From 7cc00e335a83750ceb54a2803c3618bb9809fb88 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Max=20L=C3=BCbke?= Date: Wed, 23 Oct 2024 13:43:30 +0200 Subject: [PATCH] Bump Phreecq to version 3.8.2 --- .github/workflows/cmake.yml | 94 +- CMakeLists.txt | 21 +- R/Makefile | 4 + R/R.cpp | 270 +- R/build-databases.R | 32 +- R/phreeqc.R.in | 162 +- ctest-shared.cmake | 32 + database/Amm.dat | 2372 +- database/CMakeLists.txt | 9 +- database/Concrete_PHR.dat | 158 + database/Concrete_PZ.dat | 195 + database/EPRI/epri_cdmusic.dat | 25974 ++++----- database/Kinec.v2.dat | 12039 ++++ database/Kinec_v3.dat | 12159 ++++ database/Makefile.am | 6 + .../CEMDATA18-31-03-2022-phaseVol.dat | 1394 + database/Tipping_Hurley.dat | 4590 +- database/core10.dat | 13646 ++--- database/iso.dat | 5900 +- database/llnl-organics/llnl_organics.dat | 45668 ++++++++-------- database/llnl.dat | 22878 ++++---- database/minimum.dat | 94 +- database/minteq.dat | 8718 +-- database/minteq.v4.dat | 19238 +++---- database/phreeqc.dat | 2374 +- database/phreeqc_rates.dat | 3149 ++ database/pitzer.dat | 844 +- database/sit.dat | 27141 +++++---- database/wateq4f.dat | 4292 +- examples/com/python/parallel_advect.py | 38 +- gtest/CMakeLists.txt | 56 +- gtest/Makefile.am | 3 +- gtest/TestIPhreeqc.cpp | 6 +- gtest/TestIPhreeqcLib.cpp | 6 +- gtest/phreeqc.dat.90a6449 | 1935 + .../Phreeqc_3_2013_manual_fromPDF.docx | Bin 0 -> 5887040 bytes phreeqc3-doc/RELEASE.TXT | 393 +- phreeqc3-examples/ex1.out | 317 +- phreeqc3-examples/ex10.out | 5555 +- phreeqc3-examples/ex10.sel | 1240 +- phreeqc3-examples/ex11.out | 11 +- phreeqc3-examples/ex11trn.sel | 172 +- phreeqc3-examples/ex12.out | 1 + phreeqc3-examples/ex12.sel | 124 +- phreeqc3-examples/ex12a.out | 1 + phreeqc3-examples/ex12a.sel | 90 +- phreeqc3-examples/ex13a.out | 7 +- phreeqc3-examples/ex13ac.out | 7 +- phreeqc3-examples/ex13b.out | 7 +- phreeqc3-examples/ex13c.out | 7 +- phreeqc3-examples/ex14.out | 639 +- phreeqc3-examples/ex14.sel | 402 +- phreeqc3-examples/ex16.out | 213 +- phreeqc3-examples/ex17.out | 29 +- phreeqc3-examples/ex17b.out | 361 +- phreeqc3-examples/ex18.out | 417 +- phreeqc3-examples/ex19.out | 1 + phreeqc3-examples/ex19b.out | 1 + phreeqc3-examples/ex2.out | 1221 +- phreeqc3-examples/ex2.sel | 80 +- phreeqc3-examples/ex20a.out | 78 +- phreeqc3-examples/ex20b.out | 16334 +++--- phreeqc3-examples/ex21 | 44 +- phreeqc3-examples/ex21.out | 533 +- phreeqc3-examples/ex22.out | 4008 +- phreeqc3-examples/ex2b.out | 1 + phreeqc3-examples/ex3.out | 709 +- phreeqc3-examples/ex4.out | 193 +- phreeqc3-examples/ex5.out | 1087 +- phreeqc3-examples/ex5.sel | 12 +- phreeqc3-examples/ex6.out | 209 +- phreeqc3-examples/ex6A-B.sel | 24 +- phreeqc3-examples/ex7.out | 1609 +- phreeqc3-examples/ex7.sel | 52 +- phreeqc3-examples/ex8.out | 205 +- phreeqc3-examples/ex8.sel | 6 +- phreeqc3-examples/ex9.out | 47 +- phreeqc3-examples/radial | 154 +- poet/test/testPhreeqcEngine.cpp | 4 +- src/IPhreeqc.cpp | 11 +- src/IPhreeqc.h | 6 +- src/IPhreeqc.hpp | 2 +- src/IPhreeqcLib.cpp | 2 +- src/IPhreeqc_interface_F.cpp | 2 +- src/IPhreeqc_interface_F.h | 2 +- src/README.Fortran | 34 +- src/fimpl.h | 2 +- src/fwrap.cpp | 2 +- src/fwrap.h | 2 +- src/phreeqcpp/PBasic.cpp | 804 +- src/phreeqcpp/PBasic.h | 11 + src/phreeqcpp/Phreeqc.cpp | 18 +- src/phreeqcpp/Phreeqc.h | 41 +- src/phreeqcpp/PhreeqcKeywords/Keywords.cpp | 20 +- src/phreeqcpp/PhreeqcKeywords/Keywords.h | 4 + src/phreeqcpp/Serializer.cxx | 4 + src/phreeqcpp/Solution.cxx | 15 +- src/phreeqcpp/Solution.h | 6 +- src/phreeqcpp/Surface.cxx | 34 +- src/phreeqcpp/Surface.h | 9 +- src/phreeqcpp/SurfaceCharge.cxx | 45 +- src/phreeqcpp/SurfaceCharge.h | 6 + src/phreeqcpp/basicsubs.cpp | 1155 +- src/phreeqcpp/class_main.cpp | 85 +- src/phreeqcpp/common/Utils.cxx | 8 + src/phreeqcpp/gases.cpp | 3 +- src/phreeqcpp/global_structures.h | 244 +- src/phreeqcpp/integrate.cpp | 227 +- src/phreeqcpp/kinetics.cpp | 5 +- src/phreeqcpp/mainsubs.cpp | 116 +- src/phreeqcpp/model.cpp | 1 - src/phreeqcpp/prep.cpp | 60 +- src/phreeqcpp/print.cpp | 62 +- src/phreeqcpp/read.cpp | 360 +- src/phreeqcpp/spread.cpp | 48 +- src/phreeqcpp/step.cpp | 2 + src/phreeqcpp/structures.cpp | 2 + src/phreeqcpp/tidy.cpp | 10 + src/phreeqcpp/transport.cpp | 530 +- src/phreeqcpp/utilities.cpp | 4 + unit/TestIPhreeqc.cpp | 20 +- unit/TestIPhreeqcLib.cpp | 22 +- 122 files changed, 144138 insertions(+), 112010 deletions(-) create mode 100644 ctest-shared.cmake create mode 100644 database/Concrete_PHR.dat create mode 100644 database/Concrete_PZ.dat create mode 100644 database/Kinec.v2.dat create mode 100644 database/Kinec_v3.dat create mode 100644 database/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat create mode 100644 database/phreeqc_rates.dat create mode 100644 gtest/phreeqc.dat.90a6449 create mode 100644 phreeqc3-doc/Phreeqc_3_2013_manual_fromPDF.docx diff --git a/.github/workflows/cmake.yml b/.github/workflows/cmake.yml index d12db4b7..1e6f48c6 100644 --- a/.github/workflows/cmake.yml +++ b/.github/workflows/cmake.yml @@ -44,6 +44,8 @@ jobs: os: [macos-latest, ubuntu-latest, windows-latest] runs-on: ${{ matrix.os }} + env: + BUILD_DIR: _ctest # set in ctest.cmake steps: - uses: actions/checkout@v4 @@ -68,9 +70,97 @@ jobs: - name: Upload results uses: actions/upload-artifact@v4 with: - name: ${{ matrix.os }}-test-results - path: ${{ github.workspace }}/_ctest/Testing/ + name: ${{ matrix.os }}-${{ github.job }}-results + path: ${{ github.workspace }}/${{ env.BUILD_DIR }}/Testing/ + test-shared: + strategy: + fail-fast: false + matrix: + os: [macos-latest, ubuntu-latest, windows-latest] + + runs-on: ${{ matrix.os }} + env: + BUILD_DIR: _ctest_shared # set in ctest-shared.cmake + + steps: + - uses: actions/checkout@v4 + + - name: Install ninja valgrind (Linux) + if: runner.os == 'Linux' + run: sudo apt-get update && sudo apt-get install -y ninja-build valgrind + + - name: Install ninja (macOS) + if: runner.os == 'macOS' + run: brew install ninja + + - name: Set up Visual Studio shell (Windows) + if: runner.os == 'Windows' + uses: egor-tensin/vs-shell@v2 + with: + arch: x64 + + - name: CTest + run: ctest -S ctest-shared.cmake -V --output-on-failure --timeout 900 + + - name: Upload results + uses: actions/upload-artifact@v4 + with: + name: ${{ matrix.os }}-${{ github.job }}-results + path: ${{ github.workspace }}/${{ env.BUILD_DIR }}/Testing/ + + test-clang: + strategy: + fail-fast: false + matrix: + os: [macos-latest, ubuntu-latest, windows-latest] + shared_libs: [OFF, ON] + enable_module: [OFF, ON] + + runs-on: ${{ matrix.os }} + env: + BUILD_DIR: _build + + steps: + - uses: actions/checkout@v4 + + - name: Install ninja valgrind (Linux) + if: runner.os == 'Linux' + run: sudo apt-get update && sudo apt-get install -y ninja-build clang valgrind + + - name: Install ninja (macOS) + if: runner.os == 'macOS' + run: brew install ninja + + - name: Set up Visual Studio shell (Windows) + if: runner.os == 'Windows' + uses: egor-tensin/vs-shell@v2 + with: + arch: x64 + + - name: CMake configure + if: runner.os == 'Linux' + run: CC=clang CXX=clang++ cmake -B ${{ env.BUILD_DIR }} -DBUILD_SHARED_LIBS=${{ matrix.shared_libs }} -DIPHREEQC_ENABLE_MODULE=${{ matrix.enable_module }} -DCMAKE_CXX_STANDARD=20 -DCMAKE_CXX_STANDARD_REQUIRED=ON + + - name: CMake configure + if: runner.os == 'macOS' + run: CC=$(brew --prefix llvm@15)/bin/clang CXX=$(brew --prefix llvm@15)/bin/clang++ cmake -B ${{ env.BUILD_DIR }} -DBUILD_SHARED_LIBS=${{ matrix.shared_libs }} -DIPHREEQC_ENABLE_MODULE=${{ matrix.enable_module }} -DCMAKE_CXX_STANDARD=20 -DCMAKE_CXX_STANDARD_REQUIRED=ON + + - name: CMake configure + if: runner.os == 'Windows' + run: cmake -B ${{ env.BUILD_DIR }} -A x64 -T "ClangCL" -DBUILD_SHARED_LIBS=${{ matrix.shared_libs }} -DIPHREEQC_ENABLE_MODULE=${{ matrix.enable_module }} -DCMAKE_CXX_STANDARD=20 -DCMAKE_CXX_STANDARD_REQUIRED=ON + + - name: CMake build + run: cmake --build ${{ env.BUILD_DIR }} + + - name: CTest + run: ctest --test-dir ${{ env.BUILD_DIR }} + + - name: Upload results + uses: actions/upload-artifact@v4 + with: + name: ${{ matrix.os }}-${{ github.job }}-SHARED=${{ matrix.shared_libs }}-MODULE=${{ matrix.enable_module }}-results + path: ${{ github.workspace }}/${{ env.BUILD_DIR }}/Testing/ chm: runs-on: windows-latest diff --git a/CMakeLists.txt b/CMakeLists.txt index c5ef4aaf..61b2aa1b 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -271,6 +271,12 @@ if (MSVC_VERSION EQUAL 1400 OR MSVC_VERSION GREATER 1400) target_compile_definitions(IPhreeqc PUBLIC _SCL_SECURE_NO_WARNINGS) endif() +if (WIN32 AND BUILD_SHARED_LIBS) + # Required to build IMPLIB + # (Seems to be automatically set when using Visual Studio as the generator) + target_compile_definitions(IPhreeqc PRIVATE _WINDLL) +endif() + # Allow user to override POSTFIX properties (but mandate them so that # all builds can be installed to the same directory) if (NOT CMAKE_DEBUG_POSTFIX) @@ -409,10 +415,14 @@ if (STANDALONE_BUILD) if (BUILD_TESTING) # may need to add MSVC version check include(FetchContent) + # Avoid warning about DOWNLOAD_EXTRACT_TIMESTAMP in CMake 3.24: + if (CMAKE_VERSION VERSION_GREATER_EQUAL "3.24.0") + cmake_policy(SET CMP0135 NEW) + endif() + FetchContent_Declare( googletest - GIT_REPOSITORY https://github.com/google/googletest.git - GIT_TAG 58d77fa8070e8cec2dc1ed015d66b454c8d78850 # release-1.12.1 + URL https://github.com/google/googletest/archive/release-1.12.1.tar.gz ) mark_as_advanced( @@ -449,8 +459,11 @@ if (STANDALONE_BUILD) FetchContent_MakeAvailable(googletest) if (NOT googletest_POPULATED) - FetchContent_Populate(googletest) - add_subdirectory(${googletest_SOURCE_DIR} ${googletest_BINARY_DIR}) + # Always build googletest static + set(SAVE_BUILD_SHARED_LIBS ${BUILD_SHARED_LIBS}) + set(BUILD_SHARED_LIBS OFF) + FetchContent_MakeAvailable(googletest) + set(BUILD_SHARED_LIBS ${SAVE_BUILD_SHARED_LIBS}) endif() add_subdirectory(gtest) diff --git a/R/Makefile b/R/Makefile index b3f67bf3..7e599e8c 100644 --- a/R/Makefile +++ b/R/Makefile @@ -32,9 +32,13 @@ DBS = \ ex15.ascii \ frezchem.ascii \ iso.ascii \ + Kinec_v3.ascii \ + Kinec.v2.ascii \ llnl.ascii \ minteq.ascii \ minteq.v4.ascii \ + phreeqc_rates.ascii \ + PHREEQC_ThermoddemV1.10_15Dec2020.ascii \ phreeqc.ascii \ pitzer.ascii \ sit.ascii \ diff --git a/R/R.cpp b/R/R.cpp index 11bf1c4f..00b826b3 100644 --- a/R/R.cpp +++ b/R/R.cpp @@ -30,14 +30,14 @@ accumLine(SEXP line) const char* str_in; // check args - if (!isString(line) || length(line) != 1 || STRING_ELT(line, 0) == NA_STRING) { - error("AccumulateLine:line is not a single string\n"); + if (!Rf_isString(line) || Rf_length(line) != 1 || STRING_ELT(line, 0) == NA_STRING) { + Rf_error("AccumulateLine:line is not a single string\n"); } if (STRING_ELT(line, 0) != NA_STRING) { str_in = CHAR(STRING_ELT(line, 0)); if (R::singleton().AccumulateLine(str_in) != VR_OK) { - error("%s", R::singleton().GetErrorString()); + Rf_error("%s", R::singleton().GetErrorString()); } } @@ -50,18 +50,18 @@ accumLineLst(SEXP line) const char* str_in; // check args - if (!isString(line)) { - error("a character vector argument expected"); + if (!Rf_isString(line)) { + Rf_error("a character vector argument expected"); } - int n = length(line); + int n = Rf_length(line); //std::ostringstream oss; for (int i = 0; i < n; ++i) { if (STRING_ELT(line, i) != NA_STRING) { str_in = CHAR(STRING_ELT(line, 0)); if (R::singleton().AccumulateLine(str_in) != VR_OK) { - error("%s", R::singleton().GetErrorString()); + Rf_error("%s", R::singleton().GetErrorString()); } } } @@ -90,10 +90,10 @@ getAccumLines(void) { lines.push_back(line); } - PROTECT(ans = allocVector(STRSXP, lines.size())); + Rf_protect(ans = Rf_allocVector(STRSXP, lines.size())); for (size_t i = 0; i < lines.size(); ++i) { - SET_STRING_ELT(ans, i, mkChar(lines[i].c_str())); + SET_STRING_ELT(ans, i, Rf_mkChar(lines[i].c_str())); } UNPROTECT(1); } @@ -132,22 +132,22 @@ getCol(int ncol) if (ns) { // all strings - PROTECT(ans = allocVector(STRSXP, rows-1)); + Rf_protect(ans = Rf_allocVector(STRSXP, rows-1)); for (int r = 1; r < rows; ++r) { VarInit(&vv); R::singleton().GetSelectedOutputValue(r, ncol, &vv); switch (vv.type) { case TT_EMPTY: - SET_STRING_ELT(ans, r-1, mkChar("")); + SET_STRING_ELT(ans, r-1, Rf_mkChar("")); break; case TT_ERROR: switch (vv.u.vresult) { - case VR_OK: SET_STRING_ELT(ans, r-1, mkChar("VR_OK")); break; - case VR_OUTOFMEMORY: SET_STRING_ELT(ans, r-1, mkChar("VR_OUTOFMEMORY")); break; - case VR_BADVARTYPE: SET_STRING_ELT(ans, r-1, mkChar("VR_BADVARTYPE")); break; - case VR_INVALIDARG: SET_STRING_ELT(ans, r-1, mkChar("VR_INVALIDARG")); break; - case VR_INVALIDROW: SET_STRING_ELT(ans, r-1, mkChar("VR_INVALIDROW")); break; - case VR_INVALIDCOL: SET_STRING_ELT(ans, r-1, mkChar("VR_INVALIDCOL")); break; + case VR_OK: SET_STRING_ELT(ans, r-1, Rf_mkChar("VR_OK")); break; + case VR_OUTOFMEMORY: SET_STRING_ELT(ans, r-1, Rf_mkChar("VR_OUTOFMEMORY")); break; + case VR_BADVARTYPE: SET_STRING_ELT(ans, r-1, Rf_mkChar("VR_BADVARTYPE")); break; + case VR_INVALIDARG: SET_STRING_ELT(ans, r-1, Rf_mkChar("VR_INVALIDARG")); break; + case VR_INVALIDROW: SET_STRING_ELT(ans, r-1, Rf_mkChar("VR_INVALIDROW")); break; + case VR_INVALIDCOL: SET_STRING_ELT(ans, r-1, Rf_mkChar("VR_INVALIDCOL")); break; } break; case TT_LONG: @@ -156,7 +156,7 @@ getCol(int ncol) } else { snprintf(buffer, sizeof(buffer), "%ld", vv.u.lVal); } - SET_STRING_ELT(ans, r-1, mkChar(buffer)); + SET_STRING_ELT(ans, r-1, Rf_mkChar(buffer)); break; case TT_DOUBLE: if (vv.u.dVal == -999.999 || vv.u.dVal == -99.) { @@ -164,10 +164,10 @@ getCol(int ncol) } else { snprintf(buffer, sizeof(buffer), "%g", vv.u.dVal); } - SET_STRING_ELT(ans, r-1, mkChar(buffer)); + SET_STRING_ELT(ans, r-1, Rf_mkChar(buffer)); break; case TT_STRING: - SET_STRING_ELT(ans, r-1, mkChar(vv.u.sVal)); + SET_STRING_ELT(ans, r-1, Rf_mkChar(vv.u.sVal)); break; } VarClear(&vv); @@ -176,7 +176,7 @@ getCol(int ncol) } // if (ns) else if (nd) { // all reals - PROTECT(ans = allocVector(REALSXP, rows-1)); + Rf_protect(ans = Rf_allocVector(REALSXP, rows-1)); for (int r = 1; r < rows; ++r) { VarInit(&vv); R::singleton().GetSelectedOutputValue(r, ncol, &vv); @@ -210,7 +210,7 @@ getCol(int ncol) } // if (nd) else if (nl) { // all ints - PROTECT(ans = allocVector(INTSXP, rows-1)); + Rf_protect(ans = Rf_allocVector(INTSXP, rows-1)); for (int r = 1; r < rows; ++r) { VarInit(&vv); R::singleton().GetSelectedOutputValue(r, ncol, &vv); @@ -237,7 +237,7 @@ getCol(int ncol) } // if (nl) else { // all NA - PROTECT(ans = allocVector(INTSXP, rows-1)); + Rf_protect(ans = Rf_allocVector(INTSXP, rows-1)); for (int r = 1; r < rows; ++r) { INTEGER(ans)[r-1] = NA_INTEGER; } // for @@ -250,8 +250,8 @@ SEXP getDumpFileName(void) { SEXP ans = R_NilValue; - PROTECT(ans = allocVector(STRSXP, 1)); - SET_STRING_ELT(ans, 0, mkChar(R::singleton().GetDumpFileName())); + Rf_protect(ans = Rf_allocVector(STRSXP, 1)); + SET_STRING_ELT(ans, 0, Rf_mkChar(R::singleton().GetDumpFileName())); UNPROTECT(1); return ans; } @@ -270,10 +270,10 @@ getDumpStrings(void) { lines.push_back(line); } - PROTECT(ans = allocVector(STRSXP, lines.size())); + Rf_protect(ans = Rf_allocVector(STRSXP, lines.size())); for (size_t i = 0; i < lines.size(); ++i) { - SET_STRING_ELT(ans, i, mkChar(lines[i].c_str())); + SET_STRING_ELT(ans, i, Rf_mkChar(lines[i].c_str())); } UNPROTECT(1); } @@ -284,8 +284,8 @@ SEXP getErrorFileName(void) { SEXP ans = R_NilValue; - PROTECT(ans = allocVector(STRSXP, 1)); - SET_STRING_ELT(ans, 0, mkChar(R::singleton().GetErrorFileName())); + Rf_protect(ans = Rf_allocVector(STRSXP, 1)); + SET_STRING_ELT(ans, 0, Rf_mkChar(R::singleton().GetErrorFileName())); UNPROTECT(1); return ans; } @@ -294,7 +294,7 @@ SEXP getDumpFileOn(void) { SEXP ans = R_NilValue; - PROTECT(ans = allocVector(LGLSXP, 1)); + Rf_protect(ans = Rf_allocVector(LGLSXP, 1)); if (R::singleton().GetDumpFileOn()) { LOGICAL(ans)[0] = TRUE; } @@ -309,7 +309,7 @@ SEXP getDumpStringOn(void) { SEXP ans = R_NilValue; - PROTECT(ans = allocVector(LGLSXP, 1)); + Rf_protect(ans = Rf_allocVector(LGLSXP, 1)); if (R::singleton().GetDumpStringOn()) { LOGICAL(ans)[0] = TRUE; } @@ -324,7 +324,7 @@ SEXP getErrorFileOn(void) { SEXP ans = R_NilValue; - PROTECT(ans = allocVector(LGLSXP, 1)); + Rf_protect(ans = Rf_allocVector(LGLSXP, 1)); if (R::singleton().GetErrorFileOn()) { LOGICAL(ans)[0] = TRUE; } @@ -339,7 +339,7 @@ SEXP getErrorStringOn(void) { SEXP ans = R_NilValue; - PROTECT(ans = allocVector(LGLSXP, 1)); + Rf_protect(ans = Rf_allocVector(LGLSXP, 1)); if (R::singleton().GetErrorStringOn()) { LOGICAL(ans)[0] = TRUE; } @@ -354,7 +354,7 @@ SEXP getLogFileOn(void) { SEXP ans = R_NilValue; - PROTECT(ans = allocVector(LGLSXP, 1)); + Rf_protect(ans = Rf_allocVector(LGLSXP, 1)); if (R::singleton().GetLogFileOn()) { LOGICAL(ans)[0] = TRUE; } @@ -369,7 +369,7 @@ SEXP getLogStringOn(void) { SEXP ans = R_NilValue; - PROTECT(ans = allocVector(LGLSXP, 1)); + Rf_protect(ans = Rf_allocVector(LGLSXP, 1)); if (R::singleton().GetLogStringOn()) { LOGICAL(ans)[0] = TRUE; } @@ -384,7 +384,7 @@ SEXP getOutputStringOn(void) { SEXP ans = R_NilValue; - PROTECT(ans = allocVector(LGLSXP, 1)); + Rf_protect(ans = Rf_allocVector(LGLSXP, 1)); if (R::singleton().GetOutputStringOn()) { LOGICAL(ans)[0] = TRUE; } @@ -409,10 +409,10 @@ getErrorStrings(void) { lines.push_back(line); } - PROTECT(ans = allocVector(STRSXP, lines.size())); + Rf_protect(ans = Rf_allocVector(STRSXP, lines.size())); for (size_t i = 0; i < lines.size(); ++i) { - SET_STRING_ELT(ans, i, mkChar(lines[i].c_str())); + SET_STRING_ELT(ans, i, Rf_mkChar(lines[i].c_str())); } UNPROTECT(1); } @@ -423,8 +423,8 @@ SEXP getLogFileName(void) { SEXP ans = R_NilValue; - PROTECT(ans = allocVector(STRSXP, 1)); - SET_STRING_ELT(ans, 0, mkChar(R::singleton().GetLogFileName())); + Rf_protect(ans = Rf_allocVector(STRSXP, 1)); + SET_STRING_ELT(ans, 0, Rf_mkChar(R::singleton().GetLogFileName())); UNPROTECT(1); return ans; } @@ -443,10 +443,10 @@ getLogStrings(void) { lines.push_back(line); } - PROTECT(ans = allocVector(STRSXP, lines.size())); + Rf_protect(ans = Rf_allocVector(STRSXP, lines.size())); for (size_t i = 0; i < lines.size(); ++i) { - SET_STRING_ELT(ans, i, mkChar(lines[i].c_str())); + SET_STRING_ELT(ans, i, Rf_mkChar(lines[i].c_str())); } UNPROTECT(1); } @@ -457,8 +457,8 @@ SEXP getOutputFileName(void) { SEXP ans = R_NilValue; - PROTECT(ans = allocVector(STRSXP, 1)); - SET_STRING_ELT(ans, 0, mkChar(R::singleton().GetOutputFileName())); + Rf_protect(ans = Rf_allocVector(STRSXP, 1)); + SET_STRING_ELT(ans, 0, Rf_mkChar(R::singleton().GetOutputFileName())); UNPROTECT(1); return ans; } @@ -467,7 +467,7 @@ SEXP getOutputFileOn(void) { SEXP ans = R_NilValue; - PROTECT(ans = allocVector(LGLSXP, 1)); + Rf_protect(ans = Rf_allocVector(LGLSXP, 1)); if (R::singleton().GetOutputFileOn()) { LOGICAL(ans)[0] = 1; } @@ -492,10 +492,10 @@ getOutputStrings(void) { lines.push_back(line); } - PROTECT(ans = allocVector(STRSXP, lines.size())); + Rf_protect(ans = Rf_allocVector(STRSXP, lines.size())); for (size_t i = 0; i < lines.size(); ++i) { - SET_STRING_ELT(ans, i, mkChar(lines[i].c_str())); + SET_STRING_ELT(ans, i, Rf_mkChar(lines[i].c_str())); } UNPROTECT(1); } @@ -507,13 +507,13 @@ getSelectedOutputFileName(SEXP nuser) { SEXP ans = R_NilValue; // check args - if (!isInteger(nuser) || length(nuser) != 1) { - error("GetSelectedOutputFileName:nuser must be a single integer\n"); + if (!Rf_isInteger(nuser) || Rf_length(nuser) != 1) { + Rf_error("GetSelectedOutputFileName:nuser must be a single integer\n"); } int save = R::singleton().GetCurrentSelectedOutputUserNumber(); R::singleton().SetCurrentSelectedOutputUserNumber(INTEGER(nuser)[0]); - PROTECT(ans = allocVector(STRSXP, 1)); - SET_STRING_ELT(ans, 0, mkChar(R::singleton().GetSelectedOutputFileName())); + Rf_protect(ans = Rf_allocVector(STRSXP, 1)); + SET_STRING_ELT(ans, 0, Rf_mkChar(R::singleton().GetSelectedOutputFileName())); UNPROTECT(1); R::singleton().SetCurrentSelectedOutputUserNumber(save); return ans; @@ -533,10 +533,10 @@ getSelectedOutputStrings(void) { lines.push_back(line); } - PROTECT(ans = allocVector(STRSXP, lines.size())); + Rf_protect(ans = Rf_allocVector(STRSXP, lines.size())); for (size_t i = 0; i < lines.size(); ++i) { - SET_STRING_ELT(ans, i, mkChar(lines[i].c_str())); + SET_STRING_ELT(ans, i, Rf_mkChar(lines[i].c_str())); } UNPROTECT(1); } @@ -555,21 +555,21 @@ getSelectedOutputStringsLst(void) SEXP so; char buffer[80]; - PROTECT(list = allocVector(VECSXP, n)); - PROTECT(attr = allocVector(STRSXP, n)); + Rf_protect(list = Rf_allocVector(VECSXP, n)); + Rf_protect(attr = Rf_allocVector(STRSXP, n)); int save = R::singleton().GetCurrentSelectedOutputUserNumber(); for (int i = 0; i < n; ++i) { int d = R::singleton().GetNthSelectedOutputUserNumber(i); ::snprintf(buffer, sizeof(buffer), "n%d", d); - SET_STRING_ELT(attr, i, mkChar(buffer)); + SET_STRING_ELT(attr, i, Rf_mkChar(buffer)); R::singleton().SetCurrentSelectedOutputUserNumber(d); - PROTECT(so = getSelectedOutputStrings()); + Rf_protect(so = getSelectedOutputStrings()); SET_VECTOR_ELT(list, i, so); UNPROTECT(1); } R::singleton().SetCurrentSelectedOutputUserNumber(save); - setAttrib(list, R_NamesSymbol, attr); + Rf_setAttrib(list, R_NamesSymbol, attr); UNPROTECT(2); } @@ -600,34 +600,34 @@ getSelOut(void) return list; } - PROTECT(list = allocVector(VECSXP, cols)); - PROTECT(attr = allocVector(STRSXP, cols)); + Rf_protect(list = Rf_allocVector(VECSXP, cols)); + Rf_protect(attr = Rf_allocVector(STRSXP, cols)); for (c = 0; c < cols; ++c) { VarInit(&vn); R::singleton().GetSelectedOutputValue(0, c, &vn); - PROTECT(col = getCol(c)); + Rf_protect(col = getCol(c)); SET_VECTOR_ELT(list, c, col); - SET_STRING_ELT(attr, c, mkChar(vn.u.sVal)); + SET_STRING_ELT(attr, c, Rf_mkChar(vn.u.sVal)); UNPROTECT(1); VarClear(&vn); } - setAttrib(list, R_NamesSymbol, attr); + Rf_setAttrib(list, R_NamesSymbol, attr); // Turn the data "list" into a "data.frame" // see model.c - PROTECT(klass = mkString("data.frame")); - setAttrib(list, R_ClassSymbol, klass); + Rf_protect(klass = Rf_mkString("data.frame")); + Rf_setAttrib(list, R_ClassSymbol, klass); UNPROTECT(1); - PROTECT(row_names = allocVector(INTSXP, rows-1)); + Rf_protect(row_names = Rf_allocVector(INTSXP, rows-1)); for (r = 0; r < rows-1; ++r) INTEGER(row_names)[r] = r+1; - setAttrib(list, R_RowNamesSymbol, row_names); + Rf_setAttrib(list, R_RowNamesSymbol, row_names); UNPROTECT(1); UNPROTECT(2); @@ -646,21 +646,21 @@ getSelOutLst(void) SEXP so; char buffer[80]; - PROTECT(list = allocVector(VECSXP, n)); - PROTECT(attr = allocVector(STRSXP, n)); + Rf_protect(list = Rf_allocVector(VECSXP, n)); + Rf_protect(attr = Rf_allocVector(STRSXP, n)); int save = R::singleton().GetCurrentSelectedOutputUserNumber(); for (int i = 0; i < n; ++i) { int d = R::singleton().GetNthSelectedOutputUserNumber(i); ::snprintf(buffer, sizeof(buffer), "n%d", d); - SET_STRING_ELT(attr, i, mkChar(buffer)); + SET_STRING_ELT(attr, i, Rf_mkChar(buffer)); R::singleton().SetCurrentSelectedOutputUserNumber(d); - PROTECT(so = getSelOut()); + Rf_protect(so = getSelOut()); SET_VECTOR_ELT(list, i, so); UNPROTECT(1); } R::singleton().SetCurrentSelectedOutputUserNumber(save); - setAttrib(list, R_NamesSymbol, attr); + Rf_setAttrib(list, R_NamesSymbol, attr); UNPROTECT(2); } @@ -671,8 +671,8 @@ SEXP getVersionString(void) { SEXP ans = R_NilValue; - PROTECT(ans = allocVector(STRSXP, 1)); - SET_STRING_ELT(ans, 0, mkChar(R::singleton().GetVersionString())); + Rf_protect(ans = Rf_allocVector(STRSXP, 1)); + SET_STRING_ELT(ans, 0, Rf_mkChar(R::singleton().GetVersionString())); UNPROTECT(1); return ans; } @@ -691,10 +691,10 @@ getWarningStrings(void) { lines.push_back(line); } - PROTECT(ans = allocVector(STRSXP, lines.size())); + Rf_protect(ans = Rf_allocVector(STRSXP, lines.size())); for (size_t i = 0; i < lines.size(); ++i) { - SET_STRING_ELT(ans, i, mkChar(lines[i].c_str())); + SET_STRING_ELT(ans, i, Rf_mkChar(lines[i].c_str())); } UNPROTECT(1); } @@ -708,10 +708,10 @@ listComps(void) std::list< std::string > lc = R::singleton().ListComponents(); if (lc.size() > 0) { - PROTECT(ans = allocVector(STRSXP, lc.size())); + Rf_protect(ans = Rf_allocVector(STRSXP, lc.size())); std::list< std::string >::iterator li = lc.begin(); for (int i = 0; li != lc.end(); ++i, ++li) { - SET_STRING_ELT(ans, i, mkChar((*li).c_str())); + SET_STRING_ELT(ans, i, Rf_mkChar((*li).c_str())); } UNPROTECT(1); return(ans); @@ -726,14 +726,14 @@ loadDB(SEXP filename) const char* name; // check args - if (!isString(filename) || length(filename) != 1) { - error("'filename' is not a single string"); + if (!Rf_isString(filename) || Rf_length(filename) != 1) { + Rf_error("'filename' is not a single string"); } name = CHAR(STRING_ELT(filename, 0)); if (R::singleton().LoadDatabase(name) != VR_OK) { - error("%s", R::singleton().GetErrorString()); + Rf_error("%s", R::singleton().GetErrorString()); } return(R_NilValue); @@ -743,11 +743,11 @@ SEXP loadDBLst(SEXP input) { // check args - if (!isString(input)) { - error("a character vector argument expected"); + if (!Rf_isString(input)) { + Rf_error("a character vector argument expected"); } - int n = length(input); + int n = Rf_length(input); std::ostringstream *poss = new std::ostringstream(); for (int i = 0; i < n; ++i) { @@ -759,7 +759,7 @@ loadDBLst(SEXP input) if (R::singleton().LoadDatabaseString((*poss).str().c_str()) != VR_OK) { // all dtors must be called before error delete poss; - error("%s", R::singleton().GetErrorString()); + Rf_error("%s", R::singleton().GetErrorString()); } delete poss; @@ -772,14 +772,14 @@ loadDBStr(SEXP input) const char* string; // check args - if (!isString(input) || length(input) != 1) { - error("'input' is not a single string"); + if (!Rf_isString(input) || Rf_length(input) != 1) { + Rf_error("'input' is not a single string"); } string = CHAR(STRING_ELT(input, 0)); if (R::singleton().LoadDatabaseString(string) != VR_OK) { - error("%s", R::singleton().GetErrorString()); + Rf_error("%s", R::singleton().GetErrorString()); } return(R_NilValue); @@ -789,7 +789,7 @@ SEXP runAccum(void) { if (R::singleton().RunAccumulated() != VR_OK) { - error("%s", R::singleton().GetErrorString()); + Rf_error("%s", R::singleton().GetErrorString()); } return(R_NilValue); } @@ -800,13 +800,13 @@ runFile(SEXP filename) const char* name; // check args - if (!isString(filename) || length(filename) != 1 || STRING_ELT(filename, 0) == NA_STRING) { - error("'filename' must be a single character string"); + if (!Rf_isString(filename) || Rf_length(filename) != 1 || STRING_ELT(filename, 0) == NA_STRING) { + Rf_error("'filename' must be a single character string"); } name = CHAR(STRING_ELT(filename, 0)); if (R::singleton().RunFile(name) != VR_OK) { - error("%s", R::singleton().GetErrorString()); + Rf_error("%s", R::singleton().GetErrorString()); } return(R_NilValue); @@ -818,13 +818,13 @@ runString(SEXP input) const char* in; // check args - if (!isString(input)) { - error("a character vector argument expected"); + if (!Rf_isString(input)) { + Rf_error("a character vector argument expected"); } in = CHAR(STRING_ELT(input, 0)); if (R::singleton().RunString(in) != VR_OK) { - error("%s", R::singleton().GetErrorString()); + Rf_error("%s", R::singleton().GetErrorString()); } return(R_NilValue); @@ -834,11 +834,11 @@ SEXP runStringLst(SEXP input) { // check args - if (!isString(input)) { - error("a character vector argument expected"); + if (!Rf_isString(input)) { + Rf_error("a character vector argument expected"); } - int n = length(input); + int n = Rf_length(input); std::ostringstream *poss = new std::ostringstream(); for (int i = 0; i < n; ++i) { @@ -849,7 +849,7 @@ runStringLst(SEXP input) if (R::singleton().RunString((*poss).str().c_str()) != VR_OK) { delete poss; - error("%s", R::singleton().GetErrorString()); + Rf_error("%s", R::singleton().GetErrorString()); } delete poss; @@ -862,8 +862,8 @@ setDumpFileName(SEXP filename) const char* name; SEXP ans = R_NilValue; // check args - if (!isString(filename) || length(filename) != 1) { - error("SetDumpFileName:filename is not a single string\n"); + if (!Rf_isString(filename) || Rf_length(filename) != 1) { + Rf_error("SetDumpFileName:filename is not a single string\n"); } name = CHAR(STRING_ELT(filename, 0)); @@ -876,9 +876,9 @@ setDumpFileOn(SEXP value) { SEXP ans = R_NilValue; // check args - if (!isLogical(value) || length(value) != 1 || LOGICAL(value)[0] == NA_LOGICAL) { + if (!Rf_isLogical(value) || Rf_length(value) != 1 || LOGICAL(value)[0] == NA_LOGICAL) { R::singleton().AddError("SetDumpFileOn: value must either be \"TRUE\" or \"FALSE\""); - error("value must either be \"TRUE\" or \"FALSE\"\n"); + Rf_error("value must either be \"TRUE\" or \"FALSE\"\n"); } R::singleton().SetDumpFileOn(LOGICAL(value)[0]); return(ans); @@ -889,8 +889,8 @@ setDumpStringOn(SEXP value) { SEXP ans = R_NilValue; // check args - if (!isLogical(value) || length(value) != 1) { - error("SetDumpStringOn:value must either be \"TRUE\" or \"FALSE\"\n"); + if (!Rf_isLogical(value) || Rf_length(value) != 1) { + Rf_error("SetDumpStringOn:value must either be \"TRUE\" or \"FALSE\"\n"); } R::singleton().SetDumpStringOn(LOGICAL(value)[0]); return(ans); @@ -902,8 +902,8 @@ setErrorFileName(SEXP filename) const char* name; SEXP ans = R_NilValue; // check args - if (!isString(filename) || length(filename) != 1) { - error("SetErrorFileName:filename is not a single string\n"); + if (!Rf_isString(filename) || Rf_length(filename) != 1) { + Rf_error("SetErrorFileName:filename is not a single string\n"); } name = CHAR(STRING_ELT(filename, 0)); @@ -916,9 +916,9 @@ setErrorFileOn(SEXP value) { SEXP ans = R_NilValue; // check args - if (!isLogical(value) || length(value) != 1 || LOGICAL(value)[0] == NA_LOGICAL) { + if (!Rf_isLogical(value) || Rf_length(value) != 1 || LOGICAL(value)[0] == NA_LOGICAL) { R::singleton().AddError("SetErrorFileOn: value must either be \"TRUE\" or \"FALSE\""); - error("value must either be \"TRUE\" or \"FALSE\"\n"); + Rf_error("value must either be \"TRUE\" or \"FALSE\"\n"); } R::singleton().SetErrorFileOn(LOGICAL(value)[0]); return(ans); @@ -929,8 +929,8 @@ setErrorStringOn(SEXP value) { SEXP ans = R_NilValue; // check args - if (!isLogical(value) || length(value) != 1) { - error("SetErrorStringOn:value must either be \"TRUE\" or \"FALSE\"\n"); + if (!Rf_isLogical(value) || Rf_length(value) != 1) { + Rf_error("SetErrorStringOn:value must either be \"TRUE\" or \"FALSE\"\n"); } R::singleton().SetErrorStringOn(LOGICAL(value)[0]); return(ans); @@ -942,8 +942,8 @@ setLogFileName(SEXP filename) const char* name; SEXP ans = R_NilValue; // check args - if (!isString(filename) || length(filename) != 1) { - error("SetLogFileName:filename is not a single string\n"); + if (!Rf_isString(filename) || Rf_length(filename) != 1) { + Rf_error("SetLogFileName:filename is not a single string\n"); } name = CHAR(STRING_ELT(filename, 0)); @@ -956,9 +956,9 @@ setLogFileOn(SEXP value) { SEXP ans = R_NilValue; // check args - if (!isLogical(value) || length(value) != 1) { + if (!Rf_isLogical(value) || Rf_length(value) != 1) { R::singleton().AddError("SetLogFileOn: value must either be \"TRUE\" or \"FALSE\""); - error("value must either be \"TRUE\" or \"FALSE\""); + Rf_error("value must either be \"TRUE\" or \"FALSE\""); } R::singleton().SetLogFileOn(LOGICAL(value)[0]); return(ans); @@ -969,8 +969,8 @@ setLogStringOn(SEXP value) { SEXP ans = R_NilValue; // check args - if (!isLogical(value) || length(value) != 1) { - error("SetLogStringOn:value must either be \"TRUE\" or \"FALSE\"\n"); + if (!Rf_isLogical(value) || Rf_length(value) != 1) { + Rf_error("SetLogStringOn:value must either be \"TRUE\" or \"FALSE\"\n"); } R::singleton().SetLogStringOn(LOGICAL(value)[0]); return(ans); @@ -982,8 +982,8 @@ setOutputFileName(SEXP filename) const char* name; SEXP ans = R_NilValue; // check args - if (!isString(filename) || length(filename) != 1) { - error("SetOutputFileName:filename is not a single string\n"); + if (!Rf_isString(filename) || Rf_length(filename) != 1) { + Rf_error("SetOutputFileName:filename is not a single string\n"); } name = CHAR(STRING_ELT(filename, 0)); @@ -996,8 +996,8 @@ setOutputFileOn(SEXP value) { SEXP ans = R_NilValue; // check args - if (!isLogical(value) || length(value) != 1) { - error("value must either be \"TRUE\" or \"FALSE\"\n"); + if (!Rf_isLogical(value) || Rf_length(value) != 1) { + Rf_error("value must either be \"TRUE\" or \"FALSE\"\n"); } R::singleton().SetOutputFileOn(LOGICAL(value)[0]); return(ans); @@ -1008,8 +1008,8 @@ setOutputStringOn(SEXP value) { SEXP ans = R_NilValue; // check args - if (!isLogical(value) || length(value) != 1) { - error("SetOutputStringOn:value must either be \"TRUE\" or \"FALSE\"\n"); + if (!Rf_isLogical(value) || Rf_length(value) != 1) { + Rf_error("SetOutputStringOn:value must either be \"TRUE\" or \"FALSE\"\n"); } R::singleton().SetOutputStringOn(LOGICAL(value)[0]); return(ans); @@ -1020,11 +1020,11 @@ setSelectedOutputFileName(SEXP nuser, SEXP filename) { SEXP ans = R_NilValue; // check args - if (!isInteger(nuser) || length(nuser) != 1) { - error("SetSelectedOutputFileName:nuser must be a single integer\n"); + if (!Rf_isInteger(nuser) || Rf_length(nuser) != 1) { + Rf_error("SetSelectedOutputFileName:nuser must be a single integer\n"); } - if (!isString(filename) || length(filename) != 1) { - error("SetSelectedOutputFileName:filename is not a single string\n"); + if (!Rf_isString(filename) || Rf_length(filename) != 1) { + Rf_error("SetSelectedOutputFileName:filename is not a single string\n"); } int save = R::singleton().GetCurrentSelectedOutputUserNumber(); const char* name = CHAR(STRING_ELT(filename, 0)); @@ -1039,11 +1039,11 @@ setSelectedOutputFileOn(SEXP nuser, SEXP value) { SEXP ans = R_NilValue; // check args - if (!isInteger(nuser) || length(nuser) != 1) { - error("nuser must be a single integer\n"); + if (!Rf_isInteger(nuser) || Rf_length(nuser) != 1) { + Rf_error("nuser must be a single integer\n"); } - if (!isLogical(value) || length(value) != 1) { - error("value must either be \"TRUE\" or \"FALSE\"\n"); + if (!Rf_isLogical(value) || Rf_length(value) != 1) { + Rf_error("value must either be \"TRUE\" or \"FALSE\"\n"); } int save = R::singleton().GetCurrentSelectedOutputUserNumber(); R::singleton().SetCurrentSelectedOutputUserNumber(INTEGER(nuser)[0]); @@ -1057,11 +1057,11 @@ setSelectedOutputStringOn(SEXP nuser, SEXP value) { SEXP ans = R_NilValue; // check args - if (!isInteger(nuser) || length(nuser) != 1) { - error("SetSelectedOutputStringOn:nuser must be a single integer\n"); + if (!Rf_isInteger(nuser) || Rf_length(nuser) != 1) { + Rf_error("SetSelectedOutputStringOn:nuser must be a single integer\n"); } - if (!isLogical(value) || length(value) != 1) { - error("SetSelectedOutputStringOn:value must either be \"TRUE\" or \"FALSE\"\n"); + if (!Rf_isLogical(value) || Rf_length(value) != 1) { + Rf_error("SetSelectedOutputStringOn:value must either be \"TRUE\" or \"FALSE\"\n"); } int save = R::singleton().GetCurrentSelectedOutputUserNumber(); R::singleton().SetCurrentSelectedOutputUserNumber(INTEGER(nuser)[0]); diff --git a/R/build-databases.R b/R/build-databases.R index f65156d9..6e651cf6 100644 --- a/R/build-databases.R +++ b/R/build-databases.R @@ -10,19 +10,23 @@ ##phreeqc.dat.string <- paste(scan("../database/phreeqc.dat", what="", sep="\n"), collapse="\n") ##wateq4f.dat.string <- paste(scan("../database/wateq4f.dat", what="", sep="\n"), collapse="\n") # lists -Amm.dat <- scan("Amm.ascii", what="", sep="\n") -ColdChem.dat <- scan("ColdChem.ascii", what="", sep="\n") -core10.dat <- scan("core10.ascii", what="", sep="\n") -ex15.dat <- scan("ex15.ascii", what="", sep="\n") -frezchem.dat <- scan("frezchem.ascii", what="", sep="\n") -iso.dat <- scan("iso.ascii", what="", sep="\n") -llnl.dat <- scan("llnl.ascii", what="", sep="\n") -minteq.dat <- scan("minteq.ascii", what="", sep="\n") -minteq.v4.dat <- scan("minteq.v4.ascii", what="", sep="\n") -pitzer.dat <- scan("pitzer.ascii", what="", sep="\n") -sit.dat <- scan("sit.ascii", what="", sep="\n") -Tipping_Hurley.dat <- scan("Tipping_Hurley.ascii", what="", sep="\n") -phreeqc.dat <- scan("phreeqc.ascii", what="", sep="\n") -wateq4f.dat <- scan("wateq4f.ascii", what="", sep="\n") +Amm.dat <- scan("Amm.ascii", what="", sep="\n") +ColdChem.dat <- scan("ColdChem.ascii", what="", sep="\n") +core10.dat <- scan("core10.ascii", what="", sep="\n") +ex15.dat <- scan("ex15.ascii", what="", sep="\n") +frezchem.dat <- scan("frezchem.ascii", what="", sep="\n") +iso.dat <- scan("iso.ascii", what="", sep="\n") +Kinec_v3.dat <- scan("Kinec_v3.ascii", what="", sep="\n") +Kinec.v2.dat <- scan("Kinec.v2.ascii", what="", sep="\n") +llnl.dat <- scan("llnl.ascii", what="", sep="\n") +minteq.dat <- scan("minteq.ascii", what="", sep="\n") +minteq.v4.dat <- scan("minteq.v4.ascii", what="", sep="\n") +phreeqc_rates.dat <- scan("phreeqc_rates.ascii", what="", sep="\n") +PHREEQC_ThermoddemV1.10_15Dec2020.dat <- scan("PHREEQC_ThermoddemV1.10_15Dec2020.ascii", what="", sep="\n") +pitzer.dat <- scan("pitzer.ascii", what="", sep="\n") +sit.dat <- scan("sit.ascii", what="", sep="\n") +Tipping_Hurley.dat <- scan("Tipping_Hurley.ascii", what="", sep="\n") +phreeqc.dat <- scan("phreeqc.ascii", what="", sep="\n") +wateq4f.dat <- scan("wateq4f.ascii", what="", sep="\n") save(list = ls(all = TRUE), file = "phreeqc/data/databases.rda", compress = "xz") rm(list = ls(all = TRUE)) diff --git a/R/phreeqc.R.in b/R/phreeqc.R.in index 6f62c9a9..b53d6655 100644 --- a/R/phreeqc.R.in +++ b/R/phreeqc.R.in @@ -1377,37 +1377,6 @@ function(nuser, value) { -##' @name phreeqc.dat -##' @title The phreeqc.dat database -##' @description phreeqc.dat is a phreeqc database file derived from PHREEQE, -##' which is consistent with wateq4f.dat, but has a smaller set of elements and -##' aqueous species. The database has been reformatted for use by -##' \code{\link{phrLoadDatabaseString}}. -##' @docType data -##' @family Databases -##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} -##' @usage phreeqc.dat # phrLoadDatabaseString(phreeqc.dat) -##' @keywords dataset -NULL - - - -##' @name ex15.dat -##' @title The ex15.dat database -##' @description ex15.dat is a database used by example 15 (\code{\link{ex15}}). -##' The database has been reformatted for use by -##' \code{\link{phrLoadDatabaseString}}. -##' @docType data -##' @family Databases -##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} -##' @usage ex15.dat # phrLoadDatabaseString(ex15.dat) -##' @keywords dataset -NULL - - - ##' @name Amm.dat ##' @title The Amm.dat database. ##' @description Amm.dat is the same as phreeqc.dat, except that ammonia redox @@ -1456,14 +1425,16 @@ NULL -##' @name Tipping_Hurley.dat -##' @title The Tipping_Hurley.dat database -##' @description Tipping_Hurley.dat is a database for organic-ligand -##' binding approximating WHAM by Tipping and Hurley. +##' @name ex15.dat +##' @title The ex15.dat database +##' @description ex15.dat is a database used by example 15 (\code{\link{ex15}}). +##' The database has been reformatted for use by ##' \code{\link{phrLoadDatabaseString}}. ##' @docType data ##' @family Databases -##' @usage Tipping_Hurley.dat # phrLoadDatabaseString(Tipping_Hurley.dat) +##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} +##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @usage ex15.dat # phrLoadDatabaseString(ex15.dat) ##' @keywords dataset NULL @@ -1484,15 +1455,51 @@ NULL -##' @name wateq4f.dat -##' @title The wateq4f.dat database. -##' @description wateq4f.dat is a database derived from WATEQ4F. The database -##' has been reformatted for use by \code{\link{phrLoadDatabaseString}}. +##' @name iso.dat +##' @title The iso.dat database. +##' @description iso.dat is a partial implementation of the individual component +##' approach to isotope calculations as described by Thorstenson and Parkhurst. +##' The database has been reformatted for use by +##' \code{\link{phrLoadDatabaseString}}. ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} ##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} -##' @usage wateq4f.dat # phrLoadDatabaseString(wateq4f.dat) +##' @usage iso.dat # phrLoadDatabaseString(iso.dat) +##' @keywords dataset +NULL + + + +##' @name Kinec_v3.dat +##' @title Thermodynamic and rates database from Oelkers and coworkers. +##' @description Kinec_v3.dat contains the parameters for calculating mineral +##' dissolution rates for primary and secondary silicate minerals using the equations +##' and parameters reported by Hermanska et al. (2022, 2023), and dissolution rates +##' for other non)-silicate mineral systems using the equations and parameters +##' reported by Oelkers and Addassi (2024, in preparation). +##' @docType data +##' @family Databases +##' @references Hermanska et al. (2022, 2003) and Oelkers and Addassi (2024, in preparation). +##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @usage Kinec_v3.dat # phrLoadDatabaseString(Kinec_v3.dat) +##' @keywords dataset +NULL + + + +##' @name Kinec.v2.dat +##' @title Thermodynamic and rates database from Oelkers and coworkers. +##' @description Kinec.v2.dat contains the parameters for calculating mineral +##' dissolution rates for primary and secondary silicate minerals using the equations +##' and parameters reported by Hermanska et al. (2022, 2023), and dissolution rates +##' for other non)-silicate mineral systems using the equations and parameters +##' reported by Oelkers and Addassi (2024, in preparation). +##' @docType data +##' @family Databases +##' @references Hermanska et al. (2022, 2003) and Oelkers and Addassi (2024, in preparation). +##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @usage Kinec.v2.dat # phrLoadDatabaseString(Kinec.v2.dat) ##' @keywords dataset NULL @@ -1543,6 +1550,56 @@ NULL +##' @name phreeqc_rates.dat +##' @title Thermodynamic and rates database +##' @description Same as the phreeqc.dat database, but with new data blocks +##' RATE_PARAMETERS_HERMANSKA, RATE_PARAMETERS_PK, and +##' RATE_PARAMETERS_SVD that tabulate rate parameters from Hermanska +##' and others (2023), Palandri and Kharaka (2004), and Sverdrup and +##' others (2019). The Sverdrup parameters are only for two minerals +##' as a demonstration. Basic functions RATE_HERMANSKA, RATE_PK, and +##' RATE_SVD can be used to calculate rates using the corresponding +##' parameters. +##' @docType data +##' @family Databases +##' @references Hermanska and others (2023), Palandri and Kharaka (2004), +##' and Sverdrup and others (2019). +##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @usage phreeqc_rates.dat # phrLoadDatabaseString(phreeqc_rates.dat) +##' @keywords dataset +NULL + + + +##' @name PHREEQC_ThermoddemV1.10_15Dec2020.dat +##' @title Thermochemical Database from the BRGM institute (French Geological Survey) +##' @description Thermochemical Database from the BRGM institute (French Geological Survey) +##' @docType data +##' @family Databases +##' @references \url{https://thermoddem.brgm.fr/} +##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @usage PHREEQC_ThermoddemV1.10_15Dec2020.dat +##' # phrLoadDatabaseString(PHREEQC_ThermoddemV1.10_15Dec2020.dat) +NULL + + + +##' @name phreeqc.dat +##' @title The phreeqc.dat database +##' @description phreeqc.dat is a phreeqc database file derived from PHREEQE, +##' which is consistent with wateq4f.dat, but has a smaller set of elements and +##' aqueous species. The database has been reformatted for use by +##' \code{\link{phrLoadDatabaseString}}. +##' @docType data +##' @family Databases +##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} +##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @usage phreeqc.dat # phrLoadDatabaseString(phreeqc.dat) +##' @keywords dataset +NULL + + + ##' @name pitzer.dat ##' @title The pitzer.dat database. ##' @description pitzer.dat is a database for the specific-ion-interaction model @@ -1574,17 +1631,28 @@ NULL -##' @name iso.dat -##' @title The iso.dat database. -##' @description iso.dat is a partial implementation of the individual component -##' approach to isotope calculations as described by Thorstenson and Parkhurst. -##' The database has been reformatted for use by +##' @name Tipping_Hurley.dat +##' @title The Tipping_Hurley.dat database +##' @description Tipping_Hurley.dat is a database for organic-ligand +##' binding approximating WHAM by Tipping and Hurley. ##' \code{\link{phrLoadDatabaseString}}. ##' @docType data ##' @family Databases +##' @usage Tipping_Hurley.dat # phrLoadDatabaseString(Tipping_Hurley.dat) +##' @keywords dataset +NULL + + + +##' @name wateq4f.dat +##' @title The wateq4f.dat database. +##' @description wateq4f.dat is a database derived from WATEQ4F. The database +##' has been reformatted for use by \code{\link{phrLoadDatabaseString}}. +##' @docType data +##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} ##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} -##' @usage iso.dat # phrLoadDatabaseString(iso.dat) +##' @usage wateq4f.dat # phrLoadDatabaseString(wateq4f.dat) ##' @keywords dataset NULL diff --git a/ctest-shared.cmake b/ctest-shared.cmake new file mode 100644 index 00000000..a275e7f5 --- /dev/null +++ b/ctest-shared.cmake @@ -0,0 +1,32 @@ +include(CTestConfig.cmake) + +site_name(CTEST_SITE) +set(CTEST_BUILD_NAME ${CMAKE_HOST_SYSTEM_NAME}) + +set(CTEST_SOURCE_DIRECTORY "${CTEST_SCRIPT_DIRECTORY}") +set(CTEST_BINARY_DIRECTORY "${CTEST_SCRIPT_DIRECTORY}/_ctest_shared") + +##set(ENV{CXXFLAGS} "--coverage") +set(CTEST_CMAKE_GENERATOR Ninja) +set(CTEST_CONFIGURATION_TYPE Debug) +set(CTEST_BUILD_CONFIGURATION Debug) +set(CTEST_USE_LAUNCHERS 1) + +set(CTEST_UPDATE_TYPE git) +set(CTEST_UPDATE_COMMAND git) +set(CTEST_UPDATE_VERSION_ONLY TRUE) + +##set(CTEST_COVERAGE_COMMAND "gcov") +##find_program(CTEST_MEMORYCHECK_COMMAND NAMES valgrind) + +ctest_empty_binary_directory(${CTEST_BINARY_DIRECTORY}) +ctest_start("Continuous") +ctest_update() +ctest_configure(OPTIONS "-L;-DBUILD_SHARED_LIBS:BOOL=ON") +ctest_build() +ctest_test() +#ctest_coverage() +if (CTEST_MEMORYCHECK_COMMAND) + ctest_memcheck() +endif() +##ctest_submit() diff --git a/database/Amm.dat b/database/Amm.dat index e40c6bb2..c7169124 100644 --- a/database/Amm.dat +++ b/database/Amm.dat @@ -1,1405 +1,1417 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\Amm.dat, 22/05/2024 19:38, 1948 lines, 55817 bytes, md5=78b3659799b73ddca128328b6ee7533b +# Created 22 May 2024 19:55:37 +# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts Amm.dat + # PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES # -#element species alk gfw_formula element_gfw +#element species alk gfw_formula element_gfw # -H H+ -1.0 H 1.008 -H(0) H2 0 H -H(1) H+ -1.0 0 -E e- 0 0.0 0 -O H2O 0 O 16.0 -O(0) O2 0 O -O(-2) H2O 0 0 -Ca Ca+2 0 Ca 40.08 -Mg Mg+2 0 Mg 24.312 -Na Na+ 0 Na 22.9898 -K K+ 0 K 39.102 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2.0 Fe -Mn Mn+2 0 Mn 54.938 -Mn(+2) Mn+2 0 Mn -Mn(+3) Mn+3 0 Mn -Al Al+3 0 Al 26.9815 -Ba Ba+2 0 Ba 137.34 -Sr Sr+2 0 Sr 87.62 -Si H4SiO4 0 SiO2 28.0843 -Cl Cl- 0 Cl 35.453 -C CO3-2 2.0 HCO3 12.0111 -C(+4) CO3-2 2.0 HCO3 -C(-4) CH4 0 CH4 -Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 -S SO4-2 0 SO4 32.064 -S(6) SO4-2 0 SO4 -S(-2) HS- 1.0 S -N NO3- 0 N 14.0067 -N(+5) NO3- 0 NO3 -N(+3) NO2- 0 NO2 -N(0) N2 0 N -# N(-3) NH4+ NH4 14.0067 -Amm AmmH+ 0 AmmH 17.031 -B H3BO3 0 B 10.81 -P PO4-3 2.0 P 30.9738 -F F- 0 F 18.9984 -Li Li+ 0 Li 6.939 -Br Br- 0 Br 79.904 -Zn Zn+2 0 Zn 65.37 -Cd Cd+2 0 Cd 112.4 -Pb Pb+2 0 Pb 207.19 -Cu Cu+2 0 Cu 63.546 -Cu(+2) Cu+2 0 Cu -Cu(+1) Cu+1 0 Cu -# redox-uncoupled gases -Hdg Hdg 0 Hdg 2.016 # H2 gas -Oxg Oxg 0 Oxg 32 # O2 gas -Mtg Mtg 0 Mtg 16.032 # CH4 gas -Sg H2Sg 0.0 H2Sg 32.064 # H2S gas -Ntg Ntg 0 Ntg 28.0134 # N2 gas +H H+ -1 H 1.008 +H(0) H2 0 H +H(1) H+ -1 H +E e- 1 0 0 +O H2O 0 O 16 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.9815 +Ba Ba+2 0 Ba 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO3-2 2 HCO3 12.0111 +C(+4) CO3-2 2 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +S(-2) HS- 1 S +N NO3- 0 N 14.0067 +N(+5) NO3- 0 NO3 +N(+3) NO2- 0 NO2 +N(0) N2 0 N +#N(-3) NH4+ 0 NH4 14.0067 +Amm AmmH+ 0 AmmH 17.031 +B H3BO3 0 B 10.81 +P PO4-3 2 P 30.9738 +F F- 0 F 18.9984 +Li Li+ 0 Li 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.37 +Cd Cd+2 0 Cd 112.4 +Pb Pb+2 0 Pb 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu +# redox-uncoupled gases +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # O2 gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas +Sg H2Sg 0 H2Sg 32.064 # H2S gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -gamma 9.0 0 - -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc -# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) - -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 + -gamma 9 0 + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 + -dw 9.31e-9 838 16.315 0 2.376 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif +# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif + +# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 2.376 for H+) +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. (a2 = Vm = 0 for H+, the reference for Vm) +# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) +# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) + +# If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O + -dw 2.299e-9 -254 # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence -Ca+2 = Ca+2 - -gamma 5.0 0.1650 - -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 - -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M -Mg+2 = Mg+2 - -gamma 5.5 0.20 - -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 -Na+ = Na+ - -gamma 4.0 0.075 - -gamma 4.08 0.082 # halite solubility - -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 -# for calculating densities (rho) when I > 3... - # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 - -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 -K+ = K+ - -gamma 3.5 0.015 - -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 - -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 -Fe+2 = Fe+2 - -gamma 6.0 0 - -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 -Mn+2 = Mn+2 - -gamma 6.0 0 - -dw 0.688e-9 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 -Al+3 = Al+3 - -gamma 9.0 0 - -dw 0.559e-9 - -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. -Ba+2 = Ba+2 - -gamma 5.0 0 - -gamma 4.0 0.153 # Barite solubility - -dw 0.848e-9 100 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 - -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 -Sr+2 = Sr+2 - -gamma 5.260 0.121 - -dw 0.794e-9 161 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 -H4SiO4 = H4SiO4 - -dw 1.10e-9 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 -Cl- = Cl- - -gamma 3.5 0.015 - -gamma 3.63 0.017 # cf. pitzer.dat - -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 - -viscosity 0 0 0 0 0 0 1 # the reference solute -CO3-2 = CO3-2 - -gamma 5.4 0 - -dw 0.955e-9 28.9 14.3 98.1 - -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 - -viscosity 0 0.301 4.12e-2 1.44e-3 1.41e-2 1.364 -2.00 -SO4-2 = SO4-2 - -gamma 5.0 -0.04 - -dw 1.07e-9 187 2.64 22.6 - -Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143 -NO3- = NO3- - -gamma 3.0 0 - -dw 1.9e-9 184 1.85 3.85 - -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 - -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 -AmmH+ = AmmH+ - -gamma 2.5 0 - -dw 1.98e-9 312 0.95 4.53 - -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 - -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 -H3BO3 = H3BO3 - -dw 1.1e-9 - -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt -PO4-3 = PO4-3 - -gamma 4.0 0 - -dw 0.612e-9 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 -F- = F- - -gamma 3.5 0 - -dw 1.46e-9 10 - -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 Li+ = Li+ - -gamma 6.0 0 - -dw 1.03e-9 80 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 + -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 +Na+ = Na+ + -gamma 4 0.075 + -gamma 4.08 0.082 # halite solubility + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 +K+ = K+ + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 + -dw 1.96e-9 254 3.484 0 0.1964 +Mg+2 = Mg+2 + -gamma 5.5 0.2 + -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 +Ca+2 = Ca+2 + -gamma 5 0.165 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 +Sr+2 = Sr+2 + -gamma 5.26 0.121 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 +Ba+2 = Ba+2 + -gamma 5 0 + -gamma 4 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3 +Fe+2 = Fe+2 + -gamma 6 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +Mn+2 = Mn+2 + -gamma 6 0 + -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +Al+3 = Al+3 + -gamma 9 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353 + -dw 0.559e-9 +H4SiO4 = H4SiO4 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 + -dw 1.1e-9 +Cl- = Cl- + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.16 0.2071 0.7432 +CO3-2 = CO3-2 + -gamma 5.4 0 + -Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 +SO4-2 = SO4-2 + -gamma 5 -0.04 + -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 + -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 +NO3- = NO3- + -gamma 3 0 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 + -dw 1.9e-9 104 1.11 +AmmH+ = AmmH+ + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 +H3BO3 = H3BO3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt + -dw 1.1e-9 +PO4-3 = PO4-3 + -gamma 4 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 +F- = F- + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 -36 4.352 Br- = Br- - -gamma 3.0 0 - -dw 2.01e-9 258 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 - -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 + -gamma 3 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.82 + -dw 2.09e-9 208 3.5 0 0.5737 Zn+2 = Zn+2 - -gamma 5.0 0 - -dw 0.715e-9 - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -gamma 5 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 Cd+2 = Cd+2 - -dw 0.717e-9 - -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 Pb+2 = Pb+2 - -dw 0.945e-9 - -Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 Cu+2 = Cu+2 - -gamma 6.0 0 - -dw 0.733e-9 - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -gamma 6 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 # redox-uncoupled gases Hdg = Hdg # H2 - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 Oxg = Oxg # O2 - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 Mtg = Mtg # CH4 - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 Ntg = Ntg # N2 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 # aqueous species H2O = OH- + H+ - -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -gamma 3.5 0 - -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 - -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -gamma 3.5 0 + -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 + -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 + -log_k -86.08 -delta_h 134.79 kcal - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 2 H+ + 2 e- = H2 - -log_k -3.15 + -log_k -3.15 -delta_h -1.759 kcal - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 H+ + Cl- = HCl - -log_k -0.5 - -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C - -gamma 0 0.4256 - -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- - -log_k 10.329 - -delta_h -3.561 kcal - -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 - -dw 1.18e-9 -182 0.351 -4.94 - -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 - -dw 1.18e-9 -182 0.351 -4.94 - -viscosity 0 0.117 -2.91e-2 0 0 0 0.896 + -log_k 10.329; -delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 CO3-2 + 2 H+ = CO2 + H2O - -log_k 16.681 - -delta_h -5.738 kcal - -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 -2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T -log_k -1.8 - -analytical_expression 8.68 -0.0103 -2190 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 14.58 1.84 4.14 -2.46 -3.20 + -analytical_expression 8.68 -0.0103 -2190 + -Vm 14.58 1.84 4.14 -2.46 -3.2 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O - -log_k 41.071 + -log_k 41.071 -delta_h -61.039 kcal - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 SO4-2 + H+ = HSO4- - -log_k 1.988 - -delta_h 3.85 kcal - -analytic -56.889 0.006473 2307.9 19.8858 - -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15 2.861 HS- = S-2 + H+ - -log_k -12.918 - -delta_h 12.1 kcal - -gamma 5.0 0 - -dw 0.731e-9 + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5 0 + -dw 0.731e-9 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O - -log_k 33.65 - -delta_h -60.140 kcal - -gamma 3.5 0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -log_k 33.65 + -delta_h -60.14 kcal + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 HS- + H+ = H2S - -log_k 6.994 - -delta_h -5.30 kcal - -analytical -11.17 0.02386 3279.0 - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 -2H2S = (H2S)2 # activity correction for H2S solubility at high P, T - -analytical_expression 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -log_k 6.994; -delta_h -5.3 kcal + -analytical -11.17 0.02386 3279 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 H2Sg = HSg- + H+ - -log_k -6.994 - -delta_h 5.30 kcal - -analytical_expression 11.17 -0.02386 -3279.0 - -gamma 3.5 0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt -2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T - -analytical_expression 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -log_k -6.994; -delta_h 5.3 kcal + -analytical_expression 11.17 -0.02386 -3279 + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 NO3- + 2 H+ + 2 e- = NO2- + H2O - -log_k 28.570 - -delta_h -43.760 kcal - -gamma 3.0 0 - -dw 1.91e-9 - -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt + -log_k 28.57 + -delta_h -43.76 kcal + -gamma 3 0 + -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O - -log_k 207.08 - -delta_h -312.130 kcal - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 -AmmH+ = Amm + H+ - -log_k -9.252 - -delta_h 12.48 kcal - -analytic 0.6322 -0.001225 -2835.76 - -dw 2.28e-9 - -Vm 6.69 2.8 3.58 -2.88 1.43 - -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -log_k 207.08 + -delta_h -312.13 kcal + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O -# -log_k 119.077 -# -delta_h -187.055 kcal -# -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +# -log_k 119.077 +# -delta_h -187.055 kcal +# -gamma 2.5 0 +# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 +# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 +# -dw 1.98e-9 203 1.47 2.644 6.81e-2 +AmmH+ = Amm + H+ +#NH4+ = NH3 + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 AmmH+ + SO4-2 = AmmHSO4- - -log_k 1.11; -delta_h 13.2 kcal - -gamma 5 -0.163 - -Vm 13.56 0 -31.15 0 0 0 11.20 0 -0.1287 1 - -dw 1.1e-9 400 1.85 200 - -viscosity 0.262 0 0 9.49e-2 3.81e-2 0.438 0.507 +#NH4+ + SO4-2 = NH4SO4- + -gamma 6.54 -0.08 + -log_k 1.106; -delta_h 4.3 kcal + -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 + -viscosity 0.24 0 0 3.3e-3 -0.1 0.528 0.748 + -dw 1.35e-9 500 12.5 3 -1 H3BO3 = H2BO3- + H+ - -log_k -9.24 - -delta_h 3.224 kcal + -log_k -9.24 + -delta_h 3.224 kcal H3BO3 + F- = BF(OH)3- - -log_k -0.4 - -delta_h 1.850 kcal + -log_k -0.4 + -delta_h 1.85 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O - -log_k 7.63 - -delta_h 1.618 kcal + -log_k 7.63 + -delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O - -log_k 13.67 - -delta_h -1.614 kcal + -log_k 13.67 + -delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O - -log_k 20.28 - -delta_h -1.846 kcal + -log_k 20.28 + -delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 - -log_k 12.346 - -delta_h -3.530 kcal - -gamma 5.0 0 - -dw 0.69e-9 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 + -log_k 12.346 + -delta_h -3.53 kcal + -gamma 5 0 + -dw 0.69e-9 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- - -log_k 19.553 - -delta_h -4.520 kcal - -gamma 5.4 0 - -dw 0.846e-9 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 -PO4-3 + 3H+ = H3PO4 - log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 - delta_h -10.1 kJ - -Vm 7.47 12.4 6.29 -3.29 0 + -log_k 19.553 + -delta_h -4.52 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 +PO4-3 + 3 H+ = H3PO4 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF - -log_k 3.18 - -delta_h 3.18 kcal - -analytic -2.033 0.012645 429.01 - -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt H+ + 2 F- = HF2- - -log_k 3.76 - -delta_h 4.550 kcal - -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt + -log_k 3.76 + -delta_h 4.55 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt Ca+2 + H2O = CaOH+ + H+ - -log_k -12.78 + -log_k -12.78 Ca+2 + CO3-2 = CaCO3 - -log_k 3.224 - -delta_h 3.545 kcal - -analytic -1228.732 -0.299440 35512.75 485.818 - -dw 4.46e-10 # complexes: calc'd with the Pikal formula - -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.29944 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ - -log_k 11.435 - -delta_h -0.871 kcal - -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 - -gamma 6.0 0 + -log_k 10.91; -delta_h 4.38 kcal + -analytic -6.009 3.377e-2 2044 + -gamma 6 0 + -Vm 30.19 .01 5.75 -2.78 .308 5.4 -dw 5.06e-10 - -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt Ca+2 + SO4-2 = CaSO4 - -log_k 2.25 - -delta_h 1.325 kcal + -log_k 2.25 + -delta_h 1.325 kcal -dw 4.71e-10 - -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt + -Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt Ca+2 + HSO4- = CaHSO4+ - -log_k 1.08 + -log_k 1.08 Ca+2 + PO4-3 = CaPO4- - -log_k 6.459 - -delta_h 3.10 kcal - -gamma 5.4 0.0 + -log_k 6.459 + -delta_h 3.1 kcal + -gamma 5.4 0 Ca+2 + HPO4-2 = CaHPO4 - -log_k 2.739 + -log_k 2.739 -delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ - -log_k 1.408 + -log_k 1.408 -delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 # Ca+2 + F- = CaF+ # -log_k 0.94 # -delta_h 4.120 kcal - # -gamma 5.5 0.0 - # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt + # -gamma 5.5 0.0 + # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt Mg+2 + H2O = MgOH+ + H+ - -log_k -11.44 + -log_k -11.44 -delta_h 15.952 kcal - -gamma 6.5 0 + -gamma 6.5 0 Mg+2 + CO3-2 = MgCO3 - -log_k 2.98 - -delta_h 2.713 kcal - -analytic 0.9910 0.00667 + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.991 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt -dw 4.21e-10 - -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt Mg+2 + H+ + CO3-2 = MgHCO3+ - -log_k 11.399 + -log_k 11.399 -delta_h -2.771 kcal - -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 - -gamma 4.0 0 + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt -dw 4.78e-10 - -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt Mg+2 + SO4-2 = MgSO4 - -log_k 2.42; -delta_h 19.0 kJ - -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -gamma 0 0.20 - -Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0 - -dw 4.45e-10 - -viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0 + -gamma 0 0.2 + -log_k 2.42; -delta_h 19 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 8.65 -10.21 29.58 -18.6 1.061 + -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696 + -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 - -log_k 0.52; -delta_h -13.6 kJ - -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -gamma 7 0.047 - -Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2 - -Dw 1e-9 -2926 6.10e-2 -5.41 - -viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 + -viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3 + -dw 0.845e-9 -200 8 0 0.965 Mg+2 + PO4-3 = MgPO4- - -log_k 6.589 - -delta_h 3.10 kcal - -gamma 5.4 0 + -log_k 6.589 + -delta_h 3.1 kcal + -gamma 5.4 0 Mg+2 + HPO4-2 = MgHPO4 - -log_k 2.87 + -log_k 2.87 -delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ - -log_k 1.513 + -log_k 1.513 -delta_h 3.4 kcal - -gamma 5.4 0 + -gamma 5.4 0 Mg+2 + F- = MgF+ - -log_k 1.82 - -delta_h 3.20 kcal - -gamma 4.5 0 - -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt + -log_k 1.82 + -delta_h 3.2 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH - -log_k -10 # remove this complex -# Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC - # -log_k 1.27 - # -delta_h 8.91 kcal - # -dw 1.2e-9 -400 1e-10 1e-10 - # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 - # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 + -log_k -10 # remove this complex Na+ + HCO3- = NaHCO3 - -log_k -0.18; -delta_h 27 kJ - -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 62–71. - -gamma 0 0.23 - -dw 6.73e-10 -400 1e-10 1e-10 - -Vm 9 -6 - -viscosity 0 0 0 0.1 3e-2 + -log_k -0.06; -delta_h 21 kJ + -gamma 0 0.2 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 Na+ + SO4-2 = NaSO4- - -log_k 0.6; -delta_h -14.4 kJ - -analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -gamma 0 0 - -Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672 - -dw 1.183e-9 438 1e-10 1e-10 - -viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120 + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325 + -viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208 + -dw 1.13e-9 -23 8.5 0.392 0.521 Na+ + HPO4-2 = NaHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF - -log_k -0.24 - -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt +K+ + HCO3- = KHCO3 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- - -log_k 0.6; -delta_h -10.4 kJ - -analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC - -gamma 0 8.3e-3 - -Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166 - -dw 5.11e-10 1694 -0.587 -4.43 - -viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975 + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919 + -viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69 + -dw 0.9e-9 63 8.48 0 1.8 K+ + HPO4-2 = KHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ - -log_k -9.5 - -delta_h 13.20 kcal - -gamma 5.0 0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ - -log_k -31.0 + -log_k -9.5 + -delta_h 13.2 kcal + -gamma 5 0 +Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + -log_k -31 -delta_h 30.3 kcal - -gamma 5.0 0 + -gamma 5 0 Fe+2 + Cl- = FeCl+ - -log_k 0.14 + -log_k 0.14 Fe+2 + CO3-2 = FeCO3 - -log_k 4.38 + -log_k 4.38 Fe+2 + HCO3- = FeHCO3+ - -log_k 2.0 + -log_k 2 Fe+2 + SO4-2 = FeSO4 - -log_k 2.25 - -delta_h 3.230 kcal - -Vm -13 0 123 + -log_k 2.25 + -delta_h 3.23 kcal + -Vm -13 0 123 Fe+2 + HSO4- = FeHSO4+ - -log_k 1.08 -Fe+2 + 2HS- = Fe(HS)2 - -log_k 8.95 -Fe+2 + 3HS- = Fe(HS)3- - -log_k 10.987 + -log_k 1.08 +Fe+2 + 2 HS- = Fe(HS)2 + -log_k 8.95 +Fe+2 + 3 HS- = Fe(HS)3- + -log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 - -log_k 3.6 + -log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ - -log_k 2.7 - -gamma 5.4 0 + -log_k 2.7 + -gamma 5.4 0 Fe+2 + F- = FeF+ - -log_k 1.0 + -log_k 1 Fe+2 = Fe+3 + e- - -log_k -13.02 - -delta_h 9.680 kcal - -gamma 9.0 0 + -log_k -13.02 + -delta_h 9.68 kcal + -gamma 9 0 Fe+3 + H2O = FeOH+2 + H+ - -log_k -2.19 - -delta_h 10.4 kcal - -gamma 5.0 0 + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5 0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ - -log_k -5.67 - -delta_h 17.1 kcal - -gamma 5.4 0 + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ - -log_k -12.56 - -delta_h 24.8 kcal + -log_k -12.56 + -delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ - -log_k -21.6 - -delta_h 31.9 kcal - -gamma 5.4 0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ - -log_k -20.57 - -delta_h 28.565 kcal + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + -log_k -20.57 + -delta_h 28.565 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ - -log_k -2.95 - -delta_h 13.5 kcal + -log_k -2.95 + -delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ - -log_k -6.3 - -delta_h 14.3 kcal + -log_k -6.3 + -delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 - -log_k 1.48 - -delta_h 5.6 kcal - -gamma 5.0 0 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5 0 Fe+3 + 2 Cl- = FeCl2+ - -log_k 2.13 - -gamma 5.0 0 + -log_k 2.13 + -gamma 5 0 Fe+3 + 3 Cl- = FeCl3 - -log_k 1.13 + -log_k 1.13 Fe+3 + SO4-2 = FeSO4+ - -log_k 4.04 - -delta_h 3.91 kcal - -gamma 5.0 0 + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5 0 Fe+3 + HSO4- = FeHSO4+2 - -log_k 2.48 + -log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- - -log_k 5.38 - -delta_h 4.60 kcal + -log_k 5.38 + -delta_h 4.6 kcal Fe+3 + HPO4-2 = FeHPO4+ - -log_k 5.43 - -delta_h 5.76 kcal - -gamma 5.0 0 + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5 0 Fe+3 + H2PO4- = FeH2PO4+2 - -log_k 5.43 - -gamma 5.4 0 + -log_k 5.43 + -gamma 5.4 0 Fe+3 + F- = FeF+2 - -log_k 6.2 - -delta_h 2.7 kcal - -gamma 5.0 0 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5 0 Fe+3 + 2 F- = FeF2+ - -log_k 10.8 - -delta_h 4.8 kcal - -gamma 5.0 0 + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5 0 Fe+3 + 3 F- = FeF3 - -log_k 14.0 - -delta_h 5.4 kcal + -log_k 14 + -delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ - -log_k -10.59 - -delta_h 14.40 kcal - -gamma 5.0 0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ - -log_k -34.8 - -gamma 5.0 0 + -log_k -10.59 + -delta_h 14.4 kcal + -gamma 5 0 +Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + -log_k -34.8 + -gamma 5 0 Mn+2 + Cl- = MnCl+ - -log_k 0.61 - -gamma 5.0 0 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 + -log_k 0.61 + -gamma 5 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 - -log_k 0.25 - -Vm 1e-5 0 144 + -log_k 0.25 + -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- - -log_k -0.31 - -gamma 5.0 0 - -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 + -log_k -0.31 + -gamma 5 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 - -log_k 4.9 + -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ - -log_k 1.95 - -gamma 5.0 0 + -log_k 1.95 + -gamma 5 0 Mn+2 + SO4-2 = MnSO4 - -log_k 2.25 - -delta_h 3.370 kcal - -Vm -1.31 -1.83 62.3 -2.7 + -log_k 2.25 + -delta_h 3.37 kcal + -Vm -1.31 -1.83 62.3 -2.7 Mn+2 + 2 NO3- = Mn(NO3)2 - -log_k 0.6 - -delta_h -0.396 kcal - -Vm 6.16 0 29.4 0 0.9 + -log_k 0.6 + -delta_h -0.396 kcal + -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ - -log_k 0.84 - -gamma 5.0 0 + -log_k 0.84 + -gamma 5 0 Mn+2 = Mn+3 + e- - -log_k -25.51 - -delta_h 25.80 kcal - -gamma 9.0 0 + -log_k -25.51 + -delta_h 25.8 kcal + -gamma 9 0 Al+3 + H2O = AlOH+2 + H+ - -log_k -5.0 - -delta_h 11.49 kcal - -analytic -38.253 0.0 -656.27 14.327 - -gamma 5.4 0 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. + -log_k -5 + -delta_h 11.49 kcal + -analytic -38.253 0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353 Al+3 + 2 H2O = Al(OH)2+ + 2 H+ - -log_k -10.1 - -delta_h 26.90 kcal - -gamma 5.4 0 - -analytic 88.50 0.0 -9391.6 -27.121 + -log_k -10.1 + -delta_h 26.9 kcal + -gamma 5.4 0 + -analytic 88.5 0 -9391.6 -27.121 Al+3 + 3 H2O = Al(OH)3 + 3 H+ - -log_k -16.9 - -delta_h 39.89 kcal - -analytic 226.374 0.0 -18247.8 -73.597 + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ - -log_k -22.7 - -delta_h 42.30 kcal - -analytic 51.578 0.0 -11168.9 -14.865 - -gamma 4.5 0 + -log_k -22.7 + -delta_h 42.3 kcal + -analytic 51.578 0 -11168.9 -14.865 + -gamma 4.5 0 -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 Al+3 + SO4-2 = AlSO4+ - -log_k 3.5 + -log_k 3.5 -delta_h 2.29 kcal - -gamma 4.5 0 -Al+3 + 2SO4-2 = Al(SO4)2- - -log_k 5.0 + -gamma 4.5 0 +Al+3 + 2 SO4-2 = Al(SO4)2- + -log_k 5 -delta_h 3.11 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + HSO4- = AlHSO4+2 - -log_k 0.46 + -log_k 0.46 Al+3 + F- = AlF+2 - -log_k 7.0 - -delta_h 1.060 kcal - -gamma 5.4 0 + -log_k 7 + -delta_h 1.06 kcal + -gamma 5.4 0 Al+3 + 2 F- = AlF2+ - -log_k 12.7 - -delta_h 1.980 kcal - -gamma 5.4 0 + -log_k 12.7 + -delta_h 1.98 kcal + -gamma 5.4 0 Al+3 + 3 F- = AlF3 - -log_k 16.8 - -delta_h 2.160 kcal + -log_k 16.8 + -delta_h 2.16 kcal Al+3 + 4 F- = AlF4- - -log_k 19.4 - -delta_h 2.20 kcal - -gamma 4.5 0 + -log_k 19.4 + -delta_h 2.2 kcal + -gamma 4.5 0 # Al+3 + 5 F- = AlF5-2 - # log_k 20.6 - # delta_h 1.840 kcal + # log_k 20.6 + # delta_h 1.840 kcal # Al+3 + 6 F- = AlF6-3 - # log_k 20.6 + # log_k 20.6 # delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ - -log_k -9.83 - -delta_h 6.12 kcal - -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -gamma 4 0 - -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ - -log_k -23.0 - -delta_h 17.6 kcal - -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 - -gamma 5.4 0 + -log_k -23 + -delta_h 17.6 kcal + -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 + -gamma 5.4 0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O - -log_k 30.18 - -delta_h -16.260 kcal - -gamma 5.0 0 - -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt + -log_k 30.18 + -delta_h -16.26 kcal + -gamma 5 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt Ba+2 + H2O = BaOH+ + H+ - -log_k -13.47 - -gamma 5.0 0 + -log_k -13.47 + -gamma 5 0 Ba+2 + CO3-2 = BaCO3 - -log_k 2.71 - -delta_h 3.55 kcal - -analytic 0.113 0.008721 - -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt Ba+2 + HCO3- = BaHCO3+ - -log_k 0.982 + -log_k 0.982 -delta_h 5.56 kcal - -analytic -3.0938 0.013669 + -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 - -log_k 2.7 + -log_k 2.7 Sr+2 + H2O = SrOH+ + H+ - -log_k -13.29 - -gamma 5.0 0 + -log_k -13.29 + -gamma 5 0 Sr+2 + CO3-2 + H+ = SrHCO3+ - -log_k 11.509 - -delta_h 2.489 kcal - -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 Sr+2 + CO3-2 = SrCO3 - -log_k 2.81 - -delta_h 5.22 kcal - -analytic -1.019 0.012826 - -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt Sr+2 + SO4-2 = SrSO4 - -log_k 2.29 - -delta_h 2.08 kcal - -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility Li+ + SO4-2 = LiSO4- - -log_k 0.64 - -gamma 5.0 0 + -log_k 0.64 + -gamma 5 0 Cu+2 + e- = Cu+ - -log_k 2.72 - -delta_h 1.65 kcal - -gamma 2.5 0 -Cu+ + 2Cl- = CuCl2- - -log_k 5.50 + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 +Cu+ + 2 Cl- = CuCl2- + -log_k 5.5 -delta_h -0.42 kcal - -gamma 4.0 0 -Cu+ + 3Cl- = CuCl3-2 - -log_k 5.70 + -gamma 4 0 +Cu+ + 3 Cl- = CuCl3-2 + -log_k 5.7 -delta_h 0.26 kcal - -gamma 5.0 0.0 -Cu+2 + CO3-2 = CuCO3 - -log_k 6.73 -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - -log_k 9.83 + -gamma 5 0 +Cu+2 + CO3-2 = CuCO3 + -log_k 6.73 +Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + -log_k 9.83 Cu+2 + HCO3- = CuHCO3+ - -log_k 2.7 -Cu+2 + Cl- = CuCl+ - -log_k 0.43 + -log_k 2.7 +Cu+2 + Cl- = CuCl+ + -log_k 0.43 -delta_h 8.65 kcal - -gamma 4.0 0 - -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 -Cu+2 + 2Cl- = CuCl2 - -log_k 0.16 + -gamma 4 0 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2 Cl- = CuCl2 + -log_k 0.16 -delta_h 10.56 kcal - -Vm 26.8 0 -136 -Cu+2 + 3Cl- = CuCl3- - -log_k -2.29 + -Vm 26.8 0 -136 +Cu+2 + 3 Cl- = CuCl3- + -log_k -2.29 -delta_h 13.69 kcal - -gamma 4.0 0 -Cu+2 + 4Cl- = CuCl4-2 - -log_k -4.59 + -gamma 4 0 +Cu+2 + 4 Cl- = CuCl4-2 + -log_k -4.59 -delta_h 17.78 kcal - -gamma 5.0 0 -Cu+2 + F- = CuF+ - -log_k 1.26 + -gamma 5 0 +Cu+2 + F- = CuF+ + -log_k 1.26 -delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ - -log_k -8.0 - -gamma 4.0 0 + -log_k -8 + -gamma 4 0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ - -log_k -13.68 + -log_k -13.68 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ - -log_k -26.9 + -log_k -26.9 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ - -log_k -39.6 -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ - -log_k -10.359 + -log_k -39.6 +2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + -log_k -10.359 -delta_h 17.539 kcal - -analytical 2.497 0.0 -3833.0 + -analytical 2.497 0 -3833 Cu+2 + SO4-2 = CuSO4 - -log_k 2.31 - -delta_h 1.220 kcal - -Vm 5.21 0 -14.6 -Cu+2 + 3HS- = Cu(HS)3- - -log_k 25.9 + -log_k 2.31 + -delta_h 1.22 kcal + -Vm 5.21 0 -14.6 +Cu+2 + 3 HS- = Cu(HS)3- + -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ - -log_k -8.96 + -log_k -8.96 -delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ - -log_k -16.9 + -log_k -16.9 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ - -log_k -28.4 + -log_k -28.4 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ - -log_k -41.2 + -log_k -41.2 Zn+2 + Cl- = ZnCl+ - -log_k 0.43 + -log_k 0.43 -delta_h 7.79 kcal - -gamma 4.0 0 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 + -gamma 4 0 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 - -log_k 0.45 + -log_k 0.45 -delta_h 8.5 kcal - -Vm -10.1 4.57 241 -2.97 -1e-3 -Zn+2 + 3Cl- = ZnCl3- - -log_k 0.5 + -Vm -10.1 4.57 241 -2.97 -1e-3 +Zn+2 + 3 Cl- = ZnCl3- + -log_k 0.5 -delta_h 9.56 kcal - -gamma 4.0 0 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 -Zn+2 + 4Cl- = ZnCl4-2 - -log_k 0.2 + -gamma 4 0 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 +Zn+2 + 4 Cl- = ZnCl4-2 + -log_k 0.2 -delta_h 10.96 kcal - -gamma 5.0 0 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 -Zn+2 + H2O + Cl- = ZnOHCl + H+ - -log_k -7.48 -Zn+2 + 2HS- = Zn(HS)2 - -log_k 14.94 -Zn+2 + 3HS- = Zn(HS)3- - -log_k 16.1 + -gamma 5 0 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 +Zn+2 + H2O + Cl- = ZnOHCl + H+ + -log_k -7.48 +Zn+2 + 2 HS- = Zn(HS)2 + -log_k 14.94 +Zn+2 + 3 HS- = Zn(HS)3- + -log_k 16.1 Zn+2 + CO3-2 = ZnCO3 - -log_k 5.3 -Zn+2 + 2CO3-2 = Zn(CO3)2-2 - -log_k 9.63 + -log_k 5.3 +Zn+2 + 2 CO3-2 = Zn(CO3)2-2 + -log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ - -log_k 2.1 + -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 - -log_k 2.37 + -log_k 2.37 -delta_h 1.36 kcal - -Vm 2.51 0 18.8 -Zn+2 + 2SO4-2 = Zn(SO4)2-2 - -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 -Zn+2 + Br- = ZnBr+ - -log_k -0.58 -Zn+2 + 2Br- = ZnBr2 - -log_k -0.98 -Zn+2 + F- = ZnF+ - -log_k 1.15 + -Vm 2.51 0 18.8 +Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 +Zn+2 + Br- = ZnBr+ + -log_k -0.58 +Zn+2 + 2 Br- = ZnBr2 + -log_k -0.98 +Zn+2 + F- = ZnF+ + -log_k 1.15 -delta_h 2.22 kcal Cd+2 + H2O = CdOH+ + H+ - -log_k -10.08 + -log_k -10.08 -delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ - -log_k -20.35 + -log_k -20.35 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ - -log_k -33.3 + -log_k -33.3 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ - -log_k -47.35 -2Cd+2 + H2O = Cd2OH+3 + H+ - -log_k -9.39 + -log_k -47.35 +2 Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -9.39 -delta_h 10.9 kcal -Cd+2 + H2O + Cl- = CdOHCl + H+ - -log_k -7.404 +Cd+2 + H2O + Cl- = CdOHCl + H+ + -log_k -7.404 -delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ - -log_k 0.4 + -log_k 0.4 -delta_h -5.2 kcal - -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ - -log_k 1.98 + -log_k 1.98 -delta_h 0.59 kcal - -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 - -log_k 2.6 + -log_k 2.6 -delta_h 1.24 kcal - -Vm 5.53 + -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- - -log_k 2.4 + -log_k 2.4 -delta_h 3.9 kcal - -Vm 4.6 0 83.9 0 0 0 0 0 0 1 + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 - -log_k 2.9 -Cd+2 + 2CO3-2 = Cd(CO3)2-2 - -log_k 6.4 + -log_k 2.9 +Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + -log_k 6.4 Cd+2 + HCO3- = CdHCO3+ - -log_k 1.5 + -log_k 1.5 Cd+2 + SO4-2 = CdSO4 - -log_k 2.46 + -log_k 2.46 -delta_h 1.08 kcal - -Vm 10.4 0 57.9 -Cd+2 + 2SO4-2 = Cd(SO4)2-2 - -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 -Cd+2 + Br- = CdBr+ - -log_k 2.17 + -Vm 10.4 0 57.9 +Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 +Cd+2 + Br- = CdBr+ + -log_k 2.17 -delta_h -0.81 kcal -Cd+2 + 2Br- = CdBr2 - -log_k 2.9 -Cd+2 + F- = CdF+ - -log_k 1.1 -Cd+2 + 2F- = CdF2 - -log_k 1.5 -Cd+2 + HS- = CdHS+ - -log_k 10.17 -Cd+2 + 2HS- = Cd(HS)2 - -log_k 16.53 -Cd+2 + 3HS- = Cd(HS)3- - -log_k 18.71 -Cd+2 + 4HS- = Cd(HS)4-2 - -log_k 20.9 +Cd+2 + 2 Br- = CdBr2 + -log_k 2.9 +Cd+2 + F- = CdF+ + -log_k 1.1 +Cd+2 + 2 F- = CdF2 + -log_k 1.5 +Cd+2 + HS- = CdHS+ + -log_k 10.17 +Cd+2 + 2 HS- = Cd(HS)2 + -log_k 16.53 +Cd+2 + 3 HS- = Cd(HS)3- + -log_k 18.71 +Cd+2 + 4 HS- = Cd(HS)4-2 + -log_k 20.9 Pb+2 + H2O = PbOH+ + H+ - -log_k -7.71 + -log_k -7.71 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ - -log_k -17.12 + -log_k -17.12 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ - -log_k -28.06 + -log_k -28.06 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ - -log_k -39.7 + -log_k -39.7 2 Pb+2 + H2O = Pb2OH+3 + H+ - -log_k -6.36 + -log_k -6.36 Pb+2 + Cl- = PbCl+ - -log_k 1.6 + -log_k 1.6 -delta_h 4.38 kcal - -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt Pb+2 + 2 Cl- = PbCl2 - -log_k 1.8 + -log_k 1.8 -delta_h 1.08 kcal - -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt + -Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt Pb+2 + 3 Cl- = PbCl3- - -log_k 1.7 + -log_k 1.7 -delta_h 2.17 kcal - -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt Pb+2 + 4 Cl- = PbCl4-2 - -log_k 1.38 + -log_k 1.38 -delta_h 3.53 kcal - -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt + -Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt Pb+2 + CO3-2 = PbCO3 - -log_k 7.24 + -log_k 7.24 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 - -log_k 10.64 + -log_k 10.64 Pb+2 + HCO3- = PbHCO3+ - -log_k 2.9 + -log_k 2.9 Pb+2 + SO4-2 = PbSO4 - -log_k 2.75 + -log_k 2.75 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 - -log_k 3.47 -Pb+2 + 2HS- = Pb(HS)2 - -log_k 15.27 -Pb+2 + 3HS- = Pb(HS)3- - -log_k 16.57 -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ - -log_k -23.88 - -delta_h 26.5 kcal + -log_k 3.47 +Pb+2 + 2 HS- = Pb(HS)2 + -log_k 15.27 +Pb+2 + 3 HS- = Pb(HS)3- + -log_k 16.57 +3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + -log_k -23.88 + -delta_h 26.5 kcal Pb+2 + NO3- = PbNO3+ - -log_k 1.17 -Pb+2 + Br- = PbBr+ - -log_k 1.77 + -log_k 1.17 +Pb+2 + Br- = PbBr+ + -log_k 1.77 -delta_h 2.88 kcal -Pb+2 + 2Br- = PbBr2 - -log_k 1.44 -Pb+2 + F- = PbF+ - -log_k 1.25 -Pb+2 + 2F- = PbF2 - -log_k 2.56 -Pb+2 + 3F- = PbF3- - -log_k 3.42 -Pb+2 + 4F- = PbF4-2 - -log_k 3.1 +Pb+2 + 2 Br- = PbBr2 + -log_k 1.44 +Pb+2 + F- = PbF+ + -log_k 1.25 +Pb+2 + 2 F- = PbF2 + -log_k 2.56 +Pb+2 + 3 F- = PbF3- + -log_k 3.42 +Pb+2 + 4 F- = PbF4-2 + -log_k 3.1 PHASES Calcite CaCO3 = CO3-2 + Ca+2 - -log_k -8.48 + -log_k -8.48 -delta_h -2.297 kcal - -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 + -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 - -log_k -8.336 + -log_k -8.336 -delta_h -2.589 kcal - -analytic -171.9773 -0.077993 2903.293 71.595 + -analytic -171.9773 -0.077993 2903.293 71.595 -Vm 34.04 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - -log_k -17.09 - -delta_h -9.436 kcal - -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275. + -log_k -17.09 + -delta_h -9.436 kcal + -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275 -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 - -log_k -10.89 - -delta_h -2.480 kcal + -log_k -10.89 + -delta_h -2.48 kcal -Vm 29.2 Rhodochrosite MnCO3 = Mn+2 + CO3-2 - -log_k -11.13 - -delta_h -1.430 kcal + -log_k -11.13 + -delta_h -1.43 kcal -Vm 31.1 Strontianite SrCO3 = Sr+2 + CO3-2 - -log_k -9.271 - -delta_h -0.400 kcal - -analytic 155.0305 0.0 -7239.594 -56.58638 + -log_k -9.271 + -delta_h -0.4 kcal + -analytic 155.0305 0 -7239.594 -56.58638 -Vm 39.69 Witherite BaCO3 = Ba+2 + CO3-2 - -log_k -8.562 - -delta_h 0.703 kcal - -analytic 607.642 0.121098 -20011.25 -236.4948 + -log_k -8.562 + -delta_h 0.703 kcal + -analytic 607.642 0.121098 -20011.25 -236.4948 -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58 + -log_k -4.58 -delta_h -0.109 kcal - -analytic 68.2401 0.0 -3221.51 -25.0627 - -analytical_expression 93.7 5.99E-03 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 - -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) + -analytic 68.2401 0 -3221.51 -25.0627 + -analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 + -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) Anhydrite CaSO4 = Ca+2 + SO4-2 - -log_k -4.36 - -delta_h -1.710 kcal - -analytic 84.90 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323. + -log_k -4.36 + -delta_h -1.71 kcal + -analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 - -log_k -6.63 + -log_k -6.63 -delta_h -4.037 kcal -# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 - -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464. +# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 + -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 - -log_k -9.97 - -delta_h 6.35 kcal - -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 + -log_k -9.97 + -delta_h 6.35 kcal + -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 Arcanite - K2SO4 = SO4-2 + 2 K+ - log_k -1.776; -delta_h 5 kcal - -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 -Vm 65.5 Mirabilite - Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O - -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 Vm 216 Thenardite Na2SO4 = 2 Na+ + SO4-2 - -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 -Vm 52.9 Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.74; -delta_h 10.57 kJ - -analytical_expression -3.59 6.21e-3 - Vm 147 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 Hexahydrite - MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.57; -delta_h 2.35 kJ - -analytical_expression -1.978 1.38e-3 - Vm 132 + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 Kieserite - MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -1.16; -delta_h 9.22 kJ - -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 - Vm 53.8 + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 - -log_k -3.421 + -log_k -3.421 -delta_h -36.155 kcal -Vm 128.9 Fluorite CaF2 = Ca+2 + 2 F- - -log_k -10.6 - -delta_h 4.69 kcal - -analytic 66.348 0.0 -4298.2 -25.271 + -log_k -10.6 + -delta_h 4.69 kcal + -analytic 66.348 0 -4298.2 -25.271 -Vm 15.7 SiO2(a) SiO2 + 2 H2O = H4SiO4 - -log_k -2.71 - -delta_h 3.340 kcal - -analytic -0.26 0.0 -731.0 + -log_k -2.71 + -delta_h 3.34 kcal + -analytic -0.26 0 -731 Chalcedony SiO2 + 2 H2O = H4SiO4 - -log_k -3.55 - -delta_h 4.720 kcal - -analytic -0.09 0.0 -1032.0 + -log_k -3.55 + -delta_h 4.72 kcal + -analytic -0.09 0 -1032 -Vm 23.1 Quartz SiO2 + 2 H2O = H4SiO4 - -log_k -3.98 - -delta_h 5.990 kcal - -analytic 0.41 0.0 -1309.0 + -log_k -3.98 + -delta_h 5.99 kcal + -analytic 0.41 0 -1309 -Vm 22.67 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 8.11 - -delta_h -22.800 kcal + -log_k 8.11 + -delta_h -22.8 kcal -Vm 32.22 Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 10.8 - -delta_h -26.500 kcal + -log_k 10.8 + -delta_h -26.5 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 - -log_k 7.435 - -delta_h -35.300 kcal + -log_k 7.435 + -delta_h -35.3 kcal -Vm 99.35 Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 - -log_k -18.002 + -log_k -18.002 -delta_h 25.896 kcal -Vm 101.31 Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 - -log_k -19.714 - -delta_h 11.580 kcal + -log_k -19.714 + -delta_h 11.58 kcal -Vm 105.05 K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 - -log_k -20.573 - -delta_h 30.820 kcal + -log_k -20.573 + -delta_h 30.82 kcal -Vm 108.15 K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 - -log_k 12.703 + -log_k 12.703 -delta_h -59.376 kcal Chlorite(14A) - Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O - -log_k 68.38 + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + -log_k 68.38 -delta_h -151.494 kcal Ca-Montmorillonite - Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ - -log_k -45.027 - -delta_h 58.373 kcal + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + -log_k -45.027 + -delta_h 58.373 kcal -Vm 156.16 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 - -log_k 21.399 + -log_k 21.399 -delta_h -46.352 kcal -Vm 68.34 Illite - K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ - -log_k -40.267 + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ + -log_k -40.267 -delta_h 54.684 kcal -Vm 141.48 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 - -log_k 32.2 - -delta_h -46.800 kcal - -analytic 13.248 0.0 10217.1 -6.1894 - -Vm 106.5808 # 277.11/2.60 + -log_k 32.2 + -delta_h -46.8 kcal + -analytic 13.248 0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 Sepiolite - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 15.760 - -delta_h -10.700 kcal + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 15.76 + -delta_h -10.7 kcal -Vm 143.765 Sepiolite(d) - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 18.66 + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 18.66 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - -log_k -4.008 + -log_k -4.008 -delta_h -30.845 kcal -Vm 30.39 Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O - -log_k -1.0 - -delta_h -14.48 kcal + -log_k -1 + -delta_h -14.48 kcal -Vm 20.84 Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O - -log_k 4.891 + -log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- - -log_k -18.479 - -delta_h 11.300 kcal + -log_k -18.479 + -delta_h 11.3 kcal -Vm 23.48 FeS(ppt) FeS + H+ = Fe+2 + HS- - -log_k -3.915 + -log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- - -log_k -4.648 + -log_k -4.648 -Vm 20.45 Sulfur - S + 2H+ + 2e- = H2S - -log_k 4.882 + S + 2 H+ + 2 e- = H2S + -log_k 4.882 -delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O - -log_k -36.0 -Pyrolusite # H2O added for surface calc's + -log_k -36 +Pyrolusite # H2O added for surface calc's MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O - -log_k 41.38 - -delta_h -65.110 kcal + -log_k 41.38 + -delta_h -65.11 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O - -log_k 61.03 - -delta_h -100.640 kcal + -log_k 61.03 + -delta_h -100.64 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O - -log_k 25.34 + -log_k 25.34 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O - -log_k 15.2 + -log_k 15.2 Halite - NaCl = Cl- + Na+ - log_k 1.570 - -delta_h 1.37 + NaCl = Cl- + Na+ + log_k 1.57 + -delta_h 1.37 #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. -Vm 27.1 Sylvite - KCl = K+ + Cl- - log_k 0.900 - -delta_h 8.5 - # -analytic 3.984 0.0 -919.55 + KCl = K+ + Cl- + log_k 0.9 + -delta_h 8.5 + # -analytic 3.984 0.0 -919.55 Vm 37.5 # Gases... CO2(g) CO2 = CO2 - -log_k -1.468 + -log_k -1.468 -delta_h -4.776 kcal - -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 - -T_c 304.2 # critical T, K - -P_c 72.86 # critical P, atm + -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 + -T_c 304.2 # critical T, K + -P_c 72.86 # critical P, atm -Omega 0.225 # acentric factor H2O(g) H2O = H2O - -log_k 1.506; delta_h -44.03 kJ - -T_c 647.3; -P_c 217.60; -Omega 0.344 - -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 + -log_k 1.506; delta_h -44.03 kJ + -T_c 647.3; -P_c 217.6; -Omega 0.344 + -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 O2(g) O2 = O2 - -log_k -2.8983 - -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 - -T_c 154.6; -P_c 49.80; -Omega 0.021 + -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 H2(g) H2 = H2 - -log_k -3.1050 - -delta_h -4.184 kJ - -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 - -T_c 33.2; -P_c 12.80; -Omega -0.225 + -log_k -3.105 + -delta_h -4.184 kJ + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 N2(g) N2 = N2 - -log_k -3.1864 - -analytic -58.453 1.818e-3 3199 17.909 -27460 - -T_c 126.2; -P_c 33.50; -Omega 0.039 + -log_k -3.1864 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + -T_c 126.2; -P_c 33.5; -Omega 0.039 H2S(g) - H2S = H+ + HS- - log_k -7.93 - -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 - -T_c 373.2; -P_c 88.20; -Omega 0.1 + H2S = H+ + HS- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 CH4(g) CH4 = CH4 -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C - -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 Amm(g) Amm = Amm - -log_k 1.7966 - -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 - -T_c 405.6; -P_c 111.3; -Omega 0.25 +#NH3(g) +# NH3 = NH3 + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 # redox-uncoupled gases Oxg(g) Oxg = Oxg - -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 - -T_c 154.6 ; -P_c 49.80 ; -Omega 0.021 + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 Hdg(g) Hdg = Hdg - -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 - -T_c 33.2 ; -P_c 12.80 ; -Omega -0.225 + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 Ntg(g) Ntg = Ntg - -analytic -58.453 1.81800e-3 3199 17.909 -27460 - T_c 126.2 ; -P_c 33.50 ; -Omega 0.039 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + T_c 126.2; -P_c 33.5; -Omega 0.039 Mtg(g) Mtg = Mtg -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C - -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 H2Sg(g) - H2Sg = H+ + HSg- - log_k -7.93 - -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 - -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 + H2Sg = H+ + HSg- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 - -log_k -2.209 - -delta_h 4.910 kcal - -analytic 1.447 -0.004153 0.0 0.0 -214949.0 + -log_k -2.209 + -delta_h 4.91 kcal + -analytic 1.447 -0.004153 0 0 -214949 Alunite - KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O - -log_k -1.4 - -delta_h -50.250 kcal + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + -log_k -1.4 + -delta_h -50.25 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 - -log_k -9.21 - -delta_h -31.280 kcal + -log_k -9.21 + -delta_h -31.28 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - -log_k 11.5 + -log_k 11.5 Smithsonite ZnCO3 = Zn+2 + CO3-2 - -log_k -10.0 - -delta_h -4.36 kcal + -log_k -10 + -delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- - -log_k -11.618 - -delta_h 8.250 kcal -Willemite 289 - Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - -log_k 15.33 - -delta_h -33.37 kcal + -log_k -11.618 + -delta_h 8.25 kcal +Willemite 289 + Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 + -log_k 15.33 + -delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O - -log_k 13.65 -Otavite 315 + -log_k 13.65 +Otavite 315 CdCO3 = Cd+2 + CO3-2 - -log_k -12.1 - -delta_h -0.019 kcal -CdSiO3 328 - CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - -log_k 9.06 - -delta_h -16.63 kcal -CdSO4 329 + -log_k -12.1 + -delta_h -0.019 kcal +CdSiO3 328 + CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 + -log_k 9.06 + -delta_h -16.63 kcal +CdSO4 329 CdSO4 = Cd+2 + SO4-2 - -log_k -0.1 - -delta_h -14.74 kcal -Cerussite 365 + -log_k -0.1 + -delta_h -14.74 kcal +Cerussite 365 PbCO3 = Pb+2 + CO3-2 - -log_k -13.13 - -delta_h 4.86 kcal -Anglesite 384 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 PbSO4 = Pb+2 + SO4-2 - -log_k -7.79 - -delta_h 2.15 kcal -Pb(OH)2 389 - Pb(OH)2 + 2H+ = Pb+2 + 2H2O - -log_k 8.15 - -delta_h -13.99 kcal + -log_k -7.79 + -delta_h 2.15 kcal +Pb(OH)2 389 + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + -log_k 8.15 + -delta_h -13.99 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - -log_k 0.0 + -log_k 0 Na+ + X- = NaX - -log_k 0.0 - -gamma 4.08 0.082 + -log_k 0 + -gamma 4.08 0.082 K+ + X- = KX - -log_k 0.7 - -gamma 3.5 0.015 - -delta_h -4.3 # Jardine & Sparks, 1984 + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX - -log_k -0.08 - -gamma 6.0 0 - -delta_h 1.4 # Merriam & Thomas, 1956 + -log_k -0.08 + -gamma 6 0 + -delta_h 1.4 # Merriam & Thomas, 1956 # !!!!! -# H+ + X- = HX -# -log_k 1.0 -# -gamma 9.0 0 +# H+ + X- = HX +# -log_k 1.0 +# -gamma 9.0 0 AmmH+ + X- = AmmHX - -log_k 0.6 - -gamma 2.5 0 - -delta_h -2.4 # Laudelout et al., 1968 +# NH4+ + X- = NH4X + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 - Ca+2 + 2X- = CaX2 - -log_k 0.8 - -gamma 5.0 0.165 - -delta_h 7.2 # Van Bladel & Gheyl, 1980 + Ca+2 + 2 X- = CaX2 + -log_k 0.8 + -gamma 5 0.165 + -delta_h 7.2 # Van Bladel & Gheyl, 1980 - Mg+2 + 2X- = MgX2 - -log_k 0.6 - -gamma 5.5 0.2 - -delta_h 7.4 # Laudelout et al., 1968 + Mg+2 + 2 X- = MgX2 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 - Sr+2 + 2X- = SrX2 - -log_k 0.91 - -gamma 5.26 0.121 - -delta_h 5.5 # Laudelout et al., 1968 + Sr+2 + 2 X- = SrX2 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 - Ba+2 + 2X- = BaX2 - -log_k 0.91 - -gamma 4.0 0.153 - -delta_h 4.5 # Laudelout et al., 1968 + Ba+2 + 2 X- = BaX2 + -log_k 0.91 + -gamma 4 0.153 + -delta_h 4.5 # Laudelout et al., 1968 - Mn+2 + 2X- = MnX2 - -log_k 0.52 - -gamma 6.0 0 + Mn+2 + 2 X- = MnX2 + -log_k 0.52 + -gamma 6 0 - Fe+2 + 2X- = FeX2 - -log_k 0.44 - -gamma 6.0 0 + Fe+2 + 2 X- = FeX2 + -log_k 0.44 + -gamma 6 0 - Cu+2 + 2X- = CuX2 - -log_k 0.6 - -gamma 6.0 0 + Cu+2 + 2 X- = CuX2 + -log_k 0.6 + -gamma 6 0 - Zn+2 + 2X- = ZnX2 - -log_k 0.8 - -gamma 5.0 0 + Zn+2 + 2 X- = ZnX2 + -log_k 0.8 + -gamma 5 0 - Cd+2 + 2X- = CdX2 - -log_k 0.8 - -gamma 0.0 0 + Cd+2 + 2 X- = CdX2 + -log_k 0.8 + -gamma 0 0 - Pb+2 + 2X- = PbX2 - -log_k 1.05 - -gamma 0.0 0 + Pb+2 + 2 X- = PbX2 + -log_k 1.05 + -gamma 0 0 - Al+3 + 3X- = AlX3 - -log_k 0.41 - -gamma 9.0 0 + Al+3 + 3 X- = AlX3 + -log_k 0.41 + -gamma 9 0 - AlOH+2 + 2X- = AlOHX2 - -log_k 0.89 - -gamma 0.0 0 + AlOH+2 + 2 X- = AlOHX2 + -log_k 0.89 + -gamma 0 0 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 @@ -1410,24 +1422,24 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - -log_k 0 + -log_k 0 - Hfo_sOH + H+ = Hfo_sOH2+ - -log_k 7.29 # = pKa1,int + Hfo_sOH + H+ = Hfo_sOH2+ + -log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - -log_k 0 + -log_k 0 - Hfo_wOH + H+ = Hfo_wOH2+ - -log_k 7.29 # = pKa1,int + Hfo_wOH + H+ = Hfo_wOH2+ + -log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### @@ -1436,52 +1448,52 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - -log_k 4.97 + -log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ -log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - -log_k 5.01 + -log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ -log_k -6.58 - Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ -log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - -log_k 5.46 + -log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - -log_k -7.2 # table 10.5 + -log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - -log_k 0.47 + -log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - -log_k -2.91 + -log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - -log_k 0.99 + -log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - -log_k -1.99 + -log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - -log_k 2.89 + -log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - -log_k 0.6 # table 10.5 + -log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - -log_k 4.65 + -log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - -log_k 0.3 # table 10.5 + -log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -1490,18 +1502,18 @@ SURFACE_SPECIES -log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - -log_k -0.4 # table 10.5 + -log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - -log_k -3.5 # table 10.5 + -log_k -3.5 # table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - -log_k -0.95 + -log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ -log_k -2.98 - Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ -log_k -11.55 ############################################### # ANIONS # @@ -1510,51 +1522,74 @@ SURFACE_SPECIES # Anions from table 10.6 # # Phosphate - Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - -log_k 31.29 + Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + -log_k 31.29 - Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - -log_k 25.39 + Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + -log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - -log_k 17.72 + -log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - -log_k 0.62 + -log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - -log_k 7.78 + -log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - -log_k 0.79 + -log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - -log_k 8.7 + -log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - -log_k 1.6 + -log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for D&M model # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O - -log_k 12.56 + -log_k 12.56 - Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O - -log_k 20.62 + Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O + -log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 - Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 + +MEAN_GAMMAS +CaCl2 Ca+2 1 Cl- 2 +CaSO4 Ca+2 1 SO4-2 1 +CaCO3 Ca+2 1 CO3-2 1 +Ca(OH)2 Ca+2 1 OH- 2 +MgCl2 Mg+2 1 Cl- 2 +MgSO4 Mg+2 1 SO4-2 1 +MgCO3 Mg+2 1 CO3-2 1 +Mg(OH)2 Mg+2 1 OH- 2 +NaCl Na+ 1 Cl- 1 +Na2SO4 Na+ 2 SO4-2 1 +NaHCO3 Na+ 1 HCO3- 1 +Na2CO3 Na+ 2 CO3-2 1 +NaOH Na+ 1 OH- 1 +KCl K+ 1 Cl- 1 +K2SO4 K+ 2 SO4-2 1 +HCO3 K+ 1 HCO3- 1 +K2CO3 K+ 2 CO3-2 1 +KOH K+ 1 OH- 1 +HCl H+ 1 Cl- 1 +H2SO4 H+ 2 SO4-2 1 +HBr H+ 1 Br- 1 RATES @@ -1564,25 +1599,25 @@ RATES # ####### # Example of quartz kinetic rates block: -# KINETICS -# Quartz -# -m0 158.8 # 90 % Qu -# -parms 0.146 1.5 -# -step 3.1536e8 in 10 -# -tol 1e-12 +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 Quartz -start -1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 -2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol -3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) -4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz -5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp -40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) -# Integrate... +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +# Integrate... 50 SAVE moles * TIME -end @@ -1604,60 +1639,60 @@ Quartz # GFW Kspar 0.278 kg/mol # # Moles of Kspar per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space -# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space +# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space # # Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere -# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere +# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere # Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar # # # Example of KINETICS data block for K-feldspar rate: -# KINETICS 1 -# K-feldspar -# -m0 2.18 # 10% Kspar, 0.1 mm cubes -# -m 2.18 # Moles per L pore space -# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 +# KINETICS 1 +# K-feldspar +# -m0 2.18 # 10% Kspar, 0.1 mm cubes +# -m 2.18 # Moles per L pore space +# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 K-feldspar -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM K-Feldspar parameters -10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME 290 SAVE moles -end @@ -1676,63 +1711,63 @@ K-feldspar # p. 162-163 and 395-399. # # Example of KINETICS data block for Albite rate: -# KINETICS 1 -# Albite -# -m0 0.46 # 2% Albite, 0.1 mm cubes -# -m 0.46 # Moles per L pore space -# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 +# KINETICS 1 +# Albite +# -m0 0.46 # 2% Albite, 0.1 mm cubes +# -m 0.46 # Moles per L pore space +# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 # # Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) # Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L # GFW Albite 0.262 kg/mol # # Moles of Albite per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space -# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space +# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space # # Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere -# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere -# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere +# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite Albite -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Albite m^2/mol Albite -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM Albite parameters -10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("Albite")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME 290 SAVE moles -end @@ -1740,27 +1775,27 @@ Albite #Calcite ######## # Example of KINETICS data block for calcite rate, -# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257. +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 # KINETICS 1 # Calcite # -tol 1e-8 # -m0 3.e-3 -# -m 3.e-3 +# -m 3.e-3 # -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor # -time 1 day Calcite -start -1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite -2 REM PARM(2) = exponent for M/M0 +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 -10 si_cc = SI("Calcite") -20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 -30 k1 = 10^(0.198 - 444.0 / TK ) -40 k2 = 10^(2.84 - 2177.0 /TK ) -50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317.0 / TK) -60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737.0 / TK ) -80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444 / TK ) +40 k2 = 10^(2.84 - 2177 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M 110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) 120 rate = rate * (1 - 10^(2/3*si_cc)) 130 moles = rate * 0.001 * TIME # convert from mmol to mol @@ -1776,27 +1811,27 @@ Calcite # rate equation is mol m^-2 s^-1. # # Example of KINETICS data block for pyrite rate: -# KINETICS 1 -# Pyrite -# -tol 1e-8 -# -m0 5.e-4 -# -m 5.e-4 -# -parms 0.3 0.67 .5 -0.11 -# -time 1 day in 10 +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 0.3 0.67 .5 -0.11 +# -time 1 day in 10 Pyrite -start -1 REM Williamson and Rimstidt, 1994 -2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) -3 REM PARM(2) = exp for (M/M0) -4 REM PARM(3) = exp for O2 -5 REM PARM(4) = exp for H+ +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ -10 REM Dissolution in presence of DO -20 if (M <= 0) THEN GOTO 200 -30 if (SI("Pyrite") >= 0) THEN GOTO 200 -40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") -50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) -60 moles = 10^(log_area + log_rate) * TIME +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME 200 SAVE moles -end @@ -1805,27 +1840,27 @@ Pyrite ########## # # Example of KINETICS data block for SOC (sediment organic carbon): -# KINETICS 1 -# Organic_C -# -formula C -# -tol 1e-8 -# -m 5e-3 # SOC in mol -# -time 30 year in 15 +# KINETICS 1 +# Organic_C +# -formula C +# -tol 1e-8 +# -m 5e-3 # SOC in mol +# -time 30 year in 15 Organic_C -start -1 REM Additive Monod kinetics for SOC (sediment organic carbon) -2 REM Electron acceptors: O2, NO3, and SO4 +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 -10 if (M <= 0) THEN GOTO 200 -20 mO2 = MOL("O2") -30 mNO3 = TOT("N(5)") -40 mSO4 = TOT("S(6)") -50 k_O2 = 1.57e-9 # 1/sec -60 k_NO3 = 1.67e-11 # 1/sec -70 k_SO4 = 1.e-13 # 1/sec -80 rate = k_O2 * mO2/(2.94e-4 + mO2) -90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) -100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) 110 moles = rate * M * (M/M0) * TIME 200 SAVE moles -end @@ -1838,33 +1873,34 @@ Organic_C # Rate equation given as mol L^-1 s^-1 # # Example of KINETICS data block for Pyrolusite -# KINETICS 1-12 -# Pyrolusite -# -tol 1.e-7 -# -m0 0.1 -# -m 0.1 -# -time 0.5 day in 10 +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +# -time 0.5 day in 10 Pyrolusite -start -10 if (M <= 0) THEN GOTO 200 -20 sr_pl = SR("Pyrolusite") -30 if (sr_pl > 1) THEN GOTO 100 -40 REM sr_pl <= 1, undersaturated -50 Fe_t = TOT("Fe(2)") -60 if Fe_t < 1e-8 then goto 200 -70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) -80 GOTO 200 +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 100 REM sr_pl > 1, supersaturated 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end + END # ============================================================================================= -#(a) means amorphous. (d) means disordered, or less crystalline. -#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), -#precipitated, indicates an initial precipitate that is less crystalline. +#(a) means amorphous. (d) means disordered, or less crystalline. +#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), +#precipitated, indicates an initial precipitate that is less crystalline. #Zn(OH)2(e) indicates a specific crystal form, epsilon. -# ============================================================================================= +# ============================================================================================= # For the reaction aA + bB = cC + dD, # with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), # PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). @@ -1876,36 +1912,36 @@ END # H2O 0.49 0.19 0.19 0.49 # ============================================================================================= # The molar volumes of solids are entered with -# -Vm vm cm3/mol +# -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. -# -------------------- +# -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- -# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with -# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + -# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) -# + z^2 / 2 * Av * f(I^0.5) -# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 +# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) +# + z^2 / 2 * Av * f(I^0.5) +# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 # Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). # 41.84 transforms cal/bar/mol into cm3/mol. # pb is pressure in bar. # W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, -# W is fitted on measured solution densities. +# W is fitted on measured solution densities. # z is charge of the solute species. # Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-Hückel equation: -# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), -# a0 = -gamma x for cations, = 0 for anions. +# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), +# a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 -# # b0 b1 b2 d1 d2 d3 tan +# # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions @@ -1913,7 +1949,7 @@ END # n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. # -# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. # ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. # ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp diff --git a/database/CMakeLists.txt b/database/CMakeLists.txt index 296e5384..75d594f5 100644 --- a/database/CMakeLists.txt +++ b/database/CMakeLists.txt @@ -1,14 +1,19 @@ set(phreeqc_DATABASE Amm.dat - core10.dat ColdChem.dat + Concrete_PHR.dat + Concrete_PZ.dat + core10.dat frezchem.dat iso.dat + Kinec_v3.dat + Kinec.v2.dat llnl.dat minteq.dat minteq.v4.dat - phreeqc.dat + phreeqc_rates.dat PHREEQC_ThermoddemV1.10_15Dec2020.dat + phreeqc.dat pitzer.dat sit.dat Tipping_Hurley.dat diff --git a/database/Concrete_PHR.dat b/database/Concrete_PHR.dat new file mode 100644 index 00000000..ded8898f --- /dev/null +++ b/database/Concrete_PHR.dat @@ -0,0 +1,158 @@ +# Concrete minerals +# Read this file in your input file with +# INCLUDE$ c:\phreeqc\database\concrete_phr.dat + +PRINT; -reset false + +# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O. +# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura. +# # +# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations: +# SURFACE_MASTER_SPECIES +# Sura Sura+ +# SURFACE_SPECIES +# Sura+ = Sura+ +# SOLUTION 1 +# pH 7 charge +# REACTION 1 +# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20 +# SAVE solution 2 +# END + +# RATES +# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al... +# 10 tot_ss = 2 * equi("AFmsura") +# 20 SAVE (m - tot_ss) * time +# -end + +# USE solution 2 +# EQUILIBRIUM_PHASES 2 +# AFmsura 0 0 +# KINETICS 2 +# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30 +# SURFACE 2 +# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1 +# END + +PHASES +Portlandite # Reardon, 1990 + Ca(OH)2 = Ca+2 + 2 OH- + -log_k -5.19; -Vm 33.1 + +Gibbsite + Al(OH)3 + OH- = Al(OH)4- + -log_k -1.123; -Vm 32.2 + -analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065 + +# AFm with a single exchange site... +OH-AFm # Appelo, 2021 + Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O + -log_k -12.84; -Vm 185 +OH-AFmsura + Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O + -log_k -12.74; -Vm 185 + +Cl-AFm # Friedel's salt. Appelo, 2021 + Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O + -log_k -13.68; -Vm 136 +Cl-AFmsura + Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O + -log_k -13.59; -Vm 136 + +# AFm with a double exchange site... +SO4-AFm # Monosulfoaluminate. Appelo, 2021 + Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O + -log_k -29.15; -Vm 309 +SO4-AFmsura + Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O + -log_k -28.88; -Vm 309 + +SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021 + Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O + -log_k -27.24; -Vm 340 +SO4-OH-AFmsura + Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O + -log_k -26.94; -Vm 340 + +CO3-AFm # Monocarboaluminate. Appelo, 2021 + Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O + -log_k -31.32; -Vm 261 +CO3-AFmsura + Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O + -log_k -31.05; -Vm 261 + +CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021 + Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O + -log_k -29.06; -Vm 284 +CO3-OH-AFmsura + Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O + -log_k -28.84; -Vm 284 + +SO4-Cl-AFm # Kuzel's salt. Appelo, 2021 + Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O + -log_k -28.52; -Vm 290 +SO4-Cl-AFmsura + Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O + -log_k -28.41; -Vm 290 + +SO4-AFem # Lothenbach 2019 + Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O + -log_k -31.57; -Vm 321 +CO3-AFem # Lothenbach 2019 + Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O + -log_k -34.59; -Vm 292 +CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O?? + Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O + -log_k -30.83; -Vm 273 + +Ettringite # Matschei, 2007, fig. 27 + Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O + -log_k -44.8; -Vm 707 + -analyt 334.09 0 -26251 -117.57 # 5 - 75 C + +CO3-ettringite # Matschei, 2007, tbl 13 + Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O; + -log_k -46.50; -Vm 652 + +C2AH8 # Matschei, fig. 19 + Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O + -log_k -13.55; -Vm 184 + -analyt -225.37 -0.12380 0 100.522 # 1 - 50 ºC + +CAH10 # Matschei, fig. 19 + CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O + -log_k -7.60; -Vm 194 + -delta_h 43.2 # 1 - 20 ºC + +Hydrogarnet_Al # Matschei, 2007, Table 5 + (CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH- + -log_k -20.84; -Vm 150 + # -analyt -20.64 -0.002 0 0.16 # 5 - 105 ºC + # -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255 + +Hydrogarnet_Fe # Lothenbach 2019 + (CaO)3Fe2O3(H2O)6 = 3 Ca+2 + 2 Fe(OH)4- + 4 OH- + -log_k -26.3; -Vm 155 + +Hydrogarnet_Si # Matschei, 2007, Table 6 + Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH- + -log_k -33.69; -Vm 143 + -analyt -476.84 -0.2598 0 210.38 # 5 - 85 ºC + +Jennite # CSH2.1. Lothenbach 2019 + Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4- + -log_k -13.12; -Vm 78.4 + +Tobermorite-I # Lothenbach 2019 + CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4- + -log_k -6.80; -Vm 70.4 + +Tobermorite-II # Lothenbach 2019 + Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4- + -log_k -7.99; -Vm 58.7 + +PRINT; -reset true +# Refs +# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270. +# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506. +# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410. \ No newline at end of file diff --git a/database/Concrete_PZ.dat b/database/Concrete_PZ.dat new file mode 100644 index 00000000..69745ec4 --- /dev/null +++ b/database/Concrete_PZ.dat @@ -0,0 +1,195 @@ +# Concrete minerals for use with +# DATABASE c:\phreeqc\database\pitzer.dat +# Read this file in your input file with +# INCLUDE$ c:\phreeqc\database\concrete_pz.dat + +PRINT; -reset false + +SOLUTION_MASTER_SPECIES +Al Al(OH)4- 0 Al 26.9815 +H(0) H2 0 H +O(0) O2 0 O +SOLUTION_SPECIES +Al(OH)4- = Al(OH)4-; -dw 1.04e-9 # dw from Mackin & Aller, 1983, GCA 47, 959 +2 H2O = O2 + 4 H+ + 4 e-; log_k -86.08; delta_h 134.79 kcal; -dw 2.35e-9 +2 H+ + 2 e- = H2; log_k -3.15; delta_h -1.759 kcal; -dw 5.13e-9 + +PITZER # Using data from Weskolowski, 1992, GCA +#Park & Englezos 99 The model Pitzer coeff's are different from pitzer.dat, data are everywhere below the calc'd osmotic from Weskolowski. +-B0 + Al(OH)4- K+ -0.0669 0 0 8.24e-3 + Al(OH)4- Na+ -0.0289 0 0 1.18e-3 +-B1 + Al(OH)4- K+ 0.668 0 0 -1.93e-2 + Al(OH)4- Na+ 0.461 0 0 -2.33e-3 +-C0 + Al(OH)4- K+ 0.0499 0 0 -3.63e-3 + Al(OH)4- Na+ 0.0073 0 0 -1.56e-4 +-THETA + Al(OH)4- Cl- -0.0233 0 0 -8.11e-4 + Al(OH)4- OH- 0.0718 0 0 -7.29e-4 + # Al(OH)4- SO4-2 -0.012 +-PSI + Al(OH)4- Cl- K+ 0.0009 0 0 9.94e-4 + Al(OH)4- Cl- Na+ 0.0048 0 0 1.32e-4 + Al(OH)4- OH- Na+ -0.0048 0 0 1.00e-4 + Al(OH)4- OH- K+ 0 0 0 0 + Al(OH)4- K+ Na+ 0 0 0 0 +END + +# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O. +# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura. +# # +# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations: +# SURFACE_MASTER_SPECIES +# Sura Sura+ +# SURFACE_SPECIES +# Sura+ = Sura+ +# SOLUTION 1 +# pH 7 charge +# REACTION 1 +# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20 +# SAVE solution 2 +# END + +# RATES +# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al... +# 10 tot_ss = 2 * equi("AFmsura") +# 20 SAVE (m - tot_ss) * time +# -end + +# USE solution 2 +# EQUILIBRIUM_PHASES 2 +# AFmsura 0 0 +# KINETICS 2 +# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30 +# SURFACE 2 +# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1 +# END + +PHASES +O2(g) + O2 = O2; -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 +H2(g) + H2 = H2; -log_k -3.1050 + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + +Portlandite # Reardon, 1990 + Ca(OH)2 = Ca+2 + 2 OH- + -log_k -5.19; -Vm 33.1 + +Gibbsite + Al(OH)3 + OH- = Al(OH)4- + -log_k -1.123; -Vm 32.2 + -analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065 + +# AFm with a single exchange site... +OH-AFm # Appelo, 2021 + Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O + -log_k -12.84; -Vm 185 +OH-AFmsura + Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O + -log_k -12.74; -Vm 185 + +Cl-AFm # Friedel's salt. Appelo, 2021 + Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O + -log_k -13.68; -Vm 136 +Cl-AFmsura + Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O + -log_k -13.59; -Vm 136 + +# AFm with a double exchange site... +SO4-AFm # Monosulfoaluminate. Appelo, 2021 + Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O + -log_k -29.15; -Vm 309 +SO4-AFmsura + Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O + -log_k -28.88; -Vm 309 + +SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021 + Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O + -log_k -27.24; -Vm 340 +SO4-OH-AFmsura + Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O + -log_k -26.94; -Vm 340 + +CO3-AFm # Monocarboaluminate. Appelo, 2021 + Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O + -log_k -31.32; -Vm 261 +CO3-AFmsura + Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O + -log_k -31.05; -Vm 261 + +CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021 + Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O + -log_k -29.06; -Vm 284 +CO3-OH-AFmsura + Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O + -log_k -28.84; -Vm 284 + +SO4-Cl-AFm # Kuzel's salt. Appelo, 2021 + Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O + -log_k -28.52; -Vm 290 +SO4-Cl-AFmsura + Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O + -log_k -28.41; -Vm 290 + +# No Fe(OH)4- in Pitzer... +# SO4-AFem # Lothenbach 2019 + # Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O + # -log_k -31.57; -Vm 321 +# CO3-AFem # Lothenbach 2019 + # Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O + # -log_k -34.59; -Vm 292 +# CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O?? + # Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O + # -log_k -30.83; -Vm 273 + +Ettringite # Matschei, 2007, fig. 27 + Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O + -log_k -44.8; -Vm 707 + -analyt 334.09 0 -26251 -117.57 # 5 - 75 C + +CO3-ettringite # Matschei, 2007, tbl 13 + Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O; + -log_k -46.50; -Vm 652 + +C2AH8 # Matschei, fig. 19 + Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O + -log_k -13.55; -Vm 184 + -analyt -225.37 -0.12380 0 100.522 # 1 - 50 ºC + +CAH10 # Matschei, fig. 19 + CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O + -log_k -7.60; -Vm 194 + -delta_h 43.2 # 1 - 20 ºC + +Hydrogarnet_Al # Matschei, 2007, Table 5 + (CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH- + -log_k -20.84; -Vm 150 + # -analyt -20.64 -0.002 0 0.16 # 5 - 105 ºC + # -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255 + +Hydrogarnet_Si # Matschei, 2007, Table 6 + Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH- + -log_k -33.69; -Vm 143 + -analyt -476.84 -0.2598 0 210.38 # 5 - 85 ºC + +Jennite # CSH2.1. Lothenbach 2019 + Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4- + -log_k -13.12; -Vm 78.4 + +Tobermorite-I # Lothenbach 2019 + CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4- + -log_k -6.80; -Vm 70.4 + +Tobermorite-II # Lothenbach 2019 + Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4- + -log_k -7.99; -Vm 58.7 + +PRINT; -reset true +# Refs +# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270 +# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506. +# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410. \ No newline at end of file diff --git a/database/EPRI/epri_cdmusic.dat b/database/EPRI/epri_cdmusic.dat index ce9db7db..d1ff88de 100644 --- a/database/EPRI/epri_cdmusic.dat +++ b/database/EPRI/epri_cdmusic.dat @@ -1,12987 +1,12987 @@ -# $Id: minteq.v4.dat 794 2006-02-27 21:06:22Z dlpark $ -# expanded with CD-MUSIC parameters for sorption of oxyanions on goethite and HFO 1/14/2009 dv -# -SOLUTION_MASTER_SPECIES -Alkalinity CO3-2 2.0 HCO3 61.0173 -E e- 0 0 0 -O H2O 0 O 16.00 -O(-2) H2O 0 O -O(0) O2 0 O -Ag Ag+ 0.0 Ag 107.868 -Al Al+3 0.0 Al 26.9815 -As H3AsO4 -1.0 As 74.9216 -As(3) H3AsO3 0.0 As -As(5) H3AsO4 -1.0 As -B H3BO3 0.0 B 10.81 -Ba Ba+2 0.0 Ba 137.33 -Be Be+2 0.0 Be 9.0122 -Br Br- 0.0 Br 79.904 -C CO3-2 2.0 CO3 12.0111 -C(4) CO3-2 2.0 CO3 12.0111 -Cyanide Cyanide- 1.0 Cyanide 26.0177 -Dom_a Dom_a 0.0 C 12.0111 -Dom_b Dom_b 0.0 C 12.0111 -Dom_c Dom_c 0.0 C 12.0111 -Ca Ca+2 0.0 Ca 40.078 -Cd Cd+2 0.0 Cd 112.41 -Cl Cl- 0.0 Cl 35.453 -Co Co+3 -1.0 Co 58.9332 -Co(2) Co+2 0.0 Co -Co(3) Co+3 -1.0 Co -Cr CrO4-2 1.0 Cr 51.996 -Cr(2) Cr+2 0.0 Cr -Cr(3) Cr(OH)2+ 0.0 Cr -Cr(6) CrO4-2 1.0 Cr -Cu Cu+2 0.0 Cu 63.546 -Cu(1) Cu+ 0.0 Cu -Cu(2) Cu+2 0.0 Cu -F F- 0.0 F 18.9984 -Fe Fe+3 -2.0 Fe 55.847 -Fe(2) Fe+2 0.0 Fe -Fe(3) Fe+3 -2.0 Fe -H H+ -1.0 H 1.0079 -H(0) H2 0 H -H(1) H+ -1.0 H -Hg Hg(OH)2 0.0 Hg 200.59 -Hg(0) Hg 0.0 Hg -Hg(1) Hg2+2 0.0 Hg -Hg(2) Hg(OH)2 0.0 Hg -I I- 0.0 I 126.904 -K K+ 0.0 K 39.0983 -Li Li+ 0.0 Li 6.941 -Mg Mg+2 0.0 Mg 24.305 -Mn Mn+3 0.0 Mn 54.938 -Mn(2) Mn+2 0.0 Mn -Mn(3) Mn+3 0.0 Mn -Mn(6) MnO4-2 0.0 Mn -Mn(7) MnO4- 0.0 Mn -Mo MoO4-2 0.0 Mo 95.94 -N NO3- 0.0 N 14.0067 -N(-3) NH4+ 0.0 N -N(3) NO2- 0.0 N -N(5) NO3- 0.0 N -Na Na+ 0.0 Na 22.9898 -Ni Ni+2 0.0 Ni 58.69 -P PO4-3 2.0 P 30.9738 -Pb Pb+2 0.0 Pb 207.2 -S SO4-2 0.0 SO4 32.066 -S(-2) HS- 1.0 S -#S(0) S 0.0 S -S(6) SO4-2 0.0 SO4 -Sb Sb(OH)6- 0.0 Sb 121.75 -Sb(3) Sb(OH)3 0.0 Sb -Sb(5) Sb(OH)6- 0.0 Sb -Se SeO4-2 0.0 Se 78.96 -Se(-2) HSe- 0.0 Se -Se(4) HSeO3- 0.0 Se -Se(6) SeO4-2 0.0 Se -Si H4SiO4 0.0 SiO2 28.0843 -Sn Sn(OH)6-2 0.0 Sn 118.71 -Sn(2) Sn(OH)2 0.0 Sn -Sn(4) Sn(OH)6-2 0.0 Sn -Sr Sr+2 0.0 Sr 87.62 -Tl Tl(OH)3 0.0 Tl 204.383 -Tl(1) Tl+ 0.0 Tl -Tl(3) Tl(OH)3 0.0 Tl -U UO2+2 0.0 U 238.029 -U(3) U+3 0.0 U -U(4) U+4 -4.0 U -U(5) UO2+ 0.0 U -U(6) UO2+2 0.0 U -V VO2+ -2.0 V 50.94 -V(2) V+2 0.0 V -V(3) V+3 -3.0 V -V(4) VO+2 0.0 V -V(5) VO2+ -2.0 V -Zn Zn+2 0.0 Zn 65.39 -Benzoate Benzoate- 0.0 121.116 121.116 -Phenylacetate Phenylacetate- 0.0 135.142 135.142 -Isophthalate Isophthalate-2 0.0 164.117 164.117 -Diethylamine Diethylamine 1.0 73.138 73.138 -Butylamine Butylamine 1.0 73.138 73.138 -Methylamine Methylamine 1.0 31.057 31.057 -Dimethylamine Dimethylamine 1.0 45.084 45.084 -Hexylamine Hexylamine 1.0 101.192 101.192 -Ethylenediamine Ethylenediamine 2.0 60.099 60.099 -Propylamine Propylamine 1.0 59.111 59.111 -Isopropylamine Isopropylamine 1.0 59.111 59.111 -Trimethylamine Trimethylamine 1.0 59.111 59.111 -Citrate Citrate-3 2.0 189.102 189.102 -Nta Nta-3 1.0 188.117 188.117 -Edta Edta-4 2.0 288.214 288.214 -Propionate Propionate- 1.0 73.072 73.072 -Butyrate Butyrate- 1.0 87.098 87.098 -Isobutyrate Isobutyrate- 1.0 87.098 87.098 -Two_picoline Two_picoline 1.0 93.128 93.128 -Three_picoline Three_picoline 1.0 93.128 93.128 -Four_picoline Four_picoline 1.0 93.128 93.128 -Formate Formate- 0.0 45.018 45.018 -Isovalerate Isovalerate- 1.0 101.125 101.125 -Valerate Valerate- 1.0 101.125 101.125 -Acetate Acetate- 1.0 59.045 59.045 -Tartarate Tartarate-2 0.0 148.072 148.072 -Glycine Glycine- 1.0 74.059 74.059 -Salicylate Salicylate-2 1.0 136.107 136.107 -Glutamate Glutamate-2 1.0 145.115 145.115 -Phthalate Phthalate-2 1.0 164.117 164.117 -SOLUTION_SPECIES -e- = e- - log_k 0 -H2O = H2O - log_k 0 -Ag+ = Ag+ - log_k 0 -Al+3 = Al+3 - log_k 0 -H3AsO4 = H3AsO4 - log_k 0 -H3BO3 = H3BO3 - log_k 0 -Ba+2 = Ba+2 - log_k 0 -Be+2 = Be+2 - log_k 0 -Br- = Br- - log_k 0 -CO3-2 = CO3-2 - log_k 0 -Cyanide- = Cyanide- - log_k 0 -Dom_a = Dom_a - log_k 0 -Dom_b = Dom_b - log_k 0 -Dom_c = Dom_c - log_k 0 -Ca+2 = Ca+2 - log_k 0 -Cd+2 = Cd+2 - log_k 0 -Cl- = Cl- - log_k 0 -Co+3 = Co+3 - log_k 0 -CrO4-2 = CrO4-2 - log_k 0 -Cu+2 = Cu+2 - log_k 0 -F- = F- - log_k 0 -Fe+3 = Fe+3 - log_k 0 -H+ = H+ - log_k 0 -Hg(OH)2 = Hg(OH)2 - log_k 0 -I- = I- - log_k 0 -K+ = K+ - log_k 0 -Li+ = Li+ - log_k 0 -Mg+2 = Mg+2 - log_k 0 -Mn+3 = Mn+3 - log_k 0 -MoO4-2 = MoO4-2 - log_k 0 -NO3- = NO3- - log_k 0 -Na+ = Na+ - log_k 0 -Ni+2 = Ni+2 - log_k 0 -PO4-3 = PO4-3 - log_k 0 -Pb+2 = Pb+2 - log_k 0 -SO4-2 = SO4-2 - log_k 0 -Sb(OH)6- = Sb(OH)6- - log_k 0 -SeO4-2 = SeO4-2 - log_k 0 -H4SiO4 = H4SiO4 - log_k 0 -Sn(OH)6-2 = Sn(OH)6-2 - log_k 0 -Sr+2 = Sr+2 - log_k 0 -Tl(OH)3 = Tl(OH)3 - log_k 0 -UO2+2 = UO2+2 - log_k 0 -VO2+ = VO2+ - log_k 0 -Benzoate- = Benzoate- - log_k 0 -Phenylacetate- = Phenylacetate- - log_k 0 -Isophthalate-2 = Isophthalate-2 - log_k 0 -Zn+2 = Zn+2 - log_k 0 -Diethylamine = Diethylamine - log_k 0 -Butylamine = Butylamine - log_k 0 -Methylamine = Methylamine - log_k 0 -Dimethylamine = Dimethylamine - log_k 0 -Hexylamine = Hexylamine - log_k 0 -Ethylenediamine = Ethylenediamine - log_k 0 -Propylamine = Propylamine - log_k 0 -Isopropylamine = Isopropylamine - log_k 0 -Trimethylamine = Trimethylamine - log_k 0 -Citrate-3 = Citrate-3 - log_k 0 -Nta-3 = Nta-3 - log_k 0 -Edta-4 = Edta-4 - log_k 0 -Propionate- = Propionate- - log_k 0 -Butyrate- = Butyrate- - log_k 0 -Isobutyrate- = Isobutyrate- - log_k 0 -Two_picoline = Two_picoline - log_k 0 -Three_picoline = Three_picoline - log_k 0 -Four_picoline = Four_picoline - log_k 0 -Formate- = Formate- - log_k 0 -Isovalerate- = Isovalerate- - log_k 0 -Valerate- = Valerate- - log_k 0 -Acetate- = Acetate- - log_k 0 -Tartarate-2 = Tartarate-2 - log_k 0 -Glycine- = Glycine- - log_k 0 -Salicylate-2 = Salicylate-2 - log_k 0 -Glutamate-2 = Glutamate-2 - log_k 0 -Phthalate-2 = Phthalate-2 - log_k 0 -SOLUTION_SPECIES -Fe+3 + e- = Fe+2 - log_k 13.032 - delta_h -42.7 kJ - -gamma 0 0 - # Id: 2802810 - # log K source: Bard85 - # Delta H source: Bard85 - #T and ionic strength: -H3AsO4 + 2e- + 2H+ = H3AsO3 + H2O - log_k 18.898 - delta_h -125.6 kJ - -gamma 0 0 - # Id: 600610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sb(OH)6- + 2e- + 3H+ = Sb(OH)3 + 3H2O - log_k 24.31 - delta_h 0 kJ - -gamma 0 0 - # Id: 7407410 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + 3e- + 4H+ = U+3 + 2H2O - log_k 0.42 - delta_h -42 kJ - -gamma 0 0 - # Id: 8908930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + 2e- + 4H+ = U+4 + 2H2O - log_k 9.216 - delta_h -144.1 kJ - -gamma 0 0 - # Id: 8918930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + e- = UO2+ - log_k 2.785 - delta_h -13.8 kJ - -gamma 0 0 - # Id: 8928930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -e- + Mn+3 = Mn+2 - log_k 25.35 - delta_h -107.8 kJ - -gamma 0 0 - # Id: 4704710 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Co+3 + e- = Co+2 - log_k 32.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2002010 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cu+2 + e- = Cu+ - log_k 2.69 - delta_h 6.9 kJ - -gamma 0 0 - # Id: 2302310 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -V+3 + e- = V+2 - log_k -4.31 - delta_h 0 kJ - -gamma 0 0 - # Id: 9009010 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -VO+2 + e- + 2H+ = V+3 + H2O - log_k 5.696 - delta_h 0 kJ - -gamma 0 0 - # Id: 9019020 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -VO2+ + e- + 2H+ = VO+2 + H2O - log_k 16.903 - delta_h -122.7 kJ - -gamma 0 0 - # Id: 9029030 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -SO4-2 + 9H+ + 8e- = HS- + 4H2O - log_k 33.66 - delta_h -60.14 kJ - -gamma 0 0 - # Id: 7307320 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sn(OH)6-2 + 2e- + 4H+ = Sn(OH)2 + 4H2O - log_k 19.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 7907910 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl(OH)3 + 2e- + 3H+ = Tl+ + 3H2O - log_k 45.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 8708710 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -HSeO3- + 6e- + 6H+ = HSe- + 3H2O - log_k 44.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 7607610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -SeO4-2 + 2e- + 3H+ = HSeO3- + H2O - log_k 36.308 - delta_h -201.2 kJ - -gamma 0 0 - # Id: 7617620 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -0.5Hg2+2 + e- = Hg - log_k 6.5667 - delta_h -45.735 kJ - -gamma 0 0 - # Id: 3600000 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: - -2Hg(OH)2 + 4H+ + 2e- = Hg2+2 + 4H2O - log_k 43.185 - delta_h -63.59 kJ - -gamma 0 0 - # Id: 3603610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 2H+ + e- = Cr+2 + 2H2O - log_k 2.947 - delta_h 6.36 kJ - -gamma 0 0 - # Id: 2102110 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + 6H+ + 3e- = Cr(OH)2+ + 2H2O - log_k 67.376 - delta_h -103 kJ - -gamma 0 0 - # Id: 2112120 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: - -2H2O = O2 + 4H+ + 4e- -# Adjusted for equation to aqueous species - log_k -85.9951 - -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 - -2 H+ + 2 e- = H2 - log_k -3.15 - delta_h -1.759 kcal - -NO3- + 2 H+ + 2 e- = NO2- + H2O - log_k 28.570 - delta_h -43.760 kcal - -gamma 3.0000 0.0000 - -NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O - log_k 119.077 - delta_h -187.055 kcal - -gamma 2.5000 0.0000 - -Mn+2 + 4H2O = MnO4- + 8H+ + 5e- - log_k -127.794 - delta_h 822.67 kJ - -gamma 3 0 - # Id: 4700020 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- - log_k -118.422 - delta_h 711.07 kJ - -gamma 5 0 - # Id: 4700021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -HS- = S-2 + H+ - log_k -17.3 - delta_h 49.4 kJ - -gamma 5 0 - # Id: 3307301 - # log K source: LMa1987 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 -HSe- = Se-2 + H+ - log_k -15 - delta_h 48.116 kJ - -gamma 0 0 - # Id: 3307601 - # log K source: SCD3.02 (1968 DKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ = Tl+3 + 3H2O - log_k 3.291 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -0.5Hg2+2 + e- = Hg - log_k 6.5667 - delta_h -45.735 kJ - -gamma 0 0 - # Id: 3600000 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Hg(OH)2 + 2H+ = Hg+2 + 2H2O - log_k 6.194 - delta_h -39.72 kJ - -gamma 0 0 - # Id: 3613300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ = Cr+3 + 2H2O - log_k 9.5688 - delta_h -129.62 kJ - -gamma 0 0 - # Id: 2113300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.10 20.0 -H2O = OH- + H+ - log_k -13.997 - delta_h 55.81 kJ - -gamma 3.5 0 - # Id: 3300020 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ = Sn+2 + 2H2O - log_k 7.094 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + H+ = SnOH+ + H2O - log_k 3.697 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + H2O = Sn(OH)3- + H+ - log_k -9.497 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2Sn(OH)2 + 2H+ = Sn2(OH)2+2 + 2H2O - log_k 9.394 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -3Sn(OH)2 + 2H+ = Sn3(OH)4+2 + 2H2O - log_k 14.394 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903305 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 = HSnO2- + H+ - log_k -8.9347 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903306 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sn(OH)6-2 + 6H+ = Sn+4 + 6H2O - log_k 21.2194 - delta_h 0 kJ - -gamma 0 0 - # Id: 7913301 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sn(OH)6-2 = SnO3-2 + 3H2O - log_k -2.2099 - delta_h 0 kJ - -gamma 0 0 - # Id: 7913302 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Pb+2 + H2O = PbOH+ + H+ - log_k -7.597 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2H2O = Pb(OH)2 + 2H+ - log_k -17.094 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Pb+2 + 3H2O = Pb(OH)3- + 3H+ - log_k -28.091 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2Pb+2 + H2O = Pb2OH+3 + H+ - log_k -6.397 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ - log_k -23.888 - delta_h 115.24 kJ - -gamma 0 0 - # Id: 6003304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Pb+2 + 4H2O = Pb(OH)4-2 + 4H+ - log_k -39.699 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003305 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -4Pb+2 + 4H2O = Pb4(OH)4+4 + 4H+ - log_k -19.988 - delta_h 88.24 kJ - -gamma 0 0 - # Id: 6003306 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -H3BO3 + F- = BF(OH)3- - log_k -0.399 - delta_h 7.7404 kJ - -gamma 2.5 0 - # Id: 902700 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3BO3 + 2F- + H+ = BF2(OH)2- + H2O - log_k 7.63 - delta_h 6.8408 kJ - -gamma 2.5 0 - # Id: 902701 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3BO3 + 3F- + 2H+ = BF3OH- + 2H2O - log_k 13.22 - delta_h -20.4897 kJ - -gamma 2.5 0 - # Id: 902702 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Al+3 + H2O = AlOH+2 + H+ - log_k -4.997 - delta_h 47.81 kJ - -gamma 5.4 0 - # Id: 303300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Al+3 + 2H2O = Al(OH)2+ + 2H+ - log_k -10.094 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 303301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Al+3 + 3H2O = Al(OH)3 + 3H+ - log_k -16.791 - delta_h 0 kJ - -gamma 0 0 - # Id: 303303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Al+3 + 4H2O = Al(OH)4- + 4H+ - log_k -22.688 - delta_h 173.24 kJ - -gamma 4.5 0 - # Id: 303302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl+ + H2O = TlOH + H+ - log_k -13.207 - delta_h 56.81 kJ - -gamma 0 0 - # Id: 8703300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 2H+ = TlOH+2 + 2H2O - log_k 2.694 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + H+ = Tl(OH)2+ + H2O - log_k 1.897 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + H2O = Tl(OH)4- + H+ - log_k -11.697 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + H2O = ZnOH+ + H+ - log_k -8.997 - delta_h 55.81 kJ - -gamma 0 0 - # Id: 9503300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2H2O = Zn(OH)2 + 2H+ - log_k -17.794 - delta_h 0 kJ - -gamma 0 0 - # Id: 9503301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + 3H2O = Zn(OH)3- + 3H+ - log_k -28.091 - delta_h 0 kJ - -gamma 0 0 - # Id: 9503302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + 4H2O = Zn(OH)4-2 + 4H+ - log_k -40.488 - delta_h 0 kJ - -gamma 0 0 - # Id: 9503303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cd+2 + H2O = CdOH+ + H+ - log_k -10.097 - delta_h 54.81 kJ - -gamma 0 0 - # Id: 1603300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2H2O = Cd(OH)2 + 2H+ - log_k -20.294 - delta_h 0 kJ - -gamma 0 0 - # Id: 1603301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cd+2 + 3H2O = Cd(OH)3- + 3H+ - log_k -32.505 - delta_h 0 kJ - -gamma 0 0 - # Id: 1603302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 -Cd+2 + 4H2O = Cd(OH)4-2 + 4H+ - log_k -47.288 - delta_h 0 kJ - -gamma 0 0 - # Id: 1603303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2Cd+2 + H2O = Cd2OH+3 + H+ - log_k -9.397 - delta_h 45.81 kJ - -gamma 0 0 - # Id: 1603304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + H+ = HgOH+ + H2O - log_k 2.797 - delta_h -18.91 kJ - -gamma 0 0 - # Id: 3613302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + H2O = Hg(OH)3- + H+ - log_k -14.897 - delta_h 0 kJ - -gamma 0 0 - # Id: 3613303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cu+2 + H2O = CuOH+ + H+ - log_k -7.497 - delta_h 35.81 kJ - -gamma 4 0 - # Id: 2313300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cu+2 + 2H2O = Cu(OH)2 + 2H+ - log_k -16.194 - delta_h 0 kJ - -gamma 0 0 - # Id: 2313301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cu+2 + 3H2O = Cu(OH)3- + 3H+ - log_k -26.879 - delta_h 0 kJ - -gamma 0 0 - # Id: 2313302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Cu+2 + 4H2O = Cu(OH)4-2 + 4H+ - log_k -39.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 2313303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ - log_k -10.594 - delta_h 76.62 kJ - -gamma 0 0 - # Id: 2313304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ag+ + H2O = AgOH + H+ - log_k -11.997 - delta_h 0 kJ - -gamma 0 0 - # Id: 203300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ag+ + 2H2O = Ag(OH)2- + 2H+ - log_k -24.004 - delta_h 0 kJ - -gamma 0 0 - # Id: 203301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ni+2 + H2O = NiOH+ + H+ - log_k -9.897 - delta_h 51.81 kJ - -gamma 0 0 - # Id: 5403300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ni+2 + 2H2O = Ni(OH)2 + 2H+ - log_k -18.994 - delta_h 0 kJ - -gamma 0 0 - # Id: 5403301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ni+2 + 3H2O = Ni(OH)3- + 3H+ - log_k -29.991 - delta_h 0 kJ - -gamma 0 0 - # Id: 5403302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + H2O = CoOH+ + H+ - log_k -9.697 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + 2H2O = Co(OH)2 + 2H+ - log_k -18.794 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + 3H2O = Co(OH)3- + 3H+ - log_k -31.491 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + 4H2O = Co(OH)4-2 + 4H+ - log_k -46.288 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2Co+2 + H2O = Co2OH+3 + H+ - log_k -10.997 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -4Co+2 + 4H2O = Co4(OH)4+4 + 4H+ - log_k -30.488 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003306 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + 2H2O = CoOOH- + 3H+ - log_k -32.0915 - delta_h 260.454 kJ - -gamma 0 0 - # Id: 2003305 - # log K source: NIST2.1.1 - # Delta H source: MTQ3.11 - #T and ionic strength: -Co+3 + H2O = CoOH+2 + H+ - log_k -1.291 - delta_h 0 kJ - -gamma 0 0 - # Id: 2013300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 -Fe+2 + H2O = FeOH+ + H+ - log_k -9.397 - delta_h 55.81 kJ - -gamma 5 0 - # Id: 2803300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ - log_k -20.494 - delta_h 119.62 kJ - -gamma 0 0 - # Id: 2803302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ - log_k -28.991 - delta_h 126.43 kJ - -gamma 5 0 - # Id: 2803301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Fe+3 + H2O = FeOH+2 + H+ - log_k -2.187 - delta_h 41.81 kJ - -gamma 5 0 - # Id: 2813300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Fe+3 + 2H2O = Fe(OH)2+ + 2H+ - log_k -4.594 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 2813301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Fe+3 + 3H2O = Fe(OH)3 + 3H+ - log_k -12.56 - delta_h 103.8 kJ - -gamma 0 0 - # Id: 2813302 - # log K source: Nord90 - # Delta H source: Nord90 - #T and ionic strength: 0.00 25.0 -Fe+3 + 4H2O = Fe(OH)4- + 4H+ - log_k -21.588 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 2813303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2Fe+3 + 2H2O = Fe2(OH)2+4 + 2H+ - log_k -2.854 - delta_h 57.62 kJ - -gamma 0 0 - # Id: 2813304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -3Fe+3 + 4H2O = Fe3(OH)4+5 + 4H+ - log_k -6.288 - delta_h 65.24 kJ - -gamma 0 0 - # Id: 2813305 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Mn+2 + H2O = MnOH+ + H+ - log_k -10.597 - delta_h 55.81 kJ - -gamma 5 0 - # Id: 4703300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ - log_k -34.8 - delta_h 0 kJ - -gamma 5 0 - # Id: 4703301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Mn+2 + 4H2O = Mn(OH)4-2 + 4H+ - log_k -48.288 - delta_h 0 kJ - -gamma 5 0 - # Id: 4703302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Mn+2 + 4H2O = MnO4- + 8H+ + 5e- - log_k -127.794 - delta_h 822.67 kJ - -gamma 3 0 - # Id: 4700020 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- - log_k -118.422 - delta_h 711.07 kJ - -gamma 5 0 - # Id: 4700021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Cr(OH)2+ + H+ = Cr(OH)+2 + H2O - log_k 5.9118 - delta_h -77.91 kJ - -gamma 0 0 - # Id: 2113301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + H2O = Cr(OH)3 + H+ - log_k -8.4222 - delta_h 0 kJ - -gamma 0 0 - # Id: 2113302 - # log K source: SCD3.02 (1983 RCa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H2O = Cr(OH)4- + 2H+ - log_k -17.8192 - delta_h 0 kJ - -gamma 0 0 - # Id: 2113303 - # log K source: SCD3.02 (1983 RCa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ = CrO2- + 2H+ - log_k -17.7456 - delta_h 0 kJ - -gamma 0 0 - # Id: 2113304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -V+2 + H2O = VOH+ + H+ - log_k -6.487 - delta_h 59.81 kJ - -gamma 0 0 - # Id: 9003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -V+3 + H2O = VOH+2 + H+ - log_k -2.297 - delta_h 43.81 kJ - -gamma 0 0 - # Id: 9013300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -V+3 + 2H2O = V(OH)2+ + 2H+ - log_k -6.274 - delta_h 0 kJ - -gamma 0 0 - # Id: 9013301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -V+3 + 3H2O = V(OH)3 + 3H+ - log_k -3.0843 - delta_h 0 kJ - -gamma 0 0 - # Id: 9013302 - # log K source: SCD3.02 (1978 TKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 -2V+3 + 2H2O = V2(OH)2+4 + 2H+ - log_k -3.794 - delta_h 0 kJ - -gamma 0 0 - # Id: 9013304 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2V+3 + 3H2O = V2(OH)3+3 + 3H+ - log_k -10.1191 - delta_h 0 kJ - -gamma 0 0 - # Id: 9013303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 -VO+2 + 2H2O = V(OH)3+ + H+ - log_k -5.697 - delta_h 0 kJ - -gamma 0 0 - # Id: 9023300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2VO+2 + 2H2O = H2V2O4+2 + 2H+ - log_k -6.694 - delta_h 53.62 kJ - -gamma 0 0 - # Id: 9023301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -U+4 + H2O = UOH+3 + H+ - log_k -0.597 - delta_h 47.81 kJ - -gamma 0 0 - # Id: 8913300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -U+4 + 2H2O = U(OH)2+2 + 2H+ - log_k -2.27 - delta_h 74.1823 kJ - -gamma 0 0 - # Id: 8913301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 3H2O = U(OH)3+ + 3H+ - log_k -4.935 - delta_h 94.7467 kJ - -gamma 0 0 - # Id: 8913302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 4H2O = U(OH)4 + 4H+ - log_k -8.498 - delta_h 103.596 kJ - -gamma 0 0 - # Id: 8913303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 5H2O = U(OH)5- + 5H+ - log_k -13.12 - delta_h 115.374 kJ - -gamma 0 0 - # Id: 8913304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -6U+4 + 15H2O = U6(OH)15+9 + 15H+ - log_k -17.155 - delta_h 0 kJ - -gamma 0 0 - # Id: 8913305 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -UO2+2 + H2O = UO2OH+ + H+ - log_k -5.897 - delta_h 47.81 kJ - -gamma 0 0 - # Id: 8933300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+ - log_k -5.574 - delta_h 41.82 kJ - -gamma 0 0 - # Id: 8933301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+ - log_k -15.585 - delta_h 108.05 kJ - -gamma 0 0 - # Id: 8933302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Be+2 + H2O = BeOH+ + H+ - log_k -5.397 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Be+2 + 2H2O = Be(OH)2 + 2H+ - log_k -13.594 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Be+2 + 3H2O = Be(OH)3- + 3H+ - log_k -23.191 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Be+2 + 4H2O = Be(OH)4-2 + 4H+ - log_k -37.388 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2Be+2 + H2O = Be2OH+3 + H+ - log_k -3.177 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103305 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -3Be+2 + 3H2O = Be3(OH)3+3 + 3H+ - log_k -8.8076 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103306 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -Mg+2 + H2O = MgOH+ + H+ - log_k -11.397 - delta_h 67.81 kJ - -gamma 6.5 0 - # Id: 4603300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ca+2 + H2O = CaOH+ + H+ - log_k -12.697 - delta_h 64.11 kJ - -gamma 6 0 - # Id: 1503300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Sr+2 + H2O = SrOH+ + H+ - log_k -13.177 - delta_h 60.81 kJ - -gamma 5 0 - # Id: 8003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ba+2 + H2O = BaOH+ + H+ - log_k -13.357 - delta_h 60.81 kJ - -gamma 5 0 - # Id: 1003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -H+ + F- = HF - log_k 3.17 - delta_h 13.3 kJ - -gamma 0 0 - # Id: 3302700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -H+ + 2F- = HF2- - log_k 3.75 - delta_h 17.4 kJ - -gamma 3.5 0 - # Id: 3302701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -2F- + 2H+ = H2F2 - log_k 6.768 - delta_h 0 kJ - -gamma 0 0 - # Id: 3302702 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sb(OH)3 + F- + H+ = SbOF + 2H2O - log_k 6.1864 - delta_h 0 kJ - -gamma 0 0 - # Id: 7402700 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)3 + F- + H+ = Sb(OH)2F + H2O - log_k 6.1937 - delta_h 0 kJ - -gamma 0 0 - # Id: 7402702 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -H4SiO4 + 4H+ + 6F- = SiF6-2 + 4H2O - log_k 30.18 - delta_h -68 kJ - -gamma 5 0 - # Id: 7702700 - # log K source: Nord90 - # Delta H source: Nord90 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + F- = SnF+ + 2H2O - log_k 11.582 - delta_h 0 kJ - -gamma 0 0 - # Id: 7902701 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Sn(OH)2 + 2H+ + 2F- = SnF2 + 2H2O - log_k 14.386 - delta_h 0 kJ - -gamma 0 0 - # Id: 7902702 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Sn(OH)2 + 2H+ + 3F- = SnF3- + 2H2O - log_k 17.206 - delta_h 0 kJ - -gamma 0 0 - # Id: 7902703 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Sn(OH)6-2 + 6H+ + 6F- = SnF6-2 + 6H2O - log_k 33.5844 - delta_h 0 kJ - -gamma 0 0 - # Id: 7912701 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Pb+2 + F- = PbF+ - log_k 1.848 - delta_h 0 kJ - -gamma 0 0 - # Id: 6002700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Pb+2 + 2F- = PbF2 - log_k 3.142 - delta_h 0 kJ - -gamma 0 0 - # Id: 6002701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Pb+2 + 3F- = PbF3- - log_k 3.42 - delta_h 0 kJ - -gamma 0 0 - # Id: 6002702 - # log K source: SCD3.02 (1956 TKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Pb+2 + 4F- = PbF4-2 - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 6002703 - # log K source: SCD3.02 (1956 TKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -H3BO3 + 3H+ + 4F- = BF4- + 3H2O - log_k 19.912 - delta_h -18.67 kJ - -gamma 2.5 0 - # Id: 902703 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 1.00 25.0 -Al+3 + F- = AlF+2 - log_k 7 - delta_h 4.6 kJ - -gamma 5.4 0 - # Id: 302700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Al+3 + 2F- = AlF2+ - log_k 12.6 - delta_h 8.3 kJ - -gamma 5.4 0 - # Id: 302701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Al+3 + 3F- = AlF3 - log_k 16.7 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 302702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Al+3 + 4F- = AlF4- - log_k 19.4 - delta_h 8.7 kJ - -gamma 4.5 0 - # Id: 302703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl+ + F- = TlF - log_k 0.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 8702700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + F- = ZnF+ - log_k 1.3 - delta_h 11 kJ - -gamma 0 0 - # Id: 9502700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + F- = CdF+ - log_k 1.2 - delta_h 5 kJ - -gamma 0 0 - # Id: 1602700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2F- = CdF2 - log_k 1.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 1602701 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 2H+ + F- = HgF+ + 2H2O - log_k 7.763 - delta_h -35.72 kJ - -gamma 0 0 - # Id: 3612701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 -Cu+2 + F- = CuF+ - log_k 1.8 - delta_h 13 kJ - -gamma 0 0 - # Id: 2312700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ag+ + F- = AgF - log_k 0.4 - delta_h 12 kJ - -gamma 0 0 - # Id: 202700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ni+2 + F- = NiF+ - log_k 1.4 - delta_h 7.1 kJ - -gamma 0 0 - # Id: 5402700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Co+2 + F- = CoF+ - log_k 1.5 - delta_h 9.2 kJ - -gamma 0 0 - # Id: 2002700 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Fe+3 + F- = FeF+2 - log_k 6.04 - delta_h 10 kJ - -gamma 5 0 - # Id: 2812700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Fe+3 + 2F- = FeF2+ - log_k 10.4675 - delta_h 17 kJ - -gamma 5 0 - # Id: 2812701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 -Fe+3 + 3F- = FeF3 - log_k 13.617 - delta_h 29 kJ - -gamma 0 0 - # Id: 2812702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 -Mn+2 + F- = MnF+ - log_k 1.6 - delta_h 11 kJ - -gamma 5 0 - # Id: 4702700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ + F- = CrF+2 + 2H2O - log_k 14.7688 - delta_h -70.2452 kJ - -gamma 0 0 - # Id: 2112700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -VO+2 + F- = VOF+ - log_k 3.778 - delta_h 7.9 kJ - -gamma 0 0 - # Id: 9022700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -VO+2 + 2F- = VOF2 - log_k 6.352 - delta_h 14 kJ - -gamma 0 0 - # Id: 9022701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -VO+2 + 3F- = VOF3- - log_k 7.902 - delta_h 20 kJ - -gamma 0 0 - # Id: 9022702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -VO+2 + 4F- = VOF4-2 - log_k 8.508 - delta_h 26 kJ - -gamma 0 0 - # Id: 9022703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -VO2+ + F- = VO2F - log_k 3.244 - delta_h 0 kJ - -gamma 0 0 - # Id: 9032700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -VO2+ + 2F- = VO2F2- - log_k 5.804 - delta_h 0 kJ - -gamma 0 0 - # Id: 9032701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -VO2+ + 3F- = VO2F3-2 - log_k 6.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 9032702 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -VO2+ + 4F- = VO2F4-3 - log_k 6.592 - delta_h 0 kJ - -gamma 0 0 - # Id: 9032703 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -U+4 + F- = UF+3 - log_k 9.3 - delta_h 21.1292 kJ - -gamma 0 0 - # Id: 8912700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -U+4 + 2F- = UF2+2 - log_k 16.4 - delta_h 30.1248 kJ - -gamma 0 0 - # Id: 8912701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -U+4 + 3F- = UF3+ - log_k 21.6 - delta_h 29.9156 kJ - -gamma 0 0 - # Id: 8912702 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -U+4 + 4F- = UF4 - log_k 23.64 - delta_h 19.2464 kJ - -gamma 0 0 - # Id: 8912703 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 5F- = UF5- - log_k 25.238 - delta_h 20.2924 kJ - -gamma 0 0 - # Id: 8912704 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 6F- = UF6-2 - log_k 27.718 - delta_h 13.8072 kJ - -gamma 0 0 - # Id: 8912705 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + F- = UO2F+ - log_k 5.14 - delta_h 1 kJ - -gamma 0 0 - # Id: 8932700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -UO2+2 + 2F- = UO2F2 - log_k 8.6 - delta_h 2 kJ - -gamma 0 0 - # Id: 8932701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -UO2+2 + 3F- = UO2F3- - log_k 11 - delta_h 2 kJ - -gamma 0 0 - # Id: 8932702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -UO2+2 + 4F- = UO2F4-2 - log_k 11.9 - delta_h 0.4 kJ - -gamma 0 0 - # Id: 8932703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Be+2 + F- = BeF+ - log_k 5.249 - delta_h 0 kJ - -gamma 0 0 - # Id: 1102701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Be+2 + 2F- = BeF2 - log_k 9.1285 - delta_h -4 kJ - -gamma 0 0 - # Id: 1102702 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Be+2 + 3F- = BeF3- - log_k 11.9085 - delta_h -8 kJ - -gamma 0 0 - # Id: 1102703 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Mg+2 + F- = MgF+ - log_k 2.05 - delta_h 13 kJ - -gamma 4.5 0 - # Id: 4602700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ca+2 + F- = CaF+ - log_k 1.038 - delta_h 14 kJ - -gamma 5 0 - # Id: 1502700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -Sr+2 + F- = SrF+ - log_k 0.548 - delta_h 16 kJ - -gamma 0 0 - # Id: 8002701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 -Na+ + F- = NaF - log_k -0.2 - delta_h 12 kJ - -gamma 0 0 - # Id: 5002700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + Cl- = SnCl+ + 2H2O - log_k 8.734 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + 2Cl- = SnCl2 + 2H2O - log_k 9.524 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + 3Cl- = SnCl3- + 2H2O - log_k 8.3505 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901803 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 2.00 25.0 -Pb+2 + Cl- = PbCl+ - log_k 1.55 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 6001800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2Cl- = PbCl2 - log_k 2.2 - delta_h 12 kJ - -gamma 0 0 - # Id: 6001801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Pb+2 + 3Cl- = PbCl3- - log_k 1.8 - delta_h 4 kJ - -gamma 0 0 - # Id: 6001802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Pb+2 + 4Cl- = PbCl4-2 - log_k 1.46 - delta_h 14.7695 kJ - -gamma 0 0 - # Id: 6001803 - # log K source: SCD3.02 (1984 SEa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Tl+ + Cl- = TlCl - log_k 0.51 - delta_h -6.2 kJ - -gamma 0 0 - # Id: 8701800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl+ + 2Cl- = TlCl2- - log_k 0.28 - delta_h 0 kJ - -gamma 0 0 - # Id: 8701801 - # log K source: SCD3.02 (1992 RAb) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ + Cl- = TlCl+2 + 3H2O - log_k 11.011 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ + 2Cl- = TlCl2+ + 3H2O - log_k 16.771 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ + 3Cl- = TlCl3 + 3H2O - log_k 19.791 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ + 4Cl- = TlCl4- + 3H2O - log_k 21.591 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711803 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + Cl- + 2H+ = TlOHCl+ + 2H2O - log_k 10.629 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + Cl- = ZnCl+ - log_k 0.4 - delta_h 5.4 kJ - -gamma 4 0 - # Id: 9501800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2Cl- = ZnCl2 - log_k 0.6 - delta_h 37 kJ - -gamma 0 0 - # Id: 9501801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Zn+2 + 3Cl- = ZnCl3- - log_k 0.5 - delta_h 39.999 kJ - -gamma 4 0 - # Id: 9501802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + 4Cl- = ZnCl4-2 - log_k 0.199 - delta_h 45.8566 kJ - -gamma 5 0 - # Id: 9501803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + H2O + Cl- = ZnOHCl + H+ - log_k -7.48 - delta_h 0 kJ - -gamma 0 0 - # Id: 9501804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cd+2 + Cl- = CdCl+ - log_k 1.98 - delta_h 1 kJ - -gamma 0 0 - # Id: 1601800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2Cl- = CdCl2 - log_k 2.6 - delta_h 3 kJ - -gamma 0 0 - # Id: 1601801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 3Cl- = CdCl3- - log_k 2.4 - delta_h 10 kJ - -gamma 0 0 - # Id: 1601802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + H2O + Cl- = CdOHCl + H+ - log_k -7.404 - delta_h 18.2213 kJ - -gamma 0 0 - # Id: 1601803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 2H+ + Cl- = HgCl+ + 2H2O - log_k 13.494 - delta_h -62.72 kJ - -gamma 0 0 - # Id: 3611800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 2Cl- = HgCl2 + 2H2O - log_k 20.194 - delta_h -92.42 kJ - -gamma 0 0 - # Id: 3611801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 3Cl- = HgCl3- + 2H2O - log_k 21.194 - delta_h -94.02 kJ - -gamma 0 0 - # Id: 3611802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 4Cl- = HgCl4-2 + 2H2O - log_k 21.794 - delta_h -100.72 kJ - -gamma 0 0 - # Id: 3611803 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + Cl- + I- + 2H+ = HgClI + 2H2O - log_k 25.532 - delta_h -135.3 kJ - -gamma 0 0 - # Id: 3611804 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Hg(OH)2 + H+ + Cl- = HgClOH + H2O - log_k 10.444 - delta_h -42.72 kJ - -gamma 0 0 - # Id: 3611805 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -Cu+2 + Cl- = CuCl+ - log_k 0.2 - delta_h 8.3 kJ - -gamma 4 0 - # Id: 2311800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cu+2 + 2Cl- = CuCl2 - log_k -0.26 - delta_h 44.183 kJ - -gamma 0 0 - # Id: 2311801 - # log K source: SCD3.02 (1989 IPa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cu+2 + 3Cl- = CuCl3- - log_k -2.29 - delta_h 57.279 kJ - -gamma 4 0 - # Id: 2311802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cu+2 + 4Cl- = CuCl4-2 - log_k -4.59 - delta_h 32.5515 kJ - -gamma 5 0 - # Id: 2311803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cu+ + 2Cl- = CuCl2- - log_k 5.42 - delta_h -1.7573 kJ - -gamma 4 0 - # Id: 2301800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cu+ + 3Cl- = CuCl3-2 - log_k 4.75 - delta_h 1.0878 kJ - -gamma 5 0 - # Id: 2301801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cu+ + Cl- = CuCl - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2301802 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ag+ + Cl- = AgCl - log_k 3.31 - delta_h -12 kJ - -gamma 0 0 - # Id: 201800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ag+ + 2Cl- = AgCl2- - log_k 5.25 - delta_h -16 kJ - -gamma 0 0 - # Id: 201801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ag+ + 3Cl- = AgCl3-2 - log_k 5.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 201802 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ag+ + 4Cl- = AgCl4-3 - log_k 5.51 - delta_h 0 kJ - -gamma 0 0 - # Id: 201803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Ni+2 + Cl- = NiCl+ - log_k 0.408 - delta_h 2 kJ - -gamma 0 0 - # Id: 5401800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -Ni+2 + 2Cl- = NiCl2 - log_k -1.89 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401801 - # log K source: SCD3.02 (1989 IPa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + Cl- = CoCl+ - log_k 0.539 - delta_h 2 kJ - -gamma 0 0 - # Id: 2001800 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Co+3 + Cl- = CoCl+2 - log_k 2.3085 - delta_h 16 kJ - -gamma 0 0 - # Id: 2011800 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Fe+3 + Cl- = FeCl+2 - log_k 1.48 - delta_h 23 kJ - -gamma 5 0 - # Id: 2811800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Fe+3 + 2Cl- = FeCl2+ - log_k 2.13 - delta_h 0 kJ - -gamma 5 0 - # Id: 2811801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Fe+3 + 3Cl- = FeCl3 - log_k 1.13 - delta_h 0 kJ - -gamma 0 0 - # Id: 2811802 - # log K source: Nord90 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Mn+2 + Cl- = MnCl+ - log_k 0.1 - delta_h 0 kJ - -gamma 5 0 - # Id: 4701800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 20.0 -Mn+2 + 2Cl- = MnCl2 - log_k 0.25 - delta_h 0 kJ - -gamma 0 0 - # Id: 4701801 - # log K source: Nord90 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Mn+2 + 3Cl- = MnCl3- - log_k -0.31 - delta_h 0 kJ - -gamma 5 0 - # Id: 4701802 - # log K source: Nord90 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ + Cl- = CrCl+2 + 2H2O - log_k 9.6808 - delta_h -103.62 kJ - -gamma 0 0 - # Id: 2111800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -Cr(OH)2+ + 2Cl- + 2H+ = CrCl2+ + 2H2O - log_k 8.658 - delta_h -39.2208 kJ - -gamma 0 0 - # Id: 2111801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 2Cl- + H+ = CrOHCl2 + H2O - log_k 2.9627 - delta_h 0 kJ - -gamma 0 0 - # Id: 2111802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -VO+2 + Cl- = VOCl+ - log_k 0.448 - delta_h 0 kJ - -gamma 0 0 - # Id: 9021800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -U+4 + Cl- = UCl+3 - log_k 1.7 - delta_h -20 kJ - -gamma 0 0 - # Id: 8911800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -UO2+2 + Cl- = UO2Cl+ - log_k 0.21 - delta_h 16 kJ - -gamma 0 0 - # Id: 8931800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Be+2 + Cl- = BeCl+ - log_k 0.2009 - delta_h 0 kJ - -gamma 5 0 - # Id: 1101801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 20.0 -Sn(OH)2 + 2H+ + Br- = SnBr+ + 2H2O - log_k 8.254 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + 2Br- = SnBr2 + 2H2O - log_k 8.794 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901302 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + 3Br- = SnBr3- + 2H2O - log_k 7.48 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901303 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 3.00 25.0 -Pb+2 + Br- = PbBr+ - log_k 1.7 - delta_h 8 kJ - -gamma 0 0 - # Id: 6001300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2Br- = PbBr2 - log_k 2.6 - delta_h -4 kJ - -gamma 0 0 - # Id: 6001301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl+ + Br- = TlBr - log_k 0.91 - delta_h -12 kJ - -gamma 0 0 - # Id: 8701300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl+ + 2Br- = TlBr2- - log_k -0.384 - delta_h 12.36 kJ - -gamma 0 0 - # Id: 8701301 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 4.00 25.0 -Tl+ + Br- + Cl- = TlBrCl- - log_k 0.8165 - delta_h 0 kJ - -gamma 0 0 - # Id: 8701302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl+ + I- + Br- = TlIBr- - log_k 2.185 - delta_h 0 kJ - -gamma 0 0 - # Id: 8703802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl(OH)3 + 3H+ + Br- = TlBr+2 + 3H2O - log_k 12.803 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Tl(OH)3 + 3H+ + 2Br- = TlBr2+ + 3H2O - log_k 20.711 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Tl(OH)3 + 3Br- + 3H+ = TlBr3 + 3H2O - log_k 27.0244 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl(OH)3 + 4Br- + 3H+ = TlBr4- + 3H2O - log_k 31.1533 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + Br- = ZnBr+ - log_k -0.07 - delta_h 1 kJ - -gamma 0 0 - # Id: 9501300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2Br- = ZnBr2 - log_k -0.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 9501301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cd+2 + Br- = CdBr+ - log_k 2.15 - delta_h -3 kJ - -gamma 0 0 - # Id: 1601300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2Br- = CdBr2 - log_k 3 - delta_h -3 kJ - -gamma 0 0 - # Id: 1601301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + Br- = HgBr+ + 2H2O - log_k 15.803 - delta_h -81.92 kJ - -gamma 0 0 - # Id: 3611301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 2Br- = HgBr2 + 2H2O - log_k 24.2725 - delta_h -127.12 kJ - -gamma 0 0 - # Id: 3611302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 3Br- = HgBr3- + 2H2O - log_k 26.7025 - delta_h -138.82 kJ - -gamma 0 0 - # Id: 3611303 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 4Br- = HgBr4-2 + 2H2O - log_k 27.933 - delta_h -153.72 kJ - -gamma 0 0 - # Id: 3611304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + Br- + Cl- + 2H+ = HgBrCl + 2H2O - log_k 22.1811 - delta_h -113.77 kJ - -gamma 0 0 - # Id: 3611305 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Hg(OH)2 + Br- + I- + 2H+ = HgBrI + 2H2O - log_k 27.3133 - delta_h -151.27 kJ - -gamma 0 0 - # Id: 3611306 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Hg(OH)2 + Br- + 3I- + 2H+ = HgBrI3-2 + 2H2O - log_k 34.2135 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611307 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 2Br- + 2I- + 2H+ = HgBr2I2-2 + 2H2O - log_k 32.3994 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611308 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 3Br- + I- + 2H+ = HgBr3I-2 + 2H2O - log_k 30.1528 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611309 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + H+ + Br- = HgBrOH + H2O - log_k 12.433 - delta_h 0 kJ - -gamma 0 0 - # Id: 3613301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Ag+ + Br- = AgBr - log_k 4.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 201300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ag+ + 2Br- = AgBr2- - log_k 7.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 201301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ag+ + 3Br- = AgBr3-2 - log_k 8.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 201302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ni+2 + Br- = NiBr+ - log_k 0.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + Br- + 2H+ = CrBr+2 + 2H2O - log_k 7.5519 - delta_h -46.9068 kJ - -gamma 0 0 - # Id: 2111300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Be+2 + Br- = BeBr+ - log_k 0.1009 - delta_h 0 kJ - -gamma 5 0 - # Id: 1101301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 20.0 -Pb+2 + I- = PbI+ - log_k 2 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2I- = PbI2 - log_k 3.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Tl+ + I- = TlI - log_k 1.4279 - delta_h 0 kJ - -gamma 0 0 - # Id: 8703800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl+ + 2I- = TlI2- - log_k 1.8588 - delta_h 0 kJ - -gamma 0 0 - # Id: 8703801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl(OH)3 + 4I- + 3H+ = TlI4- + 3H2O - log_k 34.7596 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + I- = ZnI+ - log_k -2.0427 - delta_h -4 kJ - -gamma 0 0 - # Id: 9503800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 3.00 25.0 -Zn+2 + 2I- = ZnI2 - log_k -1.69 - delta_h 0 kJ - -gamma 0 0 - # Id: 9503801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cd+2 + I- = CdI+ - log_k 2.28 - delta_h -9.6 kJ - -gamma 0 0 - # Id: 1603800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2I- = CdI2 - log_k 3.92 - delta_h -12 kJ - -gamma 0 0 - # Id: 1603801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + I- = HgI+ + 2H2O - log_k 19.603 - delta_h -111.22 kJ - -gamma 0 0 - # Id: 3613801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 2I- = HgI2 + 2H2O - log_k 30.8225 - delta_h -182.72 kJ - -gamma 0 0 - # Id: 3613802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 3I- = HgI3- + 2H2O - log_k 34.6025 - delta_h -194.22 kJ - -gamma 0 0 - # Id: 3613803 - # log K source: NIST46.4 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 4I- = HgI4-2 + 2H2O - log_k 36.533 - delta_h -220.72 kJ - -gamma 0 0 - # Id: 3613804 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Ag+ + I- = AgI - log_k 6.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 203800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 18.0 -Ag+ + 2I- = AgI2- - log_k 11.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 203801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 18.0 -Ag+ + 3I- = AgI3-2 - log_k 12.6 - delta_h -122 kJ - -gamma 0 0 - # Id: 203802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ag+ + 4I- = AgI4-3 - log_k 14.229 - delta_h 0 kJ - -gamma 0 0 - # Id: 203803 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 25.0 -Cr(OH)2+ + I- + 2H+ = CrI+2 + 2H2O - log_k 4.8289 - delta_h 0 kJ - -gamma 0 0 - # Id: 2113800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H+ + HS- = H2S - log_k 7.02 - delta_h -22 kJ - -gamma 0 0 - # Id: 3307300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2HS- = Pb(HS)2 - log_k 15.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 6007300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Pb+2 + 3HS- = Pb(HS)3- - log_k 16.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 6007301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl+ + HS- = TlHS - log_k 2.474 - delta_h 0 kJ - -gamma 0 0 - # Id: 8707300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -2Tl+ + HS- = Tl2HS+ - log_k 5.974 - delta_h 0 kJ - -gamma 0 0 - # Id: 8707301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -2Tl+ + 3HS- + H2O = Tl2OH(HS)3-2 + H+ - log_k 1.0044 - delta_h 0 kJ - -gamma 0 0 - # Id: 8707302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -2Tl+ + 2HS- + 2H2O = Tl2(OH)2(HS)2-2 + 2H+ - log_k -11.0681 - delta_h 0 kJ - -gamma 0 0 - # Id: 8707303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + 2HS- = Zn(HS)2 - log_k 12.82 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507300 - # log K source: DHa1993 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + 3HS- = Zn(HS)3- - log_k 16.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + 3HS- = ZnS(HS)2-2 + H+ - log_k 6.12 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507302 - # log K source: DHa1993 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2HS- + 2HS- = Zn(HS)4-2 - log_k 14.64 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507303 - # log K source: DHa1993 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2HS- = ZnS(HS)- + H+ - log_k 6.81 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507304 - # log K source: DHa1993 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cd+2 + HS- = CdHS+ - log_k 8.008 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Cd+2 + 2HS- = Cd(HS)2 - log_k 15.212 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Cd+2 + 3HS- = Cd(HS)3- - log_k 17.112 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Cd+2 + 4HS- = Cd(HS)4-2 - log_k 19.308 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Hg(OH)2 + 2HS- = HgS2-2 + 2H2O - log_k 29.414 - delta_h 0 kJ - -gamma 0 0 - # Id: 3617300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -Hg(OH)2 + 2H+ + 2HS- = Hg(HS)2 + 2H2O - log_k 44.516 - delta_h 0 kJ - -gamma 0 0 - # Id: 3617301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -Hg(OH)2 + H+ + 2HS- = HgHS2- + 2H2O - log_k 38.122 - delta_h 0 kJ - -gamma 0 0 - # Id: 3617302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -Cu+2 + 3HS- = Cu(HS)3- - log_k 25.899 - delta_h 0 kJ - -gamma 0 0 - # Id: 2317300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Ag+ + HS- = AgHS - log_k 13.8145 - delta_h 0 kJ - -gamma 0 0 - # Id: 207300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 -Ag+ + 2HS- = Ag(HS)2- - log_k 17.9145 - delta_h 0 kJ - -gamma 0 0 - # Id: 207301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 -Fe+2 + 2HS- = Fe(HS)2 - log_k 8.95 - delta_h 0 kJ - -gamma 0 0 - # Id: 2807300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Fe+2 + 3HS- = Fe(HS)3- - log_k 10.987 - delta_h 0 kJ - -gamma 0 0 - # Id: 2807301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -HS- = S2-2 + H+ - log_k -11.7828 - delta_h 46.4 kJ - -gamma 0 0 - -no_check - # Id: 7317300 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -HS- = S3-2 + H+ - log_k -10.7667 - delta_h 42.2 kJ - -gamma 0 0 - -no_check - # Id: 7317301 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -HS- = S4-2 + H+ - log_k -9.9608 - delta_h 39.3 kJ - -gamma 0 0 - -no_check - # Id: 7317302 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -HS- = S5-2 + H+ - log_k -9.3651 - delta_h 37.6 kJ - -gamma 0 0 - -no_check - # Id: 7317303 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -HS- = S6-2 + H+ - log_k -9.881 - delta_h 0 kJ - -gamma 0 0 - -no_check - # Id: 7317304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -2Sb(OH)3 + 4HS- + 2H+ = Sb2S4-2 + 6H2O - log_k 49.3886 - delta_h -321.78 kJ - -gamma 0 0 - # Id: 7407300 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Cu+ + 2HS- = Cu(S4)2-3 + 2H+ - log_k 3.39 - delta_h 0 kJ - -gamma 23 0 - -no_check - # Id: 2307300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cu+ + 2HS- = CuS4S5-3 + 2H+ - log_k 2.66 - delta_h 0 kJ - -gamma 25 0 - -no_check - # Id: 2307301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Ag+ + 2HS- = Ag(S4)2-3 + 2H+ - log_k 0.991 - delta_h 0 kJ - -gamma 22 0 - -no_check - # Id: 207302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Ag+ + 2HS- = AgS4S5-3 + 2H+ - log_k 0.68 - delta_h 0 kJ - -gamma 24 0 - -no_check - # Id: 207303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Ag+ + 2HS- = Ag(HS)S4-2 + H+ - log_k 10.431 - delta_h 0 kJ - -gamma 15 0 - -no_check - # Id: 207304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H+ + SO4-2 = HSO4- - log_k 1.99 - delta_h 22 kJ - -gamma 4.5 0 - # Id: 3307320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -NH4+ + SO4-2 = NH4SO4- - log_k 1.03 - delta_h 0 kJ - -gamma 5 0 - # Id: 4907320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Pb+2 + SO4-2 = PbSO4 - log_k 2.69 - delta_h 0 kJ - -gamma 0 0 - # Id: 6007320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2SO4-2 = Pb(SO4)2-2 - log_k 3.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 6007321 - # log K source: SCD3.02 (1960 RKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Al+3 + SO4-2 = AlSO4+ - log_k 3.89 - delta_h 28 kJ - -gamma 4.5 0 - # Id: 307320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Al+3 + 2SO4-2 = Al(SO4)2- - log_k 4.92 - delta_h 11.9 kJ - -gamma 4.5 0 - # Id: 307321 - # log K source: Nord90 - # Delta H source: Nord90 - #T and ionic strength: 0.00 25.0 -Tl+ + SO4-2 = TlSO4- - log_k 1.37 - delta_h -0.8 kJ - -gamma 0 0 - # Id: 8707320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Zn+2 + SO4-2 = ZnSO4 - log_k 2.34 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 9507320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2SO4-2 = Zn(SO4)2-2 - log_k 3.28 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507321 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cd+2 + SO4-2 = CdSO4 - log_k 2.37 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 1607320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2SO4-2 = Cd(SO4)2-2 - log_k 3.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607321 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 2H+ + SO4-2 = HgSO4 + 2H2O - log_k 8.612 - delta_h 0 kJ - -gamma 0 0 - # Id: 3617320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Cu+2 + SO4-2 = CuSO4 - log_k 2.36 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 2317320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ag+ + SO4-2 = AgSO4- - log_k 1.3 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 207320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ni+2 + SO4-2 = NiSO4 - log_k 2.3 - delta_h 5.8 kJ - -gamma 0 0 - # Id: 5407320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ni+2 + 2SO4-2 = Ni(SO4)2-2 - log_k 0.82 - delta_h 0 kJ - -gamma 0 0 - # Id: 5407321 - # log K source: SCD3.02 (1978 BLa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + SO4-2 = CoSO4 - log_k 2.3 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 2007320 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Fe+2 + SO4-2 = FeSO4 - log_k 2.39 - delta_h 8 kJ - -gamma 0 0 - # Id: 2807320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Fe+3 + SO4-2 = FeSO4+ - log_k 4.05 - delta_h 25 kJ - -gamma 5 0 - # Id: 2817320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Fe+3 + 2SO4-2 = Fe(SO4)2- - log_k 5.38 - delta_h 19.2 kJ - -gamma 0 0 - # Id: 2817321 - # log K source: Nord90 - # Delta H source: Nord90 - #T and ionic strength: 0.00 25.0 -Mn+2 + SO4-2 = MnSO4 - log_k 2.25 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 4707320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ + SO4-2 = CrSO4+ + 2H2O - log_k 12.9371 - delta_h -98.62 kJ - -gamma 0 0 - # Id: 2117320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 50.0 -Cr(OH)2+ + H+ + SO4-2 = CrOHSO4 + H2O - log_k 8.2871 - delta_h 0 kJ - -gamma 0 0 - # Id: 2117321 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -2Cr(OH)2+ + SO4-2 + 2H+ = Cr2(OH)2SO4+2 + 2H2O - log_k 16.155 - delta_h 0 kJ - -gamma 0 0 - # Id: 2117323 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -2Cr(OH)2+ + 2SO4-2 + 2H+ = Cr2(OH)2(SO4)2 + 2H2O - log_k 17.9288 - delta_h 0 kJ - -gamma 0 0 - # Id: 2117324 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + SO4-2 = USO4+2 - log_k 6.6 - delta_h 8 kJ - -gamma 0 0 - # Id: 8917320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -U+4 + 2SO4-2 = U(SO4)2 - log_k 10.5 - delta_h 33 kJ - -gamma 0 0 - # Id: 8917321 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -UO2+2 + SO4-2 = UO2SO4 - log_k 3.18 - delta_h 20 kJ - -gamma 0 0 - # Id: 8937320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -UO2+2 + 2SO4-2 = UO2(SO4)2-2 - log_k 4.3 - delta_h 38 kJ - -gamma 0 0 - # Id: 8937321 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -V+3 + SO4-2 = VSO4+ - log_k 2.674 - delta_h 0 kJ - -gamma 0 0 - # Id: 9017320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -VO+2 + SO4-2 = VOSO4 - log_k 2.44 - delta_h 17 kJ - -gamma 0 0 - # Id: 9027320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -VO2+ + SO4-2 = VO2SO4- - log_k 1.378 - delta_h 0 kJ - -gamma 0 0 - # Id: 9037320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -Be+2 + SO4-2 = BeSO4 - log_k 2.19 - delta_h 29 kJ - -gamma 0 0 - # Id: 1107321 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Be+2 + 2SO4-2 = Be(SO4)2-2 - log_k 2.596 - delta_h 0 kJ - -gamma 0 0 - # Id: 1107322 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Mg+2 + SO4-2 = MgSO4 - log_k 2.26 - delta_h 5.8 kJ - -gamma 0 0 - # Id: 4607320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ca+2 + SO4-2 = CaSO4 - log_k 2.36 - delta_h 7.1 kJ - -gamma 0 0 - # Id: 1507320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Sr+2 + SO4-2 = SrSO4 - log_k 2.3 - delta_h 8 kJ - -gamma 0 0 - # Id: 8007321 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Li+ + SO4-2 = LiSO4- - log_k 0.64 - delta_h 0 kJ - -gamma 5 0 - # Id: 4407320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Na+ + SO4-2 = NaSO4- - log_k 0.73 - delta_h 1 kJ - -gamma 5.4 0 - # Id: 5007320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -K+ + SO4-2 = KSO4- - log_k 0.85 - delta_h 4.1 kJ - -gamma 5.4 0 - # Id: 4107320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -HSe- + H+ = H2Se - log_k 3.89 - delta_h 3.3 kJ - -gamma 0 0 - # Id: 3307600 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 -2Ag+ + HSe- = Ag2Se + H+ - log_k 34.911 - delta_h 0 kJ - -gamma 0 0 - # Id: 207600 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Ag+ + H2O + 2HSe- = AgOH(Se)2-4 + 3H+ - log_k -20.509 - delta_h 0 kJ - -gamma 0 0 - # Id: 207601 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Mn+2 + HSe- = MnSe + H+ - log_k -5.385 - delta_h 0 kJ - -gamma 0 0 - # Id: 4707600 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -HSeO3- = SeO3-2 + H+ - log_k -8.4 - delta_h 5.02 kJ - -gamma 0 0 - # Id: 3307611 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -HSeO3- + H+ = H2SeO3 - log_k 2.63 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 3307610 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2HSeO3- = Cd(SeO3)2-2 + 2H+ - log_k -10.884 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607610 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Ag+ + HSeO3- = AgSeO3- + H+ - log_k -5.592 - delta_h 0 kJ - -gamma 0 0 - # Id: 207610 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Ag+ + 2HSeO3- = Ag(SeO3)2-3 + 2H+ - log_k -13.04 - delta_h 0 kJ - -gamma 0 0 - # Id: 207611 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Fe+3 + HSeO3- = FeHSeO3+2 - log_k 3.422 - delta_h 25 kJ - -gamma 0 0 - # Id: 2817610 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -SeO4-2 + H+ = HSeO4- - log_k 1.7 - delta_h 23 kJ - -gamma 0 0 - # Id: 3307620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Zn+2 + SeO4-2 = ZnSeO4 - log_k 2.19 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507620 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2SeO4-2 = Zn(SeO4)2-2 - log_k 2.196 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507621 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Cd+2 + SeO4-2 = CdSeO4 - log_k 2.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607620 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ni+2 + SeO4-2 = NiSeO4 - log_k 2.67 - delta_h 14 kJ - -gamma 0 0 - # Id: 5407620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Co+2 + SeO4-2 = CoSeO4 - log_k 2.7 - delta_h 12 kJ - -gamma 0 0 - # Id: 2007621 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Mn+2 + SeO4-2 = MnSeO4 - log_k 2.43 - delta_h 14 kJ - -gamma 0 0 - # Id: 4707620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -NH4+ = NH3 + H+ - log_k -9.244 - delta_h -52 kJ - -gamma 0 0 - # Id: 3304900 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ag+ + NH4+ = AgNH3+ + H+ - log_k -5.934 - delta_h -72 kJ - -gamma 0 0 - # Id: 204901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ag+ + 2NH4+ = Ag(NH3)2+ + 2H+ - log_k -11.268 - delta_h -160 kJ - -gamma 0 0 - # Id: 204902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + H+ + NH4+ = HgNH3+2 + 2H2O - log_k 5.75 - delta_h 0 kJ - -gamma 0 0 - # Id: 3614900 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 22.0 -Hg(OH)2 + 2NH4+ = Hg(NH3)2+2 + 2H2O - log_k 5.506 - delta_h -246.72 kJ - -gamma 0 0 - # Id: 3614901 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -Hg(OH)2 + 3NH4+ = Hg(NH3)3+2 + 2H2O + H+ - log_k -3.138 - delta_h -312.72 kJ - -gamma 0 0 - # Id: 3614902 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 2.00 25.0 -Hg(OH)2 + 4NH4+ = Hg(NH3)4+2 + 2H2O + 2H+ - log_k -11.482 - delta_h -379.72 kJ - -gamma 0 0 - # Id: 3614903 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.10 25.0 -Cu+2 + NH4+ = CuNH3+2 + H+ - log_k -5.234 - delta_h -72 kJ - -gamma 0 0 - # Id: 2314901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ni+2 + NH4+ = NiNH3+2 + H+ - log_k -6.514 - delta_h -67 kJ - -gamma 0 0 - # Id: 5404901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Ni+2 + 2NH4+ = Ni(NH3)2+2 + 2H+ - log_k -13.598 - delta_h -111.6 kJ - -gamma 0 0 - # Id: 5404902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+2 + NH4+ = Co(NH3)+2 + H+ - log_k -7.164 - delta_h -65 kJ - -gamma 0 0 - # Id: 2004900 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+2 + 2NH4+ = Co(NH3)2+2 + 2H+ - log_k -14.778 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 25.0 -Co+2 + 3NH4+ = Co(NH3)3+2 + 3H+ - log_k -22.922 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004902 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 25.0 -Co+2 + 4NH4+ = Co(NH3)4+2 + 4H+ - log_k -31.446 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004903 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 30.0 -Co+2 + 5NH4+ = Co(NH3)5+2 + 5H+ - log_k -40.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004904 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 30.0 -Co+3 + 6NH4+ + H2O = Co(NH3)6OH+2 + 7H+ - log_k -43.7148 - delta_h 0 kJ - -gamma 0 0 - # Id: 2014901 - # log K source: NIST2.1.1 - # Delta H source: MTQ3.11 - #T and ionic strength: -Co+3 + 5NH4+ + Cl- = Co(NH3)5Cl+2 + 5H+ - log_k -17.9584 - delta_h 113.38 kJ - -gamma 0 0 - # Id: 2014902 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Co+3 + 6NH4+ + Cl- = Co(NH3)6Cl+2 + 6H+ - log_k -33.9179 - delta_h 104.34 kJ - -gamma 0 0 - # Id: 2014903 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Co+3 + 6NH4+ + Br- = Co(NH3)6Br+2 + 6H+ - log_k -33.8884 - delta_h 110.57 kJ - -gamma 0 0 - # Id: 2014904 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Co+3 + 6NH4+ + I- = Co(NH3)6I+2 + 6H+ - log_k -33.4808 - delta_h 115.44 kJ - -gamma 0 0 - # Id: 2014905 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Co+3 + 6NH4+ + SO4-2 = Co(NH3)6SO4+ + 6H+ - log_k -28.9926 - delta_h 124.5 kJ - -gamma 0 0 - # Id: 2014906 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Cr(OH)2+ + 6NH4+ = Cr(NH3)6+3 + 2H2O + 4H+ - log_k -32.8952 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114900 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 4.50 25.0 -Cr(OH)2+ + 5NH4+ = Cr(NH3)5OH+2 + 4H+ + H2O - log_k -30.2759 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114901 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 6NH4+ + Cl- = Cr(NH3)6Cl+2 + 2H2O + 4H+ - log_k -31.7932 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114904 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 6NH4+ + Br- = Cr(NH3)6Br+2 + 4H+ + 2H2O - log_k -31.887 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114905 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 6NH4+ + I- = Cr(NH3)6I+2 + 4H+ + 2H2O - log_k -32.008 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114906 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -#Cr(OH)2+ + 4NH4+ = cis+ + 4H+ -# log_k -29.8574 -# delta_h 0 kJ -# -gamma 0 0 -# # Id: 4902113 -# # log K source: MTQ3.11 -# # Delta H source: MTQ3.11 -# #T and ionic strength: -#Cr(OH)2+ + 4NH4+ = trans+ + 4H+ -# log_k -30.5537 -# delta_h 0 kJ -# -gamma 0 0 -# # Id: 4902114 -# # log K source: MTQ3.11 -# # Delta H source: MTQ3.11 -# #T and ionic strength: -Ca+2 + NH4+ = CaNH3+2 + H+ - log_k -9.144 - delta_h 0 kJ - -gamma 0 0 - # Id: 1504901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Ca+2 + 2NH4+ = Ca(NH3)2+2 + 2H+ - log_k -18.788 - delta_h 0 kJ - -gamma 0 0 - # Id: 1504902 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Sr+2 + NH4+ = SrNH3+2 + H+ - log_k -9.344 - delta_h 0 kJ - -gamma 0 0 - # Id: 8004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Ba+2 + NH4+ = BaNH3+2 + H+ - log_k -9.444 - delta_h 0 kJ - -gamma 0 0 - # Id: 1004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Tl+ + NO2- = TlNO2 - log_k 0.83 - delta_h 0 kJ - -gamma 0 0 - # Id: 8704910 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ag+ + NO2- = AgNO2 - log_k 2.32 - delta_h -29 kJ - -gamma 0 0 - # Id: 204911 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ag+ + 2NO2- = Ag(NO2)2- - log_k 2.51 - delta_h -46 kJ - -gamma 0 0 - # Id: 204910 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cu+2 + NO2- = CuNO2+ - log_k 2.02 - delta_h 0 kJ - -gamma 0 0 - # Id: 2314911 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cu+2 + 2NO2- = Cu(NO2)2 - log_k 3.03 - delta_h 0 kJ - -gamma 0 0 - # Id: 2314912 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + NO2- = CoNO2+ - log_k 0.848 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004911 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Sn(OH)2 + 2H+ + NO3- = SnNO3+ + 2H2O - log_k 7.942 - delta_h 0 kJ - -gamma 0 0 - # Id: 7904921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Pb+2 + NO3- = PbNO3+ - log_k 1.17 - delta_h 2 kJ - -gamma 0 0 - # Id: 6004920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2NO3- = Pb(NO3)2 - log_k 1.4 - delta_h -6.6 kJ - -gamma 0 0 - # Id: 6004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Tl+ + NO3- = TlNO3 - log_k 0.33 - delta_h -2 kJ - -gamma 0 0 - # Id: 8704920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + NO3- + 3H+ = TlNO3+2 + 3H2O - log_k 7.0073 - delta_h 0 kJ - -gamma 0 0 - # Id: 8714920 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cd+2 + NO3- = CdNO3+ - log_k 0.5 - delta_h -21 kJ - -gamma 0 0 - # Id: 1604920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2NO3- = Cd(NO3)2 - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1604921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + NO3- = HgNO3+ + 2H2O - log_k 5.7613 - delta_h 0 kJ - -gamma 0 0 - # Id: 3614920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 -Hg(OH)2 + 2H+ + 2NO3- = Hg(NO3)2 + 2H2O - log_k 5.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 3614921 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 -Cu+2 + NO3- = CuNO3+ - log_k 0.5 - delta_h -4.1 kJ - -gamma 0 0 - # Id: 2314921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cu+2 + 2NO3- = Cu(NO3)2 - log_k -0.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2314922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + NO3- = ZnNO3+ - log_k 0.4 - delta_h -4.6 kJ - -gamma 0 0 - # Id: 9504921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2NO3- = Zn(NO3)2 - log_k -0.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 9504922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ag+ + NO3- = AgNO3 - log_k -0.1 - delta_h 22.6 kJ - -gamma 0 0 - # Id: 204920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ni+2 + NO3- = NiNO3+ - log_k 0.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 5404921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + NO3- = CoNO3+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + 2NO3- = Co(NO3)2 - log_k 0.5085 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Fe+3 + NO3- = FeNO3+2 - log_k 1 - delta_h -37 kJ - -gamma 0 0 - # Id: 2814921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Mn+2 + NO3- = MnNO3+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 4704921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Mn+2 + 2NO3- = Mn(NO3)2 - log_k 0.6 - delta_h -1.6569 kJ - -gamma 0 0 - # Id: 4704920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + NO3- + 2H+ = CrNO3+2 + 2H2O - log_k 8.2094 - delta_h -65.4378 kJ - -gamma 0 0 - # Id: 2114920 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + NO3- = UO2NO3+ - log_k 0.3 - delta_h -12 kJ - -gamma 0 0 - # Id: 8934921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -VO2+ + NO3- = VO2NO3 - log_k -0.296 - delta_h 0 kJ - -gamma 0 0 - # Id: 9034920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -Ca+2 + NO3- = CaNO3+ - log_k 0.5 - delta_h -5.4 kJ - -gamma 0 0 - # Id: 1504921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sr+2 + NO3- = SrNO3+ - log_k 0.6 - delta_h -10 kJ - -gamma 0 0 - # Id: 8004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ba+2 + NO3- = BaNO3+ - log_k 0.7 - delta_h -13 kJ - -gamma 0 0 - # Id: 1004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -H+ + Cyanide- = HCyanide - log_k 9.21 - delta_h -43.63 kJ - -gamma 0 0 - # Id: 3301431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cd+2 + Cyanide- = CdCyanide+ - log_k 6.01 - delta_h -30 kJ - -gamma 0 0 - # Id: 1601431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2Cyanide- = Cd(Cyanide)2 - log_k 11.12 - delta_h -54.3 kJ - -gamma 0 0 - # Id: 1601432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cd+2 + 3Cyanide- = Cd(Cyanide)3- - log_k 15.65 - delta_h -90.3 kJ - -gamma 0 0 - # Id: 1601433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cd+2 + 4Cyanide- = Cd(Cyanide)4-2 - log_k 17.92 - delta_h -112 kJ - -gamma 0 0 - # Id: 1601434 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + Cyanide- = HgCyanide+ + 2H2O - log_k 23.194 - delta_h -136.72 kJ - -gamma 0 0 - # Id: 3611431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 2Cyanide- = Hg(Cyanide)2 + 2H2O - log_k 38.944 - delta_h 154.28 kJ - -gamma 0 0 - # Id: 3611432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 3Cyanide- = Hg(Cyanide)3- + 2H2O - log_k 42.504 - delta_h -262.72 kJ - -gamma 0 0 - # Id: 3611433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 4Cyanide- = Hg(Cyanide)4-2 + 2H2O - log_k 45.164 - delta_h -288.72 kJ - -gamma 0 0 - # Id: 3611434 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cu+ + 2Cyanide- = Cu(Cyanide)2- - log_k 21.9145 - delta_h -121 kJ - -gamma 0 0 - # Id: 2301432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Cu+ + 3Cyanide- = Cu(Cyanide)3-2 - log_k 27.2145 - delta_h -167.4 kJ - -gamma 0 0 - # Id: 2301433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cu+ + 4Cyanide- = Cu(Cyanide)4-3 - log_k 28.7145 - delta_h -214.2 kJ - -gamma 0 0 - # Id: 2301431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ag+ + 2Cyanide- = Ag(Cyanide)2- - log_k 20.48 - delta_h -137 kJ - -gamma 0 0 - # Id: 201432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ag+ + 3Cyanide- = Ag(Cyanide)3-2 - log_k 21.7 - delta_h -140 kJ - -gamma 0 0 - # Id: 201433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ag+ + H2O + Cyanide- = Ag(Cyanide)OH- + H+ - log_k -0.777 - delta_h 0 kJ - -gamma 0 0 - # Id: 201431 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ni+2 + 4Cyanide- = Ni(Cyanide)4-2 - log_k 30.2 - delta_h -180 kJ - -gamma 0 0 - # Id: 5401431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ni+2 + 4Cyanide- + H+ = NiH(Cyanide)4- - log_k 36.0289 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401432 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -Ni+2 + 4Cyanide- + 2H+ = NiH2Cyanide4 - log_k 40.7434 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401433 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -Ni+2 + 4Cyanide- + 3H+ = NiH3(Cyanide)4+ - log_k 43.3434 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401434 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -Co+2 + 3Cyanide- = Co(Cyanide)3- - log_k 14.312 - delta_h 0 kJ - -gamma 0 0 - # Id: 2001431 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Co+2 + 5Cyanide- = Co(Cyanide)5-3 - log_k 23 - delta_h -257 kJ - -gamma 0 0 - # Id: 2001432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 -Fe+2 + 6Cyanide- = Fe(Cyanide)6-4 - log_k 35.4 - delta_h -358 kJ - -gamma 0 0 - # Id: 2801431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -H+ + Fe+2 + 6Cyanide- = HFe(Cyanide)6-3 - log_k 39.71 - delta_h -356 kJ - -gamma 0 0 - # Id: 2801432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -2H+ + Fe+2 + 6Cyanide- = H2Fe(Cyanide)6-2 - log_k 42.11 - delta_h -352 kJ - -gamma 0 0 - # Id: 2801433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Fe+3 + 6Cyanide- = Fe(Cyanide)6-3 - log_k 43.6 - delta_h -293 kJ - -gamma 0 0 - # Id: 2811431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -2Fe+3 + 6Cyanide- = Fe2(Cyanide)6 - log_k 47.6355 - delta_h -218 kJ - -gamma 0 0 - # Id: 2811432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Sn(OH)2 + Fe+3 + 6Cyanide- + 2H+ = SnFe(Cyanide)6- + 2H2O - log_k 53.54 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901431 - # log K source: Ba1987 - # Delta H source: - #T and ionic strength: 0.00 25.0 -NH4+ + Fe+2 + 6Cyanide- = NH4Fe(Cyanide)6-3 - log_k 37.7 - delta_h -354 kJ - -gamma 0 0 - # Id: 4901431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Tl+ + Fe+2 + 6Cyanide- = TlFe(Cyanide)6-3 - log_k 38.4 - delta_h -365.5 kJ - -gamma 0 0 - # Id: 8701432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Mg+2 + Fe+3 + 6Cyanide- = MgFe(Cyanide)6- - log_k 46.39 - delta_h -290 kJ - -gamma 0 0 - # Id: 4601431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Mg+2 + Fe+2 + 6Cyanide- = MgFe(Cyanide)6-2 - log_k 39.21 - delta_h -346 kJ - -gamma 0 0 - # Id: 4601432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ca+2 + Fe+3 + 6Cyanide- = CaFe(Cyanide)6- - log_k 46.43 - delta_h -291 kJ - -gamma 0 0 - # Id: 1501431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ca+2 + Fe+2 + 6Cyanide- = CaFe(Cyanide)6-2 - log_k 39.1 - delta_h -347 kJ - -gamma 0 0 - # Id: 1501432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -2Ca+2 + Fe+2 + 6Cyanide- = Ca2Fe(Cyanide)6 - log_k 40.6 - delta_h -350.201 kJ - -gamma 0 0 - # Id: 1501433 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Sr+2 + Fe+3 + 6Cyanide- = SrFe(Cyanide)6- - log_k 46.45 - delta_h -292 kJ - -gamma 0 0 - # Id: 8001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sr+2 + Fe+2 + 6Cyanide- = SrFe(Cyanide)6-2 - log_k 39.1 - delta_h -350 kJ - -gamma 0 0 - # Id: 8001432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ba+2 + Fe+2 + 6Cyanide- = BaFe(Cyanide)6-2 - log_k 39.19 - delta_h -342 kJ - -gamma 0 0 - # Id: 1001430 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ba+2 + Fe+3 + 6Cyanide- = BaFe(Cyanide)6- - log_k 46.48 - delta_h -292 kJ - -gamma 0 0 - # Id: 1001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Na+ + Fe+2 + 6Cyanide- = NaFe(Cyanide)6-3 - log_k 37.6 - delta_h -354 kJ - -gamma 0 0 - # Id: 5001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -K+ + Fe+2 + 6Cyanide- = KFe(Cyanide)6-3 - log_k 37.75 - delta_h -353.9 kJ - -gamma 0 0 - # Id: 4101433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -K+ + Fe+3 + 6Cyanide- = KFe(Cyanide)6-2 - log_k 45.04 - delta_h -291 kJ - -gamma 0 0 - # Id: 4101430 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -H+ + PO4-3 = HPO4-2 - log_k 12.375 - delta_h -15 kJ - -gamma 5 0 - # Id: 3305800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -2H+ + PO4-3 = H2PO4- - log_k 19.573 - delta_h -18 kJ - -gamma 5.4 0 - # Id: 3305801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -3H+ + PO4-3 = H3PO4 - log_k 21.721 - delta_h -10.1 kJ - -gamma 0 0 - # Id: 3305802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Co+2 + H+ + PO4-3 = CoHPO4 - log_k 15.4128 - delta_h 0 kJ - -gamma 0 0 - # Id: 2005800 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -Fe+2 + 2H+ + PO4-3 = FeH2PO4+ - log_k 22.273 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 2805800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Fe+2 + H+ + PO4-3 = FeHPO4 - log_k 15.975 - delta_h 0 kJ - -gamma 0 0 - # Id: 2805801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Fe+3 + 2H+ + PO4-3 = FeH2PO4+2 - log_k 23.8515 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 2815801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Fe+3 + H+ + PO4-3 = FeHPO4+ - log_k 22.292 - delta_h -30.5432 kJ - -gamma 5.4 0 - # Id: 2815800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 4H+ + PO4-3 = CrH2PO4+2 + 2H2O - log_k 31.9068 - delta_h 0 kJ - -gamma 0 0 - # Id: 2115800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + PO4-3 + H+ = UHPO4+2 - log_k 24.443 - delta_h 31.38 kJ - -gamma 0 0 - # Id: 8915800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 2PO4-3 + 2H+ = U(HPO4)2 - log_k 46.833 - delta_h 7.1128 kJ - -gamma 0 0 - # Id: 8915801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 3PO4-3 + 3H+ = U(HPO4)3-2 - log_k 67.564 - delta_h -32.6352 kJ - -gamma 0 0 - # Id: 8915802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 4PO4-3 + 4H+ = U(HPO4)4-4 - log_k 88.483 - delta_h -110.876 kJ - -gamma 0 0 - # Id: 8915803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + H+ + PO4-3 = UO2HPO4 - log_k 19.655 - delta_h -8.7864 kJ - -gamma 0 0 - # Id: 8935800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -UO2+2 + 2PO4-3 + 2H+ = UO2(HPO4)2-2 - log_k 42.988 - delta_h -47.6934 kJ - -gamma 0 0 - # Id: 8935801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + 2H+ + PO4-3 = UO2H2PO4+ - log_k 22.833 - delta_h -15.4808 kJ - -gamma 0 0 - # Id: 8935802 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -UO2+2 + 2PO4-3 + 4H+ = UO2(H2PO4)2 - log_k 44.7 - delta_h -69.036 kJ - -gamma 0 0 - # Id: 8935803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + 3PO4-3 + 6H+ = UO2(H2PO4)3- - log_k 66.245 - delta_h -119.662 kJ - -gamma 0 0 - # Id: 8935804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + PO4-3 = UO2PO4- - log_k 13.25 - delta_h 0 kJ - -gamma 0 0 - # Id: 8935805 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Mg+2 + PO4-3 = MgPO4- - log_k 4.654 - delta_h 12.9704 kJ - -gamma 5.4 0 - # Id: 4605800 - # log K source: SCD3.02 (1993 GMa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.20 25.0 -Mg+2 + 2H+ + PO4-3 = MgH2PO4+ - log_k 21.2561 - delta_h -4.6861 kJ - -gamma 5.4 0 - # Id: 4605801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 37.0 -Mg+2 + H+ + PO4-3 = MgHPO4 - log_k 15.175 - delta_h -3 kJ - -gamma 0 0 - # Id: 4605802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ca+2 + H+ + PO4-3 = CaHPO4 - log_k 15.035 - delta_h -3 kJ - -gamma 0 0 - # Id: 1505800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ca+2 + PO4-3 = CaPO4- - log_k 6.46 - delta_h 12.9704 kJ - -gamma 5.4 0 - # Id: 1505801 - # log K source: SCD3.02 (1993 GMa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ca+2 + 2H+ + PO4-3 = CaH2PO4+ - log_k 20.923 - delta_h -6 kJ - -gamma 5.4 0 - # Id: 1505802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Sr+2 + H+ + PO4-3 = SrHPO4 - log_k 14.8728 - delta_h 0 kJ - -gamma 0 0 - # Id: 8005800 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -Sr+2 + 2H+ + PO4-3 = SrH2PO4+ - log_k 20.4019 - delta_h 0 kJ - -gamma 0 0 - # Id: 8005801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 -Na+ + H+ + PO4-3 = NaHPO4- - log_k 13.445 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 5005800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -K+ + H+ + PO4-3 = KHPO4- - log_k 13.255 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 4105800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -H3AsO3 = AsO3-3 + 3H+ - log_k -34.744 - delta_h 84.726 kJ - -gamma 0 0 - # Id: 3300602 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3AsO3 = HAsO3-2 + 2H+ - log_k -21.33 - delta_h 59.4086 kJ - -gamma 0 0 - # Id: 3300601 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3AsO3 = H2AsO3- + H+ - log_k -9.29 - delta_h 27.41 kJ - -gamma 0 0 - # Id: 3300600 - # log K source: NIST46.4 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 -H3AsO3 + H+ = H4AsO3+ - log_k -0.305 - delta_h 0 kJ - -gamma 0 0 - # Id: 3300603 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3AsO4 = AsO4-3 + 3H+ - log_k -20.7 - delta_h 12.9 kJ - -gamma 0 0 - # Id: 3300613 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -H3AsO4 = HAsO4-2 + 2H+ - log_k -9.2 - delta_h -4.1 kJ - -gamma 0 0 - # Id: 3300612 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -H3AsO4 = H2AsO4- + H+ - log_k -2.24 - delta_h -7.1 kJ - -gamma 0 0 - # Id: 3300611 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sb(OH)3 + H2O = Sb(OH)4- + H+ - log_k -12.0429 - delta_h 69.8519 kJ - -gamma 0 0 - # Id: 7400020 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)3 + H+ = Sb(OH)2+ + H2O - log_k 1.3853 - delta_h 0 kJ - -gamma 0 0 - # Id: 7403302 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)3 = HSbO2 + H2O - log_k -0.0105 - delta_h -0.13 kJ - -gamma 0 0 - # Id: 7400021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Sb(OH)3 = SbO2- + H2O + H+ - log_k -11.8011 - delta_h 70.1866 kJ - -gamma 0 0 - # Id: 7403301 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)3 + H+ = SbO+ + 2H2O - log_k 0.9228 - delta_h 8.2425 kJ - -gamma 0 0 - # Id: 7403300 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)6- = SbO3- + 3H2O - log_k 2.9319 - delta_h 0 kJ - -gamma 0 0 - # Id: 7410021 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)6- + 2H+ = SbO2+ + 4H2O - log_k 2.3895 - delta_h 0 kJ - -gamma 0 0 - # Id: 7413300 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -H+ + CO3-2 = HCO3- - log_k 10.329 - delta_h -14.6 kJ - -gamma 5.4 0 - # Id: 3301400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -2H+ + CO3-2 = H2CO3 - log_k 16.681 - delta_h -23.76 kJ - -gamma 0 0 - # Id: 3301401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2CO3-2 = Pb(CO3)2-2 - log_k 9.938 - delta_h 0 kJ - -gamma 0 0 - # Id: 6001400 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Pb+2 + CO3-2 = PbCO3 - log_k 6.478 - delta_h 0 kJ - -gamma 0 0 - # Id: 6001401 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Pb+2 + CO3-2 + H+ = PbHCO3+ - log_k 13.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 6001402 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + CO3-2 = ZnCO3 - log_k 4.76 - delta_h 0 kJ - -gamma 0 0 - # Id: 9501401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + H+ + CO3-2 = ZnHCO3+ - log_k 11.829 - delta_h 0 kJ - -gamma 0 0 - # Id: 9501400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + CO3-2 = HgCO3 + 2H2O - log_k 18.272 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 2CO3-2 = Hg(CO3)2-2 + 2H2O - log_k 21.772 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611402 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 3H+ + CO3-2 = HgHCO3+ + 2H2O - log_k 22.542 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611403 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Cd+2 + CO3-2 = CdCO3 - log_k 4.3578 - delta_h 0 kJ - -gamma 0 0 - # Id: 1601401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -Cd+2 + H+ + CO3-2 = CdHCO3+ - log_k 10.6863 - delta_h 0 kJ - -gamma 0 0 - # Id: 1601400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 -Cd+2 + 2CO3-2 = Cd(CO3)2-2 - log_k 7.2278 - delta_h 0 kJ - -gamma 0 0 - # Id: 1601403 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 -Cu+2 + CO3-2 = CuCO3 - log_k 6.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 2311400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cu+2 + H+ + CO3-2 = CuHCO3+ - log_k 12.129 - delta_h 0 kJ - -gamma 0 0 - # Id: 2311402 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - log_k 10.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2311401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ni+2 + CO3-2 = NiCO3 - log_k 4.5718 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401401 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 25.0 -Ni+2 + H+ + CO3-2 = NiHCO3+ - log_k 12.4199 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401400 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 25.0 -Co+2 + CO3-2 = CoCO3 - log_k 4.228 - delta_h 0 kJ - -gamma 0 0 - # Id: 2001400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Co+2 + H+ + CO3-2 = CoHCO3+ - log_k 12.2199 - delta_h 0 kJ - -gamma 0 0 - # Id: 2001401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 25.0 -Fe+2 + H+ + CO3-2 = FeHCO3+ - log_k 11.429 - delta_h 0 kJ - -gamma 6 0 - # Id: 2801400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Mn+2 + H+ + CO3-2 = MnHCO3+ - log_k 11.629 - delta_h -10.6 kJ - -gamma 5 0 - # Id: 4701400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -UO2+2 + CO3-2 = UO2CO3 - log_k 9.6 - delta_h 4 kJ - -gamma 0 0 - # Id: 8931400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -UO2+2 + 2CO3-2 = UO2(CO3)2-2 - log_k 16.9 - delta_h 16 kJ - -gamma 0 0 - # Id: 8931401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -UO2+2 + 3CO3-2 = UO2(CO3)3-4 - log_k 21.6 - delta_h -40 kJ - -gamma 0 0 - # Id: 8931402 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Be+2 + CO3-2 = BeCO3 - log_k 6.2546 - delta_h 0 kJ - -gamma 0 0 - # Id: 1101401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 -Mg+2 + CO3-2 = MgCO3 - log_k 2.92 - delta_h 12 kJ - -gamma 0 0 - # Id: 4601400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Mg+2 + H+ + CO3-2 = MgHCO3+ - log_k 11.339 - delta_h -10.6 kJ - -gamma 4 0 - # Id: 4601401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ca+2 + H+ + CO3-2 = CaHCO3+ - log_k 11.599 - delta_h 5.4 kJ - -gamma 6 0 - # Id: 1501400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -CO3-2 + Ca+2 = CaCO3 - log_k 3.2 - delta_h 16 kJ - -gamma 0 0 - # Id: 1501401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Sr+2 + CO3-2 = SrCO3 - log_k 2.81 - delta_h 20 kJ - -gamma 0 0 - # Id: 8001401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sr+2 + H+ + CO3-2 = SrHCO3+ - log_k 11.539 - delta_h 10.4 kJ - -gamma 6 0 - # Id: 8001400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ba+2 + CO3-2 = BaCO3 - log_k 2.71 - delta_h 16 kJ - -gamma 0 0 - # Id: 1001401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ba+2 + H+ + CO3-2 = BaHCO3+ - log_k 11.309 - delta_h 10.4 kJ - -gamma 6 0 - # Id: 1001400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Na+ + CO3-2 = NaCO3- - log_k 1.27 - delta_h -20.35 kJ - -gamma 5.4 0 - # Id: 5001400 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 -Na+ + H+ + CO3-2 = NaHCO3 - log_k 10.079 - delta_h -28.3301 kJ - -gamma 0 0 - # Id: 5001401 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 -H4SiO4 = H2SiO4-2 + 2H+ - log_k -23.04 - delta_h 61 kJ - -gamma 5.4 0 - # Id: 3307701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -H4SiO4 = H3SiO4- + H+ - log_k -9.84 - delta_h 20 kJ - -gamma 4 0 - # Id: 3307700 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -UO2+2 + H4SiO4 = UO2H3SiO4+ + H+ - log_k -1.9111 - delta_h 0 kJ - -gamma 0 0 - # Id: 8937700 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -H3BO3 = H2BO3- + H+ - log_k -9.236 - delta_h 13 kJ - -gamma 2.5 0 - # Id: 3300900 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -2H3BO3 = H5(BO3)2- + H+ - log_k -9.306 - delta_h 8.4 kJ - -gamma 2.5 0 - # Id: 3300901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -3H3BO3 = H8(BO3)3- + H+ - log_k -7.306 - delta_h 29.4 kJ - -gamma 2.5 0 - # Id: 3300902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ag+ + H3BO3 = AgH2BO3 + H+ - log_k -8.036 - delta_h 0 kJ - -gamma 2.5 0 - # Id: 200901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Mg+2 + H3BO3 = MgH2BO3+ + H+ - log_k -7.696 - delta_h 13 kJ - -gamma 2.5 0 - # Id: 4600901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ca+2 + H3BO3 = CaH2BO3+ + H+ - log_k -7.476 - delta_h 17 kJ - -gamma 2.5 0 - # Id: 1500901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sr+2 + H3BO3 = SrH2BO3+ + H+ - log_k -7.686 - delta_h 17 kJ - -gamma 2.5 0 - # Id: 8000901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ba+2 + H3BO3 = BaH2BO3+ + H+ - log_k -7.746 - delta_h 17 kJ - -gamma 2.5 0 - # Id: 1000901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Na+ + H3BO3 = NaH2BO3 + H+ - log_k -9.036 - delta_h 0 kJ - -gamma 2.5 0 - # Id: 5000901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -CrO4-2 + H+ = HCrO4- - log_k 6.51 - delta_h 2 kJ - -gamma 0 0 - # Id: 2123300 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -CrO4-2 + 2H+ = H2CrO4 - log_k 6.4188 - delta_h 39 kJ - -gamma 0 0 - # Id: 2123301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 20.0 -2CrO4-2 + 2H+ = Cr2O7-2 + H2O - log_k 14.56 - delta_h -15 kJ - -gamma 0 0 - # Id: 2123302 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -CrO4-2 + Cl- + 2H+ = CrO3Cl- + H2O - log_k 7.3086 - delta_h 0 kJ - -gamma 0 0 - # Id: 2121800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + SO4-2 + 2H+ = CrO3SO4-2 + H2O - log_k 8.9937 - delta_h 0 kJ - -gamma 0 0 - # Id: 2127320 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + 4H+ + PO4-3 = CrO3H2PO4- + H2O - log_k 29.3634 - delta_h 0 kJ - -gamma 0 0 - # Id: 2125800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + 3H+ + PO4-3 = CrO3HPO4-2 + H2O - log_k 26.6806 - delta_h 0 kJ - -gamma 0 0 - # Id: 2125801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + Na+ = NaCrO4- - log_k 0.6963 - delta_h 0 kJ - -gamma 0 0 - # Id: 5002120 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -K+ + CrO4-2 = KCrO4- - log_k 0.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 4102120 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 18.0 -MoO4-2 + H+ = HMoO4- - log_k 4.2988 - delta_h 20 kJ - -gamma 0 0 - # Id: 3304801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 20.0 -MoO4-2 + 2H+ = H2MoO4 - log_k 8.1636 - delta_h -26 kJ - -gamma 0 0 - # Id: 3304802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 20.0 -7MoO4-2 + 8H+ = Mo7O24-6 + 4H2O - log_k 52.99 - delta_h -228 kJ - -gamma 0 0 - # Id: 3304803 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -7MoO4-2 + 9H+ = HMo7O24-5 + 4H2O - log_k 59.3768 - delta_h -218 kJ - -gamma 0 0 - # Id: 3304804 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -7MoO4-2 + 10H+ = H2Mo7O24-4 + 4H2O - log_k 64.159 - delta_h -215 kJ - -gamma 0 0 - # Id: 3304805 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -7MoO4-2 + 11H+ = H3Mo7O24-3 + 4H2O - log_k 67.405 - delta_h -217 kJ - -gamma 0 0 - # Id: 3304806 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 -6MoO4-2 + Al+3 + 6H+ = AlMo6O21-3 + 3H2O - log_k 54.9925 - delta_h 0 kJ - -gamma 0 0 - # Id: 304801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -MoO4-2 + 2Ag+ = Ag2MoO4 - log_k -0.4219 - delta_h -1.18 kJ - -gamma 0 0 - # Id: 204801 - # log K source: Bard85 - # Delta H source: Bard85 - #T and ionic strength: -VO2+ + 2H2O = VO4-3 + 4H+ - log_k -30.2 - delta_h -25 kJ - -gamma 0 0 - # Id: 9033303 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -VO2+ + 2H2O = HVO4-2 + 3H+ - log_k -15.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 9033302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -VO2+ + 2H2O = H2VO4- + 2H+ - log_k -7.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 9033301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -VO2+ + 2H2O = H3VO4 + H+ - log_k -3.3 - delta_h 44.4759 kJ - -gamma 0 0 - # Id: 9033300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -2VO2+ + 3H2O = V2O7-4 + 6H+ - log_k -31.24 - delta_h -28 kJ - -gamma 0 0 - # Id: 9030020 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -2VO2+ + 3H2O = HV2O7-3 + 5H+ - log_k -20.67 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030021 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2VO2+ + 3H2O = H3V2O7- + 3H+ - log_k -3.79 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030022 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -3VO2+ + 3H2O = V3O9-3 + 6H+ - log_k -15.88 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030023 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -4VO2+ + 4H2O = V4O12-4 + 8H+ - log_k -20.56 - delta_h -87 kJ - -gamma 0 0 - # Id: 9030024 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -10VO2+ + 8H2O = V10O28-6 + 16H+ - log_k -24.0943 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030025 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 -10VO2+ + 8H2O = HV10O28-5 + 15H+ - log_k -15.9076 - delta_h 90.0397 kJ - -gamma 0 0 - # Id: 9030026 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 -10VO2+ + 8H2O = H2V10O28-4 + 14H+ - log_k -10.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030027 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Benzoate- + H+ = H(Benzoate) - log_k 4.202 - delta_h -0.4602 kJ - -gamma 0 0 - # Id: 3309171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Benzoate- + Pb+2 = Pb(Benzoate)+ - log_k 2.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Benzoate- + Al+3 = Al(Benzoate)+2 - log_k 2.05 - delta_h 0 kJ - -gamma 0 0 - # Id: 309171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Benzoate- + Al+3 + H2O = AlOH(Benzoate)+ + H+ - log_k -0.56 - delta_h 0 kJ - -gamma 0 0 - # Id: 309172 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Benzoate- + Zn+2 = Zn(Benzoate)+ - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Benzoate- + Cd+2 = Cd(Benzoate)+ - log_k 1.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Benzoate- + Cd+2 = Cd(Benzoate)2 - log_k 1.82 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609172 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Benzoate- + Cu+2 = Cu(Benzoate)+ - log_k 2.19 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Benzoate- + Ag+ = Ag(Benzoate) - log_k 0.91 - delta_h 0 kJ - -gamma 0 0 - # Id: 209171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Benzoate- + Ni+2 = Ni(Benzoate)+ - log_k 1.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Co+2 + Benzoate- = Co(Benzoate)+ - log_k 1.0537 - delta_h 12 kJ - -gamma 0 0 - # Id: 2009171 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 30.0 -Benzoate- + Mn+2 = Mn(Benzoate)+ - log_k 2.06 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Benzoate- + Mg+2 = Mg(Benzoate)+ - log_k 1.26 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Benzoate- + Ca+2 = Ca(Benzoate)+ - log_k 1.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Phenylacetate- + H+ = H(Phenylacetate) - log_k 4.31 - delta_h 2.1757 kJ - -gamma 0 0 - # Id: 3309181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Phenylacetate- + Zn+2 = Zn(Phenylacetate)+ - log_k 1.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Phenylacetate- + Cu+2 = Cu(Phenylacetate)+ - log_k 1.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Phenylacetate- = Co(Phenylacetate)+ - log_k 0.591 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009181 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 -Co+2 + 2Phenylacetate- = Co(Phenylacetate)2 - log_k 0.4765 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009182 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 -Isophthalate-2 + H+ = H(Isophthalate)- - log_k 4.5 - delta_h 1.6736 kJ - -gamma 0 0 - # Id: 3309201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Isophthalate-2 + 2H+ = H2(Isophthalate) - log_k 8 - delta_h 1.6736 kJ - -gamma 0 0 - # Id: 3309202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Isophthalate-2 + Pb+2 = Pb(Isophthalate) - log_k 2.99 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Isophthalate-2 + Pb+2 = Pb(Isophthalate)2-2 - log_k 4.18 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Isophthalate-2 + Pb+2 + H+ = PbH(Isophthalate)+ - log_k 6.69 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009203 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Isophthalate-2 + Cd+2 = Cd(Isophthalate) - log_k 2.15 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Isophthalate-2 + Cd+2 = Cd(Isophthalate)2-2 - log_k 2.99 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Isophthalate-2 + Cd+2 + H+ = CdH(Isophthalate)+ - log_k 5.73 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609203 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Isophthalate-2 + Ca+2 = Ca(Isophthalate) - log_k 2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509200 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Isophthalate-2 + Ba+2 = Ba(Isophthalate) - log_k 1.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Diethylamine = H(Diethylamine)+ - log_k 10.933 - delta_h -53.1368 kJ - -gamma 0 0 - # Id: 3309551 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Diethylamine = Zn(Diethylamine)+2 - log_k 2.74 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 2Diethylamine = Zn(Diethylamine)2+2 - log_k 5.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 3Diethylamine = Zn(Diethylamine)3+2 - log_k 7.71 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 4Diethylamine = Zn(Diethylamine)4+2 - log_k 9.84 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + Diethylamine = Cd(Diethylamine)+2 - log_k 2.73 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Diethylamine = Cd(Diethylamine)2+2 - log_k 4.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Diethylamine = Cd(Diethylamine)3+2 - log_k 6.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 4Diethylamine = Cd(Diethylamine)4+2 - log_k 7.32 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ag+ + Diethylamine = Ag(Diethylamine)+ - log_k 2.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 209551 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Diethylamine = Ag(Diethylamine)2+ - log_k 6.38 - delta_h -44.7688 kJ - -gamma 0 0 - # Id: 209552 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Diethylamine = Ni(Diethylamine)+2 - log_k 2.78 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 2Diethylamine = Ni(Diethylamine)2+2 - log_k 4.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 3Diethylamine = Ni(Diethylamine)3+2 - log_k 6.72 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 4Diethylamine = Ni(Diethylamine)4+2 - log_k 7.93 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 5Diethylamine = Ni(Diethylamine)5+2 - log_k 8.87 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409555 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Butylamine = H(Butylamine)+ - log_k 10.64 - delta_h -58.2831 kJ - -gamma 0 0 - # Id: 3309561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Butylamine + 2H+ = Hg(Butylamine)+2 + 2H2O - log_k 14.84 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Butylamine + 2H+ = Hg(Butylamine)2+2 + 2H2O - log_k 24.24 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619562 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 3Butylamine + 2H+ = Hg(Butylamine)3+2 + 2H2O - log_k 25.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619563 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 4Butylamine + 2H+ = Hg(Butylamine)4+2 + 2H2O - log_k 26.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619564 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Butylamine = Ag(Butylamine)+ - log_k 3.42 - delta_h -16.736 kJ - -gamma 0 0 - # Id: 209561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Butylamine = Ag(Butylamine)2+ - log_k 7.47 - delta_h -52.7184 kJ - -gamma 0 0 - # Id: 209562 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Methylamine = H(Methylamine)+ - log_k 10.64 - delta_h -55.2288 kJ - -gamma 0 0 - # Id: 3309581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Methylamine = Cd(Methylamine)+2 - log_k 2.75 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Methylamine = Cd(Methylamine)2+2 - log_k 4.81 - delta_h -29.288 kJ - -gamma 0 0 - # Id: 1609582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 3Methylamine = Cd(Methylamine)3+2 - log_k 5.94 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 4Methylamine = Cd(Methylamine)4+2 - log_k 6.55 - delta_h -58.576 kJ - -gamma 0 0 - # Id: 1609584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Methylamine + 2H+ = Hg(Methylamine)+2 + 2H2O - log_k 14.76 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Methylamine + 2H+ = Hg(Methylamine)2+2 + 2H2O - log_k 23.96 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 3Methylamine + 2H+ = Hg(Methylamine)3+2 + 2H2O - log_k 24.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 4Methylamine + 2H+ = Hg(Methylamine)4+2 + 2H2O - log_k 24.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Methylamine = Cu(Methylamine)+2 - log_k 4.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Methylamine = Cu(Methylamine)2+2 - log_k 7.51 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 3Methylamine = Cu(Methylamine)3+2 - log_k 10.21 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 4Methylamine = Cu(Methylamine)4+2 - log_k 12.08 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Methylamine = Ag(Methylamine)+ - log_k 3.07 - delta_h -12.552 kJ - -gamma 0 0 - # Id: 209581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Methylamine = Ag(Methylamine)2+ - log_k 6.89 - delta_h -48.9528 kJ - -gamma 0 0 - # Id: 209582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Methylamine = Ni(Methylamine)+2 - log_k 2.23 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Dimethylamine = H(Dimethylamine)+ - log_k 10.774 - delta_h -50.208 kJ - -gamma 0 0 - # Id: 3309591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Dimethylamine = Ag(Dimethylamine)2+ - log_k 5.37 - delta_h -40.5848 kJ - -gamma 0 0 - # Id: 209591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Dimethylamine = Ni(Dimethylamine)+2 - log_k 1.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Hexylamine = H(Hexylamine)+ - log_k 10.63 - delta_h -58.576 kJ - -gamma 0 0 - # Id: 3309611 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Hexylamine = Ag(Hexylamine)+ - log_k 3.54 - delta_h -25.104 kJ - -gamma 0 0 - # Id: 209611 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Hexylamine = Ag(Hexylamine)2+ - log_k 7.55 - delta_h -53.1368 kJ - -gamma 0 0 - # Id: 209612 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Ethylenediamine = H(Ethylenediamine)+ - log_k 9.928 - delta_h -49.7896 kJ - -gamma 0 0 - # Id: 3309631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Ethylenediamine = H2(Ethylenediamine)+2 - log_k 16.776 - delta_h -95.3952 kJ - -gamma 0 0 - # Id: 3309632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Ethylenediamine = Pb(Ethylenediamine)+2 - log_k 5.04 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + 2Ethylenediamine = Pb(Ethylenediamine)2+2 - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Ethylenediamine = Zn(Ethylenediamine)+2 - log_k 5.66 - delta_h -29.288 kJ - -gamma 0 0 - # Id: 9509631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Ethylenediamine = Zn(Ethylenediamine)2+2 - log_k 10.6 - delta_h -48.116 kJ - -gamma 0 0 - # Id: 9509632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 3Ethylenediamine = Zn(Ethylenediamine)3+2 - log_k 13.9 - delta_h -71.5464 kJ - -gamma 0 0 - # Id: 9509633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Ethylenediamine = Cd(Ethylenediamine)+2 - log_k 5.41 - delta_h -28.4512 kJ - -gamma 0 0 - # Id: 1609631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Ethylenediamine = Cd(Ethylenediamine)2+2 - log_k 9.9 - delta_h -55.6472 kJ - -gamma 0 0 - # Id: 1609632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 3Ethylenediamine = Cd(Ethylenediamine)3+2 - log_k 11.6 - delta_h -82.4248 kJ - -gamma 0 0 - # Id: 1609633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Ethylenediamine + 2H+ = Hg(Ethylenediamine)+2 + 2H2O - log_k 20.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Ethylenediamine + 2H+ = Hg(Ethylenediamine)2+2 + 2H2O - log_k 29.3 - delta_h -173.218 kJ - -gamma 0 0 - # Id: 3619632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Ethylenediamine + 3H+ = HgH(Ethylenediamine)2+3 + 2H2O - log_k 34.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 2Ethylenediamine = Cu(Ethylenediamine)2+ - log_k 11.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Ethylenediamine = Cu(Ethylenediamine)+2 - log_k 10.5 - delta_h -52.7184 kJ - -gamma 0 0 - # Id: 2319631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Ethylenediamine = Cu(Ethylenediamine)2+2 - log_k 19.6 - delta_h -105.437 kJ - -gamma 0 0 - # Id: 2319632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Ethylenediamine = Ag(Ethylenediamine)+ - log_k 4.6 - delta_h -48.9528 kJ - -gamma 0 0 - # Id: 209631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Ethylenediamine = Ag(Ethylenediamine)2+ - log_k 7.5 - delta_h -52.3 kJ - -gamma 0 0 - # Id: 209632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Ethylenediamine + H+ = AgH(Ethylenediamine)+2 - log_k 11.99 - delta_h -75.312 kJ - -gamma 0 0 - # Id: 209633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Ag+ + Ethylenediamine = Ag2(Ethylenediamine)+2 - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 209634 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Ag+ + 2Ethylenediamine = Ag2(Ethylenediamine)2+2 - log_k 12.7 - delta_h -97.0688 kJ - -gamma 0 0 - # Id: 209635 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Ethylenediamine + 2H+ = Ag(HEthylenediamine)2+3 - log_k 24 - delta_h -150.206 kJ - -gamma 0 0 - # Id: 209636 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Ethylenediamine + H+ = AgH(Ethylenediamine)2+2 - log_k 8.4 - delta_h -47.6976 kJ - -gamma 0 0 - # Id: 209637 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Ethylenediamine = Ni(Ethylenediamine)+2 - log_k 7.32 - delta_h -37.656 kJ - -gamma 0 0 - # Id: 5409631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Ethylenediamine = Ni(Ethylenediamine)2+2 - log_k 13.5 - delta_h -76.5672 kJ - -gamma 0 0 - # Id: 5409632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 3Ethylenediamine = Ni(Ethylenediamine)3+2 - log_k 17.6 - delta_h -117.152 kJ - -gamma 0 0 - # Id: 5409633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Ethylenediamine = Co(Ethylenediamine)+2 - log_k 5.5 - delta_h -28 kJ - -gamma 0 0 - # Id: 2009631 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+2 + 2Ethylenediamine = Co(Ethylenediamine)2+2 - log_k 10.1 - delta_h -58.5 kJ - -gamma 0 0 - # Id: 2009632 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+2 + 3Ethylenediamine = Co(Ethylenediamine)3+2 - log_k 13.2 - delta_h -92.8 kJ - -gamma 0 0 - # Id: 2009633 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+3 + 2Ethylenediamine = Co(Ethylenediamine)2+3 - log_k 34.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2019631 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 -Co+3 + 3Ethylenediamine = Co(Ethylenediamine)3+3 - log_k 48.69 - delta_h 0 kJ - -gamma 0 0 - # Id: 2019632 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.50 30.0 -Fe+2 + Ethylenediamine = Fe(Ethylenediamine)+2 - log_k 4.26 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 2Ethylenediamine = Fe(Ethylenediamine)2+2 - log_k 7.73 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 3Ethylenediamine = Fe(Ethylenediamine)3+2 - log_k 10.17 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + Ethylenediamine = Mn(Ethylenediamine)+2 - log_k 2.74 - delta_h -11.7152 kJ - -gamma 0 0 - # Id: 4709631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + 2Ethylenediamine = Mn(Ethylenediamine)2+2 - log_k 4.8 - delta_h -25.104 kJ - -gamma 0 0 - # Id: 4709632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + 2Ethylenediamine + 2H+ = Cr(Ethylenediamine)2+3 + 2H2O - log_k 22.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + 3Ethylenediamine + 2H+ = Cr(Ethylenediamine)3+3 + 2H2O - log_k 29 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Ethylenediamine = Mg(Ethylenediamine)+2 - log_k 0.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Ethylenediamine = Ca(Ethylenediamine)+2 - log_k 0.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Propylamine = H(Propylamine)+ - log_k 10.566 - delta_h -57.53 kJ - -gamma 0 0 - # Id: 3309641 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Propylamine = Zn(Propylamine)+2 - log_k 2.42 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 2Propylamine = Zn(Propylamine)2+2 - log_k 4.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 3Propylamine = Zn(Propylamine)3+2 - log_k 7.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 4Propylamine = Zn(Propylamine)4+2 - log_k 9.49 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509644 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + Propylamine = Cd(Propylamine)+2 - log_k 2.62 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Propylamine = Cd(Propylamine)2+2 - log_k 4.64 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Propylamine = Cd(Propylamine)3+2 - log_k 6.03 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ag+ + Propylamine = Ag(Propylamine)+ - log_k 3.45 - delta_h -12.552 kJ - -gamma 0 0 - # Id: 209641 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Propylamine = Ag(Propylamine)2+ - log_k 7.44 - delta_h -53.1368 kJ - -gamma 0 0 - # Id: 209642 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Propylamine = Ni(Propylamine)+2 - log_k 2.81 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 2Propylamine = Ni(Propylamine)2+2 - log_k 5.02 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 3Propylamine = Ni(Propylamine)3+2 - log_k 6.79 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 4Propylamine = Ni(Propylamine)4+2 - log_k 8.31 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409644 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Isopropylamine = H(Isopropylamine)+ - log_k 10.67 - delta_h -58.3668 kJ - -gamma 0 0 - # Id: 3309651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Isopropylamine = Zn(Isopropylamine)+2 - log_k 2.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 2Isopropylamine = Zn(Isopropylamine)2+2 - log_k 4.67 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 3Isopropylamine = Zn(Isopropylamine)3+2 - log_k 7.14 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 4Isopropylamine = Zn(Isopropylamine)4+2 - log_k 9.44 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + Isopropylamine = Cd(Isopropylamine)+2 - log_k 2.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Isopropylamine = Cd(Isopropylamine)2+2 - log_k 4.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Isopropylamine = Cd(Isopropylamine)3+2 - log_k 6.07 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 4Isopropylamine = Cd(Isopropylamine)4+2 - log_k 6.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Hg(OH)2 + Isopropylamine + 2H+ = Hg(Isopropylamine)+2 + 2H2O - log_k 14.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Isopropylamine + 2H+ = Hg(Isopropylamine)2+2 + 2H2O - log_k 24.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619652 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Isopropylamine = Ag(Isopropylamine)+ - log_k 3.67 - delta_h -23.8488 kJ - -gamma 0 0 - # Id: 209651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Isopropylamine = Ag(Isopropylamine)2+ - log_k 7.77 - delta_h -59.8312 kJ - -gamma 0 0 - # Id: 209652 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Isopropylamine = Ni(Isopropylamine)+2 - log_k 2.71 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 2Isopropylamine = Ni(Isopropylamine)2+2 - log_k 4.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 3Isopropylamine = Ni(Isopropylamine)3+2 - log_k 6.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 4Isopropylamine = Ni(Isopropylamine)4+2 - log_k 7.83 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 5Isopropylamine = Ni(Isopropylamine)5+2 - log_k 8.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409655 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Trimethylamine = H(Trimethylamine)+ - log_k 9.8 - delta_h -36.8192 kJ - -gamma 0 0 - # Id: 3309661 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Trimethylamine = Ag(Trimethylamine)+ - log_k 1.701 - delta_h 0 kJ - -gamma 0 0 - # Id: 209661 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Citrate-3 = H(Citrate)-2 - log_k 6.396 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 3309671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Citrate-3 = H2(Citrate)- - log_k 11.157 - delta_h 1.297 kJ - -gamma 0 0 - # Id: 3309672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -3H+ + Citrate-3 = H3(Citrate) - log_k 14.285 - delta_h -2.7614 kJ - -gamma 0 0 - # Id: 3309673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Citrate-3 = Pb(Citrate)- - log_k 7.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Pb+2 + 2Citrate-3 = Pb(Citrate)2-4 - log_k 6.53 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Citrate-3 = Al(Citrate) - log_k 9.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 309671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + 2Citrate-3 = Al(Citrate)2-3 - log_k 14.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 309672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Citrate-3 + H+ = AlH(Citrate)+ - log_k 12.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 309673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Tl+ + Citrate-3 = Tl(Citrate)-2 - log_k 1.48 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Citrate-3 = Zn(Citrate)- - log_k 6.21 - delta_h 8.368 kJ - -gamma 0 0 - # Id: 9509671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Citrate-3 = Zn(Citrate)2-4 - log_k 7.4 - delta_h 25.104 kJ - -gamma 0 0 - # Id: 9509672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Citrate-3 + H+ = ZnH(Citrate) - log_k 10.2 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 9509673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Citrate-3 + 2H+ = ZnH2(Citrate)+ - log_k 12.84 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509674 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + Citrate-3 = Cd(Citrate)- - log_k 4.98 - delta_h 8.368 kJ - -gamma 0 0 - # Id: 1609671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Citrate-3 + H+ = CdH(Citrate) - log_k 9.44 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 1609672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Citrate-3 + 2H+ = CdH2(Citrate)+ - log_k 12.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Citrate-3 = Cd(Citrate)2-4 - log_k 5.9 - delta_h 20.92 kJ - -gamma 0 0 - # Id: 1609674 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Citrate-3 + 2H+ = Hg(Citrate)- + 2H2O - log_k 18.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Citrate-3 = Cu(Citrate)- - log_k 7.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cu+2 + 2Citrate-3 = Cu(Citrate)2-4 - log_k 8.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319672 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cu+2 + Citrate-3 + H+ = CuH(Citrate) - log_k 10.87 - delta_h 11.7152 kJ - -gamma 0 0 - # Id: 2319673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Citrate-3 + 2H+ = CuH2(Citrate)+ - log_k 13.23 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319674 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -2Cu+2 + 2Citrate-3 = Cu2(Citrate)2-2 - log_k 16.9 - delta_h 41.84 kJ - -gamma 0 0 - # Id: 2319675 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Citrate-3 = Ni(Citrate)- - log_k 6.59 - delta_h 16.736 kJ - -gamma 0 0 - # Id: 5409671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Citrate-3 + H+ = NiH(Citrate) - log_k 10.5 - delta_h 15.8992 kJ - -gamma 0 0 - # Id: 5409672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Citrate-3 + 2H+ = NiH2(Citrate)+ - log_k 13.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Citrate-3 = Ni(Citrate)2-4 - log_k 8.77 - delta_h 12.552 kJ - -gamma 0 0 - # Id: 5409674 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Citrate-3 + H+ = NiH(Citrate)2-3 - log_k 14.9 - delta_h 32.6352 kJ - -gamma 0 0 - # Id: 5409675 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Citrate-3 = Co(Citrate)- - log_k 6.1867 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Co+2 + H+ + Citrate-3 = CoHCitrate - log_k 10.4438 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Co+2 + 2H+ + Citrate-3 = CoH2Citrate+ - log_k 12.7859 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009673 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Fe+2 + Citrate-3 = Fe(Citrate)- - log_k 6.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + Citrate-3 + H+ = FeH(Citrate) - log_k 10.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Citrate-3 = Fe(Citrate) - log_k 13.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Citrate-3 + H+ = FeH(Citrate)+ - log_k 14.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + Citrate-3 = Mn(Citrate)- - log_k 4.28 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Mn+2 + Citrate-3 + H+ = MnH(Citrate) - log_k 9.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Be+2 + Citrate-3 = Be(Citrate)- - log_k 5.534 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 -Be+2 + H+ + Citrate-3 = BeH(Citrate) - log_k 9.442 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 -Ca+2 + Citrate-3 = Ca(Citrate)- - log_k 4.87 - delta_h -8.368 kJ - -gamma 0 0 - # Id: 1509671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Citrate-3 + H+ = CaH(Citrate) - log_k 9.26 - delta_h -0.8368 kJ - -gamma 0 0 - # Id: 1509672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Citrate-3 + 2H+ = CaH2(Citrate)+ - log_k 12.257 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Mg+2 + Citrate-3 = Mg(Citrate)- - log_k 4.89 - delta_h 8.368 kJ - -gamma 0 0 - # Id: 4609671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Citrate-3 + H+ = MgH(Citrate) - log_k 8.91 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 4609672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Citrate-3 + 2H+ = MgH2(Citrate)+ - log_k 12.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Sr+2 + Citrate-3 = Sr(Citrate)- - log_k 4.3367 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Sr+2 + H+ + Citrate-3 = SrH(Citrate) - log_k 8.9738 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Sr+2 + 2H+ + Citrate-3 = SrH2(Citrate)+ - log_k 12.4859 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009673 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Ba+2 + Citrate-3 = Ba(Citrate)- - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ba+2 + Citrate-3 + H+ = BaH(Citrate) - log_k 8.74 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ba+2 + Citrate-3 + 2H+ = BaH2(Citrate)+ - log_k 12.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Na+ + Citrate-3 = Na(Citrate)-2 - log_k 1.03 - delta_h -2.8033 kJ - -gamma 0 0 - # Id: 5009671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -2Na+ + Citrate-3 = Na2(Citrate)- - log_k 1.5 - delta_h -5.1045 kJ - -gamma 0 0 - # Id: 5009672 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Na+ + Citrate-3 + H+ = NaH(Citrate)- - log_k 6.45 - delta_h -3.5982 kJ - -gamma 0 0 - # Id: 5009673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -K+ + Citrate-3 = K(Citrate)-2 - log_k 1.1 - delta_h 5.4392 kJ - -gamma 0 0 - # Id: 4109671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Nta-3 = H(Nta)-2 - log_k 10.278 - delta_h -18.828 kJ - -gamma 0 0 - # Id: 3309681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Nta-3 = H2(Nta)- - log_k 13.22 - delta_h -17.9912 kJ - -gamma 0 0 - # Id: 3309682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -3H+ + Nta-3 = H3(Nta) - log_k 15.22 - delta_h -16.3176 kJ - -gamma 0 0 - # Id: 3309683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -4H+ + Nta-3 = H4(Nta)+ - log_k 16.22 - delta_h -16.3176 kJ - -gamma 0 0 - # Id: 3309684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Nta-3 = Pb(Nta)- - log_k 12.7 - delta_h -15.8992 kJ - -gamma 0 0 - # Id: 6009681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Nta-3 + H+ = PbH(Nta) - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Nta-3 = Al(Nta) - log_k 13.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 309681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Nta-3 + H+ = AlH(Nta)+ - log_k 15.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 309682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Nta-3 + H2O = AlOH(Nta)- + H+ - log_k 8 - delta_h 0 kJ - -gamma 0 0 - # Id: 309683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Tl+ + Nta-3 = Tl(Nta)-2 - log_k 5.39 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Nta-3 = Zn(Nta)- - log_k 11.95 - delta_h -3.7656 kJ - -gamma 0 0 - # Id: 9509681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Nta-3 = Zn(Nta)2-4 - log_k 14.88 - delta_h -15.0624 kJ - -gamma 0 0 - # Id: 9509682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Nta-3 + H2O = ZnOH(Nta)-2 + H+ - log_k 1.46 - delta_h 46.4424 kJ - -gamma 0 0 - # Id: 9509683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Nta-3 = Cd(Nta)- - log_k 11.07 - delta_h -16.736 kJ - -gamma 0 0 - # Id: 1609681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Nta-3 = Cd(Nta)2-4 - log_k 15.03 - delta_h -38.0744 kJ - -gamma 0 0 - # Id: 1609682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Nta-3 + H2O = CdOH(Nta)-2 + H+ - log_k -0.61 - delta_h 29.288 kJ - -gamma 0 0 - # Id: 1609683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Nta-3 + 2H+ = Hg(Nta)- + 2H2O - log_k 21.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Nta-3 = Cu(Nta)- - log_k 14.4 - delta_h -7.9496 kJ - -gamma 0 0 - # Id: 2319681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Nta-3 = Cu(Nta)2-4 - log_k 18.1 - delta_h -37.2376 kJ - -gamma 0 0 - # Id: 2319682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Nta-3 + H+ = CuH(Nta) - log_k 16.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Nta-3 + H2O = CuOH(Nta)-2 + H+ - log_k 4.8 - delta_h 25.5224 kJ - -gamma 0 0 - # Id: 2319684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Nta-3 = Ag(Nta)-2 - log_k 6 - delta_h -26.3592 kJ - -gamma 0 0 - # Id: 209681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Nta-3 = Ni(Nta)- - log_k 12.79 - delta_h -10.0416 kJ - -gamma 0 0 - # Id: 5409681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Nta-3 = Ni(Nta)2-4 - log_k 16.96 - delta_h -32.6352 kJ - -gamma 0 0 - # Id: 5409682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Nta-3 + H2O = NiOH(Nta)-2 + H+ - log_k 1.5 - delta_h 15.0624 kJ - -gamma 0 0 - # Id: 5409683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Nta-3 = Co(Nta)- - log_k 11.6667 - delta_h -0.4 kJ - -gamma 0 0 - # Id: 2009681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+2 + 2Nta-3 = Co(Nta)2-4 - log_k 14.9734 - delta_h -20 kJ - -gamma 0 0 - # Id: 2009682 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+2 + Nta-3 + H2O = CoOH(Nta)-2 + H+ - log_k 0.4378 - delta_h 45.6 kJ - -gamma 0 0 - # Id: 2009683 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Fe+2 + Nta-3 = Fe(Nta)- - log_k 10.19 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 2Nta-3 = Fe(Nta)2-4 - log_k 12.62 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + Nta-3 + H+ = FeH(Nta) - log_k 12.29 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + Nta-3 + H2O = FeOH(Nta)-2 + H+ - log_k -1.06 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Nta-3 = Fe(Nta) - log_k 17.8 - delta_h 13.3888 kJ - -gamma 0 0 - # Id: 2819681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + 2Nta-3 = Fe(Nta)2-3 - log_k 25.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Nta-3 + H2O = FeOH(Nta)- + H+ - log_k 13.23 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + Nta-3 = Mn(Nta)- - log_k 8.573 - delta_h 5.8576 kJ - -gamma 0 0 - # Id: 4709681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + 2Nta-3 = Mn(Nta)2-4 - log_k 11.58 - delta_h -17.1544 kJ - -gamma 0 0 - # Id: 4709682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Nta-3 + 2H+ = Cr(Nta) + 2H2O - log_k 21.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119681 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 2Nta-3 + 2H+ = Cr(Nta)2-3 + 2H2O - log_k 29.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119682 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -MoO4-2 + 2H+ + Nta-3 = MoO3(Nta)-3 + H2O - log_k 19.5434 - delta_h -69 kJ - -gamma 0 0 - # Id: 4809681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -MoO4-2 + 3H+ + Nta-3 = MoO3H(Nta)-2 + H2O - log_k 23.3954 - delta_h -71 kJ - -gamma 0 0 - # Id: 4809682 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 -MoO4-2 + 4H+ + Nta-3 = MoO3H2(Nta)- + H2O - log_k 25.3534 - delta_h -71 kJ - -gamma 0 0 - # Id: 4809683 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 -Be+2 + Nta-3 = Be(Nta)- - log_k 9.0767 - delta_h 25 kJ - -gamma 0 0 - # Id: 1109681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Mg+2 + Nta-3 = Mg(Nta)- - log_k 6.5 - delta_h 17.9912 kJ - -gamma 0 0 - # Id: 4609681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Nta-3 = Ca(Nta)- - log_k 7.608 - delta_h -5.6902 kJ - -gamma 0 0 - # Id: 1509681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + 2Nta-3 = Ca(Nta)2-4 - log_k 8.81 - delta_h -32.6352 kJ - -gamma 0 0 - # Id: 1509682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sr+2 + Nta-3 = Sr(Nta)- - log_k 6.2767 - delta_h -2.2 kJ - -gamma 0 0 - # Id: 8009681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Ba+2 + Nta-3 = Ba(Nta)- - log_k 5.875 - delta_h -6.025 kJ - -gamma 0 0 - # Id: 1009681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Edta-4 = H(Edta)-3 - log_k 10.948 - delta_h -23.4304 kJ - -gamma 0 0 - # Id: 3309691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Edta-4 = H2(Edta)-2 - log_k 17.221 - delta_h -41.0032 kJ - -gamma 0 0 - # Id: 3309692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -3H+ + Edta-4 = H3(Edta)- - log_k 20.34 - delta_h -35.564 kJ - -gamma 0 0 - # Id: 3309693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -4H+ + Edta-4 = H4(Edta) - log_k 22.5 - delta_h -34.3088 kJ - -gamma 0 0 - # Id: 3309694 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -5H+ + Edta-4 = H5(Edta)+ - log_k 24 - delta_h -32.2168 kJ - -gamma 0 0 - # Id: 3309695 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sn(OH)2 + 2H+ + Edta-4 = Sn(Edta)-2 + 2H2O - log_k 27.026 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909691 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 -Sn(OH)2 + 3H+ + Edta-4 = SnH(Edta)- + 2H2O - log_k 29.934 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 -Sn(OH)2 + 4H+ + Edta-4 = SnH2(Edta) + 2H2O - log_k 31.638 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909693 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 -Pb+2 + Edta-4 = Pb(Edta)-2 - log_k 19.8 - delta_h -54.8104 kJ - -gamma 0 0 - # Id: 6009691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Edta-4 + H+ = PbH(Edta)- - log_k 23 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Edta-4 + 2H+ = PbH2(Edta) - log_k 24.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Edta-4 = Al(Edta)- - log_k 19.1 - delta_h 52.7184 kJ - -gamma 0 0 - # Id: 309690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Edta-4 + H+ = AlH(Edta) - log_k 21.8 - delta_h 36.4008 kJ - -gamma 0 0 - # Id: 309691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Edta-4 + H2O = AlOH(Edta)-2 + H+ - log_k 12.8 - delta_h 73.6384 kJ - -gamma 0 0 - # Id: 309692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Tl+ + Edta-4 = Tl(Edta)-3 - log_k 7.27 - delta_h -43.5136 kJ - -gamma 0 0 - # Id: 8709691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Tl+ + Edta-4 + H+ = TlH(Edta)-2 - log_k 13.68 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Edta-4 = Zn(Edta)-2 - log_k 18 - delta_h -19.2464 kJ - -gamma 0 0 - # Id: 9509691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Edta-4 + H+ = ZnH(Edta)- - log_k 21.4 - delta_h -28.4512 kJ - -gamma 0 0 - # Id: 9509692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Edta-4 + H2O = ZnOH(Edta)-3 + H+ - log_k 5.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Edta-4 = Cd(Edta)-2 - log_k 18.2 - delta_h -38.0744 kJ - -gamma 0 0 - # Id: 1609691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Edta-4 + H+ = CdH(Edta)- - log_k 21.5 - delta_h -39.748 kJ - -gamma 0 0 - # Id: 1609692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Edta-4 + 2H+ = Hg(Edta)-2 + 2H2O - log_k 29.3 - delta_h -125.102 kJ - -gamma 0 0 - # Id: 3619691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Edta-4 + 3H+ = HgH(Edta)- + 2H2O - log_k 32.9 - delta_h -128.449 kJ - -gamma 0 0 - # Id: 3619692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Edta-4 = Cu(Edta)-2 - log_k 20.5 - delta_h -34.7272 kJ - -gamma 0 0 - # Id: 2319691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Edta-4 + H+ = CuH(Edta)- - log_k 24 - delta_h -43.0952 kJ - -gamma 0 0 - # Id: 2319692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Edta-4 + 2H+ = CuH2(Edta) - log_k 26.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Edta-4 + H2O = CuOH(Edta)-3 + H+ - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319694 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Edta-4 = Ag(Edta)-3 - log_k 8.08 - delta_h -31.38 kJ - -gamma 0 0 - # Id: 209691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Edta-4 + H+ = AgH(Edta)-2 - log_k 15.21 - delta_h 0 kJ - -gamma 0 0 - # Id: 209693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + Edta-4 = Ni(Edta)-2 - log_k 20.1 - delta_h -30.9616 kJ - -gamma 0 0 - # Id: 5409691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Edta-4 + H+ = NiH(Edta)- - log_k 23.6 - delta_h -38.4928 kJ - -gamma 0 0 - # Id: 5409692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Edta-4 + H2O = NiOH(Edta)-3 + H+ - log_k 7.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Edta-4 = Co(Edta)-2 - log_k 18.1657 - delta_h -15 kJ - -gamma 0 0 - # Id: 2009691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+2 + Edta-4 + H+ = CoH(Edta)- - log_k 21.5946 - delta_h -22.9 kJ - -gamma 0 0 - # Id: 2009692 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+2 + Edta-4 + 2H+ = CoH2(Edta) - log_k 23.4986 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009693 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 -Co+3 + Edta-4 = Co(Edta)- - log_k 43.9735 - delta_h 0 kJ - -gamma 0 0 - # Id: 2019691 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Co+3 + Edta-4 + H+ = CoH(Edta) - log_k 47.168 - delta_h 0 kJ - -gamma 0 0 - # Id: 2019692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Fe+2 + Edta-4 = Fe(Edta)-2 - log_k 16 - delta_h -16.736 kJ - -gamma 0 0 - # Id: 2809690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + Edta-4 + H+ = FeH(Edta)- - log_k 19.06 - delta_h -27.6144 kJ - -gamma 0 0 - # Id: 2809691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + Edta-4 + H2O = FeOH(Edta)-3 + H+ - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809692 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Fe+2 + Edta-4 + 2H2O = Fe(OH)2(Edta)-4 + 2H+ - log_k -4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Fe+3 + Edta-4 = Fe(Edta)- - log_k 27.7 - delta_h -11.2968 kJ - -gamma 0 0 - # Id: 2819690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Edta-4 + H+ = FeH(Edta) - log_k 29.2 - delta_h -11.7152 kJ - -gamma 0 0 - # Id: 2819691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Edta-4 + H2O = FeOH(Edta)-2 + H+ - log_k 19.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Edta-4 + 2H2O = Fe(OH)2(Edta)-3 + 2H+ - log_k 9.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Mn+2 + Edta-4 = Mn(Edta)-2 - log_k 15.6 - delta_h -19.2464 kJ - -gamma 0 0 - # Id: 4709691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + Edta-4 + H+ = MnH(Edta)- - log_k 19.1 - delta_h -24.2672 kJ - -gamma 0 0 - # Id: 4709692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr+2 + Edta-4 = Cr(Edta)-2 - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr+2 + Edta-4 + H+ = CrH(Edta)- - log_k 19.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109692 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + Edta-4 + 2H+ = Cr(Edta)- + 2H2O - log_k 35.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Edta-4 + 3H+ = CrH(Edta) + 2H2O - log_k 37.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Edta-4 + H+ = CrOH(Edta)-2 + H2O - log_k 27.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Be+2 + Edta-4 = Be(Edta)-2 - log_k 11.4157 - delta_h 41 kJ - -gamma 0 0 - # Id: 1109691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Mg+2 + Edta-4 = Mg(Edta)-2 - log_k 10.57 - delta_h 13.8072 kJ - -gamma 0 0 - # Id: 4609690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Edta-4 + H+ = MgH(Edta)- - log_k 14.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Edta-4 = Ca(Edta)-2 - log_k 12.42 - delta_h -25.5224 kJ - -gamma 0 0 - # Id: 1509690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Edta-4 + H+ = CaH(Edta)- - log_k 15.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sr+2 + Edta-4 = Sr(Edta)-2 - log_k 10.4357 - delta_h -17 kJ - -gamma 0 0 - # Id: 8009691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Sr+2 + Edta-4 + H+ = SrH(Edta)- - log_k 14.7946 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Ba+2 + Edta-4 = Ba(Edta)-2 - log_k 7.72 - delta_h -20.5016 kJ - -gamma 0 0 - # Id: 1009691 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Na+ + Edta-4 = Na(Edta)-3 - log_k 2.7 - delta_h -5.8576 kJ - -gamma 0 0 - # Id: 5009690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -K+ + Edta-4 = K(Edta)-3 - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 4109690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Propionate- = H(Propionate) - log_k 4.874 - delta_h 0.66 kJ - -gamma 0 0 - # Id: 3309711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Pb+2 + Propionate- = Pb(Propionate)+ - log_k 2.64 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.00 35.0 -Pb+2 + 2Propionate- = Pb(Propionate)2 - log_k 3.1765 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 2.00 25.0 -Zn+2 + Propionate- = Zn(Propionate)+ - log_k 1.4389 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Zn+2 + 2Propionate- = Zn(Propionate)2 - log_k 1.842 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 -Cd+2 + Propionate- = Cd(Propionate)+ - log_k 1.598 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 -Cd+2 + 2Propionate- = Cd(Propionate)2 - log_k 2.472 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 -Hg(OH)2 + 2H+ + Propionate- = Hg(Propionate)+ + 2H2O - log_k 10.594 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Cu+2 + Propionate- = Cu(Propionate)+ - log_k 2.22 - delta_h 4.1 kJ - -gamma 0 0 - # Id: 2319711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cu+2 + 2Propionate- = Cu(Propionate)2 - log_k 3.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Ni+2 + Propionate- = Ni(Propionate)+ - log_k 0.908 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 1.00 25.0 -Co+2 + Propionate- = Co(Propionate)+ - log_k 0.671 - delta_h 4.6 kJ - -gamma 0 0 - # Id: 2009711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 2.00 25.0 -Co+2 + 2Propionate- = Co(Propionate)2 - log_k 0.5565 - delta_h 16 kJ - -gamma 0 0 - # Id: 2009712 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 2.00 25.0 -Fe+3 + Propionate- = Fe(Propionate)+2 - log_k 4.012 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 -Cr(OH)2+ + 2H+ + Propionate- = Cr(Propionate)+2 + 2H2O - log_k 15.0773 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 2H+ + 2Propionate- = Cr(Propionate)2+ + 2H2O - log_k 17.9563 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 2H+ + 3Propionate- = Cr(Propionate)3 + 2H2O - log_k 20.8858 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119713 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.50 25.0 -Mg+2 + Propionate- = Mg(Propionate)+ - log_k 0.9689 - delta_h 4.2677 kJ - -gamma 0 0 - # Id: 4609710 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 -Ca+2 + Propionate- = Ca(Propionate)+ - log_k 0.9289 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 1509710 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 -Sr+2 + Propionate- = Sr(Propionate)+ - log_k 0.8589 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Ba+2 + Propionate- = Ba(Propionate)+ - log_k 0.7689 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 -Ba+2 + 2Propionate- = Ba(Propionate)2 - log_k 0.9834 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 -H+ + Butyrate- = H(Butyrate) - log_k 4.819 - delta_h 2.8 kJ - -gamma 0 0 - # Id: 3309721 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Pb+2 + Butyrate- = Pb(Butyrate)+ - log_k 2.101 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 2.00 25.0 -Zn+2 + Butyrate- = Zn(Butyrate)+ - log_k 1.4289 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Hg(OH)2 + 2H+ + Butyrate- = Hg(Butyrate)+ + 2H2O - log_k 10.3529 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Cu+2 + Butyrate- = Cu(Butyrate)+ - log_k 2.14 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Ni+2 + Butyrate- = Ni(Butyrate)+ - log_k 0.691 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 2.00 25.0 -Co+2 + Butyrate- = Co(Butyrate)+ - log_k 0.591 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 -Co+2 + 2Butyrate- = Co(Butyrate)2 - log_k 0.7765 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009722 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 -Mg+2 + Butyrate- = Mg(Butyrate)+ - log_k 0.9589 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609720 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 -Ca+2 + Butyrate- = Ca(Butyrate)+ - log_k 0.9389 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 1509720 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 -Sr+2 + Butyrate- = Sr(Butyrate)+ - log_k 0.7889 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Ba+2 + Butyrate- = Ba(Butyrate)+ - log_k 0.7389 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 -Ba+2 + 2Butyrate- = Ba(Butyrate)2 - log_k 0.88 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009722 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Isobutyrate- = H(Isobutyrate) - log_k 4.849 - delta_h 3.2217 kJ - -gamma 0 0 - # Id: 3309731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Isobutyrate- = Zn(Isobutyrate)+ - log_k 1.44 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Isobutyrate- = Cu(Isobutyrate)+ - log_k 2.17 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Isobutyrate- = Cu(Isobutyrate)2 - log_k 3.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319732 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Isobutyrate- = Fe(Isobutyrate)+2 - log_k 4.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Isobutyrate- = Ca(Isobutyrate)+ - log_k 0.51 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509731 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Two_picoline = H(Two_picoline)+ - log_k 5.95 - delta_h -25.5224 kJ - -gamma 0 0 - # Id: 3309801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Two_picoline = Cu(Two_picoline)+2 - log_k 1.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Two_picoline = Cu(Two_picoline)2+2 - log_k 2.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + Two_picoline = Cu(Two_picoline)+ - log_k 5.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 2Two_picoline = Cu(Two_picoline)2+ - log_k 7.65 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 3Two_picoline = Cu(Two_picoline)3+ - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309803 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Two_picoline = Ag(Two_picoline)+ - log_k 2.32 - delta_h -24.2672 kJ - -gamma 0 0 - # Id: 209801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Two_picoline = Ag(Two_picoline)2+ - log_k 4.68 - delta_h -42.6768 kJ - -gamma 0 0 - # Id: 209802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Two_picoline = Ni(Two_picoline)+2 - log_k 0.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Three_picoline = H(Three_picoline)+ - log_k 5.7 - delta_h -23.8488 kJ - -gamma 0 0 - # Id: 3309811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Three_picoline = Zn(Three_picoline)+2 - log_k 1 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Three_picoline = Zn(Three_picoline)2+2 - log_k 2.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 3Three_picoline = Zn(Three_picoline)3+2 - log_k 2.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 4Three_picoline = Zn(Three_picoline)4+2 - log_k 3.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Three_picoline = Cd(Three_picoline)+2 - log_k 1.42 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609811 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Three_picoline = Cd(Three_picoline)2+2 - log_k 2.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609812 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Three_picoline = Cd(Three_picoline)3+2 - log_k 3.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 4Three_picoline = Cd(Three_picoline)4+2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + Three_picoline = Cu(Three_picoline)+ - log_k 5.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 2Three_picoline = Cu(Three_picoline)2+ - log_k 7.78 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 3Three_picoline = Cu(Three_picoline)3+ - log_k 8.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 4Three_picoline = Cu(Three_picoline)4+ - log_k 9 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Three_picoline = Cu(Three_picoline)+2 - log_k 2.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Three_picoline = Cu(Three_picoline)2+2 - log_k 4.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 3Three_picoline = Cu(Three_picoline)3+2 - log_k 6.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 4Three_picoline = Cu(Three_picoline)4+2 - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Three_picoline = Ag(Three_picoline)+ - log_k 2.2 - delta_h -21.7568 kJ - -gamma 0 0 - # Id: 209811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Three_picoline = Ag(Three_picoline)2+ - log_k 4.46 - delta_h -49.7896 kJ - -gamma 0 0 - # Id: 209812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Three_picoline = Ni(Three_picoline)+2 - log_k 1.87 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Three_picoline = Ni(Three_picoline)2+2 - log_k 3.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 3Three_picoline = Ni(Three_picoline)3+2 - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 4Three_picoline = Ni(Three_picoline)4+2 - log_k 4.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Three_picoline = Co(Three_picoline)+2 - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009811 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -Co+2 + 2Three_picoline = Co(Three_picoline)2+2 - log_k 2.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009812 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -Co+2 + 3Three_picoline = Co(Three_picoline)3+2 - log_k 2.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009813 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -H+ + Four_picoline = H(Four_picoline)+ - log_k 6.03 - delta_h -25.3132 kJ - -gamma 0 0 - # Id: 3309821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Four_picoline = Zn(Four_picoline)+2 - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Four_picoline = Zn(Four_picoline)2+2 - log_k 2.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 3Four_picoline = Zn(Four_picoline)3+2 - log_k 2.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Four_picoline = Cd(Four_picoline)+2 - log_k 1.59 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609821 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Four_picoline = Cd(Four_picoline)2+2 - log_k 2.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609822 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Four_picoline = Cd(Four_picoline)3+2 - log_k 3.18 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609823 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 4Four_picoline = Cd(Four_picoline)4+2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + Four_picoline = Cu(Four_picoline)+ - log_k 5.65 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 2Four_picoline = Cu(Four_picoline)2+ - log_k 8.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 3Four_picoline = Cu(Four_picoline)3+ - log_k 8.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 4Four_picoline = Cu(Four_picoline)4+ - log_k 9.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Four_picoline = Cu(Four_picoline)+2 - log_k 2.88 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Four_picoline = Cu(Four_picoline)2+2 - log_k 5.16 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 3Four_picoline = Cu(Four_picoline)3+2 - log_k 6.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 4Four_picoline = Cu(Four_picoline)4+2 - log_k 8.08 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 5Four_picoline = Cu(Four_picoline)5+2 - log_k 8.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319825 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Four_picoline = Ag(Four_picoline)+ - log_k 2.03 - delta_h -25.5224 kJ - -gamma 0 0 - # Id: 209821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Four_picoline = Ag(Four_picoline)2+ - log_k 4.39 - delta_h -53.5552 kJ - -gamma 0 0 - # Id: 209822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Four_picoline = Ni(Four_picoline)+2 - log_k 2.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Four_picoline = Ni(Four_picoline)2+2 - log_k 3.59 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 3Four_picoline = Ni(Four_picoline)3+2 - log_k 4.34 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 4Four_picoline = Ni(Four_picoline)4+2 - log_k 4.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Four_picoline = Co(Four_picoline)+2 - log_k 1.56 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009821 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -Co+2 + 2Four_picoline = Co(Four_picoline)2+2 - log_k 2.51 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009822 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -Co+2 + 3Four_picoline = Co(Four_picoline)3+2 - log_k 2.94 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009823 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -Co+2 + 4Four_picoline = Co(Four_picoline)4+2 - log_k 3.17 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009824 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -H+ + Formate- = H(Formate) - log_k 3.745 - delta_h 0.1674 kJ - -gamma 0 0 - # Id: 3309831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Formate- = Pb(Formate)+ - log_k 2.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + Formate- = Zn(Formate)+ - log_k 1.44 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Formate- = Cd(Formate)+ - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Hg(OH)2 + Formate- + 2H+ = Hg(Formate)+ + 2H2O - log_k 9.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Formate- = Cu(Formate)+ - log_k 2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Formate- = Ni(Formate)+ - log_k 1.22 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Co+2 + Formate- = Co(Formate)+ - log_k 1.209 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009831 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 30.0 -Co+2 + 2Formate- = Co(Formate)2 - log_k 1.1365 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009832 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 -Cr+2 + Formate- = Cr(Formate)+ - log_k 1.07 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Formate- = Mg(Formate)+ - log_k 1.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Formate- = Ca(Formate)+ - log_k 1.43 - delta_h 4.184 kJ - -gamma 0 0 - # Id: 1509831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sr+2 + Formate- = Sr(Formate)+ - log_k 1.39 - delta_h 4 kJ - -gamma 0 0 - # Id: 8009831 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ba+2 + Formate- = Ba(Formate)+ - log_k 1.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Isovalerate- = H(Isovalerate) - log_k 4.781 - delta_h 4.5606 kJ - -gamma 0 0 - # Id: 3309841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Isovalerate- = Zn(Isovalerate)+ - log_k 1.39 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Isovalerate- = Cu(Isovalerate)+ - log_k 2.08 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Isovalerate- = Ca(Isovalerate)+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509841 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Valerate- = H(Valerate) - log_k 4.843 - delta_h 2.887 kJ - -gamma 0 0 - # Id: 3309851 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Valerate- = Cu(Valerate)+ - log_k 2.12 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319851 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Valerate- = Ca(Valerate)+ - log_k 0.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509851 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ba+2 + Valerate- = Ba(Valerate)+ - log_k -0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009851 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Acetate- = H(Acetate) - log_k 4.757 - delta_h 0.41 kJ - -gamma 0 0 - # Id: 3309921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + Acetate- = Sn(Acetate)+ + 2H2O - log_k 10.0213 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 3.00 25.0 -Sn(OH)2 + 2H+ + 2Acetate- = Sn(Acetate)2 + 2H2O - log_k 12.32 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 3.00 25.0 -Sn(OH)2 + 2H+ + 3Acetate- = Sn(Acetate)3- + 2H2O - log_k 13.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909923 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 3.00 25.0 -Pb+2 + Acetate- = Pb(Acetate)+ - log_k 2.68 - delta_h -0.4 kJ - -gamma 0 0 - # Id: 6009921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2Acetate- = Pb(Acetate)2 - log_k 4.08 - delta_h -0.8 kJ - -gamma 0 0 - # Id: 6009922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Tl+ + Acetate- = Tl(Acetate) - log_k -0.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Zn+2 + Acetate- = Zn(Acetate)+ - log_k 1.58 - delta_h 8.3 kJ - -gamma 0 0 - # Id: 9509921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2Acetate- = Zn(Acetate)2 - log_k 2.6434 - delta_h 22 kJ - -gamma 0 0 - # Id: 9509922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Cd+2 + Acetate- = Cd(Acetate)+ - log_k 1.93 - delta_h 9.6 kJ - -gamma 0 0 - # Id: 1609921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2Acetate- = Cd(Acetate)2 - log_k 2.86 - delta_h 15 kJ - -gamma 0 0 - # Id: 1609922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + Acetate- = Hg(Acetate)+ + 2H2O - log_k 10.494 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 2Acetate- = Hg(Acetate)2 + 2H2O - log_k 13.83 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619921 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 3.00 25.0 -Cu+2 + Acetate- = Cu(Acetate)+ - log_k 2.21 - delta_h 7.1 kJ - -gamma 0 0 - # Id: 2319921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cu+2 + 2Acetate- = Cu(Acetate)2 - log_k 3.4 - delta_h 12 kJ - -gamma 0 0 - # Id: 2319922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cu+2 + 3Acetate- = Cu(Acetate)3- - log_k 3.9434 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 2319923 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Ag+ + Acetate- = Ag(Acetate) - log_k 0.73 - delta_h 3 kJ - -gamma 0 0 - # Id: 209921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ag+ + 2Acetate- = Ag(Acetate)2- - log_k 0.64 - delta_h 3 kJ - -gamma 0 0 - # Id: 209922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ni+2 + Acetate- = Ni(Acetate)+ - log_k 1.37 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 5409921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ni+2 + 2Acetate- = Ni(Acetate)2 - log_k 2.1 - delta_h 10 kJ - -gamma 0 0 - # Id: 5409922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Co+2 + Acetate- = Co(Acetate)+ - log_k 1.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Co+2 + 2Acetate- = Co(Acetate)2 - log_k 0.7565 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 -Fe+2 + Acetate- = Fe(Acetate)+ - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Fe+3 + Acetate- = Fe(Acetate)+2 - log_k 4.0234 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Fe+3 + 2Acetate- = Fe(Acetate)2+ - log_k 7.5723 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Fe+3 + 3Acetate- = Fe(Acetate)3 - log_k 9.5867 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Mn+2 + Acetate- = Mn(Acetate)+ - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Cr+2 + Acetate- = Cr(Acetate)+ - log_k 1.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Cr+2 + 2Acetate- = Cr(Acetate)2 - log_k 2.92 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ + Acetate- = Cr(Acetate)+2 + 2H2O - log_k 15.0073 - delta_h -125.62 kJ - -gamma 0 0 - # Id: 2119921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 2H+ + 2Acetate- = Cr(Acetate)2+ + 2H2O - log_k 17.9963 - delta_h -117.62 kJ - -gamma 0 0 - # Id: 2119922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 2H+ + 3Acetate- = Cr(Acetate)3 + 2H2O - log_k 20.7858 - delta_h -96.62 kJ - -gamma 0 0 - # Id: 2119923 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Be+2 + Acetate- = Be(Acetate)+ - log_k 2.0489 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Be+2 + 2Acetate- = Be(Acetate)2 - log_k 3.0034 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Mg+2 + Acetate- = Mg(Acetate)+ - log_k 1.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Ca+2 + Acetate- = Ca(Acetate)+ - log_k 1.18 - delta_h 4 kJ - -gamma 0 0 - # Id: 1509920 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sr+2 + Acetate- = Sr(Acetate)+ - log_k 1.14 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Ba+2 + Acetate- = Ba(Acetate)+ - log_k 1.07 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Na+ + Acetate- = Na(Acetate) - log_k -0.18 - delta_h 12 kJ - -gamma 0 0 - # Id: 5009920 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -K+ + Acetate- = K(Acetate) - log_k -0.1955 - delta_h 4.184 kJ - -gamma 0 0 - # Id: 4109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -H+ + Tartarate-2 = H(Tartarate)- - log_k 4.366 - delta_h -0.7531 kJ - -gamma 0 0 - # Id: 3309931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Tartarate-2 = H2(Tartarate) - log_k 7.402 - delta_h -3.6819 kJ - -gamma 0 0 - # Id: 3309932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sn(OH)2 + 2H+ + Tartarate-2 = Sn(Tartarate) + 2H2O - log_k 13.1518 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Pb+2 + Tartarate-2 = Pb(Tartarate) - log_k 3.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + 2Tartarate-2 = Al(Tartarate)2- - log_k 9.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 309931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Tl+ + Tartarate-2 = Tl(Tartarate)- - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Tl+ + Tartarate-2 + H+ = TlH(Tartarate) - log_k 4.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Tartarate-2 = Zn(Tartarate) - log_k 3.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Tartarate-2 = Zn(Tartarate)2-2 - log_k 5.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Tartarate-2 + H+ = ZnH(Tartarate)+ - log_k 5.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509933 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Tartarate-2 = Cd(Tartarate) - log_k 2.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Tartarate-2 = Cd(Tartarate)2-2 - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Tartarate-2 + 2H+ = Hg(Tartarate) + 2H2O - log_k 14 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Tartarate-2 = Cu(Tartarate) - log_k 3.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Tartarate-2 + H+ = CuH(Tartarate)+ - log_k 6.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Tartarate-2 = Ni(Tartarate) - log_k 3.46 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Tartarate-2 + H+ = NiH(Tartarate)+ - log_k 5.89 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Tartarate-2 = Co(Tartarate) - log_k 3.05 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Co+2 + 2Tartarate-2 = Co(Tartarate)2-2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Co+2 + H+ + Tartarate-2 = CoH(Tartarate)+ - log_k 5.754 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009933 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 -Fe+2 + Tartarate-2 = Fe(Tartarate) - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Tartarate-2 = Fe(Tartarate)+ - log_k 7.78 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + Tartarate-2 = Mn(Tartarate) - log_k 3.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + Tartarate-2 + H+ = MnH(Tartarate)+ - log_k 6 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Tartarate-2 = Mg(Tartarate) - log_k 2.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Tartarate-2 + H+ = MgH(Tartarate)+ - log_k 5.75 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Be+2 + Tartarate-2 = Be(Tartarate) - log_k 2.768 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -Be+2 + 2Tartarate-2 = Be(Tartarate)2-2 - log_k 4.008 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -Ca+2 + Tartarate-2 = Ca(Tartarate) - log_k 2.8 - delta_h -8.368 kJ - -gamma 0 0 - # Id: 1509931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Tartarate-2 + H+ = CaH(Tartarate)+ - log_k 5.86 - delta_h -9.1211 kJ - -gamma 0 0 - # Id: 1509932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sr+2 + Tartarate-2 = Sr(Tartarate) - log_k 2.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 20.0 -Sr+2 + H+ + Tartarate-2 = SrH(Tartarate)+ - log_k 5.8949 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Ba+2 + Tartarate-2 = Ba(Tartarate) - log_k 2.54 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ba+2 + Tartarate-2 + H+ = BaH(Tartarate)+ - log_k 5.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Na+ + Tartarate-2 = Na(Tartarate)- - log_k 0.9 - delta_h -0.8368 kJ - -gamma 0 0 - # Id: 5009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Na+ + Tartarate-2 + H+ = NaH(Tartarate) - log_k 4.58 - delta_h -2.8451 kJ - -gamma 0 0 - # Id: 5009932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -K+ + Tartarate-2 = K(Tartarate)- - log_k 0.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 4109931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Glycine- = H(Glycine) - log_k 9.778 - delta_h -44.3504 kJ - -gamma 0 0 - # Id: 3309941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Glycine- = H2(Glycine)+ - log_k 12.128 - delta_h -48.4507 kJ - -gamma 0 0 - # Id: 3309942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Glycine- = Pb(Glycine)+ - log_k 5.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + 2Glycine- = Pb(Glycine)2 - log_k 8.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Tl+ + Glycine- = Tl(Glycine) - log_k 1.72 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Glycine- = Zn(Glycine)+ - log_k 5.38 - delta_h -11.7152 kJ - -gamma 0 0 - # Id: 9509941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Glycine- = Zn(Glycine)2 - log_k 9.81 - delta_h -24.2672 kJ - -gamma 0 0 - # Id: 9509942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 3Glycine- = Zn(Glycine)3- - log_k 12.3 - delta_h -39.748 kJ - -gamma 0 0 - # Id: 9509943 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Glycine- = Cd(Glycine)+ - log_k 4.69 - delta_h -8.7864 kJ - -gamma 0 0 - # Id: 1609941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Glycine- = Cd(Glycine)2 - log_k 8.4 - delta_h -22.5936 kJ - -gamma 0 0 - # Id: 1609942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 3Glycine- = Cd(Glycine)3- - log_k 10.7 - delta_h -35.9824 kJ - -gamma 0 0 - # Id: 1609943 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Glycine- + 2H+ = Hg(Glycine)+ + 2H2O - log_k 17 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619941 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Hg(OH)2 + 2Glycine- + 2H+ = Hg(Glycine)2 + 2H2O - log_k 25.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cu+ + 2Glycine- = Cu(Glycine)2- - log_k 10.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Glycine- = Cu(Glycine)+ - log_k 8.57 - delta_h -25.104 kJ - -gamma 0 0 - # Id: 2319941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Glycine- = Cu(Glycine)2 - log_k 15.7 - delta_h -54.8104 kJ - -gamma 0 0 - # Id: 2319942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Glycine- = Ag(Glycine) - log_k 3.51 - delta_h -19.2464 kJ - -gamma 0 0 - # Id: 209941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Glycine- = Ag(Glycine)2- - log_k 6.89 - delta_h -48.116 kJ - -gamma 0 0 - # Id: 209942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Glycine- = Ni(Glycine)+ - log_k 6.15 - delta_h -18.828 kJ - -gamma 0 0 - # Id: 5409941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Glycine- = Ni(Glycine)2 - log_k 11.12 - delta_h -38.0744 kJ - -gamma 0 0 - # Id: 5409942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 3Glycine- = Ni(Glycine)3- - log_k 14.63 - delta_h -62.3416 kJ - -gamma 0 0 - # Id: 5409943 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Co+2 + Glycine- = Co(Glycine)+ - log_k 5.07 - delta_h -12 kJ - -gamma 0 0 - # Id: 2009941 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Co+2 + 2Glycine- = Co(Glycine)2 - log_k 9.07 - delta_h -26 kJ - -gamma 0 0 - # Id: 2009942 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Co+2 + 3Glycine- = Co(Glycine)3- - log_k 11.6 - delta_h -41 kJ - -gamma 0 0 - # Id: 2009943 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Co+2 + Glycine- + H2O = CoOH(Glycine) + H+ - log_k -5.02 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009944 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Fe+2 + Glycine- = Fe(Glycine)+ - log_k 4.31 - delta_h -15.0624 kJ - -gamma 0 0 - # Id: 2809941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 2Glycine- = Fe(Glycine)2 - log_k 8.29 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Glycine- = Fe(Glycine)+2 - log_k 9.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Glycine- + H+ = FeH(Glycine)+3 - log_k 11.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + Glycine- = Mn(Glycine)+ - log_k 3.19 - delta_h -1.2552 kJ - -gamma 0 0 - # Id: 4709941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + 2Glycine- = Mn(Glycine)2 - log_k 5.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Glycine- + 2H+ = Cr(Glycine)+2 + 2H2O - log_k 18.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119941 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 2Glycine- + 2H+ = Cr(Glycine)2+ + 2H2O - log_k 25.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 3Glycine- + 2H+ = Cr(Glycine)3 + 2H2O - log_k 31.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119943 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Mg+2 + Glycine- = Mg(Glycine)+ - log_k 2.08 - delta_h 4.184 kJ - -gamma 0 0 - # Id: 4609941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Glycine- = Ca(Glycine)+ - log_k 1.39 - delta_h -4.184 kJ - -gamma 0 0 - # Id: 1509941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Glycine- + H+ = CaH(Glycine)+2 - log_k 10.1 - delta_h -35.9824 kJ - -gamma 0 0 - # Id: 1509942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sr+2 + Glycine- = Sr(Glycine)+ - log_k 0.91 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009941 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Ba+2 + Glycine- = Ba(Glycine)+ - log_k 0.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Salicylate-2 = H(Salicylate)- - log_k 13.7 - delta_h -35.7732 kJ - -gamma 0 0 - # Id: 3309951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Salicylate-2 = H2(Salicylate) - log_k 16.8 - delta_h -38.7857 kJ - -gamma 0 0 - # Id: 3309952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Salicylate-2 = Zn(Salicylate) - log_k 7.71 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509951 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + Salicylate-2 + H+ = ZnH(Salicylate)+ - log_k 15.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Salicylate-2 = Cd(Salicylate) - log_k 6.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Salicylate-2 + H+ = CdH(Salicylate)+ - log_k 16 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Salicylate-2 = Cu(Salicylate) - log_k 11.3 - delta_h -17.9912 kJ - -gamma 0 0 - # Id: 2319951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Salicylate-2 = Cu(Salicylate)2-2 - log_k 19.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Salicylate-2 + H+ = CuH(Salicylate)+ - log_k 14.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319953 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Salicylate-2 = Ni(Salicylate) - log_k 8.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Salicylate-2 = Ni(Salicylate)2-2 - log_k 12.64 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409952 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Co+2 + Salicylate-2 = Co(Salicylate) - log_k 7.4289 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009951 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Co+2 + 2Salicylate-2 = Co(Salicylate)2-2 - log_k 11.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009952 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Fe+2 + Salicylate-2 = Fe(Salicylate) - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 2Salicylate-2 = Fe(Salicylate)2-2 - log_k 11.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Salicylate-2 = Fe(Salicylate)+ - log_k 17.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + 2Salicylate-2 = Fe(Salicylate)2- - log_k 29.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + Salicylate-2 = Mn(Salicylate) - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + 2Salicylate-2 = Mn(Salicylate)2-2 - log_k 10.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Be+2 + Salicylate-2 = Be(Salicylate) - log_k 13.3889 - delta_h -31.7732 kJ - -gamma 0 0 - # Id: 1109951 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Be+2 + 2Salicylate-2 = Be(Salicylate)2-2 - log_k 23.25 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109952 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Mg+2 + Salicylate-2 = Mg(Salicylate) - log_k 5.76 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Salicylate-2 + H+ = MgH(Salicylate)+ - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609952 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ca+2 + Salicylate-2 = Ca(Salicylate) - log_k 4.05 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Salicylate-2 + H+ = CaH(Salicylate)+ - log_k 14.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ba+2 + Salicylate-2 + H+ = BaH(Salicylate)+ - log_k 13.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009951 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Glutamate-2 = H(Glutamate)- - log_k 9.96 - delta_h -41.0032 kJ - -gamma 0 0 - # Id: 3309961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Glutamate-2 = H2(Glutamate) - log_k 14.26 - delta_h -43.5136 kJ - -gamma 0 0 - # Id: 3309962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -3H+ + Glutamate-2 = H3(Glutamate)+ - log_k 16.42 - delta_h -46.8608 kJ - -gamma 0 0 - # Id: 3309963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Glutamate-2 = Pb(Glutamate) - log_k 6.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Pb+2 + 2Glutamate-2 = Pb(Glutamate)2-2 - log_k 8.61 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Pb+2 + Glutamate-2 + H+ = PbH(Glutamate)+ - log_k 14.08 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Al+3 + Glutamate-2 + H+ = AlH(Glutamate)+2 - log_k 13.07 - delta_h 0 kJ - -gamma 0 0 - # Id: 309961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Glutamate-2 = Zn(Glutamate) - log_k 6.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 2Glutamate-2 = Zn(Glutamate)2-2 - log_k 9.13 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 3Glutamate-2 = Zn(Glutamate)3-4 - log_k 9.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + Glutamate-2 = Cd(Glutamate) - log_k 4.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Glutamate-2 = Cd(Glutamate)2-2 - log_k 7.59 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Glutamate-2 + 2H+ = Hg(Glutamate) + 2H2O - log_k 19.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Hg(OH)2 + 2Glutamate-2 + 2H+ = Hg(Glutamate)2-2 + 2H2O - log_k 26.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cu+2 + Glutamate-2 = Cu(Glutamate) - log_k 9.17 - delta_h -20.92 kJ - -gamma 0 0 - # Id: 2319961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Glutamate-2 = Cu(Glutamate)2-2 - log_k 15.78 - delta_h -48.116 kJ - -gamma 0 0 - # Id: 2319962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Glutamate-2 + H+ = CuH(Glutamate)+ - log_k 13.3 - delta_h -28.0328 kJ - -gamma 0 0 - # Id: 2319963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Glutamate-2 = Ag(Glutamate)- - log_k 4.22 - delta_h 0 kJ - -gamma 0 0 - # Id: 209961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Glutamate-2 = Ag(Glutamate)2-3 - log_k 7.36 - delta_h 0 kJ - -gamma 0 0 - # Id: 209962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -2Ag+ + Glutamate-2 = Ag2(Glutamate) - log_k 3.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 209963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Glutamate-2 = Ni(Glutamate) - log_k 6.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Glutamate-2 = Ni(Glutamate)2-2 - log_k 10.7 - delta_h -30.9616 kJ - -gamma 0 0 - # Id: 5409962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Glutamate-2 = Co(Glutamate) - log_k 5.4178 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009961 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Co+2 + 2Glutamate-2 = Co(Glutamate)2-2 - log_k 8.7178 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009962 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Mn+2 + Glutamate-2 = Mn(Glutamate) - log_k 4.95 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Mn+2 + 2Glutamate-2 = Mn(Glutamate)2-2 - log_k 8.48 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + Glutamate-2 + 2H+ = Cr(Glutamate)+ + 2H2O - log_k 22.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 2Glutamate-2 + 2H+ = Cr(Glutamate)2- + 2H2O - log_k 30.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + Glutamate-2 + 3H+ = CrH(Glutamate)+2 + 2H2O - log_k 25.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Mg+2 + Glutamate-2 = Mg(Glutamate) - log_k 2.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Glutamate-2 = Ca(Glutamate) - log_k 2.06 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Glutamate-2 + H+ = CaH(Glutamate)+ - log_k 11.13 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sr+2 + Glutamate-2 = Sr(Glutamate) - log_k 2.2278 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009961 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Ba+2 + Glutamate-2 = Ba(Glutamate) - log_k 2.14 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Phthalate-2 = H(Phthalate)- - log_k 5.408 - delta_h 2.1757 kJ - -gamma 0 0 - # Id: 3309971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Phthalate-2 = H2(Phthalate) - log_k 8.358 - delta_h 4.8534 kJ - -gamma 0 0 - # Id: 3309972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Phthalate-2 = Pb(Phthalate) - log_k 4.26 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Pb+2 + 2Phthalate-2 = Pb(Phthalate)2-2 - log_k 4.83 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Phthalate-2 + H+ = PbH(Phthalate)+ - log_k 6.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009973 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Phthalate-2 = Al(Phthalate)+ - log_k 4.56 - delta_h 0 kJ - -gamma 0 0 - # Id: 309971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + 2Phthalate-2 = Al(Phthalate)2- - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 309972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Phthalate-2 = Zn(Phthalate) - log_k 2.91 - delta_h 13.3888 kJ - -gamma 0 0 - # Id: 9509971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Phthalate-2 = Zn(Phthalate)2-2 - log_k 4.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Phthalate-2 = Cd(Phthalate) - log_k 3.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Phthalate-2 + H+ = CdH(Phthalate)+ - log_k 6.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609973 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Phthalate-2 = Cd(Phthalate)2-2 - log_k 3.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Phthalate-2 = Cu(Phthalate) - log_k 4.02 - delta_h 8.368 kJ - -gamma 0 0 - # Id: 2319971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Phthalate-2 + H+ = CuH(Phthalate)+ - log_k 7.1 - delta_h 3.8493 kJ - -gamma 0 0 - # Id: 2319970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Phthalate-2 = Cu(Phthalate)2-2 - log_k 5.3 - delta_h 15.8992 kJ - -gamma 0 0 - # Id: 2319972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Phthalate-2 = Ni(Phthalate) - log_k 2.95 - delta_h 7.5312 kJ - -gamma 0 0 - # Id: 5409971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Phthalate-2 + H+ = NiH(Phthalate)+ - log_k 6.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Phthalate-2 = Co(Phthalate) - log_k 2.83 - delta_h 7.9 kJ - -gamma 0 0 - # Id: 2009971 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Co+2 + H+ + Phthalate-2 = CoH(Phthalate)+ - log_k 7.227 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009972 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -Mn+2 + Phthalate-2 = Mn(Phthalate) - log_k 2.74 - delta_h 10.0416 kJ - -gamma 0 0 - # Id: 4709971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Phthalate-2 + 2H+ = Cr(Phthalate)+ + 2H2O - log_k 16.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 2Phthalate-2 + 2H+ = Cr(Phthalate)2- + 2H2O - log_k 21.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119972 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 3Phthalate-2 + 2H+ = Cr(Phthalate)3-3 + 2H2O - log_k 23.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119973 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Be+2 + Phthalate-2 = Be(Phthalate) - log_k 4.8278 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109971 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Be+2 + 2Phthalate-2 = Be(Phthalate)2-2 - log_k 6.5478 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109972 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Mg+2 + Phthalate-2 = Mg(Phthalate) - log_k 2.49 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ca+2 + Phthalate-2 = Ca(Phthalate) - log_k 2.45 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Phthalate-2 + H+ = CaH(Phthalate)+ - log_k 6.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ba+2 + Phthalate-2 = Ba(Phthalate) - log_k 2.33 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Na+ + Phthalate-2 = Na(Phthalate)- - log_k 0.8 - delta_h 4.184 kJ - -gamma 0 0 - # Id: 5009970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -K+ + Phthalate-2 = K(Phthalate)- - log_k 0.7 - delta_h 3.7656 kJ - -gamma 0 0 - # Id: 4109971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -PHASES -Sulfur - S + H+ + 2e- = HS- - log_k -2.1449 - delta_h -16.3 kJ -Semetal(hex - Se + H+ + 2e- = HSe- - log_k -7.7084 - delta_h 15.9 kJ -Semetal(am) - Se + H+ + 2e- = HSe- - log_k -7.1099 - delta_h 10.8784 kJ -Sbmetal - Sb + 3H2O = Sb(OH)3 + 3H+ + 3e- - log_k -11.6889 - delta_h 83.89 kJ -Snmetal(wht) - Sn + 2H2O = Sn(OH)2 + 2H+ + 2e- - log_k -2.3266 - delta_h -0 kJ -Pbmetal - Pb = Pb+2 + 2e- - log_k 4.2462 - delta_h 0.92 kJ -Tlmetal - Tl = Tl+ + e- - log_k 5.6762 - delta_h 5.36 kJ -Znmetal - Zn = Zn+2 + 2e- - log_k 25.7886 - delta_h -153.39 kJ -Cdmetal(alpha) - Cd = Cd+2 + 2e- - log_k 13.5147 - delta_h -75.33 kJ -Cdmetal(gamma) - Cd = Cd+2 + 2e- - log_k 13.618 - delta_h -75.92 kJ -Hgmetal(l) - Hg = 0.5Hg2+2 + e- - log_k -13.4517 - delta_h 83.435 kJ -Cumetal - Cu = Cu+ + e- - log_k -8.756 - delta_h 71.67 kJ -Agmetal - Ag = Ag+ + e- - log_k -13.5065 - delta_h 105.79 kJ -Crmetal - Cr = Cr+2 + 2e- - log_k 30.4831 - delta_h -172 kJ -Vmetal - V = V+3 + 3e- - log_k 44.0253 - delta_h -259 kJ -Stibnite - Sb2S3 + 6H2O = 2Sb(OH)3 + 3H+ + 3HS- - log_k -50.46 - delta_h 293.78 kJ -Orpiment - As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ - log_k -61.0663 - delta_h 350.68 kJ -Realgar - AsS + 3H2O = H3AsO3 + HS- + 2H+ + e- - log_k -19.747 - delta_h 127.8 kJ -SnS - SnS + 2H2O = Sn(OH)2 + H+ + HS- - log_k -19.114 - delta_h -0 kJ -SnS2 - SnS2 + 6H2O = Sn(OH)6-2 + 4H+ + 2HS- - log_k -57.4538 - delta_h -0 kJ -Galena - PbS + H+ = Pb+2 + HS- - log_k -13.97 - delta_h 80 kJ -Tl2S - Tl2S + H+ = 2Tl+ + HS- - log_k -7.19 - delta_h 91.52 kJ -ZnS(am) - ZnS + H+ = Zn+2 + HS- - log_k -9.052 - delta_h 15.3553 kJ -Sphalerite - ZnS + H+ = Zn+2 + HS- - log_k -11.45 - delta_h 30 kJ -Wurtzite - ZnS + H+ = Zn+2 + HS- - log_k -8.95 - delta_h 21.171 kJ -Greenockite - CdS + H+ = Cd+2 + HS- - log_k -14.36 - delta_h 55 kJ -Hg2S - Hg2S + H+ = Hg2+2 + HS- - log_k -11.6765 - delta_h 69.7473 kJ -Cinnabar - HgS + 2H2O = Hg(OH)2 + H+ + HS- - log_k -45.694 - delta_h 253.76 kJ -Metacinnabar - HgS + 2H2O = Hg(OH)2 + H+ + HS- - log_k -45.094 - delta_h 253.72 kJ -Chalcocite - Cu2S + H+ = 2Cu+ + HS- - log_k -34.92 - delta_h 168 kJ -Djurleite - Cu0.066Cu1.868S + H+ = 0.066Cu+2 + 1.868Cu+ + HS- - log_k -33.92 - delta_h 200.334 kJ -Anilite - Cu0.25Cu1.5S + H+ = 0.25Cu+2 + 1.5Cu+ + HS- - log_k -31.878 - delta_h 182.15 kJ -BlaubleiII - Cu0.6Cu0.8S + H+ = 0.6Cu+2 + 0.8Cu+ + HS- - log_k -27.279 - delta_h -0 kJ -BlaubleiI - Cu0.9Cu0.2S + H+ = 0.9Cu+2 + 0.2Cu+ + HS- - log_k -24.162 - delta_h -0 kJ -Covellite - CuS + H+ = Cu+2 + HS- - log_k -22.3 - delta_h 97 kJ -Chalcopyrite - CuFeS2 + 2H+ = Cu+2 + Fe+2 + 2HS- - log_k -35.27 - delta_h 148.448 kJ -Acanthite - Ag2S + H+ = 2Ag+ + HS- - log_k -36.22 - delta_h 227 kJ -NiS(alpha) - NiS + H+ = Ni+2 + HS- - log_k -5.6 - delta_h -0 kJ -NiS(beta) - NiS + H+ = Ni+2 + HS- - log_k -11.1 - delta_h -0 kJ -NiS(gamma) - NiS + H+ = Ni+2 + HS- - log_k -12.8 - delta_h -0 kJ -CoS(alpha) - CoS + H+ = Co+2 + HS- - log_k -7.44 - delta_h -0 kJ -CoS(beta) - CoS + H+ = Co+2 + HS- - log_k -11.07 - delta_h -0 kJ -FeS(ppt) - FeS + H+ = Fe+2 + HS- - log_k -2.95 - delta_h -11 kJ -Greigite - Fe3S4 + 4H+ = 2Fe+3 + Fe+2 + 4HS- - log_k -45.035 - delta_h -0 kJ -Mackinawite - FeS + H+ = Fe+2 + HS- - log_k -3.6 - delta_h -0 kJ -Pyrite - FeS2 + 2H+ + 2e- = Fe+2 + 2HS- - log_k -18.5082 - delta_h 49.844 kJ -MnS(grn) - MnS + H+ = Mn+2 + HS- - log_k 0.17 - delta_h -32 kJ -MnS(pnk) - MnS + H+ = Mn+2 + HS- - log_k 3.34 - delta_h -0 kJ -MoS2 - MoS2 + 4H2O = MoO4-2 + 6H+ + 2HS- + 2e- - log_k -70.2596 - delta_h 389.02 kJ -BeS - BeS + H+ = Be+2 + HS- - log_k 19.38 - delta_h -0 kJ -BaS - BaS + H+ = Ba+2 + HS- - log_k 16.18 - delta_h -0 kJ -Hg2(Cyanide)2 - Hg2(Cyanide)2 = Hg2+2 + 2Cyanide- - log_k -39.3 - delta_h -0 kJ -CuCyanide - CuCyanide = Cu+ + Cyanide- - log_k -19.5 - delta_h -19 kJ -AgCyanide - AgCyanide = Ag+ + Cyanide- - log_k -15.74 - delta_h 110.395 kJ -Ag2(Cyanide)2 - Ag2(Cyanide)2 = 2Ag+ + 2Cyanide- - log_k -11.3289 - delta_h -0 kJ -NaCyanide(cubic) - NaCyanide = Cyanide- + Na+ - log_k 1.6012 - delta_h 0.969 kJ -KCyanide(cubic) - KCyanide = Cyanide- + K+ - log_k 1.4188 - delta_h 11.93 kJ -Pb2Fe(Cyanide)6 - Pb2Fe(Cyanide)6 = 2Pb+2 + Fe+2 + 6Cyanide- - log_k -53.42 - delta_h -0 kJ -Zn2Fe(Cyanide)6 - Zn2Fe(Cyanide)6 = 2Zn+2 + Fe+2 + 6Cyanide- - log_k -51.08 - delta_h -0 kJ -Cd2Fe(Cyanide)6 - Cd2Fe(Cyanide)6 = 2Cd+2 + Fe+2 + 6Cyanide- - log_k -52.78 - delta_h -0 kJ -Ag4Fe(Cyanide)6 - Ag4Fe(Cyanide)6 = 4Ag+ + Fe+2 + 6Cyanide- - log_k -79.47 - delta_h -0 kJ -Ag3Fe(Cyanide)6 - Ag3Fe(Cyanide)6 = 3Ag+ + Fe+3 + 6Cyanide- - log_k -72.7867 - delta_h -0 kJ -Mn3(Fe(Cyanide)6)2 - Mn3(Fe(Cyanide)6)2 = 3Mn+2 + 2Fe+3 + 12Cyanide- - log_k -105.4 - delta_h -0 kJ -Sb2Se3 - Sb2Se3 + 6H2O = 2Sb(OH)3 + 3HSe- + 3H+ - log_k -67.7571 - delta_h 343.046 kJ -SnSe - SnSe + 2H2O = Sn(OH)2 + H+ + HSe- - log_k -30.494 - delta_h -0 kJ -SnSe2 - SnSe2 + 6H2O = Sn(OH)6-2 + 4H+ + 2HSe- - log_k -65.1189 - delta_h -0 kJ -Clausthalite - PbSe + H+ = Pb+2 + HSe- - log_k -27.1 - delta_h 119.72 kJ -Tl2Se - Tl2Se + H+ = 2Tl+ + HSe- - log_k -18.1 - delta_h 85.62 kJ -ZnSe - ZnSe + H+ = Zn+2 + HSe- - log_k -14.4 - delta_h 25.51 kJ -CdSe - CdSe + H+ = Cd+2 + HSe- - log_k -20.2 - delta_h 75.9814 kJ -HgSe - HgSe + 2H2O = Hg(OH)2 + H+ + HSe- - log_k -55.694 - delta_h -0 kJ -Cu2Se(alpha) - Cu2Se + H+ = 2Cu+ + HSe- - log_k -45.8 - delta_h 214.263 kJ -Cu3Se2 - Cu3Se2 + 2H+ = 2HSe- + 2Cu+ + Cu+2 - log_k -63.4911 - delta_h 340.327 kJ -CuSe - CuSe + H+ = Cu+2 + HSe- - log_k -33.1 - delta_h 121.127 kJ -CuSe2 - CuSe2 + 2H+ + 2e- = 2HSe- + Cu+2 - log_k -33.3655 - delta_h 140.582 kJ -Ag2Se - Ag2Se + H+ = 2Ag+ + HSe- - log_k -48.7 - delta_h 265.48 kJ -NiSe - NiSe + H+ = Ni+2 + HSe- - log_k -17.7 - delta_h -0 kJ -CoSe - CoSe + H+ = Co+2 + HSe- - log_k -16.2 - delta_h -0 kJ -FeSe - FeSe + H+ = Fe+2 + HSe- - log_k -11 - delta_h 2.092 kJ -Ferroselite - FeSe2 + 2H+ + 2e- = 2HSe- + Fe+2 - log_k -18.5959 - delta_h 47.2792 kJ -MnSe - MnSe + H+ = Mn+2 + HSe- - log_k 3.5 - delta_h -98.15 kJ -AlSb - AlSb + 3H2O = Sb(OH)3 + 6e- + Al+3 + 3H+ - log_k 65.6241 - delta_h -0 kJ -ZnSb - ZnSb + 3H2O = Sb(OH)3 + 5e- + Zn+2 + 3H+ - log_k 11.0138 - delta_h -54.8773 kJ -CdSb - CdSb + 3H2O = Sb(OH)3 + 5e- + 3H+ + Cd+2 - log_k -0.3501 - delta_h 22.36 kJ -Cu2Sb:3H2O - Cu2Sb:3H2O = Sb(OH)3 + 6e- + 3H+ + Cu+ + Cu+2 - log_k -34.8827 - delta_h 233.237 kJ -Cu3Sb - Cu3Sb + 3H2O = Sb(OH)3 + 6e- + 3H+ + 3Cu+ - log_k -42.5937 - delta_h 308.131 kJ -#Ag4Sb -# Ag4Sb + 3H2O = Sb(OH)3 + 6e- + 3Ag+ + 3H+ -# log_k -56.1818 -# delta_h -0 kJ -Breithauptite - NiSb + 3H2O = Sb(OH)3 + 5e- + 3H+ + Ni+2 - log_k -18.5225 - delta_h 96.0019 kJ -MnSb - MnSb + 3H2O = Mn+3 + Sb(OH)3 + 6e- + 3H+ - log_k -2.9099 - delta_h 21.1083 kJ -Mn2Sb - Mn2Sb + 3H2O = 2Mn+2 + Sb(OH)3 + 7e- + 3H+ - log_k 61.0796 - delta_h -0 kJ -USb2 - USb2 + 8H2O = UO2+2 + 2Sb(OH)3 + 12e- + 10H+ - log_k 29.5771 - delta_h -103.56 kJ -U3Sb4 - U3Sb4 + 12H2O = 3U+4 + 4Sb(OH)3 + 24e- + 12H+ - log_k 152.383 - delta_h -986.04 kJ -Mg2Sb3 - Mg2Sb3 + 9H2O = 2Mg+2 + 3Sb(OH)3 + 9H+ + 13e- - log_k 74.6838 - delta_h -0 kJ -Ca3Sb2 - Ca3Sb2 + 6H2O = 3Ca+2 + 2Sb(OH)3 + 6H+ + 12e- - log_k 142.974 - delta_h -732.744 kJ -NaSb - NaSb + 3H2O = Na+ + Sb(OH)3 + 3H+ + 4e- - log_k 23.1658 - delta_h -93.45 kJ -Na3Sb - Na3Sb + 3H2O = 3Na+ + Sb(OH)3 + 3H+ + 6e- - log_k 94.4517 - delta_h -432.13 kJ -SeO2 - SeO2 + H2O = HSeO3- + H+ - log_k 0.1246 - delta_h 1.4016 kJ -SeO3 - SeO3 + H2O = SeO4-2 + 2H+ - log_k 21.044 - delta_h -146.377 kJ -Sb2O5 - Sb2O5 + 7H2O = 2Sb(OH)6- + 2H+ - log_k -9.6674 - delta_h -0 kJ -SbO2 - SbO2 + 4H2O = Sb(OH)6- + e- + 2H+ - log_k -27.8241 - delta_h -0 kJ -Sb2O4 - Sb2O4 + 2H2O + 2H+ + 2e- = 2Sb(OH)3 - log_k 3.4021 - delta_h -68.04 kJ -Sb4O6(cubic) - Sb4O6 + 6H2O = 4Sb(OH)3 - log_k -18.2612 - delta_h 61.1801 kJ -Sb4O6(orth) - Sb4O6 + 6H2O = 4Sb(OH)3 - log_k -17.9012 - delta_h 37.6801 kJ -Sb(OH)3 - Sb(OH)3 = Sb(OH)3 - log_k -7.1099 - delta_h 30.1248 kJ -Senarmontite - Sb2O3 + 3H2O = 2Sb(OH)3 - log_k -12.3654 - delta_h 30.6478 kJ -Valentinite - Sb2O3 + 3H2O = 2Sb(OH)3 - log_k -8.4806 - delta_h 19.0163 kJ -Chalcedony - SiO2 + 2H2O = H4SiO4 - log_k -3.55 - delta_h 19.7 kJ -Cristobalite - SiO2 + 2H2O = H4SiO4 - log_k -3.35 - delta_h 20.006 kJ -Quartz - SiO2 + 2H2O = H4SiO4 - log_k -4 - delta_h 22.36 kJ -SiO2(am-gel) - SiO2 + 2H2O = H4SiO4 - log_k -2.71 - delta_h 14 kJ -SiO2(am-ppt) - SiO2 + 2H2O = H4SiO4 - log_k -2.74 - delta_h 15.15 kJ -SnO - SnO + H2O = Sn(OH)2 - log_k -4.9141 - delta_h -0 kJ -SnO2 - SnO2 + 4H2O = Sn(OH)6-2 + 2H+ - log_k -28.9749 - delta_h -0 kJ -Sn(OH)2 - Sn(OH)2 = Sn(OH)2 - log_k -5.4309 - delta_h -0 kJ -Sn(OH)4 - Sn(OH)4 + 2H2O = Sn(OH)6-2 + 2H+ - log_k -22.2808 - delta_h -0 kJ -H2Sn(OH)6 - H2Sn(OH)6 = Sn(OH)6-2 + 2H+ - log_k -23.5281 - delta_h -0 kJ -Massicot - PbO + 2H+ = Pb+2 + H2O - log_k 12.894 - delta_h -66.848 kJ -Litharge - PbO + 2H+ = Pb+2 + H2O - log_k 12.694 - delta_h -65.501 kJ -PbO:0.3H2O - PbO:0.33H2O + 2H+ = Pb+2 + 1.33H2O - log_k 12.98 - delta_h -0 kJ -Plattnerite - PbO2 + 4H+ + 2e- = Pb+2 + 2H2O - log_k 49.6001 - delta_h -296.27 kJ -Pb(OH)2 - Pb(OH)2 + 2H+ = Pb+2 + 2H2O - log_k 8.15 - delta_h -58.5342 kJ -Pb2O(OH)2 - Pb2O(OH)2 + 4H+ = 2Pb+2 + 3H2O - log_k 26.188 - delta_h -0 kJ -Al(OH)3(am) - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 10.8 - delta_h -111 kJ -Boehmite - AlOOH + 3H+ = Al+3 + 2H2O - log_k 8.578 - delta_h -117.696 kJ -Diaspore - AlOOH + 3H+ = Al+3 + 2H2O - log_k 6.873 - delta_h -103.052 kJ -Gibbsite - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 8.291 - delta_h -95.3952 kJ -Tl2O - Tl2O + 2H+ = 2Tl+ + H2O - log_k 27.0915 - delta_h -96.41 kJ -TlOH - TlOH + H+ = Tl+ + H2O - log_k 12.9186 - delta_h -41.57 kJ -Avicennite - Tl2O3 + 3H2O = 2Tl(OH)3 - log_k -13 - delta_h -0 kJ -Tl(OH)3 - Tl(OH)3 = Tl(OH)3 - log_k -5.441 - delta_h -0 kJ -Zn(OH)2(am) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.474 - delta_h -80.62 kJ -Zn(OH)2 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.2 - delta_h -0 kJ -Zn(OH)2(beta) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.754 - delta_h -83.14 kJ -Zn(OH)2(gamma) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.734 - delta_h -0 kJ -Zn(OH)2(epsilon) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.534 - delta_h -81.8 kJ -ZnO(active) - ZnO + 2H+ = Zn+2 + H2O - log_k 11.1884 - delta_h -88.76 kJ -Zincite - ZnO + 2H+ = Zn+2 + H2O - log_k 11.334 - delta_h -89.62 kJ -Cd(OH)2(am) - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.73 - delta_h -86.9017 kJ -Cd(OH)2 - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.644 - delta_h -94.62 kJ -Monteponite - CdO + 2H+ = Cd+2 + H2O - log_k 15.1034 - delta_h -103.4 kJ -Hg2(OH)2 - Hg2(OH)2 + 2H+ = Hg2+2 + 2H2O - log_k 5.2603 - delta_h -0 kJ -Montroydite - HgO + H2O = Hg(OH)2 - log_k -3.64 - delta_h -38.9 kJ -Hg(OH)2 - Hg(OH)2 = Hg(OH)2 - log_k -3.4963 - delta_h -0 kJ -Cuprite - Cu2O + 2H+ = 2Cu+ + H2O - log_k -1.406 - delta_h -124.02 kJ -Cu(OH)2 - Cu(OH)2 + 2H+ = Cu+2 + 2H2O - log_k 8.674 - delta_h -56.42 kJ -Tenorite - CuO + 2H+ = Cu+2 + H2O - log_k 7.644 - delta_h -64.867 kJ -Ag2O - Ag2O + 2H+ = 2Ag+ + H2O - log_k 12.574 - delta_h -45.62 kJ -Ni(OH)2 - Ni(OH)2 + 2H+ = Ni+2 + 2H2O - log_k 12.794 - delta_h -95.96 kJ -Bunsenite - NiO + 2H+ = Ni+2 + H2O - log_k 12.4456 - delta_h -100.13 kJ -CoO - CoO + 2H+ = Co+2 + H2O - log_k 13.5864 - delta_h -106.295 kJ -Co(OH)2 - Co(OH)2 + 2H+ = Co+2 + 2H2O - log_k 13.094 - delta_h -0 kJ -Co(OH)3 - Co(OH)3 + 3H+ = Co+3 + 3H2O - log_k -2.309 - delta_h -92.43 kJ -#Wustite-0.11 -# WUSTITE-0.11 + 2H+ = 0.947Fe+2 + H2O -# log_k 11.6879 -# delta_h -103.938 kJ -Fe(OH)2 - Fe(OH)2 + 2H+ = Fe+2 + 2H2O - log_k 13.564 - delta_h -0 kJ -Ferrihydrite - Fe(OH)3 + 3H+ = Fe+3 + 3H2O - log_k 3.191 - delta_h -73.374 kJ -Fe3(OH)8 - Fe3(OH)8 + 8H+ = 2Fe+3 + Fe+2 + 8H2O - log_k 20.222 - delta_h -0 kJ -Goethite - FeOOH + 3H+ = Fe+3 + 2H2O - log_k 0.491 - delta_h -60.5843 kJ -Pyrolusite - MnO2 + 4H+ + 2e- = Mn+2 + 2H2O - log_k 41.38 - delta_h -272 kJ -Birnessite - MnO2 + 4H+ + e- = Mn+3 + 2H2O - log_k 18.091 - delta_h -0 kJ -Nsutite - MnO2 + 4H+ + e- = Mn+3 + 2H2O - log_k 17.504 - delta_h -0 kJ -Pyrochroite - Mn(OH)2 + 2H+ = Mn+2 + 2H2O - log_k 15.194 - delta_h -97.0099 kJ -Manganite - MnOOH + 3H+ + e- = Mn+2 + 2H2O - log_k 25.34 - delta_h -0 kJ -Cr(OH)2 - Cr(OH)2 + 2H+ = Cr+2 + 2H2O - log_k 10.8189 - delta_h -35.6058 kJ -Cr(OH)3(am) - Cr(OH)3 + H+ = Cr(OH)2+ + H2O - log_k -0.75 - delta_h -0 kJ -Cr(OH)3 - Cr(OH)3 + H+ = Cr(OH)2+ + H2O - log_k 1.3355 - delta_h -29.7692 kJ -CrO3 - CrO3 + H2O = CrO4-2 + 2H+ - log_k -3.2105 - delta_h -5.2091 kJ -MoO3 - MoO3 + H2O = MoO4-2 + 2H+ - log_k -8 - delta_h -0 kJ -VO - VO + 2H+ = V+3 + H2O + e- - log_k 14.7563 - delta_h -113.041 kJ -V(OH)3 - V(OH)3 + 3H+ = V+3 + 3H2O - log_k 7.591 - delta_h -0 kJ -VO(OH)2 - VO(OH)2 + 2H+ = VO+2 + 2H2O - log_k 5.1506 - delta_h -0 kJ -Uraninite - UO2 + 4H+ = U+4 + 2H2O - log_k -4.6693 - delta_h -77.86 kJ -UO2(am) - UO2 + 4H+ = U+4 + 2H2O - log_k 0.934 - delta_h -109.746 kJ -UO3 - UO3 + 2H+ = UO2+2 + H2O - log_k 7.7 - delta_h -81.0299 kJ -Gummite - UO3 + 2H+ = UO2+2 + H2O - log_k 7.6718 - delta_h -81.0299 kJ -UO2(OH)2(beta) - UO2(OH)2 + 2H+ = UO2+2 + 2H2O - log_k 5.6116 - delta_h -56.7599 kJ -Schoepite - UO2(OH)2:H2O + 2H+ = UO2+2 + 3H2O - log_k 5.994 - delta_h -49.79 kJ -Be(OH)2(am) - Be(OH)2 + 2H+ = Be+2 + 2H2O - log_k 7.194 - delta_h -0 kJ -Be(OH)2(alpha) - Be(OH)2 + 2H+ = Be+2 + 2H2O - log_k 6.894 - delta_h -0 kJ -Be(OH)2(beta) - Be(OH)2 + 2H+ = Be+2 + 2H2O - log_k 6.494 - delta_h -0 kJ -Brucite - Mg(OH)2 + 2H+ = Mg+2 + 2H2O - log_k 16.844 - delta_h -113.996 kJ -Periclase - MgO + 2H+ = Mg+2 + H2O - log_k 21.5841 - delta_h -151.23 kJ -Mg(OH)2(active) - Mg(OH)2 + 2H+ = Mg+2 + 2H2O - log_k 18.794 - delta_h -0 kJ -Lime - CaO + 2H+ = Ca+2 + H2O - log_k 32.6993 - delta_h -193.91 kJ -Portlandite - Ca(OH)2 + 2H+ = Ca+2 + 2H2O - log_k 22.804 - delta_h -128.62 kJ -Ba(OH)2:8H2O - Ba(OH)2:8H2O + 2H+ = Ba+2 + 10H2O - log_k 24.394 - delta_h -54.32 kJ -Cu(SbO3)2 - Cu(SbO3)2 + 6H+ + 4e- = 2Sb(OH)3 + Cu+2 - log_k 45.2105 - delta_h -0 kJ -Arsenolite - As2O3 + 3H2O = 2H3AsO3 - log_k -1.38 - delta_h 59.9567 kJ -Claudetite - As2O3 + 3H2O = 2H3AsO3 - log_k -1.5325 - delta_h 55.6054 kJ -As2O5 - As2O5 + 3H2O = 2H3AsO4 - log_k 6.7061 - delta_h -22.64 kJ -Pb2O3 - Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2O - log_k 61.04 - delta_h -0 kJ -Minium - Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2O - log_k 73.5219 - delta_h -421.874 kJ -Al2O3 - Al2O3 + 6H+ = 2Al+3 + 3H2O - log_k 19.6524 - delta_h -258.59 kJ -Co3O4 - Co3O4 + 8H+ = Co+2 + 2Co+3 + 4H2O - log_k -10.4956 - delta_h -107.5 kJ -CoFe2O4 - CoFe2O4 + 8H+ = Co+2 + 2Fe+3 + 4H2O - log_k -3.5281 - delta_h -158.82 kJ -Magnetite - Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O - log_k 3.4028 - delta_h -208.526 kJ -Hercynite - FeAl2O4 + 8H+ = Fe+2 + 2Al+3 + 4H2O - log_k 22.893 - delta_h -313.92 kJ -Hematite - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k -1.418 - delta_h -128.987 kJ -Maghemite - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k 6.386 - delta_h -0 kJ -Lepidocrocite - FeOOH + 3H+ = Fe+3 + 2H2O - log_k 1.371 - delta_h -0 kJ -Hausmannite - Mn3O4 + 8H+ + 2e- = 3Mn+2 + 4H2O - log_k 61.03 - delta_h -421 kJ -Bixbyite - Mn2O3 + 6H+ = 2Mn+3 + 3H2O - log_k -0.6445 - delta_h -124.49 kJ -Cr2O3 - Cr2O3 + H2O + 2H+ = 2Cr(OH)2+ - log_k -2.3576 - delta_h -50.731 kJ -#V2O3 -# V2O3 + 3H+ = V+3 + 1.5H2O -# log_k 4.9 -# delta_h -82.5085 kJ -V3O5 - V3O5 + 4H+ = 3VO+2 + 2H2O + 2e- - log_k 1.8361 - delta_h -98.46 kJ -#V2O4 -# V2O4 + 2H+ = VO+2 + H2O -# log_k 4.27 -# delta_h -58.8689 kJ -V4O7 - V4O7 + 6H+ = 4VO+2 + 3H2O + 2e- - log_k 7.1865 - delta_h -163.89 kJ -V6O13 - V6O13 + 2H+ = 6VO2+ + H2O + 4e- - log_k -60.86 - delta_h 271.5 kJ -V2O5 - V2O5 + 2H+ = 2VO2+ + H2O - log_k -1.36 - delta_h 34 kJ -U4O9 - U4O9 + 18H+ + 2e- = 4U+4 + 9H2O - log_k -3.0198 - delta_h -426.87 kJ -U3O8 - U3O8 + 16H+ + 4e- = 3U+4 + 8H2O - log_k 21.0834 - delta_h -485.44 kJ -Spinel - MgAl2O4 + 8H+ = Mg+2 + 2Al+3 + 4H2O - log_k 36.8476 - delta_h -388.012 kJ -Magnesioferrite - Fe2MgO4 + 8H+ = Mg+2 + 2Fe+3 + 4H2O - log_k 16.8597 - delta_h -278.92 kJ -Natron - Na2CO3:10H2O = 2Na+ + CO3-2 + 10H2O - log_k -1.311 - delta_h 65.8771 kJ -Cuprousferrite - CuFeO2 + 4H+ = Cu+ + Fe+3 + 2H2O - log_k -8.9171 - delta_h -15.89 kJ -Cupricferrite - CuFe2O4 + 8H+ = Cu+2 + 2Fe+3 + 4H2O - log_k 5.9882 - delta_h -210.21 kJ -FeCr2O4 - FeCr2O4 + 4H+ = 2Cr(OH)2+ + Fe+2 - log_k 7.2003 - delta_h -140.4 kJ -MgCr2O4 - MgCr2O4 + 4H+ = 2Cr(OH)2+ + Mg+2 - log_k 16.2007 - delta_h -179.4 kJ -SbF3 - SbF3 + 3H2O = Sb(OH)3 + 3H+ + 3F- - log_k -10.2251 - delta_h -6.7279 kJ -PbF2 - PbF2 = Pb+2 + 2F- - log_k -7.44 - delta_h 20 kJ -ZnF2 - ZnF2 = Zn+2 + 2F- - log_k -0.5343 - delta_h -59.69 kJ -CdF2 - CdF2 = Cd+2 + 2F- - log_k -1.2124 - delta_h -46.22 kJ -Hg2F2 - Hg2F2 = Hg2+2 + 2F- - log_k -10.3623 - delta_h -18.486 kJ -CuF - CuF = Cu+ + F- - log_k -4.9056 - delta_h 16.648 kJ -CuF2 - CuF2 = Cu+2 + 2F- - log_k 1.115 - delta_h -66.901 kJ -CuF2:2H2O - CuF2:2H2O = Cu+2 + 2F- + 2H2O - log_k -4.55 - delta_h -15.2716 kJ -AgF:4H2O - AgF:4H2O = Ag+ + F- + 4H2O - log_k 1.0491 - delta_h 15.4202 kJ -CoF2 - CoF2 = Co+2 + 2F- - log_k -1.5969 - delta_h -57.368 kJ -CoF3 - CoF3 = Co+3 + 3F- - log_k -1.4581 - delta_h -123.692 kJ -CrF3 - CrF3 + 2H2O = Cr(OH)2+ + 3F- + 2H+ - log_k -11.3367 - delta_h -23.3901 kJ -VF4 - VF4 + H2O = VO+2 + 4F- + 2H+ - log_k 14.93 - delta_h -199.117 kJ -UF4 - UF4 = U+4 + 4F- - log_k -29.5371 - delta_h -79.0776 kJ -UF4:2.5H2O - UF4:2.5H2O = U+4 + 4F- + 2.5H2O - log_k -32.7179 - delta_h 24.325 kJ -MgF2 - MgF2 = Mg+2 + 2F- - log_k -8.13 - delta_h -8 kJ -Fluorite - CaF2 = Ca+2 + 2F- - log_k -10.5 - delta_h 8 kJ -SrF2 - SrF2 = Sr+2 + 2F- - log_k -8.58 - delta_h 4 kJ -BaF2 - BaF2 = Ba+2 + 2F- - log_k -5.82 - delta_h 4 kJ -Cryolite - Na3AlF6 = 3Na+ + Al+3 + 6F- - log_k -33.84 - delta_h 38 kJ -SbCl3 - SbCl3 + 3H2O = Sb(OH)3 + 3Cl- + 3H+ - log_k 0.5719 - delta_h -35.18 kJ -SnCl2 - SnCl2 + 2H2O = Sn(OH)2 + 2H+ + 2Cl- - log_k -9.2752 - delta_h -0 kJ -Cotunnite - PbCl2 = Pb+2 + 2Cl- - log_k -4.78 - delta_h 26.166 kJ -Matlockite - PbClF = Pb+2 + Cl- + F- - log_k -8.9733 - delta_h 33.19 kJ -Phosgenite - PbCl2:PbCO3 = 2Pb+2 + 2Cl- + CO3-2 - log_k -19.81 - delta_h -0 kJ -Laurionite - PbOHCl + H+ = Pb+2 + Cl- + H2O - log_k 0.623 - delta_h -0 kJ -Pb2(OH)3Cl - Pb2(OH)3Cl + 3H+ = 2Pb+2 + 3H2O + Cl- - log_k 8.793 - delta_h -0 kJ -TlCl - TlCl = Tl+ + Cl- - log_k -3.74 - delta_h 41 kJ -ZnCl2 - ZnCl2 = Zn+2 + 2Cl- - log_k 7.05 - delta_h -72.5 kJ -Zn2(OH)3Cl - Zn2(OH)3Cl + 3H+ = 2Zn+2 + 3H2O + Cl- - log_k 15.191 - delta_h -0 kJ -Zn5(OH)8Cl2 - Zn5(OH)8Cl2 + 8H+ = 5Zn+2 + 8H2O + 2Cl- - log_k 38.5 - delta_h -0 kJ -CdCl2 - CdCl2 = Cd+2 + 2Cl- - log_k -0.6588 - delta_h -18.58 kJ -CdCl2:1H2O - CdCl2:1H2O = Cd+2 + 2Cl- + H2O - log_k -1.6932 - delta_h -7.47 kJ -CdCl2:2.5H2O - CdCl2:2.5H2O = Cd+2 + 2Cl- + 2.5H2O - log_k -1.913 - delta_h 7.2849 kJ -CdOHCl - CdOHCl + H+ = Cd+2 + H2O + Cl- - log_k 3.5373 - delta_h -30.93 kJ -Calomel - Hg2Cl2 = Hg2+2 + 2Cl- - log_k -17.91 - delta_h 92 kJ -HgCl2 - HgCl2 + 2H2O = Hg(OH)2 + 2Cl- + 2H+ - log_k -21.2621 - delta_h 107.82 kJ -Nantokite - CuCl = Cu+ + Cl- - log_k -6.73 - delta_h 42.662 kJ -Melanothallite - CuCl2 = Cu+2 + 2Cl- - log_k 6.2572 - delta_h -63.407 kJ -Atacamite - Cu2(OH)3Cl + 3H+ = 2Cu+2 + 3H2O + Cl- - log_k 7.391 - delta_h -93.43 kJ -Cerargyrite - AgCl = Ag+ + Cl- - log_k -9.75 - delta_h 65.2 kJ -CoCl2 - CoCl2 = Co+2 + 2Cl- - log_k 8.2672 - delta_h -79.815 kJ -CoCl2:6H2O - CoCl2:6H2O = Co+2 + 2Cl- + 6H2O - log_k 2.5365 - delta_h 8.0598 kJ -(Co(NH3)6)Cl3 - (Co(NH3)6)Cl3 + 6H+ = Co+3 + 6NH4+ + 3Cl- - log_k 20.0317 - delta_h -33.1 kJ -(Co(NH3)5OH2)Cl3 - (Co(NH3)5OH2)Cl3 + 5H+ = Co+3 + 5NH4+ + 3Cl- + H2O - log_k 11.7351 - delta_h -25.37 kJ -(Co(NH3)5Cl)Cl2 - (Co(NH3)5Cl)Cl2 + 5H+ = Co+3 + 5NH4+ + 3Cl- - log_k 4.5102 - delta_h -10.74 kJ -Fe(OH)2.7Cl.3 - Fe(OH)2.7Cl.3 + 2.7H+ = Fe+3 + 2.7H2O + 0.3Cl- - log_k -3.04 - delta_h -0 kJ -MnCl2:4H2O - MnCl2:4H2O = Mn+2 + 2Cl- + 4H2O - log_k 2.7151 - delta_h -10.83 kJ -CrCl2 - CrCl2 = Cr+2 + 2Cl- - log_k 14.0917 - delta_h -110.76 kJ -CrCl3 - CrCl3 + 2H2O = Cr(OH)2+ + 3Cl- + 2H+ - log_k 15.1145 - delta_h -121.08 kJ -VCl2 - VCl2 = V+3 + 2Cl- + e- - log_k 18.8744 - delta_h -141.16 kJ -VCl3 - VCl3 = V+3 + 3Cl- - log_k 23.4326 - delta_h -179.54 kJ -VOCl - VOCl + 2H+ = V+3 + Cl- + H2O - log_k 11.1524 - delta_h -104.91 kJ -VOCl2 - VOCl2 = VO+2 + 2Cl- - log_k 12.7603 - delta_h -117.76 kJ -VO2Cl - VO2Cl = VO2+ + Cl- - log_k 2.8413 - delta_h -40.28 kJ -Halite - NaCl = Na+ + Cl- - log_k 1.6025 - delta_h 3.7 kJ -SbBr3 - SbBr3 + 3H2O = Sb(OH)3 + 3Br- + 3H+ - log_k 0.9689 - delta_h -20.94 kJ -SnBr2 - SnBr2 + 2H2O = Sn(OH)2 + 2H+ + 2Br- - log_k -9.5443 - delta_h -0 kJ -SnBr4 - SnBr4 + 6H2O = Sn(OH)6-2 + 6H+ + 4Br- - log_k -28.8468 - delta_h -0 kJ -PbBr2 - PbBr2 = Pb+2 + 2Br- - log_k -5.3 - delta_h 35.499 kJ -PbBrF - PbBrF = Pb+2 + Br- + F- - log_k -8.49 - delta_h -0 kJ -TlBr - TlBr = Tl+ + Br- - log_k -5.44 - delta_h 54 kJ -ZnBr2:2H2O - ZnBr2:2H2O = Zn+2 + 2Br- + 2H2O - log_k 5.2005 - delta_h -30.67 kJ -CdBr2:4H2O - CdBr2:4H2O = Cd+2 + 2Br- + 4H2O - log_k -2.425 - delta_h 30.5001 kJ -Hg2Br2 - Hg2Br2 = Hg2+2 + 2Br- - log_k -22.25 - delta_h 133 kJ -HgBr2 - HgBr2 + 2H2O = Hg(OH)2 + 2Br- + 2H+ - log_k -25.2734 - delta_h 138.492 kJ -CuBr - CuBr = Cu+ + Br- - log_k -8.3 - delta_h 54.86 kJ -Cu2(OH)3Br - Cu2(OH)3Br + 3H+ = 2Cu+2 + 3H2O + Br- - log_k 7.9085 - delta_h -93.43 kJ -Bromyrite - AgBr = Ag+ + Br- - log_k -12.3 - delta_h 84.5 kJ -(Co(NH3)6)Br3 - (Co(NH3)6)Br3 + 6H+ = Co+3 + 6NH4+ + 3Br- - log_k 18.3142 - delta_h -21.1899 kJ -(Co(NH3)5Cl)Br2 - (Co(NH3)5Cl)Br2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2Br- - log_k 5.0295 - delta_h -6.4 kJ -CrBr3 - CrBr3 + 2H2O = Cr(OH)2+ + 3Br- + 2H+ - log_k 19.9086 - delta_h -141.323 kJ -AsI3 - AsI3 + 3H2O = H3AsO3 + 3I- + 3H+ - log_k 4.2307 - delta_h 3.15 kJ -SbI3 - SbI3 + 3H2O = Sb(OH)3 + 3H+ + 3I- - log_k -0.538 - delta_h 13.5896 kJ -PbI2 - PbI2 = Pb+2 + 2I- - log_k -8.1 - delta_h 62 kJ -TlI - TlI = Tl+ + I- - log_k -7.23 - delta_h 75 kJ -ZnI2 - ZnI2 = Zn+2 + 2I- - log_k 7.3055 - delta_h -58.92 kJ -CdI2 - CdI2 = Cd+2 + 2I- - log_k -3.5389 - delta_h 13.82 kJ -Hg2I2 - Hg2I2 = Hg2+2 + 2I- - log_k -28.34 - delta_h 163 kJ -Coccinite - HgI2 + 2H2O = Hg(OH)2 + 2H+ + 2I- - log_k -34.9525 - delta_h 210.72 kJ -HgI2:2NH3 - HgI2:2NH3 + 2H2O = Hg(OH)2 + 2I- + 2NH4+ - log_k -16.2293 - delta_h 132.18 kJ -HgI2:6NH3 - HgI2:6NH3 + 2H2O + 4H+ = Hg(OH)2 + 2I- + 6NH4+ - log_k 33.7335 - delta_h -90.3599 kJ -CuI - CuI = Cu+ + I- - log_k -12 - delta_h 82.69 kJ -Iodyrite - AgI = Ag+ + I- - log_k -16.08 - delta_h 110 kJ -(Co(NH3)6)I3 - (Co(NH3)6)I3 + 6H+ = Co+3 + 6NH4+ + 3I- - log_k 16.5831 - delta_h -9.6999 kJ -(Co(NH3)5Cl)I2 - (Co(NH3)5Cl)I2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2I- - log_k 5.5981 - delta_h 0.66 kJ -CrI3 - CrI3 + 2H2O = Cr(OH)2+ + 3I- + 2H+ - log_k 20.4767 - delta_h -134.419 kJ -Cerrusite - PbCO3 = Pb+2 + CO3-2 - log_k -13.13 - delta_h 24.79 kJ -Pb2OCO3 - Pb2OCO3 + 2H+ = 2Pb+2 + H2O + CO3-2 - log_k -0.5578 - delta_h -40.8199 kJ -Pb3O2CO3 - Pb3O2CO3 + 4H+ = 3Pb+2 + CO3-2 + 2H2O - log_k 11.02 - delta_h -110.583 kJ -Hydrocerrusite - Pb3(OH)2(CO3)2 + 2H+ = 3Pb+2 + 2H2O + 2CO3-2 - log_k -18.7705 - delta_h -0 kJ -Pb10(OH)6O(CO3)6 - Pb10(OH)6O(CO3)6 + 8H+ = 10Pb+2 + 6CO3-2 + 7H2O - log_k -8.76 - delta_h -0 kJ -Tl2CO3 - Tl2CO3 = 2Tl+ + CO3-2 - log_k -3.8367 - delta_h 35.49 kJ -Smithsonite - ZnCO3 = Zn+2 + CO3-2 - log_k -10 - delta_h -15.84 kJ -ZnCO3:1H2O - ZnCO3:1H2O = Zn+2 + CO3-2 + H2O - log_k -10.26 - delta_h -0 kJ -Otavite - CdCO3 = Cd+2 + CO3-2 - log_k -12 - delta_h -0.55 kJ -Hg2CO3 - Hg2CO3 = Hg2+2 + CO3-2 - log_k -16.05 - delta_h 45.14 kJ -Hg3O2CO3 - Hg3O2CO3 + 4H2O = 3Hg(OH)2 + 2H+ + CO3-2 - log_k -29.682 - delta_h -0 kJ -CuCO3 - CuCO3 = Cu+2 + CO3-2 - log_k -11.5 - delta_h -0 kJ -Malachite - Cu2(OH)2CO3 + 2H+ = 2Cu+2 + 2H2O + CO3-2 - log_k -5.306 - delta_h 76.38 kJ -Azurite - Cu3(OH)2(CO3)2 + 2H+ = 3Cu+2 + 2H2O + 2CO3-2 - log_k -16.906 - delta_h -95.22 kJ -Ag2CO3 - Ag2CO3 = 2Ag+ + CO3-2 - log_k -11.09 - delta_h 42.15 kJ -NiCO3 - NiCO3 = Ni+2 + CO3-2 - log_k -6.87 - delta_h -41.589 kJ -CoCO3 - CoCO3 = Co+2 + CO3-2 - log_k -9.98 - delta_h -12.7612 kJ -Siderite - FeCO3 = Fe+2 + CO3-2 - log_k -10.24 - delta_h -16 kJ -Rhodochrosite - MnCO3 = Mn+2 + CO3-2 - log_k -10.58 - delta_h -1.88 kJ -Rutherfordine - UO2CO3 = UO2+2 + CO3-2 - log_k -14.5 - delta_h -3.03 kJ -Artinite - MgCO3:Mg(OH)2:3H2O + 2H+ = 2Mg+2 + CO3-2 + 5H2O - log_k 9.6 - delta_h -120.257 kJ -Hydromagnesite - Mg5(CO3)4(OH)2:4H2O + 2H+ = 5Mg+2 + 4CO3-2 + 6H2O - log_k -8.766 - delta_h -218.447 kJ -Magnesite - MgCO3 = Mg+2 + CO3-2 - log_k -7.46 - delta_h 20 kJ -Nesquehonite - MgCO3:3H2O = Mg+2 + CO3-2 + 3H2O - log_k -4.67 - delta_h -24.2212 kJ -Aragonite - CaCO3 = Ca+2 + CO3-2 - log_k -8.3 - delta_h -12 kJ -Calcite - CaCO3 = Ca+2 + CO3-2 - log_k -8.48 - delta_h -8 kJ -Dolomite(ordered) - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -17.09 - delta_h -39.5 kJ -Dolomite(disordered) - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -16.54 - delta_h -46.4 kJ -Huntite - CaMg3(CO3)4 = 3Mg+2 + Ca+2 + 4CO3-2 - log_k -29.968 - delta_h -107.78 kJ -Strontianite - SrCO3 = Sr+2 + CO3-2 - log_k -9.27 - delta_h -0 kJ -Witherite - BaCO3 = Ba+2 + CO3-2 - log_k -8.57 - delta_h 4 kJ -Thermonatrite - Na2CO3:H2O = 2Na+ + CO3-2 + H2O - log_k 0.637 - delta_h -10.4799 kJ -TlNO3 - TlNO3 = Tl+ + NO3- - log_k -1.6127 - delta_h 42.44 kJ -Zn(NO3)2:6H2O - Zn(NO3)2:6H2O = Zn+2 + 2NO3- + 6H2O - log_k 3.3153 - delta_h 24.5698 kJ -Cu2(OH)3NO3 - Cu2(OH)3NO3 + 3H+ = 2Cu+2 + 3H2O + NO3- - log_k 9.251 - delta_h -72.5924 kJ -(Co(NH3)6)(NO3)3 - (Co(NH3)6)(NO3)3 + 6H+ = Co+3 + 6NH4+ + 3NO3- - log_k 17.9343 - delta_h 1.59 kJ -(Co(NH3)5Cl)(NO3)2 - (Co(NH3)5Cl)(NO3)2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2NO3- - log_k 6.2887 - delta_h 6.4199 kJ -UO2(NO3)2 - UO2(NO3)2 = UO2+2 + 2NO3- - log_k 12.1476 - delta_h -83.3999 kJ -UO2(NO3)2:2H2O - UO2(NO3)2:2H2O = UO2+2 + 2NO3- + 2H2O - log_k 4.851 - delta_h -25.355 kJ -UO2(NO3)2:3H2O - UO2(NO3)2:3H2O = UO2+2 + 2NO3- + 3H2O - log_k 3.39 - delta_h -9.1599 kJ -UO2(NO3)2:6H2O - UO2(NO3)2:6H2O = UO2+2 + 2NO3- + 6H2O - log_k 2.0464 - delta_h 20.8201 kJ -Pb(BO2)2 - Pb(BO2)2 + 2H2O + 2H+ = Pb+2 + 2H3BO3 - log_k 6.5192 - delta_h -15.6119 kJ -Zn(BO2)2 - Zn(BO2)2 + 2H2O + 2H+ = Zn+2 + 2H3BO3 - log_k 8.29 - delta_h -0 kJ -Cd(BO2)2 - Cd(BO2)2 + 2H2O + 2H+ = Cd+2 + 2H3BO3 - log_k 9.84 - delta_h -0 kJ -Co(BO2)2 - Co(BO2)2 + 2H2O + 2H+ = Co+2 + 2H3BO3 - log_k 27.0703 - delta_h -0 kJ -SnSO4 - SnSO4 + 2H2O = Sn(OH)2 + 2H+ + SO4-2 - log_k -56.9747 - delta_h -0 kJ -Sn(SO4)2 - Sn(SO4)2 + 6H2O = Sn(OH)6-2 + 6H+ + 2SO4-2 - log_k -15.2123 - delta_h -0 kJ -Larnakite - PbO:PbSO4 + 2H+ = 2Pb+2 + SO4-2 + H2O - log_k -0.4344 - delta_h -21.83 kJ -Pb3O2SO4 - Pb3O2SO4 + 4H+ = 3Pb+2 + SO4-2 + 2H2O - log_k 10.6864 - delta_h -79.14 kJ -Pb4O3SO4 - Pb4O3SO4 + 6H+ = 4Pb+2 + SO4-2 + 3H2O - log_k 21.8772 - delta_h -136.45 kJ -Anglesite - PbSO4 = Pb+2 + SO4-2 - log_k -7.79 - delta_h 12 kJ -Pb4(OH)6SO4 - Pb4(OH)6SO4 + 6H+ = 4Pb+2 + SO4-2 + 6H2O - log_k 21.1 - delta_h -0 kJ -AlOHSO4 - AlOHSO4 + H+ = Al+3 + SO4-2 + H2O - log_k -3.23 - delta_h -0 kJ -Al4(OH)10SO4 - Al4(OH)10SO4 + 10H+ = 4Al+3 + SO4-2 + 10H2O - log_k 22.7 - delta_h -0 kJ -Tl2SO4 - Tl2SO4 = 2Tl+ + SO4-2 - log_k -3.7868 - delta_h 33.1799 kJ -Zn2(OH)2SO4 - Zn2(OH)2SO4 + 2H+ = 2Zn+2 + 2H2O + SO4-2 - log_k 7.5 - delta_h -0 kJ -Zn4(OH)6SO4 - Zn4(OH)6SO4 + 6H+ = 4Zn+2 + 6H2O + SO4-2 - log_k 28.4 - delta_h -0 kJ -Zn3O(SO4)2 - Zn3O(SO4)2 + 2H+ = 3Zn+2 + 2SO4-2 + H2O - log_k 18.9135 - delta_h -258.08 kJ -Zincosite - ZnSO4 = Zn+2 + SO4-2 - log_k 3.9297 - delta_h -82.586 kJ -ZnSO4:1H2O - ZnSO4:1H2O = Zn+2 + SO4-2 + H2O - log_k -0.638 - delta_h -44.0699 kJ -Bianchite - ZnSO4:6H2O = Zn+2 + SO4-2 + 6H2O - log_k -1.765 - delta_h -0.6694 kJ -Goslarite - ZnSO4:7H2O = Zn+2 + SO4-2 + 7H2O - log_k -2.0112 - delta_h 14.21 kJ -Cd3(OH)4SO4 - Cd3(OH)4SO4 + 4H+ = 3Cd+2 + 4H2O + SO4-2 - log_k 22.56 - delta_h -0 kJ -Cd3(OH)2(SO4)2 - Cd3(OH)2(SO4)2 + 2H+ = 3Cd+2 + 2H2O + 2SO4-2 - log_k 6.71 - delta_h -0 kJ -Cd4(OH)6SO4 - Cd4(OH)6SO4 + 6H+ = 4Cd+2 + 6H2O + SO4-2 - log_k 28.4 - delta_h -0 kJ -CdSO4 - CdSO4 = Cd+2 + SO4-2 - log_k -0.1722 - delta_h -51.98 kJ -CdSO4:1H2O - CdSO4:1H2O = Cd+2 + SO4-2 + H2O - log_k -1.7261 - delta_h -31.5399 kJ -CdSO4:2.67H2O - CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67H2O - log_k -1.873 - delta_h -17.9912 kJ -Hg2SO4 - Hg2SO4 = Hg2+2 + SO4-2 - log_k -6.13 - delta_h 5.4 kJ -HgSO4 - HgSO4 + 2H2O = Hg(OH)2 + SO4-2 + 2H+ - log_k -9.4189 - delta_h 14.6858 kJ -Cu2SO4 - Cu2SO4 = 2Cu+ + SO4-2 - log_k -1.95 - delta_h -19.079 kJ -Antlerite - Cu3(OH)4SO4 + 4H+ = 3Cu+2 + 4H2O + SO4-2 - log_k 8.788 - delta_h -0 kJ -Brochantite - Cu4(OH)6SO4 + 6H+ = 4Cu+2 + 6H2O + SO4-2 - log_k 15.222 - delta_h -202.86 kJ -Langite - Cu4(OH)6SO4:H2O + 6H+ = 4Cu+2 + 7H2O + SO4-2 - log_k 17.4886 - delta_h -165.55 kJ -CuOCuSO4 - CuOCuSO4 + 2H+ = 2Cu+2 + H2O + SO4-2 - log_k 10.3032 - delta_h -137.777 kJ -CuSO4 - CuSO4 = Cu+2 + SO4-2 - log_k 2.9395 - delta_h -73.04 kJ -Chalcanthite - CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O - log_k -2.64 - delta_h 6.025 kJ -Ag2SO4 - Ag2SO4 = 2Ag+ + SO4-2 - log_k -4.82 - delta_h 17 kJ -Ni4(OH)6SO4 - Ni4(OH)6SO4 + 6H+ = 4Ni+2 + SO4-2 + 6H2O - log_k 32 - delta_h -0 kJ -Retgersite - NiSO4:6H2O = Ni+2 + SO4-2 + 6H2O - log_k -2.04 - delta_h 4.6024 kJ -Morenosite - NiSO4:7H2O = Ni+2 + SO4-2 + 7H2O - log_k -2.1449 - delta_h 12.1802 kJ -CoSO4 - CoSO4 = Co+2 + SO4-2 - log_k 2.8024 - delta_h -79.277 kJ -CoSO4:6H2O - CoSO4:6H2O = Co+2 + SO4-2 + 6H2O - log_k -2.4726 - delta_h 1.0801 kJ -Melanterite - FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O - log_k -2.209 - delta_h 20.5 kJ -Fe2(SO4)3 - Fe2(SO4)3 = 2Fe+3 + 3SO4-2 - log_k -3.7343 - delta_h -242.028 kJ -H-Jarosite - (H3O)Fe3(SO4)2(OH)6 + 5H+ = 3Fe+3 + 2SO4-2 + 7H2O - log_k -12.1 - delta_h -230.748 kJ -Na-Jarosite - NaFe3(SO4)2(OH)6 + 6H+ = Na+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -11.2 - delta_h -151.377 kJ -K-Jarosite - KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -14.8 - delta_h -130.875 kJ -MnSO4 - MnSO4 = Mn+2 + SO4-2 - log_k 2.5831 - delta_h -64.8401 kJ -Mn2(SO4)3 - Mn2(SO4)3 = 2Mn+3 + 3SO4-2 - log_k -5.711 - delta_h -163.427 kJ -VOSO4 - VOSO4 = VO+2 + SO4-2 - log_k 3.6097 - delta_h -86.7401 kJ -Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7H2O - log_k -2.1265 - delta_h 11.5601 kJ -Anhydrite - CaSO4 = Ca+2 + SO4-2 - log_k -4.36 - delta_h -7.2 kJ -Gypsum - CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O - log_k -4.61 - delta_h 1 kJ -Celestite - SrSO4 = Sr+2 + SO4-2 - log_k -6.62 - delta_h 2 kJ -Barite - BaSO4 = Ba+2 + SO4-2 - log_k -9.98 - delta_h 23 kJ -Mirabilite - Na2SO4:10H2O = 2Na+ + SO4-2 + 10H2O - log_k -1.114 - delta_h 79.4416 kJ -Thenardite - Na2SO4 = 2Na+ + SO4-2 - log_k 0.3217 - delta_h -9.121 kJ -K-Alum - KAl(SO4)2:12H2O = K+ + Al+3 + 2SO4-2 + 12H2O - log_k -5.17 - delta_h 30.2085 kJ -Alunite - KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O - log_k -1.4 - delta_h -210 kJ -(NH4)2CrO4 - (NH4)2CrO4 = CrO4-2 + 2NH4+ - log_k 0.4046 - delta_h 9.163 kJ -PbCrO4 - PbCrO4 = Pb+2 + CrO4-2 - log_k -12.6 - delta_h 44.18 kJ -Tl2CrO4 - Tl2CrO4 = 2Tl+ + CrO4-2 - log_k -12.01 - delta_h 74.27 kJ -Hg2CrO4 - Hg2CrO4 = Hg2+2 + CrO4-2 - log_k -8.7 - delta_h -0 kJ -CuCrO4 - CuCrO4 = Cu+2 + CrO4-2 - log_k -5.44 - delta_h -0 kJ -Ag2CrO4 - Ag2CrO4 = 2Ag+ + CrO4-2 - log_k -11.59 - delta_h 62 kJ -MgCrO4 - MgCrO4 = CrO4-2 + Mg+2 - log_k 5.3801 - delta_h -88.9518 kJ -CaCrO4 - CaCrO4 = Ca+2 + CrO4-2 - log_k -2.2657 - delta_h -26.945 kJ -SrCrO4 - SrCrO4 = Sr+2 + CrO4-2 - log_k -4.65 - delta_h -10.1253 kJ -BaCrO4 - BaCrO4 = Ba+2 + CrO4-2 - log_k -9.67 - delta_h 33 kJ -Li2CrO4 - Li2CrO4 = CrO4-2 + 2Li+ - log_k 4.8568 - delta_h -45.2792 kJ -Na2CrO4 - Na2CrO4 = CrO4-2 + 2Na+ - log_k 2.9302 - delta_h -19.6301 kJ -Na2Cr2O7 - Na2Cr2O7 + H2O = 2CrO4-2 + 2Na+ + 2H+ - log_k -9.8953 - delta_h 22.1961 kJ -K2CrO4 - K2CrO4 = CrO4-2 + 2K+ - log_k -0.5134 - delta_h 18.2699 kJ -K2Cr2O7 - K2Cr2O7 + H2O = 2CrO4-2 + 2K+ + 2H+ - log_k -17.2424 - delta_h 80.7499 kJ -Hg2SeO3 - Hg2SeO3 + H+ = Hg2+2 + HSeO3- - log_k -4.657 - delta_h -0 kJ -HgSeO3 - HgSeO3 + 2H2O = Hg(OH)2 + H+ + HSeO3- - log_k -12.43 - delta_h -0 kJ -Ag2SeO3 - Ag2SeO3 + H+ = 2Ag+ + HSeO3- - log_k -7.15 - delta_h 39.68 kJ -CuSeO3:2H2O - CuSeO3:2H2O + H+ = Cu+2 + HSeO3- + 2H2O - log_k 0.5116 - delta_h -36.861 kJ -NiSeO3:2H2O - NiSeO3:2H2O + H+ = HSeO3- + Ni+2 + 2H2O - log_k 2.8147 - delta_h -31.0034 kJ -CoSeO3 - CoSeO3 + H+ = Co+2 + HSeO3- - log_k 1.32 - delta_h -0 kJ -Fe2(SeO3)3:2H2O - Fe2(SeO3)3:2H2O + 3H+ = 3HSeO3- + 2Fe+3 + 2H2O - log_k -20.6262 - delta_h -0 kJ -Fe2(OH)4SeO3 - Fe2(OH)4SeO3 + 5H+ = HSeO3- + 2Fe+3 + 4H2O - log_k 1.5539 - delta_h -0 kJ -MnSeO3 - MnSeO3 + H+ = Mn+2 + HSeO3- - log_k 1.13 - delta_h -0 kJ -MnSeO3:2H2O - MnSeO3:2H2O + H+ = HSeO3- + Mn+2 + 2H2O - log_k 0.9822 - delta_h 8.4935 kJ -MgSeO3:6H2O - MgSeO3:6H2O + H+ = Mg+2 + HSeO3- + 6H2O - log_k 3.0554 - delta_h 5.23 kJ -CaSeO3:2H2O - CaSeO3:2H2O + H+ = HSeO3- + Ca+2 + 2H2O - log_k 2.8139 - delta_h -19.4556 kJ -SrSeO3 - SrSeO3 + H+ = Sr+2 + HSeO3- - log_k 2.3 - delta_h -0 kJ -BaSeO3 - BaSeO3 + H+ = Ba+2 + HSeO3- - log_k 1.83 - delta_h 11.98 kJ -Na2SeO3:5H2O - Na2SeO3:5H2O + H+ = 2Na+ + HSeO3- + 5H2O - log_k 10.3 - delta_h -0 kJ -PbSeO4 - PbSeO4 = Pb+2 + SeO4-2 - log_k -6.84 - delta_h 15 kJ -Tl2SeO4 - Tl2SeO4 = 2Tl+ + SeO4-2 - log_k -4.1 - delta_h 43 kJ -ZnSeO4:6H2O - ZnSeO4:6H2O = Zn+2 + SeO4-2 + 6H2O - log_k -1.52 - delta_h -0 kJ -CdSeO4:2H2O - CdSeO4:2H2O = Cd+2 + SeO4-2 + 2H2O - log_k -1.85 - delta_h -0 kJ -Ag2SeO4 - Ag2SeO4 = 2Ag+ + SeO4-2 - log_k -8.91 - delta_h -43.5 kJ -CuSeO4:5H2O - CuSeO4:5H2O = Cu+2 + SeO4-2 + 5H2O - log_k -2.44 - delta_h -0 kJ -NiSeO4:6H2O - NiSeO4:6H2O = Ni+2 + SeO4-2 + 6H2O - log_k -1.52 - delta_h -0 kJ -CoSeO4:6H2O - CoSeO4:6H2O = Co+2 + SeO4-2 + 6H2O - log_k -1.53 - delta_h -0 kJ -MnSeO4:5H2O - MnSeO4:5H2O = Mn+2 + SeO4-2 + 5H2O - log_k -2.05 - delta_h -0 kJ -UO2SeO4:4H2O - UO2SeO4:4H2O = UO2+2 + SeO4-2 + 4H2O - log_k -2.25 - delta_h -0 kJ -MgSeO4:6H2O - MgSeO4:6H2O = Mg+2 + SeO4-2 + 6H2O - log_k -1.2 - delta_h -0 kJ -CaSeO4:2H2O - CaSeO4:2H2O = Ca+2 + SeO4-2 + 2H2O - log_k -3.02 - delta_h -8.3 kJ -SrSeO4 - SrSeO4 = Sr+2 + SeO4-2 - log_k -4.4 - delta_h 0.4 kJ -BaSeO4 - BaSeO4 = Ba+2 + SeO4-2 - log_k -7.46 - delta_h 22 kJ -BeSeO4:4H2O - BeSeO4:4H2O = Be+2 + SeO4-2 + 4H2O - log_k -2.94 - delta_h -0 kJ -Na2SeO4 - Na2SeO4 = 2Na+ + SeO4-2 - log_k 1.28 - delta_h -0 kJ -K2SeO4 - K2SeO4 = 2K+ + SeO4-2 - log_k -0.73 - delta_h -0 kJ -(NH4)2SeO4 - (NH4)2SeO4 = 2NH4+ + SeO4-2 - log_k 0.45 - delta_h -0 kJ -H2MoO4 - H2MoO4 = MoO4-2 + 2H+ - log_k -12.8765 - delta_h 49 kJ -PbMoO4 - PbMoO4 = Pb+2 + MoO4-2 - log_k -15.62 - delta_h 53.93 kJ -Al2(MoO4)3 - Al2(MoO4)3 = 3MoO4-2 + 2Al+3 - log_k 2.3675 - delta_h -260.8 kJ -Tl2MoO4 - Tl2MoO4 = MoO4-2 + 2Tl+ - log_k -7.9887 - delta_h -0 kJ -ZnMoO4 - ZnMoO4 = MoO4-2 + Zn+2 - log_k -10.1254 - delta_h -10.6901 kJ -CdMoO4 - CdMoO4 = MoO4-2 + Cd+2 - log_k -14.1497 - delta_h 19.48 kJ -CuMoO4 - CuMoO4 = MoO4-2 + Cu+2 - log_k -13.0762 - delta_h 12.2 kJ -Ag2MoO4 - Ag2MoO4 = 2Ag+ + MoO4-2 - log_k -11.55 - delta_h 52.7 kJ -NiMoO4 - NiMoO4 = MoO4-2 + Ni+2 - log_k -11.1421 - delta_h 1.3 kJ -CoMoO4 - CoMoO4 = MoO4-2 + Co+2 - log_k -7.7609 - delta_h -23.3999 kJ -FeMoO4 - FeMoO4 = MoO4-2 + Fe+2 - log_k -10.091 - delta_h -11.1 kJ -BeMoO4 - BeMoO4 = MoO4-2 + Be+2 - log_k -1.7817 - delta_h -56.4 kJ -MgMoO4 - MgMoO4 = Mg+2 + MoO4-2 - log_k -1.85 - delta_h -0 kJ -CaMoO4 - CaMoO4 = Ca+2 + MoO4-2 - log_k -7.95 - delta_h -2 kJ -BaMoO4 - BaMoO4 = MoO4-2 + Ba+2 - log_k -6.9603 - delta_h 10.96 kJ -Li2MoO4 - Li2MoO4 = MoO4-2 + 2Li+ - log_k 2.4416 - delta_h -33.9399 kJ -Na2MoO4 - Na2MoO4 = MoO4-2 + 2Na+ - log_k 1.4901 - delta_h -9.98 kJ -Na2MoO4:2H2O - Na2MoO4:2H2O = MoO4-2 + 2Na+ + 2H2O - log_k 1.224 - delta_h -0 kJ -Na2Mo2O7 - Na2Mo2O7 + H2O = 2MoO4-2 + 2Na+ + 2H+ - log_k -16.5966 - delta_h 56.2502 kJ -K2MoO4 - K2MoO4 = MoO4-2 + 2K+ - log_k 3.2619 - delta_h -3.38 kJ -PbHPO4 - PbHPO4 = Pb+2 + H+ + PO4-3 - log_k -23.805 - delta_h -0 kJ -Pb3(PO4)2 - Pb3(PO4)2 = 3Pb+2 + 2PO4-3 - log_k -43.53 - delta_h -0 kJ -Pyromorphite - Pb5(PO4)3Cl = 5Pb+2 + 3PO4-3 + Cl- - log_k -84.43 - delta_h -0 kJ -Hydroxylpyromorphite - Pb5(PO4)3OH + H+ = 5Pb+2 + 3PO4-3 + H2O - log_k -62.79 - delta_h -0 kJ -Plumbgummite - PbAl3(PO4)2(OH)5:H2O + 5H+ = Pb+2 + 3Al+3 + 2PO4-3 + 6H2O - log_k -32.79 - delta_h -0 kJ -Hinsdalite - PbAl3PO4SO4(OH)6 + 6H+ = Pb+2 + 3Al+3 + PO4-3 + SO4-2 + 6H2O - log_k -2.5 - delta_h -0 kJ -Tsumebite - Pb2CuPO4(OH)3:3H2O + 3H+ = 2Pb+2 + Cu+2 + PO4-3 + 6H2O - log_k -9.79 - delta_h -0 kJ -Zn3(PO4)2:4H2O - Zn3(PO4)2:4H2O = 3Zn+2 + 2PO4-3 + 4H2O - log_k -35.42 - delta_h -0 kJ -Cd3(PO4)2 - Cd3(PO4)2 = 3Cd+2 + 2PO4-3 - log_k -32.6 - delta_h -0 kJ -Hg2HPO4 - Hg2HPO4 = Hg2+2 + H+ + PO4-3 - log_k -24.775 - delta_h -0 kJ -Cu3(PO4)2 - Cu3(PO4)2 = 3Cu+2 + 2PO4-3 - log_k -36.85 - delta_h -0 kJ -Cu3(PO4)2:3H2O - Cu3(PO4)2:3H2O = 3Cu+2 + 2PO4-3 + 3H2O - log_k -35.12 - delta_h -0 kJ -Ag3PO4 - Ag3PO4 = 3Ag+ + PO4-3 - log_k -17.59 - delta_h -0 kJ -Ni3(PO4)2 - Ni3(PO4)2 = 3Ni+2 + 2PO4-3 - log_k -31.3 - delta_h -0 kJ -CoHPO4 - CoHPO4 = Co+2 + PO4-3 + H+ - log_k -19.0607 - delta_h -0 kJ -Co3(PO4)2 - Co3(PO4)2 = 3Co+2 + 2PO4-3 - log_k -34.6877 - delta_h -0 kJ -Vivianite - Fe3(PO4)2:8H2O = 3Fe+2 + 2PO4-3 + 8H2O - log_k -36 - delta_h -0 kJ -Strengite - FePO4:2H2O = Fe+3 + PO4-3 + 2H2O - log_k -26.4 - delta_h -9.3601 kJ -Mn3(PO4)2 - Mn3(PO4)2 = 3Mn+2 + 2PO4-3 - log_k -23.827 - delta_h 8.8701 kJ -MnHPO4 - MnHPO4 = Mn+2 + PO4-3 + H+ - log_k -25.4 - delta_h -0 kJ -(VO)3(PO4)2 - (VO)3(PO4)2 = 3VO+2 + 2PO4-3 - log_k -25.1 - delta_h -0 kJ -Mg3(PO4)2 - Mg3(PO4)2 = 3Mg+2 + 2PO4-3 - log_k -23.28 - delta_h -0 kJ -MgHPO4:3H2O - MgHPO4:3H2O = Mg+2 + H+ + PO4-3 + 3H2O - log_k -18.175 - delta_h -0 kJ -FCO3Apatite - Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48F- - log_k -114.4 - delta_h 164.808 kJ -Hydroxylapatite - Ca5(PO4)3OH + H+ = 5Ca+2 + 3PO4-3 + H2O - log_k -44.333 - delta_h -0 kJ -CaHPO4:2H2O - CaHPO4:2H2O = Ca+2 + H+ + PO4-3 + 2H2O - log_k -18.995 - delta_h 23 kJ -CaHPO4 - CaHPO4 = Ca+2 + H+ + PO4-3 - log_k -19.275 - delta_h 31 kJ -Ca3(PO4)2(beta) - Ca3(PO4)2 = 3Ca+2 + 2PO4-3 - log_k -28.92 - delta_h 54 kJ -Ca4H(PO4)3:3H2O - Ca4H(PO4)3:3H2O = 4Ca+2 + H+ + 3PO4-3 + 3H2O - log_k -47.08 - delta_h -0 kJ -SrHPO4 - SrHPO4 = Sr+2 + H+ + PO4-3 - log_k -19.295 - delta_h -0 kJ -BaHPO4 - BaHPO4 = Ba+2 + H+ + PO4-3 - log_k -19.775 - delta_h -0 kJ -U(HPO4)2:4H2O - U(HPO4)2:4H2O = U+4 + 2PO4-3 + 2H+ + 4H2O - log_k -51.584 - delta_h 16.0666 kJ -(UO2)3(PO4)2 - (UO2)3(PO4)2 = 3UO2+2 + 2PO4-3 - log_k -49.4 - delta_h 397.062 kJ -UO2HPO4 - UO2HPO4 = UO2+2 + H+ + PO4-3 - log_k -24.225 - delta_h -0 kJ -Uramphite - (NH4)2(UO2)2(PO4)2 = 2UO2+2 + 2NH4+ + 2PO4-3 - log_k -51.749 - delta_h 40.5848 kJ -Przhevalskite - Pb(UO2)2(PO4)2 = 2UO2+2 + Pb+2 + 2PO4-3 - log_k -44.365 - delta_h -46.024 kJ -Torbernite - Cu(UO2)2(PO4)2 = 2UO2+2 + Cu+2 + 2PO4-3 - log_k -45.279 - delta_h -66.5256 kJ -Bassetite - Fe(UO2)2(PO4)2 = 2UO2+2 + Fe+2 + 2PO4-3 - log_k -44.485 - delta_h -83.2616 kJ -Saleeite - Mg(UO2)2(PO4)2 = 2UO2+2 + Mg+2 + 2PO4-3 - log_k -43.646 - delta_h -84.4331 kJ -Ningyoite - CaU(PO4)2:2H2O = U+4 + Ca+2 + 2PO4-3 + 2H2O - log_k -53.906 - delta_h -9.4977 kJ -H-Autunite - H2(UO2)2(PO4)2 = 2UO2+2 + 2H+ + 2PO4-3 - log_k -47.931 - delta_h -15.0624 kJ -Autunite - Ca(UO2)2(PO4)2 = 2UO2+2 + Ca+2 + 2PO4-3 - log_k -43.927 - delta_h -59.9986 kJ -Sr-Autunite - Sr(UO2)2(PO4)2 = 2UO2+2 + Sr+2 + 2PO4-3 - log_k -44.457 - delta_h -54.6012 kJ -Na-Autunite - Na2(UO2)2(PO4)2 = 2UO2+2 + 2Na+ + 2PO4-3 - log_k -47.409 - delta_h -1.9246 kJ -K-Autunite - K2(UO2)2(PO4)2 = 2UO2+2 + 2K+ + 2PO4-3 - log_k -48.244 - delta_h 24.5182 kJ -Uranocircite - Ba(UO2)2(PO4)2 = 2UO2+2 + Ba+2 + 2PO4-3 - log_k -44.631 - delta_h -42.2584 kJ -Pb3(AsO4)2 - Pb3(AsO4)2 + 6H+ = 3Pb+2 + 2H3AsO4 - log_k 5.8 - delta_h -0 kJ -AlAsO4:2H2O - AlAsO4:2H2O + 3H+ = Al+3 + H3AsO4 + 2H2O - log_k 4.8 - delta_h -0 kJ -Zn3(AsO4)2:2.5H2O - Zn3(AsO4)2:2.5H2O + 6H+ = 3Zn+2 + 2H3AsO4 + 2.5H2O - log_k 13.65 - delta_h -0 kJ -Cu3(AsO4)2:2H2O - Cu3(AsO4)2:2H2O + 6H+ = 3Cu+2 + 2H3AsO4 + 2H2O - log_k 6.1 - delta_h -0 kJ -Ag3AsO3 - Ag3AsO3 + 3H+ = 3Ag+ + H3AsO3 - log_k 2.1573 - delta_h -0 kJ -Ag3AsO4 - Ag3AsO4 + 3H+ = 3Ag+ + H3AsO4 - log_k -2.7867 - delta_h -0 kJ -Ni3(AsO4)2:8H2O - Ni3(AsO4)2:8H2O + 6H+ = 3Ni+2 + 2H3AsO4 + 8H2O - log_k 15.7 - delta_h -0 kJ -Co3(AsO4)2 - Co3(AsO4)2 + 6H+ = 3Co+2 + 2H3AsO4 - log_k 13.0341 - delta_h -0 kJ -FeAsO4:2H2O - FeAsO4:2H2O + 3H+ = Fe+3 + H3AsO4 + 2H2O - log_k 0.4 - delta_h -0 kJ -Mn3(AsO4)2:8H2O - Mn3(AsO4)2:8H2O + 6H+ = 3Mn+2 + 2H3AsO4 + 8H2O - log_k 12.5 - delta_h -0 kJ -Ca3(AsO4)2:4H2O - Ca3(AsO4)2:4H2O + 6H+ = 3Ca+2 + 2H3AsO4 + 4H2O - log_k 22.3 - delta_h -0 kJ -Ba3(AsO4)2 - Ba3(AsO4)2 + 6H+ = 3Ba+2 + 2H3AsO4 - log_k -8.91 - delta_h 11.0458 kJ -#NH4VO3 -# NH4VO3 + 2H+ = 2VO2+ + H2O -# log_k 3.8 -# delta_h 30 kJ -Pb3(VO4)2 - Pb3(VO4)2 + 8H+ = 3Pb+2 + 2VO2+ + 4H2O - log_k 6.14 - delta_h -72.6342 kJ -Pb2V2O7 - Pb2V2O7 + 6H+ = 2Pb+2 + 2VO2+ + 3H2O - log_k -1.9 - delta_h -26.945 kJ -AgVO3 - AgVO3 + 2H+ = Ag+ + VO2+ + H2O - log_k 0.77 - delta_h -0 kJ -Ag2HVO4 - Ag2HVO4 + 3H+ = 2Ag+ + VO2+ + 2H2O - log_k 1.48 - delta_h -0 kJ -Ag3H2VO5 - Ag3H2VO5 + 4H+ = 3Ag+ + VO2+ + 3H2O - log_k 5.18 - delta_h -0 kJ -Fe(VO3)2 - Fe(VO3)2 + 4H+ = Fe+2 + 2VO2+ + 2H2O - log_k -3.72 - delta_h -61.6722 kJ -Mn(VO3)2 - Mn(VO3)2 + 4H+ = Mn+2 + 2VO2+ + 2H2O - log_k 4.9 - delta_h -92.4664 kJ -Mg(VO3)2 - Mg(VO3)2 + 4H+ = Mg+2 + 2VO2+ + 2H2O - log_k 11.28 - delta_h -136.649 kJ -Mg2V2O7 - Mg2V2O7 + 6H+ = 2Mg+2 + 2VO2+ + 3H2O - log_k 26.36 - delta_h -255.224 kJ -Carnotite - KUO2VO4 + 4H+ = K+ + UO2+2 + VO2+ + 2H2O - log_k 0.23 - delta_h -36.4008 kJ -Tyuyamunite - Ca(UO2)2(VO4)2 + 8H+ = Ca+2 + 2UO2+2 + 2VO2+ + 4H2O - log_k 4.08 - delta_h -153.134 kJ -Ca(VO3)2 - Ca(VO3)2 + 4H+ = Ca+2 + 2VO2+ + 2H2O - log_k 5.66 - delta_h -84.7678 kJ -Ca3(VO4)2 - Ca3(VO4)2 + 8H+ = 3Ca+2 + 2VO2+ + 4H2O - log_k 38.96 - delta_h -293.466 kJ -Ca2V2O7 - Ca2V2O7 + 6H+ = 2Ca+2 + 2VO2+ + 3H2O - log_k 17.5 - delta_h -159.494 kJ -Ca3(VO4)2:4H2O - Ca3(VO4)2:4H2O + 8H+ = 3Ca+2 + 2VO2+ + 8H2O - log_k 39.86 - delta_h -0 kJ -Ca2V2O7:2H2O - Ca2V2O7:2H2O + 6H+ = 2Ca+2 + 2VO2+ + 5H2O - log_k 21.552 - delta_h -0 kJ -Ba3(VO4)2:4H2O - Ba3(VO4)2:4H2O + 8H+ = 3Ba+2 + 2VO2+ + 8H2O - log_k 32.94 - delta_h -0 kJ -Ba2V2O7:2H2O - Ba2V2O7:2H2O + 6H+ = 2Ba+2 + 2VO2+ + 5H2O - log_k 15.872 - delta_h -0 kJ -NaVO3 - NaVO3 + 2H+ = Na+ + VO2+ + H2O - log_k 3.8582 - delta_h -30.1799 kJ -Na3VO4 - Na3VO4 + 4H+ = 3Na+ + VO2+ + 2H2O - log_k 36.6812 - delta_h -184.61 kJ -Na4V2O7 - Na4V2O7 + 6H+ = 4Na+ + 2VO2+ + 3H2O - log_k 37.4 - delta_h -201.083 kJ -Halloysite - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 9.5749 - delta_h -181.43 kJ -Kaolinite - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 7.435 - delta_h -148 kJ -Greenalite - Fe3Si2O5(OH)4 + 6H+ = 3Fe+2 + 2H4SiO4 + H2O - log_k 20.81 - delta_h -0 kJ -Chrysotile - Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + H2O - log_k 32.2 - delta_h -196 kJ -Sepiolite - Mg2Si3O7.5OH:3H2O + 4H+ + 0.5H2O = 2Mg+2 + 3H4SiO4 - log_k 15.76 - delta_h -114.089 kJ -Sepiolite(A) - Mg2Si3O7.5OH:3H2O + 0.5H2O + 4H+ = 2Mg+2 + 3H4SiO4 - log_k 18.78 - delta_h -0 kJ -PHASES -O2(g) - O2 + 4H+ + 4e- = 2H2O - log_k 83.0894 - delta_h -571.66 kJ -CH4(g) - CH4 + 3H2O = CO3-2 + 8e- + 10H+ - log_k -41.0452 - delta_h 257.133 kJ -CO2(g) - CO2 + H2O = 2H+ + CO3-2 - log_k -18.147 - delta_h 4.06 kJ -H2S(g) - H2S = H+ + HS- - log_k -8.01 - delta_h -0 kJ -H2Se(g) - H2Se = HSe- + H+ - log_k -4.96 - delta_h -15.3 kJ -Hg(g) - Hg = 0.5Hg2+2 + e- - log_k -7.8733 - delta_h 22.055 kJ -Hg2(g) - Hg2 = Hg2+2 + 2e- - log_k -14.9554 - delta_h 58.07 kJ -Hg(CH3)2(g) - Hg(CH3)2 + 8H2O = Hg(OH)2 + 2CO3-2 + 16e- + 20H+ - log_k -73.7066 - delta_h 481.99 kJ -HgF(g) - HgF = 0.5Hg2+2 + F- - log_k 32.6756 - delta_h -254.844 kJ -HgF2(g) - HgF2 + 2H2O = Hg(OH)2 + 2F- + 2H+ - log_k 12.5652 - delta_h -165.186 kJ -HgCl(g) - HgCl = 0.5Hg2+2 + Cl- - log_k 19.4966 - delta_h -162.095 kJ -HgBr(g) - HgBr = 0.5Hg2+2 + Br- - log_k 16.7566 - delta_h -142.157 kJ -HgBr2(g) - HgBr2 + 2H2O = Hg(OH)2 + 2Br- + 2H+ - log_k -18.3881 - delta_h 54.494 kJ -HgI(g) - HgI = 0.5Hg2+2 + I- - log_k 11.3322 - delta_h -106.815 kJ -HgI2(g) - HgI2 + 2H2O = Hg(OH)2 + 2I- + 2H+ - log_k -27.2259 - delta_h 114.429 kJ -# -# -SURFACE_MASTER_SPECIES - Goe_uni Goe_uniOH-0.5 # =FeO site on goethite - Goe_tri Goe_triO-0.5 # =Fe3O site on goethite - Hfocd_uni Hfocd_uniOH-0.5 # =FeO site on HFO - Hfocd_tri Hfocd_triO-0.5 # =Fe3O site on HFO -SURFACE_SPECIES -# -# Goethite -# - Goe_triO-0.5 = Goe_triO-0.5 - -cd_music 0 0 0 0 0 - log_k 0 - Goe_triO-0.5 + H+ = Goe_triOH+0.5 - -cd_music 1 0 0 0 0 - log_k 9.20 - Goe_uniOH-0.5 = Goe_uniOH-0.5 - -cd_music 0 0 0 0 0 - log_k 0 - Goe_uniOH-0.5 + H+ = Goe_uniOH2+0.5 - -cd_music 1 0 0 0 0 - log_k 9.20 -# Na+ - Goe_triO-0.5 + Na+ = Goe_triONa+0.5 - -cd_music 0 1 0 0 0 - log_k -0.60 - Goe_uniOH-0.5 + Na+ = Goe_uniOHNa+0.5 - -cd_music 0 1 0 0 0 - log_k -0.60 -# K+ - Goe_triO-0.5 + K+ = Goe_triOK+0.5 - -cd_music 0 1 0 0 0 - log_k -1.71 - Goe_uniOH-0.5 + K+ = Goe_uniOHK+0.5 - -cd_music 0 1 0 0 0 - log_k -1.71 -# Cl- - Goe_uniOH-0.5 + H+ + Cl- = Goe_uniOH2Cl-0.5 - -cd_music 1 -1 0 0 0 - log_k 8.76 - Goe_triO-0.5 + H+ + Cl- = Goe_triOHCl-0.5 - -cd_music 1 -1 0 0 0 - log_k 8.76 -# NO3- - Goe_triO-0.5 + H+ + NO3- = Goe_triOHNO3-0.5 - -cd_music 1 -1 0 0 0 - log_k 8.52 - Goe_uniOH-0.5 + H+ + NO3- = Goe_uniOH2NO3-0.5 - log_k 8.52 - -cd_music 1 -1 0 0 0 -# Ca+2 - Goe_triO-0.5 + Ca+2 = Goe_triOCa+1.5 - log_k 3.00 - -cd_music 0.0 2.0 0 0 0 - Goe_uniOH-0.5 + Ca+2 = Goe_uniOHCa+1.5 - log_k 3.00 - -cd_music 0.0 2.0 0 0 0 - Goe_uniOH-0.5 + Ca+2 = Goe_uniOHCa+1.5 - log_k 3.65 - -cd_music 0.32 1.68 0 0 0 - Goe_uniOH-0.5 + Ca+2 + H2O = Goe_uniOHCaOH+0.5 + H+ - log_k -9.25 - -cd_music 0.32 0.68 0 0 0 -# Mg+2 - 2Goe_uniOH-0.5 + Mg+2 = (Goe_uniOH)2Mg+ - log_k 4.90 - -cd_music 0.71 1.29 0 0 0 - 2Goe_uniOH-0.5 + Mg+2 + H2O = (Goe_uniOH)2MgOH + H+ - log_k -6.47 - -cd_music 0.71 0.29 0 0 0 -# CO3-2 - 2Goe_uniOH-0.5 + 2H+ + CO3-2 = (Goe_uniO)2CO- + 2H2O - log_k 22.33 - -cd_music 0.68 -0.68 0 0 0 -# PO4-3 - Goe_uniOH-0.5 + 2H+ + PO4-3 = Goe_uniOPO2OH-1.5 + H2O - log_k 27.65 - -cd_music 0.28 -1.28 0 0 0 - 2Goe_uniOH-0.5 + 2H+ + PO4-3 = (Goe_uniO)2PO2-2 + 2H2O - log_k 29.77 - -cd_music 0.46 -1.46 0 0 0 -# H3AsO3 - Goe_uniOH-0.5 + H3AsO3 = Goe_uniOAs(OH)2-0.5 + H2O - log_k 4.33 # Stachowicz et al 2006 - -cd_music 0.16 -0.16 0 0 0 - 2Goe_uniOH-0.5 + H3AsO3 = (Goe_uniO)2AsOH- + 2H2O - log_k 6.99 # Stachowicz et al 2006 - -cd_music 0.34 -0.34 0 0 0 -# AsO4-3 - Goe_uniOH-0.5 + 2H+ + AsO4-3 = Goe_uniOAsO2OH-1.5 + H2O - log_k 25.88 - -cd_music 0.30 -1.30 0 0 0 - 2Goe_uniOH-0.5 + 2H+ + AsO4-3 = (Goe_uniO)2AsO2-2 + 2H2O - log_k 29.41 - -cd_music 0.47 -1.47 0 0 0 - 2Goe_uniOH-0.5 + 3H+ + AsO4-3 = (Goe_uniO)2AsOOH- + 2H2O - log_k 33.72 - -cd_music 0.58 -0.58 0 0 0 -# H3BO3 - Goe_uniOH-0.5 + H3BO3 = Goe_uniOBH2O2-0.5 + H2O - log_k 1.99 - -cd_music 0.16 -0.16 0 0 0 - Goe_uniOH-0.5 + H3BO3 = Goe_uniOH3BO3-1.5 + H+ - log_k -8.31 - -cd_music 0.16 -0.16 0 0 0 -# CrO4-2 - Goe_uniOH-0.5 + H+ + CrO4-2 = Goe_uniOCrO3-1.5 + H2O - log_k 12.45 - -cd_music 0.5 -1.5 0 0 0 -# MoO4-2 - Goe_uniOH-0.5 + 2H+ + MoO4-2 + H2O = Goe_uniOMo(OH)5-0.5 - log_k 18.25 - -cd_music 0.5 -0.5 0 0 0 # RH99 - Goe_uniOH-0.5 + H+ + MoO4-2 = Goe_uniOMoO3-1.5 + H2O - log_k 12.28 - -cd_music 0.5 -1.5 0 0 0 # RH99 -# SO4-2 - Goe_uniOH-0.5 + H+ + SO4-2 = Goe_uniSO4-1.5 + H2O - log_k 9.21 - -cd_music 0.65 -1.65 0 0 0 # RH99 - 2Goe_uniOH-0.5 + 2H+ +SO4-2 = Goe_uni2SO4- + 2H2O - log_k 19.01 - -cd_music 1.5 -0.5 0 0 0 - Goe_uniOH-0.5 + 2H+ + SO4-2 = Goe_uniSO4H-0.5 + H2O - log_k 3.97 - -cd_music 1.5 -0.5 0 0 0 # RH99 - 2Goe_uniOH-0.5 + 3H+ +SO4-2 = Goe_uni2SO4H + 2H2O - log_k 19.00 - -cd_music 1 0 0 0 0 -# Sb(OH)3 - Goe_uniOH-0.5 + Sb(OH)3 = Goe_uniOSb(OH)2-0.5 + H2O - log_k 15.55 - -cd_music 0.16 -0.16 0 0 0 - 2Goe_uniOH-0.5 + Sb(OH)3 = Goe_uni2O2Sb(OH)- + 2H2O - log_k 25.22 - -cd_music 0.34 -0.34 0 0 0 -# Sb(OH)6- - Goe_uniOH-0.5 + Sb(OH)6- = Goe_uniOSb(OH)5-1.5 + H2O - log_k 6.66 - -cd_music 0.84 -1.83 0 0 0 - 2Goe_uniOH-0.5 + Sb(OH)6- = Goe_uni2O2Sb(OH)4-2 + 2H2O - log_k -7.80 - -cd_music 1.67 -2.66 0 0 0 -# HSeO3- - 2Goe_uniOH-0.5 + H+ + HSeO3- = Goe_uni2SeO3- + 2H2O - log_k 4.33 - -cd_music 0.72 -0.72 0 0 0 - 2Goe_uniOH-0.5 + 2H+ + HSeO3- = Goe_uni2HSeO3 + 2H2O - log_k 9.46 - -cd_music 1.03 -0.03 0 0 0 - Goe_uniOH-0.5 + H+ + HSeO3- = Goe_uniSeO3H-0.5 + H2O - log_k 6.85 - -cd_music 0.43 -0.43 0 0 0 - Goe_uniOH-0.5 + HSeO3- = Goe_uniSeO3-1.5 + H2O - log_k 2.29 - -cd_music 0.20 -1.20 0 0 0 -# SeO4-2 - Goe_uniOH-0.5 + H+ + SeO4-2 = Goe_uniSeO4-1.5 + H2O - log_k 10.48 - -cd_music 0.50 -1.50 0 0 0 - 2Goe_uniOH-0.5 + SeO4-2 + 2H+ = Goe_uni2SeO4- + 2H2O - log_k -5.84 - -cd_music 1. -1. 0 0 0 - Goe_uniOH-0.5 + 2H+ + SeO4-2 = Goe_uniOH2SeO4H-0.5 - log_k -2.19 - -cd_music 0.50 -0.50 0 0 0 -# -# HFO -# - Hfocd_triO-0.5 = Hfocd_triO-0.5 - -cd_music 0 0 0 0 0 - log_k 0 - Hfocd_triO-0.5 + H+ = Hfocd_triOH+0.5 - -cd_music 1 0 0 0 0 - log_k 9.20 - Hfocd_uniOH-0.5 = Hfocd_uniOH-0.5 - -cd_music 0 0 0 0 0 - log_k 0 - Hfocd_uniOH-0.5 + H+ = Hfocd_uniOH2+0.5 - -cd_music 1 0 0 0 0 - log_k 9.20 -# Na+ - Hfocd_triO-0.5 + Na+ = Hfocd_triONa+0.5 - -cd_music 0 1 0 0 0 - log_k -0.60 - Hfocd_uniOH-0.5 + Na+ = Hfocd_uniOHNa+0.5 - -cd_music 0 1 0 0 0 - log_k -0.60 -# K+ - Hfocd_triO-0.5 + K+ = Hfocd_triOK+0.5 - -cd_music 0 1 0 0 0 - log_k -1.71 - Hfocd_uniOH-0.5 + K+ = Hfocd_uniOHK+0.5 - -cd_music 0 1 0 0 0 - log_k 1.71 -# Cl- - Hfocd_triO-0.5 + H+ + Cl- = Hfocd_triOHCl-0.5 - -cd_music 1 -1 0 0 0 - log_k 8.76 - Hfocd_uniOH-0.5 + H+ + Cl- = Hfocd_uniOH2Cl-0.5 - -cd_music 1 -1 0 0 0 - log_k 8.76 -# NO3- - Hfocd_triO-0.5 + H+ + NO3- = Hfocd_triOHNO3-0.5 - -cd_music 1 -1 0 0 0 - log_k 8.52 - Hfocd_uniOH-0.5 + H+ + NO3- = Hfocd_uniOH2NO3-0.5 - -cd_music 1 -1 0 0 0 - log_k 8.52 -# Ca+2 - Hfocd_triO-0.5 + Ca+2 = Hfocd_triOCa+1.5 - log_k 3.00 - -cd_music 0.0 2.0 0 0 0 - Hfocd_uniOH-0.5 + Ca+2 = Hfocd_uniOHCa+1.5 - log_k 3.00 - -cd_music 0.0 2.0 0 0 0 - Hfocd_uniOH-0.5 + Ca+2 = Hfocd_uniOHCa+1.5 - log_k 3.65 - -cd_music 0.32 1.68 0 0 0 - Hfocd_uniOH-0.5 + Ca+2 + H2O = Hfocd_uniOHCaOH+0.5 + H+ - log_k -9.25 - -cd_music 0.32 1.68 0 0 0 -# Mg+2 - 2Hfocd_uniOH-0.5 + Mg+2 = (Hfocd_uniOH)2Mg+ - log_k 4.90 - -cd_music 0.71 1.29 0 0 0 - 2Hfocd_uniOH-0.5 + Mg+2 + H2O = (Hfocd_uniOH)2MgOH + H+ - log_k -6.47 - -cd_music 0.71 1.29 0 0 0 -# CO3-2 - 2Hfocd_uniOH-0.5 + 2H+ + CO3-2 = (Hfocd_uniO)2CO- + 2H2O - log_k 22.33 - -cd_music 0.68 -0.68 0 0 0 -# H3AsO3 - Hfocd_uniOH-0.5 + H3AsO3 = Hfocd_uniOAs(OH)2-0.5 + H2O - log_k 5.31 - -cd_music 0.16 -0.16 0 0 0 - - 2Hfocd_uniOH-0.5 + H3AsO3 = (Hfocd_uniO)2AsOH- + 2H2O - log_k 5.89 - -cd_music 0.34 -0.34 0 0 0 -# AsO4-3 - Hfocd_uniOH-0.5 + 2H+ + AsO4-3 = Hfocd_uniOAsO2OH-1.5 + H2O - log_k 25.83 - -cd_music 0.30 -1.30 0 0 0 - 2Hfocd_uniOH-0.5 + 2H+ + AsO4-3 = (Hfocd_uniO)2AsO2-2 + 2H2O - log_k 28.11 - -cd_music 0.47 -1.47 0 0 0 - 2Hfocd_uniOH-0.5 + 3H+ + AsO4-3 = (Hfocd_uniO)2AsOOH- + 2H2O - log_k 33.41 - -cd_music 0.58 -0.58 0 0 0 -# H3BO3 - Hfocd_uniOH-0.5 + H3BO3 = Hfocd_uniOBH2O2-0.5 + H2O - log_k 1.92 - -cd_music 0.16 -0.16 0 0 0 - Hfocd_uniOH-0.5 + H3BO3 = Hfocd_uniOH3BO3-1.5 + H+ - log_k -8.10 - -cd_music 0.16 -0.16 0 0 0 -# CrO4-2 - Hfocd_uniOH-0.5 + H+ + CrO4-2 = Hfocd_uniOCrO3-1.5 + H2O - log_k 11.11 - -cd_music 0.5 -1.5 0 0 0 -# MoO4-2 - Hfocd_uniOH-0.5 + 2H+ + MoO4-2 + H2O = Hfocd_uniOMo(OH)5-0.5 - log_k 14.94 - -cd_music 0.5 -0.5 0 0 0 # RH99 - Hfocd_uniOH-0.5 + H+ + MoO4-2 = Hfocd_uniOMoO3-1.5 + H2O - log_k 11.38 - -cd_music 0.5 -1.5 0 0 0 # RH99 -# SO4-2 - Hfocd_uniOH-0.5 + H+ + SO4-2 = Hfocd_uniSO4-1.5 + H2O - log_k 2.77 - -cd_music 0.65 -1.65 0 0 0 # RH99 - 2Hfocd_uniOH-0.5 + 2H+ +SO4-2 = Hfocd_uni2SO4- + 2H2O - log_k 0.20 - -cd_music 1.5 -0.5 0 0 0 - Hfocd_uniOH-0.5 + 2H+ + SO4-2 = Hfocd_uniSO4H-0.5 + H2O - log_k 4.12 - -cd_music 1.5 -0.5 0 0 0 # RH99 - 2Hfocd_uniOH-0.5 + 3H+ +SO4-2 = Hfocd_uni2SO4H + 2H2O - log_k 17.68 - -cd_music 1 0 0 0 0 -# Sb(OH)6- - Hfocd_uniOH-0.5 + Sb(OH)6- = Hfocd_uniOSb(OH)5-1.5 + H2O - log_k 9.75 - -cd_music 0.84 -1.83 0 0 0 - 2Hfocd_uniOH-0.5 + Sb(OH)6- = Hfocd_uni2O2Sb(OH)4-2 + 2H2O - log_k -0.21 - -cd_music 1.67 -2.66 0 0 0 -# HSeO3- - 2Hfocd_uniOH-0.5 + H+ + HSeO3- = Hfocd_uni2SeO3- + 2H2O - log_k 9.61 - -cd_music 0.72 -0.72 0 0 0 - 2Hfocd_uniOH-0.5 + 2H+ + HSeO3- = Hfocd_uni2HSeO3 + 2H2O - log_k 15.15 - -cd_music 1.03 -0.03 0 0 0 - Hfocd_uniOH-0.5 + H+ + HSeO3- = Hfocd_uniSeO3H-0.5 + H2O - log_k 5.00 - -cd_music 0.43 -0.43 0 0 0 - Hfocd_uniOH-0.5 + HSeO3- = Hfocd_uniSeO3-1.5 + H2O - log_k 5.00 - -cd_music 0.20 -1.20 0 0 0 -# SeO4-2 - Hfocd_uniOH-0.5 + H+ + SeO4-2 = Hfocd_uniSeO4-1.5 + H2O - log_k 11.57 - -cd_music 0.50 -1.50 0 0 0 - 2Hfocd_uniOH-0.5 + SeO4-2 + 2H+ = Hfocd_uni2SeO4- + 2H2O - log_k 4.04 - -cd_music 1. -1. 0 0 0 - Hfocd_uniOH-0.5 + 2H+ + SeO4-2 = Hfocd_uniOH2SeO4H-0.5 - log_k 3.76 - -cd_music 0.50 -0.50 0 0 0 -# VO2+ - 2Hfocd_uniOH-0.5 + VO2+ = Hfocd_uni2O2VO + H2O - log_k 18.15 - -cd_music 1.50 -0.50 0 0 0 -END - - +# $Id: minteq.v4.dat 794 2006-02-27 21:06:22Z dlpark $ +# expanded with CD-MUSIC parameters for sorption of oxyanions on goethite and HFO 1/14/2009 dv +# +SOLUTION_MASTER_SPECIES +Alkalinity CO3-2 2.0 HCO3 61.0173 +E e- 0 0 0 +O H2O 0 O 16.00 +O(-2) H2O 0 O +O(0) O2 0 O +Ag Ag+ 0.0 Ag 107.868 +Al Al+3 0.0 Al 26.9815 +As H3AsO4 -1.0 As 74.9216 +As(3) H3AsO3 0.0 As +As(5) H3AsO4 -1.0 As +B H3BO3 0.0 B 10.81 +Ba Ba+2 0.0 Ba 137.33 +Be Be+2 0.0 Be 9.0122 +Br Br- 0.0 Br 79.904 +C CO3-2 2.0 CO3 12.0111 +C(4) CO3-2 2.0 CO3 12.0111 +Cyanide Cyanide- 1.0 Cyanide 26.0177 +Dom_a Dom_a 0.0 C 12.0111 +Dom_b Dom_b 0.0 C 12.0111 +Dom_c Dom_c 0.0 C 12.0111 +Ca Ca+2 0.0 Ca 40.078 +Cd Cd+2 0.0 Cd 112.41 +Cl Cl- 0.0 Cl 35.453 +Co Co+3 -1.0 Co 58.9332 +Co(2) Co+2 0.0 Co +Co(3) Co+3 -1.0 Co +Cr CrO4-2 1.0 Cr 51.996 +Cr(2) Cr+2 0.0 Cr +Cr(3) Cr(OH)2+ 0.0 Cr +Cr(6) CrO4-2 1.0 Cr +Cu Cu+2 0.0 Cu 63.546 +Cu(1) Cu+ 0.0 Cu +Cu(2) Cu+2 0.0 Cu +F F- 0.0 F 18.9984 +Fe Fe+3 -2.0 Fe 55.847 +Fe(2) Fe+2 0.0 Fe +Fe(3) Fe+3 -2.0 Fe +H H+ -1.0 H 1.0079 +H(0) H2 0 H +H(1) H+ -1.0 H +Hg Hg(OH)2 0.0 Hg 200.59 +Hg(0) Hg 0.0 Hg +Hg(1) Hg2+2 0.0 Hg +Hg(2) Hg(OH)2 0.0 Hg +I I- 0.0 I 126.904 +K K+ 0.0 K 39.0983 +Li Li+ 0.0 Li 6.941 +Mg Mg+2 0.0 Mg 24.305 +Mn Mn+3 0.0 Mn 54.938 +Mn(2) Mn+2 0.0 Mn +Mn(3) Mn+3 0.0 Mn +Mn(6) MnO4-2 0.0 Mn +Mn(7) MnO4- 0.0 Mn +Mo MoO4-2 0.0 Mo 95.94 +N NO3- 0.0 N 14.0067 +N(-3) NH4+ 0.0 N +N(3) NO2- 0.0 N +N(5) NO3- 0.0 N +Na Na+ 0.0 Na 22.9898 +Ni Ni+2 0.0 Ni 58.69 +P PO4-3 2.0 P 30.9738 +Pb Pb+2 0.0 Pb 207.2 +S SO4-2 0.0 SO4 32.066 +S(-2) HS- 1.0 S +#S(0) S 0.0 S +S(6) SO4-2 0.0 SO4 +Sb Sb(OH)6- 0.0 Sb 121.75 +Sb(3) Sb(OH)3 0.0 Sb +Sb(5) Sb(OH)6- 0.0 Sb +Se SeO4-2 0.0 Se 78.96 +Se(-2) HSe- 0.0 Se +Se(4) HSeO3- 0.0 Se +Se(6) SeO4-2 0.0 Se +Si H4SiO4 0.0 SiO2 28.0843 +Sn Sn(OH)6-2 0.0 Sn 118.71 +Sn(2) Sn(OH)2 0.0 Sn +Sn(4) Sn(OH)6-2 0.0 Sn +Sr Sr+2 0.0 Sr 87.62 +Tl Tl(OH)3 0.0 Tl 204.383 +Tl(1) Tl+ 0.0 Tl +Tl(3) Tl(OH)3 0.0 Tl +U UO2+2 0.0 U 238.029 +U(3) U+3 0.0 U +U(4) U+4 -4.0 U +U(5) UO2+ 0.0 U +U(6) UO2+2 0.0 U +V VO2+ -2.0 V 50.94 +V(2) V+2 0.0 V +V(3) V+3 -3.0 V +V(4) VO+2 0.0 V +V(5) VO2+ -2.0 V +Zn Zn+2 0.0 Zn 65.39 +Benzoate Benzoate- 0.0 121.116 121.116 +Phenylacetate Phenylacetate- 0.0 135.142 135.142 +Isophthalate Isophthalate-2 0.0 164.117 164.117 +Diethylamine Diethylamine 1.0 73.138 73.138 +Butylamine Butylamine 1.0 73.138 73.138 +Methylamine Methylamine 1.0 31.057 31.057 +Dimethylamine Dimethylamine 1.0 45.084 45.084 +Hexylamine Hexylamine 1.0 101.192 101.192 +Ethylenediamine Ethylenediamine 2.0 60.099 60.099 +Propylamine Propylamine 1.0 59.111 59.111 +Isopropylamine Isopropylamine 1.0 59.111 59.111 +Trimethylamine Trimethylamine 1.0 59.111 59.111 +Citrate Citrate-3 2.0 189.102 189.102 +Nta Nta-3 1.0 188.117 188.117 +Edta Edta-4 2.0 288.214 288.214 +Propionate Propionate- 1.0 73.072 73.072 +Butyrate Butyrate- 1.0 87.098 87.098 +Isobutyrate Isobutyrate- 1.0 87.098 87.098 +Two_picoline Two_picoline 1.0 93.128 93.128 +Three_picoline Three_picoline 1.0 93.128 93.128 +Four_picoline Four_picoline 1.0 93.128 93.128 +Formate Formate- 0.0 45.018 45.018 +Isovalerate Isovalerate- 1.0 101.125 101.125 +Valerate Valerate- 1.0 101.125 101.125 +Acetate Acetate- 1.0 59.045 59.045 +Tartarate Tartarate-2 0.0 148.072 148.072 +Glycine Glycine- 1.0 74.059 74.059 +Salicylate Salicylate-2 1.0 136.107 136.107 +Glutamate Glutamate-2 1.0 145.115 145.115 +Phthalate Phthalate-2 1.0 164.117 164.117 +SOLUTION_SPECIES +e- = e- + log_k 0 +H2O = H2O + log_k 0 +Ag+ = Ag+ + log_k 0 +Al+3 = Al+3 + log_k 0 +H3AsO4 = H3AsO4 + log_k 0 +H3BO3 = H3BO3 + log_k 0 +Ba+2 = Ba+2 + log_k 0 +Be+2 = Be+2 + log_k 0 +Br- = Br- + log_k 0 +CO3-2 = CO3-2 + log_k 0 +Cyanide- = Cyanide- + log_k 0 +Dom_a = Dom_a + log_k 0 +Dom_b = Dom_b + log_k 0 +Dom_c = Dom_c + log_k 0 +Ca+2 = Ca+2 + log_k 0 +Cd+2 = Cd+2 + log_k 0 +Cl- = Cl- + log_k 0 +Co+3 = Co+3 + log_k 0 +CrO4-2 = CrO4-2 + log_k 0 +Cu+2 = Cu+2 + log_k 0 +F- = F- + log_k 0 +Fe+3 = Fe+3 + log_k 0 +H+ = H+ + log_k 0 +Hg(OH)2 = Hg(OH)2 + log_k 0 +I- = I- + log_k 0 +K+ = K+ + log_k 0 +Li+ = Li+ + log_k 0 +Mg+2 = Mg+2 + log_k 0 +Mn+3 = Mn+3 + log_k 0 +MoO4-2 = MoO4-2 + log_k 0 +NO3- = NO3- + log_k 0 +Na+ = Na+ + log_k 0 +Ni+2 = Ni+2 + log_k 0 +PO4-3 = PO4-3 + log_k 0 +Pb+2 = Pb+2 + log_k 0 +SO4-2 = SO4-2 + log_k 0 +Sb(OH)6- = Sb(OH)6- + log_k 0 +SeO4-2 = SeO4-2 + log_k 0 +H4SiO4 = H4SiO4 + log_k 0 +Sn(OH)6-2 = Sn(OH)6-2 + log_k 0 +Sr+2 = Sr+2 + log_k 0 +Tl(OH)3 = Tl(OH)3 + log_k 0 +UO2+2 = UO2+2 + log_k 0 +VO2+ = VO2+ + log_k 0 +Benzoate- = Benzoate- + log_k 0 +Phenylacetate- = Phenylacetate- + log_k 0 +Isophthalate-2 = Isophthalate-2 + log_k 0 +Zn+2 = Zn+2 + log_k 0 +Diethylamine = Diethylamine + log_k 0 +Butylamine = Butylamine + log_k 0 +Methylamine = Methylamine + log_k 0 +Dimethylamine = Dimethylamine + log_k 0 +Hexylamine = Hexylamine + log_k 0 +Ethylenediamine = Ethylenediamine + log_k 0 +Propylamine = Propylamine + log_k 0 +Isopropylamine = Isopropylamine + log_k 0 +Trimethylamine = Trimethylamine + log_k 0 +Citrate-3 = Citrate-3 + log_k 0 +Nta-3 = Nta-3 + log_k 0 +Edta-4 = Edta-4 + log_k 0 +Propionate- = Propionate- + log_k 0 +Butyrate- = Butyrate- + log_k 0 +Isobutyrate- = Isobutyrate- + log_k 0 +Two_picoline = Two_picoline + log_k 0 +Three_picoline = Three_picoline + log_k 0 +Four_picoline = Four_picoline + log_k 0 +Formate- = Formate- + log_k 0 +Isovalerate- = Isovalerate- + log_k 0 +Valerate- = Valerate- + log_k 0 +Acetate- = Acetate- + log_k 0 +Tartarate-2 = Tartarate-2 + log_k 0 +Glycine- = Glycine- + log_k 0 +Salicylate-2 = Salicylate-2 + log_k 0 +Glutamate-2 = Glutamate-2 + log_k 0 +Phthalate-2 = Phthalate-2 + log_k 0 +SOLUTION_SPECIES +Fe+3 + e- = Fe+2 + log_k 13.032 + delta_h -42.7 kJ + -gamma 0 0 + # Id: 2802810 + # log K source: Bard85 + # Delta H source: Bard85 + #T and ionic strength: +H3AsO4 + 2e- + 2H+ = H3AsO3 + H2O + log_k 18.898 + delta_h -125.6 kJ + -gamma 0 0 + # Id: 600610 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sb(OH)6- + 2e- + 3H+ = Sb(OH)3 + 3H2O + log_k 24.31 + delta_h 0 kJ + -gamma 0 0 + # Id: 7407410 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + 3e- + 4H+ = U+3 + 2H2O + log_k 0.42 + delta_h -42 kJ + -gamma 0 0 + # Id: 8908930 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + 2e- + 4H+ = U+4 + 2H2O + log_k 9.216 + delta_h -144.1 kJ + -gamma 0 0 + # Id: 8918930 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + e- = UO2+ + log_k 2.785 + delta_h -13.8 kJ + -gamma 0 0 + # Id: 8928930 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +e- + Mn+3 = Mn+2 + log_k 25.35 + delta_h -107.8 kJ + -gamma 0 0 + # Id: 4704710 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Co+3 + e- = Co+2 + log_k 32.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2002010 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cu+2 + e- = Cu+ + log_k 2.69 + delta_h 6.9 kJ + -gamma 0 0 + # Id: 2302310 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +V+3 + e- = V+2 + log_k -4.31 + delta_h 0 kJ + -gamma 0 0 + # Id: 9009010 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +VO+2 + e- + 2H+ = V+3 + H2O + log_k 5.696 + delta_h 0 kJ + -gamma 0 0 + # Id: 9019020 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +VO2+ + e- + 2H+ = VO+2 + H2O + log_k 16.903 + delta_h -122.7 kJ + -gamma 0 0 + # Id: 9029030 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +SO4-2 + 9H+ + 8e- = HS- + 4H2O + log_k 33.66 + delta_h -60.14 kJ + -gamma 0 0 + # Id: 7307320 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sn(OH)6-2 + 2e- + 4H+ = Sn(OH)2 + 4H2O + log_k 19.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 7907910 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl(OH)3 + 2e- + 3H+ = Tl+ + 3H2O + log_k 45.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 8708710 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +HSeO3- + 6e- + 6H+ = HSe- + 3H2O + log_k 44.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 7607610 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +SeO4-2 + 2e- + 3H+ = HSeO3- + H2O + log_k 36.308 + delta_h -201.2 kJ + -gamma 0 0 + # Id: 7617620 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +0.5Hg2+2 + e- = Hg + log_k 6.5667 + delta_h -45.735 kJ + -gamma 0 0 + # Id: 3600000 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: + +2Hg(OH)2 + 4H+ + 2e- = Hg2+2 + 4H2O + log_k 43.185 + delta_h -63.59 kJ + -gamma 0 0 + # Id: 3603610 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 2H+ + e- = Cr+2 + 2H2O + log_k 2.947 + delta_h 6.36 kJ + -gamma 0 0 + # Id: 2102110 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + 6H+ + 3e- = Cr(OH)2+ + 2H2O + log_k 67.376 + delta_h -103 kJ + -gamma 0 0 + # Id: 2112120 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: + +2H2O = O2 + 4H+ + 4e- +# Adjusted for equation to aqueous species + log_k -85.9951 + -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 + +2 H+ + 2 e- = H2 + log_k -3.15 + delta_h -1.759 kcal + +NO3- + 2 H+ + 2 e- = NO2- + H2O + log_k 28.570 + delta_h -43.760 kcal + -gamma 3.0000 0.0000 + +NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + log_k 119.077 + delta_h -187.055 kcal + -gamma 2.5000 0.0000 + +Mn+2 + 4H2O = MnO4- + 8H+ + 5e- + log_k -127.794 + delta_h 822.67 kJ + -gamma 3 0 + # Id: 4700020 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- + log_k -118.422 + delta_h 711.07 kJ + -gamma 5 0 + # Id: 4700021 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +HS- = S-2 + H+ + log_k -17.3 + delta_h 49.4 kJ + -gamma 5 0 + # Id: 3307301 + # log K source: LMa1987 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 +HSe- = Se-2 + H+ + log_k -15 + delta_h 48.116 kJ + -gamma 0 0 + # Id: 3307601 + # log K source: SCD3.02 (1968 DKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + 3H+ = Tl+3 + 3H2O + log_k 3.291 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +0.5Hg2+2 + e- = Hg + log_k 6.5667 + delta_h -45.735 kJ + -gamma 0 0 + # Id: 3600000 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Hg(OH)2 + 2H+ = Hg+2 + 2H2O + log_k 6.194 + delta_h -39.72 kJ + -gamma 0 0 + # Id: 3613300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ + 2H+ = Cr+3 + 2H2O + log_k 9.5688 + delta_h -129.62 kJ + -gamma 0 0 + # Id: 2113300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.10 20.0 +H2O = OH- + H+ + log_k -13.997 + delta_h 55.81 kJ + -gamma 3.5 0 + # Id: 3300020 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + 2H+ = Sn+2 + 2H2O + log_k 7.094 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903301 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + H+ = SnOH+ + H2O + log_k 3.697 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + H2O = Sn(OH)3- + H+ + log_k -9.497 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903303 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2Sn(OH)2 + 2H+ = Sn2(OH)2+2 + 2H2O + log_k 9.394 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903304 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +3Sn(OH)2 + 2H+ = Sn3(OH)4+2 + 2H2O + log_k 14.394 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903305 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 = HSnO2- + H+ + log_k -8.9347 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903306 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sn(OH)6-2 + 6H+ = Sn+4 + 6H2O + log_k 21.2194 + delta_h 0 kJ + -gamma 0 0 + # Id: 7913301 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sn(OH)6-2 = SnO3-2 + 3H2O + log_k -2.2099 + delta_h 0 kJ + -gamma 0 0 + # Id: 7913302 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Pb+2 + H2O = PbOH+ + H+ + log_k -7.597 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2H2O = Pb(OH)2 + 2H+ + log_k -17.094 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Pb+2 + 3H2O = Pb(OH)3- + 3H+ + log_k -28.091 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2Pb+2 + H2O = Pb2OH+3 + H+ + log_k -6.397 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ + log_k -23.888 + delta_h 115.24 kJ + -gamma 0 0 + # Id: 6003304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Pb+2 + 4H2O = Pb(OH)4-2 + 4H+ + log_k -39.699 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003305 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +4Pb+2 + 4H2O = Pb4(OH)4+4 + 4H+ + log_k -19.988 + delta_h 88.24 kJ + -gamma 0 0 + # Id: 6003306 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +H3BO3 + F- = BF(OH)3- + log_k -0.399 + delta_h 7.7404 kJ + -gamma 2.5 0 + # Id: 902700 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3BO3 + 2F- + H+ = BF2(OH)2- + H2O + log_k 7.63 + delta_h 6.8408 kJ + -gamma 2.5 0 + # Id: 902701 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3BO3 + 3F- + 2H+ = BF3OH- + 2H2O + log_k 13.22 + delta_h -20.4897 kJ + -gamma 2.5 0 + # Id: 902702 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Al+3 + H2O = AlOH+2 + H+ + log_k -4.997 + delta_h 47.81 kJ + -gamma 5.4 0 + # Id: 303300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Al+3 + 2H2O = Al(OH)2+ + 2H+ + log_k -10.094 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 303301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Al+3 + 3H2O = Al(OH)3 + 3H+ + log_k -16.791 + delta_h 0 kJ + -gamma 0 0 + # Id: 303303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Al+3 + 4H2O = Al(OH)4- + 4H+ + log_k -22.688 + delta_h 173.24 kJ + -gamma 4.5 0 + # Id: 303302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl+ + H2O = TlOH + H+ + log_k -13.207 + delta_h 56.81 kJ + -gamma 0 0 + # Id: 8703300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + 2H+ = TlOH+2 + 2H2O + log_k 2.694 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + H+ = Tl(OH)2+ + H2O + log_k 1.897 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + H2O = Tl(OH)4- + H+ + log_k -11.697 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + H2O = ZnOH+ + H+ + log_k -8.997 + delta_h 55.81 kJ + -gamma 0 0 + # Id: 9503300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2H2O = Zn(OH)2 + 2H+ + log_k -17.794 + delta_h 0 kJ + -gamma 0 0 + # Id: 9503301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + 3H2O = Zn(OH)3- + 3H+ + log_k -28.091 + delta_h 0 kJ + -gamma 0 0 + # Id: 9503302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + 4H2O = Zn(OH)4-2 + 4H+ + log_k -40.488 + delta_h 0 kJ + -gamma 0 0 + # Id: 9503303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cd+2 + H2O = CdOH+ + H+ + log_k -10.097 + delta_h 54.81 kJ + -gamma 0 0 + # Id: 1603300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2H2O = Cd(OH)2 + 2H+ + log_k -20.294 + delta_h 0 kJ + -gamma 0 0 + # Id: 1603301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cd+2 + 3H2O = Cd(OH)3- + 3H+ + log_k -32.505 + delta_h 0 kJ + -gamma 0 0 + # Id: 1603302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 +Cd+2 + 4H2O = Cd(OH)4-2 + 4H+ + log_k -47.288 + delta_h 0 kJ + -gamma 0 0 + # Id: 1603303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2Cd+2 + H2O = Cd2OH+3 + H+ + log_k -9.397 + delta_h 45.81 kJ + -gamma 0 0 + # Id: 1603304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + H+ = HgOH+ + H2O + log_k 2.797 + delta_h -18.91 kJ + -gamma 0 0 + # Id: 3613302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + H2O = Hg(OH)3- + H+ + log_k -14.897 + delta_h 0 kJ + -gamma 0 0 + # Id: 3613303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cu+2 + H2O = CuOH+ + H+ + log_k -7.497 + delta_h 35.81 kJ + -gamma 4 0 + # Id: 2313300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cu+2 + 2H2O = Cu(OH)2 + 2H+ + log_k -16.194 + delta_h 0 kJ + -gamma 0 0 + # Id: 2313301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cu+2 + 3H2O = Cu(OH)3- + 3H+ + log_k -26.879 + delta_h 0 kJ + -gamma 0 0 + # Id: 2313302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Cu+2 + 4H2O = Cu(OH)4-2 + 4H+ + log_k -39.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 2313303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ + log_k -10.594 + delta_h 76.62 kJ + -gamma 0 0 + # Id: 2313304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ag+ + H2O = AgOH + H+ + log_k -11.997 + delta_h 0 kJ + -gamma 0 0 + # Id: 203300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ag+ + 2H2O = Ag(OH)2- + 2H+ + log_k -24.004 + delta_h 0 kJ + -gamma 0 0 + # Id: 203301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ni+2 + H2O = NiOH+ + H+ + log_k -9.897 + delta_h 51.81 kJ + -gamma 0 0 + # Id: 5403300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ni+2 + 2H2O = Ni(OH)2 + 2H+ + log_k -18.994 + delta_h 0 kJ + -gamma 0 0 + # Id: 5403301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ni+2 + 3H2O = Ni(OH)3- + 3H+ + log_k -29.991 + delta_h 0 kJ + -gamma 0 0 + # Id: 5403302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + H2O = CoOH+ + H+ + log_k -9.697 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003300 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + 2H2O = Co(OH)2 + 2H+ + log_k -18.794 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003301 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + 3H2O = Co(OH)3- + 3H+ + log_k -31.491 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + 4H2O = Co(OH)4-2 + 4H+ + log_k -46.288 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003303 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2Co+2 + H2O = Co2OH+3 + H+ + log_k -10.997 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003304 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +4Co+2 + 4H2O = Co4(OH)4+4 + 4H+ + log_k -30.488 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003306 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + 2H2O = CoOOH- + 3H+ + log_k -32.0915 + delta_h 260.454 kJ + -gamma 0 0 + # Id: 2003305 + # log K source: NIST2.1.1 + # Delta H source: MTQ3.11 + #T and ionic strength: +Co+3 + H2O = CoOH+2 + H+ + log_k -1.291 + delta_h 0 kJ + -gamma 0 0 + # Id: 2013300 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 +Fe+2 + H2O = FeOH+ + H+ + log_k -9.397 + delta_h 55.81 kJ + -gamma 5 0 + # Id: 2803300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Fe+2 + 2H2O = Fe(OH)2 + 2H+ + log_k -20.494 + delta_h 119.62 kJ + -gamma 0 0 + # Id: 2803302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Fe+2 + 3H2O = Fe(OH)3- + 3H+ + log_k -28.991 + delta_h 126.43 kJ + -gamma 5 0 + # Id: 2803301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Fe+3 + H2O = FeOH+2 + H+ + log_k -2.187 + delta_h 41.81 kJ + -gamma 5 0 + # Id: 2813300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Fe+3 + 2H2O = Fe(OH)2+ + 2H+ + log_k -4.594 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 2813301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Fe+3 + 3H2O = Fe(OH)3 + 3H+ + log_k -12.56 + delta_h 103.8 kJ + -gamma 0 0 + # Id: 2813302 + # log K source: Nord90 + # Delta H source: Nord90 + #T and ionic strength: 0.00 25.0 +Fe+3 + 4H2O = Fe(OH)4- + 4H+ + log_k -21.588 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 2813303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2Fe+3 + 2H2O = Fe2(OH)2+4 + 2H+ + log_k -2.854 + delta_h 57.62 kJ + -gamma 0 0 + # Id: 2813304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +3Fe+3 + 4H2O = Fe3(OH)4+5 + 4H+ + log_k -6.288 + delta_h 65.24 kJ + -gamma 0 0 + # Id: 2813305 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Mn+2 + H2O = MnOH+ + H+ + log_k -10.597 + delta_h 55.81 kJ + -gamma 5 0 + # Id: 4703300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Mn+2 + 3H2O = Mn(OH)3- + 3H+ + log_k -34.8 + delta_h 0 kJ + -gamma 5 0 + # Id: 4703301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Mn+2 + 4H2O = Mn(OH)4-2 + 4H+ + log_k -48.288 + delta_h 0 kJ + -gamma 5 0 + # Id: 4703302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Mn+2 + 4H2O = MnO4- + 8H+ + 5e- + log_k -127.794 + delta_h 822.67 kJ + -gamma 3 0 + # Id: 4700020 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- + log_k -118.422 + delta_h 711.07 kJ + -gamma 5 0 + # Id: 4700021 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Cr(OH)2+ + H+ = Cr(OH)+2 + H2O + log_k 5.9118 + delta_h -77.91 kJ + -gamma 0 0 + # Id: 2113301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ + H2O = Cr(OH)3 + H+ + log_k -8.4222 + delta_h 0 kJ + -gamma 0 0 + # Id: 2113302 + # log K source: SCD3.02 (1983 RCa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ + 2H2O = Cr(OH)4- + 2H+ + log_k -17.8192 + delta_h 0 kJ + -gamma 0 0 + # Id: 2113303 + # log K source: SCD3.02 (1983 RCa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ = CrO2- + 2H+ + log_k -17.7456 + delta_h 0 kJ + -gamma 0 0 + # Id: 2113304 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +V+2 + H2O = VOH+ + H+ + log_k -6.487 + delta_h 59.81 kJ + -gamma 0 0 + # Id: 9003300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +V+3 + H2O = VOH+2 + H+ + log_k -2.297 + delta_h 43.81 kJ + -gamma 0 0 + # Id: 9013300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +V+3 + 2H2O = V(OH)2+ + 2H+ + log_k -6.274 + delta_h 0 kJ + -gamma 0 0 + # Id: 9013301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +V+3 + 3H2O = V(OH)3 + 3H+ + log_k -3.0843 + delta_h 0 kJ + -gamma 0 0 + # Id: 9013302 + # log K source: SCD3.02 (1978 TKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 +2V+3 + 2H2O = V2(OH)2+4 + 2H+ + log_k -3.794 + delta_h 0 kJ + -gamma 0 0 + # Id: 9013304 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2V+3 + 3H2O = V2(OH)3+3 + 3H+ + log_k -10.1191 + delta_h 0 kJ + -gamma 0 0 + # Id: 9013303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 +VO+2 + 2H2O = V(OH)3+ + H+ + log_k -5.697 + delta_h 0 kJ + -gamma 0 0 + # Id: 9023300 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2VO+2 + 2H2O = H2V2O4+2 + 2H+ + log_k -6.694 + delta_h 53.62 kJ + -gamma 0 0 + # Id: 9023301 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +U+4 + H2O = UOH+3 + H+ + log_k -0.597 + delta_h 47.81 kJ + -gamma 0 0 + # Id: 8913300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +U+4 + 2H2O = U(OH)2+2 + 2H+ + log_k -2.27 + delta_h 74.1823 kJ + -gamma 0 0 + # Id: 8913301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 3H2O = U(OH)3+ + 3H+ + log_k -4.935 + delta_h 94.7467 kJ + -gamma 0 0 + # Id: 8913302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 4H2O = U(OH)4 + 4H+ + log_k -8.498 + delta_h 103.596 kJ + -gamma 0 0 + # Id: 8913303 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 5H2O = U(OH)5- + 5H+ + log_k -13.12 + delta_h 115.374 kJ + -gamma 0 0 + # Id: 8913304 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +6U+4 + 15H2O = U6(OH)15+9 + 15H+ + log_k -17.155 + delta_h 0 kJ + -gamma 0 0 + # Id: 8913305 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +UO2+2 + H2O = UO2OH+ + H+ + log_k -5.897 + delta_h 47.81 kJ + -gamma 0 0 + # Id: 8933300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+ + log_k -5.574 + delta_h 41.82 kJ + -gamma 0 0 + # Id: 8933301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+ + log_k -15.585 + delta_h 108.05 kJ + -gamma 0 0 + # Id: 8933302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Be+2 + H2O = BeOH+ + H+ + log_k -5.397 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103301 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Be+2 + 2H2O = Be(OH)2 + 2H+ + log_k -13.594 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Be+2 + 3H2O = Be(OH)3- + 3H+ + log_k -23.191 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103303 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Be+2 + 4H2O = Be(OH)4-2 + 4H+ + log_k -37.388 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103304 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2Be+2 + H2O = Be2OH+3 + H+ + log_k -3.177 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103305 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +3Be+2 + 3H2O = Be3(OH)3+3 + 3H+ + log_k -8.8076 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103306 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +Mg+2 + H2O = MgOH+ + H+ + log_k -11.397 + delta_h 67.81 kJ + -gamma 6.5 0 + # Id: 4603300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ca+2 + H2O = CaOH+ + H+ + log_k -12.697 + delta_h 64.11 kJ + -gamma 6 0 + # Id: 1503300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Sr+2 + H2O = SrOH+ + H+ + log_k -13.177 + delta_h 60.81 kJ + -gamma 5 0 + # Id: 8003300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ba+2 + H2O = BaOH+ + H+ + log_k -13.357 + delta_h 60.81 kJ + -gamma 5 0 + # Id: 1003300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +H+ + F- = HF + log_k 3.17 + delta_h 13.3 kJ + -gamma 0 0 + # Id: 3302700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +H+ + 2F- = HF2- + log_k 3.75 + delta_h 17.4 kJ + -gamma 3.5 0 + # Id: 3302701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +2F- + 2H+ = H2F2 + log_k 6.768 + delta_h 0 kJ + -gamma 0 0 + # Id: 3302702 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sb(OH)3 + F- + H+ = SbOF + 2H2O + log_k 6.1864 + delta_h 0 kJ + -gamma 0 0 + # Id: 7402700 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)3 + F- + H+ = Sb(OH)2F + H2O + log_k 6.1937 + delta_h 0 kJ + -gamma 0 0 + # Id: 7402702 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +H4SiO4 + 4H+ + 6F- = SiF6-2 + 4H2O + log_k 30.18 + delta_h -68 kJ + -gamma 5 0 + # Id: 7702700 + # log K source: Nord90 + # Delta H source: Nord90 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + 2H+ + F- = SnF+ + 2H2O + log_k 11.582 + delta_h 0 kJ + -gamma 0 0 + # Id: 7902701 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Sn(OH)2 + 2H+ + 2F- = SnF2 + 2H2O + log_k 14.386 + delta_h 0 kJ + -gamma 0 0 + # Id: 7902702 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Sn(OH)2 + 2H+ + 3F- = SnF3- + 2H2O + log_k 17.206 + delta_h 0 kJ + -gamma 0 0 + # Id: 7902703 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Sn(OH)6-2 + 6H+ + 6F- = SnF6-2 + 6H2O + log_k 33.5844 + delta_h 0 kJ + -gamma 0 0 + # Id: 7912701 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Pb+2 + F- = PbF+ + log_k 1.848 + delta_h 0 kJ + -gamma 0 0 + # Id: 6002700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Pb+2 + 2F- = PbF2 + log_k 3.142 + delta_h 0 kJ + -gamma 0 0 + # Id: 6002701 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Pb+2 + 3F- = PbF3- + log_k 3.42 + delta_h 0 kJ + -gamma 0 0 + # Id: 6002702 + # log K source: SCD3.02 (1956 TKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Pb+2 + 4F- = PbF4-2 + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 6002703 + # log K source: SCD3.02 (1956 TKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +H3BO3 + 3H+ + 4F- = BF4- + 3H2O + log_k 19.912 + delta_h -18.67 kJ + -gamma 2.5 0 + # Id: 902703 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 1.00 25.0 +Al+3 + F- = AlF+2 + log_k 7 + delta_h 4.6 kJ + -gamma 5.4 0 + # Id: 302700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Al+3 + 2F- = AlF2+ + log_k 12.6 + delta_h 8.3 kJ + -gamma 5.4 0 + # Id: 302701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Al+3 + 3F- = AlF3 + log_k 16.7 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 302702 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Al+3 + 4F- = AlF4- + log_k 19.4 + delta_h 8.7 kJ + -gamma 4.5 0 + # Id: 302703 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl+ + F- = TlF + log_k 0.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 8702700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + F- = ZnF+ + log_k 1.3 + delta_h 11 kJ + -gamma 0 0 + # Id: 9502700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + F- = CdF+ + log_k 1.2 + delta_h 5 kJ + -gamma 0 0 + # Id: 1602700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2F- = CdF2 + log_k 1.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 1602701 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 2H+ + F- = HgF+ + 2H2O + log_k 7.763 + delta_h -35.72 kJ + -gamma 0 0 + # Id: 3612701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 +Cu+2 + F- = CuF+ + log_k 1.8 + delta_h 13 kJ + -gamma 0 0 + # Id: 2312700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ag+ + F- = AgF + log_k 0.4 + delta_h 12 kJ + -gamma 0 0 + # Id: 202700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ni+2 + F- = NiF+ + log_k 1.4 + delta_h 7.1 kJ + -gamma 0 0 + # Id: 5402700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Co+2 + F- = CoF+ + log_k 1.5 + delta_h 9.2 kJ + -gamma 0 0 + # Id: 2002700 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Fe+3 + F- = FeF+2 + log_k 6.04 + delta_h 10 kJ + -gamma 5 0 + # Id: 2812700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Fe+3 + 2F- = FeF2+ + log_k 10.4675 + delta_h 17 kJ + -gamma 5 0 + # Id: 2812701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 +Fe+3 + 3F- = FeF3 + log_k 13.617 + delta_h 29 kJ + -gamma 0 0 + # Id: 2812702 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 +Mn+2 + F- = MnF+ + log_k 1.6 + delta_h 11 kJ + -gamma 5 0 + # Id: 4702700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ + 2H+ + F- = CrF+2 + 2H2O + log_k 14.7688 + delta_h -70.2452 kJ + -gamma 0 0 + # Id: 2112700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +VO+2 + F- = VOF+ + log_k 3.778 + delta_h 7.9 kJ + -gamma 0 0 + # Id: 9022700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +VO+2 + 2F- = VOF2 + log_k 6.352 + delta_h 14 kJ + -gamma 0 0 + # Id: 9022701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +VO+2 + 3F- = VOF3- + log_k 7.902 + delta_h 20 kJ + -gamma 0 0 + # Id: 9022702 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +VO+2 + 4F- = VOF4-2 + log_k 8.508 + delta_h 26 kJ + -gamma 0 0 + # Id: 9022703 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +VO2+ + F- = VO2F + log_k 3.244 + delta_h 0 kJ + -gamma 0 0 + # Id: 9032700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +VO2+ + 2F- = VO2F2- + log_k 5.804 + delta_h 0 kJ + -gamma 0 0 + # Id: 9032701 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +VO2+ + 3F- = VO2F3-2 + log_k 6.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 9032702 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +VO2+ + 4F- = VO2F4-3 + log_k 6.592 + delta_h 0 kJ + -gamma 0 0 + # Id: 9032703 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +U+4 + F- = UF+3 + log_k 9.3 + delta_h 21.1292 kJ + -gamma 0 0 + # Id: 8912700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +U+4 + 2F- = UF2+2 + log_k 16.4 + delta_h 30.1248 kJ + -gamma 0 0 + # Id: 8912701 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +U+4 + 3F- = UF3+ + log_k 21.6 + delta_h 29.9156 kJ + -gamma 0 0 + # Id: 8912702 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +U+4 + 4F- = UF4 + log_k 23.64 + delta_h 19.2464 kJ + -gamma 0 0 + # Id: 8912703 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 5F- = UF5- + log_k 25.238 + delta_h 20.2924 kJ + -gamma 0 0 + # Id: 8912704 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 6F- = UF6-2 + log_k 27.718 + delta_h 13.8072 kJ + -gamma 0 0 + # Id: 8912705 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + F- = UO2F+ + log_k 5.14 + delta_h 1 kJ + -gamma 0 0 + # Id: 8932700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +UO2+2 + 2F- = UO2F2 + log_k 8.6 + delta_h 2 kJ + -gamma 0 0 + # Id: 8932701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +UO2+2 + 3F- = UO2F3- + log_k 11 + delta_h 2 kJ + -gamma 0 0 + # Id: 8932702 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +UO2+2 + 4F- = UO2F4-2 + log_k 11.9 + delta_h 0.4 kJ + -gamma 0 0 + # Id: 8932703 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Be+2 + F- = BeF+ + log_k 5.249 + delta_h 0 kJ + -gamma 0 0 + # Id: 1102701 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Be+2 + 2F- = BeF2 + log_k 9.1285 + delta_h -4 kJ + -gamma 0 0 + # Id: 1102702 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Be+2 + 3F- = BeF3- + log_k 11.9085 + delta_h -8 kJ + -gamma 0 0 + # Id: 1102703 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Mg+2 + F- = MgF+ + log_k 2.05 + delta_h 13 kJ + -gamma 4.5 0 + # Id: 4602700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ca+2 + F- = CaF+ + log_k 1.038 + delta_h 14 kJ + -gamma 5 0 + # Id: 1502700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +Sr+2 + F- = SrF+ + log_k 0.548 + delta_h 16 kJ + -gamma 0 0 + # Id: 8002701 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 +Na+ + F- = NaF + log_k -0.2 + delta_h 12 kJ + -gamma 0 0 + # Id: 5002700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + 2H+ + Cl- = SnCl+ + 2H2O + log_k 8.734 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901801 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + 2H+ + 2Cl- = SnCl2 + 2H2O + log_k 9.524 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901802 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + 2H+ + 3Cl- = SnCl3- + 2H2O + log_k 8.3505 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901803 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 2.00 25.0 +Pb+2 + Cl- = PbCl+ + log_k 1.55 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 6001800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2Cl- = PbCl2 + log_k 2.2 + delta_h 12 kJ + -gamma 0 0 + # Id: 6001801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Pb+2 + 3Cl- = PbCl3- + log_k 1.8 + delta_h 4 kJ + -gamma 0 0 + # Id: 6001802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Pb+2 + 4Cl- = PbCl4-2 + log_k 1.46 + delta_h 14.7695 kJ + -gamma 0 0 + # Id: 6001803 + # log K source: SCD3.02 (1984 SEa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Tl+ + Cl- = TlCl + log_k 0.51 + delta_h -6.2 kJ + -gamma 0 0 + # Id: 8701800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl+ + 2Cl- = TlCl2- + log_k 0.28 + delta_h 0 kJ + -gamma 0 0 + # Id: 8701801 + # log K source: SCD3.02 (1992 RAb) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + 3H+ + Cl- = TlCl+2 + 3H2O + log_k 11.011 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + 3H+ + 2Cl- = TlCl2+ + 3H2O + log_k 16.771 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + 3H+ + 3Cl- = TlCl3 + 3H2O + log_k 19.791 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + 3H+ + 4Cl- = TlCl4- + 3H2O + log_k 21.591 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711803 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + Cl- + 2H+ = TlOHCl+ + 2H2O + log_k 10.629 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711804 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + Cl- = ZnCl+ + log_k 0.4 + delta_h 5.4 kJ + -gamma 4 0 + # Id: 9501800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2Cl- = ZnCl2 + log_k 0.6 + delta_h 37 kJ + -gamma 0 0 + # Id: 9501801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Zn+2 + 3Cl- = ZnCl3- + log_k 0.5 + delta_h 39.999 kJ + -gamma 4 0 + # Id: 9501802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + 4Cl- = ZnCl4-2 + log_k 0.199 + delta_h 45.8566 kJ + -gamma 5 0 + # Id: 9501803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + H2O + Cl- = ZnOHCl + H+ + log_k -7.48 + delta_h 0 kJ + -gamma 0 0 + # Id: 9501804 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cd+2 + Cl- = CdCl+ + log_k 1.98 + delta_h 1 kJ + -gamma 0 0 + # Id: 1601800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2Cl- = CdCl2 + log_k 2.6 + delta_h 3 kJ + -gamma 0 0 + # Id: 1601801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 3Cl- = CdCl3- + log_k 2.4 + delta_h 10 kJ + -gamma 0 0 + # Id: 1601802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + H2O + Cl- = CdOHCl + H+ + log_k -7.404 + delta_h 18.2213 kJ + -gamma 0 0 + # Id: 1601803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 2H+ + Cl- = HgCl+ + 2H2O + log_k 13.494 + delta_h -62.72 kJ + -gamma 0 0 + # Id: 3611800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + 2Cl- = HgCl2 + 2H2O + log_k 20.194 + delta_h -92.42 kJ + -gamma 0 0 + # Id: 3611801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + 3Cl- = HgCl3- + 2H2O + log_k 21.194 + delta_h -94.02 kJ + -gamma 0 0 + # Id: 3611802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + 4Cl- = HgCl4-2 + 2H2O + log_k 21.794 + delta_h -100.72 kJ + -gamma 0 0 + # Id: 3611803 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + Cl- + I- + 2H+ = HgClI + 2H2O + log_k 25.532 + delta_h -135.3 kJ + -gamma 0 0 + # Id: 3611804 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Hg(OH)2 + H+ + Cl- = HgClOH + H2O + log_k 10.444 + delta_h -42.72 kJ + -gamma 0 0 + # Id: 3611805 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +Cu+2 + Cl- = CuCl+ + log_k 0.2 + delta_h 8.3 kJ + -gamma 4 0 + # Id: 2311800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cu+2 + 2Cl- = CuCl2 + log_k -0.26 + delta_h 44.183 kJ + -gamma 0 0 + # Id: 2311801 + # log K source: SCD3.02 (1989 IPa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cu+2 + 3Cl- = CuCl3- + log_k -2.29 + delta_h 57.279 kJ + -gamma 4 0 + # Id: 2311802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cu+2 + 4Cl- = CuCl4-2 + log_k -4.59 + delta_h 32.5515 kJ + -gamma 5 0 + # Id: 2311803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cu+ + 2Cl- = CuCl2- + log_k 5.42 + delta_h -1.7573 kJ + -gamma 4 0 + # Id: 2301800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cu+ + 3Cl- = CuCl3-2 + log_k 4.75 + delta_h 1.0878 kJ + -gamma 5 0 + # Id: 2301801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cu+ + Cl- = CuCl + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2301802 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ag+ + Cl- = AgCl + log_k 3.31 + delta_h -12 kJ + -gamma 0 0 + # Id: 201800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ag+ + 2Cl- = AgCl2- + log_k 5.25 + delta_h -16 kJ + -gamma 0 0 + # Id: 201801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ag+ + 3Cl- = AgCl3-2 + log_k 5.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 201802 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ag+ + 4Cl- = AgCl4-3 + log_k 5.51 + delta_h 0 kJ + -gamma 0 0 + # Id: 201803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Ni+2 + Cl- = NiCl+ + log_k 0.408 + delta_h 2 kJ + -gamma 0 0 + # Id: 5401800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +Ni+2 + 2Cl- = NiCl2 + log_k -1.89 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401801 + # log K source: SCD3.02 (1989 IPa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + Cl- = CoCl+ + log_k 0.539 + delta_h 2 kJ + -gamma 0 0 + # Id: 2001800 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Co+3 + Cl- = CoCl+2 + log_k 2.3085 + delta_h 16 kJ + -gamma 0 0 + # Id: 2011800 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Fe+3 + Cl- = FeCl+2 + log_k 1.48 + delta_h 23 kJ + -gamma 5 0 + # Id: 2811800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Fe+3 + 2Cl- = FeCl2+ + log_k 2.13 + delta_h 0 kJ + -gamma 5 0 + # Id: 2811801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Fe+3 + 3Cl- = FeCl3 + log_k 1.13 + delta_h 0 kJ + -gamma 0 0 + # Id: 2811802 + # log K source: Nord90 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Mn+2 + Cl- = MnCl+ + log_k 0.1 + delta_h 0 kJ + -gamma 5 0 + # Id: 4701800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 20.0 +Mn+2 + 2Cl- = MnCl2 + log_k 0.25 + delta_h 0 kJ + -gamma 0 0 + # Id: 4701801 + # log K source: Nord90 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Mn+2 + 3Cl- = MnCl3- + log_k -0.31 + delta_h 0 kJ + -gamma 5 0 + # Id: 4701802 + # log K source: Nord90 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ + 2H+ + Cl- = CrCl+2 + 2H2O + log_k 9.6808 + delta_h -103.62 kJ + -gamma 0 0 + # Id: 2111800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +Cr(OH)2+ + 2Cl- + 2H+ = CrCl2+ + 2H2O + log_k 8.658 + delta_h -39.2208 kJ + -gamma 0 0 + # Id: 2111801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 2Cl- + H+ = CrOHCl2 + H2O + log_k 2.9627 + delta_h 0 kJ + -gamma 0 0 + # Id: 2111802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +VO+2 + Cl- = VOCl+ + log_k 0.448 + delta_h 0 kJ + -gamma 0 0 + # Id: 9021800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +U+4 + Cl- = UCl+3 + log_k 1.7 + delta_h -20 kJ + -gamma 0 0 + # Id: 8911800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +UO2+2 + Cl- = UO2Cl+ + log_k 0.21 + delta_h 16 kJ + -gamma 0 0 + # Id: 8931800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Be+2 + Cl- = BeCl+ + log_k 0.2009 + delta_h 0 kJ + -gamma 5 0 + # Id: 1101801 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 20.0 +Sn(OH)2 + 2H+ + Br- = SnBr+ + 2H2O + log_k 8.254 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901301 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + 2H+ + 2Br- = SnBr2 + 2H2O + log_k 8.794 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901302 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + 2H+ + 3Br- = SnBr3- + 2H2O + log_k 7.48 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901303 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 3.00 25.0 +Pb+2 + Br- = PbBr+ + log_k 1.7 + delta_h 8 kJ + -gamma 0 0 + # Id: 6001300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2Br- = PbBr2 + log_k 2.6 + delta_h -4 kJ + -gamma 0 0 + # Id: 6001301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl+ + Br- = TlBr + log_k 0.91 + delta_h -12 kJ + -gamma 0 0 + # Id: 8701300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl+ + 2Br- = TlBr2- + log_k -0.384 + delta_h 12.36 kJ + -gamma 0 0 + # Id: 8701301 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 4.00 25.0 +Tl+ + Br- + Cl- = TlBrCl- + log_k 0.8165 + delta_h 0 kJ + -gamma 0 0 + # Id: 8701302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl+ + I- + Br- = TlIBr- + log_k 2.185 + delta_h 0 kJ + -gamma 0 0 + # Id: 8703802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl(OH)3 + 3H+ + Br- = TlBr+2 + 3H2O + log_k 12.803 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Tl(OH)3 + 3H+ + 2Br- = TlBr2+ + 3H2O + log_k 20.711 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Tl(OH)3 + 3Br- + 3H+ = TlBr3 + 3H2O + log_k 27.0244 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl(OH)3 + 4Br- + 3H+ = TlBr4- + 3H2O + log_k 31.1533 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711303 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + Br- = ZnBr+ + log_k -0.07 + delta_h 1 kJ + -gamma 0 0 + # Id: 9501300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2Br- = ZnBr2 + log_k -0.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 9501301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cd+2 + Br- = CdBr+ + log_k 2.15 + delta_h -3 kJ + -gamma 0 0 + # Id: 1601300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2Br- = CdBr2 + log_k 3 + delta_h -3 kJ + -gamma 0 0 + # Id: 1601301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + Br- = HgBr+ + 2H2O + log_k 15.803 + delta_h -81.92 kJ + -gamma 0 0 + # Id: 3611301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + 2H+ + 2Br- = HgBr2 + 2H2O + log_k 24.2725 + delta_h -127.12 kJ + -gamma 0 0 + # Id: 3611302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + 2H+ + 3Br- = HgBr3- + 2H2O + log_k 26.7025 + delta_h -138.82 kJ + -gamma 0 0 + # Id: 3611303 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + 2H+ + 4Br- = HgBr4-2 + 2H2O + log_k 27.933 + delta_h -153.72 kJ + -gamma 0 0 + # Id: 3611304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + Br- + Cl- + 2H+ = HgBrCl + 2H2O + log_k 22.1811 + delta_h -113.77 kJ + -gamma 0 0 + # Id: 3611305 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Hg(OH)2 + Br- + I- + 2H+ = HgBrI + 2H2O + log_k 27.3133 + delta_h -151.27 kJ + -gamma 0 0 + # Id: 3611306 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Hg(OH)2 + Br- + 3I- + 2H+ = HgBrI3-2 + 2H2O + log_k 34.2135 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611307 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 2Br- + 2I- + 2H+ = HgBr2I2-2 + 2H2O + log_k 32.3994 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611308 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 3Br- + I- + 2H+ = HgBr3I-2 + 2H2O + log_k 30.1528 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611309 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + H+ + Br- = HgBrOH + H2O + log_k 12.433 + delta_h 0 kJ + -gamma 0 0 + # Id: 3613301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Ag+ + Br- = AgBr + log_k 4.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 201300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ag+ + 2Br- = AgBr2- + log_k 7.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 201301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ag+ + 3Br- = AgBr3-2 + log_k 8.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 201302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ni+2 + Br- = NiBr+ + log_k 0.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + Br- + 2H+ = CrBr+2 + 2H2O + log_k 7.5519 + delta_h -46.9068 kJ + -gamma 0 0 + # Id: 2111300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Be+2 + Br- = BeBr+ + log_k 0.1009 + delta_h 0 kJ + -gamma 5 0 + # Id: 1101301 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 20.0 +Pb+2 + I- = PbI+ + log_k 2 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2I- = PbI2 + log_k 3.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Tl+ + I- = TlI + log_k 1.4279 + delta_h 0 kJ + -gamma 0 0 + # Id: 8703800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl+ + 2I- = TlI2- + log_k 1.8588 + delta_h 0 kJ + -gamma 0 0 + # Id: 8703801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl(OH)3 + 4I- + 3H+ = TlI4- + 3H2O + log_k 34.7596 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + I- = ZnI+ + log_k -2.0427 + delta_h -4 kJ + -gamma 0 0 + # Id: 9503800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 3.00 25.0 +Zn+2 + 2I- = ZnI2 + log_k -1.69 + delta_h 0 kJ + -gamma 0 0 + # Id: 9503801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cd+2 + I- = CdI+ + log_k 2.28 + delta_h -9.6 kJ + -gamma 0 0 + # Id: 1603800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2I- = CdI2 + log_k 3.92 + delta_h -12 kJ + -gamma 0 0 + # Id: 1603801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + I- = HgI+ + 2H2O + log_k 19.603 + delta_h -111.22 kJ + -gamma 0 0 + # Id: 3613801 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + 2H+ + 2I- = HgI2 + 2H2O + log_k 30.8225 + delta_h -182.72 kJ + -gamma 0 0 + # Id: 3613802 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + 2H+ + 3I- = HgI3- + 2H2O + log_k 34.6025 + delta_h -194.22 kJ + -gamma 0 0 + # Id: 3613803 + # log K source: NIST46.4 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + 2H+ + 4I- = HgI4-2 + 2H2O + log_k 36.533 + delta_h -220.72 kJ + -gamma 0 0 + # Id: 3613804 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Ag+ + I- = AgI + log_k 6.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 203800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 18.0 +Ag+ + 2I- = AgI2- + log_k 11.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 203801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 18.0 +Ag+ + 3I- = AgI3-2 + log_k 12.6 + delta_h -122 kJ + -gamma 0 0 + # Id: 203802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ag+ + 4I- = AgI4-3 + log_k 14.229 + delta_h 0 kJ + -gamma 0 0 + # Id: 203803 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 25.0 +Cr(OH)2+ + I- + 2H+ = CrI+2 + 2H2O + log_k 4.8289 + delta_h 0 kJ + -gamma 0 0 + # Id: 2113800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H+ + HS- = H2S + log_k 7.02 + delta_h -22 kJ + -gamma 0 0 + # Id: 3307300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2HS- = Pb(HS)2 + log_k 15.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 6007300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Pb+2 + 3HS- = Pb(HS)3- + log_k 16.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 6007301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl+ + HS- = TlHS + log_k 2.474 + delta_h 0 kJ + -gamma 0 0 + # Id: 8707300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +2Tl+ + HS- = Tl2HS+ + log_k 5.974 + delta_h 0 kJ + -gamma 0 0 + # Id: 8707301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +2Tl+ + 3HS- + H2O = Tl2OH(HS)3-2 + H+ + log_k 1.0044 + delta_h 0 kJ + -gamma 0 0 + # Id: 8707302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +2Tl+ + 2HS- + 2H2O = Tl2(OH)2(HS)2-2 + 2H+ + log_k -11.0681 + delta_h 0 kJ + -gamma 0 0 + # Id: 8707303 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + 2HS- = Zn(HS)2 + log_k 12.82 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507300 + # log K source: DHa1993 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + 3HS- = Zn(HS)3- + log_k 16.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + 3HS- = ZnS(HS)2-2 + H+ + log_k 6.12 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507302 + # log K source: DHa1993 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2HS- + 2HS- = Zn(HS)4-2 + log_k 14.64 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507303 + # log K source: DHa1993 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2HS- = ZnS(HS)- + H+ + log_k 6.81 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507304 + # log K source: DHa1993 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cd+2 + HS- = CdHS+ + log_k 8.008 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Cd+2 + 2HS- = Cd(HS)2 + log_k 15.212 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Cd+2 + 3HS- = Cd(HS)3- + log_k 17.112 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Cd+2 + 4HS- = Cd(HS)4-2 + log_k 19.308 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Hg(OH)2 + 2HS- = HgS2-2 + 2H2O + log_k 29.414 + delta_h 0 kJ + -gamma 0 0 + # Id: 3617300 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +Hg(OH)2 + 2H+ + 2HS- = Hg(HS)2 + 2H2O + log_k 44.516 + delta_h 0 kJ + -gamma 0 0 + # Id: 3617301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +Hg(OH)2 + H+ + 2HS- = HgHS2- + 2H2O + log_k 38.122 + delta_h 0 kJ + -gamma 0 0 + # Id: 3617302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +Cu+2 + 3HS- = Cu(HS)3- + log_k 25.899 + delta_h 0 kJ + -gamma 0 0 + # Id: 2317300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Ag+ + HS- = AgHS + log_k 13.8145 + delta_h 0 kJ + -gamma 0 0 + # Id: 207300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 +Ag+ + 2HS- = Ag(HS)2- + log_k 17.9145 + delta_h 0 kJ + -gamma 0 0 + # Id: 207301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 +Fe+2 + 2HS- = Fe(HS)2 + log_k 8.95 + delta_h 0 kJ + -gamma 0 0 + # Id: 2807300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Fe+2 + 3HS- = Fe(HS)3- + log_k 10.987 + delta_h 0 kJ + -gamma 0 0 + # Id: 2807301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +HS- = S2-2 + H+ + log_k -11.7828 + delta_h 46.4 kJ + -gamma 0 0 + -no_check + # Id: 7317300 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +HS- = S3-2 + H+ + log_k -10.7667 + delta_h 42.2 kJ + -gamma 0 0 + -no_check + # Id: 7317301 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +HS- = S4-2 + H+ + log_k -9.9608 + delta_h 39.3 kJ + -gamma 0 0 + -no_check + # Id: 7317302 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +HS- = S5-2 + H+ + log_k -9.3651 + delta_h 37.6 kJ + -gamma 0 0 + -no_check + # Id: 7317303 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +HS- = S6-2 + H+ + log_k -9.881 + delta_h 0 kJ + -gamma 0 0 + -no_check + # Id: 7317304 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +2Sb(OH)3 + 4HS- + 2H+ = Sb2S4-2 + 6H2O + log_k 49.3886 + delta_h -321.78 kJ + -gamma 0 0 + # Id: 7407300 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Cu+ + 2HS- = Cu(S4)2-3 + 2H+ + log_k 3.39 + delta_h 0 kJ + -gamma 23 0 + -no_check + # Id: 2307300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cu+ + 2HS- = CuS4S5-3 + 2H+ + log_k 2.66 + delta_h 0 kJ + -gamma 25 0 + -no_check + # Id: 2307301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Ag+ + 2HS- = Ag(S4)2-3 + 2H+ + log_k 0.991 + delta_h 0 kJ + -gamma 22 0 + -no_check + # Id: 207302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Ag+ + 2HS- = AgS4S5-3 + 2H+ + log_k 0.68 + delta_h 0 kJ + -gamma 24 0 + -no_check + # Id: 207303 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Ag+ + 2HS- = Ag(HS)S4-2 + H+ + log_k 10.431 + delta_h 0 kJ + -gamma 15 0 + -no_check + # Id: 207304 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H+ + SO4-2 = HSO4- + log_k 1.99 + delta_h 22 kJ + -gamma 4.5 0 + # Id: 3307320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +NH4+ + SO4-2 = NH4SO4- + log_k 1.03 + delta_h 0 kJ + -gamma 5 0 + # Id: 4907320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Pb+2 + SO4-2 = PbSO4 + log_k 2.69 + delta_h 0 kJ + -gamma 0 0 + # Id: 6007320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2SO4-2 = Pb(SO4)2-2 + log_k 3.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 6007321 + # log K source: SCD3.02 (1960 RKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Al+3 + SO4-2 = AlSO4+ + log_k 3.89 + delta_h 28 kJ + -gamma 4.5 0 + # Id: 307320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Al+3 + 2SO4-2 = Al(SO4)2- + log_k 4.92 + delta_h 11.9 kJ + -gamma 4.5 0 + # Id: 307321 + # log K source: Nord90 + # Delta H source: Nord90 + #T and ionic strength: 0.00 25.0 +Tl+ + SO4-2 = TlSO4- + log_k 1.37 + delta_h -0.8 kJ + -gamma 0 0 + # Id: 8707320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Zn+2 + SO4-2 = ZnSO4 + log_k 2.34 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 9507320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2SO4-2 = Zn(SO4)2-2 + log_k 3.28 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507321 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cd+2 + SO4-2 = CdSO4 + log_k 2.37 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 1607320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2SO4-2 = Cd(SO4)2-2 + log_k 3.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607321 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 2H+ + SO4-2 = HgSO4 + 2H2O + log_k 8.612 + delta_h 0 kJ + -gamma 0 0 + # Id: 3617320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Cu+2 + SO4-2 = CuSO4 + log_k 2.36 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 2317320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ag+ + SO4-2 = AgSO4- + log_k 1.3 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 207320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ni+2 + SO4-2 = NiSO4 + log_k 2.3 + delta_h 5.8 kJ + -gamma 0 0 + # Id: 5407320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ni+2 + 2SO4-2 = Ni(SO4)2-2 + log_k 0.82 + delta_h 0 kJ + -gamma 0 0 + # Id: 5407321 + # log K source: SCD3.02 (1978 BLa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + SO4-2 = CoSO4 + log_k 2.3 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 2007320 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Fe+2 + SO4-2 = FeSO4 + log_k 2.39 + delta_h 8 kJ + -gamma 0 0 + # Id: 2807320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Fe+3 + SO4-2 = FeSO4+ + log_k 4.05 + delta_h 25 kJ + -gamma 5 0 + # Id: 2817320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Fe+3 + 2SO4-2 = Fe(SO4)2- + log_k 5.38 + delta_h 19.2 kJ + -gamma 0 0 + # Id: 2817321 + # log K source: Nord90 + # Delta H source: Nord90 + #T and ionic strength: 0.00 25.0 +Mn+2 + SO4-2 = MnSO4 + log_k 2.25 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 4707320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ + 2H+ + SO4-2 = CrSO4+ + 2H2O + log_k 12.9371 + delta_h -98.62 kJ + -gamma 0 0 + # Id: 2117320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 50.0 +Cr(OH)2+ + H+ + SO4-2 = CrOHSO4 + H2O + log_k 8.2871 + delta_h 0 kJ + -gamma 0 0 + # Id: 2117321 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +2Cr(OH)2+ + SO4-2 + 2H+ = Cr2(OH)2SO4+2 + 2H2O + log_k 16.155 + delta_h 0 kJ + -gamma 0 0 + # Id: 2117323 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +2Cr(OH)2+ + 2SO4-2 + 2H+ = Cr2(OH)2(SO4)2 + 2H2O + log_k 17.9288 + delta_h 0 kJ + -gamma 0 0 + # Id: 2117324 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + SO4-2 = USO4+2 + log_k 6.6 + delta_h 8 kJ + -gamma 0 0 + # Id: 8917320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +U+4 + 2SO4-2 = U(SO4)2 + log_k 10.5 + delta_h 33 kJ + -gamma 0 0 + # Id: 8917321 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +UO2+2 + SO4-2 = UO2SO4 + log_k 3.18 + delta_h 20 kJ + -gamma 0 0 + # Id: 8937320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +UO2+2 + 2SO4-2 = UO2(SO4)2-2 + log_k 4.3 + delta_h 38 kJ + -gamma 0 0 + # Id: 8937321 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +V+3 + SO4-2 = VSO4+ + log_k 2.674 + delta_h 0 kJ + -gamma 0 0 + # Id: 9017320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +VO+2 + SO4-2 = VOSO4 + log_k 2.44 + delta_h 17 kJ + -gamma 0 0 + # Id: 9027320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +VO2+ + SO4-2 = VO2SO4- + log_k 1.378 + delta_h 0 kJ + -gamma 0 0 + # Id: 9037320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +Be+2 + SO4-2 = BeSO4 + log_k 2.19 + delta_h 29 kJ + -gamma 0 0 + # Id: 1107321 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Be+2 + 2SO4-2 = Be(SO4)2-2 + log_k 2.596 + delta_h 0 kJ + -gamma 0 0 + # Id: 1107322 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Mg+2 + SO4-2 = MgSO4 + log_k 2.26 + delta_h 5.8 kJ + -gamma 0 0 + # Id: 4607320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ca+2 + SO4-2 = CaSO4 + log_k 2.36 + delta_h 7.1 kJ + -gamma 0 0 + # Id: 1507320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Sr+2 + SO4-2 = SrSO4 + log_k 2.3 + delta_h 8 kJ + -gamma 0 0 + # Id: 8007321 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Li+ + SO4-2 = LiSO4- + log_k 0.64 + delta_h 0 kJ + -gamma 5 0 + # Id: 4407320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Na+ + SO4-2 = NaSO4- + log_k 0.73 + delta_h 1 kJ + -gamma 5.4 0 + # Id: 5007320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +K+ + SO4-2 = KSO4- + log_k 0.85 + delta_h 4.1 kJ + -gamma 5.4 0 + # Id: 4107320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +HSe- + H+ = H2Se + log_k 3.89 + delta_h 3.3 kJ + -gamma 0 0 + # Id: 3307600 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 +2Ag+ + HSe- = Ag2Se + H+ + log_k 34.911 + delta_h 0 kJ + -gamma 0 0 + # Id: 207600 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Ag+ + H2O + 2HSe- = AgOH(Se)2-4 + 3H+ + log_k -20.509 + delta_h 0 kJ + -gamma 0 0 + # Id: 207601 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Mn+2 + HSe- = MnSe + H+ + log_k -5.385 + delta_h 0 kJ + -gamma 0 0 + # Id: 4707600 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +HSeO3- = SeO3-2 + H+ + log_k -8.4 + delta_h 5.02 kJ + -gamma 0 0 + # Id: 3307611 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +HSeO3- + H+ = H2SeO3 + log_k 2.63 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 3307610 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2HSeO3- = Cd(SeO3)2-2 + 2H+ + log_k -10.884 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607610 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Ag+ + HSeO3- = AgSeO3- + H+ + log_k -5.592 + delta_h 0 kJ + -gamma 0 0 + # Id: 207610 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Ag+ + 2HSeO3- = Ag(SeO3)2-3 + 2H+ + log_k -13.04 + delta_h 0 kJ + -gamma 0 0 + # Id: 207611 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Fe+3 + HSeO3- = FeHSeO3+2 + log_k 3.422 + delta_h 25 kJ + -gamma 0 0 + # Id: 2817610 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +SeO4-2 + H+ = HSeO4- + log_k 1.7 + delta_h 23 kJ + -gamma 0 0 + # Id: 3307620 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Zn+2 + SeO4-2 = ZnSeO4 + log_k 2.19 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507620 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2SeO4-2 = Zn(SeO4)2-2 + log_k 2.196 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507621 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Cd+2 + SeO4-2 = CdSeO4 + log_k 2.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607620 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ni+2 + SeO4-2 = NiSeO4 + log_k 2.67 + delta_h 14 kJ + -gamma 0 0 + # Id: 5407620 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Co+2 + SeO4-2 = CoSeO4 + log_k 2.7 + delta_h 12 kJ + -gamma 0 0 + # Id: 2007621 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Mn+2 + SeO4-2 = MnSeO4 + log_k 2.43 + delta_h 14 kJ + -gamma 0 0 + # Id: 4707620 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +NH4+ = NH3 + H+ + log_k -9.244 + delta_h -52 kJ + -gamma 0 0 + # Id: 3304900 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ag+ + NH4+ = AgNH3+ + H+ + log_k -5.934 + delta_h -72 kJ + -gamma 0 0 + # Id: 204901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ag+ + 2NH4+ = Ag(NH3)2+ + 2H+ + log_k -11.268 + delta_h -160 kJ + -gamma 0 0 + # Id: 204902 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + H+ + NH4+ = HgNH3+2 + 2H2O + log_k 5.75 + delta_h 0 kJ + -gamma 0 0 + # Id: 3614900 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 22.0 +Hg(OH)2 + 2NH4+ = Hg(NH3)2+2 + 2H2O + log_k 5.506 + delta_h -246.72 kJ + -gamma 0 0 + # Id: 3614901 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +Hg(OH)2 + 3NH4+ = Hg(NH3)3+2 + 2H2O + H+ + log_k -3.138 + delta_h -312.72 kJ + -gamma 0 0 + # Id: 3614902 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 2.00 25.0 +Hg(OH)2 + 4NH4+ = Hg(NH3)4+2 + 2H2O + 2H+ + log_k -11.482 + delta_h -379.72 kJ + -gamma 0 0 + # Id: 3614903 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.10 25.0 +Cu+2 + NH4+ = CuNH3+2 + H+ + log_k -5.234 + delta_h -72 kJ + -gamma 0 0 + # Id: 2314901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ni+2 + NH4+ = NiNH3+2 + H+ + log_k -6.514 + delta_h -67 kJ + -gamma 0 0 + # Id: 5404901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Ni+2 + 2NH4+ = Ni(NH3)2+2 + 2H+ + log_k -13.598 + delta_h -111.6 kJ + -gamma 0 0 + # Id: 5404902 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+2 + NH4+ = Co(NH3)+2 + H+ + log_k -7.164 + delta_h -65 kJ + -gamma 0 0 + # Id: 2004900 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+2 + 2NH4+ = Co(NH3)2+2 + 2H+ + log_k -14.778 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 25.0 +Co+2 + 3NH4+ = Co(NH3)3+2 + 3H+ + log_k -22.922 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004902 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 25.0 +Co+2 + 4NH4+ = Co(NH3)4+2 + 4H+ + log_k -31.446 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004903 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 30.0 +Co+2 + 5NH4+ = Co(NH3)5+2 + 5H+ + log_k -40.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004904 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 30.0 +Co+3 + 6NH4+ + H2O = Co(NH3)6OH+2 + 7H+ + log_k -43.7148 + delta_h 0 kJ + -gamma 0 0 + # Id: 2014901 + # log K source: NIST2.1.1 + # Delta H source: MTQ3.11 + #T and ionic strength: +Co+3 + 5NH4+ + Cl- = Co(NH3)5Cl+2 + 5H+ + log_k -17.9584 + delta_h 113.38 kJ + -gamma 0 0 + # Id: 2014902 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Co+3 + 6NH4+ + Cl- = Co(NH3)6Cl+2 + 6H+ + log_k -33.9179 + delta_h 104.34 kJ + -gamma 0 0 + # Id: 2014903 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Co+3 + 6NH4+ + Br- = Co(NH3)6Br+2 + 6H+ + log_k -33.8884 + delta_h 110.57 kJ + -gamma 0 0 + # Id: 2014904 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Co+3 + 6NH4+ + I- = Co(NH3)6I+2 + 6H+ + log_k -33.4808 + delta_h 115.44 kJ + -gamma 0 0 + # Id: 2014905 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Co+3 + 6NH4+ + SO4-2 = Co(NH3)6SO4+ + 6H+ + log_k -28.9926 + delta_h 124.5 kJ + -gamma 0 0 + # Id: 2014906 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Cr(OH)2+ + 6NH4+ = Cr(NH3)6+3 + 2H2O + 4H+ + log_k -32.8952 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114900 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 4.50 25.0 +Cr(OH)2+ + 5NH4+ = Cr(NH3)5OH+2 + 4H+ + H2O + log_k -30.2759 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114901 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 6NH4+ + Cl- = Cr(NH3)6Cl+2 + 2H2O + 4H+ + log_k -31.7932 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114904 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 6NH4+ + Br- = Cr(NH3)6Br+2 + 4H+ + 2H2O + log_k -31.887 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114905 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 6NH4+ + I- = Cr(NH3)6I+2 + 4H+ + 2H2O + log_k -32.008 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114906 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +#Cr(OH)2+ + 4NH4+ = cis+ + 4H+ +# log_k -29.8574 +# delta_h 0 kJ +# -gamma 0 0 +# # Id: 4902113 +# # log K source: MTQ3.11 +# # Delta H source: MTQ3.11 +# #T and ionic strength: +#Cr(OH)2+ + 4NH4+ = trans+ + 4H+ +# log_k -30.5537 +# delta_h 0 kJ +# -gamma 0 0 +# # Id: 4902114 +# # log K source: MTQ3.11 +# # Delta H source: MTQ3.11 +# #T and ionic strength: +Ca+2 + NH4+ = CaNH3+2 + H+ + log_k -9.144 + delta_h 0 kJ + -gamma 0 0 + # Id: 1504901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Ca+2 + 2NH4+ = Ca(NH3)2+2 + 2H+ + log_k -18.788 + delta_h 0 kJ + -gamma 0 0 + # Id: 1504902 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Sr+2 + NH4+ = SrNH3+2 + H+ + log_k -9.344 + delta_h 0 kJ + -gamma 0 0 + # Id: 8004901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Ba+2 + NH4+ = BaNH3+2 + H+ + log_k -9.444 + delta_h 0 kJ + -gamma 0 0 + # Id: 1004901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Tl+ + NO2- = TlNO2 + log_k 0.83 + delta_h 0 kJ + -gamma 0 0 + # Id: 8704910 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ag+ + NO2- = AgNO2 + log_k 2.32 + delta_h -29 kJ + -gamma 0 0 + # Id: 204911 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ag+ + 2NO2- = Ag(NO2)2- + log_k 2.51 + delta_h -46 kJ + -gamma 0 0 + # Id: 204910 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cu+2 + NO2- = CuNO2+ + log_k 2.02 + delta_h 0 kJ + -gamma 0 0 + # Id: 2314911 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cu+2 + 2NO2- = Cu(NO2)2 + log_k 3.03 + delta_h 0 kJ + -gamma 0 0 + # Id: 2314912 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + NO2- = CoNO2+ + log_k 0.848 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004911 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Sn(OH)2 + 2H+ + NO3- = SnNO3+ + 2H2O + log_k 7.942 + delta_h 0 kJ + -gamma 0 0 + # Id: 7904921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Pb+2 + NO3- = PbNO3+ + log_k 1.17 + delta_h 2 kJ + -gamma 0 0 + # Id: 6004920 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2NO3- = Pb(NO3)2 + log_k 1.4 + delta_h -6.6 kJ + -gamma 0 0 + # Id: 6004921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Tl+ + NO3- = TlNO3 + log_k 0.33 + delta_h -2 kJ + -gamma 0 0 + # Id: 8704920 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + NO3- + 3H+ = TlNO3+2 + 3H2O + log_k 7.0073 + delta_h 0 kJ + -gamma 0 0 + # Id: 8714920 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cd+2 + NO3- = CdNO3+ + log_k 0.5 + delta_h -21 kJ + -gamma 0 0 + # Id: 1604920 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2NO3- = Cd(NO3)2 + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1604921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + NO3- = HgNO3+ + 2H2O + log_k 5.7613 + delta_h 0 kJ + -gamma 0 0 + # Id: 3614920 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 +Hg(OH)2 + 2H+ + 2NO3- = Hg(NO3)2 + 2H2O + log_k 5.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 3614921 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 +Cu+2 + NO3- = CuNO3+ + log_k 0.5 + delta_h -4.1 kJ + -gamma 0 0 + # Id: 2314921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cu+2 + 2NO3- = Cu(NO3)2 + log_k -0.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2314922 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + NO3- = ZnNO3+ + log_k 0.4 + delta_h -4.6 kJ + -gamma 0 0 + # Id: 9504921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2NO3- = Zn(NO3)2 + log_k -0.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 9504922 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ag+ + NO3- = AgNO3 + log_k -0.1 + delta_h 22.6 kJ + -gamma 0 0 + # Id: 204920 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ni+2 + NO3- = NiNO3+ + log_k 0.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 5404921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + NO3- = CoNO3+ + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + 2NO3- = Co(NO3)2 + log_k 0.5085 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004922 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Fe+3 + NO3- = FeNO3+2 + log_k 1 + delta_h -37 kJ + -gamma 0 0 + # Id: 2814921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Mn+2 + NO3- = MnNO3+ + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 4704921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Mn+2 + 2NO3- = Mn(NO3)2 + log_k 0.6 + delta_h -1.6569 kJ + -gamma 0 0 + # Id: 4704920 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ + NO3- + 2H+ = CrNO3+2 + 2H2O + log_k 8.2094 + delta_h -65.4378 kJ + -gamma 0 0 + # Id: 2114920 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + NO3- = UO2NO3+ + log_k 0.3 + delta_h -12 kJ + -gamma 0 0 + # Id: 8934921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +VO2+ + NO3- = VO2NO3 + log_k -0.296 + delta_h 0 kJ + -gamma 0 0 + # Id: 9034920 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +Ca+2 + NO3- = CaNO3+ + log_k 0.5 + delta_h -5.4 kJ + -gamma 0 0 + # Id: 1504921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sr+2 + NO3- = SrNO3+ + log_k 0.6 + delta_h -10 kJ + -gamma 0 0 + # Id: 8004921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ba+2 + NO3- = BaNO3+ + log_k 0.7 + delta_h -13 kJ + -gamma 0 0 + # Id: 1004921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +H+ + Cyanide- = HCyanide + log_k 9.21 + delta_h -43.63 kJ + -gamma 0 0 + # Id: 3301431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cd+2 + Cyanide- = CdCyanide+ + log_k 6.01 + delta_h -30 kJ + -gamma 0 0 + # Id: 1601431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2Cyanide- = Cd(Cyanide)2 + log_k 11.12 + delta_h -54.3 kJ + -gamma 0 0 + # Id: 1601432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cd+2 + 3Cyanide- = Cd(Cyanide)3- + log_k 15.65 + delta_h -90.3 kJ + -gamma 0 0 + # Id: 1601433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cd+2 + 4Cyanide- = Cd(Cyanide)4-2 + log_k 17.92 + delta_h -112 kJ + -gamma 0 0 + # Id: 1601434 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + Cyanide- = HgCyanide+ + 2H2O + log_k 23.194 + delta_h -136.72 kJ + -gamma 0 0 + # Id: 3611431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + 2Cyanide- = Hg(Cyanide)2 + 2H2O + log_k 38.944 + delta_h 154.28 kJ + -gamma 0 0 + # Id: 3611432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + 3Cyanide- = Hg(Cyanide)3- + 2H2O + log_k 42.504 + delta_h -262.72 kJ + -gamma 0 0 + # Id: 3611433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + 4Cyanide- = Hg(Cyanide)4-2 + 2H2O + log_k 45.164 + delta_h -288.72 kJ + -gamma 0 0 + # Id: 3611434 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cu+ + 2Cyanide- = Cu(Cyanide)2- + log_k 21.9145 + delta_h -121 kJ + -gamma 0 0 + # Id: 2301432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Cu+ + 3Cyanide- = Cu(Cyanide)3-2 + log_k 27.2145 + delta_h -167.4 kJ + -gamma 0 0 + # Id: 2301433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cu+ + 4Cyanide- = Cu(Cyanide)4-3 + log_k 28.7145 + delta_h -214.2 kJ + -gamma 0 0 + # Id: 2301431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ag+ + 2Cyanide- = Ag(Cyanide)2- + log_k 20.48 + delta_h -137 kJ + -gamma 0 0 + # Id: 201432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ag+ + 3Cyanide- = Ag(Cyanide)3-2 + log_k 21.7 + delta_h -140 kJ + -gamma 0 0 + # Id: 201433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ag+ + H2O + Cyanide- = Ag(Cyanide)OH- + H+ + log_k -0.777 + delta_h 0 kJ + -gamma 0 0 + # Id: 201431 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ni+2 + 4Cyanide- = Ni(Cyanide)4-2 + log_k 30.2 + delta_h -180 kJ + -gamma 0 0 + # Id: 5401431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ni+2 + 4Cyanide- + H+ = NiH(Cyanide)4- + log_k 36.0289 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401432 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +Ni+2 + 4Cyanide- + 2H+ = NiH2Cyanide4 + log_k 40.7434 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401433 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +Ni+2 + 4Cyanide- + 3H+ = NiH3(Cyanide)4+ + log_k 43.3434 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401434 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +Co+2 + 3Cyanide- = Co(Cyanide)3- + log_k 14.312 + delta_h 0 kJ + -gamma 0 0 + # Id: 2001431 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Co+2 + 5Cyanide- = Co(Cyanide)5-3 + log_k 23 + delta_h -257 kJ + -gamma 0 0 + # Id: 2001432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 +Fe+2 + 6Cyanide- = Fe(Cyanide)6-4 + log_k 35.4 + delta_h -358 kJ + -gamma 0 0 + # Id: 2801431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +H+ + Fe+2 + 6Cyanide- = HFe(Cyanide)6-3 + log_k 39.71 + delta_h -356 kJ + -gamma 0 0 + # Id: 2801432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +2H+ + Fe+2 + 6Cyanide- = H2Fe(Cyanide)6-2 + log_k 42.11 + delta_h -352 kJ + -gamma 0 0 + # Id: 2801433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Fe+3 + 6Cyanide- = Fe(Cyanide)6-3 + log_k 43.6 + delta_h -293 kJ + -gamma 0 0 + # Id: 2811431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +2Fe+3 + 6Cyanide- = Fe2(Cyanide)6 + log_k 47.6355 + delta_h -218 kJ + -gamma 0 0 + # Id: 2811432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Sn(OH)2 + Fe+3 + 6Cyanide- + 2H+ = SnFe(Cyanide)6- + 2H2O + log_k 53.54 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901431 + # log K source: Ba1987 + # Delta H source: + #T and ionic strength: 0.00 25.0 +NH4+ + Fe+2 + 6Cyanide- = NH4Fe(Cyanide)6-3 + log_k 37.7 + delta_h -354 kJ + -gamma 0 0 + # Id: 4901431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Tl+ + Fe+2 + 6Cyanide- = TlFe(Cyanide)6-3 + log_k 38.4 + delta_h -365.5 kJ + -gamma 0 0 + # Id: 8701432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Mg+2 + Fe+3 + 6Cyanide- = MgFe(Cyanide)6- + log_k 46.39 + delta_h -290 kJ + -gamma 0 0 + # Id: 4601431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Mg+2 + Fe+2 + 6Cyanide- = MgFe(Cyanide)6-2 + log_k 39.21 + delta_h -346 kJ + -gamma 0 0 + # Id: 4601432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ca+2 + Fe+3 + 6Cyanide- = CaFe(Cyanide)6- + log_k 46.43 + delta_h -291 kJ + -gamma 0 0 + # Id: 1501431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ca+2 + Fe+2 + 6Cyanide- = CaFe(Cyanide)6-2 + log_k 39.1 + delta_h -347 kJ + -gamma 0 0 + # Id: 1501432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +2Ca+2 + Fe+2 + 6Cyanide- = Ca2Fe(Cyanide)6 + log_k 40.6 + delta_h -350.201 kJ + -gamma 0 0 + # Id: 1501433 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Sr+2 + Fe+3 + 6Cyanide- = SrFe(Cyanide)6- + log_k 46.45 + delta_h -292 kJ + -gamma 0 0 + # Id: 8001431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sr+2 + Fe+2 + 6Cyanide- = SrFe(Cyanide)6-2 + log_k 39.1 + delta_h -350 kJ + -gamma 0 0 + # Id: 8001432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ba+2 + Fe+2 + 6Cyanide- = BaFe(Cyanide)6-2 + log_k 39.19 + delta_h -342 kJ + -gamma 0 0 + # Id: 1001430 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ba+2 + Fe+3 + 6Cyanide- = BaFe(Cyanide)6- + log_k 46.48 + delta_h -292 kJ + -gamma 0 0 + # Id: 1001431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Na+ + Fe+2 + 6Cyanide- = NaFe(Cyanide)6-3 + log_k 37.6 + delta_h -354 kJ + -gamma 0 0 + # Id: 5001431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +K+ + Fe+2 + 6Cyanide- = KFe(Cyanide)6-3 + log_k 37.75 + delta_h -353.9 kJ + -gamma 0 0 + # Id: 4101433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +K+ + Fe+3 + 6Cyanide- = KFe(Cyanide)6-2 + log_k 45.04 + delta_h -291 kJ + -gamma 0 0 + # Id: 4101430 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +H+ + PO4-3 = HPO4-2 + log_k 12.375 + delta_h -15 kJ + -gamma 5 0 + # Id: 3305800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +2H+ + PO4-3 = H2PO4- + log_k 19.573 + delta_h -18 kJ + -gamma 5.4 0 + # Id: 3305801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +3H+ + PO4-3 = H3PO4 + log_k 21.721 + delta_h -10.1 kJ + -gamma 0 0 + # Id: 3305802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Co+2 + H+ + PO4-3 = CoHPO4 + log_k 15.4128 + delta_h 0 kJ + -gamma 0 0 + # Id: 2005800 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +Fe+2 + 2H+ + PO4-3 = FeH2PO4+ + log_k 22.273 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 2805800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Fe+2 + H+ + PO4-3 = FeHPO4 + log_k 15.975 + delta_h 0 kJ + -gamma 0 0 + # Id: 2805801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Fe+3 + 2H+ + PO4-3 = FeH2PO4+2 + log_k 23.8515 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 2815801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Fe+3 + H+ + PO4-3 = FeHPO4+ + log_k 22.292 + delta_h -30.5432 kJ + -gamma 5.4 0 + # Id: 2815800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Cr(OH)2+ + 4H+ + PO4-3 = CrH2PO4+2 + 2H2O + log_k 31.9068 + delta_h 0 kJ + -gamma 0 0 + # Id: 2115800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + PO4-3 + H+ = UHPO4+2 + log_k 24.443 + delta_h 31.38 kJ + -gamma 0 0 + # Id: 8915800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 2PO4-3 + 2H+ = U(HPO4)2 + log_k 46.833 + delta_h 7.1128 kJ + -gamma 0 0 + # Id: 8915801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 3PO4-3 + 3H+ = U(HPO4)3-2 + log_k 67.564 + delta_h -32.6352 kJ + -gamma 0 0 + # Id: 8915802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 4PO4-3 + 4H+ = U(HPO4)4-4 + log_k 88.483 + delta_h -110.876 kJ + -gamma 0 0 + # Id: 8915803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + H+ + PO4-3 = UO2HPO4 + log_k 19.655 + delta_h -8.7864 kJ + -gamma 0 0 + # Id: 8935800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +UO2+2 + 2PO4-3 + 2H+ = UO2(HPO4)2-2 + log_k 42.988 + delta_h -47.6934 kJ + -gamma 0 0 + # Id: 8935801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + 2H+ + PO4-3 = UO2H2PO4+ + log_k 22.833 + delta_h -15.4808 kJ + -gamma 0 0 + # Id: 8935802 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +UO2+2 + 2PO4-3 + 4H+ = UO2(H2PO4)2 + log_k 44.7 + delta_h -69.036 kJ + -gamma 0 0 + # Id: 8935803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + 3PO4-3 + 6H+ = UO2(H2PO4)3- + log_k 66.245 + delta_h -119.662 kJ + -gamma 0 0 + # Id: 8935804 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + PO4-3 = UO2PO4- + log_k 13.25 + delta_h 0 kJ + -gamma 0 0 + # Id: 8935805 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Mg+2 + PO4-3 = MgPO4- + log_k 4.654 + delta_h 12.9704 kJ + -gamma 5.4 0 + # Id: 4605800 + # log K source: SCD3.02 (1993 GMa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.20 25.0 +Mg+2 + 2H+ + PO4-3 = MgH2PO4+ + log_k 21.2561 + delta_h -4.6861 kJ + -gamma 5.4 0 + # Id: 4605801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 37.0 +Mg+2 + H+ + PO4-3 = MgHPO4 + log_k 15.175 + delta_h -3 kJ + -gamma 0 0 + # Id: 4605802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ca+2 + H+ + PO4-3 = CaHPO4 + log_k 15.035 + delta_h -3 kJ + -gamma 0 0 + # Id: 1505800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ca+2 + PO4-3 = CaPO4- + log_k 6.46 + delta_h 12.9704 kJ + -gamma 5.4 0 + # Id: 1505801 + # log K source: SCD3.02 (1993 GMa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ca+2 + 2H+ + PO4-3 = CaH2PO4+ + log_k 20.923 + delta_h -6 kJ + -gamma 5.4 0 + # Id: 1505802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Sr+2 + H+ + PO4-3 = SrHPO4 + log_k 14.8728 + delta_h 0 kJ + -gamma 0 0 + # Id: 8005800 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +Sr+2 + 2H+ + PO4-3 = SrH2PO4+ + log_k 20.4019 + delta_h 0 kJ + -gamma 0 0 + # Id: 8005801 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 +Na+ + H+ + PO4-3 = NaHPO4- + log_k 13.445 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 5005800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +K+ + H+ + PO4-3 = KHPO4- + log_k 13.255 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 4105800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +H3AsO3 = AsO3-3 + 3H+ + log_k -34.744 + delta_h 84.726 kJ + -gamma 0 0 + # Id: 3300602 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3AsO3 = HAsO3-2 + 2H+ + log_k -21.33 + delta_h 59.4086 kJ + -gamma 0 0 + # Id: 3300601 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3AsO3 = H2AsO3- + H+ + log_k -9.29 + delta_h 27.41 kJ + -gamma 0 0 + # Id: 3300600 + # log K source: NIST46.4 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 +H3AsO3 + H+ = H4AsO3+ + log_k -0.305 + delta_h 0 kJ + -gamma 0 0 + # Id: 3300603 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3AsO4 = AsO4-3 + 3H+ + log_k -20.7 + delta_h 12.9 kJ + -gamma 0 0 + # Id: 3300613 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +H3AsO4 = HAsO4-2 + 2H+ + log_k -9.2 + delta_h -4.1 kJ + -gamma 0 0 + # Id: 3300612 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +H3AsO4 = H2AsO4- + H+ + log_k -2.24 + delta_h -7.1 kJ + -gamma 0 0 + # Id: 3300611 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sb(OH)3 + H2O = Sb(OH)4- + H+ + log_k -12.0429 + delta_h 69.8519 kJ + -gamma 0 0 + # Id: 7400020 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)3 + H+ = Sb(OH)2+ + H2O + log_k 1.3853 + delta_h 0 kJ + -gamma 0 0 + # Id: 7403302 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)3 = HSbO2 + H2O + log_k -0.0105 + delta_h -0.13 kJ + -gamma 0 0 + # Id: 7400021 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Sb(OH)3 = SbO2- + H2O + H+ + log_k -11.8011 + delta_h 70.1866 kJ + -gamma 0 0 + # Id: 7403301 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)3 + H+ = SbO+ + 2H2O + log_k 0.9228 + delta_h 8.2425 kJ + -gamma 0 0 + # Id: 7403300 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)6- = SbO3- + 3H2O + log_k 2.9319 + delta_h 0 kJ + -gamma 0 0 + # Id: 7410021 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)6- + 2H+ = SbO2+ + 4H2O + log_k 2.3895 + delta_h 0 kJ + -gamma 0 0 + # Id: 7413300 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +H+ + CO3-2 = HCO3- + log_k 10.329 + delta_h -14.6 kJ + -gamma 5.4 0 + # Id: 3301400 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +2H+ + CO3-2 = H2CO3 + log_k 16.681 + delta_h -23.76 kJ + -gamma 0 0 + # Id: 3301401 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2CO3-2 = Pb(CO3)2-2 + log_k 9.938 + delta_h 0 kJ + -gamma 0 0 + # Id: 6001400 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Pb+2 + CO3-2 = PbCO3 + log_k 6.478 + delta_h 0 kJ + -gamma 0 0 + # Id: 6001401 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Pb+2 + CO3-2 + H+ = PbHCO3+ + log_k 13.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 6001402 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + CO3-2 = ZnCO3 + log_k 4.76 + delta_h 0 kJ + -gamma 0 0 + # Id: 9501401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + H+ + CO3-2 = ZnHCO3+ + log_k 11.829 + delta_h 0 kJ + -gamma 0 0 + # Id: 9501400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + CO3-2 = HgCO3 + 2H2O + log_k 18.272 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + 2H+ + 2CO3-2 = Hg(CO3)2-2 + 2H2O + log_k 21.772 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611402 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + 3H+ + CO3-2 = HgHCO3+ + 2H2O + log_k 22.542 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611403 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Cd+2 + CO3-2 = CdCO3 + log_k 4.3578 + delta_h 0 kJ + -gamma 0 0 + # Id: 1601401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +Cd+2 + H+ + CO3-2 = CdHCO3+ + log_k 10.6863 + delta_h 0 kJ + -gamma 0 0 + # Id: 1601400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 +Cd+2 + 2CO3-2 = Cd(CO3)2-2 + log_k 7.2278 + delta_h 0 kJ + -gamma 0 0 + # Id: 1601403 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 +Cu+2 + CO3-2 = CuCO3 + log_k 6.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 2311400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cu+2 + H+ + CO3-2 = CuHCO3+ + log_k 12.129 + delta_h 0 kJ + -gamma 0 0 + # Id: 2311402 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cu+2 + 2CO3-2 = Cu(CO3)2-2 + log_k 10.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2311401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ni+2 + CO3-2 = NiCO3 + log_k 4.5718 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401401 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 25.0 +Ni+2 + H+ + CO3-2 = NiHCO3+ + log_k 12.4199 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401400 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 25.0 +Co+2 + CO3-2 = CoCO3 + log_k 4.228 + delta_h 0 kJ + -gamma 0 0 + # Id: 2001400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Co+2 + H+ + CO3-2 = CoHCO3+ + log_k 12.2199 + delta_h 0 kJ + -gamma 0 0 + # Id: 2001401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 25.0 +Fe+2 + H+ + CO3-2 = FeHCO3+ + log_k 11.429 + delta_h 0 kJ + -gamma 6 0 + # Id: 2801400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Mn+2 + H+ + CO3-2 = MnHCO3+ + log_k 11.629 + delta_h -10.6 kJ + -gamma 5 0 + # Id: 4701400 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +UO2+2 + CO3-2 = UO2CO3 + log_k 9.6 + delta_h 4 kJ + -gamma 0 0 + # Id: 8931400 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +UO2+2 + 2CO3-2 = UO2(CO3)2-2 + log_k 16.9 + delta_h 16 kJ + -gamma 0 0 + # Id: 8931401 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +UO2+2 + 3CO3-2 = UO2(CO3)3-4 + log_k 21.6 + delta_h -40 kJ + -gamma 0 0 + # Id: 8931402 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Be+2 + CO3-2 = BeCO3 + log_k 6.2546 + delta_h 0 kJ + -gamma 0 0 + # Id: 1101401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 +Mg+2 + CO3-2 = MgCO3 + log_k 2.92 + delta_h 12 kJ + -gamma 0 0 + # Id: 4601400 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Mg+2 + H+ + CO3-2 = MgHCO3+ + log_k 11.339 + delta_h -10.6 kJ + -gamma 4 0 + # Id: 4601401 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ca+2 + H+ + CO3-2 = CaHCO3+ + log_k 11.599 + delta_h 5.4 kJ + -gamma 6 0 + # Id: 1501400 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +CO3-2 + Ca+2 = CaCO3 + log_k 3.2 + delta_h 16 kJ + -gamma 0 0 + # Id: 1501401 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Sr+2 + CO3-2 = SrCO3 + log_k 2.81 + delta_h 20 kJ + -gamma 0 0 + # Id: 8001401 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sr+2 + H+ + CO3-2 = SrHCO3+ + log_k 11.539 + delta_h 10.4 kJ + -gamma 6 0 + # Id: 8001400 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ba+2 + CO3-2 = BaCO3 + log_k 2.71 + delta_h 16 kJ + -gamma 0 0 + # Id: 1001401 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ba+2 + H+ + CO3-2 = BaHCO3+ + log_k 11.309 + delta_h 10.4 kJ + -gamma 6 0 + # Id: 1001400 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Na+ + CO3-2 = NaCO3- + log_k 1.27 + delta_h -20.35 kJ + -gamma 5.4 0 + # Id: 5001400 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 +Na+ + H+ + CO3-2 = NaHCO3 + log_k 10.079 + delta_h -28.3301 kJ + -gamma 0 0 + # Id: 5001401 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 +H4SiO4 = H2SiO4-2 + 2H+ + log_k -23.04 + delta_h 61 kJ + -gamma 5.4 0 + # Id: 3307701 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +H4SiO4 = H3SiO4- + H+ + log_k -9.84 + delta_h 20 kJ + -gamma 4 0 + # Id: 3307700 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +UO2+2 + H4SiO4 = UO2H3SiO4+ + H+ + log_k -1.9111 + delta_h 0 kJ + -gamma 0 0 + # Id: 8937700 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +H3BO3 = H2BO3- + H+ + log_k -9.236 + delta_h 13 kJ + -gamma 2.5 0 + # Id: 3300900 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +2H3BO3 = H5(BO3)2- + H+ + log_k -9.306 + delta_h 8.4 kJ + -gamma 2.5 0 + # Id: 3300901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +3H3BO3 = H8(BO3)3- + H+ + log_k -7.306 + delta_h 29.4 kJ + -gamma 2.5 0 + # Id: 3300902 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ag+ + H3BO3 = AgH2BO3 + H+ + log_k -8.036 + delta_h 0 kJ + -gamma 2.5 0 + # Id: 200901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Mg+2 + H3BO3 = MgH2BO3+ + H+ + log_k -7.696 + delta_h 13 kJ + -gamma 2.5 0 + # Id: 4600901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ca+2 + H3BO3 = CaH2BO3+ + H+ + log_k -7.476 + delta_h 17 kJ + -gamma 2.5 0 + # Id: 1500901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sr+2 + H3BO3 = SrH2BO3+ + H+ + log_k -7.686 + delta_h 17 kJ + -gamma 2.5 0 + # Id: 8000901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ba+2 + H3BO3 = BaH2BO3+ + H+ + log_k -7.746 + delta_h 17 kJ + -gamma 2.5 0 + # Id: 1000901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Na+ + H3BO3 = NaH2BO3 + H+ + log_k -9.036 + delta_h 0 kJ + -gamma 2.5 0 + # Id: 5000901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +CrO4-2 + H+ = HCrO4- + log_k 6.51 + delta_h 2 kJ + -gamma 0 0 + # Id: 2123300 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +CrO4-2 + 2H+ = H2CrO4 + log_k 6.4188 + delta_h 39 kJ + -gamma 0 0 + # Id: 2123301 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 20.0 +2CrO4-2 + 2H+ = Cr2O7-2 + H2O + log_k 14.56 + delta_h -15 kJ + -gamma 0 0 + # Id: 2123302 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +CrO4-2 + Cl- + 2H+ = CrO3Cl- + H2O + log_k 7.3086 + delta_h 0 kJ + -gamma 0 0 + # Id: 2121800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + SO4-2 + 2H+ = CrO3SO4-2 + H2O + log_k 8.9937 + delta_h 0 kJ + -gamma 0 0 + # Id: 2127320 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + 4H+ + PO4-3 = CrO3H2PO4- + H2O + log_k 29.3634 + delta_h 0 kJ + -gamma 0 0 + # Id: 2125800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + 3H+ + PO4-3 = CrO3HPO4-2 + H2O + log_k 26.6806 + delta_h 0 kJ + -gamma 0 0 + # Id: 2125801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + Na+ = NaCrO4- + log_k 0.6963 + delta_h 0 kJ + -gamma 0 0 + # Id: 5002120 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +K+ + CrO4-2 = KCrO4- + log_k 0.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 4102120 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 18.0 +MoO4-2 + H+ = HMoO4- + log_k 4.2988 + delta_h 20 kJ + -gamma 0 0 + # Id: 3304801 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 20.0 +MoO4-2 + 2H+ = H2MoO4 + log_k 8.1636 + delta_h -26 kJ + -gamma 0 0 + # Id: 3304802 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 20.0 +7MoO4-2 + 8H+ = Mo7O24-6 + 4H2O + log_k 52.99 + delta_h -228 kJ + -gamma 0 0 + # Id: 3304803 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +7MoO4-2 + 9H+ = HMo7O24-5 + 4H2O + log_k 59.3768 + delta_h -218 kJ + -gamma 0 0 + # Id: 3304804 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +7MoO4-2 + 10H+ = H2Mo7O24-4 + 4H2O + log_k 64.159 + delta_h -215 kJ + -gamma 0 0 + # Id: 3304805 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +7MoO4-2 + 11H+ = H3Mo7O24-3 + 4H2O + log_k 67.405 + delta_h -217 kJ + -gamma 0 0 + # Id: 3304806 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 +6MoO4-2 + Al+3 + 6H+ = AlMo6O21-3 + 3H2O + log_k 54.9925 + delta_h 0 kJ + -gamma 0 0 + # Id: 304801 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +MoO4-2 + 2Ag+ = Ag2MoO4 + log_k -0.4219 + delta_h -1.18 kJ + -gamma 0 0 + # Id: 204801 + # log K source: Bard85 + # Delta H source: Bard85 + #T and ionic strength: +VO2+ + 2H2O = VO4-3 + 4H+ + log_k -30.2 + delta_h -25 kJ + -gamma 0 0 + # Id: 9033303 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +VO2+ + 2H2O = HVO4-2 + 3H+ + log_k -15.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 9033302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +VO2+ + 2H2O = H2VO4- + 2H+ + log_k -7.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 9033301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +VO2+ + 2H2O = H3VO4 + H+ + log_k -3.3 + delta_h 44.4759 kJ + -gamma 0 0 + # Id: 9033300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +2VO2+ + 3H2O = V2O7-4 + 6H+ + log_k -31.24 + delta_h -28 kJ + -gamma 0 0 + # Id: 9030020 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +2VO2+ + 3H2O = HV2O7-3 + 5H+ + log_k -20.67 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030021 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2VO2+ + 3H2O = H3V2O7- + 3H+ + log_k -3.79 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030022 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +3VO2+ + 3H2O = V3O9-3 + 6H+ + log_k -15.88 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030023 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +4VO2+ + 4H2O = V4O12-4 + 8H+ + log_k -20.56 + delta_h -87 kJ + -gamma 0 0 + # Id: 9030024 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +10VO2+ + 8H2O = V10O28-6 + 16H+ + log_k -24.0943 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030025 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 +10VO2+ + 8H2O = HV10O28-5 + 15H+ + log_k -15.9076 + delta_h 90.0397 kJ + -gamma 0 0 + # Id: 9030026 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 +10VO2+ + 8H2O = H2V10O28-4 + 14H+ + log_k -10.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030027 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Benzoate- + H+ = H(Benzoate) + log_k 4.202 + delta_h -0.4602 kJ + -gamma 0 0 + # Id: 3309171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Benzoate- + Pb+2 = Pb(Benzoate)+ + log_k 2.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Benzoate- + Al+3 = Al(Benzoate)+2 + log_k 2.05 + delta_h 0 kJ + -gamma 0 0 + # Id: 309171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Benzoate- + Al+3 + H2O = AlOH(Benzoate)+ + H+ + log_k -0.56 + delta_h 0 kJ + -gamma 0 0 + # Id: 309172 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Benzoate- + Zn+2 = Zn(Benzoate)+ + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509171 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Benzoate- + Cd+2 = Cd(Benzoate)+ + log_k 1.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2Benzoate- + Cd+2 = Cd(Benzoate)2 + log_k 1.82 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609172 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Benzoate- + Cu+2 = Cu(Benzoate)+ + log_k 2.19 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Benzoate- + Ag+ = Ag(Benzoate) + log_k 0.91 + delta_h 0 kJ + -gamma 0 0 + # Id: 209171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Benzoate- + Ni+2 = Ni(Benzoate)+ + log_k 1.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409171 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Co+2 + Benzoate- = Co(Benzoate)+ + log_k 1.0537 + delta_h 12 kJ + -gamma 0 0 + # Id: 2009171 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 30.0 +Benzoate- + Mn+2 = Mn(Benzoate)+ + log_k 2.06 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Benzoate- + Mg+2 = Mg(Benzoate)+ + log_k 1.26 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609171 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Benzoate- + Ca+2 = Ca(Benzoate)+ + log_k 1.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509171 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Phenylacetate- + H+ = H(Phenylacetate) + log_k 4.31 + delta_h 2.1757 kJ + -gamma 0 0 + # Id: 3309181 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Phenylacetate- + Zn+2 = Zn(Phenylacetate)+ + log_k 1.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509181 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Phenylacetate- + Cu+2 = Cu(Phenylacetate)+ + log_k 1.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319181 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Phenylacetate- = Co(Phenylacetate)+ + log_k 0.591 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009181 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 +Co+2 + 2Phenylacetate- = Co(Phenylacetate)2 + log_k 0.4765 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009182 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 +Isophthalate-2 + H+ = H(Isophthalate)- + log_k 4.5 + delta_h 1.6736 kJ + -gamma 0 0 + # Id: 3309201 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Isophthalate-2 + 2H+ = H2(Isophthalate) + log_k 8 + delta_h 1.6736 kJ + -gamma 0 0 + # Id: 3309202 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Isophthalate-2 + Pb+2 = Pb(Isophthalate) + log_k 2.99 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009201 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2Isophthalate-2 + Pb+2 = Pb(Isophthalate)2-2 + log_k 4.18 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009202 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Isophthalate-2 + Pb+2 + H+ = PbH(Isophthalate)+ + log_k 6.69 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009203 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Isophthalate-2 + Cd+2 = Cd(Isophthalate) + log_k 2.15 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609201 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2Isophthalate-2 + Cd+2 = Cd(Isophthalate)2-2 + log_k 2.99 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609202 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Isophthalate-2 + Cd+2 + H+ = CdH(Isophthalate)+ + log_k 5.73 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609203 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Isophthalate-2 + Ca+2 = Ca(Isophthalate) + log_k 2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509200 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Isophthalate-2 + Ba+2 = Ba(Isophthalate) + log_k 1.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009201 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Diethylamine = H(Diethylamine)+ + log_k 10.933 + delta_h -53.1368 kJ + -gamma 0 0 + # Id: 3309551 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Diethylamine = Zn(Diethylamine)+2 + log_k 2.74 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509551 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 2Diethylamine = Zn(Diethylamine)2+2 + log_k 5.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509552 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 3Diethylamine = Zn(Diethylamine)3+2 + log_k 7.71 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509553 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 4Diethylamine = Zn(Diethylamine)4+2 + log_k 9.84 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509554 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + Diethylamine = Cd(Diethylamine)+2 + log_k 2.73 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609551 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2Diethylamine = Cd(Diethylamine)2+2 + log_k 4.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609552 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3Diethylamine = Cd(Diethylamine)3+2 + log_k 6.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609553 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 4Diethylamine = Cd(Diethylamine)4+2 + log_k 7.32 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609554 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ag+ + Diethylamine = Ag(Diethylamine)+ + log_k 2.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 209551 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Diethylamine = Ag(Diethylamine)2+ + log_k 6.38 + delta_h -44.7688 kJ + -gamma 0 0 + # Id: 209552 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Diethylamine = Ni(Diethylamine)+2 + log_k 2.78 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409551 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 2Diethylamine = Ni(Diethylamine)2+2 + log_k 4.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409552 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 3Diethylamine = Ni(Diethylamine)3+2 + log_k 6.72 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409553 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 4Diethylamine = Ni(Diethylamine)4+2 + log_k 7.93 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409554 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 5Diethylamine = Ni(Diethylamine)5+2 + log_k 8.87 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409555 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Butylamine = H(Butylamine)+ + log_k 10.64 + delta_h -58.2831 kJ + -gamma 0 0 + # Id: 3309561 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Butylamine + 2H+ = Hg(Butylamine)+2 + 2H2O + log_k 14.84 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619561 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2Butylamine + 2H+ = Hg(Butylamine)2+2 + 2H2O + log_k 24.24 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619562 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 3Butylamine + 2H+ = Hg(Butylamine)3+2 + 2H2O + log_k 25.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619563 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 4Butylamine + 2H+ = Hg(Butylamine)4+2 + 2H2O + log_k 26.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619564 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Butylamine = Ag(Butylamine)+ + log_k 3.42 + delta_h -16.736 kJ + -gamma 0 0 + # Id: 209561 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Butylamine = Ag(Butylamine)2+ + log_k 7.47 + delta_h -52.7184 kJ + -gamma 0 0 + # Id: 209562 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Methylamine = H(Methylamine)+ + log_k 10.64 + delta_h -55.2288 kJ + -gamma 0 0 + # Id: 3309581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Methylamine = Cd(Methylamine)+2 + log_k 2.75 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2Methylamine = Cd(Methylamine)2+2 + log_k 4.81 + delta_h -29.288 kJ + -gamma 0 0 + # Id: 1609582 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 3Methylamine = Cd(Methylamine)3+2 + log_k 5.94 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609583 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 4Methylamine = Cd(Methylamine)4+2 + log_k 6.55 + delta_h -58.576 kJ + -gamma 0 0 + # Id: 1609584 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Methylamine + 2H+ = Hg(Methylamine)+2 + 2H2O + log_k 14.76 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2Methylamine + 2H+ = Hg(Methylamine)2+2 + 2H2O + log_k 23.96 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619582 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 3Methylamine + 2H+ = Hg(Methylamine)3+2 + 2H2O + log_k 24.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619583 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 4Methylamine + 2H+ = Hg(Methylamine)4+2 + 2H2O + log_k 24.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619584 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Methylamine = Cu(Methylamine)+2 + log_k 4.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Methylamine = Cu(Methylamine)2+2 + log_k 7.51 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319582 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 3Methylamine = Cu(Methylamine)3+2 + log_k 10.21 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319583 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 4Methylamine = Cu(Methylamine)4+2 + log_k 12.08 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319584 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Methylamine = Ag(Methylamine)+ + log_k 3.07 + delta_h -12.552 kJ + -gamma 0 0 + # Id: 209581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Methylamine = Ag(Methylamine)2+ + log_k 6.89 + delta_h -48.9528 kJ + -gamma 0 0 + # Id: 209582 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Methylamine = Ni(Methylamine)+2 + log_k 2.23 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Dimethylamine = H(Dimethylamine)+ + log_k 10.774 + delta_h -50.208 kJ + -gamma 0 0 + # Id: 3309591 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Dimethylamine = Ag(Dimethylamine)2+ + log_k 5.37 + delta_h -40.5848 kJ + -gamma 0 0 + # Id: 209591 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Dimethylamine = Ni(Dimethylamine)+2 + log_k 1.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409591 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Hexylamine = H(Hexylamine)+ + log_k 10.63 + delta_h -58.576 kJ + -gamma 0 0 + # Id: 3309611 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Hexylamine = Ag(Hexylamine)+ + log_k 3.54 + delta_h -25.104 kJ + -gamma 0 0 + # Id: 209611 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Hexylamine = Ag(Hexylamine)2+ + log_k 7.55 + delta_h -53.1368 kJ + -gamma 0 0 + # Id: 209612 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Ethylenediamine = H(Ethylenediamine)+ + log_k 9.928 + delta_h -49.7896 kJ + -gamma 0 0 + # Id: 3309631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Ethylenediamine = H2(Ethylenediamine)+2 + log_k 16.776 + delta_h -95.3952 kJ + -gamma 0 0 + # Id: 3309632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Ethylenediamine = Pb(Ethylenediamine)+2 + log_k 5.04 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + 2Ethylenediamine = Pb(Ethylenediamine)2+2 + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Ethylenediamine = Zn(Ethylenediamine)+2 + log_k 5.66 + delta_h -29.288 kJ + -gamma 0 0 + # Id: 9509631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2Ethylenediamine = Zn(Ethylenediamine)2+2 + log_k 10.6 + delta_h -48.116 kJ + -gamma 0 0 + # Id: 9509632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 3Ethylenediamine = Zn(Ethylenediamine)3+2 + log_k 13.9 + delta_h -71.5464 kJ + -gamma 0 0 + # Id: 9509633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Ethylenediamine = Cd(Ethylenediamine)+2 + log_k 5.41 + delta_h -28.4512 kJ + -gamma 0 0 + # Id: 1609631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2Ethylenediamine = Cd(Ethylenediamine)2+2 + log_k 9.9 + delta_h -55.6472 kJ + -gamma 0 0 + # Id: 1609632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 3Ethylenediamine = Cd(Ethylenediamine)3+2 + log_k 11.6 + delta_h -82.4248 kJ + -gamma 0 0 + # Id: 1609633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Ethylenediamine + 2H+ = Hg(Ethylenediamine)+2 + 2H2O + log_k 20.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2Ethylenediamine + 2H+ = Hg(Ethylenediamine)2+2 + 2H2O + log_k 29.3 + delta_h -173.218 kJ + -gamma 0 0 + # Id: 3619632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2Ethylenediamine + 3H+ = HgH(Ethylenediamine)2+3 + 2H2O + log_k 34.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 2Ethylenediamine = Cu(Ethylenediamine)2+ + log_k 11.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Ethylenediamine = Cu(Ethylenediamine)+2 + log_k 10.5 + delta_h -52.7184 kJ + -gamma 0 0 + # Id: 2319631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Ethylenediamine = Cu(Ethylenediamine)2+2 + log_k 19.6 + delta_h -105.437 kJ + -gamma 0 0 + # Id: 2319632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Ethylenediamine = Ag(Ethylenediamine)+ + log_k 4.6 + delta_h -48.9528 kJ + -gamma 0 0 + # Id: 209631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Ethylenediamine = Ag(Ethylenediamine)2+ + log_k 7.5 + delta_h -52.3 kJ + -gamma 0 0 + # Id: 209632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Ethylenediamine + H+ = AgH(Ethylenediamine)+2 + log_k 11.99 + delta_h -75.312 kJ + -gamma 0 0 + # Id: 209633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2Ag+ + Ethylenediamine = Ag2(Ethylenediamine)+2 + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 209634 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2Ag+ + 2Ethylenediamine = Ag2(Ethylenediamine)2+2 + log_k 12.7 + delta_h -97.0688 kJ + -gamma 0 0 + # Id: 209635 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Ethylenediamine + 2H+ = Ag(HEthylenediamine)2+3 + log_k 24 + delta_h -150.206 kJ + -gamma 0 0 + # Id: 209636 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Ethylenediamine + H+ = AgH(Ethylenediamine)2+2 + log_k 8.4 + delta_h -47.6976 kJ + -gamma 0 0 + # Id: 209637 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Ethylenediamine = Ni(Ethylenediamine)+2 + log_k 7.32 + delta_h -37.656 kJ + -gamma 0 0 + # Id: 5409631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Ethylenediamine = Ni(Ethylenediamine)2+2 + log_k 13.5 + delta_h -76.5672 kJ + -gamma 0 0 + # Id: 5409632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 3Ethylenediamine = Ni(Ethylenediamine)3+2 + log_k 17.6 + delta_h -117.152 kJ + -gamma 0 0 + # Id: 5409633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Ethylenediamine = Co(Ethylenediamine)+2 + log_k 5.5 + delta_h -28 kJ + -gamma 0 0 + # Id: 2009631 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+2 + 2Ethylenediamine = Co(Ethylenediamine)2+2 + log_k 10.1 + delta_h -58.5 kJ + -gamma 0 0 + # Id: 2009632 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+2 + 3Ethylenediamine = Co(Ethylenediamine)3+2 + log_k 13.2 + delta_h -92.8 kJ + -gamma 0 0 + # Id: 2009633 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+3 + 2Ethylenediamine = Co(Ethylenediamine)2+3 + log_k 34.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2019631 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 +Co+3 + 3Ethylenediamine = Co(Ethylenediamine)3+3 + log_k 48.69 + delta_h 0 kJ + -gamma 0 0 + # Id: 2019632 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.50 30.0 +Fe+2 + Ethylenediamine = Fe(Ethylenediamine)+2 + log_k 4.26 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 2Ethylenediamine = Fe(Ethylenediamine)2+2 + log_k 7.73 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 3Ethylenediamine = Fe(Ethylenediamine)3+2 + log_k 10.17 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + Ethylenediamine = Mn(Ethylenediamine)+2 + log_k 2.74 + delta_h -11.7152 kJ + -gamma 0 0 + # Id: 4709631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + 2Ethylenediamine = Mn(Ethylenediamine)2+2 + log_k 4.8 + delta_h -25.104 kJ + -gamma 0 0 + # Id: 4709632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + 2Ethylenediamine + 2H+ = Cr(Ethylenediamine)2+3 + 2H2O + log_k 22.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + 3Ethylenediamine + 2H+ = Cr(Ethylenediamine)3+3 + 2H2O + log_k 29 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Ethylenediamine = Mg(Ethylenediamine)+2 + log_k 0.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Ethylenediamine = Ca(Ethylenediamine)+2 + log_k 0.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Propylamine = H(Propylamine)+ + log_k 10.566 + delta_h -57.53 kJ + -gamma 0 0 + # Id: 3309641 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Propylamine = Zn(Propylamine)+2 + log_k 2.42 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509641 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 2Propylamine = Zn(Propylamine)2+2 + log_k 4.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509642 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 3Propylamine = Zn(Propylamine)3+2 + log_k 7.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509643 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 4Propylamine = Zn(Propylamine)4+2 + log_k 9.49 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509644 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + Propylamine = Cd(Propylamine)+2 + log_k 2.62 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609641 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2Propylamine = Cd(Propylamine)2+2 + log_k 4.64 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609642 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3Propylamine = Cd(Propylamine)3+2 + log_k 6.03 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609643 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ag+ + Propylamine = Ag(Propylamine)+ + log_k 3.45 + delta_h -12.552 kJ + -gamma 0 0 + # Id: 209641 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Propylamine = Ag(Propylamine)2+ + log_k 7.44 + delta_h -53.1368 kJ + -gamma 0 0 + # Id: 209642 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Propylamine = Ni(Propylamine)+2 + log_k 2.81 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409641 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 2Propylamine = Ni(Propylamine)2+2 + log_k 5.02 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409642 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 3Propylamine = Ni(Propylamine)3+2 + log_k 6.79 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409643 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 4Propylamine = Ni(Propylamine)4+2 + log_k 8.31 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409644 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Isopropylamine = H(Isopropylamine)+ + log_k 10.67 + delta_h -58.3668 kJ + -gamma 0 0 + # Id: 3309651 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Isopropylamine = Zn(Isopropylamine)+2 + log_k 2.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509651 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 2Isopropylamine = Zn(Isopropylamine)2+2 + log_k 4.67 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509652 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 3Isopropylamine = Zn(Isopropylamine)3+2 + log_k 7.14 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509653 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 4Isopropylamine = Zn(Isopropylamine)4+2 + log_k 9.44 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509654 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + Isopropylamine = Cd(Isopropylamine)+2 + log_k 2.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609651 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2Isopropylamine = Cd(Isopropylamine)2+2 + log_k 4.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609652 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3Isopropylamine = Cd(Isopropylamine)3+2 + log_k 6.07 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609653 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 4Isopropylamine = Cd(Isopropylamine)4+2 + log_k 6.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609654 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Hg(OH)2 + Isopropylamine + 2H+ = Hg(Isopropylamine)+2 + 2H2O + log_k 14.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619651 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2Isopropylamine + 2H+ = Hg(Isopropylamine)2+2 + 2H2O + log_k 24.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619652 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Isopropylamine = Ag(Isopropylamine)+ + log_k 3.67 + delta_h -23.8488 kJ + -gamma 0 0 + # Id: 209651 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Isopropylamine = Ag(Isopropylamine)2+ + log_k 7.77 + delta_h -59.8312 kJ + -gamma 0 0 + # Id: 209652 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Isopropylamine = Ni(Isopropylamine)+2 + log_k 2.71 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409651 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 2Isopropylamine = Ni(Isopropylamine)2+2 + log_k 4.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409652 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 3Isopropylamine = Ni(Isopropylamine)3+2 + log_k 6.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409653 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 4Isopropylamine = Ni(Isopropylamine)4+2 + log_k 7.83 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409654 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 5Isopropylamine = Ni(Isopropylamine)5+2 + log_k 8.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409655 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Trimethylamine = H(Trimethylamine)+ + log_k 9.8 + delta_h -36.8192 kJ + -gamma 0 0 + # Id: 3309661 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Trimethylamine = Ag(Trimethylamine)+ + log_k 1.701 + delta_h 0 kJ + -gamma 0 0 + # Id: 209661 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Citrate-3 = H(Citrate)-2 + log_k 6.396 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 3309671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Citrate-3 = H2(Citrate)- + log_k 11.157 + delta_h 1.297 kJ + -gamma 0 0 + # Id: 3309672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +3H+ + Citrate-3 = H3(Citrate) + log_k 14.285 + delta_h -2.7614 kJ + -gamma 0 0 + # Id: 3309673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Citrate-3 = Pb(Citrate)- + log_k 7.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009671 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Pb+2 + 2Citrate-3 = Pb(Citrate)2-4 + log_k 6.53 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Citrate-3 = Al(Citrate) + log_k 9.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 309671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + 2Citrate-3 = Al(Citrate)2-3 + log_k 14.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 309672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Citrate-3 + H+ = AlH(Citrate)+ + log_k 12.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 309673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Tl+ + Citrate-3 = Tl(Citrate)-2 + log_k 1.48 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Citrate-3 = Zn(Citrate)- + log_k 6.21 + delta_h 8.368 kJ + -gamma 0 0 + # Id: 9509671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2Citrate-3 = Zn(Citrate)2-4 + log_k 7.4 + delta_h 25.104 kJ + -gamma 0 0 + # Id: 9509672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Citrate-3 + H+ = ZnH(Citrate) + log_k 10.2 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 9509673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Citrate-3 + 2H+ = ZnH2(Citrate)+ + log_k 12.84 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509674 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + Citrate-3 = Cd(Citrate)- + log_k 4.98 + delta_h 8.368 kJ + -gamma 0 0 + # Id: 1609671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Citrate-3 + H+ = CdH(Citrate) + log_k 9.44 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 1609672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Citrate-3 + 2H+ = CdH2(Citrate)+ + log_k 12.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2Citrate-3 = Cd(Citrate)2-4 + log_k 5.9 + delta_h 20.92 kJ + -gamma 0 0 + # Id: 1609674 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Citrate-3 + 2H+ = Hg(Citrate)- + 2H2O + log_k 18.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Citrate-3 = Cu(Citrate)- + log_k 7.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319671 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cu+2 + 2Citrate-3 = Cu(Citrate)2-4 + log_k 8.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319672 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cu+2 + Citrate-3 + H+ = CuH(Citrate) + log_k 10.87 + delta_h 11.7152 kJ + -gamma 0 0 + # Id: 2319673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Citrate-3 + 2H+ = CuH2(Citrate)+ + log_k 13.23 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319674 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +2Cu+2 + 2Citrate-3 = Cu2(Citrate)2-2 + log_k 16.9 + delta_h 41.84 kJ + -gamma 0 0 + # Id: 2319675 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Citrate-3 = Ni(Citrate)- + log_k 6.59 + delta_h 16.736 kJ + -gamma 0 0 + # Id: 5409671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Citrate-3 + H+ = NiH(Citrate) + log_k 10.5 + delta_h 15.8992 kJ + -gamma 0 0 + # Id: 5409672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Citrate-3 + 2H+ = NiH2(Citrate)+ + log_k 13.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Citrate-3 = Ni(Citrate)2-4 + log_k 8.77 + delta_h 12.552 kJ + -gamma 0 0 + # Id: 5409674 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Citrate-3 + H+ = NiH(Citrate)2-3 + log_k 14.9 + delta_h 32.6352 kJ + -gamma 0 0 + # Id: 5409675 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Citrate-3 = Co(Citrate)- + log_k 6.1867 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009671 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Co+2 + H+ + Citrate-3 = CoHCitrate + log_k 10.4438 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009672 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Co+2 + 2H+ + Citrate-3 = CoH2Citrate+ + log_k 12.7859 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009673 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Fe+2 + Citrate-3 = Fe(Citrate)- + log_k 6.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + Citrate-3 + H+ = FeH(Citrate) + log_k 10.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Citrate-3 = Fe(Citrate) + log_k 13.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Citrate-3 + H+ = FeH(Citrate)+ + log_k 14.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + Citrate-3 = Mn(Citrate)- + log_k 4.28 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709671 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Mn+2 + Citrate-3 + H+ = MnH(Citrate) + log_k 9.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Be+2 + Citrate-3 = Be(Citrate)- + log_k 5.534 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109671 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 +Be+2 + H+ + Citrate-3 = BeH(Citrate) + log_k 9.442 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109672 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 +Ca+2 + Citrate-3 = Ca(Citrate)- + log_k 4.87 + delta_h -8.368 kJ + -gamma 0 0 + # Id: 1509671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Citrate-3 + H+ = CaH(Citrate) + log_k 9.26 + delta_h -0.8368 kJ + -gamma 0 0 + # Id: 1509672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Citrate-3 + 2H+ = CaH2(Citrate)+ + log_k 12.257 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509673 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Mg+2 + Citrate-3 = Mg(Citrate)- + log_k 4.89 + delta_h 8.368 kJ + -gamma 0 0 + # Id: 4609671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Citrate-3 + H+ = MgH(Citrate) + log_k 8.91 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 4609672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Citrate-3 + 2H+ = MgH2(Citrate)+ + log_k 12.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609673 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Sr+2 + Citrate-3 = Sr(Citrate)- + log_k 4.3367 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009671 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Sr+2 + H+ + Citrate-3 = SrH(Citrate) + log_k 8.9738 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009672 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Sr+2 + 2H+ + Citrate-3 = SrH2(Citrate)+ + log_k 12.4859 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009673 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Ba+2 + Citrate-3 = Ba(Citrate)- + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ba+2 + Citrate-3 + H+ = BaH(Citrate) + log_k 8.74 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ba+2 + Citrate-3 + 2H+ = BaH2(Citrate)+ + log_k 12.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Na+ + Citrate-3 = Na(Citrate)-2 + log_k 1.03 + delta_h -2.8033 kJ + -gamma 0 0 + # Id: 5009671 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +2Na+ + Citrate-3 = Na2(Citrate)- + log_k 1.5 + delta_h -5.1045 kJ + -gamma 0 0 + # Id: 5009672 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Na+ + Citrate-3 + H+ = NaH(Citrate)- + log_k 6.45 + delta_h -3.5982 kJ + -gamma 0 0 + # Id: 5009673 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +K+ + Citrate-3 = K(Citrate)-2 + log_k 1.1 + delta_h 5.4392 kJ + -gamma 0 0 + # Id: 4109671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Nta-3 = H(Nta)-2 + log_k 10.278 + delta_h -18.828 kJ + -gamma 0 0 + # Id: 3309681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Nta-3 = H2(Nta)- + log_k 13.22 + delta_h -17.9912 kJ + -gamma 0 0 + # Id: 3309682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +3H+ + Nta-3 = H3(Nta) + log_k 15.22 + delta_h -16.3176 kJ + -gamma 0 0 + # Id: 3309683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +4H+ + Nta-3 = H4(Nta)+ + log_k 16.22 + delta_h -16.3176 kJ + -gamma 0 0 + # Id: 3309684 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Nta-3 = Pb(Nta)- + log_k 12.7 + delta_h -15.8992 kJ + -gamma 0 0 + # Id: 6009681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Nta-3 + H+ = PbH(Nta) + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Nta-3 = Al(Nta) + log_k 13.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 309681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Nta-3 + H+ = AlH(Nta)+ + log_k 15.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 309682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Nta-3 + H2O = AlOH(Nta)- + H+ + log_k 8 + delta_h 0 kJ + -gamma 0 0 + # Id: 309683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Tl+ + Nta-3 = Tl(Nta)-2 + log_k 5.39 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Nta-3 = Zn(Nta)- + log_k 11.95 + delta_h -3.7656 kJ + -gamma 0 0 + # Id: 9509681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2Nta-3 = Zn(Nta)2-4 + log_k 14.88 + delta_h -15.0624 kJ + -gamma 0 0 + # Id: 9509682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Nta-3 + H2O = ZnOH(Nta)-2 + H+ + log_k 1.46 + delta_h 46.4424 kJ + -gamma 0 0 + # Id: 9509683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Nta-3 = Cd(Nta)- + log_k 11.07 + delta_h -16.736 kJ + -gamma 0 0 + # Id: 1609681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2Nta-3 = Cd(Nta)2-4 + log_k 15.03 + delta_h -38.0744 kJ + -gamma 0 0 + # Id: 1609682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Nta-3 + H2O = CdOH(Nta)-2 + H+ + log_k -0.61 + delta_h 29.288 kJ + -gamma 0 0 + # Id: 1609683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Nta-3 + 2H+ = Hg(Nta)- + 2H2O + log_k 21.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Nta-3 = Cu(Nta)- + log_k 14.4 + delta_h -7.9496 kJ + -gamma 0 0 + # Id: 2319681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Nta-3 = Cu(Nta)2-4 + log_k 18.1 + delta_h -37.2376 kJ + -gamma 0 0 + # Id: 2319682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Nta-3 + H+ = CuH(Nta) + log_k 16.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Nta-3 + H2O = CuOH(Nta)-2 + H+ + log_k 4.8 + delta_h 25.5224 kJ + -gamma 0 0 + # Id: 2319684 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Nta-3 = Ag(Nta)-2 + log_k 6 + delta_h -26.3592 kJ + -gamma 0 0 + # Id: 209681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Nta-3 = Ni(Nta)- + log_k 12.79 + delta_h -10.0416 kJ + -gamma 0 0 + # Id: 5409681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Nta-3 = Ni(Nta)2-4 + log_k 16.96 + delta_h -32.6352 kJ + -gamma 0 0 + # Id: 5409682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Nta-3 + H2O = NiOH(Nta)-2 + H+ + log_k 1.5 + delta_h 15.0624 kJ + -gamma 0 0 + # Id: 5409683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Nta-3 = Co(Nta)- + log_k 11.6667 + delta_h -0.4 kJ + -gamma 0 0 + # Id: 2009681 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+2 + 2Nta-3 = Co(Nta)2-4 + log_k 14.9734 + delta_h -20 kJ + -gamma 0 0 + # Id: 2009682 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+2 + Nta-3 + H2O = CoOH(Nta)-2 + H+ + log_k 0.4378 + delta_h 45.6 kJ + -gamma 0 0 + # Id: 2009683 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Fe+2 + Nta-3 = Fe(Nta)- + log_k 10.19 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 2Nta-3 = Fe(Nta)2-4 + log_k 12.62 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + Nta-3 + H+ = FeH(Nta) + log_k 12.29 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + Nta-3 + H2O = FeOH(Nta)-2 + H+ + log_k -1.06 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809684 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Nta-3 = Fe(Nta) + log_k 17.8 + delta_h 13.3888 kJ + -gamma 0 0 + # Id: 2819681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + 2Nta-3 = Fe(Nta)2-3 + log_k 25.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Nta-3 + H2O = FeOH(Nta)- + H+ + log_k 13.23 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + Nta-3 = Mn(Nta)- + log_k 8.573 + delta_h 5.8576 kJ + -gamma 0 0 + # Id: 4709681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + 2Nta-3 = Mn(Nta)2-4 + log_k 11.58 + delta_h -17.1544 kJ + -gamma 0 0 + # Id: 4709682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Nta-3 + 2H+ = Cr(Nta) + 2H2O + log_k 21.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119681 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 2Nta-3 + 2H+ = Cr(Nta)2-3 + 2H2O + log_k 29.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119682 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +MoO4-2 + 2H+ + Nta-3 = MoO3(Nta)-3 + H2O + log_k 19.5434 + delta_h -69 kJ + -gamma 0 0 + # Id: 4809681 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +MoO4-2 + 3H+ + Nta-3 = MoO3H(Nta)-2 + H2O + log_k 23.3954 + delta_h -71 kJ + -gamma 0 0 + # Id: 4809682 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 +MoO4-2 + 4H+ + Nta-3 = MoO3H2(Nta)- + H2O + log_k 25.3534 + delta_h -71 kJ + -gamma 0 0 + # Id: 4809683 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 +Be+2 + Nta-3 = Be(Nta)- + log_k 9.0767 + delta_h 25 kJ + -gamma 0 0 + # Id: 1109681 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Mg+2 + Nta-3 = Mg(Nta)- + log_k 6.5 + delta_h 17.9912 kJ + -gamma 0 0 + # Id: 4609681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Nta-3 = Ca(Nta)- + log_k 7.608 + delta_h -5.6902 kJ + -gamma 0 0 + # Id: 1509681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + 2Nta-3 = Ca(Nta)2-4 + log_k 8.81 + delta_h -32.6352 kJ + -gamma 0 0 + # Id: 1509682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sr+2 + Nta-3 = Sr(Nta)- + log_k 6.2767 + delta_h -2.2 kJ + -gamma 0 0 + # Id: 8009681 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Ba+2 + Nta-3 = Ba(Nta)- + log_k 5.875 + delta_h -6.025 kJ + -gamma 0 0 + # Id: 1009681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Edta-4 = H(Edta)-3 + log_k 10.948 + delta_h -23.4304 kJ + -gamma 0 0 + # Id: 3309691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Edta-4 = H2(Edta)-2 + log_k 17.221 + delta_h -41.0032 kJ + -gamma 0 0 + # Id: 3309692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +3H+ + Edta-4 = H3(Edta)- + log_k 20.34 + delta_h -35.564 kJ + -gamma 0 0 + # Id: 3309693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +4H+ + Edta-4 = H4(Edta) + log_k 22.5 + delta_h -34.3088 kJ + -gamma 0 0 + # Id: 3309694 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +5H+ + Edta-4 = H5(Edta)+ + log_k 24 + delta_h -32.2168 kJ + -gamma 0 0 + # Id: 3309695 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sn(OH)2 + 2H+ + Edta-4 = Sn(Edta)-2 + 2H2O + log_k 27.026 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909691 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 +Sn(OH)2 + 3H+ + Edta-4 = SnH(Edta)- + 2H2O + log_k 29.934 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909692 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 +Sn(OH)2 + 4H+ + Edta-4 = SnH2(Edta) + 2H2O + log_k 31.638 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909693 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 +Pb+2 + Edta-4 = Pb(Edta)-2 + log_k 19.8 + delta_h -54.8104 kJ + -gamma 0 0 + # Id: 6009691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Edta-4 + H+ = PbH(Edta)- + log_k 23 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Edta-4 + 2H+ = PbH2(Edta) + log_k 24.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Edta-4 = Al(Edta)- + log_k 19.1 + delta_h 52.7184 kJ + -gamma 0 0 + # Id: 309690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Edta-4 + H+ = AlH(Edta) + log_k 21.8 + delta_h 36.4008 kJ + -gamma 0 0 + # Id: 309691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Edta-4 + H2O = AlOH(Edta)-2 + H+ + log_k 12.8 + delta_h 73.6384 kJ + -gamma 0 0 + # Id: 309692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Tl+ + Edta-4 = Tl(Edta)-3 + log_k 7.27 + delta_h -43.5136 kJ + -gamma 0 0 + # Id: 8709691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Tl+ + Edta-4 + H+ = TlH(Edta)-2 + log_k 13.68 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Edta-4 = Zn(Edta)-2 + log_k 18 + delta_h -19.2464 kJ + -gamma 0 0 + # Id: 9509691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Edta-4 + H+ = ZnH(Edta)- + log_k 21.4 + delta_h -28.4512 kJ + -gamma 0 0 + # Id: 9509692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Edta-4 + H2O = ZnOH(Edta)-3 + H+ + log_k 5.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Edta-4 = Cd(Edta)-2 + log_k 18.2 + delta_h -38.0744 kJ + -gamma 0 0 + # Id: 1609691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Edta-4 + H+ = CdH(Edta)- + log_k 21.5 + delta_h -39.748 kJ + -gamma 0 0 + # Id: 1609692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Edta-4 + 2H+ = Hg(Edta)-2 + 2H2O + log_k 29.3 + delta_h -125.102 kJ + -gamma 0 0 + # Id: 3619691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Edta-4 + 3H+ = HgH(Edta)- + 2H2O + log_k 32.9 + delta_h -128.449 kJ + -gamma 0 0 + # Id: 3619692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Edta-4 = Cu(Edta)-2 + log_k 20.5 + delta_h -34.7272 kJ + -gamma 0 0 + # Id: 2319691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Edta-4 + H+ = CuH(Edta)- + log_k 24 + delta_h -43.0952 kJ + -gamma 0 0 + # Id: 2319692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Edta-4 + 2H+ = CuH2(Edta) + log_k 26.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Edta-4 + H2O = CuOH(Edta)-3 + H+ + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319694 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Edta-4 = Ag(Edta)-3 + log_k 8.08 + delta_h -31.38 kJ + -gamma 0 0 + # Id: 209691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Edta-4 + H+ = AgH(Edta)-2 + log_k 15.21 + delta_h 0 kJ + -gamma 0 0 + # Id: 209693 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + Edta-4 = Ni(Edta)-2 + log_k 20.1 + delta_h -30.9616 kJ + -gamma 0 0 + # Id: 5409691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Edta-4 + H+ = NiH(Edta)- + log_k 23.6 + delta_h -38.4928 kJ + -gamma 0 0 + # Id: 5409692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Edta-4 + H2O = NiOH(Edta)-3 + H+ + log_k 7.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Edta-4 = Co(Edta)-2 + log_k 18.1657 + delta_h -15 kJ + -gamma 0 0 + # Id: 2009691 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+2 + Edta-4 + H+ = CoH(Edta)- + log_k 21.5946 + delta_h -22.9 kJ + -gamma 0 0 + # Id: 2009692 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+2 + Edta-4 + 2H+ = CoH2(Edta) + log_k 23.4986 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009693 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 +Co+3 + Edta-4 = Co(Edta)- + log_k 43.9735 + delta_h 0 kJ + -gamma 0 0 + # Id: 2019691 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Co+3 + Edta-4 + H+ = CoH(Edta) + log_k 47.168 + delta_h 0 kJ + -gamma 0 0 + # Id: 2019692 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Fe+2 + Edta-4 = Fe(Edta)-2 + log_k 16 + delta_h -16.736 kJ + -gamma 0 0 + # Id: 2809690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + Edta-4 + H+ = FeH(Edta)- + log_k 19.06 + delta_h -27.6144 kJ + -gamma 0 0 + # Id: 2809691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + Edta-4 + H2O = FeOH(Edta)-3 + H+ + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809692 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Fe+2 + Edta-4 + 2H2O = Fe(OH)2(Edta)-4 + 2H+ + log_k -4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809693 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Fe+3 + Edta-4 = Fe(Edta)- + log_k 27.7 + delta_h -11.2968 kJ + -gamma 0 0 + # Id: 2819690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Edta-4 + H+ = FeH(Edta) + log_k 29.2 + delta_h -11.7152 kJ + -gamma 0 0 + # Id: 2819691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Edta-4 + H2O = FeOH(Edta)-2 + H+ + log_k 19.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Edta-4 + 2H2O = Fe(OH)2(Edta)-3 + 2H+ + log_k 9.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819693 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Mn+2 + Edta-4 = Mn(Edta)-2 + log_k 15.6 + delta_h -19.2464 kJ + -gamma 0 0 + # Id: 4709691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + Edta-4 + H+ = MnH(Edta)- + log_k 19.1 + delta_h -24.2672 kJ + -gamma 0 0 + # Id: 4709692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr+2 + Edta-4 = Cr(Edta)-2 + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr+2 + Edta-4 + H+ = CrH(Edta)- + log_k 19.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109692 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + Edta-4 + 2H+ = Cr(Edta)- + 2H2O + log_k 35.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Edta-4 + 3H+ = CrH(Edta) + 2H2O + log_k 37.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Edta-4 + H+ = CrOH(Edta)-2 + H2O + log_k 27.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Be+2 + Edta-4 = Be(Edta)-2 + log_k 11.4157 + delta_h 41 kJ + -gamma 0 0 + # Id: 1109691 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Mg+2 + Edta-4 = Mg(Edta)-2 + log_k 10.57 + delta_h 13.8072 kJ + -gamma 0 0 + # Id: 4609690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Edta-4 + H+ = MgH(Edta)- + log_k 14.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Edta-4 = Ca(Edta)-2 + log_k 12.42 + delta_h -25.5224 kJ + -gamma 0 0 + # Id: 1509690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Edta-4 + H+ = CaH(Edta)- + log_k 15.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sr+2 + Edta-4 = Sr(Edta)-2 + log_k 10.4357 + delta_h -17 kJ + -gamma 0 0 + # Id: 8009691 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Sr+2 + Edta-4 + H+ = SrH(Edta)- + log_k 14.7946 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009692 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Ba+2 + Edta-4 = Ba(Edta)-2 + log_k 7.72 + delta_h -20.5016 kJ + -gamma 0 0 + # Id: 1009691 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Na+ + Edta-4 = Na(Edta)-3 + log_k 2.7 + delta_h -5.8576 kJ + -gamma 0 0 + # Id: 5009690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +K+ + Edta-4 = K(Edta)-3 + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 4109690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Propionate- = H(Propionate) + log_k 4.874 + delta_h 0.66 kJ + -gamma 0 0 + # Id: 3309711 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Pb+2 + Propionate- = Pb(Propionate)+ + log_k 2.64 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009711 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.00 35.0 +Pb+2 + 2Propionate- = Pb(Propionate)2 + log_k 3.1765 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009712 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 2.00 25.0 +Zn+2 + Propionate- = Zn(Propionate)+ + log_k 1.4389 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Zn+2 + 2Propionate- = Zn(Propionate)2 + log_k 1.842 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509712 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 +Cd+2 + Propionate- = Cd(Propionate)+ + log_k 1.598 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 +Cd+2 + 2Propionate- = Cd(Propionate)2 + log_k 2.472 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609712 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 +Hg(OH)2 + 2H+ + Propionate- = Hg(Propionate)+ + 2H2O + log_k 10.594 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Cu+2 + Propionate- = Cu(Propionate)+ + log_k 2.22 + delta_h 4.1 kJ + -gamma 0 0 + # Id: 2319711 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cu+2 + 2Propionate- = Cu(Propionate)2 + log_k 3.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319712 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Ni+2 + Propionate- = Ni(Propionate)+ + log_k 0.908 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409711 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 1.00 25.0 +Co+2 + Propionate- = Co(Propionate)+ + log_k 0.671 + delta_h 4.6 kJ + -gamma 0 0 + # Id: 2009711 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 2.00 25.0 +Co+2 + 2Propionate- = Co(Propionate)2 + log_k 0.5565 + delta_h 16 kJ + -gamma 0 0 + # Id: 2009712 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 2.00 25.0 +Fe+3 + Propionate- = Fe(Propionate)+2 + log_k 4.012 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 +Cr(OH)2+ + 2H+ + Propionate- = Cr(Propionate)+2 + 2H2O + log_k 15.0773 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119711 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.50 25.0 +Cr(OH)2+ + 2H+ + 2Propionate- = Cr(Propionate)2+ + 2H2O + log_k 17.9563 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119712 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.50 25.0 +Cr(OH)2+ + 2H+ + 3Propionate- = Cr(Propionate)3 + 2H2O + log_k 20.8858 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119713 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.50 25.0 +Mg+2 + Propionate- = Mg(Propionate)+ + log_k 0.9689 + delta_h 4.2677 kJ + -gamma 0 0 + # Id: 4609710 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 +Ca+2 + Propionate- = Ca(Propionate)+ + log_k 0.9289 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 1509710 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 +Sr+2 + Propionate- = Sr(Propionate)+ + log_k 0.8589 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Ba+2 + Propionate- = Ba(Propionate)+ + log_k 0.7689 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009711 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 +Ba+2 + 2Propionate- = Ba(Propionate)2 + log_k 0.9834 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009712 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 +H+ + Butyrate- = H(Butyrate) + log_k 4.819 + delta_h 2.8 kJ + -gamma 0 0 + # Id: 3309721 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Pb+2 + Butyrate- = Pb(Butyrate)+ + log_k 2.101 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009721 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 2.00 25.0 +Zn+2 + Butyrate- = Zn(Butyrate)+ + log_k 1.4289 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Hg(OH)2 + 2H+ + Butyrate- = Hg(Butyrate)+ + 2H2O + log_k 10.3529 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Cu+2 + Butyrate- = Cu(Butyrate)+ + log_k 2.14 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Ni+2 + Butyrate- = Ni(Butyrate)+ + log_k 0.691 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409721 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 2.00 25.0 +Co+2 + Butyrate- = Co(Butyrate)+ + log_k 0.591 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 +Co+2 + 2Butyrate- = Co(Butyrate)2 + log_k 0.7765 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009722 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 +Mg+2 + Butyrate- = Mg(Butyrate)+ + log_k 0.9589 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609720 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 +Ca+2 + Butyrate- = Ca(Butyrate)+ + log_k 0.9389 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 1509720 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 +Sr+2 + Butyrate- = Sr(Butyrate)+ + log_k 0.7889 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Ba+2 + Butyrate- = Ba(Butyrate)+ + log_k 0.7389 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009721 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 +Ba+2 + 2Butyrate- = Ba(Butyrate)2 + log_k 0.88 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009722 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Isobutyrate- = H(Isobutyrate) + log_k 4.849 + delta_h 3.2217 kJ + -gamma 0 0 + # Id: 3309731 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Isobutyrate- = Zn(Isobutyrate)+ + log_k 1.44 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509731 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Isobutyrate- = Cu(Isobutyrate)+ + log_k 2.17 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319731 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Isobutyrate- = Cu(Isobutyrate)2 + log_k 3.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319732 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Isobutyrate- = Fe(Isobutyrate)+2 + log_k 4.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819731 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Isobutyrate- = Ca(Isobutyrate)+ + log_k 0.51 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509731 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Two_picoline = H(Two_picoline)+ + log_k 5.95 + delta_h -25.5224 kJ + -gamma 0 0 + # Id: 3309801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Two_picoline = Cu(Two_picoline)+2 + log_k 1.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Two_picoline = Cu(Two_picoline)2+2 + log_k 2.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319802 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + Two_picoline = Cu(Two_picoline)+ + log_k 5.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 2Two_picoline = Cu(Two_picoline)2+ + log_k 7.65 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309802 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 3Two_picoline = Cu(Two_picoline)3+ + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309803 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Two_picoline = Ag(Two_picoline)+ + log_k 2.32 + delta_h -24.2672 kJ + -gamma 0 0 + # Id: 209801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Two_picoline = Ag(Two_picoline)2+ + log_k 4.68 + delta_h -42.6768 kJ + -gamma 0 0 + # Id: 209802 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Two_picoline = Ni(Two_picoline)+2 + log_k 0.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Three_picoline = H(Three_picoline)+ + log_k 5.7 + delta_h -23.8488 kJ + -gamma 0 0 + # Id: 3309811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Three_picoline = Zn(Three_picoline)+2 + log_k 1 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2Three_picoline = Zn(Three_picoline)2+2 + log_k 2.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 3Three_picoline = Zn(Three_picoline)3+2 + log_k 2.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 4Three_picoline = Zn(Three_picoline)4+2 + log_k 3.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Three_picoline = Cd(Three_picoline)+2 + log_k 1.42 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609811 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2Three_picoline = Cd(Three_picoline)2+2 + log_k 2.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609812 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3Three_picoline = Cd(Three_picoline)3+2 + log_k 3.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 4Three_picoline = Cd(Three_picoline)4+2 + log_k 4 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + Three_picoline = Cu(Three_picoline)+ + log_k 5.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 2Three_picoline = Cu(Three_picoline)2+ + log_k 7.78 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 3Three_picoline = Cu(Three_picoline)3+ + log_k 8.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 4Three_picoline = Cu(Three_picoline)4+ + log_k 9 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Three_picoline = Cu(Three_picoline)+2 + log_k 2.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Three_picoline = Cu(Three_picoline)2+2 + log_k 4.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 3Three_picoline = Cu(Three_picoline)3+2 + log_k 6.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 4Three_picoline = Cu(Three_picoline)4+2 + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Three_picoline = Ag(Three_picoline)+ + log_k 2.2 + delta_h -21.7568 kJ + -gamma 0 0 + # Id: 209811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Three_picoline = Ag(Three_picoline)2+ + log_k 4.46 + delta_h -49.7896 kJ + -gamma 0 0 + # Id: 209812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Three_picoline = Ni(Three_picoline)+2 + log_k 1.87 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Three_picoline = Ni(Three_picoline)2+2 + log_k 3.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 3Three_picoline = Ni(Three_picoline)3+2 + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 4Three_picoline = Ni(Three_picoline)4+2 + log_k 4.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Three_picoline = Co(Three_picoline)+2 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009811 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +Co+2 + 2Three_picoline = Co(Three_picoline)2+2 + log_k 2.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009812 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +Co+2 + 3Three_picoline = Co(Three_picoline)3+2 + log_k 2.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009813 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +H+ + Four_picoline = H(Four_picoline)+ + log_k 6.03 + delta_h -25.3132 kJ + -gamma 0 0 + # Id: 3309821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Four_picoline = Zn(Four_picoline)+2 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2Four_picoline = Zn(Four_picoline)2+2 + log_k 2.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 3Four_picoline = Zn(Four_picoline)3+2 + log_k 2.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509823 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Four_picoline = Cd(Four_picoline)+2 + log_k 1.59 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609821 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2Four_picoline = Cd(Four_picoline)2+2 + log_k 2.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609822 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3Four_picoline = Cd(Four_picoline)3+2 + log_k 3.18 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609823 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 4Four_picoline = Cd(Four_picoline)4+2 + log_k 4 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609824 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + Four_picoline = Cu(Four_picoline)+ + log_k 5.65 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 2Four_picoline = Cu(Four_picoline)2+ + log_k 8.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 3Four_picoline = Cu(Four_picoline)3+ + log_k 8.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309823 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 4Four_picoline = Cu(Four_picoline)4+ + log_k 9.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309824 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Four_picoline = Cu(Four_picoline)+2 + log_k 2.88 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Four_picoline = Cu(Four_picoline)2+2 + log_k 5.16 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 3Four_picoline = Cu(Four_picoline)3+2 + log_k 6.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319823 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 4Four_picoline = Cu(Four_picoline)4+2 + log_k 8.08 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319824 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 5Four_picoline = Cu(Four_picoline)5+2 + log_k 8.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319825 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Four_picoline = Ag(Four_picoline)+ + log_k 2.03 + delta_h -25.5224 kJ + -gamma 0 0 + # Id: 209821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Four_picoline = Ag(Four_picoline)2+ + log_k 4.39 + delta_h -53.5552 kJ + -gamma 0 0 + # Id: 209822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Four_picoline = Ni(Four_picoline)+2 + log_k 2.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Four_picoline = Ni(Four_picoline)2+2 + log_k 3.59 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 3Four_picoline = Ni(Four_picoline)3+2 + log_k 4.34 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409823 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 4Four_picoline = Ni(Four_picoline)4+2 + log_k 4.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409824 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Four_picoline = Co(Four_picoline)+2 + log_k 1.56 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009821 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +Co+2 + 2Four_picoline = Co(Four_picoline)2+2 + log_k 2.51 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009822 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +Co+2 + 3Four_picoline = Co(Four_picoline)3+2 + log_k 2.94 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009823 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +Co+2 + 4Four_picoline = Co(Four_picoline)4+2 + log_k 3.17 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009824 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +H+ + Formate- = H(Formate) + log_k 3.745 + delta_h 0.1674 kJ + -gamma 0 0 + # Id: 3309831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Formate- = Pb(Formate)+ + log_k 2.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009831 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + Formate- = Zn(Formate)+ + log_k 1.44 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Formate- = Cd(Formate)+ + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609831 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Hg(OH)2 + Formate- + 2H+ = Hg(Formate)+ + 2H2O + log_k 9.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Formate- = Cu(Formate)+ + log_k 2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Formate- = Ni(Formate)+ + log_k 1.22 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409831 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Co+2 + Formate- = Co(Formate)+ + log_k 1.209 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009831 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 30.0 +Co+2 + 2Formate- = Co(Formate)2 + log_k 1.1365 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009832 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 +Cr+2 + Formate- = Cr(Formate)+ + log_k 1.07 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Formate- = Mg(Formate)+ + log_k 1.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Formate- = Ca(Formate)+ + log_k 1.43 + delta_h 4.184 kJ + -gamma 0 0 + # Id: 1509831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sr+2 + Formate- = Sr(Formate)+ + log_k 1.39 + delta_h 4 kJ + -gamma 0 0 + # Id: 8009831 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ba+2 + Formate- = Ba(Formate)+ + log_k 1.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Isovalerate- = H(Isovalerate) + log_k 4.781 + delta_h 4.5606 kJ + -gamma 0 0 + # Id: 3309841 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Isovalerate- = Zn(Isovalerate)+ + log_k 1.39 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509841 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Isovalerate- = Cu(Isovalerate)+ + log_k 2.08 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319841 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Isovalerate- = Ca(Isovalerate)+ + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509841 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Valerate- = H(Valerate) + log_k 4.843 + delta_h 2.887 kJ + -gamma 0 0 + # Id: 3309851 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Valerate- = Cu(Valerate)+ + log_k 2.12 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319851 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Valerate- = Ca(Valerate)+ + log_k 0.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509851 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ba+2 + Valerate- = Ba(Valerate)+ + log_k -0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009851 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Acetate- = H(Acetate) + log_k 4.757 + delta_h 0.41 kJ + -gamma 0 0 + # Id: 3309921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + 2H+ + Acetate- = Sn(Acetate)+ + 2H2O + log_k 10.0213 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 3.00 25.0 +Sn(OH)2 + 2H+ + 2Acetate- = Sn(Acetate)2 + 2H2O + log_k 12.32 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 3.00 25.0 +Sn(OH)2 + 2H+ + 3Acetate- = Sn(Acetate)3- + 2H2O + log_k 13.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909923 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 3.00 25.0 +Pb+2 + Acetate- = Pb(Acetate)+ + log_k 2.68 + delta_h -0.4 kJ + -gamma 0 0 + # Id: 6009921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2Acetate- = Pb(Acetate)2 + log_k 4.08 + delta_h -0.8 kJ + -gamma 0 0 + # Id: 6009922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Tl+ + Acetate- = Tl(Acetate) + log_k -0.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Zn+2 + Acetate- = Zn(Acetate)+ + log_k 1.58 + delta_h 8.3 kJ + -gamma 0 0 + # Id: 9509921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2Acetate- = Zn(Acetate)2 + log_k 2.6434 + delta_h 22 kJ + -gamma 0 0 + # Id: 9509922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Cd+2 + Acetate- = Cd(Acetate)+ + log_k 1.93 + delta_h 9.6 kJ + -gamma 0 0 + # Id: 1609921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2Acetate- = Cd(Acetate)2 + log_k 2.86 + delta_h 15 kJ + -gamma 0 0 + # Id: 1609922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + Acetate- = Hg(Acetate)+ + 2H2O + log_k 10.494 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + 2Acetate- = Hg(Acetate)2 + 2H2O + log_k 13.83 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619921 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 3.00 25.0 +Cu+2 + Acetate- = Cu(Acetate)+ + log_k 2.21 + delta_h 7.1 kJ + -gamma 0 0 + # Id: 2319921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cu+2 + 2Acetate- = Cu(Acetate)2 + log_k 3.4 + delta_h 12 kJ + -gamma 0 0 + # Id: 2319922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cu+2 + 3Acetate- = Cu(Acetate)3- + log_k 3.9434 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 2319923 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Ag+ + Acetate- = Ag(Acetate) + log_k 0.73 + delta_h 3 kJ + -gamma 0 0 + # Id: 209921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ag+ + 2Acetate- = Ag(Acetate)2- + log_k 0.64 + delta_h 3 kJ + -gamma 0 0 + # Id: 209922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ni+2 + Acetate- = Ni(Acetate)+ + log_k 1.37 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 5409921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ni+2 + 2Acetate- = Ni(Acetate)2 + log_k 2.1 + delta_h 10 kJ + -gamma 0 0 + # Id: 5409922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Co+2 + Acetate- = Co(Acetate)+ + log_k 1.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Co+2 + 2Acetate- = Co(Acetate)2 + log_k 0.7565 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 +Fe+2 + Acetate- = Fe(Acetate)+ + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Fe+3 + Acetate- = Fe(Acetate)+2 + log_k 4.0234 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Fe+3 + 2Acetate- = Fe(Acetate)2+ + log_k 7.5723 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Fe+3 + 3Acetate- = Fe(Acetate)3 + log_k 9.5867 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Mn+2 + Acetate- = Mn(Acetate)+ + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Cr+2 + Acetate- = Cr(Acetate)+ + log_k 1.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Cr+2 + 2Acetate- = Cr(Acetate)2 + log_k 2.92 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ + 2H+ + Acetate- = Cr(Acetate)+2 + 2H2O + log_k 15.0073 + delta_h -125.62 kJ + -gamma 0 0 + # Id: 2119921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Cr(OH)2+ + 2H+ + 2Acetate- = Cr(Acetate)2+ + 2H2O + log_k 17.9963 + delta_h -117.62 kJ + -gamma 0 0 + # Id: 2119922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Cr(OH)2+ + 2H+ + 3Acetate- = Cr(Acetate)3 + 2H2O + log_k 20.7858 + delta_h -96.62 kJ + -gamma 0 0 + # Id: 2119923 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Be+2 + Acetate- = Be(Acetate)+ + log_k 2.0489 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Be+2 + 2Acetate- = Be(Acetate)2 + log_k 3.0034 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Mg+2 + Acetate- = Mg(Acetate)+ + log_k 1.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Ca+2 + Acetate- = Ca(Acetate)+ + log_k 1.18 + delta_h 4 kJ + -gamma 0 0 + # Id: 1509920 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sr+2 + Acetate- = Sr(Acetate)+ + log_k 1.14 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Ba+2 + Acetate- = Ba(Acetate)+ + log_k 1.07 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Na+ + Acetate- = Na(Acetate) + log_k -0.18 + delta_h 12 kJ + -gamma 0 0 + # Id: 5009920 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +K+ + Acetate- = K(Acetate) + log_k -0.1955 + delta_h 4.184 kJ + -gamma 0 0 + # Id: 4109921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +H+ + Tartarate-2 = H(Tartarate)- + log_k 4.366 + delta_h -0.7531 kJ + -gamma 0 0 + # Id: 3309931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Tartarate-2 = H2(Tartarate) + log_k 7.402 + delta_h -3.6819 kJ + -gamma 0 0 + # Id: 3309932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sn(OH)2 + 2H+ + Tartarate-2 = Sn(Tartarate) + 2H2O + log_k 13.1518 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909931 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Pb+2 + Tartarate-2 = Pb(Tartarate) + log_k 3.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + 2Tartarate-2 = Al(Tartarate)2- + log_k 9.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 309931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Tl+ + Tartarate-2 = Tl(Tartarate)- + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Tl+ + Tartarate-2 + H+ = TlH(Tartarate) + log_k 4.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Tartarate-2 = Zn(Tartarate) + log_k 3.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2Tartarate-2 = Zn(Tartarate)2-2 + log_k 5.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Tartarate-2 + H+ = ZnH(Tartarate)+ + log_k 5.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509933 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Tartarate-2 = Cd(Tartarate) + log_k 2.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2Tartarate-2 = Cd(Tartarate)2-2 + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Tartarate-2 + 2H+ = Hg(Tartarate) + 2H2O + log_k 14 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Tartarate-2 = Cu(Tartarate) + log_k 3.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Tartarate-2 + H+ = CuH(Tartarate)+ + log_k 6.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Tartarate-2 = Ni(Tartarate) + log_k 3.46 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Tartarate-2 + H+ = NiH(Tartarate)+ + log_k 5.89 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Tartarate-2 = Co(Tartarate) + log_k 3.05 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009931 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Co+2 + 2Tartarate-2 = Co(Tartarate)2-2 + log_k 4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009932 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Co+2 + H+ + Tartarate-2 = CoH(Tartarate)+ + log_k 5.754 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009933 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 +Fe+2 + Tartarate-2 = Fe(Tartarate) + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Tartarate-2 = Fe(Tartarate)+ + log_k 7.78 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + Tartarate-2 = Mn(Tartarate) + log_k 3.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + Tartarate-2 + H+ = MnH(Tartarate)+ + log_k 6 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Tartarate-2 = Mg(Tartarate) + log_k 2.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Tartarate-2 + H+ = MgH(Tartarate)+ + log_k 5.75 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Be+2 + Tartarate-2 = Be(Tartarate) + log_k 2.768 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109931 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +Be+2 + 2Tartarate-2 = Be(Tartarate)2-2 + log_k 4.008 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109932 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +Ca+2 + Tartarate-2 = Ca(Tartarate) + log_k 2.8 + delta_h -8.368 kJ + -gamma 0 0 + # Id: 1509931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Tartarate-2 + H+ = CaH(Tartarate)+ + log_k 5.86 + delta_h -9.1211 kJ + -gamma 0 0 + # Id: 1509932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sr+2 + Tartarate-2 = Sr(Tartarate) + log_k 2.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009931 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 20.0 +Sr+2 + H+ + Tartarate-2 = SrH(Tartarate)+ + log_k 5.8949 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009932 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Ba+2 + Tartarate-2 = Ba(Tartarate) + log_k 2.54 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ba+2 + Tartarate-2 + H+ = BaH(Tartarate)+ + log_k 5.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Na+ + Tartarate-2 = Na(Tartarate)- + log_k 0.9 + delta_h -0.8368 kJ + -gamma 0 0 + # Id: 5009931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Na+ + Tartarate-2 + H+ = NaH(Tartarate) + log_k 4.58 + delta_h -2.8451 kJ + -gamma 0 0 + # Id: 5009932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +K+ + Tartarate-2 = K(Tartarate)- + log_k 0.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 4109931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Glycine- = H(Glycine) + log_k 9.778 + delta_h -44.3504 kJ + -gamma 0 0 + # Id: 3309941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Glycine- = H2(Glycine)+ + log_k 12.128 + delta_h -48.4507 kJ + -gamma 0 0 + # Id: 3309942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Glycine- = Pb(Glycine)+ + log_k 5.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + 2Glycine- = Pb(Glycine)2 + log_k 8.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009942 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Tl+ + Glycine- = Tl(Glycine) + log_k 1.72 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Glycine- = Zn(Glycine)+ + log_k 5.38 + delta_h -11.7152 kJ + -gamma 0 0 + # Id: 9509941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2Glycine- = Zn(Glycine)2 + log_k 9.81 + delta_h -24.2672 kJ + -gamma 0 0 + # Id: 9509942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 3Glycine- = Zn(Glycine)3- + log_k 12.3 + delta_h -39.748 kJ + -gamma 0 0 + # Id: 9509943 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Glycine- = Cd(Glycine)+ + log_k 4.69 + delta_h -8.7864 kJ + -gamma 0 0 + # Id: 1609941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2Glycine- = Cd(Glycine)2 + log_k 8.4 + delta_h -22.5936 kJ + -gamma 0 0 + # Id: 1609942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 3Glycine- = Cd(Glycine)3- + log_k 10.7 + delta_h -35.9824 kJ + -gamma 0 0 + # Id: 1609943 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Glycine- + 2H+ = Hg(Glycine)+ + 2H2O + log_k 17 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619941 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Hg(OH)2 + 2Glycine- + 2H+ = Hg(Glycine)2 + 2H2O + log_k 25.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619942 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cu+ + 2Glycine- = Cu(Glycine)2- + log_k 10.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Glycine- = Cu(Glycine)+ + log_k 8.57 + delta_h -25.104 kJ + -gamma 0 0 + # Id: 2319941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Glycine- = Cu(Glycine)2 + log_k 15.7 + delta_h -54.8104 kJ + -gamma 0 0 + # Id: 2319942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Glycine- = Ag(Glycine) + log_k 3.51 + delta_h -19.2464 kJ + -gamma 0 0 + # Id: 209941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Glycine- = Ag(Glycine)2- + log_k 6.89 + delta_h -48.116 kJ + -gamma 0 0 + # Id: 209942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Glycine- = Ni(Glycine)+ + log_k 6.15 + delta_h -18.828 kJ + -gamma 0 0 + # Id: 5409941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Glycine- = Ni(Glycine)2 + log_k 11.12 + delta_h -38.0744 kJ + -gamma 0 0 + # Id: 5409942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 3Glycine- = Ni(Glycine)3- + log_k 14.63 + delta_h -62.3416 kJ + -gamma 0 0 + # Id: 5409943 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Co+2 + Glycine- = Co(Glycine)+ + log_k 5.07 + delta_h -12 kJ + -gamma 0 0 + # Id: 2009941 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Co+2 + 2Glycine- = Co(Glycine)2 + log_k 9.07 + delta_h -26 kJ + -gamma 0 0 + # Id: 2009942 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Co+2 + 3Glycine- = Co(Glycine)3- + log_k 11.6 + delta_h -41 kJ + -gamma 0 0 + # Id: 2009943 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Co+2 + Glycine- + H2O = CoOH(Glycine) + H+ + log_k -5.02 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009944 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Fe+2 + Glycine- = Fe(Glycine)+ + log_k 4.31 + delta_h -15.0624 kJ + -gamma 0 0 + # Id: 2809941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 2Glycine- = Fe(Glycine)2 + log_k 8.29 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Glycine- = Fe(Glycine)+2 + log_k 9.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Glycine- + H+ = FeH(Glycine)+3 + log_k 11.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + Glycine- = Mn(Glycine)+ + log_k 3.19 + delta_h -1.2552 kJ + -gamma 0 0 + # Id: 4709941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + 2Glycine- = Mn(Glycine)2 + log_k 5.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Glycine- + 2H+ = Cr(Glycine)+2 + 2H2O + log_k 18.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119941 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 2Glycine- + 2H+ = Cr(Glycine)2+ + 2H2O + log_k 25.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119942 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 3Glycine- + 2H+ = Cr(Glycine)3 + 2H2O + log_k 31.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119943 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Mg+2 + Glycine- = Mg(Glycine)+ + log_k 2.08 + delta_h 4.184 kJ + -gamma 0 0 + # Id: 4609941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Glycine- = Ca(Glycine)+ + log_k 1.39 + delta_h -4.184 kJ + -gamma 0 0 + # Id: 1509941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Glycine- + H+ = CaH(Glycine)+2 + log_k 10.1 + delta_h -35.9824 kJ + -gamma 0 0 + # Id: 1509942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sr+2 + Glycine- = Sr(Glycine)+ + log_k 0.91 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009941 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Ba+2 + Glycine- = Ba(Glycine)+ + log_k 0.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Salicylate-2 = H(Salicylate)- + log_k 13.7 + delta_h -35.7732 kJ + -gamma 0 0 + # Id: 3309951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Salicylate-2 = H2(Salicylate) + log_k 16.8 + delta_h -38.7857 kJ + -gamma 0 0 + # Id: 3309952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Salicylate-2 = Zn(Salicylate) + log_k 7.71 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509951 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + Salicylate-2 + H+ = ZnH(Salicylate)+ + log_k 15.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Salicylate-2 = Cd(Salicylate) + log_k 6.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Salicylate-2 + H+ = CdH(Salicylate)+ + log_k 16 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Salicylate-2 = Cu(Salicylate) + log_k 11.3 + delta_h -17.9912 kJ + -gamma 0 0 + # Id: 2319951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Salicylate-2 = Cu(Salicylate)2-2 + log_k 19.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Salicylate-2 + H+ = CuH(Salicylate)+ + log_k 14.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319953 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Salicylate-2 = Ni(Salicylate) + log_k 8.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Salicylate-2 = Ni(Salicylate)2-2 + log_k 12.64 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409952 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Co+2 + Salicylate-2 = Co(Salicylate) + log_k 7.4289 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009951 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Co+2 + 2Salicylate-2 = Co(Salicylate)2-2 + log_k 11.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009952 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Fe+2 + Salicylate-2 = Fe(Salicylate) + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 2Salicylate-2 = Fe(Salicylate)2-2 + log_k 11.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Salicylate-2 = Fe(Salicylate)+ + log_k 17.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + 2Salicylate-2 = Fe(Salicylate)2- + log_k 29.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + Salicylate-2 = Mn(Salicylate) + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + 2Salicylate-2 = Mn(Salicylate)2-2 + log_k 10.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Be+2 + Salicylate-2 = Be(Salicylate) + log_k 13.3889 + delta_h -31.7732 kJ + -gamma 0 0 + # Id: 1109951 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Be+2 + 2Salicylate-2 = Be(Salicylate)2-2 + log_k 23.25 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109952 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Mg+2 + Salicylate-2 = Mg(Salicylate) + log_k 5.76 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Salicylate-2 + H+ = MgH(Salicylate)+ + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609952 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ca+2 + Salicylate-2 = Ca(Salicylate) + log_k 4.05 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Salicylate-2 + H+ = CaH(Salicylate)+ + log_k 14.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ba+2 + Salicylate-2 + H+ = BaH(Salicylate)+ + log_k 13.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009951 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Glutamate-2 = H(Glutamate)- + log_k 9.96 + delta_h -41.0032 kJ + -gamma 0 0 + # Id: 3309961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Glutamate-2 = H2(Glutamate) + log_k 14.26 + delta_h -43.5136 kJ + -gamma 0 0 + # Id: 3309962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +3H+ + Glutamate-2 = H3(Glutamate)+ + log_k 16.42 + delta_h -46.8608 kJ + -gamma 0 0 + # Id: 3309963 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Glutamate-2 = Pb(Glutamate) + log_k 6.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Pb+2 + 2Glutamate-2 = Pb(Glutamate)2-2 + log_k 8.61 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Pb+2 + Glutamate-2 + H+ = PbH(Glutamate)+ + log_k 14.08 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009963 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Al+3 + Glutamate-2 + H+ = AlH(Glutamate)+2 + log_k 13.07 + delta_h 0 kJ + -gamma 0 0 + # Id: 309961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Glutamate-2 = Zn(Glutamate) + log_k 6.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 2Glutamate-2 = Zn(Glutamate)2-2 + log_k 9.13 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 3Glutamate-2 = Zn(Glutamate)3-4 + log_k 9.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509963 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + Glutamate-2 = Cd(Glutamate) + log_k 4.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2Glutamate-2 = Cd(Glutamate)2-2 + log_k 7.59 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Glutamate-2 + 2H+ = Hg(Glutamate) + 2H2O + log_k 19.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Hg(OH)2 + 2Glutamate-2 + 2H+ = Hg(Glutamate)2-2 + 2H2O + log_k 26.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cu+2 + Glutamate-2 = Cu(Glutamate) + log_k 9.17 + delta_h -20.92 kJ + -gamma 0 0 + # Id: 2319961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Glutamate-2 = Cu(Glutamate)2-2 + log_k 15.78 + delta_h -48.116 kJ + -gamma 0 0 + # Id: 2319962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Glutamate-2 + H+ = CuH(Glutamate)+ + log_k 13.3 + delta_h -28.0328 kJ + -gamma 0 0 + # Id: 2319963 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Glutamate-2 = Ag(Glutamate)- + log_k 4.22 + delta_h 0 kJ + -gamma 0 0 + # Id: 209961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Glutamate-2 = Ag(Glutamate)2-3 + log_k 7.36 + delta_h 0 kJ + -gamma 0 0 + # Id: 209962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +2Ag+ + Glutamate-2 = Ag2(Glutamate) + log_k 3.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 209963 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Glutamate-2 = Ni(Glutamate) + log_k 6.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Glutamate-2 = Ni(Glutamate)2-2 + log_k 10.7 + delta_h -30.9616 kJ + -gamma 0 0 + # Id: 5409962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Glutamate-2 = Co(Glutamate) + log_k 5.4178 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009961 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Co+2 + 2Glutamate-2 = Co(Glutamate)2-2 + log_k 8.7178 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009962 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Mn+2 + Glutamate-2 = Mn(Glutamate) + log_k 4.95 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Mn+2 + 2Glutamate-2 = Mn(Glutamate)2-2 + log_k 8.48 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + Glutamate-2 + 2H+ = Cr(Glutamate)+ + 2H2O + log_k 22.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 2Glutamate-2 + 2H+ = Cr(Glutamate)2- + 2H2O + log_k 30.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + Glutamate-2 + 3H+ = CrH(Glutamate)+2 + 2H2O + log_k 25.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119963 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Mg+2 + Glutamate-2 = Mg(Glutamate) + log_k 2.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Glutamate-2 = Ca(Glutamate) + log_k 2.06 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Glutamate-2 + H+ = CaH(Glutamate)+ + log_k 11.13 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sr+2 + Glutamate-2 = Sr(Glutamate) + log_k 2.2278 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009961 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Ba+2 + Glutamate-2 = Ba(Glutamate) + log_k 2.14 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Phthalate-2 = H(Phthalate)- + log_k 5.408 + delta_h 2.1757 kJ + -gamma 0 0 + # Id: 3309971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Phthalate-2 = H2(Phthalate) + log_k 8.358 + delta_h 4.8534 kJ + -gamma 0 0 + # Id: 3309972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Phthalate-2 = Pb(Phthalate) + log_k 4.26 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009971 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Pb+2 + 2Phthalate-2 = Pb(Phthalate)2-2 + log_k 4.83 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Phthalate-2 + H+ = PbH(Phthalate)+ + log_k 6.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009973 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Phthalate-2 = Al(Phthalate)+ + log_k 4.56 + delta_h 0 kJ + -gamma 0 0 + # Id: 309971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + 2Phthalate-2 = Al(Phthalate)2- + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 309972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Phthalate-2 = Zn(Phthalate) + log_k 2.91 + delta_h 13.3888 kJ + -gamma 0 0 + # Id: 9509971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2Phthalate-2 = Zn(Phthalate)2-2 + log_k 4.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Phthalate-2 = Cd(Phthalate) + log_k 3.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Phthalate-2 + H+ = CdH(Phthalate)+ + log_k 6.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609973 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2Phthalate-2 = Cd(Phthalate)2-2 + log_k 3.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Phthalate-2 = Cu(Phthalate) + log_k 4.02 + delta_h 8.368 kJ + -gamma 0 0 + # Id: 2319971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Phthalate-2 + H+ = CuH(Phthalate)+ + log_k 7.1 + delta_h 3.8493 kJ + -gamma 0 0 + # Id: 2319970 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Phthalate-2 = Cu(Phthalate)2-2 + log_k 5.3 + delta_h 15.8992 kJ + -gamma 0 0 + # Id: 2319972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Phthalate-2 = Ni(Phthalate) + log_k 2.95 + delta_h 7.5312 kJ + -gamma 0 0 + # Id: 5409971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Phthalate-2 + H+ = NiH(Phthalate)+ + log_k 6.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Phthalate-2 = Co(Phthalate) + log_k 2.83 + delta_h 7.9 kJ + -gamma 0 0 + # Id: 2009971 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Co+2 + H+ + Phthalate-2 = CoH(Phthalate)+ + log_k 7.227 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009972 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +Mn+2 + Phthalate-2 = Mn(Phthalate) + log_k 2.74 + delta_h 10.0416 kJ + -gamma 0 0 + # Id: 4709971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Phthalate-2 + 2H+ = Cr(Phthalate)+ + 2H2O + log_k 16.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119971 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 2Phthalate-2 + 2H+ = Cr(Phthalate)2- + 2H2O + log_k 21.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119972 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 3Phthalate-2 + 2H+ = Cr(Phthalate)3-3 + 2H2O + log_k 23.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119973 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Be+2 + Phthalate-2 = Be(Phthalate) + log_k 4.8278 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109971 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Be+2 + 2Phthalate-2 = Be(Phthalate)2-2 + log_k 6.5478 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109972 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Mg+2 + Phthalate-2 = Mg(Phthalate) + log_k 2.49 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609971 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ca+2 + Phthalate-2 = Ca(Phthalate) + log_k 2.45 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509970 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Phthalate-2 + H+ = CaH(Phthalate)+ + log_k 6.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ba+2 + Phthalate-2 = Ba(Phthalate) + log_k 2.33 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Na+ + Phthalate-2 = Na(Phthalate)- + log_k 0.8 + delta_h 4.184 kJ + -gamma 0 0 + # Id: 5009970 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +K+ + Phthalate-2 = K(Phthalate)- + log_k 0.7 + delta_h 3.7656 kJ + -gamma 0 0 + # Id: 4109971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +PHASES +Sulfur + S + H+ + 2e- = HS- + log_k -2.1449 + delta_h -16.3 kJ +Semetal(hex + Se + H+ + 2e- = HSe- + log_k -7.7084 + delta_h 15.9 kJ +Semetal(am) + Se + H+ + 2e- = HSe- + log_k -7.1099 + delta_h 10.8784 kJ +Sbmetal + Sb + 3H2O = Sb(OH)3 + 3H+ + 3e- + log_k -11.6889 + delta_h 83.89 kJ +Snmetal(wht) + Sn + 2H2O = Sn(OH)2 + 2H+ + 2e- + log_k -2.3266 + delta_h -0 kJ +Pbmetal + Pb = Pb+2 + 2e- + log_k 4.2462 + delta_h 0.92 kJ +Tlmetal + Tl = Tl+ + e- + log_k 5.6762 + delta_h 5.36 kJ +Znmetal + Zn = Zn+2 + 2e- + log_k 25.7886 + delta_h -153.39 kJ +Cdmetal(alpha) + Cd = Cd+2 + 2e- + log_k 13.5147 + delta_h -75.33 kJ +Cdmetal(gamma) + Cd = Cd+2 + 2e- + log_k 13.618 + delta_h -75.92 kJ +Hgmetal(l) + Hg = 0.5Hg2+2 + e- + log_k -13.4517 + delta_h 83.435 kJ +Cumetal + Cu = Cu+ + e- + log_k -8.756 + delta_h 71.67 kJ +Agmetal + Ag = Ag+ + e- + log_k -13.5065 + delta_h 105.79 kJ +Crmetal + Cr = Cr+2 + 2e- + log_k 30.4831 + delta_h -172 kJ +Vmetal + V = V+3 + 3e- + log_k 44.0253 + delta_h -259 kJ +Stibnite + Sb2S3 + 6H2O = 2Sb(OH)3 + 3H+ + 3HS- + log_k -50.46 + delta_h 293.78 kJ +Orpiment + As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ + log_k -61.0663 + delta_h 350.68 kJ +Realgar + AsS + 3H2O = H3AsO3 + HS- + 2H+ + e- + log_k -19.747 + delta_h 127.8 kJ +SnS + SnS + 2H2O = Sn(OH)2 + H+ + HS- + log_k -19.114 + delta_h -0 kJ +SnS2 + SnS2 + 6H2O = Sn(OH)6-2 + 4H+ + 2HS- + log_k -57.4538 + delta_h -0 kJ +Galena + PbS + H+ = Pb+2 + HS- + log_k -13.97 + delta_h 80 kJ +Tl2S + Tl2S + H+ = 2Tl+ + HS- + log_k -7.19 + delta_h 91.52 kJ +ZnS(am) + ZnS + H+ = Zn+2 + HS- + log_k -9.052 + delta_h 15.3553 kJ +Sphalerite + ZnS + H+ = Zn+2 + HS- + log_k -11.45 + delta_h 30 kJ +Wurtzite + ZnS + H+ = Zn+2 + HS- + log_k -8.95 + delta_h 21.171 kJ +Greenockite + CdS + H+ = Cd+2 + HS- + log_k -14.36 + delta_h 55 kJ +Hg2S + Hg2S + H+ = Hg2+2 + HS- + log_k -11.6765 + delta_h 69.7473 kJ +Cinnabar + HgS + 2H2O = Hg(OH)2 + H+ + HS- + log_k -45.694 + delta_h 253.76 kJ +Metacinnabar + HgS + 2H2O = Hg(OH)2 + H+ + HS- + log_k -45.094 + delta_h 253.72 kJ +Chalcocite + Cu2S + H+ = 2Cu+ + HS- + log_k -34.92 + delta_h 168 kJ +Djurleite + Cu0.066Cu1.868S + H+ = 0.066Cu+2 + 1.868Cu+ + HS- + log_k -33.92 + delta_h 200.334 kJ +Anilite + Cu0.25Cu1.5S + H+ = 0.25Cu+2 + 1.5Cu+ + HS- + log_k -31.878 + delta_h 182.15 kJ +BlaubleiII + Cu0.6Cu0.8S + H+ = 0.6Cu+2 + 0.8Cu+ + HS- + log_k -27.279 + delta_h -0 kJ +BlaubleiI + Cu0.9Cu0.2S + H+ = 0.9Cu+2 + 0.2Cu+ + HS- + log_k -24.162 + delta_h -0 kJ +Covellite + CuS + H+ = Cu+2 + HS- + log_k -22.3 + delta_h 97 kJ +Chalcopyrite + CuFeS2 + 2H+ = Cu+2 + Fe+2 + 2HS- + log_k -35.27 + delta_h 148.448 kJ +Acanthite + Ag2S + H+ = 2Ag+ + HS- + log_k -36.22 + delta_h 227 kJ +NiS(alpha) + NiS + H+ = Ni+2 + HS- + log_k -5.6 + delta_h -0 kJ +NiS(beta) + NiS + H+ = Ni+2 + HS- + log_k -11.1 + delta_h -0 kJ +NiS(gamma) + NiS + H+ = Ni+2 + HS- + log_k -12.8 + delta_h -0 kJ +CoS(alpha) + CoS + H+ = Co+2 + HS- + log_k -7.44 + delta_h -0 kJ +CoS(beta) + CoS + H+ = Co+2 + HS- + log_k -11.07 + delta_h -0 kJ +FeS(ppt) + FeS + H+ = Fe+2 + HS- + log_k -2.95 + delta_h -11 kJ +Greigite + Fe3S4 + 4H+ = 2Fe+3 + Fe+2 + 4HS- + log_k -45.035 + delta_h -0 kJ +Mackinawite + FeS + H+ = Fe+2 + HS- + log_k -3.6 + delta_h -0 kJ +Pyrite + FeS2 + 2H+ + 2e- = Fe+2 + 2HS- + log_k -18.5082 + delta_h 49.844 kJ +MnS(grn) + MnS + H+ = Mn+2 + HS- + log_k 0.17 + delta_h -32 kJ +MnS(pnk) + MnS + H+ = Mn+2 + HS- + log_k 3.34 + delta_h -0 kJ +MoS2 + MoS2 + 4H2O = MoO4-2 + 6H+ + 2HS- + 2e- + log_k -70.2596 + delta_h 389.02 kJ +BeS + BeS + H+ = Be+2 + HS- + log_k 19.38 + delta_h -0 kJ +BaS + BaS + H+ = Ba+2 + HS- + log_k 16.18 + delta_h -0 kJ +Hg2(Cyanide)2 + Hg2(Cyanide)2 = Hg2+2 + 2Cyanide- + log_k -39.3 + delta_h -0 kJ +CuCyanide + CuCyanide = Cu+ + Cyanide- + log_k -19.5 + delta_h -19 kJ +AgCyanide + AgCyanide = Ag+ + Cyanide- + log_k -15.74 + delta_h 110.395 kJ +Ag2(Cyanide)2 + Ag2(Cyanide)2 = 2Ag+ + 2Cyanide- + log_k -11.3289 + delta_h -0 kJ +NaCyanide(cubic) + NaCyanide = Cyanide- + Na+ + log_k 1.6012 + delta_h 0.969 kJ +KCyanide(cubic) + KCyanide = Cyanide- + K+ + log_k 1.4188 + delta_h 11.93 kJ +Pb2Fe(Cyanide)6 + Pb2Fe(Cyanide)6 = 2Pb+2 + Fe+2 + 6Cyanide- + log_k -53.42 + delta_h -0 kJ +Zn2Fe(Cyanide)6 + Zn2Fe(Cyanide)6 = 2Zn+2 + Fe+2 + 6Cyanide- + log_k -51.08 + delta_h -0 kJ +Cd2Fe(Cyanide)6 + Cd2Fe(Cyanide)6 = 2Cd+2 + Fe+2 + 6Cyanide- + log_k -52.78 + delta_h -0 kJ +Ag4Fe(Cyanide)6 + Ag4Fe(Cyanide)6 = 4Ag+ + Fe+2 + 6Cyanide- + log_k -79.47 + delta_h -0 kJ +Ag3Fe(Cyanide)6 + Ag3Fe(Cyanide)6 = 3Ag+ + Fe+3 + 6Cyanide- + log_k -72.7867 + delta_h -0 kJ +Mn3(Fe(Cyanide)6)2 + Mn3(Fe(Cyanide)6)2 = 3Mn+2 + 2Fe+3 + 12Cyanide- + log_k -105.4 + delta_h -0 kJ +Sb2Se3 + Sb2Se3 + 6H2O = 2Sb(OH)3 + 3HSe- + 3H+ + log_k -67.7571 + delta_h 343.046 kJ +SnSe + SnSe + 2H2O = Sn(OH)2 + H+ + HSe- + log_k -30.494 + delta_h -0 kJ +SnSe2 + SnSe2 + 6H2O = Sn(OH)6-2 + 4H+ + 2HSe- + log_k -65.1189 + delta_h -0 kJ +Clausthalite + PbSe + H+ = Pb+2 + HSe- + log_k -27.1 + delta_h 119.72 kJ +Tl2Se + Tl2Se + H+ = 2Tl+ + HSe- + log_k -18.1 + delta_h 85.62 kJ +ZnSe + ZnSe + H+ = Zn+2 + HSe- + log_k -14.4 + delta_h 25.51 kJ +CdSe + CdSe + H+ = Cd+2 + HSe- + log_k -20.2 + delta_h 75.9814 kJ +HgSe + HgSe + 2H2O = Hg(OH)2 + H+ + HSe- + log_k -55.694 + delta_h -0 kJ +Cu2Se(alpha) + Cu2Se + H+ = 2Cu+ + HSe- + log_k -45.8 + delta_h 214.263 kJ +Cu3Se2 + Cu3Se2 + 2H+ = 2HSe- + 2Cu+ + Cu+2 + log_k -63.4911 + delta_h 340.327 kJ +CuSe + CuSe + H+ = Cu+2 + HSe- + log_k -33.1 + delta_h 121.127 kJ +CuSe2 + CuSe2 + 2H+ + 2e- = 2HSe- + Cu+2 + log_k -33.3655 + delta_h 140.582 kJ +Ag2Se + Ag2Se + H+ = 2Ag+ + HSe- + log_k -48.7 + delta_h 265.48 kJ +NiSe + NiSe + H+ = Ni+2 + HSe- + log_k -17.7 + delta_h -0 kJ +CoSe + CoSe + H+ = Co+2 + HSe- + log_k -16.2 + delta_h -0 kJ +FeSe + FeSe + H+ = Fe+2 + HSe- + log_k -11 + delta_h 2.092 kJ +Ferroselite + FeSe2 + 2H+ + 2e- = 2HSe- + Fe+2 + log_k -18.5959 + delta_h 47.2792 kJ +MnSe + MnSe + H+ = Mn+2 + HSe- + log_k 3.5 + delta_h -98.15 kJ +AlSb + AlSb + 3H2O = Sb(OH)3 + 6e- + Al+3 + 3H+ + log_k 65.6241 + delta_h -0 kJ +ZnSb + ZnSb + 3H2O = Sb(OH)3 + 5e- + Zn+2 + 3H+ + log_k 11.0138 + delta_h -54.8773 kJ +CdSb + CdSb + 3H2O = Sb(OH)3 + 5e- + 3H+ + Cd+2 + log_k -0.3501 + delta_h 22.36 kJ +Cu2Sb:3H2O + Cu2Sb:3H2O = Sb(OH)3 + 6e- + 3H+ + Cu+ + Cu+2 + log_k -34.8827 + delta_h 233.237 kJ +Cu3Sb + Cu3Sb + 3H2O = Sb(OH)3 + 6e- + 3H+ + 3Cu+ + log_k -42.5937 + delta_h 308.131 kJ +#Ag4Sb +# Ag4Sb + 3H2O = Sb(OH)3 + 6e- + 3Ag+ + 3H+ +# log_k -56.1818 +# delta_h -0 kJ +Breithauptite + NiSb + 3H2O = Sb(OH)3 + 5e- + 3H+ + Ni+2 + log_k -18.5225 + delta_h 96.0019 kJ +MnSb + MnSb + 3H2O = Mn+3 + Sb(OH)3 + 6e- + 3H+ + log_k -2.9099 + delta_h 21.1083 kJ +Mn2Sb + Mn2Sb + 3H2O = 2Mn+2 + Sb(OH)3 + 7e- + 3H+ + log_k 61.0796 + delta_h -0 kJ +USb2 + USb2 + 8H2O = UO2+2 + 2Sb(OH)3 + 12e- + 10H+ + log_k 29.5771 + delta_h -103.56 kJ +U3Sb4 + U3Sb4 + 12H2O = 3U+4 + 4Sb(OH)3 + 24e- + 12H+ + log_k 152.383 + delta_h -986.04 kJ +Mg2Sb3 + Mg2Sb3 + 9H2O = 2Mg+2 + 3Sb(OH)3 + 9H+ + 13e- + log_k 74.6838 + delta_h -0 kJ +Ca3Sb2 + Ca3Sb2 + 6H2O = 3Ca+2 + 2Sb(OH)3 + 6H+ + 12e- + log_k 142.974 + delta_h -732.744 kJ +NaSb + NaSb + 3H2O = Na+ + Sb(OH)3 + 3H+ + 4e- + log_k 23.1658 + delta_h -93.45 kJ +Na3Sb + Na3Sb + 3H2O = 3Na+ + Sb(OH)3 + 3H+ + 6e- + log_k 94.4517 + delta_h -432.13 kJ +SeO2 + SeO2 + H2O = HSeO3- + H+ + log_k 0.1246 + delta_h 1.4016 kJ +SeO3 + SeO3 + H2O = SeO4-2 + 2H+ + log_k 21.044 + delta_h -146.377 kJ +Sb2O5 + Sb2O5 + 7H2O = 2Sb(OH)6- + 2H+ + log_k -9.6674 + delta_h -0 kJ +SbO2 + SbO2 + 4H2O = Sb(OH)6- + e- + 2H+ + log_k -27.8241 + delta_h -0 kJ +Sb2O4 + Sb2O4 + 2H2O + 2H+ + 2e- = 2Sb(OH)3 + log_k 3.4021 + delta_h -68.04 kJ +Sb4O6(cubic) + Sb4O6 + 6H2O = 4Sb(OH)3 + log_k -18.2612 + delta_h 61.1801 kJ +Sb4O6(orth) + Sb4O6 + 6H2O = 4Sb(OH)3 + log_k -17.9012 + delta_h 37.6801 kJ +Sb(OH)3 + Sb(OH)3 = Sb(OH)3 + log_k -7.1099 + delta_h 30.1248 kJ +Senarmontite + Sb2O3 + 3H2O = 2Sb(OH)3 + log_k -12.3654 + delta_h 30.6478 kJ +Valentinite + Sb2O3 + 3H2O = 2Sb(OH)3 + log_k -8.4806 + delta_h 19.0163 kJ +Chalcedony + SiO2 + 2H2O = H4SiO4 + log_k -3.55 + delta_h 19.7 kJ +Cristobalite + SiO2 + 2H2O = H4SiO4 + log_k -3.35 + delta_h 20.006 kJ +Quartz + SiO2 + 2H2O = H4SiO4 + log_k -4 + delta_h 22.36 kJ +SiO2(am-gel) + SiO2 + 2H2O = H4SiO4 + log_k -2.71 + delta_h 14 kJ +SiO2(am-ppt) + SiO2 + 2H2O = H4SiO4 + log_k -2.74 + delta_h 15.15 kJ +SnO + SnO + H2O = Sn(OH)2 + log_k -4.9141 + delta_h -0 kJ +SnO2 + SnO2 + 4H2O = Sn(OH)6-2 + 2H+ + log_k -28.9749 + delta_h -0 kJ +Sn(OH)2 + Sn(OH)2 = Sn(OH)2 + log_k -5.4309 + delta_h -0 kJ +Sn(OH)4 + Sn(OH)4 + 2H2O = Sn(OH)6-2 + 2H+ + log_k -22.2808 + delta_h -0 kJ +H2Sn(OH)6 + H2Sn(OH)6 = Sn(OH)6-2 + 2H+ + log_k -23.5281 + delta_h -0 kJ +Massicot + PbO + 2H+ = Pb+2 + H2O + log_k 12.894 + delta_h -66.848 kJ +Litharge + PbO + 2H+ = Pb+2 + H2O + log_k 12.694 + delta_h -65.501 kJ +PbO:0.3H2O + PbO:0.33H2O + 2H+ = Pb+2 + 1.33H2O + log_k 12.98 + delta_h -0 kJ +Plattnerite + PbO2 + 4H+ + 2e- = Pb+2 + 2H2O + log_k 49.6001 + delta_h -296.27 kJ +Pb(OH)2 + Pb(OH)2 + 2H+ = Pb+2 + 2H2O + log_k 8.15 + delta_h -58.5342 kJ +Pb2O(OH)2 + Pb2O(OH)2 + 4H+ = 2Pb+2 + 3H2O + log_k 26.188 + delta_h -0 kJ +Al(OH)3(am) + Al(OH)3 + 3H+ = Al+3 + 3H2O + log_k 10.8 + delta_h -111 kJ +Boehmite + AlOOH + 3H+ = Al+3 + 2H2O + log_k 8.578 + delta_h -117.696 kJ +Diaspore + AlOOH + 3H+ = Al+3 + 2H2O + log_k 6.873 + delta_h -103.052 kJ +Gibbsite + Al(OH)3 + 3H+ = Al+3 + 3H2O + log_k 8.291 + delta_h -95.3952 kJ +Tl2O + Tl2O + 2H+ = 2Tl+ + H2O + log_k 27.0915 + delta_h -96.41 kJ +TlOH + TlOH + H+ = Tl+ + H2O + log_k 12.9186 + delta_h -41.57 kJ +Avicennite + Tl2O3 + 3H2O = 2Tl(OH)3 + log_k -13 + delta_h -0 kJ +Tl(OH)3 + Tl(OH)3 = Tl(OH)3 + log_k -5.441 + delta_h -0 kJ +Zn(OH)2(am) + Zn(OH)2 + 2H+ = Zn+2 + 2H2O + log_k 12.474 + delta_h -80.62 kJ +Zn(OH)2 + Zn(OH)2 + 2H+ = Zn+2 + 2H2O + log_k 12.2 + delta_h -0 kJ +Zn(OH)2(beta) + Zn(OH)2 + 2H+ = Zn+2 + 2H2O + log_k 11.754 + delta_h -83.14 kJ +Zn(OH)2(gamma) + Zn(OH)2 + 2H+ = Zn+2 + 2H2O + log_k 11.734 + delta_h -0 kJ +Zn(OH)2(epsilon) + Zn(OH)2 + 2H+ = Zn+2 + 2H2O + log_k 11.534 + delta_h -81.8 kJ +ZnO(active) + ZnO + 2H+ = Zn+2 + H2O + log_k 11.1884 + delta_h -88.76 kJ +Zincite + ZnO + 2H+ = Zn+2 + H2O + log_k 11.334 + delta_h -89.62 kJ +Cd(OH)2(am) + Cd(OH)2 + 2H+ = Cd+2 + 2H2O + log_k 13.73 + delta_h -86.9017 kJ +Cd(OH)2 + Cd(OH)2 + 2H+ = Cd+2 + 2H2O + log_k 13.644 + delta_h -94.62 kJ +Monteponite + CdO + 2H+ = Cd+2 + H2O + log_k 15.1034 + delta_h -103.4 kJ +Hg2(OH)2 + Hg2(OH)2 + 2H+ = Hg2+2 + 2H2O + log_k 5.2603 + delta_h -0 kJ +Montroydite + HgO + H2O = Hg(OH)2 + log_k -3.64 + delta_h -38.9 kJ +Hg(OH)2 + Hg(OH)2 = Hg(OH)2 + log_k -3.4963 + delta_h -0 kJ +Cuprite + Cu2O + 2H+ = 2Cu+ + H2O + log_k -1.406 + delta_h -124.02 kJ +Cu(OH)2 + Cu(OH)2 + 2H+ = Cu+2 + 2H2O + log_k 8.674 + delta_h -56.42 kJ +Tenorite + CuO + 2H+ = Cu+2 + H2O + log_k 7.644 + delta_h -64.867 kJ +Ag2O + Ag2O + 2H+ = 2Ag+ + H2O + log_k 12.574 + delta_h -45.62 kJ +Ni(OH)2 + Ni(OH)2 + 2H+ = Ni+2 + 2H2O + log_k 12.794 + delta_h -95.96 kJ +Bunsenite + NiO + 2H+ = Ni+2 + H2O + log_k 12.4456 + delta_h -100.13 kJ +CoO + CoO + 2H+ = Co+2 + H2O + log_k 13.5864 + delta_h -106.295 kJ +Co(OH)2 + Co(OH)2 + 2H+ = Co+2 + 2H2O + log_k 13.094 + delta_h -0 kJ +Co(OH)3 + Co(OH)3 + 3H+ = Co+3 + 3H2O + log_k -2.309 + delta_h -92.43 kJ +#Wustite-0.11 +# WUSTITE-0.11 + 2H+ = 0.947Fe+2 + H2O +# log_k 11.6879 +# delta_h -103.938 kJ +Fe(OH)2 + Fe(OH)2 + 2H+ = Fe+2 + 2H2O + log_k 13.564 + delta_h -0 kJ +Ferrihydrite + Fe(OH)3 + 3H+ = Fe+3 + 3H2O + log_k 3.191 + delta_h -73.374 kJ +Fe3(OH)8 + Fe3(OH)8 + 8H+ = 2Fe+3 + Fe+2 + 8H2O + log_k 20.222 + delta_h -0 kJ +Goethite + FeOOH + 3H+ = Fe+3 + 2H2O + log_k 0.491 + delta_h -60.5843 kJ +Pyrolusite + MnO2 + 4H+ + 2e- = Mn+2 + 2H2O + log_k 41.38 + delta_h -272 kJ +Birnessite + MnO2 + 4H+ + e- = Mn+3 + 2H2O + log_k 18.091 + delta_h -0 kJ +Nsutite + MnO2 + 4H+ + e- = Mn+3 + 2H2O + log_k 17.504 + delta_h -0 kJ +Pyrochroite + Mn(OH)2 + 2H+ = Mn+2 + 2H2O + log_k 15.194 + delta_h -97.0099 kJ +Manganite + MnOOH + 3H+ + e- = Mn+2 + 2H2O + log_k 25.34 + delta_h -0 kJ +Cr(OH)2 + Cr(OH)2 + 2H+ = Cr+2 + 2H2O + log_k 10.8189 + delta_h -35.6058 kJ +Cr(OH)3(am) + Cr(OH)3 + H+ = Cr(OH)2+ + H2O + log_k -0.75 + delta_h -0 kJ +Cr(OH)3 + Cr(OH)3 + H+ = Cr(OH)2+ + H2O + log_k 1.3355 + delta_h -29.7692 kJ +CrO3 + CrO3 + H2O = CrO4-2 + 2H+ + log_k -3.2105 + delta_h -5.2091 kJ +MoO3 + MoO3 + H2O = MoO4-2 + 2H+ + log_k -8 + delta_h -0 kJ +VO + VO + 2H+ = V+3 + H2O + e- + log_k 14.7563 + delta_h -113.041 kJ +V(OH)3 + V(OH)3 + 3H+ = V+3 + 3H2O + log_k 7.591 + delta_h -0 kJ +VO(OH)2 + VO(OH)2 + 2H+ = VO+2 + 2H2O + log_k 5.1506 + delta_h -0 kJ +Uraninite + UO2 + 4H+ = U+4 + 2H2O + log_k -4.6693 + delta_h -77.86 kJ +UO2(am) + UO2 + 4H+ = U+4 + 2H2O + log_k 0.934 + delta_h -109.746 kJ +UO3 + UO3 + 2H+ = UO2+2 + H2O + log_k 7.7 + delta_h -81.0299 kJ +Gummite + UO3 + 2H+ = UO2+2 + H2O + log_k 7.6718 + delta_h -81.0299 kJ +UO2(OH)2(beta) + UO2(OH)2 + 2H+ = UO2+2 + 2H2O + log_k 5.6116 + delta_h -56.7599 kJ +Schoepite + UO2(OH)2:H2O + 2H+ = UO2+2 + 3H2O + log_k 5.994 + delta_h -49.79 kJ +Be(OH)2(am) + Be(OH)2 + 2H+ = Be+2 + 2H2O + log_k 7.194 + delta_h -0 kJ +Be(OH)2(alpha) + Be(OH)2 + 2H+ = Be+2 + 2H2O + log_k 6.894 + delta_h -0 kJ +Be(OH)2(beta) + Be(OH)2 + 2H+ = Be+2 + 2H2O + log_k 6.494 + delta_h -0 kJ +Brucite + Mg(OH)2 + 2H+ = Mg+2 + 2H2O + log_k 16.844 + delta_h -113.996 kJ +Periclase + MgO + 2H+ = Mg+2 + H2O + log_k 21.5841 + delta_h -151.23 kJ +Mg(OH)2(active) + Mg(OH)2 + 2H+ = Mg+2 + 2H2O + log_k 18.794 + delta_h -0 kJ +Lime + CaO + 2H+ = Ca+2 + H2O + log_k 32.6993 + delta_h -193.91 kJ +Portlandite + Ca(OH)2 + 2H+ = Ca+2 + 2H2O + log_k 22.804 + delta_h -128.62 kJ +Ba(OH)2:8H2O + Ba(OH)2:8H2O + 2H+ = Ba+2 + 10H2O + log_k 24.394 + delta_h -54.32 kJ +Cu(SbO3)2 + Cu(SbO3)2 + 6H+ + 4e- = 2Sb(OH)3 + Cu+2 + log_k 45.2105 + delta_h -0 kJ +Arsenolite + As2O3 + 3H2O = 2H3AsO3 + log_k -1.38 + delta_h 59.9567 kJ +Claudetite + As2O3 + 3H2O = 2H3AsO3 + log_k -1.5325 + delta_h 55.6054 kJ +As2O5 + As2O5 + 3H2O = 2H3AsO4 + log_k 6.7061 + delta_h -22.64 kJ +Pb2O3 + Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2O + log_k 61.04 + delta_h -0 kJ +Minium + Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2O + log_k 73.5219 + delta_h -421.874 kJ +Al2O3 + Al2O3 + 6H+ = 2Al+3 + 3H2O + log_k 19.6524 + delta_h -258.59 kJ +Co3O4 + Co3O4 + 8H+ = Co+2 + 2Co+3 + 4H2O + log_k -10.4956 + delta_h -107.5 kJ +CoFe2O4 + CoFe2O4 + 8H+ = Co+2 + 2Fe+3 + 4H2O + log_k -3.5281 + delta_h -158.82 kJ +Magnetite + Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O + log_k 3.4028 + delta_h -208.526 kJ +Hercynite + FeAl2O4 + 8H+ = Fe+2 + 2Al+3 + 4H2O + log_k 22.893 + delta_h -313.92 kJ +Hematite + Fe2O3 + 6H+ = 2Fe+3 + 3H2O + log_k -1.418 + delta_h -128.987 kJ +Maghemite + Fe2O3 + 6H+ = 2Fe+3 + 3H2O + log_k 6.386 + delta_h -0 kJ +Lepidocrocite + FeOOH + 3H+ = Fe+3 + 2H2O + log_k 1.371 + delta_h -0 kJ +Hausmannite + Mn3O4 + 8H+ + 2e- = 3Mn+2 + 4H2O + log_k 61.03 + delta_h -421 kJ +Bixbyite + Mn2O3 + 6H+ = 2Mn+3 + 3H2O + log_k -0.6445 + delta_h -124.49 kJ +Cr2O3 + Cr2O3 + H2O + 2H+ = 2Cr(OH)2+ + log_k -2.3576 + delta_h -50.731 kJ +#V2O3 +# V2O3 + 3H+ = V+3 + 1.5H2O +# log_k 4.9 +# delta_h -82.5085 kJ +V3O5 + V3O5 + 4H+ = 3VO+2 + 2H2O + 2e- + log_k 1.8361 + delta_h -98.46 kJ +#V2O4 +# V2O4 + 2H+ = VO+2 + H2O +# log_k 4.27 +# delta_h -58.8689 kJ +V4O7 + V4O7 + 6H+ = 4VO+2 + 3H2O + 2e- + log_k 7.1865 + delta_h -163.89 kJ +V6O13 + V6O13 + 2H+ = 6VO2+ + H2O + 4e- + log_k -60.86 + delta_h 271.5 kJ +V2O5 + V2O5 + 2H+ = 2VO2+ + H2O + log_k -1.36 + delta_h 34 kJ +U4O9 + U4O9 + 18H+ + 2e- = 4U+4 + 9H2O + log_k -3.0198 + delta_h -426.87 kJ +U3O8 + U3O8 + 16H+ + 4e- = 3U+4 + 8H2O + log_k 21.0834 + delta_h -485.44 kJ +Spinel + MgAl2O4 + 8H+ = Mg+2 + 2Al+3 + 4H2O + log_k 36.8476 + delta_h -388.012 kJ +Magnesioferrite + Fe2MgO4 + 8H+ = Mg+2 + 2Fe+3 + 4H2O + log_k 16.8597 + delta_h -278.92 kJ +Natron + Na2CO3:10H2O = 2Na+ + CO3-2 + 10H2O + log_k -1.311 + delta_h 65.8771 kJ +Cuprousferrite + CuFeO2 + 4H+ = Cu+ + Fe+3 + 2H2O + log_k -8.9171 + delta_h -15.89 kJ +Cupricferrite + CuFe2O4 + 8H+ = Cu+2 + 2Fe+3 + 4H2O + log_k 5.9882 + delta_h -210.21 kJ +FeCr2O4 + FeCr2O4 + 4H+ = 2Cr(OH)2+ + Fe+2 + log_k 7.2003 + delta_h -140.4 kJ +MgCr2O4 + MgCr2O4 + 4H+ = 2Cr(OH)2+ + Mg+2 + log_k 16.2007 + delta_h -179.4 kJ +SbF3 + SbF3 + 3H2O = Sb(OH)3 + 3H+ + 3F- + log_k -10.2251 + delta_h -6.7279 kJ +PbF2 + PbF2 = Pb+2 + 2F- + log_k -7.44 + delta_h 20 kJ +ZnF2 + ZnF2 = Zn+2 + 2F- + log_k -0.5343 + delta_h -59.69 kJ +CdF2 + CdF2 = Cd+2 + 2F- + log_k -1.2124 + delta_h -46.22 kJ +Hg2F2 + Hg2F2 = Hg2+2 + 2F- + log_k -10.3623 + delta_h -18.486 kJ +CuF + CuF = Cu+ + F- + log_k -4.9056 + delta_h 16.648 kJ +CuF2 + CuF2 = Cu+2 + 2F- + log_k 1.115 + delta_h -66.901 kJ +CuF2:2H2O + CuF2:2H2O = Cu+2 + 2F- + 2H2O + log_k -4.55 + delta_h -15.2716 kJ +AgF:4H2O + AgF:4H2O = Ag+ + F- + 4H2O + log_k 1.0491 + delta_h 15.4202 kJ +CoF2 + CoF2 = Co+2 + 2F- + log_k -1.5969 + delta_h -57.368 kJ +CoF3 + CoF3 = Co+3 + 3F- + log_k -1.4581 + delta_h -123.692 kJ +CrF3 + CrF3 + 2H2O = Cr(OH)2+ + 3F- + 2H+ + log_k -11.3367 + delta_h -23.3901 kJ +VF4 + VF4 + H2O = VO+2 + 4F- + 2H+ + log_k 14.93 + delta_h -199.117 kJ +UF4 + UF4 = U+4 + 4F- + log_k -29.5371 + delta_h -79.0776 kJ +UF4:2.5H2O + UF4:2.5H2O = U+4 + 4F- + 2.5H2O + log_k -32.7179 + delta_h 24.325 kJ +MgF2 + MgF2 = Mg+2 + 2F- + log_k -8.13 + delta_h -8 kJ +Fluorite + CaF2 = Ca+2 + 2F- + log_k -10.5 + delta_h 8 kJ +SrF2 + SrF2 = Sr+2 + 2F- + log_k -8.58 + delta_h 4 kJ +BaF2 + BaF2 = Ba+2 + 2F- + log_k -5.82 + delta_h 4 kJ +Cryolite + Na3AlF6 = 3Na+ + Al+3 + 6F- + log_k -33.84 + delta_h 38 kJ +SbCl3 + SbCl3 + 3H2O = Sb(OH)3 + 3Cl- + 3H+ + log_k 0.5719 + delta_h -35.18 kJ +SnCl2 + SnCl2 + 2H2O = Sn(OH)2 + 2H+ + 2Cl- + log_k -9.2752 + delta_h -0 kJ +Cotunnite + PbCl2 = Pb+2 + 2Cl- + log_k -4.78 + delta_h 26.166 kJ +Matlockite + PbClF = Pb+2 + Cl- + F- + log_k -8.9733 + delta_h 33.19 kJ +Phosgenite + PbCl2:PbCO3 = 2Pb+2 + 2Cl- + CO3-2 + log_k -19.81 + delta_h -0 kJ +Laurionite + PbOHCl + H+ = Pb+2 + Cl- + H2O + log_k 0.623 + delta_h -0 kJ +Pb2(OH)3Cl + Pb2(OH)3Cl + 3H+ = 2Pb+2 + 3H2O + Cl- + log_k 8.793 + delta_h -0 kJ +TlCl + TlCl = Tl+ + Cl- + log_k -3.74 + delta_h 41 kJ +ZnCl2 + ZnCl2 = Zn+2 + 2Cl- + log_k 7.05 + delta_h -72.5 kJ +Zn2(OH)3Cl + Zn2(OH)3Cl + 3H+ = 2Zn+2 + 3H2O + Cl- + log_k 15.191 + delta_h -0 kJ +Zn5(OH)8Cl2 + Zn5(OH)8Cl2 + 8H+ = 5Zn+2 + 8H2O + 2Cl- + log_k 38.5 + delta_h -0 kJ +CdCl2 + CdCl2 = Cd+2 + 2Cl- + log_k -0.6588 + delta_h -18.58 kJ +CdCl2:1H2O + CdCl2:1H2O = Cd+2 + 2Cl- + H2O + log_k -1.6932 + delta_h -7.47 kJ +CdCl2:2.5H2O + CdCl2:2.5H2O = Cd+2 + 2Cl- + 2.5H2O + log_k -1.913 + delta_h 7.2849 kJ +CdOHCl + CdOHCl + H+ = Cd+2 + H2O + Cl- + log_k 3.5373 + delta_h -30.93 kJ +Calomel + Hg2Cl2 = Hg2+2 + 2Cl- + log_k -17.91 + delta_h 92 kJ +HgCl2 + HgCl2 + 2H2O = Hg(OH)2 + 2Cl- + 2H+ + log_k -21.2621 + delta_h 107.82 kJ +Nantokite + CuCl = Cu+ + Cl- + log_k -6.73 + delta_h 42.662 kJ +Melanothallite + CuCl2 = Cu+2 + 2Cl- + log_k 6.2572 + delta_h -63.407 kJ +Atacamite + Cu2(OH)3Cl + 3H+ = 2Cu+2 + 3H2O + Cl- + log_k 7.391 + delta_h -93.43 kJ +Cerargyrite + AgCl = Ag+ + Cl- + log_k -9.75 + delta_h 65.2 kJ +CoCl2 + CoCl2 = Co+2 + 2Cl- + log_k 8.2672 + delta_h -79.815 kJ +CoCl2:6H2O + CoCl2:6H2O = Co+2 + 2Cl- + 6H2O + log_k 2.5365 + delta_h 8.0598 kJ +(Co(NH3)6)Cl3 + (Co(NH3)6)Cl3 + 6H+ = Co+3 + 6NH4+ + 3Cl- + log_k 20.0317 + delta_h -33.1 kJ +(Co(NH3)5OH2)Cl3 + (Co(NH3)5OH2)Cl3 + 5H+ = Co+3 + 5NH4+ + 3Cl- + H2O + log_k 11.7351 + delta_h -25.37 kJ +(Co(NH3)5Cl)Cl2 + (Co(NH3)5Cl)Cl2 + 5H+ = Co+3 + 5NH4+ + 3Cl- + log_k 4.5102 + delta_h -10.74 kJ +Fe(OH)2.7Cl.3 + Fe(OH)2.7Cl.3 + 2.7H+ = Fe+3 + 2.7H2O + 0.3Cl- + log_k -3.04 + delta_h -0 kJ +MnCl2:4H2O + MnCl2:4H2O = Mn+2 + 2Cl- + 4H2O + log_k 2.7151 + delta_h -10.83 kJ +CrCl2 + CrCl2 = Cr+2 + 2Cl- + log_k 14.0917 + delta_h -110.76 kJ +CrCl3 + CrCl3 + 2H2O = Cr(OH)2+ + 3Cl- + 2H+ + log_k 15.1145 + delta_h -121.08 kJ +VCl2 + VCl2 = V+3 + 2Cl- + e- + log_k 18.8744 + delta_h -141.16 kJ +VCl3 + VCl3 = V+3 + 3Cl- + log_k 23.4326 + delta_h -179.54 kJ +VOCl + VOCl + 2H+ = V+3 + Cl- + H2O + log_k 11.1524 + delta_h -104.91 kJ +VOCl2 + VOCl2 = VO+2 + 2Cl- + log_k 12.7603 + delta_h -117.76 kJ +VO2Cl + VO2Cl = VO2+ + Cl- + log_k 2.8413 + delta_h -40.28 kJ +Halite + NaCl = Na+ + Cl- + log_k 1.6025 + delta_h 3.7 kJ +SbBr3 + SbBr3 + 3H2O = Sb(OH)3 + 3Br- + 3H+ + log_k 0.9689 + delta_h -20.94 kJ +SnBr2 + SnBr2 + 2H2O = Sn(OH)2 + 2H+ + 2Br- + log_k -9.5443 + delta_h -0 kJ +SnBr4 + SnBr4 + 6H2O = Sn(OH)6-2 + 6H+ + 4Br- + log_k -28.8468 + delta_h -0 kJ +PbBr2 + PbBr2 = Pb+2 + 2Br- + log_k -5.3 + delta_h 35.499 kJ +PbBrF + PbBrF = Pb+2 + Br- + F- + log_k -8.49 + delta_h -0 kJ +TlBr + TlBr = Tl+ + Br- + log_k -5.44 + delta_h 54 kJ +ZnBr2:2H2O + ZnBr2:2H2O = Zn+2 + 2Br- + 2H2O + log_k 5.2005 + delta_h -30.67 kJ +CdBr2:4H2O + CdBr2:4H2O = Cd+2 + 2Br- + 4H2O + log_k -2.425 + delta_h 30.5001 kJ +Hg2Br2 + Hg2Br2 = Hg2+2 + 2Br- + log_k -22.25 + delta_h 133 kJ +HgBr2 + HgBr2 + 2H2O = Hg(OH)2 + 2Br- + 2H+ + log_k -25.2734 + delta_h 138.492 kJ +CuBr + CuBr = Cu+ + Br- + log_k -8.3 + delta_h 54.86 kJ +Cu2(OH)3Br + Cu2(OH)3Br + 3H+ = 2Cu+2 + 3H2O + Br- + log_k 7.9085 + delta_h -93.43 kJ +Bromyrite + AgBr = Ag+ + Br- + log_k -12.3 + delta_h 84.5 kJ +(Co(NH3)6)Br3 + (Co(NH3)6)Br3 + 6H+ = Co+3 + 6NH4+ + 3Br- + log_k 18.3142 + delta_h -21.1899 kJ +(Co(NH3)5Cl)Br2 + (Co(NH3)5Cl)Br2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2Br- + log_k 5.0295 + delta_h -6.4 kJ +CrBr3 + CrBr3 + 2H2O = Cr(OH)2+ + 3Br- + 2H+ + log_k 19.9086 + delta_h -141.323 kJ +AsI3 + AsI3 + 3H2O = H3AsO3 + 3I- + 3H+ + log_k 4.2307 + delta_h 3.15 kJ +SbI3 + SbI3 + 3H2O = Sb(OH)3 + 3H+ + 3I- + log_k -0.538 + delta_h 13.5896 kJ +PbI2 + PbI2 = Pb+2 + 2I- + log_k -8.1 + delta_h 62 kJ +TlI + TlI = Tl+ + I- + log_k -7.23 + delta_h 75 kJ +ZnI2 + ZnI2 = Zn+2 + 2I- + log_k 7.3055 + delta_h -58.92 kJ +CdI2 + CdI2 = Cd+2 + 2I- + log_k -3.5389 + delta_h 13.82 kJ +Hg2I2 + Hg2I2 = Hg2+2 + 2I- + log_k -28.34 + delta_h 163 kJ +Coccinite + HgI2 + 2H2O = Hg(OH)2 + 2H+ + 2I- + log_k -34.9525 + delta_h 210.72 kJ +HgI2:2NH3 + HgI2:2NH3 + 2H2O = Hg(OH)2 + 2I- + 2NH4+ + log_k -16.2293 + delta_h 132.18 kJ +HgI2:6NH3 + HgI2:6NH3 + 2H2O + 4H+ = Hg(OH)2 + 2I- + 6NH4+ + log_k 33.7335 + delta_h -90.3599 kJ +CuI + CuI = Cu+ + I- + log_k -12 + delta_h 82.69 kJ +Iodyrite + AgI = Ag+ + I- + log_k -16.08 + delta_h 110 kJ +(Co(NH3)6)I3 + (Co(NH3)6)I3 + 6H+ = Co+3 + 6NH4+ + 3I- + log_k 16.5831 + delta_h -9.6999 kJ +(Co(NH3)5Cl)I2 + (Co(NH3)5Cl)I2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2I- + log_k 5.5981 + delta_h 0.66 kJ +CrI3 + CrI3 + 2H2O = Cr(OH)2+ + 3I- + 2H+ + log_k 20.4767 + delta_h -134.419 kJ +Cerrusite + PbCO3 = Pb+2 + CO3-2 + log_k -13.13 + delta_h 24.79 kJ +Pb2OCO3 + Pb2OCO3 + 2H+ = 2Pb+2 + H2O + CO3-2 + log_k -0.5578 + delta_h -40.8199 kJ +Pb3O2CO3 + Pb3O2CO3 + 4H+ = 3Pb+2 + CO3-2 + 2H2O + log_k 11.02 + delta_h -110.583 kJ +Hydrocerrusite + Pb3(OH)2(CO3)2 + 2H+ = 3Pb+2 + 2H2O + 2CO3-2 + log_k -18.7705 + delta_h -0 kJ +Pb10(OH)6O(CO3)6 + Pb10(OH)6O(CO3)6 + 8H+ = 10Pb+2 + 6CO3-2 + 7H2O + log_k -8.76 + delta_h -0 kJ +Tl2CO3 + Tl2CO3 = 2Tl+ + CO3-2 + log_k -3.8367 + delta_h 35.49 kJ +Smithsonite + ZnCO3 = Zn+2 + CO3-2 + log_k -10 + delta_h -15.84 kJ +ZnCO3:1H2O + ZnCO3:1H2O = Zn+2 + CO3-2 + H2O + log_k -10.26 + delta_h -0 kJ +Otavite + CdCO3 = Cd+2 + CO3-2 + log_k -12 + delta_h -0.55 kJ +Hg2CO3 + Hg2CO3 = Hg2+2 + CO3-2 + log_k -16.05 + delta_h 45.14 kJ +Hg3O2CO3 + Hg3O2CO3 + 4H2O = 3Hg(OH)2 + 2H+ + CO3-2 + log_k -29.682 + delta_h -0 kJ +CuCO3 + CuCO3 = Cu+2 + CO3-2 + log_k -11.5 + delta_h -0 kJ +Malachite + Cu2(OH)2CO3 + 2H+ = 2Cu+2 + 2H2O + CO3-2 + log_k -5.306 + delta_h 76.38 kJ +Azurite + Cu3(OH)2(CO3)2 + 2H+ = 3Cu+2 + 2H2O + 2CO3-2 + log_k -16.906 + delta_h -95.22 kJ +Ag2CO3 + Ag2CO3 = 2Ag+ + CO3-2 + log_k -11.09 + delta_h 42.15 kJ +NiCO3 + NiCO3 = Ni+2 + CO3-2 + log_k -6.87 + delta_h -41.589 kJ +CoCO3 + CoCO3 = Co+2 + CO3-2 + log_k -9.98 + delta_h -12.7612 kJ +Siderite + FeCO3 = Fe+2 + CO3-2 + log_k -10.24 + delta_h -16 kJ +Rhodochrosite + MnCO3 = Mn+2 + CO3-2 + log_k -10.58 + delta_h -1.88 kJ +Rutherfordine + UO2CO3 = UO2+2 + CO3-2 + log_k -14.5 + delta_h -3.03 kJ +Artinite + MgCO3:Mg(OH)2:3H2O + 2H+ = 2Mg+2 + CO3-2 + 5H2O + log_k 9.6 + delta_h -120.257 kJ +Hydromagnesite + Mg5(CO3)4(OH)2:4H2O + 2H+ = 5Mg+2 + 4CO3-2 + 6H2O + log_k -8.766 + delta_h -218.447 kJ +Magnesite + MgCO3 = Mg+2 + CO3-2 + log_k -7.46 + delta_h 20 kJ +Nesquehonite + MgCO3:3H2O = Mg+2 + CO3-2 + 3H2O + log_k -4.67 + delta_h -24.2212 kJ +Aragonite + CaCO3 = Ca+2 + CO3-2 + log_k -8.3 + delta_h -12 kJ +Calcite + CaCO3 = Ca+2 + CO3-2 + log_k -8.48 + delta_h -8 kJ +Dolomite(ordered) + CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 + log_k -17.09 + delta_h -39.5 kJ +Dolomite(disordered) + CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 + log_k -16.54 + delta_h -46.4 kJ +Huntite + CaMg3(CO3)4 = 3Mg+2 + Ca+2 + 4CO3-2 + log_k -29.968 + delta_h -107.78 kJ +Strontianite + SrCO3 = Sr+2 + CO3-2 + log_k -9.27 + delta_h -0 kJ +Witherite + BaCO3 = Ba+2 + CO3-2 + log_k -8.57 + delta_h 4 kJ +Thermonatrite + Na2CO3:H2O = 2Na+ + CO3-2 + H2O + log_k 0.637 + delta_h -10.4799 kJ +TlNO3 + TlNO3 = Tl+ + NO3- + log_k -1.6127 + delta_h 42.44 kJ +Zn(NO3)2:6H2O + Zn(NO3)2:6H2O = Zn+2 + 2NO3- + 6H2O + log_k 3.3153 + delta_h 24.5698 kJ +Cu2(OH)3NO3 + Cu2(OH)3NO3 + 3H+ = 2Cu+2 + 3H2O + NO3- + log_k 9.251 + delta_h -72.5924 kJ +(Co(NH3)6)(NO3)3 + (Co(NH3)6)(NO3)3 + 6H+ = Co+3 + 6NH4+ + 3NO3- + log_k 17.9343 + delta_h 1.59 kJ +(Co(NH3)5Cl)(NO3)2 + (Co(NH3)5Cl)(NO3)2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2NO3- + log_k 6.2887 + delta_h 6.4199 kJ +UO2(NO3)2 + UO2(NO3)2 = UO2+2 + 2NO3- + log_k 12.1476 + delta_h -83.3999 kJ +UO2(NO3)2:2H2O + UO2(NO3)2:2H2O = UO2+2 + 2NO3- + 2H2O + log_k 4.851 + delta_h -25.355 kJ +UO2(NO3)2:3H2O + UO2(NO3)2:3H2O = UO2+2 + 2NO3- + 3H2O + log_k 3.39 + delta_h -9.1599 kJ +UO2(NO3)2:6H2O + UO2(NO3)2:6H2O = UO2+2 + 2NO3- + 6H2O + log_k 2.0464 + delta_h 20.8201 kJ +Pb(BO2)2 + Pb(BO2)2 + 2H2O + 2H+ = Pb+2 + 2H3BO3 + log_k 6.5192 + delta_h -15.6119 kJ +Zn(BO2)2 + Zn(BO2)2 + 2H2O + 2H+ = Zn+2 + 2H3BO3 + log_k 8.29 + delta_h -0 kJ +Cd(BO2)2 + Cd(BO2)2 + 2H2O + 2H+ = Cd+2 + 2H3BO3 + log_k 9.84 + delta_h -0 kJ +Co(BO2)2 + Co(BO2)2 + 2H2O + 2H+ = Co+2 + 2H3BO3 + log_k 27.0703 + delta_h -0 kJ +SnSO4 + SnSO4 + 2H2O = Sn(OH)2 + 2H+ + SO4-2 + log_k -56.9747 + delta_h -0 kJ +Sn(SO4)2 + Sn(SO4)2 + 6H2O = Sn(OH)6-2 + 6H+ + 2SO4-2 + log_k -15.2123 + delta_h -0 kJ +Larnakite + PbO:PbSO4 + 2H+ = 2Pb+2 + SO4-2 + H2O + log_k -0.4344 + delta_h -21.83 kJ +Pb3O2SO4 + Pb3O2SO4 + 4H+ = 3Pb+2 + SO4-2 + 2H2O + log_k 10.6864 + delta_h -79.14 kJ +Pb4O3SO4 + Pb4O3SO4 + 6H+ = 4Pb+2 + SO4-2 + 3H2O + log_k 21.8772 + delta_h -136.45 kJ +Anglesite + PbSO4 = Pb+2 + SO4-2 + log_k -7.79 + delta_h 12 kJ +Pb4(OH)6SO4 + Pb4(OH)6SO4 + 6H+ = 4Pb+2 + SO4-2 + 6H2O + log_k 21.1 + delta_h -0 kJ +AlOHSO4 + AlOHSO4 + H+ = Al+3 + SO4-2 + H2O + log_k -3.23 + delta_h -0 kJ +Al4(OH)10SO4 + Al4(OH)10SO4 + 10H+ = 4Al+3 + SO4-2 + 10H2O + log_k 22.7 + delta_h -0 kJ +Tl2SO4 + Tl2SO4 = 2Tl+ + SO4-2 + log_k -3.7868 + delta_h 33.1799 kJ +Zn2(OH)2SO4 + Zn2(OH)2SO4 + 2H+ = 2Zn+2 + 2H2O + SO4-2 + log_k 7.5 + delta_h -0 kJ +Zn4(OH)6SO4 + Zn4(OH)6SO4 + 6H+ = 4Zn+2 + 6H2O + SO4-2 + log_k 28.4 + delta_h -0 kJ +Zn3O(SO4)2 + Zn3O(SO4)2 + 2H+ = 3Zn+2 + 2SO4-2 + H2O + log_k 18.9135 + delta_h -258.08 kJ +Zincosite + ZnSO4 = Zn+2 + SO4-2 + log_k 3.9297 + delta_h -82.586 kJ +ZnSO4:1H2O + ZnSO4:1H2O = Zn+2 + SO4-2 + H2O + log_k -0.638 + delta_h -44.0699 kJ +Bianchite + ZnSO4:6H2O = Zn+2 + SO4-2 + 6H2O + log_k -1.765 + delta_h -0.6694 kJ +Goslarite + ZnSO4:7H2O = Zn+2 + SO4-2 + 7H2O + log_k -2.0112 + delta_h 14.21 kJ +Cd3(OH)4SO4 + Cd3(OH)4SO4 + 4H+ = 3Cd+2 + 4H2O + SO4-2 + log_k 22.56 + delta_h -0 kJ +Cd3(OH)2(SO4)2 + Cd3(OH)2(SO4)2 + 2H+ = 3Cd+2 + 2H2O + 2SO4-2 + log_k 6.71 + delta_h -0 kJ +Cd4(OH)6SO4 + Cd4(OH)6SO4 + 6H+ = 4Cd+2 + 6H2O + SO4-2 + log_k 28.4 + delta_h -0 kJ +CdSO4 + CdSO4 = Cd+2 + SO4-2 + log_k -0.1722 + delta_h -51.98 kJ +CdSO4:1H2O + CdSO4:1H2O = Cd+2 + SO4-2 + H2O + log_k -1.7261 + delta_h -31.5399 kJ +CdSO4:2.67H2O + CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67H2O + log_k -1.873 + delta_h -17.9912 kJ +Hg2SO4 + Hg2SO4 = Hg2+2 + SO4-2 + log_k -6.13 + delta_h 5.4 kJ +HgSO4 + HgSO4 + 2H2O = Hg(OH)2 + SO4-2 + 2H+ + log_k -9.4189 + delta_h 14.6858 kJ +Cu2SO4 + Cu2SO4 = 2Cu+ + SO4-2 + log_k -1.95 + delta_h -19.079 kJ +Antlerite + Cu3(OH)4SO4 + 4H+ = 3Cu+2 + 4H2O + SO4-2 + log_k 8.788 + delta_h -0 kJ +Brochantite + Cu4(OH)6SO4 + 6H+ = 4Cu+2 + 6H2O + SO4-2 + log_k 15.222 + delta_h -202.86 kJ +Langite + Cu4(OH)6SO4:H2O + 6H+ = 4Cu+2 + 7H2O + SO4-2 + log_k 17.4886 + delta_h -165.55 kJ +CuOCuSO4 + CuOCuSO4 + 2H+ = 2Cu+2 + H2O + SO4-2 + log_k 10.3032 + delta_h -137.777 kJ +CuSO4 + CuSO4 = Cu+2 + SO4-2 + log_k 2.9395 + delta_h -73.04 kJ +Chalcanthite + CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O + log_k -2.64 + delta_h 6.025 kJ +Ag2SO4 + Ag2SO4 = 2Ag+ + SO4-2 + log_k -4.82 + delta_h 17 kJ +Ni4(OH)6SO4 + Ni4(OH)6SO4 + 6H+ = 4Ni+2 + SO4-2 + 6H2O + log_k 32 + delta_h -0 kJ +Retgersite + NiSO4:6H2O = Ni+2 + SO4-2 + 6H2O + log_k -2.04 + delta_h 4.6024 kJ +Morenosite + NiSO4:7H2O = Ni+2 + SO4-2 + 7H2O + log_k -2.1449 + delta_h 12.1802 kJ +CoSO4 + CoSO4 = Co+2 + SO4-2 + log_k 2.8024 + delta_h -79.277 kJ +CoSO4:6H2O + CoSO4:6H2O = Co+2 + SO4-2 + 6H2O + log_k -2.4726 + delta_h 1.0801 kJ +Melanterite + FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O + log_k -2.209 + delta_h 20.5 kJ +Fe2(SO4)3 + Fe2(SO4)3 = 2Fe+3 + 3SO4-2 + log_k -3.7343 + delta_h -242.028 kJ +H-Jarosite + (H3O)Fe3(SO4)2(OH)6 + 5H+ = 3Fe+3 + 2SO4-2 + 7H2O + log_k -12.1 + delta_h -230.748 kJ +Na-Jarosite + NaFe3(SO4)2(OH)6 + 6H+ = Na+ + 3Fe+3 + 2SO4-2 + 6H2O + log_k -11.2 + delta_h -151.377 kJ +K-Jarosite + KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O + log_k -14.8 + delta_h -130.875 kJ +MnSO4 + MnSO4 = Mn+2 + SO4-2 + log_k 2.5831 + delta_h -64.8401 kJ +Mn2(SO4)3 + Mn2(SO4)3 = 2Mn+3 + 3SO4-2 + log_k -5.711 + delta_h -163.427 kJ +VOSO4 + VOSO4 = VO+2 + SO4-2 + log_k 3.6097 + delta_h -86.7401 kJ +Epsomite + MgSO4:7H2O = Mg+2 + SO4-2 + 7H2O + log_k -2.1265 + delta_h 11.5601 kJ +Anhydrite + CaSO4 = Ca+2 + SO4-2 + log_k -4.36 + delta_h -7.2 kJ +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O + log_k -4.61 + delta_h 1 kJ +Celestite + SrSO4 = Sr+2 + SO4-2 + log_k -6.62 + delta_h 2 kJ +Barite + BaSO4 = Ba+2 + SO4-2 + log_k -9.98 + delta_h 23 kJ +Mirabilite + Na2SO4:10H2O = 2Na+ + SO4-2 + 10H2O + log_k -1.114 + delta_h 79.4416 kJ +Thenardite + Na2SO4 = 2Na+ + SO4-2 + log_k 0.3217 + delta_h -9.121 kJ +K-Alum + KAl(SO4)2:12H2O = K+ + Al+3 + 2SO4-2 + 12H2O + log_k -5.17 + delta_h 30.2085 kJ +Alunite + KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O + log_k -1.4 + delta_h -210 kJ +(NH4)2CrO4 + (NH4)2CrO4 = CrO4-2 + 2NH4+ + log_k 0.4046 + delta_h 9.163 kJ +PbCrO4 + PbCrO4 = Pb+2 + CrO4-2 + log_k -12.6 + delta_h 44.18 kJ +Tl2CrO4 + Tl2CrO4 = 2Tl+ + CrO4-2 + log_k -12.01 + delta_h 74.27 kJ +Hg2CrO4 + Hg2CrO4 = Hg2+2 + CrO4-2 + log_k -8.7 + delta_h -0 kJ +CuCrO4 + CuCrO4 = Cu+2 + CrO4-2 + log_k -5.44 + delta_h -0 kJ +Ag2CrO4 + Ag2CrO4 = 2Ag+ + CrO4-2 + log_k -11.59 + delta_h 62 kJ +MgCrO4 + MgCrO4 = CrO4-2 + Mg+2 + log_k 5.3801 + delta_h -88.9518 kJ +CaCrO4 + CaCrO4 = Ca+2 + CrO4-2 + log_k -2.2657 + delta_h -26.945 kJ +SrCrO4 + SrCrO4 = Sr+2 + CrO4-2 + log_k -4.65 + delta_h -10.1253 kJ +BaCrO4 + BaCrO4 = Ba+2 + CrO4-2 + log_k -9.67 + delta_h 33 kJ +Li2CrO4 + Li2CrO4 = CrO4-2 + 2Li+ + log_k 4.8568 + delta_h -45.2792 kJ +Na2CrO4 + Na2CrO4 = CrO4-2 + 2Na+ + log_k 2.9302 + delta_h -19.6301 kJ +Na2Cr2O7 + Na2Cr2O7 + H2O = 2CrO4-2 + 2Na+ + 2H+ + log_k -9.8953 + delta_h 22.1961 kJ +K2CrO4 + K2CrO4 = CrO4-2 + 2K+ + log_k -0.5134 + delta_h 18.2699 kJ +K2Cr2O7 + K2Cr2O7 + H2O = 2CrO4-2 + 2K+ + 2H+ + log_k -17.2424 + delta_h 80.7499 kJ +Hg2SeO3 + Hg2SeO3 + H+ = Hg2+2 + HSeO3- + log_k -4.657 + delta_h -0 kJ +HgSeO3 + HgSeO3 + 2H2O = Hg(OH)2 + H+ + HSeO3- + log_k -12.43 + delta_h -0 kJ +Ag2SeO3 + Ag2SeO3 + H+ = 2Ag+ + HSeO3- + log_k -7.15 + delta_h 39.68 kJ +CuSeO3:2H2O + CuSeO3:2H2O + H+ = Cu+2 + HSeO3- + 2H2O + log_k 0.5116 + delta_h -36.861 kJ +NiSeO3:2H2O + NiSeO3:2H2O + H+ = HSeO3- + Ni+2 + 2H2O + log_k 2.8147 + delta_h -31.0034 kJ +CoSeO3 + CoSeO3 + H+ = Co+2 + HSeO3- + log_k 1.32 + delta_h -0 kJ +Fe2(SeO3)3:2H2O + Fe2(SeO3)3:2H2O + 3H+ = 3HSeO3- + 2Fe+3 + 2H2O + log_k -20.6262 + delta_h -0 kJ +Fe2(OH)4SeO3 + Fe2(OH)4SeO3 + 5H+ = HSeO3- + 2Fe+3 + 4H2O + log_k 1.5539 + delta_h -0 kJ +MnSeO3 + MnSeO3 + H+ = Mn+2 + HSeO3- + log_k 1.13 + delta_h -0 kJ +MnSeO3:2H2O + MnSeO3:2H2O + H+ = HSeO3- + Mn+2 + 2H2O + log_k 0.9822 + delta_h 8.4935 kJ +MgSeO3:6H2O + MgSeO3:6H2O + H+ = Mg+2 + HSeO3- + 6H2O + log_k 3.0554 + delta_h 5.23 kJ +CaSeO3:2H2O + CaSeO3:2H2O + H+ = HSeO3- + Ca+2 + 2H2O + log_k 2.8139 + delta_h -19.4556 kJ +SrSeO3 + SrSeO3 + H+ = Sr+2 + HSeO3- + log_k 2.3 + delta_h -0 kJ +BaSeO3 + BaSeO3 + H+ = Ba+2 + HSeO3- + log_k 1.83 + delta_h 11.98 kJ +Na2SeO3:5H2O + Na2SeO3:5H2O + H+ = 2Na+ + HSeO3- + 5H2O + log_k 10.3 + delta_h -0 kJ +PbSeO4 + PbSeO4 = Pb+2 + SeO4-2 + log_k -6.84 + delta_h 15 kJ +Tl2SeO4 + Tl2SeO4 = 2Tl+ + SeO4-2 + log_k -4.1 + delta_h 43 kJ +ZnSeO4:6H2O + ZnSeO4:6H2O = Zn+2 + SeO4-2 + 6H2O + log_k -1.52 + delta_h -0 kJ +CdSeO4:2H2O + CdSeO4:2H2O = Cd+2 + SeO4-2 + 2H2O + log_k -1.85 + delta_h -0 kJ +Ag2SeO4 + Ag2SeO4 = 2Ag+ + SeO4-2 + log_k -8.91 + delta_h -43.5 kJ +CuSeO4:5H2O + CuSeO4:5H2O = Cu+2 + SeO4-2 + 5H2O + log_k -2.44 + delta_h -0 kJ +NiSeO4:6H2O + NiSeO4:6H2O = Ni+2 + SeO4-2 + 6H2O + log_k -1.52 + delta_h -0 kJ +CoSeO4:6H2O + CoSeO4:6H2O = Co+2 + SeO4-2 + 6H2O + log_k -1.53 + delta_h -0 kJ +MnSeO4:5H2O + MnSeO4:5H2O = Mn+2 + SeO4-2 + 5H2O + log_k -2.05 + delta_h -0 kJ +UO2SeO4:4H2O + UO2SeO4:4H2O = UO2+2 + SeO4-2 + 4H2O + log_k -2.25 + delta_h -0 kJ +MgSeO4:6H2O + MgSeO4:6H2O = Mg+2 + SeO4-2 + 6H2O + log_k -1.2 + delta_h -0 kJ +CaSeO4:2H2O + CaSeO4:2H2O = Ca+2 + SeO4-2 + 2H2O + log_k -3.02 + delta_h -8.3 kJ +SrSeO4 + SrSeO4 = Sr+2 + SeO4-2 + log_k -4.4 + delta_h 0.4 kJ +BaSeO4 + BaSeO4 = Ba+2 + SeO4-2 + log_k -7.46 + delta_h 22 kJ +BeSeO4:4H2O + BeSeO4:4H2O = Be+2 + SeO4-2 + 4H2O + log_k -2.94 + delta_h -0 kJ +Na2SeO4 + Na2SeO4 = 2Na+ + SeO4-2 + log_k 1.28 + delta_h -0 kJ +K2SeO4 + K2SeO4 = 2K+ + SeO4-2 + log_k -0.73 + delta_h -0 kJ +(NH4)2SeO4 + (NH4)2SeO4 = 2NH4+ + SeO4-2 + log_k 0.45 + delta_h -0 kJ +H2MoO4 + H2MoO4 = MoO4-2 + 2H+ + log_k -12.8765 + delta_h 49 kJ +PbMoO4 + PbMoO4 = Pb+2 + MoO4-2 + log_k -15.62 + delta_h 53.93 kJ +Al2(MoO4)3 + Al2(MoO4)3 = 3MoO4-2 + 2Al+3 + log_k 2.3675 + delta_h -260.8 kJ +Tl2MoO4 + Tl2MoO4 = MoO4-2 + 2Tl+ + log_k -7.9887 + delta_h -0 kJ +ZnMoO4 + ZnMoO4 = MoO4-2 + Zn+2 + log_k -10.1254 + delta_h -10.6901 kJ +CdMoO4 + CdMoO4 = MoO4-2 + Cd+2 + log_k -14.1497 + delta_h 19.48 kJ +CuMoO4 + CuMoO4 = MoO4-2 + Cu+2 + log_k -13.0762 + delta_h 12.2 kJ +Ag2MoO4 + Ag2MoO4 = 2Ag+ + MoO4-2 + log_k -11.55 + delta_h 52.7 kJ +NiMoO4 + NiMoO4 = MoO4-2 + Ni+2 + log_k -11.1421 + delta_h 1.3 kJ +CoMoO4 + CoMoO4 = MoO4-2 + Co+2 + log_k -7.7609 + delta_h -23.3999 kJ +FeMoO4 + FeMoO4 = MoO4-2 + Fe+2 + log_k -10.091 + delta_h -11.1 kJ +BeMoO4 + BeMoO4 = MoO4-2 + Be+2 + log_k -1.7817 + delta_h -56.4 kJ +MgMoO4 + MgMoO4 = Mg+2 + MoO4-2 + log_k -1.85 + delta_h -0 kJ +CaMoO4 + CaMoO4 = Ca+2 + MoO4-2 + log_k -7.95 + delta_h -2 kJ +BaMoO4 + BaMoO4 = MoO4-2 + Ba+2 + log_k -6.9603 + delta_h 10.96 kJ +Li2MoO4 + Li2MoO4 = MoO4-2 + 2Li+ + log_k 2.4416 + delta_h -33.9399 kJ +Na2MoO4 + Na2MoO4 = MoO4-2 + 2Na+ + log_k 1.4901 + delta_h -9.98 kJ +Na2MoO4:2H2O + Na2MoO4:2H2O = MoO4-2 + 2Na+ + 2H2O + log_k 1.224 + delta_h -0 kJ +Na2Mo2O7 + Na2Mo2O7 + H2O = 2MoO4-2 + 2Na+ + 2H+ + log_k -16.5966 + delta_h 56.2502 kJ +K2MoO4 + K2MoO4 = MoO4-2 + 2K+ + log_k 3.2619 + delta_h -3.38 kJ +PbHPO4 + PbHPO4 = Pb+2 + H+ + PO4-3 + log_k -23.805 + delta_h -0 kJ +Pb3(PO4)2 + Pb3(PO4)2 = 3Pb+2 + 2PO4-3 + log_k -43.53 + delta_h -0 kJ +Pyromorphite + Pb5(PO4)3Cl = 5Pb+2 + 3PO4-3 + Cl- + log_k -84.43 + delta_h -0 kJ +Hydroxylpyromorphite + Pb5(PO4)3OH + H+ = 5Pb+2 + 3PO4-3 + H2O + log_k -62.79 + delta_h -0 kJ +Plumbgummite + PbAl3(PO4)2(OH)5:H2O + 5H+ = Pb+2 + 3Al+3 + 2PO4-3 + 6H2O + log_k -32.79 + delta_h -0 kJ +Hinsdalite + PbAl3PO4SO4(OH)6 + 6H+ = Pb+2 + 3Al+3 + PO4-3 + SO4-2 + 6H2O + log_k -2.5 + delta_h -0 kJ +Tsumebite + Pb2CuPO4(OH)3:3H2O + 3H+ = 2Pb+2 + Cu+2 + PO4-3 + 6H2O + log_k -9.79 + delta_h -0 kJ +Zn3(PO4)2:4H2O + Zn3(PO4)2:4H2O = 3Zn+2 + 2PO4-3 + 4H2O + log_k -35.42 + delta_h -0 kJ +Cd3(PO4)2 + Cd3(PO4)2 = 3Cd+2 + 2PO4-3 + log_k -32.6 + delta_h -0 kJ +Hg2HPO4 + Hg2HPO4 = Hg2+2 + H+ + PO4-3 + log_k -24.775 + delta_h -0 kJ +Cu3(PO4)2 + Cu3(PO4)2 = 3Cu+2 + 2PO4-3 + log_k -36.85 + delta_h -0 kJ +Cu3(PO4)2:3H2O + Cu3(PO4)2:3H2O = 3Cu+2 + 2PO4-3 + 3H2O + log_k -35.12 + delta_h -0 kJ +Ag3PO4 + Ag3PO4 = 3Ag+ + PO4-3 + log_k -17.59 + delta_h -0 kJ +Ni3(PO4)2 + Ni3(PO4)2 = 3Ni+2 + 2PO4-3 + log_k -31.3 + delta_h -0 kJ +CoHPO4 + CoHPO4 = Co+2 + PO4-3 + H+ + log_k -19.0607 + delta_h -0 kJ +Co3(PO4)2 + Co3(PO4)2 = 3Co+2 + 2PO4-3 + log_k -34.6877 + delta_h -0 kJ +Vivianite + Fe3(PO4)2:8H2O = 3Fe+2 + 2PO4-3 + 8H2O + log_k -36 + delta_h -0 kJ +Strengite + FePO4:2H2O = Fe+3 + PO4-3 + 2H2O + log_k -26.4 + delta_h -9.3601 kJ +Mn3(PO4)2 + Mn3(PO4)2 = 3Mn+2 + 2PO4-3 + log_k -23.827 + delta_h 8.8701 kJ +MnHPO4 + MnHPO4 = Mn+2 + PO4-3 + H+ + log_k -25.4 + delta_h -0 kJ +(VO)3(PO4)2 + (VO)3(PO4)2 = 3VO+2 + 2PO4-3 + log_k -25.1 + delta_h -0 kJ +Mg3(PO4)2 + Mg3(PO4)2 = 3Mg+2 + 2PO4-3 + log_k -23.28 + delta_h -0 kJ +MgHPO4:3H2O + MgHPO4:3H2O = Mg+2 + H+ + PO4-3 + 3H2O + log_k -18.175 + delta_h -0 kJ +FCO3Apatite + Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48F- + log_k -114.4 + delta_h 164.808 kJ +Hydroxylapatite + Ca5(PO4)3OH + H+ = 5Ca+2 + 3PO4-3 + H2O + log_k -44.333 + delta_h -0 kJ +CaHPO4:2H2O + CaHPO4:2H2O = Ca+2 + H+ + PO4-3 + 2H2O + log_k -18.995 + delta_h 23 kJ +CaHPO4 + CaHPO4 = Ca+2 + H+ + PO4-3 + log_k -19.275 + delta_h 31 kJ +Ca3(PO4)2(beta) + Ca3(PO4)2 = 3Ca+2 + 2PO4-3 + log_k -28.92 + delta_h 54 kJ +Ca4H(PO4)3:3H2O + Ca4H(PO4)3:3H2O = 4Ca+2 + H+ + 3PO4-3 + 3H2O + log_k -47.08 + delta_h -0 kJ +SrHPO4 + SrHPO4 = Sr+2 + H+ + PO4-3 + log_k -19.295 + delta_h -0 kJ +BaHPO4 + BaHPO4 = Ba+2 + H+ + PO4-3 + log_k -19.775 + delta_h -0 kJ +U(HPO4)2:4H2O + U(HPO4)2:4H2O = U+4 + 2PO4-3 + 2H+ + 4H2O + log_k -51.584 + delta_h 16.0666 kJ +(UO2)3(PO4)2 + (UO2)3(PO4)2 = 3UO2+2 + 2PO4-3 + log_k -49.4 + delta_h 397.062 kJ +UO2HPO4 + UO2HPO4 = UO2+2 + H+ + PO4-3 + log_k -24.225 + delta_h -0 kJ +Uramphite + (NH4)2(UO2)2(PO4)2 = 2UO2+2 + 2NH4+ + 2PO4-3 + log_k -51.749 + delta_h 40.5848 kJ +Przhevalskite + Pb(UO2)2(PO4)2 = 2UO2+2 + Pb+2 + 2PO4-3 + log_k -44.365 + delta_h -46.024 kJ +Torbernite + Cu(UO2)2(PO4)2 = 2UO2+2 + Cu+2 + 2PO4-3 + log_k -45.279 + delta_h -66.5256 kJ +Bassetite + Fe(UO2)2(PO4)2 = 2UO2+2 + Fe+2 + 2PO4-3 + log_k -44.485 + delta_h -83.2616 kJ +Saleeite + Mg(UO2)2(PO4)2 = 2UO2+2 + Mg+2 + 2PO4-3 + log_k -43.646 + delta_h -84.4331 kJ +Ningyoite + CaU(PO4)2:2H2O = U+4 + Ca+2 + 2PO4-3 + 2H2O + log_k -53.906 + delta_h -9.4977 kJ +H-Autunite + H2(UO2)2(PO4)2 = 2UO2+2 + 2H+ + 2PO4-3 + log_k -47.931 + delta_h -15.0624 kJ +Autunite + Ca(UO2)2(PO4)2 = 2UO2+2 + Ca+2 + 2PO4-3 + log_k -43.927 + delta_h -59.9986 kJ +Sr-Autunite + Sr(UO2)2(PO4)2 = 2UO2+2 + Sr+2 + 2PO4-3 + log_k -44.457 + delta_h -54.6012 kJ +Na-Autunite + Na2(UO2)2(PO4)2 = 2UO2+2 + 2Na+ + 2PO4-3 + log_k -47.409 + delta_h -1.9246 kJ +K-Autunite + K2(UO2)2(PO4)2 = 2UO2+2 + 2K+ + 2PO4-3 + log_k -48.244 + delta_h 24.5182 kJ +Uranocircite + Ba(UO2)2(PO4)2 = 2UO2+2 + Ba+2 + 2PO4-3 + log_k -44.631 + delta_h -42.2584 kJ +Pb3(AsO4)2 + Pb3(AsO4)2 + 6H+ = 3Pb+2 + 2H3AsO4 + log_k 5.8 + delta_h -0 kJ +AlAsO4:2H2O + AlAsO4:2H2O + 3H+ = Al+3 + H3AsO4 + 2H2O + log_k 4.8 + delta_h -0 kJ +Zn3(AsO4)2:2.5H2O + Zn3(AsO4)2:2.5H2O + 6H+ = 3Zn+2 + 2H3AsO4 + 2.5H2O + log_k 13.65 + delta_h -0 kJ +Cu3(AsO4)2:2H2O + Cu3(AsO4)2:2H2O + 6H+ = 3Cu+2 + 2H3AsO4 + 2H2O + log_k 6.1 + delta_h -0 kJ +Ag3AsO3 + Ag3AsO3 + 3H+ = 3Ag+ + H3AsO3 + log_k 2.1573 + delta_h -0 kJ +Ag3AsO4 + Ag3AsO4 + 3H+ = 3Ag+ + H3AsO4 + log_k -2.7867 + delta_h -0 kJ +Ni3(AsO4)2:8H2O + Ni3(AsO4)2:8H2O + 6H+ = 3Ni+2 + 2H3AsO4 + 8H2O + log_k 15.7 + delta_h -0 kJ +Co3(AsO4)2 + Co3(AsO4)2 + 6H+ = 3Co+2 + 2H3AsO4 + log_k 13.0341 + delta_h -0 kJ +FeAsO4:2H2O + FeAsO4:2H2O + 3H+ = Fe+3 + H3AsO4 + 2H2O + log_k 0.4 + delta_h -0 kJ +Mn3(AsO4)2:8H2O + Mn3(AsO4)2:8H2O + 6H+ = 3Mn+2 + 2H3AsO4 + 8H2O + log_k 12.5 + delta_h -0 kJ +Ca3(AsO4)2:4H2O + Ca3(AsO4)2:4H2O + 6H+ = 3Ca+2 + 2H3AsO4 + 4H2O + log_k 22.3 + delta_h -0 kJ +Ba3(AsO4)2 + Ba3(AsO4)2 + 6H+ = 3Ba+2 + 2H3AsO4 + log_k -8.91 + delta_h 11.0458 kJ +#NH4VO3 +# NH4VO3 + 2H+ = 2VO2+ + H2O +# log_k 3.8 +# delta_h 30 kJ +Pb3(VO4)2 + Pb3(VO4)2 + 8H+ = 3Pb+2 + 2VO2+ + 4H2O + log_k 6.14 + delta_h -72.6342 kJ +Pb2V2O7 + Pb2V2O7 + 6H+ = 2Pb+2 + 2VO2+ + 3H2O + log_k -1.9 + delta_h -26.945 kJ +AgVO3 + AgVO3 + 2H+ = Ag+ + VO2+ + H2O + log_k 0.77 + delta_h -0 kJ +Ag2HVO4 + Ag2HVO4 + 3H+ = 2Ag+ + VO2+ + 2H2O + log_k 1.48 + delta_h -0 kJ +Ag3H2VO5 + Ag3H2VO5 + 4H+ = 3Ag+ + VO2+ + 3H2O + log_k 5.18 + delta_h -0 kJ +Fe(VO3)2 + Fe(VO3)2 + 4H+ = Fe+2 + 2VO2+ + 2H2O + log_k -3.72 + delta_h -61.6722 kJ +Mn(VO3)2 + Mn(VO3)2 + 4H+ = Mn+2 + 2VO2+ + 2H2O + log_k 4.9 + delta_h -92.4664 kJ +Mg(VO3)2 + Mg(VO3)2 + 4H+ = Mg+2 + 2VO2+ + 2H2O + log_k 11.28 + delta_h -136.649 kJ +Mg2V2O7 + Mg2V2O7 + 6H+ = 2Mg+2 + 2VO2+ + 3H2O + log_k 26.36 + delta_h -255.224 kJ +Carnotite + KUO2VO4 + 4H+ = K+ + UO2+2 + VO2+ + 2H2O + log_k 0.23 + delta_h -36.4008 kJ +Tyuyamunite + Ca(UO2)2(VO4)2 + 8H+ = Ca+2 + 2UO2+2 + 2VO2+ + 4H2O + log_k 4.08 + delta_h -153.134 kJ +Ca(VO3)2 + Ca(VO3)2 + 4H+ = Ca+2 + 2VO2+ + 2H2O + log_k 5.66 + delta_h -84.7678 kJ +Ca3(VO4)2 + Ca3(VO4)2 + 8H+ = 3Ca+2 + 2VO2+ + 4H2O + log_k 38.96 + delta_h -293.466 kJ +Ca2V2O7 + Ca2V2O7 + 6H+ = 2Ca+2 + 2VO2+ + 3H2O + log_k 17.5 + delta_h -159.494 kJ +Ca3(VO4)2:4H2O + Ca3(VO4)2:4H2O + 8H+ = 3Ca+2 + 2VO2+ + 8H2O + log_k 39.86 + delta_h -0 kJ +Ca2V2O7:2H2O + Ca2V2O7:2H2O + 6H+ = 2Ca+2 + 2VO2+ + 5H2O + log_k 21.552 + delta_h -0 kJ +Ba3(VO4)2:4H2O + Ba3(VO4)2:4H2O + 8H+ = 3Ba+2 + 2VO2+ + 8H2O + log_k 32.94 + delta_h -0 kJ +Ba2V2O7:2H2O + Ba2V2O7:2H2O + 6H+ = 2Ba+2 + 2VO2+ + 5H2O + log_k 15.872 + delta_h -0 kJ +NaVO3 + NaVO3 + 2H+ = Na+ + VO2+ + H2O + log_k 3.8582 + delta_h -30.1799 kJ +Na3VO4 + Na3VO4 + 4H+ = 3Na+ + VO2+ + 2H2O + log_k 36.6812 + delta_h -184.61 kJ +Na4V2O7 + Na4V2O7 + 6H+ = 4Na+ + 2VO2+ + 3H2O + log_k 37.4 + delta_h -201.083 kJ +Halloysite + Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O + log_k 9.5749 + delta_h -181.43 kJ +Kaolinite + Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O + log_k 7.435 + delta_h -148 kJ +Greenalite + Fe3Si2O5(OH)4 + 6H+ = 3Fe+2 + 2H4SiO4 + H2O + log_k 20.81 + delta_h -0 kJ +Chrysotile + Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + H2O + log_k 32.2 + delta_h -196 kJ +Sepiolite + Mg2Si3O7.5OH:3H2O + 4H+ + 0.5H2O = 2Mg+2 + 3H4SiO4 + log_k 15.76 + delta_h -114.089 kJ +Sepiolite(A) + Mg2Si3O7.5OH:3H2O + 0.5H2O + 4H+ = 2Mg+2 + 3H4SiO4 + log_k 18.78 + delta_h -0 kJ +PHASES +O2(g) + O2 + 4H+ + 4e- = 2H2O + log_k 83.0894 + delta_h -571.66 kJ +CH4(g) + CH4 + 3H2O = CO3-2 + 8e- + 10H+ + log_k -41.0452 + delta_h 257.133 kJ +CO2(g) + CO2 + H2O = 2H+ + CO3-2 + log_k -18.147 + delta_h 4.06 kJ +H2S(g) + H2S = H+ + HS- + log_k -8.01 + delta_h -0 kJ +H2Se(g) + H2Se = HSe- + H+ + log_k -4.96 + delta_h -15.3 kJ +Hg(g) + Hg = 0.5Hg2+2 + e- + log_k -7.8733 + delta_h 22.055 kJ +Hg2(g) + Hg2 = Hg2+2 + 2e- + log_k -14.9554 + delta_h 58.07 kJ +Hg(CH3)2(g) + Hg(CH3)2 + 8H2O = Hg(OH)2 + 2CO3-2 + 16e- + 20H+ + log_k -73.7066 + delta_h 481.99 kJ +HgF(g) + HgF = 0.5Hg2+2 + F- + log_k 32.6756 + delta_h -254.844 kJ +HgF2(g) + HgF2 + 2H2O = Hg(OH)2 + 2F- + 2H+ + log_k 12.5652 + delta_h -165.186 kJ +HgCl(g) + HgCl = 0.5Hg2+2 + Cl- + log_k 19.4966 + delta_h -162.095 kJ +HgBr(g) + HgBr = 0.5Hg2+2 + Br- + log_k 16.7566 + delta_h -142.157 kJ +HgBr2(g) + HgBr2 + 2H2O = Hg(OH)2 + 2Br- + 2H+ + log_k -18.3881 + delta_h 54.494 kJ +HgI(g) + HgI = 0.5Hg2+2 + I- + log_k 11.3322 + delta_h -106.815 kJ +HgI2(g) + HgI2 + 2H2O = Hg(OH)2 + 2I- + 2H+ + log_k -27.2259 + delta_h 114.429 kJ +# +# +SURFACE_MASTER_SPECIES + Goe_uni Goe_uniOH-0.5 # =FeO site on goethite + Goe_tri Goe_triO-0.5 # =Fe3O site on goethite + Hfocd_uni Hfocd_uniOH-0.5 # =FeO site on HFO + Hfocd_tri Hfocd_triO-0.5 # =Fe3O site on HFO +SURFACE_SPECIES +# +# Goethite +# + Goe_triO-0.5 = Goe_triO-0.5 + -cd_music 0 0 0 0 0 + log_k 0 + Goe_triO-0.5 + H+ = Goe_triOH+0.5 + -cd_music 1 0 0 0 0 + log_k 9.20 + Goe_uniOH-0.5 = Goe_uniOH-0.5 + -cd_music 0 0 0 0 0 + log_k 0 + Goe_uniOH-0.5 + H+ = Goe_uniOH2+0.5 + -cd_music 1 0 0 0 0 + log_k 9.20 +# Na+ + Goe_triO-0.5 + Na+ = Goe_triONa+0.5 + -cd_music 0 1 0 0 0 + log_k -0.60 + Goe_uniOH-0.5 + Na+ = Goe_uniOHNa+0.5 + -cd_music 0 1 0 0 0 + log_k -0.60 +# K+ + Goe_triO-0.5 + K+ = Goe_triOK+0.5 + -cd_music 0 1 0 0 0 + log_k -1.71 + Goe_uniOH-0.5 + K+ = Goe_uniOHK+0.5 + -cd_music 0 1 0 0 0 + log_k -1.71 +# Cl- + Goe_uniOH-0.5 + H+ + Cl- = Goe_uniOH2Cl-0.5 + -cd_music 1 -1 0 0 0 + log_k 8.76 + Goe_triO-0.5 + H+ + Cl- = Goe_triOHCl-0.5 + -cd_music 1 -1 0 0 0 + log_k 8.76 +# NO3- + Goe_triO-0.5 + H+ + NO3- = Goe_triOHNO3-0.5 + -cd_music 1 -1 0 0 0 + log_k 8.52 + Goe_uniOH-0.5 + H+ + NO3- = Goe_uniOH2NO3-0.5 + log_k 8.52 + -cd_music 1 -1 0 0 0 +# Ca+2 + Goe_triO-0.5 + Ca+2 = Goe_triOCa+1.5 + log_k 3.00 + -cd_music 0.0 2.0 0 0 0 + Goe_uniOH-0.5 + Ca+2 = Goe_uniOHCa+1.5 + log_k 3.00 + -cd_music 0.0 2.0 0 0 0 + Goe_uniOH-0.5 + Ca+2 = Goe_uniOHCa+1.5 + log_k 3.65 + -cd_music 0.32 1.68 0 0 0 + Goe_uniOH-0.5 + Ca+2 + H2O = Goe_uniOHCaOH+0.5 + H+ + log_k -9.25 + -cd_music 0.32 0.68 0 0 0 +# Mg+2 + 2Goe_uniOH-0.5 + Mg+2 = (Goe_uniOH)2Mg+ + log_k 4.90 + -cd_music 0.71 1.29 0 0 0 + 2Goe_uniOH-0.5 + Mg+2 + H2O = (Goe_uniOH)2MgOH + H+ + log_k -6.47 + -cd_music 0.71 0.29 0 0 0 +# CO3-2 + 2Goe_uniOH-0.5 + 2H+ + CO3-2 = (Goe_uniO)2CO- + 2H2O + log_k 22.33 + -cd_music 0.68 -0.68 0 0 0 +# PO4-3 + Goe_uniOH-0.5 + 2H+ + PO4-3 = Goe_uniOPO2OH-1.5 + H2O + log_k 27.65 + -cd_music 0.28 -1.28 0 0 0 + 2Goe_uniOH-0.5 + 2H+ + PO4-3 = (Goe_uniO)2PO2-2 + 2H2O + log_k 29.77 + -cd_music 0.46 -1.46 0 0 0 +# H3AsO3 + Goe_uniOH-0.5 + H3AsO3 = Goe_uniOAs(OH)2-0.5 + H2O + log_k 4.33 # Stachowicz et al 2006 + -cd_music 0.16 -0.16 0 0 0 + 2Goe_uniOH-0.5 + H3AsO3 = (Goe_uniO)2AsOH- + 2H2O + log_k 6.99 # Stachowicz et al 2006 + -cd_music 0.34 -0.34 0 0 0 +# AsO4-3 + Goe_uniOH-0.5 + 2H+ + AsO4-3 = Goe_uniOAsO2OH-1.5 + H2O + log_k 25.88 + -cd_music 0.30 -1.30 0 0 0 + 2Goe_uniOH-0.5 + 2H+ + AsO4-3 = (Goe_uniO)2AsO2-2 + 2H2O + log_k 29.41 + -cd_music 0.47 -1.47 0 0 0 + 2Goe_uniOH-0.5 + 3H+ + AsO4-3 = (Goe_uniO)2AsOOH- + 2H2O + log_k 33.72 + -cd_music 0.58 -0.58 0 0 0 +# H3BO3 + Goe_uniOH-0.5 + H3BO3 = Goe_uniOBH2O2-0.5 + H2O + log_k 1.99 + -cd_music 0.16 -0.16 0 0 0 + Goe_uniOH-0.5 + H3BO3 = Goe_uniOH3BO3-1.5 + H+ + log_k -8.31 + -cd_music 0.16 -0.16 0 0 0 +# CrO4-2 + Goe_uniOH-0.5 + H+ + CrO4-2 = Goe_uniOCrO3-1.5 + H2O + log_k 12.45 + -cd_music 0.5 -1.5 0 0 0 +# MoO4-2 + Goe_uniOH-0.5 + 2H+ + MoO4-2 + H2O = Goe_uniOMo(OH)5-0.5 + log_k 18.25 + -cd_music 0.5 -0.5 0 0 0 # RH99 + Goe_uniOH-0.5 + H+ + MoO4-2 = Goe_uniOMoO3-1.5 + H2O + log_k 12.28 + -cd_music 0.5 -1.5 0 0 0 # RH99 +# SO4-2 + Goe_uniOH-0.5 + H+ + SO4-2 = Goe_uniSO4-1.5 + H2O + log_k 9.21 + -cd_music 0.65 -1.65 0 0 0 # RH99 + 2Goe_uniOH-0.5 + 2H+ +SO4-2 = Goe_uni2SO4- + 2H2O + log_k 19.01 + -cd_music 1.5 -0.5 0 0 0 + Goe_uniOH-0.5 + 2H+ + SO4-2 = Goe_uniSO4H-0.5 + H2O + log_k 3.97 + -cd_music 1.5 -0.5 0 0 0 # RH99 + 2Goe_uniOH-0.5 + 3H+ +SO4-2 = Goe_uni2SO4H + 2H2O + log_k 19.00 + -cd_music 1 0 0 0 0 +# Sb(OH)3 + Goe_uniOH-0.5 + Sb(OH)3 = Goe_uniOSb(OH)2-0.5 + H2O + log_k 15.55 + -cd_music 0.16 -0.16 0 0 0 + 2Goe_uniOH-0.5 + Sb(OH)3 = Goe_uni2O2Sb(OH)- + 2H2O + log_k 25.22 + -cd_music 0.34 -0.34 0 0 0 +# Sb(OH)6- + Goe_uniOH-0.5 + Sb(OH)6- = Goe_uniOSb(OH)5-1.5 + H2O + log_k 6.66 + -cd_music 0.84 -1.83 0 0 0 + 2Goe_uniOH-0.5 + Sb(OH)6- = Goe_uni2O2Sb(OH)4-2 + 2H2O + log_k -7.80 + -cd_music 1.67 -2.66 0 0 0 +# HSeO3- + 2Goe_uniOH-0.5 + H+ + HSeO3- = Goe_uni2SeO3- + 2H2O + log_k 4.33 + -cd_music 0.72 -0.72 0 0 0 + 2Goe_uniOH-0.5 + 2H+ + HSeO3- = Goe_uni2HSeO3 + 2H2O + log_k 9.46 + -cd_music 1.03 -0.03 0 0 0 + Goe_uniOH-0.5 + H+ + HSeO3- = Goe_uniSeO3H-0.5 + H2O + log_k 6.85 + -cd_music 0.43 -0.43 0 0 0 + Goe_uniOH-0.5 + HSeO3- = Goe_uniSeO3-1.5 + H2O + log_k 2.29 + -cd_music 0.20 -1.20 0 0 0 +# SeO4-2 + Goe_uniOH-0.5 + H+ + SeO4-2 = Goe_uniSeO4-1.5 + H2O + log_k 10.48 + -cd_music 0.50 -1.50 0 0 0 + 2Goe_uniOH-0.5 + SeO4-2 + 2H+ = Goe_uni2SeO4- + 2H2O + log_k -5.84 + -cd_music 1. -1. 0 0 0 + Goe_uniOH-0.5 + 2H+ + SeO4-2 = Goe_uniOH2SeO4H-0.5 + log_k -2.19 + -cd_music 0.50 -0.50 0 0 0 +# +# HFO +# + Hfocd_triO-0.5 = Hfocd_triO-0.5 + -cd_music 0 0 0 0 0 + log_k 0 + Hfocd_triO-0.5 + H+ = Hfocd_triOH+0.5 + -cd_music 1 0 0 0 0 + log_k 9.20 + Hfocd_uniOH-0.5 = Hfocd_uniOH-0.5 + -cd_music 0 0 0 0 0 + log_k 0 + Hfocd_uniOH-0.5 + H+ = Hfocd_uniOH2+0.5 + -cd_music 1 0 0 0 0 + log_k 9.20 +# Na+ + Hfocd_triO-0.5 + Na+ = Hfocd_triONa+0.5 + -cd_music 0 1 0 0 0 + log_k -0.60 + Hfocd_uniOH-0.5 + Na+ = Hfocd_uniOHNa+0.5 + -cd_music 0 1 0 0 0 + log_k -0.60 +# K+ + Hfocd_triO-0.5 + K+ = Hfocd_triOK+0.5 + -cd_music 0 1 0 0 0 + log_k -1.71 + Hfocd_uniOH-0.5 + K+ = Hfocd_uniOHK+0.5 + -cd_music 0 1 0 0 0 + log_k 1.71 +# Cl- + Hfocd_triO-0.5 + H+ + Cl- = Hfocd_triOHCl-0.5 + -cd_music 1 -1 0 0 0 + log_k 8.76 + Hfocd_uniOH-0.5 + H+ + Cl- = Hfocd_uniOH2Cl-0.5 + -cd_music 1 -1 0 0 0 + log_k 8.76 +# NO3- + Hfocd_triO-0.5 + H+ + NO3- = Hfocd_triOHNO3-0.5 + -cd_music 1 -1 0 0 0 + log_k 8.52 + Hfocd_uniOH-0.5 + H+ + NO3- = Hfocd_uniOH2NO3-0.5 + -cd_music 1 -1 0 0 0 + log_k 8.52 +# Ca+2 + Hfocd_triO-0.5 + Ca+2 = Hfocd_triOCa+1.5 + log_k 3.00 + -cd_music 0.0 2.0 0 0 0 + Hfocd_uniOH-0.5 + Ca+2 = Hfocd_uniOHCa+1.5 + log_k 3.00 + -cd_music 0.0 2.0 0 0 0 + Hfocd_uniOH-0.5 + Ca+2 = Hfocd_uniOHCa+1.5 + log_k 3.65 + -cd_music 0.32 1.68 0 0 0 + Hfocd_uniOH-0.5 + Ca+2 + H2O = Hfocd_uniOHCaOH+0.5 + H+ + log_k -9.25 + -cd_music 0.32 1.68 0 0 0 +# Mg+2 + 2Hfocd_uniOH-0.5 + Mg+2 = (Hfocd_uniOH)2Mg+ + log_k 4.90 + -cd_music 0.71 1.29 0 0 0 + 2Hfocd_uniOH-0.5 + Mg+2 + H2O = (Hfocd_uniOH)2MgOH + H+ + log_k -6.47 + -cd_music 0.71 1.29 0 0 0 +# CO3-2 + 2Hfocd_uniOH-0.5 + 2H+ + CO3-2 = (Hfocd_uniO)2CO- + 2H2O + log_k 22.33 + -cd_music 0.68 -0.68 0 0 0 +# H3AsO3 + Hfocd_uniOH-0.5 + H3AsO3 = Hfocd_uniOAs(OH)2-0.5 + H2O + log_k 5.31 + -cd_music 0.16 -0.16 0 0 0 + + 2Hfocd_uniOH-0.5 + H3AsO3 = (Hfocd_uniO)2AsOH- + 2H2O + log_k 5.89 + -cd_music 0.34 -0.34 0 0 0 +# AsO4-3 + Hfocd_uniOH-0.5 + 2H+ + AsO4-3 = Hfocd_uniOAsO2OH-1.5 + H2O + log_k 25.83 + -cd_music 0.30 -1.30 0 0 0 + 2Hfocd_uniOH-0.5 + 2H+ + AsO4-3 = (Hfocd_uniO)2AsO2-2 + 2H2O + log_k 28.11 + -cd_music 0.47 -1.47 0 0 0 + 2Hfocd_uniOH-0.5 + 3H+ + AsO4-3 = (Hfocd_uniO)2AsOOH- + 2H2O + log_k 33.41 + -cd_music 0.58 -0.58 0 0 0 +# H3BO3 + Hfocd_uniOH-0.5 + H3BO3 = Hfocd_uniOBH2O2-0.5 + H2O + log_k 1.92 + -cd_music 0.16 -0.16 0 0 0 + Hfocd_uniOH-0.5 + H3BO3 = Hfocd_uniOH3BO3-1.5 + H+ + log_k -8.10 + -cd_music 0.16 -0.16 0 0 0 +# CrO4-2 + Hfocd_uniOH-0.5 + H+ + CrO4-2 = Hfocd_uniOCrO3-1.5 + H2O + log_k 11.11 + -cd_music 0.5 -1.5 0 0 0 +# MoO4-2 + Hfocd_uniOH-0.5 + 2H+ + MoO4-2 + H2O = Hfocd_uniOMo(OH)5-0.5 + log_k 14.94 + -cd_music 0.5 -0.5 0 0 0 # RH99 + Hfocd_uniOH-0.5 + H+ + MoO4-2 = Hfocd_uniOMoO3-1.5 + H2O + log_k 11.38 + -cd_music 0.5 -1.5 0 0 0 # RH99 +# SO4-2 + Hfocd_uniOH-0.5 + H+ + SO4-2 = Hfocd_uniSO4-1.5 + H2O + log_k 2.77 + -cd_music 0.65 -1.65 0 0 0 # RH99 + 2Hfocd_uniOH-0.5 + 2H+ +SO4-2 = Hfocd_uni2SO4- + 2H2O + log_k 0.20 + -cd_music 1.5 -0.5 0 0 0 + Hfocd_uniOH-0.5 + 2H+ + SO4-2 = Hfocd_uniSO4H-0.5 + H2O + log_k 4.12 + -cd_music 1.5 -0.5 0 0 0 # RH99 + 2Hfocd_uniOH-0.5 + 3H+ +SO4-2 = Hfocd_uni2SO4H + 2H2O + log_k 17.68 + -cd_music 1 0 0 0 0 +# Sb(OH)6- + Hfocd_uniOH-0.5 + Sb(OH)6- = Hfocd_uniOSb(OH)5-1.5 + H2O + log_k 9.75 + -cd_music 0.84 -1.83 0 0 0 + 2Hfocd_uniOH-0.5 + Sb(OH)6- = Hfocd_uni2O2Sb(OH)4-2 + 2H2O + log_k -0.21 + -cd_music 1.67 -2.66 0 0 0 +# HSeO3- + 2Hfocd_uniOH-0.5 + H+ + HSeO3- = Hfocd_uni2SeO3- + 2H2O + log_k 9.61 + -cd_music 0.72 -0.72 0 0 0 + 2Hfocd_uniOH-0.5 + 2H+ + HSeO3- = Hfocd_uni2HSeO3 + 2H2O + log_k 15.15 + -cd_music 1.03 -0.03 0 0 0 + Hfocd_uniOH-0.5 + H+ + HSeO3- = Hfocd_uniSeO3H-0.5 + H2O + log_k 5.00 + -cd_music 0.43 -0.43 0 0 0 + Hfocd_uniOH-0.5 + HSeO3- = Hfocd_uniSeO3-1.5 + H2O + log_k 5.00 + -cd_music 0.20 -1.20 0 0 0 +# SeO4-2 + Hfocd_uniOH-0.5 + H+ + SeO4-2 = Hfocd_uniSeO4-1.5 + H2O + log_k 11.57 + -cd_music 0.50 -1.50 0 0 0 + 2Hfocd_uniOH-0.5 + SeO4-2 + 2H+ = Hfocd_uni2SeO4- + 2H2O + log_k 4.04 + -cd_music 1. -1. 0 0 0 + Hfocd_uniOH-0.5 + 2H+ + SeO4-2 = Hfocd_uniOH2SeO4H-0.5 + log_k 3.76 + -cd_music 0.50 -0.50 0 0 0 +# VO2+ + 2Hfocd_uniOH-0.5 + VO2+ = Hfocd_uni2O2VO + H2O + log_k 18.15 + -cd_music 1.50 -0.50 0 0 0 +END + + diff --git a/database/Kinec.v2.dat b/database/Kinec.v2.dat new file mode 100644 index 00000000..3b7166ba --- /dev/null +++ b/database/Kinec.v2.dat @@ -0,0 +1,12039 @@ +# KINEC.v2.dat - last edited April 18, 2024 by MA and EHO. +# +# This database contains the parameters for calculating mineral dissolution rates for primary and secondary silicate minerals using the equations and parameters reported by Hermanska et al. (2022, 2023), +# and dissolution rates for other non)-silicate mineral systems using the equations and parameters reported by Oelkers and Addassi (2024, in preparation). +# +# This database contains thermodynamic properties from the Carbfix.dat (Voigt et al., 2018) and the llnl.dat database. +# The thermodynamic data for Gaspite, Variscite were taken from https://thermoddem.brgm.fr/ and Monazite-Ce was extracte from (A.P. Gysi et al. / Geochimica et Cosmochimica Acta 242 (2018)) +# +# Several solid solutions have been added to the kinetics database to allow calculation of the release of metals from solid solutions. The solubilities of these solid solutions are based on the ideal mechanical mixing of the endmembers. These solid solutions are indicated in the kinetic part of the database by the suffix: _ss +# +#----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- +# README for the RATES blocks in the Kinec.v2.dat file + + +# Reference literature for derived kinetic fits can be found in Hermanska et al. (2022, 2003) and Oelkers and Addassi (2024, in preparation), along with pH and temperature conditions. Note the rated of minerals glauconite and struvite were not added to the current database due to lack of thermodynamic data. +# The uncertainties associated with the dissolution rates generated using this database have been described in original manuscripts, and caution should be taken when using rates extrapolated well beyond the limits of the available experimental data. + +# Below is a minimal example for such a KINETICS block, explaining the different parameters specific to KINEC.v2.dat. Other parameters can be specified as explained in the PHREEQC documentation. + +#------------------------------------------------ +##Example data block for mineral end-members: + +#KINETICS +#Albite # Name of the mineral +# -m0 1e-3 # Initial moles of mineral +# -parms 0 100 0 0 # Four parameters as explained below + +##Example data block for selected mineral solid solutions (the identntity of the solid solutions are listed in Appendix in Hermanska et al. (2022)): + +#KINETICS +#Augite_ss # Name of the mineral +# -formula Mg0.45Fe0.275Ca0.275SiO3 1 # Mineral formula ! must be added to run solid solutions. +# -m0 100 # Initial moles of mineral +# -parms 0 0.0088183 0 2 # Four parameters as explained below + +#------------------------------------------------ +#Parameters: +#Four parameters are necessary when using rates from Kenec.dat: + +# - The first parameter specifies if the specific surface area is entered as m2 per g of rock (0) or m2 per kg of water (1) + +# - The second parameter specifies the specific surface area of the mineral (in m2/g or m2/kgw depending on the choice of the first parameter) + +# - The third parameters define how the surface area changes during dissolution and has three possible values. This option is only available when the first parameter is 0. If the first parameter is 1, the surface area is always constant. +# 0: The surface area changes linearly with the moles of the mineral present +# 1: The surface area changes according to the geometry of dissolving cubes or spheres + +#- The fourth parameter specifies the dissolution and precipitation option +# 0: allow dissolution and precipitation +# 1: allow precipitation only +# 2: allow dissolution only +#----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- +# +# References for KINEC.v2.dat database description: +#Hermanska M., Voigt M. J., Marieni C., Declercq J., and Oelkers E. H. (2022) A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology. 597, 120807. https://doi.org/10.1016/j.chemgeo.2022.120807 +# +#Hermanska M., Voigt M. J., Marieni C., Declercq J., and Oelkers E. H. (2023) A comprehensive and internally consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology. 636, 121632 https://doi.org/10.1016/j.chemgeo.2023.121632 +# +# and +# +# Oelkers, E.H., Addassi, M. 2024. A comprehensive and internally consistent mineral dissolution rate database: Part III: Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals. (in preparation) +# ***the thermodynamic database is described below ******************* + +# +LLNL_AQUEOUS_MODEL_PARAMETERS +-temperatures + 0.01 25 60 100 + 150 200 250 300 +#debye huckel a (adh) +-dh_a + 0.4939 0.5114 0.5465 0.5995 + 0.6855 0.7994 0.9593 1.2180 +#debye huckel b (bdh) +-dh_b + 0.3253 0.3288 0.3346 0.3421 + 0.3525 0.3639 0.3766 0.3925 +-bdot + 0.0374 0.0410 0.0438 0.0460 + 0.0470 0.0470 0.0340 0 +#cco2 (coefficients for the Drummond (1981) polynomial) +-co2_coefs + -1.0312 0.0012806 + 255.9 0.4445 + -0.001606 + +SOLUTION_MASTER_SPECIES + +#element species alk gfw_formula element_gfw + +Al Al+3 0 Al 26.9815 +Alkalinity HCO3- 1 Ca0.5(CO3)0.5 50.05 +B B(OH)3 0 B 10.811 +B(3) B(OH)3 0 B -36.44179 +Ba Ba+2 0 Ba 137.3270 +C(-4) CH4 0 CH4 -33.31051 +C(-3) C2H6 0 C2H6 -30.54674 +C(-2) C2H4 0 C2H4 -28.08539 +C HCO3- 1 HCO3 12.011 +C(+2) CO 0 C -23.87691 +C(+4) HCO3- 1 HCO3 -22.05727 +Ca Ca+2 0 Ca 40.078 +Ce Ce+3 0 Ce 140.115 +Ce(+2) Ce+2 0 Ce +Ce(+3) Ce+3 0 Ce +Ce(+4) Ce+4 0 Ce +Cl Cl- 0 Cl 35.4527 +Cl(-1) Cl- 0 Cl -17.43358 +Cl(1) ClO- 0 Cl -16.11094 +Cl(3) ClO2- 0 Cl -14.87484 +Cl(5) ClO3- 0 Cl -13.71476 +Cl(7) ClO4- 0 Cl +Co Co+2 0 Co 58.9332 +Co(+2) Co+2 0 Co +Co(+3) Co+3 0 Co +Cr CrO4-2 0 CrO4-2 51.9961 +Cr(+2) Cr+2 0 Cr +Cr(+3) Cr+3 0 Cr +Cr(+6) CrO4-2 0 Cr +Cd Cd+2 0 Cd 112.411 +Cu Cu+2 0 Cu 63.546 +Cu(+1) Cu+1 0 Cu +Cu(+2) Cu+2 0 Cu +E e- 0 0 0 +Eu Eu+3 0 Eu 151.965 +Eu(+2) Eu+2 0 Eu +Eu(+3) Eu+3 0 Eu +F F- 0 F 18.9984 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Gd Gd+3 0 Gd 157.25 +Gd(+3) Gd+3 0 Gd +H H+ -1 H 1.0079 +H(0) H2 0 H +H(+1) H+ -1 0 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.941 +Mg Mg+2 0 Mg 24.305 +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Mn(+6) MnO4-2 0 Mn +Mn(+7) MnO4- 0 Mn +Mo MoO4-2 0 Mo 95.94 +N NH3 1 N 14.0067 +N(-3) NH3 1 N +N(0) N2 0 N +N(+3) NO2- 0 N +N(+5) NO3- 0 N +Na Na+ 0 Na 22.9898 +Ni Ni+2 0 Ni 58.69 +O H2O 0 O 15.994 +O(-2) H2O 0 0 +O(0) O2 0 O +P HPO4-2 2 P 30.9738 +P(5) HPO4-2 2 P +Pb Pb+2 0 Pb 207.20 +Pb(+2) Pb+2 0 Pb +Pb(+4) Pb+4 0 Pb +S SO4-2 0 SO4 32.066 +S(-2) HS- 1 S +S(+2) S2O3-2 0 S +S(+3) S2O4-2 0 S +S(+4) SO3-2 0 S +S(+5) S2O5-2 0 S +S(+6) SO4-2 0 SO4 +S(+7) S2O8-2 0 S +S(+8) HSO5- 0 S +Sc Sc+3 0 Sc 44.9559 +Si SiO2 0 SiO2 28.0855 +Sm Sm+3 0 Sm 150.36 +Sm(+2) Sm+2 0 Sm +Sm(+3) Sm+3 0 Sm +Sr Sr+2 0.0 Sr 87.62 +Th Th+4 0 Th 232.0381 +Ti Ti(OH)4 0 Ti 47.88 +U UO2+2 0 U 238.0289 +U(+3) U+3 0 U +U(+4) U+4 0 U +U(+5) UO2+ 0 U +U(+6) UO2+2 0 U +Zn Zn+2 0 Zn 65.39 + + + +SOLUTION_SPECIES + +#------------------ +# 31 basis species +#------------------ + +Al+3 = Al+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -128.681 kcal/mol + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # APP14, BH86 + +B(OH)3 = B(OH)3 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -256.82 kcal/mol + -Vm 7.0643 8.847 3.5844 -3.1451 -0.2 0 0 0 0 0 # SHS89 + +Ca+2 = Ca+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -129.8 kcal/mol + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # APP14 + +Cd+2 = Cd+2 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cd+2 +# Enthalpy of formation: -18.14 kcal/mol + +Cl- = Cl- + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -39.933 kcal/mol + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # APP14 + +Co+2 = Co+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -13.9 kcal/mol + -Vm -1.2252 -8.9356 5.3191 -2.4095 1.47690 0 0 0 0 0 # SSW+97 + +CrO4-2 = CrO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -210.6 kcal/mol + -Vm 5.4891 5.6223 3.5382 -3.0113 3.00240 0 0 0 0 0 # SSW+97 + +Cu+2 = Cu+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH 15.7 kcal/mol + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # APP14 + +e- = e- + +Eu+3 = Eu+3 + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -144.7 kcal/mol + -Vm -3.1037 -15.3599 11.7871 -2.144 2.3161 0 0 0 0 0 # SH88 + +F- = F- + -llnl_gamma 3.5000 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -80.15 kcal/mol + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 # APP14 + +Fe+2 = Fe+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -22.05 kcal/mol + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # APP14 + +Gd+3 = Gd+3 + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -164.2 kcal/mol + -Vm -2.9771 -15.0506 11.6656 -2.1568 2.3265 0 0 0 0 0 # SH88 + +H+ = H+ + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -0 kJ/mol + +HCO3- = HCO3- + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -164.898 kcal/mol + -Vm 7.5621 1.1505 1.2346 -2.8266 1.27330 0 0 0 0 0 # SH88 + +HPO4-2 = HPO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -308.815 kcal/mol + -Vm 3.6315 1.0857 5.3233 -2.8239 3.33630 0 0 0 0 0 # SH88 + +K+ = K+ + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -60.27 kcal/mol + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # APP14 + +Li+ = Li+ + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -66.552 kcal/mol + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # APP14, E68 + +Mg+2 = Mg+2 + -llnl_gamma 8 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -111.367 kcal/mol + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # APP14 + +Mn+2 = Mn+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -52.724 kcal/mol + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # APP14 + +MoO4-2 = MoO4-2 + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -238.5 kcal/mol + -Vm 6.9651 2.7095 18.6617 -2.8909 3.07770 0 0 0 0 0 # SSW+97 + +NH3 = NH3 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -19.44 kcal/mol + -Vm 5.0911 2.797 8.6248 -2.8946 -7.690e-2 0 0 0 0 0 # SHS89 + +Na+ = Na+ + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -57.433 kcal/mol + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # APP14 + +Ni+2 = Ni+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -12.9 kcal/mol + -Vm -1.6942 -11.9181 10.4344 -2.2863 1.50670 0 0 0 0 0 # SH88 + +H2O = H2O + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -68.317 kcal/mol + +SO4-2 = SO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -217.4 kcal/mol + -Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # APP14 + +Sc+3 = Sc+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -146.8 kcal/mol + -Vm -2.1109 -12.9294 10.817 -2.2444 2.5003 0 0 0 0 0 # SSW+97 + +SiO2 = SiO2 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -209.775 kcal/mol + -Vm 1.9 1.7 20 -2.7 0.12910 0 0 0 0 0 # SHS89 + +Sm+3 = Sm+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -165.2 kcal/mol + -Vm -3.2065 -15.6108 11.8857 -2.1337 2.2955 0 0 0 0 0 # SH88 + +Th+4 = Th+4 + -llnl_gamma 11 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -183.8 kcal/mol + -Vm -4.2886 -18.25 12.9154 -2.0244 3.70930 0 0 0 0 0 # SSW+97 + +Ti(OH)4 = Ti(OH)4 + -llnl_gamma 3 + log_k 0 +# deltafH -0 kcal/mol + -Vm 7.366874 10.21009 1.152964 -3.201004 0.01498566 0 0 0 0 0 # Ste01 + +UO2+2 = UO2+2 + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -1019 kJ/mol + -Vm 3.0256 -4.1084 15.3326 -2.6091 1.40990 0 0 0 0 0 # SSW+97 + +Zn+2 = Zn+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -36.66 kcal/mol + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 # APP14 + +Ba+2 = Ba+2 + -llnl_gamma 5.0 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ba+2 +# Enthalpy of formation: -128.5 kcal/mol + +Ce+3 = Ce+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ce+3 +# Enthalpy of formation: -167.4 kcal/mol + +Pb+2 = Pb+2 + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pb+2 +# Enthalpy of formation: 0.22 kcal/mol + +Sr+2 = Sr+2 + -llnl_gamma 5.0 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sr+2 +# Enthalpy of formation: -131.67 kcal/mol +#------------------- +# 40 Redox couples +#------------------- + +2H2O = O2 + 4H+ + 4e- + -CO2_llnl_gamma + log_k -85.9951 + -delta_H 559.543 kJ/mol +# deltafH -2.9 kcal/mol + -analytic 38.0229 7.99407e-3 -2.7655e4 -1.4506e1 199838.45 +# Range 0-350 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 +# Extrapol supcrt92 +# Ref SHS89 + +SO4-2 + H+ = HS- + 2 O2 + -llnl_gamma 3.5 + log_k -138.3169 + -delta_H 869.226 kJ/mol +# deltafH -3.85 kcal/mol + -analytic 2.6251e1 3.9525e-2 -4.5443e4 -1.1107e1 3.1843e5 +# Range 0-350 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.44100 +# Extrapol supcrt92 +# Ref SH88 + +.5 O2 + 2 HS- = S2-2 + H2O + -llnl_gamma 4.0 + log_k 33.2673 +# deltafH -0 kcal/mol + -analytic 0.21730e2 -0.12307e-2 0.10098e5 -0.88813e1 0.15757e3 + -mass_balance S(-2)2 +# Range 0-350 + -Vm 5.5797 5.8426 3.4536 -3.0205 3.10830 +# Extrapol supcrt92 +# Ref SH88 + +2 H+ + 2 SO3-2 = S2O3-2 + O2 + H2O + -llnl_gamma 4.0 + log_k -40.2906 +# deltafH -0 kcal/mol + -analytic 0.77679e2 0.65761e-1 -0.15438e5 -0.34651e2 -0.24092e3 +# Range 0-350 + -Vm 6.6685 12.4951 -7.7281 -3.2955 2.96940 +# Extrapol supcrt92 +# Ref SH88 + +H+ + HCO3- + H2O = CH4 + 2 O2 + -llnl_gamma 3.0 + log_k -144.1412 + -delta_H 863.599 kJ/mol +# deltafH -21.01 kcal/mol + -analytic -0.41698e2 0.36584e-1 -0.40675e5 0.93479e1 -0.63468e3 +# Range 0-350 + -Vm 6.7617 8.7279 2.3212 -3.1397 -0.31790 +# Extrapol supcrt92 +# Ref SH90 + +2 H+ + 2 HCO3- + H2O = C2H6 + 3.5 O2 + -llnl_gamma 3.0 + log_k -228.6072 +# deltafH -0 kcal/mol + #analytic -0.10777e2 0.72105e-1 -0.67489e5 -0.13915e2 -0.10531e4 + -analytic -491.3 1.148 -10004 0 0 -8.06e-4 # !!! Using CHNOSZ, discrepant with above expression unless the first term is -0.10777e2 instead of 0.10777e2 +# Range 0-350 + -Vm 8.75 13.1051 1.6258 -3.3207 -0.06270 +# Extrapol supcrt92 +# Ref SH90 + +2 H+ + 2 HCO3- = C2H4 + 3 O2 + -llnl_gamma 3.0 + log_k -254.5034 + -delta_H 1446.6 kJ/mol +# deltafH 24.65 kcal/mol + #analytic -0.30329e2 0.71187e-1 -0.73140e5 + -analytic 6e-2 3.60e-2 -7.17e4 +# Range 0-350 + -Vm 7.856 12.6391 -1.8737 -3.3014 -0.4 +# Extrapol supcrt92 +# Ref SH90 + +HCO3- + H+ = CO + H2O + 0.5 O2 + -llnl_gamma 3.0 + log_k -41.7002 + -delta_H 277.069 kJ/mol +# deltafH -28.91 kcal/mol + -analytic 1.0028e2 4.6877e-2 -1.8062e4 -4.0263e1 3.8031e5 +# Range 0-350 + -Vm 6.2373 7.4498 2.8184 -3.0869 -0.37150 +# Extrapol supcrt92 +# Ref SM93 + +Cl- + 0.5 O2 = ClO- + -llnl_gamma 4.0 + log_k -15.1014 + -delta_H 66.0361 kJ/mol +# deltafH -25.6 kcal/mol + -analytic 6.1314e1 3.4812e-3 -6.0952e3 -2.3043e1 -9.5128e1 +# Range 0-350 + -Vm 2.3599 -2.0164 6.5356 -2.6955 1.47670 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +O2 + Cl- = ClO2- + -llnl_gamma 4.0 + log_k -23.108 + -delta_H 112.688 kJ/mol +# deltafH -15.9 kcal/mol + -analytic 3.3638e0 -6.1675e-3 -4.9726e3 -2.0467e0 -2.5769e5 +# Range 0-350 + -Vm 5.2163 4.958 3.7949 -2.9839 1.2637 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +1.5 O2 + Cl- = ClO3- + -llnl_gamma 3.5 + log_k -17.2608 + -delta_H 81.3077 kJ/mol +# deltafH -24.85 kcal/mol + -analytic 2.8852e1 -4.8281e-3 -4.6779e3 -1.0772e1 -2.0783e5 +# Range 0-350 + -Vm 7.1665 9.7172 1.9307 -3.1807 1.0418 +# Extrapol supcrt92 +# Ref SH88 + +2 O2 + Cl- = ClO4- + -llnl_gamma 3.5 + log_k -15.7091 + -delta_H 62.0194 kJ/mol +# deltafH -30.91 kcal/mol + -analytic 7.0280e1 -6.8927e-5 -5.5690e3 -2.6446e1 -1.6596e5 +# Range 0-350 + -Vm 8.1411 15.5654 -7.8077 -3.4224 0.9699 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H+ + Co+2 + 0.25 O2 = Co+3 + 0.5 H2O + -llnl_gamma 5.0 + log_k -11.4845 + -delta_H 10.3198 kJ/mol +# deltafH 22 kcal/mol + -analytic -2.2827e1 -1.2222e-2 -7.2117e2 7.0306 -1.1247e1 +# Range 0-350 + -Vm -2.8678 -14.7777 11.5439 -2.1680 2.6901 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +4 H+ + CrO4-2 = Cr+2 + 2 H2O + O2 + -llnl_gamma 4.5 + log_k -21.6373 + -delta_H 153.829 kJ/mol +# deltafH -34.3 kcal/mol + -analytic 6.9003e1 6.2884e-2 -6.9847e3 -3.4720e1 -1.0901e2 +# Range 0-350 + -Vm -0.8036 -9.74 9.5688 -2.3762 1.4287 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76del/hal differ by 2 log K at 0C, 0.7 log K at 300C + +5 H+ + CrO4-2 = Cr+3 + 2.5 H2O + 0.75 O2 + -llnl_gamma 9.0 + log_k 8.3842 + -delta_H -81.0336 kJ/mol +# deltafH -57 kcal/mol + -analytic 5.1963e1 6.0932e-2 5.4256e3 -3.2290e1 8.4645e1 +# Range 0-350 + -Vm -2.7824 -14.5709 11.4661 -2.1765 2.7403 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76del/hal differ by 1.5 log K at 0C, 0.8 log K at 300C + +Cu+2 + 0.5 H2O = Cu+ + H+ + 0.25 O2 + -llnl_gamma 4.0 + log_k -18.7704 + -delta_H 145.877 kJ/mol +# deltafH 17.132 kcal/mol + -analytic 3.7909e1 1.3731e-2 -8.1506e3 -1.3508e1 -1.2719e2 +# Range 0-350 + -Vm 0.807 -5.804 8.0165 -2.5390 0.40460 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Eu+3 + 0.5 H2O = Eu+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -27.5115 + -delta_H 217.708 kJ/mol +# deltafH -126.1 kcal/mol + -analytic 3.0300e1 1.4126e-2 -1.2319e4 -9.0585e0 1.5289e5 +# Range 0-350 + -Vm 0.0407 -7.6776 8.7578 -2.4615 1.0929 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H+ + Fe+2 + 0.25 O2 = Fe+3 + 0.5 H2O + -llnl_gamma 9.0 + log_k 8.4899 + -delta_H -97.209 kJ/mol +# deltafH -11.85 kcal/mol + -analytic -1.7808e1 -1.1753e-2 4.7609e3 5.5866 7.4295e1 +# Range 0-350 + -Vm -2.4256 -13.6961 11.1141 -2.2127 2.58120 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H2O = H2 + 0.5 O2 + -CO2_llnl_gamma + log_k -46.1066 + -delta_H 275.588 kJ/mol +# deltafH -1 kcal/mol + -analytic 6.6835e1 1.7172e-2 -1.8849e4 -2.4092e1 4.2501e5 +# Range 0-350 + -Vm 5.1427 4.7758 3.8729 -2.9764 -0.209 +# Extrapol supcrt92 +# Ref SHS89 + +SO4-2 + H+ + 0.5 O2 = HSO5- + -llnl_gamma 4.0 + log_k -17.2865 + -delta_H 140.038 kJ/mol +# deltafH -185.38 kcal/mol + -analytic 5.9944e1 3.0904e-2 -7.7494e3 -2.4420e1 -1.2094e2 +# Range 0-350 + -Vm 8.9391 14.043 0.2349 -3.3594 0.86110 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Mn+2 + H+ + 0.25 O2 = Mn+3 + 0.5 H2O + -llnl_gamma 5.0 + log_k -4.0811 + -delta_H -65.2892 kJ/mol +# deltafH -34.895 kcal/mol + -analytic 3.8873e1 1.7458e-2 2.0757e3 -2.2274e1 3.2378e1 +# Range 0-350 + -Vm -2.932 -14.934 11.6041 -2.1615 2.70250 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76mac match + +2 H2O + O2 + Mn+2 = MnO4-2 + 4 H+ + -llnl_gamma 4.0 + log_k -32.4146 + -delta_H 151.703 kJ/mol +# deltafH -156 kcal/mol + -analytic -1.0407e1 -4.6464e-2 -1.0515e4 1.0943e1 -1.6408e2 +# Range 0-350 + -Vm 5.6596 6.0368 3.3786 -3.0285 2.98030 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 NH3 + 1.5 O2 = N2 + 3 H2O + -llnl_gamma 3.0 + log_k 116.4609 + -delta_H -687.08 kJ/mol +# deltafH -2.495 kcal/mol + -analytic -8.2621e1 -1.4671e-2 4.0068e4 2.9090e1 -2.5924e5 +# Range 0-350 + -Vm 6.2046 7.3685 2.8539 -3.0836 -0.34680 +# Extrapol supcrt92 +# Ref SHS89 + +1.5 O2 + NH3 = NO2- + H+ + H2O + -llnl_gamma 3.0 + log_k +46.8653 + -delta_H -290.901 kJ/mol +# deltafH -25 kcal/mol + -analytic -1.7011e1 -3.3459e-2 1.3999e4 1.1078e1 -4.8255e4 +# Range 0-350 + -Vm 5.5864 5.859 3.4472 -3.0212 1.18470 +# Extrapol supcrt92 +# Ref SH88 + +2 O2 + NH3 = NO3- + H+ + H2O + -llnl_gamma 3.0 + log_k 62.1001 + -delta_H -387.045 kJ/mol +# deltafH -49.429 kcal/mol + -analytic -3.9468e1 -3.9697e-2 2.0614e4 1.8872e1 -2.1917e5 +# Range 0-350 + -Vm 7.3161 6.7824 -4.6838 -3.0594 1.09770 +# Extrapol supcrt92 +# Ref SH88 + +2 H+ + 2 SO3-2 = S2O4-2 + .5 O2 + H2O + -llnl_gamma 5.0 + log_k -25.2076 +# deltafH -0 kcal/mol + -analytic -2.3172e2 2.0393e-3 -7.1011 8.3239e1 9.4155e-1 +# Range 0-350 + -Vm 6.6784 8.528 2.3917 -3.1314 2.87720 +# Extrapol supcrt92 +# Ref SSW+97 + +2 SO3-2 + .5 O2 + 2 H+ = S2O6-2 + H2O + -llnl_gamma 4.0 + log_k 41.8289 +# deltafH -0 kcal/mol + -analytic 0.14458e3 0.61449e-1 0.71877e4 -0.58657e2 0.11211e3 +# Range 0-350 + -Vm 8.2257 12.3054 0.9087 -3.2876 2.75870 +# Extrapol supcrt92 +# Ref SSW+97 + +2 SO3-2 + 1.5 O2 + 2 H+ = S2O8-2 + H2O + -llnl_gamma 4.0 + log_k 70.7489 +# deltafH -0 kcal/mol + -analytic 0.18394e3 0.60414e-1 0.13864e5 -0.71804e2 0.21628e3 +# Range 0-350 + -Vm 13.3622 24.8454 -4.0153 -3.8061 2.32810 +# Extrapol supcrt92 +# Ref SH88 + +O2 + H+ + 3 HS- = S3-2 + 2 H2O + -llnl_gamma 4.0 + log_k 79.3915 +# deltafH -0 kcal/mol + -analytic -0.51626e2 0.70208e-2 0.31797e5 0.11927e2 -0.64249e6 + -mass_balance S(-2)3 +# Range 0-350 + -Vm 6.7661 8.7396 2.315 -3.1403 2.97490 +# Extrapol supcrt92 +# Ref SH88 + +3 SO3-2 + 4 H+ = S3O6-2 + .5 O2 + 2 H2O + -llnl_gamma 4.0 + log_k -6.2316 +# deltafH -0 kcal/mol + -analytic 0.23664e3 0.12702 -0.10110e5 -0.99715e2 -0.15783e3 +# Range 0-350 + -Vm 8.4155 12.7691 0.7268 -3.3068 2.71310 +# Extrapol supcrt92 +# Ref SSW+97 + +1.5 O2 + 2 H+ + 4 HS- = S4-2 + 3 H2O + -llnl_gamma 4.0 + log_k 125.2958 +# deltafH -0 kcal/mol + -analytic 0.20875e3 0.58133e-1 0.33278e5 -0.85833e2 0.51921e3 + -mass_balance S(-2)4 +# Range 0-350 + -Vm 7.9381 11.6012 1.1902 -3.2586 2.83900 +# Extrapol supcrt92 +# Ref SH88 + +4 SO3-2 + 6 H+ = S4O6-2 + 1.5 O2 + 3 H2O + -llnl_gamma 4.0 + log_k -38.3859 +# deltafH -0 kcal/mol + -analytic 0.32239e3 0.19555 -0.23617e5 -0.13729e3 -0.36862e3 +# Range 0-350 + -Vm 10.2672 17.2902 -1.0502 -3.4937 2.28050 +# Extrapol supcrt92 +# Ref SSW+97 + +2 O2 + 3 H+ + 5 HS- = S5-2 + 4 H2O + -llnl_gamma 4.0 + log_k 170.9802 +# deltafH -0 kcal/mol + -analytic 0.30329e3 0.88033e-1 0.44739e5 -0.12471e3 0.69803e3 + -mass_balance S(-2)5 +# Range 0-350 + -Vm 9.1107 14.4645 0.0649 -3.3770 2.70510 +# Extrapol supcrt92 +# Ref SH88 + +5 SO3-2 + 8 H+ = S5O6-2 + 2.5 O2 + 4 H2O + -llnl_gamma 4.0 + log_k -99.4206 +# deltafH -0 kcal/mol + -analytic 0.42074e3 0.25833 -0.43878e5 -0.18178e3 -0.68480e3 +# Range 0-350 + -Vm 8.8725 13.8806 0.2986 -3.3527 2.60760 +# Extrapol supcrt92 +# Ref SSW+97 + +H+ + HCO3- + HS- + NH3 = SCN- + 3 H2O + -llnl_gamma 3.5 + log_k 3.0070 +# deltafH -0 kcal/mol + -analytic 0.16539e3 0.49623e-1 -0.44624e4 -0.65544e2 -0.69680e2 +# Range 0-350 + -Vm 7.0244 9.3687 2.0708 -3.1662 1.10730 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +SO4-2 = SO3-2 + 0.5 O2 + -llnl_gamma 4.5 + log_k -46.6244 + -delta_H 267.985 kJ/mol +# deltafH -151.9 kcal/mol + -analytic -1.3771e1 6.5102e-4 -1.3330e4 4.7164 -2.0800e2 +# Range 0-350 + -Vm 2.4632 -1.7691 6.4494 -2.7058 3.321 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Sm+3 + 0.5 H2O = Sm+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -47.9624 + -delta_H 326.911 kJ/mol +# deltafH -120.5 kcal/mol + -analytic -1.0217e1 7.7548e-3 -1.6285e4 5.4711 9.1931e4 +# Range 0-350 + -Vm -0.0353 -7.8592 8.8194 -2.454 1.1512 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +UO2+2 + H+ = U+3 + 0.75 O2 + 0.5 H2O + -llnl_gamma 5.0 + log_k -64.8028 + -delta_H 377.881 kJ/mol +# deltafH -489.1 kJ/mol + -analytic 2.5133e1 6.4088e-3 -2.2542e4 -8.1423 3.4793e5 +# Range 0-350 + -Vm -2.8438 -14.722 11.528 -2.1703 2.27520 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +2 H+ + UO2+2 = U+4 + H2O + 0.5 O2 + -llnl_gamma 5.5 + log_k -33.9491 + -delta_H 135.895 kJ/mol +# deltafH -591.2 kJ/mol + -analytic 4.4837e1 1.0129e-2 -1.1787e4 -1.9194e1 4.6436e5 +# Range 0-350 + -Vm -4.2836 -18.2319 12.8955 -2.0252 3.68350 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +UO2+2 + 0.5 H2O = UO2+ + H+ + 0.25 O2 + -llnl_gamma 4.0 + log_k -20.0169 + -delta_H 133.759 kJ/mol +# deltafH -1025.13 kJ/mol + -analytic 8.0480 9.5845e-3 -6.5994e3 -3.5515 -1.0298e2 +# Range 0-350 + -Vm 3.3767 0.4614 5.5725 -2.7980 0.63880 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +#--------------------------- +# 156 other aqueous species +#--------------------------- + +2 CH3COOH + Al+3 = Al(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -5.595 + -delta_H -46.8566 kJ/mol +# deltafH -372.08 kcal/mol + -analytic -4.2528e1 2.1431e-3 3.1658e2 1.1585e1 5.8604e5 +# Range 0-350 + -Vm 8.9971 14.1844 0.1805 -3.3653 1.39180 +# Extrapol supcrt92 +# Ref SK93, differ by 2.2 log K at 0C, 1 log K at 300C + +4 H2O + Al+3 = Al(OH)4- + 4 H+ + -llnl_gamma 4.0 + log_k -22.8833 + -delta_H 180.899 kJ/mol +# deltafH -222.079 kcal/mol + -analytic 1.0803e1 -3.4379e-3 -9.7391e3 0e0 0e0 +# Range 0-350 + -Vm 3.7221 3.9954 -1.5879 -2.9441 1.74180 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +H2O + Al+3 = Al(OH)+2 + H+ + -llnl_gamma 4.5 + log_k -4.9571 + -delta_H 49.798 kJ/mol +# deltafH -185.096 kcal/mol + -analytic -2.6224e-1 8.8816e-3 -1.8686e3 -4.3195e-1 -2.9158e1 +# Range 0-350 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # APP14, BH86 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +B(OH)3 = BO2- + H+ + H2O + -llnl_gamma 4.0 + log_k -9.2449 + -delta_H 16.3302 kJ/mol +# deltafH -184.6 kcal/mol + -analytic -1.0500e2 -3.3447e-2 1.4706e3 4.0724e1 2.2978e1 +# Range 0-350 + -Vm -2.2428 -6.2065 -6.3216 -2.5224 1.75950 +# Extrapol supcrt92 +# Ref SH88 + +HCO3- + H+ = CO2 + H2O + -CO2_llnl_gamma + log_k 6.3447 + -delta_H -9.7027 kJ/mol +# deltafH -98.9 kcal/mol + -analytic -1.0534e1 2.1746e-2 2.5216e3 7.9125e-1 3.9351e1 +# Range 0-350 + -Vm 6.2466 7.4711 2.8136 -3.0879 -0.1934 +# Extrapol supcrt92 +# Ref SSW01, SHS89 + +HCO3- = CO3-2 + H+ + -llnl_gamma 4.5 + log_k -10.3288 + -delta_H 14.6984 kJ/mol +# deltafH -161.385 kcal/mol + -analytic -6.9958e1 -3.3526e-2 -7.0846e1 2.8224e1 -1.0849 +# Range 0-350 + -Vm 2.8524 -3.9844 6.4142 -2.6143 3.39140 +# Extrapol supcrt92 +# Ref SH88 + +NH3 + HCO3- = CN- + 2 H2O + 0.5 O2 + -llnl_gamma 3.0 + log_k -56.0505 + -delta_H 344.151 kJ/mol +# deltafH 36 kcal/mol + -analytic -1.1174e1 3.8167e-3 -1.7063e4 4.5349e0 -2.6625e2 +# Range 0-350 + -Vm 5.4714 5.5813 3.5497 -3.0096 1.29000 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +HCO3- + H+ = HCOOH + 0.5 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -39.0524 + -analytic -16.6 0.041 -10000 0 0 -1.205e-5 +# Range 0-350 + -Vm 6.3957 7.7713 2.8318 -3.1002 -0.33 +# Extrapol supcrt92 +# Ref Sho95 + +HCOOH = HCOO- + H+ + -llnl_gamma 3.5 # EQ3/6 data0.sup + log_k -3.752994 + -analytic -6.456 0.01694 0 0 0 -2.71e-5 +# Range 0-350 + -Vm 5.7842 4.7242 7.363 -2.9742 1.3003 +# Extrapol supcrt92 +# Ref Sho95 + +2 HCO3- + 2 H+ = CH3COOH + 2 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -141.99219 + -analytic -6.037 0.0104 -42362 0 0 3.604e-5 +# Range 0-350 + -Vm 11.6198 5.218 2.5088 -2.9946 -0.15 +# Extrapol supcrt92 +# Ref Sho95 + +CH3COOH = CH3COO- + H+ + -llnl_gamma 4.5 + log_k -4.7572 +# deltafH -0 kcal/mol + -analytic -0.96597e2 -0.34535e-1 0.19753e4 0.38593e2 0.30850e2 +# Range 0-350 + -Vm 7.7525 8.6996 7.5825 -3.1385 1.31820 +# Extrapol supcrt92 +# Ref Sho95 + +2 NH3 + HCO3- + H+ = CO(NH2)2 + 2 H2O + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k 6.631821 + -analytic 15.98 -4.41e-2 0 0 0 4.25e-5 +# Range 0-350 + -Vm 7.7158 7.3031 10.9353 -3.0808 -0.3006 +# Extrapol supcrt92 +# Ref SM93 + +3 H+ + 3 HCO3- + H2O = C3H8 + 5 O2 + -llnl_gamma 3.0 # thermo.com.V8.R6+.tdat + log_k -363.088 + -analytic -8.04e2 1.877 0 0 0 -1.33e-3 +# Range 0-350 + -Vm 10.768 17.6785 -0.5878 -3.5097 -0.165 +# Extrapol supcrt92 +# Ref SH90 + +H+ + HCO3- + H2O = CH3OH + 1.5 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -117.9046 + -analytic -262.5446137 6.159125942e-1 0 0 0 -4.375362728e-4 +# Range 0-350 + -Vm 6.9383 5.5146 11.4018 -3.0069 -0.14760 +# Extrapol supcrt92 +# Ref SH90 + +H2O + 2 HCO3- + 2 H+ = CH3CH2OH + 3 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -224.1415 + -analytic -423.8 0.989 -10003 0 0 -6.93e-4 +# Range 0-350 + -Vm 9.2333 9.9581 12.1445 -3.1906 -0.2037 +# Extrapol supcrt92 +# Ref SH90 + +HCO3- + H+ = CH2O + O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -86.57248 + -analytic -17.3 0.0404 -24072 0 0 -6.57e-6 +# Range 0-350 + -Vm 5.3113 5.3139 3.3901 -2.9986 -0.3984 +# Extrapol supcrt92 +# Ref SS93 + +2 CH3COOH + Ca+2 = Ca(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.3814 + -delta_H -2.7196 kJ/mol +# deltafH -362.65 kcal/mol + -analytic -1.0320e1 4.0012e-3 -3.6281e3 2.4421 7.0175e5 +# Range 0-350 + -Vm 12.9911 23.9379 -3.6556 -3.7685 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Ca+2 + CH3COOH = CaCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.8263 + -delta_H 1.17152 kJ/mol +# deltafH -245.62 kcal/mol + -analytic -8.8826 3.1672e-3 -1.0764e3 2.0526 2.3599e5 +# Range 0-350 + -Vm 5.9002 6.6232 3.1505 -3.0527 0.36360 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Ca+2 = CaCO3 + H+ + -llnl_gamma 3.0 + log_k -7.0017 + -delta_H 30.5767 kJ/mol +# deltafH -287.39 kcal/mol + -analytic 2.3045e2 5.5350e-2 -8.5056e3 -9.1096e1 -1.3279e2 +# Range 0-350 + -Vm -0.3907 -8.7325 9.1753 -2.4179 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +Cl- + Ca+2 = CaCl+ + -llnl_gamma 4.0 + log_k -0.6956 + -delta_H 2.02087 kJ/mol +# deltafH -169.25 kcal/mol + -analytic 8.1498e1 3.8387e-2 -1.3763e3 -3.5968e1 -2.1501e1 +# Range 0-350 + -Vm 2.7148 -1.1497 6.1949 -2.7314 0.48620 +# Extrapol supcrt92 +# Ref SSH97 differ by 0.3 log K at 0C, 1.2 log K at 300C + +2 Cl- + Ca+2 = CaCl2 + -llnl_gamma 3.0 + log_k -0.6436 + -delta_H -5.8325 kJ/mol +# deltafH -211.06 kcal/mol + -analytic 1.8178e2 7.6910e-2 -3.1088e3 -7.8760e1 -4.8563e1 +# Range 0-350 + -Vm 6.2187 7.4058 2.8322 -3.0851 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + Ca+2 = CaSO4 + -llnl_gamma 3.0 + log_k 2.1111 + -delta_H 5.4392 kJ/mol +# deltafH -345.9 kcal/mol + -analytic 2.8618e2 8.4084e-2 -7.6880e3 -1.1449e2 -1.2005e2 +# Range 0-350 + -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # phreeqc.dat, SSH97 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Co+2 = Co(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.1468 + -delta_H -22.4262 kJ/mol +# deltafH -251.46 kcal/mol + -analytic -2.0661e1 2.9014e-3 -2.2146e3 5.1702 6.4968e5 +# Range 0-350 + -Vm 11.9141 21.312 -2.6321 -3.6599 3.49629 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Co+2 = Co(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.281 + -delta_H -48.2415 kJ/mol +# deltafH -373.73 kcal/mol + -analytic 6.3384e1 -4.0669e-3 -1.4715e4 -1.9518e1 2.1524e6 +# Range 0-350 + -Vm 20.3474 41.8989 -10.7127 -4.5110 1.47140 +# Extrapol supcrt92 +# Ref SK93 + +Co+2 + CH3COOH = CoCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.2985 + -delta_H -8.70272 kJ/mol +# deltafH -132.08 kcal/mol + -analytic -5.4858 1.9147e-3 -1.1292e3 9.0555e-1 2.8223e5 +# Range 0-350 + -Vm 5.0294 4.4992 3.9806 -2.9649 0.64720 +# Extrapol supcrt92 +# Ref SK93 + +Co+2 + Cl- = CoCl+ + -llnl_gamma 4.0 + log_k 0.1547 + -delta_H 1.71962 kJ/mol +# deltafH -53.422 kcal/mol + -analytic 1.5234e2 5.6958e-2 -3.3258e3 -6.3849e1 -5.1942e1 +# Range 0-350 + -Vm 1.8028 -3.3766 7.0702 -2.6394 0.71910 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 74nau/ryz match + +2 H+ + 2 CrO4-2 = Cr2O7-2 + H2O + -llnl_gamma 4.0 + log_k 14.5192 + -delta_H -13.8783 kJ/mol +# deltafH -356.2 kcal/mol + -analytic 1.3749e2 6.5773e-2 -7.9472e2 -5.6525e1 -1.2441e1 +# Range 0-350 + -Vm 12.4303 22.568 -3.1161 -3.7119 2.12160 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 CH3COOH + Cu+2 = Cu(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -5.8824 + -delta_H -25.899 kJ/mol +# deltafH -222.69 kcal/mol + -analytic -2.6689e1 1.8048e-3 -1.8244e3 7.7008 6.5408e5 +# Range 0-350 + -Vm 11.8801 21.2264 -2.5925 -3.6564 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Cu+ = Cu(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.2139 + -delta_H -19.5476 kJ/mol +# deltafH -219.74 kcal/mol + -analytic -3.2712e2 -5.9087e-2 1.1386e4 1.2017e2 1.7777e2 +# Range 0-350 + -Vm 15.0715 29.0205 -5.6592 -3.9786 1.06910 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Cu+2 = Cu(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -9.3788 + -delta_H -53.2205 kJ/mol +# deltafH -345.32 kcal/mol + -analytic 3.9475e1 -6.2867e-3 -1.3233e4 -1.0643e1 2.1121e6 +# Range 0-350 + -Vm 20.2654 41.7019 -10.6422 -4.5029 1.3408 +# Extrapol supcrt92 +# Ref SK93 + +Cu+ + CH3COOH = CuCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.4274 + -delta_H -4.19237 kJ/mol +# deltafH -99.97 kcal/mol + -analytic 6.3784 -4.5464e-4 -1.9995e3 -2.8359 2.7224e5 +# Range 0-350 + -Vm 7.3009 10.0483 1.7946 -3.1943 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Cu+2 + CH3COOH = CuCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -2.5252 + -delta_H -11.3805 kJ/mol +# deltafH -103.12 kcal/mol + -analytic -1.4930e1 5.1278e-4 -3.4874e2 4.3605 2.3504e5 +# Range 0-350 + -Vm 4.9722 4.362 4.029 -2.9592 0.56810 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Eu+3 = Eu(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.6912 + -delta_H -28.3257 kJ/mol +# deltafH -383.67 kcal/mol + -analytic -2.7589e1 1.5772e-3 -1.1008e3 7.9899 5.6652e5 +# Range 0-350 + -Vm 9.3029 14.9307 -0.1123 -3.3961 0.7384 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Eu+3 = Eu(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -7.9824 + -delta_H -47.3629 kJ/mol +# deltafH -504.32 kcal/mol + -analytic -3.7470e1 1.9276e-3 -1.0318e3 9.7078 7.4558e5 +# Range 0-350 + -Vm 16.6413 32.8512 -7.1605 -4.137 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Eu+3 + CH3COOH = EuCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.9571 + -delta_H -14.5603 kJ/mol +# deltafH -264.28 kcal/mol + -analytic -1.5090e1 1.0352e-3 -6.4435e2 4.6225 3.1649e5 +# Range 0-350 + -Vm 2.75 -1.0666 6.169 -2.7348 1.5269 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Eu+3 = EuCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.4057 + -delta_H 90.7844 kJ/mol +# deltafH -287.9 kcal/mol # OBIGT: -311.27 kcal/mol HSS95 + -analytic 2.3548e2 5.3819e-2 -6.9908e3 -9.3137e1 -1.0915e2 +# Range 0-350 + -Vm -0.9842 -10.1779 9.7343 -2.3581 1.2465 +# Extrapol supcrt92 +# Ref HSS95 + +Eu+2 + Cl- = EuCl+ + -llnl_gamma 4.0 + log_k 0.3819 + -delta_H 8.50607 kJ/mol +# deltafH -164 kcal/mol + -analytic 6.8695e1 3.7619e-2 -1.0809e3 -3.0665e1 -1.6887e1 +# Range 0-350 + -Vm 5.1742 4.8499 3.8487 -2.9794 0.2557 +# Extrapol supcrt92 +# Ref HSS95 + +Eu+3 + Cl- = EuCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 13.9453 kJ/mol +# deltafH -181.3 kcal/mol + -analytic 7.9275e1 3.7878e-2 -1.7895e3 -3.4041e1 -2.7947e1 +# Range 0-350 + -Vm -0.3777 -8.6968 9.1514 -2.4194 1.4671 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Eu+3 = EuCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 18.6857 kJ/mol +# deltafH -220.1 kcal/mol # OBIGT: -204.6 kcal/mol HSS95 + -analytic 2.1758e2 8.0336e-2 -5.5499e3 -9.0087e1 -8.6665e1 +# Range 0-350 + -Vm 9.1152 14.474 0.0641 -3.3773 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Eu+3 = EuCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 11.2926 kJ/mol +# deltafH -261.8 kcal/mol + -analytic 4.2075e2 1.2890e-1 -1.1288e4 -1.7043e2 -1.7627e2 +# Range 0-350 + -Vm 6.2132 7.3881 2.8493 -3.0843 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Eu+2 = EuCl3- + -llnl_gamma 4.0 + log_k 2.0253 + -delta_H -3.76978 kJ/mol +# deltafH -246.8 kcal/mol + -analytic 1.1546e1 6.4683e-2 3.7299e3 -1.6672e1 5.8196e1 +# Range 0-350 + -Vm 13.946 26.2721 -4.579 -3.865 0.9527 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Eu+3 = EuCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -9.90771 kJ/mol +# deltafH -306.8 kcal/mol + -analytic 4.8122e2 1.3081e-1 -1.2950e4 -1.9302e2 -2.0222e2 +# Range 0-350 + -Vm 10.9946 19.066 -1.7473 -3.5671 1.787 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Eu+2 = EuCl4-2 + -llnl_gamma 4.0 + log_k 2.8470 + -delta_H -19.9493 kJ/mol +# deltafH -290.6 kcal/mol + -analytic -1.2842e2 5.0789e-2 9.8815e3 3.3565e1 1.5423e2 +# Range 0-350 + -Vm 19.473 39.7656 -9.8784 -4.4228 2.4755 +# Extrapol supcrt92 +# Ref HSS95 + +HPO4-2 + H+ + Eu+3 = EuH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -17.0916 kJ/mol +# deltafH -457.6 kcal/mol + -analytic 1.0873e2 6.3416e-2 2.7202e2 -4.8113e1 4.2122 +# Range 0-350 + -Vm 1.4946 -4.1236 7.3517 -2.6084 1.5372 +# Extrapol supcrt92 +# Ref HSS95 + +HCO3- + Eu+3 = EuHCO3+2 + -llnl_gamma 4.5 + log_k 1.6258 + -delta_H 8.77803 kJ/mol +# deltafH -307.5 kcal/mol + -analytic 3.9266e1 3.1608e-2 -9.8731e1 -1.8875e1 -1.5524 +# Range 0-350 + -Vm 0.4928 -6.572 8.3198 -2.5072 1.286 +# Extrapol supcrt92 +# Ref HSS95 + +NO3- + Eu+3 = EuNO3+2 + -llnl_gamma 4.5 + log_k 0.8745 + -delta_H -32.0955 kJ/mol +# deltafH -201.8 kcal/mol + -analytic 1.7398e1 2.5467e-2 2.2683e3 -1.2810e1 3.5389e1 +# Range 0-350 + -Vm 1.2198 -4.7951 7.6178 -2.5807 1.6556 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Eu+3 = EuO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.337 + -delta_H 110.947 kJ/mol +# deltafH -186.5 kcal/mol # OBIGT: -177.81 kcal/mol HSS95 + -analytic 1.8876e2 3.0194e-2 -1.3836e4 -6.7770e1 -2.1595e2 +# Range 0-350 + -Vm 2.7458 -1.0743 6.1663 -2.7345 0.4322 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Eu+3 = EuO2- + 4 H+ + -llnl_gamma 4.0 + log_k -34.5066 + -delta_H 281.307 kJ/mol +# deltafH -214.1 kcal/mol # OBIGT: -219.06 kcal/mol HSS95 + -analytic 7.5244e1 3.7089e-4 -1.3587e4 -2.3859e1 -4.6713e5 +# Range 0-350 + -Vm 4.8468 4.0541 4.1548 -2.9465 1.1424 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Eu+3 = EuO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.4173 + -delta_H 222.313 kJ/mol +# deltafH -228.2 kcal/mol + -analytic 3.6754e2 5.3868e-2 -2.4034e4 -1.3272e2 -3.7514e2 +# Range 0-350 + -Vm 4.8064 3.954 4.1968 -2.9424 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Eu+3 = EuOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 78.0065 kJ/mol +# deltafH -194.373 kcal/mol + -analytic 6.7691e1 1.2066e-2 -6.1871e3 -2.3617e1 -9.6563e1 +# Range 0-350 + -Vm 2.6569 -1.2969 6.2659 -2.7253 1.1815 +# Extrapol supcrt92 +# Ref HSS95 + +SO4-2 + Eu+3 = EuSO4+ + -llnl_gamma 4.0 + log_k 3.6430 + -delta_H 62.3416 kJ/mol +# deltafH -347.2 kcal/mol # OBIGT: -357.2 kcal/mol HSS95 + -analytic 3.0587e2 8.6208e-2 -9.0387e3 -1.2026e2 -1.4113e2 +# Range 0-350 + -Vm 1.4399 -4.2627 7.4184 -2.6027 0.779 +# Extrapol supcrt92 +# Ref HSS95 + +2 CH3COOH + Fe+2 = Fe(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.0295 + -delta_H -20.2924 kJ/mol +# deltafH -259.1 kcal/mol + -analytic -2.9862e1 1.3901e-3 -1.6908e3 8.6283 6.0125e5 +# Range 0-350 + -Vm 12.1698 21.937 -2.8791 -3.6858 -0.038 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Fe+2 + CH3COOH = FeCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.4671 + -delta_H -3.80744 kJ/mol +# deltafH -139.06 kcal/mol + -analytic -1.3781e1 9.6253e-4 -7.5310e2 4.0135 2.3416e5 +# Range 0-350 + -Vm 5.2246 4.9785 3.7863 -2.9848 0.57560 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Fe+2 + Cl- = FeCl+ + -llnl_gamma 4.0 + log_k -0.1605 + -delta_H 3.02503 kJ/mol +# deltafH -61.26 kcal/mol + -analytic 8.2435e1 3.7755e-2 -1.4765e3 -3.5918e1 -2.3064e1 +# Range 0-350 + -Vm 2.1468 -2.5367 6.7401 -2.6741 0.7003 +# Extrapol supcrt92 +# Ref SSH97 + +Fe+3 + Cl- = FeCl+2 + -llnl_gamma 4.5 + log_k -0.8108 + -delta_H 36.6421 kJ/mol +# deltafH -180.018 kJ/mol + -analytic 1.6186e2 5.9436e-2 -5.1913e3 -6.5852e1 -8.1053e1 +# Range 0-350 + -Vm -0.7164 -9.5277 9.4878 -2.3851 0.17013 # SSH97 +# Extrapol supcrt92, 64cri/cob +# Ref SSH97, WEP+82 differ by 2.7 log K at 0C, 1.2 log K at 300C + +2 Cl- + Fe+2 = FeCl2 + -llnl_gamma 3.0 + log_k -2.4541 + -delta_H 6.46846 kJ/mol +# deltafH -100.37 kcal/mol + -analytic 1.9171e2 7.8070e-2 -4.1048e3 -8.2292e1 -6.4108e1 +# Range 0-350 + -Vm 5.5057 5.665 3.5164 -3.0131 -0.038 +# Extrapol supcrt92 +# Ref SSH97 differ by 7.2 log K at 0C, 3.2 log K at 300C !! flag + +H2O + Fe+2 = FeOH+ + H+ + -llnl_gamma 4.0 + log_k -9.5 + -analytic 1.706e-1 0 -2.883e3 +# Range 0-350 + -Vm -0.2561 -8.4039 9.0457 -2.4315 0.7003 +# Extrapol supcrt92 +# Ref SSW+97, Marion+03,08 match + +H2O + Fe+3 = FeOH+2 + H+ + -llnl_gamma 4.5 + log_k -2.19 +# deltafH -0 kcal/mol + -analytic 5.300 0 -2.272e3 +# Range 0-350 + -Vm -1.1562 -10.6009 9.9077 -2.3407 1.43820 +# Extrapol supcrt92 +# Ref SSW+97, Marion+08 match + +2 CH3COOH + Gd+3 = Gd(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.9625 + -delta_H -22.3426 kJ/mol +# deltafH -401.74 kcal/mol + -analytic -4.3124e1 1.2995e-4 -4.3494e2 1.3677e1 5.1224e5 +# Range 0-350 + -Vm 9.4165 15.2134 -0.2342 -3.4078 0.6223 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Gd+3 = Gd(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -8.3489 + -delta_H -37.9907 kJ/mol +# deltafH -521.58 kcal/mol + -analytic -8.8296e1 -5.0939e-3 1.2268e3 2.8513e1 6.0745e5 +# Range 0-350 + -Vm 16.8116 33.2662 -7.3215 -4.1541 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Gd+3 + CH3COOH = GdCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -11.7152 kJ/mol +# deltafH -283.1 kcal/mol + -analytic -1.4118e1 1.6660e-3 -7.5206e2 4.2614 3.1187e5 +# Range 0-350 + -Vm 2.8605 -0.7945 6.0567 -2.7461 1.4477 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Gd+3 = GdCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.479 + -delta_H 89.9476 kJ/mol +# deltafH -307.6 kcal/mol # OBIGT: -330.22 kcal/mol HSS95 + -analytic 2.3628e2 5.4100e-2 -7.0746e3 -9.3413e1 -1.1046e2 +# Range 0-350 + -Vm -0.953 -10.1036 9.7095 -2.3612 1.1729 +# Extrapol supcrt92 +# Ref HSS95 + +Gd+3 + Cl- = GdCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.7821 kJ/mol +# deltafH -200.6 kcal/mol + -analytic 8.0750e1 3.8524e-2 -1.8591e3 -3.4621e1 -2.9034e1 +# Range 0-350 + -Vm -0.263 -8.417 9.0425 -2.4309 1.4006 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Gd+3 = GdCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 21.1961 kJ/mol +# deltafH -239 kcal/mol + -analytic 2.1754e2 8.0996e-2 -5.6121e3 -9.0067e1 -8.7635e1 +# Range 0-350 + -Vm 2.8492 -0.8272 6.0803 -2.7447 0.6305 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Gd+3 = GdCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 15.895 kJ/mol +# deltafH -280.2 kcal/mol + -analytic 4.1398e2 1.2829e-1 -1.1230e4 -1.6770e2 -1.7535e2 +# Range 0-350 + -Vm 6.3836 7.8028 2.6888 -3.1015 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Gd+3 = GdCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -1.53971 kJ/mol +# deltafH -324.3 kcal/mol + -analytic 4.7684e2 1.3157e-1 -1.3068e4 -1.9118e2 -2.0405e2 +# Range 0-350 + -Vm 11.1317 19.3995 -1.8761 -3.5809 1.631 +# Extrapol supcrt92 +# Ref HSS95 + +HPO4-2 + H+ + Gd+3 = GdH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -14.9996 kJ/mol +# deltafH -476.6 kcal/mol + -analytic 1.1058e2 6.4124e-2 1.3451e2 -4.8758e1 2.0660 +# Range 0-350 + -Vm 1.6048 -3.8632 7.2686 -2.6192 1.4574 +# Extrapol supcrt92 +# Ref HSS95 + +HCO3- + Gd+3 = GdHCO3+2 + -llnl_gamma 4.5 + log_k 1.6991 + -delta_H 10.0332 kJ/mol +# deltafH -326.7 kcal/mol + -analytic 4.1973e1 3.2521e-2 -2.3475e2 -1.9864e1 -3.6757 +# Range 0-350 + -Vm 0.6026 -6.3043 8.2153 -2.5183 1.2048 +# Extrapol supcrt92 +# Ref HSS95 + +NO3- + Gd+3 = GdNO3+2 + -llnl_gamma 4.5 + log_k 0.4347 + -delta_H -25.8195 kJ/mol +# deltafH -219.8 kcal/mol + -analytic 2.0253e1 2.6372e-2 1.8785e3 -1.3723e1 2.9306e1 +# Range 0-350 + -Vm 1.3205 -4.5535 7.5323 -2.5907 1.5475 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Gd+3 = GdO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.337 + -delta_H 113.039 kJ/mol +# deltafH -205.5 kcal/mol # OBIGT: -196.63 kcal/mol HSS95 + -analytic 2.0599e2 3.2521e-2 -1.4547e4 -7.4048e1 -2.2705e2 +# Range 0-350 + -Vm 2.8425 -0.8409 6.0801 -2.7441 0.3539 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Gd+3 = GdO2- + 4 H+ + -llnl_gamma 4.0 + log_k -34.4333 + -delta_H 283.817 kJ/mol +# deltafH -233 kcal/mol # OBIGT: -237.73 kcal/mol HSS95 + -analytic 1.2067e2 6.6276e-3 -1.5531e4 -4.0448e1 -4.3587e5 +# Range 0-350 + -Vm 5.0344 4.5111 3.9769 -2.9654 1.0495 -1 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Gd+3 = GdO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.2707 + -delta_H 224.405 kJ/mol +# deltafH -247.2 kcal/mol + -analytic 3.6324e2 4.7938e-2 -2.4275e4 -1.2988e2 -3.7889e2 +# Range 0-350 + -Vm 5.0117 4.4582 3.9917 -2.9632 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Gd+3 = GdOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 79.9855 kJ/mol +# deltafH -213.4 kcal/mol # OBIGT: 212.9 kcal/mol HSS95 + -analytic 8.3265e1 1.4153e-2 -6.8229e3 -2.9301e1 -1.0649e2 +# Range 0-350 + -Vm 2.7389 -1.0936 6.1786 -2.7337 1.1 +# Extrapol supcrt92 +# Ref HSS95 + +SO4-2 + Gd+3 = GdSO4+ + -llnl_gamma 4.0 + log_k -3.687 + -delta_H 20.0832 kJ/mol +# deltafH -376.8 kcal/mol + -analytic 3.0783e2 8.6798e-2 -1.1246e4 -1.2109e2 -1.7557e2 + #analytic 3.18e2 7.5e-2 -1.12e4 -1.21e2 -1.76e2 +# Range 0-350 + -Vm 1.4776 -4.1705 7.3822 -2.6065 0.7287 +# Extrapol supcrt92 +# Ref HSS95 differ by 7 log K at 0C, 3.7 log K at 300C !! flag + +2 HPO4-2 + 2 H+ = H2P2O7-2 + H2O + -llnl_gamma 4.0 + log_k 12.0709 + -delta_H 19.7192 kJ/mol +# deltafH -544.6 kcal/mol + -analytic 1.4825e2 6.7021e-2 -2.8329e3 -5.9251e1 -4.4248e1 +# Range 0-350 + -Vm 9.0963 14.4299 0.076 -3.3754 2.62180 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +HPO4-2 + H+ = H2PO4- + -llnl_gamma 4.0 + log_k 7.2054 + -delta_H -4.20492 kJ/mol +# deltafH -309.82 kcal/mol + -analytic 8.2149e1 3.4077e-2 -1.0431e3 -3.2970e1 -1.6301e1 +# Range 0-350 + -Vm 6.4875 8.0594 2.5823 -3.1122 1.3003 +# Extrapol supcrt92 +# Ref SH88 + +3 H+ + 2 HPO4-2 = H3P2O7- + H2O + -llnl_gamma 4.0 + log_k 14.4165 + -delta_H 21.8112 kJ/mol +# deltafH -544.1 kcal/mol + -analytic 2.3157e2 1.0161e-1 -4.3723e3 -9.4050e1 -6.8295e1 +# Range 0-350 + -Vm 9.1292 14.5122 0.0398 -3.3788 0.8568 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + HPO4-2 = H3PO4 + -llnl_gamma 3.0 + log_k 9.3751 + -delta_H 3.74468 kJ/mol +# deltafH -307.92 kcal/mol + -analytic 1.8380e2 6.7320e-2 -3.7792e3 -7.3463e1 -5.9025e1 +# Range 0-350 + -Vm 8.2727 12.4182 0.8691 -3.2924 -0.22 +# Extrapol supcrt92 +# Ref SHS89 + +4 H+ + 2 HPO4-2 = H4P2O7 + H2O + -llnl_gamma 3.0 + log_k 15.9263 + -delta_H 29.7226 kJ/mol +# deltafH -2268.6 kJ/mol + -analytic 6.9026e2 2.4309e-1 -1.6165e4 -2.7989e2 -2.7475e2 +# Range 0-350 + -Vm 9.2975 14.9199 -0.113 -3.3957 -0.62920 +# Extrapol supcrt92, 69hel +# Ref SSW+97, WEP+82 + +3 H2O + Al+3 = Al(OH)3 + 3 H+ + -llnl_gamma 3.0 + log_k -16.4329 + -delta_H 144.704 kJ/mol +# deltafH -230.73 kcal/mol + -analytic 4.2012e1 1.9980e-2 -7.7847e3 -1.5470e1 -1.2149e2 +# Range 0-350 + -Vm 3.5338 0.8485 5.4132 -2.8140 -0.03 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel + +H+ + CN- = HCN + -llnl_gamma 3.0 + log_k 9.2359 + -delta_H -43.5136 kJ/mol +# deltafH 25.6 kcal/mol + -analytic 1.0536e1 2.3105e-2 3.3038e3 -7.7786 5.1550e1 +# Range 0-350 + -Vm 8.0083 11.7705 1.1286 -3.2655 -0.1113 +# Extrapol supcrt92 +# Ref SM93 + +H+ + Cl- = HCl + -llnl_gamma 3.0 + log_k -0.67 +# deltafH -0 kcal/mol + -analytic 4.1893e2 1.1103e-1 -1.1784e4 -1.6697e2 -1.8400e2 +# Range 0-350 + -Vm 1.2547 -4.7177 7.6043 -2.5840 -0.7 +# Extrapol supcrt92, ? +# Ref MS97, 87rua/sew match + +H+ + CrO4-2 = HCrO4- + -llnl_gamma 4.0 + log_k 6.4944 + -delta_H 2.9288 kJ/mol +# deltafH -209.9 kcal/mol + -analytic 4.4944e1 3.2740e-2 1.8400e2 -1.9722e1 2.8578 +# Range 0-350 + -Vm 8.2211 12.2925 0.9174 -3.2871 0.923 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +NO2- + H+ = HNO2 + -llnl_gamma 3.0 + log_k 3.2206 + -delta_H -14.782 kJ/mol +# deltafH -119.382 kJ/mol + -analytic 1.9653 -1.1603e-4 0 0 1.1569e5 +# Range 0-350 + -Vm 5.9151 6.659 3.1378 -3.0542 -0.1507 +# Extrapol supcrt92, 69hel +# Ref SSW+97, WEP+82 match + +NO3- + H+ = HNO3 + -llnl_gamma 3.0 + log_k -1.3025 + -delta_H 16.8155 kJ/mol +# deltafH -45.41 kcal/mol + -analytic 9.9744e1 3.4866e-2 -3.0975e3 -4.0830e1 -4.8363e1 +# Range 0-350 + -Vm 7.1623 9.7063 1.9367 -3.1802 -0.3066 +# Extrapol supcrt92 +# Ref SSW+97, SHS89 + +2 HPO4-2 + H+ = HP2O7-3 + H2O + -llnl_gamma 4.0 + log_k 5.4498 + -delta_H 23.3326 kJ/mol +# deltafH -2274.99 kJ/mol + -analytic 3.9159e2 1.5438e-1 -8.7071e3 -1.6283e2 -1.3598e2 +# Range 0-350 + -Vm 8.3302 12.5558 0.8208 -3.2980 4.647 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, WEP+82 differ by 0 log K at 0C, 4.7 log K at 300C + +SO3-2 + H+ = HSO3- + -llnl_gamma 4.0 + log_k 7.2054 + -delta_H 9.33032 kJ/mol +# deltafH -149.67 kcal/mol + -analytic 5.5899e1 3.3623e-2 -5.0120e2 -2.3040e1 -7.8373 +# Range 0-350 + -Vm 6.7014 8.5816 2.3771 -0.31338 1.1233 +# Extrapol supcrt92 +# Ref SH88 + +SO4-2 + H+ = HSO4- + -llnl_gamma 4.0 + log_k 1.9791 + -delta_H 20.5016 kJ/mol +# deltafH -212.5 kcal/mol + -analytic 4.9619e1 3.0368e-2 -1.1558e3 -2.1335e1 -1.8051e1 +# Range 0-350 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # APP14 +# Extrapol supcrt92 +# Ref SH88 + +SiO2 + H2O = HSiO3- + H+ + -llnl_gamma 4.0 + log_k -9.9525 + -delta_H 25.991 kJ/mol +# deltafH -271.88 kcal/mol + -analytic 6.4211e1 -2.4872e-2 -1.2707e4 -1.4681e1 1.0853e6 +# Range 0-350 + -Vm 2.9735 -0.5158 5.9467 -2.7575 1.5511 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + K+ = K(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -10.2914 + -delta_H -1.79912 kJ/mol +# deltafH -292.9 kcal/mol + -analytic -2.3036e2 -4.6369e-2 7.0305e3 8.4997e1 1.0977e2 +# Range 0-350 + -Vm 17.8481 35.7984 -8.3193 -4.2588 0.7097 +# Extrapol supcrt92 +# Ref SK93 + +K+ + CH3COOH = KCH3COO + H+ + -llnl_gamma 3.0 + log_k -5.0211 + -delta_H 4.8116 kJ/mol +# deltafH -175.22 kcal/mol + -analytic -2.6676e-1 -3.2675e-3 -1.7143e3 -7.1907e-3 1.7726e5 +# Range 0-350 + -Vm 17.8481 35.7984 -8.3193 -4.2588 0.7097 +# Extrapol supcrt92 +# Ref SK93 + +K+ + Cl- = KCl + -llnl_gamma 3.0 + log_k -1.4946 + -delta_H 14.1963 kJ/mol +# deltafH -96.81 kcal/mol + -analytic 1.3650e2 3.8405e-2 -4.4014e3 -5.4421e1 -6.8721e1 +# Range 0-350 + -Vm 6.9932 9.297 2.0889 -3.1633 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + K+ + H+ = KHSO4 + -llnl_gamma 3.0 + log_k 0.8136 + -delta_H 29.8319 kJ/mol +# deltafH -270.54 kcal/mol + -analytic 1.2620e2 5.7349e-2 -3.3670e3 -5.3003e1 -5.2576e1 +# Range 0-350 + -Vm 9.1226 14.4964 0.0453 -3.3782 -0.001 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + K+ = KSO4- + -llnl_gamma 4.0 + log_k 0.8796 + -delta_H 2.88696 kJ/mol +# deltafH -276.98 kcal/mol + -analytic 9.9073e1 3.7817e-2 -2.1628e3 -4.1297e1 -3.3779e1 +# Range 0-350 + -Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Li+ = Li(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.2674 + -delta_H -24.7609 kJ/mol +# deltafH -304.67 kcal/mol + -analytic -3.3702e2 -6.0849e-2 1.1952e4 1.2359e2 1.8659e2 +# Range 0-350 + -Vm 16.3412 32.1211 -6.8785 -4.1068 1.2422 +# Extrapol supcrt92 +# Ref SK93 + +Li+ + CH3COOH = LiCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.4589 + -delta_H -6.64419 kJ/mol +# deltafH -184.24 kcal/mol + -analytic -3.8391 -7.3938e-4 -1.0829e3 3.4134e-1 2.1318e5 +# Range 0-350 + -Vm 8.388 12.6976 0.7639 -3.3038 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Li+ + Cl- = LiCl + -llnl_gamma 3.0 + log_k -1.5115 + -delta_H 3.36812 kJ/mol +# deltafH -105.68 kcal/mol + -analytic 1.2484e2 4.1941e-2 -3.2439e3 -5.1708e1 -5.0655e1 +# Range 0-350 + -Vm 5.5837 5.8554 3.4416 -3.021 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Mg+2 = Mg(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.473 + -delta_H -23.8195 kJ/mol +# deltafH -349.26 kcal/mol + -analytic -4.3954e1 -3.1842e-4 -1.2033e3 1.3556e1 6.3058e5 +# Range 0-350 + -Vm 12.3982 22.4898 -3.0853 -3.7086 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Mg+2 + CH3COOH = MgCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.4781 + -delta_H -8.42239 kJ/mol +# deltafH -229.48 kcal/mol + -analytic -2.3548e1 -1.6071e-3 -4.2228e2 7.7009 2.5981e5 +# Range 0-350 + -Vm 5.4981 5.6424 3.5341 -3.0122 0.7483 +# Extrapol supcrt92 +# Ref SK93 + +Mg+2 + Cl- = MgCl+ + -llnl_gamma 4.0 + log_k -0.1349 + -delta_H -0.58576 kJ/mol +# deltafH -151.44 kcal/mol + -analytic 4.3363e1 3.2858e-2 1.1878e2 -2.1688e1 1.8403 +# Range 0-350 + -Vm 2.223 -2.3505 6.6669 -2.6818 0.84490 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + Mg+2 = MgSO4 + -llnl_gamma 3.0 + log_k 2.4117 + -delta_H 19.6051 kJ/mol +# deltafH -1355.96 kJ/mol + -analytic 1.7994e2 6.4715e-2 -4.7314e3 -7.3123e1 -8.0408e1 +# Range 0-350 + -Vm 2.4 -0.97 6.1 -2.74 # APP14 +# Extrapol supcrt92, 69hel +# Ref MS97, 82mar/smi match + +2 CH3COOH + Mn+2 = Mn(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.4547 + -delta_H -11.4893 kJ/mol +# deltafH -287.67 kcal/mol + -analytic -9.0558e-1 5.9656e-3 -4.3531e3 -1.1063 8.0323e5 +# Range 0-350 + -Vm 13.1542 24.3405 -3.8236 -3.7851 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Mn+2 = Mn(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.8747 + -delta_H -30.3591 kJ/mol +# deltafH -408.28 kcal/mol + -analytic -3.8531 -9.9140e-3 -1.2065e4 5.1424 2.0175e6 +# Range 0-350 + -Vm 21.6217 45.0124 -11.9409 -4.6397 1.15360 +# Extrapol supcrt92 +# Ref SK93 + +Mn+2 + CH3COOH = MnCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.5404 + -delta_H -3.07942 kJ/mol +# deltafH -169.56 kcal/mol + -analytic -1.4061e1 1.8149e-3 -8.6438e2 4.0354 2.5831e5 +# Range 0-350 + -Vm 6.0776 7.057 2.9786 -3.0706 0.4555 +# Extrapol supcrt92 +# Ref SK93 + +Mn+2 + Cl- = MnCl+ + -llnl_gamma 4.0 + log_k 0.3013 + -delta_H 18.3134 kJ/mol +# deltafH -88.28 kcal/mol + -analytic 8.7072e1 4.0361e-2 -2.1786e3 -3.6966e1 -3.4022e1 +# Range 0-350 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +1.5 H2O + 1.25 O2 + Mn+2 = MnO4- + 3 H+ + -llnl_gamma 3.5 + log_k -20.2963 + -delta_H 123.112 kJ/mol +# deltafH -129.4 kcal/mol + -analytic 1.8544e1 -1.7618e-2 -6.7332e3 -3.3193 -2.4924e5 +# Range 0-350 + -Vm 7.8248 11.3277 1.2912 -3.2472 0.9248 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +SO4-2 + Mn+2 = MnSO4 + -llnl_gamma 3.0 + log_k 2.3529 + -delta_H 14.1168 kJ/mol +# deltafH -266.75 kcal/mol + -analytic 2.9448e2 8.5294e-2 -8.1366e3 -1.1729e2 -1.2705e2 +# Range 0-350 + -Vm -1.31 -1.83 62.3 -2.7 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + NH3 = NH4(CH3COO)2- + H+ + -llnl_gamma 4.0 + log_k -0.1928 + -delta_H -56.735 kJ/mol +# deltafH -265.2 kcal/mol + -analytic 3.7137e1 -1.2242e-2 -8.4764e3 -8.4308 1.3883e6 +# Range 0-350 + -Vm 19.3685 39.509 -9.7736 -4.4122 0.6495 +# Extrapol supcrt92 +# Ref SK93 + +NH3 + H+ = NH4+ + -llnl_gamma 2.5 + log_k 9.2410 + -delta_H -51.9234 kJ/mol +# deltafH -31.85 kcal/mol + -analytic -1.4527e1 -5.0518e-3 3.0447e3 6.0865 4.7515e1 +# Range 0-350 + -Vm 3.8763 2.3448 8.5605 -2.8759 0.1502 +# Extrapol supcrt92 +# Ref SH88 + +NH3 + CH3COOH = NH4CH3COO + -llnl_gamma 3.0 + log_k 4.6964 + -delta_H -48.911 kJ/mol +# deltafH -147.23 kcal/mol + -analytic 1.4104e1 -4.3664e-3 -1.0746e3 -3.6999 4.1428e5 +# Range 0-350 + -Vm 11.2849 19.7719 -2.0187 -3.5963 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Na+ = Na(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.9989 + -delta_H -11.5771 kJ/mol +# deltafH -292.4 kcal/mol + -analytic -2.9232e2 -5.5708e-2 9.6601e3 1.0772e2 1.5082e2 +# Range 0-350 + -Vm 16.2062 31.7884 -6.7416 -4.0930 0.9633 +# Extrapol supcrt92 +# Ref SK93 + +Na+ + CH3COOH = NaCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.8606 + -delta_H -0.029288 kJ/mol +# deltafH -173.54 kcal/mol + -analytic 6.4833 -1.8739e-3 -2.0902e3 -2.6121 2.3990e5 +# Range 0-350 + -Vm 8.3514 12.6125 0.7884 -3.3003 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Na+ + Cl- = NaCl + -llnl_gamma 3.0 + log_k -0.777 + -delta_H 5.21326 kJ/mol +# deltafH -96.12 kcal/mol + -analytic 1.1398e2 3.6386e-2 -3.0847e3 -4.6571e1 -4.8167e1 +# Range 0-350 + -Vm 5.0364 4.5189 3.9669 -2.9658 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +SiO2 + Na+ + H2O = NaHSiO3 + H+ + -llnl_gamma 3.0 + log_k -8.304 + -delta_H 11.6524 kJ/mol +# deltafH -332.74 kcal/mol + -analytic 3.6045e1 -9.0411e-3 -6.6605e3 -1.0447e1 5.8415e5 +# Range 0-350 + -Vm 3.4928 0.75 5.4483 -2.8100 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +Na+ + H2O = NaOH + H+ + -llnl_gamma 3.0 + log_k -14.7948 + -delta_H 53.6514 kJ/mol +# deltafH -112.927 kcal/mol + -analytic 8.7326e1 2.3555e-2 -5.4770e3 -3.6678e1 -8.5489e1 +# Range 0-350 + -Vm 2.2338 -2.3287 6.6683 -2.6826 -0.03 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +2 CH3COOH + Ni+2 = Ni(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.1908 + -delta_H -25.8571 kJ/mol +# deltafH -251.28 kcal/mol + -analytic -2.9660e1 1.0643e-3 -1.0060e3 7.9358 5.2562e5 +# Range 0-350 + -Vm 11.1327 19.4031 -1.8801 -3.5810 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Ni+2 = Ni(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.3543 + -delta_H -53.6807 kJ/mol +# deltafH -374.03 kcal/mol + -analytic 5.0850e1 -8.2435e-3 -1.3049e4 -1.5410e1 1.9704e6 +# Range 0-350 + -Vm 19.5212 39.8827 -9.9226 -4.4277 0.1603 +# Extrapol supcrt92 +# Ref SK93 + +Ni+2 + CH3COOH = NiCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.3278 + -delta_H -10.2508 kJ/mol +# deltafH -131.45 kcal/mol + -analytic -3.3110 1.6895e-3 -1.0556e3 2.7168e-2 2.6350e5 +# Range 0-350 + -Vm 4.3556 2.8512 4.6343 -2.8968 0.7287 +# Extrapol supcrt92 +# Ref SK93 + +Ni+2 + Cl- = NiCl+ + -llnl_gamma 4.0 + log_k -0.9962 + -delta_H 5.99567 kJ/mol +# deltafH -51.4 kcal/mol + -analytic 9.5370e1 3.8521e-2 -2.1746e3 -4.0629e1 -3.3961e1 +# Range 0-350 + -Vm 1.1319 -5.0147 7.714 -2.5716 0.8111 +# Extrapol supcrt92 +# Ref SSH97 + +H2O = OH- + H+ + -llnl_gamma 3.5 + log_k -13.9951 + -delta_H 55.8146 kJ/mol +# deltafH -54.977 kcal/mol + -analytic -6.7506e1 -3.0619e-2 -1.9901e3 2.8004e1 -3.1033e1 +# Range 0-350 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SH88 + +2 HPO4-2 = P2O7-4 + H2O + -llnl_gamma 4.0 + log_k -3.7463 + -delta_H 27.2256 kJ/mol +# deltafH -2271.1 kJ/mol + -analytic 4.0885e2 1.3243e-1 -1.1373e4 -1.6727e2 -1.7758e2 +# Range 0-350 + -Vm 7.0687 9.4773 2.0273 -3.1707 6.9069 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, WEP+82 differ by 0.1 log K at 0C, 7 log K at 350C !! flag + +HPO4-2 = PO4-3 + H+ + -llnl_gamma 4.0 + log_k -12.3218 + -delta_H 14.7068 kJ/mol +# deltafH -305.3 kcal/mol + -analytic -7.6170e1 -3.3574e-2 1.3405e2 2.9658e1 2.1140 +# Range 0-350 + -Vm -0.5258 -9.0576 9.2927 -2.4045 5.61140 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + 2 SO3-2 = S2O5-2 + H2O + -llnl_gamma 4.0 + log_k 9.5934 +# deltafH -0 kcal/mol + -analytic 0.12262e3 0.62883e-1 -0.18005e4 -0.50798e2 -0.28132e2 +# Range 0-350 + -Vm 7.3618 10.1945 1.7414 -3.2003 2.8343 # SSW+97 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + SO3-2 = SO2 + H2O + -llnl_gamma 3.0 + log_k 9.0656 + -delta_H 26.7316 kJ/mol +# deltafH -77.194 kcal/mol + -analytic 9.4048e1 6.2127e-2 -1.1072e3 -4.0310e1 -1.7305e1 +# Range 0-350 + -Vm 6.9502 9.189 2.1383 -3.1589 -0.0559 +# Extrapol supcrt92 +# Ref SHS89 + +2 CH3COOH + Sc+3 = Sc(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -3.7237 + -delta_H -43.1789 kJ/mol +# deltafH -389.32 kcal/mol + -analytic -4.1862e1 -3.9443e-5 2.1444e2 1.2616e1 5.5442e5 +# Range 0-350 + -Vm 9.2794 14.8737 -0.0899 -3.3938 0.9706 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Sc+3 = Sc(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -6.6777 + -delta_H -70.0402 kJ/mol +# deltafH -511.84 kcal/mol + -analytic -5.2525e1 1.6181e-3 7.5022e2 1.3988e1 7.3540e5 +# Range 0-350 + -Vm 16.5277 32.5748 -7.0539 -4.1255 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Sc+3 + CH3COOH = ScCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.4294 + -delta_H -21.7568 kJ/mol +# deltafH -268.1 kcal/mol + -analytic -2.3400e1 1.3144e-4 1.1125e2 7.3527 3.0025e5 +# Range 0-350 + -Vm 2.7175 -1.1437 6.1937 -2.7316 1.7013 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Sm+3 = Sm(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.7132 + -delta_H -25.5224 kJ/mol +# deltafH -403.5 kcal/mol + -analytic -1.4192e1 2.1732e-3 -1.0267e3 2.9516 4.4389e5 +# Range 0-350 + -Vm 9.159 14.5839 0.0138 -3.3818 0.6644 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Sm+3 = Sm(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -7.8798 + -delta_H -43.5554 kJ/mol +# deltafH -523.91 kcal/mol + -analytic -2.0765e1 1.1047e-3 -5.1181e2 3.4797 5.0618e5 +# Range 0-350 + -Vm 16.5088 32.5307 -7.0412 -4.1237 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Sm+3 + CH3COOH = SmCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.9205 + -delta_H -13.598 kJ/mol +# deltafH -284.55 kcal/mol + -analytic -1.1734e1 1.0889e-3 -5.1061e2 3.3317 2.6395e5 +# Range 0-350 + -Vm 2.6264 -1.3667 6.2827 -2.7224 1.4769 +# Extrapol supcrt92 +# Ref SK93 + +Sm+3 + HCO3- = SmCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.479 + -delta_H 89.1108 kJ/mol +# deltafH -308.8 kcal/mol # OBIGT: -331.34 kcal/mol HSS95 + -analytic 2.3486e2 5.3703e-2 -7.0193e3 -9.2863e1 -1.0960e2 +# Range 0-350 + -Vm -1.0455 -10.3293 9.798 -2.3519 1.1907 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + Cl- = SmCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.3637 kJ/mol +# deltafH -201.7 kcal/mol + -analytic 9.4972e1 3.9428e-2 -2.4198e3 -3.9718e1 -3.7787e1 +# Range 0-350 + -Vm -0.5006 -8.9988 9.2743 -2.4069 1.4192 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Sm+3 = SmCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 19.9409 kJ/mol +# deltafH -240.3 kcal/mol + -analytic 2.5872e2 8.4154e-2 -7.2061e3 -1.0493e2 -1.1252e2 +# Range 0-350 + -Vm 2.5888 -1.4617 6.3276 -2.7185 0.6644 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Sm+3 = SmCl3 + -llnl_gamma 3.0 + log_k -0.3936 + -delta_H 13.803 kJ/mol +# deltafH -281.7 kcal/mol + -analytic 4.9535e2 1.3520e-1 -1.4325e4 -1.9720e2 -2.2367e2 +# Range 0-350 + -Vm 6.0808 7.0673 2.9692 -3.0711 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Sm+3 = SmCl4- + -llnl_gamma 4.0 + log_k -0.818 + -delta_H -5.30531 kJ/mol +# deltafH -326.2 kcal/mol + -analytic 6.0562e2 1.4212e-1 -1.7982e4 -2.3782e2 -2.8077e2 +# Range 0-350 + -Vm 10.8148 18.6261 -1.5732 -3.5489 1.6917 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + HPO4-2 + H+ = SmH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -15.8364 kJ/mol +# deltafH -477.8 kcal/mol + -analytic 1.2451e2 6.4959e-2 -3.9576e2 -5.3772e1 -6.2124 +# Range 0-350 + -Vm 1.3708 -4.4295 7.4801 -2.5958 1.4867 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + HCO3- = SmHCO3+2 + -llnl_gamma 4.5 + log_k 1.7724 + -delta_H 9.19643 kJ/mol +# deltafH -327.9 kcal/mol + -analytic 5.5520e1 3.3265e-2 -7.3142e2 -2.4727e1 -1.1430e1 +# Range 0-350 + -Vm 0.3694 -6.8727 8.4365 -2.4948 1.2366 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + NO3- = SmNO3+2 + -llnl_gamma 4.5 + log_k 0.8012 + -delta_H -29.1667 kJ/mol +# deltafH -221.6 kcal/mol + -analytic 3.3782e1 2.7125e-2 1.5091e3 -1.8632e1 2.3537e1 +# Range 0-350 + -Vm 1.0908 -5.1124 7.7478 -2.5676 1.5897 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + H2O = SmO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.4837 + -delta_H 113.039 kJ/mol +# deltafH -206.5 kcal/mol # OBIGT: -197.63 kcal/mol HSS95 + -analytic 1.8554e2 3.0198e-2 -1.3791e4 -6.6588e1 -2.1526e2 +# Range 0-350 + -Vm 2.8115 -0.9157 6.1076 -2.741 0.3837 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Sm+3 = SmO2- + 4 H+ + -llnl_gamma 4.0 + log_k -35.0197 + -delta_H 285.909 kJ/mol +# deltafH -233.5 kcal/mol # OBIGT: -238.22 kcal/mol HSS95 + -analytic 1.3508e1 -8.3384e-3 -1.0325e4 -1.5506 -6.7392e5 +# Range 0-350 + -Vm 4.9642 4.3393 4.0456 -2.9583 1.0848 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Sm+3 = SmO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.9304 + -delta_H 226.497 kJ/mol +# deltafH -247.7 kcal/mol + -analytic 3.6882e2 5.3761e-2 -2.4317e4 -1.3305e2 -3.7956e2 +# Range 0-350 + -Vm 4.9296 4.2552 4.0768 -2.9548 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + H2O = SmOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9808 + -delta_H 79.1487 kJ/mol +# deltafH -214.6 kcal/mol # OBIGT: -213.97 kcal/mol HSS95 + -analytic 6.3793e1 1.1977e-2 -6.0852e3 -2.2198e1 -9.4972e1 +# Range 0-350 + -Vm 2.7076 -1.1676 6.2027 -2.7306 1.1289 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + SO4-2 = SmSO4+ + -llnl_gamma 4.0 + log_k 3.6430 + -delta_H 20.0832 kJ/mol +# deltafH -377.8 kcal/mol + -analytic 3.0597e2 8.6258e-2 -9.0231e3 -1.2032e2 -1.4089e2 +# Range 0-350 + -Vm -1.3885 -4.3882 7.4678 -2.5975 0.7483 +# Extrapol supcrt92 +# Ref HSS95 + +UO2+2 + H2O = UO2OH+ + H+ + -llnl_gamma 4.0 + log_k -5.2073 + -delta_H 43.1813 kJ/mol +# deltafH -1261.66 kJ/mol + -analytic 3.4387e1 6.0811e-3 -3.3068e3 -1.2252e1 -5.1609e1 +# Range 0-350 + -Vm 4.764 3.8529 4.2318 -2.9382 0.4925 # SSB97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +2 CH3COOH + Zn+2 = Zn(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -6.062 + -delta_H -11.0458 kJ/mol +# deltafH -271.5 kcal/mol + -analytic -2.2038e1 2.6133e-3 -2.7652e3 6.8501 6.7086e5 +# Range 0-350 + -Vm 11.7443 20.8978 -2.4707 -3.6429 -0.038 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +3 CH3COOH + Zn+2 = Zn(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -10.0715 + -delta_H 25.355 kJ/mol +# deltafH -378.9 kcal/mol + -analytic 3.5104e1 -6.1568e-3 -1.3379e4 -8.7697 2.0670e6 +# Range 0-350 + -Vm 20.0332 41.1373 -10.4257 -4.4796 1.2513 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Zn+2 + CH3COOH = ZnCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.1519 + -delta_H -9.87424 kJ/mol +# deltafH -155.12 kcal/mol + -analytic -7.9367 2.8564e-3 -1.4514e3 2.5010 2.3343e5 +# Range 0-350 + -Vm 4.8484 4.06 4.1473 -2.9468 0.41 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Zn+2 + Cl- = ZnCl+ + -llnl_gamma 4.0 + log_k 0.1986 + -delta_H 43.317 kJ/mol +# deltafH -66.24 kcal/mol + -analytic 1.1235e2 4.4461e-2 -4.1662e3 -4.5023e1 -6.5042e1 +# Range 0-350 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 Cl- + Zn+2 = ZnCl2 + -llnl_gamma 3.0 + log_k 0.2507 + -delta_H 31.1541 kJ/mol +# deltafH -109.08 kcal/mol + -analytic 1.7824e2 7.5733e-2 -4.6251e3 -7.4770e1 -7.2224e1 +# Range 0-350 + -Vm -10.1 4.57 241 -2.97 -1e-3 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +3 Cl- + Zn+2 = ZnCl3- + -llnl_gamma 4.0 + log_k -0.0198 + -delta_H 22.5894 kJ/mol +# deltafH -151.06 kcal/mol + -analytic 1.3889e2 7.4712e-2 -2.1527e3 -6.2200e1 -3.3633e1 +# Range 0-350 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +4 Cl- + Zn+2 = ZnCl4-2 + -llnl_gamma 4.0 + log_k 0.8605 + -delta_H 4.98733 kJ/mol +# deltafH -195.2 kcal/mol + -analytic 8.4294e1 7.0021e-2 3.9150e2 -4.2664e1 6.0834 +# Range 0-300 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97? + +Zn+2 + H2O = ZnOH+ + H+ + -llnl_gamma 4.0 + log_k -8.96 +# deltafH -0 kcal/mol + -analytic -7.8600e-1 -2.9499e-4 -2.8673e3 6.1892e-1 -4.2576e1 +# Range 25-300 + -Vm 1.1499 -4.9677 7.6896 -2.5735 0.326 +# Extrapol supcrt92, ? +# Ref SSW+97, 87bou/bar differ by 0.8 log K at 0C, 2.7 log K at 300C + +Zn+2 + SO4-2 = ZnSO4 + -llnl_gamma 3.0 + log_k 2.3062 + -delta_H 15.277 kJ/mol +# deltafH -1047.71 kJ/mol + -analytic 1.3640e2 5.1256e-2 -3.4422e3 -5.5695e1 -5.8501e1 +# Range 0-200 + -Vm 2.51 0 18.8 # APP14 +# Extrapol 69hel +# Ref WEP+82 + +#--------------------------- +# carbfix.dat additions and changes +#--------------------------- + +HS- + H+ = H2S + -llnl_gamma 3.0 + log_k 6.97791 # SS97 + -analytic -782.43945 -0.361261 20565.7315 328.67496 0 1.6722e-4 # SS97 + -Vm 7.81 2.96 -0.46 # phreeqc.dat + +2 H2O + Al+3 = Al(OH)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -10.5945 # llnl.dat + -analytic 4.4036e+001 2.0168e-002 -5.5455e+003 -1.6987e+001 -8.6545e+001 # llnl.dat + -Vm 2.1705 -2.4811 6.7241 -2.6763 0.95700 0 0 0 0 0 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Al+3 + SiO2 + 2 H2O = AlH3SiO4+2 + H+ + -llnl_gamma 4.5 + log_k -2.38 # P+96 + -analytic 5.241793953846094 0.005624769230769303 -2772.442855034987 0 0 0 # P+96 + -Vm 0.16 -7.23 8.61 -2.4800 0.88000 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +SO4-2 + Al+3 = AlSO4+ + -llnl_gamma 4.0 + log_k 3.17527 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -6034.286233487146 -2.009118445366823 225586.09598339273 2388.3098402377414 -8.473342720127227e6 0.000736431615071334 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 1.833 -3.3057 7.0494 -2.6423 2.4143 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +4 H2O + Na+ + Al+3 = NaAl(OH)4 + 4 H+ + -llnl_gamma 3.0 + log_k -22.9 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -319.6003434647659 -0.1452549158200939 2048.487394301387 134.79387929123214 -579779.0987586592 0.00006885771169878286 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 9.1267 14.3411 0.1121 -3.3719 0 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Mg+2 + CO3-2 = MgCO3 + -llnl_gamma 3.0 + log_k 3.01 # SBS14 + -analytic 5.5093 -0.00017143 -734.208 0 0 0 # SBS14 + -Vm -0.7355 -9.5745 9.5062 -2.3831 -0.038 # SSH97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Mg+2 + HCO3- = MgHCO3+ + -llnl_gamma 4.0 + log_k 1.10 # SBS14 + -analytic -8.8935 0.01694 1474.786 0 0 0 # SBS14 + -Vm 3.271 0.206 5.669 -2.7880 0.59900 # SK95 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Na+ + CO3-2 = NaCO3- + -llnl_gamma 4.0 + log_k 1.01 # SBS13 + -analytic 4.1659 0 -941.150 0 0 0 # SBS13 + -Vm 7.642732 2.993503 2.328077 -2.902751 1.507948 # DEW17 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Na+ + HCO3- = NaHCO3 + -llnl_gamma 3.0 + log_k -0.18 # SBS13 + -analytic 1.8528 0 -606.240 0 0 0 # SBS13 + -Vm 0.431 # APP14 + +HCO3- + Ca+2 = CaHCO3+ + -llnl_gamma 4.0 + log_k 1.0467 # llnl.dat + -analytic 5.5985e+001 3.4639e-002 -3.6972e+002 -2.5864e+001 -5.7859e+000 # llnl.dat + -Vm 3.706 1.267 5.252 -2.8310 0.30800 # SK95 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Na+ + SO4-2 = NaSO4- + -llnl_gamma 4.0 + log_k 0.702779 # MS97 + CHNOSZ/OBIGT/SUPCRTBL - D08 + -analytic -1515.4130255698833 -0.5496881710640973 53009.74446438346 607.5403646933713 -1.7958467164664706e6 0.00021478523226344507 # MS97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 1e-5 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53 # APP14 + +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -5.6502 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -311.3248470052558 -0.1252808696431922 9665.364708433648 127.49811415837463 -849396.8730633351 0.00005263379396466626 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm -3.7118 -16.8408 12.3595 -2.0827 0.7191 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + -llnl_gamma 3.0 + log_k -12.0185 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -741.3725966104283 -0.26505708328056 26205.378230673232 296.5340355414264 -1.972081032472368e6 0.00010032479998977653 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 2.7401 -1.0905 6.1776 -2.7338 -0.03 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + -llnl_gamma 4.0 + log_k -21.6225 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic 1533.5014901840032 0.45075510400897445 -69859.23735739749 -593.4694075764281 2.3641904800567343e6 -0.00014964010950998835 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 2.3837 -1.9602 6.5182 -2.6979 1.4662 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +2 H2O + Fe+2 = Fe(OH)2 + 2 H+ + -llnl_gamma 3.0 + log_k -20.4049 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -325.1339790725869 -0.1345716716871417 5315.653600095374 132.16984714439332 -459607.68923879805 0.000057906348553908315 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm -0.5029 -9.0053 9.2791 -2.4066 -0.03 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +3 H2O + Fe+2 = Fe(OH)3- + 3 H+ + -llnl_gamma 4.0 + log_k -29.208 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic 1906.044327275795 0.5662477247894362 -88119.68431429783 -741.1535184277503 3.7592690582787376e6 -0.0001898657106678743 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 0.6272 -6.244 8.1905 -2.5208 1.8564 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +H+ + ClO- = HClO + -llnl_gamma 3.0 + log_k 7.55236 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2041.6086043936152 -0.6683042462929405 80422.12116400951 805.7772200117705 -3.2667035060825506e6 0.00024280864184851264 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 5.5927 5.8751 3.4387 -3.0218 -0.1734 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +H+ + ClO2- = HClO2 + -llnl_gamma 3.0 + log_k 1.98189 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2249.8186120868168 -0.7355468012526403 86690.01133768198 887.6588357902062 -3.5397309172713878e6 0.00026672471518723433 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 7.6706 10.9455 1.4527 -3.2314 -0.3415 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +H+ + S2O3-- = HS2O3- + -llnl_gamma 4.0 + log_k 1.68836 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -1611.0948316547294 -0.5495686401519247 59194.43018784251 640.1240524484979 -2.166923306383505e6 0.00020844502892650532 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 6.1964 7.351 2.8549 -3.0828 1.1676 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +K+ + H2O = KOH + H+ + -llnl_gamma 3.0 + log_k -14.4386 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -477.55011247018905 -0.1442523288404146 18222.588641689916 183.69951482387626 -1.2139398662316576e6 0.0000461802984447927 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 3.7938 1.4839 5.1619 -2.8402 -0.03 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + + + +#--------------------------- +# 66 other aqueous species +#--------------------------- +H2O + Ba+2 + B(OH)3 = BaB(OH)4+ + H+ + -llnl_gamma 4.0 + log_k -7.8012 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaB(OH)4+ +# Enthalpy of formation: -0 kcal/mol + + HCO3- + Ba+2 = BaCO3 + H+ + -llnl_gamma 3.0 + log_k -7.6834 + -delta_H 31.5808 kJ/mol # Calculated enthalpy of reaction BaCO3 +# Enthalpy of formation: -285.85 kcal/mol + -analytic 2.1878e+002 5.2368e-002 -8.2472e+003 -8.6644e+001 -1.2875e+002 +# -Range: 0-300 + + Cl- + Ba+2 = BaCl+ + -llnl_gamma 4.0 + log_k -0.4977 + -delta_H 11.142 kJ/mol # Calculated enthalpy of reaction BaCl+ +# Enthalpy of formation: -165.77 kcal/mol + -analytic 1.1016e+002 4.2325e-002 -2.8039e+003 -4.6010e+001 -4.3785e+001 +# -Range: 0-300 + + F- + Ba+2 = BaF+ + -llnl_gamma 4.0 + log_k -0.1833 + -delta_H 8.95376 kJ/mol # Calculated enthalpy of reaction BaF+ +# Enthalpy of formation: -206.51 kcal/mol + -analytic 1.0349e+002 4.0336e-002 -2.5195e+003 -4.3334e+001 -3.9346e+001 +# -Range: 0-300 + + NO3- + Ba+2 = BaNO3+ + -llnl_gamma 4.0 + log_k +0.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaNO3+ +# Enthalpy of formation: -0 kcal/mol + + H2O + Ba+2 = BaOH+ + H+ + -llnl_gamma 4.0 + log_k -13.47 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaOH+ +# Enthalpy of formation: -0 kcal/mol + + +Ce+3 + 0.5 H2O = Ce+2 + H+ +0.25 O2 + -llnl_gamma 4.5 + log_k -83.6754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+2 +# Enthalpy of formation: -0 kcal/mol + +H+ + Ce+3 + 0.25 O2 = Ce+4 +0.5 H2O + -llnl_gamma 5.5 + log_k -7.9154 + -delta_H 0 # Not possible to ca + +2.0 HCO3- + Ce+3 = Ce(CO3)2- +2.0 H+ + -llnl_gamma 4.0 + log_k -8.1576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0 HPO4-2 + Ce+3 = Ce(HPO4)2- + -llnl_gamma 4.0 + log_k +8.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0 H2O + Ce+4 = Ce(OH)2+2 +2.0 H+ + -llnl_gamma 4.5 + log_k +2.0098 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)2+2 +# Enthalpy of formation: -0 kcal/mol + +2.0 HPO4-2 + Ce+3 = Ce(PO4)2-3 +2.0 H+ + -llnl_gamma 4.0 + log_k -6.1437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0 H2O + 2.0 Ce+4 = Ce2(OH)2+6 +2.0 H+ + -llnl_gamma 6.0 + log_k +3.0098 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(OH)2+6 +# Enthalpy of formation: -0 kcal/mol + +5.0 H2O + 3.0 Ce+3 = Ce3(OH)5+4 +5.0 H+ + -llnl_gamma 5.5 + log_k -33.4754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(OH)5+4 +# Enthalpy of formation: -0 kcal/mol + +HCO3- + Ce+3 = CeCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.9284 + -delta_H 93.345 kJ/mol # Calculated enthalpy of reaction CeCO3+ +# Enthalpy of formation: -309.988 kcal/mol + -analytic 2.3292e+002 5.3153e-002 -7.1180e+003 -9.2061e+001 -1.1114e+002 +# -Range: 0-300 + +Cl- + Ce+3 = CeCl+2 + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction CeCl+2 +# Enthalpy of formation: -203.8 kcal/mol + -analytic 8.3534e+001 3.8166e-002 -2.0058e+003 -3.5504e+001 -3.1324e+001 +# -Range: 0-300 + +2.0 Cl- + Ce+3 = CeCl2+ + -llnl_gamma 4.0 + log_k +0.0308 + -delta_H 20.7777 kJ/mol # Calculated enthalpy of reaction CeCl2+ +# Enthalpy of formation: -242.3 kcal/mol + -analytic 2.3011e+002 8.1428e-002 -6.1292e+003 -9.4468e+001 -9.5708e+001 +# -Range: 0-300 + +3.0 Cl- + Ce+3 = CeCl3 + -llnl_gamma 3.0 + log_k -0.3936 + -delta_H 15.4766 kJ/mol # Calculated enthalpy of reaction CeCl3 +# Enthalpy of formation: -283.5 kcal/mol + -analytic 4.4073e+002 1.2994e-001 -1.2308e+004 -1.7722e+002 -1.9218e+002 +# -Range: 0-300 + +4.0 Cl- + Ce+3 = CeCl4- + -llnl_gamma 4.0 + log_k -0.7447 + -delta_H -1.95811 kJ/mol # Calculated enthalpy of reaction CeCl4- +# Enthalpy of formation: -327.6 kcal/mol + -analytic 5.2230e+002 1.3490e-001 -1.4859e+004 -2.0747e+002 -2.3201e+002 +# -Range: 0-300 + +ClO4- + Ce+3 = CeClO4+2 + -llnl_gamma 4.5 + log_k +1.9102 + -delta_H -49.0197 kJ/mol # Calculated enthalpy of reaction CeClO4+2 +# Enthalpy of formation: -210.026 kcal/mol + -analytic -1.3609e+001 1.8115e-002 3.9869e+003 -1.3033e+000 6.2215e+001 +# -Range: 0-300 + +F- + Ce+3 = CeF+2 + -llnl_gamma 4.5 + log_k +4.2221 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction CeF+2 +# Enthalpy of formation: -242 kcal/mol + -analytic 1.0303e+002 4.1730e-002 -2.8424e+003 -4.1094e+001 -4.4383e+001 +# -Range: 0-300 + +2.0 F- + Ce+3 = CeF2+ + -llnl_gamma 4.0 + log_k +7.2714 + -delta_H 15.0624 kJ/mol # Calculated enthalpy of reaction CeF2+ +# Enthalpy of formation: -324.1 kcal/mol + -analytic 2.5063e+002 8.5224e-002 -6.2219e+003 -1.0017e+002 -9.7160e+001 +# -Range: 0-300 + +3.0 F- + Ce+3 = CeF3 + -llnl_gamma 3.0 + log_k +9.5144 + -delta_H -6.0668 kJ/mol # Calculated enthalpy of reaction CeF3 +# Enthalpy of formation: -409.3 kcal/mol + -analytic 4.6919e+002 1.3664e-001 -1.1745e+004 -1.8629e+002 -1.8340e+002 +# -Range: 0-300 + +4.0 F- + Ce+3 = CeF4- + -llnl_gamma 4.0 + log_k +11.3909 + -delta_H -45.6056 kJ/mol # Calculated enthalpy of reaction CeF4- +# Enthalpy of formation: -498.9 kcal/mol + -analytic 5.3522e+002 1.3856e-001 -1.2722e+004 -2.1112e+002 -1.9868e+002 +# -Range: 0-300 + +HPO4-2 + H+ + Ce+3 = CeH2PO4+2 + -llnl_gamma 4.5 + log_k +9.6684 + -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction CeH2PO4+2 +# Enthalpy of formation: -480.1 kcal/mol + -analytic 1.1338e+002 6.3771e-002 5.2908e+001 -4.9649e+001 7.9189e-001 +# -Range: 0-300 + +HCO3- + Ce+3 = CeHCO3+2 + -llnl_gamma 4.5 + log_k +1.9190 + -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction CeHCO3+2 +# Enthalpy of formation: -330.2 kcal/mol + -analytic 4.4441e+001 3.2077e-002 -3.0714e+002 -2.0622e+001 -4.8060e+000 +# -Range: 0-300 + +HPO4-2 + Ce+3 = CeHPO4+ + -llnl_gamma 4.0 + log_k +5.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeHPO4+ +# Enthalpy of formation: -0 kcal/mol + +NO3- + Ce+3 = CeNO3+2 + -llnl_gamma 4.5 + log_k +1.3143 + -delta_H -26.6563 kJ/mol # Calculated enthalpy of reaction CeNO3+2 +# Enthalpy of formation: -223.2 kcal/mol + -analytic 2.2772e+001 2.5931e-002 1.9950e+003 -1.4490e+001 3.1124e+001 +# -Range: 0-300 + +H2O + Ce+3 = CeO+ +2.0 H+ + -llnl_gamma 4.0 + log_k -16.4103 + -delta_H 112.202 kJ/mol # Calculated enthalpy of reaction CeO+ +# Enthalpy of formation: -208.9 kcal/mol + -analytic 1.9881e+002 3.1302e-002 -1.4331e+004 -7.1323e+001 -2.2368e+002 +# -Range: 0-300 + +2.0 H2O + Ce+3 = CeO2- +4.0 H+ + -llnl_gamma 4.0 + log_k -38.758 + -delta_H 308.503 kJ/mol # Calculated enthalpy of reaction CeO2- +# Enthalpy of formation: -230.3 kcal/mol + -analytic 1.0059e+002 3.4824e-003 -1.5873e+004 -3.3056e+001 -4.7656e+005 +# -Range: 0-300 + +2.0 H2O + Ce+3 = CeO2H +3.0 H+ + -llnl_gamma 3.0 + log_k -26.1503 + -delta_H 228.17 kJ/mol # Calculated enthalpy of reaction CeO2H +# Enthalpy of formation: -249.5 kcal/mol + -analytic 3.5650e+002 4.6708e-002 -2.4320e+004 -1.2731e+002 -3.7959e+002 +# -Range: 0-300 + +H2O + Ce+3 = CeOH+2 + H+ + -llnl_gamma 4.5 + log_k -8.4206 + -delta_H 73.2911 kJ/mol # Calculated enthalpy of reaction CeOH+2 +# Enthalpy of formation: -218.2 kcal/mol + -analytic 7.5809e+001 1.2863e-002 -6.7244e+003 -2.6473e+001 -1.0495e+002 +# -Range: 0-300 + +H2O + Ce+4 = CeOH+3 + H+ + -llnl_gamma 5.0 + log_k +3.2049 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeOH+3 +# Enthalpy of formation: -0 kcal/mol + +HPO4-2 + Ce+3 = CePO4 + H+ + -llnl_gamma 3.0 + log_k -0.9718 + -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4 +# Enthalpy of formation: -0 kcal/mol + +SO4-2 + Ce+3 = CeSO4+ + -llnl_gamma 4.0 + log_k -3.687 + -delta_H 19.2464 kJ/mol # Calculated enthalpy of reaction CeSO4+ +# Enthalpy of formation: -380.2 kcal/mol + -analytic 3.0156e+002 8.5149e-002 -1.1025e+004 -1.1866e+002 -1.7213e+002 +# -Range: 0-300 + +2.0 H+ + Pb+2 + 0.5 O2 = Pb+4 + H2O + -llnl_gamma 5.5 + log_k -14.1802 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb+4 +# Enthalpy of formation: -0 kcal/mol + +2.0 HCO3- + Pb+2 = Pb(CO3)2-2 +2.0 H+ + -llnl_gamma 4.0 + log_k -11.2576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol + +2.0 ClO3- + Pb+2 = Pb(ClO3)2 + -llnl_gamma 3.0 + log_k -0.5133 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(ClO3)2 +# Enthalpy of formation: -0 kcal/mol + +2.0 H2O + Pb+2 = Pb(OH)2 +2.0 H+ + -llnl_gamma 3.0 + log_k -17.0902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)2 +# Enthalpy of formation: -0 kcal/mol + +3.0 H2O + Pb+2 = Pb(OH)3- +3.0 H+ + -llnl_gamma 4.0 + log_k -28.0852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)3- +# Enthalpy of formation: -0 kcal/mol + +2.0 Pb+2 + H2O = Pb2OH+3 + H+ + -llnl_gamma 5.0 + log_k -6.3951 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2OH+3 +# Enthalpy of formation: -0 kcal/mol + +4.0 H2O + 3.0 Pb+2 = Pb3(OH)4+2 +4.0 H+ + -llnl_gamma 4.5 + log_k -23.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(OH)4+2 +# Enthalpy of formation: -0 kcal/mol + +4.0 Pb+2 + 4.0 H2O = Pb4(OH)4+4 +4.0 H+ + -llnl_gamma 5.5 + log_k -20.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol + +8.0 H2O + 6.0 Pb+2 = Pb6(OH)8+4 +8.0 H+ + -llnl_gamma 5.5 + log_k -43.5606 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb6(OH)8+4 +# Enthalpy of formation: -0 kcal/mol + + + Pb+2 + HCO3- = PbCO3 + H+ + -llnl_gamma 3.0 + log_k -3.7488 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3 +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + Cl- = PbCl+ + -llnl_gamma 4.0 + log_k +1.4374 + -delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+ +# Enthalpy of formation: -38.63 kcal/mol + -analytic 1.1948e+002 4.3527e-002 -2.7666e+003 -4.9190e+001 -4.3206e+001 +# -Range: 0-300 + +2.0 Cl- + Pb+2 = PbCl2 + -llnl_gamma 3.0 + log_k +2.0026 + -delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2 +# Enthalpy of formation: -77.7 kcal/mol + -analytic 2.2537e+002 7.7574e-002 -5.5112e+003 -9.2131e+001 -8.6064e+001 +# -Range: 0-300 + +3.0 Cl- + Pb+2 = PbCl3- + -llnl_gamma 4.0 + log_k +1.6881 + -delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3- +# Enthalpy of formation: -117.7 kcal/mol + -analytic 2.5254e+002 8.9159e-002 -6.0116e+003 -1.0395e+002 -9.3880e+001 +# -Range: 0-300 + +4.0 Cl- + Pb+2 = PbCl4-2 + -llnl_gamma 4.0 + log_k +1.4909 + -delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2 +# Enthalpy of formation: -161.23 kcal/mol + -analytic 1.4048e+002 7.6332e-002 -1.1507e+003 -6.3786e+001 -1.7997e+001 +# -Range: 0-300 + + Pb+2 + ClO3- = PbClO3+ + -llnl_gamma 4.0 + log_k -0.2208 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbClO3+ +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + F- = PbF+ + -llnl_gamma 4.0 + log_k +0.8284 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF+ +# Enthalpy of formation: -0 kcal/mol + +2.0 F- + Pb+2 = PbF2 + -llnl_gamma 3.0 + log_k +1.6132 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF2 +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + HPO4-2 + H+ = PbH2PO4+ + -llnl_gamma 4.0 + log_k +1.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbH2PO4+ +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + HPO4-2 = PbHPO4 + -llnl_gamma 3.0 + log_k +3.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + NO3- = PbNO3+ + -llnl_gamma 4.0 + log_k +1.2271 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbNO3+ +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + H2O = PbOH+ + H+ + -llnl_gamma 4.0 + log_k -7.6951 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0 HPO4-2 + Pb+2 = PbP2O7-2 + H2O + -llnl_gamma 4.0 + log_k +7.4136 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 HCO3- = SrCO3 +1.0 H+ + -llnl_gamma 3.0 + log_k -7.4635 + -delta_H 33.2544 kJ/mol # Calculated enthalpy of reaction SrCO3 +# Enthalpy of formation: -288.62 kcal/mol + -analytic 2.2303e+002 5.2582e-002 -8.4861e+003 -8.7975e+001 -1.3248e+002 +# -Range: 0-300 + +1.0 Sr+2 + 1.0 Cl- = SrCl+ + -llnl_gamma 4.0 + log_k -0.2485 + -delta_H 7.58559 kJ/mol # Calculated enthalpy of reaction SrCl+ +# Enthalpy of formation: -169.79 kcal/mol + -analytic 9.4568e+001 3.9042e-002 -2.1458e+003 -4.0105e+001 -3.3511e+001 +# -Range: 0-300 + +1.0 Sr+2 + 1.0 F- = SrF+ + -llnl_gamma 4.0 + log_k +0.1393 + -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction SrF+ +# Enthalpy of formation: -210.67 kcal/mol + -analytic 9.0295e+001 3.7609e-002 -1.9012e+003 -3.8379e+001 -2.9693e+001 +# -Range: 0-300 + +1.0 Sr+2 + 1.0 HPO4-2 + 1.0 H+ = SrH2PO4+ + -llnl_gamma 4.0 + log_k +0.7300 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 HPO4-2 = SrHPO4 + -llnl_gamma 3.0 + log_k +2.0600 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 NO3- = SrNO3+ + -llnl_gamma 4.0 + log_k +0.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrNO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 H2O = SrOH+ +1.0 H+ + -llnl_gamma 4.0 + log_k -13.29 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0 HPO4-2 + 1.0 Sr+2 = SrP2O7-2 +1.0 H2O + -llnl_gamma 4.0 + log_k +1.6537 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 SO4-2 = SrSO4 + -llnl_gamma 3.0 + log_k +2.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrSO4 +# Enthalpy of formation: -0 kcal/mol + + + +PHASES + +#------------ +# 375 solids +#------------ + +[(6)(CB)(CB)S] + S + O2 = SO2 + log_k 63.04 + -analytic 137.16 -0.320465 0 0 0 0.000241 +# Range 0-350 + -Vm 16.5 +# Extrapol supcrt92 +# Ref R01, calculations and fit by N17 + +[(aro)-O-(aro)] + O = 0.5 O2 + log_k -20.610681 + -delta_H 30.240 kcal/mol + -analytic -46.6 0.111 0 0 0 -7.99e-5 +# Range 0-350 + -Vm -2.4 +# Extrapol supcrt92 +# Ref RH98 + +Afwillite + Ca3Si2O4(OH)6 + 6 H+ = 2 SiO2 + 3 Ca+2 + 6 H2O + log_k 60.0452 + -delta_H -316.059 kJ/mol +# deltafH -1143.31 kcal/mol + -analytic 1.8353e1 1.9014e-3 1.8478e4 -6.6311 -4.0227e5 +# Range 0-300 + -Vm 129.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Akermanite + Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 SiO2 + 3 H2O + log_k 45.3190 + -delta_H -288.575 kJ/mol +# deltafH -926.497 kcal/mol + -analytic -4.8295e1 -8.5613e-3 2.0880e4 1.3798e1 -7.1975e5 +# Range 0-350 + -Vm 92.81 +# Extrapol supcrt92 +# Ref HDN+78 + +Al + Al + 3 H+ + 0.75 O2 = Al+3 + 1.5 H2O + log_k 149.9292 + -delta_H -958.059 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.8752e2 -4.6187e-2 5.7127e4 6.6270e1 -3.8952e5 +# Range 0-300 + -Vm 9.99 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Al2(SO4)3 + Al2(SO4)3 = 2 Al+3 + 3 SO4-2 + log_k 19.0535 + -delta_H -364.566 kJ/mol +# deltafH -3441.04 kJ/mol + -analytic -6.1001e2 -2.4268e-1 2.9194e4 2.4383e2 4.5573e2 +# Range 0-300 + -Vm 126.25 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Alabandite + MnS + H+ = HS- + Mn+2 + log_k -0.3944 + -delta_H -23.3216 kJ/mol +# deltafH -51 kcal/mol + -analytic -1.5515e2 -4.8820e-2 4.9049e3 6.1765e1 7.6583e1 +# Range 0-350 + -Vm 21.46 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol +# deltafH -939.68 kcal/mol + -analytic -1.1694e1 1.4429e-2 1.3784e4 -7.2866 -1.6136e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite_high + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 4.0832 + -delta_H -62.8562 kJ/mol +# deltafH -937.05 kcal/mol + -analytic -1.8957e1 1.3726e-2 1.4801e4 -4.9732 -1.6442e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite_low + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol +# deltafH -939.68 kcal/mol + -analytic -1.2860e1 1.4481e-2 1.3913e4 -6.9417 -1.6256e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Alum-K + KAl(SO4)2:12H2O = Al+3 + K+ + 2 SO4-2 + 12 H2O + log_k -4.8818 + -delta_H 14.4139 kJ/mol +# deltafH -1447 kcal/mol + -analytic -8.8025e2 -2.5706e-1 2.2399e4 3.5434e2 3.4978e2 +# Range 0-300 + -Vm 269.54 # Marion+09 +# Extrapol Cp integration +# Ref 73bar/kna + +Alunite + KAl3(OH)6(SO4)2 + 6 H+ = K+ + 2 SO4-2 + 3 Al+3 + 6 H2O + log_k -0.3479 + -delta_H -231.856 kJ/mol +# deltafH -1235.6 kcal/mol + -analytic -6.8581e2 -2.2455e-1 2.6886e4 2.6758e2 4.1973e2 +# Range 0-350 + -Vm 205.40 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Amesite-14A + Mg4Al4Si2O10(OH)8 + 20 H+ = 2 SiO2 + 4 Al+3 + 4 Mg+2 + 14 H2O + log_k 75.4571 + -delta_H -797.098 kJ/mol +# deltafH -2145.67 kcal/mol + -analytic -5.4326e2 -1.4144e-1 5.4150e4 1.9361e2 8.4512e2 +# Range 0-300 + -Vm 205.4 +# Extrapol Cp integration +# Ref 78wol + +Andalusite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 15.9445 + -delta_H -235.233 kJ/mol +# deltafH -615.866 kcal/mol + -analytic -7.1115e1 -3.2234e-2 1.2308e4 2.2357e1 1.9208e2 +# Range 0-350 + -Vm 51.53 +# Extrapol supcrt92 +# Ref HDN+78 differ by 1.6 log K at 0C, 0.5 log K at 350C + +Andradite + Ca3Fe2(SiO4)3 + 12 H+ = 2 Fe+3 + 3 Ca+2 + 3 SiO2 + 6 H2O + log_k 33.3352 + -delta_H -301.173 kJ/mol +# deltafH -1380.35 kcal/mol + -analytic 1.3884e1 -2.3886e-2 1.5314e4 -8.1606 -4.2193e5 +# Range 0-350 + -Vm 131.85 +# Extrapol supcrt92 +# Ref HDN+78 + +Anhydrite + CaSO4 = Ca+2 + SO4-2 + log_k -4.3064 + -delta_H -18.577 kJ/mol +# deltafH -342.76 kcal/mol + -analytic -2.0986e2 -7.8823e-2 5.0969e3 8.5642e1 7.9594e1 +# Range 0-350 + -Vm 45.94 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Annite + KFe3AlSi3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 SiO2 + 6 H2O + log_k 29.4693 + -delta_H -259.964 kJ/mol +# deltafH -1232.19 kcal/mol + -analytic -4.0186e1 -1.4238e-2 1.8929e4 7.9859e0 -8.4343e5 +# Range 0-350 + -Vm 154.32 +# Extrapol supcrt92 +# Ref HDN+78 + +Anorthite + CaAl2(SiO4)2 + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 4 H2O + log_k 26.5780 + -delta_H -303.039 kJ/mol +# deltafH -1007.55 kcal/mol + -analytic 3.9717e-1 -1.8751e-2 1.4897e4 -6.3078 -2.3885e5 +# Range 0-350 + -Vm 100.79 +# Extrapol supcrt92 +# Ref HDN+78 + +Anthophyllite + Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 + 8 H2O + 8 SiO2 + log_k 66.7965 + -delta_H -483.486 kJ/mol +# deltafH -2888.75 kcal/mol + -analytic -1.2865e2 1.9705e-2 5.4853e4 1.9444e1 -3.8080e6 +# Range 0-350 + -Vm 264.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Antigorite + Mg48Si34O85(OH)62 + 96 H+ = 34 SiO2 + 48 Mg+2 + 79 H2O + log_k 477.1943 + -delta_H -3364.43 kJ/mol +# deltafH -17070.9 kcal/mol + -analytic -8.1630e2 -6.7780e-2 2.5998e5 2.2029e2 -9.3275e6 +# Range 0-350 + -Vm 1749.13 +# Extrapol supcrt92 +# Ref HDN+78 + +Aragonite + CaCO3 + H+ = Ca+2 + HCO3- + log_k 1.9931 + -delta_H -25.8027 kJ/mol +# deltafH -288.531 kcal/mol + -analytic -1.4934e2 -4.8043e-2 4.9089e3 6.0284e1 7.6644e1 +# Range 0-325 + -Vm 34.15 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.8008 + -delta_H 23.836 kJ/mol +# deltafH -1437.78 kJ/mol + -analytic -1.6428e2 -6.7762e-2 1.9879e3 7.1116e1 3.1067e1 +# Range 0-300 + -Vm 65.50 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Artinite + Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O + log_k 19.6560 + -delta_H -130.432 kJ/mol +# deltafH -698.043 kcal/mol + -analytic -2.8614e2 -6.7344e-2 1.5230e4 1.1104e2 2.3773e2 +# Range 0-350 + -Vm 96.9 # 97.85 Webmineral.com +# Extrapol supcrt92 +# Ref HDN+78 + +Atacamite + Cu4Cl2(OH)6 + 6 H+ = 2 Cl- + 4 Cu+2 + 6 H2O + log_k 14.2836 + -delta_H -132.001 kJ/mol +# deltafH -1654.43 kJ/mol + -analytic -2.6623e2 -4.8121e-2 1.5315e4 9.8395e1 2.6016e2 +# Range 0-200 + -Vm 56.80 # Webmineral.com +# Extrapol Constant H approx +# Ref 87woo/gar + +Azurite + Cu3(CO3)2(OH)2 + 4 H+ = 2 H2O + 2 HCO3- + 3 Cu+2 + log_k 9.1607 + -delta_H -122.298 kJ/mol +# deltafH -390.1 kcal/mol + -analytic -4.4042e2 -1.1934e-1 1.8053e4 1.7158e2 2.8182e2 +# Range 0-350 + -Vm 91.01 +# Extrapol supcrt92 +# Ref HDN+78 + +B + B + 1.5 H2O + 0.75 O2 = B(OH)3 + log_k 109.5654 + -delta_H -636.677 kJ/mol +# deltafH 0 kJ/mol + -analytic 8.0471e1 1.2577e-3 2.9653e4 -2.8593e1 4.6268e2 +# Range 0-300 + -Vm 4.386 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +B2O3 + B2O3 + 3 H2O = 2 B(OH)3 + log_k 5.5464 + -delta_H -18.0548 kJ/mol +# deltafH -1273.5 kJ/mol + -analytic 9.0905e1 5.5365e-3 -2.6629e3 -3.1553e1 -4.1578e1 +# Range 0-300 + -Vm 28.30 # gfw/density +# Extrapol Cp integration +# Ref CWM89 + +Bassanite + CaSO4:0.5H2O = 0.5 H2O + Ca+2 + SO4-2 + log_k -3.6615 + -delta_H -18.711 kJ/mol +# deltafH -1576.89 kJ/mol + -analytic -2.2010e2 -8.0230e-2 5.5092e3 8.9651e1 8.6031e1 +# Range 0-300 + -Vm 52.31 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Bassetite + Fe(UO2)2(PO4)2 + 2 H+ = Fe+2 + 2 HPO4-2 + 2 UO2+2 + log_k -17.7240 + -delta_H -114.841 kJ/mol +# deltafH -1099.33 kcal/mol + -analytic -5.7788e1 -4.5400e-2 4.0119e3 1.6216e1 6.8147e1 +# Range 0-200 + -Vm 256.19 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Beidellite-Ca + Ca.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.5914 + -delta_H -162.403 kJ/mol +# deltafH -1370.66 kcal/mol + -analytic 3.872e1 -1.431e-1 0 0 0 9.036e-5 +# Range 0-300 + -Vm 133.081 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 1.5 log K at 0C, 1 log K at 300C + +Beidellite-Fe + Fe.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Fe+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 4.6335 + -delta_H -154.65 kJ/mol +# deltafH -1351.1 kcal/mol + -analytic 3.641e1 -1.391e-1 0 0 0 8.671e-5 +# Range 0-300 + -Vm 134.293 +# Extrapol supcrt92 +# Ref Catalano13 + +Beidellite-K + K.35Al2.35Si3.65O10(OH)2 +7.4 H+ = 0.35 K+ + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.3088 + -delta_H -150.834 kJ/mol +# deltafH -1371.9 kcal/mol + -analytic 3.307e1 -1.254e-1 0 0 0 7.660e-5 +# Range 0-300 + -Vm 137.214 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 2.9 log K at 0C, 1.7 log K at 300C + +Beidellite-Mg + Mg.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Mg+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.5537 + -delta_H -165.455 kJ/mol +# deltafH -1366.89 kcal/mol + -analytic 3.750e1 -1.415e-1 0 0 0 8.929e-5 +# Range 0-300 + -Vm 132.116 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 2.4 log K at 0C, 1.4 log K at 300C + +Beidellite-Na + Na.35Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Na+ + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.6473 + -delta_H -155.846 kJ/mol +# deltafH -1369.76 kcal/mol + -analytic 3.613e1 -1.347e-1 0 0 0 8.470e-5 +# Range 0-300 + -Vm 134.522 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, differ from 78 wol and Wilson+06 (which match) by 2.8 log K at 0C, 1.3 log K at 300C + +Berlinite + AlPO4 + H+ = Al+3 + HPO4-2 + log_k -7.2087 + -delta_H -96.6313 kJ/mol +# deltafH -1733.85 kJ/mol + -analytic -2.8134e2 -9.9933e-2 1.0308e4 1.0883e2 1.6094e2 +# Range 0-300 + -Vm 46.19 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Bieberite + CoSO4:7H2O = Co+2 + SO4-2 + 7 H2O + log_k -2.5051 + -delta_H 11.3885 kJ/mol +# deltafH -2980.02 kJ/mol + -analytic -2.6405e2 -7.2497e-2 6.6673e3 1.0538e2 1.0411e2 +# Range 0-300 + -Vm 147.95 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Bixbyite + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.9655 + -delta_H -190.545 kJ/mol +# deltafH -958.971 kJ/mol + -analytic -1.1600e2 -2.8056e-3 1.3418e4 2.8639e1 2.0941e2 +# Range 0-300 + -Vm 31.89 # Webmineral.com, density 4.95 +# Extrapol Cp integration +# Ref RHF79 + +Boehmite + AlO2H + 3 H+ = Al+3 + 2 H2O + log_k 7.5642 + -delta_H -113.282 kJ/mol +# deltafH -238.24 kcal/mol + -analytic -1.2196e2 -3.1138e-2 8.8643e3 4.4075e1 1.3835e2 +# Range 0-225 + -Vm 19.535 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Borax + Na2(B4O5(OH)4):8H2O + 2 H+ = 2 Na+ + 4 B(OH)3 + 5 H2O + log_k 12.0395 + -delta_H 80.5145 kJ/mol +# deltafH -6288.44 kJ/mol + -analytic 7.8374e1 1.9328e-2 -5.3279e3 -2.1914e1 -8.3160e1 +# Range 0-300 + -Vm 222.66 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Boric_acid + B(OH)3 = B(OH)3 + log_k -0.1583 + -delta_H 20.2651 kJ/mol +# deltafH -1094.8 kJ/mol + -analytic 3.9122e1 6.4058e-3 -2.2525e3 -1.3592e1 -3.5160e1 +# Range 0-300 + -Vm 43.09 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Bornite + Cu5FeS4 + 4 H+ = Cu+2 + Fe+2 + 4 Cu+ + 4 HS- + log_k -102.4369 + -delta_H 530.113 kJ/mol +# deltafH -79.922 kcal/mol + -analytic -7.0495e2 -2.0082e-1 -9.1376e3 2.8004e2 -1.4238e2 +# Range 0-350 + -Vm 98.6 +# Extrapol supcrt92 +# Ref HDN+78 + +Brezinaite + Cr3S4 + 4 H+ = Cr+2 + 2 Cr+3 + 4 HS- + log_k 2.7883 + -delta_H -216.731 kJ/mol +# deltafH -111.9 kcal/mol + -analytic -7.0528e1 -3.6568e-2 1.0598e4 1.9665e1 1.8000e2 +# Range 0-200 + -Vm 69.16 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78vau/cra + +Brochantite + Cu4(SO4)(OH)6 + 6 H+ = SO4-2 + 4 Cu+2 + 6 H2O + log_k 15.4363 + -delta_H -163.158 kJ/mol +# deltafH -2198.72 kJ/mol + -analytic -2.3609e2 -3.9046e-2 1.5970e4 8.4701e1 2.7127e2 +# Range 0-200 + -Vm 113.60 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87woo/gar + +Brucite + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.2980 + -delta_H -111.34 kJ/mol +# deltafH -221.39 kcal/mol + -analytic -1.0280e2 -1.9759e-2 9.0180e3 3.8282e1 1.4075e2 +# Range 0-350 + -Vm 24.63 +# Extrapol supcrt92 +# Ref HDN+78 + +Bunsenite + NiO + 2 H+ = H2O + Ni+2 + log_k 12.4719 + -delta_H -100.069 kJ/mol +# deltafH -57.3 kcal/mol + -analytic -8.1664e1 -1.9796e-2 7.4064e3 3.0385e1 1.1559e2 +# Range 0-350 + -Vm 10.97 +# Extrapol supcrt92 +# Ref HDN+78 + +C + C + H2O + O2 = H+ + HCO3- + log_k 64.1735 + -delta_H -391.961 kJ/mol +# deltafH 0 kcal/mol + -analytic -3.5556e1 -3.3691e-2 1.9774e4 1.7548e1 3.0856e2 +# Range 0-350 + -Vm 5.298 +# Extrapol supcrt92 +# Ref HDN+78 + +Ca + Ca +2 H+ + 0.5 O2 = Ca+2 + H2O + log_k 139.8465 + -delta_H -822.855 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.1328e2 -2.6554e-2 4.7638e4 4.1989e1 -2.3545e5 +# Range 0-300 + -Vm 26.19 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Ca-Al_Pyroxene + CaAl2SiO6 + 8 H+ = Ca+2 + SiO2 + 2 Al+3 + 4 H2O + log_k 35.9759 + -delta_H -361.548 kJ/mol +# deltafH -783.793 kcal/mol + -analytic -1.4664e2 -5.0409e-2 2.1045e4 5.1318e1 3.2843e2 +# Range 0-350 + -Vm 63.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Ca3Al2O6 + Ca3Al2O6 + 12 H+ = 2 Al+3 + 3 Ca+2 + 6 H2O + log_k 113.0460 + -delta_H -833.336 kJ/mol +# deltafH -857.492 kcal/mol + -analytic -2.7163e2 -5.2897e-2 5.0815e4 9.2946e1 8.6300e2 +# Range 0-200 + -Vm 88.94 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Ca4Al2Fe2O10 + Ca4Al2Fe2O10 + 20 H+ = 2 Al+3 + 2 Fe+3 + 4 Ca+2 + 10 H2O + log_k 140.5050 + -delta_H -1139.86 kJ/mol +# deltafH -1211 kcal/mol + -analytic -4.1808e2 -8.2787e-2 7.0288e4 1.4043e2 1.1937e3 +# Range 0-200 + -Vm 130.28 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +CaAl2O4 + CaAl2O4 + 8 H+ = Ca+2 + 2 Al+3 + 4 H2O + log_k 46.9541 + -delta_H -436.952 kJ/mol +# deltafH -555.996 kcal/mol + -analytic -3.0378e2 -7.9356e-2 3.0096e4 1.1049e2 4.6971e2 +# Range 0-300 + -Vm 53.02 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +CaAl4O7 + CaAl4O7 + 14 H+ = Ca+2 + 4 Al+3 + 7 H2O + log_k 68.6138 + -delta_H -718.464 kJ/mol +# deltafH -951.026 kcal/mol + -analytic -3.1044e2 -6.7078e-2 4.4566e4 1.0085e2 7.5689e2 +# Range 0-200 + -Vm 89.35 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +CaUO4 + CaUO4 + 4 H+ = Ca+2 + UO2+2 + 2 H2O + log_k 15.9420 + -delta_H -131.46 kJ/mol +# deltafH -2002.3 kJ/mol + -analytic -8.7902e1 -1.9810e-2 9.2354e3 3.1832e1 1.4414e2 +# Range 0-300 + -Vm 45.92 # M13 +# Extrapol Cp integration +# Ref 92gre/fug + +Calcite + CaCO3 + H+ = Ca+2 + HCO3- + log_k 1.8487 + -delta_H -25.7149 kJ/mol +# deltafH -288.552 kcal/mol + -analytic -1.4978e2 -4.8370e-2 4.8974e3 6.0458e1 7.6464e1 +# Range 0-350 + -Vm 36.934 +# Extrapol supcrt92 +# Ref HDN+78 + +Cattierite + CoS2 = Co+2 + S2-2 + log_k -29.9067 +# deltafH -36.589 kcal/mol + -analytic -2.1970e2 -7.8585e-2 -1.9592e3 8.8809e1 -3.0507e1 +# Range 0-300 + -Vm 25.53 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78vau/cra + +Celadonite + KMgAlSi4O10(OH)2 + 6 H+ = Al+3 + K+ + Mg+2 + 4 H2O + 4 SiO2 + log_k 7.4575 + -delta_H -74.3957 kJ/mol +# deltafH -1394.9 kcal/mol + -analytic -3.3097e1 1.7989e-2 1.8919e4 -2.1219 -2.0588e6 +# Range 0-300 + -Vm 157.1 +# Extrapol supcrt92, Cp integration +# Ref HDN+78, 78wol match + +Chalcanthite + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.6215 + -delta_H 6.57556 kJ/mol +# deltafH -2279.68 kJ/mol + -analytic -1.1262e2 -1.5544e-2 3.6176e3 4.1420e1 6.1471e1 +# Range 0-200 + -Vm 108.97 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Chalcedony + SiO2 = SiO2 + log_k -3.7281 + -delta_H 31.4093 kJ/mol +# deltafH -217.282 kcal/mol + -analytic -9.0068 9.3241e-3 4.0535e3 -1.0830 -7.5077e5 +# Range 0-350 + -Vm 22.68 +# Extrapol supcrt92 +# Ref HDN+78 + +Chalcocite + Cu2S + H+ = HS- + 2 Cu+ + log_k -34.7342 + -delta_H 206.748 kJ/mol +# deltafH -19 kcal/mol + -analytic -1.3703e2 -4.0727e-2 -7.1694e3 5.5963e1 -1.1183e2 +# Range 0-350 + -Vm 27.48 +# Extrapol supcrt92 +# Ref HDN+78 + +Chalcocyanite + CuSO4 = Cu+2 + SO4-2 + log_k 2.9239 + -delta_H -72.5128 kJ/mol +# deltafH -771.4 kJ/mol + -analytic 5.8173 -1.6933e-2 2.0097e3 -1.8583 3.4126e1 +# Range 0-200 + -Vm 40.88 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref CWM89 + +Chalcopyrite + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -32.5638 + -delta_H 127.206 kJ/mol +# deltafH -44.453 kcal/mol + -analytic -3.1575e2 -9.8947e-2 8.3400e2 1.2522e2 1.3106e1 +# Range 0-350 + -Vm 42.83 +# Extrapol supcrt92 +# Ref HDN+78 + +Chloromagnesite + MgCl2 = Mg+2 + 2 Cl- + log_k 21.8604 + -delta_H -158.802 kJ/mol +# deltafH -641.317 kJ/mol + -analytic -2.3640e2 -8.2017e-2 1.3480e4 9.5963e1 2.1042e2 +# Range 0-300 + -Vm 40.95 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Chromite + FeCr2O4 + 8 H+ = Fe+2 + 2 Cr+3 + 4 H2O + log_k 15.1685 + -delta_H -267.755 kJ/mol +# deltafH -1444.83 kJ/mol + -analytic -1.9060e2 -2.5695e-2 1.9465e4 5.9865e1 3.0379e2 +# Range 0-300 + -Vm 44.01 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O + log_k 31.1254 + -delta_H -218.041 kJ/mol +# deltafH -1043.12 kcal/mol + -analytic -9.2462e1 -1.1359e-2 1.8312e4 2.9289e1 -6.2342e5 +# Range 0-350 + -Vm 108.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Clinochlore-14A + Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O + log_k 67.2391 + -delta_H -612.379 kJ/mol +# deltafH -2116.96 kcal/mol + -analytic -2.0441e2 -6.2268e-2 3.5388e4 6.9239e1 5.5225e2 +# Range 0-350 + -Vm 207.11 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 differ by 0.4 log K at 0C, 1.6 log K at 300C + +Clinochlore-7A + Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O + log_k 70.6124 + -delta_H -628.14 kJ/mol +# deltafH -2113.2 kcal/mol + -analytic -2.1644e2 -6.4187e-2 3.6548e4 7.4123e1 5.7037e2 +# Range 0-350 + -Vm 211.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Clinoptilolite-K + K3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 14.533 SiO2 + 17.856 H2O + log_k -10.9485 + -delta_H 67.4862 kJ/mol +# deltafH -4937.77 kcal/mol + -analytic 1.1697e1 6.9480e-2 4.7718e4 -4.7442e1 -7.6907e6 +# Range 0-300 + -Vm 655.93 # Webmineral.com, density 2.15 +# Extrapol Cp integration +# Ref 89db 7 + +Clinozoisite + Ca2Al3Si3O12(OH) + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O + log_k 43.2569 + -delta_H -457.755 kJ/mol +# deltafH -1643.78 kcal/mol + -analytic -2.8690e1 -3.7056e-2 2.2770e4 3.7880 -2.5834e5 +# Range 0-300 + -Vm 136.2 +# Extrapol supcrt92 +# Ref HDN+78, SH88 + +Co + Co + 2 H+ + 0.5 O2 = Co+2 + H2O + log_k 52.5307 + -delta_H -337.929 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.2703e1 -2.0172e-2 1.8888e4 2.3391e1 2.9474e2 +# Range 0-300 + -Vm 6.67 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Co2SiO4 + Co2SiO4 + 4 H+ = SiO2 + 2 Co+2 + 2 H2O + log_k 6.6808 + -delta_H -88.6924 kJ/mol +# deltafH -353.011 kcal/mol + -analytic -3.9978 -3.7985e-3 5.1554e3 -1.5033 -1.6100e5 +# Range 0-300 + -Vm 44.52 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoCl2 + CoCl2 = Co+2 + 2 Cl- + log_k 8.2641 + -delta_H -79.5949 kJ/mol +# deltafH -312.722 kJ/mol + -analytic -2.2386e2 -8.0936e-2 8.8631e3 9.1528e1 1.3837e2 +# Range 0-300 + -Vm 38.69 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoCl2:2H2O + CoCl2:2H2O = Co+2 + 2 Cl- + 2 H2O + log_k 4.6661 + -delta_H -40.7876 kJ/mol +# deltafH -923.206 kJ/mol + -analytic -5.6411e1 -2.3390e-2 3.0519e3 2.3361e1 5.1845e1 +# Range 0-200 + -Vm 66.61 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CoCl2:6H2O + CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O + log_k 2.6033 + -delta_H 8.32709 kJ/mol +# deltafH -2115.67 kJ/mol + -analytic -1.5066e2 -2.2132e-2 5.0591e3 5.7743e1 8.5962e1 +# Range 0-200 + -Vm 123.66 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CoFe2O4 + CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O + log_k 0.8729 + -delta_H -160.674 kJ/mol +# deltafH -272.466 kcal/mol + -analytic -3.0149e2 -7.9159e-2 1.5683e4 1.1046e2 2.4480e2 +# Range 0-300 + -Vm 44 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +CoO + CoO + 2 H+ = Co+2 + H2O + log_k 13.5553 + -delta_H -106.05 kJ/mol +# deltafH -237.946 kJ/mol + -analytic -8.4424e1 -1.9457e-2 7.8616e3 3.1281e1 1.2270e2 +# Range 0-300 + -Vm 11.64 # gfw/density +# Extrapol Cp integration +# Ref WEP+82 + +CoS + CoS + H+ = Co+2 + HS- + log_k -7.3740 + -delta_H 10.1755 kJ/mol +# deltafH -20.182 kcal/mol + -analytic -1.5128e2 -4.8484e-2 2.9553e3 5.9983e1 4.6158e1 +# Range 0-300 + -Vm 22.91 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +CoSO4 + CoSO4 = Co+2 + SO4-2 + log_k 2.8996 + -delta_H -79.7952 kJ/mol +# deltafH -887.964 kJ/mol + -analytic -1.9907e2 -7.7890e-2 7.7193e3 8.0525e1 1.2051e2 +# Range 0-300 + -Vm 41.78 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoSO4:6H2O + CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O + log_k -2.3512 + -delta_H 1.08483 kJ/mol +# deltafH -2683.87 kJ/mol + -analytic -2.5469e2 -7.3092e-2 6.6767e3 1.0172e2 1.0426e2 +# Range 0-300 + -Vm 130.30 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoSO4:H2O + CoSO4:H2O = Co+2 + H2O + SO4-2 + log_k -1.2111 + -delta_H -52.6556 kJ/mol +# deltafH -287.032 kcal/mol + -analytic -1.0570e1 -1.6196e-2 1.7180e3 3.4000 2.9178e1 +# Range 0-200 + -Vm 56.26 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +Coesite + SiO2 = SiO2 + log_k -3.1893 + -delta_H 28.6144 kJ/mol +# deltafH -216.614 kcal/mol + -analytic -9.7312 9.1773e-3 4.2143e3 -7.8065e-1 -7.4905e5 +# Range 0-350 + -Vm 20.641 +# Extrapol supcrt92 +# Ref HDN+78 + +Coffinite + USiO4 + 4 H+ = SiO2 + U+4 + 2 H2O + log_k -8.0530 + -delta_H -49.2493 kJ/mol +# deltafH -1991.33 kJ/mol + -analytic 2.3126e2 6.2389e-2 -4.6189e3 -9.7976e1 -7.8517e1 +# Range 0-200 + -Vm 46.12 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref 92gre/fug + +Cordierite_anhyd + Mg2Al4Si5O18 + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 8 H2O + log_k 52.3035 + -delta_H -626.219 kJ/mol +# deltafH -2183.2 kcal/mol + -analytic 2.6562 -2.3801e-2 3.5192e4 -1.9911e1 -1.0894e6 +# Range 0-350 + -Vm 233.22 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3 log K at 0C, 0.8 log K at 350C + +Cordierite_hydr + Mg2Al4Si5O18:H2O + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 9 H2O + log_k 49.8235 + -delta_H -608.814 kJ/mol +# deltafH -2255.68 kcal/mol + -analytic -1.2985e2 -4.1335e-2 4.1566e4 2.7892e1 -1.4819e6 +# Range 0-350 + -Vm 241.22 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3.4 log K at 0C, 0.8 log K at 350C + +Corundum + Al2O3 + 6 H+ = 2 Al+3 + 3 H2O + log_k 18.3121 + -delta_H -258.626 kJ/mol +# deltafH -400.5 kcal/mol + -analytic -1.4278e2 -7.8519e-2 1.3776e4 5.5881e1 2.1501e2 +# Range 0-350 + -Vm 25.575 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel differ by 1 log K at 0C, 7 log K at 300C !! flag + +Covellite + CuS + H+ = Cu+2 + HS- + log_k -22.8310 + -delta_H 101.88 kJ/mol +# deltafH -12.5 kcal/mol + -analytic -1.6068e2 -4.9040e-2 -1.4234e3 6.3536e1 -2.2164e1 +# Range 0-350 + -Vm 20.42 +# Extrapol supcrt92 +# Ref HDN+78 + +Cr + Cr + 3 H+ + 0.75 O2 = Cr+3 + 1.5 H2O + log_k 98.6784 + -delta_H -658.145 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.2488e1 -5.5886e-3 3.4288e4 3.1585 5.3503e2 +# Range 0-300 + -Vm 7.231 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +CrCl3 + CrCl3 = Cr+3 + 3 Cl- + log_k 17.9728 + -delta_H -183.227 kJ/mol +# deltafH -556.5 kJ/mol + -analytic -2.6348e2 -9.5339e-2 1.4785e4 1.0517e2 2.3079e2 +# Range 0-300 + -Vm 57.38 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CrO2 + CrO2 = 0.5 Cr+2 + 0.5 CrO4-2 + log_k -19.1332 + -delta_H 85.9812 kJ/mol +# deltafH -143 kcal/mol + -analytic 2.7763 -7.7698e-3 -5.2893e3 -7.4970e-1 -8.9821e1 +# Range 0-200 + -Vm 16.95 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +CrO3 + CrO3 + H2O = CrO4-2 + 2 H+ + log_k -3.5221 + -delta_H -5.78647 kJ/mol +# deltafH -140.9 kcal/mol + -analytic -1.3262e2 -6.1411e-2 2.2083e3 5.6564e1 3.4497e1 +# Range 0-300 + -Vm 35.14 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 76del/hal + +CrS + CrS + H+ = Cr+2 + HS- + log_k -0.6304 + -delta_H -26.15 kJ/mol +# deltafH -31.9 kcal/mol + -analytic -1.1134e2 -3.5954e-2 3.8744e3 4.3815e1 6.0490e1 +# Range 0-300 + -Vm 17.33 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 76del/hal + +Cristobalite(alpha) + SiO2 = SiO2 + log_k -3.4488 + -delta_H 29.2043 kJ/mol +# deltafH -216.755 kcal/mol + -analytic -1.1936e1 9.0520e-3 4.3701e3 -1.1464e-1 -7.6568e5 +# Range 0-350 + -Vm 25.74 +# Extrapol supcrt92 +# Ref HDN+78 + +Cristobalite(beta) + SiO2 = SiO2 + log_k -3.0053 + -delta_H 24.6856 kJ/mol +# deltafH -215.675 kcal/mol + -analytic -4.7414 9.7567e-3 3.8831e3 -2.5830 -6.9636e5 +# Range 0-350 + -Vm 27.38 +# Extrapol supcrt92 +# Ref HDN+78 + +Cronstedtite-7A + Fe2Fe2SiO5(OH)4 + 10 H+ = SiO2 + 2 Fe+2 + 2 Fe+3 + 7 H2O + log_k 16.2603 + -delta_H -244.266 kJ/mol +# deltafH -697.413 kcal/mol + -analytic -2.3783e2 -7.1026e-2 1.7752e4 8.7147e1 2.7707e2 +# Range 0-300 + -Vm 110.9 # HDN+78 +# Extrapol Cp integration +# Ref 78wol + +Cu + Cu + 2 H+ + 0.5 O2 = Cu+2 + H2O + log_k 31.5118 + -delta_H -214.083 kJ/mol +# deltafH 0 kcal/mol + -analytic -7.0719e1 -2.0300e-2 1.2802e4 2.6401e1 1.9979e2 +# Range 0-300 + -Vm 7.113 +# Extrapol supcrt92 +# Ref HDN+78 + + +CuCl2 + CuCl2 = Cu+2 + 2 Cl- + log_k 3.7308 + -delta_H -48.5965 kJ/mol +# deltafH -219.874 kJ/mol + -analytic -1.7803e1 -2.4432e-2 1.5729e3 9.5104 2.6716e1 +# Range 0-200 + -Vm 39.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CuCr2O4 + CuCr2O4 + 8 H+ = Cu+2 + 2 Cr+3 + 4 H2O + log_k 16.2174 + -delta_H -268.768 kJ/mol +# deltafH -307.331 kcal/mol + -analytic -1.8199e2 -1.0254e-2 2.0123e4 5.4062e1 3.4178e2 +# Range 0-200 + -Vm 42.74 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +Cuprite + Cu2O + 2 H+ = H2O + 2 Cu+ + log_k -1.9031 + -delta_H 28.355 kJ/mol +# deltafH -40.83 kcal/mol + -analytic -8.6240e1 -1.1445e-2 1.7851e3 3.3041e1 2.7880e1 +# Range 0-350 + -Vm 23.437 +# Extrapol supcrt92 +# Ref HDN+78 + +Daphnite-14A + Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O + log_k 52.2821 + -delta_H -517.561 kJ/mol +# deltafH -1693.04 kcal/mol + -analytic -1.5261e2 -6.1392e-2 2.8283e4 5.1788e1 4.4137e2 +# Range 0-350 + -Vm 213.42 +# Extrapol supcrt92 +# Ref HDN+78 + +Daphnite-7A + Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O + log_k 55.6554 + -delta_H -532.326 kJ/mol +# deltafH -1689.51 kcal/mol + -analytic -1.6430e2 -6.3160e-2 2.9499e4 5.6442e1 4.6035e2 +# Range 0-300 + -Vm 221.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Dawsonite + NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O + log_k 4.3464 + -delta_H -76.3549 kJ/mol +# deltafH -1963.96 kJ/mol + -analytic -1.1393e2 -2.3487e-2 7.1758e3 4.0900e1 1.2189e2 +# Range 0-200 + -Vm 59.50 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Delafossite + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -6.4172 + -delta_H -18.6104 kJ/mol +# deltafH -126.904 kcal/mol + -analytic -1.5275e2 -3.5478e-2 5.1404e3 5.6437e1 8.0255e1 +# Range 0-300 + -Vm 27.52 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +Diaspore + AlHO2 + 3 H+ = Al+3 + 2 H2O + log_k 7.1603 + -delta_H -110.42 kJ/mol +# deltafH -238.924 kcal/mol + -analytic -1.2618e2 -3.1671e-2 8.8737e3 4.5669e1 1.3850e2 +# Range 0-225 + -Vm 17.76 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Dicalcium_silicate + Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O + log_k 37.1725 + -delta_H -217.642 kJ/mol +# deltafH -2317.9 kJ/mol + -analytic -5.9723e1 -1.3682e-2 1.5461e4 2.1547e1 -3.7732e5 +# Range 0-300 + -Vm 59.11 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Diopside + CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 + 2 H2O + 2 SiO2 + log_k 20.9643 + -delta_H -133.775 kJ/mol +# deltafH -765.378 kcal/mol + -analytic 7.1240e1 1.5514e-2 8.1437e3 -3.0672e1 -5.6880e5 +# Range 0-350 + -Vm 66.09 +# Extrapol supcrt92 +# Ref HDN+78 + +Dioptase + CuSiO2(OH)2 + 2 H+ = Cu+2 + SiO2 + 2 H2O + log_k 6.0773 + -delta_H -25.2205 kJ/mol +# deltafH -1358.47 kJ/mol + -analytic 2.3913e2 6.2669e-2 -5.4030e3 -9.4420e1 -9.1834e1 +# Range 0-200 + -Vm 48.24 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87woo/gar + +Dolomite-dis + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 4.0579 + -delta_H -72.2117 kJ/mol +# deltafH -553.704 kcal/mol + -analytic -3.1706e2 -9.7886e-2 1.1442e4 1.2604e2 1.7864e2 +# Range 0-350 + -Vm 64.39 +# Extrapol supcrt92 +# Ref HDN+78 + +Dolomite-ord + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 2.5135 + -delta_H -59.9651 kJ/mol +# deltafH -556.631 kcal/mol + -analytic -3.1654e2 -9.7902e-2 1.0805e4 1.2607e2 1.6870e2 +# Range 0-350 + -Vm 64.34 +# Extrapol supcrt92 +# Ref HDN+78 + +Enstatite + MgSiO3 + 2 H+ = H2O + Mg+2 + SiO2 + log_k 11.3269 + -delta_H -82.7302 kJ/mol +# deltafH -369.686 kcal/mol + -analytic -4.9278e1 -3.2832e-3 9.5205e3 1.4437e1 -5.4324e5 +# Range 0-350 + -Vm 31.276 +# Extrapol supcrt92 +# Ref HDN+78 + +Epidote + Ca2FeAl2Si3O12OH + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O + log_k 32.9296 + -delta_H -386.451 kJ/mol +# deltafH -1543.99 kcal/mol + -analytic -2.6187e1 -3.6436e-2 1.9351e4 3.3671 -3.0319e5 +# Range 0-350 + -Vm 139.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Epidote-ord + FeCa2Al2(OH)(SiO4)3 + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O + log_k 32.9296 + -delta_H -386.351 kJ/mol +# deltafH -1544.02 kcal/mol + -analytic 1.9379e1 -3.2870e-2 1.5692e4 -1.1901e1 2.4485e2 +# Range 0-350 + -Vm 139.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Eskolaite + Cr2O3 + 2 H2O + 1.5 O2 = 2 CrO4-2 + 4 H+ + log_k -9.1306 + -delta_H -32.6877 kJ/mol +# deltafH -1139.74 kJ/mol + -analytic -2.0411e2 -1.2809e-1 2.2197e3 9.1186e1 3.4697e1 +# Range 0-300 + -Vm 29.09 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ettringite + Ca6Al2(SO4)3(OH)12:26H2O + 12 H+ = 2 Al+3 + 3 SO4-2 + 6 Ca+2 + 38 H2O + log_k 62.5362 + -delta_H -382.451 kJ/mol +# deltafH -4193 kcal/mol + -analytic -1.0576e3 -1.1585e-1 5.9580e4 3.8585e2 1.0121e3 +# Range 0-200 + -Vm 697.28 # Webmineral.com +# Extrapol Constant H approx +# Ref 82sar/bar + +Eu + Eu + 3 H+ + 0.75 O2 = Eu+3 + 1.5 H2O + log_k 165.1443 + -delta_H -1025.08 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5749e1 -2.8921e-2 5.4018e4 2.3561e1 8.4292e2 +# Range 0-300 + -Vm 28.97 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 85rar 2 + +Eu(OH)3 + Eu(OH)3 + 3 H+ = Eu+3 + 3 H2O + log_k 15.3482 + -delta_H -126.897 kJ/mol +# deltafH -1336.04 kJ/mol + -analytic -6.3077e1 -6.1421e-3 8.7323e3 2.0595e1 1.4831e+2 +# Range 0-200 + -Vm 38.44 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +Eu2(SO4)3:8H2O + Eu2(SO4)3:8H2O = 2 Eu+3 + 3 SO4-2 + 8 H2O + log_k -10.8524 + -delta_H -86.59 kJ/mol +# deltafH -6139.77 kJ/mol + -analytic -5.6582e1 -3.8846e-2 3.3821e3 1.8561e1 5.7452e1 +# Range 0-200 + -Vm 245.41 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu2O3(cubic) + Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O + log_k 51.7818 + -delta_H -406.403 kJ/mol +# deltafH -1661.96 kJ/mol + -analytic -5.3469e1 -1.2554e-2 2.1925e4 1.4324e1 3.7233e2 +# Range 0-200 + -Vm 48.29 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu2O3(monoclinic) + Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O + log_k 53.3936 + -delta_H -417.481 kJ/mol +# deltafH -1650.88 kJ/mol + -analytic -5.4022e1 -1.2627e-2 2.2508e4 1.4416e1 3.8224e2 +# Range 0-200 + -Vm 44.02 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu3O4 + Eu3O4 + 8 H+ = Eu+2 + 2 Eu+3 + 4 H2O + log_k 87.0369 + -delta_H -611.249 kJ/mol +# deltafH -2270.56 kJ/mol + -analytic -1.1829e2 -2.0354e-2 3.4981e4 3.8007e1 5.9407e2 +# Range 0-200 + -Vm 64.15 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuCl2 + EuCl2 = Eu+2 + 2 Cl- + log_k 5.9230 + -delta_H -39.2617 kJ/mol +# deltafH -822.5 kJ/mol + -analytic -2.5741e1 -2.4956e-2 1.5713e3 1.3670e1 2.6691e1 +# Range 0-200 + -Vm 45.49 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +EuCl3 + EuCl3 = Eu+3 + 3 Cl- + log_k 19.7149 + -delta_H -170.861 kJ/mol +# deltafH -935.803 kJ/mol + -analytic 3.2865e1 -3.1877e-2 4.9792e3 -8.2294 8.4542e1 +# Range 0-200 + -Vm 52.83 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuCl3:6H2O + EuCl3:6H2O = Eu+3 + 3 Cl- + 6 H2O + log_k 4.9090 + -delta_H -40.0288 kJ/mol +# deltafH -2781.66 kJ/mol + -analytic -1.0987e2 -2.9851e-2 4.9991e3 4.3198e1 8.4930e1 +# Range 0-200 + -Vm 151.22 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuOCl + EuOCl + 2 H+ = Cl- + Eu+3 + H2O + log_k 15.6683 + -delta_H -147.173 kJ/mol +# deltafH -911.17 kJ/mol + -analytic -7.7446 -1.4960e-2 6.6242e3 2.2813 1.1249e2 +# Range 0-200 + -Vm 31.68 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +EuS + EuS + H+ = Eu+2 + HS- + log_k 14.9068 + -delta_H -96.4088 kJ/mol +# deltafH -447.302 kJ/mol + -analytic -4.1026e1 -1.5582e-2 5.7842e3 1.6639e1 9.8238e1 +# Range 0-200 + -Vm 32.03 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuSO4 + EuSO4 = Eu+2 + SO4-2 + log_k -8.8449 + -delta_H 33.873 kJ/mol +# deltafH -1471.08 kJ/mol + -analytic 3.0262e-1 -1.7571e-2 -3.0392e3 2.5356 -5.1610e1 +# Range 0-200 + -Vm 49.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eucryptite + LiAlSiO4 + 4 H+ = Al+3 + Li+ + SiO2 + 2 H2O + log_k 13.6106 + -delta_H -141.818 kJ/mol +# deltafH -2124.41 kJ/mol + -analytic -2.2213 -8.2498e-3 6.4838e3 -1.4183 1.0117e2 +# Range 0-300 + -Vm 53.63 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fayalite + Fe2SiO4 + 4 H+ = SiO2 + 2 Fe+2 + 2 H2O + log_k 19.1113 + -delta_H -152.256 kJ/mol +# deltafH -354.119 kcal/mol + -analytic 1.3853e1 -3.5501e-3 7.1496e3 -6.8710e0 -6.3310e4 +# Range 0-350 + -Vm 46.39 +# Extrapol supcrt92 +# Ref HDN+78 + +Fe + Fe + 2 H+ + 0.5 O2 = Fe+2 + H2O + log_k 59.0325 + -delta_H -372.029 kJ/mol +# deltafH 0 kcal/mol + -analytic -6.2882e1 -2.0379e-2 2.0690e4 2.3673e1 3.2287e2 +# Range 0-350 + -Vm 7.092 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref RHF79 + +Fe(OH)2 + Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O + log_k 13.9045 + -delta_H -95.4089 kJ/mol +# deltafH -568.525 kJ/mol + -analytic -8.6666e1 -1.8440e-2 7.5723e3 3.2597e1 1.1818e2 +# Range 0-300 + -Vm 26.43 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fe(OH)3 + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 5.6556 + -delta_H -84.0824 kJ/mol +# deltafH -823.013 kJ/mol + -analytic -1.3316e2 -3.1284e-2 7.9753e3 4.9052e1 1.2449e2 +# Range 0-300 + -Vm 34.36 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fe2(SO4)3 + Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 + log_k 3.2058 + -delta_H -250.806 kJ/mol +# deltafH -2577.16 kJ/mol + -analytic -5.8649e2 -2.3718e-1 2.2736e4 2.3601e2 3.5495e2 +# Range 0-300 + -Vm 130.77 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +FeO + FeO + 2 H+ = Fe+2 + H2O + log_k 13.5318 + -delta_H -106.052 kJ/mol +# deltafH -65.02 kcal/mol + -analytic -7.8750e1 -1.8268e-2 7.6852e3 2.9074e1 1.1994e2 +# Range 0-350 + -Vm 12 +# Extrapol supcrt92 +# Ref HDN+78 + +FeSO4 + FeSO4 = Fe+2 + SO4-2 + log_k 2.6565 + -delta_H -73.0878 kJ/mol +# deltafH -928.771 kJ/mol + -analytic -2.0794e2 -7.6891e-2 7.8705e3 8.3685e1 1.2287e2 +# Range 0-300 + -Vm 41.58 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrite-Ca + CaFe2O4 + 8 H+ = Ca+2 + 2 Fe+3 + 4 H2O + log_k 21.5217 + -delta_H -264.738 kJ/mol +# deltafH -363.494 kcal/mol + -analytic -2.8472e2 -7.5870e-2 2.0688e4 1.0485e2 3.2289e2 +# Range 0-300 + -Vm 44.98 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Ferrite-Cu + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 10.3160 + -delta_H -211.647 kJ/mol +# deltafH -965.178 kJ/mol + -analytic -3.1271e2 -7.9976e-2 1.8818e4 1.1466e2 2.9374e2 +# Range 0-300 + -Vm 44.53 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrite-Dicalcium + Ca2Fe2O5 + 10 H+ = 2 Ca+2 + 2 Fe+3 + 5 H2O + log_k 56.8331 + -delta_H -475.261 kJ/mol +# deltafH -2139.26 kJ/mol + -analytic -3.6277e2 -9.5015e-2 3.3898e4 1.3506e2 5.2906e2 +# Range 0-300 + -Vm 67.18 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Ferrite-Mg + MgFe2O4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O + log_k 21.0551 + -delta_H -280.056 kJ/mol +# deltafH -1428.42 kJ/mol + -analytic -2.8297e2 -7.4820e-2 2.1333e4 1.0295e2 3.3296e2 +# Range 0-300 + -Vm 44.57 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Ferrite-Zn + ZnFe2O4 + 8 H+ = Zn+2 + 2 Fe+3 + 4 H2O + log_k 11.7342 + -delta_H -226.609 kJ/mol +# deltafH -1169.29 kJ/mol + -analytic -2.9809e2 -7.7263e-2 1.9067e4 1.0866e2 2.9761e2 +# Range 0-300 + -Vm 45.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrosilite + FeSiO3 + 2 H+ = Fe+2 + H2O + SiO2 + log_k 7.4471 + -delta_H -60.6011 kJ/mol +# deltafH -285.658 kcal/mol + -analytic 9.0041 3.7917e-3 5.1625e3 -6.3009 -3.9565e5 +# Range 0-350 + -Vm 32.952 +# Extrapol supcrt92 +# Ref HDN+78 + +Forsterite + Mg2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mg+2 + log_k 27.8626 + -delta_H -205.614 kJ/mol +# deltafH -520 kcal/mol + -analytic -7.6195e1 -1.4013e-2 1.4763e4 2.5090e1 -3.0379e5 +# Range 0-350 + -Vm 43.79 +# Extrapol supcrt92 +# Ref HDN+78 + +Foshagite + Ca4Si3O9(OH)2:0.5H2O + 8 H+ = 3 SiO2 + 4 Ca+2 + 5.5 H2O + log_k 65.9210 + -delta_H -359.839 kJ/mol +# deltafH -1438.27 kcal/mol + -analytic 2.9983e1 5.5272e-3 2.3427e4 -1.3879e1 -8.9461e5 +# Range 0-300 + -Vm 154.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + + +Gd + Gd + 3 H+ + 0.75 O2 = Gd+3 + 1.5 H2O + log_k 180.7573 + -delta_H -1106.67 kJ/mol +# deltafH 0 kJ/mol + -analytic -3.3949e2 -6.5698e-2 7.4278e4 1.2189e2 -9.7055e5 +# Range 0-300 + -Vm 19.89 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Gehlenite + Ca2Al2SiO7 + 10 H+ = SiO2 + 2 Al+3 + 2 Ca+2 + 5 H2O + log_k 56.2997 + -delta_H -489.934 kJ/mol +# deltafH -951.225 kcal/mol + -analytic -2.1784e2 -6.7200e-2 2.9779e4 7.8488e1 4.6473e2 +# Range 0-350 + -Vm 90.24 +# Extrapol supcrt92 +# Ref HDN+78 + +Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 7.7560 + -delta_H -102.788 kJ/mol +# deltafH -309.065 kcal/mol + -analytic -1.1403e2 -3.6453e-2 7.7236e3 4.3134e1 1.2055e2 +# Range 0-150 + -Vm 31.956 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 0.5345 + -delta_H -61.9291 kJ/mol +# deltafH -559.328 kJ/mol + -analytic -6.0331e1 -1.0847e-2 4.7759e3 1.9429e1 8.1122e1 +# Range 0-200 + -Vm 20.82 +# Extrapol supcrt92, Constant H approx +# Ref Sho09, MLS+03, RHF79 match + +Greenalite + Fe3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Fe+2 + 5 H2O + log_k 22.6701 + -delta_H -165.297 kJ/mol +# deltafH -787.778 kcal/mol + -analytic -1.4187e1 -3.8377e-3 1.1710e4 1.6442 -4.8290e5 +# Range 0-350 + -Vm 115 +# Extrapol supcrt92 +# Ref HDN+78, 78wol, Wilson+06 match + +Grossular + Ca3Al2(SiO4)3 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 SiO2 + 6 H2O + log_k 51.9228 + -delta_H -432.006 kJ/mol +# deltafH -1582.74 kcal/mol + -analytic 2.9389e1 -2.2478e-2 2.0323e4 -1.4624e1 -2.5674e5 +# Range 0-350 + -Vm 125.3 +# Extrapol supcrt92 +# Ref HDN+78 + +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.4823 + -delta_H -1.66746 kJ/mol +# deltafH -2022.69 kJ/mol + -analytic -2.4417e2 -8.3329e-2 5.5958e3 9.9301e1 8.7389e1 +# Range 0-300 + -Vm 74.69 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Gyrolite + Ca2Si3O7(OH)2:1.5H2O + 4 H+ = 2 Ca+2 + 3 SiO2 + 4.5 H2O + log_k 22.9099 + -delta_H -82.862 kJ/mol +# deltafH -1176.55 kcal/mol + -analytic -2.4416e1 1.4646e-2 1.6181e4 2.3723 -1.5369e6 +# -Range 0-300 + -Vm 136.85 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Halite + NaCl = Cl- + Na+ + log_k 1.5855 + -delta_H 3.7405 kJ/mol +# deltafH -98.26 kcal/mol + -analytic -1.0163e2 -3.4761e-2 2.2796e3 4.2802e1 3.5602e1 +# Range 0-350 + -Vm 27.015 +# Extrapol supcrt92 +# Ref HDN+78 + +Hatrurite + Ca3SiO5 + 6 H+ = SiO2 + 3 Ca+2 + 3 H2O + log_k 73.4056 + -delta_H -434.684 kJ/mol +# deltafH -700.234 kcal/mol + -analytic -4.5448e1 -1.9998e-2 2.3800e4 1.8494e1 -7.3385e4 +# Range 0-300 + -Vm 75.60 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Hausmannite + Mn3O4 + 8 H+ = Mn+2 + 2 Mn+3 + 4 H2O + log_k 10.1598 + -delta_H -268.121 kJ/mol +# deltafH -1387.83 kJ/mol + -analytic -2.0600e2 -2.2214e-2 2.0160e4 6.2700e1 3.1464e2 +# Range 0-300 + -Vm 48.07 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Heazlewoodite + Ni3S2 + 4 H+ + 0.5 O2 = H2O + 2 HS- + 3 Ni+2 + log_k 28.2477 + -delta_H -270.897 kJ/mol +# deltafH -203.012 kJ/mol + -analytic -3.5439e2 -1.1740e-1 2.1811e4 1.3919e2 3.4044e2 +# Range 0-300 + -Vm 40.95 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Hedenbergite + CaFe(SiO3)2 + 4 H+ = Ca+2 + Fe+2 + 2 H2O + 2 SiO2 + log_k 19.6060 + -delta_H -124.507 kJ/mol +# deltafH -678.276 kcal/mol + -analytic -1.9473e1 1.5288e-3 1.2910e4 2.1729 -9.0058e5 +# Range 0-350 + -Vm 68.27 +# Extrapol supcrt92 +# Ref HDN+78 + +Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 0.1086 + -delta_H -129.415 kJ/mol +# deltafH -197.72 kcal/mol + -analytic -2.2015e2 -6.0290e-2 1.1812e4 8.0253e1 1.8438e2 +# Range 0-350 + -Vm 30.274 +# Extrapol supcrt92 +# Ref HDN+78 + +Hercynite + FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O + log_k 28.8484 + -delta_H -345.961 kJ/mol +# deltafH -1966.45 kJ/mol + -analytic -3.1848e2 -7.9501e-2 2.5892e4 1.1483e2 4.0412e2 +# Range 0-300 + -Vm 40.75 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Hillebrandite + Ca2SiO3(OH)2:0.17H2O + 4 H+ = SiO2 + 2 Ca+2 + 3.17 H2O + log_k 36.8190 + -delta_H -203.074 kJ/mol +# deltafH -637.404 kcal/mol + -analytic -1.9360e1 -7.5176e-3 1.1947e4 8.0558 -1.4504e5 +# Range 0-300 + -Vm 71.79 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Huntite + CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- + log_k 10.3010 + -delta_H -171.096 kJ/mol +# deltafH -1082.6 kcal/mol + -analytic -6.5e2 -1.9671e-1 2.4815e4 2.5688e2 3.8740e2 +# Range 0-350 + -Vm 122.9 +# Extrapol supcrt92 +# Ref HDN+78 + +Hydromagnesite + Mg5(CO3)4(OH)2:4H2O + 6 H+ = 4 HCO3- + 5 Mg+2 + 6 H2O + log_k 30.8539 + -delta_H -289.696 kJ/mol +# deltafH -1557.09 kcal/mol + -analytic -7.9288e2 -2.1448e-1 3.6749e4 3.0888e2 5.7367e2 +# Range 0-350 + -Vm 208.8 +# Extrapol supcrt92 +# Ref HDN+78 + +Hydrophilite + CaCl2 = Ca+2 + 2 Cl- + log_k 11.7916 + -delta_H -81.4545 kJ/mol +# deltafH -795.788 kJ/mol + -analytic -2.2278e2 -8.1414e-2 9.0298e3 9.2349e1 1.4097e2 +# Range 0-300 + -Vm 49.99 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Hydroxyapatite + Ca5(OH)(PO4)3 + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + log_k -3.0746 + -delta_H -191.982 kJ/mol +# deltafH -6685.52 kJ/mol + -analytic -8.5221e2 -2.9430e-1 2.8125e4 3.4044e2 4.3911e2 +# Range 0-300 + -Vm 128.9 +# Extrapol Cp integration +# Ref RHF79 + +Ice + H2O = H2O + log_k 0.1387 + -delta_H 6.74879 kJ/mol +# deltafH -69.93 kcal/mol + -analytic -2.3260e1 4.7948e-4 7.7351e2 8.3499 1.3143e1 +# Range 0-200 + -Vm 19.635 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87kee/rup + +Ilmenite + FeTiO3 + 2 H+ + H2O = Fe+2 + Ti(OH)4 + log_k 0.9046 +# deltafH -1236.65 kJ/mol + -Vm 32.15 # Webmineral.com +# Ref RHF79 + +Jadeite + NaAl(SiO3)2 + 4 H+ = Al+3 + Na+ + 2 H2O + 2 SiO2 + log_k 8.3888 + -delta_H -84.4415 kJ/mol +# deltafH -722.116 kcal/mol + -analytic 1.5934 5.0757e-3 9.5602e3 -7.0164 -8.4454e5 +# Range 0-350 + -Vm 60.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Jarosite + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 2 SO4-2 + 3 Fe+3 + 6 H2O + log_k -9.3706 + -delta_H -191.343 kJ/mol +# deltafH -894.79 kcal/mol + -analytic -1.0813e2 -5.0381e-2 9.6893e3 3.2832e1 1.6457e2 +# Range 0-200 + -Vm 162.07 # Webmineral.com +# Extrapol Constant H approx +# Ref 75kas/bor + +K + K + H+ + 0.25 O2 = 0.5 H2O + K+ + log_k 70.9861 + -delta_H -392.055 kJ/mol +# deltafH 0 kJ/mol + -analytic -3.1102e1 -1.0003e-2 2.1338e4 1.3534e1 3.3296e2 +# Range 0-300 + -Vm 45.94 # Webelements.com +# Extrapol Cp integration +# Ref CWM89 + + +K-Feldspar + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol +# deltafH -949.188 kcal/mol + -analytic -1.0684 1.3111e-2 1.1671e4 -9.9129 -1.5855e6 +# Range 0-350 + -Vm 108.87 +# Extrapol supcrt92 +# Ref HDN+78 + +K2O + K2O + 2 H+ = H2O + 2 K+ + log_k 84.0405 + -delta_H -427.006 kJ/mol +# deltafH -86.8 kcal/mol + -analytic -1.8283e1 -5.2255e-3 2.3184e4 1.0553e1 3.6177e2 +# Range 0-350 + -Vm 40.085 # gfw/density +# Extrapol supcrt92 +# Ref HDN+78 + +KAl(SO4)2 + KAl(SO4)2 = Al+3 + K+ + 2 SO4-2 + log_k 3.3647 + -delta_H -139.485 kJ/mol +# deltafH -2470.29 kJ/mol + -analytic -4.2785e2 -1.6303e-1 1.5311e4 1.7312e2 2.3904e2 +# Range 0-300 + -Vm 146.71 # gfw/density +# Extrapol Cp integration +# Ref RHF79 + +Kalsilite + KAlSiO4 + 4 H+ = Al+3 + K+ + SiO2 + 2 H2O + log_k 10.8987 + -delta_H -108.583 kJ/mol +# deltafH -509.408 kcal/mol + -analytic -6.7595 -7.4301e-3 6.5380e3 1.8999e-1 -2.2880e5 +# Range 0-350 + -Vm 59.89 +# Extrapol supcrt92 +# Ref HDN+78 + +Kaolinite + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 SiO2 + 5 H2O + log_k 6.8101 + -delta_H -151.779 kJ/mol +# deltafH -982.221 kcal/mol + -analytic 1.6835e1 -7.8939e-3 7.7636e3 -1.2190e1 -3.2354e5 +# Range 0-350 + -Vm 99.52 +# Extrapol supcrt92 +# Ref HDN+78 differ by 1.6 log K at 0C, 0.4 log K at 350C + +KerogenC128 + C128H68O7 + 141.5 O2 = 128 CO2 + 34 H2O + log_k 10740.654 + -delta_H -14623.902 kcal/mol + -analytic 23405.37 -54.726 0 0 0 0.041 +# Range 0-350 + -Vm 1320.7 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +KerogenC292 + C292H288O12 + 358 O2 = 292 CO2 + 144 H2O + log_k 27153.69 + -delta_H -36994.127 kcal/mol + -analytic 59184.26 -138.37 0 0 0 0.10 +# Range 0-350 + -Vm 3398.2 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +KerogenC515 + C515H596O72 + 628 O2 = 515 CO2 + 298 H2O + log_k 48112.16 + -delta_H -65346.703 kcal/mol + -analytic 104660.55 -244.27 0 0 0 0.183 +# Range 0-350 + -Vm 6989.3 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +Kyanite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 15.6740 + -delta_H -230.919 kJ/mol +# deltafH -616.897 kcal/mol + -analytic -7.3335e1 -3.2853e-2 1.2166e4 2.3412e1 1.8986e2 +# Range 0-175 + -Vm 44.09 +# Extrapol supcrt92 +# Ref HDN+78 + +Larnite + Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O + log_k 38.4665 + -delta_H -227.061 kJ/mol +# deltafH -551.74 kcal/mol + -analytic 2.6900e1 -2.1833e-3 1.0900e4 -9.5257 -7.2537e4 +# Range 0-300 + -Vm 51.6 # HDN+78 +# Extrapol Cp integration +# Ref 82sar/bar + +Lawrencite + FeCl2 = Fe+2 + 2 Cl- + log_k 9.0945 + -delta_H -84.7665 kJ/mol +# deltafH -341.65 kJ/mol + -analytic -2.2798e2 -8.1819e-2 9.2620e3 9.3097e1 1.4459e2 +# Range 0-300 + -Vm 40.31 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Lawsonite + CaAl2Si2O7(OH)2:H2O + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 6 H2O + log_k 22.2132 + -delta_H -244.806 kJ/mol +# deltafH -1158.1 kcal/mol + -analytic 1.3995e1 -1.7668e-2 1.0119e4 -8.3100 1.5789e2 +# Range 0-350 + -Vm 101.32 +# Extrapol supcrt92 +# Ref HDN+78 + +Li + Li + H+ +0.25 O2 = 0.5 H2O + Li+ + log_k 72.7622 + -delta_H -418.339 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.0227e2 -1.8118e-2 2.6262e4 3.8056e1 -1.6166e5 +# Range 0-300 + -Vm 13.017 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Lime + CaO + 2 H+ = Ca+2 + H2O + log_k 32.5761 + -delta_H -193.832 kJ/mol +# deltafH -151.79 kcal/mol + -analytic -7.2686e1 -1.7654e-2 1.2199e4 2.8128e1 1.9037e2 +# Range 0-350 + -Vm 16.764 +# Extrapol supcrt92 +# Ref HDN+78 + +Linnaeite + Co3S4 + 4 H+ = Co+2 + 2 Co+3 + 4 HS- + log_k -106.9017 + -delta_H 420.534 kJ/mol +# deltafH -85.81 kcal/mol + -analytic -6.0034e2 -2.0179e-1 -9.2145e3 2.3618e2 -1.4361e2 +# Range 0-300 + -Vm 63.55 # Webmineral.com +# Extrapol Cp integration +# Ref 78vau/cra + +Lizardite + Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O + log_k 30.560 + -analytic 7.886e1 -2.108e-1 0 0 0 1.637e-4 +# Range 0-300 + -Vm 107.31 +# Extrapol supcrt92 +# Ref Wilson+06 + +Lopezite + K2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 K+ + log_k -17.4366 + -delta_H 81.9227 kJ/mol +# deltafH -493.003 kcal/mol + -analytic 7.8359e1 -2.2908e-2 -9.3812e3 -2.3245e1 -1.5933e2 +# Range 0-200 + -Vm 109.93 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref 76del/hal + +Magnesiochromite + MgCr2O4 + 8 H+ = Mg+2 + 2 Cr+3 + 4 H2O + log_k 21.6927 + -delta_H -302.689 kJ/mol +# deltafH -1783.6 kJ/mol + -analytic -1.7376e2 -8.7429e-3 2.1600e4 5.0762e1 3.6685e2 +# Range 0-200 + -Vm 43.564 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref WEP+82 + +Magnesite + MgCO3 + H+ = HCO3- + Mg+2 + log_k 2.2936 + -delta_H -44.4968 kJ/mol +# deltafH -265.63 kcal/mol + -analytic -1.6665e2 -4.9469e-2 6.4344e3 6.5506e1 1.0045e2 +# Range 0-350 + -Vm 28.018 +# Extrapol supcrt92 +# Ref HDN+78 + +Magnetite + Fe3O4 + 8 H+ = Fe+2 + 2 Fe+3 + 4 H2O + log_k 10.4724 + -delta_H -216.597 kJ/mol +# deltafH -267.25 kcal/mol + -analytic -3.0510e2 -7.9919e-2 1.8709e4 1.1178e2 2.9203e2 +# Range 0-350 + -Vm 44.524 +# Extrapol supcrt92 +# Ref HDN+78 + +Malachite + Cu2CO3(OH)2 + 3 H+ = HCO3- + 2 Cu+2 + 2 H2O + log_k 5.9399 + -delta_H -76.2827 kJ/mol +# deltafH -251.9 kcal/mol + -analytic -2.7189e2 -6.9454e-2 1.1451e4 1.0511e2 1.7877e2 +# Range 0-350 + -Vm 54.86 +# Extrapol supcrt92 +# Ref HDN+78 + +Manganosite + MnO + 2 H+ = H2O + Mn+2 + log_k 17.9240 + -delta_H -121.215 kJ/mol +# deltafH -92.07 kcal/mol + -analytic -8.4114e1 -1.8490e-2 8.7792e3 3.1561e1 1.3702e2 +# Range 0-350 + -Vm 13.221 +# Extrapol supcrt92 +# Ref HDN+78 + +Margarite + CaAl4Si2O10(OH)2 + 14 H+ = Ca+2 + 2 SiO2 + 4 Al+3 + 8 H2O + log_k 41.0658 + -delta_H -522.192 kJ/mol +# deltafH -1485.8 kcal/mol + -analytic -2.3138e2 -8.2788e-2 3.0154e4 7.9148e1 4.7060e2 +# Range 0-350 + -Vm 129.4 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3.3 log K at 0C, 1.1 log K at 350C + +Maximum_Microcline + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol +# deltafH -949.188 kcal/mol + -analytic -9.4387 1.3561e-2 1.2656e4 -7.4925 -1.6795e6 +# Range 0-350 + -Vm 108.741 +# Extrapol supcrt92 +# Ref HDN+78 + +Mayenite + Ca12Al14O33 + 66 H+ = 12 Ca+2 + 14 Al+3 + 33 H2O + log_k 494.2199 + -delta_H -4056.77 kJ/mol +# deltafH -4644 kcal/mol + -analytic -1.4778e3 -2.9898e-1 2.4918e5 4.9518e2 4.2319e3 +# Range 0-200 + -Vm 517.41 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Melanterite + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.3490 + -delta_H 11.7509 kJ/mol +# deltafH -3014.48 kJ/mol + -analytic -2.6230e2 -7.2469e-2 6.5854e3 1.0484e2 1.0284e2 +# Range 0-300 + -Vm 146.48 # Marion+08 +# Extrapol Cp integration +# Ref RHF79 + +Merwinite + MgCa3(SiO4)2 + 8 H+ = Mg+2 + 2 SiO2 + 3 Ca+2 + 4 H2O + log_k 68.5140 + -delta_H -430.069 kJ/mol +# deltafH -1090.8 kcal/mol + -analytic -2.2524e2 -4.2525e-2 3.5619e4 7.9984e1 -9.8259e5 +# Range 0-350 + -Vm 104.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Mg + Mg + 2 H+ + 0.5 O2 = H2O + Mg+2 + log_k 122.5365 + -delta_H -745.731 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5988e1 -1.9356e-2 4.0318e4 2.3862e1 6.2914e2 +# Range 0-300 + -Vm 13.996 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +MgOHCl + MgOHCl + H+ = Cl- + H2O + Mg+2 + log_k 15.9138 + -delta_H -118.897 kJ/mol +# deltafH -191.2 kcal/mol + -analytic -1.6614e2 -4.9715e-2 1.0311e4 6.5578e1 1.6093e2 +# Range 0-300 + -Vm 33.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +MgSO4 + MgSO4 = Mg+2 + SO4-2 + log_k 4.8781 + -delta_H -90.6421 kJ/mol +# deltafH -1284.92 kJ/mol + -analytic -2.2439e2 -7.9688e-2 9.3058e3 8.9622e1 1.4527e2 +# Range 0-300 + -Vm 45.25 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Millerite + NiS + H+ = HS- + Ni+2 + log_k -8.0345 + -delta_H 12.089 kJ/mol +# deltafH -82.171 kJ/mol + -analytic -1.4848e2 -4.8834e-2 2.6981e3 5.8976e1 4.2145e1 +# Range 0-300 + -Vm 16.89 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Minnesotaite + Fe3Si4O10(OH)2 + 6 H+ = 3 Fe+2 + 4 H2O + 4 SiO2 + log_k 13.9805 + -delta_H -105.211 kJ/mol +# deltafH -1153.37 kcal/mol + -analytic -1.8812e1 1.7261e-2 1.9804e4 -6.4410 -2.0433e6 +# Range 0-300 + -Vm 147.86 # HDN+78 +# Extrapol Cp integration +# Ref 78wol, Wilson+06 differ by 2.6 log K at 0C, 1.6 log K at 350C + +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + log_k -1.1398 + -delta_H 79.4128 kJ/mol +# deltafH -4328 kJ/mol + -analytic -2.1877e2 -3.6692e-3 5.9214e3 8.0361e1 1.0063e2 +# Range 0-200 + -Vm 219.80 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref RHF79 + +Mn + Mn + 2 H+ + 0.5 O2 = H2O + Mn+2 + log_k 82.9505 + -delta_H -500.369 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5558e1 -2.0429e-2 2.7571e4 2.5098e1 4.3024e2 +# Range 0-300 + -Vm 7.354 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Mn(OH)2(am) + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.3102 + -delta_H -97.1779 kJ/mol +# deltafH -695.096 kJ/mol + -analytic -7.8518e1 -7.5357e-3 8.0198e3 2.7955e1 1.3621e2 +# Range 0-200 + -Vm 22.36 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:2H2O + MnCl2:2H2O = Mn+2 + 2 Cl- + 2 H2O + log_k 4.0067 + -delta_H -34.4222 kJ/mol +# deltafH -1092.01 kJ/mol + -analytic -6.2823e1 -2.3959e-2 2.9931e3 2.5834e1 5.0850e1 +# Range 0-200 + -Vm 71.12 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:4H2O + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.7563 + -delta_H -10.7019 kJ/mol +# deltafH -1687.41 kJ/mol + -analytic -1.1049e2 -2.3376e-2 4.0458e3 4.3097e1 6.8742e1 +# Range 0-200 + -Vm 98.46 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:H2O + MnCl2:H2O = H2O + Mn+2 + 2 Cl- + log_k 5.5517 + -delta_H -50.8019 kJ/mol +# deltafH -789.793 kJ/mol + -analytic -4.5051e1 -2.5923e-2 2.8739e3 1.9674e1 4.8818e1 +# Range 0-200 + -Vm 42.27 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +MnSO4 + MnSO4 = Mn+2 + SO4-2 + log_k 2.6561 + -delta_H -64.8718 kJ/mol +# deltafH -1065.33 kJ/mol + -analytic -2.3088e2 -8.2694e-2 8.1653e3 9.3256e1 1.2748e2 +# Range 0-300 + -Vm 46.46 # gfw/density +# Extrapol Cp integration +# Ref RHF79 + +Mo + Mo + 1.5 O2 + H2O = MoO4-2 + 2 H+ + log_k 109.3230 + -delta_H -693.845 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.0021e2 -8.3006e-2 4.1629e4 8.0219e1 -3.4570e5 +# Range 0-300 + -Vm 9.387 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Molysite + FeCl3 = Fe+3 + 3 Cl- + log_k 13.5517 + -delta_H -151.579 kJ/mol +# deltafH -399.24 kJ/mol + -analytic -3.1810e2 -1.2357e-1 1.3860e4 1.3010e2 2.1637e2 +# Range 0-300 + -Vm 55.86 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Monohydrocalcite + CaCO3:H2O + H+ = Ca+2 + H2O + HCO3- + log_k 2.6824 + -delta_H -20.5648 kJ/mol +# deltafH -1498.29 kJ/mol + -analytic -7.2614e1 -1.7217e-2 3.1850e3 2.8185e1 5.4111e1 +# Range 0-200 + -Vm 49.62 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Monticellite + CaMgSiO4 + 4 H+ = Ca+2 + Mg+2 + SiO2 + 2 H2O + log_k 29.5852 + -delta_H -195.711 kJ/mol +# deltafH -540.8 kcal/mol + -analytic 1.5730e1 -3.5567e-3 9.0789e3 -6.3007 1.4166e2 +# Range 0-300 + -Vm 51.47 +# Extrapol supcrt92 +# Ref HDN+78 + +Montmor-Ca + Ca.175Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.175 Ca+2 + 0.35 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.4952 + -delta_H -100.154 kJ/mol +# deltafH -1361.5 kcal/mol + -analytic 2.459e1 -9.080e-2 0 0 0 5.223e-5 +# Range 0-300 + -Vm 136.007 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-K + K.35Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.35 K+ + 0.35 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.1423 + -delta_H -88.184 kJ/mol +# deltafH -1362.83 kcal/mol + -analytic 2.022e1 -7.624e-2 0 0 0 4.102e-5 +# Range 0-300 + -Vm 140.140 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-Mg + Mg.525Al1.65Si4O10(OH)2 + 6 H+ = 0.525 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.3879 + -delta_H -102.608 kJ/mol +# deltafH -1357.87 kcal/mol + -analytic 2.381e1 -9.031e-2 0 0 0 5.203e-5 +# Range 0-300 + -Vm 135.042 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-Na + Na.35Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.35 Mg+2 + 0.35 Na+ + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.4844 + -delta_H -93.2165 kJ/mol +# deltafH -1360.69 kcal/mol + -analytic 2.348e1 -8.604e-2 0 0 0 4.951e-5 +# Range 0-300 + -Vm 137.449 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match, but differ from Wilson+06 by 3.4 log K at 0C, 1.7 log K at 300C + +Morenosite + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.0140 + -delta_H 12.0185 kJ/mol +# deltafH -2976.46 kJ/mol + -analytic -2.6654e2 -7.2132e-2 6.7983e3 1.0636e2 1.0616e2 +# Range 0-300 + -Vm 144.17 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Muscovite + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 13.5858 + -delta_H -243.224 kJ/mol +# deltafH -1427.41 kcal/mol + -analytic 3.3085e1 -1.2425e-2 1.2477e4 -2.0865e1 -5.4692e5 +# Range 0-350 + -Vm 140.71 +# Extrapol supcrt92 +# Ref HDN+78 + +Na + Na + H+ + 0.25 O2 = 0.5 H2O + Na+ + log_k 67.3804 + -delta_H -380.185 kJ/mol +# deltafH 0 kJ/mol + -analytic -4.0458e1 -8.7899e-3 2.1223e4 1.5927e1 -1.2715e4 +# Range 0-300 + -Vm 23.812 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Na2CO3 + Na2CO3 + H+ = HCO3- + 2 Na+ + log_k 11.1822 + -delta_H -39.8526 kJ/mol +# deltafH -1130.68 kJ/mol + -analytic -1.5495e2 -4.3374e-2 6.4821e3 6.3571e1 1.0119e2 +# Range 0-300 + -Vm 41.86 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Na2CO3:7H2O + Na2CO3:7H2O + H+ = HCO3- + 2 Na+ + 7 H2O + log_k 9.9459 + -delta_H 27.7881 kJ/mol +# deltafH -3199.19 kJ/mol + -analytic -2.0593e2 -3.4509e-3 8.1601e3 7.6594e1 1.3864e2 +# Range 0-200 + -Vm 153.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Na2Cr2O7 + Na2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 Na+ + log_k -10.1597 + -delta_H 21.9702 kJ/mol +# deltafH -473 kcal/mol + -analytic 4.4885e1 -2.4919e-2 -5.0321e3 -1.2430e1 -8.5468e1 +# Range 0-200 + -Vm 103.96 # gfw/density +# Extrapol Constant H approx +# Ref 76del/hal + +Na2CrO4 + Na2CrO4 = CrO4-2 + 2 Na+ + log_k 2.9103 + -delta_H -19.5225 kJ/mol +# deltafH -320.8 kcal/mol + -analytic 5.4985 -9.9008e-3 1.0510e2 +# Range 0-200 + -Vm 59.48 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +Na2O + Na2O + 2 H+ = H2O + 2 Na+ + log_k 67.4269 + -delta_H -351.636 kJ/mol +# deltafH -99.14 kcal/mol + -analytic -6.3585e1 -8.4695e-3 2.0923e4 2.5601e1 3.2651e2 +# Range 0-350 + -Vm 25 +# Extrapol supcrt92 +# Ref HDN+78 + +Na2SiO3 + Na2SiO3 + 2 H+ = H2O + SiO2 + 2 Na+ + log_k 22.2418 + -delta_H -82.7093 kJ/mol +# deltafH -373.19 kcal/mol + -analytic -3.4928e1 5.6905e-3 1.0284e4 1.1197e1 -6.0134e5 +# Range 0-300 + -Vm 50.86 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +Na2U2O7 + Na2U2O7 + 6 H+ = 2 Na+ + 2 UO2+2 + 3 H2O + log_k 22.5917 + -delta_H -172.314 kJ/mol +# deltafH -3203.8 kJ/mol + -analytic -8.6640e1 -1.0903e-2 1.1841e4 2.9406e1 1.8479e2 +# Range 0-300 + -Vm 95.34 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +NaFeO2 + NaFeO2 + 4 H+ = Fe+3 + Na+ + 2 H2O + log_k 19.8899 + -delta_H -163.339 kJ/mol +# deltafH -698.218 kJ/mol + -analytic -7.0047e1 -9.6226e-3 1.0647e4 2.3071e1 1.8082e2 +# Range 0-200 + -Vm 33.48 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NaUO3 + NaUO3 + 2 H+ = H2O + Na+ + UO2+ + log_k 8.3371 + -delta_H -56.365 kJ/mol +# deltafH -1494.9 kJ/mol + -analytic -3.6363e1 7.0505e-4 4.5359e3 1.1828e1 7.0790e1 +# Range 0-300 + -Vm 42.56 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +Nahcolite + NaHCO3 = HCO3- + Na+ + log_k -0.1118 + -delta_H 17.0247 kJ/mol +# deltafH -226.4 kcal/mol + -analytic -2.2282e2 -5.9693e-2 5.4887e3 8.9744e1 8.5712e1 +# Range 0-300 + -Vm 38.62 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +Nantokite + CuCl = Cl- + Cu+ + log_k -6.7623 + -delta_H 41.9296 kJ/mol +# deltafH -137.329 kJ/mol + -analytic -2.2442e1 -1.1201e-2 -1.8709e3 1.0221e1 -3.1763e1 +# Range 0-200 + -Vm 23.92 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Natron + Na2CO3:10H2O + H+ = HCO3- + 2 Na+ + 10 H2O + log_k 9.6102 + -delta_H 50.4781 kJ/mol +# deltafH -4079.39 kJ/mol + -analytic -1.9981e2 -2.9247e-2 5.2937e3 8.0973e1 8.2662e1 +# Range 0-300 + -Vm 195.99 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Natrosilite + Na2Si2O5 + 2 H+ = H2O + 2 Na+ + 2 SiO2 + log_k 18.1337 + -delta_H -51.7686 kJ/mol +# deltafH -590.36 kcal/mol + -analytic -2.7628e1 1.6865e-2 1.3302e4 4.2356 -1.2828e6 +# Range 0-300 + -Vm 72.57 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Nepheline + NaAlSiO4 + 4 H+ = Al+3 + Na+ + SiO2 + 2 H2O + log_k 13.8006 + -delta_H -135.068 kJ/mol +# deltafH -500.241 kcal/mol + -analytic -2.4856e1 -8.8171e-3 8.5653e3 6.0904 -2.2786e5 +# Range 0-350 + -Vm 54.16 +# Extrapol supcrt92 +# Ref HDN+78 + +Nesquehonite + MgCO3:3H2O + H+ = HCO3- + Mg+2 + 3 H2O + log_k 4.9955 + -delta_H -36.1498 kJ/mol +# deltafH -472.576 kcal/mol + -analytic 1.3771e2 -6.0397e-2 -3.5049e4 -1.8831e1 4.4213e6 +# Range 0-50 + -Vm 74.79 +# Extrapol supcrt92 +# Ref HDN+78 + +NH4Cl + NH4Cl = NH4+ + Cl- + log_k 1.3252 + -analytic -3.078 1.550e-2 0 0 0 -3.451e-6 +# Range 0-30 + -Vm 34.96 +# Extrapol Marion+12 +# Ref Marion+12, WangLi11 match + +NH4-feldspar # Buddingtonite (sometimes with +0.5 H2O, especially at low temp) + NH4AlSi3O8 + 4H+ = NH4+ + Al+3 + 3 SiO2 + 2 H2O + log_k -2.7243 + -analytic -7.434e1 3.080e-1 0 0 0 -2.270e-4 +# Range 25-325 + -Vm 114.78 # Webmineral.com (Hovis04: 109.08-112.23) +# Extrapol N17 +# Ref Wat81 + +NH4HCO3 + NH4HCO3 = NH4+ + HCO3- + log_k -0.0207 + -analytic -1.587e1 9.703e-2 0 0 0 -1.472e-4 +# Range 0-40 + -Vm 50.04 +# Extrapol Marion+12 +# Ref Marion+12 + +NH4-muscovite # Tobelite + NH4Al3Si3O10(OH)2 + 10 H+ = NH4+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 6.8109 + -analytical -6.638e1 3.170e-1 0 0 0 -2.386e-4 +# Range 25-325 + -Vm 146.07 # Hovis04 +# Extrapol N17 +# Ref Wat81 + +Ni + Ni + 2 H+ + 0.5 O2 = H2O + Ni+2 + log_k 50.9914 + -delta_H -333.745 kJ/mol +# deltafH 0 kcal/mol + -analytic -5.8308e1 -2.0133e-2 1.8444e4 2.1590e1 2.8781e2 +# Range 0-350 + -Vm 6.588 +# Extrapol supcrt92 +# Ref HDN+78 + +Ni(OH)2 + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 12.7485 + -delta_H -95.6523 kJ/mol +# deltafH -529.998 kJ/mol + -analytic -6.5279e1 -5.9499e-3 7.3471e3 2.2290e1 1.2479e2 +# Range 0-200 + -Vm 22.34 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Ni2SiO4 + Ni2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Ni+2 + log_k 14.3416 + -delta_H -127.629 kJ/mol +# deltafH -341.705 kcal/mol + -analytic -4.0414e1 -1.1194e-2 9.6515e3 1.2026e1 -3.6336e5 +# Range 0-300 + -Vm 42.61 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +NiCl2 + NiCl2 = Ni+2 + 2 Cl- + log_k 8.6113 + -delta_H -82.7969 kJ/mol +# deltafH -305.336 kJ/mol + -analytic -1.2416 -2.3139e-2 2.6529e3 3.1696 4.5052e1 +# Range 0-200 + -Vm 36.70 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NiCl2:2H2O + NiCl2:2H2O = Ni+2 + 2 Cl- + 2 H2O + log_k 3.9327 + -delta_H -37.6746 kJ/mol +# deltafH -922.135 kJ/mol + -analytic -4.8814e1 -2.2602e-2 2.5951e3 2.0518e1 4.4086e1 +# Range 0-200 + -Vm 64.07 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NiSO4 + NiSO4 = Ni+2 + SO4-2 + log_k 5.3197 + -delta_H -90.5092 kJ/mol +# deltafH -873.066 kJ/mol + -analytic -1.8878e2 -7.6403e-2 7.9412e3 7.6866e1 1.2397e2 +# Range 0-300 + -Vm 42.05 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +NiSO4:6H2O(alpha) + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.0072 + -delta_H 4.37983 kJ/mol +# deltafH -2682.99 kJ/mol + -analytic -1.1937e2 -1.3785e-2 4.1543e3 4.3454e1 7.0587e1 +# Range 0-200 + -Vm 126.6 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Nickelbischofite + NiCl2:6H2O = Ni+2 + 2 Cl- + 6 H2O + log_k 3.1681 + -delta_H 0.064088 kJ/mol +# deltafH -2103.23 kJ/mol + -analytic -1.4340e2 -2.1257e-2 5.1858e3 5.4759e1 8.8112e1 +# Range 0-200 + -Vm 123.15 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Ningyoite + CaUP2O8:2H2O + 2 H+ = Ca+2 + U+4 + 2 H2O + 2 HPO4-2 + log_k -29.7931 + -delta_H -36.4769 kJ/mol +# deltafH -1016.65 kcal/mol + -analytic -1.0274e2 -4.9041e-2 1.7779e3 3.2973e1 3.0227e1 +# Range 0-200 + -Vm 116.77 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Niter + KNO3 = K+ + NO3- + log_k -0.2061 + -delta_H 35.4794 kJ/mol +# deltafH -494.46 kJ/mol + -analytic -6.5607e1 -2.8165e-2 -4.0131e2 3.0361e1 -6.2425 +# Range 0-300 + -Vm 48.04 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Nontronite-Ca + Ca.175Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.5822 + -delta_H -38.138 kJ/mol +# deltafH -1166.7 kcal/mol + -analytic 3.697 -4.892e-2 0 0 0 1.489e-5 +# Range 0-300 + -Vm 137.780 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.6 log K at 0C, 0.2 log K at 300C + +Nontronite-K + K.35Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.35 Al+3 + 0.35 K+ + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.8648 + -delta_H -26.5822 kJ/mol +# deltafH -1167.93 kcal/mol + -analytic -1.959 -3.115e-2 0 0 0 1.139e-6 +# Range 0-300 + -Vm 141.913 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.1 log K at 0C, 0.5 log K at 300C + +Nontronite-Mg + Mg.175Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.175 Mg+2 + 0.35 Al+3 + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.6200 + -delta_H -41.1779 kJ/mol +# deltafH -1162.93 kcal/mol + -analytic 2.476 -4.730e-2 0 0 0 1.382e-5 +# Range 0-300 + -Vm 136.815 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol + +Nontronite-Na + Na.35Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.35 Al+3 + 0.35 Na+ + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.5263 + -delta_H -31.5687 kJ/mol +# deltafH -1165.8 kcal/mol + -analytic 1.106 -4.045e-2 0 0 0 9.229e-6 +# Range 0-300 + -Vm 139.221 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.7 log K at 0C, 0.2 log K at 300C + +Okenite + CaSi2O4(OH)2:H2O + 2 H+ = Ca+2 + 2 SiO2 + 3 H2O + log_k 10.3816 + -delta_H -19.4974 kJ/mol +# deltafH -749.641 kcal/mol + -analytic -7.7353e1 1.5091e-2 1.3023e4 2.1337e1 -1.1831e6 +# Range 0-300 + -Vm 94.77 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +P + P + 1.5 H2O + 1.25 O2 = HPO4-2 + 2 H+ + log_k 132.1032 + -delta_H -848.157 kJ/mol +# deltafH 0 kJ/mol + -analytic -9.2727e1 -6.8342e-2 4.3465e4 4.0156e1 6.7826e2 +# Range 0-300 + -Vm 17.2 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Paragonite + NaAl3Si3O10(OH)2 + 10 H+ = Na+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 17.5220 + -delta_H -275.056 kJ/mol +# deltafH -1416.96 kcal/mol + -analytic 3.5507e1 -1.0720e-2 1.3519e4 -2.2283e1 -4.5657e5 +# Range 0-350 + -Vm 132.53 +# Extrapol supcrt92 +# Ref HDN+78, differ by 2.5 log K at 0C, 0.6 log K at 350C, but match Wilson+06 + +Pargasite + NaCa2Al3Mg4Si6O22(OH)2 + 22 H+ = Na+ + 2 Ca+2 + 3 Al+3 + 4 Mg+2 + 6 SiO2 + 12 H2O + log_k 101.9939 + -delta_H -880.205 kJ/mol +# deltafH -3016.62 kcal/mol + -analytic -6.7889e1 -3.7817e-2 5.0493e4 9.2705 -1.0163e6 +# Range 0-350 + -Vm 273.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Periclase + MgO + 2 H+ = H2O + Mg+2 + log_k 21.3354 + -delta_H -150.139 kJ/mol +# deltafH -143.8 kcal/mol + -analytic -8.8465e1 -1.8390e-2 1.0414e4 3.2469e1 1.6253e2 +# Range 0-350 + -Vm 11.248 +# Extrapol supcrt92 +# Ref HDN+78 + +Petalite + LiAlSi4O10 + 4 H+ = Al+3 + Li+ + 2 H2O + 4 SiO2 + log_k -3.8153 + -delta_H -13.1739 kJ/mol +# deltafH -4886.15 kJ/mol + -analytic -6.6355 2.4316e-2 1.5949e4 -1.3341e1 -2.2265e6 +# Range 0-300 + -Vm 128.4 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Phlogopite + KAlMg3Si3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 SiO2 + 6 H2O + log_k 37.4400 + -delta_H -310.503 kJ/mol +# deltafH -1488.07 kcal/mol + -analytic -8.7730e1 -1.7253e-2 2.3748e4 2.4465e1 -8.9045e5 +# Range 0-350 + -Vm 149.66 +# Extrapol supcrt92 +# Ref HDN+78 + +Polydymite + Ni3S4 + 2 H+ = S2-2 + 2 HS- + 3 Ni+2 + log_k -48.9062 +# deltafH -78.014 kcal/mol + -analytic -1.8030e1 -4.6945e-2 -1.1557e4 8.8339 -1.9625e2 +# Range 0-200 + -Vm 64.14 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 78vau/cra + +Portlandite + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.5552 + -delta_H -128.686 kJ/mol +# deltafH -986.074 kJ/mol + -analytic -8.3848e1 -1.8373e-2 9.3154e3 3.2584e1 1.4538e2 +# Range 0-300 + -Vm 33.056 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Prehnite + Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 SiO2 + 6 H2O + log_k 32.9305 + -delta_H -311.875 kJ/mol +# deltafH -1481.65 kcal/mol + -analytic -3.5763e1 -2.1396e-2 2.0167e4 6.3554 -7.4967e5 +# Range 0-350 + -Vm 140.33 +# Extrapol supcrt92 +# Ref HDN+78 + +Pseudowollastonite + CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 + log_k 13.9997 + -delta_H -79.4625 kJ/mol +# deltafH -388.9 kcal/mol + -analytic 2.6691e1 6.3323e-3 5.5723e3 -1.1822e1 -3.6038e5 +# Range 0-300 + -Vm 40.08 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Pyridine + C5H5N + 6.25 O2 = 5 CO2 + 2.5 H2O + 0.5 N2 + log_k 490.7474 + -delta_H -669.9574 kcal/mol + -analytic 1071.04 -2.50773 0 0 0 0.00188 +# Range 0-350 + -Vm 64.4 +# Extrapol supcrt92 +# Ref Hel+98 + +Pyrite + FeS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Fe+2 + 1.75 HS- + log_k -24.6534 + -delta_H 109.535 kJ/mol +# deltafH -41 kcal/mol + -analytic -2.4195e2 -8.7948e-2 -6.2911e2 9.9248e1 -9.7454 +# Range 0-350 + -Vm 23.94 +# Extrapol supcrt92 +# Ref HDN+78 + +Pyrolusite + MnO2 = 0.5 Mn+2 + 0.5 MnO4-2 + log_k -17.6439 + -delta_H 83.3804 kJ/mol +# deltafH -520.031 kJ/mol + -analytic -1.1541e2 -4.1665e-2 -1.8960e3 4.7094e1 -2.9551e1 +# Range 0-300 + -Vm 18.38 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Pyrophyllite + Al2Si4O10(OH)2 + 6 H+ = 2 Al+3 + 4 H2O + 4 SiO2 + log_k 0.4397 + -delta_H -102.161 kJ/mol +# deltafH -1345.31 kcal/mol + -analytic 1.1066e1 1.2707e-2 1.6417e4 -1.9596e1 -1.8791e6 +# Range 0-350 + -Vm 126.6 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 match + +Pyrrhotite + FeS + H+ = Fe+2 + HS- + log_k -3.7193 + -delta_H -7.9496 kJ/mol +# deltafH -24 kcal/mol + -analytic -1.5785e2 -5.2258e-2 3.9711e3 6.3195e1 6.2012e1 +# Range 0-350 + -Vm 18.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Quartz + SiO2 = SiO2 + log_k -3.9993 + -delta_H 32.949 kJ/mol +# deltafH -217.65 kcal/mol + -analytic 7.7698e-2 1.0612e-2 3.4651e3 -4.3551 -7.2138e5 +# Range 0-350 + -Vm 22.68 +# Extrapol supcrt92 +# Ref HDN+78 + +Rankinite + Ca3Si2O7 + 6 H+ = 2 SiO2 + 3 Ca+2 + 3 H2O + log_k 51.9078 + -delta_H -302.089 kJ/mol +# deltafH -941.7 kcal/mol + -analytic -9.6393e1 -1.6592e-2 2.4832e4 3.2541e1 -9.4630e5 +# Range 0-300 + -Vm 96.13 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Rhodochrosite + MnCO3 + H+ = HCO3- + Mn+2 + log_k -0.1928 + -delta_H -21.3426 kJ/mol +# deltafH -212.521 kcal/mol + -analytic -1.6195e2 -4.9344e-2 5.0937e3 6.4402e1 7.9531e1 +# Range 0-350 + -Vm 31.075 +# Extrapol supcrt92 +# Ref HDN+78 + +Rhodonite + MnSiO3 + 2 H+ = H2O + Mn+2 + SiO2 + log_k 9.7301 + -delta_H -64.7121 kJ/mol +# deltafH -1319.42 kJ/mol + -analytic 2.0585e1 4.9941e-3 4.5816e3 -9.8212 -3.0658e5 +# Range 0-300 + -Vm 35.87 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Ripidolite + Mg3Fe2Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 2 Fe+2 + 3 Mg+2 + 3 SiO2 + 12 H2O + log_k 60.9638 + -delta_H -572.472 kJ/mol +# deltafH -1947.87 kcal/mol + -analytic 2.122e2 -6.025e-1 0 0 0 4.579e-4 +# Range 0-300 + -Vm 208.614 +# Extrapol supcrt92 +# Ref Catalano13 + +Rutherfordine + UO2CO3 + H+ = HCO3- + UO2+2 + log_k -4.1064 + -delta_H -19.4032 kJ/mol +# deltafH -1689.53 kJ/mol + -analytic -8.8224e1 -3.1434e-2 2.6675e3 3.4161e1 4.1650e1 +# Range 0-300 + -Vm 57.90 # Webmineral.com +# Extrapol Cp integration +# Ref 92gre/fug + +Rutile + TiO2 + 2 H2O = Ti(OH)4 + log_k -9.6452 +# deltafH -226.107 kcal/mol + -Vm 18.82 +# Ref RHF79 + +S + S + H2O = 0.5 O2 + H+ + HS- + log_k -45.0980 + -delta_H 263.663 kJ/mol +# deltafH 0 kJ/mol + -analytic -8.8928e1 -2.8454e-2 -1.1516e4 3.6747e1 -1.7966e2 +# Range 0-300 + -Vm 15.511 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Saleeite + Mg(UO2)2(PO4)2 + 2 H+ = Mg+2 + 2 HPO4-2 + 2 UO2+2 + log_k -19.4575 + -delta_H -110.816 kJ/mol +# deltafH -1189.61 kcal/mol + -analytic -6.0028e1 -4.4391e-2 3.9168e3 1.6428e1 6.6533e1 +# Range 0-200 + -Vm 285.77 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Sanidine_high + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k 0.9239 + -delta_H -35.0284 kJ/mol +# deltafH -946.538 kcal/mol + -analytic -3.4889 1.4495e-2 1.2856e4 -9.8978 -1.6572e6 +# Range 0-350 + -Vm 109.008 +# Extrapol supcrt92 +# Ref HDN+78 + +Saponite-Fe-Ca + Ca.175Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 20.3624 + -analytic 5.992e1 -1.681e-1 0 0 0 1.174e-4 +# Range 0-300 + -Vm 143.506 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Fe + Fe3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 18.9359 + -analytic 5.762e1 -1.630e-1 0 0 0 1.099e-4 +# Range 0-300 + -Vm 142.672 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-K + K.35Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 K+ + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 18.7937 + -analytic 5.427e1 -1.504e-1 0 0 0 1.037e-4 +# Range 0-300 + -Vm 147.639 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Mg + Mg.175Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Mg+2 + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 19.5290 + -analytic 5.870e1 -1.665e-1 0 0 0 1.163e-4 +# Range 0-300 + -Vm 142.541 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Na + Na.35Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Na+ + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 19.7977 + -analytic 5.733e1 -1.597e-1 0 0 0 1.117e-4 +# Range 0-300 + -Vm 144.947 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Mg-Ca + Ca.175Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.2900 + -delta_H -207.971 kJ/mol +# deltafH -1436.51 kcal/mol + -analytic 8.088e1 -2.233e-1 0 0 0 1.655e-4 +# Range 0-300 + -Vm 141.250 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol match + +Saponite-Mg-Fe + Fe.175Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Fe+2 + 0.35 Al+3 + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 27.6789 + -analytic 7.825e1 -2.180e-1 0 0 0 1.612e-4 +# Range 0-300 + -Vm 140.416 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Mg-K + K.35Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 0.35 K+ + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.0075 + -delta_H -196.402 kJ/mol +# deltafH -1437.74 kcal/mol + -analytic 7.522e1 -2.055e-1 0 0 0 1.517e-4 +# Range 0-300 + -Vm 145.383 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.7 log K at 0C, 0.7 log K at 300C + +Saponite-Mg-Mg + Mg3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.2523 + -delta_H -210.822 kJ/mol +# deltafH -1432.79 kcal/mol + -analytic 7.965e1 -2.217e-1 0 0 0 1.644e-4 +# Range 0-300 + -Vm 140.285 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.2 log K at 0C, 0.6 log K at 300C + +Saponite-Mg-Na + Na.35Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 0.35 Na+ + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.3459 + -delta_H -201.401 kJ/mol +# deltafH -1435.61 kcal/mol + -analytic 7.829e1 -2.148e-1 0 0 0 1.598e-4 +# Range 0-300 + -Vm 142.691 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.4 log K at 0C, 0.7 log K at 300C + +Sc + Sc + 3 H+ + 0.75 O2 = Sc+3 + 1.5 H2O + log_k 167.2700 + -delta_H -1033.87 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.6922e1 -2.9150e-2 5.4559e4 2.4189e1 8.5137e2 +# Range 0-300 + -Vm 15.038 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Scacchite + MnCl2 = Mn+2 + 2 Cl- + log_k 8.7785 + -delta_H -73.4546 kJ/mol +# deltafH -481.302 kJ/mol + -analytic -2.3476e2 -8.2437e-2 9.0088e3 9.6128e1 1.4064e2 +# Range 0-300 + -Vm 42.27 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Schoepite + UO3:2H2O + 2 H+ = UO2+2 + 3 H2O + log_k 4.8333 + -delta_H -50.415 kJ/mol +# deltafH -1826.1 kJ/mol + -analytic 1.3645e1 1.0884e-2 2.5412e3 -8.3167e0 3.9649e1 +# Range 0-300 + -Vm 66.08 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +Sepiolite + Mg4Si6O15(OH)2:6H2O + 8 H+ = 4 Mg+2 + 6 SiO2 + 11 H2O + log_k 30.4439 + -delta_H -157.339 kJ/mol +# deltafH -2418 kcal/mol + -analytic 1.8690e1 4.7544e-2 2.6765e4 -2.5301e1 -2.6498e6 +# Range 0-350 + -Vm 285.6 +# Extrapol supcrt92 +# Ref HDN+78 + +Si + Si + O2 = SiO2 + log_k 148.9059 + -delta_H -865.565 kJ/mol +# deltafH 0 kJ/mol + -analytic -5.7245e2 -7.6302e-2 8.3516e4 2.0045e2 -2.8494e6 +# Range 0-300 + -Vm 12.056 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Sillimanite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 16.3080 + -delta_H -238.442 kJ/mol +# deltafH -615.099 kcal/mol + -analytic -7.1610e1 -3.2196e-2 1.2493e4 2.2449e1 1.9496e2 +# Range 0-350 + -Vm 49.9 +# Extrapol supcrt92 +# Ref HDN+78 + +SiO2(am) + SiO2 = SiO2 + log_k -2.7136 + -delta_H 20.0539 kJ/mol +# deltafH -214.568 kcal/mol + -analytic 1.2109 7.0767e-3 2.3634e3 -3.4449 -4.8591e5 +# Range 0-325 + -Vm 29 +# Extrapol supcrt92 +# Ref HDN+78 + +Sm + Sm + 2 H+ + 0.5 O2 = H2O + Sm+2 + log_k 133.1614 + -delta_H -783.944 kJ/mol +# deltafH 0 kJ/mol + -analytic -7.1599e1 -2.0083e-2 4.2693e4 2.7291e1 6.6621e2 +# Range 0-300 + -Vm 19.98 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Smectite-high-Fe-Mg + Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 + 8 H+ = 0.025 Ca+2 + 0.1 Na+ + 0.2 Fe+3 + 0.2 K+ + 0.5 Fe+2 + 1.15 Mg+2 + 1.25 Al+3 + 3.5 SiO2 + 5 H2O + log_k 17.4200 + -delta_H -199.841 kJ/mol +# deltafH -1351.39 kcal/mol + -analytic -9.6102 1.2551e-3 1.8157e4 -7.9862 -1.3005e6 +# Range 0-300 + -Vm 139.07 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78wol + +Smectite-low-Fe-Mg + Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 + 7 H+ = 0.02 Ca+2 + 0.15 Na+ + 0.16 Fe+3 + 0.2 K+ + 0.29 Fe+2 + 0.9 Mg+2 + 1.25 Al+3 + 3.75 SiO2 + 4.5 H2O + log_k 11.0405 + -delta_H -144.774 kJ/mol +# deltafH -1352.12 kcal/mol + -analytic -1.7003e1 6.9848e-3 1.8359e4 -6.8896 -1.6637e6 +# Range 0-300 + -Vm 139.39 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78wol + +Smithsonite + ZnCO3 + H+ = HCO3- + Zn+2 + log_k 0.4633 + -delta_H -30.5348 kJ/mol +# deltafH -194.26 kcal/mol + -analytic -1.6452e2 -5.0231e-2 5.5925e3 6.5139e1 8.7314e1 +# Range 0-350 + -Vm 28.275 +# Extrapol supcrt92 +# Ref HDN+78 + +Sphaerocobaltite + CoCO3 + H+ = Co+2 + HCO3- + log_k -0.2331 + -delta_H -30.7064 kJ/mol +# deltafH -171.459 kcal/mol + -analytic -1.5709e2 -4.8957e-2 5.3158e3 6.2075e1 8.2995e1 +# Range 0-300 + -Vm 28.8 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 84sve + +Sphalerite + ZnS + H+ = HS- + Zn+2 + log_k -11.4400 + -delta_H 35.5222 kJ/mol +# deltafH -49 kcal/mol + -analytic -1.5497e2 -4.8953e-2 1.7850e3 6.1472e1 2.7899e1 +# Range 0-350 + -Vm 23.83 +# Extrapol supcrt92 +# Ref HDN+78 + +Spinel + Al2MgO4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O + log_k 37.6295 + -delta_H -398.108 kJ/mol +# deltafH -546.847 kcal/mol + -analytic -3.3895e2 -8.3595e-2 2.9251e4 1.2260e2 4.5654e2 +# Range 0-350 + -Vm 39.71 +# Extrapol supcrt92 +# Ref HDN+78 + +Spinel-Co + Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O + log_k -6.4852 + -delta_H -126.415 kJ/mol +# deltafH -891 kJ/mol + -analytic -3.2239e2 -8.0782e-2 1.4635e4 1.1755e2 2.2846e2 +# Range 0-300 + -Vm 39.41 # gfw/density +# Extrapol Cp integration +# Ref WEP+82 + +Spodumene + LiAlSi2O6 + 4 H+ = Al+3 + Li+ + 2 H2O + 2 SiO2 + log_k 6.9972 + -delta_H -89.1817 kJ/mol +# deltafH -3054.75 kJ/mol + -analytic -9.8111 2.1191e-3 9.6920e3 -3.0484 -7.8822e5 +# Range 0-300 + -Vm 58.37 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Stilbite + Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O + 8.72 H+ = 0.006 K+ + 0.136 Na+ + 1.019 Ca+2 + 2.18 Al+3 + 6.82 SiO2 + 11.69 H2O + log_k 1.0545 + -delta_H -83.0019 kJ/mol +# deltafH -11005.7 kJ/mol + -analytic -2.4483e1 3.0987e-2 2.8013e4 -1.5802e1 -3.4491e6 +# Range 0-300 + -Vm 333.50 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 90how/joh + +Strengite + FePO4:2H2O + H+ = Fe+3 + HPO4-2 + 2 H2O + log_k -11.3429 + -delta_H -37.107 kJ/mol +# deltafH -1876.23 kJ/mol + -analytic -2.7752e2 -9.4014e-2 7.6862e3 1.0846e2 1.2002e2 +# Range 0-300 + -Vm 65.10 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Sylvite + KCl = Cl- + K+ + log_k 0.8459 + -delta_H 17.4347 kJ/mol +# deltafH -104.37 kcal/mol + -analytic -8.1204e1 -3.3074e-2 8.2819e2 3.6014e1 1.2947e1 +# Range 0-350 + -Vm 37.524 +# Extrapol supcrt92 +# Ref HDN+78 + +Talc + Mg3Si4O10(OH)2 + 6 H+ = 3 Mg+2 + 4 H2O + 4 SiO2 + log_k 21.1383 + -delta_H -148.737 kJ/mol +# deltafH -1410.92 kcal/mol + -analytic 1.1164e1 2.4724e-2 1.9810e4 -1.7568e1 -1.8241e6 +# Range 0-350 + -Vm 136.25 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 match + +Tarapacaite + K2CrO4 = CrO4-2 + 2 K+ + log_k -0.4037 + -delta_H 17.8238 kJ/mol +# deltafH -335.4 kcal/mol + -analytic 2.7953e1 -1.0863e-2 -2.7589e3 -6.4154e0 -4.6859e1 +# Range 0-200 + -Vm 70.87 # Webmineral.com +# Extrapol Constant H approx +# Ref 76del/hal + +Tenorite + CuO + 2 H+ = Cu+2 + H2O + log_k 7.6560 + -delta_H -64.5047 kJ/mol +# deltafH -37.2 kcal/mol + -analytic -8.9899e1 -1.8886e-2 6.0346e3 3.3517e1 9.4191e1 +# Range 0-350 + -Vm 12.22 +# Extrapol supcrt92 +# Ref HDN+78 + +Tephroite + Mn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mn+2 + log_k 23.0781 + -delta_H -160.1 kJ/mol +# deltafH -1730.47 kJ/mol + -analytic -3.2440e1 -1.1023e-2 8.8910e3 1.1691e1 1.3875e2 +# Range 0-300 + -Vm 47.52 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Th + Th + 4 H+ + O2 = Th+4 + 2 H2O + log_k 209.6028 + -delta_H -1328.56 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.8256e1 -1.1963e-2 6.8870e4 4.2068e0 1.0747e3 +# Range 0-300 + -Vm 19.83 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Th(NO3)4:5H2O + Th(NO3)4:5H2O = Th+4 + 4 NO3- + 5 H2O + log_k 1.7789 + -delta_H -18.1066 kJ/mol +# deltafH -3007.35 kJ/mol + -analytic -1.2480e2 -2.0405e-2 5.1601e3 4.6613e1 8.7669e1 +# Range 0-200 + -Vm 203.62 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Th(SO4)2 + Th(SO4)2 = Th+4 + 2 SO4-2 + log_k -20.3006 + -delta_H -46.1064 kJ/mol +# deltafH -2542.12 kJ/mol + -analytic -8.4525 -3.5442e-2 0 0 -1.1540e5 +# Range 0-200 + -Vm 100.39 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Th2S3 + Th2S3 + 5 H+ + 0.5 O2 = H2O + 2 Th+4 + 3 HS- + log_k 95.2290 + -delta_H -783.243 kJ/mol +# deltafH -1082.89 kJ/mol + -analytic -3.2969e2 -1.1090e-1 4.6877e4 1.2152e2 7.3157e2 +# Range 0-300 + -Vm 71.19 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Th7S12 + Th7S12 + 16 H+ + O2 = 2 H2O + 7 Th+4 + 12 HS- + log_k 204.0740 + -delta_H -1999.4 kJ/mol +# deltafH -4136.58 kJ/mol + -analytic -2.1309e2 -1.4149e-1 9.8550e4 5.2042e1 1.6736e3 +# Range 0-200 + -Vm 248.02 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +ThCl4 + ThCl4 = Th+4 + 4 Cl- + log_k 23.8491 + -delta_H -251.094 kJ/mol +# deltafH -283.519 kcal/mol + -analytic -5.9340 -4.1640e-2 9.8623e3 3.6804 1.6748e2 +# Range 0-200 + -Vm 81.45 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 80lan/her + +ThS2 + ThS2 + 2 H+ = Th+4 + 2 HS- + log_k 10.7872 + -delta_H -175.369 kJ/mol +# deltafH -625.867 kJ/mol + -analytic -3.7691e1 -2.3714e-2 8.4673e3 1.0970e1 1.4380e2 +# Range 0-200 + -Vm 40.57 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Thenardite + Na2SO4 = SO4-2 + 2 Na+ + log_k -0.3091 + -delta_H -2.33394 kJ/mol +# deltafH -1387.87 kJ/mol + -analytic -2.1202e2 -7.1613e-2 5.1083e3 8.7244e1 7.9773e1 +# Range 0-300 + -Vm 53.33 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Thermonatrite + Na2CO3:H2O + H+ = H2O + HCO3- + 2 Na+ + log_k 10.9623 + -delta_H -27.5869 kJ/mol +# deltafH -1428.78 kJ/mol + -analytic -1.4030e2 -3.5263e-2 5.7840e3 5.7528e1 9.0295e1 +# Range 0-300 + -Vm 54.92 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Thorianite + ThO2 + 4 H+ = Th+4 + 2 H2O + log_k 1.8624 + -delta_H -114.296 kJ/mol +# deltafH -1226.4 kJ/mol + -analytic -1.4249e1 -2.4645e-3 4.3110e3 -1.6605e-2 2.1598e5 +# Range 0-300 + -Vm 26.373 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Ti + Ti + 2 H2O + O2 = Ti(OH)4 + log_k 149.2978 +# deltafH 0 kJ/mol + -Vm 10.631 # thermo.com.V8.R6+.tdat +# Ref CWM89 + +Ti2O3 + Ti2O3 + 4 H2O + 0.5 O2 = 2 Ti(OH)4 + log_k 42.9866 +# deltafH -1520.78 kJ/mol + -Vm 32.02 # gfw/density +# Ref WEP+82 + +Ti3O5 + Ti3O5 + 6 H2O + 0.5 O2 = 3 Ti(OH)4 + log_k 34.6557 +# deltafH -2459.24 kJ/mol + -Vm 48.93 # gfw/density +# Ref WEP+82 + +TiB2 + TiB2 + 5 H2O + 2.5 O2 = Ti(OH)4 + 2 B(OH)3 + log_k 312.4194 +# deltafH -323.883 kJ/mol + -Vm 15.37 # gfw/density +# Ref WEP+82 + +TiC + TiC + 3 H2O + 2 O2 = H+ + HCO3- + Ti(OH)4 + log_k 181.8139 +# deltafH -184.346 kJ/mol + -Vm 12.15 # gfw/density +# Ref WEP+82 + +TiCl2 + TiCl2 + 3 H2O + 0.5 O2 = Ti(OH)4 + 2 Cl- + 2 H+ + log_k 70.9386 +# deltafH -514.012 kJ/mol + -Vm 37.95 # gfw/density +# Ref WEP+82 + +TiCl3 + TiCl3 + 3.5 H2O + 0.25 O2 = Ti(OH)4 + 3 Cl- + 3 H+ + log_k 39.3099 +# deltafH -720.775 kJ/mol + -Vm 58.42 # gfw/density +# Ref WEP+82 + +TiN + TiN + 3.5 H2O + 0.25 O2 = NH3 + Ti(OH)4 + log_k 35.2344 +# deltafH -338.304 kJ/mol + -Vm 11.46 # gfw/density +# Ref WEP+82 + +Titanite + CaTiSiO5 + 2 H+ + H2O = Ca+2 + SiO2 + Ti(OH)4 + log_k 719.5839 +# deltafH 0 kcal/mol + -Vm 55.65 +# Ref RHF79 + +Tobermorite-11A + Ca5Si6H11O22.5 + 10 H+ = 5 Ca+2 + 6 SiO2 + 10.5 H2O + log_k 65.6121 + -delta_H -286.861 kJ/mol +# deltafH -2556.42 kcal/mol + -analytic 7.9123e1 3.9150e-2 2.9429e4 -3.9191e1 -2.4122e6 +# Range 0-300 + -Vm 286.81 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Tremolite + Ca2Mg5Si8O22(OH)2 + 14 H+ = 2 Ca+2 + 5 Mg+2 + 8 H2O + 8 SiO2 + log_k 61.2367 + -delta_H -406.404 kJ/mol +# deltafH -2944.04 kcal/mol + -analytic 8.5291e1 4.6337e-2 3.9465e4 -5.4414e1 -3.1913e6 +# Range 0-350 + -Vm 272.92 +# Extrapol supcrt92 +# Ref HDN+78 + +Trevorite + NiFe2O4 + 8 H+ = Ni+2 + 2 Fe+3 + 4 H2O + log_k 9.7876 + -delta_H -215.338 kJ/mol +# deltafH -1081.15 kJ/mol + -analytic -1.4322e2 -2.9429e-2 1.4518e4 4.5698e1 2.4658e2 +# Range 0-200 + -Vm 44.89 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Tridymite + SiO2 = SiO2 + log_k -3.8278 + -delta_H 31.3664 kJ/mol +# deltafH -909.065 kJ/mol + -analytic 3.1594e2 6.9315e-2 -1.1358e4 -1.2219e2 -1.9299e2 +# Range 0-200 + -Vm 26.12 # Webmineral.com +# Extrapol Constant H approx +# Ref WEP+82 + +Troilite + FeS + H+ = Fe+2 + HS- + log_k -3.8184 + -delta_H -7.3296 kJ/mol +# deltafH -101.036 kJ/mol + -analytic -1.6146e2 -5.3170e-2 4.0461e3 6.4620e1 6.3183e1 +# Range 0-300 + -Vm 19.07 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +U + U + 2 H+ + 1.5 O2 = H2O + UO2+2 + log_k 212.7800 + -delta_H -1286.64 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.4912e2 -4.7104e-2 8.1115e4 8.7008e1 -1.0158e6 +# Range 0-300 + -Vm 12.49 # Webelements.com +# Extrapol Cp integration +# Ref CWM89 + +U2O2Cl5 + U2O2Cl5 = U+4 + UO2+ + 5 Cl- + log_k 19.2752 + -delta_H -254.325 kJ/mol +# deltafH -2197.4 kJ/mol + -analytic -4.3945e2 -1.6239e-1 2.1694e4 1.7551e2 3.3865e2 +# Range 0-300 + -Vm 142.48 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +U3S5 + U3S5 + 5 H+ = U+4 + 2 U+3 + 5 HS- + log_k -0.3680 + -delta_H -218.942 kJ/mol +# deltafH -1431 kJ/mol + -analytic -1.1011e2 -6.7959e-2 1.0369e4 3.8481e1 1.7611e2 +# Range 0-200 + -Vm 106.12 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UC + UC + 2 H+ + 1.75 O2 = 0.5 H2O + HCO3- + U+3 + log_k 194.8241 + -delta_H -1202.82 kJ/mol +# deltafH -97.9 kJ/mol + -analytic -4.6329e1 -4.4600e-2 6.1417e4 1.9566e1 9.5836e2 +# Range 0-300 + -Vm 18.34 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl3 + UCl3 = U+3 + 3 Cl- + log_k 13.0062 + -delta_H -126.639 kJ/mol +# deltafH -863.7 kJ/mol + -analytic -2.6388e2 -1.0241e-1 1.1629e4 1.0846e2 1.8155e2 +# Range 0-300 + -Vm 62.62 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl4 + UCl4 = U+4 + 4 Cl- + log_k 21.9769 + -delta_H -240.719 kJ/mol +# deltafH -1018.8 kJ/mol + -analytic -3.6881e2 -1.3618e-1 1.9685e4 1.4763e2 3.0727e2 +# Range 0-300 + -Vm 78.00 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl6 + UCl6 + 2 H2O = UO2+2 + 4 H+ + 6 Cl- + log_k 57.5888 + -delta_H -383.301 kJ/mol +# deltafH -1066.5 kJ/mol + -analytic -4.5589e2 -1.9203e-1 2.8029e4 1.9262e2 4.3750e2 +# Range 0-300 + -Vm 125.21 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UH3(beta) + UH3 + 3 H+ + 1.5 O2 = U+3 + 3 H2O + log_k 199.7683 + -delta_H -1201.43 kJ/mol +# deltafH -126.98 kJ/mol + -analytic 5.2870e1 4.2151e-3 6.0167e4 -2.2701e1 1.0217e3 +# Range 0-200 + -Vm 22.01 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UN + UN + 3 H+ = NH3 + U+3 + log_k 41.7130 + -delta_H -280.437 kJ/mol +# deltafH -290 kJ/mol + -analytic -1.6393e2 -1.1679e-3 2.8845e3 6.5637e1 3.0122e6 +# Range 0-300 + -Vm 45.85 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UO2(NO3)2 + UO2(NO3)2 = UO2+2 + 2 NO3- + log_k 11.9598 + -delta_H -81.6219 kJ/mol +# deltafH -1351 kJ/mol + -analytic -1.2216e1 -1.1261e-2 3.9895e3 5.7166 6.7751e1 +# Range 0-200 + -Vm 140.23 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UO2(NO3)2:6H2O + UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O + log_k 2.3189 + -delta_H 19.8482 kJ/mol +# deltafH -3167.5 kJ/mol + -analytic -1.4019e2 -4.3682e-2 2.7842e3 5.9070e1 4.3486e1 +# Range 0-300 + -Vm 178.88 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +UO2(OH)2(beta) + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 4.9457 + -delta_H -56.8767 kJ/mol +# deltafH -1533.8 kJ/mol + -analytic -1.7478e1 -1.6806e-3 3.4226e3 4.6260 5.3412e1 +# Range 0-300 + -Vm 51.31 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +UO2SO4 + UO2SO4 = SO4-2 + UO2+2 + log_k 1.9681 + -delta_H -83.4616 kJ/mol +# deltafH -1845.14 kJ/mol + -analytic -1.5677e2 -6.5310e-2 6.7411e3 6.2867e1 1.0523e2 +# Range 0-300 + -Vm 111.61 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UO2SO4:3H2O + UO2SO4:3H2O = SO4-2 + UO2+2 + 3 H2O + log_k -1.4028 + -delta_H -34.6176 kJ/mol +# deltafH -2751.5 kJ/mol + -analytic -5.0134e1 -1.0321e-2 3.0505e3 1.6799e1 5.1818e1 +# Range 0-200 + -Vm 108.34 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 92gre/fug + +UO3(beta) + UO3 + 2 H+ = H2O + UO2+2 + log_k 8.3095 + -delta_H -84.5383 kJ/mol +# deltafH -1220.3 kJ/mol + -analytic -1.2298e1 -1.7800e-3 4.5621e3 2.3593 7.1191e1 +# Range 0-300 + -Vm 34.46 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 92gre/fug + +Uraninite + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.8372 + -delta_H -77.8767 kJ/mol +# deltafH -1085 kJ/mol + -analytic -7.5776e1 -1.0558e-2 5.9677e3 2.1853e1 9.3142e1 +# Range 0-325 + -Vm 24.638 +# Extrapol Cp integration +# Ref CWM89, SSB97 match + +Vaesite + NiS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Ni+2 + 1.75 HS- + log_k -26.7622 + -delta_H 110.443 kJ/mol +# deltafH -32.067 kcal/mol + -analytic 1.6172e1 -2.2673e-2 -8.2514e3 -3.4392 -1.4013e2 +# Range 0-200 + -Vm 27.697 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 78vau/cra + +Wollastonite + CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 + log_k 13.7605 + -delta_H -76.5756 kJ/mol +# deltafH -389.59 kcal/mol + -analytic 3.0931e1 6.7466e-3 5.1749e3 -1.3209e1 -3.4579e5 +# Range 0-350 + -Vm 39.93 +# Extrapol supcrt92 +# Ref HDN+78 + +Wurtzite + ZnS + H+ = HS- + Zn+2 + log_k -9.1406 + -delta_H 22.3426 kJ/mol +# deltafH -45.85 kcal/mol + -analytic -1.5446e2 -4.8874e-2 2.4551e3 6.1278e1 3.8355e1 +# Range 0-350 + -Vm 23.846 +# Extrapol supcrt92 +# Ref HDN+78 + +Wustite + Fe.947O + 2 H+ = 0.106 Fe+3 + 0.841 Fe+2 + H2O + log_k 12.4113 + -delta_H -102.417 kJ/mol +# deltafH -266.265 kJ/mol + -analytic -7.6919e1 -1.8433e-2 7.3823e3 2.8312e1 1.1522e2 +# Range 0-300 + -Vm 12.04 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Xonotlite + Ca6Si6O17(OH)2 + 12 H+ = 6 Ca+2 + 6 SiO2 + 7 H2O + log_k 91.8267 + -delta_H -495.457 kJ/mol +# deltafH -2397.25 kcal/mol + -analytic 1.6080e3 3.7309e-1 -2.2548e4 -6.2716e2 -3.8346e2 +# Range 0-200 + -Vm 264.81 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Zincite + ZnO + 2 H+ = H2O + Zn+2 + log_k 11.2087 + -delta_H -88.7638 kJ/mol +# deltafH -350.46 kJ/mol + -analytic -8.6681e1 -1.9324e-2 7.1034e3 3.2256e1 1.1087e2 +# Range 0-350 + -Vm 14.338 +# Extrapol supcrt92, Cp integration +# Ref SSW+97, CWM89 match + +Zn + Zn + 2 H+ + 0.5 O2 = H2O + Zn+2 + log_k 68.8035 + -delta_H -433.157 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.4131e1 -2.0009e-2 2.3921e4 2.3702e1 3.7329e2 +# Range 0-300 + -Vm 9.162 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Zn(NO3)2:6H2O + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.4102 + -delta_H 24.7577 kJ/mol +# deltafH -2306.8 kJ/mol + -analytic -1.7152e2 -1.6875e-2 5.6291e3 6.5094e1 9.5649e1 +# Range 0-200 + -Vm 144.06 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn(OH)2(beta) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.9341 + -delta_H -83.2111 kJ/mol +# deltafH -641.851 kJ/mol + -analytic -7.7810e1 -7.8548e-3 7.1994e3 2.7455e1 1.2228e2 +# Range 0-200 + -Vm 32.60 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn(OH)2(epsilon) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.6625 + -delta_H -81.7811 kJ/mol +# deltafH -643.281 kJ/mol + -analytic -7.7938e1 -7.8767e-3 7.1282e3 2.7496e1 1.2107e2 +# Range 0-200 + -Vm 32.60 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn2SiO4 + Zn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Zn+2 + log_k 13.8695 + -delta_H -119.399 kJ/mol +# deltafH -1636.75 kJ/mol + -analytic 2.0970e2 5.3663e-2 -1.2724e2 -8.5445e1 -2.2336 +# Range 0-200 + -Vm 55.03 # Webmineral.com +# Extrapol Constant H approx +# Ref WEP+82 + +ZnCl2 + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.0880 + -delta_H -72.4548 kJ/mol +# deltafH -415.09 kJ/mol + -analytic -1.6157e1 -2.5405e-2 2.6505e3 8.8584 4.5015e1 +# Range 0-200 + -Vm 46.84 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +ZnCr2O4 + ZnCr2O4 + 8 H+ = Zn+2 + 2 Cr+3 + 4 H2O + log_k 7.9161 + -delta_H -221.953 kJ/mol +# deltafH -370.88 kcal/mol + -analytic -1.7603e2 -1.0217e-2 1.7414e4 5.1966e1 2.9577e2 +# Range 0-200 + -Vm 44.03 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +ZnSO4 + ZnSO4 = SO4-2 + Zn+2 + log_k 3.5452 + -delta_H -80.132 kJ/mol +# deltafH -982.855 kJ/mol + -analytic 6.9905 -1.8046e-2 2.2566e3 -2.2819 3.8318e1 +# Range 0-200 + -Vm 45.61 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +ZnSO4:6H2O + ZnSO4:6H2O = SO4-2 + Zn+2 + 6 H2O + log_k -1.6846 + -delta_H -0.412008 kJ/mol +# deltafH -2777.61 kJ/mol + -analytic -1.4506e2 -1.8736e-2 5.2179e3 5.3121e1 8.8657e1 +# Range 0-200 + -Vm 130.08 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zoisite + Ca2Al3(SiO4)3OH + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O + log_k 43.3017 + -delta_H -458.131 kJ/mol +# deltafH -1643.69 kcal/mol + -analytic 2.5321 -3.5886e-2 1.9902e4 -6.2443 3.1055e2 +# Range 0-350 + -Vm 135.9 +# Extrapol supcrt92 +# Ref HDN+78 differ by 2.5 log K at 0C, 0.6 log K at 350C + +#--------------------------- +# carbfix.dat additions and changes +#--------------------------- + +Ankerite + CaFe(CO3)2 = Ca+2 + Fe+2 + 2 CO3-2 + log_k -20.8732 # HP11 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic 6743.140988642074 2.3089611210263445 -252723.63251182728 -2681.493160205648 9.661065201605685e6 -0.0008807525923414785 # HP11 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 66.060 # HP11 + +Dolomite + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17.5755 # carbfix.dat + -analytic 29.3854 -0.08464 -6474.23 0 0 0 # carbfix.dat + -Vm 64.365 # core10.dat + +Siderite #M 115.856 + FeCO3 = Fe+2 + CO3-2 + log_k -11.0441 # carbfix.dat + -analytic 349.4317054926304 0.03628114046578195 -13573.811090861998 -131.65143185871804 0 0 # carbfix.dat + -Vm 29.378 # core10.dat + +Vaterite + CaCO3 = Ca+2 + CO3-2 + log_k -7.913 # PB82 + -analytic -172.1295 -0.077993 3074.688 71.595 # PB82 + -Vm 37.628 # Webmineral + +Chamosite + Fe5Al2Si3O10(OH)8 + 16 H+ = 3 SiO2 + 2 Al+3 + 5 Fe+2 + 12 H2O + log_k 51.0989 # Wilson+06 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2261.8191086219654 -0.05624157931775312 177907.89284663578 751.8600225754568 -1.0016051707895715e7 -0.00016619114943726155 # Wilson+06 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 213.42 # Wilson+06 + +Ferroactinolite + Ca2Fe5Si8O24H2 + 14 H+ = 8 H2O + 2 Ca++ + 5 Fe++ + 8 SiO2 + log_k 53.8577 # HP11 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -6166.998542330102 -1.037219798091501 365861.8176639852 2233.6116457595454 -2.0884200268246245e7 0.00012380655710718727 # HP11 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 284.20 # HP11 + +Analcime + Na0.96Al0.96Si2.04O6:1H2O + 3.84 H+ = 0.96 Al+3 + 2.04 SiO2 + 0.96 Na+ + 2.92 H2O + log_k 6.46778 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -1607.397164637225 -0.20244882417823173 100724.95781836317 567.7196058320366 -6.033769323248515e6 -5.813879879598253e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 97.43 # Neu00 + +Chabazite-Ca + CaAl2Si4O12:6H2O + 8 H+ = 2 Al+3 + Ca+2 + 4 SiO2 + 10 H2O + log_k 14.7771 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3008.8025156663593 -0.3755910460310381 188997.49544842725 1062.7947084349842 -1.1188005391588064e7 -0.00002583123991650134 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 247.45 # Neu00 + +Chabazite-Na + Na2Al2Si4O12:6H2O + 8 H+ = 2 Al+3 + 2 Na+ + 4 SiO2 + 10 H2O + log_k 16.9077 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3186.8278093507747 -0.418380143168157 196138.93487499916 1132.2901846509246 -1.157949755113691e7 -0.000010048464434853268 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 247.45 # Neu00 + +Clinoptilolite-Ca + Ca1.5Al3Si15O36:12H2O + 12 H+ = 3 Al+3 + 1.5 Ca+2 + 15 SiO2 + 18 H2O + log_k -6.46186 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -9671.715446207168 -1.2994995558734899 586051.6056233725 3435.4387233980556 -3.6938991496076465e7 0.000020765835897886403 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 628.14 # Neu00 + +Clinoptilolite-Na + Na3Al3Si15O36:10H2O + 12 H+ = 3 Al+3 + 3 Na+ + 15 SiO2 + 16 H2O + log_k -9.10501 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -9935.986589349232 -1.3651421045919674 595717.5272789554 3537.941435564227 -3.7574827008609205e7 0.00004659640445273473 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 628.14 # Neu00 + +Heulandite-Ca + CaAl2Si7O18:6H2O + 8 H+ = 2 Al+3 + Ca+2 + 7 SiO2 + 10 H2O + log_k 3.436 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4716.20373811867 -0.6097204104617631 290361.2230601926 1669.4918855360143 -1.8033731828280084e7 -7.066268784616783e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 319.27 # Neu00 + +Heulandite-Na + Na2Al2Si7O18:5H2O + 8 H+ = 2 Al+3 + 2 Na+ + 7 SiO2 + 9 H2O + log_k 6.5703 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4893.663438946976 -0.6527198597381667 298513.6715970333 1737.9764230580004 -1.846214573574453e7 9.017353510490205e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 314.27 # Neu00 + +Laumontite + CaAl2Si4O12:4.5H2O + 8 H+ = 2 Al+3 + 4 SiO2 + 1 Ca+2 + 8.5 H2O + log_k 14.7774 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2953.1864248185643 -0.3460678860757567 189179.5402824526 1037.3497867115404 -1.133807260140713e7 -0.000030091905800782725 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 209.68 # Neu00 + +Leonhardite + CaAl2Si4O12:3.5H2O + 8 H+ = 2 Al+3 + 4 SiO2 + 1 Ca+2 + 7.5 H2O + log_k 14.8743 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2952.1293972721705 -0.34742048679718 189640.4641323959 1036.5589592559031 -1.1353314773495251e7 -0.00002980389895752243 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 204.6 # Neu00 + +Mesolite + Ca0.667Na0.666Al2Si3O10:2.667H2O + 8 H+ = 2 Al+3 + 0.667 Ca+2 + 3 SiO2 + 0.666Na+ + 6.667 H2O + log_k 17.4218 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2514.705149002807 -0.29384113565312087 161655.70641411358 883.4921843216846 -9.406741691291668e6 -0.00003131384483046101 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 171.60 # Neu00 + +Mordenite-Ca + Ca0.5AlSi5O12:4H2O + 4 H+ = 1 Al+3 + 0.5 Ca+2 + 5 SiO2 + 6 H2O + log_k -7.0717 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3209.8424385413937 -0.42341047224966527 194516.0226403748 1137.819893904924 -1.2397691837671977e7 6.8216657981027104e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 208.74 # Neu00 + +Mordenite-Na + NaAlSi5O12:3H2O + 4 H+ = 1 Al+3 + 1 Na+ + 5 SiO2 + 5 H2O + log_k -1.64368 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3304.0194429277494 -0.44813101451196 199814.8259786772 1174.547352199426 -1.2617592209620891e7 0.00001579003538196579 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 208.74 # Neu00 + +Natrolite + Na2Al2Si3O10:2H2O + 8 H+ = 2 Al+3 + 3 SiO2 + 2 Na+ + 6 H2O + log_k 19.1579 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2597.197018319145 -0.31602003400891093 165224.20445157515 915.9259126075954 -9.615658410718244e6 -0.000020437594207700833 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 169.22 # Neu00 + +Scolecite + CaAl2Si3O10:3H2O + 8 H+ = 2 Al+3 + Ca+2 + 3 SiO2 + 7 H2O + log_k 16.5484 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2472.9848254242747 -0.282577973571597 159852.11641836836 867.0866007988283 -9.301702517122421e6 -0.00003682208544087395 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 172.29 # Neu00 + +Stilbite-Ca + CaAl2Si7O18:7H2O + 8 H+ = 2 Al+3 + Ca+2 + 7 SiO2 + 11 H2O + log_k 3.25107 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4700.580605084462 -0.6041316785312421 289527.09790938033 1663.141867840657 -1.795058537490787e7 -5.933631409739997e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 333.48 # Neu00 + +Thomsonite + Ca2NaAl5Si5O20:6H2O + 20 H+ = 5 Al+3 + 2 Ca+2 + 5 SiO2 + Na+ + 16 H2O + log_k 53.2914 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4574.622243877597 -0.4696926814639755 308149.84600719286 1591.2127911035302 -1.7223826926743384e7 -0.00010328397531931611 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 338.10 # Neu00 + +Wairakite + CaAl2Si4O12:2H2O + 8 H+ = 2 Al+3 + 4 SiO2 + 1 Ca+2 + 6 H2O + log_k 18.7266 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3019.9452775460704 -0.35597487369231395 196047.2234609314 1059.0051267650902 -1.159849076955757e7 -0.000030402580312874294 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 190.35 # Neu00 + +Yugawaralite + CaAl2Si6O16:4H2O + 8 H+ = 2 Al+3 + 6 SiO2 + 1 Ca+2 + 8 H2O + log_k 7.98228 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4107.23434950416 -0.5135363017836825 257073.67049534645 1449.0996243850718 -1.5841096694718203e7 -0.000015762141005939227 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 265.79 # Neu00 + +#---------- +# 15 gases +#---------- + +C2H4(g) + C2H4 = C2H4 + log_k -2.323631 + -delta_H -3.930 kcal/mol + -analytic -14.5616 0.0176 2192.2 0 0 -3.8657e-6 +# Range 0-350 + -T_c 283 # K + -P_c 50.53 + -Omega 0.085 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref Sho93 + +C2H6(g) + C2H6 = C2H6 + log_k -2.93276 + -delta_H -4.509 kcal/mol + -analytic -23.1154 0.0354 3289.1 0 0 -1.5637e-5 +# Range 0-350 + -T_c 305 # K + -P_c 48.16 + -Omega 0.100 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref HOK+98 + +C3H8(g) + C3H8 = C3H8 + log_k -2.876 + -analytic 1.885 -2.55e-2 0 0 0 3.20e-5 # Not the best +# Range 0-350 + -T_c 369.522 # K + -P_c 42.4924 + -Omega 0.152 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref HOK+98 + +CH4(g) + CH4 = CH4 + log_k -2.8502 + -delta_H -13.0959 kJ/mol +# deltafH -17.88 kcal/mol + -analytic -24.027 4.7146e-3 372.27 6.4264 2.3362e5 +# Range 0-350 + -T_c 190.6 # K + -P_c 45.40 + -Omega 0.008 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +CO(g) + CO = CO + log_k -3.0068 + -delta_H -10.4349 kJ/mol +# deltafH -26.416 kcal/mol + -analytic -8.0849 9.2114e-3 0 0 2.0813e5 +# Range 0-350 + -T_c 133 # K + -P_c 34.54 + -Omega 0.049 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref Sho93 + +CO2(g) + CO2 + H2O = H+ + HCO3- + log_k -7.8136 + -delta_H -10.5855 kJ/mol +# deltafH -94.051 kcal/mol + -analytic -8.5938e1 -3.0431e-2 2.0702e3 3.2427e1 3.2328e1 +# Range 0-350 + -T_c 304.25 # K + -P_c 72.83 # atm, 7.38 MPa, http://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=4#Thermo-Phase + -Omega 0.225 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +H2(g) + H2 = H2 + log_k -3.1050 + -delta_H -4.184 kJ/mol +# deltafH 0 kcal/mol + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 +# Range 0-350 + -T_c 33.2 # K + -P_c 12.80 + -Omega 0.225 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +H2O(g) # HP98 + H2O = 1.000 H2O + -log_k 1.5108 + -analytic -1.4782e1 1.0752e-3 2.7519e3 2.7548 4.2945e1 + -T_c 647.3 + -P_c 220.9 + -Omega 0.344 + +H2S(g) + H2S = H+ + HS- + log_k -7.9759 + -delta_H 4.5229 kJ/mol +# deltafH -4.931 kcal/mol + -analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56 +# Range 0-350 + -T_c 373.2 # K + -P_c 88.20 + -Omega 0.1 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +N2(g) + N2 = N2 + log_k -3.1864 + -delta_H -10.4391 kJ/mol +# deltafH 0 kcal/mol + -analytic -58.453 1.818e-3 3199 17.909 -27460 # phreeqc.dat +# Range 0-350 + -T_c 126.2 # K + -P_c 33.50 + -Omega 0.039 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +NH3(g) + NH3 = NH3 + log_k 1.7966 + -delta_H -35.2251 kJ/mol +# deltafH -11.021 kcal/mol + -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 +# Range 0-350 + -T_c 405.6 # K + -P_c 111.3 + -Omega 0.25 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +NO(g) + NO + 0.5 H2O + 0.25 O2 = H+ + NO2- + log_k 0.7554 + -delta_H -48.8884 kJ/mol +# deltafH 90.241 kJ/mol + -analytic 8.2147 -1.2708e-1 -6.0593e3 2.0504e1 -9.4551e1 +# Range 0-300 + -T_c 180 # K + -P_c 64.64 + -Omega 0.607 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92, Cp integration +# Ref AS01, WEP+82 differ by 0.2 log K at 0C, 17 log K at 350C !! flag + +NO2(g) + NO2 + 0.5 H2O + 0.25 O2 = H+ + NO3- + log_k 8.3673 + -delta_H -94.0124 kJ/mol +# deltafH 33.154 kJ/mol + -analytic 9.4389e1 -2.7511e-1 -1.6783e4 2.1127e1 -2.6191e2 +# Range 0-300 + -T_c 431 # K + -P_c 99.67 + -Omega 0 # Not found +# Extrapol Cp integration +# Ref WEP+82 + +O2(g) + O2 = O2 + log_k -2.8983 + -delta_H -12.1336 kJ/mol +# deltafH 0 kcal/mol + -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 +# Range 0-300 + -T_c 154.6 # K phreeqc.dat + -P_c 49.80 # phreeqc.dat + -Omega 0.021 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +SO2(g) + SO2 = SO2 + log_k 0.1700 + -delta_H 0 +# deltafH 0 kcal/mol + -analytic -2.0205e1 2.8861e-3 1.4862e3 5.2958 1.2721e5 +# Range 0-300 + -T_c 430 # K + -P_c 77.67 + -Omega 0.251 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +#---------- +# Additional phases added for the purpose of the kinetics +#---------- + +#Basaltic glass leached layer solubility - calculated from a stoichiometric mixture of amorphous SiO2 and Al(OH)3 in this database. +#NOTE: The analytical expression was calculated assuming a constant Cp for Al(OH)3(am), so that significant systematic errors occur at high temperatures! +Glass_Basalt_leached_layer + Si1.00Al0.35O2(OH)1.05 + 0.35 OH- = 0.35 Al(OH)4- + SiO2 + log_k -2.36449 + -analytic 77.82514814711445 0.032450265390183614 -1502.5932036570116 -33.02705435543141 -216815.051931841 -7.454186812457974e-6 + +#Rhyolite glass leached layer solubility - calculated from a stoichiometric mixture of amorphous SiO2 and Al(OH)3 in this database. +#NOTE: The analytical expression was calculated assuming a constant Cp for Al(OH)3(am), so that significant systematic errors occur at high temperatures! +Glass_Rhyolite_leached_layer +Si1.00Al0.23O2(OH)0.69 + 0.23 OH- = 0.23 Al(OH)4- + SiO2 + log_k -2.49416 + -analytic 5.1557406e+01 2.3750757e-02 -1.7710982e+02 -2.2884601e+01 -3.0907618e+05 -4.8984656e-06 + +#---------- +# Additional phases +##Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals#### +# 16 added solids +# The thermodynmaic propeties are from the llnl.data database expet for Gaspite +#------------ + + +Anglesite + PbSO4 = + Pb+2 + SO4-2 + log_k -7.8527 + -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Anglesite +# Enthalpy of formation: -219.87 kcal/mol + -analytic -1.8583e+002 -7.3849e-002 2.8528e+003 7.6936e+001 4.4570e+001 + -Vm 47.950 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Barite + BaSO4 = + Ba++ + SO4-2 + log_k -9.9711 + -delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite +# Enthalpy of formation: -352.1 kcal/mol + -analytic -1.8747e+002 -7.5521e-002 2.0790e+003 7.7998e+001 3.2497e+001 + -Vm 52.1 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Celestite + SrSO4 = + SO4-2 + Sr+2 + log_k -5.6771 + -delta_H -7.40568 kJ/mol # Calculated enthalpy of reaction Celestite +# Enthalpy of formation: -347.3 kcal/mol + -analytic -1.9063e+002 -7.4552e-002 3.9050e+003 7.8416e+001 6.0991e+001 + -Vm 46.25 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Cerussite + PbCO3 + H+ = + HCO3- + Pb+2 + log_k -3.2091 + -delta_H 13.8992 kJ/mol # Calculated enthalpy of reaction Cerussite +# Enthalpy of formation: -168 kcal/mol + -analytic -1.2887e+002 -4.4372e-002 2.2336e+003 5.3091e+001 3.4891e+001 +# -Range: 0-300 + +Fluorapatite + Ca5(PO4)3F +3.0 H+ = + F- + 3.0 HPO4-2 + 5.0 Ca++ + log_k -24.9940 + -delta_H -90.8915 kJ/mol # Calculated enthalpy of reaction Fluorapatite +# Enthalpy of formation: -6836.12 kJ/mol + -analytic -9.3648e+002 -3.2688e-001 2.4398e+004 3.7461e+002 3.8098e+002 + -Vm 157.56 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Fluorite + CaF2 = + Ca++ + 2.0 F- + log_k -10.0370 + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction Fluorite +# Enthalpy of formation: -293 kcal/mol + -analytic -2.5036e+002 -8.4183e-002 4.9525e+003 1.0054e+002 7.7353e+001 + -Vm 24.542 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Gaspite # M 118.702 https://thermoddem.brgm.fr/ +NiCO3 + H+ = HCO3- + Ni+2 + log_k -0.74 + -analytic -909.497277 -0.146985 50789.653398 329.221149 -2880194.459776 + -Vm 26.978 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Otavite + CdCO3 + H+ = + Cd++ + HCO3- + log_k -1.7712 + -delta_H 0 # Not possible to calculate enthalpy of reaction Otavite +# Enthalpy of formation: 0 kcal/mol + +Pyromorphite + Pb5(PO4)3Cl +3.0 H+ = + Cl- + 3.0 HPO4-2 + 5.0 Pb+2 + log_k -47.8954 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite +# Enthalpy of formation: 0 kcal/mol + +Pyromorphite-OH + Pb5(OH)(PO4)3 +4.0 H+ = + H2O + 3.0 HPO4-2 + 5.0 Pb+2 + log_k -26.2653 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite-OH + -Vm 188.40 #https://thermoddem.brgm.fr/ +# Enthalpy of formation: 0 kcal/mol + +Rhodochrosite + MnCO3 + H+ = + HCO3- + Mn+2 + log_k -0.1928 + -delta_H -21.3426 kJ/mol # Calculated enthalpy of reaction Rhodochrosite +# Enthalpy of formation: -212.521 kcal/mol + -analytic -1.6195e+002 -4.9344e-002 5.0937e+003 6.4402e+001 7.9531e+001 + -Vm 31.075 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Smithsonite + ZnCO3 + H+ = + HCO3- + Zn+2 + log_k 0.4633 + -delta_H -30.5348 kJ/mol # Calculated enthalpy of reaction Smithsonite +# Enthalpy of formation: -194.26 kcal/mol + -analytic -1.6452e+002 -5.0231e-002 5.5925e+003 6.5139e+001 8.7314e+001 +# -Range: 0-300 + + +Strontianite + SrCO3 + H+ = + HCO3- + Sr+2 + log_k -0.3137 + -delta_H -8.23411 kJ/mol # Calculated enthalpy of reaction Strontianite +# Enthalpy of formation: -294.6 kcal/mol + -analytic -1.3577e+002 -4.4884e-002 3.5729e+003 5.5296e+001 5.5791e+001 +# -Range: 0-300 + +Witherite + BaCO3 + H+ = + Ba+2 + HCO3- + log_k -2.9965 + -delta_H 17.1628 kJ/mol # Calculated enthalpy of reaction Witherite +# Enthalpy of formation: -297.5 kcal/mol + -analytic -1.2585e+002 -4.4315e-002 2.0227e+003 5.2239e+001 3.1600e+001 +# -Range: 0-300 + +# A.P. Gysi et al. / Geochimica et Cosmochimica Acta 242 (2018) 143–164 +Monazite-Ce # M 235.087 g/mol + CePO4 + H+ = Ce+3 + HPO4-2 + log_k -18.12 + -analytic 0.968 0.0474 4.384E+03 + +Variscite # M 157.983 #https://thermoddem.brgm.fr/ + AlPO4:2H2O + 2H+ = Al+3 + H2PO4- + 2 H2O + log_k -2.16 + -analytic -1069.095997 -0.173224 59751.042067 386.011849 -3287463.862916 + -Vm 61.953 + +## +Illite + K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 +8.0000 H+ = + 0.2500 Mg++ + 0.6000 K+ + 2.3000 Al+++ + 3.5000 SiO2 + 5.0000 H2O + log_k 9.0260 + -delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite +# Enthalpy of formation: -1394.71 kcal/mol + -analytic 2.6069e+001 -1.2553e-003 1.3670e+004 -2.0232e+001 -1.1204e+006 +# -Range: 0-300 + + + +#---------- +# List of the RATE blocks (details in Hermanska et al. 2022, 2023) +#---------- + + +RATES + +Albite #NaAlSi3O8; M 262.219 g/mol +-start +1 name$ = "Albite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.7 #mol.m-2.s-1 +1001 An = 2.05e-1 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.3 +1010 nb = -0.3 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Albite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Albite_high #NaAlSi3O8; M 262.219 g/mol +-start +1 name$ = "Albite_high" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.7 #mol.m-2.s-1 +1001 An = 2.05e-1 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.3 +1010 nb = -0.3 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Albite_high")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Albite_low #NaAlSi3O8; M 262.219 g/mol +-start +1 name$ = "Albite_low" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.7 #mol.m-2.s-1 +1001 An = 2.05e-1 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.3 +1010 nb = -0.3 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Albite_low")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Almandine#Fe3Al2(SiO4)3, M 500.4 g/mol +-start +1 name$ = "Almandine" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.0e5#mol/m2/s +1001 An = 2.31e-4#mol/m2/s +1002 Ab = 6.0e-8#mol/m2/s +1003 na = 1 +1004 nb = -0.4 +1005 Ea = 60000 +1006 En = 43200 +1007 Eb = 42300 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +10010 Sig = 3 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Almandine")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Analcime#Na0.96Al0.96Si2.04O6:1H2O; 219.27 g/mol +-start +1 name$ = "Analcime" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5.0e7#mol.m-2.s-1 +1001 An = 1.0e-1 #mol.m-2.s-1 +1002 Ab = 7.5e-5 #mol.m-2.s-1 +1003 Ea = 63000 #J.mol-1 +1004 En = 58500 #J.mol-1 +1005 Eb = 58000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1 +1010 nb = -0.4 +1011 Sig = 2.04 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Analcime")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + + +Andalusite#Al2SiO5, M 162.9 g/mol +-start +1 name$ = "Andalusite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.39#mol/m2/s +1001 An = 8.0e-3#mol/m2/s +1002 Ab = 8.8e-15#mol/m2/s +1003 na = 0.15 +1004 nb = -1.2 +1005 Ea = 58000 +1006 En = 60000 +1007 Eb = 50000 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +1001 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusn = An* (exp(-En/ (R * Tk)))* S +2004 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Andalusite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Andesine_ss#Ca0.4Na0.6Al1.4Si2.6O8 , M 268.613 g/mol +-start +1 name$ = "Andesine_ss" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 268.613 else S = m0 * ((m/m0)^(2/3)) * 268.613 * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +10 SR_Andesine=(SR ("Albite")*0.6)*(SR ("Anorthite")*0.4) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Andesine < 1) Then GoTo 5000 # warning no dissolution reaction +200 If (SR_Andesine > 1) Then GoTo 5000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 146.75#mol.m-2.s-1 +1001 An = 0.19 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.67 +1010 nb = -0.35 +1011 Sig = 2.6 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR_Andesine^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Andradite#Ca3Fe2(SiO4)3, M 510.9 g/mol +-start +1 name$ = "Andradite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.6e5#mol/m2/s +1001 An = 3.2e-4#mol/m2/s +1003 na = 1 +1005 Ea = 60000 +1006 En = 43200 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +10010 Sig = 3 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Andradite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + + +Annite #KFe3AlSi3O10(OH)2; M 511.85 g/mol +-start +1 name$ = "Annite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.90e-7 #mol.m-2.s-1 +1001 An = 5e-9 #mol.m-2.s-1 +1002 Ab = 4e-10 #mol.m-2.s-1 +1003 Ea = 18200 #J.mol-1 +1004 En = 22000 #J.mol-1 +1005 Eb = 25500 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.5 +1009 nb = -0.16 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Annite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Anorthite #CaAl2Si2O8; M 278.204 g/mol +-start +1 name$ = "Anorthite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3))* GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 9.82e4 #mol.m-2.s-1 +1001 An = 1.5E-1 #mol.m-2.s-1 +1002 Ab = 1.5E-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.22 +1010 nb = -0.35 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Anorthite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Anthophyllite #Mg7Si8O22(OH)2, M 780.807 g/mol +-start +1 name$ = "Anthophyllite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.7e-4 #mol.m-2.s-1 +1001 An = 5.0e-6 #mol.m-2.s-1 +1002 Ea = 52000 #J.mol-1 +1003 En = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.42 +1006 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR ("Anthophyllite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Antigorite #Mg3Si2O5(OH4); M 277 g/mol +-start +1 name$ = "Antigorite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +#------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.8e-6 #mol.m-2.s-1 +1001 An = 2.0e-8 #mol.m-2.s-1 +1003 Ea = 27000 #J.mol-1 +1004 En = 27000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.25 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Antigorite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Augite_ss#Mg0.45Fe0.275Ca0.275SiO3;M 113.4 g/mol +-start + 2 if (PARM(1) = 0) then goto 3 else goto 5 + 3 if PARM(3) = 0 then S = PARM(2) * m * 113.4 else S = m0 * ((m/m0)^(2/3)) * 113.4 * PARM(2) + 4 GOTO 1000 + 5 S = PARM(2)*TOT("water") + 10 SR_Augite=(SR ("Wollastonite")*0.45)*(SR ("Ferrosilite")*0.275)*(SR ("Enstatite")*0.275) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Augite < 1) Then GoTo 5000 # warning no dissolution reaction +200 If (SR_Augite > 1) Then GoTo 5000 # warning no precipitation reaction +#------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.52e6 +1001 An =350 +1002 Ea =81834 +1003 En =83000 +1004 R = 8.314 +1006 Sig = 1 +1007 na =0.7 +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR_Augite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-Ca#Ca.175Al2.35Si3.65O10(OH)2; M 366.9 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +#------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-Fe# Fe.175Al2.35Si3.65O10(OH)2 369.7 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-Fe" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-Fe")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-K# K.35Al2.35Si3.65O10(OH)2; M 373.6 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-Mg# Mg.175Al2.35Si3.65O10(OH)2; M 364.2 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-Na# Na.35Al2.35Si3.65O10(OH)2 ; M 368.0 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Biotite_ss #KFe1.5Mg1.5AlSi3O10(OH)2; M 464.564 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 464.564 else S = m0 * ((m/m0)^(2/3)) * 464.564 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Biotite=(SR ("Annite")*0.5)*(SR ("Phlogopite")*0.5) + +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Biotite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Biotite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.90e-7 #mol.m-2.s-1 +1001 An = 5e-9 #mol.m-2.s-1 +1002 Ab = 4e-10 #mol.m-2.s-1 +1003 Ea = 18200 #J.mol-1 +1004 En = 22000 #J.mol-1 +1005 Eb = 25500 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.5 +1009 nb = -0.16 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR_Biotite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Bronzite_ss#Mg0.77Fe0.23SiO3, M 107.6 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 107.6 else S = m0 * ((m/m0)^(2/3)) * 107.6 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Bronzite=(SR ("Enstatite")*0.77)*(SR ("Ferrosilite")*0.23) + +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Bronzite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Bronzite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 9.5e-4# mol.m-2.s-1 +1001 An = 7.6e-1# mol.m-2.s-1 +1002 Ea = 38548# J/mol +1003 En = 66100# J/mol +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1011 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR_Bronzite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Bytownite_ss#Ca0.77Na0.23Al1.77Si2.23O8, M 243.67 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 243.67 else S = m0 * ((m/m0)^(2/3)) * 243.67 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Bytownite=(SR ("Albite")*0.23)*(SR ("Anorthite")*0.77) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Bytownite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Bytownite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 18838.52 #mol.m-2.s-1 +1001 An = 0.17 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.105 +1010 nb = -0.35 +1011 Sig = 2.23 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR_Bytownite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chabazite-Ca# CaAl2Si4O12:6H2O +-start +1 name$ = "Chabazite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.221 #mol.m-2.s-1 +1001 An = 1.56e-4 #mol.m-2.s-1 +1002 Ab = 4.94e-5 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Chabazite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chabazite-Na# Na2Al2Si4O12:6H2O +-start +1 name$ = "Chabazite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.221 #mol.m-2.s-1 +1001 An = 1.56e-4 #mol.m-2.s-1 +1002 Ab = 4.94e-5 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Chabazite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chalcedony# SiO2 M 60.08 g/mol #listed as Amorphous SiO2 in DB part 1 +-start +1 name$ = "Chalcedony" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.563e-4#mol/m2/s +1001 Ab = 0.0353#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 41610 +1005 Eb = 73000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Chalcedony")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chrysotile # Mg3Si2O5(OH4); M 278.9 g/mol +-start +1 name$ = "Chrysotile" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.8e-6 #mol.m-2.s-1 +1001 An = 2.0e-8 #mol.m-2.s-1 +1003 Ea = 27000 #J.mol-1 +1004 En = 27000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.25 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Chrysotile")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chamosite# Fe5Al(AlSi3O10)(OH)8; M 713.44 g/mol +-start +1 name$ = "Chamosite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Chamosite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Clinochlore-14A#Mg5Al(AlSi3O10)(OH)8; M 555.79 g/mol +-start +1 name$ = "Clinochlore-14A" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Clinochlore-14A")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Clinochlore-7A# Mg5Al(AlSi3O10)(OH)8; M 555.79 g/mol +-start +1 name$ = "Clinochlore-7A" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Clinochlore-7A")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Clinoptilolite-Ca# Ca1.5Al3Si15O36:12H2O +-start +1 name$ = "Clinoptilolite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 15 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR ("Clinoptilolite-Ca") +/Sig)) +4000 moles = rate * time +5000 save moles +-end + +Clinoptilolite-Na# Na3Al3Si15O36:10H2O +-start +1 name$ = "Clinoptilolite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 15 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Clinoptilolite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Cristobalite(alpha)#SiO2; M 60.08 g/mol +-start +1 name$ = "Cristobalite(alpha)" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.03e-4#mol/m2/s +1001 Ab = 0.105#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 45600 +1005 Eb = 80000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Cristobalite(alpha)")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Cristobalite(beta)#SiO2, M 60.08 g/mol +-start +1 name$ = "Cristobalite(beta)" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.03e-4#mol/m2/s +1001 Ab = 0.105#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 45600 +1005 Eb = 80000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Cristobalite(beta)")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Daphnite-14A#Fe5Al(AlSi3O10)(OH)8;M 713.44 g/mol +-start +1 name$ = "Daphnite-14A" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Daphnite-14A")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Daphnite-7A#Fe5Al(AlSi3O10)(OH)8; M 713.44 g/mol +-start +1 name$ = "Daphnite-7A" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Daphnite-7A")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Diopside #CaMgSi2O6; M 216.55 g/mol +-start +1 name$ = "Diopside" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 8.55e-5 #mol.m-2.s-1 +1001 An = 4.30e-4 #mol.m-2.s-1 +1003 Ea = 32654 #J.mol-1 +1004 En = 43866 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.25 +1009 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR ("Diopside")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Enstatite#MgSiO3;M 100.387 g/mol +-start +1 name$ = "Enstatite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 0.574 #mol.m-2.s-1 +1001 An = 6252 #mol.m-2.s-1 +1003 Ea = 46080 #J.mol-1 +1004 En = 89538 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.5 +1010 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR ("Enstatite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Epidote#Ca2FeAl2Si3O12OH;M 483.215 g/mol +-start +1 name$ = "Epidote" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.09 #mol.m-2.s-1 +1001 An = 5.13e-5 #mol.m-2.s-1 +1002 Ab = 1.40e-9 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 43200 #J.mol-1 +1005 Eb = 42300 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.30 +1009 nb = -0.4 +1010 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Epidote")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Epidote-ord#Ca2FeAl2Si3O12OH;M 483.215 g/mol +-start +1 name$ = "Epidote-ord" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.14e1 #mol.m-2.s-1 +1001 An = 5.13e-5 #mol.m-2.s-1 +1002 Ab = 1.40e-9 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 43200 #J.mol-1 +1005 Eb = 42300 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.56 +1009 nb = -0.4 +1010 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Epidote-ord")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Fayalite #Fe2SiO4;M 203.771 g/mol +-start +1 name$ = "Fayalite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.20e6# mol.m-2.s-1 +1001 Ab =1.91e3# mol.m-2.s-1 +1002 Ea =70400# J/mol +1003 Eb =60900# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =0.44 +1008 nb =0.22 +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb)* S +2002 rplus = rplusa + rplusb +4000 rate = rplus * (1 - SR("Fayalite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Ferroactinolite #Ca2Fe5Si8O22(OH)2, M 970.053 g/mol, kinetic parameters from Tremolite +-start +1 name$ = "Ferroactinolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +5 S = PARM(2)*TOT("water") +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 3.0e-3 #mol.m-2.s-1 +1001 An = 2.0e-5 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 En = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.22 +1006 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Ferroactinolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Forsterite #Mg2SiO4, M 140.692 g/mol +-start +1 name$ = "Forsterite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =14.8e4# mol.m-2.s-1 +1001 Ab =220# mol.m-2.s-1 +1002 Ea =70400# J/mol +1003 Eb =60900# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na = 0.44 +1008 nb = 0.22 + #Rate Equation +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusb +4000 rate = rplus * (1 - SR("Forsterite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Glass_Basalt#SiTi0.02Al0.36Fe0.19Mg0.28Ca0.26Na0.08K0.008O3.364 , M 122.566 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 122.566 else S = m0 * ((m/m0)^(2/3)) * 122.566 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR ("Glass_Basalt_leached_layer") < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR ("Glass_Basalt_leached_layer") > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 if (m0<=0) then go to 5000 +1001 Aa = 1.08e-4 #mol.m-2.s-1 +1003 Ea = 21500 #J.mol-1 +1006 R = 8.3144 #J.deg-1.mol-1 +1007 ACTI = (ACT ("H+")^3)/(ACT("Al+3")) +1008 n = 1/3 +1009 Sig = 1 + #rate equation +2000 rplus = Aa * ACTI^n * exp(-Ea/ (R * Tk)) * S +3000 rate = rplus * (1 - (SR ("Glass_Basalt_leached_layer")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Glass_Rhyolite#SiAl0.23Na0.13Fe0.05K0.05Ca0.03Mg0.007Ti0.004O2.536; M 84.165 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 84.165 else S = m0 * ((m/m0)^(2/3)) * 84.165 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR("Glass_Rhyolite_leached_layer") < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR("Glass_Rhyolite_leached_layer") > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.6e-3 #mol.m-2.s-1 +1002 Ab = 7.0e-8 #mol.m-2.s-1 +1003 Ea = 36000 #J.mol-1 +1005 Eb = 52000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.48 +1010 nb = -0.6 +1011 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Glass_Rhyolite_leached_layer")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Glaucophane_ss#Na2Mg3Al2Si8O22(OH)2, M 783.531 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 783.531 else S = m0 * ((m/m0)^(2/3)) * 783.531 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Glaucophane =((SR ("Anthophyllite")*1)*(SR ("Jadeite")*2))*(SR ("Enstatite")*(-4)) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Glaucophane < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Glaucophane > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 220 #mol.m-2.s-1 +1001 Ab = 1.0e-4 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 Eb = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 na = 0.7 +1006 nb = -0.12 +1007 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR_Glaucophane^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Grossular#Ca3Al2(SiO4)3, M 453 g/mol +-start +1 name$ = "Grossular" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.0e5#mol/m2/s +1001 An = 2.31e-4#mol/m2/s +1002 Ab = 6.0e-8#mol/m2/s +1003 na = 1 +1004 nb = -0.4 +1005 Ea = 60000 +1006 En = 43200 +1007 Eb = 42300 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +10010 Sig = 3 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Grossular")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Heulandite-Ca# CaAl2Si7O18:6H2O +-start +1 name$ = "Heulandite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 7 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Heulandite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Heulandite-Na# Na2Al2Si7O18:5H2O +-start +1 name$ = "Heulandite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 7 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Heulandite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Hornblende_ss#Ca2(Mg4Al)(Si7Al)O22(OH)2, M 813.927 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 813.927 else S = m0 * ((m/m0)^(2/3)) * 813.927 * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +10 SR_Hornblende =((SR ("Tremolite")*1)*(SR ("Corundum")*1))*(SR ("Enstatite")*(-1)) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Hornblende < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Hornblende > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5.0e-3 #mol.m-2.s-1 +1001 Ab = 2.1e-5 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 Eb = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 na = 0.17 +1006 nb = -0.12 +1007 Sig = 7 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR_Hornblende^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Illite# K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 +-start +1 name$ = "Illite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 7.3e-4 #mol.m-2.s-1 +1001 An = 3.348e-3 #mol.m-2.s-1 +1002 Ab = 6.0e-8 #mol.m-2.s-1 +1003 Ea = 50000 #J.mol-1 +1004 En = 70000 #J.mol-1 +1005 Eb = 74000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1009 nb = -0.6 +1011 Sig = 3.5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Illite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Jadeite# NaAl(SiO3)2;M 203.9 g/mol +-start +1 name$ = "Jadeite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 25 #mol.m-2.s-1 +1001 An = 2.70e5 #mol.m-2.s-1 +1003 Ea = 46080 #J.mol-1 +1004 En = 89538 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.5 +1010 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Jadeite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Kaolinite # Al2Si2O5(OH)4; M 258.16 g/mol +-start +1 name$ = "Kaolinite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.85 #mol.m-2.s-1 +1001 An = 4.15e-3 #mol.m-2.s-1 +1002 Ab = 2.40e-11 #mol.m-2.s-1 +1003 Ea = 73000 #J.mol-1 +1004 En = 67000 #J.mol-1 +1005 Eb = 61000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.45 +1010 nb = -0.76 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 -SR("Kaolinite")^(1/Sig)) +4000 moles = rate * time +5000 save moles +-end + +K-Feldspar #KAlSi3O8; M 278.33 g/mol +-start +1 name$ = "K-Feldspar" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.05 # mol.m-2.s-1 +1001 An = 1.08e-2 # mol.m-2.s-1 +1002 Ab = 1.2e-10 # mol.m-2.s-1 +1003 Ea = 51700 # J/mol +1004 En = 60000 # J/mol +1005 Eb = 62195 # J/mol +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") # +1008 Sig = 3 +1009 nA = 0.45 +1010 nb = -0.75 + #Rate Equation +3000 rplusa = Aa * ACTI^nA * exp (-Ea/ (R * Tk)) * S +3001 rplusn = An * exp (-En/ (R * Tk)) * S +3002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* ACTI^(nC) * S +3003 rplus = rplusa + rplusn + rplusb +4000 rate = rplus * (1 - SR("K-Feldspar")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Kyanite# Al2SiO5, M 162.9 g/mol +-start +1 name$ = "Kyanite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.115#mol/m2/s +1001 An = 1e-3#mol/m2/s +1002 Ab = 1.5e-13#mol/m2/s +1003 na = 0.15 +1004 nb = -1 +1005 Ea = 58000 +1006 En = 60000 +1007 Eb = 50000 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +1001 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusn = An* (exp(-En/ (R * Tk)))* S +2004 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Kyanite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Larnite #Ca2SiO4;M 172.237 g/mol +-start +1 name$ = "Larnite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5.25e8# mol.m-2.s-1 +1001 Ab = 8.25e5# mol.m-2.s-1 +1002 Ea = 70400# J/mol +1003 Eb = 60900# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =0.44 +1008 nb =0.22 +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb)* S +2002 rplus = rplusa + rplusb +4000 rate = rplus * (1 - SR ("Larnite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Labradorite_ss# Ca0.68Na0.32Al1.68Si2.32O8, M 245.84 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 245.84 else S = m0 * ((m/m0)^(2/3)) * 245.84 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Labradorite=(SR ("Albite")*0.32)*(SR ("Anorthite")*0.68) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Labradorite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Labradorite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5886.557 #mol.m-2.s-1 +1001 An = 0.17 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.0 +1010 nb = -0.35 +1011 Sig = 2.32 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +2010 SR_Labradorite=(SR ("Albite")*0.32)*(SR ("Anorthite")*0.68) +3000 rate = rplus * (1 - (SR_Labradorite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Labradorite_ss_an55# Ca0.55Na0.45Al1.68Si2.32O8, M 245.84 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 245.84 else S = m0 * ((m/m0)^(2/3)) * 245.84 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 Labradorite_ss_an55=(SR ("Albite")*0.55)*(SR ("Anorthite")*0.55) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Labradorite_an55 < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Labradorite_an55 > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5886.557 #mol.m-2.s-1 +1001 An = 0.17 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.0 +1010 nb = -0.35 +1011 Sig = 2.32 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (Labradorite_ss_an55^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Laumontite# CaAl2Si4O12:4.5H2O +-start +1 name$ = "Laumontite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.25 #mol.m-2.s-1 +1001 An = 1.39e-3 #mol.m-2.s-1 +1002 Ab = 7.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Laumontite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Lizardite #Mg3Si2O5(OH4); M 277 g/mol +-start +1 name$ = "Lizardite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.8e-6 #mol.m-2.s-1 +1001 An = 2.0e-8 #mol.m-2.s-1 +1003 Ea = 27000 #J.mol-1 +1004 En = 27000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.25 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Lizardite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Leonhardite# CaAl2Si4O12:3.5H2O +-start +1 name$ = "Leonhardite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.25 #mol.m-2.s-1 +1001 An = 1.39e-3 #mol.m-2.s-1 +1002 Ab = 7.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Leonhardite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Maximum_Microcline #KAlSi3O8; M 278.33 g/mol +-start +1 name$ = "Maximum_Microcline" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.05 # mol.m-2.s-1 +1001 An = 1.08e-2 # mol.m-2.s-1 +1002 Ab = 1.2e-10 # mol.m-2.s-1 +1003 Ea = 51700 # J/mol +1004 En = 60000 # J/mol +1005 Eb = 62195 # J/mol +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") # +1008 Sig = 3 +1009 nA = 0.45 +1010 nb = -0.75 + #Rate Equation +3000 rplusa = Aa * ACTI^nA * exp (-Ea/ (R * Tk)) * S +3001 rplusn = An * exp (-En/ (R * Tk)) * S +3002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* ACTI^(nC) * S +3003 rplus = rplusa + rplusn + rplusb +4000 rate = rplus * (1 - SR("Maximum_Microcline")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Mesolite# Ca0.667Na0.666Al2Si3O10:2.667H2O +-start +1 name$ = "Mesolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.97 #mol.m-2.s-1 +1001 An = 1.11e-3 #mol.m-2.s-1 +1002 Ab = 5.54e-4 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Mesolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Montmor-Ca# Ca.175Mg.35Al1.65Si4O10(OH)2 +-start +1 name$ = "Montmor-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Montmor-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Montmor-Mg# Mg.525Al1.65Si4O10(OH)2; M 363.6 g/mol +-start +1 name$ = "Montmor-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Montmor-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Montmor-K# +-start +1 name$ = "Montmor-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Montmor-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Mordenite-Ca# Ca0.5AlSi5O12:4H2O +-start +1 name$ = "Mordenite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000 else goto 1000 # warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 else goto 1000# warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Mordenite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Mordenite-Na# NaAlSi5O12:3H2O +-start +1 name$ = "Mordenite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Mordenite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Muscovite #KAl3Si3O10(OH)2, M 398.303 g/mol +-start +1 name$ = "Muscovite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 0.000126#mol.m-2.s-1 +1001 An = 0.00000631#mol.m-2.s-1 +1002 Ab = 0.0000316#mol.m-2.s-1 +1004 Ea = 41311 #J.mol-1 +1005 En = 39301 #J.mol-1 +1006 Eb = 56950 #J.mol-1 +1008 R = 8.314 #J.deg-1.mol-1 +1009 nA = 0.37 +1010 nb = -0.22 +2000 Sig = 3 + #rate equations +2005 rplusa = Aa* (exp(-Ea/ (R * Tk)))*((act("H+"))^nA )* S +2006 rplusn = An* (exp(-En/ (R * Tk)))* S +2007 rplusb = Ab* (exp(-Eb/ (R * Tk)))*((act("H+"))^nb)* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Muscovite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Natrolite# Na2Al2Si3O10:2H2O +-start +1 name$ = "Natrolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.97 #mol.m-2.s-1 +1001 An = 1.11e-3 #mol.m-2.s-1 +1002 Ab = 5.54e-4 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Natrolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nepheline #NaAlSiO4 +-start +1 name$ = "NaAlSiO4" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5e7 #mol.m-2.s-1 +1001 An = 0.1 #mol.m-2.s-1 +1002 Ab = 7.5e-5 #mol.m-2.s-1 +1003 Ea = 63000 #J.mol-1 +1004 En = 58500 #J.mol-1 +1005 Eb = 58000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.0 +1009 nb = -0.4 +1011 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("NaAlSiO4")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nontronite-Ca# Ca.175Fe2Al.35Si3.65H2O12; M 424.7 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Nontronite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Nontronite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nontronite-K# K.35Fe2Al.35Si3.65H2O12; M 431.3 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Nontronite-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Nontronite-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nontronite-Mg# Mg.175Fe2Al.35Si3.65H2O12; M 421.9 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Nontronite-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Nontronite-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nontronite-Na# Na.35Fe2Al.35Si3.65H2O12; M 425.7 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Nontronite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Nontronite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Oligoclase_ss#Ca0.186Na0.814Al1.186Si2.814O8, M 265.2 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 265.2 else S = m0 * ((m/m0)^(2/3)) * 265.2 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Oligoclase=(SR ("Albite")*0.814)*(SR ("Anorthite")*0.186) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Oligoclase < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Oligoclase > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 6.8 #mol.m-2.s-1 +1001 An = 0.2 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.38 +1010 nb = -0.35 +1011 Sig = 2.814 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR_Oligoclase^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Olivine_ss#Mg1.8Fe0.2SiO4;M 147.31 g/mol +-start + 2 if (PARM(1) = 0) then goto 3 else goto 5 + 3 if PARM(3) = 0 then S = PARM(2) * m * 147.31 else S = m0 * ((m/m0)^(2/3)) * 113.4 * PARM(2) + 4 GOTO 1000 + 5 S = PARM(2)*TOT("water") +10 SR_Olivine=(SR ("Forsterite")*0.9)*(SR ("Fayalite")*0.1) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Olivine < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Olivine > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =14.8e4# mol.m-2.s-1 # Forsterite rate! +1001 Ab =220# mol.m-2.s-1 # Forsterite rate! +1002 Ea =70400# J/mol +1003 Eb =60900# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na = 0.44 +1008 nb = 0.22 +#Rate Equation +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR_Olivine^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Paragonite # NaAl3Si3O10(OH)2 +-start +1 name$ = "Paragonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 7.3e-4 #mol.m-2.s-1 +1001 An = 3.48e-3 #mol.m-2.s-1 +1002 Ab = 6.0e-8 #mol.m-2.s-1 +1003 Ea = 50000 #J.mol-1 +1004 En = 70000 #J.mol-1 +1005 Eb = 74000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1009 nb = -0.6 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Paragonite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Pargasite #NaCa2Al3Mg4Si6O22(OH)2, M 835.814 g/mol, kinetic parameters from glaucophane in DB P1 +-start +1 name$ = "Pargasite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 3.327e8 #mol.m-2.s-1 +1001 Ab = 5000 #mol.m-2.s-1 +1002 Ea = 85000 #J.mol-1 +1003 Eb = 94400 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 na = 0.7 +1006 nb = -0.12 +1007 Sig = 6 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2010 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Pargasite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Phlogopite #KAlMg3Si3O10(OH)2; M 417.25 +-start +1 name$ = "Phlogopite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.90e-7 #mol.m-2.s-1 +1001 An = 5e-9 #mol.m-2.s-1 +1002 Ab = 4e-10 #mol.m-2.s-1 +1003 Ea = 18200 #J.mol-1 +1004 En = 22000 #J.mol-1 +1005 Eb = 25500 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.5 +1009 nb = -0.16 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Phlogopite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Prehnite#Ca2Al2Si3O10(OH)2 ;M 415.1 g/mol +-start +1 name$ = "Prehnite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.30e3 #mol.m-2.s-1 +1001 An = 1.0 #mol.m-2.s-1 +1002 Ab = 1.53e1 #mol.m-2.s-1 +1003 Ea = 77000 #J.mol-1 +1004 En = 80000 #J.mol-1 +1005 Eb = 80000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.35 +1009 nb = -0.075 +1010 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Prehnite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Pyrophyllite#Al2Si4O10(OH)2, M 363.908 g/mol +-start +1 name$ = "Pyrophyllite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.60e4 #mol.m-2.s-1 +1001 An = 1.5e-1 #mol.m-2.s-1 +1002 Ab = 2.0e-8 #mol.m-2.s-1 +1003 Ea = 73000 #J.mol-1 +1004 En = 67000 #J.mol-1 +1005 Eb = 61000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.7 +1010 nb = -0.7 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Pyrophyllite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Quartz#SiO2; M 60.08 g/mol +-start +1 name$ = "Quartz" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.03e-4#mol/m2/s +1001 Ab = 0.105#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 45600 +1005 Eb = 80000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Quartz")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Riebeckite_ss#Na2Fe5Si8O22(OH)2, M 935.877 g/mol, kinetic parameters from tremolite +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 935.877 else S = m0 * ((m/m0)^(2/3)) * 935.877 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Riebeckite =((SR ("Wollastonite")*1)*(SR ("Jadeite")*2))*(SR ("Sillimanite")*(-2)) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Riebeckite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Riebeckite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 3.0e-3 #mol.m-2.s-1 +1001 An = 2.0e-5 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 En = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.22 +1006 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR_Riebeckite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Sanidine_high #KAlSi3O8; M 278.33 g/mol, kinetic parameters from K-feldspar in DB P1 +-start +1 name$ = "Sanidine_high" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.05 # mol.m-2.s-1 +1001 An = 1.08e-2 # mol.m-2.s-1 +1002 Ab = 1.2e-10 # mol.m-2.s-1 +1003 Ea = 51700 # J/mol +1004 En = 60000 # J/mol +1005 Eb = 62195 # J/mol +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") # +1008 Sig = 3 +1009 nA = 0.45 +1010 nb = -0.75 + #Rate Equation +3000 rplusa = Aa * ACTI^nA * exp (-Ea/ (R * Tk)) * S +3001 rplusn = An * exp (-En/ (R * Tk)) * S +3002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* ACTI^(nC) * S +3003 rplus = rplusa + rplusn + rplusb +4000 rate = rplus * (1 - SR("Sanidine_high")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Saponite-Fe-Ca#Ca.175Fe3Al.35Si3.65O10(OH)2; M 480.5 g/mol +-start +1 name$ = "Saponite-Fe-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Fe-Fe#Fe3.175Al.35Si3.65O10(OH)2; M 483.3 g/mol +-start +1 name$ = "Saponite-Fe-Fe" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-Fe")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Fe-K#K.35Fe3Al.35Si3.65O10(OH)2; M 487.2 g/mol +-start +1 name$ = "Saponite-Fe-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Fe-Mg#Mg.175Fe3Al.35Si3.65O10(OH)2 ; M 477.7 g/mol +-start +1 name$ = "Saponite-Fe-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Fe-Na#Na.35Fe3Al.35Si3.65O10(OH)2; M 481.5 g/mol +-start +1 name$ = "Saponite-Fe-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-Ca#Ca.175Mg3Al.35Si3.65O10(OH)2 ; M 385.9 g/mol +-start +1 name$ = "Saponite-Mg-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-Fe#Fe.175Mg3Al.35Si3.65O10(OH)2 ; M 388.6 g/mol +-start +1 name$ = "Saponite-Mg-Fe" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-Fe")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-K#K.35Mg3Al.35Si3.65O10(OH)2 ; M 392.6 g/mol +-start +1 name$ = "Saponite-Mg-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-Mg#Mg3.175Al.35Si3.65O10(OH)2 ; M 383.0 g/mol +-start +1 name$ = "Saponite-Mg-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-Na#Na.35Mg3Al.35Si3.65O10(OH)2; M 386.9 g/mol +-start +1 name$ = "Saponite-Mg-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Scolecite# CaAl2Si3O10:3H2O +-start +1 name$ = "Scolecite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.97 #mol.m-2.s-1 +1001 An = 1.11e-3 #mol.m-2.s-1 +1002 Ab = 5.54e-4 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR ("Scolecite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Sepiolite #Mg4Si6O15(OH)2:6H2O,653.22 g/mol +-start +1 name$ = "Sepiolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.89e-3 #mol.m-2.s-1 +1001 An = 8.0e-7 #mol.m-2.s-1 +1002 Ea = 50200 #J.mol-1 +1003 En = 40700 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.248 +1006 Sig = 6 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Sepiolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +SiO2(am)#M 60.08 g/mol +-start +1 name$ = "SiO2(am)" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.563e-4#mol/m2/s +1001 Ab = 0.0353#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 41610 +1005 Eb = 73000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("SiO2(am)") ^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Smectite-high-Fe-Mg# Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 +-start +1 name$ = "Smectite-high-Fe-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Smectite-high-Fe-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Smectite-low-Fe-Mg# Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12; 395.5 g/mol +-start +1 name$ = "Smectite-low-Fe-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.75 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Smectite-low-Fe-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Spodumene# LiAlSi2O6;M 187.9 g/mol +-start +1 name$ = "Spodumene" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 490 #mol.m-2.s-1 +1001 An = 5.40e6 #mol.m-2.s-1 +1003 Ea = 46080 #J.mol-1 +1004 En = 89538 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.5 +1010 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Spodumene")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Stilbite# Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 +-start +1 name$ = "Stilbite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3.75 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Stilbite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Stilbite-Ca# CaAl2Si7O18:7H2O +-start +1 name$ = "Stilbite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Stilbite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Talc #Mg3Si4O10(OH)2,379.259 g/mol +-start +1 name$ = "Talc" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 0.004424914 #mol.m-2.s-1 +1001 An = 1.56e-6 #mol.m-2.s-1 +1002 Ea = 50200 #J.mol-1 +1003 En = 40700 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.36 +1006 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Talc")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Tremolite #Ca2Mg5Si8O22(OH)2, 812.353 g/mol +-start +1 name$ = "Tremolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 3.0e-3 #mol.m-2.s-1 +1001 An = 2.0e-5 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 En = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.22 +1006 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Tremolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Thomsonite# Ca2NaAl5Si5O20:6H2O +-start +1 name$ = "Thomsonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.97 #mol.m-2.s-1 +1001 An = 1.11e-3 #mol.m-2.s-1 +1002 Ab = 5.54e-4 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Thomsonite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Wollastonite#CaSiO3;M 117.1 g/mol +-start +1 name$ = "Wollastonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 700 #mol.m-2.s-1 +1001 Ab = 20 #mol.m-2.s-1 +1003 Ea = 56000 #J.mol-1 +1004 Eb = 52000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.4 +1009 nb = 0.15 +1010 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Wollastonite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Zoisite#Ca2Al3(SiO4)3OH;M 457.1 g/mol +-start +1 name$ = "Zoisite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.09 #mol.m-2.s-1 +1001 An = 5.13e-5 #mol.m-2.s-1 +1002 Ab = 1.40e-9 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 43200 #J.mol-1 +1005 Eb = 42300 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.30 +1009 nb = -0.4 +1010 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Zoisite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +#### Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals############################### + +Anglesite #PbSO4; M 303.264 g/mol +-start +1 name$ = "Anglesite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.0e-2 #mol.m-2.s-1 +1002 Ab = 2e-14 #mol.m-2.s-1 +1003 Ea = 26000 #J.mol-1 +1005 Eb = 26000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1009 nb = -1.0 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Anglesite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Anhydrite #CaSO4; M 136.14 g/mol +-start +1 name$ = "Anhydrite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.30e3 #mol.m-2.s-1 +1003 Ea = 37700 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Anhydrite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Fluorapatite #Ca5(PO4)3F ; M 504.302 g/mol +-start +1 name$ = "Fluorapatite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 80 #mol.m-2.s-1 +1002 Ab = 3e-2 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1005 Eb = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.8 +1009 nb = 0.2 +1010 Sig = 5 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Fluorapatite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Hydroxyapatite #Ca5(OH)(PO4)3 ; M 502.31 g/mol +-start +1 name$ = "Hydroxyapatite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 80 #mol.m-2.s-1 +1002 Ab = 3e-2 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1005 Eb = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.8 +1009 nb = 0.2 +1010 Sig = 5 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Hydroxyapatite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Barite #BaSO4 ; M 233.404 g/mol +-start +1 name$ = "Barite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 2.5e-3 #mol.m-2.s-1 +1003 Ea = 26000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Barite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Boehmite #AlO2H : M 59.988 g/mol +-start +1 name$ = "Boehmite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 2.85 #mol.m-2.s-1 +1001 An = 4.2e-3 #mol.m-2.s-1 +1002 Ab = 5.4e-11 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 1.0 +1009 nb = -1 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Boehmite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Brucite #Mg(OH)2 ; M 58.32 g/mol +-start +1 name$ = "Brucite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.2e4 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.19 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Brucite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Celestite #SrSO4 ; M 183.684 g/mol +-start +1 name$ = "Celestite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 3.8e-2 #mol.m-2.s-1 +1003 Ea = 24000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Celestite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Diaspore #AlHO2 : M 59.99 g/mol +-start +1 name$ = "Diaspore" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 2.85 #mol.m-2.s-1 +1001 An = 4.2e-3 #mol.m-2.s-1 +1002 Ab = 5.4e-11 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 1.0 +1009 nb = -1.0 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Diaspore")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Fluorite #CaF2 ; M 78.075 g/mol +-start +1 name$ = "Fluorite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.2e6 #mol.m-2.s-1 +1003 Ea = 75000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.12 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Fluorite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Gibbsite #Al(OH)3 : M 78.00 g/mol +-start +1 name$ = "Gibbsite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 20.0 #mol.m-2.s-1 +1001 An = 3.0e-2 #mol.m-2.s-1 +1002 Ab = 3.0e-10 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 1.0 +1009 nb = -1.0 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Gibbsite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Gypsum #CaSO4:2H2O : M 172.17 g/mol +-start +1 name$ = "Gypsum" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.8e4 #mol.m-2.s-1 +1003 Ea = 37700 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Gypsum")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Halite #NaCl : M 58.44 g/mol +-start +1 name$ = "Halite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1001 An = 3.3e-4 #mol.m-2.s-1 +1004 En = -22340 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1010 Sig = 1 + #rate equation +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2003 rplus =rplusn +3000 rate = rplus * (1 - (SR ("Halite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Monazite-Ce #CePO4 : M 235.087 g/mol +-start +1 name$ = "Monazite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.0e-4 #mol.m-2.s-1 +1001 An = 1.0e-7 #mol.m-2.s-1 +1002 Ab = 1.2e-11 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1004 En = 43000 #J.mol-1 +1005 Eb = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.7 +1009 nb = -0.5 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Monazite-Ce")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Periclase #MgO : M 40.304 g/mol +-start +1 name$ = "Periclase" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.2e4 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.19 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Periclase")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Pyromorphite #Pb5(PO4)3Cl ; M 1356.365 g/mol +-start +1 name$ = "Pyromorphite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 58 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.68 +1010 Sig = 5 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Pyromorphite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Variscite #AlPO4:2H2O ; M 157.983 g/mol +-start +1 name$ = "Variscite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.0e-4 #mol.m-2.s-1 +1002 Ab = 2.4e-7 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1005 Eb = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.3 +1009 nb = -0.3 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Variscite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +## carbonates + +Aragonite #CaCO3; M 100.0869 g/mol +-start +1 name$ = "Aragonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =11.025# mol.m-2.s-1 +1001 Ac = 122.5 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Aragonite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Calcite #CaCO3; M 100.0869 g/mol +-start +1 name$ = "Calcite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =5.625# mol.m-2.s-1 +1001 Ac = 62.5 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Calcite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Cerussite #PbCO3; M 267.2089 g/mol +-start +1 name$ = "Cerussite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2.55# mol.m-2.s-1 +1001 Ac = 45.45 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Cerussite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Dawsonite # NaAlCO3(OH)2 : M 144.0 g/mol +-start +1 name$ = "Dawsonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.6e5# mol.m-2.s-1 +1001 Ac = 0.3 # mol.m-2.s-1 +1002 Ea =55000# J/mol +1003 Eac =55000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =0 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Dawsonite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Dolomite # CaMg(CO3)2: M 184.40 g/mol !!! +-start +1 name$ = "Dolomite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.2e-3# mol.m-2.s-1 +1001 Ac = 650 # mol.m-2.s-1 +1002 Ea =10000# J/mol +1003 Eac =65000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1.9 +1007 na =0.5 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Dolomite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Gaspite # NiCO3: M 118.702 g/mol +-start +1 name$ = "Gaspite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2.6e-6# mol.m-2.s-1 +1001 Ac = 6.73e-3 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 3.73 +1007 na =0.55 +1008 kc =1000 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Gaspite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Magnesite # MgCO3: M 84.314 g/mol +-start +1 name$ = "Magnesite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =5e-4# mol.m-2.s-1 +1001 Ac = 2.7e-2 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =45000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 3.94 +1007 na =0.66 +1008 kc =380 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Magnesite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Otavite # CdCO3: M 172.419 g/mol +-start +1 name$ = "Otavite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.02# mol.m-2.s-1 +1001 Ac = 11.36 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Otavite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Rhodochrosite #MnCO3 : M 114.95 g/mol +-start +1 name$ = "Rhodochrosite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2.28e-3# mol.m-2.s-1 +1001 Ac = 0.4 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 4.65 +1007 na =0.5 +1008 kc =1000 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Rhodochrosite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Siderite # FeCO3: M 115.856 g/mol !!! +-start +1 name$ = "Siderite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2e-3# mol.m-2.s-1 +1001 Ac = 0.2 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 4 +1007 na =0.7 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Siderite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Smithsonite # ZnCO3: M 125.399 g/mol !!! +-start +1 name$ = "Smithsonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.94# mol.m-2.s-1 +1001 Ac = 8.89 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 2 +1007 na =1 +1008 kc =200 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Smithsonite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Strontianite # ZnCO3: M 125.399 g/mol +-start +1 name$ = "Strontianite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2.2e-3# mol.m-2.s-1 +1001 Ac = 8.89 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =240 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Strontianite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Witherite # BaCO3: M 197.349 g/mol !!! +-start +1 name$ = "Witherite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =35# mol.m-2.s-1 +1001 Ac = 12 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Witherite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +###! + + + diff --git a/database/Kinec_v3.dat b/database/Kinec_v3.dat new file mode 100644 index 00000000..d782d182 --- /dev/null +++ b/database/Kinec_v3.dat @@ -0,0 +1,12159 @@ +# KINEC_v3.dat - last edited July 23, 2024 by MA and EHO. +# +# This database contains the parameters for calculating mineral dissolution rates for primary and secondary silicate minerals using the equations and parameters reported by Hermanska et al. (2022, 2023), +# and dissolution rates for other mineral systems using the equations and parameters reported by Oelkers and addassi (2024*). +# +# This database contains thermodynamic properties from the Carbfix.dat (Voigt et al., 2018) and the llnl.dat database. +# The thermodynamic data for Gaspite, Variscite were taken from https://thermoddem.brgm.fr/ and Monazite-Ce was extracte from (A.P. Gysi et al. / Geochimica et Cosmochimica Acta 242 (2018)) +# +# Several solid solutions have been added to the kinetics database to properly address the release of metals from solid solutions. The solubilities of these solid solutions are based on the ideal mechanical mixing of the endmembers. These solid solutions are indicated by the suffix: _ss +# +#----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- +# README for the RATES blocks in the Kinec.v2.dat file + + +# Reference literature for derived kinetic fits can be found in Hermanska et al. (2022, 2003) and Oelkers and addassi (2024*), along with pH and temperature conditions. Note the minerals glauconite and Struvite are not present in the current database due to lack of thermodynamic data. +# Also please note that extrapolation of the database to different conditions or mineral precipitation might lead to incorrect results. + + +# When loading this database in PHREEQC, simulations can make use of them through using KINETICS blocks. These rates could also be imported to different thermodynamics databases if desired. + +# Below is a minimal example for such a KINETICS block, explaining the different parameters specific to KINEC.v2.dat. Other parameters can be specified as explained in the PHREEQC documentation. + +#------------------------------------------------ +##Example data block for mineral end-members: + +#KINETICS +#Albite # Name of the mineral +# -m0 1e-3 # Initial moles of mineral +# -parms 0 100 0 0 # Four parameters as explained below + +##Example data block for selected mineral solid solutions (selected solid solutions listed in Appendix in Hermanska et al. (2022)): + +#KINETICS +#Augite_ss # Name of the mineral +# -formula Mg0.45Fe0.275Ca0.275SiO3 1 # Mineral formula ! must be added to run solid soultions. +# -m0 100 # Initial moles of mineral +# -parms 0 0.0088183 0 2 # Four parameters as explained below + +#------------------------------------------------ +#Parameters: +#Four parameters are necessary when using rates from Kenec.dat: +# - The first parameter specifies if the specific surface area is entered as m2 per g of rock (0) or m2 per kg of water (1) +# - The second parameter specifies the specific surface area of the mineral (in m2/g or m2/kgw depending on the choice of the first parameter) +# - The third parameters define how the surface area changes during dissolution and has three possible values. This option is only available when the first parameter is 0. If the first parameter is 1, the surface area is always constant. +# 0: The surface area changes linearly with the moles of the mineral present +# 1: The surface area changes according to the geometry of dissolving cubes or spheres +#- The fourth parameter specifies the dissolution and precipitation option +# 0: allow dissolution and precipitation +# 1: allow precipitation only +# 2: allow dissolution only +#----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- +# +# References for KINEC_v3.dat database description: +#Hermanska M., Voigt M. J., Marieni C., Declercq J., and Oelkers E. H. (2022) A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology. 597, 120807. https://doi.org/10.1016/j.chemgeo.2022.120807 +# +#Hermanska M., Voigt M. J., Marieni C., Declercq J., and Oelkers E. H. (2023) A comprehensive and internally consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology. 636, 121632 https://doi.org/10.1016/j.chemgeo.2023.121632 +# +# and +# +# Oelkers, E.H., Addassi, M. 2024. A comprehensive and internally consistent mineral dissolution rate database: Part III: Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals. (in preperation) +# ********************************************************************* +# +# Thermodynamics from carbfix.dat (Voigt et al., 2018). +# Reference for carbfix.dat database description: Voigt M., Marieni C., Clark D. E., Gislason S. R., and Oelkers E. H. (2018) Evaluation and refinement of thermodynamic databases for mineral carbonation. Energy Procedia 146, 81-91. http://dx.doi.org/10.1016/j.egypro.2018.07.012 +# +# Reference for core10.dat database description: Neveu M., Desch S. J., Castillo-Rogez J. C. (2017) Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas compositions, and fate of antifreezes and radionuclides. Geochimica et Cosmochimica Acta 212, 324-371. http://dx.doi.org/10.1016/j.gca.2017.06.023 +# +#*********************************************************************** +# +# Extrapolation algorithms: +# 64cri/cob: ? (12 aq species, all also with supcrt92) +# Cp integration = Integration of heat capacity vs. temperature measurements (162 solids, 2 gases) +# Constant H approx = Constant enthalpy approximation (76 solids) +# 69hel: http://dx.doi.org/10.2475/ajs.267.7.729 (5 aq species) +# Marion+12 (NH4Cl, NH4HCO3) +# supcrt92 = SUPCRT92 (329 aq, solids, gases) +# N17 ([(6)(CB)(CB)S], NH4-feldspar, NH4-muscovite) +# +# References: +# APP14: http://dx.doi.org/10.1016/j.gca.2013.10.003 (25 molar volumes, see phreeqc.dat) +# AS01: http://dx.doi.org/10.1016/S0168-6445(00)00062-0 (NO(g)) +# BH86: Barta and Hepler, 1986, Can. J.C. 64, 353. (Al+3, AlOH+2 molar volumes) +# Catalano13: http://dx.doi.org/10.1002/jgre.20161 (23 saponites + ripidolite) +# CWM89: http://www.worldcat.org/oclc/18559968 (20 solids, incl. 14 elemental) +# E68: Ellis, 1968, J. Chem. Soc. A, 1138. (Li+ molar volume) +# HDN+78: http://www.worldcatlibraries.org/oclc/13594862 (117 solids) +# Hel+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (Pyridine) +# Hel+09: http://dx.doi.org/10.1016/j.gca.2008.03.004 (Kerogen C128, C292, C515) +# HOK+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (C2H6(g), C3H8(g)) +# Hovis04: http://dx.doi.org/10.2138/am-2004-0111 (NH4-muscovite molar volume) +# HSS95: http://dx.doi.org/10.1016/0016-7037(95)00314-P (55 solutes) +# Joh90: Johnson, J.W., 1990, Personal calculation, Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C): Earch Sci. Dept, LLNL, Livermore, CA. (H2O(g)) +# Kel60: http://www.worldcat.org/oclc/693388901 (8 gases) +# M13: McColm I. J. (2013) Dictionary of Ceramic Science and Engineering, p.72. (CaUO4 molar volume) +# Marion+03: http://dx.doi.org/10.1016/S0016-7037(03)00372-7 (FeOH+) +# Marion+05: http://dx.doi.org/10.1016/j.gca.2004.06.024 (Arcanite, Gypsum, Niter, Thenardite molar volumes) +# Marion+08: http://dx.doi.org/10.1016/j.gca.2007.10.012 (FeOH+, FeOH+2, Melanterite molar volume) +# Marion+09: http://dx.doi.org/10.1016/j.gca.2009.03.013 (Alum-K molar volume) +# Marion+12: http://dx.doi.org/10.1016/j.icarus.2012.06.016 (NH4Cl, NH4HCO3) +# MLS+03: http://dx.doi.org/10.2138/am-2003-5-613 (Goethite) +# MS97: http://dx.doi.org/10.1016/S0016-7037(97)00241-X (HCl, MgSO4) +# N17: http://dx.doi.org/10.1016/j.gca.2017.06.023 ([(6)(CB)(CB)S], NH4-feldspar, NH4-muscovite) +# R01: http://dx.doi.org/10.1016/S0016-7037(01)00761-X ([(6)(CB)(CB)S]) +# RHF79: http://pubs.er.usgs.gov/publication/b1452 (40 solids) +# RH98: http://dx.doi.org/10.1016/S0016-7037(97)00345-1 ([(aro)-O-(aro)], Kerogen C128, C292, C515) +# SH88: http://dx.doi.org/10.1016/0016-7037(88)90181-0 (42 solutes, 1 solid) +# SH90: http://dx.doi.org/10.1016/0016-7037(90)90429-O (6 organic solutes) +# Sho93: http://dx.doi.org/10.1016/0016-7037(93)90542-5 (C2H4(g), CO(g)) +# Sho95: http://dx.doi.org/10.2475/ajs.295.5.496 (4 organic solutes) +# Sho09: http://dx.doi.org/10.2113/gsecongeo.104.8.1235 (Goethite) +# SHS89: http://dx.doi.org/10.1016/0016-7037(89)90341-4 (11 solutes) +# SK93: http://dx.doi.org/10.1016/0016-7037(93)90128-J (44 acetic acid/acetate complexes) +# SS93: http://dx.doi.org/10.1016/0016-7037(93)90337-V (CH2O) +# SM93: http://dx.doi.org/10.1006/icar.1993.1185 (CO, CO(NH2)2, HCN solutes) +# SSB97: http://dx.doi.org/10.1016/S0016-7037(97)00240-8 (UO2OH+, Uraninite) +# SSH97: http://dx.doi.org/10.1016/S0016-7037(97)00009-4 (30 solutes) +# SSW+97: https://doi.org/10.1016/S0016-7037(96)00339-0 +# SSW01: http://dx.doi.org/10.1016/S0016-7037(01)00717-7 (CO2, H2S) +# Ste01: http://dx.doi.org/10.1016/S0009-2541(00)00263-1 (Ti(OH)4) +# Wat81: ‚ÄúAmmonium Aluminosilicates: The Examination of a Mechanism for the High Temperature Condensation of Ammonia in Circumplanetary Subnebulae‚Äù MS Thesis, MIT, 1981. (NH4-feldspar, NH4-muscovite) +# WEP+82: http://dx.doi.org/10.1063/1.555845 (87 solutes, solids, and gases) +# WebElements: http://www.webelements.com/periodicity/molar_volume (K, U molar volumes) +# WebMineral: http://www.webmineral.com (38 solid molar volumes) +# Wilson+06: http://dx.doi.org/10.1016/j.gca.2005.10.003 (Chamosite, Lizardite) +# +# 73bar/kna: Barin, I., and Knacke, O., 1973, Thermochemical properties of inorganic substances: Springer-Verlag, New York. (Alum-K, MgOHCl, Na2SiO3, Nahcolite) +# 77bar/kna: Barin, I., Knacke, O., and Kubaschewski, O., 1977, Thermochemical properties of inorganic substances. Supplement: Springer-Verlag, New York. (Natrosilite, Pseudowollastonite, Rankinite) +# 87bou/bar: http://dx.doi.org/10.2113/gsecongeo.82.7.1839 (ZnOH+) +# 88db 3: Database development group iii/3, 1988, Errors in computation of estimated delH298 for montmor-x endmembers of smectite-di solid solution: LLNL Internal Memo. (Montmor-Ca, K, Mg, Na) +# 89db 7=89db 6, Database development group, 1989, Zeolite thermodynamic data: LLNL Internal memo. (Clinoptilolite-K) +# 76del/hal: http://dx.doi.org/10.1021/cr60301a001 (2 Cr solutes, 9 Cr solids) +# 92gre/fug: Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., and Wanner, H., 1992, Chemical Thermodynamics, Volume 1: Chemical Thermodynamics of Uranium: North-Holland, Amsterdam, 1, 714p. (4 U solutes, 21 U solids) +# 90how/joh: http://dx.doi.org/10.1016/S0144-2449(05)80307-0 (Stilbite) +# 75kas/bor: Kashkay, C.H.M., Borovskaya,Y.U.B., and Babazade, M.A., 1975, Determination of delG0f298K of synthetic jarosite and its sulfate analogues: Geochem. Intl., 12, 115-121. (Jarosite) +# 87kee/rup: Kee, R.J., Rupley, F.M., and Miller, J.A., 1987, The Chemkin thermodynamic database: SNL Rep. SAND-87-8215, 92p. (Ice) +# 78lan: http://dx.doi.org/10.1016/0016-7037(78)90001-7 (Bassetite, Ningyoite, Saleeite) +# 80lan/her: http://dx.doi.org/10.1016/0016-7037(80)90226-4 (ThCl4) +# 82mar/smi: Martell, A.E., and Smith, R.M., 1982, Critical Stability Constants, Vol. 5: First Supplement: Plenum, New York, 5, 604p. (MgSO4(aq)) +# 74nau/ryz: Naumov, G.B., Ryzhenko, B.N., and Khodakovsky, I.L., 1974, Handbook of Thermodynamic Data: U.S.G.S. WRD-74-001, 328p. (CoCl+, CoFe2O4, CoS, CoSO4:H2O, Delafossite, Ni2SiO4) +# 76mac: http://dx.doi.org/10.1016/0010-938X(76)90066-4 (Mn+3) +# 95pok/hel: http://dx.doi.org/10.2475/ajs.295.10.1255 (4 solutes, 4 solids) +# 85rar 2: http://dx.doi.org/10.1021/cr00070a003 (9 europium solids) +# 87rar 2: Rard, J.A., 1987, Update of the europium data base, October, 1987: LLNL Internal Memo. (3 europium solids) +# 87rua/sew: http://dx.doi.org/10.1016/0016-7037(87)90013-5 (HCl) +# 82sar/bar: Sarkar, A.K., Barnes, M.W., and Roy, D.M., 1982, Longevity of borehole and shaft sealing materials: thermodynamic properties of cements and related phases applied to repository sealing: ONWI Tech. Rep. ONWI-201, 52p. (16 solids) +# 84sve: http://dx.doi.org/10.1016/0016-7037(84)90203-5 (Sphaerocobaltite) +# 78vau/cra: Vaughan, D.J., and Craig, J.R., 1978, Mineral chemistry of metal sulfides: Cambridge Univ. Press, Cambridge, MA. (5 solids) +# 78wol: Wolery, T.J., 1978, Some chemical aspects of hydrothermal processes at mid-oceanic ridges -- A theoretical study. I. Basalt-sea water reaction and chemical cycling between the oceanic crust and the oceans. II. Calculation of chemical equilibrium between aqueous solutions and minerals: Unpub. Ph.D. Diss., Northwestern Univ., Evaston, IL, 263p. (23 clays) +# 87woo/gar: Woods, T.L., and Garrels, R.M., 1987, Thermodynamic values at low temperature for natural inorganic materials: An uncritical summary: Oxford Univ. Press, Oxford. (Atacamite, Brochantite, Dioptase) +# +# Additional carbfix.dat references +# D08: http://dx.doi.org/10.1186/1467-4866-9-10 +# DEW17: Deep Earth Water (DEW) spreadsheet http://www.dewcommunity.org +# HP98: https://doi.org/10.1111/j.1525-1314.1998.00140.x +# HP11: http://dx.doi.org/10.1111/j.1525-1314.2010.00923.x +# Neu00: Neuhoff P.S., 2000, Thermodynamic Properties and Parageneses of Rock-Forming Zeolites. PhD Thesis. Stanford University. +# SBS13: http://dx.doi.org/10.1016/j.gca.2013.04.023 +# SBS14: http://dx.doi.org/10.1016/j.gca.2014.04.008 +# MS97: http://dx.doi.org/10.1016/S0016-7037(97)00241-X +# PB82: http://doi.org/10.1016/0016-7037(82)90056-4 +# P+96: http://dx.doi.org/10.1016/0016-7037(96)00123-8 +# SK95: http://doi.org/10.1016/0016-7037(95)00058-8 +# SS97: http://doi.org/10.1016/S0016-7037(97)00291-3 +# TS01: http://dx.doi.org/10.1016/S0016-7037(01)00705-0 +# Z+16: http://dx.doi.org/10.1016/j.cageo.2016.02.013 +# +# Species have various valid temperature ranges, noted in the Range parameter. Currently, Phreeqc does not use this parameter, so it is up to the user to remain in the valid temperature range for all data used. + +# Example entry block: + +# Formation reaction from basis species +# -llnl_gamma # ion size parameter in B-dot Debye-Huckel equation +# log_k # at 25C, 1 bar, used if no -delta_H or -analytic +# -delta_H # molar enthalpy of reaction, used if no -analytic +# # deltafH # molar enthalpy of formation from reference compounds +# -analytic b1 b2 b3 b4 b5 b6 # logK = b1 + b2*T + b3/T + b4*log(T) + b5/T2 + b6*T2 +# # Range Tmin-Tmax # of validity of -analytic +# -Vm a1 a2 a3 a4 omega # See APP14, SH88 for equations +# # Extrapol # extrapolation algorithm +# # Ref # references +#----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- + +# DATABASE STARTS BELOW +# +LLNL_AQUEOUS_MODEL_PARAMETERS +-temperatures + 0.01 25 60 100 + 150 200 250 300 +#debye huckel a (adh) +-dh_a + 0.4939 0.5114 0.5465 0.5995 + 0.6855 0.7994 0.9593 1.2180 +#debye huckel b (bdh) +-dh_b + 0.3253 0.3288 0.3346 0.3421 + 0.3525 0.3639 0.3766 0.3925 +-bdot + 0.0374 0.0410 0.0438 0.0460 + 0.0470 0.0470 0.0340 0 +#cco2 (coefficients for the Drummond (1981) polynomial) +-co2_coefs + -1.0312 0.0012806 + 255.9 0.4445 + -0.001606 + +SOLUTION_MASTER_SPECIES + +#element species alk gfw_formula element_gfw + +Al Al+3 0 Al 26.9815 +Alkalinity HCO3- 1 Ca0.5(CO3)0.5 50.05 +B B(OH)3 0 B 10.811 +B(3) B(OH)3 0 B -36.44179 +Ba Ba+2 0 Ba 137.3270 +C(-4) CH4 0 CH4 -33.31051 +C(-3) C2H6 0 C2H6 -30.54674 +C(-2) C2H4 0 C2H4 -28.08539 +C HCO3- 1 HCO3 12.011 +C(+2) CO 0 C -23.87691 +C(+4) HCO3- 1 HCO3 -22.05727 +Ca Ca+2 0 Ca 40.078 +Ce Ce+3 0 Ce 140.115 +Ce(+2) Ce+2 0 Ce +Ce(+3) Ce+3 0 Ce +Ce(+4) Ce+4 0 Ce +Cl Cl- 0 Cl 35.4527 +Cl(-1) Cl- 0 Cl -17.43358 +Cl(1) ClO- 0 Cl -16.11094 +Cl(3) ClO2- 0 Cl -14.87484 +Cl(5) ClO3- 0 Cl -13.71476 +Cl(7) ClO4- 0 Cl +Co Co+2 0 Co 58.9332 +Co(+2) Co+2 0 Co +Co(+3) Co+3 0 Co +Cr CrO4-2 0 CrO4-2 51.9961 +Cr(+2) Cr+2 0 Cr +Cr(+3) Cr+3 0 Cr +Cr(+6) CrO4-2 0 Cr +Cd Cd+2 0 Cd 112.411 +Cu Cu+2 0 Cu 63.546 +Cu(+1) Cu+1 0 Cu +Cu(+2) Cu+2 0 Cu +E e- 0 0 0 +Eu Eu+3 0 Eu 151.965 +Eu(+2) Eu+2 0 Eu +Eu(+3) Eu+3 0 Eu +F F- 0 F 18.9984 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Gd Gd+3 0 Gd 157.25 +Gd(+3) Gd+3 0 Gd +H H+ -1 H 1.0079 +H(0) H2 0 H +H(+1) H+ -1 0 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.941 +Mg Mg+2 0 Mg 24.305 +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Mn(+6) MnO4-2 0 Mn +Mn(+7) MnO4- 0 Mn +Mo MoO4-2 0 Mo 95.94 +N NH3 1 N 14.0067 +N(-3) NH3 1 N +N(0) N2 0 N +N(+3) NO2- 0 N +N(+5) NO3- 0 N +Na Na+ 0 Na 22.9898 +Ni Ni+2 0 Ni 58.69 +O H2O 0 O 15.994 +O(-2) H2O 0 0 +O(0) O2 0 O +P HPO4-2 2 P 30.9738 +P(5) HPO4-2 2 P +Pb Pb+2 0 Pb 207.20 +Pb(+2) Pb+2 0 Pb +Pb(+4) Pb+4 0 Pb +S SO4-2 0 SO4 32.066 +S(-2) HS- 1 S +S(+2) S2O3-2 0 S +S(+3) S2O4-2 0 S +S(+4) SO3-2 0 S +S(+5) S2O5-2 0 S +S(+6) SO4-2 0 SO4 +S(+7) S2O8-2 0 S +S(+8) HSO5- 0 S +Sc Sc+3 0 Sc 44.9559 +Si SiO2 0 SiO2 28.0855 +Sm Sm+3 0 Sm 150.36 +Sm(+2) Sm+2 0 Sm +Sm(+3) Sm+3 0 Sm +Sr Sr+2 0.0 Sr 87.62 +Th Th+4 0 Th 232.0381 +Ti Ti(OH)4 0 Ti 47.88 +U UO2+2 0 U 238.0289 +U(+3) U+3 0 U +U(+4) U+4 0 U +U(+5) UO2+ 0 U +U(+6) UO2+2 0 U +Zn Zn+2 0 Zn 65.39 + + + +SOLUTION_SPECIES + +#------------------ +# 31 basis species +#------------------ + +Al+3 = Al+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -128.681 kcal/mol + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # APP14, BH86 + +B(OH)3 = B(OH)3 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -256.82 kcal/mol + -Vm 7.0643 8.847 3.5844 -3.1451 -0.2 0 0 0 0 0 # SHS89 + +Ca+2 = Ca+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -129.8 kcal/mol + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # APP14 + +Cd+2 = Cd+2 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cd+2 +# Enthalpy of formation: -18.14 kcal/mol + +Cl- = Cl- + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -39.933 kcal/mol + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # APP14 + +Co+2 = Co+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -13.9 kcal/mol + -Vm -1.2252 -8.9356 5.3191 -2.4095 1.47690 0 0 0 0 0 # SSW+97 + +CrO4-2 = CrO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -210.6 kcal/mol + -Vm 5.4891 5.6223 3.5382 -3.0113 3.00240 0 0 0 0 0 # SSW+97 + +Cu+2 = Cu+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH 15.7 kcal/mol + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # APP14 + +e- = e- + +Eu+3 = Eu+3 + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -144.7 kcal/mol + -Vm -3.1037 -15.3599 11.7871 -2.144 2.3161 0 0 0 0 0 # SH88 + +F- = F- + -llnl_gamma 3.5000 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -80.15 kcal/mol + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 # APP14 + +Fe+2 = Fe+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -22.05 kcal/mol + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # APP14 + +Gd+3 = Gd+3 + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -164.2 kcal/mol + -Vm -2.9771 -15.0506 11.6656 -2.1568 2.3265 0 0 0 0 0 # SH88 + +H+ = H+ + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -0 kJ/mol + +HCO3- = HCO3- + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -164.898 kcal/mol + -Vm 7.5621 1.1505 1.2346 -2.8266 1.27330 0 0 0 0 0 # SH88 + +HPO4-2 = HPO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -308.815 kcal/mol + -Vm 3.6315 1.0857 5.3233 -2.8239 3.33630 0 0 0 0 0 # SH88 + +K+ = K+ + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -60.27 kcal/mol + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # APP14 + +Li+ = Li+ + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -66.552 kcal/mol + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # APP14, E68 + +Mg+2 = Mg+2 + -llnl_gamma 8 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -111.367 kcal/mol + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # APP14 + +Mn+2 = Mn+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -52.724 kcal/mol + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # APP14 + +MoO4-2 = MoO4-2 + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -238.5 kcal/mol + -Vm 6.9651 2.7095 18.6617 -2.8909 3.07770 0 0 0 0 0 # SSW+97 + +NH3 = NH3 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -19.44 kcal/mol + -Vm 5.0911 2.797 8.6248 -2.8946 -7.690e-2 0 0 0 0 0 # SHS89 + +Na+ = Na+ + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -57.433 kcal/mol + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # APP14 + +Ni+2 = Ni+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -12.9 kcal/mol + -Vm -1.6942 -11.9181 10.4344 -2.2863 1.50670 0 0 0 0 0 # SH88 + +H2O = H2O + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -68.317 kcal/mol + +SO4-2 = SO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -217.4 kcal/mol + -Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # APP14 + +Sc+3 = Sc+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -146.8 kcal/mol + -Vm -2.1109 -12.9294 10.817 -2.2444 2.5003 0 0 0 0 0 # SSW+97 + +SiO2 = SiO2 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -209.775 kcal/mol + -Vm 1.9 1.7 20 -2.7 0.12910 0 0 0 0 0 # SHS89 + +Sm+3 = Sm+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -165.2 kcal/mol + -Vm -3.2065 -15.6108 11.8857 -2.1337 2.2955 0 0 0 0 0 # SH88 + +Th+4 = Th+4 + -llnl_gamma 11 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -183.8 kcal/mol + -Vm -4.2886 -18.25 12.9154 -2.0244 3.70930 0 0 0 0 0 # SSW+97 + +Ti(OH)4 = Ti(OH)4 + -llnl_gamma 3 + log_k 0 +# deltafH -0 kcal/mol + -Vm 7.366874 10.21009 1.152964 -3.201004 0.01498566 0 0 0 0 0 # Ste01 + +UO2+2 = UO2+2 + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -1019 kJ/mol + -Vm 3.0256 -4.1084 15.3326 -2.6091 1.40990 0 0 0 0 0 # SSW+97 + +Zn+2 = Zn+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -36.66 kcal/mol + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 # APP14 + +Ba+2 = Ba+2 + -llnl_gamma 5.0 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ba+2 +# Enthalpy of formation: -128.5 kcal/mol + +Ce+3 = Ce+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ce+3 +# Enthalpy of formation: -167.4 kcal/mol + +Pb+2 = Pb+2 + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pb+2 +# Enthalpy of formation: 0.22 kcal/mol + +Sr+2 = Sr+2 + -llnl_gamma 5.0 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sr+2 +# Enthalpy of formation: -131.67 kcal/mol +#------------------- +# 40 Redox couples +#------------------- + +2H2O = O2 + 4H+ + 4e- + -CO2_llnl_gamma + log_k -85.9951 + -delta_H 559.543 kJ/mol +# deltafH -2.9 kcal/mol + -analytic 38.0229 7.99407e-3 -2.7655e4 -1.4506e1 199838.45 +# Range 0-350 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 +# Extrapol supcrt92 +# Ref SHS89 + +SO4-2 + H+ = HS- + 2 O2 + -llnl_gamma 3.5 + log_k -138.3169 + -delta_H 869.226 kJ/mol +# deltafH -3.85 kcal/mol + -analytic 2.6251e1 3.9525e-2 -4.5443e4 -1.1107e1 3.1843e5 +# Range 0-350 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.44100 +# Extrapol supcrt92 +# Ref SH88 + +.5 O2 + 2 HS- = S2-2 + H2O + -llnl_gamma 4.0 + log_k 33.2673 +# deltafH -0 kcal/mol + -analytic 0.21730e2 -0.12307e-2 0.10098e5 -0.88813e1 0.15757e3 + -mass_balance S(-2)2 +# Range 0-350 + -Vm 5.5797 5.8426 3.4536 -3.0205 3.10830 +# Extrapol supcrt92 +# Ref SH88 + +2 H+ + 2 SO3-2 = S2O3-2 + O2 + H2O + -llnl_gamma 4.0 + log_k -40.2906 +# deltafH -0 kcal/mol + -analytic 0.77679e2 0.65761e-1 -0.15438e5 -0.34651e2 -0.24092e3 +# Range 0-350 + -Vm 6.6685 12.4951 -7.7281 -3.2955 2.96940 +# Extrapol supcrt92 +# Ref SH88 + +H+ + HCO3- + H2O = CH4 + 2 O2 + -llnl_gamma 3.0 + log_k -144.1412 + -delta_H 863.599 kJ/mol +# deltafH -21.01 kcal/mol + -analytic -0.41698e2 0.36584e-1 -0.40675e5 0.93479e1 -0.63468e3 +# Range 0-350 + -Vm 6.7617 8.7279 2.3212 -3.1397 -0.31790 +# Extrapol supcrt92 +# Ref SH90 + +2 H+ + 2 HCO3- + H2O = C2H6 + 3.5 O2 + -llnl_gamma 3.0 + log_k -228.6072 +# deltafH -0 kcal/mol + #analytic -0.10777e2 0.72105e-1 -0.67489e5 -0.13915e2 -0.10531e4 + -analytic -491.3 1.148 -10004 0 0 -8.06e-4 # !!! Using CHNOSZ, discrepant with above expression unless the first term is -0.10777e2 instead of 0.10777e2 +# Range 0-350 + -Vm 8.75 13.1051 1.6258 -3.3207 -0.06270 +# Extrapol supcrt92 +# Ref SH90 + +2 H+ + 2 HCO3- = C2H4 + 3 O2 + -llnl_gamma 3.0 + log_k -254.5034 + -delta_H 1446.6 kJ/mol +# deltafH 24.65 kcal/mol + #analytic -0.30329e2 0.71187e-1 -0.73140e5 + -analytic 6e-2 3.60e-2 -7.17e4 +# Range 0-350 + -Vm 7.856 12.6391 -1.8737 -3.3014 -0.4 +# Extrapol supcrt92 +# Ref SH90 + +HCO3- + H+ = CO + H2O + 0.5 O2 + -llnl_gamma 3.0 + log_k -41.7002 + -delta_H 277.069 kJ/mol +# deltafH -28.91 kcal/mol + -analytic 1.0028e2 4.6877e-2 -1.8062e4 -4.0263e1 3.8031e5 +# Range 0-350 + -Vm 6.2373 7.4498 2.8184 -3.0869 -0.37150 +# Extrapol supcrt92 +# Ref SM93 + +Cl- + 0.5 O2 = ClO- + -llnl_gamma 4.0 + log_k -15.1014 + -delta_H 66.0361 kJ/mol +# deltafH -25.6 kcal/mol + -analytic 6.1314e1 3.4812e-3 -6.0952e3 -2.3043e1 -9.5128e1 +# Range 0-350 + -Vm 2.3599 -2.0164 6.5356 -2.6955 1.47670 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +O2 + Cl- = ClO2- + -llnl_gamma 4.0 + log_k -23.108 + -delta_H 112.688 kJ/mol +# deltafH -15.9 kcal/mol + -analytic 3.3638e0 -6.1675e-3 -4.9726e3 -2.0467e0 -2.5769e5 +# Range 0-350 + -Vm 5.2163 4.958 3.7949 -2.9839 1.2637 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +1.5 O2 + Cl- = ClO3- + -llnl_gamma 3.5 + log_k -17.2608 + -delta_H 81.3077 kJ/mol +# deltafH -24.85 kcal/mol + -analytic 2.8852e1 -4.8281e-3 -4.6779e3 -1.0772e1 -2.0783e5 +# Range 0-350 + -Vm 7.1665 9.7172 1.9307 -3.1807 1.0418 +# Extrapol supcrt92 +# Ref SH88 + +2 O2 + Cl- = ClO4- + -llnl_gamma 3.5 + log_k -15.7091 + -delta_H 62.0194 kJ/mol +# deltafH -30.91 kcal/mol + -analytic 7.0280e1 -6.8927e-5 -5.5690e3 -2.6446e1 -1.6596e5 +# Range 0-350 + -Vm 8.1411 15.5654 -7.8077 -3.4224 0.9699 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H+ + Co+2 + 0.25 O2 = Co+3 + 0.5 H2O + -llnl_gamma 5.0 + log_k -11.4845 + -delta_H 10.3198 kJ/mol +# deltafH 22 kcal/mol + -analytic -2.2827e1 -1.2222e-2 -7.2117e2 7.0306 -1.1247e1 +# Range 0-350 + -Vm -2.8678 -14.7777 11.5439 -2.1680 2.6901 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +4 H+ + CrO4-2 = Cr+2 + 2 H2O + O2 + -llnl_gamma 4.5 + log_k -21.6373 + -delta_H 153.829 kJ/mol +# deltafH -34.3 kcal/mol + -analytic 6.9003e1 6.2884e-2 -6.9847e3 -3.4720e1 -1.0901e2 +# Range 0-350 + -Vm -0.8036 -9.74 9.5688 -2.3762 1.4287 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76del/hal differ by 2 log K at 0C, 0.7 log K at 300C + +5 H+ + CrO4-2 = Cr+3 + 2.5 H2O + 0.75 O2 + -llnl_gamma 9.0 + log_k 8.3842 + -delta_H -81.0336 kJ/mol +# deltafH -57 kcal/mol + -analytic 5.1963e1 6.0932e-2 5.4256e3 -3.2290e1 8.4645e1 +# Range 0-350 + -Vm -2.7824 -14.5709 11.4661 -2.1765 2.7403 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76del/hal differ by 1.5 log K at 0C, 0.8 log K at 300C + +Cu+2 + 0.5 H2O = Cu+ + H+ + 0.25 O2 + -llnl_gamma 4.0 + log_k -18.7704 + -delta_H 145.877 kJ/mol +# deltafH 17.132 kcal/mol + -analytic 3.7909e1 1.3731e-2 -8.1506e3 -1.3508e1 -1.2719e2 +# Range 0-350 + -Vm 0.807 -5.804 8.0165 -2.5390 0.40460 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Eu+3 + 0.5 H2O = Eu+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -27.5115 + -delta_H 217.708 kJ/mol +# deltafH -126.1 kcal/mol + -analytic 3.0300e1 1.4126e-2 -1.2319e4 -9.0585e0 1.5289e5 +# Range 0-350 + -Vm 0.0407 -7.6776 8.7578 -2.4615 1.0929 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H+ + Fe+2 + 0.25 O2 = Fe+3 + 0.5 H2O + -llnl_gamma 9.0 + log_k 8.4899 + -delta_H -97.209 kJ/mol +# deltafH -11.85 kcal/mol + -analytic -1.7808e1 -1.1753e-2 4.7609e3 5.5866 7.4295e1 +# Range 0-350 + -Vm -2.4256 -13.6961 11.1141 -2.2127 2.58120 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H2O = H2 + 0.5 O2 + -CO2_llnl_gamma + log_k -46.1066 + -delta_H 275.588 kJ/mol +# deltafH -1 kcal/mol + -analytic 6.6835e1 1.7172e-2 -1.8849e4 -2.4092e1 4.2501e5 +# Range 0-350 + -Vm 5.1427 4.7758 3.8729 -2.9764 -0.209 +# Extrapol supcrt92 +# Ref SHS89 + +SO4-2 + H+ + 0.5 O2 = HSO5- + -llnl_gamma 4.0 + log_k -17.2865 + -delta_H 140.038 kJ/mol +# deltafH -185.38 kcal/mol + -analytic 5.9944e1 3.0904e-2 -7.7494e3 -2.4420e1 -1.2094e2 +# Range 0-350 + -Vm 8.9391 14.043 0.2349 -3.3594 0.86110 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Mn+2 + H+ + 0.25 O2 = Mn+3 + 0.5 H2O + -llnl_gamma 5.0 + log_k -4.0811 + -delta_H -65.2892 kJ/mol +# deltafH -34.895 kcal/mol + -analytic 3.8873e1 1.7458e-2 2.0757e3 -2.2274e1 3.2378e1 +# Range 0-350 + -Vm -2.932 -14.934 11.6041 -2.1615 2.70250 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76mac match + +2 H2O + O2 + Mn+2 = MnO4-2 + 4 H+ + -llnl_gamma 4.0 + log_k -32.4146 + -delta_H 151.703 kJ/mol +# deltafH -156 kcal/mol + -analytic -1.0407e1 -4.6464e-2 -1.0515e4 1.0943e1 -1.6408e2 +# Range 0-350 + -Vm 5.6596 6.0368 3.3786 -3.0285 2.98030 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 NH3 + 1.5 O2 = N2 + 3 H2O + -llnl_gamma 3.0 + log_k 116.4609 + -delta_H -687.08 kJ/mol +# deltafH -2.495 kcal/mol + -analytic -8.2621e1 -1.4671e-2 4.0068e4 2.9090e1 -2.5924e5 +# Range 0-350 + -Vm 6.2046 7.3685 2.8539 -3.0836 -0.34680 +# Extrapol supcrt92 +# Ref SHS89 + +1.5 O2 + NH3 = NO2- + H+ + H2O + -llnl_gamma 3.0 + log_k +46.8653 + -delta_H -290.901 kJ/mol +# deltafH -25 kcal/mol + -analytic -1.7011e1 -3.3459e-2 1.3999e4 1.1078e1 -4.8255e4 +# Range 0-350 + -Vm 5.5864 5.859 3.4472 -3.0212 1.18470 +# Extrapol supcrt92 +# Ref SH88 + +2 O2 + NH3 = NO3- + H+ + H2O + -llnl_gamma 3.0 + log_k 62.1001 + -delta_H -387.045 kJ/mol +# deltafH -49.429 kcal/mol + -analytic -3.9468e1 -3.9697e-2 2.0614e4 1.8872e1 -2.1917e5 +# Range 0-350 + -Vm 7.3161 6.7824 -4.6838 -3.0594 1.09770 +# Extrapol supcrt92 +# Ref SH88 + +2 H+ + 2 SO3-2 = S2O4-2 + .5 O2 + H2O + -llnl_gamma 5.0 + log_k -25.2076 +# deltafH -0 kcal/mol + -analytic -2.3172e2 2.0393e-3 -7.1011 8.3239e1 9.4155e-1 +# Range 0-350 + -Vm 6.6784 8.528 2.3917 -3.1314 2.87720 +# Extrapol supcrt92 +# Ref SSW+97 + +2 SO3-2 + .5 O2 + 2 H+ = S2O6-2 + H2O + -llnl_gamma 4.0 + log_k 41.8289 +# deltafH -0 kcal/mol + -analytic 0.14458e3 0.61449e-1 0.71877e4 -0.58657e2 0.11211e3 +# Range 0-350 + -Vm 8.2257 12.3054 0.9087 -3.2876 2.75870 +# Extrapol supcrt92 +# Ref SSW+97 + +2 SO3-2 + 1.5 O2 + 2 H+ = S2O8-2 + H2O + -llnl_gamma 4.0 + log_k 70.7489 +# deltafH -0 kcal/mol + -analytic 0.18394e3 0.60414e-1 0.13864e5 -0.71804e2 0.21628e3 +# Range 0-350 + -Vm 13.3622 24.8454 -4.0153 -3.8061 2.32810 +# Extrapol supcrt92 +# Ref SH88 + +O2 + H+ + 3 HS- = S3-2 + 2 H2O + -llnl_gamma 4.0 + log_k 79.3915 +# deltafH -0 kcal/mol + -analytic -0.51626e2 0.70208e-2 0.31797e5 0.11927e2 -0.64249e6 + -mass_balance S(-2)3 +# Range 0-350 + -Vm 6.7661 8.7396 2.315 -3.1403 2.97490 +# Extrapol supcrt92 +# Ref SH88 + +3 SO3-2 + 4 H+ = S3O6-2 + .5 O2 + 2 H2O + -llnl_gamma 4.0 + log_k -6.2316 +# deltafH -0 kcal/mol + -analytic 0.23664e3 0.12702 -0.10110e5 -0.99715e2 -0.15783e3 +# Range 0-350 + -Vm 8.4155 12.7691 0.7268 -3.3068 2.71310 +# Extrapol supcrt92 +# Ref SSW+97 + +1.5 O2 + 2 H+ + 4 HS- = S4-2 + 3 H2O + -llnl_gamma 4.0 + log_k 125.2958 +# deltafH -0 kcal/mol + -analytic 0.20875e3 0.58133e-1 0.33278e5 -0.85833e2 0.51921e3 + -mass_balance S(-2)4 +# Range 0-350 + -Vm 7.9381 11.6012 1.1902 -3.2586 2.83900 +# Extrapol supcrt92 +# Ref SH88 + +4 SO3-2 + 6 H+ = S4O6-2 + 1.5 O2 + 3 H2O + -llnl_gamma 4.0 + log_k -38.3859 +# deltafH -0 kcal/mol + -analytic 0.32239e3 0.19555 -0.23617e5 -0.13729e3 -0.36862e3 +# Range 0-350 + -Vm 10.2672 17.2902 -1.0502 -3.4937 2.28050 +# Extrapol supcrt92 +# Ref SSW+97 + +2 O2 + 3 H+ + 5 HS- = S5-2 + 4 H2O + -llnl_gamma 4.0 + log_k 170.9802 +# deltafH -0 kcal/mol + -analytic 0.30329e3 0.88033e-1 0.44739e5 -0.12471e3 0.69803e3 + -mass_balance S(-2)5 +# Range 0-350 + -Vm 9.1107 14.4645 0.0649 -3.3770 2.70510 +# Extrapol supcrt92 +# Ref SH88 + +5 SO3-2 + 8 H+ = S5O6-2 + 2.5 O2 + 4 H2O + -llnl_gamma 4.0 + log_k -99.4206 +# deltafH -0 kcal/mol + -analytic 0.42074e3 0.25833 -0.43878e5 -0.18178e3 -0.68480e3 +# Range 0-350 + -Vm 8.8725 13.8806 0.2986 -3.3527 2.60760 +# Extrapol supcrt92 +# Ref SSW+97 + +H+ + HCO3- + HS- + NH3 = SCN- + 3 H2O + -llnl_gamma 3.5 + log_k 3.0070 +# deltafH -0 kcal/mol + -analytic 0.16539e3 0.49623e-1 -0.44624e4 -0.65544e2 -0.69680e2 +# Range 0-350 + -Vm 7.0244 9.3687 2.0708 -3.1662 1.10730 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +SO4-2 = SO3-2 + 0.5 O2 + -llnl_gamma 4.5 + log_k -46.6244 + -delta_H 267.985 kJ/mol +# deltafH -151.9 kcal/mol + -analytic -1.3771e1 6.5102e-4 -1.3330e4 4.7164 -2.0800e2 +# Range 0-350 + -Vm 2.4632 -1.7691 6.4494 -2.7058 3.321 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Sm+3 + 0.5 H2O = Sm+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -47.9624 + -delta_H 326.911 kJ/mol +# deltafH -120.5 kcal/mol + -analytic -1.0217e1 7.7548e-3 -1.6285e4 5.4711 9.1931e4 +# Range 0-350 + -Vm -0.0353 -7.8592 8.8194 -2.454 1.1512 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +UO2+2 + H+ = U+3 + 0.75 O2 + 0.5 H2O + -llnl_gamma 5.0 + log_k -64.8028 + -delta_H 377.881 kJ/mol +# deltafH -489.1 kJ/mol + -analytic 2.5133e1 6.4088e-3 -2.2542e4 -8.1423 3.4793e5 +# Range 0-350 + -Vm -2.8438 -14.722 11.528 -2.1703 2.27520 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +2 H+ + UO2+2 = U+4 + H2O + 0.5 O2 + -llnl_gamma 5.5 + log_k -33.9491 + -delta_H 135.895 kJ/mol +# deltafH -591.2 kJ/mol + -analytic 4.4837e1 1.0129e-2 -1.1787e4 -1.9194e1 4.6436e5 +# Range 0-350 + -Vm -4.2836 -18.2319 12.8955 -2.0252 3.68350 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +UO2+2 + 0.5 H2O = UO2+ + H+ + 0.25 O2 + -llnl_gamma 4.0 + log_k -20.0169 + -delta_H 133.759 kJ/mol +# deltafH -1025.13 kJ/mol + -analytic 8.0480 9.5845e-3 -6.5994e3 -3.5515 -1.0298e2 +# Range 0-350 + -Vm 3.3767 0.4614 5.5725 -2.7980 0.63880 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +#--------------------------- +# 156 other aqueous species +#--------------------------- + +2 CH3COOH + Al+3 = Al(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -5.595 + -delta_H -46.8566 kJ/mol +# deltafH -372.08 kcal/mol + -analytic -4.2528e1 2.1431e-3 3.1658e2 1.1585e1 5.8604e5 +# Range 0-350 + -Vm 8.9971 14.1844 0.1805 -3.3653 1.39180 +# Extrapol supcrt92 +# Ref SK93, differ by 2.2 log K at 0C, 1 log K at 300C + +4 H2O + Al+3 = Al(OH)4- + 4 H+ + -llnl_gamma 4.0 + log_k -22.8833 + -delta_H 180.899 kJ/mol +# deltafH -222.079 kcal/mol + -analytic 1.0803e1 -3.4379e-3 -9.7391e3 0e0 0e0 +# Range 0-350 + -Vm 3.7221 3.9954 -1.5879 -2.9441 1.74180 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +H2O + Al+3 = Al(OH)+2 + H+ + -llnl_gamma 4.5 + log_k -4.9571 + -delta_H 49.798 kJ/mol +# deltafH -185.096 kcal/mol + -analytic -2.6224e-1 8.8816e-3 -1.8686e3 -4.3195e-1 -2.9158e1 +# Range 0-350 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # APP14, BH86 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +B(OH)3 = BO2- + H+ + H2O + -llnl_gamma 4.0 + log_k -9.2449 + -delta_H 16.3302 kJ/mol +# deltafH -184.6 kcal/mol + -analytic -1.0500e2 -3.3447e-2 1.4706e3 4.0724e1 2.2978e1 +# Range 0-350 + -Vm -2.2428 -6.2065 -6.3216 -2.5224 1.75950 +# Extrapol supcrt92 +# Ref SH88 + +HCO3- + H+ = CO2 + H2O + -CO2_llnl_gamma + log_k 6.3447 + -delta_H -9.7027 kJ/mol +# deltafH -98.9 kcal/mol + -analytic -1.0534e1 2.1746e-2 2.5216e3 7.9125e-1 3.9351e1 +# Range 0-350 + -Vm 6.2466 7.4711 2.8136 -3.0879 -0.1934 +# Extrapol supcrt92 +# Ref SSW01, SHS89 + +HCO3- = CO3-2 + H+ + -llnl_gamma 4.5 + log_k -10.3288 + -delta_H 14.6984 kJ/mol +# deltafH -161.385 kcal/mol + -analytic -6.9958e1 -3.3526e-2 -7.0846e1 2.8224e1 -1.0849 +# Range 0-350 + -Vm 2.8524 -3.9844 6.4142 -2.6143 3.39140 +# Extrapol supcrt92 +# Ref SH88 + +NH3 + HCO3- = CN- + 2 H2O + 0.5 O2 + -llnl_gamma 3.0 + log_k -56.0505 + -delta_H 344.151 kJ/mol +# deltafH 36 kcal/mol + -analytic -1.1174e1 3.8167e-3 -1.7063e4 4.5349e0 -2.6625e2 +# Range 0-350 + -Vm 5.4714 5.5813 3.5497 -3.0096 1.29000 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +HCO3- + H+ = HCOOH + 0.5 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -39.0524 + -analytic -16.6 0.041 -10000 0 0 -1.205e-5 +# Range 0-350 + -Vm 6.3957 7.7713 2.8318 -3.1002 -0.33 +# Extrapol supcrt92 +# Ref Sho95 + +HCOOH = HCOO- + H+ + -llnl_gamma 3.5 # EQ3/6 data0.sup + log_k -3.752994 + -analytic -6.456 0.01694 0 0 0 -2.71e-5 +# Range 0-350 + -Vm 5.7842 4.7242 7.363 -2.9742 1.3003 +# Extrapol supcrt92 +# Ref Sho95 + +2 HCO3- + 2 H+ = CH3COOH + 2 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -141.99219 + -analytic -6.037 0.0104 -42362 0 0 3.604e-5 +# Range 0-350 + -Vm 11.6198 5.218 2.5088 -2.9946 -0.15 +# Extrapol supcrt92 +# Ref Sho95 + +CH3COOH = CH3COO- + H+ + -llnl_gamma 4.5 + log_k -4.7572 +# deltafH -0 kcal/mol + -analytic -0.96597e2 -0.34535e-1 0.19753e4 0.38593e2 0.30850e2 +# Range 0-350 + -Vm 7.7525 8.6996 7.5825 -3.1385 1.31820 +# Extrapol supcrt92 +# Ref Sho95 + +2 NH3 + HCO3- + H+ = CO(NH2)2 + 2 H2O + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k 6.631821 + -analytic 15.98 -4.41e-2 0 0 0 4.25e-5 +# Range 0-350 + -Vm 7.7158 7.3031 10.9353 -3.0808 -0.3006 +# Extrapol supcrt92 +# Ref SM93 + +3 H+ + 3 HCO3- + H2O = C3H8 + 5 O2 + -llnl_gamma 3.0 # thermo.com.V8.R6+.tdat + log_k -363.088 + -analytic -8.04e2 1.877 0 0 0 -1.33e-3 +# Range 0-350 + -Vm 10.768 17.6785 -0.5878 -3.5097 -0.165 +# Extrapol supcrt92 +# Ref SH90 + +H+ + HCO3- + H2O = CH3OH + 1.5 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -117.9046 + -analytic -262.5446137 6.159125942e-1 0 0 0 -4.375362728e-4 +# Range 0-350 + -Vm 6.9383 5.5146 11.4018 -3.0069 -0.14760 +# Extrapol supcrt92 +# Ref SH90 + +H2O + 2 HCO3- + 2 H+ = CH3CH2OH + 3 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -224.1415 + -analytic -423.8 0.989 -10003 0 0 -6.93e-4 +# Range 0-350 + -Vm 9.2333 9.9581 12.1445 -3.1906 -0.2037 +# Extrapol supcrt92 +# Ref SH90 + +HCO3- + H+ = CH2O + O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -86.57248 + -analytic -17.3 0.0404 -24072 0 0 -6.57e-6 +# Range 0-350 + -Vm 5.3113 5.3139 3.3901 -2.9986 -0.3984 +# Extrapol supcrt92 +# Ref SS93 + +2 CH3COOH + Ca+2 = Ca(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.3814 + -delta_H -2.7196 kJ/mol +# deltafH -362.65 kcal/mol + -analytic -1.0320e1 4.0012e-3 -3.6281e3 2.4421 7.0175e5 +# Range 0-350 + -Vm 12.9911 23.9379 -3.6556 -3.7685 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Ca+2 + CH3COOH = CaCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.8263 + -delta_H 1.17152 kJ/mol +# deltafH -245.62 kcal/mol + -analytic -8.8826 3.1672e-3 -1.0764e3 2.0526 2.3599e5 +# Range 0-350 + -Vm 5.9002 6.6232 3.1505 -3.0527 0.36360 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Ca+2 = CaCO3 + H+ + -llnl_gamma 3.0 + log_k -7.0017 + -delta_H 30.5767 kJ/mol +# deltafH -287.39 kcal/mol + -analytic 2.3045e2 5.5350e-2 -8.5056e3 -9.1096e1 -1.3279e2 +# Range 0-350 + -Vm -0.3907 -8.7325 9.1753 -2.4179 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +Cl- + Ca+2 = CaCl+ + -llnl_gamma 4.0 + log_k -0.6956 + -delta_H 2.02087 kJ/mol +# deltafH -169.25 kcal/mol + -analytic 8.1498e1 3.8387e-2 -1.3763e3 -3.5968e1 -2.1501e1 +# Range 0-350 + -Vm 2.7148 -1.1497 6.1949 -2.7314 0.48620 +# Extrapol supcrt92 +# Ref SSH97 differ by 0.3 log K at 0C, 1.2 log K at 300C + +2 Cl- + Ca+2 = CaCl2 + -llnl_gamma 3.0 + log_k -0.6436 + -delta_H -5.8325 kJ/mol +# deltafH -211.06 kcal/mol + -analytic 1.8178e2 7.6910e-2 -3.1088e3 -7.8760e1 -4.8563e1 +# Range 0-350 + -Vm 6.2187 7.4058 2.8322 -3.0851 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + Ca+2 = CaSO4 + -llnl_gamma 3.0 + log_k 2.1111 + -delta_H 5.4392 kJ/mol +# deltafH -345.9 kcal/mol + -analytic 2.8618e2 8.4084e-2 -7.6880e3 -1.1449e2 -1.2005e2 +# Range 0-350 + -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # phreeqc.dat, SSH97 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Co+2 = Co(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.1468 + -delta_H -22.4262 kJ/mol +# deltafH -251.46 kcal/mol + -analytic -2.0661e1 2.9014e-3 -2.2146e3 5.1702 6.4968e5 +# Range 0-350 + -Vm 11.9141 21.312 -2.6321 -3.6599 3.49629 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Co+2 = Co(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.281 + -delta_H -48.2415 kJ/mol +# deltafH -373.73 kcal/mol + -analytic 6.3384e1 -4.0669e-3 -1.4715e4 -1.9518e1 2.1524e6 +# Range 0-350 + -Vm 20.3474 41.8989 -10.7127 -4.5110 1.47140 +# Extrapol supcrt92 +# Ref SK93 + +Co+2 + CH3COOH = CoCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.2985 + -delta_H -8.70272 kJ/mol +# deltafH -132.08 kcal/mol + -analytic -5.4858 1.9147e-3 -1.1292e3 9.0555e-1 2.8223e5 +# Range 0-350 + -Vm 5.0294 4.4992 3.9806 -2.9649 0.64720 +# Extrapol supcrt92 +# Ref SK93 + +Co+2 + Cl- = CoCl+ + -llnl_gamma 4.0 + log_k 0.1547 + -delta_H 1.71962 kJ/mol +# deltafH -53.422 kcal/mol + -analytic 1.5234e2 5.6958e-2 -3.3258e3 -6.3849e1 -5.1942e1 +# Range 0-350 + -Vm 1.8028 -3.3766 7.0702 -2.6394 0.71910 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 74nau/ryz match + +2 H+ + 2 CrO4-2 = Cr2O7-2 + H2O + -llnl_gamma 4.0 + log_k 14.5192 + -delta_H -13.8783 kJ/mol +# deltafH -356.2 kcal/mol + -analytic 1.3749e2 6.5773e-2 -7.9472e2 -5.6525e1 -1.2441e1 +# Range 0-350 + -Vm 12.4303 22.568 -3.1161 -3.7119 2.12160 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 CH3COOH + Cu+2 = Cu(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -5.8824 + -delta_H -25.899 kJ/mol +# deltafH -222.69 kcal/mol + -analytic -2.6689e1 1.8048e-3 -1.8244e3 7.7008 6.5408e5 +# Range 0-350 + -Vm 11.8801 21.2264 -2.5925 -3.6564 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Cu+ = Cu(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.2139 + -delta_H -19.5476 kJ/mol +# deltafH -219.74 kcal/mol + -analytic -3.2712e2 -5.9087e-2 1.1386e4 1.2017e2 1.7777e2 +# Range 0-350 + -Vm 15.0715 29.0205 -5.6592 -3.9786 1.06910 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Cu+2 = Cu(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -9.3788 + -delta_H -53.2205 kJ/mol +# deltafH -345.32 kcal/mol + -analytic 3.9475e1 -6.2867e-3 -1.3233e4 -1.0643e1 2.1121e6 +# Range 0-350 + -Vm 20.2654 41.7019 -10.6422 -4.5029 1.3408 +# Extrapol supcrt92 +# Ref SK93 + +Cu+ + CH3COOH = CuCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.4274 + -delta_H -4.19237 kJ/mol +# deltafH -99.97 kcal/mol + -analytic 6.3784 -4.5464e-4 -1.9995e3 -2.8359 2.7224e5 +# Range 0-350 + -Vm 7.3009 10.0483 1.7946 -3.1943 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Cu+2 + CH3COOH = CuCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -2.5252 + -delta_H -11.3805 kJ/mol +# deltafH -103.12 kcal/mol + -analytic -1.4930e1 5.1278e-4 -3.4874e2 4.3605 2.3504e5 +# Range 0-350 + -Vm 4.9722 4.362 4.029 -2.9592 0.56810 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Eu+3 = Eu(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.6912 + -delta_H -28.3257 kJ/mol +# deltafH -383.67 kcal/mol + -analytic -2.7589e1 1.5772e-3 -1.1008e3 7.9899 5.6652e5 +# Range 0-350 + -Vm 9.3029 14.9307 -0.1123 -3.3961 0.7384 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Eu+3 = Eu(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -7.9824 + -delta_H -47.3629 kJ/mol +# deltafH -504.32 kcal/mol + -analytic -3.7470e1 1.9276e-3 -1.0318e3 9.7078 7.4558e5 +# Range 0-350 + -Vm 16.6413 32.8512 -7.1605 -4.137 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Eu+3 + CH3COOH = EuCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.9571 + -delta_H -14.5603 kJ/mol +# deltafH -264.28 kcal/mol + -analytic -1.5090e1 1.0352e-3 -6.4435e2 4.6225 3.1649e5 +# Range 0-350 + -Vm 2.75 -1.0666 6.169 -2.7348 1.5269 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Eu+3 = EuCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.4057 + -delta_H 90.7844 kJ/mol +# deltafH -287.9 kcal/mol # OBIGT: -311.27 kcal/mol HSS95 + -analytic 2.3548e2 5.3819e-2 -6.9908e3 -9.3137e1 -1.0915e2 +# Range 0-350 + -Vm -0.9842 -10.1779 9.7343 -2.3581 1.2465 +# Extrapol supcrt92 +# Ref HSS95 + +Eu+2 + Cl- = EuCl+ + -llnl_gamma 4.0 + log_k 0.3819 + -delta_H 8.50607 kJ/mol +# deltafH -164 kcal/mol + -analytic 6.8695e1 3.7619e-2 -1.0809e3 -3.0665e1 -1.6887e1 +# Range 0-350 + -Vm 5.1742 4.8499 3.8487 -2.9794 0.2557 +# Extrapol supcrt92 +# Ref HSS95 + +Eu+3 + Cl- = EuCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 13.9453 kJ/mol +# deltafH -181.3 kcal/mol + -analytic 7.9275e1 3.7878e-2 -1.7895e3 -3.4041e1 -2.7947e1 +# Range 0-350 + -Vm -0.3777 -8.6968 9.1514 -2.4194 1.4671 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Eu+3 = EuCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 18.6857 kJ/mol +# deltafH -220.1 kcal/mol # OBIGT: -204.6 kcal/mol HSS95 + -analytic 2.1758e2 8.0336e-2 -5.5499e3 -9.0087e1 -8.6665e1 +# Range 0-350 + -Vm 9.1152 14.474 0.0641 -3.3773 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Eu+3 = EuCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 11.2926 kJ/mol +# deltafH -261.8 kcal/mol + -analytic 4.2075e2 1.2890e-1 -1.1288e4 -1.7043e2 -1.7627e2 +# Range 0-350 + -Vm 6.2132 7.3881 2.8493 -3.0843 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Eu+2 = EuCl3- + -llnl_gamma 4.0 + log_k 2.0253 + -delta_H -3.76978 kJ/mol +# deltafH -246.8 kcal/mol + -analytic 1.1546e1 6.4683e-2 3.7299e3 -1.6672e1 5.8196e1 +# Range 0-350 + -Vm 13.946 26.2721 -4.579 -3.865 0.9527 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Eu+3 = EuCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -9.90771 kJ/mol +# deltafH -306.8 kcal/mol + -analytic 4.8122e2 1.3081e-1 -1.2950e4 -1.9302e2 -2.0222e2 +# Range 0-350 + -Vm 10.9946 19.066 -1.7473 -3.5671 1.787 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Eu+2 = EuCl4-2 + -llnl_gamma 4.0 + log_k 2.8470 + -delta_H -19.9493 kJ/mol +# deltafH -290.6 kcal/mol + -analytic -1.2842e2 5.0789e-2 9.8815e3 3.3565e1 1.5423e2 +# Range 0-350 + -Vm 19.473 39.7656 -9.8784 -4.4228 2.4755 +# Extrapol supcrt92 +# Ref HSS95 + +HPO4-2 + H+ + Eu+3 = EuH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -17.0916 kJ/mol +# deltafH -457.6 kcal/mol + -analytic 1.0873e2 6.3416e-2 2.7202e2 -4.8113e1 4.2122 +# Range 0-350 + -Vm 1.4946 -4.1236 7.3517 -2.6084 1.5372 +# Extrapol supcrt92 +# Ref HSS95 + +HCO3- + Eu+3 = EuHCO3+2 + -llnl_gamma 4.5 + log_k 1.6258 + -delta_H 8.77803 kJ/mol +# deltafH -307.5 kcal/mol + -analytic 3.9266e1 3.1608e-2 -9.8731e1 -1.8875e1 -1.5524 +# Range 0-350 + -Vm 0.4928 -6.572 8.3198 -2.5072 1.286 +# Extrapol supcrt92 +# Ref HSS95 + +NO3- + Eu+3 = EuNO3+2 + -llnl_gamma 4.5 + log_k 0.8745 + -delta_H -32.0955 kJ/mol +# deltafH -201.8 kcal/mol + -analytic 1.7398e1 2.5467e-2 2.2683e3 -1.2810e1 3.5389e1 +# Range 0-350 + -Vm 1.2198 -4.7951 7.6178 -2.5807 1.6556 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Eu+3 = EuO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.337 + -delta_H 110.947 kJ/mol +# deltafH -186.5 kcal/mol # OBIGT: -177.81 kcal/mol HSS95 + -analytic 1.8876e2 3.0194e-2 -1.3836e4 -6.7770e1 -2.1595e2 +# Range 0-350 + -Vm 2.7458 -1.0743 6.1663 -2.7345 0.4322 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Eu+3 = EuO2- + 4 H+ + -llnl_gamma 4.0 + log_k -34.5066 + -delta_H 281.307 kJ/mol +# deltafH -214.1 kcal/mol # OBIGT: -219.06 kcal/mol HSS95 + -analytic 7.5244e1 3.7089e-4 -1.3587e4 -2.3859e1 -4.6713e5 +# Range 0-350 + -Vm 4.8468 4.0541 4.1548 -2.9465 1.1424 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Eu+3 = EuO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.4173 + -delta_H 222.313 kJ/mol +# deltafH -228.2 kcal/mol + -analytic 3.6754e2 5.3868e-2 -2.4034e4 -1.3272e2 -3.7514e2 +# Range 0-350 + -Vm 4.8064 3.954 4.1968 -2.9424 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Eu+3 = EuOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 78.0065 kJ/mol +# deltafH -194.373 kcal/mol + -analytic 6.7691e1 1.2066e-2 -6.1871e3 -2.3617e1 -9.6563e1 +# Range 0-350 + -Vm 2.6569 -1.2969 6.2659 -2.7253 1.1815 +# Extrapol supcrt92 +# Ref HSS95 + +SO4-2 + Eu+3 = EuSO4+ + -llnl_gamma 4.0 + log_k 3.6430 + -delta_H 62.3416 kJ/mol +# deltafH -347.2 kcal/mol # OBIGT: -357.2 kcal/mol HSS95 + -analytic 3.0587e2 8.6208e-2 -9.0387e3 -1.2026e2 -1.4113e2 +# Range 0-350 + -Vm 1.4399 -4.2627 7.4184 -2.6027 0.779 +# Extrapol supcrt92 +# Ref HSS95 + +2 CH3COOH + Fe+2 = Fe(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.0295 + -delta_H -20.2924 kJ/mol +# deltafH -259.1 kcal/mol + -analytic -2.9862e1 1.3901e-3 -1.6908e3 8.6283 6.0125e5 +# Range 0-350 + -Vm 12.1698 21.937 -2.8791 -3.6858 -0.038 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Fe+2 + CH3COOH = FeCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.4671 + -delta_H -3.80744 kJ/mol +# deltafH -139.06 kcal/mol + -analytic -1.3781e1 9.6253e-4 -7.5310e2 4.0135 2.3416e5 +# Range 0-350 + -Vm 5.2246 4.9785 3.7863 -2.9848 0.57560 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Fe+2 + Cl- = FeCl+ + -llnl_gamma 4.0 + log_k -0.1605 + -delta_H 3.02503 kJ/mol +# deltafH -61.26 kcal/mol + -analytic 8.2435e1 3.7755e-2 -1.4765e3 -3.5918e1 -2.3064e1 +# Range 0-350 + -Vm 2.1468 -2.5367 6.7401 -2.6741 0.7003 +# Extrapol supcrt92 +# Ref SSH97 + +Fe+3 + Cl- = FeCl+2 + -llnl_gamma 4.5 + log_k -0.8108 + -delta_H 36.6421 kJ/mol +# deltafH -180.018 kJ/mol + -analytic 1.6186e2 5.9436e-2 -5.1913e3 -6.5852e1 -8.1053e1 +# Range 0-350 + -Vm -0.7164 -9.5277 9.4878 -2.3851 0.17013 # SSH97 +# Extrapol supcrt92, 64cri/cob +# Ref SSH97, WEP+82 differ by 2.7 log K at 0C, 1.2 log K at 300C + +2 Cl- + Fe+2 = FeCl2 + -llnl_gamma 3.0 + log_k -2.4541 + -delta_H 6.46846 kJ/mol +# deltafH -100.37 kcal/mol + -analytic 1.9171e2 7.8070e-2 -4.1048e3 -8.2292e1 -6.4108e1 +# Range 0-350 + -Vm 5.5057 5.665 3.5164 -3.0131 -0.038 +# Extrapol supcrt92 +# Ref SSH97 differ by 7.2 log K at 0C, 3.2 log K at 300C !! flag + +H2O + Fe+2 = FeOH+ + H+ + -llnl_gamma 4.0 + log_k -9.5 + -analytic 1.706e-1 0 -2.883e3 +# Range 0-350 + -Vm -0.2561 -8.4039 9.0457 -2.4315 0.7003 +# Extrapol supcrt92 +# Ref SSW+97, Marion+03,08 match + +H2O + Fe+3 = FeOH+2 + H+ + -llnl_gamma 4.5 + log_k -2.19 +# deltafH -0 kcal/mol + -analytic 5.300 0 -2.272e3 +# Range 0-350 + -Vm -1.1562 -10.6009 9.9077 -2.3407 1.43820 +# Extrapol supcrt92 +# Ref SSW+97, Marion+08 match + +2 CH3COOH + Gd+3 = Gd(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.9625 + -delta_H -22.3426 kJ/mol +# deltafH -401.74 kcal/mol + -analytic -4.3124e1 1.2995e-4 -4.3494e2 1.3677e1 5.1224e5 +# Range 0-350 + -Vm 9.4165 15.2134 -0.2342 -3.4078 0.6223 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Gd+3 = Gd(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -8.3489 + -delta_H -37.9907 kJ/mol +# deltafH -521.58 kcal/mol + -analytic -8.8296e1 -5.0939e-3 1.2268e3 2.8513e1 6.0745e5 +# Range 0-350 + -Vm 16.8116 33.2662 -7.3215 -4.1541 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Gd+3 + CH3COOH = GdCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -11.7152 kJ/mol +# deltafH -283.1 kcal/mol + -analytic -1.4118e1 1.6660e-3 -7.5206e2 4.2614 3.1187e5 +# Range 0-350 + -Vm 2.8605 -0.7945 6.0567 -2.7461 1.4477 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Gd+3 = GdCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.479 + -delta_H 89.9476 kJ/mol +# deltafH -307.6 kcal/mol # OBIGT: -330.22 kcal/mol HSS95 + -analytic 2.3628e2 5.4100e-2 -7.0746e3 -9.3413e1 -1.1046e2 +# Range 0-350 + -Vm -0.953 -10.1036 9.7095 -2.3612 1.1729 +# Extrapol supcrt92 +# Ref HSS95 + +Gd+3 + Cl- = GdCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.7821 kJ/mol +# deltafH -200.6 kcal/mol + -analytic 8.0750e1 3.8524e-2 -1.8591e3 -3.4621e1 -2.9034e1 +# Range 0-350 + -Vm -0.263 -8.417 9.0425 -2.4309 1.4006 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Gd+3 = GdCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 21.1961 kJ/mol +# deltafH -239 kcal/mol + -analytic 2.1754e2 8.0996e-2 -5.6121e3 -9.0067e1 -8.7635e1 +# Range 0-350 + -Vm 2.8492 -0.8272 6.0803 -2.7447 0.6305 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Gd+3 = GdCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 15.895 kJ/mol +# deltafH -280.2 kcal/mol + -analytic 4.1398e2 1.2829e-1 -1.1230e4 -1.6770e2 -1.7535e2 +# Range 0-350 + -Vm 6.3836 7.8028 2.6888 -3.1015 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Gd+3 = GdCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -1.53971 kJ/mol +# deltafH -324.3 kcal/mol + -analytic 4.7684e2 1.3157e-1 -1.3068e4 -1.9118e2 -2.0405e2 +# Range 0-350 + -Vm 11.1317 19.3995 -1.8761 -3.5809 1.631 +# Extrapol supcrt92 +# Ref HSS95 + +HPO4-2 + H+ + Gd+3 = GdH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -14.9996 kJ/mol +# deltafH -476.6 kcal/mol + -analytic 1.1058e2 6.4124e-2 1.3451e2 -4.8758e1 2.0660 +# Range 0-350 + -Vm 1.6048 -3.8632 7.2686 -2.6192 1.4574 +# Extrapol supcrt92 +# Ref HSS95 + +HCO3- + Gd+3 = GdHCO3+2 + -llnl_gamma 4.5 + log_k 1.6991 + -delta_H 10.0332 kJ/mol +# deltafH -326.7 kcal/mol + -analytic 4.1973e1 3.2521e-2 -2.3475e2 -1.9864e1 -3.6757 +# Range 0-350 + -Vm 0.6026 -6.3043 8.2153 -2.5183 1.2048 +# Extrapol supcrt92 +# Ref HSS95 + +NO3- + Gd+3 = GdNO3+2 + -llnl_gamma 4.5 + log_k 0.4347 + -delta_H -25.8195 kJ/mol +# deltafH -219.8 kcal/mol + -analytic 2.0253e1 2.6372e-2 1.8785e3 -1.3723e1 2.9306e1 +# Range 0-350 + -Vm 1.3205 -4.5535 7.5323 -2.5907 1.5475 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Gd+3 = GdO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.337 + -delta_H 113.039 kJ/mol +# deltafH -205.5 kcal/mol # OBIGT: -196.63 kcal/mol HSS95 + -analytic 2.0599e2 3.2521e-2 -1.4547e4 -7.4048e1 -2.2705e2 +# Range 0-350 + -Vm 2.8425 -0.8409 6.0801 -2.7441 0.3539 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Gd+3 = GdO2- + 4 H+ + -llnl_gamma 4.0 + log_k -34.4333 + -delta_H 283.817 kJ/mol +# deltafH -233 kcal/mol # OBIGT: -237.73 kcal/mol HSS95 + -analytic 1.2067e2 6.6276e-3 -1.5531e4 -4.0448e1 -4.3587e5 +# Range 0-350 + -Vm 5.0344 4.5111 3.9769 -2.9654 1.0495 -1 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Gd+3 = GdO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.2707 + -delta_H 224.405 kJ/mol +# deltafH -247.2 kcal/mol + -analytic 3.6324e2 4.7938e-2 -2.4275e4 -1.2988e2 -3.7889e2 +# Range 0-350 + -Vm 5.0117 4.4582 3.9917 -2.9632 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Gd+3 = GdOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 79.9855 kJ/mol +# deltafH -213.4 kcal/mol # OBIGT: 212.9 kcal/mol HSS95 + -analytic 8.3265e1 1.4153e-2 -6.8229e3 -2.9301e1 -1.0649e2 +# Range 0-350 + -Vm 2.7389 -1.0936 6.1786 -2.7337 1.1 +# Extrapol supcrt92 +# Ref HSS95 + +SO4-2 + Gd+3 = GdSO4+ + -llnl_gamma 4.0 + log_k -3.687 + -delta_H 20.0832 kJ/mol +# deltafH -376.8 kcal/mol + -analytic 3.0783e2 8.6798e-2 -1.1246e4 -1.2109e2 -1.7557e2 + #analytic 3.18e2 7.5e-2 -1.12e4 -1.21e2 -1.76e2 +# Range 0-350 + -Vm 1.4776 -4.1705 7.3822 -2.6065 0.7287 +# Extrapol supcrt92 +# Ref HSS95 differ by 7 log K at 0C, 3.7 log K at 300C !! flag + +2 HPO4-2 + 2 H+ = H2P2O7-2 + H2O + -llnl_gamma 4.0 + log_k 12.0709 + -delta_H 19.7192 kJ/mol +# deltafH -544.6 kcal/mol + -analytic 1.4825e2 6.7021e-2 -2.8329e3 -5.9251e1 -4.4248e1 +# Range 0-350 + -Vm 9.0963 14.4299 0.076 -3.3754 2.62180 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +HPO4-2 + H+ = H2PO4- + -llnl_gamma 4.0 + log_k 7.2054 + -delta_H -4.20492 kJ/mol +# deltafH -309.82 kcal/mol + -analytic 8.2149e1 3.4077e-2 -1.0431e3 -3.2970e1 -1.6301e1 +# Range 0-350 + -Vm 6.4875 8.0594 2.5823 -3.1122 1.3003 +# Extrapol supcrt92 +# Ref SH88 + +3 H+ + 2 HPO4-2 = H3P2O7- + H2O + -llnl_gamma 4.0 + log_k 14.4165 + -delta_H 21.8112 kJ/mol +# deltafH -544.1 kcal/mol + -analytic 2.3157e2 1.0161e-1 -4.3723e3 -9.4050e1 -6.8295e1 +# Range 0-350 + -Vm 9.1292 14.5122 0.0398 -3.3788 0.8568 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + HPO4-2 = H3PO4 + -llnl_gamma 3.0 + log_k 9.3751 + -delta_H 3.74468 kJ/mol +# deltafH -307.92 kcal/mol + -analytic 1.8380e2 6.7320e-2 -3.7792e3 -7.3463e1 -5.9025e1 +# Range 0-350 + -Vm 8.2727 12.4182 0.8691 -3.2924 -0.22 +# Extrapol supcrt92 +# Ref SHS89 + +4 H+ + 2 HPO4-2 = H4P2O7 + H2O + -llnl_gamma 3.0 + log_k 15.9263 + -delta_H 29.7226 kJ/mol +# deltafH -2268.6 kJ/mol + -analytic 6.9026e2 2.4309e-1 -1.6165e4 -2.7989e2 -2.7475e2 +# Range 0-350 + -Vm 9.2975 14.9199 -0.113 -3.3957 -0.62920 +# Extrapol supcrt92, 69hel +# Ref SSW+97, WEP+82 + +3 H2O + Al+3 = Al(OH)3 + 3 H+ + -llnl_gamma 3.0 + log_k -16.4329 + -delta_H 144.704 kJ/mol +# deltafH -230.73 kcal/mol + -analytic 4.2012e1 1.9980e-2 -7.7847e3 -1.5470e1 -1.2149e2 +# Range 0-350 + -Vm 3.5338 0.8485 5.4132 -2.8140 -0.03 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel + +H+ + CN- = HCN + -llnl_gamma 3.0 + log_k 9.2359 + -delta_H -43.5136 kJ/mol +# deltafH 25.6 kcal/mol + -analytic 1.0536e1 2.3105e-2 3.3038e3 -7.7786 5.1550e1 +# Range 0-350 + -Vm 8.0083 11.7705 1.1286 -3.2655 -0.1113 +# Extrapol supcrt92 +# Ref SM93 + +H+ + Cl- = HCl + -llnl_gamma 3.0 + log_k -0.67 +# deltafH -0 kcal/mol + -analytic 4.1893e2 1.1103e-1 -1.1784e4 -1.6697e2 -1.8400e2 +# Range 0-350 + -Vm 1.2547 -4.7177 7.6043 -2.5840 -0.7 +# Extrapol supcrt92, ? +# Ref MS97, 87rua/sew match + +H+ + CrO4-2 = HCrO4- + -llnl_gamma 4.0 + log_k 6.4944 + -delta_H 2.9288 kJ/mol +# deltafH -209.9 kcal/mol + -analytic 4.4944e1 3.2740e-2 1.8400e2 -1.9722e1 2.8578 +# Range 0-350 + -Vm 8.2211 12.2925 0.9174 -3.2871 0.923 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +NO2- + H+ = HNO2 + -llnl_gamma 3.0 + log_k 3.2206 + -delta_H -14.782 kJ/mol +# deltafH -119.382 kJ/mol + -analytic 1.9653 -1.1603e-4 0 0 1.1569e5 +# Range 0-350 + -Vm 5.9151 6.659 3.1378 -3.0542 -0.1507 +# Extrapol supcrt92, 69hel +# Ref SSW+97, WEP+82 match + +NO3- + H+ = HNO3 + -llnl_gamma 3.0 + log_k -1.3025 + -delta_H 16.8155 kJ/mol +# deltafH -45.41 kcal/mol + -analytic 9.9744e1 3.4866e-2 -3.0975e3 -4.0830e1 -4.8363e1 +# Range 0-350 + -Vm 7.1623 9.7063 1.9367 -3.1802 -0.3066 +# Extrapol supcrt92 +# Ref SSW+97, SHS89 + +2 HPO4-2 + H+ = HP2O7-3 + H2O + -llnl_gamma 4.0 + log_k 5.4498 + -delta_H 23.3326 kJ/mol +# deltafH -2274.99 kJ/mol + -analytic 3.9159e2 1.5438e-1 -8.7071e3 -1.6283e2 -1.3598e2 +# Range 0-350 + -Vm 8.3302 12.5558 0.8208 -3.2980 4.647 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, WEP+82 differ by 0 log K at 0C, 4.7 log K at 300C + +SO3-2 + H+ = HSO3- + -llnl_gamma 4.0 + log_k 7.2054 + -delta_H 9.33032 kJ/mol +# deltafH -149.67 kcal/mol + -analytic 5.5899e1 3.3623e-2 -5.0120e2 -2.3040e1 -7.8373 +# Range 0-350 + -Vm 6.7014 8.5816 2.3771 -0.31338 1.1233 +# Extrapol supcrt92 +# Ref SH88 + +SO4-2 + H+ = HSO4- + -llnl_gamma 4.0 + log_k 1.9791 + -delta_H 20.5016 kJ/mol +# deltafH -212.5 kcal/mol + -analytic 4.9619e1 3.0368e-2 -1.1558e3 -2.1335e1 -1.8051e1 +# Range 0-350 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # APP14 +# Extrapol supcrt92 +# Ref SH88 + +SiO2 + H2O = HSiO3- + H+ + -llnl_gamma 4.0 + log_k -9.9525 + -delta_H 25.991 kJ/mol +# deltafH -271.88 kcal/mol + -analytic 6.4211e1 -2.4872e-2 -1.2707e4 -1.4681e1 1.0853e6 +# Range 0-350 + -Vm 2.9735 -0.5158 5.9467 -2.7575 1.5511 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + K+ = K(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -10.2914 + -delta_H -1.79912 kJ/mol +# deltafH -292.9 kcal/mol + -analytic -2.3036e2 -4.6369e-2 7.0305e3 8.4997e1 1.0977e2 +# Range 0-350 + -Vm 17.8481 35.7984 -8.3193 -4.2588 0.7097 +# Extrapol supcrt92 +# Ref SK93 + +K+ + CH3COOH = KCH3COO + H+ + -llnl_gamma 3.0 + log_k -5.0211 + -delta_H 4.8116 kJ/mol +# deltafH -175.22 kcal/mol + -analytic -2.6676e-1 -3.2675e-3 -1.7143e3 -7.1907e-3 1.7726e5 +# Range 0-350 + -Vm 17.8481 35.7984 -8.3193 -4.2588 0.7097 +# Extrapol supcrt92 +# Ref SK93 + +K+ + Cl- = KCl + -llnl_gamma 3.0 + log_k -1.4946 + -delta_H 14.1963 kJ/mol +# deltafH -96.81 kcal/mol + -analytic 1.3650e2 3.8405e-2 -4.4014e3 -5.4421e1 -6.8721e1 +# Range 0-350 + -Vm 6.9932 9.297 2.0889 -3.1633 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + K+ + H+ = KHSO4 + -llnl_gamma 3.0 + log_k 0.8136 + -delta_H 29.8319 kJ/mol +# deltafH -270.54 kcal/mol + -analytic 1.2620e2 5.7349e-2 -3.3670e3 -5.3003e1 -5.2576e1 +# Range 0-350 + -Vm 9.1226 14.4964 0.0453 -3.3782 -0.001 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + K+ = KSO4- + -llnl_gamma 4.0 + log_k 0.8796 + -delta_H 2.88696 kJ/mol +# deltafH -276.98 kcal/mol + -analytic 9.9073e1 3.7817e-2 -2.1628e3 -4.1297e1 -3.3779e1 +# Range 0-350 + -Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Li+ = Li(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.2674 + -delta_H -24.7609 kJ/mol +# deltafH -304.67 kcal/mol + -analytic -3.3702e2 -6.0849e-2 1.1952e4 1.2359e2 1.8659e2 +# Range 0-350 + -Vm 16.3412 32.1211 -6.8785 -4.1068 1.2422 +# Extrapol supcrt92 +# Ref SK93 + +Li+ + CH3COOH = LiCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.4589 + -delta_H -6.64419 kJ/mol +# deltafH -184.24 kcal/mol + -analytic -3.8391 -7.3938e-4 -1.0829e3 3.4134e-1 2.1318e5 +# Range 0-350 + -Vm 8.388 12.6976 0.7639 -3.3038 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Li+ + Cl- = LiCl + -llnl_gamma 3.0 + log_k -1.5115 + -delta_H 3.36812 kJ/mol +# deltafH -105.68 kcal/mol + -analytic 1.2484e2 4.1941e-2 -3.2439e3 -5.1708e1 -5.0655e1 +# Range 0-350 + -Vm 5.5837 5.8554 3.4416 -3.021 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Mg+2 = Mg(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.473 + -delta_H -23.8195 kJ/mol +# deltafH -349.26 kcal/mol + -analytic -4.3954e1 -3.1842e-4 -1.2033e3 1.3556e1 6.3058e5 +# Range 0-350 + -Vm 12.3982 22.4898 -3.0853 -3.7086 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Mg+2 + CH3COOH = MgCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.4781 + -delta_H -8.42239 kJ/mol +# deltafH -229.48 kcal/mol + -analytic -2.3548e1 -1.6071e-3 -4.2228e2 7.7009 2.5981e5 +# Range 0-350 + -Vm 5.4981 5.6424 3.5341 -3.0122 0.7483 +# Extrapol supcrt92 +# Ref SK93 + +Mg+2 + Cl- = MgCl+ + -llnl_gamma 4.0 + log_k -0.1349 + -delta_H -0.58576 kJ/mol +# deltafH -151.44 kcal/mol + -analytic 4.3363e1 3.2858e-2 1.1878e2 -2.1688e1 1.8403 +# Range 0-350 + -Vm 2.223 -2.3505 6.6669 -2.6818 0.84490 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + Mg+2 = MgSO4 + -llnl_gamma 3.0 + log_k 2.4117 + -delta_H 19.6051 kJ/mol +# deltafH -1355.96 kJ/mol + -analytic 1.7994e2 6.4715e-2 -4.7314e3 -7.3123e1 -8.0408e1 +# Range 0-350 + -Vm 2.4 -0.97 6.1 -2.74 # APP14 +# Extrapol supcrt92, 69hel +# Ref MS97, 82mar/smi match + +2 CH3COOH + Mn+2 = Mn(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.4547 + -delta_H -11.4893 kJ/mol +# deltafH -287.67 kcal/mol + -analytic -9.0558e-1 5.9656e-3 -4.3531e3 -1.1063 8.0323e5 +# Range 0-350 + -Vm 13.1542 24.3405 -3.8236 -3.7851 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Mn+2 = Mn(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.8747 + -delta_H -30.3591 kJ/mol +# deltafH -408.28 kcal/mol + -analytic -3.8531 -9.9140e-3 -1.2065e4 5.1424 2.0175e6 +# Range 0-350 + -Vm 21.6217 45.0124 -11.9409 -4.6397 1.15360 +# Extrapol supcrt92 +# Ref SK93 + +Mn+2 + CH3COOH = MnCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.5404 + -delta_H -3.07942 kJ/mol +# deltafH -169.56 kcal/mol + -analytic -1.4061e1 1.8149e-3 -8.6438e2 4.0354 2.5831e5 +# Range 0-350 + -Vm 6.0776 7.057 2.9786 -3.0706 0.4555 +# Extrapol supcrt92 +# Ref SK93 + +Mn+2 + Cl- = MnCl+ + -llnl_gamma 4.0 + log_k 0.3013 + -delta_H 18.3134 kJ/mol +# deltafH -88.28 kcal/mol + -analytic 8.7072e1 4.0361e-2 -2.1786e3 -3.6966e1 -3.4022e1 +# Range 0-350 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +1.5 H2O + 1.25 O2 + Mn+2 = MnO4- + 3 H+ + -llnl_gamma 3.5 + log_k -20.2963 + -delta_H 123.112 kJ/mol +# deltafH -129.4 kcal/mol + -analytic 1.8544e1 -1.7618e-2 -6.7332e3 -3.3193 -2.4924e5 +# Range 0-350 + -Vm 7.8248 11.3277 1.2912 -3.2472 0.9248 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +SO4-2 + Mn+2 = MnSO4 + -llnl_gamma 3.0 + log_k 2.3529 + -delta_H 14.1168 kJ/mol +# deltafH -266.75 kcal/mol + -analytic 2.9448e2 8.5294e-2 -8.1366e3 -1.1729e2 -1.2705e2 +# Range 0-350 + -Vm -1.31 -1.83 62.3 -2.7 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + NH3 = NH4(CH3COO)2- + H+ + -llnl_gamma 4.0 + log_k -0.1928 + -delta_H -56.735 kJ/mol +# deltafH -265.2 kcal/mol + -analytic 3.7137e1 -1.2242e-2 -8.4764e3 -8.4308 1.3883e6 +# Range 0-350 + -Vm 19.3685 39.509 -9.7736 -4.4122 0.6495 +# Extrapol supcrt92 +# Ref SK93 + +NH3 + H+ = NH4+ + -llnl_gamma 2.5 + log_k 9.2410 + -delta_H -51.9234 kJ/mol +# deltafH -31.85 kcal/mol + -analytic -1.4527e1 -5.0518e-3 3.0447e3 6.0865 4.7515e1 +# Range 0-350 + -Vm 3.8763 2.3448 8.5605 -2.8759 0.1502 +# Extrapol supcrt92 +# Ref SH88 + +NH3 + CH3COOH = NH4CH3COO + -llnl_gamma 3.0 + log_k 4.6964 + -delta_H -48.911 kJ/mol +# deltafH -147.23 kcal/mol + -analytic 1.4104e1 -4.3664e-3 -1.0746e3 -3.6999 4.1428e5 +# Range 0-350 + -Vm 11.2849 19.7719 -2.0187 -3.5963 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Na+ = Na(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.9989 + -delta_H -11.5771 kJ/mol +# deltafH -292.4 kcal/mol + -analytic -2.9232e2 -5.5708e-2 9.6601e3 1.0772e2 1.5082e2 +# Range 0-350 + -Vm 16.2062 31.7884 -6.7416 -4.0930 0.9633 +# Extrapol supcrt92 +# Ref SK93 + +Na+ + CH3COOH = NaCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.8606 + -delta_H -0.029288 kJ/mol +# deltafH -173.54 kcal/mol + -analytic 6.4833 -1.8739e-3 -2.0902e3 -2.6121 2.3990e5 +# Range 0-350 + -Vm 8.3514 12.6125 0.7884 -3.3003 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Na+ + Cl- = NaCl + -llnl_gamma 3.0 + log_k -0.777 + -delta_H 5.21326 kJ/mol +# deltafH -96.12 kcal/mol + -analytic 1.1398e2 3.6386e-2 -3.0847e3 -4.6571e1 -4.8167e1 +# Range 0-350 + -Vm 5.0364 4.5189 3.9669 -2.9658 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +SiO2 + Na+ + H2O = NaHSiO3 + H+ + -llnl_gamma 3.0 + log_k -8.304 + -delta_H 11.6524 kJ/mol +# deltafH -332.74 kcal/mol + -analytic 3.6045e1 -9.0411e-3 -6.6605e3 -1.0447e1 5.8415e5 +# Range 0-350 + -Vm 3.4928 0.75 5.4483 -2.8100 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +Na+ + H2O = NaOH + H+ + -llnl_gamma 3.0 + log_k -14.7948 + -delta_H 53.6514 kJ/mol +# deltafH -112.927 kcal/mol + -analytic 8.7326e1 2.3555e-2 -5.4770e3 -3.6678e1 -8.5489e1 +# Range 0-350 + -Vm 2.2338 -2.3287 6.6683 -2.6826 -0.03 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +2 CH3COOH + Ni+2 = Ni(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.1908 + -delta_H -25.8571 kJ/mol +# deltafH -251.28 kcal/mol + -analytic -2.9660e1 1.0643e-3 -1.0060e3 7.9358 5.2562e5 +# Range 0-350 + -Vm 11.1327 19.4031 -1.8801 -3.5810 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Ni+2 = Ni(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.3543 + -delta_H -53.6807 kJ/mol +# deltafH -374.03 kcal/mol + -analytic 5.0850e1 -8.2435e-3 -1.3049e4 -1.5410e1 1.9704e6 +# Range 0-350 + -Vm 19.5212 39.8827 -9.9226 -4.4277 0.1603 +# Extrapol supcrt92 +# Ref SK93 + +Ni+2 + CH3COOH = NiCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.3278 + -delta_H -10.2508 kJ/mol +# deltafH -131.45 kcal/mol + -analytic -3.3110 1.6895e-3 -1.0556e3 2.7168e-2 2.6350e5 +# Range 0-350 + -Vm 4.3556 2.8512 4.6343 -2.8968 0.7287 +# Extrapol supcrt92 +# Ref SK93 + +Ni+2 + Cl- = NiCl+ + -llnl_gamma 4.0 + log_k -0.9962 + -delta_H 5.99567 kJ/mol +# deltafH -51.4 kcal/mol + -analytic 9.5370e1 3.8521e-2 -2.1746e3 -4.0629e1 -3.3961e1 +# Range 0-350 + -Vm 1.1319 -5.0147 7.714 -2.5716 0.8111 +# Extrapol supcrt92 +# Ref SSH97 + +H2O = OH- + H+ + -llnl_gamma 3.5 + log_k -13.9951 + -delta_H 55.8146 kJ/mol +# deltafH -54.977 kcal/mol + -analytic -6.7506e1 -3.0619e-2 -1.9901e3 2.8004e1 -3.1033e1 +# Range 0-350 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SH88 + +2 HPO4-2 = P2O7-4 + H2O + -llnl_gamma 4.0 + log_k -3.7463 + -delta_H 27.2256 kJ/mol +# deltafH -2271.1 kJ/mol + -analytic 4.0885e2 1.3243e-1 -1.1373e4 -1.6727e2 -1.7758e2 +# Range 0-350 + -Vm 7.0687 9.4773 2.0273 -3.1707 6.9069 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, WEP+82 differ by 0.1 log K at 0C, 7 log K at 350C !! flag + +HPO4-2 = PO4-3 + H+ + -llnl_gamma 4.0 + log_k -12.3218 + -delta_H 14.7068 kJ/mol +# deltafH -305.3 kcal/mol + -analytic -7.6170e1 -3.3574e-2 1.3405e2 2.9658e1 2.1140 +# Range 0-350 + -Vm -0.5258 -9.0576 9.2927 -2.4045 5.61140 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + 2 SO3-2 = S2O5-2 + H2O + -llnl_gamma 4.0 + log_k 9.5934 +# deltafH -0 kcal/mol + -analytic 0.12262e3 0.62883e-1 -0.18005e4 -0.50798e2 -0.28132e2 +# Range 0-350 + -Vm 7.3618 10.1945 1.7414 -3.2003 2.8343 # SSW+97 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + SO3-2 = SO2 + H2O + -llnl_gamma 3.0 + log_k 9.0656 + -delta_H 26.7316 kJ/mol +# deltafH -77.194 kcal/mol + -analytic 9.4048e1 6.2127e-2 -1.1072e3 -4.0310e1 -1.7305e1 +# Range 0-350 + -Vm 6.9502 9.189 2.1383 -3.1589 -0.0559 +# Extrapol supcrt92 +# Ref SHS89 + +2 CH3COOH + Sc+3 = Sc(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -3.7237 + -delta_H -43.1789 kJ/mol +# deltafH -389.32 kcal/mol + -analytic -4.1862e1 -3.9443e-5 2.1444e2 1.2616e1 5.5442e5 +# Range 0-350 + -Vm 9.2794 14.8737 -0.0899 -3.3938 0.9706 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Sc+3 = Sc(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -6.6777 + -delta_H -70.0402 kJ/mol +# deltafH -511.84 kcal/mol + -analytic -5.2525e1 1.6181e-3 7.5022e2 1.3988e1 7.3540e5 +# Range 0-350 + -Vm 16.5277 32.5748 -7.0539 -4.1255 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Sc+3 + CH3COOH = ScCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.4294 + -delta_H -21.7568 kJ/mol +# deltafH -268.1 kcal/mol + -analytic -2.3400e1 1.3144e-4 1.1125e2 7.3527 3.0025e5 +# Range 0-350 + -Vm 2.7175 -1.1437 6.1937 -2.7316 1.7013 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Sm+3 = Sm(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.7132 + -delta_H -25.5224 kJ/mol +# deltafH -403.5 kcal/mol + -analytic -1.4192e1 2.1732e-3 -1.0267e3 2.9516 4.4389e5 +# Range 0-350 + -Vm 9.159 14.5839 0.0138 -3.3818 0.6644 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Sm+3 = Sm(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -7.8798 + -delta_H -43.5554 kJ/mol +# deltafH -523.91 kcal/mol + -analytic -2.0765e1 1.1047e-3 -5.1181e2 3.4797 5.0618e5 +# Range 0-350 + -Vm 16.5088 32.5307 -7.0412 -4.1237 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Sm+3 + CH3COOH = SmCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.9205 + -delta_H -13.598 kJ/mol +# deltafH -284.55 kcal/mol + -analytic -1.1734e1 1.0889e-3 -5.1061e2 3.3317 2.6395e5 +# Range 0-350 + -Vm 2.6264 -1.3667 6.2827 -2.7224 1.4769 +# Extrapol supcrt92 +# Ref SK93 + +Sm+3 + HCO3- = SmCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.479 + -delta_H 89.1108 kJ/mol +# deltafH -308.8 kcal/mol # OBIGT: -331.34 kcal/mol HSS95 + -analytic 2.3486e2 5.3703e-2 -7.0193e3 -9.2863e1 -1.0960e2 +# Range 0-350 + -Vm -1.0455 -10.3293 9.798 -2.3519 1.1907 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + Cl- = SmCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.3637 kJ/mol +# deltafH -201.7 kcal/mol + -analytic 9.4972e1 3.9428e-2 -2.4198e3 -3.9718e1 -3.7787e1 +# Range 0-350 + -Vm -0.5006 -8.9988 9.2743 -2.4069 1.4192 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Sm+3 = SmCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 19.9409 kJ/mol +# deltafH -240.3 kcal/mol + -analytic 2.5872e2 8.4154e-2 -7.2061e3 -1.0493e2 -1.1252e2 +# Range 0-350 + -Vm 2.5888 -1.4617 6.3276 -2.7185 0.6644 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Sm+3 = SmCl3 + -llnl_gamma 3.0 + log_k -0.3936 + -delta_H 13.803 kJ/mol +# deltafH -281.7 kcal/mol + -analytic 4.9535e2 1.3520e-1 -1.4325e4 -1.9720e2 -2.2367e2 +# Range 0-350 + -Vm 6.0808 7.0673 2.9692 -3.0711 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Sm+3 = SmCl4- + -llnl_gamma 4.0 + log_k -0.818 + -delta_H -5.30531 kJ/mol +# deltafH -326.2 kcal/mol + -analytic 6.0562e2 1.4212e-1 -1.7982e4 -2.3782e2 -2.8077e2 +# Range 0-350 + -Vm 10.8148 18.6261 -1.5732 -3.5489 1.6917 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + HPO4-2 + H+ = SmH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -15.8364 kJ/mol +# deltafH -477.8 kcal/mol + -analytic 1.2451e2 6.4959e-2 -3.9576e2 -5.3772e1 -6.2124 +# Range 0-350 + -Vm 1.3708 -4.4295 7.4801 -2.5958 1.4867 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + HCO3- = SmHCO3+2 + -llnl_gamma 4.5 + log_k 1.7724 + -delta_H 9.19643 kJ/mol +# deltafH -327.9 kcal/mol + -analytic 5.5520e1 3.3265e-2 -7.3142e2 -2.4727e1 -1.1430e1 +# Range 0-350 + -Vm 0.3694 -6.8727 8.4365 -2.4948 1.2366 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + NO3- = SmNO3+2 + -llnl_gamma 4.5 + log_k 0.8012 + -delta_H -29.1667 kJ/mol +# deltafH -221.6 kcal/mol + -analytic 3.3782e1 2.7125e-2 1.5091e3 -1.8632e1 2.3537e1 +# Range 0-350 + -Vm 1.0908 -5.1124 7.7478 -2.5676 1.5897 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + H2O = SmO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.4837 + -delta_H 113.039 kJ/mol +# deltafH -206.5 kcal/mol # OBIGT: -197.63 kcal/mol HSS95 + -analytic 1.8554e2 3.0198e-2 -1.3791e4 -6.6588e1 -2.1526e2 +# Range 0-350 + -Vm 2.8115 -0.9157 6.1076 -2.741 0.3837 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Sm+3 = SmO2- + 4 H+ + -llnl_gamma 4.0 + log_k -35.0197 + -delta_H 285.909 kJ/mol +# deltafH -233.5 kcal/mol # OBIGT: -238.22 kcal/mol HSS95 + -analytic 1.3508e1 -8.3384e-3 -1.0325e4 -1.5506 -6.7392e5 +# Range 0-350 + -Vm 4.9642 4.3393 4.0456 -2.9583 1.0848 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Sm+3 = SmO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.9304 + -delta_H 226.497 kJ/mol +# deltafH -247.7 kcal/mol + -analytic 3.6882e2 5.3761e-2 -2.4317e4 -1.3305e2 -3.7956e2 +# Range 0-350 + -Vm 4.9296 4.2552 4.0768 -2.9548 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + H2O = SmOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9808 + -delta_H 79.1487 kJ/mol +# deltafH -214.6 kcal/mol # OBIGT: -213.97 kcal/mol HSS95 + -analytic 6.3793e1 1.1977e-2 -6.0852e3 -2.2198e1 -9.4972e1 +# Range 0-350 + -Vm 2.7076 -1.1676 6.2027 -2.7306 1.1289 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + SO4-2 = SmSO4+ + -llnl_gamma 4.0 + log_k 3.6430 + -delta_H 20.0832 kJ/mol +# deltafH -377.8 kcal/mol + -analytic 3.0597e2 8.6258e-2 -9.0231e3 -1.2032e2 -1.4089e2 +# Range 0-350 + -Vm -1.3885 -4.3882 7.4678 -2.5975 0.7483 +# Extrapol supcrt92 +# Ref HSS95 + +UO2+2 + H2O = UO2OH+ + H+ + -llnl_gamma 4.0 + log_k -5.2073 + -delta_H 43.1813 kJ/mol +# deltafH -1261.66 kJ/mol + -analytic 3.4387e1 6.0811e-3 -3.3068e3 -1.2252e1 -5.1609e1 +# Range 0-350 + -Vm 4.764 3.8529 4.2318 -2.9382 0.4925 # SSB97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +2 CH3COOH + Zn+2 = Zn(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -6.062 + -delta_H -11.0458 kJ/mol +# deltafH -271.5 kcal/mol + -analytic -2.2038e1 2.6133e-3 -2.7652e3 6.8501 6.7086e5 +# Range 0-350 + -Vm 11.7443 20.8978 -2.4707 -3.6429 -0.038 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +3 CH3COOH + Zn+2 = Zn(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -10.0715 + -delta_H 25.355 kJ/mol +# deltafH -378.9 kcal/mol + -analytic 3.5104e1 -6.1568e-3 -1.3379e4 -8.7697 2.0670e6 +# Range 0-350 + -Vm 20.0332 41.1373 -10.4257 -4.4796 1.2513 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Zn+2 + CH3COOH = ZnCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.1519 + -delta_H -9.87424 kJ/mol +# deltafH -155.12 kcal/mol + -analytic -7.9367 2.8564e-3 -1.4514e3 2.5010 2.3343e5 +# Range 0-350 + -Vm 4.8484 4.06 4.1473 -2.9468 0.41 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Zn+2 + Cl- = ZnCl+ + -llnl_gamma 4.0 + log_k 0.1986 + -delta_H 43.317 kJ/mol +# deltafH -66.24 kcal/mol + -analytic 1.1235e2 4.4461e-2 -4.1662e3 -4.5023e1 -6.5042e1 +# Range 0-350 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 Cl- + Zn+2 = ZnCl2 + -llnl_gamma 3.0 + log_k 0.2507 + -delta_H 31.1541 kJ/mol +# deltafH -109.08 kcal/mol + -analytic 1.7824e2 7.5733e-2 -4.6251e3 -7.4770e1 -7.2224e1 +# Range 0-350 + -Vm -10.1 4.57 241 -2.97 -1e-3 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +3 Cl- + Zn+2 = ZnCl3- + -llnl_gamma 4.0 + log_k -0.0198 + -delta_H 22.5894 kJ/mol +# deltafH -151.06 kcal/mol + -analytic 1.3889e2 7.4712e-2 -2.1527e3 -6.2200e1 -3.3633e1 +# Range 0-350 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +4 Cl- + Zn+2 = ZnCl4-2 + -llnl_gamma 4.0 + log_k 0.8605 + -delta_H 4.98733 kJ/mol +# deltafH -195.2 kcal/mol + -analytic 8.4294e1 7.0021e-2 3.9150e2 -4.2664e1 6.0834 +# Range 0-300 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97? + +Zn+2 + H2O = ZnOH+ + H+ + -llnl_gamma 4.0 + log_k -8.96 +# deltafH -0 kcal/mol + -analytic -7.8600e-1 -2.9499e-4 -2.8673e3 6.1892e-1 -4.2576e1 +# Range 25-300 + -Vm 1.1499 -4.9677 7.6896 -2.5735 0.326 +# Extrapol supcrt92, ? +# Ref SSW+97, 87bou/bar differ by 0.8 log K at 0C, 2.7 log K at 300C + +Zn+2 + SO4-2 = ZnSO4 + -llnl_gamma 3.0 + log_k 2.3062 + -delta_H 15.277 kJ/mol +# deltafH -1047.71 kJ/mol + -analytic 1.3640e2 5.1256e-2 -3.4422e3 -5.5695e1 -5.8501e1 +# Range 0-200 + -Vm 2.51 0 18.8 # APP14 +# Extrapol 69hel +# Ref WEP+82 + +#--------------------------- +# carbfix.dat additions and changes +#--------------------------- + +HS- + H+ = H2S + -llnl_gamma 3.0 + log_k 6.97791 # SS97 + -analytic -782.43945 -0.361261 20565.7315 328.67496 0 1.6722e-4 # SS97 + -Vm 7.81 2.96 -0.46 # phreeqc.dat + +2 H2O + Al+3 = Al(OH)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -10.5945 # llnl.dat + -analytic 4.4036e+001 2.0168e-002 -5.5455e+003 -1.6987e+001 -8.6545e+001 # llnl.dat + -Vm 2.1705 -2.4811 6.7241 -2.6763 0.95700 0 0 0 0 0 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Al+3 + SiO2 + 2 H2O = AlH3SiO4+2 + H+ + -llnl_gamma 4.5 + log_k -2.38 # P+96 + -analytic 5.241793953846094 0.005624769230769303 -2772.442855034987 0 0 0 # P+96 + -Vm 0.16 -7.23 8.61 -2.4800 0.88000 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +SO4-2 + Al+3 = AlSO4+ + -llnl_gamma 4.0 + log_k 3.17527 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -6034.286233487146 -2.009118445366823 225586.09598339273 2388.3098402377414 -8.473342720127227e6 0.000736431615071334 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 1.833 -3.3057 7.0494 -2.6423 2.4143 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +4 H2O + Na+ + Al+3 = NaAl(OH)4 + 4 H+ + -llnl_gamma 3.0 + log_k -22.9 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -319.6003434647659 -0.1452549158200939 2048.487394301387 134.79387929123214 -579779.0987586592 0.00006885771169878286 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 9.1267 14.3411 0.1121 -3.3719 0 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Mg+2 + CO3-2 = MgCO3 + -llnl_gamma 3.0 + log_k 3.01 # SBS14 + -analytic 5.5093 -0.00017143 -734.208 0 0 0 # SBS14 + -Vm -0.7355 -9.5745 9.5062 -2.3831 -0.038 # SSH97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Mg+2 + HCO3- = MgHCO3+ + -llnl_gamma 4.0 + log_k 1.10 # SBS14 + -analytic -8.8935 0.01694 1474.786 0 0 0 # SBS14 + -Vm 3.271 0.206 5.669 -2.7880 0.59900 # SK95 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Na+ + CO3-2 = NaCO3- + -llnl_gamma 4.0 + log_k 1.01 # SBS13 + -analytic 4.1659 0 -941.150 0 0 0 # SBS13 + -Vm 7.642732 2.993503 2.328077 -2.902751 1.507948 # DEW17 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Na+ + HCO3- = NaHCO3 + -llnl_gamma 3.0 + log_k -0.18 # SBS13 + -analytic 1.8528 0 -606.240 0 0 0 # SBS13 + -Vm 0.431 # APP14 + +HCO3- + Ca+2 = CaHCO3+ + -llnl_gamma 4.0 + log_k 1.0467 # llnl.dat + -analytic 5.5985e+001 3.4639e-002 -3.6972e+002 -2.5864e+001 -5.7859e+000 # llnl.dat + -Vm 3.706 1.267 5.252 -2.8310 0.30800 # SK95 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Na+ + SO4-2 = NaSO4- + -llnl_gamma 4.0 + log_k 0.702779 # MS97 + CHNOSZ/OBIGT/SUPCRTBL - D08 + -analytic -1515.4130255698833 -0.5496881710640973 53009.74446438346 607.5403646933713 -1.7958467164664706e6 0.00021478523226344507 # MS97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 1e-5 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53 # APP14 + +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -5.6502 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -311.3248470052558 -0.1252808696431922 9665.364708433648 127.49811415837463 -849396.8730633351 0.00005263379396466626 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm -3.7118 -16.8408 12.3595 -2.0827 0.7191 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + -llnl_gamma 3.0 + log_k -12.0185 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -741.3725966104283 -0.26505708328056 26205.378230673232 296.5340355414264 -1.972081032472368e6 0.00010032479998977653 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 2.7401 -1.0905 6.1776 -2.7338 -0.03 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + -llnl_gamma 4.0 + log_k -21.6225 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic 1533.5014901840032 0.45075510400897445 -69859.23735739749 -593.4694075764281 2.3641904800567343e6 -0.00014964010950998835 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 2.3837 -1.9602 6.5182 -2.6979 1.4662 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +2 H2O + Fe+2 = Fe(OH)2 + 2 H+ + -llnl_gamma 3.0 + log_k -20.4049 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -325.1339790725869 -0.1345716716871417 5315.653600095374 132.16984714439332 -459607.68923879805 0.000057906348553908315 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm -0.5029 -9.0053 9.2791 -2.4066 -0.03 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +3 H2O + Fe+2 = Fe(OH)3- + 3 H+ + -llnl_gamma 4.0 + log_k -29.208 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic 1906.044327275795 0.5662477247894362 -88119.68431429783 -741.1535184277503 3.7592690582787376e6 -0.0001898657106678743 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 0.6272 -6.244 8.1905 -2.5208 1.8564 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +H+ + ClO- = HClO + -llnl_gamma 3.0 + log_k 7.55236 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2041.6086043936152 -0.6683042462929405 80422.12116400951 805.7772200117705 -3.2667035060825506e6 0.00024280864184851264 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 5.5927 5.8751 3.4387 -3.0218 -0.1734 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +H+ + ClO2- = HClO2 + -llnl_gamma 3.0 + log_k 1.98189 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2249.8186120868168 -0.7355468012526403 86690.01133768198 887.6588357902062 -3.5397309172713878e6 0.00026672471518723433 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 7.6706 10.9455 1.4527 -3.2314 -0.3415 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +H+ + S2O3-- = HS2O3- + -llnl_gamma 4.0 + log_k 1.68836 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -1611.0948316547294 -0.5495686401519247 59194.43018784251 640.1240524484979 -2.166923306383505e6 0.00020844502892650532 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 6.1964 7.351 2.8549 -3.0828 1.1676 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +K+ + H2O = KOH + H+ + -llnl_gamma 3.0 + log_k -14.4386 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -477.55011247018905 -0.1442523288404146 18222.588641689916 183.69951482387626 -1.2139398662316576e6 0.0000461802984447927 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 3.7938 1.4839 5.1619 -2.8402 -0.03 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + + + +#--------------------------- +# 66 other aqueous species +#--------------------------- +H2O + Ba+2 + B(OH)3 = BaB(OH)4+ + H+ + -llnl_gamma 4.0 + log_k -7.8012 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaB(OH)4+ +# Enthalpy of formation: -0 kcal/mol + + HCO3- + Ba+2 = BaCO3 + H+ + -llnl_gamma 3.0 + log_k -7.6834 + -delta_H 31.5808 kJ/mol # Calculated enthalpy of reaction BaCO3 +# Enthalpy of formation: -285.85 kcal/mol + -analytic 2.1878e+002 5.2368e-002 -8.2472e+003 -8.6644e+001 -1.2875e+002 +# -Range: 0-300 + + Cl- + Ba+2 = BaCl+ + -llnl_gamma 4.0 + log_k -0.4977 + -delta_H 11.142 kJ/mol # Calculated enthalpy of reaction BaCl+ +# Enthalpy of formation: -165.77 kcal/mol + -analytic 1.1016e+002 4.2325e-002 -2.8039e+003 -4.6010e+001 -4.3785e+001 +# -Range: 0-300 + + F- + Ba+2 = BaF+ + -llnl_gamma 4.0 + log_k -0.1833 + -delta_H 8.95376 kJ/mol # Calculated enthalpy of reaction BaF+ +# Enthalpy of formation: -206.51 kcal/mol + -analytic 1.0349e+002 4.0336e-002 -2.5195e+003 -4.3334e+001 -3.9346e+001 +# -Range: 0-300 + + NO3- + Ba+2 = BaNO3+ + -llnl_gamma 4.0 + log_k +0.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaNO3+ +# Enthalpy of formation: -0 kcal/mol + + H2O + Ba+2 = BaOH+ + H+ + -llnl_gamma 4.0 + log_k -13.47 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaOH+ +# Enthalpy of formation: -0 kcal/mol + + +Ce+3 + 0.5 H2O = Ce+2 + H+ +0.25 O2 + -llnl_gamma 4.5 + log_k -83.6754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+2 +# Enthalpy of formation: -0 kcal/mol + +H+ + Ce+3 + 0.25 O2 = Ce+4 +0.5 H2O + -llnl_gamma 5.5 + log_k -7.9154 + -delta_H 0 # Not possible to ca + +2.0 HCO3- + Ce+3 = Ce(CO3)2- +2.0 H+ + -llnl_gamma 4.0 + log_k -8.1576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0 HPO4-2 + Ce+3 = Ce(HPO4)2- + -llnl_gamma 4.0 + log_k +8.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0 H2O + Ce+4 = Ce(OH)2+2 +2.0 H+ + -llnl_gamma 4.5 + log_k +2.0098 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)2+2 +# Enthalpy of formation: -0 kcal/mol + +2.0 HPO4-2 + Ce+3 = Ce(PO4)2-3 +2.0 H+ + -llnl_gamma 4.0 + log_k -6.1437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0 H2O + 2.0 Ce+4 = Ce2(OH)2+6 +2.0 H+ + -llnl_gamma 6.0 + log_k +3.0098 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(OH)2+6 +# Enthalpy of formation: -0 kcal/mol + +5.0 H2O + 3.0 Ce+3 = Ce3(OH)5+4 +5.0 H+ + -llnl_gamma 5.5 + log_k -33.4754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(OH)5+4 +# Enthalpy of formation: -0 kcal/mol + +HCO3- + Ce+3 = CeCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.9284 + -delta_H 93.345 kJ/mol # Calculated enthalpy of reaction CeCO3+ +# Enthalpy of formation: -309.988 kcal/mol + -analytic 2.3292e+002 5.3153e-002 -7.1180e+003 -9.2061e+001 -1.1114e+002 +# -Range: 0-300 + +Cl- + Ce+3 = CeCl+2 + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction CeCl+2 +# Enthalpy of formation: -203.8 kcal/mol + -analytic 8.3534e+001 3.8166e-002 -2.0058e+003 -3.5504e+001 -3.1324e+001 +# -Range: 0-300 + +2.0 Cl- + Ce+3 = CeCl2+ + -llnl_gamma 4.0 + log_k +0.0308 + -delta_H 20.7777 kJ/mol # Calculated enthalpy of reaction CeCl2+ +# Enthalpy of formation: -242.3 kcal/mol + -analytic 2.3011e+002 8.1428e-002 -6.1292e+003 -9.4468e+001 -9.5708e+001 +# -Range: 0-300 + +3.0 Cl- + Ce+3 = CeCl3 + -llnl_gamma 3.0 + log_k -0.3936 + -delta_H 15.4766 kJ/mol # Calculated enthalpy of reaction CeCl3 +# Enthalpy of formation: -283.5 kcal/mol + -analytic 4.4073e+002 1.2994e-001 -1.2308e+004 -1.7722e+002 -1.9218e+002 +# -Range: 0-300 + +4.0 Cl- + Ce+3 = CeCl4- + -llnl_gamma 4.0 + log_k -0.7447 + -delta_H -1.95811 kJ/mol # Calculated enthalpy of reaction CeCl4- +# Enthalpy of formation: -327.6 kcal/mol + -analytic 5.2230e+002 1.3490e-001 -1.4859e+004 -2.0747e+002 -2.3201e+002 +# -Range: 0-300 + +ClO4- + Ce+3 = CeClO4+2 + -llnl_gamma 4.5 + log_k +1.9102 + -delta_H -49.0197 kJ/mol # Calculated enthalpy of reaction CeClO4+2 +# Enthalpy of formation: -210.026 kcal/mol + -analytic -1.3609e+001 1.8115e-002 3.9869e+003 -1.3033e+000 6.2215e+001 +# -Range: 0-300 + +F- + Ce+3 = CeF+2 + -llnl_gamma 4.5 + log_k +4.2221 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction CeF+2 +# Enthalpy of formation: -242 kcal/mol + -analytic 1.0303e+002 4.1730e-002 -2.8424e+003 -4.1094e+001 -4.4383e+001 +# -Range: 0-300 + +2.0 F- + Ce+3 = CeF2+ + -llnl_gamma 4.0 + log_k +7.2714 + -delta_H 15.0624 kJ/mol # Calculated enthalpy of reaction CeF2+ +# Enthalpy of formation: -324.1 kcal/mol + -analytic 2.5063e+002 8.5224e-002 -6.2219e+003 -1.0017e+002 -9.7160e+001 +# -Range: 0-300 + +3.0 F- + Ce+3 = CeF3 + -llnl_gamma 3.0 + log_k +9.5144 + -delta_H -6.0668 kJ/mol # Calculated enthalpy of reaction CeF3 +# Enthalpy of formation: -409.3 kcal/mol + -analytic 4.6919e+002 1.3664e-001 -1.1745e+004 -1.8629e+002 -1.8340e+002 +# -Range: 0-300 + +4.0 F- + Ce+3 = CeF4- + -llnl_gamma 4.0 + log_k +11.3909 + -delta_H -45.6056 kJ/mol # Calculated enthalpy of reaction CeF4- +# Enthalpy of formation: -498.9 kcal/mol + -analytic 5.3522e+002 1.3856e-001 -1.2722e+004 -2.1112e+002 -1.9868e+002 +# -Range: 0-300 + +HPO4-2 + H+ + Ce+3 = CeH2PO4+2 + -llnl_gamma 4.5 + log_k +9.6684 + -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction CeH2PO4+2 +# Enthalpy of formation: -480.1 kcal/mol + -analytic 1.1338e+002 6.3771e-002 5.2908e+001 -4.9649e+001 7.9189e-001 +# -Range: 0-300 + +HCO3- + Ce+3 = CeHCO3+2 + -llnl_gamma 4.5 + log_k +1.9190 + -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction CeHCO3+2 +# Enthalpy of formation: -330.2 kcal/mol + -analytic 4.4441e+001 3.2077e-002 -3.0714e+002 -2.0622e+001 -4.8060e+000 +# -Range: 0-300 + +HPO4-2 + Ce+3 = CeHPO4+ + -llnl_gamma 4.0 + log_k +5.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeHPO4+ +# Enthalpy of formation: -0 kcal/mol + +NO3- + Ce+3 = CeNO3+2 + -llnl_gamma 4.5 + log_k +1.3143 + -delta_H -26.6563 kJ/mol # Calculated enthalpy of reaction CeNO3+2 +# Enthalpy of formation: -223.2 kcal/mol + -analytic 2.2772e+001 2.5931e-002 1.9950e+003 -1.4490e+001 3.1124e+001 +# -Range: 0-300 + +H2O + Ce+3 = CeO+ +2.0 H+ + -llnl_gamma 4.0 + log_k -16.4103 + -delta_H 112.202 kJ/mol # Calculated enthalpy of reaction CeO+ +# Enthalpy of formation: -208.9 kcal/mol + -analytic 1.9881e+002 3.1302e-002 -1.4331e+004 -7.1323e+001 -2.2368e+002 +# -Range: 0-300 + +2.0 H2O + Ce+3 = CeO2- +4.0 H+ + -llnl_gamma 4.0 + log_k -38.758 + -delta_H 308.503 kJ/mol # Calculated enthalpy of reaction CeO2- +# Enthalpy of formation: -230.3 kcal/mol + -analytic 1.0059e+002 3.4824e-003 -1.5873e+004 -3.3056e+001 -4.7656e+005 +# -Range: 0-300 + +2.0 H2O + Ce+3 = CeO2H +3.0 H+ + -llnl_gamma 3.0 + log_k -26.1503 + -delta_H 228.17 kJ/mol # Calculated enthalpy of reaction CeO2H +# Enthalpy of formation: -249.5 kcal/mol + -analytic 3.5650e+002 4.6708e-002 -2.4320e+004 -1.2731e+002 -3.7959e+002 +# -Range: 0-300 + +H2O + Ce+3 = CeOH+2 + H+ + -llnl_gamma 4.5 + log_k -8.4206 + -delta_H 73.2911 kJ/mol # Calculated enthalpy of reaction CeOH+2 +# Enthalpy of formation: -218.2 kcal/mol + -analytic 7.5809e+001 1.2863e-002 -6.7244e+003 -2.6473e+001 -1.0495e+002 +# -Range: 0-300 + +H2O + Ce+4 = CeOH+3 + H+ + -llnl_gamma 5.0 + log_k +3.2049 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeOH+3 +# Enthalpy of formation: -0 kcal/mol + +HPO4-2 + Ce+3 = CePO4 + H+ + -llnl_gamma 3.0 + log_k -0.9718 + -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4 +# Enthalpy of formation: -0 kcal/mol + +SO4-2 + Ce+3 = CeSO4+ + -llnl_gamma 4.0 + log_k -3.687 + -delta_H 19.2464 kJ/mol # Calculated enthalpy of reaction CeSO4+ +# Enthalpy of formation: -380.2 kcal/mol + -analytic 3.0156e+002 8.5149e-002 -1.1025e+004 -1.1866e+002 -1.7213e+002 +# -Range: 0-300 + +2.0 H+ + Pb+2 + 0.5 O2 = Pb+4 + H2O + -llnl_gamma 5.5 + log_k -14.1802 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb+4 +# Enthalpy of formation: -0 kcal/mol + +2.0 HCO3- + Pb+2 = Pb(CO3)2-2 +2.0 H+ + -llnl_gamma 4.0 + log_k -11.2576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol + +2.0 ClO3- + Pb+2 = Pb(ClO3)2 + -llnl_gamma 3.0 + log_k -0.5133 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(ClO3)2 +# Enthalpy of formation: -0 kcal/mol + +2.0 H2O + Pb+2 = Pb(OH)2 +2.0 H+ + -llnl_gamma 3.0 + log_k -17.0902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)2 +# Enthalpy of formation: -0 kcal/mol + +3.0 H2O + Pb+2 = Pb(OH)3- +3.0 H+ + -llnl_gamma 4.0 + log_k -28.0852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)3- +# Enthalpy of formation: -0 kcal/mol + +2.0 Pb+2 + H2O = Pb2OH+3 + H+ + -llnl_gamma 5.0 + log_k -6.3951 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2OH+3 +# Enthalpy of formation: -0 kcal/mol + +4.0 H2O + 3.0 Pb+2 = Pb3(OH)4+2 +4.0 H+ + -llnl_gamma 4.5 + log_k -23.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(OH)4+2 +# Enthalpy of formation: -0 kcal/mol + +4.0 Pb+2 + 4.0 H2O = Pb4(OH)4+4 +4.0 H+ + -llnl_gamma 5.5 + log_k -20.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol + +8.0 H2O + 6.0 Pb+2 = Pb6(OH)8+4 +8.0 H+ + -llnl_gamma 5.5 + log_k -43.5606 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb6(OH)8+4 +# Enthalpy of formation: -0 kcal/mol + + + Pb+2 + HCO3- = PbCO3 + H+ + -llnl_gamma 3.0 + log_k -3.7488 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3 +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + Cl- = PbCl+ + -llnl_gamma 4.0 + log_k +1.4374 + -delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+ +# Enthalpy of formation: -38.63 kcal/mol + -analytic 1.1948e+002 4.3527e-002 -2.7666e+003 -4.9190e+001 -4.3206e+001 +# -Range: 0-300 + +2.0 Cl- + Pb+2 = PbCl2 + -llnl_gamma 3.0 + log_k +2.0026 + -delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2 +# Enthalpy of formation: -77.7 kcal/mol + -analytic 2.2537e+002 7.7574e-002 -5.5112e+003 -9.2131e+001 -8.6064e+001 +# -Range: 0-300 + +3.0 Cl- + Pb+2 = PbCl3- + -llnl_gamma 4.0 + log_k +1.6881 + -delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3- +# Enthalpy of formation: -117.7 kcal/mol + -analytic 2.5254e+002 8.9159e-002 -6.0116e+003 -1.0395e+002 -9.3880e+001 +# -Range: 0-300 + +4.0 Cl- + Pb+2 = PbCl4-2 + -llnl_gamma 4.0 + log_k +1.4909 + -delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2 +# Enthalpy of formation: -161.23 kcal/mol + -analytic 1.4048e+002 7.6332e-002 -1.1507e+003 -6.3786e+001 -1.7997e+001 +# -Range: 0-300 + + Pb+2 + ClO3- = PbClO3+ + -llnl_gamma 4.0 + log_k -0.2208 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbClO3+ +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + F- = PbF+ + -llnl_gamma 4.0 + log_k +0.8284 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF+ +# Enthalpy of formation: -0 kcal/mol + +2.0 F- + Pb+2 = PbF2 + -llnl_gamma 3.0 + log_k +1.6132 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF2 +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + HPO4-2 + H+ = PbH2PO4+ + -llnl_gamma 4.0 + log_k +1.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbH2PO4+ +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + HPO4-2 = PbHPO4 + -llnl_gamma 3.0 + log_k +3.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + NO3- = PbNO3+ + -llnl_gamma 4.0 + log_k +1.2271 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbNO3+ +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + H2O = PbOH+ + H+ + -llnl_gamma 4.0 + log_k -7.6951 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0 HPO4-2 + Pb+2 = PbP2O7-2 + H2O + -llnl_gamma 4.0 + log_k +7.4136 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 HCO3- = SrCO3 +1.0 H+ + -llnl_gamma 3.0 + log_k -7.4635 + -delta_H 33.2544 kJ/mol # Calculated enthalpy of reaction SrCO3 +# Enthalpy of formation: -288.62 kcal/mol + -analytic 2.2303e+002 5.2582e-002 -8.4861e+003 -8.7975e+001 -1.3248e+002 +# -Range: 0-300 + +1.0 Sr+2 + 1.0 Cl- = SrCl+ + -llnl_gamma 4.0 + log_k -0.2485 + -delta_H 7.58559 kJ/mol # Calculated enthalpy of reaction SrCl+ +# Enthalpy of formation: -169.79 kcal/mol + -analytic 9.4568e+001 3.9042e-002 -2.1458e+003 -4.0105e+001 -3.3511e+001 +# -Range: 0-300 + +1.0 Sr+2 + 1.0 F- = SrF+ + -llnl_gamma 4.0 + log_k +0.1393 + -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction SrF+ +# Enthalpy of formation: -210.67 kcal/mol + -analytic 9.0295e+001 3.7609e-002 -1.9012e+003 -3.8379e+001 -2.9693e+001 +# -Range: 0-300 + +1.0 Sr+2 + 1.0 HPO4-2 + 1.0 H+ = SrH2PO4+ + -llnl_gamma 4.0 + log_k +0.7300 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 HPO4-2 = SrHPO4 + -llnl_gamma 3.0 + log_k +2.0600 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 NO3- = SrNO3+ + -llnl_gamma 4.0 + log_k +0.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrNO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 H2O = SrOH+ +1.0 H+ + -llnl_gamma 4.0 + log_k -13.29 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0 HPO4-2 + 1.0 Sr+2 = SrP2O7-2 +1.0 H2O + -llnl_gamma 4.0 + log_k +1.6537 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 SO4-2 = SrSO4 + -llnl_gamma 3.0 + log_k +2.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrSO4 +# Enthalpy of formation: -0 kcal/mol + + + +PHASES + +#------------ +# 375 solids +#------------ + +[(6)(CB)(CB)S] + S + O2 = SO2 + log_k 63.04 + -analytic 137.16 -0.320465 0 0 0 0.000241 +# Range 0-350 + -Vm 16.5 +# Extrapol supcrt92 +# Ref R01, calculations and fit by N17 + +[(aro)-O-(aro)] + O = 0.5 O2 + log_k -20.610681 + -delta_H 30.240 kcal/mol + -analytic -46.6 0.111 0 0 0 -7.99e-5 +# Range 0-350 + -Vm -2.4 +# Extrapol supcrt92 +# Ref RH98 + +Afwillite + Ca3Si2O4(OH)6 + 6 H+ = 2 SiO2 + 3 Ca+2 + 6 H2O + log_k 60.0452 + -delta_H -316.059 kJ/mol +# deltafH -1143.31 kcal/mol + -analytic 1.8353e1 1.9014e-3 1.8478e4 -6.6311 -4.0227e5 +# Range 0-300 + -Vm 129.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Akermanite + Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 SiO2 + 3 H2O + log_k 45.3190 + -delta_H -288.575 kJ/mol +# deltafH -926.497 kcal/mol + -analytic -4.8295e1 -8.5613e-3 2.0880e4 1.3798e1 -7.1975e5 +# Range 0-350 + -Vm 92.81 +# Extrapol supcrt92 +# Ref HDN+78 + +Al + Al + 3 H+ + 0.75 O2 = Al+3 + 1.5 H2O + log_k 149.9292 + -delta_H -958.059 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.8752e2 -4.6187e-2 5.7127e4 6.6270e1 -3.8952e5 +# Range 0-300 + -Vm 9.99 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Al2(SO4)3 + Al2(SO4)3 = 2 Al+3 + 3 SO4-2 + log_k 19.0535 + -delta_H -364.566 kJ/mol +# deltafH -3441.04 kJ/mol + -analytic -6.1001e2 -2.4268e-1 2.9194e4 2.4383e2 4.5573e2 +# Range 0-300 + -Vm 126.25 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Alabandite + MnS + H+ = HS- + Mn+2 + log_k -0.3944 + -delta_H -23.3216 kJ/mol +# deltafH -51 kcal/mol + -analytic -1.5515e2 -4.8820e-2 4.9049e3 6.1765e1 7.6583e1 +# Range 0-350 + -Vm 21.46 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol +# deltafH -939.68 kcal/mol + -analytic -1.1694e1 1.4429e-2 1.3784e4 -7.2866 -1.6136e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite_high + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 4.0832 + -delta_H -62.8562 kJ/mol +# deltafH -937.05 kcal/mol + -analytic -1.8957e1 1.3726e-2 1.4801e4 -4.9732 -1.6442e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite_low + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol +# deltafH -939.68 kcal/mol + -analytic -1.2860e1 1.4481e-2 1.3913e4 -6.9417 -1.6256e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Alum-K + KAl(SO4)2:12H2O = Al+3 + K+ + 2 SO4-2 + 12 H2O + log_k -4.8818 + -delta_H 14.4139 kJ/mol +# deltafH -1447 kcal/mol + -analytic -8.8025e2 -2.5706e-1 2.2399e4 3.5434e2 3.4978e2 +# Range 0-300 + -Vm 269.54 # Marion+09 +# Extrapol Cp integration +# Ref 73bar/kna + +Alunite + KAl3(OH)6(SO4)2 + 6 H+ = K+ + 2 SO4-2 + 3 Al+3 + 6 H2O + log_k -0.3479 + -delta_H -231.856 kJ/mol +# deltafH -1235.6 kcal/mol + -analytic -6.8581e2 -2.2455e-1 2.6886e4 2.6758e2 4.1973e2 +# Range 0-350 + -Vm 205.40 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Amesite-14A + Mg4Al4Si2O10(OH)8 + 20 H+ = 2 SiO2 + 4 Al+3 + 4 Mg+2 + 14 H2O + log_k 75.4571 + -delta_H -797.098 kJ/mol +# deltafH -2145.67 kcal/mol + -analytic -5.4326e2 -1.4144e-1 5.4150e4 1.9361e2 8.4512e2 +# Range 0-300 + -Vm 205.4 +# Extrapol Cp integration +# Ref 78wol + +Andalusite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 15.9445 + -delta_H -235.233 kJ/mol +# deltafH -615.866 kcal/mol + -analytic -7.1115e1 -3.2234e-2 1.2308e4 2.2357e1 1.9208e2 +# Range 0-350 + -Vm 51.53 +# Extrapol supcrt92 +# Ref HDN+78 differ by 1.6 log K at 0C, 0.5 log K at 350C + +Andradite + Ca3Fe2(SiO4)3 + 12 H+ = 2 Fe+3 + 3 Ca+2 + 3 SiO2 + 6 H2O + log_k 33.3352 + -delta_H -301.173 kJ/mol +# deltafH -1380.35 kcal/mol + -analytic 1.3884e1 -2.3886e-2 1.5314e4 -8.1606 -4.2193e5 +# Range 0-350 + -Vm 131.85 +# Extrapol supcrt92 +# Ref HDN+78 + +Anhydrite + CaSO4 = Ca+2 + SO4-2 + log_k -4.3064 + -delta_H -18.577 kJ/mol +# deltafH -342.76 kcal/mol + -analytic -2.0986e2 -7.8823e-2 5.0969e3 8.5642e1 7.9594e1 +# Range 0-350 + -Vm 45.94 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Annite + KFe3AlSi3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 SiO2 + 6 H2O + log_k 29.4693 + -delta_H -259.964 kJ/mol +# deltafH -1232.19 kcal/mol + -analytic -4.0186e1 -1.4238e-2 1.8929e4 7.9859e0 -8.4343e5 +# Range 0-350 + -Vm 154.32 +# Extrapol supcrt92 +# Ref HDN+78 + +Anorthite + CaAl2(SiO4)2 + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 4 H2O + log_k 26.5780 + -delta_H -303.039 kJ/mol +# deltafH -1007.55 kcal/mol + -analytic 3.9717e-1 -1.8751e-2 1.4897e4 -6.3078 -2.3885e5 +# Range 0-350 + -Vm 100.79 +# Extrapol supcrt92 +# Ref HDN+78 + +Anthophyllite + Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 + 8 H2O + 8 SiO2 + log_k 66.7965 + -delta_H -483.486 kJ/mol +# deltafH -2888.75 kcal/mol + -analytic -1.2865e2 1.9705e-2 5.4853e4 1.9444e1 -3.8080e6 +# Range 0-350 + -Vm 264.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Antigorite + Mg48Si34O85(OH)62 + 96 H+ = 34 SiO2 + 48 Mg+2 + 79 H2O + log_k 477.1943 + -delta_H -3364.43 kJ/mol +# deltafH -17070.9 kcal/mol + -analytic -8.1630e2 -6.7780e-2 2.5998e5 2.2029e2 -9.3275e6 +# Range 0-350 + -Vm 1749.13 +# Extrapol supcrt92 +# Ref HDN+78 + +Aragonite + CaCO3 + H+ = Ca+2 + HCO3- + log_k 1.9931 + -delta_H -25.8027 kJ/mol +# deltafH -288.531 kcal/mol + -analytic -1.4934e2 -4.8043e-2 4.9089e3 6.0284e1 7.6644e1 +# Range 0-325 + -Vm 34.15 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.8008 + -delta_H 23.836 kJ/mol +# deltafH -1437.78 kJ/mol + -analytic -1.6428e2 -6.7762e-2 1.9879e3 7.1116e1 3.1067e1 +# Range 0-300 + -Vm 65.50 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Artinite + Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O + log_k 19.6560 + -delta_H -130.432 kJ/mol +# deltafH -698.043 kcal/mol + -analytic -2.8614e2 -6.7344e-2 1.5230e4 1.1104e2 2.3773e2 +# Range 0-350 + -Vm 96.9 # 97.85 Webmineral.com +# Extrapol supcrt92 +# Ref HDN+78 + +Atacamite + Cu4Cl2(OH)6 + 6 H+ = 2 Cl- + 4 Cu+2 + 6 H2O + log_k 14.2836 + -delta_H -132.001 kJ/mol +# deltafH -1654.43 kJ/mol + -analytic -2.6623e2 -4.8121e-2 1.5315e4 9.8395e1 2.6016e2 +# Range 0-200 + -Vm 56.80 # Webmineral.com +# Extrapol Constant H approx +# Ref 87woo/gar + +Azurite + Cu3(CO3)2(OH)2 + 4 H+ = 2 H2O + 2 HCO3- + 3 Cu+2 + log_k 9.1607 + -delta_H -122.298 kJ/mol +# deltafH -390.1 kcal/mol + -analytic -4.4042e2 -1.1934e-1 1.8053e4 1.7158e2 2.8182e2 +# Range 0-350 + -Vm 91.01 +# Extrapol supcrt92 +# Ref HDN+78 + +B + B + 1.5 H2O + 0.75 O2 = B(OH)3 + log_k 109.5654 + -delta_H -636.677 kJ/mol +# deltafH 0 kJ/mol + -analytic 8.0471e1 1.2577e-3 2.9653e4 -2.8593e1 4.6268e2 +# Range 0-300 + -Vm 4.386 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +B2O3 + B2O3 + 3 H2O = 2 B(OH)3 + log_k 5.5464 + -delta_H -18.0548 kJ/mol +# deltafH -1273.5 kJ/mol + -analytic 9.0905e1 5.5365e-3 -2.6629e3 -3.1553e1 -4.1578e1 +# Range 0-300 + -Vm 28.30 # gfw/density +# Extrapol Cp integration +# Ref CWM89 + +Bassanite + CaSO4:0.5H2O = 0.5 H2O + Ca+2 + SO4-2 + log_k -3.6615 + -delta_H -18.711 kJ/mol +# deltafH -1576.89 kJ/mol + -analytic -2.2010e2 -8.0230e-2 5.5092e3 8.9651e1 8.6031e1 +# Range 0-300 + -Vm 52.31 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Bassetite + Fe(UO2)2(PO4)2 + 2 H+ = Fe+2 + 2 HPO4-2 + 2 UO2+2 + log_k -17.7240 + -delta_H -114.841 kJ/mol +# deltafH -1099.33 kcal/mol + -analytic -5.7788e1 -4.5400e-2 4.0119e3 1.6216e1 6.8147e1 +# Range 0-200 + -Vm 256.19 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Beidellite-Ca + Ca.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.5914 + -delta_H -162.403 kJ/mol +# deltafH -1370.66 kcal/mol + -analytic 3.872e1 -1.431e-1 0 0 0 9.036e-5 +# Range 0-300 + -Vm 133.081 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 1.5 log K at 0C, 1 log K at 300C + +Beidellite-Fe + Fe.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Fe+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 4.6335 + -delta_H -154.65 kJ/mol +# deltafH -1351.1 kcal/mol + -analytic 3.641e1 -1.391e-1 0 0 0 8.671e-5 +# Range 0-300 + -Vm 134.293 +# Extrapol supcrt92 +# Ref Catalano13 + +Beidellite-K + K.35Al2.35Si3.65O10(OH)2 +7.4 H+ = 0.35 K+ + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.3088 + -delta_H -150.834 kJ/mol +# deltafH -1371.9 kcal/mol + -analytic 3.307e1 -1.254e-1 0 0 0 7.660e-5 +# Range 0-300 + -Vm 137.214 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 2.9 log K at 0C, 1.7 log K at 300C + +Beidellite-Mg + Mg.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Mg+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.5537 + -delta_H -165.455 kJ/mol +# deltafH -1366.89 kcal/mol + -analytic 3.750e1 -1.415e-1 0 0 0 8.929e-5 +# Range 0-300 + -Vm 132.116 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 2.4 log K at 0C, 1.4 log K at 300C + +Beidellite-Na + Na.35Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Na+ + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.6473 + -delta_H -155.846 kJ/mol +# deltafH -1369.76 kcal/mol + -analytic 3.613e1 -1.347e-1 0 0 0 8.470e-5 +# Range 0-300 + -Vm 134.522 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, differ from 78 wol and Wilson+06 (which match) by 2.8 log K at 0C, 1.3 log K at 300C + +Berlinite + AlPO4 + H+ = Al+3 + HPO4-2 + log_k -7.2087 + -delta_H -96.6313 kJ/mol +# deltafH -1733.85 kJ/mol + -analytic -2.8134e2 -9.9933e-2 1.0308e4 1.0883e2 1.6094e2 +# Range 0-300 + -Vm 46.19 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Bieberite + CoSO4:7H2O = Co+2 + SO4-2 + 7 H2O + log_k -2.5051 + -delta_H 11.3885 kJ/mol +# deltafH -2980.02 kJ/mol + -analytic -2.6405e2 -7.2497e-2 6.6673e3 1.0538e2 1.0411e2 +# Range 0-300 + -Vm 147.95 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Bixbyite + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.9655 + -delta_H -190.545 kJ/mol +# deltafH -958.971 kJ/mol + -analytic -1.1600e2 -2.8056e-3 1.3418e4 2.8639e1 2.0941e2 +# Range 0-300 + -Vm 31.89 # Webmineral.com, density 4.95 +# Extrapol Cp integration +# Ref RHF79 + +Boehmite + AlO2H + 3 H+ = Al+3 + 2 H2O + log_k 7.5642 + -delta_H -113.282 kJ/mol +# deltafH -238.24 kcal/mol + -analytic -1.2196e2 -3.1138e-2 8.8643e3 4.4075e1 1.3835e2 +# Range 0-225 + -Vm 19.535 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Borax + Na2(B4O5(OH)4):8H2O + 2 H+ = 2 Na+ + 4 B(OH)3 + 5 H2O + log_k 12.0395 + -delta_H 80.5145 kJ/mol +# deltafH -6288.44 kJ/mol + -analytic 7.8374e1 1.9328e-2 -5.3279e3 -2.1914e1 -8.3160e1 +# Range 0-300 + -Vm 222.66 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Boric_acid + B(OH)3 = B(OH)3 + log_k -0.1583 + -delta_H 20.2651 kJ/mol +# deltafH -1094.8 kJ/mol + -analytic 3.9122e1 6.4058e-3 -2.2525e3 -1.3592e1 -3.5160e1 +# Range 0-300 + -Vm 43.09 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Bornite + Cu5FeS4 + 4 H+ = Cu+2 + Fe+2 + 4 Cu+ + 4 HS- + log_k -102.4369 + -delta_H 530.113 kJ/mol +# deltafH -79.922 kcal/mol + -analytic -7.0495e2 -2.0082e-1 -9.1376e3 2.8004e2 -1.4238e2 +# Range 0-350 + -Vm 98.6 +# Extrapol supcrt92 +# Ref HDN+78 + +Brezinaite + Cr3S4 + 4 H+ = Cr+2 + 2 Cr+3 + 4 HS- + log_k 2.7883 + -delta_H -216.731 kJ/mol +# deltafH -111.9 kcal/mol + -analytic -7.0528e1 -3.6568e-2 1.0598e4 1.9665e1 1.8000e2 +# Range 0-200 + -Vm 69.16 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78vau/cra + +Brochantite + Cu4(SO4)(OH)6 + 6 H+ = SO4-2 + 4 Cu+2 + 6 H2O + log_k 15.4363 + -delta_H -163.158 kJ/mol +# deltafH -2198.72 kJ/mol + -analytic -2.3609e2 -3.9046e-2 1.5970e4 8.4701e1 2.7127e2 +# Range 0-200 + -Vm 113.60 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87woo/gar + +Brucite + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.2980 + -delta_H -111.34 kJ/mol +# deltafH -221.39 kcal/mol + -analytic -1.0280e2 -1.9759e-2 9.0180e3 3.8282e1 1.4075e2 +# Range 0-350 + -Vm 24.63 +# Extrapol supcrt92 +# Ref HDN+78 + +Bunsenite + NiO + 2 H+ = H2O + Ni+2 + log_k 12.4719 + -delta_H -100.069 kJ/mol +# deltafH -57.3 kcal/mol + -analytic -8.1664e1 -1.9796e-2 7.4064e3 3.0385e1 1.1559e2 +# Range 0-350 + -Vm 10.97 +# Extrapol supcrt92 +# Ref HDN+78 + +C + C + H2O + O2 = H+ + HCO3- + log_k 64.1735 + -delta_H -391.961 kJ/mol +# deltafH 0 kcal/mol + -analytic -3.5556e1 -3.3691e-2 1.9774e4 1.7548e1 3.0856e2 +# Range 0-350 + -Vm 5.298 +# Extrapol supcrt92 +# Ref HDN+78 + +Ca + Ca +2 H+ + 0.5 O2 = Ca+2 + H2O + log_k 139.8465 + -delta_H -822.855 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.1328e2 -2.6554e-2 4.7638e4 4.1989e1 -2.3545e5 +# Range 0-300 + -Vm 26.19 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Ca-Al_Pyroxene + CaAl2SiO6 + 8 H+ = Ca+2 + SiO2 + 2 Al+3 + 4 H2O + log_k 35.9759 + -delta_H -361.548 kJ/mol +# deltafH -783.793 kcal/mol + -analytic -1.4664e2 -5.0409e-2 2.1045e4 5.1318e1 3.2843e2 +# Range 0-350 + -Vm 63.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Ca3Al2O6 + Ca3Al2O6 + 12 H+ = 2 Al+3 + 3 Ca+2 + 6 H2O + log_k 113.0460 + -delta_H -833.336 kJ/mol +# deltafH -857.492 kcal/mol + -analytic -2.7163e2 -5.2897e-2 5.0815e4 9.2946e1 8.6300e2 +# Range 0-200 + -Vm 88.94 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Ca4Al2Fe2O10 + Ca4Al2Fe2O10 + 20 H+ = 2 Al+3 + 2 Fe+3 + 4 Ca+2 + 10 H2O + log_k 140.5050 + -delta_H -1139.86 kJ/mol +# deltafH -1211 kcal/mol + -analytic -4.1808e2 -8.2787e-2 7.0288e4 1.4043e2 1.1937e3 +# Range 0-200 + -Vm 130.28 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +CaAl2O4 + CaAl2O4 + 8 H+ = Ca+2 + 2 Al+3 + 4 H2O + log_k 46.9541 + -delta_H -436.952 kJ/mol +# deltafH -555.996 kcal/mol + -analytic -3.0378e2 -7.9356e-2 3.0096e4 1.1049e2 4.6971e2 +# Range 0-300 + -Vm 53.02 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +CaAl4O7 + CaAl4O7 + 14 H+ = Ca+2 + 4 Al+3 + 7 H2O + log_k 68.6138 + -delta_H -718.464 kJ/mol +# deltafH -951.026 kcal/mol + -analytic -3.1044e2 -6.7078e-2 4.4566e4 1.0085e2 7.5689e2 +# Range 0-200 + -Vm 89.35 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +CaUO4 + CaUO4 + 4 H+ = Ca+2 + UO2+2 + 2 H2O + log_k 15.9420 + -delta_H -131.46 kJ/mol +# deltafH -2002.3 kJ/mol + -analytic -8.7902e1 -1.9810e-2 9.2354e3 3.1832e1 1.4414e2 +# Range 0-300 + -Vm 45.92 # M13 +# Extrapol Cp integration +# Ref 92gre/fug + +Calcite + CaCO3 + H+ = Ca+2 + HCO3- + log_k 1.8487 + -delta_H -25.7149 kJ/mol +# deltafH -288.552 kcal/mol + -analytic -1.4978e2 -4.8370e-2 4.8974e3 6.0458e1 7.6464e1 +# Range 0-350 + -Vm 36.934 +# Extrapol supcrt92 +# Ref HDN+78 + +Cattierite + CoS2 = Co+2 + S2-2 + log_k -29.9067 +# deltafH -36.589 kcal/mol + -analytic -2.1970e2 -7.8585e-2 -1.9592e3 8.8809e1 -3.0507e1 +# Range 0-300 + -Vm 25.53 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78vau/cra + +Celadonite + KMgAlSi4O10(OH)2 + 6 H+ = Al+3 + K+ + Mg+2 + 4 H2O + 4 SiO2 + log_k 7.4575 + -delta_H -74.3957 kJ/mol +# deltafH -1394.9 kcal/mol + -analytic -3.3097e1 1.7989e-2 1.8919e4 -2.1219 -2.0588e6 +# Range 0-300 + -Vm 157.1 +# Extrapol supcrt92, Cp integration +# Ref HDN+78, 78wol match + +Chalcanthite + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.6215 + -delta_H 6.57556 kJ/mol +# deltafH -2279.68 kJ/mol + -analytic -1.1262e2 -1.5544e-2 3.6176e3 4.1420e1 6.1471e1 +# Range 0-200 + -Vm 108.97 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Chalcedony + SiO2 = SiO2 + log_k -3.7281 + -delta_H 31.4093 kJ/mol +# deltafH -217.282 kcal/mol + -analytic -9.0068 9.3241e-3 4.0535e3 -1.0830 -7.5077e5 +# Range 0-350 + -Vm 22.68 +# Extrapol supcrt92 +# Ref HDN+78 + +Chalcocite + Cu2S + H+ = HS- + 2 Cu+ + log_k -34.7342 + -delta_H 206.748 kJ/mol +# deltafH -19 kcal/mol + -analytic -1.3703e2 -4.0727e-2 -7.1694e3 5.5963e1 -1.1183e2 +# Range 0-350 + -Vm 27.48 +# Extrapol supcrt92 +# Ref HDN+78 + +Chalcocyanite + CuSO4 = Cu+2 + SO4-2 + log_k 2.9239 + -delta_H -72.5128 kJ/mol +# deltafH -771.4 kJ/mol + -analytic 5.8173 -1.6933e-2 2.0097e3 -1.8583 3.4126e1 +# Range 0-200 + -Vm 40.88 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref CWM89 + +Chalcopyrite + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -32.5638 + -delta_H 127.206 kJ/mol +# deltafH -44.453 kcal/mol + -analytic -3.1575e2 -9.8947e-2 8.3400e2 1.2522e2 1.3106e1 +# Range 0-350 + -Vm 42.83 +# Extrapol supcrt92 +# Ref HDN+78 + +Chloromagnesite + MgCl2 = Mg+2 + 2 Cl- + log_k 21.8604 + -delta_H -158.802 kJ/mol +# deltafH -641.317 kJ/mol + -analytic -2.3640e2 -8.2017e-2 1.3480e4 9.5963e1 2.1042e2 +# Range 0-300 + -Vm 40.95 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Chromite + FeCr2O4 + 8 H+ = Fe+2 + 2 Cr+3 + 4 H2O + log_k 15.1685 + -delta_H -267.755 kJ/mol +# deltafH -1444.83 kJ/mol + -analytic -1.9060e2 -2.5695e-2 1.9465e4 5.9865e1 3.0379e2 +# Range 0-300 + -Vm 44.01 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O + log_k 31.1254 + -delta_H -218.041 kJ/mol +# deltafH -1043.12 kcal/mol + -analytic -9.2462e1 -1.1359e-2 1.8312e4 2.9289e1 -6.2342e5 +# Range 0-350 + -Vm 108.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Clinochlore-14A + Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O + log_k 67.2391 + -delta_H -612.379 kJ/mol +# deltafH -2116.96 kcal/mol + -analytic -2.0441e2 -6.2268e-2 3.5388e4 6.9239e1 5.5225e2 +# Range 0-350 + -Vm 207.11 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 differ by 0.4 log K at 0C, 1.6 log K at 300C + +Clinochlore-7A + Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O + log_k 70.6124 + -delta_H -628.14 kJ/mol +# deltafH -2113.2 kcal/mol + -analytic -2.1644e2 -6.4187e-2 3.6548e4 7.4123e1 5.7037e2 +# Range 0-350 + -Vm 211.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Clinoptilolite-K + K3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 14.533 SiO2 + 17.856 H2O + log_k -10.9485 + -delta_H 67.4862 kJ/mol +# deltafH -4937.77 kcal/mol + -analytic 1.1697e1 6.9480e-2 4.7718e4 -4.7442e1 -7.6907e6 +# Range 0-300 + -Vm 655.93 # Webmineral.com, density 2.15 +# Extrapol Cp integration +# Ref 89db 7 + +Clinozoisite + Ca2Al3Si3O12(OH) + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O + log_k 43.2569 + -delta_H -457.755 kJ/mol +# deltafH -1643.78 kcal/mol + -analytic -2.8690e1 -3.7056e-2 2.2770e4 3.7880 -2.5834e5 +# Range 0-300 + -Vm 136.2 +# Extrapol supcrt92 +# Ref HDN+78, SH88 + +Co + Co + 2 H+ + 0.5 O2 = Co+2 + H2O + log_k 52.5307 + -delta_H -337.929 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.2703e1 -2.0172e-2 1.8888e4 2.3391e1 2.9474e2 +# Range 0-300 + -Vm 6.67 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Co2SiO4 + Co2SiO4 + 4 H+ = SiO2 + 2 Co+2 + 2 H2O + log_k 6.6808 + -delta_H -88.6924 kJ/mol +# deltafH -353.011 kcal/mol + -analytic -3.9978 -3.7985e-3 5.1554e3 -1.5033 -1.6100e5 +# Range 0-300 + -Vm 44.52 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoCl2 + CoCl2 = Co+2 + 2 Cl- + log_k 8.2641 + -delta_H -79.5949 kJ/mol +# deltafH -312.722 kJ/mol + -analytic -2.2386e2 -8.0936e-2 8.8631e3 9.1528e1 1.3837e2 +# Range 0-300 + -Vm 38.69 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoCl2:2H2O + CoCl2:2H2O = Co+2 + 2 Cl- + 2 H2O + log_k 4.6661 + -delta_H -40.7876 kJ/mol +# deltafH -923.206 kJ/mol + -analytic -5.6411e1 -2.3390e-2 3.0519e3 2.3361e1 5.1845e1 +# Range 0-200 + -Vm 66.61 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CoCl2:6H2O + CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O + log_k 2.6033 + -delta_H 8.32709 kJ/mol +# deltafH -2115.67 kJ/mol + -analytic -1.5066e2 -2.2132e-2 5.0591e3 5.7743e1 8.5962e1 +# Range 0-200 + -Vm 123.66 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CoFe2O4 + CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O + log_k 0.8729 + -delta_H -160.674 kJ/mol +# deltafH -272.466 kcal/mol + -analytic -3.0149e2 -7.9159e-2 1.5683e4 1.1046e2 2.4480e2 +# Range 0-300 + -Vm 44 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +CoO + CoO + 2 H+ = Co+2 + H2O + log_k 13.5553 + -delta_H -106.05 kJ/mol +# deltafH -237.946 kJ/mol + -analytic -8.4424e1 -1.9457e-2 7.8616e3 3.1281e1 1.2270e2 +# Range 0-300 + -Vm 11.64 # gfw/density +# Extrapol Cp integration +# Ref WEP+82 + +CoS + CoS + H+ = Co+2 + HS- + log_k -7.3740 + -delta_H 10.1755 kJ/mol +# deltafH -20.182 kcal/mol + -analytic -1.5128e2 -4.8484e-2 2.9553e3 5.9983e1 4.6158e1 +# Range 0-300 + -Vm 22.91 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +CoSO4 + CoSO4 = Co+2 + SO4-2 + log_k 2.8996 + -delta_H -79.7952 kJ/mol +# deltafH -887.964 kJ/mol + -analytic -1.9907e2 -7.7890e-2 7.7193e3 8.0525e1 1.2051e2 +# Range 0-300 + -Vm 41.78 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoSO4:6H2O + CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O + log_k -2.3512 + -delta_H 1.08483 kJ/mol +# deltafH -2683.87 kJ/mol + -analytic -2.5469e2 -7.3092e-2 6.6767e3 1.0172e2 1.0426e2 +# Range 0-300 + -Vm 130.30 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoSO4:H2O + CoSO4:H2O = Co+2 + H2O + SO4-2 + log_k -1.2111 + -delta_H -52.6556 kJ/mol +# deltafH -287.032 kcal/mol + -analytic -1.0570e1 -1.6196e-2 1.7180e3 3.4000 2.9178e1 +# Range 0-200 + -Vm 56.26 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +Coesite + SiO2 = SiO2 + log_k -3.1893 + -delta_H 28.6144 kJ/mol +# deltafH -216.614 kcal/mol + -analytic -9.7312 9.1773e-3 4.2143e3 -7.8065e-1 -7.4905e5 +# Range 0-350 + -Vm 20.641 +# Extrapol supcrt92 +# Ref HDN+78 + +Coffinite + USiO4 + 4 H+ = SiO2 + U+4 + 2 H2O + log_k -8.0530 + -delta_H -49.2493 kJ/mol +# deltafH -1991.33 kJ/mol + -analytic 2.3126e2 6.2389e-2 -4.6189e3 -9.7976e1 -7.8517e1 +# Range 0-200 + -Vm 46.12 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref 92gre/fug + +Cordierite_anhyd + Mg2Al4Si5O18 + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 8 H2O + log_k 52.3035 + -delta_H -626.219 kJ/mol +# deltafH -2183.2 kcal/mol + -analytic 2.6562 -2.3801e-2 3.5192e4 -1.9911e1 -1.0894e6 +# Range 0-350 + -Vm 233.22 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3 log K at 0C, 0.8 log K at 350C + +Cordierite_hydr + Mg2Al4Si5O18:H2O + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 9 H2O + log_k 49.8235 + -delta_H -608.814 kJ/mol +# deltafH -2255.68 kcal/mol + -analytic -1.2985e2 -4.1335e-2 4.1566e4 2.7892e1 -1.4819e6 +# Range 0-350 + -Vm 241.22 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3.4 log K at 0C, 0.8 log K at 350C + +Corundum + Al2O3 + 6 H+ = 2 Al+3 + 3 H2O + log_k 18.3121 + -delta_H -258.626 kJ/mol +# deltafH -400.5 kcal/mol + -analytic -1.4278e2 -7.8519e-2 1.3776e4 5.5881e1 2.1501e2 +# Range 0-350 + -Vm 25.575 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel differ by 1 log K at 0C, 7 log K at 300C !! flag + +Covellite + CuS + H+ = Cu+2 + HS- + log_k -22.8310 + -delta_H 101.88 kJ/mol +# deltafH -12.5 kcal/mol + -analytic -1.6068e2 -4.9040e-2 -1.4234e3 6.3536e1 -2.2164e1 +# Range 0-350 + -Vm 20.42 +# Extrapol supcrt92 +# Ref HDN+78 + +Cr + Cr + 3 H+ + 0.75 O2 = Cr+3 + 1.5 H2O + log_k 98.6784 + -delta_H -658.145 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.2488e1 -5.5886e-3 3.4288e4 3.1585 5.3503e2 +# Range 0-300 + -Vm 7.231 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +CrCl3 + CrCl3 = Cr+3 + 3 Cl- + log_k 17.9728 + -delta_H -183.227 kJ/mol +# deltafH -556.5 kJ/mol + -analytic -2.6348e2 -9.5339e-2 1.4785e4 1.0517e2 2.3079e2 +# Range 0-300 + -Vm 57.38 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CrO2 + CrO2 = 0.5 Cr+2 + 0.5 CrO4-2 + log_k -19.1332 + -delta_H 85.9812 kJ/mol +# deltafH -143 kcal/mol + -analytic 2.7763 -7.7698e-3 -5.2893e3 -7.4970e-1 -8.9821e1 +# Range 0-200 + -Vm 16.95 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +CrO3 + CrO3 + H2O = CrO4-2 + 2 H+ + log_k -3.5221 + -delta_H -5.78647 kJ/mol +# deltafH -140.9 kcal/mol + -analytic -1.3262e2 -6.1411e-2 2.2083e3 5.6564e1 3.4497e1 +# Range 0-300 + -Vm 35.14 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 76del/hal + +CrS + CrS + H+ = Cr+2 + HS- + log_k -0.6304 + -delta_H -26.15 kJ/mol +# deltafH -31.9 kcal/mol + -analytic -1.1134e2 -3.5954e-2 3.8744e3 4.3815e1 6.0490e1 +# Range 0-300 + -Vm 17.33 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 76del/hal + +Cristobalite(alpha) + SiO2 = SiO2 + log_k -3.4488 + -delta_H 29.2043 kJ/mol +# deltafH -216.755 kcal/mol + -analytic -1.1936e1 9.0520e-3 4.3701e3 -1.1464e-1 -7.6568e5 +# Range 0-350 + -Vm 25.74 +# Extrapol supcrt92 +# Ref HDN+78 + +Cristobalite(beta) + SiO2 = SiO2 + log_k -3.0053 + -delta_H 24.6856 kJ/mol +# deltafH -215.675 kcal/mol + -analytic -4.7414 9.7567e-3 3.8831e3 -2.5830 -6.9636e5 +# Range 0-350 + -Vm 27.38 +# Extrapol supcrt92 +# Ref HDN+78 + +Cronstedtite-7A + Fe2Fe2SiO5(OH)4 + 10 H+ = SiO2 + 2 Fe+2 + 2 Fe+3 + 7 H2O + log_k 16.2603 + -delta_H -244.266 kJ/mol +# deltafH -697.413 kcal/mol + -analytic -2.3783e2 -7.1026e-2 1.7752e4 8.7147e1 2.7707e2 +# Range 0-300 + -Vm 110.9 # HDN+78 +# Extrapol Cp integration +# Ref 78wol + +Cu + Cu + 2 H+ + 0.5 O2 = Cu+2 + H2O + log_k 31.5118 + -delta_H -214.083 kJ/mol +# deltafH 0 kcal/mol + -analytic -7.0719e1 -2.0300e-2 1.2802e4 2.6401e1 1.9979e2 +# Range 0-300 + -Vm 7.113 +# Extrapol supcrt92 +# Ref HDN+78 + + +CuCl2 + CuCl2 = Cu+2 + 2 Cl- + log_k 3.7308 + -delta_H -48.5965 kJ/mol +# deltafH -219.874 kJ/mol + -analytic -1.7803e1 -2.4432e-2 1.5729e3 9.5104 2.6716e1 +# Range 0-200 + -Vm 39.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CuCr2O4 + CuCr2O4 + 8 H+ = Cu+2 + 2 Cr+3 + 4 H2O + log_k 16.2174 + -delta_H -268.768 kJ/mol +# deltafH -307.331 kcal/mol + -analytic -1.8199e2 -1.0254e-2 2.0123e4 5.4062e1 3.4178e2 +# Range 0-200 + -Vm 42.74 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +Cuprite + Cu2O + 2 H+ = H2O + 2 Cu+ + log_k -1.9031 + -delta_H 28.355 kJ/mol +# deltafH -40.83 kcal/mol + -analytic -8.6240e1 -1.1445e-2 1.7851e3 3.3041e1 2.7880e1 +# Range 0-350 + -Vm 23.437 +# Extrapol supcrt92 +# Ref HDN+78 + +Daphnite-14A + Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O + log_k 52.2821 + -delta_H -517.561 kJ/mol +# deltafH -1693.04 kcal/mol + -analytic -1.5261e2 -6.1392e-2 2.8283e4 5.1788e1 4.4137e2 +# Range 0-350 + -Vm 213.42 +# Extrapol supcrt92 +# Ref HDN+78 + +Daphnite-7A + Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O + log_k 55.6554 + -delta_H -532.326 kJ/mol +# deltafH -1689.51 kcal/mol + -analytic -1.6430e2 -6.3160e-2 2.9499e4 5.6442e1 4.6035e2 +# Range 0-300 + -Vm 221.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Dawsonite + NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O + log_k 4.3464 + -delta_H -76.3549 kJ/mol +# deltafH -1963.96 kJ/mol + -analytic -1.1393e2 -2.3487e-2 7.1758e3 4.0900e1 1.2189e2 +# Range 0-200 + -Vm 59.50 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Delafossite + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -6.4172 + -delta_H -18.6104 kJ/mol +# deltafH -126.904 kcal/mol + -analytic -1.5275e2 -3.5478e-2 5.1404e3 5.6437e1 8.0255e1 +# Range 0-300 + -Vm 27.52 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +Diaspore + AlHO2 + 3 H+ = Al+3 + 2 H2O + log_k 7.1603 + -delta_H -110.42 kJ/mol +# deltafH -238.924 kcal/mol + -analytic -1.2618e2 -3.1671e-2 8.8737e3 4.5669e1 1.3850e2 +# Range 0-225 + -Vm 17.76 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Dicalcium_silicate + Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O + log_k 37.1725 + -delta_H -217.642 kJ/mol +# deltafH -2317.9 kJ/mol + -analytic -5.9723e1 -1.3682e-2 1.5461e4 2.1547e1 -3.7732e5 +# Range 0-300 + -Vm 59.11 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Diopside + CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 + 2 H2O + 2 SiO2 + log_k 20.9643 + -delta_H -133.775 kJ/mol +# deltafH -765.378 kcal/mol + -analytic 7.1240e1 1.5514e-2 8.1437e3 -3.0672e1 -5.6880e5 +# Range 0-350 + -Vm 66.09 +# Extrapol supcrt92 +# Ref HDN+78 + +Dioptase + CuSiO2(OH)2 + 2 H+ = Cu+2 + SiO2 + 2 H2O + log_k 6.0773 + -delta_H -25.2205 kJ/mol +# deltafH -1358.47 kJ/mol + -analytic 2.3913e2 6.2669e-2 -5.4030e3 -9.4420e1 -9.1834e1 +# Range 0-200 + -Vm 48.24 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87woo/gar + +Dolomite-dis + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 4.0579 + -delta_H -72.2117 kJ/mol +# deltafH -553.704 kcal/mol + -analytic -3.1706e2 -9.7886e-2 1.1442e4 1.2604e2 1.7864e2 +# Range 0-350 + -Vm 64.39 +# Extrapol supcrt92 +# Ref HDN+78 + +Dolomite-ord + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 2.5135 + -delta_H -59.9651 kJ/mol +# deltafH -556.631 kcal/mol + -analytic -3.1654e2 -9.7902e-2 1.0805e4 1.2607e2 1.6870e2 +# Range 0-350 + -Vm 64.34 +# Extrapol supcrt92 +# Ref HDN+78 + +Enstatite + MgSiO3 + 2 H+ = H2O + Mg+2 + SiO2 + log_k 11.3269 + -delta_H -82.7302 kJ/mol +# deltafH -369.686 kcal/mol + -analytic -4.9278e1 -3.2832e-3 9.5205e3 1.4437e1 -5.4324e5 +# Range 0-350 + -Vm 31.276 +# Extrapol supcrt92 +# Ref HDN+78 + +Epidote + Ca2FeAl2Si3O12OH + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O + log_k 32.9296 + -delta_H -386.451 kJ/mol +# deltafH -1543.99 kcal/mol + -analytic -2.6187e1 -3.6436e-2 1.9351e4 3.3671 -3.0319e5 +# Range 0-350 + -Vm 139.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Epidote-ord + FeCa2Al2(OH)(SiO4)3 + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O + log_k 32.9296 + -delta_H -386.351 kJ/mol +# deltafH -1544.02 kcal/mol + -analytic 1.9379e1 -3.2870e-2 1.5692e4 -1.1901e1 2.4485e2 +# Range 0-350 + -Vm 139.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Eskolaite + Cr2O3 + 2 H2O + 1.5 O2 = 2 CrO4-2 + 4 H+ + log_k -9.1306 + -delta_H -32.6877 kJ/mol +# deltafH -1139.74 kJ/mol + -analytic -2.0411e2 -1.2809e-1 2.2197e3 9.1186e1 3.4697e1 +# Range 0-300 + -Vm 29.09 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ettringite + Ca6Al2(SO4)3(OH)12:26H2O + 12 H+ = 2 Al+3 + 3 SO4-2 + 6 Ca+2 + 38 H2O + log_k 62.5362 + -delta_H -382.451 kJ/mol +# deltafH -4193 kcal/mol + -analytic -1.0576e3 -1.1585e-1 5.9580e4 3.8585e2 1.0121e3 +# Range 0-200 + -Vm 697.28 # Webmineral.com +# Extrapol Constant H approx +# Ref 82sar/bar + +Eu + Eu + 3 H+ + 0.75 O2 = Eu+3 + 1.5 H2O + log_k 165.1443 + -delta_H -1025.08 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5749e1 -2.8921e-2 5.4018e4 2.3561e1 8.4292e2 +# Range 0-300 + -Vm 28.97 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 85rar 2 + +Eu(OH)3 + Eu(OH)3 + 3 H+ = Eu+3 + 3 H2O + log_k 15.3482 + -delta_H -126.897 kJ/mol +# deltafH -1336.04 kJ/mol + -analytic -6.3077e1 -6.1421e-3 8.7323e3 2.0595e1 1.4831e+2 +# Range 0-200 + -Vm 38.44 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +Eu2(SO4)3:8H2O + Eu2(SO4)3:8H2O = 2 Eu+3 + 3 SO4-2 + 8 H2O + log_k -10.8524 + -delta_H -86.59 kJ/mol +# deltafH -6139.77 kJ/mol + -analytic -5.6582e1 -3.8846e-2 3.3821e3 1.8561e1 5.7452e1 +# Range 0-200 + -Vm 245.41 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu2O3(cubic) + Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O + log_k 51.7818 + -delta_H -406.403 kJ/mol +# deltafH -1661.96 kJ/mol + -analytic -5.3469e1 -1.2554e-2 2.1925e4 1.4324e1 3.7233e2 +# Range 0-200 + -Vm 48.29 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu2O3(monoclinic) + Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O + log_k 53.3936 + -delta_H -417.481 kJ/mol +# deltafH -1650.88 kJ/mol + -analytic -5.4022e1 -1.2627e-2 2.2508e4 1.4416e1 3.8224e2 +# Range 0-200 + -Vm 44.02 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu3O4 + Eu3O4 + 8 H+ = Eu+2 + 2 Eu+3 + 4 H2O + log_k 87.0369 + -delta_H -611.249 kJ/mol +# deltafH -2270.56 kJ/mol + -analytic -1.1829e2 -2.0354e-2 3.4981e4 3.8007e1 5.9407e2 +# Range 0-200 + -Vm 64.15 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuCl2 + EuCl2 = Eu+2 + 2 Cl- + log_k 5.9230 + -delta_H -39.2617 kJ/mol +# deltafH -822.5 kJ/mol + -analytic -2.5741e1 -2.4956e-2 1.5713e3 1.3670e1 2.6691e1 +# Range 0-200 + -Vm 45.49 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +EuCl3 + EuCl3 = Eu+3 + 3 Cl- + log_k 19.7149 + -delta_H -170.861 kJ/mol +# deltafH -935.803 kJ/mol + -analytic 3.2865e1 -3.1877e-2 4.9792e3 -8.2294 8.4542e1 +# Range 0-200 + -Vm 52.83 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuCl3:6H2O + EuCl3:6H2O = Eu+3 + 3 Cl- + 6 H2O + log_k 4.9090 + -delta_H -40.0288 kJ/mol +# deltafH -2781.66 kJ/mol + -analytic -1.0987e2 -2.9851e-2 4.9991e3 4.3198e1 8.4930e1 +# Range 0-200 + -Vm 151.22 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuOCl + EuOCl + 2 H+ = Cl- + Eu+3 + H2O + log_k 15.6683 + -delta_H -147.173 kJ/mol +# deltafH -911.17 kJ/mol + -analytic -7.7446 -1.4960e-2 6.6242e3 2.2813 1.1249e2 +# Range 0-200 + -Vm 31.68 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +EuS + EuS + H+ = Eu+2 + HS- + log_k 14.9068 + -delta_H -96.4088 kJ/mol +# deltafH -447.302 kJ/mol + -analytic -4.1026e1 -1.5582e-2 5.7842e3 1.6639e1 9.8238e1 +# Range 0-200 + -Vm 32.03 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuSO4 + EuSO4 = Eu+2 + SO4-2 + log_k -8.8449 + -delta_H 33.873 kJ/mol +# deltafH -1471.08 kJ/mol + -analytic 3.0262e-1 -1.7571e-2 -3.0392e3 2.5356 -5.1610e1 +# Range 0-200 + -Vm 49.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eucryptite + LiAlSiO4 + 4 H+ = Al+3 + Li+ + SiO2 + 2 H2O + log_k 13.6106 + -delta_H -141.818 kJ/mol +# deltafH -2124.41 kJ/mol + -analytic -2.2213 -8.2498e-3 6.4838e3 -1.4183 1.0117e2 +# Range 0-300 + -Vm 53.63 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fayalite + Fe2SiO4 + 4 H+ = SiO2 + 2 Fe+2 + 2 H2O + log_k 19.1113 + -delta_H -152.256 kJ/mol +# deltafH -354.119 kcal/mol + -analytic 1.3853e1 -3.5501e-3 7.1496e3 -6.8710e0 -6.3310e4 +# Range 0-350 + -Vm 46.39 +# Extrapol supcrt92 +# Ref HDN+78 + +Fe + Fe + 2 H+ + 0.5 O2 = Fe+2 + H2O + log_k 59.0325 + -delta_H -372.029 kJ/mol +# deltafH 0 kcal/mol + -analytic -6.2882e1 -2.0379e-2 2.0690e4 2.3673e1 3.2287e2 +# Range 0-350 + -Vm 7.092 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref RHF79 + +Fe(OH)2 + Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O + log_k 13.9045 + -delta_H -95.4089 kJ/mol +# deltafH -568.525 kJ/mol + -analytic -8.6666e1 -1.8440e-2 7.5723e3 3.2597e1 1.1818e2 +# Range 0-300 + -Vm 26.43 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fe(OH)3 + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 5.6556 + -delta_H -84.0824 kJ/mol +# deltafH -823.013 kJ/mol + -analytic -1.3316e2 -3.1284e-2 7.9753e3 4.9052e1 1.2449e2 +# Range 0-300 + -Vm 34.36 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fe2(SO4)3 + Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 + log_k 3.2058 + -delta_H -250.806 kJ/mol +# deltafH -2577.16 kJ/mol + -analytic -5.8649e2 -2.3718e-1 2.2736e4 2.3601e2 3.5495e2 +# Range 0-300 + -Vm 130.77 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +FeO + FeO + 2 H+ = Fe+2 + H2O + log_k 13.5318 + -delta_H -106.052 kJ/mol +# deltafH -65.02 kcal/mol + -analytic -7.8750e1 -1.8268e-2 7.6852e3 2.9074e1 1.1994e2 +# Range 0-350 + -Vm 12 +# Extrapol supcrt92 +# Ref HDN+78 + +FeSO4 + FeSO4 = Fe+2 + SO4-2 + log_k 2.6565 + -delta_H -73.0878 kJ/mol +# deltafH -928.771 kJ/mol + -analytic -2.0794e2 -7.6891e-2 7.8705e3 8.3685e1 1.2287e2 +# Range 0-300 + -Vm 41.58 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrite-Ca + CaFe2O4 + 8 H+ = Ca+2 + 2 Fe+3 + 4 H2O + log_k 21.5217 + -delta_H -264.738 kJ/mol +# deltafH -363.494 kcal/mol + -analytic -2.8472e2 -7.5870e-2 2.0688e4 1.0485e2 3.2289e2 +# Range 0-300 + -Vm 44.98 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Ferrite-Cu + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 10.3160 + -delta_H -211.647 kJ/mol +# deltafH -965.178 kJ/mol + -analytic -3.1271e2 -7.9976e-2 1.8818e4 1.1466e2 2.9374e2 +# Range 0-300 + -Vm 44.53 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrite-Dicalcium + Ca2Fe2O5 + 10 H+ = 2 Ca+2 + 2 Fe+3 + 5 H2O + log_k 56.8331 + -delta_H -475.261 kJ/mol +# deltafH -2139.26 kJ/mol + -analytic -3.6277e2 -9.5015e-2 3.3898e4 1.3506e2 5.2906e2 +# Range 0-300 + -Vm 67.18 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Ferrite-Mg + MgFe2O4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O + log_k 21.0551 + -delta_H -280.056 kJ/mol +# deltafH -1428.42 kJ/mol + -analytic -2.8297e2 -7.4820e-2 2.1333e4 1.0295e2 3.3296e2 +# Range 0-300 + -Vm 44.57 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Ferrite-Zn + ZnFe2O4 + 8 H+ = Zn+2 + 2 Fe+3 + 4 H2O + log_k 11.7342 + -delta_H -226.609 kJ/mol +# deltafH -1169.29 kJ/mol + -analytic -2.9809e2 -7.7263e-2 1.9067e4 1.0866e2 2.9761e2 +# Range 0-300 + -Vm 45.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrosilite + FeSiO3 + 2 H+ = Fe+2 + H2O + SiO2 + log_k 7.4471 + -delta_H -60.6011 kJ/mol +# deltafH -285.658 kcal/mol + -analytic 9.0041 3.7917e-3 5.1625e3 -6.3009 -3.9565e5 +# Range 0-350 + -Vm 32.952 +# Extrapol supcrt92 +# Ref HDN+78 + +Forsterite + Mg2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mg+2 + log_k 27.8626 + -delta_H -205.614 kJ/mol +# deltafH -520 kcal/mol + -analytic -7.6195e1 -1.4013e-2 1.4763e4 2.5090e1 -3.0379e5 +# Range 0-350 + -Vm 43.79 +# Extrapol supcrt92 +# Ref HDN+78 + +Foshagite + Ca4Si3O9(OH)2:0.5H2O + 8 H+ = 3 SiO2 + 4 Ca+2 + 5.5 H2O + log_k 65.9210 + -delta_H -359.839 kJ/mol +# deltafH -1438.27 kcal/mol + -analytic 2.9983e1 5.5272e-3 2.3427e4 -1.3879e1 -8.9461e5 +# Range 0-300 + -Vm 154.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + + +Gd + Gd + 3 H+ + 0.75 O2 = Gd+3 + 1.5 H2O + log_k 180.7573 + -delta_H -1106.67 kJ/mol +# deltafH 0 kJ/mol + -analytic -3.3949e2 -6.5698e-2 7.4278e4 1.2189e2 -9.7055e5 +# Range 0-300 + -Vm 19.89 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Gehlenite + Ca2Al2SiO7 + 10 H+ = SiO2 + 2 Al+3 + 2 Ca+2 + 5 H2O + log_k 56.2997 + -delta_H -489.934 kJ/mol +# deltafH -951.225 kcal/mol + -analytic -2.1784e2 -6.7200e-2 2.9779e4 7.8488e1 4.6473e2 +# Range 0-350 + -Vm 90.24 +# Extrapol supcrt92 +# Ref HDN+78 + +Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 7.7560 + -delta_H -102.788 kJ/mol +# deltafH -309.065 kcal/mol + -analytic -1.1403e2 -3.6453e-2 7.7236e3 4.3134e1 1.2055e2 +# Range 0-150 + -Vm 31.956 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 0.5345 + -delta_H -61.9291 kJ/mol +# deltafH -559.328 kJ/mol + -analytic -6.0331e1 -1.0847e-2 4.7759e3 1.9429e1 8.1122e1 +# Range 0-200 + -Vm 20.82 +# Extrapol supcrt92, Constant H approx +# Ref Sho09, MLS+03, RHF79 match + +Greenalite + Fe3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Fe+2 + 5 H2O + log_k 22.6701 + -delta_H -165.297 kJ/mol +# deltafH -787.778 kcal/mol + -analytic -1.4187e1 -3.8377e-3 1.1710e4 1.6442 -4.8290e5 +# Range 0-350 + -Vm 115 +# Extrapol supcrt92 +# Ref HDN+78, 78wol, Wilson+06 match + +Grossular + Ca3Al2(SiO4)3 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 SiO2 + 6 H2O + log_k 51.9228 + -delta_H -432.006 kJ/mol +# deltafH -1582.74 kcal/mol + -analytic 2.9389e1 -2.2478e-2 2.0323e4 -1.4624e1 -2.5674e5 +# Range 0-350 + -Vm 125.3 +# Extrapol supcrt92 +# Ref HDN+78 + +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.4823 + -delta_H -1.66746 kJ/mol +# deltafH -2022.69 kJ/mol + -analytic -2.4417e2 -8.3329e-2 5.5958e3 9.9301e1 8.7389e1 +# Range 0-300 + -Vm 74.69 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Gyrolite + Ca2Si3O7(OH)2:1.5H2O + 4 H+ = 2 Ca+2 + 3 SiO2 + 4.5 H2O + log_k 22.9099 + -delta_H -82.862 kJ/mol +# deltafH -1176.55 kcal/mol + -analytic -2.4416e1 1.4646e-2 1.6181e4 2.3723 -1.5369e6 +# -Range 0-300 + -Vm 136.85 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Halite + NaCl = Cl- + Na+ + log_k 1.5855 + -delta_H 3.7405 kJ/mol +# deltafH -98.26 kcal/mol + -analytic -1.0163e2 -3.4761e-2 2.2796e3 4.2802e1 3.5602e1 +# Range 0-350 + -Vm 27.015 +# Extrapol supcrt92 +# Ref HDN+78 + +Hatrurite + Ca3SiO5 + 6 H+ = SiO2 + 3 Ca+2 + 3 H2O + log_k 73.4056 + -delta_H -434.684 kJ/mol +# deltafH -700.234 kcal/mol + -analytic -4.5448e1 -1.9998e-2 2.3800e4 1.8494e1 -7.3385e4 +# Range 0-300 + -Vm 75.60 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Hausmannite + Mn3O4 + 8 H+ = Mn+2 + 2 Mn+3 + 4 H2O + log_k 10.1598 + -delta_H -268.121 kJ/mol +# deltafH -1387.83 kJ/mol + -analytic -2.0600e2 -2.2214e-2 2.0160e4 6.2700e1 3.1464e2 +# Range 0-300 + -Vm 48.07 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Heazlewoodite + Ni3S2 + 4 H+ + 0.5 O2 = H2O + 2 HS- + 3 Ni+2 + log_k 28.2477 + -delta_H -270.897 kJ/mol +# deltafH -203.012 kJ/mol + -analytic -3.5439e2 -1.1740e-1 2.1811e4 1.3919e2 3.4044e2 +# Range 0-300 + -Vm 40.95 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Hedenbergite + CaFe(SiO3)2 + 4 H+ = Ca+2 + Fe+2 + 2 H2O + 2 SiO2 + log_k 19.6060 + -delta_H -124.507 kJ/mol +# deltafH -678.276 kcal/mol + -analytic -1.9473e1 1.5288e-3 1.2910e4 2.1729 -9.0058e5 +# Range 0-350 + -Vm 68.27 +# Extrapol supcrt92 +# Ref HDN+78 + +Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 0.1086 + -delta_H -129.415 kJ/mol +# deltafH -197.72 kcal/mol + -analytic -2.2015e2 -6.0290e-2 1.1812e4 8.0253e1 1.8438e2 +# Range 0-350 + -Vm 30.274 +# Extrapol supcrt92 +# Ref HDN+78 + +Hercynite + FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O + log_k 28.8484 + -delta_H -345.961 kJ/mol +# deltafH -1966.45 kJ/mol + -analytic -3.1848e2 -7.9501e-2 2.5892e4 1.1483e2 4.0412e2 +# Range 0-300 + -Vm 40.75 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Hillebrandite + Ca2SiO3(OH)2:0.17H2O + 4 H+ = SiO2 + 2 Ca+2 + 3.17 H2O + log_k 36.8190 + -delta_H -203.074 kJ/mol +# deltafH -637.404 kcal/mol + -analytic -1.9360e1 -7.5176e-3 1.1947e4 8.0558 -1.4504e5 +# Range 0-300 + -Vm 71.79 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Huntite + CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- + log_k 10.3010 + -delta_H -171.096 kJ/mol +# deltafH -1082.6 kcal/mol + -analytic -6.5e2 -1.9671e-1 2.4815e4 2.5688e2 3.8740e2 +# Range 0-350 + -Vm 122.9 +# Extrapol supcrt92 +# Ref HDN+78 + +Hydromagnesite + Mg5(CO3)4(OH)2:4H2O + 6 H+ = 4 HCO3- + 5 Mg+2 + 6 H2O + log_k 30.8539 + -delta_H -289.696 kJ/mol +# deltafH -1557.09 kcal/mol + -analytic -7.9288e2 -2.1448e-1 3.6749e4 3.0888e2 5.7367e2 +# Range 0-350 + -Vm 208.8 +# Extrapol supcrt92 +# Ref HDN+78 + +Hydrophilite + CaCl2 = Ca+2 + 2 Cl- + log_k 11.7916 + -delta_H -81.4545 kJ/mol +# deltafH -795.788 kJ/mol + -analytic -2.2278e2 -8.1414e-2 9.0298e3 9.2349e1 1.4097e2 +# Range 0-300 + -Vm 49.99 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Hydroxyapatite + Ca5(OH)(PO4)3 + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + log_k -3.0746 + -delta_H -191.982 kJ/mol +# deltafH -6685.52 kJ/mol + -analytic -8.5221e2 -2.9430e-1 2.8125e4 3.4044e2 4.3911e2 +# Range 0-300 + -Vm 128.9 +# Extrapol Cp integration +# Ref RHF79 + +Ice + H2O = H2O + log_k 0.1387 + -delta_H 6.74879 kJ/mol +# deltafH -69.93 kcal/mol + -analytic -2.3260e1 4.7948e-4 7.7351e2 8.3499 1.3143e1 +# Range 0-200 + -Vm 19.635 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87kee/rup + +Ilmenite + FeTiO3 + 2 H+ + H2O = Fe+2 + Ti(OH)4 + log_k 0.9046 +# deltafH -1236.65 kJ/mol + -Vm 32.15 # Webmineral.com +# Ref RHF79 + +Jadeite + NaAl(SiO3)2 + 4 H+ = Al+3 + Na+ + 2 H2O + 2 SiO2 + log_k 8.3888 + -delta_H -84.4415 kJ/mol +# deltafH -722.116 kcal/mol + -analytic 1.5934 5.0757e-3 9.5602e3 -7.0164 -8.4454e5 +# Range 0-350 + -Vm 60.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Jarosite + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 2 SO4-2 + 3 Fe+3 + 6 H2O + log_k -9.3706 + -delta_H -191.343 kJ/mol +# deltafH -894.79 kcal/mol + -analytic -1.0813e2 -5.0381e-2 9.6893e3 3.2832e1 1.6457e2 +# Range 0-200 + -Vm 162.07 # Webmineral.com +# Extrapol Constant H approx +# Ref 75kas/bor + +K + K + H+ + 0.25 O2 = 0.5 H2O + K+ + log_k 70.9861 + -delta_H -392.055 kJ/mol +# deltafH 0 kJ/mol + -analytic -3.1102e1 -1.0003e-2 2.1338e4 1.3534e1 3.3296e2 +# Range 0-300 + -Vm 45.94 # Webelements.com +# Extrapol Cp integration +# Ref CWM89 + + +K-Feldspar + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol +# deltafH -949.188 kcal/mol + -analytic -1.0684 1.3111e-2 1.1671e4 -9.9129 -1.5855e6 +# Range 0-350 + -Vm 108.87 +# Extrapol supcrt92 +# Ref HDN+78 + +K2O + K2O + 2 H+ = H2O + 2 K+ + log_k 84.0405 + -delta_H -427.006 kJ/mol +# deltafH -86.8 kcal/mol + -analytic -1.8283e1 -5.2255e-3 2.3184e4 1.0553e1 3.6177e2 +# Range 0-350 + -Vm 40.085 # gfw/density +# Extrapol supcrt92 +# Ref HDN+78 + +KAl(SO4)2 + KAl(SO4)2 = Al+3 + K+ + 2 SO4-2 + log_k 3.3647 + -delta_H -139.485 kJ/mol +# deltafH -2470.29 kJ/mol + -analytic -4.2785e2 -1.6303e-1 1.5311e4 1.7312e2 2.3904e2 +# Range 0-300 + -Vm 146.71 # gfw/density +# Extrapol Cp integration +# Ref RHF79 + +Kalsilite + KAlSiO4 + 4 H+ = Al+3 + K+ + SiO2 + 2 H2O + log_k 10.8987 + -delta_H -108.583 kJ/mol +# deltafH -509.408 kcal/mol + -analytic -6.7595 -7.4301e-3 6.5380e3 1.8999e-1 -2.2880e5 +# Range 0-350 + -Vm 59.89 +# Extrapol supcrt92 +# Ref HDN+78 + +Kaolinite + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 SiO2 + 5 H2O + log_k 6.8101 + -delta_H -151.779 kJ/mol +# deltafH -982.221 kcal/mol + -analytic 1.6835e1 -7.8939e-3 7.7636e3 -1.2190e1 -3.2354e5 +# Range 0-350 + -Vm 99.52 +# Extrapol supcrt92 +# Ref HDN+78 differ by 1.6 log K at 0C, 0.4 log K at 350C + +KerogenC128 + C128H68O7 + 141.5 O2 = 128 CO2 + 34 H2O + log_k 10740.654 + -delta_H -14623.902 kcal/mol + -analytic 23405.37 -54.726 0 0 0 0.041 +# Range 0-350 + -Vm 1320.7 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +KerogenC292 + C292H288O12 + 358 O2 = 292 CO2 + 144 H2O + log_k 27153.69 + -delta_H -36994.127 kcal/mol + -analytic 59184.26 -138.37 0 0 0 0.10 +# Range 0-350 + -Vm 3398.2 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +KerogenC515 + C515H596O72 + 628 O2 = 515 CO2 + 298 H2O + log_k 48112.16 + -delta_H -65346.703 kcal/mol + -analytic 104660.55 -244.27 0 0 0 0.183 +# Range 0-350 + -Vm 6989.3 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +Kyanite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 15.6740 + -delta_H -230.919 kJ/mol +# deltafH -616.897 kcal/mol + -analytic -7.3335e1 -3.2853e-2 1.2166e4 2.3412e1 1.8986e2 +# Range 0-175 + -Vm 44.09 +# Extrapol supcrt92 +# Ref HDN+78 + +Larnite + Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O + log_k 38.4665 + -delta_H -227.061 kJ/mol +# deltafH -551.74 kcal/mol + -analytic 2.6900e1 -2.1833e-3 1.0900e4 -9.5257 -7.2537e4 +# Range 0-300 + -Vm 51.6 # HDN+78 +# Extrapol Cp integration +# Ref 82sar/bar + +Lawrencite + FeCl2 = Fe+2 + 2 Cl- + log_k 9.0945 + -delta_H -84.7665 kJ/mol +# deltafH -341.65 kJ/mol + -analytic -2.2798e2 -8.1819e-2 9.2620e3 9.3097e1 1.4459e2 +# Range 0-300 + -Vm 40.31 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Lawsonite + CaAl2Si2O7(OH)2:H2O + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 6 H2O + log_k 22.2132 + -delta_H -244.806 kJ/mol +# deltafH -1158.1 kcal/mol + -analytic 1.3995e1 -1.7668e-2 1.0119e4 -8.3100 1.5789e2 +# Range 0-350 + -Vm 101.32 +# Extrapol supcrt92 +# Ref HDN+78 + +Li + Li + H+ +0.25 O2 = 0.5 H2O + Li+ + log_k 72.7622 + -delta_H -418.339 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.0227e2 -1.8118e-2 2.6262e4 3.8056e1 -1.6166e5 +# Range 0-300 + -Vm 13.017 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Lime + CaO + 2 H+ = Ca+2 + H2O + log_k 32.5761 + -delta_H -193.832 kJ/mol +# deltafH -151.79 kcal/mol + -analytic -7.2686e1 -1.7654e-2 1.2199e4 2.8128e1 1.9037e2 +# Range 0-350 + -Vm 16.764 +# Extrapol supcrt92 +# Ref HDN+78 + +Linnaeite + Co3S4 + 4 H+ = Co+2 + 2 Co+3 + 4 HS- + log_k -106.9017 + -delta_H 420.534 kJ/mol +# deltafH -85.81 kcal/mol + -analytic -6.0034e2 -2.0179e-1 -9.2145e3 2.3618e2 -1.4361e2 +# Range 0-300 + -Vm 63.55 # Webmineral.com +# Extrapol Cp integration +# Ref 78vau/cra + +Lizardite + Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O + log_k 30.560 + -analytic 7.886e1 -2.108e-1 0 0 0 1.637e-4 +# Range 0-300 + -Vm 107.31 +# Extrapol supcrt92 +# Ref Wilson+06 + +Lopezite + K2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 K+ + log_k -17.4366 + -delta_H 81.9227 kJ/mol +# deltafH -493.003 kcal/mol + -analytic 7.8359e1 -2.2908e-2 -9.3812e3 -2.3245e1 -1.5933e2 +# Range 0-200 + -Vm 109.93 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref 76del/hal + +Magnesiochromite + MgCr2O4 + 8 H+ = Mg+2 + 2 Cr+3 + 4 H2O + log_k 21.6927 + -delta_H -302.689 kJ/mol +# deltafH -1783.6 kJ/mol + -analytic -1.7376e2 -8.7429e-3 2.1600e4 5.0762e1 3.6685e2 +# Range 0-200 + -Vm 43.564 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref WEP+82 + +Magnesite + MgCO3 + H+ = HCO3- + Mg+2 + log_k 2.2936 + -delta_H -44.4968 kJ/mol +# deltafH -265.63 kcal/mol + -analytic -1.6665e2 -4.9469e-2 6.4344e3 6.5506e1 1.0045e2 +# Range 0-350 + -Vm 28.018 +# Extrapol supcrt92 +# Ref HDN+78 + +Magnetite + Fe3O4 + 8 H+ = Fe+2 + 2 Fe+3 + 4 H2O + log_k 10.4724 + -delta_H -216.597 kJ/mol +# deltafH -267.25 kcal/mol + -analytic -3.0510e2 -7.9919e-2 1.8709e4 1.1178e2 2.9203e2 +# Range 0-350 + -Vm 44.524 +# Extrapol supcrt92 +# Ref HDN+78 + +Malachite + Cu2CO3(OH)2 + 3 H+ = HCO3- + 2 Cu+2 + 2 H2O + log_k 5.9399 + -delta_H -76.2827 kJ/mol +# deltafH -251.9 kcal/mol + -analytic -2.7189e2 -6.9454e-2 1.1451e4 1.0511e2 1.7877e2 +# Range 0-350 + -Vm 54.86 +# Extrapol supcrt92 +# Ref HDN+78 + +Manganosite + MnO + 2 H+ = H2O + Mn+2 + log_k 17.9240 + -delta_H -121.215 kJ/mol +# deltafH -92.07 kcal/mol + -analytic -8.4114e1 -1.8490e-2 8.7792e3 3.1561e1 1.3702e2 +# Range 0-350 + -Vm 13.221 +# Extrapol supcrt92 +# Ref HDN+78 + +Margarite + CaAl4Si2O10(OH)2 + 14 H+ = Ca+2 + 2 SiO2 + 4 Al+3 + 8 H2O + log_k 41.0658 + -delta_H -522.192 kJ/mol +# deltafH -1485.8 kcal/mol + -analytic -2.3138e2 -8.2788e-2 3.0154e4 7.9148e1 4.7060e2 +# Range 0-350 + -Vm 129.4 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3.3 log K at 0C, 1.1 log K at 350C + +Maximum_Microcline + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol +# deltafH -949.188 kcal/mol + -analytic -9.4387 1.3561e-2 1.2656e4 -7.4925 -1.6795e6 +# Range 0-350 + -Vm 108.741 +# Extrapol supcrt92 +# Ref HDN+78 + +Mayenite + Ca12Al14O33 + 66 H+ = 12 Ca+2 + 14 Al+3 + 33 H2O + log_k 494.2199 + -delta_H -4056.77 kJ/mol +# deltafH -4644 kcal/mol + -analytic -1.4778e3 -2.9898e-1 2.4918e5 4.9518e2 4.2319e3 +# Range 0-200 + -Vm 517.41 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Melanterite + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.3490 + -delta_H 11.7509 kJ/mol +# deltafH -3014.48 kJ/mol + -analytic -2.6230e2 -7.2469e-2 6.5854e3 1.0484e2 1.0284e2 +# Range 0-300 + -Vm 146.48 # Marion+08 +# Extrapol Cp integration +# Ref RHF79 + +Merwinite + MgCa3(SiO4)2 + 8 H+ = Mg+2 + 2 SiO2 + 3 Ca+2 + 4 H2O + log_k 68.5140 + -delta_H -430.069 kJ/mol +# deltafH -1090.8 kcal/mol + -analytic -2.2524e2 -4.2525e-2 3.5619e4 7.9984e1 -9.8259e5 +# Range 0-350 + -Vm 104.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Mg + Mg + 2 H+ + 0.5 O2 = H2O + Mg+2 + log_k 122.5365 + -delta_H -745.731 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5988e1 -1.9356e-2 4.0318e4 2.3862e1 6.2914e2 +# Range 0-300 + -Vm 13.996 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +MgOHCl + MgOHCl + H+ = Cl- + H2O + Mg+2 + log_k 15.9138 + -delta_H -118.897 kJ/mol +# deltafH -191.2 kcal/mol + -analytic -1.6614e2 -4.9715e-2 1.0311e4 6.5578e1 1.6093e2 +# Range 0-300 + -Vm 33.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +MgSO4 + MgSO4 = Mg+2 + SO4-2 + log_k 4.8781 + -delta_H -90.6421 kJ/mol +# deltafH -1284.92 kJ/mol + -analytic -2.2439e2 -7.9688e-2 9.3058e3 8.9622e1 1.4527e2 +# Range 0-300 + -Vm 45.25 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Millerite + NiS + H+ = HS- + Ni+2 + log_k -8.0345 + -delta_H 12.089 kJ/mol +# deltafH -82.171 kJ/mol + -analytic -1.4848e2 -4.8834e-2 2.6981e3 5.8976e1 4.2145e1 +# Range 0-300 + -Vm 16.89 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Minnesotaite + Fe3Si4O10(OH)2 + 6 H+ = 3 Fe+2 + 4 H2O + 4 SiO2 + log_k 13.9805 + -delta_H -105.211 kJ/mol +# deltafH -1153.37 kcal/mol + -analytic -1.8812e1 1.7261e-2 1.9804e4 -6.4410 -2.0433e6 +# Range 0-300 + -Vm 147.86 # HDN+78 +# Extrapol Cp integration +# Ref 78wol, Wilson+06 differ by 2.6 log K at 0C, 1.6 log K at 350C + +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + log_k -1.1398 + -delta_H 79.4128 kJ/mol +# deltafH -4328 kJ/mol + -analytic -2.1877e2 -3.6692e-3 5.9214e3 8.0361e1 1.0063e2 +# Range 0-200 + -Vm 219.80 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref RHF79 + +Mn + Mn + 2 H+ + 0.5 O2 = H2O + Mn+2 + log_k 82.9505 + -delta_H -500.369 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5558e1 -2.0429e-2 2.7571e4 2.5098e1 4.3024e2 +# Range 0-300 + -Vm 7.354 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Mn(OH)2(am) + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.3102 + -delta_H -97.1779 kJ/mol +# deltafH -695.096 kJ/mol + -analytic -7.8518e1 -7.5357e-3 8.0198e3 2.7955e1 1.3621e2 +# Range 0-200 + -Vm 22.36 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:2H2O + MnCl2:2H2O = Mn+2 + 2 Cl- + 2 H2O + log_k 4.0067 + -delta_H -34.4222 kJ/mol +# deltafH -1092.01 kJ/mol + -analytic -6.2823e1 -2.3959e-2 2.9931e3 2.5834e1 5.0850e1 +# Range 0-200 + -Vm 71.12 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:4H2O + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.7563 + -delta_H -10.7019 kJ/mol +# deltafH -1687.41 kJ/mol + -analytic -1.1049e2 -2.3376e-2 4.0458e3 4.3097e1 6.8742e1 +# Range 0-200 + -Vm 98.46 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:H2O + MnCl2:H2O = H2O + Mn+2 + 2 Cl- + log_k 5.5517 + -delta_H -50.8019 kJ/mol +# deltafH -789.793 kJ/mol + -analytic -4.5051e1 -2.5923e-2 2.8739e3 1.9674e1 4.8818e1 +# Range 0-200 + -Vm 42.27 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +MnSO4 + MnSO4 = Mn+2 + SO4-2 + log_k 2.6561 + -delta_H -64.8718 kJ/mol +# deltafH -1065.33 kJ/mol + -analytic -2.3088e2 -8.2694e-2 8.1653e3 9.3256e1 1.2748e2 +# Range 0-300 + -Vm 46.46 # gfw/density +# Extrapol Cp integration +# Ref RHF79 + +Mo + Mo + 1.5 O2 + H2O = MoO4-2 + 2 H+ + log_k 109.3230 + -delta_H -693.845 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.0021e2 -8.3006e-2 4.1629e4 8.0219e1 -3.4570e5 +# Range 0-300 + -Vm 9.387 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Molysite + FeCl3 = Fe+3 + 3 Cl- + log_k 13.5517 + -delta_H -151.579 kJ/mol +# deltafH -399.24 kJ/mol + -analytic -3.1810e2 -1.2357e-1 1.3860e4 1.3010e2 2.1637e2 +# Range 0-300 + -Vm 55.86 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Monohydrocalcite + CaCO3:H2O + H+ = Ca+2 + H2O + HCO3- + log_k 2.6824 + -delta_H -20.5648 kJ/mol +# deltafH -1498.29 kJ/mol + -analytic -7.2614e1 -1.7217e-2 3.1850e3 2.8185e1 5.4111e1 +# Range 0-200 + -Vm 49.62 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Monticellite + CaMgSiO4 + 4 H+ = Ca+2 + Mg+2 + SiO2 + 2 H2O + log_k 29.5852 + -delta_H -195.711 kJ/mol +# deltafH -540.8 kcal/mol + -analytic 1.5730e1 -3.5567e-3 9.0789e3 -6.3007 1.4166e2 +# Range 0-300 + -Vm 51.47 +# Extrapol supcrt92 +# Ref HDN+78 + +Montmor-Ca + Ca.175Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.175 Ca+2 + 0.35 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.4952 + -delta_H -100.154 kJ/mol +# deltafH -1361.5 kcal/mol + -analytic 2.459e1 -9.080e-2 0 0 0 5.223e-5 +# Range 0-300 + -Vm 136.007 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-K + K.35Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.35 K+ + 0.35 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.1423 + -delta_H -88.184 kJ/mol +# deltafH -1362.83 kcal/mol + -analytic 2.022e1 -7.624e-2 0 0 0 4.102e-5 +# Range 0-300 + -Vm 140.140 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-Mg + Mg.525Al1.65Si4O10(OH)2 + 6 H+ = 0.525 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.3879 + -delta_H -102.608 kJ/mol +# deltafH -1357.87 kcal/mol + -analytic 2.381e1 -9.031e-2 0 0 0 5.203e-5 +# Range 0-300 + -Vm 135.042 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-Na + Na.35Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.35 Mg+2 + 0.35 Na+ + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.4844 + -delta_H -93.2165 kJ/mol +# deltafH -1360.69 kcal/mol + -analytic 2.348e1 -8.604e-2 0 0 0 4.951e-5 +# Range 0-300 + -Vm 137.449 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match, but differ from Wilson+06 by 3.4 log K at 0C, 1.7 log K at 300C + +Morenosite + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.0140 + -delta_H 12.0185 kJ/mol +# deltafH -2976.46 kJ/mol + -analytic -2.6654e2 -7.2132e-2 6.7983e3 1.0636e2 1.0616e2 +# Range 0-300 + -Vm 144.17 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Muscovite + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 13.5858 + -delta_H -243.224 kJ/mol +# deltafH -1427.41 kcal/mol + -analytic 3.3085e1 -1.2425e-2 1.2477e4 -2.0865e1 -5.4692e5 +# Range 0-350 + -Vm 140.71 +# Extrapol supcrt92 +# Ref HDN+78 + +Na + Na + H+ + 0.25 O2 = 0.5 H2O + Na+ + log_k 67.3804 + -delta_H -380.185 kJ/mol +# deltafH 0 kJ/mol + -analytic -4.0458e1 -8.7899e-3 2.1223e4 1.5927e1 -1.2715e4 +# Range 0-300 + -Vm 23.812 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Na2CO3 + Na2CO3 + H+ = HCO3- + 2 Na+ + log_k 11.1822 + -delta_H -39.8526 kJ/mol +# deltafH -1130.68 kJ/mol + -analytic -1.5495e2 -4.3374e-2 6.4821e3 6.3571e1 1.0119e2 +# Range 0-300 + -Vm 41.86 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Na2CO3:7H2O + Na2CO3:7H2O + H+ = HCO3- + 2 Na+ + 7 H2O + log_k 9.9459 + -delta_H 27.7881 kJ/mol +# deltafH -3199.19 kJ/mol + -analytic -2.0593e2 -3.4509e-3 8.1601e3 7.6594e1 1.3864e2 +# Range 0-200 + -Vm 153.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Na2Cr2O7 + Na2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 Na+ + log_k -10.1597 + -delta_H 21.9702 kJ/mol +# deltafH -473 kcal/mol + -analytic 4.4885e1 -2.4919e-2 -5.0321e3 -1.2430e1 -8.5468e1 +# Range 0-200 + -Vm 103.96 # gfw/density +# Extrapol Constant H approx +# Ref 76del/hal + +Na2CrO4 + Na2CrO4 = CrO4-2 + 2 Na+ + log_k 2.9103 + -delta_H -19.5225 kJ/mol +# deltafH -320.8 kcal/mol + -analytic 5.4985 -9.9008e-3 1.0510e2 +# Range 0-200 + -Vm 59.48 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +Na2O + Na2O + 2 H+ = H2O + 2 Na+ + log_k 67.4269 + -delta_H -351.636 kJ/mol +# deltafH -99.14 kcal/mol + -analytic -6.3585e1 -8.4695e-3 2.0923e4 2.5601e1 3.2651e2 +# Range 0-350 + -Vm 25 +# Extrapol supcrt92 +# Ref HDN+78 + +Na2SiO3 + Na2SiO3 + 2 H+ = H2O + SiO2 + 2 Na+ + log_k 22.2418 + -delta_H -82.7093 kJ/mol +# deltafH -373.19 kcal/mol + -analytic -3.4928e1 5.6905e-3 1.0284e4 1.1197e1 -6.0134e5 +# Range 0-300 + -Vm 50.86 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +Na2U2O7 + Na2U2O7 + 6 H+ = 2 Na+ + 2 UO2+2 + 3 H2O + log_k 22.5917 + -delta_H -172.314 kJ/mol +# deltafH -3203.8 kJ/mol + -analytic -8.6640e1 -1.0903e-2 1.1841e4 2.9406e1 1.8479e2 +# Range 0-300 + -Vm 95.34 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +NaFeO2 + NaFeO2 + 4 H+ = Fe+3 + Na+ + 2 H2O + log_k 19.8899 + -delta_H -163.339 kJ/mol +# deltafH -698.218 kJ/mol + -analytic -7.0047e1 -9.6226e-3 1.0647e4 2.3071e1 1.8082e2 +# Range 0-200 + -Vm 33.48 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NaUO3 + NaUO3 + 2 H+ = H2O + Na+ + UO2+ + log_k 8.3371 + -delta_H -56.365 kJ/mol +# deltafH -1494.9 kJ/mol + -analytic -3.6363e1 7.0505e-4 4.5359e3 1.1828e1 7.0790e1 +# Range 0-300 + -Vm 42.56 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +Nahcolite + NaHCO3 = HCO3- + Na+ + log_k -0.1118 + -delta_H 17.0247 kJ/mol +# deltafH -226.4 kcal/mol + -analytic -2.2282e2 -5.9693e-2 5.4887e3 8.9744e1 8.5712e1 +# Range 0-300 + -Vm 38.62 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +Nantokite + CuCl = Cl- + Cu+ + log_k -6.7623 + -delta_H 41.9296 kJ/mol +# deltafH -137.329 kJ/mol + -analytic -2.2442e1 -1.1201e-2 -1.8709e3 1.0221e1 -3.1763e1 +# Range 0-200 + -Vm 23.92 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Natron + Na2CO3:10H2O + H+ = HCO3- + 2 Na+ + 10 H2O + log_k 9.6102 + -delta_H 50.4781 kJ/mol +# deltafH -4079.39 kJ/mol + -analytic -1.9981e2 -2.9247e-2 5.2937e3 8.0973e1 8.2662e1 +# Range 0-300 + -Vm 195.99 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Natrosilite + Na2Si2O5 + 2 H+ = H2O + 2 Na+ + 2 SiO2 + log_k 18.1337 + -delta_H -51.7686 kJ/mol +# deltafH -590.36 kcal/mol + -analytic -2.7628e1 1.6865e-2 1.3302e4 4.2356 -1.2828e6 +# Range 0-300 + -Vm 72.57 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Nepheline + NaAlSiO4 + 4 H+ = Al+3 + Na+ + SiO2 + 2 H2O + log_k 13.8006 + -delta_H -135.068 kJ/mol +# deltafH -500.241 kcal/mol + -analytic -2.4856e1 -8.8171e-3 8.5653e3 6.0904 -2.2786e5 +# Range 0-350 + -Vm 54.16 +# Extrapol supcrt92 +# Ref HDN+78 + +Nesquehonite + MgCO3:3H2O + H+ = HCO3- + Mg+2 + 3 H2O + log_k 4.9955 + -delta_H -36.1498 kJ/mol +# deltafH -472.576 kcal/mol + -analytic 1.3771e2 -6.0397e-2 -3.5049e4 -1.8831e1 4.4213e6 +# Range 0-50 + -Vm 74.79 +# Extrapol supcrt92 +# Ref HDN+78 + +NH4Cl + NH4Cl = NH4+ + Cl- + log_k 1.3252 + -analytic -3.078 1.550e-2 0 0 0 -3.451e-6 +# Range 0-30 + -Vm 34.96 +# Extrapol Marion+12 +# Ref Marion+12, WangLi11 match + +NH4-feldspar # Buddingtonite (sometimes with +0.5 H2O, especially at low temp) + NH4AlSi3O8 + 4H+ = NH4+ + Al+3 + 3 SiO2 + 2 H2O + log_k -2.7243 + -analytic -7.434e1 3.080e-1 0 0 0 -2.270e-4 +# Range 25-325 + -Vm 114.78 # Webmineral.com (Hovis04: 109.08-112.23) +# Extrapol N17 +# Ref Wat81 + +NH4HCO3 + NH4HCO3 = NH4+ + HCO3- + log_k -0.0207 + -analytic -1.587e1 9.703e-2 0 0 0 -1.472e-4 +# Range 0-40 + -Vm 50.04 +# Extrapol Marion+12 +# Ref Marion+12 + +NH4-muscovite # Tobelite + NH4Al3Si3O10(OH)2 + 10 H+ = NH4+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 6.8109 + -analytical -6.638e1 3.170e-1 0 0 0 -2.386e-4 +# Range 25-325 + -Vm 146.07 # Hovis04 +# Extrapol N17 +# Ref Wat81 + +Ni + Ni + 2 H+ + 0.5 O2 = H2O + Ni+2 + log_k 50.9914 + -delta_H -333.745 kJ/mol +# deltafH 0 kcal/mol + -analytic -5.8308e1 -2.0133e-2 1.8444e4 2.1590e1 2.8781e2 +# Range 0-350 + -Vm 6.588 +# Extrapol supcrt92 +# Ref HDN+78 + +Ni(OH)2 + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 12.7485 + -delta_H -95.6523 kJ/mol +# deltafH -529.998 kJ/mol + -analytic -6.5279e1 -5.9499e-3 7.3471e3 2.2290e1 1.2479e2 +# Range 0-200 + -Vm 22.34 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Ni2SiO4 + Ni2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Ni+2 + log_k 14.3416 + -delta_H -127.629 kJ/mol +# deltafH -341.705 kcal/mol + -analytic -4.0414e1 -1.1194e-2 9.6515e3 1.2026e1 -3.6336e5 +# Range 0-300 + -Vm 42.61 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +NiCl2 + NiCl2 = Ni+2 + 2 Cl- + log_k 8.6113 + -delta_H -82.7969 kJ/mol +# deltafH -305.336 kJ/mol + -analytic -1.2416 -2.3139e-2 2.6529e3 3.1696 4.5052e1 +# Range 0-200 + -Vm 36.70 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NiCl2:2H2O + NiCl2:2H2O = Ni+2 + 2 Cl- + 2 H2O + log_k 3.9327 + -delta_H -37.6746 kJ/mol +# deltafH -922.135 kJ/mol + -analytic -4.8814e1 -2.2602e-2 2.5951e3 2.0518e1 4.4086e1 +# Range 0-200 + -Vm 64.07 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NiSO4 + NiSO4 = Ni+2 + SO4-2 + log_k 5.3197 + -delta_H -90.5092 kJ/mol +# deltafH -873.066 kJ/mol + -analytic -1.8878e2 -7.6403e-2 7.9412e3 7.6866e1 1.2397e2 +# Range 0-300 + -Vm 42.05 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +NiSO4:6H2O(alpha) + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.0072 + -delta_H 4.37983 kJ/mol +# deltafH -2682.99 kJ/mol + -analytic -1.1937e2 -1.3785e-2 4.1543e3 4.3454e1 7.0587e1 +# Range 0-200 + -Vm 126.6 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Nickelbischofite + NiCl2:6H2O = Ni+2 + 2 Cl- + 6 H2O + log_k 3.1681 + -delta_H 0.064088 kJ/mol +# deltafH -2103.23 kJ/mol + -analytic -1.4340e2 -2.1257e-2 5.1858e3 5.4759e1 8.8112e1 +# Range 0-200 + -Vm 123.15 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Ningyoite + CaUP2O8:2H2O + 2 H+ = Ca+2 + U+4 + 2 H2O + 2 HPO4-2 + log_k -29.7931 + -delta_H -36.4769 kJ/mol +# deltafH -1016.65 kcal/mol + -analytic -1.0274e2 -4.9041e-2 1.7779e3 3.2973e1 3.0227e1 +# Range 0-200 + -Vm 116.77 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Niter + KNO3 = K+ + NO3- + log_k -0.2061 + -delta_H 35.4794 kJ/mol +# deltafH -494.46 kJ/mol + -analytic -6.5607e1 -2.8165e-2 -4.0131e2 3.0361e1 -6.2425 +# Range 0-300 + -Vm 48.04 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Nontronite-Ca + Ca.175Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.5822 + -delta_H -38.138 kJ/mol +# deltafH -1166.7 kcal/mol + -analytic 3.697 -4.892e-2 0 0 0 1.489e-5 +# Range 0-300 + -Vm 137.780 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.6 log K at 0C, 0.2 log K at 300C + +Nontronite-K + K.35Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.35 Al+3 + 0.35 K+ + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.8648 + -delta_H -26.5822 kJ/mol +# deltafH -1167.93 kcal/mol + -analytic -1.959 -3.115e-2 0 0 0 1.139e-6 +# Range 0-300 + -Vm 141.913 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.1 log K at 0C, 0.5 log K at 300C + +Nontronite-Mg + Mg.175Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.175 Mg+2 + 0.35 Al+3 + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.6200 + -delta_H -41.1779 kJ/mol +# deltafH -1162.93 kcal/mol + -analytic 2.476 -4.730e-2 0 0 0 1.382e-5 +# Range 0-300 + -Vm 136.815 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol + +Nontronite-Na + Na.35Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.35 Al+3 + 0.35 Na+ + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.5263 + -delta_H -31.5687 kJ/mol +# deltafH -1165.8 kcal/mol + -analytic 1.106 -4.045e-2 0 0 0 9.229e-6 +# Range 0-300 + -Vm 139.221 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.7 log K at 0C, 0.2 log K at 300C + +Okenite + CaSi2O4(OH)2:H2O + 2 H+ = Ca+2 + 2 SiO2 + 3 H2O + log_k 10.3816 + -delta_H -19.4974 kJ/mol +# deltafH -749.641 kcal/mol + -analytic -7.7353e1 1.5091e-2 1.3023e4 2.1337e1 -1.1831e6 +# Range 0-300 + -Vm 94.77 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +P + P + 1.5 H2O + 1.25 O2 = HPO4-2 + 2 H+ + log_k 132.1032 + -delta_H -848.157 kJ/mol +# deltafH 0 kJ/mol + -analytic -9.2727e1 -6.8342e-2 4.3465e4 4.0156e1 6.7826e2 +# Range 0-300 + -Vm 17.2 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Paragonite + NaAl3Si3O10(OH)2 + 10 H+ = Na+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 17.5220 + -delta_H -275.056 kJ/mol +# deltafH -1416.96 kcal/mol + -analytic 3.5507e1 -1.0720e-2 1.3519e4 -2.2283e1 -4.5657e5 +# Range 0-350 + -Vm 132.53 +# Extrapol supcrt92 +# Ref HDN+78, differ by 2.5 log K at 0C, 0.6 log K at 350C, but match Wilson+06 + +Pargasite + NaCa2Al3Mg4Si6O22(OH)2 + 22 H+ = Na+ + 2 Ca+2 + 3 Al+3 + 4 Mg+2 + 6 SiO2 + 12 H2O + log_k 101.9939 + -delta_H -880.205 kJ/mol +# deltafH -3016.62 kcal/mol + -analytic -6.7889e1 -3.7817e-2 5.0493e4 9.2705 -1.0163e6 +# Range 0-350 + -Vm 273.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Periclase + MgO + 2 H+ = H2O + Mg+2 + log_k 21.3354 + -delta_H -150.139 kJ/mol +# deltafH -143.8 kcal/mol + -analytic -8.8465e1 -1.8390e-2 1.0414e4 3.2469e1 1.6253e2 +# Range 0-350 + -Vm 11.248 +# Extrapol supcrt92 +# Ref HDN+78 + +Petalite + LiAlSi4O10 + 4 H+ = Al+3 + Li+ + 2 H2O + 4 SiO2 + log_k -3.8153 + -delta_H -13.1739 kJ/mol +# deltafH -4886.15 kJ/mol + -analytic -6.6355 2.4316e-2 1.5949e4 -1.3341e1 -2.2265e6 +# Range 0-300 + -Vm 128.4 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Phlogopite + KAlMg3Si3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 SiO2 + 6 H2O + log_k 37.4400 + -delta_H -310.503 kJ/mol +# deltafH -1488.07 kcal/mol + -analytic -8.7730e1 -1.7253e-2 2.3748e4 2.4465e1 -8.9045e5 +# Range 0-350 + -Vm 149.66 +# Extrapol supcrt92 +# Ref HDN+78 + +Polydymite + Ni3S4 + 2 H+ = S2-2 + 2 HS- + 3 Ni+2 + log_k -48.9062 +# deltafH -78.014 kcal/mol + -analytic -1.8030e1 -4.6945e-2 -1.1557e4 8.8339 -1.9625e2 +# Range 0-200 + -Vm 64.14 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 78vau/cra + +Portlandite + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.5552 + -delta_H -128.686 kJ/mol +# deltafH -986.074 kJ/mol + -analytic -8.3848e1 -1.8373e-2 9.3154e3 3.2584e1 1.4538e2 +# Range 0-300 + -Vm 33.056 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Prehnite + Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 SiO2 + 6 H2O + log_k 32.9305 + -delta_H -311.875 kJ/mol +# deltafH -1481.65 kcal/mol + -analytic -3.5763e1 -2.1396e-2 2.0167e4 6.3554 -7.4967e5 +# Range 0-350 + -Vm 140.33 +# Extrapol supcrt92 +# Ref HDN+78 + +Pseudowollastonite + CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 + log_k 13.9997 + -delta_H -79.4625 kJ/mol +# deltafH -388.9 kcal/mol + -analytic 2.6691e1 6.3323e-3 5.5723e3 -1.1822e1 -3.6038e5 +# Range 0-300 + -Vm 40.08 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Pyridine + C5H5N + 6.25 O2 = 5 CO2 + 2.5 H2O + 0.5 N2 + log_k 490.7474 + -delta_H -669.9574 kcal/mol + -analytic 1071.04 -2.50773 0 0 0 0.00188 +# Range 0-350 + -Vm 64.4 +# Extrapol supcrt92 +# Ref Hel+98 + +Pyrite + FeS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Fe+2 + 1.75 HS- + log_k -24.6534 + -delta_H 109.535 kJ/mol +# deltafH -41 kcal/mol + -analytic -2.4195e2 -8.7948e-2 -6.2911e2 9.9248e1 -9.7454 +# Range 0-350 + -Vm 23.94 +# Extrapol supcrt92 +# Ref HDN+78 + +Pyrolusite + MnO2 = 0.5 Mn+2 + 0.5 MnO4-2 + log_k -17.6439 + -delta_H 83.3804 kJ/mol +# deltafH -520.031 kJ/mol + -analytic -1.1541e2 -4.1665e-2 -1.8960e3 4.7094e1 -2.9551e1 +# Range 0-300 + -Vm 18.38 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Pyrophyllite + Al2Si4O10(OH)2 + 6 H+ = 2 Al+3 + 4 H2O + 4 SiO2 + log_k 0.4397 + -delta_H -102.161 kJ/mol +# deltafH -1345.31 kcal/mol + -analytic 1.1066e1 1.2707e-2 1.6417e4 -1.9596e1 -1.8791e6 +# Range 0-350 + -Vm 126.6 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 match + +Pyrrhotite + FeS + H+ = Fe+2 + HS- + log_k -3.7193 + -delta_H -7.9496 kJ/mol +# deltafH -24 kcal/mol + -analytic -1.5785e2 -5.2258e-2 3.9711e3 6.3195e1 6.2012e1 +# Range 0-350 + -Vm 18.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Quartz + SiO2 = SiO2 + log_k -3.9993 + -delta_H 32.949 kJ/mol +# deltafH -217.65 kcal/mol + -analytic 7.7698e-2 1.0612e-2 3.4651e3 -4.3551 -7.2138e5 +# Range 0-350 + -Vm 22.68 +# Extrapol supcrt92 +# Ref HDN+78 + +Rankinite + Ca3Si2O7 + 6 H+ = 2 SiO2 + 3 Ca+2 + 3 H2O + log_k 51.9078 + -delta_H -302.089 kJ/mol +# deltafH -941.7 kcal/mol + -analytic -9.6393e1 -1.6592e-2 2.4832e4 3.2541e1 -9.4630e5 +# Range 0-300 + -Vm 96.13 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Rhodochrosite + MnCO3 + H+ = HCO3- + Mn+2 + log_k -0.1928 + -delta_H -21.3426 kJ/mol +# deltafH -212.521 kcal/mol + -analytic -1.6195e2 -4.9344e-2 5.0937e3 6.4402e1 7.9531e1 +# Range 0-350 + -Vm 31.075 +# Extrapol supcrt92 +# Ref HDN+78 + +Rhodonite + MnSiO3 + 2 H+ = H2O + Mn+2 + SiO2 + log_k 9.7301 + -delta_H -64.7121 kJ/mol +# deltafH -1319.42 kJ/mol + -analytic 2.0585e1 4.9941e-3 4.5816e3 -9.8212 -3.0658e5 +# Range 0-300 + -Vm 35.87 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Ripidolite + Mg3Fe2Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 2 Fe+2 + 3 Mg+2 + 3 SiO2 + 12 H2O + log_k 60.9638 + -delta_H -572.472 kJ/mol +# deltafH -1947.87 kcal/mol + -analytic 2.122e2 -6.025e-1 0 0 0 4.579e-4 +# Range 0-300 + -Vm 208.614 +# Extrapol supcrt92 +# Ref Catalano13 + +Rutherfordine + UO2CO3 + H+ = HCO3- + UO2+2 + log_k -4.1064 + -delta_H -19.4032 kJ/mol +# deltafH -1689.53 kJ/mol + -analytic -8.8224e1 -3.1434e-2 2.6675e3 3.4161e1 4.1650e1 +# Range 0-300 + -Vm 57.90 # Webmineral.com +# Extrapol Cp integration +# Ref 92gre/fug + +Rutile + TiO2 + 2 H2O = Ti(OH)4 + log_k -9.6452 +# deltafH -226.107 kcal/mol + -Vm 18.82 +# Ref RHF79 + +S + S + H2O = 0.5 O2 + H+ + HS- + log_k -45.0980 + -delta_H 263.663 kJ/mol +# deltafH 0 kJ/mol + -analytic -8.8928e1 -2.8454e-2 -1.1516e4 3.6747e1 -1.7966e2 +# Range 0-300 + -Vm 15.511 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Saleeite + Mg(UO2)2(PO4)2 + 2 H+ = Mg+2 + 2 HPO4-2 + 2 UO2+2 + log_k -19.4575 + -delta_H -110.816 kJ/mol +# deltafH -1189.61 kcal/mol + -analytic -6.0028e1 -4.4391e-2 3.9168e3 1.6428e1 6.6533e1 +# Range 0-200 + -Vm 285.77 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Sanidine_high + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k 0.9239 + -delta_H -35.0284 kJ/mol +# deltafH -946.538 kcal/mol + -analytic -3.4889 1.4495e-2 1.2856e4 -9.8978 -1.6572e6 +# Range 0-350 + -Vm 109.008 +# Extrapol supcrt92 +# Ref HDN+78 + +Saponite-Fe-Ca + Ca.175Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 20.3624 + -analytic 5.992e1 -1.681e-1 0 0 0 1.174e-4 +# Range 0-300 + -Vm 143.506 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Fe + Fe3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 18.9359 + -analytic 5.762e1 -1.630e-1 0 0 0 1.099e-4 +# Range 0-300 + -Vm 142.672 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-K + K.35Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 K+ + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 18.7937 + -analytic 5.427e1 -1.504e-1 0 0 0 1.037e-4 +# Range 0-300 + -Vm 147.639 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Mg + Mg.175Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Mg+2 + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 19.5290 + -analytic 5.870e1 -1.665e-1 0 0 0 1.163e-4 +# Range 0-300 + -Vm 142.541 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Na + Na.35Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Na+ + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 19.7977 + -analytic 5.733e1 -1.597e-1 0 0 0 1.117e-4 +# Range 0-300 + -Vm 144.947 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Mg-Ca + Ca.175Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.2900 + -delta_H -207.971 kJ/mol +# deltafH -1436.51 kcal/mol + -analytic 8.088e1 -2.233e-1 0 0 0 1.655e-4 +# Range 0-300 + -Vm 141.250 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol match + +Saponite-Mg-Fe + Fe.175Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Fe+2 + 0.35 Al+3 + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 27.6789 + -analytic 7.825e1 -2.180e-1 0 0 0 1.612e-4 +# Range 0-300 + -Vm 140.416 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Mg-K + K.35Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 0.35 K+ + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.0075 + -delta_H -196.402 kJ/mol +# deltafH -1437.74 kcal/mol + -analytic 7.522e1 -2.055e-1 0 0 0 1.517e-4 +# Range 0-300 + -Vm 145.383 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.7 log K at 0C, 0.7 log K at 300C + +Saponite-Mg-Mg + Mg3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.2523 + -delta_H -210.822 kJ/mol +# deltafH -1432.79 kcal/mol + -analytic 7.965e1 -2.217e-1 0 0 0 1.644e-4 +# Range 0-300 + -Vm 140.285 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.2 log K at 0C, 0.6 log K at 300C + +Saponite-Mg-Na + Na.35Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 0.35 Na+ + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.3459 + -delta_H -201.401 kJ/mol +# deltafH -1435.61 kcal/mol + -analytic 7.829e1 -2.148e-1 0 0 0 1.598e-4 +# Range 0-300 + -Vm 142.691 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.4 log K at 0C, 0.7 log K at 300C + +Sc + Sc + 3 H+ + 0.75 O2 = Sc+3 + 1.5 H2O + log_k 167.2700 + -delta_H -1033.87 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.6922e1 -2.9150e-2 5.4559e4 2.4189e1 8.5137e2 +# Range 0-300 + -Vm 15.038 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Scacchite + MnCl2 = Mn+2 + 2 Cl- + log_k 8.7785 + -delta_H -73.4546 kJ/mol +# deltafH -481.302 kJ/mol + -analytic -2.3476e2 -8.2437e-2 9.0088e3 9.6128e1 1.4064e2 +# Range 0-300 + -Vm 42.27 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Schoepite + UO3:2H2O + 2 H+ = UO2+2 + 3 H2O + log_k 4.8333 + -delta_H -50.415 kJ/mol +# deltafH -1826.1 kJ/mol + -analytic 1.3645e1 1.0884e-2 2.5412e3 -8.3167e0 3.9649e1 +# Range 0-300 + -Vm 66.08 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +Sepiolite + Mg4Si6O15(OH)2:6H2O + 8 H+ = 4 Mg+2 + 6 SiO2 + 11 H2O + log_k 30.4439 + -delta_H -157.339 kJ/mol +# deltafH -2418 kcal/mol + -analytic 1.8690e1 4.7544e-2 2.6765e4 -2.5301e1 -2.6498e6 +# Range 0-350 + -Vm 285.6 +# Extrapol supcrt92 +# Ref HDN+78 + +Si + Si + O2 = SiO2 + log_k 148.9059 + -delta_H -865.565 kJ/mol +# deltafH 0 kJ/mol + -analytic -5.7245e2 -7.6302e-2 8.3516e4 2.0045e2 -2.8494e6 +# Range 0-300 + -Vm 12.056 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Sillimanite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 16.3080 + -delta_H -238.442 kJ/mol +# deltafH -615.099 kcal/mol + -analytic -7.1610e1 -3.2196e-2 1.2493e4 2.2449e1 1.9496e2 +# Range 0-350 + -Vm 49.9 +# Extrapol supcrt92 +# Ref HDN+78 + +SiO2(am) + SiO2 = SiO2 + log_k -2.7136 + -delta_H 20.0539 kJ/mol +# deltafH -214.568 kcal/mol + -analytic 1.2109 7.0767e-3 2.3634e3 -3.4449 -4.8591e5 +# Range 0-325 + -Vm 29 +# Extrapol supcrt92 +# Ref HDN+78 + +Sm + Sm + 2 H+ + 0.5 O2 = H2O + Sm+2 + log_k 133.1614 + -delta_H -783.944 kJ/mol +# deltafH 0 kJ/mol + -analytic -7.1599e1 -2.0083e-2 4.2693e4 2.7291e1 6.6621e2 +# Range 0-300 + -Vm 19.98 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Smectite-high-Fe-Mg + Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 + 8 H+ = 0.025 Ca+2 + 0.1 Na+ + 0.2 Fe+3 + 0.2 K+ + 0.5 Fe+2 + 1.15 Mg+2 + 1.25 Al+3 + 3.5 SiO2 + 5 H2O + log_k 17.4200 + -delta_H -199.841 kJ/mol +# deltafH -1351.39 kcal/mol + -analytic -9.6102 1.2551e-3 1.8157e4 -7.9862 -1.3005e6 +# Range 0-300 + -Vm 139.07 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78wol + +Smectite-low-Fe-Mg + Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 + 7 H+ = 0.02 Ca+2 + 0.15 Na+ + 0.16 Fe+3 + 0.2 K+ + 0.29 Fe+2 + 0.9 Mg+2 + 1.25 Al+3 + 3.75 SiO2 + 4.5 H2O + log_k 11.0405 + -delta_H -144.774 kJ/mol +# deltafH -1352.12 kcal/mol + -analytic -1.7003e1 6.9848e-3 1.8359e4 -6.8896 -1.6637e6 +# Range 0-300 + -Vm 139.39 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78wol + +Smithsonite + ZnCO3 + H+ = HCO3- + Zn+2 + log_k 0.4633 + -delta_H -30.5348 kJ/mol +# deltafH -194.26 kcal/mol + -analytic -1.6452e2 -5.0231e-2 5.5925e3 6.5139e1 8.7314e1 +# Range 0-350 + -Vm 28.275 +# Extrapol supcrt92 +# Ref HDN+78 + +Sphaerocobaltite + CoCO3 + H+ = Co+2 + HCO3- + log_k -0.2331 + -delta_H -30.7064 kJ/mol +# deltafH -171.459 kcal/mol + -analytic -1.5709e2 -4.8957e-2 5.3158e3 6.2075e1 8.2995e1 +# Range 0-300 + -Vm 28.8 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 84sve + +Sphalerite + ZnS + H+ = HS- + Zn+2 + log_k -11.4400 + -delta_H 35.5222 kJ/mol +# deltafH -49 kcal/mol + -analytic -1.5497e2 -4.8953e-2 1.7850e3 6.1472e1 2.7899e1 +# Range 0-350 + -Vm 23.83 +# Extrapol supcrt92 +# Ref HDN+78 + +Spinel + Al2MgO4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O + log_k 37.6295 + -delta_H -398.108 kJ/mol +# deltafH -546.847 kcal/mol + -analytic -3.3895e2 -8.3595e-2 2.9251e4 1.2260e2 4.5654e2 +# Range 0-350 + -Vm 39.71 +# Extrapol supcrt92 +# Ref HDN+78 + +Spinel-Co + Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O + log_k -6.4852 + -delta_H -126.415 kJ/mol +# deltafH -891 kJ/mol + -analytic -3.2239e2 -8.0782e-2 1.4635e4 1.1755e2 2.2846e2 +# Range 0-300 + -Vm 39.41 # gfw/density +# Extrapol Cp integration +# Ref WEP+82 + +Spodumene + LiAlSi2O6 + 4 H+ = Al+3 + Li+ + 2 H2O + 2 SiO2 + log_k 6.9972 + -delta_H -89.1817 kJ/mol +# deltafH -3054.75 kJ/mol + -analytic -9.8111 2.1191e-3 9.6920e3 -3.0484 -7.8822e5 +# Range 0-300 + -Vm 58.37 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Stilbite + Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O + 8.72 H+ = 0.006 K+ + 0.136 Na+ + 1.019 Ca+2 + 2.18 Al+3 + 6.82 SiO2 + 11.69 H2O + log_k 1.0545 + -delta_H -83.0019 kJ/mol +# deltafH -11005.7 kJ/mol + -analytic -2.4483e1 3.0987e-2 2.8013e4 -1.5802e1 -3.4491e6 +# Range 0-300 + -Vm 333.50 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 90how/joh + +Strengite + FePO4:2H2O + H+ = Fe+3 + HPO4-2 + 2 H2O + log_k -11.3429 + -delta_H -37.107 kJ/mol +# deltafH -1876.23 kJ/mol + -analytic -2.7752e2 -9.4014e-2 7.6862e3 1.0846e2 1.2002e2 +# Range 0-300 + -Vm 65.10 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Sylvite + KCl = Cl- + K+ + log_k 0.8459 + -delta_H 17.4347 kJ/mol +# deltafH -104.37 kcal/mol + -analytic -8.1204e1 -3.3074e-2 8.2819e2 3.6014e1 1.2947e1 +# Range 0-350 + -Vm 37.524 +# Extrapol supcrt92 +# Ref HDN+78 + +Talc + Mg3Si4O10(OH)2 + 6 H+ = 3 Mg+2 + 4 H2O + 4 SiO2 + log_k 21.1383 + -delta_H -148.737 kJ/mol +# deltafH -1410.92 kcal/mol + -analytic 1.1164e1 2.4724e-2 1.9810e4 -1.7568e1 -1.8241e6 +# Range 0-350 + -Vm 136.25 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 match + +Tarapacaite + K2CrO4 = CrO4-2 + 2 K+ + log_k -0.4037 + -delta_H 17.8238 kJ/mol +# deltafH -335.4 kcal/mol + -analytic 2.7953e1 -1.0863e-2 -2.7589e3 -6.4154e0 -4.6859e1 +# Range 0-200 + -Vm 70.87 # Webmineral.com +# Extrapol Constant H approx +# Ref 76del/hal + +Tenorite + CuO + 2 H+ = Cu+2 + H2O + log_k 7.6560 + -delta_H -64.5047 kJ/mol +# deltafH -37.2 kcal/mol + -analytic -8.9899e1 -1.8886e-2 6.0346e3 3.3517e1 9.4191e1 +# Range 0-350 + -Vm 12.22 +# Extrapol supcrt92 +# Ref HDN+78 + +Tephroite + Mn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mn+2 + log_k 23.0781 + -delta_H -160.1 kJ/mol +# deltafH -1730.47 kJ/mol + -analytic -3.2440e1 -1.1023e-2 8.8910e3 1.1691e1 1.3875e2 +# Range 0-300 + -Vm 47.52 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Th + Th + 4 H+ + O2 = Th+4 + 2 H2O + log_k 209.6028 + -delta_H -1328.56 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.8256e1 -1.1963e-2 6.8870e4 4.2068e0 1.0747e3 +# Range 0-300 + -Vm 19.83 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Th(NO3)4:5H2O + Th(NO3)4:5H2O = Th+4 + 4 NO3- + 5 H2O + log_k 1.7789 + -delta_H -18.1066 kJ/mol +# deltafH -3007.35 kJ/mol + -analytic -1.2480e2 -2.0405e-2 5.1601e3 4.6613e1 8.7669e1 +# Range 0-200 + -Vm 203.62 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Th(SO4)2 + Th(SO4)2 = Th+4 + 2 SO4-2 + log_k -20.3006 + -delta_H -46.1064 kJ/mol +# deltafH -2542.12 kJ/mol + -analytic -8.4525 -3.5442e-2 0 0 -1.1540e5 +# Range 0-200 + -Vm 100.39 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Th2S3 + Th2S3 + 5 H+ + 0.5 O2 = H2O + 2 Th+4 + 3 HS- + log_k 95.2290 + -delta_H -783.243 kJ/mol +# deltafH -1082.89 kJ/mol + -analytic -3.2969e2 -1.1090e-1 4.6877e4 1.2152e2 7.3157e2 +# Range 0-300 + -Vm 71.19 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Th7S12 + Th7S12 + 16 H+ + O2 = 2 H2O + 7 Th+4 + 12 HS- + log_k 204.0740 + -delta_H -1999.4 kJ/mol +# deltafH -4136.58 kJ/mol + -analytic -2.1309e2 -1.4149e-1 9.8550e4 5.2042e1 1.6736e3 +# Range 0-200 + -Vm 248.02 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +ThCl4 + ThCl4 = Th+4 + 4 Cl- + log_k 23.8491 + -delta_H -251.094 kJ/mol +# deltafH -283.519 kcal/mol + -analytic -5.9340 -4.1640e-2 9.8623e3 3.6804 1.6748e2 +# Range 0-200 + -Vm 81.45 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 80lan/her + +ThS2 + ThS2 + 2 H+ = Th+4 + 2 HS- + log_k 10.7872 + -delta_H -175.369 kJ/mol +# deltafH -625.867 kJ/mol + -analytic -3.7691e1 -2.3714e-2 8.4673e3 1.0970e1 1.4380e2 +# Range 0-200 + -Vm 40.57 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Thenardite + Na2SO4 = SO4-2 + 2 Na+ + log_k -0.3091 + -delta_H -2.33394 kJ/mol +# deltafH -1387.87 kJ/mol + -analytic -2.1202e2 -7.1613e-2 5.1083e3 8.7244e1 7.9773e1 +# Range 0-300 + -Vm 53.33 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Thermonatrite + Na2CO3:H2O + H+ = H2O + HCO3- + 2 Na+ + log_k 10.9623 + -delta_H -27.5869 kJ/mol +# deltafH -1428.78 kJ/mol + -analytic -1.4030e2 -3.5263e-2 5.7840e3 5.7528e1 9.0295e1 +# Range 0-300 + -Vm 54.92 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Thorianite + ThO2 + 4 H+ = Th+4 + 2 H2O + log_k 1.8624 + -delta_H -114.296 kJ/mol +# deltafH -1226.4 kJ/mol + -analytic -1.4249e1 -2.4645e-3 4.3110e3 -1.6605e-2 2.1598e5 +# Range 0-300 + -Vm 26.373 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Ti + Ti + 2 H2O + O2 = Ti(OH)4 + log_k 149.2978 +# deltafH 0 kJ/mol + -Vm 10.631 # thermo.com.V8.R6+.tdat +# Ref CWM89 + +Ti2O3 + Ti2O3 + 4 H2O + 0.5 O2 = 2 Ti(OH)4 + log_k 42.9866 +# deltafH -1520.78 kJ/mol + -Vm 32.02 # gfw/density +# Ref WEP+82 + +Ti3O5 + Ti3O5 + 6 H2O + 0.5 O2 = 3 Ti(OH)4 + log_k 34.6557 +# deltafH -2459.24 kJ/mol + -Vm 48.93 # gfw/density +# Ref WEP+82 + +TiB2 + TiB2 + 5 H2O + 2.5 O2 = Ti(OH)4 + 2 B(OH)3 + log_k 312.4194 +# deltafH -323.883 kJ/mol + -Vm 15.37 # gfw/density +# Ref WEP+82 + +TiC + TiC + 3 H2O + 2 O2 = H+ + HCO3- + Ti(OH)4 + log_k 181.8139 +# deltafH -184.346 kJ/mol + -Vm 12.15 # gfw/density +# Ref WEP+82 + +TiCl2 + TiCl2 + 3 H2O + 0.5 O2 = Ti(OH)4 + 2 Cl- + 2 H+ + log_k 70.9386 +# deltafH -514.012 kJ/mol + -Vm 37.95 # gfw/density +# Ref WEP+82 + +TiCl3 + TiCl3 + 3.5 H2O + 0.25 O2 = Ti(OH)4 + 3 Cl- + 3 H+ + log_k 39.3099 +# deltafH -720.775 kJ/mol + -Vm 58.42 # gfw/density +# Ref WEP+82 + +TiN + TiN + 3.5 H2O + 0.25 O2 = NH3 + Ti(OH)4 + log_k 35.2344 +# deltafH -338.304 kJ/mol + -Vm 11.46 # gfw/density +# Ref WEP+82 + +Titanite + CaTiSiO5 + 2 H+ + H2O = Ca+2 + SiO2 + Ti(OH)4 + log_k 719.5839 +# deltafH 0 kcal/mol + -Vm 55.65 +# Ref RHF79 + +Tobermorite-11A + Ca5Si6H11O22.5 + 10 H+ = 5 Ca+2 + 6 SiO2 + 10.5 H2O + log_k 65.6121 + -delta_H -286.861 kJ/mol +# deltafH -2556.42 kcal/mol + -analytic 7.9123e1 3.9150e-2 2.9429e4 -3.9191e1 -2.4122e6 +# Range 0-300 + -Vm 286.81 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Tremolite + Ca2Mg5Si8O22(OH)2 + 14 H+ = 2 Ca+2 + 5 Mg+2 + 8 H2O + 8 SiO2 + log_k 61.2367 + -delta_H -406.404 kJ/mol +# deltafH -2944.04 kcal/mol + -analytic 8.5291e1 4.6337e-2 3.9465e4 -5.4414e1 -3.1913e6 +# Range 0-350 + -Vm 272.92 +# Extrapol supcrt92 +# Ref HDN+78 + +Trevorite + NiFe2O4 + 8 H+ = Ni+2 + 2 Fe+3 + 4 H2O + log_k 9.7876 + -delta_H -215.338 kJ/mol +# deltafH -1081.15 kJ/mol + -analytic -1.4322e2 -2.9429e-2 1.4518e4 4.5698e1 2.4658e2 +# Range 0-200 + -Vm 44.89 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Tridymite + SiO2 = SiO2 + log_k -3.8278 + -delta_H 31.3664 kJ/mol +# deltafH -909.065 kJ/mol + -analytic 3.1594e2 6.9315e-2 -1.1358e4 -1.2219e2 -1.9299e2 +# Range 0-200 + -Vm 26.12 # Webmineral.com +# Extrapol Constant H approx +# Ref WEP+82 + +Troilite + FeS + H+ = Fe+2 + HS- + log_k -3.8184 + -delta_H -7.3296 kJ/mol +# deltafH -101.036 kJ/mol + -analytic -1.6146e2 -5.3170e-2 4.0461e3 6.4620e1 6.3183e1 +# Range 0-300 + -Vm 19.07 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +U + U + 2 H+ + 1.5 O2 = H2O + UO2+2 + log_k 212.7800 + -delta_H -1286.64 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.4912e2 -4.7104e-2 8.1115e4 8.7008e1 -1.0158e6 +# Range 0-300 + -Vm 12.49 # Webelements.com +# Extrapol Cp integration +# Ref CWM89 + +U2O2Cl5 + U2O2Cl5 = U+4 + UO2+ + 5 Cl- + log_k 19.2752 + -delta_H -254.325 kJ/mol +# deltafH -2197.4 kJ/mol + -analytic -4.3945e2 -1.6239e-1 2.1694e4 1.7551e2 3.3865e2 +# Range 0-300 + -Vm 142.48 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +U3S5 + U3S5 + 5 H+ = U+4 + 2 U+3 + 5 HS- + log_k -0.3680 + -delta_H -218.942 kJ/mol +# deltafH -1431 kJ/mol + -analytic -1.1011e2 -6.7959e-2 1.0369e4 3.8481e1 1.7611e2 +# Range 0-200 + -Vm 106.12 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UC + UC + 2 H+ + 1.75 O2 = 0.5 H2O + HCO3- + U+3 + log_k 194.8241 + -delta_H -1202.82 kJ/mol +# deltafH -97.9 kJ/mol + -analytic -4.6329e1 -4.4600e-2 6.1417e4 1.9566e1 9.5836e2 +# Range 0-300 + -Vm 18.34 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl3 + UCl3 = U+3 + 3 Cl- + log_k 13.0062 + -delta_H -126.639 kJ/mol +# deltafH -863.7 kJ/mol + -analytic -2.6388e2 -1.0241e-1 1.1629e4 1.0846e2 1.8155e2 +# Range 0-300 + -Vm 62.62 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl4 + UCl4 = U+4 + 4 Cl- + log_k 21.9769 + -delta_H -240.719 kJ/mol +# deltafH -1018.8 kJ/mol + -analytic -3.6881e2 -1.3618e-1 1.9685e4 1.4763e2 3.0727e2 +# Range 0-300 + -Vm 78.00 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl6 + UCl6 + 2 H2O = UO2+2 + 4 H+ + 6 Cl- + log_k 57.5888 + -delta_H -383.301 kJ/mol +# deltafH -1066.5 kJ/mol + -analytic -4.5589e2 -1.9203e-1 2.8029e4 1.9262e2 4.3750e2 +# Range 0-300 + -Vm 125.21 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UH3(beta) + UH3 + 3 H+ + 1.5 O2 = U+3 + 3 H2O + log_k 199.7683 + -delta_H -1201.43 kJ/mol +# deltafH -126.98 kJ/mol + -analytic 5.2870e1 4.2151e-3 6.0167e4 -2.2701e1 1.0217e3 +# Range 0-200 + -Vm 22.01 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UN + UN + 3 H+ = NH3 + U+3 + log_k 41.7130 + -delta_H -280.437 kJ/mol +# deltafH -290 kJ/mol + -analytic -1.6393e2 -1.1679e-3 2.8845e3 6.5637e1 3.0122e6 +# Range 0-300 + -Vm 45.85 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UO2(NO3)2 + UO2(NO3)2 = UO2+2 + 2 NO3- + log_k 11.9598 + -delta_H -81.6219 kJ/mol +# deltafH -1351 kJ/mol + -analytic -1.2216e1 -1.1261e-2 3.9895e3 5.7166 6.7751e1 +# Range 0-200 + -Vm 140.23 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UO2(NO3)2:6H2O + UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O + log_k 2.3189 + -delta_H 19.8482 kJ/mol +# deltafH -3167.5 kJ/mol + -analytic -1.4019e2 -4.3682e-2 2.7842e3 5.9070e1 4.3486e1 +# Range 0-300 + -Vm 178.88 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +UO2(OH)2(beta) + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 4.9457 + -delta_H -56.8767 kJ/mol +# deltafH -1533.8 kJ/mol + -analytic -1.7478e1 -1.6806e-3 3.4226e3 4.6260 5.3412e1 +# Range 0-300 + -Vm 51.31 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +UO2SO4 + UO2SO4 = SO4-2 + UO2+2 + log_k 1.9681 + -delta_H -83.4616 kJ/mol +# deltafH -1845.14 kJ/mol + -analytic -1.5677e2 -6.5310e-2 6.7411e3 6.2867e1 1.0523e2 +# Range 0-300 + -Vm 111.61 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UO2SO4:3H2O + UO2SO4:3H2O = SO4-2 + UO2+2 + 3 H2O + log_k -1.4028 + -delta_H -34.6176 kJ/mol +# deltafH -2751.5 kJ/mol + -analytic -5.0134e1 -1.0321e-2 3.0505e3 1.6799e1 5.1818e1 +# Range 0-200 + -Vm 108.34 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 92gre/fug + +UO3(beta) + UO3 + 2 H+ = H2O + UO2+2 + log_k 8.3095 + -delta_H -84.5383 kJ/mol +# deltafH -1220.3 kJ/mol + -analytic -1.2298e1 -1.7800e-3 4.5621e3 2.3593 7.1191e1 +# Range 0-300 + -Vm 34.46 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 92gre/fug + +Uraninite + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.8372 + -delta_H -77.8767 kJ/mol +# deltafH -1085 kJ/mol + -analytic -7.5776e1 -1.0558e-2 5.9677e3 2.1853e1 9.3142e1 +# Range 0-325 + -Vm 24.638 +# Extrapol Cp integration +# Ref CWM89, SSB97 match + +Vaesite + NiS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Ni+2 + 1.75 HS- + log_k -26.7622 + -delta_H 110.443 kJ/mol +# deltafH -32.067 kcal/mol + -analytic 1.6172e1 -2.2673e-2 -8.2514e3 -3.4392 -1.4013e2 +# Range 0-200 + -Vm 27.697 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 78vau/cra + +Wollastonite + CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 + log_k 13.7605 + -delta_H -76.5756 kJ/mol +# deltafH -389.59 kcal/mol + -analytic 3.0931e1 6.7466e-3 5.1749e3 -1.3209e1 -3.4579e5 +# Range 0-350 + -Vm 39.93 +# Extrapol supcrt92 +# Ref HDN+78 + +Wurtzite + ZnS + H+ = HS- + Zn+2 + log_k -9.1406 + -delta_H 22.3426 kJ/mol +# deltafH -45.85 kcal/mol + -analytic -1.5446e2 -4.8874e-2 2.4551e3 6.1278e1 3.8355e1 +# Range 0-350 + -Vm 23.846 +# Extrapol supcrt92 +# Ref HDN+78 + +Wustite + Fe.947O + 2 H+ = 0.106 Fe+3 + 0.841 Fe+2 + H2O + log_k 12.4113 + -delta_H -102.417 kJ/mol +# deltafH -266.265 kJ/mol + -analytic -7.6919e1 -1.8433e-2 7.3823e3 2.8312e1 1.1522e2 +# Range 0-300 + -Vm 12.04 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Xonotlite + Ca6Si6O17(OH)2 + 12 H+ = 6 Ca+2 + 6 SiO2 + 7 H2O + log_k 91.8267 + -delta_H -495.457 kJ/mol +# deltafH -2397.25 kcal/mol + -analytic 1.6080e3 3.7309e-1 -2.2548e4 -6.2716e2 -3.8346e2 +# Range 0-200 + -Vm 264.81 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Zincite + ZnO + 2 H+ = H2O + Zn+2 + log_k 11.2087 + -delta_H -88.7638 kJ/mol +# deltafH -350.46 kJ/mol + -analytic -8.6681e1 -1.9324e-2 7.1034e3 3.2256e1 1.1087e2 +# Range 0-350 + -Vm 14.338 +# Extrapol supcrt92, Cp integration +# Ref SSW+97, CWM89 match + +Zn + Zn + 2 H+ + 0.5 O2 = H2O + Zn+2 + log_k 68.8035 + -delta_H -433.157 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.4131e1 -2.0009e-2 2.3921e4 2.3702e1 3.7329e2 +# Range 0-300 + -Vm 9.162 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Zn(NO3)2:6H2O + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.4102 + -delta_H 24.7577 kJ/mol +# deltafH -2306.8 kJ/mol + -analytic -1.7152e2 -1.6875e-2 5.6291e3 6.5094e1 9.5649e1 +# Range 0-200 + -Vm 144.06 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn(OH)2(beta) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.9341 + -delta_H -83.2111 kJ/mol +# deltafH -641.851 kJ/mol + -analytic -7.7810e1 -7.8548e-3 7.1994e3 2.7455e1 1.2228e2 +# Range 0-200 + -Vm 32.60 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn(OH)2(epsilon) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.6625 + -delta_H -81.7811 kJ/mol +# deltafH -643.281 kJ/mol + -analytic -7.7938e1 -7.8767e-3 7.1282e3 2.7496e1 1.2107e2 +# Range 0-200 + -Vm 32.60 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn2SiO4 + Zn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Zn+2 + log_k 13.8695 + -delta_H -119.399 kJ/mol +# deltafH -1636.75 kJ/mol + -analytic 2.0970e2 5.3663e-2 -1.2724e2 -8.5445e1 -2.2336 +# Range 0-200 + -Vm 55.03 # Webmineral.com +# Extrapol Constant H approx +# Ref WEP+82 + +ZnCl2 + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.0880 + -delta_H -72.4548 kJ/mol +# deltafH -415.09 kJ/mol + -analytic -1.6157e1 -2.5405e-2 2.6505e3 8.8584 4.5015e1 +# Range 0-200 + -Vm 46.84 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +ZnCr2O4 + ZnCr2O4 + 8 H+ = Zn+2 + 2 Cr+3 + 4 H2O + log_k 7.9161 + -delta_H -221.953 kJ/mol +# deltafH -370.88 kcal/mol + -analytic -1.7603e2 -1.0217e-2 1.7414e4 5.1966e1 2.9577e2 +# Range 0-200 + -Vm 44.03 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +ZnSO4 + ZnSO4 = SO4-2 + Zn+2 + log_k 3.5452 + -delta_H -80.132 kJ/mol +# deltafH -982.855 kJ/mol + -analytic 6.9905 -1.8046e-2 2.2566e3 -2.2819 3.8318e1 +# Range 0-200 + -Vm 45.61 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +ZnSO4:6H2O + ZnSO4:6H2O = SO4-2 + Zn+2 + 6 H2O + log_k -1.6846 + -delta_H -0.412008 kJ/mol +# deltafH -2777.61 kJ/mol + -analytic -1.4506e2 -1.8736e-2 5.2179e3 5.3121e1 8.8657e1 +# Range 0-200 + -Vm 130.08 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zoisite + Ca2Al3(SiO4)3OH + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O + log_k 43.3017 + -delta_H -458.131 kJ/mol +# deltafH -1643.69 kcal/mol + -analytic 2.5321 -3.5886e-2 1.9902e4 -6.2443 3.1055e2 +# Range 0-350 + -Vm 135.9 +# Extrapol supcrt92 +# Ref HDN+78 differ by 2.5 log K at 0C, 0.6 log K at 350C + +#--------------------------- +# carbfix.dat additions and changes +#--------------------------- + +Ankerite + CaFe(CO3)2 = Ca+2 + Fe+2 + 2 CO3-2 + log_k -20.8732 # HP11 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic 6743.140988642074 2.3089611210263445 -252723.63251182728 -2681.493160205648 9.661065201605685e6 -0.0008807525923414785 # HP11 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 66.060 # HP11 + +Dolomite + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17.5755 # carbfix.dat + -analytic 29.3854 -0.08464 -6474.23 0 0 0 # carbfix.dat + -Vm 64.365 # core10.dat + +Siderite #M 115.856 + FeCO3 = Fe+2 + CO3-2 + log_k -11.0441 # carbfix.dat + -analytic 349.4317054926304 0.03628114046578195 -13573.811090861998 -131.65143185871804 0 0 # carbfix.dat + -Vm 29.378 # core10.dat + +Vaterite + CaCO3 = Ca+2 + CO3-2 + log_k -7.913 # PB82 + -analytic -172.1295 -0.077993 3074.688 71.595 # PB82 + -Vm 37.628 # Webmineral + +Chamosite + Fe5Al2Si3O10(OH)8 + 16 H+ = 3 SiO2 + 2 Al+3 + 5 Fe+2 + 12 H2O + log_k 51.0989 # Wilson+06 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2261.8191086219654 -0.05624157931775312 177907.89284663578 751.8600225754568 -1.0016051707895715e7 -0.00016619114943726155 # Wilson+06 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 213.42 # Wilson+06 + +Ferroactinolite + Ca2Fe5Si8O24H2 + 14 H+ = 8 H2O + 2 Ca++ + 5 Fe++ + 8 SiO2 + log_k 53.8577 # HP11 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -6166.998542330102 -1.037219798091501 365861.8176639852 2233.6116457595454 -2.0884200268246245e7 0.00012380655710718727 # HP11 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 284.20 # HP11 + +Analcime + Na0.96Al0.96Si2.04O6:1H2O + 3.84 H+ = 0.96 Al+3 + 2.04 SiO2 + 0.96 Na+ + 2.92 H2O + log_k 6.46778 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -1607.397164637225 -0.20244882417823173 100724.95781836317 567.7196058320366 -6.033769323248515e6 -5.813879879598253e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 97.43 # Neu00 + +Chabazite-Ca + CaAl2Si4O12:6H2O + 8 H+ = 2 Al+3 + Ca+2 + 4 SiO2 + 10 H2O + log_k 14.7771 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3008.8025156663593 -0.3755910460310381 188997.49544842725 1062.7947084349842 -1.1188005391588064e7 -0.00002583123991650134 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 247.45 # Neu00 + +Chabazite-Na + Na2Al2Si4O12:6H2O + 8 H+ = 2 Al+3 + 2 Na+ + 4 SiO2 + 10 H2O + log_k 16.9077 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3186.8278093507747 -0.418380143168157 196138.93487499916 1132.2901846509246 -1.157949755113691e7 -0.000010048464434853268 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 247.45 # Neu00 + +Clinoptilolite-Ca + Ca1.5Al3Si15O36:12H2O + 12 H+ = 3 Al+3 + 1.5 Ca+2 + 15 SiO2 + 18 H2O + log_k -6.46186 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -9671.715446207168 -1.2994995558734899 586051.6056233725 3435.4387233980556 -3.6938991496076465e7 0.000020765835897886403 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 628.14 # Neu00 + +Clinoptilolite-Na + Na3Al3Si15O36:10H2O + 12 H+ = 3 Al+3 + 3 Na+ + 15 SiO2 + 16 H2O + log_k -9.10501 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -9935.986589349232 -1.3651421045919674 595717.5272789554 3537.941435564227 -3.7574827008609205e7 0.00004659640445273473 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 628.14 # Neu00 + +Heulandite-Ca + CaAl2Si7O18:6H2O + 8 H+ = 2 Al+3 + Ca+2 + 7 SiO2 + 10 H2O + log_k 3.436 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4716.20373811867 -0.6097204104617631 290361.2230601926 1669.4918855360143 -1.8033731828280084e7 -7.066268784616783e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 319.27 # Neu00 + +Heulandite-Na + Na2Al2Si7O18:5H2O + 8 H+ = 2 Al+3 + 2 Na+ + 7 SiO2 + 9 H2O + log_k 6.5703 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4893.663438946976 -0.6527198597381667 298513.6715970333 1737.9764230580004 -1.846214573574453e7 9.017353510490205e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 314.27 # Neu00 + +Laumontite + CaAl2Si4O12:4.5H2O + 8 H+ = 2 Al+3 + 4 SiO2 + 1 Ca+2 + 8.5 H2O + log_k 14.7774 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2953.1864248185643 -0.3460678860757567 189179.5402824526 1037.3497867115404 -1.133807260140713e7 -0.000030091905800782725 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 209.68 # Neu00 + +Leonhardite + CaAl2Si4O12:3.5H2O + 8 H+ = 2 Al+3 + 4 SiO2 + 1 Ca+2 + 7.5 H2O + log_k 14.8743 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2952.1293972721705 -0.34742048679718 189640.4641323959 1036.5589592559031 -1.1353314773495251e7 -0.00002980389895752243 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 204.6 # Neu00 + +Mesolite + Ca0.667Na0.666Al2Si3O10:2.667H2O + 8 H+ = 2 Al+3 + 0.667 Ca+2 + 3 SiO2 + 0.666Na+ + 6.667 H2O + log_k 17.4218 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2514.705149002807 -0.29384113565312087 161655.70641411358 883.4921843216846 -9.406741691291668e6 -0.00003131384483046101 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 171.60 # Neu00 + +Mordenite-Ca + Ca0.5AlSi5O12:4H2O + 4 H+ = 1 Al+3 + 0.5 Ca+2 + 5 SiO2 + 6 H2O + log_k -7.0717 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3209.8424385413937 -0.42341047224966527 194516.0226403748 1137.819893904924 -1.2397691837671977e7 6.8216657981027104e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 208.74 # Neu00 + +Mordenite-Na + NaAlSi5O12:3H2O + 4 H+ = 1 Al+3 + 1 Na+ + 5 SiO2 + 5 H2O + log_k -1.64368 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3304.0194429277494 -0.44813101451196 199814.8259786772 1174.547352199426 -1.2617592209620891e7 0.00001579003538196579 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 208.74 # Neu00 + +Natrolite + Na2Al2Si3O10:2H2O + 8 H+ = 2 Al+3 + 3 SiO2 + 2 Na+ + 6 H2O + log_k 19.1579 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2597.197018319145 -0.31602003400891093 165224.20445157515 915.9259126075954 -9.615658410718244e6 -0.000020437594207700833 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 169.22 # Neu00 + +Scolecite + CaAl2Si3O10:3H2O + 8 H+ = 2 Al+3 + Ca+2 + 3 SiO2 + 7 H2O + log_k 16.5484 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2472.9848254242747 -0.282577973571597 159852.11641836836 867.0866007988283 -9.301702517122421e6 -0.00003682208544087395 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 172.29 # Neu00 + +Stilbite-Ca + CaAl2Si7O18:7H2O + 8 H+ = 2 Al+3 + Ca+2 + 7 SiO2 + 11 H2O + log_k 3.25107 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4700.580605084462 -0.6041316785312421 289527.09790938033 1663.141867840657 -1.795058537490787e7 -5.933631409739997e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 333.48 # Neu00 + +Thomsonite + Ca2NaAl5Si5O20:6H2O + 20 H+ = 5 Al+3 + 2 Ca+2 + 5 SiO2 + Na+ + 16 H2O + log_k 53.2914 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4574.622243877597 -0.4696926814639755 308149.84600719286 1591.2127911035302 -1.7223826926743384e7 -0.00010328397531931611 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 338.10 # Neu00 + +Wairakite + CaAl2Si4O12:2H2O + 8 H+ = 2 Al+3 + 4 SiO2 + 1 Ca+2 + 6 H2O + log_k 18.7266 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3019.9452775460704 -0.35597487369231395 196047.2234609314 1059.0051267650902 -1.159849076955757e7 -0.000030402580312874294 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 190.35 # Neu00 + +Yugawaralite + CaAl2Si6O16:4H2O + 8 H+ = 2 Al+3 + 6 SiO2 + 1 Ca+2 + 8 H2O + log_k 7.98228 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4107.23434950416 -0.5135363017836825 257073.67049534645 1449.0996243850718 -1.5841096694718203e7 -0.000015762141005939227 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 265.79 # Neu00 + +#---------- +# 15 gases +#---------- + +C2H4(g) + C2H4 = C2H4 + log_k -2.323631 + -delta_H -3.930 kcal/mol + -analytic -14.5616 0.0176 2192.2 0 0 -3.8657e-6 +# Range 0-350 + -T_c 283 # K + -P_c 50.53 + -Omega 0.085 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref Sho93 + +C2H6(g) + C2H6 = C2H6 + log_k -2.93276 + -delta_H -4.509 kcal/mol + -analytic -23.1154 0.0354 3289.1 0 0 -1.5637e-5 +# Range 0-350 + -T_c 305 # K + -P_c 48.16 + -Omega 0.100 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref HOK+98 + +C3H8(g) + C3H8 = C3H8 + log_k -2.876 + -analytic 1.885 -2.55e-2 0 0 0 3.20e-5 # Not the best +# Range 0-350 + -T_c 369.522 # K + -P_c 42.4924 + -Omega 0.152 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref HOK+98 + +CH4(g) + CH4 = CH4 + log_k -2.8502 + -delta_H -13.0959 kJ/mol +# deltafH -17.88 kcal/mol + -analytic -24.027 4.7146e-3 372.27 6.4264 2.3362e5 +# Range 0-350 + -T_c 190.6 # K + -P_c 45.40 + -Omega 0.008 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +CO(g) + CO = CO + log_k -3.0068 + -delta_H -10.4349 kJ/mol +# deltafH -26.416 kcal/mol + -analytic -8.0849 9.2114e-3 0 0 2.0813e5 +# Range 0-350 + -T_c 133 # K + -P_c 34.54 + -Omega 0.049 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref Sho93 + +CO2(g) + CO2 + H2O = H+ + HCO3- + log_k -7.8136 + -delta_H -10.5855 kJ/mol +# deltafH -94.051 kcal/mol + -analytic -8.5938e1 -3.0431e-2 2.0702e3 3.2427e1 3.2328e1 +# Range 0-350 + -T_c 304.25 # K + -P_c 72.83 # atm, 7.38 MPa, http://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=4#Thermo-Phase + -Omega 0.225 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +H2(g) + H2 = H2 + log_k -3.1050 + -delta_H -4.184 kJ/mol +# deltafH 0 kcal/mol + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 +# Range 0-350 + -T_c 33.2 # K + -P_c 12.80 + -Omega 0.225 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +H2O(g) # HP98 + H2O = 1.000 H2O + -log_k 1.5108 + -analytic -1.4782e1 1.0752e-3 2.7519e3 2.7548 4.2945e1 + -T_c 647.3 + -P_c 220.9 + -Omega 0.344 + +H2S(g) + H2S = H+ + HS- + log_k -7.9759 + -delta_H 4.5229 kJ/mol +# deltafH -4.931 kcal/mol + -analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56 +# Range 0-350 + -T_c 373.2 # K + -P_c 88.20 + -Omega 0.1 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +N2(g) + N2 = N2 + log_k -3.1864 + -delta_H -10.4391 kJ/mol +# deltafH 0 kcal/mol + -analytic -58.453 1.818e-3 3199 17.909 -27460 # phreeqc.dat +# Range 0-350 + -T_c 126.2 # K + -P_c 33.50 + -Omega 0.039 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +NH3(g) + NH3 = NH3 + log_k 1.7966 + -delta_H -35.2251 kJ/mol +# deltafH -11.021 kcal/mol + -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 +# Range 0-350 + -T_c 405.6 # K + -P_c 111.3 + -Omega 0.25 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +NO(g) + NO + 0.5 H2O + 0.25 O2 = H+ + NO2- + log_k 0.7554 + -delta_H -48.8884 kJ/mol +# deltafH 90.241 kJ/mol + -analytic 8.2147 -1.2708e-1 -6.0593e3 2.0504e1 -9.4551e1 +# Range 0-300 + -T_c 180 # K + -P_c 64.64 + -Omega 0.607 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92, Cp integration +# Ref AS01, WEP+82 differ by 0.2 log K at 0C, 17 log K at 350C !! flag + +NO2(g) + NO2 + 0.5 H2O + 0.25 O2 = H+ + NO3- + log_k 8.3673 + -delta_H -94.0124 kJ/mol +# deltafH 33.154 kJ/mol + -analytic 9.4389e1 -2.7511e-1 -1.6783e4 2.1127e1 -2.6191e2 +# Range 0-300 + -T_c 431 # K + -P_c 99.67 + -Omega 0 # Not found +# Extrapol Cp integration +# Ref WEP+82 + +O2(g) + O2 = O2 + log_k -2.8983 + -delta_H -12.1336 kJ/mol +# deltafH 0 kcal/mol + -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 +# Range 0-300 + -T_c 154.6 # K phreeqc.dat + -P_c 49.80 # phreeqc.dat + -Omega 0.021 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +SO2(g) + SO2 = SO2 + log_k 0.1700 + -delta_H 0 +# deltafH 0 kcal/mol + -analytic -2.0205e1 2.8861e-3 1.4862e3 5.2958 1.2721e5 +# Range 0-300 + -T_c 430 # K + -P_c 77.67 + -Omega 0.251 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +#---------- +# Additional phases added for the purpose of the kinetics +#---------- + +#Basaltic glass leached layer solubility - calculated from a stoichiometric mixture of amorphous SiO2 and Al(OH)3 in this database. +#NOTE: The analytical expression was calculated assuming a constant Cp for Al(OH)3(am), so that significant systematic errors occur at high temperatures! +Glass_Basalt_leached_layer + Si1.00Al0.35O2(OH)1.05 + 0.35 OH- = 0.35 Al(OH)4- + SiO2 + log_k -2.36449 + -analytic 77.82514814711445 0.032450265390183614 -1502.5932036570116 -33.02705435543141 -216815.051931841 -7.454186812457974e-6 + +#Rhyolite glass leached layer solubility - calculated from a stoichiometric mixture of amorphous SiO2 and Al(OH)3 in this database. +#NOTE: The analytical expression was calculated assuming a constant Cp for Al(OH)3(am), so that significant systematic errors occur at high temperatures! +Glass_Rhyolite_leached_layer +Si1.00Al0.23O2(OH)0.69 + 0.23 OH- = 0.23 Al(OH)4- + SiO2 + log_k -2.49416 + -analytic 5.1557406e+01 2.3750757e-02 -1.7710982e+02 -2.2884601e+01 -3.0907618e+05 -4.8984656e-06 + +#---------- +# Additional phases +##Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals#### +# 16 added solids +# The thermodynmaic propeties are from the llnl.data database expet for Gaspite +#------------ + + +Anglesite + PbSO4 = + Pb+2 + SO4-2 + log_k -7.8527 + -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Anglesite +# Enthalpy of formation: -219.87 kcal/mol + -analytic -1.8583e+002 -7.3849e-002 2.8528e+003 7.6936e+001 4.4570e+001 + -Vm 47.950 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Barite + BaSO4 = + Ba++ + SO4-2 + log_k -9.9711 + -delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite +# Enthalpy of formation: -352.1 kcal/mol + -analytic -1.8747e+002 -7.5521e-002 2.0790e+003 7.7998e+001 3.2497e+001 + -Vm 52.1 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Celestite + SrSO4 = + SO4-2 + Sr+2 + log_k -5.6771 + -delta_H -7.40568 kJ/mol # Calculated enthalpy of reaction Celestite +# Enthalpy of formation: -347.3 kcal/mol + -analytic -1.9063e+002 -7.4552e-002 3.9050e+003 7.8416e+001 6.0991e+001 + -Vm 46.25 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Cerussite + PbCO3 + H+ = + HCO3- + Pb+2 + log_k -3.2091 + -delta_H 13.8992 kJ/mol # Calculated enthalpy of reaction Cerussite +# Enthalpy of formation: -168 kcal/mol + -analytic -1.2887e+002 -4.4372e-002 2.2336e+003 5.3091e+001 3.4891e+001 +# -Range: 0-300 + +Fluorapatite + Ca5(PO4)3F +3.0 H+ = + F- + 3.0 HPO4-2 + 5.0 Ca++ + log_k -24.9940 + -delta_H -90.8915 kJ/mol # Calculated enthalpy of reaction Fluorapatite +# Enthalpy of formation: -6836.12 kJ/mol + -analytic -9.3648e+002 -3.2688e-001 2.4398e+004 3.7461e+002 3.8098e+002 + -Vm 157.56 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Fluorite + CaF2 = + Ca++ + 2.0 F- + log_k -10.0370 + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction Fluorite +# Enthalpy of formation: -293 kcal/mol + -analytic -2.5036e+002 -8.4183e-002 4.9525e+003 1.0054e+002 7.7353e+001 + -Vm 24.542 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Gaspite # M 118.702 https://thermoddem.brgm.fr/ +NiCO3 + H+ = HCO3- + Ni+2 + log_k -0.74 + -analytic -909.497277 -0.146985 50789.653398 329.221149 -2880194.459776 + -Vm 26.978 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Otavite + CdCO3 + H+ = + Cd++ + HCO3- + log_k -1.7712 + -delta_H 0 # Not possible to calculate enthalpy of reaction Otavite +# Enthalpy of formation: 0 kcal/mol + +Pyromorphite + Pb5(PO4)3Cl +3.0 H+ = + Cl- + 3.0 HPO4-2 + 5.0 Pb+2 + log_k -47.8954 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite +# Enthalpy of formation: 0 kcal/mol + +Pyromorphite-OH + Pb5(OH)(PO4)3 +4.0 H+ = + H2O + 3.0 HPO4-2 + 5.0 Pb+2 + log_k -26.2653 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite-OH + -Vm 188.40 #https://thermoddem.brgm.fr/ +# Enthalpy of formation: 0 kcal/mol + +Rhodochrosite + MnCO3 + H+ = + HCO3- + Mn+2 + log_k -0.1928 + -delta_H -21.3426 kJ/mol # Calculated enthalpy of reaction Rhodochrosite +# Enthalpy of formation: -212.521 kcal/mol + -analytic -1.6195e+002 -4.9344e-002 5.0937e+003 6.4402e+001 7.9531e+001 + -Vm 31.075 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Smithsonite + ZnCO3 + H+ = + HCO3- + Zn+2 + log_k 0.4633 + -delta_H -30.5348 kJ/mol # Calculated enthalpy of reaction Smithsonite +# Enthalpy of formation: -194.26 kcal/mol + -analytic -1.6452e+002 -5.0231e-002 5.5925e+003 6.5139e+001 8.7314e+001 +# -Range: 0-300 + + +Strontianite + SrCO3 + H+ = + HCO3- + Sr+2 + log_k -0.3137 + -delta_H -8.23411 kJ/mol # Calculated enthalpy of reaction Strontianite +# Enthalpy of formation: -294.6 kcal/mol + -analytic -1.3577e+002 -4.4884e-002 3.5729e+003 5.5296e+001 5.5791e+001 +# -Range: 0-300 + +Witherite + BaCO3 + H+ = + Ba+2 + HCO3- + log_k -2.9965 + -delta_H 17.1628 kJ/mol # Calculated enthalpy of reaction Witherite +# Enthalpy of formation: -297.5 kcal/mol + -analytic -1.2585e+002 -4.4315e-002 2.0227e+003 5.2239e+001 3.1600e+001 +# -Range: 0-300 + +# A.P. Gysi et al. / Geochimica et Cosmochimica Acta 242 (2018) 143–164 +Monazite-Ce # M 235.087 g/mol + CePO4 + H+ = Ce+3 + HPO4-2 + log_k -18.12 + -analytic 0.968 0.0474 4.384E+03 + +Variscite # M 157.983 #https://thermoddem.brgm.fr/ + AlPO4:2H2O + 2H+ = Al+3 + H2PO4- + 2 H2O + log_k -2.16 + -analytic -1069.095997 -0.173224 59751.042067 386.011849 -3287463.862916 + -Vm 61.953 + +## +Illite + K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 +8.0000 H+ = + 0.2500 Mg++ + 0.6000 K+ + 2.3000 Al+++ + 3.5000 SiO2 + 5.0000 H2O + log_k 9.0260 + -delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite +# Enthalpy of formation: -1394.71 kcal/mol + -analytic 2.6069e+001 -1.2553e-003 1.3670e+004 -2.0232e+001 -1.1204e+006 +# -Range: 0-300 + + + +#---------- +# List of the RATE blocks (details in Hermanska et al. 2022, 2023) +#---------- + + +RATES + +Albite #NaAlSi3O8; M 262.219 g/mol +-start +1 name$ = "Albite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.7 #mol.m-2.s-1 +1001 An = 2.05e-1 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.3 +1010 nb = -0.3 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Albite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Albite_high #NaAlSi3O8; M 262.219 g/mol +-start +1 name$ = "Albite_high" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.7 #mol.m-2.s-1 +1001 An = 2.05e-1 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.3 +1010 nb = -0.3 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Albite_high")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Albite_low #NaAlSi3O8; M 262.219 g/mol +-start +1 name$ = "Albite_low" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.7 #mol.m-2.s-1 +1001 An = 2.05e-1 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.3 +1010 nb = -0.3 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Albite_low")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Almandine#Fe3Al2(SiO4)3, M 500.4 g/mol +-start +1 name$ = "Almandine" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.0e5#mol/m2/s +1001 An = 2.31e-4#mol/m2/s +1002 Ab = 6.0e-8#mol/m2/s +1003 na = 1 +1004 nb = -0.4 +1005 Ea = 60000 +1006 En = 43200 +1007 Eb = 42300 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +10010 Sig = 3 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Almandine")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Analcime#Na0.96Al0.96Si2.04O6:1H2O; 219.27 g/mol +-start +1 name$ = "Analcime" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5.0e7#mol.m-2.s-1 +1001 An = 1.0e-1 #mol.m-2.s-1 +1002 Ab = 7.5e-5 #mol.m-2.s-1 +1003 Ea = 63000 #J.mol-1 +1004 En = 58500 #J.mol-1 +1005 Eb = 58000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1 +1010 nb = -0.4 +1011 Sig = 2.04 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Analcime")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + + +Andalusite#Al2SiO5, M 162.9 g/mol +-start +1 name$ = "Andalusite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.39#mol/m2/s +1001 An = 8.0e-3#mol/m2/s +1002 Ab = 8.8e-15#mol/m2/s +1003 na = 0.15 +1004 nb = -1.2 +1005 Ea = 58000 +1006 En = 60000 +1007 Eb = 50000 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +1001 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusn = An* (exp(-En/ (R * Tk)))* S +2004 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Andalusite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Andesine_ss#Ca0.4Na0.6Al1.4Si2.6O8 , M 268.613 g/mol +-start +1 name$ = "Andesine_ss" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 268.613 else S = m0 * ((m/m0)^(2/3)) * 268.613 * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +10 SR_Andesine=(SR ("Albite")*0.6)*(SR ("Anorthite")*0.4) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Andesine < 1) Then GoTo 5000 # warning no dissolution reaction +200 If (SR_Andesine > 1) Then GoTo 5000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 146.75#mol.m-2.s-1 +1001 An = 0.19 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.67 +1010 nb = -0.35 +1011 Sig = 2.6 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR_Andesine^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Andradite#Ca3Fe2(SiO4)3, M 510.9 g/mol +-start +1 name$ = "Andradite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.6e5#mol/m2/s +1001 An = 3.2e-4#mol/m2/s +1003 na = 1 +1005 Ea = 60000 +1006 En = 43200 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +10010 Sig = 3 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Andradite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + + +Annite #KFe3AlSi3O10(OH)2; M 511.85 g/mol +-start +1 name$ = "Annite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.90e-7 #mol.m-2.s-1 +1001 An = 5e-9 #mol.m-2.s-1 +1002 Ab = 4e-10 #mol.m-2.s-1 +1003 Ea = 18200 #J.mol-1 +1004 En = 22000 #J.mol-1 +1005 Eb = 25500 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.5 +1009 nb = -0.16 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Annite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Anorthite #CaAl2Si2O8; M 278.204 g/mol +-start +1 name$ = "Anorthite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3))* GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 9.82e4 #mol.m-2.s-1 +1001 An = 1.5E-1 #mol.m-2.s-1 +1002 Ab = 1.5E-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.22 +1010 nb = -0.35 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Anorthite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Anthophyllite #Mg7Si8O22(OH)2, M 780.807 g/mol +-start +1 name$ = "Anthophyllite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.7e-4 #mol.m-2.s-1 +1001 An = 5.0e-6 #mol.m-2.s-1 +1002 Ea = 52000 #J.mol-1 +1003 En = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.42 +1006 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR ("Anthophyllite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Antigorite #Mg3Si2O5(OH4); M 277 g/mol +-start +1 name$ = "Antigorite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +#------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.8e-6 #mol.m-2.s-1 +1001 An = 2.0e-8 #mol.m-2.s-1 +1003 Ea = 27000 #J.mol-1 +1004 En = 27000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.25 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Antigorite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Augite_ss#Mg0.45Fe0.275Ca0.275SiO3;M 113.4 g/mol +-start + 2 if (PARM(1) = 0) then goto 3 else goto 5 + 3 if PARM(3) = 0 then S = PARM(2) * m * 113.4 else S = m0 * ((m/m0)^(2/3)) * 113.4 * PARM(2) + 4 GOTO 1000 + 5 S = PARM(2)*TOT("water") + 10 SR_Augite=(SR ("Wollastonite")*0.45)*(SR ("Ferrosilite")*0.275)*(SR ("Enstatite")*0.275) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Augite < 1) Then GoTo 5000 # warning no dissolution reaction +200 If (SR_Augite > 1) Then GoTo 5000 # warning no precipitation reaction +#------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.52e6 +1001 An =350 +1002 Ea =81834 +1003 En =83000 +1004 R = 8.314 +1006 Sig = 1 +1007 na =0.7 +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR_Augite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-Ca#Ca.175Al2.35Si3.65O10(OH)2; M 366.9 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +#------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-Fe# Fe.175Al2.35Si3.65O10(OH)2 369.7 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-Fe" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-Fe")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-K# K.35Al2.35Si3.65O10(OH)2; M 373.6 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-Mg# Mg.175Al2.35Si3.65O10(OH)2; M 364.2 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-Na# Na.35Al2.35Si3.65O10(OH)2 ; M 368.0 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Biotite_ss #KFe1.5Mg1.5AlSi3O10(OH)2; M 464.564 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 464.564 else S = m0 * ((m/m0)^(2/3)) * 464.564 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Biotite=(SR ("Annite")*0.5)*(SR ("Phlogopite")*0.5) + +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Biotite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Biotite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.90e-7 #mol.m-2.s-1 +1001 An = 5e-9 #mol.m-2.s-1 +1002 Ab = 4e-10 #mol.m-2.s-1 +1003 Ea = 18200 #J.mol-1 +1004 En = 22000 #J.mol-1 +1005 Eb = 25500 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.5 +1009 nb = -0.16 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR_Biotite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Bronzite_ss#Mg0.77Fe0.23SiO3, M 107.6 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 107.6 else S = m0 * ((m/m0)^(2/3)) * 107.6 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Bronzite=(SR ("Enstatite")*0.77)*(SR ("Ferrosilite")*0.23) + +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Bronzite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Bronzite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 9.5e-4# mol.m-2.s-1 +1001 An = 7.6e-1# mol.m-2.s-1 +1002 Ea = 38548# J/mol +1003 En = 66100# J/mol +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1011 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR_Bronzite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Bytownite_ss#Ca0.77Na0.23Al1.77Si2.23O8, M 243.67 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 243.67 else S = m0 * ((m/m0)^(2/3)) * 243.67 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Bytownite=(SR ("Albite")*0.23)*(SR ("Anorthite")*0.77) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Bytownite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Bytownite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 18838.52 #mol.m-2.s-1 +1001 An = 0.17 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.105 +1010 nb = -0.35 +1011 Sig = 2.23 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR_Bytownite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chabazite-Ca# CaAl2Si4O12:6H2O +-start +1 name$ = "Chabazite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.221 #mol.m-2.s-1 +1001 An = 1.56e-4 #mol.m-2.s-1 +1002 Ab = 4.94e-5 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Chabazite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chabazite-Na# Na2Al2Si4O12:6H2O +-start +1 name$ = "Chabazite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.221 #mol.m-2.s-1 +1001 An = 1.56e-4 #mol.m-2.s-1 +1002 Ab = 4.94e-5 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Chabazite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chalcedony# SiO2 M 60.08 g/mol #listed as Amorphous SiO2 in DB part 1 +-start +1 name$ = "Chalcedony" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.563e-4#mol/m2/s +1001 Ab = 0.0353#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 41610 +1005 Eb = 73000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Chalcedony")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chrysotile # Mg3Si2O5(OH4); M 278.9 g/mol +-start +1 name$ = "Chrysotile" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.8e-6 #mol.m-2.s-1 +1001 An = 2.0e-8 #mol.m-2.s-1 +1003 Ea = 27000 #J.mol-1 +1004 En = 27000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.25 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Chrysotile")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chamosite# Fe5Al(AlSi3O10)(OH)8; M 713.44 g/mol +-start +1 name$ = "Chamosite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Chamosite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Clinochlore-14A#Mg5Al(AlSi3O10)(OH)8; M 555.79 g/mol +-start +1 name$ = "Clinochlore-14A" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Clinochlore-14A")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Clinochlore-7A# Mg5Al(AlSi3O10)(OH)8; M 555.79 g/mol +-start +1 name$ = "Clinochlore-7A" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Clinochlore-7A")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Clinoptilolite-Ca# Ca1.5Al3Si15O36:12H2O +-start +1 name$ = "Clinoptilolite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 15 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR ("Clinoptilolite-Ca") +/Sig)) +4000 moles = rate * time +5000 save moles +-end + +Clinoptilolite-Na# Na3Al3Si15O36:10H2O +-start +1 name$ = "Clinoptilolite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 15 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Clinoptilolite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Cristobalite(alpha)#SiO2; M 60.08 g/mol +-start +1 name$ = "Cristobalite(alpha)" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.03e-4#mol/m2/s +1001 Ab = 0.105#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 45600 +1005 Eb = 80000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Cristobalite(alpha)")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Cristobalite(beta)#SiO2, M 60.08 g/mol +-start +1 name$ = "Cristobalite(beta)" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.03e-4#mol/m2/s +1001 Ab = 0.105#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 45600 +1005 Eb = 80000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Cristobalite(beta)")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Daphnite-14A#Fe5Al(AlSi3O10)(OH)8;M 713.44 g/mol +-start +1 name$ = "Daphnite-14A" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Daphnite-14A")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Daphnite-7A#Fe5Al(AlSi3O10)(OH)8; M 713.44 g/mol +-start +1 name$ = "Daphnite-7A" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Daphnite-7A")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Diopside #CaMgSi2O6; M 216.55 g/mol +-start +1 name$ = "Diopside" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 8.55e-5 #mol.m-2.s-1 +1001 An = 4.30e-4 #mol.m-2.s-1 +1003 Ea = 32654 #J.mol-1 +1004 En = 43866 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.25 +1009 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR ("Diopside")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Enstatite#MgSiO3;M 100.387 g/mol +-start +1 name$ = "Enstatite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 0.574 #mol.m-2.s-1 +1001 An = 6252 #mol.m-2.s-1 +1003 Ea = 46080 #J.mol-1 +1004 En = 89538 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.5 +1010 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR ("Enstatite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Epidote#Ca2FeAl2Si3O12OH;M 483.215 g/mol +-start +1 name$ = "Epidote" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.09 #mol.m-2.s-1 +1001 An = 5.13e-5 #mol.m-2.s-1 +1002 Ab = 1.40e-9 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 43200 #J.mol-1 +1005 Eb = 42300 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.30 +1009 nb = -0.4 +1010 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Epidote")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Epidote-ord#Ca2FeAl2Si3O12OH;M 483.215 g/mol +-start +1 name$ = "Epidote-ord" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.14e1 #mol.m-2.s-1 +1001 An = 5.13e-5 #mol.m-2.s-1 +1002 Ab = 1.40e-9 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 43200 #J.mol-1 +1005 Eb = 42300 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.56 +1009 nb = -0.4 +1010 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Epidote-ord")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Fayalite #Fe2SiO4;M 203.771 g/mol +-start +1 name$ = "Fayalite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.20e6# mol.m-2.s-1 +1001 Ab =1.91e3# mol.m-2.s-1 +1002 Ea =70400# J/mol +1003 Eb =60900# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =0.44 +1008 nb =0.22 +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb)* S +2002 rplus = rplusa + rplusb +4000 rate = rplus * (1 - SR("Fayalite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Ferroactinolite #Ca2Fe5Si8O22(OH)2, M 970.053 g/mol, kinetic parameters from Tremolite +-start +1 name$ = "Ferroactinolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +5 S = PARM(2)*TOT("water") +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 3.0e-3 #mol.m-2.s-1 +1001 An = 2.0e-5 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 En = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.22 +1006 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Ferroactinolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Forsterite #Mg2SiO4, M 140.692 g/mol +-start +1 name$ = "Forsterite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =14.8e4# mol.m-2.s-1 +1001 Ab =220# mol.m-2.s-1 +1002 Ea =70400# J/mol +1003 Eb =60900# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na = 0.44 +1008 nb = 0.22 + #Rate Equation +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusb +4000 rate = rplus * (1 - SR("Forsterite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Glass_Basalt#SiTi0.02Al0.36Fe0.19Mg0.28Ca0.26Na0.08K0.008O3.364 , M 122.566 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 122.566 else S = m0 * ((m/m0)^(2/3)) * 122.566 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR ("Glass_Basalt_leached_layer") < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR ("Glass_Basalt_leached_layer") > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 if (m0<=0) then go to 5000 +1001 Aa = 1.08e-4 #mol.m-2.s-1 +1003 Ea = 21500 #J.mol-1 +1006 R = 8.3144 #J.deg-1.mol-1 +1007 ACTI = (ACT ("H+")^3)/(ACT("Al+3")) +1008 n = 1/3 +1009 Sig = 1 + #rate equation +2000 rplus = Aa * ACTI^n * exp(-Ea/ (R * Tk)) * S +3000 rate = rplus * (1 - (SR ("Glass_Basalt_leached_layer")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Glass_Rhyolite#SiAl0.23Na0.13Fe0.05K0.05Ca0.03Mg0.007Ti0.004O2.536; M 84.165 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 84.165 else S = m0 * ((m/m0)^(2/3)) * 84.165 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR("Glass_Rhyolite_leached_layer") < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR("Glass_Rhyolite_leached_layer") > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.6e-3 #mol.m-2.s-1 +1002 Ab = 7.0e-8 #mol.m-2.s-1 +1003 Ea = 36000 #J.mol-1 +1005 Eb = 52000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.48 +1010 nb = -0.6 +1011 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Glass_Rhyolite_leached_layer")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Glaucophane_ss#Na2Mg3Al2Si8O22(OH)2, M 783.531 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 783.531 else S = m0 * ((m/m0)^(2/3)) * 783.531 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Glaucophane =((SR ("Anthophyllite")*1)*(SR ("Jadeite")*2))*(SR ("Enstatite")*(-4)) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Glaucophane < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Glaucophane > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 220 #mol.m-2.s-1 +1001 Ab = 1.0e-4 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 Eb = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 na = 0.7 +1006 nb = -0.12 +1007 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR_Glaucophane^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Grossular#Ca3Al2(SiO4)3, M 453 g/mol +-start +1 name$ = "Grossular" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.0e5#mol/m2/s +1001 An = 2.31e-4#mol/m2/s +1002 Ab = 6.0e-8#mol/m2/s +1003 na = 1 +1004 nb = -0.4 +1005 Ea = 60000 +1006 En = 43200 +1007 Eb = 42300 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +10010 Sig = 3 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Grossular")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Heulandite-Ca# CaAl2Si7O18:6H2O +-start +1 name$ = "Heulandite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 7 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Heulandite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Heulandite-Na# Na2Al2Si7O18:5H2O +-start +1 name$ = "Heulandite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 7 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Heulandite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Hornblende_ss#Ca2(Mg4Al)(Si7Al)O22(OH)2, M 813.927 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 813.927 else S = m0 * ((m/m0)^(2/3)) * 813.927 * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +10 SR_Hornblende =((SR ("Tremolite")*1)*(SR ("Corundum")*1))*(SR ("Enstatite")*(-1)) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Hornblende < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Hornblende > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5.0e-3 #mol.m-2.s-1 +1001 Ab = 2.1e-5 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 Eb = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 na = 0.17 +1006 nb = -0.12 +1007 Sig = 7 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR_Hornblende^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Illite# K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 +-start +1 name$ = "Illite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 7.3e-4 #mol.m-2.s-1 +1001 An = 3.348e-3 #mol.m-2.s-1 +1002 Ab = 6.0e-8 #mol.m-2.s-1 +1003 Ea = 50000 #J.mol-1 +1004 En = 70000 #J.mol-1 +1005 Eb = 74000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1009 nb = -0.6 +1011 Sig = 3.5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Illite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Jadeite# NaAl(SiO3)2;M 203.9 g/mol +-start +1 name$ = "Jadeite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 25 #mol.m-2.s-1 +1001 An = 2.70e5 #mol.m-2.s-1 +1003 Ea = 46080 #J.mol-1 +1004 En = 89538 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.5 +1010 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Jadeite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Kaolinite # Al2Si2O5(OH)4; M 258.16 g/mol +-start +1 name$ = "Kaolinite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.85 #mol.m-2.s-1 +1001 An = 4.15e-3 #mol.m-2.s-1 +1002 Ab = 2.40e-11 #mol.m-2.s-1 +1003 Ea = 73000 #J.mol-1 +1004 En = 67000 #J.mol-1 +1005 Eb = 61000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.45 +1010 nb = -0.76 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 -SR("Kaolinite")^(1/Sig)) +4000 moles = rate * time +5000 save moles +-end + +K-Feldspar #KAlSi3O8; M 278.33 g/mol +-start +1 name$ = "K-Feldspar" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.05 # mol.m-2.s-1 +1001 An = 1.08e-2 # mol.m-2.s-1 +1002 Ab = 1.2e-10 # mol.m-2.s-1 +1003 Ea = 51700 # J/mol +1004 En = 60000 # J/mol +1005 Eb = 62195 # J/mol +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") # +1008 Sig = 3 +1009 nA = 0.45 +1010 nb = -0.75 + #Rate Equation +3000 rplusa = Aa * ACTI^nA * exp (-Ea/ (R * Tk)) * S +3001 rplusn = An * exp (-En/ (R * Tk)) * S +3002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* ACTI^(nC) * S +3003 rplus = rplusa + rplusn + rplusb +4000 rate = rplus * (1 - SR("K-Feldspar")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Kyanite# Al2SiO5, M 162.9 g/mol +-start +1 name$ = "Kyanite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.115#mol/m2/s +1001 An = 1e-3#mol/m2/s +1002 Ab = 1.5e-13#mol/m2/s +1003 na = 0.15 +1004 nb = -1 +1005 Ea = 58000 +1006 En = 60000 +1007 Eb = 50000 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +1001 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusn = An* (exp(-En/ (R * Tk)))* S +2004 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Kyanite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Larnite #Ca2SiO4;M 172.237 g/mol +-start +1 name$ = "Larnite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5.25e8# mol.m-2.s-1 +1001 Ab = 8.25e5# mol.m-2.s-1 +1002 Ea = 70400# J/mol +1003 Eb = 60900# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =0.44 +1008 nb =0.22 +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb)* S +2002 rplus = rplusa + rplusb +4000 rate = rplus * (1 - SR ("Larnite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Labradorite_ss# Ca0.68Na0.32Al1.68Si2.32O8, M 245.84 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 245.84 else S = m0 * ((m/m0)^(2/3)) * 245.84 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Labradorite=(SR ("Albite")*0.32)*(SR ("Anorthite")*0.68) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Labradorite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Labradorite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5886.557 #mol.m-2.s-1 +1001 An = 0.17 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.0 +1010 nb = -0.35 +1011 Sig = 2.32 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +2010 SR_Labradorite=(SR ("Albite")*0.32)*(SR ("Anorthite")*0.68) +3000 rate = rplus * (1 - (SR_Labradorite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Labradorite_ss_an55# Ca0.55Na0.45Al1.68Si2.32O8, M 245.84 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 245.84 else S = m0 * ((m/m0)^(2/3)) * 245.84 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 Labradorite_ss_an55=(SR ("Albite")*0.55)*(SR ("Anorthite")*0.55) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Labradorite_an55 < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Labradorite_an55 > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5886.557 #mol.m-2.s-1 +1001 An = 0.17 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.0 +1010 nb = -0.35 +1011 Sig = 2.32 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (Labradorite_ss_an55^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Laumontite# CaAl2Si4O12:4.5H2O +-start +1 name$ = "Laumontite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.25 #mol.m-2.s-1 +1001 An = 1.39e-3 #mol.m-2.s-1 +1002 Ab = 7.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Laumontite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Lizardite #Mg3Si2O5(OH4); M 277 g/mol +-start +1 name$ = "Lizardite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.8e-6 #mol.m-2.s-1 +1001 An = 2.0e-8 #mol.m-2.s-1 +1003 Ea = 27000 #J.mol-1 +1004 En = 27000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.25 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Lizardite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Leonhardite# CaAl2Si4O12:3.5H2O +-start +1 name$ = "Leonhardite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.25 #mol.m-2.s-1 +1001 An = 1.39e-3 #mol.m-2.s-1 +1002 Ab = 7.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Leonhardite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Maximum_Microcline #KAlSi3O8; M 278.33 g/mol +-start +1 name$ = "Maximum_Microcline" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.05 # mol.m-2.s-1 +1001 An = 1.08e-2 # mol.m-2.s-1 +1002 Ab = 1.2e-10 # mol.m-2.s-1 +1003 Ea = 51700 # J/mol +1004 En = 60000 # J/mol +1005 Eb = 62195 # J/mol +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") # +1008 Sig = 3 +1009 nA = 0.45 +1010 nb = -0.75 + #Rate Equation +3000 rplusa = Aa * ACTI^nA * exp (-Ea/ (R * Tk)) * S +3001 rplusn = An * exp (-En/ (R * Tk)) * S +3002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* ACTI^(nC) * S +3003 rplus = rplusa + rplusn + rplusb +4000 rate = rplus * (1 - SR("Maximum_Microcline")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Mesolite# Ca0.667Na0.666Al2Si3O10:2.667H2O +-start +1 name$ = "Mesolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.97 #mol.m-2.s-1 +1001 An = 1.11e-3 #mol.m-2.s-1 +1002 Ab = 5.54e-4 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Mesolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Montmor-Ca# Ca.175Mg.35Al1.65Si4O10(OH)2 +-start +1 name$ = "Montmor-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Montmor-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Montmor-Mg# Mg.525Al1.65Si4O10(OH)2; M 363.6 g/mol +-start +1 name$ = "Montmor-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Montmor-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Montmor-K# +-start +1 name$ = "Montmor-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Montmor-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Mordenite-Ca# Ca0.5AlSi5O12:4H2O +-start +1 name$ = "Mordenite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000 else goto 1000 # warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 else goto 1000# warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Mordenite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Mordenite-Na# NaAlSi5O12:3H2O +-start +1 name$ = "Mordenite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Mordenite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Muscovite #KAl3Si3O10(OH)2, M 398.303 g/mol +-start +1 name$ = "Muscovite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 0.000126#mol.m-2.s-1 +1001 An = 0.00000631#mol.m-2.s-1 +1002 Ab = 0.0000316#mol.m-2.s-1 +1004 Ea = 41311 #J.mol-1 +1005 En = 39301 #J.mol-1 +1006 Eb = 56950 #J.mol-1 +1008 R = 8.314 #J.deg-1.mol-1 +1009 nA = 0.37 +1010 nb = -0.22 +2000 Sig = 3 + #rate equations +2005 rplusa = Aa* (exp(-Ea/ (R * Tk)))*((act("H+"))^nA )* S +2006 rplusn = An* (exp(-En/ (R * Tk)))* S +2007 rplusb = Ab* (exp(-Eb/ (R * Tk)))*((act("H+"))^nb)* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Muscovite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Natrolite# Na2Al2Si3O10:2H2O +-start +1 name$ = "Natrolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.97 #mol.m-2.s-1 +1001 An = 1.11e-3 #mol.m-2.s-1 +1002 Ab = 5.54e-4 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Natrolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nepheline #NaAlSiO4 +-start +1 name$ = "Nepheline" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5e7 #mol.m-2.s-1 +1001 An = 0.1 #mol.m-2.s-1 +1002 Ab = 7.5e-5 #mol.m-2.s-1 +1003 Ea = 63000 #J.mol-1 +1004 En = 58500 #J.mol-1 +1005 Eb = 58000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.0 +1009 nb = -0.4 +1011 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Nepheline")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nontronite-Ca# Ca.175Fe2Al.35Si3.65H2O12; M 424.7 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Nontronite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Nontronite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nontronite-K# K.35Fe2Al.35Si3.65H2O12; M 431.3 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Nontronite-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Nontronite-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nontronite-Mg# Mg.175Fe2Al.35Si3.65H2O12; M 421.9 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Nontronite-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Nontronite-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nontronite-Na# Na.35Fe2Al.35Si3.65H2O12; M 425.7 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Nontronite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Nontronite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Oligoclase_ss#Ca0.186Na0.814Al1.186Si2.814O8, M 265.2 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 265.2 else S = m0 * ((m/m0)^(2/3)) * 265.2 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Oligoclase=(SR ("Albite")*0.814)*(SR ("Anorthite")*0.186) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Oligoclase < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Oligoclase > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 6.8 #mol.m-2.s-1 +1001 An = 0.2 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.38 +1010 nb = -0.35 +1011 Sig = 2.814 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR_Oligoclase^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Olivine_ss#Mg1.8Fe0.2SiO4;M 147.31 g/mol +-start + 2 if (PARM(1) = 0) then goto 3 else goto 5 + 3 if PARM(3) = 0 then S = PARM(2) * m * 147.31 else S = m0 * ((m/m0)^(2/3)) * 113.4 * PARM(2) + 4 GOTO 1000 + 5 S = PARM(2)*TOT("water") +10 SR_Olivine=(SR ("Forsterite")*0.9)*(SR ("Fayalite")*0.1) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Olivine < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Olivine > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =14.8e4# mol.m-2.s-1 # Forsterite rate! +1001 Ab =220# mol.m-2.s-1 # Forsterite rate! +1002 Ea =70400# J/mol +1003 Eb =60900# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na = 0.44 +1008 nb = 0.22 +#Rate Equation +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR_Olivine^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Paragonite # NaAl3Si3O10(OH)2 +-start +1 name$ = "Paragonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 7.3e-4 #mol.m-2.s-1 +1001 An = 3.48e-3 #mol.m-2.s-1 +1002 Ab = 6.0e-8 #mol.m-2.s-1 +1003 Ea = 50000 #J.mol-1 +1004 En = 70000 #J.mol-1 +1005 Eb = 74000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1009 nb = -0.6 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Paragonite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Pargasite #NaCa2Al3Mg4Si6O22(OH)2, M 835.814 g/mol, kinetic parameters from glaucophane in DB P1 +-start +1 name$ = "Pargasite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 3.327e8 #mol.m-2.s-1 +1001 Ab = 5000 #mol.m-2.s-1 +1002 Ea = 85000 #J.mol-1 +1003 Eb = 94400 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 na = 0.7 +1006 nb = -0.12 +1007 Sig = 6 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2010 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Pargasite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Phlogopite #KAlMg3Si3O10(OH)2; M 417.25 +-start +1 name$ = "Phlogopite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.90e-7 #mol.m-2.s-1 +1001 An = 5e-9 #mol.m-2.s-1 +1002 Ab = 4e-10 #mol.m-2.s-1 +1003 Ea = 18200 #J.mol-1 +1004 En = 22000 #J.mol-1 +1005 Eb = 25500 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.5 +1009 nb = -0.16 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Phlogopite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Prehnite#Ca2Al2Si3O10(OH)2 ;M 415.1 g/mol +-start +1 name$ = "Prehnite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.30e3 #mol.m-2.s-1 +1001 An = 1.0 #mol.m-2.s-1 +1002 Ab = 1.53e1 #mol.m-2.s-1 +1003 Ea = 77000 #J.mol-1 +1004 En = 80000 #J.mol-1 +1005 Eb = 80000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.35 +1009 nb = -0.075 +1010 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Prehnite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Pyrophyllite#Al2Si4O10(OH)2, M 363.908 g/mol +-start +1 name$ = "Pyrophyllite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.60e4 #mol.m-2.s-1 +1001 An = 1.5e-1 #mol.m-2.s-1 +1002 Ab = 2.0e-8 #mol.m-2.s-1 +1003 Ea = 73000 #J.mol-1 +1004 En = 67000 #J.mol-1 +1005 Eb = 61000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.7 +1010 nb = -0.7 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Pyrophyllite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Quartz#SiO2; M 60.08 g/mol +-start +1 name$ = "Quartz" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.03e-4#mol/m2/s +1001 Ab = 0.105#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 45600 +1005 Eb = 80000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Quartz")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Riebeckite_ss#Na2Fe5Si8O22(OH)2, M 935.877 g/mol, kinetic parameters from tremolite +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 935.877 else S = m0 * ((m/m0)^(2/3)) * 935.877 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Riebeckite =((SR ("Wollastonite")*1)*(SR ("Jadeite")*2))*(SR ("Sillimanite")*(-2)) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Riebeckite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Riebeckite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 3.0e-3 #mol.m-2.s-1 +1001 An = 2.0e-5 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 En = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.22 +1006 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR_Riebeckite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Sanidine_high #KAlSi3O8; M 278.33 g/mol, kinetic parameters from K-feldspar in DB P1 +-start +1 name$ = "Sanidine_high" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.05 # mol.m-2.s-1 +1001 An = 1.08e-2 # mol.m-2.s-1 +1002 Ab = 1.2e-10 # mol.m-2.s-1 +1003 Ea = 51700 # J/mol +1004 En = 60000 # J/mol +1005 Eb = 62195 # J/mol +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") # +1008 Sig = 3 +1009 nA = 0.45 +1010 nb = -0.75 + #Rate Equation +3000 rplusa = Aa * ACTI^nA * exp (-Ea/ (R * Tk)) * S +3001 rplusn = An * exp (-En/ (R * Tk)) * S +3002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* ACTI^(nC) * S +3003 rplus = rplusa + rplusn + rplusb +4000 rate = rplus * (1 - SR("Sanidine_high")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Saponite-Fe-Ca#Ca.175Fe3Al.35Si3.65O10(OH)2; M 480.5 g/mol +-start +1 name$ = "Saponite-Fe-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Fe-Fe#Fe3.175Al.35Si3.65O10(OH)2; M 483.3 g/mol +-start +1 name$ = "Saponite-Fe-Fe" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-Fe")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Fe-K#K.35Fe3Al.35Si3.65O10(OH)2; M 487.2 g/mol +-start +1 name$ = "Saponite-Fe-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Fe-Mg#Mg.175Fe3Al.35Si3.65O10(OH)2 ; M 477.7 g/mol +-start +1 name$ = "Saponite-Fe-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Fe-Na#Na.35Fe3Al.35Si3.65O10(OH)2; M 481.5 g/mol +-start +1 name$ = "Saponite-Fe-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-Ca#Ca.175Mg3Al.35Si3.65O10(OH)2 ; M 385.9 g/mol +-start +1 name$ = "Saponite-Mg-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-Fe#Fe.175Mg3Al.35Si3.65O10(OH)2 ; M 388.6 g/mol +-start +1 name$ = "Saponite-Mg-Fe" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-Fe")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-K#K.35Mg3Al.35Si3.65O10(OH)2 ; M 392.6 g/mol +-start +1 name$ = "Saponite-Mg-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-Mg#Mg3.175Al.35Si3.65O10(OH)2 ; M 383.0 g/mol +-start +1 name$ = "Saponite-Mg-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-Na#Na.35Mg3Al.35Si3.65O10(OH)2; M 386.9 g/mol +-start +1 name$ = "Saponite-Mg-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Scolecite# CaAl2Si3O10:3H2O +-start +1 name$ = "Scolecite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.97 #mol.m-2.s-1 +1001 An = 1.11e-3 #mol.m-2.s-1 +1002 Ab = 5.54e-4 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR ("Scolecite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Sepiolite #Mg4Si6O15(OH)2:6H2O,653.22 g/mol +-start +1 name$ = "Sepiolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.89e-3 #mol.m-2.s-1 +1001 An = 8.0e-7 #mol.m-2.s-1 +1002 Ea = 50200 #J.mol-1 +1003 En = 40700 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.248 +1006 Sig = 6 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Sepiolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +SiO2(am)#M 60.08 g/mol +-start +1 name$ = "SiO2(am)" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.563e-4#mol/m2/s +1001 Ab = 0.0353#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 41610 +1005 Eb = 73000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("SiO2(am)") ^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Smectite-high-Fe-Mg# Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 +-start +1 name$ = "Smectite-high-Fe-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Smectite-high-Fe-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Smectite-low-Fe-Mg# Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12; 395.5 g/mol +-start +1 name$ = "Smectite-low-Fe-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.75 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Smectite-low-Fe-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Spodumene# LiAlSi2O6;M 187.9 g/mol +-start +1 name$ = "Spodumene" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 490 #mol.m-2.s-1 +1001 An = 5.40e6 #mol.m-2.s-1 +1003 Ea = 46080 #J.mol-1 +1004 En = 89538 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.5 +1010 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Spodumene")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Stilbite# Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 +-start +1 name$ = "Stilbite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3.75 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Stilbite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Stilbite-Ca# CaAl2Si7O18:7H2O +-start +1 name$ = "Stilbite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Stilbite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Talc #Mg3Si4O10(OH)2,379.259 g/mol +-start +1 name$ = "Talc" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 0.004424914 #mol.m-2.s-1 +1001 An = 1.56e-6 #mol.m-2.s-1 +1002 Ea = 50200 #J.mol-1 +1003 En = 40700 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.36 +1006 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Talc")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Tremolite #Ca2Mg5Si8O22(OH)2, 812.353 g/mol +-start +1 name$ = "Tremolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 3.0e-3 #mol.m-2.s-1 +1001 An = 2.0e-5 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 En = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.22 +1006 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Tremolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Thomsonite# Ca2NaAl5Si5O20:6H2O +-start +1 name$ = "Thomsonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.97 #mol.m-2.s-1 +1001 An = 1.11e-3 #mol.m-2.s-1 +1002 Ab = 5.54e-4 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Thomsonite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Wollastonite#CaSiO3;M 117.1 g/mol +-start +1 name$ = "Wollastonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 700 #mol.m-2.s-1 +1001 Ab = 20 #mol.m-2.s-1 +1003 Ea = 56000 #J.mol-1 +1004 Eb = 52000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.4 +1009 nb = 0.15 +1010 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Wollastonite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Zoisite#Ca2Al3(SiO4)3OH;M 457.1 g/mol +-start +1 name$ = "Zoisite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.09 #mol.m-2.s-1 +1001 An = 5.13e-5 #mol.m-2.s-1 +1002 Ab = 1.40e-9 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 43200 #J.mol-1 +1005 Eb = 42300 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.30 +1009 nb = -0.4 +1010 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Zoisite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +#### Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals############################### + +Anglesite #PbSO4; M 303.264 g/mol +-start +1 name$ = "Anglesite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.0e-2 #mol.m-2.s-1 +1002 Ab = 2e-14 #mol.m-2.s-1 +1003 Ea = 26000 #J.mol-1 +1005 Eb = 26000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1009 nb = -1.0 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Anglesite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Anhydrite #CaSO4; M 136.14 g/mol +-start +1 name$ = "Anhydrite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.30e3 #mol.m-2.s-1 +1003 Ea = 37700 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Anhydrite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Fluorapatite #Ca5(PO4)3F ; M 504.302 g/mol +-start +1 name$ = "Fluorapatite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 80 #mol.m-2.s-1 +1002 Ab = 3e-2 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1005 Eb = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.8 +1009 nb = 0.2 +1010 Sig = 5 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Fluorapatite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Hydroxyapatite #Ca5(OH)(PO4)3 ; M 502.31 g/mol +-start +1 name$ = "Hydroxyapatite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 80 #mol.m-2.s-1 +1002 Ab = 3e-2 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1005 Eb = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.8 +1009 nb = 0.2 +1010 Sig = 5 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Hydroxyapatite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Barite #BaSO4 ; M 233.404 g/mol +-start +1 name$ = "Barite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 2.5e-3 #mol.m-2.s-1 +1003 Ea = 26000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Barite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Boehmite #AlO2H : M 59.988 g/mol +-start +1 name$ = "Boehmite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 2.85 #mol.m-2.s-1 +1001 An = 4.2e-3 #mol.m-2.s-1 +1002 Ab = 5.4e-11 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 1.0 +1009 nb = -1 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Boehmite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Brucite #Mg(OH)2 ; M 58.32 g/mol +-start +1 name$ = "Brucite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.2e4 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.19 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Brucite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Celestite #SrSO4 ; M 183.684 g/mol +-start +1 name$ = "Celestite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 3.8e-2 #mol.m-2.s-1 +1003 Ea = 24000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Celestite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Diaspore #AlHO2 : M 59.99 g/mol +-start +1 name$ = "Diaspore" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 2.85 #mol.m-2.s-1 +1001 An = 4.2e-3 #mol.m-2.s-1 +1002 Ab = 5.4e-11 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 1.0 +1009 nb = -1.0 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Diaspore")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Fluorite #CaF2 ; M 78.075 g/mol +-start +1 name$ = "Fluorite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.2e6 #mol.m-2.s-1 +1003 Ea = 75000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.12 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Fluorite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Gibbsite #Al(OH)3 : M 78.00 g/mol +-start +1 name$ = "Gibbsite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 20.0 #mol.m-2.s-1 +1001 An = 3.0e-2 #mol.m-2.s-1 +1002 Ab = 3.0e-10 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 1.0 +1009 nb = -1.0 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Gibbsite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Gypsum #CaSO4:2H2O : M 172.17 g/mol +-start +1 name$ = "Gypsum" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.8e4 #mol.m-2.s-1 +1003 Ea = 37700 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Gypsum")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Halite #NaCl : M 58.44 g/mol +-start +1 name$ = "Halite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1001 An = 3.3e-4 #mol.m-2.s-1 +1004 En = -22340 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1010 Sig = 1 + #rate equation +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2003 rplus =rplusn +3000 rate = rplus * (1 - (SR ("Halite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Monazite-Ce #CePO4 : M 235.087 g/mol +-start +1 name$ = "Monazite-Ce" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.0e-4 #mol.m-2.s-1 +1001 An = 1.0e-7 #mol.m-2.s-1 +1002 Ab = 1.2e-11 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1004 En = 43000 #J.mol-1 +1005 Eb = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.7 +1009 nb = -0.5 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Monazite-Ce")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Periclase #MgO : M 40.304 g/mol +-start +1 name$ = "Periclase" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.2e4 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.19 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Periclase")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Pyromorphite #Pb5(PO4)3Cl ; M 1356.365 g/mol +-start +1 name$ = "Pyromorphite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 58 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.68 +1010 Sig = 5 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Pyromorphite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Variscite #AlPO4:2H2O ; M 157.983 g/mol +-start +1 name$ = "Variscite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.0e-4 #mol.m-2.s-1 +1002 Ab = 2.4e-7 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1005 Eb = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.3 +1009 nb = -0.3 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Variscite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +## carbonates + +Aragonite #CaCO3; M 100.0869 g/mol +-start +1 name$ = "Aragonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =11.025# mol.m-2.s-1 +1001 Ac = 122.5 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Aragonite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Calcite #CaCO3; M 100.0869 g/mol +-start +1 name$ = "Calcite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =5.625# mol.m-2.s-1 +1001 Ac = 62.5 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Calcite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Cerussite #PbCO3; M 267.2089 g/mol +-start +1 name$ = "Cerussite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2.55# mol.m-2.s-1 +1001 Ac = 45.45 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Cerussite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Dawsonite # NaAlCO3(OH)2 : M 144.0 g/mol +-start +1 name$ = "Dawsonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.6e5# mol.m-2.s-1 +1001 Ac = 0.3 # mol.m-2.s-1 +1002 Ea =55000# J/mol +1003 Eac =55000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =0 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Dawsonite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Dolomite # CaMg(CO3)2: M 184.40 g/mol !!! +-start +1 name$ = "Dolomite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.2e-3# mol.m-2.s-1 +1001 Ac = 650 # mol.m-2.s-1 +1002 Ea =10000# J/mol +1003 Eac =65000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1.9 +1007 na =0.5 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Dolomite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Gaspite # NiCO3: M 118.702 g/mol +-start +1 name$ = "Gaspite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2.6e-6# mol.m-2.s-1 +1001 Ac = 6.73e-3 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 3.73 +1007 na =0.55 +1008 kc =1000 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Gaspite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Magnesite # MgCO3: M 84.314 g/mol +-start +1 name$ = "Magnesite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =5e-4# mol.m-2.s-1 +1001 Ac = 2.7e-2 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =45000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 3.94 +1007 na =0.66 +1008 kc =380 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Magnesite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Otavite # CdCO3: M 172.419 g/mol +-start +1 name$ = "Otavite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.02# mol.m-2.s-1 +1001 Ac = 11.36 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Otavite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Rhodochrosite #MnCO3 : M 114.95 g/mol +-start +1 name$ = "Rhodochrosite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2.28e-3# mol.m-2.s-1 +1001 Ac = 0.4 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 4.65 +1007 na =0.5 +1008 kc =1000 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Rhodochrosite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Siderite # FeCO3: M 115.856 g/mol !!! +-start +1 name$ = "Siderite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2e-3# mol.m-2.s-1 +1001 Ac = 0.2 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 4 +1007 na =0.7 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Siderite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Smithsonite # ZnCO3: M 125.399 g/mol !!! +-start +1 name$ = "Smithsonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.94# mol.m-2.s-1 +1001 Ac = 8.89 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 2 +1007 na =1 +1008 kc =200 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Smithsonite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Strontianite # ZnCO3: M 125.399 g/mol +-start +1 name$ = "Strontianite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2.2e-3# mol.m-2.s-1 +1001 Ac = 8.89 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =240 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Strontianite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Witherite # BaCO3: M 197.349 g/mol !!! +-start +1 name$ = "Witherite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =35# mol.m-2.s-1 +1001 Ac = 12 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Witherite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +###! + + + diff --git a/database/Makefile.am b/database/Makefile.am index 25a6ba47..abe19d83 100644 --- a/database/Makefile.am +++ b/database/Makefile.am @@ -9,12 +9,18 @@ dist_database_DATA=$(DATABASE) DATABASE=\ Amm.dat\ ColdChem.dat\ + Concrete_PHR.dat\ + Concrete_PZ.dat\ core10.dat\ frezchem.dat\ iso.dat\ + Kinec_v3.dat\ + Kinec.v2.dat\ llnl.dat\ minteq.dat\ minteq.v4.dat\ + phreeqc_rates.dat\ + PHREEQC_ThermoddemV1.10_15Dec2020.dat\ phreeqc.dat\ pitzer.dat\ sit.dat\ diff --git a/database/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat b/database/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat new file mode 100644 index 00000000..14c26011 --- /dev/null +++ b/database/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat @@ -0,0 +1,1394 @@ +# Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials +# Authors: Barbara Lothenbach, Dmitrii Kulik, Thomas Matschei, Magdalena Balonis, Luis Baquerizo, Belay Dilnesa, George Dan Miron, Rupert J. Myers +# Published in Cement and Concrete Research, 2018, in press +# +# Based on CEMDATA18 version 01 (09.10.2017) and PSI/Nagra 12/07 GEM format +# +# Exported to PHREEQC format using ThermoMatch (https://bitbucket.org/gems4/thermomatch) reactions generator and export modules +# +# Temperature dependence described by three-term analytical model +# Valid range : 0 - 100°C +# +# +# Phreeqc version date: 08.05.2018 +# update 03.12.2018 - added missing phases: zeoliteP_Ca, chabazite, M075SH, M15SH, zeoliteX, natrolite, zeoliteY +# update 08.01.2019 - corrected INFCNA formula and reaction; 23.09.2019 fixed logK to 17.4787 +# update 16.01.2019 - fixed a3 parameter from the logK analytical function (wrong converted from A[3]*ln(T) GEMS to +# phreeqc A[3]*log10(T); for phases aded in update update 03.12.2018) +# update 31.03.2022 - added missing C4FeCl2H10 (Fe Friedel's salt ideal composition) and reactions for Fe(OH)3(am) and Fe(OH)3(mic) with original source +# Hummel et al. (2002) Nagra/PSI Chemical Thermodynamic Data Base 01/01. Nagra Technical Report NTB 02-16 +# +# for questions contact: Barbara Lothenbach (barbara.lothenbach@empa.ch); G. Dan Miron (dan.miron@psi.ch) + +SOLUTION_MASTER_SPECIES + + +# +# elemen species alk gfw_formula element_gfw atomic number +# + + +Al AlO2- 0.0 AlO2 26.981541 # 13 +C CO3-2 0.0 CO3 12.0108 # 6 +# C(0) SCN- 0.0 SCN # +# C(-1) HCN 0.0 HCN # +C(+4) CO3-2 2.0 CO3 # +C(-4) CH4 0.0 CH4 # +Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 # +Ca Ca+2 0.0 Ca 40.077999 # 20 +Cl Cl- 0.0 Cl 35.452999 # 17 +Cl(-1) Cl- 0.0 Cl # +Cl(7) ClO4- 0.0 ClO4 # +Fe FeO2- 0.0 FeO2 55.845001 # 26 +# Fe(2) FeS 0.0 FeS # +Fe(3) FeO2- 0.0 FeO2 # +H H+ 0.0 H 1.00795 # 1 +H(0) H2 0.0 H2 # +H(1) H+ -1.0 H # +K K+ 0.0 K 39.098301 # 19 +Mg Mg+2 0.0 Mg 24.305 # 12 +N NO3- 0.0 NO3 14.0067 # 7 +N(-3) NH4+ 0.0 NH4 # +N(0) N2 0.0 N2 # +# N(-1) HCN 0.0 HCN # +N(+5) NO3- 0.0 NO3 # +Na Na+ 0.0 Na 22.989799 # 11 +O H2O 0.0 O2 15.9994 # 8 +O(0) O2 0.0 O2 # +O(-2) H2O 0.0 H2O # +S SO4-2 0.0 S 32.067001 # 16 +S(-2) HS- 1.0 HS # +# S(0) S 0.0 S # +S(2) S2O3-2 0.0 S2O3 # +S(4) SO3-2 0.0 SO3 # +S(6) SO4-2 0.0 SO4 # +Si SiO2 0.0 SiO2 28.085501 # 14 +Sr Sr+2 0.0 Sr 87.620003 # 38 +E e- 0 0.0 0 # + + +SOLUTION_SPECIES + +# PMATCH MASTER SPECIES + + +AlO2- = AlO2- + -gamma 4 0.064 + -log_k 0.0 + +Ca+2 = Ca+2 + -gamma 4.86 0.15 + -log_k 0.0 + +Cl- = Cl- + -gamma 3.71 0.01 + -log_k 0.0 + +CO3-2 = CO3-2 + -gamma 5.4 0.064 + -log_k 0.0 + +e- = e- + -gamma 9 0.064 + -log_k 0.0 + +FeO2- = FeO2- + -gamma 4 0.064 + -log_k 0.0 + +H2O = H2O + -gamma 0.0 0 + -log_k 0.0 + +H+ = H+ + -gamma 9 0.064 + -log_k 0.0 + +K+ = K+ + -gamma 3.71 0.01 + -log_k 0.0 + +Mg+2 = Mg+2 + -gamma 5.46 0.22 + -log_k 0.0 + +Na+ = Na+ + -gamma 4.32 0.06 + -log_k 0.0 + +NO3- = NO3- + -gamma 3 0 + -log_k 0.0 + +SiO2 = SiO2 + -gamma 0.0 0 + -log_k 0.0 + +SO4-2 = SO4-2 + -gamma 5.31 -0.07 + -log_k 0.0 + +Sr+2 = Sr+2 + -gamma 5.48 0.11 + -log_k 0.0 + +# PMATCH SECONDARY MASTER SPECIES + + +H+ + FeO2- = FeO2H + -analytical_expression 29.546087 0 737.003635 -9.286176 0 0 0 + -gamma 0.0 0 + -log_K 9.039877 + +H2O + SiO2 = SiO3-2 + 2H+ + -analytical_expression -10.000668 0 -3917.496558 0 0 0 0 + -gamma 4 0.064 + -log_K -23.139999 + +H2O + SiO2 = HSiO3- + H+ + -analytical_expression 67.706653 0 -4741.842127 -24.899348 0 0 0 + -gamma 4 0.064 + -log_K -9.810017 + +Mg+2 + H2O = Mg(OH)+ + H+ + -analytical_expression -27.037806 0 -2051.344448 9.084125 0 0 0 + -gamma 4 0.064 + -log_K -11.44 + +Mg+2 + H2O + SiO2 = Mg(HSiO3)+ + H+ + -analytical_expression -24.956609 0 -403.475592 7.274665 0 0 0 + -gamma 4 0.064 + -log_K -8.31003 + +NO3- + 8e- + 9H+ = NH3 + 3H2O + -analytical_expression -107.400094 0 42212.00396 30.601079 0 0 0 + -gamma 0.0 0 + -log_K 109.900031 + +Na+ + H2O = NaOH + H+ + -analytical_expression 40.022689 0 -4902.375428 -15.260091 0 0 0 + -gamma 0.0 0 + -log_K -14.179994 + +H2O + K+ = KOH + H+ + -analytical_expression 55.772715 0 -5964.687625 -20.298401 0 0 0 + -gamma 0.0 0 + -log_K -14.45995 + +H2O = OH- + H+ + -analytical_expression 69.848379 0 -6215.240028 -25.461346 0 0 0 + -gamma 10.65 0.064 + -log_K -14.000072 + +CO3-2 + NO3- + SO4-2 + 16e- + 20H+ = SCN- + 10H2O + -analytical_expression -403.337321 0 68953.389243 132.954532 0 0 0 + -gamma 4 0.064 + -log_K 156.933672 + +CO3-2 + NO3- + 10e- + 13H+ = HCN + 6H2O + -analytical_expression -242.754542 0 48438.203406 79.874649 0 0 0 + -gamma 0.0 0 + -log_K 117.350397 + +CO3-2 + Sr+2 = Sr(CO3) + -analytical_expression -62.653523 0 2074.553325 23.642085 0 0 0 + -gamma 0.0 0 + -log_K 2.805165 + +CO3-2 + Sr+2 + H+ = SrHCO3+ + -analytical_expression -179.980045 0 9094.004136 65.062273 0 0 0 + -gamma 4 0.064 + -log_K 11.51358 + +e- + 4H+ + FeO2- = Fe+2 + 2H2O + -analytical_expression -122.476876 0 16777.048756 40.747293 0 0 0 + -gamma 5.08 0.16 + -log_K 34.619927 + +e- + 3H+ + FeO2- = FeOH+ + H2O + -analytical_expression -129.83045 0 14350.241615 43.169306 0 0 0 + -gamma 4 0.064 + -log_K 25.119997 + +NO3- + 8e- + 10H+ = NH4+ + 3H2O + -analytical_expression -103.801782 0 44761.476983 29.424107 0 0 0 + -gamma 2.5 0.064 + -log_K 119.136999 + +SO4-2 + 2e- + 2H+ = SO3-2 + H2O + -analytical_expression -16.749207 0 1175.143358 3.803176 0 0 0 + -gamma 4.5 0 + -log_K -3.396962 + +SO4-2 + Mg+2 = Mg(SO4) + -analytical_expression -65.503097 0 2716.841523 23.747178 0 0 0 + -gamma 0.0 0 + -log_K 2.36999 + +SO4-2 + K+ = KSO4- + -analytical_expression -72.976676 0 3150.048361 25.565951 0 0 0 + -gamma 4 0.064 + -log_K 0.850029 + +SO4-2 + H+ = HSO4- + -analytical_expression -95.450023 0 3428.229466 34.730939 0 0 0 + -gamma 4 0.064 + -log_K 1.987722 + +SO4-2 + Na+ = Na(SO4)- + -analytical_expression -67.94723 0 2908.645146 23.800045 0 0 0 + -gamma 4 0.064 + -log_K 0.700065 + +SO4-2 + Sr+2 = Sr(SO4) + -analytical_expression -65.057619 0 2594.980137 23.699973 0 0 0 + -gamma 0.0 0 + -log_K 2.289927 + +Sr+2 + H2O + SiO2 = SrSiO3 + 2H+ + -analytical_expression -0.03398 0 -5596.700024 0.0146 0 0 0 + -gamma 0.0 0 + -log_K -18.770009 + +Sr+2 + H2O = Sr(OH)+ + H+ + -analytical_expression 24.083524 0 -5334.855026 -7.872656 0 0 0 + -gamma 4 0.064 + -log_K -13.290021 + +SO4-2 + e- + 5H+ + FeO2- = FeHSO4+ + 2H2O + -analytical_expression -340.160684 0 26093.962654 117.331514 0 0 0 + -gamma 4 0.064 + -log_K 37.687879 + +SO4-2 + e- + 4H+ + FeO2- = Fe(SO4) + 2H2O + -analytical_expression -187.703581 0 19421.940132 64.431753 0 0 0 + -gamma 0.0 0 + -log_K 36.869911 + +SO4-2 + 4H+ + FeO2- = Fe(SO4)+ + 2H2O + -analytical_expression -179.460087 0 16269.573383 60.834841 0 0 0 + -gamma 4 0.064 + -log_K 25.639965 + +SO4-2 + 2e- + 3H+ = HSO3- + H2O + -analytical_expression -104.341666 0 4987.683177 36.952237 0 0 0 + -gamma 4 0.064 + -log_K 3.823027 + +SO4-2 + 5H+ + FeO2- = FeHSO4+2 + 2H2O + -analytical_expression -386.282594 0 27250.332754 129.707435 0 0 0 + -gamma 4 0.064 + -log_K 26.067958 + +SO4-2 + 8e- + 9H+ = HS- + 4H2O + -analytical_expression -135.448856 0 18639.971235 43.088749 0 0 0 + -gamma 3.5 0.064 + -log_K 33.690011 + +SO4-2 + AlO2- + 4H+ = Al(SO4)+ + 2H2O + -analytical_expression -92.70801 0 12391.461203 31.492469 0 0 0 + -gamma 4 0.064 + -log_K 26.779235 + +SO4-2 + 8e- + 10H+ = H2S + 4H2O + -analytical_expression -227.994702 0 24084.360505 75.934677 0 0 0 + -gamma 0 0 + -log_K 40.679974 + +CO3-2 + Na+ + H+ = NaHCO3 + -analytical_expression -150.324123 0 7758.548881 54.307766 0 0 0 + -gamma 0.0 0 + -log_K 10.078938 + +CO3-2 + Na+ = NaCO3- + -analytical_expression -72.698173 0 4313.391269 24.046388 0 0 0 + -gamma 4 0.064 + -log_K 1.269963 + +4H+ + FeO2- = Fe+3 + 2H2O + -analytical_expression -117.578761 0 14084.096983 37.156205 0 0 0 + -gamma 9 0 + -log_K 21.599876 + +3H+ + FeO2- = Fe(OH)+2 + H2O + -analytical_expression -100.979091 0 11351.458414 33.266688 0 0 0 + -gamma 4 0.064 + -log_K 19.409983 + +3Cl- + 4H+ + FeO2- = FeCl3 + 2H2O + -analytical_expression -403.034321 0 27439.514698 134.865165 0 0 0 + -gamma 0.0 0 + -log_K 22.729861 + +AlO2- + 2H+ = AlO+ + H2O + -analytical_expression -0.423917 0 3851.729324 -0.084762 0 0 0 + -gamma 4 0.064 + -log_K 12.285123 + +AlO2- + 3H+ = Al(OH)+2 + H2O + -analytical_expression -67.530882 0 9473.0536 21.693818 0 0 0 + -gamma 4 0.064 + -log_K 17.921907 + +AlO2- + H2O + SiO2 = AlSiO5-3 + 2H+ + -analytical_expression -10.000641 0 -3759.481479 0 0 0 0 + -gamma 4 0.064 + -log_K -22.609995 + +AlO2- + 3H+ + SiO2 = AlHSiO3+2 + H2O + -analytical_expression 49.32925 0 3459.291193 -16.35201 0 0 0 + -gamma 4 0.064 + -log_K 20.469103 + +AlO2- + 4H+ = Al+3 + 2H2O + -analytical_expression -32.960146 0 10342.694854 8.547302 0 0 0 + -gamma 6.65 0.19 + -log_K 22.879124 + +2SO4-2 + AlO2- + 4H+ = Al(SO4)2- + 2H2O + -analytical_expression -162.337197 0 15848.175089 55.754663 0 0 0 + -gamma 4 0.064 + -log_K 28.77922 + +2SO4-2 + 8e- + 10H+ = S2O3-2 + 5H2O + -analytical_expression -201.732708 0 22219.585517 66.771654 0 0 0 + -gamma 4 0.064 + -log_K 38.014086 + +2H2O = O2 + 4e- + 4H+ + -analytical_expression -37.318475 0 -27028.699677 16.968388 0 0 0 + -gamma 0.0 0 + -log_K -85.986052 + +2e- + 2H+ = H2 + -analytical_expression -52.093194 0 2359.24879 16.599428 0 0 0 + -gamma 0.0 0 + -log_K -3.105969 + +2H2O + 4SiO2 = Si4O10-4 + 4H+ + -analytical_expression -0.000122 0 -10822.837161 0 0 0 0 + -gamma 4 0.064 + -log_K -36.299995 + +2H+ + FeO2- = FeO+ + H2O + -analytical_expression -39.343808 0 6777.47262 13.151347 0 0 0 + -gamma 4 0.064 + -log_K 15.929981 + +2FeO2- + 6H+ = Fe2(OH)2+4 + 2H2O + -analytical_expression -228.211639 0 25217.742482 74.31241 0 0 0 + -gamma 4 0.064 + -log_K 40.249753 + +FeO2- + 3H+ + SiO2 = FeHSiO3+2 + H2O + -analytical_expression -40.172013 0 9342.250604 12.256824 0 0 0 + -gamma 4 0.064 + -log_K 21.489856 + +3FeO2- + 8H+ = Fe3(OH)4+5 + 2H2O + -analytical_expression -348.553863 0 39126.962643 111.468617 0 0 0 + -gamma 4 0.064 + -log_K 58.499629 + +2SO4-2 + 4H+ + FeO2- = Fe(SO4)2- + 2H2O + -analytical_expression -249.059673 0 19527.889672 85.087253 0 0 0 + -gamma 4 0.064 + -log_K 26.980004 + +SO4-2 + 8e- + 8H+ = S-2 + 4H2O + -analytical_expression -154.448832 0 18639.971266 43.088749 0 0 0 + -gamma 4 0.064 + -log_K 14.690011 + +2NO3- + 10e- + 12H+ = N2 + 6H2O + -analytical_expression -258.961738 0 79047.238923 81.272772 0 0 0 + -gamma 0.0 0 + -log_K 207.26792 + +AlO2- + H+ = AlO2H + -analytical_expression 58.704239 0 -1368.552981 -19.263945 0 0 0 + -gamma 0.0 0 + -log_K 6.446694 + +Ca+2 + H2O = Ca(OH)+ + H+ + -analytical_expression 14.192136 0 -4635.53095 -4.617086 0 0 0 + -gamma 4 0.064.064 + -log_K -12.780039 + +CO3-2 + e- + 4H+ + FeO2- = FeCO3 + 2H2O + -analytical_expression -186.917805 0 19661.212978 64.650733 0 0 0 + -gamma 0.0 0 + -log_K 38.999888 + +CO3-2 + Ca+2 + H+ = Ca(HCO3)+ + -analytical_expression -184.735846 0 9335.338708 66.625146 0 0 0 + -gamma 4 0.064 + -log_K 11.434569 + +CO3-2 + Ca+2 = CaCO3 + -analytical_expression -62.597364 0 2198.635138 23.620516 0 0 0 + -gamma 0.0 0 + -log_K 3.224223 + +CO3-2 + e- + 5H+ + FeO2- = FeHCO3+ + 2H2O + -analytical_expression -308.32264 0 26778.821505 107.279171 0 0 0 + -gamma 4 0.064 + -log_K 46.948848 + +CO3-2 + H+ = HCO3- + -analytical_expression -81.274179 0 4730.952703 30.607236 0 0 0 + -gamma 5.4 0 + -log_K 10.328936 + +CO3-2 + Mg+2 + H+ = Mg(HCO3)+ + -analytical_expression -188.634028 0 9470.015117 68.00288 0 0 0 + -gamma 4 0.064 + -log_K 11.397078 + +CO3-2 + Mg+2 = Mg(CO3) + -analytical_expression -63.463292 0 2552.360636 23.392206 0 0 0 + -gamma 0 0 + -log_K 2.979656 + +CO3-2 + 8e- + 10H+ = CH4 + 3H2O + -analytical_expression -246.104883 0 24658.587079 81.464185 0 0 0 + -gamma 0 0 + -log_K 38.17789 + +CO3-2 + 2H+ = CO2 + H2O + -analytical_expression -200.217775 0 10740.0203 73.098171 0 0 0 + -gamma 0.0 0 + -log_K 16.681026 + +Ca+2 + H2O + SiO2 = CaSiO3 + 2H+ + -analytical_expression -10.000639 0 -2546.007503 0 0 0 0 + -gamma 0 0 + -log_K -18.54 + +Ca+2 + H2O + SiO2 = Ca(HSiO3)+ + H+ + -analytical_expression -20.400451 0 -822.7361 5.880359 0 0 0 + -gamma 4 0.064 + -log_K -8.609958 + +Ca+2 + SO4-2 = CaSO4 + -analytical_expression -64.25357 0 2770.028075 23.141785 0 0 0 + -gamma 0.0 0 + -log_K 2.300088 + +Mg+2 + H2O + SiO2 = MgSiO3 + 2H+ + -analytical_expression 124.447476 0 -10098.720791 -43.652583 0 0 0 + -gamma 0 0 + -log_K -17.440008 + +Cl- + 4H2O = ClO4- + 8e- + 8H+ + -analytical_expression 49.886974 0 -63068.038263 -10.53711 0 0 0 + -gamma 3 0 + -log_K -187.715268 + +Cl- + e- + 4H+ + FeO2- = FeCl+ + 2H2O + -analytical_expression -206.567427 0 20469.070501 69.783235 0 0 0 + -gamma 4 0.064 + -log_K 34.759905 + +Cl- + 4H+ + FeO2- = FeCl+2 + 2H2O + -analytical_expression -190.269722 0 17206.948818 62.898167 0 0 0 + -gamma 4 0.064 + -log_K 23.079893 + +2Cl- + 4H+ + FeO2- = FeCl2+ + 2H2O + -analytical_expression -333.532333 0 23878.594387 112.01482 0 0 0 + -gamma 4 0.064 + -log_K 23.729853 + + + +PHASES + + +CH4(g) + CH4 + 3H2O = CO3-2 + 8e- + 10H+ + -Vm 24789.71191 + -analytical_expression 156.470612 0 -20218.503151 -52.416322 0 0 0 + -log_K -41.034386 + +CO2(g) + CO2 + H2O = CO3-2 + 2H+ + -Vm 24789.71191 + -analytical_expression 123.151237 0 -6471.092769 -48.330215 0 0 0 + -log_K -18.14878 + +H2(g) + H2 = 2e- + 2H+ + -Vm 24789.71191 + -analytical_expression -0.006568 0 0.285413 0.002204 0 0 0 + -log_K 0 + +H2O(g) + H2O = H2O + -Vm 24789.71191 + -analytical_expression -18.473651 0 2820.718831 4.244215 0 0 0 + -log_K 1.489127 + +H2S(g) + H2S + 4H2O = SO4-2 + 8e- + 10H+ + -Vm 24789.71191 + -analytical_expression 173.087205 0 -20865.981223 -58.499322 0 0 0 + -log_K -41.699938 + +N2(g) + N2 + 6H2O = 2NO3- + 10e- + 12H+ + -Vm 24789.71191 + -analytical_expression 182.234055 0 -75312.823228 -56.614603 0 0 0 + -log_K -210.455352 + +O2(g) + O2 + 4e- + 4H+ = 2H2O + -Vm 24789.71191 + -analytical_expression -39.356141 0 30857.471179 7.664541 0 0 0 + -log_K 83.104854 + +5CA + (CaO)1.25(SiO2)1(Al2O3)0.125(H2O)1.625 + 2.25H+ = 1.25Ca+2 + 0.25AlO2- + 2.75H2O + SiO2 + -Vm 57.3 + -analytical_expression -8.681198 0 5225.70552 2.847338 0 0 0 + -log_K 15.88995 + +5CNA + (CaO)1.25(SiO2)1(Al2O3)0.125(Na2O)0.25(H2O)1.375 + 2.75H+ = 1.25Ca+2 + 0.5Na+ + 0.25AlO2- + 2.75H2O + SiO2 + -Vm 64.51 + -analytical_expression -15.798737 0 7769.891839 5.245569 0 0 0 + -log_K 23.240018 + +AlOHam + Al(OH)3 = AlO2- + H+ + H2O + -Vm 31.956 + -analytical_expression 21.767964 0 -4668.909881 -8.028999 0 0 0 + -log_K -13.760077 + +AlOHmic + Al(OH)3 = AlO2- + H+ + H2O + -Vm 31.956 + -analytical_expression 18.115845 0 -3851.361281 -8.028975 0 0 0 + -log_K -14.670074 + +Amor-Sl + SiO2 = SiO2 + -Vm 29 + -analytical_expression 0 0 -809.189752 0 0 0 0 + -log_K -2.714066 + +Anh + CaSO4 = Ca+2 + SO4-2 + -Vm 45.94 + -analytical_expression 131.227142 0 -5228.525356 -47.707058 0 0 0 + -log_K -4.357536 + +Arg + CaCO3 = CO3-2 + Ca+2 + -Vm 34.15 + -analytical_expression 130.197564 0 -5675.517045 -48.293026 0 0 0 + -log_K -8.336133 + +Brc + Mg(OH)2 + 2H+ = Mg+2 + 2H2O + -Vm 24.63 + -analytical_expression -21.32009 0 6782.887663 6.227777 0 0 0 + -log_K 16.8401 + +C2AClH5 + Ca2AlCl(OH)6(H2O)2 + 2H+ = 2Ca+2 + Cl- + AlO2- + 6H2O + -Vm 136.15 + -analytical_expression 66.786476 0 1762.591495 -23.542598 0 0 0 + -log_K 14.365171 + +C2AH7.5 + Ca2Al2(OH)10(H2O)2.5 + 2H+ = 2Ca+2 + 2AlO2- + 8.5H2O + -Vm 179.71001 + -analytical_expression 17.808797 0 3827.297306 -6.644028 0 0 0 + -log_K 14.200141 + +C2AH65 + Ca2Al(OH)7(H2O)3 + 3H+ = 2Ca+2 + AlO2- + 8H2O + -Vm 137.235 + -analytical_expression 27.662014 0 7522.207466 -9.502063 0 0 0 + -log_K 29.376623 + +C2S + (CaO)2SiO2 + 4H+ = 2Ca+2 + 2H2O + SiO2 + -Vm 51.79 + -analytical_expression -4.75838 0 12467.437992 0.569296 0 0 0 + -log_K 38.567691 + +C3A + (CaO)3Al2O3 + 4H+ = 3Ca+2 + 2AlO2- + 2H2O + -Vm 89.217 + -analytical_expression 71.858176 0 21788.248051 -30.009988 0 0 0 + -log_K 71.013492 + +C3AFS0.84H4.32 + (AlFeO3)(Ca3O3(SiO2)0.84(H2O)4.32) + 4H+ = FeO2- + 3Ca+2 + AlO2- + 6.32H2O + 0.84SiO2 + -Vm 145.51 + -analytical_expression 84.816859 0 6813.298737 -34.506414 0 0 0 + -log_K 22.280635 + +C3AH6 + Ca3Al2O6(H2O)6 + 4H+ = 3Ca+2 + 2AlO2- + 8H2O + -Vm 149.702 + -analytical_expression 6.92717 0 11498.865007 -4.036936 0 0 0 + -log_K 35.500282 + +C3AS0.41H5.18 + Ca3Al2O6(SiO2)0.41(H2O)5.18 + 4H+ = 3Ca+2 + 2AlO2- + 7.18H2O + 0.41SiO2 + -Vm 146.12 + -analytical_expression 15.787929 0 9382.192907 -7.403224 0 0 0 + -log_K 28.932364 + +C3AS0.84H4.32 + AlCa3AlO6(SiO2)0.84(H2O)4.32 + 4H+ = 3Ca+2 + 2AlO2- + 6.32H2O + 0.84SiO2 + -Vm 142.492 + -analytical_expression 25.095111 0 8272.186752 -10.93384 0 0 0 + -log_K 25.780644 + +C3FH6 + Ca3Fe2O6(H2O)6 + 4H+ = 2FeO2- + 3Ca+2 + 8H2O + -Vm 155.287 + -analytical_expression 128.806374 0 8307.518545 -51.310648 0 0 0 + -log_K 29.700289 + +C3FS0.84H4.32 + (FeFeO3)(Ca3O3(SiO2)0.84(H2O)4.32) + 4H+ = 2FeO2- + 3Ca+2 + 6.32H2O + 0.84SiO2 + -Vm 148.523 + -analytical_expression 145.738478 0 5354.444017 -58.078978 0 0 0 + -log_K 19.980634 + +C3FS1.34H3.32 + Ca3Fe2O6(SiO2)1.34(H2O)3.32 + 4H+ = 2FeO2- + 3Ca+2 + 5.32H2O + 1.34SiO2 + -Vm 148.523 + -analytical_expression 155.93451 0 4156.512613 -62.109626 0 0 0 + -log_K 16.18562 + +C3S + (CaO)3SiO2 + 6H+ = 3Ca+2 + 3H2O + SiO2 + -Vm 73.18 + -analytical_expression -6.720801 0 23294.175088 0.748984 0 0 0 + -log_K 73.405906 + +C4AClH10 + Ca4Al2Cl2(OH)12(H2O)4 + 4H+ = 2Cl- + 4Ca+2 + 2AlO2- + 12H2O + -Vm 272.3 + -analytical_expression 133.572952 0 3525.182989 -47.085195 0 0 0 + -log_K 28.730289 + +C4FeCl2H10 + Ca4Fe2Cl2(OH)12(H2O)4 + 4H+ = 12H2O + 2FeO2- + 2Cl- + 4Ca+2 + -Vm 278.04000854492 + -analytical_expression 251.42095310846 0 3211.1112086654 -94.8876323436921 0 0 0 + -log_K 27.391529 + +C4AF + (CaO)4(Al2O3)(Fe2O3) + 4H+ = 2FeO2- + 4Ca+2 + 2AlO2- + 2H2O + -Vm 130.202 + -analytical_expression 307.746518 0 6436.091359 -112.699532 0 0 0 + -log_K 50.893809 + +C4AH11 + Ca4Al2(OH)14(H2O)4 + 6H+ = 4Ca+2 + 2AlO2- + 14H2O + -Vm 257.346 + -analytical_expression 75.788218 0 15723.564353 -27.493686 0 0 0 + -log_K 60.486292 + +C4AH13 + Ca4Al2(OH)14(H2O)6 + 6H+ = 4Ca+2 + 2AlO2- + 16H2O + -Vm 274.47001 + -analytical_expression 55.325344 0 15044.855527 -19.004596 0 0 0 + -log_K 58.751897 + +C4AH19 + Ca4Al2(OH)14(H2O)12 + 6H+ = 4Ca+2 + 2AlO2- + 22H2O + -Vm 368.69999 + -analytical_expression -11.900205 0 16241.7182 6.460722 0 0 0 + -log_K 58.550427 + +C4AsClH12 + Ca4Al2Cl(SO4)0.5(OH)12(H2O)6 + 4H+ = Cl- + 4Ca+2 + 0.5SO4-2 + 2AlO2- + 14H2O + -Vm 288.60001 + -analytical_expression 119.688175 0 3706.96797 -42.248411 0 0 0 + -log_K 27.470295 + +C4FH13 + Ca4Fe2(OH)14(H2O)6 + 6H+ = 2FeO2- + 4Ca+2 + 16H2O + -Vm 285.94 + -analytical_expression 138.614269 0 5051.345155 -41.341951 0 0 0 + -log_K 53.250431 + +C12A7 + (CaO)12(Al2O3)7 + 10H+ = 12Ca+2 + 14AlO2- + 5H2O + -Vm 517.79999 + -analytical_expression 523.897526 0 50319.498133 -212.361273 0 0 0 + -log_K 166.898035 + +CA2 + CaO(Al2O3)2 + H2O = Ca+2 + 4AlO2- + 2H+ + -Vm 89.04 + -analytical_expression 153.425544 0 -10161.804838 -60.379629 0 0 0 + -log_K -29.744525 + +CA + CaOAl2O3 = Ca+2 + 2AlO2- + -Vm 53.66 + -analytical_expression 77.01585 0 -458.174791 -30.627906 0 0 0 + -log_K -0.026104 + +CAH10 + CaOAl2O3(H2O)10 = Ca+2 + 2AlO2- + 10H2O + -Vm 193.985 + -analytical_expression 13.654578 0 -2505.455035 -5.191264 0 0 0 + -log_K -7.599997 + +Cal + CaCO3 = CO3-2 + Ca+2 + -Vm 36.934 + -analytical_expression 130.276347 0 -5689.203921 -48.36444 0 0 0 + -log_K -8.479966 + +Cls + SrSO4 = SO4-2 + Sr+2 + -Vm 46.25 + -analytical_expression 138.560301 0 -6425.421539 -49.967439 0 0 0 + -log_K -6.631871 + +CSH3T-T2C + ((CaO)0.75(SiO2)0.5(H2O)1.25)2 + 3H+ = 1.5Ca+2 + 4H2O + SiO2 + -Vm 80.5584 + -analytical_expression -18.242686 0 7428.082891 7.517428 0 0 0 + -log_K 25.270837 + +CSH3T-T5C + ((CaO)1(SiO2)1(H2O)2)1.25 + 2.5H+ = 1.25Ca+2 + 3.75H2O + 1.25SiO2 + -Vm 79.2605 + -analytical_expression -18.519024 0 5127.78826 7.864154 0 0 0 + -log_K 18.137305 + +CSH3T-TobH + (CaO)1(SiO2)1.5(H2O)2.5 + 2H+ = Ca+2 + 3.5H2O + 1.5SiO2 + -Vm 84.96 + -analytical_expression -18.821451 0 3282.489718 8.22098 0 0 0 + -log_K 12.528815 + +CSHQ-JenD + (CaO)1.5(SiO2)0.6667(H2O)2.5 + 3H+ = 1.5Ca+2 + 4H2O + 0.6667SiO2 + -Vm 81 + -analytical_expression -15.591756 0 8609.739692 6.24251 0 0 0 + -log_K 28.730362 + +CSHQ-JenH + (CaO)1.3333(SiO2)1(H2O)2.1667 + 2.6666H+ = 1.3333Ca+2 + 3.5H2O + SiO2 + -Vm 76 + -analytical_expression -17.10944 0 6470.553982 7.107847 0 0 0 + -log_K 22.179305 + +CSHQ-TobD + ((CaO)1.25(SiO2)1(H2O)2.75)0.6667 + 1.66675H+ = 0.833375Ca+2 + 2.6668H2O + 0.6667SiO2 + -Vm 48 + -analytical_expression -10.916344 0 3959.367696 4.563888 0 0 0 + -log_K 13.655314 + +CSHQ-TobH + (CaO)0.6667(SiO2)1(H2O)1.5 + 1.3334H+ = 0.6667Ca+2 + 2.1667H2O + SiO2 + -Vm 55 + -analytical_expression -12.519254 0 2163.381583 5.476331 0 0 0 + -log_K 8.286642 + +Dis-Dol + CaMg(CO3)2 = 2CO3-2 + Ca+2 + Mg+2 + -Vm 64.39 + -analytical_expression 251.91928 0 -10035.250176 -94.890789 0 0 0 + -log_K -16.539822 + +ECSH1-KSH + ((KOH)2.5SiO2H2O)0.2 + 0.5H+ = 0.7H2O + 0.2SiO2 + 0.5K+ + -Vm 12.4 + -analytical_expression -5.730562 0 1108.807169 3.035639 0 0 0 + -log_K 5.360034 + +ECSH1-NaSH + ((NaOH)2.5SiO2H2O)0.2 + 0.5H+ = 0.5Na+ + 0.7H2O + 0.2SiO2 + -Vm 10.5 + -analytical_expression -12.608734 0 1575.198378 5.146974 0 0 0 + -log_K 5.270073 + +ECSH1-SH + (SiO2H2O)1 = H2O + SiO2 + -Vm 33.8 + -analytical_expression 0 0 -775.067607 0 0 0 0 + -log_K -2.600016 + +ECSH1-SrSH + ((Sr(OH)2)1SiO2H2O)1 + 2H+ = Sr+2 + 3H2O + SiO2 + -Vm 64 + -analytical_expression -14.8975 0 4225.657132 6.516963 0 0 0 + -log_K 15.400027 + +ECSH1-TobCa + ((Ca(OH)2)0.8333SiO2H2O)1 + 1.6666H+ = 0.8333Ca+2 + 2.6666H2O + SiO2 + -Vm 68 + -analytical_expression -13.776918 0 3023.19863 5.923868 0 0 0 + -log_K 11.019995 + +ECSH2-JenCa + ((Ca(OH)2)1.6667SiO2H2O)0.6 + 2.00004H+ = 1.00002Ca+2 + 2.60004H2O + 0.6SiO2 + -Vm 36 + -analytical_expression -22.977998 0 5250.037507 9.284551 0 0 0 + -log_K 17.603574 + +ECSH2-KSH + ((KOH)2.5SiO2H2O)0.2 + 0.5H+ = 0.7H2O + 0.2SiO2 + 0.5K+ + -Vm 12.4 + -analytical_expression -5.730562 0 1257.985538 3.035639 0 0 0 + -log_K 5.860381 + +ECSH2-NaSH + ((NaOH)2.5SiO2H2O)0.2 + 0.5H+ = 0.5Na+ + 0.7H2O + 0.2SiO2 + -Vm 10.5 + -analytical_expression -12.608734 0 1724.011114 5.146974 0 0 0 + -log_K 5.769194 + +ECSH2-SrSH + ((Sr(OH)2)1SiO2H2O)1 + 2H+ = Sr+2 + 3H2O + SiO2 + -Vm 64 + -analytical_expression -14.8975 0 4463.945549 6.516963 0 0 0 + -log_K 16.19925 + +ECSH2-TobCa + ((Ca(OH)2)0.8333SiO2H2O)1 + 1.6666H+ = 0.8333Ca+2 + 2.6666H2O + SiO2 + -Vm 68 + -analytical_expression -13.776918 0 3023.19863 5.923868 0 0 0 + -log_K 11.019995 + +ettringite + ((H2O)2)Ca6Al2(SO4)3(OH)12(H2O)24 + 4H+ = 6Ca+2 + 3SO4-2 + 2AlO2- + 34H2O + -Vm 707.03003 + -analytical_expression 249.812807 0 -9575.448133 -83.467765 0 0 0 + -log_K 11.100288 + +ettringite03_ss + (SO4)Ca2Al0.6666667(OH)4(H2O)8.6666667 + 1.3333332H+ = 2Ca+2 + SO4-2 + 0.6666667AlO2- + 11.3333333H2O + 0.0000001e- # added + 0.0000001e- to charge balance the reaction + -Vm 235.67699 + -analytical_expression 83.270833 0 -3192.056993 -27.822547 0 0 0 + -log_K 3.699287 + +ettringite05 + Ca3Al(SO4)1.5(OH)6(H2O)13 + 2H+ = 3Ca+2 + 1.5SO4-2 + AlO2- + 17H2O + -Vm 353.51501 + -analytical_expression 124.906404 0 -4787.82619 -41.733882 0 0 0 + -log_K 5.549801 + +ettringite9 + Ca6Al2(SO4)3(OH)12(H2O)3 + 4H+ = 6Ca+2 + 3SO4-2 + 2AlO2- + 11H2O + -Vm 360.99998 + -analytical_expression 515.195568 0 -5706.663308 -181.076858 0 0 0 + -log_K 47.941168 + +Ettringite9_des + Ca6Al2(SO4)3(OH)12(H2O)3 + 4H+ = 6Ca+2 + 3SO4-2 + 2AlO2- + 11H2O + -Vm 360.99998 + -analytical_expression 515.195568 0 -5706.663308 -181.076858 0 0 0 + -log_K 47.941168 + +ettringite13 + Ca6Al2(SO4)3(OH)12(H2O)7 + 4H+ = 6Ca+2 + 3SO4-2 + 2AlO2- + 15H2O + -Vm 410.60001 + -analytical_expression 411.78326 0 9912.899169 -164.096652 0 0 0 + -log_K 38.931914 + +Ettringite13_des + Ca6Al2(SO4)3(OH)12(H2O)7 + 4H+ = 6Ca+2 + 3SO4-2 + 2AlO2- + 15H2O + -Vm 410.60001 + -analytical_expression 411.78326 0 9912.899169 -164.096652 0 0 0 + -log_K 38.931914 + +ettringite30 + Ca6Al2(SO4)3(OH)12(H2O)24 + 4H+ = 6Ca+2 + 3SO4-2 + 2AlO2- + 32H2O + -Vm 707.79999 + -analytical_expression 272.821479 0 -9993.558256 -91.956855 0 0 0 + -log_K 11.701736 + +Fe-ettringite05 + Ca3Fe(SO4)1.5(OH)6(H2O)13 + 2H+ = FeO2- + 3Ca+2 + 1.5SO4-2 + 17H2O + -Vm 358.77998 + -analytical_expression 197.364253 0 -8624.223942 -65.634539 0 0 0 + -log_K 5.999868 + +Fe-ettringite + Ca6Fe2(SO4)3(OH)12(H2O)26 + 4H+ = 2FeO2- + 6Ca+2 + 3SO4-2 + 34H2O + -Vm 717.55997 + -analytical_expression 394.728405 0 -17248.229444 -131.269079 0 0 0 + -log_K 12.000367 + +Fe-hemicarbonate + Ca3O3Fe2O3(CaCO3)0.5(CaO2H2)0.5(H2O)9.5 + 5H+ = 2FeO2- + 0.5CO3-2 + 4Ca+2 + 12.5H2O + -Vm 273.393 + -analytical_expression 193.828235 0 10447.417422 -76.660531 0 0 0 + -log_K 39.170367 + +Fe-monosulph05 + Ca2FeS0.5O5(H2O)6 + 2H+ = FeO2- + 2Ca+2 + 0.5SO4-2 + 7H2O + -Vm 160.56999 + -analytical_expression 120.283422 0 2063.244429 -46.465814 0 0 0 + -log_K 12.215835 + +Fe-monosulphate + Ca4Fe2SO10(H2O)12 + 4H+ = 2FeO2- + 4Ca+2 + SO4-2 + 14H2O + -Vm 321.13998 + -analytical_expression 240.566801 0 4126.078131 -92.931614 0 0 0 + -log_K 24.430286 + +Fe + Fe + 2H2O = FeO2- + 3e- + 4H+ + -Vm 7.092 + -analytical_expression 132.340967 0 -12404.074019 -44.182581 0 0 0 + -log_K -18.589211 + +Femonocarbonate + Ca4O4Fe2O3CO2(H2O)12 + 4H+ = 2FeO2- + CO3-2 + 4Ca+2 + 14H2O + -Vm 291.66599 + -analytical_expression 249.334962 0 1093.382606 -93.590513 0 0 0 + -log_K 21.410284 + +FeOOHmic + FeOOH = FeO2- + H+ + -Vm 34.3055 + -analytical_expression 100.061618 0 -8235.848429 -37.195525 0 0 0 + -log_K -19.600073 + +Fe(OH)3(am) + Fe(OH)3 = H2O + H+ + FeO2- + -Vm 34.0 + -analytical_expression 122.5787585403 0 -14084.096873518 -37.156204153846 0 0 0 + -log_K -16.599876 + +Fe(OH)3(mic) + Fe(OH)3 = H2O + H+ + FeO2- + -Vm 34.0 + -analytical_expression 120.57875815185 0 -14084.096873518 -37.156204153846 0 0 0 + -log_K -18.599876 + +FeCO3(pr) + FeCO3 + 2H2O = 4H+ + FeO2- + e- + CO3-2 + -Vm 0 + -analytical_expression 242.999905233 0 -22598.476532107 -85.7871290067801 0 0 0 + -log_K -45.070013 + +Gbs + Al(OH)3 = AlO2- + H+ + H2O + -Vm 31.956 + -analytical_expression 21.767948 0 -5075.650047 -8.028994 0 0 0 + -log_K -15.123224 + +Gp + CaSO4(H2O)2 = Ca+2 + SO4-2 + 2H2O + -Vm 74.69 + -analytical_expression 111.52996 0 -5116.920989 -39.988271 0 0 0 + -log_K -4.580905 + +Gr + C + 3H2O = CO3-2 + 4e- + 6H+ + -Vm 5.298 + -analytical_expression 162.956174 0 -16787.603977 -56.097644 0 0 0 + -log_K -32.159364 + +Gt + FeO(OH) = FeO2- + H+ + -Vm 20.82 + -analytical_expression 107.380005 0 -11314.633767 -37.192105 0 0 0 + -log_K -22.599869 + +Hem + Fe2O3 + H2O = 2FeO2- + 2H+ + -Vm 30.274 + -analytical_expression 223.79664 0 -21596.779136 -78.175762 0 0 0 + -log_K -42.079928 + +hemicarbonat10.5 + (CaO)3Al2O3(CaCO3)0.5(CaO2H2)0.5(H2O)10 + 5H+ = 0.5CO3-2 + 4Ca+2 + 2AlO2- + 13H2O + -Vm 261.264 + -analytical_expression 77.626118 0 10184.22042 -27.955532 0 0 0 + -log_K 42.602279 + +hemicarbonate + (CaO)3Al2O3(CaCO3)0.5(CaO2H2)0.5(H2O)11.5 + 5H+ = 0.5CO3-2 + 4Ca+2 + 2AlO2- + 14.5H2O + -Vm 284.515 + -analytical_expression 62.269608 0 9549.770855 -21.589162 0 0 0 + -log_K 40.870354 + +hemicarbonate9 + (CaO)3Al2O3(CaCO3)0.5(CaO2H2)0.5(H2O)8.5 + 5H+ = 0.5CO3-2 + 4Ca+2 + 2AlO2- + 11.5H2O + -Vm 249.26001 + -analytical_expression 93.058654 0 11173.871793 -34.321784 0 0 0 + -log_K 45.601854 + +hemihydrate + CaSO4(H2O)0.5 = Ca+2 + SO4-2 + 0.5H2O + -Vm 61.73 + -analytical_expression 126.983644 0 -4904.135062 -46.116125 0 0 0 + -log_K -3.591424 + +hydrotalcite + Mg4Al2O7(H2O)10 + 6H+ = 4Mg+2 + 2AlO2- + 13H2O + -Vm 220.2 + -analytical_expression -64.408885 0 14558.45083 17.606952 0 0 0 + -log_K 27.981048 + +INFCA + (CaO)1(SiO2)1.1875(Al2O3)0.15625(H2O)1.65625 + 1.6875H+ = Ca+2 + 0.3125AlO2- + 2.5H2O + 1.1875SiO2 + -Vm 59.31 + -analytical_expression -4.743157 0 2835.081302 1.693048 0 0 0 + -log_K 8.953727 + +INFCN + (CaO)1(SiO2)1.5(Na2O)0.3125(H2O)1.1875 + 2.625H+ = Ca+2 + 0.625Na+ + 2.5H2O + 1.5SiO2 + -Vm 71.07 + -analytical_expression -20.845546 0 6107.503138 7.727791 0 0 0 + -log_K 18.759957 + +INFCNA + (CaO)1(SiO2)1.1875(Al2O3)0.15625(Na2O)0.34375(H2O)1.3125 + 2.375H+ = 0.3125AlO2- + Ca+2 + 0.6875Na+ + 2.5H2O + 1.1875SiO2 # (CaO)1.25(SiO2)1(Al2O3)0.125(Na2O)0.25(H2O)1.375 + 2.75H+ = 1.25Ca+2 + 0.5Na+ + 0.25AlO2- + 2.75H2O + SiO2 + -Vm 64.51 + -analytical_expression -14.774576 0 5861.456900 4.990089 0 0 0 # -15.798737 0 7769.891839 5.245569 0 0 0 + -log_K 17.4787 #17.23247 # 23.240018 + +Jennite + (SiO2)1(CaO)1.666667(H2O)2.1 + 3.333334H+ = 1.666667Ca+2 + 3.766667H2O + SiO2 + -Vm 78.4 + -analytical_expression -19.396078 0 8669.561341 7.93557 0 0 0 + -log_K 29.311107 + +K2O + K2O + 2H+ = H2O + 2K+ + -Vm 40.38 + -analytical_expression 6.476756 0 22428.269631 0.967431 0 0 0 + -log_K 84.040201 + +K2SO4 + K2SO4 = SO4-2 + 2K+ + -Vm 65.5 + -analytical_expression 135.069553 0 -7146.619808 -45.622186 0 0 0 + -log_K -1.789931 + +Kln + Al2Si2O5(OH)4 = 2AlO2- + 2H+ + H2O + 2SiO2 + -Vm 99.52 + -analytical_expression 54.870319 0 -12400.265644 -20.854932 0 0 0 + -log_K -38.323299 + +KSiOH + ((KOH)2.5SiO2H2O)0.2 + 0.5H+ = 0.7H2O + 0.2SiO2 + 0.5K+ + -Vm 12.4 + -analytical_expression -5.730562 0 1187.456467 3.035639 0 0 0 + -log_K 5.763688 # fixed from 20 to 25 C standard state + +Lim + CaO + 2H+ = Ca+2 + H2O + -Vm 16.764 + -analytical_expression -1.936052 0 10151.015229 0.193158 0 0 0 + -log_K 32.576144 + +M4A-OH-LDH + Mg4Al2(OH)14(H2O)3 + 6H+ = 4Mg+2 + 2AlO2- + 13H2O + -Vm 219.1 + -analytical_expression -64.757092 0 16457.781625 17.72704 0 0 0 + -log_K 34.300378 + +M6A-OH-LDH + Mg6Al2(OH)18(H2O)3 + 10H+ = 6Mg+2 + 2AlO2- + 17H2O + -Vm 305.44001 + -analytical_expression -107.049491 0 30008.834801 30.062691 0 0 0 + -log_K 67.980719 + +M8A-OH-LDH + Mg8Al2(OH)22(H2O)3 + 14H+ = 8Mg+2 + 2AlO2- + 21H2O + -Vm 392.36 + -analytical_expression -149.690514 0 43575.149605 42.518503 0 0 0 + -log_K 101.660954 + +Mag + FeFe2O4 + 2H2O = 3FeO2- + e- + 4H+ + -Vm 44.524 + -analytical_expression 342.751579 0 -34317.547939 -119.4011 0 0 0 + -log_K -67.799781 + +Melanterite + FeSO4(H2O)7 = FeO2- + SO4-2 + e- + 4H+ + 5H2O + -Vm 146.5 + -analytical_expression 42.012261 0 -13764.024167 -13.205643 0 0 0 + -log_K -36.829266 + +Mg2AlC0.5OH + Mg2Al(OH)6(CO3)0.5(H2O)2 + 2H+ = 0.5CO3-2 + 2Mg+2 + AlO2- + 6H2O + -Vm 110.64 + -analytical_expression 52.087082 0 2427.559551 -21.950718 0 0 0 + -log_K 5.905352 + +Mg2FeC0.5OH + Mg2Fe(OH)6(CO3)0.5(H2O)2 + 2H+ = FeO2- + 0.5CO3-2 + 2Mg+2 + 6H2O + -Vm 118.24 + -analytical_expression 123.467564 0 -1619.112448 -45.350343 0 0 0 + -log_K 5.819333 + +Mg3AlC0.5OH + Mg3Al(OH)8(CO3)0.5(H2O)2.5 + 4H+ = 0.5CO3-2 + 3Mg+2 + AlO2- + 8.5H2O + -Vm 114.96 + -analytical_expression 30.767468 0 9200.105421 -15.723139 0 0 0 + -log_K 22.710152 + +Mg3FeC0.5OH + Mg3Fe(OH)8(CO3)0.5(H2O)2.5 + 4H+ = FeO2- + 0.5CO3-2 + 3Mg+2 + 8.5H2O + -Vm 119.04 + -analytical_expression 102.147972 0 5075.604806 -39.122772 0 0 0 + -log_K 22.364849 + +Mgs + MgCO3 = CO3-2 + Mg+2 + -Vm 28.02 + -analytical_expression 122.077828 0 -4543.697257 -46.52635 0 0 0 + -log_K -8.287956 + +monocarbonate05 + Ca2AlC0.5O4.5(H2O)5.5 + 2H+ = 0.5CO3-2 + 2Ca+2 + AlO2- + 6.5H2O + -Vm 130.979 + -analytical_expression 70.00517 0 1099.718617 -24.823618 0 0 0 + -log_K 12.265064 + +monocarbonate9 + Ca4Al2CO9(H2O)9 + 4H+ = CO3-2 + 4Ca+2 + 2AlO2- + 11H2O + -Vm 233.56001 + -analytical_expression 158.243914 0 4217.516791 -58.13549 0 0 0 + -log_K 28.529678 + +monocarbonate + Ca4Al2CO9(H2O)11 + 4H+ = CO3-2 + 4Ca+2 + 2AlO2- + 13H2O + -Vm 261.95801 + -analytical_expression 140.009891 0 2199.460032 -49.64706 0 0 0 + -log_K 24.530285 + +mononitrate + Ca4Al2(OH)12N2O6(H2O)4 + 4H+ = 4Ca+2 + 2NO3- + 2AlO2- + 12H2O + -Vm 296.6 + -analytical_expression 125.898043 0 2205.916688 -42.823015 0 0 0 + -log_K 27.330282 + +mononitrite + Ca4Al2(OH)12N2O4(H2O)4 = 4Ca+2 + 2NO3- + 4e- + 2AlO2- + 10H2O + -Vm 275.1 + -analytical_expression 155.801032 0 -16841.373096 -50.526302 0 0 0 + -log_K -25.773636 + +monosulphate9 + Ca4Al2SO10(H2O)9 + 4H+ = 4Ca+2 + SO4-2 + 2AlO2- + 11H2O + -Vm 274.59999 + -analytical_expression 159.852574 0 4550.796558 -58.584347 0 0 0 + -log_K 30.131523 + +monosulphate10_5 + Ca4Al2SO10(H2O)10.5 + 4H+ = 4Ca+2 + SO4-2 + 2AlO2- + 12.5H2O + -Vm 281.6 + -analytical_expression 145.904159 0 3409.965469 -52.21689 0 0 0 + -log_K 28.112004 + +monosulphate12 + Ca4Al2SO10(H2O)12 + 4H+ = 4Ca+2 + SO4-2 + 2AlO2- + 14H2O + -Vm 310.1 + -analytical_expression 129.176276 0 3298.866824 -45.84964 0 0 0 + -log_K 26.766183 + +monosulphate14 + Ca4Al2SO10(H2O)14 + 4H+ = 4Ca+2 + SO4-2 + 2AlO2- + 16H2O + -Vm 331.6 + -analytical_expression 102.943376 0 4849.121605 -37.359536 0 0 0 + -log_K 26.74029 + +monosulphate16 + Ca4Al2SO10(H2O)16 + 4H+ = 4Ca+2 + SO4-2 + 2AlO2- + 18H2O + -Vm 350.49999 + -analytical_expression 86.970337 0 3920.996004 -29.6115 0 0 0 + -log_K 26.825486 + +monosulphate1205 + Ca2AlS0.5O5(H2O)6 + 2H+ = 2Ca+2 + 0.5SO4-2 + AlO2- + 7H2O + -Vm 155 + -analytical_expression 64.588687 0 1649.307718 -22.925 0 0 0 + -log_K 13.382785 + +Na2O + Na2O + 2H+ = 2Na+ + H2O + -Vm 25 + -analytical_expression -23.111565 0 19655.835929 9.951451 0 0 0 + -log_K 67.426798 + +Na2SO4 + Na2SO4 = SO4-2 + 2Na+ + -Vm 53.33 + -analytical_expression 88.450221 0 -3841.556012 -30.659122 0 0 0 + -log_K -0.276627 + +NaSiOH + ((NaOH)2.5SiO2H2O)0.2 + 0.5H+ = 0.5Na+ + 0.7H2O + 0.2SiO2 + -Vm 10.5 + -analytical_expression -12.612802 0 1646.66001 5.148192 0 0 0 + -log_K 5.64873 # fixed from 20 to 25 C standard state + +Ord-Dol + CaMg(CO3)2 = 2CO3-2 + Ca+2 + Mg+2 + -Vm 64.34 + -analytical_expression 252.520277 0 -10378.423105 -94.890789 0 0 0 + -log_K -17.089923 + +Portlandite + Ca(OH)2 + 2H+ = Ca+2 + 2H2O + -Vm 33.06 + -analytical_expression -11.299363 0 7301.394065 3.883957 0 0 0 + -log_K 22.799937 + +Py + FeSS + 10H2O = FeO2- + 2SO4-2 + 15e- + 20H+ + -Vm 23.94 + -analytical_expression 494.259016 0 -62035.882103 -164.356773 0 0 0 + -log_K -120.499988 + +Qtz + SiO2 = SiO2 + -Vm 22.688 + -analytical_expression 0 0 -1117.053188 0 0 0 0 + -log_K -3.745943 + +Sd + FeCO3 + 2H2O = FeO2- + CO3-2 + e- + 4H+ + -Vm 29.378 + -analytical_expression 250.136977 0 -22250.818869 -89.320508 0 0 0 + -log_K -45.510001 + +straetlingite5_5 + Ca2Al2SiO7(H2O)5.5 + 2H+ = 2Ca+2 + 2AlO2- + 6.5H2O + SiO2 + -Vm 212.80001 + -analytical_expression 37.907778 0 2181.475531 -15.409059 0 0 0 + -log_K 7.084478 + +straetlingite7 + Ca2Al2SiO7(H2O)7 + 2H+ = 2Ca+2 + 2AlO2- + 8H2O + SiO2 + -Vm 215.49999 + -analytical_expression 23.157422 0 1202.259407 -9.042894 0 0 0 + -log_K 4.808689 + +straetlingite + Ca2Al2SiO7(H2O)8 + 2H+ = 2Ca+2 + 2AlO2- + 9H2O + SiO2 + -Vm 216.11 + -analytical_expression 11.402755 0 1366.913776 -4.798679 0 0 0 + -log_K 4.107923 + +Str + SrCO3 = CO3-2 + Sr+2 + -Vm 39.01 + -analytical_expression 135.252007 0 -6419.173204 -49.705385 0 0 0 + -log_K -9.270604 + +Sulfur + S + 4H2O = SO4-2 + 6e- + 8H+ + -Vm 15.61 + -analytical_expression 181.434769 0 -20059.230933 -60.591388 0 0 0 + -log_K -35.786877 + +syngenite + K2Ca(SO4)2H2O = Ca+2 + 2SO4-2 + H2O + 2K+ + -Vm 127.54 + -analytical_expression 256.448003 0 -12598.952713 -89.469888 0 0 0 + -log_K -7.200017 + +T2C-CNASHss + (CaO)1.5(SiO2)1(H2O)2.5 + 3H+ = 1.5Ca+2 + 4H2O + SiO2 + -Vm 80.6 + -analytical_expression -18.253184 0 7517.243302 7.519834 0 0 0 + -log_K 25.565334 + +T5C-CNASHss + (CaO)1.25(SiO2)1.25(H2O)2.5 + 2.5H+ = 1.25Ca+2 + 3.75H2O + 1.25SiO2 + -Vm 79.3 + -analytical_expression -18.534936 0 5220.492792 7.869445 0 0 0 + -log_K 18.445467 + +thaumasite + (CaSiO3)(CaSO4)(CaCO3)(H2O)15 + 2H+ = CO3-2 + 3Ca+2 + SO4-2 + 16H2O + SiO2 + -Vm 330 + -analytical_expression 167.233706 0 -8544.402669 -56.373637 0 0 0 + -log_K -0.939919 + +Tob-I + (SiO2)2.4(CaO)2(H2O)3.2 + 4H+ = 2Ca+2 + 5.2H2O + 2.4SiO2 + -Vm 140.8 + -analytical_expression -33.40536 0 7370.767991 14.318972 0 0 0 + -log_K 26.745369 + +Tob-II + (SiO2)1(CaO)0.833333(H2O)1.333333 + 1.666666H+ = 0.833333Ca+2 + 2.166666H2O + SiO2 + -Vm 58.7 + -analytical_expression -13.918819 0 3071.259317 5.96621 0 0 0 + -log_K 11.143844 + +TobH-CNASHss + (CaO)1(SiO2)1.5(H2O)2.5 + 2H+ = Ca+2 + 3.5H2O + 1.5SiO2 + -Vm 85 + -analytical_expression -18.816693 0 3362.507631 8.219057 0 0 0 + -log_K 12.797208 + +tricarboalu03 + (CO3)Ca2Al0.6666667(OH)4(H2O)8.6666667 + 1.3333332H+ = CO3-2 + 2Ca+2 + 0.6666667AlO2- + 11.3333333H2O + 0.0000001e- # added + 0.0000001e- to charge balance the reaction + -Vm 216.8 + -analytical_expression 82.318066 0 -2586.079211 -28.479545 0 0 0 + -log_K 3.167231 + +Tro + FeS + 6H2O = FeO2- + SO4-2 + 9e- + 12H+ + -Vm 18.2 + -analytical_expression 314.679591 0 -38228.907533 -105.106645 0 0 0 + -log_K -73.61999 + +zeoliteP_Ca + Ca(Al2Si2)O8(H2O)4.5 = 2AlO2- + Ca+2 + 2SiO2 + 4.5H2O + -Vm 152.85 + -analytical_expression 132.861 0 -5357.72 -54.635048311 0 0 0 + -log_k -20.3 + +chabazite + Ca(Al2Si4)O12(H2O)6 = 2AlO2- + Ca+2 + 4SiO2 + 6H2O + -Vm 251.16 + -analytical_expression 34.7164 0 -7737.68 -13.968471285 0 0 0 + -log_K -25.8 + +M075SH + Mg1.5Si2O5.5(H2O)2.5 = 1.5Mg+2 + 2SiO2 + 3OH- + H2O + -Vm 94.885 + -analytical_expression 189.002 0 -12089.2 -71.567338050 0 0 0 + -log_K -28.8 + +M15SH + Mg1.5SiO3.5(H2O)2.5 = 1.5Mg+2 + 1SiO2 + 3OH- + H2O + -Vm 74.32 + -analytical_expression 181.544 0 -10396.4 -68.757032944 0 0 0 + -log_K -23.57 + +zeoliteX + Na2(Al2Si2.5)O9(H2O)6.2 = 2AlO2- + 2Na+ + 2.5SiO2 + 6.2H2O + -Vm 213.6 + -analytical_expression 11.7196 0 -6871.84 -3.5447606731 0 0 0 + -log_K -20.1 + +natrolite + Na2(Al2Si3)O10(H2O)2 = 2AlO2- + 2Na+ + 3SiO2 + 2H2O + -Vm 169.2 + -analytical_expression 31.8586 0 -9899.44 -11.661534306 0 0 0 + -log_K -30.2 + +zeoliteY + Na2(Al2Si4)O12(H2O)8 = 2AlO2- + 2Na+ + 4SiO2 + 8H2O + -Vm 282.93 + -analytical_expression -4.67273 0 -7863.67 2.4440328952 0 0 0 + -log_K -25 diff --git a/database/Tipping_Hurley.dat b/database/Tipping_Hurley.dat index 792e440c..471fe128 100644 --- a/database/Tipping_Hurley.dat +++ b/database/Tipping_Hurley.dat @@ -1,1397 +1,1401 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\Tipping_Hurley.dat, 11/09/2013 23:05, 4134 lines, 111410 bytes, md5=ffec89dbc1a8a57aec1a0f8e2fc8f922 +# Created 17 May 2024 14:30:44 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "Tipping_Hurley.dat" + # $Id: wateq4f.dat 6895 2012-08-21 18:10:05Z dlpark $ # Revised arsenic data from Archer and Nordstrom (2002) SOLUTION_MASTER_SPECIES -Ag Ag+ 0.0 107.868 107.868 -Al Al+3 0.0 26.9815 26.9815 -Alkalinity CO3-2 1.0 50.05 50.05 -As H3AsO4 -1.0 74.9216 74.9216 -As(+3) H3AsO3 0.0 74.9216 74.9216 -As(+5) H3AsO4 -1.0 74.9216 -B H3BO3 0.0 10.81 10.81 -Ba Ba+2 0.0 137.34 137.34 -Br Br- 0.0 79.904 79.904 -C CO3-2 2.0 61.0173 12.0111 -C(+4) CO3-2 2.0 61.0173 -C(-4) CH4 0.0 16.042 -Ca Ca+2 0.0 40.08 40.08 -Cd Cd+2 0.0 112.4 112.4 -Cl Cl- 0.0 35.453 35.453 -Cs Cs+ 0.0 132.905 132.905 -Cu Cu+2 0.0 63.546 63.546 -Cu(+1) Cu+1 0.0 63.546 -Cu(+2) Cu+2 0.0 63.546 -E e- 0.0 0.0 0.0 -F F- 0.0 18.9984 18.9984 -Fe Fe+2 0.0 55.847 55.847 -Fe(+2) Fe+2 0.0 55.847 -Fe(+3) Fe+3 -2.0 55.847 -Fulvate Fulvate-2 0.0 650. 650. -H H+ -1. 1.008 1.008 -H(0) H2 0.0 1.008 -H(1) H+ -1. 1.008 -Humate Humate-2 0.0 2000. 2000. -I I- 0.0 126.9044 126.9044 -K K+ 0.0 39.102 39.102 -Li Li+ 0.0 6.939 6.939 -Mg Mg+2 0.0 24.312 24.312 -Mn Mn+2 0.0 54.938 54.938 -Mn(2) Mn+2 0.0 54.938 -Mn(3) Mn+3 0.0 54.938 -Mn(6) MnO4-2 0.0 54.938 -Mn(7) MnO4- 0.0 54.938 -N NO3- 0.0 14.0067 14.0067 -N(-3) NH4+ 0.0 14.0067 -N(0) N2 0.0 14.0067 -N(+3) NO2- 0.0 14.0067 -N(+5) NO3- 0.0 14.0067 -Na Na+ 0.0 22.9898 22.9898 -Ni Ni+2 0.0 58.71 58.71 -O H2O 0.0 16.00 16.00 -O(-2) H2O 0.0 18.016 -O(0) O2 0.0 16.00 -P PO4-3 2.0 30.9738 30.9738 -Pb Pb+2 0.0 207.19 207.19 -Rb Rb+ 0.0 85.47 85.47 -S SO4-2 0.0 96.0616 32.064 -S(-2) H2S 0.0 32.064 -S(6) SO4-2 0.0 96.0616 -Se SeO4-2 0.0 78.96 78.96 -Se(-2) HSe- 0.0 78.96 -Se(4) SeO3-2 0.0 78.96 -Se(6) SeO4-2 0.0 78.96 -Si H4SiO4 0.0 60.0843 28.0843 -Sr Sr+2 0.0 87.62 87.62 -Zn Zn+2 0.0 65.37 65.37 -U UO2+2 0.0 238.0290 238.0290 -U(3) U+3 0.0 238.0290 238.0290 -U(4) U+4 0.0 238.0290 238.0290 -U(5) UO2+ 0.0 238.0290 238.0290 -U(6) UO2+2 0.0 238.0290 238.0290 +Ag Ag+ 0 107.868 107.868 +Al Al+3 0 26.9815 26.9815 +Alkalinity CO3-2 1 50.05 50.05 +As H3AsO4 -1 74.9216 74.9216 +As(+3) H3AsO3 0 74.9216 74.9216 +As(+5) H3AsO4 -1 74.9216 +B H3BO3 0 10.81 10.81 +Ba Ba+2 0 137.34 137.34 +Br Br- 0 79.904 79.904 +C CO3-2 2 61.0173 12.0111 +C(+4) CO3-2 2 61.0173 +C(-4) CH4 0 16.042 +Ca Ca+2 0 40.08 40.08 +Cd Cd+2 0 112.4 112.4 +Cl Cl- 0 35.453 35.453 +Cs Cs+ 0 132.905 132.905 +Cu Cu+2 0 63.546 63.546 +Cu(+1) Cu+1 0 63.546 +Cu(+2) Cu+2 0 63.546 +E e- 1 0 0 +F F- 0 18.9984 18.9984 +Fe Fe+2 0 55.847 55.847 +Fe(+2) Fe+2 0 55.847 +Fe(+3) Fe+3 -2 55.847 +Fulvate Fulvate-2 0 650 650 +H H+ -1 1.008 1.008 +H(0) H2 0 1.008 +H(1) H+ -1 1.008 +Humate Humate-2 0 2000 2000 +I I- 0 126.9044 126.9044 +K K+ 0 39.102 39.102 +Li Li+ 0 6.939 6.939 +Mg Mg+2 0 24.312 24.312 +Mn Mn+2 0 54.938 54.938 +Mn(2) Mn+2 0 54.938 +Mn(3) Mn+3 0 54.938 +Mn(6) MnO4-2 0 54.938 +Mn(7) MnO4- 0 54.938 +N NO3- 0 14.0067 14.0067 +N(-3) NH4+ 0 14.0067 +N(0) N2 0 14.0067 +N(+3) NO2- 0 14.0067 +N(+5) NO3- 0 14.0067 +Na Na+ 0 22.9898 22.9898 +Ni Ni+2 0 58.71 58.71 +O H2O 0 16 16 +O(-2) H2O 0 18.016 +O(0) O2 0 16 +P PO4-3 2 30.9738 30.9738 +Pb Pb+2 0 207.19 207.19 +Rb Rb+ 0 85.47 85.47 +S SO4-2 0 96.0616 32.064 +S(-2) H2S 0 32.064 +S(6) SO4-2 0 96.0616 +Se SeO4-2 0 78.96 78.96 +Se(-2) HSe- 0 78.96 +Se(4) SeO3-2 0 78.96 +Se(6) SeO4-2 0 78.96 +Si H4SiO4 0 60.0843 28.0843 +Sr Sr+2 0 87.62 87.62 +Zn Zn+2 0 65.37 65.37 +U UO2+2 0 238.029 238.029 +U(3) U+3 0 238.029 238.029 +U(4) U+4 0 238.029 238.029 +U(5) UO2+ 0 238.029 238.029 +U(6) UO2+2 0 238.029 238.029 SOLUTION_SPECIES #H+ primary master species H+ = H+ - log_k 0.0 - -gamma 9.0 0.0 + log_k 0 + -gamma 9 0 #e- primary master species e- = e- - log_k 0.0 + log_k 0 #H2O primary master species H2O = H2O - log_k 0.0 + log_k 0 #Ag+ primary master species Ag+ = Ag+ - log_k 0.0 + log_k 0 #Al+3 primary master species Al+3 = Al+3 - log_k 0.0 - -gamma 9.0 0.0 + log_k 0 + -gamma 9 0 #H3AsO4 primary master species H3AsO4 = H3AsO4 - log_k 0.0 + log_k 0 #H3BO3 primary master species H3BO3 = H3BO3 - log_k 0.0 + log_k 0 #Ba+2 primary master species Ba+2 = Ba+2 - log_k 0.0 - -gamma 5.0 0.0 + log_k 0 + -gamma 5 0 #Br- primary master species Br- = Br- - log_k 0.0 + log_k 0 #CO3-2 primary master species CO3-2 = CO3-2 - log_k 0.0 - -gamma 5.4 0.0 + log_k 0 + -gamma 5.4 0 #Ca+2 primary master species Ca+2 = Ca+2 - log_k 0.0 - -gamma 5.0 0.165 + log_k 0 + -gamma 5 0.165 #Cd+2 primary master species Cd+2 = Cd+2 - log_k 0.0 + log_k 0 #Cl- primary master species Cl- = Cl- - log_k 0.0 - -gamma 3.5 0.015 + log_k 0 + -gamma 3.5 0.015 #Cs+ primary master species Cs+ = Cs+ - log_k 0.0 + log_k 0 #Cu+2 primary master species Cu+2 = Cu+2 - log_k 0.0 - -gamma 6.0 0.0 + log_k 0 + -gamma 6 0 #F- primary master species F- = F- - log_k 0.0 - -gamma 3.5 0.0 + log_k 0 + -gamma 3.5 0 #Fe+2 primary master species Fe+2 = Fe+2 - log_k 0.0 - -gamma 6.0 0.0 - + log_k 0 + -gamma 6 0 + #Fulvate-2 primary master species Fulvate-2 = Fulvate-2 - log_k 0.0 + log_k 0 #Humate-2 primary master species Humate-2 = Humate-2 - log_k 0.0 + log_k 0 #I- primary master species I- = I- - log_k 0.0 + log_k 0 #K+ primary master species K+ = K+ - log_k 0.0 - -gamma 3.5 0.015 + log_k 0 + -gamma 3.5 0.015 #Li+ primary master species Li+ = Li+ - log_k 0.0 - -gamma 6.0 0.0 + log_k 0 + -gamma 6 0 #Mg+2 primary master species Mg+2 = Mg+2 - log_k 0.0 - -gamma 5.5 0.200 + log_k 0 + -gamma 5.5 0.2 #Mn+2 primary master species Mn+2 = Mn+2 - log_k 0.0 - -gamma 6.0 0.0 + log_k 0 + -gamma 6 0 #NO3- primary master species NO3- = NO3- - log_k 0.0 - -gamma 3.0 0.0 + log_k 0 + -gamma 3 0 #Na+ primary master species Na+ = Na+ - log_k 0.0 - -gamma 4.0 0.075 + log_k 0 + -gamma 4 0.075 #Ni+2 primary master species Ni+2 = Ni+2 - log_k 0.0 + log_k 0 #PO4-3 primary master species PO4-3 = PO4-3 - log_k 0.0 - -gamma 5.0 0.0 + log_k 0 + -gamma 5 0 #Pb+2 primary master species Pb+2 = Pb+2 - log_k 0.0 + log_k 0 #Rb+ primary master species Rb+ = Rb+ - log_k 0.0 + log_k 0 #SO4-2 primary master species SO4-2 = SO4-2 - log_k 0.0 - -gamma 5.0 -0.040 + log_k 0 + -gamma 5 -0.04 #SeO4-2 primary master species SeO4-2 = SeO4-2 - log_k 0.0 + log_k 0 #H4SiO4 primary master species H4SiO4 = H4SiO4 - log_k 0.0 + log_k 0 #Sr+2 primary master species Sr+2 = Sr+2 - log_k 0.0 - -gamma 5.26 0.121 + log_k 0 + -gamma 5.26 0.121 #UO2+2 primary master species UO2+2 = UO2+2 - log_k 0.0 + log_k 0 #Zn+2 primary master species Zn+2 = Zn+2 - log_k 0.0 - -gamma 6.0 0.0 + log_k 0 + -gamma 6 0 #Fe+3 secondary master species 0 - Fe+2 = Fe+3 + e- - log_k -13.020 - delta_h 9.680 kcal - -gamma 9.0 0.0 + Fe+2 = Fe+3 + e- + log_k -13.02 + delta_h 9.68 kcal + -gamma 9 0 #FeOH+2 1 - Fe+3 + H2O = FeOH+2 + H+ - log_k -2.19 + Fe+3 + H2O = FeOH+2 + H+ + log_k -2.19 delta_h 10.4 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeOH+ 2 - Fe+2 + H2O = FeOH+ + H+ - log_k -9.5 + Fe+2 + H2O = FeOH+ + H+ + log_k -9.5 delta_h 13.2 kcal - -gamma 5.0 0.0 + -gamma 5 0 #Fe(OH)3- 3 - Fe+2 + 3H2O = Fe(OH)3- + 3H+ - log_k -31.0 + Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + log_k -31 delta_h 30.3 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeSO4+ 4 - Fe+3 + SO4-2 = FeSO4+ - log_k 4.04 + Fe+3 + SO4-2 = FeSO4+ + log_k 4.04 delta_h 3.91 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeCl+2 5 - Fe+3 + Cl- = FeCl+2 - log_k 1.48 + Fe+3 + Cl- = FeCl+2 + log_k 1.48 delta_h 5.6 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeCl2+ 6 - Fe+3 + 2Cl- = FeCl2+ - log_k 2.13 + Fe+3 + 2 Cl- = FeCl2+ + log_k 2.13 #FeCl3 7 - Fe+3 + 3Cl- = FeCl3 - log_k 1.13 + Fe+3 + 3 Cl- = FeCl3 + log_k 1.13 #FeSO4 8 - Fe+2 + SO4-2 = FeSO4 - log_k 2.25 + Fe+2 + SO4-2 = FeSO4 + log_k 2.25 delta_h 3.23 kcal #H3SiO4- 13 - H4SiO4 = H3SiO4- + H+ - log_k -9.83 + H4SiO4 = H3SiO4- + H+ + log_k -9.83 delta_h 6.12 kcal - -analytical -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -gamma 4.0 0.0 + -analytical -302.3724 -0.050698 15669.69 108.18466 -1119669 + -gamma 4 0 #H2SiO4-2 14 - H4SiO4 = H2SiO4-2 + 2H+ - log_k -23.0 + H4SiO4 = H2SiO4-2 + 2 H+ + log_k -23 delta_h 17.6 kcal - -analytical -294.0184 -0.07265 11204.49 108.18466 -1119669.0 - -gamma 5.4 0.0 + -analytical -294.0184 -0.07265 11204.49 108.18466 -1119669 + -gamma 5.4 0 #HPO4-2 15 H+ + PO4-3 = HPO4-2 - log_k 12.346 + log_k 12.346 delta_h -3.53 kcal - -gamma 5.0 0.0 + -gamma 5 0 #H2PO4- 16 - 2H+ + PO4-3 = H2PO4- - log_k 19.553 + 2 H+ + PO4-3 = H2PO4- + log_k 19.553 delta_h -4.52 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #MgF+ 22 - Mg+2 + F- = MgF+ - log_k 1.82 + Mg+2 + F- = MgF+ + log_k 1.82 delta_h 3.2 kcal - -gamma 4.5 0.0 + -gamma 4.5 0 #CaSO4 23 - Ca+2 + SO4-2 = CaSO4 - log_k 2.3 + Ca+2 + SO4-2 = CaSO4 + log_k 2.3 delta_h 1.65 kcal #MgOH+ 24 - Mg+2 + H2O = MgOH+ + H+ - log_k -11.44 + Mg+2 + H2O = MgOH+ + H+ + log_k -11.44 delta_h 15.952 kcal - -gamma 6.5 0.0 + -gamma 6.5 0 #H3BO3 25 H3BO3 = H2BO3- + H+ - log_k -9.24 + log_k -9.24 delta_h 3.224 kcal # -analytical 24.3919 0.012078 -1343.9 -13.2258 - -gamma 2.5 0.0 + -gamma 2.5 0 #NH3 26 - NH4+ = NH3 + H+ - log_k -9.252 + NH4+ = NH3 + H+ + log_k -9.252 delta_h 12.48 kcal - -analytic 0.6322 -0.001225 -2835.76 - -gamma 2.5 0.0 + -analytic 0.6322 -0.001225 -2835.76 + -gamma 2.5 0 #NaHPO4- 30 Na+ + HPO4-2 = NaHPO4- - log_k 0.29 - -gamma 5.4 0.0 + log_k 0.29 + -gamma 5.4 0 #KHPO4- 32 K+ + HPO4-2 = KHPO4- - log_k 0.29 - -gamma 5.4 0.0 + log_k 0.29 + -gamma 5.4 0 #MgHPO4 33 - Mg+2 + HPO4-2 = MgHPO4 - log_k 2.87 + Mg+2 + HPO4-2 = MgHPO4 + log_k 2.87 delta_h 3.3 kcal #CaHPO4 34 - Ca+2 + HPO4-2 = CaHPO4 - log_k 2.739 + Ca+2 + HPO4-2 = CaHPO4 + log_k 2.739 delta_h 3.3 kcal #CH4 secondary master species CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O - log_k 41.071 - delta_h -61.039 kcal + log_k 41.071 + delta_h -61.039 kcal #H2CO3 35 -# HCO3- + H+ = H2CO3 +# HCO3- + H+ = H2CO3 # log_k 6.351 # delta_h -2.247 kcal # -analytical 356.3094 0.06091960 -21834.37 -126.8339 1684915.0 #CO2 could be used instead of H2CO3 CO3-2 + 2 H+ = CO2 + H2O - log_k 16.681 + log_k 16.681 delta_h -5.738 kcal - -analytical 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -analytical 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 #HCO3- 68 - H+ + CO3-2 = HCO3- - log_k 10.329 + H+ + CO3-2 = HCO3- + log_k 10.329 delta_h -3.561 kcal - -analytical 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0.0 + -analytical 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 #NaCO3- 69 - Na+ + CO3-2 = NaCO3- - log_k 1.27 + Na+ + CO3-2 = NaCO3- + log_k 1.27 delta_h 8.91 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #NaHCO3 70 - Na+ + HCO3- = NaHCO3 - log_k -0.25 + Na+ + HCO3- = NaHCO3 + log_k -0.25 #NaSO4- 71 Na+ + SO4-2 = NaSO4- - log_k 0.7 + log_k 0.7 delta_h 1.12 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #KSO4- 72 K+ + SO4-2 = KSO4- - log_k 0.85 + log_k 0.85 delta_h 2.25 kcal - -analytical 3.106 0.0 -673.6 - -gamma 5.4 0.0 + -analytical 3.106 0 -673.6 + -gamma 5.4 0 #MgCO3 73 - Mg+2 + CO3-2 = MgCO3 - log_k 2.98 + Mg+2 + CO3-2 = MgCO3 + log_k 2.98 delta_h 2.713 kcal - -analytical 0.9910 0.00667 + -analytical 0.991 0.00667 #MgHCO3+ 74 Mg+2 + HCO3- = MgHCO3+ - log_k 1.07 + log_k 1.07 delta_h 0.79 kcal - -analytical -59.215 0.0 2537.455 20.92298 0.0 - -gamma 4.0 0.0 + -analytical -59.215 0 2537.455 20.92298 0 + -gamma 4 0 #MgSO4 75 - Mg+2 + SO4-2 = MgSO4 - log_k 2.37 + Mg+2 + SO4-2 = MgSO4 + log_k 2.37 delta_h 4.55 kcal #CaOH+ 76 - Ca+2 + H2O = CaOH+ + H+ - log_k -12.78 - -gamma 6.0 0.0 + Ca+2 + H2O = CaOH+ + H+ + log_k -12.78 + -gamma 6 0 #CaHCO3+ 77 Ca+2 + HCO3- = CaHCO3+ - log_k 1.106 + log_k 1.106 delta_h 2.69 kcal - -analytical 1209.12 0.31294 -34765.05 -478.782 0.0 - -gamma 6.0 0.0 + -analytical 1209.12 0.31294 -34765.05 -478.782 0 + -gamma 6 0 #CaCO3 78 - Ca+2 + CO3-2 = CaCO3 - log_k 3.224 + Ca+2 + CO3-2 = CaCO3 + log_k 3.224 delta_h 3.545 kcal - -analytical -1228.732 -0.299444 35512.75 485.818 0.0 + -analytical -1228.732 -0.299444 35512.75 485.818 0 #SrHCO3+ 79 - Sr+2 + HCO3- = SrHCO3+ - log_k 1.18 + Sr+2 + HCO3- = SrHCO3+ + log_k 1.18 delta_h 6.05 kcal - -analytical -3.248 0.014867 0.0 0.0 0.0 - -gamma 5.4 0.0 + -analytical -3.248 0.014867 0 0 0 + -gamma 5.4 0 #AlOH+2 80 - Al+3 + H2O = AlOH+2 + H+ - log_k -5.0 + Al+3 + H2O = AlOH+2 + H+ + log_k -5 delta_h 11.49 kcal - -analytical -38.253 0.0 -656.27 14.327 0.0 - -gamma 5.4 0.0 + -analytical -38.253 0 -656.27 14.327 0 + -gamma 5.4 0 #Al(OH)2+ 81 - Al+3 + 2H2O = Al(OH)2+ + 2H+ - log_k -10.1 + Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + log_k -10.1 delta_h 26.9 kcal - -analytical 88.5 0.0 -9391.6 -27.121 0.0 - -gamma 5.4 0.0 + -analytical 88.5 0 -9391.6 -27.121 0 + -gamma 5.4 0 #Al(OH)3 336 - Al+3 + 3H2O = Al(OH)3 + 3H+ - log_k -16.9 + Al+3 + 3 H2O = Al(OH)3 + 3 H+ + log_k -16.9 delta_h 39.89 kcal - -analytical 226.374 0.0 -18247.8 -73.597 0.0 + -analytical 226.374 0 -18247.8 -73.597 0 #Al(OH)4- 82 - Al+3 + 4H2O = Al(OH)4- + 4H+ - log_k -22.7 + Al+3 + 4 H2O = Al(OH)4- + 4 H+ + log_k -22.7 delta_h 42.3 kcal - -analytical 51.578 0.0 -11168.9 -14.865 0.0 - -gamma 4.5 0.0 + -analytical 51.578 0 -11168.9 -14.865 0 + -gamma 4.5 0 #AlF+2 83 - Al+3 + F- = AlF+2 - log_k 7.0 + Al+3 + F- = AlF+2 + log_k 7 delta_h 1.06 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #AlF2+ 84 - Al+3 + 2F- = AlF2+ - log_k 12.7 + Al+3 + 2 F- = AlF2+ + log_k 12.7 delta_h 1.98 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #AlF3 85 - Al+3 + 3F- = AlF3 - log_k 16.8 + Al+3 + 3 F- = AlF3 + log_k 16.8 delta_h 2.16 kcal #AlF4- 86 - Al+3 + 4F- = AlF4- - log_k 19.4 + Al+3 + 4 F- = AlF4- + log_k 19.4 delta_h 2.2 kcal - -gamma 4.5 0.0 + -gamma 4.5 0 #AlSO4+ 87 Al+3 + SO4-2 = AlSO4+ - log_k 3.5 + log_k 3.5 delta_h 2.29 kcal - -gamma 4.5 0.0 + -gamma 4.5 0 #Al(SO4)2- 88 - Al+3 + 2SO4-2 = Al(SO4)2- - log_k 5.0 + Al+3 + 2 SO4-2 = Al(SO4)2- + log_k 5 delta_h 3.11 kcal - -gamma 4.5 0.0 + -gamma 4.5 0 #HSO4- 89 - H+ + SO4-2 = HSO4- - log_k 1.988 + H+ + SO4-2 = HSO4- + log_k 1.988 delta_h 3.85 kcal - -analytical -56.889 0.006473 2307.9 19.8858 0.0 - -gamma 4.5 0.0 + -analytical -56.889 0.006473 2307.9 19.8858 0 + -gamma 4.5 0 #H2S secondary master species 90 - SO4-2 + 10H+ + 8e- = H2S + 4H2O - log_k 40.644 + SO4-2 + 10 H+ + 8 e- = H2S + 4 H2O + log_k 40.644 delta_h -65.44 kcal #HS- 91 - H2S = HS- + H+ - log_k -6.994 + H2S = HS- + H+ + log_k -6.994 delta_h 5.3 kcal - -analytical 11.17 -0.02386 -3279.0 - -gamma 3.5 0.0 + -analytical 11.17 -0.02386 -3279 + -gamma 3.5 0 #S-2 92 - HS- = S-2 + H+ - log_k -12.918 + HS- = S-2 + H+ + log_k -12.918 delta_h 12.1 kcal - -gamma 5.0 0.0 + -gamma 5 0 #oxy 93 -# 0.5H2O = 0.25O2 + H+ + e- +# 0.5H2O = 0.25O2 + H+ + e- # log_k -20.780 # delta_h 34.157000 kcal #O2 secondary master species - 2H2O = O2 + 4H+ + 4e- - log_k -86.08 + 2 H2O = O2 + 4 H+ + 4 e- + log_k -86.08 delta_h 134.79 kcal #H2 secondary master species 2 H+ + 2 e- = H2 - log_k -3.15 + log_k -3.15 delta_h -1.759 kcal #Fe(OH)2+ 102 - Fe+3 + 2H2O = Fe(OH)2+ + 2H+ - log_k -5.67 + Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + log_k -5.67 delta_h 17.1 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #Fe(OH)3 103 - Fe+3 + 3H2O = Fe(OH)3 + 3H+ - log_k -12.56 + Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + log_k -12.56 delta_h 24.8 kcal #Fe(OH)4- 104 - Fe+3 + 4H2O = Fe(OH)4- + 4H+ - log_k -21.6 + Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + log_k -21.6 delta_h 31.9 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #Fe(OH)2 105 - Fe+2 + 2H2O = Fe(OH)2 + 2H+ - log_k -20.57 + Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + log_k -20.57 delta_h 28.565 kcal #FeH2PO4+ 120 - Fe+2 + H2PO4- = FeH2PO4+ - log_k 2.7 - -gamma 5.4 0.0 + Fe+2 + H2PO4- = FeH2PO4+ + log_k 2.7 + -gamma 5.4 0 #CaPO4- 121 Ca+2 + PO4-3 = CaPO4- - log_k 6.459 + log_k 6.459 delta_h 3.1 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #CaH2PO4+ 122 Ca+2 + H2PO4- = CaH2PO4+ - log_k 1.408 + log_k 1.408 delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #MgPO4- 123 Mg+2 + PO4-3 = MgPO4- - log_k 6.589 + log_k 6.589 delta_h 3.1 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #MgH2PO4+ 124 Mg+2 + H2PO4- = MgH2PO4+ - log_k 1.513 + log_k 1.513 delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #LiSO4- 126 Li+ + SO4-2 = LiSO4- - log_k 0.64 - -gamma 5.0 0.0 + log_k 0.64 + -gamma 5 0 #N2 secondary master species 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O - log_k 207.080 - delta_h -312.130 kcal + log_k 207.08 + delta_h -312.13 kcal #NH4 secondary master species 127 - NO3- + 10H+ + 8e- = NH4+ + 3H2O - log_k 119.077 + NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + log_k 119.077 delta_h -187.055 kcal #SrOH+ 129 - Sr+2 + H2O = SrOH+ + H+ - log_k -13.29 - -gamma 5.0 0.0 + Sr+2 + H2O = SrOH+ + H+ + log_k -13.29 + -gamma 5 0 #BaOH+ 130 - Ba+2 + H2O = BaOH+ + H+ - log_k -13.47 - -gamma 5.0 0.0 + Ba+2 + H2O = BaOH+ + H+ + log_k -13.47 + -gamma 5 0 #NH4SO4- 131 - NH4+ + SO4-2 = NH4SO4- - log_k 1.11 - -gamma 5.0 0.0 + NH4+ + SO4-2 = NH4SO4- + log_k 1.11 + -gamma 5 0 #SrCO3 135 - Sr+2 + CO3-2 = SrCO3 - log_k 2.81 + Sr+2 + CO3-2 = SrCO3 + log_k 2.81 delta_h 5.22 kcal - -analytical -1.019 0.012826 0.0 0.0 0.0 - -gamma 5.0 0.0 + -analytical -1.019 0.012826 0 0 0 + -gamma 5 0 #O2Sato 136 -# 0.5H2O = 0.25O2(aq) + H+ + e- +# 0.5H2O = 0.25O2(aq) + H+ + e- # log_k -11.385 #CO2 137 -# CO2 (g) + H2O = H2CO3 +# CO2 (g) + H2O = H2CO3 # -1.468 -4.776 108.38650 0.01985076 -6919.530 -40.45154 -669365.0 #FeHPO4 138 Fe+2 + HPO4-2 = FeHPO4 - log_k 3.6 + log_k 3.6 #FeHPO4+ 139 - Fe+3 + HPO4-2 = FeHPO4+ - log_k 5.43 + Fe+3 + HPO4-2 = FeHPO4+ + log_k 5.43 delta_h 5.76 kcal - -gamma 5.5 0.0 + -gamma 5.5 0 #FeHSO4+ 148 Fe+2 + HSO4- = FeHSO4+ - log_k 1.08 + log_k 1.08 #O2calc 151 -# 0.5H2O = 0.25O2(aq) + H+ + e- +# 0.5H2O = 0.25O2(aq) + H+ + e- # log_k -20.780 # delta_h 33.457 kcal #OH- 152 - H2O = OH- + H+ - log_k -14.0 + H2O = OH- + H+ + log_k -14 delta_h 13.362 kcal - -analytical -283.971 -0.05069842 13323.0 102.24447 -1119669.0 - -gamma 3.5 0.0 + -analytical -283.971 -0.05069842 13323 102.24447 -1119669 + -gamma 3.5 0 #FeH2PO4+2 156 Fe+3 + H2PO4- = FeH2PO4+2 - log_k 5.43 - -gamma 5.4 0.0 + log_k 5.43 + -gamma 5.4 0 #FeHSO4+2 159 - Fe+3 + HSO4- = FeHSO4+2 - log_k 2.48 + Fe+3 + HSO4- = FeHSO4+2 + log_k 2.48 #CaF+ 160 - Ca+2 + F- = CaF+ - log_k 0.94 + Ca+2 + F- = CaF+ + log_k 0.94 delta_h 4.12 kcal - -gamma 5.5 0.0 + -gamma 5.5 0 #BF(OH)3- 161 H3BO3 + F- = BF(OH)3- - log_k -0.4 + log_k -0.4 delta_h 1.85 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #BF2(OH)2- 162 - H3BO3 + H+ + 2F- = BF2(OH)2- + H2O - log_k 7.63 + H3BO3 + H+ + 2 F- = BF2(OH)2- + H2O + log_k 7.63 delta_h 1.618 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #BF3OH- 163 - H3BO3 + 2H+ + 3F- = BF3OH- + 2H2O - log_k 13.67 + H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O + log_k 13.67 delta_h -1.614 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #BF4- 164 - H3BO3 + 3H+ + 4F- = BF4- + 3H2O - log_k 20.28 + H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O + log_k 20.28 delta_h -1.846 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #FeF+2 165 - Fe+3 + F- = FeF+2 - log_k 6.2 + Fe+3 + F- = FeF+2 + log_k 6.2 delta_h 2.7 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeF2+ 166 - Fe+3 + 2F- = FeF2+ - log_k 10.8 + Fe+3 + 2 F- = FeF2+ + log_k 10.8 delta_h 4.8 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeF3 167 - Fe+3 + 3F- = FeF3 - log_k 14.0 + Fe+3 + 3 F- = FeF3 + log_k 14 delta_h 5.4 kcal #CaHSO4+ 168 - Ca+2 + HSO4- = CaHSO4+ - log_k 1.08 + Ca+2 + HSO4- = CaHSO4+ + log_k 1.08 #Mn+3 secondary master species 169 - Mn+2 = Mn+3 + e- - log_k -25.51 + Mn+2 = Mn+3 + e- + log_k -25.51 delta_h 25.8 kcal - -gamma 9.0 0.0 + -gamma 9 0 #MnCl+ 170 - Mn+2 + Cl- = MnCl+ - log_k 0.61 - -gamma 5.0 0.0 + Mn+2 + Cl- = MnCl+ + log_k 0.61 + -gamma 5 0 #MnCl2 171 - Mn+2 + 2Cl- = MnCl2 - log_k 0.25 + Mn+2 + 2 Cl- = MnCl2 + log_k 0.25 #MnCl3- 172 - Mn+2 + 3Cl- = MnCl3- - log_k -0.31 - -gamma 5.0 0.0 + Mn+2 + 3 Cl- = MnCl3- + log_k -0.31 + -gamma 5 0 #MnOH+ 173 - Mn+2 + H2O = MnOH+ + H+ - log_k -10.59 + Mn+2 + H2O = MnOH+ + H+ + log_k -10.59 delta_h 14.4 kcal - -gamma 5.0 0.0 + -gamma 5 0 #Mn(OH)3- 174 - Mn+2 + 3H2O = Mn(OH)3- + 3H+ - log_k -34.8 - -gamma 5.0 0.0 + Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + log_k -34.8 + -gamma 5 0 #MnF+ 175 - Mn+2 + F- = MnF+ - log_k 0.84 - -gamma 5.0 0.0 + Mn+2 + F- = MnF+ + log_k 0.84 + -gamma 5 0 #MnSO4 176 - Mn+2 + SO4-2 = MnSO4 - log_k 2.25 + Mn+2 + SO4-2 = MnSO4 + log_k 2.25 delta_h 3.37 kcal #Mn(NO3)2 177 - Mn+2 + 2NO3- = Mn(NO3)2 - log_k 0.6 + Mn+2 + 2 NO3- = Mn(NO3)2 + log_k 0.6 delta_h -0.396 kcal #MnHCO3+ 178 Mn+2 + HCO3- = MnHCO3+ - log_k 1.95 - -gamma 5.0 0.0 + log_k 1.95 + -gamma 5 0 #MnO4- secondary master species 179 - Mn+2 + 4H2O = MnO4- + 8H+ + 5e- - log_k -127.824 + Mn+2 + 4 H2O = MnO4- + 8 H+ + 5 e- + log_k -127.824 delta_h 176.62 kcal - -gamma 3.0 0.0 + -gamma 3 0 #MnO4-2 secondary master species 180 - Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- - log_k -118.44 + Mn+2 + 4 H2O = MnO4-2 + 8 H+ + 4 e- + log_k -118.44 delta_h 150.02 kcal - -gamma 5.0 0.0 + -gamma 5 0 #SiF6-2 201 - H4SiO4 + 4H+ + 6F- = SiF6-2 + 4H2O - log_k 30.18 + H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O + log_k 30.18 delta_h -16.26 kcal - -gamma 5.0 0.0 + -gamma 5 0 #HF 202 - H+ + F- = HF - log_k 3.18 + H+ + F- = HF + log_k 3.18 delta_h 3.18 kcal - -analytical -2.033 0.012645 429.01 0.0 0.0 + -analytical -2.033 0.012645 429.01 0 0 #HF2- 203 - H+ + 2F- = HF2- - log_k 3.76 + H+ + 2 F- = HF2- + log_k 3.76 delta_h 4.55 kcal - -gamma 3.5 0.0 + -gamma 3.5 0 #CuCl2- 206 # Cu+2 + 2Cl- + e- = CuCl2- # log_k 8.220 # delta_h 1.230 kcal - Cu+ + 2Cl- = CuCl2- - log_k 5.50 + Cu+ + 2 Cl- = CuCl2- + log_k 5.5 delta_h -0.42 kcal - -gamma 4.0 0.0 + -gamma 4 0 #CuCl3-2 207 -# Cu+2 + 3Cl- + e- = CuCl3-2 +# Cu+2 + 3Cl- + e- = CuCl3-2 # log_k 8.420 # delta_h 1.910 kcal - Cu+ + 3Cl- = CuCl3-2 - log_k 5.70 + Cu+ + 3 Cl- = CuCl3-2 + log_k 5.7 delta_h 0.26 kcal - -gamma 5.0 0.0 + -gamma 5 0 #Cu+ secondary master species 208 - Cu+2 + e- = Cu+ - log_k 2.72 + Cu+2 + e- = Cu+ + log_k 2.72 delta_h 1.65 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #CuCO3 209 - Cu+2 + CO3-2 = CuCO3 - log_k 6.73 + Cu+2 + CO3-2 = CuCO3 + log_k 6.73 #Cu(CO3)2-2 210 - Cu+2 + 2CO3-2 = Cu(CO3)2-2 - log_k 9.83 + Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + log_k 9.83 #CuCl+ 211 - Cu+2 + Cl- = CuCl+ - log_k 0.43 + Cu+2 + Cl- = CuCl+ + log_k 0.43 delta_h 8.65 kcal - -gamma 4.0 0.0 + -gamma 4 0 #CuCl2 212 - Cu+2 + 2Cl- = CuCl2 - log_k 0.16 + Cu+2 + 2 Cl- = CuCl2 + log_k 0.16 delta_h 10.56 kcal #CuCl3- 213 - Cu+2 + 3Cl- = CuCl3- - log_k -2.29 + Cu+2 + 3 Cl- = CuCl3- + log_k -2.29 delta_h 13.69 kcal - -gamma 4.0 0.0 + -gamma 4 0 #CuCl4-2 214 - Cu+2 + 4Cl- = CuCl4-2 - log_k -4.59 + Cu+2 + 4 Cl- = CuCl4-2 + log_k -4.59 delta_h 17.78 kcal - -gamma 5.0 0.0 + -gamma 5 0 #CuF+ 215 - Cu+2 + F- = CuF+ - log_k 1.26 + Cu+2 + F- = CuF+ + log_k 1.26 delta_h 1.62 kcal #CuOH+ 216 - Cu+2 + H2O = CuOH+ + H+ - log_k -8.0 - -gamma 4.0 0.0 + Cu+2 + H2O = CuOH+ + H+ + log_k -8 + -gamma 4 0 #Cu(OH)2 217 - Cu+2 + 2H2O = Cu(OH)2 + 2H+ - log_k -13.68 + Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + log_k -13.68 #Cu(OH)3- 218 - Cu+2 + 3H2O = Cu(OH)3- + 3H+ - log_k -26.9 + Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + log_k -26.9 #Cu(OH)4-2 219 - Cu+2 + 4H2O = Cu(OH)4-2 + 4H+ - log_k -39.6 + Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + log_k -39.6 #Cu2(OH)2+2 220 - 2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ - log_k -10.359 + 2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + log_k -10.359 delta_h 17.539 kcal - -analytical 2.497 0.0 -3833.0 0.0 0.0 + -analytical 2.497 0 -3833 0 0 #CuSO4 221 - Cu+2 + SO4-2 = CuSO4 - log_k 2.31 + Cu+2 + SO4-2 = CuSO4 + log_k 2.31 delta_h 1.22 kcal #Cu(HS)3- 222 - Cu+2 + 3HS- = Cu(HS)3- - log_k 25.9 + Cu+2 + 3 HS- = Cu(HS)3- + log_k 25.9 #ZnCl+ 251 - Zn+2 + Cl- = ZnCl+ - log_k 0.43 + Zn+2 + Cl- = ZnCl+ + log_k 0.43 delta_h 7.79 kcal - -gamma 4.0 0.0 + -gamma 4 0 #ZnCl2 252 - Zn+2 + 2Cl- = ZnCl2 - log_k 0.45 + Zn+2 + 2 Cl- = ZnCl2 + log_k 0.45 delta_h 8.5 kcal #ZnCl3- 253 - Zn+2 + 3Cl- = ZnCl3- - log_k 0.5 + Zn+2 + 3 Cl- = ZnCl3- + log_k 0.5 delta_h 9.56 kcal - -gamma 4.0 0.0 + -gamma 4 0 #ZnCl4-2 254 - Zn+2 + 4Cl- = ZnCl4-2 - log_k 0.2 + Zn+2 + 4 Cl- = ZnCl4-2 + log_k 0.2 delta_h 10.96 kcal - -gamma 5.0 0.0 + -gamma 5 0 #ZnF+ 255 - Zn+2 + F- = ZnF+ - log_k 1.15 + Zn+2 + F- = ZnF+ + log_k 1.15 delta_h 2.22 kcal #ZnOH+ 256 - Zn+2 + H2O = ZnOH+ + H+ - log_k -8.96 + Zn+2 + H2O = ZnOH+ + H+ + log_k -8.96 delta_h 13.4 kcal #Zn(OH)2 257 - Zn+2 + 2H2O = Zn(OH)2 + 2H+ - log_k -16.9 + Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + log_k -16.9 #Zn(OH)3- 258 - Zn+2 + 3H2O = Zn(OH)3- + 3H+ - log_k -28.4 + Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + log_k -28.4 #Zn(OH)4-2 259 - Zn+2 + 4H2O = Zn(OH)4-2 + 4H+ - log_k -41.2 + Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + log_k -41.2 #ZnOHCl 260 - Zn+2 + H2O + Cl- = ZnOHCl + H+ - log_k -7.48 + Zn+2 + H2O + Cl- = ZnOHCl + H+ + log_k -7.48 #Zn(HS)2 261 - Zn+2 + 2HS- = Zn(HS)2 - log_k 14.94 + Zn+2 + 2 HS- = Zn(HS)2 + log_k 14.94 #Zn(HS)3- 262 - Zn+2 + 3HS- = Zn(HS)3- - log_k 16.1 + Zn+2 + 3 HS- = Zn(HS)3- + log_k 16.1 #ZnSO4 263 - Zn+2 + SO4-2 = ZnSO4 - log_k 2.37 + Zn+2 + SO4-2 = ZnSO4 + log_k 2.37 delta_h 1.36 kcal #Zn(SO4)2-2 264 - Zn+2 + 2SO4-2 = Zn(SO4)2-2 - log_k 3.28 + Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + log_k 3.28 #CdCl+ 294 - Cd+2 + Cl- = CdCl+ - log_k 1.98 + Cd+2 + Cl- = CdCl+ + log_k 1.98 delta_h 0.59 kcal #CdCl2 295 - Cd+2 + 2Cl- = CdCl2 - log_k 2.6 + Cd+2 + 2 Cl- = CdCl2 + log_k 2.6 delta_h 1.24 kcal #CdCl3- 296 - Cd+2 + 3Cl- = CdCl3- - log_k 2.4 + Cd+2 + 3 Cl- = CdCl3- + log_k 2.4 delta_h 3.9 kcal #CdF+ 297 - Cd+2 + F- = CdF+ - log_k 1.1 + Cd+2 + F- = CdF+ + log_k 1.1 #CdF2 298 - Cd+2 + 2F- = CdF2 - log_k 1.5 + Cd+2 + 2 F- = CdF2 + log_k 1.5 #Cd(CO3)2-2 299 - Cd+2 + 2CO3-2 = Cd(CO3)2-2 - log_k 6.4 + Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + log_k 6.4 #CdOH+ 300 - Cd+2 + H2O = CdOH+ + H+ - log_k -10.08 + Cd+2 + H2O = CdOH+ + H+ + log_k -10.08 delta_h 13.1 kcal #Cd(OH)2 301 - Cd+2 + 2H2O = Cd(OH)2 + 2H+ - log_k -20.35 + Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + log_k -20.35 #Cd(OH)3- 302 - Cd+2 + 3H2O = Cd(OH)3- + 3H+ - log_k -33.3 + Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + log_k -33.3 #Cd(OH)4-2 303 - Cd+2 + 4H2O = Cd(OH)4-2 + 4H+ - log_k -47.35 + Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + log_k -47.35 #Cd2OH+3 304 - 2Cd+2 + H2O = Cd2OH+3 + H+ - log_k -9.39 + 2 Cd+2 + H2O = Cd2OH+3 + H+ + log_k -9.39 delta_h 10.9 kcal #CdOHCl 305 - Cd+2 + H2O + Cl- = CdOHCl + H+ - log_k -7.404 + Cd+2 + H2O + Cl- = CdOHCl + H+ + log_k -7.404 delta_h 4.355 kcal #CdNO3+ 306 Cd+2 + NO3- = CdNO3+ - log_k 0.4 + log_k 0.4 delta_h -5.2 kcal #CdSO4 307 - Cd+2 + SO4-2 = CdSO4 - log_k 2.46 + Cd+2 + SO4-2 = CdSO4 + log_k 2.46 delta_h 1.08 kcal #CdHS+ 308 - Cd+2 + HS- = CdHS+ - log_k 10.17 + Cd+2 + HS- = CdHS+ + log_k 10.17 #Cd(HS)2 309 - Cd+2 + 2HS- = Cd(HS)2 - log_k 16.53 + Cd+2 + 2 HS- = Cd(HS)2 + log_k 16.53 #Cd(HS)3- 310 - Cd+2 + 3HS- = Cd(HS)3- - log_k 18.71 + Cd+2 + 3 HS- = Cd(HS)3- + log_k 18.71 #Cd(HS)4-2 311 - Cd+2 + 4HS- = Cd(HS)4-2 - log_k 20.9 + Cd+2 + 4 HS- = Cd(HS)4-2 + log_k 20.9 #Fe(SO4)2- 333 - Fe+3 + 2SO4-2 = Fe(SO4)2- - log_k 5.38 + Fe+3 + 2 SO4-2 = Fe(SO4)2- + log_k 5.38 delta_h 4.6 kcal #Fe2(OH)2+4 334 - 2Fe+3 + 2H2O = Fe2(OH)2+4 + 2H+ - log_k -2.95 + 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + log_k -2.95 delta_h 13.5 kcal #Fe3(OH)4+5 335 - 3Fe+3 + 4H2O = Fe3(OH)4+5 + 4H+ - log_k -6.3 + 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + log_k -6.3 delta_h 14.3 kcal #PbCl+ 341 - Pb+2 + Cl- = PbCl+ - log_k 1.6 + Pb+2 + Cl- = PbCl+ + log_k 1.6 delta_h 4.38 kcal #PbCl2 342 - Pb+2 + 2Cl- = PbCl2 - log_k 1.8 + Pb+2 + 2 Cl- = PbCl2 + log_k 1.8 delta_h 1.08 kcal #PbCl3- 343 - Pb+2 + 3Cl- = PbCl3- - log_k 1.7 + Pb+2 + 3 Cl- = PbCl3- + log_k 1.7 delta_h 2.17 kcal #PbCl4-2 344 - Pb+2 + 4Cl- = PbCl4-2 - log_k 1.38 + Pb+2 + 4 Cl- = PbCl4-2 + log_k 1.38 delta_h 3.53 kcal #Pb(CO3)2-2 345 - Pb+2 + 2CO3-2 = Pb(CO3)2-2 - log_k 10.64 + Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + log_k 10.64 #PbF+ 346 - Pb+2 + F- = PbF+ - log_k 1.25 + Pb+2 + F- = PbF+ + log_k 1.25 #PbF2 347 - Pb+2 + 2F- = PbF2 - log_k 2.56 + Pb+2 + 2 F- = PbF2 + log_k 2.56 #PbF3- 348 - Pb+2 + 3F- = PbF3- - log_k 3.42 + Pb+2 + 3 F- = PbF3- + log_k 3.42 #PbF4-2 349 - Pb+2 + 4F- = PbF4-2 - log_k 3.1 + Pb+2 + 4 F- = PbF4-2 + log_k 3.1 #PbOH+ 350 - Pb+2 + H2O = PbOH+ + H+ - log_k -7.71 + Pb+2 + H2O = PbOH+ + H+ + log_k -7.71 #Pb(OH)2 351 - Pb+2 + 2H2O = Pb(OH)2 + 2H+ - log_k -17.12 + Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + log_k -17.12 #Pb(OH)3- 352 - Pb+2 + 3H2O = Pb(OH)3- + 3H+ - log_k -28.06 + Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + log_k -28.06 #Pb2OH+3 353 - 2Pb+2 + H2O = Pb2OH+3 + H+ - log_k -6.36 + 2 Pb+2 + H2O = Pb2OH+3 + H+ + log_k -6.36 #PbNO3+ 354 Pb+2 + NO3- = PbNO3+ - log_k 1.17 + log_k 1.17 #PbSO4 355 - Pb+2 + SO4-2 = PbSO4 - log_k 2.75 + Pb+2 + SO4-2 = PbSO4 + log_k 2.75 #Pb(HS)2 356 - Pb+2 + 2HS- = Pb(HS)2 - log_k 15.27 + Pb+2 + 2 HS- = Pb(HS)2 + log_k 15.27 #Pb(HS)3- 357 - Pb+2 + 3HS- = Pb(HS)3- - log_k 16.57 + Pb+2 + 3 HS- = Pb(HS)3- + log_k 16.57 #Pb3(OH)4+2 358 - 3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ - log_k -23.88 + 3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + log_k -23.88 delta_h 26.5 kcal #FeF+ 359 - Fe+2 + F- = FeF+ - log_k 1.0 + Fe+2 + F- = FeF+ + log_k 1 #AlHSO4+2 397 - Al+3 + HSO4- = AlHSO4+2 - log_k 0.46 + Al+3 + HSO4- = AlHSO4+2 + log_k 0.46 #NO2 secondary master species 400 - NO3- + 2H+ + 2e- = NO2- + H2O - log_k 28.57 + NO3- + 2 H+ + 2 e- = NO2- + H2O + log_k 28.57 delta_h -43.76 kcal #NiBr+ 403 - Ni+2 + Br- = NiBr+ - log_k 0.5 + Ni+2 + Br- = NiBr+ + log_k 0.5 #NiCl+ 404 - Ni+2 + Cl- = NiCl+ - log_k 0.4 + Ni+2 + Cl- = NiCl+ + log_k 0.4 #NiF+ 405 - Ni+2 + F- = NiF+ - log_k 1.3 + Ni+2 + F- = NiF+ + log_k 1.3 #NiOH+ 406 - Ni+2 + H2O = NiOH+ + H+ - log_k -9.86 + Ni+2 + H2O = NiOH+ + H+ + log_k -9.86 delta_h 12.42 kcal #Ni(OH)2 407 - Ni+2 + 2H2O = Ni(OH)2 + 2H+ - log_k -19.0 + Ni+2 + 2 H2O = Ni(OH)2 + 2 H+ + log_k -19 #Ni(OH)3- 408 - Ni+2 + 3H2O = Ni(OH)3- + 3H+ - log_k -30.0 + Ni+2 + 3 H2O = Ni(OH)3- + 3 H+ + log_k -30 #NiSO4 409 - Ni+2 + SO4-2 = NiSO4 - log_k 2.29 + Ni+2 + SO4-2 = NiSO4 + log_k 2.29 delta_h 1.52 kcal #AgBr 421 Ag+ + Br- = AgBr - log_k 4.24 + log_k 4.24 #AgBr2- 422 - Ag+ + 2Br- = AgBr2- - log_k 7.28 + Ag+ + 2 Br- = AgBr2- + log_k 7.28 #AgCl 423 Ag+ + Cl- = AgCl - log_k 3.27 + log_k 3.27 delta_h -2.68 kcal #AgCl2- 424 - Ag+ + 2Cl- = AgCl2- - log_k 5.27 + Ag+ + 2 Cl- = AgCl2- + log_k 5.27 delta_h -3.93 kcal #AgCl3-2 425 - Ag+ + 3Cl- = AgCl3-2 - log_k 5.29 + Ag+ + 3 Cl- = AgCl3-2 + log_k 5.29 #AgCl4-3 426 - Ag+ + 4Cl- = AgCl4-3 - log_k 5.51 + Ag+ + 4 Cl- = AgCl4-3 + log_k 5.51 #AgF 427 Ag+ + F- = AgF - log_k 0.36 + log_k 0.36 delta_h -2.83 kcal #AgHS 428 - Ag+ + HS- = AgHS - log_k 14.05 + Ag+ + HS- = AgHS + log_k 14.05 #Ag(HS)2- 429 - Ag+ + 2HS- = Ag(HS)2- - log_k 18.45 + Ag+ + 2 HS- = Ag(HS)2- + log_k 18.45 #AgI 430 Ag+ + I- = AgI - log_k 6.6 + log_k 6.6 #AgI2- 431 - Ag+ + 2I- = AgI2- - log_k 10.68 + Ag+ + 2 I- = AgI2- + log_k 10.68 #AgOH 432 - Ag+ + H2O = AgOH + H+ - log_k -12.0 + Ag+ + H2O = AgOH + H+ + log_k -12 #Ag(OH)2- 433 - Ag+ + 2H2O = Ag(OH)2- + 2H+ - log_k -24.0 + Ag+ + 2 H2O = Ag(OH)2- + 2 H+ + log_k -24 #AgSO4- 434 Ag+ + SO4-2 = AgSO4- - log_k 1.29 + log_k 1.29 delta_h 1.49 kcal #AgNO3 435 Ag+ + NO3- = AgNO3 - log_k -0.29 + log_k -0.29 #Ag(NO2)2- 436 - Ag+ + 2NO2- = Ag(NO2)2- - log_k 2.22 + Ag+ + 2 NO2- = Ag(NO2)2- + log_k 2.22 #ZnBr+ 447 - Zn+2 + Br- = ZnBr+ - log_k -0.58 + Zn+2 + Br- = ZnBr+ + log_k -0.58 #ZnBr2 448 - Zn+2 + 2Br- = ZnBr2 - log_k -0.98 + Zn+2 + 2 Br- = ZnBr2 + log_k -0.98 #ZnI+ 449 - Zn+2 + I- = ZnI+ - log_k -2.91 + Zn+2 + I- = ZnI+ + log_k -2.91 #ZnI2 450 - Zn+2 + 2I- = ZnI2 - log_k -1.69 + Zn+2 + 2 I- = ZnI2 + log_k -1.69 #CdBr+ 451 - Cd+2 + Br- = CdBr+ - log_k 2.17 + Cd+2 + Br- = CdBr+ + log_k 2.17 delta_h -0.81 kcal #CdBr2 452 - Cd+2 + 2Br- = CdBr2 - log_k 2.9 + Cd+2 + 2 Br- = CdBr2 + log_k 2.9 #CdI+ 453 - Cd+2 + I- = CdI+ - log_k 2.15 + Cd+2 + I- = CdI+ + log_k 2.15 delta_h -2.37 kcal #CdI2 454 - Cd+2 + 2I- = CdI2 - log_k 3.59 + Cd+2 + 2 I- = CdI2 + log_k 3.59 #PbBr+ 455 - Pb+2 + Br- = PbBr+ - log_k 1.77 + Pb+2 + Br- = PbBr+ + log_k 1.77 delta_h 2.88 kcal #PbBr2 456 - Pb+2 + 2Br- = PbBr2 - log_k 1.44 + Pb+2 + 2 Br- = PbBr2 + log_k 1.44 #PbI+ 457 - Pb+2 + I- = PbI+ - log_k 1.94 + Pb+2 + I- = PbI+ + log_k 1.94 #PbI2 458 - Pb+2 + 2I- = PbI2 - log_k 3.2 + Pb+2 + 2 I- = PbI2 + log_k 3.2 #PbCO3 468 - Pb+2 + CO3-2 = PbCO3 - log_k 7.24 + Pb+2 + CO3-2 = PbCO3 + log_k 7.24 #Pb(OH)4-2 469 - Pb+2 + 4H2O = Pb(OH)4-2 + 4H+ - log_k -39.7 + Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + log_k -39.7 #Pb(SO4)2-2 470 - Pb+2 + 2SO4-2 = Pb(SO4)2-2 - log_k 3.47 + Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + log_k 3.47 #AgBr3-2 473 - Ag+ + 3Br- = AgBr3-2 - log_k 8.71 + Ag+ + 3 Br- = AgBr3-2 + log_k 8.71 #AgI3-2 474 - Ag+ + 3I- = AgI3-2 - log_k 13.37 + Ag+ + 3 I- = AgI3-2 + log_k 13.37 delta_h -27.03 kcal #AgI4-3 475 - Ag+ + 4I- = AgI4-3 - log_k 14.08 + Ag+ + 4 I- = AgI4-3 + log_k 14.08 #Fe(HS)2 476 - Fe+2 + 2HS- = Fe(HS)2 - log_k 8.95 + Fe+2 + 2 HS- = Fe(HS)2 + log_k 8.95 #Fe(HS)3- 477 - Fe+2 + 3HS- = Fe(HS)3- - log_k 10.987 + Fe+2 + 3 HS- = Fe(HS)3- + log_k 10.987 #H2AsO3- 478 H3AsO3 = H2AsO3- + H+ - log_k -9.15 - delta_h 27.54 kJ + log_k -9.15 + delta_h 27.54 kJ #HAsO3-2 479 - H3AsO3 = HAsO3-2 + 2H+ - log_k -23.85 - delta_h 59.41 kJ + H3AsO3 = HAsO3-2 + 2 H+ + log_k -23.85 + delta_h 59.41 kJ #AsO3-3 480 - H3AsO3 = AsO3-3 + 3H+ - log_k -39.55 - delta_h 84.73 kJ + H3AsO3 = AsO3-3 + 3 H+ + log_k -39.55 + delta_h 84.73 kJ #H4AsO3+ 481 - H3AsO3 + H+ = H4AsO3+ - log_k -0.305 + H3AsO3 + H+ = H4AsO3+ + log_k -0.305 #H2AsO4- 482 H3AsO4 = H2AsO4- + H+ - log_k -2.3 - delta_h -7.066 kJ + log_k -2.3 + delta_h -7.066 kJ #HAsO4-2 483 - H3AsO4 = HAsO4-2 + 2H+ - log_k -9.46 - delta_h -3.846 kJ + H3AsO4 = HAsO4-2 + 2 H+ + log_k -9.46 + delta_h -3.846 kJ #AsO43- 484 - H3AsO4 = AsO4-3 + 3H+ - log_k -21.11 - delta_h 14.354 kJ + H3AsO4 = AsO4-3 + 3 H+ + log_k -21.11 + delta_h 14.354 kJ #As3 secondary master species 487 H3AsO4 + H2 = H3AsO3 + H2O - log_k 22.5 - delta_h -117.480344 kJ + log_k 22.5 + delta_h -117.480344 kJ #As3S4(HS)-2 631 - 3H3AsO3 + 6HS- + 5H+ = As3S4(HS)2- + 9H2O - log_k 72.314 - -gamma 5.0 0.0 + 3 H3AsO3 + 6 HS- + 5 H+ = As3S4(HS)2- + 9 H2O + log_k 72.314 + -gamma 5 0 #AsS(OH)(HS)- 637 - H3AsO3 + 2HS- + H+ = AsS(OH)(HS)- + 2H2O - log_k 18.038 - -gamma 5.0 0.0 + H3AsO3 + 2 HS- + H+ = AsS(OH)(HS)- + 2 H2O + log_k 18.038 + -gamma 5 0 # -# TURNING OFF CHECKING FOR EQUATION BALANCE FOR +# TURNING OFF CHECKING FOR EQUATION BALANCE FOR # POLYSULFIDES # @@ -1406,73 +1410,73 @@ SOLUTION_SPECIES # Cu+2 + 2HS- + e- = CuS4S5-3 + 2H+ # (lhs) +7S # log_k 5.382 # -no_check -# -mass_balance CuS(-2)9 +# -mass_balance CuS(-2)9 # -gamma 25.0 0.0 #As3/As5 487 -# H3AsO3 + H2O = H3AsO4 + 2H+ + 2e- +# H3AsO3 + H2O = H3AsO4 + 2H+ + 2e- # log_k -18.897 # delta_h 30.015 kcal #S2-2 502 - HS- = S2-2 + H+ # (lhs) +S - log_k -14.528 + HS- = S2-2 + H+ # (lhs) +S + log_k -14.528 delta_h 11.4 kcal -no_check - -mass_balance S(-2)2 - -gamma 6.5 0.0 + -mass_balance S(-2)2 + -gamma 6.5 0 #S3-2 503 - HS- = S3-2 + H+ # (lhs) +2S - log_k -13.282 + HS- = S3-2 + H+ # (lhs) +2S + log_k -13.282 delta_h 10.4 kcal -no_check - -mass_balance S(-2)3 - -gamma 8.0 0.0 + -mass_balance S(-2)3 + -gamma 8 0 #S4-2 504 - HS- = S4-2 + H+ # (lhs) +3S - log_k -9.829 + HS- = S4-2 + H+ # (lhs) +3S + log_k -9.829 delta_h 9.7 kcal -no_check - -mass_balance S(-2)4 - -gamma 10.0 0.0 + -mass_balance S(-2)4 + -gamma 10 0 #S5-2 505 - HS- = S5-2 + H+ # (lhs) +4S - log_k -9.595 + HS- = S5-2 + H+ # (lhs) +4S + log_k -9.595 delta_h 9.3 kcal -no_check - -mass_balance S(-2)5 - -gamma 12.0 0.0 + -mass_balance S(-2)5 + -gamma 12 0 #S6-2 506 - HS- = S6-2 + H+ # (lhs) +5S - log_k -9.881 + HS- = S6-2 + H+ # (lhs) +5S + log_k -9.881 -no_check - -mass_balance S(-2)6 - -gamma 14.0 0.0 + -mass_balance S(-2)6 + -gamma 14 0 #Ag(S4)2-3 507 - Ag+ + 2HS- = Ag(S4)2-3 + 2H+ # (lhs) +6S - log_k 0.991 + Ag+ + 2 HS- = Ag(S4)2-3 + 2 H+ # (lhs) +6S + log_k 0.991 -no_check - -mass_balance AgS(-2)8 - -gamma 22.0 0.0 + -mass_balance AgS(-2)8 + -gamma 22 0 #Ag(S4)S5-3 508 - Ag+ + 2HS- = Ag(S4)S5-3 + 2H+ # (lhs) +7S - log_k 0.68 + Ag+ + 2 HS- = Ag(S4)S5-3 + 2 H+ # (lhs) +7S + log_k 0.68 -no_check - -mass_balance AgS(-2)9 - -gamma 24.0 0.0 + -mass_balance AgS(-2)9 + -gamma 24 0 #AgHS(S4)-2 509 # (lhs) +3S - Ag+ + 2HS- = AgHS(S4)-2 + H+ - log_k 10.43 + Ag+ + 2 HS- = AgHS(S4)-2 + H+ + log_k 10.43 -no_check - -mass_balance AgHS(-2)5 - -gamma 15.0 0.0 + -mass_balance AgHS(-2)5 + -gamma 15 0 # # END OF POLYSULFIDES @@ -1480,99 +1484,99 @@ SOLUTION_SPECIES #CuHCO3+ 510 Cu+2 + HCO3- = CuHCO3+ - log_k 2.7 + log_k 2.7 #ZnHCO3+ 511 Zn+2 + HCO3- = ZnHCO3+ - log_k 2.1 + log_k 2.1 #ZnCO3 512 - Zn+2 + CO3-2 = ZnCO3 - log_k 5.3 + Zn+2 + CO3-2 = ZnCO3 + log_k 5.3 #Zn(CO3)2-2 513 - Zn+2 + 2CO3-2 = Zn(CO3)2-2 - log_k 9.63 + Zn+2 + 2 CO3-2 = Zn(CO3)2-2 + log_k 9.63 #CdHCO3 514 Cd+2 + HCO3- = CdHCO3+ - log_k 1.5 + log_k 1.5 #CdCO3 515 - Cd+2 + CO3-2 = CdCO3 - log_k 2.9 + Cd+2 + CO3-2 = CdCO3 + log_k 2.9 #Cd(SO4)2-2 516 - Cd+2 + 2SO4-2 = Cd(SO4)2-2 - log_k 3.5 + Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + log_k 3.5 #PbHCO3+ 517 Pb+2 + HCO3- = PbHCO3+ - log_k 2.9 + log_k 2.9 #NiCl2 518 - Ni+2 + 2Cl- = NiCl2 - log_k 0.96 + Ni+2 + 2 Cl- = NiCl2 + log_k 0.96 #NiHCO3+ 519 Ni+2 + HCO3- = NiHCO3+ - log_k 2.14 + log_k 2.14 #NiCO3 520 - Ni+2 + CO3-2 = NiCO3 - log_k 6.87 + Ni+2 + CO3-2 = NiCO3 + log_k 6.87 #Ni(CO3)2-2 521 - Ni+2 + 2CO3-2 = Ni(CO3)2-2 - log_k 10.11 + Ni+2 + 2 CO3-2 = Ni(CO3)2-2 + log_k 10.11 #Ni(SO4)2-2 522 - Ni+2 + 2SO4-2 = Ni(SO4)2-2 - log_k 1.02 + Ni+2 + 2 SO4-2 = Ni(SO4)2-2 + log_k 1.02 #HFulvate 523 - H+ + Fulvate-2 = HFulvate- - log_k 4.27 + H+ + Fulvate-2 = HFulvate- + log_k 4.27 #HHumate 524 - H+ + Humate-2 = HHumate- - log_k 4.27 + H+ + Humate-2 = HHumate- + log_k 4.27 #FeFulvate 525 - Fe+3 + Fulvate-2 = FeFulvate+ - log_k 9.4 + Fe+3 + Fulvate-2 = FeFulvate+ + log_k 9.4 #FeHumate 526 - Fe+3 + Humate-2 = FeHumate+ - log_k 9.4 + Fe+3 + Humate-2 = FeHumate+ + log_k 9.4 #CuFulvate 527 Cu+2 + Fulvate-2 = CuFulvate - log_k 6.2 + log_k 6.2 #CuHumate 528 Cu+2 + Humate-2 = CuHumate - log_k 6.2 + log_k 6.2 #CdFulvate 529 Cd+2 + Fulvate-2 = CdFulvate - log_k 3.5 + log_k 3.5 #CdHumate 530 Cd+2 + Humate-2 = CdHumate - log_k 3.5 + log_k 3.5 #AgFulvate 531 - Ag+ + Fulvate-2 = AgFulvate- - log_k 2.4 + Ag+ + Fulvate-2 = AgFulvate- + log_k 2.4 #AgHumate 532 - Ag+ + Humate-2 = AgHumate- - log_k 2.4 + Ag+ + Humate-2 = AgHumate- + log_k 2.4 #H2F2 537 - 2H+ + 2F- = H2F2 - log_k 6.768 + 2 H+ + 2 F- = H2F2 + log_k 6.768 #peS/H2S 538 # S + 2H+ + 2e- = H2S @@ -1580,1969 +1584,1969 @@ SOLUTION_SPECIES #NaF 540 Na+ + F- = NaF - log_k -0.24 + log_k -0.24 #FeCl+ 542 - Fe+2 + Cl- = FeCl+ - log_k 0.14 - -gamma 5.0 0.0 + Fe+2 + Cl- = FeCl+ + log_k 0.14 + -gamma 5 0 #BaSO4 543 - Ba+2 + SO4-2 = BaSO4 - log_k 2.7 + Ba+2 + SO4-2 = BaSO4 + log_k 2.7 #HSe- secondary master species 549 - SeO3-2 + 7H+ + 6e- = HSe- + 3H2O - log_k 42.514 + SeO3-2 + 7 H+ + 6 e- = HSe- + 3 H2O + log_k 42.514 #H2Se 544 - HSe- + H+ = H2Se - log_k 3.8 + HSe- + H+ = H2Se + log_k 3.8 delta_h -5.3 kcal #SeO3-2 secondary master species 548 - SeO4-2 + 2H+ + 2e- = SeO3-2 + H2O - log_k 30.256 + SeO4-2 + 2 H+ + 2 e- = SeO3-2 + H2O + log_k 30.256 #H2SeO3 545 - SeO3-2 + 2H+ = H2SeO3 - log_k 11.25 + SeO3-2 + 2 H+ = H2SeO3 + log_k 11.25 #HSeO3- 546 SeO3-2 + H+ = HSeO3- - log_k 8.5 + log_k 8.5 #HSeO4- 547 SeO4-2 + H+ = HSeO4- - log_k 1.66 + log_k 1.66 delta_h 4.91 kcal #Se4/Se6 548 -# SeO3-2 + H2O = SeO4-2 + 2H+ + 2e- +# SeO3-2 + H2O = SeO4-2 + 2H+ + 2e- # -30.256 0.0 #Se4/Se-2 549 -# SeO3-2 + 7H+ + 6e- = HSe- + 3H2O +# SeO3-2 + 7H+ + 6e- = HSe- + 3H2O # 42.514 0.0 #As3/As 557 -# H3AsO3 + 3H+ + 3e- = As + 3H2O +# H3AsO3 + 3H+ + 3e- = As + 3H2O # 12.170 0.0 #FeHCO3+ 558 Fe+2 + HCO3- = FeHCO3+ - log_k 2.0 + log_k 2 #FeCO3 559 - Fe+2 + CO3-2 = FeCO3 - log_k 4.38 + Fe+2 + CO3-2 = FeCO3 + log_k 4.38 #MnCO3 560 - Mn+2 + CO3-2 = MnCO3 - log_k 4.9 + Mn+2 + CO3-2 = MnCO3 + log_k 4.9 #BaHCO3+ 561 Ba+2 + HCO3- = BaHCO3+ - log_k 0.982 + log_k 0.982 delta_h 5.56 kcal - -analytical -3.0938 0.013669 0.0 0.0 0.0 + -analytical -3.0938 0.013669 0 0 0 #BaCO3 562 - Ba+2 + CO3-2 = BaCO3 - log_k 2.71 + Ba+2 + CO3-2 = BaCO3 + log_k 2.71 delta_h 3.55 kcal - -analytical 0.113 0.008721 0.0 0.0 0.0 + -analytical 0.113 0.008721 0 0 0 #SrSO4 563 - Sr+2 + SO4-2 = SrSO4 - log_k 2.29 + Sr+2 + SO4-2 = SrSO4 + log_k 2.29 delta_h 2.08 kcal #U+4 secondary master species 565 - UO2+2 + 4H+ + 2e- = U+4 + 2H2O - log_k 9.04 + UO2+2 + 4 H+ + 2 e- = U+4 + 2 H2O + log_k 9.04 delta_h -34.43 kcal #U+3 secondary master species 566 - U+4 + e- = U+3 - log_k -8.796 + U+4 + e- = U+3 + log_k -8.796 delta_h 24.4 kcal #UOH+3 567 - U+4 + H2O = UOH+3 + H+ - log_k -0.54 + U+4 + H2O = UOH+3 + H+ + log_k -0.54 delta_h 11.21 kcal #U(OH)2+2 568 - U+4 + 2H2O = U(OH)2+2 + 2H+ - log_k -2.27 + U+4 + 2 H2O = U(OH)2+2 + 2 H+ + log_k -2.27 delta_h 17.73 kcal #U(OH)3+ 569 - U+4 + 3H2O = U(OH)3+ + 3H+ - log_k -4.935 + U+4 + 3 H2O = U(OH)3+ + 3 H+ + log_k -4.935 delta_h 22.645 kcal #U(OH)4 570 - U+4 + 4H2O = U(OH)4 + 4H+ - log_k -8.498 + U+4 + 4 H2O = U(OH)4 + 4 H+ + log_k -8.498 delta_h 24.76 kcal #U6(OH)15+9 572 - 6U+4 + 15H2O = U6(OH)15+9 + 15H+ - log_k -17.2 + 6 U+4 + 15 H2O = U6(OH)15+9 + 15 H+ + log_k -17.2 #UF+3 578 - U+4 + F- = UF+3 - log_k 9.3 + U+4 + F- = UF+3 + log_k 9.3 delta_h -1.3 kcal #UF2+2 579 - U+4 + 2F- = UF2+2 - log_k 16.22 + U+4 + 2 F- = UF2+2 + log_k 16.22 delta_h -0.8 kcal #UF3+ 580 - U+4 + 3F- = UF3+ - log_k 21.6 + U+4 + 3 F- = UF3+ + log_k 21.6 delta_h 0.1 kcal #UF4 581 - U+4 + 4F- = UF4 - log_k 25.5 + U+4 + 4 F- = UF4 + log_k 25.5 delta_h -0.87 kcal #UF5- 582 - U+4 + 5F- = UF5- - log_k 27.01 + U+4 + 5 F- = UF5- + log_k 27.01 delta_h 4.85 kcal #UF6-2 583 - U+4 + 6F- = UF6-2 - log_k 29.1 + U+4 + 6 F- = UF6-2 + log_k 29.1 delta_h 3.3 kcal #UCl+3 586 - U+4 + Cl- = UCl+3 - log_k 1.72 + U+4 + Cl- = UCl+3 + log_k 1.72 delta_h -4.54 kcal #USO4+2 587 - U+4 + SO4-2 = USO4+2 - log_k 6.58 + U+4 + SO4-2 = USO4+2 + log_k 6.58 delta_h 1.9 kcal #U(SO4)2 588 - U+4 + 2SO4-2 = U(SO4)2 - log_k 10.5 + U+4 + 2 SO4-2 = U(SO4)2 + log_k 10.5 delta_h 7.8 kcal #U(CO3)4-4 589 - U+4 + 4CO3-2 = U(CO3)4-4 - log_k 32.9 + U+4 + 4 CO3-2 = U(CO3)4-4 + log_k 32.9 #U(CO3)5-6 590 - U+4 + 5CO3-2 = U(CO3)5-6 - log_k 34.0 - delta_h 20.0 kcal + U+4 + 5 CO3-2 = U(CO3)5-6 + log_k 34 + delta_h 20 kcal #UO2+ secondary master species 595 - UO2+2 + e- = UO2+ - log_k 1.49 + UO2+2 + e- = UO2+ + log_k 1.49 delta_h -3.3 kcal #UO2OH+ 596 - UO2+2 + H2O = UO2OH+ + H+ - log_k -5.2 + UO2+2 + H2O = UO2OH+ + H+ + log_k -5.2 delta_h 11.015 kcal #(UO2)2(OH)2+2 597 - 2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+ - log_k -5.62 + 2 UO2+2 + 2 H2O = (UO2)2(OH)2+2 + 2 H+ + log_k -5.62 delta_h 10.23 kcal #(UO2)3(OH)5+ 598 - 3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+ - log_k -15.55 + 3 UO2+2 + 5 H2O = (UO2)3(OH)5+ + 5 H+ + log_k -15.55 delta_h 25.075 kcal #UO2CO3 603 - UO2+2 + CO3-2 = UO2CO3 - log_k 9.63 + UO2+2 + CO3-2 = UO2CO3 + log_k 9.63 delta_h 1.2 kcal #UO2(CO3)2-2 604 - UO2+2 + 2CO3-2 = UO2(CO3)2-2 - log_k 17.0 + UO2+2 + 2 CO3-2 = UO2(CO3)2-2 + log_k 17 delta_h 4.42 kcal #UO2(CO3)3-4 605 - UO2+2 + 3CO3-2 = UO2(CO3)3-4 - log_k 21.63 + UO2+2 + 3 CO3-2 = UO2(CO3)3-4 + log_k 21.63 delta_h -9.13 kcal #UO2F+ 607 - UO2+2 + F- = UO2F+ - log_k 5.09 + UO2+2 + F- = UO2F+ + log_k 5.09 delta_h 0.41 kcal #UO2F2 608 - UO2+2 + 2F- = UO2F2 - log_k 8.62 + UO2+2 + 2 F- = UO2F2 + log_k 8.62 delta_h 0.5 kcal #UO2F3- 609 - UO2+2 + 3F- = UO2F3- - log_k 10.9 + UO2+2 + 3 F- = UO2F3- + log_k 10.9 delta_h 0.56 kcal #UO2F4-2 610 - UO2+2 + 4F- = UO2F4-2 - log_k 11.7 + UO2+2 + 4 F- = UO2F4-2 + log_k 11.7 delta_h 0.07 kcal #UO2Cl+ 611 - UO2+2 + Cl- = UO2Cl+ - log_k 0.17 + UO2+2 + Cl- = UO2Cl+ + log_k 0.17 delta_h 1.9 kcal #UO2SO4 612 - UO2+2 + SO4-2 = UO2SO4 - log_k 3.15 + UO2+2 + SO4-2 = UO2SO4 + log_k 3.15 delta_h 4.7 kcal #UO2(SO4)2-2 613 - UO2+2 + 2SO4-2 = UO2(SO4)2-2 - log_k 4.14 + UO2+2 + 2 SO4-2 = UO2(SO4)2-2 + log_k 4.14 delta_h 8.4 kcal #UO2HPO4 614 - UO2+2 + PO4-3 + H+ = UO2HPO4 - log_k 20.21 + UO2+2 + PO4-3 + H+ = UO2HPO4 + log_k 20.21 delta_h -2.1 kcal #UO2(HPO4)2-2 615 - UO2+2 + 2PO4-3 + 2H+ = UO2(HPO4)2-2 - log_k 43.441 + UO2+2 + 2 PO4-3 + 2 H+ = UO2(HPO4)2-2 + log_k 43.441 delta_h -11.8 kcal #UO2H2PO4+ 616 - UO2+2 + PO4-3 + 2H+ = UO2H2PO4+ - log_k 22.87 + UO2+2 + PO4-3 + 2 H+ = UO2H2PO4+ + log_k 22.87 delta_h -3.7 kcal #UO2H2PO4)2 617 - UO2+2 + 2PO4-3 + 4H+ = UO2(H2PO4)2 - log_k 44.38 + UO2+2 + 2 PO4-3 + 4 H+ = UO2(H2PO4)2 + log_k 44.38 delta_h -16.5 kcal #UO2H2PO4)3- 618 - UO2+2 + 3PO4-3 + 6H+ = UO2(H2PO4)3- - log_k 66.245 + UO2+2 + 3 PO4-3 + 6 H+ = UO2(H2PO4)3- + log_k 66.245 delta_h -28.6 kcal #UBr+3 633 - U+4 + Br- = UBr+3 - log_k 1.5 + U+4 + Br- = UBr+3 + log_k 1.5 #UI+3 634 - U+4 + I- = UI+3 - log_k 1.3 + U+4 + I- = UI+3 + log_k 1.3 #UNO3+3 635 - U+4 + NO3- = UNO3+3 - log_k 1.47 + U+4 + NO3- = UNO3+3 + log_k 1.47 #U(NO3)2+2 636 - U+4 + 2NO3- = U(NO3)2+2 - log_k 2.3 + U+4 + 2 NO3- = U(NO3)2+2 + log_k 2.3 #UO2(OH)3- 638 - UO2+2 + 3H2O = UO2(OH)3- + 3H+ - log_k -19.2 + UO2+2 + 3 H2O = UO2(OH)3- + 3 H+ + log_k -19.2 #UO2(OH)4-2 639 - UO2+2 + 4H2O = UO2(OH)4-2 + 4H+ - log_k -33.0 + UO2+2 + 4 H2O = UO2(OH)4-2 + 4 H+ + log_k -33 #(UO2)2OH+3 640 - 2UO2+2 + H2O = (UO2)2OH+3 + H+ - log_k -2.7 + 2 UO2+2 + H2O = (UO2)2OH+3 + H+ + log_k -2.7 #(UO2)3(OH)4+2 641 - 3UO2+2 + 4H2O = (UO2)3(OH)4+2 + 4H+ - log_k -11.9 + 3 UO2+2 + 4 H2O = (UO2)3(OH)4+2 + 4 H+ + log_k -11.9 #(UO2)3(OH)7- 642 - 3UO2+2 + 7H2O = (UO2)3(OH)7- + 7H+ - log_k -31.0 + 3 UO2+2 + 7 H2O = (UO2)3(OH)7- + 7 H+ + log_k -31 #(UO2)4(OH)7+ 643 - 4UO2+2 + 7H2O = (UO2)4(OH)7+ + 7H+ - log_k -21.9 + 4 UO2+2 + 7 H2O = (UO2)4(OH)7+ + 7 H+ + log_k -21.9 #UO2Cl2 644 - UO2+2 + 2Cl- = UO2Cl2 - log_k -1.1 + UO2+2 + 2 Cl- = UO2Cl2 + log_k -1.1 delta_h 3.6 kcal #UO2Br+ 645 - UO2+2 + Br- = UO2Br+ - log_k 0.22 + UO2+2 + Br- = UO2Br+ + log_k 0.22 #UO2NO3+ 646 - UO2+2 + NO3- = UO2NO3+ - log_k 0.3 + UO2+2 + NO3- = UO2NO3+ + log_k 0.3 #UO2H3PO4+2 647 - UO2+2 + PO4-3 + 3H+ = UO2H3PO4+2 - log_k 22.813 + UO2+2 + PO4-3 + 3 H+ = UO2H3PO4+2 + log_k 22.813 #(UO2)3(CO3)6-6 648 - 3UO2+2 + 6CO3-2 = (UO2)3(CO3)6-6 - log_k 54.0 + 3 UO2+2 + 6 CO3-2 = (UO2)3(CO3)6-6 + log_k 54 #UO2PO4- 649 UO2+2 + PO4-3 = UO2PO4- - log_k 13.69 + log_k 13.69 #UO2(CO3)3-5 650 -# UO2+2 + 3CO3-2 + e- = UO2(CO3)3-5 +# UO2+2 + 3CO3-2 + e- = UO2(CO3)3-5 # log_k 8.920 - UO2+ + 3CO3-2 = UO2(CO3)3-5 - log_k 7.43 + UO2+ + 3 CO3-2 = UO2(CO3)3-5 + log_k 7.43 delta_h 3.33 kcal PHASES H2O(g) H2O = H2O - log_k 1.51 - delta_h -44.03 kJ + log_k 1.51 + delta_h -44.03 kJ # Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978) -Siderite(d)(3) 9 - FeCO3 = Fe+2 + CO3-2 - log_k -10.45 +Siderite(d)(3) 9 + FeCO3 = Fe+2 + CO3-2 + log_k -10.45 -Magnesite 10 - MgCO3 = Mg+2 + CO3-2 - log_k -8.029 +Magnesite 10 + MgCO3 = Mg+2 + CO3-2 + log_k -8.029 delta_h -6.169 kcal -Dolomite(d) 11 - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -16.54 +Dolomite(d) 11 + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -16.54 delta_h -11.09 kcal -Calcite 12 - CaCO3 = Ca+2 + CO3-2 - log_k -8.48 +Calcite 12 + CaCO3 = Ca+2 + CO3-2 + log_k -8.48 delta_h -2.297 kcal - -analytical -171.9065 -0.077993 2839.319 71.595 0.0 + -analytical -171.9065 -0.077993 2839.319 71.595 0 -Anhydrite 17 - CaSO4 = Ca+2 + SO4-2 - log_k -4.36 +Anhydrite 17 + CaSO4 = Ca+2 + SO4-2 + log_k -4.36 delta_h -1.71 kcal - -analytical 197.52 0.0 -8669.8 -69.835 0.0 + -analytical 197.52 0 -8669.8 -69.835 0 -Gypsum 18 - CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O - log_k -4.58 +Gypsum 18 + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.58 delta_h -0.109 kcal - -analytical 68.2401 0.0 -3221.51 -25.0627 0.0 + -analytical 68.2401 0 -3221.51 -25.0627 0 -Brucite 19 - Mg(OH)2 + 2H+ = Mg+2 + 2H2O - log_k 16.84 +Brucite 19 + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.84 delta_h -27.1 kcal -Chrysotile 20 - Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + H2O - log_k 32.2 +Chrysotile 20 + Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O + log_k 32.2 delta_h -46.8 kcal - -analytical 13.248 0.0 10217.1 -6.1894 0.0 + -analytical 13.248 0 10217.1 -6.1894 0 -Aragonite 21 - CaCO3 = Ca+2 + CO3-2 - log_k -8.336 +Aragonite 21 + CaCO3 = Ca+2 + CO3-2 + log_k -8.336 delta_h -2.589 kcal - -analytical -171.9773 -0.077993 2903.293 71.595 0.0 + -analytical -171.9773 -0.077993 2903.293 71.595 0 -Forsterite 27 - Mg2SiO4 + 4H+ = 2Mg+2 + H4SiO4 - log_k 28.306 +Forsterite 27 + Mg2SiO4 + 4 H+ = 2 Mg+2 + H4SiO4 + log_k 28.306 delta_h -48.578 kcal -Diopside 28 - CaMgSi2O6 + 4H+ + 2H2O = Ca+2 + Mg+2 + 2H4SiO4 - log_k 19.894 +Diopside 28 + CaMgSi2O6 + 4 H+ + 2 H2O = Ca+2 + Mg+2 + 2 H4SiO4 + log_k 19.894 delta_h -32.348 kcal -Clinoenstatite 29 - MgSiO3 + 2H+ + H2O = Mg+2 + H4SiO4 - log_k 11.342 +Clinoenstatite 29 + MgSiO3 + 2 H+ + H2O = Mg+2 + H4SiO4 + log_k 11.342 delta_h -20.049 kcal -Tremolite 31 - Ca2Mg5Si8O22(OH)2+14H+ +8H2O = 2Ca+2 +5Mg+2 +8H4SiO4 - log_k 56.574 +Tremolite 31 + Ca2Mg5Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Ca+2 + 5 Mg+2 + 8 H4SiO4 + log_k 56.574 delta_h -96.853 kcal -Sepiolite 36 - Mg2Si3O7.5OH:3H2O+0.5H2O+4H+ = 2Mg+2 +3H4SiO4 - log_k 15.76 +Sepiolite 36 + Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 + log_k 15.76 delta_h -10.7 kcal -Talc 37 - Mg3Si4O10(OH)2+4H2O+6H+=3Mg+2 +4H4SiO4 - log_k 21.399 +Talc 37 + Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 + log_k 21.399 delta_h -46.352 kcal -Hydromagnesite 38 - Mg5(CO3)4(OH)2:4H2O + 2H+ = 5Mg+2 + 4CO3-2 + 6H2O - log_k -8.762 +Hydromagnesite 38 + Mg5(CO3)4(OH)2:4H2O + 2 H+ = 5 Mg+2 + 4 CO3-2 + 6 H2O + log_k -8.762 delta_h -52.244 kcal -Adularia 39 - KAlSi3O8 + 8H2O = K+ + Al(OH)4- + 3H4SiO4 - log_k -20.573 +Adularia 39 + KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 + log_k -20.573 delta_h 30.82 kcal -Albite 40 - NaAlSi3O8 + 8H2O = Na+ + Al(OH)4- + 3H4SiO4 - log_k -18.002 +Albite 40 + NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 + log_k -18.002 delta_h 25.896 kcal -Anorthite 41 - CaAl2Si2O8 + 8H2O = Ca+2 + 2Al(OH)4- + 2H4SiO4 - log_k -19.714 +Anorthite 41 + CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 + log_k -19.714 delta_h 11.58 kcal -Analcime 42 - NaAlSi2O6:H2O + 5H2O = Na+ + Al(OH)4- + 2H4SiO4 - log_k -12.701 +Analcime 42 + NaAlSi2O6:H2O + 5 H2O = Na+ + Al(OH)4- + 2 H4SiO4 + log_k -12.701 delta_h 18.206 kcal -Kmica 43 - KAl3Si3O10(OH)2+10H+=K+ +3Al+3 +3H4SiO4 - log_k 12.703 +Kmica 43 + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 + log_k 12.703 delta_h -59.376 kcal -Phlogopite 44 - KMg3AlSi3O10(OH)2 + 10H+ = K+ + 3Mg+2 + Al+3 + 3H4SiO4 - log_k 43.3 - delta_h -42.30 kcal +Phlogopite 44 + KMg3AlSi3O10(OH)2 + 10 H+ = K+ + 3 Mg+2 + Al+3 + 3 H4SiO4 + log_k 43.3 + delta_h -42.3 kcal -Illite 45 - K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ +0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ - log_k -40.267 +Illite 45 + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ + log_k -40.267 delta_h 54.684 kcal -Kaolinite 46 - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 7.435 +Kaolinite 46 + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 7.435 delta_h -35.3 kcal -Halloysite 47 - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 12.498 - delta_h -39.920 kcal +Halloysite 47 + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 12.498 + delta_h -39.92 kcal -Beidellite 48 - (NaKMg0.5)0.11Al2.33Si3.67O10(OH)2 + 12H2O = 0.11Na+ + 0.11K+ + 0.055Mg+2 + 2.33Al(OH)4- + 3.67H4SiO4 + 2H+ - log_k -45.272 +Beidellite 48 + (NaKMg0.5)0.11Al2.33Si3.67O10(OH)2 + 12 H2O = 0.11 Na+ + 0.11 K+ + 0.055 Mg+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + log_k -45.272 delta_h 60.355 kcal -Chlorite14A 49 - Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O - log_k 68.38 +Chlorite14A 49 + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + log_k 68.38 delta_h -151.494 kcal -Alunite 50 - KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O - log_k -1.4 +Alunite 50 + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + log_k -1.4 delta_h -50.25 kcal -Gibbsite 51 - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 8.11 +Gibbsite 51 + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 8.11 delta_h -22.8 kcal -Boehmite 52 - AlOOH + 3H+ = Al+3 + 2H2O - log_k 8.584 +Boehmite 52 + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 8.584 delta_h -28.181 kcal -Pyrophyllite 53 - Al2Si4O10(OH)2 + 12H2O = 2Al(OH)4- + 4H4SiO4 + 2H+ - log_k -48.314 +Pyrophyllite 53 + Al2Si4O10(OH)2 + 12 H2O = 2 Al(OH)4- + 4 H4SiO4 + 2 H+ + log_k -48.314 -Phillipsite 54 - Na0.5K0.5AlSi3O8:H2O + 7H2O = 0.5Na+ +0.5K+ + Al(OH)4- + 3H4SiO4 - log_k -19.874 +Phillipsite 54 + Na0.5K0.5AlSi3O8:H2O + 7 H2O = 0.5 Na+ + 0.5 K+ + Al(OH)4- + 3 H4SiO4 + log_k -19.874 -Nahcolite 58 +Nahcolite 58 NaHCO3 = Na+ + HCO3- - log_k -0.548 - delta_h 3.720 kcal + log_k -0.548 + delta_h 3.72 kcal -Trona 59 - NaHCO3:Na2CO3:2H2O = 2H2O + 3Na+ + CO3-2 + HCO3- - log_k -0.795 - delta_h -18.0 kcal +Trona 59 + NaHCO3:Na2CO3:2H2O = 2 H2O + 3 Na+ + CO3-2 + HCO3- + log_k -0.795 + delta_h -18 kcal -Natron 60 - Na2CO3:10H2O = 2Na+ + CO3-2 + 10H2O - log_k -1.311 +Natron 60 + Na2CO3:10H2O = 2 Na+ + CO3-2 + 10 H2O + log_k -1.311 delta_h 15.745 kcal -Thermonatrite 61 - Na2CO3:H2O = 2Na+ + CO3-2 + H2O - log_k 0.125 +Thermonatrite 61 + Na2CO3:H2O = 2 Na+ + CO3-2 + H2O + log_k 0.125 delta_h -2.802 kcal -Fluorite 62 - CaF2 = Ca+2 + 2F- - log_k -10.6 +Fluorite 62 + CaF2 = Ca+2 + 2 F- + log_k -10.6 delta_h 4.69 kcal - -analytical 66.348 0.0 -4298.2 -25.271 0.0 + -analytical 66.348 0 -4298.2 -25.271 0 -Montmorillonite-Ca 63 - Ca0.165Al2.33Si3.67O10(OH)2 + 12H2O = 0.165Ca+2 + 2.33Al(OH)4- + 3.67H4SiO4 + 2H+ - log_k -45.027 +Montmorillonite-Ca 63 + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + log_k -45.027 delta_h 58.373 kcal -Halite 64 - NaCl = Na+ + Cl- - log_k 1.582 +Halite 64 + NaCl = Na+ + Cl- + log_k 1.582 delta_h 0.918 kcal -Thenardite 65 - Na2SO4 = 2Na+ + SO4-2 - log_k -0.179 +Thenardite 65 + Na2SO4 = 2 Na+ + SO4-2 + log_k -0.179 delta_h -0.572 kcal -Mirabilite 66 - Na2SO4:10H2O = 2Na+ + SO4-2 + 10H2O - log_k -1.114 +Mirabilite 66 + Na2SO4:10H2O = 2 Na+ + SO4-2 + 10 H2O + log_k -1.114 delta_h 18.987 kcal -Mackinawite 67 - FeS + H+ = Fe+2 + HS- - log_k -4.648 +Mackinawite 67 + FeS + H+ = Fe+2 + HS- + log_k -4.648 -Siderite 94 - FeCO3 = Fe+2 + CO3-2 - log_k -10.89 +Siderite 94 + FeCO3 = Fe+2 + CO3-2 + log_k -10.89 delta_h -2.48 kcal -Hydroxyapatite 95 - Ca5(PO4)3OH + 4H+ = 5Ca+2 + 3HPO4-2 + H2O - log_k -3.421 +Hydroxyapatite 95 + Ca5(PO4)3OH + 4 H+ = 5 Ca+2 + 3 HPO4-2 + H2O + log_k -3.421 delta_h -36.155 kcal -Fluorapatite 96 - Ca5(PO4)3F + 3H+ = 5Ca+2 + 3HPO4-2 + F- - log_k -17.6 - delta_h -20.070 kcal +Fluorapatite 96 + Ca5(PO4)3F + 3 H+ = 5 Ca+2 + 3 HPO4-2 + F- + log_k -17.6 + delta_h -20.07 kcal -Chalcedony 97 - SiO2 + 2H2O = H4SiO4 - log_k -3.55 +Chalcedony 97 + SiO2 + 2 H2O = H4SiO4 + log_k -3.55 delta_h 4.72 kcal - -analytical -0.09 0.0 -1032.0 0.0 0.0 + -analytical -0.09 0 -1032 0 0 -Magadiite 98 - NaSi7O13(OH)3:3H2O + H+ + 9H2O = Na+ + 7H4SiO4 - log_k -14.3 +Magadiite 98 + NaSi7O13(OH)3:3H2O + H+ + 9 H2O = Na+ + 7 H4SiO4 + log_k -14.3 -Cristobalite 99 - SiO2 + 2H2O = H4SiO4 - log_k -3.587 +Cristobalite 99 + SiO2 + 2 H2O = H4SiO4 + log_k -3.587 delta_h 5.5 kcal -Silicagel 100 - SiO2 + 2H2O = H4SiO4 - log_k -3.018 - delta_h 4.440 kcal +Silicagel 100 + SiO2 + 2 H2O = H4SiO4 + log_k -3.018 + delta_h 4.44 kcal -Quartz 101 - SiO2 + 2H2O = H4SiO4 - log_k -3.98 +Quartz 101 + SiO2 + 2 H2O = H4SiO4 + log_k -3.98 delta_h 5.99 kcal - -analytical 0.41 0.0 -1309.0 0.0 0.0 + -analytical 0.41 0 -1309 0 0 -Vivianite 106 - Fe3(PO4)2:8H2O = 3Fe+2 + 2PO4-3 + 8H2O - log_k -36.0 +Vivianite 106 + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + log_k -36 -Magnetite 107 - Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O - log_k 3.737 - delta_h -50.460 kcal +Magnetite 107 + Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O + log_k 3.737 + delta_h -50.46 kcal -Hematite 108 - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k -4.008 +Hematite 108 + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k -4.008 delta_h -30.845 kcal -Maghemite 109 - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k 6.386 +Maghemite 109 + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 6.386 -Goethite 110 - FeOOH + 3H+ = Fe+3 + 2H2O - log_k -1.0 - delta_h -14.48 kcal +Goethite 110 + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k -1 + delta_h -14.48 kcal -Greenalite 111 - Fe3Si2O5(OH)4 + 6H+ = 3Fe+2 + 2 H4SiO4 + H2O - log_k 20.810 +Greenalite 111 + Fe3Si2O5(OH)4 + 6 H+ = 3 Fe+2 + 2 H4SiO4 + H2O + log_k 20.81 -Fe(OH)3(a) 112 - Fe(OH)3 + 3H+ = Fe+3 + 3H2O - log_k 4.891 +Fe(OH)3(a) 112 + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 4.891 -Annite 113 - KFe3AlSi3O10(OH)2 + 10H2O = K+ + 3Fe+2 + Al(OH)4- + 3H4SiO4 + 6OH- - log_k -85.645 - delta_h 62.480 kcal +Annite 113 + KFe3AlSi3O10(OH)2 + 10 H2O = K+ + 3 Fe+2 + Al(OH)4- + 3 H4SiO4 + 6 OH- + log_k -85.645 + delta_h 62.48 kcal -Pyrite 114 - FeS2 + 2H+ + 2e- = Fe+2 + 2HS- - log_k -18.479 +Pyrite 114 + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + log_k -18.479 delta_h 11.3 kcal -Montmorillonite-BelleFourche 115 - (HNaK)0.09Mg0.29Fe0.24Al1.57Si3.93O10(OH)2 + 10H2O = 0.09H+ + 0.09Na+ + 0.09K+ + 0.29Mg+2 + 0.24Fe+3 + 1.57Al(OH)4- + 3.93H4SiO4 - log_k -34.913 +Montmorillonite-BelleFourche 115 + (HNaK)0.09Mg0.29Fe0.24Al1.57Si3.93O10(OH)2 + 10 H2O = 0.09 H+ + 0.09 Na+ + 0.09 K+ + 0.29 Mg+2 + 0.24 Fe+3 + 1.57 Al(OH)4- + 3.93 H4SiO4 + log_k -34.913 -Montmorillonite-Aberdeen 116 - (HNaK)0.14Mg0.45Fe0.33Al1.47Si3.82O10(OH)2 + 9.16H2O + 0.84H+ = 0.14H+ + 0.14Na+ + 0.14K+ + 0.45Mg+2 + 0.33Fe+3 + 1.47Al(OH)4- + 3.82H4SiO4 - log_k -29.688 +Montmorillonite-Aberdeen 116 + (HNaK)0.14Mg0.45Fe0.33Al1.47Si3.82O10(OH)2 + 9.16 H2O + 0.84 H+ = 0.14 H+ + 0.14 Na+ + 0.14 K+ + 0.45 Mg+2 + 0.33 Fe+3 + 1.47 Al(OH)4- + 3.82 H4SiO4 + log_k -29.688 -Huntite 117 - CaMg3(CO3)4 = 3Mg+2 + Ca+2 + 4CO3-2 - log_k -29.968 - delta_h -25.760 kcal +Huntite 117 + CaMg3(CO3)4 = 3 Mg+2 + Ca+2 + 4 CO3-2 + log_k -29.968 + delta_h -25.76 kcal -Greigite 118 - Fe3S4 + 4H+ = 2Fe+3 + Fe+2 + 4HS- - log_k -45.035 +Greigite 118 + Fe3S4 + 4 H+ = 2 Fe+3 + Fe+2 + 4 HS- + log_k -45.035 -FeS(ppt) 119 - FeS + H+ = Fe+2 + HS- - log_k -3.915 +FeS(ppt) 119 + FeS + H+ = Fe+2 + HS- + log_k -3.915 -Chlorite7A 125 - Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 +3H4SiO4 + 6H2O - log_k 71.752 +Chlorite7A 125 + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + log_k 71.752 delta_h -155.261 kcal -Laumontite 128 - CaAl2Si4O12:4H2O + 8H2O = Ca+2 + 2Al(OH)4- + 4H4SiO4 - log_k -30.960 - delta_h 39.610 kcal +Laumontite 128 + CaAl2Si4O12:4H2O + 8 H2O = Ca+2 + 2 Al(OH)4- + 4 H4SiO4 + log_k -30.96 + delta_h 39.61 kcal -Jarosite(ss) 133 - (K0.77Na0.03H0.2)Fe3(SO4)2(OH)6 + 5.8H+ = 0.77K+ + 0.03Na+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -9.83 # WATEQ4F, Alpers and others, 1989 +Jarosite(ss) 133 + (K0.77Na0.03H0.2)Fe3(SO4)2(OH)6 + 5.8 H+ = 0.77 K+ + 0.03 Na+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -9.83 # WATEQ4F, Alpers and others, 1989 -Mn2(SO4)3 134 - Mn2(SO4)3 = 2Mn+3 + 3SO4-2 - log_k -5.711 - delta_h -39.060 kcal +Mn2(SO4)3 134 + Mn2(SO4)3 = 2 Mn+3 + 3 SO4-2 + log_k -5.711 + delta_h -39.06 kcal -Al(OH)3(a) 140 - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 10.8 +Al(OH)3(a) 140 + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 10.8 delta_h -26.5 kcal -Prehnite 141 - Ca2Al2Si3O10(OH)2 + 8H2O + 2H+ = 2Ca+2 + 2Al(OH)4- + 3H4SiO4 - log_k -11.695 - delta_h 10.390 kcal +Prehnite 141 + Ca2Al2Si3O10(OH)2 + 8 H2O + 2 H+ = 2 Ca+2 + 2 Al(OH)4- + 3 H4SiO4 + log_k -11.695 + delta_h 10.39 kcal -Strontianite 142 - SrCO3 = Sr+2 + CO3-2 - log_k -9.271 +Strontianite 142 + SrCO3 = Sr+2 + CO3-2 + log_k -9.271 delta_h -0.4 kcal - -analytical 155.0305 0.0 -7239.594 -56.58638 0.0 + -analytical 155.0305 0 -7239.594 -56.58638 0 -Celestite 143 - SrSO4 = Sr+2 + SO4-2 - log_k -6.63 +Celestite 143 + SrSO4 = Sr+2 + SO4-2 + log_k -6.63 delta_h -1.037 kcal - -analytical -14805.9622 -2.4660924 756968.533 5436.3588 -40553604. + -analytical -14805.9622 -2.4660924 756968.533 5436.3588 -40553604 -Barite 144 - BaSO4 = Ba+2 + SO4-2 - log_k -9.97 +Barite 144 + BaSO4 = Ba+2 + SO4-2 + log_k -9.97 delta_h 6.35 kcal - -analytical 136.035 0.0 -7680.41 -48.595 0.0 + -analytical 136.035 0 -7680.41 -48.595 0 -Witherite 145 - BaCO3 = Ba+2 + CO3-2 - log_k -8.562 +Witherite 145 + BaCO3 = Ba+2 + CO3-2 + log_k -8.562 delta_h 0.703 kcal - -analytical 607.642 0.121098 -20011.25 -236.4948 0.0 + -analytical 607.642 0.121098 -20011.25 -236.4948 0 -Strengite 146 - FePO4:2H2O = Fe+3 + PO4-3 + 2H2O - log_k -26.4 - delta_h -2.030 kcal +Strengite 146 + FePO4:2H2O = Fe+3 + PO4-3 + 2 H2O + log_k -26.4 + delta_h -2.03 kcal -Leonhardite 147 - Ca2Al4Si8O24:7H2O + 17H2O = 2Ca+2 + 4Al(OH)4- + 8H4SiO4 - log_k -69.756 - delta_h 90.070 kcal +Leonhardite 147 + Ca2Al4Si8O24:7H2O + 17 H2O = 2 Ca+2 + 4 Al(OH)4- + 8 H4SiO4 + log_k -69.756 + delta_h 90.07 kcal -Nesquehonite 149 - MgCO3:3H2O = Mg+2 + CO3-2 + 3H2O - log_k -5.621 +Nesquehonite 149 + MgCO3:3H2O = Mg+2 + CO3-2 + 3 H2O + log_k -5.621 delta_h -5.789 kcal -Artinite 150 - MgCO3:Mg(OH)2:3H2O + 2H+ = 2Mg+2 + CO3-2 + 5H2O - log_k 9.6 +Artinite 150 + MgCO3:Mg(OH)2:3H2O + 2 H+ = 2 Mg+2 + CO3-2 + 5 H2O + log_k 9.6 delta_h -28.742 kcal -Sepiolite(d) 153 - Mg2Si3O7.5OH:3H2O+0.5H2O+4H+=2Mg+2 +3H4SiO4 - log_k 18.66 +Sepiolite(d) 153 + Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 + log_k 18.66 -Diaspore 154 - AlOOH + 3H+ = Al+3 + 2H2O - log_k 6.879 +Diaspore 154 + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 6.879 delta_h -24.681 kcal -Wairakite 155 - CaAl2Si4O12:2H2O + 10H2O = Ca+2 + 2Al(OH)4- + 4H4SiO4 - log_k -26.708 - delta_h 26.140 kcal +Wairakite 155 + CaAl2Si4O12:2H2O + 10 H2O = Ca+2 + 2 Al(OH)4- + 4 H4SiO4 + log_k -26.708 + delta_h 26.14 kcal -Fe(OH)2.7Cl.3 181 - Fe(OH)2.7Cl0.3 + 2.7H+ = Fe+3 + 2.7H2O + 0.3 Cl- - log_k -3.040 +Fe(OH)2.7Cl.3 181 + Fe(OH)2.7Cl0.3 + 2.7 H+ = Fe+3 + 2.7 H2O + 0.3 Cl- + log_k -3.04 -MnSO4 182 - MnSO4 = Mn+2 + SO4-2 - log_k 2.669 - delta_h -15.480 kcal +MnSO4 182 + MnSO4 = Mn+2 + SO4-2 + log_k 2.669 + delta_h -15.48 kcal -Pyrolusite 183 - MnO2 + 4H+ + 2e- = Mn+2 + 2H2O - log_k 41.38 +Pyrolusite 183 + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 41.38 delta_h -65.11 kcal -Birnessite 184 - MnO2 + 4H+ + 2e- = Mn+2 + 2H2O - log_k 43.601 +Birnessite 184 + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 43.601 -Nsutite 185 - MnO2 + 4H+ + 2e- = Mn+2 + 2H2O - log_k 42.564 +Nsutite 185 + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 42.564 -Bixbyite 186 - Mn2O3 + 6H+ = 2Mn+3 + 3H2O - log_k -0.611 +Bixbyite 186 + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.611 delta_h -15.245 kcal -Hausmannite 187 - Mn3O4 + 8H+ + 2e- = 3Mn+2 + 4H2O - log_k 61.03 +Hausmannite 187 + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + log_k 61.03 delta_h -100.64 kcal -Pyrochroite 188 - Mn(OH)2 + 2H+ = Mn+2 + 2H2O - log_k 15.2 +Pyrochroite 188 + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.2 -Manganite 189 - MnOOH + 3H+ + e- = Mn+2 + 2H2O - log_k 25.340 +Manganite 189 + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + log_k 25.34 -Rhodochrosite(d) 190 - MnCO3 = Mn+2 + CO3-2 - log_k -10.390 +Rhodochrosite(d) 190 + MnCO3 = Mn+2 + CO3-2 + log_k -10.39 -MnCl2:4H2O 191 - MnCl2:4H2O = Mn+2 + 2Cl- + 4H2O - log_k 2.710 - delta_h 17.380 kcal +MnCl2:4H2O 191 + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.71 + delta_h 17.38 kcal -MnS(Green) 192 - MnS + H+ = Mn+2 + HS- - log_k 3.8 - delta_h -5.790 kcal +MnS(Green) 192 + MnS + H+ = Mn+2 + HS- + log_k 3.8 + delta_h -5.79 kcal -Mn3(PO4)2 193 - Mn3(PO4)2 = 3Mn+2 + 2PO4-3 - log_k -23.827 - delta_h 2.120 kcal +Mn3(PO4)2 193 + Mn3(PO4)2 = 3 Mn+2 + 2 PO4-3 + log_k -23.827 + delta_h 2.12 kcal -MnHPO4 194 - MnHPO4 = Mn+2 + HPO4-2 - log_k -12.947 +MnHPO4 194 + MnHPO4 = Mn+2 + HPO4-2 + log_k -12.947 -Jarosite-Na 204 - NaFe3(SO4)2(OH)6 + 6H+ = Na+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -5.280 - delta_h -36.180 kcal +Jarosite-Na 204 + NaFe3(SO4)2(OH)6 + 6 H+ = Na+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -5.28 + delta_h -36.18 kcal -Jarosite-K 205 - KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -9.21 +Jarosite-K 205 + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -9.21 delta_h -31.28 kcal -CuMetal 223 - Cu = Cu+ + e- - log_k -8.760 - delta_h 17.130 kcal +CuMetal 223 + Cu = Cu+ + e- + log_k -8.76 + delta_h 17.13 kcal -Nantokite 224 - CuCl = Cu+ + Cl- - log_k -6.760 - delta_h 9.980 kcal +Nantokite 224 + CuCl = Cu+ + Cl- + log_k -6.76 + delta_h 9.98 kcal -CuF 225 - CuF = Cu+ + F- - log_k 7.080 - delta_h -12.370 kcal +CuF 225 + CuF = Cu+ + F- + log_k 7.08 + delta_h -12.37 kcal -Cuprite 226 - Cu2O + 2H+ = 2Cu+ + H2O - log_k -1.550 +Cuprite 226 + Cu2O + 2 H+ = 2 Cu+ + H2O + log_k -1.55 delta_h 6.245 kcal -Chalcocite 227 - Cu2S + H+ = 2Cu+ + HS- - log_k -34.619 - delta_h 49.350 kcal +Chalcocite 227 + Cu2S + H+ = 2 Cu+ + HS- + log_k -34.619 + delta_h 49.35 kcal -Cu2SO4 228 - Cu2SO4 = 2Cu+ + SO4-2 - log_k -1.950 - delta_h -4.560 kcal +Cu2SO4 228 + Cu2SO4 = 2 Cu+ + SO4-2 + log_k -1.95 + delta_h -4.56 kcal -CuprousFerrite 229 - CuFeO2 + 4H+ = Cu+ + Fe+3 + 2H2O - log_k -8.920 +CuprousFerrite 229 + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -8.92 delta_h -3.8 kcal -Melanothallite 230 - CuCl2 = Cu+2 + 2Cl- - log_k 3.730 - delta_h -12.320 kcal +Melanothallite 230 + CuCl2 = Cu+2 + 2 Cl- + log_k 3.73 + delta_h -12.32 kcal -CuCO3 231 - CuCO3 = Cu+2 + CO3-2 - log_k -9.630 +CuCO3 231 + CuCO3 = Cu+2 + CO3-2 + log_k -9.63 -CuF2 232 - CuF2 = Cu+2 + 2F- - log_k -0.620 - delta_h -13.320 kcal +CuF2 232 + CuF2 = Cu+2 + 2 F- + log_k -0.62 + delta_h -13.32 kcal -CuF2:2H2O 233 - CuF2:2H2O = Cu+2 + 2F- + 2H2O - log_k -4.550 - delta_h -3.650 kcal +CuF2:2H2O 233 + CuF2:2H2O = Cu+2 + 2 F- + 2 H2O + log_k -4.55 + delta_h -3.65 kcal -Cu(OH)2 234 - Cu(OH)2 + 2H+ = Cu+2 + 2H2O - log_k 8.640 - delta_h -15.250 kcal +Cu(OH)2 234 + Cu(OH)2 + 2 H+ = Cu+2 + 2 H2O + log_k 8.64 + delta_h -15.25 kcal -Malachite 235 - Cu2(OH)2CO3 + 3H+ = 2Cu+2 + 2H2O + HCO3- - log_k 5.150 - delta_h -19.760 kcal +Malachite 235 + Cu2(OH)2CO3 + 3 H+ = 2 Cu+2 + 2 H2O + HCO3- + log_k 5.15 + delta_h -19.76 kcal -Azurite 236 - Cu3(OH)2(CO3)2 + 4H+ = 3Cu+2 + 2H2O + 2HCO3- - log_k 3.750 - delta_h -30.870 kcal +Azurite 236 + Cu3(OH)2(CO3)2 + 4 H+ = 3 Cu+2 + 2 H2O + 2 HCO3- + log_k 3.75 + delta_h -30.87 kcal -Atacamite 237 - Cu2(OH)3Cl + 3H+ = 2Cu+2 + 3H2O + Cl- - log_k 7.340 - delta_h -18.690 kcal +Atacamite 237 + Cu2(OH)3Cl + 3 H+ = 2 Cu+2 + 3 H2O + Cl- + log_k 7.34 + delta_h -18.69 kcal -Cu2(OH)3NO3 238 - Cu2(OH)3NO3 + 3H+ = 2Cu+2 + 3H2O + NO3- - log_k 9.240 - delta_h -17.350 kcal +Cu2(OH)3NO3 238 + Cu2(OH)3NO3 + 3 H+ = 2 Cu+2 + 3 H2O + NO3- + log_k 9.24 + delta_h -17.35 kcal -Antlerite 239 - Cu3(OH)4SO4 + 4H+ = 3Cu+2 + 4H2O + SO4-2 - log_k 8.290 +Antlerite 239 + Cu3(OH)4SO4 + 4 H+ = 3 Cu+2 + 4 H2O + SO4-2 + log_k 8.29 -Brochantite 240 - Cu4(OH)6SO4 + 6H+ = 4Cu+2 + 6H2O + SO4-2 - log_k 15.340 +Brochantite 240 + Cu4(OH)6SO4 + 6 H+ = 4 Cu+2 + 6 H2O + SO4-2 + log_k 15.34 -Langite 241 - Cu4(OH)6SO4:H2O + 6H+ = 4Cu+2 + 7H2O + SO4-2 - log_k 16.790 - delta_h -39.610 kcal +Langite 241 + Cu4(OH)6SO4:H2O + 6 H+ = 4 Cu+2 + 7 H2O + SO4-2 + log_k 16.79 + delta_h -39.61 kcal -Tenorite 242 - CuO + 2H+ = Cu+2 + H2O - log_k 7.620 - delta_h -15.240 kcal +Tenorite 242 + CuO + 2 H+ = Cu+2 + H2O + log_k 7.62 + delta_h -15.24 kcal -CuOCuSO4 243 - CuO:CuSO4 + 2H+ = 2Cu+2 + H2O + SO4-2 - log_k 11.530 +CuOCuSO4 243 + CuO:CuSO4 + 2 H+ = 2 Cu+2 + H2O + SO4-2 + log_k 11.53 delta_h -35.575 kcal -Cu3(PO4)2 244 - Cu3(PO4)2 = 3Cu+2 + 2PO4-3 - log_k -36.850 +Cu3(PO4)2 244 + Cu3(PO4)2 = 3 Cu+2 + 2 PO4-3 + log_k -36.85 -Cu3(PO4)2:3H2O 245 - Cu3(PO4)2:3H2O = 3Cu+2 + 2PO4-3 + 3H2O - log_k -35.120 +Cu3(PO4)2:3H2O 245 + Cu3(PO4)2:3H2O = 3 Cu+2 + 2 PO4-3 + 3 H2O + log_k -35.12 -Covellite 246 - CuS + H+ = Cu+2 + HS- - log_k -22.270 - delta_h 24.010 kcal +Covellite 246 + CuS + H+ = Cu+2 + HS- + log_k -22.27 + delta_h 24.01 kcal -CuSO4 247 - CuSO4 = Cu+2 + SO4-2 - log_k 3.010 - delta_h -18.140 kcal +CuSO4 247 + CuSO4 = Cu+2 + SO4-2 + log_k 3.01 + delta_h -18.14 kcal -Chalcanthite 248 - CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O - log_k -2.640 - delta_h 1.440 kcal +Chalcanthite 248 + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.64 + delta_h 1.44 kcal -CupricFerrite 249 - CuFe2O4 + 8H+ = Cu+2 + 2Fe+3 + 4H2O - log_k 5.880 - delta_h -38.690 kcal +CupricFerrite 249 + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 5.88 + delta_h -38.69 kcal -Chalcopyrite 250 - CuFeS2 + 2H+ = Cu+2 + Fe+2 + 2HS- - log_k -35.270 - delta_h 35.480 kcal +Chalcopyrite 250 + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -35.27 + delta_h 35.48 kcal -ZnMetal 265 - Zn = Zn+2 + 2e- - log_k 25.757 - delta_h -36.780 kcal +ZnMetal 265 + Zn = Zn+2 + 2 e- + log_k 25.757 + delta_h -36.78 kcal -Zn(BO2)2 266 - Zn(BO2)2 + 2H2O + 2H+ = Zn+2 + 2H3BO3 - log_k 8.290 +Zn(BO2)2 266 + Zn(BO2)2 + 2 H2O + 2 H+ = Zn+2 + 2 H3BO3 + log_k 8.29 -ZnCl2 267 - ZnCl2 = Zn+2 + 2Cl- - log_k 7.030 - delta_h -17.480 kcal +ZnCl2 267 + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.03 + delta_h -17.48 kcal -Smithsonite 268 - ZnCO3 = Zn+2 + CO3-2 - log_k -10.0 +Smithsonite 268 + ZnCO3 = Zn+2 + CO3-2 + log_k -10 delta_h -4.36 kcal -ZnCO3:H2O 269 - ZnCO3:H2O = Zn+2 + CO3-2 + H2O - log_k -10.260 +ZnCO3:H2O 269 + ZnCO3:H2O = Zn+2 + CO3-2 + H2O + log_k -10.26 -ZnF2 270 - ZnF2 = Zn+2 + 2F- - log_k -1.520 - delta_h -13.080 kcal +ZnF2 270 + ZnF2 = Zn+2 + 2 F- + log_k -1.52 + delta_h -13.08 kcal -Zn(OH)2-a 271 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.450 +Zn(OH)2-a 271 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.45 -Zn(OH)2-c 272 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.2 +Zn(OH)2-c 272 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.2 -Zn(OH)2-b 273 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.750 +Zn(OH)2-b 273 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.75 -Zn(OH)2-g 274 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.710 +Zn(OH)2-g 274 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.71 -Zn(OH)2-e 275 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.5 +Zn(OH)2-e 275 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.5 -Zn2(OH)3Cl 276 - Zn2(OH)3Cl + 3H+= 2Zn+2 + 3H2O + Cl- - log_k 15.2 +Zn2(OH)3Cl 276 + Zn2(OH)3Cl + 3 H+ = 2 Zn+2 + 3 H2O + Cl- + log_k 15.2 -Zn5(OH)8Cl2 277 - Zn5(OH)8Cl2 + 8H+ = 5Zn+2 + 8H2O + 2Cl- - log_k 38.5 +Zn5(OH)8Cl2 277 + Zn5(OH)8Cl2 + 8 H+ = 5 Zn+2 + 8 H2O + 2 Cl- + log_k 38.5 -Zn2(OH)2SO4 278 - Zn2(OH)2SO4 + 2H+ = 2Zn+2 + 2H2O + SO4-2 - log_k 7.5 +Zn2(OH)2SO4 278 + Zn2(OH)2SO4 + 2 H+ = 2 Zn+2 + 2 H2O + SO4-2 + log_k 7.5 -Zn4(OH)6SO4 279 - Zn4(OH)6SO4 + 6H+ = 4Zn+2 + 6H2O + SO4-2 - log_k 28.4 +Zn4(OH)6SO4 279 + Zn4(OH)6SO4 + 6 H+ = 4 Zn+2 + 6 H2O + SO4-2 + log_k 28.4 -Zn(NO3)2:6H2O 280 - Zn(NO3)2:6H2O = Zn+2 + 2NO3- + 6H2O - log_k 3.440 - delta_h 5.510 kcal +Zn(NO3)2:6H2O 280 + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.44 + delta_h 5.51 kcal -ZnO(a) 281 - ZnO + 2H+ = Zn+2 + H2O - log_k 11.310 +ZnO(a) 281 + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.31 -Zincite(c) 282 - ZnO + 2H+ = Zn+2 + H2O - log_k 11.140 - delta_h -21.860 kcal +Zincite(c) 282 + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.14 + delta_h -21.86 kcal -Zn3O(SO4)2 283 - ZnO:2ZnSO4 + 2H+ = 3Zn+2 + 2SO4-2 + H2O - log_k 19.020 - delta_h -62.0 kcal +Zn3O(SO4)2 283 + ZnO:2ZnSO4 + 2 H+ = 3 Zn+2 + 2 SO4-2 + H2O + log_k 19.02 + delta_h -62 kcal -Zn3(PO4)2:4w 284 - Zn3(PO4)2:4H2O = 3Zn+2 + 2PO4-3 + 4H2O - log_k -32.040 +Zn3(PO4)2:4w 284 + Zn3(PO4)2:4H2O = 3 Zn+2 + 2 PO4-3 + 4 H2O + log_k -32.04 -ZnS(a) 285 - ZnS + H+ = Zn+2 + HS- - log_k -9.052 - delta_h 3.670 kcal +ZnS(a) 285 + ZnS + H+ = Zn+2 + HS- + log_k -9.052 + delta_h 3.67 kcal -Sphalerite 286 - ZnS + H+ = Zn+2 + HS- - log_k -11.618 +Sphalerite 286 + ZnS + H+ = Zn+2 + HS- + log_k -11.618 delta_h 8.25 kcal -Wurtzite 287 - ZnS + H+ = Zn+2 + HS- - log_k -9.682 - delta_h 5.060 kcal +Wurtzite 287 + ZnS + H+ = Zn+2 + HS- + log_k -9.682 + delta_h 5.06 kcal -ZnSiO3 288 - ZnSiO3 + 2H+ + H2O = Zn+2 + H4SiO4 - log_k 2.930 - delta_h -18.270 kcal +ZnSiO3 288 + ZnSiO3 + 2 H+ + H2O = Zn+2 + H4SiO4 + log_k 2.93 + delta_h -18.27 kcal -Willemite 289 - Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - log_k 15.33 +Willemite 289 + Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 + log_k 15.33 delta_h -33.37 kcal -Zincosite 290 - ZnSO4 = Zn+2 + SO4-2 - log_k 3.010 +Zincosite 290 + ZnSO4 = Zn+2 + SO4-2 + log_k 3.01 delta_h -19.2 kcal -ZnSO4:H2O 291 - ZnSO4:H2O = Zn+2 + SO4-2 + H2O - log_k -0.570 - delta_h -10.640 kcal +ZnSO4:H2O 291 + ZnSO4:H2O = Zn+2 + SO4-2 + H2O + log_k -0.57 + delta_h -10.64 kcal -Bianchite 292 - ZnSO4:6H2O = Zn+2 + SO4-2 + 6H2O - log_k -1.765 - delta_h -0.160 kcal +Bianchite 292 + ZnSO4:6H2O = Zn+2 + SO4-2 + 6 H2O + log_k -1.765 + delta_h -0.16 kcal -Goslarite 293 - ZnSO4:7H2O = Zn+2 + SO4-2 + 7H2O - log_k -1.960 +Goslarite 293 + ZnSO4:7H2O = Zn+2 + SO4-2 + 7 H2O + log_k -1.96 delta_h 3.3 kcal -CdMetal 312 - Cd = Cd+2 + 2e- - log_k 13.490 - delta_h -18.0 kcal +CdMetal 312 + Cd = Cd+2 + 2 e- + log_k 13.49 + delta_h -18 kcal -Cd(gamma) 313 - Cd = Cd+2 + 2e- - log_k 13.590 - delta_h -18.140 kcal +Cd(gamma) 313 + Cd = Cd+2 + 2 e- + log_k 13.59 + delta_h -18.14 kcal -Cd(BO2)2 314 - Cd(BO2)2 + 2H2O + 2H+ = Cd+2 + 2H3BO3 - log_k 9.840 +Cd(BO2)2 314 + Cd(BO2)2 + 2 H2O + 2 H+ = Cd+2 + 2 H3BO3 + log_k 9.84 -Otavite 315 - CdCO3 = Cd+2 + CO3-2 - log_k -12.1 +Otavite 315 + CdCO3 = Cd+2 + CO3-2 + log_k -12.1 delta_h -0.019 kcal -CdCl2 316 - CdCl2 = Cd+2 + 2Cl- - log_k -0.68 +CdCl2 316 + CdCl2 = Cd+2 + 2 Cl- + log_k -0.68 delta_h -4.47 kcal -CdCl2:H2O 317 - CdCl2:H2O = Cd+2 + 2Cl- + H2O - log_k -1.71 +CdCl2:H2O 317 + CdCl2:H2O = Cd+2 + 2 Cl- + H2O + log_k -1.71 delta_h -1.82 kcal -CdCl2:2.5H2O 318 - CdCl2:2.5H2O = Cd+2 + 2Cl- + 2.5H2O - log_k -1.940 - delta_h 1.710 kcal +CdCl2:2.5H2O 318 + CdCl2:2.5H2O = Cd+2 + 2 Cl- + 2.5 H2O + log_k -1.94 + delta_h 1.71 kcal -CdF2 319 - CdF2 = Cd+2 + 2F- - log_k -2.980 - delta_h -9.720 kcal +CdF2 319 + CdF2 = Cd+2 + 2 F- + log_k -2.98 + delta_h -9.72 kcal -Cd(OH)2(a) 320 - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.730 - delta_h -20.770 kcal +Cd(OH)2(a) 320 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.73 + delta_h -20.77 kcal -Cd(OH)2 321 - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.65 +Cd(OH)2 321 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.65 -CdOHCl 322 - CdOHCl + H+ = Cd+2 + H2O + Cl- - log_k 3.520 +CdOHCl 322 + CdOHCl + H+ = Cd+2 + H2O + Cl- + log_k 3.52 delta_h -7.407 kcal -Cd3(OH)4SO4 323 - Cd3(OH)4SO4 + 4H+ = 3Cd+2 + 4H2O + SO4-2 - log_k 22.560 +Cd3(OH)4SO4 323 + Cd3(OH)4SO4 + 4 H+ = 3 Cd+2 + 4 H2O + SO4-2 + log_k 22.56 -Cd3(OH)2(SO4)2 324 - Cd3(OH)2(SO4)2 + 2H+ = 3Cd+2 + 2H2O + 2SO4-2 - log_k 6.710 +Cd3(OH)2(SO4)2 324 + Cd3(OH)2(SO4)2 + 2 H+ = 3 Cd+2 + 2 H2O + 2 SO4-2 + log_k 6.71 -Cd4(OH)6SO4 325 - Cd4(OH)6SO4 + 6H+ = 4Cd+2 + 6H2O + SO4-2 - log_k 28.4 +Cd4(OH)6SO4 325 + Cd4(OH)6SO4 + 6 H+ = 4 Cd+2 + 6 H2O + SO4-2 + log_k 28.4 -Monteponite 326 - CdO + 2H+ = Cd+2 + H2O - log_k 13.770 - delta_h -24.760 kcal +Monteponite 326 + CdO + 2 H+ = Cd+2 + H2O + log_k 13.77 + delta_h -24.76 kcal -Cd3(PO4)2 327 - Cd3(PO4)2 = 3Cd+2 + 2PO4-3 - log_k -32.6 +Cd3(PO4)2 327 + Cd3(PO4)2 = 3 Cd+2 + 2 PO4-3 + log_k -32.6 -CdSiO3 328 - CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - log_k 9.06 +CdSiO3 328 + CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 + log_k 9.06 delta_h -16.63 kcal -CdSO4 329 - CdSO4 = Cd+2 + SO4-2 - log_k -0.1 +CdSO4 329 + CdSO4 = Cd+2 + SO4-2 + log_k -0.1 delta_h -14.74 kcal -CdSO4:H2O 330 - CdSO4:H2O = Cd+2 + SO4-2 + H2O - log_k -1.657 - delta_h -7.520 kcal +CdSO4:H2O 330 + CdSO4:H2O = Cd+2 + SO4-2 + H2O + log_k -1.657 + delta_h -7.52 kcal -CdSO4:2.7H2O 331 - CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67H2O - log_k -1.873 +CdSO4:2.7H2O 331 + CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67 H2O + log_k -1.873 delta_h -4.3 kcal -Greenockite 332 - CdS + H+ = Cd+2 + HS- - log_k -15.930 - delta_h 16.360 kcal +Greenockite 332 + CdS + H+ = Cd+2 + HS- + log_k -15.93 + delta_h 16.36 kcal -JarositeH 337 - (H3O)Fe3(SO4)2(OH)6 + 5H+ = 3Fe+3 + 2SO4-2 + 7H2O - log_k -5.390 - delta_h -55.150 kcal +JarositeH 337 + (H3O)Fe3(SO4)2(OH)6 + 5 H+ = 3 Fe+3 + 2 SO4-2 + 7 H2O + log_k -5.39 + delta_h -55.15 kcal -AlumK 338 - KAl(SO4)2:12H2O = K+ + Al+3 + 2SO4-2 + 12H2O - log_k -5.170 - delta_h 7.220 kcal +AlumK 338 + KAl(SO4)2:12H2O = K+ + Al+3 + 2 SO4-2 + 12 H2O + log_k -5.17 + delta_h 7.22 kcal -Melanterite 339 - FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O - log_k -2.209 +Melanterite 339 + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.209 delta_h 4.91 kcal - -analytical 1.447 -0.004153 0.0 0.0 -214949.0 + -analytical 1.447 -0.004153 0 0 -214949 -Epsomite 340 - MgSO4:7H2O = Mg+2 + SO4-2 + 7H2O - log_k -2.140 - delta_h 2.820 kcal +Epsomite 340 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -2.14 + delta_h 2.82 kcal -PbMetal 360 - Pb = Pb+2 + 2e- - log_k 4.270 +PbMetal 360 + Pb = Pb+2 + 2 e- + log_k 4.27 delta_h 0.4 kcal -Pb(BO2)2 361 - Pb(BO2)2 + 2H2O + 2H+ = Pb+2 + 2H3BO3 - log_k 7.610 +Pb(BO2)2 361 + Pb(BO2)2 + 2 H2O + 2 H+ = Pb+2 + 2 H3BO3 + log_k 7.61 delta_h -5.8 kcal -Cotunnite 362 - PbCl2 = Pb+2 + 2Cl- - log_k -4.770 +Cotunnite 362 + PbCl2 = Pb+2 + 2 Cl- + log_k -4.77 delta_h 5.6 kcal -Matlockite 363 - PbClF = Pb+2 + Cl- + F- - log_k -9.430 - delta_h 7.950 kcal +Matlockite 363 + PbClF = Pb+2 + Cl- + F- + log_k -9.43 + delta_h 7.95 kcal -Phosgenite 364 - PbCl2:PbCO3 = 2Pb+2 + 2Cl- + CO3-2 - log_k -19.810 +Phosgenite 364 + PbCl2:PbCO3 = 2 Pb+2 + 2 Cl- + CO3-2 + log_k -19.81 -Cerrusite 365 - PbCO3 = Pb+2 + CO3-2 - log_k -13.13 +Cerrusite 365 + PbCO3 = Pb+2 + CO3-2 + log_k -13.13 delta_h 4.86 kcal -PbF2 366 - PbF2 = Pb+2 + 2F- - log_k -7.440 +PbF2 366 + PbF2 = Pb+2 + 2 F- + log_k -7.44 delta_h -0.7 kcal -Massicot 367 - PbO + 2H+ = Pb+2 + H2O - log_k 12.910 - delta_h -16.780 kcal +Massicot 367 + PbO + 2 H+ = Pb+2 + H2O + log_k 12.91 + delta_h -16.78 kcal -Litharge 368 - PbO + 2H+ = Pb+2 + H2O - log_k 12.720 - delta_h -16.380 kcal +Litharge 368 + PbO + 2 H+ = Pb+2 + H2O + log_k 12.72 + delta_h -16.38 kcal -PbO:0.3H2O 369 - PbO:0.33H2O + 2H+ = Pb+2 + 1.33H2O - log_k 12.980 +PbO:0.3H2O 369 + PbO:0.33H2O + 2 H+ = Pb+2 + 1.33 H2O + log_k 12.98 -Pb2OCO3 370 - PbO:PbCO3 + 2H+ = 2Pb+2 + CO3-2 + H2O - log_k -0.5 - delta_h -11.460 kcal +Pb2OCO3 370 + PbO:PbCO3 + 2 H+ = 2 Pb+2 + CO3-2 + H2O + log_k -0.5 + delta_h -11.46 kcal -Larnakite 371 - PbO:PbSO4 + 2H+ = 2Pb+2 + SO4-2 + H2O - log_k -0.280 - delta_h -6.440 kcal +Larnakite 371 + PbO:PbSO4 + 2 H+ = 2 Pb+2 + SO4-2 + H2O + log_k -0.28 + delta_h -6.44 kcal -Pb3O2SO4 372 - PbSO4:2PbO + 4H+ = 3Pb+2 + SO4-2 + 2H2O - log_k 10.4 - delta_h -20.750 kcal +Pb3O2SO4 372 + PbSO4:2PbO + 4 H+ = 3 Pb+2 + SO4-2 + 2 H2O + log_k 10.4 + delta_h -20.75 kcal -Pb4O3SO4 373 - PbSO4:3PbO + 6H+ = 4Pb+2 + SO4-2 + 3H2O - log_k 22.1 - delta_h -35.070 kcal +Pb4O3SO4 373 + PbSO4:3PbO + 6 H+ = 4 Pb+2 + SO4-2 + 3 H2O + log_k 22.1 + delta_h -35.07 kcal -PbHPO4 374 - PbHPO4 = Pb+2 + HPO4-2 - log_k -11.460 - delta_h 7.040 kcal +PbHPO4 374 + PbHPO4 = Pb+2 + HPO4-2 + log_k -11.46 + delta_h 7.04 kcal -Pb3(PO4)2 375 - Pb3(PO4)2 + 2H+ = 3Pb+2 + 2HPO4-2 - log_k -19.670 - delta_h -1.670 kcal +Pb3(PO4)2 375 + Pb3(PO4)2 + 2 H+ = 3 Pb+2 + 2 HPO4-2 + log_k -19.67 + delta_h -1.67 kcal -Clpyromorphite 376 - Pb5(PO4)3Cl = 5Pb+2 + 3PO4-3 + Cl- - log_k -84.430 +Clpyromorphite 376 + Pb5(PO4)3Cl = 5 Pb+2 + 3 PO4-3 + Cl- + log_k -84.43 -Hxypyromorphite 377 - Pb5(PO4)3OH + H+ = 5Pb+2 + 3PO4-3 + H2O - log_k -62.790 +Hxypyromorphite 377 + Pb5(PO4)3OH + H+ = 5 Pb+2 + 3 PO4-3 + H2O + log_k -62.79 -Pb3O2CO3 378 - PbCO3:2PbO + 4H+ = 3Pb+2 + CO3-2 + 2H2O - log_k 11.020 - delta_h -26.430 kcal +Pb3O2CO3 378 + PbCO3:2PbO + 4 H+ = 3 Pb+2 + CO3-2 + 2 H2O + log_k 11.02 + delta_h -26.43 kcal -Plumbogummite 379 - PbAl3(PO4)2(OH)5:H2O + 5H+ = Pb+2 + 3Al+3 + 2PO4-3 + 6H2O - log_k -32.790 +Plumbogummite 379 + PbAl3(PO4)2(OH)5:H2O + 5 H+ = Pb+2 + 3 Al+3 + 2 PO4-3 + 6 H2O + log_k -32.79 -Hinsdalite 380 - PbAl3PO4SO4(OH)6 + 6H+ = Pb+2 + 3Al+3 + PO4-3 + SO4-2 + 6H2O - log_k -2.5 +Hinsdalite 380 + PbAl3PO4SO4(OH)6 + 6 H+ = Pb+2 + 3 Al+3 + PO4-3 + SO4-2 + 6 H2O + log_k -2.5 -Tsumebite 381 - Pb2CuPO4(OH)3:3H2O + 3H+ = 2Pb+2 + Cu+2 + PO4-3 + 6H2O - log_k -9.790 +Tsumebite 381 + Pb2CuPO4(OH)3:3H2O + 3 H+ = 2 Pb+2 + Cu+2 + PO4-3 + 6 H2O + log_k -9.79 -PbSiO3 382 - PbSiO3 + H2O + 2H+ = Pb+2 + H4SiO4 - log_k 7.320 - delta_h -9.260 kcal +PbSiO3 382 + PbSiO3 + H2O + 2 H+ = Pb+2 + H4SiO4 + log_k 7.32 + delta_h -9.26 kcal -Pb2SiO4 383 - Pb2SiO4 + 4H+ = 2Pb+2 + H4SiO4 - log_k 19.760 - delta_h -26.0 kcal +Pb2SiO4 383 + Pb2SiO4 + 4 H+ = 2 Pb+2 + H4SiO4 + log_k 19.76 + delta_h -26 kcal -Anglesite 384 - PbSO4 = Pb+2 + SO4-2 - log_k -7.79 +Anglesite 384 + PbSO4 = Pb+2 + SO4-2 + log_k -7.79 delta_h 2.15 kcal -Galena 385 - PbS + H+ = Pb+2 + HS- - log_k -12.780 +Galena 385 + PbS + H+ = Pb+2 + HS- + log_k -12.78 delta_h 19.4 kcal -Plattnerite 386 - PbO2 + 4H+ + 2e- = Pb+2 + 2H2O - log_k 49.3 - delta_h -70.730 kcal +Plattnerite 386 + PbO2 + 4 H+ + 2 e- = Pb+2 + 2 H2O + log_k 49.3 + delta_h -70.73 kcal -Pb2O3 387 - Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2O - log_k 61.040 +Pb2O3 387 + Pb2O3 + 6 H+ + 2 e- = 2 Pb+2 + 3 H2O + log_k 61.04 -Minium 388 - Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2O - log_k 73.690 - delta_h -102.760 kcal +Minium 388 + Pb3O4 + 8 H+ + 2 e- = 3 Pb+2 + 4 H2O + log_k 73.69 + delta_h -102.76 kcal -Pb(OH)2 389 - Pb(OH)2 + 2H+ = Pb+2 + 2H2O - log_k 8.15 +Pb(OH)2 389 + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + log_k 8.15 delta_h -13.99 kcal -Laurionite 390 - PbOHCl + H+ = Pb+2 + Cl- + H2O - log_k 0.623 +Laurionite 390 + PbOHCl + H+ = Pb+2 + Cl- + H2O + log_k 0.623 -Pb2(OH)3Cl 391 - Pb2(OH)3Cl + 3H+ = 2Pb+2 + 3H2O + Cl- - log_k 8.793 +Pb2(OH)3Cl 391 + Pb2(OH)3Cl + 3 H+ = 2 Pb+2 + 3 H2O + Cl- + log_k 8.793 -Hydrocerrusite 392 - Pb(OH)2:2PbCO3 + 2H+ = 3Pb+2 + 2CO3-2 + 2H2O - log_k -17.460 +Hydrocerrusite 392 + Pb(OH)2:2PbCO3 + 2 H+ = 3 Pb+2 + 2 CO3-2 + 2 H2O + log_k -17.46 -Pb2O(OH)2 393 - PbO:Pb(OH)2 + 4H+ = 2Pb+2 + 3H2O - log_k 26.2 +Pb2O(OH)2 393 + PbO:Pb(OH)2 + 4 H+ = 2 Pb+2 + 3 H2O + log_k 26.2 -Pb4(OH)6SO4 394 - Pb4(OH)6SO4 + 6H+ = 4Pb+2 + SO4-2 + 6H2O - log_k 21.1 +Pb4(OH)6SO4 394 + Pb4(OH)6SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 6 H2O + log_k 21.1 -SiO2(a) 395 - SiO2 + 2H2O = H4SiO4 - log_k -2.71 +SiO2(a) 395 + SiO2 + 2 H2O = H4SiO4 + log_k -2.71 delta_h 3.34 kcal - -analytical -0.26 0.0 -731.0 0.0 0.0 + -analytical -0.26 0 -731 0 0 -FCO3Apatite 396 - Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48F- - log_k -114.4 - delta_h 39.390 kcal +FCO3Apatite 396 + Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316 Ca+2 + 0.36 Na+ + 0.144 Mg+2 + 4.8 PO4-3 + 1.2 CO3-2 + 2.48 F- + log_k -114.4 + delta_h 39.39 kcal -BaF2 398 - BaF2 = Ba+2 + 2F- - log_k -5.760 - delta_h 1.0 kcal +BaF2 398 + BaF2 = Ba+2 + 2 F- + log_k -5.76 + delta_h 1 kcal -SrF2 399 - SrF2 = Sr+2 + 2F- - log_k -8.540 - delta_h 1.250 kcal +SrF2 399 + SrF2 = Sr+2 + 2 F- + log_k -8.54 + delta_h 1.25 kcal -Dolomite 401 - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -17.09 +Dolomite 401 + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17.09 delta_h -9.436 kcal -Sulfur 402 - S + 2e- = S-2 - log_k -15.026 +Sulfur 402 + S + 2 e- = S-2 + log_k -15.026 delta_h 7.9 kcal -NiCO3 410 - NiCO3 = Ni+2 + CO3-2 - log_k -6.840 - delta_h -9.940 kcal +NiCO3 410 + NiCO3 = Ni+2 + CO3-2 + log_k -6.84 + delta_h -9.94 kcal -Ni(OH)2 411 - Ni(OH)2 + 2H+ = Ni+2 + 2H2O - log_k 10.8 - delta_h 30.450 kcal +Ni(OH)2 411 + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 10.8 + delta_h 30.45 kcal -Ni4(OH)6SO4 412 - Ni4(OH)6SO4 + 6H+ = 4Ni+2 + SO4-2 + 6H2O - log_k 32.0 +Ni4(OH)6SO4 412 + Ni4(OH)6SO4 + 6 H+ = 4 Ni+2 + SO4-2 + 6 H2O + log_k 32 -Bunsenite 413 - NiO + 2H+ = Ni+2 + H2O - log_k 12.450 - delta_h -23.920 kcal +Bunsenite 413 + NiO + 2 H+ = Ni+2 + H2O + log_k 12.45 + delta_h -23.92 kcal -Ni3(PO4)2 414 - Ni3(PO4)2 = 3Ni+2 + 2PO4-3 - log_k -31.3 +Ni3(PO4)2 414 + Ni3(PO4)2 = 3 Ni+2 + 2 PO4-3 + log_k -31.3 -Millerite 415 - NiS + H+ = Ni+2 + HS- - log_k -8.042 +Millerite 415 + NiS + H+ = Ni+2 + HS- + log_k -8.042 delta_h 2.5 kcal -Retgersite 416 - NiSO4:6H2O = Ni+2 + SO4-2 + 6H2O - log_k -2.040 +Retgersite 416 + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.04 delta_h 1.1 kcal -Morenosite 417 - NiSO4:7H2O = Ni+2 + SO4-2 + 7H2O - log_k -2.360 - delta_h 2.940 kcal +Morenosite 417 + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.36 + delta_h 2.94 kcal -Ni2SiO4 418 - Ni2SiO4 + 4H+ = 2Ni+2 + H4SiO4 - log_k 14.540 - delta_h -33.360 kcal +Ni2SiO4 418 + Ni2SiO4 + 4 H+ = 2 Ni+2 + H4SiO4 + log_k 14.54 + delta_h -33.36 kcal -Fe3(OH)8 419 - Fe3(OH)8 + 8H+ = 2Fe+3 + Fe+2 + 8H2O - log_k 20.222 +Fe3(OH)8 419 + Fe3(OH)8 + 8 H+ = 2 Fe+3 + Fe+2 + 8 H2O + log_k 20.222 -Dioptase 420 - CuSiO3:H2O + 2H+ = Cu+2 + H4SiO4 - log_k 6.5 - delta_h -8.960 kcal +Dioptase 420 + CuSiO3:H2O + 2 H+ = Cu+2 + H4SiO4 + log_k 6.5 + delta_h -8.96 kcal -AgMetal 437 - Ag = Ag+ + e- - log_k -13.510 +AgMetal 437 + Ag = Ag+ + e- + log_k -13.51 delta_h 25.234 kcal -Bromyrite 438 - AgBr = Ag+ + Br- - log_k -12.270 - delta_h 20.170 kcal +Bromyrite 438 + AgBr = Ag+ + Br- + log_k -12.27 + delta_h 20.17 kcal -Cerargyrite 439 - AgCl = Ag+ + Cl- - log_k -9.750 +Cerargyrite 439 + AgCl = Ag+ + Cl- + log_k -9.75 delta_h 15.652 kcal -Ag2CO3 440 - Ag2CO3 = 2Ag+ + CO3-2 - log_k -11.070 - delta_h 9.530 kcal +Ag2CO3 440 + Ag2CO3 = 2 Ag+ + CO3-2 + log_k -11.07 + delta_h 9.53 kcal -AgF:4H2O 441 - AgF:4H2O = Ag+ + F- + 4H2O - log_k 0.550 - delta_h 4.270 kcal +AgF:4H2O 441 + AgF:4H2O = Ag+ + F- + 4 H2O + log_k 0.55 + delta_h 4.27 kcal -Iodyrite 442 - AgI = Ag+ + I- - log_k -16.070 - delta_h 26.820 kcal +Iodyrite 442 + AgI = Ag+ + I- + log_k -16.07 + delta_h 26.82 kcal -Ag2O 443 - Ag2O + 2H+ = 2Ag+ + H2O - log_k 12.580 - delta_h -10.430 kcal +Ag2O 443 + Ag2O + 2 H+ = 2 Ag+ + H2O + log_k 12.58 + delta_h -10.43 kcal -Ag3PO4 444 - Ag3PO4 = 3Ag+ + PO4-3 - log_k -17.550 +Ag3PO4 444 + Ag3PO4 = 3 Ag+ + PO4-3 + log_k -17.55 -Acanthite 445 - Ag2S + H+ = 2Ag+ + HS- - log_k -36.050 +Acanthite 445 + Ag2S + H+ = 2 Ag+ + HS- + log_k -36.05 delta_h 53.3 kcal -Ag2SO4 446 - Ag2SO4 = 2Ag+ + SO4-2 - log_k -4.920 - delta_h 4.250 kcal +Ag2SO4 446 + Ag2SO4 = 2 Ag+ + SO4-2 + log_k -4.92 + delta_h 4.25 kcal -CuBr 459 - CuBr = Cu+ + Br- - log_k -8.210 - delta_h 13.080 kcal +CuBr 459 + CuBr = Cu+ + Br- + log_k -8.21 + delta_h 13.08 kcal -CuI 460 - CuI = Cu+ + I- - log_k -11.890 - delta_h 20.140 kcal +CuI 460 + CuI = Cu+ + I- + log_k -11.89 + delta_h 20.14 kcal -ZnBr2:2H2O 461 - ZnBr2:2H2O = Zn+2 + 2Br- + 2H2O - log_k 5.210 - delta_h -7.510 kcal +ZnBr2:2H2O 461 + ZnBr2:2H2O = Zn+2 + 2 Br- + 2 H2O + log_k 5.21 + delta_h -7.51 kcal -ZnI2 462 - ZnI2 = Zn+2 + 2I- - log_k 7.230 - delta_h -13.440 kcal +ZnI2 462 + ZnI2 = Zn+2 + 2 I- + log_k 7.23 + delta_h -13.44 kcal -CdBr2:4H2O 463 - CdBr2:4H2O = Cd+2 + 2Br- + 4H2O - log_k -2.420 - delta_h 7.230 kcal +CdBr2:4H2O 463 + CdBr2:4H2O = Cd+2 + 2 Br- + 4 H2O + log_k -2.42 + delta_h 7.23 kcal -CdI2 464 - CdI2 = Cd+2 + 2I- - log_k -3.610 - delta_h 4.080 kcal +CdI2 464 + CdI2 = Cd+2 + 2 I- + log_k -3.61 + delta_h 4.08 kcal -PbBr2 465 - PbBr2 = Pb+2 + 2Br- - log_k -5.180 +PbBr2 465 + PbBr2 = Pb+2 + 2 Br- + log_k -5.18 delta_h 8.1 kcal -PbBrF 466 - PbBrF = Pb+2 + Br- + F- - log_k -8.490 +PbBrF 466 + PbBrF = Pb+2 + Br- + F- + log_k -8.49 -PbI2 467 - PbI2 = Pb+2 + 2I- - log_k -8.070 - delta_h 15.160 kcal +PbI2 467 + PbI2 = Pb+2 + 2 I- + log_k -8.07 + delta_h 15.16 kcal -Jurbanite 471 - AlOHSO4 + H+ = Al+3 + SO4-2 + H2O - log_k -3.230 +Jurbanite 471 + AlOHSO4 + H+ = Al+3 + SO4-2 + H2O + log_k -3.23 -Basaluminite 472 - Al4(OH)10SO4 + 10H+ = 4Al+3 + SO4-2 + 10H2O - log_k 22.7 +Basaluminite 472 + Al4(OH)10SO4 + 10 H+ = 4 Al+3 + SO4-2 + 10 H2O + log_k 22.7 -As_native 557 - As + 3H2O = H3AsO3 + 3H+ + 3e- - log_k -12.532 - delta_h 115.131 kJ +As_native 557 + As + 3 H2O = H3AsO3 + 3 H+ + 3 e- + log_k -12.532 + delta_h 115.131 kJ -As2O5(cr) 488 - As2O5 + 3H2O = 2H3AsO4 - log_k 8.228 - delta_h -31.619 kJ +As2O5(cr) 488 + As2O5 + 3 H2O = 2 H3AsO4 + log_k 8.228 + delta_h -31.619 kJ -AlAsO4:2H2O 489 - AlAsO4:2H2O = Al+3 + AsO4-3 + 2H2O - log_k -15.837 +AlAsO4:2H2O 489 + AlAsO4:2H2O = Al+3 + AsO4-3 + 2 H2O + log_k -15.837 -Ca3(AsO4)2:4w 490 - Ca3(AsO4)2:4H2O = 3Ca+2 + 2AsO4-3 + 4H2O - log_k -18.905 +Ca3(AsO4)2:4w 490 + Ca3(AsO4)2:4H2O = 3 Ca+2 + 2 AsO4-3 + 4 H2O + log_k -18.905 -Cu3(AsO4)2:6w 491 - Cu3(AsO4)2:6H2O = 3Cu+2 + 2AsO4-3 + 6H2O - log_k -35.123 +Cu3(AsO4)2:6w 491 + Cu3(AsO4)2:6H2O = 3 Cu+2 + 2 AsO4-3 + 6 H2O + log_k -35.123 -Scorodite 492 - FeAsO4:2H2O = Fe+3 + AsO4-3 + 2H2O - log_k -20.249 +Scorodite 492 + FeAsO4:2H2O = Fe+3 + AsO4-3 + 2 H2O + log_k -20.249 -Mn3(AsO4)2:8H2O 493 - Mn3(AsO4)2:8H2O = 3Mn+2 + 2AsO4-3 + 8H2O - log_k -28.707 +Mn3(AsO4)2:8H2O 493 + Mn3(AsO4)2:8H2O = 3 Mn+2 + 2 AsO4-3 + 8 H2O + log_k -28.707 -Ni3(AsO4)2:8H2O 494 - Ni3(AsO4)2:8H2O = 3Ni+2 + 2AsO4-3 + 8H2O - log_k -25.511 +Ni3(AsO4)2:8H2O 494 + Ni3(AsO4)2:8H2O = 3 Ni+2 + 2 AsO4-3 + 8 H2O + log_k -25.511 -Pb3(AsO4)2 495 - Pb3(AsO4)2 = 3Pb+2 + 2AsO4-3 - log_k -35.403 +Pb3(AsO4)2 495 + Pb3(AsO4)2 = 3 Pb+2 + 2 AsO4-3 + log_k -35.403 -Zn3(AsO4)2:2.5w 496 - Zn3(AsO4)2:2.5H2O = 3Zn+2 + 2AsO4-3 + 2.5H2O - log_k -27.546 +Zn3(AsO4)2:2.5w 496 + Zn3(AsO4)2:2.5H2O = 3 Zn+2 + 2 AsO4-3 + 2.5 H2O + log_k -27.546 -Arsenolite 497 -# As4O6 + 6H2O = 4H3AsO3 +Arsenolite 497 +# As4O6 + 6H2O = 4H3AsO3 # log_k -2.801 # delta_h 14.330 kcal - As2O3 + 3H2O = 2H3AsO3 - log_k -1.38 - delta_h 30.041 kJ + As2O3 + 3 H2O = 2 H3AsO3 + log_k -1.38 + delta_h 30.041 kJ -Claudetite 498 -# As4O6 + 6H2O = 4H3AsO3 +Claudetite 498 +# As4O6 + 6H2O = 4H3AsO3 # log_k -3.065 # delta_h 13.290 kcal - As2O3 + 3H2O = 2H3AsO3 - log_k -1.34 - delta_h 28.443 kJ + As2O3 + 3 H2O = 2 H3AsO3 + log_k -1.34 + delta_h 28.443 kJ -AsI3 499 - AsI3 + 3H2O = H3AsO3 + 3I- + 3H+ - log_k 4.155 +AsI3 499 + AsI3 + 3 H2O = H3AsO3 + 3 I- + 3 H+ + log_k 4.155 delta_h 1.875 kcal -Orpiment 500 - As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ +Orpiment 500 + As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ # log_k -60.971 # delta_h 82.890 kcal - log_k -46.3 - delta_h 263.1 kJ + log_k -46.3 + delta_h 263.1 kJ -As2S3(am) 132 - As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ - log_k -44.9 - delta_h 244.2 kJ +As2S3(am) 132 + As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ + log_k -44.9 + delta_h 244.2 kJ -Realgar 501 - AsS + 3H2O = H3AsO3 + HS- + 2H+ + e- +Realgar 501 + AsS + 3 H2O = H3AsO3 + HS- + 2 H+ + e- # log_k -19.747 # delta_h 30.545 kcal - log_k -19.944 - delta_h 129.2625 kJ + log_k -19.944 + delta_h 129.2625 kJ -BlaubleiI 533 - Cu0.9Cu0.2S + H+ = 0.9Cu+2 + 0.2Cu+ + HS- - log_k -24.162 +BlaubleiI 533 + Cu0.9Cu0.2S + H+ = 0.9 Cu+2 + 0.2 Cu+ + HS- + log_k -24.162 -BlaubleiII 534 - Cu0.6Cu0.8S + H+ = 0.6Cu+2 + 0.8Cu+ + HS- - log_k -27.279 +BlaubleiII 534 + Cu0.6Cu0.8S + H+ = 0.6 Cu+2 + 0.8 Cu+ + HS- + log_k -27.279 -Anilite 535 - Cu0.25Cu1.5S + H+ = 0.25Cu+2 + 1.5Cu+ + HS- - log_k -31.878 +Anilite 535 + Cu0.25Cu1.5S + H+ = 0.25 Cu+2 + 1.5 Cu+ + HS- + log_k -31.878 delta_h 43.535 kcal -Djurleite 536 - Cu0.066Cu1.868S + H+ = 0.066Cu+2 + 1.868Cu+ + HS- - log_k -33.920 +Djurleite 536 + Cu0.066Cu1.868S + H+ = 0.066 Cu+2 + 1.868 Cu+ + HS- + log_k -33.92 delta_h 47.881 kcal -Portlandite 539 - Ca(OH)2 + 2H+ = Ca+2 + 2H2O - log_k 22.8 - delta_h -31.0 kcal +Portlandite 539 + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.8 + delta_h -31 kcal -Ba3(AsO4)2 541 - Ba3(AsO4)2 = 3Ba+2 + 2AsO4-3 - log_k -50.110 +Ba3(AsO4)2 541 + Ba3(AsO4)2 = 3 Ba+2 + 2 AsO4-3 + log_k -50.11 delta_h 9.5 kcal -Se(s) 550 - Se + H+ + 2e- = HSe- - log_k -17.322 +Se(s) 550 + Se + H+ + 2 e- = HSe- + log_k -17.322 #SemetalSe4 551 -# Se + 3H2O = SeO3-2 + 6H+ + 4e- +# Se + 3H2O = SeO3-2 + 6H+ + 4e- # log_k -59.836 -FeSe2 552 - FeSe2 + 2H+ + 2e- = Fe+2 + 2HSe- - log_k -18.580 +FeSe2 552 + FeSe2 + 2 H+ + 2 e- = Fe+2 + 2 HSe- + log_k -18.58 -SeO2 553 - SeO2 + H2O = SeO3-2 + 2H+ - log_k -8.380 +SeO2 553 + SeO2 + H2O = SeO3-2 + 2 H+ + log_k -8.38 -CaSeO3 554 - CaSeO3 = Ca+2 + SeO3-2 - log_k -5.6 +CaSeO3 554 + CaSeO3 = Ca+2 + SeO3-2 + log_k -5.6 -BaSeO3 555 - BaSeO3 = Ba+2 + SeO3-2 - log_k -6.390 +BaSeO3 555 + BaSeO3 = Ba+2 + SeO3-2 + log_k -6.39 -Fe2(SeO3)3 556 - Fe2(SeO3)3 = 2Fe+3 + 3SeO3-2 - log_k -35.430 +Fe2(SeO3)3 556 + Fe2(SeO3)3 = 2 Fe+3 + 3 SeO3-2 + log_k -35.43 -Rhodochrosite 564 - MnCO3 = Mn+2 + CO3-2 - log_k -11.13 +Rhodochrosite 564 + MnCO3 = Mn+2 + CO3-2 + log_k -11.13 delta_h -1.43 kcal -Na4UO2(CO3)3 571 - Na4UO2(CO3)3 = 4Na+ + UO2+2 + 3CO3-2 - log_k -16.290 +Na4UO2(CO3)3 571 + Na4UO2(CO3)3 = 4 Na+ + UO2+2 + 3 CO3-2 + log_k -16.29 -Uraninite(c) 573 - UO2 + 4H+ = U+4 + 2H2O - log_k -4.8 - delta_h -18.610 kcal +Uraninite(c) 573 + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.8 + delta_h -18.61 kcal -UO2(a) 574 - UO2 + 4H+ = U+4 + 2H2O - log_k 0.1 +UO2(a) 574 + UO2 + 4 H+ = U+4 + 2 H2O + log_k 0.1 -U4O9(c) 575 - U4O9 + 18H+ + 2e- = 4U+4 + 9H2O - log_k -3.384 +U4O9(c) 575 + U4O9 + 18 H+ + 2 e- = 4 U+4 + 9 H2O + log_k -3.384 delta_h -101.235 kcal -U3O8(c) 576 - U3O8 + 16H+ + 4e- = 3U+4 + 8H2O - log_k 20.530 - delta_h -116.0 kcal +U3O8(c) 576 + U3O8 + 16 H+ + 4 e- = 3 U+4 + 8 H2O + log_k 20.53 + delta_h -116 kcal -Coffinite 577 - USiO4 + 4H+ = U+4 + H4SiO4 - log_k -7.670 +Coffinite 577 + USiO4 + 4 H+ = U+4 + H4SiO4 + log_k -7.67 delta_h -11.6 kcal -UF4(c) 584 - UF4 = U+4 + 4F- - log_k -18.606 +UF4(c) 584 + UF4 = U+4 + 4 F- + log_k -18.606 delta_h -18.9 kcal -UF4:2.5H2O 585 - UF4:2.5H2O = U+4 + 4F- + 2.5H2O - log_k -27.570 +UF4:2.5H2O 585 + UF4:2.5H2O = U+4 + 4 F- + 2.5 H2O + log_k -27.57 delta_h -0.588 kcal -U(OH)2SO4 591 - U(OH)2SO4 + 2H+ = U+4 + SO4-2 + 2H2O - log_k -3.2 +U(OH)2SO4 591 + U(OH)2SO4 + 2 H+ = U+4 + SO4-2 + 2 H2O + log_k -3.2 -UO2HPO4:4H2O 592 - UO2HPO4:4H2O = UO2+2 + HPO4-2 + 4H2O - log_k -11.850 +UO2HPO4:4H2O 592 + UO2HPO4:4H2O = UO2+2 + HPO4-2 + 4 H2O + log_k -11.85 -U(HPO4)2:4H2O 593 - U(HPO4)2:4H2O = U+4 + 2PO4-3 + 2H+ + 4H2O - log_k -55.3 - delta_h 3.840 kcal +U(HPO4)2:4H2O 593 + U(HPO4)2:4H2O = U+4 + 2 PO4-3 + 2 H+ + 4 H2O + log_k -55.3 + delta_h 3.84 kcal -Ningyoite 594 - CaU(PO4)2:2H2O = U+4 + Ca+2 + 2PO4-3 + 2H2O - log_k -53.906 - delta_h -2.270 kcal +Ningyoite 594 + CaU(PO4)2:2H2O = U+4 + Ca+2 + 2 PO4-3 + 2 H2O + log_k -53.906 + delta_h -2.27 kcal -UO3(gamma) 599 - UO3 + 2H+ = UO2+2 + H2O - log_k 7.719 +UO3(gamma) 599 + UO3 + 2 H+ = UO2+2 + H2O + log_k 7.719 delta_h -19.315 kcal -Gummite 600 - UO3 + 2H+ = UO2+2 + H2O - log_k 10.403 +Gummite 600 + UO3 + 2 H+ = UO2+2 + H2O + log_k 10.403 delta_h -23.015 kcal -B-UO2(OH)2 601 - UO2(OH)2 + 2H+ = UO2+2 + 2H2O - log_k 5.544 - delta_h -13.730 kcal +B-UO2(OH)2 601 + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 5.544 + delta_h -13.73 kcal -Schoepite 602 - UO2(OH)2:H2O + 2H+ = UO2+2 + 3H2O - log_k 5.404 +Schoepite 602 + UO2(OH)2:H2O + 2 H+ = UO2+2 + 3 H2O + log_k 5.404 delta_h -12.045 kcal -Rutherfordine 606 - UO2CO3 = UO2+2 + CO3-2 - log_k -14.450 - delta_h -1.440 kcal +Rutherfordine 606 + UO2CO3 = UO2+2 + CO3-2 + log_k -14.45 + delta_h -1.44 kcal -(UO2)3(PO4)2:4w 619 - (UO2)3(PO4)2:4H2O = 3UO2+2 + 2PO4-3 + 4H2O - log_k -37.4 +(UO2)3(PO4)2:4w 619 + (UO2)3(PO4)2:4H2O = 3 UO2+2 + 2 PO4-3 + 4 H2O + log_k -37.4 delta_h 41.5 kcal -H-Autunite 620 - H2(UO2)2(PO4)2 = 2H+ + 2UO2+2 + 2PO4-3 - log_k -47.931 +H-Autunite 620 + H2(UO2)2(PO4)2 = 2 H+ + 2 UO2+2 + 2 PO4-3 + log_k -47.931 delta_h -3.6 kcal -Na-Autunite 621 - Na2(UO2)2(PO4)2 = 2Na+ + 2UO2+2 + 2PO4-3 - log_k -47.409 - delta_h -0.460 kcal +Na-Autunite 621 + Na2(UO2)2(PO4)2 = 2 Na+ + 2 UO2+2 + 2 PO4-3 + log_k -47.409 + delta_h -0.46 kcal -K-Autunite 622 - K2(UO2)2(PO4)2 = 2K+ + 2UO2+2 + 2PO4-3 - log_k -48.244 - delta_h 5.860 kcal +K-Autunite 622 + K2(UO2)2(PO4)2 = 2 K+ + 2 UO2+2 + 2 PO4-3 + log_k -48.244 + delta_h 5.86 kcal -Uramphite 623 - (NH4)2(UO2)2(PO4)2 = 2NH4+ + 2UO2+2 + 2PO4-3 - log_k -51.749 +Uramphite 623 + (NH4)2(UO2)2(PO4)2 = 2 NH4+ + 2 UO2+2 + 2 PO4-3 + log_k -51.749 delta_h 9.7 kcal -Saleeite 624 - Mg(UO2)2(PO4)2 = Mg+2 + 2UO2+2 + 2PO4-3 - log_k -43.646 - delta_h -20.180 kcal +Saleeite 624 + Mg(UO2)2(PO4)2 = Mg+2 + 2 UO2+2 + 2 PO4-3 + log_k -43.646 + delta_h -20.18 kcal -Autunite 625 - Ca(UO2)2(PO4)2 = Ca+2 + 2UO2+2 + 2PO4-3 - log_k -43.927 - delta_h -14.340 kcal +Autunite 625 + Ca(UO2)2(PO4)2 = Ca+2 + 2 UO2+2 + 2 PO4-3 + log_k -43.927 + delta_h -14.34 kcal -Sr-Autunite 626 - Sr(UO2)2(PO4)2 = Sr+2 + 2UO2+2 + 2PO4-3 - log_k -44.457 - delta_h -13.050 kcal +Sr-Autunite 626 + Sr(UO2)2(PO4)2 = Sr+2 + 2 UO2+2 + 2 PO4-3 + log_k -44.457 + delta_h -13.05 kcal -Uranocircite 627 - Ba(UO2)2(PO4)2 = Ba+2 + 2UO2+2 + 2PO4-3 - log_k -44.631 +Uranocircite 627 + Ba(UO2)2(PO4)2 = Ba+2 + 2 UO2+2 + 2 PO4-3 + log_k -44.631 delta_h -10.1 kcal -Bassetite 628 - Fe(UO2)2(PO4)2 = Fe+2 + 2UO2+2 + 2PO4-3 - log_k -44.485 +Bassetite 628 + Fe(UO2)2(PO4)2 = Fe+2 + 2 UO2+2 + 2 PO4-3 + log_k -44.485 delta_h -19.9 kcal -Torbernite 629 - Cu(UO2)2(PO4)2 = Cu+2 + 2UO2+2 + 2PO4-3 - log_k -45.279 +Torbernite 629 + Cu(UO2)2(PO4)2 = Cu+2 + 2 UO2+2 + 2 PO4-3 + log_k -45.279 delta_h -15.9 kcal -Przhevalskite 630 - Pb(UO2)2(PO4)2 = Pb+2 + 2UO2+2 + 2PO4-3 - log_k -44.365 - delta_h -11.0 kcal +Przhevalskite 630 + Pb(UO2)2(PO4)2 = Pb+2 + 2 UO2+2 + 2 PO4-3 + log_k -44.365 + delta_h -11 kcal -Uranophane 632 - Ca(UO2)2(SiO3OH)2 + 6H+ = Ca+2 + 2UO2+2 + 2H4SiO4 - log_k 17.489 +Uranophane 632 + Ca(UO2)2(SiO3OH)2 + 6 H+ = Ca+2 + 2 UO2+2 + 2 H4SiO4 + log_k 17.489 -CO2(g) - CO2 = CO2 - log_k -1.468 +CO2(g) + CO2 = CO2 + log_k -1.468 delta_h -4.776 kcal - -analytical 108.3865 0.01985076 -6919.53 -40.45154 669365.0 + -analytical 108.3865 0.01985076 -6919.53 -40.45154 669365 O2(g) - O2 = O2 + O2 = O2 # log_k -2.960 # delta_h -1.844 kcal # log K from llnl.dat Aug 23, 2005 - log_k -2.8983 - -analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005 + log_k -2.8983 + -analytic -7.5001e+0 7.8981e-3 0e+0 0e+0 2.0027e+5 H2(g) - H2 = H2 - log_k -3.150 + H2 = H2 + log_k -3.15 delta_h -1.759 kcal N2(g) - N2 = N2 - log_k -3.260 + N2 = N2 + log_k -3.26 delta_h -1.358 kcal H2S(g) - H2S = H2S - log_k -0.997 - delta_h -4.570 kcal + H2S = H2S + log_k -0.997 + delta_h -4.57 kcal CH4(g) - CH4 = CH4 - log_k -2.860 + CH4 = CH4 + log_k -2.86 delta_h -3.373 kcal NH3(g) - NH3 = NH3 - log_k 1.770 - delta_h -8.170 kcal + NH3 = NH3 + log_k 1.77 + delta_h -8.17 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - log_k 0.0 + log_k 0 Na+ + X- = NaX - log_k 0.0 + log_k 0 K+ + X- = KX - log_k 0.7 + log_k 0.7 Li+ + X- = LiX - log_k -0.08 + log_k -0.08 H+ + X- = HX - log_k 1.0 + log_k 1 NH4+ + X- = NH4X - log_k 0.6 + log_k 0.6 - Ca+2 + 2X- = CaX2 - log_k 0.8 + Ca+2 + 2 X- = CaX2 + log_k 0.8 - Mg+2 + 2X- = MgX2 - log_k 0.6 + Mg+2 + 2 X- = MgX2 + log_k 0.6 - Sr+2 + 2X- = SrX2 - log_k 0.91 + Sr+2 + 2 X- = SrX2 + log_k 0.91 - Ba+2 + 2X- = BaX2 - log_k 0.91 + Ba+2 + 2 X- = BaX2 + log_k 0.91 - Mn+2 + 2X- = MnX2 - log_k 0.52 + Mn+2 + 2 X- = MnX2 + log_k 0.52 - Fe+2 + 2X- = FeX2 - log_k 0.44 + Fe+2 + 2 X- = FeX2 + log_k 0.44 - Cu+2 + 2X- = CuX2 - log_k 0.6 + Cu+2 + 2 X- = CuX2 + log_k 0.6 - Zn+2 + 2X- = ZnX2 - log_k 0.8 + Zn+2 + 2 X- = ZnX2 + log_k 0.8 - Cd+2 + 2X- = CdX2 - log_k 0.8 + Cd+2 + 2 X- = CdX2 + log_k 0.8 - Pb+2 + 2X- = PbX2 - log_k 1.05 + Pb+2 + 2 X- = PbX2 + log_k 1.05 - Al+3 + 3X- = AlX3 - log_k 0.67 + Al+3 + 3 X- = AlX3 + log_k 0.67 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES -# All surface data from +# All surface data from # Dzombak and Morel, 1990 # # # Acid-base data from table 5.7 # -# strong binding site--Hfo_s, +# strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - log_k 0.0 + log_k 0 - Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.29 # = pKa1,int + Hfo_sOH + H+ = Hfo_sOH2+ + log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - log_k 0.0 + log_k 0 - Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.29 # = pKa1,int + Hfo_wOH + H+ = Hfo_wOH2+ + log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int ############################################### # CATIONS # @@ -3552,64 +3556,64 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 + log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - log_k 5.01 + log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ log_k -6.58 - Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ - log_k -17.60 + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ + log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - log_k 5.46 + log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 # table 10.5 + log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Silver Hfo_sOH + Ag+ = Hfo_sOAg + H+ - log_k -1.72 + log_k -1.72 Hfo_wOH + Ag+ = Hfo_wOAg + H+ - log_k -5.3 # table 10.5 + log_k -5.3 # table 10.5 # Nickel Hfo_sOH + Ni+2 = Hfo_sONi+ + H+ - log_k 0.37 + log_k 0.37 Hfo_wOH + Ni+2 = Hfo_wONi+ + H+ - log_k -2.5 # table 10.5 + log_k -2.5 # table 10.5 # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - log_k 0.47 + log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - log_k -2.91 + log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - log_k 0.99 + log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - log_k -1.99 + log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - log_k 2.89 + log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - log_k 0.6 # table 10.5 + log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - log_k 4.65 + log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - log_k 0.3 # table 10.5 + log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -3619,17 +3623,17 @@ SURFACE_SPECIES # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - log_k -0.4 # table 10.5 + log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - log_k -3.5 # table 10.5 + log_k -3.5 # table 10.5 # Uranyl Hfo_sOH + UO2+2 = Hfo_sOUO2+ + H+ - log_k 5.2 # table 10.5 + log_k 5.2 # table 10.5 Hfo_wOH + UO2+2 = Hfo_wOUO2+ + H+ - log_k 2.8 # table 10.5 + log_k 2.8 # table 10.5 # Iron # Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ @@ -3641,83 +3645,83 @@ SURFACE_SPECIES # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - log_k -0.95 + log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ log_k -2.98 - Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ log_k -11.55 ############################################### # ANIONS # ############################################### # -# Anions from table 10.6 +# Anions from table 10.6 # # Phosphate - Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - log_k 31.29 + Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + log_k 31.29 - Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - log_k 25.39 + Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - log_k 17.72 + log_k 17.72 # Arsenate - Hfo_wOH + AsO4-3 + 3H+ = Hfo_wH2AsO4 + H2O - log_k 29.31 + Hfo_wOH + AsO4-3 + 3 H+ = Hfo_wH2AsO4 + H2O + log_k 29.31 - Hfo_wOH + AsO4-3 + 2H+ = Hfo_wHAsO4- + H2O - log_k 23.51 + Hfo_wOH + AsO4-3 + 2 H+ = Hfo_wHAsO4- + H2O + log_k 23.51 Hfo_wOH + AsO4-3 = Hfo_wOHAsO4-3 - log_k 10.58 + log_k 10.58 # # Anions from table 10.7 # # Arsenite Hfo_wOH + H3AsO3 = Hfo_wH2AsO3 + H2O - log_k 5.41 + log_k 5.41 # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - log_k 0.62 + log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - log_k 7.78 + log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 + log_k 0.79 # Selenate Hfo_wOH + SeO4-2 + H+ = Hfo_wSeO4- + H2O - log_k 7.73 + log_k 7.73 Hfo_wOH + SeO4-2 = Hfo_wOHSeO4-2 - log_k 0.80 + log_k 0.8 # Selenite Hfo_wOH + SeO3-2 + H+ = Hfo_wSeO3- + H2O - log_k 12.69 + log_k 12.69 Hfo_wOH + SeO3-2 = Hfo_wOHSeO3-2 - log_k 5.17 + log_k 5.17 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - log_k 8.7 + log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - log_k 1.6 + log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for HFO # 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L # # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O # log_k 12.56 -# +# # Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O # log_k 20.62 @@ -3727,7 +3731,7 @@ RATES #K-feldspar ########### # -# Sverdrup, H.U., 1990, The kinetics of base cation release due to +# Sverdrup, H.U., 1990, The kinetics of base cation release due to # chemical weathering: Lund University Press, Lund, 246 p. # # Example of KINETICS data block for K-feldspar rate: @@ -3742,28 +3746,28 @@ K-feldspar 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) 3 rem parm(2) = corrects for field rate relative to lab rate - 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) - - 10 dif_temp = 1/TK - 1/298 - 20 pk_H = 12.5 + 3134 * dif_temp - 30 pk_w = 15.3 + 1838 * dif_temp - 40 pk_OH = 14.2 + 3134 * dif_temp - 50 pk_CO2 = 14.6 + 1677 * dif_temp + 4 rem temp corr: from p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) + + 10 dif_temp = 1/TK - 1/298 + 20 pk_H = 12.5 + 3134 * dif_temp + 30 pk_w = 15.3 + 1838 * dif_temp + 40 pk_OH = 14.2 + 3134 * dif_temp + 50 pk_CO2 = 14.6 + 1677 * dif_temp #60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC - 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 - 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 + 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 + 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 - 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time + 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time 81 rem decrease rate on precipitation - 90 if SR("K-feldspar") > 1 then moles = moles * 0.1 - 100 save moles + 90 if SR("K-feldspar") > 1 then moles = moles * 0.1 + 100 save moles -end ########### #Albite ########### # -# Sverdrup, H.U., 1990, The kinetics of base cation release due to +# Sverdrup, H.U., 1990, The kinetics of base cation release due to # chemical weathering: Lund University Press, Lund, 246 p. # # Example of KINETICS data block for Albite rate: @@ -3777,70 +3781,70 @@ Albite 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) 3 rem parm(2) = corrects for field rate relative to lab rate - 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) - - 10 dif_temp = 1/TK - 1/298 - 20 pk_H = 12.5 + 3359 * dif_temp - 30 pk_w = 14.8 + 2648 * dif_temp - 40 pk_OH = 13.7 + 3359 * dif_temp + 4 rem temp corr: from p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) + + 10 dif_temp = 1/TK - 1/298 + 20 pk_H = 12.5 + 3359 * dif_temp + 30 pk_w = 14.8 + 2648 * dif_temp + 40 pk_OH = 13.7 + 3359 * dif_temp #41 rem ^12.9 in Sverdrup, but larger than for oligoclase... - 50 pk_CO2 = 14.0 + 1677 * dif_temp + 50 pk_CO2 = 14 + 1677 * dif_temp #60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC - 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 - 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 + 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 + 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 - 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time + 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time 81 rem decrease rate on precipitation - 90 if SR("Albite") > 1 then moles = moles * 0.1 - 100 save moles + 90 if SR("Albite") > 1 then moles = moles * 0.1 + 100 save moles -end ######## #Calcite ######## # -# Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978, +# Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978, # American Journal of Science, v. 278, p. 179-216. # # Example of KINETICS data block for calcite rate: # # KINETICS 1 -# Calcite +# Calcite # -tol 1e-8 # -m0 3.e-3 # -m 3.e-3 # -parms 5.0 0.6 Calcite -start - 1 REM Modified from Plummer and others, 1978 - 2 REM M = current moles of calcite - 3 REM M0 = initial moles of calcite - 4 REM parm(1) = Area/Volume, cm^2/L (or cm^2 per cell) - 5 REM parm(2) = exponent for M/M0 for surface area correction - 10 REM rate = 0 if no calcite and undersaturated - 20 si_cc = SI("Calcite") - 30 if (M <= 0 and si_cc < 0) then goto 300 - 40 k1 = 10^(0.198 - 444.0 / TK ) - 50 k2 = 10^(2.84 - 2177.0 / TK ) - 60 if TC <= 25 then k3 = 10^(-5.86 - 317.0 / TK ) - 70 if TC > 25 then k3 = 10^(-1.1 - 1737.0 / TK ) - 80 REM surface area calculation - 90 t = 1 - 100 if M0 > 0 then t = M/M0 - 110 if t = 0 then t = 1 - 120 area = PARM(1) * (t)^PARM(2) - 130 rf = k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O") + 1 REM Modified from Plummer and others, 1978 + 2 REM M = current moles of calcite + 3 REM M0 = initial moles of calcite + 4 REM parm(1) = Area/Volume, cm^2/L (or cm^2 per cell) + 5 REM parm(2) = exponent for M/M0 for surface area correction + 10 REM rate = 0 if no calcite and undersaturated + 20 si_cc = SI("Calcite") + 30 if (M <= 0 and si_cc < 0) then goto 300 + 40 k1 = 10^(0.198 - 444 / TK ) + 50 k2 = 10^(2.84 - 2177 / TK ) + 60 if TC <= 25 then k3 = 10^(-5.86 - 317 / TK ) + 70 if TC > 25 then k3 = 10^(-1.1 - 1737 / TK ) + 80 REM surface area calculation + 90 t = 1 + 100 if M0 > 0 then t = M/M0 + 110 if t = 0 then t = 1 + 120 area = PARM(1) * (t)^PARM(2) + 130 rf = k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O") 140 REM 1e-3 converts mmol to mol - 150 rate = area * 1e-3 * rf * (1 - 10^(2/3*si_cc)) - 160 moles = rate * TIME + 150 rate = area * 1e-3 * rf * (1 - 10^(2/3*si_cc)) + 160 moles = rate * TIME 170 REM do not dissolve more calcite than present - 180 if (moles > M) then moles = M - 190 if (moles >= 0) then goto 300 + 180 if (moles > M) then moles = M + 190 if (moles >= 0) then goto 300 200 REM do not precipitate more Ca or C(4) than present - 210 temp = TOT("Ca") - 220 mc = TOT("C(4)") - 230 if mc < temp then temp = mc - 240 if -moles > temp then moles = -temp + 210 temp = TOT("Ca") + 220 mc = TOT("C(4)") + 230 if mc < temp then temp = mc + 240 if -moles > temp then moles = -temp 300 SAVE moles -end @@ -3848,26 +3852,26 @@ Calcite #Pyrite ####### # -# Williamson, M.A. and Rimstidt, J.D., 1994, +# Williamson, M.A. and Rimstidt, J.D., 1994, # Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454. # # Example of KINETICS data block for pyrite rate: # KINETICS 1 -# Pyrite +# Pyrite # -tol 1e-8 # -m0 5.e-4 # -m 5.e-4 -# -parms 2.0 0.67 .5 -0.11 +# -parms 2.0 0.67 .5 -0.11 Pyrite -start - 1 rem Williamson and Rimstidt, 1994 - 2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0) - 3 rem parm(3) = exp for O2 parm(4) = exp for H+ - + 1 rem Williamson and Rimstidt, 1994 + 2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0) + 3 rem parm(3) = exp for O2 parm(4) = exp for H+ + 10 if (m <= 0) then goto 200 20 if (si("Pyrite") >= 0) then goto 200 - 25 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0) - 30 moles = 10^rate * time + 25 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0) + 30 moles = 10^rate * time 40 if (moles > m) then moles = m 200 save moles -end @@ -3885,16 +3889,16 @@ Pyrite # -m 5e-3 Organic_C -start - 1 rem Additive Monod kinetics - 2 rem Electron acceptors: O2, NO3, and SO4 + 1 rem Additive Monod kinetics + 2 rem Electron acceptors: O2, NO3, and SO4 10 if (m <= 0) then goto 200 - 20 mO2 = mol("O2") - 30 mNO3 = tot("N(5)") - 40 mSO4 = tot("S(6)") - 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3) - 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4) - 70 moles = rate * m * (m/m0) * time + 20 mO2 = mol("O2") + 30 mNO3 = tot("N(5)") + 40 mSO4 = tot("S(6)") + 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3) + 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4) + 70 moles = rate * m * (m/m0) * time 80 if (moles > m) then moles = m 200 save moles -end @@ -3913,222 +3917,222 @@ Organic_C # -m 0.1 Pyrolusite -start - 5 if (m <= 0.0) then goto 200 - 7 sr_pl = sr("Pyrolusite") - 9 if abs(1 - sr_pl) < 0.1 then goto 200 - 10 if (sr_pl > 1.0) then goto 100 + 5 if (m <= 0.0) then goto 200 + 7 sr_pl = sr("Pyrolusite") + 9 if abs(1 - sr_pl) < 0.1 then goto 200 + 10 if (sr_pl > 1.0) then goto 100 #20 rem initially 1 mol Fe+2 = 0.5 mol pyrolusite. k*A/V = 1/time (3 cells) #22 rem time (3 cells) = 1.432e4. 1/time = 6.98e-5 - 30 Fe_t = tot("Fe(2)") - 32 if Fe_t < 1.e-8 then goto 200 - 40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl) - 50 if moles > Fe_t / 2 then moles = Fe_t / 2 - 70 if moles > m then moles = m - 90 goto 200 - 100 Mn_t = tot("Mn") - 110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time - 120 if moles <= -Mn_t then moles = -Mn_t - 200 save moles + 30 Fe_t = tot("Fe(2)") + 32 if Fe_t < 1e-8 then goto 200 + 40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl) + 50 if moles > Fe_t / 2 then moles = Fe_t / 2 + 70 if moles > m then moles = m + 90 goto 200 + 100 Mn_t = tot("Mn") + 110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time + 120 if moles <= -Mn_t then moles = -Mn_t + 200 save moles -end SURFACE_MASTER_SPECIES # Monodentate 60% - H_a H_aH; H_b H_bH; H_c H_cH; H_d H_dH - H_e H_eH; H_f H_fH; H_g H_gH; H_h H_hH + H_a H_aH; H_b H_bH; H_c H_cH; H_d H_dH + H_e H_eH; H_f H_fH; H_g H_gH; H_h H_hH # Diprotic 40% H_ab H_abH2; H_ad H_adH2; H_af H_afH2; H_ah H_ahH2 H_bc H_bcH2; H_be H_beH2; H_bg H_bgH2; H_cd H_cdH2 H_cf H_cfH2; H_ch H_chH2; H_de H_deH2; H_dg H_dgH2 SURFACE_SPECIES - H_aH = H_aH; log_k 0; H_bH = H_bH; log_k 0; H_cH = H_cH; log_k 0; H_dH = H_dH; log_k 0; - H_eH = H_eH; log_k 0; H_fH = H_fH; log_k 0; H_gH = H_gH; log_k 0; H_hH = H_hH; log_k 0; + H_aH = H_aH; log_k 0; H_bH = H_bH; log_k 0; H_cH = H_cH; log_k 0; H_dH = H_dH; log_k 0 + H_eH = H_eH; log_k 0; H_fH = H_fH; log_k 0; H_gH = H_gH; log_k 0; H_hH = H_hH; log_k 0 - H_abH2 = H_abH2; log_k 0; H_adH2 = H_adH2; log_k 0; H_afH2 = H_afH2; log_k 0; - H_ahH2 = H_ahH2; log_k 0; H_bcH2 = H_bcH2; log_k 0; H_beH2 = H_beH2; log_k 0; - H_bgH2 = H_bgH2; log_k 0; H_cdH2 = H_cdH2; log_k 0; H_cfH2 = H_cfH2; log_k 0; - H_chH2 = H_chH2; log_k 0; H_deH2 = H_deH2; log_k 0; H_dgH2 = H_dgH2; log_k 0; + H_abH2 = H_abH2; log_k 0; H_adH2 = H_adH2; log_k 0; H_afH2 = H_afH2; log_k 0 + H_ahH2 = H_ahH2; log_k 0; H_bcH2 = H_bcH2; log_k 0; H_beH2 = H_beH2; log_k 0 + H_bgH2 = H_bgH2; log_k 0; H_cdH2 = H_cdH2; log_k 0; H_cfH2 = H_cfH2; log_k 0 + H_chH2 = H_chH2; log_k 0; H_deH2 = H_deH2; log_k 0; H_dgH2 = H_dgH2; log_k 0 # Protons - H_aH = H_a- + H+; log_k -1.59 - H_bH = H_b- + H+; log_k -2.70 - H_cH = H_c- + H+; log_k -3.82 - H_dH = H_d- + H+; log_k -4.93 - - H_eH = H_e- + H+; log_k -6.88 - H_fH = H_f- + H+; log_k -8.72 - H_gH = H_g- + H+; log_k -10.56 - H_hH = H_h- + H+; log_k -12.40 - - H_abH2 = H_abH- + H+; log_k -1.59; H_abH- = H_ab-2 + H+; log_k -2.70 + H_aH = H_a- + H+; log_k -1.59 + H_bH = H_b- + H+; log_k -2.7 + H_cH = H_c- + H+; log_k -3.82 + H_dH = H_d- + H+; log_k -4.93 + + H_eH = H_e- + H+; log_k -6.88 + H_fH = H_f- + H+; log_k -8.72 + H_gH = H_g- + H+; log_k -10.56 + H_hH = H_h- + H+; log_k -12.4 + + H_abH2 = H_abH- + H+; log_k -1.59; H_abH- = H_ab-2 + H+; log_k -2.7 H_adH2 = H_adH- + H+; log_k -1.59; H_adH- = H_ad-2 + H+; log_k -4.93 H_afH2 = H_afH- + H+; log_k -1.59; H_afH- = H_af-2 + H+; log_k -8.72 - H_ahH2 = H_ahH- + H+; log_k -1.59; H_ahH- = H_ah-2 + H+; log_k -12.40 - H_bcH2 = H_bcH- + H+; log_k -2.70; H_bcH- = H_bc-2 + H+; log_k -3.82 - H_beH2 = H_beH- + H+; log_k -2.70; H_beH- = H_be-2 + H+; log_k -6.88 - H_bgH2 = H_bgH- + H+; log_k -2.70; H_bgH- = H_bg-2 + H+; log_k -10.56 + H_ahH2 = H_ahH- + H+; log_k -1.59; H_ahH- = H_ah-2 + H+; log_k -12.4 + H_bcH2 = H_bcH- + H+; log_k -2.7; H_bcH- = H_bc-2 + H+; log_k -3.82 + H_beH2 = H_beH- + H+; log_k -2.7; H_beH- = H_be-2 + H+; log_k -6.88 + H_bgH2 = H_bgH- + H+; log_k -2.7; H_bgH- = H_bg-2 + H+; log_k -10.56 H_cdH2 = H_cdH- + H+; log_k -3.82; H_cdH- = H_cd-2 + H+; log_k -4.93 H_cfH2 = H_cfH- + H+; log_k -3.82; H_cfH- = H_cf-2 + H+; log_k -8.72 - H_chH2 = H_chH- + H+; log_k -3.82; H_chH- = H_ch-2 + H+; log_k -12.40 + H_chH2 = H_chH- + H+; log_k -3.82; H_chH- = H_ch-2 + H+; log_k -12.4 H_deH2 = H_deH- + H+; log_k -4.93; H_deH- = H_de-2 + H+; log_k -6.88 H_dgH2 = H_dgH- + H+; log_k -4.93; H_dgH- = H_dg-2 + H+; log_k -10.56 # Mg From Lofts and Tipping, 2000 - H_aH + Mg+2 = H_aMg+ + H+; log_k -3.30 - H_bH + Mg+2 = H_bMg+ + H+; log_k -3.30 - H_cH + Mg+2 = H_cMg+ + H+; log_k -3.30 - H_dH + Mg+2 = H_dMg+ + H+; log_k -3.30 + H_aH + Mg+2 = H_aMg+ + H+; log_k -3.3 + H_bH + Mg+2 = H_bMg+ + H+; log_k -3.3 + H_cH + Mg+2 = H_cMg+ + H+; log_k -3.3 + H_dH + Mg+2 = H_dMg+ + H+; log_k -3.3 - H_eH + Mg+2 = H_eMg+ + H+; log_k -7.12 - H_fH + Mg+2 = H_fMg+ + H+; log_k -7.12 - H_gH + Mg+2 = H_gMg+ + H+; log_k -7.12 - H_hH + Mg+2 = H_hMg+ + H+; log_k -7.12 + H_eH + Mg+2 = H_eMg+ + H+; log_k -7.12 + H_fH + Mg+2 = H_fMg+ + H+; log_k -7.12 + H_gH + Mg+2 = H_gMg+ + H+; log_k -7.12 + H_hH + Mg+2 = H_hMg+ + H+; log_k -7.12 - H_abH2 + Mg+2 = H_abMg + 2H+; log_k -6.60 - H_adH2 + Mg+2 = H_adMg + 2H+; log_k -6.60 - H_afH2 + Mg+2 = H_afMg + 2H+; log_k -10.42 - H_ahH2 + Mg+2 = H_ahMg + 2H+; log_k -10.42 - H_bcH2 + Mg+2 = H_bcMg + 2H+; log_k -6.60 - H_beH2 + Mg+2 = H_beMg + 2H+; log_k -10.42 - H_bgH2 + Mg+2 = H_bgMg + 2H+; log_k -10.42 - H_cdH2 + Mg+2 = H_cdMg + 2H+; log_k -6.60 - H_cfH2 + Mg+2 = H_cfMg + 2H+; log_k -10.42 - H_chH2 + Mg+2 = H_chMg + 2H+; log_k -10.42 - H_deH2 + Mg+2 = H_deMg + 2H+; log_k -10.42 - H_dgH2 + Mg+2 = H_dgMg + 2H+; log_k -10.42 + H_abH2 + Mg+2 = H_abMg + 2 H+; log_k -6.6 + H_adH2 + Mg+2 = H_adMg + 2 H+; log_k -6.6 + H_afH2 + Mg+2 = H_afMg + 2 H+; log_k -10.42 + H_ahH2 + Mg+2 = H_ahMg + 2 H+; log_k -10.42 + H_bcH2 + Mg+2 = H_bcMg + 2 H+; log_k -6.6 + H_beH2 + Mg+2 = H_beMg + 2 H+; log_k -10.42 + H_bgH2 + Mg+2 = H_bgMg + 2 H+; log_k -10.42 + H_cdH2 + Mg+2 = H_cdMg + 2 H+; log_k -6.6 + H_cfH2 + Mg+2 = H_cfMg + 2 H+; log_k -10.42 + H_chH2 + Mg+2 = H_chMg + 2 H+; log_k -10.42 + H_deH2 + Mg+2 = H_deMg + 2 H+; log_k -10.42 + H_dgH2 + Mg+2 = H_dgMg + 2 H+; log_k -10.42 # Calcium, Lofts and Tipping, 2000 - H_aH + Ca+2 = H_aCa+ + H+; log_k -3.20 - H_bH + Ca+2 = H_bCa+ + H+; log_k -3.20 - H_cH + Ca+2 = H_cCa+ + H+; log_k -3.20 - H_dH + Ca+2 = H_dCa+ + H+; log_k -3.20 + H_aH + Ca+2 = H_aCa+ + H+; log_k -3.2 + H_bH + Ca+2 = H_bCa+ + H+; log_k -3.2 + H_cH + Ca+2 = H_cCa+ + H+; log_k -3.2 + H_dH + Ca+2 = H_dCa+ + H+; log_k -3.2 - H_eH + Ca+2 = H_eCa+ + H+; log_k -6.99 - H_fH + Ca+2 = H_fCa+ + H+; log_k -6.99 - H_gH + Ca+2 = H_gCa+ + H+; log_k -6.99 - H_hH + Ca+2 = H_hCa+ + H+; log_k -6.99 + H_eH + Ca+2 = H_eCa+ + H+; log_k -6.99 + H_fH + Ca+2 = H_fCa+ + H+; log_k -6.99 + H_gH + Ca+2 = H_gCa+ + H+; log_k -6.99 + H_hH + Ca+2 = H_hCa+ + H+; log_k -6.99 - H_abH2 + Ca+2 = H_abCa + 2H+; log_k -6.40 - H_adH2 + Ca+2 = H_adCa + 2H+; log_k -6.40 - H_afH2 + Ca+2 = H_afCa + 2H+; log_k -7.45 - H_ahH2 + Ca+2 = H_ahCa + 2H+; log_k -10.2 - H_bcH2 + Ca+2 = H_bcCa + 2H+; log_k -6.40 - H_beH2 + Ca+2 = H_beCa + 2H+; log_k -10.2 - H_bgH2 + Ca+2 = H_bgCa + 2H+; log_k -10.2 - H_cdH2 + Ca+2 = H_cdCa + 2H+; log_k -6.40 - H_cfH2 + Ca+2 = H_cfCa + 2H+; log_k -10.2 - H_chH2 + Ca+2 = H_chCa + 2H+; log_k -10.2 - H_deH2 + Ca+2 = H_deCa + 2H+; log_k -10.2 - H_dgH2 + Ca+2 = H_dgCa + 2H+; log_k -10.2 + H_abH2 + Ca+2 = H_abCa + 2 H+; log_k -6.4 + H_adH2 + Ca+2 = H_adCa + 2 H+; log_k -6.4 + H_afH2 + Ca+2 = H_afCa + 2 H+; log_k -7.45 + H_ahH2 + Ca+2 = H_ahCa + 2 H+; log_k -10.2 + H_bcH2 + Ca+2 = H_bcCa + 2 H+; log_k -6.4 + H_beH2 + Ca+2 = H_beCa + 2 H+; log_k -10.2 + H_bgH2 + Ca+2 = H_bgCa + 2 H+; log_k -10.2 + H_cdH2 + Ca+2 = H_cdCa + 2 H+; log_k -6.4 + H_cfH2 + Ca+2 = H_cfCa + 2 H+; log_k -10.2 + H_chH2 + Ca+2 = H_chCa + 2 H+; log_k -10.2 + H_deH2 + Ca+2 = H_deCa + 2 H+; log_k -10.2 + H_dgH2 + Ca+2 = H_dgCa + 2 H+; log_k -10.2 # Nickel - H_aH + Ni+2 = H_aNi+ + H+; log_k -1.4 - H_bH + Ni+2 = H_bNi+ + H+; log_k -1.4 - H_cH + Ni+2 = H_cNi+ + H+; log_k -1.4 - H_dH + Ni+2 = H_dNi+ + H+; log_k -1.4 + H_aH + Ni+2 = H_aNi+ + H+; log_k -1.4 + H_bH + Ni+2 = H_bNi+ + H+; log_k -1.4 + H_cH + Ni+2 = H_cNi+ + H+; log_k -1.4 + H_dH + Ni+2 = H_dNi+ + H+; log_k -1.4 - H_eH + Ni+2 = H_eNi+ + H+; log_k -4.5 - H_fH + Ni+2 = H_fNi+ + H+; log_k -4.5 - H_gH + Ni+2 = H_gNi+ + H+; log_k -4.5 - H_hH + Ni+2 = H_hNi+ + H+; log_k -4.5 + H_eH + Ni+2 = H_eNi+ + H+; log_k -4.5 + H_fH + Ni+2 = H_fNi+ + H+; log_k -4.5 + H_gH + Ni+2 = H_gNi+ + H+; log_k -4.5 + H_hH + Ni+2 = H_hNi+ + H+; log_k -4.5 - H_abH2 + Ni+2 = H_abNi + 2H+; log_k -2.8 - H_adH2 + Ni+2 = H_adNi + 2H+; log_k -2.8 - H_afH2 + Ni+2 = H_afNi + 2H+; log_k -5.9 - H_ahH2 + Ni+2 = H_ahNi + 2H+; log_k -5.9 - H_bcH2 + Ni+2 = H_bcNi + 2H+; log_k -2.8 - H_beH2 + Ni+2 = H_beNi + 2H+; log_k -5.9 - H_bgH2 + Ni+2 = H_bgNi + 2H+; log_k -5.9 - H_cdH2 + Ni+2 = H_cdNi + 2H+; log_k -2.8 - H_cfH2 + Ni+2 = H_cfNi + 2H+; log_k -5.9 - H_chH2 + Ni+2 = H_chNi + 2H+; log_k -5.9 - H_deH2 + Ni+2 = H_deNi + 2H+; log_k -5.9 - H_dgH2 + Ni+2 = H_dgNi + 2H+; log_k -5.9 + H_abH2 + Ni+2 = H_abNi + 2 H+; log_k -2.8 + H_adH2 + Ni+2 = H_adNi + 2 H+; log_k -2.8 + H_afH2 + Ni+2 = H_afNi + 2 H+; log_k -5.9 + H_ahH2 + Ni+2 = H_ahNi + 2 H+; log_k -5.9 + H_bcH2 + Ni+2 = H_bcNi + 2 H+; log_k -2.8 + H_beH2 + Ni+2 = H_beNi + 2 H+; log_k -5.9 + H_bgH2 + Ni+2 = H_bgNi + 2 H+; log_k -5.9 + H_cdH2 + Ni+2 = H_cdNi + 2 H+; log_k -2.8 + H_cfH2 + Ni+2 = H_cfNi + 2 H+; log_k -5.9 + H_chH2 + Ni+2 = H_chNi + 2 H+; log_k -5.9 + H_deH2 + Ni+2 = H_deNi + 2 H+; log_k -5.9 + H_dgH2 + Ni+2 = H_dgNi + 2 H+; log_k -5.9 # Copper - H_aH + Cu+2 = H_aCu+ + H+; log_k -0.63 - H_bH + Cu+2 = H_bCu+ + H+; log_k -0.63 - H_cH + Cu+2 = H_cCu+ + H+; log_k -0.63 - H_dH + Cu+2 = H_dCu+ + H+; log_k -0.63 + H_aH + Cu+2 = H_aCu+ + H+; log_k -0.63 + H_bH + Cu+2 = H_bCu+ + H+; log_k -0.63 + H_cH + Cu+2 = H_cCu+ + H+; log_k -0.63 + H_dH + Cu+2 = H_dCu+ + H+; log_k -0.63 - H_eH + Cu+2 = H_eCu+ + H+; log_k -3.75 - H_fH + Cu+2 = H_fCu+ + H+; log_k -3.75 - H_gH + Cu+2 = H_gCu+ + H+; log_k -3.75 - H_hH + Cu+2 = H_hCu+ + H+; log_k -3.75 + H_eH + Cu+2 = H_eCu+ + H+; log_k -3.75 + H_fH + Cu+2 = H_fCu+ + H+; log_k -3.75 + H_gH + Cu+2 = H_gCu+ + H+; log_k -3.75 + H_hH + Cu+2 = H_hCu+ + H+; log_k -3.75 - H_abH2 + Cu+2 = H_abCu + 2H+; log_k -1.26 - H_adH2 + Cu+2 = H_adCu + 2H+; log_k -1.26 - H_afH2 + Cu+2 = H_afCu + 2H+; log_k -4.38 - H_ahH2 + Cu+2 = H_ahCu + 2H+; log_k -4.38 - H_bcH2 + Cu+2 = H_bcCu + 2H+; log_k -1.26 - H_beH2 + Cu+2 = H_beCu + 2H+; log_k -4.38 - H_bgH2 + Cu+2 = H_bgCu + 2H+; log_k -4.38 - H_cdH2 + Cu+2 = H_cdCu + 2H+; log_k -1.26 - H_cfH2 + Cu+2 = H_cfCu + 2H+; log_k -4.38 - H_chH2 + Cu+2 = H_chCu + 2H+; log_k -4.38 - H_deH2 + Cu+2 = H_deCu + 2H+; log_k -4.38 - H_dgH2 + Cu+2 = H_dgCu + 2H+; log_k -4.38 + H_abH2 + Cu+2 = H_abCu + 2 H+; log_k -1.26 + H_adH2 + Cu+2 = H_adCu + 2 H+; log_k -1.26 + H_afH2 + Cu+2 = H_afCu + 2 H+; log_k -4.38 + H_ahH2 + Cu+2 = H_ahCu + 2 H+; log_k -4.38 + H_bcH2 + Cu+2 = H_bcCu + 2 H+; log_k -1.26 + H_beH2 + Cu+2 = H_beCu + 2 H+; log_k -4.38 + H_bgH2 + Cu+2 = H_bgCu + 2 H+; log_k -4.38 + H_cdH2 + Cu+2 = H_cdCu + 2 H+; log_k -1.26 + H_cfH2 + Cu+2 = H_cfCu + 2 H+; log_k -4.38 + H_chH2 + Cu+2 = H_chCu + 2 H+; log_k -4.38 + H_deH2 + Cu+2 = H_deCu + 2 H+; log_k -4.38 + H_dgH2 + Cu+2 = H_dgCu + 2 H+; log_k -4.38 # Zinc - H_aH + Zn+2 = H_aZn+ + H+; log_k -1.7 - H_bH + Zn+2 = H_bZn+ + H+; log_k -1.7 - H_cH + Zn+2 = H_cZn+ + H+; log_k -1.7 - H_dH + Zn+2 = H_dZn+ + H+; log_k -1.7 + H_aH + Zn+2 = H_aZn+ + H+; log_k -1.7 + H_bH + Zn+2 = H_bZn+ + H+; log_k -1.7 + H_cH + Zn+2 = H_cZn+ + H+; log_k -1.7 + H_dH + Zn+2 = H_dZn+ + H+; log_k -1.7 - H_eH + Zn+2 = H_eZn+ + H+; log_k -4.9 - H_fH + Zn+2 = H_fZn+ + H+; log_k -4.9 - H_gH + Zn+2 = H_gZn+ + H+; log_k -4.9 - H_hH + Zn+2 = H_hZn+ + H+; log_k -4.9 + H_eH + Zn+2 = H_eZn+ + H+; log_k -4.9 + H_fH + Zn+2 = H_fZn+ + H+; log_k -4.9 + H_gH + Zn+2 = H_gZn+ + H+; log_k -4.9 + H_hH + Zn+2 = H_hZn+ + H+; log_k -4.9 - H_abH2 + Zn+2 = H_abZn + 2H+; log_k -2.4 - H_adH2 + Zn+2 = H_adZn + 2H+; log_k -2.4 - H_afH2 + Zn+2 = H_afZn + 2H+; log_k -6.6 - H_ahH2 + Zn+2 = H_ahZn + 2H+; log_k -6.6 - H_bcH2 + Zn+2 = H_bcZn + 2H+; log_k -2.4 - H_beH2 + Zn+2 = H_beZn + 2H+; log_k -6.6 - H_bgH2 + Zn+2 = H_bgZn + 2H+; log_k -6.6 - H_cdH2 + Zn+2 = H_cdZn + 2H+; log_k -2.4 - H_cfH2 + Zn+2 = H_cfZn + 2H+; log_k -6.6 - H_chH2 + Zn+2 = H_chZn + 2H+; log_k -6.6 - H_deH2 + Zn+2 = H_deZn + 2H+; log_k -6.6 - H_dgH2 + Zn+2 = H_dgZn + 2H+; log_k -6.6 + H_abH2 + Zn+2 = H_abZn + 2 H+; log_k -2.4 + H_adH2 + Zn+2 = H_adZn + 2 H+; log_k -2.4 + H_afH2 + Zn+2 = H_afZn + 2 H+; log_k -6.6 + H_ahH2 + Zn+2 = H_ahZn + 2 H+; log_k -6.6 + H_bcH2 + Zn+2 = H_bcZn + 2 H+; log_k -2.4 + H_beH2 + Zn+2 = H_beZn + 2 H+; log_k -6.6 + H_bgH2 + Zn+2 = H_bgZn + 2 H+; log_k -6.6 + H_cdH2 + Zn+2 = H_cdZn + 2 H+; log_k -2.4 + H_cfH2 + Zn+2 = H_cfZn + 2 H+; log_k -6.6 + H_chH2 + Zn+2 = H_chZn + 2 H+; log_k -6.6 + H_deH2 + Zn+2 = H_deZn + 2 H+; log_k -6.6 + H_dgH2 + Zn+2 = H_dgZn + 2 H+; log_k -6.6 # Cadmium - H_aH + Cd+2 = H_aCd+ + H+; log_k -1.52 - H_bH + Cd+2 = H_bCd+ + H+; log_k -1.52 - H_cH + Cd+2 = H_cCd+ + H+; log_k -1.52 - H_dH + Cd+2 = H_dCd+ + H+; log_k -1.52 + H_aH + Cd+2 = H_aCd+ + H+; log_k -1.52 + H_bH + Cd+2 = H_bCd+ + H+; log_k -1.52 + H_cH + Cd+2 = H_cCd+ + H+; log_k -1.52 + H_dH + Cd+2 = H_dCd+ + H+; log_k -1.52 - H_eH + Cd+2 = H_eCd+ + H+; log_k -5.57 - H_fH + Cd+2 = H_fCd+ + H+; log_k -5.57 - H_gH + Cd+2 = H_gCd+ + H+; log_k -5.57 - H_hH + Cd+2 = H_hCd+ + H+; log_k -5.57 + H_eH + Cd+2 = H_eCd+ + H+; log_k -5.57 + H_fH + Cd+2 = H_fCd+ + H+; log_k -5.57 + H_gH + Cd+2 = H_gCd+ + H+; log_k -5.57 + H_hH + Cd+2 = H_hCd+ + H+; log_k -5.57 - H_abH2 + Cd+2 = H_abCd + 2H+; log_k -3.04 - H_adH2 + Cd+2 = H_adCd + 2H+; log_k -3.04 - H_afH2 + Cd+2 = H_afCd + 2H+; log_k -7.09 - H_ahH2 + Cd+2 = H_ahCd + 2H+; log_k -7.09 - H_bcH2 + Cd+2 = H_bcCd + 2H+; log_k -3.04 - H_beH2 + Cd+2 = H_beCd + 2H+; log_k -7.09 - H_bgH2 + Cd+2 = H_bgCd + 2H+; log_k -7.09 - H_cdH2 + Cd+2 = H_cdCd + 2H+; log_k -3.04 - H_cfH2 + Cd+2 = H_cfCd + 2H+; log_k -7.09 - H_chH2 + Cd+2 = H_chCd + 2H+; log_k -7.09 - H_deH2 + Cd+2 = H_deCd + 2H+; log_k -7.09 - H_dgH2 + Cd+2 = H_dgCd + 2H+; log_k -7.09 + H_abH2 + Cd+2 = H_abCd + 2 H+; log_k -3.04 + H_adH2 + Cd+2 = H_adCd + 2 H+; log_k -3.04 + H_afH2 + Cd+2 = H_afCd + 2 H+; log_k -7.09 + H_ahH2 + Cd+2 = H_ahCd + 2 H+; log_k -7.09 + H_bcH2 + Cd+2 = H_bcCd + 2 H+; log_k -3.04 + H_beH2 + Cd+2 = H_beCd + 2 H+; log_k -7.09 + H_bgH2 + Cd+2 = H_bgCd + 2 H+; log_k -7.09 + H_cdH2 + Cd+2 = H_cdCd + 2 H+; log_k -3.04 + H_cfH2 + Cd+2 = H_cfCd + 2 H+; log_k -7.09 + H_chH2 + Cd+2 = H_chCd + 2 H+; log_k -7.09 + H_deH2 + Cd+2 = H_deCd + 2 H+; log_k -7.09 + H_dgH2 + Cd+2 = H_dgCd + 2 H+; log_k -7.09 # Plumbum (Lead) - H_aH + Pb+2 = H_aPb+ + H+; log_k -0.81 - H_bH + Pb+2 = H_bPb+ + H+; log_k -0.81 - H_cH + Pb+2 = H_cPb+ + H+; log_k -0.81 - H_dH + Pb+2 = H_dPb+ + H+; log_k -0.81 + H_aH + Pb+2 = H_aPb+ + H+; log_k -0.81 + H_bH + Pb+2 = H_bPb+ + H+; log_k -0.81 + H_cH + Pb+2 = H_cPb+ + H+; log_k -0.81 + H_dH + Pb+2 = H_dPb+ + H+; log_k -0.81 - H_eH + Pb+2 = H_ePb+ + H+; log_k -3.04 - H_fH + Pb+2 = H_fPb+ + H+; log_k -3.04 - H_gH + Pb+2 = H_gPb+ + H+; log_k -3.04 - H_hH + Pb+2 = H_hPb+ + H+; log_k -3.04 + H_eH + Pb+2 = H_ePb+ + H+; log_k -3.04 + H_fH + Pb+2 = H_fPb+ + H+; log_k -3.04 + H_gH + Pb+2 = H_gPb+ + H+; log_k -3.04 + H_hH + Pb+2 = H_hPb+ + H+; log_k -3.04 + + H_abH2 + Pb+2 = H_abPb + 2 H+; log_k -1.62 + H_adH2 + Pb+2 = H_adPb + 2 H+; log_k -1.62 + H_afH2 + Pb+2 = H_afPb + 2 H+; log_k -3.85 + H_ahH2 + Pb+2 = H_ahPb + 2 H+; log_k -3.85 + H_bcH2 + Pb+2 = H_bcPb + 2 H+; log_k -1.62 + H_beH2 + Pb+2 = H_bePb + 2 H+; log_k -3.85 + H_bgH2 + Pb+2 = H_bgPb + 2 H+; log_k -3.85 + H_cdH2 + Pb+2 = H_cdPb + 2 H+; log_k -1.62 + H_cfH2 + Pb+2 = H_cfPb + 2 H+; log_k -3.85 + H_chH2 + Pb+2 = H_chPb + 2 H+; log_k -3.85 + H_deH2 + Pb+2 = H_dePb + 2 H+; log_k -3.85 + H_dgH2 + Pb+2 = H_dgPb + 2 H+; log_k -3.85 - H_abH2 + Pb+2 = H_abPb + 2H+; log_k -1.62 - H_adH2 + Pb+2 = H_adPb + 2H+; log_k -1.62 - H_afH2 + Pb+2 = H_afPb + 2H+; log_k -3.85 - H_ahH2 + Pb+2 = H_ahPb + 2H+; log_k -3.85 - H_bcH2 + Pb+2 = H_bcPb + 2H+; log_k -1.62 - H_beH2 + Pb+2 = H_bePb + 2H+; log_k -3.85 - H_bgH2 + Pb+2 = H_bgPb + 2H+; log_k -3.85 - H_cdH2 + Pb+2 = H_cdPb + 2H+; log_k -1.62 - H_cfH2 + Pb+2 = H_cfPb + 2H+; log_k -3.85 - H_chH2 + Pb+2 = H_chPb + 2H+; log_k -3.85 - H_deH2 + Pb+2 = H_dePb + 2H+; log_k -3.85 - H_dgH2 + Pb+2 = H_dgPb + 2H+; log_k -3.85 - END diff --git a/database/core10.dat b/database/core10.dat index 0c77db5f..5b147d43 100644 --- a/database/core10.dat +++ b/database/core10.dat @@ -1,6824 +1,6824 @@ -# Marc Neveu - created March 2, 2017. Last edited April 16, 2018. mneveu@asu.edu -# Reference for database description: Neveu M., Desch S. J., Castillo-Rogez J. C. (2017) -# Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas compositions, -# and fate of antifreezes and radionuclides. Geochimica et Cosmochimica Acta 212, 324-371. - # http://dx.doi.org/10.1016/j.gca.2017.06.023 -# -# Downloaded April 26, 2018 -# -# Paraphrase from abstract: -# This database is a compilation and careful validation of a -# comprehensive PHREEQC database, which combines the advantages -# of the default databases phreeqc.dat (carefully vetted data, molar volumes) -# and llnl.dat (large diversity of species), and should be of broad use to -# anyone seeking to model aqueous geochemistry at pressures that -# differ from 1 bar. -# -# Extrapolation algorithms: -# 64cri/cob: ? (12 aq species, all also with supcrt92) -# Cp integration = Integration of heat capacity vs. temperature measurements (162 solids, 2 gases) -# Constant H approx = Constant enthalpy approximation (76 solids) -# 69hel: http://dx.doi.org/10.2475/ajs.267.7.729 (5 aq species) -# Marion+12 (NH4Cl, NH4HCO3) -# supcrt92 = SUPCRT92 (329 aq, solids, gases) -# N17 ([(6)(CB)(CB)S], NH4-feldspar, NH4-muscovite) -# -# References: -# APP14: http://dx.doi.org/10.1016/j.gca.2013.10.003 (25 molar volumes, see phreeqc.dat) -# AS01: http://dx.doi.org/10.1016/S0168-6445(00)00062-0 (NO(g)) -# BH86: Barta and Hepler, 1986, Can. J.C. 64, 353. (Al+3, AlOH+2 molar volumes) -# Catalano13: http://dx.doi.org/10.1002/jgre.20161 (23 saponites + ripidolite) -# CWM89: http://www.worldcat.org/oclc/18559968 (20 solids, incl. 14 elemental) -# E68: Ellis, 1968, J. Chem. Soc. A, 1138. (Li+ molar volume) -# HDN+78: http://www.worldcatlibraries.org/oclc/13594862 (117 solids) -# Hel+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (Pyridine) -# Hel+09: http://dx.doi.org/10.1016/j.gca.2008.03.004 (Kerogen C128, C292, C515) -# HOK+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (C2H6(g), C3H8(g)) -# Hovis04: http://dx.doi.org/10.2138/am-2004-0111 (NH4-muscovite molar volume) -# HSS95: http://dx.doi.org/10.1016/0016-7037(95)00314-P (55 solutes) -# Joh90: Johnson, J.W., 1990, Personal calculation, Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C): Earch Sci. Dept, LLNL, Livermore, CA. (H2O(g)) -# Kel60: http://www.worldcat.org/oclc/693388901 (8 gases) -# M13: McColm I. J. (2013) Dictionary of Ceramic Science and Engineering, p.72. (CaUO4 molar volume) -# Marion+03: http://dx.doi.org/10.1016/S0016-7037(03)00372-7 (FeOH+) -# Marion+05: http://dx.doi.org/10.1016/j.gca.2004.06.024 (Arcanite, Gypsum, Niter, Thenardite molar volumes) -# Marion+08: http://dx.doi.org/10.1016/j.gca.2007.10.012 (FeOH+, FeOH+2, Melanterite molar volume) -# Marion+09: http://dx.doi.org/10.1016/j.gca.2009.03.013 (Alum-K molar volume) -# Marion+12: http://dx.doi.org/10.1016/j.icarus.2012.06.016 (NH4Cl, NH4HCO3) -# MLS+03: http://dx.doi.org/10.2138/am-2003-5-613 (Goethite) -# MS97: http://dx.doi.org/10.1016/S0016-7037(97)00241-X (HCl, MgSO4) -# N17: http://dx.doi.org/10.1016/j.gca.2017.06.023 ([(6)(CB)(CB)S], NH4-feldspar, NH4-muscovite) -# R01: http://dx.doi.org/10.1016/S0016-7037(01)00761-X ([(6)(CB)(CB)S]) -# RHF79: http://pubs.er.usgs.gov/publication/b1452 (40 solids) -# RH98: http://dx.doi.org/10.1016/S0016-7037(97)00345-1 ([(aro)-O-(aro)], Kerogen C128, C292, C515) -# SH88: http://dx.doi.org/10.1016/0016-7037(88)90181-0 (42 solutes, 1 solid) -# SH90: http://dx.doi.org/10.1016/0016-7037(90)90429-O (6 organic solutes) -# Sho93: http://dx.doi.org/10.1016/0016-7037(93)90542-5 (C2H4(g), CO(g)) -# Sho95: http://dx.doi.org/10.2475/ajs.295.5.496 (4 organic solutes) -# Sho09: http://dx.doi.org/10.2113/gsecongeo.104.8.1235 (Goethite) -# SHS89: http://dx.doi.org/10.1016/0016-7037(89)90341-4 (11 solutes) -# SK93: http://dx.doi.org/10.1016/0016-7037(93)90128-J (44 acetic acid/acetate complexes) -# SS93: http://dx.doi.org/10.1016/0016-7037(93)90337-V (CH2O) -# SM93: http://dx.doi.org/10.1006/icar.1993.1185 (CO, CO(NH2)2, HCN solutes) -# SSB97: http://dx.doi.org/10.1016/S0016-7037(97)00240-8 (UO2OH+, Uraninite) -# SSH97: http://dx.doi.org/10.1016/S0016-7037(97)00009-4 (30 solutes) -# SSW01: http://dx.doi.org/10.1016/S0016-7037(01)00717-7 (CO2, H2S) -# Ste01: http://dx.doi.org/10.1016/S0009-2541(00)00263-1 (Ti(OH)4) -# Wat81: “Ammonium Aluminosilicates: The Examination of a Mechanism for the High Temperature Condensation of Ammonia in Circumplanetary Subnebulae†MS Thesis, MIT, 1981. (NH4-feldspar, NH4-muscovite) -# WEP+82: http://dx.doi.org/10.1063/1.555845 (87 solutes, solids, and gases) -# WebElements: http://www.webelements.com/periodicity/molar_volume (K, U molar volumes) -# WebMineral: http://www.webmineral.com (38 solid molar volumes) -# Wilson+06: http://dx.doi.org/10.1016/j.gca.2005.10.003 (Chamosite, Lizardite) -# -# 73bar/kna: Barin, I., and Knacke, O., 1973, Thermochemical properties of inorganic substances: Springer-Verlag, New York. (Alum-K, MgOHCl, Na2SiO3, Nahcolite) -# 77bar/kna: Barin, I., Knacke, O., and Kubaschewski, O., 1977, Thermochemical properties of inorganic substances. Supplement: Springer-Verlag, New York. (Natrosilite, Pseudowollastonite, Rankinite) -# 87bou/bar: http://dx.doi.org/10.2113/gsecongeo.82.7.1839 (ZnOH+) -# 88db 3: Database development group iii/3, 1988, Errors in computation of estimated delH298 for montmor-x endmembers of smectite-di solid solution: LLNL Internal Memo. (Montmor-Ca, K, Mg, Na) -# 89db 7=89db 6, Database development group, 1989, Zeolite thermodynamic data: LLNL Internal memo. (Clinoptilolite-Ca, K, Na, Mesolite) -# 76del/hal: http://dx.doi.org/10.1021/cr60301a001 (2 Cr solutes, 9 Cr solids) -# 92gre/fug: Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., and Wanner, H., 1992, Chemical Thermodynamics, Volume 1: Chemical Thermodynamics of Uranium: North-Holland, Amsterdam, 1, 714p. (4 U solutes, 21 U solids) -# 90how/joh: http://dx.doi.org/10.1016/S0144-2449(05)80307-0 (Stilbite) -# 82joh/flo: Johnson, G.K., Flotow, H.E., O'Hare, P.A.G., and Wise, W.S., 1982, Thermodynamic studies of zeolites: Analcime and dehydrated analcime: Amer. Mineral., 67, 736-748. (Analcime) -# 83joh/flo: Johnson, G.K., Flotow, H.E., O'Hare, P.A.G., and Wise, W.S., 1983, Thermodynamic studies of zeolites: Natrolite, mesolite, and scolecite: Amer. Mineral., 68, 1134-1145. (Natrolite, Scolecite) -# 91joh/tas: http://dx.doi.org/10.1016/S0021-9614(05)80135-1 (Mordenite) -# 75kas/bor: Kashkay, C.H.M., Borovskaya,Y.U.B., and Babazade, M.A., 1975, Determination of delG0f298K of synthetic jarosite and its sulfate analogues: Geochem. Intl., 12, 115-121. (Jarosite) -# 87kee/rup: Kee, R.J., Rupley, F.M., and Miller, J.A., 1987, The Chemkin thermodynamic database: SNL Rep. SAND-87-8215, 92p. (Ice) -# 78lan: http://dx.doi.org/10.1016/0016-7037(78)90001-7 (Bassetite, Ningyoite, Saleeite) -# 80lan/her: http://dx.doi.org/10.1016/0016-7037(80)90226-4 (ThCl4) -# 82mar/smi: Martell, A.E., and Smith, R.M., 1982, Critical Stability Constants, Vol. 5: First Supplement: Plenum, New York, 5, 604p. (MgSO4(aq)) -# 74nau/ryz: Naumov, G.B., Ryzhenko, B.N., and Khodakovsky, I.L., 1974, Handbook of Thermodynamic Data: U.S.G.S. WRD-74-001, 328p. (CoCl+, CoFe2O4, CoS, CoSO4:H2O, Delafossite, Ni2SiO4) -# 76mac: http://dx.doi.org/10.1016/0010-938X(76)90066-4 (Mn+3) -# 95pok/hel: http://dx.doi.org/10.2475/ajs.295.10.1255 (4 solutes, 4 solids) -# 85rar 2: http://dx.doi.org/10.1021/cr00070a003 (9 europium solids) -# 87rar 2: Rard, J.A., 1987, Update of the europium data base, October, 1987: LLNL Internal Memo. (3 europium solids) -# 87rua/sew: http://dx.doi.org/10.1016/0016-7037(87)90013-5 (HCl) -# 82sar/bar: Sarkar, A.K., Barnes, M.W., and Roy, D.M., 1982, Longevity of borehole and shaft sealing materials: thermodynamic properties of cements and related phases applied to repository sealing: ONWI Tech. Rep. ONWI-201, 52p. (16 solids) -# 84sve: http://dx.doi.org/10.1016/0016-7037(84)90203-5 (Sphaerocobaltite) -# 78vau/cra: Vaughan, D.J., and Craig, J.R., 1978, Mineral chemistry of metal sulfides: Cambridge Univ. Press, Cambridge, MA. (5 solids) -# 78wol: Wolery, T.J., 1978, Some chemical aspects of hydrothermal processes at mid-oceanic ridges -- A theoretical study. I. Basalt-sea water reaction and chemical cycling between the oceanic crust and the oceans. II. Calculation of chemical equilibrium between aqueous solutions and minerals: Unpub. Ph.D. Diss., Northwestern Univ., Evaston, IL, 263p. (23 clays) -# 87woo/gar: Woods, T.L., and Garrels, R.M., 1987, Thermodynamic values at low temperature for natural inorganic materials: An uncritical summary: Oxford Univ. Press, Oxford. (Atacamite, Brochantite, Dioptase) - -# Species have various valid temperature ranges, noted in the Range parameter. Currently, Phreeqc doesn’t use this parameter, so it is up to the user to remain in the valid temperature range for all data used. - -# Example entry block: - -# Formation reaction from basis species -# -llnl_gamma # ion size parameter in B-dot Debye-Huckel equation -# log_k # at 25C, 1 bar, used if no -delta_H or -analytic -# -delta_H # molar enthalpy of reaction, used if no -analytic -# # deltafH # molar enthalpy of formation from reference compounds -# -analytic b1 b2 b3 b4 b5 b6 # logK = b1 + b2*T + b3/T + b4*log(T) + b5/T2 + b6*T2 -# # Range Tmin-Tmax # of validity of -analytic -# -Vm a1 a2 a3 a4 omega # See APP14, SH88 for equations -# # Extrapol # extrapolation algorithm -# # Ref # references - -LLNL_AQUEOUS_MODEL_PARAMETERS --temperatures - 0.01 25 60 100 - 150 200 250 300 -#debye huckel a (adh) --dh_a - 0.4939 0.5114 0.5465 0.5995 - 0.6855 0.7994 0.9593 1.2180 -#debye huckel b (bdh) --dh_b - 0.3253 0.3288 0.3346 0.3421 - 0.3525 0.3639 0.3766 0.3925 --bdot - 0.0374 0.0410 0.0438 0.0460 - 0.0470 0.0470 0.0340 0 -#cco2 (coefficients for the Drummond (1981) polynomial) --co2_coefs - -1.0312 0.0012806 - 255.9 0.4445 - -0.001606 - -SOLUTION_MASTER_SPECIES - -#element species alk gfw_formula element_gfw - -Al Al+3 0 Al 26.9815 -Alkalinity HCO3- 1 Ca0.5(CO3)0.5 50.05 -B B(OH)3 0 B 10.811 -B(3) B(OH)3 0 B -36.44179 -C(-4) CH4 0 CH4 -33.31051 -C(-3) C2H6 0 C2H6 -30.54674 -C(-2) C2H4 0 C2H4 -28.08539 -C HCO3- 1 HCO3 12.011 -C(+2) CO 0 C -23.87691 -C(+4) HCO3- 1 HCO3 -22.05727 -Ca Ca+2 0 Ca 40.078 -Cl Cl- 0 Cl 35.4527 -Cl(-1) Cl- 0 Cl -17.43358 -Cl(1) ClO- 0 Cl -16.11094 -Cl(3) ClO2- 0 Cl -14.87484 -Cl(5) ClO3- 0 Cl -13.71476 -Cl(7) ClO4- 0 Cl -Co Co+2 0 Co 58.9332 -Co(+2) Co+2 0 Co -Co(+3) Co+3 0 Co -Cr CrO4-2 0 CrO4-2 51.9961 -Cr(+2) Cr+2 0 Cr -Cr(+3) Cr+3 0 Cr -Cr(+6) CrO4-2 0 Cr -Cu Cu+2 0 Cu 63.546 -Cu(+1) Cu+1 0 Cu -Cu(+2) Cu+2 0 Cu -E e- 0 0 0 -Eu Eu+3 0 Eu 151.965 -Eu(+2) Eu+2 0 Eu -Eu(+3) Eu+3 0 Eu -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2 Fe -Gd Gd+3 0 Gd 157.25 -Gd(+3) Gd+3 0 Gd -H H+ -1 H 1.0079 -H(0) H2 0 H -H(+1) H+ -1 0 -K K+ 0 K 39.0983 -Li Li+ 0 Li 6.941 -Mg Mg+2 0 Mg 24.305 -Mn Mn+2 0 Mn 54.938 -Mn(+2) Mn+2 0 Mn -Mn(+3) Mn+3 0 Mn -Mn(+6) MnO4-2 0 Mn -Mn(+7) MnO4- 0 Mn -Mo MoO4-2 0 Mo 95.94 -N NH3 1 N 14.0067 -N(-3) NH3 1 N -N(0) N2 0 N -N(+3) NO2- 0 N -N(+5) NO3- 0 N -Na Na+ 0 Na 22.9898 -Ni Ni+2 0 Ni 58.69 -O H2O 0 O 15.994 -O(-2) H2O 0 0 -O(0) O2 0 O -P HPO4-2 2 P 30.9738 -P(5) HPO4-2 2 P -S SO4-2 0 SO4 32.066 -S(-2) HS- 1 S -S(+2) S2O3-2 0 S -S(+3) S2O4-2 0 S -S(+4) SO3-2 0 S -S(+5) S2O5-2 0 S -S(+6) SO4-2 0 SO4 -S(+7) S2O8-2 0 S -S(+8) HSO5- 0 S -Sc Sc+3 0 Sc 44.9559 -Si SiO2 0 SiO2 28.0855 -Sm Sm+3 0 Sm 150.36 -Sm(+2) Sm+2 0 Sm -Sm(+3) Sm+3 0 Sm -Th Th+4 0 Th 232.0381 -Ti Ti(OH)4 0 Ti 47.88 -U UO2+2 0 U 238.0289 -U(+3) U+3 0 U -U(+4) U+4 0 U -U(+5) UO2+ 0 U -U(+6) UO2+2 0 U -Zn Zn+2 0 Zn 65.39 - -SOLUTION_SPECIES - -#------------------ -# 31 basis species -#------------------ - -Al+3 = Al+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -128.681 kcal/mol - -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # APP14, BH86 - -B(OH)3 = B(OH)3 - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -256.82 kcal/mol - -Vm 7.0643 8.847 3.5844 -3.1451 -0.2 0 0 0 0 0 # SHS89 - -Ca+2 = Ca+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -129.8 kcal/mol - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # APP14 - -Cl- = Cl- - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -39.933 kcal/mol - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # APP14 - -Co+2 = Co+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -13.9 kcal/mol - -Vm -1.2252 -8.9356 5.3191 -2.4095 1.47690 0 0 0 0 0 # SSW+97 - -CrO4-2 = CrO4-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -210.6 kcal/mol - -Vm 5.4891 5.6223 3.5382 -3.0113 3.00240 0 0 0 0 0 # SSW+97 - -Cu+2 = Cu+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol -# deltafH 15.7 kcal/mol - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # APP14 - -e- = e- - -Eu+3 = Eu+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -144.7 kcal/mol - -Vm -3.1037 -15.3599 11.7871 -2.144 2.3161 0 0 0 0 0 # SH88 - -Fe+2 = Fe+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -22.05 kcal/mol - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # APP14 - -Gd+3 = Gd+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -164.2 kcal/mol - -Vm -2.9771 -15.0506 11.6656 -2.1568 2.3265 0 0 0 0 0 # SH88 - -H+ = H+ - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -0 kJ/mol - -HCO3- = HCO3- - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -164.898 kcal/mol - -Vm 7.5621 1.1505 1.2346 -2.8266 1.27330 0 0 0 0 0 # SH88 - -HPO4-2 = HPO4-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -308.815 kcal/mol - -Vm 3.6315 1.0857 5.3233 -2.8239 3.33630 0 0 0 0 0 # SH88 - -K+ = K+ - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -60.27 kcal/mol - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # APP14 - -Li+ = Li+ - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -66.552 kcal/mol - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # APP14, E68 - -Mg+2 = Mg+2 - -llnl_gamma 8 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -111.367 kcal/mol - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # APP14 - -Mn+2 = Mn+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -52.724 kcal/mol - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # APP14 - -MoO4-2 = MoO4-2 - -llnl_gamma 4.5 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -238.5 kcal/mol - -Vm 6.9651 2.7095 18.6617 -2.8909 3.07770 0 0 0 0 0 # SSW+97 - -NH3 = NH3 - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -19.44 kcal/mol - -Vm 5.0911 2.797 8.6248 -2.8946 -7.690e-2 0 0 0 0 0 # SHS89 - -Na+ = Na+ - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -57.433 kcal/mol - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # APP14 - -Ni+2 = Ni+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -12.9 kcal/mol - -Vm -1.6942 -11.9181 10.4344 -2.2863 1.50670 0 0 0 0 0 # SH88 - -H2O = H2O - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -68.317 kcal/mol - -SO4-2 = SO4-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -217.4 kcal/mol - -Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # APP14 - -Sc+3 = Sc+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -146.8 kcal/mol - -Vm -2.1109 -12.9294 10.817 -2.2444 2.5003 0 0 0 0 0 # SSW+97 - -SiO2 = SiO2 - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -209.775 kcal/mol - -Vm 1.9 1.7 20 -2.7 0.12910 0 0 0 0 0 # SHS89 - -Sm+3 = Sm+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -165.2 kcal/mol - -Vm -3.2065 -15.6108 11.8857 -2.1337 2.2955 0 0 0 0 0 # SH88 - -Th+4 = Th+4 - -llnl_gamma 11 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -183.8 kcal/mol - -Vm -4.2886 -18.25 12.9154 -2.0244 3.70930 0 0 0 0 0 # SSW+97 - -Ti(OH)4 = Ti(OH)4 - -llnl_gamma 3 - log_k 0 -# deltafH -0 kcal/mol - -Vm 7.366874 10.21009 1.152964 -3.201004 0.01498566 0 0 0 0 0 # Ste01 - -UO2+2 = UO2+2 - -llnl_gamma 4.5 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -1019 kJ/mol - -Vm 3.0256 -4.1084 15.3326 -2.6091 1.40990 0 0 0 0 0 # SSW+97 - -Zn+2 = Zn+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -36.66 kcal/mol - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 # APP14 - -#------------------- -# 40 Redox couples -#------------------- - -2H2O = O2 + 4H+ + 4e- - -CO2_llnl_gamma - log_k -85.9951 - -delta_H 559.543 kJ/mol -# deltafH -2.9 kcal/mol - -analytic 38.0229 7.99407e-3 -2.7655e4 -1.4506e1 199838.45 -# Range 0-350 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 -# Extrapol supcrt92 -# Ref SHS89 - -SO4-2 + H+ = HS- + 2 O2 - -llnl_gamma 3.5 - log_k -138.3169 - -delta_H 869.226 kJ/mol -# deltafH -3.85 kcal/mol - -analytic 2.6251e1 3.9525e-2 -4.5443e4 -1.1107e1 3.1843e5 -# Range 0-350 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.44100 -# Extrapol supcrt92 -# Ref SH88 - -.5 O2 + 2 HS- = S2-2 + H2O - -llnl_gamma 4.0 - log_k 33.2673 -# deltafH -0 kcal/mol - -analytic 0.21730e2 -0.12307e-2 0.10098e5 -0.88813e1 0.15757e3 - -mass_balance S(-2)2 -# Range 0-350 - -Vm 5.5797 5.8426 3.4536 -3.0205 3.10830 -# Extrapol supcrt92 -# Ref SH88 - -2 H+ + 2 SO3-2 = S2O3-2 + O2 + H2O - -llnl_gamma 4.0 - log_k -40.2906 -# deltafH -0 kcal/mol - -analytic 0.77679e2 0.65761e-1 -0.15438e5 -0.34651e2 -0.24092e3 -# Range 0-350 - -Vm 6.6685 12.4951 -7.7281 -3.2955 2.96940 -# Extrapol supcrt92 -# Ref SH88 - -H+ + HCO3- + H2O = CH4 + 2 O2 - -llnl_gamma 3.0 - log_k -144.1412 - -delta_H 863.599 kJ/mol -# deltafH -21.01 kcal/mol - -analytic -0.41698e2 0.36584e-1 -0.40675e5 0.93479e1 -0.63468e3 -# Range 0-350 - -Vm 6.7617 8.7279 2.3212 -3.1397 -0.31790 -# Extrapol supcrt92 -# Ref SH90 - -2 H+ + 2 HCO3- + H2O = C2H6 + 3.5 O2 - -llnl_gamma 3.0 - log_k -228.6072 -# deltafH -0 kcal/mol - #analytic -0.10777e2 0.72105e-1 -0.67489e5 -0.13915e2 -0.10531e4 - -analytic -491.3 1.148 -10004 0 0 -8.06e-4 # !!! Using CHNOSZ, discrepant with above expression unless the first term is -0.10777e2 instead of 0.10777e2 -# Range 0-350 - -Vm 8.75 13.1051 1.6258 -3.3207 -0.06270 -# Extrapol supcrt92 -# Ref SH90 - -2 H+ + 2 HCO3- = C2H4 + 3 O2 - -llnl_gamma 3.0 - log_k -254.5034 - -delta_H 1446.6 kJ/mol -# deltafH 24.65 kcal/mol - #analytic -0.30329e2 0.71187e-1 -0.73140e5 - -analytic 6e-2 3.60e-2 -7.17e4 -# Range 0-350 - -Vm 7.856 12.6391 -1.8737 -3.3014 -0.4 -# Extrapol supcrt92 -# Ref SH90 - -HCO3- + H+ = CO + H2O + 0.5 O2 - -llnl_gamma 3.0 - log_k -41.7002 - -delta_H 277.069 kJ/mol -# deltafH -28.91 kcal/mol - -analytic 1.0028e2 4.6877e-2 -1.8062e4 -4.0263e1 3.8031e5 -# Range 0-350 - -Vm 6.2373 7.4498 2.8184 -3.0869 -0.37150 -# Extrapol supcrt92 -# Ref SM93 - -Cl- + 0.5 O2 = ClO- - -llnl_gamma 4.0 - log_k -15.1014 - -delta_H 66.0361 kJ/mol -# deltafH -25.6 kcal/mol - -analytic 6.1314e1 3.4812e-3 -6.0952e3 -2.3043e1 -9.5128e1 -# Range 0-350 - -Vm 2.3599 -2.0164 6.5356 -2.6955 1.47670 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -O2 + Cl- = ClO2- - -llnl_gamma 4.0 - log_k -23.108 - -delta_H 112.688 kJ/mol -# deltafH -15.9 kcal/mol - -analytic 3.3638e0 -6.1675e-3 -4.9726e3 -2.0467e0 -2.5769e5 -# Range 0-350 - -Vm 5.2163 4.958 3.7949 -2.9839 1.2637 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -1.5 O2 + Cl- = ClO3- - -llnl_gamma 3.5 - log_k -17.2608 - -delta_H 81.3077 kJ/mol -# deltafH -24.85 kcal/mol - -analytic 2.8852e1 -4.8281e-3 -4.6779e3 -1.0772e1 -2.0783e5 -# Range 0-350 - -Vm 7.1665 9.7172 1.9307 -3.1807 1.0418 -# Extrapol supcrt92 -# Ref SH88 - -2 O2 + Cl- = ClO4- - -llnl_gamma 3.5 - log_k -15.7091 - -delta_H 62.0194 kJ/mol -# deltafH -30.91 kcal/mol - -analytic 7.0280e1 -6.8927e-5 -5.5690e3 -2.6446e1 -1.6596e5 -# Range 0-350 - -Vm 8.1411 15.5654 -7.8077 -3.4224 0.9699 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -H+ + Co+2 + 0.25 O2 = Co+3 + 0.5 H2O - -llnl_gamma 5.0 - log_k -11.4845 - -delta_H 10.3198 kJ/mol -# deltafH 22 kcal/mol - -analytic -2.2827e1 -1.2222e-2 -7.2117e2 7.0306 -1.1247e1 -# Range 0-350 - -Vm -2.8678 -14.7777 11.5439 -2.1680 2.6901 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -4 H+ + CrO4-2 = Cr+2 + 2 H2O + O2 - -llnl_gamma 4.5 - log_k -21.6373 - -delta_H 153.829 kJ/mol -# deltafH -34.3 kcal/mol - -analytic 6.9003e1 6.2884e-2 -6.9847e3 -3.4720e1 -1.0901e2 -# Range 0-350 - -Vm -0.8036 -9.74 9.5688 -2.3762 1.4287 # SSW+97 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 76del/hal differ by 2 log K at 0C, 0.7 log K at 300C - -5 H+ + CrO4-2 = Cr+3 + 2.5 H2O + 0.75 O2 - -llnl_gamma 9.0 - log_k 8.3842 - -delta_H -81.0336 kJ/mol -# deltafH -57 kcal/mol - -analytic 5.1963e1 6.0932e-2 5.4256e3 -3.2290e1 8.4645e1 -# Range 0-350 - -Vm -2.7824 -14.5709 11.4661 -2.1765 2.7403 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 76del/hal differ by 1.5 log K at 0C, 0.8 log K at 300C - -Cu+2 + 0.5 H2O = Cu+ + H+ + 0.25 O2 - -llnl_gamma 4.0 - log_k -18.7704 - -delta_H 145.877 kJ/mol -# deltafH 17.132 kcal/mol - -analytic 3.7909e1 1.3731e-2 -8.1506e3 -1.3508e1 -1.2719e2 -# Range 0-350 - -Vm 0.807 -5.804 8.0165 -2.5390 0.40460 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -Eu+3 + 0.5 H2O = Eu+2 + H+ + 0.25 O2 - -llnl_gamma 4.5 - log_k -27.5115 - -delta_H 217.708 kJ/mol -# deltafH -126.1 kcal/mol - -analytic 3.0300e1 1.4126e-2 -1.2319e4 -9.0585e0 1.5289e5 -# Range 0-350 - -Vm 0.0407 -7.6776 8.7578 -2.4615 1.0929 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -H+ + Fe+2 + 0.25 O2 = Fe+3 + 0.5 H2O - -llnl_gamma 9.0 - log_k 8.4899 - -delta_H -97.209 kJ/mol -# deltafH -11.85 kcal/mol - -analytic -1.7808e1 -1.1753e-2 4.7609e3 5.5866 7.4295e1 -# Range 0-350 - -Vm -2.4256 -13.6961 11.1141 -2.2127 2.58120 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -H2O = H2 + 0.5 O2 - -CO2_llnl_gamma - log_k -46.1066 - -delta_H 275.588 kJ/mol -# deltafH -1 kcal/mol - -analytic 6.6835e1 1.7172e-2 -1.8849e4 -2.4092e1 4.2501e5 -# Range 0-350 - -Vm 5.1427 4.7758 3.8729 -2.9764 -0.209 -# Extrapol supcrt92 -# Ref SHS89 - -SO4-2 + H+ + 0.5 O2 = HSO5- - -llnl_gamma 4.0 - log_k -17.2865 - -delta_H 140.038 kJ/mol -# deltafH -185.38 kcal/mol - -analytic 5.9944e1 3.0904e-2 -7.7494e3 -2.4420e1 -1.2094e2 -# Range 0-350 - -Vm 8.9391 14.043 0.2349 -3.3594 0.86110 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -Mn+2 + H+ + 0.25 O2 = Mn+3 + 0.5 H2O - -llnl_gamma 5.0 - log_k -4.0811 - -delta_H -65.2892 kJ/mol -# deltafH -34.895 kcal/mol - -analytic 3.8873e1 1.7458e-2 2.0757e3 -2.2274e1 3.2378e1 -# Range 0-350 - -Vm -2.932 -14.934 11.6041 -2.1615 2.70250 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 76mac match - -2 H2O + O2 + Mn+2 = MnO4-2 + 4 H+ - -llnl_gamma 4.0 - log_k -32.4146 - -delta_H 151.703 kJ/mol -# deltafH -156 kcal/mol - -analytic -1.0407e1 -4.6464e-2 -1.0515e4 1.0943e1 -1.6408e2 -# Range 0-350 - -Vm 5.6596 6.0368 3.3786 -3.0285 2.98030 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -2 NH3 + 1.5 O2 = N2 + 3 H2O - -llnl_gamma 3.0 - log_k 116.4609 - -delta_H -687.08 kJ/mol -# deltafH -2.495 kcal/mol - -analytic -8.2621e1 -1.4671e-2 4.0068e4 2.9090e1 -2.5924e5 -# Range 0-350 - -Vm 6.2046 7.3685 2.8539 -3.0836 -0.34680 -# Extrapol supcrt92 -# Ref SHS89 - -1.5 O2 + NH3 = NO2- + H+ + H2O - -llnl_gamma 3.0 - log_k +46.8653 - -delta_H -290.901 kJ/mol -# deltafH -25 kcal/mol - -analytic -1.7011e1 -3.3459e-2 1.3999e4 1.1078e1 -4.8255e4 -# Range 0-350 - -Vm 5.5864 5.859 3.4472 -3.0212 1.18470 -# Extrapol supcrt92 -# Ref SH88 - -2 O2 + NH3 = NO3- + H+ + H2O - -llnl_gamma 3.0 - log_k 62.1001 - -delta_H -387.045 kJ/mol -# deltafH -49.429 kcal/mol - -analytic -3.9468e1 -3.9697e-2 2.0614e4 1.8872e1 -2.1917e5 -# Range 0-350 - -Vm 7.3161 6.7824 -4.6838 -3.0594 1.09770 -# Extrapol supcrt92 -# Ref SH88 - -2 H+ + 2 SO3-2 = S2O4-2 + .5 O2 + H2O - -llnl_gamma 5.0 - log_k -25.2076 -# deltafH -0 kcal/mol - -analytic -2.3172e2 2.0393e-3 -7.1011 8.3239e1 9.4155e-1 -# Range 0-350 - -Vm 6.6784 8.528 2.3917 -3.1314 2.87720 -# Extrapol supcrt92 -# Ref SSW+97 - -2 SO3-2 + .5 O2 + 2 H+ = S2O6-2 + H2O - -llnl_gamma 4.0 - log_k 41.8289 -# deltafH -0 kcal/mol - -analytic 0.14458e3 0.61449e-1 0.71877e4 -0.58657e2 0.11211e3 -# Range 0-350 - -Vm 8.2257 12.3054 0.9087 -3.2876 2.75870 -# Extrapol supcrt92 -# Ref SSW+97 - -2 SO3-2 + 1.5 O2 + 2 H+ = S2O8-2 + H2O - -llnl_gamma 4.0 - log_k 70.7489 -# deltafH -0 kcal/mol - -analytic 0.18394e3 0.60414e-1 0.13864e5 -0.71804e2 0.21628e3 -# Range 0-350 - -Vm 13.3622 24.8454 -4.0153 -3.8061 2.32810 -# Extrapol supcrt92 -# Ref SH88 - -O2 + H+ + 3 HS- = S3-2 + 2 H2O - -llnl_gamma 4.0 - log_k 79.3915 -# deltafH -0 kcal/mol - -analytic -0.51626e2 0.70208e-2 0.31797e5 0.11927e2 -0.64249e6 - -mass_balance S(-2)3 -# Range 0-350 - -Vm 6.7661 8.7396 2.315 -3.1403 2.97490 -# Extrapol supcrt92 -# Ref SH88 - -3 SO3-2 + 4 H+ = S3O6-2 + .5 O2 + 2 H2O - -llnl_gamma 4.0 - log_k -6.2316 -# deltafH -0 kcal/mol - -analytic 0.23664e3 0.12702 -0.10110e5 -0.99715e2 -0.15783e3 -# Range 0-350 - -Vm 8.4155 12.7691 0.7268 -3.3068 2.71310 -# Extrapol supcrt92 -# Ref SSW+97 - -1.5 O2 + 2 H+ + 4 HS- = S4-2 + 3 H2O - -llnl_gamma 4.0 - log_k 125.2958 -# deltafH -0 kcal/mol - -analytic 0.20875e3 0.58133e-1 0.33278e5 -0.85833e2 0.51921e3 - -mass_balance S(-2)4 -# Range 0-350 - -Vm 7.9381 11.6012 1.1902 -3.2586 2.83900 -# Extrapol supcrt92 -# Ref SH88 - -4 SO3-2 + 6 H+ = S4O6-2 + 1.5 O2 + 3 H2O - -llnl_gamma 4.0 - log_k -38.3859 -# deltafH -0 kcal/mol - -analytic 0.32239e3 0.19555 -0.23617e5 -0.13729e3 -0.36862e3 -# Range 0-350 - -Vm 10.2672 17.2902 -1.0502 -3.4937 2.28050 -# Extrapol supcrt92 -# Ref SSW+97 - -2 O2 + 3 H+ + 5 HS- = S5-2 + 4 H2O - -llnl_gamma 4.0 - log_k 170.9802 -# deltafH -0 kcal/mol - -analytic 0.30329e3 0.88033e-1 0.44739e5 -0.12471e3 0.69803e3 - -mass_balance S(-2)5 -# Range 0-350 - -Vm 9.1107 14.4645 0.0649 -3.3770 2.70510 -# Extrapol supcrt92 -# Ref SH88 - -5 SO3-2 + 8 H+ = S5O6-2 + 2.5 O2 + 4 H2O - -llnl_gamma 4.0 - log_k -99.4206 -# deltafH -0 kcal/mol - -analytic 0.42074e3 0.25833 -0.43878e5 -0.18178e3 -0.68480e3 -# Range 0-350 - -Vm 8.8725 13.8806 0.2986 -3.3527 2.60760 -# Extrapol supcrt92 -# Ref SSW+97 - -H+ + HCO3- + HS- + NH3 = SCN- + 3 H2O - -llnl_gamma 3.5 - log_k 3.0070 -# deltafH -0 kcal/mol - -analytic 0.16539e3 0.49623e-1 -0.44624e4 -0.65544e2 -0.69680e2 -# Range 0-350 - -Vm 7.0244 9.3687 2.0708 -3.1662 1.10730 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 92gre/fug match - -SO4-2 = SO3-2 + 0.5 O2 - -llnl_gamma 4.5 - log_k -46.6244 - -delta_H 267.985 kJ/mol -# deltafH -151.9 kcal/mol - -analytic -1.3771e1 6.5102e-4 -1.3330e4 4.7164 -2.0800e2 -# Range 0-350 - -Vm 2.4632 -1.7691 6.4494 -2.7058 3.321 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -Sm+3 + 0.5 H2O = Sm+2 + H+ + 0.25 O2 - -llnl_gamma 4.5 - log_k -47.9624 - -delta_H 326.911 kJ/mol -# deltafH -120.5 kcal/mol - -analytic -1.0217e1 7.7548e-3 -1.6285e4 5.4711 9.1931e4 -# Range 0-350 - -Vm -0.0353 -7.8592 8.8194 -2.454 1.1512 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -UO2+2 + H+ = U+3 + 0.75 O2 + 0.5 H2O - -llnl_gamma 5.0 - log_k -64.8028 - -delta_H 377.881 kJ/mol -# deltafH -489.1 kJ/mol - -analytic 2.5133e1 6.4088e-3 -2.2542e4 -8.1423 3.4793e5 -# Range 0-350 - -Vm -2.8438 -14.722 11.528 -2.1703 2.27520 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 92gre/fug match - -2 H+ + UO2+2 = U+4 + H2O + 0.5 O2 - -llnl_gamma 5.5 - log_k -33.9491 - -delta_H 135.895 kJ/mol -# deltafH -591.2 kJ/mol - -analytic 4.4837e1 1.0129e-2 -1.1787e4 -1.9194e1 4.6436e5 -# Range 0-350 - -Vm -4.2836 -18.2319 12.8955 -2.0252 3.68350 # SSW+97 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 92gre/fug match - -UO2+2 + 0.5 H2O = UO2+ + H+ + 0.25 O2 - -llnl_gamma 4.0 - log_k -20.0169 - -delta_H 133.759 kJ/mol -# deltafH -1025.13 kJ/mol - -analytic 8.0480 9.5845e-3 -6.5994e3 -3.5515 -1.0298e2 -# Range 0-350 - -Vm 3.3767 0.4614 5.5725 -2.7980 0.63880 # SSW+97 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 92gre/fug match - -#--------------------------- -# 156 other aqueous species -#--------------------------- - -2 CH3COOH + Al+3 = Al(CH3COO)2+ + 2 H+ - -llnl_gamma 4.0 - log_k -5.595 - -delta_H -46.8566 kJ/mol -# deltafH -372.08 kcal/mol - -analytic -4.2528e1 2.1431e-3 3.1658e2 1.1585e1 5.8604e5 -# Range 0-350 - -Vm 8.9971 14.1844 0.1805 -3.3653 1.39180 -# Extrapol supcrt92 -# Ref SK93, differ by 2.2 log K at 0C, 1 log K at 300C - -2 H2O + Al+3 = AlO2- + 4 H+ - -llnl_gamma 4.0 - log_k -22.8833 - -delta_H 180.899 kJ/mol -# deltafH -222.079 kcal/mol - -analytic 1.0803e1 -3.4379e-3 -9.7391e3 0e0 0e0 -# Range 0-350 - -Vm 3.7221 3.9954 -1.5879 -2.9441 1.74180 -# Extrapol supcrt92 -# Ref SSW+97, 95pok/hel match - -H2O + Al+3 = AlOH+2 + H+ - -llnl_gamma 4.5 - log_k -4.9571 - -delta_H 49.798 kJ/mol -# deltafH -185.096 kcal/mol - -analytic -2.6224e-1 8.8816e-3 -1.8686e3 -4.3195e-1 -2.9158e1 -# Range 0-350 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # APP14, BH86 -# Extrapol supcrt92 -# Ref SSW+97, 95pok/hel match - -B(OH)3 = BO2- + H+ + H2O - -llnl_gamma 4.0 - log_k -9.2449 - -delta_H 16.3302 kJ/mol -# deltafH -184.6 kcal/mol - -analytic -1.0500e2 -3.3447e-2 1.4706e3 4.0724e1 2.2978e1 -# Range 0-350 - -Vm -2.2428 -6.2065 -6.3216 -2.5224 1.75950 -# Extrapol supcrt92 -# Ref SH88 - -HCO3- + H+ = CO2 + H2O - -CO2_llnl_gamma - log_k 6.3447 - -delta_H -9.7027 kJ/mol -# deltafH -98.9 kcal/mol - -analytic -1.0534e1 2.1746e-2 2.5216e3 7.9125e-1 3.9351e1 -# Range 0-350 - -Vm 6.2466 7.4711 2.8136 -3.0879 -0.1934 -# Extrapol supcrt92 -# Ref SSW01, SHS89 - -HCO3- = CO3-2 + H+ - -llnl_gamma 4.5 - log_k -10.3288 - -delta_H 14.6984 kJ/mol -# deltafH -161.385 kcal/mol - -analytic -6.9958e1 -3.3526e-2 -7.0846e1 2.8224e1 -1.0849 -# Range 0-350 - -Vm 2.8524 -3.9844 6.4142 -2.6143 3.39140 -# Extrapol supcrt92 -# Ref SH88 - -NH3 + HCO3- = CN- + 2 H2O + 0.5 O2 - -llnl_gamma 3.0 - log_k -56.0505 - -delta_H 344.151 kJ/mol -# deltafH 36 kcal/mol - -analytic -1.1174e1 3.8167e-3 -1.7063e4 4.5349e0 -2.6625e2 -# Range 0-350 - -Vm 5.4714 5.5813 3.5497 -3.0096 1.29000 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -HCO3- + H+ = HCOOH + 0.5 O2 - -llnl_gamma 3.0 # EQ3/6 data0.sup - log_k -39.0524 - -analytic -16.6 0.041 -10000 0 0 -1.205e-5 -# Range 0-350 - -Vm 6.3957 7.7713 2.8318 -3.1002 -0.33 -# Extrapol supcrt92 -# Ref Sho95 - -HCOOH = HCOO- + H+ - -llnl_gamma 3.5 # EQ3/6 data0.sup - log_k -3.752994 - -analytic -6.456 0.01694 0 0 0 -2.71e-5 -# Range 0-350 - -Vm 5.7842 4.7242 7.363 -2.9742 1.3003 -# Extrapol supcrt92 -# Ref Sho95 - -2 HCO3- + 2 H+ = CH3COOH + 2 O2 - -llnl_gamma 3.0 # EQ3/6 data0.sup - log_k -141.99219 - -analytic -6.037 0.0104 -42362 0 0 3.604e-5 -# Range 0-350 - -Vm 11.6198 5.218 2.5088 -2.9946 -0.15 -# Extrapol supcrt92 -# Ref Sho95 - -CH3COOH = CH3COO- + H+ - -llnl_gamma 4.5 - log_k -4.7572 -# deltafH -0 kcal/mol - -analytic -0.96597e2 -0.34535e-1 0.19753e4 0.38593e2 0.30850e2 -# Range 0-350 - -Vm 7.7525 8.6996 7.5825 -3.1385 1.31820 -# Extrapol supcrt92 -# Ref Sho95 - -2 NH3 + HCO3- + H+ = CO(NH2)2 + 2 H2O - -llnl_gamma 3.0 # EQ3/6 data0.sup - log_k 6.631821 - -analytic 15.98 -4.41e-2 0 0 0 4.25e-5 -# Range 0-350 - -Vm 7.7158 7.3031 10.9353 -3.0808 -0.3006 -# Extrapol supcrt92 -# Ref SM93 - -3 H+ + 3 HCO3- + H2O = C3H8 + 5 O2 - -llnl_gamma 3.0 # thermo.com.V8.R6+.tdat - log_k -363.088 - -analytic -8.04e2 1.877 0 0 0 -1.33e-3 -# Range 0-350 - -Vm 10.768 17.6785 -0.5878 -3.5097 -0.165 -# Extrapol supcrt92 -# Ref SH90 - -H+ + HCO3- + H2O = CH3OH + 1.5 O2 - -llnl_gamma 3.0 # EQ3/6 data0.sup - log_k -117.9046 - -analytic -262.5446137 6.159125942e-1 0 0 0 -4.375362728e-4 -# Range 0-350 - -Vm 6.9383 5.5146 11.4018 -3.0069 -0.14760 -# Extrapol supcrt92 -# Ref SH90 - -H2O + 2 HCO3- + 2 H+ = CH3CH2OH + 3 O2 - -llnl_gamma 3.0 # EQ3/6 data0.sup - log_k -224.1415 - -analytic -423.8 0.989 -10003 0 0 -6.93e-4 -# Range 0-350 - -Vm 9.2333 9.9581 12.1445 -3.1906 -0.2037 -# Extrapol supcrt92 -# Ref SH90 - -HCO3- + H+ = CH2O + O2 - -llnl_gamma 3.0 # EQ3/6 data0.sup - log_k -86.57248 - -analytic -17.3 0.0404 -24072 0 0 -6.57e-6 -# Range 0-350 - -Vm 5.3113 5.3139 3.3901 -2.9986 -0.3984 -# Extrapol supcrt92 -# Ref SS93 - -2 CH3COOH + Ca+2 = Ca(CH3COO)2 + 2 H+ - -llnl_gamma 3.0 - log_k -7.3814 - -delta_H -2.7196 kJ/mol -# deltafH -362.65 kcal/mol - -analytic -1.0320e1 4.0012e-3 -3.6281e3 2.4421 7.0175e5 -# Range 0-350 - -Vm 12.9911 23.9379 -3.6556 -3.7685 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Ca+2 + CH3COOH = CaCH3COO+ + H+ - -llnl_gamma 4.0 - log_k -3.8263 - -delta_H 1.17152 kJ/mol -# deltafH -245.62 kcal/mol - -analytic -8.8826 3.1672e-3 -1.0764e3 2.0526 2.3599e5 -# Range 0-350 - -Vm 5.9002 6.6232 3.1505 -3.0527 0.36360 -# Extrapol supcrt92 -# Ref SK93 - -HCO3- + Ca+2 = CaCO3 + H+ - -llnl_gamma 3.0 - log_k -7.0017 - -delta_H 30.5767 kJ/mol -# deltafH -287.39 kcal/mol - -analytic 2.3045e2 5.5350e-2 -8.5056e3 -9.1096e1 -1.3279e2 -# Range 0-350 - -Vm -0.3907 -8.7325 9.1753 -2.4179 -0.038 -# Extrapol supcrt92 -# Ref SSH97 - -Cl- + Ca+2 = CaCl+ - -llnl_gamma 4.0 - log_k -0.6956 - -delta_H 2.02087 kJ/mol -# deltafH -169.25 kcal/mol - -analytic 8.1498e1 3.8387e-2 -1.3763e3 -3.5968e1 -2.1501e1 -# Range 0-350 - -Vm 2.7148 -1.1497 6.1949 -2.7314 0.48620 -# Extrapol supcrt92 -# Ref SSH97 differ by 0.3 log K at 0C, 1.2 log K at 300C - -2 Cl- + Ca+2 = CaCl2 - -llnl_gamma 3.0 - log_k -0.6436 - -delta_H -5.8325 kJ/mol -# deltafH -211.06 kcal/mol - -analytic 1.8178e2 7.6910e-2 -3.1088e3 -7.8760e1 -4.8563e1 -# Range 0-350 - -Vm 6.2187 7.4058 2.8322 -3.0851 -0.038 -# Extrapol supcrt92 -# Ref SSH97 - -SO4-2 + Ca+2 = CaSO4 - -llnl_gamma 3.0 - log_k 2.1111 - -delta_H 5.4392 kJ/mol -# deltafH -345.9 kcal/mol - -analytic 2.8618e2 8.4084e-2 -7.6880e3 -1.1449e2 -1.2005e2 -# Range 0-350 - -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # phreeqc.dat, SSH97 -# Extrapol supcrt92 -# Ref SSH97 - -2 CH3COOH + Co+2 = Co(CH3COO)2 + 2 H+ - -llnl_gamma 3.0 - log_k -7.1468 - -delta_H -22.4262 kJ/mol -# deltafH -251.46 kcal/mol - -analytic -2.0661e1 2.9014e-3 -2.2146e3 5.1702 6.4968e5 -# Range 0-350 - -Vm 11.9141 21.312 -2.6321 -3.6599 3.49629 -# Extrapol supcrt92 -# Ref SK93 - -3 CH3COOH + Co+2 = Co(CH3COO)3- + 3 H+ - -llnl_gamma 4.0 - log_k -11.281 - -delta_H -48.2415 kJ/mol -# deltafH -373.73 kcal/mol - -analytic 6.3384e1 -4.0669e-3 -1.4715e4 -1.9518e1 2.1524e6 -# Range 0-350 - -Vm 20.3474 41.8989 -10.7127 -4.5110 1.47140 -# Extrapol supcrt92 -# Ref SK93 - -Co+2 + CH3COOH = CoCH3COO+ + H+ - -llnl_gamma 4.0 - log_k -3.2985 - -delta_H -8.70272 kJ/mol -# deltafH -132.08 kcal/mol - -analytic -5.4858 1.9147e-3 -1.1292e3 9.0555e-1 2.8223e5 -# Range 0-350 - -Vm 5.0294 4.4992 3.9806 -2.9649 0.64720 -# Extrapol supcrt92 -# Ref SK93 - -Co+2 + Cl- = CoCl+ - -llnl_gamma 4.0 - log_k 0.1547 - -delta_H 1.71962 kJ/mol -# deltafH -53.422 kcal/mol - -analytic 1.5234e2 5.6958e-2 -3.3258e3 -6.3849e1 -5.1942e1 -# Range 0-350 - -Vm 1.8028 -3.3766 7.0702 -2.6394 0.71910 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 74nau/ryz match - -2 H+ + 2 CrO4-2 = Cr2O7-2 + H2O - -llnl_gamma 4.0 - log_k 14.5192 - -delta_H -13.8783 kJ/mol -# deltafH -356.2 kcal/mol - -analytic 1.3749e2 6.5773e-2 -7.9472e2 -5.6525e1 -1.2441e1 -# Range 0-350 - -Vm 12.4303 22.568 -3.1161 -3.7119 2.12160 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -2 CH3COOH + Cu+2 = Cu(CH3COO)2 + 2 H+ - -llnl_gamma 3.0 - log_k -5.8824 - -delta_H -25.899 kJ/mol -# deltafH -222.69 kcal/mol - -analytic -2.6689e1 1.8048e-3 -1.8244e3 7.7008 6.5408e5 -# Range 0-350 - -Vm 11.8801 21.2264 -2.5925 -3.6564 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -2 CH3COOH + Cu+ = Cu(CH3COO)2- + 2 H+ - -llnl_gamma 4.0 - log_k -9.2139 - -delta_H -19.5476 kJ/mol -# deltafH -219.74 kcal/mol - -analytic -3.2712e2 -5.9087e-2 1.1386e4 1.2017e2 1.7777e2 -# Range 0-350 - -Vm 15.0715 29.0205 -5.6592 -3.9786 1.06910 -# Extrapol supcrt92 -# Ref SK93 - -3 CH3COOH + Cu+2 = Cu(CH3COO)3- + 3 H+ - -llnl_gamma 4.0 - log_k -9.3788 - -delta_H -53.2205 kJ/mol -# deltafH -345.32 kcal/mol - -analytic 3.9475e1 -6.2867e-3 -1.3233e4 -1.0643e1 2.1121e6 -# Range 0-350 - -Vm 20.2654 41.7019 -10.6422 -4.5029 1.3408 -# Extrapol supcrt92 -# Ref SK93 - -Cu+ + CH3COOH = CuCH3COO + H+ - -llnl_gamma 3.0 - log_k -4.4274 - -delta_H -4.19237 kJ/mol -# deltafH -99.97 kcal/mol - -analytic 6.3784 -4.5464e-4 -1.9995e3 -2.8359 2.7224e5 -# Range 0-350 - -Vm 7.3009 10.0483 1.7946 -3.1943 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Cu+2 + CH3COOH = CuCH3COO+ + H+ - -llnl_gamma 4.0 - log_k -2.5252 - -delta_H -11.3805 kJ/mol -# deltafH -103.12 kcal/mol - -analytic -1.4930e1 5.1278e-4 -3.4874e2 4.3605 2.3504e5 -# Range 0-350 - -Vm 4.9722 4.362 4.029 -2.9592 0.56810 -# Extrapol supcrt92 -# Ref SK93 - -2 CH3COOH + Eu+3 = Eu(CH3COO)2+ + 2 H+ - -llnl_gamma 4.0 - log_k -4.6912 - -delta_H -28.3257 kJ/mol -# deltafH -383.67 kcal/mol - -analytic -2.7589e1 1.5772e-3 -1.1008e3 7.9899 5.6652e5 -# Range 0-350 - -Vm 9.3029 14.9307 -0.1123 -3.3961 0.7384 -# Extrapol supcrt92 -# Ref SK93 - -3 CH3COOH + Eu+3 = Eu(CH3COO)3 + 3 H+ - -llnl_gamma 3.0 - log_k -7.9824 - -delta_H -47.3629 kJ/mol -# deltafH -504.32 kcal/mol - -analytic -3.7470e1 1.9276e-3 -1.0318e3 9.7078 7.4558e5 -# Range 0-350 - -Vm 16.6413 32.8512 -7.1605 -4.137 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Eu+3 + CH3COOH = EuCH3COO+2 + H+ - -llnl_gamma 4.5 - log_k -1.9571 - -delta_H -14.5603 kJ/mol -# deltafH -264.28 kcal/mol - -analytic -1.5090e1 1.0352e-3 -6.4435e2 4.6225 3.1649e5 -# Range 0-350 - -Vm 2.75 -1.0666 6.169 -2.7348 1.5269 -# Extrapol supcrt92 -# Ref SK93 - -HCO3- + Eu+3 = EuCO3+ + H+ - -llnl_gamma 4.0 - log_k -2.4057 - -delta_H 90.7844 kJ/mol -# deltafH -287.9 kcal/mol # OBIGT: -311.27 kcal/mol HSS95 - -analytic 2.3548e2 5.3819e-2 -6.9908e3 -9.3137e1 -1.0915e2 -# Range 0-350 - -Vm -0.9842 -10.1779 9.7343 -2.3581 1.2465 -# Extrapol supcrt92 -# Ref HSS95 - -Eu+2 + Cl- = EuCl+ - -llnl_gamma 4.0 - log_k 0.3819 - -delta_H 8.50607 kJ/mol -# deltafH -164 kcal/mol - -analytic 6.8695e1 3.7619e-2 -1.0809e3 -3.0665e1 -1.6887e1 -# Range 0-350 - -Vm 5.1742 4.8499 3.8487 -2.9794 0.2557 -# Extrapol supcrt92 -# Ref HSS95 - -Eu+3 + Cl- = EuCl+2 - -llnl_gamma 4.5 - log_k 0.3086 - -delta_H 13.9453 kJ/mol -# deltafH -181.3 kcal/mol - -analytic 7.9275e1 3.7878e-2 -1.7895e3 -3.4041e1 -2.7947e1 -# Range 0-350 - -Vm -0.3777 -8.6968 9.1514 -2.4194 1.4671 -# Extrapol supcrt92 -# Ref HSS95 - -2 Cl- + Eu+3 = EuCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 18.6857 kJ/mol -# deltafH -220.1 kcal/mol # OBIGT: -204.6 kcal/mol HSS95 - -analytic 2.1758e2 8.0336e-2 -5.5499e3 -9.0087e1 -8.6665e1 -# Range 0-350 - -Vm 9.1152 14.474 0.0641 -3.3773 -0.03 -# Extrapol supcrt92 -# Ref HSS95 - -3 Cl- + Eu+3 = EuCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 11.2926 kJ/mol -# deltafH -261.8 kcal/mol - -analytic 4.2075e2 1.2890e-1 -1.1288e4 -1.7043e2 -1.7627e2 -# Range 0-350 - -Vm 6.2132 7.3881 2.8493 -3.0843 -0.03 -# Extrapol supcrt92 -# Ref HSS95 - -3 Cl- + Eu+2 = EuCl3- - -llnl_gamma 4.0 - log_k 2.0253 - -delta_H -3.76978 kJ/mol -# deltafH -246.8 kcal/mol - -analytic 1.1546e1 6.4683e-2 3.7299e3 -1.6672e1 5.8196e1 -# Range 0-350 - -Vm 13.946 26.2721 -4.579 -3.865 0.9527 -# Extrapol supcrt92 -# Ref HSS95 - -4 Cl- + Eu+3 = EuCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -9.90771 kJ/mol -# deltafH -306.8 kcal/mol - -analytic 4.8122e2 1.3081e-1 -1.2950e4 -1.9302e2 -2.0222e2 -# Range 0-350 - -Vm 10.9946 19.066 -1.7473 -3.5671 1.787 -# Extrapol supcrt92 -# Ref HSS95 - -4 Cl- + Eu+2 = EuCl4-2 - -llnl_gamma 4.0 - log_k 2.8470 - -delta_H -19.9493 kJ/mol -# deltafH -290.6 kcal/mol - -analytic -1.2842e2 5.0789e-2 9.8815e3 3.3565e1 1.5423e2 -# Range 0-350 - -Vm 19.473 39.7656 -9.8784 -4.4228 2.4755 -# Extrapol supcrt92 -# Ref HSS95 - -HPO4-2 + H+ + Eu+3 = EuH2PO4+2 - -llnl_gamma 4.5 - log_k 9.4484 - -delta_H -17.0916 kJ/mol -# deltafH -457.6 kcal/mol - -analytic 1.0873e2 6.3416e-2 2.7202e2 -4.8113e1 4.2122 -# Range 0-350 - -Vm 1.4946 -4.1236 7.3517 -2.6084 1.5372 -# Extrapol supcrt92 -# Ref HSS95 - -HCO3- + Eu+3 = EuHCO3+2 - -llnl_gamma 4.5 - log_k 1.6258 - -delta_H 8.77803 kJ/mol -# deltafH -307.5 kcal/mol - -analytic 3.9266e1 3.1608e-2 -9.8731e1 -1.8875e1 -1.5524 -# Range 0-350 - -Vm 0.4928 -6.572 8.3198 -2.5072 1.286 -# Extrapol supcrt92 -# Ref HSS95 - -NO3- + Eu+3 = EuNO3+2 - -llnl_gamma 4.5 - log_k 0.8745 - -delta_H -32.0955 kJ/mol -# deltafH -201.8 kcal/mol - -analytic 1.7398e1 2.5467e-2 2.2683e3 -1.2810e1 3.5389e1 -# Range 0-350 - -Vm 1.2198 -4.7951 7.6178 -2.5807 1.6556 -# Extrapol supcrt92 -# Ref HSS95 - -H2O + Eu+3 = EuO+ + 2 H+ - -llnl_gamma 4.0 - log_k -16.337 - -delta_H 110.947 kJ/mol -# deltafH -186.5 kcal/mol # OBIGT: -177.81 kcal/mol HSS95 - -analytic 1.8876e2 3.0194e-2 -1.3836e4 -6.7770e1 -2.1595e2 -# Range 0-350 - -Vm 2.7458 -1.0743 6.1663 -2.7345 0.4322 -# Extrapol supcrt92 -# Ref HSS95 - -2 H2O + Eu+3 = EuO2- + 4 H+ - -llnl_gamma 4.0 - log_k -34.5066 - -delta_H 281.307 kJ/mol -# deltafH -214.1 kcal/mol # OBIGT: -219.06 kcal/mol HSS95 - -analytic 7.5244e1 3.7089e-4 -1.3587e4 -2.3859e1 -4.6713e5 -# Range 0-350 - -Vm 4.8468 4.0541 4.1548 -2.9465 1.1424 -# Extrapol supcrt92 -# Ref HSS95 - -2 H2O + Eu+3 = EuO2H + 3 H+ - -llnl_gamma 3.0 - log_k -25.4173 - -delta_H 222.313 kJ/mol -# deltafH -228.2 kcal/mol - -analytic 3.6754e2 5.3868e-2 -2.4034e4 -1.3272e2 -3.7514e2 -# Range 0-350 - -Vm 4.8064 3.954 4.1968 -2.9424 -0.03 -# Extrapol supcrt92 -# Ref HSS95 - -H2O + Eu+3 = EuOH+2 + H+ - -llnl_gamma 4.5 - log_k -7.9075 - -delta_H 78.0065 kJ/mol -# deltafH -194.373 kcal/mol - -analytic 6.7691e1 1.2066e-2 -6.1871e3 -2.3617e1 -9.6563e1 -# Range 0-350 - -Vm 2.6569 -1.2969 6.2659 -2.7253 1.1815 -# Extrapol supcrt92 -# Ref HSS95 - -SO4-2 + Eu+3 = EuSO4+ - -llnl_gamma 4.0 - log_k 3.6430 - -delta_H 62.3416 kJ/mol -# deltafH -347.2 kcal/mol # OBIGT: -357.2 kcal/mol HSS95 - -analytic 3.0587e2 8.6208e-2 -9.0387e3 -1.2026e2 -1.4113e2 -# Range 0-350 - -Vm 1.4399 -4.2627 7.4184 -2.6027 0.779 -# Extrapol supcrt92 -# Ref HSS95 - -2 CH3COOH + Fe+2 = Fe(CH3COO)2 + 2 H+ - -llnl_gamma 3.0 - log_k -7.0295 - -delta_H -20.2924 kJ/mol -# deltafH -259.1 kcal/mol - -analytic -2.9862e1 1.3901e-3 -1.6908e3 8.6283 6.0125e5 -# Range 0-350 - -Vm 12.1698 21.937 -2.8791 -3.6858 -0.038 -# Extrapol supcrt92 -# Ref SSH97, SK93 - -Fe+2 + CH3COOH = FeCH3COO+ + H+ - -llnl_gamma 4.0 - log_k -3.4671 - -delta_H -3.80744 kJ/mol -# deltafH -139.06 kcal/mol - -analytic -1.3781e1 9.6253e-4 -7.5310e2 4.0135 2.3416e5 -# Range 0-350 - -Vm 5.2246 4.9785 3.7863 -2.9848 0.57560 -# Extrapol supcrt92 -# Ref SSH97, SK93 - -Fe+2 + Cl- = FeCl+ - -llnl_gamma 4.0 - log_k -0.1605 - -delta_H 3.02503 kJ/mol -# deltafH -61.26 kcal/mol - -analytic 8.2435e1 3.7755e-2 -1.4765e3 -3.5918e1 -2.3064e1 -# Range 0-350 - -Vm 2.1468 -2.5367 6.7401 -2.6741 0.7003 -# Extrapol supcrt92 -# Ref SSH97 - -Fe+3 + Cl- = FeCl+2 - -llnl_gamma 4.5 - log_k -0.8108 - -delta_H 36.6421 kJ/mol -# deltafH -180.018 kJ/mol - -analytic 1.6186e2 5.9436e-2 -5.1913e3 -6.5852e1 -8.1053e1 -# Range 0-350 - -Vm -0.7164 -9.5277 9.4878 -2.3851 0.17013 # SSH97 -# Extrapol supcrt92, 64cri/cob -# Ref SSH97, WEP+82 differ by 2.7 log K at 0C, 1.2 log K at 300C - -2 Cl- + Fe+2 = FeCl2 - -llnl_gamma 3.0 - log_k -2.4541 - -delta_H 6.46846 kJ/mol -# deltafH -100.37 kcal/mol - -analytic 1.9171e2 7.8070e-2 -4.1048e3 -8.2292e1 -6.4108e1 -# Range 0-350 - -Vm 5.5057 5.665 3.5164 -3.0131 -0.038 -# Extrapol supcrt92 -# Ref SSH97 differ by 7.2 log K at 0C, 3.2 log K at 300C !! flag - -H2O + Fe+2 = FeOH+ + H+ - -llnl_gamma 4.0 - log_k -9.5 - -analytic 1.706e-1 0 -2.883e3 -# Range 0-350 - -Vm -0.2561 -8.4039 9.0457 -2.4315 0.7003 -# Extrapol supcrt92 -# Ref SSW+97, Marion+03,08 match - -H2O + Fe+3 = FeOH+2 + H+ - -llnl_gamma 4.5 - log_k -2.19 -# deltafH -0 kcal/mol - -analytic 5.300 0 -2.272e3 -# Range 0-350 - -Vm -1.1562 -10.6009 9.9077 -2.3407 1.43820 -# Extrapol supcrt92 -# Ref SSW+97, Marion+08 match - -2 CH3COOH + Gd+3 = Gd(CH3COO)2+ + 2 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -22.3426 kJ/mol -# deltafH -401.74 kcal/mol - -analytic -4.3124e1 1.2995e-4 -4.3494e2 1.3677e1 5.1224e5 -# Range 0-350 - -Vm 9.4165 15.2134 -0.2342 -3.4078 0.6223 -# Extrapol supcrt92 -# Ref SK93 - -3 CH3COOH + Gd+3 = Gd(CH3COO)3 + 3 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -37.9907 kJ/mol -# deltafH -521.58 kcal/mol - -analytic -8.8296e1 -5.0939e-3 1.2268e3 2.8513e1 6.0745e5 -# Range 0-350 - -Vm 16.8116 33.2662 -7.3215 -4.1541 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Gd+3 + CH3COOH = GdCH3COO+2 + H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -11.7152 kJ/mol -# deltafH -283.1 kcal/mol - -analytic -1.4118e1 1.6660e-3 -7.5206e2 4.2614 3.1187e5 -# Range 0-350 - -Vm 2.8605 -0.7945 6.0567 -2.7461 1.4477 -# Extrapol supcrt92 -# Ref SK93 - -HCO3- + Gd+3 = GdCO3+ + H+ - -llnl_gamma 4.0 - log_k -2.479 - -delta_H 89.9476 kJ/mol -# deltafH -307.6 kcal/mol # OBIGT: -330.22 kcal/mol HSS95 - -analytic 2.3628e2 5.4100e-2 -7.0746e3 -9.3413e1 -1.1046e2 -# Range 0-350 - -Vm -0.953 -10.1036 9.7095 -2.3612 1.1729 -# Extrapol supcrt92 -# Ref HSS95 - -Gd+3 + Cl- = GdCl+2 - -llnl_gamma 4.5 - log_k 0.3086 - -delta_H 14.7821 kJ/mol -# deltafH -200.6 kcal/mol - -analytic 8.0750e1 3.8524e-2 -1.8591e3 -3.4621e1 -2.9034e1 -# Range 0-350 - -Vm -0.263 -8.417 9.0425 -2.4309 1.4006 -# Extrapol supcrt92 -# Ref HSS95 - -2 Cl- + Gd+3 = GdCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 21.1961 kJ/mol -# deltafH -239 kcal/mol - -analytic 2.1754e2 8.0996e-2 -5.6121e3 -9.0067e1 -8.7635e1 -# Range 0-350 - -Vm 2.8492 -0.8272 6.0803 -2.7447 0.6305 -# Extrapol supcrt92 -# Ref HSS95 - -3 Cl- + Gd+3 = GdCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 15.895 kJ/mol -# deltafH -280.2 kcal/mol - -analytic 4.1398e2 1.2829e-1 -1.1230e4 -1.6770e2 -1.7535e2 -# Range 0-350 - -Vm 6.3836 7.8028 2.6888 -3.1015 -0.03 -# Extrapol supcrt92 -# Ref HSS95 - -4 Cl- + Gd+3 = GdCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -1.53971 kJ/mol -# deltafH -324.3 kcal/mol - -analytic 4.7684e2 1.3157e-1 -1.3068e4 -1.9118e2 -2.0405e2 -# Range 0-350 - -Vm 11.1317 19.3995 -1.8761 -3.5809 1.631 -# Extrapol supcrt92 -# Ref HSS95 - -HPO4-2 + H+ + Gd+3 = GdH2PO4+2 - -llnl_gamma 4.5 - log_k 9.4484 - -delta_H -14.9996 kJ/mol -# deltafH -476.6 kcal/mol - -analytic 1.1058e2 6.4124e-2 1.3451e2 -4.8758e1 2.0660 -# Range 0-350 - -Vm 1.6048 -3.8632 7.2686 -2.6192 1.4574 -# Extrapol supcrt92 -# Ref HSS95 - -HCO3- + Gd+3 = GdHCO3+2 - -llnl_gamma 4.5 - log_k 1.6991 - -delta_H 10.0332 kJ/mol -# deltafH -326.7 kcal/mol - -analytic 4.1973e1 3.2521e-2 -2.3475e2 -1.9864e1 -3.6757 -# Range 0-350 - -Vm 0.6026 -6.3043 8.2153 -2.5183 1.2048 -# Extrapol supcrt92 -# Ref HSS95 - -NO3- + Gd+3 = GdNO3+2 - -llnl_gamma 4.5 - log_k 0.4347 - -delta_H -25.8195 kJ/mol -# deltafH -219.8 kcal/mol - -analytic 2.0253e1 2.6372e-2 1.8785e3 -1.3723e1 2.9306e1 -# Range 0-350 - -Vm 1.3205 -4.5535 7.5323 -2.5907 1.5475 -# Extrapol supcrt92 -# Ref HSS95 - -H2O + Gd+3 = GdO+ + 2 H+ - -llnl_gamma 4.0 - log_k -16.337 - -delta_H 113.039 kJ/mol -# deltafH -205.5 kcal/mol # OBIGT: -196.63 kcal/mol HSS95 - -analytic 2.0599e2 3.2521e-2 -1.4547e4 -7.4048e1 -2.2705e2 -# Range 0-350 - -Vm 2.8425 -0.8409 6.0801 -2.7441 0.3539 -# Extrapol supcrt92 -# Ref HSS95 - -2 H2O + Gd+3 = GdO2- + 4 H+ - -llnl_gamma 4.0 - log_k -34.4333 - -delta_H 283.817 kJ/mol -# deltafH -233 kcal/mol # OBIGT: -237.73 kcal/mol HSS95 - -analytic 1.2067e2 6.6276e-3 -1.5531e4 -4.0448e1 -4.3587e5 -# Range 0-350 - -Vm 5.0344 4.5111 3.9769 -2.9654 1.0495 -1 -# Extrapol supcrt92 -# Ref HSS95 - -2 H2O + Gd+3 = GdO2H + 3 H+ - -llnl_gamma 3.0 - log_k -25.2707 - -delta_H 224.405 kJ/mol -# deltafH -247.2 kcal/mol - -analytic 3.6324e2 4.7938e-2 -2.4275e4 -1.2988e2 -3.7889e2 -# Range 0-350 - -Vm 5.0117 4.4582 3.9917 -2.9632 -0.03 -# Extrapol supcrt92 -# Ref HSS95 - -H2O + Gd+3 = GdOH+2 + H+ - -llnl_gamma 4.5 - log_k -7.9075 - -delta_H 79.9855 kJ/mol -# deltafH -213.4 kcal/mol # OBIGT: 212.9 kcal/mol HSS95 - -analytic 8.3265e1 1.4153e-2 -6.8229e3 -2.9301e1 -1.0649e2 -# Range 0-350 - -Vm 2.7389 -1.0936 6.1786 -2.7337 1.1 -# Extrapol supcrt92 -# Ref HSS95 - -SO4-2 + Gd+3 = GdSO4+ - -llnl_gamma 4.0 - log_k -3.687 - -delta_H 20.0832 kJ/mol -# deltafH -376.8 kcal/mol - -analytic 3.0783e2 8.6798e-2 -1.1246e4 -1.2109e2 -1.7557e2 - #analytic 3.18e2 7.5e-2 -1.12e4 -1.21e2 -1.76e2 -# Range 0-350 - -Vm 1.4776 -4.1705 7.3822 -2.6065 0.7287 -# Extrapol supcrt92 -# Ref HSS95 differ by 7 log K at 0C, 3.7 log K at 300C !! flag - -2 HPO4-2 + 2 H+ = H2P2O7-2 + H2O - -llnl_gamma 4.0 - log_k 12.0709 - -delta_H 19.7192 kJ/mol -# deltafH -544.6 kcal/mol - -analytic 1.4825e2 6.7021e-2 -2.8329e3 -5.9251e1 -4.4248e1 -# Range 0-350 - -Vm 9.0963 14.4299 0.076 -3.3754 2.62180 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -HPO4-2 + H+ = H2PO4- - -llnl_gamma 4.0 - log_k 7.2054 - -delta_H -4.20492 kJ/mol -# deltafH -309.82 kcal/mol - -analytic 8.2149e1 3.4077e-2 -1.0431e3 -3.2970e1 -1.6301e1 -# Range 0-350 - -Vm 6.4875 8.0594 2.5823 -3.1122 1.3003 -# Extrapol supcrt92 -# Ref SH88 - -HS- + H+ = H2S - -llnl_gamma 3.0 - log_k 6.9877 - -delta_H -21.5518 kJ/mol -# deltafH -9.001 kcal/mol - -analytic 3.9283e1 2.8727e-2 1.3477e3 -1.8331e1 2.1018e1 -# Range 0-350 - -Vm 7.81 2.96 -0.46 # phreeqc.dat -# Extrapol supcrt92 -# Ref SSW01, SHS89 - -3 H+ + 2 HPO4-2 = H3P2O7- + H2O - -llnl_gamma 4.0 - log_k 14.4165 - -delta_H 21.8112 kJ/mol -# deltafH -544.1 kcal/mol - -analytic 2.3157e2 1.0161e-1 -4.3723e3 -9.4050e1 -6.8295e1 -# Range 0-350 - -Vm 9.1292 14.5122 0.0398 -3.3788 0.8568 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -2 H+ + HPO4-2 = H3PO4 - -llnl_gamma 3.0 - log_k 9.3751 - -delta_H 3.74468 kJ/mol -# deltafH -307.92 kcal/mol - -analytic 1.8380e2 6.7320e-2 -3.7792e3 -7.3463e1 -5.9025e1 -# Range 0-350 - -Vm 8.2727 12.4182 0.8691 -3.2924 -0.22 -# Extrapol supcrt92 -# Ref SHS89 - -4 H+ + 2 HPO4-2 = H4P2O7 + H2O - -llnl_gamma 3.0 - log_k 15.9263 - -delta_H 29.7226 kJ/mol -# deltafH -2268.6 kJ/mol - -analytic 6.9026e2 2.4309e-1 -1.6165e4 -2.7989e2 -2.7475e2 -# Range 0-350 - -Vm 9.2975 14.9199 -0.113 -3.3957 -0.62920 -# Extrapol supcrt92, 69hel -# Ref SSW+97, WEP+82 - -2 H2O + Al+3 = HAlO2 + 3 H+ - -llnl_gamma 3.0 - log_k -16.4329 - -delta_H 144.704 kJ/mol -# deltafH -230.73 kcal/mol - -analytic 4.2012e1 1.9980e-2 -7.7847e3 -1.5470e1 -1.2149e2 -# Range 0-350 - -Vm 3.5338 0.8485 5.4132 -2.8140 -0.03 -# Extrapol supcrt92 -# Ref SSW+97, 95pok/hel - -H+ + CN- = HCN - -llnl_gamma 3.0 - log_k 9.2359 - -delta_H -43.5136 kJ/mol -# deltafH 25.6 kcal/mol - -analytic 1.0536e1 2.3105e-2 3.3038e3 -7.7786 5.1550e1 -# Range 0-350 - -Vm 8.0083 11.7705 1.1286 -3.2655 -0.1113 -# Extrapol supcrt92 -# Ref SM93 - -H+ + Cl- = HCl - -llnl_gamma 3.0 - log_k -0.67 -# deltafH -0 kcal/mol - -analytic 4.1893e2 1.1103e-1 -1.1784e4 -1.6697e2 -1.8400e2 -# Range 0-350 - -Vm 1.2547 -4.7177 7.6043 -2.5840 -0.7 -# Extrapol supcrt92, ? -# Ref MS97, 87rua/sew match - -H+ + CrO4-2 = HCrO4- - -llnl_gamma 4.0 - log_k 6.4944 - -delta_H 2.9288 kJ/mol -# deltafH -209.9 kcal/mol - -analytic 4.4944e1 3.2740e-2 1.8400e2 -1.9722e1 2.8578 -# Range 0-350 - -Vm 8.2211 12.2925 0.9174 -3.2871 0.923 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -NO2- + H+ = HNO2 - -llnl_gamma 3.0 - log_k 3.2206 - -delta_H -14.782 kJ/mol -# deltafH -119.382 kJ/mol - -analytic 1.9653 -1.1603e-4 0 0 1.1569e5 -# Range 0-350 - -Vm 5.9151 6.659 3.1378 -3.0542 -0.1507 -# Extrapol supcrt92, 69hel -# Ref SSW+97, WEP+82 match - -NO3- + H+ = HNO3 - -llnl_gamma 3.0 - log_k -1.3025 - -delta_H 16.8155 kJ/mol -# deltafH -45.41 kcal/mol - -analytic 9.9744e1 3.4866e-2 -3.0975e3 -4.0830e1 -4.8363e1 -# Range 0-350 - -Vm 7.1623 9.7063 1.9367 -3.1802 -0.3066 -# Extrapol supcrt92 -# Ref SSW+97, SHS89 - -2 HPO4-2 + H+ = HP2O7-3 + H2O - -llnl_gamma 4.0 - log_k 5.4498 - -delta_H 23.3326 kJ/mol -# deltafH -2274.99 kJ/mol - -analytic 3.9159e2 1.5438e-1 -8.7071e3 -1.6283e2 -1.3598e2 -# Range 0-350 - -Vm 8.3302 12.5558 0.8208 -3.2980 4.647 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, WEP+82 differ by 0 log K at 0C, 4.7 log K at 300C - -SO3-2 + H+ = HSO3- - -llnl_gamma 4.0 - log_k 7.2054 - -delta_H 9.33032 kJ/mol -# deltafH -149.67 kcal/mol - -analytic 5.5899e1 3.3623e-2 -5.0120e2 -2.3040e1 -7.8373 -# Range 0-350 - -Vm 6.7014 8.5816 2.3771 -0.31338 1.1233 -# Extrapol supcrt92 -# Ref SH88 - -SO4-2 + H+ = HSO4- - -llnl_gamma 4.0 - log_k 1.9791 - -delta_H 20.5016 kJ/mol -# deltafH -212.5 kcal/mol - -analytic 4.9619e1 3.0368e-2 -1.1558e3 -2.1335e1 -1.8051e1 -# Range 0-350 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # APP14 -# Extrapol supcrt92 -# Ref SH88 - -SiO2 + H2O = HSiO3- + H+ - -llnl_gamma 4.0 - log_k -9.9525 - -delta_H 25.991 kJ/mol -# deltafH -271.88 kcal/mol - -analytic 6.4211e1 -2.4872e-2 -1.2707e4 -1.4681e1 1.0853e6 -# Range 0-350 - -Vm 2.9735 -0.5158 5.9467 -2.7575 1.5511 -# Extrapol supcrt92 -# Ref SSH97 - -2 CH3COOH + K+ = K(CH3COO)2- + 2 H+ - -llnl_gamma 4.0 - log_k -10.2914 - -delta_H -1.79912 kJ/mol -# deltafH -292.9 kcal/mol - -analytic -2.3036e2 -4.6369e-2 7.0305e3 8.4997e1 1.0977e2 -# Range 0-350 - -Vm 17.8481 35.7984 -8.3193 -4.2588 0.7097 -# Extrapol supcrt92 -# Ref SK93 - -K+ + CH3COOH = KCH3COO + H+ - -llnl_gamma 3.0 - log_k -5.0211 - -delta_H 4.8116 kJ/mol -# deltafH -175.22 kcal/mol - -analytic -2.6676e-1 -3.2675e-3 -1.7143e3 -7.1907e-3 1.7726e5 -# Range 0-350 - -Vm 17.8481 35.7984 -8.3193 -4.2588 0.7097 -# Extrapol supcrt92 -# Ref SK93 - -K+ + Cl- = KCl - -llnl_gamma 3.0 - log_k -1.4946 - -delta_H 14.1963 kJ/mol -# deltafH -96.81 kcal/mol - -analytic 1.3650e2 3.8405e-2 -4.4014e3 -5.4421e1 -6.8721e1 -# Range 0-350 - -Vm 6.9932 9.297 2.0889 -3.1633 -0.038 -# Extrapol supcrt92 -# Ref SSH97 - -SO4-2 + K+ + H+ = KHSO4 - -llnl_gamma 3.0 - log_k 0.8136 - -delta_H 29.8319 kJ/mol -# deltafH -270.54 kcal/mol - -analytic 1.2620e2 5.7349e-2 -3.3670e3 -5.3003e1 -5.2576e1 -# Range 0-350 - -Vm 9.1226 14.4964 0.0453 -3.3782 -0.001 -# Extrapol supcrt92 -# Ref SSH97 - -SO4-2 + K+ = KSO4- - -llnl_gamma 4.0 - log_k 0.8796 - -delta_H 2.88696 kJ/mol -# deltafH -276.98 kcal/mol - -analytic 9.9073e1 3.7817e-2 -2.1628e3 -4.1297e1 -3.3779e1 -# Range 0-350 - -Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # APP14 -# Extrapol supcrt92 -# Ref SSH97 - -2 CH3COOH + Li+ = Li(CH3COO)2- + 2 H+ - -llnl_gamma 4.0 - log_k -9.2674 - -delta_H -24.7609 kJ/mol -# deltafH -304.67 kcal/mol - -analytic -3.3702e2 -6.0849e-2 1.1952e4 1.2359e2 1.8659e2 -# Range 0-350 - -Vm 16.3412 32.1211 -6.8785 -4.1068 1.2422 -# Extrapol supcrt92 -# Ref SK93 - -Li+ + CH3COOH = LiCH3COO + H+ - -llnl_gamma 3.0 - log_k -4.4589 - -delta_H -6.64419 kJ/mol -# deltafH -184.24 kcal/mol - -analytic -3.8391 -7.3938e-4 -1.0829e3 3.4134e-1 2.1318e5 -# Range 0-350 - -Vm 8.388 12.6976 0.7639 -3.3038 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Li+ + Cl- = LiCl - -llnl_gamma 3.0 - log_k -1.5115 - -delta_H 3.36812 kJ/mol -# deltafH -105.68 kcal/mol - -analytic 1.2484e2 4.1941e-2 -3.2439e3 -5.1708e1 -5.0655e1 -# Range 0-350 - -Vm 5.5837 5.8554 3.4416 -3.021 -0.038 -# Extrapol supcrt92 -# Ref SSH97 - -2 CH3COOH + Mg+2 = Mg(CH3COO)2 + 2 H+ - -llnl_gamma 3.0 - log_k -7.473 - -delta_H -23.8195 kJ/mol -# deltafH -349.26 kcal/mol - -analytic -4.3954e1 -3.1842e-4 -1.2033e3 1.3556e1 6.3058e5 -# Range 0-350 - -Vm 12.3982 22.4898 -3.0853 -3.7086 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Mg+2 + CH3COOH = MgCH3COO+ + H+ - -llnl_gamma 4.0 - log_k -3.4781 - -delta_H -8.42239 kJ/mol -# deltafH -229.48 kcal/mol - -analytic -2.3548e1 -1.6071e-3 -4.2228e2 7.7009 2.5981e5 -# Range 0-350 - -Vm 5.4981 5.6424 3.5341 -3.0122 0.7483 -# Extrapol supcrt92 -# Ref SK93 - -Mg+2 + HCO3- = MgCO3 + H+ - -llnl_gamma 3.0 - log_k -7.3499 - -delta_H 23.8279 kJ/mol -# deltafH -270.57 kcal/mol - -analytic 2.3465e2 5.5538e-2 -8.3947e3 -9.3104e1 -1.3106e2 -# Range 0-350 - -Vm -0.7355 -9.5745 9.5062 -2.3831 -0.038 -# Extrapol supcrt92 -# Ref SSH97 - -Mg+2 + Cl- = MgCl+ - -llnl_gamma 4.0 - log_k -0.1349 - -delta_H -0.58576 kJ/mol -# deltafH -151.44 kcal/mol - -analytic 4.3363e1 3.2858e-2 1.1878e2 -2.1688e1 1.8403 -# Range 0-350 - -Vm 2.223 -2.3505 6.6669 -2.6818 0.84490 -# Extrapol supcrt92 -# Ref SSH97 - -SO4-2 + Mg+2 = MgSO4 - -llnl_gamma 3.0 - log_k 2.4117 - -delta_H 19.6051 kJ/mol -# deltafH -1355.96 kJ/mol - -analytic 1.7994e2 6.4715e-2 -4.7314e3 -7.3123e1 -8.0408e1 -# Range 0-350 - -Vm 2.4 -0.97 6.1 -2.74 # APP14 -# Extrapol supcrt92, 69hel -# Ref MS97, 82mar/smi match - -2 CH3COOH + Mn+2 = Mn(CH3COO)2 + 2 H+ - -llnl_gamma 3.0 - log_k -7.4547 - -delta_H -11.4893 kJ/mol -# deltafH -287.67 kcal/mol - -analytic -9.0558e-1 5.9656e-3 -4.3531e3 -1.1063 8.0323e5 -# Range 0-350 - -Vm 13.1542 24.3405 -3.8236 -3.7851 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -3 CH3COOH + Mn+2 = Mn(CH3COO)3- + 3 H+ - -llnl_gamma 4.0 - log_k -11.8747 - -delta_H -30.3591 kJ/mol -# deltafH -408.28 kcal/mol - -analytic -3.8531 -9.9140e-3 -1.2065e4 5.1424 2.0175e6 -# Range 0-350 - -Vm 21.6217 45.0124 -11.9409 -4.6397 1.15360 -# Extrapol supcrt92 -# Ref SK93 - -Mn+2 + CH3COOH = MnCH3COO+ + H+ - -llnl_gamma 4.0 - log_k -3.5404 - -delta_H -3.07942 kJ/mol -# deltafH -169.56 kcal/mol - -analytic -1.4061e1 1.8149e-3 -8.6438e2 4.0354 2.5831e5 -# Range 0-350 - -Vm 6.0776 7.057 2.9786 -3.0706 0.4555 -# Extrapol supcrt92 -# Ref SK93 - -Mn+2 + Cl- = MnCl+ - -llnl_gamma 4.0 - log_k 0.3013 - -delta_H 18.3134 kJ/mol -# deltafH -88.28 kcal/mol - -analytic 8.7072e1 4.0361e-2 -2.1786e3 -3.6966e1 -3.4022e1 -# Range 0-350 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 # APP14 -# Extrapol supcrt92 -# Ref SSH97 - -1.5 H2O + 1.25 O2 + Mn+2 = MnO4- + 3 H+ - -llnl_gamma 3.5 - log_k -20.2963 - -delta_H 123.112 kJ/mol -# deltafH -129.4 kcal/mol - -analytic 1.8544e1 -1.7618e-2 -6.7332e3 -3.3193 -2.4924e5 -# Range 0-350 - -Vm 7.8248 11.3277 1.2912 -3.2472 0.9248 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -SO4-2 + Mn+2 = MnSO4 - -llnl_gamma 3.0 - log_k 2.3529 - -delta_H 14.1168 kJ/mol -# deltafH -266.75 kcal/mol - -analytic 2.9448e2 8.5294e-2 -8.1366e3 -1.1729e2 -1.2705e2 -# Range 0-350 - -Vm -1.31 -1.83 62.3 -2.7 # APP14 -# Extrapol supcrt92 -# Ref SSH97 - -2 CH3COOH + NH3 = NH4(CH3COO)2- + H+ - -llnl_gamma 4.0 - log_k -0.1928 - -delta_H -56.735 kJ/mol -# deltafH -265.2 kcal/mol - -analytic 3.7137e1 -1.2242e-2 -8.4764e3 -8.4308 1.3883e6 -# Range 0-350 - -Vm 19.3685 39.509 -9.7736 -4.4122 0.6495 -# Extrapol supcrt92 -# Ref SK93 - -NH3 + H+ = NH4+ - -llnl_gamma 2.5 - log_k 9.2410 - -delta_H -51.9234 kJ/mol -# deltafH -31.85 kcal/mol - -analytic -1.4527e1 -5.0518e-3 3.0447e3 6.0865 4.7515e1 -# Range 0-350 - -Vm 3.8763 2.3448 8.5605 -2.8759 0.1502 -# Extrapol supcrt92 -# Ref SH88 - -NH3 + CH3COOH = NH4CH3COO - -llnl_gamma 3.0 - log_k 4.6964 - -delta_H -48.911 kJ/mol -# deltafH -147.23 kcal/mol - -analytic 1.4104e1 -4.3664e-3 -1.0746e3 -3.6999 4.1428e5 -# Range 0-350 - -Vm 11.2849 19.7719 -2.0187 -3.5963 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -2 CH3COOH + Na+ = Na(CH3COO)2- + 2 H+ - -llnl_gamma 4.0 - log_k -9.9989 - -delta_H -11.5771 kJ/mol -# deltafH -292.4 kcal/mol - -analytic -2.9232e2 -5.5708e-2 9.6601e3 1.0772e2 1.5082e2 -# Range 0-350 - -Vm 16.2062 31.7884 -6.7416 -4.0930 0.9633 -# Extrapol supcrt92 -# Ref SK93 - -Na+ + CH3COOH = NaCH3COO + H+ - -llnl_gamma 3.0 - log_k -4.8606 - -delta_H -0.029288 kJ/mol -# deltafH -173.54 kcal/mol - -analytic 6.4833 -1.8739e-3 -2.0902e3 -2.6121 2.3990e5 -# Range 0-350 - -Vm 8.3514 12.6125 0.7884 -3.3003 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Na+ + Cl- = NaCl - -llnl_gamma 3.0 - log_k -0.777 - -delta_H 5.21326 kJ/mol -# deltafH -96.12 kcal/mol - -analytic 1.1398e2 3.6386e-2 -3.0847e3 -4.6571e1 -4.8167e1 -# Range 0-350 - -Vm 5.0364 4.5189 3.9669 -2.9658 -0.038 -# Extrapol supcrt92 -# Ref SSH97 - -Na+ + HCO3- = NaHCO3 - -llnl_gamma 3.0 - log_k 0.1541 - -delta_H -13.7741 kJ/mol -# deltafH -944.007 kJ/mol - -analytic -9.0668e1 -2.9866e-2 2.7947e3 3.6515e1 4.7489e1 -# Range 0-200 - -Vm 0.431 # APP14 -# Extrapol 69hel -# Ref WEP+82 - -SiO2 + Na+ + H2O = NaHSiO3 + H+ - -llnl_gamma 3.0 - log_k -8.304 - -delta_H 11.6524 kJ/mol -# deltafH -332.74 kcal/mol - -analytic 3.6045e1 -9.0411e-3 -6.6605e3 -1.0447e1 5.8415e5 -# Range 0-350 - -Vm 3.4928 0.75 5.4483 -2.8100 -0.038 -# Extrapol supcrt92 -# Ref SSH97 - -Na+ + H2O = NaOH + H+ - -llnl_gamma 3.0 - log_k -14.7948 - -delta_H 53.6514 kJ/mol -# deltafH -112.927 kcal/mol - -analytic 8.7326e1 2.3555e-2 -5.4770e3 -3.6678e1 -8.5489e1 -# Range 0-350 - -Vm 2.2338 -2.3287 6.6683 -2.6826 -0.03 -# Extrapol supcrt92 -# Ref SSW+97, 95pok/hel match - -2 CH3COOH + Ni+2 = Ni(CH3COO)2 + 2 H+ - -llnl_gamma 3.0 - log_k -7.1908 - -delta_H -25.8571 kJ/mol -# deltafH -251.28 kcal/mol - -analytic -2.9660e1 1.0643e-3 -1.0060e3 7.9358 5.2562e5 -# Range 0-350 - -Vm 11.1327 19.4031 -1.8801 -3.5810 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -3 CH3COOH + Ni+2 = Ni(CH3COO)3- + 3 H+ - -llnl_gamma 4.0 - log_k -11.3543 - -delta_H -53.6807 kJ/mol -# deltafH -374.03 kcal/mol - -analytic 5.0850e1 -8.2435e-3 -1.3049e4 -1.5410e1 1.9704e6 -# Range 0-350 - -Vm 19.5212 39.8827 -9.9226 -4.4277 0.1603 -# Extrapol supcrt92 -# Ref SK93 - -Ni+2 + CH3COOH = NiCH3COO+ + H+ - -llnl_gamma 4.0 - log_k -3.3278 - -delta_H -10.2508 kJ/mol -# deltafH -131.45 kcal/mol - -analytic -3.3110 1.6895e-3 -1.0556e3 2.7168e-2 2.6350e5 -# Range 0-350 - -Vm 4.3556 2.8512 4.6343 -2.8968 0.7287 -# Extrapol supcrt92 -# Ref SK93 - -Ni+2 + Cl- = NiCl+ - -llnl_gamma 4.0 - log_k -0.9962 - -delta_H 5.99567 kJ/mol -# deltafH -51.4 kcal/mol - -analytic 9.5370e1 3.8521e-2 -2.1746e3 -4.0629e1 -3.3961e1 -# Range 0-350 - -Vm 1.1319 -5.0147 7.714 -2.5716 0.8111 -# Extrapol supcrt92 -# Ref SSH97 - -H2O = OH- + H+ - -llnl_gamma 3.5 - log_k -13.9951 - -delta_H 55.8146 kJ/mol -# deltafH -54.977 kcal/mol - -analytic -6.7506e1 -3.0619e-2 -1.9901e3 2.8004e1 -3.1033e1 -# Range 0-350 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # APP14 -# Extrapol supcrt92 -# Ref SH88 - -2 HPO4-2 = P2O7-4 + H2O - -llnl_gamma 4.0 - log_k -3.7463 - -delta_H 27.2256 kJ/mol -# deltafH -2271.1 kJ/mol - -analytic 4.0885e2 1.3243e-1 -1.1373e4 -1.6727e2 -1.7758e2 -# Range 0-350 - -Vm 7.0687 9.4773 2.0273 -3.1707 6.9069 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, WEP+82 differ by 0.1 log K at 0C, 7 log K at 350C !! flag - -HPO4-2 = PO4-3 + H+ - -llnl_gamma 4.0 - log_k -12.3218 - -delta_H 14.7068 kJ/mol -# deltafH -305.3 kcal/mol - -analytic -7.6170e1 -3.3574e-2 1.3405e2 2.9658e1 2.1140 -# Range 0-350 - -Vm -0.5258 -9.0576 9.2927 -2.4045 5.61140 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -2 H+ + 2 SO3-2 = S2O5-2 + H2O - -llnl_gamma 4.0 - log_k 9.5934 -# deltafH -0 kcal/mol - -analytic 0.12262e3 0.62883e-1 -0.18005e4 -0.50798e2 -0.28132e2 -# Range 0-350 - -Vm 7.3618 10.1945 1.7414 -3.2003 2.8343 # SSW+97 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -2 H+ + SO3-2 = SO2 + H2O - -llnl_gamma 3.0 - log_k 9.0656 - -delta_H 26.7316 kJ/mol -# deltafH -77.194 kcal/mol - -analytic 9.4048e1 6.2127e-2 -1.1072e3 -4.0310e1 -1.7305e1 -# Range 0-350 - -Vm 6.9502 9.189 2.1383 -3.1589 -0.0559 -# Extrapol supcrt92 -# Ref SHS89 - -2 CH3COOH + Sc+3 = Sc(CH3COO)2+ + 2 H+ - -llnl_gamma 4.0 - log_k -3.7237 - -delta_H -43.1789 kJ/mol -# deltafH -389.32 kcal/mol - -analytic -4.1862e1 -3.9443e-5 2.1444e2 1.2616e1 5.5442e5 -# Range 0-350 - -Vm 9.2794 14.8737 -0.0899 -3.3938 0.9706 -# Extrapol supcrt92 -# Ref SK93 - -3 CH3COOH + Sc+3 = Sc(CH3COO)3 + 3 H+ - -llnl_gamma 3.0 - log_k -6.6777 - -delta_H -70.0402 kJ/mol -# deltafH -511.84 kcal/mol - -analytic -5.2525e1 1.6181e-3 7.5022e2 1.3988e1 7.3540e5 -# Range 0-350 - -Vm 16.5277 32.5748 -7.0539 -4.1255 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Sc+3 + CH3COOH = ScCH3COO+2 + H+ - -llnl_gamma 4.5 - log_k -1.4294 - -delta_H -21.7568 kJ/mol -# deltafH -268.1 kcal/mol - -analytic -2.3400e1 1.3144e-4 1.1125e2 7.3527 3.0025e5 -# Range 0-350 - -Vm 2.7175 -1.1437 6.1937 -2.7316 1.7013 -# Extrapol supcrt92 -# Ref SK93 - -2 CH3COOH + Sm+3 = Sm(CH3COO)2+ + 2 H+ - -llnl_gamma 4.0 - log_k -4.7132 - -delta_H -25.5224 kJ/mol -# deltafH -403.5 kcal/mol - -analytic -1.4192e1 2.1732e-3 -1.0267e3 2.9516 4.4389e5 -# Range 0-350 - -Vm 9.159 14.5839 0.0138 -3.3818 0.6644 -# Extrapol supcrt92 -# Ref SK93 - -3 CH3COOH + Sm+3 = Sm(CH3COO)3 + 3 H+ - -llnl_gamma 3.0 - log_k -7.8798 - -delta_H -43.5554 kJ/mol -# deltafH -523.91 kcal/mol - -analytic -2.0765e1 1.1047e-3 -5.1181e2 3.4797 5.0618e5 -# Range 0-350 - -Vm 16.5088 32.5307 -7.0412 -4.1237 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Sm+3 + CH3COOH = SmCH3COO+2 + H+ - -llnl_gamma 4.5 - log_k -1.9205 - -delta_H -13.598 kJ/mol -# deltafH -284.55 kcal/mol - -analytic -1.1734e1 1.0889e-3 -5.1061e2 3.3317 2.6395e5 -# Range 0-350 - -Vm 2.6264 -1.3667 6.2827 -2.7224 1.4769 -# Extrapol supcrt92 -# Ref SK93 - -Sm+3 + HCO3- = SmCO3+ + H+ - -llnl_gamma 4.0 - log_k -2.479 - -delta_H 89.1108 kJ/mol -# deltafH -308.8 kcal/mol # OBIGT: -331.34 kcal/mol HSS95 - -analytic 2.3486e2 5.3703e-2 -7.0193e3 -9.2863e1 -1.0960e2 -# Range 0-350 - -Vm -1.0455 -10.3293 9.798 -2.3519 1.1907 -# Extrapol supcrt92 -# Ref HSS95 - -Sm+3 + Cl- = SmCl+2 - -llnl_gamma 4.5 - log_k 0.3086 - -delta_H 14.3637 kJ/mol -# deltafH -201.7 kcal/mol - -analytic 9.4972e1 3.9428e-2 -2.4198e3 -3.9718e1 -3.7787e1 -# Range 0-350 - -Vm -0.5006 -8.9988 9.2743 -2.4069 1.4192 -# Extrapol supcrt92 -# Ref HSS95 - -2 Cl- + Sm+3 = SmCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 19.9409 kJ/mol -# deltafH -240.3 kcal/mol - -analytic 2.5872e2 8.4154e-2 -7.2061e3 -1.0493e2 -1.1252e2 -# Range 0-350 - -Vm 2.5888 -1.4617 6.3276 -2.7185 0.6644 -# Extrapol supcrt92 -# Ref HSS95 - -3 Cl- + Sm+3 = SmCl3 - -llnl_gamma 3.0 - log_k -0.3936 - -delta_H 13.803 kJ/mol -# deltafH -281.7 kcal/mol - -analytic 4.9535e2 1.3520e-1 -1.4325e4 -1.9720e2 -2.2367e2 -# Range 0-350 - -Vm 6.0808 7.0673 2.9692 -3.0711 -0.03 -# Extrapol supcrt92 -# Ref HSS95 - -4 Cl- + Sm+3 = SmCl4- - -llnl_gamma 4.0 - log_k -0.818 - -delta_H -5.30531 kJ/mol -# deltafH -326.2 kcal/mol - -analytic 6.0562e2 1.4212e-1 -1.7982e4 -2.3782e2 -2.8077e2 -# Range 0-350 - -Vm 10.8148 18.6261 -1.5732 -3.5489 1.6917 -# Extrapol supcrt92 -# Ref HSS95 - -Sm+3 + HPO4-2 + H+ = SmH2PO4+2 - -llnl_gamma 4.5 - log_k 9.4484 - -delta_H -15.8364 kJ/mol -# deltafH -477.8 kcal/mol - -analytic 1.2451e2 6.4959e-2 -3.9576e2 -5.3772e1 -6.2124 -# Range 0-350 - -Vm 1.3708 -4.4295 7.4801 -2.5958 1.4867 -# Extrapol supcrt92 -# Ref HSS95 - -Sm+3 + HCO3- = SmHCO3+2 - -llnl_gamma 4.5 - log_k 1.7724 - -delta_H 9.19643 kJ/mol -# deltafH -327.9 kcal/mol - -analytic 5.5520e1 3.3265e-2 -7.3142e2 -2.4727e1 -1.1430e1 -# Range 0-350 - -Vm 0.3694 -6.8727 8.4365 -2.4948 1.2366 -# Extrapol supcrt92 -# Ref HSS95 - -Sm+3 + NO3- = SmNO3+2 - -llnl_gamma 4.5 - log_k 0.8012 - -delta_H -29.1667 kJ/mol -# deltafH -221.6 kcal/mol - -analytic 3.3782e1 2.7125e-2 1.5091e3 -1.8632e1 2.3537e1 -# Range 0-350 - -Vm 1.0908 -5.1124 7.7478 -2.5676 1.5897 -# Extrapol supcrt92 -# Ref HSS95 - -Sm+3 + H2O = SmO+ + 2 H+ - -llnl_gamma 4.0 - log_k -16.4837 - -delta_H 113.039 kJ/mol -# deltafH -206.5 kcal/mol # OBIGT: -197.63 kcal/mol HSS95 - -analytic 1.8554e2 3.0198e-2 -1.3791e4 -6.6588e1 -2.1526e2 -# Range 0-350 - -Vm 2.8115 -0.9157 6.1076 -2.741 0.3837 -# Extrapol supcrt92 -# Ref HSS95 - -2 H2O + Sm+3 = SmO2- + 4 H+ - -llnl_gamma 4.0 - log_k -35.0197 - -delta_H 285.909 kJ/mol -# deltafH -233.5 kcal/mol # OBIGT: -238.22 kcal/mol HSS95 - -analytic 1.3508e1 -8.3384e-3 -1.0325e4 -1.5506 -6.7392e5 -# Range 0-350 - -Vm 4.9642 4.3393 4.0456 -2.9583 1.0848 -# Extrapol supcrt92 -# Ref HSS95 - -2 H2O + Sm+3 = SmO2H + 3 H+ - -llnl_gamma 3.0 - log_k -25.9304 - -delta_H 226.497 kJ/mol -# deltafH -247.7 kcal/mol - -analytic 3.6882e2 5.3761e-2 -2.4317e4 -1.3305e2 -3.7956e2 -# Range 0-350 - -Vm 4.9296 4.2552 4.0768 -2.9548 -0.03 -# Extrapol supcrt92 -# Ref HSS95 - -Sm+3 + H2O = SmOH+2 + H+ - -llnl_gamma 4.5 - log_k -7.9808 - -delta_H 79.1487 kJ/mol -# deltafH -214.6 kcal/mol # OBIGT: -213.97 kcal/mol HSS95 - -analytic 6.3793e1 1.1977e-2 -6.0852e3 -2.2198e1 -9.4972e1 -# Range 0-350 - -Vm 2.7076 -1.1676 6.2027 -2.7306 1.1289 -# Extrapol supcrt92 -# Ref HSS95 - -Sm+3 + SO4-2 = SmSO4+ - -llnl_gamma 4.0 - log_k 3.6430 - -delta_H 20.0832 kJ/mol -# deltafH -377.8 kcal/mol - -analytic 3.0597e2 8.6258e-2 -9.0231e3 -1.2032e2 -1.4089e2 -# Range 0-350 - -Vm -1.3885 -4.3882 7.4678 -2.5975 0.7483 -# Extrapol supcrt92 -# Ref HSS95 - -UO2+2 + H2O = UO2OH+ + H+ - -llnl_gamma 4.0 - log_k -5.2073 - -delta_H 43.1813 kJ/mol -# deltafH -1261.66 kJ/mol - -analytic 3.4387e1 6.0811e-3 -3.3068e3 -1.2252e1 -5.1609e1 -# Range 0-350 - -Vm 4.764 3.8529 4.2318 -2.9382 0.4925 # SSB97 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 92gre/fug match - -2 CH3COOH + Zn+2 = Zn(CH3COO)2 + 2 H+ - -llnl_gamma 3.0 - log_k -6.062 - -delta_H -11.0458 kJ/mol -# deltafH -271.5 kcal/mol - -analytic -2.2038e1 2.6133e-3 -2.7652e3 6.8501 6.7086e5 -# Range 0-350 - -Vm 11.7443 20.8978 -2.4707 -3.6429 -0.038 -# Extrapol supcrt92 -# Ref SSH97, SK93 - -3 CH3COOH + Zn+2 = Zn(CH3COO)3- + 3 H+ - -llnl_gamma 4.0 - log_k -10.0715 - -delta_H 25.355 kJ/mol -# deltafH -378.9 kcal/mol - -analytic 3.5104e1 -6.1568e-3 -1.3379e4 -8.7697 2.0670e6 -# Range 0-350 - -Vm 20.0332 41.1373 -10.4257 -4.4796 1.2513 -# Extrapol supcrt92 -# Ref SSH97, SK93 - -Zn+2 + CH3COOH = ZnCH3COO+ + H+ - -llnl_gamma 4.0 - log_k -3.1519 - -delta_H -9.87424 kJ/mol -# deltafH -155.12 kcal/mol - -analytic -7.9367 2.8564e-3 -1.4514e3 2.5010 2.3343e5 -# Range 0-350 - -Vm 4.8484 4.06 4.1473 -2.9468 0.41 -# Extrapol supcrt92 -# Ref SSH97, SK93 - -Zn+2 + Cl- = ZnCl+ - -llnl_gamma 4.0 - log_k 0.1986 - -delta_H 43.317 kJ/mol -# deltafH -66.24 kcal/mol - -analytic 1.1235e2 4.4461e-2 -4.1662e3 -4.5023e1 -6.5042e1 -# Range 0-350 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 # APP14 -# Extrapol supcrt92 -# Ref SSH97 - -2 Cl- + Zn+2 = ZnCl2 - -llnl_gamma 3.0 - log_k 0.2507 - -delta_H 31.1541 kJ/mol -# deltafH -109.08 kcal/mol - -analytic 1.7824e2 7.5733e-2 -4.6251e3 -7.4770e1 -7.2224e1 -# Range 0-350 - -Vm -10.1 4.57 241 -2.97 -1e-3 # APP14 -# Extrapol supcrt92 -# Ref SSH97 - -3 Cl- + Zn+2 = ZnCl3- - -llnl_gamma 4.0 - log_k -0.0198 - -delta_H 22.5894 kJ/mol -# deltafH -151.06 kcal/mol - -analytic 1.3889e2 7.4712e-2 -2.1527e3 -6.2200e1 -3.3633e1 -# Range 0-350 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 # APP14 -# Extrapol supcrt92 -# Ref SSH97 - -4 Cl- + Zn+2 = ZnCl4-2 - -llnl_gamma 4.0 - log_k 0.8605 - -delta_H 4.98733 kJ/mol -# deltafH -195.2 kcal/mol - -analytic 8.4294e1 7.0021e-2 3.9150e2 -4.2664e1 6.0834 -# Range 0-300 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 # APP14 -# Extrapol supcrt92 -# Ref SSH97? - -Zn+2 + H2O = ZnOH+ + H+ - -llnl_gamma 4.0 - log_k -8.96 -# deltafH -0 kcal/mol - -analytic -7.8600e-1 -2.9499e-4 -2.8673e3 6.1892e-1 -4.2576e1 -# Range 25-300 - -Vm 1.1499 -4.9677 7.6896 -2.5735 0.326 -# Extrapol supcrt92, ? -# Ref SSW+97, 87bou/bar differ by 0.8 log K at 0C, 2.7 log K at 300C - -Zn+2 + SO4-2 = ZnSO4 - -llnl_gamma 3.0 - log_k 2.3062 - -delta_H 15.277 kJ/mol -# deltafH -1047.71 kJ/mol - -analytic 1.3640e2 5.1256e-2 -3.4422e3 -5.5695e1 -5.8501e1 -# Range 0-200 - -Vm 2.51 0 18.8 # APP14 -# Extrapol 69hel -# Ref WEP+82 - -PHASES - -#------------ -# 375 solids -#------------ - -[(6)(CB)(CB)S] - S + O2 = SO2 - log_k 63.04 - -analytic 137.16 -0.320465 0 0 0 0.000241 -# Range 0-350 - -Vm 16.5 -# Extrapol supcrt92 -# Ref R01, calculations and fit by N17 - -[(aro)-O-(aro)] - O = 0.5 O2 - log_k -20.610681 - -delta_H 30.240 kcal/mol - -analytic -46.6 0.111 0 0 0 -7.99e-5 -# Range 0-350 - -Vm -2.4 -# Extrapol supcrt92 -# Ref RH98 - -Afwillite - Ca3Si2O4(OH)6 + 6 H+ = 2 SiO2 + 3 Ca+2 + 6 H2O - log_k 60.0452 - -delta_H -316.059 kJ/mol -# deltafH -1143.31 kcal/mol - -analytic 1.8353e1 1.9014e-3 1.8478e4 -6.6311 -4.0227e5 -# Range 0-300 - -Vm 129.23 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - -Akermanite - Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 SiO2 + 3 H2O - log_k 45.3190 - -delta_H -288.575 kJ/mol -# deltafH -926.497 kcal/mol - -analytic -4.8295e1 -8.5613e-3 2.0880e4 1.3798e1 -7.1975e5 -# Range 0-350 - -Vm 92.81 -# Extrapol supcrt92 -# Ref HDN+78 - -Al - Al + 3 H+ + 0.75 O2 = Al+3 + 1.5 H2O - log_k 149.9292 - -delta_H -958.059 kJ/mol -# deltafH 0 kJ/mol - -analytic -1.8752e2 -4.6187e-2 5.7127e4 6.6270e1 -3.8952e5 -# Range 0-300 - -Vm 9.99 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Al2(SO4)3 - Al2(SO4)3 = 2 Al+3 + 3 SO4-2 - log_k 19.0535 - -delta_H -364.566 kJ/mol -# deltafH -3441.04 kJ/mol - -analytic -6.1001e2 -2.4268e-1 2.9194e4 2.4383e2 4.5573e2 -# Range 0-300 - -Vm 126.25 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Alabandite - MnS + H+ = HS- + Mn+2 - log_k -0.3944 - -delta_H -23.3216 kJ/mol -# deltafH -51 kcal/mol - -analytic -1.5515e2 -4.8820e-2 4.9049e3 6.1765e1 7.6583e1 -# Range 0-350 - -Vm 21.46 -# Extrapol supcrt92 -# Ref HDN+78 - -Albite - NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 - log_k 2.7645 - -delta_H -51.8523 kJ/mol -# deltafH -939.68 kcal/mol - -analytic -1.1694e1 1.4429e-2 1.3784e4 -7.2866 -1.6136e6 -# Range 0-350 - -Vm 100.25 -# Extrapol supcrt92 -# Ref HDN+78 - -Albite_high - NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 - log_k 4.0832 - -delta_H -62.8562 kJ/mol -# deltafH -937.05 kcal/mol - -analytic -1.8957e1 1.3726e-2 1.4801e4 -4.9732 -1.6442e6 -# Range 0-350 - -Vm 100.25 -# Extrapol supcrt92 -# Ref HDN+78 - -Albite_low - NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 - log_k 2.7645 - -delta_H -51.8523 kJ/mol -# deltafH -939.68 kcal/mol - -analytic -1.2860e1 1.4481e-2 1.3913e4 -6.9417 -1.6256e6 -# Range 0-350 - -Vm 100.25 -# Extrapol supcrt92 -# Ref HDN+78 - -Alum-K - KAl(SO4)2:12H2O = Al+3 + K+ + 2 SO4-2 + 12 H2O - log_k -4.8818 - -delta_H 14.4139 kJ/mol -# deltafH -1447 kcal/mol - -analytic -8.8025e2 -2.5706e-1 2.2399e4 3.5434e2 3.4978e2 -# Range 0-300 - -Vm 269.54 # Marion+09 -# Extrapol Cp integration -# Ref 73bar/kna - -Alunite - KAl3(OH)6(SO4)2 + 6 H+ = K+ + 2 SO4-2 + 3 Al+3 + 6 H2O - log_k -0.3479 - -delta_H -231.856 kJ/mol -# deltafH -1235.6 kcal/mol - -analytic -6.8581e2 -2.2455e-1 2.6886e4 2.6758e2 4.1973e2 -# Range 0-350 - -Vm 205.40 # thermo.com.V8.R6+.tdat -# Extrapol supcrt92 -# Ref HDN+78 - -Amesite-14A - Mg4Al4Si2O10(OH)8 + 20 H+ = 2 SiO2 + 4 Al+3 + 4 Mg+2 + 14 H2O - log_k 75.4571 - -delta_H -797.098 kJ/mol -# deltafH -2145.67 kcal/mol - -analytic -5.4326e2 -1.4144e-1 5.4150e4 1.9361e2 8.4512e2 -# Range 0-300 - -Vm 205.4 -# Extrapol Cp integration -# Ref 78wol - -Analcime - Na.96Al.96Si2.04O6:H2O + 3.84 H+ = 0.96 Al+3 + 0.96 Na+ + 2.04 SiO2 + 2.92 H2O - log_k 6.1396 - -delta_H -75.844 kJ/mol -# deltafH -3296.86 kJ/mol - -analytic -6.8694 6.6052e-3 9.8260e3 -4.8540 -8.8780e5 -# Range 0-350 - -Vm 97.1 # 96.8 in thermo.com.V8.R6+.tdat -# Extrapol supcrt92, Cp integration -# Ref HDN+78, 82joh/flo match but differ from Wilson+06 by 1 log K at 0C, 0 log K a 300C - -Andalusite - Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O - log_k 15.9445 - -delta_H -235.233 kJ/mol -# deltafH -615.866 kcal/mol - -analytic -7.1115e1 -3.2234e-2 1.2308e4 2.2357e1 1.9208e2 -# Range 0-350 - -Vm 51.53 -# Extrapol supcrt92 -# Ref HDN+78 differ by 1.6 log K at 0C, 0.5 log K at 350C - -Andradite - Ca3Fe2(SiO4)3 + 12 H+ = 2 Fe+3 + 3 Ca+2 + 3 SiO2 + 6 H2O - log_k 33.3352 - -delta_H -301.173 kJ/mol -# deltafH -1380.35 kcal/mol - -analytic 1.3884e1 -2.3886e-2 1.5314e4 -8.1606 -4.2193e5 -# Range 0-350 - -Vm 131.85 -# Extrapol supcrt92 -# Ref HDN+78 - -Anhydrite - CaSO4 = Ca+2 + SO4-2 - log_k -4.3064 - -delta_H -18.577 kJ/mol -# deltafH -342.76 kcal/mol - -analytic -2.0986e2 -7.8823e-2 5.0969e3 8.5642e1 7.9594e1 -# Range 0-350 - -Vm 45.94 # thermo.com.V8.R6+.tdat -# Extrapol supcrt92 -# Ref HDN+78 - -Annite - KFe3AlSi3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 SiO2 + 6 H2O - log_k 29.4693 - -delta_H -259.964 kJ/mol -# deltafH -1232.19 kcal/mol - -analytic -4.0186e1 -1.4238e-2 1.8929e4 7.9859e0 -8.4343e5 -# Range 0-350 - -Vm 154.32 -# Extrapol supcrt92 -# Ref HDN+78 - -Anorthite - CaAl2(SiO4)2 + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 4 H2O - log_k 26.5780 - -delta_H -303.039 kJ/mol -# deltafH -1007.55 kcal/mol - -analytic 3.9717e-1 -1.8751e-2 1.4897e4 -6.3078 -2.3885e5 -# Range 0-350 - -Vm 100.79 -# Extrapol supcrt92 -# Ref HDN+78 - -Anthophyllite - Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 + 8 H2O + 8 SiO2 - log_k 66.7965 - -delta_H -483.486 kJ/mol -# deltafH -2888.75 kcal/mol - -analytic -1.2865e2 1.9705e-2 5.4853e4 1.9444e1 -3.8080e6 -# Range 0-350 - -Vm 264.4 -# Extrapol supcrt92 -# Ref HDN+78 - -Antigorite - Mg48Si34O85(OH)62 + 96 H+ = 34 SiO2 + 48 Mg+2 + 79 H2O - log_k 477.1943 - -delta_H -3364.43 kJ/mol -# deltafH -17070.9 kcal/mol - -analytic -8.1630e2 -6.7780e-2 2.5998e5 2.2029e2 -9.3275e6 -# Range 0-350 - -Vm 1749.13 -# Extrapol supcrt92 -# Ref HDN+78 - -Aragonite - CaCO3 + H+ = Ca+2 + HCO3- - log_k 1.9931 - -delta_H -25.8027 kJ/mol -# deltafH -288.531 kcal/mol - -analytic -1.4934e2 -4.8043e-2 4.9089e3 6.0284e1 7.6644e1 -# Range 0-325 - -Vm 34.15 # thermo.com.V8.R6+.tdat -# Extrapol supcrt92 -# Ref HDN+78 - -Arcanite - K2SO4 = SO4-2 + 2 K+ - log_k -1.8008 - -delta_H 23.836 kJ/mol -# deltafH -1437.78 kJ/mol - -analytic -1.6428e2 -6.7762e-2 1.9879e3 7.1116e1 3.1067e1 -# Range 0-300 - -Vm 65.50 # Marion+05 -# Extrapol Cp integration -# Ref RHF79 - -Artinite - Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O - log_k 19.6560 - -delta_H -130.432 kJ/mol -# deltafH -698.043 kcal/mol - -analytic -2.8614e2 -6.7344e-2 1.5230e4 1.1104e2 2.3773e2 -# Range 0-350 - -Vm 96.9 # 97.85 Webmineral.com -# Extrapol supcrt92 -# Ref HDN+78 - -Atacamite - Cu4Cl2(OH)6 + 6 H+ = 2 Cl- + 4 Cu+2 + 6 H2O - log_k 14.2836 - -delta_H -132.001 kJ/mol -# deltafH -1654.43 kJ/mol - -analytic -2.6623e2 -4.8121e-2 1.5315e4 9.8395e1 2.6016e2 -# Range 0-200 - -Vm 56.80 # Webmineral.com -# Extrapol Constant H approx -# Ref 87woo/gar - -Azurite - Cu3(CO3)2(OH)2 + 4 H+ = 2 H2O + 2 HCO3- + 3 Cu+2 - log_k 9.1607 - -delta_H -122.298 kJ/mol -# deltafH -390.1 kcal/mol - -analytic -4.4042e2 -1.1934e-1 1.8053e4 1.7158e2 2.8182e2 -# Range 0-350 - -Vm 91.01 -# Extrapol supcrt92 -# Ref HDN+78 - -B - B + 1.5 H2O + 0.75 O2 = B(OH)3 - log_k 109.5654 - -delta_H -636.677 kJ/mol -# deltafH 0 kJ/mol - -analytic 8.0471e1 1.2577e-3 2.9653e4 -2.8593e1 4.6268e2 -# Range 0-300 - -Vm 4.386 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -B2O3 - B2O3 + 3 H2O = 2 B(OH)3 - log_k 5.5464 - -delta_H -18.0548 kJ/mol -# deltafH -1273.5 kJ/mol - -analytic 9.0905e1 5.5365e-3 -2.6629e3 -3.1553e1 -4.1578e1 -# Range 0-300 - -Vm 28.30 # gfw/density -# Extrapol Cp integration -# Ref CWM89 - -Bassanite - CaSO4:0.5H2O = 0.5 H2O + Ca+2 + SO4-2 - log_k -3.6615 - -delta_H -18.711 kJ/mol -# deltafH -1576.89 kJ/mol - -analytic -2.2010e2 -8.0230e-2 5.5092e3 8.9651e1 8.6031e1 -# Range 0-300 - -Vm 52.31 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Bassetite - Fe(UO2)2(PO4)2 + 2 H+ = Fe+2 + 2 HPO4-2 + 2 UO2+2 - log_k -17.7240 - -delta_H -114.841 kJ/mol -# deltafH -1099.33 kcal/mol - -analytic -5.7788e1 -4.5400e-2 4.0119e3 1.6216e1 6.8147e1 -# Range 0-200 - -Vm 256.19 # Webmineral.com -# Extrapol Constant H approx -# Ref 78lan - -Beidellite-Ca - Ca.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O - log_k 5.5914 - -delta_H -162.403 kJ/mol -# deltafH -1370.66 kcal/mol - -analytic 3.872e1 -1.431e-1 0 0 0 9.036e-5 -# Range 0-300 - -Vm 133.081 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78 wol differ by 1.5 log K at 0C, 1 log K at 300C - -Beidellite-Fe - Fe.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Fe+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O - log_k 4.6335 - -delta_H -154.65 kJ/mol -# deltafH -1351.1 kcal/mol - -analytic 3.641e1 -1.391e-1 0 0 0 8.671e-5 -# Range 0-300 - -Vm 134.293 -# Extrapol supcrt92 -# Ref Catalano13 - -Beidellite-K - K.35Al2.35Si3.65O10(OH)2 +7.4 H+ = 0.35 K+ + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O - log_k 5.3088 - -delta_H -150.834 kJ/mol -# deltafH -1371.9 kcal/mol - -analytic 3.307e1 -1.254e-1 0 0 0 7.660e-5 -# Range 0-300 - -Vm 137.214 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78 wol differ by 2.9 log K at 0C, 1.7 log K at 300C - -Beidellite-Mg - Mg.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Mg+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O - log_k 5.5537 - -delta_H -165.455 kJ/mol -# deltafH -1366.89 kcal/mol - -analytic 3.750e1 -1.415e-1 0 0 0 8.929e-5 -# Range 0-300 - -Vm 132.116 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78 wol differ by 2.4 log K at 0C, 1.4 log K at 300C - -Beidellite-Na - Na.35Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Na+ + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O - log_k 5.6473 - -delta_H -155.846 kJ/mol -# deltafH -1369.76 kcal/mol - -analytic 3.613e1 -1.347e-1 0 0 0 8.470e-5 -# Range 0-300 - -Vm 134.522 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, differ from 78 wol and Wilson+06 (which match) by 2.8 log K at 0C, 1.3 log K at 300C - -Berlinite - AlPO4 + H+ = Al+3 + HPO4-2 - log_k -7.2087 - -delta_H -96.6313 kJ/mol -# deltafH -1733.85 kJ/mol - -analytic -2.8134e2 -9.9933e-2 1.0308e4 1.0883e2 1.6094e2 -# Range 0-300 - -Vm 46.19 # Webmineral.com -# Extrapol Cp integration -# Ref WEP+82 - -Bieberite - CoSO4:7H2O = Co+2 + SO4-2 + 7 H2O - log_k -2.5051 - -delta_H 11.3885 kJ/mol -# deltafH -2980.02 kJ/mol - -analytic -2.6405e2 -7.2497e-2 6.6673e3 1.0538e2 1.0411e2 -# Range 0-300 - -Vm 147.95 # Webmineral.com -# Extrapol Cp integration -# Ref WEP+82 - -Bixbyite - Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O - log_k -0.9655 - -delta_H -190.545 kJ/mol -# deltafH -958.971 kJ/mol - -analytic -1.1600e2 -2.8056e-3 1.3418e4 2.8639e1 2.0941e2 -# Range 0-300 - -Vm 31.89 # Webmineral.com, density 4.95 -# Extrapol Cp integration -# Ref RHF79 - -Boehmite - AlO2H + 3 H+ = Al+3 + 2 H2O - log_k 7.5642 - -delta_H -113.282 kJ/mol -# deltafH -238.24 kcal/mol - -analytic -1.2196e2 -3.1138e-2 8.8643e3 4.4075e1 1.3835e2 -# Range 0-225 - -Vm 19.535 -# Extrapol supcrt92 -# Ref HDN+78, 95pok/hel - -Borax - Na2(B4O5(OH)4):8H2O + 2 H+ = 2 Na+ + 4 B(OH)3 + 5 H2O - log_k 12.0395 - -delta_H 80.5145 kJ/mol -# deltafH -6288.44 kJ/mol - -analytic 7.8374e1 1.9328e-2 -5.3279e3 -2.1914e1 -8.3160e1 -# Range 0-300 - -Vm 222.66 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Boric_acid - B(OH)3 = B(OH)3 - log_k -0.1583 - -delta_H 20.2651 kJ/mol -# deltafH -1094.8 kJ/mol - -analytic 3.9122e1 6.4058e-3 -2.2525e3 -1.3592e1 -3.5160e1 -# Range 0-300 - -Vm 43.09 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Bornite - Cu5FeS4 + 4 H+ = Cu+2 + Fe+2 + 4 Cu+ + 4 HS- - log_k -102.4369 - -delta_H 530.113 kJ/mol -# deltafH -79.922 kcal/mol - -analytic -7.0495e2 -2.0082e-1 -9.1376e3 2.8004e2 -1.4238e2 -# Range 0-350 - -Vm 98.6 -# Extrapol supcrt92 -# Ref HDN+78 - -Brezinaite - Cr3S4 + 4 H+ = Cr+2 + 2 Cr+3 + 4 HS- - log_k 2.7883 - -delta_H -216.731 kJ/mol -# deltafH -111.9 kcal/mol - -analytic -7.0528e1 -3.6568e-2 1.0598e4 1.9665e1 1.8000e2 -# Range 0-200 - -Vm 69.16 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 78vau/cra - -Brochantite - Cu4(SO4)(OH)6 + 6 H+ = SO4-2 + 4 Cu+2 + 6 H2O - log_k 15.4363 - -delta_H -163.158 kJ/mol -# deltafH -2198.72 kJ/mol - -analytic -2.3609e2 -3.9046e-2 1.5970e4 8.4701e1 2.7127e2 -# Range 0-200 - -Vm 113.60 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 87woo/gar - -Brucite - Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O - log_k 16.2980 - -delta_H -111.34 kJ/mol -# deltafH -221.39 kcal/mol - -analytic -1.0280e2 -1.9759e-2 9.0180e3 3.8282e1 1.4075e2 -# Range 0-350 - -Vm 24.63 -# Extrapol supcrt92 -# Ref HDN+78 - -Bunsenite - NiO + 2 H+ = H2O + Ni+2 - log_k 12.4719 - -delta_H -100.069 kJ/mol -# deltafH -57.3 kcal/mol - -analytic -8.1664e1 -1.9796e-2 7.4064e3 3.0385e1 1.1559e2 -# Range 0-350 - -Vm 10.97 -# Extrapol supcrt92 -# Ref HDN+78 - -C - C + H2O + O2 = H+ + HCO3- - log_k 64.1735 - -delta_H -391.961 kJ/mol -# deltafH 0 kcal/mol - -analytic -3.5556e1 -3.3691e-2 1.9774e4 1.7548e1 3.0856e2 -# Range 0-350 - -Vm 5.298 -# Extrapol supcrt92 -# Ref HDN+78 - -Ca - Ca +2 H+ + 0.5 O2 = Ca+2 + H2O - log_k 139.8465 - -delta_H -822.855 kJ/mol -# deltafH 0 kJ/mol - -analytic -1.1328e2 -2.6554e-2 4.7638e4 4.1989e1 -2.3545e5 -# Range 0-300 - -Vm 26.19 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Ca-Al_Pyroxene - CaAl2SiO6 + 8 H+ = Ca+2 + SiO2 + 2 Al+3 + 4 H2O - log_k 35.9759 - -delta_H -361.548 kJ/mol -# deltafH -783.793 kcal/mol - -analytic -1.4664e2 -5.0409e-2 2.1045e4 5.1318e1 3.2843e2 -# Range 0-350 - -Vm 63.5 -# Extrapol supcrt92 -# Ref HDN+78 - -Ca3Al2O6 - Ca3Al2O6 + 12 H+ = 2 Al+3 + 3 Ca+2 + 6 H2O - log_k 113.0460 - -delta_H -833.336 kJ/mol -# deltafH -857.492 kcal/mol - -analytic -2.7163e2 -5.2897e-2 5.0815e4 9.2946e1 8.6300e2 -# Range 0-200 - -Vm 88.94 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 82sar/bar - -Ca4Al2Fe2O10 - Ca4Al2Fe2O10 + 20 H+ = 2 Al+3 + 2 Fe+3 + 4 Ca+2 + 10 H2O - log_k 140.5050 - -delta_H -1139.86 kJ/mol -# deltafH -1211 kcal/mol - -analytic -4.1808e2 -8.2787e-2 7.0288e4 1.4043e2 1.1937e3 -# Range 0-200 - -Vm 130.28 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 82sar/bar - -CaAl2O4 - CaAl2O4 + 8 H+ = Ca+2 + 2 Al+3 + 4 H2O - log_k 46.9541 - -delta_H -436.952 kJ/mol -# deltafH -555.996 kcal/mol - -analytic -3.0378e2 -7.9356e-2 3.0096e4 1.1049e2 4.6971e2 -# Range 0-300 - -Vm 53.02 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - -CaAl4O7 - CaAl4O7 + 14 H+ = Ca+2 + 4 Al+3 + 7 H2O - log_k 68.6138 - -delta_H -718.464 kJ/mol -# deltafH -951.026 kcal/mol - -analytic -3.1044e2 -6.7078e-2 4.4566e4 1.0085e2 7.5689e2 -# Range 0-200 - -Vm 89.35 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 82sar/bar - -CaUO4 - CaUO4 + 4 H+ = Ca+2 + UO2+2 + 2 H2O - log_k 15.9420 - -delta_H -131.46 kJ/mol -# deltafH -2002.3 kJ/mol - -analytic -8.7902e1 -1.9810e-2 9.2354e3 3.1832e1 1.4414e2 -# Range 0-300 - -Vm 45.92 # M13 -# Extrapol Cp integration -# Ref 92gre/fug - -Calcite - CaCO3 + H+ = Ca+2 + HCO3- - log_k 1.8487 - -delta_H -25.7149 kJ/mol -# deltafH -288.552 kcal/mol - -analytic -1.4978e2 -4.8370e-2 4.8974e3 6.0458e1 7.6464e1 -# Range 0-350 - -Vm 36.934 -# Extrapol supcrt92 -# Ref HDN+78 - -Cattierite - CoS2 = Co+2 + S2-2 - log_k -29.9067 -# deltafH -36.589 kcal/mol - -analytic -2.1970e2 -7.8585e-2 -1.9592e3 8.8809e1 -3.0507e1 -# Range 0-300 - -Vm 25.53 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 78vau/cra - -Celadonite - KMgAlSi4O10(OH)2 + 6 H+ = Al+3 + K+ + Mg+2 + 4 H2O + 4 SiO2 - log_k 7.4575 - -delta_H -74.3957 kJ/mol -# deltafH -1394.9 kcal/mol - -analytic -3.3097e1 1.7989e-2 1.8919e4 -2.1219 -2.0588e6 -# Range 0-300 - -Vm 157.1 -# Extrapol supcrt92, Cp integration -# Ref HDN+78, 78wol match - -Chalcanthite - CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O - log_k -2.6215 - -delta_H 6.57556 kJ/mol -# deltafH -2279.68 kJ/mol - -analytic -1.1262e2 -1.5544e-2 3.6176e3 4.1420e1 6.1471e1 -# Range 0-200 - -Vm 108.97 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Chalcedony - SiO2 = SiO2 - log_k -3.7281 - -delta_H 31.4093 kJ/mol -# deltafH -217.282 kcal/mol - -analytic -9.0068 9.3241e-3 4.0535e3 -1.0830 -7.5077e5 -# Range 0-350 - -Vm 22.68 -# Extrapol supcrt92 -# Ref HDN+78 - -Chalcocite - Cu2S + H+ = HS- + 2 Cu+ - log_k -34.7342 - -delta_H 206.748 kJ/mol -# deltafH -19 kcal/mol - -analytic -1.3703e2 -4.0727e-2 -7.1694e3 5.5963e1 -1.1183e2 -# Range 0-350 - -Vm 27.48 -# Extrapol supcrt92 -# Ref HDN+78 - -Chalcocyanite - CuSO4 = Cu+2 + SO4-2 - log_k 2.9239 - -delta_H -72.5128 kJ/mol -# deltafH -771.4 kJ/mol - -analytic 5.8173 -1.6933e-2 2.0097e3 -1.8583 3.4126e1 -# Range 0-200 - -Vm 40.88 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref CWM89 - -Chalcopyrite - CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- - log_k -32.5638 - -delta_H 127.206 kJ/mol -# deltafH -44.453 kcal/mol - -analytic -3.1575e2 -9.8947e-2 8.3400e2 1.2522e2 1.3106e1 -# Range 0-350 - -Vm 42.83 -# Extrapol supcrt92 -# Ref HDN+78 - -Chamosite - Fe5Al2Si3O10(OH)8 + 16 H+ = 3 SiO2 + 2 Al+3 + 5 Fe+2 + 12 H2O - log_k 32.8416 - -delta_H -364.213 kJ/mol -# deltafH -902.407 kcal/mol - -analytic 1.577e2 -4.614e-1 0 0 0 3.413e-4 -# Range 0-300 - -Vm 213.42 -# Extrapol supcrt92 -# Ref Wilson+06 - -Chloromagnesite - MgCl2 = Mg+2 + 2 Cl- - log_k 21.8604 - -delta_H -158.802 kJ/mol -# deltafH -641.317 kJ/mol - -analytic -2.3640e2 -8.2017e-2 1.3480e4 9.5963e1 2.1042e2 -# Range 0-300 - -Vm 40.95 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -Chromite - FeCr2O4 + 8 H+ = Fe+2 + 2 Cr+3 + 4 H2O - log_k 15.1685 - -delta_H -267.755 kJ/mol -# deltafH -1444.83 kJ/mol - -analytic -1.9060e2 -2.5695e-2 1.9465e4 5.9865e1 3.0379e2 -# Range 0-300 - -Vm 44.01 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Chrysotile - Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O - log_k 31.1254 - -delta_H -218.041 kJ/mol -# deltafH -1043.12 kcal/mol - -analytic -9.2462e1 -1.1359e-2 1.8312e4 2.9289e1 -6.2342e5 -# Range 0-350 - -Vm 108.5 -# Extrapol supcrt92 -# Ref HDN+78 - -Clinochlore-14A - Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O - log_k 67.2391 - -delta_H -612.379 kJ/mol -# deltafH -2116.96 kcal/mol - -analytic -2.0441e2 -6.2268e-2 3.5388e4 6.9239e1 5.5225e2 -# Range 0-350 - -Vm 207.11 -# Extrapol supcrt92 -# Ref HDN+78, Wilson+06 differ by 0.4 log K at 0C, 1.6 log K at 300C - -Clinochlore-7A - Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O - log_k 70.6124 - -delta_H -628.14 kJ/mol -# deltafH -2113.2 kcal/mol - -analytic -2.1644e2 -6.4187e-2 3.6548e4 7.4123e1 5.7037e2 -# Range 0-350 - -Vm 211.5 -# Extrapol supcrt92 -# Ref HDN+78 - -Clinoptilolite-Ca - Ca1.7335Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Ca+2 + 3.45 Al+3 + 14.533 SiO2 + 17.856 H2O - log_k -7.0095 - -delta_H -74.6745 kJ/mol -# deltafH -4919.84 kcal/mol - -analytic -4.4820e1 5.3696e-2 5.4878e4 -3.1459e1 -7.5491e6 -# Range 0-300 - -Vm 625.19 # Webmineral.com, density 2.15 -# Extrapol Cp integration -# Ref 89db 7 - -Clinoptilolite-K - K3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 14.533 SiO2 + 17.856 H2O - log_k -10.9485 - -delta_H 67.4862 kJ/mol -# deltafH -4937.77 kcal/mol - -analytic 1.1697e1 6.9480e-2 4.7718e4 -4.7442e1 -7.6907e6 -# Range 0-300 - -Vm 655.93 # Webmineral.com, density 2.15 -# Extrapol Cp integration -# Ref 89db 7 - -Clinoptilolite-Na - Na3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Na+ + 14.533 SiO2 + 17.856 H2O - log_k -7.1363 - -delta_H 2.32824 kJ/mol -# deltafH -4912.36 kcal/mol - -analytic -3.4572e1 6.8377e-2 5.1962e4 -3.3426e1 -7.5586e6 -# Range 0-300 - -Vm 629.95 # Webmineral.com, density 2.15 -# Extrapol Cp integration -# Ref 89db 7 - -Clinozoisite - Ca2Al3Si3O12(OH) + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O - log_k 43.2569 - -delta_H -457.755 kJ/mol -# deltafH -1643.78 kcal/mol - -analytic -2.8690e1 -3.7056e-2 2.2770e4 3.7880 -2.5834e5 -# Range 0-300 - -Vm 136.2 -# Extrapol supcrt92 -# Ref HDN+78, SH88 - -Co - Co + 2 H+ + 0.5 O2 = Co+2 + H2O - log_k 52.5307 - -delta_H -337.929 kJ/mol -# deltafH 0 kJ/mol - -analytic -6.2703e1 -2.0172e-2 1.8888e4 2.3391e1 2.9474e2 -# Range 0-300 - -Vm 6.67 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Co2SiO4 - Co2SiO4 + 4 H+ = SiO2 + 2 Co+2 + 2 H2O - log_k 6.6808 - -delta_H -88.6924 kJ/mol -# deltafH -353.011 kcal/mol - -analytic -3.9978 -3.7985e-3 5.1554e3 -1.5033 -1.6100e5 -# Range 0-300 - -Vm 44.52 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -CoCl2 - CoCl2 = Co+2 + 2 Cl- - log_k 8.2641 - -delta_H -79.5949 kJ/mol -# deltafH -312.722 kJ/mol - -analytic -2.2386e2 -8.0936e-2 8.8631e3 9.1528e1 1.3837e2 -# Range 0-300 - -Vm 38.69 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -CoCl2:2H2O - CoCl2:2H2O = Co+2 + 2 Cl- + 2 H2O - log_k 4.6661 - -delta_H -40.7876 kJ/mol -# deltafH -923.206 kJ/mol - -analytic -5.6411e1 -2.3390e-2 3.0519e3 2.3361e1 5.1845e1 -# Range 0-200 - -Vm 66.61 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -CoCl2:6H2O - CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O - log_k 2.6033 - -delta_H 8.32709 kJ/mol -# deltafH -2115.67 kJ/mol - -analytic -1.5066e2 -2.2132e-2 5.0591e3 5.7743e1 8.5962e1 -# Range 0-200 - -Vm 123.66 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -CoFe2O4 - CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O - log_k 0.8729 - -delta_H -160.674 kJ/mol -# deltafH -272.466 kcal/mol - -analytic -3.0149e2 -7.9159e-2 1.5683e4 1.1046e2 2.4480e2 -# Range 0-300 - -Vm 44 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 74nau/ryz - -CoO - CoO + 2 H+ = Co+2 + H2O - log_k 13.5553 - -delta_H -106.05 kJ/mol -# deltafH -237.946 kJ/mol - -analytic -8.4424e1 -1.9457e-2 7.8616e3 3.1281e1 1.2270e2 -# Range 0-300 - -Vm 11.64 # gfw/density -# Extrapol Cp integration -# Ref WEP+82 - -CoS - CoS + H+ = Co+2 + HS- - log_k -7.3740 - -delta_H 10.1755 kJ/mol -# deltafH -20.182 kcal/mol - -analytic -1.5128e2 -4.8484e-2 2.9553e3 5.9983e1 4.6158e1 -# Range 0-300 - -Vm 22.91 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 74nau/ryz - -CoSO4 - CoSO4 = Co+2 + SO4-2 - log_k 2.8996 - -delta_H -79.7952 kJ/mol -# deltafH -887.964 kJ/mol - -analytic -1.9907e2 -7.7890e-2 7.7193e3 8.0525e1 1.2051e2 -# Range 0-300 - -Vm 41.78 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -CoSO4:6H2O - CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O - log_k -2.3512 - -delta_H 1.08483 kJ/mol -# deltafH -2683.87 kJ/mol - -analytic -2.5469e2 -7.3092e-2 6.6767e3 1.0172e2 1.0426e2 -# Range 0-300 - -Vm 130.30 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -CoSO4:H2O - CoSO4:H2O = Co+2 + H2O + SO4-2 - log_k -1.2111 - -delta_H -52.6556 kJ/mol -# deltafH -287.032 kcal/mol - -analytic -1.0570e1 -1.6196e-2 1.7180e3 3.4000 2.9178e1 -# Range 0-200 - -Vm 56.26 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 74nau/ryz - -Coesite - SiO2 = SiO2 - log_k -3.1893 - -delta_H 28.6144 kJ/mol -# deltafH -216.614 kcal/mol - -analytic -9.7312 9.1773e-3 4.2143e3 -7.8065e-1 -7.4905e5 -# Range 0-350 - -Vm 20.641 -# Extrapol supcrt92 -# Ref HDN+78 - -Coffinite - USiO4 + 4 H+ = SiO2 + U+4 + 2 H2O - log_k -8.0530 - -delta_H -49.2493 kJ/mol -# deltafH -1991.33 kJ/mol - -analytic 2.3126e2 6.2389e-2 -4.6189e3 -9.7976e1 -7.8517e1 -# Range 0-200 - -Vm 46.12 # thermo.com.V8.R6+.tdat -# Extrapol Constant H Approx -# Ref 92gre/fug - -Cordierite_anhyd - Mg2Al4Si5O18 + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 8 H2O - log_k 52.3035 - -delta_H -626.219 kJ/mol -# deltafH -2183.2 kcal/mol - -analytic 2.6562 -2.3801e-2 3.5192e4 -1.9911e1 -1.0894e6 -# Range 0-350 - -Vm 233.22 -# Extrapol supcrt92 -# Ref HDN+78 differ by 3 log K at 0C, 0.8 log K at 350C - -Cordierite_hydr - Mg2Al4Si5O18:H2O + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 9 H2O - log_k 49.8235 - -delta_H -608.814 kJ/mol -# deltafH -2255.68 kcal/mol - -analytic -1.2985e2 -4.1335e-2 4.1566e4 2.7892e1 -1.4819e6 -# Range 0-350 - -Vm 241.22 -# Extrapol supcrt92 -# Ref HDN+78 differ by 3.4 log K at 0C, 0.8 log K at 350C - -Corundum - Al2O3 + 6 H+ = 2 Al+3 + 3 H2O - log_k 18.3121 - -delta_H -258.626 kJ/mol -# deltafH -400.5 kcal/mol - -analytic -1.4278e2 -7.8519e-2 1.3776e4 5.5881e1 2.1501e2 -# Range 0-350 - -Vm 25.575 -# Extrapol supcrt92 -# Ref HDN+78, 95pok/hel differ by 1 log K at 0C, 7 log K at 300C !! flag - -Covellite - CuS + H+ = Cu+2 + HS- - log_k -22.8310 - -delta_H 101.88 kJ/mol -# deltafH -12.5 kcal/mol - -analytic -1.6068e2 -4.9040e-2 -1.4234e3 6.3536e1 -2.2164e1 -# Range 0-350 - -Vm 20.42 -# Extrapol supcrt92 -# Ref HDN+78 - -Cr - Cr + 3 H+ + 0.75 O2 = Cr+3 + 1.5 H2O - log_k 98.6784 - -delta_H -658.145 kJ/mol -# deltafH 0 kJ/mol - -analytic -2.2488e1 -5.5886e-3 3.4288e4 3.1585 5.3503e2 -# Range 0-300 - -Vm 7.231 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -CrCl3 - CrCl3 = Cr+3 + 3 Cl- - log_k 17.9728 - -delta_H -183.227 kJ/mol -# deltafH -556.5 kJ/mol - -analytic -2.6348e2 -9.5339e-2 1.4785e4 1.0517e2 2.3079e2 -# Range 0-300 - -Vm 57.38 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -CrO2 - CrO2 = 0.5 Cr+2 + 0.5 CrO4-2 - log_k -19.1332 - -delta_H 85.9812 kJ/mol -# deltafH -143 kcal/mol - -analytic 2.7763 -7.7698e-3 -5.2893e3 -7.4970e-1 -8.9821e1 -# Range 0-200 - -Vm 16.95 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 76del/hal - -CrO3 - CrO3 + H2O = CrO4-2 + 2 H+ - log_k -3.5221 - -delta_H -5.78647 kJ/mol -# deltafH -140.9 kcal/mol - -analytic -1.3262e2 -6.1411e-2 2.2083e3 5.6564e1 3.4497e1 -# Range 0-300 - -Vm 35.14 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 76del/hal - -CrS - CrS + H+ = Cr+2 + HS- - log_k -0.6304 - -delta_H -26.15 kJ/mol -# deltafH -31.9 kcal/mol - -analytic -1.1134e2 -3.5954e-2 3.8744e3 4.3815e1 6.0490e1 -# Range 0-300 - -Vm 17.33 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 76del/hal - -Cristobalite(alpha) - SiO2 = SiO2 - log_k -3.4488 - -delta_H 29.2043 kJ/mol -# deltafH -216.755 kcal/mol - -analytic -1.1936e1 9.0520e-3 4.3701e3 -1.1464e-1 -7.6568e5 -# Range 0-350 - -Vm 25.74 -# Extrapol supcrt92 -# Ref HDN+78 - -Cristobalite(beta) - SiO2 = SiO2 - log_k -3.0053 - -delta_H 24.6856 kJ/mol -# deltafH -215.675 kcal/mol - -analytic -4.7414 9.7567e-3 3.8831e3 -2.5830 -6.9636e5 -# Range 0-350 - -Vm 27.38 -# Extrapol supcrt92 -# Ref HDN+78 - -Cronstedtite-7A - Fe2Fe2SiO5(OH)4 + 10 H+ = SiO2 + 2 Fe+2 + 2 Fe+3 + 7 H2O - log_k 16.2603 - -delta_H -244.266 kJ/mol -# deltafH -697.413 kcal/mol - -analytic -2.3783e2 -7.1026e-2 1.7752e4 8.7147e1 2.7707e2 -# Range 0-300 - -Vm 110.9 # HDN+78 -# Extrapol Cp integration -# Ref 78wol - -Cu - Cu + 2 H+ + 0.5 O2 = Cu+2 + H2O - log_k 31.5118 - -delta_H -214.083 kJ/mol -# deltafH 0 kcal/mol - -analytic -7.0719e1 -2.0300e-2 1.2802e4 2.6401e1 1.9979e2 -# Range 0-300 - -Vm 7.113 -# Extrapol supcrt92 -# Ref HDN+78 - - -CuCl2 - CuCl2 = Cu+2 + 2 Cl- - log_k 3.7308 - -delta_H -48.5965 kJ/mol -# deltafH -219.874 kJ/mol - -analytic -1.7803e1 -2.4432e-2 1.5729e3 9.5104 2.6716e1 -# Range 0-200 - -Vm 39.71 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -CuCr2O4 - CuCr2O4 + 8 H+ = Cu+2 + 2 Cr+3 + 4 H2O - log_k 16.2174 - -delta_H -268.768 kJ/mol -# deltafH -307.331 kcal/mol - -analytic -1.8199e2 -1.0254e-2 2.0123e4 5.4062e1 3.4178e2 -# Range 0-200 - -Vm 42.74 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 76del/hal - -Cuprite - Cu2O + 2 H+ = H2O + 2 Cu+ - log_k -1.9031 - -delta_H 28.355 kJ/mol -# deltafH -40.83 kcal/mol - -analytic -8.6240e1 -1.1445e-2 1.7851e3 3.3041e1 2.7880e1 -# Range 0-350 - -Vm 23.437 -# Extrapol supcrt92 -# Ref HDN+78 - -Daphnite-14A - Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O - log_k 52.2821 - -delta_H -517.561 kJ/mol -# deltafH -1693.04 kcal/mol - -analytic -1.5261e2 -6.1392e-2 2.8283e4 5.1788e1 4.4137e2 -# Range 0-350 - -Vm 213.42 -# Extrapol supcrt92 -# Ref HDN+78 - -Daphnite-7A - Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O - log_k 55.6554 - -delta_H -532.326 kJ/mol -# deltafH -1689.51 kcal/mol - -analytic -1.6430e2 -6.3160e-2 2.9499e4 5.6442e1 4.6035e2 -# Range 0-300 - -Vm 221.2 -# Extrapol supcrt92 -# Ref HDN+78 - -Dawsonite - NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O - log_k 4.3464 - -delta_H -76.3549 kJ/mol -# deltafH -1963.96 kJ/mol - -analytic -1.1393e2 -2.3487e-2 7.1758e3 4.0900e1 1.2189e2 -# Range 0-200 - -Vm 59.50 # Webmineral.com -# Extrapol Constant H approx -# Ref RHF79 - -Delafossite - CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O - log_k -6.4172 - -delta_H -18.6104 kJ/mol -# deltafH -126.904 kcal/mol - -analytic -1.5275e2 -3.5478e-2 5.1404e3 5.6437e1 8.0255e1 -# Range 0-300 - -Vm 27.52 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 74nau/ryz - -Diaspore - AlHO2 + 3 H+ = Al+3 + 2 H2O - log_k 7.1603 - -delta_H -110.42 kJ/mol -# deltafH -238.924 kcal/mol - -analytic -1.2618e2 -3.1671e-2 8.8737e3 4.5669e1 1.3850e2 -# Range 0-225 - -Vm 17.76 -# Extrapol supcrt92 -# Ref HDN+78, 95pok/hel - -Dicalcium_silicate - Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O - log_k 37.1725 - -delta_H -217.642 kJ/mol -# deltafH -2317.9 kJ/mol - -analytic -5.9723e1 -1.3682e-2 1.5461e4 2.1547e1 -3.7732e5 -# Range 0-300 - -Vm 59.11 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Diopside - CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 + 2 H2O + 2 SiO2 - log_k 20.9643 - -delta_H -133.775 kJ/mol -# deltafH -765.378 kcal/mol - -analytic 7.1240e1 1.5514e-2 8.1437e3 -3.0672e1 -5.6880e5 -# Range 0-350 - -Vm 66.09 -# Extrapol supcrt92 -# Ref HDN+78 - -Dioptase - CuSiO2(OH)2 + 2 H+ = Cu+2 + SiO2 + 2 H2O - log_k 6.0773 - -delta_H -25.2205 kJ/mol -# deltafH -1358.47 kJ/mol - -analytic 2.3913e2 6.2669e-2 -5.4030e3 -9.4420e1 -9.1834e1 -# Range 0-200 - -Vm 48.24 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 87woo/gar - -Dolomite - CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- - log_k 2.5135 - -delta_H -59.9651 kJ/mol -# deltafH -556.631 kcal/mol - -analytic -3.1782e2 -9.8179e-2 1.0845e4 1.2657e2 1.6932e2 -# Range 0-350 - -Vm 64.365 -# Extrapol supcrt92 -# Ref HDN+78 - -Dolomite-dis - CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- - log_k 4.0579 - -delta_H -72.2117 kJ/mol -# deltafH -553.704 kcal/mol - -analytic -3.1706e2 -9.7886e-2 1.1442e4 1.2604e2 1.7864e2 -# Range 0-350 - -Vm 64.39 -# Extrapol supcrt92 -# Ref HDN+78 - -Dolomite-ord - CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- - log_k 2.5135 - -delta_H -59.9651 kJ/mol -# deltafH -556.631 kcal/mol - -analytic -3.1654e2 -9.7902e-2 1.0805e4 1.2607e2 1.6870e2 -# Range 0-350 - -Vm 64.34 -# Extrapol supcrt92 -# Ref HDN+78 - -Enstatite - MgSiO3 + 2 H+ = H2O + Mg+2 + SiO2 - log_k 11.3269 - -delta_H -82.7302 kJ/mol -# deltafH -369.686 kcal/mol - -analytic -4.9278e1 -3.2832e-3 9.5205e3 1.4437e1 -5.4324e5 -# Range 0-350 - -Vm 31.276 -# Extrapol supcrt92 -# Ref HDN+78 - -Epidote - Ca2FeAl2Si3O12OH + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O - log_k 32.9296 - -delta_H -386.451 kJ/mol -# deltafH -1543.99 kcal/mol - -analytic -2.6187e1 -3.6436e-2 1.9351e4 3.3671 -3.0319e5 -# Range 0-350 - -Vm 139.2 -# Extrapol supcrt92 -# Ref HDN+78 - -Epidote-ord - FeCa2Al2(OH)(SiO4)3 + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O - log_k 32.9296 - -delta_H -386.351 kJ/mol -# deltafH -1544.02 kcal/mol - -analytic 1.9379e1 -3.2870e-2 1.5692e4 -1.1901e1 2.4485e2 -# Range 0-350 - -Vm 139.2 -# Extrapol supcrt92 -# Ref HDN+78 - -Eskolaite - Cr2O3 + 2 H2O + 1.5 O2 = 2 CrO4-2 + 4 H+ - log_k -9.1306 - -delta_H -32.6877 kJ/mol -# deltafH -1139.74 kJ/mol - -analytic -2.0411e2 -1.2809e-1 2.2197e3 9.1186e1 3.4697e1 -# Range 0-300 - -Vm 29.09 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Ettringite - Ca6Al2(SO4)3(OH)12:26H2O + 12 H+ = 2 Al+3 + 3 SO4-2 + 6 Ca+2 + 38 H2O - log_k 62.5362 - -delta_H -382.451 kJ/mol -# deltafH -4193 kcal/mol - -analytic -1.0576e3 -1.1585e-1 5.9580e4 3.8585e2 1.0121e3 -# Range 0-200 - -Vm 697.28 # Webmineral.com -# Extrapol Constant H approx -# Ref 82sar/bar - -Eu - Eu + 3 H+ + 0.75 O2 = Eu+3 + 1.5 H2O - log_k 165.1443 - -delta_H -1025.08 kJ/mol -# deltafH 0 kJ/mol - -analytic -6.5749e1 -2.8921e-2 5.4018e4 2.3561e1 8.4292e2 -# Range 0-300 - -Vm 28.97 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 85rar 2 - -Eu(OH)3 - Eu(OH)3 + 3 H+ = Eu+3 + 3 H2O - log_k 15.3482 - -delta_H -126.897 kJ/mol -# deltafH -1336.04 kJ/mol - -analytic -6.3077e1 -6.1421e-3 8.7323e3 2.0595e1 1.4831e+2 -# Range 0-200 - -Vm 38.44 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 87rar 2 - -Eu2(SO4)3:8H2O - Eu2(SO4)3:8H2O = 2 Eu+3 + 3 SO4-2 + 8 H2O - log_k -10.8524 - -delta_H -86.59 kJ/mol -# deltafH -6139.77 kJ/mol - -analytic -5.6582e1 -3.8846e-2 3.3821e3 1.8561e1 5.7452e1 -# Range 0-200 - -Vm 245.41 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 85rar 2 - -Eu2O3(cubic) - Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O - log_k 51.7818 - -delta_H -406.403 kJ/mol -# deltafH -1661.96 kJ/mol - -analytic -5.3469e1 -1.2554e-2 2.1925e4 1.4324e1 3.7233e2 -# Range 0-200 - -Vm 48.29 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 85rar 2 - -Eu2O3(monoclinic) - Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O - log_k 53.3936 - -delta_H -417.481 kJ/mol -# deltafH -1650.88 kJ/mol - -analytic -5.4022e1 -1.2627e-2 2.2508e4 1.4416e1 3.8224e2 -# Range 0-200 - -Vm 44.02 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 85rar 2 - -Eu3O4 - Eu3O4 + 8 H+ = Eu+2 + 2 Eu+3 + 4 H2O - log_k 87.0369 - -delta_H -611.249 kJ/mol -# deltafH -2270.56 kJ/mol - -analytic -1.1829e2 -2.0354e-2 3.4981e4 3.8007e1 5.9407e2 -# Range 0-200 - -Vm 64.15 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 85rar 2 - -EuCl2 - EuCl2 = Eu+2 + 2 Cl- - log_k 5.9230 - -delta_H -39.2617 kJ/mol -# deltafH -822.5 kJ/mol - -analytic -2.5741e1 -2.4956e-2 1.5713e3 1.3670e1 2.6691e1 -# Range 0-200 - -Vm 45.49 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 87rar 2 - -EuCl3 - EuCl3 = Eu+3 + 3 Cl- - log_k 19.7149 - -delta_H -170.861 kJ/mol -# deltafH -935.803 kJ/mol - -analytic 3.2865e1 -3.1877e-2 4.9792e3 -8.2294 8.4542e1 -# Range 0-200 - -Vm 52.83 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 85rar 2 - -EuCl3:6H2O - EuCl3:6H2O = Eu+3 + 3 Cl- + 6 H2O - log_k 4.9090 - -delta_H -40.0288 kJ/mol -# deltafH -2781.66 kJ/mol - -analytic -1.0987e2 -2.9851e-2 4.9991e3 4.3198e1 8.4930e1 -# Range 0-200 - -Vm 151.22 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 85rar 2 - -EuOCl - EuOCl + 2 H+ = Cl- + Eu+3 + H2O - log_k 15.6683 - -delta_H -147.173 kJ/mol -# deltafH -911.17 kJ/mol - -analytic -7.7446 -1.4960e-2 6.6242e3 2.2813 1.1249e2 -# Range 0-200 - -Vm 31.68 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 87rar 2 - -EuS - EuS + H+ = Eu+2 + HS- - log_k 14.9068 - -delta_H -96.4088 kJ/mol -# deltafH -447.302 kJ/mol - -analytic -4.1026e1 -1.5582e-2 5.7842e3 1.6639e1 9.8238e1 -# Range 0-200 - -Vm 32.03 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 85rar 2 - -EuSO4 - EuSO4 = Eu+2 + SO4-2 - log_k -8.8449 - -delta_H 33.873 kJ/mol -# deltafH -1471.08 kJ/mol - -analytic 3.0262e-1 -1.7571e-2 -3.0392e3 2.5356 -5.1610e1 -# Range 0-200 - -Vm 49.71 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 85rar 2 - -Eucryptite - LiAlSiO4 + 4 H+ = Al+3 + Li+ + SiO2 + 2 H2O - log_k 13.6106 - -delta_H -141.818 kJ/mol -# deltafH -2124.41 kJ/mol - -analytic -2.2213 -8.2498e-3 6.4838e3 -1.4183 1.0117e2 -# Range 0-300 - -Vm 53.63 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Fayalite - Fe2SiO4 + 4 H+ = SiO2 + 2 Fe+2 + 2 H2O - log_k 19.1113 - -delta_H -152.256 kJ/mol -# deltafH -354.119 kcal/mol - -analytic 1.3853e1 -3.5501e-3 7.1496e3 -6.8710e0 -6.3310e4 -# Range 0-350 - -Vm 46.39 -# Extrapol supcrt92 -# Ref HDN+78 - -Fe - Fe + 2 H+ + 0.5 O2 = Fe+2 + H2O - log_k 59.0325 - -delta_H -372.029 kJ/mol -# deltafH 0 kcal/mol - -analytic -6.2882e1 -2.0379e-2 2.0690e4 2.3673e1 3.2287e2 -# Range 0-350 - -Vm 7.092 # thermo.com.V8.R6+.tdat -# Extrapol supcrt92 -# Ref RHF79 - -Fe(OH)2 - Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O - log_k 13.9045 - -delta_H -95.4089 kJ/mol -# deltafH -568.525 kJ/mol - -analytic -8.6666e1 -1.8440e-2 7.5723e3 3.2597e1 1.1818e2 -# Range 0-300 - -Vm 26.43 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Fe(OH)3 - Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O - log_k 5.6556 - -delta_H -84.0824 kJ/mol -# deltafH -823.013 kJ/mol - -analytic -1.3316e2 -3.1284e-2 7.9753e3 4.9052e1 1.2449e2 -# Range 0-300 - -Vm 34.36 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Fe2(SO4)3 - Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 - log_k 3.2058 - -delta_H -250.806 kJ/mol -# deltafH -2577.16 kJ/mol - -analytic -5.8649e2 -2.3718e-1 2.2736e4 2.3601e2 3.5495e2 -# Range 0-300 - -Vm 130.77 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -FeO - FeO + 2 H+ = Fe+2 + H2O - log_k 13.5318 - -delta_H -106.052 kJ/mol -# deltafH -65.02 kcal/mol - -analytic -7.8750e1 -1.8268e-2 7.6852e3 2.9074e1 1.1994e2 -# Range 0-350 - -Vm 12 -# Extrapol supcrt92 -# Ref HDN+78 - -FeSO4 - FeSO4 = Fe+2 + SO4-2 - log_k 2.6565 - -delta_H -73.0878 kJ/mol -# deltafH -928.771 kJ/mol - -analytic -2.0794e2 -7.6891e-2 7.8705e3 8.3685e1 1.2287e2 -# Range 0-300 - -Vm 41.58 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Ferrite-Ca - CaFe2O4 + 8 H+ = Ca+2 + 2 Fe+3 + 4 H2O - log_k 21.5217 - -delta_H -264.738 kJ/mol -# deltafH -363.494 kcal/mol - -analytic -2.8472e2 -7.5870e-2 2.0688e4 1.0485e2 3.2289e2 -# Range 0-300 - -Vm 44.98 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - -Ferrite-Cu - CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O - log_k 10.3160 - -delta_H -211.647 kJ/mol -# deltafH -965.178 kJ/mol - -analytic -3.1271e2 -7.9976e-2 1.8818e4 1.1466e2 2.9374e2 -# Range 0-300 - -Vm 44.53 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Ferrite-Dicalcium - Ca2Fe2O5 + 10 H+ = 2 Ca+2 + 2 Fe+3 + 5 H2O - log_k 56.8331 - -delta_H -475.261 kJ/mol -# deltafH -2139.26 kJ/mol - -analytic -3.6277e2 -9.5015e-2 3.3898e4 1.3506e2 5.2906e2 -# Range 0-300 - -Vm 67.18 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Ferrite-Mg - MgFe2O4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O - log_k 21.0551 - -delta_H -280.056 kJ/mol -# deltafH -1428.42 kJ/mol - -analytic -2.8297e2 -7.4820e-2 2.1333e4 1.0295e2 3.3296e2 -# Range 0-300 - -Vm 44.57 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Ferrite-Zn - ZnFe2O4 + 8 H+ = Zn+2 + 2 Fe+3 + 4 H2O - log_k 11.7342 - -delta_H -226.609 kJ/mol -# deltafH -1169.29 kJ/mol - -analytic -2.9809e2 -7.7263e-2 1.9067e4 1.0866e2 2.9761e2 -# Range 0-300 - -Vm 45.23 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Ferrosilite - FeSiO3 + 2 H+ = Fe+2 + H2O + SiO2 - log_k 7.4471 - -delta_H -60.6011 kJ/mol -# deltafH -285.658 kcal/mol - -analytic 9.0041 3.7917e-3 5.1625e3 -6.3009 -3.9565e5 -# Range 0-350 - -Vm 32.952 -# Extrapol supcrt92 -# Ref HDN+78 - -Forsterite - Mg2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mg+2 - log_k 27.8626 - -delta_H -205.614 kJ/mol -# deltafH -520 kcal/mol - -analytic -7.6195e1 -1.4013e-2 1.4763e4 2.5090e1 -3.0379e5 -# Range 0-350 - -Vm 43.79 -# Extrapol supcrt92 -# Ref HDN+78 - -Foshagite - Ca4Si3O9(OH)2:0.5H2O + 8 H+ = 3 SiO2 + 4 Ca+2 + 5.5 H2O - log_k 65.9210 - -delta_H -359.839 kJ/mol -# deltafH -1438.27 kcal/mol - -analytic 2.9983e1 5.5272e-3 2.3427e4 -1.3879e1 -8.9461e5 -# Range 0-300 - -Vm 154.23 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - - -Gd - Gd + 3 H+ + 0.75 O2 = Gd+3 + 1.5 H2O - log_k 180.7573 - -delta_H -1106.67 kJ/mol -# deltafH 0 kJ/mol - -analytic -3.3949e2 -6.5698e-2 7.4278e4 1.2189e2 -9.7055e5 -# Range 0-300 - -Vm 19.89 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Gehlenite - Ca2Al2SiO7 + 10 H+ = SiO2 + 2 Al+3 + 2 Ca+2 + 5 H2O - log_k 56.2997 - -delta_H -489.934 kJ/mol -# deltafH -951.225 kcal/mol - -analytic -2.1784e2 -6.7200e-2 2.9779e4 7.8488e1 4.6473e2 -# Range 0-350 - -Vm 90.24 -# Extrapol supcrt92 -# Ref HDN+78 - -Gibbsite - Al(OH)3 + 3 H+ = Al+3 + 3 H2O - log_k 7.7560 - -delta_H -102.788 kJ/mol -# deltafH -309.065 kcal/mol - -analytic -1.1403e2 -3.6453e-2 7.7236e3 4.3134e1 1.2055e2 -# Range 0-150 - -Vm 31.956 -# Extrapol supcrt92 -# Ref HDN+78, 95pok/hel - -Goethite - FeOOH + 3 H+ = Fe+3 + 2 H2O - log_k 0.5345 - -delta_H -61.9291 kJ/mol -# deltafH -559.328 kJ/mol - -analytic -6.0331e1 -1.0847e-2 4.7759e3 1.9429e1 8.1122e1 -# Range 0-200 - -Vm 20.82 -# Extrapol supcrt92, Constant H approx -# Ref Sho09, MLS+03, RHF79 match - -Greenalite - Fe3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Fe+2 + 5 H2O - log_k 22.6701 - -delta_H -165.297 kJ/mol -# deltafH -787.778 kcal/mol - -analytic -1.4187e1 -3.8377e-3 1.1710e4 1.6442 -4.8290e5 -# Range 0-350 - -Vm 115 -# Extrapol supcrt92 -# Ref HDN+78, 78wol, Wilson+06 match - -Grossular - Ca3Al2(SiO4)3 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 SiO2 + 6 H2O - log_k 51.9228 - -delta_H -432.006 kJ/mol -# deltafH -1582.74 kcal/mol - -analytic 2.9389e1 -2.2478e-2 2.0323e4 -1.4624e1 -2.5674e5 -# Range 0-350 - -Vm 125.3 -# Extrapol supcrt92 -# Ref HDN+78 - -Gypsum - CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - log_k -4.4823 - -delta_H -1.66746 kJ/mol -# deltafH -2022.69 kJ/mol - -analytic -2.4417e2 -8.3329e-2 5.5958e3 9.9301e1 8.7389e1 -# Range 0-300 - -Vm 74.69 # Marion+05 -# Extrapol Cp integration -# Ref RHF79 - -Gyrolite - Ca2Si3O7(OH)2:1.5H2O + 4 H+ = 2 Ca+2 + 3 SiO2 + 4.5 H2O - log_k 22.9099 - -delta_H -82.862 kJ/mol -# deltafH -1176.55 kcal/mol - -analytic -2.4416e1 1.4646e-2 1.6181e4 2.3723 -1.5369e6 -# -Range 0-300 - -Vm 136.85 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - -Halite - NaCl = Cl- + Na+ - log_k 1.5855 - -delta_H 3.7405 kJ/mol -# deltafH -98.26 kcal/mol - -analytic -1.0163e2 -3.4761e-2 2.2796e3 4.2802e1 3.5602e1 -# Range 0-350 - -Vm 27.015 -# Extrapol supcrt92 -# Ref HDN+78 - -Hatrurite - Ca3SiO5 + 6 H+ = SiO2 + 3 Ca+2 + 3 H2O - log_k 73.4056 - -delta_H -434.684 kJ/mol -# deltafH -700.234 kcal/mol - -analytic -4.5448e1 -1.9998e-2 2.3800e4 1.8494e1 -7.3385e4 -# Range 0-300 - -Vm 75.60 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - -Hausmannite - Mn3O4 + 8 H+ = Mn+2 + 2 Mn+3 + 4 H2O - log_k 10.1598 - -delta_H -268.121 kJ/mol -# deltafH -1387.83 kJ/mol - -analytic -2.0600e2 -2.2214e-2 2.0160e4 6.2700e1 3.1464e2 -# Range 0-300 - -Vm 48.07 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -Heazlewoodite - Ni3S2 + 4 H+ + 0.5 O2 = H2O + 2 HS- + 3 Ni+2 - log_k 28.2477 - -delta_H -270.897 kJ/mol -# deltafH -203.012 kJ/mol - -analytic -3.5439e2 -1.1740e-1 2.1811e4 1.3919e2 3.4044e2 -# Range 0-300 - -Vm 40.95 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Hedenbergite - CaFe(SiO3)2 + 4 H+ = Ca+2 + Fe+2 + 2 H2O + 2 SiO2 - log_k 19.6060 - -delta_H -124.507 kJ/mol -# deltafH -678.276 kcal/mol - -analytic -1.9473e1 1.5288e-3 1.2910e4 2.1729 -9.0058e5 -# Range 0-350 - -Vm 68.27 -# Extrapol supcrt92 -# Ref HDN+78 - -Hematite - Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - log_k 0.1086 - -delta_H -129.415 kJ/mol -# deltafH -197.72 kcal/mol - -analytic -2.2015e2 -6.0290e-2 1.1812e4 8.0253e1 1.8438e2 -# Range 0-350 - -Vm 30.274 -# Extrapol supcrt92 -# Ref HDN+78 - -Hercynite - FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O - log_k 28.8484 - -delta_H -345.961 kJ/mol -# deltafH -1966.45 kJ/mol - -analytic -3.1848e2 -7.9501e-2 2.5892e4 1.1483e2 4.0412e2 -# Range 0-300 - -Vm 40.75 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Hillebrandite - Ca2SiO3(OH)2:0.17H2O + 4 H+ = SiO2 + 2 Ca+2 + 3.17 H2O - log_k 36.8190 - -delta_H -203.074 kJ/mol -# deltafH -637.404 kcal/mol - -analytic -1.9360e1 -7.5176e-3 1.1947e4 8.0558 -1.4504e5 -# Range 0-300 - -Vm 71.79 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - -Huntite - CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- - log_k 10.3010 - -delta_H -171.096 kJ/mol -# deltafH -1082.6 kcal/mol - -analytic -6.5e2 -1.9671e-1 2.4815e4 2.5688e2 3.8740e2 -# Range 0-350 - -Vm 122.9 -# Extrapol supcrt92 -# Ref HDN+78 - -Hydromagnesite - Mg5(CO3)4(OH)2:4H2O + 6 H+ = 4 HCO3- + 5 Mg+2 + 6 H2O - log_k 30.8539 - -delta_H -289.696 kJ/mol -# deltafH -1557.09 kcal/mol - -analytic -7.9288e2 -2.1448e-1 3.6749e4 3.0888e2 5.7367e2 -# Range 0-350 - -Vm 208.8 -# Extrapol supcrt92 -# Ref HDN+78 - -Hydrophilite - CaCl2 = Ca+2 + 2 Cl- - log_k 11.7916 - -delta_H -81.4545 kJ/mol -# deltafH -795.788 kJ/mol - -analytic -2.2278e2 -8.1414e-2 9.0298e3 9.2349e1 1.4097e2 -# Range 0-300 - -Vm 49.99 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -Hydroxyapatite - Ca5(OH)(PO4)3 + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 - log_k -3.0746 - -delta_H -191.982 kJ/mol -# deltafH -6685.52 kJ/mol - -analytic -8.5221e2 -2.9430e-1 2.8125e4 3.4044e2 4.3911e2 -# Range 0-300 - -Vm 128.9 -# Extrapol Cp integration -# Ref RHF79 - -Ice - H2O = H2O - log_k 0.1387 - -delta_H 6.74879 kJ/mol -# deltafH -69.93 kcal/mol - -analytic -2.3260e1 4.7948e-4 7.7351e2 8.3499 1.3143e1 -# Range 0-200 - -Vm 19.635 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 87kee/rup - -Ilmenite - FeTiO3 + 2 H+ + H2O = Fe+2 + Ti(OH)4 - log_k 0.9046 -# deltafH -1236.65 kJ/mol - -Vm 32.15 # Webmineral.com -# Ref RHF79 - -Jadeite - NaAl(SiO3)2 + 4 H+ = Al+3 + Na+ + 2 H2O + 2 SiO2 - log_k 8.3888 - -delta_H -84.4415 kJ/mol -# deltafH -722.116 kcal/mol - -analytic 1.5934 5.0757e-3 9.5602e3 -7.0164 -8.4454e5 -# Range 0-350 - -Vm 60.4 -# Extrapol supcrt92 -# Ref HDN+78 - -Jarosite - KFe3(SO4)2(OH)6 + 6 H+ = K+ + 2 SO4-2 + 3 Fe+3 + 6 H2O - log_k -9.3706 - -delta_H -191.343 kJ/mol -# deltafH -894.79 kcal/mol - -analytic -1.0813e2 -5.0381e-2 9.6893e3 3.2832e1 1.6457e2 -# Range 0-200 - -Vm 162.07 # Webmineral.com -# Extrapol Constant H approx -# Ref 75kas/bor - -K - K + H+ + 0.25 O2 = 0.5 H2O + K+ - log_k 70.9861 - -delta_H -392.055 kJ/mol -# deltafH 0 kJ/mol - -analytic -3.1102e1 -1.0003e-2 2.1338e4 1.3534e1 3.3296e2 -# Range 0-300 - -Vm 45.94 # Webelements.com -# Extrapol Cp integration -# Ref CWM89 - -K-Feldspar - KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 - log_k -0.2753 - -delta_H -23.9408 kJ/mol -# deltafH -949.188 kcal/mol - -analytic -1.0684 1.3111e-2 1.1671e4 -9.9129 -1.5855e6 -# Range 0-350 - -Vm 108.87 -# Extrapol supcrt92 -# Ref HDN+78 - -K2O - K2O + 2 H+ = H2O + 2 K+ - log_k 84.0405 - -delta_H -427.006 kJ/mol -# deltafH -86.8 kcal/mol - -analytic -1.8283e1 -5.2255e-3 2.3184e4 1.0553e1 3.6177e2 -# Range 0-350 - -Vm 40.085 # gfw/density -# Extrapol supcrt92 -# Ref HDN+78 - -KAl(SO4)2 - KAl(SO4)2 = Al+3 + K+ + 2 SO4-2 - log_k 3.3647 - -delta_H -139.485 kJ/mol -# deltafH -2470.29 kJ/mol - -analytic -4.2785e2 -1.6303e-1 1.5311e4 1.7312e2 2.3904e2 -# Range 0-300 - -Vm 146.71 # gfw/density -# Extrapol Cp integration -# Ref RHF79 - -Kalsilite - KAlSiO4 + 4 H+ = Al+3 + K+ + SiO2 + 2 H2O - log_k 10.8987 - -delta_H -108.583 kJ/mol -# deltafH -509.408 kcal/mol - -analytic -6.7595 -7.4301e-3 6.5380e3 1.8999e-1 -2.2880e5 -# Range 0-350 - -Vm 59.89 -# Extrapol supcrt92 -# Ref HDN+78 - -Kaolinite - Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 SiO2 + 5 H2O - log_k 6.8101 - -delta_H -151.779 kJ/mol -# deltafH -982.221 kcal/mol - -analytic 1.6835e1 -7.8939e-3 7.7636e3 -1.2190e1 -3.2354e5 -# Range 0-350 - -Vm 99.52 -# Extrapol supcrt92 -# Ref HDN+78 differ by 1.6 log K at 0C, 0.4 log K at 350C - -KerogenC128 - C128H68O7 + 141.5 O2 = 128 CO2 + 34 H2O - log_k 10740.654 - -delta_H -14623.902 kcal/mol - -analytic 23405.37 -54.726 0 0 0 0.041 -# Range 0-350 - -Vm 1320.7 -# Extrapol supcrt92 -# Ref RH98, Hel+09 - -KerogenC292 - C292H288O12 + 358 O2 = 292 CO2 + 144 H2O - log_k 27153.69 - -delta_H -36994.127 kcal/mol - -analytic 59184.26 -138.37 0 0 0 0.10 -# Range 0-350 - -Vm 3398.2 -# Extrapol supcrt92 -# Ref RH98, Hel+09 - -KerogenC515 - C515H596O72 + 628 O2 = 515 CO2 + 298 H2O - log_k 48112.16 - -delta_H -65346.703 kcal/mol - -analytic 104660.55 -244.27 0 0 0 0.183 -# Range 0-350 - -Vm 6989.3 -# Extrapol supcrt92 -# Ref RH98, Hel+09 - -Kyanite - Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O - log_k 15.6740 - -delta_H -230.919 kJ/mol -# deltafH -616.897 kcal/mol - -analytic -7.3335e1 -3.2853e-2 1.2166e4 2.3412e1 1.8986e2 -# Range 0-175 - -Vm 44.09 -# Extrapol supcrt92 -# Ref HDN+78 - -Larnite - Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O - log_k 38.4665 - -delta_H -227.061 kJ/mol -# deltafH -551.74 kcal/mol - -analytic 2.6900e1 -2.1833e-3 1.0900e4 -9.5257 -7.2537e4 -# Range 0-300 - -Vm 51.6 # HDN+78 -# Extrapol Cp integration -# Ref 82sar/bar - -Laumontite - CaAl2Si4O12:4H2O + 8 H+ = Ca+2 + 2 Al+3 + 4 SiO2 + 8 H2O - log_k 13.6667 - -delta_H -184.657 kJ/mol -# deltafH -1728.66 kcal/mol - -analytic 1.1904 8.1763e-3 1.9005e4 -1.4561e1 -1.5851e6 -# Range 0-350 - -Vm 207.55 -# Extrapol supcrt92 -# Ref HDN+78 differ by 1.7 log K at 0C, 0.1 log K at 350C - -Lawrencite - FeCl2 = Fe+2 + 2 Cl- - log_k 9.0945 - -delta_H -84.7665 kJ/mol -# deltafH -341.65 kJ/mol - -analytic -2.2798e2 -8.1819e-2 9.2620e3 9.3097e1 1.4459e2 -# Range 0-300 - -Vm 40.31 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -Lawsonite - CaAl2Si2O7(OH)2:H2O + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 6 H2O - log_k 22.2132 - -delta_H -244.806 kJ/mol -# deltafH -1158.1 kcal/mol - -analytic 1.3995e1 -1.7668e-2 1.0119e4 -8.3100 1.5789e2 -# Range 0-350 - -Vm 101.32 -# Extrapol supcrt92 -# Ref HDN+78 - -Li - Li + H+ +0.25 O2 = 0.5 H2O + Li+ - log_k 72.7622 - -delta_H -418.339 kJ/mol -# deltafH 0 kJ/mol - -analytic -1.0227e2 -1.8118e-2 2.6262e4 3.8056e1 -1.6166e5 -# Range 0-300 - -Vm 13.017 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Lime - CaO + 2 H+ = Ca+2 + H2O - log_k 32.5761 - -delta_H -193.832 kJ/mol -# deltafH -151.79 kcal/mol - -analytic -7.2686e1 -1.7654e-2 1.2199e4 2.8128e1 1.9037e2 -# Range 0-350 - -Vm 16.764 -# Extrapol supcrt92 -# Ref HDN+78 - -Linnaeite - Co3S4 + 4 H+ = Co+2 + 2 Co+3 + 4 HS- - log_k -106.9017 - -delta_H 420.534 kJ/mol -# deltafH -85.81 kcal/mol - -analytic -6.0034e2 -2.0179e-1 -9.2145e3 2.3618e2 -1.4361e2 -# Range 0-300 - -Vm 63.55 # Webmineral.com -# Extrapol Cp integration -# Ref 78vau/cra - -Lizardite - Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O - log_k 30.560 - -analytic 7.886e1 -2.108e-1 0 0 0 1.637e-4 -# Range 0-300 - -Vm 107.31 -# Extrapol supcrt92 -# Ref Wilson+06 - -Lopezite - K2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 K+ - log_k -17.4366 - -delta_H 81.9227 kJ/mol -# deltafH -493.003 kcal/mol - -analytic 7.8359e1 -2.2908e-2 -9.3812e3 -2.3245e1 -1.5933e2 -# Range 0-200 - -Vm 109.93 # thermo.com.V8.R6+.tdat -# Extrapol Constant H Approx -# Ref 76del/hal - -Magnesiochromite - MgCr2O4 + 8 H+ = Mg+2 + 2 Cr+3 + 4 H2O - log_k 21.6927 - -delta_H -302.689 kJ/mol -# deltafH -1783.6 kJ/mol - -analytic -1.7376e2 -8.7429e-3 2.1600e4 5.0762e1 3.6685e2 -# Range 0-200 - -Vm 43.564 # thermo.com.V8.R6+.tdat -# Extrapol Constant H Approx -# Ref WEP+82 - -Magnesite - MgCO3 + H+ = HCO3- + Mg+2 - log_k 2.2936 - -delta_H -44.4968 kJ/mol -# deltafH -265.63 kcal/mol - -analytic -1.6665e2 -4.9469e-2 6.4344e3 6.5506e1 1.0045e2 -# Range 0-350 - -Vm 28.018 -# Extrapol supcrt92 -# Ref HDN+78 - -Magnetite - Fe3O4 + 8 H+ = Fe+2 + 2 Fe+3 + 4 H2O - log_k 10.4724 - -delta_H -216.597 kJ/mol -# deltafH -267.25 kcal/mol - -analytic -3.0510e2 -7.9919e-2 1.8709e4 1.1178e2 2.9203e2 -# Range 0-350 - -Vm 44.524 -# Extrapol supcrt92 -# Ref HDN+78 - -Malachite - Cu2CO3(OH)2 + 3 H+ = HCO3- + 2 Cu+2 + 2 H2O - log_k 5.9399 - -delta_H -76.2827 kJ/mol -# deltafH -251.9 kcal/mol - -analytic -2.7189e2 -6.9454e-2 1.1451e4 1.0511e2 1.7877e2 -# Range 0-350 - -Vm 54.86 -# Extrapol supcrt92 -# Ref HDN+78 - -Manganosite - MnO + 2 H+ = H2O + Mn+2 - log_k 17.9240 - -delta_H -121.215 kJ/mol -# deltafH -92.07 kcal/mol - -analytic -8.4114e1 -1.8490e-2 8.7792e3 3.1561e1 1.3702e2 -# Range 0-350 - -Vm 13.221 -# Extrapol supcrt92 -# Ref HDN+78 - -Margarite - CaAl4Si2O10(OH)2 + 14 H+ = Ca+2 + 2 SiO2 + 4 Al+3 + 8 H2O - log_k 41.0658 - -delta_H -522.192 kJ/mol -# deltafH -1485.8 kcal/mol - -analytic -2.3138e2 -8.2788e-2 3.0154e4 7.9148e1 4.7060e2 -# Range 0-350 - -Vm 129.4 -# Extrapol supcrt92 -# Ref HDN+78 differ by 3.3 log K at 0C, 1.1 log K at 350C - -Maximum_Microcline - KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 - log_k -0.2753 - -delta_H -23.9408 kJ/mol -# deltafH -949.188 kcal/mol - -analytic -9.4387 1.3561e-2 1.2656e4 -7.4925 -1.6795e6 -# Range 0-350 - -Vm 108.741 -# Extrapol supcrt92 -# Ref HDN+78 - -Mayenite - Ca12Al14O33 + 66 H+ = 12 Ca+2 + 14 Al+3 + 33 H2O - log_k 494.2199 - -delta_H -4056.77 kJ/mol -# deltafH -4644 kcal/mol - -analytic -1.4778e3 -2.9898e-1 2.4918e5 4.9518e2 4.2319e3 -# Range 0-200 - -Vm 517.41 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 82sar/bar - -Melanterite - FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O - log_k -2.3490 - -delta_H 11.7509 kJ/mol -# deltafH -3014.48 kJ/mol - -analytic -2.6230e2 -7.2469e-2 6.5854e3 1.0484e2 1.0284e2 -# Range 0-300 - -Vm 146.48 # Marion+08 -# Extrapol Cp integration -# Ref RHF79 - -Merwinite - MgCa3(SiO4)2 + 8 H+ = Mg+2 + 2 SiO2 + 3 Ca+2 + 4 H2O - log_k 68.5140 - -delta_H -430.069 kJ/mol -# deltafH -1090.8 kcal/mol - -analytic -2.2524e2 -4.2525e-2 3.5619e4 7.9984e1 -9.8259e5 -# Range 0-350 - -Vm 104.4 -# Extrapol supcrt92 -# Ref HDN+78 - -Mesolite - Na.676Ca.657Al1.99Si3.01O10:2.647H2O + 7.96 H+ = 0.657 Ca+2 + 0.676 Na+ + 1.99 Al+3 + 3.01 SiO2 + 6.627 H2O - log_k 13.6191 - -delta_H -179.744 kJ/mol -# deltafH -5947.05 kJ/mol - -analytic 7.1993 5.9356e-3 1.4717e4 -1.3627e1 -9.8863e5 -# Range 0-300 - -Vm 171.2 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 89db 6 - -Mg - Mg + 2 H+ + 0.5 O2 = H2O + Mg+2 - log_k 122.5365 - -delta_H -745.731 kJ/mol -# deltafH 0 kJ/mol - -analytic -6.5988e1 -1.9356e-2 4.0318e4 2.3862e1 6.2914e2 -# Range 0-300 - -Vm 13.996 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -MgOHCl - MgOHCl + H+ = Cl- + H2O + Mg+2 - log_k 15.9138 - -delta_H -118.897 kJ/mol -# deltafH -191.2 kcal/mol - -analytic -1.6614e2 -4.9715e-2 1.0311e4 6.5578e1 1.6093e2 -# Range 0-300 - -Vm 33.23 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 73bar/kna - -MgSO4 - MgSO4 = Mg+2 + SO4-2 - log_k 4.8781 - -delta_H -90.6421 kJ/mol -# deltafH -1284.92 kJ/mol - -analytic -2.2439e2 -7.9688e-2 9.3058e3 8.9622e1 1.4527e2 -# Range 0-300 - -Vm 45.25 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Millerite - NiS + H+ = HS- + Ni+2 - log_k -8.0345 - -delta_H 12.089 kJ/mol -# deltafH -82.171 kJ/mol - -analytic -1.4848e2 -4.8834e-2 2.6981e3 5.8976e1 4.2145e1 -# Range 0-300 - -Vm 16.89 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Minnesotaite - Fe3Si4O10(OH)2 + 6 H+ = 3 Fe+2 + 4 H2O + 4 SiO2 - log_k 13.9805 - -delta_H -105.211 kJ/mol -# deltafH -1153.37 kcal/mol - -analytic -1.8812e1 1.7261e-2 1.9804e4 -6.4410 -2.0433e6 -# Range 0-300 - -Vm 147.86 # HDN+78 -# Extrapol Cp integration -# Ref 78wol, Wilson+06 differ by 2.6 log K at 0C, 1.6 log K at 350C - -Mirabilite - Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O - log_k -1.1398 - -delta_H 79.4128 kJ/mol -# deltafH -4328 kJ/mol - -analytic -2.1877e2 -3.6692e-3 5.9214e3 8.0361e1 1.0063e2 -# Range 0-200 - -Vm 219.80 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref RHF79 - -Mn - Mn + 2 H+ + 0.5 O2 = H2O + Mn+2 - log_k 82.9505 - -delta_H -500.369 kJ/mol -# deltafH 0 kJ/mol - -analytic -6.5558e1 -2.0429e-2 2.7571e4 2.5098e1 4.3024e2 -# Range 0-300 - -Vm 7.354 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Mn(OH)2(am) - Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O - log_k 15.3102 - -delta_H -97.1779 kJ/mol -# deltafH -695.096 kJ/mol - -analytic -7.8518e1 -7.5357e-3 8.0198e3 2.7955e1 1.3621e2 -# Range 0-200 - -Vm 22.36 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -MnCl2:2H2O - MnCl2:2H2O = Mn+2 + 2 Cl- + 2 H2O - log_k 4.0067 - -delta_H -34.4222 kJ/mol -# deltafH -1092.01 kJ/mol - -analytic -6.2823e1 -2.3959e-2 2.9931e3 2.5834e1 5.0850e1 -# Range 0-200 - -Vm 71.12 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -MnCl2:4H2O - MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O - log_k 2.7563 - -delta_H -10.7019 kJ/mol -# deltafH -1687.41 kJ/mol - -analytic -1.1049e2 -2.3376e-2 4.0458e3 4.3097e1 6.8742e1 -# Range 0-200 - -Vm 98.46 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -MnCl2:H2O - MnCl2:H2O = H2O + Mn+2 + 2 Cl- - log_k 5.5517 - -delta_H -50.8019 kJ/mol -# deltafH -789.793 kJ/mol - -analytic -4.5051e1 -2.5923e-2 2.8739e3 1.9674e1 4.8818e1 -# Range 0-200 - -Vm 42.27 # gfw/density -# Extrapol Constant H approx -# Ref WEP+82 - -MnSO4 - MnSO4 = Mn+2 + SO4-2 - log_k 2.6561 - -delta_H -64.8718 kJ/mol -# deltafH -1065.33 kJ/mol - -analytic -2.3088e2 -8.2694e-2 8.1653e3 9.3256e1 1.2748e2 -# Range 0-300 - -Vm 46.46 # gfw/density -# Extrapol Cp integration -# Ref RHF79 - -Mo - Mo + 1.5 O2 + H2O = MoO4-2 + 2 H+ - log_k 109.3230 - -delta_H -693.845 kJ/mol -# deltafH 0 kJ/mol - -analytic -2.0021e2 -8.3006e-2 4.1629e4 8.0219e1 -3.4570e5 -# Range 0-300 - -Vm 9.387 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Molysite - FeCl3 = Fe+3 + 3 Cl- - log_k 13.5517 - -delta_H -151.579 kJ/mol -# deltafH -399.24 kJ/mol - -analytic -3.1810e2 -1.2357e-1 1.3860e4 1.3010e2 2.1637e2 -# Range 0-300 - -Vm 55.86 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -Monohydrocalcite - CaCO3:H2O + H+ = Ca+2 + H2O + HCO3- - log_k 2.6824 - -delta_H -20.5648 kJ/mol -# deltafH -1498.29 kJ/mol - -analytic -7.2614e1 -1.7217e-2 3.1850e3 2.8185e1 5.4111e1 -# Range 0-200 - -Vm 49.62 # Webmineral.com -# Extrapol Constant H approx -# Ref RHF79 - -Monticellite - CaMgSiO4 + 4 H+ = Ca+2 + Mg+2 + SiO2 + 2 H2O - log_k 29.5852 - -delta_H -195.711 kJ/mol -# deltafH -540.8 kcal/mol - -analytic 1.5730e1 -3.5567e-3 9.0789e3 -6.3007 1.4166e2 -# Range 0-300 - -Vm 51.47 -# Extrapol supcrt92 -# Ref HDN+78 - -Montmor-Ca - Ca.175Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.175 Ca+2 + 0.35 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 - log_k 2.4952 - -delta_H -100.154 kJ/mol -# deltafH -1361.5 kcal/mol - -analytic 2.459e1 -9.080e-2 0 0 0 5.223e-5 -# Range 0-300 - -Vm 136.007 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 88db 3 match - -Montmor-K - K.35Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.35 K+ + 0.35 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 - log_k 2.1423 - -delta_H -88.184 kJ/mol -# deltafH -1362.83 kcal/mol - -analytic 2.022e1 -7.624e-2 0 0 0 4.102e-5 -# Range 0-300 - -Vm 140.140 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 88db 3 match - -Montmor-Mg - Mg.525Al1.65Si4O10(OH)2 + 6 H+ = 0.525 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 - log_k 2.3879 - -delta_H -102.608 kJ/mol -# deltafH -1357.87 kcal/mol - -analytic 2.381e1 -9.031e-2 0 0 0 5.203e-5 -# Range 0-300 - -Vm 135.042 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 88db 3 match - -Montmor-Na - Na.35Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.35 Mg+2 + 0.35 Na+ + 1.65 Al+3 + 4 H2O + 4 SiO2 - log_k 2.4844 - -delta_H -93.2165 kJ/mol -# deltafH -1360.69 kcal/mol - -analytic 2.348e1 -8.604e-2 0 0 0 4.951e-5 -# Range 0-300 - -Vm 137.449 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 88db 3 match, but differ from Wilson+06 by 3.4 log K at 0C, 1.7 log K at 300C - -Mordenite - Ca.2895Na.361Al.94Si5.06O12:3.468H2O + 3.76 H+ = 0.2895 Ca+2 + 0.361 Na+ + 0.94 Al+3 + 5.06 SiO2 + 5.348 H2O - log_k -5.1969 - -delta_H 16.7517 kJ/mol -# deltafH -6736.64 kJ/mol - -analytic -5.4675e1 3.2513e-2 2.3412e4 -1.0419 -3.2292e6 -# Range 0-300 - -Vm 209.90 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 91joh/tas - -Morenosite - NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O - log_k -2.0140 - -delta_H 12.0185 kJ/mol -# deltafH -2976.46 kJ/mol - -analytic -2.6654e2 -7.2132e-2 6.7983e3 1.0636e2 1.0616e2 -# Range 0-300 - -Vm 144.17 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Muscovite - KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 SiO2 + 6 H2O - log_k 13.5858 - -delta_H -243.224 kJ/mol -# deltafH -1427.41 kcal/mol - -analytic 3.3085e1 -1.2425e-2 1.2477e4 -2.0865e1 -5.4692e5 -# Range 0-350 - -Vm 140.71 -# Extrapol supcrt92 -# Ref HDN+78 - -Na - Na + H+ + 0.25 O2 = 0.5 H2O + Na+ - log_k 67.3804 - -delta_H -380.185 kJ/mol -# deltafH 0 kJ/mol - -analytic -4.0458e1 -8.7899e-3 2.1223e4 1.5927e1 -1.2715e4 -# Range 0-300 - -Vm 23.812 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Na2CO3 - Na2CO3 + H+ = HCO3- + 2 Na+ - log_k 11.1822 - -delta_H -39.8526 kJ/mol -# deltafH -1130.68 kJ/mol - -analytic -1.5495e2 -4.3374e-2 6.4821e3 6.3571e1 1.0119e2 -# Range 0-300 - -Vm 41.86 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Na2CO3:7H2O - Na2CO3:7H2O + H+ = HCO3- + 2 Na+ + 7 H2O - log_k 9.9459 - -delta_H 27.7881 kJ/mol -# deltafH -3199.19 kJ/mol - -analytic -2.0593e2 -3.4509e-3 8.1601e3 7.6594e1 1.3864e2 -# Range 0-200 - -Vm 153.71 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Na2Cr2O7 - Na2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 Na+ - log_k -10.1597 - -delta_H 21.9702 kJ/mol -# deltafH -473 kcal/mol - -analytic 4.4885e1 -2.4919e-2 -5.0321e3 -1.2430e1 -8.5468e1 -# Range 0-200 - -Vm 103.96 # gfw/density -# Extrapol Constant H approx -# Ref 76del/hal - -Na2CrO4 - Na2CrO4 = CrO4-2 + 2 Na+ - log_k 2.9103 - -delta_H -19.5225 kJ/mol -# deltafH -320.8 kcal/mol - -analytic 5.4985 -9.9008e-3 1.0510e2 -# Range 0-200 - -Vm 59.48 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 76del/hal - -Na2O - Na2O + 2 H+ = H2O + 2 Na+ - log_k 67.4269 - -delta_H -351.636 kJ/mol -# deltafH -99.14 kcal/mol - -analytic -6.3585e1 -8.4695e-3 2.0923e4 2.5601e1 3.2651e2 -# Range 0-350 - -Vm 25 -# Extrapol supcrt92 -# Ref HDN+78 - -Na2SiO3 - Na2SiO3 + 2 H+ = H2O + SiO2 + 2 Na+ - log_k 22.2418 - -delta_H -82.7093 kJ/mol -# deltafH -373.19 kcal/mol - -analytic -3.4928e1 5.6905e-3 1.0284e4 1.1197e1 -6.0134e5 -# Range 0-300 - -Vm 50.86 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 73bar/kna - -Na2U2O7 - Na2U2O7 + 6 H+ = 2 Na+ + 2 UO2+2 + 3 H2O - log_k 22.5917 - -delta_H -172.314 kJ/mol -# deltafH -3203.8 kJ/mol - -analytic -8.6640e1 -1.0903e-2 1.1841e4 2.9406e1 1.8479e2 -# Range 0-300 - -Vm 95.34 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 92gre/fug - -NaFeO2 - NaFeO2 + 4 H+ = Fe+3 + Na+ + 2 H2O - log_k 19.8899 - -delta_H -163.339 kJ/mol -# deltafH -698.218 kJ/mol - -analytic -7.0047e1 -9.6226e-3 1.0647e4 2.3071e1 1.8082e2 -# Range 0-200 - -Vm 33.48 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -NaUO3 - NaUO3 + 2 H+ = H2O + Na+ + UO2+ - log_k 8.3371 - -delta_H -56.365 kJ/mol -# deltafH -1494.9 kJ/mol - -analytic -3.6363e1 7.0505e-4 4.5359e3 1.1828e1 7.0790e1 -# Range 0-300 - -Vm 42.56 # gfw/density -# Extrapol Cp integration -# Ref 92gre/fug - -Nahcolite - NaHCO3 = HCO3- + Na+ - log_k -0.1118 - -delta_H 17.0247 kJ/mol -# deltafH -226.4 kcal/mol - -analytic -2.2282e2 -5.9693e-2 5.4887e3 8.9744e1 8.5712e1 -# Range 0-300 - -Vm 38.62 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 73bar/kna - -Nantokite - CuCl = Cl- + Cu+ - log_k -6.7623 - -delta_H 41.9296 kJ/mol -# deltafH -137.329 kJ/mol - -analytic -2.2442e1 -1.1201e-2 -1.8709e3 1.0221e1 -3.1763e1 -# Range 0-200 - -Vm 23.92 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Natrolite - Na2Al2Si3O10:2H2O + 8 H+ = 2 Al+3 + 2 Na+ + 3 SiO2 + 6 H2O - log_k 18.5204 - -delta_H -186.971 kJ/mol -# deltafH -5718.56 kJ/mol - -analytic -2.7712e1 -2.7963e-3 1.6075e4 1.5332 -9.5765e5 -# Range 0-300 - -Vm 169.72 # HDN+78 -# Extrapol Cp integration -# Ref 83joh/flo - -Natron - Na2CO3:10H2O + H+ = HCO3- + 2 Na+ + 10 H2O - log_k 9.6102 - -delta_H 50.4781 kJ/mol -# deltafH -4079.39 kJ/mol - -analytic -1.9981e2 -2.9247e-2 5.2937e3 8.0973e1 8.2662e1 -# Range 0-300 - -Vm 195.99 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Natrosilite - Na2Si2O5 + 2 H+ = H2O + 2 Na+ + 2 SiO2 - log_k 18.1337 - -delta_H -51.7686 kJ/mol -# deltafH -590.36 kcal/mol - -analytic -2.7628e1 1.6865e-2 1.3302e4 4.2356 -1.2828e6 -# Range 0-300 - -Vm 72.57 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 77bar/kna - -Nepheline - NaAlSiO4 + 4 H+ = Al+3 + Na+ + SiO2 + 2 H2O - log_k 13.8006 - -delta_H -135.068 kJ/mol -# deltafH -500.241 kcal/mol - -analytic -2.4856e1 -8.8171e-3 8.5653e3 6.0904 -2.2786e5 -# Range 0-350 - -Vm 54.16 -# Extrapol supcrt92 -# Ref HDN+78 - -Nesquehonite - MgCO3:3H2O + H+ = HCO3- + Mg+2 + 3 H2O - log_k 4.9955 - -delta_H -36.1498 kJ/mol -# deltafH -472.576 kcal/mol - -analytic 1.3771e2 -6.0397e-2 -3.5049e4 -1.8831e1 4.4213e6 -# Range 0-50 - -Vm 74.79 -# Extrapol supcrt92 -# Ref HDN+78 - -NH4Cl - NH4Cl = NH4+ + Cl- - log_k 1.3252 - -analytic -3.078 1.550e-2 0 0 0 -3.451e-6 -# Range 0-30 - -Vm 34.96 -# Extrapol Marion+12 -# Ref Marion+12, WangLi11 match - -NH4-feldspar # Buddingtonite (sometimes with +0.5 H2O, especially at low temp) - NH4AlSi3O8 + 4H+ = NH4+ + Al+3 + 3 SiO2 + 2 H2O - log_k -2.7243 - -analytic -7.434e1 3.080e-1 0 0 0 -2.270e-4 -# Range 25-325 - -Vm 114.78 # Webmineral.com (Hovis04: 109.08-112.23) -# Extrapol N17 -# Ref Wat81 - -NH4HCO3 - NH4HCO3 = NH4+ + HCO3- - log_k -0.0207 - -analytic -1.587e1 9.703e-2 0 0 0 -1.472e-4 -# Range 0-40 - -Vm 50.04 -# Extrapol Marion+12 -# Ref Marion+12 - -NH4-muscovite # Tobelite - NH4Al3Si3O10(OH)2 + 10 H+ = NH4+ + 3 Al+3 + 3 SiO2 + 6 H2O - log_k 6.8109 - -analytical -6.638e1 3.170e-1 0 0 0 -2.386e-4 -# Range 25-325 - -Vm 146.07 # Hovis04 -# Extrapol N17 -# Ref Wat81 - -Ni - Ni + 2 H+ + 0.5 O2 = H2O + Ni+2 - log_k 50.9914 - -delta_H -333.745 kJ/mol -# deltafH 0 kcal/mol - -analytic -5.8308e1 -2.0133e-2 1.8444e4 2.1590e1 2.8781e2 -# Range 0-350 - -Vm 6.588 -# Extrapol supcrt92 -# Ref HDN+78 - -Ni(OH)2 - Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O - log_k 12.7485 - -delta_H -95.6523 kJ/mol -# deltafH -529.998 kJ/mol - -analytic -6.5279e1 -5.9499e-3 7.3471e3 2.2290e1 1.2479e2 -# Range 0-200 - -Vm 22.34 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Ni2SiO4 - Ni2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Ni+2 - log_k 14.3416 - -delta_H -127.629 kJ/mol -# deltafH -341.705 kcal/mol - -analytic -4.0414e1 -1.1194e-2 9.6515e3 1.2026e1 -3.6336e5 -# Range 0-300 - -Vm 42.61 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 74nau/ryz - -NiCl2 - NiCl2 = Ni+2 + 2 Cl- - log_k 8.6113 - -delta_H -82.7969 kJ/mol -# deltafH -305.336 kJ/mol - -analytic -1.2416 -2.3139e-2 2.6529e3 3.1696 4.5052e1 -# Range 0-200 - -Vm 36.70 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -NiCl2:2H2O - NiCl2:2H2O = Ni+2 + 2 Cl- + 2 H2O - log_k 3.9327 - -delta_H -37.6746 kJ/mol -# deltafH -922.135 kJ/mol - -analytic -4.8814e1 -2.2602e-2 2.5951e3 2.0518e1 4.4086e1 -# Range 0-200 - -Vm 64.07 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -NiSO4 - NiSO4 = Ni+2 + SO4-2 - log_k 5.3197 - -delta_H -90.5092 kJ/mol -# deltafH -873.066 kJ/mol - -analytic -1.8878e2 -7.6403e-2 7.9412e3 7.6866e1 1.2397e2 -# Range 0-300 - -Vm 42.05 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -NiSO4:6H2O(alpha) - NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O - log_k -2.0072 - -delta_H 4.37983 kJ/mol -# deltafH -2682.99 kJ/mol - -analytic -1.1937e2 -1.3785e-2 4.1543e3 4.3454e1 7.0587e1 -# Range 0-200 - -Vm 126.6 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Nickelbischofite - NiCl2:6H2O = Ni+2 + 2 Cl- + 6 H2O - log_k 3.1681 - -delta_H 0.064088 kJ/mol -# deltafH -2103.23 kJ/mol - -analytic -1.4340e2 -2.1257e-2 5.1858e3 5.4759e1 8.8112e1 -# Range 0-200 - -Vm 123.15 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Ningyoite - CaUP2O8:2H2O + 2 H+ = Ca+2 + U+4 + 2 H2O + 2 HPO4-2 - log_k -29.7931 - -delta_H -36.4769 kJ/mol -# deltafH -1016.65 kcal/mol - -analytic -1.0274e2 -4.9041e-2 1.7779e3 3.2973e1 3.0227e1 -# Range 0-200 - -Vm 116.77 # Webmineral.com -# Extrapol Constant H approx -# Ref 78lan - -Niter - KNO3 = K+ + NO3- - log_k -0.2061 - -delta_H 35.4794 kJ/mol -# deltafH -494.46 kJ/mol - -analytic -6.5607e1 -2.8165e-2 -4.0131e2 3.0361e1 -6.2425 -# Range 0-300 - -Vm 48.04 # Marion+05 -# Extrapol Cp integration -# Ref RHF79 - -Nontronite-Ca - Ca.175Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O - log_k -11.5822 - -delta_H -38.138 kJ/mol -# deltafH -1166.7 kcal/mol - -analytic 3.697 -4.892e-2 0 0 0 1.489e-5 -# Range 0-300 - -Vm 137.780 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78wol differ by 2.6 log K at 0C, 0.2 log K at 300C - -Nontronite-K - K.35Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.35 Al+3 + 0.35 K+ + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O - log_k -11.8648 - -delta_H -26.5822 kJ/mol -# deltafH -1167.93 kcal/mol - -analytic -1.959 -3.115e-2 0 0 0 1.139e-6 -# Range 0-300 - -Vm 141.913 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78wol differ by 1.1 log K at 0C, 0.5 log K at 300C - -Nontronite-Mg - Mg.175Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.175 Mg+2 + 0.35 Al+3 + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O - log_k -11.6200 - -delta_H -41.1779 kJ/mol -# deltafH -1162.93 kcal/mol - -analytic 2.476 -4.730e-2 0 0 0 1.382e-5 -# Range 0-300 - -Vm 136.815 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78wol - -Nontronite-Na - Na.35Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.35 Al+3 + 0.35 Na+ + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O - log_k -11.5263 - -delta_H -31.5687 kJ/mol -# deltafH -1165.8 kcal/mol - -analytic 1.106 -4.045e-2 0 0 0 9.229e-6 -# Range 0-300 - -Vm 139.221 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78wol differ by 1.7 log K at 0C, 0.2 log K at 300C - -Okenite - CaSi2O4(OH)2:H2O + 2 H+ = Ca+2 + 2 SiO2 + 3 H2O - log_k 10.3816 - -delta_H -19.4974 kJ/mol -# deltafH -749.641 kcal/mol - -analytic -7.7353e1 1.5091e-2 1.3023e4 2.1337e1 -1.1831e6 -# Range 0-300 - -Vm 94.77 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - -P - P + 1.5 H2O + 1.25 O2 = HPO4-2 + 2 H+ - log_k 132.1032 - -delta_H -848.157 kJ/mol -# deltafH 0 kJ/mol - -analytic -9.2727e1 -6.8342e-2 4.3465e4 4.0156e1 6.7826e2 -# Range 0-300 - -Vm 17.2 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Paragonite - NaAl3Si3O10(OH)2 + 10 H+ = Na+ + 3 Al+3 + 3 SiO2 + 6 H2O - log_k 17.5220 - -delta_H -275.056 kJ/mol -# deltafH -1416.96 kcal/mol - -analytic 3.5507e1 -1.0720e-2 1.3519e4 -2.2283e1 -4.5657e5 -# Range 0-350 - -Vm 132.53 -# Extrapol supcrt92 -# Ref HDN+78, differ by 2.5 log K at 0C, 0.6 log K at 350C, but match Wilson+06 - -Pargasite - NaCa2Al3Mg4Si6O22(OH)2 + 22 H+ = Na+ + 2 Ca+2 + 3 Al+3 + 4 Mg+2 + 6 SiO2 + 12 H2O - log_k 101.9939 - -delta_H -880.205 kJ/mol -# deltafH -3016.62 kcal/mol - -analytic -6.7889e1 -3.7817e-2 5.0493e4 9.2705 -1.0163e6 -# Range 0-350 - -Vm 273.5 -# Extrapol supcrt92 -# Ref HDN+78 - -Periclase - MgO + 2 H+ = H2O + Mg+2 - log_k 21.3354 - -delta_H -150.139 kJ/mol -# deltafH -143.8 kcal/mol - -analytic -8.8465e1 -1.8390e-2 1.0414e4 3.2469e1 1.6253e2 -# Range 0-350 - -Vm 11.248 -# Extrapol supcrt92 -# Ref HDN+78 - -Petalite - LiAlSi4O10 + 4 H+ = Al+3 + Li+ + 2 H2O + 4 SiO2 - log_k -3.8153 - -delta_H -13.1739 kJ/mol -# deltafH -4886.15 kJ/mol - -analytic -6.6355 2.4316e-2 1.5949e4 -1.3341e1 -2.2265e6 -# Range 0-300 - -Vm 128.4 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Phlogopite - KAlMg3Si3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 SiO2 + 6 H2O - log_k 37.4400 - -delta_H -310.503 kJ/mol -# deltafH -1488.07 kcal/mol - -analytic -8.7730e1 -1.7253e-2 2.3748e4 2.4465e1 -8.9045e5 -# Range 0-350 - -Vm 149.66 -# Extrapol supcrt92 -# Ref HDN+78 - -Polydymite - Ni3S4 + 2 H+ = S2-2 + 2 HS- + 3 Ni+2 - log_k -48.9062 -# deltafH -78.014 kcal/mol - -analytic -1.8030e1 -4.6945e-2 -1.1557e4 8.8339 -1.9625e2 -# Range 0-200 - -Vm 64.14 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 78vau/cra - -Portlandite - Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O - log_k 22.5552 - -delta_H -128.686 kJ/mol -# deltafH -986.074 kJ/mol - -analytic -8.3848e1 -1.8373e-2 9.3154e3 3.2584e1 1.4538e2 -# Range 0-300 - -Vm 33.056 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Prehnite - Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 SiO2 + 6 H2O - log_k 32.9305 - -delta_H -311.875 kJ/mol -# deltafH -1481.65 kcal/mol - -analytic -3.5763e1 -2.1396e-2 2.0167e4 6.3554 -7.4967e5 -# Range 0-350 - -Vm 140.33 -# Extrapol supcrt92 -# Ref HDN+78 - -Pseudowollastonite - CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 - log_k 13.9997 - -delta_H -79.4625 kJ/mol -# deltafH -388.9 kcal/mol - -analytic 2.6691e1 6.3323e-3 5.5723e3 -1.1822e1 -3.6038e5 -# Range 0-300 - -Vm 40.08 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 77bar/kna - -Pyridine - C5H5N + 6.25 O2 = 5 CO2 + 2.5 H2O + 0.5 N2 - log_k 490.7474 - -delta_H -669.9574 kcal/mol - -analytic 1071.04 -2.50773 0 0 0 0.00188 -# Range 0-350 - -Vm 64.4 -# Extrapol supcrt92 -# Ref Hel+98 - -Pyrite - FeS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Fe+2 + 1.75 HS- - log_k -24.6534 - -delta_H 109.535 kJ/mol -# deltafH -41 kcal/mol - -analytic -2.4195e2 -8.7948e-2 -6.2911e2 9.9248e1 -9.7454 -# Range 0-350 - -Vm 23.94 -# Extrapol supcrt92 -# Ref HDN+78 - -Pyrolusite - MnO2 = 0.5 Mn+2 + 0.5 MnO4-2 - log_k -17.6439 - -delta_H 83.3804 kJ/mol -# deltafH -520.031 kJ/mol - -analytic -1.1541e2 -4.1665e-2 -1.8960e3 4.7094e1 -2.9551e1 -# Range 0-300 - -Vm 18.38 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -Pyrophyllite - Al2Si4O10(OH)2 + 6 H+ = 2 Al+3 + 4 H2O + 4 SiO2 - log_k 0.4397 - -delta_H -102.161 kJ/mol -# deltafH -1345.31 kcal/mol - -analytic 1.1066e1 1.2707e-2 1.6417e4 -1.9596e1 -1.8791e6 -# Range 0-350 - -Vm 126.6 -# Extrapol supcrt92 -# Ref HDN+78, Wilson+06 match - -Pyrrhotite - FeS + H+ = Fe+2 + HS- - log_k -3.7193 - -delta_H -7.9496 kJ/mol -# deltafH -24 kcal/mol - -analytic -1.5785e2 -5.2258e-2 3.9711e3 6.3195e1 6.2012e1 -# Range 0-350 - -Vm 18.2 -# Extrapol supcrt92 -# Ref HDN+78 - -Quartz - SiO2 = SiO2 - log_k -3.9993 - -delta_H 32.949 kJ/mol -# deltafH -217.65 kcal/mol - -analytic 7.7698e-2 1.0612e-2 3.4651e3 -4.3551 -7.2138e5 -# Range 0-350 - -Vm 22.68 -# Extrapol supcrt92 -# Ref HDN+78 - -Rankinite - Ca3Si2O7 + 6 H+ = 2 SiO2 + 3 Ca+2 + 3 H2O - log_k 51.9078 - -delta_H -302.089 kJ/mol -# deltafH -941.7 kcal/mol - -analytic -9.6393e1 -1.6592e-2 2.4832e4 3.2541e1 -9.4630e5 -# Range 0-300 - -Vm 96.13 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 77bar/kna - -Rhodochrosite - MnCO3 + H+ = HCO3- + Mn+2 - log_k -0.1928 - -delta_H -21.3426 kJ/mol -# deltafH -212.521 kcal/mol - -analytic -1.6195e2 -4.9344e-2 5.0937e3 6.4402e1 7.9531e1 -# Range 0-350 - -Vm 31.075 -# Extrapol supcrt92 -# Ref HDN+78 - -Rhodonite - MnSiO3 + 2 H+ = H2O + Mn+2 + SiO2 - log_k 9.7301 - -delta_H -64.7121 kJ/mol -# deltafH -1319.42 kJ/mol - -analytic 2.0585e1 4.9941e-3 4.5816e3 -9.8212 -3.0658e5 -# Range 0-300 - -Vm 35.87 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -Ripidolite - Mg3Fe2Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 2 Fe+2 + 3 Mg+2 + 3 SiO2 + 12 H2O - log_k 60.9638 - -delta_H -572.472 kJ/mol -# deltafH -1947.87 kcal/mol - -analytic 2.122e2 -6.025e-1 0 0 0 4.579e-4 -# Range 0-300 - -Vm 208.614 -# Extrapol supcrt92 -# Ref Catalano13 - -Rutherfordine - UO2CO3 + H+ = HCO3- + UO2+2 - log_k -4.1064 - -delta_H -19.4032 kJ/mol -# deltafH -1689.53 kJ/mol - -analytic -8.8224e1 -3.1434e-2 2.6675e3 3.4161e1 4.1650e1 -# Range 0-300 - -Vm 57.90 # Webmineral.com -# Extrapol Cp integration -# Ref 92gre/fug - -Rutile - TiO2 + 2 H2O = Ti(OH)4 - log_k -9.6452 -# deltafH -226.107 kcal/mol - -Vm 18.82 -# Ref RHF79 - -S - S + H2O = 0.5 O2 + H+ + HS- - log_k -45.0980 - -delta_H 263.663 kJ/mol -# deltafH 0 kJ/mol - -analytic -8.8928e1 -2.8454e-2 -1.1516e4 3.6747e1 -1.7966e2 -# Range 0-300 - -Vm 15.511 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Saleeite - Mg(UO2)2(PO4)2 + 2 H+ = Mg+2 + 2 HPO4-2 + 2 UO2+2 - log_k -19.4575 - -delta_H -110.816 kJ/mol -# deltafH -1189.61 kcal/mol - -analytic -6.0028e1 -4.4391e-2 3.9168e3 1.6428e1 6.6533e1 -# Range 0-200 - -Vm 285.77 # Webmineral.com -# Extrapol Constant H approx -# Ref 78lan - -Sanidine_high - KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 - log_k 0.9239 - -delta_H -35.0284 kJ/mol -# deltafH -946.538 kcal/mol - -analytic -3.4889 1.4495e-2 1.2856e4 -9.8978 -1.6572e6 -# Range 0-350 - -Vm 109.008 -# Extrapol supcrt92 -# Ref HDN+78 - -Saponite-Fe-Ca - Ca.175Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O - log_k 20.3624 - -analytic 5.992e1 -1.681e-1 0 0 0 1.174e-4 -# Range 0-300 - -Vm 143.506 -# Extrapol supcrt92 -# Ref Catalano13 - -Saponite-Fe-Fe - Fe3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Fe+2 + 3.65 SiO2 + 4.7 H2O - log_k 18.9359 - -analytic 5.762e1 -1.630e-1 0 0 0 1.099e-4 -# Range 0-300 - -Vm 142.672 -# Extrapol supcrt92 -# Ref Catalano13 - -Saponite-Fe-K - K.35Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 K+ + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O - log_k 18.7937 - -analytic 5.427e1 -1.504e-1 0 0 0 1.037e-4 -# Range 0-300 - -Vm 147.639 -# Extrapol supcrt92 -# Ref Catalano13 - -Saponite-Fe-Mg - Mg.175Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Mg+2 + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O - log_k 19.5290 - -analytic 5.870e1 -1.665e-1 0 0 0 1.163e-4 -# Range 0-300 - -Vm 142.541 -# Extrapol supcrt92 -# Ref Catalano13 - -Saponite-Fe-Na - Na.35Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Na+ + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O - log_k 19.7977 - -analytic 5.733e1 -1.597e-1 0 0 0 1.117e-4 -# Range 0-300 - -Vm 144.947 -# Extrapol supcrt92 -# Ref Catalano13 - -Saponite-Mg-Ca - Ca.175Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O - log_k 26.2900 - -delta_H -207.971 kJ/mol -# deltafH -1436.51 kcal/mol - -analytic 8.088e1 -2.233e-1 0 0 0 1.655e-4 -# Range 0-300 - -Vm 141.250 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78wol match - -Saponite-Mg-Fe - Fe.175Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Fe+2 + 0.35 Al+3 + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O - log_k 27.6789 - -analytic 7.825e1 -2.180e-1 0 0 0 1.612e-4 -# Range 0-300 - -Vm 140.416 -# Extrapol supcrt92 -# Ref Catalano13 - -Saponite-Mg-K - K.35Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 0.35 K+ + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O - log_k 26.0075 - -delta_H -196.402 kJ/mol -# deltafH -1437.74 kcal/mol - -analytic 7.522e1 -2.055e-1 0 0 0 1.517e-4 -# Range 0-300 - -Vm 145.383 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78wol differ by 1.7 log K at 0C, 0.7 log K at 300C - -Saponite-Mg-Mg - Mg3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Mg+2 + 3.65 SiO2 + 4.7 H2O - log_k 26.2523 - -delta_H -210.822 kJ/mol -# deltafH -1432.79 kcal/mol - -analytic 7.965e1 -2.217e-1 0 0 0 1.644e-4 -# Range 0-300 - -Vm 140.285 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78wol differ by 2.2 log K at 0C, 0.6 log K at 300C - -Saponite-Mg-Na - Na.35Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 0.35 Na+ + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O - log_k 26.3459 - -delta_H -201.401 kJ/mol -# deltafH -1435.61 kcal/mol - -analytic 7.829e1 -2.148e-1 0 0 0 1.598e-4 -# Range 0-300 - -Vm 142.691 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78wol differ by 2.4 log K at 0C, 0.7 log K at 300C - -Sc - Sc + 3 H+ + 0.75 O2 = Sc+3 + 1.5 H2O - log_k 167.2700 - -delta_H -1033.87 kJ/mol -# deltafH 0 kJ/mol - -analytic -6.6922e1 -2.9150e-2 5.4559e4 2.4189e1 8.5137e2 -# Range 0-300 - -Vm 15.038 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Scacchite - MnCl2 = Mn+2 + 2 Cl- - log_k 8.7785 - -delta_H -73.4546 kJ/mol -# deltafH -481.302 kJ/mol - -analytic -2.3476e2 -8.2437e-2 9.0088e3 9.6128e1 1.4064e2 -# Range 0-300 - -Vm 42.27 # Webmineral.com -# Extrapol Cp integration -# Ref WEP+82 - -Schoepite - UO3:2H2O + 2 H+ = UO2+2 + 3 H2O - log_k 4.8333 - -delta_H -50.415 kJ/mol -# deltafH -1826.1 kJ/mol - -analytic 1.3645e1 1.0884e-2 2.5412e3 -8.3167e0 3.9649e1 -# Range 0-300 - -Vm 66.08 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 92gre/fug - -Scolecite - CaAl2Si3O10:3H2O + 8 H+ = Ca+2 + 2 Al+3 + 3 SiO2 + 7 H2O - log_k 15.8767 - -delta_H -204.93 kJ/mol -# deltafH -6048.92 kJ/mol - -analytic 5.0656e1 -3.1485e-3 1.0574e4 -2.5663e1 -5.2769e5 -# Range 0-300 - -Vm 172.29 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 83joh/flo - -Sepiolite - Mg4Si6O15(OH)2:6H2O + 8 H+ = 4 Mg+2 + 6 SiO2 + 11 H2O - log_k 30.4439 - -delta_H -157.339 kJ/mol -# deltafH -2418 kcal/mol - -analytic 1.8690e1 4.7544e-2 2.6765e4 -2.5301e1 -2.6498e6 -# Range 0-350 - -Vm 285.6 -# Extrapol supcrt92 -# Ref HDN+78 - -Si - Si + O2 = SiO2 - log_k 148.9059 - -delta_H -865.565 kJ/mol -# deltafH 0 kJ/mol - -analytic -5.7245e2 -7.6302e-2 8.3516e4 2.0045e2 -2.8494e6 -# Range 0-300 - -Vm 12.056 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Siderite - FeCO3 + H+ = Fe+2 + HCO3- - log_k -0.1920 - -delta_H -32.5306 kJ/mol -# deltafH -179.173 kcal/mol - -analytic -1.5990e2 -4.9361e-2 5.4947e3 6.3032e1 8.5787e1 -# Range 0-350 - -Vm 29.378 -# Extrapol supcrt92 -# Ref HDN+78 - -Sillimanite - Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O - log_k 16.3080 - -delta_H -238.442 kJ/mol -# deltafH -615.099 kcal/mol - -analytic -7.1610e1 -3.2196e-2 1.2493e4 2.2449e1 1.9496e2 -# Range 0-350 - -Vm 49.9 -# Extrapol supcrt92 -# Ref HDN+78 - -SiO2(am) - SiO2 = SiO2 - log_k -2.7136 - -delta_H 20.0539 kJ/mol -# deltafH -214.568 kcal/mol - -analytic 1.2109 7.0767e-3 2.3634e3 -3.4449 -4.8591e5 -# Range 0-325 - -Vm 29 -# Extrapol supcrt92 -# Ref HDN+78 - -Sm - Sm + 2 H+ + 0.5 O2 = H2O + Sm+2 - log_k 133.1614 - -delta_H -783.944 kJ/mol -# deltafH 0 kJ/mol - -analytic -7.1599e1 -2.0083e-2 4.2693e4 2.7291e1 6.6621e2 -# Range 0-300 - -Vm 19.98 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Smectite-high-Fe-Mg - Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 + 8 H+ = 0.025 Ca+2 + 0.1 Na+ + 0.2 Fe+3 + 0.2 K+ + 0.5 Fe+2 + 1.15 Mg+2 + 1.25 Al+3 + 3.5 SiO2 + 5 H2O - log_k 17.4200 - -delta_H -199.841 kJ/mol -# deltafH -1351.39 kcal/mol - -analytic -9.6102 1.2551e-3 1.8157e4 -7.9862 -1.3005e6 -# Range 0-300 - -Vm 139.07 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 78wol - -Smectite-low-Fe-Mg - Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 + 7 H+ = 0.02 Ca+2 + 0.15 Na+ + 0.16 Fe+3 + 0.2 K+ + 0.29 Fe+2 + 0.9 Mg+2 + 1.25 Al+3 + 3.75 SiO2 + 4.5 H2O - log_k 11.0405 - -delta_H -144.774 kJ/mol -# deltafH -1352.12 kcal/mol - -analytic -1.7003e1 6.9848e-3 1.8359e4 -6.8896 -1.6637e6 -# Range 0-300 - -Vm 139.39 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 78wol - -Smithsonite - ZnCO3 + H+ = HCO3- + Zn+2 - log_k 0.4633 - -delta_H -30.5348 kJ/mol -# deltafH -194.26 kcal/mol - -analytic -1.6452e2 -5.0231e-2 5.5925e3 6.5139e1 8.7314e1 -# Range 0-350 - -Vm 28.275 -# Extrapol supcrt92 -# Ref HDN+78 - -Sphaerocobaltite - CoCO3 + H+ = Co+2 + HCO3- - log_k -0.2331 - -delta_H -30.7064 kJ/mol -# deltafH -171.459 kcal/mol - -analytic -1.5709e2 -4.8957e-2 5.3158e3 6.2075e1 8.2995e1 -# Range 0-300 - -Vm 28.8 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 84sve - -Sphalerite - ZnS + H+ = HS- + Zn+2 - log_k -11.4400 - -delta_H 35.5222 kJ/mol -# deltafH -49 kcal/mol - -analytic -1.5497e2 -4.8953e-2 1.7850e3 6.1472e1 2.7899e1 -# Range 0-350 - -Vm 23.83 -# Extrapol supcrt92 -# Ref HDN+78 - -Spinel - Al2MgO4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O - log_k 37.6295 - -delta_H -398.108 kJ/mol -# deltafH -546.847 kcal/mol - -analytic -3.3895e2 -8.3595e-2 2.9251e4 1.2260e2 4.5654e2 -# Range 0-350 - -Vm 39.71 -# Extrapol supcrt92 -# Ref HDN+78 - -Spinel-Co - Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O - log_k -6.4852 - -delta_H -126.415 kJ/mol -# deltafH -891 kJ/mol - -analytic -3.2239e2 -8.0782e-2 1.4635e4 1.1755e2 2.2846e2 -# Range 0-300 - -Vm 39.41 # gfw/density -# Extrapol Cp integration -# Ref WEP+82 - -Spodumene - LiAlSi2O6 + 4 H+ = Al+3 + Li+ + 2 H2O + 2 SiO2 - log_k 6.9972 - -delta_H -89.1817 kJ/mol -# deltafH -3054.75 kJ/mol - -analytic -9.8111 2.1191e-3 9.6920e3 -3.0484 -7.8822e5 -# Range 0-300 - -Vm 58.37 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Stilbite - Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O + 8.72 H+ = 0.006 K+ + 0.136 Na+ + 1.019 Ca+2 + 2.18 Al+3 + 6.82 SiO2 + 11.69 H2O - log_k 1.0545 - -delta_H -83.0019 kJ/mol -# deltafH -11005.7 kJ/mol - -analytic -2.4483e1 3.0987e-2 2.8013e4 -1.5802e1 -3.4491e6 -# Range 0-300 - -Vm 333.50 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 90how/joh - -Strengite - FePO4:2H2O + H+ = Fe+3 + HPO4-2 + 2 H2O - log_k -11.3429 - -delta_H -37.107 kJ/mol -# deltafH -1876.23 kJ/mol - -analytic -2.7752e2 -9.4014e-2 7.6862e3 1.0846e2 1.2002e2 -# Range 0-300 - -Vm 65.10 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -Sylvite - KCl = Cl- + K+ - log_k 0.8459 - -delta_H 17.4347 kJ/mol -# deltafH -104.37 kcal/mol - -analytic -8.1204e1 -3.3074e-2 8.2819e2 3.6014e1 1.2947e1 -# Range 0-350 - -Vm 37.524 -# Extrapol supcrt92 -# Ref HDN+78 - -Talc - Mg3Si4O10(OH)2 + 6 H+ = 3 Mg+2 + 4 H2O + 4 SiO2 - log_k 21.1383 - -delta_H -148.737 kJ/mol -# deltafH -1410.92 kcal/mol - -analytic 1.1164e1 2.4724e-2 1.9810e4 -1.7568e1 -1.8241e6 -# Range 0-350 - -Vm 136.25 -# Extrapol supcrt92 -# Ref HDN+78, Wilson+06 match - -Tarapacaite - K2CrO4 = CrO4-2 + 2 K+ - log_k -0.4037 - -delta_H 17.8238 kJ/mol -# deltafH -335.4 kcal/mol - -analytic 2.7953e1 -1.0863e-2 -2.7589e3 -6.4154e0 -4.6859e1 -# Range 0-200 - -Vm 70.87 # Webmineral.com -# Extrapol Constant H approx -# Ref 76del/hal - -Tenorite - CuO + 2 H+ = Cu+2 + H2O - log_k 7.6560 - -delta_H -64.5047 kJ/mol -# deltafH -37.2 kcal/mol - -analytic -8.9899e1 -1.8886e-2 6.0346e3 3.3517e1 9.4191e1 -# Range 0-350 - -Vm 12.22 -# Extrapol supcrt92 -# Ref HDN+78 - -Tephroite - Mn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mn+2 - log_k 23.0781 - -delta_H -160.1 kJ/mol -# deltafH -1730.47 kJ/mol - -analytic -3.2440e1 -1.1023e-2 8.8910e3 1.1691e1 1.3875e2 -# Range 0-300 - -Vm 47.52 # Webmineral.com -# Extrapol Cp integration -# Ref WEP+82 - -Th - Th + 4 H+ + O2 = Th+4 + 2 H2O - log_k 209.6028 - -delta_H -1328.56 kJ/mol -# deltafH 0 kJ/mol - -analytic -2.8256e1 -1.1963e-2 6.8870e4 4.2068e0 1.0747e3 -# Range 0-300 - -Vm 19.83 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Th(NO3)4:5H2O - Th(NO3)4:5H2O = Th+4 + 4 NO3- + 5 H2O - log_k 1.7789 - -delta_H -18.1066 kJ/mol -# deltafH -3007.35 kJ/mol - -analytic -1.2480e2 -2.0405e-2 5.1601e3 4.6613e1 8.7669e1 -# Range 0-200 - -Vm 203.62 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Th(SO4)2 - Th(SO4)2 = Th+4 + 2 SO4-2 - log_k -20.3006 - -delta_H -46.1064 kJ/mol -# deltafH -2542.12 kJ/mol - -analytic -8.4525 -3.5442e-2 0 0 -1.1540e5 -# Range 0-200 - -Vm 100.39 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Th2S3 - Th2S3 + 5 H+ + 0.5 O2 = H2O + 2 Th+4 + 3 HS- - log_k 95.2290 - -delta_H -783.243 kJ/mol -# deltafH -1082.89 kJ/mol - -analytic -3.2969e2 -1.1090e-1 4.6877e4 1.2152e2 7.3157e2 -# Range 0-300 - -Vm 71.19 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Th7S12 - Th7S12 + 16 H+ + O2 = 2 H2O + 7 Th+4 + 12 HS- - log_k 204.0740 - -delta_H -1999.4 kJ/mol -# deltafH -4136.58 kJ/mol - -analytic -2.1309e2 -1.4149e-1 9.8550e4 5.2042e1 1.6736e3 -# Range 0-200 - -Vm 248.02 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -ThCl4 - ThCl4 = Th+4 + 4 Cl- - log_k 23.8491 - -delta_H -251.094 kJ/mol -# deltafH -283.519 kcal/mol - -analytic -5.9340 -4.1640e-2 9.8623e3 3.6804 1.6748e2 -# Range 0-200 - -Vm 81.45 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 80lan/her - -ThS2 - ThS2 + 2 H+ = Th+4 + 2 HS- - log_k 10.7872 - -delta_H -175.369 kJ/mol -# deltafH -625.867 kJ/mol - -analytic -3.7691e1 -2.3714e-2 8.4673e3 1.0970e1 1.4380e2 -# Range 0-200 - -Vm 40.57 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Thenardite - Na2SO4 = SO4-2 + 2 Na+ - log_k -0.3091 - -delta_H -2.33394 kJ/mol -# deltafH -1387.87 kJ/mol - -analytic -2.1202e2 -7.1613e-2 5.1083e3 8.7244e1 7.9773e1 -# Range 0-300 - -Vm 53.33 # Marion+05 -# Extrapol Cp integration -# Ref RHF79 - -Thermonatrite - Na2CO3:H2O + H+ = H2O + HCO3- + 2 Na+ - log_k 10.9623 - -delta_H -27.5869 kJ/mol -# deltafH -1428.78 kJ/mol - -analytic -1.4030e2 -3.5263e-2 5.7840e3 5.7528e1 9.0295e1 -# Range 0-300 - -Vm 54.92 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Thorianite - ThO2 + 4 H+ = Th+4 + 2 H2O - log_k 1.8624 - -delta_H -114.296 kJ/mol -# deltafH -1226.4 kJ/mol - -analytic -1.4249e1 -2.4645e-3 4.3110e3 -1.6605e-2 2.1598e5 -# Range 0-300 - -Vm 26.373 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Ti - Ti + 2 H2O + O2 = Ti(OH)4 - log_k 149.2978 -# deltafH 0 kJ/mol - -Vm 10.631 # thermo.com.V8.R6+.tdat -# Ref CWM89 - -Ti2O3 - Ti2O3 + 4 H2O + 0.5 O2 = 2 Ti(OH)4 - log_k 42.9866 -# deltafH -1520.78 kJ/mol - -Vm 32.02 # gfw/density -# Ref WEP+82 - -Ti3O5 - Ti3O5 + 6 H2O + 0.5 O2 = 3 Ti(OH)4 - log_k 34.6557 -# deltafH -2459.24 kJ/mol - -Vm 48.93 # gfw/density -# Ref WEP+82 - -TiB2 - TiB2 + 5 H2O + 2.5 O2 = Ti(OH)4 + 2 B(OH)3 - log_k 312.4194 -# deltafH -323.883 kJ/mol - -Vm 15.37 # gfw/density -# Ref WEP+82 - -TiC - TiC + 3 H2O + 2 O2 = H+ + HCO3- + Ti(OH)4 - log_k 181.8139 -# deltafH -184.346 kJ/mol - -Vm 12.15 # gfw/density -# Ref WEP+82 - -TiCl2 - TiCl2 + 3 H2O + 0.5 O2 = Ti(OH)4 + 2 Cl- + 2 H+ - log_k 70.9386 -# deltafH -514.012 kJ/mol - -Vm 37.95 # gfw/density -# Ref WEP+82 - -TiCl3 - TiCl3 + 3.5 H2O + 0.25 O2 = Ti(OH)4 + 3 Cl- + 3 H+ - log_k 39.3099 -# deltafH -720.775 kJ/mol - -Vm 58.42 # gfw/density -# Ref WEP+82 - -TiN - TiN + 3.5 H2O + 0.25 O2 = NH3 + Ti(OH)4 - log_k 35.2344 -# deltafH -338.304 kJ/mol - -Vm 11.46 # gfw/density -# Ref WEP+82 - -Titanite - CaTiSiO5 + 2 H+ + H2O = Ca+2 + SiO2 + Ti(OH)4 - log_k 719.5839 -# deltafH 0 kcal/mol - -Vm 55.65 -# Ref RHF79 - -Tobermorite-11A - Ca5Si6H11O22.5 + 10 H+ = 5 Ca+2 + 6 SiO2 + 10.5 H2O - log_k 65.6121 - -delta_H -286.861 kJ/mol -# deltafH -2556.42 kcal/mol - -analytic 7.9123e1 3.9150e-2 2.9429e4 -3.9191e1 -2.4122e6 -# Range 0-300 - -Vm 286.81 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - -Tremolite - Ca2Mg5Si8O22(OH)2 + 14 H+ = 2 Ca+2 + 5 Mg+2 + 8 H2O + 8 SiO2 - log_k 61.2367 - -delta_H -406.404 kJ/mol -# deltafH -2944.04 kcal/mol - -analytic 8.5291e1 4.6337e-2 3.9465e4 -5.4414e1 -3.1913e6 -# Range 0-350 - -Vm 272.92 -# Extrapol supcrt92 -# Ref HDN+78 - -Trevorite - NiFe2O4 + 8 H+ = Ni+2 + 2 Fe+3 + 4 H2O - log_k 9.7876 - -delta_H -215.338 kJ/mol -# deltafH -1081.15 kJ/mol - -analytic -1.4322e2 -2.9429e-2 1.4518e4 4.5698e1 2.4658e2 -# Range 0-200 - -Vm 44.89 # Webmineral.com -# Extrapol Constant H approx -# Ref RHF79 - -Tridymite - SiO2 = SiO2 - log_k -3.8278 - -delta_H 31.3664 kJ/mol -# deltafH -909.065 kJ/mol - -analytic 3.1594e2 6.9315e-2 -1.1358e4 -1.2219e2 -1.9299e2 -# Range 0-200 - -Vm 26.12 # Webmineral.com -# Extrapol Constant H approx -# Ref WEP+82 - -Troilite - FeS + H+ = Fe+2 + HS- - log_k -3.8184 - -delta_H -7.3296 kJ/mol -# deltafH -101.036 kJ/mol - -analytic -1.6146e2 -5.3170e-2 4.0461e3 6.4620e1 6.3183e1 -# Range 0-300 - -Vm 19.07 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -U - U + 2 H+ + 1.5 O2 = H2O + UO2+2 - log_k 212.7800 - -delta_H -1286.64 kJ/mol -# deltafH 0 kJ/mol - -analytic -2.4912e2 -4.7104e-2 8.1115e4 8.7008e1 -1.0158e6 -# Range 0-300 - -Vm 12.49 # Webelements.com -# Extrapol Cp integration -# Ref CWM89 - -U2O2Cl5 - U2O2Cl5 = U+4 + UO2+ + 5 Cl- - log_k 19.2752 - -delta_H -254.325 kJ/mol -# deltafH -2197.4 kJ/mol - -analytic -4.3945e2 -1.6239e-1 2.1694e4 1.7551e2 3.3865e2 -# Range 0-300 - -Vm 142.48 # gfw/density -# Extrapol Cp integration -# Ref 92gre/fug - -U3S5 - U3S5 + 5 H+ = U+4 + 2 U+3 + 5 HS- - log_k -0.3680 - -delta_H -218.942 kJ/mol -# deltafH -1431 kJ/mol - -analytic -1.1011e2 -6.7959e-2 1.0369e4 3.8481e1 1.7611e2 -# Range 0-200 - -Vm 106.12 # gfw/density -# Extrapol Constant H approx -# Ref 92gre/fug - -UC - UC + 2 H+ + 1.75 O2 = 0.5 H2O + HCO3- + U+3 - log_k 194.8241 - -delta_H -1202.82 kJ/mol -# deltafH -97.9 kJ/mol - -analytic -4.6329e1 -4.4600e-2 6.1417e4 1.9566e1 9.5836e2 -# Range 0-300 - -Vm 18.34 # gfw/density -# Extrapol Cp integration -# Ref 92gre/fug - -UCl3 - UCl3 = U+3 + 3 Cl- - log_k 13.0062 - -delta_H -126.639 kJ/mol -# deltafH -863.7 kJ/mol - -analytic -2.6388e2 -1.0241e-1 1.1629e4 1.0846e2 1.8155e2 -# Range 0-300 - -Vm 62.62 # gfw/density -# Extrapol Cp integration -# Ref 92gre/fug - -UCl4 - UCl4 = U+4 + 4 Cl- - log_k 21.9769 - -delta_H -240.719 kJ/mol -# deltafH -1018.8 kJ/mol - -analytic -3.6881e2 -1.3618e-1 1.9685e4 1.4763e2 3.0727e2 -# Range 0-300 - -Vm 78.00 # gfw/density -# Extrapol Cp integration -# Ref 92gre/fug - -UCl6 - UCl6 + 2 H2O = UO2+2 + 4 H+ + 6 Cl- - log_k 57.5888 - -delta_H -383.301 kJ/mol -# deltafH -1066.5 kJ/mol - -analytic -4.5589e2 -1.9203e-1 2.8029e4 1.9262e2 4.3750e2 -# Range 0-300 - -Vm 125.21 # gfw/density -# Extrapol Cp integration -# Ref 92gre/fug - -UH3(beta) - UH3 + 3 H+ + 1.5 O2 = U+3 + 3 H2O - log_k 199.7683 - -delta_H -1201.43 kJ/mol -# deltafH -126.98 kJ/mol - -analytic 5.2870e1 4.2151e-3 6.0167e4 -2.2701e1 1.0217e3 -# Range 0-200 - -Vm 22.01 # gfw/density -# Extrapol Constant H approx -# Ref 92gre/fug - -UN - UN + 3 H+ = NH3 + U+3 - log_k 41.7130 - -delta_H -280.437 kJ/mol -# deltafH -290 kJ/mol - -analytic -1.6393e2 -1.1679e-3 2.8845e3 6.5637e1 3.0122e6 -# Range 0-300 - -Vm 45.85 # gfw/density -# Extrapol Cp integration -# Ref 92gre/fug - -UO2(NO3)2 - UO2(NO3)2 = UO2+2 + 2 NO3- - log_k 11.9598 - -delta_H -81.6219 kJ/mol -# deltafH -1351 kJ/mol - -analytic -1.2216e1 -1.1261e-2 3.9895e3 5.7166 6.7751e1 -# Range 0-200 - -Vm 140.23 # gfw/density -# Extrapol Constant H approx -# Ref 92gre/fug - -UO2(NO3)2:6H2O - UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O - log_k 2.3189 - -delta_H 19.8482 kJ/mol -# deltafH -3167.5 kJ/mol - -analytic -1.4019e2 -4.3682e-2 2.7842e3 5.9070e1 4.3486e1 -# Range 0-300 - -Vm 178.88 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 92gre/fug - -UO2(OH)2(beta) - UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O - log_k 4.9457 - -delta_H -56.8767 kJ/mol -# deltafH -1533.8 kJ/mol - -analytic -1.7478e1 -1.6806e-3 3.4226e3 4.6260 5.3412e1 -# Range 0-300 - -Vm 51.31 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 92gre/fug - -UO2SO4 - UO2SO4 = SO4-2 + UO2+2 - log_k 1.9681 - -delta_H -83.4616 kJ/mol -# deltafH -1845.14 kJ/mol - -analytic -1.5677e2 -6.5310e-2 6.7411e3 6.2867e1 1.0523e2 -# Range 0-300 - -Vm 111.61 # gfw/density -# Extrapol Cp integration -# Ref 92gre/fug - -UO2SO4:3H2O - UO2SO4:3H2O = SO4-2 + UO2+2 + 3 H2O - log_k -1.4028 - -delta_H -34.6176 kJ/mol -# deltafH -2751.5 kJ/mol - -analytic -5.0134e1 -1.0321e-2 3.0505e3 1.6799e1 5.1818e1 -# Range 0-200 - -Vm 108.34 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 92gre/fug - -UO3(beta) - UO3 + 2 H+ = H2O + UO2+2 - log_k 8.3095 - -delta_H -84.5383 kJ/mol -# deltafH -1220.3 kJ/mol - -analytic -1.2298e1 -1.7800e-3 4.5621e3 2.3593 7.1191e1 -# Range 0-300 - -Vm 34.46 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 92gre/fug - -Uraninite - UO2 + 4 H+ = U+4 + 2 H2O - log_k -4.8372 - -delta_H -77.8767 kJ/mol -# deltafH -1085 kJ/mol - -analytic -7.5776e1 -1.0558e-2 5.9677e3 2.1853e1 9.3142e1 -# Range 0-325 - -Vm 24.638 -# Extrapol Cp integration -# Ref CWM89, SSB97 match - -Vaesite - NiS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Ni+2 + 1.75 HS- - log_k -26.7622 - -delta_H 110.443 kJ/mol -# deltafH -32.067 kcal/mol - -analytic 1.6172e1 -2.2673e-2 -8.2514e3 -3.4392 -1.4013e2 -# Range 0-200 - -Vm 27.697 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 78vau/cra - -Wairakite - CaAl2Si4O10(OH)4 + 8 H+ = Ca+2 + 2 Al+3 + 4 SiO2 + 6 H2O - log_k 18.0762 - -delta_H -237.781 kJ/mol -# deltafH -1579.33 kcal/mol - -analytic -1.7914e1 3.2944e-3 2.2782e4 -9.0981 -1.6934e6 -# Range 0-350 - -Vm 186.87 -# Extrapol supcrt92 -# Ref HDN+78 - -Wollastonite - CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 - log_k 13.7605 - -delta_H -76.5756 kJ/mol -# deltafH -389.59 kcal/mol - -analytic 3.0931e1 6.7466e-3 5.1749e3 -1.3209e1 -3.4579e5 -# Range 0-350 - -Vm 39.93 -# Extrapol supcrt92 -# Ref HDN+78 - -Wurtzite - ZnS + H+ = HS- + Zn+2 - log_k -9.1406 - -delta_H 22.3426 kJ/mol -# deltafH -45.85 kcal/mol - -analytic -1.5446e2 -4.8874e-2 2.4551e3 6.1278e1 3.8355e1 -# Range 0-350 - -Vm 23.846 -# Extrapol supcrt92 -# Ref HDN+78 - -Wustite - Fe.947O + 2 H+ = 0.106 Fe+3 + 0.841 Fe+2 + H2O - log_k 12.4113 - -delta_H -102.417 kJ/mol -# deltafH -266.265 kJ/mol - -analytic -7.6919e1 -1.8433e-2 7.3823e3 2.8312e1 1.1522e2 -# Range 0-300 - -Vm 12.04 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Xonotlite - Ca6Si6O17(OH)2 + 12 H+ = 6 Ca+2 + 6 SiO2 + 7 H2O - log_k 91.8267 - -delta_H -495.457 kJ/mol -# deltafH -2397.25 kcal/mol - -analytic 1.6080e3 3.7309e-1 -2.2548e4 -6.2716e2 -3.8346e2 -# Range 0-200 - -Vm 264.81 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 82sar/bar - -Zincite - ZnO + 2 H+ = H2O + Zn+2 - log_k 11.2087 - -delta_H -88.7638 kJ/mol -# deltafH -350.46 kJ/mol - -analytic -8.6681e1 -1.9324e-2 7.1034e3 3.2256e1 1.1087e2 -# Range 0-350 - -Vm 14.338 -# Extrapol supcrt92, Cp integration -# Ref SSW+97, CWM89 match - -Zn - Zn + 2 H+ + 0.5 O2 = H2O + Zn+2 - log_k 68.8035 - -delta_H -433.157 kJ/mol -# deltafH 0 kJ/mol - -analytic -6.4131e1 -2.0009e-2 2.3921e4 2.3702e1 3.7329e2 -# Range 0-300 - -Vm 9.162 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Zn(NO3)2:6H2O - Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O - log_k 3.4102 - -delta_H 24.7577 kJ/mol -# deltafH -2306.8 kJ/mol - -analytic -1.7152e2 -1.6875e-2 5.6291e3 6.5094e1 9.5649e1 -# Range 0-200 - -Vm 144.06 # gfw/density -# Extrapol Constant H approx -# Ref WEP+82 - -Zn(OH)2(beta) - Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - log_k 11.9341 - -delta_H -83.2111 kJ/mol -# deltafH -641.851 kJ/mol - -analytic -7.7810e1 -7.8548e-3 7.1994e3 2.7455e1 1.2228e2 -# Range 0-200 - -Vm 32.60 # gfw/density -# Extrapol Constant H approx -# Ref WEP+82 - -Zn(OH)2(epsilon) - Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - log_k 11.6625 - -delta_H -81.7811 kJ/mol -# deltafH -643.281 kJ/mol - -analytic -7.7938e1 -7.8767e-3 7.1282e3 2.7496e1 1.2107e2 -# Range 0-200 - -Vm 32.60 # gfw/density -# Extrapol Constant H approx -# Ref WEP+82 - -Zn2SiO4 - Zn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Zn+2 - log_k 13.8695 - -delta_H -119.399 kJ/mol -# deltafH -1636.75 kJ/mol - -analytic 2.0970e2 5.3663e-2 -1.2724e2 -8.5445e1 -2.2336 -# Range 0-200 - -Vm 55.03 # Webmineral.com -# Extrapol Constant H approx -# Ref WEP+82 - -ZnCl2 - ZnCl2 = Zn+2 + 2 Cl- - log_k 7.0880 - -delta_H -72.4548 kJ/mol -# deltafH -415.09 kJ/mol - -analytic -1.6157e1 -2.5405e-2 2.6505e3 8.8584 4.5015e1 -# Range 0-200 - -Vm 46.84 # gfw/density -# Extrapol Constant H approx -# Ref WEP+82 - -ZnCr2O4 - ZnCr2O4 + 8 H+ = Zn+2 + 2 Cr+3 + 4 H2O - log_k 7.9161 - -delta_H -221.953 kJ/mol -# deltafH -370.88 kcal/mol - -analytic -1.7603e2 -1.0217e-2 1.7414e4 5.1966e1 2.9577e2 -# Range 0-200 - -Vm 44.03 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 76del/hal - -ZnSO4 - ZnSO4 = SO4-2 + Zn+2 - log_k 3.5452 - -delta_H -80.132 kJ/mol -# deltafH -982.855 kJ/mol - -analytic 6.9905 -1.8046e-2 2.2566e3 -2.2819 3.8318e1 -# Range 0-200 - -Vm 45.61 # gfw/density -# Extrapol Constant H approx -# Ref WEP+82 - -ZnSO4:6H2O - ZnSO4:6H2O = SO4-2 + Zn+2 + 6 H2O - log_k -1.6846 - -delta_H -0.412008 kJ/mol -# deltafH -2777.61 kJ/mol - -analytic -1.4506e2 -1.8736e-2 5.2179e3 5.3121e1 8.8657e1 -# Range 0-200 - -Vm 130.08 # gfw/density -# Extrapol Constant H approx -# Ref WEP+82 - -Zoisite - Ca2Al3(SiO4)3OH + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O - log_k 43.3017 - -delta_H -458.131 kJ/mol -# deltafH -1643.69 kcal/mol - -analytic 2.5321 -3.5886e-2 1.9902e4 -6.2443 3.1055e2 -# Range 0-350 - -Vm 135.9 -# Extrapol supcrt92 -# Ref HDN+78 differ by 2.5 log K at 0C, 0.6 log K at 350C - -#---------- -# 15 gases -#---------- - -C2H4(g) - C2H4 = C2H4 - log_k -2.323631 - -delta_H -3.930 kcal/mol - -analytic -14.5616 0.0176 2192.2 0 0 -3.8657e-6 -# Range 0-350 - -T_c 283 # K - -P_c 50.53 - -Omega 0.085 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -# Extrapol supcrt92 -# Ref Sho93 - -C2H6(g) - C2H6 = C2H6 - log_k -2.93276 - -delta_H -4.509 kcal/mol - -analytic -23.1154 0.0354 3289.1 0 0 -1.5637e-5 -# Range 0-350 - -T_c 305 # K - -P_c 48.16 - -Omega 0.100 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -# Extrapol supcrt92 -# Ref HOK+98 - -C3H8(g) - C3H8 = C3H8 - log_k -2.876 - -analytic 1.885 -2.55e-2 0 0 0 3.20e-5 # Not the best -# Range 0-350 - -T_c 369.522 # K - -P_c 42.4924 - -Omega 0.152 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -# Extrapol supcrt92 -# Ref HOK+98 - -CH4(g) - CH4 = CH4 - log_k -2.8502 - -delta_H -13.0959 kJ/mol -# deltafH -17.88 kcal/mol - -analytic -24.027 4.7146e-3 372.27 6.4264 2.3362e5 -# Range 0-350 - -T_c 190.6 # K - -P_c 45.40 - -Omega 0.008 # phreeqc.dat -# Extrapol supcrt92 -# Ref WEP+82, Kel60 - -CO(g) - CO = CO - log_k -3.0068 - -delta_H -10.4349 kJ/mol -# deltafH -26.416 kcal/mol - -analytic -8.0849 9.2114e-3 0 0 2.0813e5 -# Range 0-350 - -T_c 133 # K - -P_c 34.54 - -Omega 0.049 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -# Extrapol supcrt92 -# Ref Sho93 - -CO2(g) - CO2 + H2O = H+ + HCO3- - log_k -7.8136 - -delta_H -10.5855 kJ/mol -# deltafH -94.051 kcal/mol - -analytic -8.5938e1 -3.0431e-2 2.0702e3 3.2427e1 3.2328e1 -# Range 0-350 - -T_c 304.25 # K - -P_c 72.83 # atm, 7.38 MPa, http://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=4#Thermo-Phase - -Omega 0.225 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -# Extrapol supcrt92 -# Ref WEP+82, Kel60 - -H2(g) - H2 = H2 - log_k -3.1050 - -delta_H -4.184 kJ/mol -# deltafH 0 kcal/mol - -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -# Range 0-350 - -T_c 33.2 # K - -P_c 12.80 - -Omega 0.225 # phreeqc.dat -# Extrapol supcrt92 -# Ref WEP+82, Kel60 - -H2O(g) - H2O = H2O - log_k 1.5854 - -delta_H -43.4383 kJ/mol -# deltafH -57.935 kcal/mol - -analytic -1.4782e1 1.0752e-3 2.7519e3 2.7548 4.2945e1 -# Range 0-350 - -T_c 647.3 # K - -P_c 218.31 - -Omega 0.344 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -# Extrapol supcrt92 -# Ref Joh90 - -H2S(g) - H2S = H+ + HS- - log_k -7.9759 - -delta_H 4.5229 kJ/mol -# deltafH -4.931 kcal/mol - -analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56 -# Range 0-350 - -T_c 373.2 # K - -P_c 88.20 - -Omega 0.1 -# Extrapol supcrt92 -# Ref WEP+82, Kel60 - -N2(g) - N2 = N2 - log_k -3.1864 - -delta_H -10.4391 kJ/mol -# deltafH 0 kcal/mol - -analytic -58.453 1.818e-3 3199 17.909 -27460 # phreeqc.dat -# Range 0-350 - -T_c 126.2 # K - -P_c 33.50 - -Omega 0.039 -# Extrapol supcrt92 -# Ref WEP+82, Kel60 - -NH3(g) - NH3 = NH3 - log_k 1.7966 - -delta_H -35.2251 kJ/mol -# deltafH -11.021 kcal/mol - -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 -# Range 0-350 - -T_c 405.6 # K - -P_c 111.3 - -Omega 0.25 -# Extrapol supcrt92 -# Ref WEP+82, Kel60 - -NO(g) - NO + 0.5 H2O + 0.25 O2 = H+ + NO2- - log_k 0.7554 - -delta_H -48.8884 kJ/mol -# deltafH 90.241 kJ/mol - -analytic 8.2147 -1.2708e-1 -6.0593e3 2.0504e1 -9.4551e1 -# Range 0-300 - -T_c 180 # K - -P_c 64.64 - -Omega 0.607 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -# Extrapol supcrt92, Cp integration -# Ref AS01, WEP+82 differ by 0.2 log K at 0C, 17 log K at 350C !! flag - -NO2(g) - NO2 + 0.5 H2O + 0.25 O2 = H+ + NO3- - log_k 8.3673 - -delta_H -94.0124 kJ/mol -# deltafH 33.154 kJ/mol - -analytic 9.4389e1 -2.7511e-1 -1.6783e4 2.1127e1 -2.6191e2 -# Range 0-300 - -T_c 431 # K - -P_c 99.67 - -Omega 0 # Not found -# Extrapol Cp integration -# Ref WEP+82 - -O2(g) - O2 = O2 - log_k -2.8983 - -delta_H -12.1336 kJ/mol -# deltafH 0 kcal/mol - -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 -# Range 0-300 - -T_c 154.6 # K phreeqc.dat - -P_c 49.80 # phreeqc.dat - -Omega 0.021 # phreeqc.dat -# Extrapol supcrt92 -# Ref WEP+82, Kel60 - -SO2(g) - SO2 = SO2 - log_k 0.1700 - -delta_H 0 -# deltafH 0 kcal/mol - -analytic -2.0205e1 2.8861e-3 1.4862e3 5.2958 1.2721e5 -# Range 0-300 - -T_c 430 # K - -P_c 77.67 - -Omega 0.251 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -# Extrapol supcrt92 +# Marc Neveu - created March 2, 2017. Last edited April 16, 2018. mneveu@asu.edu +# Reference for database description: Neveu M., Desch S. J., Castillo-Rogez J. C. (2017) +# Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas compositions, +# and fate of antifreezes and radionuclides. Geochimica et Cosmochimica Acta 212, 324-371. + # http://dx.doi.org/10.1016/j.gca.2017.06.023 +# +# Downloaded April 26, 2018 +# +# Paraphrase from abstract: +# This database is a compilation and careful validation of a +# comprehensive PHREEQC database, which combines the advantages +# of the default databases phreeqc.dat (carefully vetted data, molar volumes) +# and llnl.dat (large diversity of species), and should be of broad use to +# anyone seeking to model aqueous geochemistry at pressures that +# differ from 1 bar. +# +# Extrapolation algorithms: +# 64cri/cob: ? (12 aq species, all also with supcrt92) +# Cp integration = Integration of heat capacity vs. temperature measurements (162 solids, 2 gases) +# Constant H approx = Constant enthalpy approximation (76 solids) +# 69hel: http://dx.doi.org/10.2475/ajs.267.7.729 (5 aq species) +# Marion+12 (NH4Cl, NH4HCO3) +# supcrt92 = SUPCRT92 (329 aq, solids, gases) +# N17 ([(6)(CB)(CB)S], NH4-feldspar, NH4-muscovite) +# +# References: +# APP14: http://dx.doi.org/10.1016/j.gca.2013.10.003 (25 molar volumes, see phreeqc.dat) +# AS01: http://dx.doi.org/10.1016/S0168-6445(00)00062-0 (NO(g)) +# BH86: Barta and Hepler, 1986, Can. J.C. 64, 353. (Al+3, AlOH+2 molar volumes) +# Catalano13: http://dx.doi.org/10.1002/jgre.20161 (23 saponites + ripidolite) +# CWM89: http://www.worldcat.org/oclc/18559968 (20 solids, incl. 14 elemental) +# E68: Ellis, 1968, J. Chem. Soc. A, 1138. (Li+ molar volume) +# HDN+78: http://www.worldcatlibraries.org/oclc/13594862 (117 solids) +# Hel+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (Pyridine) +# Hel+09: http://dx.doi.org/10.1016/j.gca.2008.03.004 (Kerogen C128, C292, C515) +# HOK+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (C2H6(g), C3H8(g)) +# Hovis04: http://dx.doi.org/10.2138/am-2004-0111 (NH4-muscovite molar volume) +# HSS95: http://dx.doi.org/10.1016/0016-7037(95)00314-P (55 solutes) +# Joh90: Johnson, J.W., 1990, Personal calculation, Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C): Earch Sci. Dept, LLNL, Livermore, CA. (H2O(g)) +# Kel60: http://www.worldcat.org/oclc/693388901 (8 gases) +# M13: McColm I. J. (2013) Dictionary of Ceramic Science and Engineering, p.72. (CaUO4 molar volume) +# Marion+03: http://dx.doi.org/10.1016/S0016-7037(03)00372-7 (FeOH+) +# Marion+05: http://dx.doi.org/10.1016/j.gca.2004.06.024 (Arcanite, Gypsum, Niter, Thenardite molar volumes) +# Marion+08: http://dx.doi.org/10.1016/j.gca.2007.10.012 (FeOH+, FeOH+2, Melanterite molar volume) +# Marion+09: http://dx.doi.org/10.1016/j.gca.2009.03.013 (Alum-K molar volume) +# Marion+12: http://dx.doi.org/10.1016/j.icarus.2012.06.016 (NH4Cl, NH4HCO3) +# MLS+03: http://dx.doi.org/10.2138/am-2003-5-613 (Goethite) +# MS97: http://dx.doi.org/10.1016/S0016-7037(97)00241-X (HCl, MgSO4) +# N17: http://dx.doi.org/10.1016/j.gca.2017.06.023 ([(6)(CB)(CB)S], NH4-feldspar, NH4-muscovite) +# R01: http://dx.doi.org/10.1016/S0016-7037(01)00761-X ([(6)(CB)(CB)S]) +# RHF79: http://pubs.er.usgs.gov/publication/b1452 (40 solids) +# RH98: http://dx.doi.org/10.1016/S0016-7037(97)00345-1 ([(aro)-O-(aro)], Kerogen C128, C292, C515) +# SH88: http://dx.doi.org/10.1016/0016-7037(88)90181-0 (42 solutes, 1 solid) +# SH90: http://dx.doi.org/10.1016/0016-7037(90)90429-O (6 organic solutes) +# Sho93: http://dx.doi.org/10.1016/0016-7037(93)90542-5 (C2H4(g), CO(g)) +# Sho95: http://dx.doi.org/10.2475/ajs.295.5.496 (4 organic solutes) +# Sho09: http://dx.doi.org/10.2113/gsecongeo.104.8.1235 (Goethite) +# SHS89: http://dx.doi.org/10.1016/0016-7037(89)90341-4 (11 solutes) +# SK93: http://dx.doi.org/10.1016/0016-7037(93)90128-J (44 acetic acid/acetate complexes) +# SS93: http://dx.doi.org/10.1016/0016-7037(93)90337-V (CH2O) +# SM93: http://dx.doi.org/10.1006/icar.1993.1185 (CO, CO(NH2)2, HCN solutes) +# SSB97: http://dx.doi.org/10.1016/S0016-7037(97)00240-8 (UO2OH+, Uraninite) +# SSH97: http://dx.doi.org/10.1016/S0016-7037(97)00009-4 (30 solutes) +# SSW01: http://dx.doi.org/10.1016/S0016-7037(01)00717-7 (CO2, H2S) +# Ste01: http://dx.doi.org/10.1016/S0009-2541(00)00263-1 (Ti(OH)4) +# Wat81: “Ammonium Aluminosilicates: The Examination of a Mechanism for the High Temperature Condensation of Ammonia in Circumplanetary Subnebulae†MS Thesis, MIT, 1981. (NH4-feldspar, NH4-muscovite) +# WEP+82: http://dx.doi.org/10.1063/1.555845 (87 solutes, solids, and gases) +# WebElements: http://www.webelements.com/periodicity/molar_volume (K, U molar volumes) +# WebMineral: http://www.webmineral.com (38 solid molar volumes) +# Wilson+06: http://dx.doi.org/10.1016/j.gca.2005.10.003 (Chamosite, Lizardite) +# +# 73bar/kna: Barin, I., and Knacke, O., 1973, Thermochemical properties of inorganic substances: Springer-Verlag, New York. (Alum-K, MgOHCl, Na2SiO3, Nahcolite) +# 77bar/kna: Barin, I., Knacke, O., and Kubaschewski, O., 1977, Thermochemical properties of inorganic substances. Supplement: Springer-Verlag, New York. (Natrosilite, Pseudowollastonite, Rankinite) +# 87bou/bar: http://dx.doi.org/10.2113/gsecongeo.82.7.1839 (ZnOH+) +# 88db 3: Database development group iii/3, 1988, Errors in computation of estimated delH298 for montmor-x endmembers of smectite-di solid solution: LLNL Internal Memo. (Montmor-Ca, K, Mg, Na) +# 89db 7=89db 6, Database development group, 1989, Zeolite thermodynamic data: LLNL Internal memo. (Clinoptilolite-Ca, K, Na, Mesolite) +# 76del/hal: http://dx.doi.org/10.1021/cr60301a001 (2 Cr solutes, 9 Cr solids) +# 92gre/fug: Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., and Wanner, H., 1992, Chemical Thermodynamics, Volume 1: Chemical Thermodynamics of Uranium: North-Holland, Amsterdam, 1, 714p. (4 U solutes, 21 U solids) +# 90how/joh: http://dx.doi.org/10.1016/S0144-2449(05)80307-0 (Stilbite) +# 82joh/flo: Johnson, G.K., Flotow, H.E., O'Hare, P.A.G., and Wise, W.S., 1982, Thermodynamic studies of zeolites: Analcime and dehydrated analcime: Amer. Mineral., 67, 736-748. (Analcime) +# 83joh/flo: Johnson, G.K., Flotow, H.E., O'Hare, P.A.G., and Wise, W.S., 1983, Thermodynamic studies of zeolites: Natrolite, mesolite, and scolecite: Amer. Mineral., 68, 1134-1145. (Natrolite, Scolecite) +# 91joh/tas: http://dx.doi.org/10.1016/S0021-9614(05)80135-1 (Mordenite) +# 75kas/bor: Kashkay, C.H.M., Borovskaya,Y.U.B., and Babazade, M.A., 1975, Determination of delG0f298K of synthetic jarosite and its sulfate analogues: Geochem. Intl., 12, 115-121. (Jarosite) +# 87kee/rup: Kee, R.J., Rupley, F.M., and Miller, J.A., 1987, The Chemkin thermodynamic database: SNL Rep. SAND-87-8215, 92p. (Ice) +# 78lan: http://dx.doi.org/10.1016/0016-7037(78)90001-7 (Bassetite, Ningyoite, Saleeite) +# 80lan/her: http://dx.doi.org/10.1016/0016-7037(80)90226-4 (ThCl4) +# 82mar/smi: Martell, A.E., and Smith, R.M., 1982, Critical Stability Constants, Vol. 5: First Supplement: Plenum, New York, 5, 604p. (MgSO4(aq)) +# 74nau/ryz: Naumov, G.B., Ryzhenko, B.N., and Khodakovsky, I.L., 1974, Handbook of Thermodynamic Data: U.S.G.S. WRD-74-001, 328p. (CoCl+, CoFe2O4, CoS, CoSO4:H2O, Delafossite, Ni2SiO4) +# 76mac: http://dx.doi.org/10.1016/0010-938X(76)90066-4 (Mn+3) +# 95pok/hel: http://dx.doi.org/10.2475/ajs.295.10.1255 (4 solutes, 4 solids) +# 85rar 2: http://dx.doi.org/10.1021/cr00070a003 (9 europium solids) +# 87rar 2: Rard, J.A., 1987, Update of the europium data base, October, 1987: LLNL Internal Memo. (3 europium solids) +# 87rua/sew: http://dx.doi.org/10.1016/0016-7037(87)90013-5 (HCl) +# 82sar/bar: Sarkar, A.K., Barnes, M.W., and Roy, D.M., 1982, Longevity of borehole and shaft sealing materials: thermodynamic properties of cements and related phases applied to repository sealing: ONWI Tech. Rep. ONWI-201, 52p. (16 solids) +# 84sve: http://dx.doi.org/10.1016/0016-7037(84)90203-5 (Sphaerocobaltite) +# 78vau/cra: Vaughan, D.J., and Craig, J.R., 1978, Mineral chemistry of metal sulfides: Cambridge Univ. Press, Cambridge, MA. (5 solids) +# 78wol: Wolery, T.J., 1978, Some chemical aspects of hydrothermal processes at mid-oceanic ridges -- A theoretical study. I. Basalt-sea water reaction and chemical cycling between the oceanic crust and the oceans. II. Calculation of chemical equilibrium between aqueous solutions and minerals: Unpub. Ph.D. Diss., Northwestern Univ., Evaston, IL, 263p. (23 clays) +# 87woo/gar: Woods, T.L., and Garrels, R.M., 1987, Thermodynamic values at low temperature for natural inorganic materials: An uncritical summary: Oxford Univ. Press, Oxford. (Atacamite, Brochantite, Dioptase) + +# Species have various valid temperature ranges, noted in the Range parameter. Currently, Phreeqc doesn’t use this parameter, so it is up to the user to remain in the valid temperature range for all data used. + +# Example entry block: + +# Formation reaction from basis species +# -llnl_gamma # ion size parameter in B-dot Debye-Huckel equation +# log_k # at 25C, 1 bar, used if no -delta_H or -analytic +# -delta_H # molar enthalpy of reaction, used if no -analytic +# # deltafH # molar enthalpy of formation from reference compounds +# -analytic b1 b2 b3 b4 b5 b6 # logK = b1 + b2*T + b3/T + b4*log(T) + b5/T2 + b6*T2 +# # Range Tmin-Tmax # of validity of -analytic +# -Vm a1 a2 a3 a4 omega # See APP14, SH88 for equations +# # Extrapol # extrapolation algorithm +# # Ref # references + +LLNL_AQUEOUS_MODEL_PARAMETERS +-temperatures + 0.01 25 60 100 + 150 200 250 300 +#debye huckel a (adh) +-dh_a + 0.4939 0.5114 0.5465 0.5995 + 0.6855 0.7994 0.9593 1.2180 +#debye huckel b (bdh) +-dh_b + 0.3253 0.3288 0.3346 0.3421 + 0.3525 0.3639 0.3766 0.3925 +-bdot + 0.0374 0.0410 0.0438 0.0460 + 0.0470 0.0470 0.0340 0 +#cco2 (coefficients for the Drummond (1981) polynomial) +-co2_coefs + -1.0312 0.0012806 + 255.9 0.4445 + -0.001606 + +SOLUTION_MASTER_SPECIES + +#element species alk gfw_formula element_gfw + +Al Al+3 0 Al 26.9815 +Alkalinity HCO3- 1 Ca0.5(CO3)0.5 50.05 +B B(OH)3 0 B 10.811 +B(3) B(OH)3 0 B -36.44179 +C(-4) CH4 0 CH4 -33.31051 +C(-3) C2H6 0 C2H6 -30.54674 +C(-2) C2H4 0 C2H4 -28.08539 +C HCO3- 1 HCO3 12.011 +C(+2) CO 0 C -23.87691 +C(+4) HCO3- 1 HCO3 -22.05727 +Ca Ca+2 0 Ca 40.078 +Cl Cl- 0 Cl 35.4527 +Cl(-1) Cl- 0 Cl -17.43358 +Cl(1) ClO- 0 Cl -16.11094 +Cl(3) ClO2- 0 Cl -14.87484 +Cl(5) ClO3- 0 Cl -13.71476 +Cl(7) ClO4- 0 Cl +Co Co+2 0 Co 58.9332 +Co(+2) Co+2 0 Co +Co(+3) Co+3 0 Co +Cr CrO4-2 0 CrO4-2 51.9961 +Cr(+2) Cr+2 0 Cr +Cr(+3) Cr+3 0 Cr +Cr(+6) CrO4-2 0 Cr +Cu Cu+2 0 Cu 63.546 +Cu(+1) Cu+1 0 Cu +Cu(+2) Cu+2 0 Cu +E e- 0 0 0 +Eu Eu+3 0 Eu 151.965 +Eu(+2) Eu+2 0 Eu +Eu(+3) Eu+3 0 Eu +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Gd Gd+3 0 Gd 157.25 +Gd(+3) Gd+3 0 Gd +H H+ -1 H 1.0079 +H(0) H2 0 H +H(+1) H+ -1 0 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.941 +Mg Mg+2 0 Mg 24.305 +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Mn(+6) MnO4-2 0 Mn +Mn(+7) MnO4- 0 Mn +Mo MoO4-2 0 Mo 95.94 +N NH3 1 N 14.0067 +N(-3) NH3 1 N +N(0) N2 0 N +N(+3) NO2- 0 N +N(+5) NO3- 0 N +Na Na+ 0 Na 22.9898 +Ni Ni+2 0 Ni 58.69 +O H2O 0 O 15.994 +O(-2) H2O 0 0 +O(0) O2 0 O +P HPO4-2 2 P 30.9738 +P(5) HPO4-2 2 P +S SO4-2 0 SO4 32.066 +S(-2) HS- 1 S +S(+2) S2O3-2 0 S +S(+3) S2O4-2 0 S +S(+4) SO3-2 0 S +S(+5) S2O5-2 0 S +S(+6) SO4-2 0 SO4 +S(+7) S2O8-2 0 S +S(+8) HSO5- 0 S +Sc Sc+3 0 Sc 44.9559 +Si SiO2 0 SiO2 28.0855 +Sm Sm+3 0 Sm 150.36 +Sm(+2) Sm+2 0 Sm +Sm(+3) Sm+3 0 Sm +Th Th+4 0 Th 232.0381 +Ti Ti(OH)4 0 Ti 47.88 +U UO2+2 0 U 238.0289 +U(+3) U+3 0 U +U(+4) U+4 0 U +U(+5) UO2+ 0 U +U(+6) UO2+2 0 U +Zn Zn+2 0 Zn 65.39 + +SOLUTION_SPECIES + +#------------------ +# 31 basis species +#------------------ + +Al+3 = Al+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -128.681 kcal/mol + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # APP14, BH86 + +B(OH)3 = B(OH)3 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -256.82 kcal/mol + -Vm 7.0643 8.847 3.5844 -3.1451 -0.2 0 0 0 0 0 # SHS89 + +Ca+2 = Ca+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -129.8 kcal/mol + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # APP14 + +Cl- = Cl- + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -39.933 kcal/mol + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # APP14 + +Co+2 = Co+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -13.9 kcal/mol + -Vm -1.2252 -8.9356 5.3191 -2.4095 1.47690 0 0 0 0 0 # SSW+97 + +CrO4-2 = CrO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -210.6 kcal/mol + -Vm 5.4891 5.6223 3.5382 -3.0113 3.00240 0 0 0 0 0 # SSW+97 + +Cu+2 = Cu+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH 15.7 kcal/mol + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # APP14 + +e- = e- + +Eu+3 = Eu+3 + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -144.7 kcal/mol + -Vm -3.1037 -15.3599 11.7871 -2.144 2.3161 0 0 0 0 0 # SH88 + +Fe+2 = Fe+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -22.05 kcal/mol + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # APP14 + +Gd+3 = Gd+3 + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -164.2 kcal/mol + -Vm -2.9771 -15.0506 11.6656 -2.1568 2.3265 0 0 0 0 0 # SH88 + +H+ = H+ + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -0 kJ/mol + +HCO3- = HCO3- + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -164.898 kcal/mol + -Vm 7.5621 1.1505 1.2346 -2.8266 1.27330 0 0 0 0 0 # SH88 + +HPO4-2 = HPO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -308.815 kcal/mol + -Vm 3.6315 1.0857 5.3233 -2.8239 3.33630 0 0 0 0 0 # SH88 + +K+ = K+ + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -60.27 kcal/mol + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # APP14 + +Li+ = Li+ + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -66.552 kcal/mol + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # APP14, E68 + +Mg+2 = Mg+2 + -llnl_gamma 8 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -111.367 kcal/mol + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # APP14 + +Mn+2 = Mn+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -52.724 kcal/mol + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # APP14 + +MoO4-2 = MoO4-2 + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -238.5 kcal/mol + -Vm 6.9651 2.7095 18.6617 -2.8909 3.07770 0 0 0 0 0 # SSW+97 + +NH3 = NH3 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -19.44 kcal/mol + -Vm 5.0911 2.797 8.6248 -2.8946 -7.690e-2 0 0 0 0 0 # SHS89 + +Na+ = Na+ + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -57.433 kcal/mol + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # APP14 + +Ni+2 = Ni+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -12.9 kcal/mol + -Vm -1.6942 -11.9181 10.4344 -2.2863 1.50670 0 0 0 0 0 # SH88 + +H2O = H2O + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -68.317 kcal/mol + +SO4-2 = SO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -217.4 kcal/mol + -Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # APP14 + +Sc+3 = Sc+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -146.8 kcal/mol + -Vm -2.1109 -12.9294 10.817 -2.2444 2.5003 0 0 0 0 0 # SSW+97 + +SiO2 = SiO2 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -209.775 kcal/mol + -Vm 1.9 1.7 20 -2.7 0.12910 0 0 0 0 0 # SHS89 + +Sm+3 = Sm+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -165.2 kcal/mol + -Vm -3.2065 -15.6108 11.8857 -2.1337 2.2955 0 0 0 0 0 # SH88 + +Th+4 = Th+4 + -llnl_gamma 11 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -183.8 kcal/mol + -Vm -4.2886 -18.25 12.9154 -2.0244 3.70930 0 0 0 0 0 # SSW+97 + +Ti(OH)4 = Ti(OH)4 + -llnl_gamma 3 + log_k 0 +# deltafH -0 kcal/mol + -Vm 7.366874 10.21009 1.152964 -3.201004 0.01498566 0 0 0 0 0 # Ste01 + +UO2+2 = UO2+2 + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -1019 kJ/mol + -Vm 3.0256 -4.1084 15.3326 -2.6091 1.40990 0 0 0 0 0 # SSW+97 + +Zn+2 = Zn+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -36.66 kcal/mol + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 # APP14 + +#------------------- +# 40 Redox couples +#------------------- + +2H2O = O2 + 4H+ + 4e- + -CO2_llnl_gamma + log_k -85.9951 + -delta_H 559.543 kJ/mol +# deltafH -2.9 kcal/mol + -analytic 38.0229 7.99407e-3 -2.7655e4 -1.4506e1 199838.45 +# Range 0-350 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 +# Extrapol supcrt92 +# Ref SHS89 + +SO4-2 + H+ = HS- + 2 O2 + -llnl_gamma 3.5 + log_k -138.3169 + -delta_H 869.226 kJ/mol +# deltafH -3.85 kcal/mol + -analytic 2.6251e1 3.9525e-2 -4.5443e4 -1.1107e1 3.1843e5 +# Range 0-350 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.44100 +# Extrapol supcrt92 +# Ref SH88 + +.5 O2 + 2 HS- = S2-2 + H2O + -llnl_gamma 4.0 + log_k 33.2673 +# deltafH -0 kcal/mol + -analytic 0.21730e2 -0.12307e-2 0.10098e5 -0.88813e1 0.15757e3 + -mass_balance S(-2)2 +# Range 0-350 + -Vm 5.5797 5.8426 3.4536 -3.0205 3.10830 +# Extrapol supcrt92 +# Ref SH88 + +2 H+ + 2 SO3-2 = S2O3-2 + O2 + H2O + -llnl_gamma 4.0 + log_k -40.2906 +# deltafH -0 kcal/mol + -analytic 0.77679e2 0.65761e-1 -0.15438e5 -0.34651e2 -0.24092e3 +# Range 0-350 + -Vm 6.6685 12.4951 -7.7281 -3.2955 2.96940 +# Extrapol supcrt92 +# Ref SH88 + +H+ + HCO3- + H2O = CH4 + 2 O2 + -llnl_gamma 3.0 + log_k -144.1412 + -delta_H 863.599 kJ/mol +# deltafH -21.01 kcal/mol + -analytic -0.41698e2 0.36584e-1 -0.40675e5 0.93479e1 -0.63468e3 +# Range 0-350 + -Vm 6.7617 8.7279 2.3212 -3.1397 -0.31790 +# Extrapol supcrt92 +# Ref SH90 + +2 H+ + 2 HCO3- + H2O = C2H6 + 3.5 O2 + -llnl_gamma 3.0 + log_k -228.6072 +# deltafH -0 kcal/mol + #analytic -0.10777e2 0.72105e-1 -0.67489e5 -0.13915e2 -0.10531e4 + -analytic -491.3 1.148 -10004 0 0 -8.06e-4 # !!! Using CHNOSZ, discrepant with above expression unless the first term is -0.10777e2 instead of 0.10777e2 +# Range 0-350 + -Vm 8.75 13.1051 1.6258 -3.3207 -0.06270 +# Extrapol supcrt92 +# Ref SH90 + +2 H+ + 2 HCO3- = C2H4 + 3 O2 + -llnl_gamma 3.0 + log_k -254.5034 + -delta_H 1446.6 kJ/mol +# deltafH 24.65 kcal/mol + #analytic -0.30329e2 0.71187e-1 -0.73140e5 + -analytic 6e-2 3.60e-2 -7.17e4 +# Range 0-350 + -Vm 7.856 12.6391 -1.8737 -3.3014 -0.4 +# Extrapol supcrt92 +# Ref SH90 + +HCO3- + H+ = CO + H2O + 0.5 O2 + -llnl_gamma 3.0 + log_k -41.7002 + -delta_H 277.069 kJ/mol +# deltafH -28.91 kcal/mol + -analytic 1.0028e2 4.6877e-2 -1.8062e4 -4.0263e1 3.8031e5 +# Range 0-350 + -Vm 6.2373 7.4498 2.8184 -3.0869 -0.37150 +# Extrapol supcrt92 +# Ref SM93 + +Cl- + 0.5 O2 = ClO- + -llnl_gamma 4.0 + log_k -15.1014 + -delta_H 66.0361 kJ/mol +# deltafH -25.6 kcal/mol + -analytic 6.1314e1 3.4812e-3 -6.0952e3 -2.3043e1 -9.5128e1 +# Range 0-350 + -Vm 2.3599 -2.0164 6.5356 -2.6955 1.47670 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +O2 + Cl- = ClO2- + -llnl_gamma 4.0 + log_k -23.108 + -delta_H 112.688 kJ/mol +# deltafH -15.9 kcal/mol + -analytic 3.3638e0 -6.1675e-3 -4.9726e3 -2.0467e0 -2.5769e5 +# Range 0-350 + -Vm 5.2163 4.958 3.7949 -2.9839 1.2637 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +1.5 O2 + Cl- = ClO3- + -llnl_gamma 3.5 + log_k -17.2608 + -delta_H 81.3077 kJ/mol +# deltafH -24.85 kcal/mol + -analytic 2.8852e1 -4.8281e-3 -4.6779e3 -1.0772e1 -2.0783e5 +# Range 0-350 + -Vm 7.1665 9.7172 1.9307 -3.1807 1.0418 +# Extrapol supcrt92 +# Ref SH88 + +2 O2 + Cl- = ClO4- + -llnl_gamma 3.5 + log_k -15.7091 + -delta_H 62.0194 kJ/mol +# deltafH -30.91 kcal/mol + -analytic 7.0280e1 -6.8927e-5 -5.5690e3 -2.6446e1 -1.6596e5 +# Range 0-350 + -Vm 8.1411 15.5654 -7.8077 -3.4224 0.9699 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H+ + Co+2 + 0.25 O2 = Co+3 + 0.5 H2O + -llnl_gamma 5.0 + log_k -11.4845 + -delta_H 10.3198 kJ/mol +# deltafH 22 kcal/mol + -analytic -2.2827e1 -1.2222e-2 -7.2117e2 7.0306 -1.1247e1 +# Range 0-350 + -Vm -2.8678 -14.7777 11.5439 -2.1680 2.6901 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +4 H+ + CrO4-2 = Cr+2 + 2 H2O + O2 + -llnl_gamma 4.5 + log_k -21.6373 + -delta_H 153.829 kJ/mol +# deltafH -34.3 kcal/mol + -analytic 6.9003e1 6.2884e-2 -6.9847e3 -3.4720e1 -1.0901e2 +# Range 0-350 + -Vm -0.8036 -9.74 9.5688 -2.3762 1.4287 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76del/hal differ by 2 log K at 0C, 0.7 log K at 300C + +5 H+ + CrO4-2 = Cr+3 + 2.5 H2O + 0.75 O2 + -llnl_gamma 9.0 + log_k 8.3842 + -delta_H -81.0336 kJ/mol +# deltafH -57 kcal/mol + -analytic 5.1963e1 6.0932e-2 5.4256e3 -3.2290e1 8.4645e1 +# Range 0-350 + -Vm -2.7824 -14.5709 11.4661 -2.1765 2.7403 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76del/hal differ by 1.5 log K at 0C, 0.8 log K at 300C + +Cu+2 + 0.5 H2O = Cu+ + H+ + 0.25 O2 + -llnl_gamma 4.0 + log_k -18.7704 + -delta_H 145.877 kJ/mol +# deltafH 17.132 kcal/mol + -analytic 3.7909e1 1.3731e-2 -8.1506e3 -1.3508e1 -1.2719e2 +# Range 0-350 + -Vm 0.807 -5.804 8.0165 -2.5390 0.40460 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Eu+3 + 0.5 H2O = Eu+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -27.5115 + -delta_H 217.708 kJ/mol +# deltafH -126.1 kcal/mol + -analytic 3.0300e1 1.4126e-2 -1.2319e4 -9.0585e0 1.5289e5 +# Range 0-350 + -Vm 0.0407 -7.6776 8.7578 -2.4615 1.0929 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H+ + Fe+2 + 0.25 O2 = Fe+3 + 0.5 H2O + -llnl_gamma 9.0 + log_k 8.4899 + -delta_H -97.209 kJ/mol +# deltafH -11.85 kcal/mol + -analytic -1.7808e1 -1.1753e-2 4.7609e3 5.5866 7.4295e1 +# Range 0-350 + -Vm -2.4256 -13.6961 11.1141 -2.2127 2.58120 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H2O = H2 + 0.5 O2 + -CO2_llnl_gamma + log_k -46.1066 + -delta_H 275.588 kJ/mol +# deltafH -1 kcal/mol + -analytic 6.6835e1 1.7172e-2 -1.8849e4 -2.4092e1 4.2501e5 +# Range 0-350 + -Vm 5.1427 4.7758 3.8729 -2.9764 -0.209 +# Extrapol supcrt92 +# Ref SHS89 + +SO4-2 + H+ + 0.5 O2 = HSO5- + -llnl_gamma 4.0 + log_k -17.2865 + -delta_H 140.038 kJ/mol +# deltafH -185.38 kcal/mol + -analytic 5.9944e1 3.0904e-2 -7.7494e3 -2.4420e1 -1.2094e2 +# Range 0-350 + -Vm 8.9391 14.043 0.2349 -3.3594 0.86110 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Mn+2 + H+ + 0.25 O2 = Mn+3 + 0.5 H2O + -llnl_gamma 5.0 + log_k -4.0811 + -delta_H -65.2892 kJ/mol +# deltafH -34.895 kcal/mol + -analytic 3.8873e1 1.7458e-2 2.0757e3 -2.2274e1 3.2378e1 +# Range 0-350 + -Vm -2.932 -14.934 11.6041 -2.1615 2.70250 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76mac match + +2 H2O + O2 + Mn+2 = MnO4-2 + 4 H+ + -llnl_gamma 4.0 + log_k -32.4146 + -delta_H 151.703 kJ/mol +# deltafH -156 kcal/mol + -analytic -1.0407e1 -4.6464e-2 -1.0515e4 1.0943e1 -1.6408e2 +# Range 0-350 + -Vm 5.6596 6.0368 3.3786 -3.0285 2.98030 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 NH3 + 1.5 O2 = N2 + 3 H2O + -llnl_gamma 3.0 + log_k 116.4609 + -delta_H -687.08 kJ/mol +# deltafH -2.495 kcal/mol + -analytic -8.2621e1 -1.4671e-2 4.0068e4 2.9090e1 -2.5924e5 +# Range 0-350 + -Vm 6.2046 7.3685 2.8539 -3.0836 -0.34680 +# Extrapol supcrt92 +# Ref SHS89 + +1.5 O2 + NH3 = NO2- + H+ + H2O + -llnl_gamma 3.0 + log_k +46.8653 + -delta_H -290.901 kJ/mol +# deltafH -25 kcal/mol + -analytic -1.7011e1 -3.3459e-2 1.3999e4 1.1078e1 -4.8255e4 +# Range 0-350 + -Vm 5.5864 5.859 3.4472 -3.0212 1.18470 +# Extrapol supcrt92 +# Ref SH88 + +2 O2 + NH3 = NO3- + H+ + H2O + -llnl_gamma 3.0 + log_k 62.1001 + -delta_H -387.045 kJ/mol +# deltafH -49.429 kcal/mol + -analytic -3.9468e1 -3.9697e-2 2.0614e4 1.8872e1 -2.1917e5 +# Range 0-350 + -Vm 7.3161 6.7824 -4.6838 -3.0594 1.09770 +# Extrapol supcrt92 +# Ref SH88 + +2 H+ + 2 SO3-2 = S2O4-2 + .5 O2 + H2O + -llnl_gamma 5.0 + log_k -25.2076 +# deltafH -0 kcal/mol + -analytic -2.3172e2 2.0393e-3 -7.1011 8.3239e1 9.4155e-1 +# Range 0-350 + -Vm 6.6784 8.528 2.3917 -3.1314 2.87720 +# Extrapol supcrt92 +# Ref SSW+97 + +2 SO3-2 + .5 O2 + 2 H+ = S2O6-2 + H2O + -llnl_gamma 4.0 + log_k 41.8289 +# deltafH -0 kcal/mol + -analytic 0.14458e3 0.61449e-1 0.71877e4 -0.58657e2 0.11211e3 +# Range 0-350 + -Vm 8.2257 12.3054 0.9087 -3.2876 2.75870 +# Extrapol supcrt92 +# Ref SSW+97 + +2 SO3-2 + 1.5 O2 + 2 H+ = S2O8-2 + H2O + -llnl_gamma 4.0 + log_k 70.7489 +# deltafH -0 kcal/mol + -analytic 0.18394e3 0.60414e-1 0.13864e5 -0.71804e2 0.21628e3 +# Range 0-350 + -Vm 13.3622 24.8454 -4.0153 -3.8061 2.32810 +# Extrapol supcrt92 +# Ref SH88 + +O2 + H+ + 3 HS- = S3-2 + 2 H2O + -llnl_gamma 4.0 + log_k 79.3915 +# deltafH -0 kcal/mol + -analytic -0.51626e2 0.70208e-2 0.31797e5 0.11927e2 -0.64249e6 + -mass_balance S(-2)3 +# Range 0-350 + -Vm 6.7661 8.7396 2.315 -3.1403 2.97490 +# Extrapol supcrt92 +# Ref SH88 + +3 SO3-2 + 4 H+ = S3O6-2 + .5 O2 + 2 H2O + -llnl_gamma 4.0 + log_k -6.2316 +# deltafH -0 kcal/mol + -analytic 0.23664e3 0.12702 -0.10110e5 -0.99715e2 -0.15783e3 +# Range 0-350 + -Vm 8.4155 12.7691 0.7268 -3.3068 2.71310 +# Extrapol supcrt92 +# Ref SSW+97 + +1.5 O2 + 2 H+ + 4 HS- = S4-2 + 3 H2O + -llnl_gamma 4.0 + log_k 125.2958 +# deltafH -0 kcal/mol + -analytic 0.20875e3 0.58133e-1 0.33278e5 -0.85833e2 0.51921e3 + -mass_balance S(-2)4 +# Range 0-350 + -Vm 7.9381 11.6012 1.1902 -3.2586 2.83900 +# Extrapol supcrt92 +# Ref SH88 + +4 SO3-2 + 6 H+ = S4O6-2 + 1.5 O2 + 3 H2O + -llnl_gamma 4.0 + log_k -38.3859 +# deltafH -0 kcal/mol + -analytic 0.32239e3 0.19555 -0.23617e5 -0.13729e3 -0.36862e3 +# Range 0-350 + -Vm 10.2672 17.2902 -1.0502 -3.4937 2.28050 +# Extrapol supcrt92 +# Ref SSW+97 + +2 O2 + 3 H+ + 5 HS- = S5-2 + 4 H2O + -llnl_gamma 4.0 + log_k 170.9802 +# deltafH -0 kcal/mol + -analytic 0.30329e3 0.88033e-1 0.44739e5 -0.12471e3 0.69803e3 + -mass_balance S(-2)5 +# Range 0-350 + -Vm 9.1107 14.4645 0.0649 -3.3770 2.70510 +# Extrapol supcrt92 +# Ref SH88 + +5 SO3-2 + 8 H+ = S5O6-2 + 2.5 O2 + 4 H2O + -llnl_gamma 4.0 + log_k -99.4206 +# deltafH -0 kcal/mol + -analytic 0.42074e3 0.25833 -0.43878e5 -0.18178e3 -0.68480e3 +# Range 0-350 + -Vm 8.8725 13.8806 0.2986 -3.3527 2.60760 +# Extrapol supcrt92 +# Ref SSW+97 + +H+ + HCO3- + HS- + NH3 = SCN- + 3 H2O + -llnl_gamma 3.5 + log_k 3.0070 +# deltafH -0 kcal/mol + -analytic 0.16539e3 0.49623e-1 -0.44624e4 -0.65544e2 -0.69680e2 +# Range 0-350 + -Vm 7.0244 9.3687 2.0708 -3.1662 1.10730 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +SO4-2 = SO3-2 + 0.5 O2 + -llnl_gamma 4.5 + log_k -46.6244 + -delta_H 267.985 kJ/mol +# deltafH -151.9 kcal/mol + -analytic -1.3771e1 6.5102e-4 -1.3330e4 4.7164 -2.0800e2 +# Range 0-350 + -Vm 2.4632 -1.7691 6.4494 -2.7058 3.321 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Sm+3 + 0.5 H2O = Sm+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -47.9624 + -delta_H 326.911 kJ/mol +# deltafH -120.5 kcal/mol + -analytic -1.0217e1 7.7548e-3 -1.6285e4 5.4711 9.1931e4 +# Range 0-350 + -Vm -0.0353 -7.8592 8.8194 -2.454 1.1512 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +UO2+2 + H+ = U+3 + 0.75 O2 + 0.5 H2O + -llnl_gamma 5.0 + log_k -64.8028 + -delta_H 377.881 kJ/mol +# deltafH -489.1 kJ/mol + -analytic 2.5133e1 6.4088e-3 -2.2542e4 -8.1423 3.4793e5 +# Range 0-350 + -Vm -2.8438 -14.722 11.528 -2.1703 2.27520 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +2 H+ + UO2+2 = U+4 + H2O + 0.5 O2 + -llnl_gamma 5.5 + log_k -33.9491 + -delta_H 135.895 kJ/mol +# deltafH -591.2 kJ/mol + -analytic 4.4837e1 1.0129e-2 -1.1787e4 -1.9194e1 4.6436e5 +# Range 0-350 + -Vm -4.2836 -18.2319 12.8955 -2.0252 3.68350 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +UO2+2 + 0.5 H2O = UO2+ + H+ + 0.25 O2 + -llnl_gamma 4.0 + log_k -20.0169 + -delta_H 133.759 kJ/mol +# deltafH -1025.13 kJ/mol + -analytic 8.0480 9.5845e-3 -6.5994e3 -3.5515 -1.0298e2 +# Range 0-350 + -Vm 3.3767 0.4614 5.5725 -2.7980 0.63880 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +#--------------------------- +# 156 other aqueous species +#--------------------------- + +2 CH3COOH + Al+3 = Al(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -5.595 + -delta_H -46.8566 kJ/mol +# deltafH -372.08 kcal/mol + -analytic -4.2528e1 2.1431e-3 3.1658e2 1.1585e1 5.8604e5 +# Range 0-350 + -Vm 8.9971 14.1844 0.1805 -3.3653 1.39180 +# Extrapol supcrt92 +# Ref SK93, differ by 2.2 log K at 0C, 1 log K at 300C + +2 H2O + Al+3 = AlO2- + 4 H+ + -llnl_gamma 4.0 + log_k -22.8833 + -delta_H 180.899 kJ/mol +# deltafH -222.079 kcal/mol + -analytic 1.0803e1 -3.4379e-3 -9.7391e3 0e0 0e0 +# Range 0-350 + -Vm 3.7221 3.9954 -1.5879 -2.9441 1.74180 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +H2O + Al+3 = AlOH+2 + H+ + -llnl_gamma 4.5 + log_k -4.9571 + -delta_H 49.798 kJ/mol +# deltafH -185.096 kcal/mol + -analytic -2.6224e-1 8.8816e-3 -1.8686e3 -4.3195e-1 -2.9158e1 +# Range 0-350 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # APP14, BH86 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +B(OH)3 = BO2- + H+ + H2O + -llnl_gamma 4.0 + log_k -9.2449 + -delta_H 16.3302 kJ/mol +# deltafH -184.6 kcal/mol + -analytic -1.0500e2 -3.3447e-2 1.4706e3 4.0724e1 2.2978e1 +# Range 0-350 + -Vm -2.2428 -6.2065 -6.3216 -2.5224 1.75950 +# Extrapol supcrt92 +# Ref SH88 + +HCO3- + H+ = CO2 + H2O + -CO2_llnl_gamma + log_k 6.3447 + -delta_H -9.7027 kJ/mol +# deltafH -98.9 kcal/mol + -analytic -1.0534e1 2.1746e-2 2.5216e3 7.9125e-1 3.9351e1 +# Range 0-350 + -Vm 6.2466 7.4711 2.8136 -3.0879 -0.1934 +# Extrapol supcrt92 +# Ref SSW01, SHS89 + +HCO3- = CO3-2 + H+ + -llnl_gamma 4.5 + log_k -10.3288 + -delta_H 14.6984 kJ/mol +# deltafH -161.385 kcal/mol + -analytic -6.9958e1 -3.3526e-2 -7.0846e1 2.8224e1 -1.0849 +# Range 0-350 + -Vm 2.8524 -3.9844 6.4142 -2.6143 3.39140 +# Extrapol supcrt92 +# Ref SH88 + +NH3 + HCO3- = CN- + 2 H2O + 0.5 O2 + -llnl_gamma 3.0 + log_k -56.0505 + -delta_H 344.151 kJ/mol +# deltafH 36 kcal/mol + -analytic -1.1174e1 3.8167e-3 -1.7063e4 4.5349e0 -2.6625e2 +# Range 0-350 + -Vm 5.4714 5.5813 3.5497 -3.0096 1.29000 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +HCO3- + H+ = HCOOH + 0.5 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -39.0524 + -analytic -16.6 0.041 -10000 0 0 -1.205e-5 +# Range 0-350 + -Vm 6.3957 7.7713 2.8318 -3.1002 -0.33 +# Extrapol supcrt92 +# Ref Sho95 + +HCOOH = HCOO- + H+ + -llnl_gamma 3.5 # EQ3/6 data0.sup + log_k -3.752994 + -analytic -6.456 0.01694 0 0 0 -2.71e-5 +# Range 0-350 + -Vm 5.7842 4.7242 7.363 -2.9742 1.3003 +# Extrapol supcrt92 +# Ref Sho95 + +2 HCO3- + 2 H+ = CH3COOH + 2 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -141.99219 + -analytic -6.037 0.0104 -42362 0 0 3.604e-5 +# Range 0-350 + -Vm 11.6198 5.218 2.5088 -2.9946 -0.15 +# Extrapol supcrt92 +# Ref Sho95 + +CH3COOH = CH3COO- + H+ + -llnl_gamma 4.5 + log_k -4.7572 +# deltafH -0 kcal/mol + -analytic -0.96597e2 -0.34535e-1 0.19753e4 0.38593e2 0.30850e2 +# Range 0-350 + -Vm 7.7525 8.6996 7.5825 -3.1385 1.31820 +# Extrapol supcrt92 +# Ref Sho95 + +2 NH3 + HCO3- + H+ = CO(NH2)2 + 2 H2O + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k 6.631821 + -analytic 15.98 -4.41e-2 0 0 0 4.25e-5 +# Range 0-350 + -Vm 7.7158 7.3031 10.9353 -3.0808 -0.3006 +# Extrapol supcrt92 +# Ref SM93 + +3 H+ + 3 HCO3- + H2O = C3H8 + 5 O2 + -llnl_gamma 3.0 # thermo.com.V8.R6+.tdat + log_k -363.088 + -analytic -8.04e2 1.877 0 0 0 -1.33e-3 +# Range 0-350 + -Vm 10.768 17.6785 -0.5878 -3.5097 -0.165 +# Extrapol supcrt92 +# Ref SH90 + +H+ + HCO3- + H2O = CH3OH + 1.5 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -117.9046 + -analytic -262.5446137 6.159125942e-1 0 0 0 -4.375362728e-4 +# Range 0-350 + -Vm 6.9383 5.5146 11.4018 -3.0069 -0.14760 +# Extrapol supcrt92 +# Ref SH90 + +H2O + 2 HCO3- + 2 H+ = CH3CH2OH + 3 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -224.1415 + -analytic -423.8 0.989 -10003 0 0 -6.93e-4 +# Range 0-350 + -Vm 9.2333 9.9581 12.1445 -3.1906 -0.2037 +# Extrapol supcrt92 +# Ref SH90 + +HCO3- + H+ = CH2O + O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -86.57248 + -analytic -17.3 0.0404 -24072 0 0 -6.57e-6 +# Range 0-350 + -Vm 5.3113 5.3139 3.3901 -2.9986 -0.3984 +# Extrapol supcrt92 +# Ref SS93 + +2 CH3COOH + Ca+2 = Ca(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.3814 + -delta_H -2.7196 kJ/mol +# deltafH -362.65 kcal/mol + -analytic -1.0320e1 4.0012e-3 -3.6281e3 2.4421 7.0175e5 +# Range 0-350 + -Vm 12.9911 23.9379 -3.6556 -3.7685 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Ca+2 + CH3COOH = CaCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.8263 + -delta_H 1.17152 kJ/mol +# deltafH -245.62 kcal/mol + -analytic -8.8826 3.1672e-3 -1.0764e3 2.0526 2.3599e5 +# Range 0-350 + -Vm 5.9002 6.6232 3.1505 -3.0527 0.36360 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Ca+2 = CaCO3 + H+ + -llnl_gamma 3.0 + log_k -7.0017 + -delta_H 30.5767 kJ/mol +# deltafH -287.39 kcal/mol + -analytic 2.3045e2 5.5350e-2 -8.5056e3 -9.1096e1 -1.3279e2 +# Range 0-350 + -Vm -0.3907 -8.7325 9.1753 -2.4179 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +Cl- + Ca+2 = CaCl+ + -llnl_gamma 4.0 + log_k -0.6956 + -delta_H 2.02087 kJ/mol +# deltafH -169.25 kcal/mol + -analytic 8.1498e1 3.8387e-2 -1.3763e3 -3.5968e1 -2.1501e1 +# Range 0-350 + -Vm 2.7148 -1.1497 6.1949 -2.7314 0.48620 +# Extrapol supcrt92 +# Ref SSH97 differ by 0.3 log K at 0C, 1.2 log K at 300C + +2 Cl- + Ca+2 = CaCl2 + -llnl_gamma 3.0 + log_k -0.6436 + -delta_H -5.8325 kJ/mol +# deltafH -211.06 kcal/mol + -analytic 1.8178e2 7.6910e-2 -3.1088e3 -7.8760e1 -4.8563e1 +# Range 0-350 + -Vm 6.2187 7.4058 2.8322 -3.0851 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + Ca+2 = CaSO4 + -llnl_gamma 3.0 + log_k 2.1111 + -delta_H 5.4392 kJ/mol +# deltafH -345.9 kcal/mol + -analytic 2.8618e2 8.4084e-2 -7.6880e3 -1.1449e2 -1.2005e2 +# Range 0-350 + -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # phreeqc.dat, SSH97 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Co+2 = Co(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.1468 + -delta_H -22.4262 kJ/mol +# deltafH -251.46 kcal/mol + -analytic -2.0661e1 2.9014e-3 -2.2146e3 5.1702 6.4968e5 +# Range 0-350 + -Vm 11.9141 21.312 -2.6321 -3.6599 3.49629 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Co+2 = Co(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.281 + -delta_H -48.2415 kJ/mol +# deltafH -373.73 kcal/mol + -analytic 6.3384e1 -4.0669e-3 -1.4715e4 -1.9518e1 2.1524e6 +# Range 0-350 + -Vm 20.3474 41.8989 -10.7127 -4.5110 1.47140 +# Extrapol supcrt92 +# Ref SK93 + +Co+2 + CH3COOH = CoCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.2985 + -delta_H -8.70272 kJ/mol +# deltafH -132.08 kcal/mol + -analytic -5.4858 1.9147e-3 -1.1292e3 9.0555e-1 2.8223e5 +# Range 0-350 + -Vm 5.0294 4.4992 3.9806 -2.9649 0.64720 +# Extrapol supcrt92 +# Ref SK93 + +Co+2 + Cl- = CoCl+ + -llnl_gamma 4.0 + log_k 0.1547 + -delta_H 1.71962 kJ/mol +# deltafH -53.422 kcal/mol + -analytic 1.5234e2 5.6958e-2 -3.3258e3 -6.3849e1 -5.1942e1 +# Range 0-350 + -Vm 1.8028 -3.3766 7.0702 -2.6394 0.71910 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 74nau/ryz match + +2 H+ + 2 CrO4-2 = Cr2O7-2 + H2O + -llnl_gamma 4.0 + log_k 14.5192 + -delta_H -13.8783 kJ/mol +# deltafH -356.2 kcal/mol + -analytic 1.3749e2 6.5773e-2 -7.9472e2 -5.6525e1 -1.2441e1 +# Range 0-350 + -Vm 12.4303 22.568 -3.1161 -3.7119 2.12160 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 CH3COOH + Cu+2 = Cu(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -5.8824 + -delta_H -25.899 kJ/mol +# deltafH -222.69 kcal/mol + -analytic -2.6689e1 1.8048e-3 -1.8244e3 7.7008 6.5408e5 +# Range 0-350 + -Vm 11.8801 21.2264 -2.5925 -3.6564 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Cu+ = Cu(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.2139 + -delta_H -19.5476 kJ/mol +# deltafH -219.74 kcal/mol + -analytic -3.2712e2 -5.9087e-2 1.1386e4 1.2017e2 1.7777e2 +# Range 0-350 + -Vm 15.0715 29.0205 -5.6592 -3.9786 1.06910 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Cu+2 = Cu(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -9.3788 + -delta_H -53.2205 kJ/mol +# deltafH -345.32 kcal/mol + -analytic 3.9475e1 -6.2867e-3 -1.3233e4 -1.0643e1 2.1121e6 +# Range 0-350 + -Vm 20.2654 41.7019 -10.6422 -4.5029 1.3408 +# Extrapol supcrt92 +# Ref SK93 + +Cu+ + CH3COOH = CuCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.4274 + -delta_H -4.19237 kJ/mol +# deltafH -99.97 kcal/mol + -analytic 6.3784 -4.5464e-4 -1.9995e3 -2.8359 2.7224e5 +# Range 0-350 + -Vm 7.3009 10.0483 1.7946 -3.1943 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Cu+2 + CH3COOH = CuCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -2.5252 + -delta_H -11.3805 kJ/mol +# deltafH -103.12 kcal/mol + -analytic -1.4930e1 5.1278e-4 -3.4874e2 4.3605 2.3504e5 +# Range 0-350 + -Vm 4.9722 4.362 4.029 -2.9592 0.56810 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Eu+3 = Eu(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.6912 + -delta_H -28.3257 kJ/mol +# deltafH -383.67 kcal/mol + -analytic -2.7589e1 1.5772e-3 -1.1008e3 7.9899 5.6652e5 +# Range 0-350 + -Vm 9.3029 14.9307 -0.1123 -3.3961 0.7384 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Eu+3 = Eu(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -7.9824 + -delta_H -47.3629 kJ/mol +# deltafH -504.32 kcal/mol + -analytic -3.7470e1 1.9276e-3 -1.0318e3 9.7078 7.4558e5 +# Range 0-350 + -Vm 16.6413 32.8512 -7.1605 -4.137 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Eu+3 + CH3COOH = EuCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.9571 + -delta_H -14.5603 kJ/mol +# deltafH -264.28 kcal/mol + -analytic -1.5090e1 1.0352e-3 -6.4435e2 4.6225 3.1649e5 +# Range 0-350 + -Vm 2.75 -1.0666 6.169 -2.7348 1.5269 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Eu+3 = EuCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.4057 + -delta_H 90.7844 kJ/mol +# deltafH -287.9 kcal/mol # OBIGT: -311.27 kcal/mol HSS95 + -analytic 2.3548e2 5.3819e-2 -6.9908e3 -9.3137e1 -1.0915e2 +# Range 0-350 + -Vm -0.9842 -10.1779 9.7343 -2.3581 1.2465 +# Extrapol supcrt92 +# Ref HSS95 + +Eu+2 + Cl- = EuCl+ + -llnl_gamma 4.0 + log_k 0.3819 + -delta_H 8.50607 kJ/mol +# deltafH -164 kcal/mol + -analytic 6.8695e1 3.7619e-2 -1.0809e3 -3.0665e1 -1.6887e1 +# Range 0-350 + -Vm 5.1742 4.8499 3.8487 -2.9794 0.2557 +# Extrapol supcrt92 +# Ref HSS95 + +Eu+3 + Cl- = EuCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 13.9453 kJ/mol +# deltafH -181.3 kcal/mol + -analytic 7.9275e1 3.7878e-2 -1.7895e3 -3.4041e1 -2.7947e1 +# Range 0-350 + -Vm -0.3777 -8.6968 9.1514 -2.4194 1.4671 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Eu+3 = EuCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 18.6857 kJ/mol +# deltafH -220.1 kcal/mol # OBIGT: -204.6 kcal/mol HSS95 + -analytic 2.1758e2 8.0336e-2 -5.5499e3 -9.0087e1 -8.6665e1 +# Range 0-350 + -Vm 9.1152 14.474 0.0641 -3.3773 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Eu+3 = EuCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 11.2926 kJ/mol +# deltafH -261.8 kcal/mol + -analytic 4.2075e2 1.2890e-1 -1.1288e4 -1.7043e2 -1.7627e2 +# Range 0-350 + -Vm 6.2132 7.3881 2.8493 -3.0843 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Eu+2 = EuCl3- + -llnl_gamma 4.0 + log_k 2.0253 + -delta_H -3.76978 kJ/mol +# deltafH -246.8 kcal/mol + -analytic 1.1546e1 6.4683e-2 3.7299e3 -1.6672e1 5.8196e1 +# Range 0-350 + -Vm 13.946 26.2721 -4.579 -3.865 0.9527 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Eu+3 = EuCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -9.90771 kJ/mol +# deltafH -306.8 kcal/mol + -analytic 4.8122e2 1.3081e-1 -1.2950e4 -1.9302e2 -2.0222e2 +# Range 0-350 + -Vm 10.9946 19.066 -1.7473 -3.5671 1.787 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Eu+2 = EuCl4-2 + -llnl_gamma 4.0 + log_k 2.8470 + -delta_H -19.9493 kJ/mol +# deltafH -290.6 kcal/mol + -analytic -1.2842e2 5.0789e-2 9.8815e3 3.3565e1 1.5423e2 +# Range 0-350 + -Vm 19.473 39.7656 -9.8784 -4.4228 2.4755 +# Extrapol supcrt92 +# Ref HSS95 + +HPO4-2 + H+ + Eu+3 = EuH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -17.0916 kJ/mol +# deltafH -457.6 kcal/mol + -analytic 1.0873e2 6.3416e-2 2.7202e2 -4.8113e1 4.2122 +# Range 0-350 + -Vm 1.4946 -4.1236 7.3517 -2.6084 1.5372 +# Extrapol supcrt92 +# Ref HSS95 + +HCO3- + Eu+3 = EuHCO3+2 + -llnl_gamma 4.5 + log_k 1.6258 + -delta_H 8.77803 kJ/mol +# deltafH -307.5 kcal/mol + -analytic 3.9266e1 3.1608e-2 -9.8731e1 -1.8875e1 -1.5524 +# Range 0-350 + -Vm 0.4928 -6.572 8.3198 -2.5072 1.286 +# Extrapol supcrt92 +# Ref HSS95 + +NO3- + Eu+3 = EuNO3+2 + -llnl_gamma 4.5 + log_k 0.8745 + -delta_H -32.0955 kJ/mol +# deltafH -201.8 kcal/mol + -analytic 1.7398e1 2.5467e-2 2.2683e3 -1.2810e1 3.5389e1 +# Range 0-350 + -Vm 1.2198 -4.7951 7.6178 -2.5807 1.6556 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Eu+3 = EuO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.337 + -delta_H 110.947 kJ/mol +# deltafH -186.5 kcal/mol # OBIGT: -177.81 kcal/mol HSS95 + -analytic 1.8876e2 3.0194e-2 -1.3836e4 -6.7770e1 -2.1595e2 +# Range 0-350 + -Vm 2.7458 -1.0743 6.1663 -2.7345 0.4322 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Eu+3 = EuO2- + 4 H+ + -llnl_gamma 4.0 + log_k -34.5066 + -delta_H 281.307 kJ/mol +# deltafH -214.1 kcal/mol # OBIGT: -219.06 kcal/mol HSS95 + -analytic 7.5244e1 3.7089e-4 -1.3587e4 -2.3859e1 -4.6713e5 +# Range 0-350 + -Vm 4.8468 4.0541 4.1548 -2.9465 1.1424 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Eu+3 = EuO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.4173 + -delta_H 222.313 kJ/mol +# deltafH -228.2 kcal/mol + -analytic 3.6754e2 5.3868e-2 -2.4034e4 -1.3272e2 -3.7514e2 +# Range 0-350 + -Vm 4.8064 3.954 4.1968 -2.9424 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Eu+3 = EuOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 78.0065 kJ/mol +# deltafH -194.373 kcal/mol + -analytic 6.7691e1 1.2066e-2 -6.1871e3 -2.3617e1 -9.6563e1 +# Range 0-350 + -Vm 2.6569 -1.2969 6.2659 -2.7253 1.1815 +# Extrapol supcrt92 +# Ref HSS95 + +SO4-2 + Eu+3 = EuSO4+ + -llnl_gamma 4.0 + log_k 3.6430 + -delta_H 62.3416 kJ/mol +# deltafH -347.2 kcal/mol # OBIGT: -357.2 kcal/mol HSS95 + -analytic 3.0587e2 8.6208e-2 -9.0387e3 -1.2026e2 -1.4113e2 +# Range 0-350 + -Vm 1.4399 -4.2627 7.4184 -2.6027 0.779 +# Extrapol supcrt92 +# Ref HSS95 + +2 CH3COOH + Fe+2 = Fe(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.0295 + -delta_H -20.2924 kJ/mol +# deltafH -259.1 kcal/mol + -analytic -2.9862e1 1.3901e-3 -1.6908e3 8.6283 6.0125e5 +# Range 0-350 + -Vm 12.1698 21.937 -2.8791 -3.6858 -0.038 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Fe+2 + CH3COOH = FeCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.4671 + -delta_H -3.80744 kJ/mol +# deltafH -139.06 kcal/mol + -analytic -1.3781e1 9.6253e-4 -7.5310e2 4.0135 2.3416e5 +# Range 0-350 + -Vm 5.2246 4.9785 3.7863 -2.9848 0.57560 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Fe+2 + Cl- = FeCl+ + -llnl_gamma 4.0 + log_k -0.1605 + -delta_H 3.02503 kJ/mol +# deltafH -61.26 kcal/mol + -analytic 8.2435e1 3.7755e-2 -1.4765e3 -3.5918e1 -2.3064e1 +# Range 0-350 + -Vm 2.1468 -2.5367 6.7401 -2.6741 0.7003 +# Extrapol supcrt92 +# Ref SSH97 + +Fe+3 + Cl- = FeCl+2 + -llnl_gamma 4.5 + log_k -0.8108 + -delta_H 36.6421 kJ/mol +# deltafH -180.018 kJ/mol + -analytic 1.6186e2 5.9436e-2 -5.1913e3 -6.5852e1 -8.1053e1 +# Range 0-350 + -Vm -0.7164 -9.5277 9.4878 -2.3851 0.17013 # SSH97 +# Extrapol supcrt92, 64cri/cob +# Ref SSH97, WEP+82 differ by 2.7 log K at 0C, 1.2 log K at 300C + +2 Cl- + Fe+2 = FeCl2 + -llnl_gamma 3.0 + log_k -2.4541 + -delta_H 6.46846 kJ/mol +# deltafH -100.37 kcal/mol + -analytic 1.9171e2 7.8070e-2 -4.1048e3 -8.2292e1 -6.4108e1 +# Range 0-350 + -Vm 5.5057 5.665 3.5164 -3.0131 -0.038 +# Extrapol supcrt92 +# Ref SSH97 differ by 7.2 log K at 0C, 3.2 log K at 300C !! flag + +H2O + Fe+2 = FeOH+ + H+ + -llnl_gamma 4.0 + log_k -9.5 + -analytic 1.706e-1 0 -2.883e3 +# Range 0-350 + -Vm -0.2561 -8.4039 9.0457 -2.4315 0.7003 +# Extrapol supcrt92 +# Ref SSW+97, Marion+03,08 match + +H2O + Fe+3 = FeOH+2 + H+ + -llnl_gamma 4.5 + log_k -2.19 +# deltafH -0 kcal/mol + -analytic 5.300 0 -2.272e3 +# Range 0-350 + -Vm -1.1562 -10.6009 9.9077 -2.3407 1.43820 +# Extrapol supcrt92 +# Ref SSW+97, Marion+08 match + +2 CH3COOH + Gd+3 = Gd(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.9625 + -delta_H -22.3426 kJ/mol +# deltafH -401.74 kcal/mol + -analytic -4.3124e1 1.2995e-4 -4.3494e2 1.3677e1 5.1224e5 +# Range 0-350 + -Vm 9.4165 15.2134 -0.2342 -3.4078 0.6223 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Gd+3 = Gd(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -8.3489 + -delta_H -37.9907 kJ/mol +# deltafH -521.58 kcal/mol + -analytic -8.8296e1 -5.0939e-3 1.2268e3 2.8513e1 6.0745e5 +# Range 0-350 + -Vm 16.8116 33.2662 -7.3215 -4.1541 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Gd+3 + CH3COOH = GdCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -11.7152 kJ/mol +# deltafH -283.1 kcal/mol + -analytic -1.4118e1 1.6660e-3 -7.5206e2 4.2614 3.1187e5 +# Range 0-350 + -Vm 2.8605 -0.7945 6.0567 -2.7461 1.4477 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Gd+3 = GdCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.479 + -delta_H 89.9476 kJ/mol +# deltafH -307.6 kcal/mol # OBIGT: -330.22 kcal/mol HSS95 + -analytic 2.3628e2 5.4100e-2 -7.0746e3 -9.3413e1 -1.1046e2 +# Range 0-350 + -Vm -0.953 -10.1036 9.7095 -2.3612 1.1729 +# Extrapol supcrt92 +# Ref HSS95 + +Gd+3 + Cl- = GdCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.7821 kJ/mol +# deltafH -200.6 kcal/mol + -analytic 8.0750e1 3.8524e-2 -1.8591e3 -3.4621e1 -2.9034e1 +# Range 0-350 + -Vm -0.263 -8.417 9.0425 -2.4309 1.4006 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Gd+3 = GdCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 21.1961 kJ/mol +# deltafH -239 kcal/mol + -analytic 2.1754e2 8.0996e-2 -5.6121e3 -9.0067e1 -8.7635e1 +# Range 0-350 + -Vm 2.8492 -0.8272 6.0803 -2.7447 0.6305 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Gd+3 = GdCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 15.895 kJ/mol +# deltafH -280.2 kcal/mol + -analytic 4.1398e2 1.2829e-1 -1.1230e4 -1.6770e2 -1.7535e2 +# Range 0-350 + -Vm 6.3836 7.8028 2.6888 -3.1015 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Gd+3 = GdCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -1.53971 kJ/mol +# deltafH -324.3 kcal/mol + -analytic 4.7684e2 1.3157e-1 -1.3068e4 -1.9118e2 -2.0405e2 +# Range 0-350 + -Vm 11.1317 19.3995 -1.8761 -3.5809 1.631 +# Extrapol supcrt92 +# Ref HSS95 + +HPO4-2 + H+ + Gd+3 = GdH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -14.9996 kJ/mol +# deltafH -476.6 kcal/mol + -analytic 1.1058e2 6.4124e-2 1.3451e2 -4.8758e1 2.0660 +# Range 0-350 + -Vm 1.6048 -3.8632 7.2686 -2.6192 1.4574 +# Extrapol supcrt92 +# Ref HSS95 + +HCO3- + Gd+3 = GdHCO3+2 + -llnl_gamma 4.5 + log_k 1.6991 + -delta_H 10.0332 kJ/mol +# deltafH -326.7 kcal/mol + -analytic 4.1973e1 3.2521e-2 -2.3475e2 -1.9864e1 -3.6757 +# Range 0-350 + -Vm 0.6026 -6.3043 8.2153 -2.5183 1.2048 +# Extrapol supcrt92 +# Ref HSS95 + +NO3- + Gd+3 = GdNO3+2 + -llnl_gamma 4.5 + log_k 0.4347 + -delta_H -25.8195 kJ/mol +# deltafH -219.8 kcal/mol + -analytic 2.0253e1 2.6372e-2 1.8785e3 -1.3723e1 2.9306e1 +# Range 0-350 + -Vm 1.3205 -4.5535 7.5323 -2.5907 1.5475 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Gd+3 = GdO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.337 + -delta_H 113.039 kJ/mol +# deltafH -205.5 kcal/mol # OBIGT: -196.63 kcal/mol HSS95 + -analytic 2.0599e2 3.2521e-2 -1.4547e4 -7.4048e1 -2.2705e2 +# Range 0-350 + -Vm 2.8425 -0.8409 6.0801 -2.7441 0.3539 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Gd+3 = GdO2- + 4 H+ + -llnl_gamma 4.0 + log_k -34.4333 + -delta_H 283.817 kJ/mol +# deltafH -233 kcal/mol # OBIGT: -237.73 kcal/mol HSS95 + -analytic 1.2067e2 6.6276e-3 -1.5531e4 -4.0448e1 -4.3587e5 +# Range 0-350 + -Vm 5.0344 4.5111 3.9769 -2.9654 1.0495 -1 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Gd+3 = GdO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.2707 + -delta_H 224.405 kJ/mol +# deltafH -247.2 kcal/mol + -analytic 3.6324e2 4.7938e-2 -2.4275e4 -1.2988e2 -3.7889e2 +# Range 0-350 + -Vm 5.0117 4.4582 3.9917 -2.9632 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Gd+3 = GdOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 79.9855 kJ/mol +# deltafH -213.4 kcal/mol # OBIGT: 212.9 kcal/mol HSS95 + -analytic 8.3265e1 1.4153e-2 -6.8229e3 -2.9301e1 -1.0649e2 +# Range 0-350 + -Vm 2.7389 -1.0936 6.1786 -2.7337 1.1 +# Extrapol supcrt92 +# Ref HSS95 + +SO4-2 + Gd+3 = GdSO4+ + -llnl_gamma 4.0 + log_k -3.687 + -delta_H 20.0832 kJ/mol +# deltafH -376.8 kcal/mol + -analytic 3.0783e2 8.6798e-2 -1.1246e4 -1.2109e2 -1.7557e2 + #analytic 3.18e2 7.5e-2 -1.12e4 -1.21e2 -1.76e2 +# Range 0-350 + -Vm 1.4776 -4.1705 7.3822 -2.6065 0.7287 +# Extrapol supcrt92 +# Ref HSS95 differ by 7 log K at 0C, 3.7 log K at 300C !! flag + +2 HPO4-2 + 2 H+ = H2P2O7-2 + H2O + -llnl_gamma 4.0 + log_k 12.0709 + -delta_H 19.7192 kJ/mol +# deltafH -544.6 kcal/mol + -analytic 1.4825e2 6.7021e-2 -2.8329e3 -5.9251e1 -4.4248e1 +# Range 0-350 + -Vm 9.0963 14.4299 0.076 -3.3754 2.62180 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +HPO4-2 + H+ = H2PO4- + -llnl_gamma 4.0 + log_k 7.2054 + -delta_H -4.20492 kJ/mol +# deltafH -309.82 kcal/mol + -analytic 8.2149e1 3.4077e-2 -1.0431e3 -3.2970e1 -1.6301e1 +# Range 0-350 + -Vm 6.4875 8.0594 2.5823 -3.1122 1.3003 +# Extrapol supcrt92 +# Ref SH88 + +HS- + H+ = H2S + -llnl_gamma 3.0 + log_k 6.9877 + -delta_H -21.5518 kJ/mol +# deltafH -9.001 kcal/mol + -analytic 3.9283e1 2.8727e-2 1.3477e3 -1.8331e1 2.1018e1 +# Range 0-350 + -Vm 7.81 2.96 -0.46 # phreeqc.dat +# Extrapol supcrt92 +# Ref SSW01, SHS89 + +3 H+ + 2 HPO4-2 = H3P2O7- + H2O + -llnl_gamma 4.0 + log_k 14.4165 + -delta_H 21.8112 kJ/mol +# deltafH -544.1 kcal/mol + -analytic 2.3157e2 1.0161e-1 -4.3723e3 -9.4050e1 -6.8295e1 +# Range 0-350 + -Vm 9.1292 14.5122 0.0398 -3.3788 0.8568 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + HPO4-2 = H3PO4 + -llnl_gamma 3.0 + log_k 9.3751 + -delta_H 3.74468 kJ/mol +# deltafH -307.92 kcal/mol + -analytic 1.8380e2 6.7320e-2 -3.7792e3 -7.3463e1 -5.9025e1 +# Range 0-350 + -Vm 8.2727 12.4182 0.8691 -3.2924 -0.22 +# Extrapol supcrt92 +# Ref SHS89 + +4 H+ + 2 HPO4-2 = H4P2O7 + H2O + -llnl_gamma 3.0 + log_k 15.9263 + -delta_H 29.7226 kJ/mol +# deltafH -2268.6 kJ/mol + -analytic 6.9026e2 2.4309e-1 -1.6165e4 -2.7989e2 -2.7475e2 +# Range 0-350 + -Vm 9.2975 14.9199 -0.113 -3.3957 -0.62920 +# Extrapol supcrt92, 69hel +# Ref SSW+97, WEP+82 + +2 H2O + Al+3 = HAlO2 + 3 H+ + -llnl_gamma 3.0 + log_k -16.4329 + -delta_H 144.704 kJ/mol +# deltafH -230.73 kcal/mol + -analytic 4.2012e1 1.9980e-2 -7.7847e3 -1.5470e1 -1.2149e2 +# Range 0-350 + -Vm 3.5338 0.8485 5.4132 -2.8140 -0.03 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel + +H+ + CN- = HCN + -llnl_gamma 3.0 + log_k 9.2359 + -delta_H -43.5136 kJ/mol +# deltafH 25.6 kcal/mol + -analytic 1.0536e1 2.3105e-2 3.3038e3 -7.7786 5.1550e1 +# Range 0-350 + -Vm 8.0083 11.7705 1.1286 -3.2655 -0.1113 +# Extrapol supcrt92 +# Ref SM93 + +H+ + Cl- = HCl + -llnl_gamma 3.0 + log_k -0.67 +# deltafH -0 kcal/mol + -analytic 4.1893e2 1.1103e-1 -1.1784e4 -1.6697e2 -1.8400e2 +# Range 0-350 + -Vm 1.2547 -4.7177 7.6043 -2.5840 -0.7 +# Extrapol supcrt92, ? +# Ref MS97, 87rua/sew match + +H+ + CrO4-2 = HCrO4- + -llnl_gamma 4.0 + log_k 6.4944 + -delta_H 2.9288 kJ/mol +# deltafH -209.9 kcal/mol + -analytic 4.4944e1 3.2740e-2 1.8400e2 -1.9722e1 2.8578 +# Range 0-350 + -Vm 8.2211 12.2925 0.9174 -3.2871 0.923 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +NO2- + H+ = HNO2 + -llnl_gamma 3.0 + log_k 3.2206 + -delta_H -14.782 kJ/mol +# deltafH -119.382 kJ/mol + -analytic 1.9653 -1.1603e-4 0 0 1.1569e5 +# Range 0-350 + -Vm 5.9151 6.659 3.1378 -3.0542 -0.1507 +# Extrapol supcrt92, 69hel +# Ref SSW+97, WEP+82 match + +NO3- + H+ = HNO3 + -llnl_gamma 3.0 + log_k -1.3025 + -delta_H 16.8155 kJ/mol +# deltafH -45.41 kcal/mol + -analytic 9.9744e1 3.4866e-2 -3.0975e3 -4.0830e1 -4.8363e1 +# Range 0-350 + -Vm 7.1623 9.7063 1.9367 -3.1802 -0.3066 +# Extrapol supcrt92 +# Ref SSW+97, SHS89 + +2 HPO4-2 + H+ = HP2O7-3 + H2O + -llnl_gamma 4.0 + log_k 5.4498 + -delta_H 23.3326 kJ/mol +# deltafH -2274.99 kJ/mol + -analytic 3.9159e2 1.5438e-1 -8.7071e3 -1.6283e2 -1.3598e2 +# Range 0-350 + -Vm 8.3302 12.5558 0.8208 -3.2980 4.647 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, WEP+82 differ by 0 log K at 0C, 4.7 log K at 300C + +SO3-2 + H+ = HSO3- + -llnl_gamma 4.0 + log_k 7.2054 + -delta_H 9.33032 kJ/mol +# deltafH -149.67 kcal/mol + -analytic 5.5899e1 3.3623e-2 -5.0120e2 -2.3040e1 -7.8373 +# Range 0-350 + -Vm 6.7014 8.5816 2.3771 -0.31338 1.1233 +# Extrapol supcrt92 +# Ref SH88 + +SO4-2 + H+ = HSO4- + -llnl_gamma 4.0 + log_k 1.9791 + -delta_H 20.5016 kJ/mol +# deltafH -212.5 kcal/mol + -analytic 4.9619e1 3.0368e-2 -1.1558e3 -2.1335e1 -1.8051e1 +# Range 0-350 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # APP14 +# Extrapol supcrt92 +# Ref SH88 + +SiO2 + H2O = HSiO3- + H+ + -llnl_gamma 4.0 + log_k -9.9525 + -delta_H 25.991 kJ/mol +# deltafH -271.88 kcal/mol + -analytic 6.4211e1 -2.4872e-2 -1.2707e4 -1.4681e1 1.0853e6 +# Range 0-350 + -Vm 2.9735 -0.5158 5.9467 -2.7575 1.5511 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + K+ = K(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -10.2914 + -delta_H -1.79912 kJ/mol +# deltafH -292.9 kcal/mol + -analytic -2.3036e2 -4.6369e-2 7.0305e3 8.4997e1 1.0977e2 +# Range 0-350 + -Vm 17.8481 35.7984 -8.3193 -4.2588 0.7097 +# Extrapol supcrt92 +# Ref SK93 + +K+ + CH3COOH = KCH3COO + H+ + -llnl_gamma 3.0 + log_k -5.0211 + -delta_H 4.8116 kJ/mol +# deltafH -175.22 kcal/mol + -analytic -2.6676e-1 -3.2675e-3 -1.7143e3 -7.1907e-3 1.7726e5 +# Range 0-350 + -Vm 17.8481 35.7984 -8.3193 -4.2588 0.7097 +# Extrapol supcrt92 +# Ref SK93 + +K+ + Cl- = KCl + -llnl_gamma 3.0 + log_k -1.4946 + -delta_H 14.1963 kJ/mol +# deltafH -96.81 kcal/mol + -analytic 1.3650e2 3.8405e-2 -4.4014e3 -5.4421e1 -6.8721e1 +# Range 0-350 + -Vm 6.9932 9.297 2.0889 -3.1633 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + K+ + H+ = KHSO4 + -llnl_gamma 3.0 + log_k 0.8136 + -delta_H 29.8319 kJ/mol +# deltafH -270.54 kcal/mol + -analytic 1.2620e2 5.7349e-2 -3.3670e3 -5.3003e1 -5.2576e1 +# Range 0-350 + -Vm 9.1226 14.4964 0.0453 -3.3782 -0.001 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + K+ = KSO4- + -llnl_gamma 4.0 + log_k 0.8796 + -delta_H 2.88696 kJ/mol +# deltafH -276.98 kcal/mol + -analytic 9.9073e1 3.7817e-2 -2.1628e3 -4.1297e1 -3.3779e1 +# Range 0-350 + -Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Li+ = Li(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.2674 + -delta_H -24.7609 kJ/mol +# deltafH -304.67 kcal/mol + -analytic -3.3702e2 -6.0849e-2 1.1952e4 1.2359e2 1.8659e2 +# Range 0-350 + -Vm 16.3412 32.1211 -6.8785 -4.1068 1.2422 +# Extrapol supcrt92 +# Ref SK93 + +Li+ + CH3COOH = LiCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.4589 + -delta_H -6.64419 kJ/mol +# deltafH -184.24 kcal/mol + -analytic -3.8391 -7.3938e-4 -1.0829e3 3.4134e-1 2.1318e5 +# Range 0-350 + -Vm 8.388 12.6976 0.7639 -3.3038 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Li+ + Cl- = LiCl + -llnl_gamma 3.0 + log_k -1.5115 + -delta_H 3.36812 kJ/mol +# deltafH -105.68 kcal/mol + -analytic 1.2484e2 4.1941e-2 -3.2439e3 -5.1708e1 -5.0655e1 +# Range 0-350 + -Vm 5.5837 5.8554 3.4416 -3.021 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Mg+2 = Mg(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.473 + -delta_H -23.8195 kJ/mol +# deltafH -349.26 kcal/mol + -analytic -4.3954e1 -3.1842e-4 -1.2033e3 1.3556e1 6.3058e5 +# Range 0-350 + -Vm 12.3982 22.4898 -3.0853 -3.7086 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Mg+2 + CH3COOH = MgCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.4781 + -delta_H -8.42239 kJ/mol +# deltafH -229.48 kcal/mol + -analytic -2.3548e1 -1.6071e-3 -4.2228e2 7.7009 2.5981e5 +# Range 0-350 + -Vm 5.4981 5.6424 3.5341 -3.0122 0.7483 +# Extrapol supcrt92 +# Ref SK93 + +Mg+2 + HCO3- = MgCO3 + H+ + -llnl_gamma 3.0 + log_k -7.3499 + -delta_H 23.8279 kJ/mol +# deltafH -270.57 kcal/mol + -analytic 2.3465e2 5.5538e-2 -8.3947e3 -9.3104e1 -1.3106e2 +# Range 0-350 + -Vm -0.7355 -9.5745 9.5062 -2.3831 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +Mg+2 + Cl- = MgCl+ + -llnl_gamma 4.0 + log_k -0.1349 + -delta_H -0.58576 kJ/mol +# deltafH -151.44 kcal/mol + -analytic 4.3363e1 3.2858e-2 1.1878e2 -2.1688e1 1.8403 +# Range 0-350 + -Vm 2.223 -2.3505 6.6669 -2.6818 0.84490 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + Mg+2 = MgSO4 + -llnl_gamma 3.0 + log_k 2.4117 + -delta_H 19.6051 kJ/mol +# deltafH -1355.96 kJ/mol + -analytic 1.7994e2 6.4715e-2 -4.7314e3 -7.3123e1 -8.0408e1 +# Range 0-350 + -Vm 2.4 -0.97 6.1 -2.74 # APP14 +# Extrapol supcrt92, 69hel +# Ref MS97, 82mar/smi match + +2 CH3COOH + Mn+2 = Mn(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.4547 + -delta_H -11.4893 kJ/mol +# deltafH -287.67 kcal/mol + -analytic -9.0558e-1 5.9656e-3 -4.3531e3 -1.1063 8.0323e5 +# Range 0-350 + -Vm 13.1542 24.3405 -3.8236 -3.7851 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Mn+2 = Mn(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.8747 + -delta_H -30.3591 kJ/mol +# deltafH -408.28 kcal/mol + -analytic -3.8531 -9.9140e-3 -1.2065e4 5.1424 2.0175e6 +# Range 0-350 + -Vm 21.6217 45.0124 -11.9409 -4.6397 1.15360 +# Extrapol supcrt92 +# Ref SK93 + +Mn+2 + CH3COOH = MnCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.5404 + -delta_H -3.07942 kJ/mol +# deltafH -169.56 kcal/mol + -analytic -1.4061e1 1.8149e-3 -8.6438e2 4.0354 2.5831e5 +# Range 0-350 + -Vm 6.0776 7.057 2.9786 -3.0706 0.4555 +# Extrapol supcrt92 +# Ref SK93 + +Mn+2 + Cl- = MnCl+ + -llnl_gamma 4.0 + log_k 0.3013 + -delta_H 18.3134 kJ/mol +# deltafH -88.28 kcal/mol + -analytic 8.7072e1 4.0361e-2 -2.1786e3 -3.6966e1 -3.4022e1 +# Range 0-350 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +1.5 H2O + 1.25 O2 + Mn+2 = MnO4- + 3 H+ + -llnl_gamma 3.5 + log_k -20.2963 + -delta_H 123.112 kJ/mol +# deltafH -129.4 kcal/mol + -analytic 1.8544e1 -1.7618e-2 -6.7332e3 -3.3193 -2.4924e5 +# Range 0-350 + -Vm 7.8248 11.3277 1.2912 -3.2472 0.9248 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +SO4-2 + Mn+2 = MnSO4 + -llnl_gamma 3.0 + log_k 2.3529 + -delta_H 14.1168 kJ/mol +# deltafH -266.75 kcal/mol + -analytic 2.9448e2 8.5294e-2 -8.1366e3 -1.1729e2 -1.2705e2 +# Range 0-350 + -Vm -1.31 -1.83 62.3 -2.7 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + NH3 = NH4(CH3COO)2- + H+ + -llnl_gamma 4.0 + log_k -0.1928 + -delta_H -56.735 kJ/mol +# deltafH -265.2 kcal/mol + -analytic 3.7137e1 -1.2242e-2 -8.4764e3 -8.4308 1.3883e6 +# Range 0-350 + -Vm 19.3685 39.509 -9.7736 -4.4122 0.6495 +# Extrapol supcrt92 +# Ref SK93 + +NH3 + H+ = NH4+ + -llnl_gamma 2.5 + log_k 9.2410 + -delta_H -51.9234 kJ/mol +# deltafH -31.85 kcal/mol + -analytic -1.4527e1 -5.0518e-3 3.0447e3 6.0865 4.7515e1 +# Range 0-350 + -Vm 3.8763 2.3448 8.5605 -2.8759 0.1502 +# Extrapol supcrt92 +# Ref SH88 + +NH3 + CH3COOH = NH4CH3COO + -llnl_gamma 3.0 + log_k 4.6964 + -delta_H -48.911 kJ/mol +# deltafH -147.23 kcal/mol + -analytic 1.4104e1 -4.3664e-3 -1.0746e3 -3.6999 4.1428e5 +# Range 0-350 + -Vm 11.2849 19.7719 -2.0187 -3.5963 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Na+ = Na(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.9989 + -delta_H -11.5771 kJ/mol +# deltafH -292.4 kcal/mol + -analytic -2.9232e2 -5.5708e-2 9.6601e3 1.0772e2 1.5082e2 +# Range 0-350 + -Vm 16.2062 31.7884 -6.7416 -4.0930 0.9633 +# Extrapol supcrt92 +# Ref SK93 + +Na+ + CH3COOH = NaCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.8606 + -delta_H -0.029288 kJ/mol +# deltafH -173.54 kcal/mol + -analytic 6.4833 -1.8739e-3 -2.0902e3 -2.6121 2.3990e5 +# Range 0-350 + -Vm 8.3514 12.6125 0.7884 -3.3003 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Na+ + Cl- = NaCl + -llnl_gamma 3.0 + log_k -0.777 + -delta_H 5.21326 kJ/mol +# deltafH -96.12 kcal/mol + -analytic 1.1398e2 3.6386e-2 -3.0847e3 -4.6571e1 -4.8167e1 +# Range 0-350 + -Vm 5.0364 4.5189 3.9669 -2.9658 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +Na+ + HCO3- = NaHCO3 + -llnl_gamma 3.0 + log_k 0.1541 + -delta_H -13.7741 kJ/mol +# deltafH -944.007 kJ/mol + -analytic -9.0668e1 -2.9866e-2 2.7947e3 3.6515e1 4.7489e1 +# Range 0-200 + -Vm 0.431 # APP14 +# Extrapol 69hel +# Ref WEP+82 + +SiO2 + Na+ + H2O = NaHSiO3 + H+ + -llnl_gamma 3.0 + log_k -8.304 + -delta_H 11.6524 kJ/mol +# deltafH -332.74 kcal/mol + -analytic 3.6045e1 -9.0411e-3 -6.6605e3 -1.0447e1 5.8415e5 +# Range 0-350 + -Vm 3.4928 0.75 5.4483 -2.8100 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +Na+ + H2O = NaOH + H+ + -llnl_gamma 3.0 + log_k -14.7948 + -delta_H 53.6514 kJ/mol +# deltafH -112.927 kcal/mol + -analytic 8.7326e1 2.3555e-2 -5.4770e3 -3.6678e1 -8.5489e1 +# Range 0-350 + -Vm 2.2338 -2.3287 6.6683 -2.6826 -0.03 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +2 CH3COOH + Ni+2 = Ni(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.1908 + -delta_H -25.8571 kJ/mol +# deltafH -251.28 kcal/mol + -analytic -2.9660e1 1.0643e-3 -1.0060e3 7.9358 5.2562e5 +# Range 0-350 + -Vm 11.1327 19.4031 -1.8801 -3.5810 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Ni+2 = Ni(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.3543 + -delta_H -53.6807 kJ/mol +# deltafH -374.03 kcal/mol + -analytic 5.0850e1 -8.2435e-3 -1.3049e4 -1.5410e1 1.9704e6 +# Range 0-350 + -Vm 19.5212 39.8827 -9.9226 -4.4277 0.1603 +# Extrapol supcrt92 +# Ref SK93 + +Ni+2 + CH3COOH = NiCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.3278 + -delta_H -10.2508 kJ/mol +# deltafH -131.45 kcal/mol + -analytic -3.3110 1.6895e-3 -1.0556e3 2.7168e-2 2.6350e5 +# Range 0-350 + -Vm 4.3556 2.8512 4.6343 -2.8968 0.7287 +# Extrapol supcrt92 +# Ref SK93 + +Ni+2 + Cl- = NiCl+ + -llnl_gamma 4.0 + log_k -0.9962 + -delta_H 5.99567 kJ/mol +# deltafH -51.4 kcal/mol + -analytic 9.5370e1 3.8521e-2 -2.1746e3 -4.0629e1 -3.3961e1 +# Range 0-350 + -Vm 1.1319 -5.0147 7.714 -2.5716 0.8111 +# Extrapol supcrt92 +# Ref SSH97 + +H2O = OH- + H+ + -llnl_gamma 3.5 + log_k -13.9951 + -delta_H 55.8146 kJ/mol +# deltafH -54.977 kcal/mol + -analytic -6.7506e1 -3.0619e-2 -1.9901e3 2.8004e1 -3.1033e1 +# Range 0-350 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SH88 + +2 HPO4-2 = P2O7-4 + H2O + -llnl_gamma 4.0 + log_k -3.7463 + -delta_H 27.2256 kJ/mol +# deltafH -2271.1 kJ/mol + -analytic 4.0885e2 1.3243e-1 -1.1373e4 -1.6727e2 -1.7758e2 +# Range 0-350 + -Vm 7.0687 9.4773 2.0273 -3.1707 6.9069 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, WEP+82 differ by 0.1 log K at 0C, 7 log K at 350C !! flag + +HPO4-2 = PO4-3 + H+ + -llnl_gamma 4.0 + log_k -12.3218 + -delta_H 14.7068 kJ/mol +# deltafH -305.3 kcal/mol + -analytic -7.6170e1 -3.3574e-2 1.3405e2 2.9658e1 2.1140 +# Range 0-350 + -Vm -0.5258 -9.0576 9.2927 -2.4045 5.61140 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + 2 SO3-2 = S2O5-2 + H2O + -llnl_gamma 4.0 + log_k 9.5934 +# deltafH -0 kcal/mol + -analytic 0.12262e3 0.62883e-1 -0.18005e4 -0.50798e2 -0.28132e2 +# Range 0-350 + -Vm 7.3618 10.1945 1.7414 -3.2003 2.8343 # SSW+97 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + SO3-2 = SO2 + H2O + -llnl_gamma 3.0 + log_k 9.0656 + -delta_H 26.7316 kJ/mol +# deltafH -77.194 kcal/mol + -analytic 9.4048e1 6.2127e-2 -1.1072e3 -4.0310e1 -1.7305e1 +# Range 0-350 + -Vm 6.9502 9.189 2.1383 -3.1589 -0.0559 +# Extrapol supcrt92 +# Ref SHS89 + +2 CH3COOH + Sc+3 = Sc(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -3.7237 + -delta_H -43.1789 kJ/mol +# deltafH -389.32 kcal/mol + -analytic -4.1862e1 -3.9443e-5 2.1444e2 1.2616e1 5.5442e5 +# Range 0-350 + -Vm 9.2794 14.8737 -0.0899 -3.3938 0.9706 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Sc+3 = Sc(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -6.6777 + -delta_H -70.0402 kJ/mol +# deltafH -511.84 kcal/mol + -analytic -5.2525e1 1.6181e-3 7.5022e2 1.3988e1 7.3540e5 +# Range 0-350 + -Vm 16.5277 32.5748 -7.0539 -4.1255 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Sc+3 + CH3COOH = ScCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.4294 + -delta_H -21.7568 kJ/mol +# deltafH -268.1 kcal/mol + -analytic -2.3400e1 1.3144e-4 1.1125e2 7.3527 3.0025e5 +# Range 0-350 + -Vm 2.7175 -1.1437 6.1937 -2.7316 1.7013 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Sm+3 = Sm(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.7132 + -delta_H -25.5224 kJ/mol +# deltafH -403.5 kcal/mol + -analytic -1.4192e1 2.1732e-3 -1.0267e3 2.9516 4.4389e5 +# Range 0-350 + -Vm 9.159 14.5839 0.0138 -3.3818 0.6644 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Sm+3 = Sm(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -7.8798 + -delta_H -43.5554 kJ/mol +# deltafH -523.91 kcal/mol + -analytic -2.0765e1 1.1047e-3 -5.1181e2 3.4797 5.0618e5 +# Range 0-350 + -Vm 16.5088 32.5307 -7.0412 -4.1237 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Sm+3 + CH3COOH = SmCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.9205 + -delta_H -13.598 kJ/mol +# deltafH -284.55 kcal/mol + -analytic -1.1734e1 1.0889e-3 -5.1061e2 3.3317 2.6395e5 +# Range 0-350 + -Vm 2.6264 -1.3667 6.2827 -2.7224 1.4769 +# Extrapol supcrt92 +# Ref SK93 + +Sm+3 + HCO3- = SmCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.479 + -delta_H 89.1108 kJ/mol +# deltafH -308.8 kcal/mol # OBIGT: -331.34 kcal/mol HSS95 + -analytic 2.3486e2 5.3703e-2 -7.0193e3 -9.2863e1 -1.0960e2 +# Range 0-350 + -Vm -1.0455 -10.3293 9.798 -2.3519 1.1907 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + Cl- = SmCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.3637 kJ/mol +# deltafH -201.7 kcal/mol + -analytic 9.4972e1 3.9428e-2 -2.4198e3 -3.9718e1 -3.7787e1 +# Range 0-350 + -Vm -0.5006 -8.9988 9.2743 -2.4069 1.4192 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Sm+3 = SmCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 19.9409 kJ/mol +# deltafH -240.3 kcal/mol + -analytic 2.5872e2 8.4154e-2 -7.2061e3 -1.0493e2 -1.1252e2 +# Range 0-350 + -Vm 2.5888 -1.4617 6.3276 -2.7185 0.6644 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Sm+3 = SmCl3 + -llnl_gamma 3.0 + log_k -0.3936 + -delta_H 13.803 kJ/mol +# deltafH -281.7 kcal/mol + -analytic 4.9535e2 1.3520e-1 -1.4325e4 -1.9720e2 -2.2367e2 +# Range 0-350 + -Vm 6.0808 7.0673 2.9692 -3.0711 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Sm+3 = SmCl4- + -llnl_gamma 4.0 + log_k -0.818 + -delta_H -5.30531 kJ/mol +# deltafH -326.2 kcal/mol + -analytic 6.0562e2 1.4212e-1 -1.7982e4 -2.3782e2 -2.8077e2 +# Range 0-350 + -Vm 10.8148 18.6261 -1.5732 -3.5489 1.6917 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + HPO4-2 + H+ = SmH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -15.8364 kJ/mol +# deltafH -477.8 kcal/mol + -analytic 1.2451e2 6.4959e-2 -3.9576e2 -5.3772e1 -6.2124 +# Range 0-350 + -Vm 1.3708 -4.4295 7.4801 -2.5958 1.4867 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + HCO3- = SmHCO3+2 + -llnl_gamma 4.5 + log_k 1.7724 + -delta_H 9.19643 kJ/mol +# deltafH -327.9 kcal/mol + -analytic 5.5520e1 3.3265e-2 -7.3142e2 -2.4727e1 -1.1430e1 +# Range 0-350 + -Vm 0.3694 -6.8727 8.4365 -2.4948 1.2366 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + NO3- = SmNO3+2 + -llnl_gamma 4.5 + log_k 0.8012 + -delta_H -29.1667 kJ/mol +# deltafH -221.6 kcal/mol + -analytic 3.3782e1 2.7125e-2 1.5091e3 -1.8632e1 2.3537e1 +# Range 0-350 + -Vm 1.0908 -5.1124 7.7478 -2.5676 1.5897 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + H2O = SmO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.4837 + -delta_H 113.039 kJ/mol +# deltafH -206.5 kcal/mol # OBIGT: -197.63 kcal/mol HSS95 + -analytic 1.8554e2 3.0198e-2 -1.3791e4 -6.6588e1 -2.1526e2 +# Range 0-350 + -Vm 2.8115 -0.9157 6.1076 -2.741 0.3837 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Sm+3 = SmO2- + 4 H+ + -llnl_gamma 4.0 + log_k -35.0197 + -delta_H 285.909 kJ/mol +# deltafH -233.5 kcal/mol # OBIGT: -238.22 kcal/mol HSS95 + -analytic 1.3508e1 -8.3384e-3 -1.0325e4 -1.5506 -6.7392e5 +# Range 0-350 + -Vm 4.9642 4.3393 4.0456 -2.9583 1.0848 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Sm+3 = SmO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.9304 + -delta_H 226.497 kJ/mol +# deltafH -247.7 kcal/mol + -analytic 3.6882e2 5.3761e-2 -2.4317e4 -1.3305e2 -3.7956e2 +# Range 0-350 + -Vm 4.9296 4.2552 4.0768 -2.9548 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + H2O = SmOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9808 + -delta_H 79.1487 kJ/mol +# deltafH -214.6 kcal/mol # OBIGT: -213.97 kcal/mol HSS95 + -analytic 6.3793e1 1.1977e-2 -6.0852e3 -2.2198e1 -9.4972e1 +# Range 0-350 + -Vm 2.7076 -1.1676 6.2027 -2.7306 1.1289 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + SO4-2 = SmSO4+ + -llnl_gamma 4.0 + log_k 3.6430 + -delta_H 20.0832 kJ/mol +# deltafH -377.8 kcal/mol + -analytic 3.0597e2 8.6258e-2 -9.0231e3 -1.2032e2 -1.4089e2 +# Range 0-350 + -Vm -1.3885 -4.3882 7.4678 -2.5975 0.7483 +# Extrapol supcrt92 +# Ref HSS95 + +UO2+2 + H2O = UO2OH+ + H+ + -llnl_gamma 4.0 + log_k -5.2073 + -delta_H 43.1813 kJ/mol +# deltafH -1261.66 kJ/mol + -analytic 3.4387e1 6.0811e-3 -3.3068e3 -1.2252e1 -5.1609e1 +# Range 0-350 + -Vm 4.764 3.8529 4.2318 -2.9382 0.4925 # SSB97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +2 CH3COOH + Zn+2 = Zn(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -6.062 + -delta_H -11.0458 kJ/mol +# deltafH -271.5 kcal/mol + -analytic -2.2038e1 2.6133e-3 -2.7652e3 6.8501 6.7086e5 +# Range 0-350 + -Vm 11.7443 20.8978 -2.4707 -3.6429 -0.038 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +3 CH3COOH + Zn+2 = Zn(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -10.0715 + -delta_H 25.355 kJ/mol +# deltafH -378.9 kcal/mol + -analytic 3.5104e1 -6.1568e-3 -1.3379e4 -8.7697 2.0670e6 +# Range 0-350 + -Vm 20.0332 41.1373 -10.4257 -4.4796 1.2513 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Zn+2 + CH3COOH = ZnCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.1519 + -delta_H -9.87424 kJ/mol +# deltafH -155.12 kcal/mol + -analytic -7.9367 2.8564e-3 -1.4514e3 2.5010 2.3343e5 +# Range 0-350 + -Vm 4.8484 4.06 4.1473 -2.9468 0.41 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Zn+2 + Cl- = ZnCl+ + -llnl_gamma 4.0 + log_k 0.1986 + -delta_H 43.317 kJ/mol +# deltafH -66.24 kcal/mol + -analytic 1.1235e2 4.4461e-2 -4.1662e3 -4.5023e1 -6.5042e1 +# Range 0-350 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 Cl- + Zn+2 = ZnCl2 + -llnl_gamma 3.0 + log_k 0.2507 + -delta_H 31.1541 kJ/mol +# deltafH -109.08 kcal/mol + -analytic 1.7824e2 7.5733e-2 -4.6251e3 -7.4770e1 -7.2224e1 +# Range 0-350 + -Vm -10.1 4.57 241 -2.97 -1e-3 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +3 Cl- + Zn+2 = ZnCl3- + -llnl_gamma 4.0 + log_k -0.0198 + -delta_H 22.5894 kJ/mol +# deltafH -151.06 kcal/mol + -analytic 1.3889e2 7.4712e-2 -2.1527e3 -6.2200e1 -3.3633e1 +# Range 0-350 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +4 Cl- + Zn+2 = ZnCl4-2 + -llnl_gamma 4.0 + log_k 0.8605 + -delta_H 4.98733 kJ/mol +# deltafH -195.2 kcal/mol + -analytic 8.4294e1 7.0021e-2 3.9150e2 -4.2664e1 6.0834 +# Range 0-300 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97? + +Zn+2 + H2O = ZnOH+ + H+ + -llnl_gamma 4.0 + log_k -8.96 +# deltafH -0 kcal/mol + -analytic -7.8600e-1 -2.9499e-4 -2.8673e3 6.1892e-1 -4.2576e1 +# Range 25-300 + -Vm 1.1499 -4.9677 7.6896 -2.5735 0.326 +# Extrapol supcrt92, ? +# Ref SSW+97, 87bou/bar differ by 0.8 log K at 0C, 2.7 log K at 300C + +Zn+2 + SO4-2 = ZnSO4 + -llnl_gamma 3.0 + log_k 2.3062 + -delta_H 15.277 kJ/mol +# deltafH -1047.71 kJ/mol + -analytic 1.3640e2 5.1256e-2 -3.4422e3 -5.5695e1 -5.8501e1 +# Range 0-200 + -Vm 2.51 0 18.8 # APP14 +# Extrapol 69hel +# Ref WEP+82 + +PHASES + +#------------ +# 375 solids +#------------ + +[(6)(CB)(CB)S] + S + O2 = SO2 + log_k 63.04 + -analytic 137.16 -0.320465 0 0 0 0.000241 +# Range 0-350 + -Vm 16.5 +# Extrapol supcrt92 +# Ref R01, calculations and fit by N17 + +[(aro)-O-(aro)] + O = 0.5 O2 + log_k -20.610681 + -delta_H 30.240 kcal/mol + -analytic -46.6 0.111 0 0 0 -7.99e-5 +# Range 0-350 + -Vm -2.4 +# Extrapol supcrt92 +# Ref RH98 + +Afwillite + Ca3Si2O4(OH)6 + 6 H+ = 2 SiO2 + 3 Ca+2 + 6 H2O + log_k 60.0452 + -delta_H -316.059 kJ/mol +# deltafH -1143.31 kcal/mol + -analytic 1.8353e1 1.9014e-3 1.8478e4 -6.6311 -4.0227e5 +# Range 0-300 + -Vm 129.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Akermanite + Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 SiO2 + 3 H2O + log_k 45.3190 + -delta_H -288.575 kJ/mol +# deltafH -926.497 kcal/mol + -analytic -4.8295e1 -8.5613e-3 2.0880e4 1.3798e1 -7.1975e5 +# Range 0-350 + -Vm 92.81 +# Extrapol supcrt92 +# Ref HDN+78 + +Al + Al + 3 H+ + 0.75 O2 = Al+3 + 1.5 H2O + log_k 149.9292 + -delta_H -958.059 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.8752e2 -4.6187e-2 5.7127e4 6.6270e1 -3.8952e5 +# Range 0-300 + -Vm 9.99 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Al2(SO4)3 + Al2(SO4)3 = 2 Al+3 + 3 SO4-2 + log_k 19.0535 + -delta_H -364.566 kJ/mol +# deltafH -3441.04 kJ/mol + -analytic -6.1001e2 -2.4268e-1 2.9194e4 2.4383e2 4.5573e2 +# Range 0-300 + -Vm 126.25 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Alabandite + MnS + H+ = HS- + Mn+2 + log_k -0.3944 + -delta_H -23.3216 kJ/mol +# deltafH -51 kcal/mol + -analytic -1.5515e2 -4.8820e-2 4.9049e3 6.1765e1 7.6583e1 +# Range 0-350 + -Vm 21.46 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol +# deltafH -939.68 kcal/mol + -analytic -1.1694e1 1.4429e-2 1.3784e4 -7.2866 -1.6136e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite_high + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 4.0832 + -delta_H -62.8562 kJ/mol +# deltafH -937.05 kcal/mol + -analytic -1.8957e1 1.3726e-2 1.4801e4 -4.9732 -1.6442e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite_low + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol +# deltafH -939.68 kcal/mol + -analytic -1.2860e1 1.4481e-2 1.3913e4 -6.9417 -1.6256e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Alum-K + KAl(SO4)2:12H2O = Al+3 + K+ + 2 SO4-2 + 12 H2O + log_k -4.8818 + -delta_H 14.4139 kJ/mol +# deltafH -1447 kcal/mol + -analytic -8.8025e2 -2.5706e-1 2.2399e4 3.5434e2 3.4978e2 +# Range 0-300 + -Vm 269.54 # Marion+09 +# Extrapol Cp integration +# Ref 73bar/kna + +Alunite + KAl3(OH)6(SO4)2 + 6 H+ = K+ + 2 SO4-2 + 3 Al+3 + 6 H2O + log_k -0.3479 + -delta_H -231.856 kJ/mol +# deltafH -1235.6 kcal/mol + -analytic -6.8581e2 -2.2455e-1 2.6886e4 2.6758e2 4.1973e2 +# Range 0-350 + -Vm 205.40 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Amesite-14A + Mg4Al4Si2O10(OH)8 + 20 H+ = 2 SiO2 + 4 Al+3 + 4 Mg+2 + 14 H2O + log_k 75.4571 + -delta_H -797.098 kJ/mol +# deltafH -2145.67 kcal/mol + -analytic -5.4326e2 -1.4144e-1 5.4150e4 1.9361e2 8.4512e2 +# Range 0-300 + -Vm 205.4 +# Extrapol Cp integration +# Ref 78wol + +Analcime + Na.96Al.96Si2.04O6:H2O + 3.84 H+ = 0.96 Al+3 + 0.96 Na+ + 2.04 SiO2 + 2.92 H2O + log_k 6.1396 + -delta_H -75.844 kJ/mol +# deltafH -3296.86 kJ/mol + -analytic -6.8694 6.6052e-3 9.8260e3 -4.8540 -8.8780e5 +# Range 0-350 + -Vm 97.1 # 96.8 in thermo.com.V8.R6+.tdat +# Extrapol supcrt92, Cp integration +# Ref HDN+78, 82joh/flo match but differ from Wilson+06 by 1 log K at 0C, 0 log K a 300C + +Andalusite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 15.9445 + -delta_H -235.233 kJ/mol +# deltafH -615.866 kcal/mol + -analytic -7.1115e1 -3.2234e-2 1.2308e4 2.2357e1 1.9208e2 +# Range 0-350 + -Vm 51.53 +# Extrapol supcrt92 +# Ref HDN+78 differ by 1.6 log K at 0C, 0.5 log K at 350C + +Andradite + Ca3Fe2(SiO4)3 + 12 H+ = 2 Fe+3 + 3 Ca+2 + 3 SiO2 + 6 H2O + log_k 33.3352 + -delta_H -301.173 kJ/mol +# deltafH -1380.35 kcal/mol + -analytic 1.3884e1 -2.3886e-2 1.5314e4 -8.1606 -4.2193e5 +# Range 0-350 + -Vm 131.85 +# Extrapol supcrt92 +# Ref HDN+78 + +Anhydrite + CaSO4 = Ca+2 + SO4-2 + log_k -4.3064 + -delta_H -18.577 kJ/mol +# deltafH -342.76 kcal/mol + -analytic -2.0986e2 -7.8823e-2 5.0969e3 8.5642e1 7.9594e1 +# Range 0-350 + -Vm 45.94 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Annite + KFe3AlSi3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 SiO2 + 6 H2O + log_k 29.4693 + -delta_H -259.964 kJ/mol +# deltafH -1232.19 kcal/mol + -analytic -4.0186e1 -1.4238e-2 1.8929e4 7.9859e0 -8.4343e5 +# Range 0-350 + -Vm 154.32 +# Extrapol supcrt92 +# Ref HDN+78 + +Anorthite + CaAl2(SiO4)2 + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 4 H2O + log_k 26.5780 + -delta_H -303.039 kJ/mol +# deltafH -1007.55 kcal/mol + -analytic 3.9717e-1 -1.8751e-2 1.4897e4 -6.3078 -2.3885e5 +# Range 0-350 + -Vm 100.79 +# Extrapol supcrt92 +# Ref HDN+78 + +Anthophyllite + Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 + 8 H2O + 8 SiO2 + log_k 66.7965 + -delta_H -483.486 kJ/mol +# deltafH -2888.75 kcal/mol + -analytic -1.2865e2 1.9705e-2 5.4853e4 1.9444e1 -3.8080e6 +# Range 0-350 + -Vm 264.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Antigorite + Mg48Si34O85(OH)62 + 96 H+ = 34 SiO2 + 48 Mg+2 + 79 H2O + log_k 477.1943 + -delta_H -3364.43 kJ/mol +# deltafH -17070.9 kcal/mol + -analytic -8.1630e2 -6.7780e-2 2.5998e5 2.2029e2 -9.3275e6 +# Range 0-350 + -Vm 1749.13 +# Extrapol supcrt92 +# Ref HDN+78 + +Aragonite + CaCO3 + H+ = Ca+2 + HCO3- + log_k 1.9931 + -delta_H -25.8027 kJ/mol +# deltafH -288.531 kcal/mol + -analytic -1.4934e2 -4.8043e-2 4.9089e3 6.0284e1 7.6644e1 +# Range 0-325 + -Vm 34.15 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.8008 + -delta_H 23.836 kJ/mol +# deltafH -1437.78 kJ/mol + -analytic -1.6428e2 -6.7762e-2 1.9879e3 7.1116e1 3.1067e1 +# Range 0-300 + -Vm 65.50 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Artinite + Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O + log_k 19.6560 + -delta_H -130.432 kJ/mol +# deltafH -698.043 kcal/mol + -analytic -2.8614e2 -6.7344e-2 1.5230e4 1.1104e2 2.3773e2 +# Range 0-350 + -Vm 96.9 # 97.85 Webmineral.com +# Extrapol supcrt92 +# Ref HDN+78 + +Atacamite + Cu4Cl2(OH)6 + 6 H+ = 2 Cl- + 4 Cu+2 + 6 H2O + log_k 14.2836 + -delta_H -132.001 kJ/mol +# deltafH -1654.43 kJ/mol + -analytic -2.6623e2 -4.8121e-2 1.5315e4 9.8395e1 2.6016e2 +# Range 0-200 + -Vm 56.80 # Webmineral.com +# Extrapol Constant H approx +# Ref 87woo/gar + +Azurite + Cu3(CO3)2(OH)2 + 4 H+ = 2 H2O + 2 HCO3- + 3 Cu+2 + log_k 9.1607 + -delta_H -122.298 kJ/mol +# deltafH -390.1 kcal/mol + -analytic -4.4042e2 -1.1934e-1 1.8053e4 1.7158e2 2.8182e2 +# Range 0-350 + -Vm 91.01 +# Extrapol supcrt92 +# Ref HDN+78 + +B + B + 1.5 H2O + 0.75 O2 = B(OH)3 + log_k 109.5654 + -delta_H -636.677 kJ/mol +# deltafH 0 kJ/mol + -analytic 8.0471e1 1.2577e-3 2.9653e4 -2.8593e1 4.6268e2 +# Range 0-300 + -Vm 4.386 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +B2O3 + B2O3 + 3 H2O = 2 B(OH)3 + log_k 5.5464 + -delta_H -18.0548 kJ/mol +# deltafH -1273.5 kJ/mol + -analytic 9.0905e1 5.5365e-3 -2.6629e3 -3.1553e1 -4.1578e1 +# Range 0-300 + -Vm 28.30 # gfw/density +# Extrapol Cp integration +# Ref CWM89 + +Bassanite + CaSO4:0.5H2O = 0.5 H2O + Ca+2 + SO4-2 + log_k -3.6615 + -delta_H -18.711 kJ/mol +# deltafH -1576.89 kJ/mol + -analytic -2.2010e2 -8.0230e-2 5.5092e3 8.9651e1 8.6031e1 +# Range 0-300 + -Vm 52.31 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Bassetite + Fe(UO2)2(PO4)2 + 2 H+ = Fe+2 + 2 HPO4-2 + 2 UO2+2 + log_k -17.7240 + -delta_H -114.841 kJ/mol +# deltafH -1099.33 kcal/mol + -analytic -5.7788e1 -4.5400e-2 4.0119e3 1.6216e1 6.8147e1 +# Range 0-200 + -Vm 256.19 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Beidellite-Ca + Ca.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.5914 + -delta_H -162.403 kJ/mol +# deltafH -1370.66 kcal/mol + -analytic 3.872e1 -1.431e-1 0 0 0 9.036e-5 +# Range 0-300 + -Vm 133.081 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 1.5 log K at 0C, 1 log K at 300C + +Beidellite-Fe + Fe.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Fe+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 4.6335 + -delta_H -154.65 kJ/mol +# deltafH -1351.1 kcal/mol + -analytic 3.641e1 -1.391e-1 0 0 0 8.671e-5 +# Range 0-300 + -Vm 134.293 +# Extrapol supcrt92 +# Ref Catalano13 + +Beidellite-K + K.35Al2.35Si3.65O10(OH)2 +7.4 H+ = 0.35 K+ + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.3088 + -delta_H -150.834 kJ/mol +# deltafH -1371.9 kcal/mol + -analytic 3.307e1 -1.254e-1 0 0 0 7.660e-5 +# Range 0-300 + -Vm 137.214 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 2.9 log K at 0C, 1.7 log K at 300C + +Beidellite-Mg + Mg.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Mg+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.5537 + -delta_H -165.455 kJ/mol +# deltafH -1366.89 kcal/mol + -analytic 3.750e1 -1.415e-1 0 0 0 8.929e-5 +# Range 0-300 + -Vm 132.116 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 2.4 log K at 0C, 1.4 log K at 300C + +Beidellite-Na + Na.35Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Na+ + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.6473 + -delta_H -155.846 kJ/mol +# deltafH -1369.76 kcal/mol + -analytic 3.613e1 -1.347e-1 0 0 0 8.470e-5 +# Range 0-300 + -Vm 134.522 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, differ from 78 wol and Wilson+06 (which match) by 2.8 log K at 0C, 1.3 log K at 300C + +Berlinite + AlPO4 + H+ = Al+3 + HPO4-2 + log_k -7.2087 + -delta_H -96.6313 kJ/mol +# deltafH -1733.85 kJ/mol + -analytic -2.8134e2 -9.9933e-2 1.0308e4 1.0883e2 1.6094e2 +# Range 0-300 + -Vm 46.19 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Bieberite + CoSO4:7H2O = Co+2 + SO4-2 + 7 H2O + log_k -2.5051 + -delta_H 11.3885 kJ/mol +# deltafH -2980.02 kJ/mol + -analytic -2.6405e2 -7.2497e-2 6.6673e3 1.0538e2 1.0411e2 +# Range 0-300 + -Vm 147.95 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Bixbyite + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.9655 + -delta_H -190.545 kJ/mol +# deltafH -958.971 kJ/mol + -analytic -1.1600e2 -2.8056e-3 1.3418e4 2.8639e1 2.0941e2 +# Range 0-300 + -Vm 31.89 # Webmineral.com, density 4.95 +# Extrapol Cp integration +# Ref RHF79 + +Boehmite + AlO2H + 3 H+ = Al+3 + 2 H2O + log_k 7.5642 + -delta_H -113.282 kJ/mol +# deltafH -238.24 kcal/mol + -analytic -1.2196e2 -3.1138e-2 8.8643e3 4.4075e1 1.3835e2 +# Range 0-225 + -Vm 19.535 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Borax + Na2(B4O5(OH)4):8H2O + 2 H+ = 2 Na+ + 4 B(OH)3 + 5 H2O + log_k 12.0395 + -delta_H 80.5145 kJ/mol +# deltafH -6288.44 kJ/mol + -analytic 7.8374e1 1.9328e-2 -5.3279e3 -2.1914e1 -8.3160e1 +# Range 0-300 + -Vm 222.66 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Boric_acid + B(OH)3 = B(OH)3 + log_k -0.1583 + -delta_H 20.2651 kJ/mol +# deltafH -1094.8 kJ/mol + -analytic 3.9122e1 6.4058e-3 -2.2525e3 -1.3592e1 -3.5160e1 +# Range 0-300 + -Vm 43.09 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Bornite + Cu5FeS4 + 4 H+ = Cu+2 + Fe+2 + 4 Cu+ + 4 HS- + log_k -102.4369 + -delta_H 530.113 kJ/mol +# deltafH -79.922 kcal/mol + -analytic -7.0495e2 -2.0082e-1 -9.1376e3 2.8004e2 -1.4238e2 +# Range 0-350 + -Vm 98.6 +# Extrapol supcrt92 +# Ref HDN+78 + +Brezinaite + Cr3S4 + 4 H+ = Cr+2 + 2 Cr+3 + 4 HS- + log_k 2.7883 + -delta_H -216.731 kJ/mol +# deltafH -111.9 kcal/mol + -analytic -7.0528e1 -3.6568e-2 1.0598e4 1.9665e1 1.8000e2 +# Range 0-200 + -Vm 69.16 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78vau/cra + +Brochantite + Cu4(SO4)(OH)6 + 6 H+ = SO4-2 + 4 Cu+2 + 6 H2O + log_k 15.4363 + -delta_H -163.158 kJ/mol +# deltafH -2198.72 kJ/mol + -analytic -2.3609e2 -3.9046e-2 1.5970e4 8.4701e1 2.7127e2 +# Range 0-200 + -Vm 113.60 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87woo/gar + +Brucite + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.2980 + -delta_H -111.34 kJ/mol +# deltafH -221.39 kcal/mol + -analytic -1.0280e2 -1.9759e-2 9.0180e3 3.8282e1 1.4075e2 +# Range 0-350 + -Vm 24.63 +# Extrapol supcrt92 +# Ref HDN+78 + +Bunsenite + NiO + 2 H+ = H2O + Ni+2 + log_k 12.4719 + -delta_H -100.069 kJ/mol +# deltafH -57.3 kcal/mol + -analytic -8.1664e1 -1.9796e-2 7.4064e3 3.0385e1 1.1559e2 +# Range 0-350 + -Vm 10.97 +# Extrapol supcrt92 +# Ref HDN+78 + +C + C + H2O + O2 = H+ + HCO3- + log_k 64.1735 + -delta_H -391.961 kJ/mol +# deltafH 0 kcal/mol + -analytic -3.5556e1 -3.3691e-2 1.9774e4 1.7548e1 3.0856e2 +# Range 0-350 + -Vm 5.298 +# Extrapol supcrt92 +# Ref HDN+78 + +Ca + Ca +2 H+ + 0.5 O2 = Ca+2 + H2O + log_k 139.8465 + -delta_H -822.855 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.1328e2 -2.6554e-2 4.7638e4 4.1989e1 -2.3545e5 +# Range 0-300 + -Vm 26.19 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Ca-Al_Pyroxene + CaAl2SiO6 + 8 H+ = Ca+2 + SiO2 + 2 Al+3 + 4 H2O + log_k 35.9759 + -delta_H -361.548 kJ/mol +# deltafH -783.793 kcal/mol + -analytic -1.4664e2 -5.0409e-2 2.1045e4 5.1318e1 3.2843e2 +# Range 0-350 + -Vm 63.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Ca3Al2O6 + Ca3Al2O6 + 12 H+ = 2 Al+3 + 3 Ca+2 + 6 H2O + log_k 113.0460 + -delta_H -833.336 kJ/mol +# deltafH -857.492 kcal/mol + -analytic -2.7163e2 -5.2897e-2 5.0815e4 9.2946e1 8.6300e2 +# Range 0-200 + -Vm 88.94 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Ca4Al2Fe2O10 + Ca4Al2Fe2O10 + 20 H+ = 2 Al+3 + 2 Fe+3 + 4 Ca+2 + 10 H2O + log_k 140.5050 + -delta_H -1139.86 kJ/mol +# deltafH -1211 kcal/mol + -analytic -4.1808e2 -8.2787e-2 7.0288e4 1.4043e2 1.1937e3 +# Range 0-200 + -Vm 130.28 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +CaAl2O4 + CaAl2O4 + 8 H+ = Ca+2 + 2 Al+3 + 4 H2O + log_k 46.9541 + -delta_H -436.952 kJ/mol +# deltafH -555.996 kcal/mol + -analytic -3.0378e2 -7.9356e-2 3.0096e4 1.1049e2 4.6971e2 +# Range 0-300 + -Vm 53.02 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +CaAl4O7 + CaAl4O7 + 14 H+ = Ca+2 + 4 Al+3 + 7 H2O + log_k 68.6138 + -delta_H -718.464 kJ/mol +# deltafH -951.026 kcal/mol + -analytic -3.1044e2 -6.7078e-2 4.4566e4 1.0085e2 7.5689e2 +# Range 0-200 + -Vm 89.35 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +CaUO4 + CaUO4 + 4 H+ = Ca+2 + UO2+2 + 2 H2O + log_k 15.9420 + -delta_H -131.46 kJ/mol +# deltafH -2002.3 kJ/mol + -analytic -8.7902e1 -1.9810e-2 9.2354e3 3.1832e1 1.4414e2 +# Range 0-300 + -Vm 45.92 # M13 +# Extrapol Cp integration +# Ref 92gre/fug + +Calcite + CaCO3 + H+ = Ca+2 + HCO3- + log_k 1.8487 + -delta_H -25.7149 kJ/mol +# deltafH -288.552 kcal/mol + -analytic -1.4978e2 -4.8370e-2 4.8974e3 6.0458e1 7.6464e1 +# Range 0-350 + -Vm 36.934 +# Extrapol supcrt92 +# Ref HDN+78 + +Cattierite + CoS2 = Co+2 + S2-2 + log_k -29.9067 +# deltafH -36.589 kcal/mol + -analytic -2.1970e2 -7.8585e-2 -1.9592e3 8.8809e1 -3.0507e1 +# Range 0-300 + -Vm 25.53 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78vau/cra + +Celadonite + KMgAlSi4O10(OH)2 + 6 H+ = Al+3 + K+ + Mg+2 + 4 H2O + 4 SiO2 + log_k 7.4575 + -delta_H -74.3957 kJ/mol +# deltafH -1394.9 kcal/mol + -analytic -3.3097e1 1.7989e-2 1.8919e4 -2.1219 -2.0588e6 +# Range 0-300 + -Vm 157.1 +# Extrapol supcrt92, Cp integration +# Ref HDN+78, 78wol match + +Chalcanthite + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.6215 + -delta_H 6.57556 kJ/mol +# deltafH -2279.68 kJ/mol + -analytic -1.1262e2 -1.5544e-2 3.6176e3 4.1420e1 6.1471e1 +# Range 0-200 + -Vm 108.97 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Chalcedony + SiO2 = SiO2 + log_k -3.7281 + -delta_H 31.4093 kJ/mol +# deltafH -217.282 kcal/mol + -analytic -9.0068 9.3241e-3 4.0535e3 -1.0830 -7.5077e5 +# Range 0-350 + -Vm 22.68 +# Extrapol supcrt92 +# Ref HDN+78 + +Chalcocite + Cu2S + H+ = HS- + 2 Cu+ + log_k -34.7342 + -delta_H 206.748 kJ/mol +# deltafH -19 kcal/mol + -analytic -1.3703e2 -4.0727e-2 -7.1694e3 5.5963e1 -1.1183e2 +# Range 0-350 + -Vm 27.48 +# Extrapol supcrt92 +# Ref HDN+78 + +Chalcocyanite + CuSO4 = Cu+2 + SO4-2 + log_k 2.9239 + -delta_H -72.5128 kJ/mol +# deltafH -771.4 kJ/mol + -analytic 5.8173 -1.6933e-2 2.0097e3 -1.8583 3.4126e1 +# Range 0-200 + -Vm 40.88 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref CWM89 + +Chalcopyrite + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -32.5638 + -delta_H 127.206 kJ/mol +# deltafH -44.453 kcal/mol + -analytic -3.1575e2 -9.8947e-2 8.3400e2 1.2522e2 1.3106e1 +# Range 0-350 + -Vm 42.83 +# Extrapol supcrt92 +# Ref HDN+78 + +Chamosite + Fe5Al2Si3O10(OH)8 + 16 H+ = 3 SiO2 + 2 Al+3 + 5 Fe+2 + 12 H2O + log_k 32.8416 + -delta_H -364.213 kJ/mol +# deltafH -902.407 kcal/mol + -analytic 1.577e2 -4.614e-1 0 0 0 3.413e-4 +# Range 0-300 + -Vm 213.42 +# Extrapol supcrt92 +# Ref Wilson+06 + +Chloromagnesite + MgCl2 = Mg+2 + 2 Cl- + log_k 21.8604 + -delta_H -158.802 kJ/mol +# deltafH -641.317 kJ/mol + -analytic -2.3640e2 -8.2017e-2 1.3480e4 9.5963e1 2.1042e2 +# Range 0-300 + -Vm 40.95 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Chromite + FeCr2O4 + 8 H+ = Fe+2 + 2 Cr+3 + 4 H2O + log_k 15.1685 + -delta_H -267.755 kJ/mol +# deltafH -1444.83 kJ/mol + -analytic -1.9060e2 -2.5695e-2 1.9465e4 5.9865e1 3.0379e2 +# Range 0-300 + -Vm 44.01 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O + log_k 31.1254 + -delta_H -218.041 kJ/mol +# deltafH -1043.12 kcal/mol + -analytic -9.2462e1 -1.1359e-2 1.8312e4 2.9289e1 -6.2342e5 +# Range 0-350 + -Vm 108.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Clinochlore-14A + Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O + log_k 67.2391 + -delta_H -612.379 kJ/mol +# deltafH -2116.96 kcal/mol + -analytic -2.0441e2 -6.2268e-2 3.5388e4 6.9239e1 5.5225e2 +# Range 0-350 + -Vm 207.11 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 differ by 0.4 log K at 0C, 1.6 log K at 300C + +Clinochlore-7A + Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O + log_k 70.6124 + -delta_H -628.14 kJ/mol +# deltafH -2113.2 kcal/mol + -analytic -2.1644e2 -6.4187e-2 3.6548e4 7.4123e1 5.7037e2 +# Range 0-350 + -Vm 211.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Clinoptilolite-Ca + Ca1.7335Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Ca+2 + 3.45 Al+3 + 14.533 SiO2 + 17.856 H2O + log_k -7.0095 + -delta_H -74.6745 kJ/mol +# deltafH -4919.84 kcal/mol + -analytic -4.4820e1 5.3696e-2 5.4878e4 -3.1459e1 -7.5491e6 +# Range 0-300 + -Vm 625.19 # Webmineral.com, density 2.15 +# Extrapol Cp integration +# Ref 89db 7 + +Clinoptilolite-K + K3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 14.533 SiO2 + 17.856 H2O + log_k -10.9485 + -delta_H 67.4862 kJ/mol +# deltafH -4937.77 kcal/mol + -analytic 1.1697e1 6.9480e-2 4.7718e4 -4.7442e1 -7.6907e6 +# Range 0-300 + -Vm 655.93 # Webmineral.com, density 2.15 +# Extrapol Cp integration +# Ref 89db 7 + +Clinoptilolite-Na + Na3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Na+ + 14.533 SiO2 + 17.856 H2O + log_k -7.1363 + -delta_H 2.32824 kJ/mol +# deltafH -4912.36 kcal/mol + -analytic -3.4572e1 6.8377e-2 5.1962e4 -3.3426e1 -7.5586e6 +# Range 0-300 + -Vm 629.95 # Webmineral.com, density 2.15 +# Extrapol Cp integration +# Ref 89db 7 + +Clinozoisite + Ca2Al3Si3O12(OH) + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O + log_k 43.2569 + -delta_H -457.755 kJ/mol +# deltafH -1643.78 kcal/mol + -analytic -2.8690e1 -3.7056e-2 2.2770e4 3.7880 -2.5834e5 +# Range 0-300 + -Vm 136.2 +# Extrapol supcrt92 +# Ref HDN+78, SH88 + +Co + Co + 2 H+ + 0.5 O2 = Co+2 + H2O + log_k 52.5307 + -delta_H -337.929 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.2703e1 -2.0172e-2 1.8888e4 2.3391e1 2.9474e2 +# Range 0-300 + -Vm 6.67 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Co2SiO4 + Co2SiO4 + 4 H+ = SiO2 + 2 Co+2 + 2 H2O + log_k 6.6808 + -delta_H -88.6924 kJ/mol +# deltafH -353.011 kcal/mol + -analytic -3.9978 -3.7985e-3 5.1554e3 -1.5033 -1.6100e5 +# Range 0-300 + -Vm 44.52 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoCl2 + CoCl2 = Co+2 + 2 Cl- + log_k 8.2641 + -delta_H -79.5949 kJ/mol +# deltafH -312.722 kJ/mol + -analytic -2.2386e2 -8.0936e-2 8.8631e3 9.1528e1 1.3837e2 +# Range 0-300 + -Vm 38.69 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoCl2:2H2O + CoCl2:2H2O = Co+2 + 2 Cl- + 2 H2O + log_k 4.6661 + -delta_H -40.7876 kJ/mol +# deltafH -923.206 kJ/mol + -analytic -5.6411e1 -2.3390e-2 3.0519e3 2.3361e1 5.1845e1 +# Range 0-200 + -Vm 66.61 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CoCl2:6H2O + CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O + log_k 2.6033 + -delta_H 8.32709 kJ/mol +# deltafH -2115.67 kJ/mol + -analytic -1.5066e2 -2.2132e-2 5.0591e3 5.7743e1 8.5962e1 +# Range 0-200 + -Vm 123.66 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CoFe2O4 + CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O + log_k 0.8729 + -delta_H -160.674 kJ/mol +# deltafH -272.466 kcal/mol + -analytic -3.0149e2 -7.9159e-2 1.5683e4 1.1046e2 2.4480e2 +# Range 0-300 + -Vm 44 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +CoO + CoO + 2 H+ = Co+2 + H2O + log_k 13.5553 + -delta_H -106.05 kJ/mol +# deltafH -237.946 kJ/mol + -analytic -8.4424e1 -1.9457e-2 7.8616e3 3.1281e1 1.2270e2 +# Range 0-300 + -Vm 11.64 # gfw/density +# Extrapol Cp integration +# Ref WEP+82 + +CoS + CoS + H+ = Co+2 + HS- + log_k -7.3740 + -delta_H 10.1755 kJ/mol +# deltafH -20.182 kcal/mol + -analytic -1.5128e2 -4.8484e-2 2.9553e3 5.9983e1 4.6158e1 +# Range 0-300 + -Vm 22.91 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +CoSO4 + CoSO4 = Co+2 + SO4-2 + log_k 2.8996 + -delta_H -79.7952 kJ/mol +# deltafH -887.964 kJ/mol + -analytic -1.9907e2 -7.7890e-2 7.7193e3 8.0525e1 1.2051e2 +# Range 0-300 + -Vm 41.78 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoSO4:6H2O + CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O + log_k -2.3512 + -delta_H 1.08483 kJ/mol +# deltafH -2683.87 kJ/mol + -analytic -2.5469e2 -7.3092e-2 6.6767e3 1.0172e2 1.0426e2 +# Range 0-300 + -Vm 130.30 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoSO4:H2O + CoSO4:H2O = Co+2 + H2O + SO4-2 + log_k -1.2111 + -delta_H -52.6556 kJ/mol +# deltafH -287.032 kcal/mol + -analytic -1.0570e1 -1.6196e-2 1.7180e3 3.4000 2.9178e1 +# Range 0-200 + -Vm 56.26 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +Coesite + SiO2 = SiO2 + log_k -3.1893 + -delta_H 28.6144 kJ/mol +# deltafH -216.614 kcal/mol + -analytic -9.7312 9.1773e-3 4.2143e3 -7.8065e-1 -7.4905e5 +# Range 0-350 + -Vm 20.641 +# Extrapol supcrt92 +# Ref HDN+78 + +Coffinite + USiO4 + 4 H+ = SiO2 + U+4 + 2 H2O + log_k -8.0530 + -delta_H -49.2493 kJ/mol +# deltafH -1991.33 kJ/mol + -analytic 2.3126e2 6.2389e-2 -4.6189e3 -9.7976e1 -7.8517e1 +# Range 0-200 + -Vm 46.12 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref 92gre/fug + +Cordierite_anhyd + Mg2Al4Si5O18 + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 8 H2O + log_k 52.3035 + -delta_H -626.219 kJ/mol +# deltafH -2183.2 kcal/mol + -analytic 2.6562 -2.3801e-2 3.5192e4 -1.9911e1 -1.0894e6 +# Range 0-350 + -Vm 233.22 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3 log K at 0C, 0.8 log K at 350C + +Cordierite_hydr + Mg2Al4Si5O18:H2O + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 9 H2O + log_k 49.8235 + -delta_H -608.814 kJ/mol +# deltafH -2255.68 kcal/mol + -analytic -1.2985e2 -4.1335e-2 4.1566e4 2.7892e1 -1.4819e6 +# Range 0-350 + -Vm 241.22 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3.4 log K at 0C, 0.8 log K at 350C + +Corundum + Al2O3 + 6 H+ = 2 Al+3 + 3 H2O + log_k 18.3121 + -delta_H -258.626 kJ/mol +# deltafH -400.5 kcal/mol + -analytic -1.4278e2 -7.8519e-2 1.3776e4 5.5881e1 2.1501e2 +# Range 0-350 + -Vm 25.575 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel differ by 1 log K at 0C, 7 log K at 300C !! flag + +Covellite + CuS + H+ = Cu+2 + HS- + log_k -22.8310 + -delta_H 101.88 kJ/mol +# deltafH -12.5 kcal/mol + -analytic -1.6068e2 -4.9040e-2 -1.4234e3 6.3536e1 -2.2164e1 +# Range 0-350 + -Vm 20.42 +# Extrapol supcrt92 +# Ref HDN+78 + +Cr + Cr + 3 H+ + 0.75 O2 = Cr+3 + 1.5 H2O + log_k 98.6784 + -delta_H -658.145 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.2488e1 -5.5886e-3 3.4288e4 3.1585 5.3503e2 +# Range 0-300 + -Vm 7.231 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +CrCl3 + CrCl3 = Cr+3 + 3 Cl- + log_k 17.9728 + -delta_H -183.227 kJ/mol +# deltafH -556.5 kJ/mol + -analytic -2.6348e2 -9.5339e-2 1.4785e4 1.0517e2 2.3079e2 +# Range 0-300 + -Vm 57.38 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CrO2 + CrO2 = 0.5 Cr+2 + 0.5 CrO4-2 + log_k -19.1332 + -delta_H 85.9812 kJ/mol +# deltafH -143 kcal/mol + -analytic 2.7763 -7.7698e-3 -5.2893e3 -7.4970e-1 -8.9821e1 +# Range 0-200 + -Vm 16.95 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +CrO3 + CrO3 + H2O = CrO4-2 + 2 H+ + log_k -3.5221 + -delta_H -5.78647 kJ/mol +# deltafH -140.9 kcal/mol + -analytic -1.3262e2 -6.1411e-2 2.2083e3 5.6564e1 3.4497e1 +# Range 0-300 + -Vm 35.14 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 76del/hal + +CrS + CrS + H+ = Cr+2 + HS- + log_k -0.6304 + -delta_H -26.15 kJ/mol +# deltafH -31.9 kcal/mol + -analytic -1.1134e2 -3.5954e-2 3.8744e3 4.3815e1 6.0490e1 +# Range 0-300 + -Vm 17.33 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 76del/hal + +Cristobalite(alpha) + SiO2 = SiO2 + log_k -3.4488 + -delta_H 29.2043 kJ/mol +# deltafH -216.755 kcal/mol + -analytic -1.1936e1 9.0520e-3 4.3701e3 -1.1464e-1 -7.6568e5 +# Range 0-350 + -Vm 25.74 +# Extrapol supcrt92 +# Ref HDN+78 + +Cristobalite(beta) + SiO2 = SiO2 + log_k -3.0053 + -delta_H 24.6856 kJ/mol +# deltafH -215.675 kcal/mol + -analytic -4.7414 9.7567e-3 3.8831e3 -2.5830 -6.9636e5 +# Range 0-350 + -Vm 27.38 +# Extrapol supcrt92 +# Ref HDN+78 + +Cronstedtite-7A + Fe2Fe2SiO5(OH)4 + 10 H+ = SiO2 + 2 Fe+2 + 2 Fe+3 + 7 H2O + log_k 16.2603 + -delta_H -244.266 kJ/mol +# deltafH -697.413 kcal/mol + -analytic -2.3783e2 -7.1026e-2 1.7752e4 8.7147e1 2.7707e2 +# Range 0-300 + -Vm 110.9 # HDN+78 +# Extrapol Cp integration +# Ref 78wol + +Cu + Cu + 2 H+ + 0.5 O2 = Cu+2 + H2O + log_k 31.5118 + -delta_H -214.083 kJ/mol +# deltafH 0 kcal/mol + -analytic -7.0719e1 -2.0300e-2 1.2802e4 2.6401e1 1.9979e2 +# Range 0-300 + -Vm 7.113 +# Extrapol supcrt92 +# Ref HDN+78 + + +CuCl2 + CuCl2 = Cu+2 + 2 Cl- + log_k 3.7308 + -delta_H -48.5965 kJ/mol +# deltafH -219.874 kJ/mol + -analytic -1.7803e1 -2.4432e-2 1.5729e3 9.5104 2.6716e1 +# Range 0-200 + -Vm 39.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CuCr2O4 + CuCr2O4 + 8 H+ = Cu+2 + 2 Cr+3 + 4 H2O + log_k 16.2174 + -delta_H -268.768 kJ/mol +# deltafH -307.331 kcal/mol + -analytic -1.8199e2 -1.0254e-2 2.0123e4 5.4062e1 3.4178e2 +# Range 0-200 + -Vm 42.74 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +Cuprite + Cu2O + 2 H+ = H2O + 2 Cu+ + log_k -1.9031 + -delta_H 28.355 kJ/mol +# deltafH -40.83 kcal/mol + -analytic -8.6240e1 -1.1445e-2 1.7851e3 3.3041e1 2.7880e1 +# Range 0-350 + -Vm 23.437 +# Extrapol supcrt92 +# Ref HDN+78 + +Daphnite-14A + Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O + log_k 52.2821 + -delta_H -517.561 kJ/mol +# deltafH -1693.04 kcal/mol + -analytic -1.5261e2 -6.1392e-2 2.8283e4 5.1788e1 4.4137e2 +# Range 0-350 + -Vm 213.42 +# Extrapol supcrt92 +# Ref HDN+78 + +Daphnite-7A + Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O + log_k 55.6554 + -delta_H -532.326 kJ/mol +# deltafH -1689.51 kcal/mol + -analytic -1.6430e2 -6.3160e-2 2.9499e4 5.6442e1 4.6035e2 +# Range 0-300 + -Vm 221.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Dawsonite + NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O + log_k 4.3464 + -delta_H -76.3549 kJ/mol +# deltafH -1963.96 kJ/mol + -analytic -1.1393e2 -2.3487e-2 7.1758e3 4.0900e1 1.2189e2 +# Range 0-200 + -Vm 59.50 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Delafossite + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -6.4172 + -delta_H -18.6104 kJ/mol +# deltafH -126.904 kcal/mol + -analytic -1.5275e2 -3.5478e-2 5.1404e3 5.6437e1 8.0255e1 +# Range 0-300 + -Vm 27.52 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +Diaspore + AlHO2 + 3 H+ = Al+3 + 2 H2O + log_k 7.1603 + -delta_H -110.42 kJ/mol +# deltafH -238.924 kcal/mol + -analytic -1.2618e2 -3.1671e-2 8.8737e3 4.5669e1 1.3850e2 +# Range 0-225 + -Vm 17.76 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Dicalcium_silicate + Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O + log_k 37.1725 + -delta_H -217.642 kJ/mol +# deltafH -2317.9 kJ/mol + -analytic -5.9723e1 -1.3682e-2 1.5461e4 2.1547e1 -3.7732e5 +# Range 0-300 + -Vm 59.11 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Diopside + CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 + 2 H2O + 2 SiO2 + log_k 20.9643 + -delta_H -133.775 kJ/mol +# deltafH -765.378 kcal/mol + -analytic 7.1240e1 1.5514e-2 8.1437e3 -3.0672e1 -5.6880e5 +# Range 0-350 + -Vm 66.09 +# Extrapol supcrt92 +# Ref HDN+78 + +Dioptase + CuSiO2(OH)2 + 2 H+ = Cu+2 + SiO2 + 2 H2O + log_k 6.0773 + -delta_H -25.2205 kJ/mol +# deltafH -1358.47 kJ/mol + -analytic 2.3913e2 6.2669e-2 -5.4030e3 -9.4420e1 -9.1834e1 +# Range 0-200 + -Vm 48.24 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87woo/gar + +Dolomite + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 2.5135 + -delta_H -59.9651 kJ/mol +# deltafH -556.631 kcal/mol + -analytic -3.1782e2 -9.8179e-2 1.0845e4 1.2657e2 1.6932e2 +# Range 0-350 + -Vm 64.365 +# Extrapol supcrt92 +# Ref HDN+78 + +Dolomite-dis + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 4.0579 + -delta_H -72.2117 kJ/mol +# deltafH -553.704 kcal/mol + -analytic -3.1706e2 -9.7886e-2 1.1442e4 1.2604e2 1.7864e2 +# Range 0-350 + -Vm 64.39 +# Extrapol supcrt92 +# Ref HDN+78 + +Dolomite-ord + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 2.5135 + -delta_H -59.9651 kJ/mol +# deltafH -556.631 kcal/mol + -analytic -3.1654e2 -9.7902e-2 1.0805e4 1.2607e2 1.6870e2 +# Range 0-350 + -Vm 64.34 +# Extrapol supcrt92 +# Ref HDN+78 + +Enstatite + MgSiO3 + 2 H+ = H2O + Mg+2 + SiO2 + log_k 11.3269 + -delta_H -82.7302 kJ/mol +# deltafH -369.686 kcal/mol + -analytic -4.9278e1 -3.2832e-3 9.5205e3 1.4437e1 -5.4324e5 +# Range 0-350 + -Vm 31.276 +# Extrapol supcrt92 +# Ref HDN+78 + +Epidote + Ca2FeAl2Si3O12OH + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O + log_k 32.9296 + -delta_H -386.451 kJ/mol +# deltafH -1543.99 kcal/mol + -analytic -2.6187e1 -3.6436e-2 1.9351e4 3.3671 -3.0319e5 +# Range 0-350 + -Vm 139.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Epidote-ord + FeCa2Al2(OH)(SiO4)3 + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O + log_k 32.9296 + -delta_H -386.351 kJ/mol +# deltafH -1544.02 kcal/mol + -analytic 1.9379e1 -3.2870e-2 1.5692e4 -1.1901e1 2.4485e2 +# Range 0-350 + -Vm 139.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Eskolaite + Cr2O3 + 2 H2O + 1.5 O2 = 2 CrO4-2 + 4 H+ + log_k -9.1306 + -delta_H -32.6877 kJ/mol +# deltafH -1139.74 kJ/mol + -analytic -2.0411e2 -1.2809e-1 2.2197e3 9.1186e1 3.4697e1 +# Range 0-300 + -Vm 29.09 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ettringite + Ca6Al2(SO4)3(OH)12:26H2O + 12 H+ = 2 Al+3 + 3 SO4-2 + 6 Ca+2 + 38 H2O + log_k 62.5362 + -delta_H -382.451 kJ/mol +# deltafH -4193 kcal/mol + -analytic -1.0576e3 -1.1585e-1 5.9580e4 3.8585e2 1.0121e3 +# Range 0-200 + -Vm 697.28 # Webmineral.com +# Extrapol Constant H approx +# Ref 82sar/bar + +Eu + Eu + 3 H+ + 0.75 O2 = Eu+3 + 1.5 H2O + log_k 165.1443 + -delta_H -1025.08 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5749e1 -2.8921e-2 5.4018e4 2.3561e1 8.4292e2 +# Range 0-300 + -Vm 28.97 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 85rar 2 + +Eu(OH)3 + Eu(OH)3 + 3 H+ = Eu+3 + 3 H2O + log_k 15.3482 + -delta_H -126.897 kJ/mol +# deltafH -1336.04 kJ/mol + -analytic -6.3077e1 -6.1421e-3 8.7323e3 2.0595e1 1.4831e+2 +# Range 0-200 + -Vm 38.44 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +Eu2(SO4)3:8H2O + Eu2(SO4)3:8H2O = 2 Eu+3 + 3 SO4-2 + 8 H2O + log_k -10.8524 + -delta_H -86.59 kJ/mol +# deltafH -6139.77 kJ/mol + -analytic -5.6582e1 -3.8846e-2 3.3821e3 1.8561e1 5.7452e1 +# Range 0-200 + -Vm 245.41 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu2O3(cubic) + Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O + log_k 51.7818 + -delta_H -406.403 kJ/mol +# deltafH -1661.96 kJ/mol + -analytic -5.3469e1 -1.2554e-2 2.1925e4 1.4324e1 3.7233e2 +# Range 0-200 + -Vm 48.29 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu2O3(monoclinic) + Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O + log_k 53.3936 + -delta_H -417.481 kJ/mol +# deltafH -1650.88 kJ/mol + -analytic -5.4022e1 -1.2627e-2 2.2508e4 1.4416e1 3.8224e2 +# Range 0-200 + -Vm 44.02 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu3O4 + Eu3O4 + 8 H+ = Eu+2 + 2 Eu+3 + 4 H2O + log_k 87.0369 + -delta_H -611.249 kJ/mol +# deltafH -2270.56 kJ/mol + -analytic -1.1829e2 -2.0354e-2 3.4981e4 3.8007e1 5.9407e2 +# Range 0-200 + -Vm 64.15 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuCl2 + EuCl2 = Eu+2 + 2 Cl- + log_k 5.9230 + -delta_H -39.2617 kJ/mol +# deltafH -822.5 kJ/mol + -analytic -2.5741e1 -2.4956e-2 1.5713e3 1.3670e1 2.6691e1 +# Range 0-200 + -Vm 45.49 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +EuCl3 + EuCl3 = Eu+3 + 3 Cl- + log_k 19.7149 + -delta_H -170.861 kJ/mol +# deltafH -935.803 kJ/mol + -analytic 3.2865e1 -3.1877e-2 4.9792e3 -8.2294 8.4542e1 +# Range 0-200 + -Vm 52.83 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuCl3:6H2O + EuCl3:6H2O = Eu+3 + 3 Cl- + 6 H2O + log_k 4.9090 + -delta_H -40.0288 kJ/mol +# deltafH -2781.66 kJ/mol + -analytic -1.0987e2 -2.9851e-2 4.9991e3 4.3198e1 8.4930e1 +# Range 0-200 + -Vm 151.22 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuOCl + EuOCl + 2 H+ = Cl- + Eu+3 + H2O + log_k 15.6683 + -delta_H -147.173 kJ/mol +# deltafH -911.17 kJ/mol + -analytic -7.7446 -1.4960e-2 6.6242e3 2.2813 1.1249e2 +# Range 0-200 + -Vm 31.68 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +EuS + EuS + H+ = Eu+2 + HS- + log_k 14.9068 + -delta_H -96.4088 kJ/mol +# deltafH -447.302 kJ/mol + -analytic -4.1026e1 -1.5582e-2 5.7842e3 1.6639e1 9.8238e1 +# Range 0-200 + -Vm 32.03 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuSO4 + EuSO4 = Eu+2 + SO4-2 + log_k -8.8449 + -delta_H 33.873 kJ/mol +# deltafH -1471.08 kJ/mol + -analytic 3.0262e-1 -1.7571e-2 -3.0392e3 2.5356 -5.1610e1 +# Range 0-200 + -Vm 49.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eucryptite + LiAlSiO4 + 4 H+ = Al+3 + Li+ + SiO2 + 2 H2O + log_k 13.6106 + -delta_H -141.818 kJ/mol +# deltafH -2124.41 kJ/mol + -analytic -2.2213 -8.2498e-3 6.4838e3 -1.4183 1.0117e2 +# Range 0-300 + -Vm 53.63 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fayalite + Fe2SiO4 + 4 H+ = SiO2 + 2 Fe+2 + 2 H2O + log_k 19.1113 + -delta_H -152.256 kJ/mol +# deltafH -354.119 kcal/mol + -analytic 1.3853e1 -3.5501e-3 7.1496e3 -6.8710e0 -6.3310e4 +# Range 0-350 + -Vm 46.39 +# Extrapol supcrt92 +# Ref HDN+78 + +Fe + Fe + 2 H+ + 0.5 O2 = Fe+2 + H2O + log_k 59.0325 + -delta_H -372.029 kJ/mol +# deltafH 0 kcal/mol + -analytic -6.2882e1 -2.0379e-2 2.0690e4 2.3673e1 3.2287e2 +# Range 0-350 + -Vm 7.092 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref RHF79 + +Fe(OH)2 + Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O + log_k 13.9045 + -delta_H -95.4089 kJ/mol +# deltafH -568.525 kJ/mol + -analytic -8.6666e1 -1.8440e-2 7.5723e3 3.2597e1 1.1818e2 +# Range 0-300 + -Vm 26.43 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fe(OH)3 + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 5.6556 + -delta_H -84.0824 kJ/mol +# deltafH -823.013 kJ/mol + -analytic -1.3316e2 -3.1284e-2 7.9753e3 4.9052e1 1.2449e2 +# Range 0-300 + -Vm 34.36 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fe2(SO4)3 + Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 + log_k 3.2058 + -delta_H -250.806 kJ/mol +# deltafH -2577.16 kJ/mol + -analytic -5.8649e2 -2.3718e-1 2.2736e4 2.3601e2 3.5495e2 +# Range 0-300 + -Vm 130.77 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +FeO + FeO + 2 H+ = Fe+2 + H2O + log_k 13.5318 + -delta_H -106.052 kJ/mol +# deltafH -65.02 kcal/mol + -analytic -7.8750e1 -1.8268e-2 7.6852e3 2.9074e1 1.1994e2 +# Range 0-350 + -Vm 12 +# Extrapol supcrt92 +# Ref HDN+78 + +FeSO4 + FeSO4 = Fe+2 + SO4-2 + log_k 2.6565 + -delta_H -73.0878 kJ/mol +# deltafH -928.771 kJ/mol + -analytic -2.0794e2 -7.6891e-2 7.8705e3 8.3685e1 1.2287e2 +# Range 0-300 + -Vm 41.58 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrite-Ca + CaFe2O4 + 8 H+ = Ca+2 + 2 Fe+3 + 4 H2O + log_k 21.5217 + -delta_H -264.738 kJ/mol +# deltafH -363.494 kcal/mol + -analytic -2.8472e2 -7.5870e-2 2.0688e4 1.0485e2 3.2289e2 +# Range 0-300 + -Vm 44.98 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Ferrite-Cu + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 10.3160 + -delta_H -211.647 kJ/mol +# deltafH -965.178 kJ/mol + -analytic -3.1271e2 -7.9976e-2 1.8818e4 1.1466e2 2.9374e2 +# Range 0-300 + -Vm 44.53 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrite-Dicalcium + Ca2Fe2O5 + 10 H+ = 2 Ca+2 + 2 Fe+3 + 5 H2O + log_k 56.8331 + -delta_H -475.261 kJ/mol +# deltafH -2139.26 kJ/mol + -analytic -3.6277e2 -9.5015e-2 3.3898e4 1.3506e2 5.2906e2 +# Range 0-300 + -Vm 67.18 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Ferrite-Mg + MgFe2O4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O + log_k 21.0551 + -delta_H -280.056 kJ/mol +# deltafH -1428.42 kJ/mol + -analytic -2.8297e2 -7.4820e-2 2.1333e4 1.0295e2 3.3296e2 +# Range 0-300 + -Vm 44.57 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Ferrite-Zn + ZnFe2O4 + 8 H+ = Zn+2 + 2 Fe+3 + 4 H2O + log_k 11.7342 + -delta_H -226.609 kJ/mol +# deltafH -1169.29 kJ/mol + -analytic -2.9809e2 -7.7263e-2 1.9067e4 1.0866e2 2.9761e2 +# Range 0-300 + -Vm 45.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrosilite + FeSiO3 + 2 H+ = Fe+2 + H2O + SiO2 + log_k 7.4471 + -delta_H -60.6011 kJ/mol +# deltafH -285.658 kcal/mol + -analytic 9.0041 3.7917e-3 5.1625e3 -6.3009 -3.9565e5 +# Range 0-350 + -Vm 32.952 +# Extrapol supcrt92 +# Ref HDN+78 + +Forsterite + Mg2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mg+2 + log_k 27.8626 + -delta_H -205.614 kJ/mol +# deltafH -520 kcal/mol + -analytic -7.6195e1 -1.4013e-2 1.4763e4 2.5090e1 -3.0379e5 +# Range 0-350 + -Vm 43.79 +# Extrapol supcrt92 +# Ref HDN+78 + +Foshagite + Ca4Si3O9(OH)2:0.5H2O + 8 H+ = 3 SiO2 + 4 Ca+2 + 5.5 H2O + log_k 65.9210 + -delta_H -359.839 kJ/mol +# deltafH -1438.27 kcal/mol + -analytic 2.9983e1 5.5272e-3 2.3427e4 -1.3879e1 -8.9461e5 +# Range 0-300 + -Vm 154.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + + +Gd + Gd + 3 H+ + 0.75 O2 = Gd+3 + 1.5 H2O + log_k 180.7573 + -delta_H -1106.67 kJ/mol +# deltafH 0 kJ/mol + -analytic -3.3949e2 -6.5698e-2 7.4278e4 1.2189e2 -9.7055e5 +# Range 0-300 + -Vm 19.89 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Gehlenite + Ca2Al2SiO7 + 10 H+ = SiO2 + 2 Al+3 + 2 Ca+2 + 5 H2O + log_k 56.2997 + -delta_H -489.934 kJ/mol +# deltafH -951.225 kcal/mol + -analytic -2.1784e2 -6.7200e-2 2.9779e4 7.8488e1 4.6473e2 +# Range 0-350 + -Vm 90.24 +# Extrapol supcrt92 +# Ref HDN+78 + +Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 7.7560 + -delta_H -102.788 kJ/mol +# deltafH -309.065 kcal/mol + -analytic -1.1403e2 -3.6453e-2 7.7236e3 4.3134e1 1.2055e2 +# Range 0-150 + -Vm 31.956 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 0.5345 + -delta_H -61.9291 kJ/mol +# deltafH -559.328 kJ/mol + -analytic -6.0331e1 -1.0847e-2 4.7759e3 1.9429e1 8.1122e1 +# Range 0-200 + -Vm 20.82 +# Extrapol supcrt92, Constant H approx +# Ref Sho09, MLS+03, RHF79 match + +Greenalite + Fe3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Fe+2 + 5 H2O + log_k 22.6701 + -delta_H -165.297 kJ/mol +# deltafH -787.778 kcal/mol + -analytic -1.4187e1 -3.8377e-3 1.1710e4 1.6442 -4.8290e5 +# Range 0-350 + -Vm 115 +# Extrapol supcrt92 +# Ref HDN+78, 78wol, Wilson+06 match + +Grossular + Ca3Al2(SiO4)3 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 SiO2 + 6 H2O + log_k 51.9228 + -delta_H -432.006 kJ/mol +# deltafH -1582.74 kcal/mol + -analytic 2.9389e1 -2.2478e-2 2.0323e4 -1.4624e1 -2.5674e5 +# Range 0-350 + -Vm 125.3 +# Extrapol supcrt92 +# Ref HDN+78 + +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.4823 + -delta_H -1.66746 kJ/mol +# deltafH -2022.69 kJ/mol + -analytic -2.4417e2 -8.3329e-2 5.5958e3 9.9301e1 8.7389e1 +# Range 0-300 + -Vm 74.69 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Gyrolite + Ca2Si3O7(OH)2:1.5H2O + 4 H+ = 2 Ca+2 + 3 SiO2 + 4.5 H2O + log_k 22.9099 + -delta_H -82.862 kJ/mol +# deltafH -1176.55 kcal/mol + -analytic -2.4416e1 1.4646e-2 1.6181e4 2.3723 -1.5369e6 +# -Range 0-300 + -Vm 136.85 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Halite + NaCl = Cl- + Na+ + log_k 1.5855 + -delta_H 3.7405 kJ/mol +# deltafH -98.26 kcal/mol + -analytic -1.0163e2 -3.4761e-2 2.2796e3 4.2802e1 3.5602e1 +# Range 0-350 + -Vm 27.015 +# Extrapol supcrt92 +# Ref HDN+78 + +Hatrurite + Ca3SiO5 + 6 H+ = SiO2 + 3 Ca+2 + 3 H2O + log_k 73.4056 + -delta_H -434.684 kJ/mol +# deltafH -700.234 kcal/mol + -analytic -4.5448e1 -1.9998e-2 2.3800e4 1.8494e1 -7.3385e4 +# Range 0-300 + -Vm 75.60 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Hausmannite + Mn3O4 + 8 H+ = Mn+2 + 2 Mn+3 + 4 H2O + log_k 10.1598 + -delta_H -268.121 kJ/mol +# deltafH -1387.83 kJ/mol + -analytic -2.0600e2 -2.2214e-2 2.0160e4 6.2700e1 3.1464e2 +# Range 0-300 + -Vm 48.07 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Heazlewoodite + Ni3S2 + 4 H+ + 0.5 O2 = H2O + 2 HS- + 3 Ni+2 + log_k 28.2477 + -delta_H -270.897 kJ/mol +# deltafH -203.012 kJ/mol + -analytic -3.5439e2 -1.1740e-1 2.1811e4 1.3919e2 3.4044e2 +# Range 0-300 + -Vm 40.95 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Hedenbergite + CaFe(SiO3)2 + 4 H+ = Ca+2 + Fe+2 + 2 H2O + 2 SiO2 + log_k 19.6060 + -delta_H -124.507 kJ/mol +# deltafH -678.276 kcal/mol + -analytic -1.9473e1 1.5288e-3 1.2910e4 2.1729 -9.0058e5 +# Range 0-350 + -Vm 68.27 +# Extrapol supcrt92 +# Ref HDN+78 + +Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 0.1086 + -delta_H -129.415 kJ/mol +# deltafH -197.72 kcal/mol + -analytic -2.2015e2 -6.0290e-2 1.1812e4 8.0253e1 1.8438e2 +# Range 0-350 + -Vm 30.274 +# Extrapol supcrt92 +# Ref HDN+78 + +Hercynite + FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O + log_k 28.8484 + -delta_H -345.961 kJ/mol +# deltafH -1966.45 kJ/mol + -analytic -3.1848e2 -7.9501e-2 2.5892e4 1.1483e2 4.0412e2 +# Range 0-300 + -Vm 40.75 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Hillebrandite + Ca2SiO3(OH)2:0.17H2O + 4 H+ = SiO2 + 2 Ca+2 + 3.17 H2O + log_k 36.8190 + -delta_H -203.074 kJ/mol +# deltafH -637.404 kcal/mol + -analytic -1.9360e1 -7.5176e-3 1.1947e4 8.0558 -1.4504e5 +# Range 0-300 + -Vm 71.79 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Huntite + CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- + log_k 10.3010 + -delta_H -171.096 kJ/mol +# deltafH -1082.6 kcal/mol + -analytic -6.5e2 -1.9671e-1 2.4815e4 2.5688e2 3.8740e2 +# Range 0-350 + -Vm 122.9 +# Extrapol supcrt92 +# Ref HDN+78 + +Hydromagnesite + Mg5(CO3)4(OH)2:4H2O + 6 H+ = 4 HCO3- + 5 Mg+2 + 6 H2O + log_k 30.8539 + -delta_H -289.696 kJ/mol +# deltafH -1557.09 kcal/mol + -analytic -7.9288e2 -2.1448e-1 3.6749e4 3.0888e2 5.7367e2 +# Range 0-350 + -Vm 208.8 +# Extrapol supcrt92 +# Ref HDN+78 + +Hydrophilite + CaCl2 = Ca+2 + 2 Cl- + log_k 11.7916 + -delta_H -81.4545 kJ/mol +# deltafH -795.788 kJ/mol + -analytic -2.2278e2 -8.1414e-2 9.0298e3 9.2349e1 1.4097e2 +# Range 0-300 + -Vm 49.99 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Hydroxyapatite + Ca5(OH)(PO4)3 + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + log_k -3.0746 + -delta_H -191.982 kJ/mol +# deltafH -6685.52 kJ/mol + -analytic -8.5221e2 -2.9430e-1 2.8125e4 3.4044e2 4.3911e2 +# Range 0-300 + -Vm 128.9 +# Extrapol Cp integration +# Ref RHF79 + +Ice + H2O = H2O + log_k 0.1387 + -delta_H 6.74879 kJ/mol +# deltafH -69.93 kcal/mol + -analytic -2.3260e1 4.7948e-4 7.7351e2 8.3499 1.3143e1 +# Range 0-200 + -Vm 19.635 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87kee/rup + +Ilmenite + FeTiO3 + 2 H+ + H2O = Fe+2 + Ti(OH)4 + log_k 0.9046 +# deltafH -1236.65 kJ/mol + -Vm 32.15 # Webmineral.com +# Ref RHF79 + +Jadeite + NaAl(SiO3)2 + 4 H+ = Al+3 + Na+ + 2 H2O + 2 SiO2 + log_k 8.3888 + -delta_H -84.4415 kJ/mol +# deltafH -722.116 kcal/mol + -analytic 1.5934 5.0757e-3 9.5602e3 -7.0164 -8.4454e5 +# Range 0-350 + -Vm 60.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Jarosite + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 2 SO4-2 + 3 Fe+3 + 6 H2O + log_k -9.3706 + -delta_H -191.343 kJ/mol +# deltafH -894.79 kcal/mol + -analytic -1.0813e2 -5.0381e-2 9.6893e3 3.2832e1 1.6457e2 +# Range 0-200 + -Vm 162.07 # Webmineral.com +# Extrapol Constant H approx +# Ref 75kas/bor + +K + K + H+ + 0.25 O2 = 0.5 H2O + K+ + log_k 70.9861 + -delta_H -392.055 kJ/mol +# deltafH 0 kJ/mol + -analytic -3.1102e1 -1.0003e-2 2.1338e4 1.3534e1 3.3296e2 +# Range 0-300 + -Vm 45.94 # Webelements.com +# Extrapol Cp integration +# Ref CWM89 + +K-Feldspar + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol +# deltafH -949.188 kcal/mol + -analytic -1.0684 1.3111e-2 1.1671e4 -9.9129 -1.5855e6 +# Range 0-350 + -Vm 108.87 +# Extrapol supcrt92 +# Ref HDN+78 + +K2O + K2O + 2 H+ = H2O + 2 K+ + log_k 84.0405 + -delta_H -427.006 kJ/mol +# deltafH -86.8 kcal/mol + -analytic -1.8283e1 -5.2255e-3 2.3184e4 1.0553e1 3.6177e2 +# Range 0-350 + -Vm 40.085 # gfw/density +# Extrapol supcrt92 +# Ref HDN+78 + +KAl(SO4)2 + KAl(SO4)2 = Al+3 + K+ + 2 SO4-2 + log_k 3.3647 + -delta_H -139.485 kJ/mol +# deltafH -2470.29 kJ/mol + -analytic -4.2785e2 -1.6303e-1 1.5311e4 1.7312e2 2.3904e2 +# Range 0-300 + -Vm 146.71 # gfw/density +# Extrapol Cp integration +# Ref RHF79 + +Kalsilite + KAlSiO4 + 4 H+ = Al+3 + K+ + SiO2 + 2 H2O + log_k 10.8987 + -delta_H -108.583 kJ/mol +# deltafH -509.408 kcal/mol + -analytic -6.7595 -7.4301e-3 6.5380e3 1.8999e-1 -2.2880e5 +# Range 0-350 + -Vm 59.89 +# Extrapol supcrt92 +# Ref HDN+78 + +Kaolinite + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 SiO2 + 5 H2O + log_k 6.8101 + -delta_H -151.779 kJ/mol +# deltafH -982.221 kcal/mol + -analytic 1.6835e1 -7.8939e-3 7.7636e3 -1.2190e1 -3.2354e5 +# Range 0-350 + -Vm 99.52 +# Extrapol supcrt92 +# Ref HDN+78 differ by 1.6 log K at 0C, 0.4 log K at 350C + +KerogenC128 + C128H68O7 + 141.5 O2 = 128 CO2 + 34 H2O + log_k 10740.654 + -delta_H -14623.902 kcal/mol + -analytic 23405.37 -54.726 0 0 0 0.041 +# Range 0-350 + -Vm 1320.7 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +KerogenC292 + C292H288O12 + 358 O2 = 292 CO2 + 144 H2O + log_k 27153.69 + -delta_H -36994.127 kcal/mol + -analytic 59184.26 -138.37 0 0 0 0.10 +# Range 0-350 + -Vm 3398.2 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +KerogenC515 + C515H596O72 + 628 O2 = 515 CO2 + 298 H2O + log_k 48112.16 + -delta_H -65346.703 kcal/mol + -analytic 104660.55 -244.27 0 0 0 0.183 +# Range 0-350 + -Vm 6989.3 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +Kyanite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 15.6740 + -delta_H -230.919 kJ/mol +# deltafH -616.897 kcal/mol + -analytic -7.3335e1 -3.2853e-2 1.2166e4 2.3412e1 1.8986e2 +# Range 0-175 + -Vm 44.09 +# Extrapol supcrt92 +# Ref HDN+78 + +Larnite + Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O + log_k 38.4665 + -delta_H -227.061 kJ/mol +# deltafH -551.74 kcal/mol + -analytic 2.6900e1 -2.1833e-3 1.0900e4 -9.5257 -7.2537e4 +# Range 0-300 + -Vm 51.6 # HDN+78 +# Extrapol Cp integration +# Ref 82sar/bar + +Laumontite + CaAl2Si4O12:4H2O + 8 H+ = Ca+2 + 2 Al+3 + 4 SiO2 + 8 H2O + log_k 13.6667 + -delta_H -184.657 kJ/mol +# deltafH -1728.66 kcal/mol + -analytic 1.1904 8.1763e-3 1.9005e4 -1.4561e1 -1.5851e6 +# Range 0-350 + -Vm 207.55 +# Extrapol supcrt92 +# Ref HDN+78 differ by 1.7 log K at 0C, 0.1 log K at 350C + +Lawrencite + FeCl2 = Fe+2 + 2 Cl- + log_k 9.0945 + -delta_H -84.7665 kJ/mol +# deltafH -341.65 kJ/mol + -analytic -2.2798e2 -8.1819e-2 9.2620e3 9.3097e1 1.4459e2 +# Range 0-300 + -Vm 40.31 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Lawsonite + CaAl2Si2O7(OH)2:H2O + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 6 H2O + log_k 22.2132 + -delta_H -244.806 kJ/mol +# deltafH -1158.1 kcal/mol + -analytic 1.3995e1 -1.7668e-2 1.0119e4 -8.3100 1.5789e2 +# Range 0-350 + -Vm 101.32 +# Extrapol supcrt92 +# Ref HDN+78 + +Li + Li + H+ +0.25 O2 = 0.5 H2O + Li+ + log_k 72.7622 + -delta_H -418.339 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.0227e2 -1.8118e-2 2.6262e4 3.8056e1 -1.6166e5 +# Range 0-300 + -Vm 13.017 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Lime + CaO + 2 H+ = Ca+2 + H2O + log_k 32.5761 + -delta_H -193.832 kJ/mol +# deltafH -151.79 kcal/mol + -analytic -7.2686e1 -1.7654e-2 1.2199e4 2.8128e1 1.9037e2 +# Range 0-350 + -Vm 16.764 +# Extrapol supcrt92 +# Ref HDN+78 + +Linnaeite + Co3S4 + 4 H+ = Co+2 + 2 Co+3 + 4 HS- + log_k -106.9017 + -delta_H 420.534 kJ/mol +# deltafH -85.81 kcal/mol + -analytic -6.0034e2 -2.0179e-1 -9.2145e3 2.3618e2 -1.4361e2 +# Range 0-300 + -Vm 63.55 # Webmineral.com +# Extrapol Cp integration +# Ref 78vau/cra + +Lizardite + Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O + log_k 30.560 + -analytic 7.886e1 -2.108e-1 0 0 0 1.637e-4 +# Range 0-300 + -Vm 107.31 +# Extrapol supcrt92 +# Ref Wilson+06 + +Lopezite + K2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 K+ + log_k -17.4366 + -delta_H 81.9227 kJ/mol +# deltafH -493.003 kcal/mol + -analytic 7.8359e1 -2.2908e-2 -9.3812e3 -2.3245e1 -1.5933e2 +# Range 0-200 + -Vm 109.93 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref 76del/hal + +Magnesiochromite + MgCr2O4 + 8 H+ = Mg+2 + 2 Cr+3 + 4 H2O + log_k 21.6927 + -delta_H -302.689 kJ/mol +# deltafH -1783.6 kJ/mol + -analytic -1.7376e2 -8.7429e-3 2.1600e4 5.0762e1 3.6685e2 +# Range 0-200 + -Vm 43.564 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref WEP+82 + +Magnesite + MgCO3 + H+ = HCO3- + Mg+2 + log_k 2.2936 + -delta_H -44.4968 kJ/mol +# deltafH -265.63 kcal/mol + -analytic -1.6665e2 -4.9469e-2 6.4344e3 6.5506e1 1.0045e2 +# Range 0-350 + -Vm 28.018 +# Extrapol supcrt92 +# Ref HDN+78 + +Magnetite + Fe3O4 + 8 H+ = Fe+2 + 2 Fe+3 + 4 H2O + log_k 10.4724 + -delta_H -216.597 kJ/mol +# deltafH -267.25 kcal/mol + -analytic -3.0510e2 -7.9919e-2 1.8709e4 1.1178e2 2.9203e2 +# Range 0-350 + -Vm 44.524 +# Extrapol supcrt92 +# Ref HDN+78 + +Malachite + Cu2CO3(OH)2 + 3 H+ = HCO3- + 2 Cu+2 + 2 H2O + log_k 5.9399 + -delta_H -76.2827 kJ/mol +# deltafH -251.9 kcal/mol + -analytic -2.7189e2 -6.9454e-2 1.1451e4 1.0511e2 1.7877e2 +# Range 0-350 + -Vm 54.86 +# Extrapol supcrt92 +# Ref HDN+78 + +Manganosite + MnO + 2 H+ = H2O + Mn+2 + log_k 17.9240 + -delta_H -121.215 kJ/mol +# deltafH -92.07 kcal/mol + -analytic -8.4114e1 -1.8490e-2 8.7792e3 3.1561e1 1.3702e2 +# Range 0-350 + -Vm 13.221 +# Extrapol supcrt92 +# Ref HDN+78 + +Margarite + CaAl4Si2O10(OH)2 + 14 H+ = Ca+2 + 2 SiO2 + 4 Al+3 + 8 H2O + log_k 41.0658 + -delta_H -522.192 kJ/mol +# deltafH -1485.8 kcal/mol + -analytic -2.3138e2 -8.2788e-2 3.0154e4 7.9148e1 4.7060e2 +# Range 0-350 + -Vm 129.4 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3.3 log K at 0C, 1.1 log K at 350C + +Maximum_Microcline + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol +# deltafH -949.188 kcal/mol + -analytic -9.4387 1.3561e-2 1.2656e4 -7.4925 -1.6795e6 +# Range 0-350 + -Vm 108.741 +# Extrapol supcrt92 +# Ref HDN+78 + +Mayenite + Ca12Al14O33 + 66 H+ = 12 Ca+2 + 14 Al+3 + 33 H2O + log_k 494.2199 + -delta_H -4056.77 kJ/mol +# deltafH -4644 kcal/mol + -analytic -1.4778e3 -2.9898e-1 2.4918e5 4.9518e2 4.2319e3 +# Range 0-200 + -Vm 517.41 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Melanterite + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.3490 + -delta_H 11.7509 kJ/mol +# deltafH -3014.48 kJ/mol + -analytic -2.6230e2 -7.2469e-2 6.5854e3 1.0484e2 1.0284e2 +# Range 0-300 + -Vm 146.48 # Marion+08 +# Extrapol Cp integration +# Ref RHF79 + +Merwinite + MgCa3(SiO4)2 + 8 H+ = Mg+2 + 2 SiO2 + 3 Ca+2 + 4 H2O + log_k 68.5140 + -delta_H -430.069 kJ/mol +# deltafH -1090.8 kcal/mol + -analytic -2.2524e2 -4.2525e-2 3.5619e4 7.9984e1 -9.8259e5 +# Range 0-350 + -Vm 104.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Mesolite + Na.676Ca.657Al1.99Si3.01O10:2.647H2O + 7.96 H+ = 0.657 Ca+2 + 0.676 Na+ + 1.99 Al+3 + 3.01 SiO2 + 6.627 H2O + log_k 13.6191 + -delta_H -179.744 kJ/mol +# deltafH -5947.05 kJ/mol + -analytic 7.1993 5.9356e-3 1.4717e4 -1.3627e1 -9.8863e5 +# Range 0-300 + -Vm 171.2 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 89db 6 + +Mg + Mg + 2 H+ + 0.5 O2 = H2O + Mg+2 + log_k 122.5365 + -delta_H -745.731 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5988e1 -1.9356e-2 4.0318e4 2.3862e1 6.2914e2 +# Range 0-300 + -Vm 13.996 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +MgOHCl + MgOHCl + H+ = Cl- + H2O + Mg+2 + log_k 15.9138 + -delta_H -118.897 kJ/mol +# deltafH -191.2 kcal/mol + -analytic -1.6614e2 -4.9715e-2 1.0311e4 6.5578e1 1.6093e2 +# Range 0-300 + -Vm 33.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +MgSO4 + MgSO4 = Mg+2 + SO4-2 + log_k 4.8781 + -delta_H -90.6421 kJ/mol +# deltafH -1284.92 kJ/mol + -analytic -2.2439e2 -7.9688e-2 9.3058e3 8.9622e1 1.4527e2 +# Range 0-300 + -Vm 45.25 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Millerite + NiS + H+ = HS- + Ni+2 + log_k -8.0345 + -delta_H 12.089 kJ/mol +# deltafH -82.171 kJ/mol + -analytic -1.4848e2 -4.8834e-2 2.6981e3 5.8976e1 4.2145e1 +# Range 0-300 + -Vm 16.89 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Minnesotaite + Fe3Si4O10(OH)2 + 6 H+ = 3 Fe+2 + 4 H2O + 4 SiO2 + log_k 13.9805 + -delta_H -105.211 kJ/mol +# deltafH -1153.37 kcal/mol + -analytic -1.8812e1 1.7261e-2 1.9804e4 -6.4410 -2.0433e6 +# Range 0-300 + -Vm 147.86 # HDN+78 +# Extrapol Cp integration +# Ref 78wol, Wilson+06 differ by 2.6 log K at 0C, 1.6 log K at 350C + +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + log_k -1.1398 + -delta_H 79.4128 kJ/mol +# deltafH -4328 kJ/mol + -analytic -2.1877e2 -3.6692e-3 5.9214e3 8.0361e1 1.0063e2 +# Range 0-200 + -Vm 219.80 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref RHF79 + +Mn + Mn + 2 H+ + 0.5 O2 = H2O + Mn+2 + log_k 82.9505 + -delta_H -500.369 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5558e1 -2.0429e-2 2.7571e4 2.5098e1 4.3024e2 +# Range 0-300 + -Vm 7.354 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Mn(OH)2(am) + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.3102 + -delta_H -97.1779 kJ/mol +# deltafH -695.096 kJ/mol + -analytic -7.8518e1 -7.5357e-3 8.0198e3 2.7955e1 1.3621e2 +# Range 0-200 + -Vm 22.36 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:2H2O + MnCl2:2H2O = Mn+2 + 2 Cl- + 2 H2O + log_k 4.0067 + -delta_H -34.4222 kJ/mol +# deltafH -1092.01 kJ/mol + -analytic -6.2823e1 -2.3959e-2 2.9931e3 2.5834e1 5.0850e1 +# Range 0-200 + -Vm 71.12 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:4H2O + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.7563 + -delta_H -10.7019 kJ/mol +# deltafH -1687.41 kJ/mol + -analytic -1.1049e2 -2.3376e-2 4.0458e3 4.3097e1 6.8742e1 +# Range 0-200 + -Vm 98.46 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:H2O + MnCl2:H2O = H2O + Mn+2 + 2 Cl- + log_k 5.5517 + -delta_H -50.8019 kJ/mol +# deltafH -789.793 kJ/mol + -analytic -4.5051e1 -2.5923e-2 2.8739e3 1.9674e1 4.8818e1 +# Range 0-200 + -Vm 42.27 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +MnSO4 + MnSO4 = Mn+2 + SO4-2 + log_k 2.6561 + -delta_H -64.8718 kJ/mol +# deltafH -1065.33 kJ/mol + -analytic -2.3088e2 -8.2694e-2 8.1653e3 9.3256e1 1.2748e2 +# Range 0-300 + -Vm 46.46 # gfw/density +# Extrapol Cp integration +# Ref RHF79 + +Mo + Mo + 1.5 O2 + H2O = MoO4-2 + 2 H+ + log_k 109.3230 + -delta_H -693.845 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.0021e2 -8.3006e-2 4.1629e4 8.0219e1 -3.4570e5 +# Range 0-300 + -Vm 9.387 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Molysite + FeCl3 = Fe+3 + 3 Cl- + log_k 13.5517 + -delta_H -151.579 kJ/mol +# deltafH -399.24 kJ/mol + -analytic -3.1810e2 -1.2357e-1 1.3860e4 1.3010e2 2.1637e2 +# Range 0-300 + -Vm 55.86 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Monohydrocalcite + CaCO3:H2O + H+ = Ca+2 + H2O + HCO3- + log_k 2.6824 + -delta_H -20.5648 kJ/mol +# deltafH -1498.29 kJ/mol + -analytic -7.2614e1 -1.7217e-2 3.1850e3 2.8185e1 5.4111e1 +# Range 0-200 + -Vm 49.62 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Monticellite + CaMgSiO4 + 4 H+ = Ca+2 + Mg+2 + SiO2 + 2 H2O + log_k 29.5852 + -delta_H -195.711 kJ/mol +# deltafH -540.8 kcal/mol + -analytic 1.5730e1 -3.5567e-3 9.0789e3 -6.3007 1.4166e2 +# Range 0-300 + -Vm 51.47 +# Extrapol supcrt92 +# Ref HDN+78 + +Montmor-Ca + Ca.175Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.175 Ca+2 + 0.35 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.4952 + -delta_H -100.154 kJ/mol +# deltafH -1361.5 kcal/mol + -analytic 2.459e1 -9.080e-2 0 0 0 5.223e-5 +# Range 0-300 + -Vm 136.007 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-K + K.35Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.35 K+ + 0.35 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.1423 + -delta_H -88.184 kJ/mol +# deltafH -1362.83 kcal/mol + -analytic 2.022e1 -7.624e-2 0 0 0 4.102e-5 +# Range 0-300 + -Vm 140.140 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-Mg + Mg.525Al1.65Si4O10(OH)2 + 6 H+ = 0.525 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.3879 + -delta_H -102.608 kJ/mol +# deltafH -1357.87 kcal/mol + -analytic 2.381e1 -9.031e-2 0 0 0 5.203e-5 +# Range 0-300 + -Vm 135.042 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-Na + Na.35Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.35 Mg+2 + 0.35 Na+ + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.4844 + -delta_H -93.2165 kJ/mol +# deltafH -1360.69 kcal/mol + -analytic 2.348e1 -8.604e-2 0 0 0 4.951e-5 +# Range 0-300 + -Vm 137.449 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match, but differ from Wilson+06 by 3.4 log K at 0C, 1.7 log K at 300C + +Mordenite + Ca.2895Na.361Al.94Si5.06O12:3.468H2O + 3.76 H+ = 0.2895 Ca+2 + 0.361 Na+ + 0.94 Al+3 + 5.06 SiO2 + 5.348 H2O + log_k -5.1969 + -delta_H 16.7517 kJ/mol +# deltafH -6736.64 kJ/mol + -analytic -5.4675e1 3.2513e-2 2.3412e4 -1.0419 -3.2292e6 +# Range 0-300 + -Vm 209.90 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 91joh/tas + +Morenosite + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.0140 + -delta_H 12.0185 kJ/mol +# deltafH -2976.46 kJ/mol + -analytic -2.6654e2 -7.2132e-2 6.7983e3 1.0636e2 1.0616e2 +# Range 0-300 + -Vm 144.17 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Muscovite + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 13.5858 + -delta_H -243.224 kJ/mol +# deltafH -1427.41 kcal/mol + -analytic 3.3085e1 -1.2425e-2 1.2477e4 -2.0865e1 -5.4692e5 +# Range 0-350 + -Vm 140.71 +# Extrapol supcrt92 +# Ref HDN+78 + +Na + Na + H+ + 0.25 O2 = 0.5 H2O + Na+ + log_k 67.3804 + -delta_H -380.185 kJ/mol +# deltafH 0 kJ/mol + -analytic -4.0458e1 -8.7899e-3 2.1223e4 1.5927e1 -1.2715e4 +# Range 0-300 + -Vm 23.812 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Na2CO3 + Na2CO3 + H+ = HCO3- + 2 Na+ + log_k 11.1822 + -delta_H -39.8526 kJ/mol +# deltafH -1130.68 kJ/mol + -analytic -1.5495e2 -4.3374e-2 6.4821e3 6.3571e1 1.0119e2 +# Range 0-300 + -Vm 41.86 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Na2CO3:7H2O + Na2CO3:7H2O + H+ = HCO3- + 2 Na+ + 7 H2O + log_k 9.9459 + -delta_H 27.7881 kJ/mol +# deltafH -3199.19 kJ/mol + -analytic -2.0593e2 -3.4509e-3 8.1601e3 7.6594e1 1.3864e2 +# Range 0-200 + -Vm 153.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Na2Cr2O7 + Na2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 Na+ + log_k -10.1597 + -delta_H 21.9702 kJ/mol +# deltafH -473 kcal/mol + -analytic 4.4885e1 -2.4919e-2 -5.0321e3 -1.2430e1 -8.5468e1 +# Range 0-200 + -Vm 103.96 # gfw/density +# Extrapol Constant H approx +# Ref 76del/hal + +Na2CrO4 + Na2CrO4 = CrO4-2 + 2 Na+ + log_k 2.9103 + -delta_H -19.5225 kJ/mol +# deltafH -320.8 kcal/mol + -analytic 5.4985 -9.9008e-3 1.0510e2 +# Range 0-200 + -Vm 59.48 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +Na2O + Na2O + 2 H+ = H2O + 2 Na+ + log_k 67.4269 + -delta_H -351.636 kJ/mol +# deltafH -99.14 kcal/mol + -analytic -6.3585e1 -8.4695e-3 2.0923e4 2.5601e1 3.2651e2 +# Range 0-350 + -Vm 25 +# Extrapol supcrt92 +# Ref HDN+78 + +Na2SiO3 + Na2SiO3 + 2 H+ = H2O + SiO2 + 2 Na+ + log_k 22.2418 + -delta_H -82.7093 kJ/mol +# deltafH -373.19 kcal/mol + -analytic -3.4928e1 5.6905e-3 1.0284e4 1.1197e1 -6.0134e5 +# Range 0-300 + -Vm 50.86 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +Na2U2O7 + Na2U2O7 + 6 H+ = 2 Na+ + 2 UO2+2 + 3 H2O + log_k 22.5917 + -delta_H -172.314 kJ/mol +# deltafH -3203.8 kJ/mol + -analytic -8.6640e1 -1.0903e-2 1.1841e4 2.9406e1 1.8479e2 +# Range 0-300 + -Vm 95.34 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +NaFeO2 + NaFeO2 + 4 H+ = Fe+3 + Na+ + 2 H2O + log_k 19.8899 + -delta_H -163.339 kJ/mol +# deltafH -698.218 kJ/mol + -analytic -7.0047e1 -9.6226e-3 1.0647e4 2.3071e1 1.8082e2 +# Range 0-200 + -Vm 33.48 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NaUO3 + NaUO3 + 2 H+ = H2O + Na+ + UO2+ + log_k 8.3371 + -delta_H -56.365 kJ/mol +# deltafH -1494.9 kJ/mol + -analytic -3.6363e1 7.0505e-4 4.5359e3 1.1828e1 7.0790e1 +# Range 0-300 + -Vm 42.56 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +Nahcolite + NaHCO3 = HCO3- + Na+ + log_k -0.1118 + -delta_H 17.0247 kJ/mol +# deltafH -226.4 kcal/mol + -analytic -2.2282e2 -5.9693e-2 5.4887e3 8.9744e1 8.5712e1 +# Range 0-300 + -Vm 38.62 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +Nantokite + CuCl = Cl- + Cu+ + log_k -6.7623 + -delta_H 41.9296 kJ/mol +# deltafH -137.329 kJ/mol + -analytic -2.2442e1 -1.1201e-2 -1.8709e3 1.0221e1 -3.1763e1 +# Range 0-200 + -Vm 23.92 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Natrolite + Na2Al2Si3O10:2H2O + 8 H+ = 2 Al+3 + 2 Na+ + 3 SiO2 + 6 H2O + log_k 18.5204 + -delta_H -186.971 kJ/mol +# deltafH -5718.56 kJ/mol + -analytic -2.7712e1 -2.7963e-3 1.6075e4 1.5332 -9.5765e5 +# Range 0-300 + -Vm 169.72 # HDN+78 +# Extrapol Cp integration +# Ref 83joh/flo + +Natron + Na2CO3:10H2O + H+ = HCO3- + 2 Na+ + 10 H2O + log_k 9.6102 + -delta_H 50.4781 kJ/mol +# deltafH -4079.39 kJ/mol + -analytic -1.9981e2 -2.9247e-2 5.2937e3 8.0973e1 8.2662e1 +# Range 0-300 + -Vm 195.99 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Natrosilite + Na2Si2O5 + 2 H+ = H2O + 2 Na+ + 2 SiO2 + log_k 18.1337 + -delta_H -51.7686 kJ/mol +# deltafH -590.36 kcal/mol + -analytic -2.7628e1 1.6865e-2 1.3302e4 4.2356 -1.2828e6 +# Range 0-300 + -Vm 72.57 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Nepheline + NaAlSiO4 + 4 H+ = Al+3 + Na+ + SiO2 + 2 H2O + log_k 13.8006 + -delta_H -135.068 kJ/mol +# deltafH -500.241 kcal/mol + -analytic -2.4856e1 -8.8171e-3 8.5653e3 6.0904 -2.2786e5 +# Range 0-350 + -Vm 54.16 +# Extrapol supcrt92 +# Ref HDN+78 + +Nesquehonite + MgCO3:3H2O + H+ = HCO3- + Mg+2 + 3 H2O + log_k 4.9955 + -delta_H -36.1498 kJ/mol +# deltafH -472.576 kcal/mol + -analytic 1.3771e2 -6.0397e-2 -3.5049e4 -1.8831e1 4.4213e6 +# Range 0-50 + -Vm 74.79 +# Extrapol supcrt92 +# Ref HDN+78 + +NH4Cl + NH4Cl = NH4+ + Cl- + log_k 1.3252 + -analytic -3.078 1.550e-2 0 0 0 -3.451e-6 +# Range 0-30 + -Vm 34.96 +# Extrapol Marion+12 +# Ref Marion+12, WangLi11 match + +NH4-feldspar # Buddingtonite (sometimes with +0.5 H2O, especially at low temp) + NH4AlSi3O8 + 4H+ = NH4+ + Al+3 + 3 SiO2 + 2 H2O + log_k -2.7243 + -analytic -7.434e1 3.080e-1 0 0 0 -2.270e-4 +# Range 25-325 + -Vm 114.78 # Webmineral.com (Hovis04: 109.08-112.23) +# Extrapol N17 +# Ref Wat81 + +NH4HCO3 + NH4HCO3 = NH4+ + HCO3- + log_k -0.0207 + -analytic -1.587e1 9.703e-2 0 0 0 -1.472e-4 +# Range 0-40 + -Vm 50.04 +# Extrapol Marion+12 +# Ref Marion+12 + +NH4-muscovite # Tobelite + NH4Al3Si3O10(OH)2 + 10 H+ = NH4+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 6.8109 + -analytical -6.638e1 3.170e-1 0 0 0 -2.386e-4 +# Range 25-325 + -Vm 146.07 # Hovis04 +# Extrapol N17 +# Ref Wat81 + +Ni + Ni + 2 H+ + 0.5 O2 = H2O + Ni+2 + log_k 50.9914 + -delta_H -333.745 kJ/mol +# deltafH 0 kcal/mol + -analytic -5.8308e1 -2.0133e-2 1.8444e4 2.1590e1 2.8781e2 +# Range 0-350 + -Vm 6.588 +# Extrapol supcrt92 +# Ref HDN+78 + +Ni(OH)2 + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 12.7485 + -delta_H -95.6523 kJ/mol +# deltafH -529.998 kJ/mol + -analytic -6.5279e1 -5.9499e-3 7.3471e3 2.2290e1 1.2479e2 +# Range 0-200 + -Vm 22.34 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Ni2SiO4 + Ni2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Ni+2 + log_k 14.3416 + -delta_H -127.629 kJ/mol +# deltafH -341.705 kcal/mol + -analytic -4.0414e1 -1.1194e-2 9.6515e3 1.2026e1 -3.6336e5 +# Range 0-300 + -Vm 42.61 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +NiCl2 + NiCl2 = Ni+2 + 2 Cl- + log_k 8.6113 + -delta_H -82.7969 kJ/mol +# deltafH -305.336 kJ/mol + -analytic -1.2416 -2.3139e-2 2.6529e3 3.1696 4.5052e1 +# Range 0-200 + -Vm 36.70 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NiCl2:2H2O + NiCl2:2H2O = Ni+2 + 2 Cl- + 2 H2O + log_k 3.9327 + -delta_H -37.6746 kJ/mol +# deltafH -922.135 kJ/mol + -analytic -4.8814e1 -2.2602e-2 2.5951e3 2.0518e1 4.4086e1 +# Range 0-200 + -Vm 64.07 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NiSO4 + NiSO4 = Ni+2 + SO4-2 + log_k 5.3197 + -delta_H -90.5092 kJ/mol +# deltafH -873.066 kJ/mol + -analytic -1.8878e2 -7.6403e-2 7.9412e3 7.6866e1 1.2397e2 +# Range 0-300 + -Vm 42.05 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +NiSO4:6H2O(alpha) + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.0072 + -delta_H 4.37983 kJ/mol +# deltafH -2682.99 kJ/mol + -analytic -1.1937e2 -1.3785e-2 4.1543e3 4.3454e1 7.0587e1 +# Range 0-200 + -Vm 126.6 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Nickelbischofite + NiCl2:6H2O = Ni+2 + 2 Cl- + 6 H2O + log_k 3.1681 + -delta_H 0.064088 kJ/mol +# deltafH -2103.23 kJ/mol + -analytic -1.4340e2 -2.1257e-2 5.1858e3 5.4759e1 8.8112e1 +# Range 0-200 + -Vm 123.15 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Ningyoite + CaUP2O8:2H2O + 2 H+ = Ca+2 + U+4 + 2 H2O + 2 HPO4-2 + log_k -29.7931 + -delta_H -36.4769 kJ/mol +# deltafH -1016.65 kcal/mol + -analytic -1.0274e2 -4.9041e-2 1.7779e3 3.2973e1 3.0227e1 +# Range 0-200 + -Vm 116.77 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Niter + KNO3 = K+ + NO3- + log_k -0.2061 + -delta_H 35.4794 kJ/mol +# deltafH -494.46 kJ/mol + -analytic -6.5607e1 -2.8165e-2 -4.0131e2 3.0361e1 -6.2425 +# Range 0-300 + -Vm 48.04 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Nontronite-Ca + Ca.175Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.5822 + -delta_H -38.138 kJ/mol +# deltafH -1166.7 kcal/mol + -analytic 3.697 -4.892e-2 0 0 0 1.489e-5 +# Range 0-300 + -Vm 137.780 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.6 log K at 0C, 0.2 log K at 300C + +Nontronite-K + K.35Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.35 Al+3 + 0.35 K+ + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.8648 + -delta_H -26.5822 kJ/mol +# deltafH -1167.93 kcal/mol + -analytic -1.959 -3.115e-2 0 0 0 1.139e-6 +# Range 0-300 + -Vm 141.913 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.1 log K at 0C, 0.5 log K at 300C + +Nontronite-Mg + Mg.175Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.175 Mg+2 + 0.35 Al+3 + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.6200 + -delta_H -41.1779 kJ/mol +# deltafH -1162.93 kcal/mol + -analytic 2.476 -4.730e-2 0 0 0 1.382e-5 +# Range 0-300 + -Vm 136.815 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol + +Nontronite-Na + Na.35Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.35 Al+3 + 0.35 Na+ + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.5263 + -delta_H -31.5687 kJ/mol +# deltafH -1165.8 kcal/mol + -analytic 1.106 -4.045e-2 0 0 0 9.229e-6 +# Range 0-300 + -Vm 139.221 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.7 log K at 0C, 0.2 log K at 300C + +Okenite + CaSi2O4(OH)2:H2O + 2 H+ = Ca+2 + 2 SiO2 + 3 H2O + log_k 10.3816 + -delta_H -19.4974 kJ/mol +# deltafH -749.641 kcal/mol + -analytic -7.7353e1 1.5091e-2 1.3023e4 2.1337e1 -1.1831e6 +# Range 0-300 + -Vm 94.77 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +P + P + 1.5 H2O + 1.25 O2 = HPO4-2 + 2 H+ + log_k 132.1032 + -delta_H -848.157 kJ/mol +# deltafH 0 kJ/mol + -analytic -9.2727e1 -6.8342e-2 4.3465e4 4.0156e1 6.7826e2 +# Range 0-300 + -Vm 17.2 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Paragonite + NaAl3Si3O10(OH)2 + 10 H+ = Na+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 17.5220 + -delta_H -275.056 kJ/mol +# deltafH -1416.96 kcal/mol + -analytic 3.5507e1 -1.0720e-2 1.3519e4 -2.2283e1 -4.5657e5 +# Range 0-350 + -Vm 132.53 +# Extrapol supcrt92 +# Ref HDN+78, differ by 2.5 log K at 0C, 0.6 log K at 350C, but match Wilson+06 + +Pargasite + NaCa2Al3Mg4Si6O22(OH)2 + 22 H+ = Na+ + 2 Ca+2 + 3 Al+3 + 4 Mg+2 + 6 SiO2 + 12 H2O + log_k 101.9939 + -delta_H -880.205 kJ/mol +# deltafH -3016.62 kcal/mol + -analytic -6.7889e1 -3.7817e-2 5.0493e4 9.2705 -1.0163e6 +# Range 0-350 + -Vm 273.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Periclase + MgO + 2 H+ = H2O + Mg+2 + log_k 21.3354 + -delta_H -150.139 kJ/mol +# deltafH -143.8 kcal/mol + -analytic -8.8465e1 -1.8390e-2 1.0414e4 3.2469e1 1.6253e2 +# Range 0-350 + -Vm 11.248 +# Extrapol supcrt92 +# Ref HDN+78 + +Petalite + LiAlSi4O10 + 4 H+ = Al+3 + Li+ + 2 H2O + 4 SiO2 + log_k -3.8153 + -delta_H -13.1739 kJ/mol +# deltafH -4886.15 kJ/mol + -analytic -6.6355 2.4316e-2 1.5949e4 -1.3341e1 -2.2265e6 +# Range 0-300 + -Vm 128.4 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Phlogopite + KAlMg3Si3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 SiO2 + 6 H2O + log_k 37.4400 + -delta_H -310.503 kJ/mol +# deltafH -1488.07 kcal/mol + -analytic -8.7730e1 -1.7253e-2 2.3748e4 2.4465e1 -8.9045e5 +# Range 0-350 + -Vm 149.66 +# Extrapol supcrt92 +# Ref HDN+78 + +Polydymite + Ni3S4 + 2 H+ = S2-2 + 2 HS- + 3 Ni+2 + log_k -48.9062 +# deltafH -78.014 kcal/mol + -analytic -1.8030e1 -4.6945e-2 -1.1557e4 8.8339 -1.9625e2 +# Range 0-200 + -Vm 64.14 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 78vau/cra + +Portlandite + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.5552 + -delta_H -128.686 kJ/mol +# deltafH -986.074 kJ/mol + -analytic -8.3848e1 -1.8373e-2 9.3154e3 3.2584e1 1.4538e2 +# Range 0-300 + -Vm 33.056 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Prehnite + Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 SiO2 + 6 H2O + log_k 32.9305 + -delta_H -311.875 kJ/mol +# deltafH -1481.65 kcal/mol + -analytic -3.5763e1 -2.1396e-2 2.0167e4 6.3554 -7.4967e5 +# Range 0-350 + -Vm 140.33 +# Extrapol supcrt92 +# Ref HDN+78 + +Pseudowollastonite + CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 + log_k 13.9997 + -delta_H -79.4625 kJ/mol +# deltafH -388.9 kcal/mol + -analytic 2.6691e1 6.3323e-3 5.5723e3 -1.1822e1 -3.6038e5 +# Range 0-300 + -Vm 40.08 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Pyridine + C5H5N + 6.25 O2 = 5 CO2 + 2.5 H2O + 0.5 N2 + log_k 490.7474 + -delta_H -669.9574 kcal/mol + -analytic 1071.04 -2.50773 0 0 0 0.00188 +# Range 0-350 + -Vm 64.4 +# Extrapol supcrt92 +# Ref Hel+98 + +Pyrite + FeS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Fe+2 + 1.75 HS- + log_k -24.6534 + -delta_H 109.535 kJ/mol +# deltafH -41 kcal/mol + -analytic -2.4195e2 -8.7948e-2 -6.2911e2 9.9248e1 -9.7454 +# Range 0-350 + -Vm 23.94 +# Extrapol supcrt92 +# Ref HDN+78 + +Pyrolusite + MnO2 = 0.5 Mn+2 + 0.5 MnO4-2 + log_k -17.6439 + -delta_H 83.3804 kJ/mol +# deltafH -520.031 kJ/mol + -analytic -1.1541e2 -4.1665e-2 -1.8960e3 4.7094e1 -2.9551e1 +# Range 0-300 + -Vm 18.38 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Pyrophyllite + Al2Si4O10(OH)2 + 6 H+ = 2 Al+3 + 4 H2O + 4 SiO2 + log_k 0.4397 + -delta_H -102.161 kJ/mol +# deltafH -1345.31 kcal/mol + -analytic 1.1066e1 1.2707e-2 1.6417e4 -1.9596e1 -1.8791e6 +# Range 0-350 + -Vm 126.6 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 match + +Pyrrhotite + FeS + H+ = Fe+2 + HS- + log_k -3.7193 + -delta_H -7.9496 kJ/mol +# deltafH -24 kcal/mol + -analytic -1.5785e2 -5.2258e-2 3.9711e3 6.3195e1 6.2012e1 +# Range 0-350 + -Vm 18.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Quartz + SiO2 = SiO2 + log_k -3.9993 + -delta_H 32.949 kJ/mol +# deltafH -217.65 kcal/mol + -analytic 7.7698e-2 1.0612e-2 3.4651e3 -4.3551 -7.2138e5 +# Range 0-350 + -Vm 22.68 +# Extrapol supcrt92 +# Ref HDN+78 + +Rankinite + Ca3Si2O7 + 6 H+ = 2 SiO2 + 3 Ca+2 + 3 H2O + log_k 51.9078 + -delta_H -302.089 kJ/mol +# deltafH -941.7 kcal/mol + -analytic -9.6393e1 -1.6592e-2 2.4832e4 3.2541e1 -9.4630e5 +# Range 0-300 + -Vm 96.13 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Rhodochrosite + MnCO3 + H+ = HCO3- + Mn+2 + log_k -0.1928 + -delta_H -21.3426 kJ/mol +# deltafH -212.521 kcal/mol + -analytic -1.6195e2 -4.9344e-2 5.0937e3 6.4402e1 7.9531e1 +# Range 0-350 + -Vm 31.075 +# Extrapol supcrt92 +# Ref HDN+78 + +Rhodonite + MnSiO3 + 2 H+ = H2O + Mn+2 + SiO2 + log_k 9.7301 + -delta_H -64.7121 kJ/mol +# deltafH -1319.42 kJ/mol + -analytic 2.0585e1 4.9941e-3 4.5816e3 -9.8212 -3.0658e5 +# Range 0-300 + -Vm 35.87 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Ripidolite + Mg3Fe2Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 2 Fe+2 + 3 Mg+2 + 3 SiO2 + 12 H2O + log_k 60.9638 + -delta_H -572.472 kJ/mol +# deltafH -1947.87 kcal/mol + -analytic 2.122e2 -6.025e-1 0 0 0 4.579e-4 +# Range 0-300 + -Vm 208.614 +# Extrapol supcrt92 +# Ref Catalano13 + +Rutherfordine + UO2CO3 + H+ = HCO3- + UO2+2 + log_k -4.1064 + -delta_H -19.4032 kJ/mol +# deltafH -1689.53 kJ/mol + -analytic -8.8224e1 -3.1434e-2 2.6675e3 3.4161e1 4.1650e1 +# Range 0-300 + -Vm 57.90 # Webmineral.com +# Extrapol Cp integration +# Ref 92gre/fug + +Rutile + TiO2 + 2 H2O = Ti(OH)4 + log_k -9.6452 +# deltafH -226.107 kcal/mol + -Vm 18.82 +# Ref RHF79 + +S + S + H2O = 0.5 O2 + H+ + HS- + log_k -45.0980 + -delta_H 263.663 kJ/mol +# deltafH 0 kJ/mol + -analytic -8.8928e1 -2.8454e-2 -1.1516e4 3.6747e1 -1.7966e2 +# Range 0-300 + -Vm 15.511 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Saleeite + Mg(UO2)2(PO4)2 + 2 H+ = Mg+2 + 2 HPO4-2 + 2 UO2+2 + log_k -19.4575 + -delta_H -110.816 kJ/mol +# deltafH -1189.61 kcal/mol + -analytic -6.0028e1 -4.4391e-2 3.9168e3 1.6428e1 6.6533e1 +# Range 0-200 + -Vm 285.77 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Sanidine_high + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k 0.9239 + -delta_H -35.0284 kJ/mol +# deltafH -946.538 kcal/mol + -analytic -3.4889 1.4495e-2 1.2856e4 -9.8978 -1.6572e6 +# Range 0-350 + -Vm 109.008 +# Extrapol supcrt92 +# Ref HDN+78 + +Saponite-Fe-Ca + Ca.175Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 20.3624 + -analytic 5.992e1 -1.681e-1 0 0 0 1.174e-4 +# Range 0-300 + -Vm 143.506 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Fe + Fe3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 18.9359 + -analytic 5.762e1 -1.630e-1 0 0 0 1.099e-4 +# Range 0-300 + -Vm 142.672 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-K + K.35Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 K+ + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 18.7937 + -analytic 5.427e1 -1.504e-1 0 0 0 1.037e-4 +# Range 0-300 + -Vm 147.639 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Mg + Mg.175Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Mg+2 + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 19.5290 + -analytic 5.870e1 -1.665e-1 0 0 0 1.163e-4 +# Range 0-300 + -Vm 142.541 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Na + Na.35Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Na+ + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 19.7977 + -analytic 5.733e1 -1.597e-1 0 0 0 1.117e-4 +# Range 0-300 + -Vm 144.947 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Mg-Ca + Ca.175Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.2900 + -delta_H -207.971 kJ/mol +# deltafH -1436.51 kcal/mol + -analytic 8.088e1 -2.233e-1 0 0 0 1.655e-4 +# Range 0-300 + -Vm 141.250 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol match + +Saponite-Mg-Fe + Fe.175Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Fe+2 + 0.35 Al+3 + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 27.6789 + -analytic 7.825e1 -2.180e-1 0 0 0 1.612e-4 +# Range 0-300 + -Vm 140.416 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Mg-K + K.35Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 0.35 K+ + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.0075 + -delta_H -196.402 kJ/mol +# deltafH -1437.74 kcal/mol + -analytic 7.522e1 -2.055e-1 0 0 0 1.517e-4 +# Range 0-300 + -Vm 145.383 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.7 log K at 0C, 0.7 log K at 300C + +Saponite-Mg-Mg + Mg3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.2523 + -delta_H -210.822 kJ/mol +# deltafH -1432.79 kcal/mol + -analytic 7.965e1 -2.217e-1 0 0 0 1.644e-4 +# Range 0-300 + -Vm 140.285 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.2 log K at 0C, 0.6 log K at 300C + +Saponite-Mg-Na + Na.35Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 0.35 Na+ + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.3459 + -delta_H -201.401 kJ/mol +# deltafH -1435.61 kcal/mol + -analytic 7.829e1 -2.148e-1 0 0 0 1.598e-4 +# Range 0-300 + -Vm 142.691 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.4 log K at 0C, 0.7 log K at 300C + +Sc + Sc + 3 H+ + 0.75 O2 = Sc+3 + 1.5 H2O + log_k 167.2700 + -delta_H -1033.87 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.6922e1 -2.9150e-2 5.4559e4 2.4189e1 8.5137e2 +# Range 0-300 + -Vm 15.038 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Scacchite + MnCl2 = Mn+2 + 2 Cl- + log_k 8.7785 + -delta_H -73.4546 kJ/mol +# deltafH -481.302 kJ/mol + -analytic -2.3476e2 -8.2437e-2 9.0088e3 9.6128e1 1.4064e2 +# Range 0-300 + -Vm 42.27 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Schoepite + UO3:2H2O + 2 H+ = UO2+2 + 3 H2O + log_k 4.8333 + -delta_H -50.415 kJ/mol +# deltafH -1826.1 kJ/mol + -analytic 1.3645e1 1.0884e-2 2.5412e3 -8.3167e0 3.9649e1 +# Range 0-300 + -Vm 66.08 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +Scolecite + CaAl2Si3O10:3H2O + 8 H+ = Ca+2 + 2 Al+3 + 3 SiO2 + 7 H2O + log_k 15.8767 + -delta_H -204.93 kJ/mol +# deltafH -6048.92 kJ/mol + -analytic 5.0656e1 -3.1485e-3 1.0574e4 -2.5663e1 -5.2769e5 +# Range 0-300 + -Vm 172.29 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 83joh/flo + +Sepiolite + Mg4Si6O15(OH)2:6H2O + 8 H+ = 4 Mg+2 + 6 SiO2 + 11 H2O + log_k 30.4439 + -delta_H -157.339 kJ/mol +# deltafH -2418 kcal/mol + -analytic 1.8690e1 4.7544e-2 2.6765e4 -2.5301e1 -2.6498e6 +# Range 0-350 + -Vm 285.6 +# Extrapol supcrt92 +# Ref HDN+78 + +Si + Si + O2 = SiO2 + log_k 148.9059 + -delta_H -865.565 kJ/mol +# deltafH 0 kJ/mol + -analytic -5.7245e2 -7.6302e-2 8.3516e4 2.0045e2 -2.8494e6 +# Range 0-300 + -Vm 12.056 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Siderite + FeCO3 + H+ = Fe+2 + HCO3- + log_k -0.1920 + -delta_H -32.5306 kJ/mol +# deltafH -179.173 kcal/mol + -analytic -1.5990e2 -4.9361e-2 5.4947e3 6.3032e1 8.5787e1 +# Range 0-350 + -Vm 29.378 +# Extrapol supcrt92 +# Ref HDN+78 + +Sillimanite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 16.3080 + -delta_H -238.442 kJ/mol +# deltafH -615.099 kcal/mol + -analytic -7.1610e1 -3.2196e-2 1.2493e4 2.2449e1 1.9496e2 +# Range 0-350 + -Vm 49.9 +# Extrapol supcrt92 +# Ref HDN+78 + +SiO2(am) + SiO2 = SiO2 + log_k -2.7136 + -delta_H 20.0539 kJ/mol +# deltafH -214.568 kcal/mol + -analytic 1.2109 7.0767e-3 2.3634e3 -3.4449 -4.8591e5 +# Range 0-325 + -Vm 29 +# Extrapol supcrt92 +# Ref HDN+78 + +Sm + Sm + 2 H+ + 0.5 O2 = H2O + Sm+2 + log_k 133.1614 + -delta_H -783.944 kJ/mol +# deltafH 0 kJ/mol + -analytic -7.1599e1 -2.0083e-2 4.2693e4 2.7291e1 6.6621e2 +# Range 0-300 + -Vm 19.98 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Smectite-high-Fe-Mg + Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 + 8 H+ = 0.025 Ca+2 + 0.1 Na+ + 0.2 Fe+3 + 0.2 K+ + 0.5 Fe+2 + 1.15 Mg+2 + 1.25 Al+3 + 3.5 SiO2 + 5 H2O + log_k 17.4200 + -delta_H -199.841 kJ/mol +# deltafH -1351.39 kcal/mol + -analytic -9.6102 1.2551e-3 1.8157e4 -7.9862 -1.3005e6 +# Range 0-300 + -Vm 139.07 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78wol + +Smectite-low-Fe-Mg + Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 + 7 H+ = 0.02 Ca+2 + 0.15 Na+ + 0.16 Fe+3 + 0.2 K+ + 0.29 Fe+2 + 0.9 Mg+2 + 1.25 Al+3 + 3.75 SiO2 + 4.5 H2O + log_k 11.0405 + -delta_H -144.774 kJ/mol +# deltafH -1352.12 kcal/mol + -analytic -1.7003e1 6.9848e-3 1.8359e4 -6.8896 -1.6637e6 +# Range 0-300 + -Vm 139.39 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78wol + +Smithsonite + ZnCO3 + H+ = HCO3- + Zn+2 + log_k 0.4633 + -delta_H -30.5348 kJ/mol +# deltafH -194.26 kcal/mol + -analytic -1.6452e2 -5.0231e-2 5.5925e3 6.5139e1 8.7314e1 +# Range 0-350 + -Vm 28.275 +# Extrapol supcrt92 +# Ref HDN+78 + +Sphaerocobaltite + CoCO3 + H+ = Co+2 + HCO3- + log_k -0.2331 + -delta_H -30.7064 kJ/mol +# deltafH -171.459 kcal/mol + -analytic -1.5709e2 -4.8957e-2 5.3158e3 6.2075e1 8.2995e1 +# Range 0-300 + -Vm 28.8 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 84sve + +Sphalerite + ZnS + H+ = HS- + Zn+2 + log_k -11.4400 + -delta_H 35.5222 kJ/mol +# deltafH -49 kcal/mol + -analytic -1.5497e2 -4.8953e-2 1.7850e3 6.1472e1 2.7899e1 +# Range 0-350 + -Vm 23.83 +# Extrapol supcrt92 +# Ref HDN+78 + +Spinel + Al2MgO4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O + log_k 37.6295 + -delta_H -398.108 kJ/mol +# deltafH -546.847 kcal/mol + -analytic -3.3895e2 -8.3595e-2 2.9251e4 1.2260e2 4.5654e2 +# Range 0-350 + -Vm 39.71 +# Extrapol supcrt92 +# Ref HDN+78 + +Spinel-Co + Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O + log_k -6.4852 + -delta_H -126.415 kJ/mol +# deltafH -891 kJ/mol + -analytic -3.2239e2 -8.0782e-2 1.4635e4 1.1755e2 2.2846e2 +# Range 0-300 + -Vm 39.41 # gfw/density +# Extrapol Cp integration +# Ref WEP+82 + +Spodumene + LiAlSi2O6 + 4 H+ = Al+3 + Li+ + 2 H2O + 2 SiO2 + log_k 6.9972 + -delta_H -89.1817 kJ/mol +# deltafH -3054.75 kJ/mol + -analytic -9.8111 2.1191e-3 9.6920e3 -3.0484 -7.8822e5 +# Range 0-300 + -Vm 58.37 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Stilbite + Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O + 8.72 H+ = 0.006 K+ + 0.136 Na+ + 1.019 Ca+2 + 2.18 Al+3 + 6.82 SiO2 + 11.69 H2O + log_k 1.0545 + -delta_H -83.0019 kJ/mol +# deltafH -11005.7 kJ/mol + -analytic -2.4483e1 3.0987e-2 2.8013e4 -1.5802e1 -3.4491e6 +# Range 0-300 + -Vm 333.50 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 90how/joh + +Strengite + FePO4:2H2O + H+ = Fe+3 + HPO4-2 + 2 H2O + log_k -11.3429 + -delta_H -37.107 kJ/mol +# deltafH -1876.23 kJ/mol + -analytic -2.7752e2 -9.4014e-2 7.6862e3 1.0846e2 1.2002e2 +# Range 0-300 + -Vm 65.10 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Sylvite + KCl = Cl- + K+ + log_k 0.8459 + -delta_H 17.4347 kJ/mol +# deltafH -104.37 kcal/mol + -analytic -8.1204e1 -3.3074e-2 8.2819e2 3.6014e1 1.2947e1 +# Range 0-350 + -Vm 37.524 +# Extrapol supcrt92 +# Ref HDN+78 + +Talc + Mg3Si4O10(OH)2 + 6 H+ = 3 Mg+2 + 4 H2O + 4 SiO2 + log_k 21.1383 + -delta_H -148.737 kJ/mol +# deltafH -1410.92 kcal/mol + -analytic 1.1164e1 2.4724e-2 1.9810e4 -1.7568e1 -1.8241e6 +# Range 0-350 + -Vm 136.25 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 match + +Tarapacaite + K2CrO4 = CrO4-2 + 2 K+ + log_k -0.4037 + -delta_H 17.8238 kJ/mol +# deltafH -335.4 kcal/mol + -analytic 2.7953e1 -1.0863e-2 -2.7589e3 -6.4154e0 -4.6859e1 +# Range 0-200 + -Vm 70.87 # Webmineral.com +# Extrapol Constant H approx +# Ref 76del/hal + +Tenorite + CuO + 2 H+ = Cu+2 + H2O + log_k 7.6560 + -delta_H -64.5047 kJ/mol +# deltafH -37.2 kcal/mol + -analytic -8.9899e1 -1.8886e-2 6.0346e3 3.3517e1 9.4191e1 +# Range 0-350 + -Vm 12.22 +# Extrapol supcrt92 +# Ref HDN+78 + +Tephroite + Mn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mn+2 + log_k 23.0781 + -delta_H -160.1 kJ/mol +# deltafH -1730.47 kJ/mol + -analytic -3.2440e1 -1.1023e-2 8.8910e3 1.1691e1 1.3875e2 +# Range 0-300 + -Vm 47.52 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Th + Th + 4 H+ + O2 = Th+4 + 2 H2O + log_k 209.6028 + -delta_H -1328.56 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.8256e1 -1.1963e-2 6.8870e4 4.2068e0 1.0747e3 +# Range 0-300 + -Vm 19.83 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Th(NO3)4:5H2O + Th(NO3)4:5H2O = Th+4 + 4 NO3- + 5 H2O + log_k 1.7789 + -delta_H -18.1066 kJ/mol +# deltafH -3007.35 kJ/mol + -analytic -1.2480e2 -2.0405e-2 5.1601e3 4.6613e1 8.7669e1 +# Range 0-200 + -Vm 203.62 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Th(SO4)2 + Th(SO4)2 = Th+4 + 2 SO4-2 + log_k -20.3006 + -delta_H -46.1064 kJ/mol +# deltafH -2542.12 kJ/mol + -analytic -8.4525 -3.5442e-2 0 0 -1.1540e5 +# Range 0-200 + -Vm 100.39 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Th2S3 + Th2S3 + 5 H+ + 0.5 O2 = H2O + 2 Th+4 + 3 HS- + log_k 95.2290 + -delta_H -783.243 kJ/mol +# deltafH -1082.89 kJ/mol + -analytic -3.2969e2 -1.1090e-1 4.6877e4 1.2152e2 7.3157e2 +# Range 0-300 + -Vm 71.19 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Th7S12 + Th7S12 + 16 H+ + O2 = 2 H2O + 7 Th+4 + 12 HS- + log_k 204.0740 + -delta_H -1999.4 kJ/mol +# deltafH -4136.58 kJ/mol + -analytic -2.1309e2 -1.4149e-1 9.8550e4 5.2042e1 1.6736e3 +# Range 0-200 + -Vm 248.02 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +ThCl4 + ThCl4 = Th+4 + 4 Cl- + log_k 23.8491 + -delta_H -251.094 kJ/mol +# deltafH -283.519 kcal/mol + -analytic -5.9340 -4.1640e-2 9.8623e3 3.6804 1.6748e2 +# Range 0-200 + -Vm 81.45 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 80lan/her + +ThS2 + ThS2 + 2 H+ = Th+4 + 2 HS- + log_k 10.7872 + -delta_H -175.369 kJ/mol +# deltafH -625.867 kJ/mol + -analytic -3.7691e1 -2.3714e-2 8.4673e3 1.0970e1 1.4380e2 +# Range 0-200 + -Vm 40.57 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Thenardite + Na2SO4 = SO4-2 + 2 Na+ + log_k -0.3091 + -delta_H -2.33394 kJ/mol +# deltafH -1387.87 kJ/mol + -analytic -2.1202e2 -7.1613e-2 5.1083e3 8.7244e1 7.9773e1 +# Range 0-300 + -Vm 53.33 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Thermonatrite + Na2CO3:H2O + H+ = H2O + HCO3- + 2 Na+ + log_k 10.9623 + -delta_H -27.5869 kJ/mol +# deltafH -1428.78 kJ/mol + -analytic -1.4030e2 -3.5263e-2 5.7840e3 5.7528e1 9.0295e1 +# Range 0-300 + -Vm 54.92 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Thorianite + ThO2 + 4 H+ = Th+4 + 2 H2O + log_k 1.8624 + -delta_H -114.296 kJ/mol +# deltafH -1226.4 kJ/mol + -analytic -1.4249e1 -2.4645e-3 4.3110e3 -1.6605e-2 2.1598e5 +# Range 0-300 + -Vm 26.373 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Ti + Ti + 2 H2O + O2 = Ti(OH)4 + log_k 149.2978 +# deltafH 0 kJ/mol + -Vm 10.631 # thermo.com.V8.R6+.tdat +# Ref CWM89 + +Ti2O3 + Ti2O3 + 4 H2O + 0.5 O2 = 2 Ti(OH)4 + log_k 42.9866 +# deltafH -1520.78 kJ/mol + -Vm 32.02 # gfw/density +# Ref WEP+82 + +Ti3O5 + Ti3O5 + 6 H2O + 0.5 O2 = 3 Ti(OH)4 + log_k 34.6557 +# deltafH -2459.24 kJ/mol + -Vm 48.93 # gfw/density +# Ref WEP+82 + +TiB2 + TiB2 + 5 H2O + 2.5 O2 = Ti(OH)4 + 2 B(OH)3 + log_k 312.4194 +# deltafH -323.883 kJ/mol + -Vm 15.37 # gfw/density +# Ref WEP+82 + +TiC + TiC + 3 H2O + 2 O2 = H+ + HCO3- + Ti(OH)4 + log_k 181.8139 +# deltafH -184.346 kJ/mol + -Vm 12.15 # gfw/density +# Ref WEP+82 + +TiCl2 + TiCl2 + 3 H2O + 0.5 O2 = Ti(OH)4 + 2 Cl- + 2 H+ + log_k 70.9386 +# deltafH -514.012 kJ/mol + -Vm 37.95 # gfw/density +# Ref WEP+82 + +TiCl3 + TiCl3 + 3.5 H2O + 0.25 O2 = Ti(OH)4 + 3 Cl- + 3 H+ + log_k 39.3099 +# deltafH -720.775 kJ/mol + -Vm 58.42 # gfw/density +# Ref WEP+82 + +TiN + TiN + 3.5 H2O + 0.25 O2 = NH3 + Ti(OH)4 + log_k 35.2344 +# deltafH -338.304 kJ/mol + -Vm 11.46 # gfw/density +# Ref WEP+82 + +Titanite + CaTiSiO5 + 2 H+ + H2O = Ca+2 + SiO2 + Ti(OH)4 + log_k 719.5839 +# deltafH 0 kcal/mol + -Vm 55.65 +# Ref RHF79 + +Tobermorite-11A + Ca5Si6H11O22.5 + 10 H+ = 5 Ca+2 + 6 SiO2 + 10.5 H2O + log_k 65.6121 + -delta_H -286.861 kJ/mol +# deltafH -2556.42 kcal/mol + -analytic 7.9123e1 3.9150e-2 2.9429e4 -3.9191e1 -2.4122e6 +# Range 0-300 + -Vm 286.81 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Tremolite + Ca2Mg5Si8O22(OH)2 + 14 H+ = 2 Ca+2 + 5 Mg+2 + 8 H2O + 8 SiO2 + log_k 61.2367 + -delta_H -406.404 kJ/mol +# deltafH -2944.04 kcal/mol + -analytic 8.5291e1 4.6337e-2 3.9465e4 -5.4414e1 -3.1913e6 +# Range 0-350 + -Vm 272.92 +# Extrapol supcrt92 +# Ref HDN+78 + +Trevorite + NiFe2O4 + 8 H+ = Ni+2 + 2 Fe+3 + 4 H2O + log_k 9.7876 + -delta_H -215.338 kJ/mol +# deltafH -1081.15 kJ/mol + -analytic -1.4322e2 -2.9429e-2 1.4518e4 4.5698e1 2.4658e2 +# Range 0-200 + -Vm 44.89 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Tridymite + SiO2 = SiO2 + log_k -3.8278 + -delta_H 31.3664 kJ/mol +# deltafH -909.065 kJ/mol + -analytic 3.1594e2 6.9315e-2 -1.1358e4 -1.2219e2 -1.9299e2 +# Range 0-200 + -Vm 26.12 # Webmineral.com +# Extrapol Constant H approx +# Ref WEP+82 + +Troilite + FeS + H+ = Fe+2 + HS- + log_k -3.8184 + -delta_H -7.3296 kJ/mol +# deltafH -101.036 kJ/mol + -analytic -1.6146e2 -5.3170e-2 4.0461e3 6.4620e1 6.3183e1 +# Range 0-300 + -Vm 19.07 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +U + U + 2 H+ + 1.5 O2 = H2O + UO2+2 + log_k 212.7800 + -delta_H -1286.64 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.4912e2 -4.7104e-2 8.1115e4 8.7008e1 -1.0158e6 +# Range 0-300 + -Vm 12.49 # Webelements.com +# Extrapol Cp integration +# Ref CWM89 + +U2O2Cl5 + U2O2Cl5 = U+4 + UO2+ + 5 Cl- + log_k 19.2752 + -delta_H -254.325 kJ/mol +# deltafH -2197.4 kJ/mol + -analytic -4.3945e2 -1.6239e-1 2.1694e4 1.7551e2 3.3865e2 +# Range 0-300 + -Vm 142.48 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +U3S5 + U3S5 + 5 H+ = U+4 + 2 U+3 + 5 HS- + log_k -0.3680 + -delta_H -218.942 kJ/mol +# deltafH -1431 kJ/mol + -analytic -1.1011e2 -6.7959e-2 1.0369e4 3.8481e1 1.7611e2 +# Range 0-200 + -Vm 106.12 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UC + UC + 2 H+ + 1.75 O2 = 0.5 H2O + HCO3- + U+3 + log_k 194.8241 + -delta_H -1202.82 kJ/mol +# deltafH -97.9 kJ/mol + -analytic -4.6329e1 -4.4600e-2 6.1417e4 1.9566e1 9.5836e2 +# Range 0-300 + -Vm 18.34 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl3 + UCl3 = U+3 + 3 Cl- + log_k 13.0062 + -delta_H -126.639 kJ/mol +# deltafH -863.7 kJ/mol + -analytic -2.6388e2 -1.0241e-1 1.1629e4 1.0846e2 1.8155e2 +# Range 0-300 + -Vm 62.62 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl4 + UCl4 = U+4 + 4 Cl- + log_k 21.9769 + -delta_H -240.719 kJ/mol +# deltafH -1018.8 kJ/mol + -analytic -3.6881e2 -1.3618e-1 1.9685e4 1.4763e2 3.0727e2 +# Range 0-300 + -Vm 78.00 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl6 + UCl6 + 2 H2O = UO2+2 + 4 H+ + 6 Cl- + log_k 57.5888 + -delta_H -383.301 kJ/mol +# deltafH -1066.5 kJ/mol + -analytic -4.5589e2 -1.9203e-1 2.8029e4 1.9262e2 4.3750e2 +# Range 0-300 + -Vm 125.21 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UH3(beta) + UH3 + 3 H+ + 1.5 O2 = U+3 + 3 H2O + log_k 199.7683 + -delta_H -1201.43 kJ/mol +# deltafH -126.98 kJ/mol + -analytic 5.2870e1 4.2151e-3 6.0167e4 -2.2701e1 1.0217e3 +# Range 0-200 + -Vm 22.01 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UN + UN + 3 H+ = NH3 + U+3 + log_k 41.7130 + -delta_H -280.437 kJ/mol +# deltafH -290 kJ/mol + -analytic -1.6393e2 -1.1679e-3 2.8845e3 6.5637e1 3.0122e6 +# Range 0-300 + -Vm 45.85 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UO2(NO3)2 + UO2(NO3)2 = UO2+2 + 2 NO3- + log_k 11.9598 + -delta_H -81.6219 kJ/mol +# deltafH -1351 kJ/mol + -analytic -1.2216e1 -1.1261e-2 3.9895e3 5.7166 6.7751e1 +# Range 0-200 + -Vm 140.23 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UO2(NO3)2:6H2O + UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O + log_k 2.3189 + -delta_H 19.8482 kJ/mol +# deltafH -3167.5 kJ/mol + -analytic -1.4019e2 -4.3682e-2 2.7842e3 5.9070e1 4.3486e1 +# Range 0-300 + -Vm 178.88 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +UO2(OH)2(beta) + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 4.9457 + -delta_H -56.8767 kJ/mol +# deltafH -1533.8 kJ/mol + -analytic -1.7478e1 -1.6806e-3 3.4226e3 4.6260 5.3412e1 +# Range 0-300 + -Vm 51.31 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +UO2SO4 + UO2SO4 = SO4-2 + UO2+2 + log_k 1.9681 + -delta_H -83.4616 kJ/mol +# deltafH -1845.14 kJ/mol + -analytic -1.5677e2 -6.5310e-2 6.7411e3 6.2867e1 1.0523e2 +# Range 0-300 + -Vm 111.61 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UO2SO4:3H2O + UO2SO4:3H2O = SO4-2 + UO2+2 + 3 H2O + log_k -1.4028 + -delta_H -34.6176 kJ/mol +# deltafH -2751.5 kJ/mol + -analytic -5.0134e1 -1.0321e-2 3.0505e3 1.6799e1 5.1818e1 +# Range 0-200 + -Vm 108.34 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 92gre/fug + +UO3(beta) + UO3 + 2 H+ = H2O + UO2+2 + log_k 8.3095 + -delta_H -84.5383 kJ/mol +# deltafH -1220.3 kJ/mol + -analytic -1.2298e1 -1.7800e-3 4.5621e3 2.3593 7.1191e1 +# Range 0-300 + -Vm 34.46 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 92gre/fug + +Uraninite + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.8372 + -delta_H -77.8767 kJ/mol +# deltafH -1085 kJ/mol + -analytic -7.5776e1 -1.0558e-2 5.9677e3 2.1853e1 9.3142e1 +# Range 0-325 + -Vm 24.638 +# Extrapol Cp integration +# Ref CWM89, SSB97 match + +Vaesite + NiS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Ni+2 + 1.75 HS- + log_k -26.7622 + -delta_H 110.443 kJ/mol +# deltafH -32.067 kcal/mol + -analytic 1.6172e1 -2.2673e-2 -8.2514e3 -3.4392 -1.4013e2 +# Range 0-200 + -Vm 27.697 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 78vau/cra + +Wairakite + CaAl2Si4O10(OH)4 + 8 H+ = Ca+2 + 2 Al+3 + 4 SiO2 + 6 H2O + log_k 18.0762 + -delta_H -237.781 kJ/mol +# deltafH -1579.33 kcal/mol + -analytic -1.7914e1 3.2944e-3 2.2782e4 -9.0981 -1.6934e6 +# Range 0-350 + -Vm 186.87 +# Extrapol supcrt92 +# Ref HDN+78 + +Wollastonite + CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 + log_k 13.7605 + -delta_H -76.5756 kJ/mol +# deltafH -389.59 kcal/mol + -analytic 3.0931e1 6.7466e-3 5.1749e3 -1.3209e1 -3.4579e5 +# Range 0-350 + -Vm 39.93 +# Extrapol supcrt92 +# Ref HDN+78 + +Wurtzite + ZnS + H+ = HS- + Zn+2 + log_k -9.1406 + -delta_H 22.3426 kJ/mol +# deltafH -45.85 kcal/mol + -analytic -1.5446e2 -4.8874e-2 2.4551e3 6.1278e1 3.8355e1 +# Range 0-350 + -Vm 23.846 +# Extrapol supcrt92 +# Ref HDN+78 + +Wustite + Fe.947O + 2 H+ = 0.106 Fe+3 + 0.841 Fe+2 + H2O + log_k 12.4113 + -delta_H -102.417 kJ/mol +# deltafH -266.265 kJ/mol + -analytic -7.6919e1 -1.8433e-2 7.3823e3 2.8312e1 1.1522e2 +# Range 0-300 + -Vm 12.04 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Xonotlite + Ca6Si6O17(OH)2 + 12 H+ = 6 Ca+2 + 6 SiO2 + 7 H2O + log_k 91.8267 + -delta_H -495.457 kJ/mol +# deltafH -2397.25 kcal/mol + -analytic 1.6080e3 3.7309e-1 -2.2548e4 -6.2716e2 -3.8346e2 +# Range 0-200 + -Vm 264.81 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Zincite + ZnO + 2 H+ = H2O + Zn+2 + log_k 11.2087 + -delta_H -88.7638 kJ/mol +# deltafH -350.46 kJ/mol + -analytic -8.6681e1 -1.9324e-2 7.1034e3 3.2256e1 1.1087e2 +# Range 0-350 + -Vm 14.338 +# Extrapol supcrt92, Cp integration +# Ref SSW+97, CWM89 match + +Zn + Zn + 2 H+ + 0.5 O2 = H2O + Zn+2 + log_k 68.8035 + -delta_H -433.157 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.4131e1 -2.0009e-2 2.3921e4 2.3702e1 3.7329e2 +# Range 0-300 + -Vm 9.162 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Zn(NO3)2:6H2O + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.4102 + -delta_H 24.7577 kJ/mol +# deltafH -2306.8 kJ/mol + -analytic -1.7152e2 -1.6875e-2 5.6291e3 6.5094e1 9.5649e1 +# Range 0-200 + -Vm 144.06 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn(OH)2(beta) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.9341 + -delta_H -83.2111 kJ/mol +# deltafH -641.851 kJ/mol + -analytic -7.7810e1 -7.8548e-3 7.1994e3 2.7455e1 1.2228e2 +# Range 0-200 + -Vm 32.60 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn(OH)2(epsilon) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.6625 + -delta_H -81.7811 kJ/mol +# deltafH -643.281 kJ/mol + -analytic -7.7938e1 -7.8767e-3 7.1282e3 2.7496e1 1.2107e2 +# Range 0-200 + -Vm 32.60 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn2SiO4 + Zn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Zn+2 + log_k 13.8695 + -delta_H -119.399 kJ/mol +# deltafH -1636.75 kJ/mol + -analytic 2.0970e2 5.3663e-2 -1.2724e2 -8.5445e1 -2.2336 +# Range 0-200 + -Vm 55.03 # Webmineral.com +# Extrapol Constant H approx +# Ref WEP+82 + +ZnCl2 + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.0880 + -delta_H -72.4548 kJ/mol +# deltafH -415.09 kJ/mol + -analytic -1.6157e1 -2.5405e-2 2.6505e3 8.8584 4.5015e1 +# Range 0-200 + -Vm 46.84 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +ZnCr2O4 + ZnCr2O4 + 8 H+ = Zn+2 + 2 Cr+3 + 4 H2O + log_k 7.9161 + -delta_H -221.953 kJ/mol +# deltafH -370.88 kcal/mol + -analytic -1.7603e2 -1.0217e-2 1.7414e4 5.1966e1 2.9577e2 +# Range 0-200 + -Vm 44.03 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +ZnSO4 + ZnSO4 = SO4-2 + Zn+2 + log_k 3.5452 + -delta_H -80.132 kJ/mol +# deltafH -982.855 kJ/mol + -analytic 6.9905 -1.8046e-2 2.2566e3 -2.2819 3.8318e1 +# Range 0-200 + -Vm 45.61 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +ZnSO4:6H2O + ZnSO4:6H2O = SO4-2 + Zn+2 + 6 H2O + log_k -1.6846 + -delta_H -0.412008 kJ/mol +# deltafH -2777.61 kJ/mol + -analytic -1.4506e2 -1.8736e-2 5.2179e3 5.3121e1 8.8657e1 +# Range 0-200 + -Vm 130.08 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zoisite + Ca2Al3(SiO4)3OH + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O + log_k 43.3017 + -delta_H -458.131 kJ/mol +# deltafH -1643.69 kcal/mol + -analytic 2.5321 -3.5886e-2 1.9902e4 -6.2443 3.1055e2 +# Range 0-350 + -Vm 135.9 +# Extrapol supcrt92 +# Ref HDN+78 differ by 2.5 log K at 0C, 0.6 log K at 350C + +#---------- +# 15 gases +#---------- + +C2H4(g) + C2H4 = C2H4 + log_k -2.323631 + -delta_H -3.930 kcal/mol + -analytic -14.5616 0.0176 2192.2 0 0 -3.8657e-6 +# Range 0-350 + -T_c 283 # K + -P_c 50.53 + -Omega 0.085 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref Sho93 + +C2H6(g) + C2H6 = C2H6 + log_k -2.93276 + -delta_H -4.509 kcal/mol + -analytic -23.1154 0.0354 3289.1 0 0 -1.5637e-5 +# Range 0-350 + -T_c 305 # K + -P_c 48.16 + -Omega 0.100 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref HOK+98 + +C3H8(g) + C3H8 = C3H8 + log_k -2.876 + -analytic 1.885 -2.55e-2 0 0 0 3.20e-5 # Not the best +# Range 0-350 + -T_c 369.522 # K + -P_c 42.4924 + -Omega 0.152 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref HOK+98 + +CH4(g) + CH4 = CH4 + log_k -2.8502 + -delta_H -13.0959 kJ/mol +# deltafH -17.88 kcal/mol + -analytic -24.027 4.7146e-3 372.27 6.4264 2.3362e5 +# Range 0-350 + -T_c 190.6 # K + -P_c 45.40 + -Omega 0.008 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +CO(g) + CO = CO + log_k -3.0068 + -delta_H -10.4349 kJ/mol +# deltafH -26.416 kcal/mol + -analytic -8.0849 9.2114e-3 0 0 2.0813e5 +# Range 0-350 + -T_c 133 # K + -P_c 34.54 + -Omega 0.049 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref Sho93 + +CO2(g) + CO2 + H2O = H+ + HCO3- + log_k -7.8136 + -delta_H -10.5855 kJ/mol +# deltafH -94.051 kcal/mol + -analytic -8.5938e1 -3.0431e-2 2.0702e3 3.2427e1 3.2328e1 +# Range 0-350 + -T_c 304.25 # K + -P_c 72.83 # atm, 7.38 MPa, http://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=4#Thermo-Phase + -Omega 0.225 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +H2(g) + H2 = H2 + log_k -3.1050 + -delta_H -4.184 kJ/mol +# deltafH 0 kcal/mol + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 +# Range 0-350 + -T_c 33.2 # K + -P_c 12.80 + -Omega 0.225 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +H2O(g) + H2O = H2O + log_k 1.5854 + -delta_H -43.4383 kJ/mol +# deltafH -57.935 kcal/mol + -analytic -1.4782e1 1.0752e-3 2.7519e3 2.7548 4.2945e1 +# Range 0-350 + -T_c 647.3 # K + -P_c 218.31 + -Omega 0.344 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref Joh90 + +H2S(g) + H2S = H+ + HS- + log_k -7.9759 + -delta_H 4.5229 kJ/mol +# deltafH -4.931 kcal/mol + -analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56 +# Range 0-350 + -T_c 373.2 # K + -P_c 88.20 + -Omega 0.1 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +N2(g) + N2 = N2 + log_k -3.1864 + -delta_H -10.4391 kJ/mol +# deltafH 0 kcal/mol + -analytic -58.453 1.818e-3 3199 17.909 -27460 # phreeqc.dat +# Range 0-350 + -T_c 126.2 # K + -P_c 33.50 + -Omega 0.039 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +NH3(g) + NH3 = NH3 + log_k 1.7966 + -delta_H -35.2251 kJ/mol +# deltafH -11.021 kcal/mol + -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 +# Range 0-350 + -T_c 405.6 # K + -P_c 111.3 + -Omega 0.25 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +NO(g) + NO + 0.5 H2O + 0.25 O2 = H+ + NO2- + log_k 0.7554 + -delta_H -48.8884 kJ/mol +# deltafH 90.241 kJ/mol + -analytic 8.2147 -1.2708e-1 -6.0593e3 2.0504e1 -9.4551e1 +# Range 0-300 + -T_c 180 # K + -P_c 64.64 + -Omega 0.607 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92, Cp integration +# Ref AS01, WEP+82 differ by 0.2 log K at 0C, 17 log K at 350C !! flag + +NO2(g) + NO2 + 0.5 H2O + 0.25 O2 = H+ + NO3- + log_k 8.3673 + -delta_H -94.0124 kJ/mol +# deltafH 33.154 kJ/mol + -analytic 9.4389e1 -2.7511e-1 -1.6783e4 2.1127e1 -2.6191e2 +# Range 0-300 + -T_c 431 # K + -P_c 99.67 + -Omega 0 # Not found +# Extrapol Cp integration +# Ref WEP+82 + +O2(g) + O2 = O2 + log_k -2.8983 + -delta_H -12.1336 kJ/mol +# deltafH 0 kcal/mol + -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 +# Range 0-300 + -T_c 154.6 # K phreeqc.dat + -P_c 49.80 # phreeqc.dat + -Omega 0.021 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +SO2(g) + SO2 = SO2 + log_k 0.1700 + -delta_H 0 +# deltafH 0 kcal/mol + -analytic -2.0205e1 2.8861e-3 1.4862e3 5.2958 1.2721e5 +# Range 0-300 + -T_c 430 # K + -P_c 77.67 + -Omega 0.251 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 # Ref WEP+82, Kel60 \ No newline at end of file diff --git a/database/iso.dat b/database/iso.dat index 8558cd69..c922df33 100644 --- a/database/iso.dat +++ b/database/iso.dat @@ -1,737 +1,741 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\iso.dat, 15/03/2024 15:26, 7231 lines, 260799 bytes, md5=319d28e882b25a6f83f095da65c50849 +# Created 17 May 2024 14:30:37 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "iso.dat" + SOLUTION_MASTER_SPECIES -E e- 0 0 0.0 -H H3O+ -1 H 1.008 -H(0) H2 0 H -H(1) H3O+ -1 H -O H2O 0 O 16.00 -O(0) O2 0 O -O(-2) H2O 0 O -Ca Ca+2 0 Ca 40.08 -Mg Mg+2 0 Mg 24.312 -Na Na+ 0 Na 22.9898 -K K+ 0 K 39.102 -Fe Fe+2 0.0 Fe 55.847 -Fe(+2) Fe+2 0.0 Fe -Fe(+3) Fe+3 -2.0 Fe -Al Al+3 0.0 Al 26.9815 -Si H4SiO4 0.0 SiO2 28.0843 -Cl Cl- 0 Cl 35.453 -C CO2 0 HCO3 12.0111 -C(4) CO2 0 HCO3 -C(-4) CH4 0 CH4 -S SO4-2 0 S 31.972 -S(6) SO4-2 0 SO4 -S(-2) HS- 1 S -N NO3- 0 N 14.0067 -N(+5) NO3- 0 N -N(+3) NO2- 0 N -N(0) N2 0 N -N(-3) NH4+ 0 N -P PO4-3 2.0 P 30.9738 -F F- 0.0 F 18.9984 -Br Br- 0.0 Br 79.904 -Alkalinity CO2 0.0 50.05 50.05 +E e- 1 0 0 +H H3O+ -1 H 1.008 +H(0) H2 0 H +H(1) H3O+ -1 H +O H2O 0 O 16 +O(0) O2 0 O +O(-2) H2O 0 O +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Al Al+3 0 Al 26.9815 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO2 0 HCO3 12.0111 +C(4) CO2 0 HCO3 +C(-4) CH4 0 CH4 +S SO4-2 0 S 31.972 +S(6) SO4-2 0 SO4 +S(-2) HS- 1 S +N NO3- 0 N 14.0067 +N(+5) NO3- 0 N +N(+3) NO2- 0 N +N(0) N2 0 N +N(-3) NH4+ 0 N +P PO4-3 2 P 30.9738 +F F- 0 F 18.9984 +Br Br- 0 Br 79.904 +Alkalinity CO2 0 50.05 50.05 SOLUTION_SPECIES H3O+ = H3O+ - log_k 0.000 - -gamma 9.0000 0.0000 + log_k 0 + -gamma 9 0 e- = e- - log_k 0.000 + log_k 0 H2O = H2O - log_k 0.000 + log_k 0 Ca+2 = Ca+2 - log_k 0.000 - -gamma 5.0000 0.1650 + log_k 0 + -gamma 5 0.165 Mg+2 = Mg+2 - log_k 0.000 - -gamma 5.5000 0.2000 + log_k 0 + -gamma 5.5 0.2 Na+ = Na+ - log_k 0.000 - -gamma 4.0000 0.0750 + log_k 0 + -gamma 4 0.075 K+ = K+ - log_k 0.000 - -gamma 3.5000 0.0150 + log_k 0 + -gamma 3.5 0.015 Fe+2 = Fe+2 - log_k 0.000 - -gamma 6.0000 0.0000 + log_k 0 + -gamma 6 0 Al+3 = Al+3 - log_k 0.000 - -gamma 9.0000 0.0000 + log_k 0 + -gamma 9 0 H4SiO4 = H4SiO4 - log_k 0.000 + log_k 0 Cl- = Cl- - log_k 0.000 - -gamma 3.5000 0.0150 + log_k 0 + -gamma 3.5 0.015 SO4-2 = SO4-2 - log_k 0.000 - -gamma 5.0000 -0.0400 + log_k 0 + -gamma 5 -0.04 NO3- = NO3- - log_k 0.000 - -gamma 3.0000 0.0000 + log_k 0 + -gamma 3 0 PO4-3 = PO4-3 - log_k 0.000 - -gamma 4.0000 0.0000 + log_k 0 + -gamma 4 0 F- = F- - log_k 0.000 - -gamma 3.5000 0.0000 + log_k 0 + -gamma 3.5 0 Br- = Br- - log_k 0.000 - -gamma 3.0000 0.0000 + log_k 0 + -gamma 3 0 -2H2O = OH- + H3O+ - log_k -14.000 - delta_h 13.362 kcal - -analytic -283.971 -0.05069842 13323.0 102.24447 -1119669.0 - -gamma 3.5000 0.0000 +2 H2O = OH- + H3O+ + log_k -14 + delta_h 13.362 kcal + -analytic -283.971 -0.05069842 13323 102.24447 -1119669 + -gamma 3.5 0 6 H2O = O2 + 4 H3O+ + 4 e- - log_k -86.08 - delta_h 134.79 kcal + log_k -86.08 + delta_h 134.79 kcal -2 H3O+ + 2 e- = H2 + 2H2O - log_k -3.15 - delta_h -1.759 kcal +2 H3O+ + 2 e- = H2 + 2 H2O + log_k -3.15 + delta_h -1.759 kcal -CO2 + 2H2O = HCO3- + H3O+ - log_k -6.352 - delta_h 2.177 kcal - -analytic -356.3094 -0.06092 21834.37 126.8339 -1684915 +CO2 + 2 H2O = HCO3- + H3O+ + log_k -6.352 + delta_h 2.177 kcal + -analytic -356.3094 -0.06092 21834.37 126.8339 -1684915 -CO2 + 3H2O = CO3-2 + 2H3O+ - log_k -16.681 - delta_h 5.738 kcal - -analytic -464.1965 -0.09344813 26986.16 165.75951 -2248628.9 +CO2 + 3 H2O = CO3-2 + 2 H3O+ + log_k -16.681 + delta_h 5.738 kcal + -analytic -464.1965 -0.09344813 26986.16 165.75951 -2248628.9 CO3-2 + 10 H3O+ + 8 e- = CH4 + 13 H2O - log_k 41.071 - delta_h -61.039 kcal + log_k 41.071 + delta_h -61.039 kcal SO4-2 + H3O+ = HSO4- + H2O - log_k 1.988 - delta_h 3.85 kcal - -analytic -56.889 0.006473 2307.9 19.8858 0.0 + log_k 1.988 + delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 0 SO4-2 + 9 H3O+ + 8 e- = HS- + 13 H2O - log_k 33.65 - delta_h -60.140 kcal - -gamma 3.5000 0.0000 + log_k 33.65 + delta_h -60.14 kcal + -gamma 3.5 0 HS- + H2O = S-2 + H3O+ - log_k -12.918 - delta_h 12.1 kcal - -gamma 5.0000 0.0000 + log_k -12.918 + delta_h 12.1 kcal + -gamma 5 0 HS- + H3O+ = H2S + H2O - log_k 6.994 - delta_h -5.300 kcal - -analytic -11.17 0.02386 3279.0 + log_k 6.994 + delta_h -5.3 kcal + -analytic -11.17 0.02386 3279 -NO3- + 2 H3O+ + 2 e- = NO2- + 3H2O - log_k 28.570 - delta_h -43.760 kcal - -gamma 3.0000 0.0000 +NO3- + 2 H3O+ + 2 e- = NO2- + 3 H2O + log_k 28.57 + delta_h -43.76 kcal + -gamma 3 0 -2 NO3- + 12 H3O+ + 10e- = N2 + 18 H2O - log_k 207.080 - delta_h -312.130 kcal +2 NO3- + 12 H3O+ + 10 e- = N2 + 18 H2O + log_k 207.08 + delta_h -312.13 kcal NH4+ + H2O = NH3 + H3O+ - log_k -9.252 - delta_h 12.48 kcal - -analytic 0.6322 -0.001225 -2835.76 + log_k -9.252 + delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 NO3- + 10 H3O+ + 8 e- = NH4+ + 13 H2O - log_k 119.077 - delta_h -187.055 kcal - -gamma 2.5000 0.0000 + log_k 119.077 + delta_h -187.055 kcal + -gamma 2.5 0 NH4+ + SO4-2 = NH4SO4- - log_k 1.11 + log_k 1.11 PO4-3 + H3O+ = HPO4-2 + H2O - log_k 12.346 - delta_h -3.530 kcal - -gamma 4.0000 0.0000 + log_k 12.346 + delta_h -3.53 kcal + -gamma 4 0 -PO4-3 + 2 H3O+ = H2PO4- + 2H2O - log_k 19.553 - delta_h -4.520 kcal - -gamma 4.5000 0.0000 +PO4-3 + 2 H3O+ = H2PO4- + 2 H2O + log_k 19.553 + delta_h -4.52 kcal + -gamma 4.5 0 H3O+ + F- = HF + H2O - log_k 3.18 - delta_h 3.18 kcal - -analytic -2.033 0.012645 429.01 + log_k 3.18 + delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 H3O+ + 2 F- = HF2- + H2O - log_k 3.760 - delta_h 4.550 kcal + log_k 3.76 + delta_h 4.55 kcal Ca+2 + OH- = CaOH+ - log_k -12.780 + log_k -12.78 Ca+2 + CO3-2 = CaCO3 - log_k 3.224 - delta_h 3.545 kcal - -analytic -1228.732 -0.299440 35512.75 485.818 + log_k 3.224 + delta_h 3.545 kcal + -analytic -1228.732 -0.29944 35512.75 485.818 #Ca+2 + HCO3- = CaHCO3+ Ca+2 + CO3-2 + H3O+ = CaHCO3+ + H2O - log_k 11.435 - delta_h -0.871 kcal - -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 - -gamma 5.4000 0.0000 + log_k 11.435 + delta_h -0.871 kcal + -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 + -gamma 5.4 0 Ca+2 + SO4-2 = CaSO4 - log_k 2.300 - delta_h 1.650 kcal + log_k 2.3 + delta_h 1.65 kcal Ca+2 + HSO4- = CaHSO4+ - log_k 1.08 + log_k 1.08 Ca+2 + PO4-3 = CaPO4- - log_k 6.459 - delta_h 3.100 kcal + log_k 6.459 + delta_h 3.1 kcal Ca+2 + HPO4-2 = CaHPO4 - log_k 2.739 - delta_h 3.3 kcal + log_k 2.739 + delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ - log_k 1.408 - delta_h 3.4 kcal + log_k 1.408 + delta_h 3.4 kcal Ca+2 + F- = CaF+ - log_k 0.940 - delta_h 4.120 kcal + log_k 0.94 + delta_h 4.12 kcal Mg+2 + OH- = MgOH+ - log_k -11.440 - delta_h 15.952 kcal + log_k -11.44 + delta_h 15.952 kcal Mg+2 + CO3-2 = MgCO3 - log_k 2.98 - delta_h 2.713 kcal - -analytic 0.9910 0.00667 + log_k 2.98 + delta_h 2.713 kcal + -analytic 0.991 0.00667 Mg+2 + H3O+ + CO3-2 = MgHCO3+ + H2O - log_k 11.399 - delta_h -2.771 kcal - -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + log_k 11.399 + delta_h -2.771 kcal + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 Mg+2 + SO4-2 = MgSO4 - log_k 2.370 - delta_h 4.550 kcal + log_k 2.37 + delta_h 4.55 kcal Mg+2 + PO4-3 = MgPO4- - log_k 6.589 - delta_h 3.100 kcal + log_k 6.589 + delta_h 3.1 kcal Mg+2 + HPO4-2 = MgHPO4 - log_k 2.87 + log_k 2.87 delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ - log_k 1.513 + log_k 1.513 delta_h 3.4 kcal Mg+2 + F- = MgF+ - log_k 1.820 - delta_h 3.200 kcal + log_k 1.82 + delta_h 3.2 kcal Na+ + OH- = NaOH - log_k -14.180 + log_k -14.18 Na+ + CO3-2 = NaCO3- - log_k 1.270 - delta_h 8.910 kcal + log_k 1.27 + delta_h 8.91 kcal Na+ + HCO3- = NaHCO3 - log_k -0.25 + log_k -0.25 Na+ + SO4-2 = NaSO4- - log_k 0.700 - delta_h 1.120 kcal + log_k 0.7 + delta_h 1.12 kcal Na+ + HPO4-2 = NaHPO4- - log_k 0.29 + log_k 0.29 Na+ + F- = NaF - log_k -0.240 + log_k -0.24 K+ + OH- = KOH - log_k -14.460 + log_k -14.46 K+ + SO4-2 = KSO4- - log_k 0.850 - delta_h 2.250 kcal - -analytic 3.106 0.0 -673.6 + log_k 0.85 + delta_h 2.25 kcal + -analytic 3.106 0 -673.6 K+ + HPO4-2 = KHPO4- - log_k 0.29 + log_k 0.29 -Fe+2 + 2H2O = FeOH+ + H3O+ - log_k -9.500 - delta_h 13.200 kcal +Fe+2 + 2 H2O = FeOH+ + H3O+ + log_k -9.5 + delta_h 13.2 kcal Fe+2 + Cl- = FeCl+ - log_k 0.140 + log_k 0.14 Fe+2 + CO3-2 = FeCO3 - log_k 4.380 + log_k 4.38 Fe+2 + HCO3- = FeHCO3+ - log_k 2.0 + log_k 2 Fe+2 + SO4-2 = FeSO4 - log_k 2.250 - delta_h 3.230 kcal + log_k 2.25 + delta_h 3.23 kcal Fe+2 + HSO4- = FeHSO4+ - log_k 1.08 + log_k 1.08 -Fe+2 + 2HS- = Fe(HS)2 - log_k 8.95 +Fe+2 + 2 HS- = Fe(HS)2 + log_k 8.95 -Fe+2 + 3HS- = Fe(HS)3- - log_k 10.987 +Fe+2 + 3 HS- = Fe(HS)3- + log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 - log_k 3.6 + log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ - log_k 2.7 + log_k 2.7 Fe+2 + F- = FeF+ - log_k 1.000 + log_k 1 Fe+2 = Fe+3 + e- - log_k -13.020 - delta_h 9.680 kcal - -gamma 9.0000 0.0000 + log_k -13.02 + delta_h 9.68 kcal + -gamma 9 0 -Fe+3 + 2H2O = FeOH+2 + H3O+ - log_k -2.19 - delta_h 10.4 kcal +Fe+3 + 2 H2O = FeOH+2 + H3O+ + log_k -2.19 + delta_h 10.4 kcal -Fe+3 + 4H2O = Fe(OH)2+ + 2 H3O+ - log_k -5.67 - delta_h 17.1 kcal +Fe+3 + 4 H2O = Fe(OH)2+ + 2 H3O+ + log_k -5.67 + delta_h 17.1 kcal Fe+3 + 6 H2O = Fe(OH)3 + 3 H3O+ - log_k -12.56 - delta_h 24.8 kcal + log_k -12.56 + delta_h 24.8 kcal Fe+3 + 8 H2O = Fe(OH)4- + 4 H3O+ - log_k -21.6 - delta_h 31.9 kcal + log_k -21.6 + delta_h 31.9 kcal 2 Fe+3 + 4 H2O = Fe2(OH)2+4 + 2 H3O+ - log_k -2.95 - delta_h 13.5 kcal + log_k -2.95 + delta_h 13.5 kcal 3 Fe+3 + 8 H2O = Fe3(OH)4+5 + 4 H3O+ - log_k -6.3 - delta_h 14.3 kcal + log_k -6.3 + delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 - log_k 1.48 - delta_h 5.6 kcal + log_k 1.48 + delta_h 5.6 kcal Fe+3 + 2 Cl- = FeCl2+ - log_k 2.13 + log_k 2.13 Fe+3 + 3 Cl- = FeCl3 - log_k 1.13 + log_k 1.13 Fe+3 + SO4-2 = FeSO4+ - log_k 4.04 - delta_h 3.91 kcal + log_k 4.04 + delta_h 3.91 kcal Fe+3 + HSO4- = FeHSO4+2 - log_k 2.48 + log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- - log_k 5.38 - delta_h 4.60 kcal + log_k 5.38 + delta_h 4.6 kcal Fe+3 + HPO4-2 = FeHPO4+ - log_k 5.43 - delta_h 5.76 kcal + log_k 5.43 + delta_h 5.76 kcal Fe+3 + H2PO4- = FeH2PO4+2 - log_k 5.43 + log_k 5.43 Fe+3 + F- = FeF+2 - log_k 6.2 - delta_h 2.7 kcal + log_k 6.2 + delta_h 2.7 kcal Fe+3 + 2 F- = FeF2+ - log_k 10.8 - delta_h 4.8 kcal + log_k 10.8 + delta_h 4.8 kcal Fe+3 + 3 F- = FeF3 - log_k 14.0 - delta_h 5.4 kcal + log_k 14 + delta_h 5.4 kcal -Al+3 + 2H2O = AlOH+2 + H3O+ - log_k -5.00 - delta_h 11.49 kcal - -analytic -38.253 0.0 -656.27 14.327 +Al+3 + 2 H2O = AlOH+2 + H3O+ + log_k -5 + delta_h 11.49 kcal + -analytic -38.253 0 -656.27 14.327 Al+3 + 4 H2O = Al(OH)2+ + 2 H3O+ - log_k -10.1 - delta_h 26.90 kcal - -analytic 88.500 0.0 -9391.6 -27.121 + log_k -10.1 + delta_h 26.9 kcal + -analytic 88.5 0 -9391.6 -27.121 Al+3 + 6 H2O = Al(OH)3 + 3 H3O+ - log_k -16.9 - delta_h 39.89 kcal - -analytic 226.374 0.0 -18247.8 -73.597 + log_k -16.9 + delta_h 39.89 kcal + -analytic 226.374 0 -18247.8 -73.597 Al+3 + 8 H2O = Al(OH)4- + 4 H3O+ - log_k -22.7 - delta_h 42.30 kcal - -analytic 51.578 0.0 -11168.9 -14.865 + log_k -22.7 + delta_h 42.3 kcal + -analytic 51.578 0 -11168.9 -14.865 Al+3 + SO4-2 = AlSO4+ - log_k 3.5 + log_k 3.5 delta_h 2.29 kcal -Al+3 + 2SO4-2 = Al(SO4)2- - log_k 5.0 +Al+3 + 2 SO4-2 = Al(SO4)2- + log_k 5 delta_h 3.11 kcal Al+3 + HSO4- = AlHSO4+2 - log_k 0.46 + log_k 0.46 Al+3 + F- = AlF+2 - log_k 7.000 - delta_h 1.060 kcal + log_k 7 + delta_h 1.06 kcal Al+3 + 2 F- = AlF2+ - log_k 12.700 - delta_h 1.980 kcal + log_k 12.7 + delta_h 1.98 kcal Al+3 + 3 F- = AlF3 - log_k 16.800 - delta_h 2.160 kcal + log_k 16.8 + delta_h 2.16 kcal Al+3 + 4 F- = AlF4- - log_k 19.400 - delta_h 2.200 kcal + log_k 19.4 + delta_h 2.2 kcal Al+3 + 5 F- = AlF5-2 - log_k 20.600 - delta_h 1.840 kcal + log_k 20.6 + delta_h 1.84 kcal Al+3 + 6 F- = AlF6-3 - log_k 20.600 - delta_h -1.670 kcal + log_k 20.6 + delta_h -1.67 kcal H4SiO4 + H2O = H3SiO4- + H3O+ - log_k -9.83 - delta_h 6.12 kcal - -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 + log_k -9.83 + delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 -H4SiO4 + 2H2O= H2SiO4-2 + 2 H3O+ - log_k -23.0 - delta_h 17.6 kcal - -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 +H4SiO4 + 2 H2O = H2SiO4-2 + 2 H3O+ + log_k -23 + delta_h 17.6 kcal + -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 H4SiO4 + 4 H3O+ + 6 F- = SiF6-2 + 8 H2O - log_k 30.180 - delta_h -16.260 kcal + log_k 30.18 + delta_h -16.26 kcal PHASES Calcite CaCO3 = CO3-2 + Ca+2 - log_k -8.480 - delta_h -2.297 kcal - -analytic -171.9065 -0.077993 2839.319 71.595 + log_k -8.48 + delta_h -2.297 kcal + -analytic -171.9065 -0.077993 2839.319 71.595 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - log_k -17.090 + log_k -17.09 delta_h -9.436 kcal Siderite FeCO3 = Fe+2 + CO3-2 - log_k -10.890 - delta_h -2.480 kcal + log_k -10.89 + delta_h -2.48 kcal Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - log_k -4.580 - delta_h -0.109 kcal - -analytic 68.2401 0.0 -3221.51 -25.0627 + log_k -4.58 + delta_h -0.109 kcal + -analytic 68.2401 0 -3221.51 -25.0627 Anhydrite CaSO4 = Ca+2 + SO4-2 - log_k -4.360 - delta_h -1.710 kcal - -analytic 197.52 0.0 -8669.8 -69.835 + log_k -4.36 + delta_h -1.71 kcal + -analytic 197.52 0 -8669.8 -69.835 Hydroxyapatite - Ca5(PO4)3OH + 4 H3O+ = 5H2O + 3 HPO4-2 + 5 Ca+2 - log_k -3.421 + Ca5(PO4)3OH + 4 H3O+ = 5 H2O + 3 HPO4-2 + 5 Ca+2 + log_k -3.421 delta_h -36.155 kcal Fluorite CaF2 = Ca+2 + 2 F- - log_k -10.600 - delta_h 4.690 kcal - -analytic 66.348 0.0 -4298.2 -25.271 + log_k -10.6 + delta_h 4.69 kcal + -analytic 66.348 0 -4298.2 -25.271 SiO2(a) SiO2 + 2 H2O = H4SiO4 - log_k -2.710 - delta_h 3.340 kcal - -analytic -0.26 0.0 -731.0 + log_k -2.71 + delta_h 3.34 kcal + -analytic -0.26 0 -731 Chalcedony SiO2 + 2 H2O = H4SiO4 - log_k -3.550 - delta_h 4.720 kcal - -analytic -0.09 0.0 -1032.0 + log_k -3.55 + delta_h 4.72 kcal + -analytic -0.09 0 -1032 Quartz SiO2 + 2 H2O = H4SiO4 - log_k -3.980 - delta_h 5.990 kcal - -analytic 0.41 0.0 -1309.0 + log_k -3.98 + delta_h 5.99 kcal + -analytic 0.41 0 -1309 Gibbsite Al(OH)3 + 3 H3O+ = Al+3 + 6 H2O - log_k 8.110 - delta_h -22.800 kcal + log_k 8.11 + delta_h -22.8 kcal Al(OH)3(a) Al(OH)3 + 3 H3O+ = Al+3 + 6 H2O - log_k 10.800 - delta_h -26.500 kcal + log_k 10.8 + delta_h -26.5 kcal Kaolinite - Al2Si2O5(OH)4 + 6 H3O+ = 7H2O + 2 H4SiO4 + 2 Al+3 - log_k 7.435 - delta_h -35.300 kcal + Al2Si2O5(OH)4 + 6 H3O+ = 7 H2O + 2 H4SiO4 + 2 Al+3 + log_k 7.435 + delta_h -35.3 kcal Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 - log_k -18.002 + log_k -18.002 delta_h 25.896 kcal Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 - log_k -19.714 - delta_h 11.580 kcal + log_k -19.714 + delta_h 11.58 kcal K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 - log_k -20.573 - delta_h 30.820 kcal + log_k -20.573 + delta_h 30.82 kcal K-mica - KAl3Si3O10(OH)2 + 10 H3O+ = K+ + 3 Al+3 + 3 H4SiO4 + 10H2O - log_k 12.703 + KAl3Si3O10(OH)2 + 10 H3O+ = K+ + 3 Al+3 + 3 H4SiO4 + 10 H2O + log_k 12.703 delta_h -59.376 kcal Chlorite(14A) - Mg5Al2Si3O10(OH)8 + 16 H3O+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 22H2O - log_k 68.38 + Mg5Al2Si3O10(OH)8 + 16 H3O+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 22 H2O + log_k 68.38 delta_h -151.494 kcal Ca-Montmorillonite - Ca0.165Al2.33Si3.67O10(OH)2 + 14 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H3O+ - log_k -45.027 - delta_h 58.373 kcal + Ca0.165Al2.33Si3.67O10(OH)2 + 14 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H3O+ + log_k -45.027 + delta_h 58.373 kcal Talc - Mg3Si4O10(OH)2 + 4 H2O + 6 H3O+ = 3 Mg+2 + 4 H4SiO4 + 6H2O - log_k 21.399 + Mg3Si4O10(OH)2 + 4 H2O + 6 H3O+ = 3 Mg+2 + 4 H4SiO4 + 6 H2O + log_k 21.399 delta_h -46.352 kcal Illite - K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 12.4H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H3O+ - log_k -40.267 + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 12.4 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H3O+ + log_k -40.267 delta_h 54.684 kcal Chrysotile - Mg3Si2O5(OH)4 + 6 H3O+ = 7H2O + 2 H4SiO4 + 3 Mg+2 - log_k 32.200 - delta_h -46.800 kcal - -analytic 13.248 0.0 10217.1 -6.1894 + Mg3Si2O5(OH)4 + 6 H3O+ = 7 H2O + 2 H4SiO4 + 3 Mg+2 + log_k 32.2 + delta_h -46.8 kcal + -analytic 13.248 0 10217.1 -6.1894 Sepiolite - Mg2Si3O7.5OH:3H2O + 4 H3O+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 + 4H2O - log_k 15.760 - delta_h -10.700 kcal + Mg2Si3O7.5OH:3H2O + 4 H3O+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + 4 H2O + log_k 15.76 + delta_h -10.7 kcal Sepiolite(d) - Mg2Si3O7.5OH:3H2O + 4 H3O+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 + 4H2O - log_k 18.660 + Mg2Si3O7.5OH:3H2O + 4 H3O+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + 4 H2O + log_k 18.66 Hematite Fe2O3 + 6 H3O+ = 2 Fe+3 + 9 H2O - log_k -4.008 + log_k -4.008 delta_h -30.845 kcal Goethite FeOOH + 3 H3O+ = Fe+3 + 5 H2O - log_k -1.000 - delta_h -14.48 kcal + log_k -1 + delta_h -14.48 kcal Fe(OH)3(a) Fe(OH)3 + 3 H3O+ = Fe+3 + 6 H2O - log_k 4.891 + log_k 4.891 Pyrite - FeS2 + 2H3O+ + 2e- = Fe+2 + 2HS- + 2H2O - log_k -18.479 - delta_h 11.300 kcal + FeS2 + 2 H3O+ + 2 e- = Fe+2 + 2 HS- + 2 H2O + log_k -18.479 + delta_h 11.3 kcal FeS(ppt) FeS + H3O+ = Fe+2 + HS- + H2O - log_k -3.915 + log_k -3.915 Mackinawite FeS + H3O+ = Fe+2 + HS- + H2O - log_k -4.648 + log_k -4.648 Sulfur - S + 2 H3O+ + 2e- = H2S + 2H2O - log_k 4.882 + S + 2 H3O+ + 2 e- = H2S + 2 H2O + log_k 4.882 delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O - log_k -36.000 + log_k -36 Halite - NaCl = Na+ + Cl- - log_k 1.582 + NaCl = Na+ + Cl- + log_k 1.582 delta_h 0.918 kcal CO2(g) CO2(g) = CO2 - log_k -1.468 - delta_h -4.776 kcal - -analytic 108.3865 0.01985076 -6919.53 -40.45154 669365.0 + log_k -1.468 + delta_h -4.776 kcal + -analytic 108.3865 0.01985076 -6919.53 -40.45154 669365 O2(g) O2 = O2 # log_k -2.960 # delta_h -1.844 kcal # log K from llnl.dat Dec 8, 2010 - log_k -2.8983 - -analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005 + log_k -2.8983 + -analytic -7.5001e+0 7.8981e-3 0e+0 0e+0 2.0027e+5 H2(g) H2 = H2 - log_k -3.150 - delta_h -1.759 kcal + log_k -3.15 + delta_h -1.759 kcal H2O(g) H2O = H2O - log_k 1.51 - delta_h -44.03 kJ + log_k 1.51 + delta_h -44.03 kJ N2(g) N2 = N2 - log_k -3.260 - delta_h -1.358 kcal + log_k -3.26 + delta_h -1.358 kcal H2S(g) H2S = H2S - log_k -0.997 - delta_h -4.570 kcal + log_k -0.997 + delta_h -4.57 kcal CH4(g) CH4 = CH4 - log_k -2.860 - delta_h -3.373 kcal + log_k -2.86 + delta_h -3.373 kcal NH3(g) NH3 = NH3 - log_k 1.770 - delta_h -8.170 kcal + log_k 1.77 + delta_h -8.17 kcal Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 - log_k -2.209 - delta_h 4.910 kcal - -analytic 1.447 -0.004153 0.0 0.0 -214949.0 + log_k -2.209 + delta_h 4.91 kcal + -analytic 1.447 -0.004153 0 0 -214949 Alunite - KAl3(SO4)2(OH)6 + 6 H3O+ = K+ + 3 Al+3 + 2 SO4-2 + 12H2O - log_k -1.400 - delta_h -50.250 kcal + KAl3(SO4)2(OH)6 + 6 H3O+ = K+ + 3 Al+3 + 2 SO4-2 + 12 H2O + log_k -1.4 + delta_h -50.25 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H3O+ = 3 Fe+3 + 12 H2O + K+ + 2 SO4-2 - log_k -9.210 - delta_h -31.280 kcal + log_k -9.21 + delta_h -31.28 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - log_k 0.0 + log_k 0 Na+ + X- = NaX - log_k 0.0 - -gamma 4.0 0.075 + log_k 0 + -gamma 4 0.075 K+ + X- = KX - log_k 0.7 - -gamma 3.5 0.015 - delta_h -4.3 # Jardine & Sparks, 1984 + log_k 0.7 + -gamma 3.5 0.015 + delta_h -4.3 # Jardine & Sparks, 1984 NH4+ + X- = NH4X - log_k 0.6 - -gamma 2.5 0.0 - delta_h -2.4 # Laudelout et al., 1968 + log_k 0.6 + -gamma 2.5 0 + delta_h -2.4 # Laudelout et al., 1968 - Ca+2 + 2X- = CaX2 - log_k 0.8 - -gamma 5.0 0.165 - delta_h 7.2 # Van Bladel & Gheyl, 1980 + Ca+2 + 2 X- = CaX2 + log_k 0.8 + -gamma 5 0.165 + delta_h 7.2 # Van Bladel & Gheyl, 1980 - Mg+2 + 2X- = MgX2 - log_k 0.6 - -gamma 5.5 0.2 - delta_h 7.4 # Laudelout et al., 1968 + Mg+2 + 2 X- = MgX2 + log_k 0.6 + -gamma 5.5 0.2 + delta_h 7.4 # Laudelout et al., 1968 - Fe+2 + 2X- = FeX2 - log_k 0.44 - -gamma 6.0 0.0 + Fe+2 + 2 X- = FeX2 + log_k 0.44 + -gamma 6 0 - Al+3 + 3X- = AlX3 - log_k 0.41 - -gamma 9.0 0.0 + Al+3 + 3 X- = AlX3 + log_k 0.41 + -gamma 9 0 - AlOH+2 + 2X- = AlOHX2 - log_k 0.89 - -gamma 0.0 0.0 + AlOH+2 + 2 X- = AlOHX2 + log_k 0.89 + -gamma 0 0 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from @@ -743,24 +747,24 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - log_k 0.0 + log_k 0 - Hfo_sOH + H3O+ = Hfo_sOH2+ + H2O - log_k 7.29 # = pKa1,int + Hfo_sOH + H3O+ = Hfo_sOH2+ + H2O + log_k 7.29 # = pKa1,int Hfo_sOH + H2O = Hfo_sO- + H3O+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - log_k 0.0 + log_k 0 - Hfo_wOH + H3O+ = Hfo_wOH2+ + H2O - log_k 7.29 # = pKa1,int + Hfo_wOH + H3O+ = Hfo_wOH2+ + H2O + log_k 7.29 # = pKa1,int Hfo_wOH + H2O = Hfo_wO- + H3O+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int ############################################### # CATIONS # @@ -770,7 +774,7 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 + log_k 4.97 Hfo_wOH + Ca+2 + H2O = Hfo_wOCa+ + H3O+ log_k -5.85 @@ -789,12 +793,12 @@ SURFACE_SPECIES # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. Hfo_sOH + Fe+2 + H2O = Hfo_sOFe+ + H3O+ - log_k -0.95 + log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 + H2O = Hfo_wOFe+ + H3O+ log_k -2.98 - Hfo_wOH + Fe+2 + 3H2O = Hfo_wOFeOH + 2H3O+ + Hfo_wOH + Fe+2 + 3 H2O = Hfo_wOFeOH + 2 H3O+ log_k -11.55 ############################################### @@ -804,38 +808,38 @@ SURFACE_SPECIES # Anions from table 10.6 # # Phosphate - Hfo_wOH + PO4-3 + 3 H3O+ = Hfo_wH2PO4 + 4H2O - log_k 31.29 + Hfo_wOH + PO4-3 + 3 H3O+ = Hfo_wH2PO4 + 4 H2O + log_k 31.29 - Hfo_wOH + PO4-3 + 2 H3O+ = Hfo_wHPO4- + 3H2O - log_k 25.39 + Hfo_wOH + PO4-3 + 2 H3O+ = Hfo_wHPO4- + 3 H2O + log_k 25.39 - Hfo_wOH + PO4-3 + H3O+ = Hfo_wPO4-2 + 2H2O - log_k 17.72 + Hfo_wOH + PO4-3 + H3O+ = Hfo_wPO4-2 + 2 H2O + log_k 17.72 # # Anions from table 10.7 # # Sulfate - Hfo_wOH + SO4-2 + H3O+ = Hfo_wSO4- + 2H2O - log_k 7.78 + Hfo_wOH + SO4-2 + H3O+ = Hfo_wSO4- + 2 H2O + log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 + log_k 0.79 # # Derived constants table 10.10 # - Hfo_wOH + F- + H3O+ = Hfo_wF + 2H2O - log_k 8.7 + Hfo_wOH + F- + H3O+ = Hfo_wF + 2 H2O + log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - log_k 1.6 + log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for HFO # 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L # # Hfo_wOH + CO3-2 + H3O+ = Hfo_wCO3- + 2H2O # log_k 12.56 -# +# # Hfo_wOH + CO3-2 + 2 H3O+= Hfo_wHCO3 + 3 H2O # log_k 20.62 @@ -850,641 +854,641 @@ SURFACE_SPECIES ############################################################################################### SOLUTION_MASTER_SPECIES ############################################################################################### -D D2O 0 D 2 -D(1) D2O 0 D -D(0) HD 0 D -T HTO 0 T 3 -T(1) HTO 0 T -T(0) HT 0 T -[18O] H2[18O] 0 [18O] 18 -[18O](-2) H2[18O] 0 [18O] 18 -[18O](0) O[18O] 0 [18O] 18 -[13C] [13C]O2 0 [13C] 13 -[13C](4) [13C]O2 0 [13C] -[13C](-4) [13C]H4 0 [13C] -[14C] [14C]O2 0 [14C] 14 -[14C](4) [14C]O2 0 [14C] -[14C](-4) [14C]H4 0 [14C] -[34S] [34S]O4-2 0 [34S] 33.967 -[34S](6) [34S]O4-2 0 [34S] -[34S](-2) H[34S]- 0 [34S] -[15N] [15N]O3- 0 [15N] 15.00010897312 -[15N](5) [15N]O3- 0 [15N] -[15N](3) [15N]O2- 0 [15N] -[15N](0) N[15N] 0 [15N] -[15N](-3) [15N]H4+ 0 [15N] +D D2O 0 D 2 +D(1) D2O 0 D +D(0) HD 0 D +T HTO 0 T 3 +T(1) HTO 0 T +T(0) HT 0 T +[18O] H2[18O] 0 [18O] 18 +[18O](-2) H2[18O] 0 [18O] 18 +[18O](0) O[18O] 0 [18O] 18 +[13C] [13C]O2 0 [13C] 13 +[13C](4) [13C]O2 0 [13C] +[13C](-4) [13C]H4 0 [13C] +[14C] [14C]O2 0 [14C] 14 +[14C](4) [14C]O2 0 [14C] +[14C](-4) [14C]H4 0 [14C] +[34S] [34S]O4-2 0 [34S] 33.967 +[34S](6) [34S]O4-2 0 [34S] +[34S](-2) H[34S]- 0 [34S] +[15N] [15N]O3- 0 [15N] 15.00010897312 +[15N](5) [15N]O3- 0 [15N] +[15N](3) [15N]O2- 0 [15N] +[15N](0) N[15N] 0 [15N] +[15N](-3) [15N]H4+ 0 [15N] ############################################################################################### ISOTOPES ############################################################################################### H - -isotope D permil 155.76e-6 # VSMOW (Clark and Fritz, 1997) - -isotope T TU 1e-18 # Solomon and Cook, in eds, Cook and Herczeg, 2000 + -isotope D permil 155.76e-6 # VSMOW (Clark and Fritz, 1997) + -isotope T TU 1e-18 # Solomon and Cook, in eds, Cook and Herczeg, 2000 H(0) - -isotope D(0) permil 155.76e-6 # VSMOW (Clark and Fritz, 1997) - -isotope T(0) TU 1e-18 # Solomon and Cook, in eds, Cook and Herczeg, 2000 + -isotope D(0) permil 155.76e-6 # VSMOW (Clark and Fritz, 1997) + -isotope T(0) TU 1e-18 # Solomon and Cook, in eds, Cook and Herczeg, 2000 # 1 THO in 10^18 H2O # -isotope T pCi/L 3.125e-18 # #1e-18/3.2 = T/mol H2O -C - -isotope [13C] permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite +C + -isotope [13C] permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite # Chang and Li, 1990, Chinese Science Bulletin - -isotope [13C](4) permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite + -isotope [13C](4) permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite # Chang and Li, 1990, Chinese Science Bulletin - -isotope [13C](-4) permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite - -isotope [14C] pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon - -isotope [14C](4) pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon + -isotope [13C](-4) permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite + -isotope [14C] pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon + -isotope [14C](4) pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon # 13.56 Modern Carbon dpm (Kalin, in eds, Cook and Herczeg, 2000) - -isotope [14C](-4) pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon -C(4) - -isotope [13C](4) permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite + -isotope [14C](-4) pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon +C(4) + -isotope [13C](4) permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite # Chang and Li, 1990, Chinese Science Bulletin - -isotope [14C](4) pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon + -isotope [14C](4) pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon # 13.56 Modern Carbon dpm (Kalin, in eds, Cook and Herczeg, 2000) # 13.56 Modern Carbon dpm (Kalin, in eds, Cook and Herczeg, 2000) -C(-4) - -isotope [13C](-4) permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite - -isotope [14C](-4) pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon +C(-4) + -isotope [13C](-4) permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite + -isotope [14C](-4) pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon # 14C calculation # # lambda = ln(2)/(5730 yrs * 3.15576e7 sec/yr) - # mole/g carbon = -(dn/dt)/lambda = 0.226 dps / 3.8332476e-12 / 6.022136736e23 + # mole/g carbon = -(dn/dt)/lambda = 0.226 dps / 3.8332476e-12 / 6.022136736e23 # mole C/g C NBS Oxalic Acid with 13C = -19.3: 0.08325783313 # mole 14C/mol Modern Carbon mol/g carbon/ (mole C/g C) = 1.175887709e-12 # O - -isotope [18O] permil 2005.2e-6 # VSMOW (Clark and Fritz, 1997) - -isotope [18O](0) permil 2005.2e-6 # VSMOW (Clark and Fritz, 1997) + -isotope [18O] permil 2005.2e-6 # VSMOW (Clark and Fritz, 1997) + -isotope [18O](0) permil 2005.2e-6 # VSMOW (Clark and Fritz, 1997) O(0) - -isotope [18O](0) permil 2005.2e-6 # VSMOW (Clark and Fritz, 1997) + -isotope [18O](0) permil 2005.2e-6 # VSMOW (Clark and Fritz, 1997) S # Coplen and others, 2002 - -isotope [34S] permil 0.04416264 # VCDT, Vienna Canyon Diablo Troilite - -isotope [34S](6) permil 0.04416264 # VCDT - -isotope [34S](-2) permil 0.04416264 # VCDT + -isotope [34S] permil 0.04416264 # VCDT, Vienna Canyon Diablo Troilite + -isotope [34S](6) permil 0.04416264 # VCDT + -isotope [34S](-2) permil 0.04416264 # VCDT S(6) - -isotope [34S](6) permil 0.04416264 # VCDT + -isotope [34S](6) permil 0.04416264 # VCDT S(-2) - -isotope [34S](-2) permil 0.04416264 # VCDT + -isotope [34S](-2) permil 0.04416264 # VCDT N # Coplen and others, 2002 - -isotope [15N] permil 0.003676867 # Air - -isotope [15N](5) permil 0.003676867 # Air - -isotope [15N](3) permil 0.003676867 # Air - -isotope [15N](0) permil 0.003676867 # Air - -isotope [15N](-3) permil 0.003676867 # Air + -isotope [15N] permil 0.003676867 # Air + -isotope [15N](5) permil 0.003676867 # Air + -isotope [15N](3) permil 0.003676867 # Air + -isotope [15N](0) permil 0.003676867 # Air + -isotope [15N](-3) permil 0.003676867 # Air N(5) - -isotope [15N](5) permil 0.003676867 # Air + -isotope [15N](5) permil 0.003676867 # Air N(3) - -isotope [15N](3) permil 0.003676867 # Air + -isotope [15N](3) permil 0.003676867 # Air N(0) - -isotope [15N](0) permil 0.003676867 # Air + -isotope [15N](0) permil 0.003676867 # Air N(-3) - -isotope [15N](-3) permil 0.003676867 # Air + -isotope [15N](-3) permil 0.003676867 # Air ############################################################################################### ISOTOPE_RATIOS ############################################################################################### # # Total aqueous ratios # - R(D) D - R(T) T - R(18O) [18O] - R(13C) [13C] - R(14C) [14C] - R(15N) [15N] - R(34S) [34S] + R(D) D + R(T) T + R(18O) [18O] + R(13C) [13C] + R(14C) [14C] + R(15N) [15N] + R(34S) [34S] # H2O(l) ratios - R(D)_H2O(l) D - R(T)_H2O(l) T - R(18O)_H2O(l) [18O] + R(D)_H2O(l) D + R(T)_H2O(l) T + R(18O)_H2O(l) [18O] # OH- ratios - R(D)_OH- D - R(T)_OH- T - R(18O)_OH- [18O] + R(D)_OH- D + R(T)_OH- T + R(18O)_OH- [18O] # H3O+ ratios - R(D)_H3O+ D - R(T)_H3O+ T - R(18O)_H3O+ [18O] + R(D)_H3O+ D + R(T)_H3O+ T + R(18O)_H3O+ [18O] # O2(aq) ratios - R(18O)_O2(aq) [18O] + R(18O)_O2(aq) [18O] # H2(aq) ratios - R(D)_H2(aq) D - R(T)_H2(aq) T + R(D)_H2(aq) D + R(T)_H2(aq) T # CO2(aq) ratios - R(13C)_CO2(aq) [13C] - R(14C)_CO2(aq) [14C] - R(18O)_CO2(aq) [18O] + R(13C)_CO2(aq) [13C] + R(14C)_CO2(aq) [14C] + R(18O)_CO2(aq) [18O] # HCO3- ratios - R(D)_HCO3- D - R(T)_HCO3- T - R(18O)_HCO3- [18O] - R(13C)_HCO3- [13C] - R(14C)_HCO3- [14C] + R(D)_HCO3- D + R(T)_HCO3- T + R(18O)_HCO3- [18O] + R(13C)_HCO3- [13C] + R(14C)_HCO3- [14C] # CO3-2 ratios - R(18O)_CO3-2 [18O] - R(13C)_CO3-2 [13C] - R(14C)_CO3-2 [14C] + R(18O)_CO3-2 [18O] + R(13C)_CO3-2 [13C] + R(14C)_CO3-2 [14C] # CH4(aq) ratios - R(D)_CH4(aq) D - R(T)_CH4(aq) T - R(13C)_CH4(aq) [13C] - R(14C)_CH4(aq) [14C] + R(D)_CH4(aq) D + R(T)_CH4(aq) T + R(13C)_CH4(aq) [13C] + R(14C)_CH4(aq) [14C] # SO4-2 ratios - R(34S)_SO4-2 [34S] + R(34S)_SO4-2 [34S] # HSO4- ratios - R(D)_HSO4- D - R(T)_HSO4- T - R(34S)_HSO4- [34S] + R(D)_HSO4- D + R(T)_HSO4- T + R(34S)_HSO4- [34S] # S-2 ratios - R(34S)_S-2 [34S] + R(34S)_S-2 [34S] # HS- ratios - R(D)_HS- D - R(T)_HS- T - R(34S)_HS- [34S] + R(D)_HS- D + R(T)_HS- T + R(34S)_HS- [34S] # H2S ratios - R(D)_H2S(aq) D - R(T)_H2S(aq) T - R(34S)_H2S(aq) [34S] + R(D)_H2S(aq) D + R(T)_H2S(aq) T + R(34S)_H2S(aq) [34S] # NO3- ratios - R(15N)_NO3- [15N] + R(15N)_NO3- [15N] # NO2- ratios - R(15N)_NO2- [15N] + R(15N)_NO2- [15N] # N2(aq) ratios - R(15N)_N2(aq) [15N] + R(15N)_N2(aq) [15N] # NH3(aq) ratios - R(D)_NH3(aq) D - R(T)_NH3(aq) T - R(15N)_NH3(aq) [15N] + R(D)_NH3(aq) D + R(T)_NH3(aq) T + R(15N)_NH3(aq) [15N] # NH4+ ratios - R(D)_NH4+ D - R(T)_NH4+ T - R(15N)_NH4+ [15N] + R(D)_NH4+ D + R(T)_NH4+ T + R(15N)_NH4+ [15N] # # Ratios for minerals and gases # # H2O(g) ratios - R(D)_H2O(g) D - R(T)_H2O(g) T - R(18O)_H2O(g) [18O] + R(D)_H2O(g) D + R(T)_H2O(g) T + R(18O)_H2O(g) [18O] # O2(g) ratios - R(18O)_O2(g) [18O] + R(18O)_O2(g) [18O] # H2(g) ratios - R(D)_H2(g) D - R(T)_H2(g) T + R(D)_H2(g) D + R(T)_H2(g) T # CO2(g) ratios - R(18O)_CO2(g) [18O] - R(13C)_CO2(g) [13C] - R(14C)_CO2(g) [14C] + R(18O)_CO2(g) [18O] + R(13C)_CO2(g) [13C] + R(14C)_CO2(g) [14C] # Calcite ratios - R(18O)_Calcite [18O] - R(13C)_Calcite [13C] - R(14C)_Calcite [14C] + R(18O)_Calcite [18O] + R(13C)_Calcite [13C] + R(14C)_Calcite [14C] # Pyrite ratios - R(34S)_Pyrite [34S] + R(34S)_Pyrite [34S] # CH4(g) ratios - R(D)_CH4(g) D - R(T)_CH4(g) T - R(13C)_CH4(g) [13C] - R(14C)_CH4(g) [14C] + R(D)_CH4(g) D + R(T)_CH4(g) T + R(13C)_CH4(g) [13C] + R(14C)_CH4(g) [14C] # H2S(g) ratios - R(D)_H2S(g) D - R(T)_H2S(g) T - R(34S)_H2S(g) [34S] + R(D)_H2S(g) D + R(T)_H2S(g) T + R(34S)_H2S(g) [34S] # Gypsum ratios - R(34S)_Gypsum [34S] + R(34S)_Gypsum [34S] # Anhydrite ratios - R(34S)_Anhydrite [34S] + R(34S)_Anhydrite [34S] # N2(g) ratios - R(15N)_N2(g) [15N] + R(15N)_N2(g) [15N] # NH3(g) ratios - R(D)_NH3(g) D - R(T)_NH3(g) T - R(15N)_NH3(g) [15N] + R(D)_NH3(g) D + R(T)_NH3(g) T + R(15N)_NH3(g) [15N] ISOTOPE_ALPHAS # OH- - Alpha_D_OH-/H2O(l) Log_alpha_D_OH-/H2O(l) - Alpha_T_OH-/H2O(l) Log_alpha_T_OH-/H2O(l) - Alpha_18O_OH-/H2O(l) Log_alpha_18O_OH-/H2O(l) + Alpha_D_OH-/H2O(l) Log_alpha_D_OH-/H2O(l) + Alpha_T_OH-/H2O(l) Log_alpha_T_OH-/H2O(l) + Alpha_18O_OH-/H2O(l) Log_alpha_18O_OH-/H2O(l) # H3O+ - Alpha_D_H3O+/H2O(l) Log_alpha_D_H3O+/H2O(l) - Alpha_T_H3O+/H2O(l) Log_alpha_T_H3O+/H2O(l) - Alpha_18O_H3O+/H2O(l) Log_alpha_18O_H3O+/H2O(l) + Alpha_D_H3O+/H2O(l) Log_alpha_D_H3O+/H2O(l) + Alpha_T_H3O+/H2O(l) Log_alpha_T_H3O+/H2O(l) + Alpha_18O_H3O+/H2O(l) Log_alpha_18O_H3O+/H2O(l) # O2(aq) - Alpha_18O_O2(aq)/H2O(l) Log_alpha_18O_O2(aq)/H2O(l) + Alpha_18O_O2(aq)/H2O(l) Log_alpha_18O_O2(aq)/H2O(l) # H2(aq) - Alpha_D_H2(aq)/H2O(l) Log_alpha_D_H2(aq)/H2O(l) - Alpha_T_H2(aq)/H2O(l) Log_alpha_T_H2(aq)/H2O(l) + Alpha_D_H2(aq)/H2O(l) Log_alpha_D_H2(aq)/H2O(l) + Alpha_T_H2(aq)/H2O(l) Log_alpha_T_H2(aq)/H2O(l) # CO2(aq) - Alpha_18O_CO2(aq)/H2O(l) Log_alpha_18O_CO2(aq)/H2O(l) - Alpha_13C_CO2(aq)/CO2(g) Log_alpha_13C_CO2(aq)/CO2(g) - Alpha_14C_CO2(aq)/CO2(g) Log_alpha_14C_CO2(aq)/CO2(g) + Alpha_18O_CO2(aq)/H2O(l) Log_alpha_18O_CO2(aq)/H2O(l) + Alpha_13C_CO2(aq)/CO2(g) Log_alpha_13C_CO2(aq)/CO2(g) + Alpha_14C_CO2(aq)/CO2(g) Log_alpha_14C_CO2(aq)/CO2(g) # HCO3- - Alpha_D_HCO3-/H2O(l) Log_alpha_D_HCO3-/H2O(l) - Alpha_T_HCO3-/H2O(l) Log_alpha_T_HCO3-/H2O(l) - Alpha_18O_HCO3-/H2O(l) Log_alpha_18O_HCO3-/H2O(l) - Alpha_13C_HCO3-/CO2(aq) Log_alpha_13C_HCO3-/CO2(aq) - Alpha_14C_HCO3-/CO2(aq) Log_alpha_14C_HCO3-/CO2(aq) - Alpha_13C_HCO3-/CO2(g) Log_alpha_13C_HCO3-/CO2(g) - Alpha_14C_HCO3-/CO2(g) Log_alpha_14C_HCO3-/CO2(g) + Alpha_D_HCO3-/H2O(l) Log_alpha_D_HCO3-/H2O(l) + Alpha_T_HCO3-/H2O(l) Log_alpha_T_HCO3-/H2O(l) + Alpha_18O_HCO3-/H2O(l) Log_alpha_18O_HCO3-/H2O(l) + Alpha_13C_HCO3-/CO2(aq) Log_alpha_13C_HCO3-/CO2(aq) + Alpha_14C_HCO3-/CO2(aq) Log_alpha_14C_HCO3-/CO2(aq) + Alpha_13C_HCO3-/CO2(g) Log_alpha_13C_HCO3-/CO2(g) + Alpha_14C_HCO3-/CO2(g) Log_alpha_14C_HCO3-/CO2(g) # CO3-2 - Alpha_18O_CO3-2/H2O(l) Log_alpha_18O_CO3-2/H2O(l) - Alpha_13C_CO3-2/CO2(aq) Log_alpha_13C_CO3-2/CO2(aq) - Alpha_14C_CO3-2/CO2(aq) Log_alpha_14C_CO3-2/CO2(aq) - Alpha_13C_CO3-2/CO2(g) Log_alpha_13C_CO3-2/CO2(g) - Alpha_14C_CO3-2/CO2(g) Log_alpha_14C_CO3-2/CO2(g) + Alpha_18O_CO3-2/H2O(l) Log_alpha_18O_CO3-2/H2O(l) + Alpha_13C_CO3-2/CO2(aq) Log_alpha_13C_CO3-2/CO2(aq) + Alpha_14C_CO3-2/CO2(aq) Log_alpha_14C_CO3-2/CO2(aq) + Alpha_13C_CO3-2/CO2(g) Log_alpha_13C_CO3-2/CO2(g) + Alpha_14C_CO3-2/CO2(g) Log_alpha_14C_CO3-2/CO2(g) # CH4(aq) - Alpha_D_CH4(aq)/H2O(l) Log_alpha_D_CH4(aq)/H2O(l) - Alpha_T_CH4(aq)/H2O(l) Log_alpha_T_CH4(aq)/H2O(l) - Alpha_13C_CH4(aq)/CO2(aq) Log_alpha_13C_CH4(aq)/CO2(aq) - Alpha_14C_CH4(aq)/CO2(aq) Log_alpha_14C_CH4(aq)/CO2(aq) + Alpha_D_CH4(aq)/H2O(l) Log_alpha_D_CH4(aq)/H2O(l) + Alpha_T_CH4(aq)/H2O(l) Log_alpha_T_CH4(aq)/H2O(l) + Alpha_13C_CH4(aq)/CO2(aq) Log_alpha_13C_CH4(aq)/CO2(aq) + Alpha_14C_CH4(aq)/CO2(aq) Log_alpha_14C_CH4(aq)/CO2(aq) # HSO4- - Alpha_D_HSO4-/H2O(l) Log_alpha_D_HSO4-/H2O(l) - Alpha_T_HSO4-/H2O(l) Log_alpha_T_HSO4-/H2O(l) - Alpha_34S_HSO4-/SO4-2 Log_alpha_34S_HSO4-/SO4-2 + Alpha_D_HSO4-/H2O(l) Log_alpha_D_HSO4-/H2O(l) + Alpha_T_HSO4-/H2O(l) Log_alpha_T_HSO4-/H2O(l) + Alpha_34S_HSO4-/SO4-2 Log_alpha_34S_HSO4-/SO4-2 # S-2 - Alpha_34S_S-2/HS- Log_alpha_34S_S-2/HS- + Alpha_34S_S-2/HS- Log_alpha_34S_S-2/HS- # HS- - Alpha_D_HS-/H2O(l) Log_alpha_D_HS-/H2O(l) - Alpha_T_HS-/H2O(l) Log_alpha_T_HS-/H2O(l) - Alpha_34S_HS-/SO4-2 Log_alpha_34S_HS-/SO4-2 + Alpha_D_HS-/H2O(l) Log_alpha_D_HS-/H2O(l) + Alpha_T_HS-/H2O(l) Log_alpha_T_HS-/H2O(l) + Alpha_34S_HS-/SO4-2 Log_alpha_34S_HS-/SO4-2 # H2S - Alpha_D_H2S(aq)/H2O(l) Log_alpha_D_H2S(aq)/H2O(l) - Alpha_T_H2S(aq)/H2O(l) Log_alpha_T_H2S(aq)/H2O(l) - Alpha_34S_H2S(aq)/HS- Log_alpha_34S_H2S(aq)/HS- + Alpha_D_H2S(aq)/H2O(l) Log_alpha_D_H2S(aq)/H2O(l) + Alpha_T_H2S(aq)/H2O(l) Log_alpha_T_H2S(aq)/H2O(l) + Alpha_34S_H2S(aq)/HS- Log_alpha_34S_H2S(aq)/HS- # NO2- - Alpha_15N_NO2-/NO3- Log_alpha_15N_NO2-/NO3- + Alpha_15N_NO2-/NO3- Log_alpha_15N_NO2-/NO3- # N2(aq) - Alpha_15N_N2(aq)/NO3- Log_alpha_15N_N2(aq)/NO3- + Alpha_15N_N2(aq)/NO3- Log_alpha_15N_N2(aq)/NO3- # NH3(aq) - Alpha_D_NH3(aq)/H2O(l) Log_alpha_D_NH3(aq)/H2O(l) - Alpha_T_NH3(aq)/H2O(l) Log_alpha_T_NH3(aq)/H2O(l) - Alpha_15N_NH3(aq)/NO3- Log_alpha_15N_NH3(aq)/NO3- + Alpha_D_NH3(aq)/H2O(l) Log_alpha_D_NH3(aq)/H2O(l) + Alpha_T_NH3(aq)/H2O(l) Log_alpha_T_NH3(aq)/H2O(l) + Alpha_15N_NH3(aq)/NO3- Log_alpha_15N_NH3(aq)/NO3- # NH4+ - Alpha_D_NH4+/H2O(l) Log_alpha_D_NH4+/H2O(l) - Alpha_T_NH4+/H2O(l) Log_alpha_T_NH4+/H2O(l) - Alpha_15N_NH4+/NH3(aq) Log_alpha_15N_NH4+/NH3(aq) + Alpha_D_NH4+/H2O(l) Log_alpha_D_NH4+/H2O(l) + Alpha_T_NH4+/H2O(l) Log_alpha_T_NH4+/H2O(l) + Alpha_15N_NH4+/NH3(aq) Log_alpha_15N_NH4+/NH3(aq) # H2O(g) - Alpha_D_H2O(g)/H2O(l) Log_alpha_D_H2O(g)/H2O(l) - Alpha_T_H2O(g)/H2O(l) Log_alpha_T_H2O(g)/H2O(l) - Alpha_18O_H2O(g)/H2O(l) Log_alpha_18O_H2O(g)/H2O(l) + Alpha_D_H2O(g)/H2O(l) Log_alpha_D_H2O(g)/H2O(l) + Alpha_T_H2O(g)/H2O(l) Log_alpha_T_H2O(g)/H2O(l) + Alpha_18O_H2O(g)/H2O(l) Log_alpha_18O_H2O(g)/H2O(l) # O2(g) - Alpha_18O_O2(g)/H2O(l) Log_alpha_18O_O2(g)/H2O(l) #? + Alpha_18O_O2(g)/H2O(l) Log_alpha_18O_O2(g)/H2O(l) #? # H2(g) - Alpha_D_H2(g)/H2O(l) Log_alpha_D_H2(g)/H2O(l) #? - Alpha_T_H2(g)/H2O(l) Log_alpha_T_H2(g)/H2O(l) #? + Alpha_D_H2(g)/H2O(l) Log_alpha_D_H2(g)/H2O(l) #? + Alpha_T_H2(g)/H2O(l) Log_alpha_T_H2(g)/H2O(l) #? # CO2(g) - Alpha_18O_CO2(g)/H2O(l) Log_alpha_18O_CO2(g)/H2O(l) - Alpha_13C_CO2(g)/CO2(aq) Log_alpha_13C_CO2(g)/CO2(aq) - Alpha_14C_CO2(g)/CO2(aq) Log_alpha_14C_CO2(g)/CO2(aq) + Alpha_18O_CO2(g)/H2O(l) Log_alpha_18O_CO2(g)/H2O(l) + Alpha_13C_CO2(g)/CO2(aq) Log_alpha_13C_CO2(g)/CO2(aq) + Alpha_14C_CO2(g)/CO2(aq) Log_alpha_14C_CO2(g)/CO2(aq) # Calcite - Alpha_18O_Calcite/H2O(l) Log_alpha_18O_Calcite/H2O(l) - Alpha_13C_Calcite/CO2(aq) Log_alpha_13C_Calcite/CO2(aq) - Alpha_13C_Calcite/CO2(g) Log_alpha_13C_Calcite/CO2(g) - Alpha_14C_Calcite/CO2(aq) Log_alpha_14C_Calcite/CO2(aq) - Alpha_14C_Calcite/CO2(g) Log_alpha_14C_Calcite/CO2(g) + Alpha_18O_Calcite/H2O(l) Log_alpha_18O_Calcite/H2O(l) + Alpha_13C_Calcite/CO2(aq) Log_alpha_13C_Calcite/CO2(aq) + Alpha_13C_Calcite/CO2(g) Log_alpha_13C_Calcite/CO2(g) + Alpha_14C_Calcite/CO2(aq) Log_alpha_14C_Calcite/CO2(aq) + Alpha_14C_Calcite/CO2(g) Log_alpha_14C_Calcite/CO2(g) # Pyrite - Alpha_34S_Pyrite/HS- Log_alpha_34S_Pyrite/HS- + Alpha_34S_Pyrite/HS- Log_alpha_34S_Pyrite/HS- # CH4(g) - Alpha_D_CH4(g)/H2O(l) Log_alpha_D_CH4(g)/H2O(l) - Alpha_T_CH4(g)/H2O(l) Log_alpha_T_CH4(g)/H2O(l) - Alpha_13C_CH4(g)/CO2(aq) Log_alpha_13C_CH4(g)/CO2(aq) #? - Alpha_14C_CH4(g)/CO2(aq) Log_alpha_14C_CH4(g)/CO2(aq) #? + Alpha_D_CH4(g)/H2O(l) Log_alpha_D_CH4(g)/H2O(l) + Alpha_T_CH4(g)/H2O(l) Log_alpha_T_CH4(g)/H2O(l) + Alpha_13C_CH4(g)/CO2(aq) Log_alpha_13C_CH4(g)/CO2(aq) #? + Alpha_14C_CH4(g)/CO2(aq) Log_alpha_14C_CH4(g)/CO2(aq) #? # H2S(g) - Alpha_D_H2S(g)/H2S(aq) Log_alpha_D_H2S(g)/H2S(aq) - Alpha_T_H2S(g)/H2S(aq) Log_alpha_T_H2S(g)/H2S(aq) - Alpha_34S_H2S(g)/H2S(aq) Log_alpha_34S_H2S(g)/H2S(aq) + Alpha_D_H2S(g)/H2S(aq) Log_alpha_D_H2S(g)/H2S(aq) + Alpha_T_H2S(g)/H2S(aq) Log_alpha_T_H2S(g)/H2S(aq) + Alpha_34S_H2S(g)/H2S(aq) Log_alpha_34S_H2S(g)/H2S(aq) # Gypsum - Alpha_34S_Gypsum/SO4-2 Log_alpha_34S_Gypsum/SO4-2 + Alpha_34S_Gypsum/SO4-2 Log_alpha_34S_Gypsum/SO4-2 # Anhydrite - Alpha_34S_Anhydrite/SO4-2 Log_alpha_34S_Anhydrite/SO4-2 + Alpha_34S_Anhydrite/SO4-2 Log_alpha_34S_Anhydrite/SO4-2 # N2(g) - Alpha_15N_N2(g)/N2(aq) Log_alpha_15N_N2(g)/N2(aq) + Alpha_15N_N2(g)/N2(aq) Log_alpha_15N_N2(g)/N2(aq) # NH3(g) - Alpha_D_NH3(g)/H2O(l) Log_alpha_D_NH3(g)/H2O(l) + Alpha_D_NH3(g)/H2O(l) Log_alpha_D_NH3(g)/H2O(l) #Alpha_T_NH3(g)/H2O(l) Log_alpha_T_NH3(g)/H2O(l) - Alpha_15N_NH3(g)/NH3(aq) Log_alpha_15N_NH3(g)/NH3(aq) + Alpha_15N_NH3(g)/NH3(aq) Log_alpha_15N_NH3(g)/NH3(aq) NAMED_EXPRESSIONS # # OH- fractionation factors # -Log_alpha_D_OH-/H2O(l) # 1000ln(alpha(25C)) = -1435 +Log_alpha_D_OH-/H2O(l) # 1000ln(alpha(25C)) = -1435 # 13.5 C - -ln_alpha1000 -1435.0 + -ln_alpha1000 -1435 -Log_alpha_T_OH-/H2O(l) # 1000ln(alpha(25C)) = -2870 +Log_alpha_T_OH-/H2O(l) # 1000ln(alpha(25C)) = -2870 # 13.5 C - -ln_alpha1000 -2870.0 + -ln_alpha1000 -2870 -Log_alpha_18O_OH-/H2O(l) # 1000ln(alpha(25C)) = -37.8 +Log_alpha_18O_OH-/H2O(l) # 1000ln(alpha(25C)) = -37.8 # 25 C - -ln_alpha1000 -37.777 + -ln_alpha1000 -37.777 # # H3O- fractionation factors # -Log_alpha_D_H3O+/H2O(l) # 1000ln(alpha(25C)) = 40.8 +Log_alpha_D_H3O+/H2O(l) # 1000ln(alpha(25C)) = 40.8 # 13.5 C - -ln_alpha1000 40.82 - -Log_alpha_T_H3O+/H2O(l) # 1000ln(alpha(25C)) = 81.6 + -ln_alpha1000 40.82 + +Log_alpha_T_H3O+/H2O(l) # 1000ln(alpha(25C)) = 81.6 # 13.5 C - -ln_alpha1000 81.64 - -Log_alpha_18O_H3O+/H2O(l) # 1000ln(alpha(25C)) = 22.9 + -ln_alpha1000 81.64 + +Log_alpha_18O_H3O+/H2O(l) # 1000ln(alpha(25C)) = 22.9 # 25 C - -ln_alpha1000 22.86 + -ln_alpha1000 22.86 # # O2(aq) fractionation factors # Log_alpha_18O_O2(aq)/H2O(l) - -ln_alpha1000 0.0 + -ln_alpha1000 0 # # H2(aq) fractionation factors # Log_alpha_D_H2(aq)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_H2(aq)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 # # CO2(aq) fractionation factors # -Log_alpha_18O_CO2(aq)/H2O(l) # 1000ln(alpha(25C)) = 41.2 +Log_alpha_18O_CO2(aq)/H2O(l) # 1000ln(alpha(25C)) = 41.2 # 0-100 C - -ln_alpha1000 -21.9285 0.0 19.43596e3 0.0 -0.181115e6 + -ln_alpha1000 -21.9285 0 19.43596e3 0 -0.181115e6 -Log_alpha_13C_CO2(aq)/CO2(g) # 1000ln(alpha(25C)) -0.84 +Log_alpha_13C_CO2(aq)/CO2(g) # 1000ln(alpha(25C)) -0.84 # Deines and others (1974) - -ln_alpha1000 -0.91 0.0 0.0 0.0 .0063e6 + -ln_alpha1000 -0.91 0 0 0 .0063e6 -Log_alpha_14C_CO2(aq)/CO2(g) # 1000ln(alpha(25C)) -0.84 - -add_logk Log_alpha_13C_CO2(aq)/CO2(g) 2 +Log_alpha_14C_CO2(aq)/CO2(g) # 1000ln(alpha(25C)) -0.84 + -add_logk Log_alpha_13C_CO2(aq)/CO2(g) 2 # # HCO3- fractionation factors # -Log_alpha_18O_HCO3-/H2O(l) - -ln_alpha1000 0.0 #? +Log_alpha_18O_HCO3-/H2O(l) + -ln_alpha1000 0 #? Log_alpha_D_HCO3-/H2O(l) - -ln_alpha1000 0.0 + -ln_alpha1000 0 -Log_alpha_T_HCO3-/H2O(l) - -ln_alpha1000 0.0 +Log_alpha_T_HCO3-/H2O(l) + -ln_alpha1000 0 -Log_alpha_13C_HCO3-/CO2(g) # 1000ln(alpha(25C)) = 7.82 +Log_alpha_13C_HCO3-/CO2(g) # 1000ln(alpha(25C)) = 7.82 # Deines and others (1974) - -ln_alpha1000 -4.54 0.0 0.0 0.0 1.099e6 + -ln_alpha1000 -4.54 0 0 0 1.099e6 -Log_alpha_13C_HCO3-/CO2(aq) # 1000ln(alpha(25C)) = 8.7 +Log_alpha_13C_HCO3-/CO2(aq) # 1000ln(alpha(25C)) = 8.7 # 0-100 C # -ln_alpha1000 -3.63 0.0 0.0 0.0 1.0927e6 - -add_logk Log_alpha_13C_HCO3-/CO2(g) 1 - -add_logk Log_alpha_13C_CO2(aq)/CO2(g) -1 + -add_logk Log_alpha_13C_HCO3-/CO2(g) 1 + -add_logk Log_alpha_13C_CO2(aq)/CO2(g) -1 -Log_alpha_14C_HCO3-/CO2(g) # 1000ln(alpha(25C)) = 7.82 +Log_alpha_14C_HCO3-/CO2(g) # 1000ln(alpha(25C)) = 7.82 # Deines and others (1974) - -add_logk Log_alpha_13C_HCO3-/CO2(g) 2 + -add_logk Log_alpha_13C_HCO3-/CO2(g) 2 -Log_alpha_14C_HCO3-/CO2(aq) # 1000ln(alpha(25C)) = 17.3 +Log_alpha_14C_HCO3-/CO2(aq) # 1000ln(alpha(25C)) = 17.3 # 0-100 C # -ln_alpha1000 -7.26 0.0 0.0 0.0 2.1854e6 - -add_logk Log_alpha_14C_HCO3-/CO2(g) 1 - -add_logk Log_alpha_14C_CO2(aq)/CO2(g) -1 + -add_logk Log_alpha_14C_HCO3-/CO2(g) 1 + -add_logk Log_alpha_14C_CO2(aq)/CO2(g) -1 # # CO3-2 fractionation factors # Log_alpha_18O_CO3-2/H2O(l) - -ln_alpha1000 0.0 - -Log_alpha_13C_CO3-2/CO2(g) # 1000ln(alpha(25C)) - # Deines and others (1974) - -ln_alpha1000 -3.4 0.0 0.0 0.0 0.870e6 + -ln_alpha1000 0 -Log_alpha_13C_CO3-2/CO2(aq) # 1000ln(alpha(25C)) +Log_alpha_13C_CO3-2/CO2(g) # 1000ln(alpha(25C)) + # Deines and others (1974) + -ln_alpha1000 -3.4 0 0 0 0.87e6 + +Log_alpha_13C_CO3-2/CO2(aq) # 1000ln(alpha(25C)) # 0-100 C # -ln_alpha1000 -2.49 0.0 0.0 0.0 0.8637e6 - -add_logk Log_alpha_13C_CO3-2/CO2(g) 1 - -add_logk Log_alpha_13C_CO2(aq)/CO2(g) -1 + -add_logk Log_alpha_13C_CO3-2/CO2(g) 1 + -add_logk Log_alpha_13C_CO2(aq)/CO2(g) -1 -Log_alpha_14C_CO3-2/CO2(g) # 1000ln(alpha(25C)) +Log_alpha_14C_CO3-2/CO2(g) # 1000ln(alpha(25C)) # Deines and others (1974) - -add_logk Log_alpha_13C_CO3-2/CO2(g) 2 + -add_logk Log_alpha_13C_CO3-2/CO2(g) 2 -Log_alpha_14C_CO3-2/CO2(aq) # 1000ln(alpha(25C)) - # +Log_alpha_14C_CO3-2/CO2(aq) # 1000ln(alpha(25C)) + # # -ln_alpha1000 -2.49 0.0 0.0 0.0 0.8637e6 - -add_logk Log_alpha_14C_CO3-2/CO2(g) 1 - -add_logk Log_alpha_14C_CO2(aq)/CO2(g) -1 + -add_logk Log_alpha_14C_CO3-2/CO2(g) 1 + -add_logk Log_alpha_14C_CO2(aq)/CO2(g) -1 # # CH4(aq) fractionation factors # Log_alpha_D_CH4(aq)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_CH4(aq)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_13C_CH4(aq)/CO2(aq) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_14C_CH4(aq)/CO2(aq) - -ln_alpha1000 0 + -ln_alpha1000 0 # -# HSO4- fractionation factors +# HSO4- fractionation factors # Log_alpha_D_HSO4-/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_HSO4-/H2O(l) - -ln_alpha1000 0 - + -ln_alpha1000 0 + Log_alpha_34S_HSO4-/SO4-2 - -ln_alpha1000 0.0 + -ln_alpha1000 0 # # S-2 fractionation factors # Log_alpha_34S_S-2/HS- - -ln_alpha1000 0.0 + -ln_alpha1000 0 # # HS- fractionation factors # Log_alpha_D_HS-/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_HS-/H2O(l) - -ln_alpha1000 0 - + -ln_alpha1000 0 + Log_alpha_34S_HS-/SO4-2 - -ln_alpha1000 0.0 + -ln_alpha1000 0 # # H2S fractionation factors # Log_alpha_D_H2S(aq)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_H2S(aq)/H2O(l) - -ln_alpha1000 0 - + -ln_alpha1000 0 + Log_alpha_34S_H2S(aq)/HS- - -ln_alpha1000 0.0 + -ln_alpha1000 0 # # NO2- fractionation factors # -Log_alpha_15N_NO2-/NO3- - -ln_alpha1000 0.0 +Log_alpha_15N_NO2-/NO3- + -ln_alpha1000 0 # # N2(aq) fractionation factors -# +# Log_alpha_15N_N2(aq)/NO3- - -ln_alpha1000 0.0 + -ln_alpha1000 0 # # NH3(aq) fractionation factors -# +# Log_alpha_D_NH3(aq)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_NH3(aq)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_15N_NH3(aq)/NO3- - -ln_alpha1000 0 + -ln_alpha1000 0 # # NH4+ fractionation factors -# +# Log_alpha_D_NH4+/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_NH4+/H2O(l) - -ln_alpha1000 0 - + -ln_alpha1000 0 + Log_alpha_15N_NH4+/NH3(aq) - -ln_alpha1000 0 + -ln_alpha1000 0 # # H2O(g) fractionation factors # -Log_alpha_D_H2O(g)/H2O(l) # 1000ln(alpha(25C)) = -76.4 +Log_alpha_D_H2O(g)/H2O(l) # 1000ln(alpha(25C)) = -76.4 # 0-100 C - -ln_alpha1000 -52.612 0.0 76.248e3 0.0 -24.844e6 + -ln_alpha1000 -52.612 0 76.248e3 0 -24.844e6 -Log_alpha_T_H2O(g)/H2O(l) # 1000ln(alpha(25C)) = -152.7 +Log_alpha_T_H2O(g)/H2O(l) # 1000ln(alpha(25C)) = -152.7 # 0-100 C - -ln_alpha1000 -105.224 0.0 152.496e3 0.0 -49.688e6 + -ln_alpha1000 -105.224 0 152.496e3 0 -49.688e6 -Log_alpha_18O_H2O(g)/H2O(l) # 1000ln(alpha(25C)) = -9.3 +Log_alpha_18O_H2O(g)/H2O(l) # 1000ln(alpha(25C)) = -9.3 # 0-100 C - -ln_alpha1000 2.0667 0.0 0.4156e3 0.0 -1.137e6 + -ln_alpha1000 2.0667 0 0.4156e3 0 -1.137e6 # # O2(g) fractionaton factors # -Log_alpha_18O_O2(g)/H2O(l) - -ln_alpha1000 0.0 +Log_alpha_18O_O2(g)/H2O(l) + -ln_alpha1000 0 # # H2(g) fractionaton factors # Log_alpha_D_H2(g)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_H2(g)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 # # CO2(g) fractionaton factors -# -Log_alpha_18O_CO2(g)/H2O(l) # 1000ln(alpha(25C)) = 40.151 +# +Log_alpha_18O_CO2(g)/H2O(l) # 1000ln(alpha(25C)) = 40.151 # 0-100 C - -ln_alpha1000 -19.97 0.0 17.9942e3 0.0 -0.0206e6 + -ln_alpha1000 -19.97 0 17.9942e3 0 -0.0206e6 # Battinga, written commun. 1973, cited in Friedman and O'Neill -Log_alpha_13C_CO2(g)/CO2(aq) # 1000ln(alpha(25C)) = 0.84 +Log_alpha_13C_CO2(g)/CO2(aq) # 1000ln(alpha(25C)) = 0.84 # 0-100 C - -ln_alpha1000 0.91 0.0 0.0 0.0 -0.0063e6 + -ln_alpha1000 0.91 0 0 0 -0.0063e6 -Log_alpha_14C_CO2(g)/CO2(aq) # 1000ln(alpha(25C)) = 1.7 +Log_alpha_14C_CO2(g)/CO2(aq) # 1000ln(alpha(25C)) = 1.7 # 0-100 C - -ln_alpha1000 1.82 0.0 0.0 0.0 -0.0126e6 + -ln_alpha1000 1.82 0 0 0 -0.0126e6 # # CO2-Calcite fractionation factors # #Log_alpha_18O_CO2(aq)/Calcite # 1000ln(alpha(25C)) = 13.6 # # 0-100 C # -ln_alpha1000 -4.7383 0.0 12.05276e3 0.0 -1.963915e6 -Log_alpha_18O_Calcite/H2O(l) # 1000ln(alpha(25C)) = 28.38 +Log_alpha_18O_Calcite/H2O(l) # 1000ln(alpha(25C)) = 28.38 # O'Neil, Clayton and Mayeda (1969) - -ln_alpha1000 -2.89 0 0 0 2.78e6 - -Log_alpha_13C_Calcite/CO2(g) # 1000ln(alpha(25C)) - # Deines and others (1974) - -ln_alpha1000 -3.63 0.0 0.0 0.0 1.194e6 + -ln_alpha1000 -2.89 0 0 0 2.78e6 -Log_alpha_13C_Calcite/CO2(aq) # 1000ln(alpha(25C)) +Log_alpha_13C_Calcite/CO2(g) # 1000ln(alpha(25C)) # Deines and others (1974) - -add_logk Log_alpha_13C_Calcite/CO2(g) 1 - -add_logk Log_alpha_13C_CO2(aq)/CO2(g) -1 + -ln_alpha1000 -3.63 0 0 0 1.194e6 -Log_alpha_14C_Calcite/CO2(g) # 1000ln(alpha(25C)) - -add_logk Log_alpha_13C_Calcite/CO2(g) 2 - -Log_alpha_14C_Calcite/CO2(aq) # 1000ln(alpha(25C)) +Log_alpha_13C_Calcite/CO2(aq) # 1000ln(alpha(25C)) # Deines and others (1974) - -add_logk Log_alpha_14C_Calcite/CO2(g) 1 - -add_logk Log_alpha_14C_CO2(aq)/CO2(g) -1 + -add_logk Log_alpha_13C_Calcite/CO2(g) 1 + -add_logk Log_alpha_13C_CO2(aq)/CO2(g) -1 + +Log_alpha_14C_Calcite/CO2(g) # 1000ln(alpha(25C)) + -add_logk Log_alpha_13C_Calcite/CO2(g) 2 + +Log_alpha_14C_Calcite/CO2(aq) # 1000ln(alpha(25C)) + # Deines and others (1974) + -add_logk Log_alpha_14C_Calcite/CO2(g) 1 + -add_logk Log_alpha_14C_CO2(aq)/CO2(g) -1 # # Pyrite fractionation factors -# +# Log_alpha_34S_Pyrite/HS- - -ln_alpha1000 0 + -ln_alpha1000 0 # # CH4(g) fractionation factors -# +# Log_alpha_D_CH4(g)/H2O(l) #? - -ln_alpha1000 0.0 + -ln_alpha1000 0 Log_alpha_T_CH4(g)/H2O(l) #? - -ln_alpha1000 0.0 - + -ln_alpha1000 0 + Log_alpha_13C_CH4(g)/CO2(aq) #? - -ln_alpha1000 0.0 - + -ln_alpha1000 0 + Log_alpha_14C_CH4(g)/CO2(aq) #? - -ln_alpha1000 0.0 + -ln_alpha1000 0 # # H2S(g) fractionation factors # Log_alpha_D_H2S(g)/H2S(aq) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_H2S(g)/H2S(aq) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_34S_H2S(g)/H2S(aq) - -ln_alpha1000 0 + -ln_alpha1000 0 # # Gypsum fractionation factors # Log_alpha_34S_Gypsum/SO4-2 - -ln_alpha1000 0 + -ln_alpha1000 0 # # Anhydrite fractionation factors # Log_alpha_34S_Anhydrite/SO4-2 - -ln_alpha1000 0 + -ln_alpha1000 0 # # N2(g) fractionation factors # Log_alpha_15N_N2(g)/N2(aq) - -ln_alpha1000 0 + -ln_alpha1000 0 # # NH3(g) fractionation factors # Log_alpha_D_NH3(g)/H2O(l) #? - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_NH3(g)/H2O(l) #? - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_15N_NH3(g)/NH3(aq) - -ln_alpha1000 0 + -ln_alpha1000 0 ############################################################################################### CALCULATE_VALUES @@ -1502,7 +1506,7 @@ R(D) 100 save ratio -end -R(T) ?? +R(T) ?? -start 10 ratio = -9999.999 20 if (TOT("T") <= 0) THEN GOTO 100 @@ -2056,7 +2060,7 @@ R(D)_NH3(aq) -start 10 ratio = -9999.999 20 if (TOT("D") <= 0) THEN GOTO 100 -30 total_D = sum_species("{[15N],N}{H,D,T}3","D") +30 total_D = sum_species("{[15N],N}{H,D,T}3","D") 40 total_H = sum_species("{[15N],N}{H,D,T}3","H") 50 if (total_H <= 0) THEN GOTO 100 60 ratio = total_D/total_H @@ -2067,7 +2071,7 @@ R(T)_NH3(aq) -start 10 ratio = -9999.999 20 if (TOT("T") <= 0) THEN GOTO 100 -30 total_T = sum_species("{[15N],N}{H,D,T}3","T") +30 total_T = sum_species("{[15N],N}{H,D,T}3","T") 40 total_H = sum_species("{[15N],N}{H,D,T}3","H") 50 if (total_H <= 0) THEN GOTO 100 60 ratio = total_T/total_H @@ -2078,7 +2082,7 @@ R(15N)_NH3(aq) -start 10 ratio = -9999.999 20 if (TOT("[15N]") <= 0) THEN GOTO 100 -30 total_15N = sum_species("[15N]{H,D,T}3","[15N]") +30 total_15N = sum_species("[15N]{H,D,T}3","[15N]") 40 total_N = sum_species("N{H,D,T}3","N") 50 if (total_N <= 0) THEN GOTO 100 60 ratio = total_15N/total_N @@ -2091,7 +2095,7 @@ R(D)_NH4+ -start 10 ratio = -9999.999 20 if (TOT("D") <= 0) THEN GOTO 100 -30 total_D = sum_species("*{[15N],N}{H,D,T}4*","D") +30 total_D = sum_species("*{[15N],N}{H,D,T}4*","D") 40 total_H = sum_species("*{[15N],N}{H,D,T}4*","H") 50 if (total_H <= 0) THEN GOTO 100 60 ratio = total_D/total_H @@ -2102,7 +2106,7 @@ R(T)_NH4+ -start 10 ratio = -9999.999 20 if (TOT("T") <= 0) THEN GOTO 100 -30 total_T = sum_species("*{[15N],N}{H,D,T}4*","T") +30 total_T = sum_species("*{[15N],N}{H,D,T}4*","T") 40 total_H = sum_species("*{[15N],N}{H,D,T}4*","H") 50 if (total_H <= 0) THEN GOTO 100 60 ratio = total_T/total_H @@ -2113,7 +2117,7 @@ R(15N)_NH4+ -start 10 ratio = -9999.999 20 if (TOT("[15N]") <= 0) THEN GOTO 100 -30 total_15N = sum_species("*[15N]{H,D,T}4*","[15N]") +30 total_15N = sum_species("*[15N]{H,D,T}4*","[15N]") 40 total_N = sum_species("*N{H,D,T}4*","N") 50 if (total_N <= 0) THEN GOTO 100 60 ratio = total_15N/total_N @@ -3725,209 +3729,209 @@ SOLUTION_SPECIES ############################################################################################### D2O = D2O -activity_water - log_k 0 + log_k 0 HTO = HTO -activity_water - log_k 0 + log_k 0 H2[18O] = H2[18O] -activity_water - log_k 0 + log_k 0 CO2 = CO2 - log_k 0 + log_k 0 [13C]O2 = [13C]O2 - log_k 0 + log_k 0 [14C]O2 = [14C]O2 - log_k 0 + log_k 0 [34S]O4-2 = [34S]O4-2 - log_k 0.0 - -gamma 5.0000 -0.0400 + log_k 0 + -gamma 5 -0.04 -[15N]O3- = [15N]O3- - log_k 0.0 - -gamma 3.0000 0.0000 +[15N]O3- = [15N]O3- + log_k 0 + -gamma 3 0 # -# H2O reactions +# H2O reactions # last update July 31, 2006 # checked September 19, 2006 # -0.5H2O + 0.5D2O = HDO - log_k 0.301029995663 # log10(2) +0.5 H2O + 0.5 D2O = HDO + log_k 0.301029995663 # log10(2) -activity_water HDO + HTO = DTO + H2O - -mole_balance DTO - log_k -0.301029995663 # log10(1/2) + -mole_balance DTO + log_k -0.301029995663 # log10(1/2) -activity_water -2HTO = T2O + H2O - -mole_balance T2O - log_k -0.6020599913279623960 # log10(1/4) +2 HTO = T2O + H2O + -mole_balance T2O + log_k -0.602059991327962396 # log10(1/4) -activity_water H2[18O] + HDO = HD[18O] + H2O - -mole_balance HD[18O] - log_k 0.0 + -mole_balance HD[18O] + log_k 0 -activity_water H2[18O] + HTO = HT[18O] + H2O - -mole_balance HT[18O] - log_k 0.0 + -mole_balance HT[18O] + log_k 0 -activity_water - -DTO + H2[18O] = DT[18O] + H2O - -mole_balance DT[18O] - log_k 0.0 + +DTO + H2[18O] = DT[18O] + H2O + -mole_balance DT[18O] + log_k 0 -activity_water - + D2O + H2[18O] = D2[18O] + H2O - -mole_balance D2[18O] - log_k 0.0 + -mole_balance D2[18O] + log_k 0 -activity_water - + H2[18O] + T2O = T2[18O] + H2O - -mole_balance T2[18O] - log_k 0.0 + -mole_balance T2[18O] + log_k 0 -activity_water # -# OH- reactions +# OH- reactions # last update July 31, 2006 # checked September 19, 2006 # OH- + HDO = OD- + H2O - -mole_balance OD - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_D_OH-/H2O(l) 1.0 - -gamma 3.5000 0.0000 - + -mole_balance OD + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_D_OH-/H2O(l) 1 + -gamma 3.5 0 + OH- + HTO = OT- + H2O - -mole_balance OT - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_T_OH-/H2O(l) 1.0 - -gamma 3.5000 0.0000 - + -mole_balance OT + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_T_OH-/H2O(l) 1 + -gamma 3.5 0 + OH- + H2[18O] = [18O]H- + H2O - -mole_balance [18O]H - -add_logk Log_alpha_18O_OH-/H2O(l) 1.0 - -gamma 3.5000 0.0000 - + -mole_balance [18O]H + -add_logk Log_alpha_18O_OH-/H2O(l) 1 + -gamma 3.5 0 + [18O]H- + OD- = [18O]D- + OH- - -mole_balance [18O]D - log_k 0.0 - -gamma 3.5000 0.0000 - + -mole_balance [18O]D + log_k 0 + -gamma 3.5 0 + [18O]H- + OT- = [18O]T- + OH- - -mole_balance [18O]T - log_k 0.0 - -gamma 3.5000 0.0000 + -mole_balance [18O]T + log_k 0 + -gamma 3.5 0 # # H3O+ reactions # last update July 31, 2006 # checked September 19, 2006 # H3O+ + HDO = H2DO+ + H2O - -mole_balance H2DO - log_k 0.176091259055 # log10(1.5) - -add_logk Log_alpha_D_H3O+/H2O(l) 1.0 - -gamma 9.0000 0.0000 - -2H2DO+ = HD2O+ + H3O+ - -mole_balance HD2O - log_k -0.477121254719662 # log10(1/3) - -gamma 9.0000 0.0000 - + -mole_balance H2DO + log_k 0.176091259055 # log10(1.5) + -add_logk Log_alpha_D_H3O+/H2O(l) 1 + -gamma 9 0 + +2 H2DO+ = HD2O+ + H3O+ + -mole_balance HD2O + log_k -0.477121254719662 # log10(1/3) + -gamma 9 0 + H2DO+ + HD2O+ = D3O+ + H3O+ - -mole_balance D3O - log_k -0.954242509439324 # log10(1/9) - -gamma 9.0000 0.0000 - + -mole_balance D3O + log_k -0.954242509439324 # log10(1/9) + -gamma 9 0 + H3O+ + HTO = H2TO+ + H2O - -mole_balance H2TO - log_k 0.176091259055 # log10(1.5) - -add_logk Log_alpha_T_H3O+/H2O(l) 1.0 - -gamma 9.0000 0.0000 - -2H2TO+ = HT2O+ + H3O+ - -mole_balance HT2O - log_k -0.477121254719662 # log10(1/3) - -gamma 9.0000 0.0000 - + -mole_balance H2TO + log_k 0.176091259055 # log10(1.5) + -add_logk Log_alpha_T_H3O+/H2O(l) 1 + -gamma 9 0 + +2 H2TO+ = HT2O+ + H3O+ + -mole_balance HT2O + log_k -0.477121254719662 # log10(1/3) + -gamma 9 0 + H2TO+ + HT2O+ = T3O+ + H3O+ - -mole_balance T3O - log_k -0.954242509439324 # log10(1/9) - -gamma 9.0000 0.0000 - + -mole_balance T3O + log_k -0.954242509439324 # log10(1/9) + -gamma 9 0 + H2TO+ + H2DO+ = HDTO+ + H3O+ - -mole_balance HDTO - log_k -0.477121254719662 # log10(1/3) - -gamma 9.0000 0.0000 - + -mole_balance HDTO + log_k -0.477121254719662 # log10(1/3) + -gamma 9 0 + H2TO+ + HD2O+ = D2TO+ + H3O+ - -mole_balance D2TO - log_k -0.477121254719662 # log10(1/3) - -gamma 9.0000 0.0000 - + -mole_balance D2TO + log_k -0.477121254719662 # log10(1/3) + -gamma 9 0 + H2DO+ + HT2O+ = DT2O+ + H3O+ - -mole_balance DT2O - log_k -0.477121254719662 # log10(1/3) - -gamma 9.0000 0.0000 - + -mole_balance DT2O + log_k -0.477121254719662 # log10(1/3) + -gamma 9 0 + H3O+ + H2[18O] = H3[18O]+ + H2O - -mole_balance H3[18O] - -add_logk Log_alpha_18O_H3O+/H2O(l) 1.0 - -gamma 9.0000 0.0000 + -mole_balance H3[18O] + -add_logk Log_alpha_18O_H3O+/H2O(l) 1 + -gamma 9 0 H3[18O]+ + H2DO+ = H2D[18O]+ + H3O+ - -mole_balance H2D[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance H2D[18O] + log_k 0 + -gamma 9 0 + H3[18O]+ + HD2O+ = HD2[18O]+ + H3O+ - -mole_balance HD2[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance HD2[18O] + log_k 0 + -gamma 9 0 + H3[18O]+ + D3O+ = D3[18O]+ + H3O+ - -mole_balance D3[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance D3[18O] + log_k 0 + -gamma 9 0 + H3[18O]+ + H2TO+ = H2T[18O]+ + H3O+ - -mole_balance H2T[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance H2T[18O] + log_k 0 + -gamma 9 0 + H3[18O]+ + HT2O+ = HT2[18O]+ + H3O+ - -mole_balance HT2[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance HT2[18O] + log_k 0 + -gamma 9 0 + H3[18O]+ + T3O+ = T3[18O]+ + H3O+ - -mole_balance T3[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance T3[18O] + log_k 0 + -gamma 9 0 + H3[18O]+ + HDTO+ = HDT[18O]+ + H3O+ - -mole_balance HDT[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance HDT[18O] + log_k 0 + -gamma 9 0 + H3[18O]+ + D2TO+ = D2T[18O]+ + H3O+ - -mole_balance D2T[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance D2T[18O] + log_k 0 + -gamma 9 0 + H3[18O]+ + DT2O+ = DT2[18O]+ + H3O+ - -mole_balance DT2[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance DT2[18O] + log_k 0 + -gamma 9 0 + # # O2 reactions # last update July 31, 2006 @@ -3935,79 +3939,79 @@ H3[18O]+ + DT2O+ = DT2[18O]+ + H3O+ # O2 + H2[18O] = O[18O] + H2O - log_k 0.301029995663 # log10(2) - -add_logk Log_alpha_18O_O2(aq)/H2O(l) 1.0 - -mole_balance O(0)[18O](0) - -2O[18O] = [18O]2 + O2 - log_k -0.602059991327962396 # -log10(4) - -mole_balance [18O](0)2 + log_k 0.301029995663 # log10(2) + -add_logk Log_alpha_18O_O2(aq)/H2O(l) 1 + -mole_balance O(0)[18O](0) + +2 O[18O] = [18O]2 + O2 + log_k -0.602059991327962396 # -log10(4) + -mole_balance [18O](0)2 # # H2 reactions # last update July 31, 2006 # checked September 19, 2006 # H2 + HDO = HD + H2O - -mole_balance H(0)D(0) - -add_logk Log_alpha_D_H2(aq)/H2O(l) 1.0 - -2HD = D2 + H2 - -mole_balance D(0)2 - log_k -0.602059991327962396 # -log10(4) - + -mole_balance H(0)D(0) + -add_logk Log_alpha_D_H2(aq)/H2O(l) 1 + +2 HD = D2 + H2 + -mole_balance D(0)2 + log_k -0.602059991327962396 # -log10(4) + H2 + HTO = HT + H2O - -mole_balance H(0)T(0) - -add_logk Log_alpha_T_H2(aq)/H2O(l) 1.0 - -2HT = T2 + H2 - -mole_balance T(0)2 - log_k -0.602059991327962396 # -log10(4) - + -mole_balance H(0)T(0) + -add_logk Log_alpha_T_H2(aq)/H2O(l) 1 + +2 HT = T2 + H2 + -mole_balance T(0)2 + log_k -0.602059991327962396 # -log10(4) + HT + HD = DT + H2 - -mole_balance D(0)T(0) - log_k -0.301029995663 # -log10(2) + -mole_balance D(0)T(0) + log_k -0.301029995663 # -log10(2) # # CO2 reactions # last update July 31, 2006 # Checked September 19, 2006 # CO2 + H2[18O] = CO[18O] + H2O - log_k 0.301029995663 # log10(2) - -add_logk Log_alpha_18O_CO2(aq)/H2O(l) 1.0 - -2CO[18O] = C[18O]2 + CO2 - log_k -0.6020599913279623960 # log10(1/4) - + log_k 0.301029995663 # log10(2) + -add_logk Log_alpha_18O_CO2(aq)/H2O(l) 1 + +2 CO[18O] = C[18O]2 + CO2 + log_k -0.602059991327962396 # log10(1/4) + [13C]O2 + CO[18O] = [13C]O[18O] + CO2 - log_k 0 - + log_k 0 + [13C]O2 + C[18O]2 = [13C][18O]2 + CO2 - log_k 0 + log_k 0 [14C]O2 + CO[18O] = [14C]O[18O] + CO2 - log_k 0 + log_k 0 [14C]O2 + C[18O]2 = [14C][18O]2 + CO2 - log_k 0 + log_k 0 # # HCO3- reactions # last update July 31, 2006 # Checked September 19, 2006 # HCO3- + H2[18O] = HCO2[18O]- + H2O - -add_logk Log_alpha_18O_HCO3-/H2O(l) 1.0 - + -add_logk Log_alpha_18O_HCO3-/H2O(l) 1 + HCO2[18O]- = HCO[18O]O- -HCO2[18O]- = HC[18O]O2- -2HCO2[18O]- = HCO[18O]2- + HCO3- -HCO[18O]2- = HC[18O]O[18O]- -HCO[18O]2- = HC[18O]2O- -3HCO2[18O]- = HC[18O]3- + 2HCO3- +HCO2[18O]- = HC[18O]O2- +2 HCO2[18O]- = HCO[18O]2- + HCO3- +HCO[18O]2- = HC[18O]O[18O]- +HCO[18O]2- = HC[18O]2O- +3 HCO2[18O]- = HC[18O]3- + 2 HCO3- HDO + HCO3- = DCO3- + H2O - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_D_HCO3-/H2O(l) 1.0 - + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_D_HCO3-/H2O(l) 1 + DCO3- + HCO2[18O]- = DCO2[18O]- + HCO3- DCO3- + HCO[18O]O- = DCO[18O]O- + HCO3- DCO3- + HC[18O]O2- = DC[18O]O2- + HCO3- @@ -4017,9 +4021,9 @@ DCO3- + HC[18O]2O- = DC[18O]2O- + HCO3- DCO3- + HC[18O]3- = DC[18O]3- + HCO3- HTO + HCO3- = TCO3- + H2O - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_T_HCO3-/H2O(l) 1.0 - + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_T_HCO3-/H2O(l) 1 + TCO3- + HCO2[18O]- = TCO2[18O]- + HCO3- TCO3- + HCO[18O]O- = TCO[18O]O- + HCO3- TCO3- + HC[18O]O2- = TC[18O]O2- + HCO3- @@ -4029,8 +4033,8 @@ TCO3- + HC[18O]2O- = TC[18O]2O- + HCO3- TCO3- + HC[18O]3- = TC[18O]3- + HCO3- HCO3- + [13C]O2 = H[13C]O3- + CO2 - -add_logk Log_alpha_13C_HCO3-/CO2(aq) 1.0 - + -add_logk Log_alpha_13C_HCO3-/CO2(aq) 1 + H[13C]O3- + HCO2[18O]- = H[13C]O2[18O]- + HCO3- H[13C]O3- + HCO[18O]O- = H[13C]O[18O]O- + HCO3- H[13C]O3- + HC[18O]O2- = H[13C][18O]O2- + HCO3- @@ -4056,8 +4060,8 @@ H[13C]O3- + TC[18O]2O- = T[13C][18O]2O- + HCO3- H[13C]O3- + TC[18O]3- = T[13C][18O]3- + HCO3- HCO3- + [14C]O2 = H[14C]O3- + CO2 - -add_logk Log_alpha_14C_HCO3-/CO2(aq) 1.0 - + -add_logk Log_alpha_14C_HCO3-/CO2(aq) 1 + H[14C]O3- + HCO2[18O]- = H[14C]O2[18O]- + HCO3- H[14C]O3- + HCO[18O]O- = H[14C]O[18O]O- + HCO3- H[14C]O3- + HC[18O]O2- = H[14C][18O]O2- + HCO3- @@ -4087,210 +4091,210 @@ H[14C]O3- + TC[18O]3- = T[14C][18O]3- + HCO3- # Checked September 19, 2006 # CO3-2 + H2[18O] = CO2[18O]-2 + H2O - log_k 0.477121254719 # log10(3) - -add_logk Log_alpha_18O_CO3-2/H2O(l) 1.0 - -2CO2[18O]-2 = CO[18O]2-2 + CO3-2 - log_k -0.477121254719 # -log10(3) - + log_k 0.477121254719 # log10(3) + -add_logk Log_alpha_18O_CO3-2/H2O(l) 1 + +2 CO2[18O]-2 = CO[18O]2-2 + CO3-2 + log_k -0.477121254719 # -log10(3) + CO2[18O]-2 + CO[18O]2-2 = C[18O]3-2 + CO3-2 - log_k -0.954242509439324 # log10(1/9) - + log_k -0.954242509439324 # log10(1/9) + CO3-2 + [13C]O2 = [13C]O3-2 + CO2 - -add_logk Log_alpha_13C_CO3-2/CO2(aq) 1.0 - + -add_logk Log_alpha_13C_CO3-2/CO2(aq) 1 + [13C]O3-2 + CO2[18O]-2 = [13C]O2[18O]-2 + CO3-2 - log_k 0.0 - + log_k 0 + [13C]O3-2 + CO[18O]2-2 = [13C]O[18O]2-2 + CO3-2 - log_k 0.0 - + log_k 0 + [13C]O3-2 + C[18O]3-2 = [13C][18O]3-2 + CO3-2 - log_k 0.0 - + log_k 0 + CO3-2 + [14C]O2 = [14C]O3-2 + CO2 - -add_logk Log_alpha_14C_CO3-2/CO2(aq) 1.0 - + -add_logk Log_alpha_14C_CO3-2/CO2(aq) 1 + [14C]O3-2 + CO2[18O]-2 = [14C]O2[18O]-2 + CO3-2 - log_k 0.0 - + log_k 0 + [14C]O3-2 + CO[18O]2-2 = [14C]O[18O]2-2 + CO3-2 - log_k 0.0 - + log_k 0 + [14C]O3-2 + C[18O]3-2 = [14C][18O]3-2 + CO3-2 - log_k 0.0 + log_k 0 # # CH4 reactions # Updated September 19, 2006 # Checked September 19, 2006 # CH4 + HDO = CH3D + H2O - log_k 0.301029995663981198 # log10(2) - -add_logk Log_alpha_D_CH4(aq)/H2O(l) 1.0 - -2CH3D = CH2D2 + CH4 - log_k -0.42596873227228 # log10(3/8) - -3CH3D = CHD3 + 2CH4 - log_k -1.20411998265 # log10(1/16) - -4CH3D = CD4 + 3CH4 - log_k -2.408239965311 # log10(1/256) + log_k 0.301029995663981198 # log10(2) + -add_logk Log_alpha_D_CH4(aq)/H2O(l) 1 + +2 CH3D = CH2D2 + CH4 + log_k -0.42596873227228 # log10(3/8) + +3 CH3D = CHD3 + 2 CH4 + log_k -1.20411998265 # log10(1/16) + +4 CH3D = CD4 + 3 CH4 + log_k -2.408239965311 # log10(1/256) CH4 + HTO = CH3T + H2O - log_k 0.301029995663981198 # log10(2) - -add_logk Log_alpha_T_CH4(aq)/H2O(l) 1.0 + log_k 0.301029995663981198 # log10(2) + -add_logk Log_alpha_T_CH4(aq)/H2O(l) 1 -2CH3T = CH2T2 + CH4 - log_k -0.42596873227228 # log10(3/8) +2 CH3T = CH2T2 + CH4 + log_k -0.42596873227228 # log10(3/8) -3CH3T = CHT3 + 2CH4 - log_k -1.20411998265 # log10(1/16) +3 CH3T = CHT3 + 2 CH4 + log_k -1.20411998265 # log10(1/16) -4CH3T = CT4 + 3CH4 - log_k -2.408239965311 # log10(1/256) +4 CH3T = CT4 + 3 CH4 + log_k -2.408239965311 # log10(1/256) # # Added mixed DT C methane species May 19, 2006 # CH3T + CHD3 = CD3T + CH4 - log_k -0.602059991327962396 # -log10(4) + log_k -0.602059991327962396 # -log10(4) CH2T2 + CH2D2 = CD2T2 + CH4 - log_k -0.7781512503836 # -log10(6) + log_k -0.7781512503836 # -log10(6) CHT3 + CH3D = CDT3 + CH4 - log_k -0.602059991327962396 # -log10(4) + log_k -0.602059991327962396 # -log10(4) [13C]O2 + CH4 = [13C]H4 + CO2 - -add_logk Log_alpha_13C_CH4(aq)/CO2(aq) 1.0 + -add_logk Log_alpha_13C_CH4(aq)/CO2(aq) 1 -[13C]H4 + CH3D = [13C]H3D + CH4 +[13C]H4 + CH3D = [13C]H3D + CH4 [13C]H4 + CH2D2 = [13C]H2D2 + CH4 -[13C]H4 + CHD3 = [13C]HD3 + CH4 -[13C]H4 + CD4 = [13C]D4 + CH4 -[13C]H4 + CH3T = [13C]H3T + CH4 +[13C]H4 + CHD3 = [13C]HD3 + CH4 +[13C]H4 + CD4 = [13C]D4 + CH4 +[13C]H4 + CH3T = [13C]H3T + CH4 [13C]H4 + CH2T2 = [13C]H2T2 + CH4 -[13C]H4 + CHT3 = [13C]HT3 + CH4 -[13C]H4 + CT4 = [13C]T4 + CH4 -[13C]H4 + CD3T = [13C]D3T + CH4 +[13C]H4 + CHT3 = [13C]HT3 + CH4 +[13C]H4 + CT4 = [13C]T4 + CH4 +[13C]H4 + CD3T = [13C]D3T + CH4 [13C]H4 + CD2T2 = [13C]D2T2 + CH4 -[13C]H4 + CDT3 = [13C]DT3 + CH4 +[13C]H4 + CDT3 = [13C]DT3 + CH4 [14C]O2 + CH4 = [14C]H4 + CO2 - -add_logk Log_alpha_14C_CH4(aq)/CO2(aq) 1.0 + -add_logk Log_alpha_14C_CH4(aq)/CO2(aq) 1 # # Added mixed DT 14C methane species May 19, 2006 # -[14C]H4 + CH3D = [14C]H3D + CH4 +[14C]H4 + CH3D = [14C]H3D + CH4 [14C]H4 + CH2D2 = [14C]H2D2 + CH4 -[14C]H4 + CHD3 = [14C]HD3 + CH4 -[14C]H4 + CD4 = [14C]D4 + CH4 -[14C]H4 + CH3T = [14C]H3T + CH4 +[14C]H4 + CHD3 = [14C]HD3 + CH4 +[14C]H4 + CD4 = [14C]D4 + CH4 +[14C]H4 + CH3T = [14C]H3T + CH4 [14C]H4 + CH2T2 = [14C]H2T2 + CH4 -[14C]H4 + CHT3 = [14C]HT3 + CH4 -[14C]H4 + CT4 = [14C]T4 + CH4 -[14C]H4 + CD3T = [14C]D3T + CH4 +[14C]H4 + CHT3 = [14C]HT3 + CH4 +[14C]H4 + CT4 = [14C]T4 + CH4 +[14C]H4 + CD3T = [14C]D3T + CH4 [14C]H4 + CD2T2 = [14C]D2T2 + CH4 -[14C]H4 + CDT3 = [14C]DT3 + CH4 +[14C]H4 + CDT3 = [14C]DT3 + CH4 # # HSO4- reactions # Updated September 28, 2006 # Checked September 28, 2006 # HSO4- + HDO = DSO4- + H2O - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_D_HSO4-/H2O(l) 1.0 - -mole_balance DS(6)O4- + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_D_HSO4-/H2O(l) 1 + -mole_balance DS(6)O4- HSO4- + HTO = TSO4- + H2O - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_T_HSO4-/H2O(l) 1.0 - -mole_balance TS(6)O4- + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_T_HSO4-/H2O(l) 1 + -mole_balance TS(6)O4- [34S]O4-2 + HSO4- = H[34S]O4- + SO4-2 - -add_logk Log_alpha_34S_HSO4-/SO4-2 1.0 - -mole_balance H[34S](6)O4- + -add_logk Log_alpha_34S_HSO4-/SO4-2 1 + -mole_balance H[34S](6)O4- H[34S]O4- + DSO4- = D[34S]O4- + HSO4- - -mole_balance D[34S](6)O4 + -mole_balance D[34S](6)O4 H[34S]O4- + TSO4- = T[34S]O4- + HSO4- - -mole_balance T[34S](6)O4- + -mole_balance T[34S](6)O4- # # S-2 reactions # S-2 + H[34S]- = [34S]-2 + HS- - -add_logk Log_alpha_34S_S-2/HS- 1.0 - -mole_balance [34S](-2) - -gamma 5.0000 0.0000 + -add_logk Log_alpha_34S_S-2/HS- 1 + -mole_balance [34S](-2) + -gamma 5 0 # # HS- reactions # HS- + HDO = DS- + H2O - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_D_HS-/H2O(l) 1.0 - -mole_balance DS(-2) - -gamma 3.5000 0.0000 + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_D_HS-/H2O(l) 1 + -mole_balance DS(-2) + -gamma 3.5 0 HS- + HTO = TS- + H2O - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_T_HS-/H2O(l) 1.0 - -mole_balance TS(-2) - -gamma 3.5000 0.0000 + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_T_HS-/H2O(l) 1 + -mole_balance TS(-2) + -gamma 3.5 0 HS- + [34S]O4-2 = H[34S]- + SO4-2 - -add_logk Log_alpha_34S_HS-/SO4-2 1.0 - -mole_balance H[34S](-2) - -gamma 3.5000 0.0000 + -add_logk Log_alpha_34S_HS-/SO4-2 1 + -mole_balance H[34S](-2) + -gamma 3.5 0 H[34S]- + DS- = D[34S]- + HS- - -gamma 3.5000 0.0000 - -mole_balance D[34S](-2) + -gamma 3.5 0 + -mole_balance D[34S](-2) H[34S]- + TS- = T[34S]- + HS- - -gamma 3.5000 0.0000 - -mole_balance T[34S](-2) + -gamma 3.5 0 + -mole_balance T[34S](-2) # # H2S reactions # H2S + HDO = HDS + H2O - -add_logk Log_alpha_D_H2S(aq)/H2O(l) 1.0 - -mole_balance HDS(-2) + -add_logk Log_alpha_D_H2S(aq)/H2O(l) 1 + -mole_balance HDS(-2) -2HDS = D2S + H2S - log_k -0.602059991327962396 # -log10(4) - -mole_balance D2S(-2) +2 HDS = D2S + H2S + log_k -0.602059991327962396 # -log10(4) + -mole_balance D2S(-2) H2S + HTO = HTS + H2O - -add_logk Log_alpha_T_H2S(aq)/H2O(l) 1.0 - -mole_balance HTS(-2) + -add_logk Log_alpha_T_H2S(aq)/H2O(l) 1 + -mole_balance HTS(-2) -2HTS = T2S + H2S - log_k -0.602059991327962396 # -log10(4) - -mole_balance T2S(-2) +2 HTS = T2S + H2S + log_k -0.602059991327962396 # -log10(4) + -mole_balance T2S(-2) HDS + HTS = DTS + H2S - log_k -0.301029995663 # log10(1/2) - -mole_balance DTS(-2) + log_k -0.301029995663 # log10(1/2) + -mole_balance DTS(-2) H[34S]- + H2S = H2[34S] + HS- - -add_logk Log_alpha_34S_H2S(aq)/HS- 1.0 - -mole_balance H2[34S](-2) + -add_logk Log_alpha_34S_H2S(aq)/HS- 1 + -mole_balance H2[34S](-2) H2[34S] + HDS = HD[34S] + H2S - -mole_balance HD[34S](-2) + -mole_balance HD[34S](-2) H2[34S] + D2S = D2[34S] + H2S - -mole_balance D2[34S](-2) + -mole_balance D2[34S](-2) H2[34S] + HTS = HT[34S] + H2S - -mole_balance HT[34S](-2) + -mole_balance HT[34S](-2) H2[34S] + T2S = T2[34S] + H2S - -mole_balance T2[34S](-2) + -mole_balance T2[34S](-2) H2[34S] + DTS = DT[34S] + H2S - -mole_balance DT[34S](-2) + -mole_balance DT[34S](-2) # # NO2- reactions # Updated March 20, 2006 @@ -4298,177 +4302,177 @@ H2[34S] + DTS = DT[34S] + H2S # Checked September 19, 2006 # [15N]O3- + NO2- = [15N]O2- + NO3- - -add_logk Log_alpha_15N_NO2-/NO3- 1.0 - -gamma 3.0000 0.0000 + -add_logk Log_alpha_15N_NO2-/NO3- 1 + -gamma 3 0 # # N2 reactions # N2 + [15N]O3- = N[15N] + NO3- - log_k 0.301029995663 # log10(2) - -add_logk Log_alpha_15N_N2(aq)/NO3- 1.0 - -mole_balance [15N](0)N(0) -2N[15N] = [15N]2 + N2 - log_k -0.602059991327962396 # -log10(4) - -mole_balance [15N](0)2 + log_k 0.301029995663 # log10(2) + -add_logk Log_alpha_15N_N2(aq)/NO3- 1 + -mole_balance [15N](0)N(0) +2 N[15N] = [15N]2 + N2 + log_k -0.602059991327962396 # -log10(4) + -mole_balance [15N](0)2 # # NH3 reactions -# +# HDO + NH3 = NH2D + H2O - log_k 0.176091259055 # log10(1.5) - -add_logk Log_alpha_D_NH3(aq)/H2O(l) 1.0 - -2NH2D = NHD2 + NH3 - log_k -0.477121254719 # -log10(3) - -3NH2D = ND3 + 2NH3 - -logk -1.431363764158 # log10(1/27) + log_k 0.176091259055 # log10(1.5) + -add_logk Log_alpha_D_NH3(aq)/H2O(l) 1 + +2 NH2D = NHD2 + NH3 + log_k -0.477121254719 # -log10(3) + +3 NH2D = ND3 + 2 NH3 + -logk -1.431363764158 # log10(1/27) HTO + NH3 = NH2T + H2O - log_k 0.176091259055 # log10(1.5) - -add_logk Log_alpha_T_NH3(aq)/H2O(l) 1.0 + log_k 0.176091259055 # log10(1.5) + -add_logk Log_alpha_T_NH3(aq)/H2O(l) 1 -2NH2T = NHT2 + NH3 - log_k -0.477121254719662 # log10(1/3) +2 NH2T = NHT2 + NH3 + log_k -0.477121254719662 # log10(1/3) + +3 NH2T = NT3 + 2 NH3 + -logk -1.431363764158 # log10(1/27) -3NH2T = NT3 + 2NH3 - -logk -1.431363764158 # log10(1/27) - NHD2 + NH2T = ND2T + NH3 - log_k -0.477121254719 # -log10(3) - + log_k -0.477121254719 # -log10(3) + NH2D + NHT2 = NDT2 + NH3 - log_k -0.477121254719 # -log10(3) - + log_k -0.477121254719 # -log10(3) + # Checked September 19, 2006 - + NH3 + [15N]O3- = [15N]H3 + NO3- - -add_logk Log_alpha_15N_NH3(aq)/NO3- 1.0 - -mole_balance [15N](-3)H3 - + -add_logk Log_alpha_15N_NH3(aq)/NO3- 1 + -mole_balance [15N](-3)H3 + [15N]H3 + NH2D = [15N]H2D + NH3 [15N]H3 + NHD2 = [15N]HD2 + NH3 -[15N]H3 + ND3 = [15N]D3 + NH3 +[15N]H3 + ND3 = [15N]D3 + NH3 [15N]H3 + NH2T = [15N]H2T + NH3 [15N]H3 + NHT2 = [15N]HT2 + NH3 -[15N]H3 + NT3 = [15N]T3 + NH3 +[15N]H3 + NT3 = [15N]T3 + NH3 [15N]H3 + ND2T = [15N]D2T + NH3 [15N]H3 + NDT2 = [15N]DT2 + NH3 -# +# # NH4+ reactions # Updated September 19, 2006 # Checked September 19, 2006 -# +# HDO + NH4+ = NH3D+ + H2O - log_k 0.301029995663 # log10(2) - -add_logk Log_alpha_D_NH4+/H2O(l) 1.0 - -mole_balance N(-3)H3D - -gamma 2.5000 0.0000 - -2NH3D+ = NH2D2+ + NH4+ - log_k -0.42596873227228 # log10(3/8) - -mole_balance N(-3)H2D2 - -gamma 2.5000 0.0000 - -3NH3D+ = NHD3+ + 2NH4+ - log_k -1.20411998265 # log10(1/16) - -mole_balance N(-3)HD3 - -gamma 2.5000 0.0000 - -4NH3D+ = ND4+ + 3NH4+ - log_k -2.408239965311 # log10(1/256) - -mole_balance N(-3)D4 - -gamma 2.5000 0.0000 - + log_k 0.301029995663 # log10(2) + -add_logk Log_alpha_D_NH4+/H2O(l) 1 + -mole_balance N(-3)H3D + -gamma 2.5 0 + +2 NH3D+ = NH2D2+ + NH4+ + log_k -0.42596873227228 # log10(3/8) + -mole_balance N(-3)H2D2 + -gamma 2.5 0 + +3 NH3D+ = NHD3+ + 2 NH4+ + log_k -1.20411998265 # log10(1/16) + -mole_balance N(-3)HD3 + -gamma 2.5 0 + +4 NH3D+ = ND4+ + 3 NH4+ + log_k -2.408239965311 # log10(1/256) + -mole_balance N(-3)D4 + -gamma 2.5 0 + HTO + NH4+ = NH3T+ + H2O - log_k 0.301029995663 # log10(2) - -add_logk Log_alpha_T_NH4+/H2O(l) 1.0 - -mole_balance N(-3)H3T - -gamma 2.5000 0.0000 - -2NH3T+ = NH2T2+ + NH4+ - log_k -0.42596873227228 # log10(3/8) - -mole_balance N(-3)H2T2 - -gamma 2.5000 0.0000 - -3NH3T+ = NHT3+ + 2NH4+ - log_k -1.20411998265 # log10(1/16) - -mole_balance N(-3)HT3 - -gamma 2.5000 0.0000 - -4NH3T+ = NT4+ + 3NH4+ - log_k -2.408239965311 # log10(1/256) - -mole_balance N(-3)T4 - -gamma 2.5000 0.0000 -# + log_k 0.301029995663 # log10(2) + -add_logk Log_alpha_T_NH4+/H2O(l) 1 + -mole_balance N(-3)H3T + -gamma 2.5 0 + +2 NH3T+ = NH2T2+ + NH4+ + log_k -0.42596873227228 # log10(3/8) + -mole_balance N(-3)H2T2 + -gamma 2.5 0 + +3 NH3T+ = NHT3+ + 2 NH4+ + log_k -1.20411998265 # log10(1/16) + -mole_balance N(-3)HT3 + -gamma 2.5 0 + +4 NH3T+ = NT4+ + 3 NH4+ + log_k -2.408239965311 # log10(1/256) + -mole_balance N(-3)T4 + -gamma 2.5 0 +# # Updated September 19, 2006 # Checked September 19, 2006 -# +# NHD3+ + NH3T+ = ND3T+ + NH4+ - log_k -0.602059991327962396 # -log10(4) - -mole_balance N(-3)D3T - -gamma 2.5000 0.0000 - + log_k -0.602059991327962396 # -log10(4) + -mole_balance N(-3)D3T + -gamma 2.5 0 + NH2D2+ + NH2T2+ = ND2T2+ + NH4+ - log_k -0.7781512503836 # -log10(6) - -mole_balance N(-3)D2T2 - -gamma 2.5000 0.0000 - + log_k -0.7781512503836 # -log10(6) + -mole_balance N(-3)D2T2 + -gamma 2.5 0 + NH3D+ + NHT3+ = NDT3+ + NH4+ - log_k -0.602059991327962396 # -log10(4) - -mole_balance N(-3)DT3 - -gamma 2.5000 0.0000 - + log_k -0.602059991327962396 # -log10(4) + -mole_balance N(-3)DT3 + -gamma 2.5 0 + [15N]H3 + NH4+ = [15N]H4+ + NH3 - -add_logk Log_alpha_15N_NH4+/NH3(aq) 1.0 - -mole_balance [15N](-3)H4 - -gamma 2.5000 0.0000 - + -add_logk Log_alpha_15N_NH4+/NH3(aq) 1 + -mole_balance [15N](-3)H4 + -gamma 2.5 0 + [15N]H4+ + NH3D+ = [15N]H3D+ + NH4+ - -mole_balance [15N](-3)H3D - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)H3D + -gamma 2.5 0 + [15N]H4+ + NH2D2+ = [15N]H2D2+ + NH4+ - -mole_balance [15N](-3)H2D2 - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)H2D2 + -gamma 2.5 0 + [15N]H4+ + NHD3+ = [15N]HD3+ + NH4+ - -mole_balance [15N](-3)HD3 - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)HD3 + -gamma 2.5 0 + [15N]H4+ + ND4+ = [15N]D4+ + NH4+ - -mole_balance [15N](-3)D4+ - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)D4+ + -gamma 2.5 0 + [15N]H4+ + NH3T+ = [15N]H3T+ + NH4+ - -mole_balance [15N](-3)H3T - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)H3T + -gamma 2.5 0 + [15N]H4+ + NH2T2+ = [15N]H2T2+ + NH4+ - -mole_balance [15N](-3)H2T2 - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)H2T2 + -gamma 2.5 0 + [15N]H4+ + NHT3+ = [15N]HT3+ + NH4+ - -mole_balance [15N](-3)HT3 - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)HT3 + -gamma 2.5 0 + [15N]H4+ + NT4+ = [15N]T4+ + NH4+ - -mole_balance [15N](-3)T4+ - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)T4+ + -gamma 2.5 0 + [15N]H4+ + ND3T+ = [15N]D3T+ + NH4+ - -mole_balance [15N](-3)D3T - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)D3T + -gamma 2.5 0 + [15N]H4+ + ND2T2+ = [15N]D2T2+ + NH4+ - -mole_balance [15N](-3)D2T2 - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)D2T2 + -gamma 2.5 0 + [15N]H4+ + NDT3+ = [15N]DT3+ + NH4+ - -mole_balance [15N](-3)DT3 - -gamma 2.5000 0.0000 -# + -mole_balance [15N](-3)DT3 + -gamma 2.5 0 +# # Missing NH4SO4- reactions -# +# # # Missing PO4-2 reactions # @@ -4489,18 +4493,18 @@ HF + HTO = TF + H2O HF2- + HDO = DF2- + H2O HF2- + HTO = TF2- + H2O # -# CaOH reactions +# CaOH reactions # CaOH+ + [18O]H- = Ca[18O]H+ + OH- - -mole_balance Ca[18O]H + -mole_balance Ca[18O]H CaOH+ + OD- = CaOD+ + OH- - -mole_balance CaOD + -mole_balance CaOD CaOH+ + [18O]D- = Ca[18O]D+ + OH- - -mole_balance Ca[18O]D + -mole_balance Ca[18O]D CaOH+ + OT- = CaOT+ + OH- - -mole_balance CaOT+ + -mole_balance CaOT+ CaOH+ + [18O]T- = Ca[18O]T+ + OH- - -mole_balance Ca[18O]T + -mole_balance Ca[18O]T # # CaCO3 reactions # @@ -4519,219 +4523,219 @@ CaCO3 + [14C][18O]3-2 = Ca[14C][18O]3 + CO3-2 # CaHCO3+ reactions # CaHCO3+ + HCO2[18O]- = CaHCO2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + HCO[18O]O- = CaHCO[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + HC[18O]O2- = CaHC[18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + HCO[18O]2- = CaHCO[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + HC[18O]O[18O]- = CaHC[18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + HC[18O]2O- = CaHC[18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + HC[18O]3- = CaHC[18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[13C]O3- = CaH[13C]O3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[13C]O2[18O]- = CaH[13C]O2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[13C]O[18O]O- = CaH[13C]O[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[13C][18O]O2- = CaH[13C][18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[13C]O[18O]2- = CaH[13C]O[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[13C][18O]O[18O]- = CaH[13C][18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[13C][18O]2O- = CaH[13C][18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[13C][18O]3- = CaH[13C][18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[14C]O3- = CaH[14C]O3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[14C]O2[18O]- = CaH[14C]O2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[14C]O[18O]O- = CaH[14C]O[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[14C][18O]O2- = CaH[14C][18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[14C]O[18O]2- = CaH[14C]O[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[14C][18O]O[18O]- = CaH[14C][18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[14C][18O]2O- = CaH[14C][18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[14C][18O]3- = CaH[14C][18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 # DCO3- CaHCO3+ + DCO3- = CaDCO3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + DCO2[18O]- = CaDCO2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + DCO[18O]O- = CaDCO[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + DC[18O]O2- = CaDC[18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + DCO[18O]2- = CaDCO[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + DC[18O]O[18O]- = CaDC[18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + DC[18O]2O- = CaDC[18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + DC[18O]3- = CaDC[18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[13C]O3- = CaD[13C]O3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[13C]O2[18O]- = CaD[13C]O2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[13C]O[18O]O- = CaD[13C]O[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[13C][18O]O2- = CaD[13C][18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[13C]O[18O]2- = CaD[13C]O[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[13C][18O]O[18O]- = CaD[13C][18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[13C][18O]2O- = CaD[13C][18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[13C][18O]3- = CaD[13C][18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[14C]O3- = CaD[14C]O3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[14C]O2[18O]- = CaD[14C]O2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[14C]O[18O]O- = CaD[14C]O[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[14C][18O]O2- = CaD[14C][18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[14C]O[18O]2- = CaD[14C]O[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[14C][18O]O[18O]- = CaD[14C][18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[14C][18O]2O- = CaD[14C][18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[14C][18O]3- = CaD[14C][18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 # TCO3- CaHCO3+ + TCO3- = CaTCO3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + TCO2[18O]- = CaTCO2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + TCO[18O]O- = CaTCO[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + TC[18O]O2- = CaTC[18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + TCO[18O]2- = CaTCO[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + TC[18O]O[18O]- = CaTC[18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + TC[18O]2O- = CaTC[18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + TC[18O]3- = CaTC[18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[13C]O3- = CaT[13C]O3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[13C]O2[18O]- = CaT[13C]O2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[13C]O[18O]O- = CaT[13C]O[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[13C][18O]O2- = CaT[13C][18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[13C]O[18O]2- = CaT[13C]O[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[13C][18O]O[18O]- = CaT[13C][18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[13C][18O]2O- = CaT[13C][18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[13C][18O]3- = CaT[13C][18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[14C]O3- = CaT[14C]O3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[14C]O2[18O]- = CaT[14C]O2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[14C]O[18O]O- = CaT[14C]O[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[14C][18O]O2- = CaT[14C][18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[14C]O[18O]2- = CaT[14C]O[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[14C][18O]O[18O]- = CaT[14C][18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[14C][18O]2O- = CaT[14C][18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[14C][18O]3- = CaT[14C][18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 # # CaSO4 reactions # @@ -4858,13 +4862,13 @@ MgHCO3+ + T[14C][18O]3- = MgT[14C][18O]3+ + HCO3- MgSO4 + [34S]O4-2 = Mg[34S]O4 + SO4-2 # # Missing MgPO4- reactions -# +# # # Missing MgHPO4 reactions -# +# # # Missing Mg2PO4+ reactions -# +# # # NaOH reactions # @@ -4982,7 +4986,7 @@ KOH + OT- = KOT + OH- KOH + [18O]T- = K[18O]T + OH- # # KSO4- reactions -# +# KSO4- + [34S]O4-2 = K[34S]O4- + SO4-2 # # Added FeOH+ reactions 16Dec09 @@ -5098,171 +5102,171 @@ FeHSO4+ + T[34S]O4- = FeT[34S]O4+ + HSO4- # Added Fe(HS)2 reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Fe(HS)2 + HS- + DS- = FeHSDS + 2HS- -Fe(HS)2 + HS- + TS- = FeHSTS + 2HS- -Fe(HS)2 + HS- + H[34S]- = FeHSH[34S] + 2HS- -Fe(HS)2 + HS- + D[34S]- = FeHSD[34S] + 2HS- -Fe(HS)2 + HS- + T[34S]- = FeHST[34S] + 2HS- -Fe(HS)2 + DS- + HS- = FeDSHS + 2HS- -Fe(HS)2 + DS- + DS- = FeDSDS + 2HS- -Fe(HS)2 + DS- + TS- = FeDSTS + 2HS- -Fe(HS)2 + DS- + H[34S]- = FeDSH[34S] + 2HS- -Fe(HS)2 + DS- + D[34S]- = FeDSD[34S] + 2HS- -Fe(HS)2 + DS- + T[34S]- = FeDST[34S] + 2HS- -Fe(HS)2 + TS- + HS- = FeTSHS + 2HS- -Fe(HS)2 + TS- + DS- = FeTSDS + 2HS- -Fe(HS)2 + TS- + H[34S]- = FeTSH[34S] + 2HS- -Fe(HS)2 + TS- + D[34S]- = FeTSD[34S] + 2HS- -Fe(HS)2 + H[34S]- + HS- = FeH[34S]HS + 2HS- -Fe(HS)2 + H[34S]- + DS- = FeH[34S]DS + 2HS- -Fe(HS)2 + H[34S]- + TS- = FeH[34S]TS + 2HS- -Fe(HS)2 + H[34S]- + H[34S]- = FeH[34S]H[34S] + 2HS- -Fe(HS)2 + H[34S]- + D[34S]- = FeH[34S]D[34S] + 2HS- -Fe(HS)2 + H[34S]- + T[34S]- = FeH[34S]T[34S] + 2HS- -Fe(HS)2 + D[34S]- + HS- = FeD[34S]HS + 2HS- -Fe(HS)2 + D[34S]- + DS- = FeD[34S]DS + 2HS- -Fe(HS)2 + D[34S]- + TS- = FeD[34S]TS + 2HS- -Fe(HS)2 + D[34S]- + H[34S]- = FeD[34S]H[34S] + 2HS- -Fe(HS)2 + D[34S]- + D[34S]- = FeD[34S]D[34S] + 2HS- -Fe(HS)2 + D[34S]- + T[34S]- = FeD[34S]T[34S] + 2HS- -Fe(HS)2 + T[34S]- + HS- = FeT[34S]HS + 2HS- -Fe(HS)2 + T[34S]- + DS- = FeT[34S]DS + 2HS- -Fe(HS)2 + T[34S]- + H[34S]- = FeT[34S]H[34S] + 2HS- -Fe(HS)2 + T[34S]- + D[34S]- = FeT[34S]D[34S] + 2HS- +Fe(HS)2 + HS- + DS- = FeHSDS + 2 HS- +Fe(HS)2 + HS- + TS- = FeHSTS + 2 HS- +Fe(HS)2 + HS- + H[34S]- = FeHSH[34S] + 2 HS- +Fe(HS)2 + HS- + D[34S]- = FeHSD[34S] + 2 HS- +Fe(HS)2 + HS- + T[34S]- = FeHST[34S] + 2 HS- +Fe(HS)2 + DS- + HS- = FeDSHS + 2 HS- +Fe(HS)2 + DS- + DS- = FeDSDS + 2 HS- +Fe(HS)2 + DS- + TS- = FeDSTS + 2 HS- +Fe(HS)2 + DS- + H[34S]- = FeDSH[34S] + 2 HS- +Fe(HS)2 + DS- + D[34S]- = FeDSD[34S] + 2 HS- +Fe(HS)2 + DS- + T[34S]- = FeDST[34S] + 2 HS- +Fe(HS)2 + TS- + HS- = FeTSHS + 2 HS- +Fe(HS)2 + TS- + DS- = FeTSDS + 2 HS- +Fe(HS)2 + TS- + H[34S]- = FeTSH[34S] + 2 HS- +Fe(HS)2 + TS- + D[34S]- = FeTSD[34S] + 2 HS- +Fe(HS)2 + H[34S]- + HS- = FeH[34S]HS + 2 HS- +Fe(HS)2 + H[34S]- + DS- = FeH[34S]DS + 2 HS- +Fe(HS)2 + H[34S]- + TS- = FeH[34S]TS + 2 HS- +Fe(HS)2 + H[34S]- + H[34S]- = FeH[34S]H[34S] + 2 HS- +Fe(HS)2 + H[34S]- + D[34S]- = FeH[34S]D[34S] + 2 HS- +Fe(HS)2 + H[34S]- + T[34S]- = FeH[34S]T[34S] + 2 HS- +Fe(HS)2 + D[34S]- + HS- = FeD[34S]HS + 2 HS- +Fe(HS)2 + D[34S]- + DS- = FeD[34S]DS + 2 HS- +Fe(HS)2 + D[34S]- + TS- = FeD[34S]TS + 2 HS- +Fe(HS)2 + D[34S]- + H[34S]- = FeD[34S]H[34S] + 2 HS- +Fe(HS)2 + D[34S]- + D[34S]- = FeD[34S]D[34S] + 2 HS- +Fe(HS)2 + D[34S]- + T[34S]- = FeD[34S]T[34S] + 2 HS- +Fe(HS)2 + T[34S]- + HS- = FeT[34S]HS + 2 HS- +Fe(HS)2 + T[34S]- + DS- = FeT[34S]DS + 2 HS- +Fe(HS)2 + T[34S]- + H[34S]- = FeT[34S]H[34S] + 2 HS- +Fe(HS)2 + T[34S]- + D[34S]- = FeT[34S]D[34S] + 2 HS- # # Added Fe(HS)3- reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Fe(HS)3- + HS- + HS- + DS- = FeHSHSDS- + 3HS- -Fe(HS)3- + HS- + HS- + TS- = FeHSHSTS- + 3HS- -Fe(HS)3- + HS- + HS- + H[34S]- = FeHSHSH[34S]- + 3HS- -Fe(HS)3- + HS- + HS- + D[34S]- = FeHSHSD[34S]- + 3HS- -Fe(HS)3- + HS- + HS- + T[34S]- = FeHSHST[34S]- + 3HS- -Fe(HS)3- + HS- + DS- + HS- = FeHSDSHS- + 3HS- -Fe(HS)3- + HS- + DS- + DS- = FeHSDSDS- + 3HS- -Fe(HS)3- + HS- + DS- + TS- = FeHSDSTS- + 3HS- -Fe(HS)3- + HS- + DS- + H[34S]- = FeHSDSH[34S]- + 3HS- -Fe(HS)3- + HS- + DS- + D[34S]- = FeHSDSD[34S]- + 3HS- -Fe(HS)3- + HS- + DS- + T[34S]- = FeHSDST[34S]- + 3HS- -Fe(HS)3- + HS- + TS- + HS- = FeHSTSHS- + 3HS- -Fe(HS)3- + HS- + TS- + DS- = FeHSTSDS- + 3HS- -Fe(HS)3- + HS- + TS- + H[34S]- = FeHSTSH[34S]- + 3HS- -Fe(HS)3- + HS- + TS- + D[34S]- = FeHSTSD[34S]- + 3HS- -Fe(HS)3- + HS- + H[34S]- + HS- = FeHSH[34S]HS- + 3HS- -Fe(HS)3- + HS- + H[34S]- + DS- = FeHSH[34S]DS- + 3HS- -Fe(HS)3- + HS- + H[34S]- + TS- = FeHSH[34S]TS- + 3HS- -Fe(HS)3- + HS- + H[34S]- + H[34S]- = FeHSH[34S]H[34S]- + 3HS- -Fe(HS)3- + HS- + H[34S]- + D[34S]- = FeHSH[34S]D[34S]- + 3HS- -Fe(HS)3- + HS- + H[34S]- + T[34S]- = FeHSH[34S]T[34S]- + 3HS- -Fe(HS)3- + HS- + D[34S]- + HS- = FeHSD[34S]HS- + 3HS- -Fe(HS)3- + HS- + D[34S]- + DS- = FeHSD[34S]DS- + 3HS- -Fe(HS)3- + HS- + D[34S]- + TS- = FeHSD[34S]TS- + 3HS- -Fe(HS)3- + HS- + D[34S]- + H[34S]- = FeHSD[34S]H[34S]- + 3HS- -Fe(HS)3- + HS- + D[34S]- + D[34S]- = FeHSD[34S]D[34S]- + 3HS- -Fe(HS)3- + HS- + D[34S]- + T[34S]- = FeHSD[34S]T[34S]- + 3HS- -Fe(HS)3- + HS- + T[34S]- + HS- = FeHST[34S]HS- + 3HS- -Fe(HS)3- + HS- + T[34S]- + DS- = FeHST[34S]DS- + 3HS- -Fe(HS)3- + HS- + T[34S]- + H[34S]- = FeHST[34S]H[34S]- + 3HS- -Fe(HS)3- + HS- + T[34S]- + D[34S]- = FeHST[34S]D[34S]- + 3HS- -Fe(HS)3- + DS- + HS- + HS- = FeDSHSHS- + 3HS- -Fe(HS)3- + DS- + HS- + DS- = FeDSHSDS- + 3HS- -Fe(HS)3- + DS- + HS- + TS- = FeDSHSTS- + 3HS- -Fe(HS)3- + DS- + HS- + H[34S]- = FeDSHSH[34S]- + 3HS- -Fe(HS)3- + DS- + HS- + D[34S]- = FeDSHSD[34S]- + 3HS- -Fe(HS)3- + DS- + HS- + T[34S]- = FeDSHST[34S]- + 3HS- -Fe(HS)3- + DS- + DS- + HS- = FeDSDSHS- + 3HS- -Fe(HS)3- + DS- + DS- + TS- = FeDSDSTS- + 3HS- -Fe(HS)3- + DS- + DS- + H[34S]- = FeDSDSH[34S]- + 3HS- -Fe(HS)3- + DS- + DS- + T[34S]- = FeDSDST[34S]- + 3HS- -Fe(HS)3- + DS- + TS- + HS- = FeDSTSHS- + 3HS- -Fe(HS)3- + DS- + TS- + DS- = FeDSTSDS- + 3HS- -Fe(HS)3- + DS- + TS- + H[34S]- = FeDSTSH[34S]- + 3HS- -Fe(HS)3- + DS- + TS- + D[34S]- = FeDSTSD[34S]- + 3HS- -Fe(HS)3- + DS- + H[34S]- + HS- = FeDSH[34S]HS- + 3HS- -Fe(HS)3- + DS- + H[34S]- + DS- = FeDSH[34S]DS- + 3HS- -Fe(HS)3- + DS- + H[34S]- + TS- = FeDSH[34S]TS- + 3HS- -Fe(HS)3- + DS- + H[34S]- + H[34S]- = FeDSH[34S]H[34S]- + 3HS- -Fe(HS)3- + DS- + H[34S]- + D[34S]- = FeDSH[34S]D[34S]- + 3HS- -Fe(HS)3- + DS- + H[34S]- + T[34S]- = FeDSH[34S]T[34S]- + 3HS- -Fe(HS)3- + DS- + D[34S]- + HS- = FeDSD[34S]HS- + 3HS- -Fe(HS)3- + DS- + D[34S]- + TS- = FeDSD[34S]TS- + 3HS- -Fe(HS)3- + DS- + D[34S]- + H[34S]- = FeDSD[34S]H[34S]- + 3HS- -Fe(HS)3- + DS- + T[34S]- + HS- = FeDST[34S]HS- + 3HS- -Fe(HS)3- + DS- + T[34S]- + DS- = FeDST[34S]DS- + 3HS- -Fe(HS)3- + DS- + T[34S]- + H[34S]- = FeDST[34S]H[34S]- + 3HS- -Fe(HS)3- + TS- + HS- + HS- = FeTSHSHS- + 3HS- -Fe(HS)3- + TS- + HS- + DS- = FeTSHSDS- + 3HS- -Fe(HS)3- + TS- + HS- + H[34S]- = FeTSHSH[34S]- + 3HS- -Fe(HS)3- + TS- + HS- + D[34S]- = FeTSHSD[34S]- + 3HS- -Fe(HS)3- + TS- + DS- + HS- = FeTSDSHS- + 3HS- -Fe(HS)3- + TS- + DS- + DS- = FeTSDSDS- + 3HS- -Fe(HS)3- + TS- + DS- + H[34S]- = FeTSDSH[34S]- + 3HS- -Fe(HS)3- + TS- + DS- + D[34S]- = FeTSDSD[34S]- + 3HS- -Fe(HS)3- + TS- + H[34S]- + HS- = FeTSH[34S]HS- + 3HS- -Fe(HS)3- + TS- + H[34S]- + DS- = FeTSH[34S]DS- + 3HS- -Fe(HS)3- + TS- + H[34S]- + H[34S]- = FeTSH[34S]H[34S]- + 3HS- -Fe(HS)3- + TS- + H[34S]- + D[34S]- = FeTSH[34S]D[34S]- + 3HS- -Fe(HS)3- + TS- + D[34S]- + HS- = FeTSD[34S]HS- + 3HS- -Fe(HS)3- + TS- + D[34S]- + DS- = FeTSD[34S]DS- + 3HS- -Fe(HS)3- + TS- + D[34S]- + H[34S]- = FeTSD[34S]H[34S]- + 3HS- -Fe(HS)3- + H[34S]- + HS- + HS- = FeH[34S]HSHS- + 3HS- -Fe(HS)3- + H[34S]- + HS- + DS- = FeH[34S]HSDS- + 3HS- -Fe(HS)3- + H[34S]- + HS- + TS- = FeH[34S]HSTS- + 3HS- -Fe(HS)3- + H[34S]- + HS- + H[34S]- = FeH[34S]HSH[34S]- + 3HS- -Fe(HS)3- + H[34S]- + HS- + D[34S]- = FeH[34S]HSD[34S]- + 3HS- -Fe(HS)3- + H[34S]- + HS- + T[34S]- = FeH[34S]HST[34S]- + 3HS- -Fe(HS)3- + H[34S]- + DS- + HS- = FeH[34S]DSHS- + 3HS- -Fe(HS)3- + H[34S]- + DS- + DS- = FeH[34S]DSDS- + 3HS- -Fe(HS)3- + H[34S]- + DS- + TS- = FeH[34S]DSTS- + 3HS- -Fe(HS)3- + H[34S]- + DS- + H[34S]- = FeH[34S]DSH[34S]- + 3HS- -Fe(HS)3- + H[34S]- + DS- + D[34S]- = FeH[34S]DSD[34S]- + 3HS- -Fe(HS)3- + H[34S]- + DS- + T[34S]- = FeH[34S]DST[34S]- + 3HS- -Fe(HS)3- + H[34S]- + TS- + HS- = FeH[34S]TSHS- + 3HS- -Fe(HS)3- + H[34S]- + TS- + DS- = FeH[34S]TSDS- + 3HS- -Fe(HS)3- + H[34S]- + TS- + H[34S]- = FeH[34S]TSH[34S]- + 3HS- -Fe(HS)3- + H[34S]- + TS- + D[34S]- = FeH[34S]TSD[34S]- + 3HS- -Fe(HS)3- + H[34S]- + H[34S]- + HS- = FeH[34S]H[34S]HS- + 3HS- -Fe(HS)3- + H[34S]- + H[34S]- + DS- = FeH[34S]H[34S]DS- + 3HS- -Fe(HS)3- + H[34S]- + H[34S]- + TS- = FeH[34S]H[34S]TS- + 3HS- -Fe(HS)3- + H[34S]- + H[34S]- + H[34S]- = FeH[34S]H[34S]H[34S]- + 3HS- -Fe(HS)3- + H[34S]- + H[34S]- + D[34S]- = FeH[34S]H[34S]D[34S]- + 3HS- -Fe(HS)3- + H[34S]- + H[34S]- + T[34S]- = FeH[34S]H[34S]T[34S]- + 3HS- -Fe(HS)3- + H[34S]- + D[34S]- + HS- = FeH[34S]D[34S]HS- + 3HS- -Fe(HS)3- + H[34S]- + D[34S]- + DS- = FeH[34S]D[34S]DS- + 3HS- -Fe(HS)3- + H[34S]- + D[34S]- + TS- = FeH[34S]D[34S]TS- + 3HS- -Fe(HS)3- + H[34S]- + D[34S]- + H[34S]- = FeH[34S]D[34S]H[34S]- + 3HS- -Fe(HS)3- + H[34S]- + T[34S]- + HS- = FeH[34S]T[34S]HS- + 3HS- -Fe(HS)3- + H[34S]- + T[34S]- + DS- = FeH[34S]T[34S]DS- + 3HS- -Fe(HS)3- + H[34S]- + T[34S]- + H[34S]- = FeH[34S]T[34S]H[34S]- + 3HS- -Fe(HS)3- + D[34S]- + HS- + HS- = FeD[34S]HSHS- + 3HS- -Fe(HS)3- + D[34S]- + HS- + DS- = FeD[34S]HSDS- + 3HS- -Fe(HS)3- + D[34S]- + HS- + TS- = FeD[34S]HSTS- + 3HS- -Fe(HS)3- + D[34S]- + HS- + H[34S]- = FeD[34S]HSH[34S]- + 3HS- -Fe(HS)3- + D[34S]- + HS- + D[34S]- = FeD[34S]HSD[34S]- + 3HS- -Fe(HS)3- + D[34S]- + HS- + T[34S]- = FeD[34S]HST[34S]- + 3HS- -Fe(HS)3- + D[34S]- + DS- + HS- = FeD[34S]DSHS- + 3HS- -Fe(HS)3- + D[34S]- + DS- + TS- = FeD[34S]DSTS- + 3HS- -Fe(HS)3- + D[34S]- + DS- + H[34S]- = FeD[34S]DSH[34S]- + 3HS- -Fe(HS)3- + D[34S]- + TS- + HS- = FeD[34S]TSHS- + 3HS- -Fe(HS)3- + D[34S]- + TS- + DS- = FeD[34S]TSDS- + 3HS- -Fe(HS)3- + D[34S]- + TS- + H[34S]- = FeD[34S]TSH[34S]- + 3HS- -Fe(HS)3- + D[34S]- + H[34S]- + HS- = FeD[34S]H[34S]HS- + 3HS- -Fe(HS)3- + D[34S]- + H[34S]- + DS- = FeD[34S]H[34S]DS- + 3HS- -Fe(HS)3- + D[34S]- + H[34S]- + TS- = FeD[34S]H[34S]TS- + 3HS- -Fe(HS)3- + D[34S]- + H[34S]- + H[34S]- = FeD[34S]H[34S]H[34S]- + 3HS- -Fe(HS)3- + D[34S]- + D[34S]- + HS- = FeD[34S]D[34S]HS- + 3HS- -Fe(HS)3- + D[34S]- + T[34S]- + HS- = FeD[34S]T[34S]HS- + 3HS- -Fe(HS)3- + T[34S]- + HS- + HS- = FeT[34S]HSHS- + 3HS- -Fe(HS)3- + T[34S]- + HS- + DS- = FeT[34S]HSDS- + 3HS- -Fe(HS)3- + T[34S]- + HS- + H[34S]- = FeT[34S]HSH[34S]- + 3HS- -Fe(HS)3- + T[34S]- + HS- + D[34S]- = FeT[34S]HSD[34S]- + 3HS- -Fe(HS)3- + T[34S]- + DS- + HS- = FeT[34S]DSHS- + 3HS- -Fe(HS)3- + T[34S]- + DS- + DS- = FeT[34S]DSDS- + 3HS- -Fe(HS)3- + T[34S]- + DS- + H[34S]- = FeT[34S]DSH[34S]- + 3HS- -Fe(HS)3- + T[34S]- + H[34S]- + HS- = FeT[34S]H[34S]HS- + 3HS- -Fe(HS)3- + T[34S]- + H[34S]- + DS- = FeT[34S]H[34S]DS- + 3HS- -Fe(HS)3- + T[34S]- + H[34S]- + H[34S]- = FeT[34S]H[34S]H[34S]- + 3HS- -Fe(HS)3- + T[34S]- + D[34S]- + HS- = FeT[34S]D[34S]HS- + 3HS- +Fe(HS)3- + HS- + HS- + DS- = FeHSHSDS- + 3 HS- +Fe(HS)3- + HS- + HS- + TS- = FeHSHSTS- + 3 HS- +Fe(HS)3- + HS- + HS- + H[34S]- = FeHSHSH[34S]- + 3 HS- +Fe(HS)3- + HS- + HS- + D[34S]- = FeHSHSD[34S]- + 3 HS- +Fe(HS)3- + HS- + HS- + T[34S]- = FeHSHST[34S]- + 3 HS- +Fe(HS)3- + HS- + DS- + HS- = FeHSDSHS- + 3 HS- +Fe(HS)3- + HS- + DS- + DS- = FeHSDSDS- + 3 HS- +Fe(HS)3- + HS- + DS- + TS- = FeHSDSTS- + 3 HS- +Fe(HS)3- + HS- + DS- + H[34S]- = FeHSDSH[34S]- + 3 HS- +Fe(HS)3- + HS- + DS- + D[34S]- = FeHSDSD[34S]- + 3 HS- +Fe(HS)3- + HS- + DS- + T[34S]- = FeHSDST[34S]- + 3 HS- +Fe(HS)3- + HS- + TS- + HS- = FeHSTSHS- + 3 HS- +Fe(HS)3- + HS- + TS- + DS- = FeHSTSDS- + 3 HS- +Fe(HS)3- + HS- + TS- + H[34S]- = FeHSTSH[34S]- + 3 HS- +Fe(HS)3- + HS- + TS- + D[34S]- = FeHSTSD[34S]- + 3 HS- +Fe(HS)3- + HS- + H[34S]- + HS- = FeHSH[34S]HS- + 3 HS- +Fe(HS)3- + HS- + H[34S]- + DS- = FeHSH[34S]DS- + 3 HS- +Fe(HS)3- + HS- + H[34S]- + TS- = FeHSH[34S]TS- + 3 HS- +Fe(HS)3- + HS- + H[34S]- + H[34S]- = FeHSH[34S]H[34S]- + 3 HS- +Fe(HS)3- + HS- + H[34S]- + D[34S]- = FeHSH[34S]D[34S]- + 3 HS- +Fe(HS)3- + HS- + H[34S]- + T[34S]- = FeHSH[34S]T[34S]- + 3 HS- +Fe(HS)3- + HS- + D[34S]- + HS- = FeHSD[34S]HS- + 3 HS- +Fe(HS)3- + HS- + D[34S]- + DS- = FeHSD[34S]DS- + 3 HS- +Fe(HS)3- + HS- + D[34S]- + TS- = FeHSD[34S]TS- + 3 HS- +Fe(HS)3- + HS- + D[34S]- + H[34S]- = FeHSD[34S]H[34S]- + 3 HS- +Fe(HS)3- + HS- + D[34S]- + D[34S]- = FeHSD[34S]D[34S]- + 3 HS- +Fe(HS)3- + HS- + D[34S]- + T[34S]- = FeHSD[34S]T[34S]- + 3 HS- +Fe(HS)3- + HS- + T[34S]- + HS- = FeHST[34S]HS- + 3 HS- +Fe(HS)3- + HS- + T[34S]- + DS- = FeHST[34S]DS- + 3 HS- +Fe(HS)3- + HS- + T[34S]- + H[34S]- = FeHST[34S]H[34S]- + 3 HS- +Fe(HS)3- + HS- + T[34S]- + D[34S]- = FeHST[34S]D[34S]- + 3 HS- +Fe(HS)3- + DS- + HS- + HS- = FeDSHSHS- + 3 HS- +Fe(HS)3- + DS- + HS- + DS- = FeDSHSDS- + 3 HS- +Fe(HS)3- + DS- + HS- + TS- = FeDSHSTS- + 3 HS- +Fe(HS)3- + DS- + HS- + H[34S]- = FeDSHSH[34S]- + 3 HS- +Fe(HS)3- + DS- + HS- + D[34S]- = FeDSHSD[34S]- + 3 HS- +Fe(HS)3- + DS- + HS- + T[34S]- = FeDSHST[34S]- + 3 HS- +Fe(HS)3- + DS- + DS- + HS- = FeDSDSHS- + 3 HS- +Fe(HS)3- + DS- + DS- + TS- = FeDSDSTS- + 3 HS- +Fe(HS)3- + DS- + DS- + H[34S]- = FeDSDSH[34S]- + 3 HS- +Fe(HS)3- + DS- + DS- + T[34S]- = FeDSDST[34S]- + 3 HS- +Fe(HS)3- + DS- + TS- + HS- = FeDSTSHS- + 3 HS- +Fe(HS)3- + DS- + TS- + DS- = FeDSTSDS- + 3 HS- +Fe(HS)3- + DS- + TS- + H[34S]- = FeDSTSH[34S]- + 3 HS- +Fe(HS)3- + DS- + TS- + D[34S]- = FeDSTSD[34S]- + 3 HS- +Fe(HS)3- + DS- + H[34S]- + HS- = FeDSH[34S]HS- + 3 HS- +Fe(HS)3- + DS- + H[34S]- + DS- = FeDSH[34S]DS- + 3 HS- +Fe(HS)3- + DS- + H[34S]- + TS- = FeDSH[34S]TS- + 3 HS- +Fe(HS)3- + DS- + H[34S]- + H[34S]- = FeDSH[34S]H[34S]- + 3 HS- +Fe(HS)3- + DS- + H[34S]- + D[34S]- = FeDSH[34S]D[34S]- + 3 HS- +Fe(HS)3- + DS- + H[34S]- + T[34S]- = FeDSH[34S]T[34S]- + 3 HS- +Fe(HS)3- + DS- + D[34S]- + HS- = FeDSD[34S]HS- + 3 HS- +Fe(HS)3- + DS- + D[34S]- + TS- = FeDSD[34S]TS- + 3 HS- +Fe(HS)3- + DS- + D[34S]- + H[34S]- = FeDSD[34S]H[34S]- + 3 HS- +Fe(HS)3- + DS- + T[34S]- + HS- = FeDST[34S]HS- + 3 HS- +Fe(HS)3- + DS- + T[34S]- + DS- = FeDST[34S]DS- + 3 HS- +Fe(HS)3- + DS- + T[34S]- + H[34S]- = FeDST[34S]H[34S]- + 3 HS- +Fe(HS)3- + TS- + HS- + HS- = FeTSHSHS- + 3 HS- +Fe(HS)3- + TS- + HS- + DS- = FeTSHSDS- + 3 HS- +Fe(HS)3- + TS- + HS- + H[34S]- = FeTSHSH[34S]- + 3 HS- +Fe(HS)3- + TS- + HS- + D[34S]- = FeTSHSD[34S]- + 3 HS- +Fe(HS)3- + TS- + DS- + HS- = FeTSDSHS- + 3 HS- +Fe(HS)3- + TS- + DS- + DS- = FeTSDSDS- + 3 HS- +Fe(HS)3- + TS- + DS- + H[34S]- = FeTSDSH[34S]- + 3 HS- +Fe(HS)3- + TS- + DS- + D[34S]- = FeTSDSD[34S]- + 3 HS- +Fe(HS)3- + TS- + H[34S]- + HS- = FeTSH[34S]HS- + 3 HS- +Fe(HS)3- + TS- + H[34S]- + DS- = FeTSH[34S]DS- + 3 HS- +Fe(HS)3- + TS- + H[34S]- + H[34S]- = FeTSH[34S]H[34S]- + 3 HS- +Fe(HS)3- + TS- + H[34S]- + D[34S]- = FeTSH[34S]D[34S]- + 3 HS- +Fe(HS)3- + TS- + D[34S]- + HS- = FeTSD[34S]HS- + 3 HS- +Fe(HS)3- + TS- + D[34S]- + DS- = FeTSD[34S]DS- + 3 HS- +Fe(HS)3- + TS- + D[34S]- + H[34S]- = FeTSD[34S]H[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + HS- + HS- = FeH[34S]HSHS- + 3 HS- +Fe(HS)3- + H[34S]- + HS- + DS- = FeH[34S]HSDS- + 3 HS- +Fe(HS)3- + H[34S]- + HS- + TS- = FeH[34S]HSTS- + 3 HS- +Fe(HS)3- + H[34S]- + HS- + H[34S]- = FeH[34S]HSH[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + HS- + D[34S]- = FeH[34S]HSD[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + HS- + T[34S]- = FeH[34S]HST[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + DS- + HS- = FeH[34S]DSHS- + 3 HS- +Fe(HS)3- + H[34S]- + DS- + DS- = FeH[34S]DSDS- + 3 HS- +Fe(HS)3- + H[34S]- + DS- + TS- = FeH[34S]DSTS- + 3 HS- +Fe(HS)3- + H[34S]- + DS- + H[34S]- = FeH[34S]DSH[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + DS- + D[34S]- = FeH[34S]DSD[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + DS- + T[34S]- = FeH[34S]DST[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + TS- + HS- = FeH[34S]TSHS- + 3 HS- +Fe(HS)3- + H[34S]- + TS- + DS- = FeH[34S]TSDS- + 3 HS- +Fe(HS)3- + H[34S]- + TS- + H[34S]- = FeH[34S]TSH[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + TS- + D[34S]- = FeH[34S]TSD[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + H[34S]- + HS- = FeH[34S]H[34S]HS- + 3 HS- +Fe(HS)3- + H[34S]- + H[34S]- + DS- = FeH[34S]H[34S]DS- + 3 HS- +Fe(HS)3- + H[34S]- + H[34S]- + TS- = FeH[34S]H[34S]TS- + 3 HS- +Fe(HS)3- + H[34S]- + H[34S]- + H[34S]- = FeH[34S]H[34S]H[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + H[34S]- + D[34S]- = FeH[34S]H[34S]D[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + H[34S]- + T[34S]- = FeH[34S]H[34S]T[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + D[34S]- + HS- = FeH[34S]D[34S]HS- + 3 HS- +Fe(HS)3- + H[34S]- + D[34S]- + DS- = FeH[34S]D[34S]DS- + 3 HS- +Fe(HS)3- + H[34S]- + D[34S]- + TS- = FeH[34S]D[34S]TS- + 3 HS- +Fe(HS)3- + H[34S]- + D[34S]- + H[34S]- = FeH[34S]D[34S]H[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + T[34S]- + HS- = FeH[34S]T[34S]HS- + 3 HS- +Fe(HS)3- + H[34S]- + T[34S]- + DS- = FeH[34S]T[34S]DS- + 3 HS- +Fe(HS)3- + H[34S]- + T[34S]- + H[34S]- = FeH[34S]T[34S]H[34S]- + 3 HS- +Fe(HS)3- + D[34S]- + HS- + HS- = FeD[34S]HSHS- + 3 HS- +Fe(HS)3- + D[34S]- + HS- + DS- = FeD[34S]HSDS- + 3 HS- +Fe(HS)3- + D[34S]- + HS- + TS- = FeD[34S]HSTS- + 3 HS- +Fe(HS)3- + D[34S]- + HS- + H[34S]- = FeD[34S]HSH[34S]- + 3 HS- +Fe(HS)3- + D[34S]- + HS- + D[34S]- = FeD[34S]HSD[34S]- + 3 HS- +Fe(HS)3- + D[34S]- + HS- + T[34S]- = FeD[34S]HST[34S]- + 3 HS- +Fe(HS)3- + D[34S]- + DS- + HS- = FeD[34S]DSHS- + 3 HS- +Fe(HS)3- + D[34S]- + DS- + TS- = FeD[34S]DSTS- + 3 HS- +Fe(HS)3- + D[34S]- + DS- + H[34S]- = FeD[34S]DSH[34S]- + 3 HS- +Fe(HS)3- + D[34S]- + TS- + HS- = FeD[34S]TSHS- + 3 HS- +Fe(HS)3- + D[34S]- + TS- + DS- = FeD[34S]TSDS- + 3 HS- +Fe(HS)3- + D[34S]- + TS- + H[34S]- = FeD[34S]TSH[34S]- + 3 HS- +Fe(HS)3- + D[34S]- + H[34S]- + HS- = FeD[34S]H[34S]HS- + 3 HS- +Fe(HS)3- + D[34S]- + H[34S]- + DS- = FeD[34S]H[34S]DS- + 3 HS- +Fe(HS)3- + D[34S]- + H[34S]- + TS- = FeD[34S]H[34S]TS- + 3 HS- +Fe(HS)3- + D[34S]- + H[34S]- + H[34S]- = FeD[34S]H[34S]H[34S]- + 3 HS- +Fe(HS)3- + D[34S]- + D[34S]- + HS- = FeD[34S]D[34S]HS- + 3 HS- +Fe(HS)3- + D[34S]- + T[34S]- + HS- = FeD[34S]T[34S]HS- + 3 HS- +Fe(HS)3- + T[34S]- + HS- + HS- = FeT[34S]HSHS- + 3 HS- +Fe(HS)3- + T[34S]- + HS- + DS- = FeT[34S]HSDS- + 3 HS- +Fe(HS)3- + T[34S]- + HS- + H[34S]- = FeT[34S]HSH[34S]- + 3 HS- +Fe(HS)3- + T[34S]- + HS- + D[34S]- = FeT[34S]HSD[34S]- + 3 HS- +Fe(HS)3- + T[34S]- + DS- + HS- = FeT[34S]DSHS- + 3 HS- +Fe(HS)3- + T[34S]- + DS- + DS- = FeT[34S]DSDS- + 3 HS- +Fe(HS)3- + T[34S]- + DS- + H[34S]- = FeT[34S]DSH[34S]- + 3 HS- +Fe(HS)3- + T[34S]- + H[34S]- + HS- = FeT[34S]H[34S]HS- + 3 HS- +Fe(HS)3- + T[34S]- + H[34S]- + DS- = FeT[34S]H[34S]DS- + 3 HS- +Fe(HS)3- + T[34S]- + H[34S]- + H[34S]- = FeT[34S]H[34S]H[34S]- + 3 HS- +Fe(HS)3- + T[34S]- + D[34S]- + HS- = FeT[34S]D[34S]HS- + 3 HS- # # Missing FeHPO4 reactions # @@ -5281,919 +5285,919 @@ FeOH+2 + [18O]T- = Fe[18O]T+2 + OH- # Added Fe(OH)2+ reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Fe(OH)2+ + OH- + OD- = FeOHOD+ + 2OH- -Fe(OH)2+ + OH- + OT- = FeOHOT+ + 2OH- -Fe(OH)2+ + OH- + [18O]H- = FeOH[18O]H+ + 2OH- -Fe(OH)2+ + OH- + [18O]D- = FeOH[18O]D+ + 2OH- -Fe(OH)2+ + OH- + [18O]T- = FeOH[18O]T+ + 2OH- -Fe(OH)2+ + OD- + OH- = FeODOH+ + 2OH- -Fe(OH)2+ + OD- + OD- = FeODOD+ + 2OH- -Fe(OH)2+ + OD- + OT- = FeODOT+ + 2OH- -Fe(OH)2+ + OD- + [18O]H- = FeOD[18O]H+ + 2OH- -Fe(OH)2+ + OD- + [18O]D- = FeOD[18O]D+ + 2OH- -Fe(OH)2+ + OD- + [18O]T- = FeOD[18O]T+ + 2OH- -Fe(OH)2+ + OT- + OH- = FeOTOH+ + 2OH- -Fe(OH)2+ + OT- + OD- = FeOTOD+ + 2OH- -Fe(OH)2+ + OT- + [18O]H- = FeOT[18O]H+ + 2OH- -Fe(OH)2+ + OT- + [18O]D- = FeOT[18O]D+ + 2OH- -Fe(OH)2+ + [18O]H- + OH- = Fe[18O]HOH+ + 2OH- -Fe(OH)2+ + [18O]H- + OD- = Fe[18O]HOD+ + 2OH- -Fe(OH)2+ + [18O]H- + OT- = Fe[18O]HOT+ + 2OH- -Fe(OH)2+ + [18O]H- + [18O]H- = Fe[18O]H[18O]H+ + 2OH- -Fe(OH)2+ + [18O]H- + [18O]D- = Fe[18O]H[18O]D+ + 2OH- -Fe(OH)2+ + [18O]H- + [18O]T- = Fe[18O]H[18O]T+ + 2OH- -Fe(OH)2+ + [18O]D- + OH- = Fe[18O]DOH+ + 2OH- -Fe(OH)2+ + [18O]D- + OD- = Fe[18O]DOD+ + 2OH- -Fe(OH)2+ + [18O]D- + OT- = Fe[18O]DOT+ + 2OH- -Fe(OH)2+ + [18O]D- + [18O]H- = Fe[18O]D[18O]H+ + 2OH- -Fe(OH)2+ + [18O]D- + [18O]D- = Fe[18O]D[18O]D+ + 2OH- -Fe(OH)2+ + [18O]D- + [18O]T- = Fe[18O]D[18O]T+ + 2OH- -Fe(OH)2+ + [18O]T- + OH- = Fe[18O]TOH+ + 2OH- -Fe(OH)2+ + [18O]T- + OD- = Fe[18O]TOD+ + 2OH- -Fe(OH)2+ + [18O]T- + [18O]H- = Fe[18O]T[18O]H+ + 2OH- -Fe(OH)2+ + [18O]T- + [18O]D- = Fe[18O]T[18O]D+ + 2OH- +Fe(OH)2+ + OH- + OD- = FeOHOD+ + 2 OH- +Fe(OH)2+ + OH- + OT- = FeOHOT+ + 2 OH- +Fe(OH)2+ + OH- + [18O]H- = FeOH[18O]H+ + 2 OH- +Fe(OH)2+ + OH- + [18O]D- = FeOH[18O]D+ + 2 OH- +Fe(OH)2+ + OH- + [18O]T- = FeOH[18O]T+ + 2 OH- +Fe(OH)2+ + OD- + OH- = FeODOH+ + 2 OH- +Fe(OH)2+ + OD- + OD- = FeODOD+ + 2 OH- +Fe(OH)2+ + OD- + OT- = FeODOT+ + 2 OH- +Fe(OH)2+ + OD- + [18O]H- = FeOD[18O]H+ + 2 OH- +Fe(OH)2+ + OD- + [18O]D- = FeOD[18O]D+ + 2 OH- +Fe(OH)2+ + OD- + [18O]T- = FeOD[18O]T+ + 2 OH- +Fe(OH)2+ + OT- + OH- = FeOTOH+ + 2 OH- +Fe(OH)2+ + OT- + OD- = FeOTOD+ + 2 OH- +Fe(OH)2+ + OT- + [18O]H- = FeOT[18O]H+ + 2 OH- +Fe(OH)2+ + OT- + [18O]D- = FeOT[18O]D+ + 2 OH- +Fe(OH)2+ + [18O]H- + OH- = Fe[18O]HOH+ + 2 OH- +Fe(OH)2+ + [18O]H- + OD- = Fe[18O]HOD+ + 2 OH- +Fe(OH)2+ + [18O]H- + OT- = Fe[18O]HOT+ + 2 OH- +Fe(OH)2+ + [18O]H- + [18O]H- = Fe[18O]H[18O]H+ + 2 OH- +Fe(OH)2+ + [18O]H- + [18O]D- = Fe[18O]H[18O]D+ + 2 OH- +Fe(OH)2+ + [18O]H- + [18O]T- = Fe[18O]H[18O]T+ + 2 OH- +Fe(OH)2+ + [18O]D- + OH- = Fe[18O]DOH+ + 2 OH- +Fe(OH)2+ + [18O]D- + OD- = Fe[18O]DOD+ + 2 OH- +Fe(OH)2+ + [18O]D- + OT- = Fe[18O]DOT+ + 2 OH- +Fe(OH)2+ + [18O]D- + [18O]H- = Fe[18O]D[18O]H+ + 2 OH- +Fe(OH)2+ + [18O]D- + [18O]D- = Fe[18O]D[18O]D+ + 2 OH- +Fe(OH)2+ + [18O]D- + [18O]T- = Fe[18O]D[18O]T+ + 2 OH- +Fe(OH)2+ + [18O]T- + OH- = Fe[18O]TOH+ + 2 OH- +Fe(OH)2+ + [18O]T- + OD- = Fe[18O]TOD+ + 2 OH- +Fe(OH)2+ + [18O]T- + [18O]H- = Fe[18O]T[18O]H+ + 2 OH- +Fe(OH)2+ + [18O]T- + [18O]D- = Fe[18O]T[18O]D+ + 2 OH- # # Added Fe(OH)3 reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Fe(OH)3 + OH- + OH- + OD- = FeOHOHOD + 3OH- -Fe(OH)3 + OH- + OH- + OT- = FeOHOHOT + 3OH- -Fe(OH)3 + OH- + OH- + [18O]H- = FeOHOH[18O]H + 3OH- -Fe(OH)3 + OH- + OH- + [18O]D- = FeOHOH[18O]D + 3OH- -Fe(OH)3 + OH- + OH- + [18O]T- = FeOHOH[18O]T + 3OH- -Fe(OH)3 + OH- + OD- + OH- = FeOHODOH + 3OH- -Fe(OH)3 + OH- + OD- + OD- = FeOHODOD + 3OH- -Fe(OH)3 + OH- + OD- + OT- = FeOHODOT + 3OH- -Fe(OH)3 + OH- + OD- + [18O]H- = FeOHOD[18O]H + 3OH- -Fe(OH)3 + OH- + OD- + [18O]D- = FeOHOD[18O]D + 3OH- -Fe(OH)3 + OH- + OD- + [18O]T- = FeOHOD[18O]T + 3OH- -Fe(OH)3 + OH- + OT- + OH- = FeOHOTOH + 3OH- -Fe(OH)3 + OH- + OT- + OD- = FeOHOTOD + 3OH- -Fe(OH)3 + OH- + OT- + [18O]H- = FeOHOT[18O]H + 3OH- -Fe(OH)3 + OH- + OT- + [18O]D- = FeOHOT[18O]D + 3OH- -Fe(OH)3 + OH- + [18O]H- + OH- = FeOH[18O]HOH + 3OH- -Fe(OH)3 + OH- + [18O]H- + OD- = FeOH[18O]HOD + 3OH- -Fe(OH)3 + OH- + [18O]H- + OT- = FeOH[18O]HOT + 3OH- -Fe(OH)3 + OH- + [18O]H- + [18O]H- = FeOH[18O]H[18O]H + 3OH- -Fe(OH)3 + OH- + [18O]H- + [18O]D- = FeOH[18O]H[18O]D + 3OH- -Fe(OH)3 + OH- + [18O]H- + [18O]T- = FeOH[18O]H[18O]T + 3OH- -Fe(OH)3 + OH- + [18O]D- + OH- = FeOH[18O]DOH + 3OH- -Fe(OH)3 + OH- + [18O]D- + OD- = FeOH[18O]DOD + 3OH- -Fe(OH)3 + OH- + [18O]D- + OT- = FeOH[18O]DOT + 3OH- -Fe(OH)3 + OH- + [18O]D- + [18O]H- = FeOH[18O]D[18O]H + 3OH- -Fe(OH)3 + OH- + [18O]D- + [18O]D- = FeOH[18O]D[18O]D + 3OH- -Fe(OH)3 + OH- + [18O]D- + [18O]T- = FeOH[18O]D[18O]T + 3OH- -Fe(OH)3 + OH- + [18O]T- + OH- = FeOH[18O]TOH + 3OH- -Fe(OH)3 + OH- + [18O]T- + OD- = FeOH[18O]TOD + 3OH- -Fe(OH)3 + OH- + [18O]T- + [18O]H- = FeOH[18O]T[18O]H + 3OH- -Fe(OH)3 + OH- + [18O]T- + [18O]D- = FeOH[18O]T[18O]D + 3OH- -Fe(OH)3 + OD- + OH- + OH- = FeODOHOH + 3OH- -Fe(OH)3 + OD- + OH- + OD- = FeODOHOD + 3OH- -Fe(OH)3 + OD- + OH- + OT- = FeODOHOT + 3OH- -Fe(OH)3 + OD- + OH- + [18O]H- = FeODOH[18O]H + 3OH- -Fe(OH)3 + OD- + OH- + [18O]D- = FeODOH[18O]D + 3OH- -Fe(OH)3 + OD- + OH- + [18O]T- = FeODOH[18O]T + 3OH- -Fe(OH)3 + OD- + OD- + OH- = FeODODOH + 3OH- -Fe(OH)3 + OD- + OD- + OT- = FeODODOT + 3OH- -Fe(OH)3 + OD- + OD- + [18O]H- = FeODOD[18O]H + 3OH- -Fe(OH)3 + OD- + OD- + [18O]T- = FeODOD[18O]T + 3OH- -Fe(OH)3 + OD- + OT- + OH- = FeODOTOH + 3OH- -Fe(OH)3 + OD- + OT- + OD- = FeODOTOD + 3OH- -Fe(OH)3 + OD- + OT- + [18O]H- = FeODOT[18O]H + 3OH- -Fe(OH)3 + OD- + OT- + [18O]D- = FeODOT[18O]D + 3OH- -Fe(OH)3 + OD- + [18O]H- + OH- = FeOD[18O]HOH + 3OH- -Fe(OH)3 + OD- + [18O]H- + OD- = FeOD[18O]HOD + 3OH- -Fe(OH)3 + OD- + [18O]H- + OT- = FeOD[18O]HOT + 3OH- -Fe(OH)3 + OD- + [18O]H- + [18O]H- = FeOD[18O]H[18O]H + 3OH- -Fe(OH)3 + OD- + [18O]H- + [18O]D- = FeOD[18O]H[18O]D + 3OH- -Fe(OH)3 + OD- + [18O]H- + [18O]T- = FeOD[18O]H[18O]T + 3OH- -Fe(OH)3 + OD- + [18O]D- + OH- = FeOD[18O]DOH + 3OH- -Fe(OH)3 + OD- + [18O]D- + OT- = FeOD[18O]DOT + 3OH- -Fe(OH)3 + OD- + [18O]D- + [18O]H- = FeOD[18O]D[18O]H + 3OH- -Fe(OH)3 + OD- + [18O]T- + OH- = FeOD[18O]TOH + 3OH- -Fe(OH)3 + OD- + [18O]T- + OD- = FeOD[18O]TOD + 3OH- -Fe(OH)3 + OD- + [18O]T- + [18O]H- = FeOD[18O]T[18O]H + 3OH- -Fe(OH)3 + OT- + OH- + OH- = FeOTOHOH + 3OH- -Fe(OH)3 + OT- + OH- + OD- = FeOTOHOD + 3OH- -Fe(OH)3 + OT- + OH- + [18O]H- = FeOTOH[18O]H + 3OH- -Fe(OH)3 + OT- + OH- + [18O]D- = FeOTOH[18O]D + 3OH- -Fe(OH)3 + OT- + OD- + OH- = FeOTODOH + 3OH- -Fe(OH)3 + OT- + OD- + OD- = FeOTODOD + 3OH- -Fe(OH)3 + OT- + OD- + [18O]H- = FeOTOD[18O]H + 3OH- -Fe(OH)3 + OT- + OD- + [18O]D- = FeOTOD[18O]D + 3OH- -Fe(OH)3 + OT- + [18O]H- + OH- = FeOT[18O]HOH + 3OH- -Fe(OH)3 + OT- + [18O]H- + OD- = FeOT[18O]HOD + 3OH- -Fe(OH)3 + OT- + [18O]H- + [18O]H- = FeOT[18O]H[18O]H + 3OH- -Fe(OH)3 + OT- + [18O]H- + [18O]D- = FeOT[18O]H[18O]D + 3OH- -Fe(OH)3 + OT- + [18O]D- + OH- = FeOT[18O]DOH + 3OH- -Fe(OH)3 + OT- + [18O]D- + OD- = FeOT[18O]DOD + 3OH- -Fe(OH)3 + OT- + [18O]D- + [18O]H- = FeOT[18O]D[18O]H + 3OH- -Fe(OH)3 + [18O]H- + OH- + OH- = Fe[18O]HOHOH + 3OH- -Fe(OH)3 + [18O]H- + OH- + OD- = Fe[18O]HOHOD + 3OH- -Fe(OH)3 + [18O]H- + OH- + OT- = Fe[18O]HOHOT + 3OH- -Fe(OH)3 + [18O]H- + OH- + [18O]H- = Fe[18O]HOH[18O]H + 3OH- -Fe(OH)3 + [18O]H- + OH- + [18O]D- = Fe[18O]HOH[18O]D + 3OH- -Fe(OH)3 + [18O]H- + OH- + [18O]T- = Fe[18O]HOH[18O]T + 3OH- -Fe(OH)3 + [18O]H- + OD- + OH- = Fe[18O]HODOH + 3OH- -Fe(OH)3 + [18O]H- + OD- + OD- = Fe[18O]HODOD + 3OH- -Fe(OH)3 + [18O]H- + OD- + OT- = Fe[18O]HODOT + 3OH- -Fe(OH)3 + [18O]H- + OD- + [18O]H- = Fe[18O]HOD[18O]H + 3OH- -Fe(OH)3 + [18O]H- + OD- + [18O]D- = Fe[18O]HOD[18O]D + 3OH- -Fe(OH)3 + [18O]H- + OD- + [18O]T- = Fe[18O]HOD[18O]T + 3OH- -Fe(OH)3 + [18O]H- + OT- + OH- = Fe[18O]HOTOH + 3OH- -Fe(OH)3 + [18O]H- + OT- + OD- = Fe[18O]HOTOD + 3OH- -Fe(OH)3 + [18O]H- + OT- + [18O]H- = Fe[18O]HOT[18O]H + 3OH- -Fe(OH)3 + [18O]H- + OT- + [18O]D- = Fe[18O]HOT[18O]D + 3OH- -Fe(OH)3 + [18O]H- + [18O]H- + OH- = Fe[18O]H[18O]HOH + 3OH- -Fe(OH)3 + [18O]H- + [18O]H- + OD- = Fe[18O]H[18O]HOD + 3OH- -Fe(OH)3 + [18O]H- + [18O]H- + OT- = Fe[18O]H[18O]HOT + 3OH- -Fe(OH)3 + [18O]H- + [18O]D- + OH- = Fe[18O]H[18O]DOH + 3OH- -Fe(OH)3 + [18O]H- + [18O]D- + OD- = Fe[18O]H[18O]DOD + 3OH- -Fe(OH)3 + [18O]H- + [18O]D- + OT- = Fe[18O]H[18O]DOT + 3OH- -Fe(OH)3 + [18O]H- + [18O]T- + OH- = Fe[18O]H[18O]TOH + 3OH- -Fe(OH)3 + [18O]H- + [18O]T- + OD- = Fe[18O]H[18O]TOD + 3OH- -Fe(OH)3 + [18O]D- + OH- + OH- = Fe[18O]DOHOH + 3OH- -Fe(OH)3 + [18O]D- + OH- + OD- = Fe[18O]DOHOD + 3OH- -Fe(OH)3 + [18O]D- + OH- + OT- = Fe[18O]DOHOT + 3OH- -Fe(OH)3 + [18O]D- + OH- + [18O]H- = Fe[18O]DOH[18O]H + 3OH- -Fe(OH)3 + [18O]D- + OH- + [18O]D- = Fe[18O]DOH[18O]D + 3OH- -Fe(OH)3 + [18O]D- + OH- + [18O]T- = Fe[18O]DOH[18O]T + 3OH- -Fe(OH)3 + [18O]D- + OD- + OH- = Fe[18O]DODOH + 3OH- -Fe(OH)3 + [18O]D- + OD- + OT- = Fe[18O]DODOT + 3OH- -Fe(OH)3 + [18O]D- + OD- + [18O]H- = Fe[18O]DOD[18O]H + 3OH- -Fe(OH)3 + [18O]D- + OT- + OH- = Fe[18O]DOTOH + 3OH- -Fe(OH)3 + [18O]D- + OT- + OD- = Fe[18O]DOTOD + 3OH- -Fe(OH)3 + [18O]D- + OT- + [18O]H- = Fe[18O]DOT[18O]H + 3OH- -Fe(OH)3 + [18O]D- + [18O]H- + OH- = Fe[18O]D[18O]HOH + 3OH- -Fe(OH)3 + [18O]D- + [18O]H- + OD- = Fe[18O]D[18O]HOD + 3OH- -Fe(OH)3 + [18O]D- + [18O]H- + OT- = Fe[18O]D[18O]HOT + 3OH- -Fe(OH)3 + [18O]D- + [18O]D- + OH- = Fe[18O]D[18O]DOH + 3OH- -Fe(OH)3 + [18O]D- + [18O]T- + OH- = Fe[18O]D[18O]TOH + 3OH- -Fe(OH)3 + [18O]T- + OH- + OH- = Fe[18O]TOHOH + 3OH- -Fe(OH)3 + [18O]T- + OH- + OD- = Fe[18O]TOHOD + 3OH- -Fe(OH)3 + [18O]T- + OH- + [18O]H- = Fe[18O]TOH[18O]H + 3OH- -Fe(OH)3 + [18O]T- + OH- + [18O]D- = Fe[18O]TOH[18O]D + 3OH- -Fe(OH)3 + [18O]T- + OD- + OH- = Fe[18O]TODOH + 3OH- -Fe(OH)3 + [18O]T- + OD- + OD- = Fe[18O]TODOD + 3OH- -Fe(OH)3 + [18O]T- + OD- + [18O]H- = Fe[18O]TOD[18O]H + 3OH- -Fe(OH)3 + [18O]T- + [18O]H- + OH- = Fe[18O]T[18O]HOH + 3OH- -Fe(OH)3 + [18O]T- + [18O]H- + OD- = Fe[18O]T[18O]HOD + 3OH- -Fe(OH)3 + [18O]T- + [18O]D- + OH- = Fe[18O]T[18O]DOH + 3OH- +Fe(OH)3 + OH- + OH- + OD- = FeOHOHOD + 3 OH- +Fe(OH)3 + OH- + OH- + OT- = FeOHOHOT + 3 OH- +Fe(OH)3 + OH- + OH- + [18O]H- = FeOHOH[18O]H + 3 OH- +Fe(OH)3 + OH- + OH- + [18O]D- = FeOHOH[18O]D + 3 OH- +Fe(OH)3 + OH- + OH- + [18O]T- = FeOHOH[18O]T + 3 OH- +Fe(OH)3 + OH- + OD- + OH- = FeOHODOH + 3 OH- +Fe(OH)3 + OH- + OD- + OD- = FeOHODOD + 3 OH- +Fe(OH)3 + OH- + OD- + OT- = FeOHODOT + 3 OH- +Fe(OH)3 + OH- + OD- + [18O]H- = FeOHOD[18O]H + 3 OH- +Fe(OH)3 + OH- + OD- + [18O]D- = FeOHOD[18O]D + 3 OH- +Fe(OH)3 + OH- + OD- + [18O]T- = FeOHOD[18O]T + 3 OH- +Fe(OH)3 + OH- + OT- + OH- = FeOHOTOH + 3 OH- +Fe(OH)3 + OH- + OT- + OD- = FeOHOTOD + 3 OH- +Fe(OH)3 + OH- + OT- + [18O]H- = FeOHOT[18O]H + 3 OH- +Fe(OH)3 + OH- + OT- + [18O]D- = FeOHOT[18O]D + 3 OH- +Fe(OH)3 + OH- + [18O]H- + OH- = FeOH[18O]HOH + 3 OH- +Fe(OH)3 + OH- + [18O]H- + OD- = FeOH[18O]HOD + 3 OH- +Fe(OH)3 + OH- + [18O]H- + OT- = FeOH[18O]HOT + 3 OH- +Fe(OH)3 + OH- + [18O]H- + [18O]H- = FeOH[18O]H[18O]H + 3 OH- +Fe(OH)3 + OH- + [18O]H- + [18O]D- = FeOH[18O]H[18O]D + 3 OH- +Fe(OH)3 + OH- + [18O]H- + [18O]T- = FeOH[18O]H[18O]T + 3 OH- +Fe(OH)3 + OH- + [18O]D- + OH- = FeOH[18O]DOH + 3 OH- +Fe(OH)3 + OH- + [18O]D- + OD- = FeOH[18O]DOD + 3 OH- +Fe(OH)3 + OH- + [18O]D- + OT- = FeOH[18O]DOT + 3 OH- +Fe(OH)3 + OH- + [18O]D- + [18O]H- = FeOH[18O]D[18O]H + 3 OH- +Fe(OH)3 + OH- + [18O]D- + [18O]D- = FeOH[18O]D[18O]D + 3 OH- +Fe(OH)3 + OH- + [18O]D- + [18O]T- = FeOH[18O]D[18O]T + 3 OH- +Fe(OH)3 + OH- + [18O]T- + OH- = FeOH[18O]TOH + 3 OH- +Fe(OH)3 + OH- + [18O]T- + OD- = FeOH[18O]TOD + 3 OH- +Fe(OH)3 + OH- + [18O]T- + [18O]H- = FeOH[18O]T[18O]H + 3 OH- +Fe(OH)3 + OH- + [18O]T- + [18O]D- = FeOH[18O]T[18O]D + 3 OH- +Fe(OH)3 + OD- + OH- + OH- = FeODOHOH + 3 OH- +Fe(OH)3 + OD- + OH- + OD- = FeODOHOD + 3 OH- +Fe(OH)3 + OD- + OH- + OT- = FeODOHOT + 3 OH- +Fe(OH)3 + OD- + OH- + [18O]H- = FeODOH[18O]H + 3 OH- +Fe(OH)3 + OD- + OH- + [18O]D- = FeODOH[18O]D + 3 OH- +Fe(OH)3 + OD- + OH- + [18O]T- = FeODOH[18O]T + 3 OH- +Fe(OH)3 + OD- + OD- + OH- = FeODODOH + 3 OH- +Fe(OH)3 + OD- + OD- + OT- = FeODODOT + 3 OH- +Fe(OH)3 + OD- + OD- + [18O]H- = FeODOD[18O]H + 3 OH- +Fe(OH)3 + OD- + OD- + [18O]T- = FeODOD[18O]T + 3 OH- +Fe(OH)3 + OD- + OT- + OH- = FeODOTOH + 3 OH- +Fe(OH)3 + OD- + OT- + OD- = FeODOTOD + 3 OH- +Fe(OH)3 + OD- + OT- + [18O]H- = FeODOT[18O]H + 3 OH- +Fe(OH)3 + OD- + OT- + [18O]D- = FeODOT[18O]D + 3 OH- +Fe(OH)3 + OD- + [18O]H- + OH- = FeOD[18O]HOH + 3 OH- +Fe(OH)3 + OD- + [18O]H- + OD- = FeOD[18O]HOD + 3 OH- +Fe(OH)3 + OD- + [18O]H- + OT- = FeOD[18O]HOT + 3 OH- +Fe(OH)3 + OD- + [18O]H- + [18O]H- = FeOD[18O]H[18O]H + 3 OH- +Fe(OH)3 + OD- + [18O]H- + [18O]D- = FeOD[18O]H[18O]D + 3 OH- +Fe(OH)3 + OD- + [18O]H- + [18O]T- = FeOD[18O]H[18O]T + 3 OH- +Fe(OH)3 + OD- + [18O]D- + OH- = FeOD[18O]DOH + 3 OH- +Fe(OH)3 + OD- + [18O]D- + OT- = FeOD[18O]DOT + 3 OH- +Fe(OH)3 + OD- + [18O]D- + [18O]H- = FeOD[18O]D[18O]H + 3 OH- +Fe(OH)3 + OD- + [18O]T- + OH- = FeOD[18O]TOH + 3 OH- +Fe(OH)3 + OD- + [18O]T- + OD- = FeOD[18O]TOD + 3 OH- +Fe(OH)3 + OD- + [18O]T- + [18O]H- = FeOD[18O]T[18O]H + 3 OH- +Fe(OH)3 + OT- + OH- + OH- = FeOTOHOH + 3 OH- +Fe(OH)3 + OT- + OH- + OD- = FeOTOHOD + 3 OH- +Fe(OH)3 + OT- + OH- + [18O]H- = FeOTOH[18O]H + 3 OH- +Fe(OH)3 + OT- + OH- + [18O]D- = FeOTOH[18O]D + 3 OH- +Fe(OH)3 + OT- + OD- + OH- = FeOTODOH + 3 OH- +Fe(OH)3 + OT- + OD- + OD- = FeOTODOD + 3 OH- +Fe(OH)3 + OT- + OD- + [18O]H- = FeOTOD[18O]H + 3 OH- +Fe(OH)3 + OT- + OD- + [18O]D- = FeOTOD[18O]D + 3 OH- +Fe(OH)3 + OT- + [18O]H- + OH- = FeOT[18O]HOH + 3 OH- +Fe(OH)3 + OT- + [18O]H- + OD- = FeOT[18O]HOD + 3 OH- +Fe(OH)3 + OT- + [18O]H- + [18O]H- = FeOT[18O]H[18O]H + 3 OH- +Fe(OH)3 + OT- + [18O]H- + [18O]D- = FeOT[18O]H[18O]D + 3 OH- +Fe(OH)3 + OT- + [18O]D- + OH- = FeOT[18O]DOH + 3 OH- +Fe(OH)3 + OT- + [18O]D- + OD- = FeOT[18O]DOD + 3 OH- +Fe(OH)3 + OT- + [18O]D- + [18O]H- = FeOT[18O]D[18O]H + 3 OH- +Fe(OH)3 + [18O]H- + OH- + OH- = Fe[18O]HOHOH + 3 OH- +Fe(OH)3 + [18O]H- + OH- + OD- = Fe[18O]HOHOD + 3 OH- +Fe(OH)3 + [18O]H- + OH- + OT- = Fe[18O]HOHOT + 3 OH- +Fe(OH)3 + [18O]H- + OH- + [18O]H- = Fe[18O]HOH[18O]H + 3 OH- +Fe(OH)3 + [18O]H- + OH- + [18O]D- = Fe[18O]HOH[18O]D + 3 OH- +Fe(OH)3 + [18O]H- + OH- + [18O]T- = Fe[18O]HOH[18O]T + 3 OH- +Fe(OH)3 + [18O]H- + OD- + OH- = Fe[18O]HODOH + 3 OH- +Fe(OH)3 + [18O]H- + OD- + OD- = Fe[18O]HODOD + 3 OH- +Fe(OH)3 + [18O]H- + OD- + OT- = Fe[18O]HODOT + 3 OH- +Fe(OH)3 + [18O]H- + OD- + [18O]H- = Fe[18O]HOD[18O]H + 3 OH- +Fe(OH)3 + [18O]H- + OD- + [18O]D- = Fe[18O]HOD[18O]D + 3 OH- +Fe(OH)3 + [18O]H- + OD- + [18O]T- = Fe[18O]HOD[18O]T + 3 OH- +Fe(OH)3 + [18O]H- + OT- + OH- = Fe[18O]HOTOH + 3 OH- +Fe(OH)3 + [18O]H- + OT- + OD- = Fe[18O]HOTOD + 3 OH- +Fe(OH)3 + [18O]H- + OT- + [18O]H- = Fe[18O]HOT[18O]H + 3 OH- +Fe(OH)3 + [18O]H- + OT- + [18O]D- = Fe[18O]HOT[18O]D + 3 OH- +Fe(OH)3 + [18O]H- + [18O]H- + OH- = Fe[18O]H[18O]HOH + 3 OH- +Fe(OH)3 + [18O]H- + [18O]H- + OD- = Fe[18O]H[18O]HOD + 3 OH- +Fe(OH)3 + [18O]H- + [18O]H- + OT- = Fe[18O]H[18O]HOT + 3 OH- +Fe(OH)3 + [18O]H- + [18O]D- + OH- = Fe[18O]H[18O]DOH + 3 OH- +Fe(OH)3 + [18O]H- + [18O]D- + OD- = Fe[18O]H[18O]DOD + 3 OH- +Fe(OH)3 + [18O]H- + [18O]D- + OT- = Fe[18O]H[18O]DOT + 3 OH- +Fe(OH)3 + [18O]H- + [18O]T- + OH- = Fe[18O]H[18O]TOH + 3 OH- +Fe(OH)3 + [18O]H- + [18O]T- + OD- = Fe[18O]H[18O]TOD + 3 OH- +Fe(OH)3 + [18O]D- + OH- + OH- = Fe[18O]DOHOH + 3 OH- +Fe(OH)3 + [18O]D- + OH- + OD- = Fe[18O]DOHOD + 3 OH- +Fe(OH)3 + [18O]D- + OH- + OT- = Fe[18O]DOHOT + 3 OH- +Fe(OH)3 + [18O]D- + OH- + [18O]H- = Fe[18O]DOH[18O]H + 3 OH- +Fe(OH)3 + [18O]D- + OH- + [18O]D- = Fe[18O]DOH[18O]D + 3 OH- +Fe(OH)3 + [18O]D- + OH- + [18O]T- = Fe[18O]DOH[18O]T + 3 OH- +Fe(OH)3 + [18O]D- + OD- + OH- = Fe[18O]DODOH + 3 OH- +Fe(OH)3 + [18O]D- + OD- + OT- = Fe[18O]DODOT + 3 OH- +Fe(OH)3 + [18O]D- + OD- + [18O]H- = Fe[18O]DOD[18O]H + 3 OH- +Fe(OH)3 + [18O]D- + OT- + OH- = Fe[18O]DOTOH + 3 OH- +Fe(OH)3 + [18O]D- + OT- + OD- = Fe[18O]DOTOD + 3 OH- +Fe(OH)3 + [18O]D- + OT- + [18O]H- = Fe[18O]DOT[18O]H + 3 OH- +Fe(OH)3 + [18O]D- + [18O]H- + OH- = Fe[18O]D[18O]HOH + 3 OH- +Fe(OH)3 + [18O]D- + [18O]H- + OD- = Fe[18O]D[18O]HOD + 3 OH- +Fe(OH)3 + [18O]D- + [18O]H- + OT- = Fe[18O]D[18O]HOT + 3 OH- +Fe(OH)3 + [18O]D- + [18O]D- + OH- = Fe[18O]D[18O]DOH + 3 OH- +Fe(OH)3 + [18O]D- + [18O]T- + OH- = Fe[18O]D[18O]TOH + 3 OH- +Fe(OH)3 + [18O]T- + OH- + OH- = Fe[18O]TOHOH + 3 OH- +Fe(OH)3 + [18O]T- + OH- + OD- = Fe[18O]TOHOD + 3 OH- +Fe(OH)3 + [18O]T- + OH- + [18O]H- = Fe[18O]TOH[18O]H + 3 OH- +Fe(OH)3 + [18O]T- + OH- + [18O]D- = Fe[18O]TOH[18O]D + 3 OH- +Fe(OH)3 + [18O]T- + OD- + OH- = Fe[18O]TODOH + 3 OH- +Fe(OH)3 + [18O]T- + OD- + OD- = Fe[18O]TODOD + 3 OH- +Fe(OH)3 + [18O]T- + OD- + [18O]H- = Fe[18O]TOD[18O]H + 3 OH- +Fe(OH)3 + [18O]T- + [18O]H- + OH- = Fe[18O]T[18O]HOH + 3 OH- +Fe(OH)3 + [18O]T- + [18O]H- + OD- = Fe[18O]T[18O]HOD + 3 OH- +Fe(OH)3 + [18O]T- + [18O]D- + OH- = Fe[18O]T[18O]DOH + 3 OH- # # Added Fe(OH)4- reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Fe(OH)4- + OH- + OH- + OH- + OD- = FeOHOHOHOD- + 4OH- -Fe(OH)4- + OH- + OH- + OH- + OT- = FeOHOHOHOT- + 4OH- -Fe(OH)4- + OH- + OH- + OH- + [18O]H- = FeOHOHOH[18O]H- + 4OH- -Fe(OH)4- + OH- + OH- + OH- + [18O]D- = FeOHOHOH[18O]D- + 4OH- -Fe(OH)4- + OH- + OH- + OH- + [18O]T- = FeOHOHOH[18O]T- + 4OH- -Fe(OH)4- + OH- + OH- + OD- + OH- = FeOHOHODOH- + 4OH- -Fe(OH)4- + OH- + OH- + OD- + OD- = FeOHOHODOD- + 4OH- -Fe(OH)4- + OH- + OH- + OD- + OT- = FeOHOHODOT- + 4OH- -Fe(OH)4- + OH- + OH- + OD- + [18O]H- = FeOHOHOD[18O]H- + 4OH- -Fe(OH)4- + OH- + OH- + OD- + [18O]D- = FeOHOHOD[18O]D- + 4OH- -Fe(OH)4- + OH- + OH- + OD- + [18O]T- = FeOHOHOD[18O]T- + 4OH- -Fe(OH)4- + OH- + OH- + OT- + OH- = FeOHOHOTOH- + 4OH- -Fe(OH)4- + OH- + OH- + OT- + OD- = FeOHOHOTOD- + 4OH- -Fe(OH)4- + OH- + OH- + OT- + [18O]H- = FeOHOHOT[18O]H- + 4OH- -Fe(OH)4- + OH- + OH- + OT- + [18O]D- = FeOHOHOT[18O]D- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]H- + OH- = FeOHOH[18O]HOH- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]H- + OD- = FeOHOH[18O]HOD- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]H- + OT- = FeOHOH[18O]HOT- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]H- + [18O]H- = FeOHOH[18O]H[18O]H- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]H- + [18O]D- = FeOHOH[18O]H[18O]D- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]H- + [18O]T- = FeOHOH[18O]H[18O]T- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]D- + OH- = FeOHOH[18O]DOH- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]D- + OD- = FeOHOH[18O]DOD- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]D- + OT- = FeOHOH[18O]DOT- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]D- + [18O]H- = FeOHOH[18O]D[18O]H- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]D- + [18O]D- = FeOHOH[18O]D[18O]D- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]D- + [18O]T- = FeOHOH[18O]D[18O]T- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]T- + OH- = FeOHOH[18O]TOH- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]T- + OD- = FeOHOH[18O]TOD- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]T- + [18O]H- = FeOHOH[18O]T[18O]H- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]T- + [18O]D- = FeOHOH[18O]T[18O]D- + 4OH- -Fe(OH)4- + OH- + OD- + OH- + OH- = FeOHODOHOH- + 4OH- -Fe(OH)4- + OH- + OD- + OH- + OD- = FeOHODOHOD- + 4OH- -Fe(OH)4- + OH- + OD- + OH- + OT- = FeOHODOHOT- + 4OH- -Fe(OH)4- + OH- + OD- + OH- + [18O]H- = FeOHODOH[18O]H- + 4OH- -Fe(OH)4- + OH- + OD- + OH- + [18O]D- = FeOHODOH[18O]D- + 4OH- -Fe(OH)4- + OH- + OD- + OH- + [18O]T- = FeOHODOH[18O]T- + 4OH- -Fe(OH)4- + OH- + OD- + OD- + OH- = FeOHODODOH- + 4OH- -Fe(OH)4- + OH- + OD- + OD- + OT- = FeOHODODOT- + 4OH- -Fe(OH)4- + OH- + OD- + OD- + [18O]H- = FeOHODOD[18O]H- + 4OH- -Fe(OH)4- + OH- + OD- + OD- + [18O]T- = FeOHODOD[18O]T- + 4OH- -Fe(OH)4- + OH- + OD- + OT- + OH- = FeOHODOTOH- + 4OH- -Fe(OH)4- + OH- + OD- + OT- + OD- = FeOHODOTOD- + 4OH- -Fe(OH)4- + OH- + OD- + OT- + [18O]H- = FeOHODOT[18O]H- + 4OH- -Fe(OH)4- + OH- + OD- + OT- + [18O]D- = FeOHODOT[18O]D- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]H- + OH- = FeOHOD[18O]HOH- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]H- + OD- = FeOHOD[18O]HOD- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]H- + OT- = FeOHOD[18O]HOT- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]H- + [18O]H- = FeOHOD[18O]H[18O]H- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]H- + [18O]D- = FeOHOD[18O]H[18O]D- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]H- + [18O]T- = FeOHOD[18O]H[18O]T- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]D- + OH- = FeOHOD[18O]DOH- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]D- + OT- = FeOHOD[18O]DOT- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]D- + [18O]H- = FeOHOD[18O]D[18O]H- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]T- + OH- = FeOHOD[18O]TOH- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]T- + OD- = FeOHOD[18O]TOD- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]T- + [18O]H- = FeOHOD[18O]T[18O]H- + 4OH- -Fe(OH)4- + OH- + OT- + OH- + OH- = FeOHOTOHOH- + 4OH- -Fe(OH)4- + OH- + OT- + OH- + OD- = FeOHOTOHOD- + 4OH- -Fe(OH)4- + OH- + OT- + OH- + [18O]H- = FeOHOTOH[18O]H- + 4OH- -Fe(OH)4- + OH- + OT- + OH- + [18O]D- = FeOHOTOH[18O]D- + 4OH- -Fe(OH)4- + OH- + OT- + OD- + OH- = FeOHOTODOH- + 4OH- -Fe(OH)4- + OH- + OT- + OD- + OD- = FeOHOTODOD- + 4OH- -Fe(OH)4- + OH- + OT- + OD- + [18O]H- = FeOHOTOD[18O]H- + 4OH- -Fe(OH)4- + OH- + OT- + OD- + [18O]D- = FeOHOTOD[18O]D- + 4OH- -Fe(OH)4- + OH- + OT- + [18O]H- + OH- = FeOHOT[18O]HOH- + 4OH- -Fe(OH)4- + OH- + OT- + [18O]H- + OD- = FeOHOT[18O]HOD- + 4OH- -Fe(OH)4- + OH- + OT- + [18O]H- + [18O]H- = FeOHOT[18O]H[18O]H- + 4OH- -Fe(OH)4- + OH- + OT- + [18O]H- + [18O]D- = FeOHOT[18O]H[18O]D- + 4OH- -Fe(OH)4- + OH- + OT- + [18O]D- + OH- = FeOHOT[18O]DOH- + 4OH- -Fe(OH)4- + OH- + OT- + [18O]D- + OD- = FeOHOT[18O]DOD- + 4OH- -Fe(OH)4- + OH- + OT- + [18O]D- + [18O]H- = FeOHOT[18O]D[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OH- + OH- = FeOH[18O]HOHOH- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OH- + OD- = FeOH[18O]HOHOD- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OH- + OT- = FeOH[18O]HOHOT- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OH- + [18O]H- = FeOH[18O]HOH[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OH- + [18O]D- = FeOH[18O]HOH[18O]D- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OH- + [18O]T- = FeOH[18O]HOH[18O]T- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OD- + OH- = FeOH[18O]HODOH- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OD- + OD- = FeOH[18O]HODOD- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OD- + OT- = FeOH[18O]HODOT- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OD- + [18O]H- = FeOH[18O]HOD[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OD- + [18O]D- = FeOH[18O]HOD[18O]D- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OD- + [18O]T- = FeOH[18O]HOD[18O]T- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OT- + OH- = FeOH[18O]HOTOH- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OT- + OD- = FeOH[18O]HOTOD- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OT- + [18O]H- = FeOH[18O]HOT[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OT- + [18O]D- = FeOH[18O]HOT[18O]D- + 4OH- -Fe(OH)4- + OH- + [18O]H- + [18O]H- + OH- = FeOH[18O]H[18O]HOH- + 4OH- -Fe(OH)4- + OH- + [18O]H- + [18O]H- + OD- = FeOH[18O]H[18O]HOD- + 4OH- -Fe(OH)4- + OH- + [18O]H- + [18O]H- + OT- = FeOH[18O]H[18O]HOT- + 4OH- -Fe(OH)4- + OH- + [18O]H- + [18O]D- + OH- = FeOH[18O]H[18O]DOH- + 4OH- -Fe(OH)4- + OH- + [18O]H- + [18O]D- + OD- = FeOH[18O]H[18O]DOD- + 4OH- -Fe(OH)4- + OH- + [18O]H- + [18O]D- + OT- = FeOH[18O]H[18O]DOT- + 4OH- -Fe(OH)4- + OH- + [18O]H- + [18O]T- + OH- = FeOH[18O]H[18O]TOH- + 4OH- -Fe(OH)4- + OH- + [18O]H- + [18O]T- + OD- = FeOH[18O]H[18O]TOD- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OH- + OH- = FeOH[18O]DOHOH- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OH- + OD- = FeOH[18O]DOHOD- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OH- + OT- = FeOH[18O]DOHOT- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OH- + [18O]H- = FeOH[18O]DOH[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OH- + [18O]D- = FeOH[18O]DOH[18O]D- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OH- + [18O]T- = FeOH[18O]DOH[18O]T- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OD- + OH- = FeOH[18O]DODOH- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OD- + OT- = FeOH[18O]DODOT- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OD- + [18O]H- = FeOH[18O]DOD[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OT- + OH- = FeOH[18O]DOTOH- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OT- + OD- = FeOH[18O]DOTOD- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OT- + [18O]H- = FeOH[18O]DOT[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]D- + [18O]H- + OH- = FeOH[18O]D[18O]HOH- + 4OH- -Fe(OH)4- + OH- + [18O]D- + [18O]H- + OD- = FeOH[18O]D[18O]HOD- + 4OH- -Fe(OH)4- + OH- + [18O]D- + [18O]H- + OT- = FeOH[18O]D[18O]HOT- + 4OH- -Fe(OH)4- + OH- + [18O]D- + [18O]D- + OH- = FeOH[18O]D[18O]DOH- + 4OH- -Fe(OH)4- + OH- + [18O]D- + [18O]T- + OH- = FeOH[18O]D[18O]TOH- + 4OH- -Fe(OH)4- + OH- + [18O]T- + OH- + OH- = FeOH[18O]TOHOH- + 4OH- -Fe(OH)4- + OH- + [18O]T- + OH- + OD- = FeOH[18O]TOHOD- + 4OH- -Fe(OH)4- + OH- + [18O]T- + OH- + [18O]H- = FeOH[18O]TOH[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]T- + OH- + [18O]D- = FeOH[18O]TOH[18O]D- + 4OH- -Fe(OH)4- + OH- + [18O]T- + OD- + OH- = FeOH[18O]TODOH- + 4OH- -Fe(OH)4- + OH- + [18O]T- + OD- + OD- = FeOH[18O]TODOD- + 4OH- -Fe(OH)4- + OH- + [18O]T- + OD- + [18O]H- = FeOH[18O]TOD[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]T- + [18O]H- + OH- = FeOH[18O]T[18O]HOH- + 4OH- -Fe(OH)4- + OH- + [18O]T- + [18O]H- + OD- = FeOH[18O]T[18O]HOD- + 4OH- -Fe(OH)4- + OH- + [18O]T- + [18O]D- + OH- = FeOH[18O]T[18O]DOH- + 4OH- -Fe(OH)4- + OD- + OH- + OH- + OH- = FeODOHOHOH- + 4OH- -Fe(OH)4- + OD- + OH- + OH- + OD- = FeODOHOHOD- + 4OH- -Fe(OH)4- + OD- + OH- + OH- + OT- = FeODOHOHOT- + 4OH- -Fe(OH)4- + OD- + OH- + OH- + [18O]H- = FeODOHOH[18O]H- + 4OH- -Fe(OH)4- + OD- + OH- + OH- + [18O]D- = FeODOHOH[18O]D- + 4OH- -Fe(OH)4- + OD- + OH- + OH- + [18O]T- = FeODOHOH[18O]T- + 4OH- -Fe(OH)4- + OD- + OH- + OD- + OH- = FeODOHODOH- + 4OH- -Fe(OH)4- + OD- + OH- + OD- + OT- = FeODOHODOT- + 4OH- -Fe(OH)4- + OD- + OH- + OD- + [18O]H- = FeODOHOD[18O]H- + 4OH- -Fe(OH)4- + OD- + OH- + OD- + [18O]T- = FeODOHOD[18O]T- + 4OH- -Fe(OH)4- + OD- + OH- + OT- + OH- = FeODOHOTOH- + 4OH- -Fe(OH)4- + OD- + OH- + OT- + OD- = FeODOHOTOD- + 4OH- -Fe(OH)4- + OD- + OH- + OT- + [18O]H- = FeODOHOT[18O]H- + 4OH- -Fe(OH)4- + OD- + OH- + OT- + [18O]D- = FeODOHOT[18O]D- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]H- + OH- = FeODOH[18O]HOH- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]H- + OD- = FeODOH[18O]HOD- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]H- + OT- = FeODOH[18O]HOT- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]H- + [18O]H- = FeODOH[18O]H[18O]H- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]H- + [18O]D- = FeODOH[18O]H[18O]D- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]H- + [18O]T- = FeODOH[18O]H[18O]T- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]D- + OH- = FeODOH[18O]DOH- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]D- + OT- = FeODOH[18O]DOT- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]D- + [18O]H- = FeODOH[18O]D[18O]H- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]T- + OH- = FeODOH[18O]TOH- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]T- + OD- = FeODOH[18O]TOD- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]T- + [18O]H- = FeODOH[18O]T[18O]H- + 4OH- -Fe(OH)4- + OD- + OD- + OH- + OH- = FeODODOHOH- + 4OH- -Fe(OH)4- + OD- + OD- + OH- + OT- = FeODODOHOT- + 4OH- -Fe(OH)4- + OD- + OD- + OH- + [18O]H- = FeODODOH[18O]H- + 4OH- -Fe(OH)4- + OD- + OD- + OH- + [18O]T- = FeODODOH[18O]T- + 4OH- -Fe(OH)4- + OD- + OD- + OT- + OH- = FeODODOTOH- + 4OH- -Fe(OH)4- + OD- + OD- + OT- + [18O]H- = FeODODOT[18O]H- + 4OH- -Fe(OH)4- + OD- + OD- + [18O]H- + OH- = FeODOD[18O]HOH- + 4OH- -Fe(OH)4- + OD- + OD- + [18O]H- + OT- = FeODOD[18O]HOT- + 4OH- -Fe(OH)4- + OD- + OD- + [18O]H- + [18O]H- = FeODOD[18O]H[18O]H- + 4OH- -Fe(OH)4- + OD- + OD- + [18O]T- + OH- = FeODOD[18O]TOH- + 4OH- -Fe(OH)4- + OD- + OT- + OH- + OH- = FeODOTOHOH- + 4OH- -Fe(OH)4- + OD- + OT- + OH- + OD- = FeODOTOHOD- + 4OH- -Fe(OH)4- + OD- + OT- + OH- + [18O]H- = FeODOTOH[18O]H- + 4OH- -Fe(OH)4- + OD- + OT- + OH- + [18O]D- = FeODOTOH[18O]D- + 4OH- -Fe(OH)4- + OD- + OT- + OD- + OH- = FeODOTODOH- + 4OH- -Fe(OH)4- + OD- + OT- + OD- + [18O]H- = FeODOTOD[18O]H- + 4OH- -Fe(OH)4- + OD- + OT- + [18O]H- + OH- = FeODOT[18O]HOH- + 4OH- -Fe(OH)4- + OD- + OT- + [18O]H- + OD- = FeODOT[18O]HOD- + 4OH- -Fe(OH)4- + OD- + OT- + [18O]H- + [18O]H- = FeODOT[18O]H[18O]H- + 4OH- -Fe(OH)4- + OD- + OT- + [18O]D- + OH- = FeODOT[18O]DOH- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OH- + OH- = FeOD[18O]HOHOH- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OH- + OD- = FeOD[18O]HOHOD- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OH- + OT- = FeOD[18O]HOHOT- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OH- + [18O]H- = FeOD[18O]HOH[18O]H- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OH- + [18O]D- = FeOD[18O]HOH[18O]D- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OH- + [18O]T- = FeOD[18O]HOH[18O]T- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OD- + OH- = FeOD[18O]HODOH- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OD- + OT- = FeOD[18O]HODOT- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OD- + [18O]H- = FeOD[18O]HOD[18O]H- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OT- + OH- = FeOD[18O]HOTOH- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OT- + OD- = FeOD[18O]HOTOD- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OT- + [18O]H- = FeOD[18O]HOT[18O]H- + 4OH- -Fe(OH)4- + OD- + [18O]H- + [18O]H- + OH- = FeOD[18O]H[18O]HOH- + 4OH- -Fe(OH)4- + OD- + [18O]H- + [18O]H- + OD- = FeOD[18O]H[18O]HOD- + 4OH- -Fe(OH)4- + OD- + [18O]H- + [18O]H- + OT- = FeOD[18O]H[18O]HOT- + 4OH- -Fe(OH)4- + OD- + [18O]H- + [18O]D- + OH- = FeOD[18O]H[18O]DOH- + 4OH- -Fe(OH)4- + OD- + [18O]H- + [18O]T- + OH- = FeOD[18O]H[18O]TOH- + 4OH- -Fe(OH)4- + OD- + [18O]D- + OH- + OH- = FeOD[18O]DOHOH- + 4OH- -Fe(OH)4- + OD- + [18O]D- + OH- + OT- = FeOD[18O]DOHOT- + 4OH- -Fe(OH)4- + OD- + [18O]D- + OH- + [18O]H- = FeOD[18O]DOH[18O]H- + 4OH- -Fe(OH)4- + OD- + [18O]D- + OT- + OH- = FeOD[18O]DOTOH- + 4OH- -Fe(OH)4- + OD- + [18O]D- + [18O]H- + OH- = FeOD[18O]D[18O]HOH- + 4OH- -Fe(OH)4- + OD- + [18O]T- + OH- + OH- = FeOD[18O]TOHOH- + 4OH- -Fe(OH)4- + OD- + [18O]T- + OH- + OD- = FeOD[18O]TOHOD- + 4OH- -Fe(OH)4- + OD- + [18O]T- + OH- + [18O]H- = FeOD[18O]TOH[18O]H- + 4OH- -Fe(OH)4- + OD- + [18O]T- + OD- + OH- = FeOD[18O]TODOH- + 4OH- -Fe(OH)4- + OD- + [18O]T- + [18O]H- + OH- = FeOD[18O]T[18O]HOH- + 4OH- -Fe(OH)4- + OT- + OH- + OH- + OH- = FeOTOHOHOH- + 4OH- -Fe(OH)4- + OT- + OH- + OH- + OD- = FeOTOHOHOD- + 4OH- -Fe(OH)4- + OT- + OH- + OH- + [18O]H- = FeOTOHOH[18O]H- + 4OH- -Fe(OH)4- + OT- + OH- + OH- + [18O]D- = FeOTOHOH[18O]D- + 4OH- -Fe(OH)4- + OT- + OH- + OD- + OH- = FeOTOHODOH- + 4OH- -Fe(OH)4- + OT- + OH- + OD- + OD- = FeOTOHODOD- + 4OH- -Fe(OH)4- + OT- + OH- + OD- + [18O]H- = FeOTOHOD[18O]H- + 4OH- -Fe(OH)4- + OT- + OH- + OD- + [18O]D- = FeOTOHOD[18O]D- + 4OH- -Fe(OH)4- + OT- + OH- + [18O]H- + OH- = FeOTOH[18O]HOH- + 4OH- -Fe(OH)4- + OT- + OH- + [18O]H- + OD- = FeOTOH[18O]HOD- + 4OH- -Fe(OH)4- + OT- + OH- + [18O]H- + [18O]H- = FeOTOH[18O]H[18O]H- + 4OH- -Fe(OH)4- + OT- + OH- + [18O]H- + [18O]D- = FeOTOH[18O]H[18O]D- + 4OH- -Fe(OH)4- + OT- + OH- + [18O]D- + OH- = FeOTOH[18O]DOH- + 4OH- -Fe(OH)4- + OT- + OH- + [18O]D- + OD- = FeOTOH[18O]DOD- + 4OH- -Fe(OH)4- + OT- + OH- + [18O]D- + [18O]H- = FeOTOH[18O]D[18O]H- + 4OH- -Fe(OH)4- + OT- + OD- + OH- + OH- = FeOTODOHOH- + 4OH- -Fe(OH)4- + OT- + OD- + OH- + OD- = FeOTODOHOD- + 4OH- -Fe(OH)4- + OT- + OD- + OH- + [18O]H- = FeOTODOH[18O]H- + 4OH- -Fe(OH)4- + OT- + OD- + OH- + [18O]D- = FeOTODOH[18O]D- + 4OH- -Fe(OH)4- + OT- + OD- + OD- + OH- = FeOTODODOH- + 4OH- -Fe(OH)4- + OT- + OD- + OD- + [18O]H- = FeOTODOD[18O]H- + 4OH- -Fe(OH)4- + OT- + OD- + [18O]H- + OH- = FeOTOD[18O]HOH- + 4OH- -Fe(OH)4- + OT- + OD- + [18O]H- + OD- = FeOTOD[18O]HOD- + 4OH- -Fe(OH)4- + OT- + OD- + [18O]H- + [18O]H- = FeOTOD[18O]H[18O]H- + 4OH- -Fe(OH)4- + OT- + OD- + [18O]D- + OH- = FeOTOD[18O]DOH- + 4OH- -Fe(OH)4- + OT- + [18O]H- + OH- + OH- = FeOT[18O]HOHOH- + 4OH- -Fe(OH)4- + OT- + [18O]H- + OH- + OD- = FeOT[18O]HOHOD- + 4OH- -Fe(OH)4- + OT- + [18O]H- + OH- + [18O]H- = FeOT[18O]HOH[18O]H- + 4OH- -Fe(OH)4- + OT- + [18O]H- + OH- + [18O]D- = FeOT[18O]HOH[18O]D- + 4OH- -Fe(OH)4- + OT- + [18O]H- + OD- + OH- = FeOT[18O]HODOH- + 4OH- -Fe(OH)4- + OT- + [18O]H- + OD- + OD- = FeOT[18O]HODOD- + 4OH- -Fe(OH)4- + OT- + [18O]H- + OD- + [18O]H- = FeOT[18O]HOD[18O]H- + 4OH- -Fe(OH)4- + OT- + [18O]H- + [18O]H- + OH- = FeOT[18O]H[18O]HOH- + 4OH- -Fe(OH)4- + OT- + [18O]H- + [18O]H- + OD- = FeOT[18O]H[18O]HOD- + 4OH- -Fe(OH)4- + OT- + [18O]H- + [18O]D- + OH- = FeOT[18O]H[18O]DOH- + 4OH- -Fe(OH)4- + OT- + [18O]D- + OH- + OH- = FeOT[18O]DOHOH- + 4OH- -Fe(OH)4- + OT- + [18O]D- + OH- + OD- = FeOT[18O]DOHOD- + 4OH- -Fe(OH)4- + OT- + [18O]D- + OH- + [18O]H- = FeOT[18O]DOH[18O]H- + 4OH- -Fe(OH)4- + OT- + [18O]D- + OD- + OH- = FeOT[18O]DODOH- + 4OH- -Fe(OH)4- + OT- + [18O]D- + [18O]H- + OH- = FeOT[18O]D[18O]HOH- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OH- + OH- = Fe[18O]HOHOHOH- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OH- + OD- = Fe[18O]HOHOHOD- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OH- + OT- = Fe[18O]HOHOHOT- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OH- + [18O]H- = Fe[18O]HOHOH[18O]H- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OH- + [18O]D- = Fe[18O]HOHOH[18O]D- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OH- + [18O]T- = Fe[18O]HOHOH[18O]T- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OD- + OH- = Fe[18O]HOHODOH- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OD- + OD- = Fe[18O]HOHODOD- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OD- + OT- = Fe[18O]HOHODOT- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OD- + [18O]H- = Fe[18O]HOHOD[18O]H- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OD- + [18O]D- = Fe[18O]HOHOD[18O]D- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OD- + [18O]T- = Fe[18O]HOHOD[18O]T- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OT- + OH- = Fe[18O]HOHOTOH- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OT- + OD- = Fe[18O]HOHOTOD- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OT- + [18O]H- = Fe[18O]HOHOT[18O]H- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OT- + [18O]D- = Fe[18O]HOHOT[18O]D- + 4OH- -Fe(OH)4- + [18O]H- + OH- + [18O]H- + OH- = Fe[18O]HOH[18O]HOH- + 4OH- -Fe(OH)4- + [18O]H- + OH- + [18O]H- + OD- = Fe[18O]HOH[18O]HOD- + 4OH- -Fe(OH)4- + [18O]H- + OH- + [18O]H- + OT- = Fe[18O]HOH[18O]HOT- + 4OH- -Fe(OH)4- + [18O]H- + OH- + [18O]D- + OH- = Fe[18O]HOH[18O]DOH- + 4OH- -Fe(OH)4- + [18O]H- + OH- + [18O]D- + OD- = Fe[18O]HOH[18O]DOD- + 4OH- -Fe(OH)4- + [18O]H- + OH- + [18O]D- + OT- = Fe[18O]HOH[18O]DOT- + 4OH- -Fe(OH)4- + [18O]H- + OH- + [18O]T- + OH- = Fe[18O]HOH[18O]TOH- + 4OH- -Fe(OH)4- + [18O]H- + OH- + [18O]T- + OD- = Fe[18O]HOH[18O]TOD- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OH- + OH- = Fe[18O]HODOHOH- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OH- + OD- = Fe[18O]HODOHOD- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OH- + OT- = Fe[18O]HODOHOT- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OH- + [18O]H- = Fe[18O]HODOH[18O]H- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OH- + [18O]D- = Fe[18O]HODOH[18O]D- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OH- + [18O]T- = Fe[18O]HODOH[18O]T- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OD- + OH- = Fe[18O]HODODOH- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OD- + OT- = Fe[18O]HODODOT- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OD- + [18O]H- = Fe[18O]HODOD[18O]H- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OT- + OH- = Fe[18O]HODOTOH- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OT- + OD- = Fe[18O]HODOTOD- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OT- + [18O]H- = Fe[18O]HODOT[18O]H- + 4OH- -Fe(OH)4- + [18O]H- + OD- + [18O]H- + OH- = Fe[18O]HOD[18O]HOH- + 4OH- -Fe(OH)4- + [18O]H- + OD- + [18O]H- + OD- = Fe[18O]HOD[18O]HOD- + 4OH- -Fe(OH)4- + [18O]H- + OD- + [18O]H- + OT- = Fe[18O]HOD[18O]HOT- + 4OH- -Fe(OH)4- + [18O]H- + OD- + [18O]D- + OH- = Fe[18O]HOD[18O]DOH- + 4OH- -Fe(OH)4- + [18O]H- + OD- + [18O]T- + OH- = Fe[18O]HOD[18O]TOH- + 4OH- -Fe(OH)4- + [18O]H- + OT- + OH- + OH- = Fe[18O]HOTOHOH- + 4OH- -Fe(OH)4- + [18O]H- + OT- + OH- + OD- = Fe[18O]HOTOHOD- + 4OH- -Fe(OH)4- + [18O]H- + OT- + OH- + [18O]H- = Fe[18O]HOTOH[18O]H- + 4OH- -Fe(OH)4- + [18O]H- + OT- + OH- + [18O]D- = Fe[18O]HOTOH[18O]D- + 4OH- -Fe(OH)4- + [18O]H- + OT- + OD- + OH- = Fe[18O]HOTODOH- + 4OH- -Fe(OH)4- + [18O]H- + OT- + OD- + OD- = Fe[18O]HOTODOD- + 4OH- -Fe(OH)4- + [18O]H- + OT- + OD- + [18O]H- = Fe[18O]HOTOD[18O]H- + 4OH- -Fe(OH)4- + [18O]H- + OT- + [18O]H- + OH- = Fe[18O]HOT[18O]HOH- + 4OH- -Fe(OH)4- + [18O]H- + OT- + [18O]H- + OD- = Fe[18O]HOT[18O]HOD- + 4OH- -Fe(OH)4- + [18O]H- + OT- + [18O]D- + OH- = Fe[18O]HOT[18O]DOH- + 4OH- -Fe(OH)4- + [18O]H- + [18O]H- + OH- + OH- = Fe[18O]H[18O]HOHOH- + 4OH- -Fe(OH)4- + [18O]H- + [18O]H- + OH- + OD- = Fe[18O]H[18O]HOHOD- + 4OH- -Fe(OH)4- + [18O]H- + [18O]H- + OH- + OT- = Fe[18O]H[18O]HOHOT- + 4OH- -Fe(OH)4- + [18O]H- + [18O]H- + OD- + OH- = Fe[18O]H[18O]HODOH- + 4OH- -Fe(OH)4- + [18O]H- + [18O]H- + OD- + OD- = Fe[18O]H[18O]HODOD- + 4OH- -Fe(OH)4- + [18O]H- + [18O]H- + OD- + OT- = Fe[18O]H[18O]HODOT- + 4OH- -Fe(OH)4- + [18O]H- + [18O]H- + OT- + OH- = Fe[18O]H[18O]HOTOH- + 4OH- -Fe(OH)4- + [18O]H- + [18O]H- + OT- + OD- = Fe[18O]H[18O]HOTOD- + 4OH- -Fe(OH)4- + [18O]H- + [18O]D- + OH- + OH- = Fe[18O]H[18O]DOHOH- + 4OH- -Fe(OH)4- + [18O]H- + [18O]D- + OH- + OD- = Fe[18O]H[18O]DOHOD- + 4OH- -Fe(OH)4- + [18O]H- + [18O]D- + OH- + OT- = Fe[18O]H[18O]DOHOT- + 4OH- -Fe(OH)4- + [18O]H- + [18O]D- + OD- + OH- = Fe[18O]H[18O]DODOH- + 4OH- -Fe(OH)4- + [18O]H- + [18O]D- + OT- + OH- = Fe[18O]H[18O]DOTOH- + 4OH- -Fe(OH)4- + [18O]H- + [18O]T- + OH- + OH- = Fe[18O]H[18O]TOHOH- + 4OH- -Fe(OH)4- + [18O]H- + [18O]T- + OH- + OD- = Fe[18O]H[18O]TOHOD- + 4OH- -Fe(OH)4- + [18O]H- + [18O]T- + OD- + OH- = Fe[18O]H[18O]TODOH- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OH- + OH- = Fe[18O]DOHOHOH- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OH- + OD- = Fe[18O]DOHOHOD- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OH- + OT- = Fe[18O]DOHOHOT- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OH- + [18O]H- = Fe[18O]DOHOH[18O]H- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OH- + [18O]D- = Fe[18O]DOHOH[18O]D- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OH- + [18O]T- = Fe[18O]DOHOH[18O]T- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OD- + OH- = Fe[18O]DOHODOH- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OD- + OT- = Fe[18O]DOHODOT- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OD- + [18O]H- = Fe[18O]DOHOD[18O]H- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OT- + OH- = Fe[18O]DOHOTOH- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OT- + OD- = Fe[18O]DOHOTOD- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OT- + [18O]H- = Fe[18O]DOHOT[18O]H- + 4OH- -Fe(OH)4- + [18O]D- + OH- + [18O]H- + OH- = Fe[18O]DOH[18O]HOH- + 4OH- -Fe(OH)4- + [18O]D- + OH- + [18O]H- + OD- = Fe[18O]DOH[18O]HOD- + 4OH- -Fe(OH)4- + [18O]D- + OH- + [18O]H- + OT- = Fe[18O]DOH[18O]HOT- + 4OH- -Fe(OH)4- + [18O]D- + OH- + [18O]D- + OH- = Fe[18O]DOH[18O]DOH- + 4OH- -Fe(OH)4- + [18O]D- + OH- + [18O]T- + OH- = Fe[18O]DOH[18O]TOH- + 4OH- -Fe(OH)4- + [18O]D- + OD- + OH- + OH- = Fe[18O]DODOHOH- + 4OH- -Fe(OH)4- + [18O]D- + OD- + OH- + OT- = Fe[18O]DODOHOT- + 4OH- -Fe(OH)4- + [18O]D- + OD- + OH- + [18O]H- = Fe[18O]DODOH[18O]H- + 4OH- -Fe(OH)4- + [18O]D- + OD- + OT- + OH- = Fe[18O]DODOTOH- + 4OH- -Fe(OH)4- + [18O]D- + OD- + [18O]H- + OH- = Fe[18O]DOD[18O]HOH- + 4OH- -Fe(OH)4- + [18O]D- + OT- + OH- + OH- = Fe[18O]DOTOHOH- + 4OH- -Fe(OH)4- + [18O]D- + OT- + OH- + OD- = Fe[18O]DOTOHOD- + 4OH- -Fe(OH)4- + [18O]D- + OT- + OH- + [18O]H- = Fe[18O]DOTOH[18O]H- + 4OH- -Fe(OH)4- + [18O]D- + OT- + OD- + OH- = Fe[18O]DOTODOH- + 4OH- -Fe(OH)4- + [18O]D- + OT- + [18O]H- + OH- = Fe[18O]DOT[18O]HOH- + 4OH- -Fe(OH)4- + [18O]D- + [18O]H- + OH- + OH- = Fe[18O]D[18O]HOHOH- + 4OH- -Fe(OH)4- + [18O]D- + [18O]H- + OH- + OD- = Fe[18O]D[18O]HOHOD- + 4OH- -Fe(OH)4- + [18O]D- + [18O]H- + OH- + OT- = Fe[18O]D[18O]HOHOT- + 4OH- -Fe(OH)4- + [18O]D- + [18O]H- + OD- + OH- = Fe[18O]D[18O]HODOH- + 4OH- -Fe(OH)4- + [18O]D- + [18O]H- + OT- + OH- = Fe[18O]D[18O]HOTOH- + 4OH- -Fe(OH)4- + [18O]D- + [18O]D- + OH- + OH- = Fe[18O]D[18O]DOHOH- + 4OH- -Fe(OH)4- + [18O]D- + [18O]T- + OH- + OH- = Fe[18O]D[18O]TOHOH- + 4OH- -Fe(OH)4- + [18O]T- + OH- + OH- + OH- = Fe[18O]TOHOHOH- + 4OH- -Fe(OH)4- + [18O]T- + OH- + OH- + OD- = Fe[18O]TOHOHOD- + 4OH- -Fe(OH)4- + [18O]T- + OH- + OH- + [18O]H- = Fe[18O]TOHOH[18O]H- + 4OH- -Fe(OH)4- + [18O]T- + OH- + OH- + [18O]D- = Fe[18O]TOHOH[18O]D- + 4OH- -Fe(OH)4- + [18O]T- + OH- + OD- + OH- = Fe[18O]TOHODOH- + 4OH- -Fe(OH)4- + [18O]T- + OH- + OD- + OD- = Fe[18O]TOHODOD- + 4OH- -Fe(OH)4- + [18O]T- + OH- + OD- + [18O]H- = Fe[18O]TOHOD[18O]H- + 4OH- -Fe(OH)4- + [18O]T- + OH- + [18O]H- + OH- = Fe[18O]TOH[18O]HOH- + 4OH- -Fe(OH)4- + [18O]T- + OH- + [18O]H- + OD- = Fe[18O]TOH[18O]HOD- + 4OH- -Fe(OH)4- + [18O]T- + OH- + [18O]D- + OH- = Fe[18O]TOH[18O]DOH- + 4OH- -Fe(OH)4- + [18O]T- + OD- + OH- + OH- = Fe[18O]TODOHOH- + 4OH- -Fe(OH)4- + [18O]T- + OD- + OH- + OD- = Fe[18O]TODOHOD- + 4OH- -Fe(OH)4- + [18O]T- + OD- + OH- + [18O]H- = Fe[18O]TODOH[18O]H- + 4OH- -Fe(OH)4- + [18O]T- + OD- + OD- + OH- = Fe[18O]TODODOH- + 4OH- -Fe(OH)4- + [18O]T- + OD- + [18O]H- + OH- = Fe[18O]TOD[18O]HOH- + 4OH- -Fe(OH)4- + [18O]T- + [18O]H- + OH- + OH- = Fe[18O]T[18O]HOHOH- + 4OH- -Fe(OH)4- + [18O]T- + [18O]H- + OH- + OD- = Fe[18O]T[18O]HOHOD- + 4OH- -Fe(OH)4- + [18O]T- + [18O]H- + OD- + OH- = Fe[18O]T[18O]HODOH- + 4OH- -Fe(OH)4- + [18O]T- + [18O]D- + OH- + OH- = Fe[18O]T[18O]DOHOH- + 4OH- +Fe(OH)4- + OH- + OH- + OH- + OD- = FeOHOHOHOD- + 4 OH- +Fe(OH)4- + OH- + OH- + OH- + OT- = FeOHOHOHOT- + 4 OH- +Fe(OH)4- + OH- + OH- + OH- + [18O]H- = FeOHOHOH[18O]H- + 4 OH- +Fe(OH)4- + OH- + OH- + OH- + [18O]D- = FeOHOHOH[18O]D- + 4 OH- +Fe(OH)4- + OH- + OH- + OH- + [18O]T- = FeOHOHOH[18O]T- + 4 OH- +Fe(OH)4- + OH- + OH- + OD- + OH- = FeOHOHODOH- + 4 OH- +Fe(OH)4- + OH- + OH- + OD- + OD- = FeOHOHODOD- + 4 OH- +Fe(OH)4- + OH- + OH- + OD- + OT- = FeOHOHODOT- + 4 OH- +Fe(OH)4- + OH- + OH- + OD- + [18O]H- = FeOHOHOD[18O]H- + 4 OH- +Fe(OH)4- + OH- + OH- + OD- + [18O]D- = FeOHOHOD[18O]D- + 4 OH- +Fe(OH)4- + OH- + OH- + OD- + [18O]T- = FeOHOHOD[18O]T- + 4 OH- +Fe(OH)4- + OH- + OH- + OT- + OH- = FeOHOHOTOH- + 4 OH- +Fe(OH)4- + OH- + OH- + OT- + OD- = FeOHOHOTOD- + 4 OH- +Fe(OH)4- + OH- + OH- + OT- + [18O]H- = FeOHOHOT[18O]H- + 4 OH- +Fe(OH)4- + OH- + OH- + OT- + [18O]D- = FeOHOHOT[18O]D- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]H- + OH- = FeOHOH[18O]HOH- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]H- + OD- = FeOHOH[18O]HOD- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]H- + OT- = FeOHOH[18O]HOT- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]H- + [18O]H- = FeOHOH[18O]H[18O]H- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]H- + [18O]D- = FeOHOH[18O]H[18O]D- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]H- + [18O]T- = FeOHOH[18O]H[18O]T- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]D- + OH- = FeOHOH[18O]DOH- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]D- + OD- = FeOHOH[18O]DOD- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]D- + OT- = FeOHOH[18O]DOT- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]D- + [18O]H- = FeOHOH[18O]D[18O]H- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]D- + [18O]D- = FeOHOH[18O]D[18O]D- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]D- + [18O]T- = FeOHOH[18O]D[18O]T- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]T- + OH- = FeOHOH[18O]TOH- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]T- + OD- = FeOHOH[18O]TOD- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]T- + [18O]H- = FeOHOH[18O]T[18O]H- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]T- + [18O]D- = FeOHOH[18O]T[18O]D- + 4 OH- +Fe(OH)4- + OH- + OD- + OH- + OH- = FeOHODOHOH- + 4 OH- +Fe(OH)4- + OH- + OD- + OH- + OD- = FeOHODOHOD- + 4 OH- +Fe(OH)4- + OH- + OD- + OH- + OT- = FeOHODOHOT- + 4 OH- +Fe(OH)4- + OH- + OD- + OH- + [18O]H- = FeOHODOH[18O]H- + 4 OH- +Fe(OH)4- + OH- + OD- + OH- + [18O]D- = FeOHODOH[18O]D- + 4 OH- +Fe(OH)4- + OH- + OD- + OH- + [18O]T- = FeOHODOH[18O]T- + 4 OH- +Fe(OH)4- + OH- + OD- + OD- + OH- = FeOHODODOH- + 4 OH- +Fe(OH)4- + OH- + OD- + OD- + OT- = FeOHODODOT- + 4 OH- +Fe(OH)4- + OH- + OD- + OD- + [18O]H- = FeOHODOD[18O]H- + 4 OH- +Fe(OH)4- + OH- + OD- + OD- + [18O]T- = FeOHODOD[18O]T- + 4 OH- +Fe(OH)4- + OH- + OD- + OT- + OH- = FeOHODOTOH- + 4 OH- +Fe(OH)4- + OH- + OD- + OT- + OD- = FeOHODOTOD- + 4 OH- +Fe(OH)4- + OH- + OD- + OT- + [18O]H- = FeOHODOT[18O]H- + 4 OH- +Fe(OH)4- + OH- + OD- + OT- + [18O]D- = FeOHODOT[18O]D- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]H- + OH- = FeOHOD[18O]HOH- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]H- + OD- = FeOHOD[18O]HOD- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]H- + OT- = FeOHOD[18O]HOT- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]H- + [18O]H- = FeOHOD[18O]H[18O]H- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]H- + [18O]D- = FeOHOD[18O]H[18O]D- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]H- + [18O]T- = FeOHOD[18O]H[18O]T- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]D- + OH- = FeOHOD[18O]DOH- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]D- + OT- = FeOHOD[18O]DOT- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]D- + [18O]H- = FeOHOD[18O]D[18O]H- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]T- + OH- = FeOHOD[18O]TOH- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]T- + OD- = FeOHOD[18O]TOD- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]T- + [18O]H- = FeOHOD[18O]T[18O]H- + 4 OH- +Fe(OH)4- + OH- + OT- + OH- + OH- = FeOHOTOHOH- + 4 OH- +Fe(OH)4- + OH- + OT- + OH- + OD- = FeOHOTOHOD- + 4 OH- +Fe(OH)4- + OH- + OT- + OH- + [18O]H- = FeOHOTOH[18O]H- + 4 OH- +Fe(OH)4- + OH- + OT- + OH- + [18O]D- = FeOHOTOH[18O]D- + 4 OH- +Fe(OH)4- + OH- + OT- + OD- + OH- = FeOHOTODOH- + 4 OH- +Fe(OH)4- + OH- + OT- + OD- + OD- = FeOHOTODOD- + 4 OH- +Fe(OH)4- + OH- + OT- + OD- + [18O]H- = FeOHOTOD[18O]H- + 4 OH- +Fe(OH)4- + OH- + OT- + OD- + [18O]D- = FeOHOTOD[18O]D- + 4 OH- +Fe(OH)4- + OH- + OT- + [18O]H- + OH- = FeOHOT[18O]HOH- + 4 OH- +Fe(OH)4- + OH- + OT- + [18O]H- + OD- = FeOHOT[18O]HOD- + 4 OH- +Fe(OH)4- + OH- + OT- + [18O]H- + [18O]H- = FeOHOT[18O]H[18O]H- + 4 OH- +Fe(OH)4- + OH- + OT- + [18O]H- + [18O]D- = FeOHOT[18O]H[18O]D- + 4 OH- +Fe(OH)4- + OH- + OT- + [18O]D- + OH- = FeOHOT[18O]DOH- + 4 OH- +Fe(OH)4- + OH- + OT- + [18O]D- + OD- = FeOHOT[18O]DOD- + 4 OH- +Fe(OH)4- + OH- + OT- + [18O]D- + [18O]H- = FeOHOT[18O]D[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OH- + OH- = FeOH[18O]HOHOH- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OH- + OD- = FeOH[18O]HOHOD- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OH- + OT- = FeOH[18O]HOHOT- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OH- + [18O]H- = FeOH[18O]HOH[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OH- + [18O]D- = FeOH[18O]HOH[18O]D- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OH- + [18O]T- = FeOH[18O]HOH[18O]T- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OD- + OH- = FeOH[18O]HODOH- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OD- + OD- = FeOH[18O]HODOD- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OD- + OT- = FeOH[18O]HODOT- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OD- + [18O]H- = FeOH[18O]HOD[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OD- + [18O]D- = FeOH[18O]HOD[18O]D- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OD- + [18O]T- = FeOH[18O]HOD[18O]T- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OT- + OH- = FeOH[18O]HOTOH- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OT- + OD- = FeOH[18O]HOTOD- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OT- + [18O]H- = FeOH[18O]HOT[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OT- + [18O]D- = FeOH[18O]HOT[18O]D- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + [18O]H- + OH- = FeOH[18O]H[18O]HOH- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + [18O]H- + OD- = FeOH[18O]H[18O]HOD- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + [18O]H- + OT- = FeOH[18O]H[18O]HOT- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + [18O]D- + OH- = FeOH[18O]H[18O]DOH- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + [18O]D- + OD- = FeOH[18O]H[18O]DOD- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + [18O]D- + OT- = FeOH[18O]H[18O]DOT- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + [18O]T- + OH- = FeOH[18O]H[18O]TOH- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + [18O]T- + OD- = FeOH[18O]H[18O]TOD- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OH- + OH- = FeOH[18O]DOHOH- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OH- + OD- = FeOH[18O]DOHOD- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OH- + OT- = FeOH[18O]DOHOT- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OH- + [18O]H- = FeOH[18O]DOH[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OH- + [18O]D- = FeOH[18O]DOH[18O]D- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OH- + [18O]T- = FeOH[18O]DOH[18O]T- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OD- + OH- = FeOH[18O]DODOH- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OD- + OT- = FeOH[18O]DODOT- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OD- + [18O]H- = FeOH[18O]DOD[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OT- + OH- = FeOH[18O]DOTOH- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OT- + OD- = FeOH[18O]DOTOD- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OT- + [18O]H- = FeOH[18O]DOT[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + [18O]H- + OH- = FeOH[18O]D[18O]HOH- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + [18O]H- + OD- = FeOH[18O]D[18O]HOD- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + [18O]H- + OT- = FeOH[18O]D[18O]HOT- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + [18O]D- + OH- = FeOH[18O]D[18O]DOH- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + [18O]T- + OH- = FeOH[18O]D[18O]TOH- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + OH- + OH- = FeOH[18O]TOHOH- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + OH- + OD- = FeOH[18O]TOHOD- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + OH- + [18O]H- = FeOH[18O]TOH[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + OH- + [18O]D- = FeOH[18O]TOH[18O]D- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + OD- + OH- = FeOH[18O]TODOH- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + OD- + OD- = FeOH[18O]TODOD- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + OD- + [18O]H- = FeOH[18O]TOD[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + [18O]H- + OH- = FeOH[18O]T[18O]HOH- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + [18O]H- + OD- = FeOH[18O]T[18O]HOD- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + [18O]D- + OH- = FeOH[18O]T[18O]DOH- + 4 OH- +Fe(OH)4- + OD- + OH- + OH- + OH- = FeODOHOHOH- + 4 OH- +Fe(OH)4- + OD- + OH- + OH- + OD- = FeODOHOHOD- + 4 OH- +Fe(OH)4- + OD- + OH- + OH- + OT- = FeODOHOHOT- + 4 OH- +Fe(OH)4- + OD- + OH- + OH- + [18O]H- = FeODOHOH[18O]H- + 4 OH- +Fe(OH)4- + OD- + OH- + OH- + [18O]D- = FeODOHOH[18O]D- + 4 OH- +Fe(OH)4- + OD- + OH- + OH- + [18O]T- = FeODOHOH[18O]T- + 4 OH- +Fe(OH)4- + OD- + OH- + OD- + OH- = FeODOHODOH- + 4 OH- +Fe(OH)4- + OD- + OH- + OD- + OT- = FeODOHODOT- + 4 OH- +Fe(OH)4- + OD- + OH- + OD- + [18O]H- = FeODOHOD[18O]H- + 4 OH- +Fe(OH)4- + OD- + OH- + OD- + [18O]T- = FeODOHOD[18O]T- + 4 OH- +Fe(OH)4- + OD- + OH- + OT- + OH- = FeODOHOTOH- + 4 OH- +Fe(OH)4- + OD- + OH- + OT- + OD- = FeODOHOTOD- + 4 OH- +Fe(OH)4- + OD- + OH- + OT- + [18O]H- = FeODOHOT[18O]H- + 4 OH- +Fe(OH)4- + OD- + OH- + OT- + [18O]D- = FeODOHOT[18O]D- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]H- + OH- = FeODOH[18O]HOH- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]H- + OD- = FeODOH[18O]HOD- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]H- + OT- = FeODOH[18O]HOT- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]H- + [18O]H- = FeODOH[18O]H[18O]H- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]H- + [18O]D- = FeODOH[18O]H[18O]D- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]H- + [18O]T- = FeODOH[18O]H[18O]T- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]D- + OH- = FeODOH[18O]DOH- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]D- + OT- = FeODOH[18O]DOT- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]D- + [18O]H- = FeODOH[18O]D[18O]H- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]T- + OH- = FeODOH[18O]TOH- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]T- + OD- = FeODOH[18O]TOD- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]T- + [18O]H- = FeODOH[18O]T[18O]H- + 4 OH- +Fe(OH)4- + OD- + OD- + OH- + OH- = FeODODOHOH- + 4 OH- +Fe(OH)4- + OD- + OD- + OH- + OT- = FeODODOHOT- + 4 OH- +Fe(OH)4- + OD- + OD- + OH- + [18O]H- = FeODODOH[18O]H- + 4 OH- +Fe(OH)4- + OD- + OD- + OH- + [18O]T- = FeODODOH[18O]T- + 4 OH- +Fe(OH)4- + OD- + OD- + OT- + OH- = FeODODOTOH- + 4 OH- +Fe(OH)4- + OD- + OD- + OT- + [18O]H- = FeODODOT[18O]H- + 4 OH- +Fe(OH)4- + OD- + OD- + [18O]H- + OH- = FeODOD[18O]HOH- + 4 OH- +Fe(OH)4- + OD- + OD- + [18O]H- + OT- = FeODOD[18O]HOT- + 4 OH- +Fe(OH)4- + OD- + OD- + [18O]H- + [18O]H- = FeODOD[18O]H[18O]H- + 4 OH- +Fe(OH)4- + OD- + OD- + [18O]T- + OH- = FeODOD[18O]TOH- + 4 OH- +Fe(OH)4- + OD- + OT- + OH- + OH- = FeODOTOHOH- + 4 OH- +Fe(OH)4- + OD- + OT- + OH- + OD- = FeODOTOHOD- + 4 OH- +Fe(OH)4- + OD- + OT- + OH- + [18O]H- = FeODOTOH[18O]H- + 4 OH- +Fe(OH)4- + OD- + OT- + OH- + [18O]D- = FeODOTOH[18O]D- + 4 OH- +Fe(OH)4- + OD- + OT- + OD- + OH- = FeODOTODOH- + 4 OH- +Fe(OH)4- + OD- + OT- + OD- + [18O]H- = FeODOTOD[18O]H- + 4 OH- +Fe(OH)4- + OD- + OT- + [18O]H- + OH- = FeODOT[18O]HOH- + 4 OH- +Fe(OH)4- + OD- + OT- + [18O]H- + OD- = FeODOT[18O]HOD- + 4 OH- +Fe(OH)4- + OD- + OT- + [18O]H- + [18O]H- = FeODOT[18O]H[18O]H- + 4 OH- +Fe(OH)4- + OD- + OT- + [18O]D- + OH- = FeODOT[18O]DOH- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OH- + OH- = FeOD[18O]HOHOH- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OH- + OD- = FeOD[18O]HOHOD- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OH- + OT- = FeOD[18O]HOHOT- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OH- + [18O]H- = FeOD[18O]HOH[18O]H- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OH- + [18O]D- = FeOD[18O]HOH[18O]D- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OH- + [18O]T- = FeOD[18O]HOH[18O]T- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OD- + OH- = FeOD[18O]HODOH- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OD- + OT- = FeOD[18O]HODOT- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OD- + [18O]H- = FeOD[18O]HOD[18O]H- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OT- + OH- = FeOD[18O]HOTOH- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OT- + OD- = FeOD[18O]HOTOD- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OT- + [18O]H- = FeOD[18O]HOT[18O]H- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + [18O]H- + OH- = FeOD[18O]H[18O]HOH- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + [18O]H- + OD- = FeOD[18O]H[18O]HOD- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + [18O]H- + OT- = FeOD[18O]H[18O]HOT- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + [18O]D- + OH- = FeOD[18O]H[18O]DOH- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + [18O]T- + OH- = FeOD[18O]H[18O]TOH- + 4 OH- +Fe(OH)4- + OD- + [18O]D- + OH- + OH- = FeOD[18O]DOHOH- + 4 OH- +Fe(OH)4- + OD- + [18O]D- + OH- + OT- = FeOD[18O]DOHOT- + 4 OH- +Fe(OH)4- + OD- + [18O]D- + OH- + [18O]H- = FeOD[18O]DOH[18O]H- + 4 OH- +Fe(OH)4- + OD- + [18O]D- + OT- + OH- = FeOD[18O]DOTOH- + 4 OH- +Fe(OH)4- + OD- + [18O]D- + [18O]H- + OH- = FeOD[18O]D[18O]HOH- + 4 OH- +Fe(OH)4- + OD- + [18O]T- + OH- + OH- = FeOD[18O]TOHOH- + 4 OH- +Fe(OH)4- + OD- + [18O]T- + OH- + OD- = FeOD[18O]TOHOD- + 4 OH- +Fe(OH)4- + OD- + [18O]T- + OH- + [18O]H- = FeOD[18O]TOH[18O]H- + 4 OH- +Fe(OH)4- + OD- + [18O]T- + OD- + OH- = FeOD[18O]TODOH- + 4 OH- +Fe(OH)4- + OD- + [18O]T- + [18O]H- + OH- = FeOD[18O]T[18O]HOH- + 4 OH- +Fe(OH)4- + OT- + OH- + OH- + OH- = FeOTOHOHOH- + 4 OH- +Fe(OH)4- + OT- + OH- + OH- + OD- = FeOTOHOHOD- + 4 OH- +Fe(OH)4- + OT- + OH- + OH- + [18O]H- = FeOTOHOH[18O]H- + 4 OH- +Fe(OH)4- + OT- + OH- + OH- + [18O]D- = FeOTOHOH[18O]D- + 4 OH- +Fe(OH)4- + OT- + OH- + OD- + OH- = FeOTOHODOH- + 4 OH- +Fe(OH)4- + OT- + OH- + OD- + OD- = FeOTOHODOD- + 4 OH- +Fe(OH)4- + OT- + OH- + OD- + [18O]H- = FeOTOHOD[18O]H- + 4 OH- +Fe(OH)4- + OT- + OH- + OD- + [18O]D- = FeOTOHOD[18O]D- + 4 OH- +Fe(OH)4- + OT- + OH- + [18O]H- + OH- = FeOTOH[18O]HOH- + 4 OH- +Fe(OH)4- + OT- + OH- + [18O]H- + OD- = FeOTOH[18O]HOD- + 4 OH- +Fe(OH)4- + OT- + OH- + [18O]H- + [18O]H- = FeOTOH[18O]H[18O]H- + 4 OH- +Fe(OH)4- + OT- + OH- + [18O]H- + [18O]D- = FeOTOH[18O]H[18O]D- + 4 OH- +Fe(OH)4- + OT- + OH- + [18O]D- + OH- = FeOTOH[18O]DOH- + 4 OH- +Fe(OH)4- + OT- + OH- + [18O]D- + OD- = FeOTOH[18O]DOD- + 4 OH- +Fe(OH)4- + OT- + OH- + [18O]D- + [18O]H- = FeOTOH[18O]D[18O]H- + 4 OH- +Fe(OH)4- + OT- + OD- + OH- + OH- = FeOTODOHOH- + 4 OH- +Fe(OH)4- + OT- + OD- + OH- + OD- = FeOTODOHOD- + 4 OH- +Fe(OH)4- + OT- + OD- + OH- + [18O]H- = FeOTODOH[18O]H- + 4 OH- +Fe(OH)4- + OT- + OD- + OH- + [18O]D- = FeOTODOH[18O]D- + 4 OH- +Fe(OH)4- + OT- + OD- + OD- + OH- = FeOTODODOH- + 4 OH- +Fe(OH)4- + OT- + OD- + OD- + [18O]H- = FeOTODOD[18O]H- + 4 OH- +Fe(OH)4- + OT- + OD- + [18O]H- + OH- = FeOTOD[18O]HOH- + 4 OH- +Fe(OH)4- + OT- + OD- + [18O]H- + OD- = FeOTOD[18O]HOD- + 4 OH- +Fe(OH)4- + OT- + OD- + [18O]H- + [18O]H- = FeOTOD[18O]H[18O]H- + 4 OH- +Fe(OH)4- + OT- + OD- + [18O]D- + OH- = FeOTOD[18O]DOH- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + OH- + OH- = FeOT[18O]HOHOH- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + OH- + OD- = FeOT[18O]HOHOD- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + OH- + [18O]H- = FeOT[18O]HOH[18O]H- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + OH- + [18O]D- = FeOT[18O]HOH[18O]D- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + OD- + OH- = FeOT[18O]HODOH- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + OD- + OD- = FeOT[18O]HODOD- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + OD- + [18O]H- = FeOT[18O]HOD[18O]H- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + [18O]H- + OH- = FeOT[18O]H[18O]HOH- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + [18O]H- + OD- = FeOT[18O]H[18O]HOD- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + [18O]D- + OH- = FeOT[18O]H[18O]DOH- + 4 OH- +Fe(OH)4- + OT- + [18O]D- + OH- + OH- = FeOT[18O]DOHOH- + 4 OH- +Fe(OH)4- + OT- + [18O]D- + OH- + OD- = FeOT[18O]DOHOD- + 4 OH- +Fe(OH)4- + OT- + [18O]D- + OH- + [18O]H- = FeOT[18O]DOH[18O]H- + 4 OH- +Fe(OH)4- + OT- + [18O]D- + OD- + OH- = FeOT[18O]DODOH- + 4 OH- +Fe(OH)4- + OT- + [18O]D- + [18O]H- + OH- = FeOT[18O]D[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OH- + OH- = Fe[18O]HOHOHOH- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OH- + OD- = Fe[18O]HOHOHOD- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OH- + OT- = Fe[18O]HOHOHOT- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OH- + [18O]H- = Fe[18O]HOHOH[18O]H- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OH- + [18O]D- = Fe[18O]HOHOH[18O]D- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OH- + [18O]T- = Fe[18O]HOHOH[18O]T- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OD- + OH- = Fe[18O]HOHODOH- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OD- + OD- = Fe[18O]HOHODOD- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OD- + OT- = Fe[18O]HOHODOT- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OD- + [18O]H- = Fe[18O]HOHOD[18O]H- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OD- + [18O]D- = Fe[18O]HOHOD[18O]D- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OD- + [18O]T- = Fe[18O]HOHOD[18O]T- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OT- + OH- = Fe[18O]HOHOTOH- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OT- + OD- = Fe[18O]HOHOTOD- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OT- + [18O]H- = Fe[18O]HOHOT[18O]H- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OT- + [18O]D- = Fe[18O]HOHOT[18O]D- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + [18O]H- + OH- = Fe[18O]HOH[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + [18O]H- + OD- = Fe[18O]HOH[18O]HOD- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + [18O]H- + OT- = Fe[18O]HOH[18O]HOT- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + [18O]D- + OH- = Fe[18O]HOH[18O]DOH- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + [18O]D- + OD- = Fe[18O]HOH[18O]DOD- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + [18O]D- + OT- = Fe[18O]HOH[18O]DOT- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + [18O]T- + OH- = Fe[18O]HOH[18O]TOH- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + [18O]T- + OD- = Fe[18O]HOH[18O]TOD- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OH- + OH- = Fe[18O]HODOHOH- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OH- + OD- = Fe[18O]HODOHOD- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OH- + OT- = Fe[18O]HODOHOT- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OH- + [18O]H- = Fe[18O]HODOH[18O]H- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OH- + [18O]D- = Fe[18O]HODOH[18O]D- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OH- + [18O]T- = Fe[18O]HODOH[18O]T- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OD- + OH- = Fe[18O]HODODOH- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OD- + OT- = Fe[18O]HODODOT- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OD- + [18O]H- = Fe[18O]HODOD[18O]H- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OT- + OH- = Fe[18O]HODOTOH- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OT- + OD- = Fe[18O]HODOTOD- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OT- + [18O]H- = Fe[18O]HODOT[18O]H- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + [18O]H- + OH- = Fe[18O]HOD[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + [18O]H- + OD- = Fe[18O]HOD[18O]HOD- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + [18O]H- + OT- = Fe[18O]HOD[18O]HOT- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + [18O]D- + OH- = Fe[18O]HOD[18O]DOH- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + [18O]T- + OH- = Fe[18O]HOD[18O]TOH- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + OH- + OH- = Fe[18O]HOTOHOH- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + OH- + OD- = Fe[18O]HOTOHOD- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + OH- + [18O]H- = Fe[18O]HOTOH[18O]H- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + OH- + [18O]D- = Fe[18O]HOTOH[18O]D- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + OD- + OH- = Fe[18O]HOTODOH- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + OD- + OD- = Fe[18O]HOTODOD- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + OD- + [18O]H- = Fe[18O]HOTOD[18O]H- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + [18O]H- + OH- = Fe[18O]HOT[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + [18O]H- + OD- = Fe[18O]HOT[18O]HOD- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + [18O]D- + OH- = Fe[18O]HOT[18O]DOH- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]H- + OH- + OH- = Fe[18O]H[18O]HOHOH- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]H- + OH- + OD- = Fe[18O]H[18O]HOHOD- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]H- + OH- + OT- = Fe[18O]H[18O]HOHOT- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]H- + OD- + OH- = Fe[18O]H[18O]HODOH- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]H- + OD- + OD- = Fe[18O]H[18O]HODOD- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]H- + OD- + OT- = Fe[18O]H[18O]HODOT- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]H- + OT- + OH- = Fe[18O]H[18O]HOTOH- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]H- + OT- + OD- = Fe[18O]H[18O]HOTOD- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]D- + OH- + OH- = Fe[18O]H[18O]DOHOH- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]D- + OH- + OD- = Fe[18O]H[18O]DOHOD- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]D- + OH- + OT- = Fe[18O]H[18O]DOHOT- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]D- + OD- + OH- = Fe[18O]H[18O]DODOH- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]D- + OT- + OH- = Fe[18O]H[18O]DOTOH- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]T- + OH- + OH- = Fe[18O]H[18O]TOHOH- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]T- + OH- + OD- = Fe[18O]H[18O]TOHOD- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]T- + OD- + OH- = Fe[18O]H[18O]TODOH- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OH- + OH- = Fe[18O]DOHOHOH- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OH- + OD- = Fe[18O]DOHOHOD- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OH- + OT- = Fe[18O]DOHOHOT- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OH- + [18O]H- = Fe[18O]DOHOH[18O]H- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OH- + [18O]D- = Fe[18O]DOHOH[18O]D- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OH- + [18O]T- = Fe[18O]DOHOH[18O]T- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OD- + OH- = Fe[18O]DOHODOH- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OD- + OT- = Fe[18O]DOHODOT- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OD- + [18O]H- = Fe[18O]DOHOD[18O]H- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OT- + OH- = Fe[18O]DOHOTOH- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OT- + OD- = Fe[18O]DOHOTOD- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OT- + [18O]H- = Fe[18O]DOHOT[18O]H- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + [18O]H- + OH- = Fe[18O]DOH[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + [18O]H- + OD- = Fe[18O]DOH[18O]HOD- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + [18O]H- + OT- = Fe[18O]DOH[18O]HOT- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + [18O]D- + OH- = Fe[18O]DOH[18O]DOH- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + [18O]T- + OH- = Fe[18O]DOH[18O]TOH- + 4 OH- +Fe(OH)4- + [18O]D- + OD- + OH- + OH- = Fe[18O]DODOHOH- + 4 OH- +Fe(OH)4- + [18O]D- + OD- + OH- + OT- = Fe[18O]DODOHOT- + 4 OH- +Fe(OH)4- + [18O]D- + OD- + OH- + [18O]H- = Fe[18O]DODOH[18O]H- + 4 OH- +Fe(OH)4- + [18O]D- + OD- + OT- + OH- = Fe[18O]DODOTOH- + 4 OH- +Fe(OH)4- + [18O]D- + OD- + [18O]H- + OH- = Fe[18O]DOD[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]D- + OT- + OH- + OH- = Fe[18O]DOTOHOH- + 4 OH- +Fe(OH)4- + [18O]D- + OT- + OH- + OD- = Fe[18O]DOTOHOD- + 4 OH- +Fe(OH)4- + [18O]D- + OT- + OH- + [18O]H- = Fe[18O]DOTOH[18O]H- + 4 OH- +Fe(OH)4- + [18O]D- + OT- + OD- + OH- = Fe[18O]DOTODOH- + 4 OH- +Fe(OH)4- + [18O]D- + OT- + [18O]H- + OH- = Fe[18O]DOT[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]D- + [18O]H- + OH- + OH- = Fe[18O]D[18O]HOHOH- + 4 OH- +Fe(OH)4- + [18O]D- + [18O]H- + OH- + OD- = Fe[18O]D[18O]HOHOD- + 4 OH- +Fe(OH)4- + [18O]D- + [18O]H- + OH- + OT- = Fe[18O]D[18O]HOHOT- + 4 OH- +Fe(OH)4- + [18O]D- + [18O]H- + OD- + OH- = Fe[18O]D[18O]HODOH- + 4 OH- +Fe(OH)4- + [18O]D- + [18O]H- + OT- + OH- = Fe[18O]D[18O]HOTOH- + 4 OH- +Fe(OH)4- + [18O]D- + [18O]D- + OH- + OH- = Fe[18O]D[18O]DOHOH- + 4 OH- +Fe(OH)4- + [18O]D- + [18O]T- + OH- + OH- = Fe[18O]D[18O]TOHOH- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + OH- + OH- = Fe[18O]TOHOHOH- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + OH- + OD- = Fe[18O]TOHOHOD- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + OH- + [18O]H- = Fe[18O]TOHOH[18O]H- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + OH- + [18O]D- = Fe[18O]TOHOH[18O]D- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + OD- + OH- = Fe[18O]TOHODOH- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + OD- + OD- = Fe[18O]TOHODOD- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + OD- + [18O]H- = Fe[18O]TOHOD[18O]H- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + [18O]H- + OH- = Fe[18O]TOH[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + [18O]H- + OD- = Fe[18O]TOH[18O]HOD- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + [18O]D- + OH- = Fe[18O]TOH[18O]DOH- + 4 OH- +Fe(OH)4- + [18O]T- + OD- + OH- + OH- = Fe[18O]TODOHOH- + 4 OH- +Fe(OH)4- + [18O]T- + OD- + OH- + OD- = Fe[18O]TODOHOD- + 4 OH- +Fe(OH)4- + [18O]T- + OD- + OH- + [18O]H- = Fe[18O]TODOH[18O]H- + 4 OH- +Fe(OH)4- + [18O]T- + OD- + OD- + OH- = Fe[18O]TODODOH- + 4 OH- +Fe(OH)4- + [18O]T- + OD- + [18O]H- + OH- = Fe[18O]TOD[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]T- + [18O]H- + OH- + OH- = Fe[18O]T[18O]HOHOH- + 4 OH- +Fe(OH)4- + [18O]T- + [18O]H- + OH- + OD- = Fe[18O]T[18O]HOHOD- + 4 OH- +Fe(OH)4- + [18O]T- + [18O]H- + OD- + OH- = Fe[18O]T[18O]HODOH- + 4 OH- +Fe(OH)4- + [18O]T- + [18O]D- + OH- + OH- = Fe[18O]T[18O]DOHOH- + 4 OH- # # Added Fe2(OH)2+4 reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Fe2(OH)2+4 + OH- + OD- = Fe2OHOD+4 + 2OH- -Fe2(OH)2+4 + OH- + OT- = Fe2OHOT+4 + 2OH- -Fe2(OH)2+4 + OH- + [18O]H- = Fe2OH[18O]H+4 + 2OH- -Fe2(OH)2+4 + OH- + [18O]D- = Fe2OH[18O]D+4 + 2OH- -Fe2(OH)2+4 + OH- + [18O]T- = Fe2OH[18O]T+4 + 2OH- -Fe2(OH)2+4 + OD- + OH- = Fe2ODOH+4 + 2OH- -Fe2(OH)2+4 + OD- + OD- = Fe2ODOD+4 + 2OH- -Fe2(OH)2+4 + OD- + OT- = Fe2ODOT+4 + 2OH- -Fe2(OH)2+4 + OD- + [18O]H- = Fe2OD[18O]H+4 + 2OH- -Fe2(OH)2+4 + OD- + [18O]D- = Fe2OD[18O]D+4 + 2OH- -Fe2(OH)2+4 + OD- + [18O]T- = Fe2OD[18O]T+4 + 2OH- -Fe2(OH)2+4 + OT- + OH- = Fe2OTOH+4 + 2OH- -Fe2(OH)2+4 + OT- + OD- = Fe2OTOD+4 + 2OH- -Fe2(OH)2+4 + OT- + [18O]H- = Fe2OT[18O]H+4 + 2OH- -Fe2(OH)2+4 + OT- + [18O]D- = Fe2OT[18O]D+4 + 2OH- -Fe2(OH)2+4 + [18O]H- + OH- = Fe2[18O]HOH+4 + 2OH- -Fe2(OH)2+4 + [18O]H- + OD- = Fe2[18O]HOD+4 + 2OH- -Fe2(OH)2+4 + [18O]H- + OT- = Fe2[18O]HOT+4 + 2OH- -Fe2(OH)2+4 + [18O]H- + [18O]H- = Fe2[18O]H[18O]H+4 + 2OH- -Fe2(OH)2+4 + [18O]H- + [18O]D- = Fe2[18O]H[18O]D+4 + 2OH- -Fe2(OH)2+4 + [18O]H- + [18O]T- = Fe2[18O]H[18O]T+4 + 2OH- -Fe2(OH)2+4 + [18O]D- + OH- = Fe2[18O]DOH+4 + 2OH- -Fe2(OH)2+4 + [18O]D- + OD- = Fe2[18O]DOD+4 + 2OH- -Fe2(OH)2+4 + [18O]D- + OT- = Fe2[18O]DOT+4 + 2OH- -Fe2(OH)2+4 + [18O]D- + [18O]H- = Fe2[18O]D[18O]H+4 + 2OH- -Fe2(OH)2+4 + [18O]D- + [18O]D- = Fe2[18O]D[18O]D+4 + 2OH- -Fe2(OH)2+4 + [18O]D- + [18O]T- = Fe2[18O]D[18O]T+4 + 2OH- -Fe2(OH)2+4 + [18O]T- + OH- = Fe2[18O]TOH+4 + 2OH- -Fe2(OH)2+4 + [18O]T- + OD- = Fe2[18O]TOD+4 + 2OH- -Fe2(OH)2+4 + [18O]T- + [18O]H- = Fe2[18O]T[18O]H+4 + 2OH- -Fe2(OH)2+4 + [18O]T- + [18O]D- = Fe2[18O]T[18O]D+4 + 2OH- +Fe2(OH)2+4 + OH- + OD- = Fe2OHOD+4 + 2 OH- +Fe2(OH)2+4 + OH- + OT- = Fe2OHOT+4 + 2 OH- +Fe2(OH)2+4 + OH- + [18O]H- = Fe2OH[18O]H+4 + 2 OH- +Fe2(OH)2+4 + OH- + [18O]D- = Fe2OH[18O]D+4 + 2 OH- +Fe2(OH)2+4 + OH- + [18O]T- = Fe2OH[18O]T+4 + 2 OH- +Fe2(OH)2+4 + OD- + OH- = Fe2ODOH+4 + 2 OH- +Fe2(OH)2+4 + OD- + OD- = Fe2ODOD+4 + 2 OH- +Fe2(OH)2+4 + OD- + OT- = Fe2ODOT+4 + 2 OH- +Fe2(OH)2+4 + OD- + [18O]H- = Fe2OD[18O]H+4 + 2 OH- +Fe2(OH)2+4 + OD- + [18O]D- = Fe2OD[18O]D+4 + 2 OH- +Fe2(OH)2+4 + OD- + [18O]T- = Fe2OD[18O]T+4 + 2 OH- +Fe2(OH)2+4 + OT- + OH- = Fe2OTOH+4 + 2 OH- +Fe2(OH)2+4 + OT- + OD- = Fe2OTOD+4 + 2 OH- +Fe2(OH)2+4 + OT- + [18O]H- = Fe2OT[18O]H+4 + 2 OH- +Fe2(OH)2+4 + OT- + [18O]D- = Fe2OT[18O]D+4 + 2 OH- +Fe2(OH)2+4 + [18O]H- + OH- = Fe2[18O]HOH+4 + 2 OH- +Fe2(OH)2+4 + [18O]H- + OD- = Fe2[18O]HOD+4 + 2 OH- +Fe2(OH)2+4 + [18O]H- + OT- = Fe2[18O]HOT+4 + 2 OH- +Fe2(OH)2+4 + [18O]H- + [18O]H- = Fe2[18O]H[18O]H+4 + 2 OH- +Fe2(OH)2+4 + [18O]H- + [18O]D- = Fe2[18O]H[18O]D+4 + 2 OH- +Fe2(OH)2+4 + [18O]H- + [18O]T- = Fe2[18O]H[18O]T+4 + 2 OH- +Fe2(OH)2+4 + [18O]D- + OH- = Fe2[18O]DOH+4 + 2 OH- +Fe2(OH)2+4 + [18O]D- + OD- = Fe2[18O]DOD+4 + 2 OH- +Fe2(OH)2+4 + [18O]D- + OT- = Fe2[18O]DOT+4 + 2 OH- +Fe2(OH)2+4 + [18O]D- + [18O]H- = Fe2[18O]D[18O]H+4 + 2 OH- +Fe2(OH)2+4 + [18O]D- + [18O]D- = Fe2[18O]D[18O]D+4 + 2 OH- +Fe2(OH)2+4 + [18O]D- + [18O]T- = Fe2[18O]D[18O]T+4 + 2 OH- +Fe2(OH)2+4 + [18O]T- + OH- = Fe2[18O]TOH+4 + 2 OH- +Fe2(OH)2+4 + [18O]T- + OD- = Fe2[18O]TOD+4 + 2 OH- +Fe2(OH)2+4 + [18O]T- + [18O]H- = Fe2[18O]T[18O]H+4 + 2 OH- +Fe2(OH)2+4 + [18O]T- + [18O]D- = Fe2[18O]T[18O]D+4 + 2 OH- # # Added Fe3(OH)4+5 reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Fe3(OH)4+5 + OH- + OH- + OH- + OD- = Fe3OHOHOHOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OH- + OT- = Fe3OHOHOHOT+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OH- + [18O]H- = Fe3OHOHOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OH- + [18O]D- = Fe3OHOHOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OH- + [18O]T- = Fe3OHOHOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OD- + OH- = Fe3OHOHODOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OD- + OD- = Fe3OHOHODOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OD- + OT- = Fe3OHOHODOT+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OD- + [18O]H- = Fe3OHOHOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OD- + [18O]D- = Fe3OHOHOD[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OD- + [18O]T- = Fe3OHOHOD[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OT- + OH- = Fe3OHOHOTOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OT- + OD- = Fe3OHOHOTOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OT- + [18O]H- = Fe3OHOHOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OT- + [18O]D- = Fe3OHOHOT[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]H- + OH- = Fe3OHOH[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]H- + OD- = Fe3OHOH[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]H- + OT- = Fe3OHOH[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]H- + [18O]H- = Fe3OHOH[18O]H[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]H- + [18O]D- = Fe3OHOH[18O]H[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]H- + [18O]T- = Fe3OHOH[18O]H[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]D- + OH- = Fe3OHOH[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]D- + OD- = Fe3OHOH[18O]DOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]D- + OT- = Fe3OHOH[18O]DOT+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]D- + [18O]H- = Fe3OHOH[18O]D[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]D- + [18O]D- = Fe3OHOH[18O]D[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]D- + [18O]T- = Fe3OHOH[18O]D[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]T- + OH- = Fe3OHOH[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]T- + OD- = Fe3OHOH[18O]TOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]T- + [18O]H- = Fe3OHOH[18O]T[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]T- + [18O]D- = Fe3OHOH[18O]T[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OH- + OH- = Fe3OHODOHOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OH- + OD- = Fe3OHODOHOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OH- + OT- = Fe3OHODOHOT+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OH- + [18O]H- = Fe3OHODOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OH- + [18O]D- = Fe3OHODOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OH- + [18O]T- = Fe3OHODOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OD- + OH- = Fe3OHODODOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OD- + OT- = Fe3OHODODOT+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OD- + [18O]H- = Fe3OHODOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OD- + [18O]T- = Fe3OHODOD[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OT- + OH- = Fe3OHODOTOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OT- + OD- = Fe3OHODOTOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OT- + [18O]H- = Fe3OHODOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OT- + [18O]D- = Fe3OHODOT[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]H- + OH- = Fe3OHOD[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]H- + OD- = Fe3OHOD[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]H- + OT- = Fe3OHOD[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]H- + [18O]H- = Fe3OHOD[18O]H[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]H- + [18O]D- = Fe3OHOD[18O]H[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]H- + [18O]T- = Fe3OHOD[18O]H[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]D- + OH- = Fe3OHOD[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]D- + OT- = Fe3OHOD[18O]DOT+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]D- + [18O]H- = Fe3OHOD[18O]D[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]T- + OH- = Fe3OHOD[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]T- + OD- = Fe3OHOD[18O]TOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]T- + [18O]H- = Fe3OHOD[18O]T[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + OH- + OH- = Fe3OHOTOHOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + OH- + OD- = Fe3OHOTOHOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + OH- + [18O]H- = Fe3OHOTOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + OH- + [18O]D- = Fe3OHOTOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + OD- + OH- = Fe3OHOTODOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + OD- + OD- = Fe3OHOTODOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + OD- + [18O]H- = Fe3OHOTOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + OD- + [18O]D- = Fe3OHOTOD[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + [18O]H- + OH- = Fe3OHOT[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + [18O]H- + OD- = Fe3OHOT[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + [18O]H- + [18O]H- = Fe3OHOT[18O]H[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + [18O]H- + [18O]D- = Fe3OHOT[18O]H[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + [18O]D- + OH- = Fe3OHOT[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + [18O]D- + OD- = Fe3OHOT[18O]DOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + [18O]D- + [18O]H- = Fe3OHOT[18O]D[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OH- + OH- = Fe3OH[18O]HOHOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OH- + OD- = Fe3OH[18O]HOHOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OH- + OT- = Fe3OH[18O]HOHOT+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OH- + [18O]H- = Fe3OH[18O]HOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OH- + [18O]D- = Fe3OH[18O]HOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OH- + [18O]T- = Fe3OH[18O]HOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OD- + OH- = Fe3OH[18O]HODOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OD- + OD- = Fe3OH[18O]HODOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OD- + OT- = Fe3OH[18O]HODOT+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OD- + [18O]H- = Fe3OH[18O]HOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OD- + [18O]D- = Fe3OH[18O]HOD[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OD- + [18O]T- = Fe3OH[18O]HOD[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OT- + OH- = Fe3OH[18O]HOTOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OT- + OD- = Fe3OH[18O]HOTOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OT- + [18O]H- = Fe3OH[18O]HOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OT- + [18O]D- = Fe3OH[18O]HOT[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + [18O]H- + OH- = Fe3OH[18O]H[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + [18O]H- + OD- = Fe3OH[18O]H[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + [18O]H- + OT- = Fe3OH[18O]H[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + [18O]D- + OH- = Fe3OH[18O]H[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + [18O]D- + OD- = Fe3OH[18O]H[18O]DOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + [18O]D- + OT- = Fe3OH[18O]H[18O]DOT+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + [18O]T- + OH- = Fe3OH[18O]H[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + [18O]T- + OD- = Fe3OH[18O]H[18O]TOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OH- + OH- = Fe3OH[18O]DOHOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OH- + OD- = Fe3OH[18O]DOHOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OH- + OT- = Fe3OH[18O]DOHOT+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OH- + [18O]H- = Fe3OH[18O]DOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OH- + [18O]D- = Fe3OH[18O]DOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OH- + [18O]T- = Fe3OH[18O]DOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OD- + OH- = Fe3OH[18O]DODOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OD- + OT- = Fe3OH[18O]DODOT+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OD- + [18O]H- = Fe3OH[18O]DOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OT- + OH- = Fe3OH[18O]DOTOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OT- + OD- = Fe3OH[18O]DOTOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OT- + [18O]H- = Fe3OH[18O]DOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + [18O]H- + OH- = Fe3OH[18O]D[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + [18O]H- + OD- = Fe3OH[18O]D[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + [18O]H- + OT- = Fe3OH[18O]D[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + [18O]D- + OH- = Fe3OH[18O]D[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + [18O]T- + OH- = Fe3OH[18O]D[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + OH- + OH- = Fe3OH[18O]TOHOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + OH- + OD- = Fe3OH[18O]TOHOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + OH- + [18O]H- = Fe3OH[18O]TOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + OH- + [18O]D- = Fe3OH[18O]TOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + OD- + OH- = Fe3OH[18O]TODOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + OD- + OD- = Fe3OH[18O]TODOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + OD- + [18O]H- = Fe3OH[18O]TOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + [18O]H- + OH- = Fe3OH[18O]T[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + [18O]H- + OD- = Fe3OH[18O]T[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + [18O]D- + OH- = Fe3OH[18O]T[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OH- + OH- = Fe3ODOHOHOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OH- + OD- = Fe3ODOHOHOD+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OH- + OT- = Fe3ODOHOHOT+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OH- + [18O]H- = Fe3ODOHOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OH- + [18O]D- = Fe3ODOHOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OH- + [18O]T- = Fe3ODOHOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OD- + OH- = Fe3ODOHODOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OD- + OT- = Fe3ODOHODOT+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OD- + [18O]H- = Fe3ODOHOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OD- + [18O]T- = Fe3ODOHOD[18O]T+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OT- + OH- = Fe3ODOHOTOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OT- + OD- = Fe3ODOHOTOD+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OT- + [18O]H- = Fe3ODOHOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OT- + [18O]D- = Fe3ODOHOT[18O]D+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]H- + OH- = Fe3ODOH[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]H- + OD- = Fe3ODOH[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]H- + OT- = Fe3ODOH[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]H- + [18O]H- = Fe3ODOH[18O]H[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]H- + [18O]D- = Fe3ODOH[18O]H[18O]D+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]H- + [18O]T- = Fe3ODOH[18O]H[18O]T+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]D- + OH- = Fe3ODOH[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]D- + OT- = Fe3ODOH[18O]DOT+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]D- + [18O]H- = Fe3ODOH[18O]D[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]T- + OH- = Fe3ODOH[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]T- + OD- = Fe3ODOH[18O]TOD+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]T- + [18O]H- = Fe3ODOH[18O]T[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + OH- + OH- = Fe3ODODOHOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + OH- + OT- = Fe3ODODOHOT+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + OH- + [18O]H- = Fe3ODODOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + OH- + [18O]T- = Fe3ODODOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + OT- + OH- = Fe3ODODOTOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + OT- + [18O]H- = Fe3ODODOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + [18O]H- + OH- = Fe3ODOD[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + [18O]H- + OT- = Fe3ODOD[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + [18O]H- + [18O]H- = Fe3ODOD[18O]H[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + [18O]T- + OH- = Fe3ODOD[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + OH- + OH- = Fe3ODOTOHOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + OH- + OD- = Fe3ODOTOHOD+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + OH- + [18O]H- = Fe3ODOTOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + OH- + [18O]D- = Fe3ODOTOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + OD- + OH- = Fe3ODOTODOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + OD- + [18O]H- = Fe3ODOTOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + [18O]H- + OH- = Fe3ODOT[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + [18O]H- + OD- = Fe3ODOT[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + [18O]H- + [18O]H- = Fe3ODOT[18O]H[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + [18O]D- + OH- = Fe3ODOT[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OH- + OH- = Fe3OD[18O]HOHOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OH- + OD- = Fe3OD[18O]HOHOD+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OH- + OT- = Fe3OD[18O]HOHOT+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OH- + [18O]H- = Fe3OD[18O]HOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OH- + [18O]D- = Fe3OD[18O]HOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OH- + [18O]T- = Fe3OD[18O]HOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OD- + OH- = Fe3OD[18O]HODOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OD- + OT- = Fe3OD[18O]HODOT+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OD- + [18O]H- = Fe3OD[18O]HOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OT- + OH- = Fe3OD[18O]HOTOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OT- + OD- = Fe3OD[18O]HOTOD+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OT- + [18O]H- = Fe3OD[18O]HOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + [18O]H- + OH- = Fe3OD[18O]H[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + [18O]H- + OD- = Fe3OD[18O]H[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + [18O]H- + OT- = Fe3OD[18O]H[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + [18O]D- + OH- = Fe3OD[18O]H[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + [18O]T- + OH- = Fe3OD[18O]H[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]D- + OH- + OH- = Fe3OD[18O]DOHOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]D- + OH- + OT- = Fe3OD[18O]DOHOT+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]D- + OH- + [18O]H- = Fe3OD[18O]DOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]D- + OT- + OH- = Fe3OD[18O]DOTOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]D- + [18O]H- + OH- = Fe3OD[18O]D[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]T- + OH- + OH- = Fe3OD[18O]TOHOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]T- + OH- + OD- = Fe3OD[18O]TOHOD+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]T- + OH- + [18O]H- = Fe3OD[18O]TOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]T- + OD- + OH- = Fe3OD[18O]TODOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]T- + [18O]H- + OH- = Fe3OD[18O]T[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + OH- + OH- = Fe3OTOHOHOH+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + OH- + OD- = Fe3OTOHOHOD+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + OH- + [18O]H- = Fe3OTOHOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + OH- + [18O]D- = Fe3OTOHOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + OD- + OH- = Fe3OTOHODOH+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + OD- + OD- = Fe3OTOHODOD+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + OD- + [18O]H- = Fe3OTOHOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + OD- + [18O]D- = Fe3OTOHOD[18O]D+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + [18O]H- + OH- = Fe3OTOH[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + [18O]H- + OD- = Fe3OTOH[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + [18O]H- + [18O]H- = Fe3OTOH[18O]H[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + [18O]H- + [18O]D- = Fe3OTOH[18O]H[18O]D+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + [18O]D- + OH- = Fe3OTOH[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + [18O]D- + OD- = Fe3OTOH[18O]DOD+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + [18O]D- + [18O]H- = Fe3OTOH[18O]D[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + OH- + OH- = Fe3OTODOHOH+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + OH- + OD- = Fe3OTODOHOD+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + OH- + [18O]H- = Fe3OTODOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + OH- + [18O]D- = Fe3OTODOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + OD- + OH- = Fe3OTODODOH+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + OD- + [18O]H- = Fe3OTODOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + [18O]H- + OH- = Fe3OTOD[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + [18O]H- + OD- = Fe3OTOD[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + [18O]H- + [18O]H- = Fe3OTOD[18O]H[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + [18O]D- + OH- = Fe3OTOD[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + OH- + OH- = Fe3OT[18O]HOHOH+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + OH- + OD- = Fe3OT[18O]HOHOD+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + OH- + [18O]H- = Fe3OT[18O]HOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + OH- + [18O]D- = Fe3OT[18O]HOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + OD- + OH- = Fe3OT[18O]HODOH+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + OD- + OD- = Fe3OT[18O]HODOD+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + OD- + [18O]H- = Fe3OT[18O]HOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + [18O]H- + OH- = Fe3OT[18O]H[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + [18O]H- + OD- = Fe3OT[18O]H[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + [18O]D- + OH- = Fe3OT[18O]H[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]D- + OH- + OH- = Fe3OT[18O]DOHOH+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]D- + OH- + OD- = Fe3OT[18O]DOHOD+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]D- + OH- + [18O]H- = Fe3OT[18O]DOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]D- + OD- + OH- = Fe3OT[18O]DODOH+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]D- + [18O]H- + OH- = Fe3OT[18O]D[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OH- + OH- = Fe3[18O]HOHOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OH- + OD- = Fe3[18O]HOHOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OH- + OT- = Fe3[18O]HOHOHOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OH- + [18O]H- = Fe3[18O]HOHOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OH- + [18O]D- = Fe3[18O]HOHOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OH- + [18O]T- = Fe3[18O]HOHOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OD- + OH- = Fe3[18O]HOHODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OD- + OD- = Fe3[18O]HOHODOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OD- + OT- = Fe3[18O]HOHODOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OD- + [18O]H- = Fe3[18O]HOHOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OD- + [18O]D- = Fe3[18O]HOHOD[18O]D+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OD- + [18O]T- = Fe3[18O]HOHOD[18O]T+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OT- + OH- = Fe3[18O]HOHOTOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OT- + OD- = Fe3[18O]HOHOTOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OT- + [18O]H- = Fe3[18O]HOHOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OT- + [18O]D- = Fe3[18O]HOHOT[18O]D+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + [18O]H- + OH- = Fe3[18O]HOH[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + [18O]H- + OD- = Fe3[18O]HOH[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + [18O]H- + OT- = Fe3[18O]HOH[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + [18O]D- + OH- = Fe3[18O]HOH[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + [18O]D- + OD- = Fe3[18O]HOH[18O]DOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + [18O]D- + OT- = Fe3[18O]HOH[18O]DOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + [18O]T- + OH- = Fe3[18O]HOH[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + [18O]T- + OD- = Fe3[18O]HOH[18O]TOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OH- + OH- = Fe3[18O]HODOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OH- + OD- = Fe3[18O]HODOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OH- + OT- = Fe3[18O]HODOHOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OH- + [18O]H- = Fe3[18O]HODOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OH- + [18O]D- = Fe3[18O]HODOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OH- + [18O]T- = Fe3[18O]HODOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OD- + OH- = Fe3[18O]HODODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OD- + OT- = Fe3[18O]HODODOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OD- + [18O]H- = Fe3[18O]HODOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OT- + OH- = Fe3[18O]HODOTOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OT- + OD- = Fe3[18O]HODOTOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OT- + [18O]H- = Fe3[18O]HODOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + [18O]H- + OH- = Fe3[18O]HOD[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + [18O]H- + OD- = Fe3[18O]HOD[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + [18O]H- + OT- = Fe3[18O]HOD[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + [18O]D- + OH- = Fe3[18O]HOD[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + [18O]T- + OH- = Fe3[18O]HOD[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + OH- + OH- = Fe3[18O]HOTOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + OH- + OD- = Fe3[18O]HOTOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + OH- + [18O]H- = Fe3[18O]HOTOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + OH- + [18O]D- = Fe3[18O]HOTOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + OD- + OH- = Fe3[18O]HOTODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + OD- + OD- = Fe3[18O]HOTODOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + OD- + [18O]H- = Fe3[18O]HOTOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + [18O]H- + OH- = Fe3[18O]HOT[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + [18O]H- + OD- = Fe3[18O]HOT[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + [18O]D- + OH- = Fe3[18O]HOT[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]H- + OH- + OH- = Fe3[18O]H[18O]HOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]H- + OH- + OD- = Fe3[18O]H[18O]HOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]H- + OH- + OT- = Fe3[18O]H[18O]HOHOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]H- + OD- + OH- = Fe3[18O]H[18O]HODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]H- + OD- + OD- = Fe3[18O]H[18O]HODOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]H- + OD- + OT- = Fe3[18O]H[18O]HODOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]H- + OT- + OH- = Fe3[18O]H[18O]HOTOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]H- + OT- + OD- = Fe3[18O]H[18O]HOTOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]D- + OH- + OH- = Fe3[18O]H[18O]DOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]D- + OH- + OD- = Fe3[18O]H[18O]DOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]D- + OH- + OT- = Fe3[18O]H[18O]DOHOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]D- + OD- + OH- = Fe3[18O]H[18O]DODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]D- + OT- + OH- = Fe3[18O]H[18O]DOTOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]T- + OH- + OH- = Fe3[18O]H[18O]TOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]T- + OH- + OD- = Fe3[18O]H[18O]TOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]T- + OD- + OH- = Fe3[18O]H[18O]TODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OH- + OH- = Fe3[18O]DOHOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OH- + OD- = Fe3[18O]DOHOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OH- + OT- = Fe3[18O]DOHOHOT+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OH- + [18O]H- = Fe3[18O]DOHOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OH- + [18O]D- = Fe3[18O]DOHOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OH- + [18O]T- = Fe3[18O]DOHOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OD- + OH- = Fe3[18O]DOHODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OD- + OT- = Fe3[18O]DOHODOT+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OD- + [18O]H- = Fe3[18O]DOHOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OT- + OH- = Fe3[18O]DOHOTOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OT- + OD- = Fe3[18O]DOHOTOD+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OT- + [18O]H- = Fe3[18O]DOHOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + [18O]H- + OH- = Fe3[18O]DOH[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + [18O]H- + OD- = Fe3[18O]DOH[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + [18O]H- + OT- = Fe3[18O]DOH[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + [18O]D- + OH- = Fe3[18O]DOH[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + [18O]T- + OH- = Fe3[18O]DOH[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OD- + OH- + OH- = Fe3[18O]DODOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OD- + OH- + OT- = Fe3[18O]DODOHOT+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OD- + OH- + [18O]H- = Fe3[18O]DODOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OD- + OT- + OH- = Fe3[18O]DODOTOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OD- + [18O]H- + OH- = Fe3[18O]DOD[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OT- + OH- + OH- = Fe3[18O]DOTOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OT- + OH- + OD- = Fe3[18O]DOTOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OT- + OH- + [18O]H- = Fe3[18O]DOTOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OT- + OD- + OH- = Fe3[18O]DOTODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OT- + [18O]H- + OH- = Fe3[18O]DOT[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + [18O]H- + OH- + OH- = Fe3[18O]D[18O]HOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + [18O]H- + OH- + OD- = Fe3[18O]D[18O]HOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + [18O]H- + OH- + OT- = Fe3[18O]D[18O]HOHOT+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + [18O]H- + OD- + OH- = Fe3[18O]D[18O]HODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + [18O]H- + OT- + OH- = Fe3[18O]D[18O]HOTOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + [18O]D- + OH- + OH- = Fe3[18O]D[18O]DOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + [18O]T- + OH- + OH- = Fe3[18O]D[18O]TOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + OH- + OH- = Fe3[18O]TOHOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + OH- + OD- = Fe3[18O]TOHOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + OH- + [18O]H- = Fe3[18O]TOHOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + OH- + [18O]D- = Fe3[18O]TOHOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + OD- + OH- = Fe3[18O]TOHODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + OD- + OD- = Fe3[18O]TOHODOD+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + OD- + [18O]H- = Fe3[18O]TOHOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + [18O]H- + OH- = Fe3[18O]TOH[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + [18O]H- + OD- = Fe3[18O]TOH[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + [18O]D- + OH- = Fe3[18O]TOH[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OD- + OH- + OH- = Fe3[18O]TODOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OD- + OH- + OD- = Fe3[18O]TODOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OD- + OH- + [18O]H- = Fe3[18O]TODOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OD- + OD- + OH- = Fe3[18O]TODODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OD- + [18O]H- + OH- = Fe3[18O]TOD[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + [18O]H- + OH- + OH- = Fe3[18O]T[18O]HOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + [18O]H- + OH- + OD- = Fe3[18O]T[18O]HOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + [18O]H- + OD- + OH- = Fe3[18O]T[18O]HODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + [18O]D- + OH- + OH- = Fe3[18O]T[18O]DOHOH+5 + 4OH- +Fe3(OH)4+5 + OH- + OH- + OH- + OD- = Fe3OHOHOHOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OH- + OT- = Fe3OHOHOHOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OH- + [18O]H- = Fe3OHOHOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OH- + [18O]D- = Fe3OHOHOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OH- + [18O]T- = Fe3OHOHOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OD- + OH- = Fe3OHOHODOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OD- + OD- = Fe3OHOHODOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OD- + OT- = Fe3OHOHODOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OD- + [18O]H- = Fe3OHOHOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OD- + [18O]D- = Fe3OHOHOD[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OD- + [18O]T- = Fe3OHOHOD[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OT- + OH- = Fe3OHOHOTOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OT- + OD- = Fe3OHOHOTOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OT- + [18O]H- = Fe3OHOHOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OT- + [18O]D- = Fe3OHOHOT[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]H- + OH- = Fe3OHOH[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]H- + OD- = Fe3OHOH[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]H- + OT- = Fe3OHOH[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]H- + [18O]H- = Fe3OHOH[18O]H[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]H- + [18O]D- = Fe3OHOH[18O]H[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]H- + [18O]T- = Fe3OHOH[18O]H[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]D- + OH- = Fe3OHOH[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]D- + OD- = Fe3OHOH[18O]DOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]D- + OT- = Fe3OHOH[18O]DOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]D- + [18O]H- = Fe3OHOH[18O]D[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]D- + [18O]D- = Fe3OHOH[18O]D[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]D- + [18O]T- = Fe3OHOH[18O]D[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]T- + OH- = Fe3OHOH[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]T- + OD- = Fe3OHOH[18O]TOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]T- + [18O]H- = Fe3OHOH[18O]T[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]T- + [18O]D- = Fe3OHOH[18O]T[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OH- + OH- = Fe3OHODOHOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OH- + OD- = Fe3OHODOHOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OH- + OT- = Fe3OHODOHOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OH- + [18O]H- = Fe3OHODOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OH- + [18O]D- = Fe3OHODOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OH- + [18O]T- = Fe3OHODOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OD- + OH- = Fe3OHODODOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OD- + OT- = Fe3OHODODOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OD- + [18O]H- = Fe3OHODOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OD- + [18O]T- = Fe3OHODOD[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OT- + OH- = Fe3OHODOTOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OT- + OD- = Fe3OHODOTOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OT- + [18O]H- = Fe3OHODOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OT- + [18O]D- = Fe3OHODOT[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]H- + OH- = Fe3OHOD[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]H- + OD- = Fe3OHOD[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]H- + OT- = Fe3OHOD[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]H- + [18O]H- = Fe3OHOD[18O]H[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]H- + [18O]D- = Fe3OHOD[18O]H[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]H- + [18O]T- = Fe3OHOD[18O]H[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]D- + OH- = Fe3OHOD[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]D- + OT- = Fe3OHOD[18O]DOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]D- + [18O]H- = Fe3OHOD[18O]D[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]T- + OH- = Fe3OHOD[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]T- + OD- = Fe3OHOD[18O]TOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]T- + [18O]H- = Fe3OHOD[18O]T[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + OH- + OH- = Fe3OHOTOHOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + OH- + OD- = Fe3OHOTOHOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + OH- + [18O]H- = Fe3OHOTOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + OH- + [18O]D- = Fe3OHOTOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + OD- + OH- = Fe3OHOTODOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + OD- + OD- = Fe3OHOTODOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + OD- + [18O]H- = Fe3OHOTOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + OD- + [18O]D- = Fe3OHOTOD[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + [18O]H- + OH- = Fe3OHOT[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + [18O]H- + OD- = Fe3OHOT[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + [18O]H- + [18O]H- = Fe3OHOT[18O]H[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + [18O]H- + [18O]D- = Fe3OHOT[18O]H[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + [18O]D- + OH- = Fe3OHOT[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + [18O]D- + OD- = Fe3OHOT[18O]DOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + [18O]D- + [18O]H- = Fe3OHOT[18O]D[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OH- + OH- = Fe3OH[18O]HOHOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OH- + OD- = Fe3OH[18O]HOHOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OH- + OT- = Fe3OH[18O]HOHOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OH- + [18O]H- = Fe3OH[18O]HOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OH- + [18O]D- = Fe3OH[18O]HOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OH- + [18O]T- = Fe3OH[18O]HOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OD- + OH- = Fe3OH[18O]HODOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OD- + OD- = Fe3OH[18O]HODOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OD- + OT- = Fe3OH[18O]HODOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OD- + [18O]H- = Fe3OH[18O]HOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OD- + [18O]D- = Fe3OH[18O]HOD[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OD- + [18O]T- = Fe3OH[18O]HOD[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OT- + OH- = Fe3OH[18O]HOTOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OT- + OD- = Fe3OH[18O]HOTOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OT- + [18O]H- = Fe3OH[18O]HOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OT- + [18O]D- = Fe3OH[18O]HOT[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + [18O]H- + OH- = Fe3OH[18O]H[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + [18O]H- + OD- = Fe3OH[18O]H[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + [18O]H- + OT- = Fe3OH[18O]H[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + [18O]D- + OH- = Fe3OH[18O]H[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + [18O]D- + OD- = Fe3OH[18O]H[18O]DOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + [18O]D- + OT- = Fe3OH[18O]H[18O]DOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + [18O]T- + OH- = Fe3OH[18O]H[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + [18O]T- + OD- = Fe3OH[18O]H[18O]TOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OH- + OH- = Fe3OH[18O]DOHOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OH- + OD- = Fe3OH[18O]DOHOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OH- + OT- = Fe3OH[18O]DOHOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OH- + [18O]H- = Fe3OH[18O]DOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OH- + [18O]D- = Fe3OH[18O]DOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OH- + [18O]T- = Fe3OH[18O]DOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OD- + OH- = Fe3OH[18O]DODOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OD- + OT- = Fe3OH[18O]DODOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OD- + [18O]H- = Fe3OH[18O]DOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OT- + OH- = Fe3OH[18O]DOTOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OT- + OD- = Fe3OH[18O]DOTOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OT- + [18O]H- = Fe3OH[18O]DOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + [18O]H- + OH- = Fe3OH[18O]D[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + [18O]H- + OD- = Fe3OH[18O]D[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + [18O]H- + OT- = Fe3OH[18O]D[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + [18O]D- + OH- = Fe3OH[18O]D[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + [18O]T- + OH- = Fe3OH[18O]D[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + OH- + OH- = Fe3OH[18O]TOHOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + OH- + OD- = Fe3OH[18O]TOHOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + OH- + [18O]H- = Fe3OH[18O]TOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + OH- + [18O]D- = Fe3OH[18O]TOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + OD- + OH- = Fe3OH[18O]TODOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + OD- + OD- = Fe3OH[18O]TODOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + OD- + [18O]H- = Fe3OH[18O]TOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + [18O]H- + OH- = Fe3OH[18O]T[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + [18O]H- + OD- = Fe3OH[18O]T[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + [18O]D- + OH- = Fe3OH[18O]T[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OH- + OH- = Fe3ODOHOHOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OH- + OD- = Fe3ODOHOHOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OH- + OT- = Fe3ODOHOHOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OH- + [18O]H- = Fe3ODOHOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OH- + [18O]D- = Fe3ODOHOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OH- + [18O]T- = Fe3ODOHOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OD- + OH- = Fe3ODOHODOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OD- + OT- = Fe3ODOHODOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OD- + [18O]H- = Fe3ODOHOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OD- + [18O]T- = Fe3ODOHOD[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OT- + OH- = Fe3ODOHOTOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OT- + OD- = Fe3ODOHOTOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OT- + [18O]H- = Fe3ODOHOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OT- + [18O]D- = Fe3ODOHOT[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]H- + OH- = Fe3ODOH[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]H- + OD- = Fe3ODOH[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]H- + OT- = Fe3ODOH[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]H- + [18O]H- = Fe3ODOH[18O]H[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]H- + [18O]D- = Fe3ODOH[18O]H[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]H- + [18O]T- = Fe3ODOH[18O]H[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]D- + OH- = Fe3ODOH[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]D- + OT- = Fe3ODOH[18O]DOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]D- + [18O]H- = Fe3ODOH[18O]D[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]T- + OH- = Fe3ODOH[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]T- + OD- = Fe3ODOH[18O]TOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]T- + [18O]H- = Fe3ODOH[18O]T[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + OH- + OH- = Fe3ODODOHOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + OH- + OT- = Fe3ODODOHOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + OH- + [18O]H- = Fe3ODODOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + OH- + [18O]T- = Fe3ODODOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + OT- + OH- = Fe3ODODOTOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + OT- + [18O]H- = Fe3ODODOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + [18O]H- + OH- = Fe3ODOD[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + [18O]H- + OT- = Fe3ODOD[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + [18O]H- + [18O]H- = Fe3ODOD[18O]H[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + [18O]T- + OH- = Fe3ODOD[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + OH- + OH- = Fe3ODOTOHOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + OH- + OD- = Fe3ODOTOHOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + OH- + [18O]H- = Fe3ODOTOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + OH- + [18O]D- = Fe3ODOTOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + OD- + OH- = Fe3ODOTODOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + OD- + [18O]H- = Fe3ODOTOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + [18O]H- + OH- = Fe3ODOT[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + [18O]H- + OD- = Fe3ODOT[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + [18O]H- + [18O]H- = Fe3ODOT[18O]H[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + [18O]D- + OH- = Fe3ODOT[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OH- + OH- = Fe3OD[18O]HOHOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OH- + OD- = Fe3OD[18O]HOHOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OH- + OT- = Fe3OD[18O]HOHOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OH- + [18O]H- = Fe3OD[18O]HOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OH- + [18O]D- = Fe3OD[18O]HOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OH- + [18O]T- = Fe3OD[18O]HOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OD- + OH- = Fe3OD[18O]HODOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OD- + OT- = Fe3OD[18O]HODOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OD- + [18O]H- = Fe3OD[18O]HOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OT- + OH- = Fe3OD[18O]HOTOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OT- + OD- = Fe3OD[18O]HOTOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OT- + [18O]H- = Fe3OD[18O]HOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + [18O]H- + OH- = Fe3OD[18O]H[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + [18O]H- + OD- = Fe3OD[18O]H[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + [18O]H- + OT- = Fe3OD[18O]H[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + [18O]D- + OH- = Fe3OD[18O]H[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + [18O]T- + OH- = Fe3OD[18O]H[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]D- + OH- + OH- = Fe3OD[18O]DOHOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]D- + OH- + OT- = Fe3OD[18O]DOHOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]D- + OH- + [18O]H- = Fe3OD[18O]DOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]D- + OT- + OH- = Fe3OD[18O]DOTOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]D- + [18O]H- + OH- = Fe3OD[18O]D[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]T- + OH- + OH- = Fe3OD[18O]TOHOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]T- + OH- + OD- = Fe3OD[18O]TOHOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]T- + OH- + [18O]H- = Fe3OD[18O]TOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]T- + OD- + OH- = Fe3OD[18O]TODOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]T- + [18O]H- + OH- = Fe3OD[18O]T[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + OH- + OH- = Fe3OTOHOHOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + OH- + OD- = Fe3OTOHOHOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + OH- + [18O]H- = Fe3OTOHOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + OH- + [18O]D- = Fe3OTOHOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + OD- + OH- = Fe3OTOHODOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + OD- + OD- = Fe3OTOHODOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + OD- + [18O]H- = Fe3OTOHOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + OD- + [18O]D- = Fe3OTOHOD[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + [18O]H- + OH- = Fe3OTOH[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + [18O]H- + OD- = Fe3OTOH[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + [18O]H- + [18O]H- = Fe3OTOH[18O]H[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + [18O]H- + [18O]D- = Fe3OTOH[18O]H[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + [18O]D- + OH- = Fe3OTOH[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + [18O]D- + OD- = Fe3OTOH[18O]DOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + [18O]D- + [18O]H- = Fe3OTOH[18O]D[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + OH- + OH- = Fe3OTODOHOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + OH- + OD- = Fe3OTODOHOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + OH- + [18O]H- = Fe3OTODOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + OH- + [18O]D- = Fe3OTODOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + OD- + OH- = Fe3OTODODOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + OD- + [18O]H- = Fe3OTODOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + [18O]H- + OH- = Fe3OTOD[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + [18O]H- + OD- = Fe3OTOD[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + [18O]H- + [18O]H- = Fe3OTOD[18O]H[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + [18O]D- + OH- = Fe3OTOD[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + OH- + OH- = Fe3OT[18O]HOHOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + OH- + OD- = Fe3OT[18O]HOHOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + OH- + [18O]H- = Fe3OT[18O]HOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + OH- + [18O]D- = Fe3OT[18O]HOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + OD- + OH- = Fe3OT[18O]HODOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + OD- + OD- = Fe3OT[18O]HODOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + OD- + [18O]H- = Fe3OT[18O]HOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + [18O]H- + OH- = Fe3OT[18O]H[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + [18O]H- + OD- = Fe3OT[18O]H[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + [18O]D- + OH- = Fe3OT[18O]H[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]D- + OH- + OH- = Fe3OT[18O]DOHOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]D- + OH- + OD- = Fe3OT[18O]DOHOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]D- + OH- + [18O]H- = Fe3OT[18O]DOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]D- + OD- + OH- = Fe3OT[18O]DODOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]D- + [18O]H- + OH- = Fe3OT[18O]D[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OH- + OH- = Fe3[18O]HOHOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OH- + OD- = Fe3[18O]HOHOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OH- + OT- = Fe3[18O]HOHOHOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OH- + [18O]H- = Fe3[18O]HOHOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OH- + [18O]D- = Fe3[18O]HOHOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OH- + [18O]T- = Fe3[18O]HOHOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OD- + OH- = Fe3[18O]HOHODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OD- + OD- = Fe3[18O]HOHODOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OD- + OT- = Fe3[18O]HOHODOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OD- + [18O]H- = Fe3[18O]HOHOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OD- + [18O]D- = Fe3[18O]HOHOD[18O]D+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OD- + [18O]T- = Fe3[18O]HOHOD[18O]T+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OT- + OH- = Fe3[18O]HOHOTOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OT- + OD- = Fe3[18O]HOHOTOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OT- + [18O]H- = Fe3[18O]HOHOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OT- + [18O]D- = Fe3[18O]HOHOT[18O]D+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + [18O]H- + OH- = Fe3[18O]HOH[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + [18O]H- + OD- = Fe3[18O]HOH[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + [18O]H- + OT- = Fe3[18O]HOH[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + [18O]D- + OH- = Fe3[18O]HOH[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + [18O]D- + OD- = Fe3[18O]HOH[18O]DOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + [18O]D- + OT- = Fe3[18O]HOH[18O]DOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + [18O]T- + OH- = Fe3[18O]HOH[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + [18O]T- + OD- = Fe3[18O]HOH[18O]TOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OH- + OH- = Fe3[18O]HODOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OH- + OD- = Fe3[18O]HODOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OH- + OT- = Fe3[18O]HODOHOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OH- + [18O]H- = Fe3[18O]HODOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OH- + [18O]D- = Fe3[18O]HODOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OH- + [18O]T- = Fe3[18O]HODOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OD- + OH- = Fe3[18O]HODODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OD- + OT- = Fe3[18O]HODODOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OD- + [18O]H- = Fe3[18O]HODOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OT- + OH- = Fe3[18O]HODOTOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OT- + OD- = Fe3[18O]HODOTOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OT- + [18O]H- = Fe3[18O]HODOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + [18O]H- + OH- = Fe3[18O]HOD[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + [18O]H- + OD- = Fe3[18O]HOD[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + [18O]H- + OT- = Fe3[18O]HOD[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + [18O]D- + OH- = Fe3[18O]HOD[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + [18O]T- + OH- = Fe3[18O]HOD[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + OH- + OH- = Fe3[18O]HOTOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + OH- + OD- = Fe3[18O]HOTOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + OH- + [18O]H- = Fe3[18O]HOTOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + OH- + [18O]D- = Fe3[18O]HOTOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + OD- + OH- = Fe3[18O]HOTODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + OD- + OD- = Fe3[18O]HOTODOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + OD- + [18O]H- = Fe3[18O]HOTOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + [18O]H- + OH- = Fe3[18O]HOT[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + [18O]H- + OD- = Fe3[18O]HOT[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + [18O]D- + OH- = Fe3[18O]HOT[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]H- + OH- + OH- = Fe3[18O]H[18O]HOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]H- + OH- + OD- = Fe3[18O]H[18O]HOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]H- + OH- + OT- = Fe3[18O]H[18O]HOHOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]H- + OD- + OH- = Fe3[18O]H[18O]HODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]H- + OD- + OD- = Fe3[18O]H[18O]HODOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]H- + OD- + OT- = Fe3[18O]H[18O]HODOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]H- + OT- + OH- = Fe3[18O]H[18O]HOTOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]H- + OT- + OD- = Fe3[18O]H[18O]HOTOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]D- + OH- + OH- = Fe3[18O]H[18O]DOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]D- + OH- + OD- = Fe3[18O]H[18O]DOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]D- + OH- + OT- = Fe3[18O]H[18O]DOHOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]D- + OD- + OH- = Fe3[18O]H[18O]DODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]D- + OT- + OH- = Fe3[18O]H[18O]DOTOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]T- + OH- + OH- = Fe3[18O]H[18O]TOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]T- + OH- + OD- = Fe3[18O]H[18O]TOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]T- + OD- + OH- = Fe3[18O]H[18O]TODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OH- + OH- = Fe3[18O]DOHOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OH- + OD- = Fe3[18O]DOHOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OH- + OT- = Fe3[18O]DOHOHOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OH- + [18O]H- = Fe3[18O]DOHOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OH- + [18O]D- = Fe3[18O]DOHOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OH- + [18O]T- = Fe3[18O]DOHOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OD- + OH- = Fe3[18O]DOHODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OD- + OT- = Fe3[18O]DOHODOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OD- + [18O]H- = Fe3[18O]DOHOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OT- + OH- = Fe3[18O]DOHOTOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OT- + OD- = Fe3[18O]DOHOTOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OT- + [18O]H- = Fe3[18O]DOHOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + [18O]H- + OH- = Fe3[18O]DOH[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + [18O]H- + OD- = Fe3[18O]DOH[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + [18O]H- + OT- = Fe3[18O]DOH[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + [18O]D- + OH- = Fe3[18O]DOH[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + [18O]T- + OH- = Fe3[18O]DOH[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OD- + OH- + OH- = Fe3[18O]DODOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OD- + OH- + OT- = Fe3[18O]DODOHOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OD- + OH- + [18O]H- = Fe3[18O]DODOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OD- + OT- + OH- = Fe3[18O]DODOTOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OD- + [18O]H- + OH- = Fe3[18O]DOD[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OT- + OH- + OH- = Fe3[18O]DOTOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OT- + OH- + OD- = Fe3[18O]DOTOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OT- + OH- + [18O]H- = Fe3[18O]DOTOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OT- + OD- + OH- = Fe3[18O]DOTODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OT- + [18O]H- + OH- = Fe3[18O]DOT[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + [18O]H- + OH- + OH- = Fe3[18O]D[18O]HOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + [18O]H- + OH- + OD- = Fe3[18O]D[18O]HOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + [18O]H- + OH- + OT- = Fe3[18O]D[18O]HOHOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + [18O]H- + OD- + OH- = Fe3[18O]D[18O]HODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + [18O]H- + OT- + OH- = Fe3[18O]D[18O]HOTOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + [18O]D- + OH- + OH- = Fe3[18O]D[18O]DOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + [18O]T- + OH- + OH- = Fe3[18O]D[18O]TOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + OH- + OH- = Fe3[18O]TOHOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + OH- + OD- = Fe3[18O]TOHOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + OH- + [18O]H- = Fe3[18O]TOHOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + OH- + [18O]D- = Fe3[18O]TOHOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + OD- + OH- = Fe3[18O]TOHODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + OD- + OD- = Fe3[18O]TOHODOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + OD- + [18O]H- = Fe3[18O]TOHOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + [18O]H- + OH- = Fe3[18O]TOH[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + [18O]H- + OD- = Fe3[18O]TOH[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + [18O]D- + OH- = Fe3[18O]TOH[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OD- + OH- + OH- = Fe3[18O]TODOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OD- + OH- + OD- = Fe3[18O]TODOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OD- + OH- + [18O]H- = Fe3[18O]TODOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OD- + OD- + OH- = Fe3[18O]TODODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OD- + [18O]H- + OH- = Fe3[18O]TOD[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + [18O]H- + OH- + OH- = Fe3[18O]T[18O]HOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + [18O]H- + OH- + OD- = Fe3[18O]T[18O]HOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + [18O]H- + OD- + OH- = Fe3[18O]T[18O]HODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + [18O]D- + OH- + OH- = Fe3[18O]T[18O]DOHOH+5 + 4 OH- # # Added FeSO4+ reactions 16Dec09 # @@ -6210,9 +6214,9 @@ FeHSO4+2 + T[34S]O4- = FeT[34S]O4+2 + HSO4- # Added Fe(SO4)2- reactions 16Dec09 # Revised 17Dec09 # -Fe(SO4)2- + SO4-2 + [34S]O4-2 = FeSO4[34S]O4- + 2SO4-2 -Fe(SO4)2- + [34S]O4-2 + SO4-2 = Fe[34S]O4SO4- + 2SO4-2 -Fe(SO4)2- + [34S]O4-2 + [34S]O4-2 = Fe[34S]O4[34S]O4- + 2SO4-2 +Fe(SO4)2- + SO4-2 + [34S]O4-2 = FeSO4[34S]O4- + 2 SO4-2 +Fe(SO4)2- + [34S]O4-2 + SO4-2 = Fe[34S]O4SO4- + 2 SO4-2 +Fe(SO4)2- + [34S]O4-2 + [34S]O4-2 = Fe[34S]O4[34S]O4- + 2 SO4-2 # # Missing FeHPO4+ reactions # @@ -6231,524 +6235,524 @@ AlOH+2 + [18O]T- = Al[18O]T+2 + OH- # Added Al(OH)2+ reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Al(OH)2+ + OH- + OD- = AlOHOD+ + 2OH- -Al(OH)2+ + OH- + OT- = AlOHOT+ + 2OH- -Al(OH)2+ + OH- + [18O]H- = AlOH[18O]H+ + 2OH- -Al(OH)2+ + OH- + [18O]D- = AlOH[18O]D+ + 2OH- -Al(OH)2+ + OH- + [18O]T- = AlOH[18O]T+ + 2OH- -Al(OH)2+ + OD- + OH- = AlODOH+ + 2OH- -Al(OH)2+ + OD- + OD- = AlODOD+ + 2OH- -Al(OH)2+ + OD- + OT- = AlODOT+ + 2OH- -Al(OH)2+ + OD- + [18O]H- = AlOD[18O]H+ + 2OH- -Al(OH)2+ + OD- + [18O]D- = AlOD[18O]D+ + 2OH- -Al(OH)2+ + OD- + [18O]T- = AlOD[18O]T+ + 2OH- -Al(OH)2+ + OT- + OH- = AlOTOH+ + 2OH- -Al(OH)2+ + OT- + OD- = AlOTOD+ + 2OH- -Al(OH)2+ + OT- + [18O]H- = AlOT[18O]H+ + 2OH- -Al(OH)2+ + OT- + [18O]D- = AlOT[18O]D+ + 2OH- -Al(OH)2+ + [18O]H- + OH- = Al[18O]HOH+ + 2OH- -Al(OH)2+ + [18O]H- + OD- = Al[18O]HOD+ + 2OH- -Al(OH)2+ + [18O]H- + OT- = Al[18O]HOT+ + 2OH- -Al(OH)2+ + [18O]H- + [18O]H- = Al[18O]H[18O]H+ + 2OH- -Al(OH)2+ + [18O]H- + [18O]D- = Al[18O]H[18O]D+ + 2OH- -Al(OH)2+ + [18O]H- + [18O]T- = Al[18O]H[18O]T+ + 2OH- -Al(OH)2+ + [18O]D- + OH- = Al[18O]DOH+ + 2OH- -Al(OH)2+ + [18O]D- + OD- = Al[18O]DOD+ + 2OH- -Al(OH)2+ + [18O]D- + OT- = Al[18O]DOT+ + 2OH- -Al(OH)2+ + [18O]D- + [18O]H- = Al[18O]D[18O]H+ + 2OH- -Al(OH)2+ + [18O]D- + [18O]D- = Al[18O]D[18O]D+ + 2OH- -Al(OH)2+ + [18O]D- + [18O]T- = Al[18O]D[18O]T+ + 2OH- -Al(OH)2+ + [18O]T- + OH- = Al[18O]TOH+ + 2OH- -Al(OH)2+ + [18O]T- + OD- = Al[18O]TOD+ + 2OH- -Al(OH)2+ + [18O]T- + [18O]H- = Al[18O]T[18O]H+ + 2OH- -Al(OH)2+ + [18O]T- + [18O]D- = Al[18O]T[18O]D+ + 2OH- +Al(OH)2+ + OH- + OD- = AlOHOD+ + 2 OH- +Al(OH)2+ + OH- + OT- = AlOHOT+ + 2 OH- +Al(OH)2+ + OH- + [18O]H- = AlOH[18O]H+ + 2 OH- +Al(OH)2+ + OH- + [18O]D- = AlOH[18O]D+ + 2 OH- +Al(OH)2+ + OH- + [18O]T- = AlOH[18O]T+ + 2 OH- +Al(OH)2+ + OD- + OH- = AlODOH+ + 2 OH- +Al(OH)2+ + OD- + OD- = AlODOD+ + 2 OH- +Al(OH)2+ + OD- + OT- = AlODOT+ + 2 OH- +Al(OH)2+ + OD- + [18O]H- = AlOD[18O]H+ + 2 OH- +Al(OH)2+ + OD- + [18O]D- = AlOD[18O]D+ + 2 OH- +Al(OH)2+ + OD- + [18O]T- = AlOD[18O]T+ + 2 OH- +Al(OH)2+ + OT- + OH- = AlOTOH+ + 2 OH- +Al(OH)2+ + OT- + OD- = AlOTOD+ + 2 OH- +Al(OH)2+ + OT- + [18O]H- = AlOT[18O]H+ + 2 OH- +Al(OH)2+ + OT- + [18O]D- = AlOT[18O]D+ + 2 OH- +Al(OH)2+ + [18O]H- + OH- = Al[18O]HOH+ + 2 OH- +Al(OH)2+ + [18O]H- + OD- = Al[18O]HOD+ + 2 OH- +Al(OH)2+ + [18O]H- + OT- = Al[18O]HOT+ + 2 OH- +Al(OH)2+ + [18O]H- + [18O]H- = Al[18O]H[18O]H+ + 2 OH- +Al(OH)2+ + [18O]H- + [18O]D- = Al[18O]H[18O]D+ + 2 OH- +Al(OH)2+ + [18O]H- + [18O]T- = Al[18O]H[18O]T+ + 2 OH- +Al(OH)2+ + [18O]D- + OH- = Al[18O]DOH+ + 2 OH- +Al(OH)2+ + [18O]D- + OD- = Al[18O]DOD+ + 2 OH- +Al(OH)2+ + [18O]D- + OT- = Al[18O]DOT+ + 2 OH- +Al(OH)2+ + [18O]D- + [18O]H- = Al[18O]D[18O]H+ + 2 OH- +Al(OH)2+ + [18O]D- + [18O]D- = Al[18O]D[18O]D+ + 2 OH- +Al(OH)2+ + [18O]D- + [18O]T- = Al[18O]D[18O]T+ + 2 OH- +Al(OH)2+ + [18O]T- + OH- = Al[18O]TOH+ + 2 OH- +Al(OH)2+ + [18O]T- + OD- = Al[18O]TOD+ + 2 OH- +Al(OH)2+ + [18O]T- + [18O]H- = Al[18O]T[18O]H+ + 2 OH- +Al(OH)2+ + [18O]T- + [18O]D- = Al[18O]T[18O]D+ + 2 OH- # # Added Al(OH)3 reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Al(OH)3 + OH- + OH- + OD- = AlOHOHOD + 3OH- -Al(OH)3 + OH- + OH- + OT- = AlOHOHOT + 3OH- -Al(OH)3 + OH- + OH- + [18O]H- = AlOHOH[18O]H + 3OH- -Al(OH)3 + OH- + OH- + [18O]D- = AlOHOH[18O]D + 3OH- -Al(OH)3 + OH- + OH- + [18O]T- = AlOHOH[18O]T + 3OH- -Al(OH)3 + OH- + OD- + OH- = AlOHODOH + 3OH- -Al(OH)3 + OH- + OD- + OD- = AlOHODOD + 3OH- -Al(OH)3 + OH- + OD- + OT- = AlOHODOT + 3OH- -Al(OH)3 + OH- + OD- + [18O]H- = AlOHOD[18O]H + 3OH- -Al(OH)3 + OH- + OD- + [18O]D- = AlOHOD[18O]D + 3OH- -Al(OH)3 + OH- + OD- + [18O]T- = AlOHOD[18O]T + 3OH- -Al(OH)3 + OH- + OT- + OH- = AlOHOTOH + 3OH- -Al(OH)3 + OH- + OT- + OD- = AlOHOTOD + 3OH- -Al(OH)3 + OH- + OT- + [18O]H- = AlOHOT[18O]H + 3OH- -Al(OH)3 + OH- + OT- + [18O]D- = AlOHOT[18O]D + 3OH- -Al(OH)3 + OH- + [18O]H- + OH- = AlOH[18O]HOH + 3OH- -Al(OH)3 + OH- + [18O]H- + OD- = AlOH[18O]HOD + 3OH- -Al(OH)3 + OH- + [18O]H- + OT- = AlOH[18O]HOT + 3OH- -Al(OH)3 + OH- + [18O]H- + [18O]H- = AlOH[18O]H[18O]H + 3OH- -Al(OH)3 + OH- + [18O]H- + [18O]D- = AlOH[18O]H[18O]D + 3OH- -Al(OH)3 + OH- + [18O]H- + [18O]T- = AlOH[18O]H[18O]T + 3OH- -Al(OH)3 + OH- + [18O]D- + OH- = AlOH[18O]DOH + 3OH- -Al(OH)3 + OH- + [18O]D- + OD- = AlOH[18O]DOD + 3OH- -Al(OH)3 + OH- + [18O]D- + OT- = AlOH[18O]DOT + 3OH- -Al(OH)3 + OH- + [18O]D- + [18O]H- = AlOH[18O]D[18O]H + 3OH- -Al(OH)3 + OH- + [18O]D- + [18O]D- = AlOH[18O]D[18O]D + 3OH- -Al(OH)3 + OH- + [18O]D- + [18O]T- = AlOH[18O]D[18O]T + 3OH- -Al(OH)3 + OH- + [18O]T- + OH- = AlOH[18O]TOH + 3OH- -Al(OH)3 + OH- + [18O]T- + OD- = AlOH[18O]TOD + 3OH- -Al(OH)3 + OH- + [18O]T- + [18O]H- = AlOH[18O]T[18O]H + 3OH- -Al(OH)3 + OH- + [18O]T- + [18O]D- = AlOH[18O]T[18O]D + 3OH- -Al(OH)3 + OD- + OH- + OH- = AlODOHOH + 3OH- -Al(OH)3 + OD- + OH- + OD- = AlODOHOD + 3OH- -Al(OH)3 + OD- + OH- + OT- = AlODOHOT + 3OH- -Al(OH)3 + OD- + OH- + [18O]H- = AlODOH[18O]H + 3OH- -Al(OH)3 + OD- + OH- + [18O]D- = AlODOH[18O]D + 3OH- -Al(OH)3 + OD- + OH- + [18O]T- = AlODOH[18O]T + 3OH- -Al(OH)3 + OD- + OD- + OH- = AlODODOH + 3OH- -Al(OH)3 + OD- + OD- + OT- = AlODODOT + 3OH- -Al(OH)3 + OD- + OD- + [18O]H- = AlODOD[18O]H + 3OH- -Al(OH)3 + OD- + OD- + [18O]T- = AlODOD[18O]T + 3OH- -Al(OH)3 + OD- + OT- + OH- = AlODOTOH + 3OH- -Al(OH)3 + OD- + OT- + OD- = AlODOTOD + 3OH- -Al(OH)3 + OD- + OT- + [18O]H- = AlODOT[18O]H + 3OH- -Al(OH)3 + OD- + OT- + [18O]D- = AlODOT[18O]D + 3OH- -Al(OH)3 + OD- + [18O]H- + OH- = AlOD[18O]HOH + 3OH- -Al(OH)3 + OD- + [18O]H- + OD- = AlOD[18O]HOD + 3OH- -Al(OH)3 + OD- + [18O]H- + OT- = AlOD[18O]HOT + 3OH- -Al(OH)3 + OD- + [18O]H- + [18O]H- = AlOD[18O]H[18O]H + 3OH- -Al(OH)3 + OD- + [18O]H- + [18O]D- = AlOD[18O]H[18O]D + 3OH- -Al(OH)3 + OD- + [18O]H- + [18O]T- = AlOD[18O]H[18O]T + 3OH- -Al(OH)3 + OD- + [18O]D- + OH- = AlOD[18O]DOH + 3OH- -Al(OH)3 + OD- + [18O]D- + OT- = AlOD[18O]DOT + 3OH- -Al(OH)3 + OD- + [18O]D- + [18O]H- = AlOD[18O]D[18O]H + 3OH- -Al(OH)3 + OD- + [18O]T- + OH- = AlOD[18O]TOH + 3OH- -Al(OH)3 + OD- + [18O]T- + OD- = AlOD[18O]TOD + 3OH- -Al(OH)3 + OD- + [18O]T- + [18O]H- = AlOD[18O]T[18O]H + 3OH- -Al(OH)3 + OT- + OH- + OH- = AlOTOHOH + 3OH- -Al(OH)3 + OT- + OH- + OD- = AlOTOHOD + 3OH- -Al(OH)3 + OT- + OH- + [18O]H- = AlOTOH[18O]H + 3OH- -Al(OH)3 + OT- + OH- + [18O]D- = AlOTOH[18O]D + 3OH- -Al(OH)3 + OT- + OD- + OH- = AlOTODOH + 3OH- -Al(OH)3 + OT- + OD- + OD- = AlOTODOD + 3OH- -Al(OH)3 + OT- + OD- + [18O]H- = AlOTOD[18O]H + 3OH- -Al(OH)3 + OT- + OD- + [18O]D- = AlOTOD[18O]D + 3OH- -Al(OH)3 + OT- + [18O]H- + OH- = AlOT[18O]HOH + 3OH- -Al(OH)3 + OT- + [18O]H- + OD- = AlOT[18O]HOD + 3OH- -Al(OH)3 + OT- + [18O]H- + [18O]H- = AlOT[18O]H[18O]H + 3OH- -Al(OH)3 + OT- + [18O]H- + [18O]D- = AlOT[18O]H[18O]D + 3OH- -Al(OH)3 + OT- + [18O]D- + OH- = AlOT[18O]DOH + 3OH- -Al(OH)3 + OT- + [18O]D- + OD- = AlOT[18O]DOD + 3OH- -Al(OH)3 + OT- + [18O]D- + [18O]H- = AlOT[18O]D[18O]H + 3OH- -Al(OH)3 + [18O]H- + OH- + OH- = Al[18O]HOHOH + 3OH- -Al(OH)3 + [18O]H- + OH- + OD- = Al[18O]HOHOD + 3OH- -Al(OH)3 + [18O]H- + OH- + OT- = Al[18O]HOHOT + 3OH- -Al(OH)3 + [18O]H- + OH- + [18O]H- = Al[18O]HOH[18O]H + 3OH- -Al(OH)3 + [18O]H- + OH- + [18O]D- = Al[18O]HOH[18O]D + 3OH- -Al(OH)3 + [18O]H- + OH- + [18O]T- = Al[18O]HOH[18O]T + 3OH- -Al(OH)3 + [18O]H- + OD- + OH- = Al[18O]HODOH + 3OH- -Al(OH)3 + [18O]H- + OD- + OD- = Al[18O]HODOD + 3OH- -Al(OH)3 + [18O]H- + OD- + OT- = Al[18O]HODOT + 3OH- -Al(OH)3 + [18O]H- + OD- + [18O]H- = Al[18O]HOD[18O]H + 3OH- -Al(OH)3 + [18O]H- + OD- + [18O]D- = Al[18O]HOD[18O]D + 3OH- -Al(OH)3 + [18O]H- + OD- + [18O]T- = Al[18O]HOD[18O]T + 3OH- -Al(OH)3 + [18O]H- + OT- + OH- = Al[18O]HOTOH + 3OH- -Al(OH)3 + [18O]H- + OT- + OD- = Al[18O]HOTOD + 3OH- -Al(OH)3 + [18O]H- + OT- + [18O]H- = Al[18O]HOT[18O]H + 3OH- -Al(OH)3 + [18O]H- + OT- + [18O]D- = Al[18O]HOT[18O]D + 3OH- -Al(OH)3 + [18O]H- + [18O]H- + OH- = Al[18O]H[18O]HOH + 3OH- -Al(OH)3 + [18O]H- + [18O]H- + OD- = Al[18O]H[18O]HOD + 3OH- -Al(OH)3 + [18O]H- + [18O]H- + OT- = Al[18O]H[18O]HOT + 3OH- -Al(OH)3 + [18O]H- + [18O]D- + OH- = Al[18O]H[18O]DOH + 3OH- -Al(OH)3 + [18O]H- + [18O]D- + OD- = Al[18O]H[18O]DOD + 3OH- -Al(OH)3 + [18O]H- + [18O]D- + OT- = Al[18O]H[18O]DOT + 3OH- -Al(OH)3 + [18O]H- + [18O]T- + OH- = Al[18O]H[18O]TOH + 3OH- -Al(OH)3 + [18O]H- + [18O]T- + OD- = Al[18O]H[18O]TOD + 3OH- -Al(OH)3 + [18O]D- + OH- + OH- = Al[18O]DOHOH + 3OH- -Al(OH)3 + [18O]D- + OH- + OD- = Al[18O]DOHOD + 3OH- -Al(OH)3 + [18O]D- + OH- + OT- = Al[18O]DOHOT + 3OH- -Al(OH)3 + [18O]D- + OH- + [18O]H- = Al[18O]DOH[18O]H + 3OH- -Al(OH)3 + [18O]D- + OH- + [18O]D- = Al[18O]DOH[18O]D + 3OH- -Al(OH)3 + [18O]D- + OH- + [18O]T- = Al[18O]DOH[18O]T + 3OH- -Al(OH)3 + [18O]D- + OD- + OH- = Al[18O]DODOH + 3OH- -Al(OH)3 + [18O]D- + OD- + OT- = Al[18O]DODOT + 3OH- -Al(OH)3 + [18O]D- + OD- + [18O]H- = Al[18O]DOD[18O]H + 3OH- -Al(OH)3 + [18O]D- + OT- + OH- = Al[18O]DOTOH + 3OH- -Al(OH)3 + [18O]D- + OT- + OD- = Al[18O]DOTOD + 3OH- -Al(OH)3 + [18O]D- + OT- + [18O]H- = Al[18O]DOT[18O]H + 3OH- -Al(OH)3 + [18O]D- + [18O]H- + OH- = Al[18O]D[18O]HOH + 3OH- -Al(OH)3 + [18O]D- + [18O]H- + OD- = Al[18O]D[18O]HOD + 3OH- -Al(OH)3 + [18O]D- + [18O]H- + OT- = Al[18O]D[18O]HOT + 3OH- -Al(OH)3 + [18O]D- + [18O]D- + OH- = Al[18O]D[18O]DOH + 3OH- -Al(OH)3 + [18O]D- + [18O]T- + OH- = Al[18O]D[18O]TOH + 3OH- -Al(OH)3 + [18O]T- + OH- + OH- = Al[18O]TOHOH + 3OH- -Al(OH)3 + [18O]T- + OH- + OD- = Al[18O]TOHOD + 3OH- -Al(OH)3 + [18O]T- + OH- + [18O]H- = Al[18O]TOH[18O]H + 3OH- -Al(OH)3 + [18O]T- + OH- + [18O]D- = Al[18O]TOH[18O]D + 3OH- -Al(OH)3 + [18O]T- + OD- + OH- = Al[18O]TODOH + 3OH- -Al(OH)3 + [18O]T- + OD- + OD- = Al[18O]TODOD + 3OH- -Al(OH)3 + [18O]T- + OD- + [18O]H- = Al[18O]TOD[18O]H + 3OH- -Al(OH)3 + [18O]T- + [18O]H- + OH- = Al[18O]T[18O]HOH + 3OH- -Al(OH)3 + [18O]T- + [18O]H- + OD- = Al[18O]T[18O]HOD + 3OH- -Al(OH)3 + [18O]T- + [18O]D- + OH- = Al[18O]T[18O]DOH + 3OH- +Al(OH)3 + OH- + OH- + OD- = AlOHOHOD + 3 OH- +Al(OH)3 + OH- + OH- + OT- = AlOHOHOT + 3 OH- +Al(OH)3 + OH- + OH- + [18O]H- = AlOHOH[18O]H + 3 OH- +Al(OH)3 + OH- + OH- + [18O]D- = AlOHOH[18O]D + 3 OH- +Al(OH)3 + OH- + OH- + [18O]T- = AlOHOH[18O]T + 3 OH- +Al(OH)3 + OH- + OD- + OH- = AlOHODOH + 3 OH- +Al(OH)3 + OH- + OD- + OD- = AlOHODOD + 3 OH- +Al(OH)3 + OH- + OD- + OT- = AlOHODOT + 3 OH- +Al(OH)3 + OH- + OD- + [18O]H- = AlOHOD[18O]H + 3 OH- +Al(OH)3 + OH- + OD- + [18O]D- = AlOHOD[18O]D + 3 OH- +Al(OH)3 + OH- + OD- + [18O]T- = AlOHOD[18O]T + 3 OH- +Al(OH)3 + OH- + OT- + OH- = AlOHOTOH + 3 OH- +Al(OH)3 + OH- + OT- + OD- = AlOHOTOD + 3 OH- +Al(OH)3 + OH- + OT- + [18O]H- = AlOHOT[18O]H + 3 OH- +Al(OH)3 + OH- + OT- + [18O]D- = AlOHOT[18O]D + 3 OH- +Al(OH)3 + OH- + [18O]H- + OH- = AlOH[18O]HOH + 3 OH- +Al(OH)3 + OH- + [18O]H- + OD- = AlOH[18O]HOD + 3 OH- +Al(OH)3 + OH- + [18O]H- + OT- = AlOH[18O]HOT + 3 OH- +Al(OH)3 + OH- + [18O]H- + [18O]H- = AlOH[18O]H[18O]H + 3 OH- +Al(OH)3 + OH- + [18O]H- + [18O]D- = AlOH[18O]H[18O]D + 3 OH- +Al(OH)3 + OH- + [18O]H- + [18O]T- = AlOH[18O]H[18O]T + 3 OH- +Al(OH)3 + OH- + [18O]D- + OH- = AlOH[18O]DOH + 3 OH- +Al(OH)3 + OH- + [18O]D- + OD- = AlOH[18O]DOD + 3 OH- +Al(OH)3 + OH- + [18O]D- + OT- = AlOH[18O]DOT + 3 OH- +Al(OH)3 + OH- + [18O]D- + [18O]H- = AlOH[18O]D[18O]H + 3 OH- +Al(OH)3 + OH- + [18O]D- + [18O]D- = AlOH[18O]D[18O]D + 3 OH- +Al(OH)3 + OH- + [18O]D- + [18O]T- = AlOH[18O]D[18O]T + 3 OH- +Al(OH)3 + OH- + [18O]T- + OH- = AlOH[18O]TOH + 3 OH- +Al(OH)3 + OH- + [18O]T- + OD- = AlOH[18O]TOD + 3 OH- +Al(OH)3 + OH- + [18O]T- + [18O]H- = AlOH[18O]T[18O]H + 3 OH- +Al(OH)3 + OH- + [18O]T- + [18O]D- = AlOH[18O]T[18O]D + 3 OH- +Al(OH)3 + OD- + OH- + OH- = AlODOHOH + 3 OH- +Al(OH)3 + OD- + OH- + OD- = AlODOHOD + 3 OH- +Al(OH)3 + OD- + OH- + OT- = AlODOHOT + 3 OH- +Al(OH)3 + OD- + OH- + [18O]H- = AlODOH[18O]H + 3 OH- +Al(OH)3 + OD- + OH- + [18O]D- = AlODOH[18O]D + 3 OH- +Al(OH)3 + OD- + OH- + [18O]T- = AlODOH[18O]T + 3 OH- +Al(OH)3 + OD- + OD- + OH- = AlODODOH + 3 OH- +Al(OH)3 + OD- + OD- + OT- = AlODODOT + 3 OH- +Al(OH)3 + OD- + OD- + [18O]H- = AlODOD[18O]H + 3 OH- +Al(OH)3 + OD- + OD- + [18O]T- = AlODOD[18O]T + 3 OH- +Al(OH)3 + OD- + OT- + OH- = AlODOTOH + 3 OH- +Al(OH)3 + OD- + OT- + OD- = AlODOTOD + 3 OH- +Al(OH)3 + OD- + OT- + [18O]H- = AlODOT[18O]H + 3 OH- +Al(OH)3 + OD- + OT- + [18O]D- = AlODOT[18O]D + 3 OH- +Al(OH)3 + OD- + [18O]H- + OH- = AlOD[18O]HOH + 3 OH- +Al(OH)3 + OD- + [18O]H- + OD- = AlOD[18O]HOD + 3 OH- +Al(OH)3 + OD- + [18O]H- + OT- = AlOD[18O]HOT + 3 OH- +Al(OH)3 + OD- + [18O]H- + [18O]H- = AlOD[18O]H[18O]H + 3 OH- +Al(OH)3 + OD- + [18O]H- + [18O]D- = AlOD[18O]H[18O]D + 3 OH- +Al(OH)3 + OD- + [18O]H- + [18O]T- = AlOD[18O]H[18O]T + 3 OH- +Al(OH)3 + OD- + [18O]D- + OH- = AlOD[18O]DOH + 3 OH- +Al(OH)3 + OD- + [18O]D- + OT- = AlOD[18O]DOT + 3 OH- +Al(OH)3 + OD- + [18O]D- + [18O]H- = AlOD[18O]D[18O]H + 3 OH- +Al(OH)3 + OD- + [18O]T- + OH- = AlOD[18O]TOH + 3 OH- +Al(OH)3 + OD- + [18O]T- + OD- = AlOD[18O]TOD + 3 OH- +Al(OH)3 + OD- + [18O]T- + [18O]H- = AlOD[18O]T[18O]H + 3 OH- +Al(OH)3 + OT- + OH- + OH- = AlOTOHOH + 3 OH- +Al(OH)3 + OT- + OH- + OD- = AlOTOHOD + 3 OH- +Al(OH)3 + OT- + OH- + [18O]H- = AlOTOH[18O]H + 3 OH- +Al(OH)3 + OT- + OH- + [18O]D- = AlOTOH[18O]D + 3 OH- +Al(OH)3 + OT- + OD- + OH- = AlOTODOH + 3 OH- +Al(OH)3 + OT- + OD- + OD- = AlOTODOD + 3 OH- +Al(OH)3 + OT- + OD- + [18O]H- = AlOTOD[18O]H + 3 OH- +Al(OH)3 + OT- + OD- + [18O]D- = AlOTOD[18O]D + 3 OH- +Al(OH)3 + OT- + [18O]H- + OH- = AlOT[18O]HOH + 3 OH- +Al(OH)3 + OT- + [18O]H- + OD- = AlOT[18O]HOD + 3 OH- +Al(OH)3 + OT- + [18O]H- + [18O]H- = AlOT[18O]H[18O]H + 3 OH- +Al(OH)3 + OT- + [18O]H- + [18O]D- = AlOT[18O]H[18O]D + 3 OH- +Al(OH)3 + OT- + [18O]D- + OH- = AlOT[18O]DOH + 3 OH- +Al(OH)3 + OT- + [18O]D- + OD- = AlOT[18O]DOD + 3 OH- +Al(OH)3 + OT- + [18O]D- + [18O]H- = AlOT[18O]D[18O]H + 3 OH- +Al(OH)3 + [18O]H- + OH- + OH- = Al[18O]HOHOH + 3 OH- +Al(OH)3 + [18O]H- + OH- + OD- = Al[18O]HOHOD + 3 OH- +Al(OH)3 + [18O]H- + OH- + OT- = Al[18O]HOHOT + 3 OH- +Al(OH)3 + [18O]H- + OH- + [18O]H- = Al[18O]HOH[18O]H + 3 OH- +Al(OH)3 + [18O]H- + OH- + [18O]D- = Al[18O]HOH[18O]D + 3 OH- +Al(OH)3 + [18O]H- + OH- + [18O]T- = Al[18O]HOH[18O]T + 3 OH- +Al(OH)3 + [18O]H- + OD- + OH- = Al[18O]HODOH + 3 OH- +Al(OH)3 + [18O]H- + OD- + OD- = Al[18O]HODOD + 3 OH- +Al(OH)3 + [18O]H- + OD- + OT- = Al[18O]HODOT + 3 OH- +Al(OH)3 + [18O]H- + OD- + [18O]H- = Al[18O]HOD[18O]H + 3 OH- +Al(OH)3 + [18O]H- + OD- + [18O]D- = Al[18O]HOD[18O]D + 3 OH- +Al(OH)3 + [18O]H- + OD- + [18O]T- = Al[18O]HOD[18O]T + 3 OH- +Al(OH)3 + [18O]H- + OT- + OH- = Al[18O]HOTOH + 3 OH- +Al(OH)3 + [18O]H- + OT- + OD- = Al[18O]HOTOD + 3 OH- +Al(OH)3 + [18O]H- + OT- + [18O]H- = Al[18O]HOT[18O]H + 3 OH- +Al(OH)3 + [18O]H- + OT- + [18O]D- = Al[18O]HOT[18O]D + 3 OH- +Al(OH)3 + [18O]H- + [18O]H- + OH- = Al[18O]H[18O]HOH + 3 OH- +Al(OH)3 + [18O]H- + [18O]H- + OD- = Al[18O]H[18O]HOD + 3 OH- +Al(OH)3 + [18O]H- + [18O]H- + OT- = Al[18O]H[18O]HOT + 3 OH- +Al(OH)3 + [18O]H- + [18O]D- + OH- = Al[18O]H[18O]DOH + 3 OH- +Al(OH)3 + [18O]H- + [18O]D- + OD- = Al[18O]H[18O]DOD + 3 OH- +Al(OH)3 + [18O]H- + [18O]D- + OT- = Al[18O]H[18O]DOT + 3 OH- +Al(OH)3 + [18O]H- + [18O]T- + OH- = Al[18O]H[18O]TOH + 3 OH- +Al(OH)3 + [18O]H- + [18O]T- + OD- = Al[18O]H[18O]TOD + 3 OH- +Al(OH)3 + [18O]D- + OH- + OH- = Al[18O]DOHOH + 3 OH- +Al(OH)3 + [18O]D- + OH- + OD- = Al[18O]DOHOD + 3 OH- +Al(OH)3 + [18O]D- + OH- + OT- = Al[18O]DOHOT + 3 OH- +Al(OH)3 + [18O]D- + OH- + [18O]H- = Al[18O]DOH[18O]H + 3 OH- +Al(OH)3 + [18O]D- + OH- + [18O]D- = Al[18O]DOH[18O]D + 3 OH- +Al(OH)3 + [18O]D- + OH- + [18O]T- = Al[18O]DOH[18O]T + 3 OH- +Al(OH)3 + [18O]D- + OD- + OH- = Al[18O]DODOH + 3 OH- +Al(OH)3 + [18O]D- + OD- + OT- = Al[18O]DODOT + 3 OH- +Al(OH)3 + [18O]D- + OD- + [18O]H- = Al[18O]DOD[18O]H + 3 OH- +Al(OH)3 + [18O]D- + OT- + OH- = Al[18O]DOTOH + 3 OH- +Al(OH)3 + [18O]D- + OT- + OD- = Al[18O]DOTOD + 3 OH- +Al(OH)3 + [18O]D- + OT- + [18O]H- = Al[18O]DOT[18O]H + 3 OH- +Al(OH)3 + [18O]D- + [18O]H- + OH- = Al[18O]D[18O]HOH + 3 OH- +Al(OH)3 + [18O]D- + [18O]H- + OD- = Al[18O]D[18O]HOD + 3 OH- +Al(OH)3 + [18O]D- + [18O]H- + OT- = Al[18O]D[18O]HOT + 3 OH- +Al(OH)3 + [18O]D- + [18O]D- + OH- = Al[18O]D[18O]DOH + 3 OH- +Al(OH)3 + [18O]D- + [18O]T- + OH- = Al[18O]D[18O]TOH + 3 OH- +Al(OH)3 + [18O]T- + OH- + OH- = Al[18O]TOHOH + 3 OH- +Al(OH)3 + [18O]T- + OH- + OD- = Al[18O]TOHOD + 3 OH- +Al(OH)3 + [18O]T- + OH- + [18O]H- = Al[18O]TOH[18O]H + 3 OH- +Al(OH)3 + [18O]T- + OH- + [18O]D- = Al[18O]TOH[18O]D + 3 OH- +Al(OH)3 + [18O]T- + OD- + OH- = Al[18O]TODOH + 3 OH- +Al(OH)3 + [18O]T- + OD- + OD- = Al[18O]TODOD + 3 OH- +Al(OH)3 + [18O]T- + OD- + [18O]H- = Al[18O]TOD[18O]H + 3 OH- +Al(OH)3 + [18O]T- + [18O]H- + OH- = Al[18O]T[18O]HOH + 3 OH- +Al(OH)3 + [18O]T- + [18O]H- + OD- = Al[18O]T[18O]HOD + 3 OH- +Al(OH)3 + [18O]T- + [18O]D- + OH- = Al[18O]T[18O]DOH + 3 OH- # # Added Al(OH)4- reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Al(OH)4- + OH- + OH- + OH- + OD- = AlOHOHOHOD- + 4OH- -Al(OH)4- + OH- + OH- + OH- + OT- = AlOHOHOHOT- + 4OH- -Al(OH)4- + OH- + OH- + OH- + [18O]H- = AlOHOHOH[18O]H- + 4OH- -Al(OH)4- + OH- + OH- + OH- + [18O]D- = AlOHOHOH[18O]D- + 4OH- -Al(OH)4- + OH- + OH- + OH- + [18O]T- = AlOHOHOH[18O]T- + 4OH- -Al(OH)4- + OH- + OH- + OD- + OH- = AlOHOHODOH- + 4OH- -Al(OH)4- + OH- + OH- + OD- + OD- = AlOHOHODOD- + 4OH- -Al(OH)4- + OH- + OH- + OD- + OT- = AlOHOHODOT- + 4OH- -Al(OH)4- + OH- + OH- + OD- + [18O]H- = AlOHOHOD[18O]H- + 4OH- -Al(OH)4- + OH- + OH- + OD- + [18O]D- = AlOHOHOD[18O]D- + 4OH- -Al(OH)4- + OH- + OH- + OD- + [18O]T- = AlOHOHOD[18O]T- + 4OH- -Al(OH)4- + OH- + OH- + OT- + OH- = AlOHOHOTOH- + 4OH- -Al(OH)4- + OH- + OH- + OT- + OD- = AlOHOHOTOD- + 4OH- -Al(OH)4- + OH- + OH- + OT- + [18O]H- = AlOHOHOT[18O]H- + 4OH- -Al(OH)4- + OH- + OH- + OT- + [18O]D- = AlOHOHOT[18O]D- + 4OH- -Al(OH)4- + OH- + OH- + [18O]H- + OH- = AlOHOH[18O]HOH- + 4OH- -Al(OH)4- + OH- + OH- + [18O]H- + OD- = AlOHOH[18O]HOD- + 4OH- -Al(OH)4- + OH- + OH- + [18O]H- + OT- = AlOHOH[18O]HOT- + 4OH- -Al(OH)4- + OH- + OH- + [18O]H- + [18O]H- = AlOHOH[18O]H[18O]H- + 4OH- -Al(OH)4- + OH- + OH- + [18O]H- + [18O]D- = AlOHOH[18O]H[18O]D- + 4OH- -Al(OH)4- + OH- + OH- + [18O]H- + [18O]T- = AlOHOH[18O]H[18O]T- + 4OH- -Al(OH)4- + OH- + OH- + [18O]D- + OH- = AlOHOH[18O]DOH- + 4OH- -Al(OH)4- + OH- + OH- + [18O]D- + OD- = AlOHOH[18O]DOD- + 4OH- -Al(OH)4- + OH- + OH- + [18O]D- + OT- = AlOHOH[18O]DOT- + 4OH- -Al(OH)4- + OH- + OH- + [18O]D- + [18O]H- = AlOHOH[18O]D[18O]H- + 4OH- -Al(OH)4- + OH- + OH- + [18O]D- + [18O]D- = AlOHOH[18O]D[18O]D- + 4OH- -Al(OH)4- + OH- + OH- + [18O]D- + [18O]T- = AlOHOH[18O]D[18O]T- + 4OH- -Al(OH)4- + OH- + OH- + [18O]T- + OH- = AlOHOH[18O]TOH- + 4OH- -Al(OH)4- + OH- + OH- + [18O]T- + OD- = AlOHOH[18O]TOD- + 4OH- -Al(OH)4- + OH- + OH- + [18O]T- + [18O]H- = AlOHOH[18O]T[18O]H- + 4OH- -Al(OH)4- + OH- + OH- + [18O]T- + [18O]D- = AlOHOH[18O]T[18O]D- + 4OH- -Al(OH)4- + OH- + OD- + OH- + OH- = AlOHODOHOH- + 4OH- -Al(OH)4- + OH- + OD- + OH- + OD- = AlOHODOHOD- + 4OH- -Al(OH)4- + OH- + OD- + OH- + OT- = AlOHODOHOT- + 4OH- -Al(OH)4- + OH- + OD- + OH- + [18O]H- = AlOHODOH[18O]H- + 4OH- -Al(OH)4- + OH- + OD- + OH- + [18O]D- = AlOHODOH[18O]D- + 4OH- -Al(OH)4- + OH- + OD- + OH- + [18O]T- = AlOHODOH[18O]T- + 4OH- -Al(OH)4- + OH- + OD- + OD- + OH- = AlOHODODOH- + 4OH- -Al(OH)4- + OH- + OD- + OD- + OT- = AlOHODODOT- + 4OH- -Al(OH)4- + OH- + OD- + OD- + [18O]H- = AlOHODOD[18O]H- + 4OH- -Al(OH)4- + OH- + OD- + OD- + [18O]T- = AlOHODOD[18O]T- + 4OH- -Al(OH)4- + OH- + OD- + OT- + OH- = AlOHODOTOH- + 4OH- -Al(OH)4- + OH- + OD- + OT- + OD- = AlOHODOTOD- + 4OH- -Al(OH)4- + OH- + OD- + OT- + [18O]H- = AlOHODOT[18O]H- + 4OH- -Al(OH)4- + OH- + OD- + OT- + [18O]D- = AlOHODOT[18O]D- + 4OH- -Al(OH)4- + OH- + OD- + [18O]H- + OH- = AlOHOD[18O]HOH- + 4OH- -Al(OH)4- + OH- + OD- + [18O]H- + OD- = AlOHOD[18O]HOD- + 4OH- -Al(OH)4- + OH- + OD- + [18O]H- + OT- = AlOHOD[18O]HOT- + 4OH- -Al(OH)4- + OH- + OD- + [18O]H- + [18O]H- = AlOHOD[18O]H[18O]H- + 4OH- -Al(OH)4- + OH- + OD- + [18O]H- + [18O]D- = AlOHOD[18O]H[18O]D- + 4OH- -Al(OH)4- + OH- + OD- + [18O]H- + [18O]T- = AlOHOD[18O]H[18O]T- + 4OH- -Al(OH)4- + OH- + OD- + [18O]D- + OH- = AlOHOD[18O]DOH- + 4OH- -Al(OH)4- + OH- + OD- + [18O]D- + OT- = AlOHOD[18O]DOT- + 4OH- -Al(OH)4- + OH- + OD- + [18O]D- + [18O]H- = AlOHOD[18O]D[18O]H- + 4OH- -Al(OH)4- + OH- + OD- + [18O]T- + OH- = AlOHOD[18O]TOH- + 4OH- -Al(OH)4- + OH- + OD- + [18O]T- + OD- = AlOHOD[18O]TOD- + 4OH- -Al(OH)4- + OH- + OD- + [18O]T- + [18O]H- = AlOHOD[18O]T[18O]H- + 4OH- -Al(OH)4- + OH- + OT- + OH- + OH- = AlOHOTOHOH- + 4OH- -Al(OH)4- + OH- + OT- + OH- + OD- = AlOHOTOHOD- + 4OH- -Al(OH)4- + OH- + OT- + OH- + [18O]H- = AlOHOTOH[18O]H- + 4OH- -Al(OH)4- + OH- + OT- + OH- + [18O]D- = AlOHOTOH[18O]D- + 4OH- -Al(OH)4- + OH- + OT- + OD- + OH- = AlOHOTODOH- + 4OH- -Al(OH)4- + OH- + OT- + OD- + OD- = AlOHOTODOD- + 4OH- -Al(OH)4- + OH- + OT- + OD- + [18O]H- = AlOHOTOD[18O]H- + 4OH- -Al(OH)4- + OH- + OT- + OD- + [18O]D- = AlOHOTOD[18O]D- + 4OH- -Al(OH)4- + OH- + OT- + [18O]H- + OH- = AlOHOT[18O]HOH- + 4OH- -Al(OH)4- + OH- + OT- + [18O]H- + OD- = AlOHOT[18O]HOD- + 4OH- -Al(OH)4- + OH- + OT- + [18O]H- + [18O]H- = AlOHOT[18O]H[18O]H- + 4OH- -Al(OH)4- + OH- + OT- + [18O]H- + [18O]D- = AlOHOT[18O]H[18O]D- + 4OH- -Al(OH)4- + OH- + OT- + [18O]D- + OH- = AlOHOT[18O]DOH- + 4OH- -Al(OH)4- + OH- + OT- + [18O]D- + OD- = AlOHOT[18O]DOD- + 4OH- -Al(OH)4- + OH- + OT- + [18O]D- + [18O]H- = AlOHOT[18O]D[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]H- + OH- + OH- = AlOH[18O]HOHOH- + 4OH- -Al(OH)4- + OH- + [18O]H- + OH- + OD- = AlOH[18O]HOHOD- + 4OH- -Al(OH)4- + OH- + [18O]H- + OH- + OT- = AlOH[18O]HOHOT- + 4OH- -Al(OH)4- + OH- + [18O]H- + OH- + [18O]H- = AlOH[18O]HOH[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]H- + OH- + [18O]D- = AlOH[18O]HOH[18O]D- + 4OH- -Al(OH)4- + OH- + [18O]H- + OH- + [18O]T- = AlOH[18O]HOH[18O]T- + 4OH- -Al(OH)4- + OH- + [18O]H- + OD- + OH- = AlOH[18O]HODOH- + 4OH- -Al(OH)4- + OH- + [18O]H- + OD- + OD- = AlOH[18O]HODOD- + 4OH- -Al(OH)4- + OH- + [18O]H- + OD- + OT- = AlOH[18O]HODOT- + 4OH- -Al(OH)4- + OH- + [18O]H- + OD- + [18O]H- = AlOH[18O]HOD[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]H- + OD- + [18O]D- = AlOH[18O]HOD[18O]D- + 4OH- -Al(OH)4- + OH- + [18O]H- + OD- + [18O]T- = AlOH[18O]HOD[18O]T- + 4OH- -Al(OH)4- + OH- + [18O]H- + OT- + OH- = AlOH[18O]HOTOH- + 4OH- -Al(OH)4- + OH- + [18O]H- + OT- + OD- = AlOH[18O]HOTOD- + 4OH- -Al(OH)4- + OH- + [18O]H- + OT- + [18O]H- = AlOH[18O]HOT[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]H- + OT- + [18O]D- = AlOH[18O]HOT[18O]D- + 4OH- -Al(OH)4- + OH- + [18O]H- + [18O]H- + OH- = AlOH[18O]H[18O]HOH- + 4OH- -Al(OH)4- + OH- + [18O]H- + [18O]H- + OD- = AlOH[18O]H[18O]HOD- + 4OH- -Al(OH)4- + OH- + [18O]H- + [18O]H- + OT- = AlOH[18O]H[18O]HOT- + 4OH- -Al(OH)4- + OH- + [18O]H- + [18O]D- + OH- = AlOH[18O]H[18O]DOH- + 4OH- -Al(OH)4- + OH- + [18O]H- + [18O]D- + OD- = AlOH[18O]H[18O]DOD- + 4OH- -Al(OH)4- + OH- + [18O]H- + [18O]D- + OT- = AlOH[18O]H[18O]DOT- + 4OH- -Al(OH)4- + OH- + [18O]H- + [18O]T- + OH- = AlOH[18O]H[18O]TOH- + 4OH- -Al(OH)4- + OH- + [18O]H- + [18O]T- + OD- = AlOH[18O]H[18O]TOD- + 4OH- -Al(OH)4- + OH- + [18O]D- + OH- + OH- = AlOH[18O]DOHOH- + 4OH- -Al(OH)4- + OH- + [18O]D- + OH- + OD- = AlOH[18O]DOHOD- + 4OH- -Al(OH)4- + OH- + [18O]D- + OH- + OT- = AlOH[18O]DOHOT- + 4OH- -Al(OH)4- + OH- + [18O]D- + OH- + [18O]H- = AlOH[18O]DOH[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]D- + OH- + [18O]D- = AlOH[18O]DOH[18O]D- + 4OH- -Al(OH)4- + OH- + [18O]D- + OH- + [18O]T- = AlOH[18O]DOH[18O]T- + 4OH- -Al(OH)4- + OH- + [18O]D- + OD- + OH- = AlOH[18O]DODOH- + 4OH- -Al(OH)4- + OH- + [18O]D- + OD- + OT- = AlOH[18O]DODOT- + 4OH- -Al(OH)4- + OH- + [18O]D- + OD- + [18O]H- = AlOH[18O]DOD[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]D- + OT- + OH- = AlOH[18O]DOTOH- + 4OH- -Al(OH)4- + OH- + [18O]D- + OT- + OD- = AlOH[18O]DOTOD- + 4OH- -Al(OH)4- + OH- + [18O]D- + OT- + [18O]H- = AlOH[18O]DOT[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]D- + [18O]H- + OH- = AlOH[18O]D[18O]HOH- + 4OH- -Al(OH)4- + OH- + [18O]D- + [18O]H- + OD- = AlOH[18O]D[18O]HOD- + 4OH- -Al(OH)4- + OH- + [18O]D- + [18O]H- + OT- = AlOH[18O]D[18O]HOT- + 4OH- -Al(OH)4- + OH- + [18O]D- + [18O]D- + OH- = AlOH[18O]D[18O]DOH- + 4OH- -Al(OH)4- + OH- + [18O]D- + [18O]T- + OH- = AlOH[18O]D[18O]TOH- + 4OH- -Al(OH)4- + OH- + [18O]T- + OH- + OH- = AlOH[18O]TOHOH- + 4OH- -Al(OH)4- + OH- + [18O]T- + OH- + OD- = AlOH[18O]TOHOD- + 4OH- -Al(OH)4- + OH- + [18O]T- + OH- + [18O]H- = AlOH[18O]TOH[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]T- + OH- + [18O]D- = AlOH[18O]TOH[18O]D- + 4OH- -Al(OH)4- + OH- + [18O]T- + OD- + OH- = AlOH[18O]TODOH- + 4OH- -Al(OH)4- + OH- + [18O]T- + OD- + OD- = AlOH[18O]TODOD- + 4OH- -Al(OH)4- + OH- + [18O]T- + OD- + [18O]H- = AlOH[18O]TOD[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]T- + [18O]H- + OH- = AlOH[18O]T[18O]HOH- + 4OH- -Al(OH)4- + OH- + [18O]T- + [18O]H- + OD- = AlOH[18O]T[18O]HOD- + 4OH- -Al(OH)4- + OH- + [18O]T- + [18O]D- + OH- = AlOH[18O]T[18O]DOH- + 4OH- -Al(OH)4- + OD- + OH- + OH- + OH- = AlODOHOHOH- + 4OH- -Al(OH)4- + OD- + OH- + OH- + OD- = AlODOHOHOD- + 4OH- -Al(OH)4- + OD- + OH- + OH- + OT- = AlODOHOHOT- + 4OH- -Al(OH)4- + OD- + OH- + OH- + [18O]H- = AlODOHOH[18O]H- + 4OH- -Al(OH)4- + OD- + OH- + OH- + [18O]D- = AlODOHOH[18O]D- + 4OH- -Al(OH)4- + OD- + OH- + OH- + [18O]T- = AlODOHOH[18O]T- + 4OH- -Al(OH)4- + OD- + OH- + OD- + OH- = AlODOHODOH- + 4OH- -Al(OH)4- + OD- + OH- + OD- + OT- = AlODOHODOT- + 4OH- -Al(OH)4- + OD- + OH- + OD- + [18O]H- = AlODOHOD[18O]H- + 4OH- -Al(OH)4- + OD- + OH- + OD- + [18O]T- = AlODOHOD[18O]T- + 4OH- -Al(OH)4- + OD- + OH- + OT- + OH- = AlODOHOTOH- + 4OH- -Al(OH)4- + OD- + OH- + OT- + OD- = AlODOHOTOD- + 4OH- -Al(OH)4- + OD- + OH- + OT- + [18O]H- = AlODOHOT[18O]H- + 4OH- -Al(OH)4- + OD- + OH- + OT- + [18O]D- = AlODOHOT[18O]D- + 4OH- -Al(OH)4- + OD- + OH- + [18O]H- + OH- = AlODOH[18O]HOH- + 4OH- -Al(OH)4- + OD- + OH- + [18O]H- + OD- = AlODOH[18O]HOD- + 4OH- -Al(OH)4- + OD- + OH- + [18O]H- + OT- = AlODOH[18O]HOT- + 4OH- -Al(OH)4- + OD- + OH- + [18O]H- + [18O]H- = AlODOH[18O]H[18O]H- + 4OH- -Al(OH)4- + OD- + OH- + [18O]H- + [18O]D- = AlODOH[18O]H[18O]D- + 4OH- -Al(OH)4- + OD- + OH- + [18O]H- + [18O]T- = AlODOH[18O]H[18O]T- + 4OH- -Al(OH)4- + OD- + OH- + [18O]D- + OH- = AlODOH[18O]DOH- + 4OH- -Al(OH)4- + OD- + OH- + [18O]D- + OT- = AlODOH[18O]DOT- + 4OH- -Al(OH)4- + OD- + OH- + [18O]D- + [18O]H- = AlODOH[18O]D[18O]H- + 4OH- -Al(OH)4- + OD- + OH- + [18O]T- + OH- = AlODOH[18O]TOH- + 4OH- -Al(OH)4- + OD- + OH- + [18O]T- + OD- = AlODOH[18O]TOD- + 4OH- -Al(OH)4- + OD- + OH- + [18O]T- + [18O]H- = AlODOH[18O]T[18O]H- + 4OH- -Al(OH)4- + OD- + OD- + OH- + OH- = AlODODOHOH- + 4OH- -Al(OH)4- + OD- + OD- + OH- + OT- = AlODODOHOT- + 4OH- -Al(OH)4- + OD- + OD- + OH- + [18O]H- = AlODODOH[18O]H- + 4OH- -Al(OH)4- + OD- + OD- + OH- + [18O]T- = AlODODOH[18O]T- + 4OH- -Al(OH)4- + OD- + OD- + OT- + OH- = AlODODOTOH- + 4OH- -Al(OH)4- + OD- + OD- + OT- + [18O]H- = AlODODOT[18O]H- + 4OH- -Al(OH)4- + OD- + OD- + [18O]H- + OH- = AlODOD[18O]HOH- + 4OH- -Al(OH)4- + OD- + OD- + [18O]H- + OT- = AlODOD[18O]HOT- + 4OH- -Al(OH)4- + OD- + OD- + [18O]H- + [18O]H- = AlODOD[18O]H[18O]H- + 4OH- -Al(OH)4- + OD- + OD- + [18O]T- + OH- = AlODOD[18O]TOH- + 4OH- -Al(OH)4- + OD- + OT- + OH- + OH- = AlODOTOHOH- + 4OH- -Al(OH)4- + OD- + OT- + OH- + OD- = AlODOTOHOD- + 4OH- -Al(OH)4- + OD- + OT- + OH- + [18O]H- = AlODOTOH[18O]H- + 4OH- -Al(OH)4- + OD- + OT- + OH- + [18O]D- = AlODOTOH[18O]D- + 4OH- -Al(OH)4- + OD- + OT- + OD- + OH- = AlODOTODOH- + 4OH- -Al(OH)4- + OD- + OT- + OD- + [18O]H- = AlODOTOD[18O]H- + 4OH- -Al(OH)4- + OD- + OT- + [18O]H- + OH- = AlODOT[18O]HOH- + 4OH- -Al(OH)4- + OD- + OT- + [18O]H- + OD- = AlODOT[18O]HOD- + 4OH- -Al(OH)4- + OD- + OT- + [18O]H- + [18O]H- = AlODOT[18O]H[18O]H- + 4OH- -Al(OH)4- + OD- + OT- + [18O]D- + OH- = AlODOT[18O]DOH- + 4OH- -Al(OH)4- + OD- + [18O]H- + OH- + OH- = AlOD[18O]HOHOH- + 4OH- -Al(OH)4- + OD- + [18O]H- + OH- + OD- = AlOD[18O]HOHOD- + 4OH- -Al(OH)4- + OD- + [18O]H- + OH- + OT- = AlOD[18O]HOHOT- + 4OH- -Al(OH)4- + OD- + [18O]H- + OH- + [18O]H- = AlOD[18O]HOH[18O]H- + 4OH- -Al(OH)4- + OD- + [18O]H- + OH- + [18O]D- = AlOD[18O]HOH[18O]D- + 4OH- -Al(OH)4- + OD- + [18O]H- + OH- + [18O]T- = AlOD[18O]HOH[18O]T- + 4OH- -Al(OH)4- + OD- + [18O]H- + OD- + OH- = AlOD[18O]HODOH- + 4OH- -Al(OH)4- + OD- + [18O]H- + OD- + OT- = AlOD[18O]HODOT- + 4OH- -Al(OH)4- + OD- + [18O]H- + OD- + [18O]H- = AlOD[18O]HOD[18O]H- + 4OH- -Al(OH)4- + OD- + [18O]H- + OT- + OH- = AlOD[18O]HOTOH- + 4OH- -Al(OH)4- + OD- + [18O]H- + OT- + OD- = AlOD[18O]HOTOD- + 4OH- -Al(OH)4- + OD- + [18O]H- + OT- + [18O]H- = AlOD[18O]HOT[18O]H- + 4OH- -Al(OH)4- + OD- + [18O]H- + [18O]H- + OH- = AlOD[18O]H[18O]HOH- + 4OH- -Al(OH)4- + OD- + [18O]H- + [18O]H- + OD- = AlOD[18O]H[18O]HOD- + 4OH- -Al(OH)4- + OD- + [18O]H- + [18O]H- + OT- = AlOD[18O]H[18O]HOT- + 4OH- -Al(OH)4- + OD- + [18O]H- + [18O]D- + OH- = AlOD[18O]H[18O]DOH- + 4OH- -Al(OH)4- + OD- + [18O]H- + [18O]T- + OH- = AlOD[18O]H[18O]TOH- + 4OH- -Al(OH)4- + OD- + [18O]D- + OH- + OH- = AlOD[18O]DOHOH- + 4OH- -Al(OH)4- + OD- + [18O]D- + OH- + OT- = AlOD[18O]DOHOT- + 4OH- -Al(OH)4- + OD- + [18O]D- + OH- + [18O]H- = AlOD[18O]DOH[18O]H- + 4OH- -Al(OH)4- + OD- + [18O]D- + OT- + OH- = AlOD[18O]DOTOH- + 4OH- -Al(OH)4- + OD- + [18O]D- + [18O]H- + OH- = AlOD[18O]D[18O]HOH- + 4OH- -Al(OH)4- + OD- + [18O]T- + OH- + OH- = AlOD[18O]TOHOH- + 4OH- -Al(OH)4- + OD- + [18O]T- + OH- + OD- = AlOD[18O]TOHOD- + 4OH- -Al(OH)4- + OD- + [18O]T- + OH- + [18O]H- = AlOD[18O]TOH[18O]H- + 4OH- -Al(OH)4- + OD- + [18O]T- + OD- + OH- = AlOD[18O]TODOH- + 4OH- -Al(OH)4- + OD- + [18O]T- + [18O]H- + OH- = AlOD[18O]T[18O]HOH- + 4OH- -Al(OH)4- + OT- + OH- + OH- + OH- = AlOTOHOHOH- + 4OH- -Al(OH)4- + OT- + OH- + OH- + OD- = AlOTOHOHOD- + 4OH- -Al(OH)4- + OT- + OH- + OH- + [18O]H- = AlOTOHOH[18O]H- + 4OH- -Al(OH)4- + OT- + OH- + OH- + [18O]D- = AlOTOHOH[18O]D- + 4OH- -Al(OH)4- + OT- + OH- + OD- + OH- = AlOTOHODOH- + 4OH- -Al(OH)4- + OT- + OH- + OD- + OD- = AlOTOHODOD- + 4OH- -Al(OH)4- + OT- + OH- + OD- + [18O]H- = AlOTOHOD[18O]H- + 4OH- -Al(OH)4- + OT- + OH- + OD- + [18O]D- = AlOTOHOD[18O]D- + 4OH- -Al(OH)4- + OT- + OH- + [18O]H- + OH- = AlOTOH[18O]HOH- + 4OH- -Al(OH)4- + OT- + OH- + [18O]H- + OD- = AlOTOH[18O]HOD- + 4OH- -Al(OH)4- + OT- + OH- + [18O]H- + [18O]H- = AlOTOH[18O]H[18O]H- + 4OH- -Al(OH)4- + OT- + OH- + [18O]H- + [18O]D- = AlOTOH[18O]H[18O]D- + 4OH- -Al(OH)4- + OT- + OH- + [18O]D- + OH- = AlOTOH[18O]DOH- + 4OH- -Al(OH)4- + OT- + OH- + [18O]D- + OD- = AlOTOH[18O]DOD- + 4OH- -Al(OH)4- + OT- + OH- + [18O]D- + [18O]H- = AlOTOH[18O]D[18O]H- + 4OH- -Al(OH)4- + OT- + OD- + OH- + OH- = AlOTODOHOH- + 4OH- -Al(OH)4- + OT- + OD- + OH- + OD- = AlOTODOHOD- + 4OH- -Al(OH)4- + OT- + OD- + OH- + [18O]H- = AlOTODOH[18O]H- + 4OH- -Al(OH)4- + OT- + OD- + OH- + [18O]D- = AlOTODOH[18O]D- + 4OH- -Al(OH)4- + OT- + OD- + OD- + OH- = AlOTODODOH- + 4OH- -Al(OH)4- + OT- + OD- + OD- + [18O]H- = AlOTODOD[18O]H- + 4OH- -Al(OH)4- + OT- + OD- + [18O]H- + OH- = AlOTOD[18O]HOH- + 4OH- -Al(OH)4- + OT- + OD- + [18O]H- + OD- = AlOTOD[18O]HOD- + 4OH- -Al(OH)4- + OT- + OD- + [18O]H- + [18O]H- = AlOTOD[18O]H[18O]H- + 4OH- -Al(OH)4- + OT- + OD- + [18O]D- + OH- = AlOTOD[18O]DOH- + 4OH- -Al(OH)4- + OT- + [18O]H- + OH- + OH- = AlOT[18O]HOHOH- + 4OH- -Al(OH)4- + OT- + [18O]H- + OH- + OD- = AlOT[18O]HOHOD- + 4OH- -Al(OH)4- + OT- + [18O]H- + OH- + [18O]H- = AlOT[18O]HOH[18O]H- + 4OH- -Al(OH)4- + OT- + [18O]H- + OH- + [18O]D- = AlOT[18O]HOH[18O]D- + 4OH- -Al(OH)4- + OT- + [18O]H- + OD- + OH- = AlOT[18O]HODOH- + 4OH- -Al(OH)4- + OT- + [18O]H- + OD- + OD- = AlOT[18O]HODOD- + 4OH- -Al(OH)4- + OT- + [18O]H- + OD- + [18O]H- = AlOT[18O]HOD[18O]H- + 4OH- -Al(OH)4- + OT- + [18O]H- + [18O]H- + OH- = AlOT[18O]H[18O]HOH- + 4OH- -Al(OH)4- + OT- + [18O]H- + [18O]H- + OD- = AlOT[18O]H[18O]HOD- + 4OH- -Al(OH)4- + OT- + [18O]H- + [18O]D- + OH- = AlOT[18O]H[18O]DOH- + 4OH- -Al(OH)4- + OT- + [18O]D- + OH- + OH- = AlOT[18O]DOHOH- + 4OH- -Al(OH)4- + OT- + [18O]D- + OH- + OD- = AlOT[18O]DOHOD- + 4OH- -Al(OH)4- + OT- + [18O]D- + OH- + [18O]H- = AlOT[18O]DOH[18O]H- + 4OH- -Al(OH)4- + OT- + [18O]D- + OD- + OH- = AlOT[18O]DODOH- + 4OH- -Al(OH)4- + OT- + [18O]D- + [18O]H- + OH- = AlOT[18O]D[18O]HOH- + 4OH- -Al(OH)4- + [18O]H- + OH- + OH- + OH- = Al[18O]HOHOHOH- + 4OH- -Al(OH)4- + [18O]H- + OH- + OH- + OD- = Al[18O]HOHOHOD- + 4OH- -Al(OH)4- + [18O]H- + OH- + OH- + OT- = Al[18O]HOHOHOT- + 4OH- -Al(OH)4- + [18O]H- + OH- + OH- + [18O]H- = Al[18O]HOHOH[18O]H- + 4OH- -Al(OH)4- + [18O]H- + OH- + OH- + [18O]D- = Al[18O]HOHOH[18O]D- + 4OH- -Al(OH)4- + [18O]H- + OH- + OH- + [18O]T- = Al[18O]HOHOH[18O]T- + 4OH- -Al(OH)4- + [18O]H- + OH- + OD- + OH- = Al[18O]HOHODOH- + 4OH- -Al(OH)4- + [18O]H- + OH- + OD- + OD- = Al[18O]HOHODOD- + 4OH- -Al(OH)4- + [18O]H- + OH- + OD- + OT- = Al[18O]HOHODOT- + 4OH- -Al(OH)4- + [18O]H- + OH- + OD- + [18O]H- = Al[18O]HOHOD[18O]H- + 4OH- -Al(OH)4- + [18O]H- + OH- + OD- + [18O]D- = Al[18O]HOHOD[18O]D- + 4OH- -Al(OH)4- + [18O]H- + OH- + OD- + [18O]T- = Al[18O]HOHOD[18O]T- + 4OH- -Al(OH)4- + [18O]H- + OH- + OT- + OH- = Al[18O]HOHOTOH- + 4OH- -Al(OH)4- + [18O]H- + OH- + OT- + OD- = Al[18O]HOHOTOD- + 4OH- -Al(OH)4- + [18O]H- + OH- + OT- + [18O]H- = Al[18O]HOHOT[18O]H- + 4OH- -Al(OH)4- + [18O]H- + OH- + OT- + [18O]D- = Al[18O]HOHOT[18O]D- + 4OH- -Al(OH)4- + [18O]H- + OH- + [18O]H- + OH- = Al[18O]HOH[18O]HOH- + 4OH- -Al(OH)4- + [18O]H- + OH- + [18O]H- + OD- = Al[18O]HOH[18O]HOD- + 4OH- -Al(OH)4- + [18O]H- + OH- + [18O]H- + OT- = Al[18O]HOH[18O]HOT- + 4OH- -Al(OH)4- + [18O]H- + OH- + [18O]D- + OH- = Al[18O]HOH[18O]DOH- + 4OH- -Al(OH)4- + [18O]H- + OH- + [18O]D- + OD- = Al[18O]HOH[18O]DOD- + 4OH- -Al(OH)4- + [18O]H- + OH- + [18O]D- + OT- = Al[18O]HOH[18O]DOT- + 4OH- -Al(OH)4- + [18O]H- + OH- + [18O]T- + OH- = Al[18O]HOH[18O]TOH- + 4OH- -Al(OH)4- + [18O]H- + OH- + [18O]T- + OD- = Al[18O]HOH[18O]TOD- + 4OH- -Al(OH)4- + [18O]H- + OD- + OH- + OH- = Al[18O]HODOHOH- + 4OH- -Al(OH)4- + [18O]H- + OD- + OH- + OD- = Al[18O]HODOHOD- + 4OH- -Al(OH)4- + [18O]H- + OD- + OH- + OT- = Al[18O]HODOHOT- + 4OH- -Al(OH)4- + [18O]H- + OD- + OH- + [18O]H- = Al[18O]HODOH[18O]H- + 4OH- -Al(OH)4- + [18O]H- + OD- + OH- + [18O]D- = Al[18O]HODOH[18O]D- + 4OH- -Al(OH)4- + [18O]H- + OD- + OH- + [18O]T- = Al[18O]HODOH[18O]T- + 4OH- -Al(OH)4- + [18O]H- + OD- + OD- + OH- = Al[18O]HODODOH- + 4OH- -Al(OH)4- + [18O]H- + OD- + OD- + OT- = Al[18O]HODODOT- + 4OH- -Al(OH)4- + [18O]H- + OD- + OD- + [18O]H- = Al[18O]HODOD[18O]H- + 4OH- -Al(OH)4- + [18O]H- + OD- + OT- + OH- = Al[18O]HODOTOH- + 4OH- -Al(OH)4- + [18O]H- + OD- + OT- + OD- = Al[18O]HODOTOD- + 4OH- -Al(OH)4- + [18O]H- + OD- + OT- + [18O]H- = Al[18O]HODOT[18O]H- + 4OH- -Al(OH)4- + [18O]H- + OD- + [18O]H- + OH- = Al[18O]HOD[18O]HOH- + 4OH- -Al(OH)4- + [18O]H- + OD- + [18O]H- + OD- = Al[18O]HOD[18O]HOD- + 4OH- -Al(OH)4- + [18O]H- + OD- + [18O]H- + OT- = Al[18O]HOD[18O]HOT- + 4OH- -Al(OH)4- + [18O]H- + OD- + [18O]D- + OH- = Al[18O]HOD[18O]DOH- + 4OH- -Al(OH)4- + [18O]H- + OD- + [18O]T- + OH- = Al[18O]HOD[18O]TOH- + 4OH- -Al(OH)4- + [18O]H- + OT- + OH- + OH- = Al[18O]HOTOHOH- + 4OH- -Al(OH)4- + [18O]H- + OT- + OH- + OD- = Al[18O]HOTOHOD- + 4OH- -Al(OH)4- + [18O]H- + OT- + OH- + [18O]H- = Al[18O]HOTOH[18O]H- + 4OH- -Al(OH)4- + [18O]H- + OT- + OH- + [18O]D- = Al[18O]HOTOH[18O]D- + 4OH- -Al(OH)4- + [18O]H- + OT- + OD- + OH- = Al[18O]HOTODOH- + 4OH- -Al(OH)4- + [18O]H- + OT- + OD- + OD- = Al[18O]HOTODOD- + 4OH- -Al(OH)4- + [18O]H- + OT- + OD- + [18O]H- = Al[18O]HOTOD[18O]H- + 4OH- -Al(OH)4- + [18O]H- + OT- + [18O]H- + OH- = Al[18O]HOT[18O]HOH- + 4OH- -Al(OH)4- + [18O]H- + OT- + [18O]H- + OD- = Al[18O]HOT[18O]HOD- + 4OH- -Al(OH)4- + [18O]H- + OT- + [18O]D- + OH- = Al[18O]HOT[18O]DOH- + 4OH- -Al(OH)4- + [18O]H- + [18O]H- + OH- + OH- = Al[18O]H[18O]HOHOH- + 4OH- -Al(OH)4- + [18O]H- + [18O]H- + OH- + OD- = Al[18O]H[18O]HOHOD- + 4OH- -Al(OH)4- + [18O]H- + [18O]H- + OH- + OT- = Al[18O]H[18O]HOHOT- + 4OH- -Al(OH)4- + [18O]H- + [18O]H- + OD- + OH- = Al[18O]H[18O]HODOH- + 4OH- -Al(OH)4- + [18O]H- + [18O]H- + OD- + OD- = Al[18O]H[18O]HODOD- + 4OH- -Al(OH)4- + [18O]H- + [18O]H- + OD- + OT- = Al[18O]H[18O]HODOT- + 4OH- -Al(OH)4- + [18O]H- + [18O]H- + OT- + OH- = Al[18O]H[18O]HOTOH- + 4OH- -Al(OH)4- + [18O]H- + [18O]H- + OT- + OD- = Al[18O]H[18O]HOTOD- + 4OH- -Al(OH)4- + [18O]H- + [18O]D- + OH- + OH- = Al[18O]H[18O]DOHOH- + 4OH- -Al(OH)4- + [18O]H- + [18O]D- + OH- + OD- = Al[18O]H[18O]DOHOD- + 4OH- -Al(OH)4- + [18O]H- + [18O]D- + OH- + OT- = Al[18O]H[18O]DOHOT- + 4OH- -Al(OH)4- + [18O]H- + [18O]D- + OD- + OH- = Al[18O]H[18O]DODOH- + 4OH- -Al(OH)4- + [18O]H- + [18O]D- + OT- + OH- = Al[18O]H[18O]DOTOH- + 4OH- -Al(OH)4- + [18O]H- + [18O]T- + OH- + OH- = Al[18O]H[18O]TOHOH- + 4OH- -Al(OH)4- + [18O]H- + [18O]T- + OH- + OD- = Al[18O]H[18O]TOHOD- + 4OH- -Al(OH)4- + [18O]H- + [18O]T- + OD- + OH- = Al[18O]H[18O]TODOH- + 4OH- -Al(OH)4- + [18O]D- + OH- + OH- + OH- = Al[18O]DOHOHOH- + 4OH- -Al(OH)4- + [18O]D- + OH- + OH- + OD- = Al[18O]DOHOHOD- + 4OH- -Al(OH)4- + [18O]D- + OH- + OH- + OT- = Al[18O]DOHOHOT- + 4OH- -Al(OH)4- + [18O]D- + OH- + OH- + [18O]H- = Al[18O]DOHOH[18O]H- + 4OH- -Al(OH)4- + [18O]D- + OH- + OH- + [18O]D- = Al[18O]DOHOH[18O]D- + 4OH- -Al(OH)4- + [18O]D- + OH- + OH- + [18O]T- = Al[18O]DOHOH[18O]T- + 4OH- -Al(OH)4- + [18O]D- + OH- + OD- + OH- = Al[18O]DOHODOH- + 4OH- -Al(OH)4- + [18O]D- + OH- + OD- + OT- = Al[18O]DOHODOT- + 4OH- -Al(OH)4- + [18O]D- + OH- + OD- + [18O]H- = Al[18O]DOHOD[18O]H- + 4OH- -Al(OH)4- + [18O]D- + OH- + OT- + OH- = Al[18O]DOHOTOH- + 4OH- -Al(OH)4- + [18O]D- + OH- + OT- + OD- = Al[18O]DOHOTOD- + 4OH- -Al(OH)4- + [18O]D- + OH- + OT- + [18O]H- = Al[18O]DOHOT[18O]H- + 4OH- -Al(OH)4- + [18O]D- + OH- + [18O]H- + OH- = Al[18O]DOH[18O]HOH- + 4OH- -Al(OH)4- + [18O]D- + OH- + [18O]H- + OD- = Al[18O]DOH[18O]HOD- + 4OH- -Al(OH)4- + [18O]D- + OH- + [18O]H- + OT- = Al[18O]DOH[18O]HOT- + 4OH- -Al(OH)4- + [18O]D- + OH- + [18O]D- + OH- = Al[18O]DOH[18O]DOH- + 4OH- -Al(OH)4- + [18O]D- + OH- + [18O]T- + OH- = Al[18O]DOH[18O]TOH- + 4OH- -Al(OH)4- + [18O]D- + OD- + OH- + OH- = Al[18O]DODOHOH- + 4OH- -Al(OH)4- + [18O]D- + OD- + OH- + OT- = Al[18O]DODOHOT- + 4OH- -Al(OH)4- + [18O]D- + OD- + OH- + [18O]H- = Al[18O]DODOH[18O]H- + 4OH- -Al(OH)4- + [18O]D- + OD- + OT- + OH- = Al[18O]DODOTOH- + 4OH- -Al(OH)4- + [18O]D- + OD- + [18O]H- + OH- = Al[18O]DOD[18O]HOH- + 4OH- -Al(OH)4- + [18O]D- + OT- + OH- + OH- = Al[18O]DOTOHOH- + 4OH- -Al(OH)4- + [18O]D- + OT- + OH- + OD- = Al[18O]DOTOHOD- + 4OH- -Al(OH)4- + [18O]D- + OT- + OH- + [18O]H- = Al[18O]DOTOH[18O]H- + 4OH- -Al(OH)4- + [18O]D- + OT- + OD- + OH- = Al[18O]DOTODOH- + 4OH- -Al(OH)4- + [18O]D- + OT- + [18O]H- + OH- = Al[18O]DOT[18O]HOH- + 4OH- -Al(OH)4- + [18O]D- + [18O]H- + OH- + OH- = Al[18O]D[18O]HOHOH- + 4OH- -Al(OH)4- + [18O]D- + [18O]H- + OH- + OD- = Al[18O]D[18O]HOHOD- + 4OH- -Al(OH)4- + [18O]D- + [18O]H- + OH- + OT- = Al[18O]D[18O]HOHOT- + 4OH- -Al(OH)4- + [18O]D- + [18O]H- + OD- + OH- = Al[18O]D[18O]HODOH- + 4OH- -Al(OH)4- + [18O]D- + [18O]H- + OT- + OH- = Al[18O]D[18O]HOTOH- + 4OH- -Al(OH)4- + [18O]D- + [18O]D- + OH- + OH- = Al[18O]D[18O]DOHOH- + 4OH- -Al(OH)4- + [18O]D- + [18O]T- + OH- + OH- = Al[18O]D[18O]TOHOH- + 4OH- -Al(OH)4- + [18O]T- + OH- + OH- + OH- = Al[18O]TOHOHOH- + 4OH- -Al(OH)4- + [18O]T- + OH- + OH- + OD- = Al[18O]TOHOHOD- + 4OH- -Al(OH)4- + [18O]T- + OH- + OH- + [18O]H- = Al[18O]TOHOH[18O]H- + 4OH- -Al(OH)4- + [18O]T- + OH- + OH- + [18O]D- = Al[18O]TOHOH[18O]D- + 4OH- -Al(OH)4- + [18O]T- + OH- + OD- + OH- = Al[18O]TOHODOH- + 4OH- -Al(OH)4- + [18O]T- + OH- + OD- + OD- = Al[18O]TOHODOD- + 4OH- -Al(OH)4- + [18O]T- + OH- + OD- + [18O]H- = Al[18O]TOHOD[18O]H- + 4OH- -Al(OH)4- + [18O]T- + OH- + [18O]H- + OH- = Al[18O]TOH[18O]HOH- + 4OH- -Al(OH)4- + [18O]T- + OH- + [18O]H- + OD- = Al[18O]TOH[18O]HOD- + 4OH- -Al(OH)4- + [18O]T- + OH- + [18O]D- + OH- = Al[18O]TOH[18O]DOH- + 4OH- -Al(OH)4- + [18O]T- + OD- + OH- + OH- = Al[18O]TODOHOH- + 4OH- -Al(OH)4- + [18O]T- + OD- + OH- + OD- = Al[18O]TODOHOD- + 4OH- -Al(OH)4- + [18O]T- + OD- + OH- + [18O]H- = Al[18O]TODOH[18O]H- + 4OH- -Al(OH)4- + [18O]T- + OD- + OD- + OH- = Al[18O]TODODOH- + 4OH- -Al(OH)4- + [18O]T- + OD- + [18O]H- + OH- = Al[18O]TOD[18O]HOH- + 4OH- -Al(OH)4- + [18O]T- + [18O]H- + OH- + OH- = Al[18O]T[18O]HOHOH- + 4OH- -Al(OH)4- + [18O]T- + [18O]H- + OH- + OD- = Al[18O]T[18O]HOHOD- + 4OH- -Al(OH)4- + [18O]T- + [18O]H- + OD- + OH- = Al[18O]T[18O]HODOH- + 4OH- -Al(OH)4- + [18O]T- + [18O]D- + OH- + OH- = Al[18O]T[18O]DOHOH- + 4OH- +Al(OH)4- + OH- + OH- + OH- + OD- = AlOHOHOHOD- + 4 OH- +Al(OH)4- + OH- + OH- + OH- + OT- = AlOHOHOHOT- + 4 OH- +Al(OH)4- + OH- + OH- + OH- + [18O]H- = AlOHOHOH[18O]H- + 4 OH- +Al(OH)4- + OH- + OH- + OH- + [18O]D- = AlOHOHOH[18O]D- + 4 OH- +Al(OH)4- + OH- + OH- + OH- + [18O]T- = AlOHOHOH[18O]T- + 4 OH- +Al(OH)4- + OH- + OH- + OD- + OH- = AlOHOHODOH- + 4 OH- +Al(OH)4- + OH- + OH- + OD- + OD- = AlOHOHODOD- + 4 OH- +Al(OH)4- + OH- + OH- + OD- + OT- = AlOHOHODOT- + 4 OH- +Al(OH)4- + OH- + OH- + OD- + [18O]H- = AlOHOHOD[18O]H- + 4 OH- +Al(OH)4- + OH- + OH- + OD- + [18O]D- = AlOHOHOD[18O]D- + 4 OH- +Al(OH)4- + OH- + OH- + OD- + [18O]T- = AlOHOHOD[18O]T- + 4 OH- +Al(OH)4- + OH- + OH- + OT- + OH- = AlOHOHOTOH- + 4 OH- +Al(OH)4- + OH- + OH- + OT- + OD- = AlOHOHOTOD- + 4 OH- +Al(OH)4- + OH- + OH- + OT- + [18O]H- = AlOHOHOT[18O]H- + 4 OH- +Al(OH)4- + OH- + OH- + OT- + [18O]D- = AlOHOHOT[18O]D- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]H- + OH- = AlOHOH[18O]HOH- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]H- + OD- = AlOHOH[18O]HOD- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]H- + OT- = AlOHOH[18O]HOT- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]H- + [18O]H- = AlOHOH[18O]H[18O]H- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]H- + [18O]D- = AlOHOH[18O]H[18O]D- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]H- + [18O]T- = AlOHOH[18O]H[18O]T- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]D- + OH- = AlOHOH[18O]DOH- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]D- + OD- = AlOHOH[18O]DOD- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]D- + OT- = AlOHOH[18O]DOT- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]D- + [18O]H- = AlOHOH[18O]D[18O]H- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]D- + [18O]D- = AlOHOH[18O]D[18O]D- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]D- + [18O]T- = AlOHOH[18O]D[18O]T- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]T- + OH- = AlOHOH[18O]TOH- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]T- + OD- = AlOHOH[18O]TOD- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]T- + [18O]H- = AlOHOH[18O]T[18O]H- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]T- + [18O]D- = AlOHOH[18O]T[18O]D- + 4 OH- +Al(OH)4- + OH- + OD- + OH- + OH- = AlOHODOHOH- + 4 OH- +Al(OH)4- + OH- + OD- + OH- + OD- = AlOHODOHOD- + 4 OH- +Al(OH)4- + OH- + OD- + OH- + OT- = AlOHODOHOT- + 4 OH- +Al(OH)4- + OH- + OD- + OH- + [18O]H- = AlOHODOH[18O]H- + 4 OH- +Al(OH)4- + OH- + OD- + OH- + [18O]D- = AlOHODOH[18O]D- + 4 OH- +Al(OH)4- + OH- + OD- + OH- + [18O]T- = AlOHODOH[18O]T- + 4 OH- +Al(OH)4- + OH- + OD- + OD- + OH- = AlOHODODOH- + 4 OH- +Al(OH)4- + OH- + OD- + OD- + OT- = AlOHODODOT- + 4 OH- +Al(OH)4- + OH- + OD- + OD- + [18O]H- = AlOHODOD[18O]H- + 4 OH- +Al(OH)4- + OH- + OD- + OD- + [18O]T- = AlOHODOD[18O]T- + 4 OH- +Al(OH)4- + OH- + OD- + OT- + OH- = AlOHODOTOH- + 4 OH- +Al(OH)4- + OH- + OD- + OT- + OD- = AlOHODOTOD- + 4 OH- +Al(OH)4- + OH- + OD- + OT- + [18O]H- = AlOHODOT[18O]H- + 4 OH- +Al(OH)4- + OH- + OD- + OT- + [18O]D- = AlOHODOT[18O]D- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]H- + OH- = AlOHOD[18O]HOH- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]H- + OD- = AlOHOD[18O]HOD- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]H- + OT- = AlOHOD[18O]HOT- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]H- + [18O]H- = AlOHOD[18O]H[18O]H- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]H- + [18O]D- = AlOHOD[18O]H[18O]D- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]H- + [18O]T- = AlOHOD[18O]H[18O]T- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]D- + OH- = AlOHOD[18O]DOH- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]D- + OT- = AlOHOD[18O]DOT- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]D- + [18O]H- = AlOHOD[18O]D[18O]H- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]T- + OH- = AlOHOD[18O]TOH- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]T- + OD- = AlOHOD[18O]TOD- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]T- + [18O]H- = AlOHOD[18O]T[18O]H- + 4 OH- +Al(OH)4- + OH- + OT- + OH- + OH- = AlOHOTOHOH- + 4 OH- +Al(OH)4- + OH- + OT- + OH- + OD- = AlOHOTOHOD- + 4 OH- +Al(OH)4- + OH- + OT- + OH- + [18O]H- = AlOHOTOH[18O]H- + 4 OH- +Al(OH)4- + OH- + OT- + OH- + [18O]D- = AlOHOTOH[18O]D- + 4 OH- +Al(OH)4- + OH- + OT- + OD- + OH- = AlOHOTODOH- + 4 OH- +Al(OH)4- + OH- + OT- + OD- + OD- = AlOHOTODOD- + 4 OH- +Al(OH)4- + OH- + OT- + OD- + [18O]H- = AlOHOTOD[18O]H- + 4 OH- +Al(OH)4- + OH- + OT- + OD- + [18O]D- = AlOHOTOD[18O]D- + 4 OH- +Al(OH)4- + OH- + OT- + [18O]H- + OH- = AlOHOT[18O]HOH- + 4 OH- +Al(OH)4- + OH- + OT- + [18O]H- + OD- = AlOHOT[18O]HOD- + 4 OH- +Al(OH)4- + OH- + OT- + [18O]H- + [18O]H- = AlOHOT[18O]H[18O]H- + 4 OH- +Al(OH)4- + OH- + OT- + [18O]H- + [18O]D- = AlOHOT[18O]H[18O]D- + 4 OH- +Al(OH)4- + OH- + OT- + [18O]D- + OH- = AlOHOT[18O]DOH- + 4 OH- +Al(OH)4- + OH- + OT- + [18O]D- + OD- = AlOHOT[18O]DOD- + 4 OH- +Al(OH)4- + OH- + OT- + [18O]D- + [18O]H- = AlOHOT[18O]D[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OH- + OH- = AlOH[18O]HOHOH- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OH- + OD- = AlOH[18O]HOHOD- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OH- + OT- = AlOH[18O]HOHOT- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OH- + [18O]H- = AlOH[18O]HOH[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OH- + [18O]D- = AlOH[18O]HOH[18O]D- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OH- + [18O]T- = AlOH[18O]HOH[18O]T- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OD- + OH- = AlOH[18O]HODOH- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OD- + OD- = AlOH[18O]HODOD- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OD- + OT- = AlOH[18O]HODOT- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OD- + [18O]H- = AlOH[18O]HOD[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OD- + [18O]D- = AlOH[18O]HOD[18O]D- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OD- + [18O]T- = AlOH[18O]HOD[18O]T- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OT- + OH- = AlOH[18O]HOTOH- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OT- + OD- = AlOH[18O]HOTOD- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OT- + [18O]H- = AlOH[18O]HOT[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OT- + [18O]D- = AlOH[18O]HOT[18O]D- + 4 OH- +Al(OH)4- + OH- + [18O]H- + [18O]H- + OH- = AlOH[18O]H[18O]HOH- + 4 OH- +Al(OH)4- + OH- + [18O]H- + [18O]H- + OD- = AlOH[18O]H[18O]HOD- + 4 OH- +Al(OH)4- + OH- + [18O]H- + [18O]H- + OT- = AlOH[18O]H[18O]HOT- + 4 OH- +Al(OH)4- + OH- + [18O]H- + [18O]D- + OH- = AlOH[18O]H[18O]DOH- + 4 OH- +Al(OH)4- + OH- + [18O]H- + [18O]D- + OD- = AlOH[18O]H[18O]DOD- + 4 OH- +Al(OH)4- + OH- + [18O]H- + [18O]D- + OT- = AlOH[18O]H[18O]DOT- + 4 OH- +Al(OH)4- + OH- + [18O]H- + [18O]T- + OH- = AlOH[18O]H[18O]TOH- + 4 OH- +Al(OH)4- + OH- + [18O]H- + [18O]T- + OD- = AlOH[18O]H[18O]TOD- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OH- + OH- = AlOH[18O]DOHOH- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OH- + OD- = AlOH[18O]DOHOD- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OH- + OT- = AlOH[18O]DOHOT- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OH- + [18O]H- = AlOH[18O]DOH[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OH- + [18O]D- = AlOH[18O]DOH[18O]D- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OH- + [18O]T- = AlOH[18O]DOH[18O]T- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OD- + OH- = AlOH[18O]DODOH- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OD- + OT- = AlOH[18O]DODOT- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OD- + [18O]H- = AlOH[18O]DOD[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OT- + OH- = AlOH[18O]DOTOH- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OT- + OD- = AlOH[18O]DOTOD- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OT- + [18O]H- = AlOH[18O]DOT[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]D- + [18O]H- + OH- = AlOH[18O]D[18O]HOH- + 4 OH- +Al(OH)4- + OH- + [18O]D- + [18O]H- + OD- = AlOH[18O]D[18O]HOD- + 4 OH- +Al(OH)4- + OH- + [18O]D- + [18O]H- + OT- = AlOH[18O]D[18O]HOT- + 4 OH- +Al(OH)4- + OH- + [18O]D- + [18O]D- + OH- = AlOH[18O]D[18O]DOH- + 4 OH- +Al(OH)4- + OH- + [18O]D- + [18O]T- + OH- = AlOH[18O]D[18O]TOH- + 4 OH- +Al(OH)4- + OH- + [18O]T- + OH- + OH- = AlOH[18O]TOHOH- + 4 OH- +Al(OH)4- + OH- + [18O]T- + OH- + OD- = AlOH[18O]TOHOD- + 4 OH- +Al(OH)4- + OH- + [18O]T- + OH- + [18O]H- = AlOH[18O]TOH[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]T- + OH- + [18O]D- = AlOH[18O]TOH[18O]D- + 4 OH- +Al(OH)4- + OH- + [18O]T- + OD- + OH- = AlOH[18O]TODOH- + 4 OH- +Al(OH)4- + OH- + [18O]T- + OD- + OD- = AlOH[18O]TODOD- + 4 OH- +Al(OH)4- + OH- + [18O]T- + OD- + [18O]H- = AlOH[18O]TOD[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]T- + [18O]H- + OH- = AlOH[18O]T[18O]HOH- + 4 OH- +Al(OH)4- + OH- + [18O]T- + [18O]H- + OD- = AlOH[18O]T[18O]HOD- + 4 OH- +Al(OH)4- + OH- + [18O]T- + [18O]D- + OH- = AlOH[18O]T[18O]DOH- + 4 OH- +Al(OH)4- + OD- + OH- + OH- + OH- = AlODOHOHOH- + 4 OH- +Al(OH)4- + OD- + OH- + OH- + OD- = AlODOHOHOD- + 4 OH- +Al(OH)4- + OD- + OH- + OH- + OT- = AlODOHOHOT- + 4 OH- +Al(OH)4- + OD- + OH- + OH- + [18O]H- = AlODOHOH[18O]H- + 4 OH- +Al(OH)4- + OD- + OH- + OH- + [18O]D- = AlODOHOH[18O]D- + 4 OH- +Al(OH)4- + OD- + OH- + OH- + [18O]T- = AlODOHOH[18O]T- + 4 OH- +Al(OH)4- + OD- + OH- + OD- + OH- = AlODOHODOH- + 4 OH- +Al(OH)4- + OD- + OH- + OD- + OT- = AlODOHODOT- + 4 OH- +Al(OH)4- + OD- + OH- + OD- + [18O]H- = AlODOHOD[18O]H- + 4 OH- +Al(OH)4- + OD- + OH- + OD- + [18O]T- = AlODOHOD[18O]T- + 4 OH- +Al(OH)4- + OD- + OH- + OT- + OH- = AlODOHOTOH- + 4 OH- +Al(OH)4- + OD- + OH- + OT- + OD- = AlODOHOTOD- + 4 OH- +Al(OH)4- + OD- + OH- + OT- + [18O]H- = AlODOHOT[18O]H- + 4 OH- +Al(OH)4- + OD- + OH- + OT- + [18O]D- = AlODOHOT[18O]D- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]H- + OH- = AlODOH[18O]HOH- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]H- + OD- = AlODOH[18O]HOD- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]H- + OT- = AlODOH[18O]HOT- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]H- + [18O]H- = AlODOH[18O]H[18O]H- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]H- + [18O]D- = AlODOH[18O]H[18O]D- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]H- + [18O]T- = AlODOH[18O]H[18O]T- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]D- + OH- = AlODOH[18O]DOH- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]D- + OT- = AlODOH[18O]DOT- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]D- + [18O]H- = AlODOH[18O]D[18O]H- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]T- + OH- = AlODOH[18O]TOH- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]T- + OD- = AlODOH[18O]TOD- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]T- + [18O]H- = AlODOH[18O]T[18O]H- + 4 OH- +Al(OH)4- + OD- + OD- + OH- + OH- = AlODODOHOH- + 4 OH- +Al(OH)4- + OD- + OD- + OH- + OT- = AlODODOHOT- + 4 OH- +Al(OH)4- + OD- + OD- + OH- + [18O]H- = AlODODOH[18O]H- + 4 OH- +Al(OH)4- + OD- + OD- + OH- + [18O]T- = AlODODOH[18O]T- + 4 OH- +Al(OH)4- + OD- + OD- + OT- + OH- = AlODODOTOH- + 4 OH- +Al(OH)4- + OD- + OD- + OT- + [18O]H- = AlODODOT[18O]H- + 4 OH- +Al(OH)4- + OD- + OD- + [18O]H- + OH- = AlODOD[18O]HOH- + 4 OH- +Al(OH)4- + OD- + OD- + [18O]H- + OT- = AlODOD[18O]HOT- + 4 OH- +Al(OH)4- + OD- + OD- + [18O]H- + [18O]H- = AlODOD[18O]H[18O]H- + 4 OH- +Al(OH)4- + OD- + OD- + [18O]T- + OH- = AlODOD[18O]TOH- + 4 OH- +Al(OH)4- + OD- + OT- + OH- + OH- = AlODOTOHOH- + 4 OH- +Al(OH)4- + OD- + OT- + OH- + OD- = AlODOTOHOD- + 4 OH- +Al(OH)4- + OD- + OT- + OH- + [18O]H- = AlODOTOH[18O]H- + 4 OH- +Al(OH)4- + OD- + OT- + OH- + [18O]D- = AlODOTOH[18O]D- + 4 OH- +Al(OH)4- + OD- + OT- + OD- + OH- = AlODOTODOH- + 4 OH- +Al(OH)4- + OD- + OT- + OD- + [18O]H- = AlODOTOD[18O]H- + 4 OH- +Al(OH)4- + OD- + OT- + [18O]H- + OH- = AlODOT[18O]HOH- + 4 OH- +Al(OH)4- + OD- + OT- + [18O]H- + OD- = AlODOT[18O]HOD- + 4 OH- +Al(OH)4- + OD- + OT- + [18O]H- + [18O]H- = AlODOT[18O]H[18O]H- + 4 OH- +Al(OH)4- + OD- + OT- + [18O]D- + OH- = AlODOT[18O]DOH- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OH- + OH- = AlOD[18O]HOHOH- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OH- + OD- = AlOD[18O]HOHOD- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OH- + OT- = AlOD[18O]HOHOT- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OH- + [18O]H- = AlOD[18O]HOH[18O]H- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OH- + [18O]D- = AlOD[18O]HOH[18O]D- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OH- + [18O]T- = AlOD[18O]HOH[18O]T- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OD- + OH- = AlOD[18O]HODOH- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OD- + OT- = AlOD[18O]HODOT- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OD- + [18O]H- = AlOD[18O]HOD[18O]H- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OT- + OH- = AlOD[18O]HOTOH- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OT- + OD- = AlOD[18O]HOTOD- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OT- + [18O]H- = AlOD[18O]HOT[18O]H- + 4 OH- +Al(OH)4- + OD- + [18O]H- + [18O]H- + OH- = AlOD[18O]H[18O]HOH- + 4 OH- +Al(OH)4- + OD- + [18O]H- + [18O]H- + OD- = AlOD[18O]H[18O]HOD- + 4 OH- +Al(OH)4- + OD- + [18O]H- + [18O]H- + OT- = AlOD[18O]H[18O]HOT- + 4 OH- +Al(OH)4- + OD- + [18O]H- + [18O]D- + OH- = AlOD[18O]H[18O]DOH- + 4 OH- +Al(OH)4- + OD- + [18O]H- + [18O]T- + OH- = AlOD[18O]H[18O]TOH- + 4 OH- +Al(OH)4- + OD- + [18O]D- + OH- + OH- = AlOD[18O]DOHOH- + 4 OH- +Al(OH)4- + OD- + [18O]D- + OH- + OT- = AlOD[18O]DOHOT- + 4 OH- +Al(OH)4- + OD- + [18O]D- + OH- + [18O]H- = AlOD[18O]DOH[18O]H- + 4 OH- +Al(OH)4- + OD- + [18O]D- + OT- + OH- = AlOD[18O]DOTOH- + 4 OH- +Al(OH)4- + OD- + [18O]D- + [18O]H- + OH- = AlOD[18O]D[18O]HOH- + 4 OH- +Al(OH)4- + OD- + [18O]T- + OH- + OH- = AlOD[18O]TOHOH- + 4 OH- +Al(OH)4- + OD- + [18O]T- + OH- + OD- = AlOD[18O]TOHOD- + 4 OH- +Al(OH)4- + OD- + [18O]T- + OH- + [18O]H- = AlOD[18O]TOH[18O]H- + 4 OH- +Al(OH)4- + OD- + [18O]T- + OD- + OH- = AlOD[18O]TODOH- + 4 OH- +Al(OH)4- + OD- + [18O]T- + [18O]H- + OH- = AlOD[18O]T[18O]HOH- + 4 OH- +Al(OH)4- + OT- + OH- + OH- + OH- = AlOTOHOHOH- + 4 OH- +Al(OH)4- + OT- + OH- + OH- + OD- = AlOTOHOHOD- + 4 OH- +Al(OH)4- + OT- + OH- + OH- + [18O]H- = AlOTOHOH[18O]H- + 4 OH- +Al(OH)4- + OT- + OH- + OH- + [18O]D- = AlOTOHOH[18O]D- + 4 OH- +Al(OH)4- + OT- + OH- + OD- + OH- = AlOTOHODOH- + 4 OH- +Al(OH)4- + OT- + OH- + OD- + OD- = AlOTOHODOD- + 4 OH- +Al(OH)4- + OT- + OH- + OD- + [18O]H- = AlOTOHOD[18O]H- + 4 OH- +Al(OH)4- + OT- + OH- + OD- + [18O]D- = AlOTOHOD[18O]D- + 4 OH- +Al(OH)4- + OT- + OH- + [18O]H- + OH- = AlOTOH[18O]HOH- + 4 OH- +Al(OH)4- + OT- + OH- + [18O]H- + OD- = AlOTOH[18O]HOD- + 4 OH- +Al(OH)4- + OT- + OH- + [18O]H- + [18O]H- = AlOTOH[18O]H[18O]H- + 4 OH- +Al(OH)4- + OT- + OH- + [18O]H- + [18O]D- = AlOTOH[18O]H[18O]D- + 4 OH- +Al(OH)4- + OT- + OH- + [18O]D- + OH- = AlOTOH[18O]DOH- + 4 OH- +Al(OH)4- + OT- + OH- + [18O]D- + OD- = AlOTOH[18O]DOD- + 4 OH- +Al(OH)4- + OT- + OH- + [18O]D- + [18O]H- = AlOTOH[18O]D[18O]H- + 4 OH- +Al(OH)4- + OT- + OD- + OH- + OH- = AlOTODOHOH- + 4 OH- +Al(OH)4- + OT- + OD- + OH- + OD- = AlOTODOHOD- + 4 OH- +Al(OH)4- + OT- + OD- + OH- + [18O]H- = AlOTODOH[18O]H- + 4 OH- +Al(OH)4- + OT- + OD- + OH- + [18O]D- = AlOTODOH[18O]D- + 4 OH- +Al(OH)4- + OT- + OD- + OD- + OH- = AlOTODODOH- + 4 OH- +Al(OH)4- + OT- + OD- + OD- + [18O]H- = AlOTODOD[18O]H- + 4 OH- +Al(OH)4- + OT- + OD- + [18O]H- + OH- = AlOTOD[18O]HOH- + 4 OH- +Al(OH)4- + OT- + OD- + [18O]H- + OD- = AlOTOD[18O]HOD- + 4 OH- +Al(OH)4- + OT- + OD- + [18O]H- + [18O]H- = AlOTOD[18O]H[18O]H- + 4 OH- +Al(OH)4- + OT- + OD- + [18O]D- + OH- = AlOTOD[18O]DOH- + 4 OH- +Al(OH)4- + OT- + [18O]H- + OH- + OH- = AlOT[18O]HOHOH- + 4 OH- +Al(OH)4- + OT- + [18O]H- + OH- + OD- = AlOT[18O]HOHOD- + 4 OH- +Al(OH)4- + OT- + [18O]H- + OH- + [18O]H- = AlOT[18O]HOH[18O]H- + 4 OH- +Al(OH)4- + OT- + [18O]H- + OH- + [18O]D- = AlOT[18O]HOH[18O]D- + 4 OH- +Al(OH)4- + OT- + [18O]H- + OD- + OH- = AlOT[18O]HODOH- + 4 OH- +Al(OH)4- + OT- + [18O]H- + OD- + OD- = AlOT[18O]HODOD- + 4 OH- +Al(OH)4- + OT- + [18O]H- + OD- + [18O]H- = AlOT[18O]HOD[18O]H- + 4 OH- +Al(OH)4- + OT- + [18O]H- + [18O]H- + OH- = AlOT[18O]H[18O]HOH- + 4 OH- +Al(OH)4- + OT- + [18O]H- + [18O]H- + OD- = AlOT[18O]H[18O]HOD- + 4 OH- +Al(OH)4- + OT- + [18O]H- + [18O]D- + OH- = AlOT[18O]H[18O]DOH- + 4 OH- +Al(OH)4- + OT- + [18O]D- + OH- + OH- = AlOT[18O]DOHOH- + 4 OH- +Al(OH)4- + OT- + [18O]D- + OH- + OD- = AlOT[18O]DOHOD- + 4 OH- +Al(OH)4- + OT- + [18O]D- + OH- + [18O]H- = AlOT[18O]DOH[18O]H- + 4 OH- +Al(OH)4- + OT- + [18O]D- + OD- + OH- = AlOT[18O]DODOH- + 4 OH- +Al(OH)4- + OT- + [18O]D- + [18O]H- + OH- = AlOT[18O]D[18O]HOH- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OH- + OH- = Al[18O]HOHOHOH- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OH- + OD- = Al[18O]HOHOHOD- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OH- + OT- = Al[18O]HOHOHOT- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OH- + [18O]H- = Al[18O]HOHOH[18O]H- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OH- + [18O]D- = Al[18O]HOHOH[18O]D- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OH- + [18O]T- = Al[18O]HOHOH[18O]T- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OD- + OH- = Al[18O]HOHODOH- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OD- + OD- = Al[18O]HOHODOD- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OD- + OT- = Al[18O]HOHODOT- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OD- + [18O]H- = Al[18O]HOHOD[18O]H- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OD- + [18O]D- = Al[18O]HOHOD[18O]D- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OD- + [18O]T- = Al[18O]HOHOD[18O]T- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OT- + OH- = Al[18O]HOHOTOH- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OT- + OD- = Al[18O]HOHOTOD- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OT- + [18O]H- = Al[18O]HOHOT[18O]H- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OT- + [18O]D- = Al[18O]HOHOT[18O]D- + 4 OH- +Al(OH)4- + [18O]H- + OH- + [18O]H- + OH- = Al[18O]HOH[18O]HOH- + 4 OH- +Al(OH)4- + [18O]H- + OH- + [18O]H- + OD- = Al[18O]HOH[18O]HOD- + 4 OH- +Al(OH)4- + [18O]H- + OH- + [18O]H- + OT- = Al[18O]HOH[18O]HOT- + 4 OH- +Al(OH)4- + [18O]H- + OH- + [18O]D- + OH- = Al[18O]HOH[18O]DOH- + 4 OH- +Al(OH)4- + [18O]H- + OH- + [18O]D- + OD- = Al[18O]HOH[18O]DOD- + 4 OH- +Al(OH)4- + [18O]H- + OH- + [18O]D- + OT- = Al[18O]HOH[18O]DOT- + 4 OH- +Al(OH)4- + [18O]H- + OH- + [18O]T- + OH- = Al[18O]HOH[18O]TOH- + 4 OH- +Al(OH)4- + [18O]H- + OH- + [18O]T- + OD- = Al[18O]HOH[18O]TOD- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OH- + OH- = Al[18O]HODOHOH- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OH- + OD- = Al[18O]HODOHOD- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OH- + OT- = Al[18O]HODOHOT- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OH- + [18O]H- = Al[18O]HODOH[18O]H- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OH- + [18O]D- = Al[18O]HODOH[18O]D- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OH- + [18O]T- = Al[18O]HODOH[18O]T- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OD- + OH- = Al[18O]HODODOH- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OD- + OT- = Al[18O]HODODOT- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OD- + [18O]H- = Al[18O]HODOD[18O]H- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OT- + OH- = Al[18O]HODOTOH- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OT- + OD- = Al[18O]HODOTOD- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OT- + [18O]H- = Al[18O]HODOT[18O]H- + 4 OH- +Al(OH)4- + [18O]H- + OD- + [18O]H- + OH- = Al[18O]HOD[18O]HOH- + 4 OH- +Al(OH)4- + [18O]H- + OD- + [18O]H- + OD- = Al[18O]HOD[18O]HOD- + 4 OH- +Al(OH)4- + [18O]H- + OD- + [18O]H- + OT- = Al[18O]HOD[18O]HOT- + 4 OH- +Al(OH)4- + [18O]H- + OD- + [18O]D- + OH- = Al[18O]HOD[18O]DOH- + 4 OH- +Al(OH)4- + [18O]H- + OD- + [18O]T- + OH- = Al[18O]HOD[18O]TOH- + 4 OH- +Al(OH)4- + [18O]H- + OT- + OH- + OH- = Al[18O]HOTOHOH- + 4 OH- +Al(OH)4- + [18O]H- + OT- + OH- + OD- = Al[18O]HOTOHOD- + 4 OH- +Al(OH)4- + [18O]H- + OT- + OH- + [18O]H- = Al[18O]HOTOH[18O]H- + 4 OH- +Al(OH)4- + [18O]H- + OT- + OH- + [18O]D- = Al[18O]HOTOH[18O]D- + 4 OH- +Al(OH)4- + [18O]H- + OT- + OD- + OH- = Al[18O]HOTODOH- + 4 OH- +Al(OH)4- + [18O]H- + OT- + OD- + OD- = Al[18O]HOTODOD- + 4 OH- +Al(OH)4- + [18O]H- + OT- + OD- + [18O]H- = Al[18O]HOTOD[18O]H- + 4 OH- +Al(OH)4- + [18O]H- + OT- + [18O]H- + OH- = Al[18O]HOT[18O]HOH- + 4 OH- +Al(OH)4- + [18O]H- + OT- + [18O]H- + OD- = Al[18O]HOT[18O]HOD- + 4 OH- +Al(OH)4- + [18O]H- + OT- + [18O]D- + OH- = Al[18O]HOT[18O]DOH- + 4 OH- +Al(OH)4- + [18O]H- + [18O]H- + OH- + OH- = Al[18O]H[18O]HOHOH- + 4 OH- +Al(OH)4- + [18O]H- + [18O]H- + OH- + OD- = Al[18O]H[18O]HOHOD- + 4 OH- +Al(OH)4- + [18O]H- + [18O]H- + OH- + OT- = Al[18O]H[18O]HOHOT- + 4 OH- +Al(OH)4- + [18O]H- + [18O]H- + OD- + OH- = Al[18O]H[18O]HODOH- + 4 OH- +Al(OH)4- + [18O]H- + [18O]H- + OD- + OD- = Al[18O]H[18O]HODOD- + 4 OH- +Al(OH)4- + [18O]H- + [18O]H- + OD- + OT- = Al[18O]H[18O]HODOT- + 4 OH- +Al(OH)4- + [18O]H- + [18O]H- + OT- + OH- = Al[18O]H[18O]HOTOH- + 4 OH- +Al(OH)4- + [18O]H- + [18O]H- + OT- + OD- = Al[18O]H[18O]HOTOD- + 4 OH- +Al(OH)4- + [18O]H- + [18O]D- + OH- + OH- = Al[18O]H[18O]DOHOH- + 4 OH- +Al(OH)4- + [18O]H- + [18O]D- + OH- + OD- = Al[18O]H[18O]DOHOD- + 4 OH- +Al(OH)4- + [18O]H- + [18O]D- + OH- + OT- = Al[18O]H[18O]DOHOT- + 4 OH- +Al(OH)4- + [18O]H- + [18O]D- + OD- + OH- = Al[18O]H[18O]DODOH- + 4 OH- +Al(OH)4- + [18O]H- + [18O]D- + OT- + OH- = Al[18O]H[18O]DOTOH- + 4 OH- +Al(OH)4- + [18O]H- + [18O]T- + OH- + OH- = Al[18O]H[18O]TOHOH- + 4 OH- +Al(OH)4- + [18O]H- + [18O]T- + OH- + OD- = Al[18O]H[18O]TOHOD- + 4 OH- +Al(OH)4- + [18O]H- + [18O]T- + OD- + OH- = Al[18O]H[18O]TODOH- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OH- + OH- = Al[18O]DOHOHOH- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OH- + OD- = Al[18O]DOHOHOD- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OH- + OT- = Al[18O]DOHOHOT- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OH- + [18O]H- = Al[18O]DOHOH[18O]H- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OH- + [18O]D- = Al[18O]DOHOH[18O]D- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OH- + [18O]T- = Al[18O]DOHOH[18O]T- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OD- + OH- = Al[18O]DOHODOH- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OD- + OT- = Al[18O]DOHODOT- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OD- + [18O]H- = Al[18O]DOHOD[18O]H- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OT- + OH- = Al[18O]DOHOTOH- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OT- + OD- = Al[18O]DOHOTOD- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OT- + [18O]H- = Al[18O]DOHOT[18O]H- + 4 OH- +Al(OH)4- + [18O]D- + OH- + [18O]H- + OH- = Al[18O]DOH[18O]HOH- + 4 OH- +Al(OH)4- + [18O]D- + OH- + [18O]H- + OD- = Al[18O]DOH[18O]HOD- + 4 OH- +Al(OH)4- + [18O]D- + OH- + [18O]H- + OT- = Al[18O]DOH[18O]HOT- + 4 OH- +Al(OH)4- + [18O]D- + OH- + [18O]D- + OH- = Al[18O]DOH[18O]DOH- + 4 OH- +Al(OH)4- + [18O]D- + OH- + [18O]T- + OH- = Al[18O]DOH[18O]TOH- + 4 OH- +Al(OH)4- + [18O]D- + OD- + OH- + OH- = Al[18O]DODOHOH- + 4 OH- +Al(OH)4- + [18O]D- + OD- + OH- + OT- = Al[18O]DODOHOT- + 4 OH- +Al(OH)4- + [18O]D- + OD- + OH- + [18O]H- = Al[18O]DODOH[18O]H- + 4 OH- +Al(OH)4- + [18O]D- + OD- + OT- + OH- = Al[18O]DODOTOH- + 4 OH- +Al(OH)4- + [18O]D- + OD- + [18O]H- + OH- = Al[18O]DOD[18O]HOH- + 4 OH- +Al(OH)4- + [18O]D- + OT- + OH- + OH- = Al[18O]DOTOHOH- + 4 OH- +Al(OH)4- + [18O]D- + OT- + OH- + OD- = Al[18O]DOTOHOD- + 4 OH- +Al(OH)4- + [18O]D- + OT- + OH- + [18O]H- = Al[18O]DOTOH[18O]H- + 4 OH- +Al(OH)4- + [18O]D- + OT- + OD- + OH- = Al[18O]DOTODOH- + 4 OH- +Al(OH)4- + [18O]D- + OT- + [18O]H- + OH- = Al[18O]DOT[18O]HOH- + 4 OH- +Al(OH)4- + [18O]D- + [18O]H- + OH- + OH- = Al[18O]D[18O]HOHOH- + 4 OH- +Al(OH)4- + [18O]D- + [18O]H- + OH- + OD- = Al[18O]D[18O]HOHOD- + 4 OH- +Al(OH)4- + [18O]D- + [18O]H- + OH- + OT- = Al[18O]D[18O]HOHOT- + 4 OH- +Al(OH)4- + [18O]D- + [18O]H- + OD- + OH- = Al[18O]D[18O]HODOH- + 4 OH- +Al(OH)4- + [18O]D- + [18O]H- + OT- + OH- = Al[18O]D[18O]HOTOH- + 4 OH- +Al(OH)4- + [18O]D- + [18O]D- + OH- + OH- = Al[18O]D[18O]DOHOH- + 4 OH- +Al(OH)4- + [18O]D- + [18O]T- + OH- + OH- = Al[18O]D[18O]TOHOH- + 4 OH- +Al(OH)4- + [18O]T- + OH- + OH- + OH- = Al[18O]TOHOHOH- + 4 OH- +Al(OH)4- + [18O]T- + OH- + OH- + OD- = Al[18O]TOHOHOD- + 4 OH- +Al(OH)4- + [18O]T- + OH- + OH- + [18O]H- = Al[18O]TOHOH[18O]H- + 4 OH- +Al(OH)4- + [18O]T- + OH- + OH- + [18O]D- = Al[18O]TOHOH[18O]D- + 4 OH- +Al(OH)4- + [18O]T- + OH- + OD- + OH- = Al[18O]TOHODOH- + 4 OH- +Al(OH)4- + [18O]T- + OH- + OD- + OD- = Al[18O]TOHODOD- + 4 OH- +Al(OH)4- + [18O]T- + OH- + OD- + [18O]H- = Al[18O]TOHOD[18O]H- + 4 OH- +Al(OH)4- + [18O]T- + OH- + [18O]H- + OH- = Al[18O]TOH[18O]HOH- + 4 OH- +Al(OH)4- + [18O]T- + OH- + [18O]H- + OD- = Al[18O]TOH[18O]HOD- + 4 OH- +Al(OH)4- + [18O]T- + OH- + [18O]D- + OH- = Al[18O]TOH[18O]DOH- + 4 OH- +Al(OH)4- + [18O]T- + OD- + OH- + OH- = Al[18O]TODOHOH- + 4 OH- +Al(OH)4- + [18O]T- + OD- + OH- + OD- = Al[18O]TODOHOD- + 4 OH- +Al(OH)4- + [18O]T- + OD- + OH- + [18O]H- = Al[18O]TODOH[18O]H- + 4 OH- +Al(OH)4- + [18O]T- + OD- + OD- + OH- = Al[18O]TODODOH- + 4 OH- +Al(OH)4- + [18O]T- + OD- + [18O]H- + OH- = Al[18O]TOD[18O]HOH- + 4 OH- +Al(OH)4- + [18O]T- + [18O]H- + OH- + OH- = Al[18O]T[18O]HOHOH- + 4 OH- +Al(OH)4- + [18O]T- + [18O]H- + OH- + OD- = Al[18O]T[18O]HOHOD- + 4 OH- +Al(OH)4- + [18O]T- + [18O]H- + OD- + OH- = Al[18O]T[18O]HODOH- + 4 OH- +Al(OH)4- + [18O]T- + [18O]D- + OH- + OH- = Al[18O]T[18O]DOHOH- + 4 OH- # # Added AlSO4+ reactions 16Dec09 # @@ -6757,9 +6761,9 @@ AlSO4+ + [34S]O4-2 = Al[34S]O4+ + SO4-2 # Added Al(SO4)2- reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Al(SO4)2- + SO4-2 + [34S]O4-2 = AlSO4[34S]O4- + 2SO4-2 -Al(SO4)2- + [34S]O4-2 + SO4-2 = Al[34S]O4SO4- + 2SO4-2 -Al(SO4)2- + [34S]O4-2 + [34S]O4-2 = Al[34S]O4[34S]O4- + 2SO4-2 +Al(SO4)2- + SO4-2 + [34S]O4-2 = AlSO4[34S]O4- + 2 SO4-2 +Al(SO4)2- + [34S]O4-2 + SO4-2 = Al[34S]O4SO4- + 2 SO4-2 +Al(SO4)2- + [34S]O4-2 + [34S]O4-2 = Al[34S]O4[34S]O4- + 2 SO4-2 # # Added AlHSO4+2 reactions 16Dec09 # @@ -6789,47 +6793,47 @@ PHASES # HDO(g) HDO(g) + H2O(l) = H2O(g) + HDO(aq) - -add_logk Log_alpha_D_H2O(g)/H2O(l) -1.0 + -add_logk Log_alpha_D_H2O(g)/H2O(l) -1 HTO(g) HTO(g) + H2O(l) = H2O(g) + HTO(aq) - -add_logk Log_alpha_T_H2O(g)/H2O(l) -1.0 + -add_logk Log_alpha_T_H2O(g)/H2O(l) -1 DTO(g) DTO(g) + H2O(g) = HDO(g) + HTO(g) - log_k 0.301029995663 # log10(2) + log_k 0.301029995663 # log10(2) D2O(g) - D2O(g) + H2O(g) = 2HDO(g) - log_k 0.602059991327962396 # log10(4) + D2O(g) + H2O(g) = 2 HDO(g) + log_k 0.602059991327962396 # log10(4) T2O(g) - T2O(g) + H2O(g) = 2HTO(g) - log_k 0.602059991327962396 # log10(4) + T2O(g) + H2O(g) = 2 HTO(g) + log_k 0.602059991327962396 # log10(4) H2[18O](g) H2[18O](g) + H2O(l) = H2O(g) + H2[18O](aq) - -add_logk Log_alpha_18O_H2O(g)/H2O(l) -1.0 + -add_logk Log_alpha_18O_H2O(g)/H2O(l) -1 HD[18O](g) HD[18O](g) + H2O(g) = HDO(g) + H2[18O](g) - log_k 0.0 + log_k 0 HT[18O](g) HT[18O](g) + H2O(g) = HTO(g) + H2[18O](g) - log_k 0.0 + log_k 0 D2[18O](g) D2[18O](g) + H2O(g) = D2O(g) + H2[18O](g) - log_k 0.0 + log_k 0 T2[18O](g) T2[18O](g) + H2O(g) = T2O(g) + H2[18O](g) - log_k 0.0 + log_k 0 DT[18O](g) DT[18O](g) + H2O(g) = DTO(g) + H2[18O](g) - log_k 0.0 + log_k 0 # # O2 gas - O2 aqueous # last update March 20, 2006 @@ -6839,11 +6843,11 @@ DT[18O](g) O[18O](g) O[18O](g) + H2O(l) = O2(g) + H2[18O](aq) ## symmetry K ?? - -add_logk Log_alpha_18O_O2(g)/H2O(l) -1.0 + -add_logk Log_alpha_18O_O2(g)/H2O(l) -1 [18O]2(g) - [18O]2(g) + O2(g) = 2O[18O](g) - log_k 0.602059991327962396 # log10(4) + [18O]2(g) + O2(g) = 2 O[18O](g) + log_k 0.602059991327962396 # log10(4) # # H2 gas - H2 aqueous # last update March 20, 2006 @@ -6852,23 +6856,23 @@ O[18O](g) # HD(g) HD(g) + H2O(l) = H2(g) + HDO(aq) - -add_logk Log_alpha_D_H2(g)/H2O(l) -1.0 + -add_logk Log_alpha_D_H2(g)/H2O(l) -1 HT(g) HT(g) + H2O(l) = H2(g) + HTO(aq) - -add_logk Log_alpha_T_H2(g)/H2O(l) -1.0 + -add_logk Log_alpha_T_H2(g)/H2O(l) -1 D2(g) - D2(g) + H2(g) = 2HD(g) - log_k 0.602059991327962396 # log10(4) - + D2(g) + H2(g) = 2 HD(g) + log_k 0.602059991327962396 # log10(4) + T2(g) - T2(g) + H2(g) = 2HT(g) - log_k 0.602059991327962396 # log10(4) + T2(g) + H2(g) = 2 HT(g) + log_k 0.602059991327962396 # log10(4) DT(g) DT(g) + H2(g) = HD(g) + HT(g) - log_k 0.301029995663 # log10(2) + log_k 0.301029995663 # log10(2) # # CO2 gas - CO2 aqueous # last update March 20, 2006 @@ -6877,36 +6881,36 @@ DT(g) # CO[18O](g) CO[18O](g) + H2O(l) = H2[18O](aq) + CO2(g) - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_18O_CO2(g)/H2O(l) -1.0 + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_18O_CO2(g)/H2O(l) -1 C[18O]2(g) - C[18O]2(g) + CO2(g) = 2CO[18O](g) - log_k 0.602059991327962396 # log10(4) + C[18O]2(g) + CO2(g) = 2 CO[18O](g) + log_k 0.602059991327962396 # log10(4) [13C]O2(g) [13C]O2(g) + CO2(aq) = [13C]O2(aq) + CO2(g) - -add_logk Log_alpha_13C_CO2(g)/CO2(aq) -1.0 + -add_logk Log_alpha_13C_CO2(g)/CO2(aq) -1 [13C]O[18O](g) [13C]O[18O](g) + CO2(g) = [13C]O2(g) + CO[18O](g) - log_k 0 + log_k 0 [13C][18O]2(g) [13C][18O]2(g) + CO2(g) = C[18O]2(g) + [13C]O2(g) - log_k 0 + log_k 0 [14C]O2(g) [14C]O2(g) + CO2(aq) = [14C]O2(aq) + CO2(g) - -add_logk Log_alpha_14C_CO2(g)/CO2(aq) -1.0 + -add_logk Log_alpha_14C_CO2(g)/CO2(aq) -1 [14C]O[18O](g) [14C]O[18O](g) + CO2(g) = [14C]O2(g) + CO[18O](g) - log_k 0 + log_k 0 [14C][18O]2(g) - [14C][18O]2(g) + CO2(g) = [14C]O2(g) + C[18O]2(g) - log_k 0 + [14C][18O]2(g) + CO2(g) = [14C]O2(g) + C[18O]2(g) + log_k 0 # # Calcite # last update Feb 13, 2006 @@ -6914,63 +6918,63 @@ C[18O]2(g) # Checked September 19, 2006 # CaCO2[18O](s) - CaCO2[18O](s) + H2O(l) = H2[18O](aq) + Calcite(s) - log_k -0.477121254719 # -log10(3) ??? - -add_logk Log_alpha_18O_Calcite/H2O(l) -1.0 + CaCO2[18O](s) + H2O(l) = H2[18O](aq) + Calcite(s) + log_k -0.477121254719 # -log10(3) ??? + -add_logk Log_alpha_18O_Calcite/H2O(l) -1 CaCO[18O]2(s) - CaCO[18O]2(s) + Calcite(s) = 2CaCO2[18O](s) - log_k 0.477121254719 # log10(3) + CaCO[18O]2(s) + Calcite(s) = 2 CaCO2[18O](s) + log_k 0.477121254719 # log10(3) CaC[18O]3(s) - CaC[18O]3(s) + 2Calcite(s) = 3CaCO2[18O](s) - log_k 1.431363764158 # log10(27) + CaC[18O]3(s) + 2 Calcite(s) = 3 CaCO2[18O](s) + log_k 1.431363764158 # log10(27) Ca[13C]O3(s) Ca[13C]O3(s) + CO2 = [13C]O2 + Calcite(s) - -add_logk Log_alpha_13C_Calcite/CO2(aq) -1.0 + -add_logk Log_alpha_13C_Calcite/CO2(aq) -1 Ca[13C]O2[18O](s) Ca[13C]O2[18O](s) + Calcite(s) = Ca[13C]O3(s) + CaCO2[18O](s) - log_k 0 + log_k 0 Ca[13C]O[18O]2(s) Ca[13C]O[18O]2(s) + Calcite(s) = Ca[13C]O3(s) + CaCO[18O]2(s) - log_k 0 + log_k 0 Ca[13C][18O]3(s) Ca[13C][18O]3(s) + Calcite(s) = Ca[13C]O3(s) + CaC[18O]3(s) - log_k 0 + log_k 0 Ca[14C]O3(s) Ca[14C]O3(s) + CO2 = Calcite(s) + [14C]O2 - -add_logk Log_alpha_14C_Calcite/CO2(aq) -1.0 + -add_logk Log_alpha_14C_Calcite/CO2(aq) -1 Ca[14C]O2[18O](s) Ca[14C]O2[18O](s) + Calcite(s) = Ca[14C]O3(s) + CaCO2[18O](s) - log_k 0 + log_k 0 Ca[14C]O[18O]2(s) Ca[14C]O[18O]2(s) + Calcite(s) = Ca[14C]O3(s) + CaCO[18O]2(s) - log_k 0 + log_k 0 Ca[14C][18O]3(s) Ca[14C][18O]3(s) + Calcite(s) = Ca[14C]O3(s) + CaC[18O]3(s) - log_k 0 + log_k 0 # # Pyrite, March 20, 2006 # Update September 28, 2006 # Checked September 28, 2006 -# +# Pyrite_FeS[34S] FeS[34S](s) + HS- = Pyrite(s) + H[34S]- - -add_logk Log_alpha_34S_Pyrite/HS- -1.0 + -add_logk Log_alpha_34S_Pyrite/HS- -1 Pyrite_Fe[34S]S Fe[34S]S(s) = Pyrite_FeS[34S](s) Pyrite_Fe[34S]2 - Fe[34S]2(s) + Pyrite(s) = 2Pyrite_FeS[34S](s) + Fe[34S]2(s) + Pyrite(s) = 2 Pyrite_FeS[34S](s) # # CH4 reactions # last update March 20, 2006 @@ -6979,53 +6983,53 @@ Pyrite_Fe[34S]2 # CH3D(g) CH3D(g) + H2O(l) = CH4(g) + HDO(aq) - log_k -0.301029995663 # -log10(2) ??? - -add_logk Log_alpha_D_CH4(g)/H2O(l) -1.0 + log_k -0.301029995663 # -log10(2) ??? + -add_logk Log_alpha_D_CH4(g)/H2O(l) -1 CH2D2(g) - CH2D2(g) + CH4(g) = 2CH3D(g) - log_k 0.42596873227228 # log10(8/3) + CH2D2(g) + CH4(g) = 2 CH3D(g) + log_k 0.42596873227228 # log10(8/3) CHD3(g) - CHD3(g) + 2CH4(g) = 3CH3D(g) - log_k 1.20411998265 # log10(16) + CHD3(g) + 2 CH4(g) = 3 CH3D(g) + log_k 1.20411998265 # log10(16) CD4(g) - CD4(g) + 3CH4(g) = 4CH3D(g) - log_k 2.408239965311 # log10(256) + CD4(g) + 3 CH4(g) = 4 CH3D(g) + log_k 2.408239965311 # log10(256) CH3T(g) CH3T(g) + H2O(l) = CH4(g) + HTO(aq) - log_k -0.301029995663 # -log10(2) ??? - -add_logk Log_alpha_T_CH4(g)/H2O(l) -1.0 + log_k -0.301029995663 # -log10(2) ??? + -add_logk Log_alpha_T_CH4(g)/H2O(l) -1 CH2T2(g) - CH2T2(g) + CH4(g) = 2CH3T(g) - log_k 0.42596873227228 # log10(8/3) + CH2T2(g) + CH4(g) = 2 CH3T(g) + log_k 0.42596873227228 # log10(8/3) CHT3(g) - CHT3(g) + 2CH4(g) = 3CH3T(g) - log_k 1.20411998265 # log10(16) + CHT3(g) + 2 CH4(g) = 3 CH3T(g) + log_k 1.20411998265 # log10(16) CT4(g) - CT4(g) + 3CH4(g) = 4CH3T(g) - log_k 2.408239965311 # log10(256) + CT4(g) + 3 CH4(g) = 4 CH3T(g) + log_k 2.408239965311 # log10(256) CD3T(g) CD3T(g) + CH4(g) = CHD3(g) + CH3T(g) - log_k 0.602059991327962396 # log10(4) + log_k 0.602059991327962396 # log10(4) CD2T2(g) CD2T2(g) + CH4(g) = CH2D2(g) + CH2T2(g) - log_k 0.7781512503836 # log10(6) + log_k 0.7781512503836 # log10(6) CDT3(g) CDT3(g) + CH4(g) = CHT3(g) + CH3D(g) - log_k 0.602059991327962396 # log10(4) + log_k 0.602059991327962396 # log10(4) [13C]H4(g) [13C]H4(g) + CO2(aq) = [13C]O2(aq) + CH4(g) - -add_logk Log_alpha_13C_CH4(g)/CO2(aq) -1.0 + -add_logk Log_alpha_13C_CH4(g)/CO2(aq) -1 [13C]H3D(g) [13C]H3D(g) + CH4(g) = CH3D(g) + [13C]H4(g) @@ -7056,50 +7060,50 @@ CDT3(g) [13C]D2T2(g) [13C]D2T2(g) + CH4(g) = CD2T2(g) + [13C]H4(g) - + [13C]DT3(g) [13C]DT3(g) + CH4(g) = CDT3(g) + [13C]H4(g) - + [13C]T4(g) [13C]T4(g) + CH4(g) = CT4(g) + [13C]H4(g) - + [14C]H4(g) [14C]H4(g) + CO2(aq) = [14C]O2(aq) + CH4(g) - -add_logk Log_alpha_14C_CH4(g)/CO2(aq) -1.0 - + -add_logk Log_alpha_14C_CH4(g)/CO2(aq) -1 + [14C]H3D(g) [14C]H3D(g) + CH4(g) = CH3D(g) + [14C]H4(g) - + [14C]H2D2(g) [14C]H2D2(g) + CH4(g) = CH2D2(g) + [14C]H4(g) - + [14C]HD3(g) [14C]HD3(g) + CH4(g) = CHD3(g) + [14C]H4(g) [14C]D4(g) [14C]D4(g) + CH4(g) = CD4(g) + [14C]H4(g) - + [14C]H3T(g) [14C]H3T(g) + CH4(g) = CH3T(g) + [14C]H4(g) - + [14C]H2T2(g) [14C]H2T2(g) + CH4(g) = CH2T2(g) + [14C]H4(g) - + [14C]HT3(g) [14C]HT3(g) + CH4(g) = CHT3(g) + [14C]H4(g) - + [14C]T4(g) [14C]T4(g) + CH4(g) = CT4(g) + [14C]H4(g) - + [14C]D3T(g) [14C]D3T(g) + CH4(g) = CD3T(g) + [14C]H4(g) - + [14C]D2T2(g) [14C]D2T2(g) + CH4(g) = CD2T2(g) + [14C]H4(g) - + [14C]DT3(g) [14C]DT3(g) + CH4(g) = CDT3(g) + [14C]H4(g) - + [14C]T4(g) [14C]T4(g) + CH4(g) = CT4(g) + [14C]H4(g) # @@ -7109,27 +7113,27 @@ CDT3(g) # HDS(g) HDS(g) + H2S(aq) = HDS(aq) + H2S(g) - -add_logk Log_alpha_D_H2S(g)/H2S(aq) -1.0 + -add_logk Log_alpha_D_H2S(g)/H2S(aq) -1 D2S(g) - D2S(g) + H2S(g) = 2HDS(g) - log_k 0.602059991327962396 # log10(4) + D2S(g) + H2S(g) = 2 HDS(g) + log_k 0.602059991327962396 # log10(4) HTS(g) HTS(g) + H2S(aq) = HTS(aq) + H2S(g) - -add_logk Log_alpha_T_H2S(g)/H2S(aq) -1.0 + -add_logk Log_alpha_T_H2S(g)/H2S(aq) -1 T2S(g) - T2S(g) + H2S(g) = 2HTS(g) - log_k 0.602059991327962396 # log10(4) + T2S(g) + H2S(g) = 2 HTS(g) + log_k 0.602059991327962396 # log10(4) DTS(g) DTS(g) + H2S(g) = HDS(g) + HTS(g) - log_k 0.301029995663 # log10(2) + log_k 0.301029995663 # log10(2) H2[34S](g) H2[34S](g) + H2S(aq) = H2[34S](aq) + H2S(g) - -add_logk Log_alpha_34S_H2S(g)/H2S(aq) -1.0 + -add_logk Log_alpha_34S_H2S(g)/H2S(aq) -1 HD[34S](g) HD[34S](g) + H2S(g) = HDS(g) + H2[34S](g) @@ -7151,60 +7155,60 @@ DT[34S](g) # Ca[34S]O4:2H2O Ca[34S]O4:2H2O + SO4-2 = [34S]O4-2 + Gypsum(s) - -add_logk Log_alpha_34S_Gypsum/SO4-2 -1.0 + -add_logk Log_alpha_34S_Gypsum/SO4-2 -1 Ca[34S]O4 Ca[34S]O4 + SO4-2 = [34S]O4-2 + Anhydrite(s) - -add_logk Log_alpha_34S_Anhydrite/SO4-2 -1.0 + -add_logk Log_alpha_34S_Anhydrite/SO4-2 -1 # # Nitrogen phases # Checked September 19, 2006 # N[15N](g) N[15N](g) + N2(aq) = N[15N](aq) + N2(g) - -add_logk Log_alpha_15N_N2(g)/N2(aq) -1.0 + -add_logk Log_alpha_15N_N2(g)/N2(aq) -1 [15N]2(g) - [15N]2(g) + N2(g) = 2N[15N](g) - log_k 0.602059991327962396 # log10(4) + [15N]2(g) + N2(g) = 2 N[15N](g) + log_k 0.602059991327962396 # log10(4) NH2D(g) NH2D(g) + H2O(l) = NH3(g) + HDO(aq) ## symmetry K?? - -add_logk Log_alpha_D_NH3(g)/H2O(l) -1.0 + -add_logk Log_alpha_D_NH3(g)/H2O(l) -1 NHD2(g) - NHD2(g) + NH3(g) = 2NH2D(g) - log_k 0.477121254719 # log10(3) + NHD2(g) + NH3(g) = 2 NH2D(g) + log_k 0.477121254719 # log10(3) ND3(g) - ND3(g) + 2NH3(g) = 3NH2D(g) - -logk 1.431363764158 # log10(27) + ND3(g) + 2 NH3(g) = 3 NH2D(g) + -logk 1.431363764158 # log10(27) NH2T(g) NH2T(g) + H2O(l) = NH3(g) + HTO(aq) ## symmetry K?? - -add_logk Log_alpha_T_NH3(g)/H2O(l) -1.0 + -add_logk Log_alpha_T_NH3(g)/H2O(l) -1 NHT2(g) - NHT2(g) + NH3(g) = 2NH2T(g) - log_k 0.477121254719 # log10(3) + NHT2(g) + NH3(g) = 2 NH2T(g) + log_k 0.477121254719 # log10(3) NT3(g) - NT3(g) + 2NH3(g) = 3NH2T(g) - -logk 1.431363764158 # log10(27) + NT3(g) + 2 NH3(g) = 3 NH2T(g) + -logk 1.431363764158 # log10(27) ND2T(g) ND2T(g) + NH3(g) = NHD2(g) + NH2T(g) - log_k 0.477121254719 # log10(3) + log_k 0.477121254719 # log10(3) NDT2(g) NDT2(g) + NH3(g) = NH2D(g) + NHT2(g) - log_k 0.477121254719 # log10(3) + log_k 0.477121254719 # log10(3) [15N]H3(g) [15N]H3(g) + NH3(aq) = [15N]H3(aq) + NH3(g) - -add_logk Log_alpha_15N_NH3(g)/NH3(aq) -1.0 + -add_logk Log_alpha_15N_NH3(g)/NH3(aq) -1 [15N]H2D(g) [15N]H2D(g) + NH3(g) = NH2D(g) + [15N]H3(g) diff --git a/database/llnl-organics/llnl_organics.dat b/database/llnl-organics/llnl_organics.dat index d88d35d9..491b2c57 100644 --- a/database/llnl-organics/llnl_organics.dat +++ b/database/llnl-organics/llnl_organics.dat @@ -1,22834 +1,22834 @@ -# $Id: llnl.dat 4023 2010-02-09 21:02:42Z dlpark $ -#Data are from 'thermo.com.V8.R6.230' prepared by Jim Johnson at -#Lawrence Livermore National Laboratory, in Geochemist's Workbench -#format. Converted to Phreeqc format by Greg Anderson with help from -#David Parkhurst. A few organic species have been omitted. - -#Delta H of reaction calculated from Delta H of formations given in -#thermo.com.V8.R6.230 (8 Mar 2000). - -#Note that species have various valid temperature ranges, noted in -#the Range parameter. However, Phreeqc at present makes no use of -#this parameter, so it is the user's responsibility to remain in the -#valid temperature range for all the data used. - -#This version is relatively untested. Kindly send comments or -#corrections to Greg Anderson at greg@geology.utoronto.ca. - -LLNL_AQUEOUS_MODEL_PARAMETERS --temperatures - 0.0100 25.0000 60.0000 100.0000 - 150.0000 200.0000 250.0000 300.0000 -#debye huckel a (adh) --dh_a - 0.4939 0.5114 0.5465 0.5995 - 0.6855 0.7994 0.9593 1.2180 -#debye huckel b (bdh) --dh_b - 0.3253 0.3288 0.3346 0.3421 - 0.3525 0.3639 0.3766 0.3925 --bdot - 0.0374 0.0410 0.0438 0.0460 - 0.0470 0.0470 0.0340 0.0000 -#cco2 (coefficients for the Drummond (1981) polynomial) --co2_coefs - -1.0312 0.0012806 - 255.9 0.4445 - -0.001606 -NAMED_EXPRESSIONS -# -# formation of O2 from H2O -# 2H2O = O2 + 4H+ + 4e- -# - Log_K_O2 - log_k -85.9951 - -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 -# Enthalpy of formation: -2.9 kcal/mol - -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 -# Range: 0-300 - - -SOLUTION_MASTER_SPECIES - -#element species alk gfw_formula element_gfw - -Acetate CH3COO- 0.0 CH3COO- 59.0252 -Ag Ag+ 0.0 Ag 107.8682 -Ag(1) Ag+ 0 Ag -Ag(2) Ag+2 0 Ag -Al Al+3 0.0 Al 26.9815 -Alkalinity HCO3- 1.0 Ca0.5(CO3)0.5 50.05 -Am Am+3 0.0 Am 243.0000 -Am(+2) Am+2 0.0 Am -Am(+3) Am+3 0.0 Am -Am(+4) Am+4 0.0 Am -Am(+5) AmO2+ 0.0 Am -Am(+6) AmO2+2 0.0 Am -Ar Ar 0.0 Ar 39.948 -As H2AsO4- 0.0 As 74.9216 -As(-3) AsH3 0.0 As -As(+3) H2AsO3- 0.0 As -As(+5) H2AsO4- 0.0 As -Au Au+ 0.0 Au 196.9665 -Au(+1) Au+ 0.0 Au -Au(+3) Au+3 0.0 Au -#B H3BO3 0.0 B 10.811 -B B(OH)3 0.0 B 10.811 -B(3) B(OH)3 0 B -B(-5) BH4- 0 B -Ba Ba+2 0.0 Ba 137.3270 -Be Be+2 0.0 Be 9.0122 -Br Br- 0.0 Br 79.904 -Br(-03) Br3- 0 Br -Br(-1) Br- 0 Br -Br(0) Br2 0 Br -Br(1) BrO- 0 Br -Br(5) BrO3- 0 Br -Br(7) BrO4- 0 Br -C(-4) CH4 0.0 CH4 -C(-3) C2H6 0.0 C2H6 -C(-2.667) C3H8 0 C3H8 -C(-2) C2H4 0.0 C2H4 -C(-1.14) C7H8 0 C7H8 -C(-1) C6H6 0 C6H6 -C(-0.667) C6H5OH 0 C6H5OH -C(-.286) C7H6O2 0 C7H6O2 -C HCO3- 1.0 HCO3 12.0110 -C(+1) C3H7COOH 0 C3H7COOH -C(+2) CO 0 C -C(+4) HCO3- 1.0 HCO3 -Ca Ca+2 0.0 Ca 40.078 -Cyanide Cyanide- 1.0 CN 26. -Cd Cd+2 0.0 Cd 112.411 -Ce Ce+3 0.0 Ce 140.115 -Ce(+2) Ce+2 0.0 Ce -Ce(+3) Ce+3 0.0 Ce -Ce(+4) Ce+4 0.0 Ce -Cl Cl- 0.0 Cl 35.4527 -Cl(-1) Cl- 0 Cl -Cl(1) ClO- 0 Cl -Cl(3) ClO2- 0 Cl -Cl(5) ClO3- 0 Cl -Cl(7) ClO4- 0 Cl -Co Co+2 0.0 Co 58.9332 -Co(+2) Co+2 0.0 Co -Co(+3) Co+3 0.0 Co -Cr CrO4-2 0.0 CrO4-2 51.9961 -Cr(+2) Cr+2 0.0 Cr -Cr(+3) Cr+3 0.0 Cr -Cr(+5) CrO4-3 0.0 Cr -Cr(+6) CrO4-2 0.0 Cr -Cs Cs+ 0.0 Cs 132.9054 -Cu Cu+2 0.0 Cu 63.546 -Cu(+1) Cu+1 0.0 Cu -Cu(+2) Cu+2 0.0 Cu -Dy Dy+3 0.0 Dy 162.50 -Dy(+2) Dy+2 0.0 Dy -Dy(+3) Dy+3 0.0 Dy -E e- 0.0 0.0 0.0 -Er Er+3 0.0 Er 167.26 -Er(+2) Er+2 0.0 Er -Er(+3) Er+3 0.0 Er -#Ethylene C2H4 0.0 C2H4 28.0536 -Eu Eu+3 0.0 Eu 151.965 -Eu(+2) Eu+2 0.0 Eu -Eu(+3) Eu+3 0.0 Eu -F F- 0.0 F 18.9984 -Fe Fe+2 0.0 Fe 55.847 -Fe(+2) Fe+2 0.0 Fe -Fe(+3) Fe+3 -2.0 Fe -Ga Ga+3 0.0 Ga 69.723 -Gd Gd+3 0.0 Gd 157.25 -Gd(+2) Gd+2 0.0 Gd -Gd(+3) Gd+3 0.0 Gd -H H+ -1. H 1.0079 -H(0) H2 0.0 H -H(+1) H+ -1. 0.0 -He He 0.0 He 4.0026 -He(0) He 0.0 He -Hf Hf+4 0.0 Hf 178.49 -Hg Hg+2 0.0 Hg 200.59 -Hg(+1) Hg2+2 0.0 Hg -Hg(+2) Hg+2 0.0 Hg -Ho Ho+3 0.0 Ho 164.9303 -Ho(+2) Ho+2 0.0 Ho -Ho(+3) Ho+3 0.0 Ho -I I- 0.0 I 126.9045 -I(-03) I3- 0 I -I(-1) I- 0.0 I -I(+1) IO- 0.0 I -I(+5) IO3- 0.0 I -I(+7) IO4- 0.0 I -In In+3 0.0 In 114.82 -K K+ 0.0 K 39.0983 -Kr Kr 0.0 Kr 83.80 -Kr(0) Kr 0.0 Kr -La La+3 0.0 La 138.9055 -La(2) La+2 0 La -La(3) La+3 0 La -Li Li+ 0.0 Li 6.9410 -Lu Lu+3 0.0 Lu 174.967 -Mg Mg+2 0.0 Mg 24.305 -Mn Mn+2 0.0 Mn 54.938 -Mn(+2) Mn+2 0.0 Mn -Mn(+3) Mn+3 0.0 Mn -Mn(+6) MnO4-2 0 Mn -Mn(+7) MnO4- 0 Mn -Mo MoO4-2 0.0 Mo 95.94 -N NH3 1.0 N 14.0067 -N(-3) NH3 1.0 N -N(-03) N3- 0.0 N -N(0) N2 0.0 N -N(+3) NO2- 0.0 N -N(+5) NO3- 0.0 N -Na Na+ 0.0 Na 22.9898 -Nd Nd+3 0.0 Nd 144.24 -Nd(+2) Nd+2 0.0 Nd -Nd(+3) Nd+3 0.0 Nd -Ne Ne 0.0 Ne 20.1797 -#Ne(0) Ne 0.0 Ne -Ni Ni+2 0.0 Ni 58.69 -Np Np+4 0.0 Np 237.048 -Np(+3) Np+3 0.0 Np -Np(+4) Np+4 0.0 Np -Np(+5) NpO2+ 0.0 Np -Np(+6) NpO2+2 0.0 Np -O H2O 0.0 O 15.994 -O(-2) H2O 0.0 0.0 -O(0) O2 0.0 O -O_phthalate O_phthalate-2 0 1 1 -P HPO4-2 2.0 P 30.9738 -P(-3) PH4+ 0 P -P(5) HPO4-2 2.0 P -Pb Pb+2 0.0 Pb 207.20 -Pb(+2) Pb+2 0.0 Pb -Pb(+4) Pb+4 0.0 Pb -Pd Pd+2 0.0 Pd 106.42 -Pm Pm+3 0.0 Pm 147.00 -Pm(+2) Pm+2 0.0 Pm -Pm(+3) Pm+3 0.0 Pm -Pr Pr+3 0.0 Pr 140.9076 -Pr(+2) Pr+2 0.0 Pr -Pr(+3) Pr+3 0.0 Pr -Pu Pu+4 0.0 Pu 244.00 -Pu(+3) Pu+3 0.0 Pu -Pu(+4) Pu+4 0.0 Pu -Pu(+5) PuO2+ 0.0 Pu -Pu(+6) PuO2+2 0.0 Pu -Ra Ra+2 0.0 Ra 226.025 -Rb Rb+ 0.0 Rb 85.4678 -Re ReO4- 0.0 Re 186.207 -Rn Rn 0.0 Rn 222.00 -Ru RuO4-2 0.0 Ru 101.07 -Ru(+2) Ru+2 0.0 Ru -Ru(+3) Ru+3 0.0 Ru -Ru(+4) Ru(OH)2+2 0.0 Ru -Ru(+6) RuO4-2 0.0 Ru -Ru(+7) RuO4- 0.0 Ru -Ru(+8) RuO4 0.0 Ru -S SO4-2 0.0 SO4 32.066 -S(-2) HS- 1.0 S -S(+2) S2O3-2 0.0 S -S(+3) S2O4-2 0.0 S -S(+4) SO3-2 0.0 S -S(+5) S2O5-2 0.0 S -S(+6) SO4-2 0.0 SO4 -S(+7) S2O8-2 0.0 S -S(+8) HSO5- 0.0 S -Sb Sb(OH)3 0.0 Sb 121.75 -Sc Sc+3 0.0 Sc 44.9559 -Se SeO3-2 0.0 Se 78.96 -Se(-2) HSe- 0.0 Se -Se(+4) SeO3-2 0.0 Se -Se(+6) SeO4-2 0.0 Se -Si SiO2 0.0 SiO2 28.0855 -Sm Sm+3 0.0 Sm 150.36 -Sm(+2) Sm+2 0.0 Sm -Sm(+3) Sm+3 0.0 Sm -Sn Sn+2 0.0 Sn 118.71 -Sn(+2) Sn+2 0.0 Sn -Sn(+4) Sn+4 0.0 Sn -Sr Sr+2 0.0 Sr 87.62 -Tb Tb+3 0.0 Tb 158.9253 -Tb(+2) Tb+2 0.0 Tb -Tb(+3) Tb+3 0.0 Tb -Tc TcO4- 0.0 Tc 98.00 -Tc(+3) Tc+3 0.0 Tc -Tc(+4) TcO+2 0.0 Tc -Tc(+5) TcO4-3 0.0 Tc -Tc(+6) TcO4-2 0.0 Tc -Tc(+7) TcO4- 0.0 Tc -Thiocyanate Thiocyanate- 0.0 SCN 58. -Th Th+4 0.0 Th 232.0381 -Ti Ti(OH)4 0.0 Ti 47.88 -Tl Tl+ 0.0 Tl 204.3833 -Tl(+1) Tl+ 0.0 Tl -Tl(+3) Tl+3 0.0 Tl -Tm Tm+3 0.0 Tm 168.9342 -Tm(+2) Tm+2 0.0 Tm -Tm(+3) Tm+3 0.0 Tm -U UO2+2 0.0 U 238.0289 -U(+3) U+3 0.0 U -U(+4) U+4 0.0 U -U(+5) UO2+ 0.0 U -U(+6) UO2+2 0.0 U -V VO+2 0.0 V 50.9415 -V(+3) V+3 0.0 V -V(+4) VO+2 0.0 V -V(+5) VO2+ 0.0 V -W WO4-2 0.0 W 183.85 -Xe Xe 0.0 Xe 131.29 -Xe(0) Xe 0.0 Xe -Y Y+3 0.0 Y 88.9059 -Yb Yb+3 0.0 Yb 173.04 -Yb(+2) Yb+2 0.0 Yb -Yb(+3) Yb+3 0.0 Yb -Zn Zn+2 0.0 Zn 65.39 -Zr Zr(OH)2+2 0.0 Zr 91.224 - -SOLUTION_SPECIES - -#HAcetate = HAcetate -# -llnl_gamma 3.0000 -# log_k 0 -# -delta_H 0 kJ/mol # Calculated enthalpy of reaction HAcetate -# Enthalpy of formation: -116.1 kcal/mol -CH3COO- = CH3COO- - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction CH3COO- -# Enthalpy of formation: -116.374 kcal/mol -Ag+ = Ag+ - -llnl_gamma 2.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ag+ -# Enthalpy of formation: 25.275 kcal/mol -Al+3 = Al+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Al+3 -# Enthalpy of formation: -128.681 kcal/mol -Am+3 = Am+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Am+3 -# Enthalpy of formation: -616.7 kJ/mol -Ar = Ar - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ar -# Enthalpy of formation: -2.87 kcal/mol -Au+ = Au+ - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Au+ -# Enthalpy of formation: 47.58 kcal/mol -B(OH)3 = B(OH)3 - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction B(OH)3 -# Enthalpy of formation: -256.82 kcal/mol -Ba+2 = Ba+2 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ba+2 -# Enthalpy of formation: -128.5 kcal/mol -Be+2 = Be+2 - -llnl_gamma 8.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Be+2 -# Enthalpy of formation: -91.5 kcal/mol -Br- = Br- - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Br- -# Enthalpy of formation: -29.04 kcal/mol -Ca+2 = Ca+2 - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ca+2 -# Enthalpy of formation: -129.8 kcal/mol -Cd+2 = Cd+2 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cd+2 -# Enthalpy of formation: -18.14 kcal/mol -Ce+3 = Ce+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ce+3 -# Enthalpy of formation: -167.4 kcal/mol -Cl- = Cl- - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cl- -# Enthalpy of formation: -39.933 kcal/mol -Co+2 = Co+2 - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Co+2 -# Enthalpy of formation: -13.9 kcal/mol -CrO4-2 = CrO4-2 - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction CrO4-2 -# Enthalpy of formation: -210.6 kcal/mol -Cs+ = Cs+ - -llnl_gamma 2.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cs+ -# Enthalpy of formation: -61.67 kcal/mol -Cu+2 = Cu+2 - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cu+2 -# Enthalpy of formation: 15.7 kcal/mol -Dy+3 = Dy+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Dy+3 -# Enthalpy of formation: -166.5 kcal/mol -e- = e- - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction e- -# Enthalpy of formation: -0 kJ/mol -Er+3 = Er+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Er+3 -# Enthalpy of formation: -168.5 kcal/mol -#Ethylene = Ethylene -# -llnl_gamma 3.0000 -# log_k 0 -# -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ethylene -# Enthalpy of formation: 8.57 kcal/mol -Eu+3 = Eu+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Eu+3 -# Enthalpy of formation: -144.7 kcal/mol -F- = F- - -llnl_gamma 3.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction F- -# Enthalpy of formation: -80.15 kcal/mol -Fe+2 = Fe+2 - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Fe+2 -# Enthalpy of formation: -22.05 kcal/mol -Ga+3 = Ga+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ga+3 -# Enthalpy of formation: -50.6 kcal/mol -Gd+3 = Gd+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Gd+3 -# Enthalpy of formation: -164.2 kcal/mol -H+ = H+ - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H+ -# Enthalpy of formation: -0 kJ/mol -He = He - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction He -# Enthalpy of formation: -0.15 kcal/mol -H2AsO4- = H2AsO4- - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2AsO4- -# Enthalpy of formation: -217.39 kcal/mol -HCO3- = HCO3- - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction HCO3- -# Enthalpy of formation: -164.898 kcal/mol -HPO4-2 = HPO4-2 - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction HPO4-2 -# Enthalpy of formation: -308.815 kcal/mol -Hf+4 = Hf+4 - log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf+4 -# Enthalpy of formation: -0 kcal/mol -Hg+2 = Hg+2 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Hg+2 -# Enthalpy of formation: 40.67 kcal/mol -Ho+3 = Ho+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ho+3 -# Enthalpy of formation: -169 kcal/mol -I- = I- - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction I- -# Enthalpy of formation: -13.6 kcal/mol -In+3 = In+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction In+3 -# Enthalpy of formation: -25 kcal/mol -K+ = K+ - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction K+ -# Enthalpy of formation: -60.27 kcal/mol -Kr = Kr - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Kr -# Enthalpy of formation: -3.65 kcal/mol -La+3 = La+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction La+3 -# Enthalpy of formation: -169.6 kcal/mol -Li+ = Li+ - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Li+ -# Enthalpy of formation: -66.552 kcal/mol -Lu+3 = Lu+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Lu+3 -# Enthalpy of formation: -167.9 kcal/mol -Mg+2 = Mg+2 - -llnl_gamma 8.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mg+2 -# Enthalpy of formation: -111.367 kcal/mol -Mn+2 = Mn+2 - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mn+2 -# Enthalpy of formation: -52.724 kcal/mol -MoO4-2 = MoO4-2 - -llnl_gamma 4.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction MoO4-2 -# Enthalpy of formation: -238.5 kcal/mol -NH3 = NH3 - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction NH3 -# Enthalpy of formation: -19.44 kcal/mol -Na+ = Na+ - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Na+ -# Enthalpy of formation: -57.433 kcal/mol -Nd+3 = Nd+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Nd+3 -# Enthalpy of formation: -166.5 kcal/mol -Ne = Ne - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ne -# Enthalpy of formation: -0.87 kcal/mol -Ni+2 = Ni+2 - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ni+2 -# Enthalpy of formation: -12.9 kcal/mol -Np+4 = Np+4 - -llnl_gamma 5.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Np+4 -# Enthalpy of formation: -556.001 kJ/mol -H2O = H2O - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2O -# Enthalpy of formation: -68.317 kcal/mol -O_phthalate-2 = O_phthalate-2 - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction O_phthalate-2 -# Enthalpy of formation: -0 kcal/mol -Pb+2 = Pb+2 - -llnl_gamma 4.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pb+2 -# Enthalpy of formation: 0.22 kcal/mol -Pd+2 = Pd+2 - -llnl_gamma 4.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pd+2 -# Enthalpy of formation: 42.08 kcal/mol -Pm+3 = Pm+3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pm+3 -# Enthalpy of formation: -688 kJ/mol -Pr+3 = Pr+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pr+3 -# Enthalpy of formation: -168.8 kcal/mol -Pu+4 = Pu+4 - -llnl_gamma 5.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pu+4 -# Enthalpy of formation: -535.893 kJ/mol -Ra+2 = Ra+2 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ra+2 -# Enthalpy of formation: -126.1 kcal/mol -Rb+ = Rb+ - -llnl_gamma 2.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rb+ -# Enthalpy of formation: -60.02 kcal/mol -ReO4- = ReO4- - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction ReO4- -# Enthalpy of formation: -188.2 kcal/mol -Rn = Rn - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rn -# Enthalpy of formation: -5 kcal/mol -RuO4-2 = RuO4-2 - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction RuO4-2 -# Enthalpy of formation: -457.075 kJ/mol -SO4-2 = SO4-2 - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SO4-2 -# Enthalpy of formation: -217.4 kcal/mol -Sb(OH)3 = Sb(OH)3 - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sb(OH)3 -# Enthalpy of formation: -773.789 kJ/mol -Sc+3 = Sc+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sc+3 -# Enthalpy of formation: -146.8 kcal/mol -SeO3-2 = SeO3-2 - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SeO3-2 -# Enthalpy of formation: -121.7 kcal/mol -SiO2 = SiO2 - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SiO2 -# Enthalpy of formation: -209.775 kcal/mol -Sm+3 = Sm+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sm+3 -# Enthalpy of formation: -165.2 kcal/mol -Sn+2 = Sn+2 - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sn+2 -# Enthalpy of formation: -2.1 kcal/mol -Sr+2 = Sr+2 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sr+2 -# Enthalpy of formation: -131.67 kcal/mol -Tb+3 = Tb+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tb+3 -# Enthalpy of formation: -166.9 kcal/mol -TcO4- = TcO4- - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction TcO4- -# Enthalpy of formation: -716.269 kJ/mol -Th+4 = Th+4 - -llnl_gamma 11.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Th+4 -# Enthalpy of formation: -183.8 kcal/mol -Ti(OH)4 = Ti(OH)4 - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(OH)4 -# Enthalpy of formation: -0 kcal/mol -Tl+ = Tl+ - -llnl_gamma 2.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tl+ -# Enthalpy of formation: 1.28 kcal/mol -Tm+3 = Tm+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tm+3 -# Enthalpy of formation: -168.5 kcal/mol -UO2+2 = UO2+2 - -llnl_gamma 4.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction UO2+2 -# Enthalpy of formation: -1019 kJ/mol -VO+2 = VO+2 - -llnl_gamma 4.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction VO+2 -# Enthalpy of formation: -116.3 kcal/mol -WO4-2 = WO4-2 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction WO4-2 -# Enthalpy of formation: -257.1 kcal/mol -Xe = Xe - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Xe -# Enthalpy of formation: -4.51 kcal/mol -Y+3 = Y+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Y+3 -# Enthalpy of formation: -170.9 kcal/mol -Yb+3 = Yb+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Yb+3 -# Enthalpy of formation: -160.3 kcal/mol -Zn+2 = Zn+2 - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zn+2 -# Enthalpy of formation: -36.66 kcal/mol -Zr(OH)2+2 = Zr(OH)2+2 - -llnl_gamma 4.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zr(OH)2+2 -# Enthalpy of formation: -260.717 kcal/mol - -2H2O = O2 + 4H+ + 4e- - -CO2_llnl_gamma - log_k -85.9951 - -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 -# Enthalpy of formation: -2.9 kcal/mol - -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 -# -Range: 0-300 - - 1.0000 SO4-- + 1.0000 H+ = HS- +2.0000 O2 - -llnl_gamma 3.5 - log_k -138.3169 - -delta_H 869.226 kJ/mol # Calculated enthalpy of reaction HS- -# Enthalpy of formation: -3.85 kcal/mol - -analytic 2.6251e+001 3.9525e-002 -4.5443e+004 -1.1107e+001 3.1843e+005 -# -Range: 0-300 - - .5000 O2 + 2.0000 HS- = S2-- + H2O -#2 HS- = S2-- +2 H+ + 2e- - -llnl_gamma 4.0 - log_k 33.2673 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.21730E+02 -0.12307E-02 0.10098E+05 -0.88813E+01 0.15757E+03 - -mass_balance S(-2)2 -# -Range: 0-300 -# -add_logk Log_K_O2 0.5 - -2.0000 H+ + 2.0000 SO3-- = S2O3-- + O2 + H2O - -llnl_gamma 4.0 - log_k -40.2906 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O3-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.77679E+02 0.65761E-01 -0.15438E+05 -0.34651E+02 -0.24092E+03 -# -Range: 0-300 - - 1.0000 H+ + 1.0000 Ag+ + 0.2500 O2 = Ag++ +0.5000 H2O - -llnl_gamma 4.5 - log_k -12.1244 - -delta_H 22.9764 kJ/mol # Calculated enthalpy of reaction Ag+2 -# Enthalpy of formation: 64.2 kcal/mol - -analytic -4.7312e+001 -1.5239e-002 -4.1954e+002 1.6622e+001 -6.5328e+000 -# -Range: 0-300 - - 1.0000 Am+++ + 0.5000 H2O = Am++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -60.3792 - -delta_H 401.953 kJ/mol # Calculated enthalpy of reaction Am+2 -# Enthalpy of formation: -354.633 kJ/mol - -analytic 1.4922e+001 3.5993e-003 -2.0987e+004 -2.4146e+000 -3.2749e+002 -# -Range: 0-300 - - 1.0000 H+ + 1.0000 Am+++ + 0.2500 O2 = Am++++ +0.5000 H2O - -llnl_gamma 5.5 - log_k -22.7073 - -delta_H 70.8142 kJ/mol # Calculated enthalpy of reaction Am+4 -# Enthalpy of formation: -406 kJ/mol - -analytic -1.7460e+001 -2.2336e-003 -3.5139e+003 2.9102e+000 -5.4826e+001 -# -Range: 0-300 - - 1.0000 H2O + 1.0000 Am+++ + 0.5000 O2 = AmO2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.384 - -delta_H 104.345 kJ/mol # Calculated enthalpy of reaction AmO2+ -# Enthalpy of formation: -804.26 kJ/mol - -analytic 1.4110e+001 6.9728e-003 -4.2098e+003 -6.0936e+000 -2.1192e+005 -# -Range: 0-300 - - 1.0000 Am+++ + 0.7500 O2 + 0.5000 H2O = AmO2++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -20.862 - -delta_H 117.959 kJ/mol # Calculated enthalpy of reaction AmO2+2 -# Enthalpy of formation: -650.76 kJ/mol - -analytic 5.7163e+001 4.0278e-003 -8.4633e+003 -2.0550e+001 -1.3208e+002 -# -Range: 0-300 - - 1.0000 H2AsO4- + 1.0000 H+ = AsH3 +2.0000 O2 - -llnl_gamma 3.0 - log_k -155.1907 - -delta_H 931.183 kJ/mol # Calculated enthalpy of reaction AsH3 -# Enthalpy of formation: 10.968 kcal/mol - -analytic 2.8310e+002 9.6961e-002 -5.4830e+004 -1.1449e+002 -9.3119e+002 -# -Range: 0-200 - - 2.0000 H+ + 1.0000 Au+ + 0.5000 O2 = Au+++ +1.0000 H2O - -llnl_gamma 5.0 - log_k -4.3506 - -delta_H -73.2911 kJ/mol # Calculated enthalpy of reaction Au+3 -# Enthalpy of formation: 96.93 kcal/mol - -analytic -6.8661e+001 -2.6838e-002 4.4549e+003 2.3178e+001 6.9534e+001 -# -Range: 0-300 - - 1.0000 H2O + 1.0000 B(OH)3 = BH4- +2.0000 O2 +1.0000 H+ - -llnl_gamma 4.0 - log_k -237.1028 - -delta_H 1384.24 kJ/mol # Calculated enthalpy of reaction BH4- -# Enthalpy of formation: 48.131 kJ/mol - -analytic -7.4930e+001 -7.2794e-003 -6.9168e+004 2.9105e+001 -1.0793e+003 -# -Range: 0-300 - - 3.0000 Br- + 2.0000 H+ + 0.5000 O2 = Br3- +1.0000 H2O - -llnl_gamma 4.0 - log_k +7.0696 - -delta_H -45.6767 kJ/mol # Calculated enthalpy of reaction Br3- -# Enthalpy of formation: -31.17 kcal/mol - -analytic 1.4899e+002 6.4017e-002 -3.3831e+002 -6.4596e+001 -5.3232e+000 -# -Range: 0-300 - - 1.0000 Br- + 0.5000 O2 = BrO- - -llnl_gamma 4.0 - log_k -10.9167 - -delta_H 33.4302 kJ/mol # Calculated enthalpy of reaction BrO- -# Enthalpy of formation: -22.5 kcal/mol - -analytic 5.4335e+001 1.9509e-003 -4.2860e+003 -2.0799e+001 -6.6896e+001 -# -Range: 0-300 - - 1.5000 O2 + 1.0000 Br- = BrO3- - -llnl_gamma 3.5 - log_k -17.1443 - -delta_H 72.6342 kJ/mol # Calculated enthalpy of reaction BrO3- -# Enthalpy of formation: -16.03 kcal/mol - -analytic 3.7156e+001 -4.7855e-003 -4.6208e+003 -1.4136e+001 -2.1385e+005 -# -Range: 0-300 - - 2.0000 O2 + 1.0000 Br- = BrO4- - -llnl_gamma 4.0 - log_k -33.104 - -delta_H 158.741 kJ/mol # Calculated enthalpy of reaction BrO4- -# Enthalpy of formation: 3.1 kcal/mol - -analytic 8.1393e+001 -2.3409e-003 -1.2290e+004 -2.9336e+001 -1.9180e+002 -# -Range: 0-300 - -# 1.0000 NH3 + 1.0000 HCO3- = CN- +2.0000 H2O +0.5000 O2 -# -llnl_gamma 3.0 -# log_k -56.0505 -# -delta_H 344.151 kJ/mol # Calculated enthalpy of reaction CN- -# # Enthalpy of formation: 36 kcal/mol -# -analytic -1.1174e+001 3.8167e-003 -1.7063e+004 4.5349e+000 -2.6625e+002 -# # -Range: 0-300 - -Cyanide- = Cyanide- - log_k 0 - - H+ + HCO3- + H2O = CH4 + 2.0000 O2 - -llnl_gamma 3.0 - log_k -144.1412 - -delta_H 863.599 kJ/mol # Calculated enthalpy of reaction CH4 -# Enthalpy of formation: -21.01 kcal/mol - -analytic -0.41698E+02 0.36584E-01 -0.40675E+05 0.93479E+01 -0.63468E+03 -# -Range: 0-300 - - 2.0000 H+ + 2.0000 HCO3- + H2O = C2H6 + 3.5000 O2 - -llnl_gamma 3.0 - log_k -228.6072 - -delta_H 0 # Not possible to calculate enthalpy of reaction C2H6 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.10777E+02 0.72105E-01 -0.67489E+05 -0.13915E+02 -0.10531E+04 -# -Range: 0-300 - - 2.000 H+ + 2.0000 HCO3- = C2H4 + 3.0000 O2 - -llnl_gamma 3.0 - log_k -254.5034 - -delta_H 1446.6 kJ/mol # Calculated enthalpy of reaction C2H4 -# Enthalpy of formation: 24.65 kcal/mol - -analytic -0.30329E+02 0.71187E-01 -0.73140E+05 0.00000E+00 0.00000E+00 -# -Range: 0-300 - - 1.0000 HCO3- + 1.0000 H+ = CO +1.0000 H2O +0.5000 O2 - -llnl_gamma 3.0 - log_k -41.7002 - -delta_H 277.069 kJ/mol # Calculated enthalpy of reaction CO -# Enthalpy of formation: -28.91 kcal/mol - -analytic 1.0028e+002 4.6877e-002 -1.8062e+004 -4.0263e+001 3.8031e+005 -# -Range: 0-300 - - 1.0000 Ce+++ + 0.5000 H2O = Ce++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -83.6754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 H+ + 1.0000 Ce+++ + 0.2500 O2 = Ce++++ +0.5000 H2O - -llnl_gamma 5.5 - log_k -7.9154 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+4 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Cl- + 0.5000 O2 = ClO- - -llnl_gamma 4.0 - log_k -15.1014 - -delta_H 66.0361 kJ/mol # Calculated enthalpy of reaction ClO- -# Enthalpy of formation: -25.6 kcal/mol - -analytic 6.1314e+001 3.4812e-003 -6.0952e+003 -2.3043e+001 -9.5128e+001 -# -Range: 0-300 - - 1.0000 O2 + 1.0000 Cl- = ClO2- - -llnl_gamma 4.0 - log_k -23.108 - -delta_H 112.688 kJ/mol # Calculated enthalpy of reaction ClO2- -# Enthalpy of formation: -15.9 kcal/mol - -analytic 3.3638e+000 -6.1675e-003 -4.9726e+003 -2.0467e+000 -2.5769e+005 -# -Range: 0-300 - - 1.5000 O2 + 1.0000 Cl- = ClO3- - -llnl_gamma 3.5 - log_k -17.2608 - -delta_H 81.3077 kJ/mol # Calculated enthalpy of reaction ClO3- -# Enthalpy of formation: -24.85 kcal/mol - -analytic 2.8852e+001 -4.8281e-003 -4.6779e+003 -1.0772e+001 -2.0783e+005 -# -Range: 0-300 - - 2.0000 O2 + 1.0000 Cl- = ClO4- - -llnl_gamma 3.5 - log_k -15.7091 - -delta_H 62.0194 kJ/mol # Calculated enthalpy of reaction ClO4- -# Enthalpy of formation: -30.91 kcal/mol - -analytic 7.0280e+001 -6.8927e-005 -5.5690e+003 -2.6446e+001 -1.6596e+005 -# -Range: 0-300 - - 1.0000 H+ + 1.0000 Co++ + 0.2500 O2 = Co+++ +0.5000 H2O - -llnl_gamma 5.0 - log_k -11.4845 - -delta_H 10.3198 kJ/mol # Calculated enthalpy of reaction Co+3 -# Enthalpy of formation: 22 kcal/mol - -analytic -2.2827e+001 -1.2222e-002 -7.2117e+002 7.0306e+000 -1.1247e+001 -# -Range: 0-300 - - 4.0000 H+ + 1.0000 CrO4-- = Cr++ +2.0000 H2O +1.0000 O2 - -llnl_gamma 4.5 - log_k -21.6373 - -delta_H 153.829 kJ/mol # Calculated enthalpy of reaction Cr+2 -# Enthalpy of formation: -34.3 kcal/mol - -analytic 6.9003e+001 6.2884e-002 -6.9847e+003 -3.4720e+001 -1.0901e+002 -# -Range: 0-300 - - 5.0000 H+ + 1.0000 CrO4-- = Cr+++ +2.5000 H2O +0.7500 O2 - -llnl_gamma 9.0 - log_k +8.3842 - -delta_H -81.0336 kJ/mol # Calculated enthalpy of reaction Cr+3 -# Enthalpy of formation: -57 kcal/mol - -analytic 5.1963e+001 6.0932e-002 5.4256e+003 -3.2290e+001 8.4645e+001 -# -Range: 0-300 - - 0.5000 H2O + 1.0000 CrO4-- = CrO4--- +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.0 - log_k -19.7709 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrO4-3 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Cu++ + 0.5000 H2O = Cu+ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.0 - log_k -18.7704 - -delta_H 145.877 kJ/mol # Calculated enthalpy of reaction Cu+ -# Enthalpy of formation: 17.132 kcal/mol - -analytic 3.7909e+001 1.3731e-002 -8.1506e+003 -1.3508e+001 -1.2719e+002 -# -Range: 0-300 - - 1.0000 Dy+++ + 0.5000 H2O = Dy++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -61.0754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Er+++ + 0.5000 H2O = Er++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -70.1754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Eu+++ + 0.5000 H2O = Eu++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -27.5115 - -delta_H 217.708 kJ/mol # Calculated enthalpy of reaction Eu+2 -# Enthalpy of formation: -126.1 kcal/mol - -analytic 3.0300e+001 1.4126e-002 -1.2319e+004 -9.0585e+000 1.5289e+005 -# -Range: 0-300 - - 1.0000 H+ + 1.0000 Fe++ + 0.2500 O2 = Fe+++ +0.5000 H2O - -llnl_gamma 9.0 - log_k +8.4899 - -delta_H -97.209 kJ/mol # Calculated enthalpy of reaction Fe+3 -# Enthalpy of formation: -11.85 kcal/mol - -analytic -1.7808e+001 -1.1753e-002 4.7609e+003 5.5866e+000 7.4295e+001 -# -Range: 0-300 - - 1.0000 Gd+++ + 0.5000 H2O = Gd++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -84.6754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 H2O = H2 +0.5000 O2 - -CO2_llnl_gamma - log_k -46.1066 - -delta_H 275.588 kJ/mol # Calculated enthalpy of reaction H2 -# Enthalpy of formation: -1 kcal/mol - -analytic 6.6835e+001 1.7172e-002 -1.8849e+004 -2.4092e+001 4.2501e+005 -# -Range: 0-300 - - 1.0000 H2AsO4- = H2AsO3- +0.5000 O2 - -llnl_gamma 4.0 - log_k -30.5349 - -delta_H 188.698 kJ/mol # Calculated enthalpy of reaction H2AsO3- -# Enthalpy of formation: -170.84 kcal/mol - -analytic 7.4245e+001 1.4885e-002 -1.4218e+004 -2.6403e+001 3.3822e+005 -# -Range: 0-300 - - 1.0000 SO4-- + 1.0000 H+ + 0.5000 O2 = HSO5- - -llnl_gamma 4.0 - log_k -17.2865 - -delta_H 140.038 kJ/mol # Calculated enthalpy of reaction HSO5- -# Enthalpy of formation: -185.38 kcal/mol - -analytic 5.9944e+001 3.0904e-002 -7.7494e+003 -2.4420e+001 -1.2094e+002 -# -Range: 0-300 - - 1.0000 SeO3-- + 1.0000 H+ = HSe- +1.5000 O2 - -llnl_gamma 4.0 - log_k -76.8418 - -delta_H 506.892 kJ/mol # Calculated enthalpy of reaction HSe- -# Enthalpy of formation: 3.8 kcal/mol - -analytic 4.7105e+001 4.3116e-002 -2.6949e+004 -1.9895e+001 2.5305e+005 -# -Range: 0-300 - - 2.0000 Hg++ + 1.0000 H2O = Hg2++ +2.0000 H+ +0.5000 O2 - -llnl_gamma 4.0 - log_k -12.208 - -delta_H 106.261 kJ/mol # Calculated enthalpy of reaction Hg2+2 -# Enthalpy of formation: 39.87 kcal/mol - -analytic 5.5010e+001 1.9050e-002 -4.7967e+003 -2.2952e+001 -7.4864e+001 -# -Range: 0-300 - - 1.0000 Ho+++ + 0.5000 H2O = Ho++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -67.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho+2 -# Enthalpy of formation: -0 kcal/mol - - 3.0000 I- + 2.0000 H+ + 0.5000 O2 = I3- +1.0000 H2O - -llnl_gamma 4.0 - log_k +24.7278 - -delta_H -160.528 kJ/mol # Calculated enthalpy of reaction I3- -# Enthalpy of formation: -12.3 kcal/mol - -analytic 1.4788e+002 6.6206e-002 5.7407e+003 -6.5517e+001 8.9535e+001 -# -Range: 0-300 - - 1.0000 I- + 0.5000 O2 = IO- - -llnl_gamma 4.0 - log_k -0.9038 - -delta_H -44.5596 kJ/mol # Calculated enthalpy of reaction IO- -# Enthalpy of formation: -25.7 kcal/mol - -analytic 2.7568e+000 -5.5671e-003 3.2484e+003 -3.9065e+000 -2.8800e+005 -# -Range: 0-300 - - 1.5000 O2 + 1.0000 I- = IO3- - -llnl_gamma 4.0 - log_k +17.6809 - -delta_H -146.231 kJ/mol # Calculated enthalpy of reaction IO3- -# Enthalpy of formation: -52.9 kcal/mol - -analytic -2.2971e+001 -1.3478e-002 9.5977e+003 6.6010e+000 -3.4371e+005 -# -Range: 0-300 - - 2.0000 O2 + 1.0000 I- = IO4- - -llnl_gamma 3.5 - log_k +6.9621 - -delta_H -70.2912 kJ/mol # Calculated enthalpy of reaction IO4- -# Enthalpy of formation: -36.2 kcal/mol - -analytic 2.1232e+001 -7.8107e-003 3.5803e+003 -8.5272e+000 -2.5422e+005 -# -Range: 0-300 - - 1.0000 La+++ + 0.5000 H2O = La++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -72.4754 - -delta_H 0 # Not possible to calculate enthalpy of reaction La+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Mn++ + 1.0000 H+ + 0.2500 O2 = Mn+++ +0.5000 H2O - -llnl_gamma 5.0 - log_k -4.0811 - -delta_H -65.2892 kJ/mol # Calculated enthalpy of reaction Mn+3 -# Enthalpy of formation: -34.895 kcal/mol - -analytic 3.8873e+001 1.7458e-002 2.0757e+003 -2.2274e+001 3.2378e+001 -# -Range: 0-300 - - 2.0000 H2O + 1.0000 O2 + 1.0000 Mn++ = MnO4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.4146 - -delta_H 151.703 kJ/mol # Calculated enthalpy of reaction MnO4-2 -# Enthalpy of formation: -156 kcal/mol - -analytic -1.0407e+001 -4.6464e-002 -1.0515e+004 1.0943e+001 -1.6408e+002 -# -Range: 0-300 - - 2.0000 NH3 + 1.5000 O2 = N2 +3.0000 H2O - -llnl_gamma 3.0 - log_k +116.4609 - -delta_H -687.08 kJ/mol # Calculated enthalpy of reaction N2 -# Enthalpy of formation: -2.495 kcal/mol - -analytic -8.2621e+001 -1.4671e-002 4.0068e+004 2.9090e+001 -2.5924e+005 -# -Range: 0-300 - - 3.0000 NH3 + 2.0000 O2 = N3- +4.0000 H2O +1.0000 H+ - -llnl_gamma 4.0 - log_k +96.9680 - -delta_H -599.935 kJ/mol # Calculated enthalpy of reaction N3- -# Enthalpy of formation: 275.14 kJ/mol - -analytic -9.1080e+001 -4.0817e-002 3.6350e+004 3.4484e+001 -6.2678e+005 -# -Range: 0-300 - - 1.5000 O2 + 1.0000 NH3 = NO2- +1.0000 H+ +1.0000 H2O - -llnl_gamma 3.0 - log_k +46.8653 - -delta_H -290.901 kJ/mol # Calculated enthalpy of reaction NO2- -# Enthalpy of formation: -25 kcal/mol - -analytic -1.7011e+001 -3.3459e-002 1.3999e+004 1.1078e+001 -4.8255e+004 -# -Range: 0-300 - - 2.0000 O2 + 1.0000 NH3 = NO3- +1.0000 H+ +1.0000 H2O - -llnl_gamma 3.0 - log_k +62.1001 - -delta_H -387.045 kJ/mol # Calculated enthalpy of reaction NO3- -# Enthalpy of formation: -49.429 kcal/mol - -analytic -3.9468e+001 -3.9697e-002 2.0614e+004 1.8872e+001 -2.1917e+005 -# -Range: 0-300 - - 1.0000 Nd+++ + 0.5000 H2O = Nd++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -64.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Np++++ + 0.5000 H2O = Np+++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 5.0 - log_k -19.0131 - -delta_H 168.787 kJ/mol # Calculated enthalpy of reaction Np+3 -# Enthalpy of formation: -527.1 kJ/mol - -analytic 1.6615e+001 2.4645e-003 -8.9343e+003 -2.5829e+000 -1.3942e+002 -# -Range: 0-300 - - 1.5000 H2O + 1.0000 Np++++ + 0.2500 O2 = NpO2+ +3.0000 H+ - -llnl_gamma 4.0 - log_k +10.5928 - -delta_H 9.80089 kJ/mol # Calculated enthalpy of reaction NpO2+ -# Enthalpy of formation: -977.991 kJ/mol - -analytic 1.2566e+001 7.5467e-003 1.6921e+003 -2.7125e+000 -2.8381e+005 -# -Range: 0-300 - - 1.0000 Np++++ + 1.0000 H2O + 0.5000 O2 = NpO2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k +11.2107 - -delta_H -12.5719 kJ/mol # Calculated enthalpy of reaction NpO2+2 -# Enthalpy of formation: -860.478 kJ/mol - -analytic 2.5510e+001 1.1973e-003 1.2753e+003 -6.7082e+000 -2.0792e+005 -# -Range: 0-300 - - 2.0000 H+ + 1.0000 Pb++ + 0.5000 O2 = Pb++++ +1.0000 H2O - -llnl_gamma 5.5 - log_k -14.1802 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb+4 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Pm+++ + 0.5000 H2O = Pm++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -65.2754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Pr+++ + 0.5000 H2O = Pr++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -79.9754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Pu++++ + 0.5000 H2O = Pu+++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 5.0 - log_k -4.5071 - -delta_H 84.2268 kJ/mol # Calculated enthalpy of reaction Pu+3 -# Enthalpy of formation: -591.552 kJ/mol - -analytic 2.0655e+001 3.2688e-003 -4.7434e+003 -4.1907e+000 1.2944e+004 -# -Range: 0-300 - - 1.5000 H2O + 1.0000 Pu++++ + 0.2500 O2 = PuO2+ +3.0000 H+ - -llnl_gamma 4.0 - log_k +2.9369 - -delta_H 53.5009 kJ/mol # Calculated enthalpy of reaction PuO2+ -# Enthalpy of formation: -914.183 kJ/mol - -analytic -2.0464e+001 2.8265e-003 1.2131e+003 9.2156e+000 -3.8400e+005 -# -Range: 0-300 - - 1.0000 Pu++++ + 1.0000 H2O + 0.5000 O2 = PuO2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k +8.1273 - -delta_H 6.22013 kJ/mol # Calculated enthalpy of reaction PuO2+2 -# Enthalpy of formation: -821.578 kJ/mol - -analytic 3.5219e+001 2.5202e-003 -2.4760e+002 -1.0120e+001 -1.7569e+005 -# -Range: 0-300 - - 4.0000 H+ + 1.0000 RuO4-- = Ru(OH)2++ +1.0000 H2O +0.5000 O2 - -llnl_gamma 4.5 - log_k +25.2470 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+2 -# Enthalpy of formation: -0 kcal/mol - - 4.0000 H+ + 1.0000 RuO4-- = Ru++ +2.0000 H2O +1.0000 O2 - -llnl_gamma 4.5 - log_k +0.1610 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+2 -# Enthalpy of formation: -0 kcal/mol - - 5.0000 H+ + 1.0000 RuO4-- = Ru+++ +2.5000 H2O +0.7500 O2 - -llnl_gamma 5.0 - log_k +17.6149 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+3 -# Enthalpy of formation: -0 kcal/mol - - 2.0000 H+ + 1.0000 RuO4-- + 0.5000 O2 = RuO4 +1.0000 H2O - -llnl_gamma 3.0 - log_k +16.2672 - -delta_H -60.8385 kJ/mol # Calculated enthalpy of reaction RuO4 -# Enthalpy of formation: -238.142 kJ/mol - -analytic 1.9964e+002 6.8286e-002 -1.2020e+003 -8.0706e+001 -2.0481e+001 -# -Range: 0-200 - - 1.0000 RuO4-- + 1.0000 H+ + 0.2500 O2 = RuO4- +0.5000 H2O - -llnl_gamma 4.0 - log_k +11.6024 - -delta_H -16.1998 kJ/mol # Calculated enthalpy of reaction RuO4- -# Enthalpy of formation: -333.389 kJ/mol - -analytic -1.9653e+000 8.8623e-003 1.8588e+003 1.8998e+000 2.9005e+001 -# -Range: 0-300 - - 2.0000 H+ + 2.0000 SO3-- = S2O4-- + .500 O2 + H2O - -llnl_gamma 5.0 -# log_k -25.2075 - log_k -25.2076 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O4-2 -# Enthalpy of formation: -0 kcal/mol -# -analytic -0.15158E+05 -0.31356E+01 0.47072E+06 0.58544E+04 0.73497E+04 - -analytic -2.3172e2 2.0393e-3 -7.1011e0 8.3239e1 9.4155e-1 -# changed 3/23/04, corrected to supcrt temperature dependence, GMA -# -Range: 0-300 - -# 2.0000 SO3-- + .500 O2 + 2.0000 H+ = S2O6-- + H2O -# H2O = .5 O2 + 2H+ + 2e- -2SO3-- = S2O6-- + 2e- - -llnl_gamma 4.0 - log_k 41.8289 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O6-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.14458E+03 0.61449E-01 0.71877E+04 -0.58657E+02 0.11211E+03 -# -Range: 0-300 - -add_logk Log_K_O2 0.5 - - - 2.0000 SO3-- + 1.500 O2 + 2.0000 H+ = S2O8-- + H2O - -llnl_gamma 4.0 - log_k 70.7489 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O8-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.18394E+03 0.60414E-01 0.13864E+05 -0.71804E+02 0.21628E+03 -# -Range: 0-300 - -O2 + H+ + 3.0000 HS- = S3-- + 2.0000 H2O -# 2H2O = O2 + 4H+ + 4e- -#3HS- = S3-- + 3H+ + 4e- - -llnl_gamma 4.0 - log_k 79.3915 - -delta_H 0 # Not possible to calculate enthalpy of reaction S3-2 -# Enthalpy of formation: -0 kcal/mol - -analytic -0.51626E+02 0.70208E-02 0.31797E+05 0.11927E+02 -0.64249E+06 - -mass_balance S(-2)3 -# -Range: 0-300 -# -add_logk Log_K_O2 1.0 - -# 3.0000 SO3-- + 4.0000 H+ = S3O6-- + .500 O2 + 2.0000 H2O -# .5 O2 + 2H+ + 2e- = H2O -3SO3-- + 6 H+ + 2e- = S3O6-- + 3H2O - -llnl_gamma 4.0 - log_k -6.2316 - -delta_H 0 # Not possible to calculate enthalpy of reaction S3O6-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.23664E+03 0.12702E+00 -0.10110E+05 -0.99715E+02 -0.15783E+03 -# -Range: 0-300 - -add_logk Log_K_O2 -0.5 - -1.5000 O2 + 2.0000 H+ + 4.0000 HS- = S4-- + 3.0000 H2O -#4 HS- = S4-- + 4H+ + 6e- - -llnl_gamma 4.0 - log_k 125.2958 - -delta_H 0 # Not possible to calculate enthalpy of reaction S4-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.20875E+03 0.58133E-01 0.33278E+05 -0.85833E+02 0.51921E+03 - -mass_balance S(-2)4 -# -Range: 0-300 -# -add_logk Log_K_O2 1.5 - -# 4.0000 SO3-- + 6.0000 H+ = S4O6-- + 1.500 O2 + 3.0000 H2O -4 SO3-- + 12 H+ + 6e- = S4O6-- + 6H2O - -llnl_gamma 4.0 - log_k -38.3859 - -delta_H 0 # Not possible to calculate enthalpy of reaction S4O6-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.32239E+03 0.19555E+00 -0.23617E+05 -0.13729E+03 -0.36862E+03 -# -Range: 0-300 - -add_logk Log_K_O2 -1.5 - -2.0000 O2 + 3.0000 H+ + 5.0000 HS- = S5-- + 4.0000 H2O -#5 HS- = S5-- + 5H+ + 8e- - -llnl_gamma 4.0 - log_k 170.9802 - -delta_H 0 # Not possible to calculate enthalpy of reaction S5-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.30329E+03 0.88033E-01 0.44739E+05 -0.12471E+03 0.69803E+03 - -mass_balance S(-2)5 -# -Range: 0-300 -# -add_logk Log_K_O2 2 - -# 5.0000 SO3-- + 8.0000 H+ = S5O6-- + 2.5000 O2 + 4.0000 H2O -# 2.5O2 + 10 H+ + 10e- = 5H2O -5SO3-- + 18H+ + 10e- = S5O6-- + 9H2O - -llnl_gamma 4.0 - log_k -99.4206 - -delta_H 0 # Not possible to calculate enthalpy of reaction S5O6-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.42074E+03 0.25833E+00 -0.43878E+05 -0.18178E+03 -0.68480E+03 -# -Range: 0-300 - -add_logk Log_K_O2 -2.5 - -# 1.0000 H+ + HCO3- + HS- + NH3 = SCN- + 3.0000 H2O -# -llnl_gamma 3.5 -# log_k 3.0070 -# -delta_H 0 # Not possible to calculate enthalpy of reaction SCN- -## Enthalpy of formation: -0 kcal/mol -# -analytic 0.16539E+03 0.49623E-01 -0.44624E+04 -0.65544E+02 -0.69680E+02 -## -Range: 0-300 - -Thiocyanate- = Thiocyanate- - log_k 0.0 - - 1.0000 SO4-- = SO3-- +0.5000 O2 - -llnl_gamma 4.5 - log_k -46.6244 - -delta_H 267.985 kJ/mol # Calculated enthalpy of reaction SO3-2 -# Enthalpy of formation: -151.9 kcal/mol - -analytic -1.3771e+001 6.5102e-004 -1.3330e+004 4.7164e+000 -2.0800e+002 -# -Range: 0-300 - -1.0000 HSe- = Se-- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -14.9534 - -delta_H 0 # Not possible to calculate enthalpy of reaction Se-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 1.0244e+002 3.1346e-002 -5.4190e+003 -4.3871e+001 -8.4589e+001 -# -Range: 0-300 - - 1.0000 SeO3-- + 0.5000 O2 = SeO4-- - -llnl_gamma 4.0 - log_k +13.9836 - -delta_H -83.8892 kJ/mol # Calculated enthalpy of reaction SeO4-2 -# Enthalpy of formation: -143.2 kcal/mol - -analytic -7.2314e+001 -1.3657e-002 8.6969e+003 2.6182e+001 -3.1897e+005 -# -Range: 0-300 - - 1.0000 Sm+++ + 0.5000 H2O = Sm++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -47.9624 - -delta_H 326.911 kJ/mol # Calculated enthalpy of reaction Sm+2 -# Enthalpy of formation: -120.5 kcal/mol - -analytic -1.0217e+001 7.7548e-003 -1.6285e+004 5.4711e+000 9.1931e+004 -# -Range: 0-300 - - 2.0000 H+ + 1.0000 Sn++ + 0.5000 O2 = Sn++++ +1.0000 H2O - -llnl_gamma 11.0 - log_k +37.7020 - -delta_H -240.739 kJ/mol # Calculated enthalpy of reaction Sn+4 -# Enthalpy of formation: 7.229 kcal/mol - -analytic 3.2053e+001 -9.2307e-003 1.0378e+004 -1.0666e+001 1.6193e+002 -# -Range: 0-300 - - 1.0000 Tb+++ + 0.5000 H2O = Tb++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -78.7754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb+2 -# Enthalpy of formation: -0 kcal/mol - - 4.0000 H+ + 1.0000 TcO4- = Tc+++ +2.0000 H2O +1.0000 O2 - -llnl_gamma 5.0 - log_k -47.614 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc+3 -# Enthalpy of formation: -0 kcal/mol - - 3.0000 H+ + 1.0000 TcO4- = TcO++ +1.5000 H2O +0.7500 O2 - -llnl_gamma 4.5 - log_k -31.5059 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 TcO4- + 0.5000 H2O = TcO4-- +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.0 - log_k -31.8197 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 TcO4- + 1.0000 H2O = TcO4--- +2.0000 H+ +0.5000 O2 - -llnl_gamma 4.0 - log_k -63.2889 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-3 -# Enthalpy of formation: -0 kcal/mol - - 2.0000 H+ + 1.0000 Tl+ + 0.5000 O2 = Tl+++ +1.0000 H2O - -llnl_gamma 5.0 - log_k -0.2751 - -delta_H -88.479 kJ/mol # Calculated enthalpy of reaction Tl+3 -# Enthalpy of formation: 47 kcal/mol - -analytic -6.7978e+001 -2.6430e-002 5.3106e+003 2.3340e+001 8.2887e+001 -# -Range: 0-300 - - 1.0000 Tm+++ + 0.5000 H2O = Tm++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -58.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 UO2++ + 1.0000 H+ = U+++ +0.7500 O2 +0.5000 H2O - -llnl_gamma 5.0 - log_k -64.8028 - -delta_H 377.881 kJ/mol # Calculated enthalpy of reaction U+3 -# Enthalpy of formation: -489.1 kJ/mol - -analytic 2.5133e+001 6.4088e-003 -2.2542e+004 -8.1423e+000 3.4793e+005 -# -Range: 0-300 - - 2.0000 H+ + 1.0000 UO2++ = U++++ +1.0000 H2O +0.5000 O2 - -llnl_gamma 5.5 - log_k -33.9491 - -delta_H 135.895 kJ/mol # Calculated enthalpy of reaction U+4 -# Enthalpy of formation: -591.2 kJ/mol - -analytic 4.4837e+001 1.0129e-002 -1.1787e+004 -1.9194e+001 4.6436e+005 -# -Range: 0-300 - - 1.0000 UO2++ + 0.5000 H2O = UO2+ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.0 - log_k -20.0169 - -delta_H 133.759 kJ/mol # Calculated enthalpy of reaction UO2+ -# Enthalpy of formation: -1025.13 kJ/mol - -analytic 8.0480e+000 9.5845e-003 -6.5994e+003 -3.5515e+000 -1.0298e+002 -# -Range: 0-300 - - 1.0000 VO++ + 1.0000 H+ = V+++ +0.5000 H2O +0.2500 O2 - -llnl_gamma 5.0 - log_k -15.7191 - -delta_H 79.6069 kJ/mol # Calculated enthalpy of reaction V+3 -# Enthalpy of formation: -62.39 kcal/mol - -analytic 1.6167e+001 1.1963e-002 -4.2112e+003 -8.6126e+000 -6.5717e+001 -# -Range: 0-300 - - 1.0000 VO++ + 0.5000 H2O + 0.2500 O2 = VO2+ +1.0000 H+ - -llnl_gamma 4.0 - log_k +4.5774 - -delta_H -17.2234 kJ/mol # Calculated enthalpy of reaction VO2+ -# Enthalpy of formation: -155.3 kcal/mol - -analytic 1.9732e+000 5.3936e-003 1.2240e+003 -1.2539e+000 1.9098e+001 -# -Range: 0-300 - - 1.0000 VO2+ + 2.0000 H2O = VO4--- +4.0000 H+ - -llnl_gamma 4.0 - log_k -28.4475 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO4-3 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Yb+++ + 0.5000 H2O = Yb++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -39.4595 - -delta_H 280.05 kJ/mol # Calculated enthalpy of reaction Yb+2 -# Enthalpy of formation: -126.8 kcal/mol - -analytic 1.0773e+000 9.5995e-003 -1.3833e+004 1.0723e+000 3.1365e+004 -# -Range: 0-300 - - 2.0000 H+ + 1.0000 Zr(OH)2++ = Zr++++ +2.0000 H2O - -llnl_gamma 11.0 - log_k +0.2385 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr+4 -# Enthalpy of formation: -0 kcal/mol - -4.0000 HS- + 4.0000 H+ + 2.0000 Sb(OH)3 + 2.0000 NH3 = (NH4)2Sb2S4 +6.0000 H2O - -llnl_gamma 3.0 - log_k +67.6490 - -delta_H -424.665 kJ/mol # Calculated enthalpy of reaction (NH4)2Sb2S4 -# Enthalpy of formation: -484.321 kJ/mol - -analytic -3.9259e+002 -1.1727e-001 3.2073e+004 1.5667e+002 5.4478e+002 -# -Range: 0-200 - -2.0000 NpO2++ + 2.0000 H2O = (NpO2)2(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -6.4 - -delta_H 45.4397 kJ/mol # Calculated enthalpy of reaction (NpO2)2(OH)2+2 -# Enthalpy of formation: -537.092 kcal/mol - -analytic -4.7462e+001 -3.1413e-002 -2.1954e+003 2.3355e+001 -3.7424e+001 -# -Range: 25-150 - -5.0000 H2O + 3.0000 NpO2++ = (NpO2)3(OH)5+ +5.0000 H+ - -llnl_gamma 4.0 - log_k -17.5 - -delta_H 112.322 kJ/mol # Calculated enthalpy of reaction (NpO2)3(OH)5+ -# Enthalpy of formation: -931.717 kcal/mol - -analytic 5.4053e+002 9.1693e-002 -2.4404e+004 -2.0349e+002 -4.1639e+002 -# -Range: 25-150 - -2.0000 PuO2++ + 2.0000 H2O = (PuO2)2(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -8.2626 - -delta_H 57.8597 kJ/mol # Calculated enthalpy of reaction (PuO2)2(OH)2+2 -# Enthalpy of formation: -2156.97 kJ/mol - -analytic 6.5448e+001 -1.6194e-003 -5.9542e+003 -2.1522e+001 -9.2929e+001 -# -Range: 0-300 - -5.0000 H2O + 3.0000 PuO2++ = (PuO2)3(OH)5+ +5.0000 H+ - -llnl_gamma 4.0 - log_k -21.655 - -delta_H 139.617 kJ/mol # Calculated enthalpy of reaction (PuO2)3(OH)5+ -# Enthalpy of formation: -3754.31 kJ/mol - -analytic 1.6151e+002 5.8182e-003 -1.4002e+004 -5.5745e+001 -2.1854e+002 -# -Range: 0-300 - -4.0000 H2O + 2.0000 TcO++ = (TcO(OH)2)2 +4.0000 H+ - -llnl_gamma 3.0 - log_k -0.1271 - -delta_H 0 # Not possible to calculate enthalpy of reaction (TcO(OH)2)2 -# Enthalpy of formation: -0 kcal/mol - -12.0000 H2O + 11.0000 UO2++ + 6.0000 HCO3- = (UO2)11(CO3)6(OH)12-2 +18.0000 H+ - -llnl_gamma 4.0 - log_k -25.7347 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)11(CO3)6(OH)12-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 UO2++ + 2.0000 H2O = (UO2)2(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -5.6346 - -delta_H 37.6127 kJ/mol # Calculated enthalpy of reaction (UO2)2(OH)2+2 -# Enthalpy of formation: -2572.06 kJ/mol - -analytic 6.4509e+001 -7.6875e-004 -4.8433e+003 -2.1689e+001 -7.5593e+001 -# -Range: 0-300 - -3.0000 H2O + 2.0000 UO2++ + 1.0000 HCO3- = (UO2)2CO3(OH)3- +4.0000 H+ - -llnl_gamma 4.0 - log_k -11.2229 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2CO3(OH)3- -# Enthalpy of formation: -0 kcal/mol - -2.0000 UO2++ + 1.0000 H2O = (UO2)2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -2.7072 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2OH+3 -# Enthalpy of formation: -0 kcal/mol - -6.0000 HCO3- + 3.0000 UO2++ = (UO2)3(CO3)6-6 +6.0000 H+ - -llnl_gamma 4.0 - log_k -8.0601 - -delta_H 25.5204 kJ/mol # Calculated enthalpy of reaction (UO2)3(CO3)6-6 -# Enthalpy of formation: -7171.08 kJ/mol - -analytic 7.4044e+002 2.7299e-001 -1.7614e+004 -3.1149e+002 -2.7507e+002 -# -Range: 0-300 - -4.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)4++ +4.0000 H+ - -llnl_gamma 4.5 - log_k -11.929 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)4+2 -# Enthalpy of formation: -0 kcal/mol - -5.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)5+ +5.0000 H+ - -llnl_gamma 4.0 - log_k -15.5862 - -delta_H 97.1056 kJ/mol # Calculated enthalpy of reaction (UO2)3(OH)5+ -# Enthalpy of formation: -4389.09 kJ/mol - -analytic 1.6004e+002 7.0827e-003 -1.1700e+004 -5.5973e+001 -1.8261e+002 -# -Range: 0-300 - -4.0000 H2O + 3.0000 UO2++ + 1.0000 HCO3- = (UO2)3(OH)5CO2+ +4.0000 H+ - -llnl_gamma 4.0 - log_k -9.6194 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)5CO2+ -# Enthalpy of formation: -0 kcal/mol - -7.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)7- +7.0000 H+ - -llnl_gamma 4.0 - log_k -31.0508 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)7- -# Enthalpy of formation: -0 kcal/mol - -3.0000 UO2++ + 3.0000 H2O + 1.0000 HCO3- = (UO2)3O(OH)2(HCO3)+ +4.0000 H+ - -llnl_gamma 4.0 - log_k -9.7129 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3O(OH)2(HCO3)+ -# Enthalpy of formation: -0 kcal/mol - -7.0000 H2O + 4.0000 UO2++ = (UO2)4(OH)7+ +7.0000 H+ - -llnl_gamma 4.0 - log_k -21.9508 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)4(OH)7+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 VO++ + 2.0000 H2O = (VO)2(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -6.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)2(OH)2+2 -# Enthalpy of formation: -0 kcal/mol - -CH3COO- + H+ = CH3COOH - -llnl_gamma 4.5 - log_k 4.7572 - -delta_H 0 # Not possible to calculate enthalpy of reaction CH3COOH -# Enthalpy of formation: -0 kcal/mol - -analytic 0.96597E+02 0.34535E-01 -0.19753E+04 -0.38593E+02 -0.30850E+02 -# -Range: 0-300 - -H+ + 2.000 HCO3- = CH3COO- + 2.0000 O2 - -llnl_gamma 4.5 - log_k -146.7494 - -delta_H 0 # Not possible to calculate enthalpy of reaction CH3COO- -# Enthalpy of formation: -0 kcal/mol - -analytic -1.3108E+03 -2.3248E-01 -4.5380E+01 4.9843E+02 6.5945E-01 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Ag+ = Ag(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.8716 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ag(Acetate)2- -# Enthalpy of formation: -0 kcal/mol - -analytic -2.8207e+002 -5.3713e-002 9.5343e+003 1.0396e+002 1.4886e+002 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Ag+ = Ag(CO3)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -18.5062 - -delta_H 1.34306 kJ/mol # Calculated enthalpy of reaction Ag(CO3)2-3 -# Enthalpy of formation: -304.2 kcal/mol - -analytic -1.6671e+002 -4.5571e-002 3.7190e+003 6.0341e+001 5.8080e+001 -# -Range: 0-300 - -1.0000 Ag+ + 1.0000 CH3COOH = AgCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.0264 - -delta_H -3.4518 kJ/mol # Calculated enthalpy of reaction AgAcetate -# Enthalpy of formation: -91.65 kcal/mol - -analytic 6.9069e+000 -1.9415e-003 -1.9953e+003 -2.6175e+000 2.5092e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Ag+ = AgCO3- +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.6416 - -delta_H -8.27177 kJ/mol # Calculated enthalpy of reaction AgCO3- -# Enthalpy of formation: -141.6 kcal/mol - -analytic 6.5598e+000 -1.6477e-004 -4.7079e+002 -5.0807e+000 -7.3484e+000 -# -Range: 0-300 - -1.0000 Cl- + 1.0000 Ag+ = AgCl - -llnl_gamma 3.0 - log_k +3.2971 - -delta_H -15.1126 kJ/mol # Calculated enthalpy of reaction AgCl -# Enthalpy of formation: -18.27 kcal/mol - -analytic 1.0904e+002 3.5492e-002 -1.8455e+003 -4.4502e+001 -2.8830e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Ag+ = AgCl2- - -llnl_gamma 4.0 - log_k +5.2989 - -delta_H -27.3592 kJ/mol # Calculated enthalpy of reaction AgCl2- -# Enthalpy of formation: -61.13 kcal/mol - -analytic 9.2164e+001 4.0261e-002 -1.6597e+002 -3.9721e+001 -2.6171e+000 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Ag+ = AgCl3-- - -llnl_gamma 4.0 - log_k +5.1310 - -delta_H -47.7645 kJ/mol # Calculated enthalpy of reaction AgCl3-2 -# Enthalpy of formation: -105.94 kcal/mol - -analytic 4.3732e+000 2.9568e-002 3.9818e+003 -8.6428e+000 6.2131e+001 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Ag+ = AgCl4--- - -llnl_gamma 4.0 - log_k +3.8050 - -delta_H -32.4804 kJ/mol # Calculated enthalpy of reaction AgCl4-3 -# Enthalpy of formation: -142.22 kcal/mol - -analytic -1.6176e+001 2.9523e-002 0.0000e+000 0.0000e+000 9.9602e+005 -# -Range: 0-300 - -1.0000 F- + 1.0000 Ag+ = AgF - -llnl_gamma 3.0 - log_k -0.1668 - -delta_H -9.298 kJ/mol # Calculated enthalpy of reaction AgF -# Enthalpy of formation: -238.895 kJ/mol - -analytic -6.6024e+001 -2.2350e-002 1.9514e+003 2.6663e+001 3.3160e+001 -# -Range: 0-200 - -1.0000 NO3- + 1.0000 Ag+ = AgNO3 - -llnl_gamma 3.0 - log_k -0.1979 - -delta_H 4.45178 kJ/mol # Calculated enthalpy of reaction AgNO3 -# Enthalpy of formation: -23.09 kcal/mol - -analytic 7.3866e+001 2.6050e-002 -1.5923e+003 -3.0904e+001 -2.4868e+001 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Al+++ = Al(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.595 - -delta_H -46.8566 kJ/mol # Calculated enthalpy of reaction Al(Acetate)2+ -# Enthalpy of formation: -372.08 kcal/mol - -analytic -4.2528e+001 2.1431e-003 3.1658e+002 1.1585e+001 5.8604e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Al+++ = Al(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -10.5945 - -delta_H 98.2822 kJ/mol # Calculated enthalpy of reaction Al(OH)2+ -# Enthalpy of formation: -241.825 kcal/mol - -analytic 4.4036e+001 2.0168e-002 -5.5455e+003 -1.6987e+001 -8.6545e+001 -# -Range: 0-300 - -2.0000 SO4-- + 1.0000 Al+++ = Al(SO4)2- - -llnl_gamma 4.0 - log_k +4.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -28.0000 H2O + 13.0000 Al+++ = Al13O4(OH)24+7 +32.0000 H+ - -llnl_gamma 6.0 - log_k -98.73 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al13O4(OH)24+7 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 2.0000 Al+++ = Al2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -7.6902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 3.0000 Al+++ = Al3(OH)4+5 +4.0000 H+ - -llnl_gamma 6.0 - log_k -13.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al3(OH)4+5 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Al+++ + 1.0000 CH3COOH = AlCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.6923 - -delta_H -18.1962 kJ/mol # Calculated enthalpy of reaction AlAcetate+2 -# Enthalpy of formation: -249.13 kcal/mol - -analytic -1.9847e+001 2.0058e-003 -2.3653e+002 5.5454e+000 3.2362e+005 -# -Range: 0-300 - -1.0000 F- + 1.0000 Al+++ = AlF++ - -llnl_gamma 4.5 - log_k +7.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Al+++ = AlF2+ - -llnl_gamma 4.0 - log_k +12.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF2+ -# Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 1.0000 Al+++ = AlF3 - -llnl_gamma 3.0 - log_k +16.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF3 -# Enthalpy of formation: -0 kcal/mol - -4.0000 F- + 1.0000 Al+++ = AlF4- - -llnl_gamma 4.0 - log_k +19.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Al+++ = AlH2PO4++ - -llnl_gamma 4.5 - log_k +3.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlH2PO4+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Al+++ = AlHPO4+ - -llnl_gamma 4.0 - log_k +7.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlHPO4+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Al+++ = AlO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -22.8833 - -delta_H 180.899 kJ/mol # Calculated enthalpy of reaction AlO2- -# Enthalpy of formation: -222.079 kcal/mol - -analytic 1.0803e+001 -3.4379e-003 -9.7391e+003 0.0000e+000 0.0000e+000 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Al+++ = AlOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -4.9571 - -delta_H 49.798 kJ/mol # Calculated enthalpy of reaction AlOH+2 -# Enthalpy of formation: -185.096 kcal/mol - -analytic -2.6224e-001 8.8816e-003 -1.8686e+003 -4.3195e-001 -2.9158e+001 -# -Range: 0-300 - -1.0000 SO4-- + 1.0000 Al+++ = AlSO4+ - -llnl_gamma 4.0 - log_k +3.0100 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlSO4+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 HCO3- + 1.0000 Am+++ = Am(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.3868 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -3.0000 HCO3- + 1.0000 Am+++ = Am(CO3)3--- +3.0000 H+ - -llnl_gamma 4.0 - log_k -15.8302 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)3-3 -# Enthalpy of formation: -0 kcal/mol - -5.0000 HCO3- + 1.0000 Am++++ = Am(CO3)5-6 +5.0000 H+ - -llnl_gamma 4.0 - log_k -12.409 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)5-6 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Am+++ = Am(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -14.1145 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)2+ -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Am+++ = Am(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.7218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Am+++ = Am(SO4)2- - -llnl_gamma 4.0 - log_k +5.2407 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Am+++ = AmCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.5434 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmCO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Cl- + 1.0000 Am+++ = AmCl++ - -llnl_gamma 4.5 - log_k +1.0374 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmCl+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 F- + 1.0000 Am+++ = AmF++ - -llnl_gamma 4.5 - log_k +3.3601 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmF+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Am+++ = AmF2+ - -llnl_gamma 4.0 - log_k +5.7204 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmF2+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Am+++ = AmH2PO4++ - -llnl_gamma 4.5 - log_k +11.4119 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmH2PO4+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 N3- + 1.0000 Am+++ = AmN3++ - -llnl_gamma 4.5 - log_k +1.6699 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmN3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Am+++ = AmNO3++ - -llnl_gamma 4.5 - log_k +1.3104 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmNO3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Am+++ = AmOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -6.4072 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmOH+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Am+++ = AmSO4+ - -llnl_gamma 4.0 - log_k +3.7703 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmSO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2AsO3- + 1.0000 H+ = As(OH)3 - -llnl_gamma 3.0 - log_k +9.2048 - -delta_H -27.4054 kJ/mol # Calculated enthalpy of reaction As(OH)3 -# Enthalpy of formation: -742.2 kJ/mol - -analytic 1.3020e+002 4.7513e-002 -1.1999e+003 -5.2993e+001 -2.0422e+001 -# -Range: 0-200 - -1.0000 H2AsO3- = AsO2- +1.0000 H2O - -llnl_gamma 4.0 - log_k 0.0111 - -delta_H 0 # Not possible to calculate enthalpy of reaction AsO2- -# Enthalpy of formation: -0 kcal/mol - -analytic -2.1509e+001 -1.7680e-002 -1.9261e+001 1.0841e+001 -2.9404e-001 -# -Range: 0-300 - -1.0000 H2AsO3- = AsO2OH-- +1.0000 H+ - -llnl_gamma 4.0 - log_k -11.0171 - -delta_H 25.514 kJ/mol # Calculated enthalpy of reaction AsO2OH-2 -# Enthalpy of formation: -164.742 kcal/mol - -analytic 1.4309e+002 1.8620e-002 -6.8596e+003 -5.5222e+001 -1.0708e+002 -# -Range: 0-300 - -1.0000 H2AsO4- + 1.0000 F- = AsO3F-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +40.2451 - -delta_H 0 # Not possible to calculate enthalpy of reaction AsO3F-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2AsO4- = AsO4--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -18.3604 - -delta_H 21.4198 kJ/mol # Calculated enthalpy of reaction AsO4-3 -# Enthalpy of formation: -888.14 kJ/mol - -analytic -2.4979e+001 -1.2761e-002 2.8369e+003 3.4878e+000 -6.8736e+005 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Au+ = Au(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.0013 - -delta_H -8.91192 kJ/mol # Calculated enthalpy of reaction Au(CH3COO)2- -# Enthalpy of formation: -186.75 kcal/mol - -analytic -2.2338e+002 -4.6312e-002 7.0942e+003 8.2606e+001 1.1076e+002 -# -Range: 0-300 - -1.0000 Au+ + 1.0000 CH3COOH = AuCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.3174 - -delta_H 0.87864 kJ/mol # Calculated enthalpy of reaction AuCH3COO -# Enthalpy of formation: -68.31 kcal/mol - -analytic -1.1812e+000 -4.1120e-003 -1.4752e+003 4.5665e-001 1.7019e+005 -# -Range: 0-300 - -2.0000 B(OH)3 = B2O(OH)5- +1.0000 H+ - -llnl_gamma 4.0 - log_k -18.6851 - -delta_H 0 # Not possible to calculate enthalpy of reaction B2O(OH)5- -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 H+ + 1.0000 B(OH)3 = BF2(OH)2- +1.0000 H2O - -llnl_gamma 4.0 - log_k +6.6174 - -delta_H 0 # Not possible to calculate enthalpy of reaction BF2(OH)2- -# Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 2.0000 H+ + 1.0000 B(OH)3 = BF3OH- +2.0000 H2O - -llnl_gamma 4.0 - log_k +13.1908 - -delta_H -178.577 kJ/mol # Calculated enthalpy of reaction BF3OH- -# Enthalpy of formation: -403.317 kcal/mol - -analytic 3.3411e+002 -3.7303e-002 -8.6507e+003 -1.1345e+002 -1.3508e+002 -# -Range: 0-300 - -4.0000 F- + 3.0000 H+ + 1.0000 B(OH)3 = BF4- +3.0000 H2O - -llnl_gamma 4.0 - log_k +18.0049 - -delta_H -16.4473 kJ/mol # Calculated enthalpy of reaction BF4- -# Enthalpy of formation: -376.4 kcal/mol - -analytic 2.5491e+002 1.0443e-001 -3.3332e+003 -1.0378e+002 -5.2087e+001 -# -Range: 0-300 - -1.0000 B(OH)3 = BO2- +1.0000 H+ +1.0000 H2O - -llnl_gamma 4.0 - log_k -9.2449 - -delta_H 16.3302 kJ/mol # Calculated enthalpy of reaction BO2- -# Enthalpy of formation: -184.6 kcal/mol - -analytic -1.0500e+002 -3.3447e-002 1.4706e+003 4.0724e+001 2.2978e+001 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Ba++ = Ba(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -8.0118 - -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Ba(CH3COO)2 -# Enthalpy of formation: -358.01 kcal/mol - -analytic -1.4566e+001 3.1394e-004 -3.9564e+003 5.1906e+000 6.1407e+005 -# -Range: 0-300 - -1.0000 O_phthalate-2 + 1.0000 Ba++ = Ba(O_phthalate) - -llnl_gamma 3.0 - log_k +2.3300 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ba(O_phthalate) -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Ba++ + 1.0000 B(OH)3 = BaB(OH)4+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.8012 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaB(OH)4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ba++ + 1.0000 CH3COOH = BaCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.7677 - -delta_H 7.322 kJ/mol # Calculated enthalpy of reaction BaCH3COO+ -# Enthalpy of formation: -242.85 kcal/mol - -analytic -1.5623e+001 2.9282e-003 -3.9534e+002 4.3959e+000 1.2829e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Ba++ = BaCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.6834 - -delta_H 31.5808 kJ/mol # Calculated enthalpy of reaction BaCO3 -# Enthalpy of formation: -285.85 kcal/mol - -analytic 2.1878e+002 5.2368e-002 -8.2472e+003 -8.6644e+001 -1.2875e+002 -# -Range: 0-300 - -1.0000 Cl- + 1.0000 Ba++ = BaCl+ - -llnl_gamma 4.0 - log_k -0.4977 - -delta_H 11.142 kJ/mol # Calculated enthalpy of reaction BaCl+ -# Enthalpy of formation: -165.77 kcal/mol - -analytic 1.1016e+002 4.2325e-002 -2.8039e+003 -4.6010e+001 -4.3785e+001 -# -Range: 0-300 - -1.0000 F- + 1.0000 Ba++ = BaF+ - -llnl_gamma 4.0 - log_k -0.1833 - -delta_H 8.95376 kJ/mol # Calculated enthalpy of reaction BaF+ -# Enthalpy of formation: -206.51 kcal/mol - -analytic 1.0349e+002 4.0336e-002 -2.5195e+003 -4.3334e+001 -3.9346e+001 -# -Range: 0-300 - -1.0000 NO3- + 1.0000 Ba++ = BaNO3+ - -llnl_gamma 4.0 - log_k +0.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaNO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Ba++ = BaOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -13.47 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaOH+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Be++ = Be(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -6.8023 - -delta_H -52.4255 kJ/mol # Calculated enthalpy of reaction Be(CH3COO)2 -# Enthalpy of formation: -336.23 kcal/mol - -analytic -3.5242e+001 5.1285e-003 -4.8914e+002 8.2862e+000 7.1774e+005 -# -Range: 0-300 - -1.0000 Be++ + 1.0000 CH3COOH = BeCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.1079 - -delta_H -22.761 kJ/mol # Calculated enthalpy of reaction BeCH3COO+ -# Enthalpy of formation: -213.04 kcal/mol - -analytic -1.9418e+001 5.2172e-004 -8.5071e+001 5.2755e+000 3.0215e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Be++ = BeO2-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.161 - -delta_H 163.737 kJ/mol # Calculated enthalpy of reaction BeO2-2 -# Enthalpy of formation: -189 kcal/mol - -analytic 7.0860e+000 -3.8474e-002 -1.1400e+004 4.2138e+000 -1.7789e+002 -# -Range: 0-300 - -2.0000 H+ + 2.0000 Br- + 0.5000 O2 = Br2 +1.0000 H2O - -llnl_gamma 3.0 - log_k +5.6834 - -delta_H 0 # Not possible to calculate enthalpy of reaction Br2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 H+ = CO2 +1.0000 H2O - -CO2_llnl_gamma - log_k +6.3447 - -delta_H -9.7027 kJ/mol # Calculated enthalpy of reaction CO2 -# Enthalpy of formation: -98.9 kcal/mol - -analytic -1.0534e+001 2.1746e-002 2.5216e+003 7.9125e-001 3.9351e+001 -# -Range: 0-300 - -1.0000 HCO3- = CO3-- +1.0000 H+ - -llnl_gamma 4.5 - log_k -10.3288 - -delta_H 14.6984 kJ/mol # Calculated enthalpy of reaction CO3-2 -# Enthalpy of formation: -161.385 kcal/mol - -analytic -6.9958e+001 -3.3526e-002 -7.0846e+001 2.8224e+001 -1.0849e+000 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Ca++ = Ca(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.3814 - -delta_H -2.7196 kJ/mol # Calculated enthalpy of reaction Ca(CH3COO)2 -# Enthalpy of formation: -362.65 kcal/mol - -analytic -1.0320e+001 4.0012e-003 -3.6281e+003 2.4421e+000 7.0175e+005 -# -Range: 0-300 - -1.0000 O_phthalate-2 + 1.0000 Ca++ = Ca(O_phthalate) - -llnl_gamma 3.0 - log_k +2.4200 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca(O_phthalate) -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Ca++ + 1.0000 B(OH)3 = CaB(OH)4+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.4222 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaB(OH)4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ca++ + 1.0000 CH3COOH = CaCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.8263 - -delta_H 1.17152 kJ/mol # Calculated enthalpy of reaction CaCH3COO+ -# Enthalpy of formation: -245.62 kcal/mol - -analytic -8.8826e+000 3.1672e-003 -1.0764e+003 2.0526e+000 2.3599e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Ca++ = CaCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.0017 - -delta_H 30.5767 kJ/mol # Calculated enthalpy of reaction CaCO3 -# Enthalpy of formation: -287.39 kcal/mol - -analytic 2.3045e+002 5.5350e-002 -8.5056e+003 -9.1096e+001 -1.3279e+002 -# -Range: 0-300 - -1.0000 Cl- + 1.0000 Ca++ = CaCl+ - -llnl_gamma 4.0 - log_k -0.6956 - -delta_H 2.02087 kJ/mol # Calculated enthalpy of reaction CaCl+ -# Enthalpy of formation: -169.25 kcal/mol - -analytic 8.1498e+001 3.8387e-002 -1.3763e+003 -3.5968e+001 -2.1501e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Ca++ = CaCl2 - -llnl_gamma 3.0 - log_k -0.6436 - -delta_H -5.8325 kJ/mol # Calculated enthalpy of reaction CaCl2 -# Enthalpy of formation: -211.06 kcal/mol - -analytic 1.8178e+002 7.6910e-002 -3.1088e+003 -7.8760e+001 -4.8563e+001 -# -Range: 0-300 - -1.0000 F- + 1.0000 Ca++ = CaF+ - -llnl_gamma 4.0 - log_k +0.6817 - -delta_H 5.6484 kJ/mol # Calculated enthalpy of reaction CaF+ -# Enthalpy of formation: -208.6 kcal/mol - -analytic 7.8058e+001 3.8276e-002 -1.3289e+003 -3.4071e+001 -2.0759e+001 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Ca++ = CaH2PO4+ - -llnl_gamma 4.0 - log_k +1.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaH2PO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Ca++ = CaHCO3+ - -llnl_gamma 4.0 - log_k +1.0467 - -delta_H 1.45603 kJ/mol # Calculated enthalpy of reaction CaHCO3+ -# Enthalpy of formation: -294.35 kcal/mol - -analytic 5.5985e+001 3.4639e-002 -3.6972e+002 -2.5864e+001 -5.7859e+000 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Ca++ = CaHPO4 - -llnl_gamma 3.0 - log_k +2.7400 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaHPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Ca++ = CaNO3+ - -llnl_gamma 4.0 - log_k +0.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaNO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Ca++ = CaOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -12.85 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaOH+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ca++ = CaP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +3.0537 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaP2O7-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Ca++ = CaPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.8618 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaPO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ca++ = CaSO4 - -llnl_gamma 3.0 - log_k +2.1111 - -delta_H 5.4392 kJ/mol # Calculated enthalpy of reaction CaSO4 -# Enthalpy of formation: -345.9 kcal/mol - -analytic 2.8618e+002 8.4084e-002 -7.6880e+003 -1.1449e+002 -1.2005e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Cd++ = Cd(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -6.3625 - -delta_H -17.4891 kJ/mol # Calculated enthalpy of reaction Cd(CH3COO)2 -# Enthalpy of formation: -254.52 kcal/mol - -analytic -1.9344e+001 2.5894e-003 -3.2847e+003 5.8489e+000 7.8041e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Cd++ = Cd(CH3COO)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -10.8558 - -delta_H -40.0409 kJ/mol # Calculated enthalpy of reaction Cd(CH3COO)3- -# Enthalpy of formation: -376.01 kcal/mol - -analytic 4.8290e+001 -3.4317e-003 -1.5122e+004 -1.3203e+001 2.2479e+006 -# -Range: 0-300 - -4.0000 CH3COOH + 1.0000 Cd++ = Cd(CH3COO)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -16.9163 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(CH3COO)4-2 -# Enthalpy of formation: -0 kcal/mol - - 2.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)2 - -llnl_gamma 3.0 - log_k +10.3551 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)2 - # Enthalpy of formation: -0 kcal/mol - - 3.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)3- - -llnl_gamma 4.0 - log_k +14.8191 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)3- - # Enthalpy of formation: -0 kcal/mol - - 4.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)4-- - -llnl_gamma 4.0 - log_k +18.2670 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)4-2 - # Enthalpy of formation: -0 kcal/mol - - -2.0000 HCO3- + 1.0000 Cd++ = Cd(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -14.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(CO3)2-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 N3- + 1.0000 Cd++ = Cd(N3)2 - -llnl_gamma 0.0 - log_k +2.4606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 N3- + 1.0000 Cd++ = Cd(N3)3- - -llnl_gamma 4.0 - log_k +3.1263 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 N3- + 1.0000 Cd++ = Cd(N3)4-- - -llnl_gamma 4.0 - log_k +3.4942 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 NH3 + 1.0000 Cd++ = Cd(NH3)++ - -llnl_gamma 4.5 - log_k +2.5295 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(NH3)+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 NH3 + 1.0000 Cd++ = Cd(NH3)2++ - -llnl_gamma 4.5 - log_k +4.8760 - -delta_H -27.6533 kJ/mol # Calculated enthalpy of reaction Cd(NH3)2+2 -# Enthalpy of formation: -266.225 kJ/mol - -analytic 1.0738e+002 1.6071e-003 -3.2536e+003 -3.7202e+001 -5.0801e+001 -# -Range: 0-300 - -4.0000 NH3 + 1.0000 Cd++ = Cd(NH3)4++ - -llnl_gamma 4.5 - log_k +7.2914 - -delta_H -49.0684 kJ/mol # Calculated enthalpy of reaction Cd(NH3)4+2 -# Enthalpy of formation: -450.314 kJ/mol - -analytic 1.5670e+002 -9.4949e-003 -5.0986e+003 -5.2316e+001 -7.9603e+001 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Cd++ = Cd(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -20.3402 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Cd++ = Cd(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -33.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Cd++ = Cd(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -47.3303 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Cl- + 1.0000 Cd++ = Cd(OH)Cl +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.4328 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)Cl -# Enthalpy of formation: -0 kcal/mol - -2.0000 Thiocyanate- + 1.0000 Cd++ = Cd(Thiocyanate)2 - -llnl_gamma 3.0 - log_k +1.8649 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 Thiocyanate- + 1.0000 Cd++ = Cd(Thiocyanate)3- - -llnl_gamma 4.0 - log_k +1.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)3- -# Enthalpy of formation: -0 kcal/mol - -2.0000 Cd++ + 1.0000 H2O = Cd2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -9.3851 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd2OH+3 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 4.0000 Cd++ = Cd4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -362.1263 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Cd++ + 1.0000 Br- = CdBr+ - -llnl_gamma 4.0 - log_k +2.1424 - -delta_H -3.35588 kJ/mol # Calculated enthalpy of reaction CdBr+ -# Enthalpy of formation: -200.757 kJ/mol - -analytic 1.4922e+002 5.0059e-002 -3.3035e+003 -6.0984e+001 -5.1593e+001 -# -Range: 0-300 - -2.0000 Br- + 1.0000 Cd++ = CdBr2 - -llnl_gamma 3.0 - log_k +2.8614 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 Br- + 1.0000 Cd++ = CdBr3- - -llnl_gamma 4.0 - log_k +3.0968 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr3- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Cd++ + 1.0000 CH3COOH = CdCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.8294 - -delta_H -7.02912 kJ/mol # Calculated enthalpy of reaction CdCH3COO+ -# Enthalpy of formation: -135.92 kcal/mol - -analytic -8.8425e+000 1.7178e-003 -1.1758e+003 2.4435e+000 3.0321e+005 -# -Range: 0-300 - -1.0000 Cd++ + 1.0000 Cyanide- = CdCyanide+ - -llnl_gamma 4.0 - log_k +5.3129 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdCyanide+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Cd++ = CdCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.3288 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdCO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Cl- + 1.0000 Cd++ = CdCl+ - -llnl_gamma 4.0 - log_k +2.7059 - -delta_H 2.33843 kJ/mol # Calculated enthalpy of reaction CdCl+ -# Enthalpy of formation: -240.639 kJ/mol -2.0000 Cl- + 1.0000 Cd++ = CdCl2 - -llnl_gamma 3.0 - log_k +3.3384 - -delta_H 5.1261 kJ/mol # Calculated enthalpy of reaction CdCl2 -# Enthalpy of formation: -404.931 kJ/mol - -analytic 1.4052e+002 4.9221e-002 -3.2625e+003 -5.6946e+001 -5.5451e+001 -# -Range: 0-200 - -3.0000 Cl- + 1.0000 Cd++ = CdCl3- - -llnl_gamma 4.0 - log_k +2.7112 - -delta_H 15.9388 kJ/mol # Calculated enthalpy of reaction CdCl3- -# Enthalpy of formation: -561.198 kJ/mol - -analytic 3.5108e+002 1.0219e-001 -9.9103e+003 -1.3965e+002 -1.5474e+002 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Cd++ = CdHCO3+ - -llnl_gamma 4.0 - log_k +1.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdHCO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 I- + 1.0000 Cd++ = CdI+ - -llnl_gamma 4.0 - log_k +2.0710 - -delta_H -9.02584 kJ/mol # Calculated enthalpy of reaction CdI+ -# Enthalpy of formation: -141.826 kJ/mol - -analytic 1.5019e+002 5.0320e-002 -3.0810e+003 -6.1738e+001 -4.8120e+001 -# -Range: 0-300 - -2.0000 I- + 1.0000 Cd++ = CdI2 - -llnl_gamma 3.0 - log_k +3.4685 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdI2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 I- + 1.0000 Cd++ = CdI3- - -llnl_gamma 4.0 - log_k +4.5506 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdI3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 I- + 1.0000 Cd++ = CdI4-- - -llnl_gamma 4.0 - log_k +5.3524 - -delta_H -38.8566 kJ/mol # Calculated enthalpy of reaction CdI4-2 -# Enthalpy of formation: -342.364 kJ/mol - -analytic 4.3154e+002 1.4257e-001 -8.4464e+003 -1.7795e+002 -1.3193e+002 -# -Range: 0-300 - -1.0000 N3- + 1.0000 Cd++ = CdN3+ - -llnl_gamma 4.0 - log_k +1.4970 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdN3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO2- + 1.0000 Cd++ = CdNO2+ - -llnl_gamma 4.0 - log_k +2.3700 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdNO2+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Cd++ = CdOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -10.0751 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdOH+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Cd++ = CdP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +4.8094 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdP2O7-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Thiocyanate- + 1.0000 Cd++ = CdThiocyanate+ - -llnl_gamma 4.0 - log_k +1.3218 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdThiocyanate+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Cd++ = CdSO4 - -llnl_gamma 3.0 - log_k +0.0028 - -delta_H 0.20436 kJ/mol # Calculated enthalpy of reaction CdSO4 -# Enthalpy of formation: -985.295 kJ/mol - -analytic -8.9926e+000 -1.9109e-003 2.7454e+002 3.4949e+000 4.6651e+000 -# -Range: 0-200 - -1.0000 SeO4-- + 1.0000 Cd++ = CdSeO4 - -llnl_gamma 3.0 - log_k +2.2700 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdSeO4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Ce+++ = Ce(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.8159 - -delta_H -22.9702 kJ/mol # Calculated enthalpy of reaction Ce(CH3COO)2+ -# Enthalpy of formation: -405.09 kcal/mol - -analytic -3.4653e+001 2.0716e-004 -6.3400e+002 1.0678e+001 4.8922e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Ce+++ = Ce(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.151 - -delta_H -38.7438 kJ/mol # Calculated enthalpy of reaction Ce(CH3COO)3 -# Enthalpy of formation: -524.96 kcal/mol - -analytic -2.3361e+001 2.3896e-003 -1.8035e+003 5.0888e+000 7.1021e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Ce+++ = Ce(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.1576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ce+++ = Ce(HPO4)2- - -llnl_gamma 4.0 - log_k +8.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Ce++++ = Ce(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k +2.0098 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)2+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ce+++ = Ce(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -6.1437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 2.0000 Ce++++ = Ce2(OH)2+6 +2.0000 H+ - -llnl_gamma 6.0 - log_k +3.0098 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(OH)2+6 -# Enthalpy of formation: -0 kcal/mol - -5.0000 H2O + 3.0000 Ce+++ = Ce3(OH)5++++ +5.0000 H+ - -llnl_gamma 5.5 - log_k -33.4754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(OH)5+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ce+++ + 1.0000 Br- = CeBr++ - -llnl_gamma 4.5 - log_k +0.3797 - -delta_H 3.0585 kJ/mol # Calculated enthalpy of reaction CeBr+2 -# Enthalpy of formation: -195.709 kcal/mol - -analytic 7.5790e+001 3.6040e-002 -1.2647e+003 -3.3094e+001 -1.9757e+001 -# -Range: 0-300 - -1.0000 Ce+++ + 1.0000 CH3COOH = CeCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.0304 - -delta_H -12.0918 kJ/mol # Calculated enthalpy of reaction CeCH3COO+2 -# Enthalpy of formation: -286.39 kcal/mol - -analytic -1.6080e+001 6.6239e-004 -6.0721e+002 5.0845e+000 2.9512e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Ce+++ = CeCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.9284 - -delta_H 93.345 kJ/mol # Calculated enthalpy of reaction CeCO3+ -# Enthalpy of formation: -309.988 kcal/mol - -analytic 2.3292e+002 5.3153e-002 -7.1180e+003 -9.2061e+001 -1.1114e+002 -# -Range: 0-300 - -1.0000 Cl- + 1.0000 Ce+++ = CeCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction CeCl+2 -# Enthalpy of formation: -203.8 kcal/mol - -analytic 8.3534e+001 3.8166e-002 -2.0058e+003 -3.5504e+001 -3.1324e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Ce+++ = CeCl2+ - -llnl_gamma 4.0 - log_k +0.0308 - -delta_H 20.7777 kJ/mol # Calculated enthalpy of reaction CeCl2+ -# Enthalpy of formation: -242.3 kcal/mol - -analytic 2.3011e+002 8.1428e-002 -6.1292e+003 -9.4468e+001 -9.5708e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Ce+++ = CeCl3 - -llnl_gamma 3.0 - log_k -0.3936 - -delta_H 15.4766 kJ/mol # Calculated enthalpy of reaction CeCl3 -# Enthalpy of formation: -283.5 kcal/mol - -analytic 4.4073e+002 1.2994e-001 -1.2308e+004 -1.7722e+002 -1.9218e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Ce+++ = CeCl4- - -llnl_gamma 4.0 - log_k -0.7447 - -delta_H -1.95811 kJ/mol # Calculated enthalpy of reaction CeCl4- -# Enthalpy of formation: -327.6 kcal/mol - -analytic 5.2230e+002 1.3490e-001 -1.4859e+004 -2.0747e+002 -2.3201e+002 -# -Range: 0-300 - -1.0000 ClO4- + 1.0000 Ce+++ = CeClO4++ - -llnl_gamma 4.5 - log_k +1.9102 - -delta_H -49.0197 kJ/mol # Calculated enthalpy of reaction CeClO4+2 -# Enthalpy of formation: -210.026 kcal/mol - -analytic -1.3609e+001 1.8115e-002 3.9869e+003 -1.3033e+000 6.2215e+001 -# -Range: 0-300 - -1.0000 F- + 1.0000 Ce+++ = CeF++ - -llnl_gamma 4.5 - log_k +4.2221 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction CeF+2 -# Enthalpy of formation: -242 kcal/mol - -analytic 1.0303e+002 4.1730e-002 -2.8424e+003 -4.1094e+001 -4.4383e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Ce+++ = CeF2+ - -llnl_gamma 4.0 - log_k +7.2714 - -delta_H 15.0624 kJ/mol # Calculated enthalpy of reaction CeF2+ -# Enthalpy of formation: -324.1 kcal/mol - -analytic 2.5063e+002 8.5224e-002 -6.2219e+003 -1.0017e+002 -9.7160e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Ce+++ = CeF3 - -llnl_gamma 3.0 - log_k +9.5144 - -delta_H -6.0668 kJ/mol # Calculated enthalpy of reaction CeF3 -# Enthalpy of formation: -409.3 kcal/mol - -analytic 4.6919e+002 1.3664e-001 -1.1745e+004 -1.8629e+002 -1.8340e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Ce+++ = CeF4- - -llnl_gamma 4.0 - log_k +11.3909 - -delta_H -45.6056 kJ/mol # Calculated enthalpy of reaction CeF4- -# Enthalpy of formation: -498.9 kcal/mol - -analytic 5.3522e+002 1.3856e-001 -1.2722e+004 -2.1112e+002 -1.9868e+002 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Ce+++ = CeH2PO4++ - -llnl_gamma 4.5 - log_k +9.6684 - -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction CeH2PO4+2 -# Enthalpy of formation: -480.1 kcal/mol - -analytic 1.1338e+002 6.3771e-002 5.2908e+001 -4.9649e+001 7.9189e-001 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Ce+++ = CeHCO3++ - -llnl_gamma 4.5 - log_k +1.9190 - -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction CeHCO3+2 -# Enthalpy of formation: -330.2 kcal/mol - -analytic 4.4441e+001 3.2077e-002 -3.0714e+002 -2.0622e+001 -4.8060e+000 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Ce+++ = CeHPO4+ - -llnl_gamma 4.0 - log_k +5.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 IO3- + 1.0000 Ce+++ = CeIO3++ - -llnl_gamma 4.5 - log_k +1.9000 - -delta_H -21.1627 kJ/mol # Calculated enthalpy of reaction CeIO3+2 -# Enthalpy of formation: -225.358 kcal/mol - -analytic 3.3756e+001 2.8528e-002 1.2847e+003 -1.8042e+001 2.0036e+001 -# -Range: 0-300 - -1.0000 NO3- + 1.0000 Ce+++ = CeNO3++ - -llnl_gamma 4.5 - log_k +1.3143 - -delta_H -26.6563 kJ/mol # Calculated enthalpy of reaction CeNO3+2 -# Enthalpy of formation: -223.2 kcal/mol - -analytic 2.2772e+001 2.5931e-002 1.9950e+003 -1.4490e+001 3.1124e+001 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Ce+++ = CeO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.4103 - -delta_H 112.202 kJ/mol # Calculated enthalpy of reaction CeO+ -# Enthalpy of formation: -208.9 kcal/mol - -analytic 1.9881e+002 3.1302e-002 -1.4331e+004 -7.1323e+001 -2.2368e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Ce+++ = CeO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -38.758 - -delta_H 308.503 kJ/mol # Calculated enthalpy of reaction CeO2- -# Enthalpy of formation: -230.3 kcal/mol - -analytic 1.0059e+002 3.4824e-003 -1.5873e+004 -3.3056e+001 -4.7656e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Ce+++ = CeO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -26.1503 - -delta_H 228.17 kJ/mol # Calculated enthalpy of reaction CeO2H -# Enthalpy of formation: -249.5 kcal/mol - -analytic 3.5650e+002 4.6708e-002 -2.4320e+004 -1.2731e+002 -3.7959e+002 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Ce+++ = CeOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -8.4206 - -delta_H 73.2911 kJ/mol # Calculated enthalpy of reaction CeOH+2 -# Enthalpy of formation: -218.2 kcal/mol - -analytic 7.5809e+001 1.2863e-002 -6.7244e+003 -2.6473e+001 -1.0495e+002 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Ce++++ = CeOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k +3.2049 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeOH+3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Ce+++ = CePO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.9718 - -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ce+++ = CeSO4+ - -llnl_gamma 4.0 - log_k -3.687 - -delta_H 19.2464 kJ/mol # Calculated enthalpy of reaction CeSO4+ -# Enthalpy of formation: -380.2 kcal/mol - -analytic 3.0156e+002 8.5149e-002 -1.1025e+004 -1.1866e+002 -1.7213e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Co++ = Co(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.1468 - -delta_H -22.4262 kJ/mol # Calculated enthalpy of reaction Co(CH3COO)2 -# Enthalpy of formation: -251.46 kcal/mol - -analytic -2.0661e+001 2.9014e-003 -2.2146e+003 5.1702e+000 6.4968e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Co++ = Co(CH3COO)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -11.281 - -delta_H -48.2415 kJ/mol # Calculated enthalpy of reaction Co(CH3COO)3- -# Enthalpy of formation: -373.73 kcal/mol - -analytic 6.3384e+001 -4.0669e-003 -1.4715e+004 -1.9518e+001 2.1524e+006 -# -Range: 0-300 - -2.0000 HS- + 1.0000 Co++ = Co(HS)2 - -llnl_gamma 3.0 - log_k +9.0306 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(HS)2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Co++ = Co(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -18.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Co++ = Co(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -45.7803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 2.0000 Co++ = Co2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -11.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co2OH+3 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 4.0000 Co++ = Co4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -30.3803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 Br- + 1.0000 Co++ = CoBr2 - -llnl_gamma 3.0 - log_k -0.0358 - -delta_H -0.56568 kJ/mol # Calculated enthalpy of reaction CoBr2 -# Enthalpy of formation: -301.73 kJ/mol - -analytic 5.8731e+000 8.0908e-004 -1.8986e+002 -2.2295e+000 -3.2261e+000 -# -Range: 0-200 - -1.0000 Co++ + 1.0000 CH3COOH = CoCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.2985 - -delta_H -8.70272 kJ/mol # Calculated enthalpy of reaction CoCH3COO+ -# Enthalpy of formation: -132.08 kcal/mol - -analytic -5.4858e+000 1.9147e-003 -1.1292e+003 9.0555e-001 2.8223e+005 -# -Range: 0-300 - -1.0000 Co++ + 1.0000 Cl- = CoCl+ - -llnl_gamma 4.0 - log_k +0.1547 - -delta_H 1.71962 kJ/mol # Calculated enthalpy of reaction CoCl+ -# Enthalpy of formation: -53.422 kcal/mol - -analytic 1.5234e+002 5.6958e-002 -3.3258e+003 -6.3849e+001 -5.1942e+001 -# -Range: 0-300 - -1.0000 HS- + 1.0000 Co++ = CoHS+ - -llnl_gamma 4.0 - log_k +5.9813 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoHS+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 I- + 1.0000 Co++ = CoI2 - -llnl_gamma 3.0 - log_k -0.0944 - -delta_H 3.1774 kJ/mol # Calculated enthalpy of reaction CoI2 -# Enthalpy of formation: -168.785 kJ/mol - -analytic 3.6029e+001 1.0128e-002 -1.1219e+003 -1.4301e+001 -1.9064e+001 -# -Range: 0-200 - -1.0000 NO3- + 1.0000 Co++ = CoNO3+ - -llnl_gamma 4.0 - log_k +0.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoNO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Co++ + S2O3-- = CoS2O3 - -llnl_gamma 3.0 - log_k 0.8063 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoS2O3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Co++ = CoSO4 - -llnl_gamma 3.0 - log_k +0.0436 - -delta_H 0.3842 kJ/mol # Calculated enthalpy of reaction CoSO4 -# Enthalpy of formation: -967.375 kJ/mol - -analytic 2.4606e+000 1.0086e-003 -6.1450e+001 -1.0148e+000 -1.0444e+000 -# -Range: 0-200 - -1.0000 SeO4-- + 1.0000 Co++ = CoSeO4 - -llnl_gamma 3.0 - log_k +2.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Cr+++ = Cr(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)2+ -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Cr+++ = Cr(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -18 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)3 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Cr+++ = Cr(OH)4- +4.0000 H+ - -llnl_gamma 4.0 - log_k -27.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)4- -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 2.0000 Cr+++ = Cr2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -5.06 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 2.0000 CrO4-- = Cr2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +14.5192 - -delta_H -13.8783 kJ/mol # Calculated enthalpy of reaction Cr2O7-2 -# Enthalpy of formation: -356.2 kcal/mol - -analytic 1.3749e+002 6.5773e-002 -7.9472e+002 -5.6525e+001 -1.2441e+001 -# -Range: 0-300 - -4.0000 H2O + 3.0000 Cr+++ = Cr3(OH)4+5 +4.0000 H+ - -llnl_gamma 6.0 - log_k -8.15 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr3(OH)4+5 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Cr+++ + 1.0000 Br- = CrBr++ - -llnl_gamma 4.5 - log_k -2.7813 - -delta_H 33.564 kJ/mol # Calculated enthalpy of reaction CrBr+2 -# Enthalpy of formation: -78.018 kcal/mol - -analytic 9.4384e+001 3.4704e-002 -3.6750e+003 -3.8461e+001 -5.7373e+001 -# -Range: 0-300 - -1.0000 Cr+++ + 1.0000 Cl- = CrCl++ - -llnl_gamma 4.5 - log_k -0.149 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrCl+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 Cl- + 1.0000 Cr+++ = CrCl2+ - -llnl_gamma 4.0 - log_k +0.1596 - -delta_H 41.2919 kJ/mol # Calculated enthalpy of reaction CrCl2+ -# Enthalpy of formation: -126.997 kcal/mol - -analytic 2.0114e+002 7.3878e-002 -6.2218e+003 -8.1677e+001 -9.7144e+001 -# -Range: 0-300 - -1.0000 Cl- + 2.000 H+ + 1.0000 CrO4-- = CrO3Cl- + 1.0000 H2O - -llnl_gamma 4.0 - log_k 7.5270 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrO3Cl- -# Enthalpy of formation: -0 kcal/mol - -analytic 2.7423e+002 1.0013e-001 -6.0072e+003 -1.1168e+002 -9.3817e+001 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Cr+++ = CrOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -4 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrOH+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Cs+ = Cs(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.771 - -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Cs(CH3COO)2- -# Enthalpy of formation: -293.57 kcal/mol - -analytic -1.6956e+002 -4.0378e-002 4.5773e+003 6.3241e+001 7.1475e+001 -# -Range: 0-300 - -1.0000 Cs+ + 1.0000 Br- = CsBr - -llnl_gamma 3.0 - log_k -0.2712 - -delta_H 10.9621 kJ/mol # Calculated enthalpy of reaction CsBr -# Enthalpy of formation: -88.09 kcal/mol - -analytic 1.2064e+002 3.2000e-002 -3.8770e+003 -4.7458e+001 -6.0533e+001 -# -Range: 0-300 - -1.0000 Cs+ + 1.0000 CH3COOH = CsCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.7352 - -delta_H 6.0668 kJ/mol # Calculated enthalpy of reaction CsCH3COO -# Enthalpy of formation: -176.32 kcal/mol - -analytic 2.4280e+001 -2.8642e-003 -3.1339e+003 -8.1616e+000 2.2684e+005 -# -Range: 0-300 - -1.0000 Cs+ + 1.0000 Cl- = CsCl - -llnl_gamma 3.0 - log_k -0.1385 - -delta_H 2.73215 kJ/mol # Calculated enthalpy of reaction CsCl -# Enthalpy of formation: -100.95 kcal/mol - -analytic 1.2472e+002 3.3730e-002 -3.9130e+003 -4.9212e+001 -6.1096e+001 -# -Range: 0-300 - -1.0000 I- + 1.0000 Cs+ = CsI - -llnl_gamma 3.0 - log_k +0.2639 - -delta_H -6.56888 kJ/mol # Calculated enthalpy of reaction CsI -# Enthalpy of formation: -76.84 kcal/mol - -analytic 1.1555e+002 3.1419e-002 -3.3496e+003 -4.5828e+001 -5.2302e+001 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Cu++ = Cu(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -5.8824 - -delta_H -25.899 kJ/mol # Calculated enthalpy of reaction Cu(CH3COO)2 -# Enthalpy of formation: -222.69 kcal/mol - -analytic -2.6689e+001 1.8048e-003 -1.8244e+003 7.7008e+000 6.5408e+005 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Cu+ = Cu(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.2139 - -delta_H -19.5476 kJ/mol # Calculated enthalpy of reaction Cu(CH3COO)2- -# Enthalpy of formation: -219.74 kcal/mol - -analytic -3.2712e+002 -5.9087e-002 1.1386e+004 1.2017e+002 1.7777e+002 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Cu++ = Cu(CH3COO)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -9.3788 - -delta_H -53.2205 kJ/mol # Calculated enthalpy of reaction Cu(CH3COO)3- -# Enthalpy of formation: -345.32 kcal/mol - -analytic 3.9475e+001 -6.2867e-003 -1.3233e+004 -1.0643e+001 2.1121e+006 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Cu++ = Cu(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -10.4757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(CO3)2-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 NH3 + 1.0000 Cu++ = Cu(NH3)2++ - -llnl_gamma 4.5 - log_k +7.4512 - -delta_H -45.1269 kJ/mol # Calculated enthalpy of reaction Cu(NH3)2+2 -# Enthalpy of formation: -142.112 kJ/mol - -analytic 1.1526e+002 4.8192e-003 -2.5139e+003 -4.0733e+001 -3.9261e+001 -# -Range: 0-300 - -3.0000 NH3 + 1.0000 Cu++ = Cu(NH3)3++ - -llnl_gamma 4.5 - log_k +10.2719 - -delta_H -67.2779 kJ/mol # Calculated enthalpy of reaction Cu(NH3)3+2 -# Enthalpy of formation: -245.6 kJ/mol - -analytic 1.3945e+002 -3.8236e-004 -2.8137e+003 -4.8336e+001 -4.3946e+001 -# -Range: 0-300 - -2.0000 NO2- + 1.0000 Cu++ = Cu(NO2)2 - -llnl_gamma 3.0 - log_k +3.0300 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(NO2)2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Cu+ + 1.0000 CH3COOH = CuCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.4274 - -delta_H -4.19237 kJ/mol # Calculated enthalpy of reaction CuCH3COO -# Enthalpy of formation: -99.97 kcal/mol - -analytic 6.3784e+000 -4.5464e-004 -1.9995e+003 -2.8359e+000 2.7224e+005 -# -Range: 0-300 - -1.0000 Cu++ + 1.0000 CH3COOH = CuCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.5252 - -delta_H -11.3805 kJ/mol # Calculated enthalpy of reaction CuCH3COO+ -# Enthalpy of formation: -103.12 kcal/mol - -analytic -1.4930e+001 5.1278e-004 -3.4874e+002 4.3605e+000 2.3504e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 HCO3- + 1.0000 Cu++ = CuCO3(OH)2-- +3.0000 H+ - -llnl_gamma 4.0 - log_k -23.444 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3(OH)2-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Cu++ = CuCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -3.3735 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Cu++ + 1.0000 Cl- = CuCl+ - -llnl_gamma 4.0 - log_k +0.4370 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 Cl- + 1.0000 Cu++ = CuCl2 - -llnl_gamma 3.0 - log_k +0.1585 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 Cl- + 1.0000 Cu+ = CuCl2- - -llnl_gamma 4.0 - log_k +4.8212 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2- -# Enthalpy of formation: -0 kcal/mol - -3.0000 Cl- + 1.0000 Cu+ = CuCl3-- - -llnl_gamma 4.0 - log_k +5.6289 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl3-2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Cu++ = CuCl4-- - -llnl_gamma 4.0 - log_k -4.5681 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 F- + 1.0000 Cu++ = CuF+ - -llnl_gamma 4.0 - log_k +1.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Cu++ = CuH2PO4+ - -llnl_gamma 4.0 - log_k +8.9654 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuH2PO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Cu++ = CuHPO4 - -llnl_gamma 3.0 - log_k +4.0600 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuHPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 NH3 + 1.0000 Cu++ = CuNH3++ - -llnl_gamma 4.5 - log_k +4.0400 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuNH3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO2- + 1.0000 Cu++ = CuNO2+ - -llnl_gamma 4.0 - log_k +2.0200 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuNO2+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Cu++ = CuO2-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -39.4497 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuO2-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Cu++ = CuOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.2875 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuOH+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Cu++ = CuPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.4718 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuPO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Cu++ = CuSO4 - -llnl_gamma 0.0 - log_k +2.3600 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuSO4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Dy+++ = Dy(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -29.3298 kJ/mol # Calculated enthalpy of reaction Dy(CH3COO)2+ -# Enthalpy of formation: -405.71 kcal/mol - -analytic -2.7249e+001 2.7507e-003 -1.7500e+003 7.9356e+000 6.8668e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Dy+++ = Dy(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -49.4549 kJ/mol # Calculated enthalpy of reaction Dy(CH3COO)3 -# Enthalpy of formation: -526.62 kcal/mol - -analytic -2.4199e+001 6.2065e-003 -2.8937e+003 5.0176e+000 1.0069e+006 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Dy+++ = Dy(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.4576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Dy+++ = Dy(HPO4)2- - -llnl_gamma 4.0 - log_k +9.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -# Redundant with DyO2- -#4.0000 H2O + 1.0000 Dy+++ = Dy(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 -# log_k -33.4803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)4- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Dy+++ = Dy(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.4437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Dy+++ = Dy(SO4)2- - -llnl_gamma 4.0 - log_k +5.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Dy+++ + 1.0000 CH3COOH = DyCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -14.8532 kJ/mol # Calculated enthalpy of reaction DyCH3COO+2 -# Enthalpy of formation: -286.15 kcal/mol - -analytic -1.3635e+001 1.7329e-003 -9.4636e+002 4.0900e+000 3.6282e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Dy+++ = DyCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.3324 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction DyCO3+ -# Enthalpy of formation: -310.1 kcal/mol - -analytic 2.3742e+002 5.4342e-002 -6.9953e+003 -9.3949e+001 -1.0922e+002 -# -Range: 0-300 - -1.0000 Dy+++ + 1.0000 Cl- = DyCl++ - -llnl_gamma 4.5 - log_k +0.2353 - -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction DyCl+2 -# Enthalpy of formation: -203.2 kcal/mol - -analytic 6.9134e+001 3.7129e-002 -1.3839e+003 -3.0432e+001 -2.1615e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Dy+++ = DyCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction DyCl2+ -# Enthalpy of formation: -242.2 kcal/mol - -analytic 1.8868e+002 7.7901e-002 -4.3528e+003 -7.9735e+001 -6.7978e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Dy+++ = DyCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 8.78222 kJ/mol # Calculated enthalpy of reaction DyCl3 -# Enthalpy of formation: -284.2 kcal/mol - -analytic 3.6761e+002 1.2471e-001 -9.0651e+003 -1.5147e+002 -1.4156e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Dy+++ = DyCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -14.0917 kJ/mol # Calculated enthalpy of reaction DyCl4- -# Enthalpy of formation: -329.6 kcal/mol - -analytic 3.9134e+002 1.2288e-001 -9.2351e+003 -1.6078e+002 -1.4422e+002 -# -Range: 0-300 - -1.0000 F- + 1.0000 Dy+++ = DyF++ - -llnl_gamma 4.5 - log_k +4.6619 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction DyF+2 -# Enthalpy of formation: -241.1 kcal/mol - -analytic 9.1120e+001 4.1193e-002 -2.3302e+003 -3.6734e+001 -3.6388e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Dy+++ = DyF2+ - -llnl_gamma 4.0 - log_k +8.1510 - -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction DyF2+ -# Enthalpy of formation: -323.8 kcal/mol - -analytic 2.1325e+002 8.2483e-002 -4.5864e+003 -8.6587e+001 -7.1629e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Dy+++ = DyF3 - -llnl_gamma 3.0 - log_k +10.7605 - -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction DyF3 -# Enthalpy of formation: -409.8 kcal/mol - -analytic 3.9766e+002 1.3143e-001 -8.5607e+003 -1.6056e+002 -1.3370e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Dy+++ = DyF4- - -llnl_gamma 4.0 - log_k +12.8569 - -delta_H -57.3208 kJ/mol # Calculated enthalpy of reaction DyF4- -# Enthalpy of formation: -500.8 kcal/mol - -analytic 4.1672e+002 1.2922e-001 -7.4445e+003 -1.6867e+002 -1.1629e+002 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Dy+++ = DyH2PO4++ - -llnl_gamma 4.5 - log_k +9.3751 - -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction DyH2PO4+2 -# Enthalpy of formation: -479.7 kcal/mol - -analytic 9.8183e+001 6.2578e-002 7.1784e+002 -4.4383e+001 1.1172e+001 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Dy+++ = DyHCO3++ - -llnl_gamma 4.5 - log_k +1.6991 - -delta_H 7.10443 kJ/mol # Calculated enthalpy of reaction DyHCO3+2 -# Enthalpy of formation: -329.7 kcal/mol - -analytic 2.8465e+001 3.0703e-002 3.9229e+002 -1.5036e+001 6.1127e+000 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Dy+++ = DyHPO4+ - -llnl_gamma 4.0 - log_k +5.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Dy+++ = DyNO3++ - -llnl_gamma 4.5 - log_k +0.1415 - -delta_H -30.4219 kJ/mol # Calculated enthalpy of reaction DyNO3+2 -# Enthalpy of formation: -223.2 kcal/mol - -analytic 6.4353e+000 2.4556e-002 2.5866e+003 -8.9975e+000 4.0359e+001 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Dy+++ = DyO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.1171 - -delta_H 108.018 kJ/mol # Calculated enthalpy of reaction DyO+ -# Enthalpy of formation: -209 kcal/mol - -analytic 1.9069e+002 3.0358e-002 -1.3796e+004 -6.8532e+001 -2.1532e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Dy+++ = DyO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -33.4804 - -delta_H 273.776 kJ/mol # Calculated enthalpy of reaction DyO2- -# Enthalpy of formation: -237.7 kcal/mol - -analytic 7.7395e+001 4.4204e-004 -1.3570e+004 -2.4546e+001 -4.2320e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Dy+++ = DyO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -24.8309 - -delta_H 217.71 kJ/mol # Calculated enthalpy of reaction DyO2H -# Enthalpy of formation: -251.1 kcal/mol - -analytic 3.3576e+002 4.6004e-002 -2.2868e+004 -1.2027e+002 -3.5693e+002 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Dy+++ = DyOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.8342 - -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction DyOH+2 -# Enthalpy of formation: -216.5 kcal/mol - -analytic 7.0856e+001 1.2473e-002 -6.2419e+003 -2.4841e+001 -9.7420e+001 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Dy+++ = DyPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Dy+++ = DySO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction DySO4+ -# Enthalpy of formation: -379 kcal/mol - -analytic 3.0672e+002 8.6459e-002 -9.0386e+003 -1.2063e+002 -1.4113e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Er+++ = Er(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9844 - -delta_H -32.8026 kJ/mol # Calculated enthalpy of reaction Er(CH3COO)2+ -# Enthalpy of formation: -408.54 kcal/mol - -analytic -3.1458e+001 1.4715e-003 -1.0556e+003 9.1586e+000 6.1669e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Er+++ = Er(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3783 - -delta_H -55.187 kJ/mol # Calculated enthalpy of reaction Er(CH3COO)3 -# Enthalpy of formation: -529.99 kcal/mol - -analytic -2.1575e+001 5.9740e-003 -2.0489e+003 3.3624e+000 8.8933e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Er+++ = Er(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Er+++ = Er(HPO4)2- - -llnl_gamma 4.0 - log_k +10.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -# Redundant with ErO2- -#4.0000 H2O + 1.0000 Er+++ = Er(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 -# log_k -32.5803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)4- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Er+++ = Er(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Er+++ = Er(SO4)2- - -llnl_gamma 4.0 - log_k +5.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Er+++ + 1.0000 CH3COOH = ErCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1184 - -delta_H -16.4013 kJ/mol # Calculated enthalpy of reaction ErCH3COO+2 -# Enthalpy of formation: -288.52 kcal/mol - -analytic -1.2519e+001 1.5558e-003 -8.5344e+002 3.5918e+000 3.4888e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Er+++ = ErCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.1858 - -delta_H 87.0188 kJ/mol # Calculated enthalpy of reaction ErCO3+ -# Enthalpy of formation: -312.6 kcal/mol - -analytic 2.3838e+002 5.4549e-002 -6.9433e+003 -9.4373e+001 -1.0841e+002 -# -Range: 0-300 - -1.0000 Er+++ + 1.0000 Cl- = ErCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 12.6901 kJ/mol # Calculated enthalpy of reaction ErCl+2 -# Enthalpy of formation: -205.4 kcal/mol - -analytic 7.4113e+001 3.7462e-002 -1.5300e+003 -3.2257e+001 -2.3896e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Er+++ = ErCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 15.3385 kJ/mol # Calculated enthalpy of reaction ErCl2+ -# Enthalpy of formation: -244.7 kcal/mol - -analytic 2.0259e+002 7.8907e-002 -4.8271e+003 -8.4835e+001 -7.5382e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Er+++ = ErCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 5.01662 kJ/mol # Calculated enthalpy of reaction ErCl3 -# Enthalpy of formation: -287.1 kcal/mol - -analytic 3.9721e+002 1.2757e-001 -1.0045e+004 -1.6244e+002 -1.5686e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Er+++ = ErCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -20.7861 kJ/mol # Calculated enthalpy of reaction ErCl4- -# Enthalpy of formation: -333.2 kcal/mol - -analytic 4.3471e+002 1.2627e-001 -1.0669e+004 -1.7677e+002 -1.6660e+002 -# -Range: 0-300 - -1.0000 F- + 1.0000 Er+++ = ErF++ - -llnl_gamma 4.5 - log_k +4.7352 - -delta_H 24.058 kJ/mol # Calculated enthalpy of reaction ErF+2 -# Enthalpy of formation: -242.9 kcal/mol - -analytic 9.7079e+001 4.1707e-002 -2.6028e+003 -3.8805e+001 -4.0643e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Er+++ = ErF2+ - -llnl_gamma 4.0 - log_k +8.2976 - -delta_H 12.9704 kJ/mol # Calculated enthalpy of reaction ErF2+ -# Enthalpy of formation: -325.7 kcal/mol - -analytic 2.2892e+002 8.3842e-002 -5.2174e+003 -9.2172e+001 -8.1481e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Er+++ = ErF3 - -llnl_gamma 3.0 - log_k +10.9071 - -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction ErF3 -# Enthalpy of formation: -411.9 kcal/mol - -analytic 4.2782e+002 1.3425e-001 -9.7064e+003 -1.7148e+002 -1.5158e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Er+++ = ErF4- - -llnl_gamma 4.0 - log_k +13.0768 - -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction ErF4- -# Enthalpy of formation: -503.5 kcal/mol - -analytic 4.6524e+002 1.3372e-001 -9.1895e+003 -1.8636e+002 -1.4353e+002 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Er+++ = ErH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction ErH2PO4+2 -# Enthalpy of formation: -482.2 kcal/mol - -analytic 1.0254e+002 6.2786e-002 6.3590e+002 -4.6029e+001 9.8920e+000 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Er+++ = ErHCO3++ - -llnl_gamma 4.5 - log_k +1.7724 - -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction ErHCO3+2 -# Enthalpy of formation: -332.2 kcal/mol - -analytic 3.2450e+001 3.0822e-002 3.1601e+002 -1.6528e+001 4.9212e+000 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Er+++ = ErHPO4+ - -llnl_gamma 4.0 - log_k +5.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Er+++ = ErNO3++ - -llnl_gamma 4.5 - log_k +0.1415 - -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction ErNO3+2 -# Enthalpy of formation: -226 kcal/mol - -analytic 1.0381e+001 2.4710e-002 2.5752e+003 -1.0596e+001 4.0181e+001 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Er+++ = ErO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.9705 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction ErO+ -# Enthalpy of formation: -211.6 kcal/mol - -analytic 1.7556e+002 2.8655e-002 -1.3134e+004 -6.3050e+001 -2.0499e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Er+++ = ErO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.6008 - -delta_H 266.245 kJ/mol # Calculated enthalpy of reaction ErO2- -# Enthalpy of formation: -241.5 kcal/mol - -analytic 1.4987e+002 9.1241e-003 -1.8521e+004 -4.9740e+001 -2.8905e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Er+++ = ErO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -24.3178 - -delta_H 212.689 kJ/mol # Calculated enthalpy of reaction ErO2H -# Enthalpy of formation: -254.3 kcal/mol - -analytic 3.1493e+002 4.4381e-002 -2.1821e+004 -1.1287e+002 -3.4059e+002 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Er+++ = ErOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.7609 - -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction ErOH+2 -# Enthalpy of formation: -219 kcal/mol - -analytic 5.7142e+001 1.0986e-002 -5.6684e+003 -1.9867e+001 -8.8467e+001 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Er+++ = ErPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.3782 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Er+++ = ErSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 20.3008 kJ/mol # Calculated enthalpy of reaction ErSO4+ -# Enthalpy of formation: -381.048 kcal/mol - -analytic 3.0363e+002 8.5667e-002 -8.9667e+003 -1.1942e+002 -1.4001e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Eu+++ = Eu(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.6912 - -delta_H -28.3257 kJ/mol # Calculated enthalpy of reaction Eu(CH3COO)2+ -# Enthalpy of formation: -383.67 kcal/mol - -analytic -2.7589e+001 1.5772e-003 -1.1008e+003 7.9899e+000 5.6652e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Eu+++ = Eu(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -7.9824 - -delta_H -47.3629 kJ/mol # Calculated enthalpy of reaction Eu(CH3COO)3 -# Enthalpy of formation: -504.32 kcal/mol - -analytic -3.7470e+001 1.9276e-003 -1.0318e+003 9.7078e+000 7.4558e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Eu+++ = Eu(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.3993 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -3.0000 HCO3- + 1.0000 Eu+++ = Eu(CO3)3--- +3.0000 H+ - -llnl_gamma 4.0 - log_k -16.8155 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)3-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Eu+++ = Eu(HPO4)2- - -llnl_gamma 4.0 - log_k +9.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -# Redundant with EuO+ -#2.0000 H2O + 1.0000 Eu+++ = Eu(OH)2+ +2.0000 H+ -# -llnl_gamma 4.0 -# log_k -14.8609 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2+ -## Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 HCO3- + 1.0000 Eu+++ = Eu(OH)2CO3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -17.8462 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2CO3- -# Enthalpy of formation: -0 kcal/mol - -# Redundant with EuO2H -#3.0000 H2O + 1.0000 Eu+++ = Eu(OH)3 +3.0000 H+ -# -llnl_gamma 3.0 -# log_k -24.1253 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)3 -## Enthalpy of formation: -0 kcal/mol - -# Redundant with EuO2- -#4.0000 H2O + 1.0000 Eu+++ = Eu(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 -# log_k -36.5958 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)4- -## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Eu+++ = Eu(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.9837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Eu+++ = Eu(SO4)2- - -llnl_gamma 4.0 - log_k +5.4693 - -delta_H 25.627 kJ/mol # Calculated enthalpy of reaction Eu(SO4)2- -# Enthalpy of formation: -2399 kJ/mol - -analytic 4.5178e+002 1.2285e-001 -1.3400e+004 -1.7697e+002 -2.0922e+002 -# -Range: 0-300 - -2.0000 H2O + 2.0000 Eu+++ = Eu2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -6.9182 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Eu+++ + 1.0000 Br- = EuBr++ - -llnl_gamma 4.5 - log_k +0.5572 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 Br- + 1.0000 Eu+++ = EuBr2+ - -llnl_gamma 4.0 - log_k +0.2145 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr2+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Eu+++ + 1.0000 BrO3- = EuBrO3++ - -llnl_gamma 4.5 - log_k +4.5823 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBrO3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Eu+++ + 1.0000 CH3COOH = EuCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -1.9571 - -delta_H -14.5603 kJ/mol # Calculated enthalpy of reaction EuCH3COO+2 -# Enthalpy of formation: -264.28 kcal/mol - -analytic -1.5090e+001 1.0352e-003 -6.4435e+002 4.6225e+000 3.1649e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Eu+++ = EuCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.4057 - -delta_H 90.7844 kJ/mol # Calculated enthalpy of reaction EuCO3+ -# Enthalpy of formation: -287.9 kcal/mol - -analytic 2.3548e+002 5.3819e-002 -6.9908e+003 -9.3137e+001 -1.0915e+002 -# -Range: 0-300 - -1.0000 Eu++ + 1.0000 Cl- = EuCl+ - -llnl_gamma 4.0 - log_k +0.3819 - -delta_H 8.50607 kJ/mol # Calculated enthalpy of reaction EuCl+ -# Enthalpy of formation: -164 kcal/mol - -analytic 6.8695e+001 3.7619e-002 -1.0809e+003 -3.0665e+001 -1.6887e+001 -# -Range: 0-300 - -1.0000 Eu+++ + 1.0000 Cl- = EuCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction EuCl+2 -# Enthalpy of formation: -181.3 kcal/mol - -analytic 7.9275e+001 3.7878e-002 -1.7895e+003 -3.4041e+001 -2.7947e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Eu++ = EuCl2 - -llnl_gamma 3.0 - log_k +1.2769 - -delta_H 5.71534 kJ/mol # Calculated enthalpy of reaction EuCl2 -# Enthalpy of formation: -204.6 kcal/mol - -analytic 1.0474e+002 6.7132e-002 -7.0448e+002 -4.8928e+001 -1.1024e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Eu+++ = EuCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 18.6857 kJ/mol # Calculated enthalpy of reaction EuCl2+ -# Enthalpy of formation: -220.1 kcal/mol - -analytic 2.1758e+002 8.0336e-002 -5.5499e+003 -9.0087e+001 -8.6665e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Eu+++ = EuCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 11.2926 kJ/mol # Calculated enthalpy of reaction EuCl3 -# Enthalpy of formation: -261.8 kcal/mol - -analytic 4.2075e+002 1.2890e-001 -1.1288e+004 -1.7043e+002 -1.7627e+002 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Eu++ = EuCl3- - -llnl_gamma 4.0 - log_k +2.0253 - -delta_H -3.76978 kJ/mol # Calculated enthalpy of reaction EuCl3- -# Enthalpy of formation: -246.8 kcal/mol - -analytic 1.1546e+001 6.4683e-002 3.7299e+003 -1.6672e+001 5.8196e+001 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Eu+++ = EuCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -9.90771 kJ/mol # Calculated enthalpy of reaction EuCl4- -# Enthalpy of formation: -306.8 kcal/mol - -analytic 4.8122e+002 1.3081e-001 -1.2950e+004 -1.9302e+002 -2.0222e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Eu++ = EuCl4-- - -llnl_gamma 4.0 - log_k +2.8470 - -delta_H -19.9493 kJ/mol # Calculated enthalpy of reaction EuCl4-2 -# Enthalpy of formation: -290.6 kcal/mol - -analytic -1.2842e+002 5.0789e-002 9.8815e+003 3.3565e+001 1.5423e+002 -# -Range: 0-300 - -1.0000 F- + 1.0000 Eu++ = EuF+ - -llnl_gamma 4.0 - log_k -1.3487 - -delta_H 16.9452 kJ/mol # Calculated enthalpy of reaction EuF+ -# Enthalpy of formation: -202.2 kcal/mol - -analytic 6.2412e+001 3.5839e-002 -1.3660e+003 -2.8223e+001 -2.1333e+001 -# -Range: 0-300 - -1.0000 F- + 1.0000 Eu+++ = EuF++ - -llnl_gamma 4.5 - log_k +4.4420 - -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction EuF+2 -# Enthalpy of formation: -219.2 kcal/mol - -analytic 1.0063e+002 4.1834e-002 -2.7355e+003 -4.0195e+001 -4.2714e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Eu++ = EuF2 - -llnl_gamma 3.0 - log_k -2.0378 - -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction EuF2 -# Enthalpy of formation: -282.2 kcal/mol - -analytic 1.2065e+002 7.1705e-002 -1.7998e+003 -5.5760e+001 -2.8121e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Eu+++ = EuF2+ - -llnl_gamma 4.0 - log_k +7.7112 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction EuF2+ -# Enthalpy of formation: -301.7 kcal/mol - -analytic 2.4099e+002 8.4714e-002 -5.7702e+003 -9.6640e+001 -9.0109e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Eu+++ = EuF3 - -llnl_gamma 3.0 - log_k +10.1741 - -delta_H -8.9956 kJ/mol # Calculated enthalpy of reaction EuF3 -# Enthalpy of formation: -387.3 kcal/mol - -analytic 4.5022e+002 1.3560e-001 -1.0801e+004 -1.7951e+002 -1.6867e+002 -# -Range: 0-300 - -3.0000 F- + 1.0000 Eu++ = EuF3- - -llnl_gamma 4.0 - log_k -2.5069 - -delta_H 3.5564 kJ/mol # Calculated enthalpy of reaction EuF3- -# Enthalpy of formation: -365.7 kcal/mol - -analytic -2.8441e+001 5.5972e-002 4.4573e+003 -2.2782e+000 6.9558e+001 -# -Range: 0-300 - -4.0000 F- + 1.0000 Eu+++ = EuF4- - -llnl_gamma 4.0 - log_k +12.1239 - -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction EuF4- -# Enthalpy of formation: -477.8 kcal/mol - -analytic 5.0246e+002 1.3629e-001 -1.1092e+004 -1.9952e+002 -1.7323e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Eu++ = EuF4-- - -llnl_gamma 4.0 - log_k -2.8294 - -delta_H -37.656 kJ/mol # Calculated enthalpy of reaction EuF4-2 -# Enthalpy of formation: -455.7 kcal/mol - -analytic -1.8730e+002 3.9237e-002 1.2303e+004 5.3179e+001 1.9204e+002 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Eu+++ = EuH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -17.0916 kJ/mol # Calculated enthalpy of reaction EuH2PO4+2 -# Enthalpy of formation: -457.6 kcal/mol - -analytic 1.0873e+002 6.3416e-002 2.7202e+002 -4.8113e+001 4.2122e+000 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Eu+++ = EuHCO3++ - -llnl_gamma 4.5 - log_k +1.6258 - -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction EuHCO3+2 -# Enthalpy of formation: -307.5 kcal/mol - -analytic 3.9266e+001 3.1608e-002 -9.8731e+001 -1.8875e+001 -1.5524e+000 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Eu+++ = EuHPO4+ - -llnl_gamma 4.0 - log_k +5.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 IO3- + 1.0000 Eu+++ = EuIO3++ - -llnl_gamma 4.5 - log_k +2.1560 - -delta_H 11.8314 kJ/mol # Calculated enthalpy of reaction EuIO3+2 -# Enthalpy of formation: -814.927 kJ/mol - -analytic 1.4970e+002 4.7369e-002 -4.1559e+003 -5.9687e+001 -6.4893e+001 -# -Range: 0-300 - -1.0000 NO3- + 1.0000 Eu+++ = EuNO3++ - -llnl_gamma 4.5 - log_k +0.8745 - -delta_H -32.0955 kJ/mol # Calculated enthalpy of reaction EuNO3+2 -# Enthalpy of formation: -201.8 kcal/mol - -analytic 1.7398e+001 2.5467e-002 2.2683e+003 -1.2810e+001 3.5389e+001 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Eu+++ = EuO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.337 - -delta_H 110.947 kJ/mol # Calculated enthalpy of reaction EuO+ -# Enthalpy of formation: -186.5 kcal/mol - -analytic 1.8876e+002 3.0194e-002 -1.3836e+004 -6.7770e+001 -2.1595e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Eu+++ = EuO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -34.5066 - -delta_H 281.307 kJ/mol # Calculated enthalpy of reaction EuO2- -# Enthalpy of formation: -214.1 kcal/mol - -analytic 7.5244e+001 3.7089e-004 -1.3587e+004 -2.3859e+001 -4.6713e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Eu+++ = EuO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.4173 - -delta_H 222.313 kJ/mol # Calculated enthalpy of reaction EuO2H -# Enthalpy of formation: -228.2 kcal/mol - -analytic 3.6754e+002 5.3868e-002 -2.4034e+004 -1.3272e+002 -3.7514e+002 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 H2O + 1.0000 Eu+++ = EuOH(CO3)2-- +3.0000 H+ - -llnl_gamma 4.0 - log_k -15.176 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOH(CO3)2-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Eu+++ = EuOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.9075 - -delta_H 78.0065 kJ/mol # Calculated enthalpy of reaction EuOH+2 -# Enthalpy of formation: -194.373 kcal/mol - -analytic 6.7691e+001 1.2066e-002 -6.1871e+003 -2.3617e+001 -9.6563e+001 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 H2O + 1.0000 Eu+++ = EuOHCO3 +2.0000 H+ - -llnl_gamma 3.0 - log_k -8.4941 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Eu+++ = EuPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.1218 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Eu+++ = EuSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 62.3416 kJ/mol # Calculated enthalpy of reaction EuSO4+ -# Enthalpy of formation: -347.2 kcal/mol - -analytic 3.0587e+002 8.6208e-002 -9.0387e+003 -1.2026e+002 -1.4113e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Fe++ = Fe(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.0295 - -delta_H -20.2924 kJ/mol # Calculated enthalpy of reaction Fe(CH3COO)2 -# Enthalpy of formation: -259.1 kcal/mol - -analytic -2.9862e+001 1.3901e-003 -1.6908e+003 8.6283e+000 6.0125e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Fe++ = Fe(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -20.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Fe+++ = Fe(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2+ -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Fe+++ = Fe(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -12 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Fe++ = Fe(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -31 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Fe+++ = Fe(OH)4- +4.0000 H+ - -llnl_gamma 4.0 - log_k -21.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4- -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Fe++ = Fe(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -46 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Fe+++ = Fe(SO4)2- - -llnl_gamma 4.0 - log_k +3.2137 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 2.0000 Fe+++ = Fe2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -2.95 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 3.0000 Fe+++ = Fe3(OH)4+5 +4.0000 H+ - -llnl_gamma 6.0 - log_k -6.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe3(OH)4+5 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Fe++ + 1.0000 CH3COOH = FeCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.4671 - -delta_H -3.80744 kJ/mol # Calculated enthalpy of reaction FeCH3COO+ -# Enthalpy of formation: -139.06 kcal/mol - -analytic -1.3781e+001 9.6253e-004 -7.5310e+002 4.0135e+000 2.3416e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Fe++ = FeCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -5.5988 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Fe+++ = FeCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -0.6088 - -delta_H -50.208 kJ/mol # Calculated enthalpy of reaction FeCO3+ -# Enthalpy of formation: -188.748 kcal/mol - -analytic 1.7100e+002 8.0413e-002 -4.3217e+002 -7.8449e+001 -6.7948e+000 -# -Range: 0-300 - -1.0000 Fe++ + 1.0000 Cl- = FeCl+ - -llnl_gamma 4.0 - log_k -0.1605 - -delta_H 3.02503 kJ/mol # Calculated enthalpy of reaction FeCl+ -# Enthalpy of formation: -61.26 kcal/mol - -analytic 8.2435e+001 3.7755e-002 -1.4765e+003 -3.5918e+001 -2.3064e+001 -# -Range: 0-300 - -1.0000 Fe+++ + 1.0000 Cl- = FeCl++ - -llnl_gamma 4.5 - log_k -0.8108 - -delta_H 36.6421 kJ/mol # Calculated enthalpy of reaction FeCl+2 -# Enthalpy of formation: -180.018 kJ/mol - -analytic 1.6186e+002 5.9436e-002 -5.1913e+003 -6.5852e+001 -8.1053e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Fe++ = FeCl2 - -llnl_gamma 3.0 - log_k -2.4541 - -delta_H 6.46846 kJ/mol # Calculated enthalpy of reaction FeCl2 -# Enthalpy of formation: -100.37 kcal/mol - -analytic 1.9171e+002 7.8070e-002 -4.1048e+003 -8.2292e+001 -6.4108e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Fe+++ = FeCl2+ - -llnl_gamma 4.0 - log_k +2.1300 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl2+ -# Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Fe+++ = FeCl4- - -llnl_gamma 4.0 - log_k -0.79 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4- -# Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Fe++ = FeCl4-- - -llnl_gamma 4.0 - log_k -1.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4-2 -# Enthalpy of formation: -0 kcal/mol - -analytic -2.4108e+002 -6.0086e-003 9.7979e+003 8.4084e+001 1.5296e+002 -# -Range: 0-300 - -1.0000 Fe++ + 1.0000 F- = FeF+ - -llnl_gamma 4.0 - log_k +1.3600 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeF+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Fe+++ + 1.0000 F- = FeF++ - -llnl_gamma 4.5 - log_k +4.1365 - -delta_H 14.327 kJ/mol # Calculated enthalpy of reaction FeF+2 -# Enthalpy of formation: -370.601 kJ/mol - -analytic 1.7546e+002 6.3754e-002 -4.3166e+003 -7.1052e+001 -6.7408e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Fe+++ = FeF2+ - -llnl_gamma 4.0 - log_k +8.3498 - -delta_H 23.9776 kJ/mol # Calculated enthalpy of reaction FeF2+ -# Enthalpy of formation: -696.298 kJ/mol - -analytic 2.9080e+002 1.0393e-001 -7.2118e+003 -1.1688e+002 -1.1262e+002 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Fe++ = FeH2PO4+ - -llnl_gamma 4.0 - log_k +2.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Fe+++ = FeH2PO4++ - -llnl_gamma 4.5 - log_k +4.1700 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Fe++ = FeHCO3+ - -llnl_gamma 4.0 - log_k +2.7200 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHCO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Fe++ = FeHPO4 - -llnl_gamma 3.0 - log_k +3.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Fe+++ = FeHPO4+ - -llnl_gamma 4.0 - log_k +10.1800 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO2- + 1.0000 Fe+++ = FeNO2++ - -llnl_gamma 4.5 - log_k +3.1500 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO2+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Fe+++ = FeNO3++ - -llnl_gamma 4.5 - log_k +1.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Fe++ = FeOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -9.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Fe+++ = FeOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.19 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Fe++ = FePO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -4.3918 - -delta_H 0 # Not possible to calculate enthalpy of reaction FePO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Fe++ = FeSO4 - -llnl_gamma 3.0 - log_k +2.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeSO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Fe+++ = FeSO4+ - -llnl_gamma 4.0 - log_k +1.9276 - -delta_H 27.181 kJ/mol # Calculated enthalpy of reaction FeSO4+ -# Enthalpy of formation: -932.001 kJ/mol - -analytic 2.5178e+002 1.0080e-001 -6.0977e+003 -1.0483e+002 -9.5223e+001 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Gd+++ = Gd(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -22.3426 kJ/mol # Calculated enthalpy of reaction Gd(CH3COO)2+ -# Enthalpy of formation: -401.74 kcal/mol - -analytic -4.3124e+001 1.2995e-004 -4.3494e+002 1.3677e+001 5.1224e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Gd+++ = Gd(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -37.9907 kJ/mol # Calculated enthalpy of reaction Gd(CH3COO)3 -# Enthalpy of formation: -521.58 kcal/mol - -analytic -8.8296e+001 -5.0939e-003 1.2268e+003 2.8513e+001 6.0745e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Gd+++ = Gd(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.5576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Gd+++ = Gd(HPO4)2- - -llnl_gamma 4.0 - log_k +9.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -# Redundant with GdO2- -#4.0000 H2O + 1.0000 Gd+++ = Gd(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 -# log_k -33.8803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)4- -## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Gd+++ = Gd(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.9437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Gd+++ = Gd(SO4)2- - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Gd+++ + 1.0000 CH3COOH = GdCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -11.7152 kJ/mol # Calculated enthalpy of reaction GdCH3COO+2 -# Enthalpy of formation: -283.1 kcal/mol - -analytic -1.4118e+001 1.6660e-003 -7.5206e+002 4.2614e+000 3.1187e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Gd+++ = GdCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.479 - -delta_H 89.9476 kJ/mol # Calculated enthalpy of reaction GdCO3+ -# Enthalpy of formation: -307.6 kcal/mol - -analytic 2.3628e+002 5.4100e-002 -7.0746e+003 -9.3413e+001 -1.1046e+002 -# -Range: 0-300 - -1.0000 Gd+++ + 1.0000 Cl- = GdCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction GdCl+2 -# Enthalpy of formation: -200.6 kcal/mol - -analytic 8.0750e+001 3.8524e-002 -1.8591e+003 -3.4621e+001 -2.9034e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Gd+++ = GdCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 21.1961 kJ/mol # Calculated enthalpy of reaction GdCl2+ -# Enthalpy of formation: -239 kcal/mol - -analytic 2.1754e+002 8.0996e-002 -5.6121e+003 -9.0067e+001 -8.7635e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Gd+++ = GdCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 15.895 kJ/mol # Calculated enthalpy of reaction GdCl3 -# Enthalpy of formation: -280.2 kcal/mol - -analytic 4.1398e+002 1.2829e-001 -1.1230e+004 -1.6770e+002 -1.7535e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Gd+++ = GdCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -1.53971 kJ/mol # Calculated enthalpy of reaction GdCl4- -# Enthalpy of formation: -324.3 kcal/mol - -analytic 4.7684e+002 1.3157e-001 -1.3068e+004 -1.9118e+002 -2.0405e+002 -# -Range: 0-300 - -1.0000 Gd+++ + 1.0000 F- = GdF++ - -llnl_gamma 4.5 - log_k +4.5886 - -delta_H 21.1292 kJ/mol # Calculated enthalpy of reaction GdF+2 -# Enthalpy of formation: -239.3 kcal/mol - -analytic 1.0060e+002 4.2181e-002 -2.6024e+003 -4.0347e+001 -4.0637e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Gd+++ = GdF2+ - -llnl_gamma 4.0 - log_k +7.9311 - -delta_H 11.2968 kJ/mol # Calculated enthalpy of reaction GdF2+ -# Enthalpy of formation: -321.8 kcal/mol - -analytic 2.3793e+002 8.4732e-002 -5.4950e+003 -9.5689e+001 -8.5815e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Gd+++ = GdF3 - -llnl_gamma 3.0 - log_k +10.4673 - -delta_H -11.506 kJ/mol # Calculated enthalpy of reaction GdF3 -# Enthalpy of formation: -407.4 kcal/mol - -analytic 4.4257e+002 1.3500e-001 -1.0377e+004 -1.7680e+002 -1.6205e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Gd+++ = GdF4- - -llnl_gamma 4.0 - log_k +12.4904 - -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction GdF4- -# Enthalpy of formation: -497.3 kcal/mol - -analytic 4.9026e+002 1.3534e-001 -1.0586e+004 -1.9501e+002 -1.6533e+002 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Gd+++ = GdH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -14.9996 kJ/mol # Calculated enthalpy of reaction GdH2PO4+2 -# Enthalpy of formation: -476.6 kcal/mol - -analytic 1.1058e+002 6.4124e-002 1.3451e+002 -4.8758e+001 2.0660e+000 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Gd+++ = GdHCO3++ - -llnl_gamma 4.5 - log_k +1.6991 - -delta_H 10.0332 kJ/mol # Calculated enthalpy of reaction GdHCO3+2 -# Enthalpy of formation: -326.7 kcal/mol - -analytic 4.1973e+001 3.2521e-002 -2.3475e+002 -1.9864e+001 -3.6757e+000 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Gd+++ = GdHPO4+ - -llnl_gamma 4.0 - log_k -185.109 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Gd+++ = GdNO3++ - -llnl_gamma 4.5 - log_k +0.4347 - -delta_H -25.8195 kJ/mol # Calculated enthalpy of reaction GdNO3+2 -# Enthalpy of formation: -219.8 kcal/mol - -analytic 2.0253e+001 2.6372e-002 1.8785e+003 -1.3723e+001 2.9306e+001 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Gd+++ = GdO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.337 - -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction GdO+ -# Enthalpy of formation: -205.5 kcal/mol - -analytic 2.0599e+002 3.2521e-002 -1.4547e+004 -7.4048e+001 -2.2705e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Gd+++ = GdO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -34.4333 - -delta_H 283.817 kJ/mol # Calculated enthalpy of reaction GdO2- -# Enthalpy of formation: -233 kcal/mol - -analytic 1.2067e+002 6.6276e-003 -1.5531e+004 -4.0448e+001 -4.3587e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Gd+++ = GdO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.2707 - -delta_H 224.405 kJ/mol # Calculated enthalpy of reaction GdO2H -# Enthalpy of formation: -247.2 kcal/mol - -analytic 3.6324e+002 4.7938e-002 -2.4275e+004 -1.2988e+002 -3.7889e+002 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Gd+++ = GdOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.9075 - -delta_H 79.9855 kJ/mol # Calculated enthalpy of reaction GdOH+2 -# Enthalpy of formation: -213.4 kcal/mol - -analytic 8.3265e+001 1.4153e-002 -6.8229e+003 -2.9301e+001 -1.0649e+002 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Gd+++ = GdPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.1218 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Gd+++ = GdSO4+ - -llnl_gamma 4.0 - log_k -3.687 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction GdSO4+ -# Enthalpy of formation: -376.8 kcal/mol - -analytic 3.0783e+002 8.6798e-002 -1.1246e+004 -1.2109e+002 -1.7557e+002 -# -Range: 0-300 - -1.0000 O_phthalate-2 + 1.0000 H+ = H(O_phthalate)- - -llnl_gamma 4.0 - log_k +5.4080 - -delta_H 0 # Not possible to calculate enthalpy of reaction H(O_phthalate)- -# Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 CrO4-- = H2CrO4 - -llnl_gamma 3.0 - log_k +5.1750 - -delta_H 42.8274 kJ/mol # Calculated enthalpy of reaction H2CrO4 -# Enthalpy of formation: -200.364 kcal/mol - -analytic 4.2958e+002 1.4939e-001 -1.1474e+004 -1.7396e+002 -1.9499e+002 -# -Range: 0-200 - -2.0000 H+ + 2.0000 F- = H2F2 - -llnl_gamma 3.0 - log_k +6.7680 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2F2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 2.0000 H+ = H2P2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +12.0709 - -delta_H 19.7192 kJ/mol # Calculated enthalpy of reaction H2P2O7-2 -# Enthalpy of formation: -544.6 kcal/mol - -analytic 1.4825e+002 6.7021e-002 -2.8329e+003 -5.9251e+001 -4.4248e+001 -# -Range: 0-300 - -3.0000 H+ + 1.0000 HPO4-- + 1.0000 F- = H2PO3F +1.0000 H2O - -llnl_gamma 3.0 - log_k +12.1047 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2PO3F -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ = H2PO4- - -llnl_gamma 4.0 - log_k +7.2054 - -delta_H -4.20492 kJ/mol # Calculated enthalpy of reaction H2PO4- -# Enthalpy of formation: -309.82 kcal/mol - -analytic 8.2149e+001 3.4077e-002 -1.0431e+003 -3.2970e+001 -1.6301e+001 -# -Range: 0-300 - -#1.0000 HS- + 1.0000 H+ = H2S -# -llnl_gamma 3.0 -# log_k +6.99 -# -analytic 1.2833e+002 5.1641e-002 -1.1681e+003 -5.3665e+001 -1.8266e+001 -# -Range: 0-300 -# these (above) H2S values are from -# Suleimenov & Seward, Geochim. Cosmochim. Acta, v. 61, p. 5187-5198. -# values below are the original Thermo.com.v8.r6.230 data from somewhere - -1.0000 HS- + 1.0000 H+ = H2S - -llnl_gamma 3.0 - log_k +6.9877 - -delta_H -21.5518 kJ/mol # Calculated enthalpy of reaction H2S -# Enthalpy of formation: -9.001 kcal/mol - -analytic 3.9283e+001 2.8727e-002 1.3477e+003 -1.8331e+001 2.1018e+001 -# -Range: 0-300 - -2.0000 H+ + 1.0000 SO3-- = H2SO3 - -llnl_gamma 3.0 - log_k +9.2132 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 SO4-- = H2SO4 - -llnl_gamma 3.0 - log_k -1.0209 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 Se-- = H2Se - -llnl_gamma 3.0 - log_k +18.7606 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2Se -# Enthalpy of formation: 19.412 kJ/mol - -analytic 3.6902e+002 1.2855e-001 -5.5900e+003 -1.4946e+002 -9.5054e+001 -# -Range: 0-200 - -2.0000 H+ + 1.0000 SeO3-- = H2SeO3 - -llnl_gamma 3.0 - log_k +9.8589 - -delta_H 1.7238 kJ/mol # Calculated enthalpy of reaction H2SeO3 -# Enthalpy of formation: -507.469 kJ/mol - -analytic 2.7850e+002 1.0460e-001 -5.4934e+003 -1.1371e+002 -9.3383e+001 -# -Range: 0-200 - -2.0000 H2O + 1.0000 SiO2 = H2SiO4-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -22.96 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SiO4-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 TcO4-- = H2TcO4 - -llnl_gamma 3.0 - log_k +9.0049 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2TcO4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 VO2+ = H2VO4- + 2.0000 H+ - -llnl_gamma 4.0 - log_k -7.0922 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2VO4- -# Enthalpy of formation: -0 kcal/mol - -analytic 1.7105e+001 -1.7503e-002 -4.2671e+003 -1.8910e+000 -6.6589e+001 -# -Range: 0-300 - -1.0000 H2AsO4- + 1.0000 H+ = H3AsO4 - -llnl_gamma 3.0 - log_k +2.2492 - -delta_H 7.17876 kJ/mol # Calculated enthalpy of reaction H3AsO4 -# Enthalpy of formation: -902.381 kJ/mol - -analytic 1.4043e+002 4.6288e-002 -3.5868e+003 -5.6560e+001 -6.0957e+001 -# -Range: 0-200 - -3.0000 H+ + 2.0000 HPO4-- = H3P2O7- +1.0000 H2O - -llnl_gamma 4.0 - log_k +14.4165 - -delta_H 21.8112 kJ/mol # Calculated enthalpy of reaction H3P2O7- -# Enthalpy of formation: -544.1 kcal/mol - -analytic 2.3157e+002 1.0161e-001 -4.3723e+003 -9.4050e+001 -6.8295e+001 -# -Range: 0-300 - -2.0000 H+ + 1.0000 HPO4-- = H3PO4 - -llnl_gamma 3.0 - log_k +9.3751 - -delta_H 3.74468 kJ/mol # Calculated enthalpy of reaction H3PO4 -# Enthalpy of formation: -307.92 kcal/mol - -analytic 1.8380e+002 6.7320e-002 -3.7792e+003 -7.3463e+001 -5.9025e+001 -# -Range: 0-300 - -8.0000 H2O + 4.0000 SiO2 = H4(H2SiO4)4---- +4.0000 H+ - -llnl_gamma 4.0 - log_k -35.94 - -delta_H 0 # Not possible to calculate enthalpy of reaction H4(H2SiO4)4-4 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H+ + 2.0000 HPO4-- = H4P2O7 +1.0000 H2O - -llnl_gamma 3.0 - log_k +15.9263 - -delta_H 29.7226 kJ/mol # Calculated enthalpy of reaction H4P2O7 -# Enthalpy of formation: -2268.6 kJ/mol - -analytic 6.9026e+002 2.4309e-001 -1.6165e+004 -2.7989e+002 -2.7475e+002 -# -Range: 0-200 - -8.0000 H2O + 4.0000 SiO2 = H6(H2SiO4)4-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -13.64 - -delta_H 0 # Not possible to calculate enthalpy of reaction H6(H2SiO4)4-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Al+++ = HAlO2 +3.0000 H+ - -llnl_gamma 3.0 - log_k -16.4329 - -delta_H 144.704 kJ/mol # Calculated enthalpy of reaction HAlO2 -# Enthalpy of formation: -230.73 kcal/mol - -analytic 4.2012e+001 1.9980e-002 -7.7847e+003 -1.5470e+001 -1.2149e+002 -# -Range: 0-300 - -1.0000 H2AsO3- + 1.0000 H+ = HAsO2 +1.0000 H2O - -llnl_gamma 3.0 - log_k 9.2792 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO2 -# Enthalpy of formation: -0 kcal/mol - -analytic 3.1290e+002 9.3052e-002 -6.5052e+003 -1.2510e+002 -1.1058e+002 -# -Range: 0-200 - -1.0000 H2AsO4- + 1.0000 H+ + 1.0000 F- = HAsO3F- +1.0000 H2O - -llnl_gamma 4.0 - log_k +46.1158 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO3F- -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2AsO4- = HAsO4-- +1.0000 H+ - -llnl_gamma 4.0 - log_k -6.7583 - -delta_H 3.22168 kJ/mol # Calculated enthalpy of reaction HAsO4-2 -# Enthalpy of formation: -216.62 kcal/mol - -analytic -8.4546e+001 -3.4630e-002 1.1829e+003 3.3997e+001 1.8483e+001 -# -Range: 0-300 - -3.0000 H+ + 2.0000 HS- + 1.0000 H2AsO3- = HAsS2 +3.0000 H2O - -llnl_gamma 3.0 - log_k +30.4803 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsS2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 BrO- = HBrO - -llnl_gamma 3.0 - log_k +8.3889 - -delta_H 0 # Not possible to calculate enthalpy of reaction HBrO -# Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 Cyanide- = HCyanide - -llnl_gamma 3.0 - log_k +9.2359 - -delta_H -43.5136 kJ/mol # Calculated enthalpy of reaction HCyanide -# Enthalpy of formation: 25.6 kcal/mol - -analytic 1.0536e+001 2.3105e-002 3.3038e+003 -7.7786e+000 5.1550e+001 -# -Range: 0-300 - -1.0000 H+ + 1.0000 Cl- = HCl - -llnl_gamma 3.0 - log_k -0.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction HCl -# Enthalpy of formation: -0 kcal/mol - -analytic 4.1893e+002 1.1103e-001 -1.1784e+004 -1.6697e+002 -1.8400e+002 -# -Range: 0-300 - -1.0000 H+ + 1.0000 ClO- = HClO - -llnl_gamma 3.0 - log_k +7.5692 - -delta_H 0 # Not possible to calculate enthalpy of reaction HClO -# Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 ClO2- = HClO2 - -llnl_gamma 3.0 - log_k +3.1698 - -delta_H 0 # Not possible to calculate enthalpy of reaction HClO2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Co++ = HCoO2- +3.0000 H+ - -llnl_gamma 4.0 - log_k -21.243 - -delta_H 0 # Not possible to calculate enthalpy of reaction HCoO2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 CrO4-- = HCrO4- - -llnl_gamma 4.0 - log_k +6.4944 - -delta_H 2.9288 kJ/mol # Calculated enthalpy of reaction HCrO4- -# Enthalpy of formation: -209.9 kcal/mol - -analytic 4.4944e+001 3.2740e-002 1.8400e+002 -1.9722e+001 2.8578e+000 -# -Range: 0-300 - -1.0000 H+ + 1.0000 F- = HF - -llnl_gamma 3.0 - log_k +3.1681 - -delta_H 13.87 kJ/mol # Calculated enthalpy of reaction HF -# Enthalpy of formation: -76.835 kcal/mol - -analytic 8.6626e+001 3.2861e-002 -2.3026e+003 -3.4559e+001 -3.5956e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 H+ = HF2- - -llnl_gamma 4.0 - log_k +2.5509 - -delta_H 20.7526 kJ/mol # Calculated enthalpy of reaction HF2- -# Enthalpy of formation: -155.34 kcal/mol - -analytic 1.4359e+002 4.0866e-002 -4.6776e+003 -5.5574e+001 -7.3032e+001 -# -Range: 0-300 - -1.0000 IO3- + 1.0000 H+ = HIO3 - -llnl_gamma 3.0 - log_k +0.4915 - -delta_H 0 # Not possible to calculate enthalpy of reaction HIO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 N3- + 1.0000 H+ = HN3 - -llnl_gamma 3.0 - log_k +4.7001 - -delta_H -15 kJ/mol # Calculated enthalpy of reaction HN3 -# Enthalpy of formation: 260.14 kJ/mol - -analytic 6.9976e+001 2.4359e-002 -7.1947e+002 -2.8339e+001 -1.2242e+001 -# -Range: 0-200 - -1.0000 NO2- + 1.0000 H+ = HNO2 - -llnl_gamma 3.0 - log_k +3.2206 - -delta_H -14.782 kJ/mol # Calculated enthalpy of reaction HNO2 -# Enthalpy of formation: -119.382 kJ/mol - -analytic 1.9653e+000 -1.1603e-004 0.0000e+000 0.0000e+000 1.1569e+005 -# -Range: 0-200 - -1.0000 NO3- + 1.0000 H+ = HNO3 - -llnl_gamma 3.0 - log_k -1.3025 - -delta_H 16.8155 kJ/mol # Calculated enthalpy of reaction HNO3 -# Enthalpy of formation: -45.41 kcal/mol - -analytic 9.9744e+001 3.4866e-002 -3.0975e+003 -4.0830e+001 -4.8363e+001 -# -Range: 0-300 - -2.0000 HPO4-- + 1.0000 H+ = HP2O7--- +1.0000 H2O - -llnl_gamma 4.0 - log_k +5.4498 - -delta_H 23.3326 kJ/mol # Calculated enthalpy of reaction HP2O7-3 -# Enthalpy of formation: -2274.99 kJ/mol - -analytic 3.9159e+002 1.5438e-001 -8.7071e+003 -1.6283e+002 -1.3598e+002 -# -Range: 0-300 - -2.0000 H+ + 1.0000 HPO4-- + 1.0000 F- = HPO3F- +1.0000 H2O - -llnl_gamma 4.0 - log_k +11.2988 - -delta_H 0 # Not possible to calculate enthalpy of reaction HPO3F- -# Enthalpy of formation: -0 kcal/mol - -1.0000 RuO4 + 1.0000 H2O = HRuO5- +1.0000 H+ - -llnl_gamma 4.0 - log_k -11.5244 - -delta_H 0 # Not possible to calculate enthalpy of reaction HRuO5- -# Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 S2O3-- = HS2O3- - -llnl_gamma 4.0 - log_k 1.0139 - -delta_H 0 # Not possible to calculate enthalpy of reaction HS2O3- -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO3-- + 1.0000 H+ = HSO3- - -llnl_gamma 4.0 - log_k +7.2054 - -delta_H 9.33032 kJ/mol # Calculated enthalpy of reaction HSO3- -# Enthalpy of formation: -149.67 kcal/mol - -analytic 5.5899e+001 3.3623e-002 -5.0120e+002 -2.3040e+001 -7.8373e+000 -# -Range: 0-300 - -1.0000 SO4-- + 1.0000 H+ = HSO4- - -llnl_gamma 4.0 - log_k +1.9791 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HSO4- -# Enthalpy of formation: -212.5 kcal/mol - -analytic 4.9619e+001 3.0368e-002 -1.1558e+003 -2.1335e+001 -1.8051e+001 -# -Range: 0-300 - -4.0000 HS- + 3.0000 H+ + 2.0000 Sb(OH)3 = HSb2S4- +6.0000 H2O - -llnl_gamma 4.0 - log_k +50.6100 - -delta_H 0 # Not possible to calculate enthalpy of reaction HSb2S4- -# Enthalpy of formation: -0 kcal/mol - -analytic 1.7540e+002 8.2177e-002 1.0786e+004 -7.4874e+001 1.6826e+002 -# -Range: 0-300 - -1.0000 SeO3-- + 1.0000 H+ = HSeO3- - -llnl_gamma 4.0 - log_k +7.2861 - -delta_H -5.35552 kJ/mol # Calculated enthalpy of reaction HSeO3- -# Enthalpy of formation: -122.98 kcal/mol - -analytic 5.0427e+001 3.2250e-002 2.9603e+002 -2.1711e+001 4.6044e+000 -# -Range: 0-300 - -1.0000 SeO4-- + 1.0000 H+ = HSeO4- - -llnl_gamma 4.0 - log_k +1.9058 - -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction HSeO4- -# Enthalpy of formation: -139 kcal/mol - -analytic 1.4160e+002 3.9801e-002 -4.5392e+003 -5.5088e+001 -7.0872e+001 -# -Range: 0-300 - -1.0000 SiO2 + 1.0000 H2O = HSiO3- +1.0000 H+ - -llnl_gamma 4.0 - log_k -9.9525 - -delta_H 25.991 kJ/mol # Calculated enthalpy of reaction HSiO3- -# Enthalpy of formation: -271.88 kcal/mol - -analytic 6.4211e+001 -2.4872e-002 -1.2707e+004 -1.4681e+001 1.0853e+006 -# -Range: 0-300 - -1.0000 TcO4-- + 1.0000 H+ = HTcO4- - -llnl_gamma 4.0 - log_k +8.7071 - -delta_H 0 # Not possible to calculate enthalpy of reaction HTcO4- -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 VO2+ = HVO4-- +3.0000 H+ - -llnl_gamma 4.0 - log_k -15.1553 - -delta_H 0 # Not possible to calculate enthalpy of reaction HVO4-2 -# Enthalpy of formation: -0 kcal/mol - -analytic -7.0660e+001 -5.2457e-002 -3.5380e+003 3.3534e+001 -5.5186e+001 -# -Range: 0-300 - -5.0000 H2O + 1.0000 Hf++++ = Hf(OH)5- +5.0000 H+ - -llnl_gamma 4.0 - log_k -17.1754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(OH)5- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Hf++++ + 1.0000 H2O = HfOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -0.2951 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfOH+3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Hg++ = Hg(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -2.6242 - -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Hg(CH3COO)2 -# Enthalpy of formation: -198.78 kcal/mol - -analytic -2.1959e+001 2.7774e-003 -3.2500e+003 7.7351e+000 9.1508e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Hg++ = Hg(CH3COO)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -4.3247 - -delta_H -59.7057 kJ/mol # Calculated enthalpy of reaction Hg(CH3COO)3- -# Enthalpy of formation: -321.9 kcal/mol - -analytic 2.1656e+001 -2.0392e-003 -1.2866e+004 -3.2932e+000 2.3073e+006 -# -Range: 0-300 - -1.0000 Hg++ + 1.0000 CH3COOH = HgCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -0.4691 - -delta_H -16.5686 kJ/mol # Calculated enthalpy of reaction HgCH3COO+ -# Enthalpy of formation: -79.39 kcal/mol - -analytic -1.6355e+001 1.9446e-003 -2.6676e+002 5.1978e+000 2.9805e+005 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Ho+++ = Ho(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9844 - -delta_H -28.1583 kJ/mol # Calculated enthalpy of reaction Ho(CH3COO)2+ -# Enthalpy of formation: -407.93 kcal/mol - -analytic -2.7925e+001 2.5599e-003 -1.4779e+003 8.0785e+000 6.3736e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Ho+++ = Ho(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3783 - -delta_H -47.5721 kJ/mol # Calculated enthalpy of reaction Ho(CH3COO)3 -# Enthalpy of formation: -528.67 kcal/mol - -analytic -6.5547e+001 -1.1963e-004 -1.8887e+002 1.9796e+001 7.9041e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Ho+++ = Ho(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.3576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ho+++ = Ho(HPO4)2- - -llnl_gamma 4.0 - log_k +9.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ho+++ = Ho(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.3437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Ho+++ = Ho(SO4)2- - -llnl_gamma 4.0 - log_k +4.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ho+++ + 1.0000 CH3COOH = HoCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1184 - -delta_H -14.3093 kJ/mol # Calculated enthalpy of reaction HoCH3COO+2 -# Enthalpy of formation: -288.52 kcal/mol - -analytic -1.8265e+001 1.0753e-003 -6.0695e+002 5.7211e+000 3.3055e+005 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 HCO3- = HoCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.2591 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction HoCO3+ -# Enthalpy of formation: -312.6 kcal/mol - -analytic 2.3773e+002 5.4448e-002 -6.9916e+003 -9.4063e+001 -1.0917e+002 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 Cl- = HoCl++ - -llnl_gamma 4.5 - log_k +0.2353 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction HoCl+2 -# Enthalpy of formation: -205.6 kcal/mol - -analytic 7.3746e+001 3.7733e-002 -1.5627e+003 -3.2126e+001 -2.4407e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Ho+++ = HoCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 17.8489 kJ/mol # Calculated enthalpy of reaction HoCl2+ -# Enthalpy of formation: -244.6 kcal/mol - -analytic 1.9928e+002 7.9025e-002 -4.7775e+003 -8.3582e+001 -7.4607e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Ho+++ = HoCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction HoCl3 -# Enthalpy of formation: -286.4 kcal/mol - -analytic 3.8608e+002 1.2638e-001 -9.8339e+003 -1.5809e+002 -1.5356e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Ho+++ = HoCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -12.4181 kJ/mol # Calculated enthalpy of reaction HoCl4- -# Enthalpy of formation: -331.7 kcal/mol - -analytic 4.2179e+002 1.2576e-001 -1.0495e+004 -1.7172e+002 -1.6388e+002 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 F- = HoF++ - -llnl_gamma 4.5 - log_k +4.7352 - -delta_H 22.3844 kJ/mol # Calculated enthalpy of reaction HoF+2 -# Enthalpy of formation: -243.8 kcal/mol - -analytic 9.5294e+001 4.1702e-002 -2.4460e+003 -3.8296e+001 -3.8195e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Ho+++ = HoF2+ - -llnl_gamma 4.0 - log_k +8.2976 - -delta_H 11.7152 kJ/mol # Calculated enthalpy of reaction HoF2+ -# Enthalpy of formation: -326.5 kcal/mol - -analytic 2.2330e+002 8.3497e-002 -4.9105e+003 -9.0272e+001 -7.6690e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Ho+++ = HoF3 - -llnl_gamma 3.0 - log_k +10.9071 - -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction HoF3 -# Enthalpy of formation: -412.5 kcal/mol - -analytic 4.1587e+002 1.3308e-001 -9.2193e+003 -1.6717e+002 -1.4398e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Ho+++ = HoF4- - -llnl_gamma 4.0 - log_k +13.0035 - -delta_H -57.7392 kJ/mol # Calculated enthalpy of reaction HoF4- -# Enthalpy of formation: -503.4 kcal/mol - -analytic 4.4575e+002 1.3182e-001 -8.5485e+003 -1.7916e+002 -1.3352e+002 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 HPO4-- + 1.0000 H+ = HoH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -17.9284 kJ/mol # Calculated enthalpy of reaction HoH2PO4+2 -# Enthalpy of formation: -482.1 kcal/mol - -analytic 1.0273e+002 6.3161e-002 5.5160e+002 -4.6035e+001 8.5766e+000 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 HCO3- = HoHCO3++ - -llnl_gamma 4.5 - log_k +1.6991 - -delta_H 7.52283 kJ/mol # Calculated enthalpy of reaction HoHCO3+2 -# Enthalpy of formation: -332.1 kcal/mol - -analytic 3.3420e+001 3.1394e-002 1.9804e+002 -1.6859e+001 3.0801e+000 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 HPO4-- = HoHPO4+ - -llnl_gamma 4.0 - log_k +5.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Ho+++ = HoNO3++ - -llnl_gamma 4.5 - log_k +0.2148 - -delta_H -30.0035 kJ/mol # Calculated enthalpy of reaction HoNO3+2 -# Enthalpy of formation: -225.6 kcal/mol - -analytic 1.1069e+001 2.5142e-002 2.3943e+003 -1.0650e+001 3.7358e+001 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 H2O = HoO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.0438 - -delta_H 108.437 kJ/mol # Calculated enthalpy of reaction HoO+ -# Enthalpy of formation: -211.4 kcal/mol - -analytic 1.9152e+002 3.0627e-002 -1.3817e+004 -6.8846e+001 -2.1565e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Ho+++ = HoO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -33.4804 - -delta_H 274.613 kJ/mol # Calculated enthalpy of reaction HoO2- -# Enthalpy of formation: -240 kcal/mol - -analytic 1.7987e+002 1.2731e-002 -2.0007e+004 -6.0642e+001 -3.1224e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Ho+++ = HoO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -24.5377 - -delta_H 216.873 kJ/mol # Calculated enthalpy of reaction HoO2H -# Enthalpy of formation: -253.8 kcal/mol - -analytic 3.3877e+002 4.6282e-002 -2.2925e+004 -1.2133e+002 -3.5782e+002 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 H2O = HoOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.7609 - -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction HoOH+2 -# Enthalpy of formation: -219 kcal/mol - -analytic 7.1326e+001 1.2657e-002 -6.2461e+003 -2.5018e+001 -9.7485e+001 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 HPO4-- = HoPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ho+++ = HoSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HoSO4+ -# Enthalpy of formation: -381.5 kcal/mol - -analytic 3.0709e+002 8.6579e-002 -9.0693e+003 -1.2078e+002 -1.4161e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 K+ = K(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -10.2914 - -delta_H -1.79912 kJ/mol # Calculated enthalpy of reaction K(CH3COO)2- -# Enthalpy of formation: -292.9 kcal/mol - -analytic -2.3036e+002 -4.6369e-002 7.0305e+003 8.4997e+001 1.0977e+002 -# -Range: 0-300 - -1.0000 K+ + 1.0000 Br- = KBr - -llnl_gamma 3.0 - log_k -1.7372 - -delta_H 12.5102 kJ/mol # Calculated enthalpy of reaction KBr -# Enthalpy of formation: -86.32 kcal/mol - -analytic 1.1320e+002 3.4227e-002 -3.6401e+003 -4.5633e+001 -5.6833e+001 -# -Range: 0-300 - -1.0000 K+ + 1.0000 CH3COOH = KCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -5.0211 - -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction KCH3COO -# Enthalpy of formation: -175.22 kcal/mol - -analytic -2.6676e-001 -3.2675e-003 -1.7143e+003 -7.1907e-003 1.7726e+005 -# -Range: 0-300 - -1.0000 K+ + 1.0000 Cl- = KCl - -llnl_gamma 3.0 - log_k -1.4946 - -delta_H 14.1963 kJ/mol # Calculated enthalpy of reaction KCl -# Enthalpy of formation: -96.81 kcal/mol - -analytic 1.3650e+002 3.8405e-002 -4.4014e+003 -5.4421e+001 -6.8721e+001 -# -Range: 0-300 - -1.0000 K+ + 1.0000 HPO4-- = KHPO4- - -llnl_gamma 4.0 - log_k +0.7800 - -delta_H 0 # Not possible to calculate enthalpy of reaction KHPO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 K+ + 1.0000 H+ = KHSO4 - -llnl_gamma 3.0 - log_k +0.8136 - -delta_H 29.8319 kJ/mol # Calculated enthalpy of reaction KHSO4 -# Enthalpy of formation: -270.54 kcal/mol - -analytic 1.2620e+002 5.7349e-002 -3.3670e+003 -5.3003e+001 -5.2576e+001 -# -Range: 0-300 - -1.0000 K+ + 1.0000 I- = KI - -llnl_gamma 3.0 - log_k -1.598 - -delta_H 9.16296 kJ/mol # Calculated enthalpy of reaction KI -# Enthalpy of formation: -71.68 kcal/mol - -analytic 1.0816e+002 3.3683e-002 -3.2143e+003 -4.4054e+001 -5.0187e+001 -# -Range: 0-300 - -1.0000 K+ + 1.0000 H2O = KOH +1.0000 H+ - -llnl_gamma 3.0 - log_k -14.46 - -delta_H 0 # Not possible to calculate enthalpy of reaction KOH -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 K+ = KP2O7--- +1.0000 H2O - -llnl_gamma 4.0 - log_k -1.4286 - -delta_H 34.1393 kJ/mol # Calculated enthalpy of reaction KP2O7-3 -# Enthalpy of formation: -2516.36 kJ/mol - -analytic 4.1930e+002 1.4676e-001 -1.1169e+004 -1.7255e+002 -1.7441e+002 -# -Range: 0-300 - -1.0000 SO4-- + 1.0000 K+ = KSO4- - -llnl_gamma 4.0 - log_k +0.8796 - -delta_H 2.88696 kJ/mol # Calculated enthalpy of reaction KSO4- -# Enthalpy of formation: -276.98 kcal/mol - -analytic 9.9073e+001 3.7817e-002 -2.1628e+003 -4.1297e+001 -3.3779e+001 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 La+++ = La(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.3949 - -delta_H -23.1375 kJ/mol # Calculated enthalpy of reaction La(CH3COO)2+ -# Enthalpy of formation: -407.33 kcal/mol - -analytic -1.2805e+001 2.8482e-003 -2.2521e+003 2.9108e+000 6.1659e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 La+++ = La(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.5982 - -delta_H -41.9237 kJ/mol # Calculated enthalpy of reaction La(CH3COO)3 -# Enthalpy of formation: -527.92 kcal/mol - -analytic -3.3456e+001 1.2371e-003 -1.5978e+003 8.6343e+000 7.5717e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 La+++ = La(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 La+++ = La(HPO4)2- - -llnl_gamma 4.0 - log_k +8.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 La+++ = La(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.0437 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 La+++ = La(SO4)2- - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 La+++ + 2.0000 H2O = La2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -22.9902 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol - -9.0000 H2O + 5.0000 La+++ = La5(OH)9+6 +9.0000 H+ - -llnl_gamma 6.0 - log_k -71.1557 - -delta_H 0 # Not possible to calculate enthalpy of reaction La5(OH)9+6 -# Enthalpy of formation: -0 kcal/mol - -1.0000 La+++ + 1.0000 CH3COOH = LaCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.2063 - -delta_H -12.5938 kJ/mol # Calculated enthalpy of reaction LaCH3COO+2 -# Enthalpy of formation: -288.71 kcal/mol - -analytic -1.0803e+001 8.5239e-004 -1.1143e+003 3.3273e+000 3.4305e+005 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 HCO3- = LaCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.212 - -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction LaCO3+ -# Enthalpy of formation: -313.1 kcal/mol - -analytic 2.3046e+002 5.2419e-002 -7.1063e+003 -9.1109e+001 -1.1095e+002 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 Cl- = LaCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction LaCl+2 -# Enthalpy of formation: -206.1 kcal/mol - -analytic 7.5802e+001 3.6641e-002 -1.7234e+003 -3.2578e+001 -2.6914e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 La+++ = LaCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 19.1041 kJ/mol # Calculated enthalpy of reaction LaCl2+ -# Enthalpy of formation: -244.9 kcal/mol - -analytic 2.1632e+002 7.9274e-002 -5.5883e+003 -8.9400e+001 -8.7264e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 La+++ = LaCl3 - -llnl_gamma 3.0 - log_k -0.3936 - -delta_H 12.5478 kJ/mol # Calculated enthalpy of reaction LaCl3 -# Enthalpy of formation: -286.4 kcal/mol - -analytic 4.2210e+002 1.2792e-001 -1.1444e+004 -1.7062e+002 -1.7869e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 La+++ = LaCl4- - -llnl_gamma 4.0 - log_k -0.818 - -delta_H -7.81571 kJ/mol # Calculated enthalpy of reaction LaCl4- -# Enthalpy of formation: -331.2 kcal/mol - -analytic 4.8802e+002 1.3053e-001 -1.3344e+004 -1.9518e+002 -2.0836e+002 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 F- = LaF++ - -llnl_gamma 4.5 - log_k +3.8556 - -delta_H 26.5684 kJ/mol # Calculated enthalpy of reaction LaF+2 -# Enthalpy of formation: -243.4 kcal/mol - -analytic 9.6765e+001 4.0513e-002 -2.8042e+003 -3.8617e+001 -4.3785e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 La+++ = LaF2+ - -llnl_gamma 4.0 - log_k +6.6850 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction LaF2+ -# Enthalpy of formation: -325.2 kcal/mol - -analytic 2.3923e+002 8.3559e-002 -6.0536e+003 -9.5821e+001 -9.4531e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 La+++ = LaF3 - -llnl_gamma 3.0 - log_k +8.7081 - -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction LaF3 -# Enthalpy of formation: -410.2 kcal/mol - -analytic 4.5123e+002 1.3460e-001 -1.1334e+004 -1.7967e+002 -1.7699e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 La+++ = LaF4- - -llnl_gamma 4.0 - log_k +10.3647 - -delta_H -41.4216 kJ/mol # Calculated enthalpy of reaction LaF4- -# Enthalpy of formation: -500.1 kcal/mol - -analytic 5.0747e+002 1.3563e-001 -1.1903e+004 -2.0108e+002 -1.8588e+002 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 HPO4-- + 1.0000 H+ = LaH2PO4++ - -llnl_gamma 4.5 - log_k +9.7417 - -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction LaH2PO4+2 -# Enthalpy of formation: -482.8 kcal/mol - -analytic 1.0530e+002 6.2177e-002 4.0686e+002 -4.6642e+001 6.3174e+000 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 HCO3- = LaHCO3++ - -llnl_gamma 4.5 - log_k +1.9923 - -delta_H 6.68603 kJ/mol # Calculated enthalpy of reaction LaHCO3+2 -# Enthalpy of formation: -332.9 kcal/mol - -analytic 3.6032e+001 3.0405e-002 5.1281e+001 -1.7478e+001 7.8933e-001 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 HPO4-- = LaHPO4+ - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 La+++ = LaNO3++ - -llnl_gamma 4.5 - log_k +0.5813 - -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction LaNO3+2 -# Enthalpy of formation: -226 kcal/mol - -analytic 1.4136e+001 2.4247e-002 2.1998e+003 -1.1371e+001 3.4322e+001 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 H2O = LaO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -18.1696 - -delta_H 121.407 kJ/mol # Calculated enthalpy of reaction LaO+ -# Enthalpy of formation: -208.9 kcal/mol - -analytic 1.8691e+002 2.9275e-002 -1.4385e+004 -6.6906e+001 -2.2452e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 La+++ = LaO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -40.8105 - -delta_H 318.126 kJ/mol # Calculated enthalpy of reaction LaO2- -# Enthalpy of formation: -230.2 kcal/mol - -analytic 1.8374e+002 1.2355e-002 -2.2472e+004 -6.1779e+001 -3.5070e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 La+++ = LaO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -27.9095 - -delta_H 237.375 kJ/mol # Calculated enthalpy of reaction LaO2H -# Enthalpy of formation: -249.5 kcal/mol - -analytic 3.3862e+002 4.4808e-002 -2.4083e+004 -1.2088e+002 -3.7589e+002 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 H2O = LaOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -8.6405 - -delta_H 82.4959 kJ/mol # Calculated enthalpy of reaction LaOH+2 -# Enthalpy of formation: -218.2 kcal/mol - -analytic 6.5529e+001 1.1104e-002 -6.3920e+003 -2.2646e+001 -9.9760e+001 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 HPO4-- = LaPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -1.3618 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 La+++ = LaSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 18.4096 kJ/mol # Calculated enthalpy of reaction LaSO4+ -# Enthalpy of formation: -382.6 kcal/mol - -analytic 3.0657e+002 8.4093e-002 -9.1074e+003 -1.2019e+002 -1.4220e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Li+ = Li(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.2674 - -delta_H -24.7609 kJ/mol # Calculated enthalpy of reaction Li(CH3COO)2- -# Enthalpy of formation: -304.67 kcal/mol - -analytic -3.3702e+002 -6.0849e-002 1.1952e+004 1.2359e+002 1.8659e+002 -# -Range: 0-300 - -1.0000 Li+ + 1.0000 CH3COOH = LiCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.4589 - -delta_H -6.64419 kJ/mol # Calculated enthalpy of reaction LiCH3COO -# Enthalpy of formation: -184.24 kcal/mol - -analytic -3.8391e+000 -7.3938e-004 -1.0829e+003 3.4134e-001 2.1318e+005 -# -Range: 0-300 - -1.0000 Li+ + 1.0000 Cl- = LiCl - -llnl_gamma 3.0 - log_k -1.5115 - -delta_H 3.36812 kJ/mol # Calculated enthalpy of reaction LiCl -# Enthalpy of formation: -105.68 kcal/mol - -analytic 1.2484e+002 4.1941e-002 -3.2439e+003 -5.1708e+001 -5.0655e+001 -# -Range: 0-300 - -1.0000 Li+ + 1.0000 H2O = LiOH +1.0000 H+ - -llnl_gamma 3.0 - log_k -13.64 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiOH -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Li+ = LiSO4- - -llnl_gamma 4.0 - log_k +0.7700 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiSO4- -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Lu+++ = Lu(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -38.5346 kJ/mol # Calculated enthalpy of reaction Lu(CH3COO)2+ -# Enthalpy of formation: -409.31 kcal/mol - -analytic -2.7341e+001 2.5097e-003 -1.4157e+003 7.5026e+000 6.9682e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Lu+++ = Lu(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -64.5173 kJ/mol # Calculated enthalpy of reaction Lu(CH3COO)3 -# Enthalpy of formation: -531.62 kcal/mol - -analytic -5.0225e+001 3.3508e-003 -6.2901e+002 1.3262e+001 9.0737e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Lu+++ = Lu(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -6.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Lu+++ = Lu(HPO4)2- - -llnl_gamma 4.0 - log_k +10.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Lu+++ = Lu(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -2.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Lu+++ = Lu(SO4)2- - -llnl_gamma 4.0 - log_k +5.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Lu+++ + 1.0000 CH3COOH = LuCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -18.9703 kJ/mol # Calculated enthalpy of reaction LuCH3COO+2 -# Enthalpy of formation: -288.534 kcal/mol - -analytic -6.5982e+000 2.4512e-003 -1.2666e+003 1.4226e+000 4.0045e+005 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 HCO3- = LuCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.0392 - -delta_H 78.2324 kJ/mol # Calculated enthalpy of reaction LuCO3+ -# Enthalpy of formation: -314.1 kcal/mol - -analytic 2.3840e+002 5.4774e-002 -6.8317e+003 -9.4500e+001 -1.0667e+002 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 Cl- = LuCl++ - -llnl_gamma 4.5 - log_k -0.0579 - -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction LuCl+2 -# Enthalpy of formation: -204.6 kcal/mol - -analytic 6.6161e+001 3.6521e-002 -1.2938e+003 -2.9397e+001 -2.0209e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Lu+++ = LuCl2+ - -llnl_gamma 4.0 - log_k -0.6289 - -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction LuCl2+ -# Enthalpy of formation: -244 kcal/mol - -analytic 1.8608e+002 7.7283e-002 -4.2349e+003 -7.9007e+001 -6.6137e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Lu+++ = LuCl3 - -llnl_gamma 3.0 - log_k -1.1999 - -delta_H 3.56895 kJ/mol # Calculated enthalpy of reaction LuCl3 -# Enthalpy of formation: -286.846 kcal/mol - -analytic 3.7060e+002 1.2564e-001 -8.9374e+003 -1.5325e+002 -1.3957e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Lu+++ = LuCl4- - -llnl_gamma 4.0 - log_k -1.771 - -delta_H -25.8069 kJ/mol # Calculated enthalpy of reaction LuCl4- -# Enthalpy of formation: -333.8 kcal/mol - -analytic 3.8876e+002 1.2200e-001 -8.6965e+003 -1.6071e+002 -1.3582e+002 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 F- = LuF++ - -llnl_gamma 4.5 - log_k +4.8085 - -delta_H 25.7316 kJ/mol # Calculated enthalpy of reaction LuF+2 -# Enthalpy of formation: -241.9 kcal/mol - -analytic 9.0303e+001 4.0963e-002 -2.4140e+003 -3.6203e+001 -3.7694e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Lu+++ = LuF2+ - -llnl_gamma 4.0 - log_k +8.4442 - -delta_H 14.2256 kJ/mol # Calculated enthalpy of reaction LuF2+ -# Enthalpy of formation: -324.8 kcal/mol - -analytic 2.1440e+002 8.2559e-002 -4.7009e+003 -8.6790e+001 -7.3417e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Lu+++ = LuF3 - -llnl_gamma 3.0 - log_k +11.0999 - -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction LuF3 -# Enthalpy of formation: -411.3 kcal/mol - -analytic 4.0247e+002 1.3233e-001 -8.6775e+003 -1.6232e+002 -1.3552e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Lu+++ = LuF4- - -llnl_gamma 4.0 - log_k +13.2967 - -delta_H -64.0152 kJ/mol # Calculated enthalpy of reaction LuF4- -# Enthalpy of formation: -503.8 kcal/mol - -analytic 4.2541e+002 1.3070e-001 -7.4276e+003 -1.7220e+002 -1.1603e+002 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 HPO4-- + 1.0000 H+ = LuH2PO4++ - -llnl_gamma 4.5 - log_k +9.5950 - -delta_H -23.786 kJ/mol # Calculated enthalpy of reaction LuH2PO4+2 -# Enthalpy of formation: -482.4 kcal/mol - -analytic 9.4223e+001 6.1797e-002 1.1102e+003 -4.3131e+001 1.7296e+001 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 HCO3- = LuHCO3++ - -llnl_gamma 4.5 - log_k +1.9190 - -delta_H 1.66523 kJ/mol # Calculated enthalpy of reaction LuHCO3+2 -# Enthalpy of formation: -332.4 kcal/mol - -analytic 2.3187e+001 2.9604e-002 8.1268e+002 -1.3252e+001 1.2674e+001 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 HPO4-- = LuHPO4+ - -llnl_gamma 4.0 - log_k +6.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Lu+++ = LuNO3++ - -llnl_gamma 4.5 - log_k +0.5813 - -delta_H -41.7187 kJ/mol # Calculated enthalpy of reaction LuNO3+2 -# Enthalpy of formation: -227.3 kcal/mol - -analytic 1.7412e+000 2.3703e-002 3.2605e+003 -7.7334e+000 5.0876e+001 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 H2O = LuO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.3108 - -delta_H 99.6503 kJ/mol # Calculated enthalpy of reaction LuO+ -# Enthalpy of formation: -212.4 kcal/mol - -analytic 1.5946e+002 2.6603e-002 -1.2215e+004 -5.7276e+001 -1.9065e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Lu+++ = LuO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -31.9411 - -delta_H 258.713 kJ/mol # Calculated enthalpy of reaction LuO2- -# Enthalpy of formation: -242.7 kcal/mol - -analytic 1.1522e+002 5.0221e-003 -1.6847e+004 -3.7244e+001 -2.6292e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Lu+++ = LuO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -23.878 - -delta_H 206.832 kJ/mol # Calculated enthalpy of reaction LuO2H -# Enthalpy of formation: -255.1 kcal/mol - -analytic 2.8768e+002 4.2338e-002 -2.0443e+004 -1.0330e+002 -3.1907e+002 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 H2O = LuOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.6143 - -delta_H 72.0359 kJ/mol # Calculated enthalpy of reaction LuOH+2 -# Enthalpy of formation: -219 kcal/mol - -analytic 4.2937e+001 9.2421e-003 -4.9953e+003 -1.4769e+001 -7.7960e+001 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 HPO4-- = LuPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Lu+++ = LuSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 19.5393 kJ/mol # Calculated enthalpy of reaction LuSO4+ -# Enthalpy of formation: -380.63 kcal/mol - -analytic 3.0108e+002 8.5238e-002 -8.8411e+003 -1.1850e+002 -1.3805e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Mg++ = Mg(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.473 - -delta_H -23.8195 kJ/mol # Calculated enthalpy of reaction Mg(CH3COO)2 -# Enthalpy of formation: -349.26 kcal/mol - -analytic -4.3954e+001 -3.1842e-004 -1.2033e+003 1.3556e+001 6.3058e+005 -# -Range: 0-300 - -4.0000 Mg++ + 4.0000 H2O = Mg4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -39.75 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mg4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mg++ + 1.0000 H2O + 1.0000 B(OH)3 = MgB(OH)4+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.3467 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgB(OH)4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mg++ + 1.0000 CH3COOH = MgCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.4781 - -delta_H -8.42239 kJ/mol # Calculated enthalpy of reaction MgAcetate+ -# Enthalpy of formation: -229.48 kcal/mol - -analytic -2.3548e+001 -1.6071e-003 -4.2228e+002 7.7009e+000 2.5981e+005 -# -Range: 0-300 - -1.0000 Mg++ + 1.0000 HCO3- = MgCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.3499 - -delta_H 23.8279 kJ/mol # Calculated enthalpy of reaction MgCO3 -# Enthalpy of formation: -270.57 kcal/mol - -analytic 2.3465e+002 5.5538e-002 -8.3947e+003 -9.3104e+001 -1.3106e+002 -# -Range: 0-300 - -1.0000 Mg++ + 1.0000 Cl- = MgCl+ - -llnl_gamma 4.0 - log_k -0.1349 - -delta_H -0.58576 kJ/mol # Calculated enthalpy of reaction MgCl+ -# Enthalpy of formation: -151.44 kcal/mol - -analytic 4.3363e+001 3.2858e-002 1.1878e+002 -2.1688e+001 1.8403e+000 -# -Range: 0-300 - -1.0000 Mg++ + 1.0000 F- = MgF+ - -llnl_gamma 4.0 - log_k +1.3524 - -delta_H 2.37233 kJ/mol # Calculated enthalpy of reaction MgF+ -# Enthalpy of formation: -190.95 kcal/mol - -analytic 6.4311e+001 3.5184e-002 -7.3241e+002 -2.8678e+001 -1.1448e+001 -# -Range: 0-300 - -1.0000 Mg++ + 1.0000 HPO4-- + 1.0000 H+ = MgH2PO4+ - -llnl_gamma 4.0 - log_k +1.6600 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgH2PO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mg++ + 1.0000 HCO3- = MgHCO3+ - -llnl_gamma 4.0 - log_k +1.0357 - -delta_H 2.15476 kJ/mol # Calculated enthalpy of reaction MgHCO3+ -# Enthalpy of formation: -275.75 kcal/mol - -analytic 3.8459e+001 3.0076e-002 9.8068e+001 -1.8869e+001 1.5187e+000 -# -Range: 0-300 - -1.0000 Mg++ + 1.0000 HPO4-- = MgHPO4 - -llnl_gamma 3.0 - log_k +2.9100 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgHPO4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Mg++ = MgP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +3.4727 - -delta_H 38.5451 kJ/mol # Calculated enthalpy of reaction MgP2O7-2 -# Enthalpy of formation: -2725.74 kJ/mol - -analytic 4.8038e+002 1.2530e-001 -1.5175e+004 -1.8724e+002 -2.3693e+002 -# -Range: 0-300 - -1.0000 Mg++ + 1.0000 HPO4-- = MgPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.7328 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgPO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Mg++ = MgSO4 - -llnl_gamma 3.0 - log_k +2.4117 - -delta_H 19.6051 kJ/mol # Calculated enthalpy of reaction MgSO4 -# Enthalpy of formation: -1355.96 kJ/mol - -analytic 1.7994e+002 6.4715e-002 -4.7314e+003 -7.3123e+001 -8.0408e+001 -# -Range: 0-200 - -2.0000 CH3COOH + 1.0000 Mn++ = Mn(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.4547 - -delta_H -11.4893 kJ/mol # Calculated enthalpy of reaction Mn(CH3COO)2 -# Enthalpy of formation: -287.67 kcal/mol - -analytic -9.0558e-001 5.9656e-003 -4.3531e+003 -1.1063e+000 8.0323e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Mn++ = Mn(CH3COO)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -11.8747 - -delta_H -30.3591 kJ/mol # Calculated enthalpy of reaction Mn(CH3COO)3- -# Enthalpy of formation: -408.28 kcal/mol - -analytic -3.8531e+000 -9.9140e-003 -1.2065e+004 5.1424e+000 2.0175e+006 -# -Range: 0-300 - -2.0000 NO3- + 1.0000 Mn++ = Mn(NO3)2 - -llnl_gamma 3.0 - log_k +0.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(NO3)2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Mn++ = Mn(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -22.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Mn++ = Mn(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -34.2278 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Mn++ = Mn(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -48.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)4-2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 2.0000 Mn++ = Mn2(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -23.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2(OH)3+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 Mn++ + 1.0000 H2O = Mn2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -10.56 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2OH+3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 CH3COOH = MnCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.5404 - -delta_H -3.07942 kJ/mol # Calculated enthalpy of reaction MnCH3COO+ -# Enthalpy of formation: -169.56 kcal/mol - -analytic -1.4061e+001 1.8149e-003 -8.6438e+002 4.0354e+000 2.5831e+005 -# -Range: 0-300 - -1.0000 Mn++ + 1.0000 HCO3- = MnCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -5.8088 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnCO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 Cl- = MnCl+ - -llnl_gamma 4.0 - log_k +0.3013 - -delta_H 18.3134 kJ/mol # Calculated enthalpy of reaction MnCl+ -# Enthalpy of formation: -88.28 kcal/mol - -analytic 8.7072e+001 4.0361e-002 -2.1786e+003 -3.6966e+001 -3.4022e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Mn++ = MnCl3- - -llnl_gamma 4.0 - log_k -0.3324 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnCl3- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 F- = MnF+ - -llnl_gamma 4.0 - log_k +1.4300 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnF+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HPO4-- + 1.0000 H+ = MnH2PO4+ - -llnl_gamma 4.0 - log_k +8.5554 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnH2PO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HCO3- = MnHCO3+ - -llnl_gamma 4.0 - log_k +0.8816 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHCO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HPO4-- = MnHPO4 - -llnl_gamma 3.0 - log_k +3.5800 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Mn++ = MnNO3+ - -llnl_gamma 4.0 - log_k +0.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnNO3+ -# Enthalpy of formation: -0 kcal/mol - -1.5000 H2O + 1.2500 O2 + 1.0000 Mn++ = MnO4- +3.0000 H+ - -llnl_gamma 3.5 - log_k -20.2963 - -delta_H 123.112 kJ/mol # Calculated enthalpy of reaction MnO4- -# Enthalpy of formation: -129.4 kcal/mol - -analytic 1.8544e+001 -1.7618e-002 -6.7332e+003 -3.3193e+000 -2.4924e+005 -# -Range: 0-300 - -1.0000 Mn++ + 1.0000 H2O = MnOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -10.59 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnOH+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HPO4-- = MnPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.1318 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnPO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Mn++ = MnSO4 - -llnl_gamma 3.0 - log_k +2.3529 - -delta_H 14.1168 kJ/mol # Calculated enthalpy of reaction MnSO4 -# Enthalpy of formation: -266.75 kcal/mol - -analytic 2.9448e+002 8.5294e-002 -8.1366e+003 -1.1729e+002 -1.2705e+002 -# -Range: 0-300 - -1.0000 SeO4-- + 1.0000 Mn++ = MnSeO4 - -llnl_gamma 3.0 - log_k +2.4300 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 NH3 = NH4(CH3COO)2- +1.0000 H+ - -llnl_gamma 4.0 - log_k -0.1928 - -delta_H -56.735 kJ/mol # Calculated enthalpy of reaction NH4(CH3COO)2- -# Enthalpy of formation: -265.2 kcal/mol - -analytic 3.7137e+001 -1.2242e-002 -8.4764e+003 -8.4308e+000 1.3883e+006 -# -Range: 0-300 - -1.0000 NH3 + 1.0000 H+ = NH4+ - -llnl_gamma 2.5 - log_k +9.2410 - -delta_H -51.9234 kJ/mol # Calculated enthalpy of reaction NH4+ -# Enthalpy of formation: -31.85 kcal/mol - -analytic -1.4527e+001 -5.0518e-003 3.0447e+003 6.0865e+000 4.7515e+001 -# -Range: 0-300 - -1.0000 NH3 + 1.0000 CH3COOH = NH4CH3COO - -llnl_gamma 3.0 - log_k +4.6964 - -delta_H -48.911 kJ/mol # Calculated enthalpy of reaction NH4CH3COO -# Enthalpy of formation: -147.23 kcal/mol - -analytic 1.4104e+001 -4.3664e-003 -1.0746e+003 -3.6999e+000 4.1428e+005 -# -Range: 0-300 - -1.0000 SO4-- + 1.0000 NH3 + 1.0000 H+ = NH4SO4- - -llnl_gamma 4.0 - log_k +0.9400 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sb(OH)3 + 1.0000 NH3 = NH4SbO2 +1.0000 H2O - -llnl_gamma 3.0 - log_k -2.5797 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SbO2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Na+ = Na(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.9989 - -delta_H -11.5771 kJ/mol # Calculated enthalpy of reaction Na(CH3COO)2- -# Enthalpy of formation: -292.4 kcal/mol - -analytic -2.9232e+002 -5.5708e-002 9.6601e+003 1.0772e+002 1.5082e+002 -# -Range: 0-300 - -1.0000 O_phthalate-2 + 1.0000 Na+ = Na(O_phthalate)- - -llnl_gamma 4.0 - log_k +0.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na(O_phthalate)- -# Enthalpy of formation: -0 kcal/mol - -2.0000 Na+ + 2.0000 HPO4-- = Na2P2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +0.4437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2P2O7-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Na+ + 1.0000 Al+++ = NaAlO2 +4.0000 H+ - -llnl_gamma 3.0 - log_k -23.6266 - -delta_H 190.326 kJ/mol # Calculated enthalpy of reaction NaAlO2 -# Enthalpy of formation: -277.259 kcal/mol - -analytic 1.2288e+002 3.4921e-002 -1.2808e+004 -4.6046e+001 -1.9990e+002 -# -Range: 0-300 - -1.0000 Na+ + 1.0000 H2O + 1.0000 B(OH)3 = NaB(OH)4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -8.974 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaB(OH)4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Na+ + 1.0000 Br- = NaBr - -llnl_gamma 3.0 - log_k -1.3568 - -delta_H 6.87431 kJ/mol # Calculated enthalpy of reaction NaBr -# Enthalpy of formation: -84.83 kcal/mol - -analytic 1.1871e+002 3.7271e-002 -3.4061e+003 -4.8386e+001 -5.3184e+001 -# -Range: 0-300 - -1.0000 Na+ + 1.0000 CH3COOH = NaCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8606 - -delta_H -0.029288 kJ/mol # Calculated enthalpy of reaction NaCH3COO -# Enthalpy of formation: -173.54 kcal/mol - -analytic 6.4833e+000 -1.8739e-003 -2.0902e+003 -2.6121e+000 2.3990e+005 -# -Range: 0-300 - -1.0000 Na+ + 1.0000 HCO3- = NaCO3- +1.0000 H+ - -llnl_gamma 4.0 - log_k -9.8144 - -delta_H -5.6521 kJ/mol # Calculated enthalpy of reaction NaCO3- -# Enthalpy of formation: -935.885 kJ/mol - -analytic 1.6939e+002 5.3122e-004 -7.6768e+003 -6.2078e+001 -1.1984e+002 -# -Range: 0-300 - -1.0000 Na+ + 1.0000 Cl- = NaCl - -llnl_gamma 3.0 - log_k -0.777 - -delta_H 5.21326 kJ/mol # Calculated enthalpy of reaction NaCl -# Enthalpy of formation: -96.12 kcal/mol - -analytic 1.1398e+002 3.6386e-002 -3.0847e+003 -4.6571e+001 -4.8167e+001 -# -Range: 0-300 - -1.0000 Na+ + 1.0000 F- = NaF - -llnl_gamma 3.0 - log_k -0.9976 - -delta_H 7.20903 kJ/mol # Calculated enthalpy of reaction NaF -# Enthalpy of formation: -135.86 kcal/mol - -analytic 1.2507e+002 3.8619e-002 -3.5436e+003 -5.0787e+001 -5.5332e+001 -# -Range: 0-300 - -1.0000 Na+ + 1.0000 HCO3- = NaHCO3 - -llnl_gamma 3.0 - log_k +0.1541 - -delta_H -13.7741 kJ/mol # Calculated enthalpy of reaction NaHCO3 -# Enthalpy of formation: -944.007 kJ/mol - -analytic -9.0668e+001 -2.9866e-002 2.7947e+003 3.6515e+001 4.7489e+001 -# -Range: 0-200 - -2.0000 HPO4-- + 1.0000 Na+ + 1.0000 H+ = NaHP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +6.8498 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaHP2O7-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Na+ + 1.0000 HPO4-- = NaHPO4- - -llnl_gamma 4.0 - log_k +0.9200 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaHPO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 SiO2 + 1.0000 Na+ + 1.0000 H2O = NaHSiO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -8.304 - -delta_H 11.6524 kJ/mol # Calculated enthalpy of reaction NaHSiO3 -# Enthalpy of formation: -332.74 kcal/mol - -analytic 3.6045e+001 -9.0411e-003 -6.6605e+003 -1.0447e+001 5.8415e+005 -# -Range: 0-300 - -1.0000 Na+ + 1.0000 I- = NaI - -llnl_gamma 3.0 - log_k -1.54 - -delta_H 7.33455 kJ/mol # Calculated enthalpy of reaction NaI -# Enthalpy of formation: -69.28 kcal/mol - -analytic 9.8742e+001 3.2917e-002 -2.7576e+003 -4.0748e+001 -4.3058e+001 -# -Range: 0-300 - -1.0000 Na+ + 1.0000 H2O = NaOH +1.0000 H+ - -llnl_gamma 3.0 - log_k -14.7948 - -delta_H 53.6514 kJ/mol # Calculated enthalpy of reaction NaOH -# Enthalpy of formation: -112.927 kcal/mol - -analytic 8.7326e+001 2.3555e-002 -5.4770e+003 -3.6678e+001 -8.5489e+001 -# -Range: 0-300 - -2.0000 HPO4-- + 1.0000 Na+ = NaP2O7--- +1.0000 H2O - -llnl_gamma 4.0 - log_k -1.4563 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaP2O7-3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Na+ = NaSO4- - -llnl_gamma 4.0 - log_k +0.8200 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaSO4- -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Nd+++ = Nd(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9771 - -delta_H -22.6354 kJ/mol # Calculated enthalpy of reaction Nd(CH3COO)2+ -# Enthalpy of formation: -404.11 kcal/mol - -analytic -2.2128e+001 1.0975e-003 -7.1543e+002 5.8799e+000 4.1748e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Nd+++ = Nd(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.2976 - -delta_H -38.8694 kJ/mol # Calculated enthalpy of reaction Nd(CH3COO)3 -# Enthalpy of formation: -524.09 kcal/mol - -analytic -4.5726e+001 -2.6143e-003 5.9389e+002 1.2679e+001 4.3320e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Nd+++ = Nd(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.0576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Nd+++ = Nd(HPO4)2- - -llnl_gamma 4.0 - log_k +9.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -# Redundant with NdO2- -#4.0000 H2O + 1.0000 Nd+++ = Nd(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 -# log_k -37.0803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)4- -## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Nd+++ = Nd(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.1437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Nd+++ = Nd(SO4)2- - -llnl_gamma 4.0 - log_k -255.7478 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 Nd+++ + 2.0000 H2O = Nd2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -13.8902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Nd+++ + 1.0000 CH3COOH = NdCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.0891 - -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction NdCH3COO+2 -# Enthalpy of formation: -285.47 kcal/mol - -analytic -1.6006e+001 4.1948e-004 -3.6469e+002 4.9280e+000 2.5187e+005 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 HCO3- = NdCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.6256 - -delta_H 91.6212 kJ/mol # Calculated enthalpy of reaction NdCO3+ -# Enthalpy of formation: -309.5 kcal/mol - -analytic 2.3399e+002 5.3454e-002 -7.0513e+003 -9.2500e+001 -1.1010e+002 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 Cl- = NdCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction NdCl+2 -# Enthalpy of formation: -203 kcal/mol - -analytic 9.4587e+001 3.9331e-002 -2.4200e+003 -3.9550e+001 -3.7790e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Nd+++ = NdCl2+ - -llnl_gamma 4.0 - log_k +0.0308 - -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction NdCl2+ -# Enthalpy of formation: -241.5 kcal/mol - -analytic 2.5840e+002 8.4118e-002 -7.2056e+003 -1.0477e+002 -1.1251e+002 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Nd+++ = NdCl3 - -llnl_gamma 3.0 - log_k -0.3203 - -delta_H 15.0582 kJ/mol # Calculated enthalpy of reaction NdCl3 -# Enthalpy of formation: -282.7 kcal/mol - -analytic 4.9362e+002 1.3485e-001 -1.4309e+004 -1.9645e+002 -2.2343e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Nd+++ = NdCl4- - -llnl_gamma 4.0 - log_k -0.7447 - -delta_H -3.21331 kJ/mol # Calculated enthalpy of reaction NdCl4- -# Enthalpy of formation: -327 kcal/mol - -analytic 6.0548e+002 1.4227e-001 -1.8055e+004 -2.3765e+002 -2.8191e+002 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 F- = NdF++ - -llnl_gamma 4.5 - log_k +4.3687 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction NdF+2 -# Enthalpy of formation: -241.2 kcal/mol - -analytic 1.1461e+002 4.3014e-002 -3.2461e+003 -4.5326e+001 -5.0687e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Nd+++ = NdF2+ - -llnl_gamma 4.0 - log_k +7.5646 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction NdF2+ -# Enthalpy of formation: -323.5 kcal/mol - -analytic 2.7901e+002 8.7910e-002 -7.2424e+003 -1.1046e+002 -1.1309e+002 -# -Range: 0-300 - -3.0000 F- + 1.0000 Nd+++ = NdF3 - -llnl_gamma 3.0 - log_k +9.8809 - -delta_H -8.1588 kJ/mol # Calculated enthalpy of reaction NdF3 -# Enthalpy of formation: -408.9 kcal/mol - -analytic 5.2220e+002 1.4154e-001 -1.3697e+004 -2.0551e+002 -2.1388e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Nd+++ = NdF4- - -llnl_gamma 4.0 - log_k +11.8307 - -delta_H -48.5344 kJ/mol # Calculated enthalpy of reaction NdF4- -# Enthalpy of formation: -498.7 kcal/mol - -analytic 6.1972e+002 1.4620e-001 -1.5869e+004 -2.4175e+002 -2.4780e+002 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 HPO4-- + 1.0000 H+ = NdH2PO4++ - -llnl_gamma 4.5 - log_k +9.5152 - -delta_H -15.736 kJ/mol # Calculated enthalpy of reaction NdH2PO4+2 -# Enthalpy of formation: -479.076 kcal/mol - -analytic 1.2450e+002 6.4953e-002 -4.0524e+002 -5.3728e+001 -6.3603e+000 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 HCO3- = NdHCO3++ - -llnl_gamma 4.5 - log_k +1.8457 - -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction NdHCO3+2 -# Enthalpy of formation: -329.2 kcal/mol - -analytic 5.5530e+001 3.3254e-002 -7.3859e+002 -2.4690e+001 -1.1542e+001 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 HPO4-- = NdHPO4+ - -llnl_gamma 4.0 - log_k +5.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Nd+++ + 1.0000 NO3- = NdNO3++ - -llnl_gamma 4.5 - log_k +0.7902 - -delta_H -27.8529 kJ/mol # Calculated enthalpy of reaction NdNO3+2 -# Enthalpy of formation: -222.586 kcal/mol - -analytic 3.3850e+001 2.7112e-002 1.4404e+003 -1.8570e+001 2.2466e+001 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 H2O = NdO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -17.0701 - -delta_H 116.386 kJ/mol # Calculated enthalpy of reaction NdO+ -# Enthalpy of formation: -207 kcal/mol - -analytic 1.8961e+002 3.0563e-002 -1.4153e+004 -6.8024e+001 -2.2089e+002 -# -Range: 0-300 -2.0000 H2O + 1.0000 Nd+++ = NdO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -37.0721 - -delta_H 298.88 kJ/mol # Calculated enthalpy of reaction NdO2- -# Enthalpy of formation: -231.7 kcal/mol - -analytic 1.9606e+002 1.4784e-002 -2.1838e+004 -6.6399e+001 -3.4082e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Nd+++ = NdO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -26.3702 - -delta_H 230.681 kJ/mol # Calculated enthalpy of reaction NdO2H -# Enthalpy of formation: -248 kcal/mol - -analytic 3.4617e+002 4.5955e-002 -2.3960e+004 -1.2361e+002 -3.7398e+002 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 H2O = NdOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -8.1274 - -delta_H 80.8223 kJ/mol # Calculated enthalpy of reaction NdOH+2 -# Enthalpy of formation: -215.5 kcal/mol - -analytic 6.6963e+001 1.2182e-002 -6.2797e+003 -2.3300e+001 -9.8008e+001 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 HPO4-- = NdPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.5218 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Nd+++ = NdSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction NdSO4+ -# Enthalpy of formation: -379.1 kcal/mol - -analytic 3.0267e+002 8.5362e-002 -8.9211e+003 -1.1902e+002 -1.3929e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Ni++ = Ni(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.1908 - -delta_H -25.8571 kJ/mol # Calculated enthalpy of reaction Ni(CH3COO)2 -# Enthalpy of formation: -251.28 kcal/mol - -analytic -2.9660e+001 1.0643e-003 -1.0060e+003 7.9358e+000 5.2562e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Ni++ = Ni(CH3COO)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -11.3543 - -delta_H -53.6807 kJ/mol # Calculated enthalpy of reaction Ni(CH3COO)3- -# Enthalpy of formation: -374.03 kcal/mol - -analytic 5.0850e+001 -8.2435e-003 -1.3049e+004 -1.5410e+001 1.9704e+006 -# -Range: 0-300 - -2.0000 NH3 + 1.0000 Ni++ = Ni(NH3)2++ - -llnl_gamma 4.5 - log_k +5.0598 - -delta_H -29.7505 kJ/mol # Calculated enthalpy of reaction Ni(NH3)2+2 -# Enthalpy of formation: -246.398 kJ/mol - -analytic 1.0002e+002 5.2896e-003 -2.5967e+003 -3.5485e+001 -4.0548e+001 -# -Range: 0-300 - -6.0000 NH3 + 1.0000 Ni++ = Ni(NH3)6++ - -llnl_gamma 4.5 - log_k +8.7344 - -delta_H -88.0436 kJ/mol # Calculated enthalpy of reaction Ni(NH3)6+2 -# Enthalpy of formation: -630.039 kJ/mol - -analytic 1.9406e+002 -1.3467e-002 -5.2321e+003 -6.6168e+001 -8.1699e+001 -# -Range: 0-300 - -2.0000 NO3- + 1.0000 Ni++ = Ni(NO3)2 - -llnl_gamma 3.0 - log_k +0.1899 - -delta_H -1.54153 kJ/mol # Calculated enthalpy of reaction Ni(NO3)2 -# Enthalpy of formation: -469.137 kJ/mol - -analytic -4.2544e+001 -1.0101e-002 1.3496e+003 1.6663e+001 2.2933e+001 -# -Range: 0-200 - -2.0000 H2O + 1.0000 Ni++ = Ni(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -19.9902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Ni++ = Ni(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -30.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)3- -# Enthalpy of formation: -0 kcal/mol - -2.0000 Ni++ + 1.0000 H2O = Ni2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -10.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2OH+3 -# Enthalpy of formation: -0 kcal/mol - -4.0000 Ni++ + 4.0000 H2O = Ni4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -27.6803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ni++ + 1.0000 Br- = NiBr+ - -llnl_gamma 4.0 - log_k -0.37 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiBr+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ni++ + 1.0000 CH3COOH = NiCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.3278 - -delta_H -10.2508 kJ/mol # Calculated enthalpy of reaction NiCH3COO+ -# Enthalpy of formation: -131.45 kcal/mol - -analytic -3.3110e+000 1.6895e-003 -1.0556e+003 2.7168e-002 2.6350e+005 -# -Range: 0-300 - -1.0000 Ni++ + 1.0000 Cl- = NiCl+ - -llnl_gamma 4.0 - log_k -0.9962 - -delta_H 5.99567 kJ/mol # Calculated enthalpy of reaction NiCl+ -# Enthalpy of formation: -51.4 kcal/mol - -analytic 9.5370e+001 3.8521e-002 -2.1746e+003 -4.0629e+001 -3.3961e+001 -# -Range: 0-300 - -2.0000 HPO4-- + 1.0000 Ni++ + 1.0000 H+ = NiHP2O7- +1.0000 H2O - -llnl_gamma 4.0 - log_k +9.2680 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiHP2O7- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ni++ + 1.0000 NO3- = NiNO3+ - -llnl_gamma 4.0 - log_k +0.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiNO3+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ni++ = NiP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +3.1012 - -delta_H 9.68819 kJ/mol # Calculated enthalpy of reaction NiP2O7-2 -# Enthalpy of formation: -2342.61 kJ/mol - -analytic 4.6809e+002 1.0985e-001 -1.4310e+004 -1.8173e+002 -2.2344e+002 -# -Range: 0-300 - -1.0000 SO4-- + 1.0000 Ni++ = NiSO4 - -llnl_gamma 3.0 - log_k +2.1257 - -delta_H 2.36814 kJ/mol # Calculated enthalpy of reaction NiSO4 -# Enthalpy of formation: -229.734 kcal/mol - -analytic 6.1187e+001 2.4211e-002 -1.2180e+003 -2.5130e+001 -2.0705e+001 -# -Range: 0-200 - -1.0000 SeO4-- + 1.0000 Ni++ = NiSeO4 - -llnl_gamma 3.0 - log_k +2.6700 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiSeO4 -# Enthalpy of formation: -0 kcal/mol - -5.0000 HCO3- + 1.0000 Np++++ = Np(CO3)5-6 +5.0000 H+ - -llnl_gamma 4.0 - log_k -13.344 - -delta_H 92.7067 kJ/mol # Calculated enthalpy of reaction Np(CO3)5-6 -# Enthalpy of formation: -935.22 kcal/mol - -analytic 6.3005e+002 2.3388e-001 -1.8328e+004 -2.6334e+002 -2.8618e+002 -# -Range: 0-300 - -2.0000 HPO4-- + 2.0000 H+ + 1.0000 Np+++ = Np(H2PO4)2+ - -llnl_gamma 4.0 - log_k +3.7000 - -delta_H -1.55258 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)2+ -# Enthalpy of formation: -743.981 kcal/mol - -analytic 7.8161e+002 2.8446e-001 -1.2330e+004 -3.3194e+002 -2.1056e+002 -# -Range: 25-150 - -3.0000 HPO4-- + 3.0000 H+ + 1.0000 Np+++ = Np(H2PO4)3 - -llnl_gamma 3.0 - log_k +5.6000 - -delta_H -21.8575 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)3 -# Enthalpy of formation: -1057.65 kcal/mol - -analytic 1.5150e+003 4.4939e-001 -3.2766e+004 -6.1975e+002 -5.5934e+002 -# -Range: 25-150 - -2.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)2 - -llnl_gamma 3.0 - log_k +23.7000 - -delta_H -35.24 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 -# Enthalpy of formation: -758.94 kcal/mol - -analytic 4.7722e+002 2.1099e-001 -4.7296e+003 -2.0229e+002 -8.0831e+001 -# -Range: 25-150 - -3.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)3-- - -llnl_gamma 4.0 - log_k +33.4000 - -delta_H -44.9093 kJ/mol # Calculated enthalpy of reaction Np(HPO4)3-2 -# Enthalpy of formation: -1070.07 kcal/mol - -analytic -1.5951e+003 -3.6579e-001 5.1343e+004 6.3262e+002 8.7619e+002 -# -Range: 25-150 - -4.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)4---- - -llnl_gamma 4.0 - log_k +43.2000 - -delta_H -67.0803 kJ/mol # Calculated enthalpy of reaction Np(HPO4)4-4 -# Enthalpy of formation: -1384.18 kcal/mol - -analytic 5.8359e+003 1.5194e+000 -1.6349e+005 -2.3025e+003 -2.7903e+003 -# -Range: 25-150 - -5.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)5-6 - -llnl_gamma 4.0 - log_k +52.0000 - -delta_H -83.5401 kJ/mol # Calculated enthalpy of reaction Np(HPO4)5-6 -# Enthalpy of formation: -1696.93 kcal/mol - -analytic -1.8082e+003 -2.0018e-001 7.5155e+004 6.7400e+002 1.2824e+003 -# -Range: 25-150 - -2.0000 H2O + 1.0000 Np++++ = Np(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -2.8 - -delta_H 77.0669 kJ/mol # Calculated enthalpy of reaction Np(OH)2+2 -# Enthalpy of formation: -251.102 kcal/mol - -analytic 2.9299e+003 6.5812e-001 -9.5085e+004 -1.1356e+003 -1.6227e+003 -# -Range: 25-150 - -3.0000 H2O + 1.0000 Np++++ = Np(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -5.8 - -delta_H 99.5392 kJ/mol # Calculated enthalpy of reaction Np(OH)3+ -# Enthalpy of formation: -314.048 kcal/mol - -analytic -4.7723e+003 -1.1810e+000 1.3545e+005 1.8850e+003 2.3117e+003 -# -Range: 25-150 - -4.0000 H2O + 1.0000 Np++++ = Np(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -9.6 - -delta_H 109.585 kJ/mol # Calculated enthalpy of reaction Np(OH)4 -# Enthalpy of formation: -379.964 kcal/mol - -analytic -5.5904e+003 -1.3639e+000 1.6112e+005 2.2013e+003 2.7498e+003 -# -Range: 25-150 - -2.0000 SO4-- + 1.0000 Np++++ = Np(SO4)2 - -llnl_gamma 3.0 - log_k +9.9000 - -delta_H 40.005 kJ/mol # Calculated enthalpy of reaction Np(SO4)2 -# Enthalpy of formation: -558.126 kcal/mol - -analytic -9.0765e+002 -1.8494e-001 2.7951e+004 3.5521e+002 4.7702e+002 -# -Range: 25-150 - -1.0000 Np++++ + 1.0000 Cl- = NpCl+++ - -llnl_gamma 5.0 - log_k +0.2000 - -delta_H 20.3737 kJ/mol # Calculated enthalpy of reaction NpCl+3 -# Enthalpy of formation: -167.951 kcal/mol - -analytic 8.3169e+002 2.6267e-001 -2.1618e+004 -3.3838e+002 -3.6898e+002 -# -Range: 25-150 - -2.0000 Cl- + 1.0000 Np++++ = NpCl2++ - -llnl_gamma 4.5 - log_k -0.1 - -delta_H 94.5853 kJ/mol # Calculated enthalpy of reaction NpCl2+2 -# Enthalpy of formation: -190.147 kcal/mol - -analytic -1.5751e+003 -3.8759e-001 4.2054e+004 6.2619e+002 7.1777e+002 -# -Range: 25-150 - -1.0000 Np++++ + 1.0000 F- = NpF+++ - -llnl_gamma 5.0 - log_k +8.7000 - -delta_H -3.43746 kJ/mol # Calculated enthalpy of reaction NpF+3 -# Enthalpy of formation: -213.859 kcal/mol - -analytic 2.7613e+000 1.3498e-003 -1.6411e+003 2.9074e+000 3.4192e+005 -# -Range: 25-150 - -2.0000 F- + 1.0000 Np++++ = NpF2++ - -llnl_gamma 4.5 - log_k +15.4000 - -delta_H 6.03094 kJ/mol # Calculated enthalpy of reaction NpF2+2 -# Enthalpy of formation: -291.746 kcal/mol - -analytic -2.6793e+002 -4.2056e-002 9.7952e+003 1.0629e+002 1.6715e+002 -# -Range: 25-150 - -1.0000 Np+++ + 1.0000 HPO4-- + 1.0000 H+ = NpH2PO4++ - -llnl_gamma 4.5 - log_k +2.4000 - -delta_H 6.0874 kJ/mol # Calculated enthalpy of reaction NpH2PO4+2 -# Enthalpy of formation: -433.34 kcal/mol - -analytic 6.0731e+003 1.4733e+000 -1.7919e+005 -2.3880e+003 -3.0582e+003 -# -Range: 25-150 - -1.0000 Np++++ + 1.0000 HPO4-- = NpHPO4++ - -llnl_gamma 4.5 - log_k +12.9000 - -delta_H 7.54554 kJ/mol # Calculated enthalpy of reaction NpHPO4+2 -# Enthalpy of formation: -439.899 kcal/mol - -analytic -7.2792e+003 -1.7476e+000 2.1770e+005 2.8624e+003 3.7154e+003 -# -Range: 25-150 - -2.0000 HCO3- + 1.0000 NpO2++ = NpO2(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -6.6576 - -delta_H 57.2588 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-2 -# Enthalpy of formation: -521.77 kcal/mol - -analytic 2.6597e+002 7.5850e-002 -9.9987e+003 -1.0576e+002 -1.5610e+002 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 NpO2+ = NpO2(CO3)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -13.6576 - -delta_H 58.1553 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-3 -# Enthalpy of formation: -549.642 kcal/mol - -analytic 2.6012e+002 7.3174e-002 -1.0250e+004 -1.0556e+002 -1.6002e+002 -# -Range: 0-300 - -3.0000 HCO3- + 1.0000 NpO2+ = NpO2(CO3)3-5 +3.0000 H+ - -llnl_gamma 4.0 - log_k -22.4864 - -delta_H 70.176 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-5 -# Enthalpy of formation: -711.667 kcal/mol - -analytic 3.7433e+002 1.2938e-001 -1.2791e+004 -1.5861e+002 -1.9970e+002 -# -Range: 0-300 - -3.0000 HCO3- + 1.0000 NpO2++ = NpO2(CO3)3---- +3.0000 H+ - -llnl_gamma 4.0 - log_k -10.5864 - -delta_H 3.14711 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-4 -# Enthalpy of formation: -699.601 kcal/mol - -analytic 3.7956e+002 1.1163e-001 -1.0607e+004 -1.5674e+002 -1.6562e+002 -# -Range: 0-300 - -1.0000 NpO2+ + 1.0000 HCO3- = NpO2CO3- +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.7288 - -delta_H 69.1634 kJ/mol # Calculated enthalpy of reaction NpO2CO3- -# Enthalpy of formation: -382.113 kcal/mol - -analytic 1.4634e+002 2.6576e-002 -8.2036e+003 -5.3534e+001 -1.2805e+002 -# -Range: 0-300 - -1.0000 NpO2+ + 1.0000 Cl- = NpO2Cl - -llnl_gamma 3.0 - log_k -0.4 - -delta_H 15.4492 kJ/mol # Calculated enthalpy of reaction NpO2Cl -# Enthalpy of formation: -269.986 kcal/mol - -analytic 4.5109e+002 9.0437e-002 -1.5453e+004 -1.7241e+002 -2.6371e+002 -# -Range: 25-150 - -1.0000 NpO2++ + 1.0000 Cl- = NpO2Cl+ - -llnl_gamma 4.0 - log_k -0.2 - -delta_H 11.6239 kJ/mol # Calculated enthalpy of reaction NpO2Cl+ -# Enthalpy of formation: -242.814 kcal/mol - -analytic -1.2276e+003 -2.5435e-001 3.8507e+004 4.7447e+002 6.5715e+002 -# -Range: 25-150 - -1.0000 NpO2+ + 1.0000 F- = NpO2F - -llnl_gamma 3.0 - log_k +1.0000 - -delta_H 34.2521 kJ/mol # Calculated enthalpy of reaction NpO2F -# Enthalpy of formation: -305.709 kcal/mol - -analytic -1.9364e+002 -4.4083e-002 4.5602e+003 7.7791e+001 7.7840e+001 -# -Range: 25-150 - -1.0000 NpO2++ + 1.0000 F- = NpO2F+ - -llnl_gamma 4.0 - log_k +4.6000 - -delta_H 0.883568 kJ/mol # Calculated enthalpy of reaction NpO2F+ -# Enthalpy of formation: -285.598 kcal/mol - -analytic 9.6320e+002 2.4799e-001 -2.7614e+004 -3.7985e+002 -4.7128e+002 -# -Range: 25-150 - -2.0000 F- + 1.0000 NpO2++ = NpO2F2 - -llnl_gamma 3.0 - log_k +7.8000 - -delta_H 2.60319 kJ/mol # Calculated enthalpy of reaction NpO2F2 -# Enthalpy of formation: -365.337 kcal/mol - -analytic 1.9648e+002 6.4083e-002 -4.5601e+003 -7.7790e+001 -7.7840e+001 -# -Range: 25-150 - -1.0000 NpO2+ + 1.0000 HPO4-- + 1.0000 H+ = NpO2H2PO4 - -llnl_gamma 3.0 - log_k +0.6000 - -delta_H 18.717 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4 -# Enthalpy of formation: -538.087 kcal/mol - -analytic 1.0890e+003 2.7738e-001 -3.0654e+004 -4.3171e+002 -5.2317e+002 -# -Range: 25-150 - -1.0000 NpO2++ + 1.0000 HPO4-- + 1.0000 H+ = NpO2H2PO4+ - -llnl_gamma 4.0 - log_k +2.3000 - -delta_H 9.31014 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4+ -# Enthalpy of formation: -512.249 kcal/mol - -analytic -5.6996e+003 -1.4008e+000 1.6898e+005 2.2441e+003 2.8838e+003 -# -Range: 25-150 - -1.0000 NpO2++ + 1.0000 HPO4-- = NpO2HPO4 - -llnl_gamma 3.0 - log_k +8.2000 - -delta_H -6.47609 kJ/mol # Calculated enthalpy of reaction NpO2HPO4 -# Enthalpy of formation: -516.022 kcal/mol - -analytic 4.8515e+003 1.2189e+000 -1.4069e+005 -1.9135e+003 -2.4011e+003 -# -Range: 25-150 - -1.0000 NpO2+ + 1.0000 HPO4-- = NpO2HPO4- - -llnl_gamma 4.0 - log_k +3.5000 - -delta_H 49.8668 kJ/mol # Calculated enthalpy of reaction NpO2HPO4- -# Enthalpy of formation: -530.642 kcal/mol - -analytic -4.1705e+003 -9.9302e-001 1.2287e+005 1.6399e+003 2.0969e+003 -# -Range: 25-150 - -1.0000 NpO2+ + 1.0000 H2O = NpO2OH +1.0000 H+ - -llnl_gamma 3.0 - log_k -8.9 - -delta_H 43.6285 kJ/mol # Calculated enthalpy of reaction NpO2OH -# Enthalpy of formation: -291.635 kcal/mol - -analytic -4.5710e+002 -1.2286e-001 1.0640e+004 1.8151e+002 1.8163e+002 -# -Range: 25-150 - -1.0000 NpO2++ + 1.0000 H2O = NpO2OH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.2 - -delta_H 43.3805 kJ/mol # Calculated enthalpy of reaction NpO2OH+ -# Enthalpy of formation: -263.608 kcal/mol - -analytic 1.7485e+002 4.0017e-002 -7.5154e+003 -6.7399e+001 -1.2823e+002 -# -Range: 25-150 - -1.0000 SO4-- + 1.0000 NpO2++ = NpO2SO4 - -llnl_gamma 3.0 - log_k +3.3000 - -delta_H 19.8789 kJ/mol # Calculated enthalpy of reaction NpO2SO4 -# Enthalpy of formation: -418.308 kcal/mol - -analytic -1.5624e+002 7.3296e-003 6.7555e+003 5.4435e+001 1.1527e+002 -# -Range: 25-150 - -1.0000 SO4-- + 1.0000 NpO2+ = NpO2SO4- - -llnl_gamma 4.0 - log_k +0.4000 - -delta_H 19.1395 kJ/mol # Calculated enthalpy of reaction NpO2SO4- -# Enthalpy of formation: -446.571 kcal/mol - -analytic -3.1804e+002 -9.3472e-002 7.6002e+003 1.2965e+002 1.2973e+002 -# -Range: 25-150 - -1.0000 Np+++ + 1.0000 H2O = NpOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7 - -delta_H 50.1031 kJ/mol # Calculated enthalpy of reaction NpOH+2 -# Enthalpy of formation: -182.322 kcal/mol - -analytic 1.4062e+002 3.2671e-002 -6.7555e+003 -5.4435e+001 -1.1526e+002 -# -Range: 25-150 - -1.0000 Np++++ + 1.0000 H2O = NpOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -1 - -delta_H 51.0089 kJ/mol # Calculated enthalpy of reaction NpOH+3 -# Enthalpy of formation: -189.013 kcal/mol - -analytic -1.8373e+002 -5.2443e-002 2.7025e+003 7.6503e+001 4.6154e+001 -# -Range: 25-150 - -1.0000 SO4-- + 1.0000 Np++++ = NpSO4++ - -llnl_gamma 4.5 - log_k +5.5000 - -delta_H 20.7377 kJ/mol # Calculated enthalpy of reaction NpSO4+2 -# Enthalpy of formation: -345.331 kcal/mol - -analytic 3.9477e+002 1.1981e-001 -1.0978e+004 -1.5687e+002 -1.8736e+002 -# -Range: 25-150 - -1.0000 H2O = OH- +1.0000 H+ - -llnl_gamma 3.5 - log_k -13.9951 - -delta_H 55.8146 kJ/mol # Calculated enthalpy of reaction OH- -# Enthalpy of formation: -54.977 kcal/mol - -analytic -6.7506e+001 -3.0619e-002 -1.9901e+003 2.8004e+001 -3.1033e+001 -# -Range: 0-300 - -2.0000 HPO4-- = P2O7---- +1.0000 H2O - -llnl_gamma 4.0 - log_k -3.7463 - -delta_H 27.2256 kJ/mol # Calculated enthalpy of reaction P2O7-4 -# Enthalpy of formation: -2271.1 kJ/mol - -analytic 4.0885e+002 1.3243e-001 -1.1373e+004 -1.6727e+002 -1.7758e+002 -# -Range: 0-300 - -3.0000 H+ + 1.0000 HPO4-- = PH4+ +2.0000 O2 - -llnl_gamma 4.0 - log_k -212.7409 - -delta_H 0 # Not possible to calculate enthalpy of reaction PH4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 F- = PO3F-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +7.1993 - -delta_H 0 # Not possible to calculate enthalpy of reaction PO3F-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- = PO4--- +1.0000 H+ - -llnl_gamma 4.0 - log_k -12.3218 - -delta_H 14.7068 kJ/mol # Calculated enthalpy of reaction PO4-3 -# Enthalpy of formation: -305.3 kcal/mol - -analytic -7.6170e+001 -3.3574e-002 1.3405e+002 2.9658e+001 2.1140e+000 -# -Range: 0-300 - -2.0000 BrO3- + 1.0000 Pb++ = Pb(BrO3)2 - -llnl_gamma 3.0 - log_k +5.1939 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(BrO3)2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Pb++ = Pb(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -6.1133 - -delta_H 10.5437 kJ/mol # Calculated enthalpy of reaction Pb(CH3COO)2 -# Enthalpy of formation: -229.46 kcal/mol - -analytic -1.7315e+001 -1.0618e-003 -3.6365e+003 6.9263e+000 5.8659e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Pb++ = Pb(CH3COO)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -8.972 - -delta_H -2.84512 kJ/mol # Calculated enthalpy of reaction Pb(CH3COO)3- -# Enthalpy of formation: -348.76 kcal/mol - -analytic 1.2417e+001 -3.1481e-003 -9.4152e+003 -1.6846e+000 1.3623e+006 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Pb++ = Pb(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -11.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(CO3)2-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 ClO3- + 1.0000 Pb++ = Pb(ClO3)2 - -llnl_gamma 3.0 - log_k -0.5133 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(ClO3)2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Pb++ = Pb(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -17.0902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Pb++ = Pb(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -28.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)3- -# Enthalpy of formation: -0 kcal/mol - -2.0000 Thiocyanate- + 1.0000 Pb++ = Pb(Thiocyanate)2 - -llnl_gamma 3.0 - log_k +1.2455 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 Pb++ + 1.0000 H2O = Pb2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -6.3951 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2OH+3 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 3.0000 Pb++ = Pb3(OH)4++ +4.0000 H+ - -llnl_gamma 4.5 - log_k -23.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(OH)4+2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 Pb++ + 4.0000 H2O = Pb4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -20.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol - -8.0000 H2O + 6.0000 Pb++ = Pb6(OH)8++++ +8.0000 H+ - -llnl_gamma 5.5 - log_k -43.5606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb6(OH)8+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 Br- = PbBr+ - -llnl_gamma 4.0 - log_k +1.1831 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 Br- + 1.0000 Pb++ = PbBr2 - -llnl_gamma 3.0 - log_k +1.5062 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 Br- + 1.0000 Pb++ = PbBr3- - -llnl_gamma 4.0 - log_k +1.2336 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr3- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 BrO3- = PbBrO3+ - -llnl_gamma 4.0 - log_k +1.9373 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 CH3COOH = PbCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.3603 - -delta_H -2.33147e-15 kJ/mol # Calculated enthalpy of reaction PbCH3COO+ -# Enthalpy of formation: -115.88 kcal/mol - -analytic -2.6822e+001 1.0992e-003 7.3688e+002 8.4407e+000 7.0266e+004 -# -Range: 0-300 - -1.0000 Pb++ + 1.0000 HCO3- = PbCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -3.7488 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 Cl- = PbCl+ - -llnl_gamma 4.0 - log_k +1.4374 - -delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+ -# Enthalpy of formation: -38.63 kcal/mol - -analytic 1.1948e+002 4.3527e-002 -2.7666e+003 -4.9190e+001 -4.3206e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Pb++ = PbCl2 - -llnl_gamma 3.0 - log_k +2.0026 - -delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2 -# Enthalpy of formation: -77.7 kcal/mol - -analytic 2.2537e+002 7.7574e-002 -5.5112e+003 -9.2131e+001 -8.6064e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Pb++ = PbCl3- - -llnl_gamma 4.0 - log_k +1.6881 - -delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3- -# Enthalpy of formation: -117.7 kcal/mol - -analytic 2.5254e+002 8.9159e-002 -6.0116e+003 -1.0395e+002 -9.3880e+001 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Pb++ = PbCl4-- - -llnl_gamma 4.0 - log_k +1.4909 - -delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2 -# Enthalpy of formation: -161.23 kcal/mol - -analytic 1.4048e+002 7.6332e-002 -1.1507e+003 -6.3786e+001 -1.7997e+001 -# -Range: 0-300 - -1.0000 Pb++ + 1.0000 ClO3- = PbClO3+ - -llnl_gamma 4.0 - log_k -0.2208 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbClO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 F- = PbF+ - -llnl_gamma 4.0 - log_k +0.8284 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbF+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Pb++ = PbF2 - -llnl_gamma 3.0 - log_k +1.6132 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbF2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 HPO4-- + 1.0000 H+ = PbH2PO4+ - -llnl_gamma 4.0 - log_k +1.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbH2PO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 HPO4-- = PbHPO4 - -llnl_gamma 3.0 - log_k +3.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 I- = PbI+ - -llnl_gamma 4.0 - log_k +1.9597 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 I- + 1.0000 Pb++ = PbI2 - -llnl_gamma 3.0 - log_k +2.7615 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 I- + 1.0000 Pb++ = PbI3- - -llnl_gamma 4.0 - log_k +3.3355 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 I- + 1.0000 Pb++ = PbI4-- - -llnl_gamma 4.0 - log_k +4.0672 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 NO3- = PbNO3+ - -llnl_gamma 4.0 - log_k +1.2271 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbNO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 H2O = PbOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.6951 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbOH+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pb++ = PbP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +7.4136 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbP2O7-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Thiocyanate- + 1.0000 Pb++ = PbThiocyanate+ - -llnl_gamma 4.0 - log_k +0.9827 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbThiocyanate+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pd++ + 1.0000 Cl- = PdCl+ - -llnl_gamma 4.0 - log_k +6.0993 - -delta_H -31.995 kJ/mol # Calculated enthalpy of reaction PdCl+ -# Enthalpy of formation: -5.5 kcal/mol - -analytic 7.2852e+001 3.6886e-002 7.3102e+002 -3.2402e+001 1.1385e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Pd++ = PdCl2 - -llnl_gamma 3.0 - log_k +10.7327 - -delta_H -66.1658 kJ/mol # Calculated enthalpy of reaction PdCl2 -# Enthalpy of formation: -53.6 kcal/mol - -analytic 1.6849e+002 7.9321e-002 8.2874e+002 -7.4416e+001 1.2882e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Pd++ = PdCl3- - -llnl_gamma 4.0 - log_k +13.0937 - -delta_H -101.592 kJ/mol # Calculated enthalpy of reaction PdCl3- -# Enthalpy of formation: -102 kcal/mol - -analytic 4.5978e+001 6.2999e-002 6.9333e+003 -3.0257e+001 1.0817e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Pd++ = PdCl4-- - -llnl_gamma 4.0 - log_k +15.1615 - -delta_H -152.08 kJ/mol # Calculated enthalpy of reaction PdCl4-2 -# Enthalpy of formation: -154 kcal/mol - -analytic -3.2209e+001 5.3432e-002 1.2180e+004 -3.7814e+000 1.9006e+002 -# -Range: 0-300 - -1.0000 Pd++ + 1.0000 H2O = PdO +2.0000 H+ - -llnl_gamma 3.0 - log_k -2.19 - -delta_H 6.43081 kJ/mol # Calculated enthalpy of reaction PdO -# Enthalpy of formation: -24.7 kcal/mol - -analytic 1.3587e+002 2.9292e-002 -4.6645e+003 -5.2997e+001 -7.2825e+001 -# -Range: 0-300 - -1.0000 Pd++ + 1.0000 H2O = PdOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -1.0905 - -delta_H -3.19239 kJ/mol # Calculated enthalpy of reaction PdOH+ -# Enthalpy of formation: -27 kcal/mol - -analytic 1.4291e+001 5.8382e-003 -1.9881e+002 -6.6475e+000 -3.1065e+000 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Pm+++ = Pm(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.9576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pm+++ = Pm(HPO4)2- - -llnl_gamma 4.0 - log_k +9.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Pm+++ = Pm(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.7902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)2+ -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Pm+++ = Pm(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -26.1852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pm+++ = Pm(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.6837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Pm+++ = Pm(SO4)2- - -llnl_gamma 4.0 - log_k +5.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HCO3- = PmCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.6288 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmCO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 Cl- = PmCl++ - -llnl_gamma 4.5 - log_k +0.3400 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmCl+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 F- = PmF++ - -llnl_gamma 4.5 - log_k +3.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmF+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HPO4-- + 1.0000 H+ = PmH2PO4++ - -llnl_gamma 4.5 - log_k +9.6054 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmH2PO4+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HCO3- = PmHCO3++ - -llnl_gamma 4.5 - log_k +2.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmHCO3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HPO4-- = PmHPO4+ - -llnl_gamma 4.0 - log_k +5.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 NO3- = PmNO3++ - -llnl_gamma 4.5 - log_k +1.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmNO3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 H2O = PmOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.9951 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmOH+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HPO4-- = PmPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.3718 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Pm+++ = PmSO4+ - -llnl_gamma 4.0 - log_k +3.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmSO4+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Pr+++ = Pr(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.8525 - -delta_H -23.8906 kJ/mol # Calculated enthalpy of reaction Pr(CH3COO)2+ -# Enthalpy of formation: -406.71 kcal/mol - -analytic -1.6464e+001 6.2989e-004 -4.4771e+002 3.6947e+000 3.3816e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Pr+++ = Pr(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.2023 - -delta_H -40.3756 kJ/mol # Calculated enthalpy of reaction Pr(CH3COO)3 -# Enthalpy of formation: -526.75 kcal/mol - -analytic -1.2007e+001 4.9332e-004 0.0000e+000 0.0000e+000 3.2789e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Pr+++ = Pr(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.1076 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pr+++ = Pr(HPO4)2- - -llnl_gamma 4.0 - log_k +8.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pr+++ = Pr(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.5637 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Pr+++ = Pr(SO4)2- - -llnl_gamma 4.0 - log_k +4.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pr+++ + 1.0000 CH3COOH = PrCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.0451 - -delta_H -12.4683 kJ/mol # Calculated enthalpy of reaction PrAcetate+2 -# Enthalpy of formation: -287.88 kcal/mol - -analytic -8.5624e+000 9.3878e-004 -5.7551e+002 2.2087e+000 2.4126e+005 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 HCO3- = PrCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.7722 - -delta_H 92.458 kJ/mol # Calculated enthalpy of reaction PrCO3+ -# Enthalpy of formation: -311.6 kcal/mol - -analytic 2.2079e+002 5.2156e-002 -6.5821e+003 -8.7701e+001 -1.0277e+002 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 Cl- = PrCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction PrCl+2 -# Enthalpy of formation: -205.3 kcal/mol - -analytic 7.5152e+001 3.7446e-002 -1.6661e+003 -3.2490e+001 -2.6020e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Pr+++ = PrCl2+ - -llnl_gamma 4.0 - log_k +0.0308 - -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction PrCl2+ -# Enthalpy of formation: -243.8 kcal/mol - -analytic 2.2848e+002 8.1250e-002 -6.0401e+003 -9.3909e+001 -9.4318e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Pr+++ = PrCl3 - -llnl_gamma 3.0 - log_k -0.3203 - -delta_H 14.2214 kJ/mol # Calculated enthalpy of reaction PrCl3 -# Enthalpy of formation: -285.2 kcal/mol - -analytic 4.5016e+002 1.3095e-001 -1.2588e+004 -1.8075e+002 -1.9656e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Pr+++ = PrCl4- - -llnl_gamma 4.0 - log_k -0.7447 - -delta_H -4.05011 kJ/mol # Calculated enthalpy of reaction PrCl4- -# Enthalpy of formation: -329.5 kcal/mol - -analytic 5.4245e+002 1.3647e-001 -1.5564e+004 -2.1485e+002 -2.4302e+002 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 F- = PrF++ - -llnl_gamma 4.5 - log_k +4.2221 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction PrF+2 -# Enthalpy of formation: -243.4 kcal/mol - -analytic 9.5146e+001 4.1115e-002 -2.5463e+003 -3.8236e+001 -3.9760e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Pr+++ = PrF2+ - -llnl_gamma 4.0 - log_k +7.3447 - -delta_H 14.644 kJ/mol # Calculated enthalpy of reaction PrF2+ -# Enthalpy of formation: -325.6 kcal/mol - -analytic 2.4997e+002 8.5251e-002 -6.1908e+003 -9.9912e+001 -9.6675e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Pr+++ = PrF3 - -llnl_gamma 3.0 - log_k +9.6610 - -delta_H -6.4852 kJ/mol # Calculated enthalpy of reaction PrF3 -# Enthalpy of formation: -410.8 kcal/mol - -analytic 4.7885e+002 1.3764e-001 -1.2080e+004 -1.8980e+002 -1.8864e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Pr+++ = PrF4- - -llnl_gamma 4.0 - log_k +11.5375 - -delta_H -47.2792 kJ/mol # Calculated enthalpy of reaction PrF4- -# Enthalpy of formation: -500.7 kcal/mol - -analytic 5.5774e+002 1.4067e-001 -1.3523e+004 -2.1933e+002 -2.1118e+002 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 HPO4-- + 1.0000 H+ = PrH2PO4++ - -llnl_gamma 4.5 - log_k +9.5950 - -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction PrH2PO4+2 -# Enthalpy of formation: -481.5 kcal/mol - -analytic 1.0501e+002 6.3059e-002 3.8161e+002 -4.6656e+001 5.9234e+000 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 HCO3- = PrHCO3++ - -llnl_gamma 4.5 - log_k +1.9190 - -delta_H -12.9788 kJ/mol # Calculated enthalpy of reaction PrHCO3+2 -# Enthalpy of formation: -336.8 kcal/mol - -analytic 2.2010e+001 2.8541e-002 1.4574e+003 -1.3522e+001 2.2734e+001 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 HPO4-- = PrHPO4+ - -llnl_gamma 4.0 - log_k +5.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pr+++ + 1.0000 NO3- = PrNO3++ - -llnl_gamma 4.5 - log_k +0.6546 - -delta_H -27.9115 kJ/mol # Calculated enthalpy of reaction PrNO3+2 -# Enthalpy of formation: -224.9 kcal/mol - -analytic 1.4297e+001 2.5214e-002 2.1756e+003 -1.1490e+001 3.3943e+001 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 H2O = PrO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -17.29 - -delta_H 117.642 kJ/mol # Calculated enthalpy of reaction PrO+ -# Enthalpy of formation: -209 kcal/mol - -analytic 1.7927e+002 2.9467e-002 -1.3815e+004 -6.4259e+001 -2.1562e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Pr+++ = PrO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -37.5852 - -delta_H 301.39 kJ/mol # Calculated enthalpy of reaction PrO2- -# Enthalpy of formation: -233.4 kcal/mol - -analytic -4.4480e+001 -1.6327e-002 -7.9031e+003 1.9348e+001 -8.5440e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Pr+++ = PrO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -26.5901 - -delta_H 231.517 kJ/mol # Calculated enthalpy of reaction PrO2H -# Enthalpy of formation: -250.1 kcal/mol - -analytic 3.3930e+002 4.4894e-002 -2.3769e+004 -1.2106e+002 -3.7099e+002 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 H2O = PrOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -8.274 - -delta_H 81.2407 kJ/mol # Calculated enthalpy of reaction PrOH+2 -# Enthalpy of formation: -217.7 kcal/mol - -analytic 5.6599e+001 1.1073e-002 -5.9197e+003 -1.9525e+001 -9.2388e+001 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 HPO4-- = PrPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.7218 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Pr+++ = PrSO4+ - -llnl_gamma 4.0 - log_k -3.687 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction PrSO4+ -# Enthalpy of formation: -381.5 kcal/mol - -analytic 2.9156e+002 8.4671e-002 -1.0638e+004 -1.1509e+002 -1.6608e+002 -# -Range: 0-300 - -2.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)2 - -llnl_gamma 3.0 - log_k +23.8483 - -delta_H 25.9279 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 -# Enthalpy of formation: -3094.13 kJ/mol - -analytic 9.2387e+002 3.2577e-001 -2.0881e+004 -3.7466e+002 -3.5492e+002 -# -Range: 0-200 - -3.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)3-- - -llnl_gamma 4.0 - log_k +33.4599 - -delta_H -6.49412 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)3-2 -# Enthalpy of formation: -4418.63 kJ/mol - -analytic 6.4515e+002 2.3011e-001 -1.2752e+004 -2.5761e+002 -1.9917e+002 -# -Range: 0-300 - -4.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)4---- - -llnl_gamma 4.0 - log_k +43.2467 - -delta_H -77.4832 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)4-4 -# Enthalpy of formation: -5781.7 kJ/mol - -analytic 8.5301e+002 3.0730e-001 -1.3644e+004 -3.4573e+002 -2.1316e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Pu++++ = Pu(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -2.3235 - -delta_H 74.3477 kJ/mol # Calculated enthalpy of reaction Pu(OH)2+2 -# Enthalpy of formation: -1033.22 kJ/mol - -analytic 7.5979e+001 6.8394e-003 -6.3710e+003 -2.3833e+001 -9.9435e+001 -# -Range: 0-300 - -3.0000 H2O + 1.0000 Pu++++ = Pu(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -5.281 - -delta_H 96.578 kJ/mol # Calculated enthalpy of reaction Pu(OH)3+ -# Enthalpy of formation: -1296.83 kJ/mol - -analytic 1.0874e+002 1.4199e-002 -8.4954e+003 -3.6278e+001 -1.3259e+002 -# -Range: 0-300 - -4.0000 H2O + 1.0000 Pu++++ = Pu(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -9.5174 - -delta_H 109.113 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 -# Enthalpy of formation: -1570.13 kJ/mol - -analytic 2.7913e+002 1.0252e-001 -1.1289e+004 -1.1369e+002 -1.9181e+002 -# -Range: 0-200 - -2.0000 SO4-- + 1.0000 Pu++++ = Pu(SO4)2 - -llnl_gamma 3.0 - log_k +10.2456 - -delta_H 41.0122 kJ/mol # Calculated enthalpy of reaction Pu(SO4)2 -# Enthalpy of formation: -2314.08 kJ/mol - -analytic 5.3705e+002 1.9308e-001 -1.3213e+004 -2.1824e+002 -2.2457e+002 -# -Range: 0-200 - -2.0000 SO4-- + 1.0000 Pu+++ = Pu(SO4)2- - -llnl_gamma 4.0 - log_k +6.3200 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pu(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pu++++ + 1.0000 F- = PuF+++ - -llnl_gamma 5.0 - log_k +8.4600 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF+3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Pu++++ = PuF2++ - -llnl_gamma 4.5 - log_k +15.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF2+2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 1.0000 Pu++++ = PuF3+ - -llnl_gamma 4.0 - log_k +5.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF3+ -# Enthalpy of formation: -0 kcal/mol - -4.0000 F- + 1.0000 Pu++++ = PuF4 - -llnl_gamma 3.0 - log_k +4.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pu+++ + 1.0000 HPO4-- + 1.0000 H+ = PuH2PO4++ - -llnl_gamma 4.5 - log_k +9.6817 - -delta_H 28.597 kJ/mol # Calculated enthalpy of reaction PuH2PO4+2 -# Enthalpy of formation: -1855.04 kJ/mol - -analytic 2.1595e+002 6.4502e-002 -6.4723e+003 -8.2341e+001 -1.0106e+002 -# -Range: 0-300 - -1.0000 Pu++++ + 1.0000 HPO4-- = PuHPO4++ - -llnl_gamma 4.5 - log_k +13.0103 - -delta_H 40.306 kJ/mol # Calculated enthalpy of reaction PuHPO4+2 -# Enthalpy of formation: -1787.67 kJ/mol - -analytic 2.2662e+002 7.1073e-002 -6.9134e+003 -8.5504e+001 -1.0794e+002 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 PuO2++ = PuO2(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.7428 - -delta_H 52.3345 kJ/mol # Calculated enthalpy of reaction PuO2(CO3)2-2 -# Enthalpy of formation: -2149.11 kJ/mol - -analytic 2.6589e+002 7.6132e-002 -9.7187e+003 -1.0577e+002 -1.5173e+002 -# -Range: 0-300 - -1.0000 PuO2++ + 1.0000 Cl- = PuO2Cl+ - -llnl_gamma 4.0 - log_k -0.2084 - -delta_H 11.6127 kJ/mol # Calculated enthalpy of reaction PuO2Cl+ -# Enthalpy of formation: -977.045 kJ/mol - -analytic 9.8385e+001 3.8617e-002 -2.5210e+003 -4.1075e+001 -3.9367e+001 -# -Range: 0-300 - -1.0000 PuO2++ + 1.0000 F- = PuO2F+ - -llnl_gamma 4.0 - log_k +5.6674 - -delta_H -5.2094 kJ/mol # Calculated enthalpy of reaction PuO2F+ -# Enthalpy of formation: -1162.13 kJ/mol - -analytic 1.1412e+002 4.1224e-002 -2.0503e+003 -4.6009e+001 -3.2027e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 PuO2++ = PuO2F2 - -llnl_gamma 3.0 - log_k +10.9669 - -delta_H -15.4738 kJ/mol # Calculated enthalpy of reaction PuO2F2 -# Enthalpy of formation: -1507.75 kJ/mol - -analytic 2.5502e+002 9.1597e-002 -4.4557e+003 -1.0362e+002 -7.5752e+001 -# -Range: 0-200 - -3.0000 F- + 1.0000 PuO2++ = PuO2F3- - -llnl_gamma 4.0 - log_k +15.9160 - -delta_H -29.4032 kJ/mol # Calculated enthalpy of reaction PuO2F3- -# Enthalpy of formation: -1857.02 kJ/mol - -analytic 3.6102e+002 8.6364e-002 -8.7129e+003 -1.3805e+002 -1.3606e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 PuO2++ = PuO2F4-- - -llnl_gamma 4.0 - log_k +18.7628 - -delta_H -39.9786 kJ/mol # Calculated enthalpy of reaction PuO2F4-2 -# Enthalpy of formation: -2202.95 kJ/mol - -analytic 4.6913e+002 1.3649e-001 -9.8336e+003 -1.8510e+002 -1.5358e+002 -# -Range: 0-300 - -1.0000 PuO2++ + 1.0000 HPO4-- + 1.0000 H+ = PuO2H2PO4+ - -llnl_gamma 4.0 - log_k +11.2059 - -delta_H -6.63904 kJ/mol # Calculated enthalpy of reaction PuO2H2PO4+ -# Enthalpy of formation: -2120.3 kJ/mol - -analytic 2.1053e+002 6.8671e-002 -4.3390e+003 -8.2930e+001 -6.7768e+001 -# -Range: 0-300 - -1.0000 PuO2+ + 1.0000 H2O = PuO2OH +1.0000 H+ - -llnl_gamma 3.0 - log_k -9.6674 - -delta_H 69.1763 kJ/mol # Calculated enthalpy of reaction PuO2OH -# Enthalpy of formation: -1130.85 kJ/mol - -analytic 7.1080e+001 2.6141e-002 -5.0337e+003 -2.8956e+001 -8.5504e+001 -# -Range: 0-200 - -1.0000 PuO2++ + 1.0000 H2O = PuO2OH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.6379 - -delta_H 45.2823 kJ/mol # Calculated enthalpy of reaction PuO2OH+ -# Enthalpy of formation: -1062.13 kJ/mol - -analytic -3.9012e+000 1.1645e-003 -1.1299e+003 1.3419e+000 -1.4364e+005 -# -Range: 0-300 - -1.0000 SO4-- + 1.0000 PuO2++ = PuO2SO4 - -llnl_gamma 3.0 - log_k +3.2658 - -delta_H 20.0746 kJ/mol # Calculated enthalpy of reaction PuO2SO4 -# Enthalpy of formation: -1711.11 kJ/mol - -analytic 2.0363e+002 7.3903e-002 -5.1940e+003 -8.2833e+001 -8.8273e+001 -# -Range: 0-200 - -1.0000 Pu+++ + 1.0000 H2O = PuOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.968 - -delta_H 53.5143 kJ/mol # Calculated enthalpy of reaction PuOH+2 -# Enthalpy of formation: -823.876 kJ/mol - -analytic 3.0065e+000 3.0278e-003 -1.9675e+003 -1.6100e+000 -1.1524e+005 -# -Range: 0-300 - -1.0000 Pu++++ + 1.0000 H2O = PuOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -0.5048 - -delta_H 48.1823 kJ/mol # Calculated enthalpy of reaction PuOH+3 -# Enthalpy of formation: -773.549 kJ/mol - -analytic 4.1056e+001 1.1119e-003 -3.9252e+003 -1.1609e+001 -6.1260e+001 -# -Range: 0-300 - -1.0000 SO4-- + 1.0000 Pu+++ = PuSO4+ - -llnl_gamma 4.0 - log_k +3.4935 - -delta_H 14.6006 kJ/mol # Calculated enthalpy of reaction PuSO4+ -# Enthalpy of formation: -1486.55 kJ/mol - -analytic 1.9194e+002 7.7154e-002 -4.2751e+003 -7.9646e+001 -6.6765e+001 -# -Range: 0-300 - -1.0000 SO4-- + 1.0000 Pu++++ = PuSO4++ - -llnl_gamma 4.5 - log_k +5.7710 - -delta_H 12.3336 kJ/mol # Calculated enthalpy of reaction PuSO4+2 -# Enthalpy of formation: -1433.16 kJ/mol - -analytic 1.9418e+002 7.5477e-002 -4.2767e+003 -7.9425e+001 -6.6792e+001 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Ra++ = Ra(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.9018 - -delta_H 21.0874 kJ/mol # Calculated enthalpy of reaction Ra(CH3COO)2 -# Enthalpy of formation: -353.26 kcal/mol - -analytic 2.2767e+001 3.1254e-003 -6.4558e+003 -7.2253e+000 7.0689e+005 -# -Range: 0-300 - -1.0000 Ra++ + 1.0000 CH3COOH = RaCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.709 - -delta_H 11.7989 kJ/mol # Calculated enthalpy of reaction RaCH3COO+ -# Enthalpy of formation: -239.38 kcal/mol - -analytic -1.8268e+001 2.9956e-003 1.9313e+001 5.2767e+000 4.9771e+004 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Rb+ = Rb(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.7636 - -delta_H -1.12968 kJ/mol # Calculated enthalpy of reaction Rb(CH3COO)2- -# Enthalpy of formation: -292.49 kcal/mol - -analytic -1.9198e+002 -4.2101e-002 5.5792e+003 7.1152e+001 8.7114e+001 -# -Range: 0-300 - -1.0000 Rb+ + 1.0000 Br- = RbBr - -llnl_gamma 3.0 - log_k -1.2168 - -delta_H 13.9327 kJ/mol # Calculated enthalpy of reaction RbBr -# Enthalpy of formation: -85.73 kcal/mol - -analytic 1.2054e+002 3.3825e-002 -3.9500e+003 -4.7920e+001 -6.1671e+001 -# -Range: 0-300 - -1.0000 Rb+ + 1.0000 CH3COOH = RbCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.7279 - -delta_H 4.89528 kJ/mol # Calculated enthalpy of reaction RbCH3COO -# Enthalpy of formation: -174.95 kcal/mol - -analytic 1.5661e+001 -2.4230e-003 -2.5280e+003 -5.4433e+000 2.0344e+005 -# -Range: 0-300 - -1.0000 Rb+ + 1.0000 Cl- = RbCl - -llnl_gamma 3.0 - log_k -0.9595 - -delta_H 13.1922 kJ/mol # Calculated enthalpy of reaction RbCl -# Enthalpy of formation: -96.8 kcal/mol - -analytic 1.2689e+002 3.5557e-002 -4.0822e+003 -5.0412e+001 -6.3736e+001 -# -Range: 0-300 - -1.0000 Rb+ + 1.0000 F- = RbF - -llnl_gamma 3.0 - log_k +0.9602 - -delta_H 1.92464 kJ/mol # Calculated enthalpy of reaction RbF -# Enthalpy of formation: -139.71 kcal/mol - -analytic 1.3893e+002 3.8188e-002 -3.8677e+003 -5.5109e+001 -6.0393e+001 -# -Range: 0-300 - -1.0000 Rb+ + 1.0000 I- = RbI - -llnl_gamma 3.0 - log_k -0.8136 - -delta_H 7.1128 kJ/mol # Calculated enthalpy of reaction RbI -# Enthalpy of formation: -71.92 kcal/mol - -analytic 1.1486e+002 3.3121e-002 -3.4217e+003 -4.6096e+001 -5.3426e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Ru+++ = Ru(Cl)2+ - -llnl_gamma 4.0 - log_k +3.7527 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)2+ -# Enthalpy of formation: -0 kcal/mol - -3.0000 Cl- + 1.0000 Ru+++ = Ru(Cl)3 - -llnl_gamma 3.0 - log_k +4.2976 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Ru+++ = Ru(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.5148 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ru(OH)2++ + 1.0000 Cl- = Ru(OH)2Cl+ - -llnl_gamma 4.0 - log_k +1.3858 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl2 - -llnl_gamma 3.0 - log_k +1.8081 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl3- - -llnl_gamma 4.0 - log_k +1.6172 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl4-- - -llnl_gamma 4.0 - log_k +2.7052 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ru(OH)2++ = Ru(OH)2SO4 - -llnl_gamma 3.0 - log_k +1.7941 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2SO4 -# Enthalpy of formation: -0 kcal/mol - -#3.0000 H2O + 1.0000 Ru++ + 0.5000 O2 = Ru(OH)4 +2.0000 H+ -# Ru(OH)2++ +1.0000 H2O +0.5000 O2 = 4.0000 H+ + 1.0000 RuO4-- log_k -25.2470 -# 4.0000 H+ + 1.0000 RuO4-- = Ru++ +2.0000 H2O +1.0000 O2 log_k +0.1610 -#1 + 2 + 3 -2H2O + Ru(OH)2++ = Ru(OH)4 + 2H+ - -llnl_gamma 3.0 -# log_k +18.0322 - log_k -7.0538 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Ru+++ = Ru(SO4)2- - -llnl_gamma 4.0 - log_k +3.0627 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -4.0000 Ru(OH)2++ + 4.0000 H2O = Ru4(OH)12++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k +7.1960 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru4(OH)12+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ru++ + 1.0000 Cl- = RuCl+ - -llnl_gamma 4.0 - log_k -0.4887 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ru+++ + 1.0000 Cl- = RuCl++ - -llnl_gamma 4.5 - log_k +2.1742 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Ru+++ = RuCl4- - -llnl_gamma 4.0 - log_k +4.1418 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl4- -# Enthalpy of formation: -0 kcal/mol - -5.0000 Cl- + 1.0000 Ru+++ = RuCl5-- - -llnl_gamma 4.0 - log_k +3.8457 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl5-2 -# Enthalpy of formation: -0 kcal/mol - -6.0000 Cl- + 1.0000 Ru+++ = RuCl6--- - -llnl_gamma 4.0 - log_k +3.4446 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl6-3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ru+++ + 1.0000 H2O = RuOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.2392 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuOH+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ru++ = RuSO4 - -llnl_gamma 3.0 - log_k +2.3547 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ru+++ = RuSO4+ - -llnl_gamma 4.0 - log_k +1.9518 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HS- = S-- +1.0000 H+ - -llnl_gamma 5.0 - log_k -12.9351 - -delta_H 49.0364 kJ/mol # Calculated enthalpy of reaction S-2 -# Enthalpy of formation: 32.928 kJ/mol - -analytic 9.7756e+001 3.2913e-002 -5.0784e+003 -4.1812e+001 -7.9273e+001 -# -Range: 0-300 - -2.0000 H+ + 2.0000 SO3-- = S2O5-- + H2O - -llnl_gamma 4.0 - log_k 9.5934 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O5-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.12262E+03 0.62883E-01 -0.18005E+04 -0.50798E+02 -0.28132E+02 -# -Range: 0-300 - -2.0000 H+ + 1.0000 SO3-- = SO2 +1.0000 H2O - -llnl_gamma 3.0 - log_k +9.0656 - -delta_H 26.7316 kJ/mol # Calculated enthalpy of reaction SO2 -# Enthalpy of formation: -77.194 kcal/mol - -analytic 9.4048e+001 6.2127e-002 -1.1072e+003 -4.0310e+001 -1.7305e+001 -# -Range: 0-300 - -1.0000 Sb(OH)3 + 1.0000 H+ = Sb(OH)2+ +1.0000 H2O - -llnl_gamma 4.0 - log_k +1.4900 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2+ -# Enthalpy of formation: -0 kcal/mol - - -analytic -4.9192e+000 -1.6439e-004 1.4777e+003 6.0724e-001 2.3059e+001 -# -Range: 0-300 - -1.0000 Sb(OH)3 + 1.0000 H+ + 1.0000 F- = Sb(OH)2F +1.0000 H2O - -llnl_gamma 3.0 - log_k +7.1700 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2F -# Enthalpy of formation: -0 kcal/mol - - -analytic -1.6961e+002 5.7364e-002 2.7207e+004 3.7969e+001 -2.2834e+006 -# -Range: 0-300 - -1.0000 Sb(OH)3 + 1.0000 H2O = Sb(OH)4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -11.92 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)4- -# Enthalpy of formation: -0 kcal/mol - - -analytic 4.9839e+001 -6.7112e-003 -4.8976e+003 -1.7138e+001 -8.3725e+004 -# -Range: 0-300 - -4.0000 HS- + 2.0000 Sb(OH)3 + 2.0000 H+ = Sb2S4-- +6.0000 H2O - -llnl_gamma 4.0 - log_k +39.1100 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2S4-2 -# Enthalpy of formation: -0 kcal/mol - - -analytic 1.7631e+002 8.3686e-002 9.7091e+003 -7.8605e+001 1.5145e+002 -# -Range: 0-300 - -4.0000 Cl- + 3.0000 H+ + 1.0000 Sb(OH)3 = SbCl4- +3.0000 H2O - -llnl_gamma 4.0 - log_k +3.0720 - -delta_H 0 # Not possible to calculate enthalpy of reaction SbCl4- -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Sc+++ = Sc(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.7237 - -delta_H -43.1789 kJ/mol # Calculated enthalpy of reaction Sc(CH3COO)2+ -# Enthalpy of formation: -389.32 kcal/mol - -analytic -4.1862e+001 -3.9443e-005 2.1444e+002 1.2616e+001 5.5442e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Sc+++ = Sc(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -6.6777 - -delta_H -70.0402 kJ/mol # Calculated enthalpy of reaction Sc(CH3COO)3 -# Enthalpy of formation: -511.84 kcal/mol - -analytic -5.2525e+001 1.6181e-003 7.5022e+002 1.3988e+001 7.3540e+005 -# -Range: 0-300 - -1.0000 Sc+++ + 1.0000 CH3COOH = ScCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -1.4294 - -delta_H -21.7568 kJ/mol # Calculated enthalpy of reaction ScCH3COO+2 -# Enthalpy of formation: -268.1 kcal/mol - -analytic -2.3400e+001 1.3144e-004 1.1125e+002 7.3527e+000 3.0025e+005 -# -Range: 0-300 - -6.0000 F- + 4.0000 H+ + 1.0000 SiO2 = SiF6-- +2.0000 H2O - -llnl_gamma 4.0 - log_k +26.2749 - -delta_H -70.9565 kJ/mol # Calculated enthalpy of reaction SiF6-2 -# Enthalpy of formation: -571 kcal/mol - -analytic 2.3209e+002 1.0685e-001 5.8428e+002 -9.6798e+001 9.0486e+000 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Sm+++ = Sm(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.7132 - -delta_H -25.5224 kJ/mol # Calculated enthalpy of reaction Sm(CH3COO)2+ -# Enthalpy of formation: -403.5 kcal/mol - -analytic -1.4192e+001 2.1732e-003 -1.0267e+003 2.9516e+000 4.4389e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Sm+++ = Sm(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -7.8798 - -delta_H -43.5554 kJ/mol # Calculated enthalpy of reaction Sm(CH3COO)3 -# Enthalpy of formation: -523.91 kcal/mol - -analytic -2.0765e+001 1.1047e-003 -5.1181e+002 3.4797e+000 5.0618e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Sm+++ = Sm(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Sm+++ = Sm(HPO4)2- - -llnl_gamma 4.0 - log_k +9.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -# Redundant with SmO2- -#4.0000 H2O + 1.0000 Sm+++ = Sm(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 -# log_k -36.8803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)4- -## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Sm+++ = Sm(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Sm+++ = Sm(SO4)2- - -llnl_gamma 4.0 - log_k +5.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sm+++ + 1.0000 CH3COOH = SmCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -1.9205 - -delta_H -13.598 kJ/mol # Calculated enthalpy of reaction SmCH3COO+2 -# Enthalpy of formation: -284.55 kcal/mol - -analytic -1.1734e+001 1.0889e-003 -5.1061e+002 3.3317e+000 2.6395e+005 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 HCO3- = SmCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.479 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction SmCO3+ -# Enthalpy of formation: -308.8 kcal/mol - -analytic 2.3486e+002 5.3703e-002 -7.0193e+003 -9.2863e+001 -1.0960e+002 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 Cl- = SmCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction SmCl+2 -# Enthalpy of formation: -201.7 kcal/mol - -analytic 9.4972e+001 3.9428e-002 -2.4198e+003 -3.9718e+001 -3.7787e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Sm+++ = SmCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 19.9409 kJ/mol # Calculated enthalpy of reaction SmCl2+ -# Enthalpy of formation: -240.3 kcal/mol - -analytic 2.5872e+002 8.4154e-002 -7.2061e+003 -1.0493e+002 -1.1252e+002 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Sm+++ = SmCl3 - -llnl_gamma 3.0 - log_k -0.3936 - -delta_H 13.803 kJ/mol # Calculated enthalpy of reaction SmCl3 -# Enthalpy of formation: -281.7 kcal/mol - -analytic 4.9535e+002 1.3520e-001 -1.4325e+004 -1.9720e+002 -2.2367e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Sm+++ = SmCl4- - -llnl_gamma 4.0 - log_k -0.818 - -delta_H -5.30531 kJ/mol # Calculated enthalpy of reaction SmCl4- -# Enthalpy of formation: -326.2 kcal/mol - -analytic 6.0562e+002 1.4212e-001 -1.7982e+004 -2.3782e+002 -2.8077e+002 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 F- = SmF++ - -llnl_gamma 4.5 - log_k +4.3687 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction SmF+2 -# Enthalpy of formation: -239.9 kcal/mol - -analytic 1.1514e+002 4.3117e-002 -3.2853e+003 -4.5499e+001 -5.1297e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Sm+++ = SmF2+ - -llnl_gamma 4.0 - log_k +7.6379 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction SmF2+ -# Enthalpy of formation: -322.2 kcal/mol - -analytic 2.8030e+002 8.8143e-002 -7.2857e+003 -1.1092e+002 -1.1377e+002 -# -Range: 0-300 - -3.0000 F- + 1.0000 Sm+++ = SmF3 - -llnl_gamma 3.0 - log_k +10.0275 - -delta_H -8.5772 kJ/mol # Calculated enthalpy of reaction SmF3 -# Enthalpy of formation: -407.7 kcal/mol - -analytic 5.2425e+002 1.4191e-001 -1.3728e+004 -2.0628e+002 -2.1436e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Sm+++ = SmF4- - -llnl_gamma 4.0 - log_k +11.9773 - -delta_H -49.7896 kJ/mol # Calculated enthalpy of reaction SmF4- -# Enthalpy of formation: -497.7 kcal/mol - -analytic 6.2228e+002 1.4659e-001 -1.5887e+004 -2.4275e+002 -2.4809e+002 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 HPO4-- + 1.0000 H+ = SmH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -15.8364 kJ/mol # Calculated enthalpy of reaction SmH2PO4+2 -# Enthalpy of formation: -477.8 kcal/mol - -analytic 1.2451e+002 6.4959e-002 -3.9576e+002 -5.3772e+001 -6.2124e+000 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 HCO3- = SmHCO3++ - -llnl_gamma 4.5 - log_k +1.7724 - -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction SmHCO3+2 -# Enthalpy of formation: -327.9 kcal/mol - -analytic 5.5520e+001 3.3265e-002 -7.3142e+002 -2.4727e+001 -1.1430e+001 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 HPO4-- = SmHPO4+ - -llnl_gamma 4.0 - log_k +5.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sm+++ + 1.0000 NO3- = SmNO3++ - -llnl_gamma 4.5 - log_k +0.8012 - -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction SmNO3+2 -# Enthalpy of formation: -221.6 kcal/mol - -analytic 3.3782e+001 2.7125e-002 1.5091e+003 -1.8632e+001 2.3537e+001 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 H2O = SmO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.4837 - -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction SmO+ -# Enthalpy of formation: -206.5 kcal/mol - -analytic 1.8554e+002 3.0198e-002 -1.3791e+004 -6.6588e+001 -2.1526e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Sm+++ = SmO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -35.0197 - -delta_H 285.909 kJ/mol # Calculated enthalpy of reaction SmO2- -# Enthalpy of formation: -233.5 kcal/mol - -analytic 1.3508e+001 -8.3384e-003 -1.0325e+004 -1.5506e+000 -6.7392e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Sm+++ = SmO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.9304 - -delta_H 226.497 kJ/mol # Calculated enthalpy of reaction SmO2H -# Enthalpy of formation: -247.7 kcal/mol - -analytic 3.6882e+002 5.3761e-002 -2.4317e+004 -1.3305e+002 -3.7956e+002 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 H2O = SmOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.9808 - -delta_H 79.1487 kJ/mol # Calculated enthalpy of reaction SmOH+2 -# Enthalpy of formation: -214.6 kcal/mol - -analytic 6.3793e+001 1.1977e-002 -6.0852e+003 -2.2198e+001 -9.4972e+001 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 HPO4-- = SmPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sm+++ + 1.0000 SO4-- = SmSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction SmSO4+ -# Enthalpy of formation: -377.8 kcal/mol - -analytic 3.0597e+002 8.6258e-002 -9.0231e+003 -1.2032e+002 -1.4089e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Sn++ = Sn(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.9102 - -delta_H 42.0534 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 -# Enthalpy of formation: -128.683 kcal/mol - -analytic -3.7979e+001 -1.0893e-002 -1.2048e+003 1.5100e+001 -2.0445e+001 -# -Range: 0-200 - -2.0000 H2O + 1.0000 Sn++++ = Sn(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -0.1902 - -delta_H -2.02087 kJ/mol # Calculated enthalpy of reaction Sn(OH)2+2 -# Enthalpy of formation: -129.888 kcal/mol - -analytic -2.1675e+001 5.9697e-003 3.3953e+003 4.8158e+000 -3.2042e+005 -# -Range: 0-300 - -3.0000 H2O + 1.0000 Sn++++ = Sn(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k +0.5148 - -delta_H -7.59396 kJ/mol # Calculated enthalpy of reaction Sn(OH)3+ -# Enthalpy of formation: -199.537 kcal/mol - -analytic -3.3294e+001 8.8580e-003 5.3803e+003 7.4994e+000 -4.8389e+005 -# -Range: 0-300 - -3.0000 H2O + 1.0000 Sn++ = Sn(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -17.4052 - -delta_H 94.7007 kJ/mol # Calculated enthalpy of reaction Sn(OH)3- -# Enthalpy of formation: -184.417 kcal/mol - -analytic 1.5614e+002 1.9943e-002 -1.0700e+004 -5.8031e+001 -1.6701e+002 -# -Range: 0-300 - -4.0000 H2O + 1.0000 Sn++++ = Sn(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k +0.8497 - -delta_H -11.0583 kJ/mol # Calculated enthalpy of reaction Sn(OH)4 -# Enthalpy of formation: -268.682 kcal/mol - -analytic -7.9563e+001 -2.2641e-002 2.6682e+003 3.1614e+001 4.5337e+001 -# -Range: 0-200 - -2.0000 SO4-- + 1.0000 Sn++++ = Sn(SO4)2 - -llnl_gamma 3.0 - log_k -0.8072 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sn(SO4)2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sn++ + 1.0000 Cl- = SnCl+ - -llnl_gamma 4.0 - log_k +1.0500 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl+ -# Enthalpy of formation: -0 kcal/mol - - -analytic 3.0558e+002 8.2458e-002 -8.9329e+003 -1.2088e+002 -1.3948e+002 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Sn++ = SnCl2 - -llnl_gamma 3.0 - log_k +1.7100 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl2 -# Enthalpy of formation: -0 kcal/mol - - -analytic 3.6600e+002 1.0753e-001 -1.0006e+004 -1.4660e+002 -1.5624e+002 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Sn++ = SnCl3- - -llnl_gamma 4.0 - log_k +1.6900 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl3- -# Enthalpy of formation: -0 kcal/mol - - -analytic 3.6019e+002 1.0602e-001 -1.0337e+004 -1.4363e+002 -1.6141e+002 -# -Range: 0-300 - -1.0000 Sn++ + 1.0000 F- = SnF+ - -llnl_gamma 4.0 - log_k +4.0800 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF+ -# Enthalpy of formation: -0 kcal/mol - - -analytic 3.0020e+002 7.5485e-002 -8.4231e+003 -1.1734e+002 -1.3152e+002 -# -Range: 0-300 - -2.0000 F- + 1.0000 Sn++ = SnF2 - -llnl_gamma 3.0 - log_k +6.6800 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF2 -# Enthalpy of formation: -0 kcal/mol - - -analytic 4.1241e+002 1.0988e-001 -1.1151e+004 -1.6207e+002 -1.7413e+002 -# -Range: 0-300 - -3.0000 F- + 1.0000 Sn++ = SnF3- - -llnl_gamma 4.0 - log_k +9.4600 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF3- -# Enthalpy of formation: -0 kcal/mol - - -analytic 4.1793e+002 1.0898e-001 -1.1402e+004 -1.6273e+002 -1.7803e+002 -# -Range: 0-300 - -1.0000 Sn++ + 1.0000 H2O = SnOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.9851 - -delta_H 21.2045 kJ/mol # Calculated enthalpy of reaction SnOH+ -# Enthalpy of formation: -65.349 kcal/mol - -analytic 7.7253e+001 1.9149e-002 -3.3745e+003 -3.0560e+001 -5.2679e+001 -# -Range: 0-300 - -1.0000 Sn++++ + 1.0000 H2O = SnOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k +0.6049 - -delta_H -5.00406 kJ/mol # Calculated enthalpy of reaction SnOH+3 -# Enthalpy of formation: -62.284 kcal/mol - -analytic -1.1548e+001 2.8878e-003 1.9476e+003 2.6622e+000 -1.6274e+005 -# -Range: 0-300 - -1.0000 Sn++++ + 1.0000 SO4-- = SnSO4++ - -llnl_gamma 4.5 - log_k -3.1094 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSO4+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Sr++ = Sr(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.8212 - -delta_H 0.54392 kJ/mol # Calculated enthalpy of reaction Sr(CH3COO)2 -# Enthalpy of formation: -363.74 kcal/mol - -analytic 1.2965e+001 4.7082e-003 -5.2538e+003 -5.2337e+000 7.4721e+005 -# -Range: 0-300 - -1.0000 Sr++ + 1.0000 CH3COOH = SrCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.6724 - -delta_H 2.3012 kJ/mol # Calculated enthalpy of reaction SrCH3COO+ -# Enthalpy of formation: -247.22 kcal/mol - -analytic -1.4301e+001 1.2481e-003 -7.5690e+002 4.2760e+000 1.9800e+005 -# -Range: 0-300 - -1.0000 Sr++ + 1.0000 HCO3- = SrCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.4635 - -delta_H 33.2544 kJ/mol # Calculated enthalpy of reaction SrCO3 -# Enthalpy of formation: -288.62 kcal/mol - -analytic 2.2303e+002 5.2582e-002 -8.4861e+003 -8.7975e+001 -1.3248e+002 -# -Range: 0-300 - -1.0000 Sr++ + 1.0000 Cl- = SrCl+ - -llnl_gamma 4.0 - log_k -0.2485 - -delta_H 7.58559 kJ/mol # Calculated enthalpy of reaction SrCl+ -# Enthalpy of formation: -169.79 kcal/mol - -analytic 9.4568e+001 3.9042e-002 -2.1458e+003 -4.0105e+001 -3.3511e+001 -# -Range: 0-300 - -1.0000 Sr++ + 1.0000 F- = SrF+ - -llnl_gamma 4.0 - log_k +0.1393 - -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction SrF+ -# Enthalpy of formation: -210.67 kcal/mol - -analytic 9.0295e+001 3.7609e-002 -1.9012e+003 -3.8379e+001 -2.9693e+001 -# -Range: 0-300 - -1.0000 Sr++ + 1.0000 HPO4-- + 1.0000 H+ = SrH2PO4+ - -llnl_gamma 4.0 - log_k +0.7300 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrH2PO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sr++ + 1.0000 HPO4-- = SrHPO4 - -llnl_gamma 3.0 - log_k +2.0600 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrHPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sr++ + 1.0000 NO3- = SrNO3+ - -llnl_gamma 4.0 - log_k +0.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrNO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sr++ + 1.0000 H2O = SrOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -13.29 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrOH+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Sr++ = SrP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +1.6537 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrP2O7-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sr++ + 1.0000 SO4-- = SrSO4 - -llnl_gamma 3.0 - log_k +2.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrSO4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Tb+++ = Tb(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -27.9491 kJ/mol # Calculated enthalpy of reaction Tb(CH3COO)2+ -# Enthalpy of formation: -405.78 kcal/mol - -analytic -2.3910e+001 1.3433e-003 -8.0800e+002 6.3895e+000 4.8619e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Tb+++ = Tb(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -47.1537 kJ/mol # Calculated enthalpy of reaction Tb(CH3COO)3 -# Enthalpy of formation: -526.47 kcal/mol - -analytic -1.0762e+001 4.2361e-003 -1.5620e+003 -3.9317e-001 6.5745e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Tb+++ = Tb(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.5576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Tb+++ = Tb(HPO4)2- - -llnl_gamma 4.0 - log_k +9.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Tb+++ = Tb(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.6437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Tb+++ = Tb(SO4)2- - -llnl_gamma 4.0 - log_k +5.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Tb+++ + 1.0000 CH3COOH = TbCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -14.2256 kJ/mol # Calculated enthalpy of reaction TbCH3COO+2 -# Enthalpy of formation: -286.4 kcal/mol - -analytic -1.6817e+001 6.4290e-004 -3.4442e+002 5.0994e+000 2.7304e+005 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 HCO3- = TbCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.4057 - -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction TbCO3+ -# Enthalpy of formation: -310.4 kcal/mol - -analytic 2.2347e+002 5.4185e-002 -6.4127e+003 -8.9112e+001 -1.0013e+002 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 Cl- = TbCl++ - -llnl_gamma 4.5 - log_k +0.2353 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction TbCl+2 -# Enthalpy of formation: -203.5 kcal/mol - -analytic 7.1095e+001 3.7367e-002 -1.4676e+003 -3.1140e+001 -2.2921e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Tb+++ = TbCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 18.2673 kJ/mol # Calculated enthalpy of reaction TbCl2+ -# Enthalpy of formation: -242.4 kcal/mol - -analytic 2.0699e+002 7.9609e-002 -5.0958e+003 -8.6337e+001 -7.9576e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Tb+++ = TbCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction TbCl3 -# Enthalpy of formation: -284.3 kcal/mol - -analytic 4.0764e+002 1.2809e-001 -1.0704e+004 -1.6583e+002 -1.6715e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Tb+++ = TbCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -11.5813 kJ/mol # Calculated enthalpy of reaction TbCl4- -# Enthalpy of formation: -329.4 kcal/mol - -analytic 4.6247e+002 1.2926e-001 -1.2117e+004 -1.8639e+002 -1.8921e+002 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 F- = TbF++ - -llnl_gamma 4.5 - log_k +4.6619 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction TbF+2 -# Enthalpy of formation: -241.6 kcal/mol - -analytic 9.2579e+001 4.1327e-002 -2.3647e+003 -3.7293e+001 -3.6927e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Tb+++ = TbF2+ - -llnl_gamma 4.0 - log_k +8.1510 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction TbF2+ -# Enthalpy of formation: -324.3 kcal/mol - -analytic 2.3100e+002 8.4094e-002 -5.2548e+003 -9.3051e+001 -8.2065e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Tb+++ = TbF3 - -llnl_gamma 3.0 - log_k +10.6872 - -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction TbF3 -# Enthalpy of formation: -410.2 kcal/mol - -analytic 4.3730e+002 1.3479e-001 -1.0128e+004 -1.7489e+002 -1.5817e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Tb+++ = TbF4- - -llnl_gamma 4.0 - log_k +12.7836 - -delta_H -56.0656 kJ/mol # Calculated enthalpy of reaction TbF4- -# Enthalpy of formation: -500.9 kcal/mol - -analytic 4.8546e+002 1.3511e-001 -1.0189e+004 -1.9347e+002 -1.5913e+002 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 HPO4-- + 1.0000 H+ = TbH2PO4++ - -llnl_gamma 4.5 - log_k +9.3751 - -delta_H -17.51 kJ/mol # Calculated enthalpy of reaction TbH2PO4+2 -# Enthalpy of formation: -479.9 kcal/mol - -analytic 1.0042e+002 6.2886e-002 6.0975e+002 -4.5178e+001 9.4847e+000 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 HCO3- = TbHCO3++ - -llnl_gamma 4.5 - log_k +1.6991 - -delta_H -14.6524 kJ/mol # Calculated enthalpy of reaction TbHCO3+2 -# Enthalpy of formation: -335.3 kcal/mol - -analytic 1.7376e+001 2.8365e-002 1.6982e+003 -1.2044e+001 2.6494e+001 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 HPO4-- = TbHPO4+ - -llnl_gamma 4.0 - log_k +5.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Tb+++ + 1.0000 NO3- = TbNO3++ - -llnl_gamma 4.5 - log_k +0.5080 - -delta_H -31.2587 kJ/mol # Calculated enthalpy of reaction TbNO3+2 -# Enthalpy of formation: -223.8 kcal/mol - -analytic 8.7852e+000 2.4868e-002 2.5553e+003 -9.7944e+000 3.9871e+001 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 H2O = TbO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.1904 - -delta_H 109.692 kJ/mol # Calculated enthalpy of reaction TbO+ -# Enthalpy of formation: -209 kcal/mol - -analytic 1.7975e+002 2.9563e-002 -1.3407e+004 -6.4573e+001 -2.0926e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Tb+++ = TbO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -34.2134 - -delta_H 278.797 kJ/mol # Calculated enthalpy of reaction TbO2- -# Enthalpy of formation: -236.9 kcal/mol - -analytic 1.6924e+002 1.1804e-002 -1.9821e+004 -5.6781e+001 -3.0933e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Tb+++ = TbO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.0508 - -delta_H 219.802 kJ/mol # Calculated enthalpy of reaction TbO2H -# Enthalpy of formation: -251 kcal/mol - -analytic 3.2761e+002 4.5225e-002 -2.2652e+004 -1.1727e+002 -3.5356e+002 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 H2O = TbOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.8342 - -delta_H 77.4751 kJ/mol # Calculated enthalpy of reaction TbOH+2 -# Enthalpy of formation: -216.7 kcal/mol - -analytic 5.9574e+001 1.1625e-002 -5.8143e+003 -2.0759e+001 -9.0744e+001 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 HPO4-- = TbPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.0782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Tb+++ + 1.0000 SO4-- = TbSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction TbSO4+ -# Enthalpy of formation: -379.6 kcal/mol - -analytic 2.9633e+002 8.5155e-002 -8.6346e+003 -1.1682e+002 -1.3482e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 TcO++ = TcO(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -3.3221 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO(OH)2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 TcO++ + 1.0000 H2O = TcOOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -1.1355 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcOOH+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 2.0000 H+ + 1.0000 Th++++ = Th(H2PO4)2++ - -llnl_gamma 4.5 - log_k +23.2070 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(H2PO4)2+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Th++++ = Th(HPO4)2 - -llnl_gamma 3.0 - log_k +22.6939 - -delta_H -13.644 kJ/mol # Calculated enthalpy of reaction Th(HPO4)2 -# Enthalpy of formation: -804.691 kcal/mol - -analytic 6.5208e+002 2.3099e-001 -1.2990e+004 -2.6457e+002 -2.2082e+002 -# -Range: 0-200 - -3.0000 HPO4-- + 1.0000 Th++++ = Th(HPO4)3-- - -llnl_gamma 4.0 - log_k +31.1894 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(HPO4)3-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Th++++ = Th(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -7.1068 - -delta_H 58.668 kJ/mol # Calculated enthalpy of reaction Th(OH)2+2 -# Enthalpy of formation: -306.412 kcal/mol - -analytic -1.1274e+001 3.4195e-003 -3.7553e+002 3.1299e+000 -2.9696e+005 -# -Range: 0-300 - -3.0000 H2O + 1.0000 Th++++ = Th(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -11.8623 - -delta_H 86.1318 kJ/mol # Calculated enthalpy of reaction Th(OH)3+ -# Enthalpy of formation: -368.165 kcal/mol -4.0000 H2O + 1.0000 Th++++ = Th(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -16.0315 - -delta_H 104.01 kJ/mol # Calculated enthalpy of reaction Th(OH)4 -# Enthalpy of formation: -432.209 kcal/mol - -analytic 2.9534e+001 1.5550e-002 -5.6680e+003 -1.2598e+001 -9.6262e+001 -# -Range: 0-200 - -2.0000 SO4-- + 1.0000 Th++++ = Th(SO4)2 - -llnl_gamma 3.0 - log_k +9.6170 - -delta_H 32.2377 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 -# Enthalpy of formation: -610.895 kcal/mol - -analytic 4.6425e+002 1.6769e-001 -1.1195e+004 -1.8875e+002 -1.9027e+002 -# -Range: 0-200 - -3.0000 SO4-- + 1.0000 Th++++ = Th(SO4)3-- - -llnl_gamma 4.0 - log_k +10.4014 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)3-2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 SO4-- + 1.0000 Th++++ = Th(SO4)4---- - -llnl_gamma 4.0 - log_k +8.4003 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)4-4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 Th++++ + 2.0000 H2O = Th2(OH)2+6 +2.0000 H+ - -llnl_gamma 6.0 - log_k -6.4618 - -delta_H 63.7181 kJ/mol # Calculated enthalpy of reaction Th2(OH)2+6 -# Enthalpy of formation: -489.005 kcal/mol - -analytic 6.8838e+001 -4.1348e-003 -6.4415e+003 -2.1200e+001 -1.0053e+002 -# -Range: 0-300 - -8.0000 H2O + 4.0000 Th++++ = Th4(OH)8+8 +8.0000 H+ - -llnl_gamma 6.0 - log_k -21.7568 - -delta_H 245.245 kJ/mol # Calculated enthalpy of reaction Th4(OH)8+8 -# Enthalpy of formation: -1223.12 kcal/mol - -analytic 2.7826e+002 -2.3504e-003 -2.4410e+004 -8.7873e+001 -3.8097e+002 -# -Range: 0-300 - -15.0000 H2O + 6.0000 Th++++ = Th6(OH)15+9 +15.0000 H+ - -llnl_gamma 6.0 - log_k -37.7027 - -delta_H 458.248 kJ/mol # Calculated enthalpy of reaction Th6(OH)15+9 -# Enthalpy of formation: -2018.03 kcal/mol - -analytic 5.2516e+002 3.3015e-003 -4.5237e+004 -1.6654e+002 -7.0603e+002 -# -Range: 0-300 - -1.0000 Th++++ + 1.0000 Cl- = ThCl+++ - -llnl_gamma 5.0 - log_k +0.9536 - -delta_H 0.06276 kJ/mol # Calculated enthalpy of reaction ThCl+3 -# Enthalpy of formation: -223.718 kcal/mol - -analytic 9.7430e+001 3.9398e-002 -1.8653e+003 -4.1202e+001 -2.9135e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Th++++ = ThCl2++ - -llnl_gamma 4.5 - log_k +0.6758 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl2+2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 Cl- + 1.0000 Th++++ = ThCl3+ - -llnl_gamma 4.0 - log_k +1.4975 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl3+ -# Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Th++++ = ThCl4 - -llnl_gamma 3.0 - log_k +1.0731 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Th++++ + 1.0000 F- = ThF+++ - -llnl_gamma 5.0 - log_k +7.8725 - -delta_H -4.87436 kJ/mol # Calculated enthalpy of reaction ThF+3 -# Enthalpy of formation: -265.115 kcal/mol - -analytic 1.1679e+002 3.9201e-002 -2.2118e+003 -4.5736e+001 -3.4548e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Th++++ = ThF2++ - -llnl_gamma 4.5 - log_k +14.0884 - -delta_H -7.77806 kJ/mol # Calculated enthalpy of reaction ThF2+2 -# Enthalpy of formation: -345.959 kcal/mol - -analytic 2.3200e+002 7.9567e-002 -4.4418e+003 -9.1617e+001 -6.9379e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Th++++ = ThF3+ - -llnl_gamma 4.0 - log_k +18.7357 - -delta_H -11.7068 kJ/mol # Calculated enthalpy of reaction ThF3+ -# Enthalpy of formation: -427.048 kcal/mol - -analytic 3.4511e+002 1.2149e-001 -6.5065e+003 -1.3770e+002 -1.0163e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Th++++ = ThF4 - -llnl_gamma 3.0 - log_k +22.1515 - -delta_H -14.8448 kJ/mol # Calculated enthalpy of reaction ThF4 -# Enthalpy of formation: -507.948 kcal/mol - -analytic 6.1206e+002 2.1878e-001 -1.1938e+004 -2.4857e+002 -2.0294e+002 -# -Range: 0-200 - -1.0000 Th++++ + 1.0000 HPO4-- + 1.0000 H+ = ThH2PO4+++ - -llnl_gamma 5.0 - log_k +11.7061 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThH2PO4+3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 Th++++ + 1.0000 HPO4-- = ThH3PO4++++ - -llnl_gamma 5.5 - log_k +11.1197 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThH3PO4+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Th++++ + 1.0000 HPO4-- = ThHPO4++ - -llnl_gamma 4.5 - log_k +10.6799 - -delta_H 0.1046 kJ/mol # Calculated enthalpy of reaction ThHPO4+2 -# Enthalpy of formation: -492.59 kcal/mol -1.0000 Th++++ + 1.0000 H2O = ThOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -3.8871 - -delta_H 25.0275 kJ/mol # Calculated enthalpy of reaction ThOH+3 -# Enthalpy of formation: -1029.83 kJ/mol - -analytic 1.0495e+001 5.1532e-003 -8.6396e+002 -4.8420e+000 -9.2609e+004 -# -Range: 0-300 - -1.0000 Th++++ + 1.0000 SO4-- = ThSO4++ - -llnl_gamma 4.5 - log_k +5.3143 - -delta_H 16.3511 kJ/mol # Calculated enthalpy of reaction ThSO4+2 -# Enthalpy of formation: -397.292 kcal/mol - -analytic 1.9443e+002 7.5245e-002 -4.5010e+003 -7.9379e+001 -7.0291e+001 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Tl+ = Tl(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -10.0129 - -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Tl(CH3COO)2- -# Enthalpy of formation: -230.62 kcal/mol - -analytic -1.8123e+002 -4.0616e-002 5.0741e+003 6.7216e+001 7.9229e+001 -# -Range: 0-300 - -1.0000 Tl+ + 1.0000 CH3COOH = TlCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8672 - -delta_H 6.15048 kJ/mol # Calculated enthalpy of reaction TlCH3COO -# Enthalpy of formation: -113.35 kcal/mol - -analytic 9.2977e+000 -3.4368e-003 -2.1748e+003 -3.1454e+000 1.7273e+005 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Tm+++ = Tm(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9844 - -delta_H -32.5934 kJ/mol # Calculated enthalpy of reaction Tm(CH3COO)2+ -# Enthalpy of formation: -408.49 kcal/mol - -analytic -2.8983e+001 2.0256e-003 -1.1525e+003 8.2163e+000 6.1820e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Tm+++ = Tm(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3783 - -delta_H -54.8104 kJ/mol # Calculated enthalpy of reaction Tm(CH3COO)3 -# Enthalpy of formation: -529.9 kcal/mol - -analytic -2.8900e+001 4.9633e-003 -1.6574e+003 6.0186e+000 8.6624e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Tm+++ = Tm(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.1576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Tm+++ = Tm(HPO4)2- - -llnl_gamma 4.0 - log_k +10.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Tm+++ = Tm(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.0437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Tm+++ = Tm(SO4)2- - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Tm+++ + 1.0000 CH3COOH = TmCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1184 - -delta_H -16.3176 kJ/mol # Calculated enthalpy of reaction TmCH3COO+2 -# Enthalpy of formation: -288.5 kcal/mol - -analytic -1.6068e+001 1.2043e-003 -6.2777e+002 4.8318e+000 3.3363e+005 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 HCO3- = TmCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.1125 - -delta_H 86.6004 kJ/mol # Calculated enthalpy of reaction TmCO3+ -# Enthalpy of formation: -312.7 kcal/mol - -analytic 2.3889e+002 5.4733e-002 -6.9382e+003 -9.4581e+001 -1.0833e+002 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 Cl- = TmCl++ - -llnl_gamma 4.5 - log_k +0.2353 - -delta_H 13.1085 kJ/mol # Calculated enthalpy of reaction TmCl+2 -# Enthalpy of formation: -205.3 kcal/mol - -analytic 7.4795e+001 3.7655e-002 -1.5701e+003 -3.2531e+001 -2.4523e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Tm+++ = TmCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction TmCl2+ -# Enthalpy of formation: -244.6 kcal/mol - -analytic 2.0352e+002 7.9173e-002 -4.8574e+003 -8.5202e+001 -7.5855e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Tm+++ = TmCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 5.43502 kJ/mol # Calculated enthalpy of reaction TmCl3 -# Enthalpy of formation: -287 kcal/mol - -analytic 3.9793e+002 1.2777e-001 -1.0070e+004 -1.6272e+002 -1.5725e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Tm+++ = TmCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -20.3677 kJ/mol # Calculated enthalpy of reaction TmCl4- -# Enthalpy of formation: -333.1 kcal/mol - -analytic 4.3574e+002 1.2655e-001 -1.0713e+004 -1.7716e+002 -1.6730e+002 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 F- = TmF++ - -llnl_gamma 4.5 - log_k +4.8085 - -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction TmF+2 -# Enthalpy of formation: -243 kcal/mol - -analytic 9.7686e+001 4.1890e-002 -2.5909e+003 -3.9059e+001 -4.0457e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Tm+++ = TmF2+ - -llnl_gamma 4.0 - log_k +8.3709 - -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction TmF2+ -# Enthalpy of formation: -325.8 kcal/mol - -analytic 2.2986e+002 8.4119e-002 -5.2144e+003 -9.2558e+001 -8.1433e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Tm+++ = TmF3 - -llnl_gamma 3.0 - log_k +10.9804 - -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction TmF3 -# Enthalpy of formation: -412 kcal/mol - -analytic 4.2855e+002 1.3445e-001 -9.7045e+003 -1.7177e+002 -1.5156e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Tm+++ = TmF4- - -llnl_gamma 4.0 - log_k +13.1501 - -delta_H -60.668 kJ/mol # Calculated enthalpy of reaction TmF4- -# Enthalpy of formation: -503.6 kcal/mol - -analytic 4.6559e+002 1.3386e-001 -9.1790e+003 -1.8650e+002 -1.4337e+002 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 HPO4-- + 1.0000 H+ = TmH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction TmH2PO4+2 -# Enthalpy of formation: -482.2 kcal/mol - -analytic 1.0360e+002 6.3085e-002 6.0731e+002 -4.6456e+001 9.4456e+000 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 HCO3- = TmHCO3++ - -llnl_gamma 4.5 - log_k +1.7724 - -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction TmHCO3+2 -# Enthalpy of formation: -332.2 kcal/mol - -analytic 3.3102e+001 3.1010e-002 2.9880e+002 -1.6791e+001 4.6524e+000 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 HPO4-- = TmHPO4+ - -llnl_gamma 4.0 - log_k +5.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Tm+++ + 1.0000 NO3- = TmNO3++ - -llnl_gamma 4.5 - log_k +0.2148 - -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction TmNO3+2 -# Enthalpy of formation: -226 kcal/mol - -analytic 1.1085e+001 2.4898e-002 2.5664e+003 -1.0861e+001 4.0043e+001 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 H2O = TmO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.8972 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction TmO+ -# Enthalpy of formation: -211.6 kcal/mol - -analytic 1.7572e+002 2.8756e-002 -1.3096e+004 -6.3150e+001 -2.0441e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Tm+++ = TmO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.6741 - -delta_H 266.663 kJ/mol # Calculated enthalpy of reaction TmO2- -# Enthalpy of formation: -241.4 kcal/mol - -analytic 3.3118e+001 -5.2802e-003 -1.1318e+004 -8.4764e+000 -4.6998e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Tm+++ = TmO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -24.1712 - -delta_H 211.853 kJ/mol # Calculated enthalpy of reaction TmO2H -# Enthalpy of formation: -254.5 kcal/mol - -analytic 3.1648e+002 4.4527e-002 -2.1821e+004 -1.1345e+002 -3.4059e+002 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 H2O = TmOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.6876 - -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction TmOH+2 -# Enthalpy of formation: -219 kcal/mol - -analytic 5.7572e+001 1.1162e-002 -5.6381e+003 -2.0074e+001 -8.7994e+001 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 HPO4-- = TmPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.4782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Tm+++ + 1.0000 SO4-- = TmSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 19.9995 kJ/mol # Calculated enthalpy of reaction TmSO4+ -# Enthalpy of formation: -381.12 kcal/mol - -analytic 3.0441e+002 8.6070e-002 -8.9592e+003 -1.1979e+002 -1.3989e+002 -# -Range: 0-300 - -4.0000 HCO3- + 1.0000 U++++ = U(CO3)4---- +4.0000 H+ - -llnl_gamma 4.0 - log_k -6.2534 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(CO3)4-4 -# Enthalpy of formation: -0 kcal/mol - -5.0000 HCO3- + 1.0000 U++++ = U(CO3)5-6 +5.0000 H+ - -llnl_gamma 4.0 - log_k -17.7169 - -delta_H 53.5172 kJ/mol # Calculated enthalpy of reaction U(CO3)5-6 -# Enthalpy of formation: -3987.35 kJ/mol - -analytic 6.3020e+002 1.9391e-001 -1.9238e+004 -2.5912e+002 -3.0038e+002 -# -Range: 0-300 - -2.0000 NO3- + 1.0000 U++++ = U(NO3)2++ - -llnl_gamma 4.5 - log_k +2.2610 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(NO3)2+2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 U++++ = U(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -4.57 - -delta_H 78.7553 kJ/mol # Calculated enthalpy of reaction U(OH)4 -# Enthalpy of formation: -1655.8 kJ/mol - -analytic 2.6685e+002 9.8204e-002 -9.4428e+003 -1.0871e+002 -1.6045e+002 -# -Range: 0-200 - -2.0000 Thiocyanate- + 1.0000 U++++ = U(Thiocyanate)2++ - -llnl_gamma 4.5 - log_k +4.2600 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(Thiocyanate)2+2 -# Enthalpy of formation: -456.4 kJ/mol - -analytic 6.2193e+000 2.7673e-002 2.4326e+003 -7.4158e+000 3.7957e+001 -# -Range: 0-300 - -2.0000 SO4-- + 1.0000 U++++ = U(SO4)2 - -llnl_gamma 3.0 - log_k +10.3507 - -delta_H 33.2232 kJ/mol # Calculated enthalpy of reaction U(SO4)2 -# Enthalpy of formation: -2377.18 kJ/mol - -analytic 4.9476e+002 1.7832e-001 -1.1901e+004 -2.0111e+002 -2.0227e+002 -# -Range: 0-200 - -1.0000 U++++ + 1.0000 Br- = UBr+++ - -llnl_gamma 5.0 - log_k +1.4240 - -delta_H 0 # Not possible to calculate enthalpy of reaction UBr+3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 U++++ + 1.0000 Cl- = UCl+++ - -llnl_gamma 5.0 - log_k +1.7073 - -delta_H -18.9993 kJ/mol # Calculated enthalpy of reaction UCl+3 -# Enthalpy of formation: -777.279 kJ/mol - -analytic 9.4418e+001 4.1718e-002 -7.0675e+002 -4.1532e+001 -1.1056e+001 -# -Range: 0-300 - -1.0000 U++++ + 1.0000 F- = UF+++ - -llnl_gamma 5.0 - log_k +9.2403 - -delta_H -5.6024 kJ/mol # Calculated enthalpy of reaction UF+3 -# Enthalpy of formation: -932.15 kJ/mol - -analytic 1.1828e+002 3.8097e-002 -2.2531e+003 -4.5594e+001 -3.5193e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 U++++ = UF2++ - -llnl_gamma 4.5 - log_k +16.1505 - -delta_H -3.5048 kJ/mol # Calculated enthalpy of reaction UF2+2 -# Enthalpy of formation: -1265.4 kJ/mol - -analytic 2.3537e+002 7.7064e-002 -4.8455e+003 -9.1296e+001 -7.5679e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 U++++ = UF3+ - -llnl_gamma 4.0 - log_k +21.4806 - -delta_H 0.4938 kJ/mol # Calculated enthalpy of reaction UF3+ -# Enthalpy of formation: -1596.75 kJ/mol - -analytic 3.5097e+002 1.1714e-001 -7.4569e+003 -1.3714e+002 -1.1646e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 U++++ = UF4 - -llnl_gamma 3.0 - log_k +25.4408 - -delta_H -4.2146 kJ/mol # Calculated enthalpy of reaction UF4 -# Enthalpy of formation: -1936.81 kJ/mol - -analytic 7.8549e+002 2.7922e-001 -1.6213e+004 -3.1881e+002 -2.7559e+002 -# -Range: 0-200 - -5.0000 F- + 1.0000 U++++ = UF5- - -llnl_gamma 4.0 - log_k +26.8110 - -delta_H 0 # Not possible to calculate enthalpy of reaction UF5- -# Enthalpy of formation: -0 kcal/mol - -6.0000 F- + 1.0000 U++++ = UF6-- - -llnl_gamma 4.0 - log_k +28.8412 - -delta_H 0 # Not possible to calculate enthalpy of reaction UF6-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 U++++ + 1.0000 I- = UI+++ - -llnl_gamma 5.0 - log_k +1.2151 - -delta_H 0 # Not possible to calculate enthalpy of reaction UI+3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 U++++ + 1.0000 NO3- = UNO3+++ - -llnl_gamma 5.0 - log_k +1.4506 - -delta_H 0 # Not possible to calculate enthalpy of reaction UNO3+3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 HCO3- + 1.0000 UO2++ = UO2(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.7467 - -delta_H 47.9065 kJ/mol # Calculated enthalpy of reaction UO2(CO3)2-2 -# Enthalpy of formation: -2350.96 kJ/mol - -analytic 2.6569e+002 8.1552e-002 -9.0918e+003 -1.0638e+002 -1.4195e+002 -# -Range: 0-300 - -3.0000 HCO3- + 1.0000 UO2+ = UO2(CO3)3-5 +3.0000 H+ - -llnl_gamma 4.0 - log_k -23.6241 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(CO3)3-5 -# Enthalpy of formation: -0 kcal/mol - -3.0000 HCO3- + 1.0000 UO2++ = UO2(CO3)3---- +3.0000 H+ - -llnl_gamma 4.0 - log_k -9.4302 - -delta_H 4.9107 kJ/mol # Calculated enthalpy of reaction UO2(CO3)3-4 -# Enthalpy of formation: -3083.89 kJ/mol - -analytic 3.7918e+002 1.1789e-001 -1.0233e+004 -1.5738e+002 -1.5978e+002 -# -Range: 0-300 - -3.0000 H+ + 2.0000 HPO4-- + 1.0000 UO2++ = UO2(H2PO4)(H3PO4)+ - -llnl_gamma 4.0 - log_k +22.7537 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)(H3PO4)+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 2.0000 H+ + 1.0000 UO2++ = UO2(H2PO4)2 - -llnl_gamma 3.0 - log_k +21.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 IO3- + 1.0000 UO2++ = UO2(IO3)2 - -llnl_gamma 3.0 - log_k +2.9969 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(IO3)2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 N3- + 1.0000 UO2++ = UO2(N3)2 - -llnl_gamma 3.0 - log_k +4.3301 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 N3- + 1.0000 UO2++ = UO2(N3)3- - -llnl_gamma 4.0 - log_k +5.7401 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 N3- + 1.0000 UO2++ = UO2(N3)4-- - -llnl_gamma 4.0 - log_k +4.9200 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)4-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 UO2++ = UO2(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -10.3146 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 UO2++ = UO2(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -19.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 UO2++ = UO2(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -33.0291 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)4-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 Thiocyanate- + 1.0000 UO2++ = UO2(Thiocyanate)2 - -llnl_gamma 3.0 - log_k +1.2401 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)2 -# Enthalpy of formation: -857.3 kJ/mol - -analytic 9.4216e+001 3.2840e-002 -2.4849e+003 -3.8162e+001 -4.2231e+001 -# -Range: 0-200 - -3.0000 Thiocyanate- + 1.0000 UO2++ = UO2(Thiocyanate)3- - -llnl_gamma 4.0 - log_k +2.1001 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)3- -# Enthalpy of formation: -783.8 kJ/mol - -analytic 1.6622e+001 2.2714e-002 4.9707e+002 -9.2785e+000 7.7512e+000 -# -Range: 0-300 - -2.0000 SO3-- + 1.0000 UO2++ = UO2(SO3)2-- - -llnl_gamma 4.0 - log_k +7.9101 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(SO3)2-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 UO2++ = UO2(SO4)2-- - -llnl_gamma 4.0 - log_k +3.9806 - -delta_H 35.6242 kJ/mol # Calculated enthalpy of reaction UO2(SO4)2-2 -# Enthalpy of formation: -2802.58 kJ/mol - -analytic 3.9907e+002 1.3536e-001 -1.0813e+004 -1.6130e+002 -1.6884e+002 -# -Range: 0-300 - -1.0000 UO2++ + 1.0000 Br- = UO2Br+ - -llnl_gamma 4.0 - log_k +0.1840 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Br+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 BrO3- = UO2BrO3+ - -llnl_gamma 4.0 - log_k +0.5510 - -delta_H 0.46952 kJ/mol # Calculated enthalpy of reaction UO2BrO3+ -# Enthalpy of formation: -1085.6 kJ/mol - -analytic 8.2618e+001 2.6921e-002 -2.0144e+003 -3.3673e+001 -3.1457e+001 -# -Range: 0-300 - -1.0000 UO2++ + 1.0000 HCO3- = UO2CO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.6634 - -delta_H 19.7032 kJ/mol # Calculated enthalpy of reaction UO2CO3 -# Enthalpy of formation: -1689.23 kJ/mol - -analytic 7.3898e+001 2.8127e-002 -2.4347e+003 -3.0217e+001 -4.1371e+001 -# -Range: 0-200 - -1.0000 UO2++ + 1.0000 Cl- = UO2Cl+ - -llnl_gamma 4.0 - log_k +0.1572 - -delta_H 8.00167 kJ/mol # Calculated enthalpy of reaction UO2Cl+ -# Enthalpy of formation: -1178.08 kJ/mol - -analytic 9.8139e+001 3.8869e-002 -2.3178e+003 -4.1133e+001 -3.6196e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 UO2++ = UO2Cl2 - -llnl_gamma 3.0 - log_k -1.1253 - -delta_H 15.0013 kJ/mol # Calculated enthalpy of reaction UO2Cl2 -# Enthalpy of formation: -1338.16 kJ/mol - -analytic 3.4087e+001 1.3840e-002 -1.3664e+003 -1.4043e+001 -2.3216e+001 -# -Range: 0-200 - -1.0000 UO2++ + 1.0000 ClO3- = UO2ClO3+ - -llnl_gamma 4.0 - log_k +0.4919 - -delta_H -3.9266 kJ/mol # Calculated enthalpy of reaction UO2ClO3+ -# Enthalpy of formation: -1126.9 kJ/mol - -analytic 9.6263e+001 2.8926e-002 -2.3068e+003 -3.9057e+001 -3.6025e+001 -# -Range: 0-300 - -1.0000 UO2++ + 1.0000 F- = UO2F+ - -llnl_gamma 4.0 - log_k +5.0502 - -delta_H 1.6976 kJ/mol # Calculated enthalpy of reaction UO2F+ -# Enthalpy of formation: -1352.65 kJ/mol - -analytic 1.1476e+002 4.0682e-002 -2.4467e+003 -4.5914e+001 -3.8212e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 UO2++ = UO2F2 - -llnl_gamma 3.0 - log_k +8.5403 - -delta_H 2.0962 kJ/mol # Calculated enthalpy of reaction UO2F2 -# Enthalpy of formation: -1687.6 kJ/mol - -analytic 2.7673e+002 9.9190e-002 -5.8371e+003 -1.1242e+002 -9.9219e+001 -# -Range: 0-200 - -3.0000 F- + 1.0000 UO2++ = UO2F3- - -llnl_gamma 4.0 - log_k +10.7806 - -delta_H 2.3428 kJ/mol # Calculated enthalpy of reaction UO2F3- -# Enthalpy of formation: -2022.7 kJ/mol - -analytic 3.3383e+002 9.2160e-002 -8.7975e+003 -1.2972e+002 -1.3738e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 UO2++ = UO2F4-- - -llnl_gamma 4.0 - log_k +11.5407 - -delta_H 0.2814 kJ/mol # Calculated enthalpy of reaction UO2F4-2 -# Enthalpy of formation: -2360.11 kJ/mol - -analytic 4.4324e+002 1.3808e-001 -1.0705e+004 -1.7657e+002 -1.6718e+002 -# -Range: 0-300 - -1.0000 UO2++ + 1.0000 HPO4-- + 1.0000 H+ = UO2H2PO4+ - -llnl_gamma 4.0 - log_k +11.6719 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H2PO4+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 UO2++ + 1.0000 HPO4-- = UO2H3PO4++ - -llnl_gamma 4.5 - log_k +11.3119 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H3PO4+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 HPO4-- = UO2HPO4 - -llnl_gamma 3.0 - log_k +8.4398 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 IO3- = UO2IO3+ - -llnl_gamma 4.0 - log_k +1.7036 - -delta_H 11.4336 kJ/mol # Calculated enthalpy of reaction UO2IO3+ -# Enthalpy of formation: -1228.9 kJ/mol - -analytic 1.0428e+002 2.9620e-002 -3.2441e+003 -4.0618e+001 -5.0651e+001 -# -Range: 0-300 - -1.0000 UO2++ + 1.0000 N3- = UO2N3+ - -llnl_gamma 4.0 - log_k +2.5799 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2N3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 NO3- = UO2NO3+ - -llnl_gamma 4.0 - log_k +0.2805 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2NO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 H2O = UO2OH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.2073 - -delta_H 43.1813 kJ/mol # Calculated enthalpy of reaction UO2OH+ -# Enthalpy of formation: -1261.66 kJ/mol - -analytic 3.4387e+001 6.0811e-003 -3.3068e+003 -1.2252e+001 -5.1609e+001 -# -Range: 0-300 - -1.0000 UO2++ + 1.0000 HPO4-- = UO2PO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k +2.0798 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2PO4- -# Enthalpy of formation: -0 kcal/mol - -#2.0000 SO3-- + 2.0000 H+ + 1.0000 UO2++ = UO2S2O3 +1.0000 H2O +1.0000 O2 -#S2O3-- + O2 + H2O = 2.0000 H+ + 2.0000 SO3-- log_k 40.2906 -S2O3-- + UO2++ = UO2S2O3 - -llnl_gamma 3.0 -# log_k -38.0666 - log_k 2.224 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2S2O3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 Thiocyanate- = UO2Thiocyanate+ - -llnl_gamma 4.0 - log_k +1.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Thiocyanate+ -# Enthalpy of formation: -939.38 kJ/mol - -analytic 4.7033e+000 1.2562e-002 4.9095e+002 -3.5097e+000 7.6593e+000 -# -Range: 0-300 - -1.0000 UO2++ + 1.0000 SO3-- = UO2SO3 - -llnl_gamma 3.0 - log_k +6.7532 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2SO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 SO4-- = UO2SO4 - -llnl_gamma 3.0 - log_k +3.0703 - -delta_H 19.7626 kJ/mol # Calculated enthalpy of reaction UO2SO4 -# Enthalpy of formation: -1908.84 kJ/mol - -analytic 1.9514e+002 7.0951e-002 -4.9949e+003 -7.9394e+001 -8.4888e+001 -# -Range: 0-200 - -1.0000 U++++ + 1.0000 H2O = UOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -0.5472 - -delta_H 46.9183 kJ/mol # Calculated enthalpy of reaction UOH+3 -# Enthalpy of formation: -830.12 kJ/mol - -analytic 4.0793e+001 1.3563e-003 -3.8441e+003 -1.1659e+001 -5.9996e+001 -# -Range: 0-300 - -1.0000 U++++ + 1.0000 Thiocyanate- = UThiocyanate+++ - -llnl_gamma 5.0 - log_k +2.9700 - -delta_H 0 # Not possible to calculate enthalpy of reaction UThiocyanate+3 -# Enthalpy of formation: -541.8 kJ/mol - -analytic 4.0286e-001 1.5909e-002 2.3026e+003 -3.9973e+000 3.5929e+001 -# -Range: 0-300 - -1.0000 U++++ + 1.0000 SO4-- = USO4++ - -llnl_gamma 4.5 - log_k +6.5003 - -delta_H 8.2616 kJ/mol # Calculated enthalpy of reaction USO4+2 -# Enthalpy of formation: -1492.54 kJ/mol - -analytic 1.9418e+002 7.5458e-002 -4.0646e+003 -7.9416e+001 -6.3482e+001 -# -Range: 0-300 - -2.0000 H2O + 1.0000 V+++ = V(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.9193 - -delta_H 0 # Not possible to calculate enthalpy of reaction V(OH)2+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 V+++ + 2.0000 H2O = V2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -3.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction V2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 VO2+ = VO(OH)3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -3.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO(OH)3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 VO2+ = VO2(HPO4)2--- - -llnl_gamma 4.0 - log_k +8.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(HPO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 VO2+ = VO2(OH)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(OH)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 VO2+ + 1.0000 F- = VO2F - -llnl_gamma 3.0 - log_k +3.3500 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 VO2+ = VO2F2- - -llnl_gamma 4.0 - log_k +5.8100 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 VO2+ + 1.0000 HPO4-- + 1.0000 H+ = VO2H2PO4 - -llnl_gamma 3.0 - log_k +1.6800 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2H2PO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 VO2+ + 1.0000 HPO4-- = VO2HPO4- - -llnl_gamma 4.0 - log_k +5.8300 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2HPO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 VO2+ + 1.0000 SO4-- = VO2SO4- - -llnl_gamma 4.0 - log_k +1.5800 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2SO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 VO4--- + 1.0000 H+ = VO3OH-- - -llnl_gamma 4.0 - log_k +14.2600 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO3OH-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 VO++ + 1.0000 F- = VOF+ - -llnl_gamma 4.0 - log_k +4.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOF+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 VO++ = VOF2 - -llnl_gamma 3.0 - log_k +6.7800 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOF2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 V+++ + 1.0000 H2O = VOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.26 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOH+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 VO++ + 1.0000 H2O = VOOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOOH+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 VO++ + 1.0000 SO4-- = VOSO4 - -llnl_gamma 3.0 - log_k +2.4800 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOSO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 V+++ + 1.0000 SO4-- = VSO4+ - -llnl_gamma 4.0 - log_k +3.3300 - -delta_H 0 # Not possible to calculate enthalpy of reaction VSO4+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Y+++ = Y(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9844 - -delta_H -34.8109 kJ/mol # Calculated enthalpy of reaction Y(CH3COO)2+ -# Enthalpy of formation: -411.42 kcal/mol - -analytic -3.3011e+001 6.1979e-004 -7.7468e+002 9.6380e+000 5.8814e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Y+++ = Y(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3783 - -delta_H -58.4505 kJ/mol # Calculated enthalpy of reaction Y(CH3COO)3 -# Enthalpy of formation: -533.17 kcal/mol - -analytic -3.0086e+001 4.0213e-003 -1.1444e+003 6.1794e+000 8.0827e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Y+++ = Y(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.3576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Y+++ = Y(HPO4)2- - -llnl_gamma 4.0 - log_k +9.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Y+++ = Y(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.3902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)2+ -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Y+++ = Y(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)3 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Y+++ = Y(OH)4- +4.0000 H+ - -llnl_gamma 4.0 - log_k -36.4803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)4- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Y+++ = Y(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Y+++ = Y(SO4)2- - -llnl_gamma 4.0 - log_k +4.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 Y+++ + 2.0000 H2O = Y2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -14.1902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 CH3COOH = YCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1184 - -delta_H -17.2799 kJ/mol # Calculated enthalpy of reaction YCH3COO+2 -# Enthalpy of formation: -291.13 kcal/mol - -analytic -1.2080e+001 1.2015e-003 -8.4186e+002 3.4522e+000 3.4647e+005 -# -Range: 0-300 - -1.0000 Y+++ + 1.0000 HCO3- = YCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.2788 - -delta_H 0 # Not possible to calculate enthalpy of reaction YCO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 Cl- = YCl++ - -llnl_gamma 4.5 - log_k +0.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YCl+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 F- = YF++ - -llnl_gamma 4.5 - log_k +4.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Y+++ = YF2+ - -llnl_gamma 4.0 - log_k +7.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF2+ -# Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 1.0000 Y+++ = YF3 - -llnl_gamma 3.0 - log_k +11.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HPO4-- + 1.0000 H+ = YH2PO4++ - -llnl_gamma 4.5 - log_k +9.6054 - -delta_H 0 # Not possible to calculate enthalpy of reaction YH2PO4+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HCO3- = YHCO3++ - -llnl_gamma 4.5 - log_k +2.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YHCO3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HPO4-- = YHPO4+ - -llnl_gamma 4.0 - log_k +5.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 NO3- = YNO3++ - -llnl_gamma 4.5 - log_k +0.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YNO3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 H2O = YOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.6951 - -delta_H 0 # Not possible to calculate enthalpy of reaction YOH+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HPO4-- = YPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 SO4-- = YSO4+ - -llnl_gamma 4.0 - log_k +3.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YSO4+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Yb+++ = Yb(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.131 - -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Yb(CH3COO)2+ -# Enthalpy of formation: -399.75 kcal/mol - -analytic -3.4286e+001 9.4069e-004 -6.5120e+002 1.0071e+001 5.4773e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Yb+++ = Yb(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.5688 - -delta_H -51.4214 kJ/mol # Calculated enthalpy of reaction Yb(CH3COO)3 -# Enthalpy of formation: -520.89 kcal/mol - -analytic -6.2211e+001 -6.1589e-004 5.9577e+002 1.7954e+001 6.6116e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Yb+++ = Yb(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.0576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Yb+++ = Yb(HPO4)2- - -llnl_gamma 4.0 - log_k +10.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -# Redundant with YbO2- -#4.0000 H2O + 1.0000 Yb+++ = Yb(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 -# log_k -32.6803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)4- -## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Yb+++ = Yb(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -2.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Yb+++ = Yb(SO4)2- - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Yb+++ + 1.0000 CH3COOH = YbCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.199 - -delta_H -15.2298 kJ/mol # Calculated enthalpy of reaction YbCH3COO+2 -# Enthalpy of formation: -280.04 kcal/mol - -analytic -8.5003e+000 2.2459e-003 -9.6434e+002 2.0630e+000 3.3550e+005 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 HCO3- = YbCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.0392 - -delta_H 82.8348 kJ/mol # Calculated enthalpy of reaction YbCO3+ -# Enthalpy of formation: -305.4 kcal/mol - -analytic 2.3533e+002 5.4436e-002 -6.7871e+003 -9.3280e+001 -1.0598e+002 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 Cl- = YbCl++ - -llnl_gamma 4.5 - log_k +0.1620 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction YbCl+2 -# Enthalpy of formation: -196.9 kcal/mol - -analytic 8.0452e+001 3.8343e-002 -1.8176e+003 -3.4594e+001 -2.8386e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Yb+++ = YbCl2+ - -llnl_gamma 4.0 - log_k -0.2624 - -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction YbCl2+ -# Enthalpy of formation: -236 kcal/mol - -analytic 2.1708e+002 8.0550e-002 -5.4744e+003 -9.0101e+001 -8.5487e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Yb+++ = YbCl3 - -llnl_gamma 3.0 - log_k -0.7601 - -delta_H 8.36382 kJ/mol # Calculated enthalpy of reaction YbCl3 -# Enthalpy of formation: -278.1 kcal/mol - -analytic 4.0887e+002 1.2992e-001 -1.0578e+004 -1.6684e+002 -1.6518e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Yb+++ = YbCl4- - -llnl_gamma 4.0 - log_k -1.1845 - -delta_H -15.7653 kJ/mol # Calculated enthalpy of reaction YbCl4- -# Enthalpy of formation: -323.8 kcal/mol - -analytic 4.7560e+002 1.3032e-001 -1.2452e+004 -1.9149e+002 -1.9444e+002 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 F- = YbF++ - -llnl_gamma 4.5 - log_k +4.8085 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction YbF+2 -# Enthalpy of formation: -234.9 kcal/mol - -analytic 1.0291e+002 4.2493e-002 -2.7637e+003 -4.1008e+001 -4.3156e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Yb+++ = YbF2+ - -llnl_gamma 4.0 - log_k +8.3709 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction YbF2+ -# Enthalpy of formation: -317.7 kcal/mol - -analytic 2.4281e+002 8.5385e-002 -5.6900e+003 -9.7299e+001 -8.8859e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Yb+++ = YbF3 - -llnl_gamma 3.0 - log_k +11.0537 - -delta_H -13.1796 kJ/mol # Calculated enthalpy of reaction YbF3 -# Enthalpy of formation: -403.9 kcal/mol - -analytic 4.5227e+002 1.3659e-001 -1.0595e+004 -1.8038e+002 -1.6546e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Yb+++ = YbF4- - -llnl_gamma 4.0 - log_k +13.2234 - -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction YbF4- -# Enthalpy of formation: -495.3 kcal/mol - -analytic 5.0369e+002 1.3726e-001 -1.0671e+004 -2.0026e+002 -1.6666e+002 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 HPO4-- + 1.0000 H+ = YbH2PO4++ - -llnl_gamma 4.5 - log_k +9.5217 - -delta_H -20.0204 kJ/mol # Calculated enthalpy of reaction YbH2PO4+2 -# Enthalpy of formation: -473.9 kcal/mol - -analytic 1.0919e+002 6.3749e-002 3.8909e+002 -4.8469e+001 6.0389e+000 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 HCO3- = YbHCO3++ - -llnl_gamma 4.5 - log_k +1.8398 - -delta_H 5.43083 kJ/mol # Calculated enthalpy of reaction YbHCO3+2 -# Enthalpy of formation: -323.9 kcal/mol - -analytic 3.9175e+001 3.1796e-002 6.9728e+001 -1.9002e+001 1.0762e+000 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 HPO4-- = YbHPO4+ - -llnl_gamma 4.0 - log_k +6.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Yb+++ + 1.0000 NO3- = YbNO3++ - -llnl_gamma 4.5 - log_k +0.2148 - -delta_H -32.9323 kJ/mol # Calculated enthalpy of reaction YbNO3+2 -# Enthalpy of formation: -217.6 kcal/mol - -analytic 1.7237e+001 2.5684e-002 2.2806e+003 -1.3055e+001 3.5581e+001 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 H2O = YbO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.7506 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction YbO+ -# Enthalpy of formation: -203.4 kcal/mol - -analytic 1.7675e+002 2.9078e-002 -1.3106e+004 -6.3534e+001 -2.0456e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Yb+++ = YbO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.6741 - -delta_H 267.918 kJ/mol # Calculated enthalpy of reaction YbO2- -# Enthalpy of formation: -232.9 kcal/mol - -analytic 1.5529e+002 1.0053e-002 -1.8749e+004 -5.1764e+001 -2.9260e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Yb+++ = YbO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -23.878 - -delta_H 211.016 kJ/mol # Calculated enthalpy of reaction YbO2H -# Enthalpy of formation: -246.5 kcal/mol - -analytic 3.2148e+002 4.4821e-002 -2.1971e+004 -1.1519e+002 -3.4293e+002 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 H2O = YbOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.6143 - -delta_H 74.9647 kJ/mol # Calculated enthalpy of reaction YbOH+2 -# Enthalpy of formation: -210.7 kcal/mol - -analytic 5.8142e+001 1.1402e-002 -5.6488e+003 -2.0289e+001 -8.8160e+001 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 HPO4-- = YbPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.5782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Yb+++ + 1.0000 SO4-- = YbSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 1424.65 kJ/mol # Calculated enthalpy of reaction YbSO4+ -# Enthalpy of formation: -37.2 kcal/mol - -analytic 3.0675e+002 8.6527e-002 -9.0298e+003 -1.2069e+002 -1.4099e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Zn++ = Zn(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -6.062 - -delta_H -11.0458 kJ/mol # Calculated enthalpy of reaction Zn(CH3COO)2 -# Enthalpy of formation: -271.5 kcal/mol - -analytic -2.2038e+001 2.6133e-003 -2.7652e+003 6.8501e+000 6.7086e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Zn++ = Zn(CH3COO)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -10.0715 - -delta_H 25.355 kJ/mol # Calculated enthalpy of reaction Zn(CH3COO)3- -# Enthalpy of formation: -378.9 kcal/mol - -analytic 3.5104e+001 -6.1568e-003 -1.3379e+004 -8.7697e+000 2.0670e+006 -# -Range: 0-300 - -4.0000 Cyanide- + 1.0000 Zn++ = Zn(Cyanide)4-- - -llnl_gamma 4.0 - log_k +16.7040 - -delta_H -107.305 kJ/mol # Calculated enthalpy of reaction Zn(Cyanide)4-2 -# Enthalpy of formation: 341.806 kJ/mol - -analytic 3.6586e+002 1.2655e-001 -2.9546e+003 -1.5232e+002 -4.6213e+001 -# -Range: 0-300 - -2.0000 N3- + 1.0000 Zn++ = Zn(N3)2 - -llnl_gamma 3.0 - log_k +1.1954 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(N3)2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 NH3 = Zn(NH3)++ - -llnl_gamma 4.5 - log_k +2.0527 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 NH3 + 1.0000 Zn++ = Zn(NH3)2++ - -llnl_gamma 4.5 - log_k +4.2590 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)2+2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 NH3 + 1.0000 Zn++ = Zn(NH3)3++ - -llnl_gamma 4.5 - log_k +6.4653 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)3+2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 NH3 + 1.0000 Zn++ = Zn(NH3)4++ - -llnl_gamma 4.5 - log_k +8.3738 - -delta_H -54.9027 kJ/mol # Calculated enthalpy of reaction Zn(NH3)4+2 -# Enthalpy of formation: -533.636 kJ/mol - -analytic 1.5851e+002 -6.3376e-003 -4.6783e+003 -5.3560e+001 -7.3047e+001 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Zn++ = Zn(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -17.3282 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Zn++ = Zn(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -28.8369 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Zn++ = Zn(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -41.6052 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 H2O + 1.0000 Cl- = Zn(OH)Cl +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.5417 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)Cl -# Enthalpy of formation: -0 kcal/mol - -2.0000 Thiocyanate- + 1.0000 Zn++ = Zn(Thiocyanate)2 - -llnl_gamma 3.0 - log_k +0.8800 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 Thiocyanate- + 1.0000 Zn++ = Zn(Thiocyanate)4-- - -llnl_gamma 4.0 - log_k +1.2479 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 Br- = ZnBr+ - -llnl_gamma 4.0 - log_k -0.6365 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 Br- + 1.0000 Zn++ = ZnBr2 - -llnl_gamma 3.0 - log_k -1.0492 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 Br- + 1.0000 Zn++ = ZnBr3- - -llnl_gamma 4.0 - log_k -1.8474 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr3- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 CH3COOH = ZnCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.1519 - -delta_H -9.87424 kJ/mol # Calculated enthalpy of reaction ZnCH3COO+ -# Enthalpy of formation: -155.12 kcal/mol - -analytic -7.9367e+000 2.8564e-003 -1.4514e+003 2.5010e+000 2.3343e+005 -# -Range: 0-300 - -1.0000 Zn++ + 1.0000 HCO3- = ZnCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -6.4288 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 Cl- = ZnCl+ - -llnl_gamma 4.0 - log_k +0.1986 - -delta_H 43.317 kJ/mol # Calculated enthalpy of reaction ZnCl+ -# Enthalpy of formation: -66.24 kcal/mol - -analytic 1.1235e+002 4.4461e-002 -4.1662e+003 -4.5023e+001 -6.5042e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Zn++ = ZnCl2 - -llnl_gamma 3.0 - log_k +0.2507 - -delta_H 31.1541 kJ/mol # Calculated enthalpy of reaction ZnCl2 -# Enthalpy of formation: -109.08 kcal/mol - -analytic 1.7824e+002 7.5733e-002 -4.6251e+003 -7.4770e+001 -7.2224e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Zn++ = ZnCl3- - -llnl_gamma 4.0 - log_k -0.0198 - -delta_H 22.5894 kJ/mol # Calculated enthalpy of reaction ZnCl3- -# Enthalpy of formation: -151.06 kcal/mol - -analytic 1.3889e+002 7.4712e-002 -2.1527e+003 -6.2200e+001 -3.3633e+001 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Zn++ = ZnCl4-- - -llnl_gamma 4.0 - log_k +0.8605 - -delta_H 4.98733 kJ/mol # Calculated enthalpy of reaction ZnCl4-2 -# Enthalpy of formation: -195.2 kcal/mol - -analytic 8.4294e+001 7.0021e-002 3.9150e+002 -4.2664e+001 6.0834e+000 -# -Range: 0-300 - -1.0000 Zn++ + 1.0000 ClO4- = ZnClO4+ - -llnl_gamma 4.0 - log_k +1.2768 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnClO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 F- = ZnF+ - -llnl_gamma 4.0 - log_k +1.1500 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnF+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 HPO4-- + 1.0000 H+ = ZnH2PO4+ - -llnl_gamma 4.0 - log_k +0.4300 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnH2PO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 HCO3- = ZnHCO3+ - -llnl_gamma 4.0 - log_k +1.4200 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHCO3+ -# Enthalpy of formation: -0 kcal/mol - -analytic 5.1115e+002 1.2911e-001 -1.5292e+004 -2.0083e+002 -2.2721e+002 -# -Range: 25-300 - -1.0000 Zn++ + 1.0000 HPO4-- = ZnHPO4 - -llnl_gamma 3.0 - log_k +3.2600 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 I- = ZnI+ - -llnl_gamma 4.0 - log_k -3.0134 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 I- + 1.0000 Zn++ = ZnI2 - -llnl_gamma 3.0 - log_k -1.8437 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 I- + 1.0000 Zn++ = ZnI3- - -llnl_gamma 4.0 - log_k -2.0054 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 I- + 1.0000 Zn++ = ZnI4-- - -llnl_gamma 4.0 - log_k -2.6052 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 N3- = ZnN3+ - -llnl_gamma 4.0 - log_k +0.4420 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnN3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 H2O = ZnOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -8.96 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnOH+ -# Enthalpy of formation: -0 kcal/mol - -analytic -7.8600e-001 -2.9499e-004 -2.8673e+003 6.1892e-001 -4.2576e+001 -# -Range: 25-300 - -1.0000 Zn++ + 1.0000 HPO4-- = ZnPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -4.3018 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnPO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 SO4-- = ZnSO4 - -llnl_gamma 3.0 - log_k +2.3062 - -delta_H 15.277 kJ/mol # Calculated enthalpy of reaction ZnSO4 -# Enthalpy of formation: -1047.71 kJ/mol - -analytic 1.3640e+002 5.1256e-002 -3.4422e+003 -5.5695e+001 -5.8501e+001 -# -Range: 0-200 - -1.0000 Zn++ + 1.0000 SeO4-- = ZnSeO4 - -llnl_gamma 3.0 - log_k +2.1900 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnSeO4 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Zr++++ = Zr(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -0.6693 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)3+ -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Zr++++ = Zr(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -1.4666 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)4 -# Enthalpy of formation: -0 kcal/mol - -5.0000 H2O + 1.0000 Zr++++ = Zr(OH)5- +5.0000 H+ - -llnl_gamma 4.0 - log_k -15.9754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)5- -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Zr++++ = Zr(SO4)2 - -llnl_gamma 3.0 - log_k +6.2965 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 SO4-- + 1.0000 Zr++++ = Zr(SO4)3-- - -llnl_gamma 4.0 - log_k +7.3007 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)3-2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 3.0000 Zr++++ = Zr3(OH)4+8 +4.0000 H+ - -llnl_gamma 6.0 - log_k -0.5803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr3(OH)4+8 -# Enthalpy of formation: -0 kcal/mol - -8.0000 H2O + 4.0000 Zr++++ = Zr4(OH)8+8 +8.0000 H+ - -llnl_gamma 6.0 - log_k -5.9606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr4(OH)8+8 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zr++++ + 1.0000 F- = ZrF+++ - -llnl_gamma 5.0 - log_k +8.5835 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF+3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Zr++++ = ZrF2++ - -llnl_gamma 4.5 - log_k +15.7377 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF2+2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 1.0000 Zr++++ = ZrF3+ - -llnl_gamma 4.0 - log_k +21.2792 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF3+ -# Enthalpy of formation: -0 kcal/mol - -4.0000 F- + 1.0000 Zr++++ = ZrF4 - -llnl_gamma 3.0 - log_k +25.9411 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4 -# Enthalpy of formation: -0 kcal/mol - -5.0000 F- + 1.0000 Zr++++ = ZrF5- - -llnl_gamma 4.0 - log_k +30.3098 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF5- -# Enthalpy of formation: -0 kcal/mol - -6.0000 F- + 1.0000 Zr++++ = ZrF6-- - -llnl_gamma 4.0 - log_k +34.0188 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF6-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zr++++ + 1.0000 H2O = ZrOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k +0.0457 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrOH+3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zr++++ + 1.0000 SO4-- = ZrSO4++ - -llnl_gamma 4.5 - log_k +3.6064 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrSO4+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 O_phthalate-2 = H2O_phthalate - -llnl_gamma 3.0 - log_k +8.3580 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2O_phthalate -# Enthalpy of formation: -0 kcal/mol - - -###################### - -#Start of organic species added Feb. 4, 2011 - -####################### - -# 1-Butanamine, C4H9NH2 - + 2.0000 C2H5NH2 = C4H9NH2 + 1.0000 NH3 - -llnl_gamma 3.0 - log_k +7.0171 - -delta_h +36.110 kcal/mol - -analytic 2.6628e+000 1.4357e-003 1.7062e+003 -7.5117e-001 5.7612e+003 -# -Range: 0-300 - -# 1-Butanol, C4H9OH - + 2.0000 C2H5OH = C4H9OH + 1.0000 H2O - -llnl_gamma 3.0 - log_k +6.5001 - -delta_h +80.320 kcal/mol - -analytic -2.4958e+000 -1.9919e-003 2.3794e+003 6.5075e-001 3.7130e+001 -# -Range: 0-300 - -# 1-Butene, C4H8 - + 2.0000 C2H4 = C4H8 - -llnl_gamma 3.0 - log_k +13.6266 - -delta_h +5.635 kcal/mol - -analytic -6.9511e+000 -5.1950e-003 5.3537e+003 2.0720e+000 -8.5186e+004 -# -Range: 0-300 - -# 1-Butyne, C4H6 - + 2.0000 C2H2 + 1.0000 H2O = C4H6 + 0.5000 O2 - -llnl_gamma 3.0 - log_k -422.3711 - -delta_h -33.4 kcal/mol - -analytic 8.0147e+000 -1.9434e-003 -9.6752e+002 -3.5459e+000 8.7444e+004 -# -Range: 0-300 - -# 1-Heptanamine, C7H15NH2 - + 3.5000 C2H5NH2 = C7H15NH2 + 2.5000 NH3 - -llnl_gamma 3.0 - log_k +15.4646 - -delta_h +51.990 kcal/mol - -analytic 8.1328e+000 2.9346e-003 3.6672e+003 -2.3594e+000 5.7222e+001 -# -Range: 0-300 - -# 1-Heptanol, C7H15OH - + 3.5000 C2H5OH = C7H15OH + 2.5000 H2O - -llnl_gamma 3.0 - log_k +16.1733 - -delta_h +97.270 kcal/mol - -analytic 1.1253e+000 -1.4421e-003 5.3337e+003 -9.7252e-001 8.3227e+001 -# -Range: 0-300 - -# 1-Heptene, C7H14 - + 3.5000 C2H4 = C7H14 - -llnl_gamma 3.0 - log_k +30.5114 - -delta_h +22.670 kcal/mol - -analytic -1.1457e+001 -1.3165e-002 1.1832e+004 3.2374e+000 -1.6063e+005 -# -Range: 0-300 - -# 1-Heptyne, C7H12 - + 3.5000 C2H2 + 2.5000 H2O = C7H12 + 1.2500 O2 - -llnl_gamma 3.0 - log_k -748.8076 - -delta_h -16.98 kcal/mol - -analytic 6.8635e+000 -6.7966e-003 -3.7961e+003 -4.0767e+000 1.8009e+005 -# -Range: 0-300 - -# 1-Hexanamine, C6H13NH2 - + 3.0000 C2H5NH2 = C6H13NH2 + 2.0000 NH3 - -llnl_gamma 3.0 - log_k +12.3189 - -delta_h +46.320 kcal/mol - -analytic 2.7655e+000 2.2270e-003 3.0793e+003 -5.7977e-001 4.8049e+001 -# -Range: 0-300 - -# 1-Hexanol, C6H13OH - + 3.0000 C2H5OH = C6H13OH + 2.0000 H2O - -llnl_gamma 3.0 - log_k +13.8358 - -delta_h +92.690 kcal/mol - -analytic 1.2093e+001 -8.5858e-004 4.0578e+003 -4.6909e+000 6.3315e+001 -# -Range: 0-300 - -# 1-Hexene, C6H12 - + 3.0000 C2H4 = C6H12 - -llnl_gamma 3.0 - log_k +24.9076 - -delta_h +17.025 kcal/mol - -analytic -1.8354e+001 -1.1761e-002 1.0127e+004 5.8975e+000 -1.5953e+005 -# -Range: 0-300 - -# 1-Hexyne, C6H10 - + 3.0000 C2H2 + 2.0000 H2O = C6H10 + 1.0000 O2 - -llnl_gamma 3.0 - log_k -639.9392 - -delta_h -22.34 kcal/mol - -analytic 2.6448e+001 -2.4295e-003 -3.8892e+003 -1.0837e+001 2.0944e+005 -# -Range: 0-300 - -# 1-Octanamine, C8H17NH2 - + 4.0000 C2H5NH2 = C8H17NH2 + 3.0000 NH3 - -llnl_gamma 3.0 - log_k +18.6103 - -delta_h +57.660 kcal/mol - -analytic 9.9090e+000 3.5563e-003 4.4097e+003 -2.8869e+000 6.8807e+001 -# -Range: 0-300 - -# 1-Octanol, C8H12OH -# + 4.0000 C2H5OH = C8H12OH + 3.0000 H2O -# does not balance -# -llnl_gamma 3.0 -# log_k +19.7862 -# -delta_h +103.060 kcal/mol -# -analytic -1.0628e+001 -4.8545e-003 7.2441e+003 3.0590e+000 1.1304e+002 -# -Range: 0-300 - -# 1-Octene, C8H16 - + 4.0000 C2H4 = C8H16 - -llnl_gamma 3.0 - log_k +35.9760 - -delta_h +28.120 kcal/mol - -analytic -3.3408e+001 -1.8810e-002 1.5052e+004 1.1026e+001 -2.4723e+005 -# -Range: 0-300 - -# 1-Octyne, C8H14 - + 4.0000 C2H2 + 3.0000 H2O = C8H14 + 1.5000 O2 - -llnl_gamma 3.0 - log_k -857.5439 - -delta_h -11.33 kcal/mol - -analytic 4.5356e+001 -2.9242e-003 -6.8742e+003 -1.8272e+001 3.3648e+005 -# -Range: 0-300 - -# 1-Pentanamine, C5H11NH2 - + 2.5000 C2H5NH2 = C5H11NH2 + 1.5000 NH3 - -llnl_gamma 3.0 - log_k +9.1805 - -delta_h +40.650 kcal/mol - -analytic 8.4037e+000 2.7132e-003 1.9292e+003 -2.7349e+000 2.3844e+004 -# -Range: 0-300 - -# 1-Pentanol, C5H11OH - + 2.5000 C2H5OH = C5H11OH + 1.5000 H2O - -llnl_gamma 3.0 - log_k +11.1245 - -delta_h +87.730 kcal/mol - -analytic -9.8673e-001 -2.4789e-003 3.8322e+003 0.0000e+000 0.0000e+000 -# -Range: 0-300 - -# 1-Pentene, C5H10 - + 2.5000 C2H4 = C5H10 - -llnl_gamma 3.0 - log_k +19.1718 - -delta_h +11.200 kcal/mol - -analytic -5.8469e+001 -1.4970e-002 1.0267e+004 2.0489e+001 -2.6977e+005 -# -Range: 0-300 - -# 1-Pentyne, C5H8 - + 2.5000 C2H2 + 1.5000 H2O = C5H8 + 0.7500 O2 - -llnl_gamma 3.0 - log_k -531.1075 - -delta_h -27.8 kcal/mol - -analytic 5.0924e+000 -3.9604e-003 -1.7557e+003 -2.7988e+000 1.1194e+005 -# -Range: 0-300 - -# 1-Propanamine, C3H7NH2 - + 1.5000 C2H5NH2 = C3H7NH2 + 0.5000 NH3 - -llnl_gamma 3.0 - log_k +4.1279 - -delta_h +30.680 kcal/mol - -analytic 2.8174e+000 8.5281e-004 9.7545e+002 -8.9491e-001 1.5220e+001 -# -Range: 0-300 - -# 1-Propanol, C3H7OH - + 1.5000 C2H5OH = C3H7OH + 0.5000 H2O - -llnl_gamma 3.0 - log_k +3.8548 - -delta_h +75.320 kcal/mol - -analytic -2.8360e+000 -1.0577e-003 1.4368e+003 8.8413e-001 2.2421e+001 -# -Range: 0-300 - -# 1-Propene, C3H6 - + 1.5000 C2H4 = C3H6 - -llnl_gamma 3.0 - log_k +8.2573 - -delta_h +0.290 kcal/mol - -analytic 1.1038e+001 -3.4869e-004 2.3006e+003 -4.2007e+000 3.5895e+001 -# -Range: 0-300 - -# 1-Propyne, C3H4 - + 1.5000 C2H2 + 0.5000 H2O = C3H4 + 0.2500 O2 - -llnl_gamma 3.0 - log_k -313.6201 - -delta_h -38.97 kcal/mol - -analytic 2.4860e-002 -1.5316e-003 4.1336e+002 -3.4011e-001 3.0624e+004 -# -Range: 0-300 - -# # 2-Butanone, C4H8O CH3C(O)CH2CH3 -# + 4.0000 CH3COCH3 = C4H8O + 0.5000 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -1200.9839 -# -delta_h +67.880 kcal/mol -# -analytic -2.1942e+001 9.8502e-004 -9.1936e+003 6.9213e+000 1.6006e+005 -# -Range: 0-300 - -# 2-Heptanone, C7H14O correct formula -# + 7.0000 CH3COCH3 = C7H14O + 2.0000 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -2179.4136 -# -delta_h +84.890 kcal/mol -# -analytic -1.8734e+002 -6.9923e-003 -3.0077e+004 6.2205e+001 -4.6928e+002 -# -Range: 0-300 - -# 2-Hexanone, C6H12O -# + 6.0000 CH3COCH3 = C6H12O + 1.5000 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -1853.3802 -# -delta_h +79.220 kcal/mol -# -analytic 3.3773e+002 5.9197e-002 -5.0406e+004 -1.2439e+002 1.7107e+006 -# -Range: 0-300 - -# 2-Hydroxybutanoate, C4H7O3- - + 1.0000 C3H7COOH + 0.5000 O2 = C4H7O3- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.8116 - -delta_h +169.810 kcal/mol - -analytic -5.4902e+001 -2.9840e-002 9.1382e+003 2.2664e+001 1.4261e+002 -# -Range: 0-300 - -# 2-Hydroxybutanoic, C4H8O3 - + 1.0000 C3H7COOH + 0.5000 O2 = C4H8O3 - -llnl_gamma 3.0 - log_k -332.1774 - -delta_h +169.670 kcal/mol - -analytic -3.0810e+001 -8.1378e-003 1.0507e+004 1.0709e+001 -1.5474e+005 -# -Range: 0-300 - -# 2-Hydroxydecanoate, C10H19O3- - + 5.0000 CH3COOH = C10H19O3- + 3.5000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.7383 - -delta_h +203.930 kcal/mol - -analytic -2.8008e+002 -1.9653e-002 -6.9199e+004 9.7024e+001 -1.0797e+003 -# -Range: 0-300 - -# 2-Hydroxydecanoic, C10H20O3 - + 5.0000 CH3COOH = C10H20O3 + 3.5000 O2 - -llnl_gamma 3.0 - log_k -984.2221 - -delta_h +203.690 kcal/mol - -analytic -3.2602e+002 -2.4822e-002 -6.7352e+004 1.1523e+002 -1.0509e+003 -# -Range: 0-300 - -# 2-Hydroxyheptanoate, C7H13O3- - + 3.5000 CH3COOH = C7H13O3- + 2.0000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.7383 - -delta_h +186.900 kcal/mol - -analytic -2.0491e+002 -2.6664e-002 -3.9557e+004 7.2979e+001 -6.1720e+002 -# -Range: 0-300 - -# 2-Hydroxyheptanoic, C7H14O3 - + 3.5000 CH3COOH = C7H14O3 + 2.0000 O2 - -llnl_gamma 3.0 - log_k -658.2107 - -delta_h +186.680 kcal/mol - -analytic -1.9142e+002 -1.4836e-002 -3.9307e+004 6.7281e+001 -6.1330e+002 -# -Range: 0-300 - -# 2-Hydroxyhexanoate, C6H11O3- - + 3.0000 CH3COOH = C6H11O3- + 1.5000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.7384 - -delta_h +181.240 kcal/mol - -analytic -1.7865e+002 -2.8722e-002 -2.9711e+004 6.4493e+001 -4.6357e+002 -# -Range: 0-300 - -# 2-Hydroxyhexanoic, C6H12O3 - + 3.0000 CH3COOH = C6H12O3 + 1.5000 O2 - -llnl_gamma 3.0 - log_k -549.5329 - -delta_h +181.010 kcal/mol - -analytic 4.5831e+000 5.4145e-003 -3.9948e+004 -1.4677e+000 6.9991e+005 -# -Range: 0-300 - -# 2-Hydroxynonanoate, C9H17O3- - + 4.5000 CH3COOH = C9H17O3- + 3.0000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.7383 - -delta_h +198.250 kcal/mol - -analytic -2.5572e+002 -2.2155e-002 -5.9298e+004 8.9284e+001 -9.2521e+002 -# -Range: 0-300 - -# 2-Hydroxynonanoic, C9H18O3 - + 4.5000 CH3COOH = C9H18O3 + 3.0000 O2 - -llnl_gamma 3.0 - log_k -875.5516 - -delta_h +198.020 kcal/mol - -analytic -1.1226e+002 -3.7272e-003 -6.9576e+004 4.0711e+001 8.3790e+005 -# -Range: 0-300 - -# 2-Hydroxyoctanoate, C8H15O3- - + 4.0000 CH3COOH = C8H15O3- + 2.5000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.7383 - -delta_h +192.570 kcal/mol - -analytic 6.7477e+001 1.2723e-002 -6.7802e+004 -2.4249e+001 1.1992e+006 -# -Range: 0-300 - -# 2-Hydroxyoctanoic, C8H16O3 - + 4.0000 CH3COOH = C8H16O3 + 2.5000 O2 - -llnl_gamma 3.0 - log_k -766.8885 - -delta_h +192.350 kcal/mol - -analytic 1.8003e+002 3.4449e-002 -7.4099e+004 -6.4322e+001 1.6435e+006 -# -Range: 0-300 - -# 2-Hydroxypentanoate, C5H9O3- - + 1.0000 C4H9COOH + 0.5000 O2 = C5H9O3- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.5918 - -delta_h +175.770 kcal/mol - -analytic -3.4964e+001 -2.4619e-002 8.6213e+003 1.4743e+001 1.3454e+002 -# -Range: 0-300 - -# 2-Hydroxypentanoic, C5H10O3 - + 1.0000 C4H9COOH + 0.5000 O2 = C5H10O3 - -llnl_gamma 3.0 - log_k -440.8552 - -delta_h +175.340 kcal/mol - -analytic -4.8323e+001 -1.0534e-002 1.1616e+004 1.6913e+001 -2.3478e+005 -# -Range: 0-300 - -# 2-Octanone, C8H16O -# + 8.0000 CH3COCH3 = C8H16O + 2.5000 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -2505.4468 -# -delta_h +90.560 kcal/mol -# -analytic 3.9776e+002 7.5718e-002 -7.4592e+004 -1.4798e+002 2.2610e+006 -# -Range: 0-300 - -# 2-Pentanone, C5H10O -# + 5.0000 CH3COCH3 = C5H10O + 1.0000 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -1527.6549 -# -delta_h +73.460 kcal/mol -# -analytic 2.2603e+002 3.9343e-002 -3.3782e+004 -8.3253e+001 1.1722e+006 -# -Range: 0-300 - -# Acetaldehyde, CH3CHO - + 1.0000 CH3COOH = CH3CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -188.3673 - -delta_h +50.380 kcal/mol - -analytic 2.3139e+001 9.8759e-003 -1.4924e+004 -9.4191e+000 8.0783e+004 -# -Range: 0-300 - -# Acetamide, CH3CONH2 - + 1.0000 NH3 + 1.0000 CH3COOH = CH3CONH2 + 1.0000 H2O - -llnl_gamma 3.0 - log_k +4.6947 - -delta_h +77.290 kcal/mol - -analytic 2.4852e+001 5.3426e-003 1.3023e+003 -1.0554e+001 2.0315e+001 -# -Range: 0-300 - -# CH3COCH3, CH3COCH3 - + 3.0000 HCO3- + 3.0000 H+ = CH3COCH3 + 4.0000 O2 - -llnl_gamma 3.0 - log_k -291.8554 - -delta_h +61.720 kcal/mol - -analytic -2.5990E+03 -4.4302E-01 -5.7126E+02 9.8637E+02 -1.6901E-01 -# -Range: 0-300 - -# Adipate, C6H8O4-2 - + 3.0000 CH3COOH = C6H8O4-2 + 2.0000 H+ + 1.0000 H2O + 0.5000 O2 - -llnl_gamma 4.0 - log_k -9.8223 - -delta_h +227.780 kcal/mol - -analytic -1.6044e+002 -7.4583e-002 -9.1669e+003 6.5454e+001 -1.4299e+002 -# -Range: 0-300 - -# Adipic_acid, C6H10O4 - + 3.0000 CH3COOH = C6H10O4 + 1.0000 H2O + 0.5000 O2 - -llnl_gamma 3.0 - log_k -467.5962 - -delta_h +229.750 kcal/mol - -analytic -4.7527e+001 -1.3717e-002 -1.0191e+004 1.7857e+001 -1.5900e+002 -# -Range: 0-300 - -# Alanine, C3H7NO2 - + 1.0000 NH3 + 3.0000 HCO3- + 3.0000 H+ = C3H7NO2 + 1.0000 H2O + 3.0000 O2 - -llnl_gamma 3.0 - log_k -215.2132 - -delta_h +132.130 kcal/mol - -analytic -1.8686E+03 -3.1237E-01 -5.4608E+02 7.0646E+02 -8.7774E-03 -# -Range 0-300 - -# Alanylglycine, C5H10N2O3 - + 2.5000 C2H5NO2 = C5H10N2O3 + 0.7500 O2 + 0.5000 H2O + 0.5000 NH3 - -llnl_gamma 3.0 - log_k -326.317 - -delta_h +186.110 kcal/mol - -analytic 1.4154e+001 1.2917e-002 -2.0305e+004 -5.2689e+000 6.4481e+005 -# -Range: 0-300 - -# Asparagine, C4H8N2O3 - + 2.0000 C2H5NO2 = C4H8N2O3 + 1.0000 H2O - -llnl_gamma 3.0 - log_k +5.9386 - -delta_h +186.660 kcal/mol - -analytic -1.7915e+001 8.7354e-004 2.1119e+003 6.1432e+000 1.1658e+005 -# -Range: 0-300 - -# Aspartic_acid, C4H7NO4 - + 2.0000 C2H5NO2 = C4H7NO4 + 1.0000 NH3 - -llnl_gamma 3.0 - log_k +1.1340 - -delta_h +226.370 kcal/mol - -analytic -1.6456e+001 1.7980e-003 2.4086e+002 6.0721e+000 1.0866e+005 -# -Range: 0-300 - -# Azelaic_acid, C9H16O4 - + 4.5000 CH3COOH = C9H16O4 + 2.0000 O2 + 1.0000 H2O - -llnl_gamma 3.0 - log_k -795.8139 - -delta_h +240.700 kcal/mol - -analytic 2.0346e+002 2.5843e-002 -6.2187e+004 -7.1175e+001 1.4838e+006 -# -Range: 0-300 - -# Azelate, C9H14O4-2 - + 4.5000 CH3COOH = C9H14O4-2 + 2.0000 H+ + 2.0000 O2 + 1.0000 H2O - -llnl_gamma 4.0 - log_k -9.9176 - -delta_h +241.660 kcal/mol - -analytic -2.5031e+002 -7.0995e-002 -3.9050e+004 9.5249e+001 -6.0927e+002 -# -Range: 0-300 - -# Ba(Ala)+, Ba(C3H6NO2)+ - + 1.0000 Ba+2 + 1.0000 C3H7NO2 = Ba(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -9.3949 - -delta_h +243.703 kcal/mol - -analytic -1.9975e+001 5.8683e-003 -3.7242e+003 7.5785e+000 2.2969e+005 -# -Range: 0-300 - -# Ba(Ala)2, Ba(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Ba+2 = Ba(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -19.3096 - -delta_h +359.051 kcal/mol - -analytic 1.0973e+002 1.7563e-002 -2.0507e+004 -3.3504e+001 1.5490e+006 -# -Range: 0-300 - -# Ba(But)+, Ba(CH3(CH2)2CO2)+ - + 1.0000 C3H7COOH + 1.0000 Ba+2 = Ba(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8378 - -delta_h +253.285 kcal/mol - -analytic -1.6992e+001 3.8062e-003 -1.7104e+003 5.2858e+000 3.2839e+005 -# -Range: 0-300 - -# Ba(But)2, Ba(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Ba+2 = Ba(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.9857 - -delta_h +378.066 kcal/mol - -analytic -2.9726e+000 1.9119e-003 -9.5963e+003 3.7172e+000 1.3721e+006 -# -Range: 0-300 - -# Ba(For)+, Ba(CHO2)+ - + 1.0000 HCOOH + 1.0000 Ba+2 = Ba(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.3727 - -delta_h +228.918 kcal/mol - -analytic 8.0004e-001 1.5487e-003 -2.7467e+002 -1.0939e+000 -4.2863e+000 -# -Range: 0-300 - -# Ba(For)2, Ba(CHO2)2 - + 2.0000 HCOOH + 1.0000 Ba+2 = Ba(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.296 - -delta_h +329.933 kcal/mol - -analytic 3.4358e+001 -2.1439e-003 -4.0534e+003 -1.1596e+001 2.9161e+005 -# -Range: 0-300 - -# Ba(Gly)+, Ba(C2H4NO2)+ - + 1.0000 C2H5NO2 + 1.0000 Ba+2 = Ba(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -8.2881 - -delta_h +235.808 kcal/mol - -analytic -4.3238e+000 8.7896e-003 -3.1933e+003 1.1733e+000 1.0974e+005 -# -Range: 0-300 - -# Ba(Gly)2, Ba(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Ba+2 = Ba(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -17.1868 - -delta_h +343.302 kcal/mol - -analytic 3.6958e+001 8.4550e-003 -1.2694e+004 -9.4136e+000 8.1935e+005 -# -Range: 0-300 - -# Ba(Glyc)+, Ba(CH3OCO2)+ - + 1.0000 C2H4O3 + 1.0000 Ba+2 = Ba(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.8338 - -delta_h +282.924 kcal/mol - -analytic -1.6504e+001 4.4210e-004 -4.2741e+002 5.3311e+000 1.5913e+005 -# -Range: 0-300 - -# Ba(Glyc)2, Ba(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Ba+2 = Ba(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.9674 - -delta_h +436.833 kcal/mol - -analytic 5.7805e+000 -1.9337e-003 -5.5632e+003 -3.9310e-001 7.5344e+005 -# -Range: 0-300 - -# Ba(Lac)+, Ba(CH3CH2OCO2)+ - + 1.0000 C3H6O3 + 1.0000 Ba+2 = Ba(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.223 - -delta_h +291.416 kcal/mol - -analytic -1.3618e+001 2.4575e-003 -1.0433e+003 4.2488e+000 2.3666e+005 -# -Range: 0-300 - -# Ba(Lac)2, Ba(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Ba+2 = Ba(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.6762 - -delta_h +453.654 kcal/mol - -analytic 1.1971e+001 8.0125e-004 -7.9857e+003 -1.7124e+000 1.0808e+006 -# -Range: 0-300 - -# Ba(Pent)+, Ba(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Ba+2 = Ba(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.0673 - -delta_h +259.492 kcal/mol - -analytic -3.4714e+001 4.4831e-003 -2.0568e+003 1.1920e+001 5.1000e+005 -# -Range: 0-300 - -# Ba(Pent)2, Ba(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Ba+2 = Ba(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -10.4241 - -delta_h +389.909 kcal/mol - -analytic -3.2583e+001 3.5113e-003 -1.2204e+004 1.6052e+001 1.9881e+006 -# -Range: 0-300 - -# Ba(Prop)+, Ba(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Ba+2 = Ba(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.7462 - -delta_h +248.190 kcal/mol - -analytic -5.3032e+000 4.7638e-003 -2.1690e+003 1.1454e+000 3.1960e+005 -# -Range: 0-300 - -# Ba(Prop)2, Ba(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Ba+2 = Ba(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.823 - -delta_h +368.336 kcal/mol - -analytic -1.3636e+001 2.7509e-004 -7.6760e+003 6.8362e+000 1.1194e+006 -# -Range: 0-300 - -# Benzene, C6H6 - + 6.0000 HCO3- + 6.0000 H+ = C6H6 + 3.0000 H2O + 7.5 O2 - -llnl_gamma 3.0 - log_k -537.502 - -delta_h -12.23 kcal/mol - -analytic -4.7749E+03 -8.0212E-01 -6.4755E+02 1.8097E+03 -7.4941E-01 -# -Range: 0-300 - -# Benzoate, C7H5O2- - + 3.5000 CH3COOH = C7H5O2- + 4.0000 H2O + 1.0000 H+ + 0.5000 O2 - -llnl_gamma 6.0 - log_k -4.2001 - -delta_h +84.990 kcal/mol - -analytic -1.6676e+002 -3.8444e-002 -5.4403e+003 6.2663e+001 -8.4843e+001 -# -Range: 0-300 - -# Benzoic_acid, C7H6O2 - + 3.5000 CH3COOH = C7H6O2 + 4.0000 H2O + 0.5000 O2 - -llnl_gamma 3.0 - log_k -534.1773 - -delta_h +85.070 kcal/mol - -analytic 1.5144e+001 3.5834e-003 -1.3334e+004 -5.4195e+000 4.1964e+005 -# -Range: 0-300 - -# Butanal, CH3(CH2)2CHO - + 1.0000 C2H4 + 1.0000 CH3COOH = CH3(CH2)2CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -406.1993 - -delta_h +61.070 kcal/mol - -analytic -1.2090e+001 -8.7356e-004 -9.4627e+003 3.4311e+000 -1.4765e+002 -# -Range: 0-300 - -# Butanoate, C3H7COO- - + 1.0000 C3H7COOH = C3H7COO- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.8085 - -delta_h +128.630 kcal/mol - -analytic -8.2788e+001 -2.9877e-002 1.7558e+003 3.2727e+001 2.7421e+001 -# -Range: 0-300 - -# Butanoic_acid, C3H7COOH - + 4.0000 HCO3- + 4.0000 H+ = C3H7COOH + 5.0000 O2 - -llnl_gamma 3.0 - log_k -358.9446 - -delta_h +127.950 kcal/mol - -analytic -3.1892E+03 -5.4023E-01 -5.9261E+02 1.2095E+03 -3.5739E-01 -# -Range: 0-300 - -# Ca(Ala)+, Ca(C3H6NO2)+ - + 1.0000 Ca+2 + 1.0000 C3H7NO2 = Ca(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -9.1245 - -delta_h +247.083 kcal/mol - -analytic 1.6971e+001 9.5706e-003 -6.1936e+003 -5.4079e+000 4.6397e+005 -# -Range: 0-300 - -# Ca(Ala)2, Ca(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Ca+2 = Ca(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -18.8192 - -delta_h +364.714 kcal/mol - -analytic 2.3029e+001 8.5155e-003 -1.5061e+004 -3.5999e+000 1.3386e+006 -# -Range: 0-300 - -# Ca(But)+, Ca(CH3(CH2)2CO2)+ - + 1.0000 Ca+2 + 1.0000 C3H7COOH = Ca(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.2976 - -delta_h +257.034 kcal/mol - -analytic -2.5048e+001 1.5166e-003 -1.4808e+003 8.3797e+000 4.0411e+005 -# -Range: 0-300 - -# Ca(But)2, Ca(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Ca+2 = Ca(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -8.9955 - -delta_h +384.411 kcal/mol - -analytic 2.0646e+000 5.8047e-003 -9.1382e+003 5.9558e-001 1.4594e+006 -# -Range: 0-300 - -# Ca(For)+, Ca(CHO2)+ - + 1.0000 HCOOH + 1.0000 Ca+2 = Ca(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.3229 - -delta_h +231.998 kcal/mol - -analytic 2.9298e+000 9.5453e-004 -6.9686e+002 -1.7506e+000 1.0103e+005 -# -Range: 0-300 - -# Ca(For)2, Ca(CHO2)2 - + 2.0000 HCOOH + 1.0000 Ca+2 = Ca(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.2058 - -delta_h +335.050 kcal/mol - -analytic 2.6958e+001 -7.2777e-005 -3.1911e+003 -1.0215e+001 3.4188e+005 -# -Range: 0-300 - -# Ca(Gly)+, Ca(C2H4NO2)+ - + 1.0000 C2H5NO2 + 1.0000 Ca+2 = Ca(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -8.4281 - -delta_h +238.629 kcal/mol - -analytic 9.6784e+000 9.2419e-003 -4.5102e+003 -3.5460e+000 2.7110e+005 -# -Range: 0-300 - -# Ca(Gly)2, Ca(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Ca+2 = Ca(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -17.4463 - -delta_h +347.942 kcal/mol - -analytic 4.7335e+001 1.2694e-002 -1.3050e+004 -1.4305e+001 9.4368e+005 -# -Range: 0-300 - -# Ca(Glyc)+, Ca(CH3OCO2)+ - + 1.0000 C2H4O3 + 1.0000 Ca+2 = Ca(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.1836 - -delta_h +285.318 kcal/mol - -analytic -6.6096e+000 1.5353e-003 -1.1777e+003 2.0325e+000 2.5764e+005 -# -Range: 0-300 - -# Ca(Glyc)2, Ca(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Ca+2 = Ca(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.777 - -delta_h +441.481 kcal/mol - -analytic 1.5520e+001 2.3781e-003 -5.6732e+003 -4.6723e+000 8.5347e+005 -# -Range: 0-300 - -# Ca(Lac)+, Ca(CH3CH2OCO2)+ - + 1.0000 C3H6O3 + 1.0000 Ca+2 = Ca(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.4431 - -delta_h +294.436 kcal/mol - -analytic -1.3975e+001 1.7379e-003 -1.2135e+003 4.6597e+000 3.1702e+005 -# -Range: 0-300 - -# Ca(Lac)2, Ca(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Ca+2 = Ca(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.2461 - -delta_h +459.217 kcal/mol - -analytic -1.6205e+001 -2.3672e-004 -5.8180e+003 7.5258e+000 1.0619e+006 -# -Range: 0-300 - -# Ca(Pent)+, Ca(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Ca+2 = Ca(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.5674 - -delta_h +263.187 kcal/mol - -analytic -3.1543e+001 3.4804e-003 -2.5576e+003 1.1076e+001 6.3392e+005 -# -Range: 0-300 - -# Ca(Pent)2, Ca(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Ca+2 = Ca(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.5042 - -delta_h +396.159 kcal/mol - -analytic -3.4318e+001 6.3122e-003 -1.1437e+004 1.5421e+001 2.0603e+006 -# -Range: 0-300 - -# Ca(Prop)+, Ca(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Ca+2 = Ca(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.2163 - -delta_h +251.925 kcal/mol - -analytic -1.1303e+001 2.9020e-003 -2.0209e+003 3.4533e+000 3.9745e+005 -# -Range: 0-300 - -# Ca(Prop)2, Ca(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Ca+2 = Ca(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -8.8533 - -delta_h +374.653 kcal/mol - -analytic -2.1746e+001 2.3077e-003 -6.4906e+003 8.4496e+000 1.1644e+006 -# -Range: 0-300 - -# Cd(Ala)+, Cd(C3H6NO2)+ - + 1.0000 Cd+2 + 1.0000 C3H7NO2 = Cd(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.3348 - -delta_h +141.016 kcal/mol - -analytic -1.0583e+001 3.9676e-003 -4.0210e+003 5.0485e+000 4.5101e+005 -# -Range: 0-300 - -# Cd(Ala)2, Cd(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Cd+2 = Cd(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -11.8894 - -delta_h +263.420 kcal/mol - -analytic 2.5164e+001 8.5032e-003 -1.3671e+004 -4.0957e+000 1.4600e+006 -# -Range: 0-300 - -# Cd(But)+, Cd(CH3(CH2)2CO2)+ - + 1.0000 Cd+2 + 1.0000 C3H7COOH = Cd(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.2875 - -delta_h +147.174 kcal/mol - -analytic -2.4575e+001 -8.5197e-006 -1.6709e+003 8.7040e+000 4.7765e+005 -# -Range: 0-300 - -# Cd(But)2, Cd(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Cd+2 = Cd(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.976 - -delta_h +276.419 kcal/mol - -analytic -5.3701e+000 4.5291e-003 -8.6471e+003 3.5125e+000 1.5458e+006 -# -Range: 0-300 - -# Cd(For)+, Cd(CHO2)+ - + 1.0000 HCOOH + 1.0000 Cd+2 = Cd(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.9131 - -delta_h +121.320 kcal/mol - -analytic -5.5574e-001 -1.0359e-003 -8.1506e+002 -3.4199e-002 1.5786e+005 -# -Range: 0-300 - -# Cd(For)2, Cd(CHO2)2 - + 2.0000 HCOOH + 1.0000 Cd+2 = Cd(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.6658 - -delta_h +226.403 kcal/mol - -analytic 2.2826e+000 -3.7353e-003 -1.8618e+003 -1.1085e+000 3.7009e+005 -# -Range: 0-300 - -# Cd(Gly)+, Cd(C2H4NO2)+ - + 1.0000 C2H5NO2 + 1.0000 Cd+2 = Cd(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.0885 - -delta_h +132.088 kcal/mol - -analytic -1.0697e+001 4.7244e-003 -2.8241e+003 4.2651e+000 2.7816e+005 -# -Range: 0-300 - -# Cd(Gly)2, Cd(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Cd+2 = Cd(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -11.1564 - -delta_h +246.607 kcal/mol - -analytic 1.7236e+001 8.4272e-003 -9.8265e+003 -3.4936e+000 9.5253e+005 -# -Range: 0-300 - -# Cd(Glyc)+, Cd(CH3OCO2)+ - + 1.0000 C2H4O3 + 1.0000 Cd+2 = Cd(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.9637 - -delta_h +174.381 kcal/mol - -analytic -2.7570e+000 5.5464e-004 -1.7718e+003 1.1165e+000 3.3942e+005 -# -Range: 0-300 - -# Cd(Glyc)2, Cd(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Cd+2 = Cd(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.3775 - -delta_h +331.279 kcal/mol - -analytic 1.7413e+001 2.4215e-003 -6.1858e+003 -5.1146e+000 9.6988e+005 -# -Range: 0-300 - -# Cd(Lac)+, Cd(CH3CH2OCO2)+ - + 1.0000 C3H6O3 + 1.0000 Cd+2 = Cd(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.1631 - -delta_h +183.519 kcal/mol - -analytic -1.3237e+001 2.9922e-004 -1.6309e+003 4.8863e+000 3.8920e+005 -# -Range: 0-300 - -# Cd(Lac)2, Cd(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Cd+2 = Cd(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.736 - -delta_h +349.085 kcal/mol - -analytic -1.7558e+001 -6.8972e-004 -6.1408e+003 8.2844e+000 1.1691e+006 -# -Range: 0-300 - -# Cd(Pent)+, Cd(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Cd+2 = Cd(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.237 - -delta_h +153.764 kcal/mol - -analytic -1.4232e+001 4.3507e-003 -3.5842e+003 5.3294e+000 7.6047e+005 -# -Range: 0-300 - -# Cd(Pent)2, Cd(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Cd+2 = Cd(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.0742 - -delta_h +288.726 kcal/mol - -analytic -3.1302e+001 6.5168e-003 -1.1405e+004 1.4573e+001 2.1801e+006 -# -Range: 0-300 - -# Cd(Prop)+, Cd(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Cd+2 = Cd(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.0068 - -delta_h +142.338 kcal/mol - -analytic -1.1700e+001 1.3228e-003 -2.0826e+003 4.0674e+000 4.6555e+005 -# -Range: 0-300 - -# Cd(Prop)2, Cd(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Cd+2 = Cd(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.5531 - -delta_h +267.043 kcal/mol - -analytic -2.7887e+001 1.1740e-003 -6.0022e+003 1.0916e+001 1.2569e+006 -# -Range: 0-300 - -# Co(Ala)+, Co(C3H6NO2)+ - + 1.0000 Co+2 + 1.0000 C3H7NO2 = Co(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.6449 - -delta_h +136.245 kcal/mol - -analytic -6.6326e+000 4.2270e-003 -4.1512e+003 3.5761e+000 4.2801e+005 -# -Range: 0-300 - -# Co(Ala)2, Co(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Co+2 = Co(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -12.3196 - -delta_h +259.272 kcal/mol - -analytic 3.7901e+001 1.0752e-002 -1.3519e+004 -9.4658e+000 1.3658e+006 -# -Range: 0-300 - -# Co(But)+, Co(CH3(CH2)2CO2)+ - + 1.0000 Co+2 + 1.0000 C3H7COOH = Co(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.0977 - -delta_h +144.234 kcal/mol - -analytic -1.2926e+001 1.1374e-003 -1.9544e+003 4.2567e+000 4.9139e+005 -# -Range: 0-300 - -# Co(But)2, Co(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Co+2 = Co(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.806 - -delta_h +274.655 kcal/mol - -analytic -1.7789e+001 3.3292e-003 -6.6509e+003 6.8084e+000 1.3765e+006 -# -Range: 0-300 - -# Co(For)+, Co(CHO2)+ - + 1.0000 HCOOH + 1.0000 Co+2 = Co(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.8934 - -delta_h +118.148 kcal/mol - -analytic 3.4604e+000 -7.0163e-004 -6.4686e+002 -1.8241e+000 1.3725e+005 -# -Range: 0-300 - -# Co(For)2, Co(CHO2)2 - + 2.0000 HCOOH + 1.0000 Co+2 = Co(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.4259 - -delta_h +223.371 kcal/mol - -analytic 4.6480e+000 -2.8123e-003 -9.5823e+002 -3.1486e+000 2.4710e+005 -# -Range: 0-300 - -# Co(Gly)+, Co(C2H4NO2)+ - + 1.0000 C2H5NO2 + 1.0000 Co+2 = Co(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.7081 - -delta_h +129.082 kcal/mol - -analytic -6.1033e+000 4.7861e-003 -2.7304e+003 2.4628e+000 2.7041e+005 -# -Range: 0-300 - -# Co(Gly)2, Co(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Co+2 = Co(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -10.4666 - -delta_h +243.427 kcal/mol - -analytic 3.7958e+001 1.1767e-002 -9.8791e+003 -1.1599e+001 8.8179e+005 -# -Range: 0-300 - -# Co(Glyc)+, Co(CH3OCO2)+ - + 1.0000 C2H4O3 + 1.0000 Co+2 = Co(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.8538 - -delta_h +171.331 kcal/mol - -analytic -5.3556e+000 -1.8875e-004 -1.2450e+003 1.7558e+000 3.0214e+005 -# -Range: 0-300 - -# Co(Glyc)2, Co(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Co+2 = Co(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.1774 - -delta_h +329.556 kcal/mol - -analytic 2.1760e+000 8.7672e-004 -4.0049e+003 -8.2381e-001 7.8900e+005 -# -Range: 0-300 - -# Co(Lac)+, Co(CH3CH2OCO2)+ - + 1.0000 C3H6O3 + 1.0000 Co+2 = Co(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.5032 - -delta_h +179.856 kcal/mol - -analytic -8.0185e+000 4.8796e-004 -1.7264e+003 2.7704e+000 3.8387e+005 -# -Range: 0-300 - -# Co(Lac)2, Co(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Co+2 = Co(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.2359 - -delta_h +346.408 kcal/mol - -analytic 2.9324e+000 2.8527e-003 -6.1528e+003 -3.0383e-001 1.1020e+006 -# -Range: 0-300 - -# Co(Pent)+, Co(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Co+2 = Co(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.1571 - -delta_h +150.673 kcal/mol - -analytic -2.2797e+001 2.4832e-003 -2.8121e+003 8.2127e+000 7.1396e+005 -# -Range: 0-300 - -# Co(Pent)2, Co(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Co+2 = Co(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.924 - -delta_h +286.935 kcal/mol - -analytic -3.2956e+001 6.8817e-003 -1.0002e+004 1.3976e+001 2.0436e+006 -# -Range: 0-300 - -# Co(Prop)+, Co(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Co+2 = Co(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.5866 - -delta_h +138.347 kcal/mol - -analytic -5.0563e+000 1.9295e-003 -2.2644e+003 1.3628e+000 4.5635e+005 -# -Range: 0-300 - -# Co(Prop)2, Co(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Co+2 = Co(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.6929 - -delta_h +263.492 kcal/mol - -analytic -1.4853e+001 3.7021e-003 -5.7739e+003 4.9977e+000 1.1637e+006 -# -Range: 0-300 - -# Cu(Ala)+, Cu(C3H6NO2)+ - + 1.0000 Cu+2 + 1.0000 C3H7NO2 = Cu(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.8545 - -delta_h +109.970 kcal/mol - -analytic -1.1698e+001 4.4099e-003 -2.4550e+003 5.1251e+000 3.6414e+005 -# -Range: 0-300 - -# Cu(Ala)2, Cu(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Cu+2 = Cu(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.3297 - -delta_h +237.360 kcal/mol - -analytic -1.2813e+001 3.4309e-003 -8.8197e+003 9.0075e+000 1.2248e+006 -# -Range: 0-300 - -# Cu(But)+, Cu(CH3(CH2)2CO2)+ - + 1.0000 Cu+2 + 1.0000 C3H7COOH = Cu(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.6982 - -delta_h +114.768 kcal/mol - -analytic 1.9946e+000 3.2893e-003 -2.6114e+003 -1.1028e+000 5.1836e+005 -# -Range: 0-300 - -# Cu(But)2, Cu(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Cu+2 = Cu(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.0656 - -delta_h +245.176 kcal/mol - -analytic -2.8831e+001 1.5210e-003 -6.1416e+003 1.1151e+001 1.3647e+006 -# -Range: 0-300 - -# Cu(For)+, CuCHO2+ - + 1.0000 HCOOH + 1.0000 Cu+2 = CuCHO2+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.7731 - -delta_h +88.300 kcal/mol - -analytic 1.8727e+000 -1.0020e-003 -5.0154e+002 -1.1966e+000 1.1576e+005 -# -Range: 0-300 - -# Cu(For)2, Cu(CHO2)2 - + 2.0000 HCOOH + 1.0000 Cu+2 = Cu(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.206 - -delta_h +193.183 kcal/mol - -analytic 7.4586e+000 -2.6644e-003 -1.3786e+003 -3.7935e+000 2.8017e+005 -# -Range: 0-300 - -# Cu(Gly)+, Cu(C2H4NO2)+ - + 1.0000 C2H5NO2 + 1.0000 Cu+2 = Cu(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.208 - -delta_h +102.408 kcal/mol - -analytic -1.2098e+001 4.5923e-003 -1.3603e+003 4.7714e+000 2.0346e+005 -# -Range: 0-300 - -# Cu(Gly)2, Cu(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Cu+2 = Cu(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.7266 - -delta_h +221.770 kcal/mol - -analytic -6.9393e+000 5.1196e-003 -5.7575e+003 5.0366e+000 7.6022e+005 -# -Range: 0-300 - -# Cu(Glyc)+, Cu(CH3OCO2)+ - + 1.0000 C2H4O3 + 1.0000 Cu+2 = Cu(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -0.9434 - -delta_h +142.561 kcal/mol - -analytic -8.4029e+000 -5.9451e-004 -7.5383e+002 2.8746e+000 2.7225e+005 -# -Range: 0-300 - -# Cu(Glyc)2, Cu(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Cu+2 = Cu(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.0075 - -delta_h +300.664 kcal/mol - -analytic -9.6849e+000 -1.0687e-003 -3.3286e+003 3.8217e+000 7.7552e+005 -# -Range: 0-300 - -# Cu(Lac)+, Cu(CH3CH2OCO2)+ - + 1.0000 C3H6O3 + 1.0000 Cu+2 = Cu(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.3033 - -delta_h +151.481 kcal/mol - -analytic -1.1811e+001 3.4701e-005 -1.0895e+003 4.1370e+000 3.4922e+005 -# -Range: 0-300 - -# Cu(Lac)2, Cu(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Cu+2 = Cu(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.5756 - -delta_h +318.184 kcal/mol - -analytic -9.7842e+000 7.7321e-004 -5.2869e+003 4.6546e+000 1.0864e+006 -# -Range: 0-300 - -# Cu(Pent)+, Cu(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Cu+2 = Cu(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.7473 - -delta_h +121.221 kcal/mol - -analytic -1.5283e+001 3.6782e-003 -3.0281e+003 5.4906e+000 7.1403e+005 -# -Range: 0-300 - -# Cu(Pent)2, Cu(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Cu+2 = Cu(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.1741 - -delta_h +257.470 kcal/mol - -analytic -2.9542e+001 7.1204e-003 -1.0296e+004 1.3112e+001 2.0784e+006 -# -Range: 0-300 - -# Cu(Prop)+, Cu(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Cu+2 = Cu(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.6762 - -delta_h +109.577 kcal/mol - -analytic -1.3220e+001 7.8363e-004 -1.4925e+003 4.3301e+000 4.1063e+005 -# -Range: 0-300 - -# Cu(Prop)2, Cu(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Cu+2 = Cu(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.0326 - -delta_h +235.268 kcal/mol - -analytic -1.0718e+001 3.9487e-003 -5.8699e+003 3.9089e+000 1.2053e+006 -# -Range: 0-300 - -# Decanal, CH3(CH2)8CHO - + 4.0000 C2H4 + 1.0000 CH3COOH = CH3(CH2)8CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -1058.134 - -delta_h +95.290 kcal/mol - -analytic -7.6767e+001 -2.9579e-002 4.2940e+003 2.8063e+001 6.7027e+001 -# -Range: 0-300 - -# Decanoate, C10H19O2- - + 5.0000 CH3COOH = C10H19O2- + 4.0000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.9185 - -delta_h +162.700 kcal/mol - -analytic -3.1511e+002 -2.1029e-002 -7.6356e+004 1.0982e+002 -1.1914e+003 -# -Range: 0-300 - -# Decanoic_acid, C10H20O2 - + 5.0000 CH3COOH = C10H20O2 + 4.0000 O2 - -llnl_gamma 3.0 - log_k -1010.8207 - -delta_h +162.200 kcal/mol - -analytic 1.9927e+002 4.5966e-002 -1.0812e+005 -7.0739e+001 2.1239e+006 -# -Range: 0-300 - -# Diglycine, C4H8N2O3 - + 2.0000 C2H5NO2 = C4H8N2O3 + 1.0000 H2O - -llnl_gamma 3.0 - log_k -2.5863 - -delta_h +175.640 kcal/mol - -analytic -9.6588e+000 2.9406e-003 -1.1504e+003 3.1397e+000 2.0330e+005 -# -Range: 0-300 - -# Diketopiperazine, C4H6N2O2 - + 2.0000 C2H5NO2 = C4H6N2O2 + 2.0000 H2O - -llnl_gamma 3.0 - log_k -4.7063 - -delta_h +99.300 kcal/mol - -analytic 3.4352e+000 4.6987e-003 -3.2032e+003 -4.8114e-001 2.1265e+005 -# -Range: 0-300 - -# Dodecanoate, C12H23O2- - + 6.0000 CH3COOH = C12H23O2- + 5.0000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.9185 - -delta_h -174.04 kcal/mol - -analytic 5.7006e+002 1.0646e-001 -1.5130e+005 -2.0765e+002 3.4121e+006 -# -Range: 0-300 - -# Dodecanoic_acid, C12H24O2 - + 6.0000 CH3COOH = C12H24O2 + 5.0000 O2 - -llnl_gamma 3.0 - log_k -1228.1689 - -delta_h +173.540 kcal/mol - -analytic 6.5537e+002 1.1671e-001 -1.5726e+005 -2.3542e+002 3.8794e+006 -# -Range: 0-300 - -# Ethanamine, C2H5NH2 - + 1.0000 NH3 + 2.0000 HCO3- + 2.0000 H+ = C2H5NH2 + 3.0000 O2 - -llnl_gamma 3.0 - log_k -223.647 - -delta_h +23.830 kcal/mol - -analytic -1.9599E+03 -3.3677E-01 -5.4980E+02 7.4290E+02 -4.9475E-02 -# -Range: 0-300 - -# Ethane, C2H6 - + 1.0000 H2O + 2.0000 HCO3- + 2.0000 H+ = C2H6 + 3.5000 O2 - -llnl_gamma 3.0 - log_k -254.5034 - -delta_h +24.650 kcal/mol - -analytic -2.2475E+03 -3.8473E-01 -5.6009E+02 8.5243E+02 -1.2340E-01 -# -Range: 0-300 - -# Ethanol, C2H5OH - + 1.0000 H2O + 2.0000 HCO3- + 2.0000 H+ = C2H5OH + 3.0000 O2 - -llnl_gamma 3.0 - log_k -224.1415 - -delta_h +68.650 kcal/mol - -analytic -1.9805E+03 -3.3932E-01 -5.5095E+02 7.5133E+02 -5.5268E-02 -# -Range: 0-300 - -# Ethyne, C2H2 - + 2.0000 HCO3- + 2.0000 H+ = C2H2 + 1.0000 H2O + 2.5000 O2 - -llnl_gamma 3.0 - log_k -209.3843 - -delta_h -50.7 kcal/mol - -analytic -1.8747E+03 -3.1966E-01 -5.4744E+02 7.1215E+02 -3.1389E-02 -# -Range: 0-300 - -# Ethylacetate, CH3COOCH2CH3 - + 1.0000 C2H4 + 1.0000 CH3COOH = CH3COOCH2CH3 - -llnl_gamma 3.0 - log_k +2.9247 - -delta_h +116.840 kcal/mol - -analytic -1.2558e+001 -3.4591e-003 2.2166e+003 3.6667e+000 3.4592e+001 -# -Range: 0-300 - -# Ethylbenzene, C6H5C2H5 -# + 4.0000 C6H6 + 3.0000 H2O = C6H5C2H5 + 1.5000 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -2256.5242 -# -delta_h +2.500 kcal/mol -# -analytic 2.7546e+002 5.0556e-002 -4.5964e+004 -1.0201e+002 8.4857e+005 -# -Range: 0-300 - -# Eu(Ala)+, Eu(C3H6NO2)+ - + 1.0000 Eu+2 + 1.0000 C3H7NO2 = Eu(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -9.2139 - -delta_h +242.060 kcal/mol - -analytic 1.4058e+001 1.0581e-002 -6.6420e+003 -4.0654e+000 5.2699e+005 -# -Range: 0-300 - -# Eu(Ala)2, Eu(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Eu+2 = Eu(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -18.7503 - -delta_h +358.510 kcal/mol - -analytic 1.3352e+001 7.6973e-003 -1.7130e+004 1.7787e+000 1.6606e+006 -# -Range: 0-300 - -# Eu(But)+, Eu(CH3(CH2)2CO2)+ - + 1.0000 Eu+2 + 1.0000 C3H7COOH = Eu(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.538 - -delta_h +251.804 kcal/mol - -analytic -1.5879e+001 3.8795e-003 -2.7555e+003 5.4947e+000 5.2007e+005 -# -Range: 0-300 - -# Eu(But)+2, Eu(CH3(CH2)2CO2)+2 - + 1.0000 Eu+3 + 1.0000 C3H7COOH = Eu(CH3(CH2)2CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.048 - -delta_h +276.036 kcal/mol - -analytic -9.7855e+000 1.8979e-003 -2.3175e+003 3.4425e+000 5.7272e+005 -# -Range: 0-300 - -# Eu(But)2, Eu(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Eu+2 = Eu(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.5254 - -delta_h +377.392 kcal/mol - -analytic 1.1271e+001 7.7268e-003 -1.2418e+004 -8.4949e-001 1.8391e+006 -# -Range: 0-300 - -# Eu(But)2+, Eu(CH3(CH2)2CO2)2+ - + 2.0000 C3H7COOH + 1.0000 Eu+3 = Eu(CH3(CH2)2CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.876 - -delta_h +405.964 kcal/mol - -analytic -3.4218e+000 7.6886e-003 -6.2895e+003 1.1718e+000 1.2875e+006 -# -Range: 0-300 - -# Eu(For)+, EuCHO2+ - + 1.0000 HCOOH + 1.0000 Eu+2 = EuCHO2+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.353 - -delta_h +227.054 kcal/mol - -analytic -3.3218e+000 9.1062e-004 -1.1082e+003 9.9294e-001 1.7476e+005 -# -Range: 0-300 - -# Eu(For)+2, EuCHO2+2 - + 1.0000 HCOOH + 1.0000 Eu+3 = EuCHO2+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -0.9632 - -delta_h +249.786 kcal/mol - -analytic 1.3475e+000 -5.3304e-004 -7.1045e+002 -7.9702e-001 1.9639e+005 -# -Range: 0-300 - -# Eu(For)2, Eu(CHO2)2 - + 2.0000 HCOOH + 1.0000 Eu+2 = Eu(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.7961 - -delta_h +329.314 kcal/mol - -analytic 2.0204e+001 -4.0598e-004 -5.2985e+003 -5.9131e+000 6.6991e+005 -# -Range: 0-300 - -# Eu(For)2+, Eu(CHO2)2+ - + 2.0000 HCOOH + 1.0000 Eu+3 = Eu(CHO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -2.7158 - -delta_h +354.544 kcal/mol - -analytic 4.1316e+000 -3.0069e-003 -3.8235e+002 -2.6986e+000 1.7945e+005 -# -Range: 0-300 - -# Eu(Gly)+, Eu(C2H4NO2)+ - + 1.0000 C2H5NO2 + 1.0000 Eu+2 = Eu(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -8.1283 - -delta_h +234.136 kcal/mol - -analytic -1.3352e+001 7.3561e-003 -3.7321e+003 5.0576e+000 2.7090e+005 -# -Range: 0-300 - -# Eu(Gly)2, Eu(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Eu+2 = Eu(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -16.5066 - -delta_h +342.929 kcal/mol - -analytic 2.6146e+001 1.0368e-002 -1.4175e+004 -4.8232e+000 1.2226e+006 -# -Range: 0-300 - -# Eu(Glyc)+, Eu(CH3OCO2)+ - + 1.0000 C2H4O3 + 1.0000 Eu+2 = Eu(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.5333 - -delta_h +279.938 kcal/mol - -analytic -1.1341e+001 1.8436e-003 -1.7310e+003 4.1823e+000 3.3141e+005 -# -Range: 0-300 - -# Eu(Glyc)2, Eu(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Eu+2 = Eu(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.757 - -delta_h +433.849 kcal/mol - -analytic 2.6027e+000 1.1080e-003 -7.8729e+003 1.8735e+000 1.1647e+006 -# -Range: 0-300 - -# Eu(Lac)+, Eu(CH3CH2OCO2)+ - + 1.0000 C3H6O3 + 1.0000 Eu+2 = Eu(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.9328 - -delta_h +288.803 kcal/mol - -analytic -6.8714e+000 3.8415e-003 -2.4462e+003 2.5210e+000 4.2462e+005 -# -Range: 0-300 - -# Eu(Lac)2, Eu(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Eu+2 = Eu(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.0656 - -delta_h +451.723 kcal/mol - -analytic 1.5690e+000 2.8366e-003 -9.6953e+003 3.0359e+000 1.4716e+006 -# -Range: 0-300 - -# Eu(Pent)+, Eu(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Eu+2 = Eu(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8569 - -delta_h +257.888 kcal/mol - -analytic -1.8827e+001 6.5719e-003 -3.9749e+003 6.8334e+000 7.5209e+005 -# -Range: 0-300 - -# Eu(Pent)+2, Eu(CH3(CH2)3CO2)+2 - + 1.0000 C4H9COOH + 1.0000 Eu+3 = Eu(CH3(CH2)3CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.0773 - -delta_h +282.516 kcal/mol - -analytic -3.0633e+001 1.5481e-003 -2.5917e+003 1.1399e+001 7.6469e+005 -# -Range: 0-300 - -# Eu(Pent)2+, Eu(CH3(CH2)3CO2)2+ - + 2.0000 C4H9COOH + 1.0000 Eu+3 = Eu(CH3(CH2)3CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.9441 - -delta_h +418.206 kcal/mol - -analytic -3.7682e+001 1.0658e-002 -8.0528e+003 1.4565e+001 1.8292e+006 -# -Range: 0-300 - -# Eu(Prop)+, Eu(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Eu+2 = Eu(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.3262 - -delta_h +246.872 kcal/mol - -analytic -1.9603e+001 2.7407e-003 -2.2921e+003 6.8757e+000 4.5820e+005 -# -Range: 0-300 - -# Eu(Prop)+2, Eu(CH3CH2CO2)+2 - + 1.0000 C2H5COOH + 1.0000 Eu+3 = Eu(CH3CH2CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.0363 - -delta_h +270.831 kcal/mol - -analytic -1.0272e+001 1.5651e-003 -1.9970e+003 3.5396e+000 5.0897e+005 -# -Range: 0-300 - -# Eu(Prop)2, Eu(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Eu+2 = Eu(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.3927 - -delta_h +367.621 kcal/mol - -analytic 4.1333e-001 5.9591e-003 -1.0532e+004 2.3781e+000 1.5907e+006 -# -Range: 0-300 - -# Eu(Prop)2+, Eu(CH3CH2CO2)2+ - + 2.0000 C2H5COOH + 1.0000 Eu+3 = Eu(CH3CH2CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.8628 - -delta_h +396.115 kcal/mol - -analytic -1.7270e+001 4.2004e-003 -4.5560e+003 5.8571e+000 1.0648e+006 -# -Range: 0-300 - -# Fe(Ala)+, Fe(C3H6NO2)+ - + 1.0000 Fe+2 + 1.0000 C3H7NO2 = Fe(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.4374 - -delta_h +145.225 kcal/mol - -analytic -6.8881e-001 4.8406e-003 -4.2771e+003 1.2355e+000 4.5422e+005 -# -Range: 0-300 - -# Fe(Ala)2, Fe(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Fe+2 = Fe(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -12.0822 - -delta_h +268.535 kcal/mol - -analytic 1.0817e+001 7.0057e-003 -1.1636e+004 -9.2499e-002 1.2704e+006 -# -Range: 0-300 - -# Fe(But)+, Fe(CH3(CH2)2CO2)+ - + 1.0000 Fe+2 + 1.0000 C3H7COOH = Fe(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.2003 - -delta_h +151.642 kcal/mol - -analytic -1.1468e+001 1.5002e-003 -2.0030e+003 3.6750e+000 4.8551e+005 -# -Range: 0-300 - -# Fe(But)2, Fe(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Fe+2 = Fe(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.998 - -delta_h +281.765 kcal/mol - -analytic -2.8364e+001 1.7011e-003 -6.1151e+003 1.0670e+001 1.3334e+006 -# -Range: 0-300 - -# Fe(For)+, FeCHO2+ - + 1.0000 HCOOH + 1.0000 Fe+2 = FeCHO2+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.9256 - -delta_h +125.651 kcal/mol - -analytic -4.2844e-001 -1.1907e-003 -4.0278e+002 -4.4791e-001 1.1757e+005 -# -Range: 0-300 - -# Fe(For)2, Fe(CHO2)2 - + 2.0000 HCOOH + 1.0000 Fe+2 = Fe(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.4889 - -delta_h +230.658 kcal/mol - -analytic 2.6286e+000 -3.2750e-003 -8.7717e+002 -2.3516e+000 2.3378e+005 -# -Range: 0-300 - -# Fe(Gly)+, Fe(C2H4NO2)+ - + 1.0000 C2H5NO2 + 1.0000 Fe+2 = Fe(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.4609 - -delta_h +134.682 kcal/mol - -analytic -1.5456e+001 3.9367e-003 -2.4338e+003 5.8876e+000 2.1566e+005 -# -Range: 0-300 - -# Fe(Gly)2, Fe(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Fe+2 = Fe(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -12.0191 - -delta_h +248.527 kcal/mol - -analytic -4.9791e+000 5.5006e-003 -7.9837e+003 3.9747e+000 7.3594e+005 -# -Range: 0-300 - -# Fe(Glyc)+, Fe(CH3OCO2)+ - + 1.0000 C2H4O3 + 1.0000 Fe+2 = Fe(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.6566 - -delta_h +179.149 kcal/mol - -analytic -1.1315e+001 -1.3546e-003 -9.1265e+002 4.0008e+000 2.8737e+005 -# -Range: 0-300 - -# Fe(Glyc)2, Fe(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Fe+2 = Fe(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.8197 - -delta_h +337.416 kcal/mol - -analytic -2.4214e+001 -3.9432e-003 -2.6649e+003 9.0425e+000 7.2466e+005 -# -Range: 0-300 - -# Fe(Lac)+, Fe(CH3CH2OCO2)+ - + 1.0000 C3H6O3 + 1.0000 Fe+2 = Fe(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.7453 - -delta_h +188.437 kcal/mol - -analytic -1.4649e+001 -2.7787e-004 -1.0617e+003 5.0960e+000 3.5122e+005 -# -Range: 0-300 - -# Fe(Lac)2, Fe(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Fe+2 = Fe(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.9788 - -delta_h +355.495 kcal/mol - -analytic -1.6235e+001 -4.1634e-005 -4.7223e+003 6.6708e+000 1.0336e+006 -# -Range: 0-300 - -# Fe(Pent)+, Fe(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Fe+2 = Fe(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.2802 - -delta_h +158.054 kcal/mol - -analytic -2.6685e+001 2.0954e-003 -2.5680e+003 9.5548e+000 6.9089e+005 -# -Range: 0-300 - -# Fe(Pent)2, Fe(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Fe+2 = Fe(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.1571 - -delta_h +293.990 kcal/mol - -analytic -4.2465e+001 5.3731e-003 -9.5476e+003 1.7464e+001 2.0055e+006 -# -Range: 0-300 - -# Fe(Prop)+, Fe(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Fe+2 = Fe(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.289 - -delta_h +146.301 kcal/mol - -analytic -7.3746e+000 1.6930e-003 -2.0030e+003 2.1641e+000 4.4097e+005 -# -Range: 0-300 - -# Fe(Prop)2, Fe(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Fe+2 = Fe(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.1556 - -delta_h +271.598 kcal/mol - -analytic -1.9694e+001 2.8321e-003 -5.3596e+003 6.8142e+000 1.1417e+006 -# -Range: 0-300 - -# Formaldehyde, HCHO - + 1.0000 CH3COOH = HCHO + 0.5000 C2H4 + 0.5000 O2 - -llnl_gamma 3.0 - log_k -86.5725 - -delta_h +33.890 kcal/mol - -analytic 1.3515e+002 2.8915e-002 -2.5168e+004 -4.9725e+001 4.2808e+005 -# -Range: 0-300 - -# Formate, HCOO- - + 1.0000 HCOOH = HCOO- + 1.0000 H+ - -llnl_gamma 3.5 - log_k -3.753 - -delta_h +101.680 kcal/mol - -analytic -9.4187e+001 -3.4616e-002 1.8918e+003 3.8145e+001 2.9547e+001 -# -Range: 0-300 - -# Formic_acid, HCOOH - HCO3- + H+ 1.0000 = HCOOH + 0.5O2 - -llnl_gamma 3.0 - log_k -39.0524 - -delta_h +101.680 kcal/mol - -analytic -3.4508E+02 -4.9133E-02 -4.9396E+02 1.3024E+02 3.5416E-01 -# -Range: 0-300 - -# Gd(But)+2, Gd(CH3(CH2)2CO2)+2 - + 1.0000 Gd+3 + 1.0000 C3H7COOH = Gd(CH3(CH2)2CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.1778 - -delta_h +294.884 kcal/mol - -analytic -9.4460e+000 2.4870e-003 -2.3699e+003 3.2918e+000 5.6419e+005 -# -Range: 0-300 - -# Gd(But)2+, Gd(CH3(CH2)2CO2)2+ - + 2.0000 C3H7COOH + 1.0000 Gd+3 = Gd(CH3(CH2)2CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.1157 - -delta_h +424.078 kcal/mol - -analytic -1.4589e+001 7.2722e-003 -5.7356e+003 5.1448e+000 1.2310e+006 -# -Range: 0-300 - -# Gd(For)+2, GdCHO2+2 - + 1.0000 Gd+3 + 1.0000 HCOOH = GdCHO2+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.0929 - -delta_h +268.634 kcal/mol - -analytic -6.8541e-001 -3.3966e-004 -6.4856e+002 -7.2227e-002 1.8259e+005 -# -Range: 0-300 - -# Gd(For)2+, Gd(CHO2)2+ - + 2.0000 HCOOH + 1.0000 Gd+3 = Gd(CHO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -2.9562 - -delta_h +372.659 kcal/mol - -analytic -3.5152e+000 -3.2979e-003 -1.3266e+002 1.3417e-001 1.4806e+005 -# -Range: 0-300 - -# Gd(Pent)+2, Gd(CH3(CH2)3CO2)+2 - + 1.0000 C4H9COOH + 1.0000 Gd+3 = Gd(CH3(CH2)3CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.2071 - -delta_h +301.364 kcal/mol - -analytic -2.8290e+001 2.4126e-003 -2.7617e+003 1.0531e+001 7.6352e+005 -# -Range: 0-300 - -# Gd(Pent)2+, Gd(CH3(CH2)3CO2)2+ - + 2.0000 C4H9COOH + 1.0000 Gd+3 = Gd(CH3(CH2)3CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.1846 - -delta_h +436.320 kcal/mol - -analytic -5.3965e+001 9.5419e-003 -7.2168e+003 2.0378e+001 1.7572e+006 -# -Range: 0-300 - -# Gd(Prop)+2, GdCH3CH2CO2+2 - + 1.0000 C2H5COOH + 1.0000 Gd+3 = GdCH3CH2CO2+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.1763 - -delta_h +289.666 kcal/mol - -analytic -1.7869e+001 1.0366e-003 -1.6096e+003 6.2464e+000 4.7496e+005 -# -Range: 0-300 - -# Gd(Prop)2+, Gd(CH3CH2CO2)2+ - + 2.0000 C2H5COOH + 1.0000 Gd+3 = Gd(CH3CH2CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.1127 - -delta_h +414.216 kcal/mol - -analytic -4.1151e+001 1.7684e-003 -3.3631e+003 1.4486e+001 9.7618e+005 -# -Range: 0-300 - -# Glutamic_acid, C5H9NO4 - + 2.5000 C2H5NO2 + 0.5000 H2O = C5H9NO4 + 1.5000 NH3 + 0.7500 O2 - -llnl_gamma 3.0 3.0 - log_k -321.9443 - -delta_h +232.000 kcal/mol - -analytic 1.3643e+002 3.2714e-002 -2.5437e+004 -4.8787e+001 7.4165e+005 -# -Range: 0-300 - -# Glutamine, C5H10N2O3 - + 2.5000 C2H5NO2 = C5H10N2O3 + 0.7500 O2 + 0.5000 H2O + 0.5000 NH3 - -llnl_gamma 3.0 - log_k +2.8622 - -delta_h +192.330 kcal/mol - -analytic 8.7755e+001 2.3462e-002 -2.1760e+004 -3.1651e+001 7.0288e+005 -# -Range: 0-300 - -# Glutarate, C5H6O4-2 - + 2.5000 CH3COOH = C5H6O4-2 + 2.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -9.7563 - -delta_h +224.140 kcal/mol - -analytic -1.3762e+002 -7.5681e-002 1.3347e+003 5.7954e+001 2.0867e+001 -# -Range: 0-300 - -# Glutaric_acid, C5H8O4 - + 2.5000 CH3COOH = C5H8O4 + 1.0000 H2O - -llnl_gamma 3.0 - log_k -357.4964 - -delta_h +223.440 kcal/mol - -analytic -9.9184e+000 -1.0441e-002 -1.9203e+001 4.2761e+000 -2.9671e-001 -# -Range: 0-300 - -# Glycine, C2H5NO2 - + 1.0000 NH3 + 2.0000 HCO3- + 2.0000 H+ = C2H5NO2 + 1.0000 H2O + 1.5000 O2 - -llnl_gamma 3.0 - log_k -108.1715 - -delta_h +122.846 kcal/mol - -analytic -9.2863E+02 -1.5296E-01 -5.1446E+02 3.5064E+02 2.0391E-01 -# -Range: 0-300 - -# Glycolate, C2H3O3- - + 1.0000 C2H4O3 = C2H3O3- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.8336 - -delta_h +154.700 kcal/mol - -analytic -9.9557e+001 -3.6800e-002 1.9551e+003 4.0462e+001 3.0537e+001 -# -Range: 0-300 - -# Glycolic_acid, C2H4O3 - + 2.0000 HCO3- + 2.0000 H+ = C2H4O3 + 1.5000 O2 - -llnl_gamma 3.0 - log_k -117.3507 - -delta_h +154.890 kcal/mol - -analytic -1.0189E+03 -1.6160E-01 -5.1773E+02 3.8447E+02 1.7876E-01 -# -Range: 0-300 - -# H-Adipate, C6H9O4- - + 3.0000 CH3COOH = C6H9O4- + 1.0000 H+ + 1.0000 H2O + 0.5000 O2 - -llnl_gamma 4.0 - log_k -4.4127 - -delta_h +227.130 kcal/mol - -analytic -5.8686e+001 -2.8724e-002 -1.0743e+004 2.3135e+001 -1.6761e+002 -# -Range: 0-300 - -# H-Azelate, C9H15O4- - + 4.5000 CH3COOH = C9H15O4- + 2.0000 O2 + 1.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -4.5226 - -delta_h +240.970 kcal/mol - -analytic 2.2650e+002 2.5261e-002 -6.2618e+004 -8.1084e+001 1.3566e+006 -# -Range: 0-300 - -# H-Glutarate, C5H7O4- - + 2.5000 CH3COOH = C5H7O4- + 1.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -4.3394 - -delta_h +223.570 kcal/mol - -analytic -4.0300e+001 -3.0858e-002 -9.3931e+001 1.7357e+001 -1.4538e+000 -# -Range: 0-300 - -# H-Malonate, C3H3O4- - + 1.5000 CH3COOH + 1.0000 O2 = C3H3O4- + 1.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -2.8513 - -delta_h +207.850 kcal/mol - -analytic -5.6715e+000 -3.3611e-002 1.9552e+004 6.4983e+000 3.0509e+002 -# -Range: 0-300 - -# H-Oxalate, C2HO4- - + 1.5000 O2 + 1.0000 CH3COOH = C2HO4- + 1.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -1.2703 - -delta_h +195.600 kcal/mol - -analytic 1.3266e+001 -3.3064e-002 2.8427e+004 0.0000e+000 0.0000e+000 -# -Range: 0-300 - -# H-Pimelate, C7H11O4- - + 3.5000 CH3COOH = C7H11O4- + 1.0000 H+ + 1.0000 H2O + 1.0000 O2 - -llnl_gamma 4.0 - log_k -4.486 - -delta_h +234.040 kcal/mol - -analytic -7.7415e+001 -2.6046e-002 -2.0605e+004 2.8981e+001 -3.2150e+002 -# -Range: 0-300 - -# H-Sebacate, C10H17O4- - + 5.0000 CH3COOH = C10H17O4- + 2.5000 O2 + 1.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -4.5446 - -delta_h +246.230 kcal/mol - -analytic -1.5704e+002 -1.8900e-002 -5.1105e+004 5.4466e+001 -7.9740e+002 -# -Range: 0-300 - -# H-Suberate, C8H13O4- - + 4.0000 CH3COOH = C8H13O4- + 1.5000 O2 + 1.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -4.508 - -delta_h +238.130 kcal/mol - -analytic -1.0933e+002 -2.4139e-002 -3.0563e+004 3.9365e+001 -4.7687e+002 -# -Range: 0-300 - -# H-Succinate, C4H5O4- - + 2.0000 CH3COOH + 0.5000 O2 = C4H5O4- + 1.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -4.2075 - -delta_h +217.350 kcal/mol - -analytic -3.0274e+001 -3.3174e-002 1.0329e+004 1.4429e+001 1.6118e+002 -# -Range: 0-300 - -# HO2-, HO2- - + 1.0000 H2O + 0.5000 O2 = HO2- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -28.3019 - -delta_h +38.320 kcal/mol - -analytic -4.1095e+001 -3.1617e-002 -7.2259e+003 1.8765e+001 -1.1274e+002 -# -Range: 0-300 - -# Heptanal, CH3(CH2)5CHO - + 2.5000 C2H4 + 1.0000 CH3COOH = CH3(CH2)5CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -733.0243 - -delta_h +77.010 kcal/mol - -analytic -4.4470e+001 -1.5235e-002 -2.8387e+003 1.5763e+001 -4.4282e+001 -# -Range: 0-300 - -# Heptanoate, C6H13COO- - + 3.5000 CH3COOH = C6H13COO- + 2.5000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.8928 - -delta_h +145.620 kcal/mol - -analytic -2.3984e+002 -2.7315e-002 -4.6686e+004 8.5594e+001 -7.2843e+002 -# -Range: 0-300 - -# Heptanoic_acid, C6H13COOH - + 3.5000 CH3COOH = C6H13COOH + 2.5000 O2 - -llnl_gamma 3.0 - log_k -684.8753 - -delta_h +145.080 kcal/mol - -analytic 4.8292e+002 8.0059e-002 -8.7380e+004 -1.7349e+002 2.4625e+006 -# -Range: 0-300 - -# Hexanal, CH3(CH2)4CHO - + 2.0000 C2H4 + 1.0000 CH3COOH = CH3(CH2)4CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -623.3863 - -delta_h +72.650 kcal/mol - -analytic -3.3617e+001 -1.0435e-002 -4.8410e+003 1.1629e+001 -7.5530e+001 -# -Range: 0-300 - -# Hexanoate, C5H11COO- - + 3.0000 CH3COOH = C5H11COO- + 2.0000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.8599 - -delta_h +139.870 kcal/mol - -analytic -2.1318e+002 -2.9283e-002 -3.6871e+004 7.6955e+001 -5.7527e+002 -# -Range: 0-300 - -# Hexanoic_acid, C5H11COOH - + 3.0000 CH3COOH = C5H11COOH + 2.0000 O2 - -llnl_gamma 3.0 - log_k -576.2928 - -delta_h +139.290 kcal/mol - -analytic 1.1076e+002 2.5510e-002 -5.4376e+004 -3.9703e+001 1.0632e+006 -# -Range: 0-300 - -# Isoleucine, C6H13NO2 - + 3.0000 C2H5NO2 + 2.0000 H2O = C6H13NO2 + 3.0000 O2 + 2.0000 NH3 - -llnl_gamma 3.0 - log_k +0.1466 - -delta_h +150.900 kcal/mol - -analytic -2.8273e+002 -1.9351e-003 -5.4209e+004 1.0027e+002 -8.4579e+002 -# -Range: 0-300 - -# K(But), K(CH3(CH2)2CO2) - + 1.0000 K+ + 1.0000 C3H7COOH = K(CH3(CH2)2CO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8078 - -delta_h +187.401 kcal/mol - -analytic 1.3634e+001 -2.1745e-003 -3.9995e+003 -3.9841e+000 4.8796e+005 -# -Range: 0-300 - -# K(But)2-, K(CH3(CH2)2CO2)2- - + 2.0000 C3H7COOH + 1.0000 K+ = K(CH3(CH2)2CO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.9359 - -delta_h +316.310 kcal/mol - -analytic 5.5776e+001 -3.5589e-003 -1.2872e+004 -1.6024e+001 1.6171e+006 -# -Range: 0-300 - -# K(For), K(CHO2) - + 1.0000 K+ + 1.0000 HCOOH = K(CHO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.7229 - -delta_h +161.151 kcal/mol - -analytic -2.4221e+000 -7.5713e-003 -6.7114e+002 1.2963e+000 -1.0472e+001 -# -Range: 0-300 - -# K(For)2-, K(CHO2)2- - + 2.0000 HCOOH + 1.0000 K+ = K(CHO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.7757 - -delta_h +264.561 kcal/mol - -analytic -1.0611e+002 -3.9682e-002 2.1061e+003 4.1665e+001 3.2895e+001 -# -Range: 0-300 - -# K(Glyc), K(CH3OCO2) - + 1.0000 K+ + 1.0000 C2H4O3 = K(CH3OCO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.8036 - -delta_h +214.171 kcal/mol - -analytic 2.8123e+001 -1.9061e-003 -3.6027e+003 -9.1691e+000 3.0378e+005 -# -Range: 0-300 - -# K(Glyc)2-, K(CH3OCO2)2- - + 2.0000 C2H4O3 + 1.0000 K+ = K(CH3OCO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.7471 - -delta_h +370.519 kcal/mol - -analytic -2.2646e+002 -4.8542e-002 6.8259e+003 8.4988e+001 1.0658e+002 -# -Range: 0-300 - -# K(Lac), K(CH3CH2OCO2) - + 1.0000 C3H6O3 + 1.0000 K+ = K(CH3CH2OCO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.8329 - -delta_h +223.541 kcal/mol - -analytic 1.4972e+001 -3.2999e-003 -3.4489e+003 -4.1956e+000 3.6756e+005 -# -Range: 0-300 - -# K(Lac)2-, K(CH3CH2OCO2)2- - + 2.0000 C3H6O3 + 1.0000 K+ = K(CH3CH2OCO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.7955 - -delta_h +388.842 kcal/mol - -analytic 3.7819e+001 -9.5803e-003 -1.0074e+004 -9.1771e+000 1.2221e+006 -# -Range: 0-300 - -# K(Pent), K(CH3(CH2)3CO2) - + 1.0000 C4H9COOH + 1.0000 K+ = K(CH3(CH2)3CO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8371 - -delta_h +193.881 kcal/mol - -analytic 1.1271e+001 -4.4936e-004 -5.4272e+003 -2.5193e+000 7.5365e+005 -# -Range: 0-300 - -# K(Pent)2-, K(CH3(CH2)3CO2)2- - + 2.0000 C4H9COOH + 1.0000 K+ = K(CH3(CH2)3CO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -10.0041 - -delta_h +328.765 kcal/mol - -analytic 7.8715e+000 -1.1792e-003 -1.3479e+004 1.7870e+000 2.0708e+006 -# -Range: 0-300 - -# K(Prop), KCH3CH2CO2 - + 1.0000 C2H5COOH + 1.0000 K+ = KCH3CH2CO2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8664 - -delta_h +182.101 kcal/mol - -analytic 1.1437e+001 -2.2439e-003 -3.4860e+003 -3.4282e+000 4.0460e+005 -# -Range: 0-300 - -# K(Prop)2-, K(CH3CH2CO2)2- - + 2.0000 C2H5COOH + 1.0000 K+ = K(CH3CH2CO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -10.0429 - -delta_h +306.125 kcal/mol - -analytic 3.7431e+001 -9.1342e-003 -1.1368e+004 -9.1819e+000 1.4324e+006 -# -Range: 0-300 - -# La(But)+2, La(CH3(CH2)2CO2)+2 - + 1.0000 La+3 + 1.0000 C3H7COOH = La(CH3(CH2)2CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.2078 - -delta_h +300.593 kcal/mol - -analytic -1.2213e+001 7.6865e-004 -2.3803e+003 4.5583e+000 5.7748e+005 -# -Range: 0-300 - -# La(But)2+, La(CH3(CH2)2CO2)2+ - + 2.0000 C3H7COOH + 1.0000 La+3 = La(CH3(CH2)2CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.1758 - -delta_h +430.176 kcal/mol - -analytic -2.7187e+001 3.6155e-003 -5.1320e+003 9.9375e+000 1.2081e+006 -# -Range: 0-300 - -# La(For)+2, La(CHO2)+2 - + 1.0000 La+3 + 1.0000 HCOOH = La(CHO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.123 - -delta_h +274.343 kcal/mol - -analytic 2.4425e+000 -1.1728e-003 -9.7383e+002 -9.4604e-001 2.1308e+005 -# -Range: 0-300 - -# La(For)2+, La(CHO2)2+ - + 2.0000 HCOOH + 1.0000 La+3 = La(CHO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.0163 - -delta_h +378.757 kcal/mol - -analytic 1.4193e+001 -2.4396e-003 -1.1566e+003 -6.0653e+000 2.1470e+005 -# -Range: 0-300 - -# La(Pent)+2, La(CH3(CH2)3CO2)+2 - + 1.0000 C4H9COOH + 1.0000 La+3 = La(CH3(CH2)3CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.2371 - -delta_h +307.073 kcal/mol - -analytic -2.4830e+001 1.6328e-003 -3.1022e+003 9.5351e+000 7.9458e+005 -# -Range: 0-300 - -# La(Pent)2+, La(CH3(CH2)3CO2)2+ - + 2.0000 C4H9COOH + 1.0000 La+3 = La(CH3(CH2)3CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.2447 - -delta_h +442.418 kcal/mol - -analytic -4.1413e+001 9.3380e-003 -8.0438e+003 1.6147e+001 1.8186e+006 -# -Range: 0-300 - -# La(Prop)+2, La(CH3CH2CO2)+2 - + 1.0000 C2H5COOH + 1.0000 La+3 = La(CH3CH2CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.3764 - -delta_h +295.142 kcal/mol - -analytic -8.7100e+000 9.9977e-004 -2.3370e+003 3.2191e+000 5.2671e+005 -# -Range: 0-300 - -# La(Prop)2+, La(CH3CH2CO2)2+ - + 2.0000 C2H5COOH + 1.0000 La+3 = La(CH3CH2CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.4829 - -delta_h +419.891 kcal/mol - -analytic -1.7985e+001 3.2712e-003 -4.8213e+003 6.3648e+000 1.0652e+006 -# -Range: 0-300 - -# Lactate, C3H5O3- - + 1.0000 C3H6O3 = C3H5O3- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.8629 - -delta_h +164.070 kcal/mol - -analytic -8.2814e+001 -3.2149e-002 1.5440e+003 3.3680e+001 2.4117e+001 -# -Range: 0-300 - -# Lactic_acid, C3H6O3 - + 3.0000 HCO3- + 3.0000 H+ = C3H6O3 + 3.0000 O2 - -llnl_gamma 3.0 - log_k -223.4996 - -delta_h +164.000 kcal/mol - -analytic -1.9621E+03 -3.2360E-01 -5.5305E+02 7.4225E+02 -2.0548E-01 -# -Range: 0-300 - -# Leucine, C6H13NO2 - + 3.0000 C2H5NO2 + 2.0000 H2O = C6H13NO2 + 3.0000 O2 + 2.0000 NH3 - -llnl_gamma 3.0 - log_k -541.723 - -delta_h +151.070 kcal/mol - -analytic 2.4561e+002 6.5239e-002 -8.6593e+004 -8.7114e+001 2.1100e+006 -# -Range: 0-300 - -# Leucylglycine, C8H16N2O3 - + 4.0000 C2H5NO2 + 1.0000 H2O = C8H16N2O3 + 3.0000 O2 + 2.0000 NH3 - -llnl_gamma 3.0 - log_k -652.321 - -delta_h +202.660 kcal/mol - -analytic -3.3759e+002 -5.6274e-003 -5.2689e+004 1.1979e+002 -8.2207e+002 -# -Range: 0-300 - -# Malonate, C3H2O4-2 - + 1.5000 CH3COOH + 1.0000 O2 = C3H2O4-2 + 2.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -2.8513 - -delta_h +207.850 kcal/mol - -analytic -9.9824e+001 -7.7578e-002 2.0986e+004 4.5594e+001 3.2750e+002 -# -Range: 0-300 - -# Malonic_acid, C3H4O4 - + 3.0000 HCO3- + 3.0000 H+ = C3H4O4 + 2.0000 O2 + 1.0000 H2O - -llnl_gamma 3.0 - log_k -144.1431 - -delta_h +207.870 kcal/mol - -analytic -1.2631E+03 -1.9613E-01 -5.2873E+02 4.7649E+02 -3.1921E-02 -# -Range: 0-300 - -# Methanamine, CH3NH2 - + 0.5000 NH3 + 0.5000 C2H5NH2 = CH3NH2 - -llnl_gamma 3.0 - log_k -3.7248 - -delta_h +16.320 kcal/mol - -analytic 3.6212e+000 9.9672e-004 -1.2549e+003 -1.3879e+000 -1.9583e+001 -# -Range: 0-300 - -# Methanol, CH3OH - + 0.5000 H2O + 0.5000 C2H5OH = CH3OH - -llnl_gamma 3.0 - log_k -5.8339 - -delta_h +58.870 kcal/mol - -analytic 1.0292e+001 2.0369e-003 -2.3980e+003 -3.5121e+000 -3.7422e+001 -# -Range: 0-300 - -# Methionine, C5H11NO2S -2.5000 C2H5NO2 + 1.0000 HS- + 1.0000 H+ + 0.5000 H2O = C5H11NO2S + 1.7500 O2 + 1.5000 NH3 - -llnl_gamma 3.0 - log_k -499.7659 - -delta_h +177.600 kcal/mol - -analytic -8.0509e+001 3.4730e-002 -2.3107e+004 2.2907e+001 -3.6054e+002 -# -Range: 0-300 - -# Mg(Ala)+, Mg(C3H6NO2)+ - + 1.0000 Mg+2 + 1.0000 C3H7NO2 = Mg(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -8.4047 - -delta_h +231.745 kcal/mol - -analytic 3.2275e+000 3.8767e-003 -5.7267e+003 1.9424e-001 5.2913e+005 -# -Range: 0-300 - -# Mg(Ala)2, Mg(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Mg+2 = Mg(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -17.4998 - -delta_h +352.641 kcal/mol - -analytic -2.6461e+000 5.2729e-003 -1.2622e+004 4.5793e+000 1.2982e+006 -# -Range: 0-300 - -# Mg(But)+, Mg(CH3(CH2)2CO2)+ - + 1.0000 Mg+2 + 1.0000 C3H7COOH = Mg(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.2778 - -delta_h +240.741 kcal/mol - -analytic -2.1041e+000 1.4633e-003 -3.1485e+003 6.1810e-001 5.7229e+005 -# -Range: 0-300 - -# Mg(But)2, Mg(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Mg+2 = Mg(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -8.9654 - -delta_h +370.578 kcal/mol - -analytic -2.8906e+001 1.7817e-003 -6.7997e+003 1.0694e+001 1.4036e+006 -# -Range: 0-300 - -# Mg(For)+, Mg(CHO2)+ - + 1.0000 Mg+2 + 1.0000 HCOOH = Mg(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.3229 - -delta_h +215.678 kcal/mol - -analytic -3.9514e+000 -2.8298e-003 -5.6302e+002 1.0614e+000 1.5474e+005 -# -Range: 0-300 - -# Mg(For)2, Mg(CHO2)2 - + 2.0000 HCOOH + 1.0000 Mg+2 = Mg(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.2058 - -delta_h +321.177 kcal/mol - -analytic -1.9131e+001 -6.0693e-003 4.0785e+001 5.2661e+000 2.2927e+005 -# -Range: 0-300 - -# Mg(Gly)+, Mg(C2H4NO2)+ - + 1.0000 Mg+2 + 1.0000 C2H5NO2 = Mg(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -6.328 - -delta_h +225.174 kcal/mol - -analytic 2.0689e+001 7.1872e-003 -4.9739e+003 -6.9062e+000 4.1092e+005 -# -Range: 0-300 - -# Mg(Gly)2, Mg(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Mg+2 = Mg(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -13.0966 - -delta_h +340.003 kcal/mol - -analytic -2.1284e+000 6.2771e-003 -8.3120e+003 2.3697e+000 8.1724e+005 -# -Range: 0-300 - -# Mg(Glyc)+, Mg(CH3OCO2)+ - + 1.0000 Mg+2 + 1.0000 C2H4O3 = Mg(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.5039 - -delta_h +266.450 kcal/mol - -analytic 4.1719e+000 4.8995e-004 -2.4071e+003 -1.0943e+000 3.5295e+005 -# -Range: 0-300 - -# Mg(Glyc)2, Mg(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Mg+2 = Mg(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.3671 - -delta_h +424.040 kcal/mol - -analytic 1.1456e+001 1.9693e-003 -5.4799e+003 -3.5701e+000 8.7339e+005 -# -Range: 0-300 - -# Mg(Lac)+, Mg(CH3CH2OCO2)+ - + 1.0000 Mg+2 + 1.0000 C3H6O3 = Mg(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.493 - -delta_h +274.593 kcal/mol - -analytic -5.8138e+000 4.6550e-004 -2.3971e+003 2.7483e+000 3.9437e+005 -# -Range: 0-300 - -# Mg(Lac)2, Mg(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Mg+2 = Mg(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.3356 - -delta_h +440.700 kcal/mol - -analytic -9.2240e+000 7.2412e-004 -6.4088e+003 5.1184e+000 1.1140e+006 -# -Range: 0-300 - -# Mg(Pent)+, Mg(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Mg+2 = Mg(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.5571 - -delta_h +246.880 kcal/mol - -analytic -2.6885e+001 6.6381e-004 -3.2502e+003 9.9565e+000 7.4821e+005 -# -Range: 0-300 - -# Mg(Pent)2, Mg(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Mg+2 = Mg(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.4844 - -delta_h +382.313 kcal/mol - -analytic -3.1213e+001 7.2244e-003 -1.0963e+004 1.3204e+001 2.1088e+006 -# -Range: 0-300 - -# Mg(Prop)+, Mg(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Mg+2 = Mg(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.1767 - -delta_h +235.660 kcal/mol - -analytic -1.5671e+001 -6.7187e-004 -2.0570e+003 5.4098e+000 4.6452e+005 -# -Range: 0-300 - -# Mg(Prop)2, Mg(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Mg+2 = Mg(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -8.7726 - -delta_h +360.889 kcal/mol - -analytic -1.3652e+001 3.8826e-003 -6.2937e+003 4.4524e+000 1.2312e+006 -# -Range: 0-300 - -# Mn(Ala)+, Mn(C3H6NO2)+ - + 1.0000 Mn+2 + 1.0000 C3H7NO2 = Mn(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -7.1248 - -delta_h +173.180 kcal/mol - -analytic -6.0922e+000 5.5095e-003 -4.5521e+003 3.1202e+000 4.3437e+005 -# -Range: 0-300 - -# Mn(Ala)2, Mn(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Mn+2 = Mn(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -14.6792 - -delta_h +294.245 kcal/mol - -analytic -5.0476e-001 5.7769e-003 -1.2737e+004 4.7857e+000 1.3339e+006 -# -Range: 0-300 - -# Mn(But)+, Mn(CH3(CH2)2CO2)+ - + 1.0000 Mn+2 + 1.0000 C3H7COOH = Mn(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.6079 - -delta_h +181.344 kcal/mol - -analytic -1.6910e+001 1.9388e-003 -1.9552e+003 5.6484e+000 4.7316e+005 -# -Range: 0-300 - -# Mn(But)2, Mn(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Mn+2 = Mn(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.7354 - -delta_h +310.012 kcal/mol - -analytic -1.8458e+001 3.5123e-003 -7.8343e+003 7.8894e+000 1.4636e+006 -# -Range: 0-300 - -# Mn(For)+, Mn(CHO2)+ - + 1.0000 Mn+2 + 1.0000 HCOOH = Mn(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.0532 - -delta_h +155.735 kcal/mol - -analytic -5.7235e+000 -8.3722e-004 -3.0900e+002 1.5086e+000 1.0934e+005 -# -Range: 0-300 - -# Mn(For)2, Mn(CHO2)2 - + 2.0000 HCOOH + 1.0000 Mn+2 = Mn(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.7162 - -delta_h +259.601 kcal/mol - -analytic 1.2827e+001 -1.4127e-003 -2.4571e+003 -5.2411e+000 3.6438e+005 -# -Range: 0-300 - -# Mn(Gly)+, Mn(C2H4NO2)+ - + 1.0000 Mn+2 + 1.0000 C2H5NO2 = Mn(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -6.1184 - -delta_h +165.803 kcal/mol - -analytic 1.2891e+001 8.7151e-003 -4.1826e+003 -4.5776e+000 3.3412e+005 -# -Range: 0-300 - -# Mn(Gly)2, Mn(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Mn+2 = Mn(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -12.9266 - -delta_h +278.847 kcal/mol - -analytic -8.9549e+000 5.6683e-003 -8.5407e+003 5.5548e+000 8.2286e+005 -# -Range: 0-300 - -# Mn(Glyc)+, Mn(CH3OCO2)+ - + 1.0000 Mn+2 + 1.0000 C2H4O3 = Mn(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.2518 - -delta_h +208.594 kcal/mol - -analytic -7.3237e+000 7.7086e-004 -1.3628e+003 2.4657e+000 2.9532e+005 -# -Range: 0-300 - -# Mn(Glyc)2, Mn(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Mn+2 = Mn(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.2373 - -delta_h +364.736 kcal/mol - -analytic -1.7505e+001 -1.6628e-003 -4.1763e+003 7.1162e+000 8.1623e+005 -# -Range: 0-300 - -# Mn(Lac)+, Mn(CH3CH2OCO2)+ - + 1.0000 Mn+2 + 1.0000 C3H6O3 = Mn(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.4328 - -delta_h +217.756 kcal/mol - -analytic -1.6464e+001 7.1558e-004 -1.2885e+003 5.7494e+000 3.4911e+005 -# -Range: 0-300 - -# Mn(Lac)2, Mn(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Mn+2 = Mn(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.2256 - -delta_h +383.047 kcal/mol - -analytic -1.8030e+001 1.4926e-004 -5.9277e+003 8.0913e+000 1.1243e+006 -# -Range: 0-300 - -# Mn(Pent)+, Mn(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Mn+2 = Mn(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.7669 - -delta_h +187.646 kcal/mol - -analytic -3.1330e+001 2.7885e-003 -2.5476e+003 1.1193e+001 6.7589e+005 -# -Range: 0-300 - -# Mn(Pent)2, Mn(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Mn+2 = Mn(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -8.044 - -delta_h +322.033 kcal/mol - -analytic -2.1011e+001 8.8159e-003 -1.1958e+004 1.0527e+001 2.1730e+006 -# -Range: 0-300 - -# Mn(Prop)+, Mn(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Mn+2 = Mn(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.6167 - -delta_h +176.112 kcal/mol - -analytic -5.3912e+000 3.1110e-003 -2.3654e+003 1.4872e+000 4.5498e+005 -# -Range: 0-300 - -# Mn(Prop)2, Mn(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Mn+2 = Mn(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.753 - -delta_h +300.037 kcal/mol - -analytic -5.4193e+000 5.1920e-003 -7.3047e+003 2.4858e+000 1.2892e+006 -# -Range: 0-300 - -# Na(But), Na(CH3(CH2)2CO2) - + 1.0000 Na+ + 1.0000 C3H7COOH = Na(CH3(CH2)2CO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.788 - -delta_h +185.529 kcal/mol - -analytic 1.1463e+001 -1.9756e-003 -3.8987e+003 -3.3969e+000 5.1852e+005 -# -Range: 0-300 - -# Na(But)2-, Na(CH3(CH2)2CO2)2- - + 2.0000 C3H7COOH + 1.0000 Na+ = Na(CH3(CH2)2CO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.8956 - -delta_h +315.475 kcal/mol - -analytic 2.9605e+001 -9.5353e-003 -1.2859e+004 -5.5837e+000 1.8051e+006 -# -Range: 0-300 - -# Na(For), Na(CHO2) - + 1.0000 Na+ + 1.0000 HCOOH = Na(CHO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.7031 - -delta_h +159.279 kcal/mol - -analytic 1.9556e+001 -4.0171e-003 -1.9403e+003 -6.7907e+000 1.1139e+005 -# -Range: 0-300 - -# Na(For)2-, Na(CHO2)2- - + 2.0000 HCOOH + 1.0000 Na+ = Na(CHO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.7362 - -delta_h +263.725 kcal/mol - -analytic -1.6907e+002 -4.9200e-002 4.7499e+003 6.4687e+001 7.4168e+001 -# -Range: 0-300 - -# Na(Glyc), Na(CH3OCO2) - + 1.0000 Na+ + 1.0000 C2H4O3 = Na(CH3OCO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.7838 - -delta_h +212.299 kcal/mol - -analytic 6.5651e+000 -4.5298e-003 -2.4464e+003 -1.5701e+000 2.7550e+005 -# -Range: 0-300 - -# Na(Glyc)2-, Na(CH3OCO2)2- - + 2.0000 C2H4O3 + 1.0000 Na+ = Na(CH3OCO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.7076 - -delta_h +369.684 kcal/mol - -analytic -2.9181e+002 -5.8674e-002 9.4836e+003 1.0904e+002 1.4807e+002 -# -Range: 0-300 - -# Na(Lac), Na(CH3CH2OCO2) - + 1.0000 Na+ + 1.0000 C3H6O3 = Na(CH3CH2OCO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.8131 - -delta_h +221.669 kcal/mol - -analytic -8.9871e+000 -6.2002e-003 -2.1368e+003 4.2449e+000 3.2856e+005 -# -Range: 0-300 - -# Na(Lac)2-, Na(CH3CH2OCO2)2- - + 2.0000 C3H6O3 + 1.0000 Na+ = Na(CH3CH2OCO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.7559 - -delta_h +388.006 kcal/mol - -analytic 5.9524e+001 -8.7468e-003 -1.2721e+004 -1.5993e+001 1.5628e+006 -# -Range: 0-300 - -# Na(Pent), Na(CH3(CH2)3CO2) - + 1.0000 C4H9COOH + 1.0000 Na+ = Na(CH3(CH2)3CO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8173 - -delta_h +192.009 kcal/mol - -analytic 8.1540e+000 -4.2441e-004 -5.2875e+003 -1.5765e+000 7.8307e+005 -# -Range: 0-300 - -# Na(Pent)2-, Na(CH3(CH2)3CO2)2- - + 2.0000 C4H9COOH + 1.0000 Na+ = Na(CH3(CH2)3CO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.9645 - -delta_h +327.929 kcal/mol - -analytic 3.8577e+001 7.5820e-004 -1.6661e+004 -8.2211e+000 2.4438e+006 -# -Range: 0-300 - -# Na(Prop), Na(CH3CH2CO2) - + 1.0000 C2H5COOH + 1.0000 Na+ = Na(CH3CH2CO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8466 - -delta_h +180.229 kcal/mol - -analytic 1.7028e+000 -3.1352e-003 -2.9697e+003 -1.0967e-001 4.1170e+005 -# -Range: 0-300 - -# Na(Prop)2-, Na(CH3CH2CO2)2- - + 2.0000 C2H5COOH + 1.0000 Na+ = Na(CH3CH2CO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -10.0026 - -delta_h +305.289 kcal/mol - -analytic 6.6077e+001 -6.9347e-003 -1.4292e+004 -1.8630e+001 1.7811e+006 -# -Range: 0-300 - -# Ni(Ala)+, Ni(C3H6NO2)+ - + 1.0000 Ni+2 + 1.0000 C3H7NO2 = Ni(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.5249 - -delta_h +137.131 kcal/mol - -analytic 1.1604e+000 4.6374e-003 -4.1009e+003 7.4132e-001 4.3245e+005 -# -Range: 0-300 - -# Ni(Ala)2, Ni(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Ni+2 = Ni(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -10.2291 - -delta_h +262.972 kcal/mol - -analytic 3.1888e+001 9.4817e-003 -1.1655e+004 -8.0444e+000 1.2513e+006 -# -Range: 0-300 - -# Ni(But)+, Ni(CH3(CH2)2CO2)+ - + 1.0000 Ni+2 + 1.0000 C3H7COOH = Ni(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.0676 - -delta_h +143.687 kcal/mol - -analytic -1.1210e+001 7.7237e-004 -1.8584e+003 3.5695e+000 4.7362e+005 -# -Range: 0-300 - -# Ni(But)2, Ni(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Ni+2 = Ni(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.7459 - -delta_h +274.625 kcal/mol - -analytic -3.4716e+000 4.8213e-003 -6.7033e+003 1.1666e+000 1.3261e+006 -# -Range: 0-300 - -# Ni(For)+, Ni(CHO2)+ - + 1.0000 Ni+2 + 1.0000 HCOOH = Ni(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.8831 - -delta_h +117.573 kcal/mol - -analytic -4.4750e-001 -1.7720e-003 -2.1850e+002 -5.1560e-001 9.8346e+004 -# -Range: 0-300 - -# Ni(For)2, Ni(CHO2)2 - + 2.0000 HCOOH + 1.0000 Ni+2 = Ni(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.4061 - -delta_h +223.287 kcal/mol - -analytic -1.1886e+001 -5.7362e-003 6.8286e+002 2.3397e+000 9.9533e+004 -# -Range: 0-300 - -# Ni(Gly)+, Ni(C2H4NO2)+ - + 1.0000 Ni+2 + 1.0000 C2H5NO2 = Ni(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.6482 - -delta_h +129.289 kcal/mol - -analytic -4.6499e+000 4.5579e-003 -2.3704e+003 1.9662e+000 2.4331e+005 -# -Range: 0-300 - -# Ni(Gly)2, Ni(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Ni+2 = Ni(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -8.5065 - -delta_h +246.055 kcal/mol - -analytic 7.2186e-001 5.9661e-003 -6.4762e+003 1.3110e+000 6.6544e+005 -# -Range: 0-300 - -# Ni(Glyc)+, Ni(CH3OCO2)+ - + 1.0000 Ni+2 + 1.0000 C2H4O3 = Ni(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.5738 - -delta_h +171.125 kcal/mol - -analytic -1.0297e+000 -1.2447e-004 -1.2044e+003 1.0906e-001 2.9085e+005 -# -Range: 0-300 - -# Ni(Glyc)2, Ni(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Ni+2 = Ni(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.657 - -delta_h +330.154 kcal/mol - -analytic -1.0354e+001 -1.4250e-003 -2.4189e+003 3.2017e+000 6.5173e+005 -# -Range: 0-300 - -# Ni(Lac)+, Ni(CH3CH2OCO2)+ - + 1.0000 Ni+2 + 1.0000 C3H6O3 = Ni(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.2731 - -delta_h +179.581 kcal/mol - -analytic -5.3952e+000 3.0639e-004 -1.6023e+003 1.7361e+000 3.6640e+005 -# -Range: 0-300 - -# Ni(Lac)2, Ni(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Ni+2 = Ni(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.7961 - -delta_h +346.896 kcal/mol - -analytic 1.3452e+001 3.7748e-003 -5.8913e+003 -4.5655e+000 1.0409e+006 -# -Range: 0-300 - -# Ni(Pent)+, Ni(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Ni+2 = Ni(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.127 - -delta_h +150.126 kcal/mol - -analytic -1.8027e+001 2.5673e-003 -2.8802e+003 6.4190e+000 7.0514e+005 -# -Range: 0-300 - -# Ni(Pent)2, Ni(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Ni+2 = Ni(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.8741 - -delta_h +286.892 kcal/mol - -analytic -1.4118e+001 9.0210e-003 -1.0307e+004 6.7035e+000 2.0075e+006 -# -Range: 0-300 - -# Ni(Prop)+, Ni(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Ni+2 = Ni(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.4561 - -delta_h +137.936 kcal/mol - -analytic -7.2594e+000 1.0617e-003 -1.9069e+003 2.0708e+000 4.2443e+005 -# -Range: 0-300 - -# Ni(Prop)2, Ni(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Ni+2 = Ni(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.4532 - -delta_h +263.708 kcal/mol - -analytic -3.7965e+001 -1.2697e-004 -3.6918e+003 1.2846e+001 9.9382e+005 -# -Range: 0-300 - -# Nonanal, CH3(CH2)7CHO - + 3.5000 C2H4 + 1.0000 CH3COOH = CH3(CH2)7CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -949.8594 - -delta_h +89.060 kcal/mol - -analytic -6.6011e+001 -2.4799e-002 1.8885e+003 2.3966e+001 2.9487e+001 -# -Range: 0-300 - -# Nonanoate, C9H17O2- - + 4.5000 CH3COOH = C9H17O2- + 3.5000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.728 - -delta_h +156.990 kcal/mol - -analytic -2.9242e+002 -2.3233e-002 -6.6303e+004 1.0260e+002 -1.0345e+003 -# -Range: 0-300 - -# Nonanoic_acid, C9H18O2 - + 4.5000 CH3COOH = C9H18O2 + 3.5000 O2 - -llnl_gamma 3.0 - log_k -902.1429 - -delta_h +156.530 kcal/mol - -analytic 7.6545e+002 1.2327e-001 -1.2782e+005 -2.7455e+002 3.7974e+006 -# -Range: 0-300 - -# Octanal, CH3(CH2)6CHO - + 3.0000 C2H4 + 1.0000 CH3COOH = CH3(CH2)6CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -841.0644 - -delta_h +83.550 kcal/mol - -analytic -5.5236e+001 -2.0015e-002 -3.6255e+002 1.9863e+001 -5.6412e+000 -# -Range: 0-300 - -# Octanoate, C7H15COO- - + 4.0000 CH3COOH = C7H15COO- + 3.0000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.8965 - -delta_h +151.580 kcal/mol - -analytic -2.6026e+002 -2.5391e-002 -5.6736e+004 9.2101e+001 -8.8524e+002 -# -Range: 0-300 - -# Octanoic_acid, C7H15COOH - + 4.0000 CH3COOH = C7H15COOH + 3.0000 O2 - -llnl_gamma 3.0 - log_k -793.3332 - -delta_h +151.050 kcal/mol - -analytic -1.9247e+001 1.0829e-002 -7.1544e+004 7.6349e+000 1.0441e+006 -# -Range: 0-300 - -# Oxalate, C2O4-2 - + 1.5000 O2 + 1.0000 CH3COOH = C2O4-2 + 2.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -1.2703 - -delta_h +195.600 kcal/mol - -analytic -6.1367e+001 -6.7813e-002 2.9725e+004 3.0857e+001 4.6385e+002 -# -Range: 0-300 - -# Oxalic_acid, C2H2O4 - + 2.0000 HCO3- + 2.0000 H+ = C2H2O4 + 0.5000 O2 + 1.0000 H2O - -llnl_gamma 3.0 - log_k -41.9377 - -delta_h +194.580 kcal/mol - -analytic -3.4531E+02 -3.8017E-02 -4.9420E+02 1.2783E+02 3.4954E-01 -# -Range: 0-300 - -# Pb(Ala)+, Pb(C3H6NO2)+ - + 1.0000 Pb+2 + 1.0000 C3H7NO2 = Pb(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.3649 - -delta_h +120.275 kcal/mol - -analytic -2.6624e+001 4.7189e-003 -2.0605e+003 9.9803e+000 1.8534e+005 -# -Range: 0-300 - -# Pb(Ala)2, Pb(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Pb+2 = Pb(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -12.4897 - -delta_h +239.191 kcal/mol - -analytic -9.5305e+000 7.6294e-006 -1.1822e+004 9.6291e+000 1.1454e+006 -# -Range: 0-300 - -# Pb(But)+, Pb(CH3(CH2)2CO2)+ - + 1.0000 Pb+2 + 1.0000 C3H7COOH = Pb(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.0075 - -delta_h +126.856 kcal/mol - -analytic -2.1474e+001 2.8958e-003 -8.4396e+002 6.9308e+000 2.9372e+005 -# -Range: 0-300 - -# Pb(But)2, Pb(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Pb+2 = Pb(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.6359 - -delta_h +253.472 kcal/mol - -analytic 2.0254e+001 4.4997e-003 -9.9101e+003 -4.4607e+000 1.4291e+006 -# -Range: 0-300 - -# Pb(For)+, Pb(CHO2)+ - + 1.0000 Pb+2 + 1.0000 HCOOH = Pb(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.8633 - -delta_h +100.688 kcal/mol - -analytic 6.0621e+000 1.9339e-003 -3.7110e+002 -2.9296e+000 -5.7925e+000 -# -Range: 0-300 - -# Pb(For)2, Pb(CHO2)2 - + 2.0000 HCOOH + 1.0000 Pb+2 = Pb(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.3658 - -delta_h +202.038 kcal/mol - -analytic 2.6259e+001 -4.0425e-003 -3.3586e+003 -8.4717e+000 2.5027e+005 -# -Range: 0-300 - -# Pb(Gly)+, Pb(C2H4NO2)+ - + 1.0000 Pb+2 + 1.0000 C2H5NO2 = Pb(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.3086 - -delta_h +112.312 kcal/mol - -analytic -1.8673e+001 6.5915e-003 -1.1000e+003 6.3328e+000 3.8522e+004 -# -Range: 0-300 - -# Pb(Gly)2, Pb(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Pb+2 = Pb(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -10.6968 - -delta_h +222.992 kcal/mol - -analytic 8.2909e+000 3.4522e-003 -9.2596e+003 1.1906e+000 7.2077e+005 -# -Range: 0-300 - -# Pb(Glyc)+, Pb(CH3OCO2)+ - + 1.0000 Pb+2 + 1.0000 C2H4O3 = Pb(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.5335 - -delta_h +154.267 kcal/mol - -analytic -1.4773e+001 6.3698e-004 -2.3399e+002 5.0111e+000 1.2864e+005 -# -Range: 0-300 - -# Pb(Glyc)2, Pb(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Pb+2 = Pb(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.5873 - -delta_h +308.946 kcal/mol - -analytic 1.1096e+001 -3.0559e-003 -5.7676e+003 -1.2814e+000 7.7865e+005 -# -Range: 0-300 - -# Pb(Lac)+, Pb(CH3CH2OCO2)+ - + 1.0000 Pb+2 + 1.0000 C3H6O3 = Pb(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.5833 - -delta_h +163.610 kcal/mol - -analytic -1.3871e+001 2.6871e-003 -5.0054e+002 4.4527e+000 1.9242e+005 -# -Range: 0-300 - -# Pb(Lac)2, Pb(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Pb+2 = Pb(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.676 - -delta_h +327.120 kcal/mol - -analytic -4.4899e+000 -2.4870e-003 -6.4849e+003 4.8300e+000 1.0115e+006 -# -Range: 0-300 - -# Pb(Pent)+, Pb(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Pb+2 = Pb(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.0471 - -delta_h +133.322 kcal/mol - -analytic -2.4746e+001 5.6511e-003 -1.9305e+003 8.3485e+000 5.2061e+005 -# -Range: 0-300 - -# Pb(Pent)2, Pb(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Pb+2 = Pb(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.7246 - -delta_h +265.793 kcal/mol - -analytic -2.7005e+001 3.4894e-003 -1.1468e+004 1.4273e+001 1.9937e+006 -# -Range: 0-300 - -# Pb(Prop)+, Pb(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Pb+2 = Pb(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.5567 - -delta_h +122.252 kcal/mol - -analytic -1.6614e+001 2.8882e-003 -8.1215e+002 5.2485e+000 2.6253e+005 -# -Range: 0-300 - -# Pb(Prop)2, Pb(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Pb+2 = Pb(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.1631 - -delta_h +244.164 kcal/mol - -analytic -8.3280e+000 2.5204e-004 -6.9233e+003 5.1398e+000 1.1223e+006 -# -Range: 0-300 - -# Pentanal, CH3(CH2)3CHO - + 1.5000 C2H4 + 1.0000 CH3COOH = CH3(CH2)3CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -514.6206 - -delta_h +67.100 kcal/mol - -analytic -2.2868e+001 -5.6572e-003 -7.1000e+003 7.5357e+000 -1.1078e+002 -# -Range: 0-300 - -# Pentanoate, C4H9COO- - + 1.0000 C4H9COOH = C4H9COO- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.8452 - -delta_h +134.380 kcal/mol - -analytic -7.1959e+001 -2.5255e-002 1.5595e+003 2.8045e+001 2.4355e+001 -# -Range: 0-300 - -# Pentanoic_acid, C4H9COOH - + 5.0000 HCO3- + 5.0000 H+ = C4H9COOH + 6.5000 O2 - -llnl_gamma 3.0 - log_k -467.5638 - -delta_h +133.690 kcal/mol - -analytic -4.1508E+03 -7.0450E-01 -6.2821E+02 1.5740E+03 -6.3823E-01 -# -Range: 0-300 - -# Phenol, C6H5OH - + 6.0000 HCO3- + 6.0000 H+ = C6H5OH + 7.0000 O2 + 3.0000 H2O - -llnl_gamma 3.0 - log_k -503.3718 - -delta_h +36.640 kcal/mol - -analytic -4.4638E+03 -7.4406E-01 -6.3959E+02 1.6908E+03 -7.2665E-01 -# -Range: 0-300 - -# Phenylalanine, C9H11NO2 - + 4.5000 C2H5NO2 = C9H11NO2 + 3.5000 NH3 + 3.2500 O2 + 0.5000 H2O - -llnl_gamma 3.0 - log_k -715.0646 - -delta_h +110.080 kcal/mol - -analytic 4.3141e+002 9.9794e-002 -1.0397e+005 -1.5181e+002 3.1041e+006 -# -Range: 0-300 - -# Pimelate, C7H10O4-2 - + 3.5000 CH3COOH = C7H10O4-2 + 2.0000 H+ + 1.0000 H2O + 1.0000 O2 - -llnl_gamma 4.0 - log_k -4.486 - -delta_h +234.040 kcal/mol - -analytic -1.8597e+002 -7.3478e-002 -1.8772e+004 7.3883e+001 -2.9286e+002 -# -Range: 0-300 - -# Pimelic_acid, C7H12O4 - + 3.5000 CH3COOH = C7H12O4 + 1.0000 H2O + 1.0000 O2 - -llnl_gamma 3.0 - log_k -575.0718 - -delta_h +253.720 kcal/mol - -analytic -8.7817e+001 -1.7044e-002 -1.9448e+004 3.2348e+001 -3.0344e+002 -# -Range: 0-300 - -# Propanal, CH3CH2CHO - + 1.0000 CH3COOH + 0.5000 C2H4 = CH3CH2CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -296.0849 - -delta_h +57.360 kcal/mol - -analytic -1.2713e+000 3.9198e-003 -1.1322e+004 -6.8971e-001 -1.7667e+002 -# -Range: 0-300 - -# Propane, C3H8 - + 1.5000 C2H6 + 0.2500 O2 = C3H8 + 0.5000 H2O - -llnl_gamma 3.0 - log_k -363.0881 - -delta_h +30.490 kcal/mol - -analytic -6.4646e+001 -1.3427e-002 9.8352e+003 2.3379e+001 -3.1351e+005 -# -Range: 0-300 - -#C7H8 from J.Thom - CH4 + C6H6 = C7H8 + H2 - -llnl_gamma 3.0 - log_k -7.82476 - -analytic -6.78979e1 -1.31838e-2 -1.34773e0 2.58679e1 9.83945e-1 -# -Range: 0-300 - -# Propanoate, C2H5COO- - + 1.0000 C2H5COOH = C2H5COO- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.8892 - -delta_h +122.630 kcal/mol - -analytic -9.5201e+001 -3.2154e-002 2.0655e+003 3.7566e+001 3.2258e+001 -# -Range: 0-300 - -# C2H5COOH, C2H5COOH - + 3.0000 HCO3- + 3.0000 H+ = C2H5COOH + 3.5000 O2 - -llnl_gamma 3.0 - log_k -250.1276 - -delta_h +122.470 kcal/mol - -analytic -2.2143E+03 -3.6918E-01 -5.6115E+02 8.3892E+02 -1.6485E-01 -# -Range: 0-300 - -# Sebacate, C10H16O4-2 - + 5.0000 CH3COOH = C10H16O4-2 + 2.5000 O2 + 2.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -4.5446 - -delta_h +246.230 kcal/mol - -analytic -2.7931e+002 -6.9587e-002 -4.8910e+004 1.0481e+002 -7.6312e+002 -# -Range: 0-300 - -# Sebacic_acid, C10H18O4 - + 5.0000 CH3COOH = C10H18O4 + 2.5000 O2 + 1.0000 H2O - -llnl_gamma 3.0 - log_k -904.7629 - -delta_h +246.000 kcal/mol - -analytic -2.2715e+002 -2.7047e-002 -4.8330e+004 8.1858e+001 -7.5408e+002 -# -Range: 0-300 - -# Serine, C3H7NO3 - + 1.5000 C2H5NO2 + 0.5000 H2O = C3H7NO3 + 0.5000 NH3 + 0.2500 O2 - -llnl_gamma 3.0 - log_k -189.3549 - -delta_h +170.800 kcal/mol - -analytic -3.4133e+001 -7.9911e-005 -6.6066e+003 1.1810e+001 -1.0308e+002 -# -Range: 0-300 - -# Sr(Ala)+, Sr(C3H6NO2)+ - + 1.0000 Sr+2 + 1.0000 C3H7NO2 = Sr(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -9.6244 - -delta_h +247.624 kcal/mol - -analytic -1.5372e-001 6.3659e-003 -5.3387e+003 9.4940e-001 3.7366e+005 -# -Range: 0-300 - -# Sr(Ala)2, Sr(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Sr+2 = Sr(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -19.7391 - -delta_h +363.933 kcal/mol - -analytic 2.2701e+001 5.7649e-003 -1.5582e+004 -2.6780e+000 1.3116e+006 -# -Range: 0-300 - -# Sr(But)+, Sr(CH3(CH2)2CO2)+ - + 1.0000 Sr+2 + 1.0000 C3H7COOH = Sr(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.6876 - -delta_h +257.725 kcal/mol - -analytic 3.9063e+000 4.6099e-003 -3.2349e+003 -1.7801e+000 4.7152e+005 -# -Range: 0-300 - -# Sr(But)2, Sr(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Sr+2 = Sr(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.716 - -delta_h +383.903 kcal/mol - -analytic -7.5798e+000 1.7956e-003 -9.0604e+003 4.8509e+000 1.3997e+006 -# -Range: 0-300 - -# Sr(For)+, Sr(CHO2)+ - + 1.0000 Sr+2 + 1.0000 HCOOH = Sr(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.3632 - -delta_h +233.167 kcal/mol - -analytic -7.7187e+000 -1.6025e-003 -1.4308e+002 2.3659e+000 4.1368e+004 -# -Range: 0-300 - -# Sr(For)2, Sr(CHO2)2 - + 2.0000 HCOOH + 1.0000 Sr+2 = Sr(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.2857 - -delta_h +335.415 kcal/mol - -analytic 1.2568e+001 -4.6580e-003 -2.6237e+003 -4.2863e+000 2.6225e+005 -# -Range: 0-300 - -# Sr(Gly)+, Sr(C2H4NO2)+ - + 1.0000 Sr+2 + 1.0000 C2H5NO2 = Sr(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -8.8283 - -delta_h +239.307 kcal/mol - -analytic 2.8102e+000 7.4407e-003 -4.2138e+003 -8.6544e-001 2.1596e+005 -# -Range: 0-300 - -# Sr(Gly)2, Sr(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Sr+2 = Sr(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -18.1764 - -delta_h +347.420 kcal/mol - -analytic -2.8343e+001 -5.5578e-004 -9.2508e+003 1.3694e+001 6.6583e+005 -# -Range: 0-300 - -# Sr(Glyc)+, Sr(CH3OCO2)+ - + 1.0000 Sr+2 + 1.0000 C2H4O3 = Sr(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.5237 - -delta_h +286.078 kcal/mol - -analytic -6.4133e+000 5.4199e-004 -1.3135e+003 2.2348e+000 2.3242e+005 -# -Range: 0-300 - -# Sr(Glyc)2, Sr(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Sr+2 = Sr(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.3971 - -delta_h +441.109 kcal/mol - -analytic 1.3286e+001 -5.0599e-004 -5.9522e+003 -3.1148e+000 8.1395e+005 -# -Range: 0-300 - -# Sr(Lac)+, Sr(CH3CH2OCO2)+ - + 1.0000 Sr+2 + 1.0000 C3H6O3 = Sr(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.8829 - -delta_h +295.697 kcal/mol - -analytic -4.0445e+000 1.9255e-003 -1.8712e+003 1.2700e+000 3.3209e+005 -# -Range: 0-300 - -# Sr(Lac)2, Sr(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Sr+2 = Sr(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.0561 - -delta_h +459.421 kcal/mol - -analytic -1.4468e+001 -2.5097e-003 -6.2399e+003 7.4467e+000 1.0390e+006 -# -Range: 0-300 - -# Sr(Pent)+, Sr(CH3(CH2)3CO2)+ - Sr+2 + 1.0000 C4H9COOH = Sr(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.0475 - -delta_h +263.755 kcal/mol - -analytic -1.6735e+001 4.7533e-003 -3.4901e+003 5.9457e+000 6.4784e+005 -# -Range: 0-300 - -# Sr(Pent)2, Sr(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Sr+2 = Sr(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -10.3845 - -delta_h +395.432 kcal/mol - -analytic -2.1107e+001 5.6147e-003 -1.2655e+004 1.1415e+001 2.0705e+006 -# -Range: 0-300 - -# Sr(Prop)+, Sr(CH3CH2CO2)+ - Sr+2 + 1.0000 C2H5COOH = Sr(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.6568 - -delta_h +252.548 kcal/mol - -analytic -6.6891e+000 2.5586e-003 -2.4244e+003 2.0550e+000 3.8526e+005 -# -Range: 0-300 - -# Sr(Prop)2, Sr(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Sr+2 = Sr(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.653 - -delta_h +374.036 kcal/mol - -analytic -1.7427e+001 2.9439e-004 -7.2086e+003 7.6682e+000 1.1487e+006 -# -Range: 0-300 - -# Suberate, C8H12O4-2 - + 4.0000 CH3COOH = C8H12O4-2 + 2.0000 H+ + 1.5000 O2 + 1.0000 H2O - -llnl_gamma 4.0 - log_k -4.508 - -delta_h +238.130 kcal/mol - -analytic -2.2072e+002 -7.2265e-002 -2.8694e+004 8.5459e+001 -4.4768e+002 -# -Range: 0-300 - -# Suberic_acid, C8H14O4 - + 4.0000 CH3COOH = C8H14O4 + 1.5000 O2 + 1.0000 H2O - -llnl_gamma 3.0 - log_k -685.0983 - -delta_h +237.760 kcal/mol - -analytic 3.0275e+002 3.8350e-002 -5.4760e+004 -1.0730e+002 1.5882e+006 -# -Range: 0-300 - -# Succinate, C4H4O4-2 - + 2.0000 CH3COOH + 0.5000 O2 = C4H4O4-2 + 2.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -4.2075 - -delta_h +217.350 kcal/mol - -analytic -1.2187e+002 -7.6672e-002 1.1465e+004 5.2865e+001 1.7894e+002 -# -Range: 0-300 - -# Succinic_acid, C4H6O4 - + 4.0000 HCO3- + 4.0000 H+ = C4H6O4 + 1.0000 H2O + 3.5000 O2 - -llnl_gamma 3.0 - log_k -249.5736 - -delta_h +218.000 kcal/mol - -analytic -2.2145E+03 -3.6471E-01 -5.6115E+02 8.3864E+02 -1.6486E-01 -# -Range: 0-300 - -# Threonine, C4H9NO3 - + 2.0000 C2H5NO2 + 1.0000 H2O = C4H9NO3 + 1.0000 NH3 + 1.0000 O2 - -llnl_gamma 3.0 - log_k -298.0694 - -delta_h +179.100 kcal/mol - -analytic -1.0140e+002 6.4713e-004 -2.0508e+004 3.5679e+001 -3.1999e+002 -# -Range: 0-300 - -# Toluene, C6H5CH3 - + 7.0000 HCO3- + 7.0000 H+ = C6H5CH3 + 9.0000 O2 + 3.0000 H2O - -llnl_gamma 3.0 - log_k -643.4017 - -delta_h -3.28 kcal/mol - -analytic -5.7062E+03 -9.5845E-01 -6.8381E+02 2.1621E+03 -1.1553E+00 -# -Range: 0-300 - -# Tryptophan, C11H12N2O2 - + 5.5000 C2H5NO2 = C11H12N2O2 + 3.5000 NH3 + 3.2500 O2 + 2.5000 H2O - -llnl_gamma 3.0 - log_k -821.6547 - -delta_h +97.800 kcal/mol - -analytic 2.0110e+002 6.4379e-002 -9.2769e+004 -6.7930e+001 2.8656e+006 -# -Range: 0-300 - -# Tyrosine, C9H11NO3 - + 4.5000 C2H5NO2 = C9H11NO3 + 3.5000 NH3 + 2.7500 O2 + 0.5000 H2O - -llnl_gamma 3.0 - log_k -685.9078 - -delta_h +157.400 kcal/mol - -analytic 8.1097e+001 4.1846e-002 -7.3858e+004 -2.6230e+001 1.7718e+006 -# -Range: 0-300 - -# Undecanoate, C11H21O2- - + 5.5000 CH3COOH = C11H21O2- + 4.5000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.9258 - -delta_h +168.370 kcal/mol - -analytic -3.4192e+002 -1.8413e-002 -8.6143e+004 1.1839e+002 -1.3441e+003 -# -Range: 0-300 - -# Undecanoic_acid, C11H22O2 - + 5.5000 CH3COOH = C11H22O2 + 4.5000 O2 - -llnl_gamma 3.0 - log_k -1119.4911 - -delta_h +167.870 kcal/mol - -analytic -3.8607e+002 -2.5829e-002 -8.4510e+004 1.3690e+002 -1.3186e+003 -# -Range: 0-300 - -# Urea, (NH2)2CO - + 2.0000 NH3 + 1.0000 HCO3- + 1.0000 H+ = (NH2)2CO + 2.0000 H2O - -llnl_gamma 3.0 - log_k -NH3(aq) - -delta_h +48.720 kcal/mol - -analytic 1.0904e+002 3.5979e-002 -6.9287e+002 -4.4776e+001 -1.0844e+001 -# -Range: 0-300 - -# Valine, C5H11NO2 - + 2.5000 C2H5NO2 + 1.5000 H2O = C5H11NO2 + 2.2500 O2 + 1.5000 NH3 - -llnl_gamma 3.0 - log_k +8.7263 - -delta_h +147.300 kcal/mol - -analytic 3.7382e+001 2.7415e-002 -5.6188e+004 -1.2674e+001 1.1178e+006 -# -Range: 0-300 - -# Yb(But)+2, Yb(CH3(CH2)2CO2)+2 - + 1.0000 Yb+3 + 1.0000 C3H7COOH = Yb(CH3(CH2)2CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.1382 - -delta_h +291.999 kcal/mol - -analytic -1.2860e+001 1.7057e-003 -2.0611e+003 4.3737e+000 5.6186e+005 -# -Range: 0-300 - -# Yb(But)2+, Yb(CH3(CH2)2CO2)2+ - + 2.0000 C3H7COOH + 1.0000 Yb+3 = Yb(CH3(CH2)2CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.046 - -delta_h +422.417 kcal/mol - -analytic -2.4830e+001 4.6045e-003 -5.0416e+003 8.6785e+000 1.2339e+006 -# -Range: 0-300 - -# Yb(For)+2, Yb(CHO2)+2 - + 1.0000 Yb+3 + 1.0000 HCOOH = Yb(CHO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.0533 - -delta_h +265.749 kcal/mol - -analytic -4.3955e+000 -1.0863e-003 -2.9561e+002 1.0868e+000 1.7552e+005 -# -Range: 0-300 - -# Yb(For)2+, Yb(CHO2)2+ - + 2.0000 HCOOH + 1.0000 Yb+3 = Yb(CHO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -2.8858 - -delta_h +370.998 kcal/mol - -analytic 1.6276e+000 -3.1580e-003 -1.1548e+002 -2.0889e+000 1.7727e+005 -# -Range: 0-300 - -# Yb(Pent)+2, Yb(CH3(CH2)3CO2)+2 - Yb+3 + 1.0000 C4H9COOH = Yb(CH3(CH2)3CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.1675 - -delta_h +298.479 kcal/mol - -analytic -2.3047e+001 2.8250e-003 -2.9411e+003 8.5036e+000 7.8951e+005 -# -Range: 0-300 - -# Yb(Pent)2+, Yb(CH3(CH2)3CO2)2+ - + 2.0000 C4H9COOH + 1.0000 Yb+3 = Yb(CH3(CH2)3CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.1142 - -delta_h +434.659 kcal/mol - -analytic -5.2700e+001 8.2187e-003 -7.2378e+003 1.9860e+001 1.8060e+006 -# -Range: 0-300 - -# Yb(Prop)+2, Yb(CH3CH2CO2)+2 - Yb+3 + 1.0000 C2H5COOH = Yb(CH3CH2CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.3266 - -delta_h +286.522 kcal/mol - -analytic -6.7242e+000 2.3108e-003 -2.1680e+003 2.0842e+000 5.1913e+005 -# -Range: 0-300 - -# Yb(Prop)2+, Yb(CH3CH2CO2)2+ - + 2.0000 C2H5COOH + 1.0000 Yb+3 = Yb(CH3CH2CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.3927 - -delta_h +412.078 kcal/mol - -analytic -3.8113e+001 1.3154e-003 -3.4162e+003 1.3121e+001 1.0092e+006 -# -Range: 0-300 - -# Zn(Ala)+, Zn(C3H6NO2)+ - + 1.0000 Zn+2 + 1.0000 C3H7NO2 = Zn(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.4147 - -delta_h +161.048 kcal/mol - -analytic 1.2672e+001 6.7980e-003 -5.1247e+003 -3.5266e+000 5.1686e+005 -# -Range: 0-300 - -# Zn(Ala)2, Zn(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Zn+2 = Zn(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -11.4994 - -delta_h +283.389 kcal/mol - -analytic 4.4585e+001 1.2039e-002 -1.3805e+004 -1.1865e+001 1.4233e+006 -# -Range: 0-300 - -# Zn(But)+, Zn(CH3(CH2)2CO2)+ - + 1.0000 Zn+2 + 1.0000 C3H7COOH = Zn(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.3682 - -delta_h +166.539 kcal/mol - -analytic -1.6276e+001 9.6461e-004 -1.8810e+003 5.4462e+000 4.8622e+005 -# -Range: 0-300 - -# Zn(But)2, Zn(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Zn+2 = Zn(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.2956 - -delta_h +296.560 kcal/mol - -analytic -1.3591e+001 4.2586e-003 -7.2513e+003 5.4031e+000 1.4233e+006 -# -Range: 0-300 - -# Zn(For)+, Zn(CHO2)+ - + 1.0000 Zn+2 + 1.0000 HCOOH = Zn(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.9828 - -delta_h +140.698 kcal/mol - -analytic -1.1156e+001 -2.5823e-003 7.3093e+001 3.4639e+000 1.0064e+005 -# -Range: 0-300 - -# Zn(For)2, Zn(CHO2)2 - + 2.0000 HCOOH + 1.0000 Zn+2 = Zn(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.5857 - -delta_h +245.726 kcal/mol - -analytic -7.1074e-001 -3.3021e-003 -9.4938e+002 -1.0872e+000 2.6619e+005 -# -Range: 0-300 - -# Zn(Gly)+, Zn(C2H4NO2)+ - + 1.0000 Zn+2 + 1.0000 C2H5NO2 = Zn(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.398 - -delta_h +151.609 kcal/mol - -analytic 1.4690e+000 6.2605e-003 -3.1652e+003 -1.7705e-001 2.9610e+005 -# -Range: 0-300 - -# Zn(Gly)2, Zn(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Zn+2 = Zn(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.7468 - -delta_h +267.408 kcal/mol - -analytic -6.7271e+000 5.7103e-003 -7.3518e+003 4.5306e+000 7.7709e+005 -# -Range: 0-300 - -# Zn(Glyc)+, Zn(CH3OCO2)+ - + 1.0000 Zn+2 + 1.0000 C2H4O3 = Zn(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.4536 - -delta_h +194.550 kcal/mol - -analytic -1.1705e+001 -8.4917e-004 -8.2775e+002 4.0500e+000 2.9059e+005 -# -Range: 0-300 - -# Zn(Glyc)2, Zn(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Zn+2 = Zn(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.4371 - -delta_h +353.139 kcal/mol - -analytic 6.2982e-001 9.5823e-004 -3.9294e+003 -1.4746e-001 8.1885e+005 -# -Range: 0-300 - -# Zn(Lac)+, Zn(CH3CH2OCO2)+ - + 1.0000 Zn+2 + 1.0000 C3H6O3 = Zn(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.6632 - -delta_h +200.064 kcal/mol - -analytic -1.2294e+001 1.2442e-003 -1.5665e+003 4.7943e+000 3.2586e+005 -# -Range: 0-300 - -# Zn(Lac)2, Zn(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Zn+2 = Zn(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.9758 - -delta_h +364.728 kcal/mol - -analytic 3.8951e+000 2.6835e-003 -7.1188e+003 1.0404e+000 1.1253e+006 -# -Range: 0-300 - -# Zn(Pent)+, Zn(CH3(CH2)3CO2)+ - Zn+2 + 1.0000 C4H9COOH = Zn(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.4869 - -delta_h +172.896 kcal/mol - -analytic -1.1325e+001 4.3921e-003 -3.5920e+003 4.0708e+000 7.5781e+005 -# -Range: 0-300 - -# Zn(Pent)2, Zn(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Zn+2 = Zn(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.5243 - -delta_h +308.690 kcal/mol - -analytic -1.2210e+001 1.0120e-002 -1.1570e+004 6.6228e+000 2.1453e+006 -# -Range: 0-300 - -# Zn(Prop)+, Zn(CH3CH2CO2)+ - Zn+2 + 1.0000 C2H5COOH = Zn(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.6467 - -delta_h +160.939 kcal/mol - -analytic -1.2581e+001 1.0699e-003 -1.9249e+003 4.0899e+000 4.4167e+005 -# -Range: 0-300 - -# Zn(Prop)2, Zn(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Zn+2 = Zn(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.8029 - -delta_h +285.915 kcal/mol - -analytic 5.0990e+000 6.7118e-003 -7.1926e+003 -2.0259e+000 1.2684e+006 -# -Range: 0-300 - -# a-Aminobutyric_acid, C4H9NO2 - + 2.0000 C2H5NO2 + 1.0000 H2O = C4H9NO2 + 1.5000 O2 + 1.0000 NH3 - -llnl_gamma 3.0 - log_k +8.5576 - -delta_h +138.180 kcal/mol - -analytic -1.4296e+002 -5.6984e-004 -2.6712e+004 5.0706e+001 -4.1677e+002 -# -Range: 0-300 - -# m-Toluate, C8H7O2- - + 4.0000 CH3COOH = C8H7O2- + 4.0000 H2O + 1.0000 H+ + 1.0000 O2 - -llnl_gamma 4.0 - log_k -1.9205 - -delta_h +95.350 kcal/mol - -analytic -2.1064e+002 -3.7768e-002 -1.3591e+004 7.7265e+001 -2.1201e+002 -# -Range: 0-300 - -# m-Toluic_acid, C8H8O2 - + 4.0000 CH3COOH = C8H8O2 + 4.0000 H2O + 1.0000 O2 - -llnl_gamma 3.0 - log_k +2.3383 - -delta_h +95.450 kcal/mol - -analytic -3.8131e+000 4.7688e-003 -2.3805e+004 1.3041e+000 6.1998e+005 -# -Range: 0-300 - -# n-Butane, C4H10 - + 2.0000 C2H6 + 0.5000 O2 = C4H10 + 1.0000 H2O - -llnl_gamma 3.0 - log_k -471.7285 - -delta_h +36.230 kcal/mol - -analytic -4.4434e+001 -1.4522e-002 1.4959e+004 1.6121e+001 -3.5819e+005 -# -Range: 0-300 - -# n-Butylbenzene, C6H5C4H9 -# + 6.0000 H2O + 5.0000 C6H6 = C6H5C4H9 + 3.0000 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -2907.6453 -# -delta_h +14.430 kcal/mol -# -analytic 6.8560e+002 1.2459e-001 -1.0249e+005 -2.5284e+002 2.3594e+006 -# -Range: 0-300 - -# n-Heptane, C7H16 - + 3.5000 C2H6 + 1.2500 O2 = C7H16 + 2.5000 H2O - -llnl_gamma 3.0 - log_k -797.97 - -delta_h +52.950 kcal/mol - -analytic 1.3006e+002 -5.8965e-003 2.2874e+004 -4.5370e+001 3.5689e+002 -# -Range: 0-300 - -# n-Heptylbenzene, C6H5C7H15 -# + 10.5000 H2O + 6.5000 C6H6 = C6H5C7H15 + 5.2500 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -3886.5811 -# -delta_h +31.090 kcal/mol -# -analytic -5.4784e+001 4.5194e-002 -1.1072e+005 8.0680e+000 -1.7277e+003 -# -Range: 0-300 - -# n-Hexane, C6H14 - + 3.0000 C2H6 + 1.0000 O2 = C6H14 + 2.0000 H2O - -llnl_gamma 3.0 - log_k -689.2922 - -delta_h +47.400 kcal/mol - -analytic -8.0362e+001 -2.8468e-002 2.9412e+004 2.9224e+001 -7.0316e+005 -# -Range: 0-300 - -# n-Hexylbenzene, C6H5C6H13 - + 3.0000 H2O + 2.0000 C6H6 = C6H5C6H13 + 1.5000 O2 - -llnl_gamma 3.0 - log_k -1186.7026 - -delta_h +25.590 kcal/mol - -analytic 3.5759e+002 6.3935e-002 -5.2899e+004 -1.3148e+002 1.2819e+006 -# -Range: 0-300 - -# n-Octane, C8H18 - + 4.0000 C2H6 + 1.5000 O2 = C8H18 + 3.0000 H2O - -llnl_gamma 3.0 - log_k -906.6918 - -delta_h +59.410 kcal/mol - -analytic -1.4173e+002 -4.6447e-002 4.5236e+004 5.1540e+001 -1.1006e+006 -# -Range: 0-300 - -# n-Octylbenzene, C6H5C8H17 -# + 12.0000 H2O + 7.0000 C6H6 = C6H5C8H17 + 6.0000 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -4212.6143 -# -delta_h +36.760 kcal/mol -# -analytic 1.2934e+003 2.4001e-001 -2.0402e+005 -4.7773e+002 4.5749e+006 -# -Range: 0-300 - -# n-Pentane, C5H12 - + 2.5000 C2H6 + 0.7500 O2 = C5H12 + 1.5000 H2O - -llnl_gamma 3.0 - log_k -580.4385 - -delta_h +41.560 kcal/mol - -analytic 8.4526e+000 -1.1432e-002 1.8295e+004 -2.8367e+000 -3.1818e+005 -# -Range: 0-300 - -# n-Pentylbenzene, C6H5C5H11 -# + 7.5000 H2O + 5.5000 C6H6 = C6H5C5H11 + 3.7500 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -3233.7886 -# -delta_h +19.750 kcal/mol -# -analytic 2.9887e+002 7.2990e-002 -9.9228e+004 -1.1348e+002 1.3767e+006 -# -Range: 0-300 - -# n-Propylbenzene, C6H5C3H7 - + 1.5000 H2O + 1.5000 C6H6 = C6H5C3H7 + 0.7500 O2 - -llnl_gamma 3.0 - log_k -860.618 - -delta_h +8.630 kcal/mol - -analytic -4.3768e+000 6.3937e-003 -1.5469e+004 0.0000e+000 0.0000e+000 -# -Range: 0-300 - -# o-Toluate, C8H7O2- - + 4.0000 CH3COOH = C8H7O2- + 4.0000 H2O + 1.0000 H+ + 1.0000 O2 - -llnl_gamma 4.0 - log_k -3.9069 - -delta_h +94.070 kcal/mol - -analytic -2.2819e+002 -3.9422e-002 -1.3238e+004 8.3275e+001 -2.0650e+002 -# -Range: 0-300 - -# o-Toluic_acid, C8H8O2 - + 4.0000 CH3COOH = C8H8O2 + 4.0000 H2O + 1.0000 O2 - -llnl_gamma 3.0 - log_k -642.3493 - -delta_h +92.640 kcal/mol - -analytic 8.2106e+001 1.6240e-002 -2.9218e+004 -2.9637e+001 8.9007e+005 -# -Range: 0-300 - -# p-Toluate, C8H7O2- - + 4.0000 CH3COOH = C8H7O2- + 4.0000 H2O + 1.0000 H+ + 1.0000 O2 - -llnl_gamma 4.0 - log_k -1.6786 - -delta_h +96.160 kcal/mol - -analytic -1.9101e+002 -3.8193e-002 -1.4330e+004 7.0482e+001 -2.2355e+002 -# -Range: 0-300 - -# p-Toluic_acid, C8H8O2 - + 4.0000 CH3COOH = C8H8O2 + 4.0000 H2O + 1.0000 O2 - -llnl_gamma 3.0 - log_k +2.6901 - -delta_h +96.190 kcal/mol - -analytic 1.5812e+002 2.5784e-002 -3.1991e+004 -5.7207e+001 1.0103e+006 -# -Range: 0-300 - -# U(But)+2, U(CH3(CH2)2CO2)+2 - 1.0000 U+3 + 1.0000 C3H7COOH = U(CH3(CH2)2CO2)+2 + 1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1498 - -delta_h 248.272 kcal/mol - -analytic 4.8984E+01 2.2598E-02 -5.4323E+02 -2.2538E+01 1.6299E+00 -# -Range: 0-300 - -# U(But)2+, U(CH3(CH2)2CO2)2+ - 1.0000 U+3 + 2.0000 C3H7COOH = U(CH3(CH2)2CO2)2+ + 2.0000 H+ - -llnl_gamma 4.5 - log_k -4.9572 - -delta_h 377.871 kcal/mol - -analytic 7.8056E+01 4.5216E-02 -5.4214E+02 -3.8131E+01 1.6380E+00 -# -Range: 0-300 - -# U(For)+2, U(CHO2)+2 - 1.0000 U+3 + 1.0000 HCOOH = U(CHO2)+2 + 1.0000 H+ - -llnl_gamma 4.5 - log_k -1.0650 - -delta_h 221.372 kj/mol - -analytic 3.4236E+01 7.8056E+01 4.5216E-02 -5.4214E+02 -3.8131E+01 1.6380E+00 -# -Range: 0-300 - -# U(For)2+, U(CHO2)2+ - 1.0000 U+3 + 2.0000 HCOOH = U(CHO2)2+ + 2.0000 H+ - -llnl_gamma 4.0 - log_k -2.2378 - -delta_h 325.914 kj/mol - -analytic 3.4236E+01 3.5094E-03 -5.4368E+02 -1.4325E+01 1.6273E+00 -# -Range: 0-300 - -# U(Pent)+2, U(CH3(CH2)3CO2)+2 - 1.0000 U+3 + 1.0000 C4H9COOH = U(CH3(CH2)3CO2)+2 + 1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1791 - -delta_h 254.046 kj/mol - -analytic 6.0007E+01 3.2104E-02 -5.4273E+02 -2.8145E+01 1.6343E+00 -# -Range: 0-300 - -# U(Prop)+2, U(CH3CH2CO2)+2 - 1.0000 U+3 + 1.0000 C2H5COOH = U(CH3CH2CO2)+2 + 1.0000 H+ - -llnl_gamma 4.5 - log_k -2.2084 - -delta_h 242.291 kj/mol - -analytic 4.5186E+01 2.0784E-02 -5.4323E+02 -2.0809E+01 1.6310E+00 -# -Range: 0-300 - -# U(Prop)2+, U(CH3CH2CO2)2+ - 1.0000 U+3 + 2.0000 C2H5COOH = U(CH3CH2CO2)2+ + 2.0000 H+ - -llnl_gamma 4.0 - log_k -5.3149 - -delta_h 366.155 kj/mol - -analytic 6.7383E+01 3.8662E-02 -5.4239E+02 -3.3175E+01 1.6373E+00 -# -Range: 0-300 - -3.0000 H+ + 1.0000 HCO3- + 1.0000 SO4-2 = CH3SH + 3.5 O2 # Methanethiol - -llnl_gamma 3.0 - log_k -242.047 # from supcrt92 -# Enthalpy of formation: -11.650 kcal/mol # from supcrt92 - -delta_H 360498 cal/mol # from supcrt92 - -analytic -2.03598E+03 -2.78169E-01 -6.13323E+02 7.59329E+02 1.13938E+00 -# -Range: 0-350 - -4.0000 H+ + 2.0000 HCO3- + 1.0000 SO4-2 = C2H5SH + 5.0 O2 # Ethanethiol - -llnl_gamma 3.0 - log_k -349.764 # from supcrt92 -# Enthalpy of formation: -17.820 kcal/mol # from supcrt92 - -delta_H 514876 cal/mol # from supcrt92 - -analytic -2.96331E+03 -4.22107E-01 -1.00319E+02 1.10720E+03 2.90155E-01 -# -Range: 0-350 - -5.0000 H+ + 3.0000 HCO3- + 1.0000 SO4-2 = C3H7SH + 6.5 O2 # Propanethiol - -llnl_gamma 3.0 - log_k -458.757 # from supcrt92 -# Enthalpy of formation: -23.320 kcal/mol # from supcrt92 - -delta_H 669924 cal/mol # from supcrt92 - -analytic -3.88470E+03 -5.63950E-01 -1.31641E+02 1.45265E+03 6.67442E-02 -# -Range: 0-350 - -6.0000 H+ + 4.0000 HCO3- + 1.0000 SO4-2 = C4H9SH + 8.0 O2 # Butanethiol - -llnl_gamma 3.0 - log_k -567.530 # from supcrt92 -# Enthalpy of formation: -28.630 kcal/mol # from supcrt92 - -delta_H 825162 cal/mol # from supcrt92 - -analytic -4.80261E+03 -7.05108E-01 -1.62840E+02 1.79669E+03 -1.59893E-01 -# -Range: 0-350 - -7.0000 H+ + 5.0000 HCO3- + 1.0000 SO4-2 = C5H11SH + 9.5 O2 # Pentanethiol - -llnl_gamma 3.0 - log_k -676.604 # from supcrt92 -# Enthalpy of formation: -34.530 kcal/mol # from supcrt92 - -delta_H 979810 cal/mol # from supcrt92 - -analytic -5.71970E+03 -8.46049E-01 -1.94013E+02 2.14026E+03 -3.61870E-01 -# -Range: 0-350 - -8.0000 H+ + 6.0000 HCO3- + 1.0000 SO4-2 = C6H13SH + 11.0 O2 # Hexanethiol - -llnl_gamma 3.0 - log_k -785.084 # from supcrt92 -# Enthalpy of formation: -40.200 kcal/mol # from supcrt92 - -delta_H 1134688 cal/mol # from supcrt92 - -analytic -6.63401E+03 -9.86521E-01 -2.25089E+02 2.48288E+03 -5.76590E-01 -# -Range: 0-350 - -9.0000 H+ + 7.0000 HCO3- + 1.0000 SO4-2 = C7H15SH + 12.5 O2 # Heptanethiol - -llnl_gamma 3.0 - log_k -893.762 # from supcrt92 -# Enthalpy of formation: -45.870 kcal/mol # from supcrt92 - -delta_H 1289566 cal/mol # from supcrt92 - -analytic -7.55009E+03 -1.12735E+00 -2.56223E+02 2.82618E+03 -8.06879E-01 -# -Range: 0-350 - -10.0000 H+ + 8.0000 HCO3- + 1.0000 SO4-2 = C8H17SH + 14.0 O2 # Octanethiol - -llnl_gamma 3.0 - log_k -1002.439 # from supcrt92 -# Enthalpy of formation: -51.540 kcal/mol # from supcrt92 - -delta_H 1444444 cal/mol # from supcrt92 - -analytic -8.46618E+03 -1.26818E+00 -2.87362E+02 3.16949E+03 -1.03755E+00 -# -Range: 0-350 - -11.0000 H+ + 9.0000 HCO3- + 1.0000 SO4-2 = C9H19SH + 15.5 O2 # Nonanethiol - -llnl_gamma 3.0 - log_k -1111.117 # from supcrt92 -# Enthalpy of formation: -57.210 kcal/mol # from supcrt92 - -delta_H 1599322 cal/mol # from supcrt92 - -analytic -9.38233E+03 -1.40904E+00 -3.18508E+02 3.51283E+03 -1.24321E+00 -# -Range: 0-350 - -12.0000 H+ + 10.0000 HCO3- + 1.0000 SO4-2 = C10H21SH + 17.0 O2 # Decanethiol - -llnl_gamma 3.0 - log_k -1219.795 # from supcrt92 -# Enthalpy of formation: -62.880 kcal/mol # from supcrt92 - -delta_H 1754200 cal/mol # from supcrt92 - -analytic -1.02985E+04 -1.54990E+00 -3.49643E+02 3.85617E+03 -1.48034E+00 -# -Range: 0-350 - -PHASES - -Toluene(l) # from J.Thom - C7H8 = C7H8 - log_k -2.2639168374931 - -analytic 1.9804E+01 2.0653E-02 1.5436E+00 -1.1409E+01 2.8885E-03 - -Toluene(g) # from J.Thom - C7H8 = C7H8 - log_k -.67116 - -analytic 7.43133e1 3.42616e-2 2.40651e0 -3.44352e1 -4.36135e0 - -CH4(g) # from J.Thom - CH4 = CH4 - log_k -2.8502 - -delta_H -13.0959 kJ/mol # Calculated enthalpy of reaction CH4(g) - -analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005 - -#################################### - -#End of data entered Feb. 4, 2011 - -################################# - -# 1122 minerals - -(UO2)2As2O7 - (UO2)2As2O7 +2.0000 H+ +1.0000 H2O = + 2.0000 H2AsO4- + 2.0000 UO2++ - log_k 7.7066 - -delta_H -145.281 kJ/mol # Calculated enthalpy of reaction (UO2)2As2O7 -# Enthalpy of formation: -3426 kJ/mol - -analytic -1.6147e+002 -6.3487e-002 1.0052e+004 6.2384e+001 1.5691e+002 -# -Range: 0-300 - -(UO2)2Cl3 - (UO2)2Cl3 = + 1.0000 UO2+ + 1.0000 UO2++ + 3.0000 Cl- - log_k 12.7339 - -delta_H -140.866 kJ/mol # Calculated enthalpy of reaction (UO2)2Cl3 -# Enthalpy of formation: -2404.5 kJ/mol - -analytic -2.3895e+002 -9.2925e-002 1.1722e+004 9.6999e+001 1.8298e+002 -# -Range: 0-300 - -(UO2)2P2O7 - (UO2)2P2O7 +1.0000 H2O = + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -14.6827 - -delta_H -103.726 kJ/mol # Calculated enthalpy of reaction (UO2)2P2O7 -# Enthalpy of formation: -4232.6 kJ/mol - -analytic -3.4581e+002 -1.3987e-001 1.0703e+004 1.3613e+002 1.6712e+002 -# -Range: 0-300 - -(UO2)3(AsO4)2 - (UO2)3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 UO2++ - log_k 9.3177 - -delta_H -186.72 kJ/mol # Calculated enthalpy of reaction (UO2)3(AsO4)2 -# Enthalpy of formation: -4689.4 kJ/mol - -analytic -1.9693e+002 -7.3236e-002 1.2936e+004 7.4631e+001 2.0192e+002 -# -Range: 0-300 - -(UO2)3(PO4)2 - (UO2)3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 UO2++ - log_k -14.0241 - -delta_H -149.864 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2 -# Enthalpy of formation: -5491.3 kJ/mol - -analytic -3.6664e+002 -1.4347e-001 1.3486e+004 1.4148e+002 2.1054e+002 -# -Range: 0-300 - -(UO2)3(PO4)2:4H2O - (UO2)3(PO4)2:4H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 UO2++ + 4.0000 H2O - log_k -27.0349 - -delta_H -45.4132 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2:4H2O -# Enthalpy of formation: -6739.1 kJ/mol - -analytic -1.5721e+002 -4.1375e-002 5.2046e+003 5.0531e+001 8.8434e+001 -# -Range: 0-200 - -(VO)3(PO4)2 - (VO)3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 VO++ - log_k 48.7864 - -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)3(PO4)2 -# Enthalpy of formation: 0 kcal/mol - -Acanthite - Ag2S +1.0000 H+ = + 1.0000 HS- + 2.0000 Ag+ - log_k -36.0346 - -delta_H 226.982 kJ/mol # Calculated enthalpy of reaction Acanthite -# Enthalpy of formation: -7.55 kcal/mol - -analytic -1.6067e+002 -4.7139e-002 -7.4522e+003 6.6140e+001 -1.1624e+002 -# -Range: 0-300 - -Afwillite - Ca3Si2O4(OH)6 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Ca++ + 6.0000 H2O - log_k 60.0452 - -delta_H -316.059 kJ/mol # Calculated enthalpy of reaction Afwillite -# Enthalpy of formation: -1143.31 kcal/mol - -analytic 1.8353e+001 1.9014e-003 1.8478e+004 -6.6311e+000 -4.0227e+005 -# -Range: 0-300 - -Ag - Ag +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Ag+ - log_k 7.9937 - -delta_H -34.1352 kJ/mol # Calculated enthalpy of reaction Ag -# Enthalpy of formation: 0 kcal/mol - -analytic -1.4144e+001 -3.8466e-003 2.2642e+003 6.3388e+000 3.5334e+001 -# -Range: 0-300 - -Ag3PO4 - Ag3PO4 +1.0000 H+ = + 1.0000 HPO4-- + 3.0000 Ag+ - log_k -5.2282 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ag3PO4 -# Enthalpy of formation: 0 kcal/mol - -Ahlfeldite - NiSeO3:2H2O = + 1.0000 Ni++ + 1.0000 SeO3-- + 2.0000 H2O - log_k -4.4894 - -delta_H -25.7902 kJ/mol # Calculated enthalpy of reaction Ahlfeldite -# Enthalpy of formation: -265.07 kcal/mol - -analytic -2.6210e+001 -1.6952e-002 1.0405e+003 9.4054e+000 1.7678e+001 -# -Range: 0-200 - -Akermanite - Ca2MgSi2O7 +6.0000 H+ = + 1.0000 Mg++ + 2.0000 Ca++ + 2.0000 SiO2 + 3.0000 H2O - log_k 45.3190 - -delta_H -288.575 kJ/mol # Calculated enthalpy of reaction Akermanite -# Enthalpy of formation: -926.497 kcal/mol - -analytic -4.8295e+001 -8.5613e-003 2.0880e+004 1.3798e+001 -7.1975e+005 -# -Range: 0-300 - -Al - Al +3.0000 H+ +0.7500 O2 = + 1.0000 Al+++ + 1.5000 H2O - log_k 149.9292 - -delta_H -958.059 kJ/mol # Calculated enthalpy of reaction Al -# Enthalpy of formation: 0 kJ/mol - -analytic -1.8752e+002 -4.6187e-002 5.7127e+004 6.6270e+001 -3.8952e+005 -# -Range: 0-300 - -Al2(SO4)3 - Al2(SO4)3 = + 2.0000 Al+++ + 3.0000 SO4-- - log_k 19.0535 - -delta_H -364.566 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3 -# Enthalpy of formation: -3441.04 kJ/mol - -analytic -6.1001e+002 -2.4268e-001 2.9194e+004 2.4383e+002 4.5573e+002 -# -Range: 0-300 - -Al2(SO4)3:6H2O - Al2(SO4)3:6H2O = + 2.0000 Al+++ + 3.0000 SO4-- + 6.0000 H2O - log_k 1.6849 - -delta_H -208.575 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3:6H2O -# Enthalpy of formation: -5312.06 kJ/mol - -analytic -7.1642e+002 -2.4552e-001 2.6064e+004 2.8441e+002 4.0691e+002 -# -Range: 0-300 - -AlF3 - AlF3 = + 1.0000 Al+++ + 3.0000 F- - log_k -17.2089 - -delta_H -34.0441 kJ/mol # Calculated enthalpy of reaction AlF3 -# Enthalpy of formation: -1510.4 kJ/mol - -analytic -3.9865e+002 -1.3388e-001 1.0211e+004 1.5642e+002 1.5945e+002 -# -Range: 0-300 - -Alabandite - MnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Mn++ - log_k -0.3944 - -delta_H -23.3216 kJ/mol # Calculated enthalpy of reaction Alabandite -# Enthalpy of formation: -51 kcal/mol - -analytic -1.5515e+002 -4.8820e-002 4.9049e+003 6.1765e+001 7.6583e+001 -# -Range: 0-300 - -Alamosite - PbSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ + 1.0000 SiO2 - log_k 5.6733 - -delta_H -16.5164 kJ/mol # Calculated enthalpy of reaction Alamosite -# Enthalpy of formation: -1146.1 kJ/mol - -analytic 2.9941e+002 6.7871e-002 -8.1706e+003 -1.1582e+002 -1.3885e+002 -# -Range: 0-200 - -Albite - NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 - log_k 2.7645 - -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite -# Enthalpy of formation: -939.68 kcal/mol - -analytic -1.1694e+001 1.4429e-002 1.3784e+004 -7.2866e+000 -1.6136e+006 -# -Range: 0-300 - -Albite_high - NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 - log_k 4.0832 - -delta_H -62.8562 kJ/mol # Calculated enthalpy of reaction Albite_high -# Enthalpy of formation: -937.05 kcal/mol - -analytic -1.8957e+001 1.3726e-002 1.4801e+004 -4.9732e+000 -1.6442e+006 -# -Range: 0-300 - -Albite_low - NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 - log_k 2.7645 - -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite_low -# Enthalpy of formation: -939.68 kcal/mol - -analytic -1.2860e+001 1.4481e-002 1.3913e+004 -6.9417e+000 -1.6256e+006 -# -Range: 0-300 - -Alstonite - BaCa(CO3)2 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 Ca++ + 2.0000 HCO3- - log_k 2.5843 - -delta_H 0 # Not possible to calculate enthalpy of reaction Alstonite -# Enthalpy of formation: 0 kcal/mol - -Alum-K - KAl(SO4)2:12H2O = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 SO4-- + 12.0000 H2O - log_k -4.8818 - -delta_H 14.4139 kJ/mol # Calculated enthalpy of reaction Alum-K -# Enthalpy of formation: -1447 kcal/mol - -analytic -8.8025e+002 -2.5706e-001 2.2399e+004 3.5434e+002 3.4978e+002 -# -Range: 0-300 - -Alunite - KAl3(OH)6(SO4)2 +6.0000 H+ = + 1.0000 K+ + 2.0000 SO4-- + 3.0000 Al+++ + 6.0000 H2O - log_k -0.3479 - -delta_H -231.856 kJ/mol # Calculated enthalpy of reaction Alunite -# Enthalpy of formation: -1235.6 kcal/mol - -analytic -6.8581e+002 -2.2455e-001 2.6886e+004 2.6758e+002 4.1973e+002 -# -Range: 0-300 - -Am - Am +3.0000 H+ +0.7500 O2 = + 1.0000 Am+++ + 1.5000 H2O - log_k 169.3900 - -delta_H -1036.36 kJ/mol # Calculated enthalpy of reaction Am -# Enthalpy of formation: 0 kJ/mol - -analytic -6.7924e+000 -8.9873e-003 5.3327e+004 0.0000e+000 0.0000e+000 -# -Range: 0-300 - -Am(OH)3 - Am(OH)3 +3.0000 H+ = + 1.0000 Am+++ + 3.0000 H2O - log_k 15.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Am(OH)3(am) - Am(OH)3 +3.0000 H+ = + 1.0000 Am+++ + 3.0000 H2O - log_k 17.0217 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Am2(CO3)3 - Am2(CO3)3 +3.0000 H+ = + 2.0000 Am+++ + 3.0000 HCO3- - log_k -2.3699 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Am2C3 - Am2C3 +4.5000 O2 +3.0000 H+ = + 2.0000 Am+++ + 3.0000 HCO3- - log_k 503.9594 - -delta_H -3097.6 kJ/mol # Calculated enthalpy of reaction Am2C3 -# Enthalpy of formation: -151 kJ/mol - -analytic 3.3907e+002 -4.2636e-003 1.4463e+005 -1.2891e+002 2.4559e+003 -# -Range: 0-200 - -Am2O3 - Am2O3 +6.0000 H+ = + 2.0000 Am+++ + 3.0000 H2O - log_k 51.7905 - -delta_H -400.515 kJ/mol # Calculated enthalpy of reaction Am2O3 -# Enthalpy of formation: -1690.4 kJ/mol - -analytic -9.2044e+001 -1.8883e-002 2.3028e+004 2.9192e+001 3.5935e+002 -# -Range: 0-300 - -AmBr3 - AmBr3 = + 1.0000 Am+++ + 3.0000 Br- - log_k 21.7826 - -delta_H -171.21 kJ/mol # Calculated enthalpy of reaction AmBr3 -# Enthalpy of formation: -810 kJ/mol - -analytic 1.0121e+001 -3.0622e-002 6.1964e+003 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -AmCl3 - AmCl3 = + 1.0000 Am+++ + 3.0000 Cl- - log_k 14.3513 - -delta_H -140.139 kJ/mol # Calculated enthalpy of reaction AmCl3 -# Enthalpy of formation: -977.8 kJ/mol - -analytic -1.5000e+001 -3.6701e-002 5.2281e+003 9.1942e+000 8.8785e+001 -# -Range: 0-200 - -AmF3 - AmF3 = + 1.0000 Am+++ + 3.0000 F- - log_k -13.1190 - -delta_H -34.7428 kJ/mol # Calculated enthalpy of reaction AmF3 -# Enthalpy of formation: -1588 kJ/mol - -analytic -4.0514e+001 -3.7312e-002 4.1626e+002 1.4999e+001 7.0827e+000 -# -Range: 0-200 - -AmF4 - AmF4 = + 1.0000 Am++++ + 4.0000 F- - log_k -25.1354 - -delta_H -37.3904 kJ/mol # Calculated enthalpy of reaction AmF4 -# Enthalpy of formation: -1710 kJ/mol - -analytic -4.9592e+001 -4.5210e-002 -9.7251e+001 1.5457e+001 -1.6348e+000 -# -Range: 0-200 - -AmH2 - AmH2 +2.0000 H+ +1.0000 O2 = + 1.0000 Am++ + 2.0000 H2O - log_k 128.4208 - -delta_H -738.376 kJ/mol # Calculated enthalpy of reaction AmH2 -# Enthalpy of formation: -175.8 kJ/mol - -analytic 3.1175e+001 -1.4062e-002 3.6259e+004 -8.1600e+000 5.6578e+002 -# -Range: 0-300 - -AmI3 - AmI3 = + 1.0000 Am+++ + 3.0000 I- - log_k 24.7301 - -delta_H -175.407 kJ/mol # Calculated enthalpy of reaction AmI3 -# Enthalpy of formation: -612 kJ/mol - -analytic -1.3886e+001 -3.6651e-002 7.2094e+003 1.0247e+001 1.2243e+002 -# -Range: 0-200 - -AmO2 - AmO2 +4.0000 H+ = + 1.0000 Am++++ + 2.0000 H2O - log_k -9.4203 - -delta_H -45.4767 kJ/mol # Calculated enthalpy of reaction AmO2 -# Enthalpy of formation: -932.2 kJ/mol - -analytic -7.4658e+001 -1.1661e-002 4.2059e+003 2.2070e+001 6.5650e+001 -# -Range: 0-300 - -AmOBr - AmOBr +2.0000 H+ = + 1.0000 Am+++ + 1.0000 Br- + 1.0000 H2O - log_k 13.7637 - -delta_H -131.042 kJ/mol # Calculated enthalpy of reaction AmOBr -# Enthalpy of formation: -893 kJ/mol - -analytic -4.4394e+001 -1.7071e-002 7.3438e+003 1.5605e+001 1.2472e+002 -# -Range: 0-200 - -AmOCl - AmOCl +2.0000 H+ = + 1.0000 Am+++ + 1.0000 Cl- + 1.0000 H2O - log_k 11.3229 - -delta_H -119.818 kJ/mol # Calculated enthalpy of reaction AmOCl -# Enthalpy of formation: -949.8 kJ/mol - -analytic -1.2101e+002 -4.1027e-002 8.6801e+003 4.6651e+001 1.3548e+002 -# -Range: 0-300 - -AmOHCO3 - AmOHCO3 +2.0000 H+ = + 1.0000 Am+++ + 1.0000 H2O + 1.0000 HCO3- - log_k 3.1519 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmOHCO3 -# Enthalpy of formation: 0 kcal/mol - -AmPO4(am) - AmPO4 +1.0000 H+ = + 1.0000 Am+++ + 1.0000 HPO4-- - log_k -12.4682 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmPO4(am) -# Enthalpy of formation: 0 kcal/mol - -Amesite-14A - Mg4Al4Si2O10(OH)8 +20.0000 H+ = + 2.0000 SiO2 + 4.0000 Al+++ + 4.0000 Mg++ + 14.0000 H2O - log_k 75.4571 - -delta_H -797.098 kJ/mol # Calculated enthalpy of reaction Amesite-14A -# Enthalpy of formation: -2145.67 kcal/mol - -analytic -5.4326e+002 -1.4144e-001 5.4150e+004 1.9361e+002 8.4512e+002 -# -Range: 0-300 - -Analcime - Na.96Al.96Si2.04O6:H2O +3.8400 H+ = + 0.9600 Al+++ + 0.9600 Na+ + 2.0400 SiO2 + 2.9200 H2O - log_k 6.1396 - -delta_H -75.844 kJ/mol # Calculated enthalpy of reaction Analcime -# Enthalpy of formation: -3296.86 kJ/mol - -analytic -6.8694e+000 6.6052e-003 9.8260e+003 -4.8540e+000 -8.8780e+005 -# -Range: 0-300 - -Analcime-dehy - Na.96Al.96Si2.04O6 +3.8400 H+ = + 0.9600 Al+++ + 0.9600 Na+ + 1.9200 H2O + 2.0400 SiO2 - log_k 12.5023 - -delta_H -116.641 kJ/mol # Calculated enthalpy of reaction Analcime-dehy -# Enthalpy of formation: -2970.23 kJ/mol - -analytic -7.1134e+000 5.6181e-003 1.2185e+004 -5.0295e+000 -9.3890e+005 -# -Range: 0-300 - -Anatase - TiO2 +2.0000 H2O = + 1.0000 Ti(OH)4 - log_k -8.5586 - -delta_H 0 # Not possible to calculate enthalpy of reaction Anatase -# Enthalpy of formation: -939.942 kJ/mol - -Andalusite - Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O - log_k 15.9445 - -delta_H -235.233 kJ/mol # Calculated enthalpy of reaction Andalusite -# Enthalpy of formation: -615.866 kcal/mol - -analytic -7.1115e+001 -3.2234e-002 1.2308e+004 2.2357e+001 1.9208e+002 -# -Range: 0-300 - -Andradite - Ca3Fe2(SiO4)3 +12.0000 H+ = + 2.0000 Fe+++ + 3.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O - log_k 33.3352 - -delta_H -301.173 kJ/mol # Calculated enthalpy of reaction Andradite -# Enthalpy of formation: -1380.35 kcal/mol - -analytic 1.3884e+001 -2.3886e-002 1.5314e+004 -8.1606e+000 -4.2193e+005 -# -Range: 0-300 - -Anglesite - PbSO4 = + 1.0000 Pb++ + 1.0000 SO4-- - log_k -7.8527 - -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Anglesite -# Enthalpy of formation: -219.87 kcal/mol - -analytic -1.8583e+002 -7.3849e-002 2.8528e+003 7.6936e+001 4.4570e+001 -# -Range: 0-300 - -Anhydrite - CaSO4 = + 1.0000 Ca++ + 1.0000 SO4-- - log_k -4.3064 - -delta_H -18.577 kJ/mol # Calculated enthalpy of reaction Anhydrite -# Enthalpy of formation: -342.76 kcal/mol - -analytic -2.0986e+002 -7.8823e-002 5.0969e+003 8.5642e+001 7.9594e+001 -# -Range: 0-300 - -Annite - KFe3AlSi3O10(OH)2 +10.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 3.0000 Fe++ + 3.0000 SiO2 + 6.0000 H2O - log_k 29.4693 - -delta_H -259.964 kJ/mol # Calculated enthalpy of reaction Annite -# Enthalpy of formation: -1232.19 kcal/mol - -analytic -4.0186e+001 -1.4238e-002 1.8929e+004 7.9859e+000 -8.4343e+005 -# -Range: 0-300 - -Anorthite - CaAl2(SiO4)2 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 2.0000 SiO2 + 4.0000 H2O - log_k 26.5780 - -delta_H -303.039 kJ/mol # Calculated enthalpy of reaction Anorthite -# Enthalpy of formation: -1007.55 kcal/mol - -analytic 3.9717e-001 -1.8751e-002 1.4897e+004 -6.3078e+000 -2.3885e+005 -# -Range: 0-300 - -Antarcticite - CaCl2:6H2O = + 1.0000 Ca++ + 2.0000 Cl- + 6.0000 H2O - log_k 4.0933 - -delta_H 0 # Not possible to calculate enthalpy of reaction Antarcticite -# Enthalpy of formation: 0 kcal/mol - -Anthophyllite - Mg7Si8O22(OH)2 +14.0000 H+ = + 7.0000 Mg++ + 8.0000 H2O + 8.0000 SiO2 - log_k 66.7965 - -delta_H -483.486 kJ/mol # Calculated enthalpy of reaction Anthophyllite -# Enthalpy of formation: -2888.75 kcal/mol - -analytic -1.2865e+002 1.9705e-002 5.4853e+004 1.9444e+001 -3.8080e+006 -# -Range: 0-300 - -Antigorite -# Mg48Si24O85(OH)62 +96.0000 H+ = + 34.0000 SiO2 + 48.0000 Mg++ + 79.0000 H2O - Mg48Si34O85(OH)62 +96.0000 H+ = + 34.0000 SiO2 + 48.0000 Mg++ + 79.0000 H2O - log_k 477.1943 - -delta_H -3364.43 kJ/mol # Calculated enthalpy of reaction Antigorite -# Enthalpy of formation: -17070.9 kcal/mol - -analytic -8.1630e+002 -6.7780e-002 2.5998e+005 2.2029e+002 -9.3275e+006 -# -Range: 0-300 - -Antlerite - Cu3(SO4)(OH)4 +4.0000 H+ = + 1.0000 SO4-- + 3.0000 Cu++ + 4.0000 H2O - log_k 8.7302 - -delta_H 0 # Not possible to calculate enthalpy of reaction Antlerite -# Enthalpy of formation: 0 kcal/mol - -Aphthitalite - NaK3(SO4)2 = + 1.0000 Na+ + 2.0000 SO4-- + 3.0000 K+ - log_k -3.8878 - -delta_H 0 # Not possible to calculate enthalpy of reaction Aphthitalite -# Enthalpy of formation: 0 kcal/mol - -Aragonite - CaCO3 +1.0000 H+ = + 1.0000 Ca++ + 1.0000 HCO3- - log_k 1.9931 - -delta_H -25.8027 kJ/mol # Calculated enthalpy of reaction Aragonite -# Enthalpy of formation: -288.531 kcal/mol - -analytic -1.4934e+002 -4.8043e-002 4.9089e+003 6.0284e+001 7.6644e+001 -# -Range: 0-300 - -Arcanite - K2SO4 = + 1.0000 SO4-- + 2.0000 K+ - log_k -1.8008 - -delta_H 23.836 kJ/mol # Calculated enthalpy of reaction Arcanite -# Enthalpy of formation: -1437.78 kJ/mol - -analytic -1.6428e+002 -6.7762e-002 1.9879e+003 7.1116e+001 3.1067e+001 -# -Range: 0-300 - -Arsenolite - As2O3 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO3- - log_k -19.8365 - -delta_H 84.5449 kJ/mol # Calculated enthalpy of reaction Arsenolite -# Enthalpy of formation: -656.619 kJ/mol - -analytic 5.1917e+000 -1.9397e-002 -6.0894e+003 4.7458e-001 -1.0341e+002 -# -Range: 0-200 - -Arsenopyrite - FeAsS +1.5000 H2O +0.5000 H+ = + 0.5000 AsH3 + 0.5000 H2AsO3- + 1.0000 Fe++ + 1.0000 HS- - log_k -14.4453 - -delta_H 28.0187 kJ/mol # Calculated enthalpy of reaction Arsenopyrite -# Enthalpy of formation: -42.079 kJ/mol - -Artinite - Mg2CO3(OH)2:3H2O +3.0000 H+ = + 1.0000 HCO3- + 2.0000 Mg++ + 5.0000 H2O - log_k 19.6560 - -delta_H -130.432 kJ/mol # Calculated enthalpy of reaction Artinite -# Enthalpy of formation: -698.043 kcal/mol - -analytic -2.8614e+002 -6.7344e-002 1.5230e+004 1.1104e+002 2.3773e+002 -# -Range: 0-300 - -As - As +1.5000 H2O +0.7500 O2 = + 1.0000 H+ + 1.0000 H2AsO3- - log_k 42.7079 - -delta_H -276.937 kJ/mol # Calculated enthalpy of reaction As -# Enthalpy of formation: 0 kJ/mol - -analytic -3.4700e+001 -3.1772e-002 1.3788e+004 1.6411e+001 2.1517e+002 -# -Range: 0-300 - -As2O5 - As2O5 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO4- - log_k 2.1601 - -delta_H -36.7345 kJ/mol # Calculated enthalpy of reaction As2O5 -# Enthalpy of formation: -924.87 kJ/mol - -analytic -1.4215e+002 -6.3459e-002 4.1222e+003 6.0369e+001 6.4365e+001 -# -Range: 0-300 - -As4O6(cubi) - As4O6 +6.0000 H2O = + 4.0000 H+ + 4.0000 H2AsO3- - log_k -39.7636 - -delta_H 169.792 kJ/mol # Calculated enthalpy of reaction As4O6(cubi) -# Enthalpy of formation: -1313.94 kJ/mol - -analytic -2.6300e+002 -1.1822e-001 -4.9004e+003 1.1108e+002 -7.6389e+001 -# -Range: 0-300 - -As4O6(mono) - As4O6 +6.0000 H2O = + 4.0000 H+ + 4.0000 H2AsO3- - log_k -40.0375 - -delta_H 165.452 kJ/mol # Calculated enthalpy of reaction As4O6(mono) -# Enthalpy of formation: -1309.6 kJ/mol - -analytic 9.2518e+000 -3.8823e-002 -1.1985e+004 9.9966e-001 -2.0352e+002 -# -Range: 0-200 - -Atacamite - Cu4Cl2(OH)6 +6.0000 H+ = + 2.0000 Cl- + 4.0000 Cu++ + 6.0000 H2O - log_k 14.2836 - -delta_H -132.001 kJ/mol # Calculated enthalpy of reaction Atacamite -# Enthalpy of formation: -1654.43 kJ/mol - -analytic -2.6623e+002 -4.8121e-002 1.5315e+004 9.8395e+001 2.6016e+002 -# -Range: 0-200 - -Au - Au +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Au+ - log_k -7.0864 - -delta_H 59.189 kJ/mol # Calculated enthalpy of reaction Au -# Enthalpy of formation: 0 kcal/mol - -analytic -7.6610e-001 -2.8520e-003 -3.0861e+003 1.9705e+000 -4.8156e+001 -# -Range: 0-300 - -Autunite-H - H2(UO2)2(PO4)2 = + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -25.3372 - -delta_H -31.8599 kJ/mol # Calculated enthalpy of reaction Autunite-H -# Enthalpy of formation: -4590.3 kJ/mol - -analytic -3.2179e+001 -3.8038e-002 -6.8629e+002 8.2724e+000 -1.1644e+001 -# -Range: 0-200 - -Azurite - Cu3(CO3)2(OH)2 +4.0000 H+ = + 2.0000 H2O + 2.0000 HCO3- + 3.0000 Cu++ - log_k 9.1607 - -delta_H -122.298 kJ/mol # Calculated enthalpy of reaction Azurite -# Enthalpy of formation: -390.1 kcal/mol - -analytic -4.4042e+002 -1.1934e-001 1.8053e+004 1.7158e+002 2.8182e+002 -# -Range: 0-300 - -B - B +1.5000 H2O +0.7500 O2 = + 1.0000 B(OH)3 - log_k 109.5654 - -delta_H -636.677 kJ/mol # Calculated enthalpy of reaction B -# Enthalpy of formation: 0 kJ/mol - -analytic 8.0471e+001 1.2577e-003 2.9653e+004 -2.8593e+001 4.6268e+002 -# -Range: 0-300 - -B2O3 - B2O3 +3.0000 H2O = + 2.0000 B(OH)3 - log_k 5.5464 - -delta_H -18.0548 kJ/mol # Calculated enthalpy of reaction B2O3 -# Enthalpy of formation: -1273.5 kJ/mol - -analytic 9.0905e+001 5.5365e-003 -2.6629e+003 -3.1553e+001 -4.1578e+001 -# -Range: 0-300 - -Ba - Ba +2.0000 H+ +0.5000 O2 = + 1.0000 Ba++ + 1.0000 H2O - log_k 141.2465 - -delta_H -817.416 kJ/mol # Calculated enthalpy of reaction Ba -# Enthalpy of formation: 0 kJ/mol - -analytic -2.5033e+001 -1.3917e-002 4.2849e+004 1.0786e+001 6.6863e+002 -# -Range: 0-300 - -Ba(OH)2:8H2O - Ba(OH)2:8H2O +2.0000 H+ = + 1.0000 Ba++ + 10.0000 H2O - log_k 24.4911 - -delta_H -55.4363 kJ/mol # Calculated enthalpy of reaction Ba(OH)2:8H2O -# Enthalpy of formation: -3340.59 kJ/mol - -analytic -2.3888e+002 -1.5791e-003 1.4097e+004 8.7518e+001 2.3947e+002 -# -Range: 0-200 - -Ba2Si3O8 - Ba2Si3O8 +4.0000 H+ = + 2.0000 Ba++ + 2.0000 H2O + 3.0000 SiO2 - log_k 23.3284 - -delta_H -95.3325 kJ/mol # Calculated enthalpy of reaction Ba2Si3O8 -# Enthalpy of formation: -4184.73 kJ/mol - -analytic -8.7226e+001 9.3125e-003 2.3147e+004 2.2012e+001 -2.1714e+006 -# -Range: 0-300 - -Ba2SiO4 - Ba2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ba++ + 2.0000 H2O - log_k 44.5930 - -delta_H -237.206 kJ/mol # Calculated enthalpy of reaction Ba2SiO4 -# Enthalpy of formation: -2287.46 kJ/mol - -analytic -7.0350e+000 -5.1744e-003 1.4786e+004 3.1091e+000 -3.6972e+005 -# -Range: 0-300 - -Ba2U2O7 - Ba2U2O7 +6.0000 H+ = + 2.0000 Ba++ + 2.0000 UO2+ + 3.0000 H2O - log_k 36.4635 - -delta_H -243.057 kJ/mol # Calculated enthalpy of reaction Ba2U2O7 -# Enthalpy of formation: -3740 kJ/mol - -analytic -9.2562e+001 5.3866e-003 1.6852e+004 2.8647e+001 2.8621e+002 -# -Range: 0-200 - -Ba3UO6 - Ba3UO6 +8.0000 H+ = + 1.0000 UO2++ + 3.0000 Ba++ + 4.0000 H2O - log_k 94.3709 - -delta_H -564.885 kJ/mol # Calculated enthalpy of reaction Ba3UO6 -# Enthalpy of formation: -3210.4 kJ/mol - -analytic -1.3001e+002 -1.7395e-002 3.3977e+004 4.6715e+001 5.7703e+002 -# -Range: 0-200 - -BaBr2 - BaBr2 = + 1.0000 Ba++ + 2.0000 Br- - log_k 5.6226 - -delta_H -23.3887 kJ/mol # Calculated enthalpy of reaction BaBr2 -# Enthalpy of formation: -757.262 kJ/mol - -analytic -1.7689e+002 -7.1918e-002 4.7187e+003 7.6010e+001 7.3683e+001 -# -Range: 0-300 - -BaBr2:2H2O - BaBr2:2H2O = + 1.0000 Ba++ + 2.0000 Br- + 2.0000 H2O - log_k 2.2523 - -delta_H 13.7736 kJ/mol # Calculated enthalpy of reaction BaBr2:2H2O -# Enthalpy of formation: -1366.1 kJ/mol - -analytic -1.5506e+001 -1.6281e-002 -8.5727e+002 1.0296e+001 -1.4552e+001 -# -Range: 0-200 - -BaCl2 - BaCl2 = + 1.0000 Ba++ + 2.0000 Cl- - log_k 2.2707 - -delta_H -13.1563 kJ/mol # Calculated enthalpy of reaction BaCl2 -# Enthalpy of formation: -858.647 kJ/mol - -analytic -2.0393e+002 -7.8925e-002 4.8846e+003 8.6204e+001 7.6280e+001 -# -Range: 0-300 - -BaCl2:2H2O - BaCl2:2H2O = + 1.0000 Ba++ + 2.0000 Cl- + 2.0000 H2O - log_k 0.2459 - -delta_H 16.558 kJ/mol # Calculated enthalpy of reaction BaCl2:2H2O -# Enthalpy of formation: -1460.04 kJ/mol - -analytic -2.0350e+002 -7.3577e-002 3.7914e+003 8.6051e+001 5.9221e+001 -# -Range: 0-300 - -BaCl2:H2O - BaCl2:H2O = + 1.0000 Ba++ + 1.0000 H2O + 2.0000 Cl- - log_k 0.8606 - -delta_H 2.89433 kJ/mol # Calculated enthalpy of reaction BaCl2:H2O -# Enthalpy of formation: -1160.54 kJ/mol - -analytic -1.9572e+002 -7.3938e-002 4.0553e+003 8.2842e+001 6.3336e+001 -# -Range: 0-300 - -BaCrO4 - BaCrO4 = + 1.0000 Ba++ + 1.0000 CrO4-- - log_k -9.9322 - -delta_H 25.9115 kJ/mol # Calculated enthalpy of reaction BaCrO4 -# Enthalpy of formation: -345.293 kcal/mol - -analytic 2.3142e+001 -1.6617e-002 -3.6883e+003 -6.3687e+000 -6.2640e+001 -# -Range: 0-200 - -BaHPO4 - BaHPO4 = + 1.0000 Ba++ + 1.0000 HPO4-- - log_k -7.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaHPO4 -# Enthalpy of formation: 0 kcal/mol - -BaI2 - BaI2 = + 1.0000 Ba++ + 2.0000 I- - log_k 11.0759 - -delta_H -46.0408 kJ/mol # Calculated enthalpy of reaction BaI2 -# Enthalpy of formation: -605.408 kJ/mol - -analytic -1.7511e+002 -7.2206e-002 5.8696e+003 7.5974e+001 9.1641e+001 -# -Range: 0-300 - -BaMnO4 - BaMnO4 = + 1.0000 Ba++ + 1.0000 MnO4-- - log_k -10.0900 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaMnO4 -# Enthalpy of formation: 0 kcal/mol - -BaO - BaO +2.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O - log_k 47.8036 - -delta_H -270.184 kJ/mol # Calculated enthalpy of reaction BaO -# Enthalpy of formation: -553.298 kJ/mol - -analytic -7.3273e+001 -1.7149e-002 1.6811e+004 2.8560e+001 -7.7510e+004 -# -Range: 0-300 - -BaS - BaS +1.0000 H+ = + 1.0000 Ba++ + 1.0000 HS- - log_k 16.2606 - -delta_H -92.9004 kJ/mol # Calculated enthalpy of reaction BaS -# Enthalpy of formation: -460.852 kJ/mol - -analytic -1.1819e+002 -4.3420e-002 7.4296e+003 4.9489e+001 1.1597e+002 -# -Range: 0-300 - -BaSeO3 - BaSeO3 = + 1.0000 Ba++ + 1.0000 SeO3-- - log_k -6.5615 - -delta_H -5.5658 kJ/mol # Calculated enthalpy of reaction BaSeO3 -# Enthalpy of formation: -1041.27 kJ/mol - -analytic 2.9742e+001 -1.7073e-002 -2.4532e+003 -9.2936e+000 -4.1669e+001 -# -Range: 0-200 - -BaSeO4 - BaSeO4 = + 1.0000 Ba++ + 1.0000 SeO4-- - log_k -7.4468 - -delta_H 8.9782 kJ/mol # Calculated enthalpy of reaction BaSeO4 -# Enthalpy of formation: -1145.77 kJ/mol - -analytic 2.4274e+001 -1.6289e-002 -2.8520e+003 -6.9949e+000 -4.8439e+001 -# -Range: 0-200 - -BaSiF6 - BaSiF6 +2.0000 H2O = + 1.0000 Ba++ + 1.0000 SiO2 + 4.0000 H+ + 6.0000 F- - log_k -32.1771 - -delta_H 95.2555 kJ/mol # Calculated enthalpy of reaction BaSiF6 -# Enthalpy of formation: -2951.01 kJ/mol - -analytic -6.4766e+000 -3.8410e-002 0.0000e+000 0.0000e+000 -1.2701e+006 -# -Range: 0-200 - -BaU2O7 - BaU2O7 +6.0000 H+ = + 1.0000 Ba++ + 2.0000 UO2++ + 3.0000 H2O - log_k 21.9576 - -delta_H -195.959 kJ/mol # Calculated enthalpy of reaction BaU2O7 -# Enthalpy of formation: -3237.2 kJ/mol - -analytic -1.2254e+002 -1.0941e-002 1.4452e+004 4.0125e+001 2.4546e+002 -# -Range: 0-200 - -BaUO4 - BaUO4 +4.0000 H+ = + 1.0000 Ba++ + 1.0000 UO2++ + 2.0000 H2O - log_k 18.2007 - -delta_H -134.521 kJ/mol # Calculated enthalpy of reaction BaUO4 -# Enthalpy of formation: -1993.8 kJ/mol - -analytic -6.7113e+001 -1.6340e-002 8.7592e+003 2.4571e+001 1.3670e+002 -# -Range: 0-300 - -BaZrO3 - BaZrO3 +4.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O + 1.0000 Zr(OH)2++ - log_k -94.4716 - -delta_H 505.159 kJ/mol # Calculated enthalpy of reaction BaZrO3 -# Enthalpy of formation: -578.27 kcal/mol - -analytic -5.3606e+001 -1.0096e-002 -2.4894e+004 1.8446e+001 -4.2271e+002 -# -Range: 0-200 - -Baddeleyite - ZrO2 +2.0000 H+ = + 1.0000 Zr(OH)2++ - log_k -7.9405 - -delta_H 9.72007 kJ/mol # Calculated enthalpy of reaction Baddeleyite -# Enthalpy of formation: -1100.56 kJ/mol - -analytic -2.5188e-001 -4.6374e-003 -1.0635e+003 -1.1055e+000 -1.6595e+001 -# -Range: 0-300 - -Barite - BaSO4 = + 1.0000 Ba++ + 1.0000 SO4-- - log_k -9.9711 - -delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite -# Enthalpy of formation: -352.1 kcal/mol - -analytic -1.8747e+002 -7.5521e-002 2.0790e+003 7.7998e+001 3.2497e+001 -# -Range: 0-300 - -Barytocalcite - BaCa(CO3)2 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 Ca++ + 2.0000 HCO3- - log_k 2.7420 - -delta_H 0 # Not possible to calculate enthalpy of reaction Barytocalcite -# Enthalpy of formation: 0 kcal/mol - -Bassanite - CaSO4:0.5H2O = + 0.5000 H2O + 1.0000 Ca++ + 1.0000 SO4-- - log_k -3.6615 - -delta_H -18.711 kJ/mol # Calculated enthalpy of reaction Bassanite -# Enthalpy of formation: -1576.89 kJ/mol - -analytic -2.2010e+002 -8.0230e-002 5.5092e+003 8.9651e+001 8.6031e+001 -# -Range: 0-300 - -Bassetite - Fe(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Fe++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -17.7240 - -delta_H -114.841 kJ/mol # Calculated enthalpy of reaction Bassetite -# Enthalpy of formation: -1099.33 kcal/mol - -analytic -5.7788e+001 -4.5400e-002 4.0119e+003 1.6216e+001 6.8147e+001 -# -Range: 0-200 - -Be - Be +2.0000 H+ +0.5000 O2 = + 1.0000 Be++ + 1.0000 H2O - log_k 104.2077 - -delta_H -662.608 kJ/mol # Calculated enthalpy of reaction Be -# Enthalpy of formation: 0 kJ/mol - -analytic -9.3960e+001 -2.4749e-002 3.6714e+004 3.3295e+001 5.7291e+002 -# -Range: 0-300 - -Be13U - Be13U +30.0000 H+ +7.5000 O2 = + 1.0000 U++++ + 13.0000 Be++ + 15.0000 H2O - log_k 1504.5350 - -delta_H -9601.04 kJ/mol # Calculated enthalpy of reaction Be13U -# Enthalpy of formation: -163.6 kJ/mol - -analytic -1.2388e+003 -3.2848e-001 5.2816e+005 4.3222e+002 8.2419e+003 -# -Range: 0-300 - -Beidellite-Ca - Ca.165Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Ca++ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.5914 - -delta_H -162.403 kJ/mol # Calculated enthalpy of reaction Beidellite-Ca -# Enthalpy of formation: -1370.66 kcal/mol - -analytic 2.3887e+001 4.4178e-003 1.5296e+004 -2.2343e+001 -1.4025e+006 -# -Range: 0-300 - -Beidellite-Cs - Cs.33Si3.67Al2.33O10(OH)2 +7.3200 H+ = + 0.3300 Cs+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.1541 - -delta_H -149.851 kJ/mol # Calculated enthalpy of reaction Beidellite-Cs -# Enthalpy of formation: -1372.59 kcal/mol - -analytic 2.1244e+001 2.1705e-003 1.4504e+004 -2.0250e+001 -1.3712e+006 -# -Range: 0-300 - -Beidellite-H - H.33Al2.33Si3.67O10(OH)2 +6.9900 H+ = + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 4.6335 - -delta_H -154.65 kJ/mol # Calculated enthalpy of reaction Beidellite-H -# Enthalpy of formation: -1351.1 kcal/mol - -analytic 5.4070e+000 3.4064e-003 1.6284e+004 -1.6028e+001 -1.5014e+006 -# -Range: 0-300 - -Beidellite-K - K.33Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 K+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.3088 - -delta_H -150.834 kJ/mol # Calculated enthalpy of reaction Beidellite-K -# Enthalpy of formation: -1371.9 kcal/mol - -analytic 1.0792e+001 3.4419e-003 1.5760e+004 -1.7333e+001 -1.4779e+006 -# -Range: 0-300 - -Beidellite-Mg - Mg.165Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Mg++ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.5537 - -delta_H -165.455 kJ/mol # Calculated enthalpy of reaction Beidellite-Mg -# Enthalpy of formation: -1366.89 kcal/mol - -analytic 1.3375e+001 3.0420e-003 1.5947e+004 -1.8728e+001 -1.4242e+006 -# -Range: 0-300 - -Beidellite-Na - Na.33Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Na+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.6473 - -delta_H -155.846 kJ/mol # Calculated enthalpy of reaction Beidellite-Na -# Enthalpy of formation: -1369.76 kcal/mol - -analytic 1.1504e+001 3.9871e-003 1.5818e+004 -1.7762e+001 -1.4485e+006 -# -Range: 0-300 - -Berlinite - AlPO4 +1.0000 H+ = + 1.0000 Al+++ + 1.0000 HPO4-- - log_k -7.2087 - -delta_H -96.6313 kJ/mol # Calculated enthalpy of reaction Berlinite -# Enthalpy of formation: -1733.85 kJ/mol - -analytic -2.8134e+002 -9.9933e-002 1.0308e+004 1.0883e+002 1.6094e+002 -# -Range: 0-300 - -Berndtite - SnS2 = + 1.0000 S2-- + 1.0000 Sn++ - log_k -34.5393 - -delta_H 0 # Not possible to calculate enthalpy of reaction Berndtite -# Enthalpy of formation: -36.7 kcal/mol - -analytic -2.0311e+002 -7.6462e-002 -4.9879e+003 8.4082e+001 -7.7772e+001 -# -Range: 0-300 - -Bieberite - CoSO4:7H2O = + 1.0000 Co++ + 1.0000 SO4-- + 7.0000 H2O - log_k -2.5051 - -delta_H 11.3885 kJ/mol # Calculated enthalpy of reaction Bieberite -# Enthalpy of formation: -2980.02 kJ/mol - -analytic -2.6405e+002 -7.2497e-002 6.6673e+003 1.0538e+002 1.0411e+002 -# -Range: 0-300 - -Birnessite - Mn8O14:5H2O +4.0000 H+ = + 3.0000 MnO4-- + 5.0000 Mn++ + 7.0000 H2O - log_k -85.5463 - -delta_H 0 # Not possible to calculate enthalpy of reaction Birnessite -# Enthalpy of formation: 0 kcal/mol - -Bischofite - MgCl2:6H2O = + 1.0000 Mg++ + 2.0000 Cl- + 6.0000 H2O - log_k 4.3923 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bischofite -# Enthalpy of formation: 0 kcal/mol - -Bixbyite - Mn2O3 +6.0000 H+ = + 2.0000 Mn+++ + 3.0000 H2O - log_k -0.9655 - -delta_H -190.545 kJ/mol # Calculated enthalpy of reaction Bixbyite -# Enthalpy of formation: -958.971 kJ/mol - -analytic -1.1600e+002 -2.8056e-003 1.3418e+004 2.8639e+001 2.0941e+002 -# -Range: 0-300 - -Bloedite - Na2Mg(SO4)2:4H2O = + 1.0000 Mg++ + 2.0000 Na+ + 2.0000 SO4-- + 4.0000 H2O - log_k -2.4777 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite -# Enthalpy of formation: 0 kcal/mol - -Boehmite - AlO2H +3.0000 H+ = + 1.0000 Al+++ + 2.0000 H2O - log_k 7.5642 - -delta_H -113.282 kJ/mol # Calculated enthalpy of reaction Boehmite -# Enthalpy of formation: -238.24 kcal/mol - -analytic -1.2196e+002 -3.1138e-002 8.8643e+003 4.4075e+001 1.3835e+002 -# -Range: 0-300 - -Boltwoodite - K(H3O)(UO2)SiO4 +3.0000 H+ = + 1.0000 K+ + 1.0000 SiO2 + 1.0000 UO2++ + 3.0000 H2O - log_k 14.8857 - -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite -# Enthalpy of formation: 0 kcal/mol - -Boltwoodite-Na - Na.7K.3(H3O)(UO2)SiO4:H2O +3.0000 H+ = + 0.3000 K+ + 0.7000 Na+ + 1.0000 SiO2 + 1.0000 UO2++ + 4.0000 H2O - log_k 14.5834 - -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite-Na -# Enthalpy of formation: 0 kcal/mol - -Borax - Na2(B4O5(OH)4):8H2O +2.0000 H+ = + 2.0000 Na+ + 4.0000 B(OH)3 + 5.0000 H2O - log_k 12.0395 - -delta_H 80.5145 kJ/mol # Calculated enthalpy of reaction Borax -# Enthalpy of formation: -6288.44 kJ/mol - -analytic 7.8374e+001 1.9328e-002 -5.3279e+003 -2.1914e+001 -8.3160e+001 -# -Range: 0-300 - -Boric_acid - B(OH)3 = + 1.0000 B(OH)3 - log_k -0.1583 - -delta_H 20.2651 kJ/mol # Calculated enthalpy of reaction Boric_acid -# Enthalpy of formation: -1094.8 kJ/mol - -analytic 3.9122e+001 6.4058e-003 -2.2525e+003 -1.3592e+001 -3.5160e+001 -# -Range: 0-300 - -Bornite - Cu5FeS4 +4.0000 H+ = + 1.0000 Cu++ + 1.0000 Fe++ + 4.0000 Cu+ + 4.0000 HS- - log_k -102.4369 - -delta_H 530.113 kJ/mol # Calculated enthalpy of reaction Bornite -# Enthalpy of formation: -79.922 kcal/mol - -analytic -7.0495e+002 -2.0082e-001 -9.1376e+003 2.8004e+002 -1.4238e+002 -# -Range: 0-300 - -Brezinaite - Cr3S4 +4.0000 H+ = + 1.0000 Cr++ + 2.0000 Cr+++ + 4.0000 HS- - log_k 2.7883 - -delta_H -216.731 kJ/mol # Calculated enthalpy of reaction Brezinaite -# Enthalpy of formation: -111.9 kcal/mol - -analytic -7.0528e+001 -3.6568e-002 1.0598e+004 1.9665e+001 1.8000e+002 -# -Range: 0-200 - -Brochantite - Cu4(SO4)(OH)6 +6.0000 H+ = + 1.0000 SO4-- + 4.0000 Cu++ + 6.0000 H2O - log_k 15.4363 - -delta_H -163.158 kJ/mol # Calculated enthalpy of reaction Brochantite -# Enthalpy of formation: -2198.72 kJ/mol - -analytic -2.3609e+002 -3.9046e-002 1.5970e+004 8.4701e+001 2.7127e+002 -# -Range: 0-200 - -Bromellite - BeO +2.0000 H+ = + 1.0000 Be++ + 1.0000 H2O - log_k 1.1309 - -delta_H -59.2743 kJ/mol # Calculated enthalpy of reaction Bromellite -# Enthalpy of formation: -609.4 kJ/mol - -analytic 1.4790e+002 -4.6004e-001 -3.2577e+004 4.0273e+001 -5.0837e+002 -# -Range: 0-300 - -Brucite - Mg(OH)2 +2.0000 H+ = + 1.0000 Mg++ + 2.0000 H2O - log_k 16.2980 - -delta_H -111.34 kJ/mol # Calculated enthalpy of reaction Brucite -# Enthalpy of formation: -221.39 kcal/mol - -analytic -1.0280e+002 -1.9759e-002 9.0180e+003 3.8282e+001 1.4075e+002 -# -Range: 0-300 - -Brushite - CaHPO4:2H2O = + 1.0000 Ca++ + 1.0000 HPO4-- + 2.0000 H2O - log_k 6.5500 - -delta_H 0 # Not possible to calculate enthalpy of reaction Brushite -# Enthalpy of formation: 0 kcal/mol - -Bunsenite - NiO +2.0000 H+ = + 1.0000 H2O + 1.0000 Ni++ - log_k 12.4719 - -delta_H -100.069 kJ/mol # Calculated enthalpy of reaction Bunsenite -# Enthalpy of formation: -57.3 kcal/mol - -analytic -8.1664e+001 -1.9796e-002 7.4064e+003 3.0385e+001 1.1559e+002 -# -Range: 0-300 - -Burkeite - Na6CO3(SO4)2 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 SO4-- + 6.0000 Na+ - log_k 9.4866 - -delta_H 0 # Not possible to calculate enthalpy of reaction Burkeite -# Enthalpy of formation: 0 kcal/mol - -C - C +1.0000 H2O +1.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- - log_k 64.1735 - -delta_H -391.961 kJ/mol # Calculated enthalpy of reaction C -# Enthalpy of formation: 0 kcal/mol - -analytic -3.5556e+001 -3.3691e-002 1.9774e+004 1.7548e+001 3.0856e+002 -# -Range: 0-300 - -Ca - Ca +2.0000 H+ +0.5000 O2 = + 1.0000 Ca++ + 1.0000 H2O - log_k 139.8465 - -delta_H -822.855 kJ/mol # Calculated enthalpy of reaction Ca -# Enthalpy of formation: 0 kJ/mol - -analytic -1.1328e+002 -2.6554e-002 4.7638e+004 4.1989e+001 -2.3545e+005 -# -Range: 0-300 - -Ca-Al_Pyroxene - CaAl2SiO6 +8.0000 H+ = + 1.0000 Ca++ + 1.0000 SiO2 + 2.0000 Al+++ + 4.0000 H2O - log_k 35.9759 - -delta_H -361.548 kJ/mol # Calculated enthalpy of reaction Ca-Al_Pyroxene -# Enthalpy of formation: -783.793 kcal/mol - -analytic -1.4664e+002 -5.0409e-002 2.1045e+004 5.1318e+001 3.2843e+002 -# -Range: 0-300 - -Ca2Al2O5:8H2O - Ca2Al2O5:8H2O +10.0000 H+ = + 2.0000 Al+++ + 2.0000 Ca++ + 13.0000 H2O - log_k 59.5687 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Al2O5:8H2O -# Enthalpy of formation: 0 kcal/mol - -Ca2Cl2(OH)2:H2O - Ca2Cl2(OH)2:H2O +2.0000 H+ = + 2.0000 Ca++ + 2.0000 Cl- + 3.0000 H2O - log_k 26.2901 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Cl2(OH)2:H2O -# Enthalpy of formation: 0 kcal/mol - -Ca2V2O7 - Ca2V2O7 +1.0000 H2O = + 2.0000 Ca++ + 2.0000 H+ + 2.0000 VO4--- - log_k -39.7129 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2V2O7 -# Enthalpy of formation: -3083.46 kJ/mol - -Ca3(AsO4)2 - Ca3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Ca++ - log_k 17.8160 - -delta_H -149.956 kJ/mol # Calculated enthalpy of reaction Ca3(AsO4)2 -# Enthalpy of formation: -3298.41 kJ/mol - -analytic -1.4011e+002 -4.2945e-002 1.0981e+004 5.4107e+001 1.8652e+002 -# -Range: 0-200 - -Ca3Al2O6 - Ca3Al2O6 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 6.0000 H2O - log_k 113.0460 - -delta_H -833.336 kJ/mol # Calculated enthalpy of reaction Ca3Al2O6 -# Enthalpy of formation: -857.492 kcal/mol - -analytic -2.7163e+002 -5.2897e-002 5.0815e+004 9.2946e+001 8.6300e+002 -# -Range: 0-200 - -Ca3V2O8 - Ca3V2O8 = + 2.0000 VO4--- + 3.0000 Ca++ - log_k -18.3234 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca3V2O8 -# Enthalpy of formation: -3778.1 kJ/mol - -Ca4Al2Fe2O10 - Ca4Al2Fe2O10 +20.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe+++ + 4.0000 Ca++ + 10.0000 H2O - log_k 140.5050 - -delta_H -1139.86 kJ/mol # Calculated enthalpy of reaction Ca4Al2Fe2O10 -# Enthalpy of formation: -1211 kcal/mol - -analytic -4.1808e+002 -8.2787e-002 7.0288e+004 1.4043e+002 1.1937e+003 -# -Range: 0-200 - -Ca4Al2O7:13H2O - Ca4Al2O7:13H2O +14.0000 H+ = + 2.0000 Al+++ + 4.0000 Ca++ + 20.0000 H2O - log_k 107.2537 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:13H2O -# Enthalpy of formation: 0 kcal/mol - -Ca4Al2O7:19H2O - Ca4Al2O7:19H2O +14.0000 H+ = + 2.0000 Al+++ + 4.0000 Ca++ + 26.0000 H2O - log_k 103.6812 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:19H2O -# Enthalpy of formation: 0 kcal/mol - -Ca4Cl2(OH)6:13H2O - Ca4Cl2(OH)6:13H2O +6.0000 H+ = + 2.0000 Cl- + 4.0000 Ca++ + 19.0000 H2O - log_k 68.3283 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Cl2(OH)6:13H2O -# Enthalpy of formation: 0 kcal/mol - -CaAl2O4 - CaAl2O4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 H2O - log_k 46.9541 - -delta_H -436.952 kJ/mol # Calculated enthalpy of reaction CaAl2O4 -# Enthalpy of formation: -555.996 kcal/mol - -analytic -3.0378e+002 -7.9356e-002 3.0096e+004 1.1049e+002 4.6971e+002 -# -Range: 0-300 - -CaAl2O4:10H2O - CaAl2O4:10H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 14.0000 H2O - log_k 37.9946 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaAl2O4:10H2O -# Enthalpy of formation: 0 kcal/mol - -CaAl4O7 - CaAl4O7 +14.0000 H+ = + 1.0000 Ca++ + 4.0000 Al+++ + 7.0000 H2O - log_k 68.6138 - -delta_H -718.464 kJ/mol # Calculated enthalpy of reaction CaAl4O7 -# Enthalpy of formation: -951.026 kcal/mol - -analytic -3.1044e+002 -6.7078e-002 4.4566e+004 1.0085e+002 7.5689e+002 -# -Range: 0-200 - -CaSO4:0.5H2O(beta) - CaSO4:0.5H2O = + 0.5000 H2O + 1.0000 Ca++ + 1.0000 SO4-- - log_k -3.4934 - -delta_H -20.804 kJ/mol # Calculated enthalpy of reaction CaSO4:0.5H2O(beta) -# Enthalpy of formation: -1574.8 kJ/mol - -analytic -2.3054e+002 -8.2832e-002 5.9132e+003 9.3705e+001 9.2338e+001 -# -Range: 0-300 - -CaSeO3:2H2O - CaSeO3:2H2O = + 1.0000 Ca++ + 1.0000 SeO3-- + 2.0000 H2O - log_k -4.6213 - -delta_H -14.1963 kJ/mol # Calculated enthalpy of reaction CaSeO3:2H2O -# Enthalpy of formation: -384.741 kcal/mol - -analytic -4.1771e+001 -2.0735e-002 9.7870e+002 1.6180e+001 1.6634e+001 -# -Range: 0-200 - -CaSeO4 - CaSeO4 = + 1.0000 Ca++ + 1.0000 SeO4-- - log_k -3.0900 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaSeO4 -# Enthalpy of formation: 0 kcal/mol - -CaUO4 - CaUO4 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 UO2++ + 2.0000 H2O - log_k 15.9420 - -delta_H -131.46 kJ/mol # Calculated enthalpy of reaction CaUO4 -# Enthalpy of formation: -2002.3 kJ/mol - -analytic -8.7902e+001 -1.9810e-002 9.2354e+003 3.1832e+001 1.4414e+002 -# -Range: 0-300 - -CaV2O6 - CaV2O6 +2.0000 H2O = + 1.0000 Ca++ + 2.0000 VO4--- + 4.0000 H+ - log_k -51.3617 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaV2O6 -# Enthalpy of formation: -2329.34 kJ/mol - -CaZrO3 - CaZrO3 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 Zr(OH)2++ - log_k -148.5015 - -delta_H 801.282 kJ/mol # Calculated enthalpy of reaction CaZrO3 -# Enthalpy of formation: -650.345 kcal/mol - -analytic -7.7908e+001 -1.4388e-002 -3.9635e+004 2.6932e+001 -6.7303e+002 -# -Range: 0-200 - -Cadmoselite - CdSe = + 1.0000 Cd++ + 1.0000 Se-- - log_k -33.8428 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cadmoselite -# Enthalpy of formation: -34.6 kcal/mol - -analytic -5.3432e+001 -1.3973e-002 -5.8989e+003 1.7591e+001 -9.2031e+001 -# -Range: 0-300 - -Calcite - CaCO3 +1.0000 H+ = + 1.0000 Ca++ + 1.0000 HCO3- - log_k 1.8487 - -delta_H -25.7149 kJ/mol # Calculated enthalpy of reaction Calcite -# Enthalpy of formation: -288.552 kcal/mol - -analytic -1.4978e+002 -4.8370e-002 4.8974e+003 6.0458e+001 7.6464e+001 -# -Range: 0-300 - -Calomel - Hg2Cl2 = + 1.0000 Hg2++ + 2.0000 Cl- - log_k -17.8241 - -delta_H 98.0267 kJ/mol # Calculated enthalpy of reaction Calomel -# Enthalpy of formation: -265.37 kJ/mol - -analytic -4.8868e+001 -2.5540e-002 -2.8439e+003 1.9475e+001 -4.8277e+001 -# -Range: 0-200 - -Carnallite - KMgCl3:6H2O = + 1.0000 K+ + 1.0000 Mg++ + 3.0000 Cl- + 6.0000 H2O - log_k 4.2721 - -delta_H 0 # Not possible to calculate enthalpy of reaction Carnallite -# Enthalpy of formation: 0 kcal/mol - -Carnotite - K2(UO2)2(VO4)2 = + 2.0000 K+ + 2.0000 UO2++ + 2.0000 VO4--- - log_k -56.3811 - -delta_H 0 # Not possible to calculate enthalpy of reaction Carnotite -# Enthalpy of formation: -1173.9 kJ/mol - -Cassiterite - SnO2 +2.0000 H+ = + 0.5000 O2 + 1.0000 H2O + 1.0000 Sn++ - log_k -46.1203 - -delta_H 280.048 kJ/mol # Calculated enthalpy of reaction Cassiterite -# Enthalpy of formation: -138.8 kcal/mol - -analytic -8.9264e+001 -1.5743e-002 -1.1497e+004 3.4917e+001 -1.7937e+002 -# -Range: 0-300 - -Cattierite - CoS2 = + 1.0000 Co++ + 1.0000 S2-- - log_k -29.9067 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cattierite -# Enthalpy of formation: -36.589 kcal/mol - -analytic -2.1970e+002 -7.8585e-002 -1.9592e+003 8.8809e+001 -3.0507e+001 -# -Range: 0-300 - -Cd - Cd +2.0000 H+ +0.5000 O2 = + 1.0000 Cd++ + 1.0000 H2O - log_k 56.6062 - -delta_H -355.669 kJ/mol # Calculated enthalpy of reaction Cd -# Enthalpy of formation: 0 kJ/mol - -analytic -7.2027e+001 -2.0250e-002 2.0474e+004 2.6814e+001 -3.2348e+004 -# -Range: 0-300 - -Cd(BO2)2 - Cd(BO2)2 +2.0000 H+ +2.0000 H2O = + 1.0000 Cd++ + 2.0000 B(OH)3 - log_k 9.8299 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(BO2)2 -# Enthalpy of formation: 0 kcal/mol - -Cd(IO3)2 - Cd(IO3)2 = + 1.0000 Cd++ + 2.0000 IO3- - log_k -7.5848 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(IO3)2 -# Enthalpy of formation: 0 kcal/mol - -Cd(OH)2 - Cd(OH)2 +2.0000 H+ = + 1.0000 Cd++ + 2.0000 H2O - log_k 13.7382 - -delta_H -87.0244 kJ/mol # Calculated enthalpy of reaction Cd(OH)2 -# Enthalpy of formation: -560.55 kJ/mol - -analytic -7.7001e+001 -6.9251e-003 7.4684e+003 2.7380e+001 1.2685e+002 -# -Range: 0-200 - -Cd(OH)Cl - Cd(OH)Cl +1.0000 H+ = + 1.0000 Cd++ + 1.0000 Cl- + 1.0000 H2O - log_k 3.5435 - -delta_H -30.3888 kJ/mol # Calculated enthalpy of reaction Cd(OH)Cl -# Enthalpy of formation: -498.427 kJ/mol - -analytic -4.5477e+001 -1.5809e-002 2.5333e+003 1.8279e+001 4.3035e+001 -# -Range: 0-200 - -Cd3(AsO4)2 - Cd3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Cd++ - log_k 4.0625 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(AsO4)2 -# Enthalpy of formation: 0 kcal/mol - -Cd3(PO4)2 - Cd3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cd++ - log_k -7.8943 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(PO4)2 -# Enthalpy of formation: 0 kcal/mol - -Cd3(SO4)(OH)4 - Cd3(SO4)(OH)4 +4.0000 H+ = + 1.0000 SO4-- + 3.0000 Cd++ + 4.0000 H2O - log_k 22.5735 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)(OH)4 -# Enthalpy of formation: 0 kcal/mol - -Cd3(SO4)2(OH)2 - Cd3(SO4)2(OH)2 +2.0000 H+ = + 2.0000 H2O + 2.0000 SO4-- + 3.0000 Cd++ - log_k 6.7180 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)2(OH)2 -# Enthalpy of formation: 0 kcal/mol - -CdBr2 - CdBr2 = + 1.0000 Cd++ + 2.0000 Br- - log_k -1.8470 - -delta_H -2.67548 kJ/mol # Calculated enthalpy of reaction CdBr2 -# Enthalpy of formation: -316.229 kJ/mol - -analytic 1.3056e+000 -2.0628e-002 -1.3318e+003 3.0126e+000 -2.2616e+001 -# -Range: 0-200 - -CdBr2:4H2O - CdBr2:4H2O = + 1.0000 Cd++ + 2.0000 Br- + 4.0000 H2O - log_k -2.3378 - -delta_H 30.2812 kJ/mol # Calculated enthalpy of reaction CdBr2:4H2O -# Enthalpy of formation: -1492.54 kJ/mol - -analytic -1.0038e+002 -2.1045e-002 1.6896e+003 3.9864e+001 2.8726e+001 -# -Range: 0-200 - -CdCl2 - CdCl2 = + 1.0000 Cd++ + 2.0000 Cl- - log_k -0.6474 - -delta_H -18.5391 kJ/mol # Calculated enthalpy of reaction CdCl2 -# Enthalpy of formation: -391.518 kJ/mol - -analytic -1.5230e+001 -2.4574e-002 -8.1017e+001 8.9599e+000 -1.3702e+000 -# -Range: 0-200 - -CdCl2(NH3)2 - CdCl2(NH3)2 = + 1.0000 Cd++ + 2.0000 Cl- + 2.0000 NH3 - log_k -8.7864 - -delta_H 63.534 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)2 -# Enthalpy of formation: -636.265 kJ/mol - -analytic -5.5283e+001 -2.1791e-002 -2.1150e+003 2.4279e+001 -3.5896e+001 -# -Range: 0-200 - -CdCl2(NH3)4 - CdCl2(NH3)4 = + 1.0000 Cd++ + 2.0000 Cl- + 4.0000 NH3 - log_k -6.8044 - -delta_H 81.7931 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)4 -# Enthalpy of formation: -817.198 kJ/mol - -analytic -9.5682e+001 -1.8853e-002 -8.3875e+002 3.9322e+001 -1.4210e+001 -# -Range: 0-200 - -CdCl2(NH3)6 - CdCl2(NH3)6 = + 1.0000 Cd++ + 2.0000 Cl- + 6.0000 NH3 - log_k -4.7524 - -delta_H 97.2971 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)6 -# Enthalpy of formation: -995.376 kJ/mol - -analytic -1.3662e+002 -1.5941e-002 5.8572e+002 5.4415e+001 9.9937e+000 -# -Range: 0-200 - -CdCl2:H2O - CdCl2:H2O = + 1.0000 Cd++ + 1.0000 H2O + 2.0000 Cl- - log_k -1.6747 - -delta_H -7.44943 kJ/mol # Calculated enthalpy of reaction CdCl2:H2O -# Enthalpy of formation: -688.446 kJ/mol - -analytic -4.1097e+001 -2.4685e-002 5.2687e+002 1.8188e+001 8.9615e+000 -# -Range: 0-200 - -CdCr2O4 - CdCr2O4 +8.0000 H+ = + 1.0000 Cd++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 14.9969 - -delta_H -255.676 kJ/mol # Calculated enthalpy of reaction CdCr2O4 -# Enthalpy of formation: -344.3 kcal/mol - -analytic -1.7446e+002 -9.1086e-003 1.9223e+004 5.1605e+001 3.2650e+002 -# -Range: 0-200 - -CdF2 - CdF2 = + 1.0000 Cd++ + 2.0000 F- - log_k -1.1464 - -delta_H -46.064 kJ/mol # Calculated enthalpy of reaction CdF2 -# Enthalpy of formation: -700.529 kJ/mol - -analytic -3.0654e+001 -2.4790e-002 1.7893e+003 1.2482e+001 3.0395e+001 -# -Range: 0-200 - -CdI2 - CdI2 = + 1.0000 Cd++ + 2.0000 I- - log_k -3.4825 - -delta_H 13.7164 kJ/mol # Calculated enthalpy of reaction CdI2 -# Enthalpy of formation: -203.419 kJ/mol - -analytic -1.5446e+001 -2.4758e-002 -1.6422e+003 1.0041e+001 -2.7882e+001 -# -Range: 0-200 - -CdS - CdS +1.0000 H+ = + 1.0000 Cd++ + 1.0000 HS- - log_k -15.9095 - -delta_H 70.1448 kJ/mol # Calculated enthalpy of reaction CdS -# Enthalpy of formation: -162.151 kJ/mol - -analytic -2.9492e+001 -1.5181e-002 -3.4695e+003 1.2019e+001 -5.8907e+001 -# -Range: 0-200 - -CdSO4 - CdSO4 = + 1.0000 Cd++ + 1.0000 SO4-- - log_k -0.1061 - -delta_H -52.1304 kJ/mol # Calculated enthalpy of reaction CdSO4 -# Enthalpy of formation: -933.369 kJ/mol - -analytic 7.7104e+000 -1.7161e-002 8.7067e+002 -2.2763e+000 1.4783e+001 -# -Range: 0-200 - -CdSO4:2.667H2O - CdSO4:2.667H2O = + 1.0000 Cd++ + 1.0000 SO4-- + 2.6670 H2O - log_k -1.8015 - -delta_H -18.5302 kJ/mol # Calculated enthalpy of reaction CdSO4:2.667H2O -# Enthalpy of formation: -1729.3 kJ/mol - -analytic -5.0331e+001 -1.4983e-002 2.0271e+003 1.8665e+001 3.4440e+001 -# -Range: 0-200 - -CdSO4:H2O - CdSO4:H2O = + 1.0000 Cd++ + 1.0000 H2O + 1.0000 SO4-- - log_k -1.6529 - -delta_H -31.6537 kJ/mol # Calculated enthalpy of reaction CdSO4:H2O -# Enthalpy of formation: -1239.68 kJ/mol - -analytic -1.7142e+001 -1.7295e-002 9.9184e+002 6.9943e+000 1.6849e+001 -# -Range: 0-200 - -CdSeO3 - CdSeO3 = + 1.0000 Cd++ + 1.0000 SeO3-- - log_k -8.8086 - -delta_H -9.92156 kJ/mol # Calculated enthalpy of reaction CdSeO3 -# Enthalpy of formation: -575.169 kJ/mol - -analytic 7.1762e+000 -1.8892e-002 -1.4680e+003 -2.1984e+000 -2.4932e+001 -# -Range: 0-200 - -CdSeO4 - CdSeO4 = + 1.0000 Cd++ + 1.0000 SeO4-- - log_k -2.2132 - -delta_H -41.9836 kJ/mol # Calculated enthalpy of reaction CdSeO4 -# Enthalpy of formation: -633.063 kJ/mol - -analytic -4.9901e+000 -1.9755e-002 7.3162e+002 2.5063e+000 1.2426e+001 -# -Range: 0-200 - -CdSiO3 - CdSiO3 +2.0000 H+ = + 1.0000 Cd++ + 1.0000 H2O + 1.0000 SiO2 - log_k 7.5136 - -delta_H -50.3427 kJ/mol # Calculated enthalpy of reaction CdSiO3 -# Enthalpy of formation: -1189.09 kJ/mol - -analytic 2.6419e+002 6.2488e-002 -5.3518e+003 -1.0401e+002 -9.0973e+001 -# -Range: 0-200 - -Ce - Ce +3.0000 H+ +0.7500 O2 = + 1.0000 Ce+++ + 1.5000 H2O - log_k 182.9563 - -delta_H -1120.06 kJ/mol # Calculated enthalpy of reaction Ce -# Enthalpy of formation: 0 kJ/mol - -analytic -5.1017e+001 -2.6149e-002 5.8511e+004 1.8382e+001 9.1302e+002 -# -Range: 0-300 - -Ce(OH)3 - Ce(OH)3 +3.0000 H+ = + 1.0000 Ce+++ + 3.0000 H2O - log_k 19.8852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Ce(OH)3(am) - Ce(OH)3 +3.0000 H+ = + 1.0000 Ce+++ + 3.0000 H2O - log_k 21.1852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Ce2(CO3)3:8H2O - Ce2(CO3)3:8H2O +3.0000 H+ = + 2.0000 Ce+++ + 3.0000 HCO3- + 8.0000 H2O - log_k -4.1136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(CO3)3:8H2O -# Enthalpy of formation: 0 kcal/mol - -Ce2O3 - Ce2O3 +6.0000 H+ = + 2.0000 Ce+++ + 3.0000 H2O - log_k 62.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2O3 -# Enthalpy of formation: 0 kcal/mol - -Ce3(PO4)4 - Ce3(PO4)4 +4.0000 H+ = + 3.0000 Ce++++ + 4.0000 HPO4-- - log_k -40.8127 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(PO4)4 -# Enthalpy of formation: 0 kcal/mol - -CeF3:.5H2O - CeF3:.5H2O = + 0.5000 H2O + 1.0000 Ce+++ + 3.0000 F- - log_k -18.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -CeO2 - CeO2 +4.0000 H+ = + 1.0000 Ce++++ + 2.0000 H2O - log_k -8.1600 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeO2 -# Enthalpy of formation: 0 kcal/mol - -CePO4:10H2O - CePO4:10H2O +1.0000 H+ = + 1.0000 Ce+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -12.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Celadonite - KMgAlSi4O10(OH)2 +6.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 1.0000 Mg++ + 4.0000 H2O + 4.0000 SiO2 - log_k 7.4575 - -delta_H -74.3957 kJ/mol # Calculated enthalpy of reaction Celadonite -# Enthalpy of formation: -1394.9 kcal/mol - -analytic -3.3097e+001 1.7989e-002 1.8919e+004 -2.1219e+000 -2.0588e+006 -# -Range: 0-300 - -Celestite - SrSO4 = + 1.0000 SO4-- + 1.0000 Sr++ - log_k -5.6771 - -delta_H -7.40568 kJ/mol # Calculated enthalpy of reaction Celestite -# Enthalpy of formation: -347.3 kcal/mol - -analytic -1.9063e+002 -7.4552e-002 3.9050e+003 7.8416e+001 6.0991e+001 -# -Range: 0-300 - -Cerussite - PbCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Pb++ - log_k -3.2091 - -delta_H 13.8992 kJ/mol # Calculated enthalpy of reaction Cerussite -# Enthalpy of formation: -168 kcal/mol - -analytic -1.2887e+002 -4.4372e-002 2.2336e+003 5.3091e+001 3.4891e+001 -# -Range: 0-300 - -Chalcanthite - CuSO4:5H2O = + 1.0000 Cu++ + 1.0000 SO4-- + 5.0000 H2O - log_k -2.6215 - -delta_H 6.57556 kJ/mol # Calculated enthalpy of reaction Chalcanthite -# Enthalpy of formation: -2279.68 kJ/mol - -analytic -1.1262e+002 -1.5544e-002 3.6176e+003 4.1420e+001 6.1471e+001 -# -Range: 0-200 - -Chalcedony - SiO2 = + 1.0000 SiO2 - log_k -3.7281 - -delta_H 31.4093 kJ/mol # Calculated enthalpy of reaction Chalcedony -# Enthalpy of formation: -217.282 kcal/mol - -analytic -9.0068e+000 9.3241e-003 4.0535e+003 -1.0830e+000 -7.5077e+005 -# -Range: 0-300 - -Chalcocite - Cu2S +1.0000 H+ = + 1.0000 HS- + 2.0000 Cu+ - log_k -34.7342 - -delta_H 206.748 kJ/mol # Calculated enthalpy of reaction Chalcocite -# Enthalpy of formation: -19 kcal/mol - -analytic -1.3703e+002 -4.0727e-002 -7.1694e+003 5.5963e+001 -1.1183e+002 -# -Range: 0-300 - -Chalcocyanite - CuSO4 = + 1.0000 Cu++ + 1.0000 SO4-- - log_k 2.9239 - -delta_H -72.5128 kJ/mol # Calculated enthalpy of reaction Chalcocyanite -# Enthalpy of formation: -771.4 kJ/mol - -analytic 5.8173e+000 -1.6933e-002 2.0097e+003 -1.8583e+000 3.4126e+001 -# -Range: 0-200 - -Chalcopyrite - CuFeS2 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 Fe++ + 2.0000 HS- - log_k -32.5638 - -delta_H 127.206 kJ/mol # Calculated enthalpy of reaction Chalcopyrite -# Enthalpy of formation: -44.453 kcal/mol - -analytic -3.1575e+002 -9.8947e-002 8.3400e+002 1.2522e+002 1.3106e+001 -# -Range: 0-300 - -Chamosite-7A - Fe2Al2SiO5(OH)4 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 2.0000 Fe++ + 7.0000 H2O - log_k 32.8416 - -delta_H -364.213 kJ/mol # Calculated enthalpy of reaction Chamosite-7A -# Enthalpy of formation: -902.407 kcal/mol - -analytic -2.5581e+002 -7.0890e-002 2.4619e+004 9.1789e+001 3.8424e+002 -# -Range: 0-300 - -Chlorargyrite - AgCl = + 1.0000 Ag+ + 1.0000 Cl- - log_k -9.7453 - -delta_H 65.739 kJ/mol # Calculated enthalpy of reaction Chlorargyrite -# Enthalpy of formation: -30.37 kcal/mol - -analytic -9.6834e+001 -3.4624e-002 -1.1820e+003 4.0962e+001 -1.8415e+001 -# -Range: 0-300 - -Chloromagnesite - MgCl2 = + 1.0000 Mg++ + 2.0000 Cl- - log_k 21.8604 - -delta_H -158.802 kJ/mol # Calculated enthalpy of reaction Chloromagnesite -# Enthalpy of formation: -641.317 kJ/mol - -analytic -2.3640e+002 -8.2017e-002 1.3480e+004 9.5963e+001 2.1042e+002 -# -Range: 0-300 - -Chromite - FeCr2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 15.1685 - -delta_H -267.755 kJ/mol # Calculated enthalpy of reaction Chromite -# Enthalpy of formation: -1444.83 kJ/mol - -analytic -1.9060e+002 -2.5695e-002 1.9465e+004 5.9865e+001 3.0379e+002 -# -Range: 0-300 - -Chrysocolla - CuSiH4O5 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 SiO2 + 3.0000 H2O - log_k 6.2142 - -delta_H 0 # Not possible to calculate enthalpy of reaction Chrysocolla -# Enthalpy of formation: 0 kcal/mol - -Chrysotile - Mg3Si2O5(OH)4 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Mg++ + 5.0000 H2O - log_k 31.1254 - -delta_H -218.041 kJ/mol # Calculated enthalpy of reaction Chrysotile -# Enthalpy of formation: -1043.12 kcal/mol - -analytic -9.2462e+001 -1.1359e-002 1.8312e+004 2.9289e+001 -6.2342e+005 -# -Range: 0-300 - -Cinnabar - HgS +1.0000 H+ = + 1.0000 HS- + 1.0000 Hg++ - log_k -38.9666 - -delta_H 207.401 kJ/mol # Calculated enthalpy of reaction Cinnabar -# Enthalpy of formation: -12.75 kcal/mol - -analytic -1.5413e+002 -4.6846e-002 -6.9806e+003 6.1639e+001 -1.0888e+002 -# -Range: 0-300 - -Claudetite - As2O3 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO3- - log_k -19.7647 - -delta_H 82.3699 kJ/mol # Calculated enthalpy of reaction Claudetite -# Enthalpy of formation: -654.444 kJ/mol - -analytic -1.4164e+002 -6.3704e-002 -2.1679e+003 5.9856e+001 -3.3787e+001 -# -Range: 0-300 - -Clausthalite - PbSe = + 1.0000 Pb++ + 1.0000 Se-- - log_k -36.2531 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clausthalite -# Enthalpy of formation: -102.9 kJ/mol - -analytic -2.6473e+001 -1.0666e-002 -8.5540e+003 8.9226e+000 -1.3347e+002 -# -Range: 0-300 - -Clinochalcomenite - CuSeO3:2H2O = + 1.0000 Cu++ + 1.0000 SeO3-- + 2.0000 H2O - log_k -6.7873 - -delta_H -31.6645 kJ/mol # Calculated enthalpy of reaction Clinochalcomenite -# Enthalpy of formation: -235.066 kcal/mol - -analytic -4.6465e+001 -1.8071e-002 2.0307e+003 1.5455e+001 3.4499e+001 -# -Range: 0-200 - -Clinochlore-14A - Mg5Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Mg++ + 12.0000 H2O - log_k 67.2391 - -delta_H -612.379 kJ/mol # Calculated enthalpy of reaction Clinochlore-14A -# Enthalpy of formation: -2116.96 kcal/mol - -analytic -2.0441e+002 -6.2268e-002 3.5388e+004 6.9239e+001 5.5225e+002 -# -Range: 0-300 - -Clinochlore-7A - Mg5Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Mg++ + 12.0000 H2O - log_k 70.6124 - -delta_H -628.14 kJ/mol # Calculated enthalpy of reaction Clinochlore-7A -# Enthalpy of formation: -2113.2 kcal/mol - -analytic -2.1644e+002 -6.4187e-002 3.6548e+004 7.4123e+001 5.7037e+002 -# -Range: 0-300 - -Clinoptilolite -# Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45F +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 14.5330 SiO2 17.8560 H2O - Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45Fe.017Si14.5330O46.922H21.844 +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O - log_k -9.7861 - -delta_H -20.8784 kJ/mol # Calculated enthalpy of reaction Clinoptilolite -# Enthalpy of formation: -20587.8 kJ/mol - -analytic -1.3213e+000 6.4960e-002 5.0630e+004 -4.6120e+001 -7.4699e+006 -# -Range: 0-300 - -Clinoptilolite-Ca - Ca1.7335Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O - log_k -7.0095 - -delta_H -74.6745 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Ca -# Enthalpy of formation: -4919.84 kcal/mol - -analytic -4.4820e+001 5.3696e-002 5.4878e+004 -3.1459e+001 -7.5491e+006 -# -Range: 0-300 - -Clinoptilolite-Cs - Cs3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 14.5330 SiO2 + 17.8560 H2O - log_k -13.0578 - -delta_H 96.9005 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Cs -# Enthalpy of formation: -4949.65 kcal/mol - -analytic -8.4746e+000 7.1997e-002 4.9675e+004 -4.1406e+001 -8.0632e+006 -# -Range: 0-300 - -Clinoptilolite-K - K3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.5330 SiO2 + 17.8560 H2O - log_k -10.9485 - -delta_H 67.4862 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-K -# Enthalpy of formation: -4937.77 kcal/mol - -analytic 1.1697e+001 6.9480e-002 4.7718e+004 -4.7442e+001 -7.6907e+006 -# -Range: 0-300 - -Clinoptilolite-NH4 - (NH4)3.467Al3.45Fe.017Si14.533O36:10.922H2O +10.4010 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 NH3 + 14.5330 SiO2 + 17.8560 H2O - log_k -42.4791 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-NH4 -# Enthalpy of formation: 0 kcal/mol - -Clinoptilolite-Na - Na3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8560 H2O - log_k -7.1363 - -delta_H 2.32824 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Na -# Enthalpy of formation: -4912.36 kcal/mol - -analytic -3.4572e+001 6.8377e-002 5.1962e+004 -3.3426e+001 -7.5586e+006 -# -Range: 0-300 - -Clinoptilolite-Sr - Sr1.7335Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O - log_k -7.1491 - -delta_H -66.2129 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Sr -# Enthalpy of formation: -4925.1 kcal/mol - -analytic 3.2274e+001 6.7050e-002 5.0880e+004 -5.9597e+001 -7.3876e+006 -# -Range: 0-300 - -Clinoptilolite-dehy -# Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45F +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 6.9340 H2O 14.5330 SiO2 - Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 - log_k 25.8490 - -delta_H -276.592 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy -# Enthalpy of formation: -17210.2 kJ/mol - -analytic -2.0505e+002 6.0155e-002 8.2682e+004 1.5333e+001 -9.1369e+006 -# -Range: 0-300 - -Clinoptilolite-dehy-Ca - Ca1.7335Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 - log_k 28.6255 - -delta_H -329.278 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Ca -# Enthalpy of formation: -4112.83 kcal/mol - -analytic -1.2948e+002 6.5698e-002 8.0229e+004 -1.2812e+001 -8.8320e+006 -# -Range: 0-300 - -Clinoptilolite-dehy-Cs - Cs3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 6.9340 H2O + 14.5330 SiO2 - log_k 22.5771 - -delta_H -164.837 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Cs -# Enthalpy of formation: -4140.93 kcal/mol - -analytic -1.2852e+002 7.9047e-002 7.7262e+004 -1.0422e+001 -9.4504e+006 -# -Range: 0-300 - -Clinoptilolite-dehy-K - K3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 6.9340 H2O + 14.5330 SiO2 - log_k 24.6865 - -delta_H -191.289 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-K -# Enthalpy of formation: -4129.76 kcal/mol - -analytic -1.2241e+002 7.4761e-002 7.6067e+004 -1.1315e+001 -9.1389e+006 -# -Range: 0-300 - -Clinoptilolite-dehy-NH4 - (NH4)3.467Al3.45Fe.017Si14.533O36 +10.4010 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 NH3 + 6.9340 H2O + 14.5330 SiO2 - log_k -6.8441 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-dehy-NH4 -# Enthalpy of formation: 0 kcal/mol - -Clinoptilolite-dehy-Na - Na3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 6.9340 H2O + 14.5330 SiO2 - log_k 28.4987 - -delta_H -253.798 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Na -# Enthalpy of formation: -4104.98 kcal/mol - -analytic -1.4386e+002 7.6846e-002 7.8723e+004 -5.9741e+000 -8.9159e+006 -# -Range: 0-300 - -Clinoptilolite-dehy-Sr - Sr1.7335Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 - log_k 28.4859 - -delta_H -321.553 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Sr -# Enthalpy of formation: -4117.92 kcal/mol - -analytic -1.8410e+002 6.0457e-002 8.3626e+004 6.4304e+000 -9.0962e+006 -# -Range: 0-300 - -Clinoptilolite-hy-Ca -# Ca1.7335Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 18.5790 H2O - Ca1.7335Al3.45Fe.017Si14.533O36:11.645H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 18.5790 H2O - log_k -7.0108 - -delta_H -65.4496 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Ca -# Enthalpy of formation: -4971.44 kcal/mol - -analytic 8.6833e+001 7.1520e-002 4.6854e+004 -7.8023e+001 -7.0900e+006 -# -Range: 0-300 - -Clinoptilolite-hy-Cs -# Cs3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 13.1640 H2O + 14.5330 SiO2 - Cs3.467Al3.45Fe.017Si14.533O36:6.23H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 13.1640 H2O + 14.5330 SiO2 - log_k -13.0621 - -delta_H 44.6397 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Cs -# Enthalpy of formation: -4616.61 kcal/mol - -analytic -2.3362e+001 7.4922e-002 5.4544e+004 -4.1092e+001 -8.3387e+006 -# -Range: 0-300 - -Clinoptilolite-hy-K -# K3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.4330 H2O + 14.5330 SiO2 - K3.467Al3.45Fe.017Si14.533O36:7.499H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.4330 H2O + 14.5330 SiO2 - log_k -10.9523 - -delta_H 29.5879 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-K -# Enthalpy of formation: -4694.86 kcal/mol - -analytic 1.6223e+001 7.3919e-002 5.0447e+004 -5.2790e+001 -7.8484e+006 -# -Range: 0-300 - -Clinoptilolite-hy-Na -# Na3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8110 H2O - Na3.467Al3.45Fe.017Si14.533O36:10.877H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8110 H2O - log_k -7.1384 - -delta_H 1.88166 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Na -# Enthalpy of formation: -4909.18 kcal/mol - -analytic -8.4189e+000 7.2018e-002 5.0501e+004 -4.2851e+001 -7.4714e+006 -# -Range: 0-300 - -Clinoptilolite-hy-Sr -# Sr1.7335Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 20.8270 H2O - Sr1.7335Al3.45Fe.017Si14.533O36:13.893H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 20.8270 H2O - log_k -7.1498 - -delta_H -31.6858 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Sr -# Enthalpy of formation: -5136.33 kcal/mol - -analytic 1.0742e-001 5.9065e-002 4.9985e+004 -4.4648e+001 -7.3382e+006 -# -Range: 0-300 - -Clinozoisite - Ca2Al3Si3O12(OH) +13.0000 H+ = + 2.0000 Ca++ + 3.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O - log_k 43.2569 - -delta_H -457.755 kJ/mol # Calculated enthalpy of reaction Clinozoisite -# Enthalpy of formation: -1643.78 kcal/mol - -analytic -2.8690e+001 -3.7056e-002 2.2770e+004 3.7880e+000 -2.5834e+005 -# -Range: 0-300 - -Co - Co +2.0000 H+ +0.5000 O2 = + 1.0000 Co++ + 1.0000 H2O - log_k 52.5307 - -delta_H -337.929 kJ/mol # Calculated enthalpy of reaction Co -# Enthalpy of formation: 0 kJ/mol - -analytic -6.2703e+001 -2.0172e-002 1.8888e+004 2.3391e+001 2.9474e+002 -# -Range: 0-300 - -Co(NO3)2 - Co(NO3)2 = + 1.0000 Co++ + 2.0000 NO3- - log_k 8.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(NO3)2 -# Enthalpy of formation: 0 kcal/mol - -Co(OH)2 - Co(OH)2 +2.0000 H+ = + 1.0000 Co++ + 2.0000 H2O - log_k 12.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 -# Enthalpy of formation: 0 kcal/mol - -Co2SiO4 - Co2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Co++ + 2.0000 H2O - log_k 6.6808 - -delta_H -88.6924 kJ/mol # Calculated enthalpy of reaction Co2SiO4 -# Enthalpy of formation: -353.011 kcal/mol - -analytic -3.9978e+000 -3.7985e-003 5.1554e+003 -1.5033e+000 -1.6100e+005 -# -Range: 0-300 - -Co3(AsO4)2 - Co3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Co++ - log_k 8.5318 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(AsO4)2 -# Enthalpy of formation: 0 kcal/mol - -Co3(PO4)2 - Co3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Co++ - log_k -10.0123 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(PO4)2 -# Enthalpy of formation: 0 kcal/mol - -CoCl2 - CoCl2 = + 1.0000 Co++ + 2.0000 Cl- - log_k 8.2641 - -delta_H -79.5949 kJ/mol # Calculated enthalpy of reaction CoCl2 -# Enthalpy of formation: -312.722 kJ/mol - -analytic -2.2386e+002 -8.0936e-002 8.8631e+003 9.1528e+001 1.3837e+002 -# -Range: 0-300 - -CoCl2:2H2O - CoCl2:2H2O = + 1.0000 Co++ + 2.0000 Cl- + 2.0000 H2O - log_k 4.6661 - -delta_H -40.7876 kJ/mol # Calculated enthalpy of reaction CoCl2:2H2O -# Enthalpy of formation: -923.206 kJ/mol - -analytic -5.6411e+001 -2.3390e-002 3.0519e+003 2.3361e+001 5.1845e+001 -# -Range: 0-200 - -CoCl2:6H2O - CoCl2:6H2O = + 1.0000 Co++ + 2.0000 Cl- + 6.0000 H2O - log_k 2.6033 - -delta_H 8.32709 kJ/mol # Calculated enthalpy of reaction CoCl2:6H2O -# Enthalpy of formation: -2115.67 kJ/mol - -analytic -1.5066e+002 -2.2132e-002 5.0591e+003 5.7743e+001 8.5962e+001 -# -Range: 0-200 - -CoF2 - CoF2 = + 1.0000 Co++ + 2.0000 F- - log_k -5.1343 - -delta_H -36.6708 kJ/mol # Calculated enthalpy of reaction CoF2 -# Enthalpy of formation: -692.182 kJ/mol - -analytic -2.5667e+002 -8.4071e-002 7.6256e+003 1.0143e+002 1.1907e+002 -# -Range: 0-300 - -CoF3 - CoF3 = + 1.0000 Co+++ + 3.0000 F- - log_k -4.9558 - -delta_H -103.136 kJ/mol # Calculated enthalpy of reaction CoF3 -# Enthalpy of formation: -193.8 kcal/mol - -analytic -3.7854e+002 -1.2911e-001 1.3215e+004 1.4859e+002 2.0632e+002 -# -Range: 0-300 - -CoFe2O4 - CoFe2O4 +8.0000 H+ = + 1.0000 Co++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 0.8729 - -delta_H -160.674 kJ/mol # Calculated enthalpy of reaction CoFe2O4 -# Enthalpy of formation: -272.466 kcal/mol - -analytic -3.0149e+002 -7.9159e-002 1.5683e+004 1.1046e+002 2.4480e+002 -# -Range: 0-300 - -CoHPO4 - CoHPO4 = + 1.0000 Co++ + 1.0000 HPO4-- - log_k -6.7223 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoHPO4 -# Enthalpy of formation: 0 kcal/mol - -CoO - CoO +2.0000 H+ = + 1.0000 Co++ + 1.0000 H2O - log_k 13.5553 - -delta_H -106.05 kJ/mol # Calculated enthalpy of reaction CoO -# Enthalpy of formation: -237.946 kJ/mol - -analytic -8.4424e+001 -1.9457e-002 7.8616e+003 3.1281e+001 1.2270e+002 -# -Range: 0-300 - -CoS - CoS +1.0000 H+ = + 1.0000 Co++ + 1.0000 HS- - log_k -7.3740 - -delta_H 10.1755 kJ/mol # Calculated enthalpy of reaction CoS -# Enthalpy of formation: -20.182 kcal/mol - -analytic -1.5128e+002 -4.8484e-002 2.9553e+003 5.9983e+001 4.6158e+001 -# -Range: 0-300 - -CoSO4 - CoSO4 = + 1.0000 Co++ + 1.0000 SO4-- - log_k 2.8996 - -delta_H -79.7952 kJ/mol # Calculated enthalpy of reaction CoSO4 -# Enthalpy of formation: -887.964 kJ/mol - -analytic -1.9907e+002 -7.7890e-002 7.7193e+003 8.0525e+001 1.2051e+002 -# -Range: 0-300 - -CoSO4.3Co(OH)2 - CoSO4(Co(OH)2)3 +6.0000 H+ = + 1.0000 SO4-- + 4.0000 Co++ + 6.0000 H2O - log_k 33.2193 - -delta_H -379.41 kJ/mol # Calculated enthalpy of reaction CoSO4.3Co(OH)2 -# Enthalpy of formation: -2477.85 kJ/mol - -analytic -2.2830e+002 -4.0197e-002 2.5937e+004 7.5367e+001 4.4053e+002 -# -Range: 0-200 - -CoSO4:6H2O - CoSO4:6H2O = + 1.0000 Co++ + 1.0000 SO4-- + 6.0000 H2O - log_k -2.3512 - -delta_H 1.08483 kJ/mol # Calculated enthalpy of reaction CoSO4:6H2O -# Enthalpy of formation: -2683.87 kJ/mol - -analytic -2.5469e+002 -7.3092e-002 6.6767e+003 1.0172e+002 1.0426e+002 -# -Range: 0-300 - -CoSO4:H2O - CoSO4:H2O = + 1.0000 Co++ + 1.0000 H2O + 1.0000 SO4-- - log_k -1.2111 - -delta_H -52.6556 kJ/mol # Calculated enthalpy of reaction CoSO4:H2O -# Enthalpy of formation: -287.032 kcal/mol - -analytic -1.0570e+001 -1.6196e-002 1.7180e+003 3.4000e+000 2.9178e+001 -# -Range: 0-200 - -CoSeO3 - CoSeO3 = + 1.0000 Co++ + 1.0000 SeO3-- - log_k -7.0800 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO3 -# Enthalpy of formation: 0 kcal/mol - -CoWO4 - CoWO4 = + 1.0000 Co++ + 1.0000 WO4-- - log_k -12.2779 - -delta_H 13.6231 kJ/mol # Calculated enthalpy of reaction CoWO4 -# Enthalpy of formation: -274.256 kcal/mol - -analytic -3.7731e+001 -2.4719e-002 -1.0347e+003 1.4663e+001 -1.7558e+001 -# -Range: 0-200 - -Coesite - SiO2 = + 1.0000 SiO2 - log_k -3.1893 - -delta_H 28.6144 kJ/mol # Calculated enthalpy of reaction Coesite -# Enthalpy of formation: -216.614 kcal/mol - -analytic -9.7312e+000 9.1773e-003 4.2143e+003 -7.8065e-001 -7.4905e+005 -# -Range: 0-300 - -Coffinite - USiO4 +4.0000 H+ = + 1.0000 SiO2 + 1.0000 U++++ + 2.0000 H2O - log_k -8.0530 - -delta_H -49.2493 kJ/mol # Calculated enthalpy of reaction Coffinite -# Enthalpy of formation: -1991.33 kJ/mol - -analytic 2.3126e+002 6.2389e-002 -4.6189e+003 -9.7976e+001 -7.8517e+001 -# -Range: 0-200 - -Colemanite - Ca2B6O11:5H2O +4.0000 H+ +2.0000 H2O = + 2.0000 Ca++ + 6.0000 B(OH)3 - log_k 21.5148 - -delta_H 0 # Not possible to calculate enthalpy of reaction Colemanite -# Enthalpy of formation: 0 kcal/mol - -Cordierite_anhyd - Mg2Al4Si5O18 +16.0000 H+ = + 2.0000 Mg++ + 4.0000 Al+++ + 5.0000 SiO2 + 8.0000 H2O - log_k 52.3035 - -delta_H -626.219 kJ/mol # Calculated enthalpy of reaction Cordierite_anhyd -# Enthalpy of formation: -2183.2 kcal/mol - -analytic 2.6562e+000 -2.3801e-002 3.5192e+004 -1.9911e+001 -1.0894e+006 -# -Range: 0-300 - -Cordierite_hydr - Mg2Al4Si5O18:H2O +16.0000 H+ = + 2.0000 Mg++ + 4.0000 Al+++ + 5.0000 SiO2 + 9.0000 H2O - log_k 49.8235 - -delta_H -608.814 kJ/mol # Calculated enthalpy of reaction Cordierite_hydr -# Enthalpy of formation: -2255.68 kcal/mol - -analytic -1.2985e+002 -4.1335e-002 4.1566e+004 2.7892e+001 -1.4819e+006 -# -Range: 0-300 - -Corkite - PbFe3(PO4)(SO4)(OH)6 +7.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pb++ + 1.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O - log_k -9.7951 - -delta_H 0 # Not possible to calculate enthalpy of reaction Corkite -# Enthalpy of formation: 0 kcal/mol - -Corundum - Al2O3 +6.0000 H+ = + 2.0000 Al+++ + 3.0000 H2O - log_k 18.3121 - -delta_H -258.626 kJ/mol # Calculated enthalpy of reaction Corundum -# Enthalpy of formation: -400.5 kcal/mol - -analytic -1.4278e+002 -7.8519e-002 1.3776e+004 5.5881e+001 2.1501e+002 -# -Range: 0-300 - -Cotunnite - PbCl2 = + 1.0000 Pb++ + 2.0000 Cl- - log_k -4.8406 - -delta_H 26.1441 kJ/mol # Calculated enthalpy of reaction Cotunnite -# Enthalpy of formation: -359.383 kJ/mol - -analytic 1.9624e+001 -1.9161e-002 -3.4686e+003 -2.8806e+000 -5.8909e+001 -# -Range: 0-200 - -Covellite - CuS +1.0000 H+ = + 1.0000 Cu++ + 1.0000 HS- - log_k -22.8310 - -delta_H 101.88 kJ/mol # Calculated enthalpy of reaction Covellite -# Enthalpy of formation: -12.5 kcal/mol - -analytic -1.6068e+002 -4.9040e-002 -1.4234e+003 6.3536e+001 -2.2164e+001 -# -Range: 0-300 - -Cr - Cr +3.0000 H+ +0.7500 O2 = + 1.0000 Cr+++ + 1.5000 H2O - log_k 98.6784 - -delta_H -658.145 kJ/mol # Calculated enthalpy of reaction Cr -# Enthalpy of formation: 0 kJ/mol - -analytic -2.2488e+001 -5.5886e-003 3.4288e+004 3.1585e+000 5.3503e+002 -# -Range: 0-300 - -CrCl3 - CrCl3 = + 1.0000 Cr+++ + 3.0000 Cl- - log_k 17.9728 - -delta_H -183.227 kJ/mol # Calculated enthalpy of reaction CrCl3 -# Enthalpy of formation: -556.5 kJ/mol - -analytic -2.6348e+002 -9.5339e-002 1.4785e+004 1.0517e+002 2.3079e+002 -# -Range: 0-300 - -CrF3 - CrF3 = + 1.0000 Cr+++ + 3.0000 F- - log_k -8.5713 - -delta_H -85.5293 kJ/mol # Calculated enthalpy of reaction CrF3 -# Enthalpy of formation: -277.008 kcal/mol - -analytic -3.2175e+002 -1.0279e-001 1.1394e+004 1.2348e+002 1.7789e+002 -# -Range: 0-300 - -CrF4 - CrF4 +2.0000 H2O = + 0.5000 Cr++ + 0.5000 CrO4-- + 4.0000 F- + 4.0000 H+ - log_k -12.3132 - -delta_H -35.2125 kJ/mol # Calculated enthalpy of reaction CrF4 -# Enthalpy of formation: -298 kcal/mol - -analytic 4.3136e+001 -4.3783e-002 -3.6809e+003 -1.2153e+001 -6.2521e+001 -# -Range: 0-200 - -CrI3 - CrI3 = + 1.0000 Cr+++ + 3.0000 I- - log_k 25.6112 - -delta_H -204.179 kJ/mol # Calculated enthalpy of reaction CrI3 -# Enthalpy of formation: -49 kcal/mol - -analytic 4.9232e+000 -2.5164e-002 8.4026e+003 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -CrO2 - CrO2 = + 0.5000 Cr++ + 0.5000 CrO4-- - log_k -19.1332 - -delta_H 85.9812 kJ/mol # Calculated enthalpy of reaction CrO2 -# Enthalpy of formation: -143 kcal/mol - -analytic 2.7763e+000 -7.7698e-003 -5.2893e+003 -7.4970e-001 -8.9821e+001 -# -Range: 0-200 - -CrO3 - CrO3 +1.0000 H2O = + 1.0000 CrO4-- + 2.0000 H+ - log_k -3.5221 - -delta_H -5.78647 kJ/mol # Calculated enthalpy of reaction CrO3 -# Enthalpy of formation: -140.9 kcal/mol - -analytic -1.3262e+002 -6.1411e-002 2.2083e+003 5.6564e+001 3.4497e+001 -# -Range: 0-300 - -CrS - CrS +1.0000 H+ = + 1.0000 Cr++ + 1.0000 HS- - log_k -0.6304 - -delta_H -26.15 kJ/mol # Calculated enthalpy of reaction CrS -# Enthalpy of formation: -31.9 kcal/mol - -analytic -1.1134e+002 -3.5954e-002 3.8744e+003 4.3815e+001 6.0490e+001 -# -Range: 0-300 - -Cristobalite(alpha) - SiO2 = + 1.0000 SiO2 - log_k -3.4488 - -delta_H 29.2043 kJ/mol # Calculated enthalpy of reaction Cristobalite(alpha) -# Enthalpy of formation: -216.755 kcal/mol - -analytic -1.1936e+001 9.0520e-003 4.3701e+003 -1.1464e-001 -7.6568e+005 -# -Range: 0-300 - -Cristobalite(beta) - SiO2 = + 1.0000 SiO2 - log_k -3.0053 - -delta_H 24.6856 kJ/mol # Calculated enthalpy of reaction Cristobalite(beta) -# Enthalpy of formation: -215.675 kcal/mol - -analytic -4.7414e+000 9.7567e-003 3.8831e+003 -2.5830e+000 -6.9636e+005 -# -Range: 0-300 - -Crocoite - PbCrO4 = + 1.0000 CrO4-- + 1.0000 Pb++ - log_k -12.7177 - -delta_H 48.6181 kJ/mol # Calculated enthalpy of reaction Crocoite -# Enthalpy of formation: -222 kcal/mol - -analytic 3.0842e+001 -1.4430e-002 -5.0292e+003 -9.0525e+000 -8.5414e+001 -# -Range: 0-200 - -Cronstedtite-7A - Fe2Fe2SiO5(OH)4 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Fe++ + 2.0000 Fe+++ + 7.0000 H2O - log_k 16.2603 - -delta_H -244.266 kJ/mol # Calculated enthalpy of reaction Cronstedtite-7A -# Enthalpy of formation: -697.413 kcal/mol - -analytic -2.3783e+002 -7.1026e-002 1.7752e+004 8.7147e+001 2.7707e+002 -# -Range: 0-300 - -Cs - Cs +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Cs+ - log_k 72.5987 - -delta_H -397.913 kJ/mol # Calculated enthalpy of reaction Cs -# Enthalpy of formation: 0 kJ/mol - -analytic -1.2875e+001 -7.3845e-003 2.1019e+004 6.9347e+000 3.2799e+002 -# -Range: 0-300 - -Cs2NaAmCl6 - Cs2NaAmCl6 = + 1.0000 Am+++ + 1.0000 Na+ + 2.0000 Cs+ + 6.0000 Cl- - log_k 11.7089 - -delta_H -59.7323 kJ/mol # Calculated enthalpy of reaction Cs2NaAmCl6 -# Enthalpy of formation: -2315.8 kJ/mol - -analytic 5.1683e+001 -5.0340e-002 -2.3205e+003 -6.9536e+000 -3.9422e+001 -# -Range: 0-200 - -Cs2U2O7 - Cs2U2O7 +6.0000 H+ = + 2.0000 Cs+ + 2.0000 UO2++ + 3.0000 H2O - log_k 31.0263 - -delta_H -191.57 kJ/mol # Calculated enthalpy of reaction Cs2U2O7 -# Enthalpy of formation: -3220 kJ/mol - -analytic -5.1436e+001 -7.4096e-003 1.2524e+004 1.7827e+001 -1.2899e+005 -# -Range: 0-300 - -Cs2U4O12 - Cs2U4O12 +8.0000 H+ = + 2.0000 Cs+ + 2.0000 UO2+ + 2.0000 UO2++ + 4.0000 H2O - log_k 18.9460 - -delta_H -175.862 kJ/mol # Calculated enthalpy of reaction Cs2U4O12 -# Enthalpy of formation: -5571.8 kJ/mol - -analytic -3.3411e+001 3.6196e-003 1.0508e+004 6.5823e+000 -2.3403e+004 -# -Range: 0-300 - -Cs2UO4 - Cs2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 Cs+ + 2.0000 H2O - log_k 35.8930 - -delta_H -178.731 kJ/mol # Calculated enthalpy of reaction Cs2UO4 -# Enthalpy of formation: -1928 kJ/mol - -analytic -3.0950e+001 -3.5650e-003 1.0690e+004 1.2949e+001 1.6682e+002 -# -Range: 0-300 - -Cu - Cu +2.0000 H+ +0.5000 O2 = + 1.0000 Cu++ + 1.0000 H2O - log_k 31.5118 - -delta_H -214.083 kJ/mol # Calculated enthalpy of reaction Cu -# Enthalpy of formation: 0 kcal/mol - -analytic -7.0719e+001 -2.0300e-002 1.2802e+004 2.6401e+001 1.9979e+002 -# -Range: 0-300 - -Cu3(PO4)2 - Cu3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cu++ - log_k -12.2247 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2 -# Enthalpy of formation: 0 kcal/mol - -Cu3(PO4)2:3H2O - Cu3(PO4)2:3H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cu++ + 3.0000 H2O - log_k -10.4763 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2:3H2O -# Enthalpy of formation: 0 kcal/mol - -CuCl2 - CuCl2 = + 1.0000 Cu++ + 2.0000 Cl- - log_k 3.7308 - -delta_H -48.5965 kJ/mol # Calculated enthalpy of reaction CuCl2 -# Enthalpy of formation: -219.874 kJ/mol - -analytic -1.7803e+001 -2.4432e-002 1.5729e+003 9.5104e+000 2.6716e+001 -# -Range: 0-200 - -CuCr2O4 - CuCr2O4 +8.0000 H+ = + 1.0000 Cu++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 16.2174 - -delta_H -268.768 kJ/mol # Calculated enthalpy of reaction CuCr2O4 -# Enthalpy of formation: -307.331 kcal/mol - -analytic -1.8199e+002 -1.0254e-002 2.0123e+004 5.4062e+001 3.4178e+002 -# -Range: 0-200 - -CuF - CuF = + 1.0000 Cu+ + 1.0000 F- - log_k 7.0800 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF -# Enthalpy of formation: 0 kcal/mol - -CuF2 - CuF2 = + 1.0000 Cu++ + 2.0000 F- - log_k -0.6200 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2 -# Enthalpy of formation: 0 kcal/mol - -CuF2:2H2O - CuF2:2H2O = + 1.0000 Cu++ + 2.0000 F- + 2.0000 H2O - log_k -4.5500 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2:2H2O -# Enthalpy of formation: 0 kcal/mol - -CuSeO3 - CuSeO3 = + 1.0000 Cu++ + 1.0000 SeO3-- - log_k -7.6767 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuSeO3 -# Enthalpy of formation: 0 kcal/mol - -Cuprite - Cu2O +2.0000 H+ = + 1.0000 H2O + 2.0000 Cu+ - log_k -1.9031 - -delta_H 28.355 kJ/mol # Calculated enthalpy of reaction Cuprite -# Enthalpy of formation: -40.83 kcal/mol - -analytic -8.6240e+001 -1.1445e-002 1.7851e+003 3.3041e+001 2.7880e+001 -# -Range: 0-300 - -Daphnite-14A - Fe5AlAlSi3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Fe++ + 12.0000 H2O - log_k 52.2821 - -delta_H -517.561 kJ/mol # Calculated enthalpy of reaction Daphnite-14A -# Enthalpy of formation: -1693.04 kcal/mol - -analytic -1.5261e+002 -6.1392e-002 2.8283e+004 5.1788e+001 4.4137e+002 -# -Range: 0-300 - -Daphnite-7A - Fe5AlAlSi3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Fe++ + 12.0000 H2O - log_k 55.6554 - -delta_H -532.326 kJ/mol # Calculated enthalpy of reaction Daphnite-7A -# Enthalpy of formation: -1689.51 kcal/mol - -analytic -1.6430e+002 -6.3160e-002 2.9499e+004 5.6442e+001 4.6035e+002 -# -Range: 0-300 - -Dawsonite - NaAlCO3(OH)2 +3.0000 H+ = + 1.0000 Al+++ + 1.0000 HCO3- + 1.0000 Na+ + 2.0000 H2O - log_k 4.3464 - -delta_H -76.3549 kJ/mol # Calculated enthalpy of reaction Dawsonite -# Enthalpy of formation: -1963.96 kJ/mol - -analytic -1.1393e+002 -2.3487e-002 7.1758e+003 4.0900e+001 1.2189e+002 -# -Range: 0-200 - -Delafossite - CuFeO2 +4.0000 H+ = + 1.0000 Cu+ + 1.0000 Fe+++ + 2.0000 H2O - log_k -6.4172 - -delta_H -18.6104 kJ/mol # Calculated enthalpy of reaction Delafossite -# Enthalpy of formation: -126.904 kcal/mol - -analytic -1.5275e+002 -3.5478e-002 5.1404e+003 5.6437e+001 8.0255e+001 -# -Range: 0-300 - -Diaspore - AlHO2 +3.0000 H+ = + 1.0000 Al+++ + 2.0000 H2O - log_k 7.1603 - -delta_H -110.42 kJ/mol # Calculated enthalpy of reaction Diaspore -# Enthalpy of formation: -238.924 kcal/mol - -analytic -1.2618e+002 -3.1671e-002 8.8737e+003 4.5669e+001 1.3850e+002 -# -Range: 0-300 - -Dicalcium_silicate - Ca2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 2.0000 H2O - log_k 37.1725 - -delta_H -217.642 kJ/mol # Calculated enthalpy of reaction Dicalcium_silicate -# Enthalpy of formation: -2317.9 kJ/mol - -analytic -5.9723e+001 -1.3682e-002 1.5461e+004 2.1547e+001 -3.7732e+005 -# -Range: 0-300 - -Diopside - CaMgSi2O6 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 H2O + 2.0000 SiO2 - log_k 20.9643 - -delta_H -133.775 kJ/mol # Calculated enthalpy of reaction Diopside -# Enthalpy of formation: -765.378 kcal/mol - -analytic 7.1240e+001 1.5514e-002 8.1437e+003 -3.0672e+001 -5.6880e+005 -# -Range: 0-300 - -Dioptase - CuSiO2(OH)2 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 SiO2 + 2.0000 H2O - log_k 6.0773 - -delta_H -25.2205 kJ/mol # Calculated enthalpy of reaction Dioptase -# Enthalpy of formation: -1358.47 kJ/mol - -analytic 2.3913e+002 6.2669e-002 -5.4030e+003 -9.4420e+001 -9.1834e+001 -# -Range: 0-200 - -Dolomite - CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- - log_k 2.5135 - -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite -# Enthalpy of formation: -556.631 kcal/mol - -analytic -3.1782e+002 -9.8179e-002 1.0845e+004 1.2657e+002 1.6932e+002 -# -Range: 0-300 - -Dolomite-dis - CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- - log_k 4.0579 - -delta_H -72.2117 kJ/mol # Calculated enthalpy of reaction Dolomite-dis -# Enthalpy of formation: -553.704 kcal/mol - -analytic -3.1706e+002 -9.7886e-002 1.1442e+004 1.2604e+002 1.7864e+002 -# -Range: 0-300 - -Dolomite-ord - CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- - log_k 2.5135 - -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite-ord -# Enthalpy of formation: -556.631 kcal/mol - -analytic -3.1654e+002 -9.7902e-002 1.0805e+004 1.2607e+002 1.6870e+002 -# -Range: 0-300 - -Downeyite - SeO2 +1.0000 H2O = + 1.0000 SeO3-- + 2.0000 H+ - log_k -6.7503 - -delta_H 1.74473 kJ/mol # Calculated enthalpy of reaction Downeyite -# Enthalpy of formation: -53.8 kcal/mol - -analytic -1.2868e+002 -6.1183e-002 1.5802e+003 5.4490e+001 2.4696e+001 -# -Range: 0-300 - -Dy - Dy +3.0000 H+ +0.7500 O2 = + 1.0000 Dy+++ + 1.5000 H2O - log_k 180.8306 - -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Dy -# Enthalpy of formation: 0 kJ/mol - -analytic -6.8317e+001 -2.8321e-002 5.8927e+004 2.4211e+001 9.1953e+002 -# -Range: 0-300 - -Dy(OH)3 - Dy(OH)3 +3.0000 H+ = + 1.0000 Dy+++ + 3.0000 H2O - log_k 15.8852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Dy(OH)3(am) - Dy(OH)3 +3.0000 H+ = + 1.0000 Dy+++ + 3.0000 H2O - log_k 17.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Dy2(CO3)3 - Dy2(CO3)3 +3.0000 H+ = + 2.0000 Dy+++ + 3.0000 HCO3- - log_k -3.0136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Dy2O3 - Dy2O3 +6.0000 H+ = + 2.0000 Dy+++ + 3.0000 H2O - log_k 47.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2O3 -# Enthalpy of formation: 0 kcal/mol - -DyF3:.5H2O - DyF3:.5H2O = + 0.5000 H2O + 1.0000 Dy+++ + 3.0000 F- - log_k -16.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -DyPO4:10H2O - DyPO4:10H2O +1.0000 H+ = + 1.0000 Dy+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Enstatite - MgSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Mg++ + 1.0000 SiO2 - log_k 11.3269 - -delta_H -82.7302 kJ/mol # Calculated enthalpy of reaction Enstatite -# Enthalpy of formation: -369.686 kcal/mol - -analytic -4.9278e+001 -3.2832e-003 9.5205e+003 1.4437e+001 -5.4324e+005 -# -Range: 0-300 - -Epidote - Ca2FeAl2Si3O12OH +13.0000 H+ = + 1.0000 Fe+++ + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 7.0000 H2O - log_k 32.9296 - -delta_H -386.451 kJ/mol # Calculated enthalpy of reaction Epidote -# Enthalpy of formation: -1543.99 kcal/mol - -analytic -2.6187e+001 -3.6436e-002 1.9351e+004 3.3671e+000 -3.0319e+005 -# -Range: 0-300 - -Epidote-ord - FeCa2Al2(OH)(SiO4)3 +13.0000 H+ = + 1.0000 Fe+++ + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 7.0000 H2O - log_k 32.9296 - -delta_H -386.351 kJ/mol # Calculated enthalpy of reaction Epidote-ord -# Enthalpy of formation: -1544.02 kcal/mol - -analytic 1.9379e+001 -3.2870e-002 1.5692e+004 -1.1901e+001 2.4485e+002 -# -Range: 0-300 - -Epsomite - MgSO4:7H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 7.0000 H2O - log_k -1.9623 - -delta_H 0 # Not possible to calculate enthalpy of reaction Epsomite -# Enthalpy of formation: 0 kcal/mol - -Er - Er +3.0000 H+ +0.7500 O2 = + 1.0000 Er+++ + 1.5000 H2O - log_k 181.7102 - -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Er -# Enthalpy of formation: 0 kJ/mol - -analytic -1.4459e+002 -3.8221e-002 6.4073e+004 5.1047e+001 -3.1503e+005 -# -Range: 0-300 - -Er(OH)3 - Er(OH)3 +3.0000 H+ = + 1.0000 Er+++ + 3.0000 H2O - log_k 14.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Er(OH)3(am) - Er(OH)3 +3.0000 H+ = + 1.0000 Er+++ + 3.0000 H2O - log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Er2(CO3)3 - Er2(CO3)3 +3.0000 H+ = + 2.0000 Er+++ + 3.0000 HCO3- - log_k -2.6136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Er2O3 - Er2O3 +6.0000 H+ = + 2.0000 Er+++ + 3.0000 H2O - log_k 42.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er2O3 -# Enthalpy of formation: 0 kcal/mol - -ErF3:.5H2O - ErF3:.5H2O = + 0.5000 H2O + 1.0000 Er+++ + 3.0000 F- - log_k -16.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -ErPO4:10H2O - ErPO4:10H2O +1.0000 H+ = + 1.0000 Er+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Erythrite - Co3(AsO4)2:8H2O +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Co++ + 8.0000 H2O - log_k 6.3930 - -delta_H 0 # Not possible to calculate enthalpy of reaction Erythrite -# Enthalpy of formation: 0 kcal/mol - -Eskolaite - Cr2O3 +2.0000 H2O +1.5000 O2 = + 2.0000 CrO4-- + 4.0000 H+ - log_k -9.1306 - -delta_H -32.6877 kJ/mol # Calculated enthalpy of reaction Eskolaite -# Enthalpy of formation: -1139.74 kJ/mol - -analytic -2.0411e+002 -1.2809e-001 2.2197e+003 9.1186e+001 3.4697e+001 -# -Range: 0-300 - -Ettringite - Ca6Al2(SO4)3(OH)12:26H2O +12.0000 H+ = + 2.0000 Al+++ + 3.0000 SO4-- + 6.0000 Ca++ + 38.0000 H2O - log_k 62.5362 - -delta_H -382.451 kJ/mol # Calculated enthalpy of reaction Ettringite -# Enthalpy of formation: -4193 kcal/mol - -analytic -1.0576e+003 -1.1585e-001 5.9580e+004 3.8585e+002 1.0121e+003 -# -Range: 0-200 - -Eu - Eu +3.0000 H+ +0.7500 O2 = + 1.0000 Eu+++ + 1.5000 H2O - log_k 165.1443 - -delta_H -1025.08 kJ/mol # Calculated enthalpy of reaction Eu -# Enthalpy of formation: 0 kJ/mol - -analytic -6.5749e+001 -2.8921e-002 5.4018e+004 2.3561e+001 8.4292e+002 -# -Range: 0-300 - -Eu(IO3)3:2H2O - Eu(IO3)3:2H2O = + 1.0000 Eu+++ + 2.0000 H2O + 3.0000 IO3- - log_k -11.6999 - -delta_H 20.8847 kJ/mol # Calculated enthalpy of reaction Eu(IO3)3:2H2O -# Enthalpy of formation: -1861.99 kJ/mol - -analytic -3.4616e+001 -1.9914e-002 -1.1966e+003 1.3276e+001 -2.0308e+001 -# -Range: 0-200 - -Eu(NO3)3:6H2O - Eu(NO3)3:6H2O = + 1.0000 Eu+++ + 3.0000 NO3- + 6.0000 H2O - log_k 1.3082 - -delta_H 15.2254 kJ/mol # Calculated enthalpy of reaction Eu(NO3)3:6H2O -# Enthalpy of formation: -2956.11 kJ/mol - -analytic -1.3205e+002 -2.0427e-002 3.9623e+003 5.0976e+001 6.7332e+001 -# -Range: 0-200 - -Eu(OH)2.5Cl.5 - Eu(OH)2.5Cl.5 +2.5000 H+ = + 0.5000 Cl- + 1.0000 Eu+++ + 2.5000 H2O - log_k 12.5546 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2.5Cl.5 -# Enthalpy of formation: 0 kcal/mol - -Eu(OH)2Cl - Eu(OH)2Cl +2.0000 H+ = + 1.0000 Cl- + 1.0000 Eu+++ + 2.0000 H2O - log_k 8.7974 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2Cl -# Enthalpy of formation: 0 kcal/mol - -Eu(OH)3 - Eu(OH)3 +3.0000 H+ = + 1.0000 Eu+++ + 3.0000 H2O - log_k 15.3482 - -delta_H -126.897 kJ/mol # Calculated enthalpy of reaction Eu(OH)3 -# Enthalpy of formation: -1336.04 kJ/mol - -analytic -6.3077e+001 -6.1421e-003 8.7323e+003 2.0595e+001 1.4831e+002 -# -Range: 0-200 - -Eu2(CO3)3:3H2O - Eu2(CO3)3:3H2O +3.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O + 3.0000 HCO3- - log_k -5.8707 - -delta_H -137.512 kJ/mol # Calculated enthalpy of reaction Eu2(CO3)3:3H2O -# Enthalpy of formation: -4000.65 kJ/mol - -analytic -1.4134e+002 -4.0240e-002 9.5883e+003 4.6591e+001 1.6287e+002 -# -Range: 0-200 - -Eu2(SO4)3:8H2O - Eu2(SO4)3:8H2O = + 2.0000 Eu+++ + 3.0000 SO4-- + 8.0000 H2O - log_k -10.8524 - -delta_H -86.59 kJ/mol # Calculated enthalpy of reaction Eu2(SO4)3:8H2O -# Enthalpy of formation: -6139.77 kJ/mol - -analytic -5.6582e+001 -3.8846e-002 3.3821e+003 1.8561e+001 5.7452e+001 -# -Range: 0-200 - -Eu2O3(cubic) - Eu2O3 +6.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O - log_k 51.7818 - -delta_H -406.403 kJ/mol # Calculated enthalpy of reaction Eu2O3(cubic) -# Enthalpy of formation: -1661.96 kJ/mol - -analytic -5.3469e+001 -1.2554e-002 2.1925e+004 1.4324e+001 3.7233e+002 -# -Range: 0-200 - -Eu2O3(monoclinic) - Eu2O3 +6.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O - log_k 53.3936 - -delta_H -417.481 kJ/mol # Calculated enthalpy of reaction Eu2O3(monoclinic) -# Enthalpy of formation: -1650.88 kJ/mol - -analytic -5.4022e+001 -1.2627e-002 2.2508e+004 1.4416e+001 3.8224e+002 -# -Range: 0-200 - -Eu3O4 - Eu3O4 +8.0000 H+ = + 1.0000 Eu++ + 2.0000 Eu+++ + 4.0000 H2O - log_k 87.0369 - -delta_H -611.249 kJ/mol # Calculated enthalpy of reaction Eu3O4 -# Enthalpy of formation: -2270.56 kJ/mol - -analytic -1.1829e+002 -2.0354e-002 3.4981e+004 3.8007e+001 5.9407e+002 -# -Range: 0-200 - -EuBr3 - EuBr3 = + 1.0000 Eu+++ + 3.0000 Br- - log_k 29.8934 - -delta_H -217.166 kJ/mol # Calculated enthalpy of reaction EuBr3 -# Enthalpy of formation: -752.769 kJ/mol - -analytic 6.0207e+001 -2.5234e-002 6.6823e+003 -1.8276e+001 1.1345e+002 -# -Range: 0-200 - -EuCl2 - EuCl2 = + 1.0000 Eu++ + 2.0000 Cl- - log_k 5.9230 - -delta_H -39.2617 kJ/mol # Calculated enthalpy of reaction EuCl2 -# Enthalpy of formation: -822.5 kJ/mol - -analytic -2.5741e+001 -2.4956e-002 1.5713e+003 1.3670e+001 2.6691e+001 -# -Range: 0-200 - -EuCl3 - EuCl3 = + 1.0000 Eu+++ + 3.0000 Cl- - log_k 19.7149 - -delta_H -170.861 kJ/mol # Calculated enthalpy of reaction EuCl3 -# Enthalpy of formation: -935.803 kJ/mol - -analytic 3.2865e+001 -3.1877e-002 4.9792e+003 -8.2294e+000 8.4542e+001 -# -Range: 0-200 - -EuCl3:6H2O - EuCl3:6H2O = + 1.0000 Eu+++ + 3.0000 Cl- + 6.0000 H2O - log_k 4.9090 - -delta_H -40.0288 kJ/mol # Calculated enthalpy of reaction EuCl3:6H2O -# Enthalpy of formation: -2781.66 kJ/mol - -analytic -1.0987e+002 -2.9851e-002 4.9991e+003 4.3198e+001 8.4930e+001 -# -Range: 0-200 - -EuF3:0.5H2O - EuF3:0.5H2O = + 0.5000 H2O + 1.0000 Eu+++ + 3.0000 F- - log_k -16.4847 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuF3:0.5H2O -# Enthalpy of formation: 0 kcal/mol - -EuO - EuO +2.0000 H+ = + 1.0000 Eu++ + 1.0000 H2O - log_k 37.4800 - -delta_H -221.196 kJ/mol # Calculated enthalpy of reaction EuO -# Enthalpy of formation: -592.245 kJ/mol - -analytic -8.9517e+001 -1.7523e-002 1.4385e+004 3.3933e+001 2.2449e+002 -# -Range: 0-300 - -EuOCl - EuOCl +2.0000 H+ = + 1.0000 Cl- + 1.0000 Eu+++ + 1.0000 H2O - log_k 15.6683 - -delta_H -147.173 kJ/mol # Calculated enthalpy of reaction EuOCl -# Enthalpy of formation: -911.17 kJ/mol - -analytic -7.7446e+000 -1.4960e-002 6.6242e+003 2.2813e+000 1.1249e+002 -# -Range: 0-200 - -EuOHCO3 - EuOHCO3 +2.0000 H+ = + 1.0000 Eu+++ + 1.0000 H2O + 1.0000 HCO3- - log_k 2.5239 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 -# Enthalpy of formation: 0 kcal/mol - -EuPO4:10H2O - EuPO4:10H2O +1.0000 H+ = + 1.0000 Eu+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -12.0782 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -EuS - EuS +1.0000 H+ = + 1.0000 Eu++ + 1.0000 HS- - log_k 14.9068 - -delta_H -96.4088 kJ/mol # Calculated enthalpy of reaction EuS -# Enthalpy of formation: -447.302 kJ/mol - -analytic -4.1026e+001 -1.5582e-002 5.7842e+003 1.6639e+001 9.8238e+001 -# -Range: 0-200 - -EuSO4 - EuSO4 = + 1.0000 Eu++ + 1.0000 SO4-- - log_k -8.8449 - -delta_H 33.873 kJ/mol # Calculated enthalpy of reaction EuSO4 -# Enthalpy of formation: -1471.08 kJ/mol - -analytic 3.0262e-001 -1.7571e-002 -3.0392e+003 2.5356e+000 -5.1610e+001 -# -Range: 0-200 - -Eucryptite - LiAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 1.0000 SiO2 + 2.0000 H2O - log_k 13.6106 - -delta_H -141.818 kJ/mol # Calculated enthalpy of reaction Eucryptite -# Enthalpy of formation: -2124.41 kJ/mol - -analytic -2.2213e+000 -8.2498e-003 6.4838e+003 -1.4183e+000 1.0117e+002 -# -Range: 0-300 - -Fayalite - Fe2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Fe++ + 2.0000 H2O - log_k 19.1113 - -delta_H -152.256 kJ/mol # Calculated enthalpy of reaction Fayalite -# Enthalpy of formation: -354.119 kcal/mol - -analytic 1.3853e+001 -3.5501e-003 7.1496e+003 -6.8710e+000 -6.3310e+004 -# -Range: 0-300 - -Fe - Fe +2.0000 H+ +0.5000 O2 = + 1.0000 Fe++ + 1.0000 H2O - log_k 59.0325 - -delta_H -372.029 kJ/mol # Calculated enthalpy of reaction Fe -# Enthalpy of formation: 0 kcal/mol - -analytic -6.2882e+001 -2.0379e-002 2.0690e+004 2.3673e+001 3.2287e+002 -# -Range: 0-300 - -Fe(OH)2 - Fe(OH)2 +2.0000 H+ = + 1.0000 Fe++ + 2.0000 H2O - log_k 13.9045 - -delta_H -95.4089 kJ/mol # Calculated enthalpy of reaction Fe(OH)2 -# Enthalpy of formation: -568.525 kJ/mol - -analytic -8.6666e+001 -1.8440e-002 7.5723e+003 3.2597e+001 1.1818e+002 -# -Range: 0-300 - -Fe(OH)3 - Fe(OH)3 +3.0000 H+ = + 1.0000 Fe+++ + 3.0000 H2O - log_k 5.6556 - -delta_H -84.0824 kJ/mol # Calculated enthalpy of reaction Fe(OH)3 -# Enthalpy of formation: -823.013 kJ/mol - -analytic -1.3316e+002 -3.1284e-002 7.9753e+003 4.9052e+001 1.2449e+002 -# -Range: 0-300 - -Fe2(SO4)3 - Fe2(SO4)3 = + 2.0000 Fe+++ + 3.0000 SO4-- - log_k 3.2058 - -delta_H -250.806 kJ/mol # Calculated enthalpy of reaction Fe2(SO4)3 -# Enthalpy of formation: -2577.16 kJ/mol - -analytic -5.8649e+002 -2.3718e-001 2.2736e+004 2.3601e+002 3.5495e+002 -# -Range: 0-300 - -FeF2 - FeF2 = + 1.0000 Fe++ + 2.0000 F- - log_k -2.3817 - -delta_H -51.6924 kJ/mol # Calculated enthalpy of reaction FeF2 -# Enthalpy of formation: -711.26 kJ/mol - -analytic -2.5687e+002 -8.4091e-002 8.4262e+003 1.0154e+002 1.3156e+002 -# -Range: 0-300 - -FeF3 - FeF3 = + 1.0000 Fe+++ + 3.0000 F- - log_k -19.2388 - -delta_H -13.8072 kJ/mol # Calculated enthalpy of reaction FeF3 -# Enthalpy of formation: -249 kcal/mol - -analytic -1.6215e+001 -3.7450e-002 -1.8926e+003 5.8485e+000 -3.2134e+001 -# -Range: 0-200 - -FeO - FeO +2.0000 H+ = + 1.0000 Fe++ + 1.0000 H2O - log_k 13.5318 - -delta_H -106.052 kJ/mol # Calculated enthalpy of reaction FeO -# Enthalpy of formation: -65.02 kcal/mol - -analytic -7.8750e+001 -1.8268e-002 7.6852e+003 2.9074e+001 1.1994e+002 -# -Range: 0-300 - -FeSO4 - FeSO4 = + 1.0000 Fe++ + 1.0000 SO4-- - log_k 2.6565 - -delta_H -73.0878 kJ/mol # Calculated enthalpy of reaction FeSO4 -# Enthalpy of formation: -928.771 kJ/mol - -analytic -2.0794e+002 -7.6891e-002 7.8705e+003 8.3685e+001 1.2287e+002 -# -Range: 0-300 - -FeV2O4 - FeV2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 V+++ + 4.0000 H2O - log_k 280.5528 - -delta_H -1733.42 kJ/mol # Calculated enthalpy of reaction FeV2O4 -# Enthalpy of formation: -5.8 kcal/mol - -analytic -1.6736e+002 -1.9398e-002 9.5736e+004 5.3582e+001 1.6258e+003 -# -Range: 0-200 - -Ferrite-Ca - CaFe2O4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 21.5217 - -delta_H -264.738 kJ/mol # Calculated enthalpy of reaction Ferrite-Ca -# Enthalpy of formation: -363.494 kcal/mol - -analytic -2.8472e+002 -7.5870e-002 2.0688e+004 1.0485e+002 3.2289e+002 -# -Range: 0-300 - -Ferrite-Cu - CuFe2O4 +8.0000 H+ = + 1.0000 Cu++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 10.3160 - -delta_H -211.647 kJ/mol # Calculated enthalpy of reaction Ferrite-Cu -# Enthalpy of formation: -965.178 kJ/mol - -analytic -3.1271e+002 -7.9976e-002 1.8818e+004 1.1466e+002 2.9374e+002 -# -Range: 0-300 - -Ferrite-Dicalcium - Ca2Fe2O5 +10.0000 H+ = + 2.0000 Ca++ + 2.0000 Fe+++ + 5.0000 H2O - log_k 56.8331 - -delta_H -475.261 kJ/mol # Calculated enthalpy of reaction Ferrite-Dicalcium -# Enthalpy of formation: -2139.26 kJ/mol - -analytic -3.6277e+002 -9.5015e-002 3.3898e+004 1.3506e+002 5.2906e+002 -# -Range: 0-300 - -Ferrite-Mg - MgFe2O4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 21.0551 - -delta_H -280.056 kJ/mol # Calculated enthalpy of reaction Ferrite-Mg -# Enthalpy of formation: -1428.42 kJ/mol - -analytic -2.8297e+002 -7.4820e-002 2.1333e+004 1.0295e+002 3.3296e+002 -# -Range: 0-300 - -Ferrite-Zn - ZnFe2O4 +8.0000 H+ = + 1.0000 Zn++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 11.7342 - -delta_H -226.609 kJ/mol # Calculated enthalpy of reaction Ferrite-Zn -# Enthalpy of formation: -1169.29 kJ/mol - -analytic -2.9809e+002 -7.7263e-002 1.9067e+004 1.0866e+002 2.9761e+002 -# -Range: 0-300 - -Ferroselite - FeSe2 +0.5000 H2O = + 0.2500 O2 + 1.0000 Fe+++ + 1.0000 H+ + 2.0000 Se-- - log_k -80.7998 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ferroselite -# Enthalpy of formation: -25 kcal/mol - -analytic -7.2971e+001 -2.4992e-002 -1.6246e+004 2.1860e+001 -2.5348e+002 -# -Range: 0-300 - -Ferrosilite - FeSiO3 +2.0000 H+ = + 1.0000 Fe++ + 1.0000 H2O + 1.0000 SiO2 - log_k 7.4471 - -delta_H -60.6011 kJ/mol # Calculated enthalpy of reaction Ferrosilite -# Enthalpy of formation: -285.658 kcal/mol - -analytic 9.0041e+000 3.7917e-003 5.1625e+003 -6.3009e+000 -3.9565e+005 -# -Range: 0-300 - -Fluorapatite - Ca5(PO4)3F +3.0000 H+ = + 1.0000 F- + 3.0000 HPO4-- + 5.0000 Ca++ - log_k -24.9940 - -delta_H -90.8915 kJ/mol # Calculated enthalpy of reaction Fluorapatite -# Enthalpy of formation: -6836.12 kJ/mol - -analytic -9.3648e+002 -3.2688e-001 2.4398e+004 3.7461e+002 3.8098e+002 -# -Range: 0-300 - -Fluorite - CaF2 = + 1.0000 Ca++ + 2.0000 F- - log_k -10.0370 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction Fluorite -# Enthalpy of formation: -293 kcal/mol - -analytic -2.5036e+002 -8.4183e-002 4.9525e+003 1.0054e+002 7.7353e+001 -# -Range: 0-300 - -Forsterite - Mg2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Mg++ - log_k 27.8626 - -delta_H -205.614 kJ/mol # Calculated enthalpy of reaction Forsterite -# Enthalpy of formation: -520 kcal/mol - -analytic -7.6195e+001 -1.4013e-002 1.4763e+004 2.5090e+001 -3.0379e+005 -# -Range: 0-300 - -Foshagite - Ca4Si3O9(OH)2:0.5H2O +8.0000 H+ = + 3.0000 SiO2 + 4.0000 Ca++ + 5.5000 H2O - log_k 65.9210 - -delta_H -359.839 kJ/mol # Calculated enthalpy of reaction Foshagite -# Enthalpy of formation: -1438.27 kcal/mol - -analytic 2.9983e+001 5.5272e-003 2.3427e+004 -1.3879e+001 -8.9461e+005 -# -Range: 0-300 - -Frankdicksonite - BaF2 = + 1.0000 Ba++ + 2.0000 F- - log_k -5.7600 - -delta_H 0 # Not possible to calculate enthalpy of reaction Frankdicksonite -# Enthalpy of formation: 0 kcal/mol - -Freboldite - CoSe = + 1.0000 Co++ + 1.0000 Se-- - log_k -24.3358 - -delta_H 0 # Not possible to calculate enthalpy of reaction Freboldite -# Enthalpy of formation: -15.295 kcal/mol - -analytic -1.3763e+001 -1.6924e-003 -3.6938e+003 9.3574e-001 -6.2723e+001 -# -Range: 0-200 - -Ga - Ga +3.0000 H+ +0.7500 O2 = + 1.0000 Ga+++ + 1.5000 H2O - log_k 92.3567 - -delta_H -631.368 kJ/mol # Calculated enthalpy of reaction Ga -# Enthalpy of formation: 0 kJ/mol - -analytic -1.3027e+002 -3.9539e-002 3.6027e+004 4.6280e+001 -8.5461e+004 -# -Range: 0-300 - -Galena - PbS +1.0000 H+ = + 1.0000 HS- + 1.0000 Pb++ - log_k -14.8544 - -delta_H 83.1361 kJ/mol # Calculated enthalpy of reaction Galena -# Enthalpy of formation: -23.5 kcal/mol - -analytic -1.2124e+002 -4.3477e-002 -1.6463e+003 5.0454e+001 -2.5654e+001 -# -Range: 0-300 - -Gaylussite - CaNa2(CO3)2:5H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 HCO3- + 2.0000 Na+ + 5.0000 H2O - log_k 11.1641 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gaylussite -# Enthalpy of formation: 0 kcal/mol - -Gd - Gd +3.0000 H+ +0.7500 O2 = + 1.0000 Gd+++ + 1.5000 H2O - log_k 180.7573 - -delta_H -1106.67 kJ/mol # Calculated enthalpy of reaction Gd -# Enthalpy of formation: 0 kJ/mol - -analytic -3.3949e+002 -6.5698e-002 7.4278e+004 1.2189e+002 -9.7055e+005 -# -Range: 0-300 - -Gd(OH)3 - Gd(OH)3 +3.0000 H+ = + 1.0000 Gd+++ + 3.0000 H2O - log_k 15.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Gd(OH)3(am) - Gd(OH)3 +3.0000 H+ = + 1.0000 Gd+++ + 3.0000 H2O - log_k 17.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Gd2(CO3)3 - Gd2(CO3)3 +3.0000 H+ = + 2.0000 Gd+++ + 3.0000 HCO3- - log_k -3.7136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Gd2O3 - Gd2O3 +6.0000 H+ = + 2.0000 Gd+++ + 3.0000 H2O - log_k 53.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2O3 -# Enthalpy of formation: 0 kcal/mol - -GdF3:.5H2O - GdF3:.5H2O = + 0.5000 H2O + 1.0000 Gd+++ + 3.0000 F- - log_k -16.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -GdPO4:10H2O - GdPO4:10H2O +1.0000 H+ = + 1.0000 Gd+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Gehlenite - Ca2Al2SiO7 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 2.0000 Ca++ + 5.0000 H2O - log_k 56.2997 - -delta_H -489.934 kJ/mol # Calculated enthalpy of reaction Gehlenite -# Enthalpy of formation: -951.225 kcal/mol - -analytic -2.1784e+002 -6.7200e-002 2.9779e+004 7.8488e+001 4.6473e+002 -# -Range: 0-300 - -Gibbsite - Al(OH)3 +3.0000 H+ = + 1.0000 Al+++ + 3.0000 H2O - log_k 7.7560 - -delta_H -102.788 kJ/mol # Calculated enthalpy of reaction Gibbsite -# Enthalpy of formation: -309.065 kcal/mol - -analytic -1.1403e+002 -3.6453e-002 7.7236e+003 4.3134e+001 1.2055e+002 -# -Range: 0-300 - -Gismondine - Ca2Al4Si4O16:9H2O +16.0000 H+ = + 2.0000 Ca++ + 4.0000 Al+++ + 4.0000 SiO2 + 17.0000 H2O - log_k 41.7170 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gismondine -# Enthalpy of formation: 0 kcal/mol - -Glauberite - Na2Ca(SO4)2 = + 1.0000 Ca++ + 2.0000 Na+ + 2.0000 SO4-- - log_k -5.4690 - -delta_H 0 # Not possible to calculate enthalpy of reaction Glauberite -# Enthalpy of formation: 0 kcal/mol - -Goethite - FeOOH +3.0000 H+ = + 1.0000 Fe+++ + 2.0000 H2O - log_k 0.5345 - -delta_H -61.9291 kJ/mol # Calculated enthalpy of reaction Goethite -# Enthalpy of formation: -559.328 kJ/mol - -analytic -6.0331e+001 -1.0847e-002 4.7759e+003 1.9429e+001 8.1122e+001 -# -Range: 0-200 - -Greenalite - Fe3Si2O5(OH)4 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Fe++ + 5.0000 H2O - log_k 22.6701 - -delta_H -165.297 kJ/mol # Calculated enthalpy of reaction Greenalite -# Enthalpy of formation: -787.778 kcal/mol - -analytic -1.4187e+001 -3.8377e-003 1.1710e+004 1.6442e+000 -4.8290e+005 -# -Range: 0-300 - -Grossular - Ca3Al2(SiO4)3 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O - log_k 51.9228 - -delta_H -432.006 kJ/mol # Calculated enthalpy of reaction Grossular -# Enthalpy of formation: -1582.74 kcal/mol - -analytic 2.9389e+001 -2.2478e-002 2.0323e+004 -1.4624e+001 -2.5674e+005 -# -Range: 0-300 - -Gypsum - CaSO4:2H2O = + 1.0000 Ca++ + 1.0000 SO4-- + 2.0000 H2O - log_k -4.4823 - -delta_H -1.66746 kJ/mol # Calculated enthalpy of reaction Gypsum -# Enthalpy of formation: -2022.69 kJ/mol - -analytic -2.4417e+002 -8.3329e-002 5.5958e+003 9.9301e+001 8.7389e+001 -# -Range: 0-300 - -Gyrolite - Ca2Si3O7(OH)2:1.5H2O +4.0000 H+ = + 2.0000 Ca++ + 3.0000 SiO2 + 4.5000 H2O - log_k 22.9099 - -delta_H -82.862 kJ/mol # Calculated enthalpy of reaction Gyrolite -# Enthalpy of formation: -1176.55 kcal/mol - -analytic -2.4416e+001 1.4646e-002 1.6181e+004 2.3723e+000 -1.5369e+006 -# -Range: 0-300 - -HTcO4 - HTcO4 = + 1.0000 H+ + 1.0000 TcO4- - log_k 5.9566 - -delta_H -12.324 kJ/mol # Calculated enthalpy of reaction HTcO4 -# Enthalpy of formation: -703.945 kJ/mol - -analytic 3.0005e+001 7.6416e-003 -5.3546e+001 -1.0568e+001 -9.1953e-001 -# -Range: 0-200 - -Haiweeite - Ca(UO2)2(Si2O5)3:5H2O +6.0000 H+ = + 1.0000 Ca++ + 2.0000 UO2++ + 6.0000 SiO2 + 8.0000 H2O - log_k -7.0413 - -delta_H 0 # Not possible to calculate enthalpy of reaction Haiweeite -# Enthalpy of formation: 0 kcal/mol - -Halite - NaCl = + 1.0000 Cl- + 1.0000 Na+ - log_k 1.5855 - -delta_H 3.7405 kJ/mol # Calculated enthalpy of reaction Halite -# Enthalpy of formation: -98.26 kcal/mol - -analytic -1.0163e+002 -3.4761e-002 2.2796e+003 4.2802e+001 3.5602e+001 -# -Range: 0-300 - -Hatrurite - Ca3SiO5 +6.0000 H+ = + 1.0000 SiO2 + 3.0000 Ca++ + 3.0000 H2O - log_k 73.4056 - -delta_H -434.684 kJ/mol # Calculated enthalpy of reaction Hatrurite -# Enthalpy of formation: -700.234 kcal/mol - -analytic -4.5448e+001 -1.9998e-002 2.3800e+004 1.8494e+001 -7.3385e+004 -# -Range: 0-300 - -Hausmannite - Mn3O4 +8.0000 H+ = + 1.0000 Mn++ + 2.0000 Mn+++ + 4.0000 H2O - log_k 10.1598 - -delta_H -268.121 kJ/mol # Calculated enthalpy of reaction Hausmannite -# Enthalpy of formation: -1387.83 kJ/mol - -analytic -2.0600e+002 -2.2214e-002 2.0160e+004 6.2700e+001 3.1464e+002 -# -Range: 0-300 - -Heazlewoodite - Ni3S2 +4.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 HS- + 3.0000 Ni++ - log_k 28.2477 - -delta_H -270.897 kJ/mol # Calculated enthalpy of reaction Heazlewoodite -# Enthalpy of formation: -203.012 kJ/mol - -analytic -3.5439e+002 -1.1740e-001 2.1811e+004 1.3919e+002 3.4044e+002 -# -Range: 0-300 - -Hedenbergite - CaFe(SiO3)2 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Fe++ + 2.0000 H2O + 2.0000 SiO2 - log_k 19.6060 - -delta_H -124.507 kJ/mol # Calculated enthalpy of reaction Hedenbergite -# Enthalpy of formation: -678.276 kcal/mol - -analytic -1.9473e+001 1.5288e-003 1.2910e+004 2.1729e+000 -9.0058e+005 -# -Range: 0-300 - -Hematite - Fe2O3 +6.0000 H+ = + 2.0000 Fe+++ + 3.0000 H2O - log_k 0.1086 - -delta_H -129.415 kJ/mol # Calculated enthalpy of reaction Hematite -# Enthalpy of formation: -197.72 kcal/mol - -analytic -2.2015e+002 -6.0290e-002 1.1812e+004 8.0253e+001 1.8438e+002 -# -Range: 0-300 - -Hercynite - FeAl2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Al+++ + 4.0000 H2O - log_k 28.8484 - -delta_H -345.961 kJ/mol # Calculated enthalpy of reaction Hercynite -# Enthalpy of formation: -1966.45 kJ/mol - -analytic -3.1848e+002 -7.9501e-002 2.5892e+004 1.1483e+002 4.0412e+002 -# -Range: 0-300 - -Herzenbergite - SnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Sn++ - log_k -15.5786 - -delta_H 81.6466 kJ/mol # Calculated enthalpy of reaction Herzenbergite -# Enthalpy of formation: -25.464 kcal/mol - -analytic -1.3576e+002 -4.6594e-002 -1.1572e+003 5.5740e+001 -1.8018e+001 -# -Range: 0-300 - -Heulandite -# Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6 +8.6600 H+ = + 0.0650 Ba++ + 0.1320 K+ + 0.1750 Sr++ + 0.3830 Na+ + 0.5850 Ca++ + 2.1650 Al+++ + 6.8350 SiO2 + 10.3300 H2O - Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6H2O +8.6600 H+ = + 0.0650 Ba++ + 0.1320 K+ + 0.1750 Sr++ + 0.3830 Na+ + 0.5850 Ca++ + 2.1650 Al+++ + 6.8350 SiO2 + 10.3300 H2O - log_k 3.3506 - -delta_H -97.2942 kJ/mol # Calculated enthalpy of reaction Heulandite -# Enthalpy of formation: -10594.5 kJ/mol - -analytic -1.8364e+001 2.7879e-002 2.8426e+004 -1.7427e+001 -3.4723e+006 -# -Range: 0-300 - -Hexahydrite - MgSO4:6H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 6.0000 H2O - log_k -1.7268 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hexahydrite -# Enthalpy of formation: 0 kcal/mol - -Hf(s) - Hf +4.0000 H+ +1.0000 O2 = + 1.0000 Hf++++ + 2.0000 H2O - log_k 189.9795 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf -# Enthalpy of formation: -0.003 kJ/mol - -HfB2 - HfB2 +2.7500 H+ +2.2500 H2O = + 0.7500 B(OH)3 + 1.0000 Hf++++ + 1.2500 BH4- - log_k 55.7691 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfB2 -# Enthalpy of formation: -78.6 kJ/mol - -HfBr2 - HfBr2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 Br- - log_k 114.9446 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr2 -# Enthalpy of formation: -98 kJ/mol - -HfBr4 - HfBr4 = + 1.0000 Hf++++ + 4.0000 Br- - log_k 48.2921 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr4 -# Enthalpy of formation: -183.1 kJ/mol - -HfC - HfC +3.0000 H+ +2.0000 O2 = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Hf++++ - log_k 215.0827 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfC -# Enthalpy of formation: -54 kJ/mol - -HfCl2 - HfCl2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 Cl- - log_k 109.1624 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl2 -# Enthalpy of formation: -125 kJ/mol - -HfCl4 - HfCl4 = + 1.0000 Hf++++ + 4.0000 Cl- - log_k 38.0919 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl4 -# Enthalpy of formation: -236.7 kJ/mol - -HfF2 - HfF2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 F- - log_k 81.7647 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfF2 -# Enthalpy of formation: -235 kJ/mol - -HfF4 - HfF4 = + 1.0000 Hf++++ + 4.0000 F- - log_k -19.2307 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfF4 -# Enthalpy of formation: -461.4 kJ/mol - -HfI2 - HfI2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 I- - log_k 117.4971 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfI2 -# Enthalpy of formation: -65 kJ/mol - -HfI4 - HfI4 = + 1.0000 Hf++++ + 4.0000 I- - log_k 54.1798 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfI4 -# Enthalpy of formation: -118 kJ/mol - -HfN - HfN +4.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Hf++++ + 1.0000 NH3 - log_k 69.4646 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfN -# Enthalpy of formation: -89.3 kJ/mol - -HfO2 - HfO2 +4.0000 H+ = + 1.0000 Hf++++ + 2.0000 H2O - log_k 1.1829 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfO2 -# Enthalpy of formation: -267.1 kJ/mol - -HfS2 - HfS2 +2.0000 H+ = + 1.0000 Hf++++ + 2.0000 HS- - log_k -1.5845 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfS2 -# Enthalpy of formation: -140 kJ/mol - -HfS3 - HfS3 +1.0000 H+ = + 1.0000 HS- + 1.0000 Hf++++ + 1.0000 S2-- - log_k -18.9936 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfS3 -# Enthalpy of formation: -149 kJ/mol - -Hg2SO4 - Hg2SO4 = + 1.0000 Hg2++ + 1.0000 SO4-- - log_k -6.1170 - -delta_H 0.30448 kJ/mol # Calculated enthalpy of reaction Hg2SO4 -# Enthalpy of formation: -743.09 kJ/mol - -analytic -3.2342e+001 -1.9881e-002 1.6292e+003 1.0781e+001 2.7677e+001 -# -Range: 0-200 - -Hg2SeO3 - Hg2SeO3 = + 1.0000 Hg2++ + 1.0000 SeO3-- - log_k -14.2132 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hg2SeO3 -# Enthalpy of formation: 0 kcal/mol - -HgSeO3 - HgSeO3 = + 1.0000 Hg++ + 1.0000 SeO3-- - log_k -13.8957 - -delta_H 0 # Not possible to calculate enthalpy of reaction HgSeO3 -# Enthalpy of formation: 0 kcal/mol - -Hillebrandite - Ca2SiO3(OH)2:0.17H2O +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 3.1700 H2O - log_k 36.8190 - -delta_H -203.074 kJ/mol # Calculated enthalpy of reaction Hillebrandite -# Enthalpy of formation: -637.404 kcal/mol - -analytic -1.9360e+001 -7.5176e-003 1.1947e+004 8.0558e+000 -1.4504e+005 -# -Range: 0-300 - -Hinsdalite - Al3PPbSO8(OH)6 +7.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pb++ + 1.0000 SO4-- + 3.0000 Al+++ + 6.0000 H2O - log_k 9.8218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hinsdalite -# Enthalpy of formation: 0 kcal/mol - -Ho - Ho +3.0000 H+ +0.7500 O2 = + 1.0000 Ho+++ + 1.5000 H2O - log_k 182.8097 - -delta_H -1126.75 kJ/mol # Calculated enthalpy of reaction Ho -# Enthalpy of formation: 0 kJ/mol - -analytic -6.5903e+001 -2.8190e-002 5.9370e+004 2.3421e+001 9.2643e+002 -# -Range: 0-300 - -Ho(OH)3 - Ho(OH)3 +3.0000 H+ = + 1.0000 Ho+++ + 3.0000 H2O - log_k 15.3852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Ho(OH)3(am) - Ho(OH)3 +3.0000 H+ = + 1.0000 Ho+++ + 3.0000 H2O - log_k 17.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Ho2(CO3)3 - Ho2(CO3)3 +3.0000 H+ = + 2.0000 Ho+++ + 3.0000 HCO3- - log_k -2.8136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Ho2O3 - Ho2O3 +6.0000 H+ = + 2.0000 Ho+++ + 3.0000 H2O - log_k 47.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2O3 -# Enthalpy of formation: 0 kcal/mol - -HoF3:.5H2O - HoF3:.5H2O = + 0.5000 H2O + 1.0000 Ho+++ + 3.0000 F- - log_k -16.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -HoPO4:10H2O - HoPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Ho+++ + 10.0000 H2O - log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Hopeite - Zn3(PO4)2:4H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Zn++ + 4.0000 H2O - log_k -10.6563 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hopeite -# Enthalpy of formation: 0 kcal/mol - -Huntite - CaMg3(CO3)4 +4.0000 H+ = + 1.0000 Ca++ + 3.0000 Mg++ + 4.0000 HCO3- - log_k 10.3010 - -delta_H -171.096 kJ/mol # Calculated enthalpy of reaction Huntite -# Enthalpy of formation: -1082.6 kcal/mol - -analytic -6.5000e+002 -1.9671e-001 2.4815e+004 2.5688e+002 3.8740e+002 -# -Range: 0-300 - -Hydroboracite - MgCaB6O11:6H2O +4.0000 H+ +1.0000 H2O = + 1.0000 Ca++ + 1.0000 Mg++ + 6.0000 B(OH)3 - log_k 20.3631 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydroboracite -# Enthalpy of formation: 0 kcal/mol - -Hydrocerussite - Pb3(CO3)2(OH)2 +4.0000 H+ = + 2.0000 H2O + 2.0000 HCO3- + 3.0000 Pb++ - log_k 1.8477 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrocerussite -# Enthalpy of formation: 0 kcal/mol - -Hydromagnesite - Mg5(CO3)4(OH)2:4H2O +6.0000 H+ = + 4.0000 HCO3- + 5.0000 Mg++ + 6.0000 H2O - log_k 30.8539 - -delta_H -289.696 kJ/mol # Calculated enthalpy of reaction Hydromagnesite -# Enthalpy of formation: -1557.09 kcal/mol - -analytic -7.9288e+002 -2.1448e-001 3.6749e+004 3.0888e+002 5.7367e+002 -# -Range: 0-300 - -Hydrophilite - CaCl2 = + 1.0000 Ca++ + 2.0000 Cl- - log_k 11.7916 - -delta_H -81.4545 kJ/mol # Calculated enthalpy of reaction Hydrophilite -# Enthalpy of formation: -795.788 kJ/mol - -analytic -2.2278e+002 -8.1414e-002 9.0298e+003 9.2349e+001 1.4097e+002 -# -Range: 0-300 - -Hydroxylapatite - Ca5(OH)(PO4)3 +4.0000 H+ = + 1.0000 H2O + 3.0000 HPO4-- + 5.0000 Ca++ - log_k -3.0746 - -delta_H -191.982 kJ/mol # Calculated enthalpy of reaction Hydroxylapatite -# Enthalpy of formation: -6685.52 kJ/mol - -analytic -8.5221e+002 -2.9430e-001 2.8125e+004 3.4044e+002 4.3911e+002 -# -Range: 0-300 - -Hydrozincite - Zn5(OH)6(CO3)2 +8.0000 H+ = + 2.0000 HCO3- + 5.0000 Zn++ + 6.0000 H2O - log_k 30.3076 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrozincite -# Enthalpy of formation: 0 kcal/mol - -I2 - I2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 I- - log_k -24.8084 - -delta_H 165.967 kJ/mol # Calculated enthalpy of reaction I2 -# Enthalpy of formation: 0 kJ/mol - -analytic -1.7135e+002 -6.2810e-002 -4.7225e+003 7.3181e+001 -7.3640e+001 -# -Range: 0-300 - -Ice - H2O = + 1.0000 H2O - log_k 0.1387 - -delta_H 6.74879 kJ/mol # Calculated enthalpy of reaction Ice -# Enthalpy of formation: -69.93 kcal/mol - -analytic -2.3260e+001 4.7948e-004 7.7351e+002 8.3499e+000 1.3143e+001 -# -Range: 0-200 - -Illite - K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 +8.0000 H+ = + 0.2500 Mg++ + 0.6000 K+ + 2.3000 Al+++ + 3.5000 SiO2 + 5.0000 H2O - log_k 9.0260 - -delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite -# Enthalpy of formation: -1394.71 kcal/mol - -analytic 2.6069e+001 -1.2553e-003 1.3670e+004 -2.0232e+001 -1.1204e+006 -# -Range: 0-300 - -Ilmenite - FeTiO3 +2.0000 H+ +1.0000 H2O = + 1.0000 Fe++ + 1.0000 Ti(OH)4 - log_k 0.9046 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ilmenite -# Enthalpy of formation: -1236.65 kJ/mol - -In - In +3.0000 H+ +0.7500 O2 = + 1.0000 In+++ + 1.5000 H2O - log_k 81.6548 - -delta_H -524.257 kJ/mol # Calculated enthalpy of reaction In -# Enthalpy of formation: 0 kJ/mol - -analytic -1.1773e+002 -3.7657e-002 3.1802e+004 4.2438e+001 -9.6348e+004 -# -Range: 0-300 - -Jadeite - NaAl(SiO3)2 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 2.0000 SiO2 - log_k 8.3888 - -delta_H -84.4415 kJ/mol # Calculated enthalpy of reaction Jadeite -# Enthalpy of formation: -722.116 kcal/mol - -analytic 1.5934e+000 5.0757e-003 9.5602e+003 -7.0164e+000 -8.4454e+005 -# -Range: 0-300 - -Jarosite - KFe3(SO4)2(OH)6 +6.0000 H+ = + 1.0000 K+ + 2.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O - log_k -9.3706 - -delta_H -191.343 kJ/mol # Calculated enthalpy of reaction Jarosite -# Enthalpy of formation: -894.79 kcal/mol - -analytic -1.0813e+002 -5.0381e-002 9.6893e+003 3.2832e+001 1.6457e+002 -# -Range: 0-200 - -Jarosite-Na - NaFe3(SO4)2(OH)6 +6.0000 H+ = + 1.0000 Na+ + 2.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O - log_k -5.4482 - -delta_H 0 # Not possible to calculate enthalpy of reaction Jarosite-Na -# Enthalpy of formation: 0 kcal/mol - -K - K +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 K+ - log_k 70.9861 - -delta_H -392.055 kJ/mol # Calculated enthalpy of reaction K -# Enthalpy of formation: 0 kJ/mol - -analytic -3.1102e+001 -1.0003e-002 2.1338e+004 1.3534e+001 3.3296e+002 -# -Range: 0-300 - -K-Feldspar - KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 - log_k -0.2753 - -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction K-Feldspar -# Enthalpy of formation: -949.188 kcal/mol - -analytic -1.0684e+000 1.3111e-002 1.1671e+004 -9.9129e+000 -1.5855e+006 -# -Range: 0-300 - -K2CO3:1.5H2O - K2CO3:1.5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.5000 H2O + 2.0000 K+ - log_k 13.3785 - -delta_H 0 # Not possible to calculate enthalpy of reaction K2CO3:1.5H2O -# Enthalpy of formation: 0 kcal/mol - -K2O - K2O +2.0000 H+ = + 1.0000 H2O + 2.0000 K+ - log_k 84.0405 - -delta_H -427.006 kJ/mol # Calculated enthalpy of reaction K2O -# Enthalpy of formation: -86.8 kcal/mol - -analytic -1.8283e+001 -5.2255e-003 2.3184e+004 1.0553e+001 3.6177e+002 -# -Range: 0-300 - -K2Se - K2Se = + 1.0000 Se-- + 2.0000 K+ - log_k 11.2925 - -delta_H 0 # Not possible to calculate enthalpy of reaction K2Se -# Enthalpy of formation: -92 kcal/mol - -analytic 1.8182e+001 7.8828e-003 2.6345e+003 -7.3075e+000 4.4732e+001 -# -Range: 0-200 - -K2UO4 - K2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 K+ - log_k 33.8714 - -delta_H -174.316 kJ/mol # Calculated enthalpy of reaction K2UO4 -# Enthalpy of formation: -1920.7 kJ/mol - -analytic -7.0905e+001 -2.5680e-003 1.2244e+004 2.6056e+001 2.0794e+002 -# -Range: 0-200 - -K3H(SO4)2 - K3H(SO4)2 = + 1.0000 H+ + 2.0000 SO4-- + 3.0000 K+ - log_k -3.6233 - -delta_H 0 # Not possible to calculate enthalpy of reaction K3H(SO4)2 -# Enthalpy of formation: 0 kcal/mol - -K8H4(CO3)6:3H2O - K8H4(CO3)6:3H2O +2.0000 H+ = + 3.0000 H2O + 6.0000 HCO3- + 8.0000 K+ - log_k 27.7099 - -delta_H 0 # Not possible to calculate enthalpy of reaction K8H4(CO3)6:3H2O -# Enthalpy of formation: 0 kcal/mol - -KAl(SO4)2 - KAl(SO4)2 = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 SO4-- - log_k 3.3647 - -delta_H -139.485 kJ/mol # Calculated enthalpy of reaction KAl(SO4)2 -# Enthalpy of formation: -2470.29 kJ/mol - -analytic -4.2785e+002 -1.6303e-001 1.5311e+004 1.7312e+002 2.3904e+002 -# -Range: 0-300 - -KBr - KBr = + 1.0000 Br- + 1.0000 K+ - log_k 1.0691 - -delta_H 20.125 kJ/mol # Calculated enthalpy of reaction KBr -# Enthalpy of formation: -393.798 kJ/mol - -analytic -7.3164e+001 -3.1240e-002 4.8140e+002 3.3104e+001 7.5336e+000 -# -Range: 0-300 - -KMgCl3 - KMgCl3 = + 1.0000 K+ + 1.0000 Mg++ + 3.0000 Cl- - log_k 21.2618 - -delta_H -132.768 kJ/mol # Calculated enthalpy of reaction KMgCl3 -# Enthalpy of formation: -1086.6 kJ/mol - -analytic -8.4641e+000 -3.2688e-002 5.1496e+003 8.9652e+000 8.7450e+001 -# -Range: 0-200 - -KMgCl3:2H2O - KMgCl3:2H2O = + 1.0000 K+ + 1.0000 Mg++ + 2.0000 H2O + 3.0000 Cl- - log_k 13.9755 - -delta_H -76.8449 kJ/mol # Calculated enthalpy of reaction KMgCl3:2H2O -# Enthalpy of formation: -1714.2 kJ/mol - -analytic -5.9982e+001 -3.3015e-002 4.6174e+003 2.7602e+001 7.8431e+001 -# -Range: 0-200 - -KNaCO3:6H2O - KNaCO3:6H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 K+ + 1.0000 Na+ + 6.0000 H2O - log_k 10.2593 - -delta_H 0 # Not possible to calculate enthalpy of reaction KNaCO3:6H2O -# Enthalpy of formation: 0 kcal/mol - -KTcO4 - KTcO4 = + 1.0000 K+ + 1.0000 TcO4- - log_k -2.2667 - -delta_H 53.2363 kJ/mol # Calculated enthalpy of reaction KTcO4 -# Enthalpy of formation: -1021.67 kJ/mol - -analytic 1.8058e+001 -8.4795e-004 -2.3985e+003 -4.1788e+000 -1.5029e+005 -# -Range: 0-300 - -KUO2AsO4 - KUO2AsO4 +2.0000 H+ = + 1.0000 H2AsO4- + 1.0000 K+ + 1.0000 UO2++ - log_k -4.1741 - -delta_H 0 # Not possible to calculate enthalpy of reaction KUO2AsO4 -# Enthalpy of formation: 0 kcal/mol - -Kainite - KMgClSO4:3H2O = + 1.0000 Cl- + 1.0000 K+ + 1.0000 Mg++ + 1.0000 SO4-- + 3.0000 H2O - log_k -0.3114 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kainite -# Enthalpy of formation: 0 kcal/mol - -Kalicinite - KHCO3 = + 1.0000 HCO3- + 1.0000 K+ - log_k 0.2837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kalicinite -# Enthalpy of formation: 0 kcal/mol - -Kalsilite - KAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 1.0000 SiO2 + 2.0000 H2O - log_k 10.8987 - -delta_H -108.583 kJ/mol # Calculated enthalpy of reaction Kalsilite -# Enthalpy of formation: -509.408 kcal/mol - -analytic -6.7595e+000 -7.4301e-003 6.5380e+003 1.8999e-001 -2.2880e+005 -# -Range: 0-300 - -Kaolinite - Al2Si2O5(OH)4 +6.0000 H+ = + 2.0000 Al+++ + 2.0000 SiO2 + 5.0000 H2O - log_k 6.8101 - -delta_H -151.779 kJ/mol # Calculated enthalpy of reaction Kaolinite -# Enthalpy of formation: -982.221 kcal/mol - -analytic 1.6835e+001 -7.8939e-003 7.7636e+003 -1.2190e+001 -3.2354e+005 -# -Range: 0-300 - -Karelianite - V2O3 +6.0000 H+ = + 2.0000 V+++ + 3.0000 H2O - log_k 9.9424 - -delta_H -160.615 kJ/mol # Calculated enthalpy of reaction Karelianite -# Enthalpy of formation: -1218.98 kJ/mol - -analytic -2.7961e+001 -7.1499e-003 6.7749e+003 5.8146e+000 2.6039e+005 -# -Range: 0-300 - -Kasolite - Pb(UO2)SiO4:H2O +4.0000 H+ = + 1.0000 Pb++ + 1.0000 SiO2 + 1.0000 UO2++ + 3.0000 H2O - log_k 7.2524 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kasolite -# Enthalpy of formation: 0 kcal/mol - -Katoite - Ca3Al2H12O12 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 12.0000 H2O - log_k 78.9437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Katoite -# Enthalpy of formation: 0 kcal/mol - -Kieserite - MgSO4:H2O = + 1.0000 H2O + 1.0000 Mg++ + 1.0000 SO4-- - log_k -0.2670 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kieserite -# Enthalpy of formation: 0 kcal/mol - -Klockmannite - CuSe = + 1.0000 Cu++ + 1.0000 Se-- - log_k -41.6172 - -delta_H 0 # Not possible to calculate enthalpy of reaction Klockmannite -# Enthalpy of formation: -10 kcal/mol - -analytic -2.3021e+001 -2.1458e-003 -8.5938e+003 4.3900e+000 -1.4593e+002 -# -Range: 0-200 - -Krutaite - CuSe2 +1.0000 H2O = + 0.5000 O2 + 1.0000 Cu++ + 2.0000 H+ + 2.0000 Se-- - log_k -107.6901 - -delta_H 0 # Not possible to calculate enthalpy of reaction Krutaite -# Enthalpy of formation: -11.5 kcal/mol - -analytic -3.7735e+001 -8.7548e-004 -2.6352e+004 7.5528e+000 -4.4749e+002 -# -Range: 0-200 - -Kyanite - Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O - log_k 15.6740 - -delta_H -230.919 kJ/mol # Calculated enthalpy of reaction Kyanite -# Enthalpy of formation: -616.897 kcal/mol - -analytic -7.3335e+001 -3.2853e-002 1.2166e+004 2.3412e+001 1.8986e+002 -# -Range: 0-300 - -La - La +3.0000 H+ +0.7500 O2 = + 1.0000 La+++ + 1.5000 H2O - log_k 184.7155 - -delta_H -1129.26 kJ/mol # Calculated enthalpy of reaction La -# Enthalpy of formation: 0 kJ/mol - -analytic -5.9508e+001 -2.7578e-002 5.9327e+004 2.1589e+001 9.2577e+002 -# -Range: 0-300 - -La(OH)3 - La(OH)3 +3.0000 H+ = + 1.0000 La+++ + 3.0000 H2O - log_k 20.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3 -# Enthalpy of formation: 0 kcal/mol - -La(OH)3(am) - La(OH)3 +3.0000 H+ = + 1.0000 La+++ + 3.0000 H2O - log_k 23.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -La2(CO3)3:8H2O - La2(CO3)3:8H2O +3.0000 H+ = + 2.0000 La+++ + 3.0000 HCO3- + 8.0000 H2O - log_k -4.3136 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2(CO3)3:8H2O -# Enthalpy of formation: 0 kcal/mol - -La2O3 - La2O3 +6.0000 H+ = + 2.0000 La+++ + 3.0000 H2O - log_k 66.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2O3 -# Enthalpy of formation: 0 kcal/mol - -LaCl3 - LaCl3 = + 1.0000 La+++ + 3.0000 Cl- - log_k 14.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3 -# Enthalpy of formation: 0 kcal/mol - -LaCl3:7H2O - LaCl3:7H2O = + 1.0000 La+++ + 3.0000 Cl- + 7.0000 H2O - log_k 4.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3:7H2O -# Enthalpy of formation: 0 kcal/mol - -LaF3:.5H2O - LaF3:.5H2O = + 0.5000 H2O + 1.0000 La+++ + 3.0000 F- - log_k -18.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -LaPO4:10H2O - LaPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 La+++ + 10.0000 H2O - log_k -12.3782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Lammerite - Cu3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Cu++ - log_k 1.5542 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lammerite -# Enthalpy of formation: 0 kcal/mol -Lanarkite - Pb2(SO4)O +2.0000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 2.0000 Pb++ - log_k -0.4692 - -delta_H -22.014 kJ/mol # Calculated enthalpy of reaction Lanarkite -# Enthalpy of formation: -1171.59 kJ/mol - -analytic 5.1071e+000 -1.6655e-002 0.0000e+000 0.0000e+000 -5.5660e+004 -# -Range: 0-200 - -Lansfordite - MgCO3:5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ + 5.0000 H2O - log_k 4.8409 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lansfordite -# Enthalpy of formation: 0 kcal/mol - -Larnite - Ca2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 2.0000 H2O - log_k 38.4665 - -delta_H -227.061 kJ/mol # Calculated enthalpy of reaction Larnite -# Enthalpy of formation: -551.74 kcal/mol - -analytic 2.6900e+001 -2.1833e-003 1.0900e+004 -9.5257e+000 -7.2537e+004 -# -Range: 0-300 - -Laumontite - CaAl2Si4O12:4H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 SiO2 + 8.0000 H2O - log_k 13.6667 - -delta_H -184.657 kJ/mol # Calculated enthalpy of reaction Laumontite -# Enthalpy of formation: -1728.66 kcal/mol - -analytic 1.1904e+000 8.1763e-003 1.9005e+004 -1.4561e+001 -1.5851e+006 -# -Range: 0-300 - -Laurite - RuS2 = + 1.0000 Ru++ + 1.0000 S2-- - log_k -73.2649 - -delta_H 0 # Not possible to calculate enthalpy of reaction Laurite -# Enthalpy of formation: -199.586 kJ/mol - -Lawrencite - FeCl2 = + 1.0000 Fe++ + 2.0000 Cl- - log_k 9.0945 - -delta_H -84.7665 kJ/mol # Calculated enthalpy of reaction Lawrencite -# Enthalpy of formation: -341.65 kJ/mol - -analytic -2.2798e+002 -8.1819e-002 9.2620e+003 9.3097e+001 1.4459e+002 -# -Range: 0-300 - -Lawsonite - CaAl2Si2O7(OH)2:H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 2.0000 SiO2 + 6.0000 H2O - log_k 22.2132 - -delta_H -244.806 kJ/mol # Calculated enthalpy of reaction Lawsonite -# Enthalpy of formation: -1158.1 kcal/mol - -analytic 1.3995e+001 -1.7668e-002 1.0119e+004 -8.3100e+000 1.5789e+002 -# -Range: 0-300 - -Leonite - K2Mg(SO4)2:4H2O = + 1.0000 Mg++ + 2.0000 K+ + 2.0000 SO4-- + 4.0000 H2O - log_k -4.1123 - -delta_H 0 # Not possible to calculate enthalpy of reaction Leonite -# Enthalpy of formation: 0 kcal/mol - -Li - Li +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Li+ - log_k 72.7622 - -delta_H -418.339 kJ/mol # Calculated enthalpy of reaction Li -# Enthalpy of formation: 0 kJ/mol - -analytic -1.0227e+002 -1.8118e-002 2.6262e+004 3.8056e+001 -1.6166e+005 -# -Range: 0-300 - -Li2Se - Li2Se +1.5000 O2 = + 1.0000 SeO3-- + 2.0000 Li+ - log_k 102.8341 - -delta_H -646.236 kJ/mol # Calculated enthalpy of reaction Li2Se -# Enthalpy of formation: -96 kcal/mol - -analytic 1.1933e+002 -6.9663e-003 2.7509e+004 -4.3124e+001 4.6710e+002 -# -Range: 0-200 - -Li2UO4 - Li2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Li+ - log_k 27.8421 - -delta_H -179.384 kJ/mol # Calculated enthalpy of reaction Li2UO4 -# Enthalpy of formation: -1968.2 kJ/mol - -analytic -1.4470e+002 -1.2024e-002 1.4899e+004 5.0984e+001 2.5306e+002 -# -Range: 0-200 - -LiUO2AsO4 - LiUO2AsO4 +2.0000 H+ = + 1.0000 H2AsO4- + 1.0000 Li+ + 1.0000 UO2++ - log_k -0.7862 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiUO2AsO4 -# Enthalpy of formation: 0 kcal/mol - -Lime - CaO +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O - log_k 32.5761 - -delta_H -193.832 kJ/mol # Calculated enthalpy of reaction Lime -# Enthalpy of formation: -151.79 kcal/mol - -analytic -7.2686e+001 -1.7654e-002 1.2199e+004 2.8128e+001 1.9037e+002 -# -Range: 0-300 - -Linnaeite - Co3S4 +4.0000 H+ = + 1.0000 Co++ + 2.0000 Co+++ + 4.0000 HS- - log_k -106.9017 - -delta_H 420.534 kJ/mol # Calculated enthalpy of reaction Linnaeite -# Enthalpy of formation: -85.81 kcal/mol - -analytic -6.0034e+002 -2.0179e-001 -9.2145e+003 2.3618e+002 -1.4361e+002 -# -Range: 0-300 - -Litharge - PbO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ - log_k 12.6388 - -delta_H -65.9118 kJ/mol # Calculated enthalpy of reaction Litharge -# Enthalpy of formation: -219.006 kJ/mol - -analytic -1.8683e+001 -2.0211e-003 4.1876e+003 7.2239e+000 7.1118e+001 -# -Range: 0-200 - -Lopezite - K2Cr2O7 +1.0000 H2O = + 2.0000 CrO4-- + 2.0000 H+ + 2.0000 K+ - log_k -17.4366 - -delta_H 81.9227 kJ/mol # Calculated enthalpy of reaction Lopezite -# Enthalpy of formation: -493.003 kcal/mol - -analytic 7.8359e+001 -2.2908e-002 -9.3812e+003 -2.3245e+001 -1.5933e+002 -# -Range: 0-200 - -Lu - Lu +3.0000 H+ +0.7500 O2 = + 1.0000 Lu+++ + 1.5000 H2O - log_k 181.3437 - -delta_H -1122.15 kJ/mol # Calculated enthalpy of reaction Lu -# Enthalpy of formation: 0 kJ/mol - -analytic -6.8950e+001 -2.8643e-002 5.9209e+004 2.4332e+001 9.2392e+002 -# -Range: 0-300 - -Lu(OH)3 - Lu(OH)3 +3.0000 H+ = + 1.0000 Lu+++ + 3.0000 H2O - log_k 14.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Lu(OH)3(am) - Lu(OH)3 +3.0000 H+ = + 1.0000 Lu+++ + 3.0000 H2O - log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Lu2(CO3)3 - Lu2(CO3)3 +3.0000 H+ = + 2.0000 Lu+++ + 3.0000 HCO3- - log_k -2.0136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Lu2O3 - Lu2O3 +6.0000 H+ = + 2.0000 Lu+++ + 3.0000 H2O - log_k 45.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2O3 -# Enthalpy of formation: 0 kcal/mol - -LuF3:.5H2O - LuF3:.5H2O = + 0.5000 H2O + 1.0000 Lu+++ + 3.0000 F- - log_k -15.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -LuPO4:10H2O - LuPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Lu+++ + 10.0000 H2O - log_k -11.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Magnesiochromite - MgCr2O4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 21.6927 - -delta_H -302.689 kJ/mol # Calculated enthalpy of reaction Magnesiochromite -# Enthalpy of formation: -1783.6 kJ/mol - -analytic -1.7376e+002 -8.7429e-003 2.1600e+004 5.0762e+001 3.6685e+002 -# -Range: 0-200 - -Magnesite - MgCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ - log_k 2.2936 - -delta_H -44.4968 kJ/mol # Calculated enthalpy of reaction Magnesite -# Enthalpy of formation: -265.63 kcal/mol - -analytic -1.6665e+002 -4.9469e-002 6.4344e+003 6.5506e+001 1.0045e+002 -# -Range: 0-300 - -Magnetite - Fe3O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 10.4724 - -delta_H -216.597 kJ/mol # Calculated enthalpy of reaction Magnetite -# Enthalpy of formation: -267.25 kcal/mol - -analytic -3.0510e+002 -7.9919e-002 1.8709e+004 1.1178e+002 2.9203e+002 -# -Range: 0-300 - -Malachite - Cu2CO3(OH)2 +3.0000 H+ = + 1.0000 HCO3- + 2.0000 Cu++ + 2.0000 H2O - log_k 5.9399 - -delta_H -76.2827 kJ/mol # Calculated enthalpy of reaction Malachite -# Enthalpy of formation: -251.9 kcal/mol - -analytic -2.7189e+002 -6.9454e-002 1.1451e+004 1.0511e+002 1.7877e+002 -# -Range: 0-300 - -Manganite - MnO(OH) +3.0000 H+ = + 1.0000 Mn+++ + 2.0000 H2O - log_k -0.1646 - -delta_H 0 # Not possible to calculate enthalpy of reaction Manganite -# Enthalpy of formation: 0 kcal/mol - -Manganosite - MnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Mn++ - log_k 17.9240 - -delta_H -121.215 kJ/mol # Calculated enthalpy of reaction Manganosite -# Enthalpy of formation: -92.07 kcal/mol - -analytic -8.4114e+001 -1.8490e-002 8.7792e+003 3.1561e+001 1.3702e+002 -# -Range: 0-300 - -Margarite - CaAl4Si2O10(OH)2 +14.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 4.0000 Al+++ + 8.0000 H2O - log_k 41.0658 - -delta_H -522.192 kJ/mol # Calculated enthalpy of reaction Margarite -# Enthalpy of formation: -1485.8 kcal/mol - -analytic -2.3138e+002 -8.2788e-002 3.0154e+004 7.9148e+001 4.7060e+002 -# -Range: 0-300 - -Massicot - PbO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ - log_k 12.8210 - -delta_H -67.6078 kJ/mol # Calculated enthalpy of reaction Massicot -# Enthalpy of formation: -217.31 kJ/mol - -analytic -1.8738e+001 -2.0125e-003 4.2739e+003 7.2018e+000 7.2584e+001 -# -Range: 0-200 - -Matlockite - PbFCl = + 1.0000 Cl- + 1.0000 F- + 1.0000 Pb++ - log_k -9.4300 - -delta_H 0 # Not possible to calculate enthalpy of reaction Matlockite -# Enthalpy of formation: 0 kcal/mol - -Maximum_Microcline - KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 - log_k -0.2753 - -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction Maximum_Microcline -# Enthalpy of formation: -949.188 kcal/mol - -analytic -9.4387e+000 1.3561e-002 1.2656e+004 -7.4925e+000 -1.6795e+006 -# -Range: 0-300 - -Mayenite - Ca12Al14O33 +66.0000 H+ = + 12.0000 Ca++ + 14.0000 Al+++ + 33.0000 H2O - log_k 494.2199 - -delta_H -4056.77 kJ/mol # Calculated enthalpy of reaction Mayenite -# Enthalpy of formation: -4644 kcal/mol - -analytic -1.4778e+003 -2.9898e-001 2.4918e+005 4.9518e+002 4.2319e+003 -# -Range: 0-200 - -Melanterite - FeSO4:7H2O = + 1.0000 Fe++ + 1.0000 SO4-- + 7.0000 H2O - log_k -2.3490 - -delta_H 11.7509 kJ/mol # Calculated enthalpy of reaction Melanterite -# Enthalpy of formation: -3014.48 kJ/mol - -analytic -2.6230e+002 -7.2469e-002 6.5854e+003 1.0484e+002 1.0284e+002 -# -Range: 0-300 - -Mercallite - KHSO4 = + 1.0000 H+ + 1.0000 K+ + 1.0000 SO4-- - log_k -1.4389 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mercallite -# Enthalpy of formation: 0 kcal/mol - -Merwinite - MgCa3(SiO4)2 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 SiO2 + 3.0000 Ca++ + 4.0000 H2O - log_k 68.5140 - -delta_H -430.069 kJ/mol # Calculated enthalpy of reaction Merwinite -# Enthalpy of formation: -1090.8 kcal/mol - -analytic -2.2524e+002 -4.2525e-002 3.5619e+004 7.9984e+001 -9.8259e+005 -# -Range: 0-300 - -Mesolite - Na.676Ca.657Al1.99Si3.01O10:2.647H2O +7.9600 H+ = + 0.6570 Ca++ + 0.6760 Na+ + 1.9900 Al+++ + 3.0100 SiO2 + 6.6270 H2O - log_k 13.6191 - -delta_H -179.744 kJ/mol # Calculated enthalpy of reaction Mesolite -# Enthalpy of formation: -5947.05 kJ/mol - -analytic 7.1993e+000 5.9356e-003 1.4717e+004 -1.3627e+001 -9.8863e+005 -# -Range: 0-300 - -Metacinnabar - HgS +1.0000 H+ = + 1.0000 HS- + 1.0000 Hg++ - log_k -38.5979 - -delta_H 203.426 kJ/mol # Calculated enthalpy of reaction Metacinnabar -# Enthalpy of formation: -11.8 kcal/mol - -analytic -1.5399e+002 -4.6740e-002 -6.7875e+003 6.1456e+001 -1.0587e+002 -# -Range: 0-300 - -Mg - Mg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mg++ - log_k 122.5365 - -delta_H -745.731 kJ/mol # Calculated enthalpy of reaction Mg -# Enthalpy of formation: 0 kJ/mol - -analytic -6.5988e+001 -1.9356e-002 4.0318e+004 2.3862e+001 6.2914e+002 -# -Range: 0-300 - -Mg1.25SO4(OH)0.5:0.5H2O - Mg1.25SO4(OH)0.5:0.5H2O +0.5000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 1.2500 Mg++ - log_k 5.2600 - -delta_H -97.1054 kJ/mol # Calculated enthalpy of reaction Mg1.25SO4(OH)0.5:0.5H2O -# Enthalpy of formation: -401.717 kcal/mol - -analytic -2.6791e+002 -8.7078e-002 1.1090e+004 1.0583e+002 1.7312e+002 -# -Range: 0-300 - -Mg1.5SO4(OH) - Mg1.5SO4(OH) +1.0000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 1.5000 Mg++ - log_k 9.2551 - -delta_H -125.832 kJ/mol # Calculated enthalpy of reaction Mg1.5SO4(OH) -# Enthalpy of formation: -422.693 kcal/mol - -analytic -2.8698e+002 -9.1970e-002 1.3088e+004 1.1304e+002 2.0432e+002 -# -Range: 0-300 - -Mg2V2O7 - Mg2V2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 Mg++ + 2.0000 VO4--- - log_k -30.9025 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mg2V2O7 -# Enthalpy of formation: -2836.23 kJ/mol - -MgBr2 - MgBr2 = + 1.0000 Mg++ + 2.0000 Br- - log_k 28.5302 - -delta_H -190.15 kJ/mol # Calculated enthalpy of reaction MgBr2 -# Enthalpy of formation: -124 kcal/mol - -analytic -2.1245e+002 -7.6168e-002 1.4466e+004 8.6940e+001 2.2579e+002 -# -Range: 0-300 - -MgBr2:6H2O - MgBr2:6H2O = + 1.0000 Mg++ + 2.0000 Br- + 6.0000 H2O - log_k 5.1656 - -delta_H -14.2682 kJ/mol # Calculated enthalpy of reaction MgBr2:6H2O -# Enthalpy of formation: -2409.73 kJ/mol - -analytic -1.3559e+002 -1.6479e-002 5.8571e+003 5.0924e+001 9.9508e+001 -# -Range: 0-200 - -MgCl2:2H2O - MgCl2:2H2O = + 1.0000 Mg++ + 2.0000 Cl- + 2.0000 H2O - log_k 12.7763 - -delta_H -92.0895 kJ/mol # Calculated enthalpy of reaction MgCl2:2H2O -# Enthalpy of formation: -1279.71 kJ/mol - -analytic -2.5409e+002 -8.1413e-002 1.0941e+004 1.0281e+002 1.7080e+002 -# -Range: 0-300 - -MgCl2:4H2O - MgCl2:4H2O = + 1.0000 Mg++ + 2.0000 Cl- + 4.0000 H2O - log_k 7.3581 - -delta_H -44.4602 kJ/mol # Calculated enthalpy of reaction MgCl2:4H2O -# Enthalpy of formation: -1899.01 kJ/mol - -analytic -2.7604e+002 -8.1648e-002 9.5501e+003 1.1140e+002 1.4910e+002 -# -Range: 0-300 - -MgCl2:H2O - MgCl2:H2O = + 1.0000 H2O + 1.0000 Mg++ + 2.0000 Cl- - log_k 16.1187 - -delta_H -119.326 kJ/mol # Calculated enthalpy of reaction MgCl2:H2O -# Enthalpy of formation: -966.631 kJ/mol - -analytic -2.4414e+002 -8.1310e-002 1.1862e+004 9.8878e+001 1.8516e+002 -# -Range: 0-300 - -MgOHCl - MgOHCl +1.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 Mg++ - log_k 15.9138 - -delta_H -118.897 kJ/mol # Calculated enthalpy of reaction MgOHCl -# Enthalpy of formation: -191.2 kcal/mol - -analytic -1.6614e+002 -4.9715e-002 1.0311e+004 6.5578e+001 1.6093e+002 -# -Range: 0-300 - -MgSO4 - MgSO4 = + 1.0000 Mg++ + 1.0000 SO4-- - log_k 4.8781 - -delta_H -90.6421 kJ/mol # Calculated enthalpy of reaction MgSO4 -# Enthalpy of formation: -1284.92 kJ/mol - -analytic -2.2439e+002 -7.9688e-002 9.3058e+003 8.9622e+001 1.4527e+002 -# -Range: 0-300 - -MgSeO3 - MgSeO3 = + 1.0000 Mg++ + 1.0000 SeO3-- - log_k 1.7191 - -delta_H -74.9647 kJ/mol # Calculated enthalpy of reaction MgSeO3 -# Enthalpy of formation: -215.15 kcal/mol - -analytic -2.2593e+002 -8.1045e-002 8.4609e+003 9.0278e+001 1.3209e+002 -# -Range: 0-300 - -MgSeO3:6H2O - MgSeO3:6H2O = + 1.0000 Mg++ + 1.0000 SeO3-- + 6.0000 H2O - log_k -3.4222 - -delta_H 11.7236 kJ/mol # Calculated enthalpy of reaction MgSeO3:6H2O -# Enthalpy of formation: -645.771 kcal/mol - -analytic -1.2807e+002 -1.5418e-002 4.0565e+003 4.6728e+001 6.8929e+001 -# -Range: 0-200 - -MgUO4 - MgUO4 +4.0000 H+ = + 1.0000 Mg++ + 1.0000 UO2++ + 2.0000 H2O - log_k 23.0023 - -delta_H -199.336 kJ/mol # Calculated enthalpy of reaction MgUO4 -# Enthalpy of formation: -1857.3 kJ/mol - -analytic -9.9954e+001 -2.0142e-002 1.3078e+004 3.4386e+001 2.0410e+002 -# -Range: 0-300 - -MgV2O6 - MgV2O6 +2.0000 H2O = + 1.0000 Mg++ + 2.0000 VO4--- + 4.0000 H+ - log_k -45.8458 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgV2O6 -# Enthalpy of formation: -2201.88 kJ/mol - -Millerite - NiS +1.0000 H+ = + 1.0000 HS- + 1.0000 Ni++ - log_k -8.0345 - -delta_H 12.089 kJ/mol # Calculated enthalpy of reaction Millerite -# Enthalpy of formation: -82.171 kJ/mol - -analytic -1.4848e+002 -4.8834e-002 2.6981e+003 5.8976e+001 4.2145e+001 -# -Range: 0-300 - -Minium - Pb3O4 +8.0000 H+ = + 1.0000 Pb++++ + 2.0000 Pb++ + 4.0000 H2O - log_k 16.2585 - -delta_H 0 # Not possible to calculate enthalpy of reaction Minium -# Enthalpy of formation: -718.493 kJ/mol - -Minnesotaite - Fe3Si4O10(OH)2 +6.0000 H+ = + 3.0000 Fe++ + 4.0000 H2O + 4.0000 SiO2 - log_k 13.9805 - -delta_H -105.211 kJ/mol # Calculated enthalpy of reaction Minnesotaite -# Enthalpy of formation: -1153.37 kcal/mol - -analytic -1.8812e+001 1.7261e-002 1.9804e+004 -6.4410e+000 -2.0433e+006 -# -Range: 0-300 - -Mirabilite - Na2SO4:10H2O = + 1.0000 SO4-- + 2.0000 Na+ + 10.0000 H2O - log_k -1.1398 - -delta_H 79.4128 kJ/mol # Calculated enthalpy of reaction Mirabilite -# Enthalpy of formation: -4328 kJ/mol - -analytic -2.1877e+002 -3.6692e-003 5.9214e+003 8.0361e+001 1.0063e+002 -# -Range: 0-200 - -Misenite - K8H6(SO4)7 = + 6.0000 H+ + 7.0000 SO4-- + 8.0000 K+ - log_k -11.0757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Misenite -# Enthalpy of formation: 0 kcal/mol - -Mn - Mn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mn++ - log_k 82.9505 - -delta_H -500.369 kJ/mol # Calculated enthalpy of reaction Mn -# Enthalpy of formation: 0 kJ/mol - -analytic -6.5558e+001 -2.0429e-002 2.7571e+004 2.5098e+001 4.3024e+002 -# -Range: 0-300 - -Mn(OH)2(am) - Mn(OH)2 +2.0000 H+ = + 1.0000 Mn++ + 2.0000 H2O - log_k 15.3102 - -delta_H -97.1779 kJ/mol # Calculated enthalpy of reaction Mn(OH)2(am) -# Enthalpy of formation: -695.096 kJ/mol - -analytic -7.8518e+001 -7.5357e-003 8.0198e+003 2.7955e+001 1.3621e+002 -# -Range: 0-200 - -Mn(OH)3 - Mn(OH)3 +3.0000 H+ = + 1.0000 Mn+++ + 3.0000 H2O - log_k 6.3412 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Mn3(PO4)2 - Mn3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Mn++ - log_k 0.8167 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn3(PO4)2 -# Enthalpy of formation: 0 kcal/mol - -MnCl2:2H2O - MnCl2:2H2O = + 1.0000 Mn++ + 2.0000 Cl- + 2.0000 H2O - log_k 4.0067 - -delta_H -34.4222 kJ/mol # Calculated enthalpy of reaction MnCl2:2H2O -# Enthalpy of formation: -1092.01 kJ/mol - -analytic -6.2823e+001 -2.3959e-002 2.9931e+003 2.5834e+001 5.0850e+001 -# -Range: 0-200 - -MnCl2:4H2O - MnCl2:4H2O = + 1.0000 Mn++ + 2.0000 Cl- + 4.0000 H2O - log_k 2.7563 - -delta_H -10.7019 kJ/mol # Calculated enthalpy of reaction MnCl2:4H2O -# Enthalpy of formation: -1687.41 kJ/mol - -analytic -1.1049e+002 -2.3376e-002 4.0458e+003 4.3097e+001 6.8742e+001 -# -Range: 0-200 - -MnCl2:H2O - MnCl2:H2O = + 1.0000 H2O + 1.0000 Mn++ + 2.0000 Cl- - log_k 5.5517 - -delta_H -50.8019 kJ/mol # Calculated enthalpy of reaction MnCl2:H2O -# Enthalpy of formation: -789.793 kJ/mol - -analytic -4.5051e+001 -2.5923e-002 2.8739e+003 1.9674e+001 4.8818e+001 -# -Range: 0-200 - -MnHPO4 - MnHPO4 = + 1.0000 HPO4-- + 1.0000 Mn++ - log_k -12.9470 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 -# Enthalpy of formation: 0 kcal/mol - -MnO2(gamma) - MnO2 = + 0.5000 Mn++ + 0.5000 MnO4-- - log_k -16.1261 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnO2(gamma) -# Enthalpy of formation: 0 kcal/mol - -MnSO4 - MnSO4 = + 1.0000 Mn++ + 1.0000 SO4-- - log_k 2.6561 - -delta_H -64.8718 kJ/mol # Calculated enthalpy of reaction MnSO4 -# Enthalpy of formation: -1065.33 kJ/mol - -analytic -2.3088e+002 -8.2694e-002 8.1653e+003 9.3256e+001 1.2748e+002 -# -Range: 0-300 - -MnSe - MnSe = + 1.0000 Mn++ + 1.0000 Se-- - log_k -10.6848 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSe -# Enthalpy of formation: -37 kcal/mol - -analytic -5.9960e+001 -1.5963e-002 1.2813e+003 2.0095e+001 2.0010e+001 -# -Range: 0-300 - -MnSeO3 - MnSeO3 = + 1.0000 Mn++ + 1.0000 SeO3-- - log_k -7.2700 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO3 -# Enthalpy of formation: 0 kcal/mol - -MnSeO3:2H2O - MnSeO3:2H2O = + 1.0000 Mn++ + 1.0000 SeO3-- + 2.0000 H2O - log_k -6.3219 - -delta_H 14.0792 kJ/mol # Calculated enthalpy of reaction MnSeO3:2H2O -# Enthalpy of formation: -314.423 kcal/mol - -analytic -4.3625e+001 -2.0426e-002 -2.5368e+002 1.7876e+001 -4.2927e+000 -# -Range: 0-200 - -MnV2O6 - MnV2O6 +2.0000 H2O = + 1.0000 Mn++ + 2.0000 VO4--- + 4.0000 H+ - log_k -52.0751 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnV2O6 -# Enthalpy of formation: -447.9 kcal/mol - -Mo - Mo +1.5000 O2 +1.0000 H2O = + 1.0000 MoO4-- + 2.0000 H+ - log_k 109.3230 - -delta_H -693.845 kJ/mol # Calculated enthalpy of reaction Mo -# Enthalpy of formation: 0 kJ/mol - -analytic -2.0021e+002 -8.3006e-002 4.1629e+004 8.0219e+001 -3.4570e+005 -# -Range: 0-300 - -MoSe2 - MoSe2 +3.0000 H2O +0.5000 O2 = + 1.0000 MoO4-- + 2.0000 Se-- + 6.0000 H+ - log_k -55.1079 - -delta_H 0 # Not possible to calculate enthalpy of reaction MoSe2 -# Enthalpy of formation: -47 kcal/mol - -analytic 1.3882e+002 -1.8590e-003 -1.7231e+004 -5.4797e+001 -2.9265e+002 -# -Range: 0-200 - -Modderite - CoAs +3.0000 H+ = + 1.0000 AsH3 + 1.0000 Co+++ - log_k -49.5512 - -delta_H 189.016 kJ/mol # Calculated enthalpy of reaction Modderite -# Enthalpy of formation: -12.208 kcal/mol - -Molysite - FeCl3 = + 1.0000 Fe+++ + 3.0000 Cl- - log_k 13.5517 - -delta_H -151.579 kJ/mol # Calculated enthalpy of reaction Molysite -# Enthalpy of formation: -399.24 kJ/mol - -analytic -3.1810e+002 -1.2357e-001 1.3860e+004 1.3010e+002 2.1637e+002 -# -Range: 0-300 - -Monohydrocalcite - CaCO3:H2O +1.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 HCO3- - log_k 2.6824 - -delta_H -20.5648 kJ/mol # Calculated enthalpy of reaction Monohydrocalcite -# Enthalpy of formation: -1498.29 kJ/mol - -analytic -7.2614e+001 -1.7217e-002 3.1850e+003 2.8185e+001 5.4111e+001 -# -Range: 0-200 - -Monteponite - CdO +2.0000 H+ = + 1.0000 Cd++ + 1.0000 H2O - log_k 15.0972 - -delta_H -103.386 kJ/mol # Calculated enthalpy of reaction Monteponite -# Enthalpy of formation: -258.35 kJ/mol - -analytic -5.0057e+001 -6.3629e-003 7.0898e+003 1.7486e+001 1.2041e+002 -# -Range: 0-200 - -Monticellite - CaMgSiO4 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 1.0000 SiO2 + 2.0000 H2O - log_k 29.5852 - -delta_H -195.711 kJ/mol # Calculated enthalpy of reaction Monticellite -# Enthalpy of formation: -540.8 kcal/mol - -analytic 1.5730e+001 -3.5567e-003 9.0789e+003 -6.3007e+000 1.4166e+002 -# -Range: 0-300 - -Montmor-Ca - Ca.165Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.1650 Ca++ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 2.4952 - -delta_H -100.154 kJ/mol # Calculated enthalpy of reaction Montmor-Ca -# Enthalpy of formation: -1361.5 kcal/mol - -analytic 6.0725e+000 1.0644e-002 1.6024e+004 -1.6334e+001 -1.7982e+006 -# -Range: 0-300 - -Montmor-Cs - Cs.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 Cs+ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 1.9913 - -delta_H -87.2259 kJ/mol # Calculated enthalpy of reaction Montmor-Cs -# Enthalpy of formation: -1363.52 kcal/mol - -analytic 9.9136e+000 1.2496e-002 1.5650e+004 -1.7601e+001 -1.8434e+006 -# -Range: 0-300 - -Montmor-K - K.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 K+ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 2.1423 - -delta_H -88.184 kJ/mol # Calculated enthalpy of reaction Montmor-K -# Enthalpy of formation: -1362.83 kcal/mol - -analytic 8.4757e+000 1.1219e-002 1.5654e+004 -1.6833e+001 -1.8386e+006 -# -Range: 0-300 - -Montmor-Mg - Mg.495Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.4950 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 2.3879 - -delta_H -102.608 kJ/mol # Calculated enthalpy of reaction Montmor-Mg -# Enthalpy of formation: -1357.87 kcal/mol - -analytic -6.8505e+000 9.0710e-003 1.6817e+004 -1.1887e+001 -1.8323e+006 -# -Range: 0-300 - -Montmor-Na - Na.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 Mg++ + 0.3300 Na+ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 2.4844 - -delta_H -93.2165 kJ/mol # Calculated enthalpy of reaction Montmor-Na -# Enthalpy of formation: -1360.69 kcal/mol - -analytic 1.9601e+000 1.1342e-002 1.6051e+004 -1.4718e+001 -1.8160e+006 -# -Range: 0-300 - -Montroydite - HgO +2.0000 H+ = + 1.0000 H2O + 1.0000 Hg++ - log_k 2.4486 - -delta_H -24.885 kJ/mol # Calculated enthalpy of reaction Montroydite -# Enthalpy of formation: -90.79 kJ/mol - -analytic -8.7302e+001 -1.7618e-002 4.0086e+003 3.2957e+001 6.2576e+001 -# -Range: 0-300 - -Mordenite - Ca.2895Na.361Al.94Si5.06O12:3.468H2O +3.7600 H+ = + 0.2895 Ca++ + 0.3610 Na+ + 0.9400 Al+++ + 5.0600 SiO2 + 5.3480 H2O - log_k -5.1969 - -delta_H 16.7517 kJ/mol # Calculated enthalpy of reaction Mordenite -# Enthalpy of formation: -6736.64 kJ/mol - -analytic -5.4675e+001 3.2513e-002 2.3412e+004 -1.0419e+000 -3.2292e+006 -# -Range: 0-300 - -Mordenite-dehy - Ca.2895Na.361Al.94Si5.06O12 +3.7600 H+ = + 0.2895 Ca++ + 0.3610 Na+ + 0.9400 Al+++ + 1.8800 H2O + 5.0600 SiO2 - log_k 9.9318 - -delta_H -86.159 kJ/mol # Calculated enthalpy of reaction Mordenite-dehy -# Enthalpy of formation: -5642.44 kJ/mol - -analytic -5.0841e+001 2.5405e-002 2.7621e+004 -1.6331e+000 -3.1618e+006 -# -Range: 0-300 - -Morenosite - NiSO4:7H2O = + 1.0000 Ni++ + 1.0000 SO4-- + 7.0000 H2O - log_k -2.0140 - -delta_H 12.0185 kJ/mol # Calculated enthalpy of reaction Morenosite -# Enthalpy of formation: -2976.46 kJ/mol - -analytic -2.6654e+002 -7.2132e-002 6.7983e+003 1.0636e+002 1.0616e+002 -# -Range: 0-300 - -Muscovite - KAl3Si3O10(OH)2 +10.0000 H+ = + 1.0000 K+ + 3.0000 Al+++ + 3.0000 SiO2 + 6.0000 H2O - log_k 13.5858 - -delta_H -243.224 kJ/mol # Calculated enthalpy of reaction Muscovite -# Enthalpy of formation: -1427.41 kcal/mol - -analytic 3.3085e+001 -1.2425e-002 1.2477e+004 -2.0865e+001 -5.4692e+005 -# -Range: 0-300 - -NH4HSe - NH4HSe = + 1.0000 NH3 + 1.0000 Se-- + 2.0000 H+ - log_k -22.0531 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4HSe -# Enthalpy of formation: -133.041 kJ/mol - -analytic -8.8685e+000 6.7342e-003 -5.3028e+003 1.0468e+000 -9.0046e+001 -# -Range: 0-200 -Na - Na +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Na+ - log_k 67.3804 - -delta_H -380.185 kJ/mol # Calculated enthalpy of reaction Na -# Enthalpy of formation: 0 kJ/mol - -analytic -4.0458e+001 -8.7899e-003 2.1223e+004 1.5927e+001 -1.2715e+004 -# -Range: 0-300 - -Na2CO3 - Na2CO3 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ - log_k 11.1822 - -delta_H -39.8526 kJ/mol # Calculated enthalpy of reaction Na2CO3 -# Enthalpy of formation: -1130.68 kJ/mol - -analytic -1.5495e+002 -4.3374e-002 6.4821e+003 6.3571e+001 1.0119e+002 -# -Range: 0-300 - -Na2CO3:7H2O - Na2CO3:7H2O +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ + 7.0000 H2O - log_k 9.9459 - -delta_H 27.7881 kJ/mol # Calculated enthalpy of reaction Na2CO3:7H2O -# Enthalpy of formation: -3199.19 kJ/mol - -analytic -2.0593e+002 -3.4509e-003 8.1601e+003 7.6594e+001 1.3864e+002 -# -Range: 0-200 - -Na2Cr2O7 - Na2Cr2O7 +1.0000 H2O = + 2.0000 CrO4-- + 2.0000 H+ + 2.0000 Na+ - log_k -10.1597 - -delta_H 21.9702 kJ/mol # Calculated enthalpy of reaction Na2Cr2O7 -# Enthalpy of formation: -473 kcal/mol - -analytic 4.4885e+001 -2.4919e-002 -5.0321e+003 -1.2430e+001 -8.5468e+001 -# -Range: 0-200 - -Na2CrO4 - Na2CrO4 = + 1.0000 CrO4-- + 2.0000 Na+ - log_k 2.9103 - -delta_H -19.5225 kJ/mol # Calculated enthalpy of reaction Na2CrO4 -# Enthalpy of formation: -320.8 kcal/mol - -analytic 5.4985e+000 -9.9008e-003 1.0510e+002 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -Na2O - Na2O +2.0000 H+ = + 1.0000 H2O + 2.0000 Na+ - log_k 67.4269 - -delta_H -351.636 kJ/mol # Calculated enthalpy of reaction Na2O -# Enthalpy of formation: -99.14 kcal/mol - -analytic -6.3585e+001 -8.4695e-003 2.0923e+004 2.5601e+001 3.2651e+002 -# -Range: 0-300 - -Na2Se - Na2Se = + 1.0000 Se-- + 2.0000 Na+ - log_k 11.8352 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se -# Enthalpy of formation: -81.9 kcal/mol - -analytic -6.0070e+000 8.2821e-003 4.5816e+003 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -Na2Se2 - Na2Se2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 Na+ + 2.0000 Se-- - log_k -61.3466 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se2 -# Enthalpy of formation: -92.8 kcal/mol - -analytic -2.7836e+001 7.7035e-003 -1.5040e+004 5.9131e+000 -2.5539e+002 -# -Range: 0-200 - -Na2SiO3 - Na2SiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 SiO2 + 2.0000 Na+ - log_k 22.2418 - -delta_H -82.7093 kJ/mol # Calculated enthalpy of reaction Na2SiO3 -# Enthalpy of formation: -373.19 kcal/mol - -analytic -3.4928e+001 5.6905e-003 1.0284e+004 1.1197e+001 -6.0134e+005 -# -Range: 0-300 - -Na2U2O7 - Na2U2O7 +6.0000 H+ = + 2.0000 Na+ + 2.0000 UO2++ + 3.0000 H2O - log_k 22.5917 - -delta_H -172.314 kJ/mol # Calculated enthalpy of reaction Na2U2O7 -# Enthalpy of formation: -3203.8 kJ/mol - -analytic -8.6640e+001 -1.0903e-002 1.1841e+004 2.9406e+001 1.8479e+002 -# -Range: 0-300 - -Na2UO4(alpha) - Na2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Na+ - log_k 30.0231 - -delta_H -173.576 kJ/mol # Calculated enthalpy of reaction Na2UO4(alpha) -# Enthalpy of formation: -1897.7 kJ/mol - -analytic -7.9767e+001 -1.0253e-002 1.1963e+004 2.9386e+001 1.8669e+002 -# -Range: 0-300 - -Na3H(SO4)2 - Na3H(SO4)2 = + 1.0000 H+ + 2.0000 SO4-- + 3.0000 Na+ - log_k -0.8906 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na3H(SO4)2 -# Enthalpy of formation: 0 kcal/mol - -Na3UO4 - Na3UO4 +4.0000 H+ = + 1.0000 UO2+ + 2.0000 H2O + 3.0000 Na+ - log_k 56.2574 - -delta_H -293.703 kJ/mol # Calculated enthalpy of reaction Na3UO4 -# Enthalpy of formation: -2024 kJ/mol - -analytic -9.6724e+001 -6.2485e-003 1.9469e+004 3.6180e+001 3.0382e+002 -# -Range: 0-300 - -Na4Ca(SO4)3:2H2O - Na4Ca(SO4)3:2H2O = + 1.0000 Ca++ + 2.0000 H2O + 3.0000 SO4-- + 4.0000 Na+ - log_k -5.8938 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na4Ca(SO4)3:2H2O -# Enthalpy of formation: 0 kcal/mol - -Na4SiO4 - Na4SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 4.0000 Na+ - log_k 70.6449 - -delta_H -327.779 kJ/mol # Calculated enthalpy of reaction Na4SiO4 -# Enthalpy of formation: -497.8 kcal/mol - -analytic -1.1969e+002 -6.5032e-003 2.6469e+004 4.4626e+001 -6.2007e+005 -# -Range: 0-300 - -Na4UO2(CO3)3 - Na4UO2(CO3)3 +3.0000 H+ = + 1.0000 UO2++ + 3.0000 HCO3- + 4.0000 Na+ - log_k 4.0395 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na4UO2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Na6Si2O7 - Na6Si2O7 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 H2O + 6.0000 Na+ - log_k 101.6199 - -delta_H -471.951 kJ/mol # Calculated enthalpy of reaction Na6Si2O7 -# Enthalpy of formation: -856.3 kcal/mol - -analytic -1.0590e+002 4.5576e-003 3.6830e+004 3.8030e+001 -1.0276e+006 -# -Range: 0-300 - -NaBr - NaBr = + 1.0000 Br- + 1.0000 Na+ - log_k 2.9739 - -delta_H -0.741032 kJ/mol # Calculated enthalpy of reaction NaBr -# Enthalpy of formation: -361.062 kJ/mol - -analytic -9.3227e+001 -3.2780e-002 2.2910e+003 3.9713e+001 3.5777e+001 -# -Range: 0-300 - -NaBr:2H2O - NaBr:2H2O = + 1.0000 Br- + 1.0000 Na+ + 2.0000 H2O - log_k 2.1040 - -delta_H 18.4883 kJ/mol # Calculated enthalpy of reaction NaBr:2H2O -# Enthalpy of formation: -951.968 kJ/mol - -analytic -4.1855e+001 -4.6170e-003 8.3883e+002 1.7182e+001 1.4259e+001 -# -Range: 0-200 - -NaFeO2 - NaFeO2 +4.0000 H+ = + 1.0000 Fe+++ + 1.0000 Na+ + 2.0000 H2O - log_k 19.8899 - -delta_H -163.339 kJ/mol # Calculated enthalpy of reaction NaFeO2 -# Enthalpy of formation: -698.218 kJ/mol - -analytic -7.0047e+001 -9.6226e-003 1.0647e+004 2.3071e+001 1.8082e+002 -# -Range: 0-200 - -NaNpO2CO3:3.5H2O - NaNpO2CO3:3.5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Na+ + 1.0000 NpO2+ + 3.5000 H2O - log_k -1.2342 - -delta_H 27.0979 kJ/mol # Calculated enthalpy of reaction NaNpO2CO3:3.5H2O -# Enthalpy of formation: -2935.76 kJ/mol - -analytic -1.4813e+002 -2.7355e-002 3.6537e+003 5.7701e+001 5.7055e+001 -# -Range: 0-300 - -NaTcO4 - NaTcO4 = + 1.0000 Na+ + 1.0000 TcO4- - log_k 1.5208 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaTcO4 -# Enthalpy of formation: 0 kcal/mol - -NaUO3 - NaUO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Na+ + 1.0000 UO2+ - log_k 8.3371 - -delta_H -56.365 kJ/mol # Calculated enthalpy of reaction NaUO3 -# Enthalpy of formation: -1494.9 kJ/mol - -analytic -3.6363e+001 7.0505e-004 4.5359e+003 1.1828e+001 7.0790e+001 -# -Range: 0-300 - -Nahcolite - NaHCO3 = + 1.0000 HCO3- + 1.0000 Na+ - log_k -0.1118 - -delta_H 17.0247 kJ/mol # Calculated enthalpy of reaction Nahcolite -# Enthalpy of formation: -226.4 kcal/mol - -analytic -2.2282e+002 -5.9693e-002 5.4887e+003 8.9744e+001 8.5712e+001 -# -Range: 0-300 - -Nantokite - CuCl = + 1.0000 Cl- + 1.0000 Cu+ - log_k -6.7623 - -delta_H 41.9296 kJ/mol # Calculated enthalpy of reaction Nantokite -# Enthalpy of formation: -137.329 kJ/mol - -analytic -2.2442e+001 -1.1201e-002 -1.8709e+003 1.0221e+001 -3.1763e+001 -# -Range: 0-200 - -Natrolite - Na2Al2Si3O10:2H2O +8.0000 H+ = + 2.0000 Al+++ + 2.0000 Na+ + 3.0000 SiO2 + 6.0000 H2O - log_k 18.5204 - -delta_H -186.971 kJ/mol # Calculated enthalpy of reaction Natrolite -# Enthalpy of formation: -5718.56 kJ/mol - -analytic -2.7712e+001 -2.7963e-003 1.6075e+004 1.5332e+000 -9.5765e+005 -# -Range: 0-300 - -Natron - Na2CO3:10H2O +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ + 10.0000 H2O - log_k 9.6102 - -delta_H 50.4781 kJ/mol # Calculated enthalpy of reaction Natron -# Enthalpy of formation: -4079.39 kJ/mol - -analytic -1.9981e+002 -2.9247e-002 5.2937e+003 8.0973e+001 8.2662e+001 -# -Range: 0-300 - -Natrosilite - Na2Si2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 Na+ + 2.0000 SiO2 - log_k 18.1337 - -delta_H -51.7686 kJ/mol # Calculated enthalpy of reaction Natrosilite -# Enthalpy of formation: -590.36 kcal/mol - -analytic -2.7628e+001 1.6865e-002 1.3302e+004 4.2356e+000 -1.2828e+006 -# -Range: 0-300 - -Naumannite - Ag2Se = + 1.0000 Se-- + 2.0000 Ag+ - log_k -57.4427 - -delta_H 0 # Not possible to calculate enthalpy of reaction Naumannite -# Enthalpy of formation: -37.441 kJ/mol - -analytic -5.3844e+001 -1.0965e-002 -1.4739e+004 1.9842e+001 -2.2998e+002 -# -Range: 0-300 - -Nd - Nd +3.0000 H+ +0.7500 O2 = + 1.0000 Nd+++ + 1.5000 H2O - log_k 182.2233 - -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Nd -# Enthalpy of formation: 0 kJ/mol - -analytic -2.7390e+002 -5.6545e-002 7.1502e+004 9.7969e+001 -8.2482e+005 -# -Range: 0-300 - -Nd(OH)3 - Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O - log_k 18.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Nd(OH)3(am) - Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O - log_k 20.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Nd(OH)3(c) - Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O - log_k 15.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(c) -# Enthalpy of formation: 0 kcal/mol - -Nd2(CO3)3 - Nd2(CO3)3 +3.0000 H+ = + 2.0000 Nd+++ + 3.0000 HCO3- - log_k -3.6636 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Nd2O3 - Nd2O3 +6.0000 H+ = + 2.0000 Nd+++ + 3.0000 H2O - log_k 58.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2O3 -# Enthalpy of formation: 0 kcal/mol - -NdF3:.5H2O - NdF3:.5H2O = + 0.5000 H2O + 1.0000 Nd+++ + 3.0000 F- - log_k -18.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -NdOHCO3 - NdOHCO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Nd+++ - log_k 2.8239 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdOHCO3 -# Enthalpy of formation: 0 kcal/mol - -NdPO4:10H2O - NdPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Nd+++ + 10.0000 H2O - log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Nepheline - NaAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 1.0000 SiO2 + 2.0000 H2O - log_k 13.8006 - -delta_H -135.068 kJ/mol # Calculated enthalpy of reaction Nepheline -# Enthalpy of formation: -500.241 kcal/mol - -analytic -2.4856e+001 -8.8171e-003 8.5653e+003 6.0904e+000 -2.2786e+005 -# -Range: 0-300 - -Nesquehonite - MgCO3:3H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ + 3.0000 H2O - log_k 4.9955 - -delta_H -36.1498 kJ/mol # Calculated enthalpy of reaction Nesquehonite -# Enthalpy of formation: -472.576 kcal/mol - -analytic 1.3771e+002 -6.0397e-002 -3.5049e+004 -1.8831e+001 4.4213e+006 -# -Range: 0-300 - -Ni - Ni +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ni++ - log_k 50.9914 - -delta_H -333.745 kJ/mol # Calculated enthalpy of reaction Ni -# Enthalpy of formation: 0 kcal/mol - -analytic -5.8308e+001 -2.0133e-002 1.8444e+004 2.1590e+001 2.8781e+002 -# -Range: 0-300 - -Ni(OH)2 - Ni(OH)2 +2.0000 H+ = + 1.0000 Ni++ + 2.0000 H2O - log_k 12.7485 - -delta_H -95.6523 kJ/mol # Calculated enthalpy of reaction Ni(OH)2 -# Enthalpy of formation: -529.998 kJ/mol - -analytic -6.5279e+001 -5.9499e-003 7.3471e+003 2.2290e+001 1.2479e+002 -# -Range: 0-200 - -Ni2P2O7 - Ni2P2O7 +1.0000 H2O = + 2.0000 HPO4-- + 2.0000 Ni++ - log_k -8.8991 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2P2O7 -# Enthalpy of formation: 0 kcal/mol - -Ni2SiO4 - Ni2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Ni++ - log_k 14.3416 - -delta_H -127.629 kJ/mol # Calculated enthalpy of reaction Ni2SiO4 -# Enthalpy of formation: -341.705 kcal/mol - -analytic -4.0414e+001 -1.1194e-002 9.6515e+003 1.2026e+001 -3.6336e+005 -# -Range: 0-300 - -Ni3(PO4)2 - Ni3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Ni++ - log_k -6.6414 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni3(PO4)2 -# Enthalpy of formation: 0 kcal/mol - -NiCO3 - NiCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Ni++ - log_k 3.5118 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiCO3 -# Enthalpy of formation: 0 kcal/mol - -NiCl2 - NiCl2 = + 1.0000 Ni++ + 2.0000 Cl- - log_k 8.6113 - -delta_H -82.7969 kJ/mol # Calculated enthalpy of reaction NiCl2 -# Enthalpy of formation: -305.336 kJ/mol - -analytic -1.2416e+000 -2.3139e-002 2.6529e+003 3.1696e+000 4.5052e+001 -# -Range: 0-200 - -NiCl2:2H2O - NiCl2:2H2O = + 1.0000 Ni++ + 2.0000 Cl- + 2.0000 H2O - log_k 3.9327 - -delta_H -37.6746 kJ/mol # Calculated enthalpy of reaction NiCl2:2H2O -# Enthalpy of formation: -922.135 kJ/mol - -analytic -4.8814e+001 -2.2602e-002 2.5951e+003 2.0518e+001 4.4086e+001 -# -Range: 0-200 - -NiCl2:4H2O - NiCl2:4H2O = + 1.0000 Ni++ + 2.0000 Cl- + 4.0000 H2O - log_k 3.8561 - -delta_H -15.4373 kJ/mol # Calculated enthalpy of reaction NiCl2:4H2O -# Enthalpy of formation: -1516.05 kJ/mol - -analytic -1.0545e+002 -2.4691e-002 3.9978e+003 4.1727e+001 6.7926e+001 -# -Range: 0-200 - -NiF2 - NiF2 = + 1.0000 Ni++ + 2.0000 F- - log_k 0.8772 - -delta_H -73.1438 kJ/mol # Calculated enthalpy of reaction NiF2 -# Enthalpy of formation: -651.525 kJ/mol - -analytic -2.5291e+002 -8.4179e-002 9.3429e+003 1.0002e+002 1.4586e+002 -# -Range: 0-300 - -NiF2:4H2O - NiF2:4H2O = + 1.0000 Ni++ + 2.0000 F- + 4.0000 H2O - log_k -4.0588 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiF2:4H2O -# Enthalpy of formation: 0 kcal/mol - -NiSO4 - NiSO4 = + 1.0000 Ni++ + 1.0000 SO4-- - log_k 5.3197 - -delta_H -90.5092 kJ/mol # Calculated enthalpy of reaction NiSO4 -# Enthalpy of formation: -873.066 kJ/mol - -analytic -1.8878e+002 -7.6403e-002 7.9412e+003 7.6866e+001 1.2397e+002 -# -Range: 0-300 - -NiSO4:6H2O(alpha) - NiSO4:6H2O = + 1.0000 Ni++ + 1.0000 SO4-- + 6.0000 H2O - log_k -2.0072 - -delta_H 4.37983 kJ/mol # Calculated enthalpy of reaction NiSO4:6H2O(alpha) -# Enthalpy of formation: -2682.99 kJ/mol - -analytic -1.1937e+002 -1.3785e-002 4.1543e+003 4.3454e+001 7.0587e+001 -# -Range: 0-200 - -Nickelbischofite - NiCl2:6H2O = + 1.0000 Ni++ + 2.0000 Cl- + 6.0000 H2O - log_k 3.1681 - -delta_H 0.064088 kJ/mol # Calculated enthalpy of reaction Nickelbischofite -# Enthalpy of formation: -2103.23 kJ/mol - -analytic -1.4340e+002 -2.1257e-002 5.1858e+003 5.4759e+001 8.8112e+001 -# -Range: 0-200 - -Ningyoite - CaUP2O8:2H2O +2.0000 H+ = + 1.0000 Ca++ + 1.0000 U++++ + 2.0000 H2O + 2.0000 HPO4-- - log_k -29.7931 - -delta_H -36.4769 kJ/mol # Calculated enthalpy of reaction Ningyoite -# Enthalpy of formation: -1016.65 kcal/mol - -analytic -1.0274e+002 -4.9041e-002 1.7779e+003 3.2973e+001 3.0227e+001 -# -Range: 0-200 - -Niter - KNO3 = + 1.0000 K+ + 1.0000 NO3- - log_k -0.2061 - -delta_H 35.4794 kJ/mol # Calculated enthalpy of reaction Niter -# Enthalpy of formation: -494.46 kJ/mol - -analytic -6.5607e+001 -2.8165e-002 -4.0131e+002 3.0361e+001 -6.2425e+000 -# -Range: 0-300 - -Nitrobarite - Ba(NO3)2 = + 1.0000 Ba++ + 2.0000 NO3- - log_k -2.4523 - -delta_H 40.8161 kJ/mol # Calculated enthalpy of reaction Nitrobarite -# Enthalpy of formation: -992.082 kJ/mol - -analytic -1.6179e+002 -6.5831e-002 1.2142e+003 7.0664e+001 1.8995e+001 -# -Range: 0-300 - -Nontronite-Ca - Ca.165Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.1650 Ca++ + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -11.5822 - -delta_H -38.138 kJ/mol # Calculated enthalpy of reaction Nontronite-Ca -# Enthalpy of formation: -1166.7 kcal/mol - -analytic 1.6291e+001 4.3557e-003 1.0221e+004 -1.8690e+001 -1.5427e+006 -# -Range: 0-300 - -Nontronite-Cs - Cs.33Si4Fe1.67Mg.33H2O12 +6.0000 H+ = + 0.3300 Cs+ + 0.3300 Mg++ + 1.6700 Fe+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 5.7975 - -delta_H -86.6996 kJ/mol # Calculated enthalpy of reaction Nontronite-Cs -# Enthalpy of formation: -1168.54 kcal/mol - -analytic -1.1646e+001 1.0033e-002 1.7668e+004 -9.0129e+000 -2.0143e+006 -# -Range: 0-300 - -Nontronite-H - H.33Fe2Al.33Si3.67H2O12 +6.9900 H+ = + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -12.5401 - -delta_H -30.452 kJ/mol # Calculated enthalpy of reaction Nontronite-H -# Enthalpy of formation: -1147.12 kcal/mol - -analytic 9.7794e+001 1.4055e-002 4.7440e+003 -4.7272e+001 -1.2103e+006 -# -Range: 0-300 - -Nontronite-K - K.33Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 K+ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -11.8648 - -delta_H -26.5822 kJ/mol # Calculated enthalpy of reaction Nontronite-K -# Enthalpy of formation: -1167.93 kcal/mol - -analytic 1.3630e+001 4.7708e-003 1.0073e+004 -1.7407e+001 -1.5803e+006 -# -Range: 0-300 - -Nontronite-Mg - Mg.165Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.1650 Mg++ + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -11.6200 - -delta_H -41.1779 kJ/mol # Calculated enthalpy of reaction Nontronite-Mg -# Enthalpy of formation: -1162.93 kcal/mol - -analytic 5.5961e+001 1.0139e-002 8.0777e+003 -3.3164e+001 -1.4031e+006 -# -Range: 0-300 - -Nontronite-Na - Na.33Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Na+ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -11.5263 - -delta_H -31.5687 kJ/mol # Calculated enthalpy of reaction Nontronite-Na -# Enthalpy of formation: -1165.8 kcal/mol - -analytic 6.7915e+001 1.2851e-002 7.1218e+003 -3.7112e+001 -1.3758e+006 -# -Range: 0-300 - -Np - Np +4.0000 H+ +1.0000 O2 = + 1.0000 Np++++ + 2.0000 H2O - log_k 174.1077 - -delta_H -1115.54 kJ/mol # Calculated enthalpy of reaction Np -# Enthalpy of formation: 0 kJ/mol - -analytic -3.2136e+001 -1.4340e-002 5.7853e+004 6.6512e+000 9.0275e+002 -# -Range: 0-300 - -Np(HPO4)2 - Np(HPO4)2 = + 1.0000 Np++++ + 2.0000 HPO4-- - log_k -30.9786 - -delta_H -18.6219 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 -# Enthalpy of formation: -3121.54 kJ/mol - -analytic -3.6627e+002 -1.3955e-001 7.1370e+003 1.4261e+002 1.1147e+002 -# -Range: 0-300 - -Np(OH)4 - Np(OH)4 +4.0000 H+ = + 1.0000 Np++++ + 4.0000 H2O - log_k 0.8103 - -delta_H -78.4963 kJ/mol # Calculated enthalpy of reaction Np(OH)4 -# Enthalpy of formation: -1620.86 kJ/mol - -analytic -9.5122e+001 -1.0532e-002 7.1132e+003 3.0398e+001 1.1102e+002 -# -Range: 0-300 - -Np2O5 - Np2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 NpO2+ - log_k 9.5000 - -delta_H -94.4576 kJ/mol # Calculated enthalpy of reaction Np2O5 -# Enthalpy of formation: -513.232 kcal/mol - -analytic 5.9974e+003 1.4553e+000 -1.7396e+005 -2.3595e+003 -2.9689e+003 -# -Range: 25-150 - -NpO2 - NpO2 +4.0000 H+ = + 1.0000 Np++++ + 2.0000 H2O - log_k -7.8026 - -delta_H -53.6087 kJ/mol # Calculated enthalpy of reaction NpO2 -# Enthalpy of formation: -1074.07 kJ/mol - -analytic -7.0053e+001 -1.1017e-002 4.4742e+003 2.0421e+001 6.9836e+001 -# -Range: 0-300 - -NpO2(OH)2 - NpO2(OH)2 +2.0000 H+ = + 1.0000 NpO2++ + 2.0000 H2O - log_k 5.9851 - -delta_H -54.9977 kJ/mol # Calculated enthalpy of reaction NpO2(OH)2 -# Enthalpy of formation: -1377.16 kJ/mol - -analytic -2.7351e+001 -1.5987e-003 3.8301e+003 8.4735e+000 5.9773e+001 -# -Range: 0-300 - -NpO2OH(am) - NpO2OH +1.0000 H+ = + 1.0000 H2O + 1.0000 NpO2+ - log_k 4.2364 - -delta_H -39.6673 kJ/mol # Calculated enthalpy of reaction NpO2OH(am) -# Enthalpy of formation: -1224.16 kJ/mol - -analytic -3.8824e+000 6.7122e-003 2.5390e+003 -9.7040e-001 3.9619e+001 -# -Range: 0-300 - -Okenite - CaSi2O4(OH)2:H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 3.0000 H2O - log_k 10.3816 - -delta_H -19.4974 kJ/mol # Calculated enthalpy of reaction Okenite -# Enthalpy of formation: -749.641 kcal/mol - -analytic -7.7353e+001 1.5091e-002 1.3023e+004 2.1337e+001 -1.1831e+006 -# -Range: 0-300 - -Orpiment - As2S3 +6.0000 H2O = + 2.0000 H2AsO3- + 3.0000 HS- + 5.0000 H+ - log_k -79.4159 - -delta_H 406.539 kJ/mol # Calculated enthalpy of reaction Orpiment -# Enthalpy of formation: -169.423 kJ/mol - -analytic -3.3964e+002 -1.4977e-001 -1.5711e+004 1.4448e+002 -2.4505e+002 -# -Range: 0-300 - -Otavite - CdCO3 +1.0000 H+ = + 1.0000 Cd++ + 1.0000 HCO3- - log_k -1.7712 - -delta_H 0 # Not possible to calculate enthalpy of reaction Otavite -# Enthalpy of formation: 0 kcal/mol - -Ottemannite - Sn2S3 +3.0000 H+ = + 1.0000 Sn++ + 1.0000 Sn++++ + 3.0000 HS- - log_k -46.2679 - -delta_H 236.727 kJ/mol # Calculated enthalpy of reaction Ottemannite -# Enthalpy of formation: -63 kcal/mol - -analytic -6.2863e+001 -5.9171e-002 -1.3469e+004 3.2092e+001 -2.2870e+002 -# -Range: 0-200 - -Oxychloride-Mg - Mg2Cl(OH)3:4H2O +3.0000 H+ = + 1.0000 Cl- + 2.0000 Mg++ + 7.0000 H2O - log_k 25.8319 - -delta_H 0 # Not possible to calculate enthalpy of reaction Oxychloride-Mg -# Enthalpy of formation: 0 kcal/mol - -P - P +1.5000 H2O +1.2500 O2 = + 1.0000 HPO4-- + 2.0000 H+ - log_k 132.1032 - -delta_H -848.157 kJ/mol # Calculated enthalpy of reaction P -# Enthalpy of formation: 0 kJ/mol - -analytic -9.2727e+001 -6.8342e-002 4.3465e+004 4.0156e+001 6.7826e+002 -# -Range: 0-300 - -Paragonite - NaAl3Si3O10(OH)2 +10.0000 H+ = + 1.0000 Na+ + 3.0000 Al+++ + 3.0000 SiO2 + 6.0000 H2O - log_k 17.5220 - -delta_H -275.056 kJ/mol # Calculated enthalpy of reaction Paragonite -# Enthalpy of formation: -1416.96 kcal/mol - -analytic 3.5507e+001 -1.0720e-002 1.3519e+004 -2.2283e+001 -4.5657e+005 -# -Range: 0-300 - -Paralaurionite - PbClOH +1.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 Pb++ - log_k 0.2035 - -delta_H 8.41948 kJ/mol # Calculated enthalpy of reaction Paralaurionite -# Enthalpy of formation: -460.417 kJ/mol - -analytic -1.1245e+001 -1.0520e-002 -5.3551e+002 6.6175e+000 -9.0896e+000 -# -Range: 0-200 - -Pargasite - NaCa2Al3Mg4Si6O22(OH)2 +22.0000 H+ = + 1.0000 Na+ + 2.0000 Ca++ + 3.0000 Al+++ + 4.0000 Mg++ + 6.0000 SiO2 + 12.0000 H2O - log_k 101.9939 - -delta_H -880.205 kJ/mol # Calculated enthalpy of reaction Pargasite -# Enthalpy of formation: -3016.62 kcal/mol - -analytic -6.7889e+001 -3.7817e-002 5.0493e+004 9.2705e+000 -1.0163e+006 -# -Range: 0-300 - -Parsonsite - Pb2UO2(PO4)2:2H2O +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 HPO4-- + 2.0000 Pb++ - log_k -27.7911 - -delta_H 0 # Not possible to calculate enthalpy of reaction Parsonsite -# Enthalpy of formation: 0 kcal/mol - -Pb - Pb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pb++ - log_k 47.1871 - -delta_H -278.851 kJ/mol # Calculated enthalpy of reaction Pb -# Enthalpy of formation: 0 kJ/mol - -analytic -3.1784e+001 -1.4816e-002 1.4984e+004 1.3383e+001 2.3381e+002 -# -Range: 0-300 - -Pb(H2PO4)2 - Pb(H2PO4)2 = + 1.0000 Pb++ + 2.0000 H+ + 2.0000 HPO4-- - log_k -9.8400 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(H2PO4)2 -# Enthalpy of formation: 0 kcal/mol - -Pb(IO3)2 - Pb(IO3)2 = + 1.0000 Pb++ + 2.0000 IO3- - log_k -12.5173 - -delta_H 53.7783 kJ/mol # Calculated enthalpy of reaction Pb(IO3)2 -# Enthalpy of formation: -495.525 kJ/mol - -analytic -5.3573e+000 -1.4164e-002 -3.6236e+003 3.7209e+000 -6.1532e+001 -# -Range: 0-200 - -Pb(N3)2(mono) - Pb(N3)2 = + 1.0000 Pb++ + 2.0000 N3- - log_k -8.3583 - -delta_H 72.9495 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(mono) -# Enthalpy of formation: 478.251 kJ/mol - -analytic 6.0051e+001 -1.1168e-002 -7.0041e+003 -1.6812e+001 -1.1896e+002 -# -Range: 0-200 - -Pb(N3)2(orth) - Pb(N3)2 = + 1.0000 Pb++ + 2.0000 N3- - log_k -8.7963 - -delta_H 75.0615 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(orth) -# Enthalpy of formation: 476.139 kJ/mol - -analytic 5.9779e+001 -1.1215e-002 -7.1081e+003 -1.6732e+001 -1.2073e+002 -# -Range: 0-200 - -Pb(Thiocyanate)2 - Pb(Thiocyanate)2 = + 1.0000 Pb++ + 2.0000 Thiocyanate- - log_k -0.0910 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 -# Enthalpy of formation: 151.212 kJ/mol - -analytic 7.4247e+000 -1.6226e-002 0.0000e+000 0.0000e+000 -2.3938e+005 -# -Range: 0-200 - -Pb2Cl2CO3 - Pb2Cl2CO3 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Cl- + 2.0000 Pb++ - log_k -9.6180 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2Cl2CO3 -# Enthalpy of formation: 0 kcal/mol - -Pb2Cl5NH4 - Pb2Cl5NH4 = + 1.0000 H+ + 1.0000 NH3 + 2.0000 Pb++ + 5.0000 Cl- - log_k -19.6100 - -delta_H 119.617 kJ/mol # Calculated enthalpy of reaction Pb2Cl5NH4 -# Enthalpy of formation: -1034.51 kJ/mol - -analytic 1.3149e+001 -4.8598e-002 -9.8473e+003 5.9552e+000 -1.6723e+002 -# -Range: 0-200 - -Pb2O(N3)2 - Pb2O(N3)2 +2.0000 H+ = + 1.0000 H2O + 2.0000 N3- + 2.0000 Pb++ - log_k -13.7066 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2O(N3)2 -# Enthalpy of formation: 0 kcal/mol - -Pb2SiO4 - Pb2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Pb++ - log_k 18.0370 - -delta_H -83.9883 kJ/mol # Calculated enthalpy of reaction Pb2SiO4 -# Enthalpy of formation: -1363.55 kJ/mol - -analytic 2.7287e+002 6.3875e-002 -3.7001e+003 -1.0568e+002 -6.2927e+001 -# -Range: 0-200 - -Pb3(PO4)2 - Pb3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Pb++ - log_k -19.9744 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(PO4)2 -# Enthalpy of formation: 0 kcal/mol - -Pb3SO6 - Pb3SO6 +4.0000 H+ = + 1.0000 SO4-- + 2.0000 H2O + 3.0000 Pb++ - log_k 10.5981 - -delta_H -79.3438 kJ/mol # Calculated enthalpy of reaction Pb3SO6 -# Enthalpy of formation: -1399.17 kJ/mol - -analytic -5.3308e+000 -1.8639e-002 3.0245e+003 4.5760e+000 5.1362e+001 -# -Range: 0-200 - -Pb4Cl2(OH)6 - Pb4Cl2(OH)6 +6.0000 H+ = + 2.0000 Cl- + 4.0000 Pb++ + 6.0000 H2O - log_k 17.2793 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4Cl2(OH)6 -# Enthalpy of formation: 0 kcal/mol - -Pb4O(PO4)2 - Pb4O(PO4)2 +4.0000 H+ = + 1.0000 H2O + 2.0000 HPO4-- + 4.0000 Pb++ - log_k -12.5727 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4O(PO4)2 -# Enthalpy of formation: 0 kcal/mol - -Pb4SO7 - Pb4SO7 +6.0000 H+ = + 1.0000 SO4-- + 3.0000 H2O + 4.0000 Pb++ - log_k 21.7354 - -delta_H -136.566 kJ/mol # Calculated enthalpy of reaction Pb4SO7 -# Enthalpy of formation: -1626.87 kJ/mol - -analytic -2.6884e+001 -2.1429e-002 6.8390e+003 1.2951e+001 1.1614e+002 -# -Range: 0-200 - -PbBr2 - PbBr2 = + 1.0000 Pb++ + 2.0000 Br- - log_k -5.2413 - -delta_H 36.3838 kJ/mol # Calculated enthalpy of reaction PbBr2 -# Enthalpy of formation: -278.47 kJ/mol - -analytic 3.0977e+001 -1.6567e-002 -4.2879e+003 -6.8329e+000 -7.2825e+001 -# -Range: 0-200 - -PbBrF - PbBrF = + 1.0000 Br- + 1.0000 F- + 1.0000 Pb++ - log_k -8.0418 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrF -# Enthalpy of formation: 0 kcal/mol - -PbCO3.PbO - PbCO3.PbO +3.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 2.0000 Pb++ - log_k 9.6711 - -delta_H -55.4286 kJ/mol # Calculated enthalpy of reaction PbCO3.PbO -# Enthalpy of formation: -918.502 kJ/mol - -analytic -4.2160e+001 -1.4124e-002 3.8661e+003 1.7404e+001 6.5667e+001 -# -Range: 0-200 - -PbF2 - PbF2 = + 1.0000 Pb++ + 2.0000 F- - log_k -5.2047 - -delta_H -5.83772 kJ/mol # Calculated enthalpy of reaction PbF2 -# Enthalpy of formation: -663.937 kJ/mol - -analytic -2.2712e+002 -7.9552e-002 5.2198e+003 9.2173e+001 8.1516e+001 -# -Range: 0-300 - -PbFCl - PbFCl = + 1.0000 Cl- + 1.0000 F- + 1.0000 Pb++ - log_k -8.9820 - -delta_H 33.1852 kJ/mol # Calculated enthalpy of reaction PbFCl -# Enthalpy of formation: -534.692 kJ/mol - -analytic 6.1688e+000 -2.0732e-002 -3.4666e+003 1.0697e+000 -5.8869e+001 -# -Range: 0-200 - -PbHPO4 - PbHPO4 = + 1.0000 HPO4-- + 1.0000 Pb++ - log_k -15.7275 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 -# Enthalpy of formation: 0 kcal/mol - -PbI2 - PbI2 = + 1.0000 Pb++ + 2.0000 I- - log_k -8.0418 - -delta_H 62.5717 kJ/mol # Calculated enthalpy of reaction PbI2 -# Enthalpy of formation: -175.456 kJ/mol - -analytic 1.5277e+001 -2.0582e-002 -5.1256e+003 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -PbSO4(NH3)2 - PbSO4(NH3)2 = + 1.0000 Pb++ + 1.0000 SO4-- + 2.0000 NH3 - log_k -2.0213 - -delta_H 28.284 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)2 -# Enthalpy of formation: -1099.64 kJ/mol - -analytic 3.5718e-001 -1.0192e-002 -2.0095e+003 2.9853e+000 -3.4124e+001 -# -Range: 0-200 - -PbSO4(NH3)4 - PbSO4(NH3)4 = + 1.0000 Pb++ + 1.0000 SO4-- + 4.0000 NH3 - log_k 1.5024 - -delta_H 31.155 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)4 -# Enthalpy of formation: -1265.18 kJ/mol - -analytic -4.1080e+001 -7.2307e-003 6.6637e+001 1.7984e+001 1.1460e+000 -# -Range: 0-200 - -PbSeO4 - PbSeO4 = + 1.0000 Pb++ + 1.0000 SeO4-- - log_k -6.9372 - -delta_H 10.8967 kJ/mol # Calculated enthalpy of reaction PbSeO4 -# Enthalpy of formation: -609.125 kJ/mol - -analytic 3.1292e+001 -1.4192e-002 -3.0980e+003 -9.5448e+000 -5.2618e+001 -# -Range: 0-200 - -Pd - Pd +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pd++ - log_k 12.0688 - -delta_H -103.709 kJ/mol # Calculated enthalpy of reaction Pd -# Enthalpy of formation: 0 kcal/mol - -analytic -6.2530e+001 -1.9774e-002 6.7013e+003 2.3441e+001 1.0459e+002 -# -Range: 0-300 - -PdO - PdO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pd++ - log_k 0.0643 - -delta_H -24.422 kJ/mol # Calculated enthalpy of reaction PdO -# Enthalpy of formation: -20.4 kcal/mol - -analytic -8.8921e+001 -1.9031e-002 3.8537e+003 3.3028e+001 6.0159e+001 -# -Range: 0-300 - -Penroseite - NiSe2 +1.0000 H2O = + 0.5000 O2 + 1.0000 Ni++ + 2.0000 H+ + 2.0000 Se-- - log_k -98.8004 - -delta_H 0 # Not possible to calculate enthalpy of reaction Penroseite -# Enthalpy of formation: -26 kcal/mol - -analytic -4.7339e+001 -1.2035e-002 -2.3589e+004 1.2624e+001 -3.6808e+002 -# -Range: 0-300 - -Pentahydrite - MgSO4:5H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 5.0000 H2O - log_k -1.3872 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pentahydrite -# Enthalpy of formation: 0 kcal/mol - -Periclase - MgO +2.0000 H+ = + 1.0000 H2O + 1.0000 Mg++ - log_k 21.3354 - -delta_H -150.139 kJ/mol # Calculated enthalpy of reaction Periclase -# Enthalpy of formation: -143.8 kcal/mol - -analytic -8.8465e+001 -1.8390e-002 1.0414e+004 3.2469e+001 1.6253e+002 -# -Range: 0-300 - -Petalite - LiAlSi4O10 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 2.0000 H2O + 4.0000 SiO2 - log_k -3.8153 - -delta_H -13.1739 kJ/mol # Calculated enthalpy of reaction Petalite -# Enthalpy of formation: -4886.15 kJ/mol - -analytic -6.6355e+000 2.4316e-002 1.5949e+004 -1.3341e+001 -2.2265e+006 -# -Range: 0-300 - -Phlogopite - KAlMg3Si3O10(OH)2 +10.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 3.0000 Mg++ + 3.0000 SiO2 + 6.0000 H2O - log_k 37.4400 - -delta_H -310.503 kJ/mol # Calculated enthalpy of reaction Phlogopite -# Enthalpy of formation: -1488.07 kcal/mol - -analytic -8.7730e+001 -1.7253e-002 2.3748e+004 2.4465e+001 -8.9045e+005 -# -Range: 0-300 - -Phosgenite - Pb2(CO3)Cl2 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Cl- + 2.0000 Pb++ - log_k -9.6355 - -delta_H 49.0844 kJ/mol # Calculated enthalpy of reaction Phosgenite -# Enthalpy of formation: -1071.34 kJ/mol - -analytic 3.4909e+000 -2.9365e-002 -4.6327e+003 4.5068e+000 -7.8671e+001 -# -Range: 0-200 - -Picromerite - K2Mg(SO4)2:6H2O = + 1.0000 Mg++ + 2.0000 K+ + 2.0000 SO4-- + 6.0000 H2O - log_k -4.4396 - -delta_H 0 # Not possible to calculate enthalpy of reaction Picromerite -# Enthalpy of formation: 0 kcal/mol - -Pirssonite - Na2Ca(CO3)2:2H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 H2O + 2.0000 HCO3- + 2.0000 Na+ - log_k 11.3230 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pirssonite -# Enthalpy of formation: 0 kcal/mol - -Plattnerite - PbO2 +4.0000 H+ = + 1.0000 Pb++++ + 2.0000 H2O - log_k -7.9661 - -delta_H 0 # Not possible to calculate enthalpy of reaction Plattnerite -# Enthalpy of formation: -277.363 kJ/mol - -Plumbogummite - PbAl3(PO4)2(OH)5:H2O +7.0000 H+ = + 1.0000 Pb++ + 2.0000 HPO4-- + 3.0000 Al+++ + 6.0000 H2O - log_k -8.1463 - -delta_H 0 # Not possible to calculate enthalpy of reaction Plumbogummite -# Enthalpy of formation: 0 kcal/mol - -Pm - Pm +3.0000 H+ +0.7500 O2 = + 1.0000 Pm+++ + 1.5000 H2O - log_k 180.6737 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm -# Enthalpy of formation: 0 kcal/mol - -Pm(OH)3 - Pm(OH)3 +3.0000 H+ = + 1.0000 Pm+++ + 3.0000 H2O - log_k 17.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Pm(OH)3(am) - Pm(OH)3 +3.0000 H+ = + 1.0000 Pm+++ + 3.0000 H2O - log_k 18.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Pm2(CO3)3 - Pm2(CO3)3 +3.0000 H+ = + 2.0000 Pm+++ + 3.0000 HCO3- - log_k -3.5636 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Pm2O3 - Pm2O3 +6.0000 H+ = + 2.0000 Pm+++ + 3.0000 H2O - log_k 48.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2O3 -# Enthalpy of formation: 0 kcal/mol - -PmF3:.5H2O - PmF3:.5H2O = + 0.5000 H2O + 1.0000 Pm+++ + 3.0000 F- - log_k -18.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -PmPO4:10H2O - PmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pm+++ + 10.0000 H2O - log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Polydymite - Ni3S4 +2.0000 H+ = + 1.0000 S2-- + 2.0000 HS- + 3.0000 Ni++ - log_k -48.9062 - -delta_H 0 # Not possible to calculate enthalpy of reaction Polydymite -# Enthalpy of formation: -78.014 kcal/mol - -analytic -1.8030e+001 -4.6945e-002 -1.1557e+004 8.8339e+000 -1.9625e+002 -# -Range: 0-200 - -Polyhalite - K2MgCa2(SO4)4:2H2O = + 1.0000 Mg++ + 2.0000 Ca++ + 2.0000 H2O + 2.0000 K+ + 4.0000 SO4-- - log_k -14.3124 - -delta_H 0 # Not possible to calculate enthalpy of reaction Polyhalite -# Enthalpy of formation: 0 kcal/mol - -Portlandite - Ca(OH)2 +2.0000 H+ = + 1.0000 Ca++ + 2.0000 H2O - log_k 22.5552 - -delta_H -128.686 kJ/mol # Calculated enthalpy of reaction Portlandite -# Enthalpy of formation: -986.074 kJ/mol - -analytic -8.3848e+001 -1.8373e-002 9.3154e+003 3.2584e+001 1.4538e+002 -# -Range: 0-300 - -Pr - Pr +3.0000 H+ +0.7500 O2 = + 1.0000 Pr+++ + 1.5000 H2O - log_k 183.6893 - -delta_H -1125.92 kJ/mol # Calculated enthalpy of reaction Pr -# Enthalpy of formation: 0 kJ/mol - -analytic -4.1136e+002 -7.5853e-002 7.9974e+004 1.4718e+002 -1.3148e+006 -# -Range: 0-300 - -Pr(OH)3 - Pr(OH)3 +3.0000 H+ = + 1.0000 Pr+++ + 3.0000 H2O - log_k 19.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Pr(OH)3(am) - Pr(OH)3 +3.0000 H+ = + 1.0000 Pr+++ + 3.0000 H2O - log_k 21.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Pr2(CO3)3 - Pr2(CO3)3 +3.0000 H+ = + 2.0000 Pr+++ + 3.0000 HCO3- - log_k -3.8136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Pr2O3 - Pr2O3 +6.0000 H+ = + 2.0000 Pr+++ + 3.0000 H2O - log_k 61.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2O3 -# Enthalpy of formation: 0 kcal/mol - -PrF3:.5H2O - PrF3:.5H2O = + 0.5000 H2O + 1.0000 Pr+++ + 3.0000 F- - log_k -18.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -PrPO4:10H2O - PrPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pr+++ + 10.0000 H2O - log_k -12.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Prehnite - Ca2Al2Si3O10(OH)2 +10.0000 H+ = + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O - log_k 32.9305 - -delta_H -311.875 kJ/mol # Calculated enthalpy of reaction Prehnite -# Enthalpy of formation: -1481.65 kcal/mol - -analytic -3.5763e+001 -2.1396e-002 2.0167e+004 6.3554e+000 -7.4967e+005 -# -Range: 0-300 - -Przhevalskite - Pb(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Pb++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -20.0403 - -delta_H -71.1058 kJ/mol # Calculated enthalpy of reaction Przhevalskite -# Enthalpy of formation: -1087.51 kcal/mol - -analytic -2.9817e+001 -4.0756e-002 1.0077e+003 7.4885e+000 1.7122e+001 -# -Range: 0-200 - -Pseudowollastonite - CaSiO3 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 SiO2 - log_k 13.9997 - -delta_H -79.4625 kJ/mol # Calculated enthalpy of reaction Pseudowollastonite -# Enthalpy of formation: -388.9 kcal/mol - -analytic 2.6691e+001 6.3323e-003 5.5723e+003 -1.1822e+001 -3.6038e+005 -# -Range: 0-300 - -Pu - Pu +4.0000 H+ +1.0000 O2 = + 1.0000 Pu++++ + 2.0000 H2O - log_k 170.3761 - -delta_H -1095.44 kJ/mol # Calculated enthalpy of reaction Pu -# Enthalpy of formation: 0 kJ/mol - -analytic -1.9321e+002 -3.4314e-002 6.6737e+004 6.3552e+001 -6.4737e+005 -# -Range: 0-300 - -Pu(HPO4)2 - Pu(HPO4)2 = + 1.0000 Pu++++ + 2.0000 HPO4-- - log_k -27.7025 - -delta_H -33.4449 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 -# Enthalpy of formation: -3086.61 kJ/mol - -analytic -3.6565e+002 -1.3961e-001 7.9105e+003 1.4265e+002 1.2354e+002 -# -Range: 0-300 - -Pu(OH)3 - Pu(OH)3 +3.0000 H+ = + 1.0000 Pu+++ + 3.0000 H2O - log_k 22.4499 - -delta_H -148.067 kJ/mol # Calculated enthalpy of reaction Pu(OH)3 -# Enthalpy of formation: -1301 kJ/mol - -analytic -6.1342e+001 -8.6952e-003 9.7733e+003 2.1664e+001 1.5252e+002 -# -Range: 0-300 - -Pu(OH)4 - Pu(OH)4 +4.0000 H+ = + 1.0000 Pu++++ + 4.0000 H2O - log_k 0.7578 - -delta_H -68.6543 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 -# Enthalpy of formation: -1610.59 kJ/mol - -analytic -9.3473e+001 -1.0579e-002 6.5974e+003 3.0415e+001 1.0297e+002 -# -Range: 0-300 - -Pu2O3 - Pu2O3 +6.0000 H+ = + 2.0000 Pu+++ + 3.0000 H2O - log_k 48.1332 - -delta_H -360.26 kJ/mol # Calculated enthalpy of reaction Pu2O3 -# Enthalpy of formation: -1680.36 kJ/mol - -analytic -8.7831e+001 -1.9784e-002 2.0832e+004 2.9096e+001 3.2509e+002 -# -Range: 0-300 - -PuF3 - PuF3 = + 1.0000 Pu+++ + 3.0000 F- - log_k -10.1872 - -delta_H -46.2608 kJ/mol # Calculated enthalpy of reaction PuF3 -# Enthalpy of formation: -1551.33 kJ/mol - -analytic -3.1104e+002 -1.0854e-001 8.7435e+003 1.2279e+002 1.3653e+002 -# -Range: 0-300 - -PuF4 - PuF4 = + 1.0000 Pu++++ + 4.0000 F- - log_k -13.2091 - -delta_H -100.039 kJ/mol # Calculated enthalpy of reaction PuF4 -# Enthalpy of formation: -1777.24 kJ/mol - -analytic -4.3072e+002 -1.4500e-001 1.4076e+004 1.6709e+002 2.1977e+002 -# -Range: 0-300 - -PuO2 - PuO2 +4.0000 H+ = + 1.0000 Pu++++ + 2.0000 H2O - log_k -7.3646 - -delta_H -51.8827 kJ/mol # Calculated enthalpy of reaction PuO2 -# Enthalpy of formation: -1055.69 kJ/mol - -analytic -7.1933e+001 -1.1841e-002 4.4494e+003 2.1491e+001 6.9450e+001 -# -Range: 0-300 - -PuO2(OH)2 - PuO2(OH)2 +2.0000 H+ = + 1.0000 PuO2++ + 2.0000 H2O - log_k 3.5499 - -delta_H -35.7307 kJ/mol # Calculated enthalpy of reaction PuO2(OH)2 -# Enthalpy of formation: -1357.52 kJ/mol - -analytic -2.6536e+001 -1.6542e-003 2.8262e+003 8.5277e+000 4.4108e+001 -# -Range: 0-300 - -PuO2HPO4 - PuO2HPO4 = + 1.0000 HPO4-- + 1.0000 PuO2++ - log_k -12.6074 - -delta_H -10.108 kJ/mol # Calculated enthalpy of reaction PuO2HPO4 -# Enthalpy of formation: -2103.55 kJ/mol - -analytic -1.6296e+002 -6.6166e-002 3.0557e+003 6.4577e+001 4.7729e+001 -# -Range: 0-300 - -PuO2OH(am) - PuO2OH +1.0000 H+ = + 1.0000 H2O + 1.0000 PuO2+ - log_k 5.4628 - -delta_H -42.4933 kJ/mol # Calculated enthalpy of reaction PuO2OH(am) -# Enthalpy of formation: -1157.53 kJ/mol - -analytic -3.1316e+000 6.7573e-003 2.6884e+003 -9.8622e-001 4.1951e+001 -# -Range: 0-300 - -Pyrite - FeS2 +1.0000 H2O = + 0.2500 H+ + 0.2500 SO4-- + 1.0000 Fe++ + 1.7500 HS- - log_k -24.6534 - -delta_H 109.535 kJ/mol # Calculated enthalpy of reaction Pyrite -# Enthalpy of formation: -41 kcal/mol - -analytic -2.4195e+002 -8.7948e-002 -6.2911e+002 9.9248e+001 -9.7454e+000 -# -Range: 0-300 - -Pyrolusite - MnO2 = + 0.5000 Mn++ + 0.5000 MnO4-- - log_k -17.6439 - -delta_H 83.3804 kJ/mol # Calculated enthalpy of reaction Pyrolusite -# Enthalpy of formation: -520.031 kJ/mol - -analytic -1.1541e+002 -4.1665e-002 -1.8960e+003 4.7094e+001 -2.9551e+001 -# -Range: 0-300 - -Pyromorphite - Pb5(PO4)3Cl +3.0000 H+ = + 1.0000 Cl- + 3.0000 HPO4-- + 5.0000 Pb++ - log_k -47.8954 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite -# Enthalpy of formation: 0 kcal/mol - -Pyromorphite-OH - Pb5(OH)(PO4)3 +4.0000 H+ = + 1.0000 H2O + 3.0000 HPO4-- + 5.0000 Pb++ - log_k -26.2653 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite-OH -# Enthalpy of formation: 0 kcal/mol - -Pyrophyllite - Al2Si4O10(OH)2 +6.0000 H+ = + 2.0000 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 0.4397 - -delta_H -102.161 kJ/mol # Calculated enthalpy of reaction Pyrophyllite -# Enthalpy of formation: -1345.31 kcal/mol - -analytic 1.1066e+001 1.2707e-002 1.6417e+004 -1.9596e+001 -1.8791e+006 -# -Range: 0-300 - -Pyrrhotite - FeS +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HS- - log_k -3.7193 - -delta_H -7.9496 kJ/mol # Calculated enthalpy of reaction Pyrrhotite -# Enthalpy of formation: -24 kcal/mol - -analytic -1.5785e+002 -5.2258e-002 3.9711e+003 6.3195e+001 6.2012e+001 -# -Range: 0-300 - -Quartz - SiO2 = + 1.0000 SiO2 - log_k -3.9993 - -delta_H 32.949 kJ/mol # Calculated enthalpy of reaction Quartz -# Enthalpy of formation: -217.65 kcal/mol - -analytic 7.7698e-002 1.0612e-002 3.4651e+003 -4.3551e+000 -7.2138e+005 -# -Range: 0-300 - -Ra - Ra +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ra++ - log_k 141.3711 - -delta_H -807.374 kJ/mol # Calculated enthalpy of reaction Ra -# Enthalpy of formation: 0 kJ/mol - -analytic 4.9867e+001 5.9412e-003 4.0293e+004 -1.8356e+001 6.8421e+002 -# -Range: 0-200 - -Ra(NO3)2 - Ra(NO3)2 = + 1.0000 Ra++ + 2.0000 NO3- - log_k -2.2419 - -delta_H 50.4817 kJ/mol # Calculated enthalpy of reaction Ra(NO3)2 -# Enthalpy of formation: -991.706 kJ/mol - -analytic 2.2001e+001 -9.5263e-003 -3.9389e+003 -3.3143e+000 -6.6896e+001 -# -Range: 0-200 - -RaCl2:2H2O - RaCl2:2H2O = + 1.0000 Ra++ + 2.0000 Cl- + 2.0000 H2O - log_k -0.7647 - -delta_H 32.6266 kJ/mol # Calculated enthalpy of reaction RaCl2:2H2O -# Enthalpy of formation: -1466.07 kJ/mol - -analytic -2.5033e+001 -1.8918e-002 -1.5713e+003 1.4213e+001 -2.6673e+001 -# -Range: 0-200 - -RaSO4 - RaSO4 = + 1.0000 Ra++ + 1.0000 SO4-- - log_k -10.4499 - -delta_H 40.309 kJ/mol # Calculated enthalpy of reaction RaSO4 -# Enthalpy of formation: -1477.51 kJ/mol - -analytic 4.8025e+001 -1.1376e-002 -5.1347e+003 -1.5306e+001 -8.7211e+001 -# -Range: 0-200 - -Rankinite - Ca3Si2O7 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Ca++ + 3.0000 H2O - log_k 51.9078 - -delta_H -302.089 kJ/mol # Calculated enthalpy of reaction Rankinite -# Enthalpy of formation: -941.7 kcal/mol - -analytic -9.6393e+001 -1.6592e-002 2.4832e+004 3.2541e+001 -9.4630e+005 -# -Range: 0-300 - -Rb - Rb +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Rb+ - log_k 71.1987 - -delta_H -391.009 kJ/mol # Calculated enthalpy of reaction Rb -# Enthalpy of formation: 0 kJ/mol - -analytic -2.1179e+001 -8.7978e-003 2.0934e+004 1.0011e+001 3.2667e+002 -# -Range: 0-300 - -Rb2UO4 - Rb2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Rb+ - log_k 34.0089 - -delta_H -170.224 kJ/mol # Calculated enthalpy of reaction Rb2UO4 -# Enthalpy of formation: -1922.7 kJ/mol - -analytic -3.8205e+001 3.1862e-003 1.0973e+004 1.3925e+001 1.8636e+002 -# -Range: 0-200 - -Re - Re +1.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 ReO4- - log_k 105.9749 - -delta_H -623.276 kJ/mol # Calculated enthalpy of reaction Re -# Enthalpy of formation: 0 kJ/mol - -analytic 1.4535e+001 -2.9877e-002 2.9910e+004 0.0000e+000 0.0000e+000 -# -Range: 0-300 - -Realgar - AsS +2.0000 H2O = + 0.5000 S2O4-- + 1.0000 AsH3 + 1.0000 H+ - log_k -60.2768 - -delta_H 0 # Not possible to calculate enthalpy of reaction Realgar -# Enthalpy of formation: -71.406 kJ/mol - -Rhodochrosite - MnCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mn++ - log_k -0.1928 - -delta_H -21.3426 kJ/mol # Calculated enthalpy of reaction Rhodochrosite -# Enthalpy of formation: -212.521 kcal/mol - -analytic -1.6195e+002 -4.9344e-002 5.0937e+003 6.4402e+001 7.9531e+001 -# -Range: 0-300 - -Rhodonite - MnSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Mn++ + 1.0000 SiO2 - log_k 9.7301 - -delta_H -64.7121 kJ/mol # Calculated enthalpy of reaction Rhodonite -# Enthalpy of formation: -1319.42 kJ/mol - -analytic 2.0585e+001 4.9941e-003 4.5816e+003 -9.8212e+000 -3.0658e+005 -# -Range: 0-300 - -Ripidolite-14A - Mg3Fe2Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe++ + 3.0000 Mg++ + 3.0000 SiO2 + 12.0000 H2O - log_k 60.9638 - -delta_H -572.472 kJ/mol # Calculated enthalpy of reaction Ripidolite-14A -# Enthalpy of formation: -1947.87 kcal/mol - -analytic -1.8376e+002 -6.1934e-002 3.2458e+004 6.2290e+001 5.0653e+002 -# -Range: 0-300 - -Ripidolite-7A - Mg3Fe2Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe++ + 3.0000 Mg++ + 3.0000 SiO2 + 12.0000 H2O - log_k 64.3371 - -delta_H -586.325 kJ/mol # Calculated enthalpy of reaction Ripidolite-7A -# Enthalpy of formation: -1944.56 kcal/mol - -analytic -1.9557e+002 -6.3779e-002 3.3634e+004 6.7057e+001 5.2489e+002 -# -Range: 0-300 - -Romarchite - SnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Sn++ - log_k 1.3625 - -delta_H -8.69017 kJ/mol # Calculated enthalpy of reaction Romarchite -# Enthalpy of formation: -68.34 kcal/mol - -analytic -6.3187e+001 -1.5821e-002 2.2786e+003 2.4900e+001 3.5574e+001 -# -Range: 0-300 - -Ru - Ru +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ru++ - log_k 16.6701 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru -# Enthalpy of formation: 0 kJ/mol - -Ru(OH)3:H2O(am) - Ru(OH)3:H2O +3.0000 H+ = + 1.0000 Ru+++ + 4.0000 H2O - log_k 1.6338 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)3:H2O(am) -# Enthalpy of formation: 0 kcal/mol - -RuBr3 - RuBr3 = + 1.0000 Ru+++ + 3.0000 Br- - log_k 3.1479 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuBr3 -# Enthalpy of formation: -147.76 kJ/mol - -RuCl3 - RuCl3 = + 1.0000 Ru+++ + 3.0000 Cl- - log_k 10.8215 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3 -# Enthalpy of formation: -221.291 kJ/mol - -RuI3 - RuI3 = + 1.0000 Ru+++ + 3.0000 I- - log_k -12.4614 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuI3 -# Enthalpy of formation: -58.425 kJ/mol - -RuO2 - RuO2 +2.0000 H+ = + 1.0000 Ru(OH)2++ - log_k -5.4835 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2 -# Enthalpy of formation: -307.233 kJ/mol - -RuO2:2H2O(am) - RuO2:2H2O +2.0000 H+ = + 1.0000 Ru(OH)2++ + 2.0000 H2O - log_k 0.9045 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2:2H2O(am) -# Enthalpy of formation: 0 kcal/mol - -RuO4 - RuO4 = + 1.0000 RuO4 - log_k -0.9636 - -delta_H 6.305 kJ/mol # Calculated enthalpy of reaction RuO4 -# Enthalpy of formation: -244.447 kJ/mol - -RuSe2 - RuSe2 +2.0000 H2O = + 1.0000 Ru(OH)2++ + 2.0000 H+ + 2.0000 Se-- - log_k -113.7236 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSe2 -# Enthalpy of formation: -146.274 kJ/mol - -Rutherfordine - UO2CO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 UO2++ - log_k -4.1064 - -delta_H -19.4032 kJ/mol # Calculated enthalpy of reaction Rutherfordine -# Enthalpy of formation: -1689.53 kJ/mol - -analytic -8.8224e+001 -3.1434e-002 2.6675e+003 3.4161e+001 4.1650e+001 -# -Range: 0-300 - -Rutile - TiO2 +2.0000 H2O = + 1.0000 Ti(OH)4 - log_k -9.6452 - -delta_H 0 # Not possible to calculate enthalpy of reaction Rutile -# Enthalpy of formation: -226.107 kcal/mol - -S - S +1.0000 H2O = + 0.5000 O2 + 1.0000 H+ + 1.0000 HS- - log_k -45.0980 - -delta_H 263.663 kJ/mol # Calculated enthalpy of reaction S -# Enthalpy of formation: 0 kJ/mol - -analytic -8.8928e+001 -2.8454e-002 -1.1516e+004 3.6747e+001 -1.7966e+002 -# -Range: 0-300 - -Safflorite - CoAs2 +2.0000 H2O +1.0000 H+ +0.5000 O2 = + 1.0000 AsH3 + 1.0000 Co++ + 1.0000 H2AsO3- - log_k -3.6419 - -delta_H -52.7226 kJ/mol # Calculated enthalpy of reaction Safflorite -# Enthalpy of formation: -23.087 kcal/mol - -Saleeite - Mg(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Mg++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -19.4575 - -delta_H -110.816 kJ/mol # Calculated enthalpy of reaction Saleeite -# Enthalpy of formation: -1189.61 kcal/mol - -analytic -6.0028e+001 -4.4391e-002 3.9168e+003 1.6428e+001 6.6533e+001 -# -Range: 0-200 - -Sanbornite - BaSi2O5 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O + 2.0000 SiO2 - log_k 9.4753 - -delta_H -31.0845 kJ/mol # Calculated enthalpy of reaction Sanbornite -# Enthalpy of formation: -2547.8 kJ/mol - -analytic -2.5381e+001 1.2999e-002 1.2330e+004 2.1053e+000 -1.3913e+006 -# -Range: 0-300 - -Sanidine_high - KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 - log_k 0.9239 - -delta_H -35.0284 kJ/mol # Calculated enthalpy of reaction Sanidine_high -# Enthalpy of formation: -946.538 kcal/mol - -analytic -3.4889e+000 1.4495e-002 1.2856e+004 -9.8978e+000 -1.6572e+006 -# -Range: 0-300 - -Saponite-Ca - Ca.165Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Ca++ + 0.3300 Al+++ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 26.2900 - -delta_H -207.971 kJ/mol # Calculated enthalpy of reaction Saponite-Ca -# Enthalpy of formation: -1436.51 kcal/mol - -analytic -4.6904e+001 6.2555e-003 2.2572e+004 5.3198e+000 -1.5725e+006 -# -Range: 0-300 - -Saponite-Cs - Cs.33Si3.67Al.33Mg3O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Cs+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 25.8528 - -delta_H -195.407 kJ/mol # Calculated enthalpy of reaction Saponite-Cs -# Enthalpy of formation: -1438.44 kcal/mol - -analytic -7.7732e+001 -3.6418e-005 2.3346e+004 1.7578e+001 -1.6319e+006 -# -Range: 0-300 - -Saponite-H - H.33Mg3Al.33Si3.67O10(OH)2 +6.9900 H+ = + 0.3300 Al+++ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 25.3321 - -delta_H -200.235 kJ/mol # Calculated enthalpy of reaction Saponite-H -# Enthalpy of formation: -1416.94 kcal/mol - -analytic -3.9828e+001 8.9566e-003 2.2165e+004 2.3941e+000 -1.5933e+006 -# -Range: 0-300 - -Saponite-K - K.33Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 K+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 26.0075 - -delta_H -196.402 kJ/mol # Calculated enthalpy of reaction Saponite-K -# Enthalpy of formation: -1437.74 kcal/mol - -analytic 3.2113e+001 1.8392e-002 1.7918e+004 -2.2874e+001 -1.3542e+006 -# -Range: 0-300 - -Saponite-Mg - Mg3.165Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 3.1650 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 26.2523 - -delta_H -210.822 kJ/mol # Calculated enthalpy of reaction Saponite-Mg -# Enthalpy of formation: -1432.79 kcal/mol - -analytic 9.8888e+000 1.4320e-002 1.9418e+004 -1.5259e+001 -1.3716e+006 -# -Range: 0-300 - -Saponite-Na - Na.33Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Na+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 26.3459 - -delta_H -201.401 kJ/mol # Calculated enthalpy of reaction Saponite-Na -# Enthalpy of formation: -1435.61 kcal/mol - -analytic -6.7611e+001 4.7327e-003 2.3586e+004 1.2868e+001 -1.6493e+006 -# -Range: 0-300 - -Sb - Sb +1.5000 H2O +0.7500 O2 = + 1.0000 Sb(OH)3 - log_k 52.7918 - -delta_H -335.931 kJ/mol # Calculated enthalpy of reaction Sb -# Enthalpy of formation: 0 kJ/mol - -Sb(OH)3 - Sb(OH)3 = + 1.0000 Sb(OH)3 - log_k -7.0953 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Sb2O3 - Sb2O3 +3.0000 H2O = + 2.0000 Sb(OH)3 - log_k -8.9600 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2O3 -# Enthalpy of formation: 0 kcal/mol - -analytic 2.3982e+000 -7.6326e-005 -3.3787e+003 0.0000e+000 0.0000e+000 -# -Range: 0-300 - -Sb2O4 - Sb2O4 +3.0000 H2O = + 0.5000 O2 + 2.0000 Sb(OH)3 - log_k -39.6139 - -delta_H 211.121 kJ/mol # Calculated enthalpy of reaction Sb2O4 -# Enthalpy of formation: -907.251 kJ/mol - -Sb2O5 - Sb2O5 +3.0000 H2O = + 1.0000 O2 + 2.0000 Sb(OH)3 - log_k -46.9320 - -delta_H 269.763 kJ/mol # Calculated enthalpy of reaction Sb2O5 -# Enthalpy of formation: -971.96 kJ/mol - -Sb4O6(cubic) - Sb4O6 +6.0000 H2O = + 4.0000 Sb(OH)3 - log_k -19.6896 - -delta_H 59.898 kJ/mol # Calculated enthalpy of reaction Sb4O6(cubic) -# Enthalpy of formation: -1440.02 kJ/mol - -Sb4O6(orthorhombic) - Sb4O6 +6.0000 H2O = + 4.0000 Sb(OH)3 - log_k -17.0442 - -delta_H 37.314 kJ/mol # Calculated enthalpy of reaction Sb4O6(orthorhombic) -# Enthalpy of formation: -1417.44 kJ/mol - -SbBr3 - SbBr3 +3.0000 H2O = + 1.0000 Sb(OH)3 + 3.0000 Br- + 3.0000 H+ - log_k 1.0554 - -delta_H -21.5871 kJ/mol # Calculated enthalpy of reaction SbBr3 -# Enthalpy of formation: -259.197 kJ/mol - -SbCl3 - SbCl3 +3.0000 H2O = + 1.0000 Sb(OH)3 + 3.0000 Cl- + 3.0000 H+ - log_k 0.5878 - -delta_H -35.393 kJ/mol # Calculated enthalpy of reaction SbCl3 -# Enthalpy of formation: -382.12 kJ/mol - -Sc - Sc +3.0000 H+ +0.7500 O2 = + 1.0000 Sc+++ + 1.5000 H2O - log_k 167.2700 - -delta_H -1033.87 kJ/mol # Calculated enthalpy of reaction Sc -# Enthalpy of formation: 0 kJ/mol - -analytic -6.6922e+001 -2.9150e-002 5.4559e+004 2.4189e+001 8.5137e+002 -# -Range: 0-300 - -Scacchite - MnCl2 = + 1.0000 Mn++ + 2.0000 Cl- - log_k 8.7785 - -delta_H -73.4546 kJ/mol # Calculated enthalpy of reaction Scacchite -# Enthalpy of formation: -481.302 kJ/mol - -analytic -2.3476e+002 -8.2437e-002 9.0088e+003 9.6128e+001 1.4064e+002 -# -Range: 0-300 - -Schoepite - UO3:2H2O +2.0000 H+ = + 1.0000 UO2++ + 3.0000 H2O - log_k 4.8333 - -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction Schoepite -# Enthalpy of formation: -1826.1 kJ/mol - -analytic 1.3645e+001 1.0884e-002 2.5412e+003 -8.3167e+000 3.9649e+001 -# -Range: 0-300 - -Schoepite-dehy(.393) - UO3:.393H2O +2.0000 H+ = + 1.0000 UO2++ + 1.3930 H2O - log_k 6.7243 - -delta_H -69.2728 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.393) -# Enthalpy of formation: -1347.9 kJ/mol - -analytic -5.6487e+001 -3.0358e-003 5.7044e+003 1.8179e+001 9.6887e+001 -# -Range: 0-200 - -Schoepite-dehy(.648) - UO3:.648H2O +2.0000 H+ = + 1.0000 UO2++ + 1.6480 H2O - log_k 6.2063 - -delta_H -65.4616 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.648) -# Enthalpy of formation: -1424.6 kJ/mol - -analytic -6.3010e+001 -3.0276e-003 5.8033e+003 2.0471e+001 9.8569e+001 -# -Range: 0-200 - -Schoepite-dehy(.85) - UO3:.85H2O +2.0000 H+ = + 1.0000 UO2++ + 1.8500 H2O - log_k 5.0970 - -delta_H -56.4009 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.85) -# Enthalpy of formation: -1491.4 kJ/mol - -analytic -6.7912e+001 -3.0420e-003 5.5690e+003 2.2323e+001 9.4593e+001 -# -Range: 0-200 - -Schoepite-dehy(.9) - UO3:.9H2O +2.0000 H+ = + 1.0000 UO2++ + 1.9000 H2O - log_k 5.0167 - -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.9) -# Enthalpy of formation: -1506.3 kJ/mol - -analytic -1.5998e+001 -2.0144e-003 3.2910e+003 4.2751e+000 5.1358e+001 -# -Range: 0-300 - -Schoepite-dehy(1.0) - UO3:H2O +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O - log_k 5.1031 - -delta_H -57.4767 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(1.0) -# Enthalpy of formation: -1533.2 kJ/mol - -analytic -7.2080e+001 -3.0503e-003 5.8024e+003 2.3695e+001 9.8557e+001 -# -Range: 0-200 - -Scolecite - CaAl2Si3O10:3H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O - log_k 15.8767 - -delta_H -204.93 kJ/mol # Calculated enthalpy of reaction Scolecite -# Enthalpy of formation: -6048.92 kJ/mol - -analytic 5.0656e+001 -3.1485e-003 1.0574e+004 -2.5663e+001 -5.2769e+005 -# -Range: 0-300 - -Se - Se +1.0000 H2O +1.0000 O2 = + 1.0000 SeO3-- + 2.0000 H+ - log_k 26.1436 - -delta_H -211.221 kJ/mol # Calculated enthalpy of reaction Se -# Enthalpy of formation: 0 kJ/mol - -analytic -9.5144e+001 -6.5681e-002 1.0736e+004 4.2358e+001 1.6755e+002 -# -Range: 0-300 - -Se2O5 - Se2O5 +2.0000 H2O = + 1.0000 SeO3-- + 1.0000 SeO4-- + 4.0000 H+ - log_k 9.5047 - -delta_H -123.286 kJ/mol # Calculated enthalpy of reaction Se2O5 -# Enthalpy of formation: -98.8 kcal/mol - -analytic 1.1013e+002 -2.4491e-002 -5.6147e+002 -3.6960e+001 -9.5719e+000 -# -Range: 0-200 - -SeCl4 - SeCl4 +3.0000 H2O = + 1.0000 SeO3-- + 4.0000 Cl- + 6.0000 H+ - log_k 14.4361 - -delta_H -131.298 kJ/mol # Calculated enthalpy of reaction SeCl4 -# Enthalpy of formation: -45.1 kcal/mol - -analytic -4.0215e+002 -1.8323e-001 1.3074e+004 1.7267e+002 2.0413e+002 -# -Range: 0-300 - -SeO3 - SeO3 +1.0000 H2O = + 1.0000 SeO4-- + 2.0000 H+ - log_k 19.2015 - -delta_H -143.022 kJ/mol # Calculated enthalpy of reaction SeO3 -# Enthalpy of formation: -40.7 kcal/mol - -analytic -1.4199e+002 -6.4398e-002 9.5505e+003 5.9941e+001 1.4907e+002 -# -Range: 0-300 - -Sellaite - MgF2 = + 1.0000 Mg++ + 2.0000 F- - log_k -9.3843 - -delta_H -12.4547 kJ/mol # Calculated enthalpy of reaction Sellaite -# Enthalpy of formation: -1124.2 kJ/mol - -analytic -2.6901e+002 -8.5487e-002 6.8237e+003 1.0595e+002 1.0656e+002 -# -Range: 0-300 - -Sepiolite - Mg4Si6O15(OH)2:6H2O +8.0000 H+ = + 4.0000 Mg++ + 6.0000 SiO2 + 11.0000 H2O - log_k 30.4439 - -delta_H -157.339 kJ/mol # Calculated enthalpy of reaction Sepiolite -# Enthalpy of formation: -2418 kcal/mol - -analytic 1.8690e+001 4.7544e-002 2.6765e+004 -2.5301e+001 -2.6498e+006 -# -Range: 0-300 - -Shcherbinaite - V2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 VO2+ - log_k -1.4520 - -delta_H -34.7917 kJ/mol # Calculated enthalpy of reaction Shcherbinaite -# Enthalpy of formation: -1550.6 kJ/mol - -analytic -1.4791e+002 -2.2464e-002 6.6865e+003 5.2832e+001 1.0438e+002 -# -Range: 0-300 - -Si - Si +1.0000 O2 = + 1.0000 SiO2 - log_k 148.9059 - -delta_H -865.565 kJ/mol # Calculated enthalpy of reaction Si -# Enthalpy of formation: 0 kJ/mol - -analytic -5.7245e+002 -7.6302e-002 8.3516e+004 2.0045e+002 -2.8494e+006 -# -Range: 0-300 - -SiO2(am) - SiO2 = + 1.0000 SiO2 - log_k -2.7136 - -delta_H 20.0539 kJ/mol # Calculated enthalpy of reaction SiO2(am) -# Enthalpy of formation: -214.568 kcal/mol - -analytic 1.2109e+000 7.0767e-003 2.3634e+003 -3.4449e+000 -4.8591e+005 -# -Range: 0-300 - -Siderite - FeCO3 +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HCO3- - log_k -0.1920 - -delta_H -32.5306 kJ/mol # Calculated enthalpy of reaction Siderite -# Enthalpy of formation: -179.173 kcal/mol - -analytic -1.5990e+002 -4.9361e-002 5.4947e+003 6.3032e+001 8.5787e+001 -# -Range: 0-300 - -Sillimanite - Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O - log_k 16.3080 - -delta_H -238.442 kJ/mol # Calculated enthalpy of reaction Sillimanite -# Enthalpy of formation: -615.099 kcal/mol - -analytic -7.1610e+001 -3.2196e-002 1.2493e+004 2.2449e+001 1.9496e+002 -# -Range: 0-300 - -Sklodowskite - Mg(H3O)2(UO2)2(SiO4)2:4H2O +6.0000 H+ = + 1.0000 Mg++ + 2.0000 SiO2 + 2.0000 UO2++ + 10.0000 H2O - log_k 13.7915 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sklodowskite -# Enthalpy of formation: 0 kcal/mol - -Sm - Sm +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sm++ - log_k 133.1614 - -delta_H -783.944 kJ/mol # Calculated enthalpy of reaction Sm -# Enthalpy of formation: 0 kJ/mol - -analytic -7.1599e+001 -2.0083e-002 4.2693e+004 2.7291e+001 6.6621e+002 -# -Range: 0-300 - -Sm(OH)3 - Sm(OH)3 +3.0000 H+ = + 1.0000 Sm+++ + 3.0000 H2O - log_k 16.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Sm(OH)3(am) - Sm(OH)3 +3.0000 H+ = + 1.0000 Sm+++ + 3.0000 H2O - log_k 18.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Sm2(CO3)3 - Sm2(CO3)3 +3.0000 H+ = + 2.0000 Sm+++ + 3.0000 HCO3- - log_k -3.5136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Sm2(SO4)3 - Sm2(SO4)3 = + 2.0000 Sm+++ + 3.0000 SO4-- - log_k -9.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(SO4)3 -# Enthalpy of formation: 0 kcal/mol - -Sm2O3 - Sm2O3 +6.0000 H+ = + 2.0000 Sm+++ + 3.0000 H2O - log_k 42.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2O3 -# Enthalpy of formation: 0 kcal/mol - -SmF3:.5H2O - SmF3:.5H2O = + 0.5000 H2O + 1.0000 Sm+++ + 3.0000 F- - log_k -17.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -SmPO4:10H2O - SmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Sm+++ + 10.0000 H2O - log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Smectite-high-Fe-Mg -# Ca.025Na.1K.2Fe++.5Fe+++.2Mg1.15Al1.25Si3.5H2O12 +8.0000 H+ = + 0.0250 Ca++ + 0.1000 Na+ + 0.2000 Fe+++ + 0.2000 K+ + 0.5000 Fe++ + 1.1500 Mg++ + 1.2500 Al+++ + 3.5000 SiO2 + 5.0000 H2O - Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 +8.0000 H+ = + 0.0250 Ca++ + 0.1000 Na+ + 0.2000 Fe+++ + 0.2000 K+ + 0.5000 Fe++ + 1.1500 Mg++ + 1.2500 Al+++ + 3.5000 SiO2 + 5.0000 H2O - log_k 17.4200 - -delta_H -199.841 kJ/mol # Calculated enthalpy of reaction Smectite-high-Fe-Mg -# Enthalpy of formation: -1351.39 kcal/mol - -analytic -9.6102e+000 1.2551e-003 1.8157e+004 -7.9862e+000 -1.3005e+006 -# -Range: 0-300 - -Smectite-low-Fe-Mg -# Ca.02Na.15K.2Fe++.29Fe+++.16Mg.9Al1.25Si3.75H2O1 +7.0000 H+ = + 0.0200 Ca++ + 0.1500 Na+ + 0.1600 Fe+++ + 0.2000 K+ + 0.2900 Fe++ + 0.9000 Mg++ + 1.2500 Al+++ + 3.7500 SiO2 + 4.5000 H2O - Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 +7.0000 H+ = + 0.0200 Ca++ + 0.1500 Na+ + 0.1600 Fe+++ + 0.2000 K+ + 0.2900 Fe++ + 0.9000 Mg++ + 1.2500 Al+++ + 3.7500 SiO2 + 4.5000 H2O - log_k 11.0405 - -delta_H -144.774 kJ/mol # Calculated enthalpy of reaction Smectite-low-Fe-Mg -# Enthalpy of formation: -1352.12 kcal/mol - -analytic -1.7003e+001 6.9848e-003 1.8359e+004 -6.8896e+000 -1.6637e+006 -# -Range: 0-300 - -Smithsonite - ZnCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Zn++ - log_k 0.4633 - -delta_H -30.5348 kJ/mol # Calculated enthalpy of reaction Smithsonite -# Enthalpy of formation: -194.26 kcal/mol - -analytic -1.6452e+002 -5.0231e-002 5.5925e+003 6.5139e+001 8.7314e+001 -# -Range: 0-300 - -Sn - Sn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sn++ - log_k 47.8615 - -delta_H -288.558 kJ/mol # Calculated enthalpy of reaction Sn -# Enthalpy of formation: 0 kcal/mol - -analytic -1.3075e+002 -3.3807e-002 1.9548e+004 5.0382e+001 -1.3868e+005 -# -Range: 0-300 - -Sn(OH)2 - Sn(OH)2 +2.0000 H+ = + 1.0000 Sn++ + 2.0000 H2O - log_k 1.8400 - -delta_H -19.6891 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 -# Enthalpy of formation: -560.774 kJ/mol - -analytic -6.1677e+001 -5.3258e-003 3.3656e+003 2.1748e+001 5.7174e+001 -# -Range: 0-200 - -Sn(SO4)2 - Sn(SO4)2 = + 1.0000 Sn++++ + 2.0000 SO4-- - log_k 16.0365 - -delta_H -159.707 kJ/mol # Calculated enthalpy of reaction Sn(SO4)2 -# Enthalpy of formation: -389.4 kcal/mol - -analytic 1.7787e+001 -5.1758e-002 3.7671e+003 4.1861e-001 6.3965e+001 -# -Range: 0-200 - -Sn3S4 - Sn3S4 +4.0000 H+ = + 1.0000 Sn++++ + 2.0000 Sn++ + 4.0000 HS- - log_k -61.9790 - -delta_H 318.524 kJ/mol # Calculated enthalpy of reaction Sn3S4 -# Enthalpy of formation: -88.5 kcal/mol - -analytic -8.1325e+001 -7.4589e-002 -1.7953e+004 4.1138e+001 -3.0484e+002 -# -Range: 0-200 - -SnBr2 - SnBr2 = + 1.0000 Sn++ + 2.0000 Br- - log_k -1.4369 - -delta_H 8.24248 kJ/mol # Calculated enthalpy of reaction SnBr2 -# Enthalpy of formation: -62.15 kcal/mol - -analytic 2.5384e+001 -1.7350e-002 -2.6653e+003 -5.1400e+000 -4.5269e+001 -# -Range: 0-200 - -SnBr4 - SnBr4 = + 1.0000 Sn++++ + 4.0000 Br- - log_k 11.1272 - -delta_H -78.3763 kJ/mol # Calculated enthalpy of reaction SnBr4 -# Enthalpy of formation: -377.391 kJ/mol - -analytic 1.3516e+001 -5.5193e-002 -8.1888e+001 5.7935e+000 -1.3940e+000 -# -Range: 0-200 - -SnCl2 - SnCl2 = + 1.0000 Sn++ + 2.0000 Cl- - log_k 0.3225 - -delta_H -11.9913 kJ/mol # Calculated enthalpy of reaction SnCl2 -# Enthalpy of formation: -79.1 kcal/mol - -analytic 7.9717e+000 -2.1475e-002 -1.1676e+003 1.0749e+000 -1.9829e+001 -# -Range: 0-200 - -SnSO4 - SnSO4 = + 1.0000 SO4-- + 1.0000 Sn++ - log_k -23.9293 - -delta_H 96.232 kJ/mol # Calculated enthalpy of reaction SnSO4 -# Enthalpy of formation: -242.5 kcal/mol - -analytic 3.0046e+001 -1.4238e-002 -7.5915e+003 -9.8122e+000 -1.2892e+002 -# -Range: 0-200 - -SnSe - SnSe = + 1.0000 Se-- + 1.0000 Sn++ - log_k -32.9506 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe -# Enthalpy of formation: -21.2 kcal/mol - -analytic 4.2342e+000 9.5462e-004 -8.0009e+003 -4.2997e+000 -1.3587e+002 -# -Range: 0-200 - -SnSe2 - SnSe2 = + 1.0000 Sn++++ + 2.0000 Se-- - log_k -66.6570 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe2 -# Enthalpy of formation: -29.8 kcal/mol - -analytic -3.6819e+001 -2.0966e-002 -1.5197e+004 1.1070e+001 -2.5806e+002 -# -Range: 0-200 - -Soddyite - (UO2)2SiO4:2H2O +4.0000 H+ = + 1.0000 SiO2 + 2.0000 UO2++ + 4.0000 H2O - log_k 0.3920 - -delta_H 0 # Not possible to calculate enthalpy of reaction Soddyite -# Enthalpy of formation: 0 kcal/mol - -Sphaerocobaltite - CoCO3 +1.0000 H+ = + 1.0000 Co++ + 1.0000 HCO3- - log_k -0.2331 - -delta_H -30.7064 kJ/mol # Calculated enthalpy of reaction Sphaerocobaltite -# Enthalpy of formation: -171.459 kcal/mol - -analytic -1.5709e+002 -4.8957e-002 5.3158e+003 6.2075e+001 8.2995e+001 -# -Range: 0-300 - -Sphalerite - ZnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Zn++ - log_k -11.4400 - -delta_H 35.5222 kJ/mol # Calculated enthalpy of reaction Sphalerite -# Enthalpy of formation: -49 kcal/mol - -analytic -1.5497e+002 -4.8953e-002 1.7850e+003 6.1472e+001 2.7899e+001 -# -Range: 0-300 - -Spinel - Al2MgO4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Al+++ + 4.0000 H2O - log_k 37.6295 - -delta_H -398.108 kJ/mol # Calculated enthalpy of reaction Spinel -# Enthalpy of formation: -546.847 kcal/mol - -analytic -3.3895e+002 -8.3595e-002 2.9251e+004 1.2260e+002 4.5654e+002 -# -Range: 0-300 - -Spinel-Co - Co3O4 +8.0000 H+ = + 1.0000 Co++ + 2.0000 Co+++ + 4.0000 H2O - log_k -6.4852 - -delta_H -126.415 kJ/mol # Calculated enthalpy of reaction Spinel-Co -# Enthalpy of formation: -891 kJ/mol - -analytic -3.2239e+002 -8.0782e-002 1.4635e+004 1.1755e+002 2.2846e+002 -# -Range: 0-300 - -Spodumene - LiAlSi2O6 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 2.0000 H2O + 2.0000 SiO2 - log_k 6.9972 - -delta_H -89.1817 kJ/mol # Calculated enthalpy of reaction Spodumene -# Enthalpy of formation: -3054.75 kJ/mol - -analytic -9.8111e+000 2.1191e-003 9.6920e+003 -3.0484e+000 -7.8822e+005 -# -Range: 0-300 - -Sr - Sr +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sr++ - log_k 141.7816 - -delta_H -830.679 kJ/mol # Calculated enthalpy of reaction Sr -# Enthalpy of formation: 0 kJ/mol - -analytic -1.6271e+002 -3.1212e-002 5.1520e+004 5.9178e+001 -4.8390e+005 -# -Range: 0-300 - -Sr(NO3)2 - Sr(NO3)2 = + 1.0000 Sr++ + 2.0000 NO3- - log_k 1.1493 - -delta_H 13.7818 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2 -# Enthalpy of formation: -978.311 kJ/mol - -analytic 2.8914e+000 -1.2487e-002 -1.4872e+003 2.8124e+000 -2.5256e+001 -# -Range: 0-200 - -Sr(NO3)2:4H2O - Sr(NO3)2:4H2O = + 1.0000 Sr++ + 2.0000 NO3- + 4.0000 H2O - log_k 0.6976 - -delta_H 47.9045 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2:4H2O -# Enthalpy of formation: -2155.79 kJ/mol - -analytic -8.4518e+001 -9.1155e-003 1.0856e+003 3.4061e+001 1.8464e+001 -# -Range: 0-200 - -Sr(OH)2 - Sr(OH)2 +2.0000 H+ = + 1.0000 Sr++ + 2.0000 H2O - log_k 27.5229 - -delta_H -153.692 kJ/mol # Calculated enthalpy of reaction Sr(OH)2 -# Enthalpy of formation: -968.892 kJ/mol - -analytic -5.1871e+001 -2.9123e-003 1.0175e+004 1.8643e+001 1.7280e+002 -# -Range: 0-200 - -Sr2SiO4 - Sr2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Sr++ - log_k 42.8076 - -delta_H -244.583 kJ/mol # Calculated enthalpy of reaction Sr2SiO4 -# Enthalpy of formation: -2306.61 kJ/mol - -analytic 3.0319e+001 2.0204e-003 1.2729e+004 -1.1584e+001 -1.9480e+005 -# -Range: 0-300 - -Sr3(AsO4)2 - Sr3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Sr++ - log_k 20.6256 - -delta_H -152.354 kJ/mol # Calculated enthalpy of reaction Sr3(AsO4)2 -# Enthalpy of formation: -3319.49 kJ/mol - -analytic -8.4749e+001 -2.9367e-002 9.5849e+003 3.3126e+001 1.6279e+002 -# -Range: 0-200 - -SrBr2 - SrBr2 = + 1.0000 Sr++ + 2.0000 Br- - log_k 13.1128 - -delta_H -75.106 kJ/mol # Calculated enthalpy of reaction SrBr2 -# Enthalpy of formation: -718.808 kJ/mol - -analytic -1.8512e+002 -7.2423e-002 7.6861e+003 7.8401e+001 1.1999e+002 -# -Range: 0-300 - -SrBr2:6H2O - SrBr2:6H2O = + 1.0000 Sr++ + 2.0000 Br- + 6.0000 H2O - log_k 3.6678 - -delta_H 23.367 kJ/mol # Calculated enthalpy of reaction SrBr2:6H2O -# Enthalpy of formation: -2532.31 kJ/mol - -analytic -2.2470e+002 -6.7920e-002 4.9432e+003 9.3758e+001 7.7200e+001 -# -Range: 0-300 - -SrBr2:H2O - SrBr2:H2O = + 1.0000 H2O + 1.0000 Sr++ + 2.0000 Br- - log_k 9.6057 - -delta_H -47.5853 kJ/mol # Calculated enthalpy of reaction SrBr2:H2O -# Enthalpy of formation: -1032.17 kJ/mol - -analytic -1.9103e+002 -7.1402e-002 6.6358e+003 8.0673e+001 1.0360e+002 -# -Range: 0-300 - -SrCl2 - SrCl2 = + 1.0000 Sr++ + 2.0000 Cl- - log_k 7.9389 - -delta_H -55.0906 kJ/mol # Calculated enthalpy of reaction SrCl2 -# Enthalpy of formation: -829.976 kJ/mol - -analytic -2.0097e+002 -7.6193e-002 7.0396e+003 8.4050e+001 1.0991e+002 -# -Range: 0-300 - -SrCl2:2H2O - SrCl2:2H2O = + 1.0000 Sr++ + 2.0000 Cl- + 2.0000 H2O - log_k 3.3248 - -delta_H -17.7313 kJ/mol # Calculated enthalpy of reaction SrCl2:2H2O -# Enthalpy of formation: -1439.01 kJ/mol - -analytic -2.1551e+002 -7.4349e-002 5.9400e+003 8.9330e+001 9.2752e+001 -# -Range: 0-300 - -SrCl2:6H2O - SrCl2:6H2O = + 1.0000 Sr++ + 2.0000 Cl- + 6.0000 H2O - log_k 1.5038 - -delta_H 24.6964 kJ/mol # Calculated enthalpy of reaction SrCl2:6H2O -# Enthalpy of formation: -2624.79 kJ/mol - -analytic -1.3225e+002 -1.8260e-002 3.7077e+003 5.1224e+001 6.3008e+001 -# -Range: 0-200 - -SrCl2:H2O - SrCl2:H2O = + 1.0000 H2O + 1.0000 Sr++ + 2.0000 Cl- - log_k 4.7822 - -delta_H -33.223 kJ/mol # Calculated enthalpy of reaction SrCl2:H2O -# Enthalpy of formation: -1137.68 kJ/mol - -analytic -2.1825e+002 -7.7851e-002 6.5957e+003 9.0555e+001 1.0298e+002 -# -Range: 0-300 - -SrCrO4 - SrCrO4 = + 1.0000 CrO4-- + 1.0000 Sr++ - log_k -3.8849 - -delta_H -1.73636 kJ/mol # Calculated enthalpy of reaction SrCrO4 -# Enthalpy of formation: -341.855 kcal/mol - -analytic 2.3424e+001 -1.5589e-002 -2.1393e+003 -6.2628e+000 -3.6337e+001 -# -Range: 0-200 - -SrF2 - SrF2 = + 1.0000 Sr++ + 2.0000 F- - log_k -8.5400 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrF2 -# Enthalpy of formation: 0 kcal/mol - -SrHPO4 - SrHPO4 = + 1.0000 HPO4-- + 1.0000 Sr++ - log_k -6.2416 - -delta_H -19.7942 kJ/mol # Calculated enthalpy of reaction SrHPO4 -# Enthalpy of formation: -1823.19 kJ/mol - -analytic 5.4057e+000 -1.8533e-002 -8.2021e+002 -1.3667e+000 -1.3930e+001 -# -Range: 0-200 - -SrI2 - SrI2 = + 1.0000 Sr++ + 2.0000 I- - log_k 19.2678 - -delta_H -103.218 kJ/mol # Calculated enthalpy of reaction SrI2 -# Enthalpy of formation: -561.494 kJ/mol - -analytic -1.8168e+002 -7.2083e-002 9.0759e+003 7.7577e+001 1.4167e+002 -# -Range: 0-300 - -SrO - SrO +2.0000 H+ = + 1.0000 H2O + 1.0000 Sr++ - log_k 41.8916 - -delta_H -243.875 kJ/mol # Calculated enthalpy of reaction SrO -# Enthalpy of formation: -592.871 kJ/mol - -analytic -5.8463e+001 -1.4240e-002 1.4417e+004 2.2725e+001 2.2499e+002 -# -Range: 0-300 - -SrS - SrS +1.0000 H+ = + 1.0000 HS- + 1.0000 Sr++ - log_k 14.7284 - -delta_H -93.3857 kJ/mol # Calculated enthalpy of reaction SrS -# Enthalpy of formation: -473.63 kJ/mol - -analytic -1.3048e+002 -4.4837e-002 7.8429e+003 5.3442e+001 1.2242e+002 -# -Range: 0-300 - -SrSeO4 - SrSeO4 = + 1.0000 SeO4-- + 1.0000 Sr++ - log_k -4.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrSeO4 -# Enthalpy of formation: 0 kcal/mol - -SrSiO3 - SrSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 SiO2 + 1.0000 Sr++ - log_k 14.8438 - -delta_H -79.6112 kJ/mol # Calculated enthalpy of reaction SrSiO3 -# Enthalpy of formation: -1634.83 kJ/mol - -analytic 2.2592e+001 6.0821e-003 5.9982e+003 -1.0213e+001 -3.9529e+005 -# -Range: 0-300 - -SrUO4(alpha) - SrUO4 +4.0000 H+ = + 1.0000 Sr++ + 1.0000 UO2++ + 2.0000 H2O - log_k 19.1650 - -delta_H -151.984 kJ/mol # Calculated enthalpy of reaction SrUO4(alpha) -# Enthalpy of formation: -1989.6 kJ/mol - -analytic -7.4169e+001 -1.6686e-002 9.8721e+003 2.6345e+001 1.5407e+002 -# -Range: 0-300 - -SrZrO3 - SrZrO3 +4.0000 H+ = + 1.0000 H2O + 1.0000 Sr++ + 1.0000 Zr(OH)2++ - log_k -131.4664 - -delta_H 706.983 kJ/mol # Calculated enthalpy of reaction SrZrO3 -# Enthalpy of formation: -629.677 kcal/mol - -analytic -5.8512e+001 -9.5738e-003 -3.5254e+004 1.9459e+001 -5.9865e+002 -# -Range: 0-200 - -Starkeyite - MgSO4:4H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 4.0000 H2O - log_k -0.9999 - -delta_H 0 # Not possible to calculate enthalpy of reaction Starkeyite -# Enthalpy of formation: 0 kcal/mol - -Stibnite - Sb2S3 +6.0000 H2O = + 2.0000 Sb(OH)3 + 3.0000 H+ + 3.0000 HS- - log_k -53.1100 - -delta_H 0 # Not possible to calculate enthalpy of reaction Stibnite -# Enthalpy of formation: 0 kcal/mol - -analytic 2.5223e+001 -5.9186e-002 -2.0860e+004 3.6892e+000 -3.2551e+002 -# -Range: 0-300 - -Stilbite - Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O +8.7200 H+ = + 0.0060 K+ + 0.1360 Na+ + 1.0190 Ca++ + 2.1800 Al+++ + 6.8200 SiO2 + 11.6900 H2O - log_k 1.0545 - -delta_H -83.0019 kJ/mol # Calculated enthalpy of reaction Stilbite -# Enthalpy of formation: -11005.7 kJ/mol - -analytic -2.4483e+001 3.0987e-002 2.8013e+004 -1.5802e+001 -3.4491e+006 -# -Range: 0-300 - -Stilleite - ZnSe = + 1.0000 Se-- + 1.0000 Zn++ - log_k -23.9693 - -delta_H 0 # Not possible to calculate enthalpy of reaction Stilleite -# Enthalpy of formation: -37.97 kcal/mol - -analytic -6.1948e+001 -1.7004e-002 -2.4498e+003 2.0712e+001 -3.8209e+001 -# -Range: 0-300 - -Strengite - FePO4:2H2O +1.0000 H+ = + 1.0000 Fe+++ + 1.0000 HPO4-- + 2.0000 H2O - log_k -11.3429 - -delta_H -37.107 kJ/mol # Calculated enthalpy of reaction Strengite -# Enthalpy of formation: -1876.23 kJ/mol - -analytic -2.7752e+002 -9.4014e-002 7.6862e+003 1.0846e+002 1.2002e+002 -# -Range: 0-300 - -Strontianite - SrCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Sr++ - log_k -0.3137 - -delta_H -8.23411 kJ/mol # Calculated enthalpy of reaction Strontianite -# Enthalpy of formation: -294.6 kcal/mol - -analytic -1.3577e+002 -4.4884e-002 3.5729e+003 5.5296e+001 5.5791e+001 -# -Range: 0-300 - -Sulfur from J.Thom - S + H2O = 0.5H+ + 0.25SO4-- + 0.75H2S - log_k -5.20733 - -analytic -7.22926e1 -1.87320e-2 7.37125e2 2.83697e1 -1.00039e2 - -Sylvite - KCl = + 1.0000 Cl- + 1.0000 K+ - log_k 0.8459 - -delta_H 17.4347 kJ/mol # Calculated enthalpy of reaction Sylvite -# Enthalpy of formation: -104.37 kcal/mol - -analytic -8.1204e+001 -3.3074e-002 8.2819e+002 3.6014e+001 1.2947e+001 -# -Range: 0-300 - -Syngenite - K2Ca(SO4)2:H2O = + 1.0000 Ca++ + 1.0000 H2O + 2.0000 K+ + 2.0000 SO4-- - log_k -7.6001 - -delta_H 0 # Not possible to calculate enthalpy of reaction Syngenite -# Enthalpy of formation: 0 kcal/mol - -Tachyhydrite - Mg2CaCl6:12H2O = + 1.0000 Ca++ + 2.0000 Mg++ + 6.0000 Cl- + 12.0000 H2O - log_k 17.1439 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tachyhydrite -# Enthalpy of formation: 0 kcal/mol - -Talc - Mg3Si4O10(OH)2 +6.0000 H+ = + 3.0000 Mg++ + 4.0000 H2O + 4.0000 SiO2 - log_k 21.1383 - -delta_H -148.737 kJ/mol # Calculated enthalpy of reaction Talc -# Enthalpy of formation: -1410.92 kcal/mol - -analytic 1.1164e+001 2.4724e-002 1.9810e+004 -1.7568e+001 -1.8241e+006 -# -Range: 0-300 - -Tarapacaite - K2CrO4 = + 1.0000 CrO4-- + 2.0000 K+ - log_k -0.4037 - -delta_H 17.8238 kJ/mol # Calculated enthalpy of reaction Tarapacaite -# Enthalpy of formation: -335.4 kcal/mol - -analytic 2.7953e+001 -1.0863e-002 -2.7589e+003 -6.4154e+000 -4.6859e+001 -# -Range: 0-200 - -Tb - Tb +3.0000 H+ +0.7500 O2 = + 1.0000 Tb+++ + 1.5000 H2O - log_k 181.4170 - -delta_H -1117.97 kJ/mol # Calculated enthalpy of reaction Tb -# Enthalpy of formation: 0 kJ/mol - -analytic -5.2354e+001 -2.6920e-002 5.8391e+004 1.8555e+001 9.1115e+002 -# -Range: 0-300 - -Tb(OH)3 - Tb(OH)3 +3.0000 H+ = + 1.0000 Tb+++ + 3.0000 H2O - log_k 15.6852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Tb(OH)3(am) - Tb(OH)3 +3.0000 H+ = + 1.0000 Tb+++ + 3.0000 H2O - log_k 18.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Tb2(CO3)3 - Tb2(CO3)3 +3.0000 H+ = + 2.0000 Tb+++ + 3.0000 HCO3- - log_k -3.2136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Tb2O3 - Tb2O3 +6.0000 H+ = + 2.0000 Tb+++ + 3.0000 H2O - log_k 47.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2O3 -# Enthalpy of formation: 0 kcal/mol - -TbF3:.5H2O - TbF3:.5H2O = + 0.5000 H2O + 1.0000 Tb+++ + 3.0000 F- - log_k -16.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -TbPO4:10H2O - TbPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Tb+++ + 10.0000 H2O - log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Tc - Tc +1.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 TcO4- - log_k 93.5811 - -delta_H -552.116 kJ/mol # Calculated enthalpy of reaction Tc -# Enthalpy of formation: 0 kJ/mol - -analytic 2.2670e+001 -1.2050e-002 3.0174e+004 -8.4053e+000 -5.2577e+005 -# -Range: 0-300 - -Tc(OH)2 - Tc(OH)2 +3.0000 H+ +0.2500 O2 = + 1.0000 Tc+++ + 2.5000 H2O - log_k 5.2714 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)2 -# Enthalpy of formation: 0 kcal/mol - -Tc(OH)3 - Tc(OH)3 +3.0000 H+ = + 1.0000 Tc+++ + 3.0000 H2O - log_k -9.2425 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Tc2O7 - Tc2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 TcO4- - log_k 13.1077 - -delta_H -26.5357 kJ/mol # Calculated enthalpy of reaction Tc2O7 -# Enthalpy of formation: -1120.16 kJ/mol - -analytic 8.7535e+001 1.5366e-002 -1.1919e+003 -3.0317e+001 -2.0271e+001 -# -Range: 0-200 - -Tc2S7 - Tc2S7 +8.0000 H2O = + 2.0000 TcO4- + 7.0000 HS- + 9.0000 H+ - log_k -230.2410 - -delta_H 1356.41 kJ/mol # Calculated enthalpy of reaction Tc2S7 -# Enthalpy of formation: -615 kJ/mol - -analytic 2.4560e+002 -4.3355e-002 -8.4192e+004 -7.2967e+001 -1.4298e+003 -# -Range: 0-200 - -Tc3O4 - Tc3O4 +9.0000 H+ +0.2500 O2 = + 3.0000 Tc+++ + 4.5000 H2O - log_k -19.2271 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc3O4 -# Enthalpy of formation: 0 kcal/mol - -Tc4O7 - Tc4O7 +10.0000 H+ = + 2.0000 Tc+++ + 2.0000 TcO++ + 5.0000 H2O - log_k -26.0149 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc4O7 -# Enthalpy of formation: 0 kcal/mol - -TcO2:2H2O(am) - TcO2:2H2O +2.0000 H+ = + 1.0000 TcO++ + 3.0000 H2O - log_k -4.2319 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO2:2H2O(am) -# Enthalpy of formation: 0 kcal/mol - -TcO3 - TcO3 +1.0000 H2O = + 1.0000 TcO4-- + 2.0000 H+ - log_k -23.1483 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO3 -# Enthalpy of formation: -540 kJ/mol - -TcOH - TcOH +3.0000 H+ +0.5000 O2 = + 1.0000 Tc+++ + 2.0000 H2O - log_k 24.9009 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcOH -# Enthalpy of formation: 0 kcal/mol - -TcS2 - TcS2 +1.0000 H2O = + 1.0000 TcO++ + 2.0000 HS- - log_k -65.9742 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcS2 -# Enthalpy of formation: -224 kJ/mol - -TcS3 - TcS3 +4.0000 H2O = + 1.0000 TcO4-- + 3.0000 HS- + 5.0000 H+ - log_k -119.5008 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcS3 -# Enthalpy of formation: -276 kJ/mol - -Tenorite - CuO +2.0000 H+ = + 1.0000 Cu++ + 1.0000 H2O - log_k 7.6560 - -delta_H -64.5047 kJ/mol # Calculated enthalpy of reaction Tenorite -# Enthalpy of formation: -37.2 kcal/mol - -analytic -8.9899e+001 -1.8886e-002 6.0346e+003 3.3517e+001 9.4191e+001 -# -Range: 0-300 - -Tephroite - Mn2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Mn++ - log_k 23.0781 - -delta_H -160.1 kJ/mol # Calculated enthalpy of reaction Tephroite -# Enthalpy of formation: -1730.47 kJ/mol - -analytic -3.2440e+001 -1.1023e-002 8.8910e+003 1.1691e+001 1.3875e+002 -# -Range: 0-300 - -Th - Th +4.0000 H+ +1.0000 O2 = + 1.0000 Th++++ + 2.0000 H2O - log_k 209.6028 - -delta_H -1328.56 kJ/mol # Calculated enthalpy of reaction Th -# Enthalpy of formation: 0 kJ/mol - -analytic -2.8256e+001 -1.1963e-002 6.8870e+004 4.2068e+000 1.0747e+003 -# -Range: 0-300 - -Th(NO3)4:5H2O - Th(NO3)4:5H2O = + 1.0000 Th++++ + 4.0000 NO3- + 5.0000 H2O - log_k 1.7789 - -delta_H -18.1066 kJ/mol # Calculated enthalpy of reaction Th(NO3)4:5H2O -# Enthalpy of formation: -3007.35 kJ/mol - -analytic -1.2480e+002 -2.0405e-002 5.1601e+003 4.6613e+001 8.7669e+001 -# -Range: 0-200 - -Th(OH)4 - Th(OH)4 +4.0000 H+ = + 1.0000 Th++++ + 4.0000 H2O - log_k 9.6543 - -delta_H -140.336 kJ/mol # Calculated enthalpy of reaction Th(OH)4 -# Enthalpy of formation: -423.527 kcal/mol - -analytic -1.4031e+002 -9.2493e-003 1.2345e+004 4.4990e+001 2.0968e+002 -# -Range: 0-200 - -Th(SO4)2 - Th(SO4)2 = + 1.0000 Th++++ + 2.0000 SO4-- - log_k -20.3006 - -delta_H -46.1064 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 -# Enthalpy of formation: -2542.12 kJ/mol - -analytic -8.4525e+000 -3.5442e-002 0.0000e+000 0.0000e+000 -1.1540e+005 -# -Range: 0-200 - -Th2S3 - Th2S3 +5.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 Th++++ + 3.0000 HS- - log_k 95.2290 - -delta_H -783.243 kJ/mol # Calculated enthalpy of reaction Th2S3 -# Enthalpy of formation: -1082.89 kJ/mol - -analytic -3.2969e+002 -1.1090e-001 4.6877e+004 1.2152e+002 7.3157e+002 -# -Range: 0-300 - -Th2Se3 - Th2Se3 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 Th++++ + 3.0000 Se-- - log_k 59.1655 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th2Se3 -# Enthalpy of formation: -224 kcal/mol - -analytic -1.0083e+001 6.0240e-003 3.4039e+004 -1.8884e+001 5.7804e+002 -# -Range: 0-200 - -Th7S12 - Th7S12 +16.0000 H+ +1.0000 O2 = + 2.0000 H2O + 7.0000 Th++++ + 12.0000 HS- - log_k 204.0740 - -delta_H -1999.4 kJ/mol # Calculated enthalpy of reaction Th7S12 -# Enthalpy of formation: -4136.58 kJ/mol - -analytic -2.1309e+002 -1.4149e-001 9.8550e+004 5.2042e+001 1.6736e+003 -# -Range: 0-200 - -ThBr4 - ThBr4 = + 1.0000 Th++++ + 4.0000 Br- - log_k 34.0803 - -delta_H -290.23 kJ/mol # Calculated enthalpy of reaction ThBr4 -# Enthalpy of formation: -964.803 kJ/mol - -analytic 2.9902e+001 -3.3109e-002 1.0988e+004 -9.2209e+000 1.8657e+002 -# -Range: 0-200 - -ThCl4 - ThCl4 = + 1.0000 Th++++ + 4.0000 Cl- - log_k 23.8491 - -delta_H -251.094 kJ/mol # Calculated enthalpy of reaction ThCl4 -# Enthalpy of formation: -283.519 kcal/mol - -analytic -5.9340e+000 -4.1640e-002 9.8623e+003 3.6804e+000 1.6748e+002 -# -Range: 0-200 - -ThF4 - ThF4 = + 1.0000 Th++++ + 4.0000 F- - log_k -29.9946 - -delta_H -12.6733 kJ/mol # Calculated enthalpy of reaction ThF4 -# Enthalpy of formation: -501.371 kcal/mol - -analytic -4.2622e+002 -1.4222e-001 9.4201e+003 1.6446e+002 1.4712e+002 -# -Range: 0-300 - -ThF4:2.5H2O - ThF4:2.5H2O = + 1.0000 Th++++ + 2.5000 H2O + 4.0000 F- - log_k -31.8568 - -delta_H 22.6696 kJ/mol # Calculated enthalpy of reaction ThF4:2.5H2O -# Enthalpy of formation: -2847.68 kJ/mol - -analytic -1.1284e+002 -4.5422e-002 -2.5781e+002 3.8547e+001 -4.3396e+000 -# -Range: 0-200 - -ThI4 - ThI4 = + 1.0000 Th++++ + 4.0000 I- - log_k 45.1997 - -delta_H -332.818 kJ/mol # Calculated enthalpy of reaction ThI4 -# Enthalpy of formation: -663.811 kJ/mol - -analytic 1.4224e+000 -4.0379e-002 1.4193e+004 3.3137e+000 2.4102e+002 -# -Range: 0-200 - -ThS - ThS +3.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 HS- + 1.0000 Th++++ - log_k 96.0395 - -delta_H -669.906 kJ/mol # Calculated enthalpy of reaction ThS -# Enthalpy of formation: -394.993 kJ/mol - -analytic -1.3919e+001 -1.2372e-002 3.3883e+004 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -ThS2 - ThS2 +2.0000 H+ = + 1.0000 Th++++ + 2.0000 HS- - log_k 10.7872 - -delta_H -175.369 kJ/mol # Calculated enthalpy of reaction ThS2 -# Enthalpy of formation: -625.867 kJ/mol - -analytic -3.7691e+001 -2.3714e-002 8.4673e+003 1.0970e+001 1.4380e+002 -# -Range: 0-200 - -Thenardite - Na2SO4 = + 1.0000 SO4-- + 2.0000 Na+ - log_k -0.3091 - -delta_H -2.33394 kJ/mol # Calculated enthalpy of reaction Thenardite -# Enthalpy of formation: -1387.87 kJ/mol - -analytic -2.1202e+002 -7.1613e-002 5.1083e+003 8.7244e+001 7.9773e+001 -# -Range: 0-300 - -Thermonatrite - Na2CO3:H2O +1.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 2.0000 Na+ - log_k 10.9623 - -delta_H -27.5869 kJ/mol # Calculated enthalpy of reaction Thermonatrite -# Enthalpy of formation: -1428.78 kJ/mol - -analytic -1.4030e+002 -3.5263e-002 5.7840e+003 5.7528e+001 9.0295e+001 -# -Range: 0-300 - -Thorianite - ThO2 +4.0000 H+ = + 1.0000 Th++++ + 2.0000 H2O - log_k 1.8624 - -delta_H -114.296 kJ/mol # Calculated enthalpy of reaction Thorianite -# Enthalpy of formation: -1226.4 kJ/mol - -analytic -1.4249e+001 -2.4645e-003 4.3110e+003 -1.6605e-002 2.1598e+005 -# -Range: 0-300 - -Ti - Ti +2.0000 H2O +1.0000 O2 = + 1.0000 Ti(OH)4 - log_k 149.2978 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti -# Enthalpy of formation: 0 kJ/mol - -Ti2O3 - Ti2O3 +4.0000 H2O +0.5000 O2 = + 2.0000 Ti(OH)4 - log_k 42.9866 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti2O3 -# Enthalpy of formation: -1520.78 kJ/mol - -Ti3O5 - Ti3O5 +6.0000 H2O +0.5000 O2 = + 3.0000 Ti(OH)4 - log_k 34.6557 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti3O5 -# Enthalpy of formation: -2459.24 kJ/mol - -TiB2 - TiB2 +5.0000 H2O +2.5000 O2 = + 1.0000 Ti(OH)4 + 2.0000 B(OH)3 - log_k 312.4194 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiB2 -# Enthalpy of formation: -323.883 kJ/mol - -TiBr3 - TiBr3 +3.5000 H2O +0.2500 O2 = + 1.0000 Ti(OH)4 + 3.0000 Br- + 3.0000 H+ - log_k 47.7190 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr3 -# Enthalpy of formation: -548.378 kJ/mol - -TiBr4 - TiBr4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Br- + 4.0000 H+ - log_k 32.9379 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4 -# Enthalpy of formation: -616.822 kJ/mol - -TiC - TiC +3.0000 H2O +2.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- + 1.0000 Ti(OH)4 - log_k 181.8139 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiC -# Enthalpy of formation: -184.346 kJ/mol - -TiCl2 - TiCl2 +3.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 + 2.0000 Cl- + 2.0000 H+ - log_k 70.9386 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl2 -# Enthalpy of formation: -514.012 kJ/mol - -TiCl3 - TiCl3 +3.5000 H2O +0.2500 O2 = + 1.0000 Ti(OH)4 + 3.0000 Cl- + 3.0000 H+ - log_k 39.3099 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl3 -# Enthalpy of formation: -720.775 kJ/mol - -TiF4(am) - TiF4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 F- + 4.0000 H+ - log_k -12.4409 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiF4(am) -# Enthalpy of formation: -1649.44 kJ/mol - -TiI4 - TiI4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 H+ + 4.0000 I- - log_k 34.5968 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiI4 -# Enthalpy of formation: -375.555 kJ/mol - -TiN - TiN +3.5000 H2O +0.2500 O2 = + 1.0000 NH3 + 1.0000 Ti(OH)4 - log_k 35.2344 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiN -# Enthalpy of formation: -338.304 kJ/mol - -TiO(alpha) - TiO +2.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 - log_k 61.1282 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(alpha) -# Enthalpy of formation: -519.835 kJ/mol - -Tiemannite - HgSe = + 1.0000 Hg++ + 1.0000 Se-- - log_k -58.2188 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tiemannite -# Enthalpy of formation: -10.4 kcal/mol - -analytic -5.7618e+001 -1.3891e-002 -1.3223e+004 1.9351e+001 -2.0632e+002 -# -Range: 0-300 - -Titanite - CaTiSiO5 +2.0000 H+ +1.0000 H2O = + 1.0000 Ca++ + 1.0000 SiO2 + 1.0000 Ti(OH)4 - log_k 719.5839 - -delta_H 0 # Not possible to calculate enthalpy of reaction Titanite -# Enthalpy of formation: 0 kcal/mol - -Tl - Tl +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Tl+ - log_k 27.1743 - -delta_H -134.53 kJ/mol # Calculated enthalpy of reaction Tl -# Enthalpy of formation: 0 kJ/mol - -analytic -3.7066e+001 -7.8341e-003 9.4594e+003 1.4896e+001 -1.7904e+005 -# -Range: 0-300 - -Tm - Tm +3.0000 H+ +0.7500 O2 = + 1.0000 Tm+++ + 1.5000 H2O - log_k 181.7102 - -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Tm -# Enthalpy of formation: 0 kJ/mol - -analytic -6.7440e+001 -2.8476e-002 5.9332e+004 2.3715e+001 -5.9611e+003 -# -Range: 0-300 - -Tm(OH)3 - Tm(OH)3 +3.0000 H+ = + 1.0000 Tm+++ + 3.0000 H2O - log_k 14.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Tm(OH)3(am) - Tm(OH)3 +3.0000 H+ = + 1.0000 Tm+++ + 3.0000 H2O - log_k 17.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Tm2(CO3)3 - Tm2(CO3)3 +3.0000 H+ = + 2.0000 Tm+++ + 3.0000 HCO3- - log_k -2.4136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Tm2O3 - Tm2O3 +6.0000 H+ = + 2.0000 Tm+++ + 3.0000 H2O - log_k 44.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2O3 -# Enthalpy of formation: 0 kcal/mol - -TmF3:.5H2O - TmF3:.5H2O = + 0.5000 H2O + 1.0000 Tm+++ + 3.0000 F- - log_k -16.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -TmPO4:10H2O - TmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Tm+++ + 10.0000 H2O - log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Tobermorite-11A - Ca5Si6H11O22.5 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 10.5000 H2O - log_k 65.6121 - -delta_H -286.861 kJ/mol # Calculated enthalpy of reaction Tobermorite-11A -# Enthalpy of formation: -2556.42 kcal/mol - -analytic 7.9123e+001 3.9150e-002 2.9429e+004 -3.9191e+001 -2.4122e+006 -# -Range: 0-300 - -Tobermorite-14A - Ca5Si6H21O27.5 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 15.5000 H2O - log_k 63.8445 - -delta_H -230.959 kJ/mol # Calculated enthalpy of reaction Tobermorite-14A -# Enthalpy of formation: -2911.36 kcal/mol - -analytic -2.0789e+002 5.2472e-003 3.9698e+004 6.7797e+001 -2.7532e+006 -# -Range: 0-300 - -Tobermorite-9A - Ca5Si6H6O20 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 8.0000 H2O - log_k 69.0798 - -delta_H -329.557 kJ/mol # Calculated enthalpy of reaction Tobermorite-9A -# Enthalpy of formation: -2375.42 kcal/mol - -analytic -6.3384e+001 1.1722e-002 3.8954e+004 1.2268e+001 -2.8681e+006 -# -Range: 0-300 - -Todorokite - Mn7O12:3H2O +16.0000 H+ = + 1.0000 MnO4-- + 6.0000 Mn+++ + 11.0000 H2O - log_k -45.8241 - -delta_H 0 # Not possible to calculate enthalpy of reaction Todorokite -# Enthalpy of formation: 0 kcal/mol - -Torbernite - Cu(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Cu++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -20.3225 - -delta_H -97.4022 kJ/mol # Calculated enthalpy of reaction Torbernite -# Enthalpy of formation: -1065.74 kcal/mol - -analytic -6.7128e+001 -4.5878e-002 3.5071e+003 1.9682e+001 5.9579e+001 -# -Range: 0-200 - -Tremolite - Ca2Mg5Si8O22(OH)2 +14.0000 H+ = + 2.0000 Ca++ + 5.0000 Mg++ + 8.0000 H2O + 8.0000 SiO2 - log_k 61.2367 - -delta_H -406.404 kJ/mol # Calculated enthalpy of reaction Tremolite -# Enthalpy of formation: -2944.04 kcal/mol - -analytic 8.5291e+001 4.6337e-002 3.9465e+004 -5.4414e+001 -3.1913e+006 -# -Range: 0-300 - -Trevorite - NiFe2O4 +8.0000 H+ = + 1.0000 Ni++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 9.7876 - -delta_H -215.338 kJ/mol # Calculated enthalpy of reaction Trevorite -# Enthalpy of formation: -1081.15 kJ/mol - -analytic -1.4322e+002 -2.9429e-002 1.4518e+004 4.5698e+001 2.4658e+002 -# -Range: 0-200 - -Tridymite - SiO2 = + 1.0000 SiO2 - log_k -3.8278 - -delta_H 31.3664 kJ/mol # Calculated enthalpy of reaction Tridymite -# Enthalpy of formation: -909.065 kJ/mol - -analytic 3.1594e+002 6.9315e-002 -1.1358e+004 -1.2219e+002 -1.9299e+002 -# -Range: 0-200 - -Troilite - FeS +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HS- - log_k -3.8184 - -delta_H -7.3296 kJ/mol # Calculated enthalpy of reaction Troilite -# Enthalpy of formation: -101.036 kJ/mol - -analytic -1.6146e+002 -5.3170e-002 4.0461e+003 6.4620e+001 6.3183e+001 -# -Range: 0-300 - -Trona-K - K2NaH(CO3)2:2H2O +1.0000 H+ = + 1.0000 Na+ + 2.0000 H2O + 2.0000 HCO3- + 2.0000 K+ - log_k 11.5891 - -delta_H 0 # Not possible to calculate enthalpy of reaction Trona-K -# Enthalpy of formation: 0 kcal/mol - -Tsumebite - Pb2Cu(PO4)(OH)3:3H2O +4.0000 H+ = + 1.0000 Cu++ + 1.0000 HPO4-- + 2.0000 Pb++ + 6.0000 H2O - log_k 2.5318 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tsumebite -# Enthalpy of formation: 0 kcal/mol - -Tyuyamunite - Ca(UO2)2(VO4)2 = + 1.0000 Ca++ + 2.0000 UO2++ + 2.0000 VO4--- - log_k -53.3757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tyuyamunite -# Enthalpy of formation: -1164.52 kcal/mol - -U - U +2.0000 H+ +1.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ - log_k 212.7800 - -delta_H -1286.64 kJ/mol # Calculated enthalpy of reaction U -# Enthalpy of formation: 0 kJ/mol - -analytic -2.4912e+002 -4.7104e-002 8.1115e+004 8.7008e+001 -1.0158e+006 -# -Range: 0-300 - -U(CO3)2 - U(CO3)2 +2.0000 H+ = + 1.0000 U++++ + 2.0000 HCO3- - log_k 7.5227 - -delta_H -170.691 kJ/mol # Calculated enthalpy of reaction U(CO3)2 -# Enthalpy of formation: -1800.38 kJ/mol - -analytic -8.5952e+001 -2.5086e-002 1.0177e+004 2.7002e+001 1.7285e+002 -# -Range: 0-200 - -U(HPO4)2:4H2O - U(HPO4)2:4H2O = + 1.0000 U++++ + 2.0000 HPO4-- + 4.0000 H2O - log_k -32.8650 - -delta_H 16.1008 kJ/mol # Calculated enthalpy of reaction U(HPO4)2:4H2O -# Enthalpy of formation: -4334.82 kJ/mol - -analytic -3.8694e+002 -1.3874e-001 6.4882e+003 1.5099e+002 1.0136e+002 -# -Range: 0-300 - -U(OH)2SO4 - U(OH)2SO4 +2.0000 H+ = + 1.0000 SO4-- + 1.0000 U++++ + 2.0000 H2O - log_k -3.0731 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(OH)2SO4 -# Enthalpy of formation: 0 kcal/mol - -U(SO3)2 - U(SO3)2 = + 1.0000 U++++ + 2.0000 SO3-- - log_k -36.7499 - -delta_H 20.7008 kJ/mol # Calculated enthalpy of reaction U(SO3)2 -# Enthalpy of formation: -1883 kJ/mol - -analytic 5.8113e+001 -2.9981e-002 -7.0503e+003 -2.5175e+001 -1.1974e+002 -# -Range: 0-200 - -U(SO4)2 - U(SO4)2 = + 1.0000 U++++ + 2.0000 SO4-- - log_k -11.5178 - -delta_H -100.803 kJ/mol # Calculated enthalpy of reaction U(SO4)2 -# Enthalpy of formation: -2309.6 kJ/mol - -analytic 3.2215e+001 -2.8662e-002 7.1066e+002 -1.5190e+001 1.2057e+001 -# -Range: 0-200 - -U(SO4)2:4H2O - U(SO4)2:4H2O = + 1.0000 U++++ + 2.0000 SO4-- + 4.0000 H2O - log_k -11.5287 - -delta_H -70.5565 kJ/mol # Calculated enthalpy of reaction U(SO4)2:4H2O -# Enthalpy of formation: -3483.2 kJ/mol - -analytic -6.9548e+001 -2.9094e-002 3.8763e+003 2.1692e+001 6.5849e+001 -# -Range: 0-200 - -U(SO4)2:8H2O - U(SO4)2:8H2O = + 1.0000 U++++ + 2.0000 SO4-- + 8.0000 H2O - log_k -12.5558 - -delta_H -34.5098 kJ/mol # Calculated enthalpy of reaction U(SO4)2:8H2O -# Enthalpy of formation: -4662.6 kJ/mol - -analytic -1.7141e+002 -2.9548e-002 6.7423e+003 5.8614e+001 1.1455e+002 -# -Range: 0-200 - -U2C3 - U2C3 +4.5000 O2 +3.0000 H+ = + 2.0000 U+++ + 3.0000 HCO3- - log_k 455.3078 - -delta_H -2810.1 kJ/mol # Calculated enthalpy of reaction U2C3 -# Enthalpy of formation: -183.3 kJ/mol - -analytic -3.8340e+002 -1.5374e-001 1.5922e+005 1.4643e+002 -1.0584e+006 -# -Range: 0-300 - -U2F9 - U2F9 +2.0000 H2O = + 1.0000 U++++ + 1.0000 UO2+ + 4.0000 H+ + 9.0000 F- - log_k -45.5022 - -delta_H -46.8557 kJ/mol # Calculated enthalpy of reaction U2F9 -# Enthalpy of formation: -4015.92 kJ/mol - -analytic -8.8191e+002 -3.0477e-001 2.0493e+004 3.4690e+002 3.2003e+002 -# -Range: 0-300 - -U2O2Cl5 - U2O2Cl5 = + 1.0000 U++++ + 1.0000 UO2+ + 5.0000 Cl- - log_k 19.2752 - -delta_H -254.325 kJ/mol # Calculated enthalpy of reaction U2O2Cl5 -# Enthalpy of formation: -2197.4 kJ/mol - -analytic -4.3945e+002 -1.6239e-001 2.1694e+004 1.7551e+002 3.3865e+002 -# -Range: 0-300 - -U2O3F6 - U2O3F6 +1.0000 H2O = + 2.0000 H+ + 2.0000 UO2++ + 6.0000 F- - log_k -2.5066 - -delta_H -185.047 kJ/mol # Calculated enthalpy of reaction U2O3F6 -# Enthalpy of formation: -3579.2 kJ/mol - -analytic -3.2332e+001 -5.9519e-002 5.7857e+003 1.1372e+001 9.8260e+001 -# -Range: 0-200 - -U2S3 - U2S3 +3.0000 H+ = + 2.0000 U+++ + 3.0000 HS- - log_k 6.5279 - -delta_H -147.525 kJ/mol # Calculated enthalpy of reaction U2S3 -# Enthalpy of formation: -879 kJ/mol - -analytic -3.0494e+002 -1.0983e-001 1.3647e+004 1.2059e+002 2.1304e+002 -# -Range: 0-300 - -U2Se3 - U2Se3 +4.5000 O2 = + 2.0000 U+++ + 3.0000 SeO3-- - log_k 248.0372 - -delta_H -1740.18 kJ/mol # Calculated enthalpy of reaction U2Se3 -# Enthalpy of formation: -711 kJ/mol - -analytic 4.9999e+002 -1.6488e-002 6.4991e+004 -1.8795e+002 1.1035e+003 -# -Range: 0-200 - -U3As4 - U3As4 +5.2500 O2 +5.0000 H+ +1.5000 H2O = + 3.0000 U+++ + 4.0000 H2AsO3- - log_k 487.6802 - -delta_H -3114.02 kJ/mol # Calculated enthalpy of reaction U3As4 -# Enthalpy of formation: -720 kJ/mol - -analytic -9.0215e+002 -2.5804e-001 1.9974e+005 3.3331e+002 -2.4911e+006 -# -Range: 0-300 - -U3O5F8 - U3O5F8 +1.0000 H2O = + 2.0000 H+ + 3.0000 UO2++ + 8.0000 F- - log_k -2.7436 - -delta_H -260.992 kJ/mol # Calculated enthalpy of reaction U3O5F8 -# Enthalpy of formation: -5192.95 kJ/mol - -analytic -7.7653e+002 -2.7294e-001 2.9180e+004 3.0599e+002 4.5556e+002 -# -Range: 0-300 - -U3P4 - U3P4 +7.2500 O2 +1.5000 H2O +1.0000 H+ = + 3.0000 U+++ + 4.0000 HPO4-- - log_k 827.5586 - -delta_H -5275.9 kJ/mol # Calculated enthalpy of reaction U3P4 -# Enthalpy of formation: -843 kJ/mol - -analytic -2.7243e+003 -6.2927e-001 4.0130e+005 1.0021e+003 -7.6720e+006 -# -Range: 0-300 - -U3S5 - U3S5 +5.0000 H+ = + 1.0000 U++++ + 2.0000 U+++ + 5.0000 HS- - log_k -0.3680 - -delta_H -218.942 kJ/mol # Calculated enthalpy of reaction U3S5 -# Enthalpy of formation: -1431 kJ/mol - -analytic -1.1011e+002 -6.7959e-002 1.0369e+004 3.8481e+001 1.7611e+002 -# -Range: 0-200 - -U3Sb4 - U3Sb4 +9.0000 H+ +5.2500 O2 +1.5000 H2O = + 3.0000 U+++ + 4.0000 Sb(OH)3 - log_k 575.0349 - -delta_H -3618.1 kJ/mol # Calculated enthalpy of reaction U3Sb4 -# Enthalpy of formation: -451.9 kJ/mol - -U3Se4 - U3Se4 +6.2500 O2 +1.0000 H+ = + 0.5000 H2O + 3.0000 U+++ + 4.0000 SeO3-- - log_k 375.2823 - -delta_H -2588.16 kJ/mol # Calculated enthalpy of reaction U3Se4 -# Enthalpy of formation: -983 kJ/mol - -analytic 6.7219e+002 -2.2708e-002 1.0025e+005 -2.5317e+002 1.7021e+003 -# -Range: 0-200 - -U3Se5 - U3Se5 +7.2500 O2 +0.5000 H2O = + 1.0000 H+ + 3.0000 U+++ + 5.0000 SeO3-- - log_k 376.5747 - -delta_H -2652.38 kJ/mol # Calculated enthalpy of reaction U3Se5 -# Enthalpy of formation: -1130 kJ/mol - -analytic 8.3306e+002 -2.6526e-002 9.5737e+004 -3.1109e+002 1.6255e+003 -# -Range: 0-200 - -U4F17 - U4F17 +2.0000 H2O = + 1.0000 UO2+ + 3.0000 U++++ + 4.0000 H+ + 17.0000 F- - log_k -104.7657 - -delta_H -78.2955 kJ/mol # Calculated enthalpy of reaction U4F17 -# Enthalpy of formation: -7849.66 kJ/mol - -analytic -1.7466e+003 -5.9186e-001 4.0017e+004 6.8046e+002 6.2494e+002 -# -Range: 0-300 - -U5O12Cl - U5O12Cl +4.0000 H+ = + 1.0000 Cl- + 2.0000 H2O + 5.0000 UO2+ - log_k -18.7797 - -delta_H -9.99133 kJ/mol # Calculated enthalpy of reaction U5O12Cl -# Enthalpy of formation: -5854.4 kJ/mol - -analytic -7.3802e+001 2.9180e-002 4.6804e+003 1.2371e+001 7.9503e+001 -# -Range: 0-200 - -UAs - UAs +2.0000 H+ +1.5000 O2 = + 1.0000 H2AsO3- + 1.0000 U+++ - log_k 149.0053 - -delta_H -951.394 kJ/mol # Calculated enthalpy of reaction UAs -# Enthalpy of formation: -234.3 kJ/mol - -analytic -5.0217e+001 -4.2992e-002 4.8480e+004 1.9964e+001 7.5650e+002 -# -Range: 0-300 - -UAs2 - UAs2 +2.2500 O2 +1.5000 H2O +1.0000 H+ = + 1.0000 U+++ + 2.0000 H2AsO3- - log_k 189.1058 - -delta_H -1210.63 kJ/mol # Calculated enthalpy of reaction UAs2 -# Enthalpy of formation: -252 kJ/mol - -analytic -8.7361e+001 -7.5252e-002 6.1445e+004 3.7485e+001 9.5881e+002 -# -Range: 0-300 - -UBr2Cl - UBr2Cl = + 1.0000 Cl- + 1.0000 U+++ + 2.0000 Br- - log_k 17.7796 - -delta_H -148.586 kJ/mol # Calculated enthalpy of reaction UBr2Cl -# Enthalpy of formation: -750.6 kJ/mol - -analytic 3.0364e+000 -3.2187e-002 5.2314e+003 2.7418e+000 8.8836e+001 -# -Range: 0-200 - -UBr2Cl2 - UBr2Cl2 = + 1.0000 U++++ + 2.0000 Br- + 2.0000 Cl- - log_k 26.2185 - -delta_H -260.466 kJ/mol # Calculated enthalpy of reaction UBr2Cl2 -# Enthalpy of formation: -907.9 kJ/mol - -analytic 3.8089e+000 -3.8781e-002 1.0125e+004 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -UBr3 - UBr3 = + 1.0000 U+++ + 3.0000 Br- - log_k 20.2249 - -delta_H -154.91 kJ/mol # Calculated enthalpy of reaction UBr3 -# Enthalpy of formation: -698.7 kJ/mol - -analytic -2.4366e+002 -9.8651e-002 1.2538e+004 1.0151e+002 1.9572e+002 -# -Range: 0-300 - -UBr3Cl - UBr3Cl = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 Br- - log_k 29.1178 - -delta_H -270.49 kJ/mol # Calculated enthalpy of reaction UBr3Cl -# Enthalpy of formation: -852.3 kJ/mol - -analytic 1.1204e+001 -3.7109e-002 1.0473e+004 -2.4905e+000 1.7784e+002 -# -Range: 0-200 - -UBr4 - UBr4 = + 1.0000 U++++ + 4.0000 Br- - log_k 31.2904 - -delta_H -275.113 kJ/mol # Calculated enthalpy of reaction UBr4 -# Enthalpy of formation: -802.1 kJ/mol - -analytic -3.3800e+002 -1.2940e-001 2.0674e+004 1.3678e+002 3.2270e+002 -# -Range: 0-300 - -UBr5 - UBr5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Br- - log_k 41.6312 - -delta_H -250.567 kJ/mol # Calculated enthalpy of reaction UBr5 -# Enthalpy of formation: -810.4 kJ/mol - -analytic -3.2773e+002 -1.4356e-001 1.8709e+004 1.4117e+002 2.9204e+002 -# -Range: 0-300 - -UBrCl2 - UBrCl2 = + 1.0000 Br- + 1.0000 U+++ + 2.0000 Cl- - log_k 14.5048 - -delta_H -132.663 kJ/mol # Calculated enthalpy of reaction UBrCl2 -# Enthalpy of formation: -812.1 kJ/mol - -analytic -5.3713e+000 -3.4256e-002 4.6251e+003 5.8875e+000 7.8542e+001 -# -Range: 0-200 - -UBrCl3 - UBrCl3 = + 1.0000 Br- + 1.0000 U++++ + 3.0000 Cl- - log_k 23.5258 - -delta_H -246.642 kJ/mol # Calculated enthalpy of reaction UBrCl3 -# Enthalpy of formation: -967.3 kJ/mol - -analytic -5.6867e+000 -4.1166e-002 9.6664e+003 3.6579e+000 1.6415e+002 -# -Range: 0-200 - -UC - UC +2.0000 H+ +1.7500 O2 = + 0.5000 H2O + 1.0000 HCO3- + 1.0000 U+++ - log_k 194.8241 - -delta_H -1202.82 kJ/mol # Calculated enthalpy of reaction UC -# Enthalpy of formation: -97.9 kJ/mol - -analytic -4.6329e+001 -4.4600e-002 6.1417e+004 1.9566e+001 9.5836e+002 -# -Range: 0-300 - -UC1.94(alpha) - UC1.94 +2.6900 O2 +1.0600 H+ +0.4400 H2O = + 1.0000 U+++ + 1.9400 HCO3- - log_k 257.1619 - -delta_H -1583.84 kJ/mol # Calculated enthalpy of reaction UC1.94(alpha) -# Enthalpy of formation: -85.324 kJ/mol - -analytic -5.8194e+002 -1.4610e-001 1.0917e+005 2.1638e+002 -1.6852e+006 -# -Range: 0-300 - -UCl2F2 - UCl2F2 = + 1.0000 U++++ + 2.0000 Cl- + 2.0000 F- - log_k -3.5085 - -delta_H -130.055 kJ/mol # Calculated enthalpy of reaction UCl2F2 -# Enthalpy of formation: -1466 kJ/mol - -analytic -3.9662e+002 -1.3879e-001 1.4710e+004 1.5562e+002 2.2965e+002 -# -Range: 0-300 - -UCl2I2 - UCl2I2 = + 1.0000 U++++ + 2.0000 Cl- + 2.0000 I- - log_k 30.2962 - -delta_H -270.364 kJ/mol # Calculated enthalpy of reaction UCl2I2 -# Enthalpy of formation: -768.8 kJ/mol - -analytic -1.2922e+001 -4.3178e-002 1.1219e+004 7.4562e+000 1.9052e+002 -# -Range: 0-200 - -UCl3 - UCl3 = + 1.0000 U+++ + 3.0000 Cl- - log_k 13.0062 - -delta_H -126.639 kJ/mol # Calculated enthalpy of reaction UCl3 -# Enthalpy of formation: -863.7 kJ/mol - -analytic -2.6388e+002 -1.0241e-001 1.1629e+004 1.0846e+002 1.8155e+002 -# -Range: 0-300 - -UCl3F - UCl3F = + 1.0000 F- + 1.0000 U++++ + 3.0000 Cl- - log_k 10.3200 - -delta_H -184.787 kJ/mol # Calculated enthalpy of reaction UCl3F -# Enthalpy of formation: -1243 kJ/mol - -analytic -3.7971e+002 -1.3681e-001 1.7127e+004 1.5086e+002 2.6736e+002 -# -Range: 0-300 - -UCl3I - UCl3I = + 1.0000 I- + 1.0000 U++++ + 3.0000 Cl- - log_k 25.5388 - -delta_H -251.041 kJ/mol # Calculated enthalpy of reaction UCl3I -# Enthalpy of formation: -898.3 kJ/mol - -analytic -1.3362e+001 -4.3214e-002 1.0167e+004 7.1426e+000 1.7265e+002 -# -Range: 0-200 - -UCl4 - UCl4 = + 1.0000 U++++ + 4.0000 Cl- - log_k 21.9769 - -delta_H -240.719 kJ/mol # Calculated enthalpy of reaction UCl4 -# Enthalpy of formation: -1018.8 kJ/mol - -analytic -3.6881e+002 -1.3618e-001 1.9685e+004 1.4763e+002 3.0727e+002 -# -Range: 0-300 - -UCl5 - UCl5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Cl- - log_k 37.3147 - -delta_H -249.849 kJ/mol # Calculated enthalpy of reaction UCl5 -# Enthalpy of formation: -1039 kJ/mol - -analytic -3.6392e+002 -1.5133e-001 1.9617e+004 1.5376e+002 3.0622e+002 -# -Range: 0-300 - -UCl6 - UCl6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 Cl- - log_k 57.5888 - -delta_H -383.301 kJ/mol # Calculated enthalpy of reaction UCl6 -# Enthalpy of formation: -1066.5 kJ/mol - -analytic -4.5589e+002 -1.9203e-001 2.8029e+004 1.9262e+002 4.3750e+002 -# -Range: 0-300 - -UClF3 - UClF3 = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 F- - log_k -17.5122 - -delta_H -74.3225 kJ/mol # Calculated enthalpy of reaction UClF3 -# Enthalpy of formation: -1690 kJ/mol - -analytic -4.1346e+002 -1.4077e-001 1.2237e+004 1.6036e+002 1.9107e+002 -# -Range: 0-300 - -UClI3 - UClI3 = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 I- - log_k 35.2367 - -delta_H -285.187 kJ/mol # Calculated enthalpy of reaction UClI3 -# Enthalpy of formation: -643.8 kJ/mol - -analytic -1.1799e+001 -4.3208e-002 1.2045e+004 7.8829e+000 2.0455e+002 -# -Range: 0-200 - -UF3 - UF3 = + 1.0000 U+++ + 3.0000 F- - log_k -19.4125 - -delta_H 6.2572 kJ/mol # Calculated enthalpy of reaction UF3 -# Enthalpy of formation: -1501.4 kJ/mol - -analytic -3.1530e+002 -1.0945e-001 6.1335e+003 1.2443e+002 9.5799e+001 -# -Range: 0-300 - -UF4 - UF4 = + 1.0000 U++++ + 4.0000 F- - log_k -29.2004 - -delta_H -18.3904 kJ/mol # Calculated enthalpy of reaction UF4 -# Enthalpy of formation: -1914.2 kJ/mol - -analytic -4.2411e+002 -1.4147e-001 9.6621e+003 1.6352e+002 1.5089e+002 -# -Range: 0-300 - -UF4:2.5H2O - UF4:2.5H2O = + 1.0000 U++++ + 2.5000 H2O + 4.0000 F- - log_k -33.3685 - -delta_H 24.2888 kJ/mol # Calculated enthalpy of reaction UF4:2.5H2O -# Enthalpy of formation: -2671.47 kJ/mol - -analytic -4.4218e+002 -1.4305e-001 8.2922e+003 1.7118e+002 1.2952e+002 -# -Range: 0-300 - -UF5(alpha) - UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- - log_k -12.8376 - -delta_H -54.8883 kJ/mol # Calculated enthalpy of reaction UF5(alpha) -# Enthalpy of formation: -2075.3 kJ/mol - -analytic -4.5126e+002 -1.6121e-001 1.1997e+004 1.8030e+002 1.8733e+002 -# -Range: 0-300 - -UF5(beta) - UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- - log_k -13.1718 - -delta_H -46.9883 kJ/mol # Calculated enthalpy of reaction UF5(beta) -# Enthalpy of formation: -2083.2 kJ/mol - -analytic -4.5020e+002 -1.6121e-001 1.1584e+004 1.8030e+002 1.8089e+002 -# -Range: 0-300 - -UF6 - UF6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 F- - log_k 17.4292 - -delta_H -261.709 kJ/mol # Calculated enthalpy of reaction UF6 -# Enthalpy of formation: -2197.7 kJ/mol - -analytic -5.8427e+002 -2.1223e-001 2.5296e+004 2.3440e+002 3.9489e+002 -# -Range: 0-300 - -UH3(beta) - UH3 +3.0000 H+ +1.5000 O2 = + 1.0000 U+++ + 3.0000 H2O - log_k 199.7683 - -delta_H -1201.43 kJ/mol # Calculated enthalpy of reaction UH3(beta) -# Enthalpy of formation: -126.98 kJ/mol - -analytic 5.2870e+001 4.2151e-003 6.0167e+004 -2.2701e+001 1.0217e+003 -# -Range: 0-200 - -UI3 - UI3 = + 1.0000 U+++ + 3.0000 I- - log_k 29.0157 - -delta_H -192.407 kJ/mol # Calculated enthalpy of reaction UI3 -# Enthalpy of formation: -467.4 kJ/mol - -analytic -2.4505e+002 -9.9867e-002 1.4579e+004 1.0301e+002 2.2757e+002 -# -Range: 0-300 - -UI4 - UI4 = + 1.0000 U++++ + 4.0000 I- - log_k 39.3102 - -delta_H -300.01 kJ/mol # Calculated enthalpy of reaction UI4 -# Enthalpy of formation: -518.8 kJ/mol - -analytic -3.4618e+002 -1.3227e-001 2.2320e+004 1.4145e+002 3.4839e+002 -# -Range: 0-300 - -UN - UN +3.0000 H+ = + 1.0000 NH3 + 1.0000 U+++ - log_k 41.7130 - -delta_H -280.437 kJ/mol # Calculated enthalpy of reaction UN -# Enthalpy of formation: -290 kJ/mol - -analytic -1.6393e+002 -1.1679e-003 2.8845e+003 6.5637e+001 3.0122e+006 -# -Range: 0-300 - -UN1.59(alpha) - UN1.59 +1.8850 H2O +1.0000 H+ +0.0575 O2 = + 1.0000 UO2+ + 1.5900 NH3 - log_k 38.3930 - -delta_H -235.75 kJ/mol # Calculated enthalpy of reaction UN1.59(alpha) -# Enthalpy of formation: -379.2 kJ/mol - -analytic 1.8304e+001 1.1109e-002 1.2064e+004 -9.5741e+000 2.0485e+002 -# -Range: 0-200 - -UN1.73(alpha) - UN1.73 +2.0950 H2O +1.0000 H+ = + 0.0475 O2 + 1.0000 UO2+ + 1.7300 NH3 - log_k 27.2932 - -delta_H -169.085 kJ/mol # Calculated enthalpy of reaction UN1.73(alpha) -# Enthalpy of formation: -398.5 kJ/mol - -analytic 1.0012e+001 1.0398e-002 8.9348e+003 -6.3817e+000 1.5172e+002 -# -Range: 0-200 - -UO2(AsO3)2 - UO2(AsO3)2 +2.0000 H2O = + 1.0000 UO2++ + 2.0000 H2AsO4- - log_k 6.9377 - -delta_H -109.843 kJ/mol # Calculated enthalpy of reaction UO2(AsO3)2 -# Enthalpy of formation: -2156.6 kJ/mol - -analytic -1.6050e+002 -6.6472e-002 8.2129e+003 6.4533e+001 1.2820e+002 -# -Range: 0-300 - -UO2(IO3)2 - UO2(IO3)2 = + 1.0000 UO2++ + 2.0000 IO3- - log_k -7.2871 - -delta_H -0.3862 kJ/mol # Calculated enthalpy of reaction UO2(IO3)2 -# Enthalpy of formation: -1461.28 kJ/mol - -analytic -2.7047e+001 -1.4267e-002 -1.5055e+001 9.7226e+000 -2.4640e-001 -# -Range: 0-200 - -UO2(NO3)2 - UO2(NO3)2 = + 1.0000 UO2++ + 2.0000 NO3- - log_k 11.9598 - -delta_H -81.6219 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2 -# Enthalpy of formation: -1351 kJ/mol - -analytic -1.2216e+001 -1.1261e-002 3.9895e+003 5.7166e+000 6.7751e+001 -# -Range: 0-200 - -UO2(NO3)2:2H2O - UO2(NO3)2:2H2O = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 NO3- - log_k 4.9446 - -delta_H -25.5995 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:2H2O -# Enthalpy of formation: -1978.7 kJ/mol - -analytic -1.3989e+002 -5.2130e-002 4.3758e+003 5.8868e+001 6.8322e+001 -# -Range: 0-300 - -UO2(NO3)2:3H2O - UO2(NO3)2:3H2O = + 1.0000 UO2++ + 2.0000 NO3- + 3.0000 H2O - log_k 3.7161 - -delta_H -9.73686 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:3H2O -# Enthalpy of formation: -2280.4 kJ/mol - -analytic -1.5037e+002 -5.2234e-002 4.0783e+003 6.3024e+001 6.3682e+001 -# -Range: 0-300 - -UO2(NO3)2:6H2O - UO2(NO3)2:6H2O = + 1.0000 UO2++ + 2.0000 NO3- + 6.0000 H2O - log_k 2.3189 - -delta_H 19.8482 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:6H2O -# Enthalpy of formation: -3167.5 kJ/mol - -analytic -1.4019e+002 -4.3682e-002 2.7842e+003 5.9070e+001 4.3486e+001 -# -Range: 0-300 - -UO2(NO3)2:H2O - UO2(NO3)2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 NO3- - log_k 8.5103 - -delta_H -54.4602 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:H2O -# Enthalpy of formation: -1664 kJ/mol - -analytic -3.7575e+001 -1.1342e-002 3.7548e+003 1.4899e+001 6.3776e+001 -# -Range: 0-200 - -UO2(OH)2(beta) - UO2(OH)2 +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O - log_k 4.9457 - -delta_H -56.8767 kJ/mol # Calculated enthalpy of reaction UO2(OH)2(beta) -# Enthalpy of formation: -1533.8 kJ/mol - -analytic -1.7478e+001 -1.6806e-003 3.4226e+003 4.6260e+000 5.3412e+001 -# -Range: 0-300 - -UO2(PO3)2 - UO2(PO3)2 +2.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 2.0000 HPO4-- - log_k -16.2805 - -delta_H -58.4873 kJ/mol # Calculated enthalpy of reaction UO2(PO3)2 -# Enthalpy of formation: -2973 kJ/mol - -analytic -3.2995e+002 -1.3747e-001 8.0652e+003 1.3237e+002 1.2595e+002 -# -Range: 0-300 - -UO2(am) - UO2 +4.0000 H+ = + 1.0000 U++++ + 2.0000 H2O - log_k 0.1091 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(am) -# Enthalpy of formation: 0 kcal/mol - -UO2.25 - UO2.25 +2.5000 H+ = + 0.5000 U++++ + 0.5000 UO2+ + 1.2500 H2O - log_k -4.8193 - -delta_H -37.1614 kJ/mol # Calculated enthalpy of reaction UO2.25 -# Enthalpy of formation: -1128.3 kJ/mol - -analytic -1.9073e+002 -4.1793e-002 7.3391e+003 7.0213e+001 1.1457e+002 -# -Range: 0-300 - -UO2.25(beta) - UO2.25 +2.5000 H+ = + 0.5000 U++++ + 0.5000 UO2+ + 1.2500 H2O - log_k -4.7593 - -delta_H -38.0614 kJ/mol # Calculated enthalpy of reaction UO2.25(beta) -# Enthalpy of formation: -1127.4 kJ/mol - -analytic -3.6654e+001 -2.4013e-003 2.9632e+003 9.1625e+000 4.6249e+001 -# -Range: 0-300 - -UO2.3333(beta) -# UO2.3333 +8.0000 H+ = + 0.3333 O2 + 2.0000 U++++ + 4.0000 H2O - (UO2.3333)2 + 8.0000 H+ = 0.3333 O2 + 2.0000 U++++ + 4.0000 H2O - log_k -27.7177 - -delta_H -1187.8 kJ/mol # Calculated enthalpy of reaction UO2.3333(beta) -# Enthalpy of formation: -1142 kJ/mol - -analytic -7.4790e+000 -6.8382e-004 -2.7277e+003 -7.2107e+000 6.1873e+005 -# -Range: 0-300 - -UO2.6667 -# UO2.6667 +8.0000 H+ = + 0.6667 O2 + 2.0000 U++++ + 4.0000 H2O - (UO2.6667)2 +8.0000 H+ = + 0.6667 O2 + 2.0000 U++++ + 4.0000 H2O - log_k -43.6051 - -delta_H -1142.24 kJ/mol # Calculated enthalpy of reaction UO2.6667 -# Enthalpy of formation: -1191.6 kJ/mol - -analytic 1.2095e+002 2.0118e-002 -1.4968e+004 -5.3552e+001 1.0813e+006 -# -Range: 0-300 - -UO2Br2 - UO2Br2 = + 1.0000 UO2++ + 2.0000 Br- - log_k 16.5103 - -delta_H -124.607 kJ/mol # Calculated enthalpy of reaction UO2Br2 -# Enthalpy of formation: -1137.4 kJ/mol - -analytic -1.4876e+002 -6.2715e-002 9.0200e+003 6.2108e+001 1.4079e+002 -# -Range: 0-300 - -UO2Br2:3H2O - UO2Br2:3H2O = + 1.0000 UO2++ + 2.0000 Br- + 3.0000 H2O - log_k 9.4113 - -delta_H -61.5217 kJ/mol # Calculated enthalpy of reaction UO2Br2:3H2O -# Enthalpy of formation: -2058 kJ/mol - -analytic -6.8507e+001 -1.6834e-002 5.1409e+003 2.6546e+001 8.7324e+001 -# -Range: 0-200 - -UO2Br2:H2O - UO2Br2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 Br- - log_k 12.1233 - -delta_H -91.945 kJ/mol # Calculated enthalpy of reaction UO2Br2:H2O -# Enthalpy of formation: -1455.9 kJ/mol - -analytic -1.7519e+001 -1.6603e-002 4.3544e+003 8.0748e+000 7.3950e+001 -# -Range: 0-200 - -UO2BrOH:2H2O - UO2BrOH:2H2O +1.0000 H+ = + 1.0000 Br- + 1.0000 UO2++ + 3.0000 H2O - log_k 4.2026 - -delta_H -39.8183 kJ/mol # Calculated enthalpy of reaction UO2BrOH:2H2O -# Enthalpy of formation: -1958.2 kJ/mol - -analytic -8.3411e+001 -1.0024e-002 5.0411e+003 2.9781e+001 8.5633e+001 -# -Range: 0-200 - -UO2CO3 - UO2CO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 UO2++ - log_k -4.1267 - -delta_H -19.2872 kJ/mol # Calculated enthalpy of reaction UO2CO3 -# Enthalpy of formation: -1689.65 kJ/mol - -analytic -4.4869e+001 -1.1541e-002 1.9475e+003 1.5215e+001 3.3086e+001 -# -Range: 0-200 - -UO2Cl - UO2Cl = + 1.0000 Cl- + 1.0000 UO2+ - log_k -0.5154 - -delta_H -21.1067 kJ/mol # Calculated enthalpy of reaction UO2Cl -# Enthalpy of formation: -1171.1 kJ/mol - -analytic -7.3291e+001 -2.5940e-002 2.5753e+003 2.9038e+001 4.0207e+001 -# -Range: 0-300 - -UO2Cl2 - UO2Cl2 = + 1.0000 UO2++ + 2.0000 Cl- - log_k 12.1394 - -delta_H -109.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2 -# Enthalpy of formation: -1243.6 kJ/mol - -analytic -1.6569e+002 -6.6249e-002 8.6920e+003 6.8055e+001 1.3568e+002 -# -Range: 0-300 - -UO2Cl2:3H2O - UO2Cl2:3H2O = + 1.0000 UO2++ + 2.0000 Cl- + 3.0000 H2O - log_k 5.6163 - -delta_H -45.8743 kJ/mol # Calculated enthalpy of reaction UO2Cl2:3H2O -# Enthalpy of formation: -2164.8 kJ/mol - -analytic -8.4932e+001 -2.0867e-002 4.7594e+003 3.2654e+001 8.0850e+001 -# -Range: 0-200 - -UO2Cl2:H2O - UO2Cl2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 Cl- - log_k 8.2880 - -delta_H -79.1977 kJ/mol # Calculated enthalpy of reaction UO2Cl2:H2O -# Enthalpy of formation: -1559.8 kJ/mol - -analytic -3.4458e+001 -2.0630e-002 4.1231e+003 1.4170e+001 7.0029e+001 -# -Range: 0-200 - -UO2ClOH:2H2O - UO2ClOH:2H2O +1.0000 H+ = + 1.0000 Cl- + 1.0000 UO2++ + 3.0000 H2O - log_k 2.3064 - -delta_H -33.1947 kJ/mol # Calculated enthalpy of reaction UO2ClOH:2H2O -# Enthalpy of formation: -2010.4 kJ/mol - -analytic -9.1834e+001 -1.2041e-002 4.9131e+003 3.2835e+001 8.3462e+001 -# -Range: 0-200 - -UO2F2 - UO2F2 = + 1.0000 UO2++ + 2.0000 F- - log_k -7.2302 - -delta_H -36.1952 kJ/mol # Calculated enthalpy of reaction UO2F2 -# Enthalpy of formation: -1653.5 kJ/mol - -analytic -2.0303e+002 -7.1028e-002 5.9356e+003 7.9627e+001 9.2679e+001 -# -Range: 0-300 - -UO2F2:3H2O - UO2F2:3H2O = + 1.0000 UO2++ + 2.0000 F- + 3.0000 H2O - log_k -7.3692 - -delta_H -12.8202 kJ/mol # Calculated enthalpy of reaction UO2F2:3H2O -# Enthalpy of formation: -2534.39 kJ/mol - -analytic -1.0286e+002 -2.1223e-002 3.4855e+003 3.6420e+001 5.9224e+001 -# -Range: 0-200 - -UO2FOH - UO2FOH +1.0000 H+ = + 1.0000 F- + 1.0000 H2O + 1.0000 UO2++ - log_k -1.8426 - -delta_H -41.7099 kJ/mol # Calculated enthalpy of reaction UO2FOH -# Enthalpy of formation: -1598.48 kJ/mol - -analytic -4.9229e+001 -1.1984e-002 3.2086e+003 1.6244e+001 5.4503e+001 -# -Range: 0-200 - -UO2FOH:2H2O - UO2FOH:2H2O +1.0000 H+ = + 1.0000 F- + 1.0000 UO2++ + 3.0000 H2O - log_k -2.6606 - -delta_H -21.8536 kJ/mol # Calculated enthalpy of reaction UO2FOH:2H2O -# Enthalpy of formation: -2190.01 kJ/mol - -analytic -1.0011e+002 -1.2203e-002 4.5446e+003 3.4690e+001 7.7208e+001 -# -Range: 0-200 - -UO2FOH:H2O - UO2FOH:H2O +1.0000 H+ = + 1.0000 F- + 1.0000 UO2++ + 2.0000 H2O - log_k -2.2838 - -delta_H -31.5243 kJ/mol # Calculated enthalpy of reaction UO2FOH:H2O -# Enthalpy of formation: -1894.5 kJ/mol - -analytic -7.4628e+001 -1.2086e-002 3.8625e+003 2.5456e+001 6.5615e+001 -# -Range: 0-200 - -UO2HPO4 - UO2HPO4 = + 1.0000 HPO4-- + 1.0000 UO2++ - log_k -12.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 -# Enthalpy of formation: 0 kcal/mol - -UO2HPO4:4H2O - UO2HPO4:4H2O = + 1.0000 HPO4-- + 1.0000 UO2++ + 4.0000 H2O - log_k -13.0231 - -delta_H 15.5327 kJ/mol # Calculated enthalpy of reaction UO2HPO4:4H2O -# Enthalpy of formation: -3469.97 kJ/mol - -analytic -1.1784e+002 -1.9418e-002 2.7547e+003 4.0963e+001 4.6818e+001 -# -Range: 0-200 - -UO2SO3 - UO2SO3 = + 1.0000 SO3-- + 1.0000 UO2++ - log_k -15.9812 - -delta_H 6.4504 kJ/mol # Calculated enthalpy of reaction UO2SO3 -# Enthalpy of formation: -1661 kJ/mol - -analytic 2.5751e+001 -1.3871e-002 -3.0305e+003 -1.1090e+001 -5.1470e+001 -# -Range: 0-200 - -UO2SO4 - UO2SO4 = + 1.0000 SO4-- + 1.0000 UO2++ - log_k 1.9681 - -delta_H -83.4616 kJ/mol # Calculated enthalpy of reaction UO2SO4 -# Enthalpy of formation: -1845.14 kJ/mol - -analytic -1.5677e+002 -6.5310e-002 6.7411e+003 6.2867e+001 1.0523e+002 -# -Range: 0-300 - -UO2SO4:2.5H2O - UO2SO4:2.5H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 2.5000 H2O - log_k -1.4912 - -delta_H -36.1984 kJ/mol # Calculated enthalpy of reaction UO2SO4:2.5H2O -# Enthalpy of formation: -2607 kJ/mol - -analytic -4.8908e+001 -1.3445e-002 2.8658e+003 1.6894e+001 4.8683e+001 -# -Range: 0-200 - -UO2SO4:3.5H2O - UO2SO4:3.5H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 3.5000 H2O - log_k -1.4805 - -delta_H -27.4367 kJ/mol # Calculated enthalpy of reaction UO2SO4:3.5H2O -# Enthalpy of formation: -2901.6 kJ/mol - -analytic -7.4180e+001 -1.3565e-002 3.5963e+003 2.6136e+001 6.1096e+001 -# -Range: 0-200 - -UO2SO4:3H2O - UO2SO4:3H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 3.0000 H2O - log_k -1.4028 - -delta_H -34.6176 kJ/mol # Calculated enthalpy of reaction UO2SO4:3H2O -# Enthalpy of formation: -2751.5 kJ/mol - -analytic -5.0134e+001 -1.0321e-002 3.0505e+003 1.6799e+001 5.1818e+001 -# -Range: 0-200 - -UO2SO4:H2O - UO2SO4:H2O = + 1.0000 H2O + 1.0000 SO4-- + 1.0000 UO2++ - log_k -6.0233 - -delta_H -39.1783 kJ/mol # Calculated enthalpy of reaction UO2SO4:H2O -# Enthalpy of formation: -519.9 kcal/mol - -analytic -1.8879e+002 -6.9827e-002 5.5636e+003 7.4717e+001 8.6870e+001 -# -Range: 0-300 - -UO3(alpha) - UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ - log_k 8.6391 - -delta_H -87.3383 kJ/mol # Calculated enthalpy of reaction UO3(alpha) -# Enthalpy of formation: -1217.5 kJ/mol - -analytic -1.4099e+001 -1.9063e-003 4.7742e+003 2.9478e+000 7.4501e+001 -# -Range: 0-300 - -UO3(beta) - UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ - log_k 8.3095 - -delta_H -84.5383 kJ/mol # Calculated enthalpy of reaction UO3(beta) -# Enthalpy of formation: -1220.3 kJ/mol - -analytic -1.2298e+001 -1.7800e-003 4.5621e+003 2.3593e+000 7.1191e+001 -# -Range: 0-300 - -UO3(gamma) - UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ - log_k 7.7073 - -delta_H -81.0383 kJ/mol # Calculated enthalpy of reaction UO3(gamma) -# Enthalpy of formation: -1223.8 kJ/mol - -analytic -1.1573e+001 -2.3560e-003 4.3124e+003 2.2305e+000 6.7294e+001 -# -Range: 0-300 - -UO3:.9H2O(alpha) - UO3:.9H2O +2.0000 H+ = + 1.0000 UO2++ + 1.9000 H2O - log_k 5.0167 - -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction UO3:.9H2O(alpha) -# Enthalpy of formation: -1506.3 kJ/mol - -analytic -6.9286e+001 -3.0624e-003 5.5984e+003 2.2809e+001 9.5092e+001 -# -Range: 0-200 - -UO3:2H2O - UO3:2H2O +2.0000 H+ = + 1.0000 UO2++ + 3.0000 H2O - log_k 4.8333 - -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction UO3:2H2O -# Enthalpy of formation: -1826.1 kJ/mol - -analytic -5.9530e+001 -9.8107e-003 4.4975e+003 2.1098e+001 7.0196e+001 -# -Range: 0-300 - -UOBr2 - UOBr2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 Br- - log_k 7.9722 - -delta_H -146.445 kJ/mol # Calculated enthalpy of reaction UOBr2 -# Enthalpy of formation: -973.6 kJ/mol - -analytic -2.0747e+002 -7.0500e-002 1.1746e+004 7.9629e+001 1.8334e+002 -# -Range: 0-300 - -UOBr3 - UOBr3 +1.0000 H2O = + 1.0000 UO2+ + 2.0000 H+ + 3.0000 Br- - log_k 23.5651 - -delta_H -149.799 kJ/mol # Calculated enthalpy of reaction UOBr3 -# Enthalpy of formation: -954 kJ/mol - -analytic -2.0001e+002 -8.4632e-002 1.1381e+004 8.5102e+001 1.7765e+002 -# -Range: 0-300 - -UOCl - UOCl +2.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 U+++ - log_k 10.3872 - -delta_H -108.118 kJ/mol # Calculated enthalpy of reaction UOCl -# Enthalpy of formation: -833.9 kJ/mol - -analytic -1.1989e+002 -4.0791e-002 8.0834e+003 4.6600e+001 1.2617e+002 -# -Range: 0-300 - -UOCl2 - UOCl2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 Cl- - log_k 5.4559 - -delta_H -141.898 kJ/mol # Calculated enthalpy of reaction UOCl2 -# Enthalpy of formation: -1069.3 kJ/mol - -analytic -2.2096e+002 -7.3329e-002 1.1858e+004 8.4250e+001 1.8509e+002 -# -Range: 0-300 - -UOCl3 - UOCl3 +1.0000 H2O = + 1.0000 UO2+ + 2.0000 H+ + 3.0000 Cl- - log_k 12.6370 - -delta_H -100.528 kJ/mol # Calculated enthalpy of reaction UOCl3 -# Enthalpy of formation: -1140 kJ/mol - -analytic -2.1934e+002 -8.8639e-002 9.3198e+003 9.1775e+001 1.4549e+002 -# -Range: 0-300 - -UOF2 - UOF2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 F- - log_k -18.1473 - -delta_H -43.1335 kJ/mol # Calculated enthalpy of reaction UOF2 -# Enthalpy of formation: -1504.6 kJ/mol - -analytic -6.9471e+001 -2.6188e-002 2.5576e+003 2.0428e+001 4.3454e+001 -# -Range: 0-200 - -UOF2:H2O - UOF2:H2O +2.0000 H+ = + 1.0000 U++++ + 2.0000 F- + 2.0000 H2O - log_k -18.7019 - -delta_H -31.5719 kJ/mol # Calculated enthalpy of reaction UOF2:H2O -# Enthalpy of formation: -1802 kJ/mol - -analytic -9.5010e+001 -2.6355e-002 3.1474e+003 2.9746e+001 5.3480e+001 -# -Range: 0-200 - -UOF4 - UOF4 +1.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 4.0000 F- - log_k 4.5737 - -delta_H -149.952 kJ/mol # Calculated enthalpy of reaction UOF4 -# Enthalpy of formation: -1924.6 kJ/mol - -analytic -5.9731e+000 -3.8581e-002 4.6903e+003 2.5464e+000 7.9649e+001 -# -Range: 0-200 - -UOFOH - UOFOH +3.0000 H+ = + 1.0000 F- + 1.0000 U++++ + 2.0000 H2O - log_k -8.9274 - -delta_H -71.5243 kJ/mol # Calculated enthalpy of reaction UOFOH -# Enthalpy of formation: -1426.7 kJ/mol - -analytic -9.2412e+001 -1.7293e-002 5.8150e+003 2.7940e+001 9.8779e+001 -# -Range: 0-200 - -UOFOH:.5H2O - UOFOH:.5H2O +1.0000 H+ +0.5000 O2 = + 1.0000 F- + 1.0000 UO2++ + 1.5000 H2O - log_k 24.5669 - -delta_H -200.938 kJ/mol # Calculated enthalpy of reaction UOFOH:.5H2O -# Enthalpy of formation: -1576.1 kJ/mol - -analytic -1.1024e+001 -7.7180e-003 1.0019e+004 1.7305e+000 1.7014e+002 -# -Range: 0-200 - -UP - UP +2.0000 O2 +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 U+++ - log_k 233.4928 - -delta_H -1487.11 kJ/mol # Calculated enthalpy of reaction UP -# Enthalpy of formation: -269.8 kJ/mol - -analytic -2.1649e+002 -9.0873e-002 8.3804e+004 8.1649e+001 -5.4044e+005 -# -Range: 0-300 - -UP2 - UP2 +3.2500 O2 +1.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 HPO4-- - log_k 360.5796 - -delta_H -2301.07 kJ/mol # Calculated enthalpy of reaction UP2 -# Enthalpy of formation: -304 kJ/mol - -analytic -2.4721e+002 -1.5005e-001 1.2243e+005 9.9521e+001 -3.9706e+005 -# -Range: 0-300 - -UP2O7 - UP2O7 +1.0000 H2O = + 1.0000 U++++ + 2.0000 HPO4-- - log_k -32.9922 - -delta_H -37.5256 kJ/mol # Calculated enthalpy of reaction UP2O7 -# Enthalpy of formation: -2852 kJ/mol - -analytic -3.5910e+002 -1.3819e-001 7.6509e+003 1.3804e+002 1.1949e+002 -# -Range: 0-300 - -UP2O7:20H2O - UP2O7:20H2O = + 1.0000 U++++ + 2.0000 HPO4-- + 19.0000 H2O - log_k -28.6300 - -delta_H 0 # Not possible to calculate enthalpy of reaction UP2O7:20H2O -# Enthalpy of formation: 0 kcal/mol - -UPO5 - UPO5 +1.0000 H2O = + 1.0000 H+ + 1.0000 HPO4-- + 1.0000 UO2+ - log_k -19.5754 - -delta_H 32.6294 kJ/mol # Calculated enthalpy of reaction UPO5 -# Enthalpy of formation: -2064 kJ/mol - -analytic -1.5316e+002 -6.0911e-002 7.3255e+002 6.0317e+001 1.1476e+001 -# -Range: 0-300 - -US - US +2.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 HS- + 1.0000 U+++ - log_k 46.6547 - -delta_H -322.894 kJ/mol # Calculated enthalpy of reaction US -# Enthalpy of formation: -322.2 kJ/mol - -analytic -1.0845e+002 -4.0538e-002 1.8749e+004 4.2147e+001 2.9259e+002 -# -Range: 0-300 - -US1.9 - US1.9 +1.9000 H+ = + 0.2000 U+++ + 0.8000 U++++ + 1.9000 HS- - log_k -2.2816 - -delta_H -91.486 kJ/mol # Calculated enthalpy of reaction US1.9 -# Enthalpy of formation: -509.9 kJ/mol - -analytic -2.0534e+002 -6.8390e-002 8.8888e+003 7.8243e+001 1.3876e+002 -# -Range: 0-300 - -US2 - US2 +2.0000 H+ = + 1.0000 U++++ + 2.0000 HS- - log_k -2.3324 - -delta_H -103.017 kJ/mol # Calculated enthalpy of reaction US2 -# Enthalpy of formation: -520.4 kJ/mol - -analytic -2.1819e+002 -7.1522e-002 9.7782e+003 8.2586e+001 1.5264e+002 -# -Range: 0-300 - -US3 - US3 +2.0000 H2O = + 1.0000 H+ + 1.0000 UO2++ + 3.0000 HS- - log_k -16.6370 - -delta_H 43.9515 kJ/mol # Calculated enthalpy of reaction US3 -# Enthalpy of formation: -539.6 kJ/mol - -analytic -2.3635e+002 -9.5877e-002 1.9170e+003 9.7726e+001 2.9982e+001 -# -Range: 0-300 - -USb - USb +3.0000 H+ +1.5000 O2 = + 1.0000 Sb(OH)3 + 1.0000 U+++ - log_k 176.0723 - -delta_H -1106.19 kJ/mol # Calculated enthalpy of reaction USb -# Enthalpy of formation: -138.5 kJ/mol - -USb2 - USb2 +3.0000 H+ +2.2500 O2 +1.5000 H2O = + 1.0000 U+++ + 2.0000 Sb(OH)3 - log_k 223.1358 - -delta_H -1407.02 kJ/mol # Calculated enthalpy of reaction USb2 -# Enthalpy of formation: -173.6 kJ/mol - -Uranium-selenide - 1.0USe +1.7500 O2 +1.0000 H+ = + 0.5000 H2O + 1.0000 SeO3-- + 1.0000 U+++ - log_k 125.6086 - -delta_H -844.278 kJ/mol # Calculated enthalpy of reaction Uranium-selenide -# Enthalpy of formation: -275.7 kJ/mol - -analytic -1.0853e+002 -7.6251e-002 4.3230e+004 4.5189e+001 6.7460e+002 -# -Range: 0-300 - -USe2(alpha) - USe2 +2.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 SeO3-- - log_k 125.4445 - -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(alpha) -# Enthalpy of formation: -427 kJ/mol - -analytic -2.0454e+002 -1.4191e-001 4.6114e+004 8.7906e+001 7.1963e+002 -# -Range: 0-300 - -USe2(beta) - USe2 +2.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 SeO3-- - log_k 125.2868 - -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(beta) -# Enthalpy of formation: -427 kJ/mol - -analytic -2.0334e+002 -1.4147e-001 4.6082e+004 8.7349e+001 7.1913e+002 -# -Range: 0-300 - -USe3 - USe3 +3.7500 O2 +1.5000 H2O = + 1.0000 U+++ + 3.0000 H+ + 3.0000 SeO3-- - log_k 147.2214 - -delta_H -1090.42 kJ/mol # Calculated enthalpy of reaction USe3 -# Enthalpy of formation: -452 kJ/mol - -analytic 4.9201e+002 -1.3720e-002 3.2168e+004 -1.8131e+002 5.4609e+002 -# -Range: 0-200 - -Umangite - Cu3Se2 = + 1.0000 Cu++ + 2.0000 Cu+ + 2.0000 Se-- - log_k -93.8412 - -delta_H 0 # Not possible to calculate enthalpy of reaction Umangite -# Enthalpy of formation: -25 kcal/mol - -analytic -7.2308e+001 -2.2566e-003 -2.0738e+004 1.9677e+001 -3.5214e+002 -# -Range: 0-200 - -Uraninite - UO2 +4.0000 H+ = + 1.0000 U++++ + 2.0000 H2O - log_k -4.8372 - -delta_H -77.8767 kJ/mol # Calculated enthalpy of reaction Uraninite -# Enthalpy of formation: -1085 kJ/mol - -analytic -7.5776e+001 -1.0558e-002 5.9677e+003 2.1853e+001 9.3142e+001 -# -Range: 0-300 - -Uranocircite - Ba(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Ba++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -19.8057 - -delta_H -72.3317 kJ/mol # Calculated enthalpy of reaction Uranocircite -# Enthalpy of formation: -1215.94 kcal/mol - -analytic -3.6843e+001 -4.3076e-002 1.2427e+003 1.0384e+001 2.1115e+001 -# -Range: 0-200 - -Uranophane - Ca(UO2)2(SiO3)2(OH)2 +6.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 2.0000 UO2++ + 4.0000 H2O - log_k 17.2850 - -delta_H 0 # Not possible to calculate enthalpy of reaction Uranophane -# Enthalpy of formation: 0 kcal/mol - -V - V +3.0000 H+ +0.7500 O2 = + 1.0000 V+++ + 1.5000 H2O - log_k 106.9435 - -delta_H -680.697 kJ/mol # Calculated enthalpy of reaction V -# Enthalpy of formation: 0 kJ/mol - -analytic -1.0508e+002 -2.1334e-002 4.0364e+004 3.5012e+001 -3.2290e+005 -# -Range: 0-300 - -V2O4 - V2O4 +4.0000 H+ = + 2.0000 H2O + 2.0000 VO++ - log_k 8.5719 - -delta_H -117.564 kJ/mol # Calculated enthalpy of reaction V2O4 -# Enthalpy of formation: -1427.31 kJ/mol - -analytic -1.4429e+002 -3.7423e-002 9.7046e+003 5.3125e+001 1.5147e+002 -# -Range: 0-300 - -V3O5 - V3O5 +8.0000 H+ = + 1.0000 VO++ + 2.0000 V+++ + 4.0000 H2O - log_k 13.4312 - -delta_H -218.857 kJ/mol # Calculated enthalpy of reaction V3O5 -# Enthalpy of formation: -1933.17 kJ/mol - -analytic -1.7652e+002 -2.1959e-002 1.6814e+004 5.6618e+001 2.8559e+002 -# -Range: 0-200 - -V4O7 - V4O7 +10.0000 H+ = + 2.0000 V+++ + 2.0000 VO++ + 5.0000 H2O - log_k 18.7946 - -delta_H -284.907 kJ/mol # Calculated enthalpy of reaction V4O7 -# Enthalpy of formation: -2639.56 kJ/mol - -analytic -2.2602e+002 -3.0261e-002 2.1667e+004 7.3214e+001 3.6800e+002 -# -Range: 0-200 - -Vaesite - NiS2 +1.0000 H2O = + 0.2500 H+ + 0.2500 SO4-- + 1.0000 Ni++ + 1.7500 HS- - log_k -26.7622 - -delta_H 110.443 kJ/mol # Calculated enthalpy of reaction Vaesite -# Enthalpy of formation: -32.067 kcal/mol - -analytic 1.6172e+001 -2.2673e-002 -8.2514e+003 -3.4392e+000 -1.4013e+002 -# -Range: 0-200 - -Vivianite - Fe3(PO4)2:8H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Fe++ + 8.0000 H2O - log_k -4.7237 - -delta_H 0 # Not possible to calculate enthalpy of reaction Vivianite -# Enthalpy of formation: 0 kcal/mol - -W - W +1.5000 O2 +1.0000 H2O = + 1.0000 WO4-- + 2.0000 H+ - log_k 123.4334 - -delta_H -771.668 kJ/mol # Calculated enthalpy of reaction W -# Enthalpy of formation: 0 kJ/mol - -analytic -1.0433e+002 -6.9470e-002 4.0134e+004 4.5993e+001 6.2629e+002 -# -Range: 0-300 - -Wairakite - CaAl2Si4O10(OH)4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 SiO2 + 6.0000 H2O - log_k 18.0762 - -delta_H -237.781 kJ/mol # Calculated enthalpy of reaction Wairakite -# Enthalpy of formation: -1579.33 kcal/mol - -analytic -1.7914e+001 3.2944e-003 2.2782e+004 -9.0981e+000 -1.6934e+006 -# -Range: 0-300 - -Weeksite - K2(UO2)2(Si2O5)3:4H2O +6.0000 H+ = + 2.0000 K+ + 2.0000 UO2++ + 6.0000 SiO2 + 7.0000 H2O - log_k 15.3750 - -delta_H 0 # Not possible to calculate enthalpy of reaction Weeksite -# Enthalpy of formation: 0 kcal/mol - -Whitlockite - Ca3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Ca++ - log_k -4.2249 - -delta_H -116.645 kJ/mol # Calculated enthalpy of reaction Whitlockite -# Enthalpy of formation: -4096.77 kJ/mol - -analytic -5.3543e+002 -1.8842e-001 1.7176e+004 2.1406e+002 2.6817e+002 -# -Range: 0-300 - -Wilkmanite - Ni3Se4 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 3.0000 Ni++ + 4.0000 Se-- - log_k -152.8793 - -delta_H 0 # Not possible to calculate enthalpy of reaction Wilkmanite -# Enthalpy of formation: -60.285 kcal/mol - -analytic -1.9769e+002 -4.9968e-002 -2.8208e+004 6.2863e+001 -1.1322e+005 -# -Range: 0-300 - -Witherite - BaCO3 +1.0000 H+ = + 1.0000 Ba++ + 1.0000 HCO3- - log_k -2.9965 - -delta_H 17.1628 kJ/mol # Calculated enthalpy of reaction Witherite -# Enthalpy of formation: -297.5 kcal/mol - -analytic -1.2585e+002 -4.4315e-002 2.0227e+003 5.2239e+001 3.1600e+001 -# -Range: 0-300 - -Wollastonite - CaSiO3 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 SiO2 - log_k 13.7605 - -delta_H -76.5756 kJ/mol # Calculated enthalpy of reaction Wollastonite -# Enthalpy of formation: -389.59 kcal/mol - -analytic 3.0931e+001 6.7466e-003 5.1749e+003 -1.3209e+001 -3.4579e+005 -# -Range: 0-300 - -Wurtzite - ZnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Zn++ - log_k -9.1406 - -delta_H 22.3426 kJ/mol # Calculated enthalpy of reaction Wurtzite -# Enthalpy of formation: -45.85 kcal/mol - -analytic -1.5446e+002 -4.8874e-002 2.4551e+003 6.1278e+001 3.8355e+001 -# -Range: 0-300 - -Wustite - Fe.947O +2.0000 H+ = + 0.1060 Fe+++ + 0.8410 Fe++ + 1.0000 H2O - log_k 12.4113 - -delta_H -102.417 kJ/mol # Calculated enthalpy of reaction Wustite -# Enthalpy of formation: -266.265 kJ/mol - -analytic -7.6919e+001 -1.8433e-002 7.3823e+003 2.8312e+001 1.1522e+002 -# -Range: 0-300 - -Xonotlite - Ca6Si6O17(OH)2 +12.0000 H+ = + 6.0000 Ca++ + 6.0000 SiO2 + 7.0000 H2O - log_k 91.8267 - -delta_H -495.457 kJ/mol # Calculated enthalpy of reaction Xonotlite -# Enthalpy of formation: -2397.25 kcal/mol - -analytic 1.6080e+003 3.7309e-001 -2.2548e+004 -6.2716e+002 -3.8346e+002 -# -Range: 0-200 - -Y - Y +3.0000 H+ +0.7500 O2 = + 1.0000 Y+++ + 1.5000 H2O - log_k 184.5689 - -delta_H -1134.7 kJ/mol # Calculated enthalpy of reaction Y -# Enthalpy of formation: 0 kJ/mol - -analytic -6.2641e+001 -2.8062e-002 5.9667e+004 2.2394e+001 9.3107e+002 -# -Range: 0-300 - -Yb - Yb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Yb++ - log_k 137.1930 - -delta_H -810.303 kJ/mol # Calculated enthalpy of reaction Yb -# Enthalpy of formation: 0 kJ/mol - -analytic -7.4712e+001 -2.0993e-002 4.4129e+004 2.8341e+001 6.8862e+002 -# -Range: 0-300 - -Yb(OH)3 - Yb(OH)3 +3.0000 H+ = + 1.0000 Yb+++ + 3.0000 H2O - log_k 14.6852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Yb(OH)3(am) - Yb(OH)3 +3.0000 H+ = + 1.0000 Yb+++ + 3.0000 H2O - log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Yb2(CO3)3 - Yb2(CO3)3 +3.0000 H+ = + 2.0000 Yb+++ + 3.0000 HCO3- - log_k -2.3136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Yb2O3 - Yb2O3 +6.0000 H+ = + 2.0000 Yb+++ + 3.0000 H2O - log_k 47.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2O3 -# Enthalpy of formation: 0 kcal/mol - -YbF3:.5H2O - YbF3:.5H2O = + 0.5000 H2O + 1.0000 Yb+++ + 3.0000 F- - log_k -16.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -YbPO4:10H2O - YbPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Yb+++ + 10.0000 H2O - log_k -11.7782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Zincite - ZnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Zn++ - log_k 11.2087 - -delta_H -88.7638 kJ/mol # Calculated enthalpy of reaction Zincite -# Enthalpy of formation: -350.46 kJ/mol - -analytic -8.6681e+001 -1.9324e-002 7.1034e+003 3.2256e+001 1.1087e+002 -# -Range: 0-300 - -Zircon - ZrSiO4 +2.0000 H+ = + 1.0000 SiO2 + 1.0000 Zr(OH)2++ - log_k -15.4193 - -delta_H 64.8635 kJ/mol # Calculated enthalpy of reaction Zircon -# Enthalpy of formation: -2033.4 kJ/mol - -analytic 9.2639e+000 6.5416e-003 5.0759e+002 -8.4547e+000 -6.6155e+005 -# -Range: 0-300 - -Zn - Zn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zn++ - log_k 68.8035 - -delta_H -433.157 kJ/mol # Calculated enthalpy of reaction Zn -# Enthalpy of formation: 0 kJ/mol - -analytic -6.4131e+001 -2.0009e-002 2.3921e+004 2.3702e+001 3.7329e+002 -# -Range: 0-300 - -Zn(BO2)2 - Zn(BO2)2 +2.0000 H+ +2.0000 H2O = + 1.0000 Zn++ + 2.0000 B(OH)3 - log_k 8.3130 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(BO2)2 -# Enthalpy of formation: 0 kcal/mol - -Zn(ClO4)2:6H2O - Zn(ClO4)2:6H2O = + 1.0000 Zn++ + 2.0000 ClO4- + 6.0000 H2O - log_k 5.6474 - -delta_H 6.31871 kJ/mol # Calculated enthalpy of reaction Zn(ClO4)2:6H2O -# Enthalpy of formation: -2133.39 kJ/mol - -analytic -1.8191e+002 -9.1383e-003 7.4822e+003 6.6751e+001 1.2712e+002 -# -Range: 0-200 - -Zn(IO3)2 - Zn(IO3)2 = + 1.0000 Zn++ + 2.0000 IO3- - log_k -5.3193 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(IO3)2 -# Enthalpy of formation: 0 kcal/mol - -Zn(NO3)2:6H2O - Zn(NO3)2:6H2O = + 1.0000 Zn++ + 2.0000 NO3- + 6.0000 H2O - log_k 3.4102 - -delta_H 24.7577 kJ/mol # Calculated enthalpy of reaction Zn(NO3)2:6H2O -# Enthalpy of formation: -2306.8 kJ/mol - -analytic -1.7152e+002 -1.6875e-002 5.6291e+003 6.5094e+001 9.5649e+001 -# -Range: 0-200 - -Zn(OH)2(beta) - Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O - log_k 11.9341 - -delta_H -83.2111 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(beta) -# Enthalpy of formation: -641.851 kJ/mol - -analytic -7.7810e+001 -7.8548e-003 7.1994e+003 2.7455e+001 1.2228e+002 -# -Range: 0-200 - -Zn(OH)2(epsilon) - Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O - log_k 11.6625 - -delta_H -81.7811 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(epsilon) -# Enthalpy of formation: -643.281 kJ/mol - -analytic -7.7938e+001 -7.8767e-003 7.1282e+003 2.7496e+001 1.2107e+002 -# -Range: 0-200 - -Zn(OH)2(gamma) - Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O - log_k 11.8832 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2(gamma) -# Enthalpy of formation: 0 kcal/mol - -Zn2(OH)3Cl - Zn2(OH)3Cl +3.0000 H+ = + 1.0000 Cl- + 2.0000 Zn++ + 3.0000 H2O - log_k 15.2921 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2(OH)3Cl -# Enthalpy of formation: 0 kcal/mol - -Zn2SO4(OH)2 - Zn2SO4(OH)2 +2.0000 H+ = + 1.0000 SO4-- + 2.0000 H2O + 2.0000 Zn++ - log_k 7.5816 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2SO4(OH)2 -# Enthalpy of formation: 0 kcal/mol - -Zn2SiO4 - Zn2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Zn++ - log_k 13.8695 - -delta_H -119.399 kJ/mol # Calculated enthalpy of reaction Zn2SiO4 -# Enthalpy of formation: -1636.75 kJ/mol - -analytic 2.0970e+002 5.3663e-002 -1.2724e+002 -8.5445e+001 -2.2336e+000 -# -Range: 0-200 - -Zn2TiO4 - Zn2TiO4 +4.0000 H+ = + 1.0000 Ti(OH)4 + 2.0000 Zn++ - log_k 12.3273 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2TiO4 -# Enthalpy of formation: -1647.85 kJ/mol - -Zn3(AsO4)2 - Zn3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Zn++ - log_k 9.3122 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn3(AsO4)2 -# Enthalpy of formation: 0 kcal/mol - -Zn3O(SO4)2 - Zn3O(SO4)2 +2.0000 H+ = + 1.0000 H2O + 2.0000 SO4-- + 3.0000 Zn++ - log_k 19.1188 - -delta_H -258.253 kJ/mol # Calculated enthalpy of reaction Zn3O(SO4)2 -# Enthalpy of formation: -2306.95 kJ/mol - -analytic -3.9661e+001 -4.3860e-002 1.1301e+004 1.3709e+001 1.9193e+002 -# -Range: 0-200 - -Zn5(NO3)2(OH)8 - Zn5(NO3)2(OH)8 +8.0000 H+ = + 2.0000 NO3- + 5.0000 Zn++ + 8.0000 H2O - log_k 42.6674 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn5(NO3)2(OH)8 -# Enthalpy of formation: 0 kcal/mol - -ZnBr2 - ZnBr2 = + 1.0000 Zn++ + 2.0000 Br- - log_k 7.5787 - -delta_H -67.7622 kJ/mol # Calculated enthalpy of reaction ZnBr2 -# Enthalpy of formation: -328.63 kJ/mol - -analytic 6.5789e-002 -2.1477e-002 1.9840e+003 2.9302e+000 3.3691e+001 -# -Range: 0-200 - -ZnBr2:2H2O - ZnBr2:2H2O = + 1.0000 Zn++ + 2.0000 Br- + 2.0000 H2O - log_k 5.2999 - -delta_H -30.9268 kJ/mol # Calculated enthalpy of reaction ZnBr2:2H2O -# Enthalpy of formation: -937.142 kJ/mol - -analytic -4.9260e+001 -2.1682e-002 2.4325e+003 2.1360e+001 4.1324e+001 -# -Range: 0-200 - -ZnCO3:H2O - ZnCO3:H2O +1.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Zn++ - log_k 0.1398 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3:H2O -# Enthalpy of formation: 0 kcal/mol - -ZnCl2 - ZnCl2 = + 1.0000 Zn++ + 2.0000 Cl- - log_k 7.0880 - -delta_H -72.4548 kJ/mol # Calculated enthalpy of reaction ZnCl2 -# Enthalpy of formation: -415.09 kJ/mol - -analytic -1.6157e+001 -2.5405e-002 2.6505e+003 8.8584e+000 4.5015e+001 -# -Range: 0-200 - -ZnCl2(NH3)2 - ZnCl2(NH3)2 = + 1.0000 Zn++ + 2.0000 Cl- + 2.0000 NH3 - log_k -6.9956 - -delta_H 27.2083 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)2 -# Enthalpy of formation: -677.427 kJ/mol - -analytic -5.9409e+001 -2.2698e-002 -2.9178e+002 2.4308e+001 -4.9341e+000 -# -Range: 0-200 - -ZnCl2(NH3)4 - ZnCl2(NH3)4 = + 1.0000 Zn++ + 2.0000 Cl- + 4.0000 NH3 - log_k -6.6955 - -delta_H 56.2004 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)4 -# Enthalpy of formation: -869.093 kJ/mol - -analytic -9.9769e+001 -1.9793e-002 4.2916e+002 3.9412e+001 7.3223e+000 -# -Range: 0-200 - -ZnCl2(NH3)6 - ZnCl2(NH3)6 = + 1.0000 Zn++ + 2.0000 Cl- + 6.0000 NH3 - log_k -4.7311 - -delta_H 77.4225 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)6 -# Enthalpy of formation: -1052.99 kJ/mol - -analytic -1.3984e+002 -1.6896e-002 1.5559e+003 5.4524e+001 2.6470e+001 -# -Range: 0-200 - -ZnCr2O4 - ZnCr2O4 +8.0000 H+ = + 1.0000 Zn++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 7.9161 - -delta_H -221.953 kJ/mol # Calculated enthalpy of reaction ZnCr2O4 -# Enthalpy of formation: -370.88 kcal/mol - -analytic -1.7603e+002 -1.0217e-002 1.7414e+004 5.1966e+001 2.9577e+002 -# -Range: 0-200 - -ZnF2 - ZnF2 = + 1.0000 Zn++ + 2.0000 F- - log_k -0.4418 - -delta_H -59.8746 kJ/mol # Calculated enthalpy of reaction ZnF2 -# Enthalpy of formation: -764.206 kJ/mol - -analytic -2.6085e+002 -8.4594e-002 9.0240e+003 1.0318e+002 1.4089e+002 -# -Range: 0-300 - -ZnI2 - ZnI2 = + 1.0000 Zn++ + 2.0000 I- - log_k 7.3885 - -delta_H -59.2332 kJ/mol # Calculated enthalpy of reaction ZnI2 -# Enthalpy of formation: -207.957 kJ/mol - -analytic -1.6472e+001 -2.5573e-002 2.0796e+003 9.9013e+000 3.5320e+001 -# -Range: 0-200 - -ZnSO4 - ZnSO4 = + 1.0000 SO4-- + 1.0000 Zn++ - log_k 3.5452 - -delta_H -80.132 kJ/mol # Calculated enthalpy of reaction ZnSO4 -# Enthalpy of formation: -982.855 kJ/mol - -analytic 6.9905e+000 -1.8046e-002 2.2566e+003 -2.2819e+000 3.8318e+001 -# -Range: 0-200 - -ZnSO4:6H2O - ZnSO4:6H2O = + 1.0000 SO4-- + 1.0000 Zn++ + 6.0000 H2O - log_k -1.6846 - -delta_H -0.412008 kJ/mol # Calculated enthalpy of reaction ZnSO4:6H2O -# Enthalpy of formation: -2777.61 kJ/mol - -analytic -1.4506e+002 -1.8736e-002 5.2179e+003 5.3121e+001 8.8657e+001 -# -Range: 0-200 - -ZnSO4:7H2O - ZnSO4:7H2O = + 1.0000 SO4-- + 1.0000 Zn++ + 7.0000 H2O - log_k -1.8683 - -delta_H 14.0417 kJ/mol # Calculated enthalpy of reaction ZnSO4:7H2O -# Enthalpy of formation: -3077.9 kJ/mol - -analytic -1.6943e+002 -1.8833e-002 5.6484e+003 6.2326e+001 9.5975e+001 -# -Range: 0-200 - -ZnSO4:H2O - ZnSO4:H2O = + 1.0000 H2O + 1.0000 SO4-- + 1.0000 Zn++ - log_k -0.5383 - -delta_H -44.2824 kJ/mol # Calculated enthalpy of reaction ZnSO4:H2O -# Enthalpy of formation: -1304.54 kJ/mol - -analytic -1.7908e+001 -1.8228e-002 1.5811e+003 7.0677e+000 2.6856e+001 -# -Range: 0-200 - -ZnSeO3:H2O - ZnSeO3:H2O = + 1.0000 H2O + 1.0000 SeO3-- + 1.0000 Zn++ - log_k -6.7408 - -delta_H -17.9056 kJ/mol # Calculated enthalpy of reaction ZnSeO3:H2O -# Enthalpy of formation: -930.511 kJ/mol - -analytic -1.8569e+001 -1.9929e-002 6.4377e+001 7.0892e+000 1.0996e+000 -# -Range: 0-200 - -Zoisite - Ca2Al3(SiO4)3OH +13.0000 H+ = + 2.0000 Ca++ + 3.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O - log_k 43.3017 - -delta_H -458.131 kJ/mol # Calculated enthalpy of reaction Zoisite -# Enthalpy of formation: -1643.69 kcal/mol - -analytic 2.5321e+000 -3.5886e-002 1.9902e+004 -6.2443e+000 3.1055e+002 -# -Range: 0-300 - -Zr - Zr +2.0000 H+ +1.0000 O2 = + 1.0000 Zr(OH)2++ - log_k 177.6471 - -delta_H -1078.71 kJ/mol # Calculated enthalpy of reaction Zr -# Enthalpy of formation: 0 kJ/mol - -analytic -2.8360e+001 -1.5214e-002 5.8045e+004 7.8012e+000 -3.0657e+005 -# -Range: 0-300 - -ZrB2 - ZrB2 +3.0000 H+ +2.0000 H2O +0.5000 O2 = + 1.0000 B(OH)3 + 1.0000 BH4- + 1.0000 Zr++++ - log_k 103.4666 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrB2 -# Enthalpy of formation: -326.628 kJ/mol - -ZrC - ZrC +3.0000 H+ +2.0000 O2 = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Zr++++ - log_k 207.0906 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrC -# Enthalpy of formation: -203.008 kJ/mol - -ZrCl - ZrCl +3.0000 H+ +0.7500 O2 = + 1.0000 Cl- + 1.0000 Zr++++ + 1.5000 H2O - log_k 130.9450 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl -# Enthalpy of formation: -303.211 kJ/mol - -ZrCl2 - ZrCl2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zr++++ + 2.0000 Cl- - log_k 96.3205 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl2 -# Enthalpy of formation: -531.021 kJ/mol - -ZrCl3 - ZrCl3 +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Zr++++ + 3.0000 Cl- - log_k 62.4492 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl3 -# Enthalpy of formation: -754.997 kJ/mol - -ZrCl4 - ZrCl4 = + 1.0000 Zr++++ + 4.0000 Cl- - log_k 27.9824 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl4 -# Enthalpy of formation: -980.762 kJ/mol - -ZrF4(beta) - ZrF4 = + 1.0000 Zr++++ + 4.0000 F- - log_k -27.7564 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(beta) -# Enthalpy of formation: -1911.26 kJ/mol - -ZrH2 - ZrH2 +4.0000 H+ +1.5000 O2 = + 1.0000 Zr++++ + 3.0000 H2O - log_k 198.3224 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrH2 -# Enthalpy of formation: -168.946 kJ/mol - -ZrN - ZrN +4.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 NH3 + 1.0000 Zr++++ - log_k 59.1271 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrN -# Enthalpy of formation: -365 kJ/mol - -O-phthalic_acid - H2O_phthalate = + 1.0000 O_phthalate-2 + 2.0000 H+ - log_k -9.7755 - -delta_H 0 # Not possible to calculate enthalpy of reaction O-phthalic_acid -# Enthalpy of formation: -186.88 kJ/mol - -analytic 7.3450e+001 1.9477e-002 -3.6511e+003 -3.1035e+001 -6.2027e+001 -# -Range: 0-200 -Br2(l) - Br2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Br- + 2.0000 H+ - log_k -6.5419 - -delta_H 36.7648 kJ/mol # Calculated enthalpy of reaction Br2(l) -# Enthalpy of formation: 0 kJ/mol - -analytic -1.5875e+002 -5.8039e-002 1.5583e+003 6.6381e+001 2.4362e+001 -# -Range: 0-300 - -Hg(l) - Hg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hg++ - log_k 14.1505 - -delta_H -109.608 kJ/mol # Calculated enthalpy of reaction Hg(l) -# Enthalpy of formation: 0 kcal/mol - -analytic -6.6462e+001 -1.8504e-002 7.3141e+003 2.4888e+001 1.1415e+002 -# -Range: 0-300 - -Ag(g) - Ag +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Ag+ - log_k 51.0924 - -delta_H -319.035 kJ/mol # Calculated enthalpy of reaction Ag(g) -# Enthalpy of formation: 284.9 kJ/mol - -analytic -5.8006e+000 1.7178e-003 1.6809e+004 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -Al(g) - Al +3.0000 H+ +0.7500 O2 = + 1.0000 Al+++ + 1.5000 H2O - log_k 200.6258 - -delta_H -1288.06 kJ/mol # Calculated enthalpy of reaction Al(g) -# Enthalpy of formation: 330 kJ/mol - -analytic 9.6402e+000 -6.9301e-003 6.5270e+004 -1.0461e+001 1.1084e+003 -# -Range: 0-200 - -Am(g) - Am +3.0000 H+ +0.7500 O2 = + 1.0000 Am+++ + 1.5000 H2O - log_k 211.7865 - -delta_H -1320.16 kJ/mol # Calculated enthalpy of reaction Am(g) -# Enthalpy of formation: 283.8 kJ/mol - -analytic -1.4236e+001 -8.7560e-003 6.8166e+004 0.0000e+000 0.0000e+000 -# -Range: 0-300 - -AmF3(g) - AmF3 = + 1.0000 Am+++ + 3.0000 F- - log_k 49.8631 - -delta_H -455.843 kJ/mol # Calculated enthalpy of reaction AmF3(g) -# Enthalpy of formation: -1166.9 kJ/mol - -analytic -4.7209e+001 -3.6440e-002 2.2278e+004 1.3418e+001 3.7833e+002 -# -Range: 0-200 - -Ar(g) - Ar = + 1.0000 Ar - log_k -2.8587 - -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction Ar(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -7.4387e+000 7.8991e-003 0.0000e+000 0.0000e+000 1.9830e+005 -# -Range: 0-300 - -B(g) - B +1.5000 H2O +0.7500 O2 = + 1.0000 B(OH)3 - log_k 200.8430 - -delta_H -1201.68 kJ/mol # Calculated enthalpy of reaction B(g) -# Enthalpy of formation: 565 kJ/mol - -analytic 1.0834e+002 1.0606e-002 5.8150e+004 -4.2720e+001 9.8743e+002 -# -Range: 0-200 - -BF3(g) - BF3 +3.0000 H2O = + 1.0000 B(OH)3 + 3.0000 F- + 3.0000 H+ - log_k -2.9664 - -delta_H -87.0627 kJ/mol # Calculated enthalpy of reaction BF3(g) -# Enthalpy of formation: -1136 kJ/mol - -analytic 5.2848e+001 -2.4617e-002 -1.8159e+002 -1.9350e+001 -3.1018e+000 -# -Range: 0-200 - -Be(g) - Be +2.0000 H+ +0.5000 O2 = + 1.0000 Be++ + 1.0000 H2O - log_k 361.9343 - -delta_H 0 # Not possible to calculate enthalpy of reaction Be(g) -# Enthalpy of formation: 0 kcal/mol - -Br2(g) - Br2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Br- + 2.0000 H+ - log_k -5.9979 - -delta_H 5.85481 kJ/mol # Calculated enthalpy of reaction Br2(g) -# Enthalpy of formation: 30.91 kJ/mol - -analytic -3.2403e+000 -1.7609e-002 -1.4941e+003 3.0300e+000 -2.5370e+001 -# -Range: 0-200 - -C(g) - C +1.0000 H2O +1.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- - log_k 181.7723 - -delta_H -1108.64 kJ/mol # Calculated enthalpy of reaction C(g) -# Enthalpy of formation: 716.68 kJ/mol - -analytic 1.0485e+002 1.7907e-003 5.2768e+004 -4.0661e+001 8.9605e+002 -# -Range: 0-200 - -C2H4(g) - C2H4 = + 1.0000 C2H4 - log_k -2.3236 - -delta_H -16.4431 kJ/mol # Calculated enthalpy of reaction Ethylene(g) -# Enthalpy of formation: 12.5 kcal/mol - -analytic -7.5368e+000 8.4676e-003 0.0000e+000 0.0000e+000 2.3971e+005 -# -Range: 0-300 - -CH4(g) - CH4 = + 1.0000 CH4 - log_k -2.8502 - -delta_H -13.0959 kJ/mol # Calculated enthalpy of reaction CH4(g) -# Enthalpy of formation: -17.88 kcal/mol - -analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005 -# -Range: 0-300 - -CO(g) -# CO +1.0000 H2O +0.5000 O2 = + 1.0000 H+ + 1.0000 HCO3- -# log_k 38.6934 -# -analytic -6.1217e+001 -3.1388e-002 1.5283e+004 2.3433e+001 2.3850e+002 -# -Range: 0-300 - CO = CO - log_k -3.0068 - -delta_H -10.4349 kJ/mol # Calculated enthalpy of reaction CO(g) -# Enthalpy of formation: -26.416 kcal/mol - -analytic -8.0849e+000 9.2114e-003 0.0000e+000 0.0000e+000 2.0813e+005 -# -Range: 0-300 - -CO2(g) - CO2 +1.0000 H2O = + 1.0000 H+ + 1.0000 HCO3- - log_k -7.8136 - -delta_H -10.5855 kJ/mol # Calculated enthalpy of reaction CO2(g) -# Enthalpy of formation: -94.051 kcal/mol - -analytic -8.5938e+001 -3.0431e-002 2.0702e+003 3.2427e+001 3.2328e+001 -# -Range: 0-300 - -Ca(g) - Ca +2.0000 H+ +0.5000 O2 = + 1.0000 Ca++ + 1.0000 H2O - log_k 165.0778 - -delta_H -1000.65 kJ/mol # Calculated enthalpy of reaction Ca(g) -# Enthalpy of formation: 177.8 kJ/mol - -analytic -7.3029e+000 -4.8208e-003 5.1822e+004 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -Cd(g) - Cd +2.0000 H+ +0.5000 O2 = + 1.0000 Cd++ + 1.0000 H2O - log_k 70.1363 - -delta_H -467.469 kJ/mol # Calculated enthalpy of reaction Cd(g) -# Enthalpy of formation: 111.8 kJ/mol - -analytic -9.8665e+000 -3.0921e-003 2.4126e+004 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -Cl2(g) - Cl2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Cl- + 2.0000 H+ - log_k 3.0004 - -delta_H -54.3878 kJ/mol # Calculated enthalpy of reaction Cl2(g) -# Enthalpy of formation: 0 kJ/mol - -analytic -1.9456e+001 -2.1491e-002 2.0652e+003 8.8629e+000 3.5076e+001 -# -Range: 0-200 - -Cs(g) - Cs +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Cs+ - log_k 81.2805 - -delta_H -474.413 kJ/mol # Calculated enthalpy of reaction Cs(g) -# Enthalpy of formation: 76.5 kJ/mol - -analytic 4.1676e+001 9.1952e-003 2.3401e+004 -1.6824e+001 3.9736e+002 -# -Range: 0-200 - -Cu(g) - Cu +2.0000 H+ +0.5000 O2 = + 1.0000 Cu++ + 1.0000 H2O - log_k 83.6618 - -delta_H -551.483 kJ/mol # Calculated enthalpy of reaction Cu(g) -# Enthalpy of formation: 337.4 kJ/mol - -analytic -1.1249e+001 -2.7585e-003 2.8541e+004 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -F2(g) - F2 +1.0000 H2O = + 0.5000 O2 + 2.0000 F- + 2.0000 H+ - log_k 55.7197 - -delta_H -390.924 kJ/mol # Calculated enthalpy of reaction F2(g) -# Enthalpy of formation: 0 kJ/mol - -analytic -3.2664e+001 -2.1035e-002 1.9974e+004 1.1174e+001 3.3920e+002 -# -Range: 0-200 - -H2(g) -# H2 +0.5000 O2 = + 1.0000 H2O -# log_k 43.0016 -# -analytic -1.1609e+001 -3.7580e-003 1.5068e+004 2.4198e+000 -7.0997e+004 -# -Range: 0-300 - H2 = H2 - log_k -3.1050 - -delta_H -4.184 kJ/mol # Calculated enthalpy of reaction H2(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -9.3114e+000 4.6473e-003 -4.9335e+001 1.4341e+000 1.2815e+005 -# -Range: 0-300 - -H2O(g) - H2O = + 1.0000 H2O - log_k 1.5854 - -delta_H -43.4383 kJ/mol # Calculated enthalpy of reaction H2O(g) -# Enthalpy of formation: -57.935 kcal/mol - -analytic -1.4782e+001 1.0752e-003 2.7519e+003 2.7548e+000 4.2945e+001 -# -Range: 0-300 - -H2S(g) - H2S = + 1.0000 H+ + 1.0000 HS- - log_k -7.9759 - -delta_H 4.5229 kJ/mol # Calculated enthalpy of reaction H2S(g) -# Enthalpy of formation: -4.931 kcal/mol - -analytic -9.7354e+001 -3.1576e-002 1.8285e+003 3.7440e+001 2.8560e+001 -# -Range: 0-300 - -HBr(g) - HBr = + 1.0000 Br- + 1.0000 H+ - log_k 8.8815 - -delta_H -85.2134 kJ/mol # Calculated enthalpy of reaction HBr(g) -# Enthalpy of formation: -36.29 kJ/mol - -analytic 8.1303e+000 -6.6641e-003 3.3951e+003 -3.4973e+000 5.7651e+001 -# -Range: 0-200 - -HCl(g) - HCl = + 1.0000 Cl- + 1.0000 H+ - log_k 6.3055 - -delta_H -74.7697 kJ/mol # Calculated enthalpy of reaction HCl(g) -# Enthalpy of formation: -92.31 kJ/mol - -analytic -2.8144e-001 -8.6776e-003 3.0668e+003 -4.5105e-001 5.2078e+001 -# -Range: 0-200 - -HF(g) - HF = + 1.0000 F- + 1.0000 H+ - log_k 1.1126 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) -# Enthalpy of formation: 619.234 kJ/mol - -analytic -8.5783e+000 -8.8440e-003 2.6279e+003 1.4180e+000 4.4628e+001 -# -Range: 0-200 - -HI(g) - HI = + 1.0000 H+ + 1.0000 I- - log_k 9.3944 - -delta_H -83.4024 kJ/mol # Calculated enthalpy of reaction HI(g) -# Enthalpy of formation: 26.5 kJ/mol - -analytic 5.8250e-003 -8.7146e-003 3.5728e+003 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -He(g) - He = + 1.0000 He - log_k -3.4143 - -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction He(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -1.3402e+001 4.6358e-003 1.8295e+002 2.8070e+000 9.3373e+004 -# -Range: 0-300 - -Hf(g) - Hf +4.0000 H+ +1.0000 O2 = + 1.0000 Hf++++ + 2.0000 H2O - log_k 290.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) -# Enthalpy of formation: 0 kJ/mol - -Hg(g) - Hg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hg++ - log_k 19.7290 - -delta_H -170.988 kJ/mol # Calculated enthalpy of reaction Hg(g) -# Enthalpy of formation: 61.38 kJ/mol - -analytic -1.6232e+001 -3.2863e-003 8.9831e+003 2.7505e+000 1.5255e+002 -# -Range: 0-200 - -I2(g) - I2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 I- - log_k -21.4231 - -delta_H 103.547 kJ/mol # Calculated enthalpy of reaction I2(g) -# Enthalpy of formation: 62.42 kJ/mol - -analytic -2.0271e+001 -2.1890e-002 -6.0267e+003 1.0339e+001 -1.0233e+002 -# -Range: 0-200 - -K(g) - K +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 K+ - log_k 81.5815 - -delta_H -481.055 kJ/mol # Calculated enthalpy of reaction K(g) -# Enthalpy of formation: 89 kJ/mol - -analytic 1.0278e+001 3.0700e-003 2.4729e+004 -5.0763e+000 4.1994e+002 -# -Range: 0-200 - -Kr(g) - Kr = + 1.0000 Kr - log_k -2.6051 - -delta_H -15.2716 kJ/mol # Calculated enthalpy of reaction Kr(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -2.1251e+001 4.8308e-003 4.2971e+002 5.3591e+000 2.2304e+005 -# -Range: 0-300 - -Li(g) - Li +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Li+ - log_k 94.9423 - -delta_H -577.639 kJ/mol # Calculated enthalpy of reaction Li(g) -# Enthalpy of formation: 159.3 kJ/mol - -analytic -2.5692e+001 -1.4385e-003 3.0936e+004 6.9899e+000 5.2535e+002 -# -Range: 0-200 - -Mg(g) - Mg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mg++ - log_k 142.2494 - -delta_H -892.831 kJ/mol # Calculated enthalpy of reaction Mg(g) -# Enthalpy of formation: 147.1 kJ/mol - -analytic -1.3470e+000 -7.7402e-004 4.5992e+004 -4.2207e+000 7.8101e+002 -# -Range: 0-200 - -N2(g) -# N2 +3.0000 H2O = + 1.5000 O2 + 2.0000 NH3 -# log_k -119.6473 -# -analytic 2.4168e+001 1.6489e-002 -3.6869e+004 -1.1181e+001 2.3178e+005 -# -Range: 0-300 - N2 = N2 - log_k -3.1864 - -delta_H -10.4391 kJ/mol # Calculated enthalpy of reaction N2(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -7.6452e+000 7.9606e-003 0.0000e+000 0.0000e+000 1.8604e+005 -# -Range: 0-300 -NH3(g) - NH3 = + 1.0000 NH3 - log_k 1.7966 - -delta_H -35.2251 kJ/mol # Calculated enthalpy of reaction NH3(g) -# Enthalpy of formation: -11.021 kcal/mol - -analytic -1.8758e+001 3.3670e-004 2.5113e+003 4.8619e+000 3.9192e+001 -# -Range: 0-300 - -NO(g) - NO +0.5000 H2O +0.2500 O2 = + 1.0000 H+ + 1.0000 NO2- - log_k 0.7554 - -delta_H -48.8884 kJ/mol # Calculated enthalpy of reaction NO(g) -# Enthalpy of formation: 90.241 kJ/mol - -analytic 8.2147e+000 -1.2708e-001 -6.0593e+003 2.0504e+001 -9.4551e+001 -# -Range: 0-300 - -NO2(g) - NO2 +0.5000 H2O +0.2500 O2 = + 1.0000 H+ + 1.0000 NO3- - log_k 8.3673 - -delta_H -94.0124 kJ/mol # Calculated enthalpy of reaction NO2(g) -# Enthalpy of formation: 33.154 kJ/mol - -analytic 9.4389e+001 -2.7511e-001 -1.6783e+004 2.1127e+001 -2.6191e+002 -# -Range: 0-300 - -Na(g) - Na +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Na+ - log_k 80.8640 - -delta_H -487.685 kJ/mol # Calculated enthalpy of reaction Na(g) -# Enthalpy of formation: 107.5 kJ/mol - -analytic -6.0156e+000 2.4712e-003 2.5682e+004 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -Ne(g) - Ne = + 1.0000 Ne - log_k -3.3462 - -delta_H -3.64008 kJ/mol # Calculated enthalpy of reaction Ne(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -6.5169e+000 6.3991e-003 0.0000e+000 0.0000e+000 1.1271e+005 -# -Range: 0-300 - -O2(g) - O2 = + 1.0000 O2 - log_k -2.8983 - -delta_H -12.1336 kJ/mol # Calculated enthalpy of reaction O2(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005 -# -Range: 0-300 - -Pb(g) - Pb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pb++ - log_k 75.6090 - -delta_H -474.051 kJ/mol # Calculated enthalpy of reaction Pb(g) -# Enthalpy of formation: 195.2 kJ/mol - -analytic 2.5752e+001 2.1307e-003 2.3397e+004 -1.1825e+001 3.9730e+002 -# -Range: 0-200 - -Rb(g) - Rb +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Rb+ - log_k 80.4976 - -delta_H -471.909 kJ/mol # Calculated enthalpy of reaction Rb(g) -# Enthalpy of formation: 80.9 kJ/mol - -analytic 2.6839e+001 5.9775e-003 2.3720e+004 -1.1189e+001 4.0279e+002 -# -Range: 0-200 - -Rn(g) - Rn = + 1.0000 Rn - log_k -2.0451 - -delta_H -20.92 kJ/mol # Calculated enthalpy of reaction Rn(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -3.0258e+001 4.9893e-003 1.4118e+002 8.8798e+000 3.8095e+005 -# -Range: 0-300 - -RuCl3(g) - RuCl3 = + 1.0000 Ru+++ + 3.0000 Cl- - log_k 41.5503 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3(g) -# Enthalpy of formation: 16.84 kJ/mol - -RuO3(g) - RuO3 +1.0000 H2O = + 1.0000 RuO4-- + 2.0000 H+ - log_k 2.3859 - -delta_H -100.369 kJ/mol # Calculated enthalpy of reaction RuO3(g) -# Enthalpy of formation: -70.868 kJ/mol - -analytic 1.1106e+002 1.7191e-002 6.8526e+002 -4.6922e+001 1.1598e+001 -# -Range: 0-200 - -S2(g) - S2 +2.0000 H2O = + 0.5000 SO4-- + 1.5000 HS- + 2.5000 H+ - log_k -7.1449 - -delta_H -35.656 kJ/mol # Calculated enthalpy of reaction S2(g) -# Enthalpy of formation: 30.681 kcal/mol - -analytic -1.8815e+002 -7.7069e-002 4.8816e+003 7.5802e+001 7.6228e+001 -# -Range: 0-300 - -SO2(g) - SO2 = SO2 - log_k 0.1700 - -delta_H 0 # Not possible to calculate enthalpy of reaction SO2(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -2.0205e+001 2.8861e-003 1.4862e+003 5.2958e+000 1.2721e+005 -# -Range: 0-300 - -Si(g) - Si +1.0000 O2 = + 1.0000 SiO2 - log_k 219.9509 - -delta_H -1315.57 kJ/mol # Calculated enthalpy of reaction Si(g) -# Enthalpy of formation: 450 kJ/mol - -analytic 4.1998e+002 8.0113e-002 5.4468e+004 -1.6433e+002 9.2480e+002 -# -Range: 0-200 - -SiF4(g) - SiF4 +2.0000 H2O = + 1.0000 SiO2 + 4.0000 F- + 4.0000 H+ - log_k -15.1931 - -delta_H -32.4123 kJ/mol # Calculated enthalpy of reaction SiF4(g) -# Enthalpy of formation: -1615 kJ/mol - -analytic 3.4941e+002 3.3668e-002 -1.2780e+004 -1.3410e+002 -2.1714e+002 -# -Range: 0-200 - -Sn(g) - Sn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sn++ - log_k 94.5019 - -delta_H -589.758 kJ/mol # Calculated enthalpy of reaction Sn(g) -# Enthalpy of formation: 301.2 kJ/mol - -analytic 1.4875e+001 -5.6877e-005 2.9728e+004 -8.1131e+000 5.0482e+002 -# -Range: 0-200 - -Tc2O7(g) - Tc2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 TcO4- - log_k 21.3593 - -delta_H -158.131 kJ/mol # Calculated enthalpy of reaction Tc2O7(g) -# Enthalpy of formation: -988.569 kJ/mol - -analytic 7.4140e+001 1.5668e-002 5.6360e+003 -3.0860e+001 9.5682e+001 -# -Range: 0-200 - -Th(g) - Th +4.0000 H+ +1.0000 O2 = + 1.0000 Th++++ + 2.0000 H2O - log_k 307.8413 - -delta_H -1930.56 kJ/mol # Calculated enthalpy of reaction Th(g) -# Enthalpy of formation: 602 kJ/mol - -analytic 1.8496e+001 2.7318e-003 9.8807e+004 -1.7332e+001 1.6779e+003 -# -Range: 0-200 - -Ti(g) - Ti +2.0000 H2O +1.0000 O2 = + 1.0000 Ti(OH)4 - log_k 224.3510 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(g) -# Enthalpy of formation: 473 kJ/mol - -TiBr4(g) - TiBr4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Br- + 4.0000 H+ - log_k 36.6695 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4(g) -# Enthalpy of formation: -549.339 kJ/mol - -TiCl4(g) - TiCl4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Cl- + 4.0000 H+ - log_k 28.0518 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl4(g) -# Enthalpy of formation: -763.2 kJ/mol - -TiO(g) - TiO +2.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 - log_k 145.5711 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(g) -# Enthalpy of formation: 17.144 kJ/mol - -U(g) - U +2.0000 H+ +1.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ - log_k 298.3441 - -delta_H -1819.64 kJ/mol # Calculated enthalpy of reaction U(g) -# Enthalpy of formation: 533 kJ/mol - -analytic 3.7536e+001 -6.3804e-003 9.2048e+004 -1.8614e+001 1.4363e+003 -# -Range: 0-300 - -U2Cl10(g) - U2Cl10 +4.0000 H2O = + 2.0000 UO2+ + 8.0000 H+ + 10.0000 Cl- - log_k 82.7621 - -delta_H -609.798 kJ/mol # Calculated enthalpy of reaction U2Cl10(g) -# Enthalpy of formation: -1967.9 kJ/mol - -analytic -7.5513e+002 -3.0070e-001 4.5824e+004 3.1267e+002 7.1526e+002 -# -Range: 0-300 - -U2Cl8(g) - U2Cl8 = + 2.0000 U++++ + 8.0000 Cl- - log_k 82.4059 - -delta_H -769.437 kJ/mol # Calculated enthalpy of reaction U2Cl8(g) -# Enthalpy of formation: -1749.6 kJ/mol - -analytic -7.4441e+002 -2.6943e-001 5.4358e+004 2.9287e+002 8.4843e+002 -# -Range: 0-300 - -U2F10(g) - U2F10 +4.0000 H2O = + 2.0000 UO2+ + 8.0000 H+ + 10.0000 F- - log_k -12.2888 - -delta_H -239.377 kJ/mol # Calculated enthalpy of reaction U2F10(g) -# Enthalpy of formation: -4021 kJ/mol - -analytic -9.1542e+002 -3.2040e-001 3.1047e+004 3.6143e+002 4.8473e+002 -# -Range: 0-300 - -UBr(g) - UBr +1.0000 O2 = + 1.0000 Br- + 1.0000 UO2+ - log_k 224.8412 - -delta_H -1381.5 kJ/mol # Calculated enthalpy of reaction UBr(g) -# Enthalpy of formation: 247 kJ/mol - -analytic -3.1193e+002 -6.3059e-002 8.7633e+004 1.1032e+002 -1.0104e+006 -# -Range: 0-300 - -UBr2(g) - UBr2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 Br- - log_k 192.6278 - -delta_H -1218.87 kJ/mol # Calculated enthalpy of reaction UBr2(g) -# Enthalpy of formation: -31 kJ/mol - -analytic -1.2277e+002 -6.4613e-002 6.4196e+004 4.8209e+001 1.0018e+003 -# -Range: 0-300 - -UBr3(g) - UBr3 = + 1.0000 U+++ + 3.0000 Br- - log_k 67.8918 - -delta_H -489.61 kJ/mol # Calculated enthalpy of reaction UBr3(g) -# Enthalpy of formation: -364 kJ/mol - -analytic -2.5784e+002 -9.7583e-002 3.0225e+004 1.0240e+002 4.7171e+002 -# -Range: 0-300 - -UBr4(g) - UBr4 = + 1.0000 U++++ + 4.0000 Br- - log_k 54.2926 - -delta_H -467.113 kJ/mol # Calculated enthalpy of reaction UBr4(g) -# Enthalpy of formation: -610.1 kJ/mol - -analytic -3.5205e+002 -1.2867e-001 3.0898e+004 1.3781e+002 4.8223e+002 -# -Range: 0-300 - -UBr5(g) - UBr5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Br- - log_k 61.4272 - -delta_H -423.222 kJ/mol # Calculated enthalpy of reaction UBr5(g) -# Enthalpy of formation: -637.745 kJ/mol - -analytic -3.4693e+002 -1.4298e-001 2.8151e+004 1.4406e+002 4.3938e+002 -# -Range: 0-300 - -UCl(g) - UCl +1.0000 O2 = + 1.0000 Cl- + 1.0000 UO2+ - log_k 221.7887 - -delta_H -1368.27 kJ/mol # Calculated enthalpy of reaction UCl(g) -# Enthalpy of formation: 188.2 kJ/mol - -analytic -4.1941e+001 -2.7879e-002 7.0800e+004 1.3954e+001 1.1048e+003 -# -Range: 0-300 - -UCl2(g) - UCl2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 Cl- - log_k 183.7912 - -delta_H -1178.03 kJ/mol # Calculated enthalpy of reaction UCl2(g) -# Enthalpy of formation: -163 kJ/mol - -analytic -1.3677e+002 -6.7829e-002 6.2413e+004 5.3100e+001 9.7394e+002 -# -Range: 0-300 - -UCl3(g) - UCl3 = + 1.0000 U+++ + 3.0000 Cl- - log_k 58.6335 - -delta_H -453.239 kJ/mol # Calculated enthalpy of reaction UCl3(g) -# Enthalpy of formation: -537.1 kJ/mol - -analytic -2.7942e+002 -1.0243e-001 2.8859e+004 1.0982e+002 4.5040e+002 -# -Range: 0-300 - -UCl4(g) - UCl4 = + 1.0000 U++++ + 4.0000 Cl- - log_k 46.3988 - -delta_H -441.419 kJ/mol # Calculated enthalpy of reaction UCl4(g) -# Enthalpy of formation: -818.1 kJ/mol - -analytic -3.7971e+002 -1.3504e-001 3.0243e+004 1.4746e+002 4.7202e+002 -# -Range: 0-300 - -UCl5(g) - UCl5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Cl- - log_k 54.5311 - -delta_H -406.349 kJ/mol # Calculated enthalpy of reaction UCl5(g) -# Enthalpy of formation: -882.5 kJ/mol - -analytic -3.8234e+002 -1.5109e-001 2.8170e+004 1.5654e+002 4.3968e+002 -# -Range: 0-300 - -UCl6(g) - UCl6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 Cl- - log_k 63.4791 - -delta_H -462.301 kJ/mol # Calculated enthalpy of reaction UCl6(g) -# Enthalpy of formation: -987.5 kJ/mol - -analytic -4.7128e+002 -1.9133e-001 3.2528e+004 1.9503e+002 5.0771e+002 -# -Range: 0-300 - -UF(g) - UF +1.0000 O2 = + 1.0000 F- + 1.0000 UO2+ - log_k 206.2684 - -delta_H -1296.34 kJ/mol # Calculated enthalpy of reaction UF(g) -# Enthalpy of formation: -52 kJ/mol - -analytic -6.1248e+001 -3.0360e-002 6.7619e+004 2.0095e+001 1.0551e+003 -# -Range: 0-300 - -UF2(g) - UF2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 F- - log_k 172.3563 - -delta_H -1147.56 kJ/mol # Calculated enthalpy of reaction UF2(g) -# Enthalpy of formation: -530 kJ/mol - -analytic -4.3462e+002 -1.0881e-001 7.6778e+004 1.5835e+002 -8.8536e+005 -# -Range: 0-300 - -UF3(g) - UF3 = + 1.0000 U+++ + 3.0000 F- - log_k 47.2334 - -delta_H -440.943 kJ/mol # Calculated enthalpy of reaction UF3(g) -# Enthalpy of formation: -1054.2 kJ/mol - -analytic -3.3058e+002 -1.0866e-001 2.9694e+004 1.2551e+002 4.6344e+002 -# -Range: 0-300 - -UF4(g) - UF4 = + 1.0000 U++++ + 4.0000 F- - log_k 14.5980 - -delta_H -331.39 kJ/mol # Calculated enthalpy of reaction UF4(g) -# Enthalpy of formation: -1601.2 kJ/mol - -analytic -4.4692e+002 -1.4314e-001 2.6427e+004 1.6791e+002 4.1250e+002 -# -Range: 0-300 - -UF5(g) - UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- - log_k 6.3801 - -delta_H -220.188 kJ/mol # Calculated enthalpy of reaction UF5(g) -# Enthalpy of formation: -1910 kJ/mol - -analytic -4.6981e+002 -1.6177e-001 2.0986e+004 1.8345e+002 3.2760e+002 -# -Range: 0-300 - -UF6(g) - UF6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 F- - log_k 18.2536 - -delta_H -310.809 kJ/mol # Calculated enthalpy of reaction UF6(g) -# Enthalpy of formation: -2148.6 kJ/mol - -analytic -5.7661e+002 -2.0409e-001 2.7680e+004 2.2743e+002 4.3209e+002 -# -Range: 0-300 - -UI(g) - UI +1.0000 O2 = + 1.0000 I- + 1.0000 UO2+ - log_k 230.8161 - -delta_H -1410.9 kJ/mol # Calculated enthalpy of reaction UI(g) -# Enthalpy of formation: 341 kJ/mol - -analytic -3.5819e+001 -2.6631e-002 7.2899e+004 1.2133e+001 1.1375e+003 -# -Range: 0-300 - -UI2(g) - UI2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 I- - log_k 194.5395 - -delta_H -1220.67 kJ/mol # Calculated enthalpy of reaction UI2(g) -# Enthalpy of formation: 100 kJ/mol - -analytic -3.3543e+002 -9.5116e-002 7.6218e+004 1.2543e+002 -6.8683e+005 -# -Range: 0-300 - -UI3(g) - UI3 = + 1.0000 U+++ + 3.0000 I- - log_k 75.6033 - -delta_H -519.807 kJ/mol # Calculated enthalpy of reaction UI3(g) -# Enthalpy of formation: -140 kJ/mol - -analytic -2.6095e+002 -9.8782e-002 3.1972e+004 1.0456e+002 4.9897e+002 -# -Range: 0-300 - -UI4(g) - UI4 = + 1.0000 U++++ + 4.0000 I- - log_k 64.3272 - -delta_H -510.01 kJ/mol # Calculated enthalpy of reaction UI4(g) -# Enthalpy of formation: -308.8 kJ/mol - -analytic -3.5645e+002 -1.3022e-001 3.3347e+004 1.4051e+002 5.2046e+002 -# -Range: 0-300 - -UO(g) - UO +2.0000 H+ +1.0000 O2 = + 1.0000 H2O + 1.0000 UO2++ - log_k 211.6585 - -delta_H -1323.2 kJ/mol # Calculated enthalpy of reaction UO(g) -# Enthalpy of formation: 30.5 kJ/mol - -analytic -1.8007e+002 -3.1985e-002 7.8469e+004 5.8892e+001 -6.8071e+005 -# -Range: 0-300 - -UO2(g) - UO2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ - log_k 125.6027 - -delta_H -820.972 kJ/mol # Calculated enthalpy of reaction UO2(g) -# Enthalpy of formation: -477.8 kJ/mol - -analytic -5.2789e+000 -3.5754e-003 4.2074e+004 -3.7117e+000 6.5653e+002 -# -Range: 0-300 - -UO2Cl2(g) - UO2Cl2 = + 1.0000 UO2++ + 2.0000 Cl- - log_k 47.9630 - -delta_H -381.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2(g) -# Enthalpy of formation: -971.6 kJ/mol - -analytic -1.8035e+002 -6.5574e-002 2.3064e+004 6.8894e+001 3.5994e+002 -# -Range: 0-300 - -UO2F2(g) - UO2F2 = + 1.0000 UO2++ + 2.0000 F- - log_k 34.6675 - -delta_H -337.195 kJ/mol # Calculated enthalpy of reaction UO2F2(g) -# Enthalpy of formation: -1352.5 kJ/mol - -analytic -2.1498e+002 -6.9882e-002 2.1774e+004 7.9780e+001 3.3983e+002 -# -Range: 0-300 - -UO3(g) - UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ - log_k 70.9480 - -delta_H -505.638 kJ/mol # Calculated enthalpy of reaction UO3(g) -# Enthalpy of formation: -799.2 kJ/mol - -analytic -3.2820e+001 -2.6807e-003 2.6914e+004 5.7767e+000 4.1997e+002 -# -Range: 0-300 - -UOF4(g) - UOF4 +1.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 4.0000 F- - log_k 24.2848 - -delta_H -312.552 kJ/mol # Calculated enthalpy of reaction UOF4(g) -# Enthalpy of formation: -1762 kJ/mol - -analytic -3.9592e+002 -1.3699e-001 2.4127e+004 1.5359e+002 3.7660e+002 -# -Range: 0-300 - -Xe(g) - Xe = + 1.0000 Xe - log_k -2.3640 - -delta_H -18.8698 kJ/mol # Calculated enthalpy of reaction Xe(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -2.0636e+001 5.1389e-003 2.0490e+002 5.1913e+000 2.8556e+005 -# -Range: 0-300 - -Zn(g) - Zn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zn++ - log_k 85.4140 - -delta_H -563.557 kJ/mol # Calculated enthalpy of reaction Zn(g) -# Enthalpy of formation: 130.4 kJ/mol - -analytic -1.0898e+001 -3.9871e-003 2.9068e+004 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -Zr(g) - Zr +4.0000 H+ +1.0000 O2 = + 1.0000 Zr++++ + 2.0000 H2O - log_k 277.1324 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(g) -# Enthalpy of formation: 608.948 kJ/mol - -ZrF4(g) - ZrF4 = + 1.0000 Zr++++ + 4.0000 F- - log_k 142.9515 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(g) -# Enthalpy of formation: -858.24 kJ/mol - -EXCHANGE_MASTER_SPECIES - X X- -EXCHANGE_SPECIES - X- = X- - log_k 0.0 - - Na+ + X- = NaX - log_k 0.0 - -llnl_gamma 4.0 - - K+ + X- = KX - log_k 0.7 - -llnl_gamma 3.0 - delta_h -4.3 # Jardine & Sparks, 1984 - - Li+ + X- = LiX - log_k -0.08 - -llnl_gamma 6.0 - delta_h 1.4 # Merriam & Thomas, 1956 - - NH4+ + X- = NH4X - log_k 0.6 - -llnl_gamma 2.5 - delta_h -2.4 # Laudelout et al., 1968 - - Ca+2 + 2X- = CaX2 - log_k 0.8 - -llnl_gamma 6.0 - delta_h 7.2 # Van Bladel & Gheyl, 1980 - - Mg+2 + 2X- = MgX2 - log_k 0.6 - -llnl_gamma 8.0 - delta_h 7.4 # Laudelout et al., 1968 - - Sr+2 + 2X- = SrX2 - log_k 0.91 - -llnl_gamma 5.0 - delta_h 5.5 # Laudelout et al., 1968 - - Ba+2 + 2X- = BaX2 - log_k 0.91 - -llnl_gamma 5.0 - delta_h 4.5 # Laudelout et al., 1968 - - Mn+2 + 2X- = MnX2 - log_k 0.52 - -llnl_gamma 6.0 - - Fe+2 + 2X- = FeX2 - log_k 0.44 - -llnl_gamma 6.0 - - Cu+2 + 2X- = CuX2 - log_k 0.6 - -llnl_gamma 6.0 - - Zn+2 + 2X- = ZnX2 - log_k 0.8 - -llnl_gamma 6.0 - - Cd+2 + 2X- = CdX2 - log_k 0.8 - -llnl_gamma 5.0 - - Pb+2 + 2X- = PbX2 - log_k 1.05 - -llnl_gamma 4.5 - - Al+3 + 3X- = AlX3 - log_k 0.41 - -llnl_gamma 9.0 - - AlOH+2 + 2X- = AlOHX2 - log_k 0.89 - -llnl_gamma 4.5 - -SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH -SURFACE_SPECIES -# All surface data from -# Dzombak and Morel, 1990 -# -# -# Acid-base data from table 5.7 -# -# strong binding site--Hfo_s, - - Hfo_sOH = Hfo_sOH - log_k 0.0 - - Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.29 # = pKa1,int - - Hfo_sOH = Hfo_sO- + H+ - log_k -8.93 # = -pKa2,int - -# weak binding site--Hfo_w - - Hfo_wOH = Hfo_wOH - log_k 0.0 - - Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.29 # = pKa1,int - - Hfo_wOH = Hfo_wO- + H+ - log_k -8.93 # = -pKa2,int - -############################################### -# CATIONS # -############################################### -# -# Cations from table 10.1 or 10.5 -# -# Calcium - Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 - - Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ - log_k -5.85 -# Strontium - Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - log_k 5.01 - - Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ - log_k -6.58 - - Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ - log_k -17.60 -# Barium - Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - log_k 5.46 - - Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 # table 10.5 -# -# Cations from table 10.2 -# -# Cadmium - Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - log_k 0.47 - - Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - log_k -2.91 -# Zinc - Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - log_k 0.99 - - Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - log_k -1.99 -# Copper - Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - log_k 2.89 - - Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - log_k 0.6 # table 10.5 -# Lead - Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - log_k 4.65 - - Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - log_k 0.3 # table 10.5 -# -# Derived constants table 10.5 -# -# Magnesium - Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ - log_k -4.6 -# Manganese - Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - log_k -0.4 # table 10.5 - - Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - log_k -3.5 # table 10.5 -# Iron - Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - log_k 0.7 # LFER using table 10.5 - - Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ - log_k -2.5 # LFER using table 10.5 - -############################################### -# ANIONS # -############################################### -# -# Anions from table 10.6 -# -# Phosphate - Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - log_k 31.29 - - Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - log_k 25.39 - - Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - log_k 17.72 -# -# Anions from table 10.7 -# -# Borate - Hfo_wOH + B(OH)3 = Hfo_wH2BO3 + H2O - log_k 0.62 -# -# Anions from table 10.8 -# -# Sulfate - Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - log_k 7.78 - - Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 -# -# Derived constants table 10.10 -# - Hfo_wOH + F- + H+ = Hfo_wF + H2O - log_k 8.7 - - Hfo_wOH + F- = Hfo_wOHF- - log_k 1.6 -# -# Carbonate: Van Geen et al., 1994 reoptimized for HFO -# 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L -# -# Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O -# log_k 12.56 -# -# Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O -# log_k 20.62 - -# 9/19/96 -# Added analytical expression for H2S, NH3, KSO4. -# Added species CaHSO4+. -# Added delta H for Goethite. - -RATES - -########### -#K-feldspar -########### -# -# Sverdrup, H.U., 1990, The kinetics of base cation release due to -# chemical weathering: Lund University Press, Lund, 246 p. -# -# Example of KINETICS data block for K-feldspar rate: -# KINETICS 1 -# K-feldspar -# -m0 2.16 # 10% K-fsp, 0.1 mm cubes -# -m 1.94 -# -parms 1.36e4 0.1 - -K-feldspar - -start - 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s - 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) - 3 rem parm(2) = corrects for field rate relative to lab rate - 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) - - 10 dif_temp = 1/TK - 1/298 - 20 pk_H = 12.5 + 3134 * dif_temp - 30 pk_w = 15.3 + 1838 * dif_temp - 40 pk_OH = 14.2 + 3134 * dif_temp - 50 pk_CO2 = 14.6 + 1677 * dif_temp - #60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC - 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 - 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 - #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 - 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time - 81 rem decrease rate on precipitation - 90 if SR("K-feldspar") > 1 then moles = moles * 0.1 - 100 save moles - -end - -########### -#Albite -########### -# -# Sverdrup, H.U., 1990, The kinetics of base cation release due to -# chemical weathering: Lund University Press, Lund, 246 p. -# -# Example of KINETICS data block for Albite rate: -# KINETICS 1 -# Albite -# -m0 0.43 # 2% Albite, 0.1 mm cubes -# -parms 2.72e3 0.1 - -Albite - -start - 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s - 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) - 3 rem parm(2) = corrects for field rate relative to lab rate - 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) - - 10 dif_temp = 1/TK - 1/298 - 20 pk_H = 12.5 + 3359 * dif_temp - 30 pk_w = 14.8 + 2648 * dif_temp - 40 pk_OH = 13.7 + 3359 * dif_temp - #41 rem ^12.9 in Sverdrup, but larger than for oligoclase... - 50 pk_CO2 = 14.0 + 1677 * dif_temp - #60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC - 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 - 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 - #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 - 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time - 81 rem decrease rate on precipitation - 90 if SR("Albite") > 1 then moles = moles * 0.1 - 100 save moles - -end - -######## -#Calcite -######## -# -# Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978, -# American Journal of Science, v. 278, p. 179-216. -# -# Example of KINETICS data block for calcite rate: -# -# KINETICS 1 -# Calcite -# -tol 1e-8 -# -m0 3.e-3 -# -m 3.e-3 -# -parms 5.0 0.6 -Calcite - -start - 1 rem Modified from Plummer and others, 1978 - 2 rem parm(1) = A/V, 1/m parm(2) = exponent for m/m0 - - 10 si_cc = si("Calcite") - 20 if (m <= 0 and si_cc < 0) then goto 200 - 30 k1 = 10^(0.198 - 444.0 / (273.16 + tc) ) - 40 k2 = 10^(2.84 - 2177.0 / (273.16 + tc) ) - 50 if tc <= 25 then k3 = 10^(-5.86 - 317.0 / (273.16 + tc) ) - 60 if tc > 25 then k3 = 10^(-1.1 - 1737.0 / (273.16 + tc) ) - 70 t = 1 - 80 if m0 > 0 then t = m/m0 - 90 if t = 0 then t = 1 - 100 moles = parm(1) * (t)^parm(2) - 110 moles = moles * (k1 * act("H+") + k2 * act("CO2") + k3 * act("H2O")) - 120 moles = moles * (1 - 10^(2/3*si_cc)) - 130 moles = moles * time - 140 if (moles > m) then moles = m - 150 if (moles >= 0) then goto 200 - 160 temp = tot("Ca") - 170 mc = tot("C(4)") - 180 if mc < temp then temp = mc - 190 if -moles > temp then moles = -temp - 200 save moles - -end - -####### -#Pyrite -####### -# -# Williamson, M.A. and Rimstidt, J.D., 1994, -# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454. -# -# Example of KINETICS data block for pyrite rate: -# KINETICS 1 -# Pyrite -# -tol 1e-8 -# -m0 5.e-4 -# -m 5.e-4 -# -parms 2.0 0.67 .5 -0.11 -Pyrite - -start - 1 rem Williamson and Rimstidt, 1994 - 2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0) - 3 rem parm(3) = exp for O2 parm(4) = exp for H+ - - 10 if (m <= 0) then goto 200 - 20 if (si("Pyrite") >= 0) then goto 200 - 20 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0) - 30 moles = 10^rate * time - 40 if (moles > m) then moles = m - 200 save moles - -end - -########## -#Organic_C -########## -# -# Example of KINETICS data block for Organic_C rate: -# KINETICS 1 -# Organic_C -# -tol 1e-8 -# # m in mol/kgw -# -m0 5e-3 -# -m 5e-3 -Organic_C - -start - 1 rem Additive Monod kinetics - 2 rem Electron acceptors: O2, NO3, and SO4 - - 10 if (m <= 0) then goto 200 - 20 mO2 = mol("O2") - 30 mNO3 = tot("N(5)") - 40 mSO4 = tot("S(6)") - 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3) - 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4) - 70 moles = rate * m * (m/m0) * time - 80 if (moles > m) then moles = m - 200 save moles - -end - -########### -#Pyrolusite -########### -# -# Postma, D. and Appelo, C.A.J., 2000, GCA 64, in press -# -# Example of KINETICS data block for Pyrolusite -# KINETICS 1-12 -# Pyrolusite -# -tol 1.e-7 -# -m0 0.1 -# -m 0.1 -Pyrolusite - -start - 5 if (m <= 0.0) then goto 200 - 7 sr_pl = sr("Pyrolusite") - 9 if abs(1 - sr_pl) < 0.1 then goto 200 - 10 if (sr_pl > 1.0) then goto 100 - #20 rem initially 1 mol Fe+2 = 0.5 mol pyrolusite. k*A/V = 1/time (3 cells) - #22 rem time (3 cells) = 1.432e4. 1/time = 6.98e-5 - 30 Fe_t = tot("Fe(2)") - 32 if Fe_t < 1.e-8 then goto 200 - 40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl) - 50 if moles > Fe_t / 2 then moles = Fe_t / 2 - 70 if moles > m then moles = m - 90 goto 200 - 100 Mn_t = tot("Mn") - 110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time - 120 if moles <= -Mn_t then moles = -Mn_t - 200 save moles - -end -END +# $Id: llnl.dat 4023 2010-02-09 21:02:42Z dlpark $ +#Data are from 'thermo.com.V8.R6.230' prepared by Jim Johnson at +#Lawrence Livermore National Laboratory, in Geochemist's Workbench +#format. Converted to Phreeqc format by Greg Anderson with help from +#David Parkhurst. A few organic species have been omitted. + +#Delta H of reaction calculated from Delta H of formations given in +#thermo.com.V8.R6.230 (8 Mar 2000). + +#Note that species have various valid temperature ranges, noted in +#the Range parameter. However, Phreeqc at present makes no use of +#this parameter, so it is the user's responsibility to remain in the +#valid temperature range for all the data used. + +#This version is relatively untested. Kindly send comments or +#corrections to Greg Anderson at greg@geology.utoronto.ca. + +LLNL_AQUEOUS_MODEL_PARAMETERS +-temperatures + 0.0100 25.0000 60.0000 100.0000 + 150.0000 200.0000 250.0000 300.0000 +#debye huckel a (adh) +-dh_a + 0.4939 0.5114 0.5465 0.5995 + 0.6855 0.7994 0.9593 1.2180 +#debye huckel b (bdh) +-dh_b + 0.3253 0.3288 0.3346 0.3421 + 0.3525 0.3639 0.3766 0.3925 +-bdot + 0.0374 0.0410 0.0438 0.0460 + 0.0470 0.0470 0.0340 0.0000 +#cco2 (coefficients for the Drummond (1981) polynomial) +-co2_coefs + -1.0312 0.0012806 + 255.9 0.4445 + -0.001606 +NAMED_EXPRESSIONS +# +# formation of O2 from H2O +# 2H2O = O2 + 4H+ + 4e- +# + Log_K_O2 + log_k -85.9951 + -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 +# Enthalpy of formation: -2.9 kcal/mol + -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 +# Range: 0-300 + + +SOLUTION_MASTER_SPECIES + +#element species alk gfw_formula element_gfw + +Acetate CH3COO- 0.0 CH3COO- 59.0252 +Ag Ag+ 0.0 Ag 107.8682 +Ag(1) Ag+ 0 Ag +Ag(2) Ag+2 0 Ag +Al Al+3 0.0 Al 26.9815 +Alkalinity HCO3- 1.0 Ca0.5(CO3)0.5 50.05 +Am Am+3 0.0 Am 243.0000 +Am(+2) Am+2 0.0 Am +Am(+3) Am+3 0.0 Am +Am(+4) Am+4 0.0 Am +Am(+5) AmO2+ 0.0 Am +Am(+6) AmO2+2 0.0 Am +Ar Ar 0.0 Ar 39.948 +As H2AsO4- 0.0 As 74.9216 +As(-3) AsH3 0.0 As +As(+3) H2AsO3- 0.0 As +As(+5) H2AsO4- 0.0 As +Au Au+ 0.0 Au 196.9665 +Au(+1) Au+ 0.0 Au +Au(+3) Au+3 0.0 Au +#B H3BO3 0.0 B 10.811 +B B(OH)3 0.0 B 10.811 +B(3) B(OH)3 0 B +B(-5) BH4- 0 B +Ba Ba+2 0.0 Ba 137.3270 +Be Be+2 0.0 Be 9.0122 +Br Br- 0.0 Br 79.904 +Br(-03) Br3- 0 Br +Br(-1) Br- 0 Br +Br(0) Br2 0 Br +Br(1) BrO- 0 Br +Br(5) BrO3- 0 Br +Br(7) BrO4- 0 Br +C(-4) CH4 0.0 CH4 +C(-3) C2H6 0.0 C2H6 +C(-2.667) C3H8 0 C3H8 +C(-2) C2H4 0.0 C2H4 +C(-1.14) C7H8 0 C7H8 +C(-1) C6H6 0 C6H6 +C(-0.667) C6H5OH 0 C6H5OH +C(-.286) C7H6O2 0 C7H6O2 +C HCO3- 1.0 HCO3 12.0110 +C(+1) C3H7COOH 0 C3H7COOH +C(+2) CO 0 C +C(+4) HCO3- 1.0 HCO3 +Ca Ca+2 0.0 Ca 40.078 +Cyanide Cyanide- 1.0 CN 26. +Cd Cd+2 0.0 Cd 112.411 +Ce Ce+3 0.0 Ce 140.115 +Ce(+2) Ce+2 0.0 Ce +Ce(+3) Ce+3 0.0 Ce +Ce(+4) Ce+4 0.0 Ce +Cl Cl- 0.0 Cl 35.4527 +Cl(-1) Cl- 0 Cl +Cl(1) ClO- 0 Cl +Cl(3) ClO2- 0 Cl +Cl(5) ClO3- 0 Cl +Cl(7) ClO4- 0 Cl +Co Co+2 0.0 Co 58.9332 +Co(+2) Co+2 0.0 Co +Co(+3) Co+3 0.0 Co +Cr CrO4-2 0.0 CrO4-2 51.9961 +Cr(+2) Cr+2 0.0 Cr +Cr(+3) Cr+3 0.0 Cr +Cr(+5) CrO4-3 0.0 Cr +Cr(+6) CrO4-2 0.0 Cr +Cs Cs+ 0.0 Cs 132.9054 +Cu Cu+2 0.0 Cu 63.546 +Cu(+1) Cu+1 0.0 Cu +Cu(+2) Cu+2 0.0 Cu +Dy Dy+3 0.0 Dy 162.50 +Dy(+2) Dy+2 0.0 Dy +Dy(+3) Dy+3 0.0 Dy +E e- 0.0 0.0 0.0 +Er Er+3 0.0 Er 167.26 +Er(+2) Er+2 0.0 Er +Er(+3) Er+3 0.0 Er +#Ethylene C2H4 0.0 C2H4 28.0536 +Eu Eu+3 0.0 Eu 151.965 +Eu(+2) Eu+2 0.0 Eu +Eu(+3) Eu+3 0.0 Eu +F F- 0.0 F 18.9984 +Fe Fe+2 0.0 Fe 55.847 +Fe(+2) Fe+2 0.0 Fe +Fe(+3) Fe+3 -2.0 Fe +Ga Ga+3 0.0 Ga 69.723 +Gd Gd+3 0.0 Gd 157.25 +Gd(+2) Gd+2 0.0 Gd +Gd(+3) Gd+3 0.0 Gd +H H+ -1. H 1.0079 +H(0) H2 0.0 H +H(+1) H+ -1. 0.0 +He He 0.0 He 4.0026 +He(0) He 0.0 He +Hf Hf+4 0.0 Hf 178.49 +Hg Hg+2 0.0 Hg 200.59 +Hg(+1) Hg2+2 0.0 Hg +Hg(+2) Hg+2 0.0 Hg +Ho Ho+3 0.0 Ho 164.9303 +Ho(+2) Ho+2 0.0 Ho +Ho(+3) Ho+3 0.0 Ho +I I- 0.0 I 126.9045 +I(-03) I3- 0 I +I(-1) I- 0.0 I +I(+1) IO- 0.0 I +I(+5) IO3- 0.0 I +I(+7) IO4- 0.0 I +In In+3 0.0 In 114.82 +K K+ 0.0 K 39.0983 +Kr Kr 0.0 Kr 83.80 +Kr(0) Kr 0.0 Kr +La La+3 0.0 La 138.9055 +La(2) La+2 0 La +La(3) La+3 0 La +Li Li+ 0.0 Li 6.9410 +Lu Lu+3 0.0 Lu 174.967 +Mg Mg+2 0.0 Mg 24.305 +Mn Mn+2 0.0 Mn 54.938 +Mn(+2) Mn+2 0.0 Mn +Mn(+3) Mn+3 0.0 Mn +Mn(+6) MnO4-2 0 Mn +Mn(+7) MnO4- 0 Mn +Mo MoO4-2 0.0 Mo 95.94 +N NH3 1.0 N 14.0067 +N(-3) NH3 1.0 N +N(-03) N3- 0.0 N +N(0) N2 0.0 N +N(+3) NO2- 0.0 N +N(+5) NO3- 0.0 N +Na Na+ 0.0 Na 22.9898 +Nd Nd+3 0.0 Nd 144.24 +Nd(+2) Nd+2 0.0 Nd +Nd(+3) Nd+3 0.0 Nd +Ne Ne 0.0 Ne 20.1797 +#Ne(0) Ne 0.0 Ne +Ni Ni+2 0.0 Ni 58.69 +Np Np+4 0.0 Np 237.048 +Np(+3) Np+3 0.0 Np +Np(+4) Np+4 0.0 Np +Np(+5) NpO2+ 0.0 Np +Np(+6) NpO2+2 0.0 Np +O H2O 0.0 O 15.994 +O(-2) H2O 0.0 0.0 +O(0) O2 0.0 O +O_phthalate O_phthalate-2 0 1 1 +P HPO4-2 2.0 P 30.9738 +P(-3) PH4+ 0 P +P(5) HPO4-2 2.0 P +Pb Pb+2 0.0 Pb 207.20 +Pb(+2) Pb+2 0.0 Pb +Pb(+4) Pb+4 0.0 Pb +Pd Pd+2 0.0 Pd 106.42 +Pm Pm+3 0.0 Pm 147.00 +Pm(+2) Pm+2 0.0 Pm +Pm(+3) Pm+3 0.0 Pm +Pr Pr+3 0.0 Pr 140.9076 +Pr(+2) Pr+2 0.0 Pr +Pr(+3) Pr+3 0.0 Pr +Pu Pu+4 0.0 Pu 244.00 +Pu(+3) Pu+3 0.0 Pu +Pu(+4) Pu+4 0.0 Pu +Pu(+5) PuO2+ 0.0 Pu +Pu(+6) PuO2+2 0.0 Pu +Ra Ra+2 0.0 Ra 226.025 +Rb Rb+ 0.0 Rb 85.4678 +Re ReO4- 0.0 Re 186.207 +Rn Rn 0.0 Rn 222.00 +Ru RuO4-2 0.0 Ru 101.07 +Ru(+2) Ru+2 0.0 Ru +Ru(+3) Ru+3 0.0 Ru +Ru(+4) Ru(OH)2+2 0.0 Ru +Ru(+6) RuO4-2 0.0 Ru +Ru(+7) RuO4- 0.0 Ru +Ru(+8) RuO4 0.0 Ru +S SO4-2 0.0 SO4 32.066 +S(-2) HS- 1.0 S +S(+2) S2O3-2 0.0 S +S(+3) S2O4-2 0.0 S +S(+4) SO3-2 0.0 S +S(+5) S2O5-2 0.0 S +S(+6) SO4-2 0.0 SO4 +S(+7) S2O8-2 0.0 S +S(+8) HSO5- 0.0 S +Sb Sb(OH)3 0.0 Sb 121.75 +Sc Sc+3 0.0 Sc 44.9559 +Se SeO3-2 0.0 Se 78.96 +Se(-2) HSe- 0.0 Se +Se(+4) SeO3-2 0.0 Se +Se(+6) SeO4-2 0.0 Se +Si SiO2 0.0 SiO2 28.0855 +Sm Sm+3 0.0 Sm 150.36 +Sm(+2) Sm+2 0.0 Sm +Sm(+3) Sm+3 0.0 Sm +Sn Sn+2 0.0 Sn 118.71 +Sn(+2) Sn+2 0.0 Sn +Sn(+4) Sn+4 0.0 Sn +Sr Sr+2 0.0 Sr 87.62 +Tb Tb+3 0.0 Tb 158.9253 +Tb(+2) Tb+2 0.0 Tb +Tb(+3) Tb+3 0.0 Tb +Tc TcO4- 0.0 Tc 98.00 +Tc(+3) Tc+3 0.0 Tc +Tc(+4) TcO+2 0.0 Tc +Tc(+5) TcO4-3 0.0 Tc +Tc(+6) TcO4-2 0.0 Tc +Tc(+7) TcO4- 0.0 Tc +Thiocyanate Thiocyanate- 0.0 SCN 58. +Th Th+4 0.0 Th 232.0381 +Ti Ti(OH)4 0.0 Ti 47.88 +Tl Tl+ 0.0 Tl 204.3833 +Tl(+1) Tl+ 0.0 Tl +Tl(+3) Tl+3 0.0 Tl +Tm Tm+3 0.0 Tm 168.9342 +Tm(+2) Tm+2 0.0 Tm +Tm(+3) Tm+3 0.0 Tm +U UO2+2 0.0 U 238.0289 +U(+3) U+3 0.0 U +U(+4) U+4 0.0 U +U(+5) UO2+ 0.0 U +U(+6) UO2+2 0.0 U +V VO+2 0.0 V 50.9415 +V(+3) V+3 0.0 V +V(+4) VO+2 0.0 V +V(+5) VO2+ 0.0 V +W WO4-2 0.0 W 183.85 +Xe Xe 0.0 Xe 131.29 +Xe(0) Xe 0.0 Xe +Y Y+3 0.0 Y 88.9059 +Yb Yb+3 0.0 Yb 173.04 +Yb(+2) Yb+2 0.0 Yb +Yb(+3) Yb+3 0.0 Yb +Zn Zn+2 0.0 Zn 65.39 +Zr Zr(OH)2+2 0.0 Zr 91.224 + +SOLUTION_SPECIES + +#HAcetate = HAcetate +# -llnl_gamma 3.0000 +# log_k 0 +# -delta_H 0 kJ/mol # Calculated enthalpy of reaction HAcetate +# Enthalpy of formation: -116.1 kcal/mol +CH3COO- = CH3COO- + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction CH3COO- +# Enthalpy of formation: -116.374 kcal/mol +Ag+ = Ag+ + -llnl_gamma 2.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ag+ +# Enthalpy of formation: 25.275 kcal/mol +Al+3 = Al+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Al+3 +# Enthalpy of formation: -128.681 kcal/mol +Am+3 = Am+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Am+3 +# Enthalpy of formation: -616.7 kJ/mol +Ar = Ar + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ar +# Enthalpy of formation: -2.87 kcal/mol +Au+ = Au+ + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Au+ +# Enthalpy of formation: 47.58 kcal/mol +B(OH)3 = B(OH)3 + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction B(OH)3 +# Enthalpy of formation: -256.82 kcal/mol +Ba+2 = Ba+2 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ba+2 +# Enthalpy of formation: -128.5 kcal/mol +Be+2 = Be+2 + -llnl_gamma 8.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Be+2 +# Enthalpy of formation: -91.5 kcal/mol +Br- = Br- + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Br- +# Enthalpy of formation: -29.04 kcal/mol +Ca+2 = Ca+2 + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ca+2 +# Enthalpy of formation: -129.8 kcal/mol +Cd+2 = Cd+2 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cd+2 +# Enthalpy of formation: -18.14 kcal/mol +Ce+3 = Ce+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ce+3 +# Enthalpy of formation: -167.4 kcal/mol +Cl- = Cl- + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cl- +# Enthalpy of formation: -39.933 kcal/mol +Co+2 = Co+2 + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Co+2 +# Enthalpy of formation: -13.9 kcal/mol +CrO4-2 = CrO4-2 + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction CrO4-2 +# Enthalpy of formation: -210.6 kcal/mol +Cs+ = Cs+ + -llnl_gamma 2.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cs+ +# Enthalpy of formation: -61.67 kcal/mol +Cu+2 = Cu+2 + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cu+2 +# Enthalpy of formation: 15.7 kcal/mol +Dy+3 = Dy+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Dy+3 +# Enthalpy of formation: -166.5 kcal/mol +e- = e- + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction e- +# Enthalpy of formation: -0 kJ/mol +Er+3 = Er+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Er+3 +# Enthalpy of formation: -168.5 kcal/mol +#Ethylene = Ethylene +# -llnl_gamma 3.0000 +# log_k 0 +# -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ethylene +# Enthalpy of formation: 8.57 kcal/mol +Eu+3 = Eu+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Eu+3 +# Enthalpy of formation: -144.7 kcal/mol +F- = F- + -llnl_gamma 3.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction F- +# Enthalpy of formation: -80.15 kcal/mol +Fe+2 = Fe+2 + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Fe+2 +# Enthalpy of formation: -22.05 kcal/mol +Ga+3 = Ga+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ga+3 +# Enthalpy of formation: -50.6 kcal/mol +Gd+3 = Gd+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Gd+3 +# Enthalpy of formation: -164.2 kcal/mol +H+ = H+ + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H+ +# Enthalpy of formation: -0 kJ/mol +He = He + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction He +# Enthalpy of formation: -0.15 kcal/mol +H2AsO4- = H2AsO4- + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2AsO4- +# Enthalpy of formation: -217.39 kcal/mol +HCO3- = HCO3- + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction HCO3- +# Enthalpy of formation: -164.898 kcal/mol +HPO4-2 = HPO4-2 + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction HPO4-2 +# Enthalpy of formation: -308.815 kcal/mol +Hf+4 = Hf+4 + log_k 0 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf+4 +# Enthalpy of formation: -0 kcal/mol +Hg+2 = Hg+2 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Hg+2 +# Enthalpy of formation: 40.67 kcal/mol +Ho+3 = Ho+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ho+3 +# Enthalpy of formation: -169 kcal/mol +I- = I- + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction I- +# Enthalpy of formation: -13.6 kcal/mol +In+3 = In+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction In+3 +# Enthalpy of formation: -25 kcal/mol +K+ = K+ + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction K+ +# Enthalpy of formation: -60.27 kcal/mol +Kr = Kr + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Kr +# Enthalpy of formation: -3.65 kcal/mol +La+3 = La+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction La+3 +# Enthalpy of formation: -169.6 kcal/mol +Li+ = Li+ + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Li+ +# Enthalpy of formation: -66.552 kcal/mol +Lu+3 = Lu+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Lu+3 +# Enthalpy of formation: -167.9 kcal/mol +Mg+2 = Mg+2 + -llnl_gamma 8.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mg+2 +# Enthalpy of formation: -111.367 kcal/mol +Mn+2 = Mn+2 + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mn+2 +# Enthalpy of formation: -52.724 kcal/mol +MoO4-2 = MoO4-2 + -llnl_gamma 4.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction MoO4-2 +# Enthalpy of formation: -238.5 kcal/mol +NH3 = NH3 + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction NH3 +# Enthalpy of formation: -19.44 kcal/mol +Na+ = Na+ + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Na+ +# Enthalpy of formation: -57.433 kcal/mol +Nd+3 = Nd+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Nd+3 +# Enthalpy of formation: -166.5 kcal/mol +Ne = Ne + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ne +# Enthalpy of formation: -0.87 kcal/mol +Ni+2 = Ni+2 + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ni+2 +# Enthalpy of formation: -12.9 kcal/mol +Np+4 = Np+4 + -llnl_gamma 5.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Np+4 +# Enthalpy of formation: -556.001 kJ/mol +H2O = H2O + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2O +# Enthalpy of formation: -68.317 kcal/mol +O_phthalate-2 = O_phthalate-2 + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 # Not possible to calculate enthalpy of reaction O_phthalate-2 +# Enthalpy of formation: -0 kcal/mol +Pb+2 = Pb+2 + -llnl_gamma 4.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pb+2 +# Enthalpy of formation: 0.22 kcal/mol +Pd+2 = Pd+2 + -llnl_gamma 4.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pd+2 +# Enthalpy of formation: 42.08 kcal/mol +Pm+3 = Pm+3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pm+3 +# Enthalpy of formation: -688 kJ/mol +Pr+3 = Pr+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pr+3 +# Enthalpy of formation: -168.8 kcal/mol +Pu+4 = Pu+4 + -llnl_gamma 5.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pu+4 +# Enthalpy of formation: -535.893 kJ/mol +Ra+2 = Ra+2 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ra+2 +# Enthalpy of formation: -126.1 kcal/mol +Rb+ = Rb+ + -llnl_gamma 2.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rb+ +# Enthalpy of formation: -60.02 kcal/mol +ReO4- = ReO4- + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction ReO4- +# Enthalpy of formation: -188.2 kcal/mol +Rn = Rn + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rn +# Enthalpy of formation: -5 kcal/mol +RuO4-2 = RuO4-2 + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction RuO4-2 +# Enthalpy of formation: -457.075 kJ/mol +SO4-2 = SO4-2 + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SO4-2 +# Enthalpy of formation: -217.4 kcal/mol +Sb(OH)3 = Sb(OH)3 + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sb(OH)3 +# Enthalpy of formation: -773.789 kJ/mol +Sc+3 = Sc+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sc+3 +# Enthalpy of formation: -146.8 kcal/mol +SeO3-2 = SeO3-2 + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SeO3-2 +# Enthalpy of formation: -121.7 kcal/mol +SiO2 = SiO2 + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SiO2 +# Enthalpy of formation: -209.775 kcal/mol +Sm+3 = Sm+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sm+3 +# Enthalpy of formation: -165.2 kcal/mol +Sn+2 = Sn+2 + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sn+2 +# Enthalpy of formation: -2.1 kcal/mol +Sr+2 = Sr+2 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sr+2 +# Enthalpy of formation: -131.67 kcal/mol +Tb+3 = Tb+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tb+3 +# Enthalpy of formation: -166.9 kcal/mol +TcO4- = TcO4- + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction TcO4- +# Enthalpy of formation: -716.269 kJ/mol +Th+4 = Th+4 + -llnl_gamma 11.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Th+4 +# Enthalpy of formation: -183.8 kcal/mol +Ti(OH)4 = Ti(OH)4 + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(OH)4 +# Enthalpy of formation: -0 kcal/mol +Tl+ = Tl+ + -llnl_gamma 2.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tl+ +# Enthalpy of formation: 1.28 kcal/mol +Tm+3 = Tm+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tm+3 +# Enthalpy of formation: -168.5 kcal/mol +UO2+2 = UO2+2 + -llnl_gamma 4.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction UO2+2 +# Enthalpy of formation: -1019 kJ/mol +VO+2 = VO+2 + -llnl_gamma 4.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction VO+2 +# Enthalpy of formation: -116.3 kcal/mol +WO4-2 = WO4-2 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction WO4-2 +# Enthalpy of formation: -257.1 kcal/mol +Xe = Xe + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Xe +# Enthalpy of formation: -4.51 kcal/mol +Y+3 = Y+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Y+3 +# Enthalpy of formation: -170.9 kcal/mol +Yb+3 = Yb+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Yb+3 +# Enthalpy of formation: -160.3 kcal/mol +Zn+2 = Zn+2 + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zn+2 +# Enthalpy of formation: -36.66 kcal/mol +Zr(OH)2+2 = Zr(OH)2+2 + -llnl_gamma 4.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zr(OH)2+2 +# Enthalpy of formation: -260.717 kcal/mol + +2H2O = O2 + 4H+ + 4e- + -CO2_llnl_gamma + log_k -85.9951 + -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 +# Enthalpy of formation: -2.9 kcal/mol + -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 +# -Range: 0-300 + + 1.0000 SO4-- + 1.0000 H+ = HS- +2.0000 O2 + -llnl_gamma 3.5 + log_k -138.3169 + -delta_H 869.226 kJ/mol # Calculated enthalpy of reaction HS- +# Enthalpy of formation: -3.85 kcal/mol + -analytic 2.6251e+001 3.9525e-002 -4.5443e+004 -1.1107e+001 3.1843e+005 +# -Range: 0-300 + + .5000 O2 + 2.0000 HS- = S2-- + H2O +#2 HS- = S2-- +2 H+ + 2e- + -llnl_gamma 4.0 + log_k 33.2673 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.21730E+02 -0.12307E-02 0.10098E+05 -0.88813E+01 0.15757E+03 + -mass_balance S(-2)2 +# -Range: 0-300 +# -add_logk Log_K_O2 0.5 + +2.0000 H+ + 2.0000 SO3-- = S2O3-- + O2 + H2O + -llnl_gamma 4.0 + log_k -40.2906 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O3-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.77679E+02 0.65761E-01 -0.15438E+05 -0.34651E+02 -0.24092E+03 +# -Range: 0-300 + + 1.0000 H+ + 1.0000 Ag+ + 0.2500 O2 = Ag++ +0.5000 H2O + -llnl_gamma 4.5 + log_k -12.1244 + -delta_H 22.9764 kJ/mol # Calculated enthalpy of reaction Ag+2 +# Enthalpy of formation: 64.2 kcal/mol + -analytic -4.7312e+001 -1.5239e-002 -4.1954e+002 1.6622e+001 -6.5328e+000 +# -Range: 0-300 + + 1.0000 Am+++ + 0.5000 H2O = Am++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -60.3792 + -delta_H 401.953 kJ/mol # Calculated enthalpy of reaction Am+2 +# Enthalpy of formation: -354.633 kJ/mol + -analytic 1.4922e+001 3.5993e-003 -2.0987e+004 -2.4146e+000 -3.2749e+002 +# -Range: 0-300 + + 1.0000 H+ + 1.0000 Am+++ + 0.2500 O2 = Am++++ +0.5000 H2O + -llnl_gamma 5.5 + log_k -22.7073 + -delta_H 70.8142 kJ/mol # Calculated enthalpy of reaction Am+4 +# Enthalpy of formation: -406 kJ/mol + -analytic -1.7460e+001 -2.2336e-003 -3.5139e+003 2.9102e+000 -5.4826e+001 +# -Range: 0-300 + + 1.0000 H2O + 1.0000 Am+++ + 0.5000 O2 = AmO2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -15.384 + -delta_H 104.345 kJ/mol # Calculated enthalpy of reaction AmO2+ +# Enthalpy of formation: -804.26 kJ/mol + -analytic 1.4110e+001 6.9728e-003 -4.2098e+003 -6.0936e+000 -2.1192e+005 +# -Range: 0-300 + + 1.0000 Am+++ + 0.7500 O2 + 0.5000 H2O = AmO2++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -20.862 + -delta_H 117.959 kJ/mol # Calculated enthalpy of reaction AmO2+2 +# Enthalpy of formation: -650.76 kJ/mol + -analytic 5.7163e+001 4.0278e-003 -8.4633e+003 -2.0550e+001 -1.3208e+002 +# -Range: 0-300 + + 1.0000 H2AsO4- + 1.0000 H+ = AsH3 +2.0000 O2 + -llnl_gamma 3.0 + log_k -155.1907 + -delta_H 931.183 kJ/mol # Calculated enthalpy of reaction AsH3 +# Enthalpy of formation: 10.968 kcal/mol + -analytic 2.8310e+002 9.6961e-002 -5.4830e+004 -1.1449e+002 -9.3119e+002 +# -Range: 0-200 + + 2.0000 H+ + 1.0000 Au+ + 0.5000 O2 = Au+++ +1.0000 H2O + -llnl_gamma 5.0 + log_k -4.3506 + -delta_H -73.2911 kJ/mol # Calculated enthalpy of reaction Au+3 +# Enthalpy of formation: 96.93 kcal/mol + -analytic -6.8661e+001 -2.6838e-002 4.4549e+003 2.3178e+001 6.9534e+001 +# -Range: 0-300 + + 1.0000 H2O + 1.0000 B(OH)3 = BH4- +2.0000 O2 +1.0000 H+ + -llnl_gamma 4.0 + log_k -237.1028 + -delta_H 1384.24 kJ/mol # Calculated enthalpy of reaction BH4- +# Enthalpy of formation: 48.131 kJ/mol + -analytic -7.4930e+001 -7.2794e-003 -6.9168e+004 2.9105e+001 -1.0793e+003 +# -Range: 0-300 + + 3.0000 Br- + 2.0000 H+ + 0.5000 O2 = Br3- +1.0000 H2O + -llnl_gamma 4.0 + log_k +7.0696 + -delta_H -45.6767 kJ/mol # Calculated enthalpy of reaction Br3- +# Enthalpy of formation: -31.17 kcal/mol + -analytic 1.4899e+002 6.4017e-002 -3.3831e+002 -6.4596e+001 -5.3232e+000 +# -Range: 0-300 + + 1.0000 Br- + 0.5000 O2 = BrO- + -llnl_gamma 4.0 + log_k -10.9167 + -delta_H 33.4302 kJ/mol # Calculated enthalpy of reaction BrO- +# Enthalpy of formation: -22.5 kcal/mol + -analytic 5.4335e+001 1.9509e-003 -4.2860e+003 -2.0799e+001 -6.6896e+001 +# -Range: 0-300 + + 1.5000 O2 + 1.0000 Br- = BrO3- + -llnl_gamma 3.5 + log_k -17.1443 + -delta_H 72.6342 kJ/mol # Calculated enthalpy of reaction BrO3- +# Enthalpy of formation: -16.03 kcal/mol + -analytic 3.7156e+001 -4.7855e-003 -4.6208e+003 -1.4136e+001 -2.1385e+005 +# -Range: 0-300 + + 2.0000 O2 + 1.0000 Br- = BrO4- + -llnl_gamma 4.0 + log_k -33.104 + -delta_H 158.741 kJ/mol # Calculated enthalpy of reaction BrO4- +# Enthalpy of formation: 3.1 kcal/mol + -analytic 8.1393e+001 -2.3409e-003 -1.2290e+004 -2.9336e+001 -1.9180e+002 +# -Range: 0-300 + +# 1.0000 NH3 + 1.0000 HCO3- = CN- +2.0000 H2O +0.5000 O2 +# -llnl_gamma 3.0 +# log_k -56.0505 +# -delta_H 344.151 kJ/mol # Calculated enthalpy of reaction CN- +# # Enthalpy of formation: 36 kcal/mol +# -analytic -1.1174e+001 3.8167e-003 -1.7063e+004 4.5349e+000 -2.6625e+002 +# # -Range: 0-300 + +Cyanide- = Cyanide- + log_k 0 + + H+ + HCO3- + H2O = CH4 + 2.0000 O2 + -llnl_gamma 3.0 + log_k -144.1412 + -delta_H 863.599 kJ/mol # Calculated enthalpy of reaction CH4 +# Enthalpy of formation: -21.01 kcal/mol + -analytic -0.41698E+02 0.36584E-01 -0.40675E+05 0.93479E+01 -0.63468E+03 +# -Range: 0-300 + + 2.0000 H+ + 2.0000 HCO3- + H2O = C2H6 + 3.5000 O2 + -llnl_gamma 3.0 + log_k -228.6072 + -delta_H 0 # Not possible to calculate enthalpy of reaction C2H6 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.10777E+02 0.72105E-01 -0.67489E+05 -0.13915E+02 -0.10531E+04 +# -Range: 0-300 + + 2.000 H+ + 2.0000 HCO3- = C2H4 + 3.0000 O2 + -llnl_gamma 3.0 + log_k -254.5034 + -delta_H 1446.6 kJ/mol # Calculated enthalpy of reaction C2H4 +# Enthalpy of formation: 24.65 kcal/mol + -analytic -0.30329E+02 0.71187E-01 -0.73140E+05 0.00000E+00 0.00000E+00 +# -Range: 0-300 + + 1.0000 HCO3- + 1.0000 H+ = CO +1.0000 H2O +0.5000 O2 + -llnl_gamma 3.0 + log_k -41.7002 + -delta_H 277.069 kJ/mol # Calculated enthalpy of reaction CO +# Enthalpy of formation: -28.91 kcal/mol + -analytic 1.0028e+002 4.6877e-002 -1.8062e+004 -4.0263e+001 3.8031e+005 +# -Range: 0-300 + + 1.0000 Ce+++ + 0.5000 H2O = Ce++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -83.6754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 H+ + 1.0000 Ce+++ + 0.2500 O2 = Ce++++ +0.5000 H2O + -llnl_gamma 5.5 + log_k -7.9154 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+4 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Cl- + 0.5000 O2 = ClO- + -llnl_gamma 4.0 + log_k -15.1014 + -delta_H 66.0361 kJ/mol # Calculated enthalpy of reaction ClO- +# Enthalpy of formation: -25.6 kcal/mol + -analytic 6.1314e+001 3.4812e-003 -6.0952e+003 -2.3043e+001 -9.5128e+001 +# -Range: 0-300 + + 1.0000 O2 + 1.0000 Cl- = ClO2- + -llnl_gamma 4.0 + log_k -23.108 + -delta_H 112.688 kJ/mol # Calculated enthalpy of reaction ClO2- +# Enthalpy of formation: -15.9 kcal/mol + -analytic 3.3638e+000 -6.1675e-003 -4.9726e+003 -2.0467e+000 -2.5769e+005 +# -Range: 0-300 + + 1.5000 O2 + 1.0000 Cl- = ClO3- + -llnl_gamma 3.5 + log_k -17.2608 + -delta_H 81.3077 kJ/mol # Calculated enthalpy of reaction ClO3- +# Enthalpy of formation: -24.85 kcal/mol + -analytic 2.8852e+001 -4.8281e-003 -4.6779e+003 -1.0772e+001 -2.0783e+005 +# -Range: 0-300 + + 2.0000 O2 + 1.0000 Cl- = ClO4- + -llnl_gamma 3.5 + log_k -15.7091 + -delta_H 62.0194 kJ/mol # Calculated enthalpy of reaction ClO4- +# Enthalpy of formation: -30.91 kcal/mol + -analytic 7.0280e+001 -6.8927e-005 -5.5690e+003 -2.6446e+001 -1.6596e+005 +# -Range: 0-300 + + 1.0000 H+ + 1.0000 Co++ + 0.2500 O2 = Co+++ +0.5000 H2O + -llnl_gamma 5.0 + log_k -11.4845 + -delta_H 10.3198 kJ/mol # Calculated enthalpy of reaction Co+3 +# Enthalpy of formation: 22 kcal/mol + -analytic -2.2827e+001 -1.2222e-002 -7.2117e+002 7.0306e+000 -1.1247e+001 +# -Range: 0-300 + + 4.0000 H+ + 1.0000 CrO4-- = Cr++ +2.0000 H2O +1.0000 O2 + -llnl_gamma 4.5 + log_k -21.6373 + -delta_H 153.829 kJ/mol # Calculated enthalpy of reaction Cr+2 +# Enthalpy of formation: -34.3 kcal/mol + -analytic 6.9003e+001 6.2884e-002 -6.9847e+003 -3.4720e+001 -1.0901e+002 +# -Range: 0-300 + + 5.0000 H+ + 1.0000 CrO4-- = Cr+++ +2.5000 H2O +0.7500 O2 + -llnl_gamma 9.0 + log_k +8.3842 + -delta_H -81.0336 kJ/mol # Calculated enthalpy of reaction Cr+3 +# Enthalpy of formation: -57 kcal/mol + -analytic 5.1963e+001 6.0932e-002 5.4256e+003 -3.2290e+001 8.4645e+001 +# -Range: 0-300 + + 0.5000 H2O + 1.0000 CrO4-- = CrO4--- +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.0 + log_k -19.7709 + -delta_H 0 # Not possible to calculate enthalpy of reaction CrO4-3 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Cu++ + 0.5000 H2O = Cu+ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.0 + log_k -18.7704 + -delta_H 145.877 kJ/mol # Calculated enthalpy of reaction Cu+ +# Enthalpy of formation: 17.132 kcal/mol + -analytic 3.7909e+001 1.3731e-002 -8.1506e+003 -1.3508e+001 -1.2719e+002 +# -Range: 0-300 + + 1.0000 Dy+++ + 0.5000 H2O = Dy++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -61.0754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Er+++ + 0.5000 H2O = Er++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -70.1754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Eu+++ + 0.5000 H2O = Eu++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -27.5115 + -delta_H 217.708 kJ/mol # Calculated enthalpy of reaction Eu+2 +# Enthalpy of formation: -126.1 kcal/mol + -analytic 3.0300e+001 1.4126e-002 -1.2319e+004 -9.0585e+000 1.5289e+005 +# -Range: 0-300 + + 1.0000 H+ + 1.0000 Fe++ + 0.2500 O2 = Fe+++ +0.5000 H2O + -llnl_gamma 9.0 + log_k +8.4899 + -delta_H -97.209 kJ/mol # Calculated enthalpy of reaction Fe+3 +# Enthalpy of formation: -11.85 kcal/mol + -analytic -1.7808e+001 -1.1753e-002 4.7609e+003 5.5866e+000 7.4295e+001 +# -Range: 0-300 + + 1.0000 Gd+++ + 0.5000 H2O = Gd++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -84.6754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 H2O = H2 +0.5000 O2 + -CO2_llnl_gamma + log_k -46.1066 + -delta_H 275.588 kJ/mol # Calculated enthalpy of reaction H2 +# Enthalpy of formation: -1 kcal/mol + -analytic 6.6835e+001 1.7172e-002 -1.8849e+004 -2.4092e+001 4.2501e+005 +# -Range: 0-300 + + 1.0000 H2AsO4- = H2AsO3- +0.5000 O2 + -llnl_gamma 4.0 + log_k -30.5349 + -delta_H 188.698 kJ/mol # Calculated enthalpy of reaction H2AsO3- +# Enthalpy of formation: -170.84 kcal/mol + -analytic 7.4245e+001 1.4885e-002 -1.4218e+004 -2.6403e+001 3.3822e+005 +# -Range: 0-300 + + 1.0000 SO4-- + 1.0000 H+ + 0.5000 O2 = HSO5- + -llnl_gamma 4.0 + log_k -17.2865 + -delta_H 140.038 kJ/mol # Calculated enthalpy of reaction HSO5- +# Enthalpy of formation: -185.38 kcal/mol + -analytic 5.9944e+001 3.0904e-002 -7.7494e+003 -2.4420e+001 -1.2094e+002 +# -Range: 0-300 + + 1.0000 SeO3-- + 1.0000 H+ = HSe- +1.5000 O2 + -llnl_gamma 4.0 + log_k -76.8418 + -delta_H 506.892 kJ/mol # Calculated enthalpy of reaction HSe- +# Enthalpy of formation: 3.8 kcal/mol + -analytic 4.7105e+001 4.3116e-002 -2.6949e+004 -1.9895e+001 2.5305e+005 +# -Range: 0-300 + + 2.0000 Hg++ + 1.0000 H2O = Hg2++ +2.0000 H+ +0.5000 O2 + -llnl_gamma 4.0 + log_k -12.208 + -delta_H 106.261 kJ/mol # Calculated enthalpy of reaction Hg2+2 +# Enthalpy of formation: 39.87 kcal/mol + -analytic 5.5010e+001 1.9050e-002 -4.7967e+003 -2.2952e+001 -7.4864e+001 +# -Range: 0-300 + + 1.0000 Ho+++ + 0.5000 H2O = Ho++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -67.3754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho+2 +# Enthalpy of formation: -0 kcal/mol + + 3.0000 I- + 2.0000 H+ + 0.5000 O2 = I3- +1.0000 H2O + -llnl_gamma 4.0 + log_k +24.7278 + -delta_H -160.528 kJ/mol # Calculated enthalpy of reaction I3- +# Enthalpy of formation: -12.3 kcal/mol + -analytic 1.4788e+002 6.6206e-002 5.7407e+003 -6.5517e+001 8.9535e+001 +# -Range: 0-300 + + 1.0000 I- + 0.5000 O2 = IO- + -llnl_gamma 4.0 + log_k -0.9038 + -delta_H -44.5596 kJ/mol # Calculated enthalpy of reaction IO- +# Enthalpy of formation: -25.7 kcal/mol + -analytic 2.7568e+000 -5.5671e-003 3.2484e+003 -3.9065e+000 -2.8800e+005 +# -Range: 0-300 + + 1.5000 O2 + 1.0000 I- = IO3- + -llnl_gamma 4.0 + log_k +17.6809 + -delta_H -146.231 kJ/mol # Calculated enthalpy of reaction IO3- +# Enthalpy of formation: -52.9 kcal/mol + -analytic -2.2971e+001 -1.3478e-002 9.5977e+003 6.6010e+000 -3.4371e+005 +# -Range: 0-300 + + 2.0000 O2 + 1.0000 I- = IO4- + -llnl_gamma 3.5 + log_k +6.9621 + -delta_H -70.2912 kJ/mol # Calculated enthalpy of reaction IO4- +# Enthalpy of formation: -36.2 kcal/mol + -analytic 2.1232e+001 -7.8107e-003 3.5803e+003 -8.5272e+000 -2.5422e+005 +# -Range: 0-300 + + 1.0000 La+++ + 0.5000 H2O = La++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -72.4754 + -delta_H 0 # Not possible to calculate enthalpy of reaction La+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Mn++ + 1.0000 H+ + 0.2500 O2 = Mn+++ +0.5000 H2O + -llnl_gamma 5.0 + log_k -4.0811 + -delta_H -65.2892 kJ/mol # Calculated enthalpy of reaction Mn+3 +# Enthalpy of formation: -34.895 kcal/mol + -analytic 3.8873e+001 1.7458e-002 2.0757e+003 -2.2274e+001 3.2378e+001 +# -Range: 0-300 + + 2.0000 H2O + 1.0000 O2 + 1.0000 Mn++ = MnO4-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -32.4146 + -delta_H 151.703 kJ/mol # Calculated enthalpy of reaction MnO4-2 +# Enthalpy of formation: -156 kcal/mol + -analytic -1.0407e+001 -4.6464e-002 -1.0515e+004 1.0943e+001 -1.6408e+002 +# -Range: 0-300 + + 2.0000 NH3 + 1.5000 O2 = N2 +3.0000 H2O + -llnl_gamma 3.0 + log_k +116.4609 + -delta_H -687.08 kJ/mol # Calculated enthalpy of reaction N2 +# Enthalpy of formation: -2.495 kcal/mol + -analytic -8.2621e+001 -1.4671e-002 4.0068e+004 2.9090e+001 -2.5924e+005 +# -Range: 0-300 + + 3.0000 NH3 + 2.0000 O2 = N3- +4.0000 H2O +1.0000 H+ + -llnl_gamma 4.0 + log_k +96.9680 + -delta_H -599.935 kJ/mol # Calculated enthalpy of reaction N3- +# Enthalpy of formation: 275.14 kJ/mol + -analytic -9.1080e+001 -4.0817e-002 3.6350e+004 3.4484e+001 -6.2678e+005 +# -Range: 0-300 + + 1.5000 O2 + 1.0000 NH3 = NO2- +1.0000 H+ +1.0000 H2O + -llnl_gamma 3.0 + log_k +46.8653 + -delta_H -290.901 kJ/mol # Calculated enthalpy of reaction NO2- +# Enthalpy of formation: -25 kcal/mol + -analytic -1.7011e+001 -3.3459e-002 1.3999e+004 1.1078e+001 -4.8255e+004 +# -Range: 0-300 + + 2.0000 O2 + 1.0000 NH3 = NO3- +1.0000 H+ +1.0000 H2O + -llnl_gamma 3.0 + log_k +62.1001 + -delta_H -387.045 kJ/mol # Calculated enthalpy of reaction NO3- +# Enthalpy of formation: -49.429 kcal/mol + -analytic -3.9468e+001 -3.9697e-002 2.0614e+004 1.8872e+001 -2.1917e+005 +# -Range: 0-300 + + 1.0000 Nd+++ + 0.5000 H2O = Nd++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -64.3754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Np++++ + 0.5000 H2O = Np+++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 5.0 + log_k -19.0131 + -delta_H 168.787 kJ/mol # Calculated enthalpy of reaction Np+3 +# Enthalpy of formation: -527.1 kJ/mol + -analytic 1.6615e+001 2.4645e-003 -8.9343e+003 -2.5829e+000 -1.3942e+002 +# -Range: 0-300 + + 1.5000 H2O + 1.0000 Np++++ + 0.2500 O2 = NpO2+ +3.0000 H+ + -llnl_gamma 4.0 + log_k +10.5928 + -delta_H 9.80089 kJ/mol # Calculated enthalpy of reaction NpO2+ +# Enthalpy of formation: -977.991 kJ/mol + -analytic 1.2566e+001 7.5467e-003 1.6921e+003 -2.7125e+000 -2.8381e+005 +# -Range: 0-300 + + 1.0000 Np++++ + 1.0000 H2O + 0.5000 O2 = NpO2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k +11.2107 + -delta_H -12.5719 kJ/mol # Calculated enthalpy of reaction NpO2+2 +# Enthalpy of formation: -860.478 kJ/mol + -analytic 2.5510e+001 1.1973e-003 1.2753e+003 -6.7082e+000 -2.0792e+005 +# -Range: 0-300 + + 2.0000 H+ + 1.0000 Pb++ + 0.5000 O2 = Pb++++ +1.0000 H2O + -llnl_gamma 5.5 + log_k -14.1802 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb+4 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Pm+++ + 0.5000 H2O = Pm++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -65.2754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Pr+++ + 0.5000 H2O = Pr++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -79.9754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Pu++++ + 0.5000 H2O = Pu+++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 5.0 + log_k -4.5071 + -delta_H 84.2268 kJ/mol # Calculated enthalpy of reaction Pu+3 +# Enthalpy of formation: -591.552 kJ/mol + -analytic 2.0655e+001 3.2688e-003 -4.7434e+003 -4.1907e+000 1.2944e+004 +# -Range: 0-300 + + 1.5000 H2O + 1.0000 Pu++++ + 0.2500 O2 = PuO2+ +3.0000 H+ + -llnl_gamma 4.0 + log_k +2.9369 + -delta_H 53.5009 kJ/mol # Calculated enthalpy of reaction PuO2+ +# Enthalpy of formation: -914.183 kJ/mol + -analytic -2.0464e+001 2.8265e-003 1.2131e+003 9.2156e+000 -3.8400e+005 +# -Range: 0-300 + + 1.0000 Pu++++ + 1.0000 H2O + 0.5000 O2 = PuO2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k +8.1273 + -delta_H 6.22013 kJ/mol # Calculated enthalpy of reaction PuO2+2 +# Enthalpy of formation: -821.578 kJ/mol + -analytic 3.5219e+001 2.5202e-003 -2.4760e+002 -1.0120e+001 -1.7569e+005 +# -Range: 0-300 + + 4.0000 H+ + 1.0000 RuO4-- = Ru(OH)2++ +1.0000 H2O +0.5000 O2 + -llnl_gamma 4.5 + log_k +25.2470 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+2 +# Enthalpy of formation: -0 kcal/mol + + 4.0000 H+ + 1.0000 RuO4-- = Ru++ +2.0000 H2O +1.0000 O2 + -llnl_gamma 4.5 + log_k +0.1610 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+2 +# Enthalpy of formation: -0 kcal/mol + + 5.0000 H+ + 1.0000 RuO4-- = Ru+++ +2.5000 H2O +0.7500 O2 + -llnl_gamma 5.0 + log_k +17.6149 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+3 +# Enthalpy of formation: -0 kcal/mol + + 2.0000 H+ + 1.0000 RuO4-- + 0.5000 O2 = RuO4 +1.0000 H2O + -llnl_gamma 3.0 + log_k +16.2672 + -delta_H -60.8385 kJ/mol # Calculated enthalpy of reaction RuO4 +# Enthalpy of formation: -238.142 kJ/mol + -analytic 1.9964e+002 6.8286e-002 -1.2020e+003 -8.0706e+001 -2.0481e+001 +# -Range: 0-200 + + 1.0000 RuO4-- + 1.0000 H+ + 0.2500 O2 = RuO4- +0.5000 H2O + -llnl_gamma 4.0 + log_k +11.6024 + -delta_H -16.1998 kJ/mol # Calculated enthalpy of reaction RuO4- +# Enthalpy of formation: -333.389 kJ/mol + -analytic -1.9653e+000 8.8623e-003 1.8588e+003 1.8998e+000 2.9005e+001 +# -Range: 0-300 + + 2.0000 H+ + 2.0000 SO3-- = S2O4-- + .500 O2 + H2O + -llnl_gamma 5.0 +# log_k -25.2075 + log_k -25.2076 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O4-2 +# Enthalpy of formation: -0 kcal/mol +# -analytic -0.15158E+05 -0.31356E+01 0.47072E+06 0.58544E+04 0.73497E+04 + -analytic -2.3172e2 2.0393e-3 -7.1011e0 8.3239e1 9.4155e-1 +# changed 3/23/04, corrected to supcrt temperature dependence, GMA +# -Range: 0-300 + +# 2.0000 SO3-- + .500 O2 + 2.0000 H+ = S2O6-- + H2O +# H2O = .5 O2 + 2H+ + 2e- +2SO3-- = S2O6-- + 2e- + -llnl_gamma 4.0 + log_k 41.8289 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O6-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.14458E+03 0.61449E-01 0.71877E+04 -0.58657E+02 0.11211E+03 +# -Range: 0-300 + -add_logk Log_K_O2 0.5 + + + 2.0000 SO3-- + 1.500 O2 + 2.0000 H+ = S2O8-- + H2O + -llnl_gamma 4.0 + log_k 70.7489 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O8-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.18394E+03 0.60414E-01 0.13864E+05 -0.71804E+02 0.21628E+03 +# -Range: 0-300 + +O2 + H+ + 3.0000 HS- = S3-- + 2.0000 H2O +# 2H2O = O2 + 4H+ + 4e- +#3HS- = S3-- + 3H+ + 4e- + -llnl_gamma 4.0 + log_k 79.3915 + -delta_H 0 # Not possible to calculate enthalpy of reaction S3-2 +# Enthalpy of formation: -0 kcal/mol + -analytic -0.51626E+02 0.70208E-02 0.31797E+05 0.11927E+02 -0.64249E+06 + -mass_balance S(-2)3 +# -Range: 0-300 +# -add_logk Log_K_O2 1.0 + +# 3.0000 SO3-- + 4.0000 H+ = S3O6-- + .500 O2 + 2.0000 H2O +# .5 O2 + 2H+ + 2e- = H2O +3SO3-- + 6 H+ + 2e- = S3O6-- + 3H2O + -llnl_gamma 4.0 + log_k -6.2316 + -delta_H 0 # Not possible to calculate enthalpy of reaction S3O6-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.23664E+03 0.12702E+00 -0.10110E+05 -0.99715E+02 -0.15783E+03 +# -Range: 0-300 + -add_logk Log_K_O2 -0.5 + +1.5000 O2 + 2.0000 H+ + 4.0000 HS- = S4-- + 3.0000 H2O +#4 HS- = S4-- + 4H+ + 6e- + -llnl_gamma 4.0 + log_k 125.2958 + -delta_H 0 # Not possible to calculate enthalpy of reaction S4-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.20875E+03 0.58133E-01 0.33278E+05 -0.85833E+02 0.51921E+03 + -mass_balance S(-2)4 +# -Range: 0-300 +# -add_logk Log_K_O2 1.5 + +# 4.0000 SO3-- + 6.0000 H+ = S4O6-- + 1.500 O2 + 3.0000 H2O +4 SO3-- + 12 H+ + 6e- = S4O6-- + 6H2O + -llnl_gamma 4.0 + log_k -38.3859 + -delta_H 0 # Not possible to calculate enthalpy of reaction S4O6-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.32239E+03 0.19555E+00 -0.23617E+05 -0.13729E+03 -0.36862E+03 +# -Range: 0-300 + -add_logk Log_K_O2 -1.5 + +2.0000 O2 + 3.0000 H+ + 5.0000 HS- = S5-- + 4.0000 H2O +#5 HS- = S5-- + 5H+ + 8e- + -llnl_gamma 4.0 + log_k 170.9802 + -delta_H 0 # Not possible to calculate enthalpy of reaction S5-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.30329E+03 0.88033E-01 0.44739E+05 -0.12471E+03 0.69803E+03 + -mass_balance S(-2)5 +# -Range: 0-300 +# -add_logk Log_K_O2 2 + +# 5.0000 SO3-- + 8.0000 H+ = S5O6-- + 2.5000 O2 + 4.0000 H2O +# 2.5O2 + 10 H+ + 10e- = 5H2O +5SO3-- + 18H+ + 10e- = S5O6-- + 9H2O + -llnl_gamma 4.0 + log_k -99.4206 + -delta_H 0 # Not possible to calculate enthalpy of reaction S5O6-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.42074E+03 0.25833E+00 -0.43878E+05 -0.18178E+03 -0.68480E+03 +# -Range: 0-300 + -add_logk Log_K_O2 -2.5 + +# 1.0000 H+ + HCO3- + HS- + NH3 = SCN- + 3.0000 H2O +# -llnl_gamma 3.5 +# log_k 3.0070 +# -delta_H 0 # Not possible to calculate enthalpy of reaction SCN- +## Enthalpy of formation: -0 kcal/mol +# -analytic 0.16539E+03 0.49623E-01 -0.44624E+04 -0.65544E+02 -0.69680E+02 +## -Range: 0-300 + +Thiocyanate- = Thiocyanate- + log_k 0.0 + + 1.0000 SO4-- = SO3-- +0.5000 O2 + -llnl_gamma 4.5 + log_k -46.6244 + -delta_H 267.985 kJ/mol # Calculated enthalpy of reaction SO3-2 +# Enthalpy of formation: -151.9 kcal/mol + -analytic -1.3771e+001 6.5102e-004 -1.3330e+004 4.7164e+000 -2.0800e+002 +# -Range: 0-300 + +1.0000 HSe- = Se-- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -14.9534 + -delta_H 0 # Not possible to calculate enthalpy of reaction Se-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 1.0244e+002 3.1346e-002 -5.4190e+003 -4.3871e+001 -8.4589e+001 +# -Range: 0-300 + + 1.0000 SeO3-- + 0.5000 O2 = SeO4-- + -llnl_gamma 4.0 + log_k +13.9836 + -delta_H -83.8892 kJ/mol # Calculated enthalpy of reaction SeO4-2 +# Enthalpy of formation: -143.2 kcal/mol + -analytic -7.2314e+001 -1.3657e-002 8.6969e+003 2.6182e+001 -3.1897e+005 +# -Range: 0-300 + + 1.0000 Sm+++ + 0.5000 H2O = Sm++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -47.9624 + -delta_H 326.911 kJ/mol # Calculated enthalpy of reaction Sm+2 +# Enthalpy of formation: -120.5 kcal/mol + -analytic -1.0217e+001 7.7548e-003 -1.6285e+004 5.4711e+000 9.1931e+004 +# -Range: 0-300 + + 2.0000 H+ + 1.0000 Sn++ + 0.5000 O2 = Sn++++ +1.0000 H2O + -llnl_gamma 11.0 + log_k +37.7020 + -delta_H -240.739 kJ/mol # Calculated enthalpy of reaction Sn+4 +# Enthalpy of formation: 7.229 kcal/mol + -analytic 3.2053e+001 -9.2307e-003 1.0378e+004 -1.0666e+001 1.6193e+002 +# -Range: 0-300 + + 1.0000 Tb+++ + 0.5000 H2O = Tb++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -78.7754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb+2 +# Enthalpy of formation: -0 kcal/mol + + 4.0000 H+ + 1.0000 TcO4- = Tc+++ +2.0000 H2O +1.0000 O2 + -llnl_gamma 5.0 + log_k -47.614 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc+3 +# Enthalpy of formation: -0 kcal/mol + + 3.0000 H+ + 1.0000 TcO4- = TcO++ +1.5000 H2O +0.7500 O2 + -llnl_gamma 4.5 + log_k -31.5059 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 TcO4- + 0.5000 H2O = TcO4-- +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.0 + log_k -31.8197 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 TcO4- + 1.0000 H2O = TcO4--- +2.0000 H+ +0.5000 O2 + -llnl_gamma 4.0 + log_k -63.2889 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-3 +# Enthalpy of formation: -0 kcal/mol + + 2.0000 H+ + 1.0000 Tl+ + 0.5000 O2 = Tl+++ +1.0000 H2O + -llnl_gamma 5.0 + log_k -0.2751 + -delta_H -88.479 kJ/mol # Calculated enthalpy of reaction Tl+3 +# Enthalpy of formation: 47 kcal/mol + -analytic -6.7978e+001 -2.6430e-002 5.3106e+003 2.3340e+001 8.2887e+001 +# -Range: 0-300 + + 1.0000 Tm+++ + 0.5000 H2O = Tm++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -58.3754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 UO2++ + 1.0000 H+ = U+++ +0.7500 O2 +0.5000 H2O + -llnl_gamma 5.0 + log_k -64.8028 + -delta_H 377.881 kJ/mol # Calculated enthalpy of reaction U+3 +# Enthalpy of formation: -489.1 kJ/mol + -analytic 2.5133e+001 6.4088e-003 -2.2542e+004 -8.1423e+000 3.4793e+005 +# -Range: 0-300 + + 2.0000 H+ + 1.0000 UO2++ = U++++ +1.0000 H2O +0.5000 O2 + -llnl_gamma 5.5 + log_k -33.9491 + -delta_H 135.895 kJ/mol # Calculated enthalpy of reaction U+4 +# Enthalpy of formation: -591.2 kJ/mol + -analytic 4.4837e+001 1.0129e-002 -1.1787e+004 -1.9194e+001 4.6436e+005 +# -Range: 0-300 + + 1.0000 UO2++ + 0.5000 H2O = UO2+ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.0 + log_k -20.0169 + -delta_H 133.759 kJ/mol # Calculated enthalpy of reaction UO2+ +# Enthalpy of formation: -1025.13 kJ/mol + -analytic 8.0480e+000 9.5845e-003 -6.5994e+003 -3.5515e+000 -1.0298e+002 +# -Range: 0-300 + + 1.0000 VO++ + 1.0000 H+ = V+++ +0.5000 H2O +0.2500 O2 + -llnl_gamma 5.0 + log_k -15.7191 + -delta_H 79.6069 kJ/mol # Calculated enthalpy of reaction V+3 +# Enthalpy of formation: -62.39 kcal/mol + -analytic 1.6167e+001 1.1963e-002 -4.2112e+003 -8.6126e+000 -6.5717e+001 +# -Range: 0-300 + + 1.0000 VO++ + 0.5000 H2O + 0.2500 O2 = VO2+ +1.0000 H+ + -llnl_gamma 4.0 + log_k +4.5774 + -delta_H -17.2234 kJ/mol # Calculated enthalpy of reaction VO2+ +# Enthalpy of formation: -155.3 kcal/mol + -analytic 1.9732e+000 5.3936e-003 1.2240e+003 -1.2539e+000 1.9098e+001 +# -Range: 0-300 + + 1.0000 VO2+ + 2.0000 H2O = VO4--- +4.0000 H+ + -llnl_gamma 4.0 + log_k -28.4475 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO4-3 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Yb+++ + 0.5000 H2O = Yb++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -39.4595 + -delta_H 280.05 kJ/mol # Calculated enthalpy of reaction Yb+2 +# Enthalpy of formation: -126.8 kcal/mol + -analytic 1.0773e+000 9.5995e-003 -1.3833e+004 1.0723e+000 3.1365e+004 +# -Range: 0-300 + + 2.0000 H+ + 1.0000 Zr(OH)2++ = Zr++++ +2.0000 H2O + -llnl_gamma 11.0 + log_k +0.2385 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr+4 +# Enthalpy of formation: -0 kcal/mol + +4.0000 HS- + 4.0000 H+ + 2.0000 Sb(OH)3 + 2.0000 NH3 = (NH4)2Sb2S4 +6.0000 H2O + -llnl_gamma 3.0 + log_k +67.6490 + -delta_H -424.665 kJ/mol # Calculated enthalpy of reaction (NH4)2Sb2S4 +# Enthalpy of formation: -484.321 kJ/mol + -analytic -3.9259e+002 -1.1727e-001 3.2073e+004 1.5667e+002 5.4478e+002 +# -Range: 0-200 + +2.0000 NpO2++ + 2.0000 H2O = (NpO2)2(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k -6.4 + -delta_H 45.4397 kJ/mol # Calculated enthalpy of reaction (NpO2)2(OH)2+2 +# Enthalpy of formation: -537.092 kcal/mol + -analytic -4.7462e+001 -3.1413e-002 -2.1954e+003 2.3355e+001 -3.7424e+001 +# -Range: 25-150 + +5.0000 H2O + 3.0000 NpO2++ = (NpO2)3(OH)5+ +5.0000 H+ + -llnl_gamma 4.0 + log_k -17.5 + -delta_H 112.322 kJ/mol # Calculated enthalpy of reaction (NpO2)3(OH)5+ +# Enthalpy of formation: -931.717 kcal/mol + -analytic 5.4053e+002 9.1693e-002 -2.4404e+004 -2.0349e+002 -4.1639e+002 +# -Range: 25-150 + +2.0000 PuO2++ + 2.0000 H2O = (PuO2)2(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k -8.2626 + -delta_H 57.8597 kJ/mol # Calculated enthalpy of reaction (PuO2)2(OH)2+2 +# Enthalpy of formation: -2156.97 kJ/mol + -analytic 6.5448e+001 -1.6194e-003 -5.9542e+003 -2.1522e+001 -9.2929e+001 +# -Range: 0-300 + +5.0000 H2O + 3.0000 PuO2++ = (PuO2)3(OH)5+ +5.0000 H+ + -llnl_gamma 4.0 + log_k -21.655 + -delta_H 139.617 kJ/mol # Calculated enthalpy of reaction (PuO2)3(OH)5+ +# Enthalpy of formation: -3754.31 kJ/mol + -analytic 1.6151e+002 5.8182e-003 -1.4002e+004 -5.5745e+001 -2.1854e+002 +# -Range: 0-300 + +4.0000 H2O + 2.0000 TcO++ = (TcO(OH)2)2 +4.0000 H+ + -llnl_gamma 3.0 + log_k -0.1271 + -delta_H 0 # Not possible to calculate enthalpy of reaction (TcO(OH)2)2 +# Enthalpy of formation: -0 kcal/mol + +12.0000 H2O + 11.0000 UO2++ + 6.0000 HCO3- = (UO2)11(CO3)6(OH)12-2 +18.0000 H+ + -llnl_gamma 4.0 + log_k -25.7347 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)11(CO3)6(OH)12-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 UO2++ + 2.0000 H2O = (UO2)2(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k -5.6346 + -delta_H 37.6127 kJ/mol # Calculated enthalpy of reaction (UO2)2(OH)2+2 +# Enthalpy of formation: -2572.06 kJ/mol + -analytic 6.4509e+001 -7.6875e-004 -4.8433e+003 -2.1689e+001 -7.5593e+001 +# -Range: 0-300 + +3.0000 H2O + 2.0000 UO2++ + 1.0000 HCO3- = (UO2)2CO3(OH)3- +4.0000 H+ + -llnl_gamma 4.0 + log_k -11.2229 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2CO3(OH)3- +# Enthalpy of formation: -0 kcal/mol + +2.0000 UO2++ + 1.0000 H2O = (UO2)2OH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -2.7072 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2OH+3 +# Enthalpy of formation: -0 kcal/mol + +6.0000 HCO3- + 3.0000 UO2++ = (UO2)3(CO3)6-6 +6.0000 H+ + -llnl_gamma 4.0 + log_k -8.0601 + -delta_H 25.5204 kJ/mol # Calculated enthalpy of reaction (UO2)3(CO3)6-6 +# Enthalpy of formation: -7171.08 kJ/mol + -analytic 7.4044e+002 2.7299e-001 -1.7614e+004 -3.1149e+002 -2.7507e+002 +# -Range: 0-300 + +4.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)4++ +4.0000 H+ + -llnl_gamma 4.5 + log_k -11.929 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)4+2 +# Enthalpy of formation: -0 kcal/mol + +5.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)5+ +5.0000 H+ + -llnl_gamma 4.0 + log_k -15.5862 + -delta_H 97.1056 kJ/mol # Calculated enthalpy of reaction (UO2)3(OH)5+ +# Enthalpy of formation: -4389.09 kJ/mol + -analytic 1.6004e+002 7.0827e-003 -1.1700e+004 -5.5973e+001 -1.8261e+002 +# -Range: 0-300 + +4.0000 H2O + 3.0000 UO2++ + 1.0000 HCO3- = (UO2)3(OH)5CO2+ +4.0000 H+ + -llnl_gamma 4.0 + log_k -9.6194 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)5CO2+ +# Enthalpy of formation: -0 kcal/mol + +7.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)7- +7.0000 H+ + -llnl_gamma 4.0 + log_k -31.0508 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)7- +# Enthalpy of formation: -0 kcal/mol + +3.0000 UO2++ + 3.0000 H2O + 1.0000 HCO3- = (UO2)3O(OH)2(HCO3)+ +4.0000 H+ + -llnl_gamma 4.0 + log_k -9.7129 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3O(OH)2(HCO3)+ +# Enthalpy of formation: -0 kcal/mol + +7.0000 H2O + 4.0000 UO2++ = (UO2)4(OH)7+ +7.0000 H+ + -llnl_gamma 4.0 + log_k -21.9508 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)4(OH)7+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 VO++ + 2.0000 H2O = (VO)2(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k -6.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)2(OH)2+2 +# Enthalpy of formation: -0 kcal/mol + +CH3COO- + H+ = CH3COOH + -llnl_gamma 4.5 + log_k 4.7572 + -delta_H 0 # Not possible to calculate enthalpy of reaction CH3COOH +# Enthalpy of formation: -0 kcal/mol + -analytic 0.96597E+02 0.34535E-01 -0.19753E+04 -0.38593E+02 -0.30850E+02 +# -Range: 0-300 + +H+ + 2.000 HCO3- = CH3COO- + 2.0000 O2 + -llnl_gamma 4.5 + log_k -146.7494 + -delta_H 0 # Not possible to calculate enthalpy of reaction CH3COO- +# Enthalpy of formation: -0 kcal/mol + -analytic -1.3108E+03 -2.3248E-01 -4.5380E+01 4.9843E+02 6.5945E-01 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Ag+ = Ag(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -8.8716 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ag(Acetate)2- +# Enthalpy of formation: -0 kcal/mol + -analytic -2.8207e+002 -5.3713e-002 9.5343e+003 1.0396e+002 1.4886e+002 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Ag+ = Ag(CO3)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -18.5062 + -delta_H 1.34306 kJ/mol # Calculated enthalpy of reaction Ag(CO3)2-3 +# Enthalpy of formation: -304.2 kcal/mol + -analytic -1.6671e+002 -4.5571e-002 3.7190e+003 6.0341e+001 5.8080e+001 +# -Range: 0-300 + +1.0000 Ag+ + 1.0000 CH3COOH = AgCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -4.0264 + -delta_H -3.4518 kJ/mol # Calculated enthalpy of reaction AgAcetate +# Enthalpy of formation: -91.65 kcal/mol + -analytic 6.9069e+000 -1.9415e-003 -1.9953e+003 -2.6175e+000 2.5092e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Ag+ = AgCO3- +1.0000 H+ + -llnl_gamma 4.0 + log_k -7.6416 + -delta_H -8.27177 kJ/mol # Calculated enthalpy of reaction AgCO3- +# Enthalpy of formation: -141.6 kcal/mol + -analytic 6.5598e+000 -1.6477e-004 -4.7079e+002 -5.0807e+000 -7.3484e+000 +# -Range: 0-300 + +1.0000 Cl- + 1.0000 Ag+ = AgCl + -llnl_gamma 3.0 + log_k +3.2971 + -delta_H -15.1126 kJ/mol # Calculated enthalpy of reaction AgCl +# Enthalpy of formation: -18.27 kcal/mol + -analytic 1.0904e+002 3.5492e-002 -1.8455e+003 -4.4502e+001 -2.8830e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Ag+ = AgCl2- + -llnl_gamma 4.0 + log_k +5.2989 + -delta_H -27.3592 kJ/mol # Calculated enthalpy of reaction AgCl2- +# Enthalpy of formation: -61.13 kcal/mol + -analytic 9.2164e+001 4.0261e-002 -1.6597e+002 -3.9721e+001 -2.6171e+000 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Ag+ = AgCl3-- + -llnl_gamma 4.0 + log_k +5.1310 + -delta_H -47.7645 kJ/mol # Calculated enthalpy of reaction AgCl3-2 +# Enthalpy of formation: -105.94 kcal/mol + -analytic 4.3732e+000 2.9568e-002 3.9818e+003 -8.6428e+000 6.2131e+001 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Ag+ = AgCl4--- + -llnl_gamma 4.0 + log_k +3.8050 + -delta_H -32.4804 kJ/mol # Calculated enthalpy of reaction AgCl4-3 +# Enthalpy of formation: -142.22 kcal/mol + -analytic -1.6176e+001 2.9523e-002 0.0000e+000 0.0000e+000 9.9602e+005 +# -Range: 0-300 + +1.0000 F- + 1.0000 Ag+ = AgF + -llnl_gamma 3.0 + log_k -0.1668 + -delta_H -9.298 kJ/mol # Calculated enthalpy of reaction AgF +# Enthalpy of formation: -238.895 kJ/mol + -analytic -6.6024e+001 -2.2350e-002 1.9514e+003 2.6663e+001 3.3160e+001 +# -Range: 0-200 + +1.0000 NO3- + 1.0000 Ag+ = AgNO3 + -llnl_gamma 3.0 + log_k -0.1979 + -delta_H 4.45178 kJ/mol # Calculated enthalpy of reaction AgNO3 +# Enthalpy of formation: -23.09 kcal/mol + -analytic 7.3866e+001 2.6050e-002 -1.5923e+003 -3.0904e+001 -2.4868e+001 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Al+++ = Al(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -5.595 + -delta_H -46.8566 kJ/mol # Calculated enthalpy of reaction Al(Acetate)2+ +# Enthalpy of formation: -372.08 kcal/mol + -analytic -4.2528e+001 2.1431e-003 3.1658e+002 1.1585e+001 5.8604e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Al+++ = Al(OH)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -10.5945 + -delta_H 98.2822 kJ/mol # Calculated enthalpy of reaction Al(OH)2+ +# Enthalpy of formation: -241.825 kcal/mol + -analytic 4.4036e+001 2.0168e-002 -5.5455e+003 -1.6987e+001 -8.6545e+001 +# -Range: 0-300 + +2.0000 SO4-- + 1.0000 Al+++ = Al(SO4)2- + -llnl_gamma 4.0 + log_k +4.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Al(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +28.0000 H2O + 13.0000 Al+++ = Al13O4(OH)24+7 +32.0000 H+ + -llnl_gamma 6.0 + log_k -98.73 + -delta_H 0 # Not possible to calculate enthalpy of reaction Al13O4(OH)24+7 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 2.0000 Al+++ = Al2(OH)2++++ +2.0000 H+ + -llnl_gamma 5.5 + log_k -7.6902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Al2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 3.0000 Al+++ = Al3(OH)4+5 +4.0000 H+ + -llnl_gamma 6.0 + log_k -13.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Al3(OH)4+5 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Al+++ + 1.0000 CH3COOH = AlCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.6923 + -delta_H -18.1962 kJ/mol # Calculated enthalpy of reaction AlAcetate+2 +# Enthalpy of formation: -249.13 kcal/mol + -analytic -1.9847e+001 2.0058e-003 -2.3653e+002 5.5454e+000 3.2362e+005 +# -Range: 0-300 + +1.0000 F- + 1.0000 Al+++ = AlF++ + -llnl_gamma 4.5 + log_k +7.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 Al+++ = AlF2+ + -llnl_gamma 4.0 + log_k +12.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF2+ +# Enthalpy of formation: -0 kcal/mol + +3.0000 F- + 1.0000 Al+++ = AlF3 + -llnl_gamma 3.0 + log_k +16.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF3 +# Enthalpy of formation: -0 kcal/mol + +4.0000 F- + 1.0000 Al+++ = AlF4- + -llnl_gamma 4.0 + log_k +19.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Al+++ = AlH2PO4++ + -llnl_gamma 4.5 + log_k +3.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlH2PO4+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Al+++ = AlHPO4+ + -llnl_gamma 4.0 + log_k +7.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlHPO4+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Al+++ = AlO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -22.8833 + -delta_H 180.899 kJ/mol # Calculated enthalpy of reaction AlO2- +# Enthalpy of formation: -222.079 kcal/mol + -analytic 1.0803e+001 -3.4379e-003 -9.7391e+003 0.0000e+000 0.0000e+000 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Al+++ = AlOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -4.9571 + -delta_H 49.798 kJ/mol # Calculated enthalpy of reaction AlOH+2 +# Enthalpy of formation: -185.096 kcal/mol + -analytic -2.6224e-001 8.8816e-003 -1.8686e+003 -4.3195e-001 -2.9158e+001 +# -Range: 0-300 + +1.0000 SO4-- + 1.0000 Al+++ = AlSO4+ + -llnl_gamma 4.0 + log_k +3.0100 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlSO4+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 HCO3- + 1.0000 Am+++ = Am(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -8.3868 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +3.0000 HCO3- + 1.0000 Am+++ = Am(CO3)3--- +3.0000 H+ + -llnl_gamma 4.0 + log_k -15.8302 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)3-3 +# Enthalpy of formation: -0 kcal/mol + +5.0000 HCO3- + 1.0000 Am++++ = Am(CO3)5-6 +5.0000 H+ + -llnl_gamma 4.0 + log_k -12.409 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)5-6 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Am+++ = Am(OH)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -14.1145 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)2+ +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Am+++ = Am(OH)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -25.7218 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Am+++ = Am(SO4)2- + -llnl_gamma 4.0 + log_k +5.2407 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 HCO3- + 1.0000 Am+++ = AmCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.5434 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmCO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Cl- + 1.0000 Am+++ = AmCl++ + -llnl_gamma 4.5 + log_k +1.0374 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmCl+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 F- + 1.0000 Am+++ = AmF++ + -llnl_gamma 4.5 + log_k +3.3601 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmF+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 Am+++ = AmF2+ + -llnl_gamma 4.0 + log_k +5.7204 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmF2+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Am+++ = AmH2PO4++ + -llnl_gamma 4.5 + log_k +11.4119 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmH2PO4+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 N3- + 1.0000 Am+++ = AmN3++ + -llnl_gamma 4.5 + log_k +1.6699 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmN3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Am+++ = AmNO3++ + -llnl_gamma 4.5 + log_k +1.3104 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmNO3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Am+++ = AmOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -6.4072 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmOH+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Am+++ = AmSO4+ + -llnl_gamma 4.0 + log_k +3.7703 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmSO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2AsO3- + 1.0000 H+ = As(OH)3 + -llnl_gamma 3.0 + log_k +9.2048 + -delta_H -27.4054 kJ/mol # Calculated enthalpy of reaction As(OH)3 +# Enthalpy of formation: -742.2 kJ/mol + -analytic 1.3020e+002 4.7513e-002 -1.1999e+003 -5.2993e+001 -2.0422e+001 +# -Range: 0-200 + +1.0000 H2AsO3- = AsO2- +1.0000 H2O + -llnl_gamma 4.0 + log_k 0.0111 + -delta_H 0 # Not possible to calculate enthalpy of reaction AsO2- +# Enthalpy of formation: -0 kcal/mol + -analytic -2.1509e+001 -1.7680e-002 -1.9261e+001 1.0841e+001 -2.9404e-001 +# -Range: 0-300 + +1.0000 H2AsO3- = AsO2OH-- +1.0000 H+ + -llnl_gamma 4.0 + log_k -11.0171 + -delta_H 25.514 kJ/mol # Calculated enthalpy of reaction AsO2OH-2 +# Enthalpy of formation: -164.742 kcal/mol + -analytic 1.4309e+002 1.8620e-002 -6.8596e+003 -5.5222e+001 -1.0708e+002 +# -Range: 0-300 + +1.0000 H2AsO4- + 1.0000 F- = AsO3F-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +40.2451 + -delta_H 0 # Not possible to calculate enthalpy of reaction AsO3F-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2AsO4- = AsO4--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -18.3604 + -delta_H 21.4198 kJ/mol # Calculated enthalpy of reaction AsO4-3 +# Enthalpy of formation: -888.14 kJ/mol + -analytic -2.4979e+001 -1.2761e-002 2.8369e+003 3.4878e+000 -6.8736e+005 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Au+ = Au(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -9.0013 + -delta_H -8.91192 kJ/mol # Calculated enthalpy of reaction Au(CH3COO)2- +# Enthalpy of formation: -186.75 kcal/mol + -analytic -2.2338e+002 -4.6312e-002 7.0942e+003 8.2606e+001 1.1076e+002 +# -Range: 0-300 + +1.0000 Au+ + 1.0000 CH3COOH = AuCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -4.3174 + -delta_H 0.87864 kJ/mol # Calculated enthalpy of reaction AuCH3COO +# Enthalpy of formation: -68.31 kcal/mol + -analytic -1.1812e+000 -4.1120e-003 -1.4752e+003 4.5665e-001 1.7019e+005 +# -Range: 0-300 + +2.0000 B(OH)3 = B2O(OH)5- +1.0000 H+ + -llnl_gamma 4.0 + log_k -18.6851 + -delta_H 0 # Not possible to calculate enthalpy of reaction B2O(OH)5- +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 H+ + 1.0000 B(OH)3 = BF2(OH)2- +1.0000 H2O + -llnl_gamma 4.0 + log_k +6.6174 + -delta_H 0 # Not possible to calculate enthalpy of reaction BF2(OH)2- +# Enthalpy of formation: -0 kcal/mol + +3.0000 F- + 2.0000 H+ + 1.0000 B(OH)3 = BF3OH- +2.0000 H2O + -llnl_gamma 4.0 + log_k +13.1908 + -delta_H -178.577 kJ/mol # Calculated enthalpy of reaction BF3OH- +# Enthalpy of formation: -403.317 kcal/mol + -analytic 3.3411e+002 -3.7303e-002 -8.6507e+003 -1.1345e+002 -1.3508e+002 +# -Range: 0-300 + +4.0000 F- + 3.0000 H+ + 1.0000 B(OH)3 = BF4- +3.0000 H2O + -llnl_gamma 4.0 + log_k +18.0049 + -delta_H -16.4473 kJ/mol # Calculated enthalpy of reaction BF4- +# Enthalpy of formation: -376.4 kcal/mol + -analytic 2.5491e+002 1.0443e-001 -3.3332e+003 -1.0378e+002 -5.2087e+001 +# -Range: 0-300 + +1.0000 B(OH)3 = BO2- +1.0000 H+ +1.0000 H2O + -llnl_gamma 4.0 + log_k -9.2449 + -delta_H 16.3302 kJ/mol # Calculated enthalpy of reaction BO2- +# Enthalpy of formation: -184.6 kcal/mol + -analytic -1.0500e+002 -3.3447e-002 1.4706e+003 4.0724e+001 2.2978e+001 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Ba++ = Ba(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -8.0118 + -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Ba(CH3COO)2 +# Enthalpy of formation: -358.01 kcal/mol + -analytic -1.4566e+001 3.1394e-004 -3.9564e+003 5.1906e+000 6.1407e+005 +# -Range: 0-300 + +1.0000 O_phthalate-2 + 1.0000 Ba++ = Ba(O_phthalate) + -llnl_gamma 3.0 + log_k +2.3300 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ba(O_phthalate) +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Ba++ + 1.0000 B(OH)3 = BaB(OH)4+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -7.8012 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaB(OH)4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ba++ + 1.0000 CH3COOH = BaCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.7677 + -delta_H 7.322 kJ/mol # Calculated enthalpy of reaction BaCH3COO+ +# Enthalpy of formation: -242.85 kcal/mol + -analytic -1.5623e+001 2.9282e-003 -3.9534e+002 4.3959e+000 1.2829e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Ba++ = BaCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -7.6834 + -delta_H 31.5808 kJ/mol # Calculated enthalpy of reaction BaCO3 +# Enthalpy of formation: -285.85 kcal/mol + -analytic 2.1878e+002 5.2368e-002 -8.2472e+003 -8.6644e+001 -1.2875e+002 +# -Range: 0-300 + +1.0000 Cl- + 1.0000 Ba++ = BaCl+ + -llnl_gamma 4.0 + log_k -0.4977 + -delta_H 11.142 kJ/mol # Calculated enthalpy of reaction BaCl+ +# Enthalpy of formation: -165.77 kcal/mol + -analytic 1.1016e+002 4.2325e-002 -2.8039e+003 -4.6010e+001 -4.3785e+001 +# -Range: 0-300 + +1.0000 F- + 1.0000 Ba++ = BaF+ + -llnl_gamma 4.0 + log_k -0.1833 + -delta_H 8.95376 kJ/mol # Calculated enthalpy of reaction BaF+ +# Enthalpy of formation: -206.51 kcal/mol + -analytic 1.0349e+002 4.0336e-002 -2.5195e+003 -4.3334e+001 -3.9346e+001 +# -Range: 0-300 + +1.0000 NO3- + 1.0000 Ba++ = BaNO3+ + -llnl_gamma 4.0 + log_k +0.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaNO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Ba++ = BaOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -13.47 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Be++ = Be(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -6.8023 + -delta_H -52.4255 kJ/mol # Calculated enthalpy of reaction Be(CH3COO)2 +# Enthalpy of formation: -336.23 kcal/mol + -analytic -3.5242e+001 5.1285e-003 -4.8914e+002 8.2862e+000 7.1774e+005 +# -Range: 0-300 + +1.0000 Be++ + 1.0000 CH3COOH = BeCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.1079 + -delta_H -22.761 kJ/mol # Calculated enthalpy of reaction BeCH3COO+ +# Enthalpy of formation: -213.04 kcal/mol + -analytic -1.9418e+001 5.2172e-004 -8.5071e+001 5.2755e+000 3.0215e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Be++ = BeO2-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -32.161 + -delta_H 163.737 kJ/mol # Calculated enthalpy of reaction BeO2-2 +# Enthalpy of formation: -189 kcal/mol + -analytic 7.0860e+000 -3.8474e-002 -1.1400e+004 4.2138e+000 -1.7789e+002 +# -Range: 0-300 + +2.0000 H+ + 2.0000 Br- + 0.5000 O2 = Br2 +1.0000 H2O + -llnl_gamma 3.0 + log_k +5.6834 + -delta_H 0 # Not possible to calculate enthalpy of reaction Br2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HCO3- + 1.0000 H+ = CO2 +1.0000 H2O + -CO2_llnl_gamma + log_k +6.3447 + -delta_H -9.7027 kJ/mol # Calculated enthalpy of reaction CO2 +# Enthalpy of formation: -98.9 kcal/mol + -analytic -1.0534e+001 2.1746e-002 2.5216e+003 7.9125e-001 3.9351e+001 +# -Range: 0-300 + +1.0000 HCO3- = CO3-- +1.0000 H+ + -llnl_gamma 4.5 + log_k -10.3288 + -delta_H 14.6984 kJ/mol # Calculated enthalpy of reaction CO3-2 +# Enthalpy of formation: -161.385 kcal/mol + -analytic -6.9958e+001 -3.3526e-002 -7.0846e+001 2.8224e+001 -1.0849e+000 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Ca++ = Ca(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.3814 + -delta_H -2.7196 kJ/mol # Calculated enthalpy of reaction Ca(CH3COO)2 +# Enthalpy of formation: -362.65 kcal/mol + -analytic -1.0320e+001 4.0012e-003 -3.6281e+003 2.4421e+000 7.0175e+005 +# -Range: 0-300 + +1.0000 O_phthalate-2 + 1.0000 Ca++ = Ca(O_phthalate) + -llnl_gamma 3.0 + log_k +2.4200 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca(O_phthalate) +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Ca++ + 1.0000 B(OH)3 = CaB(OH)4+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -7.4222 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaB(OH)4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ca++ + 1.0000 CH3COOH = CaCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.8263 + -delta_H 1.17152 kJ/mol # Calculated enthalpy of reaction CaCH3COO+ +# Enthalpy of formation: -245.62 kcal/mol + -analytic -8.8826e+000 3.1672e-003 -1.0764e+003 2.0526e+000 2.3599e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Ca++ = CaCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -7.0017 + -delta_H 30.5767 kJ/mol # Calculated enthalpy of reaction CaCO3 +# Enthalpy of formation: -287.39 kcal/mol + -analytic 2.3045e+002 5.5350e-002 -8.5056e+003 -9.1096e+001 -1.3279e+002 +# -Range: 0-300 + +1.0000 Cl- + 1.0000 Ca++ = CaCl+ + -llnl_gamma 4.0 + log_k -0.6956 + -delta_H 2.02087 kJ/mol # Calculated enthalpy of reaction CaCl+ +# Enthalpy of formation: -169.25 kcal/mol + -analytic 8.1498e+001 3.8387e-002 -1.3763e+003 -3.5968e+001 -2.1501e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Ca++ = CaCl2 + -llnl_gamma 3.0 + log_k -0.6436 + -delta_H -5.8325 kJ/mol # Calculated enthalpy of reaction CaCl2 +# Enthalpy of formation: -211.06 kcal/mol + -analytic 1.8178e+002 7.6910e-002 -3.1088e+003 -7.8760e+001 -4.8563e+001 +# -Range: 0-300 + +1.0000 F- + 1.0000 Ca++ = CaF+ + -llnl_gamma 4.0 + log_k +0.6817 + -delta_H 5.6484 kJ/mol # Calculated enthalpy of reaction CaF+ +# Enthalpy of formation: -208.6 kcal/mol + -analytic 7.8058e+001 3.8276e-002 -1.3289e+003 -3.4071e+001 -2.0759e+001 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Ca++ = CaH2PO4+ + -llnl_gamma 4.0 + log_k +1.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HCO3- + 1.0000 Ca++ = CaHCO3+ + -llnl_gamma 4.0 + log_k +1.0467 + -delta_H 1.45603 kJ/mol # Calculated enthalpy of reaction CaHCO3+ +# Enthalpy of formation: -294.35 kcal/mol + -analytic 5.5985e+001 3.4639e-002 -3.6972e+002 -2.5864e+001 -5.7859e+000 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Ca++ = CaHPO4 + -llnl_gamma 3.0 + log_k +2.7400 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Ca++ = CaNO3+ + -llnl_gamma 4.0 + log_k +0.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaNO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Ca++ = CaOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -12.85 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Ca++ = CaP2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +3.0537 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Ca++ = CaPO4- +1.0000 H+ + -llnl_gamma 4.0 + log_k -5.8618 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaPO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Ca++ = CaSO4 + -llnl_gamma 3.0 + log_k +2.1111 + -delta_H 5.4392 kJ/mol # Calculated enthalpy of reaction CaSO4 +# Enthalpy of formation: -345.9 kcal/mol + -analytic 2.8618e+002 8.4084e-002 -7.6880e+003 -1.1449e+002 -1.2005e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Cd++ = Cd(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -6.3625 + -delta_H -17.4891 kJ/mol # Calculated enthalpy of reaction Cd(CH3COO)2 +# Enthalpy of formation: -254.52 kcal/mol + -analytic -1.9344e+001 2.5894e-003 -3.2847e+003 5.8489e+000 7.8041e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Cd++ = Cd(CH3COO)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -10.8558 + -delta_H -40.0409 kJ/mol # Calculated enthalpy of reaction Cd(CH3COO)3- +# Enthalpy of formation: -376.01 kcal/mol + -analytic 4.8290e+001 -3.4317e-003 -1.5122e+004 -1.3203e+001 2.2479e+006 +# -Range: 0-300 + +4.0000 CH3COOH + 1.0000 Cd++ = Cd(CH3COO)4-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -16.9163 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(CH3COO)4-2 +# Enthalpy of formation: -0 kcal/mol + + 2.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)2 + -llnl_gamma 3.0 + log_k +10.3551 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)2 + # Enthalpy of formation: -0 kcal/mol + + 3.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)3- + -llnl_gamma 4.0 + log_k +14.8191 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)3- + # Enthalpy of formation: -0 kcal/mol + + 4.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)4-- + -llnl_gamma 4.0 + log_k +18.2670 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)4-2 + # Enthalpy of formation: -0 kcal/mol + + +2.0000 HCO3- + 1.0000 Cd++ = Cd(CO3)2-- +2.0000 H+ + -llnl_gamma 4.0 + log_k -14.2576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 N3- + 1.0000 Cd++ = Cd(N3)2 + -llnl_gamma 0.0 + log_k +2.4606 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 N3- + 1.0000 Cd++ = Cd(N3)3- + -llnl_gamma 4.0 + log_k +3.1263 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 N3- + 1.0000 Cd++ = Cd(N3)4-- + -llnl_gamma 4.0 + log_k +3.4942 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 NH3 + 1.0000 Cd++ = Cd(NH3)++ + -llnl_gamma 4.5 + log_k +2.5295 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(NH3)+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 NH3 + 1.0000 Cd++ = Cd(NH3)2++ + -llnl_gamma 4.5 + log_k +4.8760 + -delta_H -27.6533 kJ/mol # Calculated enthalpy of reaction Cd(NH3)2+2 +# Enthalpy of formation: -266.225 kJ/mol + -analytic 1.0738e+002 1.6071e-003 -3.2536e+003 -3.7202e+001 -5.0801e+001 +# -Range: 0-300 + +4.0000 NH3 + 1.0000 Cd++ = Cd(NH3)4++ + -llnl_gamma 4.5 + log_k +7.2914 + -delta_H -49.0684 kJ/mol # Calculated enthalpy of reaction Cd(NH3)4+2 +# Enthalpy of formation: -450.314 kJ/mol + -analytic 1.5670e+002 -9.4949e-003 -5.0986e+003 -5.2316e+001 -7.9603e+001 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Cd++ = Cd(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -20.3402 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Cd++ = Cd(OH)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -33.2852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Cd++ = Cd(OH)4-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -47.3303 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Cl- + 1.0000 Cd++ = Cd(OH)Cl +1.0000 H+ + -llnl_gamma 3.0 + log_k -7.4328 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)Cl +# Enthalpy of formation: -0 kcal/mol + +2.0000 Thiocyanate- + 1.0000 Cd++ = Cd(Thiocyanate)2 + -llnl_gamma 3.0 + log_k +1.8649 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 Thiocyanate- + 1.0000 Cd++ = Cd(Thiocyanate)3- + -llnl_gamma 4.0 + log_k +1.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)3- +# Enthalpy of formation: -0 kcal/mol + +2.0000 Cd++ + 1.0000 H2O = Cd2OH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -9.3851 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd2OH+3 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 4.0000 Cd++ = Cd4(OH)4++++ +4.0000 H+ + -llnl_gamma 5.5 + log_k -362.1263 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Cd++ + 1.0000 Br- = CdBr+ + -llnl_gamma 4.0 + log_k +2.1424 + -delta_H -3.35588 kJ/mol # Calculated enthalpy of reaction CdBr+ +# Enthalpy of formation: -200.757 kJ/mol + -analytic 1.4922e+002 5.0059e-002 -3.3035e+003 -6.0984e+001 -5.1593e+001 +# -Range: 0-300 + +2.0000 Br- + 1.0000 Cd++ = CdBr2 + -llnl_gamma 3.0 + log_k +2.8614 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 Br- + 1.0000 Cd++ = CdBr3- + -llnl_gamma 4.0 + log_k +3.0968 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr3- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Cd++ + 1.0000 CH3COOH = CdCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.8294 + -delta_H -7.02912 kJ/mol # Calculated enthalpy of reaction CdCH3COO+ +# Enthalpy of formation: -135.92 kcal/mol + -analytic -8.8425e+000 1.7178e-003 -1.1758e+003 2.4435e+000 3.0321e+005 +# -Range: 0-300 + +1.0000 Cd++ + 1.0000 Cyanide- = CdCyanide+ + -llnl_gamma 4.0 + log_k +5.3129 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdCyanide+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HCO3- + 1.0000 Cd++ = CdCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -7.3288 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdCO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Cl- + 1.0000 Cd++ = CdCl+ + -llnl_gamma 4.0 + log_k +2.7059 + -delta_H 2.33843 kJ/mol # Calculated enthalpy of reaction CdCl+ +# Enthalpy of formation: -240.639 kJ/mol +2.0000 Cl- + 1.0000 Cd++ = CdCl2 + -llnl_gamma 3.0 + log_k +3.3384 + -delta_H 5.1261 kJ/mol # Calculated enthalpy of reaction CdCl2 +# Enthalpy of formation: -404.931 kJ/mol + -analytic 1.4052e+002 4.9221e-002 -3.2625e+003 -5.6946e+001 -5.5451e+001 +# -Range: 0-200 + +3.0000 Cl- + 1.0000 Cd++ = CdCl3- + -llnl_gamma 4.0 + log_k +2.7112 + -delta_H 15.9388 kJ/mol # Calculated enthalpy of reaction CdCl3- +# Enthalpy of formation: -561.198 kJ/mol + -analytic 3.5108e+002 1.0219e-001 -9.9103e+003 -1.3965e+002 -1.5474e+002 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Cd++ = CdHCO3+ + -llnl_gamma 4.0 + log_k +1.5000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdHCO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 I- + 1.0000 Cd++ = CdI+ + -llnl_gamma 4.0 + log_k +2.0710 + -delta_H -9.02584 kJ/mol # Calculated enthalpy of reaction CdI+ +# Enthalpy of formation: -141.826 kJ/mol + -analytic 1.5019e+002 5.0320e-002 -3.0810e+003 -6.1738e+001 -4.8120e+001 +# -Range: 0-300 + +2.0000 I- + 1.0000 Cd++ = CdI2 + -llnl_gamma 3.0 + log_k +3.4685 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdI2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 I- + 1.0000 Cd++ = CdI3- + -llnl_gamma 4.0 + log_k +4.5506 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdI3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 I- + 1.0000 Cd++ = CdI4-- + -llnl_gamma 4.0 + log_k +5.3524 + -delta_H -38.8566 kJ/mol # Calculated enthalpy of reaction CdI4-2 +# Enthalpy of formation: -342.364 kJ/mol + -analytic 4.3154e+002 1.4257e-001 -8.4464e+003 -1.7795e+002 -1.3193e+002 +# -Range: 0-300 + +1.0000 N3- + 1.0000 Cd++ = CdN3+ + -llnl_gamma 4.0 + log_k +1.4970 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdN3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO2- + 1.0000 Cd++ = CdNO2+ + -llnl_gamma 4.0 + log_k +2.3700 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdNO2+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Cd++ = CdOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -10.0751 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Cd++ = CdP2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +4.8094 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Thiocyanate- + 1.0000 Cd++ = CdThiocyanate+ + -llnl_gamma 4.0 + log_k +1.3218 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdThiocyanate+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Cd++ = CdSO4 + -llnl_gamma 3.0 + log_k +0.0028 + -delta_H 0.20436 kJ/mol # Calculated enthalpy of reaction CdSO4 +# Enthalpy of formation: -985.295 kJ/mol + -analytic -8.9926e+000 -1.9109e-003 2.7454e+002 3.4949e+000 4.6651e+000 +# -Range: 0-200 + +1.0000 SeO4-- + 1.0000 Cd++ = CdSeO4 + -llnl_gamma 3.0 + log_k +2.2700 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdSeO4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Ce+++ = Ce(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.8159 + -delta_H -22.9702 kJ/mol # Calculated enthalpy of reaction Ce(CH3COO)2+ +# Enthalpy of formation: -405.09 kcal/mol + -analytic -3.4653e+001 2.0716e-004 -6.3400e+002 1.0678e+001 4.8922e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Ce+++ = Ce(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.151 + -delta_H -38.7438 kJ/mol # Calculated enthalpy of reaction Ce(CH3COO)3 +# Enthalpy of formation: -524.96 kcal/mol + -analytic -2.3361e+001 2.3896e-003 -1.8035e+003 5.0888e+000 7.1021e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Ce+++ = Ce(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -8.1576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Ce+++ = Ce(HPO4)2- + -llnl_gamma 4.0 + log_k +8.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Ce++++ = Ce(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k +2.0098 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)2+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Ce+++ = Ce(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -6.1437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 2.0000 Ce++++ = Ce2(OH)2+6 +2.0000 H+ + -llnl_gamma 6.0 + log_k +3.0098 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(OH)2+6 +# Enthalpy of formation: -0 kcal/mol + +5.0000 H2O + 3.0000 Ce+++ = Ce3(OH)5++++ +5.0000 H+ + -llnl_gamma 5.5 + log_k -33.4754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(OH)5+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ce+++ + 1.0000 Br- = CeBr++ + -llnl_gamma 4.5 + log_k +0.3797 + -delta_H 3.0585 kJ/mol # Calculated enthalpy of reaction CeBr+2 +# Enthalpy of formation: -195.709 kcal/mol + -analytic 7.5790e+001 3.6040e-002 -1.2647e+003 -3.3094e+001 -1.9757e+001 +# -Range: 0-300 + +1.0000 Ce+++ + 1.0000 CH3COOH = CeCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.0304 + -delta_H -12.0918 kJ/mol # Calculated enthalpy of reaction CeCH3COO+2 +# Enthalpy of formation: -286.39 kcal/mol + -analytic -1.6080e+001 6.6239e-004 -6.0721e+002 5.0845e+000 2.9512e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Ce+++ = CeCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.9284 + -delta_H 93.345 kJ/mol # Calculated enthalpy of reaction CeCO3+ +# Enthalpy of formation: -309.988 kcal/mol + -analytic 2.3292e+002 5.3153e-002 -7.1180e+003 -9.2061e+001 -1.1114e+002 +# -Range: 0-300 + +1.0000 Cl- + 1.0000 Ce+++ = CeCl++ + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction CeCl+2 +# Enthalpy of formation: -203.8 kcal/mol + -analytic 8.3534e+001 3.8166e-002 -2.0058e+003 -3.5504e+001 -3.1324e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Ce+++ = CeCl2+ + -llnl_gamma 4.0 + log_k +0.0308 + -delta_H 20.7777 kJ/mol # Calculated enthalpy of reaction CeCl2+ +# Enthalpy of formation: -242.3 kcal/mol + -analytic 2.3011e+002 8.1428e-002 -6.1292e+003 -9.4468e+001 -9.5708e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Ce+++ = CeCl3 + -llnl_gamma 3.0 + log_k -0.3936 + -delta_H 15.4766 kJ/mol # Calculated enthalpy of reaction CeCl3 +# Enthalpy of formation: -283.5 kcal/mol + -analytic 4.4073e+002 1.2994e-001 -1.2308e+004 -1.7722e+002 -1.9218e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Ce+++ = CeCl4- + -llnl_gamma 4.0 + log_k -0.7447 + -delta_H -1.95811 kJ/mol # Calculated enthalpy of reaction CeCl4- +# Enthalpy of formation: -327.6 kcal/mol + -analytic 5.2230e+002 1.3490e-001 -1.4859e+004 -2.0747e+002 -2.3201e+002 +# -Range: 0-300 + +1.0000 ClO4- + 1.0000 Ce+++ = CeClO4++ + -llnl_gamma 4.5 + log_k +1.9102 + -delta_H -49.0197 kJ/mol # Calculated enthalpy of reaction CeClO4+2 +# Enthalpy of formation: -210.026 kcal/mol + -analytic -1.3609e+001 1.8115e-002 3.9869e+003 -1.3033e+000 6.2215e+001 +# -Range: 0-300 + +1.0000 F- + 1.0000 Ce+++ = CeF++ + -llnl_gamma 4.5 + log_k +4.2221 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction CeF+2 +# Enthalpy of formation: -242 kcal/mol + -analytic 1.0303e+002 4.1730e-002 -2.8424e+003 -4.1094e+001 -4.4383e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Ce+++ = CeF2+ + -llnl_gamma 4.0 + log_k +7.2714 + -delta_H 15.0624 kJ/mol # Calculated enthalpy of reaction CeF2+ +# Enthalpy of formation: -324.1 kcal/mol + -analytic 2.5063e+002 8.5224e-002 -6.2219e+003 -1.0017e+002 -9.7160e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Ce+++ = CeF3 + -llnl_gamma 3.0 + log_k +9.5144 + -delta_H -6.0668 kJ/mol # Calculated enthalpy of reaction CeF3 +# Enthalpy of formation: -409.3 kcal/mol + -analytic 4.6919e+002 1.3664e-001 -1.1745e+004 -1.8629e+002 -1.8340e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Ce+++ = CeF4- + -llnl_gamma 4.0 + log_k +11.3909 + -delta_H -45.6056 kJ/mol # Calculated enthalpy of reaction CeF4- +# Enthalpy of formation: -498.9 kcal/mol + -analytic 5.3522e+002 1.3856e-001 -1.2722e+004 -2.1112e+002 -1.9868e+002 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Ce+++ = CeH2PO4++ + -llnl_gamma 4.5 + log_k +9.6684 + -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction CeH2PO4+2 +# Enthalpy of formation: -480.1 kcal/mol + -analytic 1.1338e+002 6.3771e-002 5.2908e+001 -4.9649e+001 7.9189e-001 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Ce+++ = CeHCO3++ + -llnl_gamma 4.5 + log_k +1.9190 + -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction CeHCO3+2 +# Enthalpy of formation: -330.2 kcal/mol + -analytic 4.4441e+001 3.2077e-002 -3.0714e+002 -2.0622e+001 -4.8060e+000 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Ce+++ = CeHPO4+ + -llnl_gamma 4.0 + log_k +5.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 IO3- + 1.0000 Ce+++ = CeIO3++ + -llnl_gamma 4.5 + log_k +1.9000 + -delta_H -21.1627 kJ/mol # Calculated enthalpy of reaction CeIO3+2 +# Enthalpy of formation: -225.358 kcal/mol + -analytic 3.3756e+001 2.8528e-002 1.2847e+003 -1.8042e+001 2.0036e+001 +# -Range: 0-300 + +1.0000 NO3- + 1.0000 Ce+++ = CeNO3++ + -llnl_gamma 4.5 + log_k +1.3143 + -delta_H -26.6563 kJ/mol # Calculated enthalpy of reaction CeNO3+2 +# Enthalpy of formation: -223.2 kcal/mol + -analytic 2.2772e+001 2.5931e-002 1.9950e+003 -1.4490e+001 3.1124e+001 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Ce+++ = CeO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.4103 + -delta_H 112.202 kJ/mol # Calculated enthalpy of reaction CeO+ +# Enthalpy of formation: -208.9 kcal/mol + -analytic 1.9881e+002 3.1302e-002 -1.4331e+004 -7.1323e+001 -2.2368e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Ce+++ = CeO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -38.758 + -delta_H 308.503 kJ/mol # Calculated enthalpy of reaction CeO2- +# Enthalpy of formation: -230.3 kcal/mol + -analytic 1.0059e+002 3.4824e-003 -1.5873e+004 -3.3056e+001 -4.7656e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Ce+++ = CeO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -26.1503 + -delta_H 228.17 kJ/mol # Calculated enthalpy of reaction CeO2H +# Enthalpy of formation: -249.5 kcal/mol + -analytic 3.5650e+002 4.6708e-002 -2.4320e+004 -1.2731e+002 -3.7959e+002 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Ce+++ = CeOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -8.4206 + -delta_H 73.2911 kJ/mol # Calculated enthalpy of reaction CeOH+2 +# Enthalpy of formation: -218.2 kcal/mol + -analytic 7.5809e+001 1.2863e-002 -6.7244e+003 -2.6473e+001 -1.0495e+002 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Ce++++ = CeOH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k +3.2049 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeOH+3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Ce+++ = CePO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -0.9718 + -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Ce+++ = CeSO4+ + -llnl_gamma 4.0 + log_k -3.687 + -delta_H 19.2464 kJ/mol # Calculated enthalpy of reaction CeSO4+ +# Enthalpy of formation: -380.2 kcal/mol + -analytic 3.0156e+002 8.5149e-002 -1.1025e+004 -1.1866e+002 -1.7213e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Co++ = Co(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.1468 + -delta_H -22.4262 kJ/mol # Calculated enthalpy of reaction Co(CH3COO)2 +# Enthalpy of formation: -251.46 kcal/mol + -analytic -2.0661e+001 2.9014e-003 -2.2146e+003 5.1702e+000 6.4968e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Co++ = Co(CH3COO)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -11.281 + -delta_H -48.2415 kJ/mol # Calculated enthalpy of reaction Co(CH3COO)3- +# Enthalpy of formation: -373.73 kcal/mol + -analytic 6.3384e+001 -4.0669e-003 -1.4715e+004 -1.9518e+001 2.1524e+006 +# -Range: 0-300 + +2.0000 HS- + 1.0000 Co++ = Co(HS)2 + -llnl_gamma 3.0 + log_k +9.0306 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(HS)2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Co++ = Co(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -18.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Co++ = Co(OH)4-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -45.7803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 2.0000 Co++ = Co2OH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -11.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co2OH+3 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 4.0000 Co++ = Co4(OH)4++++ +4.0000 H+ + -llnl_gamma 5.5 + log_k -30.3803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 Br- + 1.0000 Co++ = CoBr2 + -llnl_gamma 3.0 + log_k -0.0358 + -delta_H -0.56568 kJ/mol # Calculated enthalpy of reaction CoBr2 +# Enthalpy of formation: -301.73 kJ/mol + -analytic 5.8731e+000 8.0908e-004 -1.8986e+002 -2.2295e+000 -3.2261e+000 +# -Range: 0-200 + +1.0000 Co++ + 1.0000 CH3COOH = CoCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.2985 + -delta_H -8.70272 kJ/mol # Calculated enthalpy of reaction CoCH3COO+ +# Enthalpy of formation: -132.08 kcal/mol + -analytic -5.4858e+000 1.9147e-003 -1.1292e+003 9.0555e-001 2.8223e+005 +# -Range: 0-300 + +1.0000 Co++ + 1.0000 Cl- = CoCl+ + -llnl_gamma 4.0 + log_k +0.1547 + -delta_H 1.71962 kJ/mol # Calculated enthalpy of reaction CoCl+ +# Enthalpy of formation: -53.422 kcal/mol + -analytic 1.5234e+002 5.6958e-002 -3.3258e+003 -6.3849e+001 -5.1942e+001 +# -Range: 0-300 + +1.0000 HS- + 1.0000 Co++ = CoHS+ + -llnl_gamma 4.0 + log_k +5.9813 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoHS+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 I- + 1.0000 Co++ = CoI2 + -llnl_gamma 3.0 + log_k -0.0944 + -delta_H 3.1774 kJ/mol # Calculated enthalpy of reaction CoI2 +# Enthalpy of formation: -168.785 kJ/mol + -analytic 3.6029e+001 1.0128e-002 -1.1219e+003 -1.4301e+001 -1.9064e+001 +# -Range: 0-200 + +1.0000 NO3- + 1.0000 Co++ = CoNO3+ + -llnl_gamma 4.0 + log_k +0.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoNO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Co++ + S2O3-- = CoS2O3 + -llnl_gamma 3.0 + log_k 0.8063 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoS2O3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Co++ = CoSO4 + -llnl_gamma 3.0 + log_k +0.0436 + -delta_H 0.3842 kJ/mol # Calculated enthalpy of reaction CoSO4 +# Enthalpy of formation: -967.375 kJ/mol + -analytic 2.4606e+000 1.0086e-003 -6.1450e+001 -1.0148e+000 -1.0444e+000 +# -Range: 0-200 + +1.0000 SeO4-- + 1.0000 Co++ = CoSeO4 + -llnl_gamma 3.0 + log_k +2.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Cr+++ = Cr(OH)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -9.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)2+ +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Cr+++ = Cr(OH)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -18 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)3 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Cr+++ = Cr(OH)4- +4.0000 H+ + -llnl_gamma 4.0 + log_k -27.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)4- +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 2.0000 Cr+++ = Cr2(OH)2++++ +2.0000 H+ + -llnl_gamma 5.5 + log_k -5.06 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H+ + 2.0000 CrO4-- = Cr2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +14.5192 + -delta_H -13.8783 kJ/mol # Calculated enthalpy of reaction Cr2O7-2 +# Enthalpy of formation: -356.2 kcal/mol + -analytic 1.3749e+002 6.5773e-002 -7.9472e+002 -5.6525e+001 -1.2441e+001 +# -Range: 0-300 + +4.0000 H2O + 3.0000 Cr+++ = Cr3(OH)4+5 +4.0000 H+ + -llnl_gamma 6.0 + log_k -8.15 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr3(OH)4+5 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Cr+++ + 1.0000 Br- = CrBr++ + -llnl_gamma 4.5 + log_k -2.7813 + -delta_H 33.564 kJ/mol # Calculated enthalpy of reaction CrBr+2 +# Enthalpy of formation: -78.018 kcal/mol + -analytic 9.4384e+001 3.4704e-002 -3.6750e+003 -3.8461e+001 -5.7373e+001 +# -Range: 0-300 + +1.0000 Cr+++ + 1.0000 Cl- = CrCl++ + -llnl_gamma 4.5 + log_k -0.149 + -delta_H 0 # Not possible to calculate enthalpy of reaction CrCl+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 Cl- + 1.0000 Cr+++ = CrCl2+ + -llnl_gamma 4.0 + log_k +0.1596 + -delta_H 41.2919 kJ/mol # Calculated enthalpy of reaction CrCl2+ +# Enthalpy of formation: -126.997 kcal/mol + -analytic 2.0114e+002 7.3878e-002 -6.2218e+003 -8.1677e+001 -9.7144e+001 +# -Range: 0-300 + +1.0000 Cl- + 2.000 H+ + 1.0000 CrO4-- = CrO3Cl- + 1.0000 H2O + -llnl_gamma 4.0 + log_k 7.5270 + -delta_H 0 # Not possible to calculate enthalpy of reaction CrO3Cl- +# Enthalpy of formation: -0 kcal/mol + -analytic 2.7423e+002 1.0013e-001 -6.0072e+003 -1.1168e+002 -9.3817e+001 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Cr+++ = CrOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -4 + -delta_H 0 # Not possible to calculate enthalpy of reaction CrOH+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Cs+ = Cs(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -9.771 + -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Cs(CH3COO)2- +# Enthalpy of formation: -293.57 kcal/mol + -analytic -1.6956e+002 -4.0378e-002 4.5773e+003 6.3241e+001 7.1475e+001 +# -Range: 0-300 + +1.0000 Cs+ + 1.0000 Br- = CsBr + -llnl_gamma 3.0 + log_k -0.2712 + -delta_H 10.9621 kJ/mol # Calculated enthalpy of reaction CsBr +# Enthalpy of formation: -88.09 kcal/mol + -analytic 1.2064e+002 3.2000e-002 -3.8770e+003 -4.7458e+001 -6.0533e+001 +# -Range: 0-300 + +1.0000 Cs+ + 1.0000 CH3COOH = CsCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -4.7352 + -delta_H 6.0668 kJ/mol # Calculated enthalpy of reaction CsCH3COO +# Enthalpy of formation: -176.32 kcal/mol + -analytic 2.4280e+001 -2.8642e-003 -3.1339e+003 -8.1616e+000 2.2684e+005 +# -Range: 0-300 + +1.0000 Cs+ + 1.0000 Cl- = CsCl + -llnl_gamma 3.0 + log_k -0.1385 + -delta_H 2.73215 kJ/mol # Calculated enthalpy of reaction CsCl +# Enthalpy of formation: -100.95 kcal/mol + -analytic 1.2472e+002 3.3730e-002 -3.9130e+003 -4.9212e+001 -6.1096e+001 +# -Range: 0-300 + +1.0000 I- + 1.0000 Cs+ = CsI + -llnl_gamma 3.0 + log_k +0.2639 + -delta_H -6.56888 kJ/mol # Calculated enthalpy of reaction CsI +# Enthalpy of formation: -76.84 kcal/mol + -analytic 1.1555e+002 3.1419e-002 -3.3496e+003 -4.5828e+001 -5.2302e+001 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Cu++ = Cu(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -5.8824 + -delta_H -25.899 kJ/mol # Calculated enthalpy of reaction Cu(CH3COO)2 +# Enthalpy of formation: -222.69 kcal/mol + -analytic -2.6689e+001 1.8048e-003 -1.8244e+003 7.7008e+000 6.5408e+005 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Cu+ = Cu(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -9.2139 + -delta_H -19.5476 kJ/mol # Calculated enthalpy of reaction Cu(CH3COO)2- +# Enthalpy of formation: -219.74 kcal/mol + -analytic -3.2712e+002 -5.9087e-002 1.1386e+004 1.2017e+002 1.7777e+002 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Cu++ = Cu(CH3COO)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -9.3788 + -delta_H -53.2205 kJ/mol # Calculated enthalpy of reaction Cu(CH3COO)3- +# Enthalpy of formation: -345.32 kcal/mol + -analytic 3.9475e+001 -6.2867e-003 -1.3233e+004 -1.0643e+001 2.1121e+006 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Cu++ = Cu(CO3)2-- +2.0000 H+ + -llnl_gamma 4.0 + log_k -10.4757 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 NH3 + 1.0000 Cu++ = Cu(NH3)2++ + -llnl_gamma 4.5 + log_k +7.4512 + -delta_H -45.1269 kJ/mol # Calculated enthalpy of reaction Cu(NH3)2+2 +# Enthalpy of formation: -142.112 kJ/mol + -analytic 1.1526e+002 4.8192e-003 -2.5139e+003 -4.0733e+001 -3.9261e+001 +# -Range: 0-300 + +3.0000 NH3 + 1.0000 Cu++ = Cu(NH3)3++ + -llnl_gamma 4.5 + log_k +10.2719 + -delta_H -67.2779 kJ/mol # Calculated enthalpy of reaction Cu(NH3)3+2 +# Enthalpy of formation: -245.6 kJ/mol + -analytic 1.3945e+002 -3.8236e-004 -2.8137e+003 -4.8336e+001 -4.3946e+001 +# -Range: 0-300 + +2.0000 NO2- + 1.0000 Cu++ = Cu(NO2)2 + -llnl_gamma 3.0 + log_k +3.0300 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(NO2)2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Cu+ + 1.0000 CH3COOH = CuCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -4.4274 + -delta_H -4.19237 kJ/mol # Calculated enthalpy of reaction CuCH3COO +# Enthalpy of formation: -99.97 kcal/mol + -analytic 6.3784e+000 -4.5464e-004 -1.9995e+003 -2.8359e+000 2.7224e+005 +# -Range: 0-300 + +1.0000 Cu++ + 1.0000 CH3COOH = CuCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.5252 + -delta_H -11.3805 kJ/mol # Calculated enthalpy of reaction CuCH3COO+ +# Enthalpy of formation: -103.12 kcal/mol + -analytic -1.4930e+001 5.1278e-004 -3.4874e+002 4.3605e+000 2.3504e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 HCO3- + 1.0000 Cu++ = CuCO3(OH)2-- +3.0000 H+ + -llnl_gamma 4.0 + log_k -23.444 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3(OH)2-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HCO3- + 1.0000 Cu++ = CuCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -3.3735 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Cu++ + 1.0000 Cl- = CuCl+ + -llnl_gamma 4.0 + log_k +0.4370 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 Cl- + 1.0000 Cu++ = CuCl2 + -llnl_gamma 3.0 + log_k +0.1585 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 Cl- + 1.0000 Cu+ = CuCl2- + -llnl_gamma 4.0 + log_k +4.8212 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2- +# Enthalpy of formation: -0 kcal/mol + +3.0000 Cl- + 1.0000 Cu+ = CuCl3-- + -llnl_gamma 4.0 + log_k +5.6289 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl3-2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 Cl- + 1.0000 Cu++ = CuCl4-- + -llnl_gamma 4.0 + log_k -4.5681 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 F- + 1.0000 Cu++ = CuF+ + -llnl_gamma 4.0 + log_k +1.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Cu++ = CuH2PO4+ + -llnl_gamma 4.0 + log_k +8.9654 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Cu++ = CuHPO4 + -llnl_gamma 3.0 + log_k +4.0600 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 NH3 + 1.0000 Cu++ = CuNH3++ + -llnl_gamma 4.5 + log_k +4.0400 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuNH3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO2- + 1.0000 Cu++ = CuNO2+ + -llnl_gamma 4.0 + log_k +2.0200 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuNO2+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Cu++ = CuO2-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -39.4497 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuO2-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Cu++ = CuOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -7.2875 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuOH+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Cu++ = CuPO4- +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.4718 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuPO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Cu++ = CuSO4 + -llnl_gamma 0.0 + log_k +2.3600 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuSO4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Dy+++ = Dy(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9625 + -delta_H -29.3298 kJ/mol # Calculated enthalpy of reaction Dy(CH3COO)2+ +# Enthalpy of formation: -405.71 kcal/mol + -analytic -2.7249e+001 2.7507e-003 -1.7500e+003 7.9356e+000 6.8668e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Dy+++ = Dy(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.3489 + -delta_H -49.4549 kJ/mol # Calculated enthalpy of reaction Dy(CH3COO)3 +# Enthalpy of formation: -526.62 kcal/mol + -analytic -2.4199e+001 6.2065e-003 -2.8937e+003 5.0176e+000 1.0069e+006 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Dy+++ = Dy(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.4576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Dy+++ = Dy(HPO4)2- + -llnl_gamma 4.0 + log_k +9.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +# Redundant with DyO2- +#4.0000 H2O + 1.0000 Dy+++ = Dy(OH)4- +4.0000 H+ +# -llnl_gamma 4.0 +# log_k -33.4803 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)4- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Dy+++ = Dy(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.4437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Dy+++ = Dy(SO4)2- + -llnl_gamma 4.0 + log_k +5.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Dy+++ + 1.0000 CH3COOH = DyCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -14.8532 kJ/mol # Calculated enthalpy of reaction DyCH3COO+2 +# Enthalpy of formation: -286.15 kcal/mol + -analytic -1.3635e+001 1.7329e-003 -9.4636e+002 4.0900e+000 3.6282e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Dy+++ = DyCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.3324 + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction DyCO3+ +# Enthalpy of formation: -310.1 kcal/mol + -analytic 2.3742e+002 5.4342e-002 -6.9953e+003 -9.3949e+001 -1.0922e+002 +# -Range: 0-300 + +1.0000 Dy+++ + 1.0000 Cl- = DyCl++ + -llnl_gamma 4.5 + log_k +0.2353 + -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction DyCl+2 +# Enthalpy of formation: -203.2 kcal/mol + -analytic 6.9134e+001 3.7129e-002 -1.3839e+003 -3.0432e+001 -2.1615e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Dy+++ = DyCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction DyCl2+ +# Enthalpy of formation: -242.2 kcal/mol + -analytic 1.8868e+002 7.7901e-002 -4.3528e+003 -7.9735e+001 -6.7978e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Dy+++ = DyCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 8.78222 kJ/mol # Calculated enthalpy of reaction DyCl3 +# Enthalpy of formation: -284.2 kcal/mol + -analytic 3.6761e+002 1.2471e-001 -9.0651e+003 -1.5147e+002 -1.4156e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Dy+++ = DyCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -14.0917 kJ/mol # Calculated enthalpy of reaction DyCl4- +# Enthalpy of formation: -329.6 kcal/mol + -analytic 3.9134e+002 1.2288e-001 -9.2351e+003 -1.6078e+002 -1.4422e+002 +# -Range: 0-300 + +1.0000 F- + 1.0000 Dy+++ = DyF++ + -llnl_gamma 4.5 + log_k +4.6619 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction DyF+2 +# Enthalpy of formation: -241.1 kcal/mol + -analytic 9.1120e+001 4.1193e-002 -2.3302e+003 -3.6734e+001 -3.6388e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Dy+++ = DyF2+ + -llnl_gamma 4.0 + log_k +8.1510 + -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction DyF2+ +# Enthalpy of formation: -323.8 kcal/mol + -analytic 2.1325e+002 8.2483e-002 -4.5864e+003 -8.6587e+001 -7.1629e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Dy+++ = DyF3 + -llnl_gamma 3.0 + log_k +10.7605 + -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction DyF3 +# Enthalpy of formation: -409.8 kcal/mol + -analytic 3.9766e+002 1.3143e-001 -8.5607e+003 -1.6056e+002 -1.3370e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Dy+++ = DyF4- + -llnl_gamma 4.0 + log_k +12.8569 + -delta_H -57.3208 kJ/mol # Calculated enthalpy of reaction DyF4- +# Enthalpy of formation: -500.8 kcal/mol + -analytic 4.1672e+002 1.2922e-001 -7.4445e+003 -1.6867e+002 -1.1629e+002 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Dy+++ = DyH2PO4++ + -llnl_gamma 4.5 + log_k +9.3751 + -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction DyH2PO4+2 +# Enthalpy of formation: -479.7 kcal/mol + -analytic 9.8183e+001 6.2578e-002 7.1784e+002 -4.4383e+001 1.1172e+001 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Dy+++ = DyHCO3++ + -llnl_gamma 4.5 + log_k +1.6991 + -delta_H 7.10443 kJ/mol # Calculated enthalpy of reaction DyHCO3+2 +# Enthalpy of formation: -329.7 kcal/mol + -analytic 2.8465e+001 3.0703e-002 3.9229e+002 -1.5036e+001 6.1127e+000 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Dy+++ = DyHPO4+ + -llnl_gamma 4.0 + log_k +5.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction DyHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Dy+++ = DyNO3++ + -llnl_gamma 4.5 + log_k +0.1415 + -delta_H -30.4219 kJ/mol # Calculated enthalpy of reaction DyNO3+2 +# Enthalpy of formation: -223.2 kcal/mol + -analytic 6.4353e+000 2.4556e-002 2.5866e+003 -8.9975e+000 4.0359e+001 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Dy+++ = DyO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.1171 + -delta_H 108.018 kJ/mol # Calculated enthalpy of reaction DyO+ +# Enthalpy of formation: -209 kcal/mol + -analytic 1.9069e+002 3.0358e-002 -1.3796e+004 -6.8532e+001 -2.1532e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Dy+++ = DyO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -33.4804 + -delta_H 273.776 kJ/mol # Calculated enthalpy of reaction DyO2- +# Enthalpy of formation: -237.7 kcal/mol + -analytic 7.7395e+001 4.4204e-004 -1.3570e+004 -2.4546e+001 -4.2320e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Dy+++ = DyO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -24.8309 + -delta_H 217.71 kJ/mol # Calculated enthalpy of reaction DyO2H +# Enthalpy of formation: -251.1 kcal/mol + -analytic 3.3576e+002 4.6004e-002 -2.2868e+004 -1.2027e+002 -3.5693e+002 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Dy+++ = DyOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.8342 + -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction DyOH+2 +# Enthalpy of formation: -216.5 kcal/mol + -analytic 7.0856e+001 1.2473e-002 -6.2419e+003 -2.4841e+001 -9.7420e+001 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Dy+++ = DyPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k +0.1782 + -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Dy+++ = DySO4+ + -llnl_gamma 4.0 + log_k +3.6430 + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction DySO4+ +# Enthalpy of formation: -379 kcal/mol + -analytic 3.0672e+002 8.6459e-002 -9.0386e+003 -1.2063e+002 -1.4113e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Er+++ = Er(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9844 + -delta_H -32.8026 kJ/mol # Calculated enthalpy of reaction Er(CH3COO)2+ +# Enthalpy of formation: -408.54 kcal/mol + -analytic -3.1458e+001 1.4715e-003 -1.0556e+003 9.1586e+000 6.1669e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Er+++ = Er(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.3783 + -delta_H -55.187 kJ/mol # Calculated enthalpy of reaction Er(CH3COO)3 +# Enthalpy of formation: -529.99 kcal/mol + -analytic -2.1575e+001 5.9740e-003 -2.0489e+003 3.3624e+000 8.8933e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Er+++ = Er(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.2576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Er+++ = Er(HPO4)2- + -llnl_gamma 4.0 + log_k +10.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +# Redundant with ErO2- +#4.0000 H2O + 1.0000 Er+++ = Er(OH)4- +4.0000 H+ +# -llnl_gamma 4.0 +# log_k -32.5803 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)4- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Er+++ = Er(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.2437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Er+++ = Er(SO4)2- + -llnl_gamma 4.0 + log_k +5.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Er+++ + 1.0000 CH3COOH = ErCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1184 + -delta_H -16.4013 kJ/mol # Calculated enthalpy of reaction ErCH3COO+2 +# Enthalpy of formation: -288.52 kcal/mol + -analytic -1.2519e+001 1.5558e-003 -8.5344e+002 3.5918e+000 3.4888e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Er+++ = ErCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.1858 + -delta_H 87.0188 kJ/mol # Calculated enthalpy of reaction ErCO3+ +# Enthalpy of formation: -312.6 kcal/mol + -analytic 2.3838e+002 5.4549e-002 -6.9433e+003 -9.4373e+001 -1.0841e+002 +# -Range: 0-300 + +1.0000 Er+++ + 1.0000 Cl- = ErCl++ + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 12.6901 kJ/mol # Calculated enthalpy of reaction ErCl+2 +# Enthalpy of formation: -205.4 kcal/mol + -analytic 7.4113e+001 3.7462e-002 -1.5300e+003 -3.2257e+001 -2.3896e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Er+++ = ErCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 15.3385 kJ/mol # Calculated enthalpy of reaction ErCl2+ +# Enthalpy of formation: -244.7 kcal/mol + -analytic 2.0259e+002 7.8907e-002 -4.8271e+003 -8.4835e+001 -7.5382e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Er+++ = ErCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 5.01662 kJ/mol # Calculated enthalpy of reaction ErCl3 +# Enthalpy of formation: -287.1 kcal/mol + -analytic 3.9721e+002 1.2757e-001 -1.0045e+004 -1.6244e+002 -1.5686e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Er+++ = ErCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -20.7861 kJ/mol # Calculated enthalpy of reaction ErCl4- +# Enthalpy of formation: -333.2 kcal/mol + -analytic 4.3471e+002 1.2627e-001 -1.0669e+004 -1.7677e+002 -1.6660e+002 +# -Range: 0-300 + +1.0000 F- + 1.0000 Er+++ = ErF++ + -llnl_gamma 4.5 + log_k +4.7352 + -delta_H 24.058 kJ/mol # Calculated enthalpy of reaction ErF+2 +# Enthalpy of formation: -242.9 kcal/mol + -analytic 9.7079e+001 4.1707e-002 -2.6028e+003 -3.8805e+001 -4.0643e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Er+++ = ErF2+ + -llnl_gamma 4.0 + log_k +8.2976 + -delta_H 12.9704 kJ/mol # Calculated enthalpy of reaction ErF2+ +# Enthalpy of formation: -325.7 kcal/mol + -analytic 2.2892e+002 8.3842e-002 -5.2174e+003 -9.2172e+001 -8.1481e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Er+++ = ErF3 + -llnl_gamma 3.0 + log_k +10.9071 + -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction ErF3 +# Enthalpy of formation: -411.9 kcal/mol + -analytic 4.2782e+002 1.3425e-001 -9.7064e+003 -1.7148e+002 -1.5158e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Er+++ = ErF4- + -llnl_gamma 4.0 + log_k +13.0768 + -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction ErF4- +# Enthalpy of formation: -503.5 kcal/mol + -analytic 4.6524e+002 1.3372e-001 -9.1895e+003 -1.8636e+002 -1.4353e+002 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Er+++ = ErH2PO4++ + -llnl_gamma 4.5 + log_k +9.4484 + -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction ErH2PO4+2 +# Enthalpy of formation: -482.2 kcal/mol + -analytic 1.0254e+002 6.2786e-002 6.3590e+002 -4.6029e+001 9.8920e+000 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Er+++ = ErHCO3++ + -llnl_gamma 4.5 + log_k +1.7724 + -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction ErHCO3+2 +# Enthalpy of formation: -332.2 kcal/mol + -analytic 3.2450e+001 3.0822e-002 3.1601e+002 -1.6528e+001 4.9212e+000 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Er+++ = ErHPO4+ + -llnl_gamma 4.0 + log_k +5.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction ErHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Er+++ = ErNO3++ + -llnl_gamma 4.5 + log_k +0.1415 + -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction ErNO3+2 +# Enthalpy of formation: -226 kcal/mol + -analytic 1.0381e+001 2.4710e-002 2.5752e+003 -1.0596e+001 4.0181e+001 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Er+++ = ErO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -15.9705 + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction ErO+ +# Enthalpy of formation: -211.6 kcal/mol + -analytic 1.7556e+002 2.8655e-002 -1.3134e+004 -6.3050e+001 -2.0499e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Er+++ = ErO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -32.6008 + -delta_H 266.245 kJ/mol # Calculated enthalpy of reaction ErO2- +# Enthalpy of formation: -241.5 kcal/mol + -analytic 1.4987e+002 9.1241e-003 -1.8521e+004 -4.9740e+001 -2.8905e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Er+++ = ErO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -24.3178 + -delta_H 212.689 kJ/mol # Calculated enthalpy of reaction ErO2H +# Enthalpy of formation: -254.3 kcal/mol + -analytic 3.1493e+002 4.4381e-002 -2.1821e+004 -1.1287e+002 -3.4059e+002 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Er+++ = ErOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.7609 + -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction ErOH+2 +# Enthalpy of formation: -219 kcal/mol + -analytic 5.7142e+001 1.0986e-002 -5.6684e+003 -1.9867e+001 -8.8467e+001 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Er+++ = ErPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k +0.3782 + -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Er+++ = ErSO4+ + -llnl_gamma 4.0 + log_k +3.5697 + -delta_H 20.3008 kJ/mol # Calculated enthalpy of reaction ErSO4+ +# Enthalpy of formation: -381.048 kcal/mol + -analytic 3.0363e+002 8.5667e-002 -8.9667e+003 -1.1942e+002 -1.4001e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Eu+++ = Eu(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.6912 + -delta_H -28.3257 kJ/mol # Calculated enthalpy of reaction Eu(CH3COO)2+ +# Enthalpy of formation: -383.67 kcal/mol + -analytic -2.7589e+001 1.5772e-003 -1.1008e+003 7.9899e+000 5.6652e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Eu+++ = Eu(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -7.9824 + -delta_H -47.3629 kJ/mol # Calculated enthalpy of reaction Eu(CH3COO)3 +# Enthalpy of formation: -504.32 kcal/mol + -analytic -3.7470e+001 1.9276e-003 -1.0318e+003 9.7078e+000 7.4558e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Eu+++ = Eu(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -8.3993 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +3.0000 HCO3- + 1.0000 Eu+++ = Eu(CO3)3--- +3.0000 H+ + -llnl_gamma 4.0 + log_k -16.8155 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)3-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Eu+++ = Eu(HPO4)2- + -llnl_gamma 4.0 + log_k +9.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +# Redundant with EuO+ +#2.0000 H2O + 1.0000 Eu+++ = Eu(OH)2+ +2.0000 H+ +# -llnl_gamma 4.0 +# log_k -14.8609 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2+ +## Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 HCO3- + 1.0000 Eu+++ = Eu(OH)2CO3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -17.8462 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2CO3- +# Enthalpy of formation: -0 kcal/mol + +# Redundant with EuO2H +#3.0000 H2O + 1.0000 Eu+++ = Eu(OH)3 +3.0000 H+ +# -llnl_gamma 3.0 +# log_k -24.1253 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)3 +## Enthalpy of formation: -0 kcal/mol + +# Redundant with EuO2- +#4.0000 H2O + 1.0000 Eu+++ = Eu(OH)4- +4.0000 H+ +# -llnl_gamma 4.0 +# log_k -36.5958 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)4- +## Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Eu+++ = Eu(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.9837 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Eu+++ = Eu(SO4)2- + -llnl_gamma 4.0 + log_k +5.4693 + -delta_H 25.627 kJ/mol # Calculated enthalpy of reaction Eu(SO4)2- +# Enthalpy of formation: -2399 kJ/mol + -analytic 4.5178e+002 1.2285e-001 -1.3400e+004 -1.7697e+002 -2.0922e+002 +# -Range: 0-300 + +2.0000 H2O + 2.0000 Eu+++ = Eu2(OH)2++++ +2.0000 H+ + -llnl_gamma 5.5 + log_k -6.9182 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Eu+++ + 1.0000 Br- = EuBr++ + -llnl_gamma 4.5 + log_k +0.5572 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 Br- + 1.0000 Eu+++ = EuBr2+ + -llnl_gamma 4.0 + log_k +0.2145 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr2+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Eu+++ + 1.0000 BrO3- = EuBrO3++ + -llnl_gamma 4.5 + log_k +4.5823 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBrO3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Eu+++ + 1.0000 CH3COOH = EuCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -1.9571 + -delta_H -14.5603 kJ/mol # Calculated enthalpy of reaction EuCH3COO+2 +# Enthalpy of formation: -264.28 kcal/mol + -analytic -1.5090e+001 1.0352e-003 -6.4435e+002 4.6225e+000 3.1649e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Eu+++ = EuCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.4057 + -delta_H 90.7844 kJ/mol # Calculated enthalpy of reaction EuCO3+ +# Enthalpy of formation: -287.9 kcal/mol + -analytic 2.3548e+002 5.3819e-002 -6.9908e+003 -9.3137e+001 -1.0915e+002 +# -Range: 0-300 + +1.0000 Eu++ + 1.0000 Cl- = EuCl+ + -llnl_gamma 4.0 + log_k +0.3819 + -delta_H 8.50607 kJ/mol # Calculated enthalpy of reaction EuCl+ +# Enthalpy of formation: -164 kcal/mol + -analytic 6.8695e+001 3.7619e-002 -1.0809e+003 -3.0665e+001 -1.6887e+001 +# -Range: 0-300 + +1.0000 Eu+++ + 1.0000 Cl- = EuCl++ + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction EuCl+2 +# Enthalpy of formation: -181.3 kcal/mol + -analytic 7.9275e+001 3.7878e-002 -1.7895e+003 -3.4041e+001 -2.7947e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Eu++ = EuCl2 + -llnl_gamma 3.0 + log_k +1.2769 + -delta_H 5.71534 kJ/mol # Calculated enthalpy of reaction EuCl2 +# Enthalpy of formation: -204.6 kcal/mol + -analytic 1.0474e+002 6.7132e-002 -7.0448e+002 -4.8928e+001 -1.1024e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Eu+++ = EuCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 18.6857 kJ/mol # Calculated enthalpy of reaction EuCl2+ +# Enthalpy of formation: -220.1 kcal/mol + -analytic 2.1758e+002 8.0336e-002 -5.5499e+003 -9.0087e+001 -8.6665e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Eu+++ = EuCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 11.2926 kJ/mol # Calculated enthalpy of reaction EuCl3 +# Enthalpy of formation: -261.8 kcal/mol + -analytic 4.2075e+002 1.2890e-001 -1.1288e+004 -1.7043e+002 -1.7627e+002 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Eu++ = EuCl3- + -llnl_gamma 4.0 + log_k +2.0253 + -delta_H -3.76978 kJ/mol # Calculated enthalpy of reaction EuCl3- +# Enthalpy of formation: -246.8 kcal/mol + -analytic 1.1546e+001 6.4683e-002 3.7299e+003 -1.6672e+001 5.8196e+001 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Eu+++ = EuCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -9.90771 kJ/mol # Calculated enthalpy of reaction EuCl4- +# Enthalpy of formation: -306.8 kcal/mol + -analytic 4.8122e+002 1.3081e-001 -1.2950e+004 -1.9302e+002 -2.0222e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Eu++ = EuCl4-- + -llnl_gamma 4.0 + log_k +2.8470 + -delta_H -19.9493 kJ/mol # Calculated enthalpy of reaction EuCl4-2 +# Enthalpy of formation: -290.6 kcal/mol + -analytic -1.2842e+002 5.0789e-002 9.8815e+003 3.3565e+001 1.5423e+002 +# -Range: 0-300 + +1.0000 F- + 1.0000 Eu++ = EuF+ + -llnl_gamma 4.0 + log_k -1.3487 + -delta_H 16.9452 kJ/mol # Calculated enthalpy of reaction EuF+ +# Enthalpy of formation: -202.2 kcal/mol + -analytic 6.2412e+001 3.5839e-002 -1.3660e+003 -2.8223e+001 -2.1333e+001 +# -Range: 0-300 + +1.0000 F- + 1.0000 Eu+++ = EuF++ + -llnl_gamma 4.5 + log_k +4.4420 + -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction EuF+2 +# Enthalpy of formation: -219.2 kcal/mol + -analytic 1.0063e+002 4.1834e-002 -2.7355e+003 -4.0195e+001 -4.2714e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Eu++ = EuF2 + -llnl_gamma 3.0 + log_k -2.0378 + -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction EuF2 +# Enthalpy of formation: -282.2 kcal/mol + -analytic 1.2065e+002 7.1705e-002 -1.7998e+003 -5.5760e+001 -2.8121e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Eu+++ = EuF2+ + -llnl_gamma 4.0 + log_k +7.7112 + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction EuF2+ +# Enthalpy of formation: -301.7 kcal/mol + -analytic 2.4099e+002 8.4714e-002 -5.7702e+003 -9.6640e+001 -9.0109e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Eu+++ = EuF3 + -llnl_gamma 3.0 + log_k +10.1741 + -delta_H -8.9956 kJ/mol # Calculated enthalpy of reaction EuF3 +# Enthalpy of formation: -387.3 kcal/mol + -analytic 4.5022e+002 1.3560e-001 -1.0801e+004 -1.7951e+002 -1.6867e+002 +# -Range: 0-300 + +3.0000 F- + 1.0000 Eu++ = EuF3- + -llnl_gamma 4.0 + log_k -2.5069 + -delta_H 3.5564 kJ/mol # Calculated enthalpy of reaction EuF3- +# Enthalpy of formation: -365.7 kcal/mol + -analytic -2.8441e+001 5.5972e-002 4.4573e+003 -2.2782e+000 6.9558e+001 +# -Range: 0-300 + +4.0000 F- + 1.0000 Eu+++ = EuF4- + -llnl_gamma 4.0 + log_k +12.1239 + -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction EuF4- +# Enthalpy of formation: -477.8 kcal/mol + -analytic 5.0246e+002 1.3629e-001 -1.1092e+004 -1.9952e+002 -1.7323e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Eu++ = EuF4-- + -llnl_gamma 4.0 + log_k -2.8294 + -delta_H -37.656 kJ/mol # Calculated enthalpy of reaction EuF4-2 +# Enthalpy of formation: -455.7 kcal/mol + -analytic -1.8730e+002 3.9237e-002 1.2303e+004 5.3179e+001 1.9204e+002 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Eu+++ = EuH2PO4++ + -llnl_gamma 4.5 + log_k +9.4484 + -delta_H -17.0916 kJ/mol # Calculated enthalpy of reaction EuH2PO4+2 +# Enthalpy of formation: -457.6 kcal/mol + -analytic 1.0873e+002 6.3416e-002 2.7202e+002 -4.8113e+001 4.2122e+000 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Eu+++ = EuHCO3++ + -llnl_gamma 4.5 + log_k +1.6258 + -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction EuHCO3+2 +# Enthalpy of formation: -307.5 kcal/mol + -analytic 3.9266e+001 3.1608e-002 -9.8731e+001 -1.8875e+001 -1.5524e+000 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Eu+++ = EuHPO4+ + -llnl_gamma 4.0 + log_k +5.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 IO3- + 1.0000 Eu+++ = EuIO3++ + -llnl_gamma 4.5 + log_k +2.1560 + -delta_H 11.8314 kJ/mol # Calculated enthalpy of reaction EuIO3+2 +# Enthalpy of formation: -814.927 kJ/mol + -analytic 1.4970e+002 4.7369e-002 -4.1559e+003 -5.9687e+001 -6.4893e+001 +# -Range: 0-300 + +1.0000 NO3- + 1.0000 Eu+++ = EuNO3++ + -llnl_gamma 4.5 + log_k +0.8745 + -delta_H -32.0955 kJ/mol # Calculated enthalpy of reaction EuNO3+2 +# Enthalpy of formation: -201.8 kcal/mol + -analytic 1.7398e+001 2.5467e-002 2.2683e+003 -1.2810e+001 3.5389e+001 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Eu+++ = EuO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.337 + -delta_H 110.947 kJ/mol # Calculated enthalpy of reaction EuO+ +# Enthalpy of formation: -186.5 kcal/mol + -analytic 1.8876e+002 3.0194e-002 -1.3836e+004 -6.7770e+001 -2.1595e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Eu+++ = EuO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -34.5066 + -delta_H 281.307 kJ/mol # Calculated enthalpy of reaction EuO2- +# Enthalpy of formation: -214.1 kcal/mol + -analytic 7.5244e+001 3.7089e-004 -1.3587e+004 -2.3859e+001 -4.6713e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Eu+++ = EuO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -25.4173 + -delta_H 222.313 kJ/mol # Calculated enthalpy of reaction EuO2H +# Enthalpy of formation: -228.2 kcal/mol + -analytic 3.6754e+002 5.3868e-002 -2.4034e+004 -1.3272e+002 -3.7514e+002 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 H2O + 1.0000 Eu+++ = EuOH(CO3)2-- +3.0000 H+ + -llnl_gamma 4.0 + log_k -15.176 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOH(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Eu+++ = EuOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 78.0065 kJ/mol # Calculated enthalpy of reaction EuOH+2 +# Enthalpy of formation: -194.373 kcal/mol + -analytic 6.7691e+001 1.2066e-002 -6.1871e+003 -2.3617e+001 -9.6563e+001 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 H2O + 1.0000 Eu+++ = EuOHCO3 +2.0000 H+ + -llnl_gamma 3.0 + log_k -8.4941 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Eu+++ = EuPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -0.1218 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Eu+++ = EuSO4+ + -llnl_gamma 4.0 + log_k +3.6430 + -delta_H 62.3416 kJ/mol # Calculated enthalpy of reaction EuSO4+ +# Enthalpy of formation: -347.2 kcal/mol + -analytic 3.0587e+002 8.6208e-002 -9.0387e+003 -1.2026e+002 -1.4113e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Fe++ = Fe(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.0295 + -delta_H -20.2924 kJ/mol # Calculated enthalpy of reaction Fe(CH3COO)2 +# Enthalpy of formation: -259.1 kcal/mol + -analytic -2.9862e+001 1.3901e-003 -1.6908e+003 8.6283e+000 6.0125e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Fe++ = Fe(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -20.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Fe+++ = Fe(OH)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -5.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2+ +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Fe+++ = Fe(OH)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -12 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Fe++ = Fe(OH)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -31 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Fe+++ = Fe(OH)4- +4.0000 H+ + -llnl_gamma 4.0 + log_k -21.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4- +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Fe++ = Fe(OH)4-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -46 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Fe+++ = Fe(SO4)2- + -llnl_gamma 4.0 + log_k +3.2137 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 2.0000 Fe+++ = Fe2(OH)2++++ +2.0000 H+ + -llnl_gamma 5.5 + log_k -2.95 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 3.0000 Fe+++ = Fe3(OH)4+5 +4.0000 H+ + -llnl_gamma 6.0 + log_k -6.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe3(OH)4+5 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Fe++ + 1.0000 CH3COOH = FeCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.4671 + -delta_H -3.80744 kJ/mol # Calculated enthalpy of reaction FeCH3COO+ +# Enthalpy of formation: -139.06 kcal/mol + -analytic -1.3781e+001 9.6253e-004 -7.5310e+002 4.0135e+000 2.3416e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Fe++ = FeCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -5.5988 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HCO3- + 1.0000 Fe+++ = FeCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -0.6088 + -delta_H -50.208 kJ/mol # Calculated enthalpy of reaction FeCO3+ +# Enthalpy of formation: -188.748 kcal/mol + -analytic 1.7100e+002 8.0413e-002 -4.3217e+002 -7.8449e+001 -6.7948e+000 +# -Range: 0-300 + +1.0000 Fe++ + 1.0000 Cl- = FeCl+ + -llnl_gamma 4.0 + log_k -0.1605 + -delta_H 3.02503 kJ/mol # Calculated enthalpy of reaction FeCl+ +# Enthalpy of formation: -61.26 kcal/mol + -analytic 8.2435e+001 3.7755e-002 -1.4765e+003 -3.5918e+001 -2.3064e+001 +# -Range: 0-300 + +1.0000 Fe+++ + 1.0000 Cl- = FeCl++ + -llnl_gamma 4.5 + log_k -0.8108 + -delta_H 36.6421 kJ/mol # Calculated enthalpy of reaction FeCl+2 +# Enthalpy of formation: -180.018 kJ/mol + -analytic 1.6186e+002 5.9436e-002 -5.1913e+003 -6.5852e+001 -8.1053e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Fe++ = FeCl2 + -llnl_gamma 3.0 + log_k -2.4541 + -delta_H 6.46846 kJ/mol # Calculated enthalpy of reaction FeCl2 +# Enthalpy of formation: -100.37 kcal/mol + -analytic 1.9171e+002 7.8070e-002 -4.1048e+003 -8.2292e+001 -6.4108e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Fe+++ = FeCl2+ + -llnl_gamma 4.0 + log_k +2.1300 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl2+ +# Enthalpy of formation: -0 kcal/mol + +4.0000 Cl- + 1.0000 Fe+++ = FeCl4- + -llnl_gamma 4.0 + log_k -0.79 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4- +# Enthalpy of formation: -0 kcal/mol + +4.0000 Cl- + 1.0000 Fe++ = FeCl4-- + -llnl_gamma 4.0 + log_k -1.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4-2 +# Enthalpy of formation: -0 kcal/mol + -analytic -2.4108e+002 -6.0086e-003 9.7979e+003 8.4084e+001 1.5296e+002 +# -Range: 0-300 + +1.0000 Fe++ + 1.0000 F- = FeF+ + -llnl_gamma 4.0 + log_k +1.3600 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeF+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Fe+++ + 1.0000 F- = FeF++ + -llnl_gamma 4.5 + log_k +4.1365 + -delta_H 14.327 kJ/mol # Calculated enthalpy of reaction FeF+2 +# Enthalpy of formation: -370.601 kJ/mol + -analytic 1.7546e+002 6.3754e-002 -4.3166e+003 -7.1052e+001 -6.7408e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Fe+++ = FeF2+ + -llnl_gamma 4.0 + log_k +8.3498 + -delta_H 23.9776 kJ/mol # Calculated enthalpy of reaction FeF2+ +# Enthalpy of formation: -696.298 kJ/mol + -analytic 2.9080e+002 1.0393e-001 -7.2118e+003 -1.1688e+002 -1.1262e+002 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Fe++ = FeH2PO4+ + -llnl_gamma 4.0 + log_k +2.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Fe+++ = FeH2PO4++ + -llnl_gamma 4.5 + log_k +4.1700 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HCO3- + 1.0000 Fe++ = FeHCO3+ + -llnl_gamma 4.0 + log_k +2.7200 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHCO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Fe++ = FeHPO4 + -llnl_gamma 3.0 + log_k +3.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Fe+++ = FeHPO4+ + -llnl_gamma 4.0 + log_k +10.1800 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO2- + 1.0000 Fe+++ = FeNO2++ + -llnl_gamma 4.5 + log_k +3.1500 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO2+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Fe+++ = FeNO3++ + -llnl_gamma 4.5 + log_k +1.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Fe++ = FeOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -9.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Fe+++ = FeOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.19 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Fe++ = FePO4- +1.0000 H+ + -llnl_gamma 4.0 + log_k -4.3918 + -delta_H 0 # Not possible to calculate enthalpy of reaction FePO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Fe++ = FeSO4 + -llnl_gamma 3.0 + log_k +2.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeSO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Fe+++ = FeSO4+ + -llnl_gamma 4.0 + log_k +1.9276 + -delta_H 27.181 kJ/mol # Calculated enthalpy of reaction FeSO4+ +# Enthalpy of formation: -932.001 kJ/mol + -analytic 2.5178e+002 1.0080e-001 -6.0977e+003 -1.0483e+002 -9.5223e+001 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Gd+++ = Gd(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9625 + -delta_H -22.3426 kJ/mol # Calculated enthalpy of reaction Gd(CH3COO)2+ +# Enthalpy of formation: -401.74 kcal/mol + -analytic -4.3124e+001 1.2995e-004 -4.3494e+002 1.3677e+001 5.1224e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Gd+++ = Gd(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.3489 + -delta_H -37.9907 kJ/mol # Calculated enthalpy of reaction Gd(CH3COO)3 +# Enthalpy of formation: -521.58 kcal/mol + -analytic -8.8296e+001 -5.0939e-003 1.2268e+003 2.8513e+001 6.0745e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Gd+++ = Gd(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.5576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Gd+++ = Gd(HPO4)2- + -llnl_gamma 4.0 + log_k +9.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +# Redundant with GdO2- +#4.0000 H2O + 1.0000 Gd+++ = Gd(OH)4- +4.0000 H+ +# -llnl_gamma 4.0 +# log_k -33.8803 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)4- +## Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Gd+++ = Gd(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.9437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Gd+++ = Gd(SO4)2- + -llnl_gamma 4.0 + log_k +5.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Gd+++ + 1.0000 CH3COOH = GdCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -11.7152 kJ/mol # Calculated enthalpy of reaction GdCH3COO+2 +# Enthalpy of formation: -283.1 kcal/mol + -analytic -1.4118e+001 1.6660e-003 -7.5206e+002 4.2614e+000 3.1187e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Gd+++ = GdCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.479 + -delta_H 89.9476 kJ/mol # Calculated enthalpy of reaction GdCO3+ +# Enthalpy of formation: -307.6 kcal/mol + -analytic 2.3628e+002 5.4100e-002 -7.0746e+003 -9.3413e+001 -1.1046e+002 +# -Range: 0-300 + +1.0000 Gd+++ + 1.0000 Cl- = GdCl++ + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction GdCl+2 +# Enthalpy of formation: -200.6 kcal/mol + -analytic 8.0750e+001 3.8524e-002 -1.8591e+003 -3.4621e+001 -2.9034e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Gd+++ = GdCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 21.1961 kJ/mol # Calculated enthalpy of reaction GdCl2+ +# Enthalpy of formation: -239 kcal/mol + -analytic 2.1754e+002 8.0996e-002 -5.6121e+003 -9.0067e+001 -8.7635e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Gd+++ = GdCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 15.895 kJ/mol # Calculated enthalpy of reaction GdCl3 +# Enthalpy of formation: -280.2 kcal/mol + -analytic 4.1398e+002 1.2829e-001 -1.1230e+004 -1.6770e+002 -1.7535e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Gd+++ = GdCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -1.53971 kJ/mol # Calculated enthalpy of reaction GdCl4- +# Enthalpy of formation: -324.3 kcal/mol + -analytic 4.7684e+002 1.3157e-001 -1.3068e+004 -1.9118e+002 -2.0405e+002 +# -Range: 0-300 + +1.0000 Gd+++ + 1.0000 F- = GdF++ + -llnl_gamma 4.5 + log_k +4.5886 + -delta_H 21.1292 kJ/mol # Calculated enthalpy of reaction GdF+2 +# Enthalpy of formation: -239.3 kcal/mol + -analytic 1.0060e+002 4.2181e-002 -2.6024e+003 -4.0347e+001 -4.0637e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Gd+++ = GdF2+ + -llnl_gamma 4.0 + log_k +7.9311 + -delta_H 11.2968 kJ/mol # Calculated enthalpy of reaction GdF2+ +# Enthalpy of formation: -321.8 kcal/mol + -analytic 2.3793e+002 8.4732e-002 -5.4950e+003 -9.5689e+001 -8.5815e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Gd+++ = GdF3 + -llnl_gamma 3.0 + log_k +10.4673 + -delta_H -11.506 kJ/mol # Calculated enthalpy of reaction GdF3 +# Enthalpy of formation: -407.4 kcal/mol + -analytic 4.4257e+002 1.3500e-001 -1.0377e+004 -1.7680e+002 -1.6205e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Gd+++ = GdF4- + -llnl_gamma 4.0 + log_k +12.4904 + -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction GdF4- +# Enthalpy of formation: -497.3 kcal/mol + -analytic 4.9026e+002 1.3534e-001 -1.0586e+004 -1.9501e+002 -1.6533e+002 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Gd+++ = GdH2PO4++ + -llnl_gamma 4.5 + log_k +9.4484 + -delta_H -14.9996 kJ/mol # Calculated enthalpy of reaction GdH2PO4+2 +# Enthalpy of formation: -476.6 kcal/mol + -analytic 1.1058e+002 6.4124e-002 1.3451e+002 -4.8758e+001 2.0660e+000 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Gd+++ = GdHCO3++ + -llnl_gamma 4.5 + log_k +1.6991 + -delta_H 10.0332 kJ/mol # Calculated enthalpy of reaction GdHCO3+2 +# Enthalpy of formation: -326.7 kcal/mol + -analytic 4.1973e+001 3.2521e-002 -2.3475e+002 -1.9864e+001 -3.6757e+000 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Gd+++ = GdHPO4+ + -llnl_gamma 4.0 + log_k -185.109 + -delta_H 0 # Not possible to calculate enthalpy of reaction GdHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Gd+++ = GdNO3++ + -llnl_gamma 4.5 + log_k +0.4347 + -delta_H -25.8195 kJ/mol # Calculated enthalpy of reaction GdNO3+2 +# Enthalpy of formation: -219.8 kcal/mol + -analytic 2.0253e+001 2.6372e-002 1.8785e+003 -1.3723e+001 2.9306e+001 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Gd+++ = GdO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.337 + -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction GdO+ +# Enthalpy of formation: -205.5 kcal/mol + -analytic 2.0599e+002 3.2521e-002 -1.4547e+004 -7.4048e+001 -2.2705e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Gd+++ = GdO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -34.4333 + -delta_H 283.817 kJ/mol # Calculated enthalpy of reaction GdO2- +# Enthalpy of formation: -233 kcal/mol + -analytic 1.2067e+002 6.6276e-003 -1.5531e+004 -4.0448e+001 -4.3587e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Gd+++ = GdO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -25.2707 + -delta_H 224.405 kJ/mol # Calculated enthalpy of reaction GdO2H +# Enthalpy of formation: -247.2 kcal/mol + -analytic 3.6324e+002 4.7938e-002 -2.4275e+004 -1.2988e+002 -3.7889e+002 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Gd+++ = GdOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 79.9855 kJ/mol # Calculated enthalpy of reaction GdOH+2 +# Enthalpy of formation: -213.4 kcal/mol + -analytic 8.3265e+001 1.4153e-002 -6.8229e+003 -2.9301e+001 -1.0649e+002 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Gd+++ = GdPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -0.1218 + -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Gd+++ = GdSO4+ + -llnl_gamma 4.0 + log_k -3.687 + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction GdSO4+ +# Enthalpy of formation: -376.8 kcal/mol + -analytic 3.0783e+002 8.6798e-002 -1.1246e+004 -1.2109e+002 -1.7557e+002 +# -Range: 0-300 + +1.0000 O_phthalate-2 + 1.0000 H+ = H(O_phthalate)- + -llnl_gamma 4.0 + log_k +5.4080 + -delta_H 0 # Not possible to calculate enthalpy of reaction H(O_phthalate)- +# Enthalpy of formation: -0 kcal/mol + +2.0000 H+ + 1.0000 CrO4-- = H2CrO4 + -llnl_gamma 3.0 + log_k +5.1750 + -delta_H 42.8274 kJ/mol # Calculated enthalpy of reaction H2CrO4 +# Enthalpy of formation: -200.364 kcal/mol + -analytic 4.2958e+002 1.4939e-001 -1.1474e+004 -1.7396e+002 -1.9499e+002 +# -Range: 0-200 + +2.0000 H+ + 2.0000 F- = H2F2 + -llnl_gamma 3.0 + log_k +6.7680 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2F2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 2.0000 H+ = H2P2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +12.0709 + -delta_H 19.7192 kJ/mol # Calculated enthalpy of reaction H2P2O7-2 +# Enthalpy of formation: -544.6 kcal/mol + -analytic 1.4825e+002 6.7021e-002 -2.8329e+003 -5.9251e+001 -4.4248e+001 +# -Range: 0-300 + +3.0000 H+ + 1.0000 HPO4-- + 1.0000 F- = H2PO3F +1.0000 H2O + -llnl_gamma 3.0 + log_k +12.1047 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2PO3F +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 H+ = H2PO4- + -llnl_gamma 4.0 + log_k +7.2054 + -delta_H -4.20492 kJ/mol # Calculated enthalpy of reaction H2PO4- +# Enthalpy of formation: -309.82 kcal/mol + -analytic 8.2149e+001 3.4077e-002 -1.0431e+003 -3.2970e+001 -1.6301e+001 +# -Range: 0-300 + +#1.0000 HS- + 1.0000 H+ = H2S +# -llnl_gamma 3.0 +# log_k +6.99 +# -analytic 1.2833e+002 5.1641e-002 -1.1681e+003 -5.3665e+001 -1.8266e+001 +# -Range: 0-300 +# these (above) H2S values are from +# Suleimenov & Seward, Geochim. Cosmochim. Acta, v. 61, p. 5187-5198. +# values below are the original Thermo.com.v8.r6.230 data from somewhere + +1.0000 HS- + 1.0000 H+ = H2S + -llnl_gamma 3.0 + log_k +6.9877 + -delta_H -21.5518 kJ/mol # Calculated enthalpy of reaction H2S +# Enthalpy of formation: -9.001 kcal/mol + -analytic 3.9283e+001 2.8727e-002 1.3477e+003 -1.8331e+001 2.1018e+001 +# -Range: 0-300 + +2.0000 H+ + 1.0000 SO3-- = H2SO3 + -llnl_gamma 3.0 + log_k +9.2132 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H+ + 1.0000 SO4-- = H2SO4 + -llnl_gamma 3.0 + log_k -1.0209 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H+ + 1.0000 Se-- = H2Se + -llnl_gamma 3.0 + log_k +18.7606 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2Se +# Enthalpy of formation: 19.412 kJ/mol + -analytic 3.6902e+002 1.2855e-001 -5.5900e+003 -1.4946e+002 -9.5054e+001 +# -Range: 0-200 + +2.0000 H+ + 1.0000 SeO3-- = H2SeO3 + -llnl_gamma 3.0 + log_k +9.8589 + -delta_H 1.7238 kJ/mol # Calculated enthalpy of reaction H2SeO3 +# Enthalpy of formation: -507.469 kJ/mol + -analytic 2.7850e+002 1.0460e-001 -5.4934e+003 -1.1371e+002 -9.3383e+001 +# -Range: 0-200 + +2.0000 H2O + 1.0000 SiO2 = H2SiO4-- +2.0000 H+ + -llnl_gamma 4.0 + log_k -22.96 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SiO4-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H+ + 1.0000 TcO4-- = H2TcO4 + -llnl_gamma 3.0 + log_k +9.0049 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2TcO4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 VO2+ = H2VO4- + 2.0000 H+ + -llnl_gamma 4.0 + log_k -7.0922 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2VO4- +# Enthalpy of formation: -0 kcal/mol + -analytic 1.7105e+001 -1.7503e-002 -4.2671e+003 -1.8910e+000 -6.6589e+001 +# -Range: 0-300 + +1.0000 H2AsO4- + 1.0000 H+ = H3AsO4 + -llnl_gamma 3.0 + log_k +2.2492 + -delta_H 7.17876 kJ/mol # Calculated enthalpy of reaction H3AsO4 +# Enthalpy of formation: -902.381 kJ/mol + -analytic 1.4043e+002 4.6288e-002 -3.5868e+003 -5.6560e+001 -6.0957e+001 +# -Range: 0-200 + +3.0000 H+ + 2.0000 HPO4-- = H3P2O7- +1.0000 H2O + -llnl_gamma 4.0 + log_k +14.4165 + -delta_H 21.8112 kJ/mol # Calculated enthalpy of reaction H3P2O7- +# Enthalpy of formation: -544.1 kcal/mol + -analytic 2.3157e+002 1.0161e-001 -4.3723e+003 -9.4050e+001 -6.8295e+001 +# -Range: 0-300 + +2.0000 H+ + 1.0000 HPO4-- = H3PO4 + -llnl_gamma 3.0 + log_k +9.3751 + -delta_H 3.74468 kJ/mol # Calculated enthalpy of reaction H3PO4 +# Enthalpy of formation: -307.92 kcal/mol + -analytic 1.8380e+002 6.7320e-002 -3.7792e+003 -7.3463e+001 -5.9025e+001 +# -Range: 0-300 + +8.0000 H2O + 4.0000 SiO2 = H4(H2SiO4)4---- +4.0000 H+ + -llnl_gamma 4.0 + log_k -35.94 + -delta_H 0 # Not possible to calculate enthalpy of reaction H4(H2SiO4)4-4 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H+ + 2.0000 HPO4-- = H4P2O7 +1.0000 H2O + -llnl_gamma 3.0 + log_k +15.9263 + -delta_H 29.7226 kJ/mol # Calculated enthalpy of reaction H4P2O7 +# Enthalpy of formation: -2268.6 kJ/mol + -analytic 6.9026e+002 2.4309e-001 -1.6165e+004 -2.7989e+002 -2.7475e+002 +# -Range: 0-200 + +8.0000 H2O + 4.0000 SiO2 = H6(H2SiO4)4-- +2.0000 H+ + -llnl_gamma 4.0 + log_k -13.64 + -delta_H 0 # Not possible to calculate enthalpy of reaction H6(H2SiO4)4-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Al+++ = HAlO2 +3.0000 H+ + -llnl_gamma 3.0 + log_k -16.4329 + -delta_H 144.704 kJ/mol # Calculated enthalpy of reaction HAlO2 +# Enthalpy of formation: -230.73 kcal/mol + -analytic 4.2012e+001 1.9980e-002 -7.7847e+003 -1.5470e+001 -1.2149e+002 +# -Range: 0-300 + +1.0000 H2AsO3- + 1.0000 H+ = HAsO2 +1.0000 H2O + -llnl_gamma 3.0 + log_k 9.2792 + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO2 +# Enthalpy of formation: -0 kcal/mol + -analytic 3.1290e+002 9.3052e-002 -6.5052e+003 -1.2510e+002 -1.1058e+002 +# -Range: 0-200 + +1.0000 H2AsO4- + 1.0000 H+ + 1.0000 F- = HAsO3F- +1.0000 H2O + -llnl_gamma 4.0 + log_k +46.1158 + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO3F- +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2AsO4- = HAsO4-- +1.0000 H+ + -llnl_gamma 4.0 + log_k -6.7583 + -delta_H 3.22168 kJ/mol # Calculated enthalpy of reaction HAsO4-2 +# Enthalpy of formation: -216.62 kcal/mol + -analytic -8.4546e+001 -3.4630e-002 1.1829e+003 3.3997e+001 1.8483e+001 +# -Range: 0-300 + +3.0000 H+ + 2.0000 HS- + 1.0000 H2AsO3- = HAsS2 +3.0000 H2O + -llnl_gamma 3.0 + log_k +30.4803 + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsS2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 H+ + 1.0000 BrO- = HBrO + -llnl_gamma 3.0 + log_k +8.3889 + -delta_H 0 # Not possible to calculate enthalpy of reaction HBrO +# Enthalpy of formation: -0 kcal/mol + +1.0000 H+ + 1.0000 Cyanide- = HCyanide + -llnl_gamma 3.0 + log_k +9.2359 + -delta_H -43.5136 kJ/mol # Calculated enthalpy of reaction HCyanide +# Enthalpy of formation: 25.6 kcal/mol + -analytic 1.0536e+001 2.3105e-002 3.3038e+003 -7.7786e+000 5.1550e+001 +# -Range: 0-300 + +1.0000 H+ + 1.0000 Cl- = HCl + -llnl_gamma 3.0 + log_k -0.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction HCl +# Enthalpy of formation: -0 kcal/mol + -analytic 4.1893e+002 1.1103e-001 -1.1784e+004 -1.6697e+002 -1.8400e+002 +# -Range: 0-300 + +1.0000 H+ + 1.0000 ClO- = HClO + -llnl_gamma 3.0 + log_k +7.5692 + -delta_H 0 # Not possible to calculate enthalpy of reaction HClO +# Enthalpy of formation: -0 kcal/mol + +1.0000 H+ + 1.0000 ClO2- = HClO2 + -llnl_gamma 3.0 + log_k +3.1698 + -delta_H 0 # Not possible to calculate enthalpy of reaction HClO2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Co++ = HCoO2- +3.0000 H+ + -llnl_gamma 4.0 + log_k -21.243 + -delta_H 0 # Not possible to calculate enthalpy of reaction HCoO2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 H+ + 1.0000 CrO4-- = HCrO4- + -llnl_gamma 4.0 + log_k +6.4944 + -delta_H 2.9288 kJ/mol # Calculated enthalpy of reaction HCrO4- +# Enthalpy of formation: -209.9 kcal/mol + -analytic 4.4944e+001 3.2740e-002 1.8400e+002 -1.9722e+001 2.8578e+000 +# -Range: 0-300 + +1.0000 H+ + 1.0000 F- = HF + -llnl_gamma 3.0 + log_k +3.1681 + -delta_H 13.87 kJ/mol # Calculated enthalpy of reaction HF +# Enthalpy of formation: -76.835 kcal/mol + -analytic 8.6626e+001 3.2861e-002 -2.3026e+003 -3.4559e+001 -3.5956e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 H+ = HF2- + -llnl_gamma 4.0 + log_k +2.5509 + -delta_H 20.7526 kJ/mol # Calculated enthalpy of reaction HF2- +# Enthalpy of formation: -155.34 kcal/mol + -analytic 1.4359e+002 4.0866e-002 -4.6776e+003 -5.5574e+001 -7.3032e+001 +# -Range: 0-300 + +1.0000 IO3- + 1.0000 H+ = HIO3 + -llnl_gamma 3.0 + log_k +0.4915 + -delta_H 0 # Not possible to calculate enthalpy of reaction HIO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 N3- + 1.0000 H+ = HN3 + -llnl_gamma 3.0 + log_k +4.7001 + -delta_H -15 kJ/mol # Calculated enthalpy of reaction HN3 +# Enthalpy of formation: 260.14 kJ/mol + -analytic 6.9976e+001 2.4359e-002 -7.1947e+002 -2.8339e+001 -1.2242e+001 +# -Range: 0-200 + +1.0000 NO2- + 1.0000 H+ = HNO2 + -llnl_gamma 3.0 + log_k +3.2206 + -delta_H -14.782 kJ/mol # Calculated enthalpy of reaction HNO2 +# Enthalpy of formation: -119.382 kJ/mol + -analytic 1.9653e+000 -1.1603e-004 0.0000e+000 0.0000e+000 1.1569e+005 +# -Range: 0-200 + +1.0000 NO3- + 1.0000 H+ = HNO3 + -llnl_gamma 3.0 + log_k -1.3025 + -delta_H 16.8155 kJ/mol # Calculated enthalpy of reaction HNO3 +# Enthalpy of formation: -45.41 kcal/mol + -analytic 9.9744e+001 3.4866e-002 -3.0975e+003 -4.0830e+001 -4.8363e+001 +# -Range: 0-300 + +2.0000 HPO4-- + 1.0000 H+ = HP2O7--- +1.0000 H2O + -llnl_gamma 4.0 + log_k +5.4498 + -delta_H 23.3326 kJ/mol # Calculated enthalpy of reaction HP2O7-3 +# Enthalpy of formation: -2274.99 kJ/mol + -analytic 3.9159e+002 1.5438e-001 -8.7071e+003 -1.6283e+002 -1.3598e+002 +# -Range: 0-300 + +2.0000 H+ + 1.0000 HPO4-- + 1.0000 F- = HPO3F- +1.0000 H2O + -llnl_gamma 4.0 + log_k +11.2988 + -delta_H 0 # Not possible to calculate enthalpy of reaction HPO3F- +# Enthalpy of formation: -0 kcal/mol + +1.0000 RuO4 + 1.0000 H2O = HRuO5- +1.0000 H+ + -llnl_gamma 4.0 + log_k -11.5244 + -delta_H 0 # Not possible to calculate enthalpy of reaction HRuO5- +# Enthalpy of formation: -0 kcal/mol + +1.0000 H+ + 1.0000 S2O3-- = HS2O3- + -llnl_gamma 4.0 + log_k 1.0139 + -delta_H 0 # Not possible to calculate enthalpy of reaction HS2O3- +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO3-- + 1.0000 H+ = HSO3- + -llnl_gamma 4.0 + log_k +7.2054 + -delta_H 9.33032 kJ/mol # Calculated enthalpy of reaction HSO3- +# Enthalpy of formation: -149.67 kcal/mol + -analytic 5.5899e+001 3.3623e-002 -5.0120e+002 -2.3040e+001 -7.8373e+000 +# -Range: 0-300 + +1.0000 SO4-- + 1.0000 H+ = HSO4- + -llnl_gamma 4.0 + log_k +1.9791 + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HSO4- +# Enthalpy of formation: -212.5 kcal/mol + -analytic 4.9619e+001 3.0368e-002 -1.1558e+003 -2.1335e+001 -1.8051e+001 +# -Range: 0-300 + +4.0000 HS- + 3.0000 H+ + 2.0000 Sb(OH)3 = HSb2S4- +6.0000 H2O + -llnl_gamma 4.0 + log_k +50.6100 + -delta_H 0 # Not possible to calculate enthalpy of reaction HSb2S4- +# Enthalpy of formation: -0 kcal/mol + -analytic 1.7540e+002 8.2177e-002 1.0786e+004 -7.4874e+001 1.6826e+002 +# -Range: 0-300 + +1.0000 SeO3-- + 1.0000 H+ = HSeO3- + -llnl_gamma 4.0 + log_k +7.2861 + -delta_H -5.35552 kJ/mol # Calculated enthalpy of reaction HSeO3- +# Enthalpy of formation: -122.98 kcal/mol + -analytic 5.0427e+001 3.2250e-002 2.9603e+002 -2.1711e+001 4.6044e+000 +# -Range: 0-300 + +1.0000 SeO4-- + 1.0000 H+ = HSeO4- + -llnl_gamma 4.0 + log_k +1.9058 + -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction HSeO4- +# Enthalpy of formation: -139 kcal/mol + -analytic 1.4160e+002 3.9801e-002 -4.5392e+003 -5.5088e+001 -7.0872e+001 +# -Range: 0-300 + +1.0000 SiO2 + 1.0000 H2O = HSiO3- +1.0000 H+ + -llnl_gamma 4.0 + log_k -9.9525 + -delta_H 25.991 kJ/mol # Calculated enthalpy of reaction HSiO3- +# Enthalpy of formation: -271.88 kcal/mol + -analytic 6.4211e+001 -2.4872e-002 -1.2707e+004 -1.4681e+001 1.0853e+006 +# -Range: 0-300 + +1.0000 TcO4-- + 1.0000 H+ = HTcO4- + -llnl_gamma 4.0 + log_k +8.7071 + -delta_H 0 # Not possible to calculate enthalpy of reaction HTcO4- +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 VO2+ = HVO4-- +3.0000 H+ + -llnl_gamma 4.0 + log_k -15.1553 + -delta_H 0 # Not possible to calculate enthalpy of reaction HVO4-2 +# Enthalpy of formation: -0 kcal/mol + -analytic -7.0660e+001 -5.2457e-002 -3.5380e+003 3.3534e+001 -5.5186e+001 +# -Range: 0-300 + +5.0000 H2O + 1.0000 Hf++++ = Hf(OH)5- +5.0000 H+ + -llnl_gamma 4.0 + log_k -17.1754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(OH)5- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Hf++++ + 1.0000 H2O = HfOH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -0.2951 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfOH+3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Hg++ = Hg(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -2.6242 + -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Hg(CH3COO)2 +# Enthalpy of formation: -198.78 kcal/mol + -analytic -2.1959e+001 2.7774e-003 -3.2500e+003 7.7351e+000 9.1508e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Hg++ = Hg(CH3COO)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -4.3247 + -delta_H -59.7057 kJ/mol # Calculated enthalpy of reaction Hg(CH3COO)3- +# Enthalpy of formation: -321.9 kcal/mol + -analytic 2.1656e+001 -2.0392e-003 -1.2866e+004 -3.2932e+000 2.3073e+006 +# -Range: 0-300 + +1.0000 Hg++ + 1.0000 CH3COOH = HgCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -0.4691 + -delta_H -16.5686 kJ/mol # Calculated enthalpy of reaction HgCH3COO+ +# Enthalpy of formation: -79.39 kcal/mol + -analytic -1.6355e+001 1.9446e-003 -2.6676e+002 5.1978e+000 2.9805e+005 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Ho+++ = Ho(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9844 + -delta_H -28.1583 kJ/mol # Calculated enthalpy of reaction Ho(CH3COO)2+ +# Enthalpy of formation: -407.93 kcal/mol + -analytic -2.7925e+001 2.5599e-003 -1.4779e+003 8.0785e+000 6.3736e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Ho+++ = Ho(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.3783 + -delta_H -47.5721 kJ/mol # Calculated enthalpy of reaction Ho(CH3COO)3 +# Enthalpy of formation: -528.67 kcal/mol + -analytic -6.5547e+001 -1.1963e-004 -1.8887e+002 1.9796e+001 7.9041e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Ho+++ = Ho(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.3576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Ho+++ = Ho(HPO4)2- + -llnl_gamma 4.0 + log_k +9.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Ho+++ = Ho(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.3437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Ho+++ = Ho(SO4)2- + -llnl_gamma 4.0 + log_k +4.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ho+++ + 1.0000 CH3COOH = HoCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1184 + -delta_H -14.3093 kJ/mol # Calculated enthalpy of reaction HoCH3COO+2 +# Enthalpy of formation: -288.52 kcal/mol + -analytic -1.8265e+001 1.0753e-003 -6.0695e+002 5.7211e+000 3.3055e+005 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 HCO3- = HoCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.2591 + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction HoCO3+ +# Enthalpy of formation: -312.6 kcal/mol + -analytic 2.3773e+002 5.4448e-002 -6.9916e+003 -9.4063e+001 -1.0917e+002 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 Cl- = HoCl++ + -llnl_gamma 4.5 + log_k +0.2353 + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction HoCl+2 +# Enthalpy of formation: -205.6 kcal/mol + -analytic 7.3746e+001 3.7733e-002 -1.5627e+003 -3.2126e+001 -2.4407e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Ho+++ = HoCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 17.8489 kJ/mol # Calculated enthalpy of reaction HoCl2+ +# Enthalpy of formation: -244.6 kcal/mol + -analytic 1.9928e+002 7.9025e-002 -4.7775e+003 -8.3582e+001 -7.4607e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Ho+++ = HoCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction HoCl3 +# Enthalpy of formation: -286.4 kcal/mol + -analytic 3.8608e+002 1.2638e-001 -9.8339e+003 -1.5809e+002 -1.5356e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Ho+++ = HoCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -12.4181 kJ/mol # Calculated enthalpy of reaction HoCl4- +# Enthalpy of formation: -331.7 kcal/mol + -analytic 4.2179e+002 1.2576e-001 -1.0495e+004 -1.7172e+002 -1.6388e+002 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 F- = HoF++ + -llnl_gamma 4.5 + log_k +4.7352 + -delta_H 22.3844 kJ/mol # Calculated enthalpy of reaction HoF+2 +# Enthalpy of formation: -243.8 kcal/mol + -analytic 9.5294e+001 4.1702e-002 -2.4460e+003 -3.8296e+001 -3.8195e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Ho+++ = HoF2+ + -llnl_gamma 4.0 + log_k +8.2976 + -delta_H 11.7152 kJ/mol # Calculated enthalpy of reaction HoF2+ +# Enthalpy of formation: -326.5 kcal/mol + -analytic 2.2330e+002 8.3497e-002 -4.9105e+003 -9.0272e+001 -7.6690e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Ho+++ = HoF3 + -llnl_gamma 3.0 + log_k +10.9071 + -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction HoF3 +# Enthalpy of formation: -412.5 kcal/mol + -analytic 4.1587e+002 1.3308e-001 -9.2193e+003 -1.6717e+002 -1.4398e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Ho+++ = HoF4- + -llnl_gamma 4.0 + log_k +13.0035 + -delta_H -57.7392 kJ/mol # Calculated enthalpy of reaction HoF4- +# Enthalpy of formation: -503.4 kcal/mol + -analytic 4.4575e+002 1.3182e-001 -8.5485e+003 -1.7916e+002 -1.3352e+002 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 HPO4-- + 1.0000 H+ = HoH2PO4++ + -llnl_gamma 4.5 + log_k +9.4484 + -delta_H -17.9284 kJ/mol # Calculated enthalpy of reaction HoH2PO4+2 +# Enthalpy of formation: -482.1 kcal/mol + -analytic 1.0273e+002 6.3161e-002 5.5160e+002 -4.6035e+001 8.5766e+000 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 HCO3- = HoHCO3++ + -llnl_gamma 4.5 + log_k +1.6991 + -delta_H 7.52283 kJ/mol # Calculated enthalpy of reaction HoHCO3+2 +# Enthalpy of formation: -332.1 kcal/mol + -analytic 3.3420e+001 3.1394e-002 1.9804e+002 -1.6859e+001 3.0801e+000 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 HPO4-- = HoHPO4+ + -llnl_gamma 4.0 + log_k +5.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction HoHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Ho+++ = HoNO3++ + -llnl_gamma 4.5 + log_k +0.2148 + -delta_H -30.0035 kJ/mol # Calculated enthalpy of reaction HoNO3+2 +# Enthalpy of formation: -225.6 kcal/mol + -analytic 1.1069e+001 2.5142e-002 2.3943e+003 -1.0650e+001 3.7358e+001 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 H2O = HoO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.0438 + -delta_H 108.437 kJ/mol # Calculated enthalpy of reaction HoO+ +# Enthalpy of formation: -211.4 kcal/mol + -analytic 1.9152e+002 3.0627e-002 -1.3817e+004 -6.8846e+001 -2.1565e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Ho+++ = HoO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -33.4804 + -delta_H 274.613 kJ/mol # Calculated enthalpy of reaction HoO2- +# Enthalpy of formation: -240 kcal/mol + -analytic 1.7987e+002 1.2731e-002 -2.0007e+004 -6.0642e+001 -3.1224e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Ho+++ = HoO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -24.5377 + -delta_H 216.873 kJ/mol # Calculated enthalpy of reaction HoO2H +# Enthalpy of formation: -253.8 kcal/mol + -analytic 3.3877e+002 4.6282e-002 -2.2925e+004 -1.2133e+002 -3.5782e+002 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 H2O = HoOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.7609 + -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction HoOH+2 +# Enthalpy of formation: -219 kcal/mol + -analytic 7.1326e+001 1.2657e-002 -6.2461e+003 -2.5018e+001 -9.7485e+001 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 HPO4-- = HoPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k +0.2782 + -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Ho+++ = HoSO4+ + -llnl_gamma 4.0 + log_k +3.5697 + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HoSO4+ +# Enthalpy of formation: -381.5 kcal/mol + -analytic 3.0709e+002 8.6579e-002 -9.0693e+003 -1.2078e+002 -1.4161e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 K+ = K(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -10.2914 + -delta_H -1.79912 kJ/mol # Calculated enthalpy of reaction K(CH3COO)2- +# Enthalpy of formation: -292.9 kcal/mol + -analytic -2.3036e+002 -4.6369e-002 7.0305e+003 8.4997e+001 1.0977e+002 +# -Range: 0-300 + +1.0000 K+ + 1.0000 Br- = KBr + -llnl_gamma 3.0 + log_k -1.7372 + -delta_H 12.5102 kJ/mol # Calculated enthalpy of reaction KBr +# Enthalpy of formation: -86.32 kcal/mol + -analytic 1.1320e+002 3.4227e-002 -3.6401e+003 -4.5633e+001 -5.6833e+001 +# -Range: 0-300 + +1.0000 K+ + 1.0000 CH3COOH = KCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -5.0211 + -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction KCH3COO +# Enthalpy of formation: -175.22 kcal/mol + -analytic -2.6676e-001 -3.2675e-003 -1.7143e+003 -7.1907e-003 1.7726e+005 +# -Range: 0-300 + +1.0000 K+ + 1.0000 Cl- = KCl + -llnl_gamma 3.0 + log_k -1.4946 + -delta_H 14.1963 kJ/mol # Calculated enthalpy of reaction KCl +# Enthalpy of formation: -96.81 kcal/mol + -analytic 1.3650e+002 3.8405e-002 -4.4014e+003 -5.4421e+001 -6.8721e+001 +# -Range: 0-300 + +1.0000 K+ + 1.0000 HPO4-- = KHPO4- + -llnl_gamma 4.0 + log_k +0.7800 + -delta_H 0 # Not possible to calculate enthalpy of reaction KHPO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 K+ + 1.0000 H+ = KHSO4 + -llnl_gamma 3.0 + log_k +0.8136 + -delta_H 29.8319 kJ/mol # Calculated enthalpy of reaction KHSO4 +# Enthalpy of formation: -270.54 kcal/mol + -analytic 1.2620e+002 5.7349e-002 -3.3670e+003 -5.3003e+001 -5.2576e+001 +# -Range: 0-300 + +1.0000 K+ + 1.0000 I- = KI + -llnl_gamma 3.0 + log_k -1.598 + -delta_H 9.16296 kJ/mol # Calculated enthalpy of reaction KI +# Enthalpy of formation: -71.68 kcal/mol + -analytic 1.0816e+002 3.3683e-002 -3.2143e+003 -4.4054e+001 -5.0187e+001 +# -Range: 0-300 + +1.0000 K+ + 1.0000 H2O = KOH +1.0000 H+ + -llnl_gamma 3.0 + log_k -14.46 + -delta_H 0 # Not possible to calculate enthalpy of reaction KOH +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 K+ = KP2O7--- +1.0000 H2O + -llnl_gamma 4.0 + log_k -1.4286 + -delta_H 34.1393 kJ/mol # Calculated enthalpy of reaction KP2O7-3 +# Enthalpy of formation: -2516.36 kJ/mol + -analytic 4.1930e+002 1.4676e-001 -1.1169e+004 -1.7255e+002 -1.7441e+002 +# -Range: 0-300 + +1.0000 SO4-- + 1.0000 K+ = KSO4- + -llnl_gamma 4.0 + log_k +0.8796 + -delta_H 2.88696 kJ/mol # Calculated enthalpy of reaction KSO4- +# Enthalpy of formation: -276.98 kcal/mol + -analytic 9.9073e+001 3.7817e-002 -2.1628e+003 -4.1297e+001 -3.3779e+001 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 La+++ = La(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -5.3949 + -delta_H -23.1375 kJ/mol # Calculated enthalpy of reaction La(CH3COO)2+ +# Enthalpy of formation: -407.33 kcal/mol + -analytic -1.2805e+001 2.8482e-003 -2.2521e+003 2.9108e+000 6.1659e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 La+++ = La(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.5982 + -delta_H -41.9237 kJ/mol # Calculated enthalpy of reaction La(CH3COO)3 +# Enthalpy of formation: -527.92 kcal/mol + -analytic -3.3456e+001 1.2371e-003 -1.5978e+003 8.6343e+000 7.5717e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 La+++ = La(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -8.8576 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 La+++ = La(HPO4)2- + -llnl_gamma 4.0 + log_k +8.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 La+++ = La(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.0437 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 La+++ = La(SO4)2- + -llnl_gamma 4.0 + log_k +5.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 La+++ + 2.0000 H2O = La2(OH)2++++ +2.0000 H+ + -llnl_gamma 5.5 + log_k -22.9902 + -delta_H 0 # Not possible to calculate enthalpy of reaction La2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol + +9.0000 H2O + 5.0000 La+++ = La5(OH)9+6 +9.0000 H+ + -llnl_gamma 6.0 + log_k -71.1557 + -delta_H 0 # Not possible to calculate enthalpy of reaction La5(OH)9+6 +# Enthalpy of formation: -0 kcal/mol + +1.0000 La+++ + 1.0000 CH3COOH = LaCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.2063 + -delta_H -12.5938 kJ/mol # Calculated enthalpy of reaction LaCH3COO+2 +# Enthalpy of formation: -288.71 kcal/mol + -analytic -1.0803e+001 8.5239e-004 -1.1143e+003 3.3273e+000 3.4305e+005 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 HCO3- = LaCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.212 + -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction LaCO3+ +# Enthalpy of formation: -313.1 kcal/mol + -analytic 2.3046e+002 5.2419e-002 -7.1063e+003 -9.1109e+001 -1.1095e+002 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 Cl- = LaCl++ + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction LaCl+2 +# Enthalpy of formation: -206.1 kcal/mol + -analytic 7.5802e+001 3.6641e-002 -1.7234e+003 -3.2578e+001 -2.6914e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 La+++ = LaCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 19.1041 kJ/mol # Calculated enthalpy of reaction LaCl2+ +# Enthalpy of formation: -244.9 kcal/mol + -analytic 2.1632e+002 7.9274e-002 -5.5883e+003 -8.9400e+001 -8.7264e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 La+++ = LaCl3 + -llnl_gamma 3.0 + log_k -0.3936 + -delta_H 12.5478 kJ/mol # Calculated enthalpy of reaction LaCl3 +# Enthalpy of formation: -286.4 kcal/mol + -analytic 4.2210e+002 1.2792e-001 -1.1444e+004 -1.7062e+002 -1.7869e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 La+++ = LaCl4- + -llnl_gamma 4.0 + log_k -0.818 + -delta_H -7.81571 kJ/mol # Calculated enthalpy of reaction LaCl4- +# Enthalpy of formation: -331.2 kcal/mol + -analytic 4.8802e+002 1.3053e-001 -1.3344e+004 -1.9518e+002 -2.0836e+002 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 F- = LaF++ + -llnl_gamma 4.5 + log_k +3.8556 + -delta_H 26.5684 kJ/mol # Calculated enthalpy of reaction LaF+2 +# Enthalpy of formation: -243.4 kcal/mol + -analytic 9.6765e+001 4.0513e-002 -2.8042e+003 -3.8617e+001 -4.3785e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 La+++ = LaF2+ + -llnl_gamma 4.0 + log_k +6.6850 + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction LaF2+ +# Enthalpy of formation: -325.2 kcal/mol + -analytic 2.3923e+002 8.3559e-002 -6.0536e+003 -9.5821e+001 -9.4531e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 La+++ = LaF3 + -llnl_gamma 3.0 + log_k +8.7081 + -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction LaF3 +# Enthalpy of formation: -410.2 kcal/mol + -analytic 4.5123e+002 1.3460e-001 -1.1334e+004 -1.7967e+002 -1.7699e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 La+++ = LaF4- + -llnl_gamma 4.0 + log_k +10.3647 + -delta_H -41.4216 kJ/mol # Calculated enthalpy of reaction LaF4- +# Enthalpy of formation: -500.1 kcal/mol + -analytic 5.0747e+002 1.3563e-001 -1.1903e+004 -2.0108e+002 -1.8588e+002 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 HPO4-- + 1.0000 H+ = LaH2PO4++ + -llnl_gamma 4.5 + log_k +9.7417 + -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction LaH2PO4+2 +# Enthalpy of formation: -482.8 kcal/mol + -analytic 1.0530e+002 6.2177e-002 4.0686e+002 -4.6642e+001 6.3174e+000 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 HCO3- = LaHCO3++ + -llnl_gamma 4.5 + log_k +1.9923 + -delta_H 6.68603 kJ/mol # Calculated enthalpy of reaction LaHCO3+2 +# Enthalpy of formation: -332.9 kcal/mol + -analytic 3.6032e+001 3.0405e-002 5.1281e+001 -1.7478e+001 7.8933e-001 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 HPO4-- = LaHPO4+ + -llnl_gamma 4.0 + log_k +5.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 La+++ = LaNO3++ + -llnl_gamma 4.5 + log_k +0.5813 + -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction LaNO3+2 +# Enthalpy of formation: -226 kcal/mol + -analytic 1.4136e+001 2.4247e-002 2.1998e+003 -1.1371e+001 3.4322e+001 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 H2O = LaO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -18.1696 + -delta_H 121.407 kJ/mol # Calculated enthalpy of reaction LaO+ +# Enthalpy of formation: -208.9 kcal/mol + -analytic 1.8691e+002 2.9275e-002 -1.4385e+004 -6.6906e+001 -2.2452e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 La+++ = LaO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -40.8105 + -delta_H 318.126 kJ/mol # Calculated enthalpy of reaction LaO2- +# Enthalpy of formation: -230.2 kcal/mol + -analytic 1.8374e+002 1.2355e-002 -2.2472e+004 -6.1779e+001 -3.5070e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 La+++ = LaO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -27.9095 + -delta_H 237.375 kJ/mol # Calculated enthalpy of reaction LaO2H +# Enthalpy of formation: -249.5 kcal/mol + -analytic 3.3862e+002 4.4808e-002 -2.4083e+004 -1.2088e+002 -3.7589e+002 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 H2O = LaOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -8.6405 + -delta_H 82.4959 kJ/mol # Calculated enthalpy of reaction LaOH+2 +# Enthalpy of formation: -218.2 kcal/mol + -analytic 6.5529e+001 1.1104e-002 -6.3920e+003 -2.2646e+001 -9.9760e+001 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 HPO4-- = LaPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -1.3618 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 La+++ = LaSO4+ + -llnl_gamma 4.0 + log_k +3.6430 + -delta_H 18.4096 kJ/mol # Calculated enthalpy of reaction LaSO4+ +# Enthalpy of formation: -382.6 kcal/mol + -analytic 3.0657e+002 8.4093e-002 -9.1074e+003 -1.2019e+002 -1.4220e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Li+ = Li(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -9.2674 + -delta_H -24.7609 kJ/mol # Calculated enthalpy of reaction Li(CH3COO)2- +# Enthalpy of formation: -304.67 kcal/mol + -analytic -3.3702e+002 -6.0849e-002 1.1952e+004 1.2359e+002 1.8659e+002 +# -Range: 0-300 + +1.0000 Li+ + 1.0000 CH3COOH = LiCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -4.4589 + -delta_H -6.64419 kJ/mol # Calculated enthalpy of reaction LiCH3COO +# Enthalpy of formation: -184.24 kcal/mol + -analytic -3.8391e+000 -7.3938e-004 -1.0829e+003 3.4134e-001 2.1318e+005 +# -Range: 0-300 + +1.0000 Li+ + 1.0000 Cl- = LiCl + -llnl_gamma 3.0 + log_k -1.5115 + -delta_H 3.36812 kJ/mol # Calculated enthalpy of reaction LiCl +# Enthalpy of formation: -105.68 kcal/mol + -analytic 1.2484e+002 4.1941e-002 -3.2439e+003 -5.1708e+001 -5.0655e+001 +# -Range: 0-300 + +1.0000 Li+ + 1.0000 H2O = LiOH +1.0000 H+ + -llnl_gamma 3.0 + log_k -13.64 + -delta_H 0 # Not possible to calculate enthalpy of reaction LiOH +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Li+ = LiSO4- + -llnl_gamma 4.0 + log_k +0.7700 + -delta_H 0 # Not possible to calculate enthalpy of reaction LiSO4- +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Lu+++ = Lu(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9625 + -delta_H -38.5346 kJ/mol # Calculated enthalpy of reaction Lu(CH3COO)2+ +# Enthalpy of formation: -409.31 kcal/mol + -analytic -2.7341e+001 2.5097e-003 -1.4157e+003 7.5026e+000 6.9682e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Lu+++ = Lu(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.3489 + -delta_H -64.5173 kJ/mol # Calculated enthalpy of reaction Lu(CH3COO)3 +# Enthalpy of formation: -531.62 kcal/mol + -analytic -5.0225e+001 3.3508e-003 -6.2901e+002 1.3262e+001 9.0737e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Lu+++ = Lu(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -6.8576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Lu+++ = Lu(HPO4)2- + -llnl_gamma 4.0 + log_k +10.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Lu+++ = Lu(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -2.7437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Lu+++ = Lu(SO4)2- + -llnl_gamma 4.0 + log_k +5.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Lu+++ + 1.0000 CH3COOH = LuCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -18.9703 kJ/mol # Calculated enthalpy of reaction LuCH3COO+2 +# Enthalpy of formation: -288.534 kcal/mol + -analytic -6.5982e+000 2.4512e-003 -1.2666e+003 1.4226e+000 4.0045e+005 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 HCO3- = LuCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.0392 + -delta_H 78.2324 kJ/mol # Calculated enthalpy of reaction LuCO3+ +# Enthalpy of formation: -314.1 kcal/mol + -analytic 2.3840e+002 5.4774e-002 -6.8317e+003 -9.4500e+001 -1.0667e+002 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 Cl- = LuCl++ + -llnl_gamma 4.5 + log_k -0.0579 + -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction LuCl+2 +# Enthalpy of formation: -204.6 kcal/mol + -analytic 6.6161e+001 3.6521e-002 -1.2938e+003 -2.9397e+001 -2.0209e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Lu+++ = LuCl2+ + -llnl_gamma 4.0 + log_k -0.6289 + -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction LuCl2+ +# Enthalpy of formation: -244 kcal/mol + -analytic 1.8608e+002 7.7283e-002 -4.2349e+003 -7.9007e+001 -6.6137e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Lu+++ = LuCl3 + -llnl_gamma 3.0 + log_k -1.1999 + -delta_H 3.56895 kJ/mol # Calculated enthalpy of reaction LuCl3 +# Enthalpy of formation: -286.846 kcal/mol + -analytic 3.7060e+002 1.2564e-001 -8.9374e+003 -1.5325e+002 -1.3957e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Lu+++ = LuCl4- + -llnl_gamma 4.0 + log_k -1.771 + -delta_H -25.8069 kJ/mol # Calculated enthalpy of reaction LuCl4- +# Enthalpy of formation: -333.8 kcal/mol + -analytic 3.8876e+002 1.2200e-001 -8.6965e+003 -1.6071e+002 -1.3582e+002 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 F- = LuF++ + -llnl_gamma 4.5 + log_k +4.8085 + -delta_H 25.7316 kJ/mol # Calculated enthalpy of reaction LuF+2 +# Enthalpy of formation: -241.9 kcal/mol + -analytic 9.0303e+001 4.0963e-002 -2.4140e+003 -3.6203e+001 -3.7694e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Lu+++ = LuF2+ + -llnl_gamma 4.0 + log_k +8.4442 + -delta_H 14.2256 kJ/mol # Calculated enthalpy of reaction LuF2+ +# Enthalpy of formation: -324.8 kcal/mol + -analytic 2.1440e+002 8.2559e-002 -4.7009e+003 -8.6790e+001 -7.3417e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Lu+++ = LuF3 + -llnl_gamma 3.0 + log_k +11.0999 + -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction LuF3 +# Enthalpy of formation: -411.3 kcal/mol + -analytic 4.0247e+002 1.3233e-001 -8.6775e+003 -1.6232e+002 -1.3552e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Lu+++ = LuF4- + -llnl_gamma 4.0 + log_k +13.2967 + -delta_H -64.0152 kJ/mol # Calculated enthalpy of reaction LuF4- +# Enthalpy of formation: -503.8 kcal/mol + -analytic 4.2541e+002 1.3070e-001 -7.4276e+003 -1.7220e+002 -1.1603e+002 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 HPO4-- + 1.0000 H+ = LuH2PO4++ + -llnl_gamma 4.5 + log_k +9.5950 + -delta_H -23.786 kJ/mol # Calculated enthalpy of reaction LuH2PO4+2 +# Enthalpy of formation: -482.4 kcal/mol + -analytic 9.4223e+001 6.1797e-002 1.1102e+003 -4.3131e+001 1.7296e+001 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 HCO3- = LuHCO3++ + -llnl_gamma 4.5 + log_k +1.9190 + -delta_H 1.66523 kJ/mol # Calculated enthalpy of reaction LuHCO3+2 +# Enthalpy of formation: -332.4 kcal/mol + -analytic 2.3187e+001 2.9604e-002 8.1268e+002 -1.3252e+001 1.2674e+001 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 HPO4-- = LuHPO4+ + -llnl_gamma 4.0 + log_k +6.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction LuHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Lu+++ = LuNO3++ + -llnl_gamma 4.5 + log_k +0.5813 + -delta_H -41.7187 kJ/mol # Calculated enthalpy of reaction LuNO3+2 +# Enthalpy of formation: -227.3 kcal/mol + -analytic 1.7412e+000 2.3703e-002 3.2605e+003 -7.7334e+000 5.0876e+001 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 H2O = LuO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -15.3108 + -delta_H 99.6503 kJ/mol # Calculated enthalpy of reaction LuO+ +# Enthalpy of formation: -212.4 kcal/mol + -analytic 1.5946e+002 2.6603e-002 -1.2215e+004 -5.7276e+001 -1.9065e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Lu+++ = LuO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -31.9411 + -delta_H 258.713 kJ/mol # Calculated enthalpy of reaction LuO2- +# Enthalpy of formation: -242.7 kcal/mol + -analytic 1.1522e+002 5.0221e-003 -1.6847e+004 -3.7244e+001 -2.6292e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Lu+++ = LuO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -23.878 + -delta_H 206.832 kJ/mol # Calculated enthalpy of reaction LuO2H +# Enthalpy of formation: -255.1 kcal/mol + -analytic 2.8768e+002 4.2338e-002 -2.0443e+004 -1.0330e+002 -3.1907e+002 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 H2O = LuOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.6143 + -delta_H 72.0359 kJ/mol # Calculated enthalpy of reaction LuOH+2 +# Enthalpy of formation: -219 kcal/mol + -analytic 4.2937e+001 9.2421e-003 -4.9953e+003 -1.4769e+001 -7.7960e+001 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 HPO4-- = LuPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k +0.6782 + -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Lu+++ = LuSO4+ + -llnl_gamma 4.0 + log_k +3.5697 + -delta_H 19.5393 kJ/mol # Calculated enthalpy of reaction LuSO4+ +# Enthalpy of formation: -380.63 kcal/mol + -analytic 3.0108e+002 8.5238e-002 -8.8411e+003 -1.1850e+002 -1.3805e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Mg++ = Mg(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.473 + -delta_H -23.8195 kJ/mol # Calculated enthalpy of reaction Mg(CH3COO)2 +# Enthalpy of formation: -349.26 kcal/mol + -analytic -4.3954e+001 -3.1842e-004 -1.2033e+003 1.3556e+001 6.3058e+005 +# -Range: 0-300 + +4.0000 Mg++ + 4.0000 H2O = Mg4(OH)4++++ +4.0000 H+ + -llnl_gamma 5.5 + log_k -39.75 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mg4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mg++ + 1.0000 H2O + 1.0000 B(OH)3 = MgB(OH)4+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -7.3467 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgB(OH)4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mg++ + 1.0000 CH3COOH = MgCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.4781 + -delta_H -8.42239 kJ/mol # Calculated enthalpy of reaction MgAcetate+ +# Enthalpy of formation: -229.48 kcal/mol + -analytic -2.3548e+001 -1.6071e-003 -4.2228e+002 7.7009e+000 2.5981e+005 +# -Range: 0-300 + +1.0000 Mg++ + 1.0000 HCO3- = MgCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -7.3499 + -delta_H 23.8279 kJ/mol # Calculated enthalpy of reaction MgCO3 +# Enthalpy of formation: -270.57 kcal/mol + -analytic 2.3465e+002 5.5538e-002 -8.3947e+003 -9.3104e+001 -1.3106e+002 +# -Range: 0-300 + +1.0000 Mg++ + 1.0000 Cl- = MgCl+ + -llnl_gamma 4.0 + log_k -0.1349 + -delta_H -0.58576 kJ/mol # Calculated enthalpy of reaction MgCl+ +# Enthalpy of formation: -151.44 kcal/mol + -analytic 4.3363e+001 3.2858e-002 1.1878e+002 -2.1688e+001 1.8403e+000 +# -Range: 0-300 + +1.0000 Mg++ + 1.0000 F- = MgF+ + -llnl_gamma 4.0 + log_k +1.3524 + -delta_H 2.37233 kJ/mol # Calculated enthalpy of reaction MgF+ +# Enthalpy of formation: -190.95 kcal/mol + -analytic 6.4311e+001 3.5184e-002 -7.3241e+002 -2.8678e+001 -1.1448e+001 +# -Range: 0-300 + +1.0000 Mg++ + 1.0000 HPO4-- + 1.0000 H+ = MgH2PO4+ + -llnl_gamma 4.0 + log_k +1.6600 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mg++ + 1.0000 HCO3- = MgHCO3+ + -llnl_gamma 4.0 + log_k +1.0357 + -delta_H 2.15476 kJ/mol # Calculated enthalpy of reaction MgHCO3+ +# Enthalpy of formation: -275.75 kcal/mol + -analytic 3.8459e+001 3.0076e-002 9.8068e+001 -1.8869e+001 1.5187e+000 +# -Range: 0-300 + +1.0000 Mg++ + 1.0000 HPO4-- = MgHPO4 + -llnl_gamma 3.0 + log_k +2.9100 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgHPO4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Mg++ = MgP2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +3.4727 + -delta_H 38.5451 kJ/mol # Calculated enthalpy of reaction MgP2O7-2 +# Enthalpy of formation: -2725.74 kJ/mol + -analytic 4.8038e+002 1.2530e-001 -1.5175e+004 -1.8724e+002 -2.3693e+002 +# -Range: 0-300 + +1.0000 Mg++ + 1.0000 HPO4-- = MgPO4- +1.0000 H+ + -llnl_gamma 4.0 + log_k -5.7328 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgPO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Mg++ = MgSO4 + -llnl_gamma 3.0 + log_k +2.4117 + -delta_H 19.6051 kJ/mol # Calculated enthalpy of reaction MgSO4 +# Enthalpy of formation: -1355.96 kJ/mol + -analytic 1.7994e+002 6.4715e-002 -4.7314e+003 -7.3123e+001 -8.0408e+001 +# -Range: 0-200 + +2.0000 CH3COOH + 1.0000 Mn++ = Mn(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.4547 + -delta_H -11.4893 kJ/mol # Calculated enthalpy of reaction Mn(CH3COO)2 +# Enthalpy of formation: -287.67 kcal/mol + -analytic -9.0558e-001 5.9656e-003 -4.3531e+003 -1.1063e+000 8.0323e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Mn++ = Mn(CH3COO)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -11.8747 + -delta_H -30.3591 kJ/mol # Calculated enthalpy of reaction Mn(CH3COO)3- +# Enthalpy of formation: -408.28 kcal/mol + -analytic -3.8531e+000 -9.9140e-003 -1.2065e+004 5.1424e+000 2.0175e+006 +# -Range: 0-300 + +2.0000 NO3- + 1.0000 Mn++ = Mn(NO3)2 + -llnl_gamma 3.0 + log_k +0.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(NO3)2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Mn++ = Mn(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -22.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Mn++ = Mn(OH)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -34.2278 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Mn++ = Mn(OH)4-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -48.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)4-2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 2.0000 Mn++ = Mn2(OH)3+ +3.0000 H+ + -llnl_gamma 4.0 + log_k -23.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2(OH)3+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 Mn++ + 1.0000 H2O = Mn2OH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -10.56 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2OH+3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mn++ + 1.0000 CH3COOH = MnCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.5404 + -delta_H -3.07942 kJ/mol # Calculated enthalpy of reaction MnCH3COO+ +# Enthalpy of formation: -169.56 kcal/mol + -analytic -1.4061e+001 1.8149e-003 -8.6438e+002 4.0354e+000 2.5831e+005 +# -Range: 0-300 + +1.0000 Mn++ + 1.0000 HCO3- = MnCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -5.8088 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnCO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mn++ + 1.0000 Cl- = MnCl+ + -llnl_gamma 4.0 + log_k +0.3013 + -delta_H 18.3134 kJ/mol # Calculated enthalpy of reaction MnCl+ +# Enthalpy of formation: -88.28 kcal/mol + -analytic 8.7072e+001 4.0361e-002 -2.1786e+003 -3.6966e+001 -3.4022e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Mn++ = MnCl3- + -llnl_gamma 4.0 + log_k -0.3324 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnCl3- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mn++ + 1.0000 F- = MnF+ + -llnl_gamma 4.0 + log_k +1.4300 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnF+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mn++ + 1.0000 HPO4-- + 1.0000 H+ = MnH2PO4+ + -llnl_gamma 4.0 + log_k +8.5554 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mn++ + 1.0000 HCO3- = MnHCO3+ + -llnl_gamma 4.0 + log_k +0.8816 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHCO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mn++ + 1.0000 HPO4-- = MnHPO4 + -llnl_gamma 3.0 + log_k +3.5800 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Mn++ = MnNO3+ + -llnl_gamma 4.0 + log_k +0.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnNO3+ +# Enthalpy of formation: -0 kcal/mol + +1.5000 H2O + 1.2500 O2 + 1.0000 Mn++ = MnO4- +3.0000 H+ + -llnl_gamma 3.5 + log_k -20.2963 + -delta_H 123.112 kJ/mol # Calculated enthalpy of reaction MnO4- +# Enthalpy of formation: -129.4 kcal/mol + -analytic 1.8544e+001 -1.7618e-002 -6.7332e+003 -3.3193e+000 -2.4924e+005 +# -Range: 0-300 + +1.0000 Mn++ + 1.0000 H2O = MnOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -10.59 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnOH+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mn++ + 1.0000 HPO4-- = MnPO4- +1.0000 H+ + -llnl_gamma 4.0 + log_k -5.1318 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnPO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Mn++ = MnSO4 + -llnl_gamma 3.0 + log_k +2.3529 + -delta_H 14.1168 kJ/mol # Calculated enthalpy of reaction MnSO4 +# Enthalpy of formation: -266.75 kcal/mol + -analytic 2.9448e+002 8.5294e-002 -8.1366e+003 -1.1729e+002 -1.2705e+002 +# -Range: 0-300 + +1.0000 SeO4-- + 1.0000 Mn++ = MnSeO4 + -llnl_gamma 3.0 + log_k +2.4300 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 NH3 = NH4(CH3COO)2- +1.0000 H+ + -llnl_gamma 4.0 + log_k -0.1928 + -delta_H -56.735 kJ/mol # Calculated enthalpy of reaction NH4(CH3COO)2- +# Enthalpy of formation: -265.2 kcal/mol + -analytic 3.7137e+001 -1.2242e-002 -8.4764e+003 -8.4308e+000 1.3883e+006 +# -Range: 0-300 + +1.0000 NH3 + 1.0000 H+ = NH4+ + -llnl_gamma 2.5 + log_k +9.2410 + -delta_H -51.9234 kJ/mol # Calculated enthalpy of reaction NH4+ +# Enthalpy of formation: -31.85 kcal/mol + -analytic -1.4527e+001 -5.0518e-003 3.0447e+003 6.0865e+000 4.7515e+001 +# -Range: 0-300 + +1.0000 NH3 + 1.0000 CH3COOH = NH4CH3COO + -llnl_gamma 3.0 + log_k +4.6964 + -delta_H -48.911 kJ/mol # Calculated enthalpy of reaction NH4CH3COO +# Enthalpy of formation: -147.23 kcal/mol + -analytic 1.4104e+001 -4.3664e-003 -1.0746e+003 -3.6999e+000 4.1428e+005 +# -Range: 0-300 + +1.0000 SO4-- + 1.0000 NH3 + 1.0000 H+ = NH4SO4- + -llnl_gamma 4.0 + log_k +0.9400 + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sb(OH)3 + 1.0000 NH3 = NH4SbO2 +1.0000 H2O + -llnl_gamma 3.0 + log_k -2.5797 + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SbO2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Na+ = Na(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -9.9989 + -delta_H -11.5771 kJ/mol # Calculated enthalpy of reaction Na(CH3COO)2- +# Enthalpy of formation: -292.4 kcal/mol + -analytic -2.9232e+002 -5.5708e-002 9.6601e+003 1.0772e+002 1.5082e+002 +# -Range: 0-300 + +1.0000 O_phthalate-2 + 1.0000 Na+ = Na(O_phthalate)- + -llnl_gamma 4.0 + log_k +0.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na(O_phthalate)- +# Enthalpy of formation: -0 kcal/mol + +2.0000 Na+ + 2.0000 HPO4-- = Na2P2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +0.4437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2P2O7-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Na+ + 1.0000 Al+++ = NaAlO2 +4.0000 H+ + -llnl_gamma 3.0 + log_k -23.6266 + -delta_H 190.326 kJ/mol # Calculated enthalpy of reaction NaAlO2 +# Enthalpy of formation: -277.259 kcal/mol + -analytic 1.2288e+002 3.4921e-002 -1.2808e+004 -4.6046e+001 -1.9990e+002 +# -Range: 0-300 + +1.0000 Na+ + 1.0000 H2O + 1.0000 B(OH)3 = NaB(OH)4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -8.974 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaB(OH)4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Na+ + 1.0000 Br- = NaBr + -llnl_gamma 3.0 + log_k -1.3568 + -delta_H 6.87431 kJ/mol # Calculated enthalpy of reaction NaBr +# Enthalpy of formation: -84.83 kcal/mol + -analytic 1.1871e+002 3.7271e-002 -3.4061e+003 -4.8386e+001 -5.3184e+001 +# -Range: 0-300 + +1.0000 Na+ + 1.0000 CH3COOH = NaCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8606 + -delta_H -0.029288 kJ/mol # Calculated enthalpy of reaction NaCH3COO +# Enthalpy of formation: -173.54 kcal/mol + -analytic 6.4833e+000 -1.8739e-003 -2.0902e+003 -2.6121e+000 2.3990e+005 +# -Range: 0-300 + +1.0000 Na+ + 1.0000 HCO3- = NaCO3- +1.0000 H+ + -llnl_gamma 4.0 + log_k -9.8144 + -delta_H -5.6521 kJ/mol # Calculated enthalpy of reaction NaCO3- +# Enthalpy of formation: -935.885 kJ/mol + -analytic 1.6939e+002 5.3122e-004 -7.6768e+003 -6.2078e+001 -1.1984e+002 +# -Range: 0-300 + +1.0000 Na+ + 1.0000 Cl- = NaCl + -llnl_gamma 3.0 + log_k -0.777 + -delta_H 5.21326 kJ/mol # Calculated enthalpy of reaction NaCl +# Enthalpy of formation: -96.12 kcal/mol + -analytic 1.1398e+002 3.6386e-002 -3.0847e+003 -4.6571e+001 -4.8167e+001 +# -Range: 0-300 + +1.0000 Na+ + 1.0000 F- = NaF + -llnl_gamma 3.0 + log_k -0.9976 + -delta_H 7.20903 kJ/mol # Calculated enthalpy of reaction NaF +# Enthalpy of formation: -135.86 kcal/mol + -analytic 1.2507e+002 3.8619e-002 -3.5436e+003 -5.0787e+001 -5.5332e+001 +# -Range: 0-300 + +1.0000 Na+ + 1.0000 HCO3- = NaHCO3 + -llnl_gamma 3.0 + log_k +0.1541 + -delta_H -13.7741 kJ/mol # Calculated enthalpy of reaction NaHCO3 +# Enthalpy of formation: -944.007 kJ/mol + -analytic -9.0668e+001 -2.9866e-002 2.7947e+003 3.6515e+001 4.7489e+001 +# -Range: 0-200 + +2.0000 HPO4-- + 1.0000 Na+ + 1.0000 H+ = NaHP2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +6.8498 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaHP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Na+ + 1.0000 HPO4-- = NaHPO4- + -llnl_gamma 4.0 + log_k +0.9200 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaHPO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 SiO2 + 1.0000 Na+ + 1.0000 H2O = NaHSiO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -8.304 + -delta_H 11.6524 kJ/mol # Calculated enthalpy of reaction NaHSiO3 +# Enthalpy of formation: -332.74 kcal/mol + -analytic 3.6045e+001 -9.0411e-003 -6.6605e+003 -1.0447e+001 5.8415e+005 +# -Range: 0-300 + +1.0000 Na+ + 1.0000 I- = NaI + -llnl_gamma 3.0 + log_k -1.54 + -delta_H 7.33455 kJ/mol # Calculated enthalpy of reaction NaI +# Enthalpy of formation: -69.28 kcal/mol + -analytic 9.8742e+001 3.2917e-002 -2.7576e+003 -4.0748e+001 -4.3058e+001 +# -Range: 0-300 + +1.0000 Na+ + 1.0000 H2O = NaOH +1.0000 H+ + -llnl_gamma 3.0 + log_k -14.7948 + -delta_H 53.6514 kJ/mol # Calculated enthalpy of reaction NaOH +# Enthalpy of formation: -112.927 kcal/mol + -analytic 8.7326e+001 2.3555e-002 -5.4770e+003 -3.6678e+001 -8.5489e+001 +# -Range: 0-300 + +2.0000 HPO4-- + 1.0000 Na+ = NaP2O7--- +1.0000 H2O + -llnl_gamma 4.0 + log_k -1.4563 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaP2O7-3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Na+ = NaSO4- + -llnl_gamma 4.0 + log_k +0.8200 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaSO4- +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Nd+++ = Nd(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9771 + -delta_H -22.6354 kJ/mol # Calculated enthalpy of reaction Nd(CH3COO)2+ +# Enthalpy of formation: -404.11 kcal/mol + -analytic -2.2128e+001 1.0975e-003 -7.1543e+002 5.8799e+000 4.1748e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Nd+++ = Nd(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.2976 + -delta_H -38.8694 kJ/mol # Calculated enthalpy of reaction Nd(CH3COO)3 +# Enthalpy of formation: -524.09 kcal/mol + -analytic -4.5726e+001 -2.6143e-003 5.9389e+002 1.2679e+001 4.3320e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Nd+++ = Nd(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -8.0576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Nd+++ = Nd(HPO4)2- + -llnl_gamma 4.0 + log_k +9.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +# Redundant with NdO2- +#4.0000 H2O + 1.0000 Nd+++ = Nd(OH)4- +4.0000 H+ +# -llnl_gamma 4.0 +# log_k -37.0803 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)4- +## Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Nd+++ = Nd(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -5.1437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Nd+++ = Nd(SO4)2- + -llnl_gamma 4.0 + log_k -255.7478 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 Nd+++ + 2.0000 H2O = Nd2(OH)2++++ +2.0000 H+ + -llnl_gamma 5.5 + log_k -13.8902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Nd+++ + 1.0000 CH3COOH = NdCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.0891 + -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction NdCH3COO+2 +# Enthalpy of formation: -285.47 kcal/mol + -analytic -1.6006e+001 4.1948e-004 -3.6469e+002 4.9280e+000 2.5187e+005 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 HCO3- = NdCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.6256 + -delta_H 91.6212 kJ/mol # Calculated enthalpy of reaction NdCO3+ +# Enthalpy of formation: -309.5 kcal/mol + -analytic 2.3399e+002 5.3454e-002 -7.0513e+003 -9.2500e+001 -1.1010e+002 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 Cl- = NdCl++ + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction NdCl+2 +# Enthalpy of formation: -203 kcal/mol + -analytic 9.4587e+001 3.9331e-002 -2.4200e+003 -3.9550e+001 -3.7790e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Nd+++ = NdCl2+ + -llnl_gamma 4.0 + log_k +0.0308 + -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction NdCl2+ +# Enthalpy of formation: -241.5 kcal/mol + -analytic 2.5840e+002 8.4118e-002 -7.2056e+003 -1.0477e+002 -1.1251e+002 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Nd+++ = NdCl3 + -llnl_gamma 3.0 + log_k -0.3203 + -delta_H 15.0582 kJ/mol # Calculated enthalpy of reaction NdCl3 +# Enthalpy of formation: -282.7 kcal/mol + -analytic 4.9362e+002 1.3485e-001 -1.4309e+004 -1.9645e+002 -2.2343e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Nd+++ = NdCl4- + -llnl_gamma 4.0 + log_k -0.7447 + -delta_H -3.21331 kJ/mol # Calculated enthalpy of reaction NdCl4- +# Enthalpy of formation: -327 kcal/mol + -analytic 6.0548e+002 1.4227e-001 -1.8055e+004 -2.3765e+002 -2.8191e+002 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 F- = NdF++ + -llnl_gamma 4.5 + log_k +4.3687 + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction NdF+2 +# Enthalpy of formation: -241.2 kcal/mol + -analytic 1.1461e+002 4.3014e-002 -3.2461e+003 -4.5326e+001 -5.0687e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Nd+++ = NdF2+ + -llnl_gamma 4.0 + log_k +7.5646 + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction NdF2+ +# Enthalpy of formation: -323.5 kcal/mol + -analytic 2.7901e+002 8.7910e-002 -7.2424e+003 -1.1046e+002 -1.1309e+002 +# -Range: 0-300 + +3.0000 F- + 1.0000 Nd+++ = NdF3 + -llnl_gamma 3.0 + log_k +9.8809 + -delta_H -8.1588 kJ/mol # Calculated enthalpy of reaction NdF3 +# Enthalpy of formation: -408.9 kcal/mol + -analytic 5.2220e+002 1.4154e-001 -1.3697e+004 -2.0551e+002 -2.1388e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Nd+++ = NdF4- + -llnl_gamma 4.0 + log_k +11.8307 + -delta_H -48.5344 kJ/mol # Calculated enthalpy of reaction NdF4- +# Enthalpy of formation: -498.7 kcal/mol + -analytic 6.1972e+002 1.4620e-001 -1.5869e+004 -2.4175e+002 -2.4780e+002 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 HPO4-- + 1.0000 H+ = NdH2PO4++ + -llnl_gamma 4.5 + log_k +9.5152 + -delta_H -15.736 kJ/mol # Calculated enthalpy of reaction NdH2PO4+2 +# Enthalpy of formation: -479.076 kcal/mol + -analytic 1.2450e+002 6.4953e-002 -4.0524e+002 -5.3728e+001 -6.3603e+000 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 HCO3- = NdHCO3++ + -llnl_gamma 4.5 + log_k +1.8457 + -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction NdHCO3+2 +# Enthalpy of formation: -329.2 kcal/mol + -analytic 5.5530e+001 3.3254e-002 -7.3859e+002 -2.4690e+001 -1.1542e+001 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 HPO4-- = NdHPO4+ + -llnl_gamma 4.0 + log_k +5.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Nd+++ + 1.0000 NO3- = NdNO3++ + -llnl_gamma 4.5 + log_k +0.7902 + -delta_H -27.8529 kJ/mol # Calculated enthalpy of reaction NdNO3+2 +# Enthalpy of formation: -222.586 kcal/mol + -analytic 3.3850e+001 2.7112e-002 1.4404e+003 -1.8570e+001 2.2466e+001 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 H2O = NdO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -17.0701 + -delta_H 116.386 kJ/mol # Calculated enthalpy of reaction NdO+ +# Enthalpy of formation: -207 kcal/mol + -analytic 1.8961e+002 3.0563e-002 -1.4153e+004 -6.8024e+001 -2.2089e+002 +# -Range: 0-300 +2.0000 H2O + 1.0000 Nd+++ = NdO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -37.0721 + -delta_H 298.88 kJ/mol # Calculated enthalpy of reaction NdO2- +# Enthalpy of formation: -231.7 kcal/mol + -analytic 1.9606e+002 1.4784e-002 -2.1838e+004 -6.6399e+001 -3.4082e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Nd+++ = NdO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -26.3702 + -delta_H 230.681 kJ/mol # Calculated enthalpy of reaction NdO2H +# Enthalpy of formation: -248 kcal/mol + -analytic 3.4617e+002 4.5955e-002 -2.3960e+004 -1.2361e+002 -3.7398e+002 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 H2O = NdOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -8.1274 + -delta_H 80.8223 kJ/mol # Calculated enthalpy of reaction NdOH+2 +# Enthalpy of formation: -215.5 kcal/mol + -analytic 6.6963e+001 1.2182e-002 -6.2797e+003 -2.3300e+001 -9.8008e+001 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 HPO4-- = NdPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -0.5218 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Nd+++ = NdSO4+ + -llnl_gamma 4.0 + log_k +3.6430 + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction NdSO4+ +# Enthalpy of formation: -379.1 kcal/mol + -analytic 3.0267e+002 8.5362e-002 -8.9211e+003 -1.1902e+002 -1.3929e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Ni++ = Ni(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.1908 + -delta_H -25.8571 kJ/mol # Calculated enthalpy of reaction Ni(CH3COO)2 +# Enthalpy of formation: -251.28 kcal/mol + -analytic -2.9660e+001 1.0643e-003 -1.0060e+003 7.9358e+000 5.2562e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Ni++ = Ni(CH3COO)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -11.3543 + -delta_H -53.6807 kJ/mol # Calculated enthalpy of reaction Ni(CH3COO)3- +# Enthalpy of formation: -374.03 kcal/mol + -analytic 5.0850e+001 -8.2435e-003 -1.3049e+004 -1.5410e+001 1.9704e+006 +# -Range: 0-300 + +2.0000 NH3 + 1.0000 Ni++ = Ni(NH3)2++ + -llnl_gamma 4.5 + log_k +5.0598 + -delta_H -29.7505 kJ/mol # Calculated enthalpy of reaction Ni(NH3)2+2 +# Enthalpy of formation: -246.398 kJ/mol + -analytic 1.0002e+002 5.2896e-003 -2.5967e+003 -3.5485e+001 -4.0548e+001 +# -Range: 0-300 + +6.0000 NH3 + 1.0000 Ni++ = Ni(NH3)6++ + -llnl_gamma 4.5 + log_k +8.7344 + -delta_H -88.0436 kJ/mol # Calculated enthalpy of reaction Ni(NH3)6+2 +# Enthalpy of formation: -630.039 kJ/mol + -analytic 1.9406e+002 -1.3467e-002 -5.2321e+003 -6.6168e+001 -8.1699e+001 +# -Range: 0-300 + +2.0000 NO3- + 1.0000 Ni++ = Ni(NO3)2 + -llnl_gamma 3.0 + log_k +0.1899 + -delta_H -1.54153 kJ/mol # Calculated enthalpy of reaction Ni(NO3)2 +# Enthalpy of formation: -469.137 kJ/mol + -analytic -4.2544e+001 -1.0101e-002 1.3496e+003 1.6663e+001 2.2933e+001 +# -Range: 0-200 + +2.0000 H2O + 1.0000 Ni++ = Ni(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -19.9902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Ni++ = Ni(OH)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -30.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)3- +# Enthalpy of formation: -0 kcal/mol + +2.0000 Ni++ + 1.0000 H2O = Ni2OH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -10.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2OH+3 +# Enthalpy of formation: -0 kcal/mol + +4.0000 Ni++ + 4.0000 H2O = Ni4(OH)4++++ +4.0000 H+ + -llnl_gamma 5.5 + log_k -27.6803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ni++ + 1.0000 Br- = NiBr+ + -llnl_gamma 4.0 + log_k -0.37 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiBr+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ni++ + 1.0000 CH3COOH = NiCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.3278 + -delta_H -10.2508 kJ/mol # Calculated enthalpy of reaction NiCH3COO+ +# Enthalpy of formation: -131.45 kcal/mol + -analytic -3.3110e+000 1.6895e-003 -1.0556e+003 2.7168e-002 2.6350e+005 +# -Range: 0-300 + +1.0000 Ni++ + 1.0000 Cl- = NiCl+ + -llnl_gamma 4.0 + log_k -0.9962 + -delta_H 5.99567 kJ/mol # Calculated enthalpy of reaction NiCl+ +# Enthalpy of formation: -51.4 kcal/mol + -analytic 9.5370e+001 3.8521e-002 -2.1746e+003 -4.0629e+001 -3.3961e+001 +# -Range: 0-300 + +2.0000 HPO4-- + 1.0000 Ni++ + 1.0000 H+ = NiHP2O7- +1.0000 H2O + -llnl_gamma 4.0 + log_k +9.2680 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiHP2O7- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ni++ + 1.0000 NO3- = NiNO3+ + -llnl_gamma 4.0 + log_k +0.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiNO3+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Ni++ = NiP2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +3.1012 + -delta_H 9.68819 kJ/mol # Calculated enthalpy of reaction NiP2O7-2 +# Enthalpy of formation: -2342.61 kJ/mol + -analytic 4.6809e+002 1.0985e-001 -1.4310e+004 -1.8173e+002 -2.2344e+002 +# -Range: 0-300 + +1.0000 SO4-- + 1.0000 Ni++ = NiSO4 + -llnl_gamma 3.0 + log_k +2.1257 + -delta_H 2.36814 kJ/mol # Calculated enthalpy of reaction NiSO4 +# Enthalpy of formation: -229.734 kcal/mol + -analytic 6.1187e+001 2.4211e-002 -1.2180e+003 -2.5130e+001 -2.0705e+001 +# -Range: 0-200 + +1.0000 SeO4-- + 1.0000 Ni++ = NiSeO4 + -llnl_gamma 3.0 + log_k +2.6700 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiSeO4 +# Enthalpy of formation: -0 kcal/mol + +5.0000 HCO3- + 1.0000 Np++++ = Np(CO3)5-6 +5.0000 H+ + -llnl_gamma 4.0 + log_k -13.344 + -delta_H 92.7067 kJ/mol # Calculated enthalpy of reaction Np(CO3)5-6 +# Enthalpy of formation: -935.22 kcal/mol + -analytic 6.3005e+002 2.3388e-001 -1.8328e+004 -2.6334e+002 -2.8618e+002 +# -Range: 0-300 + +2.0000 HPO4-- + 2.0000 H+ + 1.0000 Np+++ = Np(H2PO4)2+ + -llnl_gamma 4.0 + log_k +3.7000 + -delta_H -1.55258 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)2+ +# Enthalpy of formation: -743.981 kcal/mol + -analytic 7.8161e+002 2.8446e-001 -1.2330e+004 -3.3194e+002 -2.1056e+002 +# -Range: 25-150 + +3.0000 HPO4-- + 3.0000 H+ + 1.0000 Np+++ = Np(H2PO4)3 + -llnl_gamma 3.0 + log_k +5.6000 + -delta_H -21.8575 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)3 +# Enthalpy of formation: -1057.65 kcal/mol + -analytic 1.5150e+003 4.4939e-001 -3.2766e+004 -6.1975e+002 -5.5934e+002 +# -Range: 25-150 + +2.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)2 + -llnl_gamma 3.0 + log_k +23.7000 + -delta_H -35.24 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 +# Enthalpy of formation: -758.94 kcal/mol + -analytic 4.7722e+002 2.1099e-001 -4.7296e+003 -2.0229e+002 -8.0831e+001 +# -Range: 25-150 + +3.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)3-- + -llnl_gamma 4.0 + log_k +33.4000 + -delta_H -44.9093 kJ/mol # Calculated enthalpy of reaction Np(HPO4)3-2 +# Enthalpy of formation: -1070.07 kcal/mol + -analytic -1.5951e+003 -3.6579e-001 5.1343e+004 6.3262e+002 8.7619e+002 +# -Range: 25-150 + +4.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)4---- + -llnl_gamma 4.0 + log_k +43.2000 + -delta_H -67.0803 kJ/mol # Calculated enthalpy of reaction Np(HPO4)4-4 +# Enthalpy of formation: -1384.18 kcal/mol + -analytic 5.8359e+003 1.5194e+000 -1.6349e+005 -2.3025e+003 -2.7903e+003 +# -Range: 25-150 + +5.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)5-6 + -llnl_gamma 4.0 + log_k +52.0000 + -delta_H -83.5401 kJ/mol # Calculated enthalpy of reaction Np(HPO4)5-6 +# Enthalpy of formation: -1696.93 kcal/mol + -analytic -1.8082e+003 -2.0018e-001 7.5155e+004 6.7400e+002 1.2824e+003 +# -Range: 25-150 + +2.0000 H2O + 1.0000 Np++++ = Np(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k -2.8 + -delta_H 77.0669 kJ/mol # Calculated enthalpy of reaction Np(OH)2+2 +# Enthalpy of formation: -251.102 kcal/mol + -analytic 2.9299e+003 6.5812e-001 -9.5085e+004 -1.1356e+003 -1.6227e+003 +# -Range: 25-150 + +3.0000 H2O + 1.0000 Np++++ = Np(OH)3+ +3.0000 H+ + -llnl_gamma 4.0 + log_k -5.8 + -delta_H 99.5392 kJ/mol # Calculated enthalpy of reaction Np(OH)3+ +# Enthalpy of formation: -314.048 kcal/mol + -analytic -4.7723e+003 -1.1810e+000 1.3545e+005 1.8850e+003 2.3117e+003 +# -Range: 25-150 + +4.0000 H2O + 1.0000 Np++++ = Np(OH)4 +4.0000 H+ + -llnl_gamma 3.0 + log_k -9.6 + -delta_H 109.585 kJ/mol # Calculated enthalpy of reaction Np(OH)4 +# Enthalpy of formation: -379.964 kcal/mol + -analytic -5.5904e+003 -1.3639e+000 1.6112e+005 2.2013e+003 2.7498e+003 +# -Range: 25-150 + +2.0000 SO4-- + 1.0000 Np++++ = Np(SO4)2 + -llnl_gamma 3.0 + log_k +9.9000 + -delta_H 40.005 kJ/mol # Calculated enthalpy of reaction Np(SO4)2 +# Enthalpy of formation: -558.126 kcal/mol + -analytic -9.0765e+002 -1.8494e-001 2.7951e+004 3.5521e+002 4.7702e+002 +# -Range: 25-150 + +1.0000 Np++++ + 1.0000 Cl- = NpCl+++ + -llnl_gamma 5.0 + log_k +0.2000 + -delta_H 20.3737 kJ/mol # Calculated enthalpy of reaction NpCl+3 +# Enthalpy of formation: -167.951 kcal/mol + -analytic 8.3169e+002 2.6267e-001 -2.1618e+004 -3.3838e+002 -3.6898e+002 +# -Range: 25-150 + +2.0000 Cl- + 1.0000 Np++++ = NpCl2++ + -llnl_gamma 4.5 + log_k -0.1 + -delta_H 94.5853 kJ/mol # Calculated enthalpy of reaction NpCl2+2 +# Enthalpy of formation: -190.147 kcal/mol + -analytic -1.5751e+003 -3.8759e-001 4.2054e+004 6.2619e+002 7.1777e+002 +# -Range: 25-150 + +1.0000 Np++++ + 1.0000 F- = NpF+++ + -llnl_gamma 5.0 + log_k +8.7000 + -delta_H -3.43746 kJ/mol # Calculated enthalpy of reaction NpF+3 +# Enthalpy of formation: -213.859 kcal/mol + -analytic 2.7613e+000 1.3498e-003 -1.6411e+003 2.9074e+000 3.4192e+005 +# -Range: 25-150 + +2.0000 F- + 1.0000 Np++++ = NpF2++ + -llnl_gamma 4.5 + log_k +15.4000 + -delta_H 6.03094 kJ/mol # Calculated enthalpy of reaction NpF2+2 +# Enthalpy of formation: -291.746 kcal/mol + -analytic -2.6793e+002 -4.2056e-002 9.7952e+003 1.0629e+002 1.6715e+002 +# -Range: 25-150 + +1.0000 Np+++ + 1.0000 HPO4-- + 1.0000 H+ = NpH2PO4++ + -llnl_gamma 4.5 + log_k +2.4000 + -delta_H 6.0874 kJ/mol # Calculated enthalpy of reaction NpH2PO4+2 +# Enthalpy of formation: -433.34 kcal/mol + -analytic 6.0731e+003 1.4733e+000 -1.7919e+005 -2.3880e+003 -3.0582e+003 +# -Range: 25-150 + +1.0000 Np++++ + 1.0000 HPO4-- = NpHPO4++ + -llnl_gamma 4.5 + log_k +12.9000 + -delta_H 7.54554 kJ/mol # Calculated enthalpy of reaction NpHPO4+2 +# Enthalpy of formation: -439.899 kcal/mol + -analytic -7.2792e+003 -1.7476e+000 2.1770e+005 2.8624e+003 3.7154e+003 +# -Range: 25-150 + +2.0000 HCO3- + 1.0000 NpO2++ = NpO2(CO3)2-- +2.0000 H+ + -llnl_gamma 4.0 + log_k -6.6576 + -delta_H 57.2588 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-2 +# Enthalpy of formation: -521.77 kcal/mol + -analytic 2.6597e+002 7.5850e-002 -9.9987e+003 -1.0576e+002 -1.5610e+002 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 NpO2+ = NpO2(CO3)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -13.6576 + -delta_H 58.1553 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-3 +# Enthalpy of formation: -549.642 kcal/mol + -analytic 2.6012e+002 7.3174e-002 -1.0250e+004 -1.0556e+002 -1.6002e+002 +# -Range: 0-300 + +3.0000 HCO3- + 1.0000 NpO2+ = NpO2(CO3)3-5 +3.0000 H+ + -llnl_gamma 4.0 + log_k -22.4864 + -delta_H 70.176 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-5 +# Enthalpy of formation: -711.667 kcal/mol + -analytic 3.7433e+002 1.2938e-001 -1.2791e+004 -1.5861e+002 -1.9970e+002 +# -Range: 0-300 + +3.0000 HCO3- + 1.0000 NpO2++ = NpO2(CO3)3---- +3.0000 H+ + -llnl_gamma 4.0 + log_k -10.5864 + -delta_H 3.14711 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-4 +# Enthalpy of formation: -699.601 kcal/mol + -analytic 3.7956e+002 1.1163e-001 -1.0607e+004 -1.5674e+002 -1.6562e+002 +# -Range: 0-300 + +1.0000 NpO2+ + 1.0000 HCO3- = NpO2CO3- +1.0000 H+ + -llnl_gamma 4.0 + log_k -5.7288 + -delta_H 69.1634 kJ/mol # Calculated enthalpy of reaction NpO2CO3- +# Enthalpy of formation: -382.113 kcal/mol + -analytic 1.4634e+002 2.6576e-002 -8.2036e+003 -5.3534e+001 -1.2805e+002 +# -Range: 0-300 + +1.0000 NpO2+ + 1.0000 Cl- = NpO2Cl + -llnl_gamma 3.0 + log_k -0.4 + -delta_H 15.4492 kJ/mol # Calculated enthalpy of reaction NpO2Cl +# Enthalpy of formation: -269.986 kcal/mol + -analytic 4.5109e+002 9.0437e-002 -1.5453e+004 -1.7241e+002 -2.6371e+002 +# -Range: 25-150 + +1.0000 NpO2++ + 1.0000 Cl- = NpO2Cl+ + -llnl_gamma 4.0 + log_k -0.2 + -delta_H 11.6239 kJ/mol # Calculated enthalpy of reaction NpO2Cl+ +# Enthalpy of formation: -242.814 kcal/mol + -analytic -1.2276e+003 -2.5435e-001 3.8507e+004 4.7447e+002 6.5715e+002 +# -Range: 25-150 + +1.0000 NpO2+ + 1.0000 F- = NpO2F + -llnl_gamma 3.0 + log_k +1.0000 + -delta_H 34.2521 kJ/mol # Calculated enthalpy of reaction NpO2F +# Enthalpy of formation: -305.709 kcal/mol + -analytic -1.9364e+002 -4.4083e-002 4.5602e+003 7.7791e+001 7.7840e+001 +# -Range: 25-150 + +1.0000 NpO2++ + 1.0000 F- = NpO2F+ + -llnl_gamma 4.0 + log_k +4.6000 + -delta_H 0.883568 kJ/mol # Calculated enthalpy of reaction NpO2F+ +# Enthalpy of formation: -285.598 kcal/mol + -analytic 9.6320e+002 2.4799e-001 -2.7614e+004 -3.7985e+002 -4.7128e+002 +# -Range: 25-150 + +2.0000 F- + 1.0000 NpO2++ = NpO2F2 + -llnl_gamma 3.0 + log_k +7.8000 + -delta_H 2.60319 kJ/mol # Calculated enthalpy of reaction NpO2F2 +# Enthalpy of formation: -365.337 kcal/mol + -analytic 1.9648e+002 6.4083e-002 -4.5601e+003 -7.7790e+001 -7.7840e+001 +# -Range: 25-150 + +1.0000 NpO2+ + 1.0000 HPO4-- + 1.0000 H+ = NpO2H2PO4 + -llnl_gamma 3.0 + log_k +0.6000 + -delta_H 18.717 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4 +# Enthalpy of formation: -538.087 kcal/mol + -analytic 1.0890e+003 2.7738e-001 -3.0654e+004 -4.3171e+002 -5.2317e+002 +# -Range: 25-150 + +1.0000 NpO2++ + 1.0000 HPO4-- + 1.0000 H+ = NpO2H2PO4+ + -llnl_gamma 4.0 + log_k +2.3000 + -delta_H 9.31014 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4+ +# Enthalpy of formation: -512.249 kcal/mol + -analytic -5.6996e+003 -1.4008e+000 1.6898e+005 2.2441e+003 2.8838e+003 +# -Range: 25-150 + +1.0000 NpO2++ + 1.0000 HPO4-- = NpO2HPO4 + -llnl_gamma 3.0 + log_k +8.2000 + -delta_H -6.47609 kJ/mol # Calculated enthalpy of reaction NpO2HPO4 +# Enthalpy of formation: -516.022 kcal/mol + -analytic 4.8515e+003 1.2189e+000 -1.4069e+005 -1.9135e+003 -2.4011e+003 +# -Range: 25-150 + +1.0000 NpO2+ + 1.0000 HPO4-- = NpO2HPO4- + -llnl_gamma 4.0 + log_k +3.5000 + -delta_H 49.8668 kJ/mol # Calculated enthalpy of reaction NpO2HPO4- +# Enthalpy of formation: -530.642 kcal/mol + -analytic -4.1705e+003 -9.9302e-001 1.2287e+005 1.6399e+003 2.0969e+003 +# -Range: 25-150 + +1.0000 NpO2+ + 1.0000 H2O = NpO2OH +1.0000 H+ + -llnl_gamma 3.0 + log_k -8.9 + -delta_H 43.6285 kJ/mol # Calculated enthalpy of reaction NpO2OH +# Enthalpy of formation: -291.635 kcal/mol + -analytic -4.5710e+002 -1.2286e-001 1.0640e+004 1.8151e+002 1.8163e+002 +# -Range: 25-150 + +1.0000 NpO2++ + 1.0000 H2O = NpO2OH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -5.2 + -delta_H 43.3805 kJ/mol # Calculated enthalpy of reaction NpO2OH+ +# Enthalpy of formation: -263.608 kcal/mol + -analytic 1.7485e+002 4.0017e-002 -7.5154e+003 -6.7399e+001 -1.2823e+002 +# -Range: 25-150 + +1.0000 SO4-- + 1.0000 NpO2++ = NpO2SO4 + -llnl_gamma 3.0 + log_k +3.3000 + -delta_H 19.8789 kJ/mol # Calculated enthalpy of reaction NpO2SO4 +# Enthalpy of formation: -418.308 kcal/mol + -analytic -1.5624e+002 7.3296e-003 6.7555e+003 5.4435e+001 1.1527e+002 +# -Range: 25-150 + +1.0000 SO4-- + 1.0000 NpO2+ = NpO2SO4- + -llnl_gamma 4.0 + log_k +0.4000 + -delta_H 19.1395 kJ/mol # Calculated enthalpy of reaction NpO2SO4- +# Enthalpy of formation: -446.571 kcal/mol + -analytic -3.1804e+002 -9.3472e-002 7.6002e+003 1.2965e+002 1.2973e+002 +# -Range: 25-150 + +1.0000 Np+++ + 1.0000 H2O = NpOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7 + -delta_H 50.1031 kJ/mol # Calculated enthalpy of reaction NpOH+2 +# Enthalpy of formation: -182.322 kcal/mol + -analytic 1.4062e+002 3.2671e-002 -6.7555e+003 -5.4435e+001 -1.1526e+002 +# -Range: 25-150 + +1.0000 Np++++ + 1.0000 H2O = NpOH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -1 + -delta_H 51.0089 kJ/mol # Calculated enthalpy of reaction NpOH+3 +# Enthalpy of formation: -189.013 kcal/mol + -analytic -1.8373e+002 -5.2443e-002 2.7025e+003 7.6503e+001 4.6154e+001 +# -Range: 25-150 + +1.0000 SO4-- + 1.0000 Np++++ = NpSO4++ + -llnl_gamma 4.5 + log_k +5.5000 + -delta_H 20.7377 kJ/mol # Calculated enthalpy of reaction NpSO4+2 +# Enthalpy of formation: -345.331 kcal/mol + -analytic 3.9477e+002 1.1981e-001 -1.0978e+004 -1.5687e+002 -1.8736e+002 +# -Range: 25-150 + +1.0000 H2O = OH- +1.0000 H+ + -llnl_gamma 3.5 + log_k -13.9951 + -delta_H 55.8146 kJ/mol # Calculated enthalpy of reaction OH- +# Enthalpy of formation: -54.977 kcal/mol + -analytic -6.7506e+001 -3.0619e-002 -1.9901e+003 2.8004e+001 -3.1033e+001 +# -Range: 0-300 + +2.0000 HPO4-- = P2O7---- +1.0000 H2O + -llnl_gamma 4.0 + log_k -3.7463 + -delta_H 27.2256 kJ/mol # Calculated enthalpy of reaction P2O7-4 +# Enthalpy of formation: -2271.1 kJ/mol + -analytic 4.0885e+002 1.3243e-001 -1.1373e+004 -1.6727e+002 -1.7758e+002 +# -Range: 0-300 + +3.0000 H+ + 1.0000 HPO4-- = PH4+ +2.0000 O2 + -llnl_gamma 4.0 + log_k -212.7409 + -delta_H 0 # Not possible to calculate enthalpy of reaction PH4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 F- = PO3F-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +7.1993 + -delta_H 0 # Not possible to calculate enthalpy of reaction PO3F-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- = PO4--- +1.0000 H+ + -llnl_gamma 4.0 + log_k -12.3218 + -delta_H 14.7068 kJ/mol # Calculated enthalpy of reaction PO4-3 +# Enthalpy of formation: -305.3 kcal/mol + -analytic -7.6170e+001 -3.3574e-002 1.3405e+002 2.9658e+001 2.1140e+000 +# -Range: 0-300 + +2.0000 BrO3- + 1.0000 Pb++ = Pb(BrO3)2 + -llnl_gamma 3.0 + log_k +5.1939 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(BrO3)2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Pb++ = Pb(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -6.1133 + -delta_H 10.5437 kJ/mol # Calculated enthalpy of reaction Pb(CH3COO)2 +# Enthalpy of formation: -229.46 kcal/mol + -analytic -1.7315e+001 -1.0618e-003 -3.6365e+003 6.9263e+000 5.8659e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Pb++ = Pb(CH3COO)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -8.972 + -delta_H -2.84512 kJ/mol # Calculated enthalpy of reaction Pb(CH3COO)3- +# Enthalpy of formation: -348.76 kcal/mol + -analytic 1.2417e+001 -3.1481e-003 -9.4152e+003 -1.6846e+000 1.3623e+006 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Pb++ = Pb(CO3)2-- +2.0000 H+ + -llnl_gamma 4.0 + log_k -11.2576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 ClO3- + 1.0000 Pb++ = Pb(ClO3)2 + -llnl_gamma 3.0 + log_k -0.5133 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(ClO3)2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Pb++ = Pb(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -17.0902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Pb++ = Pb(OH)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -28.0852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)3- +# Enthalpy of formation: -0 kcal/mol + +2.0000 Thiocyanate- + 1.0000 Pb++ = Pb(Thiocyanate)2 + -llnl_gamma 3.0 + log_k +1.2455 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 Pb++ + 1.0000 H2O = Pb2OH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -6.3951 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2OH+3 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 3.0000 Pb++ = Pb3(OH)4++ +4.0000 H+ + -llnl_gamma 4.5 + log_k -23.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(OH)4+2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 Pb++ + 4.0000 H2O = Pb4(OH)4++++ +4.0000 H+ + -llnl_gamma 5.5 + log_k -20.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol + +8.0000 H2O + 6.0000 Pb++ = Pb6(OH)8++++ +8.0000 H+ + -llnl_gamma 5.5 + log_k -43.5606 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb6(OH)8+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 Br- = PbBr+ + -llnl_gamma 4.0 + log_k +1.1831 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 Br- + 1.0000 Pb++ = PbBr2 + -llnl_gamma 3.0 + log_k +1.5062 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 Br- + 1.0000 Pb++ = PbBr3- + -llnl_gamma 4.0 + log_k +1.2336 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr3- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 BrO3- = PbBrO3+ + -llnl_gamma 4.0 + log_k +1.9373 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 CH3COOH = PbCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.3603 + -delta_H -2.33147e-15 kJ/mol # Calculated enthalpy of reaction PbCH3COO+ +# Enthalpy of formation: -115.88 kcal/mol + -analytic -2.6822e+001 1.0992e-003 7.3688e+002 8.4407e+000 7.0266e+004 +# -Range: 0-300 + +1.0000 Pb++ + 1.0000 HCO3- = PbCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -3.7488 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 Cl- = PbCl+ + -llnl_gamma 4.0 + log_k +1.4374 + -delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+ +# Enthalpy of formation: -38.63 kcal/mol + -analytic 1.1948e+002 4.3527e-002 -2.7666e+003 -4.9190e+001 -4.3206e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Pb++ = PbCl2 + -llnl_gamma 3.0 + log_k +2.0026 + -delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2 +# Enthalpy of formation: -77.7 kcal/mol + -analytic 2.2537e+002 7.7574e-002 -5.5112e+003 -9.2131e+001 -8.6064e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Pb++ = PbCl3- + -llnl_gamma 4.0 + log_k +1.6881 + -delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3- +# Enthalpy of formation: -117.7 kcal/mol + -analytic 2.5254e+002 8.9159e-002 -6.0116e+003 -1.0395e+002 -9.3880e+001 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Pb++ = PbCl4-- + -llnl_gamma 4.0 + log_k +1.4909 + -delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2 +# Enthalpy of formation: -161.23 kcal/mol + -analytic 1.4048e+002 7.6332e-002 -1.1507e+003 -6.3786e+001 -1.7997e+001 +# -Range: 0-300 + +1.0000 Pb++ + 1.0000 ClO3- = PbClO3+ + -llnl_gamma 4.0 + log_k -0.2208 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbClO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 F- = PbF+ + -llnl_gamma 4.0 + log_k +0.8284 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 Pb++ = PbF2 + -llnl_gamma 3.0 + log_k +1.6132 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 HPO4-- + 1.0000 H+ = PbH2PO4+ + -llnl_gamma 4.0 + log_k +1.5000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 HPO4-- = PbHPO4 + -llnl_gamma 3.0 + log_k +3.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 I- = PbI+ + -llnl_gamma 4.0 + log_k +1.9597 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 I- + 1.0000 Pb++ = PbI2 + -llnl_gamma 3.0 + log_k +2.7615 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 I- + 1.0000 Pb++ = PbI3- + -llnl_gamma 4.0 + log_k +3.3355 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 I- + 1.0000 Pb++ = PbI4-- + -llnl_gamma 4.0 + log_k +4.0672 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 NO3- = PbNO3+ + -llnl_gamma 4.0 + log_k +1.2271 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbNO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 H2O = PbOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -7.6951 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Pb++ = PbP2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +7.4136 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Thiocyanate- + 1.0000 Pb++ = PbThiocyanate+ + -llnl_gamma 4.0 + log_k +0.9827 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbThiocyanate+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pd++ + 1.0000 Cl- = PdCl+ + -llnl_gamma 4.0 + log_k +6.0993 + -delta_H -31.995 kJ/mol # Calculated enthalpy of reaction PdCl+ +# Enthalpy of formation: -5.5 kcal/mol + -analytic 7.2852e+001 3.6886e-002 7.3102e+002 -3.2402e+001 1.1385e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Pd++ = PdCl2 + -llnl_gamma 3.0 + log_k +10.7327 + -delta_H -66.1658 kJ/mol # Calculated enthalpy of reaction PdCl2 +# Enthalpy of formation: -53.6 kcal/mol + -analytic 1.6849e+002 7.9321e-002 8.2874e+002 -7.4416e+001 1.2882e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Pd++ = PdCl3- + -llnl_gamma 4.0 + log_k +13.0937 + -delta_H -101.592 kJ/mol # Calculated enthalpy of reaction PdCl3- +# Enthalpy of formation: -102 kcal/mol + -analytic 4.5978e+001 6.2999e-002 6.9333e+003 -3.0257e+001 1.0817e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Pd++ = PdCl4-- + -llnl_gamma 4.0 + log_k +15.1615 + -delta_H -152.08 kJ/mol # Calculated enthalpy of reaction PdCl4-2 +# Enthalpy of formation: -154 kcal/mol + -analytic -3.2209e+001 5.3432e-002 1.2180e+004 -3.7814e+000 1.9006e+002 +# -Range: 0-300 + +1.0000 Pd++ + 1.0000 H2O = PdO +2.0000 H+ + -llnl_gamma 3.0 + log_k -2.19 + -delta_H 6.43081 kJ/mol # Calculated enthalpy of reaction PdO +# Enthalpy of formation: -24.7 kcal/mol + -analytic 1.3587e+002 2.9292e-002 -4.6645e+003 -5.2997e+001 -7.2825e+001 +# -Range: 0-300 + +1.0000 Pd++ + 1.0000 H2O = PdOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -1.0905 + -delta_H -3.19239 kJ/mol # Calculated enthalpy of reaction PdOH+ +# Enthalpy of formation: -27 kcal/mol + -analytic 1.4291e+001 5.8382e-003 -1.9881e+002 -6.6475e+000 -3.1065e+000 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Pm+++ = Pm(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.9576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Pm+++ = Pm(HPO4)2- + -llnl_gamma 4.0 + log_k +9.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Pm+++ = Pm(OH)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.7902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)2+ +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Pm+++ = Pm(OH)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -26.1852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Pm+++ = Pm(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.6837 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Pm+++ = Pm(SO4)2- + -llnl_gamma 4.0 + log_k +5.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 HCO3- = PmCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.6288 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmCO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 Cl- = PmCl++ + -llnl_gamma 4.5 + log_k +0.3400 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmCl+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 F- = PmF++ + -llnl_gamma 4.5 + log_k +3.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmF+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 HPO4-- + 1.0000 H+ = PmH2PO4++ + -llnl_gamma 4.5 + log_k +9.6054 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmH2PO4+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 HCO3- = PmHCO3++ + -llnl_gamma 4.5 + log_k +2.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmHCO3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 HPO4-- = PmHPO4+ + -llnl_gamma 4.0 + log_k +5.5000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 NO3- = PmNO3++ + -llnl_gamma 4.5 + log_k +1.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmNO3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 H2O = PmOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.9951 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmOH+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 HPO4-- = PmPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -0.3718 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Pm+++ = PmSO4+ + -llnl_gamma 4.0 + log_k +3.5000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmSO4+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Pr+++ = Pr(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.8525 + -delta_H -23.8906 kJ/mol # Calculated enthalpy of reaction Pr(CH3COO)2+ +# Enthalpy of formation: -406.71 kcal/mol + -analytic -1.6464e+001 6.2989e-004 -4.4771e+002 3.6947e+000 3.3816e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Pr+++ = Pr(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.2023 + -delta_H -40.3756 kJ/mol # Calculated enthalpy of reaction Pr(CH3COO)3 +# Enthalpy of formation: -526.75 kcal/mol + -analytic -1.2007e+001 4.9332e-004 0.0000e+000 0.0000e+000 3.2789e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Pr+++ = Pr(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -8.1076 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Pr+++ = Pr(HPO4)2- + -llnl_gamma 4.0 + log_k +8.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Pr+++ = Pr(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -5.5637 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Pr+++ = Pr(SO4)2- + -llnl_gamma 4.0 + log_k +4.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pr+++ + 1.0000 CH3COOH = PrCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.0451 + -delta_H -12.4683 kJ/mol # Calculated enthalpy of reaction PrAcetate+2 +# Enthalpy of formation: -287.88 kcal/mol + -analytic -8.5624e+000 9.3878e-004 -5.7551e+002 2.2087e+000 2.4126e+005 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 HCO3- = PrCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.7722 + -delta_H 92.458 kJ/mol # Calculated enthalpy of reaction PrCO3+ +# Enthalpy of formation: -311.6 kcal/mol + -analytic 2.2079e+002 5.2156e-002 -6.5821e+003 -8.7701e+001 -1.0277e+002 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 Cl- = PrCl++ + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction PrCl+2 +# Enthalpy of formation: -205.3 kcal/mol + -analytic 7.5152e+001 3.7446e-002 -1.6661e+003 -3.2490e+001 -2.6020e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Pr+++ = PrCl2+ + -llnl_gamma 4.0 + log_k +0.0308 + -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction PrCl2+ +# Enthalpy of formation: -243.8 kcal/mol + -analytic 2.2848e+002 8.1250e-002 -6.0401e+003 -9.3909e+001 -9.4318e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Pr+++ = PrCl3 + -llnl_gamma 3.0 + log_k -0.3203 + -delta_H 14.2214 kJ/mol # Calculated enthalpy of reaction PrCl3 +# Enthalpy of formation: -285.2 kcal/mol + -analytic 4.5016e+002 1.3095e-001 -1.2588e+004 -1.8075e+002 -1.9656e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Pr+++ = PrCl4- + -llnl_gamma 4.0 + log_k -0.7447 + -delta_H -4.05011 kJ/mol # Calculated enthalpy of reaction PrCl4- +# Enthalpy of formation: -329.5 kcal/mol + -analytic 5.4245e+002 1.3647e-001 -1.5564e+004 -2.1485e+002 -2.4302e+002 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 F- = PrF++ + -llnl_gamma 4.5 + log_k +4.2221 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction PrF+2 +# Enthalpy of formation: -243.4 kcal/mol + -analytic 9.5146e+001 4.1115e-002 -2.5463e+003 -3.8236e+001 -3.9760e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Pr+++ = PrF2+ + -llnl_gamma 4.0 + log_k +7.3447 + -delta_H 14.644 kJ/mol # Calculated enthalpy of reaction PrF2+ +# Enthalpy of formation: -325.6 kcal/mol + -analytic 2.4997e+002 8.5251e-002 -6.1908e+003 -9.9912e+001 -9.6675e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Pr+++ = PrF3 + -llnl_gamma 3.0 + log_k +9.6610 + -delta_H -6.4852 kJ/mol # Calculated enthalpy of reaction PrF3 +# Enthalpy of formation: -410.8 kcal/mol + -analytic 4.7885e+002 1.3764e-001 -1.2080e+004 -1.8980e+002 -1.8864e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Pr+++ = PrF4- + -llnl_gamma 4.0 + log_k +11.5375 + -delta_H -47.2792 kJ/mol # Calculated enthalpy of reaction PrF4- +# Enthalpy of formation: -500.7 kcal/mol + -analytic 5.5774e+002 1.4067e-001 -1.3523e+004 -2.1933e+002 -2.1118e+002 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 HPO4-- + 1.0000 H+ = PrH2PO4++ + -llnl_gamma 4.5 + log_k +9.5950 + -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction PrH2PO4+2 +# Enthalpy of formation: -481.5 kcal/mol + -analytic 1.0501e+002 6.3059e-002 3.8161e+002 -4.6656e+001 5.9234e+000 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 HCO3- = PrHCO3++ + -llnl_gamma 4.5 + log_k +1.9190 + -delta_H -12.9788 kJ/mol # Calculated enthalpy of reaction PrHCO3+2 +# Enthalpy of formation: -336.8 kcal/mol + -analytic 2.2010e+001 2.8541e-002 1.4574e+003 -1.3522e+001 2.2734e+001 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 HPO4-- = PrHPO4+ + -llnl_gamma 4.0 + log_k +5.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PrHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pr+++ + 1.0000 NO3- = PrNO3++ + -llnl_gamma 4.5 + log_k +0.6546 + -delta_H -27.9115 kJ/mol # Calculated enthalpy of reaction PrNO3+2 +# Enthalpy of formation: -224.9 kcal/mol + -analytic 1.4297e+001 2.5214e-002 2.1756e+003 -1.1490e+001 3.3943e+001 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 H2O = PrO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -17.29 + -delta_H 117.642 kJ/mol # Calculated enthalpy of reaction PrO+ +# Enthalpy of formation: -209 kcal/mol + -analytic 1.7927e+002 2.9467e-002 -1.3815e+004 -6.4259e+001 -2.1562e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Pr+++ = PrO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -37.5852 + -delta_H 301.39 kJ/mol # Calculated enthalpy of reaction PrO2- +# Enthalpy of formation: -233.4 kcal/mol + -analytic -4.4480e+001 -1.6327e-002 -7.9031e+003 1.9348e+001 -8.5440e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Pr+++ = PrO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -26.5901 + -delta_H 231.517 kJ/mol # Calculated enthalpy of reaction PrO2H +# Enthalpy of formation: -250.1 kcal/mol + -analytic 3.3930e+002 4.4894e-002 -2.3769e+004 -1.2106e+002 -3.7099e+002 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 H2O = PrOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -8.274 + -delta_H 81.2407 kJ/mol # Calculated enthalpy of reaction PrOH+2 +# Enthalpy of formation: -217.7 kcal/mol + -analytic 5.6599e+001 1.1073e-002 -5.9197e+003 -1.9525e+001 -9.2388e+001 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 HPO4-- = PrPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -0.7218 + -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Pr+++ = PrSO4+ + -llnl_gamma 4.0 + log_k -3.687 + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction PrSO4+ +# Enthalpy of formation: -381.5 kcal/mol + -analytic 2.9156e+002 8.4671e-002 -1.0638e+004 -1.1509e+002 -1.6608e+002 +# -Range: 0-300 + +2.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)2 + -llnl_gamma 3.0 + log_k +23.8483 + -delta_H 25.9279 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 +# Enthalpy of formation: -3094.13 kJ/mol + -analytic 9.2387e+002 3.2577e-001 -2.0881e+004 -3.7466e+002 -3.5492e+002 +# -Range: 0-200 + +3.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)3-- + -llnl_gamma 4.0 + log_k +33.4599 + -delta_H -6.49412 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)3-2 +# Enthalpy of formation: -4418.63 kJ/mol + -analytic 6.4515e+002 2.3011e-001 -1.2752e+004 -2.5761e+002 -1.9917e+002 +# -Range: 0-300 + +4.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)4---- + -llnl_gamma 4.0 + log_k +43.2467 + -delta_H -77.4832 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)4-4 +# Enthalpy of formation: -5781.7 kJ/mol + -analytic 8.5301e+002 3.0730e-001 -1.3644e+004 -3.4573e+002 -2.1316e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Pu++++ = Pu(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k -2.3235 + -delta_H 74.3477 kJ/mol # Calculated enthalpy of reaction Pu(OH)2+2 +# Enthalpy of formation: -1033.22 kJ/mol + -analytic 7.5979e+001 6.8394e-003 -6.3710e+003 -2.3833e+001 -9.9435e+001 +# -Range: 0-300 + +3.0000 H2O + 1.0000 Pu++++ = Pu(OH)3+ +3.0000 H+ + -llnl_gamma 4.0 + log_k -5.281 + -delta_H 96.578 kJ/mol # Calculated enthalpy of reaction Pu(OH)3+ +# Enthalpy of formation: -1296.83 kJ/mol + -analytic 1.0874e+002 1.4199e-002 -8.4954e+003 -3.6278e+001 -1.3259e+002 +# -Range: 0-300 + +4.0000 H2O + 1.0000 Pu++++ = Pu(OH)4 +4.0000 H+ + -llnl_gamma 3.0 + log_k -9.5174 + -delta_H 109.113 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 +# Enthalpy of formation: -1570.13 kJ/mol + -analytic 2.7913e+002 1.0252e-001 -1.1289e+004 -1.1369e+002 -1.9181e+002 +# -Range: 0-200 + +2.0000 SO4-- + 1.0000 Pu++++ = Pu(SO4)2 + -llnl_gamma 3.0 + log_k +10.2456 + -delta_H 41.0122 kJ/mol # Calculated enthalpy of reaction Pu(SO4)2 +# Enthalpy of formation: -2314.08 kJ/mol + -analytic 5.3705e+002 1.9308e-001 -1.3213e+004 -2.1824e+002 -2.2457e+002 +# -Range: 0-200 + +2.0000 SO4-- + 1.0000 Pu+++ = Pu(SO4)2- + -llnl_gamma 4.0 + log_k +6.3200 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pu(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pu++++ + 1.0000 F- = PuF+++ + -llnl_gamma 5.0 + log_k +8.4600 + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF+3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 Pu++++ = PuF2++ + -llnl_gamma 4.5 + log_k +15.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF2+2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 F- + 1.0000 Pu++++ = PuF3+ + -llnl_gamma 4.0 + log_k +5.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF3+ +# Enthalpy of formation: -0 kcal/mol + +4.0000 F- + 1.0000 Pu++++ = PuF4 + -llnl_gamma 3.0 + log_k +4.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pu+++ + 1.0000 HPO4-- + 1.0000 H+ = PuH2PO4++ + -llnl_gamma 4.5 + log_k +9.6817 + -delta_H 28.597 kJ/mol # Calculated enthalpy of reaction PuH2PO4+2 +# Enthalpy of formation: -1855.04 kJ/mol + -analytic 2.1595e+002 6.4502e-002 -6.4723e+003 -8.2341e+001 -1.0106e+002 +# -Range: 0-300 + +1.0000 Pu++++ + 1.0000 HPO4-- = PuHPO4++ + -llnl_gamma 4.5 + log_k +13.0103 + -delta_H 40.306 kJ/mol # Calculated enthalpy of reaction PuHPO4+2 +# Enthalpy of formation: -1787.67 kJ/mol + -analytic 2.2662e+002 7.1073e-002 -6.9134e+003 -8.5504e+001 -1.0794e+002 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 PuO2++ = PuO2(CO3)2-- +2.0000 H+ + -llnl_gamma 4.0 + log_k -5.7428 + -delta_H 52.3345 kJ/mol # Calculated enthalpy of reaction PuO2(CO3)2-2 +# Enthalpy of formation: -2149.11 kJ/mol + -analytic 2.6589e+002 7.6132e-002 -9.7187e+003 -1.0577e+002 -1.5173e+002 +# -Range: 0-300 + +1.0000 PuO2++ + 1.0000 Cl- = PuO2Cl+ + -llnl_gamma 4.0 + log_k -0.2084 + -delta_H 11.6127 kJ/mol # Calculated enthalpy of reaction PuO2Cl+ +# Enthalpy of formation: -977.045 kJ/mol + -analytic 9.8385e+001 3.8617e-002 -2.5210e+003 -4.1075e+001 -3.9367e+001 +# -Range: 0-300 + +1.0000 PuO2++ + 1.0000 F- = PuO2F+ + -llnl_gamma 4.0 + log_k +5.6674 + -delta_H -5.2094 kJ/mol # Calculated enthalpy of reaction PuO2F+ +# Enthalpy of formation: -1162.13 kJ/mol + -analytic 1.1412e+002 4.1224e-002 -2.0503e+003 -4.6009e+001 -3.2027e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 PuO2++ = PuO2F2 + -llnl_gamma 3.0 + log_k +10.9669 + -delta_H -15.4738 kJ/mol # Calculated enthalpy of reaction PuO2F2 +# Enthalpy of formation: -1507.75 kJ/mol + -analytic 2.5502e+002 9.1597e-002 -4.4557e+003 -1.0362e+002 -7.5752e+001 +# -Range: 0-200 + +3.0000 F- + 1.0000 PuO2++ = PuO2F3- + -llnl_gamma 4.0 + log_k +15.9160 + -delta_H -29.4032 kJ/mol # Calculated enthalpy of reaction PuO2F3- +# Enthalpy of formation: -1857.02 kJ/mol + -analytic 3.6102e+002 8.6364e-002 -8.7129e+003 -1.3805e+002 -1.3606e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 PuO2++ = PuO2F4-- + -llnl_gamma 4.0 + log_k +18.7628 + -delta_H -39.9786 kJ/mol # Calculated enthalpy of reaction PuO2F4-2 +# Enthalpy of formation: -2202.95 kJ/mol + -analytic 4.6913e+002 1.3649e-001 -9.8336e+003 -1.8510e+002 -1.5358e+002 +# -Range: 0-300 + +1.0000 PuO2++ + 1.0000 HPO4-- + 1.0000 H+ = PuO2H2PO4+ + -llnl_gamma 4.0 + log_k +11.2059 + -delta_H -6.63904 kJ/mol # Calculated enthalpy of reaction PuO2H2PO4+ +# Enthalpy of formation: -2120.3 kJ/mol + -analytic 2.1053e+002 6.8671e-002 -4.3390e+003 -8.2930e+001 -6.7768e+001 +# -Range: 0-300 + +1.0000 PuO2+ + 1.0000 H2O = PuO2OH +1.0000 H+ + -llnl_gamma 3.0 + log_k -9.6674 + -delta_H 69.1763 kJ/mol # Calculated enthalpy of reaction PuO2OH +# Enthalpy of formation: -1130.85 kJ/mol + -analytic 7.1080e+001 2.6141e-002 -5.0337e+003 -2.8956e+001 -8.5504e+001 +# -Range: 0-200 + +1.0000 PuO2++ + 1.0000 H2O = PuO2OH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -5.6379 + -delta_H 45.2823 kJ/mol # Calculated enthalpy of reaction PuO2OH+ +# Enthalpy of formation: -1062.13 kJ/mol + -analytic -3.9012e+000 1.1645e-003 -1.1299e+003 1.3419e+000 -1.4364e+005 +# -Range: 0-300 + +1.0000 SO4-- + 1.0000 PuO2++ = PuO2SO4 + -llnl_gamma 3.0 + log_k +3.2658 + -delta_H 20.0746 kJ/mol # Calculated enthalpy of reaction PuO2SO4 +# Enthalpy of formation: -1711.11 kJ/mol + -analytic 2.0363e+002 7.3903e-002 -5.1940e+003 -8.2833e+001 -8.8273e+001 +# -Range: 0-200 + +1.0000 Pu+++ + 1.0000 H2O = PuOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.968 + -delta_H 53.5143 kJ/mol # Calculated enthalpy of reaction PuOH+2 +# Enthalpy of formation: -823.876 kJ/mol + -analytic 3.0065e+000 3.0278e-003 -1.9675e+003 -1.6100e+000 -1.1524e+005 +# -Range: 0-300 + +1.0000 Pu++++ + 1.0000 H2O = PuOH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -0.5048 + -delta_H 48.1823 kJ/mol # Calculated enthalpy of reaction PuOH+3 +# Enthalpy of formation: -773.549 kJ/mol + -analytic 4.1056e+001 1.1119e-003 -3.9252e+003 -1.1609e+001 -6.1260e+001 +# -Range: 0-300 + +1.0000 SO4-- + 1.0000 Pu+++ = PuSO4+ + -llnl_gamma 4.0 + log_k +3.4935 + -delta_H 14.6006 kJ/mol # Calculated enthalpy of reaction PuSO4+ +# Enthalpy of formation: -1486.55 kJ/mol + -analytic 1.9194e+002 7.7154e-002 -4.2751e+003 -7.9646e+001 -6.6765e+001 +# -Range: 0-300 + +1.0000 SO4-- + 1.0000 Pu++++ = PuSO4++ + -llnl_gamma 4.5 + log_k +5.7710 + -delta_H 12.3336 kJ/mol # Calculated enthalpy of reaction PuSO4+2 +# Enthalpy of formation: -1433.16 kJ/mol + -analytic 1.9418e+002 7.5477e-002 -4.2767e+003 -7.9425e+001 -6.6792e+001 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Ra++ = Ra(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.9018 + -delta_H 21.0874 kJ/mol # Calculated enthalpy of reaction Ra(CH3COO)2 +# Enthalpy of formation: -353.26 kcal/mol + -analytic 2.2767e+001 3.1254e-003 -6.4558e+003 -7.2253e+000 7.0689e+005 +# -Range: 0-300 + +1.0000 Ra++ + 1.0000 CH3COOH = RaCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.709 + -delta_H 11.7989 kJ/mol # Calculated enthalpy of reaction RaCH3COO+ +# Enthalpy of formation: -239.38 kcal/mol + -analytic -1.8268e+001 2.9956e-003 1.9313e+001 5.2767e+000 4.9771e+004 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Rb+ = Rb(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -9.7636 + -delta_H -1.12968 kJ/mol # Calculated enthalpy of reaction Rb(CH3COO)2- +# Enthalpy of formation: -292.49 kcal/mol + -analytic -1.9198e+002 -4.2101e-002 5.5792e+003 7.1152e+001 8.7114e+001 +# -Range: 0-300 + +1.0000 Rb+ + 1.0000 Br- = RbBr + -llnl_gamma 3.0 + log_k -1.2168 + -delta_H 13.9327 kJ/mol # Calculated enthalpy of reaction RbBr +# Enthalpy of formation: -85.73 kcal/mol + -analytic 1.2054e+002 3.3825e-002 -3.9500e+003 -4.7920e+001 -6.1671e+001 +# -Range: 0-300 + +1.0000 Rb+ + 1.0000 CH3COOH = RbCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -4.7279 + -delta_H 4.89528 kJ/mol # Calculated enthalpy of reaction RbCH3COO +# Enthalpy of formation: -174.95 kcal/mol + -analytic 1.5661e+001 -2.4230e-003 -2.5280e+003 -5.4433e+000 2.0344e+005 +# -Range: 0-300 + +1.0000 Rb+ + 1.0000 Cl- = RbCl + -llnl_gamma 3.0 + log_k -0.9595 + -delta_H 13.1922 kJ/mol # Calculated enthalpy of reaction RbCl +# Enthalpy of formation: -96.8 kcal/mol + -analytic 1.2689e+002 3.5557e-002 -4.0822e+003 -5.0412e+001 -6.3736e+001 +# -Range: 0-300 + +1.0000 Rb+ + 1.0000 F- = RbF + -llnl_gamma 3.0 + log_k +0.9602 + -delta_H 1.92464 kJ/mol # Calculated enthalpy of reaction RbF +# Enthalpy of formation: -139.71 kcal/mol + -analytic 1.3893e+002 3.8188e-002 -3.8677e+003 -5.5109e+001 -6.0393e+001 +# -Range: 0-300 + +1.0000 Rb+ + 1.0000 I- = RbI + -llnl_gamma 3.0 + log_k -0.8136 + -delta_H 7.1128 kJ/mol # Calculated enthalpy of reaction RbI +# Enthalpy of formation: -71.92 kcal/mol + -analytic 1.1486e+002 3.3121e-002 -3.4217e+003 -4.6096e+001 -5.3426e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Ru+++ = Ru(Cl)2+ + -llnl_gamma 4.0 + log_k +3.7527 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)2+ +# Enthalpy of formation: -0 kcal/mol + +3.0000 Cl- + 1.0000 Ru+++ = Ru(Cl)3 + -llnl_gamma 3.0 + log_k +4.2976 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Ru+++ = Ru(OH)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.5148 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ru(OH)2++ + 1.0000 Cl- = Ru(OH)2Cl+ + -llnl_gamma 4.0 + log_k +1.3858 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl2 + -llnl_gamma 3.0 + log_k +1.8081 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl3- + -llnl_gamma 4.0 + log_k +1.6172 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl4-- + -llnl_gamma 4.0 + log_k +2.7052 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Ru(OH)2++ = Ru(OH)2SO4 + -llnl_gamma 3.0 + log_k +1.7941 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2SO4 +# Enthalpy of formation: -0 kcal/mol + +#3.0000 H2O + 1.0000 Ru++ + 0.5000 O2 = Ru(OH)4 +2.0000 H+ +# Ru(OH)2++ +1.0000 H2O +0.5000 O2 = 4.0000 H+ + 1.0000 RuO4-- log_k -25.2470 +# 4.0000 H+ + 1.0000 RuO4-- = Ru++ +2.0000 H2O +1.0000 O2 log_k +0.1610 +#1 + 2 + 3 +2H2O + Ru(OH)2++ = Ru(OH)4 + 2H+ + -llnl_gamma 3.0 +# log_k +18.0322 + log_k -7.0538 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Ru+++ = Ru(SO4)2- + -llnl_gamma 4.0 + log_k +3.0627 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +4.0000 Ru(OH)2++ + 4.0000 H2O = Ru4(OH)12++++ +4.0000 H+ + -llnl_gamma 5.5 + log_k +7.1960 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru4(OH)12+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ru++ + 1.0000 Cl- = RuCl+ + -llnl_gamma 4.0 + log_k -0.4887 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ru+++ + 1.0000 Cl- = RuCl++ + -llnl_gamma 4.5 + log_k +2.1742 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 Cl- + 1.0000 Ru+++ = RuCl4- + -llnl_gamma 4.0 + log_k +4.1418 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl4- +# Enthalpy of formation: -0 kcal/mol + +5.0000 Cl- + 1.0000 Ru+++ = RuCl5-- + -llnl_gamma 4.0 + log_k +3.8457 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl5-2 +# Enthalpy of formation: -0 kcal/mol + +6.0000 Cl- + 1.0000 Ru+++ = RuCl6--- + -llnl_gamma 4.0 + log_k +3.4446 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl6-3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ru+++ + 1.0000 H2O = RuOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.2392 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuOH+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Ru++ = RuSO4 + -llnl_gamma 3.0 + log_k +2.3547 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Ru+++ = RuSO4+ + -llnl_gamma 4.0 + log_k +1.9518 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HS- = S-- +1.0000 H+ + -llnl_gamma 5.0 + log_k -12.9351 + -delta_H 49.0364 kJ/mol # Calculated enthalpy of reaction S-2 +# Enthalpy of formation: 32.928 kJ/mol + -analytic 9.7756e+001 3.2913e-002 -5.0784e+003 -4.1812e+001 -7.9273e+001 +# -Range: 0-300 + +2.0000 H+ + 2.0000 SO3-- = S2O5-- + H2O + -llnl_gamma 4.0 + log_k 9.5934 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O5-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.12262E+03 0.62883E-01 -0.18005E+04 -0.50798E+02 -0.28132E+02 +# -Range: 0-300 + +2.0000 H+ + 1.0000 SO3-- = SO2 +1.0000 H2O + -llnl_gamma 3.0 + log_k +9.0656 + -delta_H 26.7316 kJ/mol # Calculated enthalpy of reaction SO2 +# Enthalpy of formation: -77.194 kcal/mol + -analytic 9.4048e+001 6.2127e-002 -1.1072e+003 -4.0310e+001 -1.7305e+001 +# -Range: 0-300 + +1.0000 Sb(OH)3 + 1.0000 H+ = Sb(OH)2+ +1.0000 H2O + -llnl_gamma 4.0 + log_k +1.4900 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2+ +# Enthalpy of formation: -0 kcal/mol + + -analytic -4.9192e+000 -1.6439e-004 1.4777e+003 6.0724e-001 2.3059e+001 +# -Range: 0-300 + +1.0000 Sb(OH)3 + 1.0000 H+ + 1.0000 F- = Sb(OH)2F +1.0000 H2O + -llnl_gamma 3.0 + log_k +7.1700 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2F +# Enthalpy of formation: -0 kcal/mol + + -analytic -1.6961e+002 5.7364e-002 2.7207e+004 3.7969e+001 -2.2834e+006 +# -Range: 0-300 + +1.0000 Sb(OH)3 + 1.0000 H2O = Sb(OH)4- +1.0000 H+ + -llnl_gamma 4.0 + log_k -11.92 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)4- +# Enthalpy of formation: -0 kcal/mol + + -analytic 4.9839e+001 -6.7112e-003 -4.8976e+003 -1.7138e+001 -8.3725e+004 +# -Range: 0-300 + +4.0000 HS- + 2.0000 Sb(OH)3 + 2.0000 H+ = Sb2S4-- +6.0000 H2O + -llnl_gamma 4.0 + log_k +39.1100 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2S4-2 +# Enthalpy of formation: -0 kcal/mol + + -analytic 1.7631e+002 8.3686e-002 9.7091e+003 -7.8605e+001 1.5145e+002 +# -Range: 0-300 + +4.0000 Cl- + 3.0000 H+ + 1.0000 Sb(OH)3 = SbCl4- +3.0000 H2O + -llnl_gamma 4.0 + log_k +3.0720 + -delta_H 0 # Not possible to calculate enthalpy of reaction SbCl4- +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Sc+++ = Sc(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.7237 + -delta_H -43.1789 kJ/mol # Calculated enthalpy of reaction Sc(CH3COO)2+ +# Enthalpy of formation: -389.32 kcal/mol + -analytic -4.1862e+001 -3.9443e-005 2.1444e+002 1.2616e+001 5.5442e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Sc+++ = Sc(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -6.6777 + -delta_H -70.0402 kJ/mol # Calculated enthalpy of reaction Sc(CH3COO)3 +# Enthalpy of formation: -511.84 kcal/mol + -analytic -5.2525e+001 1.6181e-003 7.5022e+002 1.3988e+001 7.3540e+005 +# -Range: 0-300 + +1.0000 Sc+++ + 1.0000 CH3COOH = ScCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -1.4294 + -delta_H -21.7568 kJ/mol # Calculated enthalpy of reaction ScCH3COO+2 +# Enthalpy of formation: -268.1 kcal/mol + -analytic -2.3400e+001 1.3144e-004 1.1125e+002 7.3527e+000 3.0025e+005 +# -Range: 0-300 + +6.0000 F- + 4.0000 H+ + 1.0000 SiO2 = SiF6-- +2.0000 H2O + -llnl_gamma 4.0 + log_k +26.2749 + -delta_H -70.9565 kJ/mol # Calculated enthalpy of reaction SiF6-2 +# Enthalpy of formation: -571 kcal/mol + -analytic 2.3209e+002 1.0685e-001 5.8428e+002 -9.6798e+001 9.0486e+000 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Sm+++ = Sm(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.7132 + -delta_H -25.5224 kJ/mol # Calculated enthalpy of reaction Sm(CH3COO)2+ +# Enthalpy of formation: -403.5 kcal/mol + -analytic -1.4192e+001 2.1732e-003 -1.0267e+003 2.9516e+000 4.4389e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Sm+++ = Sm(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -7.8798 + -delta_H -43.5554 kJ/mol # Calculated enthalpy of reaction Sm(CH3COO)3 +# Enthalpy of formation: -523.91 kcal/mol + -analytic -2.0765e+001 1.1047e-003 -5.1181e+002 3.4797e+000 5.0618e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Sm+++ = Sm(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.8576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Sm+++ = Sm(HPO4)2- + -llnl_gamma 4.0 + log_k +9.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +# Redundant with SmO2- +#4.0000 H2O + 1.0000 Sm+++ = Sm(OH)4- +4.0000 H+ +# -llnl_gamma 4.0 +# log_k -36.8803 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)4- +## Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Sm+++ = Sm(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.2437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Sm+++ = Sm(SO4)2- + -llnl_gamma 4.0 + log_k +5.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sm+++ + 1.0000 CH3COOH = SmCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -1.9205 + -delta_H -13.598 kJ/mol # Calculated enthalpy of reaction SmCH3COO+2 +# Enthalpy of formation: -284.55 kcal/mol + -analytic -1.1734e+001 1.0889e-003 -5.1061e+002 3.3317e+000 2.6395e+005 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 HCO3- = SmCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.479 + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction SmCO3+ +# Enthalpy of formation: -308.8 kcal/mol + -analytic 2.3486e+002 5.3703e-002 -7.0193e+003 -9.2863e+001 -1.0960e+002 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 Cl- = SmCl++ + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction SmCl+2 +# Enthalpy of formation: -201.7 kcal/mol + -analytic 9.4972e+001 3.9428e-002 -2.4198e+003 -3.9718e+001 -3.7787e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Sm+++ = SmCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 19.9409 kJ/mol # Calculated enthalpy of reaction SmCl2+ +# Enthalpy of formation: -240.3 kcal/mol + -analytic 2.5872e+002 8.4154e-002 -7.2061e+003 -1.0493e+002 -1.1252e+002 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Sm+++ = SmCl3 + -llnl_gamma 3.0 + log_k -0.3936 + -delta_H 13.803 kJ/mol # Calculated enthalpy of reaction SmCl3 +# Enthalpy of formation: -281.7 kcal/mol + -analytic 4.9535e+002 1.3520e-001 -1.4325e+004 -1.9720e+002 -2.2367e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Sm+++ = SmCl4- + -llnl_gamma 4.0 + log_k -0.818 + -delta_H -5.30531 kJ/mol # Calculated enthalpy of reaction SmCl4- +# Enthalpy of formation: -326.2 kcal/mol + -analytic 6.0562e+002 1.4212e-001 -1.7982e+004 -2.3782e+002 -2.8077e+002 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 F- = SmF++ + -llnl_gamma 4.5 + log_k +4.3687 + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction SmF+2 +# Enthalpy of formation: -239.9 kcal/mol + -analytic 1.1514e+002 4.3117e-002 -3.2853e+003 -4.5499e+001 -5.1297e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Sm+++ = SmF2+ + -llnl_gamma 4.0 + log_k +7.6379 + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction SmF2+ +# Enthalpy of formation: -322.2 kcal/mol + -analytic 2.8030e+002 8.8143e-002 -7.2857e+003 -1.1092e+002 -1.1377e+002 +# -Range: 0-300 + +3.0000 F- + 1.0000 Sm+++ = SmF3 + -llnl_gamma 3.0 + log_k +10.0275 + -delta_H -8.5772 kJ/mol # Calculated enthalpy of reaction SmF3 +# Enthalpy of formation: -407.7 kcal/mol + -analytic 5.2425e+002 1.4191e-001 -1.3728e+004 -2.0628e+002 -2.1436e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Sm+++ = SmF4- + -llnl_gamma 4.0 + log_k +11.9773 + -delta_H -49.7896 kJ/mol # Calculated enthalpy of reaction SmF4- +# Enthalpy of formation: -497.7 kcal/mol + -analytic 6.2228e+002 1.4659e-001 -1.5887e+004 -2.4275e+002 -2.4809e+002 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 HPO4-- + 1.0000 H+ = SmH2PO4++ + -llnl_gamma 4.5 + log_k +9.4484 + -delta_H -15.8364 kJ/mol # Calculated enthalpy of reaction SmH2PO4+2 +# Enthalpy of formation: -477.8 kcal/mol + -analytic 1.2451e+002 6.4959e-002 -3.9576e+002 -5.3772e+001 -6.2124e+000 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 HCO3- = SmHCO3++ + -llnl_gamma 4.5 + log_k +1.7724 + -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction SmHCO3+2 +# Enthalpy of formation: -327.9 kcal/mol + -analytic 5.5520e+001 3.3265e-002 -7.3142e+002 -2.4727e+001 -1.1430e+001 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 HPO4-- = SmHPO4+ + -llnl_gamma 4.0 + log_k +5.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SmHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sm+++ + 1.0000 NO3- = SmNO3++ + -llnl_gamma 4.5 + log_k +0.8012 + -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction SmNO3+2 +# Enthalpy of formation: -221.6 kcal/mol + -analytic 3.3782e+001 2.7125e-002 1.5091e+003 -1.8632e+001 2.3537e+001 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 H2O = SmO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.4837 + -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction SmO+ +# Enthalpy of formation: -206.5 kcal/mol + -analytic 1.8554e+002 3.0198e-002 -1.3791e+004 -6.6588e+001 -2.1526e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Sm+++ = SmO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -35.0197 + -delta_H 285.909 kJ/mol # Calculated enthalpy of reaction SmO2- +# Enthalpy of formation: -233.5 kcal/mol + -analytic 1.3508e+001 -8.3384e-003 -1.0325e+004 -1.5506e+000 -6.7392e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Sm+++ = SmO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -25.9304 + -delta_H 226.497 kJ/mol # Calculated enthalpy of reaction SmO2H +# Enthalpy of formation: -247.7 kcal/mol + -analytic 3.6882e+002 5.3761e-002 -2.4317e+004 -1.3305e+002 -3.7956e+002 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 H2O = SmOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.9808 + -delta_H 79.1487 kJ/mol # Calculated enthalpy of reaction SmOH+2 +# Enthalpy of formation: -214.6 kcal/mol + -analytic 6.3793e+001 1.1977e-002 -6.0852e+003 -2.2198e+001 -9.4972e+001 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 HPO4-- = SmPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -0.2218 + -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sm+++ + 1.0000 SO4-- = SmSO4+ + -llnl_gamma 4.0 + log_k +3.6430 + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction SmSO4+ +# Enthalpy of formation: -377.8 kcal/mol + -analytic 3.0597e+002 8.6258e-002 -9.0231e+003 -1.2032e+002 -1.4089e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Sn++ = Sn(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.9102 + -delta_H 42.0534 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 +# Enthalpy of formation: -128.683 kcal/mol + -analytic -3.7979e+001 -1.0893e-002 -1.2048e+003 1.5100e+001 -2.0445e+001 +# -Range: 0-200 + +2.0000 H2O + 1.0000 Sn++++ = Sn(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k -0.1902 + -delta_H -2.02087 kJ/mol # Calculated enthalpy of reaction Sn(OH)2+2 +# Enthalpy of formation: -129.888 kcal/mol + -analytic -2.1675e+001 5.9697e-003 3.3953e+003 4.8158e+000 -3.2042e+005 +# -Range: 0-300 + +3.0000 H2O + 1.0000 Sn++++ = Sn(OH)3+ +3.0000 H+ + -llnl_gamma 4.0 + log_k +0.5148 + -delta_H -7.59396 kJ/mol # Calculated enthalpy of reaction Sn(OH)3+ +# Enthalpy of formation: -199.537 kcal/mol + -analytic -3.3294e+001 8.8580e-003 5.3803e+003 7.4994e+000 -4.8389e+005 +# -Range: 0-300 + +3.0000 H2O + 1.0000 Sn++ = Sn(OH)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -17.4052 + -delta_H 94.7007 kJ/mol # Calculated enthalpy of reaction Sn(OH)3- +# Enthalpy of formation: -184.417 kcal/mol + -analytic 1.5614e+002 1.9943e-002 -1.0700e+004 -5.8031e+001 -1.6701e+002 +# -Range: 0-300 + +4.0000 H2O + 1.0000 Sn++++ = Sn(OH)4 +4.0000 H+ + -llnl_gamma 3.0 + log_k +0.8497 + -delta_H -11.0583 kJ/mol # Calculated enthalpy of reaction Sn(OH)4 +# Enthalpy of formation: -268.682 kcal/mol + -analytic -7.9563e+001 -2.2641e-002 2.6682e+003 3.1614e+001 4.5337e+001 +# -Range: 0-200 + +2.0000 SO4-- + 1.0000 Sn++++ = Sn(SO4)2 + -llnl_gamma 3.0 + log_k -0.8072 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sn(SO4)2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sn++ + 1.0000 Cl- = SnCl+ + -llnl_gamma 4.0 + log_k +1.0500 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl+ +# Enthalpy of formation: -0 kcal/mol + + -analytic 3.0558e+002 8.2458e-002 -8.9329e+003 -1.2088e+002 -1.3948e+002 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Sn++ = SnCl2 + -llnl_gamma 3.0 + log_k +1.7100 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl2 +# Enthalpy of formation: -0 kcal/mol + + -analytic 3.6600e+002 1.0753e-001 -1.0006e+004 -1.4660e+002 -1.5624e+002 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Sn++ = SnCl3- + -llnl_gamma 4.0 + log_k +1.6900 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl3- +# Enthalpy of formation: -0 kcal/mol + + -analytic 3.6019e+002 1.0602e-001 -1.0337e+004 -1.4363e+002 -1.6141e+002 +# -Range: 0-300 + +1.0000 Sn++ + 1.0000 F- = SnF+ + -llnl_gamma 4.0 + log_k +4.0800 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF+ +# Enthalpy of formation: -0 kcal/mol + + -analytic 3.0020e+002 7.5485e-002 -8.4231e+003 -1.1734e+002 -1.3152e+002 +# -Range: 0-300 + +2.0000 F- + 1.0000 Sn++ = SnF2 + -llnl_gamma 3.0 + log_k +6.6800 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF2 +# Enthalpy of formation: -0 kcal/mol + + -analytic 4.1241e+002 1.0988e-001 -1.1151e+004 -1.6207e+002 -1.7413e+002 +# -Range: 0-300 + +3.0000 F- + 1.0000 Sn++ = SnF3- + -llnl_gamma 4.0 + log_k +9.4600 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF3- +# Enthalpy of formation: -0 kcal/mol + + -analytic 4.1793e+002 1.0898e-001 -1.1402e+004 -1.6273e+002 -1.7803e+002 +# -Range: 0-300 + +1.0000 Sn++ + 1.0000 H2O = SnOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.9851 + -delta_H 21.2045 kJ/mol # Calculated enthalpy of reaction SnOH+ +# Enthalpy of formation: -65.349 kcal/mol + -analytic 7.7253e+001 1.9149e-002 -3.3745e+003 -3.0560e+001 -5.2679e+001 +# -Range: 0-300 + +1.0000 Sn++++ + 1.0000 H2O = SnOH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k +0.6049 + -delta_H -5.00406 kJ/mol # Calculated enthalpy of reaction SnOH+3 +# Enthalpy of formation: -62.284 kcal/mol + -analytic -1.1548e+001 2.8878e-003 1.9476e+003 2.6622e+000 -1.6274e+005 +# -Range: 0-300 + +1.0000 Sn++++ + 1.0000 SO4-- = SnSO4++ + -llnl_gamma 4.5 + log_k -3.1094 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSO4+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Sr++ = Sr(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.8212 + -delta_H 0.54392 kJ/mol # Calculated enthalpy of reaction Sr(CH3COO)2 +# Enthalpy of formation: -363.74 kcal/mol + -analytic 1.2965e+001 4.7082e-003 -5.2538e+003 -5.2337e+000 7.4721e+005 +# -Range: 0-300 + +1.0000 Sr++ + 1.0000 CH3COOH = SrCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.6724 + -delta_H 2.3012 kJ/mol # Calculated enthalpy of reaction SrCH3COO+ +# Enthalpy of formation: -247.22 kcal/mol + -analytic -1.4301e+001 1.2481e-003 -7.5690e+002 4.2760e+000 1.9800e+005 +# -Range: 0-300 + +1.0000 Sr++ + 1.0000 HCO3- = SrCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -7.4635 + -delta_H 33.2544 kJ/mol # Calculated enthalpy of reaction SrCO3 +# Enthalpy of formation: -288.62 kcal/mol + -analytic 2.2303e+002 5.2582e-002 -8.4861e+003 -8.7975e+001 -1.3248e+002 +# -Range: 0-300 + +1.0000 Sr++ + 1.0000 Cl- = SrCl+ + -llnl_gamma 4.0 + log_k -0.2485 + -delta_H 7.58559 kJ/mol # Calculated enthalpy of reaction SrCl+ +# Enthalpy of formation: -169.79 kcal/mol + -analytic 9.4568e+001 3.9042e-002 -2.1458e+003 -4.0105e+001 -3.3511e+001 +# -Range: 0-300 + +1.0000 Sr++ + 1.0000 F- = SrF+ + -llnl_gamma 4.0 + log_k +0.1393 + -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction SrF+ +# Enthalpy of formation: -210.67 kcal/mol + -analytic 9.0295e+001 3.7609e-002 -1.9012e+003 -3.8379e+001 -2.9693e+001 +# -Range: 0-300 + +1.0000 Sr++ + 1.0000 HPO4-- + 1.0000 H+ = SrH2PO4+ + -llnl_gamma 4.0 + log_k +0.7300 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sr++ + 1.0000 HPO4-- = SrHPO4 + -llnl_gamma 3.0 + log_k +2.0600 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sr++ + 1.0000 NO3- = SrNO3+ + -llnl_gamma 4.0 + log_k +0.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrNO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sr++ + 1.0000 H2O = SrOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -13.29 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Sr++ = SrP2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +1.6537 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sr++ + 1.0000 SO4-- = SrSO4 + -llnl_gamma 3.0 + log_k +2.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrSO4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Tb+++ = Tb(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9625 + -delta_H -27.9491 kJ/mol # Calculated enthalpy of reaction Tb(CH3COO)2+ +# Enthalpy of formation: -405.78 kcal/mol + -analytic -2.3910e+001 1.3433e-003 -8.0800e+002 6.3895e+000 4.8619e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Tb+++ = Tb(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.3489 + -delta_H -47.1537 kJ/mol # Calculated enthalpy of reaction Tb(CH3COO)3 +# Enthalpy of formation: -526.47 kcal/mol + -analytic -1.0762e+001 4.2361e-003 -1.5620e+003 -3.9317e-001 6.5745e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Tb+++ = Tb(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.5576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Tb+++ = Tb(HPO4)2- + -llnl_gamma 4.0 + log_k +9.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Tb+++ = Tb(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.6437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Tb+++ = Tb(SO4)2- + -llnl_gamma 4.0 + log_k +5.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Tb+++ + 1.0000 CH3COOH = TbCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -14.2256 kJ/mol # Calculated enthalpy of reaction TbCH3COO+2 +# Enthalpy of formation: -286.4 kcal/mol + -analytic -1.6817e+001 6.4290e-004 -3.4442e+002 5.0994e+000 2.7304e+005 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 HCO3- = TbCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.4057 + -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction TbCO3+ +# Enthalpy of formation: -310.4 kcal/mol + -analytic 2.2347e+002 5.4185e-002 -6.4127e+003 -8.9112e+001 -1.0013e+002 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 Cl- = TbCl++ + -llnl_gamma 4.5 + log_k +0.2353 + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction TbCl+2 +# Enthalpy of formation: -203.5 kcal/mol + -analytic 7.1095e+001 3.7367e-002 -1.4676e+003 -3.1140e+001 -2.2921e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Tb+++ = TbCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 18.2673 kJ/mol # Calculated enthalpy of reaction TbCl2+ +# Enthalpy of formation: -242.4 kcal/mol + -analytic 2.0699e+002 7.9609e-002 -5.0958e+003 -8.6337e+001 -7.9576e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Tb+++ = TbCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction TbCl3 +# Enthalpy of formation: -284.3 kcal/mol + -analytic 4.0764e+002 1.2809e-001 -1.0704e+004 -1.6583e+002 -1.6715e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Tb+++ = TbCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -11.5813 kJ/mol # Calculated enthalpy of reaction TbCl4- +# Enthalpy of formation: -329.4 kcal/mol + -analytic 4.6247e+002 1.2926e-001 -1.2117e+004 -1.8639e+002 -1.8921e+002 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 F- = TbF++ + -llnl_gamma 4.5 + log_k +4.6619 + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction TbF+2 +# Enthalpy of formation: -241.6 kcal/mol + -analytic 9.2579e+001 4.1327e-002 -2.3647e+003 -3.7293e+001 -3.6927e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Tb+++ = TbF2+ + -llnl_gamma 4.0 + log_k +8.1510 + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction TbF2+ +# Enthalpy of formation: -324.3 kcal/mol + -analytic 2.3100e+002 8.4094e-002 -5.2548e+003 -9.3051e+001 -8.2065e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Tb+++ = TbF3 + -llnl_gamma 3.0 + log_k +10.6872 + -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction TbF3 +# Enthalpy of formation: -410.2 kcal/mol + -analytic 4.3730e+002 1.3479e-001 -1.0128e+004 -1.7489e+002 -1.5817e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Tb+++ = TbF4- + -llnl_gamma 4.0 + log_k +12.7836 + -delta_H -56.0656 kJ/mol # Calculated enthalpy of reaction TbF4- +# Enthalpy of formation: -500.9 kcal/mol + -analytic 4.8546e+002 1.3511e-001 -1.0189e+004 -1.9347e+002 -1.5913e+002 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 HPO4-- + 1.0000 H+ = TbH2PO4++ + -llnl_gamma 4.5 + log_k +9.3751 + -delta_H -17.51 kJ/mol # Calculated enthalpy of reaction TbH2PO4+2 +# Enthalpy of formation: -479.9 kcal/mol + -analytic 1.0042e+002 6.2886e-002 6.0975e+002 -4.5178e+001 9.4847e+000 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 HCO3- = TbHCO3++ + -llnl_gamma 4.5 + log_k +1.6991 + -delta_H -14.6524 kJ/mol # Calculated enthalpy of reaction TbHCO3+2 +# Enthalpy of formation: -335.3 kcal/mol + -analytic 1.7376e+001 2.8365e-002 1.6982e+003 -1.2044e+001 2.6494e+001 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 HPO4-- = TbHPO4+ + -llnl_gamma 4.0 + log_k +5.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction TbHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Tb+++ + 1.0000 NO3- = TbNO3++ + -llnl_gamma 4.5 + log_k +0.5080 + -delta_H -31.2587 kJ/mol # Calculated enthalpy of reaction TbNO3+2 +# Enthalpy of formation: -223.8 kcal/mol + -analytic 8.7852e+000 2.4868e-002 2.5553e+003 -9.7944e+000 3.9871e+001 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 H2O = TbO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.1904 + -delta_H 109.692 kJ/mol # Calculated enthalpy of reaction TbO+ +# Enthalpy of formation: -209 kcal/mol + -analytic 1.7975e+002 2.9563e-002 -1.3407e+004 -6.4573e+001 -2.0926e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Tb+++ = TbO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -34.2134 + -delta_H 278.797 kJ/mol # Calculated enthalpy of reaction TbO2- +# Enthalpy of formation: -236.9 kcal/mol + -analytic 1.6924e+002 1.1804e-002 -1.9821e+004 -5.6781e+001 -3.0933e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Tb+++ = TbO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -25.0508 + -delta_H 219.802 kJ/mol # Calculated enthalpy of reaction TbO2H +# Enthalpy of formation: -251 kcal/mol + -analytic 3.2761e+002 4.5225e-002 -2.2652e+004 -1.1727e+002 -3.5356e+002 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 H2O = TbOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.8342 + -delta_H 77.4751 kJ/mol # Calculated enthalpy of reaction TbOH+2 +# Enthalpy of formation: -216.7 kcal/mol + -analytic 5.9574e+001 1.1625e-002 -5.8143e+003 -2.0759e+001 -9.0744e+001 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 HPO4-- = TbPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k +0.0782 + -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Tb+++ + 1.0000 SO4-- = TbSO4+ + -llnl_gamma 4.0 + log_k +3.6430 + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction TbSO4+ +# Enthalpy of formation: -379.6 kcal/mol + -analytic 2.9633e+002 8.5155e-002 -8.6346e+003 -1.1682e+002 -1.3482e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 TcO++ = TcO(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -3.3221 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO(OH)2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 TcO++ + 1.0000 H2O = TcOOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -1.1355 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcOOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 2.0000 H+ + 1.0000 Th++++ = Th(H2PO4)2++ + -llnl_gamma 4.5 + log_k +23.2070 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(H2PO4)2+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Th++++ = Th(HPO4)2 + -llnl_gamma 3.0 + log_k +22.6939 + -delta_H -13.644 kJ/mol # Calculated enthalpy of reaction Th(HPO4)2 +# Enthalpy of formation: -804.691 kcal/mol + -analytic 6.5208e+002 2.3099e-001 -1.2990e+004 -2.6457e+002 -2.2082e+002 +# -Range: 0-200 + +3.0000 HPO4-- + 1.0000 Th++++ = Th(HPO4)3-- + -llnl_gamma 4.0 + log_k +31.1894 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(HPO4)3-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Th++++ = Th(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k -7.1068 + -delta_H 58.668 kJ/mol # Calculated enthalpy of reaction Th(OH)2+2 +# Enthalpy of formation: -306.412 kcal/mol + -analytic -1.1274e+001 3.4195e-003 -3.7553e+002 3.1299e+000 -2.9696e+005 +# -Range: 0-300 + +3.0000 H2O + 1.0000 Th++++ = Th(OH)3+ +3.0000 H+ + -llnl_gamma 4.0 + log_k -11.8623 + -delta_H 86.1318 kJ/mol # Calculated enthalpy of reaction Th(OH)3+ +# Enthalpy of formation: -368.165 kcal/mol +4.0000 H2O + 1.0000 Th++++ = Th(OH)4 +4.0000 H+ + -llnl_gamma 3.0 + log_k -16.0315 + -delta_H 104.01 kJ/mol # Calculated enthalpy of reaction Th(OH)4 +# Enthalpy of formation: -432.209 kcal/mol + -analytic 2.9534e+001 1.5550e-002 -5.6680e+003 -1.2598e+001 -9.6262e+001 +# -Range: 0-200 + +2.0000 SO4-- + 1.0000 Th++++ = Th(SO4)2 + -llnl_gamma 3.0 + log_k +9.6170 + -delta_H 32.2377 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 +# Enthalpy of formation: -610.895 kcal/mol + -analytic 4.6425e+002 1.6769e-001 -1.1195e+004 -1.8875e+002 -1.9027e+002 +# -Range: 0-200 + +3.0000 SO4-- + 1.0000 Th++++ = Th(SO4)3-- + -llnl_gamma 4.0 + log_k +10.4014 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)3-2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 SO4-- + 1.0000 Th++++ = Th(SO4)4---- + -llnl_gamma 4.0 + log_k +8.4003 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)4-4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 Th++++ + 2.0000 H2O = Th2(OH)2+6 +2.0000 H+ + -llnl_gamma 6.0 + log_k -6.4618 + -delta_H 63.7181 kJ/mol # Calculated enthalpy of reaction Th2(OH)2+6 +# Enthalpy of formation: -489.005 kcal/mol + -analytic 6.8838e+001 -4.1348e-003 -6.4415e+003 -2.1200e+001 -1.0053e+002 +# -Range: 0-300 + +8.0000 H2O + 4.0000 Th++++ = Th4(OH)8+8 +8.0000 H+ + -llnl_gamma 6.0 + log_k -21.7568 + -delta_H 245.245 kJ/mol # Calculated enthalpy of reaction Th4(OH)8+8 +# Enthalpy of formation: -1223.12 kcal/mol + -analytic 2.7826e+002 -2.3504e-003 -2.4410e+004 -8.7873e+001 -3.8097e+002 +# -Range: 0-300 + +15.0000 H2O + 6.0000 Th++++ = Th6(OH)15+9 +15.0000 H+ + -llnl_gamma 6.0 + log_k -37.7027 + -delta_H 458.248 kJ/mol # Calculated enthalpy of reaction Th6(OH)15+9 +# Enthalpy of formation: -2018.03 kcal/mol + -analytic 5.2516e+002 3.3015e-003 -4.5237e+004 -1.6654e+002 -7.0603e+002 +# -Range: 0-300 + +1.0000 Th++++ + 1.0000 Cl- = ThCl+++ + -llnl_gamma 5.0 + log_k +0.9536 + -delta_H 0.06276 kJ/mol # Calculated enthalpy of reaction ThCl+3 +# Enthalpy of formation: -223.718 kcal/mol + -analytic 9.7430e+001 3.9398e-002 -1.8653e+003 -4.1202e+001 -2.9135e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Th++++ = ThCl2++ + -llnl_gamma 4.5 + log_k +0.6758 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl2+2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 Cl- + 1.0000 Th++++ = ThCl3+ + -llnl_gamma 4.0 + log_k +1.4975 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl3+ +# Enthalpy of formation: -0 kcal/mol + +4.0000 Cl- + 1.0000 Th++++ = ThCl4 + -llnl_gamma 3.0 + log_k +1.0731 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Th++++ + 1.0000 F- = ThF+++ + -llnl_gamma 5.0 + log_k +7.8725 + -delta_H -4.87436 kJ/mol # Calculated enthalpy of reaction ThF+3 +# Enthalpy of formation: -265.115 kcal/mol + -analytic 1.1679e+002 3.9201e-002 -2.2118e+003 -4.5736e+001 -3.4548e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Th++++ = ThF2++ + -llnl_gamma 4.5 + log_k +14.0884 + -delta_H -7.77806 kJ/mol # Calculated enthalpy of reaction ThF2+2 +# Enthalpy of formation: -345.959 kcal/mol + -analytic 2.3200e+002 7.9567e-002 -4.4418e+003 -9.1617e+001 -6.9379e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Th++++ = ThF3+ + -llnl_gamma 4.0 + log_k +18.7357 + -delta_H -11.7068 kJ/mol # Calculated enthalpy of reaction ThF3+ +# Enthalpy of formation: -427.048 kcal/mol + -analytic 3.4511e+002 1.2149e-001 -6.5065e+003 -1.3770e+002 -1.0163e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Th++++ = ThF4 + -llnl_gamma 3.0 + log_k +22.1515 + -delta_H -14.8448 kJ/mol # Calculated enthalpy of reaction ThF4 +# Enthalpy of formation: -507.948 kcal/mol + -analytic 6.1206e+002 2.1878e-001 -1.1938e+004 -2.4857e+002 -2.0294e+002 +# -Range: 0-200 + +1.0000 Th++++ + 1.0000 HPO4-- + 1.0000 H+ = ThH2PO4+++ + -llnl_gamma 5.0 + log_k +11.7061 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThH2PO4+3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H+ + 1.0000 Th++++ + 1.0000 HPO4-- = ThH3PO4++++ + -llnl_gamma 5.5 + log_k +11.1197 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThH3PO4+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Th++++ + 1.0000 HPO4-- = ThHPO4++ + -llnl_gamma 4.5 + log_k +10.6799 + -delta_H 0.1046 kJ/mol # Calculated enthalpy of reaction ThHPO4+2 +# Enthalpy of formation: -492.59 kcal/mol +1.0000 Th++++ + 1.0000 H2O = ThOH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -3.8871 + -delta_H 25.0275 kJ/mol # Calculated enthalpy of reaction ThOH+3 +# Enthalpy of formation: -1029.83 kJ/mol + -analytic 1.0495e+001 5.1532e-003 -8.6396e+002 -4.8420e+000 -9.2609e+004 +# -Range: 0-300 + +1.0000 Th++++ + 1.0000 SO4-- = ThSO4++ + -llnl_gamma 4.5 + log_k +5.3143 + -delta_H 16.3511 kJ/mol # Calculated enthalpy of reaction ThSO4+2 +# Enthalpy of formation: -397.292 kcal/mol + -analytic 1.9443e+002 7.5245e-002 -4.5010e+003 -7.9379e+001 -7.0291e+001 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Tl+ = Tl(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -10.0129 + -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Tl(CH3COO)2- +# Enthalpy of formation: -230.62 kcal/mol + -analytic -1.8123e+002 -4.0616e-002 5.0741e+003 6.7216e+001 7.9229e+001 +# -Range: 0-300 + +1.0000 Tl+ + 1.0000 CH3COOH = TlCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8672 + -delta_H 6.15048 kJ/mol # Calculated enthalpy of reaction TlCH3COO +# Enthalpy of formation: -113.35 kcal/mol + -analytic 9.2977e+000 -3.4368e-003 -2.1748e+003 -3.1454e+000 1.7273e+005 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Tm+++ = Tm(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9844 + -delta_H -32.5934 kJ/mol # Calculated enthalpy of reaction Tm(CH3COO)2+ +# Enthalpy of formation: -408.49 kcal/mol + -analytic -2.8983e+001 2.0256e-003 -1.1525e+003 8.2163e+000 6.1820e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Tm+++ = Tm(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.3783 + -delta_H -54.8104 kJ/mol # Calculated enthalpy of reaction Tm(CH3COO)3 +# Enthalpy of formation: -529.9 kcal/mol + -analytic -2.8900e+001 4.9633e-003 -1.6574e+003 6.0186e+000 8.6624e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Tm+++ = Tm(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.1576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Tm+++ = Tm(HPO4)2- + -llnl_gamma 4.0 + log_k +10.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Tm+++ = Tm(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.0437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Tm+++ = Tm(SO4)2- + -llnl_gamma 4.0 + log_k +5.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Tm+++ + 1.0000 CH3COOH = TmCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1184 + -delta_H -16.3176 kJ/mol # Calculated enthalpy of reaction TmCH3COO+2 +# Enthalpy of formation: -288.5 kcal/mol + -analytic -1.6068e+001 1.2043e-003 -6.2777e+002 4.8318e+000 3.3363e+005 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 HCO3- = TmCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.1125 + -delta_H 86.6004 kJ/mol # Calculated enthalpy of reaction TmCO3+ +# Enthalpy of formation: -312.7 kcal/mol + -analytic 2.3889e+002 5.4733e-002 -6.9382e+003 -9.4581e+001 -1.0833e+002 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 Cl- = TmCl++ + -llnl_gamma 4.5 + log_k +0.2353 + -delta_H 13.1085 kJ/mol # Calculated enthalpy of reaction TmCl+2 +# Enthalpy of formation: -205.3 kcal/mol + -analytic 7.4795e+001 3.7655e-002 -1.5701e+003 -3.2531e+001 -2.4523e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Tm+++ = TmCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction TmCl2+ +# Enthalpy of formation: -244.6 kcal/mol + -analytic 2.0352e+002 7.9173e-002 -4.8574e+003 -8.5202e+001 -7.5855e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Tm+++ = TmCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 5.43502 kJ/mol # Calculated enthalpy of reaction TmCl3 +# Enthalpy of formation: -287 kcal/mol + -analytic 3.9793e+002 1.2777e-001 -1.0070e+004 -1.6272e+002 -1.5725e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Tm+++ = TmCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -20.3677 kJ/mol # Calculated enthalpy of reaction TmCl4- +# Enthalpy of formation: -333.1 kcal/mol + -analytic 4.3574e+002 1.2655e-001 -1.0713e+004 -1.7716e+002 -1.6730e+002 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 F- = TmF++ + -llnl_gamma 4.5 + log_k +4.8085 + -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction TmF+2 +# Enthalpy of formation: -243 kcal/mol + -analytic 9.7686e+001 4.1890e-002 -2.5909e+003 -3.9059e+001 -4.0457e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Tm+++ = TmF2+ + -llnl_gamma 4.0 + log_k +8.3709 + -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction TmF2+ +# Enthalpy of formation: -325.8 kcal/mol + -analytic 2.2986e+002 8.4119e-002 -5.2144e+003 -9.2558e+001 -8.1433e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Tm+++ = TmF3 + -llnl_gamma 3.0 + log_k +10.9804 + -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction TmF3 +# Enthalpy of formation: -412 kcal/mol + -analytic 4.2855e+002 1.3445e-001 -9.7045e+003 -1.7177e+002 -1.5156e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Tm+++ = TmF4- + -llnl_gamma 4.0 + log_k +13.1501 + -delta_H -60.668 kJ/mol # Calculated enthalpy of reaction TmF4- +# Enthalpy of formation: -503.6 kcal/mol + -analytic 4.6559e+002 1.3386e-001 -9.1790e+003 -1.8650e+002 -1.4337e+002 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 HPO4-- + 1.0000 H+ = TmH2PO4++ + -llnl_gamma 4.5 + log_k +9.4484 + -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction TmH2PO4+2 +# Enthalpy of formation: -482.2 kcal/mol + -analytic 1.0360e+002 6.3085e-002 6.0731e+002 -4.6456e+001 9.4456e+000 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 HCO3- = TmHCO3++ + -llnl_gamma 4.5 + log_k +1.7724 + -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction TmHCO3+2 +# Enthalpy of formation: -332.2 kcal/mol + -analytic 3.3102e+001 3.1010e-002 2.9880e+002 -1.6791e+001 4.6524e+000 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 HPO4-- = TmHPO4+ + -llnl_gamma 4.0 + log_k +5.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction TmHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Tm+++ + 1.0000 NO3- = TmNO3++ + -llnl_gamma 4.5 + log_k +0.2148 + -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction TmNO3+2 +# Enthalpy of formation: -226 kcal/mol + -analytic 1.1085e+001 2.4898e-002 2.5664e+003 -1.0861e+001 4.0043e+001 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 H2O = TmO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -15.8972 + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction TmO+ +# Enthalpy of formation: -211.6 kcal/mol + -analytic 1.7572e+002 2.8756e-002 -1.3096e+004 -6.3150e+001 -2.0441e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Tm+++ = TmO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -32.6741 + -delta_H 266.663 kJ/mol # Calculated enthalpy of reaction TmO2- +# Enthalpy of formation: -241.4 kcal/mol + -analytic 3.3118e+001 -5.2802e-003 -1.1318e+004 -8.4764e+000 -4.6998e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Tm+++ = TmO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -24.1712 + -delta_H 211.853 kJ/mol # Calculated enthalpy of reaction TmO2H +# Enthalpy of formation: -254.5 kcal/mol + -analytic 3.1648e+002 4.4527e-002 -2.1821e+004 -1.1345e+002 -3.4059e+002 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 H2O = TmOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.6876 + -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction TmOH+2 +# Enthalpy of formation: -219 kcal/mol + -analytic 5.7572e+001 1.1162e-002 -5.6381e+003 -2.0074e+001 -8.7994e+001 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 HPO4-- = TmPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k +0.4782 + -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Tm+++ + 1.0000 SO4-- = TmSO4+ + -llnl_gamma 4.0 + log_k +3.5697 + -delta_H 19.9995 kJ/mol # Calculated enthalpy of reaction TmSO4+ +# Enthalpy of formation: -381.12 kcal/mol + -analytic 3.0441e+002 8.6070e-002 -8.9592e+003 -1.1979e+002 -1.3989e+002 +# -Range: 0-300 + +4.0000 HCO3- + 1.0000 U++++ = U(CO3)4---- +4.0000 H+ + -llnl_gamma 4.0 + log_k -6.2534 + -delta_H 0 # Not possible to calculate enthalpy of reaction U(CO3)4-4 +# Enthalpy of formation: -0 kcal/mol + +5.0000 HCO3- + 1.0000 U++++ = U(CO3)5-6 +5.0000 H+ + -llnl_gamma 4.0 + log_k -17.7169 + -delta_H 53.5172 kJ/mol # Calculated enthalpy of reaction U(CO3)5-6 +# Enthalpy of formation: -3987.35 kJ/mol + -analytic 6.3020e+002 1.9391e-001 -1.9238e+004 -2.5912e+002 -3.0038e+002 +# -Range: 0-300 + +2.0000 NO3- + 1.0000 U++++ = U(NO3)2++ + -llnl_gamma 4.5 + log_k +2.2610 + -delta_H 0 # Not possible to calculate enthalpy of reaction U(NO3)2+2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 U++++ = U(OH)4 +4.0000 H+ + -llnl_gamma 3.0 + log_k -4.57 + -delta_H 78.7553 kJ/mol # Calculated enthalpy of reaction U(OH)4 +# Enthalpy of formation: -1655.8 kJ/mol + -analytic 2.6685e+002 9.8204e-002 -9.4428e+003 -1.0871e+002 -1.6045e+002 +# -Range: 0-200 + +2.0000 Thiocyanate- + 1.0000 U++++ = U(Thiocyanate)2++ + -llnl_gamma 4.5 + log_k +4.2600 + -delta_H 0 # Not possible to calculate enthalpy of reaction U(Thiocyanate)2+2 +# Enthalpy of formation: -456.4 kJ/mol + -analytic 6.2193e+000 2.7673e-002 2.4326e+003 -7.4158e+000 3.7957e+001 +# -Range: 0-300 + +2.0000 SO4-- + 1.0000 U++++ = U(SO4)2 + -llnl_gamma 3.0 + log_k +10.3507 + -delta_H 33.2232 kJ/mol # Calculated enthalpy of reaction U(SO4)2 +# Enthalpy of formation: -2377.18 kJ/mol + -analytic 4.9476e+002 1.7832e-001 -1.1901e+004 -2.0111e+002 -2.0227e+002 +# -Range: 0-200 + +1.0000 U++++ + 1.0000 Br- = UBr+++ + -llnl_gamma 5.0 + log_k +1.4240 + -delta_H 0 # Not possible to calculate enthalpy of reaction UBr+3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 U++++ + 1.0000 Cl- = UCl+++ + -llnl_gamma 5.0 + log_k +1.7073 + -delta_H -18.9993 kJ/mol # Calculated enthalpy of reaction UCl+3 +# Enthalpy of formation: -777.279 kJ/mol + -analytic 9.4418e+001 4.1718e-002 -7.0675e+002 -4.1532e+001 -1.1056e+001 +# -Range: 0-300 + +1.0000 U++++ + 1.0000 F- = UF+++ + -llnl_gamma 5.0 + log_k +9.2403 + -delta_H -5.6024 kJ/mol # Calculated enthalpy of reaction UF+3 +# Enthalpy of formation: -932.15 kJ/mol + -analytic 1.1828e+002 3.8097e-002 -2.2531e+003 -4.5594e+001 -3.5193e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 U++++ = UF2++ + -llnl_gamma 4.5 + log_k +16.1505 + -delta_H -3.5048 kJ/mol # Calculated enthalpy of reaction UF2+2 +# Enthalpy of formation: -1265.4 kJ/mol + -analytic 2.3537e+002 7.7064e-002 -4.8455e+003 -9.1296e+001 -7.5679e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 U++++ = UF3+ + -llnl_gamma 4.0 + log_k +21.4806 + -delta_H 0.4938 kJ/mol # Calculated enthalpy of reaction UF3+ +# Enthalpy of formation: -1596.75 kJ/mol + -analytic 3.5097e+002 1.1714e-001 -7.4569e+003 -1.3714e+002 -1.1646e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 U++++ = UF4 + -llnl_gamma 3.0 + log_k +25.4408 + -delta_H -4.2146 kJ/mol # Calculated enthalpy of reaction UF4 +# Enthalpy of formation: -1936.81 kJ/mol + -analytic 7.8549e+002 2.7922e-001 -1.6213e+004 -3.1881e+002 -2.7559e+002 +# -Range: 0-200 + +5.0000 F- + 1.0000 U++++ = UF5- + -llnl_gamma 4.0 + log_k +26.8110 + -delta_H 0 # Not possible to calculate enthalpy of reaction UF5- +# Enthalpy of formation: -0 kcal/mol + +6.0000 F- + 1.0000 U++++ = UF6-- + -llnl_gamma 4.0 + log_k +28.8412 + -delta_H 0 # Not possible to calculate enthalpy of reaction UF6-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 U++++ + 1.0000 I- = UI+++ + -llnl_gamma 5.0 + log_k +1.2151 + -delta_H 0 # Not possible to calculate enthalpy of reaction UI+3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 U++++ + 1.0000 NO3- = UNO3+++ + -llnl_gamma 5.0 + log_k +1.4506 + -delta_H 0 # Not possible to calculate enthalpy of reaction UNO3+3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 HCO3- + 1.0000 UO2++ = UO2(CO3)2-- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.7467 + -delta_H 47.9065 kJ/mol # Calculated enthalpy of reaction UO2(CO3)2-2 +# Enthalpy of formation: -2350.96 kJ/mol + -analytic 2.6569e+002 8.1552e-002 -9.0918e+003 -1.0638e+002 -1.4195e+002 +# -Range: 0-300 + +3.0000 HCO3- + 1.0000 UO2+ = UO2(CO3)3-5 +3.0000 H+ + -llnl_gamma 4.0 + log_k -23.6241 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(CO3)3-5 +# Enthalpy of formation: -0 kcal/mol + +3.0000 HCO3- + 1.0000 UO2++ = UO2(CO3)3---- +3.0000 H+ + -llnl_gamma 4.0 + log_k -9.4302 + -delta_H 4.9107 kJ/mol # Calculated enthalpy of reaction UO2(CO3)3-4 +# Enthalpy of formation: -3083.89 kJ/mol + -analytic 3.7918e+002 1.1789e-001 -1.0233e+004 -1.5738e+002 -1.5978e+002 +# -Range: 0-300 + +3.0000 H+ + 2.0000 HPO4-- + 1.0000 UO2++ = UO2(H2PO4)(H3PO4)+ + -llnl_gamma 4.0 + log_k +22.7537 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)(H3PO4)+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 2.0000 H+ + 1.0000 UO2++ = UO2(H2PO4)2 + -llnl_gamma 3.0 + log_k +21.7437 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 IO3- + 1.0000 UO2++ = UO2(IO3)2 + -llnl_gamma 3.0 + log_k +2.9969 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(IO3)2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 N3- + 1.0000 UO2++ = UO2(N3)2 + -llnl_gamma 3.0 + log_k +4.3301 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 N3- + 1.0000 UO2++ = UO2(N3)3- + -llnl_gamma 4.0 + log_k +5.7401 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 N3- + 1.0000 UO2++ = UO2(N3)4-- + -llnl_gamma 4.0 + log_k +4.9200 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)4-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 UO2++ = UO2(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -10.3146 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 UO2++ = UO2(OH)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -19.2218 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 UO2++ = UO2(OH)4-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -33.0291 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)4-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 Thiocyanate- + 1.0000 UO2++ = UO2(Thiocyanate)2 + -llnl_gamma 3.0 + log_k +1.2401 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)2 +# Enthalpy of formation: -857.3 kJ/mol + -analytic 9.4216e+001 3.2840e-002 -2.4849e+003 -3.8162e+001 -4.2231e+001 +# -Range: 0-200 + +3.0000 Thiocyanate- + 1.0000 UO2++ = UO2(Thiocyanate)3- + -llnl_gamma 4.0 + log_k +2.1001 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)3- +# Enthalpy of formation: -783.8 kJ/mol + -analytic 1.6622e+001 2.2714e-002 4.9707e+002 -9.2785e+000 7.7512e+000 +# -Range: 0-300 + +2.0000 SO3-- + 1.0000 UO2++ = UO2(SO3)2-- + -llnl_gamma 4.0 + log_k +7.9101 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(SO3)2-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 UO2++ = UO2(SO4)2-- + -llnl_gamma 4.0 + log_k +3.9806 + -delta_H 35.6242 kJ/mol # Calculated enthalpy of reaction UO2(SO4)2-2 +# Enthalpy of formation: -2802.58 kJ/mol + -analytic 3.9907e+002 1.3536e-001 -1.0813e+004 -1.6130e+002 -1.6884e+002 +# -Range: 0-300 + +1.0000 UO2++ + 1.0000 Br- = UO2Br+ + -llnl_gamma 4.0 + log_k +0.1840 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Br+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 UO2++ + 1.0000 BrO3- = UO2BrO3+ + -llnl_gamma 4.0 + log_k +0.5510 + -delta_H 0.46952 kJ/mol # Calculated enthalpy of reaction UO2BrO3+ +# Enthalpy of formation: -1085.6 kJ/mol + -analytic 8.2618e+001 2.6921e-002 -2.0144e+003 -3.3673e+001 -3.1457e+001 +# -Range: 0-300 + +1.0000 UO2++ + 1.0000 HCO3- = UO2CO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -0.6634 + -delta_H 19.7032 kJ/mol # Calculated enthalpy of reaction UO2CO3 +# Enthalpy of formation: -1689.23 kJ/mol + -analytic 7.3898e+001 2.8127e-002 -2.4347e+003 -3.0217e+001 -4.1371e+001 +# -Range: 0-200 + +1.0000 UO2++ + 1.0000 Cl- = UO2Cl+ + -llnl_gamma 4.0 + log_k +0.1572 + -delta_H 8.00167 kJ/mol # Calculated enthalpy of reaction UO2Cl+ +# Enthalpy of formation: -1178.08 kJ/mol + -analytic 9.8139e+001 3.8869e-002 -2.3178e+003 -4.1133e+001 -3.6196e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 UO2++ = UO2Cl2 + -llnl_gamma 3.0 + log_k -1.1253 + -delta_H 15.0013 kJ/mol # Calculated enthalpy of reaction UO2Cl2 +# Enthalpy of formation: -1338.16 kJ/mol + -analytic 3.4087e+001 1.3840e-002 -1.3664e+003 -1.4043e+001 -2.3216e+001 +# -Range: 0-200 + +1.0000 UO2++ + 1.0000 ClO3- = UO2ClO3+ + -llnl_gamma 4.0 + log_k +0.4919 + -delta_H -3.9266 kJ/mol # Calculated enthalpy of reaction UO2ClO3+ +# Enthalpy of formation: -1126.9 kJ/mol + -analytic 9.6263e+001 2.8926e-002 -2.3068e+003 -3.9057e+001 -3.6025e+001 +# -Range: 0-300 + +1.0000 UO2++ + 1.0000 F- = UO2F+ + -llnl_gamma 4.0 + log_k +5.0502 + -delta_H 1.6976 kJ/mol # Calculated enthalpy of reaction UO2F+ +# Enthalpy of formation: -1352.65 kJ/mol + -analytic 1.1476e+002 4.0682e-002 -2.4467e+003 -4.5914e+001 -3.8212e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 UO2++ = UO2F2 + -llnl_gamma 3.0 + log_k +8.5403 + -delta_H 2.0962 kJ/mol # Calculated enthalpy of reaction UO2F2 +# Enthalpy of formation: -1687.6 kJ/mol + -analytic 2.7673e+002 9.9190e-002 -5.8371e+003 -1.1242e+002 -9.9219e+001 +# -Range: 0-200 + +3.0000 F- + 1.0000 UO2++ = UO2F3- + -llnl_gamma 4.0 + log_k +10.7806 + -delta_H 2.3428 kJ/mol # Calculated enthalpy of reaction UO2F3- +# Enthalpy of formation: -2022.7 kJ/mol + -analytic 3.3383e+002 9.2160e-002 -8.7975e+003 -1.2972e+002 -1.3738e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 UO2++ = UO2F4-- + -llnl_gamma 4.0 + log_k +11.5407 + -delta_H 0.2814 kJ/mol # Calculated enthalpy of reaction UO2F4-2 +# Enthalpy of formation: -2360.11 kJ/mol + -analytic 4.4324e+002 1.3808e-001 -1.0705e+004 -1.7657e+002 -1.6718e+002 +# -Range: 0-300 + +1.0000 UO2++ + 1.0000 HPO4-- + 1.0000 H+ = UO2H2PO4+ + -llnl_gamma 4.0 + log_k +11.6719 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H2PO4+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 H+ + 1.0000 UO2++ + 1.0000 HPO4-- = UO2H3PO4++ + -llnl_gamma 4.5 + log_k +11.3119 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H3PO4+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 UO2++ + 1.0000 HPO4-- = UO2HPO4 + -llnl_gamma 3.0 + log_k +8.4398 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 UO2++ + 1.0000 IO3- = UO2IO3+ + -llnl_gamma 4.0 + log_k +1.7036 + -delta_H 11.4336 kJ/mol # Calculated enthalpy of reaction UO2IO3+ +# Enthalpy of formation: -1228.9 kJ/mol + -analytic 1.0428e+002 2.9620e-002 -3.2441e+003 -4.0618e+001 -5.0651e+001 +# -Range: 0-300 + +1.0000 UO2++ + 1.0000 N3- = UO2N3+ + -llnl_gamma 4.0 + log_k +2.5799 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2N3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 UO2++ + 1.0000 NO3- = UO2NO3+ + -llnl_gamma 4.0 + log_k +0.2805 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2NO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 UO2++ + 1.0000 H2O = UO2OH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -5.2073 + -delta_H 43.1813 kJ/mol # Calculated enthalpy of reaction UO2OH+ +# Enthalpy of formation: -1261.66 kJ/mol + -analytic 3.4387e+001 6.0811e-003 -3.3068e+003 -1.2252e+001 -5.1609e+001 +# -Range: 0-300 + +1.0000 UO2++ + 1.0000 HPO4-- = UO2PO4- +1.0000 H+ + -llnl_gamma 4.0 + log_k +2.0798 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2PO4- +# Enthalpy of formation: -0 kcal/mol + +#2.0000 SO3-- + 2.0000 H+ + 1.0000 UO2++ = UO2S2O3 +1.0000 H2O +1.0000 O2 +#S2O3-- + O2 + H2O = 2.0000 H+ + 2.0000 SO3-- log_k 40.2906 +S2O3-- + UO2++ = UO2S2O3 + -llnl_gamma 3.0 +# log_k -38.0666 + log_k 2.224 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2S2O3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 UO2++ + 1.0000 Thiocyanate- = UO2Thiocyanate+ + -llnl_gamma 4.0 + log_k +1.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Thiocyanate+ +# Enthalpy of formation: -939.38 kJ/mol + -analytic 4.7033e+000 1.2562e-002 4.9095e+002 -3.5097e+000 7.6593e+000 +# -Range: 0-300 + +1.0000 UO2++ + 1.0000 SO3-- = UO2SO3 + -llnl_gamma 3.0 + log_k +6.7532 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2SO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 UO2++ + 1.0000 SO4-- = UO2SO4 + -llnl_gamma 3.0 + log_k +3.0703 + -delta_H 19.7626 kJ/mol # Calculated enthalpy of reaction UO2SO4 +# Enthalpy of formation: -1908.84 kJ/mol + -analytic 1.9514e+002 7.0951e-002 -4.9949e+003 -7.9394e+001 -8.4888e+001 +# -Range: 0-200 + +1.0000 U++++ + 1.0000 H2O = UOH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -0.5472 + -delta_H 46.9183 kJ/mol # Calculated enthalpy of reaction UOH+3 +# Enthalpy of formation: -830.12 kJ/mol + -analytic 4.0793e+001 1.3563e-003 -3.8441e+003 -1.1659e+001 -5.9996e+001 +# -Range: 0-300 + +1.0000 U++++ + 1.0000 Thiocyanate- = UThiocyanate+++ + -llnl_gamma 5.0 + log_k +2.9700 + -delta_H 0 # Not possible to calculate enthalpy of reaction UThiocyanate+3 +# Enthalpy of formation: -541.8 kJ/mol + -analytic 4.0286e-001 1.5909e-002 2.3026e+003 -3.9973e+000 3.5929e+001 +# -Range: 0-300 + +1.0000 U++++ + 1.0000 SO4-- = USO4++ + -llnl_gamma 4.5 + log_k +6.5003 + -delta_H 8.2616 kJ/mol # Calculated enthalpy of reaction USO4+2 +# Enthalpy of formation: -1492.54 kJ/mol + -analytic 1.9418e+002 7.5458e-002 -4.0646e+003 -7.9416e+001 -6.3482e+001 +# -Range: 0-300 + +2.0000 H2O + 1.0000 V+++ = V(OH)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -5.9193 + -delta_H 0 # Not possible to calculate enthalpy of reaction V(OH)2+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 V+++ + 2.0000 H2O = V2(OH)2++++ +2.0000 H+ + -llnl_gamma 5.5 + log_k -3.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction V2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 VO2+ = VO(OH)3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -3.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO(OH)3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 VO2+ = VO2(HPO4)2--- + -llnl_gamma 4.0 + log_k +8.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(HPO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 VO2+ = VO2(OH)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(OH)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 VO2+ + 1.0000 F- = VO2F + -llnl_gamma 3.0 + log_k +3.3500 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 VO2+ = VO2F2- + -llnl_gamma 4.0 + log_k +5.8100 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 VO2+ + 1.0000 HPO4-- + 1.0000 H+ = VO2H2PO4 + -llnl_gamma 3.0 + log_k +1.6800 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2H2PO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 VO2+ + 1.0000 HPO4-- = VO2HPO4- + -llnl_gamma 4.0 + log_k +5.8300 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2HPO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 VO2+ + 1.0000 SO4-- = VO2SO4- + -llnl_gamma 4.0 + log_k +1.5800 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2SO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 VO4--- + 1.0000 H+ = VO3OH-- + -llnl_gamma 4.0 + log_k +14.2600 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO3OH-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 VO++ + 1.0000 F- = VOF+ + -llnl_gamma 4.0 + log_k +4.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOF+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 VO++ = VOF2 + -llnl_gamma 3.0 + log_k +6.7800 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOF2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 V+++ + 1.0000 H2O = VOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.26 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOH+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 VO++ + 1.0000 H2O = VOOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -5.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOOH+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 VO++ + 1.0000 SO4-- = VOSO4 + -llnl_gamma 3.0 + log_k +2.4800 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOSO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 V+++ + 1.0000 SO4-- = VSO4+ + -llnl_gamma 4.0 + log_k +3.3300 + -delta_H 0 # Not possible to calculate enthalpy of reaction VSO4+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Y+++ = Y(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9844 + -delta_H -34.8109 kJ/mol # Calculated enthalpy of reaction Y(CH3COO)2+ +# Enthalpy of formation: -411.42 kcal/mol + -analytic -3.3011e+001 6.1979e-004 -7.7468e+002 9.6380e+000 5.8814e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Y+++ = Y(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.3783 + -delta_H -58.4505 kJ/mol # Calculated enthalpy of reaction Y(CH3COO)3 +# Enthalpy of formation: -533.17 kcal/mol + -analytic -3.0086e+001 4.0213e-003 -1.1444e+003 6.1794e+000 8.0827e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Y+++ = Y(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.3576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Y+++ = Y(HPO4)2- + -llnl_gamma 4.0 + log_k +9.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Y+++ = Y(OH)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.3902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)2+ +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Y+++ = Y(OH)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -25.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)3 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Y+++ = Y(OH)4- +4.0000 H+ + -llnl_gamma 4.0 + log_k -36.4803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)4- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Y+++ = Y(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.2437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Y+++ = Y(SO4)2- + -llnl_gamma 4.0 + log_k +4.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 Y+++ + 2.0000 H2O = Y2(OH)2++++ +2.0000 H+ + -llnl_gamma 5.5 + log_k -14.1902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 CH3COOH = YCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1184 + -delta_H -17.2799 kJ/mol # Calculated enthalpy of reaction YCH3COO+2 +# Enthalpy of formation: -291.13 kcal/mol + -analytic -1.2080e+001 1.2015e-003 -8.4186e+002 3.4522e+000 3.4647e+005 +# -Range: 0-300 + +1.0000 Y+++ + 1.0000 HCO3- = YCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.2788 + -delta_H 0 # Not possible to calculate enthalpy of reaction YCO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 Cl- = YCl++ + -llnl_gamma 4.5 + log_k +0.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YCl+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 F- = YF++ + -llnl_gamma 4.5 + log_k +4.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YF+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 Y+++ = YF2+ + -llnl_gamma 4.0 + log_k +7.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YF2+ +# Enthalpy of formation: -0 kcal/mol + +3.0000 F- + 1.0000 Y+++ = YF3 + -llnl_gamma 3.0 + log_k +11.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YF3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 HPO4-- + 1.0000 H+ = YH2PO4++ + -llnl_gamma 4.5 + log_k +9.6054 + -delta_H 0 # Not possible to calculate enthalpy of reaction YH2PO4+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 HCO3- = YHCO3++ + -llnl_gamma 4.5 + log_k +2.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YHCO3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 HPO4-- = YHPO4+ + -llnl_gamma 4.0 + log_k +5.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 NO3- = YNO3++ + -llnl_gamma 4.5 + log_k +0.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YNO3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 H2O = YOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.6951 + -delta_H 0 # Not possible to calculate enthalpy of reaction YOH+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 HPO4-- = YPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k +0.2782 + -delta_H 0 # Not possible to calculate enthalpy of reaction YPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 SO4-- = YSO4+ + -llnl_gamma 4.0 + log_k +3.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YSO4+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Yb+++ = Yb(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -5.131 + -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Yb(CH3COO)2+ +# Enthalpy of formation: -399.75 kcal/mol + -analytic -3.4286e+001 9.4069e-004 -6.5120e+002 1.0071e+001 5.4773e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Yb+++ = Yb(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.5688 + -delta_H -51.4214 kJ/mol # Calculated enthalpy of reaction Yb(CH3COO)3 +# Enthalpy of formation: -520.89 kcal/mol + -analytic -6.2211e+001 -6.1589e-004 5.9577e+002 1.7954e+001 6.6116e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Yb+++ = Yb(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.0576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Yb+++ = Yb(HPO4)2- + -llnl_gamma 4.0 + log_k +10.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +# Redundant with YbO2- +#4.0000 H2O + 1.0000 Yb+++ = Yb(OH)4- +4.0000 H+ +# -llnl_gamma 4.0 +# log_k -32.6803 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)4- +## Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Yb+++ = Yb(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -2.7437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Yb+++ = Yb(SO4)2- + -llnl_gamma 4.0 + log_k +5.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Yb+++ + 1.0000 CH3COOH = YbCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.199 + -delta_H -15.2298 kJ/mol # Calculated enthalpy of reaction YbCH3COO+2 +# Enthalpy of formation: -280.04 kcal/mol + -analytic -8.5003e+000 2.2459e-003 -9.6434e+002 2.0630e+000 3.3550e+005 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 HCO3- = YbCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.0392 + -delta_H 82.8348 kJ/mol # Calculated enthalpy of reaction YbCO3+ +# Enthalpy of formation: -305.4 kcal/mol + -analytic 2.3533e+002 5.4436e-002 -6.7871e+003 -9.3280e+001 -1.0598e+002 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 Cl- = YbCl++ + -llnl_gamma 4.5 + log_k +0.1620 + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction YbCl+2 +# Enthalpy of formation: -196.9 kcal/mol + -analytic 8.0452e+001 3.8343e-002 -1.8176e+003 -3.4594e+001 -2.8386e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Yb+++ = YbCl2+ + -llnl_gamma 4.0 + log_k -0.2624 + -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction YbCl2+ +# Enthalpy of formation: -236 kcal/mol + -analytic 2.1708e+002 8.0550e-002 -5.4744e+003 -9.0101e+001 -8.5487e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Yb+++ = YbCl3 + -llnl_gamma 3.0 + log_k -0.7601 + -delta_H 8.36382 kJ/mol # Calculated enthalpy of reaction YbCl3 +# Enthalpy of formation: -278.1 kcal/mol + -analytic 4.0887e+002 1.2992e-001 -1.0578e+004 -1.6684e+002 -1.6518e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Yb+++ = YbCl4- + -llnl_gamma 4.0 + log_k -1.1845 + -delta_H -15.7653 kJ/mol # Calculated enthalpy of reaction YbCl4- +# Enthalpy of formation: -323.8 kcal/mol + -analytic 4.7560e+002 1.3032e-001 -1.2452e+004 -1.9149e+002 -1.9444e+002 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 F- = YbF++ + -llnl_gamma 4.5 + log_k +4.8085 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction YbF+2 +# Enthalpy of formation: -234.9 kcal/mol + -analytic 1.0291e+002 4.2493e-002 -2.7637e+003 -4.1008e+001 -4.3156e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Yb+++ = YbF2+ + -llnl_gamma 4.0 + log_k +8.3709 + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction YbF2+ +# Enthalpy of formation: -317.7 kcal/mol + -analytic 2.4281e+002 8.5385e-002 -5.6900e+003 -9.7299e+001 -8.8859e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Yb+++ = YbF3 + -llnl_gamma 3.0 + log_k +11.0537 + -delta_H -13.1796 kJ/mol # Calculated enthalpy of reaction YbF3 +# Enthalpy of formation: -403.9 kcal/mol + -analytic 4.5227e+002 1.3659e-001 -1.0595e+004 -1.8038e+002 -1.6546e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Yb+++ = YbF4- + -llnl_gamma 4.0 + log_k +13.2234 + -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction YbF4- +# Enthalpy of formation: -495.3 kcal/mol + -analytic 5.0369e+002 1.3726e-001 -1.0671e+004 -2.0026e+002 -1.6666e+002 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 HPO4-- + 1.0000 H+ = YbH2PO4++ + -llnl_gamma 4.5 + log_k +9.5217 + -delta_H -20.0204 kJ/mol # Calculated enthalpy of reaction YbH2PO4+2 +# Enthalpy of formation: -473.9 kcal/mol + -analytic 1.0919e+002 6.3749e-002 3.8909e+002 -4.8469e+001 6.0389e+000 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 HCO3- = YbHCO3++ + -llnl_gamma 4.5 + log_k +1.8398 + -delta_H 5.43083 kJ/mol # Calculated enthalpy of reaction YbHCO3+2 +# Enthalpy of formation: -323.9 kcal/mol + -analytic 3.9175e+001 3.1796e-002 6.9728e+001 -1.9002e+001 1.0762e+000 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 HPO4-- = YbHPO4+ + -llnl_gamma 4.0 + log_k +6.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YbHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Yb+++ + 1.0000 NO3- = YbNO3++ + -llnl_gamma 4.5 + log_k +0.2148 + -delta_H -32.9323 kJ/mol # Calculated enthalpy of reaction YbNO3+2 +# Enthalpy of formation: -217.6 kcal/mol + -analytic 1.7237e+001 2.5684e-002 2.2806e+003 -1.3055e+001 3.5581e+001 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 H2O = YbO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -15.7506 + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction YbO+ +# Enthalpy of formation: -203.4 kcal/mol + -analytic 1.7675e+002 2.9078e-002 -1.3106e+004 -6.3534e+001 -2.0456e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Yb+++ = YbO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -32.6741 + -delta_H 267.918 kJ/mol # Calculated enthalpy of reaction YbO2- +# Enthalpy of formation: -232.9 kcal/mol + -analytic 1.5529e+002 1.0053e-002 -1.8749e+004 -5.1764e+001 -2.9260e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Yb+++ = YbO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -23.878 + -delta_H 211.016 kJ/mol # Calculated enthalpy of reaction YbO2H +# Enthalpy of formation: -246.5 kcal/mol + -analytic 3.2148e+002 4.4821e-002 -2.1971e+004 -1.1519e+002 -3.4293e+002 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 H2O = YbOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.6143 + -delta_H 74.9647 kJ/mol # Calculated enthalpy of reaction YbOH+2 +# Enthalpy of formation: -210.7 kcal/mol + -analytic 5.8142e+001 1.1402e-002 -5.6488e+003 -2.0289e+001 -8.8160e+001 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 HPO4-- = YbPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k +0.5782 + -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Yb+++ + 1.0000 SO4-- = YbSO4+ + -llnl_gamma 4.0 + log_k +3.5697 + -delta_H 1424.65 kJ/mol # Calculated enthalpy of reaction YbSO4+ +# Enthalpy of formation: -37.2 kcal/mol + -analytic 3.0675e+002 8.6527e-002 -9.0298e+003 -1.2069e+002 -1.4099e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Zn++ = Zn(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -6.062 + -delta_H -11.0458 kJ/mol # Calculated enthalpy of reaction Zn(CH3COO)2 +# Enthalpy of formation: -271.5 kcal/mol + -analytic -2.2038e+001 2.6133e-003 -2.7652e+003 6.8501e+000 6.7086e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Zn++ = Zn(CH3COO)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -10.0715 + -delta_H 25.355 kJ/mol # Calculated enthalpy of reaction Zn(CH3COO)3- +# Enthalpy of formation: -378.9 kcal/mol + -analytic 3.5104e+001 -6.1568e-003 -1.3379e+004 -8.7697e+000 2.0670e+006 +# -Range: 0-300 + +4.0000 Cyanide- + 1.0000 Zn++ = Zn(Cyanide)4-- + -llnl_gamma 4.0 + log_k +16.7040 + -delta_H -107.305 kJ/mol # Calculated enthalpy of reaction Zn(Cyanide)4-2 +# Enthalpy of formation: 341.806 kJ/mol + -analytic 3.6586e+002 1.2655e-001 -2.9546e+003 -1.5232e+002 -4.6213e+001 +# -Range: 0-300 + +2.0000 N3- + 1.0000 Zn++ = Zn(N3)2 + -llnl_gamma 3.0 + log_k +1.1954 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(N3)2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 NH3 = Zn(NH3)++ + -llnl_gamma 4.5 + log_k +2.0527 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 NH3 + 1.0000 Zn++ = Zn(NH3)2++ + -llnl_gamma 4.5 + log_k +4.2590 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)2+2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 NH3 + 1.0000 Zn++ = Zn(NH3)3++ + -llnl_gamma 4.5 + log_k +6.4653 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)3+2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 NH3 + 1.0000 Zn++ = Zn(NH3)4++ + -llnl_gamma 4.5 + log_k +8.3738 + -delta_H -54.9027 kJ/mol # Calculated enthalpy of reaction Zn(NH3)4+2 +# Enthalpy of formation: -533.636 kJ/mol + -analytic 1.5851e+002 -6.3376e-003 -4.6783e+003 -5.3560e+001 -7.3047e+001 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Zn++ = Zn(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -17.3282 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Zn++ = Zn(OH)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -28.8369 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Zn++ = Zn(OH)4-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -41.6052 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 H2O + 1.0000 Cl- = Zn(OH)Cl +1.0000 H+ + -llnl_gamma 3.0 + log_k -7.5417 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)Cl +# Enthalpy of formation: -0 kcal/mol + +2.0000 Thiocyanate- + 1.0000 Zn++ = Zn(Thiocyanate)2 + -llnl_gamma 3.0 + log_k +0.8800 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 Thiocyanate- + 1.0000 Zn++ = Zn(Thiocyanate)4-- + -llnl_gamma 4.0 + log_k +1.2479 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 Br- = ZnBr+ + -llnl_gamma 4.0 + log_k -0.6365 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 Br- + 1.0000 Zn++ = ZnBr2 + -llnl_gamma 3.0 + log_k -1.0492 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 Br- + 1.0000 Zn++ = ZnBr3- + -llnl_gamma 4.0 + log_k -1.8474 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr3- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 CH3COOH = ZnCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.1519 + -delta_H -9.87424 kJ/mol # Calculated enthalpy of reaction ZnCH3COO+ +# Enthalpy of formation: -155.12 kcal/mol + -analytic -7.9367e+000 2.8564e-003 -1.4514e+003 2.5010e+000 2.3343e+005 +# -Range: 0-300 + +1.0000 Zn++ + 1.0000 HCO3- = ZnCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -6.4288 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 Cl- = ZnCl+ + -llnl_gamma 4.0 + log_k +0.1986 + -delta_H 43.317 kJ/mol # Calculated enthalpy of reaction ZnCl+ +# Enthalpy of formation: -66.24 kcal/mol + -analytic 1.1235e+002 4.4461e-002 -4.1662e+003 -4.5023e+001 -6.5042e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Zn++ = ZnCl2 + -llnl_gamma 3.0 + log_k +0.2507 + -delta_H 31.1541 kJ/mol # Calculated enthalpy of reaction ZnCl2 +# Enthalpy of formation: -109.08 kcal/mol + -analytic 1.7824e+002 7.5733e-002 -4.6251e+003 -7.4770e+001 -7.2224e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Zn++ = ZnCl3- + -llnl_gamma 4.0 + log_k -0.0198 + -delta_H 22.5894 kJ/mol # Calculated enthalpy of reaction ZnCl3- +# Enthalpy of formation: -151.06 kcal/mol + -analytic 1.3889e+002 7.4712e-002 -2.1527e+003 -6.2200e+001 -3.3633e+001 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Zn++ = ZnCl4-- + -llnl_gamma 4.0 + log_k +0.8605 + -delta_H 4.98733 kJ/mol # Calculated enthalpy of reaction ZnCl4-2 +# Enthalpy of formation: -195.2 kcal/mol + -analytic 8.4294e+001 7.0021e-002 3.9150e+002 -4.2664e+001 6.0834e+000 +# -Range: 0-300 + +1.0000 Zn++ + 1.0000 ClO4- = ZnClO4+ + -llnl_gamma 4.0 + log_k +1.2768 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnClO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 F- = ZnF+ + -llnl_gamma 4.0 + log_k +1.1500 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnF+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 HPO4-- + 1.0000 H+ = ZnH2PO4+ + -llnl_gamma 4.0 + log_k +0.4300 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 HCO3- = ZnHCO3+ + -llnl_gamma 4.0 + log_k +1.4200 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHCO3+ +# Enthalpy of formation: -0 kcal/mol + -analytic 5.1115e+002 1.2911e-001 -1.5292e+004 -2.0083e+002 -2.2721e+002 +# -Range: 25-300 + +1.0000 Zn++ + 1.0000 HPO4-- = ZnHPO4 + -llnl_gamma 3.0 + log_k +3.2600 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 I- = ZnI+ + -llnl_gamma 4.0 + log_k -3.0134 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 I- + 1.0000 Zn++ = ZnI2 + -llnl_gamma 3.0 + log_k -1.8437 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 I- + 1.0000 Zn++ = ZnI3- + -llnl_gamma 4.0 + log_k -2.0054 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 I- + 1.0000 Zn++ = ZnI4-- + -llnl_gamma 4.0 + log_k -2.6052 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 N3- = ZnN3+ + -llnl_gamma 4.0 + log_k +0.4420 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnN3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 H2O = ZnOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -8.96 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnOH+ +# Enthalpy of formation: -0 kcal/mol + -analytic -7.8600e-001 -2.9499e-004 -2.8673e+003 6.1892e-001 -4.2576e+001 +# -Range: 25-300 + +1.0000 Zn++ + 1.0000 HPO4-- = ZnPO4- +1.0000 H+ + -llnl_gamma 4.0 + log_k -4.3018 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnPO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 SO4-- = ZnSO4 + -llnl_gamma 3.0 + log_k +2.3062 + -delta_H 15.277 kJ/mol # Calculated enthalpy of reaction ZnSO4 +# Enthalpy of formation: -1047.71 kJ/mol + -analytic 1.3640e+002 5.1256e-002 -3.4422e+003 -5.5695e+001 -5.8501e+001 +# -Range: 0-200 + +1.0000 Zn++ + 1.0000 SeO4-- = ZnSeO4 + -llnl_gamma 3.0 + log_k +2.1900 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnSeO4 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Zr++++ = Zr(OH)3+ +3.0000 H+ + -llnl_gamma 4.0 + log_k -0.6693 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)3+ +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Zr++++ = Zr(OH)4 +4.0000 H+ + -llnl_gamma 3.0 + log_k -1.4666 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)4 +# Enthalpy of formation: -0 kcal/mol + +5.0000 H2O + 1.0000 Zr++++ = Zr(OH)5- +5.0000 H+ + -llnl_gamma 4.0 + log_k -15.9754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)5- +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Zr++++ = Zr(SO4)2 + -llnl_gamma 3.0 + log_k +6.2965 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 SO4-- + 1.0000 Zr++++ = Zr(SO4)3-- + -llnl_gamma 4.0 + log_k +7.3007 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)3-2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 3.0000 Zr++++ = Zr3(OH)4+8 +4.0000 H+ + -llnl_gamma 6.0 + log_k -0.5803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr3(OH)4+8 +# Enthalpy of formation: -0 kcal/mol + +8.0000 H2O + 4.0000 Zr++++ = Zr4(OH)8+8 +8.0000 H+ + -llnl_gamma 6.0 + log_k -5.9606 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr4(OH)8+8 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zr++++ + 1.0000 F- = ZrF+++ + -llnl_gamma 5.0 + log_k +8.5835 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF+3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 Zr++++ = ZrF2++ + -llnl_gamma 4.5 + log_k +15.7377 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF2+2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 F- + 1.0000 Zr++++ = ZrF3+ + -llnl_gamma 4.0 + log_k +21.2792 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF3+ +# Enthalpy of formation: -0 kcal/mol + +4.0000 F- + 1.0000 Zr++++ = ZrF4 + -llnl_gamma 3.0 + log_k +25.9411 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4 +# Enthalpy of formation: -0 kcal/mol + +5.0000 F- + 1.0000 Zr++++ = ZrF5- + -llnl_gamma 4.0 + log_k +30.3098 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF5- +# Enthalpy of formation: -0 kcal/mol + +6.0000 F- + 1.0000 Zr++++ = ZrF6-- + -llnl_gamma 4.0 + log_k +34.0188 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF6-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zr++++ + 1.0000 H2O = ZrOH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k +0.0457 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrOH+3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zr++++ + 1.0000 SO4-- = ZrSO4++ + -llnl_gamma 4.5 + log_k +3.6064 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrSO4+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H+ + 1.0000 O_phthalate-2 = H2O_phthalate + -llnl_gamma 3.0 + log_k +8.3580 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2O_phthalate +# Enthalpy of formation: -0 kcal/mol + + +###################### + +#Start of organic species added Feb. 4, 2011 + +####################### + +# 1-Butanamine, C4H9NH2 + + 2.0000 C2H5NH2 = C4H9NH2 + 1.0000 NH3 + -llnl_gamma 3.0 + log_k +7.0171 + -delta_h +36.110 kcal/mol + -analytic 2.6628e+000 1.4357e-003 1.7062e+003 -7.5117e-001 5.7612e+003 +# -Range: 0-300 + +# 1-Butanol, C4H9OH + + 2.0000 C2H5OH = C4H9OH + 1.0000 H2O + -llnl_gamma 3.0 + log_k +6.5001 + -delta_h +80.320 kcal/mol + -analytic -2.4958e+000 -1.9919e-003 2.3794e+003 6.5075e-001 3.7130e+001 +# -Range: 0-300 + +# 1-Butene, C4H8 + + 2.0000 C2H4 = C4H8 + -llnl_gamma 3.0 + log_k +13.6266 + -delta_h +5.635 kcal/mol + -analytic -6.9511e+000 -5.1950e-003 5.3537e+003 2.0720e+000 -8.5186e+004 +# -Range: 0-300 + +# 1-Butyne, C4H6 + + 2.0000 C2H2 + 1.0000 H2O = C4H6 + 0.5000 O2 + -llnl_gamma 3.0 + log_k -422.3711 + -delta_h -33.4 kcal/mol + -analytic 8.0147e+000 -1.9434e-003 -9.6752e+002 -3.5459e+000 8.7444e+004 +# -Range: 0-300 + +# 1-Heptanamine, C7H15NH2 + + 3.5000 C2H5NH2 = C7H15NH2 + 2.5000 NH3 + -llnl_gamma 3.0 + log_k +15.4646 + -delta_h +51.990 kcal/mol + -analytic 8.1328e+000 2.9346e-003 3.6672e+003 -2.3594e+000 5.7222e+001 +# -Range: 0-300 + +# 1-Heptanol, C7H15OH + + 3.5000 C2H5OH = C7H15OH + 2.5000 H2O + -llnl_gamma 3.0 + log_k +16.1733 + -delta_h +97.270 kcal/mol + -analytic 1.1253e+000 -1.4421e-003 5.3337e+003 -9.7252e-001 8.3227e+001 +# -Range: 0-300 + +# 1-Heptene, C7H14 + + 3.5000 C2H4 = C7H14 + -llnl_gamma 3.0 + log_k +30.5114 + -delta_h +22.670 kcal/mol + -analytic -1.1457e+001 -1.3165e-002 1.1832e+004 3.2374e+000 -1.6063e+005 +# -Range: 0-300 + +# 1-Heptyne, C7H12 + + 3.5000 C2H2 + 2.5000 H2O = C7H12 + 1.2500 O2 + -llnl_gamma 3.0 + log_k -748.8076 + -delta_h -16.98 kcal/mol + -analytic 6.8635e+000 -6.7966e-003 -3.7961e+003 -4.0767e+000 1.8009e+005 +# -Range: 0-300 + +# 1-Hexanamine, C6H13NH2 + + 3.0000 C2H5NH2 = C6H13NH2 + 2.0000 NH3 + -llnl_gamma 3.0 + log_k +12.3189 + -delta_h +46.320 kcal/mol + -analytic 2.7655e+000 2.2270e-003 3.0793e+003 -5.7977e-001 4.8049e+001 +# -Range: 0-300 + +# 1-Hexanol, C6H13OH + + 3.0000 C2H5OH = C6H13OH + 2.0000 H2O + -llnl_gamma 3.0 + log_k +13.8358 + -delta_h +92.690 kcal/mol + -analytic 1.2093e+001 -8.5858e-004 4.0578e+003 -4.6909e+000 6.3315e+001 +# -Range: 0-300 + +# 1-Hexene, C6H12 + + 3.0000 C2H4 = C6H12 + -llnl_gamma 3.0 + log_k +24.9076 + -delta_h +17.025 kcal/mol + -analytic -1.8354e+001 -1.1761e-002 1.0127e+004 5.8975e+000 -1.5953e+005 +# -Range: 0-300 + +# 1-Hexyne, C6H10 + + 3.0000 C2H2 + 2.0000 H2O = C6H10 + 1.0000 O2 + -llnl_gamma 3.0 + log_k -639.9392 + -delta_h -22.34 kcal/mol + -analytic 2.6448e+001 -2.4295e-003 -3.8892e+003 -1.0837e+001 2.0944e+005 +# -Range: 0-300 + +# 1-Octanamine, C8H17NH2 + + 4.0000 C2H5NH2 = C8H17NH2 + 3.0000 NH3 + -llnl_gamma 3.0 + log_k +18.6103 + -delta_h +57.660 kcal/mol + -analytic 9.9090e+000 3.5563e-003 4.4097e+003 -2.8869e+000 6.8807e+001 +# -Range: 0-300 + +# 1-Octanol, C8H12OH +# + 4.0000 C2H5OH = C8H12OH + 3.0000 H2O +# does not balance +# -llnl_gamma 3.0 +# log_k +19.7862 +# -delta_h +103.060 kcal/mol +# -analytic -1.0628e+001 -4.8545e-003 7.2441e+003 3.0590e+000 1.1304e+002 +# -Range: 0-300 + +# 1-Octene, C8H16 + + 4.0000 C2H4 = C8H16 + -llnl_gamma 3.0 + log_k +35.9760 + -delta_h +28.120 kcal/mol + -analytic -3.3408e+001 -1.8810e-002 1.5052e+004 1.1026e+001 -2.4723e+005 +# -Range: 0-300 + +# 1-Octyne, C8H14 + + 4.0000 C2H2 + 3.0000 H2O = C8H14 + 1.5000 O2 + -llnl_gamma 3.0 + log_k -857.5439 + -delta_h -11.33 kcal/mol + -analytic 4.5356e+001 -2.9242e-003 -6.8742e+003 -1.8272e+001 3.3648e+005 +# -Range: 0-300 + +# 1-Pentanamine, C5H11NH2 + + 2.5000 C2H5NH2 = C5H11NH2 + 1.5000 NH3 + -llnl_gamma 3.0 + log_k +9.1805 + -delta_h +40.650 kcal/mol + -analytic 8.4037e+000 2.7132e-003 1.9292e+003 -2.7349e+000 2.3844e+004 +# -Range: 0-300 + +# 1-Pentanol, C5H11OH + + 2.5000 C2H5OH = C5H11OH + 1.5000 H2O + -llnl_gamma 3.0 + log_k +11.1245 + -delta_h +87.730 kcal/mol + -analytic -9.8673e-001 -2.4789e-003 3.8322e+003 0.0000e+000 0.0000e+000 +# -Range: 0-300 + +# 1-Pentene, C5H10 + + 2.5000 C2H4 = C5H10 + -llnl_gamma 3.0 + log_k +19.1718 + -delta_h +11.200 kcal/mol + -analytic -5.8469e+001 -1.4970e-002 1.0267e+004 2.0489e+001 -2.6977e+005 +# -Range: 0-300 + +# 1-Pentyne, C5H8 + + 2.5000 C2H2 + 1.5000 H2O = C5H8 + 0.7500 O2 + -llnl_gamma 3.0 + log_k -531.1075 + -delta_h -27.8 kcal/mol + -analytic 5.0924e+000 -3.9604e-003 -1.7557e+003 -2.7988e+000 1.1194e+005 +# -Range: 0-300 + +# 1-Propanamine, C3H7NH2 + + 1.5000 C2H5NH2 = C3H7NH2 + 0.5000 NH3 + -llnl_gamma 3.0 + log_k +4.1279 + -delta_h +30.680 kcal/mol + -analytic 2.8174e+000 8.5281e-004 9.7545e+002 -8.9491e-001 1.5220e+001 +# -Range: 0-300 + +# 1-Propanol, C3H7OH + + 1.5000 C2H5OH = C3H7OH + 0.5000 H2O + -llnl_gamma 3.0 + log_k +3.8548 + -delta_h +75.320 kcal/mol + -analytic -2.8360e+000 -1.0577e-003 1.4368e+003 8.8413e-001 2.2421e+001 +# -Range: 0-300 + +# 1-Propene, C3H6 + + 1.5000 C2H4 = C3H6 + -llnl_gamma 3.0 + log_k +8.2573 + -delta_h +0.290 kcal/mol + -analytic 1.1038e+001 -3.4869e-004 2.3006e+003 -4.2007e+000 3.5895e+001 +# -Range: 0-300 + +# 1-Propyne, C3H4 + + 1.5000 C2H2 + 0.5000 H2O = C3H4 + 0.2500 O2 + -llnl_gamma 3.0 + log_k -313.6201 + -delta_h -38.97 kcal/mol + -analytic 2.4860e-002 -1.5316e-003 4.1336e+002 -3.4011e-001 3.0624e+004 +# -Range: 0-300 + +# # 2-Butanone, C4H8O CH3C(O)CH2CH3 +# + 4.0000 CH3COCH3 = C4H8O + 0.5000 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -1200.9839 +# -delta_h +67.880 kcal/mol +# -analytic -2.1942e+001 9.8502e-004 -9.1936e+003 6.9213e+000 1.6006e+005 +# -Range: 0-300 + +# 2-Heptanone, C7H14O correct formula +# + 7.0000 CH3COCH3 = C7H14O + 2.0000 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -2179.4136 +# -delta_h +84.890 kcal/mol +# -analytic -1.8734e+002 -6.9923e-003 -3.0077e+004 6.2205e+001 -4.6928e+002 +# -Range: 0-300 + +# 2-Hexanone, C6H12O +# + 6.0000 CH3COCH3 = C6H12O + 1.5000 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -1853.3802 +# -delta_h +79.220 kcal/mol +# -analytic 3.3773e+002 5.9197e-002 -5.0406e+004 -1.2439e+002 1.7107e+006 +# -Range: 0-300 + +# 2-Hydroxybutanoate, C4H7O3- + + 1.0000 C3H7COOH + 0.5000 O2 = C4H7O3- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.8116 + -delta_h +169.810 kcal/mol + -analytic -5.4902e+001 -2.9840e-002 9.1382e+003 2.2664e+001 1.4261e+002 +# -Range: 0-300 + +# 2-Hydroxybutanoic, C4H8O3 + + 1.0000 C3H7COOH + 0.5000 O2 = C4H8O3 + -llnl_gamma 3.0 + log_k -332.1774 + -delta_h +169.670 kcal/mol + -analytic -3.0810e+001 -8.1378e-003 1.0507e+004 1.0709e+001 -1.5474e+005 +# -Range: 0-300 + +# 2-Hydroxydecanoate, C10H19O3- + + 5.0000 CH3COOH = C10H19O3- + 3.5000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.7383 + -delta_h +203.930 kcal/mol + -analytic -2.8008e+002 -1.9653e-002 -6.9199e+004 9.7024e+001 -1.0797e+003 +# -Range: 0-300 + +# 2-Hydroxydecanoic, C10H20O3 + + 5.0000 CH3COOH = C10H20O3 + 3.5000 O2 + -llnl_gamma 3.0 + log_k -984.2221 + -delta_h +203.690 kcal/mol + -analytic -3.2602e+002 -2.4822e-002 -6.7352e+004 1.1523e+002 -1.0509e+003 +# -Range: 0-300 + +# 2-Hydroxyheptanoate, C7H13O3- + + 3.5000 CH3COOH = C7H13O3- + 2.0000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.7383 + -delta_h +186.900 kcal/mol + -analytic -2.0491e+002 -2.6664e-002 -3.9557e+004 7.2979e+001 -6.1720e+002 +# -Range: 0-300 + +# 2-Hydroxyheptanoic, C7H14O3 + + 3.5000 CH3COOH = C7H14O3 + 2.0000 O2 + -llnl_gamma 3.0 + log_k -658.2107 + -delta_h +186.680 kcal/mol + -analytic -1.9142e+002 -1.4836e-002 -3.9307e+004 6.7281e+001 -6.1330e+002 +# -Range: 0-300 + +# 2-Hydroxyhexanoate, C6H11O3- + + 3.0000 CH3COOH = C6H11O3- + 1.5000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.7384 + -delta_h +181.240 kcal/mol + -analytic -1.7865e+002 -2.8722e-002 -2.9711e+004 6.4493e+001 -4.6357e+002 +# -Range: 0-300 + +# 2-Hydroxyhexanoic, C6H12O3 + + 3.0000 CH3COOH = C6H12O3 + 1.5000 O2 + -llnl_gamma 3.0 + log_k -549.5329 + -delta_h +181.010 kcal/mol + -analytic 4.5831e+000 5.4145e-003 -3.9948e+004 -1.4677e+000 6.9991e+005 +# -Range: 0-300 + +# 2-Hydroxynonanoate, C9H17O3- + + 4.5000 CH3COOH = C9H17O3- + 3.0000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.7383 + -delta_h +198.250 kcal/mol + -analytic -2.5572e+002 -2.2155e-002 -5.9298e+004 8.9284e+001 -9.2521e+002 +# -Range: 0-300 + +# 2-Hydroxynonanoic, C9H18O3 + + 4.5000 CH3COOH = C9H18O3 + 3.0000 O2 + -llnl_gamma 3.0 + log_k -875.5516 + -delta_h +198.020 kcal/mol + -analytic -1.1226e+002 -3.7272e-003 -6.9576e+004 4.0711e+001 8.3790e+005 +# -Range: 0-300 + +# 2-Hydroxyoctanoate, C8H15O3- + + 4.0000 CH3COOH = C8H15O3- + 2.5000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.7383 + -delta_h +192.570 kcal/mol + -analytic 6.7477e+001 1.2723e-002 -6.7802e+004 -2.4249e+001 1.1992e+006 +# -Range: 0-300 + +# 2-Hydroxyoctanoic, C8H16O3 + + 4.0000 CH3COOH = C8H16O3 + 2.5000 O2 + -llnl_gamma 3.0 + log_k -766.8885 + -delta_h +192.350 kcal/mol + -analytic 1.8003e+002 3.4449e-002 -7.4099e+004 -6.4322e+001 1.6435e+006 +# -Range: 0-300 + +# 2-Hydroxypentanoate, C5H9O3- + + 1.0000 C4H9COOH + 0.5000 O2 = C5H9O3- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.5918 + -delta_h +175.770 kcal/mol + -analytic -3.4964e+001 -2.4619e-002 8.6213e+003 1.4743e+001 1.3454e+002 +# -Range: 0-300 + +# 2-Hydroxypentanoic, C5H10O3 + + 1.0000 C4H9COOH + 0.5000 O2 = C5H10O3 + -llnl_gamma 3.0 + log_k -440.8552 + -delta_h +175.340 kcal/mol + -analytic -4.8323e+001 -1.0534e-002 1.1616e+004 1.6913e+001 -2.3478e+005 +# -Range: 0-300 + +# 2-Octanone, C8H16O +# + 8.0000 CH3COCH3 = C8H16O + 2.5000 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -2505.4468 +# -delta_h +90.560 kcal/mol +# -analytic 3.9776e+002 7.5718e-002 -7.4592e+004 -1.4798e+002 2.2610e+006 +# -Range: 0-300 + +# 2-Pentanone, C5H10O +# + 5.0000 CH3COCH3 = C5H10O + 1.0000 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -1527.6549 +# -delta_h +73.460 kcal/mol +# -analytic 2.2603e+002 3.9343e-002 -3.3782e+004 -8.3253e+001 1.1722e+006 +# -Range: 0-300 + +# Acetaldehyde, CH3CHO + + 1.0000 CH3COOH = CH3CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -188.3673 + -delta_h +50.380 kcal/mol + -analytic 2.3139e+001 9.8759e-003 -1.4924e+004 -9.4191e+000 8.0783e+004 +# -Range: 0-300 + +# Acetamide, CH3CONH2 + + 1.0000 NH3 + 1.0000 CH3COOH = CH3CONH2 + 1.0000 H2O + -llnl_gamma 3.0 + log_k +4.6947 + -delta_h +77.290 kcal/mol + -analytic 2.4852e+001 5.3426e-003 1.3023e+003 -1.0554e+001 2.0315e+001 +# -Range: 0-300 + +# CH3COCH3, CH3COCH3 + + 3.0000 HCO3- + 3.0000 H+ = CH3COCH3 + 4.0000 O2 + -llnl_gamma 3.0 + log_k -291.8554 + -delta_h +61.720 kcal/mol + -analytic -2.5990E+03 -4.4302E-01 -5.7126E+02 9.8637E+02 -1.6901E-01 +# -Range: 0-300 + +# Adipate, C6H8O4-2 + + 3.0000 CH3COOH = C6H8O4-2 + 2.0000 H+ + 1.0000 H2O + 0.5000 O2 + -llnl_gamma 4.0 + log_k -9.8223 + -delta_h +227.780 kcal/mol + -analytic -1.6044e+002 -7.4583e-002 -9.1669e+003 6.5454e+001 -1.4299e+002 +# -Range: 0-300 + +# Adipic_acid, C6H10O4 + + 3.0000 CH3COOH = C6H10O4 + 1.0000 H2O + 0.5000 O2 + -llnl_gamma 3.0 + log_k -467.5962 + -delta_h +229.750 kcal/mol + -analytic -4.7527e+001 -1.3717e-002 -1.0191e+004 1.7857e+001 -1.5900e+002 +# -Range: 0-300 + +# Alanine, C3H7NO2 + + 1.0000 NH3 + 3.0000 HCO3- + 3.0000 H+ = C3H7NO2 + 1.0000 H2O + 3.0000 O2 + -llnl_gamma 3.0 + log_k -215.2132 + -delta_h +132.130 kcal/mol + -analytic -1.8686E+03 -3.1237E-01 -5.4608E+02 7.0646E+02 -8.7774E-03 +# -Range 0-300 + +# Alanylglycine, C5H10N2O3 + + 2.5000 C2H5NO2 = C5H10N2O3 + 0.7500 O2 + 0.5000 H2O + 0.5000 NH3 + -llnl_gamma 3.0 + log_k -326.317 + -delta_h +186.110 kcal/mol + -analytic 1.4154e+001 1.2917e-002 -2.0305e+004 -5.2689e+000 6.4481e+005 +# -Range: 0-300 + +# Asparagine, C4H8N2O3 + + 2.0000 C2H5NO2 = C4H8N2O3 + 1.0000 H2O + -llnl_gamma 3.0 + log_k +5.9386 + -delta_h +186.660 kcal/mol + -analytic -1.7915e+001 8.7354e-004 2.1119e+003 6.1432e+000 1.1658e+005 +# -Range: 0-300 + +# Aspartic_acid, C4H7NO4 + + 2.0000 C2H5NO2 = C4H7NO4 + 1.0000 NH3 + -llnl_gamma 3.0 + log_k +1.1340 + -delta_h +226.370 kcal/mol + -analytic -1.6456e+001 1.7980e-003 2.4086e+002 6.0721e+000 1.0866e+005 +# -Range: 0-300 + +# Azelaic_acid, C9H16O4 + + 4.5000 CH3COOH = C9H16O4 + 2.0000 O2 + 1.0000 H2O + -llnl_gamma 3.0 + log_k -795.8139 + -delta_h +240.700 kcal/mol + -analytic 2.0346e+002 2.5843e-002 -6.2187e+004 -7.1175e+001 1.4838e+006 +# -Range: 0-300 + +# Azelate, C9H14O4-2 + + 4.5000 CH3COOH = C9H14O4-2 + 2.0000 H+ + 2.0000 O2 + 1.0000 H2O + -llnl_gamma 4.0 + log_k -9.9176 + -delta_h +241.660 kcal/mol + -analytic -2.5031e+002 -7.0995e-002 -3.9050e+004 9.5249e+001 -6.0927e+002 +# -Range: 0-300 + +# Ba(Ala)+, Ba(C3H6NO2)+ + + 1.0000 Ba+2 + 1.0000 C3H7NO2 = Ba(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -9.3949 + -delta_h +243.703 kcal/mol + -analytic -1.9975e+001 5.8683e-003 -3.7242e+003 7.5785e+000 2.2969e+005 +# -Range: 0-300 + +# Ba(Ala)2, Ba(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Ba+2 = Ba(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -19.3096 + -delta_h +359.051 kcal/mol + -analytic 1.0973e+002 1.7563e-002 -2.0507e+004 -3.3504e+001 1.5490e+006 +# -Range: 0-300 + +# Ba(But)+, Ba(CH3(CH2)2CO2)+ + + 1.0000 C3H7COOH + 1.0000 Ba+2 = Ba(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8378 + -delta_h +253.285 kcal/mol + -analytic -1.6992e+001 3.8062e-003 -1.7104e+003 5.2858e+000 3.2839e+005 +# -Range: 0-300 + +# Ba(But)2, Ba(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Ba+2 = Ba(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.9857 + -delta_h +378.066 kcal/mol + -analytic -2.9726e+000 1.9119e-003 -9.5963e+003 3.7172e+000 1.3721e+006 +# -Range: 0-300 + +# Ba(For)+, Ba(CHO2)+ + + 1.0000 HCOOH + 1.0000 Ba+2 = Ba(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.3727 + -delta_h +228.918 kcal/mol + -analytic 8.0004e-001 1.5487e-003 -2.7467e+002 -1.0939e+000 -4.2863e+000 +# -Range: 0-300 + +# Ba(For)2, Ba(CHO2)2 + + 2.0000 HCOOH + 1.0000 Ba+2 = Ba(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.296 + -delta_h +329.933 kcal/mol + -analytic 3.4358e+001 -2.1439e-003 -4.0534e+003 -1.1596e+001 2.9161e+005 +# -Range: 0-300 + +# Ba(Gly)+, Ba(C2H4NO2)+ + + 1.0000 C2H5NO2 + 1.0000 Ba+2 = Ba(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -8.2881 + -delta_h +235.808 kcal/mol + -analytic -4.3238e+000 8.7896e-003 -3.1933e+003 1.1733e+000 1.0974e+005 +# -Range: 0-300 + +# Ba(Gly)2, Ba(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Ba+2 = Ba(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -17.1868 + -delta_h +343.302 kcal/mol + -analytic 3.6958e+001 8.4550e-003 -1.2694e+004 -9.4136e+000 8.1935e+005 +# -Range: 0-300 + +# Ba(Glyc)+, Ba(CH3OCO2)+ + + 1.0000 C2H4O3 + 1.0000 Ba+2 = Ba(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.8338 + -delta_h +282.924 kcal/mol + -analytic -1.6504e+001 4.4210e-004 -4.2741e+002 5.3311e+000 1.5913e+005 +# -Range: 0-300 + +# Ba(Glyc)2, Ba(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Ba+2 = Ba(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.9674 + -delta_h +436.833 kcal/mol + -analytic 5.7805e+000 -1.9337e-003 -5.5632e+003 -3.9310e-001 7.5344e+005 +# -Range: 0-300 + +# Ba(Lac)+, Ba(CH3CH2OCO2)+ + + 1.0000 C3H6O3 + 1.0000 Ba+2 = Ba(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.223 + -delta_h +291.416 kcal/mol + -analytic -1.3618e+001 2.4575e-003 -1.0433e+003 4.2488e+000 2.3666e+005 +# -Range: 0-300 + +# Ba(Lac)2, Ba(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Ba+2 = Ba(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.6762 + -delta_h +453.654 kcal/mol + -analytic 1.1971e+001 8.0125e-004 -7.9857e+003 -1.7124e+000 1.0808e+006 +# -Range: 0-300 + +# Ba(Pent)+, Ba(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Ba+2 = Ba(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.0673 + -delta_h +259.492 kcal/mol + -analytic -3.4714e+001 4.4831e-003 -2.0568e+003 1.1920e+001 5.1000e+005 +# -Range: 0-300 + +# Ba(Pent)2, Ba(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Ba+2 = Ba(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -10.4241 + -delta_h +389.909 kcal/mol + -analytic -3.2583e+001 3.5113e-003 -1.2204e+004 1.6052e+001 1.9881e+006 +# -Range: 0-300 + +# Ba(Prop)+, Ba(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Ba+2 = Ba(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.7462 + -delta_h +248.190 kcal/mol + -analytic -5.3032e+000 4.7638e-003 -2.1690e+003 1.1454e+000 3.1960e+005 +# -Range: 0-300 + +# Ba(Prop)2, Ba(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Ba+2 = Ba(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.823 + -delta_h +368.336 kcal/mol + -analytic -1.3636e+001 2.7509e-004 -7.6760e+003 6.8362e+000 1.1194e+006 +# -Range: 0-300 + +# Benzene, C6H6 + + 6.0000 HCO3- + 6.0000 H+ = C6H6 + 3.0000 H2O + 7.5 O2 + -llnl_gamma 3.0 + log_k -537.502 + -delta_h -12.23 kcal/mol + -analytic -4.7749E+03 -8.0212E-01 -6.4755E+02 1.8097E+03 -7.4941E-01 +# -Range: 0-300 + +# Benzoate, C7H5O2- + + 3.5000 CH3COOH = C7H5O2- + 4.0000 H2O + 1.0000 H+ + 0.5000 O2 + -llnl_gamma 6.0 + log_k -4.2001 + -delta_h +84.990 kcal/mol + -analytic -1.6676e+002 -3.8444e-002 -5.4403e+003 6.2663e+001 -8.4843e+001 +# -Range: 0-300 + +# Benzoic_acid, C7H6O2 + + 3.5000 CH3COOH = C7H6O2 + 4.0000 H2O + 0.5000 O2 + -llnl_gamma 3.0 + log_k -534.1773 + -delta_h +85.070 kcal/mol + -analytic 1.5144e+001 3.5834e-003 -1.3334e+004 -5.4195e+000 4.1964e+005 +# -Range: 0-300 + +# Butanal, CH3(CH2)2CHO + + 1.0000 C2H4 + 1.0000 CH3COOH = CH3(CH2)2CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -406.1993 + -delta_h +61.070 kcal/mol + -analytic -1.2090e+001 -8.7356e-004 -9.4627e+003 3.4311e+000 -1.4765e+002 +# -Range: 0-300 + +# Butanoate, C3H7COO- + + 1.0000 C3H7COOH = C3H7COO- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.8085 + -delta_h +128.630 kcal/mol + -analytic -8.2788e+001 -2.9877e-002 1.7558e+003 3.2727e+001 2.7421e+001 +# -Range: 0-300 + +# Butanoic_acid, C3H7COOH + + 4.0000 HCO3- + 4.0000 H+ = C3H7COOH + 5.0000 O2 + -llnl_gamma 3.0 + log_k -358.9446 + -delta_h +127.950 kcal/mol + -analytic -3.1892E+03 -5.4023E-01 -5.9261E+02 1.2095E+03 -3.5739E-01 +# -Range: 0-300 + +# Ca(Ala)+, Ca(C3H6NO2)+ + + 1.0000 Ca+2 + 1.0000 C3H7NO2 = Ca(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -9.1245 + -delta_h +247.083 kcal/mol + -analytic 1.6971e+001 9.5706e-003 -6.1936e+003 -5.4079e+000 4.6397e+005 +# -Range: 0-300 + +# Ca(Ala)2, Ca(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Ca+2 = Ca(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -18.8192 + -delta_h +364.714 kcal/mol + -analytic 2.3029e+001 8.5155e-003 -1.5061e+004 -3.5999e+000 1.3386e+006 +# -Range: 0-300 + +# Ca(But)+, Ca(CH3(CH2)2CO2)+ + + 1.0000 Ca+2 + 1.0000 C3H7COOH = Ca(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.2976 + -delta_h +257.034 kcal/mol + -analytic -2.5048e+001 1.5166e-003 -1.4808e+003 8.3797e+000 4.0411e+005 +# -Range: 0-300 + +# Ca(But)2, Ca(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Ca+2 = Ca(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -8.9955 + -delta_h +384.411 kcal/mol + -analytic 2.0646e+000 5.8047e-003 -9.1382e+003 5.9558e-001 1.4594e+006 +# -Range: 0-300 + +# Ca(For)+, Ca(CHO2)+ + + 1.0000 HCOOH + 1.0000 Ca+2 = Ca(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.3229 + -delta_h +231.998 kcal/mol + -analytic 2.9298e+000 9.5453e-004 -6.9686e+002 -1.7506e+000 1.0103e+005 +# -Range: 0-300 + +# Ca(For)2, Ca(CHO2)2 + + 2.0000 HCOOH + 1.0000 Ca+2 = Ca(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.2058 + -delta_h +335.050 kcal/mol + -analytic 2.6958e+001 -7.2777e-005 -3.1911e+003 -1.0215e+001 3.4188e+005 +# -Range: 0-300 + +# Ca(Gly)+, Ca(C2H4NO2)+ + + 1.0000 C2H5NO2 + 1.0000 Ca+2 = Ca(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -8.4281 + -delta_h +238.629 kcal/mol + -analytic 9.6784e+000 9.2419e-003 -4.5102e+003 -3.5460e+000 2.7110e+005 +# -Range: 0-300 + +# Ca(Gly)2, Ca(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Ca+2 = Ca(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -17.4463 + -delta_h +347.942 kcal/mol + -analytic 4.7335e+001 1.2694e-002 -1.3050e+004 -1.4305e+001 9.4368e+005 +# -Range: 0-300 + +# Ca(Glyc)+, Ca(CH3OCO2)+ + + 1.0000 C2H4O3 + 1.0000 Ca+2 = Ca(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.1836 + -delta_h +285.318 kcal/mol + -analytic -6.6096e+000 1.5353e-003 -1.1777e+003 2.0325e+000 2.5764e+005 +# -Range: 0-300 + +# Ca(Glyc)2, Ca(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Ca+2 = Ca(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.777 + -delta_h +441.481 kcal/mol + -analytic 1.5520e+001 2.3781e-003 -5.6732e+003 -4.6723e+000 8.5347e+005 +# -Range: 0-300 + +# Ca(Lac)+, Ca(CH3CH2OCO2)+ + + 1.0000 C3H6O3 + 1.0000 Ca+2 = Ca(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.4431 + -delta_h +294.436 kcal/mol + -analytic -1.3975e+001 1.7379e-003 -1.2135e+003 4.6597e+000 3.1702e+005 +# -Range: 0-300 + +# Ca(Lac)2, Ca(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Ca+2 = Ca(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.2461 + -delta_h +459.217 kcal/mol + -analytic -1.6205e+001 -2.3672e-004 -5.8180e+003 7.5258e+000 1.0619e+006 +# -Range: 0-300 + +# Ca(Pent)+, Ca(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Ca+2 = Ca(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.5674 + -delta_h +263.187 kcal/mol + -analytic -3.1543e+001 3.4804e-003 -2.5576e+003 1.1076e+001 6.3392e+005 +# -Range: 0-300 + +# Ca(Pent)2, Ca(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Ca+2 = Ca(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.5042 + -delta_h +396.159 kcal/mol + -analytic -3.4318e+001 6.3122e-003 -1.1437e+004 1.5421e+001 2.0603e+006 +# -Range: 0-300 + +# Ca(Prop)+, Ca(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Ca+2 = Ca(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.2163 + -delta_h +251.925 kcal/mol + -analytic -1.1303e+001 2.9020e-003 -2.0209e+003 3.4533e+000 3.9745e+005 +# -Range: 0-300 + +# Ca(Prop)2, Ca(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Ca+2 = Ca(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -8.8533 + -delta_h +374.653 kcal/mol + -analytic -2.1746e+001 2.3077e-003 -6.4906e+003 8.4496e+000 1.1644e+006 +# -Range: 0-300 + +# Cd(Ala)+, Cd(C3H6NO2)+ + + 1.0000 Cd+2 + 1.0000 C3H7NO2 = Cd(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.3348 + -delta_h +141.016 kcal/mol + -analytic -1.0583e+001 3.9676e-003 -4.0210e+003 5.0485e+000 4.5101e+005 +# -Range: 0-300 + +# Cd(Ala)2, Cd(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Cd+2 = Cd(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -11.8894 + -delta_h +263.420 kcal/mol + -analytic 2.5164e+001 8.5032e-003 -1.3671e+004 -4.0957e+000 1.4600e+006 +# -Range: 0-300 + +# Cd(But)+, Cd(CH3(CH2)2CO2)+ + + 1.0000 Cd+2 + 1.0000 C3H7COOH = Cd(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.2875 + -delta_h +147.174 kcal/mol + -analytic -2.4575e+001 -8.5197e-006 -1.6709e+003 8.7040e+000 4.7765e+005 +# -Range: 0-300 + +# Cd(But)2, Cd(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Cd+2 = Cd(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.976 + -delta_h +276.419 kcal/mol + -analytic -5.3701e+000 4.5291e-003 -8.6471e+003 3.5125e+000 1.5458e+006 +# -Range: 0-300 + +# Cd(For)+, Cd(CHO2)+ + + 1.0000 HCOOH + 1.0000 Cd+2 = Cd(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.9131 + -delta_h +121.320 kcal/mol + -analytic -5.5574e-001 -1.0359e-003 -8.1506e+002 -3.4199e-002 1.5786e+005 +# -Range: 0-300 + +# Cd(For)2, Cd(CHO2)2 + + 2.0000 HCOOH + 1.0000 Cd+2 = Cd(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.6658 + -delta_h +226.403 kcal/mol + -analytic 2.2826e+000 -3.7353e-003 -1.8618e+003 -1.1085e+000 3.7009e+005 +# -Range: 0-300 + +# Cd(Gly)+, Cd(C2H4NO2)+ + + 1.0000 C2H5NO2 + 1.0000 Cd+2 = Cd(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.0885 + -delta_h +132.088 kcal/mol + -analytic -1.0697e+001 4.7244e-003 -2.8241e+003 4.2651e+000 2.7816e+005 +# -Range: 0-300 + +# Cd(Gly)2, Cd(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Cd+2 = Cd(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -11.1564 + -delta_h +246.607 kcal/mol + -analytic 1.7236e+001 8.4272e-003 -9.8265e+003 -3.4936e+000 9.5253e+005 +# -Range: 0-300 + +# Cd(Glyc)+, Cd(CH3OCO2)+ + + 1.0000 C2H4O3 + 1.0000 Cd+2 = Cd(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.9637 + -delta_h +174.381 kcal/mol + -analytic -2.7570e+000 5.5464e-004 -1.7718e+003 1.1165e+000 3.3942e+005 +# -Range: 0-300 + +# Cd(Glyc)2, Cd(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Cd+2 = Cd(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.3775 + -delta_h +331.279 kcal/mol + -analytic 1.7413e+001 2.4215e-003 -6.1858e+003 -5.1146e+000 9.6988e+005 +# -Range: 0-300 + +# Cd(Lac)+, Cd(CH3CH2OCO2)+ + + 1.0000 C3H6O3 + 1.0000 Cd+2 = Cd(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.1631 + -delta_h +183.519 kcal/mol + -analytic -1.3237e+001 2.9922e-004 -1.6309e+003 4.8863e+000 3.8920e+005 +# -Range: 0-300 + +# Cd(Lac)2, Cd(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Cd+2 = Cd(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.736 + -delta_h +349.085 kcal/mol + -analytic -1.7558e+001 -6.8972e-004 -6.1408e+003 8.2844e+000 1.1691e+006 +# -Range: 0-300 + +# Cd(Pent)+, Cd(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Cd+2 = Cd(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.237 + -delta_h +153.764 kcal/mol + -analytic -1.4232e+001 4.3507e-003 -3.5842e+003 5.3294e+000 7.6047e+005 +# -Range: 0-300 + +# Cd(Pent)2, Cd(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Cd+2 = Cd(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.0742 + -delta_h +288.726 kcal/mol + -analytic -3.1302e+001 6.5168e-003 -1.1405e+004 1.4573e+001 2.1801e+006 +# -Range: 0-300 + +# Cd(Prop)+, Cd(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Cd+2 = Cd(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.0068 + -delta_h +142.338 kcal/mol + -analytic -1.1700e+001 1.3228e-003 -2.0826e+003 4.0674e+000 4.6555e+005 +# -Range: 0-300 + +# Cd(Prop)2, Cd(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Cd+2 = Cd(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.5531 + -delta_h +267.043 kcal/mol + -analytic -2.7887e+001 1.1740e-003 -6.0022e+003 1.0916e+001 1.2569e+006 +# -Range: 0-300 + +# Co(Ala)+, Co(C3H6NO2)+ + + 1.0000 Co+2 + 1.0000 C3H7NO2 = Co(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.6449 + -delta_h +136.245 kcal/mol + -analytic -6.6326e+000 4.2270e-003 -4.1512e+003 3.5761e+000 4.2801e+005 +# -Range: 0-300 + +# Co(Ala)2, Co(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Co+2 = Co(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -12.3196 + -delta_h +259.272 kcal/mol + -analytic 3.7901e+001 1.0752e-002 -1.3519e+004 -9.4658e+000 1.3658e+006 +# -Range: 0-300 + +# Co(But)+, Co(CH3(CH2)2CO2)+ + + 1.0000 Co+2 + 1.0000 C3H7COOH = Co(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.0977 + -delta_h +144.234 kcal/mol + -analytic -1.2926e+001 1.1374e-003 -1.9544e+003 4.2567e+000 4.9139e+005 +# -Range: 0-300 + +# Co(But)2, Co(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Co+2 = Co(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.806 + -delta_h +274.655 kcal/mol + -analytic -1.7789e+001 3.3292e-003 -6.6509e+003 6.8084e+000 1.3765e+006 +# -Range: 0-300 + +# Co(For)+, Co(CHO2)+ + + 1.0000 HCOOH + 1.0000 Co+2 = Co(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.8934 + -delta_h +118.148 kcal/mol + -analytic 3.4604e+000 -7.0163e-004 -6.4686e+002 -1.8241e+000 1.3725e+005 +# -Range: 0-300 + +# Co(For)2, Co(CHO2)2 + + 2.0000 HCOOH + 1.0000 Co+2 = Co(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.4259 + -delta_h +223.371 kcal/mol + -analytic 4.6480e+000 -2.8123e-003 -9.5823e+002 -3.1486e+000 2.4710e+005 +# -Range: 0-300 + +# Co(Gly)+, Co(C2H4NO2)+ + + 1.0000 C2H5NO2 + 1.0000 Co+2 = Co(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.7081 + -delta_h +129.082 kcal/mol + -analytic -6.1033e+000 4.7861e-003 -2.7304e+003 2.4628e+000 2.7041e+005 +# -Range: 0-300 + +# Co(Gly)2, Co(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Co+2 = Co(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -10.4666 + -delta_h +243.427 kcal/mol + -analytic 3.7958e+001 1.1767e-002 -9.8791e+003 -1.1599e+001 8.8179e+005 +# -Range: 0-300 + +# Co(Glyc)+, Co(CH3OCO2)+ + + 1.0000 C2H4O3 + 1.0000 Co+2 = Co(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.8538 + -delta_h +171.331 kcal/mol + -analytic -5.3556e+000 -1.8875e-004 -1.2450e+003 1.7558e+000 3.0214e+005 +# -Range: 0-300 + +# Co(Glyc)2, Co(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Co+2 = Co(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.1774 + -delta_h +329.556 kcal/mol + -analytic 2.1760e+000 8.7672e-004 -4.0049e+003 -8.2381e-001 7.8900e+005 +# -Range: 0-300 + +# Co(Lac)+, Co(CH3CH2OCO2)+ + + 1.0000 C3H6O3 + 1.0000 Co+2 = Co(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.5032 + -delta_h +179.856 kcal/mol + -analytic -8.0185e+000 4.8796e-004 -1.7264e+003 2.7704e+000 3.8387e+005 +# -Range: 0-300 + +# Co(Lac)2, Co(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Co+2 = Co(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.2359 + -delta_h +346.408 kcal/mol + -analytic 2.9324e+000 2.8527e-003 -6.1528e+003 -3.0383e-001 1.1020e+006 +# -Range: 0-300 + +# Co(Pent)+, Co(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Co+2 = Co(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.1571 + -delta_h +150.673 kcal/mol + -analytic -2.2797e+001 2.4832e-003 -2.8121e+003 8.2127e+000 7.1396e+005 +# -Range: 0-300 + +# Co(Pent)2, Co(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Co+2 = Co(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.924 + -delta_h +286.935 kcal/mol + -analytic -3.2956e+001 6.8817e-003 -1.0002e+004 1.3976e+001 2.0436e+006 +# -Range: 0-300 + +# Co(Prop)+, Co(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Co+2 = Co(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.5866 + -delta_h +138.347 kcal/mol + -analytic -5.0563e+000 1.9295e-003 -2.2644e+003 1.3628e+000 4.5635e+005 +# -Range: 0-300 + +# Co(Prop)2, Co(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Co+2 = Co(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.6929 + -delta_h +263.492 kcal/mol + -analytic -1.4853e+001 3.7021e-003 -5.7739e+003 4.9977e+000 1.1637e+006 +# -Range: 0-300 + +# Cu(Ala)+, Cu(C3H6NO2)+ + + 1.0000 Cu+2 + 1.0000 C3H7NO2 = Cu(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.8545 + -delta_h +109.970 kcal/mol + -analytic -1.1698e+001 4.4099e-003 -2.4550e+003 5.1251e+000 3.6414e+005 +# -Range: 0-300 + +# Cu(Ala)2, Cu(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Cu+2 = Cu(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.3297 + -delta_h +237.360 kcal/mol + -analytic -1.2813e+001 3.4309e-003 -8.8197e+003 9.0075e+000 1.2248e+006 +# -Range: 0-300 + +# Cu(But)+, Cu(CH3(CH2)2CO2)+ + + 1.0000 Cu+2 + 1.0000 C3H7COOH = Cu(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.6982 + -delta_h +114.768 kcal/mol + -analytic 1.9946e+000 3.2893e-003 -2.6114e+003 -1.1028e+000 5.1836e+005 +# -Range: 0-300 + +# Cu(But)2, Cu(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Cu+2 = Cu(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.0656 + -delta_h +245.176 kcal/mol + -analytic -2.8831e+001 1.5210e-003 -6.1416e+003 1.1151e+001 1.3647e+006 +# -Range: 0-300 + +# Cu(For)+, CuCHO2+ + + 1.0000 HCOOH + 1.0000 Cu+2 = CuCHO2+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.7731 + -delta_h +88.300 kcal/mol + -analytic 1.8727e+000 -1.0020e-003 -5.0154e+002 -1.1966e+000 1.1576e+005 +# -Range: 0-300 + +# Cu(For)2, Cu(CHO2)2 + + 2.0000 HCOOH + 1.0000 Cu+2 = Cu(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.206 + -delta_h +193.183 kcal/mol + -analytic 7.4586e+000 -2.6644e-003 -1.3786e+003 -3.7935e+000 2.8017e+005 +# -Range: 0-300 + +# Cu(Gly)+, Cu(C2H4NO2)+ + + 1.0000 C2H5NO2 + 1.0000 Cu+2 = Cu(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.208 + -delta_h +102.408 kcal/mol + -analytic -1.2098e+001 4.5923e-003 -1.3603e+003 4.7714e+000 2.0346e+005 +# -Range: 0-300 + +# Cu(Gly)2, Cu(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Cu+2 = Cu(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.7266 + -delta_h +221.770 kcal/mol + -analytic -6.9393e+000 5.1196e-003 -5.7575e+003 5.0366e+000 7.6022e+005 +# -Range: 0-300 + +# Cu(Glyc)+, Cu(CH3OCO2)+ + + 1.0000 C2H4O3 + 1.0000 Cu+2 = Cu(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -0.9434 + -delta_h +142.561 kcal/mol + -analytic -8.4029e+000 -5.9451e-004 -7.5383e+002 2.8746e+000 2.7225e+005 +# -Range: 0-300 + +# Cu(Glyc)2, Cu(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Cu+2 = Cu(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.0075 + -delta_h +300.664 kcal/mol + -analytic -9.6849e+000 -1.0687e-003 -3.3286e+003 3.8217e+000 7.7552e+005 +# -Range: 0-300 + +# Cu(Lac)+, Cu(CH3CH2OCO2)+ + + 1.0000 C3H6O3 + 1.0000 Cu+2 = Cu(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.3033 + -delta_h +151.481 kcal/mol + -analytic -1.1811e+001 3.4701e-005 -1.0895e+003 4.1370e+000 3.4922e+005 +# -Range: 0-300 + +# Cu(Lac)2, Cu(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Cu+2 = Cu(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.5756 + -delta_h +318.184 kcal/mol + -analytic -9.7842e+000 7.7321e-004 -5.2869e+003 4.6546e+000 1.0864e+006 +# -Range: 0-300 + +# Cu(Pent)+, Cu(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Cu+2 = Cu(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.7473 + -delta_h +121.221 kcal/mol + -analytic -1.5283e+001 3.6782e-003 -3.0281e+003 5.4906e+000 7.1403e+005 +# -Range: 0-300 + +# Cu(Pent)2, Cu(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Cu+2 = Cu(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.1741 + -delta_h +257.470 kcal/mol + -analytic -2.9542e+001 7.1204e-003 -1.0296e+004 1.3112e+001 2.0784e+006 +# -Range: 0-300 + +# Cu(Prop)+, Cu(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Cu+2 = Cu(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.6762 + -delta_h +109.577 kcal/mol + -analytic -1.3220e+001 7.8363e-004 -1.4925e+003 4.3301e+000 4.1063e+005 +# -Range: 0-300 + +# Cu(Prop)2, Cu(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Cu+2 = Cu(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.0326 + -delta_h +235.268 kcal/mol + -analytic -1.0718e+001 3.9487e-003 -5.8699e+003 3.9089e+000 1.2053e+006 +# -Range: 0-300 + +# Decanal, CH3(CH2)8CHO + + 4.0000 C2H4 + 1.0000 CH3COOH = CH3(CH2)8CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -1058.134 + -delta_h +95.290 kcal/mol + -analytic -7.6767e+001 -2.9579e-002 4.2940e+003 2.8063e+001 6.7027e+001 +# -Range: 0-300 + +# Decanoate, C10H19O2- + + 5.0000 CH3COOH = C10H19O2- + 4.0000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.9185 + -delta_h +162.700 kcal/mol + -analytic -3.1511e+002 -2.1029e-002 -7.6356e+004 1.0982e+002 -1.1914e+003 +# -Range: 0-300 + +# Decanoic_acid, C10H20O2 + + 5.0000 CH3COOH = C10H20O2 + 4.0000 O2 + -llnl_gamma 3.0 + log_k -1010.8207 + -delta_h +162.200 kcal/mol + -analytic 1.9927e+002 4.5966e-002 -1.0812e+005 -7.0739e+001 2.1239e+006 +# -Range: 0-300 + +# Diglycine, C4H8N2O3 + + 2.0000 C2H5NO2 = C4H8N2O3 + 1.0000 H2O + -llnl_gamma 3.0 + log_k -2.5863 + -delta_h +175.640 kcal/mol + -analytic -9.6588e+000 2.9406e-003 -1.1504e+003 3.1397e+000 2.0330e+005 +# -Range: 0-300 + +# Diketopiperazine, C4H6N2O2 + + 2.0000 C2H5NO2 = C4H6N2O2 + 2.0000 H2O + -llnl_gamma 3.0 + log_k -4.7063 + -delta_h +99.300 kcal/mol + -analytic 3.4352e+000 4.6987e-003 -3.2032e+003 -4.8114e-001 2.1265e+005 +# -Range: 0-300 + +# Dodecanoate, C12H23O2- + + 6.0000 CH3COOH = C12H23O2- + 5.0000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.9185 + -delta_h -174.04 kcal/mol + -analytic 5.7006e+002 1.0646e-001 -1.5130e+005 -2.0765e+002 3.4121e+006 +# -Range: 0-300 + +# Dodecanoic_acid, C12H24O2 + + 6.0000 CH3COOH = C12H24O2 + 5.0000 O2 + -llnl_gamma 3.0 + log_k -1228.1689 + -delta_h +173.540 kcal/mol + -analytic 6.5537e+002 1.1671e-001 -1.5726e+005 -2.3542e+002 3.8794e+006 +# -Range: 0-300 + +# Ethanamine, C2H5NH2 + + 1.0000 NH3 + 2.0000 HCO3- + 2.0000 H+ = C2H5NH2 + 3.0000 O2 + -llnl_gamma 3.0 + log_k -223.647 + -delta_h +23.830 kcal/mol + -analytic -1.9599E+03 -3.3677E-01 -5.4980E+02 7.4290E+02 -4.9475E-02 +# -Range: 0-300 + +# Ethane, C2H6 + + 1.0000 H2O + 2.0000 HCO3- + 2.0000 H+ = C2H6 + 3.5000 O2 + -llnl_gamma 3.0 + log_k -254.5034 + -delta_h +24.650 kcal/mol + -analytic -2.2475E+03 -3.8473E-01 -5.6009E+02 8.5243E+02 -1.2340E-01 +# -Range: 0-300 + +# Ethanol, C2H5OH + + 1.0000 H2O + 2.0000 HCO3- + 2.0000 H+ = C2H5OH + 3.0000 O2 + -llnl_gamma 3.0 + log_k -224.1415 + -delta_h +68.650 kcal/mol + -analytic -1.9805E+03 -3.3932E-01 -5.5095E+02 7.5133E+02 -5.5268E-02 +# -Range: 0-300 + +# Ethyne, C2H2 + + 2.0000 HCO3- + 2.0000 H+ = C2H2 + 1.0000 H2O + 2.5000 O2 + -llnl_gamma 3.0 + log_k -209.3843 + -delta_h -50.7 kcal/mol + -analytic -1.8747E+03 -3.1966E-01 -5.4744E+02 7.1215E+02 -3.1389E-02 +# -Range: 0-300 + +# Ethylacetate, CH3COOCH2CH3 + + 1.0000 C2H4 + 1.0000 CH3COOH = CH3COOCH2CH3 + -llnl_gamma 3.0 + log_k +2.9247 + -delta_h +116.840 kcal/mol + -analytic -1.2558e+001 -3.4591e-003 2.2166e+003 3.6667e+000 3.4592e+001 +# -Range: 0-300 + +# Ethylbenzene, C6H5C2H5 +# + 4.0000 C6H6 + 3.0000 H2O = C6H5C2H5 + 1.5000 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -2256.5242 +# -delta_h +2.500 kcal/mol +# -analytic 2.7546e+002 5.0556e-002 -4.5964e+004 -1.0201e+002 8.4857e+005 +# -Range: 0-300 + +# Eu(Ala)+, Eu(C3H6NO2)+ + + 1.0000 Eu+2 + 1.0000 C3H7NO2 = Eu(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -9.2139 + -delta_h +242.060 kcal/mol + -analytic 1.4058e+001 1.0581e-002 -6.6420e+003 -4.0654e+000 5.2699e+005 +# -Range: 0-300 + +# Eu(Ala)2, Eu(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Eu+2 = Eu(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -18.7503 + -delta_h +358.510 kcal/mol + -analytic 1.3352e+001 7.6973e-003 -1.7130e+004 1.7787e+000 1.6606e+006 +# -Range: 0-300 + +# Eu(But)+, Eu(CH3(CH2)2CO2)+ + + 1.0000 Eu+2 + 1.0000 C3H7COOH = Eu(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.538 + -delta_h +251.804 kcal/mol + -analytic -1.5879e+001 3.8795e-003 -2.7555e+003 5.4947e+000 5.2007e+005 +# -Range: 0-300 + +# Eu(But)+2, Eu(CH3(CH2)2CO2)+2 + + 1.0000 Eu+3 + 1.0000 C3H7COOH = Eu(CH3(CH2)2CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.048 + -delta_h +276.036 kcal/mol + -analytic -9.7855e+000 1.8979e-003 -2.3175e+003 3.4425e+000 5.7272e+005 +# -Range: 0-300 + +# Eu(But)2, Eu(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Eu+2 = Eu(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.5254 + -delta_h +377.392 kcal/mol + -analytic 1.1271e+001 7.7268e-003 -1.2418e+004 -8.4949e-001 1.8391e+006 +# -Range: 0-300 + +# Eu(But)2+, Eu(CH3(CH2)2CO2)2+ + + 2.0000 C3H7COOH + 1.0000 Eu+3 = Eu(CH3(CH2)2CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.876 + -delta_h +405.964 kcal/mol + -analytic -3.4218e+000 7.6886e-003 -6.2895e+003 1.1718e+000 1.2875e+006 +# -Range: 0-300 + +# Eu(For)+, EuCHO2+ + + 1.0000 HCOOH + 1.0000 Eu+2 = EuCHO2+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.353 + -delta_h +227.054 kcal/mol + -analytic -3.3218e+000 9.1062e-004 -1.1082e+003 9.9294e-001 1.7476e+005 +# -Range: 0-300 + +# Eu(For)+2, EuCHO2+2 + + 1.0000 HCOOH + 1.0000 Eu+3 = EuCHO2+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -0.9632 + -delta_h +249.786 kcal/mol + -analytic 1.3475e+000 -5.3304e-004 -7.1045e+002 -7.9702e-001 1.9639e+005 +# -Range: 0-300 + +# Eu(For)2, Eu(CHO2)2 + + 2.0000 HCOOH + 1.0000 Eu+2 = Eu(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.7961 + -delta_h +329.314 kcal/mol + -analytic 2.0204e+001 -4.0598e-004 -5.2985e+003 -5.9131e+000 6.6991e+005 +# -Range: 0-300 + +# Eu(For)2+, Eu(CHO2)2+ + + 2.0000 HCOOH + 1.0000 Eu+3 = Eu(CHO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -2.7158 + -delta_h +354.544 kcal/mol + -analytic 4.1316e+000 -3.0069e-003 -3.8235e+002 -2.6986e+000 1.7945e+005 +# -Range: 0-300 + +# Eu(Gly)+, Eu(C2H4NO2)+ + + 1.0000 C2H5NO2 + 1.0000 Eu+2 = Eu(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -8.1283 + -delta_h +234.136 kcal/mol + -analytic -1.3352e+001 7.3561e-003 -3.7321e+003 5.0576e+000 2.7090e+005 +# -Range: 0-300 + +# Eu(Gly)2, Eu(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Eu+2 = Eu(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -16.5066 + -delta_h +342.929 kcal/mol + -analytic 2.6146e+001 1.0368e-002 -1.4175e+004 -4.8232e+000 1.2226e+006 +# -Range: 0-300 + +# Eu(Glyc)+, Eu(CH3OCO2)+ + + 1.0000 C2H4O3 + 1.0000 Eu+2 = Eu(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.5333 + -delta_h +279.938 kcal/mol + -analytic -1.1341e+001 1.8436e-003 -1.7310e+003 4.1823e+000 3.3141e+005 +# -Range: 0-300 + +# Eu(Glyc)2, Eu(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Eu+2 = Eu(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.757 + -delta_h +433.849 kcal/mol + -analytic 2.6027e+000 1.1080e-003 -7.8729e+003 1.8735e+000 1.1647e+006 +# -Range: 0-300 + +# Eu(Lac)+, Eu(CH3CH2OCO2)+ + + 1.0000 C3H6O3 + 1.0000 Eu+2 = Eu(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.9328 + -delta_h +288.803 kcal/mol + -analytic -6.8714e+000 3.8415e-003 -2.4462e+003 2.5210e+000 4.2462e+005 +# -Range: 0-300 + +# Eu(Lac)2, Eu(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Eu+2 = Eu(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.0656 + -delta_h +451.723 kcal/mol + -analytic 1.5690e+000 2.8366e-003 -9.6953e+003 3.0359e+000 1.4716e+006 +# -Range: 0-300 + +# Eu(Pent)+, Eu(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Eu+2 = Eu(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8569 + -delta_h +257.888 kcal/mol + -analytic -1.8827e+001 6.5719e-003 -3.9749e+003 6.8334e+000 7.5209e+005 +# -Range: 0-300 + +# Eu(Pent)+2, Eu(CH3(CH2)3CO2)+2 + + 1.0000 C4H9COOH + 1.0000 Eu+3 = Eu(CH3(CH2)3CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.0773 + -delta_h +282.516 kcal/mol + -analytic -3.0633e+001 1.5481e-003 -2.5917e+003 1.1399e+001 7.6469e+005 +# -Range: 0-300 + +# Eu(Pent)2+, Eu(CH3(CH2)3CO2)2+ + + 2.0000 C4H9COOH + 1.0000 Eu+3 = Eu(CH3(CH2)3CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.9441 + -delta_h +418.206 kcal/mol + -analytic -3.7682e+001 1.0658e-002 -8.0528e+003 1.4565e+001 1.8292e+006 +# -Range: 0-300 + +# Eu(Prop)+, Eu(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Eu+2 = Eu(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.3262 + -delta_h +246.872 kcal/mol + -analytic -1.9603e+001 2.7407e-003 -2.2921e+003 6.8757e+000 4.5820e+005 +# -Range: 0-300 + +# Eu(Prop)+2, Eu(CH3CH2CO2)+2 + + 1.0000 C2H5COOH + 1.0000 Eu+3 = Eu(CH3CH2CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.0363 + -delta_h +270.831 kcal/mol + -analytic -1.0272e+001 1.5651e-003 -1.9970e+003 3.5396e+000 5.0897e+005 +# -Range: 0-300 + +# Eu(Prop)2, Eu(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Eu+2 = Eu(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.3927 + -delta_h +367.621 kcal/mol + -analytic 4.1333e-001 5.9591e-003 -1.0532e+004 2.3781e+000 1.5907e+006 +# -Range: 0-300 + +# Eu(Prop)2+, Eu(CH3CH2CO2)2+ + + 2.0000 C2H5COOH + 1.0000 Eu+3 = Eu(CH3CH2CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.8628 + -delta_h +396.115 kcal/mol + -analytic -1.7270e+001 4.2004e-003 -4.5560e+003 5.8571e+000 1.0648e+006 +# -Range: 0-300 + +# Fe(Ala)+, Fe(C3H6NO2)+ + + 1.0000 Fe+2 + 1.0000 C3H7NO2 = Fe(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.4374 + -delta_h +145.225 kcal/mol + -analytic -6.8881e-001 4.8406e-003 -4.2771e+003 1.2355e+000 4.5422e+005 +# -Range: 0-300 + +# Fe(Ala)2, Fe(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Fe+2 = Fe(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -12.0822 + -delta_h +268.535 kcal/mol + -analytic 1.0817e+001 7.0057e-003 -1.1636e+004 -9.2499e-002 1.2704e+006 +# -Range: 0-300 + +# Fe(But)+, Fe(CH3(CH2)2CO2)+ + + 1.0000 Fe+2 + 1.0000 C3H7COOH = Fe(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.2003 + -delta_h +151.642 kcal/mol + -analytic -1.1468e+001 1.5002e-003 -2.0030e+003 3.6750e+000 4.8551e+005 +# -Range: 0-300 + +# Fe(But)2, Fe(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Fe+2 = Fe(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.998 + -delta_h +281.765 kcal/mol + -analytic -2.8364e+001 1.7011e-003 -6.1151e+003 1.0670e+001 1.3334e+006 +# -Range: 0-300 + +# Fe(For)+, FeCHO2+ + + 1.0000 HCOOH + 1.0000 Fe+2 = FeCHO2+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.9256 + -delta_h +125.651 kcal/mol + -analytic -4.2844e-001 -1.1907e-003 -4.0278e+002 -4.4791e-001 1.1757e+005 +# -Range: 0-300 + +# Fe(For)2, Fe(CHO2)2 + + 2.0000 HCOOH + 1.0000 Fe+2 = Fe(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.4889 + -delta_h +230.658 kcal/mol + -analytic 2.6286e+000 -3.2750e-003 -8.7717e+002 -2.3516e+000 2.3378e+005 +# -Range: 0-300 + +# Fe(Gly)+, Fe(C2H4NO2)+ + + 1.0000 C2H5NO2 + 1.0000 Fe+2 = Fe(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.4609 + -delta_h +134.682 kcal/mol + -analytic -1.5456e+001 3.9367e-003 -2.4338e+003 5.8876e+000 2.1566e+005 +# -Range: 0-300 + +# Fe(Gly)2, Fe(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Fe+2 = Fe(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -12.0191 + -delta_h +248.527 kcal/mol + -analytic -4.9791e+000 5.5006e-003 -7.9837e+003 3.9747e+000 7.3594e+005 +# -Range: 0-300 + +# Fe(Glyc)+, Fe(CH3OCO2)+ + + 1.0000 C2H4O3 + 1.0000 Fe+2 = Fe(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.6566 + -delta_h +179.149 kcal/mol + -analytic -1.1315e+001 -1.3546e-003 -9.1265e+002 4.0008e+000 2.8737e+005 +# -Range: 0-300 + +# Fe(Glyc)2, Fe(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Fe+2 = Fe(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.8197 + -delta_h +337.416 kcal/mol + -analytic -2.4214e+001 -3.9432e-003 -2.6649e+003 9.0425e+000 7.2466e+005 +# -Range: 0-300 + +# Fe(Lac)+, Fe(CH3CH2OCO2)+ + + 1.0000 C3H6O3 + 1.0000 Fe+2 = Fe(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.7453 + -delta_h +188.437 kcal/mol + -analytic -1.4649e+001 -2.7787e-004 -1.0617e+003 5.0960e+000 3.5122e+005 +# -Range: 0-300 + +# Fe(Lac)2, Fe(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Fe+2 = Fe(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.9788 + -delta_h +355.495 kcal/mol + -analytic -1.6235e+001 -4.1634e-005 -4.7223e+003 6.6708e+000 1.0336e+006 +# -Range: 0-300 + +# Fe(Pent)+, Fe(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Fe+2 = Fe(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.2802 + -delta_h +158.054 kcal/mol + -analytic -2.6685e+001 2.0954e-003 -2.5680e+003 9.5548e+000 6.9089e+005 +# -Range: 0-300 + +# Fe(Pent)2, Fe(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Fe+2 = Fe(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.1571 + -delta_h +293.990 kcal/mol + -analytic -4.2465e+001 5.3731e-003 -9.5476e+003 1.7464e+001 2.0055e+006 +# -Range: 0-300 + +# Fe(Prop)+, Fe(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Fe+2 = Fe(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.289 + -delta_h +146.301 kcal/mol + -analytic -7.3746e+000 1.6930e-003 -2.0030e+003 2.1641e+000 4.4097e+005 +# -Range: 0-300 + +# Fe(Prop)2, Fe(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Fe+2 = Fe(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.1556 + -delta_h +271.598 kcal/mol + -analytic -1.9694e+001 2.8321e-003 -5.3596e+003 6.8142e+000 1.1417e+006 +# -Range: 0-300 + +# Formaldehyde, HCHO + + 1.0000 CH3COOH = HCHO + 0.5000 C2H4 + 0.5000 O2 + -llnl_gamma 3.0 + log_k -86.5725 + -delta_h +33.890 kcal/mol + -analytic 1.3515e+002 2.8915e-002 -2.5168e+004 -4.9725e+001 4.2808e+005 +# -Range: 0-300 + +# Formate, HCOO- + + 1.0000 HCOOH = HCOO- + 1.0000 H+ + -llnl_gamma 3.5 + log_k -3.753 + -delta_h +101.680 kcal/mol + -analytic -9.4187e+001 -3.4616e-002 1.8918e+003 3.8145e+001 2.9547e+001 +# -Range: 0-300 + +# Formic_acid, HCOOH + HCO3- + H+ 1.0000 = HCOOH + 0.5O2 + -llnl_gamma 3.0 + log_k -39.0524 + -delta_h +101.680 kcal/mol + -analytic -3.4508E+02 -4.9133E-02 -4.9396E+02 1.3024E+02 3.5416E-01 +# -Range: 0-300 + +# Gd(But)+2, Gd(CH3(CH2)2CO2)+2 + + 1.0000 Gd+3 + 1.0000 C3H7COOH = Gd(CH3(CH2)2CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.1778 + -delta_h +294.884 kcal/mol + -analytic -9.4460e+000 2.4870e-003 -2.3699e+003 3.2918e+000 5.6419e+005 +# -Range: 0-300 + +# Gd(But)2+, Gd(CH3(CH2)2CO2)2+ + + 2.0000 C3H7COOH + 1.0000 Gd+3 = Gd(CH3(CH2)2CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.1157 + -delta_h +424.078 kcal/mol + -analytic -1.4589e+001 7.2722e-003 -5.7356e+003 5.1448e+000 1.2310e+006 +# -Range: 0-300 + +# Gd(For)+2, GdCHO2+2 + + 1.0000 Gd+3 + 1.0000 HCOOH = GdCHO2+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.0929 + -delta_h +268.634 kcal/mol + -analytic -6.8541e-001 -3.3966e-004 -6.4856e+002 -7.2227e-002 1.8259e+005 +# -Range: 0-300 + +# Gd(For)2+, Gd(CHO2)2+ + + 2.0000 HCOOH + 1.0000 Gd+3 = Gd(CHO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -2.9562 + -delta_h +372.659 kcal/mol + -analytic -3.5152e+000 -3.2979e-003 -1.3266e+002 1.3417e-001 1.4806e+005 +# -Range: 0-300 + +# Gd(Pent)+2, Gd(CH3(CH2)3CO2)+2 + + 1.0000 C4H9COOH + 1.0000 Gd+3 = Gd(CH3(CH2)3CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.2071 + -delta_h +301.364 kcal/mol + -analytic -2.8290e+001 2.4126e-003 -2.7617e+003 1.0531e+001 7.6352e+005 +# -Range: 0-300 + +# Gd(Pent)2+, Gd(CH3(CH2)3CO2)2+ + + 2.0000 C4H9COOH + 1.0000 Gd+3 = Gd(CH3(CH2)3CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.1846 + -delta_h +436.320 kcal/mol + -analytic -5.3965e+001 9.5419e-003 -7.2168e+003 2.0378e+001 1.7572e+006 +# -Range: 0-300 + +# Gd(Prop)+2, GdCH3CH2CO2+2 + + 1.0000 C2H5COOH + 1.0000 Gd+3 = GdCH3CH2CO2+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.1763 + -delta_h +289.666 kcal/mol + -analytic -1.7869e+001 1.0366e-003 -1.6096e+003 6.2464e+000 4.7496e+005 +# -Range: 0-300 + +# Gd(Prop)2+, Gd(CH3CH2CO2)2+ + + 2.0000 C2H5COOH + 1.0000 Gd+3 = Gd(CH3CH2CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.1127 + -delta_h +414.216 kcal/mol + -analytic -4.1151e+001 1.7684e-003 -3.3631e+003 1.4486e+001 9.7618e+005 +# -Range: 0-300 + +# Glutamic_acid, C5H9NO4 + + 2.5000 C2H5NO2 + 0.5000 H2O = C5H9NO4 + 1.5000 NH3 + 0.7500 O2 + -llnl_gamma 3.0 3.0 + log_k -321.9443 + -delta_h +232.000 kcal/mol + -analytic 1.3643e+002 3.2714e-002 -2.5437e+004 -4.8787e+001 7.4165e+005 +# -Range: 0-300 + +# Glutamine, C5H10N2O3 + + 2.5000 C2H5NO2 = C5H10N2O3 + 0.7500 O2 + 0.5000 H2O + 0.5000 NH3 + -llnl_gamma 3.0 + log_k +2.8622 + -delta_h +192.330 kcal/mol + -analytic 8.7755e+001 2.3462e-002 -2.1760e+004 -3.1651e+001 7.0288e+005 +# -Range: 0-300 + +# Glutarate, C5H6O4-2 + + 2.5000 CH3COOH = C5H6O4-2 + 2.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -9.7563 + -delta_h +224.140 kcal/mol + -analytic -1.3762e+002 -7.5681e-002 1.3347e+003 5.7954e+001 2.0867e+001 +# -Range: 0-300 + +# Glutaric_acid, C5H8O4 + + 2.5000 CH3COOH = C5H8O4 + 1.0000 H2O + -llnl_gamma 3.0 + log_k -357.4964 + -delta_h +223.440 kcal/mol + -analytic -9.9184e+000 -1.0441e-002 -1.9203e+001 4.2761e+000 -2.9671e-001 +# -Range: 0-300 + +# Glycine, C2H5NO2 + + 1.0000 NH3 + 2.0000 HCO3- + 2.0000 H+ = C2H5NO2 + 1.0000 H2O + 1.5000 O2 + -llnl_gamma 3.0 + log_k -108.1715 + -delta_h +122.846 kcal/mol + -analytic -9.2863E+02 -1.5296E-01 -5.1446E+02 3.5064E+02 2.0391E-01 +# -Range: 0-300 + +# Glycolate, C2H3O3- + + 1.0000 C2H4O3 = C2H3O3- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.8336 + -delta_h +154.700 kcal/mol + -analytic -9.9557e+001 -3.6800e-002 1.9551e+003 4.0462e+001 3.0537e+001 +# -Range: 0-300 + +# Glycolic_acid, C2H4O3 + + 2.0000 HCO3- + 2.0000 H+ = C2H4O3 + 1.5000 O2 + -llnl_gamma 3.0 + log_k -117.3507 + -delta_h +154.890 kcal/mol + -analytic -1.0189E+03 -1.6160E-01 -5.1773E+02 3.8447E+02 1.7876E-01 +# -Range: 0-300 + +# H-Adipate, C6H9O4- + + 3.0000 CH3COOH = C6H9O4- + 1.0000 H+ + 1.0000 H2O + 0.5000 O2 + -llnl_gamma 4.0 + log_k -4.4127 + -delta_h +227.130 kcal/mol + -analytic -5.8686e+001 -2.8724e-002 -1.0743e+004 2.3135e+001 -1.6761e+002 +# -Range: 0-300 + +# H-Azelate, C9H15O4- + + 4.5000 CH3COOH = C9H15O4- + 2.0000 O2 + 1.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -4.5226 + -delta_h +240.970 kcal/mol + -analytic 2.2650e+002 2.5261e-002 -6.2618e+004 -8.1084e+001 1.3566e+006 +# -Range: 0-300 + +# H-Glutarate, C5H7O4- + + 2.5000 CH3COOH = C5H7O4- + 1.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -4.3394 + -delta_h +223.570 kcal/mol + -analytic -4.0300e+001 -3.0858e-002 -9.3931e+001 1.7357e+001 -1.4538e+000 +# -Range: 0-300 + +# H-Malonate, C3H3O4- + + 1.5000 CH3COOH + 1.0000 O2 = C3H3O4- + 1.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -2.8513 + -delta_h +207.850 kcal/mol + -analytic -5.6715e+000 -3.3611e-002 1.9552e+004 6.4983e+000 3.0509e+002 +# -Range: 0-300 + +# H-Oxalate, C2HO4- + + 1.5000 O2 + 1.0000 CH3COOH = C2HO4- + 1.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -1.2703 + -delta_h +195.600 kcal/mol + -analytic 1.3266e+001 -3.3064e-002 2.8427e+004 0.0000e+000 0.0000e+000 +# -Range: 0-300 + +# H-Pimelate, C7H11O4- + + 3.5000 CH3COOH = C7H11O4- + 1.0000 H+ + 1.0000 H2O + 1.0000 O2 + -llnl_gamma 4.0 + log_k -4.486 + -delta_h +234.040 kcal/mol + -analytic -7.7415e+001 -2.6046e-002 -2.0605e+004 2.8981e+001 -3.2150e+002 +# -Range: 0-300 + +# H-Sebacate, C10H17O4- + + 5.0000 CH3COOH = C10H17O4- + 2.5000 O2 + 1.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -4.5446 + -delta_h +246.230 kcal/mol + -analytic -1.5704e+002 -1.8900e-002 -5.1105e+004 5.4466e+001 -7.9740e+002 +# -Range: 0-300 + +# H-Suberate, C8H13O4- + + 4.0000 CH3COOH = C8H13O4- + 1.5000 O2 + 1.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -4.508 + -delta_h +238.130 kcal/mol + -analytic -1.0933e+002 -2.4139e-002 -3.0563e+004 3.9365e+001 -4.7687e+002 +# -Range: 0-300 + +# H-Succinate, C4H5O4- + + 2.0000 CH3COOH + 0.5000 O2 = C4H5O4- + 1.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -4.2075 + -delta_h +217.350 kcal/mol + -analytic -3.0274e+001 -3.3174e-002 1.0329e+004 1.4429e+001 1.6118e+002 +# -Range: 0-300 + +# HO2-, HO2- + + 1.0000 H2O + 0.5000 O2 = HO2- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -28.3019 + -delta_h +38.320 kcal/mol + -analytic -4.1095e+001 -3.1617e-002 -7.2259e+003 1.8765e+001 -1.1274e+002 +# -Range: 0-300 + +# Heptanal, CH3(CH2)5CHO + + 2.5000 C2H4 + 1.0000 CH3COOH = CH3(CH2)5CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -733.0243 + -delta_h +77.010 kcal/mol + -analytic -4.4470e+001 -1.5235e-002 -2.8387e+003 1.5763e+001 -4.4282e+001 +# -Range: 0-300 + +# Heptanoate, C6H13COO- + + 3.5000 CH3COOH = C6H13COO- + 2.5000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.8928 + -delta_h +145.620 kcal/mol + -analytic -2.3984e+002 -2.7315e-002 -4.6686e+004 8.5594e+001 -7.2843e+002 +# -Range: 0-300 + +# Heptanoic_acid, C6H13COOH + + 3.5000 CH3COOH = C6H13COOH + 2.5000 O2 + -llnl_gamma 3.0 + log_k -684.8753 + -delta_h +145.080 kcal/mol + -analytic 4.8292e+002 8.0059e-002 -8.7380e+004 -1.7349e+002 2.4625e+006 +# -Range: 0-300 + +# Hexanal, CH3(CH2)4CHO + + 2.0000 C2H4 + 1.0000 CH3COOH = CH3(CH2)4CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -623.3863 + -delta_h +72.650 kcal/mol + -analytic -3.3617e+001 -1.0435e-002 -4.8410e+003 1.1629e+001 -7.5530e+001 +# -Range: 0-300 + +# Hexanoate, C5H11COO- + + 3.0000 CH3COOH = C5H11COO- + 2.0000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.8599 + -delta_h +139.870 kcal/mol + -analytic -2.1318e+002 -2.9283e-002 -3.6871e+004 7.6955e+001 -5.7527e+002 +# -Range: 0-300 + +# Hexanoic_acid, C5H11COOH + + 3.0000 CH3COOH = C5H11COOH + 2.0000 O2 + -llnl_gamma 3.0 + log_k -576.2928 + -delta_h +139.290 kcal/mol + -analytic 1.1076e+002 2.5510e-002 -5.4376e+004 -3.9703e+001 1.0632e+006 +# -Range: 0-300 + +# Isoleucine, C6H13NO2 + + 3.0000 C2H5NO2 + 2.0000 H2O = C6H13NO2 + 3.0000 O2 + 2.0000 NH3 + -llnl_gamma 3.0 + log_k +0.1466 + -delta_h +150.900 kcal/mol + -analytic -2.8273e+002 -1.9351e-003 -5.4209e+004 1.0027e+002 -8.4579e+002 +# -Range: 0-300 + +# K(But), K(CH3(CH2)2CO2) + + 1.0000 K+ + 1.0000 C3H7COOH = K(CH3(CH2)2CO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8078 + -delta_h +187.401 kcal/mol + -analytic 1.3634e+001 -2.1745e-003 -3.9995e+003 -3.9841e+000 4.8796e+005 +# -Range: 0-300 + +# K(But)2-, K(CH3(CH2)2CO2)2- + + 2.0000 C3H7COOH + 1.0000 K+ = K(CH3(CH2)2CO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.9359 + -delta_h +316.310 kcal/mol + -analytic 5.5776e+001 -3.5589e-003 -1.2872e+004 -1.6024e+001 1.6171e+006 +# -Range: 0-300 + +# K(For), K(CHO2) + + 1.0000 K+ + 1.0000 HCOOH = K(CHO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.7229 + -delta_h +161.151 kcal/mol + -analytic -2.4221e+000 -7.5713e-003 -6.7114e+002 1.2963e+000 -1.0472e+001 +# -Range: 0-300 + +# K(For)2-, K(CHO2)2- + + 2.0000 HCOOH + 1.0000 K+ = K(CHO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.7757 + -delta_h +264.561 kcal/mol + -analytic -1.0611e+002 -3.9682e-002 2.1061e+003 4.1665e+001 3.2895e+001 +# -Range: 0-300 + +# K(Glyc), K(CH3OCO2) + + 1.0000 K+ + 1.0000 C2H4O3 = K(CH3OCO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.8036 + -delta_h +214.171 kcal/mol + -analytic 2.8123e+001 -1.9061e-003 -3.6027e+003 -9.1691e+000 3.0378e+005 +# -Range: 0-300 + +# K(Glyc)2-, K(CH3OCO2)2- + + 2.0000 C2H4O3 + 1.0000 K+ = K(CH3OCO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.7471 + -delta_h +370.519 kcal/mol + -analytic -2.2646e+002 -4.8542e-002 6.8259e+003 8.4988e+001 1.0658e+002 +# -Range: 0-300 + +# K(Lac), K(CH3CH2OCO2) + + 1.0000 C3H6O3 + 1.0000 K+ = K(CH3CH2OCO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.8329 + -delta_h +223.541 kcal/mol + -analytic 1.4972e+001 -3.2999e-003 -3.4489e+003 -4.1956e+000 3.6756e+005 +# -Range: 0-300 + +# K(Lac)2-, K(CH3CH2OCO2)2- + + 2.0000 C3H6O3 + 1.0000 K+ = K(CH3CH2OCO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.7955 + -delta_h +388.842 kcal/mol + -analytic 3.7819e+001 -9.5803e-003 -1.0074e+004 -9.1771e+000 1.2221e+006 +# -Range: 0-300 + +# K(Pent), K(CH3(CH2)3CO2) + + 1.0000 C4H9COOH + 1.0000 K+ = K(CH3(CH2)3CO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8371 + -delta_h +193.881 kcal/mol + -analytic 1.1271e+001 -4.4936e-004 -5.4272e+003 -2.5193e+000 7.5365e+005 +# -Range: 0-300 + +# K(Pent)2-, K(CH3(CH2)3CO2)2- + + 2.0000 C4H9COOH + 1.0000 K+ = K(CH3(CH2)3CO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -10.0041 + -delta_h +328.765 kcal/mol + -analytic 7.8715e+000 -1.1792e-003 -1.3479e+004 1.7870e+000 2.0708e+006 +# -Range: 0-300 + +# K(Prop), KCH3CH2CO2 + + 1.0000 C2H5COOH + 1.0000 K+ = KCH3CH2CO2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8664 + -delta_h +182.101 kcal/mol + -analytic 1.1437e+001 -2.2439e-003 -3.4860e+003 -3.4282e+000 4.0460e+005 +# -Range: 0-300 + +# K(Prop)2-, K(CH3CH2CO2)2- + + 2.0000 C2H5COOH + 1.0000 K+ = K(CH3CH2CO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -10.0429 + -delta_h +306.125 kcal/mol + -analytic 3.7431e+001 -9.1342e-003 -1.1368e+004 -9.1819e+000 1.4324e+006 +# -Range: 0-300 + +# La(But)+2, La(CH3(CH2)2CO2)+2 + + 1.0000 La+3 + 1.0000 C3H7COOH = La(CH3(CH2)2CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.2078 + -delta_h +300.593 kcal/mol + -analytic -1.2213e+001 7.6865e-004 -2.3803e+003 4.5583e+000 5.7748e+005 +# -Range: 0-300 + +# La(But)2+, La(CH3(CH2)2CO2)2+ + + 2.0000 C3H7COOH + 1.0000 La+3 = La(CH3(CH2)2CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.1758 + -delta_h +430.176 kcal/mol + -analytic -2.7187e+001 3.6155e-003 -5.1320e+003 9.9375e+000 1.2081e+006 +# -Range: 0-300 + +# La(For)+2, La(CHO2)+2 + + 1.0000 La+3 + 1.0000 HCOOH = La(CHO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.123 + -delta_h +274.343 kcal/mol + -analytic 2.4425e+000 -1.1728e-003 -9.7383e+002 -9.4604e-001 2.1308e+005 +# -Range: 0-300 + +# La(For)2+, La(CHO2)2+ + + 2.0000 HCOOH + 1.0000 La+3 = La(CHO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.0163 + -delta_h +378.757 kcal/mol + -analytic 1.4193e+001 -2.4396e-003 -1.1566e+003 -6.0653e+000 2.1470e+005 +# -Range: 0-300 + +# La(Pent)+2, La(CH3(CH2)3CO2)+2 + + 1.0000 C4H9COOH + 1.0000 La+3 = La(CH3(CH2)3CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.2371 + -delta_h +307.073 kcal/mol + -analytic -2.4830e+001 1.6328e-003 -3.1022e+003 9.5351e+000 7.9458e+005 +# -Range: 0-300 + +# La(Pent)2+, La(CH3(CH2)3CO2)2+ + + 2.0000 C4H9COOH + 1.0000 La+3 = La(CH3(CH2)3CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.2447 + -delta_h +442.418 kcal/mol + -analytic -4.1413e+001 9.3380e-003 -8.0438e+003 1.6147e+001 1.8186e+006 +# -Range: 0-300 + +# La(Prop)+2, La(CH3CH2CO2)+2 + + 1.0000 C2H5COOH + 1.0000 La+3 = La(CH3CH2CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.3764 + -delta_h +295.142 kcal/mol + -analytic -8.7100e+000 9.9977e-004 -2.3370e+003 3.2191e+000 5.2671e+005 +# -Range: 0-300 + +# La(Prop)2+, La(CH3CH2CO2)2+ + + 2.0000 C2H5COOH + 1.0000 La+3 = La(CH3CH2CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.4829 + -delta_h +419.891 kcal/mol + -analytic -1.7985e+001 3.2712e-003 -4.8213e+003 6.3648e+000 1.0652e+006 +# -Range: 0-300 + +# Lactate, C3H5O3- + + 1.0000 C3H6O3 = C3H5O3- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.8629 + -delta_h +164.070 kcal/mol + -analytic -8.2814e+001 -3.2149e-002 1.5440e+003 3.3680e+001 2.4117e+001 +# -Range: 0-300 + +# Lactic_acid, C3H6O3 + + 3.0000 HCO3- + 3.0000 H+ = C3H6O3 + 3.0000 O2 + -llnl_gamma 3.0 + log_k -223.4996 + -delta_h +164.000 kcal/mol + -analytic -1.9621E+03 -3.2360E-01 -5.5305E+02 7.4225E+02 -2.0548E-01 +# -Range: 0-300 + +# Leucine, C6H13NO2 + + 3.0000 C2H5NO2 + 2.0000 H2O = C6H13NO2 + 3.0000 O2 + 2.0000 NH3 + -llnl_gamma 3.0 + log_k -541.723 + -delta_h +151.070 kcal/mol + -analytic 2.4561e+002 6.5239e-002 -8.6593e+004 -8.7114e+001 2.1100e+006 +# -Range: 0-300 + +# Leucylglycine, C8H16N2O3 + + 4.0000 C2H5NO2 + 1.0000 H2O = C8H16N2O3 + 3.0000 O2 + 2.0000 NH3 + -llnl_gamma 3.0 + log_k -652.321 + -delta_h +202.660 kcal/mol + -analytic -3.3759e+002 -5.6274e-003 -5.2689e+004 1.1979e+002 -8.2207e+002 +# -Range: 0-300 + +# Malonate, C3H2O4-2 + + 1.5000 CH3COOH + 1.0000 O2 = C3H2O4-2 + 2.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -2.8513 + -delta_h +207.850 kcal/mol + -analytic -9.9824e+001 -7.7578e-002 2.0986e+004 4.5594e+001 3.2750e+002 +# -Range: 0-300 + +# Malonic_acid, C3H4O4 + + 3.0000 HCO3- + 3.0000 H+ = C3H4O4 + 2.0000 O2 + 1.0000 H2O + -llnl_gamma 3.0 + log_k -144.1431 + -delta_h +207.870 kcal/mol + -analytic -1.2631E+03 -1.9613E-01 -5.2873E+02 4.7649E+02 -3.1921E-02 +# -Range: 0-300 + +# Methanamine, CH3NH2 + + 0.5000 NH3 + 0.5000 C2H5NH2 = CH3NH2 + -llnl_gamma 3.0 + log_k -3.7248 + -delta_h +16.320 kcal/mol + -analytic 3.6212e+000 9.9672e-004 -1.2549e+003 -1.3879e+000 -1.9583e+001 +# -Range: 0-300 + +# Methanol, CH3OH + + 0.5000 H2O + 0.5000 C2H5OH = CH3OH + -llnl_gamma 3.0 + log_k -5.8339 + -delta_h +58.870 kcal/mol + -analytic 1.0292e+001 2.0369e-003 -2.3980e+003 -3.5121e+000 -3.7422e+001 +# -Range: 0-300 + +# Methionine, C5H11NO2S +2.5000 C2H5NO2 + 1.0000 HS- + 1.0000 H+ + 0.5000 H2O = C5H11NO2S + 1.7500 O2 + 1.5000 NH3 + -llnl_gamma 3.0 + log_k -499.7659 + -delta_h +177.600 kcal/mol + -analytic -8.0509e+001 3.4730e-002 -2.3107e+004 2.2907e+001 -3.6054e+002 +# -Range: 0-300 + +# Mg(Ala)+, Mg(C3H6NO2)+ + + 1.0000 Mg+2 + 1.0000 C3H7NO2 = Mg(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -8.4047 + -delta_h +231.745 kcal/mol + -analytic 3.2275e+000 3.8767e-003 -5.7267e+003 1.9424e-001 5.2913e+005 +# -Range: 0-300 + +# Mg(Ala)2, Mg(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Mg+2 = Mg(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -17.4998 + -delta_h +352.641 kcal/mol + -analytic -2.6461e+000 5.2729e-003 -1.2622e+004 4.5793e+000 1.2982e+006 +# -Range: 0-300 + +# Mg(But)+, Mg(CH3(CH2)2CO2)+ + + 1.0000 Mg+2 + 1.0000 C3H7COOH = Mg(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.2778 + -delta_h +240.741 kcal/mol + -analytic -2.1041e+000 1.4633e-003 -3.1485e+003 6.1810e-001 5.7229e+005 +# -Range: 0-300 + +# Mg(But)2, Mg(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Mg+2 = Mg(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -8.9654 + -delta_h +370.578 kcal/mol + -analytic -2.8906e+001 1.7817e-003 -6.7997e+003 1.0694e+001 1.4036e+006 +# -Range: 0-300 + +# Mg(For)+, Mg(CHO2)+ + + 1.0000 Mg+2 + 1.0000 HCOOH = Mg(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.3229 + -delta_h +215.678 kcal/mol + -analytic -3.9514e+000 -2.8298e-003 -5.6302e+002 1.0614e+000 1.5474e+005 +# -Range: 0-300 + +# Mg(For)2, Mg(CHO2)2 + + 2.0000 HCOOH + 1.0000 Mg+2 = Mg(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.2058 + -delta_h +321.177 kcal/mol + -analytic -1.9131e+001 -6.0693e-003 4.0785e+001 5.2661e+000 2.2927e+005 +# -Range: 0-300 + +# Mg(Gly)+, Mg(C2H4NO2)+ + + 1.0000 Mg+2 + 1.0000 C2H5NO2 = Mg(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -6.328 + -delta_h +225.174 kcal/mol + -analytic 2.0689e+001 7.1872e-003 -4.9739e+003 -6.9062e+000 4.1092e+005 +# -Range: 0-300 + +# Mg(Gly)2, Mg(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Mg+2 = Mg(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -13.0966 + -delta_h +340.003 kcal/mol + -analytic -2.1284e+000 6.2771e-003 -8.3120e+003 2.3697e+000 8.1724e+005 +# -Range: 0-300 + +# Mg(Glyc)+, Mg(CH3OCO2)+ + + 1.0000 Mg+2 + 1.0000 C2H4O3 = Mg(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.5039 + -delta_h +266.450 kcal/mol + -analytic 4.1719e+000 4.8995e-004 -2.4071e+003 -1.0943e+000 3.5295e+005 +# -Range: 0-300 + +# Mg(Glyc)2, Mg(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Mg+2 = Mg(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.3671 + -delta_h +424.040 kcal/mol + -analytic 1.1456e+001 1.9693e-003 -5.4799e+003 -3.5701e+000 8.7339e+005 +# -Range: 0-300 + +# Mg(Lac)+, Mg(CH3CH2OCO2)+ + + 1.0000 Mg+2 + 1.0000 C3H6O3 = Mg(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.493 + -delta_h +274.593 kcal/mol + -analytic -5.8138e+000 4.6550e-004 -2.3971e+003 2.7483e+000 3.9437e+005 +# -Range: 0-300 + +# Mg(Lac)2, Mg(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Mg+2 = Mg(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.3356 + -delta_h +440.700 kcal/mol + -analytic -9.2240e+000 7.2412e-004 -6.4088e+003 5.1184e+000 1.1140e+006 +# -Range: 0-300 + +# Mg(Pent)+, Mg(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Mg+2 = Mg(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.5571 + -delta_h +246.880 kcal/mol + -analytic -2.6885e+001 6.6381e-004 -3.2502e+003 9.9565e+000 7.4821e+005 +# -Range: 0-300 + +# Mg(Pent)2, Mg(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Mg+2 = Mg(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.4844 + -delta_h +382.313 kcal/mol + -analytic -3.1213e+001 7.2244e-003 -1.0963e+004 1.3204e+001 2.1088e+006 +# -Range: 0-300 + +# Mg(Prop)+, Mg(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Mg+2 = Mg(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.1767 + -delta_h +235.660 kcal/mol + -analytic -1.5671e+001 -6.7187e-004 -2.0570e+003 5.4098e+000 4.6452e+005 +# -Range: 0-300 + +# Mg(Prop)2, Mg(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Mg+2 = Mg(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -8.7726 + -delta_h +360.889 kcal/mol + -analytic -1.3652e+001 3.8826e-003 -6.2937e+003 4.4524e+000 1.2312e+006 +# -Range: 0-300 + +# Mn(Ala)+, Mn(C3H6NO2)+ + + 1.0000 Mn+2 + 1.0000 C3H7NO2 = Mn(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -7.1248 + -delta_h +173.180 kcal/mol + -analytic -6.0922e+000 5.5095e-003 -4.5521e+003 3.1202e+000 4.3437e+005 +# -Range: 0-300 + +# Mn(Ala)2, Mn(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Mn+2 = Mn(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -14.6792 + -delta_h +294.245 kcal/mol + -analytic -5.0476e-001 5.7769e-003 -1.2737e+004 4.7857e+000 1.3339e+006 +# -Range: 0-300 + +# Mn(But)+, Mn(CH3(CH2)2CO2)+ + + 1.0000 Mn+2 + 1.0000 C3H7COOH = Mn(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.6079 + -delta_h +181.344 kcal/mol + -analytic -1.6910e+001 1.9388e-003 -1.9552e+003 5.6484e+000 4.7316e+005 +# -Range: 0-300 + +# Mn(But)2, Mn(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Mn+2 = Mn(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.7354 + -delta_h +310.012 kcal/mol + -analytic -1.8458e+001 3.5123e-003 -7.8343e+003 7.8894e+000 1.4636e+006 +# -Range: 0-300 + +# Mn(For)+, Mn(CHO2)+ + + 1.0000 Mn+2 + 1.0000 HCOOH = Mn(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.0532 + -delta_h +155.735 kcal/mol + -analytic -5.7235e+000 -8.3722e-004 -3.0900e+002 1.5086e+000 1.0934e+005 +# -Range: 0-300 + +# Mn(For)2, Mn(CHO2)2 + + 2.0000 HCOOH + 1.0000 Mn+2 = Mn(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.7162 + -delta_h +259.601 kcal/mol + -analytic 1.2827e+001 -1.4127e-003 -2.4571e+003 -5.2411e+000 3.6438e+005 +# -Range: 0-300 + +# Mn(Gly)+, Mn(C2H4NO2)+ + + 1.0000 Mn+2 + 1.0000 C2H5NO2 = Mn(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -6.1184 + -delta_h +165.803 kcal/mol + -analytic 1.2891e+001 8.7151e-003 -4.1826e+003 -4.5776e+000 3.3412e+005 +# -Range: 0-300 + +# Mn(Gly)2, Mn(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Mn+2 = Mn(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -12.9266 + -delta_h +278.847 kcal/mol + -analytic -8.9549e+000 5.6683e-003 -8.5407e+003 5.5548e+000 8.2286e+005 +# -Range: 0-300 + +# Mn(Glyc)+, Mn(CH3OCO2)+ + + 1.0000 Mn+2 + 1.0000 C2H4O3 = Mn(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.2518 + -delta_h +208.594 kcal/mol + -analytic -7.3237e+000 7.7086e-004 -1.3628e+003 2.4657e+000 2.9532e+005 +# -Range: 0-300 + +# Mn(Glyc)2, Mn(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Mn+2 = Mn(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.2373 + -delta_h +364.736 kcal/mol + -analytic -1.7505e+001 -1.6628e-003 -4.1763e+003 7.1162e+000 8.1623e+005 +# -Range: 0-300 + +# Mn(Lac)+, Mn(CH3CH2OCO2)+ + + 1.0000 Mn+2 + 1.0000 C3H6O3 = Mn(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.4328 + -delta_h +217.756 kcal/mol + -analytic -1.6464e+001 7.1558e-004 -1.2885e+003 5.7494e+000 3.4911e+005 +# -Range: 0-300 + +# Mn(Lac)2, Mn(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Mn+2 = Mn(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.2256 + -delta_h +383.047 kcal/mol + -analytic -1.8030e+001 1.4926e-004 -5.9277e+003 8.0913e+000 1.1243e+006 +# -Range: 0-300 + +# Mn(Pent)+, Mn(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Mn+2 = Mn(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.7669 + -delta_h +187.646 kcal/mol + -analytic -3.1330e+001 2.7885e-003 -2.5476e+003 1.1193e+001 6.7589e+005 +# -Range: 0-300 + +# Mn(Pent)2, Mn(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Mn+2 = Mn(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -8.044 + -delta_h +322.033 kcal/mol + -analytic -2.1011e+001 8.8159e-003 -1.1958e+004 1.0527e+001 2.1730e+006 +# -Range: 0-300 + +# Mn(Prop)+, Mn(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Mn+2 = Mn(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.6167 + -delta_h +176.112 kcal/mol + -analytic -5.3912e+000 3.1110e-003 -2.3654e+003 1.4872e+000 4.5498e+005 +# -Range: 0-300 + +# Mn(Prop)2, Mn(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Mn+2 = Mn(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.753 + -delta_h +300.037 kcal/mol + -analytic -5.4193e+000 5.1920e-003 -7.3047e+003 2.4858e+000 1.2892e+006 +# -Range: 0-300 + +# Na(But), Na(CH3(CH2)2CO2) + + 1.0000 Na+ + 1.0000 C3H7COOH = Na(CH3(CH2)2CO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.788 + -delta_h +185.529 kcal/mol + -analytic 1.1463e+001 -1.9756e-003 -3.8987e+003 -3.3969e+000 5.1852e+005 +# -Range: 0-300 + +# Na(But)2-, Na(CH3(CH2)2CO2)2- + + 2.0000 C3H7COOH + 1.0000 Na+ = Na(CH3(CH2)2CO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.8956 + -delta_h +315.475 kcal/mol + -analytic 2.9605e+001 -9.5353e-003 -1.2859e+004 -5.5837e+000 1.8051e+006 +# -Range: 0-300 + +# Na(For), Na(CHO2) + + 1.0000 Na+ + 1.0000 HCOOH = Na(CHO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.7031 + -delta_h +159.279 kcal/mol + -analytic 1.9556e+001 -4.0171e-003 -1.9403e+003 -6.7907e+000 1.1139e+005 +# -Range: 0-300 + +# Na(For)2-, Na(CHO2)2- + + 2.0000 HCOOH + 1.0000 Na+ = Na(CHO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.7362 + -delta_h +263.725 kcal/mol + -analytic -1.6907e+002 -4.9200e-002 4.7499e+003 6.4687e+001 7.4168e+001 +# -Range: 0-300 + +# Na(Glyc), Na(CH3OCO2) + + 1.0000 Na+ + 1.0000 C2H4O3 = Na(CH3OCO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.7838 + -delta_h +212.299 kcal/mol + -analytic 6.5651e+000 -4.5298e-003 -2.4464e+003 -1.5701e+000 2.7550e+005 +# -Range: 0-300 + +# Na(Glyc)2-, Na(CH3OCO2)2- + + 2.0000 C2H4O3 + 1.0000 Na+ = Na(CH3OCO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.7076 + -delta_h +369.684 kcal/mol + -analytic -2.9181e+002 -5.8674e-002 9.4836e+003 1.0904e+002 1.4807e+002 +# -Range: 0-300 + +# Na(Lac), Na(CH3CH2OCO2) + + 1.0000 Na+ + 1.0000 C3H6O3 = Na(CH3CH2OCO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.8131 + -delta_h +221.669 kcal/mol + -analytic -8.9871e+000 -6.2002e-003 -2.1368e+003 4.2449e+000 3.2856e+005 +# -Range: 0-300 + +# Na(Lac)2-, Na(CH3CH2OCO2)2- + + 2.0000 C3H6O3 + 1.0000 Na+ = Na(CH3CH2OCO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.7559 + -delta_h +388.006 kcal/mol + -analytic 5.9524e+001 -8.7468e-003 -1.2721e+004 -1.5993e+001 1.5628e+006 +# -Range: 0-300 + +# Na(Pent), Na(CH3(CH2)3CO2) + + 1.0000 C4H9COOH + 1.0000 Na+ = Na(CH3(CH2)3CO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8173 + -delta_h +192.009 kcal/mol + -analytic 8.1540e+000 -4.2441e-004 -5.2875e+003 -1.5765e+000 7.8307e+005 +# -Range: 0-300 + +# Na(Pent)2-, Na(CH3(CH2)3CO2)2- + + 2.0000 C4H9COOH + 1.0000 Na+ = Na(CH3(CH2)3CO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.9645 + -delta_h +327.929 kcal/mol + -analytic 3.8577e+001 7.5820e-004 -1.6661e+004 -8.2211e+000 2.4438e+006 +# -Range: 0-300 + +# Na(Prop), Na(CH3CH2CO2) + + 1.0000 C2H5COOH + 1.0000 Na+ = Na(CH3CH2CO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8466 + -delta_h +180.229 kcal/mol + -analytic 1.7028e+000 -3.1352e-003 -2.9697e+003 -1.0967e-001 4.1170e+005 +# -Range: 0-300 + +# Na(Prop)2-, Na(CH3CH2CO2)2- + + 2.0000 C2H5COOH + 1.0000 Na+ = Na(CH3CH2CO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -10.0026 + -delta_h +305.289 kcal/mol + -analytic 6.6077e+001 -6.9347e-003 -1.4292e+004 -1.8630e+001 1.7811e+006 +# -Range: 0-300 + +# Ni(Ala)+, Ni(C3H6NO2)+ + + 1.0000 Ni+2 + 1.0000 C3H7NO2 = Ni(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.5249 + -delta_h +137.131 kcal/mol + -analytic 1.1604e+000 4.6374e-003 -4.1009e+003 7.4132e-001 4.3245e+005 +# -Range: 0-300 + +# Ni(Ala)2, Ni(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Ni+2 = Ni(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -10.2291 + -delta_h +262.972 kcal/mol + -analytic 3.1888e+001 9.4817e-003 -1.1655e+004 -8.0444e+000 1.2513e+006 +# -Range: 0-300 + +# Ni(But)+, Ni(CH3(CH2)2CO2)+ + + 1.0000 Ni+2 + 1.0000 C3H7COOH = Ni(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.0676 + -delta_h +143.687 kcal/mol + -analytic -1.1210e+001 7.7237e-004 -1.8584e+003 3.5695e+000 4.7362e+005 +# -Range: 0-300 + +# Ni(But)2, Ni(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Ni+2 = Ni(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.7459 + -delta_h +274.625 kcal/mol + -analytic -3.4716e+000 4.8213e-003 -6.7033e+003 1.1666e+000 1.3261e+006 +# -Range: 0-300 + +# Ni(For)+, Ni(CHO2)+ + + 1.0000 Ni+2 + 1.0000 HCOOH = Ni(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.8831 + -delta_h +117.573 kcal/mol + -analytic -4.4750e-001 -1.7720e-003 -2.1850e+002 -5.1560e-001 9.8346e+004 +# -Range: 0-300 + +# Ni(For)2, Ni(CHO2)2 + + 2.0000 HCOOH + 1.0000 Ni+2 = Ni(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.4061 + -delta_h +223.287 kcal/mol + -analytic -1.1886e+001 -5.7362e-003 6.8286e+002 2.3397e+000 9.9533e+004 +# -Range: 0-300 + +# Ni(Gly)+, Ni(C2H4NO2)+ + + 1.0000 Ni+2 + 1.0000 C2H5NO2 = Ni(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.6482 + -delta_h +129.289 kcal/mol + -analytic -4.6499e+000 4.5579e-003 -2.3704e+003 1.9662e+000 2.4331e+005 +# -Range: 0-300 + +# Ni(Gly)2, Ni(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Ni+2 = Ni(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -8.5065 + -delta_h +246.055 kcal/mol + -analytic 7.2186e-001 5.9661e-003 -6.4762e+003 1.3110e+000 6.6544e+005 +# -Range: 0-300 + +# Ni(Glyc)+, Ni(CH3OCO2)+ + + 1.0000 Ni+2 + 1.0000 C2H4O3 = Ni(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.5738 + -delta_h +171.125 kcal/mol + -analytic -1.0297e+000 -1.2447e-004 -1.2044e+003 1.0906e-001 2.9085e+005 +# -Range: 0-300 + +# Ni(Glyc)2, Ni(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Ni+2 = Ni(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.657 + -delta_h +330.154 kcal/mol + -analytic -1.0354e+001 -1.4250e-003 -2.4189e+003 3.2017e+000 6.5173e+005 +# -Range: 0-300 + +# Ni(Lac)+, Ni(CH3CH2OCO2)+ + + 1.0000 Ni+2 + 1.0000 C3H6O3 = Ni(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.2731 + -delta_h +179.581 kcal/mol + -analytic -5.3952e+000 3.0639e-004 -1.6023e+003 1.7361e+000 3.6640e+005 +# -Range: 0-300 + +# Ni(Lac)2, Ni(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Ni+2 = Ni(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.7961 + -delta_h +346.896 kcal/mol + -analytic 1.3452e+001 3.7748e-003 -5.8913e+003 -4.5655e+000 1.0409e+006 +# -Range: 0-300 + +# Ni(Pent)+, Ni(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Ni+2 = Ni(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.127 + -delta_h +150.126 kcal/mol + -analytic -1.8027e+001 2.5673e-003 -2.8802e+003 6.4190e+000 7.0514e+005 +# -Range: 0-300 + +# Ni(Pent)2, Ni(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Ni+2 = Ni(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.8741 + -delta_h +286.892 kcal/mol + -analytic -1.4118e+001 9.0210e-003 -1.0307e+004 6.7035e+000 2.0075e+006 +# -Range: 0-300 + +# Ni(Prop)+, Ni(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Ni+2 = Ni(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.4561 + -delta_h +137.936 kcal/mol + -analytic -7.2594e+000 1.0617e-003 -1.9069e+003 2.0708e+000 4.2443e+005 +# -Range: 0-300 + +# Ni(Prop)2, Ni(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Ni+2 = Ni(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.4532 + -delta_h +263.708 kcal/mol + -analytic -3.7965e+001 -1.2697e-004 -3.6918e+003 1.2846e+001 9.9382e+005 +# -Range: 0-300 + +# Nonanal, CH3(CH2)7CHO + + 3.5000 C2H4 + 1.0000 CH3COOH = CH3(CH2)7CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -949.8594 + -delta_h +89.060 kcal/mol + -analytic -6.6011e+001 -2.4799e-002 1.8885e+003 2.3966e+001 2.9487e+001 +# -Range: 0-300 + +# Nonanoate, C9H17O2- + + 4.5000 CH3COOH = C9H17O2- + 3.5000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.728 + -delta_h +156.990 kcal/mol + -analytic -2.9242e+002 -2.3233e-002 -6.6303e+004 1.0260e+002 -1.0345e+003 +# -Range: 0-300 + +# Nonanoic_acid, C9H18O2 + + 4.5000 CH3COOH = C9H18O2 + 3.5000 O2 + -llnl_gamma 3.0 + log_k -902.1429 + -delta_h +156.530 kcal/mol + -analytic 7.6545e+002 1.2327e-001 -1.2782e+005 -2.7455e+002 3.7974e+006 +# -Range: 0-300 + +# Octanal, CH3(CH2)6CHO + + 3.0000 C2H4 + 1.0000 CH3COOH = CH3(CH2)6CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -841.0644 + -delta_h +83.550 kcal/mol + -analytic -5.5236e+001 -2.0015e-002 -3.6255e+002 1.9863e+001 -5.6412e+000 +# -Range: 0-300 + +# Octanoate, C7H15COO- + + 4.0000 CH3COOH = C7H15COO- + 3.0000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.8965 + -delta_h +151.580 kcal/mol + -analytic -2.6026e+002 -2.5391e-002 -5.6736e+004 9.2101e+001 -8.8524e+002 +# -Range: 0-300 + +# Octanoic_acid, C7H15COOH + + 4.0000 CH3COOH = C7H15COOH + 3.0000 O2 + -llnl_gamma 3.0 + log_k -793.3332 + -delta_h +151.050 kcal/mol + -analytic -1.9247e+001 1.0829e-002 -7.1544e+004 7.6349e+000 1.0441e+006 +# -Range: 0-300 + +# Oxalate, C2O4-2 + + 1.5000 O2 + 1.0000 CH3COOH = C2O4-2 + 2.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -1.2703 + -delta_h +195.600 kcal/mol + -analytic -6.1367e+001 -6.7813e-002 2.9725e+004 3.0857e+001 4.6385e+002 +# -Range: 0-300 + +# Oxalic_acid, C2H2O4 + + 2.0000 HCO3- + 2.0000 H+ = C2H2O4 + 0.5000 O2 + 1.0000 H2O + -llnl_gamma 3.0 + log_k -41.9377 + -delta_h +194.580 kcal/mol + -analytic -3.4531E+02 -3.8017E-02 -4.9420E+02 1.2783E+02 3.4954E-01 +# -Range: 0-300 + +# Pb(Ala)+, Pb(C3H6NO2)+ + + 1.0000 Pb+2 + 1.0000 C3H7NO2 = Pb(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.3649 + -delta_h +120.275 kcal/mol + -analytic -2.6624e+001 4.7189e-003 -2.0605e+003 9.9803e+000 1.8534e+005 +# -Range: 0-300 + +# Pb(Ala)2, Pb(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Pb+2 = Pb(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -12.4897 + -delta_h +239.191 kcal/mol + -analytic -9.5305e+000 7.6294e-006 -1.1822e+004 9.6291e+000 1.1454e+006 +# -Range: 0-300 + +# Pb(But)+, Pb(CH3(CH2)2CO2)+ + + 1.0000 Pb+2 + 1.0000 C3H7COOH = Pb(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.0075 + -delta_h +126.856 kcal/mol + -analytic -2.1474e+001 2.8958e-003 -8.4396e+002 6.9308e+000 2.9372e+005 +# -Range: 0-300 + +# Pb(But)2, Pb(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Pb+2 = Pb(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.6359 + -delta_h +253.472 kcal/mol + -analytic 2.0254e+001 4.4997e-003 -9.9101e+003 -4.4607e+000 1.4291e+006 +# -Range: 0-300 + +# Pb(For)+, Pb(CHO2)+ + + 1.0000 Pb+2 + 1.0000 HCOOH = Pb(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.8633 + -delta_h +100.688 kcal/mol + -analytic 6.0621e+000 1.9339e-003 -3.7110e+002 -2.9296e+000 -5.7925e+000 +# -Range: 0-300 + +# Pb(For)2, Pb(CHO2)2 + + 2.0000 HCOOH + 1.0000 Pb+2 = Pb(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.3658 + -delta_h +202.038 kcal/mol + -analytic 2.6259e+001 -4.0425e-003 -3.3586e+003 -8.4717e+000 2.5027e+005 +# -Range: 0-300 + +# Pb(Gly)+, Pb(C2H4NO2)+ + + 1.0000 Pb+2 + 1.0000 C2H5NO2 = Pb(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.3086 + -delta_h +112.312 kcal/mol + -analytic -1.8673e+001 6.5915e-003 -1.1000e+003 6.3328e+000 3.8522e+004 +# -Range: 0-300 + +# Pb(Gly)2, Pb(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Pb+2 = Pb(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -10.6968 + -delta_h +222.992 kcal/mol + -analytic 8.2909e+000 3.4522e-003 -9.2596e+003 1.1906e+000 7.2077e+005 +# -Range: 0-300 + +# Pb(Glyc)+, Pb(CH3OCO2)+ + + 1.0000 Pb+2 + 1.0000 C2H4O3 = Pb(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.5335 + -delta_h +154.267 kcal/mol + -analytic -1.4773e+001 6.3698e-004 -2.3399e+002 5.0111e+000 1.2864e+005 +# -Range: 0-300 + +# Pb(Glyc)2, Pb(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Pb+2 = Pb(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.5873 + -delta_h +308.946 kcal/mol + -analytic 1.1096e+001 -3.0559e-003 -5.7676e+003 -1.2814e+000 7.7865e+005 +# -Range: 0-300 + +# Pb(Lac)+, Pb(CH3CH2OCO2)+ + + 1.0000 Pb+2 + 1.0000 C3H6O3 = Pb(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.5833 + -delta_h +163.610 kcal/mol + -analytic -1.3871e+001 2.6871e-003 -5.0054e+002 4.4527e+000 1.9242e+005 +# -Range: 0-300 + +# Pb(Lac)2, Pb(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Pb+2 = Pb(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.676 + -delta_h +327.120 kcal/mol + -analytic -4.4899e+000 -2.4870e-003 -6.4849e+003 4.8300e+000 1.0115e+006 +# -Range: 0-300 + +# Pb(Pent)+, Pb(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Pb+2 = Pb(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.0471 + -delta_h +133.322 kcal/mol + -analytic -2.4746e+001 5.6511e-003 -1.9305e+003 8.3485e+000 5.2061e+005 +# -Range: 0-300 + +# Pb(Pent)2, Pb(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Pb+2 = Pb(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.7246 + -delta_h +265.793 kcal/mol + -analytic -2.7005e+001 3.4894e-003 -1.1468e+004 1.4273e+001 1.9937e+006 +# -Range: 0-300 + +# Pb(Prop)+, Pb(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Pb+2 = Pb(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.5567 + -delta_h +122.252 kcal/mol + -analytic -1.6614e+001 2.8882e-003 -8.1215e+002 5.2485e+000 2.6253e+005 +# -Range: 0-300 + +# Pb(Prop)2, Pb(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Pb+2 = Pb(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.1631 + -delta_h +244.164 kcal/mol + -analytic -8.3280e+000 2.5204e-004 -6.9233e+003 5.1398e+000 1.1223e+006 +# -Range: 0-300 + +# Pentanal, CH3(CH2)3CHO + + 1.5000 C2H4 + 1.0000 CH3COOH = CH3(CH2)3CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -514.6206 + -delta_h +67.100 kcal/mol + -analytic -2.2868e+001 -5.6572e-003 -7.1000e+003 7.5357e+000 -1.1078e+002 +# -Range: 0-300 + +# Pentanoate, C4H9COO- + + 1.0000 C4H9COOH = C4H9COO- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.8452 + -delta_h +134.380 kcal/mol + -analytic -7.1959e+001 -2.5255e-002 1.5595e+003 2.8045e+001 2.4355e+001 +# -Range: 0-300 + +# Pentanoic_acid, C4H9COOH + + 5.0000 HCO3- + 5.0000 H+ = C4H9COOH + 6.5000 O2 + -llnl_gamma 3.0 + log_k -467.5638 + -delta_h +133.690 kcal/mol + -analytic -4.1508E+03 -7.0450E-01 -6.2821E+02 1.5740E+03 -6.3823E-01 +# -Range: 0-300 + +# Phenol, C6H5OH + + 6.0000 HCO3- + 6.0000 H+ = C6H5OH + 7.0000 O2 + 3.0000 H2O + -llnl_gamma 3.0 + log_k -503.3718 + -delta_h +36.640 kcal/mol + -analytic -4.4638E+03 -7.4406E-01 -6.3959E+02 1.6908E+03 -7.2665E-01 +# -Range: 0-300 + +# Phenylalanine, C9H11NO2 + + 4.5000 C2H5NO2 = C9H11NO2 + 3.5000 NH3 + 3.2500 O2 + 0.5000 H2O + -llnl_gamma 3.0 + log_k -715.0646 + -delta_h +110.080 kcal/mol + -analytic 4.3141e+002 9.9794e-002 -1.0397e+005 -1.5181e+002 3.1041e+006 +# -Range: 0-300 + +# Pimelate, C7H10O4-2 + + 3.5000 CH3COOH = C7H10O4-2 + 2.0000 H+ + 1.0000 H2O + 1.0000 O2 + -llnl_gamma 4.0 + log_k -4.486 + -delta_h +234.040 kcal/mol + -analytic -1.8597e+002 -7.3478e-002 -1.8772e+004 7.3883e+001 -2.9286e+002 +# -Range: 0-300 + +# Pimelic_acid, C7H12O4 + + 3.5000 CH3COOH = C7H12O4 + 1.0000 H2O + 1.0000 O2 + -llnl_gamma 3.0 + log_k -575.0718 + -delta_h +253.720 kcal/mol + -analytic -8.7817e+001 -1.7044e-002 -1.9448e+004 3.2348e+001 -3.0344e+002 +# -Range: 0-300 + +# Propanal, CH3CH2CHO + + 1.0000 CH3COOH + 0.5000 C2H4 = CH3CH2CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -296.0849 + -delta_h +57.360 kcal/mol + -analytic -1.2713e+000 3.9198e-003 -1.1322e+004 -6.8971e-001 -1.7667e+002 +# -Range: 0-300 + +# Propane, C3H8 + + 1.5000 C2H6 + 0.2500 O2 = C3H8 + 0.5000 H2O + -llnl_gamma 3.0 + log_k -363.0881 + -delta_h +30.490 kcal/mol + -analytic -6.4646e+001 -1.3427e-002 9.8352e+003 2.3379e+001 -3.1351e+005 +# -Range: 0-300 + +#C7H8 from J.Thom + CH4 + C6H6 = C7H8 + H2 + -llnl_gamma 3.0 + log_k -7.82476 + -analytic -6.78979e1 -1.31838e-2 -1.34773e0 2.58679e1 9.83945e-1 +# -Range: 0-300 + +# Propanoate, C2H5COO- + + 1.0000 C2H5COOH = C2H5COO- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.8892 + -delta_h +122.630 kcal/mol + -analytic -9.5201e+001 -3.2154e-002 2.0655e+003 3.7566e+001 3.2258e+001 +# -Range: 0-300 + +# C2H5COOH, C2H5COOH + + 3.0000 HCO3- + 3.0000 H+ = C2H5COOH + 3.5000 O2 + -llnl_gamma 3.0 + log_k -250.1276 + -delta_h +122.470 kcal/mol + -analytic -2.2143E+03 -3.6918E-01 -5.6115E+02 8.3892E+02 -1.6485E-01 +# -Range: 0-300 + +# Sebacate, C10H16O4-2 + + 5.0000 CH3COOH = C10H16O4-2 + 2.5000 O2 + 2.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -4.5446 + -delta_h +246.230 kcal/mol + -analytic -2.7931e+002 -6.9587e-002 -4.8910e+004 1.0481e+002 -7.6312e+002 +# -Range: 0-300 + +# Sebacic_acid, C10H18O4 + + 5.0000 CH3COOH = C10H18O4 + 2.5000 O2 + 1.0000 H2O + -llnl_gamma 3.0 + log_k -904.7629 + -delta_h +246.000 kcal/mol + -analytic -2.2715e+002 -2.7047e-002 -4.8330e+004 8.1858e+001 -7.5408e+002 +# -Range: 0-300 + +# Serine, C3H7NO3 + + 1.5000 C2H5NO2 + 0.5000 H2O = C3H7NO3 + 0.5000 NH3 + 0.2500 O2 + -llnl_gamma 3.0 + log_k -189.3549 + -delta_h +170.800 kcal/mol + -analytic -3.4133e+001 -7.9911e-005 -6.6066e+003 1.1810e+001 -1.0308e+002 +# -Range: 0-300 + +# Sr(Ala)+, Sr(C3H6NO2)+ + + 1.0000 Sr+2 + 1.0000 C3H7NO2 = Sr(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -9.6244 + -delta_h +247.624 kcal/mol + -analytic -1.5372e-001 6.3659e-003 -5.3387e+003 9.4940e-001 3.7366e+005 +# -Range: 0-300 + +# Sr(Ala)2, Sr(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Sr+2 = Sr(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -19.7391 + -delta_h +363.933 kcal/mol + -analytic 2.2701e+001 5.7649e-003 -1.5582e+004 -2.6780e+000 1.3116e+006 +# -Range: 0-300 + +# Sr(But)+, Sr(CH3(CH2)2CO2)+ + + 1.0000 Sr+2 + 1.0000 C3H7COOH = Sr(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.6876 + -delta_h +257.725 kcal/mol + -analytic 3.9063e+000 4.6099e-003 -3.2349e+003 -1.7801e+000 4.7152e+005 +# -Range: 0-300 + +# Sr(But)2, Sr(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Sr+2 = Sr(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.716 + -delta_h +383.903 kcal/mol + -analytic -7.5798e+000 1.7956e-003 -9.0604e+003 4.8509e+000 1.3997e+006 +# -Range: 0-300 + +# Sr(For)+, Sr(CHO2)+ + + 1.0000 Sr+2 + 1.0000 HCOOH = Sr(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.3632 + -delta_h +233.167 kcal/mol + -analytic -7.7187e+000 -1.6025e-003 -1.4308e+002 2.3659e+000 4.1368e+004 +# -Range: 0-300 + +# Sr(For)2, Sr(CHO2)2 + + 2.0000 HCOOH + 1.0000 Sr+2 = Sr(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.2857 + -delta_h +335.415 kcal/mol + -analytic 1.2568e+001 -4.6580e-003 -2.6237e+003 -4.2863e+000 2.6225e+005 +# -Range: 0-300 + +# Sr(Gly)+, Sr(C2H4NO2)+ + + 1.0000 Sr+2 + 1.0000 C2H5NO2 = Sr(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -8.8283 + -delta_h +239.307 kcal/mol + -analytic 2.8102e+000 7.4407e-003 -4.2138e+003 -8.6544e-001 2.1596e+005 +# -Range: 0-300 + +# Sr(Gly)2, Sr(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Sr+2 = Sr(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -18.1764 + -delta_h +347.420 kcal/mol + -analytic -2.8343e+001 -5.5578e-004 -9.2508e+003 1.3694e+001 6.6583e+005 +# -Range: 0-300 + +# Sr(Glyc)+, Sr(CH3OCO2)+ + + 1.0000 Sr+2 + 1.0000 C2H4O3 = Sr(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.5237 + -delta_h +286.078 kcal/mol + -analytic -6.4133e+000 5.4199e-004 -1.3135e+003 2.2348e+000 2.3242e+005 +# -Range: 0-300 + +# Sr(Glyc)2, Sr(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Sr+2 = Sr(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.3971 + -delta_h +441.109 kcal/mol + -analytic 1.3286e+001 -5.0599e-004 -5.9522e+003 -3.1148e+000 8.1395e+005 +# -Range: 0-300 + +# Sr(Lac)+, Sr(CH3CH2OCO2)+ + + 1.0000 Sr+2 + 1.0000 C3H6O3 = Sr(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.8829 + -delta_h +295.697 kcal/mol + -analytic -4.0445e+000 1.9255e-003 -1.8712e+003 1.2700e+000 3.3209e+005 +# -Range: 0-300 + +# Sr(Lac)2, Sr(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Sr+2 = Sr(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.0561 + -delta_h +459.421 kcal/mol + -analytic -1.4468e+001 -2.5097e-003 -6.2399e+003 7.4467e+000 1.0390e+006 +# -Range: 0-300 + +# Sr(Pent)+, Sr(CH3(CH2)3CO2)+ + Sr+2 + 1.0000 C4H9COOH = Sr(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.0475 + -delta_h +263.755 kcal/mol + -analytic -1.6735e+001 4.7533e-003 -3.4901e+003 5.9457e+000 6.4784e+005 +# -Range: 0-300 + +# Sr(Pent)2, Sr(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Sr+2 = Sr(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -10.3845 + -delta_h +395.432 kcal/mol + -analytic -2.1107e+001 5.6147e-003 -1.2655e+004 1.1415e+001 2.0705e+006 +# -Range: 0-300 + +# Sr(Prop)+, Sr(CH3CH2CO2)+ + Sr+2 + 1.0000 C2H5COOH = Sr(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.6568 + -delta_h +252.548 kcal/mol + -analytic -6.6891e+000 2.5586e-003 -2.4244e+003 2.0550e+000 3.8526e+005 +# -Range: 0-300 + +# Sr(Prop)2, Sr(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Sr+2 = Sr(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.653 + -delta_h +374.036 kcal/mol + -analytic -1.7427e+001 2.9439e-004 -7.2086e+003 7.6682e+000 1.1487e+006 +# -Range: 0-300 + +# Suberate, C8H12O4-2 + + 4.0000 CH3COOH = C8H12O4-2 + 2.0000 H+ + 1.5000 O2 + 1.0000 H2O + -llnl_gamma 4.0 + log_k -4.508 + -delta_h +238.130 kcal/mol + -analytic -2.2072e+002 -7.2265e-002 -2.8694e+004 8.5459e+001 -4.4768e+002 +# -Range: 0-300 + +# Suberic_acid, C8H14O4 + + 4.0000 CH3COOH = C8H14O4 + 1.5000 O2 + 1.0000 H2O + -llnl_gamma 3.0 + log_k -685.0983 + -delta_h +237.760 kcal/mol + -analytic 3.0275e+002 3.8350e-002 -5.4760e+004 -1.0730e+002 1.5882e+006 +# -Range: 0-300 + +# Succinate, C4H4O4-2 + + 2.0000 CH3COOH + 0.5000 O2 = C4H4O4-2 + 2.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -4.2075 + -delta_h +217.350 kcal/mol + -analytic -1.2187e+002 -7.6672e-002 1.1465e+004 5.2865e+001 1.7894e+002 +# -Range: 0-300 + +# Succinic_acid, C4H6O4 + + 4.0000 HCO3- + 4.0000 H+ = C4H6O4 + 1.0000 H2O + 3.5000 O2 + -llnl_gamma 3.0 + log_k -249.5736 + -delta_h +218.000 kcal/mol + -analytic -2.2145E+03 -3.6471E-01 -5.6115E+02 8.3864E+02 -1.6486E-01 +# -Range: 0-300 + +# Threonine, C4H9NO3 + + 2.0000 C2H5NO2 + 1.0000 H2O = C4H9NO3 + 1.0000 NH3 + 1.0000 O2 + -llnl_gamma 3.0 + log_k -298.0694 + -delta_h +179.100 kcal/mol + -analytic -1.0140e+002 6.4713e-004 -2.0508e+004 3.5679e+001 -3.1999e+002 +# -Range: 0-300 + +# Toluene, C6H5CH3 + + 7.0000 HCO3- + 7.0000 H+ = C6H5CH3 + 9.0000 O2 + 3.0000 H2O + -llnl_gamma 3.0 + log_k -643.4017 + -delta_h -3.28 kcal/mol + -analytic -5.7062E+03 -9.5845E-01 -6.8381E+02 2.1621E+03 -1.1553E+00 +# -Range: 0-300 + +# Tryptophan, C11H12N2O2 + + 5.5000 C2H5NO2 = C11H12N2O2 + 3.5000 NH3 + 3.2500 O2 + 2.5000 H2O + -llnl_gamma 3.0 + log_k -821.6547 + -delta_h +97.800 kcal/mol + -analytic 2.0110e+002 6.4379e-002 -9.2769e+004 -6.7930e+001 2.8656e+006 +# -Range: 0-300 + +# Tyrosine, C9H11NO3 + + 4.5000 C2H5NO2 = C9H11NO3 + 3.5000 NH3 + 2.7500 O2 + 0.5000 H2O + -llnl_gamma 3.0 + log_k -685.9078 + -delta_h +157.400 kcal/mol + -analytic 8.1097e+001 4.1846e-002 -7.3858e+004 -2.6230e+001 1.7718e+006 +# -Range: 0-300 + +# Undecanoate, C11H21O2- + + 5.5000 CH3COOH = C11H21O2- + 4.5000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.9258 + -delta_h +168.370 kcal/mol + -analytic -3.4192e+002 -1.8413e-002 -8.6143e+004 1.1839e+002 -1.3441e+003 +# -Range: 0-300 + +# Undecanoic_acid, C11H22O2 + + 5.5000 CH3COOH = C11H22O2 + 4.5000 O2 + -llnl_gamma 3.0 + log_k -1119.4911 + -delta_h +167.870 kcal/mol + -analytic -3.8607e+002 -2.5829e-002 -8.4510e+004 1.3690e+002 -1.3186e+003 +# -Range: 0-300 + +# Urea, (NH2)2CO + + 2.0000 NH3 + 1.0000 HCO3- + 1.0000 H+ = (NH2)2CO + 2.0000 H2O + -llnl_gamma 3.0 + log_k -NH3(aq) + -delta_h +48.720 kcal/mol + -analytic 1.0904e+002 3.5979e-002 -6.9287e+002 -4.4776e+001 -1.0844e+001 +# -Range: 0-300 + +# Valine, C5H11NO2 + + 2.5000 C2H5NO2 + 1.5000 H2O = C5H11NO2 + 2.2500 O2 + 1.5000 NH3 + -llnl_gamma 3.0 + log_k +8.7263 + -delta_h +147.300 kcal/mol + -analytic 3.7382e+001 2.7415e-002 -5.6188e+004 -1.2674e+001 1.1178e+006 +# -Range: 0-300 + +# Yb(But)+2, Yb(CH3(CH2)2CO2)+2 + + 1.0000 Yb+3 + 1.0000 C3H7COOH = Yb(CH3(CH2)2CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.1382 + -delta_h +291.999 kcal/mol + -analytic -1.2860e+001 1.7057e-003 -2.0611e+003 4.3737e+000 5.6186e+005 +# -Range: 0-300 + +# Yb(But)2+, Yb(CH3(CH2)2CO2)2+ + + 2.0000 C3H7COOH + 1.0000 Yb+3 = Yb(CH3(CH2)2CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.046 + -delta_h +422.417 kcal/mol + -analytic -2.4830e+001 4.6045e-003 -5.0416e+003 8.6785e+000 1.2339e+006 +# -Range: 0-300 + +# Yb(For)+2, Yb(CHO2)+2 + + 1.0000 Yb+3 + 1.0000 HCOOH = Yb(CHO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.0533 + -delta_h +265.749 kcal/mol + -analytic -4.3955e+000 -1.0863e-003 -2.9561e+002 1.0868e+000 1.7552e+005 +# -Range: 0-300 + +# Yb(For)2+, Yb(CHO2)2+ + + 2.0000 HCOOH + 1.0000 Yb+3 = Yb(CHO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -2.8858 + -delta_h +370.998 kcal/mol + -analytic 1.6276e+000 -3.1580e-003 -1.1548e+002 -2.0889e+000 1.7727e+005 +# -Range: 0-300 + +# Yb(Pent)+2, Yb(CH3(CH2)3CO2)+2 + Yb+3 + 1.0000 C4H9COOH = Yb(CH3(CH2)3CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.1675 + -delta_h +298.479 kcal/mol + -analytic -2.3047e+001 2.8250e-003 -2.9411e+003 8.5036e+000 7.8951e+005 +# -Range: 0-300 + +# Yb(Pent)2+, Yb(CH3(CH2)3CO2)2+ + + 2.0000 C4H9COOH + 1.0000 Yb+3 = Yb(CH3(CH2)3CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.1142 + -delta_h +434.659 kcal/mol + -analytic -5.2700e+001 8.2187e-003 -7.2378e+003 1.9860e+001 1.8060e+006 +# -Range: 0-300 + +# Yb(Prop)+2, Yb(CH3CH2CO2)+2 + Yb+3 + 1.0000 C2H5COOH = Yb(CH3CH2CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.3266 + -delta_h +286.522 kcal/mol + -analytic -6.7242e+000 2.3108e-003 -2.1680e+003 2.0842e+000 5.1913e+005 +# -Range: 0-300 + +# Yb(Prop)2+, Yb(CH3CH2CO2)2+ + + 2.0000 C2H5COOH + 1.0000 Yb+3 = Yb(CH3CH2CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.3927 + -delta_h +412.078 kcal/mol + -analytic -3.8113e+001 1.3154e-003 -3.4162e+003 1.3121e+001 1.0092e+006 +# -Range: 0-300 + +# Zn(Ala)+, Zn(C3H6NO2)+ + + 1.0000 Zn+2 + 1.0000 C3H7NO2 = Zn(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.4147 + -delta_h +161.048 kcal/mol + -analytic 1.2672e+001 6.7980e-003 -5.1247e+003 -3.5266e+000 5.1686e+005 +# -Range: 0-300 + +# Zn(Ala)2, Zn(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Zn+2 = Zn(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -11.4994 + -delta_h +283.389 kcal/mol + -analytic 4.4585e+001 1.2039e-002 -1.3805e+004 -1.1865e+001 1.4233e+006 +# -Range: 0-300 + +# Zn(But)+, Zn(CH3(CH2)2CO2)+ + + 1.0000 Zn+2 + 1.0000 C3H7COOH = Zn(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.3682 + -delta_h +166.539 kcal/mol + -analytic -1.6276e+001 9.6461e-004 -1.8810e+003 5.4462e+000 4.8622e+005 +# -Range: 0-300 + +# Zn(But)2, Zn(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Zn+2 = Zn(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.2956 + -delta_h +296.560 kcal/mol + -analytic -1.3591e+001 4.2586e-003 -7.2513e+003 5.4031e+000 1.4233e+006 +# -Range: 0-300 + +# Zn(For)+, Zn(CHO2)+ + + 1.0000 Zn+2 + 1.0000 HCOOH = Zn(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.9828 + -delta_h +140.698 kcal/mol + -analytic -1.1156e+001 -2.5823e-003 7.3093e+001 3.4639e+000 1.0064e+005 +# -Range: 0-300 + +# Zn(For)2, Zn(CHO2)2 + + 2.0000 HCOOH + 1.0000 Zn+2 = Zn(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.5857 + -delta_h +245.726 kcal/mol + -analytic -7.1074e-001 -3.3021e-003 -9.4938e+002 -1.0872e+000 2.6619e+005 +# -Range: 0-300 + +# Zn(Gly)+, Zn(C2H4NO2)+ + + 1.0000 Zn+2 + 1.0000 C2H5NO2 = Zn(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.398 + -delta_h +151.609 kcal/mol + -analytic 1.4690e+000 6.2605e-003 -3.1652e+003 -1.7705e-001 2.9610e+005 +# -Range: 0-300 + +# Zn(Gly)2, Zn(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Zn+2 = Zn(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.7468 + -delta_h +267.408 kcal/mol + -analytic -6.7271e+000 5.7103e-003 -7.3518e+003 4.5306e+000 7.7709e+005 +# -Range: 0-300 + +# Zn(Glyc)+, Zn(CH3OCO2)+ + + 1.0000 Zn+2 + 1.0000 C2H4O3 = Zn(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.4536 + -delta_h +194.550 kcal/mol + -analytic -1.1705e+001 -8.4917e-004 -8.2775e+002 4.0500e+000 2.9059e+005 +# -Range: 0-300 + +# Zn(Glyc)2, Zn(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Zn+2 = Zn(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.4371 + -delta_h +353.139 kcal/mol + -analytic 6.2982e-001 9.5823e-004 -3.9294e+003 -1.4746e-001 8.1885e+005 +# -Range: 0-300 + +# Zn(Lac)+, Zn(CH3CH2OCO2)+ + + 1.0000 Zn+2 + 1.0000 C3H6O3 = Zn(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.6632 + -delta_h +200.064 kcal/mol + -analytic -1.2294e+001 1.2442e-003 -1.5665e+003 4.7943e+000 3.2586e+005 +# -Range: 0-300 + +# Zn(Lac)2, Zn(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Zn+2 = Zn(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.9758 + -delta_h +364.728 kcal/mol + -analytic 3.8951e+000 2.6835e-003 -7.1188e+003 1.0404e+000 1.1253e+006 +# -Range: 0-300 + +# Zn(Pent)+, Zn(CH3(CH2)3CO2)+ + Zn+2 + 1.0000 C4H9COOH = Zn(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.4869 + -delta_h +172.896 kcal/mol + -analytic -1.1325e+001 4.3921e-003 -3.5920e+003 4.0708e+000 7.5781e+005 +# -Range: 0-300 + +# Zn(Pent)2, Zn(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Zn+2 = Zn(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.5243 + -delta_h +308.690 kcal/mol + -analytic -1.2210e+001 1.0120e-002 -1.1570e+004 6.6228e+000 2.1453e+006 +# -Range: 0-300 + +# Zn(Prop)+, Zn(CH3CH2CO2)+ + Zn+2 + 1.0000 C2H5COOH = Zn(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.6467 + -delta_h +160.939 kcal/mol + -analytic -1.2581e+001 1.0699e-003 -1.9249e+003 4.0899e+000 4.4167e+005 +# -Range: 0-300 + +# Zn(Prop)2, Zn(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Zn+2 = Zn(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.8029 + -delta_h +285.915 kcal/mol + -analytic 5.0990e+000 6.7118e-003 -7.1926e+003 -2.0259e+000 1.2684e+006 +# -Range: 0-300 + +# a-Aminobutyric_acid, C4H9NO2 + + 2.0000 C2H5NO2 + 1.0000 H2O = C4H9NO2 + 1.5000 O2 + 1.0000 NH3 + -llnl_gamma 3.0 + log_k +8.5576 + -delta_h +138.180 kcal/mol + -analytic -1.4296e+002 -5.6984e-004 -2.6712e+004 5.0706e+001 -4.1677e+002 +# -Range: 0-300 + +# m-Toluate, C8H7O2- + + 4.0000 CH3COOH = C8H7O2- + 4.0000 H2O + 1.0000 H+ + 1.0000 O2 + -llnl_gamma 4.0 + log_k -1.9205 + -delta_h +95.350 kcal/mol + -analytic -2.1064e+002 -3.7768e-002 -1.3591e+004 7.7265e+001 -2.1201e+002 +# -Range: 0-300 + +# m-Toluic_acid, C8H8O2 + + 4.0000 CH3COOH = C8H8O2 + 4.0000 H2O + 1.0000 O2 + -llnl_gamma 3.0 + log_k +2.3383 + -delta_h +95.450 kcal/mol + -analytic -3.8131e+000 4.7688e-003 -2.3805e+004 1.3041e+000 6.1998e+005 +# -Range: 0-300 + +# n-Butane, C4H10 + + 2.0000 C2H6 + 0.5000 O2 = C4H10 + 1.0000 H2O + -llnl_gamma 3.0 + log_k -471.7285 + -delta_h +36.230 kcal/mol + -analytic -4.4434e+001 -1.4522e-002 1.4959e+004 1.6121e+001 -3.5819e+005 +# -Range: 0-300 + +# n-Butylbenzene, C6H5C4H9 +# + 6.0000 H2O + 5.0000 C6H6 = C6H5C4H9 + 3.0000 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -2907.6453 +# -delta_h +14.430 kcal/mol +# -analytic 6.8560e+002 1.2459e-001 -1.0249e+005 -2.5284e+002 2.3594e+006 +# -Range: 0-300 + +# n-Heptane, C7H16 + + 3.5000 C2H6 + 1.2500 O2 = C7H16 + 2.5000 H2O + -llnl_gamma 3.0 + log_k -797.97 + -delta_h +52.950 kcal/mol + -analytic 1.3006e+002 -5.8965e-003 2.2874e+004 -4.5370e+001 3.5689e+002 +# -Range: 0-300 + +# n-Heptylbenzene, C6H5C7H15 +# + 10.5000 H2O + 6.5000 C6H6 = C6H5C7H15 + 5.2500 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -3886.5811 +# -delta_h +31.090 kcal/mol +# -analytic -5.4784e+001 4.5194e-002 -1.1072e+005 8.0680e+000 -1.7277e+003 +# -Range: 0-300 + +# n-Hexane, C6H14 + + 3.0000 C2H6 + 1.0000 O2 = C6H14 + 2.0000 H2O + -llnl_gamma 3.0 + log_k -689.2922 + -delta_h +47.400 kcal/mol + -analytic -8.0362e+001 -2.8468e-002 2.9412e+004 2.9224e+001 -7.0316e+005 +# -Range: 0-300 + +# n-Hexylbenzene, C6H5C6H13 + + 3.0000 H2O + 2.0000 C6H6 = C6H5C6H13 + 1.5000 O2 + -llnl_gamma 3.0 + log_k -1186.7026 + -delta_h +25.590 kcal/mol + -analytic 3.5759e+002 6.3935e-002 -5.2899e+004 -1.3148e+002 1.2819e+006 +# -Range: 0-300 + +# n-Octane, C8H18 + + 4.0000 C2H6 + 1.5000 O2 = C8H18 + 3.0000 H2O + -llnl_gamma 3.0 + log_k -906.6918 + -delta_h +59.410 kcal/mol + -analytic -1.4173e+002 -4.6447e-002 4.5236e+004 5.1540e+001 -1.1006e+006 +# -Range: 0-300 + +# n-Octylbenzene, C6H5C8H17 +# + 12.0000 H2O + 7.0000 C6H6 = C6H5C8H17 + 6.0000 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -4212.6143 +# -delta_h +36.760 kcal/mol +# -analytic 1.2934e+003 2.4001e-001 -2.0402e+005 -4.7773e+002 4.5749e+006 +# -Range: 0-300 + +# n-Pentane, C5H12 + + 2.5000 C2H6 + 0.7500 O2 = C5H12 + 1.5000 H2O + -llnl_gamma 3.0 + log_k -580.4385 + -delta_h +41.560 kcal/mol + -analytic 8.4526e+000 -1.1432e-002 1.8295e+004 -2.8367e+000 -3.1818e+005 +# -Range: 0-300 + +# n-Pentylbenzene, C6H5C5H11 +# + 7.5000 H2O + 5.5000 C6H6 = C6H5C5H11 + 3.7500 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -3233.7886 +# -delta_h +19.750 kcal/mol +# -analytic 2.9887e+002 7.2990e-002 -9.9228e+004 -1.1348e+002 1.3767e+006 +# -Range: 0-300 + +# n-Propylbenzene, C6H5C3H7 + + 1.5000 H2O + 1.5000 C6H6 = C6H5C3H7 + 0.7500 O2 + -llnl_gamma 3.0 + log_k -860.618 + -delta_h +8.630 kcal/mol + -analytic -4.3768e+000 6.3937e-003 -1.5469e+004 0.0000e+000 0.0000e+000 +# -Range: 0-300 + +# o-Toluate, C8H7O2- + + 4.0000 CH3COOH = C8H7O2- + 4.0000 H2O + 1.0000 H+ + 1.0000 O2 + -llnl_gamma 4.0 + log_k -3.9069 + -delta_h +94.070 kcal/mol + -analytic -2.2819e+002 -3.9422e-002 -1.3238e+004 8.3275e+001 -2.0650e+002 +# -Range: 0-300 + +# o-Toluic_acid, C8H8O2 + + 4.0000 CH3COOH = C8H8O2 + 4.0000 H2O + 1.0000 O2 + -llnl_gamma 3.0 + log_k -642.3493 + -delta_h +92.640 kcal/mol + -analytic 8.2106e+001 1.6240e-002 -2.9218e+004 -2.9637e+001 8.9007e+005 +# -Range: 0-300 + +# p-Toluate, C8H7O2- + + 4.0000 CH3COOH = C8H7O2- + 4.0000 H2O + 1.0000 H+ + 1.0000 O2 + -llnl_gamma 4.0 + log_k -1.6786 + -delta_h +96.160 kcal/mol + -analytic -1.9101e+002 -3.8193e-002 -1.4330e+004 7.0482e+001 -2.2355e+002 +# -Range: 0-300 + +# p-Toluic_acid, C8H8O2 + + 4.0000 CH3COOH = C8H8O2 + 4.0000 H2O + 1.0000 O2 + -llnl_gamma 3.0 + log_k +2.6901 + -delta_h +96.190 kcal/mol + -analytic 1.5812e+002 2.5784e-002 -3.1991e+004 -5.7207e+001 1.0103e+006 +# -Range: 0-300 + +# U(But)+2, U(CH3(CH2)2CO2)+2 + 1.0000 U+3 + 1.0000 C3H7COOH = U(CH3(CH2)2CO2)+2 + 1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1498 + -delta_h 248.272 kcal/mol + -analytic 4.8984E+01 2.2598E-02 -5.4323E+02 -2.2538E+01 1.6299E+00 +# -Range: 0-300 + +# U(But)2+, U(CH3(CH2)2CO2)2+ + 1.0000 U+3 + 2.0000 C3H7COOH = U(CH3(CH2)2CO2)2+ + 2.0000 H+ + -llnl_gamma 4.5 + log_k -4.9572 + -delta_h 377.871 kcal/mol + -analytic 7.8056E+01 4.5216E-02 -5.4214E+02 -3.8131E+01 1.6380E+00 +# -Range: 0-300 + +# U(For)+2, U(CHO2)+2 + 1.0000 U+3 + 1.0000 HCOOH = U(CHO2)+2 + 1.0000 H+ + -llnl_gamma 4.5 + log_k -1.0650 + -delta_h 221.372 kj/mol + -analytic 3.4236E+01 7.8056E+01 4.5216E-02 -5.4214E+02 -3.8131E+01 1.6380E+00 +# -Range: 0-300 + +# U(For)2+, U(CHO2)2+ + 1.0000 U+3 + 2.0000 HCOOH = U(CHO2)2+ + 2.0000 H+ + -llnl_gamma 4.0 + log_k -2.2378 + -delta_h 325.914 kj/mol + -analytic 3.4236E+01 3.5094E-03 -5.4368E+02 -1.4325E+01 1.6273E+00 +# -Range: 0-300 + +# U(Pent)+2, U(CH3(CH2)3CO2)+2 + 1.0000 U+3 + 1.0000 C4H9COOH = U(CH3(CH2)3CO2)+2 + 1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1791 + -delta_h 254.046 kj/mol + -analytic 6.0007E+01 3.2104E-02 -5.4273E+02 -2.8145E+01 1.6343E+00 +# -Range: 0-300 + +# U(Prop)+2, U(CH3CH2CO2)+2 + 1.0000 U+3 + 1.0000 C2H5COOH = U(CH3CH2CO2)+2 + 1.0000 H+ + -llnl_gamma 4.5 + log_k -2.2084 + -delta_h 242.291 kj/mol + -analytic 4.5186E+01 2.0784E-02 -5.4323E+02 -2.0809E+01 1.6310E+00 +# -Range: 0-300 + +# U(Prop)2+, U(CH3CH2CO2)2+ + 1.0000 U+3 + 2.0000 C2H5COOH = U(CH3CH2CO2)2+ + 2.0000 H+ + -llnl_gamma 4.0 + log_k -5.3149 + -delta_h 366.155 kj/mol + -analytic 6.7383E+01 3.8662E-02 -5.4239E+02 -3.3175E+01 1.6373E+00 +# -Range: 0-300 + +3.0000 H+ + 1.0000 HCO3- + 1.0000 SO4-2 = CH3SH + 3.5 O2 # Methanethiol + -llnl_gamma 3.0 + log_k -242.047 # from supcrt92 +# Enthalpy of formation: -11.650 kcal/mol # from supcrt92 + -delta_H 360498 cal/mol # from supcrt92 + -analytic -2.03598E+03 -2.78169E-01 -6.13323E+02 7.59329E+02 1.13938E+00 +# -Range: 0-350 + +4.0000 H+ + 2.0000 HCO3- + 1.0000 SO4-2 = C2H5SH + 5.0 O2 # Ethanethiol + -llnl_gamma 3.0 + log_k -349.764 # from supcrt92 +# Enthalpy of formation: -17.820 kcal/mol # from supcrt92 + -delta_H 514876 cal/mol # from supcrt92 + -analytic -2.96331E+03 -4.22107E-01 -1.00319E+02 1.10720E+03 2.90155E-01 +# -Range: 0-350 + +5.0000 H+ + 3.0000 HCO3- + 1.0000 SO4-2 = C3H7SH + 6.5 O2 # Propanethiol + -llnl_gamma 3.0 + log_k -458.757 # from supcrt92 +# Enthalpy of formation: -23.320 kcal/mol # from supcrt92 + -delta_H 669924 cal/mol # from supcrt92 + -analytic -3.88470E+03 -5.63950E-01 -1.31641E+02 1.45265E+03 6.67442E-02 +# -Range: 0-350 + +6.0000 H+ + 4.0000 HCO3- + 1.0000 SO4-2 = C4H9SH + 8.0 O2 # Butanethiol + -llnl_gamma 3.0 + log_k -567.530 # from supcrt92 +# Enthalpy of formation: -28.630 kcal/mol # from supcrt92 + -delta_H 825162 cal/mol # from supcrt92 + -analytic -4.80261E+03 -7.05108E-01 -1.62840E+02 1.79669E+03 -1.59893E-01 +# -Range: 0-350 + +7.0000 H+ + 5.0000 HCO3- + 1.0000 SO4-2 = C5H11SH + 9.5 O2 # Pentanethiol + -llnl_gamma 3.0 + log_k -676.604 # from supcrt92 +# Enthalpy of formation: -34.530 kcal/mol # from supcrt92 + -delta_H 979810 cal/mol # from supcrt92 + -analytic -5.71970E+03 -8.46049E-01 -1.94013E+02 2.14026E+03 -3.61870E-01 +# -Range: 0-350 + +8.0000 H+ + 6.0000 HCO3- + 1.0000 SO4-2 = C6H13SH + 11.0 O2 # Hexanethiol + -llnl_gamma 3.0 + log_k -785.084 # from supcrt92 +# Enthalpy of formation: -40.200 kcal/mol # from supcrt92 + -delta_H 1134688 cal/mol # from supcrt92 + -analytic -6.63401E+03 -9.86521E-01 -2.25089E+02 2.48288E+03 -5.76590E-01 +# -Range: 0-350 + +9.0000 H+ + 7.0000 HCO3- + 1.0000 SO4-2 = C7H15SH + 12.5 O2 # Heptanethiol + -llnl_gamma 3.0 + log_k -893.762 # from supcrt92 +# Enthalpy of formation: -45.870 kcal/mol # from supcrt92 + -delta_H 1289566 cal/mol # from supcrt92 + -analytic -7.55009E+03 -1.12735E+00 -2.56223E+02 2.82618E+03 -8.06879E-01 +# -Range: 0-350 + +10.0000 H+ + 8.0000 HCO3- + 1.0000 SO4-2 = C8H17SH + 14.0 O2 # Octanethiol + -llnl_gamma 3.0 + log_k -1002.439 # from supcrt92 +# Enthalpy of formation: -51.540 kcal/mol # from supcrt92 + -delta_H 1444444 cal/mol # from supcrt92 + -analytic -8.46618E+03 -1.26818E+00 -2.87362E+02 3.16949E+03 -1.03755E+00 +# -Range: 0-350 + +11.0000 H+ + 9.0000 HCO3- + 1.0000 SO4-2 = C9H19SH + 15.5 O2 # Nonanethiol + -llnl_gamma 3.0 + log_k -1111.117 # from supcrt92 +# Enthalpy of formation: -57.210 kcal/mol # from supcrt92 + -delta_H 1599322 cal/mol # from supcrt92 + -analytic -9.38233E+03 -1.40904E+00 -3.18508E+02 3.51283E+03 -1.24321E+00 +# -Range: 0-350 + +12.0000 H+ + 10.0000 HCO3- + 1.0000 SO4-2 = C10H21SH + 17.0 O2 # Decanethiol + -llnl_gamma 3.0 + log_k -1219.795 # from supcrt92 +# Enthalpy of formation: -62.880 kcal/mol # from supcrt92 + -delta_H 1754200 cal/mol # from supcrt92 + -analytic -1.02985E+04 -1.54990E+00 -3.49643E+02 3.85617E+03 -1.48034E+00 +# -Range: 0-350 + +PHASES + +Toluene(l) # from J.Thom + C7H8 = C7H8 + log_k -2.2639168374931 + -analytic 1.9804E+01 2.0653E-02 1.5436E+00 -1.1409E+01 2.8885E-03 + +Toluene(g) # from J.Thom + C7H8 = C7H8 + log_k -.67116 + -analytic 7.43133e1 3.42616e-2 2.40651e0 -3.44352e1 -4.36135e0 + +CH4(g) # from J.Thom + CH4 = CH4 + log_k -2.8502 + -delta_H -13.0959 kJ/mol # Calculated enthalpy of reaction CH4(g) + -analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005 + +#################################### + +#End of data entered Feb. 4, 2011 + +################################# + +# 1122 minerals + +(UO2)2As2O7 + (UO2)2As2O7 +2.0000 H+ +1.0000 H2O = + 2.0000 H2AsO4- + 2.0000 UO2++ + log_k 7.7066 + -delta_H -145.281 kJ/mol # Calculated enthalpy of reaction (UO2)2As2O7 +# Enthalpy of formation: -3426 kJ/mol + -analytic -1.6147e+002 -6.3487e-002 1.0052e+004 6.2384e+001 1.5691e+002 +# -Range: 0-300 + +(UO2)2Cl3 + (UO2)2Cl3 = + 1.0000 UO2+ + 1.0000 UO2++ + 3.0000 Cl- + log_k 12.7339 + -delta_H -140.866 kJ/mol # Calculated enthalpy of reaction (UO2)2Cl3 +# Enthalpy of formation: -2404.5 kJ/mol + -analytic -2.3895e+002 -9.2925e-002 1.1722e+004 9.6999e+001 1.8298e+002 +# -Range: 0-300 + +(UO2)2P2O7 + (UO2)2P2O7 +1.0000 H2O = + 2.0000 HPO4-- + 2.0000 UO2++ + log_k -14.6827 + -delta_H -103.726 kJ/mol # Calculated enthalpy of reaction (UO2)2P2O7 +# Enthalpy of formation: -4232.6 kJ/mol + -analytic -3.4581e+002 -1.3987e-001 1.0703e+004 1.3613e+002 1.6712e+002 +# -Range: 0-300 + +(UO2)3(AsO4)2 + (UO2)3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 UO2++ + log_k 9.3177 + -delta_H -186.72 kJ/mol # Calculated enthalpy of reaction (UO2)3(AsO4)2 +# Enthalpy of formation: -4689.4 kJ/mol + -analytic -1.9693e+002 -7.3236e-002 1.2936e+004 7.4631e+001 2.0192e+002 +# -Range: 0-300 + +(UO2)3(PO4)2 + (UO2)3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 UO2++ + log_k -14.0241 + -delta_H -149.864 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2 +# Enthalpy of formation: -5491.3 kJ/mol + -analytic -3.6664e+002 -1.4347e-001 1.3486e+004 1.4148e+002 2.1054e+002 +# -Range: 0-300 + +(UO2)3(PO4)2:4H2O + (UO2)3(PO4)2:4H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 UO2++ + 4.0000 H2O + log_k -27.0349 + -delta_H -45.4132 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2:4H2O +# Enthalpy of formation: -6739.1 kJ/mol + -analytic -1.5721e+002 -4.1375e-002 5.2046e+003 5.0531e+001 8.8434e+001 +# -Range: 0-200 + +(VO)3(PO4)2 + (VO)3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 VO++ + log_k 48.7864 + -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)3(PO4)2 +# Enthalpy of formation: 0 kcal/mol + +Acanthite + Ag2S +1.0000 H+ = + 1.0000 HS- + 2.0000 Ag+ + log_k -36.0346 + -delta_H 226.982 kJ/mol # Calculated enthalpy of reaction Acanthite +# Enthalpy of formation: -7.55 kcal/mol + -analytic -1.6067e+002 -4.7139e-002 -7.4522e+003 6.6140e+001 -1.1624e+002 +# -Range: 0-300 + +Afwillite + Ca3Si2O4(OH)6 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Ca++ + 6.0000 H2O + log_k 60.0452 + -delta_H -316.059 kJ/mol # Calculated enthalpy of reaction Afwillite +# Enthalpy of formation: -1143.31 kcal/mol + -analytic 1.8353e+001 1.9014e-003 1.8478e+004 -6.6311e+000 -4.0227e+005 +# -Range: 0-300 + +Ag + Ag +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Ag+ + log_k 7.9937 + -delta_H -34.1352 kJ/mol # Calculated enthalpy of reaction Ag +# Enthalpy of formation: 0 kcal/mol + -analytic -1.4144e+001 -3.8466e-003 2.2642e+003 6.3388e+000 3.5334e+001 +# -Range: 0-300 + +Ag3PO4 + Ag3PO4 +1.0000 H+ = + 1.0000 HPO4-- + 3.0000 Ag+ + log_k -5.2282 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ag3PO4 +# Enthalpy of formation: 0 kcal/mol + +Ahlfeldite + NiSeO3:2H2O = + 1.0000 Ni++ + 1.0000 SeO3-- + 2.0000 H2O + log_k -4.4894 + -delta_H -25.7902 kJ/mol # Calculated enthalpy of reaction Ahlfeldite +# Enthalpy of formation: -265.07 kcal/mol + -analytic -2.6210e+001 -1.6952e-002 1.0405e+003 9.4054e+000 1.7678e+001 +# -Range: 0-200 + +Akermanite + Ca2MgSi2O7 +6.0000 H+ = + 1.0000 Mg++ + 2.0000 Ca++ + 2.0000 SiO2 + 3.0000 H2O + log_k 45.3190 + -delta_H -288.575 kJ/mol # Calculated enthalpy of reaction Akermanite +# Enthalpy of formation: -926.497 kcal/mol + -analytic -4.8295e+001 -8.5613e-003 2.0880e+004 1.3798e+001 -7.1975e+005 +# -Range: 0-300 + +Al + Al +3.0000 H+ +0.7500 O2 = + 1.0000 Al+++ + 1.5000 H2O + log_k 149.9292 + -delta_H -958.059 kJ/mol # Calculated enthalpy of reaction Al +# Enthalpy of formation: 0 kJ/mol + -analytic -1.8752e+002 -4.6187e-002 5.7127e+004 6.6270e+001 -3.8952e+005 +# -Range: 0-300 + +Al2(SO4)3 + Al2(SO4)3 = + 2.0000 Al+++ + 3.0000 SO4-- + log_k 19.0535 + -delta_H -364.566 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3 +# Enthalpy of formation: -3441.04 kJ/mol + -analytic -6.1001e+002 -2.4268e-001 2.9194e+004 2.4383e+002 4.5573e+002 +# -Range: 0-300 + +Al2(SO4)3:6H2O + Al2(SO4)3:6H2O = + 2.0000 Al+++ + 3.0000 SO4-- + 6.0000 H2O + log_k 1.6849 + -delta_H -208.575 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3:6H2O +# Enthalpy of formation: -5312.06 kJ/mol + -analytic -7.1642e+002 -2.4552e-001 2.6064e+004 2.8441e+002 4.0691e+002 +# -Range: 0-300 + +AlF3 + AlF3 = + 1.0000 Al+++ + 3.0000 F- + log_k -17.2089 + -delta_H -34.0441 kJ/mol # Calculated enthalpy of reaction AlF3 +# Enthalpy of formation: -1510.4 kJ/mol + -analytic -3.9865e+002 -1.3388e-001 1.0211e+004 1.5642e+002 1.5945e+002 +# -Range: 0-300 + +Alabandite + MnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Mn++ + log_k -0.3944 + -delta_H -23.3216 kJ/mol # Calculated enthalpy of reaction Alabandite +# Enthalpy of formation: -51 kcal/mol + -analytic -1.5515e+002 -4.8820e-002 4.9049e+003 6.1765e+001 7.6583e+001 +# -Range: 0-300 + +Alamosite + PbSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ + 1.0000 SiO2 + log_k 5.6733 + -delta_H -16.5164 kJ/mol # Calculated enthalpy of reaction Alamosite +# Enthalpy of formation: -1146.1 kJ/mol + -analytic 2.9941e+002 6.7871e-002 -8.1706e+003 -1.1582e+002 -1.3885e+002 +# -Range: 0-200 + +Albite + NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite +# Enthalpy of formation: -939.68 kcal/mol + -analytic -1.1694e+001 1.4429e-002 1.3784e+004 -7.2866e+000 -1.6136e+006 +# -Range: 0-300 + +Albite_high + NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 + log_k 4.0832 + -delta_H -62.8562 kJ/mol # Calculated enthalpy of reaction Albite_high +# Enthalpy of formation: -937.05 kcal/mol + -analytic -1.8957e+001 1.3726e-002 1.4801e+004 -4.9732e+000 -1.6442e+006 +# -Range: 0-300 + +Albite_low + NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite_low +# Enthalpy of formation: -939.68 kcal/mol + -analytic -1.2860e+001 1.4481e-002 1.3913e+004 -6.9417e+000 -1.6256e+006 +# -Range: 0-300 + +Alstonite + BaCa(CO3)2 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 Ca++ + 2.0000 HCO3- + log_k 2.5843 + -delta_H 0 # Not possible to calculate enthalpy of reaction Alstonite +# Enthalpy of formation: 0 kcal/mol + +Alum-K + KAl(SO4)2:12H2O = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 SO4-- + 12.0000 H2O + log_k -4.8818 + -delta_H 14.4139 kJ/mol # Calculated enthalpy of reaction Alum-K +# Enthalpy of formation: -1447 kcal/mol + -analytic -8.8025e+002 -2.5706e-001 2.2399e+004 3.5434e+002 3.4978e+002 +# -Range: 0-300 + +Alunite + KAl3(OH)6(SO4)2 +6.0000 H+ = + 1.0000 K+ + 2.0000 SO4-- + 3.0000 Al+++ + 6.0000 H2O + log_k -0.3479 + -delta_H -231.856 kJ/mol # Calculated enthalpy of reaction Alunite +# Enthalpy of formation: -1235.6 kcal/mol + -analytic -6.8581e+002 -2.2455e-001 2.6886e+004 2.6758e+002 4.1973e+002 +# -Range: 0-300 + +Am + Am +3.0000 H+ +0.7500 O2 = + 1.0000 Am+++ + 1.5000 H2O + log_k 169.3900 + -delta_H -1036.36 kJ/mol # Calculated enthalpy of reaction Am +# Enthalpy of formation: 0 kJ/mol + -analytic -6.7924e+000 -8.9873e-003 5.3327e+004 0.0000e+000 0.0000e+000 +# -Range: 0-300 + +Am(OH)3 + Am(OH)3 +3.0000 H+ = + 1.0000 Am+++ + 3.0000 H2O + log_k 15.2218 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Am(OH)3(am) + Am(OH)3 +3.0000 H+ = + 1.0000 Am+++ + 3.0000 H2O + log_k 17.0217 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Am2(CO3)3 + Am2(CO3)3 +3.0000 H+ = + 2.0000 Am+++ + 3.0000 HCO3- + log_k -2.3699 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Am2C3 + Am2C3 +4.5000 O2 +3.0000 H+ = + 2.0000 Am+++ + 3.0000 HCO3- + log_k 503.9594 + -delta_H -3097.6 kJ/mol # Calculated enthalpy of reaction Am2C3 +# Enthalpy of formation: -151 kJ/mol + -analytic 3.3907e+002 -4.2636e-003 1.4463e+005 -1.2891e+002 2.4559e+003 +# -Range: 0-200 + +Am2O3 + Am2O3 +6.0000 H+ = + 2.0000 Am+++ + 3.0000 H2O + log_k 51.7905 + -delta_H -400.515 kJ/mol # Calculated enthalpy of reaction Am2O3 +# Enthalpy of formation: -1690.4 kJ/mol + -analytic -9.2044e+001 -1.8883e-002 2.3028e+004 2.9192e+001 3.5935e+002 +# -Range: 0-300 + +AmBr3 + AmBr3 = + 1.0000 Am+++ + 3.0000 Br- + log_k 21.7826 + -delta_H -171.21 kJ/mol # Calculated enthalpy of reaction AmBr3 +# Enthalpy of formation: -810 kJ/mol + -analytic 1.0121e+001 -3.0622e-002 6.1964e+003 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +AmCl3 + AmCl3 = + 1.0000 Am+++ + 3.0000 Cl- + log_k 14.3513 + -delta_H -140.139 kJ/mol # Calculated enthalpy of reaction AmCl3 +# Enthalpy of formation: -977.8 kJ/mol + -analytic -1.5000e+001 -3.6701e-002 5.2281e+003 9.1942e+000 8.8785e+001 +# -Range: 0-200 + +AmF3 + AmF3 = + 1.0000 Am+++ + 3.0000 F- + log_k -13.1190 + -delta_H -34.7428 kJ/mol # Calculated enthalpy of reaction AmF3 +# Enthalpy of formation: -1588 kJ/mol + -analytic -4.0514e+001 -3.7312e-002 4.1626e+002 1.4999e+001 7.0827e+000 +# -Range: 0-200 + +AmF4 + AmF4 = + 1.0000 Am++++ + 4.0000 F- + log_k -25.1354 + -delta_H -37.3904 kJ/mol # Calculated enthalpy of reaction AmF4 +# Enthalpy of formation: -1710 kJ/mol + -analytic -4.9592e+001 -4.5210e-002 -9.7251e+001 1.5457e+001 -1.6348e+000 +# -Range: 0-200 + +AmH2 + AmH2 +2.0000 H+ +1.0000 O2 = + 1.0000 Am++ + 2.0000 H2O + log_k 128.4208 + -delta_H -738.376 kJ/mol # Calculated enthalpy of reaction AmH2 +# Enthalpy of formation: -175.8 kJ/mol + -analytic 3.1175e+001 -1.4062e-002 3.6259e+004 -8.1600e+000 5.6578e+002 +# -Range: 0-300 + +AmI3 + AmI3 = + 1.0000 Am+++ + 3.0000 I- + log_k 24.7301 + -delta_H -175.407 kJ/mol # Calculated enthalpy of reaction AmI3 +# Enthalpy of formation: -612 kJ/mol + -analytic -1.3886e+001 -3.6651e-002 7.2094e+003 1.0247e+001 1.2243e+002 +# -Range: 0-200 + +AmO2 + AmO2 +4.0000 H+ = + 1.0000 Am++++ + 2.0000 H2O + log_k -9.4203 + -delta_H -45.4767 kJ/mol # Calculated enthalpy of reaction AmO2 +# Enthalpy of formation: -932.2 kJ/mol + -analytic -7.4658e+001 -1.1661e-002 4.2059e+003 2.2070e+001 6.5650e+001 +# -Range: 0-300 + +AmOBr + AmOBr +2.0000 H+ = + 1.0000 Am+++ + 1.0000 Br- + 1.0000 H2O + log_k 13.7637 + -delta_H -131.042 kJ/mol # Calculated enthalpy of reaction AmOBr +# Enthalpy of formation: -893 kJ/mol + -analytic -4.4394e+001 -1.7071e-002 7.3438e+003 1.5605e+001 1.2472e+002 +# -Range: 0-200 + +AmOCl + AmOCl +2.0000 H+ = + 1.0000 Am+++ + 1.0000 Cl- + 1.0000 H2O + log_k 11.3229 + -delta_H -119.818 kJ/mol # Calculated enthalpy of reaction AmOCl +# Enthalpy of formation: -949.8 kJ/mol + -analytic -1.2101e+002 -4.1027e-002 8.6801e+003 4.6651e+001 1.3548e+002 +# -Range: 0-300 + +AmOHCO3 + AmOHCO3 +2.0000 H+ = + 1.0000 Am+++ + 1.0000 H2O + 1.0000 HCO3- + log_k 3.1519 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmOHCO3 +# Enthalpy of formation: 0 kcal/mol + +AmPO4(am) + AmPO4 +1.0000 H+ = + 1.0000 Am+++ + 1.0000 HPO4-- + log_k -12.4682 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmPO4(am) +# Enthalpy of formation: 0 kcal/mol + +Amesite-14A + Mg4Al4Si2O10(OH)8 +20.0000 H+ = + 2.0000 SiO2 + 4.0000 Al+++ + 4.0000 Mg++ + 14.0000 H2O + log_k 75.4571 + -delta_H -797.098 kJ/mol # Calculated enthalpy of reaction Amesite-14A +# Enthalpy of formation: -2145.67 kcal/mol + -analytic -5.4326e+002 -1.4144e-001 5.4150e+004 1.9361e+002 8.4512e+002 +# -Range: 0-300 + +Analcime + Na.96Al.96Si2.04O6:H2O +3.8400 H+ = + 0.9600 Al+++ + 0.9600 Na+ + 2.0400 SiO2 + 2.9200 H2O + log_k 6.1396 + -delta_H -75.844 kJ/mol # Calculated enthalpy of reaction Analcime +# Enthalpy of formation: -3296.86 kJ/mol + -analytic -6.8694e+000 6.6052e-003 9.8260e+003 -4.8540e+000 -8.8780e+005 +# -Range: 0-300 + +Analcime-dehy + Na.96Al.96Si2.04O6 +3.8400 H+ = + 0.9600 Al+++ + 0.9600 Na+ + 1.9200 H2O + 2.0400 SiO2 + log_k 12.5023 + -delta_H -116.641 kJ/mol # Calculated enthalpy of reaction Analcime-dehy +# Enthalpy of formation: -2970.23 kJ/mol + -analytic -7.1134e+000 5.6181e-003 1.2185e+004 -5.0295e+000 -9.3890e+005 +# -Range: 0-300 + +Anatase + TiO2 +2.0000 H2O = + 1.0000 Ti(OH)4 + log_k -8.5586 + -delta_H 0 # Not possible to calculate enthalpy of reaction Anatase +# Enthalpy of formation: -939.942 kJ/mol + +Andalusite + Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O + log_k 15.9445 + -delta_H -235.233 kJ/mol # Calculated enthalpy of reaction Andalusite +# Enthalpy of formation: -615.866 kcal/mol + -analytic -7.1115e+001 -3.2234e-002 1.2308e+004 2.2357e+001 1.9208e+002 +# -Range: 0-300 + +Andradite + Ca3Fe2(SiO4)3 +12.0000 H+ = + 2.0000 Fe+++ + 3.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O + log_k 33.3352 + -delta_H -301.173 kJ/mol # Calculated enthalpy of reaction Andradite +# Enthalpy of formation: -1380.35 kcal/mol + -analytic 1.3884e+001 -2.3886e-002 1.5314e+004 -8.1606e+000 -4.2193e+005 +# -Range: 0-300 + +Anglesite + PbSO4 = + 1.0000 Pb++ + 1.0000 SO4-- + log_k -7.8527 + -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Anglesite +# Enthalpy of formation: -219.87 kcal/mol + -analytic -1.8583e+002 -7.3849e-002 2.8528e+003 7.6936e+001 4.4570e+001 +# -Range: 0-300 + +Anhydrite + CaSO4 = + 1.0000 Ca++ + 1.0000 SO4-- + log_k -4.3064 + -delta_H -18.577 kJ/mol # Calculated enthalpy of reaction Anhydrite +# Enthalpy of formation: -342.76 kcal/mol + -analytic -2.0986e+002 -7.8823e-002 5.0969e+003 8.5642e+001 7.9594e+001 +# -Range: 0-300 + +Annite + KFe3AlSi3O10(OH)2 +10.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 3.0000 Fe++ + 3.0000 SiO2 + 6.0000 H2O + log_k 29.4693 + -delta_H -259.964 kJ/mol # Calculated enthalpy of reaction Annite +# Enthalpy of formation: -1232.19 kcal/mol + -analytic -4.0186e+001 -1.4238e-002 1.8929e+004 7.9859e+000 -8.4343e+005 +# -Range: 0-300 + +Anorthite + CaAl2(SiO4)2 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 2.0000 SiO2 + 4.0000 H2O + log_k 26.5780 + -delta_H -303.039 kJ/mol # Calculated enthalpy of reaction Anorthite +# Enthalpy of formation: -1007.55 kcal/mol + -analytic 3.9717e-001 -1.8751e-002 1.4897e+004 -6.3078e+000 -2.3885e+005 +# -Range: 0-300 + +Antarcticite + CaCl2:6H2O = + 1.0000 Ca++ + 2.0000 Cl- + 6.0000 H2O + log_k 4.0933 + -delta_H 0 # Not possible to calculate enthalpy of reaction Antarcticite +# Enthalpy of formation: 0 kcal/mol + +Anthophyllite + Mg7Si8O22(OH)2 +14.0000 H+ = + 7.0000 Mg++ + 8.0000 H2O + 8.0000 SiO2 + log_k 66.7965 + -delta_H -483.486 kJ/mol # Calculated enthalpy of reaction Anthophyllite +# Enthalpy of formation: -2888.75 kcal/mol + -analytic -1.2865e+002 1.9705e-002 5.4853e+004 1.9444e+001 -3.8080e+006 +# -Range: 0-300 + +Antigorite +# Mg48Si24O85(OH)62 +96.0000 H+ = + 34.0000 SiO2 + 48.0000 Mg++ + 79.0000 H2O + Mg48Si34O85(OH)62 +96.0000 H+ = + 34.0000 SiO2 + 48.0000 Mg++ + 79.0000 H2O + log_k 477.1943 + -delta_H -3364.43 kJ/mol # Calculated enthalpy of reaction Antigorite +# Enthalpy of formation: -17070.9 kcal/mol + -analytic -8.1630e+002 -6.7780e-002 2.5998e+005 2.2029e+002 -9.3275e+006 +# -Range: 0-300 + +Antlerite + Cu3(SO4)(OH)4 +4.0000 H+ = + 1.0000 SO4-- + 3.0000 Cu++ + 4.0000 H2O + log_k 8.7302 + -delta_H 0 # Not possible to calculate enthalpy of reaction Antlerite +# Enthalpy of formation: 0 kcal/mol + +Aphthitalite + NaK3(SO4)2 = + 1.0000 Na+ + 2.0000 SO4-- + 3.0000 K+ + log_k -3.8878 + -delta_H 0 # Not possible to calculate enthalpy of reaction Aphthitalite +# Enthalpy of formation: 0 kcal/mol + +Aragonite + CaCO3 +1.0000 H+ = + 1.0000 Ca++ + 1.0000 HCO3- + log_k 1.9931 + -delta_H -25.8027 kJ/mol # Calculated enthalpy of reaction Aragonite +# Enthalpy of formation: -288.531 kcal/mol + -analytic -1.4934e+002 -4.8043e-002 4.9089e+003 6.0284e+001 7.6644e+001 +# -Range: 0-300 + +Arcanite + K2SO4 = + 1.0000 SO4-- + 2.0000 K+ + log_k -1.8008 + -delta_H 23.836 kJ/mol # Calculated enthalpy of reaction Arcanite +# Enthalpy of formation: -1437.78 kJ/mol + -analytic -1.6428e+002 -6.7762e-002 1.9879e+003 7.1116e+001 3.1067e+001 +# -Range: 0-300 + +Arsenolite + As2O3 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO3- + log_k -19.8365 + -delta_H 84.5449 kJ/mol # Calculated enthalpy of reaction Arsenolite +# Enthalpy of formation: -656.619 kJ/mol + -analytic 5.1917e+000 -1.9397e-002 -6.0894e+003 4.7458e-001 -1.0341e+002 +# -Range: 0-200 + +Arsenopyrite + FeAsS +1.5000 H2O +0.5000 H+ = + 0.5000 AsH3 + 0.5000 H2AsO3- + 1.0000 Fe++ + 1.0000 HS- + log_k -14.4453 + -delta_H 28.0187 kJ/mol # Calculated enthalpy of reaction Arsenopyrite +# Enthalpy of formation: -42.079 kJ/mol + +Artinite + Mg2CO3(OH)2:3H2O +3.0000 H+ = + 1.0000 HCO3- + 2.0000 Mg++ + 5.0000 H2O + log_k 19.6560 + -delta_H -130.432 kJ/mol # Calculated enthalpy of reaction Artinite +# Enthalpy of formation: -698.043 kcal/mol + -analytic -2.8614e+002 -6.7344e-002 1.5230e+004 1.1104e+002 2.3773e+002 +# -Range: 0-300 + +As + As +1.5000 H2O +0.7500 O2 = + 1.0000 H+ + 1.0000 H2AsO3- + log_k 42.7079 + -delta_H -276.937 kJ/mol # Calculated enthalpy of reaction As +# Enthalpy of formation: 0 kJ/mol + -analytic -3.4700e+001 -3.1772e-002 1.3788e+004 1.6411e+001 2.1517e+002 +# -Range: 0-300 + +As2O5 + As2O5 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO4- + log_k 2.1601 + -delta_H -36.7345 kJ/mol # Calculated enthalpy of reaction As2O5 +# Enthalpy of formation: -924.87 kJ/mol + -analytic -1.4215e+002 -6.3459e-002 4.1222e+003 6.0369e+001 6.4365e+001 +# -Range: 0-300 + +As4O6(cubi) + As4O6 +6.0000 H2O = + 4.0000 H+ + 4.0000 H2AsO3- + log_k -39.7636 + -delta_H 169.792 kJ/mol # Calculated enthalpy of reaction As4O6(cubi) +# Enthalpy of formation: -1313.94 kJ/mol + -analytic -2.6300e+002 -1.1822e-001 -4.9004e+003 1.1108e+002 -7.6389e+001 +# -Range: 0-300 + +As4O6(mono) + As4O6 +6.0000 H2O = + 4.0000 H+ + 4.0000 H2AsO3- + log_k -40.0375 + -delta_H 165.452 kJ/mol # Calculated enthalpy of reaction As4O6(mono) +# Enthalpy of formation: -1309.6 kJ/mol + -analytic 9.2518e+000 -3.8823e-002 -1.1985e+004 9.9966e-001 -2.0352e+002 +# -Range: 0-200 + +Atacamite + Cu4Cl2(OH)6 +6.0000 H+ = + 2.0000 Cl- + 4.0000 Cu++ + 6.0000 H2O + log_k 14.2836 + -delta_H -132.001 kJ/mol # Calculated enthalpy of reaction Atacamite +# Enthalpy of formation: -1654.43 kJ/mol + -analytic -2.6623e+002 -4.8121e-002 1.5315e+004 9.8395e+001 2.6016e+002 +# -Range: 0-200 + +Au + Au +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Au+ + log_k -7.0864 + -delta_H 59.189 kJ/mol # Calculated enthalpy of reaction Au +# Enthalpy of formation: 0 kcal/mol + -analytic -7.6610e-001 -2.8520e-003 -3.0861e+003 1.9705e+000 -4.8156e+001 +# -Range: 0-300 + +Autunite-H + H2(UO2)2(PO4)2 = + 2.0000 HPO4-- + 2.0000 UO2++ + log_k -25.3372 + -delta_H -31.8599 kJ/mol # Calculated enthalpy of reaction Autunite-H +# Enthalpy of formation: -4590.3 kJ/mol + -analytic -3.2179e+001 -3.8038e-002 -6.8629e+002 8.2724e+000 -1.1644e+001 +# -Range: 0-200 + +Azurite + Cu3(CO3)2(OH)2 +4.0000 H+ = + 2.0000 H2O + 2.0000 HCO3- + 3.0000 Cu++ + log_k 9.1607 + -delta_H -122.298 kJ/mol # Calculated enthalpy of reaction Azurite +# Enthalpy of formation: -390.1 kcal/mol + -analytic -4.4042e+002 -1.1934e-001 1.8053e+004 1.7158e+002 2.8182e+002 +# -Range: 0-300 + +B + B +1.5000 H2O +0.7500 O2 = + 1.0000 B(OH)3 + log_k 109.5654 + -delta_H -636.677 kJ/mol # Calculated enthalpy of reaction B +# Enthalpy of formation: 0 kJ/mol + -analytic 8.0471e+001 1.2577e-003 2.9653e+004 -2.8593e+001 4.6268e+002 +# -Range: 0-300 + +B2O3 + B2O3 +3.0000 H2O = + 2.0000 B(OH)3 + log_k 5.5464 + -delta_H -18.0548 kJ/mol # Calculated enthalpy of reaction B2O3 +# Enthalpy of formation: -1273.5 kJ/mol + -analytic 9.0905e+001 5.5365e-003 -2.6629e+003 -3.1553e+001 -4.1578e+001 +# -Range: 0-300 + +Ba + Ba +2.0000 H+ +0.5000 O2 = + 1.0000 Ba++ + 1.0000 H2O + log_k 141.2465 + -delta_H -817.416 kJ/mol # Calculated enthalpy of reaction Ba +# Enthalpy of formation: 0 kJ/mol + -analytic -2.5033e+001 -1.3917e-002 4.2849e+004 1.0786e+001 6.6863e+002 +# -Range: 0-300 + +Ba(OH)2:8H2O + Ba(OH)2:8H2O +2.0000 H+ = + 1.0000 Ba++ + 10.0000 H2O + log_k 24.4911 + -delta_H -55.4363 kJ/mol # Calculated enthalpy of reaction Ba(OH)2:8H2O +# Enthalpy of formation: -3340.59 kJ/mol + -analytic -2.3888e+002 -1.5791e-003 1.4097e+004 8.7518e+001 2.3947e+002 +# -Range: 0-200 + +Ba2Si3O8 + Ba2Si3O8 +4.0000 H+ = + 2.0000 Ba++ + 2.0000 H2O + 3.0000 SiO2 + log_k 23.3284 + -delta_H -95.3325 kJ/mol # Calculated enthalpy of reaction Ba2Si3O8 +# Enthalpy of formation: -4184.73 kJ/mol + -analytic -8.7226e+001 9.3125e-003 2.3147e+004 2.2012e+001 -2.1714e+006 +# -Range: 0-300 + +Ba2SiO4 + Ba2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ba++ + 2.0000 H2O + log_k 44.5930 + -delta_H -237.206 kJ/mol # Calculated enthalpy of reaction Ba2SiO4 +# Enthalpy of formation: -2287.46 kJ/mol + -analytic -7.0350e+000 -5.1744e-003 1.4786e+004 3.1091e+000 -3.6972e+005 +# -Range: 0-300 + +Ba2U2O7 + Ba2U2O7 +6.0000 H+ = + 2.0000 Ba++ + 2.0000 UO2+ + 3.0000 H2O + log_k 36.4635 + -delta_H -243.057 kJ/mol # Calculated enthalpy of reaction Ba2U2O7 +# Enthalpy of formation: -3740 kJ/mol + -analytic -9.2562e+001 5.3866e-003 1.6852e+004 2.8647e+001 2.8621e+002 +# -Range: 0-200 + +Ba3UO6 + Ba3UO6 +8.0000 H+ = + 1.0000 UO2++ + 3.0000 Ba++ + 4.0000 H2O + log_k 94.3709 + -delta_H -564.885 kJ/mol # Calculated enthalpy of reaction Ba3UO6 +# Enthalpy of formation: -3210.4 kJ/mol + -analytic -1.3001e+002 -1.7395e-002 3.3977e+004 4.6715e+001 5.7703e+002 +# -Range: 0-200 + +BaBr2 + BaBr2 = + 1.0000 Ba++ + 2.0000 Br- + log_k 5.6226 + -delta_H -23.3887 kJ/mol # Calculated enthalpy of reaction BaBr2 +# Enthalpy of formation: -757.262 kJ/mol + -analytic -1.7689e+002 -7.1918e-002 4.7187e+003 7.6010e+001 7.3683e+001 +# -Range: 0-300 + +BaBr2:2H2O + BaBr2:2H2O = + 1.0000 Ba++ + 2.0000 Br- + 2.0000 H2O + log_k 2.2523 + -delta_H 13.7736 kJ/mol # Calculated enthalpy of reaction BaBr2:2H2O +# Enthalpy of formation: -1366.1 kJ/mol + -analytic -1.5506e+001 -1.6281e-002 -8.5727e+002 1.0296e+001 -1.4552e+001 +# -Range: 0-200 + +BaCl2 + BaCl2 = + 1.0000 Ba++ + 2.0000 Cl- + log_k 2.2707 + -delta_H -13.1563 kJ/mol # Calculated enthalpy of reaction BaCl2 +# Enthalpy of formation: -858.647 kJ/mol + -analytic -2.0393e+002 -7.8925e-002 4.8846e+003 8.6204e+001 7.6280e+001 +# -Range: 0-300 + +BaCl2:2H2O + BaCl2:2H2O = + 1.0000 Ba++ + 2.0000 Cl- + 2.0000 H2O + log_k 0.2459 + -delta_H 16.558 kJ/mol # Calculated enthalpy of reaction BaCl2:2H2O +# Enthalpy of formation: -1460.04 kJ/mol + -analytic -2.0350e+002 -7.3577e-002 3.7914e+003 8.6051e+001 5.9221e+001 +# -Range: 0-300 + +BaCl2:H2O + BaCl2:H2O = + 1.0000 Ba++ + 1.0000 H2O + 2.0000 Cl- + log_k 0.8606 + -delta_H 2.89433 kJ/mol # Calculated enthalpy of reaction BaCl2:H2O +# Enthalpy of formation: -1160.54 kJ/mol + -analytic -1.9572e+002 -7.3938e-002 4.0553e+003 8.2842e+001 6.3336e+001 +# -Range: 0-300 + +BaCrO4 + BaCrO4 = + 1.0000 Ba++ + 1.0000 CrO4-- + log_k -9.9322 + -delta_H 25.9115 kJ/mol # Calculated enthalpy of reaction BaCrO4 +# Enthalpy of formation: -345.293 kcal/mol + -analytic 2.3142e+001 -1.6617e-002 -3.6883e+003 -6.3687e+000 -6.2640e+001 +# -Range: 0-200 + +BaHPO4 + BaHPO4 = + 1.0000 Ba++ + 1.0000 HPO4-- + log_k -7.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaHPO4 +# Enthalpy of formation: 0 kcal/mol + +BaI2 + BaI2 = + 1.0000 Ba++ + 2.0000 I- + log_k 11.0759 + -delta_H -46.0408 kJ/mol # Calculated enthalpy of reaction BaI2 +# Enthalpy of formation: -605.408 kJ/mol + -analytic -1.7511e+002 -7.2206e-002 5.8696e+003 7.5974e+001 9.1641e+001 +# -Range: 0-300 + +BaMnO4 + BaMnO4 = + 1.0000 Ba++ + 1.0000 MnO4-- + log_k -10.0900 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaMnO4 +# Enthalpy of formation: 0 kcal/mol + +BaO + BaO +2.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O + log_k 47.8036 + -delta_H -270.184 kJ/mol # Calculated enthalpy of reaction BaO +# Enthalpy of formation: -553.298 kJ/mol + -analytic -7.3273e+001 -1.7149e-002 1.6811e+004 2.8560e+001 -7.7510e+004 +# -Range: 0-300 + +BaS + BaS +1.0000 H+ = + 1.0000 Ba++ + 1.0000 HS- + log_k 16.2606 + -delta_H -92.9004 kJ/mol # Calculated enthalpy of reaction BaS +# Enthalpy of formation: -460.852 kJ/mol + -analytic -1.1819e+002 -4.3420e-002 7.4296e+003 4.9489e+001 1.1597e+002 +# -Range: 0-300 + +BaSeO3 + BaSeO3 = + 1.0000 Ba++ + 1.0000 SeO3-- + log_k -6.5615 + -delta_H -5.5658 kJ/mol # Calculated enthalpy of reaction BaSeO3 +# Enthalpy of formation: -1041.27 kJ/mol + -analytic 2.9742e+001 -1.7073e-002 -2.4532e+003 -9.2936e+000 -4.1669e+001 +# -Range: 0-200 + +BaSeO4 + BaSeO4 = + 1.0000 Ba++ + 1.0000 SeO4-- + log_k -7.4468 + -delta_H 8.9782 kJ/mol # Calculated enthalpy of reaction BaSeO4 +# Enthalpy of formation: -1145.77 kJ/mol + -analytic 2.4274e+001 -1.6289e-002 -2.8520e+003 -6.9949e+000 -4.8439e+001 +# -Range: 0-200 + +BaSiF6 + BaSiF6 +2.0000 H2O = + 1.0000 Ba++ + 1.0000 SiO2 + 4.0000 H+ + 6.0000 F- + log_k -32.1771 + -delta_H 95.2555 kJ/mol # Calculated enthalpy of reaction BaSiF6 +# Enthalpy of formation: -2951.01 kJ/mol + -analytic -6.4766e+000 -3.8410e-002 0.0000e+000 0.0000e+000 -1.2701e+006 +# -Range: 0-200 + +BaU2O7 + BaU2O7 +6.0000 H+ = + 1.0000 Ba++ + 2.0000 UO2++ + 3.0000 H2O + log_k 21.9576 + -delta_H -195.959 kJ/mol # Calculated enthalpy of reaction BaU2O7 +# Enthalpy of formation: -3237.2 kJ/mol + -analytic -1.2254e+002 -1.0941e-002 1.4452e+004 4.0125e+001 2.4546e+002 +# -Range: 0-200 + +BaUO4 + BaUO4 +4.0000 H+ = + 1.0000 Ba++ + 1.0000 UO2++ + 2.0000 H2O + log_k 18.2007 + -delta_H -134.521 kJ/mol # Calculated enthalpy of reaction BaUO4 +# Enthalpy of formation: -1993.8 kJ/mol + -analytic -6.7113e+001 -1.6340e-002 8.7592e+003 2.4571e+001 1.3670e+002 +# -Range: 0-300 + +BaZrO3 + BaZrO3 +4.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O + 1.0000 Zr(OH)2++ + log_k -94.4716 + -delta_H 505.159 kJ/mol # Calculated enthalpy of reaction BaZrO3 +# Enthalpy of formation: -578.27 kcal/mol + -analytic -5.3606e+001 -1.0096e-002 -2.4894e+004 1.8446e+001 -4.2271e+002 +# -Range: 0-200 + +Baddeleyite + ZrO2 +2.0000 H+ = + 1.0000 Zr(OH)2++ + log_k -7.9405 + -delta_H 9.72007 kJ/mol # Calculated enthalpy of reaction Baddeleyite +# Enthalpy of formation: -1100.56 kJ/mol + -analytic -2.5188e-001 -4.6374e-003 -1.0635e+003 -1.1055e+000 -1.6595e+001 +# -Range: 0-300 + +Barite + BaSO4 = + 1.0000 Ba++ + 1.0000 SO4-- + log_k -9.9711 + -delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite +# Enthalpy of formation: -352.1 kcal/mol + -analytic -1.8747e+002 -7.5521e-002 2.0790e+003 7.7998e+001 3.2497e+001 +# -Range: 0-300 + +Barytocalcite + BaCa(CO3)2 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 Ca++ + 2.0000 HCO3- + log_k 2.7420 + -delta_H 0 # Not possible to calculate enthalpy of reaction Barytocalcite +# Enthalpy of formation: 0 kcal/mol + +Bassanite + CaSO4:0.5H2O = + 0.5000 H2O + 1.0000 Ca++ + 1.0000 SO4-- + log_k -3.6615 + -delta_H -18.711 kJ/mol # Calculated enthalpy of reaction Bassanite +# Enthalpy of formation: -1576.89 kJ/mol + -analytic -2.2010e+002 -8.0230e-002 5.5092e+003 8.9651e+001 8.6031e+001 +# -Range: 0-300 + +Bassetite + Fe(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Fe++ + 2.0000 HPO4-- + 2.0000 UO2++ + log_k -17.7240 + -delta_H -114.841 kJ/mol # Calculated enthalpy of reaction Bassetite +# Enthalpy of formation: -1099.33 kcal/mol + -analytic -5.7788e+001 -4.5400e-002 4.0119e+003 1.6216e+001 6.8147e+001 +# -Range: 0-200 + +Be + Be +2.0000 H+ +0.5000 O2 = + 1.0000 Be++ + 1.0000 H2O + log_k 104.2077 + -delta_H -662.608 kJ/mol # Calculated enthalpy of reaction Be +# Enthalpy of formation: 0 kJ/mol + -analytic -9.3960e+001 -2.4749e-002 3.6714e+004 3.3295e+001 5.7291e+002 +# -Range: 0-300 + +Be13U + Be13U +30.0000 H+ +7.5000 O2 = + 1.0000 U++++ + 13.0000 Be++ + 15.0000 H2O + log_k 1504.5350 + -delta_H -9601.04 kJ/mol # Calculated enthalpy of reaction Be13U +# Enthalpy of formation: -163.6 kJ/mol + -analytic -1.2388e+003 -3.2848e-001 5.2816e+005 4.3222e+002 8.2419e+003 +# -Range: 0-300 + +Beidellite-Ca + Ca.165Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Ca++ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O + log_k 5.5914 + -delta_H -162.403 kJ/mol # Calculated enthalpy of reaction Beidellite-Ca +# Enthalpy of formation: -1370.66 kcal/mol + -analytic 2.3887e+001 4.4178e-003 1.5296e+004 -2.2343e+001 -1.4025e+006 +# -Range: 0-300 + +Beidellite-Cs + Cs.33Si3.67Al2.33O10(OH)2 +7.3200 H+ = + 0.3300 Cs+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O + log_k 5.1541 + -delta_H -149.851 kJ/mol # Calculated enthalpy of reaction Beidellite-Cs +# Enthalpy of formation: -1372.59 kcal/mol + -analytic 2.1244e+001 2.1705e-003 1.4504e+004 -2.0250e+001 -1.3712e+006 +# -Range: 0-300 + +Beidellite-H + H.33Al2.33Si3.67O10(OH)2 +6.9900 H+ = + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O + log_k 4.6335 + -delta_H -154.65 kJ/mol # Calculated enthalpy of reaction Beidellite-H +# Enthalpy of formation: -1351.1 kcal/mol + -analytic 5.4070e+000 3.4064e-003 1.6284e+004 -1.6028e+001 -1.5014e+006 +# -Range: 0-300 + +Beidellite-K + K.33Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 K+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O + log_k 5.3088 + -delta_H -150.834 kJ/mol # Calculated enthalpy of reaction Beidellite-K +# Enthalpy of formation: -1371.9 kcal/mol + -analytic 1.0792e+001 3.4419e-003 1.5760e+004 -1.7333e+001 -1.4779e+006 +# -Range: 0-300 + +Beidellite-Mg + Mg.165Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Mg++ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O + log_k 5.5537 + -delta_H -165.455 kJ/mol # Calculated enthalpy of reaction Beidellite-Mg +# Enthalpy of formation: -1366.89 kcal/mol + -analytic 1.3375e+001 3.0420e-003 1.5947e+004 -1.8728e+001 -1.4242e+006 +# -Range: 0-300 + +Beidellite-Na + Na.33Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Na+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O + log_k 5.6473 + -delta_H -155.846 kJ/mol # Calculated enthalpy of reaction Beidellite-Na +# Enthalpy of formation: -1369.76 kcal/mol + -analytic 1.1504e+001 3.9871e-003 1.5818e+004 -1.7762e+001 -1.4485e+006 +# -Range: 0-300 + +Berlinite + AlPO4 +1.0000 H+ = + 1.0000 Al+++ + 1.0000 HPO4-- + log_k -7.2087 + -delta_H -96.6313 kJ/mol # Calculated enthalpy of reaction Berlinite +# Enthalpy of formation: -1733.85 kJ/mol + -analytic -2.8134e+002 -9.9933e-002 1.0308e+004 1.0883e+002 1.6094e+002 +# -Range: 0-300 + +Berndtite + SnS2 = + 1.0000 S2-- + 1.0000 Sn++ + log_k -34.5393 + -delta_H 0 # Not possible to calculate enthalpy of reaction Berndtite +# Enthalpy of formation: -36.7 kcal/mol + -analytic -2.0311e+002 -7.6462e-002 -4.9879e+003 8.4082e+001 -7.7772e+001 +# -Range: 0-300 + +Bieberite + CoSO4:7H2O = + 1.0000 Co++ + 1.0000 SO4-- + 7.0000 H2O + log_k -2.5051 + -delta_H 11.3885 kJ/mol # Calculated enthalpy of reaction Bieberite +# Enthalpy of formation: -2980.02 kJ/mol + -analytic -2.6405e+002 -7.2497e-002 6.6673e+003 1.0538e+002 1.0411e+002 +# -Range: 0-300 + +Birnessite + Mn8O14:5H2O +4.0000 H+ = + 3.0000 MnO4-- + 5.0000 Mn++ + 7.0000 H2O + log_k -85.5463 + -delta_H 0 # Not possible to calculate enthalpy of reaction Birnessite +# Enthalpy of formation: 0 kcal/mol + +Bischofite + MgCl2:6H2O = + 1.0000 Mg++ + 2.0000 Cl- + 6.0000 H2O + log_k 4.3923 + -delta_H 0 # Not possible to calculate enthalpy of reaction Bischofite +# Enthalpy of formation: 0 kcal/mol + +Bixbyite + Mn2O3 +6.0000 H+ = + 2.0000 Mn+++ + 3.0000 H2O + log_k -0.9655 + -delta_H -190.545 kJ/mol # Calculated enthalpy of reaction Bixbyite +# Enthalpy of formation: -958.971 kJ/mol + -analytic -1.1600e+002 -2.8056e-003 1.3418e+004 2.8639e+001 2.0941e+002 +# -Range: 0-300 + +Bloedite + Na2Mg(SO4)2:4H2O = + 1.0000 Mg++ + 2.0000 Na+ + 2.0000 SO4-- + 4.0000 H2O + log_k -2.4777 + -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite +# Enthalpy of formation: 0 kcal/mol + +Boehmite + AlO2H +3.0000 H+ = + 1.0000 Al+++ + 2.0000 H2O + log_k 7.5642 + -delta_H -113.282 kJ/mol # Calculated enthalpy of reaction Boehmite +# Enthalpy of formation: -238.24 kcal/mol + -analytic -1.2196e+002 -3.1138e-002 8.8643e+003 4.4075e+001 1.3835e+002 +# -Range: 0-300 + +Boltwoodite + K(H3O)(UO2)SiO4 +3.0000 H+ = + 1.0000 K+ + 1.0000 SiO2 + 1.0000 UO2++ + 3.0000 H2O + log_k 14.8857 + -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite +# Enthalpy of formation: 0 kcal/mol + +Boltwoodite-Na + Na.7K.3(H3O)(UO2)SiO4:H2O +3.0000 H+ = + 0.3000 K+ + 0.7000 Na+ + 1.0000 SiO2 + 1.0000 UO2++ + 4.0000 H2O + log_k 14.5834 + -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite-Na +# Enthalpy of formation: 0 kcal/mol + +Borax + Na2(B4O5(OH)4):8H2O +2.0000 H+ = + 2.0000 Na+ + 4.0000 B(OH)3 + 5.0000 H2O + log_k 12.0395 + -delta_H 80.5145 kJ/mol # Calculated enthalpy of reaction Borax +# Enthalpy of formation: -6288.44 kJ/mol + -analytic 7.8374e+001 1.9328e-002 -5.3279e+003 -2.1914e+001 -8.3160e+001 +# -Range: 0-300 + +Boric_acid + B(OH)3 = + 1.0000 B(OH)3 + log_k -0.1583 + -delta_H 20.2651 kJ/mol # Calculated enthalpy of reaction Boric_acid +# Enthalpy of formation: -1094.8 kJ/mol + -analytic 3.9122e+001 6.4058e-003 -2.2525e+003 -1.3592e+001 -3.5160e+001 +# -Range: 0-300 + +Bornite + Cu5FeS4 +4.0000 H+ = + 1.0000 Cu++ + 1.0000 Fe++ + 4.0000 Cu+ + 4.0000 HS- + log_k -102.4369 + -delta_H 530.113 kJ/mol # Calculated enthalpy of reaction Bornite +# Enthalpy of formation: -79.922 kcal/mol + -analytic -7.0495e+002 -2.0082e-001 -9.1376e+003 2.8004e+002 -1.4238e+002 +# -Range: 0-300 + +Brezinaite + Cr3S4 +4.0000 H+ = + 1.0000 Cr++ + 2.0000 Cr+++ + 4.0000 HS- + log_k 2.7883 + -delta_H -216.731 kJ/mol # Calculated enthalpy of reaction Brezinaite +# Enthalpy of formation: -111.9 kcal/mol + -analytic -7.0528e+001 -3.6568e-002 1.0598e+004 1.9665e+001 1.8000e+002 +# -Range: 0-200 + +Brochantite + Cu4(SO4)(OH)6 +6.0000 H+ = + 1.0000 SO4-- + 4.0000 Cu++ + 6.0000 H2O + log_k 15.4363 + -delta_H -163.158 kJ/mol # Calculated enthalpy of reaction Brochantite +# Enthalpy of formation: -2198.72 kJ/mol + -analytic -2.3609e+002 -3.9046e-002 1.5970e+004 8.4701e+001 2.7127e+002 +# -Range: 0-200 + +Bromellite + BeO +2.0000 H+ = + 1.0000 Be++ + 1.0000 H2O + log_k 1.1309 + -delta_H -59.2743 kJ/mol # Calculated enthalpy of reaction Bromellite +# Enthalpy of formation: -609.4 kJ/mol + -analytic 1.4790e+002 -4.6004e-001 -3.2577e+004 4.0273e+001 -5.0837e+002 +# -Range: 0-300 + +Brucite + Mg(OH)2 +2.0000 H+ = + 1.0000 Mg++ + 2.0000 H2O + log_k 16.2980 + -delta_H -111.34 kJ/mol # Calculated enthalpy of reaction Brucite +# Enthalpy of formation: -221.39 kcal/mol + -analytic -1.0280e+002 -1.9759e-002 9.0180e+003 3.8282e+001 1.4075e+002 +# -Range: 0-300 + +Brushite + CaHPO4:2H2O = + 1.0000 Ca++ + 1.0000 HPO4-- + 2.0000 H2O + log_k 6.5500 + -delta_H 0 # Not possible to calculate enthalpy of reaction Brushite +# Enthalpy of formation: 0 kcal/mol + +Bunsenite + NiO +2.0000 H+ = + 1.0000 H2O + 1.0000 Ni++ + log_k 12.4719 + -delta_H -100.069 kJ/mol # Calculated enthalpy of reaction Bunsenite +# Enthalpy of formation: -57.3 kcal/mol + -analytic -8.1664e+001 -1.9796e-002 7.4064e+003 3.0385e+001 1.1559e+002 +# -Range: 0-300 + +Burkeite + Na6CO3(SO4)2 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 SO4-- + 6.0000 Na+ + log_k 9.4866 + -delta_H 0 # Not possible to calculate enthalpy of reaction Burkeite +# Enthalpy of formation: 0 kcal/mol + +C + C +1.0000 H2O +1.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- + log_k 64.1735 + -delta_H -391.961 kJ/mol # Calculated enthalpy of reaction C +# Enthalpy of formation: 0 kcal/mol + -analytic -3.5556e+001 -3.3691e-002 1.9774e+004 1.7548e+001 3.0856e+002 +# -Range: 0-300 + +Ca + Ca +2.0000 H+ +0.5000 O2 = + 1.0000 Ca++ + 1.0000 H2O + log_k 139.8465 + -delta_H -822.855 kJ/mol # Calculated enthalpy of reaction Ca +# Enthalpy of formation: 0 kJ/mol + -analytic -1.1328e+002 -2.6554e-002 4.7638e+004 4.1989e+001 -2.3545e+005 +# -Range: 0-300 + +Ca-Al_Pyroxene + CaAl2SiO6 +8.0000 H+ = + 1.0000 Ca++ + 1.0000 SiO2 + 2.0000 Al+++ + 4.0000 H2O + log_k 35.9759 + -delta_H -361.548 kJ/mol # Calculated enthalpy of reaction Ca-Al_Pyroxene +# Enthalpy of formation: -783.793 kcal/mol + -analytic -1.4664e+002 -5.0409e-002 2.1045e+004 5.1318e+001 3.2843e+002 +# -Range: 0-300 + +Ca2Al2O5:8H2O + Ca2Al2O5:8H2O +10.0000 H+ = + 2.0000 Al+++ + 2.0000 Ca++ + 13.0000 H2O + log_k 59.5687 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Al2O5:8H2O +# Enthalpy of formation: 0 kcal/mol + +Ca2Cl2(OH)2:H2O + Ca2Cl2(OH)2:H2O +2.0000 H+ = + 2.0000 Ca++ + 2.0000 Cl- + 3.0000 H2O + log_k 26.2901 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Cl2(OH)2:H2O +# Enthalpy of formation: 0 kcal/mol + +Ca2V2O7 + Ca2V2O7 +1.0000 H2O = + 2.0000 Ca++ + 2.0000 H+ + 2.0000 VO4--- + log_k -39.7129 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2V2O7 +# Enthalpy of formation: -3083.46 kJ/mol + +Ca3(AsO4)2 + Ca3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Ca++ + log_k 17.8160 + -delta_H -149.956 kJ/mol # Calculated enthalpy of reaction Ca3(AsO4)2 +# Enthalpy of formation: -3298.41 kJ/mol + -analytic -1.4011e+002 -4.2945e-002 1.0981e+004 5.4107e+001 1.8652e+002 +# -Range: 0-200 + +Ca3Al2O6 + Ca3Al2O6 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 6.0000 H2O + log_k 113.0460 + -delta_H -833.336 kJ/mol # Calculated enthalpy of reaction Ca3Al2O6 +# Enthalpy of formation: -857.492 kcal/mol + -analytic -2.7163e+002 -5.2897e-002 5.0815e+004 9.2946e+001 8.6300e+002 +# -Range: 0-200 + +Ca3V2O8 + Ca3V2O8 = + 2.0000 VO4--- + 3.0000 Ca++ + log_k -18.3234 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca3V2O8 +# Enthalpy of formation: -3778.1 kJ/mol + +Ca4Al2Fe2O10 + Ca4Al2Fe2O10 +20.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe+++ + 4.0000 Ca++ + 10.0000 H2O + log_k 140.5050 + -delta_H -1139.86 kJ/mol # Calculated enthalpy of reaction Ca4Al2Fe2O10 +# Enthalpy of formation: -1211 kcal/mol + -analytic -4.1808e+002 -8.2787e-002 7.0288e+004 1.4043e+002 1.1937e+003 +# -Range: 0-200 + +Ca4Al2O7:13H2O + Ca4Al2O7:13H2O +14.0000 H+ = + 2.0000 Al+++ + 4.0000 Ca++ + 20.0000 H2O + log_k 107.2537 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:13H2O +# Enthalpy of formation: 0 kcal/mol + +Ca4Al2O7:19H2O + Ca4Al2O7:19H2O +14.0000 H+ = + 2.0000 Al+++ + 4.0000 Ca++ + 26.0000 H2O + log_k 103.6812 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:19H2O +# Enthalpy of formation: 0 kcal/mol + +Ca4Cl2(OH)6:13H2O + Ca4Cl2(OH)6:13H2O +6.0000 H+ = + 2.0000 Cl- + 4.0000 Ca++ + 19.0000 H2O + log_k 68.3283 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Cl2(OH)6:13H2O +# Enthalpy of formation: 0 kcal/mol + +CaAl2O4 + CaAl2O4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 H2O + log_k 46.9541 + -delta_H -436.952 kJ/mol # Calculated enthalpy of reaction CaAl2O4 +# Enthalpy of formation: -555.996 kcal/mol + -analytic -3.0378e+002 -7.9356e-002 3.0096e+004 1.1049e+002 4.6971e+002 +# -Range: 0-300 + +CaAl2O4:10H2O + CaAl2O4:10H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 14.0000 H2O + log_k 37.9946 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaAl2O4:10H2O +# Enthalpy of formation: 0 kcal/mol + +CaAl4O7 + CaAl4O7 +14.0000 H+ = + 1.0000 Ca++ + 4.0000 Al+++ + 7.0000 H2O + log_k 68.6138 + -delta_H -718.464 kJ/mol # Calculated enthalpy of reaction CaAl4O7 +# Enthalpy of formation: -951.026 kcal/mol + -analytic -3.1044e+002 -6.7078e-002 4.4566e+004 1.0085e+002 7.5689e+002 +# -Range: 0-200 + +CaSO4:0.5H2O(beta) + CaSO4:0.5H2O = + 0.5000 H2O + 1.0000 Ca++ + 1.0000 SO4-- + log_k -3.4934 + -delta_H -20.804 kJ/mol # Calculated enthalpy of reaction CaSO4:0.5H2O(beta) +# Enthalpy of formation: -1574.8 kJ/mol + -analytic -2.3054e+002 -8.2832e-002 5.9132e+003 9.3705e+001 9.2338e+001 +# -Range: 0-300 + +CaSeO3:2H2O + CaSeO3:2H2O = + 1.0000 Ca++ + 1.0000 SeO3-- + 2.0000 H2O + log_k -4.6213 + -delta_H -14.1963 kJ/mol # Calculated enthalpy of reaction CaSeO3:2H2O +# Enthalpy of formation: -384.741 kcal/mol + -analytic -4.1771e+001 -2.0735e-002 9.7870e+002 1.6180e+001 1.6634e+001 +# -Range: 0-200 + +CaSeO4 + CaSeO4 = + 1.0000 Ca++ + 1.0000 SeO4-- + log_k -3.0900 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaSeO4 +# Enthalpy of formation: 0 kcal/mol + +CaUO4 + CaUO4 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 UO2++ + 2.0000 H2O + log_k 15.9420 + -delta_H -131.46 kJ/mol # Calculated enthalpy of reaction CaUO4 +# Enthalpy of formation: -2002.3 kJ/mol + -analytic -8.7902e+001 -1.9810e-002 9.2354e+003 3.1832e+001 1.4414e+002 +# -Range: 0-300 + +CaV2O6 + CaV2O6 +2.0000 H2O = + 1.0000 Ca++ + 2.0000 VO4--- + 4.0000 H+ + log_k -51.3617 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaV2O6 +# Enthalpy of formation: -2329.34 kJ/mol + +CaZrO3 + CaZrO3 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 Zr(OH)2++ + log_k -148.5015 + -delta_H 801.282 kJ/mol # Calculated enthalpy of reaction CaZrO3 +# Enthalpy of formation: -650.345 kcal/mol + -analytic -7.7908e+001 -1.4388e-002 -3.9635e+004 2.6932e+001 -6.7303e+002 +# -Range: 0-200 + +Cadmoselite + CdSe = + 1.0000 Cd++ + 1.0000 Se-- + log_k -33.8428 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cadmoselite +# Enthalpy of formation: -34.6 kcal/mol + -analytic -5.3432e+001 -1.3973e-002 -5.8989e+003 1.7591e+001 -9.2031e+001 +# -Range: 0-300 + +Calcite + CaCO3 +1.0000 H+ = + 1.0000 Ca++ + 1.0000 HCO3- + log_k 1.8487 + -delta_H -25.7149 kJ/mol # Calculated enthalpy of reaction Calcite +# Enthalpy of formation: -288.552 kcal/mol + -analytic -1.4978e+002 -4.8370e-002 4.8974e+003 6.0458e+001 7.6464e+001 +# -Range: 0-300 + +Calomel + Hg2Cl2 = + 1.0000 Hg2++ + 2.0000 Cl- + log_k -17.8241 + -delta_H 98.0267 kJ/mol # Calculated enthalpy of reaction Calomel +# Enthalpy of formation: -265.37 kJ/mol + -analytic -4.8868e+001 -2.5540e-002 -2.8439e+003 1.9475e+001 -4.8277e+001 +# -Range: 0-200 + +Carnallite + KMgCl3:6H2O = + 1.0000 K+ + 1.0000 Mg++ + 3.0000 Cl- + 6.0000 H2O + log_k 4.2721 + -delta_H 0 # Not possible to calculate enthalpy of reaction Carnallite +# Enthalpy of formation: 0 kcal/mol + +Carnotite + K2(UO2)2(VO4)2 = + 2.0000 K+ + 2.0000 UO2++ + 2.0000 VO4--- + log_k -56.3811 + -delta_H 0 # Not possible to calculate enthalpy of reaction Carnotite +# Enthalpy of formation: -1173.9 kJ/mol + +Cassiterite + SnO2 +2.0000 H+ = + 0.5000 O2 + 1.0000 H2O + 1.0000 Sn++ + log_k -46.1203 + -delta_H 280.048 kJ/mol # Calculated enthalpy of reaction Cassiterite +# Enthalpy of formation: -138.8 kcal/mol + -analytic -8.9264e+001 -1.5743e-002 -1.1497e+004 3.4917e+001 -1.7937e+002 +# -Range: 0-300 + +Cattierite + CoS2 = + 1.0000 Co++ + 1.0000 S2-- + log_k -29.9067 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cattierite +# Enthalpy of formation: -36.589 kcal/mol + -analytic -2.1970e+002 -7.8585e-002 -1.9592e+003 8.8809e+001 -3.0507e+001 +# -Range: 0-300 + +Cd + Cd +2.0000 H+ +0.5000 O2 = + 1.0000 Cd++ + 1.0000 H2O + log_k 56.6062 + -delta_H -355.669 kJ/mol # Calculated enthalpy of reaction Cd +# Enthalpy of formation: 0 kJ/mol + -analytic -7.2027e+001 -2.0250e-002 2.0474e+004 2.6814e+001 -3.2348e+004 +# -Range: 0-300 + +Cd(BO2)2 + Cd(BO2)2 +2.0000 H+ +2.0000 H2O = + 1.0000 Cd++ + 2.0000 B(OH)3 + log_k 9.8299 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(BO2)2 +# Enthalpy of formation: 0 kcal/mol + +Cd(IO3)2 + Cd(IO3)2 = + 1.0000 Cd++ + 2.0000 IO3- + log_k -7.5848 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(IO3)2 +# Enthalpy of formation: 0 kcal/mol + +Cd(OH)2 + Cd(OH)2 +2.0000 H+ = + 1.0000 Cd++ + 2.0000 H2O + log_k 13.7382 + -delta_H -87.0244 kJ/mol # Calculated enthalpy of reaction Cd(OH)2 +# Enthalpy of formation: -560.55 kJ/mol + -analytic -7.7001e+001 -6.9251e-003 7.4684e+003 2.7380e+001 1.2685e+002 +# -Range: 0-200 + +Cd(OH)Cl + Cd(OH)Cl +1.0000 H+ = + 1.0000 Cd++ + 1.0000 Cl- + 1.0000 H2O + log_k 3.5435 + -delta_H -30.3888 kJ/mol # Calculated enthalpy of reaction Cd(OH)Cl +# Enthalpy of formation: -498.427 kJ/mol + -analytic -4.5477e+001 -1.5809e-002 2.5333e+003 1.8279e+001 4.3035e+001 +# -Range: 0-200 + +Cd3(AsO4)2 + Cd3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Cd++ + log_k 4.0625 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(AsO4)2 +# Enthalpy of formation: 0 kcal/mol + +Cd3(PO4)2 + Cd3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cd++ + log_k -7.8943 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(PO4)2 +# Enthalpy of formation: 0 kcal/mol + +Cd3(SO4)(OH)4 + Cd3(SO4)(OH)4 +4.0000 H+ = + 1.0000 SO4-- + 3.0000 Cd++ + 4.0000 H2O + log_k 22.5735 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)(OH)4 +# Enthalpy of formation: 0 kcal/mol + +Cd3(SO4)2(OH)2 + Cd3(SO4)2(OH)2 +2.0000 H+ = + 2.0000 H2O + 2.0000 SO4-- + 3.0000 Cd++ + log_k 6.7180 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)2(OH)2 +# Enthalpy of formation: 0 kcal/mol + +CdBr2 + CdBr2 = + 1.0000 Cd++ + 2.0000 Br- + log_k -1.8470 + -delta_H -2.67548 kJ/mol # Calculated enthalpy of reaction CdBr2 +# Enthalpy of formation: -316.229 kJ/mol + -analytic 1.3056e+000 -2.0628e-002 -1.3318e+003 3.0126e+000 -2.2616e+001 +# -Range: 0-200 + +CdBr2:4H2O + CdBr2:4H2O = + 1.0000 Cd++ + 2.0000 Br- + 4.0000 H2O + log_k -2.3378 + -delta_H 30.2812 kJ/mol # Calculated enthalpy of reaction CdBr2:4H2O +# Enthalpy of formation: -1492.54 kJ/mol + -analytic -1.0038e+002 -2.1045e-002 1.6896e+003 3.9864e+001 2.8726e+001 +# -Range: 0-200 + +CdCl2 + CdCl2 = + 1.0000 Cd++ + 2.0000 Cl- + log_k -0.6474 + -delta_H -18.5391 kJ/mol # Calculated enthalpy of reaction CdCl2 +# Enthalpy of formation: -391.518 kJ/mol + -analytic -1.5230e+001 -2.4574e-002 -8.1017e+001 8.9599e+000 -1.3702e+000 +# -Range: 0-200 + +CdCl2(NH3)2 + CdCl2(NH3)2 = + 1.0000 Cd++ + 2.0000 Cl- + 2.0000 NH3 + log_k -8.7864 + -delta_H 63.534 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)2 +# Enthalpy of formation: -636.265 kJ/mol + -analytic -5.5283e+001 -2.1791e-002 -2.1150e+003 2.4279e+001 -3.5896e+001 +# -Range: 0-200 + +CdCl2(NH3)4 + CdCl2(NH3)4 = + 1.0000 Cd++ + 2.0000 Cl- + 4.0000 NH3 + log_k -6.8044 + -delta_H 81.7931 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)4 +# Enthalpy of formation: -817.198 kJ/mol + -analytic -9.5682e+001 -1.8853e-002 -8.3875e+002 3.9322e+001 -1.4210e+001 +# -Range: 0-200 + +CdCl2(NH3)6 + CdCl2(NH3)6 = + 1.0000 Cd++ + 2.0000 Cl- + 6.0000 NH3 + log_k -4.7524 + -delta_H 97.2971 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)6 +# Enthalpy of formation: -995.376 kJ/mol + -analytic -1.3662e+002 -1.5941e-002 5.8572e+002 5.4415e+001 9.9937e+000 +# -Range: 0-200 + +CdCl2:H2O + CdCl2:H2O = + 1.0000 Cd++ + 1.0000 H2O + 2.0000 Cl- + log_k -1.6747 + -delta_H -7.44943 kJ/mol # Calculated enthalpy of reaction CdCl2:H2O +# Enthalpy of formation: -688.446 kJ/mol + -analytic -4.1097e+001 -2.4685e-002 5.2687e+002 1.8188e+001 8.9615e+000 +# -Range: 0-200 + +CdCr2O4 + CdCr2O4 +8.0000 H+ = + 1.0000 Cd++ + 2.0000 Cr+++ + 4.0000 H2O + log_k 14.9969 + -delta_H -255.676 kJ/mol # Calculated enthalpy of reaction CdCr2O4 +# Enthalpy of formation: -344.3 kcal/mol + -analytic -1.7446e+002 -9.1086e-003 1.9223e+004 5.1605e+001 3.2650e+002 +# -Range: 0-200 + +CdF2 + CdF2 = + 1.0000 Cd++ + 2.0000 F- + log_k -1.1464 + -delta_H -46.064 kJ/mol # Calculated enthalpy of reaction CdF2 +# Enthalpy of formation: -700.529 kJ/mol + -analytic -3.0654e+001 -2.4790e-002 1.7893e+003 1.2482e+001 3.0395e+001 +# -Range: 0-200 + +CdI2 + CdI2 = + 1.0000 Cd++ + 2.0000 I- + log_k -3.4825 + -delta_H 13.7164 kJ/mol # Calculated enthalpy of reaction CdI2 +# Enthalpy of formation: -203.419 kJ/mol + -analytic -1.5446e+001 -2.4758e-002 -1.6422e+003 1.0041e+001 -2.7882e+001 +# -Range: 0-200 + +CdS + CdS +1.0000 H+ = + 1.0000 Cd++ + 1.0000 HS- + log_k -15.9095 + -delta_H 70.1448 kJ/mol # Calculated enthalpy of reaction CdS +# Enthalpy of formation: -162.151 kJ/mol + -analytic -2.9492e+001 -1.5181e-002 -3.4695e+003 1.2019e+001 -5.8907e+001 +# -Range: 0-200 + +CdSO4 + CdSO4 = + 1.0000 Cd++ + 1.0000 SO4-- + log_k -0.1061 + -delta_H -52.1304 kJ/mol # Calculated enthalpy of reaction CdSO4 +# Enthalpy of formation: -933.369 kJ/mol + -analytic 7.7104e+000 -1.7161e-002 8.7067e+002 -2.2763e+000 1.4783e+001 +# -Range: 0-200 + +CdSO4:2.667H2O + CdSO4:2.667H2O = + 1.0000 Cd++ + 1.0000 SO4-- + 2.6670 H2O + log_k -1.8015 + -delta_H -18.5302 kJ/mol # Calculated enthalpy of reaction CdSO4:2.667H2O +# Enthalpy of formation: -1729.3 kJ/mol + -analytic -5.0331e+001 -1.4983e-002 2.0271e+003 1.8665e+001 3.4440e+001 +# -Range: 0-200 + +CdSO4:H2O + CdSO4:H2O = + 1.0000 Cd++ + 1.0000 H2O + 1.0000 SO4-- + log_k -1.6529 + -delta_H -31.6537 kJ/mol # Calculated enthalpy of reaction CdSO4:H2O +# Enthalpy of formation: -1239.68 kJ/mol + -analytic -1.7142e+001 -1.7295e-002 9.9184e+002 6.9943e+000 1.6849e+001 +# -Range: 0-200 + +CdSeO3 + CdSeO3 = + 1.0000 Cd++ + 1.0000 SeO3-- + log_k -8.8086 + -delta_H -9.92156 kJ/mol # Calculated enthalpy of reaction CdSeO3 +# Enthalpy of formation: -575.169 kJ/mol + -analytic 7.1762e+000 -1.8892e-002 -1.4680e+003 -2.1984e+000 -2.4932e+001 +# -Range: 0-200 + +CdSeO4 + CdSeO4 = + 1.0000 Cd++ + 1.0000 SeO4-- + log_k -2.2132 + -delta_H -41.9836 kJ/mol # Calculated enthalpy of reaction CdSeO4 +# Enthalpy of formation: -633.063 kJ/mol + -analytic -4.9901e+000 -1.9755e-002 7.3162e+002 2.5063e+000 1.2426e+001 +# -Range: 0-200 + +CdSiO3 + CdSiO3 +2.0000 H+ = + 1.0000 Cd++ + 1.0000 H2O + 1.0000 SiO2 + log_k 7.5136 + -delta_H -50.3427 kJ/mol # Calculated enthalpy of reaction CdSiO3 +# Enthalpy of formation: -1189.09 kJ/mol + -analytic 2.6419e+002 6.2488e-002 -5.3518e+003 -1.0401e+002 -9.0973e+001 +# -Range: 0-200 + +Ce + Ce +3.0000 H+ +0.7500 O2 = + 1.0000 Ce+++ + 1.5000 H2O + log_k 182.9563 + -delta_H -1120.06 kJ/mol # Calculated enthalpy of reaction Ce +# Enthalpy of formation: 0 kJ/mol + -analytic -5.1017e+001 -2.6149e-002 5.8511e+004 1.8382e+001 9.1302e+002 +# -Range: 0-300 + +Ce(OH)3 + Ce(OH)3 +3.0000 H+ = + 1.0000 Ce+++ + 3.0000 H2O + log_k 19.8852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Ce(OH)3(am) + Ce(OH)3 +3.0000 H+ = + 1.0000 Ce+++ + 3.0000 H2O + log_k 21.1852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Ce2(CO3)3:8H2O + Ce2(CO3)3:8H2O +3.0000 H+ = + 2.0000 Ce+++ + 3.0000 HCO3- + 8.0000 H2O + log_k -4.1136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(CO3)3:8H2O +# Enthalpy of formation: 0 kcal/mol + +Ce2O3 + Ce2O3 +6.0000 H+ = + 2.0000 Ce+++ + 3.0000 H2O + log_k 62.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2O3 +# Enthalpy of formation: 0 kcal/mol + +Ce3(PO4)4 + Ce3(PO4)4 +4.0000 H+ = + 3.0000 Ce++++ + 4.0000 HPO4-- + log_k -40.8127 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(PO4)4 +# Enthalpy of formation: 0 kcal/mol + +CeF3:.5H2O + CeF3:.5H2O = + 0.5000 H2O + 1.0000 Ce+++ + 3.0000 F- + log_k -18.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +CeO2 + CeO2 +4.0000 H+ = + 1.0000 Ce++++ + 2.0000 H2O + log_k -8.1600 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeO2 +# Enthalpy of formation: 0 kcal/mol + +CePO4:10H2O + CePO4:10H2O +1.0000 H+ = + 1.0000 Ce+++ + 1.0000 HPO4-- + 10.0000 H2O + log_k -12.2782 + -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Celadonite + KMgAlSi4O10(OH)2 +6.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 1.0000 Mg++ + 4.0000 H2O + 4.0000 SiO2 + log_k 7.4575 + -delta_H -74.3957 kJ/mol # Calculated enthalpy of reaction Celadonite +# Enthalpy of formation: -1394.9 kcal/mol + -analytic -3.3097e+001 1.7989e-002 1.8919e+004 -2.1219e+000 -2.0588e+006 +# -Range: 0-300 + +Celestite + SrSO4 = + 1.0000 SO4-- + 1.0000 Sr++ + log_k -5.6771 + -delta_H -7.40568 kJ/mol # Calculated enthalpy of reaction Celestite +# Enthalpy of formation: -347.3 kcal/mol + -analytic -1.9063e+002 -7.4552e-002 3.9050e+003 7.8416e+001 6.0991e+001 +# -Range: 0-300 + +Cerussite + PbCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Pb++ + log_k -3.2091 + -delta_H 13.8992 kJ/mol # Calculated enthalpy of reaction Cerussite +# Enthalpy of formation: -168 kcal/mol + -analytic -1.2887e+002 -4.4372e-002 2.2336e+003 5.3091e+001 3.4891e+001 +# -Range: 0-300 + +Chalcanthite + CuSO4:5H2O = + 1.0000 Cu++ + 1.0000 SO4-- + 5.0000 H2O + log_k -2.6215 + -delta_H 6.57556 kJ/mol # Calculated enthalpy of reaction Chalcanthite +# Enthalpy of formation: -2279.68 kJ/mol + -analytic -1.1262e+002 -1.5544e-002 3.6176e+003 4.1420e+001 6.1471e+001 +# -Range: 0-200 + +Chalcedony + SiO2 = + 1.0000 SiO2 + log_k -3.7281 + -delta_H 31.4093 kJ/mol # Calculated enthalpy of reaction Chalcedony +# Enthalpy of formation: -217.282 kcal/mol + -analytic -9.0068e+000 9.3241e-003 4.0535e+003 -1.0830e+000 -7.5077e+005 +# -Range: 0-300 + +Chalcocite + Cu2S +1.0000 H+ = + 1.0000 HS- + 2.0000 Cu+ + log_k -34.7342 + -delta_H 206.748 kJ/mol # Calculated enthalpy of reaction Chalcocite +# Enthalpy of formation: -19 kcal/mol + -analytic -1.3703e+002 -4.0727e-002 -7.1694e+003 5.5963e+001 -1.1183e+002 +# -Range: 0-300 + +Chalcocyanite + CuSO4 = + 1.0000 Cu++ + 1.0000 SO4-- + log_k 2.9239 + -delta_H -72.5128 kJ/mol # Calculated enthalpy of reaction Chalcocyanite +# Enthalpy of formation: -771.4 kJ/mol + -analytic 5.8173e+000 -1.6933e-002 2.0097e+003 -1.8583e+000 3.4126e+001 +# -Range: 0-200 + +Chalcopyrite + CuFeS2 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 Fe++ + 2.0000 HS- + log_k -32.5638 + -delta_H 127.206 kJ/mol # Calculated enthalpy of reaction Chalcopyrite +# Enthalpy of formation: -44.453 kcal/mol + -analytic -3.1575e+002 -9.8947e-002 8.3400e+002 1.2522e+002 1.3106e+001 +# -Range: 0-300 + +Chamosite-7A + Fe2Al2SiO5(OH)4 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 2.0000 Fe++ + 7.0000 H2O + log_k 32.8416 + -delta_H -364.213 kJ/mol # Calculated enthalpy of reaction Chamosite-7A +# Enthalpy of formation: -902.407 kcal/mol + -analytic -2.5581e+002 -7.0890e-002 2.4619e+004 9.1789e+001 3.8424e+002 +# -Range: 0-300 + +Chlorargyrite + AgCl = + 1.0000 Ag+ + 1.0000 Cl- + log_k -9.7453 + -delta_H 65.739 kJ/mol # Calculated enthalpy of reaction Chlorargyrite +# Enthalpy of formation: -30.37 kcal/mol + -analytic -9.6834e+001 -3.4624e-002 -1.1820e+003 4.0962e+001 -1.8415e+001 +# -Range: 0-300 + +Chloromagnesite + MgCl2 = + 1.0000 Mg++ + 2.0000 Cl- + log_k 21.8604 + -delta_H -158.802 kJ/mol # Calculated enthalpy of reaction Chloromagnesite +# Enthalpy of formation: -641.317 kJ/mol + -analytic -2.3640e+002 -8.2017e-002 1.3480e+004 9.5963e+001 2.1042e+002 +# -Range: 0-300 + +Chromite + FeCr2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Cr+++ + 4.0000 H2O + log_k 15.1685 + -delta_H -267.755 kJ/mol # Calculated enthalpy of reaction Chromite +# Enthalpy of formation: -1444.83 kJ/mol + -analytic -1.9060e+002 -2.5695e-002 1.9465e+004 5.9865e+001 3.0379e+002 +# -Range: 0-300 + +Chrysocolla + CuSiH4O5 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 SiO2 + 3.0000 H2O + log_k 6.2142 + -delta_H 0 # Not possible to calculate enthalpy of reaction Chrysocolla +# Enthalpy of formation: 0 kcal/mol + +Chrysotile + Mg3Si2O5(OH)4 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Mg++ + 5.0000 H2O + log_k 31.1254 + -delta_H -218.041 kJ/mol # Calculated enthalpy of reaction Chrysotile +# Enthalpy of formation: -1043.12 kcal/mol + -analytic -9.2462e+001 -1.1359e-002 1.8312e+004 2.9289e+001 -6.2342e+005 +# -Range: 0-300 + +Cinnabar + HgS +1.0000 H+ = + 1.0000 HS- + 1.0000 Hg++ + log_k -38.9666 + -delta_H 207.401 kJ/mol # Calculated enthalpy of reaction Cinnabar +# Enthalpy of formation: -12.75 kcal/mol + -analytic -1.5413e+002 -4.6846e-002 -6.9806e+003 6.1639e+001 -1.0888e+002 +# -Range: 0-300 + +Claudetite + As2O3 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO3- + log_k -19.7647 + -delta_H 82.3699 kJ/mol # Calculated enthalpy of reaction Claudetite +# Enthalpy of formation: -654.444 kJ/mol + -analytic -1.4164e+002 -6.3704e-002 -2.1679e+003 5.9856e+001 -3.3787e+001 +# -Range: 0-300 + +Clausthalite + PbSe = + 1.0000 Pb++ + 1.0000 Se-- + log_k -36.2531 + -delta_H 0 # Not possible to calculate enthalpy of reaction Clausthalite +# Enthalpy of formation: -102.9 kJ/mol + -analytic -2.6473e+001 -1.0666e-002 -8.5540e+003 8.9226e+000 -1.3347e+002 +# -Range: 0-300 + +Clinochalcomenite + CuSeO3:2H2O = + 1.0000 Cu++ + 1.0000 SeO3-- + 2.0000 H2O + log_k -6.7873 + -delta_H -31.6645 kJ/mol # Calculated enthalpy of reaction Clinochalcomenite +# Enthalpy of formation: -235.066 kcal/mol + -analytic -4.6465e+001 -1.8071e-002 2.0307e+003 1.5455e+001 3.4499e+001 +# -Range: 0-200 + +Clinochlore-14A + Mg5Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Mg++ + 12.0000 H2O + log_k 67.2391 + -delta_H -612.379 kJ/mol # Calculated enthalpy of reaction Clinochlore-14A +# Enthalpy of formation: -2116.96 kcal/mol + -analytic -2.0441e+002 -6.2268e-002 3.5388e+004 6.9239e+001 5.5225e+002 +# -Range: 0-300 + +Clinochlore-7A + Mg5Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Mg++ + 12.0000 H2O + log_k 70.6124 + -delta_H -628.14 kJ/mol # Calculated enthalpy of reaction Clinochlore-7A +# Enthalpy of formation: -2113.2 kcal/mol + -analytic -2.1644e+002 -6.4187e-002 3.6548e+004 7.4123e+001 5.7037e+002 +# -Range: 0-300 + +Clinoptilolite +# Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45F +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 14.5330 SiO2 17.8560 H2O + Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45Fe.017Si14.5330O46.922H21.844 +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O + log_k -9.7861 + -delta_H -20.8784 kJ/mol # Calculated enthalpy of reaction Clinoptilolite +# Enthalpy of formation: -20587.8 kJ/mol + -analytic -1.3213e+000 6.4960e-002 5.0630e+004 -4.6120e+001 -7.4699e+006 +# -Range: 0-300 + +Clinoptilolite-Ca + Ca1.7335Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O + log_k -7.0095 + -delta_H -74.6745 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Ca +# Enthalpy of formation: -4919.84 kcal/mol + -analytic -4.4820e+001 5.3696e-002 5.4878e+004 -3.1459e+001 -7.5491e+006 +# -Range: 0-300 + +Clinoptilolite-Cs + Cs3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 14.5330 SiO2 + 17.8560 H2O + log_k -13.0578 + -delta_H 96.9005 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Cs +# Enthalpy of formation: -4949.65 kcal/mol + -analytic -8.4746e+000 7.1997e-002 4.9675e+004 -4.1406e+001 -8.0632e+006 +# -Range: 0-300 + +Clinoptilolite-K + K3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.5330 SiO2 + 17.8560 H2O + log_k -10.9485 + -delta_H 67.4862 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-K +# Enthalpy of formation: -4937.77 kcal/mol + -analytic 1.1697e+001 6.9480e-002 4.7718e+004 -4.7442e+001 -7.6907e+006 +# -Range: 0-300 + +Clinoptilolite-NH4 + (NH4)3.467Al3.45Fe.017Si14.533O36:10.922H2O +10.4010 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 NH3 + 14.5330 SiO2 + 17.8560 H2O + log_k -42.4791 + -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-NH4 +# Enthalpy of formation: 0 kcal/mol + +Clinoptilolite-Na + Na3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8560 H2O + log_k -7.1363 + -delta_H 2.32824 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Na +# Enthalpy of formation: -4912.36 kcal/mol + -analytic -3.4572e+001 6.8377e-002 5.1962e+004 -3.3426e+001 -7.5586e+006 +# -Range: 0-300 + +Clinoptilolite-Sr + Sr1.7335Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O + log_k -7.1491 + -delta_H -66.2129 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Sr +# Enthalpy of formation: -4925.1 kcal/mol + -analytic 3.2274e+001 6.7050e-002 5.0880e+004 -5.9597e+001 -7.3876e+006 +# -Range: 0-300 + +Clinoptilolite-dehy +# Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45F +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 6.9340 H2O 14.5330 SiO2 + Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 + log_k 25.8490 + -delta_H -276.592 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy +# Enthalpy of formation: -17210.2 kJ/mol + -analytic -2.0505e+002 6.0155e-002 8.2682e+004 1.5333e+001 -9.1369e+006 +# -Range: 0-300 + +Clinoptilolite-dehy-Ca + Ca1.7335Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 + log_k 28.6255 + -delta_H -329.278 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Ca +# Enthalpy of formation: -4112.83 kcal/mol + -analytic -1.2948e+002 6.5698e-002 8.0229e+004 -1.2812e+001 -8.8320e+006 +# -Range: 0-300 + +Clinoptilolite-dehy-Cs + Cs3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 6.9340 H2O + 14.5330 SiO2 + log_k 22.5771 + -delta_H -164.837 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Cs +# Enthalpy of formation: -4140.93 kcal/mol + -analytic -1.2852e+002 7.9047e-002 7.7262e+004 -1.0422e+001 -9.4504e+006 +# -Range: 0-300 + +Clinoptilolite-dehy-K + K3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 6.9340 H2O + 14.5330 SiO2 + log_k 24.6865 + -delta_H -191.289 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-K +# Enthalpy of formation: -4129.76 kcal/mol + -analytic -1.2241e+002 7.4761e-002 7.6067e+004 -1.1315e+001 -9.1389e+006 +# -Range: 0-300 + +Clinoptilolite-dehy-NH4 + (NH4)3.467Al3.45Fe.017Si14.533O36 +10.4010 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 NH3 + 6.9340 H2O + 14.5330 SiO2 + log_k -6.8441 + -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-dehy-NH4 +# Enthalpy of formation: 0 kcal/mol + +Clinoptilolite-dehy-Na + Na3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 6.9340 H2O + 14.5330 SiO2 + log_k 28.4987 + -delta_H -253.798 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Na +# Enthalpy of formation: -4104.98 kcal/mol + -analytic -1.4386e+002 7.6846e-002 7.8723e+004 -5.9741e+000 -8.9159e+006 +# -Range: 0-300 + +Clinoptilolite-dehy-Sr + Sr1.7335Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 + log_k 28.4859 + -delta_H -321.553 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Sr +# Enthalpy of formation: -4117.92 kcal/mol + -analytic -1.8410e+002 6.0457e-002 8.3626e+004 6.4304e+000 -9.0962e+006 +# -Range: 0-300 + +Clinoptilolite-hy-Ca +# Ca1.7335Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 18.5790 H2O + Ca1.7335Al3.45Fe.017Si14.533O36:11.645H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 18.5790 H2O + log_k -7.0108 + -delta_H -65.4496 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Ca +# Enthalpy of formation: -4971.44 kcal/mol + -analytic 8.6833e+001 7.1520e-002 4.6854e+004 -7.8023e+001 -7.0900e+006 +# -Range: 0-300 + +Clinoptilolite-hy-Cs +# Cs3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 13.1640 H2O + 14.5330 SiO2 + Cs3.467Al3.45Fe.017Si14.533O36:6.23H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 13.1640 H2O + 14.5330 SiO2 + log_k -13.0621 + -delta_H 44.6397 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Cs +# Enthalpy of formation: -4616.61 kcal/mol + -analytic -2.3362e+001 7.4922e-002 5.4544e+004 -4.1092e+001 -8.3387e+006 +# -Range: 0-300 + +Clinoptilolite-hy-K +# K3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.4330 H2O + 14.5330 SiO2 + K3.467Al3.45Fe.017Si14.533O36:7.499H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.4330 H2O + 14.5330 SiO2 + log_k -10.9523 + -delta_H 29.5879 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-K +# Enthalpy of formation: -4694.86 kcal/mol + -analytic 1.6223e+001 7.3919e-002 5.0447e+004 -5.2790e+001 -7.8484e+006 +# -Range: 0-300 + +Clinoptilolite-hy-Na +# Na3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8110 H2O + Na3.467Al3.45Fe.017Si14.533O36:10.877H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8110 H2O + log_k -7.1384 + -delta_H 1.88166 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Na +# Enthalpy of formation: -4909.18 kcal/mol + -analytic -8.4189e+000 7.2018e-002 5.0501e+004 -4.2851e+001 -7.4714e+006 +# -Range: 0-300 + +Clinoptilolite-hy-Sr +# Sr1.7335Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 20.8270 H2O + Sr1.7335Al3.45Fe.017Si14.533O36:13.893H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 20.8270 H2O + log_k -7.1498 + -delta_H -31.6858 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Sr +# Enthalpy of formation: -5136.33 kcal/mol + -analytic 1.0742e-001 5.9065e-002 4.9985e+004 -4.4648e+001 -7.3382e+006 +# -Range: 0-300 + +Clinozoisite + Ca2Al3Si3O12(OH) +13.0000 H+ = + 2.0000 Ca++ + 3.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O + log_k 43.2569 + -delta_H -457.755 kJ/mol # Calculated enthalpy of reaction Clinozoisite +# Enthalpy of formation: -1643.78 kcal/mol + -analytic -2.8690e+001 -3.7056e-002 2.2770e+004 3.7880e+000 -2.5834e+005 +# -Range: 0-300 + +Co + Co +2.0000 H+ +0.5000 O2 = + 1.0000 Co++ + 1.0000 H2O + log_k 52.5307 + -delta_H -337.929 kJ/mol # Calculated enthalpy of reaction Co +# Enthalpy of formation: 0 kJ/mol + -analytic -6.2703e+001 -2.0172e-002 1.8888e+004 2.3391e+001 2.9474e+002 +# -Range: 0-300 + +Co(NO3)2 + Co(NO3)2 = + 1.0000 Co++ + 2.0000 NO3- + log_k 8.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(NO3)2 +# Enthalpy of formation: 0 kcal/mol + +Co(OH)2 + Co(OH)2 +2.0000 H+ = + 1.0000 Co++ + 2.0000 H2O + log_k 12.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 +# Enthalpy of formation: 0 kcal/mol + +Co2SiO4 + Co2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Co++ + 2.0000 H2O + log_k 6.6808 + -delta_H -88.6924 kJ/mol # Calculated enthalpy of reaction Co2SiO4 +# Enthalpy of formation: -353.011 kcal/mol + -analytic -3.9978e+000 -3.7985e-003 5.1554e+003 -1.5033e+000 -1.6100e+005 +# -Range: 0-300 + +Co3(AsO4)2 + Co3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Co++ + log_k 8.5318 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(AsO4)2 +# Enthalpy of formation: 0 kcal/mol + +Co3(PO4)2 + Co3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Co++ + log_k -10.0123 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(PO4)2 +# Enthalpy of formation: 0 kcal/mol + +CoCl2 + CoCl2 = + 1.0000 Co++ + 2.0000 Cl- + log_k 8.2641 + -delta_H -79.5949 kJ/mol # Calculated enthalpy of reaction CoCl2 +# Enthalpy of formation: -312.722 kJ/mol + -analytic -2.2386e+002 -8.0936e-002 8.8631e+003 9.1528e+001 1.3837e+002 +# -Range: 0-300 + +CoCl2:2H2O + CoCl2:2H2O = + 1.0000 Co++ + 2.0000 Cl- + 2.0000 H2O + log_k 4.6661 + -delta_H -40.7876 kJ/mol # Calculated enthalpy of reaction CoCl2:2H2O +# Enthalpy of formation: -923.206 kJ/mol + -analytic -5.6411e+001 -2.3390e-002 3.0519e+003 2.3361e+001 5.1845e+001 +# -Range: 0-200 + +CoCl2:6H2O + CoCl2:6H2O = + 1.0000 Co++ + 2.0000 Cl- + 6.0000 H2O + log_k 2.6033 + -delta_H 8.32709 kJ/mol # Calculated enthalpy of reaction CoCl2:6H2O +# Enthalpy of formation: -2115.67 kJ/mol + -analytic -1.5066e+002 -2.2132e-002 5.0591e+003 5.7743e+001 8.5962e+001 +# -Range: 0-200 + +CoF2 + CoF2 = + 1.0000 Co++ + 2.0000 F- + log_k -5.1343 + -delta_H -36.6708 kJ/mol # Calculated enthalpy of reaction CoF2 +# Enthalpy of formation: -692.182 kJ/mol + -analytic -2.5667e+002 -8.4071e-002 7.6256e+003 1.0143e+002 1.1907e+002 +# -Range: 0-300 + +CoF3 + CoF3 = + 1.0000 Co+++ + 3.0000 F- + log_k -4.9558 + -delta_H -103.136 kJ/mol # Calculated enthalpy of reaction CoF3 +# Enthalpy of formation: -193.8 kcal/mol + -analytic -3.7854e+002 -1.2911e-001 1.3215e+004 1.4859e+002 2.0632e+002 +# -Range: 0-300 + +CoFe2O4 + CoFe2O4 +8.0000 H+ = + 1.0000 Co++ + 2.0000 Fe+++ + 4.0000 H2O + log_k 0.8729 + -delta_H -160.674 kJ/mol # Calculated enthalpy of reaction CoFe2O4 +# Enthalpy of formation: -272.466 kcal/mol + -analytic -3.0149e+002 -7.9159e-002 1.5683e+004 1.1046e+002 2.4480e+002 +# -Range: 0-300 + +CoHPO4 + CoHPO4 = + 1.0000 Co++ + 1.0000 HPO4-- + log_k -6.7223 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoHPO4 +# Enthalpy of formation: 0 kcal/mol + +CoO + CoO +2.0000 H+ = + 1.0000 Co++ + 1.0000 H2O + log_k 13.5553 + -delta_H -106.05 kJ/mol # Calculated enthalpy of reaction CoO +# Enthalpy of formation: -237.946 kJ/mol + -analytic -8.4424e+001 -1.9457e-002 7.8616e+003 3.1281e+001 1.2270e+002 +# -Range: 0-300 + +CoS + CoS +1.0000 H+ = + 1.0000 Co++ + 1.0000 HS- + log_k -7.3740 + -delta_H 10.1755 kJ/mol # Calculated enthalpy of reaction CoS +# Enthalpy of formation: -20.182 kcal/mol + -analytic -1.5128e+002 -4.8484e-002 2.9553e+003 5.9983e+001 4.6158e+001 +# -Range: 0-300 + +CoSO4 + CoSO4 = + 1.0000 Co++ + 1.0000 SO4-- + log_k 2.8996 + -delta_H -79.7952 kJ/mol # Calculated enthalpy of reaction CoSO4 +# Enthalpy of formation: -887.964 kJ/mol + -analytic -1.9907e+002 -7.7890e-002 7.7193e+003 8.0525e+001 1.2051e+002 +# -Range: 0-300 + +CoSO4.3Co(OH)2 + CoSO4(Co(OH)2)3 +6.0000 H+ = + 1.0000 SO4-- + 4.0000 Co++ + 6.0000 H2O + log_k 33.2193 + -delta_H -379.41 kJ/mol # Calculated enthalpy of reaction CoSO4.3Co(OH)2 +# Enthalpy of formation: -2477.85 kJ/mol + -analytic -2.2830e+002 -4.0197e-002 2.5937e+004 7.5367e+001 4.4053e+002 +# -Range: 0-200 + +CoSO4:6H2O + CoSO4:6H2O = + 1.0000 Co++ + 1.0000 SO4-- + 6.0000 H2O + log_k -2.3512 + -delta_H 1.08483 kJ/mol # Calculated enthalpy of reaction CoSO4:6H2O +# Enthalpy of formation: -2683.87 kJ/mol + -analytic -2.5469e+002 -7.3092e-002 6.6767e+003 1.0172e+002 1.0426e+002 +# -Range: 0-300 + +CoSO4:H2O + CoSO4:H2O = + 1.0000 Co++ + 1.0000 H2O + 1.0000 SO4-- + log_k -1.2111 + -delta_H -52.6556 kJ/mol # Calculated enthalpy of reaction CoSO4:H2O +# Enthalpy of formation: -287.032 kcal/mol + -analytic -1.0570e+001 -1.6196e-002 1.7180e+003 3.4000e+000 2.9178e+001 +# -Range: 0-200 + +CoSeO3 + CoSeO3 = + 1.0000 Co++ + 1.0000 SeO3-- + log_k -7.0800 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO3 +# Enthalpy of formation: 0 kcal/mol + +CoWO4 + CoWO4 = + 1.0000 Co++ + 1.0000 WO4-- + log_k -12.2779 + -delta_H 13.6231 kJ/mol # Calculated enthalpy of reaction CoWO4 +# Enthalpy of formation: -274.256 kcal/mol + -analytic -3.7731e+001 -2.4719e-002 -1.0347e+003 1.4663e+001 -1.7558e+001 +# -Range: 0-200 + +Coesite + SiO2 = + 1.0000 SiO2 + log_k -3.1893 + -delta_H 28.6144 kJ/mol # Calculated enthalpy of reaction Coesite +# Enthalpy of formation: -216.614 kcal/mol + -analytic -9.7312e+000 9.1773e-003 4.2143e+003 -7.8065e-001 -7.4905e+005 +# -Range: 0-300 + +Coffinite + USiO4 +4.0000 H+ = + 1.0000 SiO2 + 1.0000 U++++ + 2.0000 H2O + log_k -8.0530 + -delta_H -49.2493 kJ/mol # Calculated enthalpy of reaction Coffinite +# Enthalpy of formation: -1991.33 kJ/mol + -analytic 2.3126e+002 6.2389e-002 -4.6189e+003 -9.7976e+001 -7.8517e+001 +# -Range: 0-200 + +Colemanite + Ca2B6O11:5H2O +4.0000 H+ +2.0000 H2O = + 2.0000 Ca++ + 6.0000 B(OH)3 + log_k 21.5148 + -delta_H 0 # Not possible to calculate enthalpy of reaction Colemanite +# Enthalpy of formation: 0 kcal/mol + +Cordierite_anhyd + Mg2Al4Si5O18 +16.0000 H+ = + 2.0000 Mg++ + 4.0000 Al+++ + 5.0000 SiO2 + 8.0000 H2O + log_k 52.3035 + -delta_H -626.219 kJ/mol # Calculated enthalpy of reaction Cordierite_anhyd +# Enthalpy of formation: -2183.2 kcal/mol + -analytic 2.6562e+000 -2.3801e-002 3.5192e+004 -1.9911e+001 -1.0894e+006 +# -Range: 0-300 + +Cordierite_hydr + Mg2Al4Si5O18:H2O +16.0000 H+ = + 2.0000 Mg++ + 4.0000 Al+++ + 5.0000 SiO2 + 9.0000 H2O + log_k 49.8235 + -delta_H -608.814 kJ/mol # Calculated enthalpy of reaction Cordierite_hydr +# Enthalpy of formation: -2255.68 kcal/mol + -analytic -1.2985e+002 -4.1335e-002 4.1566e+004 2.7892e+001 -1.4819e+006 +# -Range: 0-300 + +Corkite + PbFe3(PO4)(SO4)(OH)6 +7.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pb++ + 1.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O + log_k -9.7951 + -delta_H 0 # Not possible to calculate enthalpy of reaction Corkite +# Enthalpy of formation: 0 kcal/mol + +Corundum + Al2O3 +6.0000 H+ = + 2.0000 Al+++ + 3.0000 H2O + log_k 18.3121 + -delta_H -258.626 kJ/mol # Calculated enthalpy of reaction Corundum +# Enthalpy of formation: -400.5 kcal/mol + -analytic -1.4278e+002 -7.8519e-002 1.3776e+004 5.5881e+001 2.1501e+002 +# -Range: 0-300 + +Cotunnite + PbCl2 = + 1.0000 Pb++ + 2.0000 Cl- + log_k -4.8406 + -delta_H 26.1441 kJ/mol # Calculated enthalpy of reaction Cotunnite +# Enthalpy of formation: -359.383 kJ/mol + -analytic 1.9624e+001 -1.9161e-002 -3.4686e+003 -2.8806e+000 -5.8909e+001 +# -Range: 0-200 + +Covellite + CuS +1.0000 H+ = + 1.0000 Cu++ + 1.0000 HS- + log_k -22.8310 + -delta_H 101.88 kJ/mol # Calculated enthalpy of reaction Covellite +# Enthalpy of formation: -12.5 kcal/mol + -analytic -1.6068e+002 -4.9040e-002 -1.4234e+003 6.3536e+001 -2.2164e+001 +# -Range: 0-300 + +Cr + Cr +3.0000 H+ +0.7500 O2 = + 1.0000 Cr+++ + 1.5000 H2O + log_k 98.6784 + -delta_H -658.145 kJ/mol # Calculated enthalpy of reaction Cr +# Enthalpy of formation: 0 kJ/mol + -analytic -2.2488e+001 -5.5886e-003 3.4288e+004 3.1585e+000 5.3503e+002 +# -Range: 0-300 + +CrCl3 + CrCl3 = + 1.0000 Cr+++ + 3.0000 Cl- + log_k 17.9728 + -delta_H -183.227 kJ/mol # Calculated enthalpy of reaction CrCl3 +# Enthalpy of formation: -556.5 kJ/mol + -analytic -2.6348e+002 -9.5339e-002 1.4785e+004 1.0517e+002 2.3079e+002 +# -Range: 0-300 + +CrF3 + CrF3 = + 1.0000 Cr+++ + 3.0000 F- + log_k -8.5713 + -delta_H -85.5293 kJ/mol # Calculated enthalpy of reaction CrF3 +# Enthalpy of formation: -277.008 kcal/mol + -analytic -3.2175e+002 -1.0279e-001 1.1394e+004 1.2348e+002 1.7789e+002 +# -Range: 0-300 + +CrF4 + CrF4 +2.0000 H2O = + 0.5000 Cr++ + 0.5000 CrO4-- + 4.0000 F- + 4.0000 H+ + log_k -12.3132 + -delta_H -35.2125 kJ/mol # Calculated enthalpy of reaction CrF4 +# Enthalpy of formation: -298 kcal/mol + -analytic 4.3136e+001 -4.3783e-002 -3.6809e+003 -1.2153e+001 -6.2521e+001 +# -Range: 0-200 + +CrI3 + CrI3 = + 1.0000 Cr+++ + 3.0000 I- + log_k 25.6112 + -delta_H -204.179 kJ/mol # Calculated enthalpy of reaction CrI3 +# Enthalpy of formation: -49 kcal/mol + -analytic 4.9232e+000 -2.5164e-002 8.4026e+003 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +CrO2 + CrO2 = + 0.5000 Cr++ + 0.5000 CrO4-- + log_k -19.1332 + -delta_H 85.9812 kJ/mol # Calculated enthalpy of reaction CrO2 +# Enthalpy of formation: -143 kcal/mol + -analytic 2.7763e+000 -7.7698e-003 -5.2893e+003 -7.4970e-001 -8.9821e+001 +# -Range: 0-200 + +CrO3 + CrO3 +1.0000 H2O = + 1.0000 CrO4-- + 2.0000 H+ + log_k -3.5221 + -delta_H -5.78647 kJ/mol # Calculated enthalpy of reaction CrO3 +# Enthalpy of formation: -140.9 kcal/mol + -analytic -1.3262e+002 -6.1411e-002 2.2083e+003 5.6564e+001 3.4497e+001 +# -Range: 0-300 + +CrS + CrS +1.0000 H+ = + 1.0000 Cr++ + 1.0000 HS- + log_k -0.6304 + -delta_H -26.15 kJ/mol # Calculated enthalpy of reaction CrS +# Enthalpy of formation: -31.9 kcal/mol + -analytic -1.1134e+002 -3.5954e-002 3.8744e+003 4.3815e+001 6.0490e+001 +# -Range: 0-300 + +Cristobalite(alpha) + SiO2 = + 1.0000 SiO2 + log_k -3.4488 + -delta_H 29.2043 kJ/mol # Calculated enthalpy of reaction Cristobalite(alpha) +# Enthalpy of formation: -216.755 kcal/mol + -analytic -1.1936e+001 9.0520e-003 4.3701e+003 -1.1464e-001 -7.6568e+005 +# -Range: 0-300 + +Cristobalite(beta) + SiO2 = + 1.0000 SiO2 + log_k -3.0053 + -delta_H 24.6856 kJ/mol # Calculated enthalpy of reaction Cristobalite(beta) +# Enthalpy of formation: -215.675 kcal/mol + -analytic -4.7414e+000 9.7567e-003 3.8831e+003 -2.5830e+000 -6.9636e+005 +# -Range: 0-300 + +Crocoite + PbCrO4 = + 1.0000 CrO4-- + 1.0000 Pb++ + log_k -12.7177 + -delta_H 48.6181 kJ/mol # Calculated enthalpy of reaction Crocoite +# Enthalpy of formation: -222 kcal/mol + -analytic 3.0842e+001 -1.4430e-002 -5.0292e+003 -9.0525e+000 -8.5414e+001 +# -Range: 0-200 + +Cronstedtite-7A + Fe2Fe2SiO5(OH)4 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Fe++ + 2.0000 Fe+++ + 7.0000 H2O + log_k 16.2603 + -delta_H -244.266 kJ/mol # Calculated enthalpy of reaction Cronstedtite-7A +# Enthalpy of formation: -697.413 kcal/mol + -analytic -2.3783e+002 -7.1026e-002 1.7752e+004 8.7147e+001 2.7707e+002 +# -Range: 0-300 + +Cs + Cs +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Cs+ + log_k 72.5987 + -delta_H -397.913 kJ/mol # Calculated enthalpy of reaction Cs +# Enthalpy of formation: 0 kJ/mol + -analytic -1.2875e+001 -7.3845e-003 2.1019e+004 6.9347e+000 3.2799e+002 +# -Range: 0-300 + +Cs2NaAmCl6 + Cs2NaAmCl6 = + 1.0000 Am+++ + 1.0000 Na+ + 2.0000 Cs+ + 6.0000 Cl- + log_k 11.7089 + -delta_H -59.7323 kJ/mol # Calculated enthalpy of reaction Cs2NaAmCl6 +# Enthalpy of formation: -2315.8 kJ/mol + -analytic 5.1683e+001 -5.0340e-002 -2.3205e+003 -6.9536e+000 -3.9422e+001 +# -Range: 0-200 + +Cs2U2O7 + Cs2U2O7 +6.0000 H+ = + 2.0000 Cs+ + 2.0000 UO2++ + 3.0000 H2O + log_k 31.0263 + -delta_H -191.57 kJ/mol # Calculated enthalpy of reaction Cs2U2O7 +# Enthalpy of formation: -3220 kJ/mol + -analytic -5.1436e+001 -7.4096e-003 1.2524e+004 1.7827e+001 -1.2899e+005 +# -Range: 0-300 + +Cs2U4O12 + Cs2U4O12 +8.0000 H+ = + 2.0000 Cs+ + 2.0000 UO2+ + 2.0000 UO2++ + 4.0000 H2O + log_k 18.9460 + -delta_H -175.862 kJ/mol # Calculated enthalpy of reaction Cs2U4O12 +# Enthalpy of formation: -5571.8 kJ/mol + -analytic -3.3411e+001 3.6196e-003 1.0508e+004 6.5823e+000 -2.3403e+004 +# -Range: 0-300 + +Cs2UO4 + Cs2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 Cs+ + 2.0000 H2O + log_k 35.8930 + -delta_H -178.731 kJ/mol # Calculated enthalpy of reaction Cs2UO4 +# Enthalpy of formation: -1928 kJ/mol + -analytic -3.0950e+001 -3.5650e-003 1.0690e+004 1.2949e+001 1.6682e+002 +# -Range: 0-300 + +Cu + Cu +2.0000 H+ +0.5000 O2 = + 1.0000 Cu++ + 1.0000 H2O + log_k 31.5118 + -delta_H -214.083 kJ/mol # Calculated enthalpy of reaction Cu +# Enthalpy of formation: 0 kcal/mol + -analytic -7.0719e+001 -2.0300e-002 1.2802e+004 2.6401e+001 1.9979e+002 +# -Range: 0-300 + +Cu3(PO4)2 + Cu3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cu++ + log_k -12.2247 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2 +# Enthalpy of formation: 0 kcal/mol + +Cu3(PO4)2:3H2O + Cu3(PO4)2:3H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cu++ + 3.0000 H2O + log_k -10.4763 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2:3H2O +# Enthalpy of formation: 0 kcal/mol + +CuCl2 + CuCl2 = + 1.0000 Cu++ + 2.0000 Cl- + log_k 3.7308 + -delta_H -48.5965 kJ/mol # Calculated enthalpy of reaction CuCl2 +# Enthalpy of formation: -219.874 kJ/mol + -analytic -1.7803e+001 -2.4432e-002 1.5729e+003 9.5104e+000 2.6716e+001 +# -Range: 0-200 + +CuCr2O4 + CuCr2O4 +8.0000 H+ = + 1.0000 Cu++ + 2.0000 Cr+++ + 4.0000 H2O + log_k 16.2174 + -delta_H -268.768 kJ/mol # Calculated enthalpy of reaction CuCr2O4 +# Enthalpy of formation: -307.331 kcal/mol + -analytic -1.8199e+002 -1.0254e-002 2.0123e+004 5.4062e+001 3.4178e+002 +# -Range: 0-200 + +CuF + CuF = + 1.0000 Cu+ + 1.0000 F- + log_k 7.0800 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF +# Enthalpy of formation: 0 kcal/mol + +CuF2 + CuF2 = + 1.0000 Cu++ + 2.0000 F- + log_k -0.6200 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2 +# Enthalpy of formation: 0 kcal/mol + +CuF2:2H2O + CuF2:2H2O = + 1.0000 Cu++ + 2.0000 F- + 2.0000 H2O + log_k -4.5500 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2:2H2O +# Enthalpy of formation: 0 kcal/mol + +CuSeO3 + CuSeO3 = + 1.0000 Cu++ + 1.0000 SeO3-- + log_k -7.6767 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuSeO3 +# Enthalpy of formation: 0 kcal/mol + +Cuprite + Cu2O +2.0000 H+ = + 1.0000 H2O + 2.0000 Cu+ + log_k -1.9031 + -delta_H 28.355 kJ/mol # Calculated enthalpy of reaction Cuprite +# Enthalpy of formation: -40.83 kcal/mol + -analytic -8.6240e+001 -1.1445e-002 1.7851e+003 3.3041e+001 2.7880e+001 +# -Range: 0-300 + +Daphnite-14A + Fe5AlAlSi3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Fe++ + 12.0000 H2O + log_k 52.2821 + -delta_H -517.561 kJ/mol # Calculated enthalpy of reaction Daphnite-14A +# Enthalpy of formation: -1693.04 kcal/mol + -analytic -1.5261e+002 -6.1392e-002 2.8283e+004 5.1788e+001 4.4137e+002 +# -Range: 0-300 + +Daphnite-7A + Fe5AlAlSi3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Fe++ + 12.0000 H2O + log_k 55.6554 + -delta_H -532.326 kJ/mol # Calculated enthalpy of reaction Daphnite-7A +# Enthalpy of formation: -1689.51 kcal/mol + -analytic -1.6430e+002 -6.3160e-002 2.9499e+004 5.6442e+001 4.6035e+002 +# -Range: 0-300 + +Dawsonite + NaAlCO3(OH)2 +3.0000 H+ = + 1.0000 Al+++ + 1.0000 HCO3- + 1.0000 Na+ + 2.0000 H2O + log_k 4.3464 + -delta_H -76.3549 kJ/mol # Calculated enthalpy of reaction Dawsonite +# Enthalpy of formation: -1963.96 kJ/mol + -analytic -1.1393e+002 -2.3487e-002 7.1758e+003 4.0900e+001 1.2189e+002 +# -Range: 0-200 + +Delafossite + CuFeO2 +4.0000 H+ = + 1.0000 Cu+ + 1.0000 Fe+++ + 2.0000 H2O + log_k -6.4172 + -delta_H -18.6104 kJ/mol # Calculated enthalpy of reaction Delafossite +# Enthalpy of formation: -126.904 kcal/mol + -analytic -1.5275e+002 -3.5478e-002 5.1404e+003 5.6437e+001 8.0255e+001 +# -Range: 0-300 + +Diaspore + AlHO2 +3.0000 H+ = + 1.0000 Al+++ + 2.0000 H2O + log_k 7.1603 + -delta_H -110.42 kJ/mol # Calculated enthalpy of reaction Diaspore +# Enthalpy of formation: -238.924 kcal/mol + -analytic -1.2618e+002 -3.1671e-002 8.8737e+003 4.5669e+001 1.3850e+002 +# -Range: 0-300 + +Dicalcium_silicate + Ca2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 2.0000 H2O + log_k 37.1725 + -delta_H -217.642 kJ/mol # Calculated enthalpy of reaction Dicalcium_silicate +# Enthalpy of formation: -2317.9 kJ/mol + -analytic -5.9723e+001 -1.3682e-002 1.5461e+004 2.1547e+001 -3.7732e+005 +# -Range: 0-300 + +Diopside + CaMgSi2O6 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 H2O + 2.0000 SiO2 + log_k 20.9643 + -delta_H -133.775 kJ/mol # Calculated enthalpy of reaction Diopside +# Enthalpy of formation: -765.378 kcal/mol + -analytic 7.1240e+001 1.5514e-002 8.1437e+003 -3.0672e+001 -5.6880e+005 +# -Range: 0-300 + +Dioptase + CuSiO2(OH)2 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 SiO2 + 2.0000 H2O + log_k 6.0773 + -delta_H -25.2205 kJ/mol # Calculated enthalpy of reaction Dioptase +# Enthalpy of formation: -1358.47 kJ/mol + -analytic 2.3913e+002 6.2669e-002 -5.4030e+003 -9.4420e+001 -9.1834e+001 +# -Range: 0-200 + +Dolomite + CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- + log_k 2.5135 + -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite +# Enthalpy of formation: -556.631 kcal/mol + -analytic -3.1782e+002 -9.8179e-002 1.0845e+004 1.2657e+002 1.6932e+002 +# -Range: 0-300 + +Dolomite-dis + CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- + log_k 4.0579 + -delta_H -72.2117 kJ/mol # Calculated enthalpy of reaction Dolomite-dis +# Enthalpy of formation: -553.704 kcal/mol + -analytic -3.1706e+002 -9.7886e-002 1.1442e+004 1.2604e+002 1.7864e+002 +# -Range: 0-300 + +Dolomite-ord + CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- + log_k 2.5135 + -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite-ord +# Enthalpy of formation: -556.631 kcal/mol + -analytic -3.1654e+002 -9.7902e-002 1.0805e+004 1.2607e+002 1.6870e+002 +# -Range: 0-300 + +Downeyite + SeO2 +1.0000 H2O = + 1.0000 SeO3-- + 2.0000 H+ + log_k -6.7503 + -delta_H 1.74473 kJ/mol # Calculated enthalpy of reaction Downeyite +# Enthalpy of formation: -53.8 kcal/mol + -analytic -1.2868e+002 -6.1183e-002 1.5802e+003 5.4490e+001 2.4696e+001 +# -Range: 0-300 + +Dy + Dy +3.0000 H+ +0.7500 O2 = + 1.0000 Dy+++ + 1.5000 H2O + log_k 180.8306 + -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Dy +# Enthalpy of formation: 0 kJ/mol + -analytic -6.8317e+001 -2.8321e-002 5.8927e+004 2.4211e+001 9.1953e+002 +# -Range: 0-300 + +Dy(OH)3 + Dy(OH)3 +3.0000 H+ = + 1.0000 Dy+++ + 3.0000 H2O + log_k 15.8852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Dy(OH)3(am) + Dy(OH)3 +3.0000 H+ = + 1.0000 Dy+++ + 3.0000 H2O + log_k 17.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Dy2(CO3)3 + Dy2(CO3)3 +3.0000 H+ = + 2.0000 Dy+++ + 3.0000 HCO3- + log_k -3.0136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Dy2O3 + Dy2O3 +6.0000 H+ = + 2.0000 Dy+++ + 3.0000 H2O + log_k 47.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2O3 +# Enthalpy of formation: 0 kcal/mol + +DyF3:.5H2O + DyF3:.5H2O = + 0.5000 H2O + 1.0000 Dy+++ + 3.0000 F- + log_k -16.5000 + -delta_H 0 # Not possible to calculate enthalpy of reaction DyF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +DyPO4:10H2O + DyPO4:10H2O +1.0000 H+ = + 1.0000 Dy+++ + 1.0000 HPO4-- + 10.0000 H2O + log_k -11.9782 + -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Enstatite + MgSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Mg++ + 1.0000 SiO2 + log_k 11.3269 + -delta_H -82.7302 kJ/mol # Calculated enthalpy of reaction Enstatite +# Enthalpy of formation: -369.686 kcal/mol + -analytic -4.9278e+001 -3.2832e-003 9.5205e+003 1.4437e+001 -5.4324e+005 +# -Range: 0-300 + +Epidote + Ca2FeAl2Si3O12OH +13.0000 H+ = + 1.0000 Fe+++ + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 7.0000 H2O + log_k 32.9296 + -delta_H -386.451 kJ/mol # Calculated enthalpy of reaction Epidote +# Enthalpy of formation: -1543.99 kcal/mol + -analytic -2.6187e+001 -3.6436e-002 1.9351e+004 3.3671e+000 -3.0319e+005 +# -Range: 0-300 + +Epidote-ord + FeCa2Al2(OH)(SiO4)3 +13.0000 H+ = + 1.0000 Fe+++ + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 7.0000 H2O + log_k 32.9296 + -delta_H -386.351 kJ/mol # Calculated enthalpy of reaction Epidote-ord +# Enthalpy of formation: -1544.02 kcal/mol + -analytic 1.9379e+001 -3.2870e-002 1.5692e+004 -1.1901e+001 2.4485e+002 +# -Range: 0-300 + +Epsomite + MgSO4:7H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 7.0000 H2O + log_k -1.9623 + -delta_H 0 # Not possible to calculate enthalpy of reaction Epsomite +# Enthalpy of formation: 0 kcal/mol + +Er + Er +3.0000 H+ +0.7500 O2 = + 1.0000 Er+++ + 1.5000 H2O + log_k 181.7102 + -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Er +# Enthalpy of formation: 0 kJ/mol + -analytic -1.4459e+002 -3.8221e-002 6.4073e+004 5.1047e+001 -3.1503e+005 +# -Range: 0-300 + +Er(OH)3 + Er(OH)3 +3.0000 H+ = + 1.0000 Er+++ + 3.0000 H2O + log_k 14.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Er(OH)3(am) + Er(OH)3 +3.0000 H+ = + 1.0000 Er+++ + 3.0000 H2O + log_k 18.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Er2(CO3)3 + Er2(CO3)3 +3.0000 H+ = + 2.0000 Er+++ + 3.0000 HCO3- + log_k -2.6136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Er2O3 + Er2O3 +6.0000 H+ = + 2.0000 Er+++ + 3.0000 H2O + log_k 42.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er2O3 +# Enthalpy of formation: 0 kcal/mol + +ErF3:.5H2O + ErF3:.5H2O = + 0.5000 H2O + 1.0000 Er+++ + 3.0000 F- + log_k -16.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction ErF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +ErPO4:10H2O + ErPO4:10H2O +1.0000 H+ = + 1.0000 Er+++ + 1.0000 HPO4-- + 10.0000 H2O + log_k -11.8782 + -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Erythrite + Co3(AsO4)2:8H2O +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Co++ + 8.0000 H2O + log_k 6.3930 + -delta_H 0 # Not possible to calculate enthalpy of reaction Erythrite +# Enthalpy of formation: 0 kcal/mol + +Eskolaite + Cr2O3 +2.0000 H2O +1.5000 O2 = + 2.0000 CrO4-- + 4.0000 H+ + log_k -9.1306 + -delta_H -32.6877 kJ/mol # Calculated enthalpy of reaction Eskolaite +# Enthalpy of formation: -1139.74 kJ/mol + -analytic -2.0411e+002 -1.2809e-001 2.2197e+003 9.1186e+001 3.4697e+001 +# -Range: 0-300 + +Ettringite + Ca6Al2(SO4)3(OH)12:26H2O +12.0000 H+ = + 2.0000 Al+++ + 3.0000 SO4-- + 6.0000 Ca++ + 38.0000 H2O + log_k 62.5362 + -delta_H -382.451 kJ/mol # Calculated enthalpy of reaction Ettringite +# Enthalpy of formation: -4193 kcal/mol + -analytic -1.0576e+003 -1.1585e-001 5.9580e+004 3.8585e+002 1.0121e+003 +# -Range: 0-200 + +Eu + Eu +3.0000 H+ +0.7500 O2 = + 1.0000 Eu+++ + 1.5000 H2O + log_k 165.1443 + -delta_H -1025.08 kJ/mol # Calculated enthalpy of reaction Eu +# Enthalpy of formation: 0 kJ/mol + -analytic -6.5749e+001 -2.8921e-002 5.4018e+004 2.3561e+001 8.4292e+002 +# -Range: 0-300 + +Eu(IO3)3:2H2O + Eu(IO3)3:2H2O = + 1.0000 Eu+++ + 2.0000 H2O + 3.0000 IO3- + log_k -11.6999 + -delta_H 20.8847 kJ/mol # Calculated enthalpy of reaction Eu(IO3)3:2H2O +# Enthalpy of formation: -1861.99 kJ/mol + -analytic -3.4616e+001 -1.9914e-002 -1.1966e+003 1.3276e+001 -2.0308e+001 +# -Range: 0-200 + +Eu(NO3)3:6H2O + Eu(NO3)3:6H2O = + 1.0000 Eu+++ + 3.0000 NO3- + 6.0000 H2O + log_k 1.3082 + -delta_H 15.2254 kJ/mol # Calculated enthalpy of reaction Eu(NO3)3:6H2O +# Enthalpy of formation: -2956.11 kJ/mol + -analytic -1.3205e+002 -2.0427e-002 3.9623e+003 5.0976e+001 6.7332e+001 +# -Range: 0-200 + +Eu(OH)2.5Cl.5 + Eu(OH)2.5Cl.5 +2.5000 H+ = + 0.5000 Cl- + 1.0000 Eu+++ + 2.5000 H2O + log_k 12.5546 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2.5Cl.5 +# Enthalpy of formation: 0 kcal/mol + +Eu(OH)2Cl + Eu(OH)2Cl +2.0000 H+ = + 1.0000 Cl- + 1.0000 Eu+++ + 2.0000 H2O + log_k 8.7974 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2Cl +# Enthalpy of formation: 0 kcal/mol + +Eu(OH)3 + Eu(OH)3 +3.0000 H+ = + 1.0000 Eu+++ + 3.0000 H2O + log_k 15.3482 + -delta_H -126.897 kJ/mol # Calculated enthalpy of reaction Eu(OH)3 +# Enthalpy of formation: -1336.04 kJ/mol + -analytic -6.3077e+001 -6.1421e-003 8.7323e+003 2.0595e+001 1.4831e+002 +# -Range: 0-200 + +Eu2(CO3)3:3H2O + Eu2(CO3)3:3H2O +3.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O + 3.0000 HCO3- + log_k -5.8707 + -delta_H -137.512 kJ/mol # Calculated enthalpy of reaction Eu2(CO3)3:3H2O +# Enthalpy of formation: -4000.65 kJ/mol + -analytic -1.4134e+002 -4.0240e-002 9.5883e+003 4.6591e+001 1.6287e+002 +# -Range: 0-200 + +Eu2(SO4)3:8H2O + Eu2(SO4)3:8H2O = + 2.0000 Eu+++ + 3.0000 SO4-- + 8.0000 H2O + log_k -10.8524 + -delta_H -86.59 kJ/mol # Calculated enthalpy of reaction Eu2(SO4)3:8H2O +# Enthalpy of formation: -6139.77 kJ/mol + -analytic -5.6582e+001 -3.8846e-002 3.3821e+003 1.8561e+001 5.7452e+001 +# -Range: 0-200 + +Eu2O3(cubic) + Eu2O3 +6.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O + log_k 51.7818 + -delta_H -406.403 kJ/mol # Calculated enthalpy of reaction Eu2O3(cubic) +# Enthalpy of formation: -1661.96 kJ/mol + -analytic -5.3469e+001 -1.2554e-002 2.1925e+004 1.4324e+001 3.7233e+002 +# -Range: 0-200 + +Eu2O3(monoclinic) + Eu2O3 +6.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O + log_k 53.3936 + -delta_H -417.481 kJ/mol # Calculated enthalpy of reaction Eu2O3(monoclinic) +# Enthalpy of formation: -1650.88 kJ/mol + -analytic -5.4022e+001 -1.2627e-002 2.2508e+004 1.4416e+001 3.8224e+002 +# -Range: 0-200 + +Eu3O4 + Eu3O4 +8.0000 H+ = + 1.0000 Eu++ + 2.0000 Eu+++ + 4.0000 H2O + log_k 87.0369 + -delta_H -611.249 kJ/mol # Calculated enthalpy of reaction Eu3O4 +# Enthalpy of formation: -2270.56 kJ/mol + -analytic -1.1829e+002 -2.0354e-002 3.4981e+004 3.8007e+001 5.9407e+002 +# -Range: 0-200 + +EuBr3 + EuBr3 = + 1.0000 Eu+++ + 3.0000 Br- + log_k 29.8934 + -delta_H -217.166 kJ/mol # Calculated enthalpy of reaction EuBr3 +# Enthalpy of formation: -752.769 kJ/mol + -analytic 6.0207e+001 -2.5234e-002 6.6823e+003 -1.8276e+001 1.1345e+002 +# -Range: 0-200 + +EuCl2 + EuCl2 = + 1.0000 Eu++ + 2.0000 Cl- + log_k 5.9230 + -delta_H -39.2617 kJ/mol # Calculated enthalpy of reaction EuCl2 +# Enthalpy of formation: -822.5 kJ/mol + -analytic -2.5741e+001 -2.4956e-002 1.5713e+003 1.3670e+001 2.6691e+001 +# -Range: 0-200 + +EuCl3 + EuCl3 = + 1.0000 Eu+++ + 3.0000 Cl- + log_k 19.7149 + -delta_H -170.861 kJ/mol # Calculated enthalpy of reaction EuCl3 +# Enthalpy of formation: -935.803 kJ/mol + -analytic 3.2865e+001 -3.1877e-002 4.9792e+003 -8.2294e+000 8.4542e+001 +# -Range: 0-200 + +EuCl3:6H2O + EuCl3:6H2O = + 1.0000 Eu+++ + 3.0000 Cl- + 6.0000 H2O + log_k 4.9090 + -delta_H -40.0288 kJ/mol # Calculated enthalpy of reaction EuCl3:6H2O +# Enthalpy of formation: -2781.66 kJ/mol + -analytic -1.0987e+002 -2.9851e-002 4.9991e+003 4.3198e+001 8.4930e+001 +# -Range: 0-200 + +EuF3:0.5H2O + EuF3:0.5H2O = + 0.5000 H2O + 1.0000 Eu+++ + 3.0000 F- + log_k -16.4847 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuF3:0.5H2O +# Enthalpy of formation: 0 kcal/mol + +EuO + EuO +2.0000 H+ = + 1.0000 Eu++ + 1.0000 H2O + log_k 37.4800 + -delta_H -221.196 kJ/mol # Calculated enthalpy of reaction EuO +# Enthalpy of formation: -592.245 kJ/mol + -analytic -8.9517e+001 -1.7523e-002 1.4385e+004 3.3933e+001 2.2449e+002 +# -Range: 0-300 + +EuOCl + EuOCl +2.0000 H+ = + 1.0000 Cl- + 1.0000 Eu+++ + 1.0000 H2O + log_k 15.6683 + -delta_H -147.173 kJ/mol # Calculated enthalpy of reaction EuOCl +# Enthalpy of formation: -911.17 kJ/mol + -analytic -7.7446e+000 -1.4960e-002 6.6242e+003 2.2813e+000 1.1249e+002 +# -Range: 0-200 + +EuOHCO3 + EuOHCO3 +2.0000 H+ = + 1.0000 Eu+++ + 1.0000 H2O + 1.0000 HCO3- + log_k 2.5239 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 +# Enthalpy of formation: 0 kcal/mol + +EuPO4:10H2O + EuPO4:10H2O +1.0000 H+ = + 1.0000 Eu+++ + 1.0000 HPO4-- + 10.0000 H2O + log_k -12.0782 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +EuS + EuS +1.0000 H+ = + 1.0000 Eu++ + 1.0000 HS- + log_k 14.9068 + -delta_H -96.4088 kJ/mol # Calculated enthalpy of reaction EuS +# Enthalpy of formation: -447.302 kJ/mol + -analytic -4.1026e+001 -1.5582e-002 5.7842e+003 1.6639e+001 9.8238e+001 +# -Range: 0-200 + +EuSO4 + EuSO4 = + 1.0000 Eu++ + 1.0000 SO4-- + log_k -8.8449 + -delta_H 33.873 kJ/mol # Calculated enthalpy of reaction EuSO4 +# Enthalpy of formation: -1471.08 kJ/mol + -analytic 3.0262e-001 -1.7571e-002 -3.0392e+003 2.5356e+000 -5.1610e+001 +# -Range: 0-200 + +Eucryptite + LiAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 1.0000 SiO2 + 2.0000 H2O + log_k 13.6106 + -delta_H -141.818 kJ/mol # Calculated enthalpy of reaction Eucryptite +# Enthalpy of formation: -2124.41 kJ/mol + -analytic -2.2213e+000 -8.2498e-003 6.4838e+003 -1.4183e+000 1.0117e+002 +# -Range: 0-300 + +Fayalite + Fe2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Fe++ + 2.0000 H2O + log_k 19.1113 + -delta_H -152.256 kJ/mol # Calculated enthalpy of reaction Fayalite +# Enthalpy of formation: -354.119 kcal/mol + -analytic 1.3853e+001 -3.5501e-003 7.1496e+003 -6.8710e+000 -6.3310e+004 +# -Range: 0-300 + +Fe + Fe +2.0000 H+ +0.5000 O2 = + 1.0000 Fe++ + 1.0000 H2O + log_k 59.0325 + -delta_H -372.029 kJ/mol # Calculated enthalpy of reaction Fe +# Enthalpy of formation: 0 kcal/mol + -analytic -6.2882e+001 -2.0379e-002 2.0690e+004 2.3673e+001 3.2287e+002 +# -Range: 0-300 + +Fe(OH)2 + Fe(OH)2 +2.0000 H+ = + 1.0000 Fe++ + 2.0000 H2O + log_k 13.9045 + -delta_H -95.4089 kJ/mol # Calculated enthalpy of reaction Fe(OH)2 +# Enthalpy of formation: -568.525 kJ/mol + -analytic -8.6666e+001 -1.8440e-002 7.5723e+003 3.2597e+001 1.1818e+002 +# -Range: 0-300 + +Fe(OH)3 + Fe(OH)3 +3.0000 H+ = + 1.0000 Fe+++ + 3.0000 H2O + log_k 5.6556 + -delta_H -84.0824 kJ/mol # Calculated enthalpy of reaction Fe(OH)3 +# Enthalpy of formation: -823.013 kJ/mol + -analytic -1.3316e+002 -3.1284e-002 7.9753e+003 4.9052e+001 1.2449e+002 +# -Range: 0-300 + +Fe2(SO4)3 + Fe2(SO4)3 = + 2.0000 Fe+++ + 3.0000 SO4-- + log_k 3.2058 + -delta_H -250.806 kJ/mol # Calculated enthalpy of reaction Fe2(SO4)3 +# Enthalpy of formation: -2577.16 kJ/mol + -analytic -5.8649e+002 -2.3718e-001 2.2736e+004 2.3601e+002 3.5495e+002 +# -Range: 0-300 + +FeF2 + FeF2 = + 1.0000 Fe++ + 2.0000 F- + log_k -2.3817 + -delta_H -51.6924 kJ/mol # Calculated enthalpy of reaction FeF2 +# Enthalpy of formation: -711.26 kJ/mol + -analytic -2.5687e+002 -8.4091e-002 8.4262e+003 1.0154e+002 1.3156e+002 +# -Range: 0-300 + +FeF3 + FeF3 = + 1.0000 Fe+++ + 3.0000 F- + log_k -19.2388 + -delta_H -13.8072 kJ/mol # Calculated enthalpy of reaction FeF3 +# Enthalpy of formation: -249 kcal/mol + -analytic -1.6215e+001 -3.7450e-002 -1.8926e+003 5.8485e+000 -3.2134e+001 +# -Range: 0-200 + +FeO + FeO +2.0000 H+ = + 1.0000 Fe++ + 1.0000 H2O + log_k 13.5318 + -delta_H -106.052 kJ/mol # Calculated enthalpy of reaction FeO +# Enthalpy of formation: -65.02 kcal/mol + -analytic -7.8750e+001 -1.8268e-002 7.6852e+003 2.9074e+001 1.1994e+002 +# -Range: 0-300 + +FeSO4 + FeSO4 = + 1.0000 Fe++ + 1.0000 SO4-- + log_k 2.6565 + -delta_H -73.0878 kJ/mol # Calculated enthalpy of reaction FeSO4 +# Enthalpy of formation: -928.771 kJ/mol + -analytic -2.0794e+002 -7.6891e-002 7.8705e+003 8.3685e+001 1.2287e+002 +# -Range: 0-300 + +FeV2O4 + FeV2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 V+++ + 4.0000 H2O + log_k 280.5528 + -delta_H -1733.42 kJ/mol # Calculated enthalpy of reaction FeV2O4 +# Enthalpy of formation: -5.8 kcal/mol + -analytic -1.6736e+002 -1.9398e-002 9.5736e+004 5.3582e+001 1.6258e+003 +# -Range: 0-200 + +Ferrite-Ca + CaFe2O4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Fe+++ + 4.0000 H2O + log_k 21.5217 + -delta_H -264.738 kJ/mol # Calculated enthalpy of reaction Ferrite-Ca +# Enthalpy of formation: -363.494 kcal/mol + -analytic -2.8472e+002 -7.5870e-002 2.0688e+004 1.0485e+002 3.2289e+002 +# -Range: 0-300 + +Ferrite-Cu + CuFe2O4 +8.0000 H+ = + 1.0000 Cu++ + 2.0000 Fe+++ + 4.0000 H2O + log_k 10.3160 + -delta_H -211.647 kJ/mol # Calculated enthalpy of reaction Ferrite-Cu +# Enthalpy of formation: -965.178 kJ/mol + -analytic -3.1271e+002 -7.9976e-002 1.8818e+004 1.1466e+002 2.9374e+002 +# -Range: 0-300 + +Ferrite-Dicalcium + Ca2Fe2O5 +10.0000 H+ = + 2.0000 Ca++ + 2.0000 Fe+++ + 5.0000 H2O + log_k 56.8331 + -delta_H -475.261 kJ/mol # Calculated enthalpy of reaction Ferrite-Dicalcium +# Enthalpy of formation: -2139.26 kJ/mol + -analytic -3.6277e+002 -9.5015e-002 3.3898e+004 1.3506e+002 5.2906e+002 +# -Range: 0-300 + +Ferrite-Mg + MgFe2O4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Fe+++ + 4.0000 H2O + log_k 21.0551 + -delta_H -280.056 kJ/mol # Calculated enthalpy of reaction Ferrite-Mg +# Enthalpy of formation: -1428.42 kJ/mol + -analytic -2.8297e+002 -7.4820e-002 2.1333e+004 1.0295e+002 3.3296e+002 +# -Range: 0-300 + +Ferrite-Zn + ZnFe2O4 +8.0000 H+ = + 1.0000 Zn++ + 2.0000 Fe+++ + 4.0000 H2O + log_k 11.7342 + -delta_H -226.609 kJ/mol # Calculated enthalpy of reaction Ferrite-Zn +# Enthalpy of formation: -1169.29 kJ/mol + -analytic -2.9809e+002 -7.7263e-002 1.9067e+004 1.0866e+002 2.9761e+002 +# -Range: 0-300 + +Ferroselite + FeSe2 +0.5000 H2O = + 0.2500 O2 + 1.0000 Fe+++ + 1.0000 H+ + 2.0000 Se-- + log_k -80.7998 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ferroselite +# Enthalpy of formation: -25 kcal/mol + -analytic -7.2971e+001 -2.4992e-002 -1.6246e+004 2.1860e+001 -2.5348e+002 +# -Range: 0-300 + +Ferrosilite + FeSiO3 +2.0000 H+ = + 1.0000 Fe++ + 1.0000 H2O + 1.0000 SiO2 + log_k 7.4471 + -delta_H -60.6011 kJ/mol # Calculated enthalpy of reaction Ferrosilite +# Enthalpy of formation: -285.658 kcal/mol + -analytic 9.0041e+000 3.7917e-003 5.1625e+003 -6.3009e+000 -3.9565e+005 +# -Range: 0-300 + +Fluorapatite + Ca5(PO4)3F +3.0000 H+ = + 1.0000 F- + 3.0000 HPO4-- + 5.0000 Ca++ + log_k -24.9940 + -delta_H -90.8915 kJ/mol # Calculated enthalpy of reaction Fluorapatite +# Enthalpy of formation: -6836.12 kJ/mol + -analytic -9.3648e+002 -3.2688e-001 2.4398e+004 3.7461e+002 3.8098e+002 +# -Range: 0-300 + +Fluorite + CaF2 = + 1.0000 Ca++ + 2.0000 F- + log_k -10.0370 + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction Fluorite +# Enthalpy of formation: -293 kcal/mol + -analytic -2.5036e+002 -8.4183e-002 4.9525e+003 1.0054e+002 7.7353e+001 +# -Range: 0-300 + +Forsterite + Mg2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Mg++ + log_k 27.8626 + -delta_H -205.614 kJ/mol # Calculated enthalpy of reaction Forsterite +# Enthalpy of formation: -520 kcal/mol + -analytic -7.6195e+001 -1.4013e-002 1.4763e+004 2.5090e+001 -3.0379e+005 +# -Range: 0-300 + +Foshagite + Ca4Si3O9(OH)2:0.5H2O +8.0000 H+ = + 3.0000 SiO2 + 4.0000 Ca++ + 5.5000 H2O + log_k 65.9210 + -delta_H -359.839 kJ/mol # Calculated enthalpy of reaction Foshagite +# Enthalpy of formation: -1438.27 kcal/mol + -analytic 2.9983e+001 5.5272e-003 2.3427e+004 -1.3879e+001 -8.9461e+005 +# -Range: 0-300 + +Frankdicksonite + BaF2 = + 1.0000 Ba++ + 2.0000 F- + log_k -5.7600 + -delta_H 0 # Not possible to calculate enthalpy of reaction Frankdicksonite +# Enthalpy of formation: 0 kcal/mol + +Freboldite + CoSe = + 1.0000 Co++ + 1.0000 Se-- + log_k -24.3358 + -delta_H 0 # Not possible to calculate enthalpy of reaction Freboldite +# Enthalpy of formation: -15.295 kcal/mol + -analytic -1.3763e+001 -1.6924e-003 -3.6938e+003 9.3574e-001 -6.2723e+001 +# -Range: 0-200 + +Ga + Ga +3.0000 H+ +0.7500 O2 = + 1.0000 Ga+++ + 1.5000 H2O + log_k 92.3567 + -delta_H -631.368 kJ/mol # Calculated enthalpy of reaction Ga +# Enthalpy of formation: 0 kJ/mol + -analytic -1.3027e+002 -3.9539e-002 3.6027e+004 4.6280e+001 -8.5461e+004 +# -Range: 0-300 + +Galena + PbS +1.0000 H+ = + 1.0000 HS- + 1.0000 Pb++ + log_k -14.8544 + -delta_H 83.1361 kJ/mol # Calculated enthalpy of reaction Galena +# Enthalpy of formation: -23.5 kcal/mol + -analytic -1.2124e+002 -4.3477e-002 -1.6463e+003 5.0454e+001 -2.5654e+001 +# -Range: 0-300 + +Gaylussite + CaNa2(CO3)2:5H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 HCO3- + 2.0000 Na+ + 5.0000 H2O + log_k 11.1641 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gaylussite +# Enthalpy of formation: 0 kcal/mol + +Gd + Gd +3.0000 H+ +0.7500 O2 = + 1.0000 Gd+++ + 1.5000 H2O + log_k 180.7573 + -delta_H -1106.67 kJ/mol # Calculated enthalpy of reaction Gd +# Enthalpy of formation: 0 kJ/mol + -analytic -3.3949e+002 -6.5698e-002 7.4278e+004 1.2189e+002 -9.7055e+005 +# -Range: 0-300 + +Gd(OH)3 + Gd(OH)3 +3.0000 H+ = + 1.0000 Gd+++ + 3.0000 H2O + log_k 15.5852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Gd(OH)3(am) + Gd(OH)3 +3.0000 H+ = + 1.0000 Gd+++ + 3.0000 H2O + log_k 17.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Gd2(CO3)3 + Gd2(CO3)3 +3.0000 H+ = + 2.0000 Gd+++ + 3.0000 HCO3- + log_k -3.7136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Gd2O3 + Gd2O3 +6.0000 H+ = + 2.0000 Gd+++ + 3.0000 H2O + log_k 53.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2O3 +# Enthalpy of formation: 0 kcal/mol + +GdF3:.5H2O + GdF3:.5H2O = + 0.5000 H2O + 1.0000 Gd+++ + 3.0000 F- + log_k -16.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction GdF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +GdPO4:10H2O + GdPO4:10H2O +1.0000 H+ = + 1.0000 Gd+++ + 1.0000 HPO4-- + 10.0000 H2O + log_k -11.9782 + -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Gehlenite + Ca2Al2SiO7 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 2.0000 Ca++ + 5.0000 H2O + log_k 56.2997 + -delta_H -489.934 kJ/mol # Calculated enthalpy of reaction Gehlenite +# Enthalpy of formation: -951.225 kcal/mol + -analytic -2.1784e+002 -6.7200e-002 2.9779e+004 7.8488e+001 4.6473e+002 +# -Range: 0-300 + +Gibbsite + Al(OH)3 +3.0000 H+ = + 1.0000 Al+++ + 3.0000 H2O + log_k 7.7560 + -delta_H -102.788 kJ/mol # Calculated enthalpy of reaction Gibbsite +# Enthalpy of formation: -309.065 kcal/mol + -analytic -1.1403e+002 -3.6453e-002 7.7236e+003 4.3134e+001 1.2055e+002 +# -Range: 0-300 + +Gismondine + Ca2Al4Si4O16:9H2O +16.0000 H+ = + 2.0000 Ca++ + 4.0000 Al+++ + 4.0000 SiO2 + 17.0000 H2O + log_k 41.7170 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gismondine +# Enthalpy of formation: 0 kcal/mol + +Glauberite + Na2Ca(SO4)2 = + 1.0000 Ca++ + 2.0000 Na+ + 2.0000 SO4-- + log_k -5.4690 + -delta_H 0 # Not possible to calculate enthalpy of reaction Glauberite +# Enthalpy of formation: 0 kcal/mol + +Goethite + FeOOH +3.0000 H+ = + 1.0000 Fe+++ + 2.0000 H2O + log_k 0.5345 + -delta_H -61.9291 kJ/mol # Calculated enthalpy of reaction Goethite +# Enthalpy of formation: -559.328 kJ/mol + -analytic -6.0331e+001 -1.0847e-002 4.7759e+003 1.9429e+001 8.1122e+001 +# -Range: 0-200 + +Greenalite + Fe3Si2O5(OH)4 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Fe++ + 5.0000 H2O + log_k 22.6701 + -delta_H -165.297 kJ/mol # Calculated enthalpy of reaction Greenalite +# Enthalpy of formation: -787.778 kcal/mol + -analytic -1.4187e+001 -3.8377e-003 1.1710e+004 1.6442e+000 -4.8290e+005 +# -Range: 0-300 + +Grossular + Ca3Al2(SiO4)3 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O + log_k 51.9228 + -delta_H -432.006 kJ/mol # Calculated enthalpy of reaction Grossular +# Enthalpy of formation: -1582.74 kcal/mol + -analytic 2.9389e+001 -2.2478e-002 2.0323e+004 -1.4624e+001 -2.5674e+005 +# -Range: 0-300 + +Gypsum + CaSO4:2H2O = + 1.0000 Ca++ + 1.0000 SO4-- + 2.0000 H2O + log_k -4.4823 + -delta_H -1.66746 kJ/mol # Calculated enthalpy of reaction Gypsum +# Enthalpy of formation: -2022.69 kJ/mol + -analytic -2.4417e+002 -8.3329e-002 5.5958e+003 9.9301e+001 8.7389e+001 +# -Range: 0-300 + +Gyrolite + Ca2Si3O7(OH)2:1.5H2O +4.0000 H+ = + 2.0000 Ca++ + 3.0000 SiO2 + 4.5000 H2O + log_k 22.9099 + -delta_H -82.862 kJ/mol # Calculated enthalpy of reaction Gyrolite +# Enthalpy of formation: -1176.55 kcal/mol + -analytic -2.4416e+001 1.4646e-002 1.6181e+004 2.3723e+000 -1.5369e+006 +# -Range: 0-300 + +HTcO4 + HTcO4 = + 1.0000 H+ + 1.0000 TcO4- + log_k 5.9566 + -delta_H -12.324 kJ/mol # Calculated enthalpy of reaction HTcO4 +# Enthalpy of formation: -703.945 kJ/mol + -analytic 3.0005e+001 7.6416e-003 -5.3546e+001 -1.0568e+001 -9.1953e-001 +# -Range: 0-200 + +Haiweeite + Ca(UO2)2(Si2O5)3:5H2O +6.0000 H+ = + 1.0000 Ca++ + 2.0000 UO2++ + 6.0000 SiO2 + 8.0000 H2O + log_k -7.0413 + -delta_H 0 # Not possible to calculate enthalpy of reaction Haiweeite +# Enthalpy of formation: 0 kcal/mol + +Halite + NaCl = + 1.0000 Cl- + 1.0000 Na+ + log_k 1.5855 + -delta_H 3.7405 kJ/mol # Calculated enthalpy of reaction Halite +# Enthalpy of formation: -98.26 kcal/mol + -analytic -1.0163e+002 -3.4761e-002 2.2796e+003 4.2802e+001 3.5602e+001 +# -Range: 0-300 + +Hatrurite + Ca3SiO5 +6.0000 H+ = + 1.0000 SiO2 + 3.0000 Ca++ + 3.0000 H2O + log_k 73.4056 + -delta_H -434.684 kJ/mol # Calculated enthalpy of reaction Hatrurite +# Enthalpy of formation: -700.234 kcal/mol + -analytic -4.5448e+001 -1.9998e-002 2.3800e+004 1.8494e+001 -7.3385e+004 +# -Range: 0-300 + +Hausmannite + Mn3O4 +8.0000 H+ = + 1.0000 Mn++ + 2.0000 Mn+++ + 4.0000 H2O + log_k 10.1598 + -delta_H -268.121 kJ/mol # Calculated enthalpy of reaction Hausmannite +# Enthalpy of formation: -1387.83 kJ/mol + -analytic -2.0600e+002 -2.2214e-002 2.0160e+004 6.2700e+001 3.1464e+002 +# -Range: 0-300 + +Heazlewoodite + Ni3S2 +4.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 HS- + 3.0000 Ni++ + log_k 28.2477 + -delta_H -270.897 kJ/mol # Calculated enthalpy of reaction Heazlewoodite +# Enthalpy of formation: -203.012 kJ/mol + -analytic -3.5439e+002 -1.1740e-001 2.1811e+004 1.3919e+002 3.4044e+002 +# -Range: 0-300 + +Hedenbergite + CaFe(SiO3)2 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Fe++ + 2.0000 H2O + 2.0000 SiO2 + log_k 19.6060 + -delta_H -124.507 kJ/mol # Calculated enthalpy of reaction Hedenbergite +# Enthalpy of formation: -678.276 kcal/mol + -analytic -1.9473e+001 1.5288e-003 1.2910e+004 2.1729e+000 -9.0058e+005 +# -Range: 0-300 + +Hematite + Fe2O3 +6.0000 H+ = + 2.0000 Fe+++ + 3.0000 H2O + log_k 0.1086 + -delta_H -129.415 kJ/mol # Calculated enthalpy of reaction Hematite +# Enthalpy of formation: -197.72 kcal/mol + -analytic -2.2015e+002 -6.0290e-002 1.1812e+004 8.0253e+001 1.8438e+002 +# -Range: 0-300 + +Hercynite + FeAl2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Al+++ + 4.0000 H2O + log_k 28.8484 + -delta_H -345.961 kJ/mol # Calculated enthalpy of reaction Hercynite +# Enthalpy of formation: -1966.45 kJ/mol + -analytic -3.1848e+002 -7.9501e-002 2.5892e+004 1.1483e+002 4.0412e+002 +# -Range: 0-300 + +Herzenbergite + SnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Sn++ + log_k -15.5786 + -delta_H 81.6466 kJ/mol # Calculated enthalpy of reaction Herzenbergite +# Enthalpy of formation: -25.464 kcal/mol + -analytic -1.3576e+002 -4.6594e-002 -1.1572e+003 5.5740e+001 -1.8018e+001 +# -Range: 0-300 + +Heulandite +# Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6 +8.6600 H+ = + 0.0650 Ba++ + 0.1320 K+ + 0.1750 Sr++ + 0.3830 Na+ + 0.5850 Ca++ + 2.1650 Al+++ + 6.8350 SiO2 + 10.3300 H2O + Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6H2O +8.6600 H+ = + 0.0650 Ba++ + 0.1320 K+ + 0.1750 Sr++ + 0.3830 Na+ + 0.5850 Ca++ + 2.1650 Al+++ + 6.8350 SiO2 + 10.3300 H2O + log_k 3.3506 + -delta_H -97.2942 kJ/mol # Calculated enthalpy of reaction Heulandite +# Enthalpy of formation: -10594.5 kJ/mol + -analytic -1.8364e+001 2.7879e-002 2.8426e+004 -1.7427e+001 -3.4723e+006 +# -Range: 0-300 + +Hexahydrite + MgSO4:6H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 6.0000 H2O + log_k -1.7268 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hexahydrite +# Enthalpy of formation: 0 kcal/mol + +Hf(s) + Hf +4.0000 H+ +1.0000 O2 = + 1.0000 Hf++++ + 2.0000 H2O + log_k 189.9795 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf +# Enthalpy of formation: -0.003 kJ/mol + +HfB2 + HfB2 +2.7500 H+ +2.2500 H2O = + 0.7500 B(OH)3 + 1.0000 Hf++++ + 1.2500 BH4- + log_k 55.7691 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfB2 +# Enthalpy of formation: -78.6 kJ/mol + +HfBr2 + HfBr2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 Br- + log_k 114.9446 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr2 +# Enthalpy of formation: -98 kJ/mol + +HfBr4 + HfBr4 = + 1.0000 Hf++++ + 4.0000 Br- + log_k 48.2921 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr4 +# Enthalpy of formation: -183.1 kJ/mol + +HfC + HfC +3.0000 H+ +2.0000 O2 = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Hf++++ + log_k 215.0827 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfC +# Enthalpy of formation: -54 kJ/mol + +HfCl2 + HfCl2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 Cl- + log_k 109.1624 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl2 +# Enthalpy of formation: -125 kJ/mol + +HfCl4 + HfCl4 = + 1.0000 Hf++++ + 4.0000 Cl- + log_k 38.0919 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl4 +# Enthalpy of formation: -236.7 kJ/mol + +HfF2 + HfF2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 F- + log_k 81.7647 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfF2 +# Enthalpy of formation: -235 kJ/mol + +HfF4 + HfF4 = + 1.0000 Hf++++ + 4.0000 F- + log_k -19.2307 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfF4 +# Enthalpy of formation: -461.4 kJ/mol + +HfI2 + HfI2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 I- + log_k 117.4971 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfI2 +# Enthalpy of formation: -65 kJ/mol + +HfI4 + HfI4 = + 1.0000 Hf++++ + 4.0000 I- + log_k 54.1798 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfI4 +# Enthalpy of formation: -118 kJ/mol + +HfN + HfN +4.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Hf++++ + 1.0000 NH3 + log_k 69.4646 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfN +# Enthalpy of formation: -89.3 kJ/mol + +HfO2 + HfO2 +4.0000 H+ = + 1.0000 Hf++++ + 2.0000 H2O + log_k 1.1829 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfO2 +# Enthalpy of formation: -267.1 kJ/mol + +HfS2 + HfS2 +2.0000 H+ = + 1.0000 Hf++++ + 2.0000 HS- + log_k -1.5845 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfS2 +# Enthalpy of formation: -140 kJ/mol + +HfS3 + HfS3 +1.0000 H+ = + 1.0000 HS- + 1.0000 Hf++++ + 1.0000 S2-- + log_k -18.9936 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfS3 +# Enthalpy of formation: -149 kJ/mol + +Hg2SO4 + Hg2SO4 = + 1.0000 Hg2++ + 1.0000 SO4-- + log_k -6.1170 + -delta_H 0.30448 kJ/mol # Calculated enthalpy of reaction Hg2SO4 +# Enthalpy of formation: -743.09 kJ/mol + -analytic -3.2342e+001 -1.9881e-002 1.6292e+003 1.0781e+001 2.7677e+001 +# -Range: 0-200 + +Hg2SeO3 + Hg2SeO3 = + 1.0000 Hg2++ + 1.0000 SeO3-- + log_k -14.2132 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hg2SeO3 +# Enthalpy of formation: 0 kcal/mol + +HgSeO3 + HgSeO3 = + 1.0000 Hg++ + 1.0000 SeO3-- + log_k -13.8957 + -delta_H 0 # Not possible to calculate enthalpy of reaction HgSeO3 +# Enthalpy of formation: 0 kcal/mol + +Hillebrandite + Ca2SiO3(OH)2:0.17H2O +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 3.1700 H2O + log_k 36.8190 + -delta_H -203.074 kJ/mol # Calculated enthalpy of reaction Hillebrandite +# Enthalpy of formation: -637.404 kcal/mol + -analytic -1.9360e+001 -7.5176e-003 1.1947e+004 8.0558e+000 -1.4504e+005 +# -Range: 0-300 + +Hinsdalite + Al3PPbSO8(OH)6 +7.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pb++ + 1.0000 SO4-- + 3.0000 Al+++ + 6.0000 H2O + log_k 9.8218 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hinsdalite +# Enthalpy of formation: 0 kcal/mol + +Ho + Ho +3.0000 H+ +0.7500 O2 = + 1.0000 Ho+++ + 1.5000 H2O + log_k 182.8097 + -delta_H -1126.75 kJ/mol # Calculated enthalpy of reaction Ho +# Enthalpy of formation: 0 kJ/mol + -analytic -6.5903e+001 -2.8190e-002 5.9370e+004 2.3421e+001 9.2643e+002 +# -Range: 0-300 + +Ho(OH)3 + Ho(OH)3 +3.0000 H+ = + 1.0000 Ho+++ + 3.0000 H2O + log_k 15.3852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Ho(OH)3(am) + Ho(OH)3 +3.0000 H+ = + 1.0000 Ho+++ + 3.0000 H2O + log_k 17.7852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Ho2(CO3)3 + Ho2(CO3)3 +3.0000 H+ = + 2.0000 Ho+++ + 3.0000 HCO3- + log_k -2.8136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Ho2O3 + Ho2O3 +6.0000 H+ = + 2.0000 Ho+++ + 3.0000 H2O + log_k 47.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2O3 +# Enthalpy of formation: 0 kcal/mol + +HoF3:.5H2O + HoF3:.5H2O = + 0.5000 H2O + 1.0000 Ho+++ + 3.0000 F- + log_k -16.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction HoF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +HoPO4:10H2O + HoPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Ho+++ + 10.0000 H2O + log_k -11.8782 + -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Hopeite + Zn3(PO4)2:4H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Zn++ + 4.0000 H2O + log_k -10.6563 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hopeite +# Enthalpy of formation: 0 kcal/mol + +Huntite + CaMg3(CO3)4 +4.0000 H+ = + 1.0000 Ca++ + 3.0000 Mg++ + 4.0000 HCO3- + log_k 10.3010 + -delta_H -171.096 kJ/mol # Calculated enthalpy of reaction Huntite +# Enthalpy of formation: -1082.6 kcal/mol + -analytic -6.5000e+002 -1.9671e-001 2.4815e+004 2.5688e+002 3.8740e+002 +# -Range: 0-300 + +Hydroboracite + MgCaB6O11:6H2O +4.0000 H+ +1.0000 H2O = + 1.0000 Ca++ + 1.0000 Mg++ + 6.0000 B(OH)3 + log_k 20.3631 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydroboracite +# Enthalpy of formation: 0 kcal/mol + +Hydrocerussite + Pb3(CO3)2(OH)2 +4.0000 H+ = + 2.0000 H2O + 2.0000 HCO3- + 3.0000 Pb++ + log_k 1.8477 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrocerussite +# Enthalpy of formation: 0 kcal/mol + +Hydromagnesite + Mg5(CO3)4(OH)2:4H2O +6.0000 H+ = + 4.0000 HCO3- + 5.0000 Mg++ + 6.0000 H2O + log_k 30.8539 + -delta_H -289.696 kJ/mol # Calculated enthalpy of reaction Hydromagnesite +# Enthalpy of formation: -1557.09 kcal/mol + -analytic -7.9288e+002 -2.1448e-001 3.6749e+004 3.0888e+002 5.7367e+002 +# -Range: 0-300 + +Hydrophilite + CaCl2 = + 1.0000 Ca++ + 2.0000 Cl- + log_k 11.7916 + -delta_H -81.4545 kJ/mol # Calculated enthalpy of reaction Hydrophilite +# Enthalpy of formation: -795.788 kJ/mol + -analytic -2.2278e+002 -8.1414e-002 9.0298e+003 9.2349e+001 1.4097e+002 +# -Range: 0-300 + +Hydroxylapatite + Ca5(OH)(PO4)3 +4.0000 H+ = + 1.0000 H2O + 3.0000 HPO4-- + 5.0000 Ca++ + log_k -3.0746 + -delta_H -191.982 kJ/mol # Calculated enthalpy of reaction Hydroxylapatite +# Enthalpy of formation: -6685.52 kJ/mol + -analytic -8.5221e+002 -2.9430e-001 2.8125e+004 3.4044e+002 4.3911e+002 +# -Range: 0-300 + +Hydrozincite + Zn5(OH)6(CO3)2 +8.0000 H+ = + 2.0000 HCO3- + 5.0000 Zn++ + 6.0000 H2O + log_k 30.3076 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrozincite +# Enthalpy of formation: 0 kcal/mol + +I2 + I2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 I- + log_k -24.8084 + -delta_H 165.967 kJ/mol # Calculated enthalpy of reaction I2 +# Enthalpy of formation: 0 kJ/mol + -analytic -1.7135e+002 -6.2810e-002 -4.7225e+003 7.3181e+001 -7.3640e+001 +# -Range: 0-300 + +Ice + H2O = + 1.0000 H2O + log_k 0.1387 + -delta_H 6.74879 kJ/mol # Calculated enthalpy of reaction Ice +# Enthalpy of formation: -69.93 kcal/mol + -analytic -2.3260e+001 4.7948e-004 7.7351e+002 8.3499e+000 1.3143e+001 +# -Range: 0-200 + +Illite + K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 +8.0000 H+ = + 0.2500 Mg++ + 0.6000 K+ + 2.3000 Al+++ + 3.5000 SiO2 + 5.0000 H2O + log_k 9.0260 + -delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite +# Enthalpy of formation: -1394.71 kcal/mol + -analytic 2.6069e+001 -1.2553e-003 1.3670e+004 -2.0232e+001 -1.1204e+006 +# -Range: 0-300 + +Ilmenite + FeTiO3 +2.0000 H+ +1.0000 H2O = + 1.0000 Fe++ + 1.0000 Ti(OH)4 + log_k 0.9046 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ilmenite +# Enthalpy of formation: -1236.65 kJ/mol + +In + In +3.0000 H+ +0.7500 O2 = + 1.0000 In+++ + 1.5000 H2O + log_k 81.6548 + -delta_H -524.257 kJ/mol # Calculated enthalpy of reaction In +# Enthalpy of formation: 0 kJ/mol + -analytic -1.1773e+002 -3.7657e-002 3.1802e+004 4.2438e+001 -9.6348e+004 +# -Range: 0-300 + +Jadeite + NaAl(SiO3)2 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 2.0000 SiO2 + log_k 8.3888 + -delta_H -84.4415 kJ/mol # Calculated enthalpy of reaction Jadeite +# Enthalpy of formation: -722.116 kcal/mol + -analytic 1.5934e+000 5.0757e-003 9.5602e+003 -7.0164e+000 -8.4454e+005 +# -Range: 0-300 + +Jarosite + KFe3(SO4)2(OH)6 +6.0000 H+ = + 1.0000 K+ + 2.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O + log_k -9.3706 + -delta_H -191.343 kJ/mol # Calculated enthalpy of reaction Jarosite +# Enthalpy of formation: -894.79 kcal/mol + -analytic -1.0813e+002 -5.0381e-002 9.6893e+003 3.2832e+001 1.6457e+002 +# -Range: 0-200 + +Jarosite-Na + NaFe3(SO4)2(OH)6 +6.0000 H+ = + 1.0000 Na+ + 2.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O + log_k -5.4482 + -delta_H 0 # Not possible to calculate enthalpy of reaction Jarosite-Na +# Enthalpy of formation: 0 kcal/mol + +K + K +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 K+ + log_k 70.9861 + -delta_H -392.055 kJ/mol # Calculated enthalpy of reaction K +# Enthalpy of formation: 0 kJ/mol + -analytic -3.1102e+001 -1.0003e-002 2.1338e+004 1.3534e+001 3.3296e+002 +# -Range: 0-300 + +K-Feldspar + KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction K-Feldspar +# Enthalpy of formation: -949.188 kcal/mol + -analytic -1.0684e+000 1.3111e-002 1.1671e+004 -9.9129e+000 -1.5855e+006 +# -Range: 0-300 + +K2CO3:1.5H2O + K2CO3:1.5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.5000 H2O + 2.0000 K+ + log_k 13.3785 + -delta_H 0 # Not possible to calculate enthalpy of reaction K2CO3:1.5H2O +# Enthalpy of formation: 0 kcal/mol + +K2O + K2O +2.0000 H+ = + 1.0000 H2O + 2.0000 K+ + log_k 84.0405 + -delta_H -427.006 kJ/mol # Calculated enthalpy of reaction K2O +# Enthalpy of formation: -86.8 kcal/mol + -analytic -1.8283e+001 -5.2255e-003 2.3184e+004 1.0553e+001 3.6177e+002 +# -Range: 0-300 + +K2Se + K2Se = + 1.0000 Se-- + 2.0000 K+ + log_k 11.2925 + -delta_H 0 # Not possible to calculate enthalpy of reaction K2Se +# Enthalpy of formation: -92 kcal/mol + -analytic 1.8182e+001 7.8828e-003 2.6345e+003 -7.3075e+000 4.4732e+001 +# -Range: 0-200 + +K2UO4 + K2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 K+ + log_k 33.8714 + -delta_H -174.316 kJ/mol # Calculated enthalpy of reaction K2UO4 +# Enthalpy of formation: -1920.7 kJ/mol + -analytic -7.0905e+001 -2.5680e-003 1.2244e+004 2.6056e+001 2.0794e+002 +# -Range: 0-200 + +K3H(SO4)2 + K3H(SO4)2 = + 1.0000 H+ + 2.0000 SO4-- + 3.0000 K+ + log_k -3.6233 + -delta_H 0 # Not possible to calculate enthalpy of reaction K3H(SO4)2 +# Enthalpy of formation: 0 kcal/mol + +K8H4(CO3)6:3H2O + K8H4(CO3)6:3H2O +2.0000 H+ = + 3.0000 H2O + 6.0000 HCO3- + 8.0000 K+ + log_k 27.7099 + -delta_H 0 # Not possible to calculate enthalpy of reaction K8H4(CO3)6:3H2O +# Enthalpy of formation: 0 kcal/mol + +KAl(SO4)2 + KAl(SO4)2 = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 SO4-- + log_k 3.3647 + -delta_H -139.485 kJ/mol # Calculated enthalpy of reaction KAl(SO4)2 +# Enthalpy of formation: -2470.29 kJ/mol + -analytic -4.2785e+002 -1.6303e-001 1.5311e+004 1.7312e+002 2.3904e+002 +# -Range: 0-300 + +KBr + KBr = + 1.0000 Br- + 1.0000 K+ + log_k 1.0691 + -delta_H 20.125 kJ/mol # Calculated enthalpy of reaction KBr +# Enthalpy of formation: -393.798 kJ/mol + -analytic -7.3164e+001 -3.1240e-002 4.8140e+002 3.3104e+001 7.5336e+000 +# -Range: 0-300 + +KMgCl3 + KMgCl3 = + 1.0000 K+ + 1.0000 Mg++ + 3.0000 Cl- + log_k 21.2618 + -delta_H -132.768 kJ/mol # Calculated enthalpy of reaction KMgCl3 +# Enthalpy of formation: -1086.6 kJ/mol + -analytic -8.4641e+000 -3.2688e-002 5.1496e+003 8.9652e+000 8.7450e+001 +# -Range: 0-200 + +KMgCl3:2H2O + KMgCl3:2H2O = + 1.0000 K+ + 1.0000 Mg++ + 2.0000 H2O + 3.0000 Cl- + log_k 13.9755 + -delta_H -76.8449 kJ/mol # Calculated enthalpy of reaction KMgCl3:2H2O +# Enthalpy of formation: -1714.2 kJ/mol + -analytic -5.9982e+001 -3.3015e-002 4.6174e+003 2.7602e+001 7.8431e+001 +# -Range: 0-200 + +KNaCO3:6H2O + KNaCO3:6H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 K+ + 1.0000 Na+ + 6.0000 H2O + log_k 10.2593 + -delta_H 0 # Not possible to calculate enthalpy of reaction KNaCO3:6H2O +# Enthalpy of formation: 0 kcal/mol + +KTcO4 + KTcO4 = + 1.0000 K+ + 1.0000 TcO4- + log_k -2.2667 + -delta_H 53.2363 kJ/mol # Calculated enthalpy of reaction KTcO4 +# Enthalpy of formation: -1021.67 kJ/mol + -analytic 1.8058e+001 -8.4795e-004 -2.3985e+003 -4.1788e+000 -1.5029e+005 +# -Range: 0-300 + +KUO2AsO4 + KUO2AsO4 +2.0000 H+ = + 1.0000 H2AsO4- + 1.0000 K+ + 1.0000 UO2++ + log_k -4.1741 + -delta_H 0 # Not possible to calculate enthalpy of reaction KUO2AsO4 +# Enthalpy of formation: 0 kcal/mol + +Kainite + KMgClSO4:3H2O = + 1.0000 Cl- + 1.0000 K+ + 1.0000 Mg++ + 1.0000 SO4-- + 3.0000 H2O + log_k -0.3114 + -delta_H 0 # Not possible to calculate enthalpy of reaction Kainite +# Enthalpy of formation: 0 kcal/mol + +Kalicinite + KHCO3 = + 1.0000 HCO3- + 1.0000 K+ + log_k 0.2837 + -delta_H 0 # Not possible to calculate enthalpy of reaction Kalicinite +# Enthalpy of formation: 0 kcal/mol + +Kalsilite + KAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 1.0000 SiO2 + 2.0000 H2O + log_k 10.8987 + -delta_H -108.583 kJ/mol # Calculated enthalpy of reaction Kalsilite +# Enthalpy of formation: -509.408 kcal/mol + -analytic -6.7595e+000 -7.4301e-003 6.5380e+003 1.8999e-001 -2.2880e+005 +# -Range: 0-300 + +Kaolinite + Al2Si2O5(OH)4 +6.0000 H+ = + 2.0000 Al+++ + 2.0000 SiO2 + 5.0000 H2O + log_k 6.8101 + -delta_H -151.779 kJ/mol # Calculated enthalpy of reaction Kaolinite +# Enthalpy of formation: -982.221 kcal/mol + -analytic 1.6835e+001 -7.8939e-003 7.7636e+003 -1.2190e+001 -3.2354e+005 +# -Range: 0-300 + +Karelianite + V2O3 +6.0000 H+ = + 2.0000 V+++ + 3.0000 H2O + log_k 9.9424 + -delta_H -160.615 kJ/mol # Calculated enthalpy of reaction Karelianite +# Enthalpy of formation: -1218.98 kJ/mol + -analytic -2.7961e+001 -7.1499e-003 6.7749e+003 5.8146e+000 2.6039e+005 +# -Range: 0-300 + +Kasolite + Pb(UO2)SiO4:H2O +4.0000 H+ = + 1.0000 Pb++ + 1.0000 SiO2 + 1.0000 UO2++ + 3.0000 H2O + log_k 7.2524 + -delta_H 0 # Not possible to calculate enthalpy of reaction Kasolite +# Enthalpy of formation: 0 kcal/mol + +Katoite + Ca3Al2H12O12 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 12.0000 H2O + log_k 78.9437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Katoite +# Enthalpy of formation: 0 kcal/mol + +Kieserite + MgSO4:H2O = + 1.0000 H2O + 1.0000 Mg++ + 1.0000 SO4-- + log_k -0.2670 + -delta_H 0 # Not possible to calculate enthalpy of reaction Kieserite +# Enthalpy of formation: 0 kcal/mol + +Klockmannite + CuSe = + 1.0000 Cu++ + 1.0000 Se-- + log_k -41.6172 + -delta_H 0 # Not possible to calculate enthalpy of reaction Klockmannite +# Enthalpy of formation: -10 kcal/mol + -analytic -2.3021e+001 -2.1458e-003 -8.5938e+003 4.3900e+000 -1.4593e+002 +# -Range: 0-200 + +Krutaite + CuSe2 +1.0000 H2O = + 0.5000 O2 + 1.0000 Cu++ + 2.0000 H+ + 2.0000 Se-- + log_k -107.6901 + -delta_H 0 # Not possible to calculate enthalpy of reaction Krutaite +# Enthalpy of formation: -11.5 kcal/mol + -analytic -3.7735e+001 -8.7548e-004 -2.6352e+004 7.5528e+000 -4.4749e+002 +# -Range: 0-200 + +Kyanite + Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O + log_k 15.6740 + -delta_H -230.919 kJ/mol # Calculated enthalpy of reaction Kyanite +# Enthalpy of formation: -616.897 kcal/mol + -analytic -7.3335e+001 -3.2853e-002 1.2166e+004 2.3412e+001 1.8986e+002 +# -Range: 0-300 + +La + La +3.0000 H+ +0.7500 O2 = + 1.0000 La+++ + 1.5000 H2O + log_k 184.7155 + -delta_H -1129.26 kJ/mol # Calculated enthalpy of reaction La +# Enthalpy of formation: 0 kJ/mol + -analytic -5.9508e+001 -2.7578e-002 5.9327e+004 2.1589e+001 9.2577e+002 +# -Range: 0-300 + +La(OH)3 + La(OH)3 +3.0000 H+ = + 1.0000 La+++ + 3.0000 H2O + log_k 20.2852 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3 +# Enthalpy of formation: 0 kcal/mol + +La(OH)3(am) + La(OH)3 +3.0000 H+ = + 1.0000 La+++ + 3.0000 H2O + log_k 23.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +La2(CO3)3:8H2O + La2(CO3)3:8H2O +3.0000 H+ = + 2.0000 La+++ + 3.0000 HCO3- + 8.0000 H2O + log_k -4.3136 + -delta_H 0 # Not possible to calculate enthalpy of reaction La2(CO3)3:8H2O +# Enthalpy of formation: 0 kcal/mol + +La2O3 + La2O3 +6.0000 H+ = + 2.0000 La+++ + 3.0000 H2O + log_k 66.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction La2O3 +# Enthalpy of formation: 0 kcal/mol + +LaCl3 + LaCl3 = + 1.0000 La+++ + 3.0000 Cl- + log_k 14.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3 +# Enthalpy of formation: 0 kcal/mol + +LaCl3:7H2O + LaCl3:7H2O = + 1.0000 La+++ + 3.0000 Cl- + 7.0000 H2O + log_k 4.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3:7H2O +# Enthalpy of formation: 0 kcal/mol + +LaF3:.5H2O + LaF3:.5H2O = + 0.5000 H2O + 1.0000 La+++ + 3.0000 F- + log_k -18.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +LaPO4:10H2O + LaPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 La+++ + 10.0000 H2O + log_k -12.3782 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Lammerite + Cu3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Cu++ + log_k 1.5542 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lammerite +# Enthalpy of formation: 0 kcal/mol +Lanarkite + Pb2(SO4)O +2.0000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 2.0000 Pb++ + log_k -0.4692 + -delta_H -22.014 kJ/mol # Calculated enthalpy of reaction Lanarkite +# Enthalpy of formation: -1171.59 kJ/mol + -analytic 5.1071e+000 -1.6655e-002 0.0000e+000 0.0000e+000 -5.5660e+004 +# -Range: 0-200 + +Lansfordite + MgCO3:5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ + 5.0000 H2O + log_k 4.8409 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lansfordite +# Enthalpy of formation: 0 kcal/mol + +Larnite + Ca2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 2.0000 H2O + log_k 38.4665 + -delta_H -227.061 kJ/mol # Calculated enthalpy of reaction Larnite +# Enthalpy of formation: -551.74 kcal/mol + -analytic 2.6900e+001 -2.1833e-003 1.0900e+004 -9.5257e+000 -7.2537e+004 +# -Range: 0-300 + +Laumontite + CaAl2Si4O12:4H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 SiO2 + 8.0000 H2O + log_k 13.6667 + -delta_H -184.657 kJ/mol # Calculated enthalpy of reaction Laumontite +# Enthalpy of formation: -1728.66 kcal/mol + -analytic 1.1904e+000 8.1763e-003 1.9005e+004 -1.4561e+001 -1.5851e+006 +# -Range: 0-300 + +Laurite + RuS2 = + 1.0000 Ru++ + 1.0000 S2-- + log_k -73.2649 + -delta_H 0 # Not possible to calculate enthalpy of reaction Laurite +# Enthalpy of formation: -199.586 kJ/mol + +Lawrencite + FeCl2 = + 1.0000 Fe++ + 2.0000 Cl- + log_k 9.0945 + -delta_H -84.7665 kJ/mol # Calculated enthalpy of reaction Lawrencite +# Enthalpy of formation: -341.65 kJ/mol + -analytic -2.2798e+002 -8.1819e-002 9.2620e+003 9.3097e+001 1.4459e+002 +# -Range: 0-300 + +Lawsonite + CaAl2Si2O7(OH)2:H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 2.0000 SiO2 + 6.0000 H2O + log_k 22.2132 + -delta_H -244.806 kJ/mol # Calculated enthalpy of reaction Lawsonite +# Enthalpy of formation: -1158.1 kcal/mol + -analytic 1.3995e+001 -1.7668e-002 1.0119e+004 -8.3100e+000 1.5789e+002 +# -Range: 0-300 + +Leonite + K2Mg(SO4)2:4H2O = + 1.0000 Mg++ + 2.0000 K+ + 2.0000 SO4-- + 4.0000 H2O + log_k -4.1123 + -delta_H 0 # Not possible to calculate enthalpy of reaction Leonite +# Enthalpy of formation: 0 kcal/mol + +Li + Li +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Li+ + log_k 72.7622 + -delta_H -418.339 kJ/mol # Calculated enthalpy of reaction Li +# Enthalpy of formation: 0 kJ/mol + -analytic -1.0227e+002 -1.8118e-002 2.6262e+004 3.8056e+001 -1.6166e+005 +# -Range: 0-300 + +Li2Se + Li2Se +1.5000 O2 = + 1.0000 SeO3-- + 2.0000 Li+ + log_k 102.8341 + -delta_H -646.236 kJ/mol # Calculated enthalpy of reaction Li2Se +# Enthalpy of formation: -96 kcal/mol + -analytic 1.1933e+002 -6.9663e-003 2.7509e+004 -4.3124e+001 4.6710e+002 +# -Range: 0-200 + +Li2UO4 + Li2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Li+ + log_k 27.8421 + -delta_H -179.384 kJ/mol # Calculated enthalpy of reaction Li2UO4 +# Enthalpy of formation: -1968.2 kJ/mol + -analytic -1.4470e+002 -1.2024e-002 1.4899e+004 5.0984e+001 2.5306e+002 +# -Range: 0-200 + +LiUO2AsO4 + LiUO2AsO4 +2.0000 H+ = + 1.0000 H2AsO4- + 1.0000 Li+ + 1.0000 UO2++ + log_k -0.7862 + -delta_H 0 # Not possible to calculate enthalpy of reaction LiUO2AsO4 +# Enthalpy of formation: 0 kcal/mol + +Lime + CaO +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + log_k 32.5761 + -delta_H -193.832 kJ/mol # Calculated enthalpy of reaction Lime +# Enthalpy of formation: -151.79 kcal/mol + -analytic -7.2686e+001 -1.7654e-002 1.2199e+004 2.8128e+001 1.9037e+002 +# -Range: 0-300 + +Linnaeite + Co3S4 +4.0000 H+ = + 1.0000 Co++ + 2.0000 Co+++ + 4.0000 HS- + log_k -106.9017 + -delta_H 420.534 kJ/mol # Calculated enthalpy of reaction Linnaeite +# Enthalpy of formation: -85.81 kcal/mol + -analytic -6.0034e+002 -2.0179e-001 -9.2145e+003 2.3618e+002 -1.4361e+002 +# -Range: 0-300 + +Litharge + PbO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ + log_k 12.6388 + -delta_H -65.9118 kJ/mol # Calculated enthalpy of reaction Litharge +# Enthalpy of formation: -219.006 kJ/mol + -analytic -1.8683e+001 -2.0211e-003 4.1876e+003 7.2239e+000 7.1118e+001 +# -Range: 0-200 + +Lopezite + K2Cr2O7 +1.0000 H2O = + 2.0000 CrO4-- + 2.0000 H+ + 2.0000 K+ + log_k -17.4366 + -delta_H 81.9227 kJ/mol # Calculated enthalpy of reaction Lopezite +# Enthalpy of formation: -493.003 kcal/mol + -analytic 7.8359e+001 -2.2908e-002 -9.3812e+003 -2.3245e+001 -1.5933e+002 +# -Range: 0-200 + +Lu + Lu +3.0000 H+ +0.7500 O2 = + 1.0000 Lu+++ + 1.5000 H2O + log_k 181.3437 + -delta_H -1122.15 kJ/mol # Calculated enthalpy of reaction Lu +# Enthalpy of formation: 0 kJ/mol + -analytic -6.8950e+001 -2.8643e-002 5.9209e+004 2.4332e+001 9.2392e+002 +# -Range: 0-300 + +Lu(OH)3 + Lu(OH)3 +3.0000 H+ = + 1.0000 Lu+++ + 3.0000 H2O + log_k 14.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Lu(OH)3(am) + Lu(OH)3 +3.0000 H+ = + 1.0000 Lu+++ + 3.0000 H2O + log_k 18.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Lu2(CO3)3 + Lu2(CO3)3 +3.0000 H+ = + 2.0000 Lu+++ + 3.0000 HCO3- + log_k -2.0136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Lu2O3 + Lu2O3 +6.0000 H+ = + 2.0000 Lu+++ + 3.0000 H2O + log_k 45.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2O3 +# Enthalpy of formation: 0 kcal/mol + +LuF3:.5H2O + LuF3:.5H2O = + 0.5000 H2O + 1.0000 Lu+++ + 3.0000 F- + log_k -15.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction LuF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +LuPO4:10H2O + LuPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Lu+++ + 10.0000 H2O + log_k -11.6782 + -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Magnesiochromite + MgCr2O4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Cr+++ + 4.0000 H2O + log_k 21.6927 + -delta_H -302.689 kJ/mol # Calculated enthalpy of reaction Magnesiochromite +# Enthalpy of formation: -1783.6 kJ/mol + -analytic -1.7376e+002 -8.7429e-003 2.1600e+004 5.0762e+001 3.6685e+002 +# -Range: 0-200 + +Magnesite + MgCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ + log_k 2.2936 + -delta_H -44.4968 kJ/mol # Calculated enthalpy of reaction Magnesite +# Enthalpy of formation: -265.63 kcal/mol + -analytic -1.6665e+002 -4.9469e-002 6.4344e+003 6.5506e+001 1.0045e+002 +# -Range: 0-300 + +Magnetite + Fe3O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Fe+++ + 4.0000 H2O + log_k 10.4724 + -delta_H -216.597 kJ/mol # Calculated enthalpy of reaction Magnetite +# Enthalpy of formation: -267.25 kcal/mol + -analytic -3.0510e+002 -7.9919e-002 1.8709e+004 1.1178e+002 2.9203e+002 +# -Range: 0-300 + +Malachite + Cu2CO3(OH)2 +3.0000 H+ = + 1.0000 HCO3- + 2.0000 Cu++ + 2.0000 H2O + log_k 5.9399 + -delta_H -76.2827 kJ/mol # Calculated enthalpy of reaction Malachite +# Enthalpy of formation: -251.9 kcal/mol + -analytic -2.7189e+002 -6.9454e-002 1.1451e+004 1.0511e+002 1.7877e+002 +# -Range: 0-300 + +Manganite + MnO(OH) +3.0000 H+ = + 1.0000 Mn+++ + 2.0000 H2O + log_k -0.1646 + -delta_H 0 # Not possible to calculate enthalpy of reaction Manganite +# Enthalpy of formation: 0 kcal/mol + +Manganosite + MnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Mn++ + log_k 17.9240 + -delta_H -121.215 kJ/mol # Calculated enthalpy of reaction Manganosite +# Enthalpy of formation: -92.07 kcal/mol + -analytic -8.4114e+001 -1.8490e-002 8.7792e+003 3.1561e+001 1.3702e+002 +# -Range: 0-300 + +Margarite + CaAl4Si2O10(OH)2 +14.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 4.0000 Al+++ + 8.0000 H2O + log_k 41.0658 + -delta_H -522.192 kJ/mol # Calculated enthalpy of reaction Margarite +# Enthalpy of formation: -1485.8 kcal/mol + -analytic -2.3138e+002 -8.2788e-002 3.0154e+004 7.9148e+001 4.7060e+002 +# -Range: 0-300 + +Massicot + PbO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ + log_k 12.8210 + -delta_H -67.6078 kJ/mol # Calculated enthalpy of reaction Massicot +# Enthalpy of formation: -217.31 kJ/mol + -analytic -1.8738e+001 -2.0125e-003 4.2739e+003 7.2018e+000 7.2584e+001 +# -Range: 0-200 + +Matlockite + PbFCl = + 1.0000 Cl- + 1.0000 F- + 1.0000 Pb++ + log_k -9.4300 + -delta_H 0 # Not possible to calculate enthalpy of reaction Matlockite +# Enthalpy of formation: 0 kcal/mol + +Maximum_Microcline + KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction Maximum_Microcline +# Enthalpy of formation: -949.188 kcal/mol + -analytic -9.4387e+000 1.3561e-002 1.2656e+004 -7.4925e+000 -1.6795e+006 +# -Range: 0-300 + +Mayenite + Ca12Al14O33 +66.0000 H+ = + 12.0000 Ca++ + 14.0000 Al+++ + 33.0000 H2O + log_k 494.2199 + -delta_H -4056.77 kJ/mol # Calculated enthalpy of reaction Mayenite +# Enthalpy of formation: -4644 kcal/mol + -analytic -1.4778e+003 -2.9898e-001 2.4918e+005 4.9518e+002 4.2319e+003 +# -Range: 0-200 + +Melanterite + FeSO4:7H2O = + 1.0000 Fe++ + 1.0000 SO4-- + 7.0000 H2O + log_k -2.3490 + -delta_H 11.7509 kJ/mol # Calculated enthalpy of reaction Melanterite +# Enthalpy of formation: -3014.48 kJ/mol + -analytic -2.6230e+002 -7.2469e-002 6.5854e+003 1.0484e+002 1.0284e+002 +# -Range: 0-300 + +Mercallite + KHSO4 = + 1.0000 H+ + 1.0000 K+ + 1.0000 SO4-- + log_k -1.4389 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mercallite +# Enthalpy of formation: 0 kcal/mol + +Merwinite + MgCa3(SiO4)2 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 SiO2 + 3.0000 Ca++ + 4.0000 H2O + log_k 68.5140 + -delta_H -430.069 kJ/mol # Calculated enthalpy of reaction Merwinite +# Enthalpy of formation: -1090.8 kcal/mol + -analytic -2.2524e+002 -4.2525e-002 3.5619e+004 7.9984e+001 -9.8259e+005 +# -Range: 0-300 + +Mesolite + Na.676Ca.657Al1.99Si3.01O10:2.647H2O +7.9600 H+ = + 0.6570 Ca++ + 0.6760 Na+ + 1.9900 Al+++ + 3.0100 SiO2 + 6.6270 H2O + log_k 13.6191 + -delta_H -179.744 kJ/mol # Calculated enthalpy of reaction Mesolite +# Enthalpy of formation: -5947.05 kJ/mol + -analytic 7.1993e+000 5.9356e-003 1.4717e+004 -1.3627e+001 -9.8863e+005 +# -Range: 0-300 + +Metacinnabar + HgS +1.0000 H+ = + 1.0000 HS- + 1.0000 Hg++ + log_k -38.5979 + -delta_H 203.426 kJ/mol # Calculated enthalpy of reaction Metacinnabar +# Enthalpy of formation: -11.8 kcal/mol + -analytic -1.5399e+002 -4.6740e-002 -6.7875e+003 6.1456e+001 -1.0587e+002 +# -Range: 0-300 + +Mg + Mg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mg++ + log_k 122.5365 + -delta_H -745.731 kJ/mol # Calculated enthalpy of reaction Mg +# Enthalpy of formation: 0 kJ/mol + -analytic -6.5988e+001 -1.9356e-002 4.0318e+004 2.3862e+001 6.2914e+002 +# -Range: 0-300 + +Mg1.25SO4(OH)0.5:0.5H2O + Mg1.25SO4(OH)0.5:0.5H2O +0.5000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 1.2500 Mg++ + log_k 5.2600 + -delta_H -97.1054 kJ/mol # Calculated enthalpy of reaction Mg1.25SO4(OH)0.5:0.5H2O +# Enthalpy of formation: -401.717 kcal/mol + -analytic -2.6791e+002 -8.7078e-002 1.1090e+004 1.0583e+002 1.7312e+002 +# -Range: 0-300 + +Mg1.5SO4(OH) + Mg1.5SO4(OH) +1.0000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 1.5000 Mg++ + log_k 9.2551 + -delta_H -125.832 kJ/mol # Calculated enthalpy of reaction Mg1.5SO4(OH) +# Enthalpy of formation: -422.693 kcal/mol + -analytic -2.8698e+002 -9.1970e-002 1.3088e+004 1.1304e+002 2.0432e+002 +# -Range: 0-300 + +Mg2V2O7 + Mg2V2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 Mg++ + 2.0000 VO4--- + log_k -30.9025 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mg2V2O7 +# Enthalpy of formation: -2836.23 kJ/mol + +MgBr2 + MgBr2 = + 1.0000 Mg++ + 2.0000 Br- + log_k 28.5302 + -delta_H -190.15 kJ/mol # Calculated enthalpy of reaction MgBr2 +# Enthalpy of formation: -124 kcal/mol + -analytic -2.1245e+002 -7.6168e-002 1.4466e+004 8.6940e+001 2.2579e+002 +# -Range: 0-300 + +MgBr2:6H2O + MgBr2:6H2O = + 1.0000 Mg++ + 2.0000 Br- + 6.0000 H2O + log_k 5.1656 + -delta_H -14.2682 kJ/mol # Calculated enthalpy of reaction MgBr2:6H2O +# Enthalpy of formation: -2409.73 kJ/mol + -analytic -1.3559e+002 -1.6479e-002 5.8571e+003 5.0924e+001 9.9508e+001 +# -Range: 0-200 + +MgCl2:2H2O + MgCl2:2H2O = + 1.0000 Mg++ + 2.0000 Cl- + 2.0000 H2O + log_k 12.7763 + -delta_H -92.0895 kJ/mol # Calculated enthalpy of reaction MgCl2:2H2O +# Enthalpy of formation: -1279.71 kJ/mol + -analytic -2.5409e+002 -8.1413e-002 1.0941e+004 1.0281e+002 1.7080e+002 +# -Range: 0-300 + +MgCl2:4H2O + MgCl2:4H2O = + 1.0000 Mg++ + 2.0000 Cl- + 4.0000 H2O + log_k 7.3581 + -delta_H -44.4602 kJ/mol # Calculated enthalpy of reaction MgCl2:4H2O +# Enthalpy of formation: -1899.01 kJ/mol + -analytic -2.7604e+002 -8.1648e-002 9.5501e+003 1.1140e+002 1.4910e+002 +# -Range: 0-300 + +MgCl2:H2O + MgCl2:H2O = + 1.0000 H2O + 1.0000 Mg++ + 2.0000 Cl- + log_k 16.1187 + -delta_H -119.326 kJ/mol # Calculated enthalpy of reaction MgCl2:H2O +# Enthalpy of formation: -966.631 kJ/mol + -analytic -2.4414e+002 -8.1310e-002 1.1862e+004 9.8878e+001 1.8516e+002 +# -Range: 0-300 + +MgOHCl + MgOHCl +1.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 Mg++ + log_k 15.9138 + -delta_H -118.897 kJ/mol # Calculated enthalpy of reaction MgOHCl +# Enthalpy of formation: -191.2 kcal/mol + -analytic -1.6614e+002 -4.9715e-002 1.0311e+004 6.5578e+001 1.6093e+002 +# -Range: 0-300 + +MgSO4 + MgSO4 = + 1.0000 Mg++ + 1.0000 SO4-- + log_k 4.8781 + -delta_H -90.6421 kJ/mol # Calculated enthalpy of reaction MgSO4 +# Enthalpy of formation: -1284.92 kJ/mol + -analytic -2.2439e+002 -7.9688e-002 9.3058e+003 8.9622e+001 1.4527e+002 +# -Range: 0-300 + +MgSeO3 + MgSeO3 = + 1.0000 Mg++ + 1.0000 SeO3-- + log_k 1.7191 + -delta_H -74.9647 kJ/mol # Calculated enthalpy of reaction MgSeO3 +# Enthalpy of formation: -215.15 kcal/mol + -analytic -2.2593e+002 -8.1045e-002 8.4609e+003 9.0278e+001 1.3209e+002 +# -Range: 0-300 + +MgSeO3:6H2O + MgSeO3:6H2O = + 1.0000 Mg++ + 1.0000 SeO3-- + 6.0000 H2O + log_k -3.4222 + -delta_H 11.7236 kJ/mol # Calculated enthalpy of reaction MgSeO3:6H2O +# Enthalpy of formation: -645.771 kcal/mol + -analytic -1.2807e+002 -1.5418e-002 4.0565e+003 4.6728e+001 6.8929e+001 +# -Range: 0-200 + +MgUO4 + MgUO4 +4.0000 H+ = + 1.0000 Mg++ + 1.0000 UO2++ + 2.0000 H2O + log_k 23.0023 + -delta_H -199.336 kJ/mol # Calculated enthalpy of reaction MgUO4 +# Enthalpy of formation: -1857.3 kJ/mol + -analytic -9.9954e+001 -2.0142e-002 1.3078e+004 3.4386e+001 2.0410e+002 +# -Range: 0-300 + +MgV2O6 + MgV2O6 +2.0000 H2O = + 1.0000 Mg++ + 2.0000 VO4--- + 4.0000 H+ + log_k -45.8458 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgV2O6 +# Enthalpy of formation: -2201.88 kJ/mol + +Millerite + NiS +1.0000 H+ = + 1.0000 HS- + 1.0000 Ni++ + log_k -8.0345 + -delta_H 12.089 kJ/mol # Calculated enthalpy of reaction Millerite +# Enthalpy of formation: -82.171 kJ/mol + -analytic -1.4848e+002 -4.8834e-002 2.6981e+003 5.8976e+001 4.2145e+001 +# -Range: 0-300 + +Minium + Pb3O4 +8.0000 H+ = + 1.0000 Pb++++ + 2.0000 Pb++ + 4.0000 H2O + log_k 16.2585 + -delta_H 0 # Not possible to calculate enthalpy of reaction Minium +# Enthalpy of formation: -718.493 kJ/mol + +Minnesotaite + Fe3Si4O10(OH)2 +6.0000 H+ = + 3.0000 Fe++ + 4.0000 H2O + 4.0000 SiO2 + log_k 13.9805 + -delta_H -105.211 kJ/mol # Calculated enthalpy of reaction Minnesotaite +# Enthalpy of formation: -1153.37 kcal/mol + -analytic -1.8812e+001 1.7261e-002 1.9804e+004 -6.4410e+000 -2.0433e+006 +# -Range: 0-300 + +Mirabilite + Na2SO4:10H2O = + 1.0000 SO4-- + 2.0000 Na+ + 10.0000 H2O + log_k -1.1398 + -delta_H 79.4128 kJ/mol # Calculated enthalpy of reaction Mirabilite +# Enthalpy of formation: -4328 kJ/mol + -analytic -2.1877e+002 -3.6692e-003 5.9214e+003 8.0361e+001 1.0063e+002 +# -Range: 0-200 + +Misenite + K8H6(SO4)7 = + 6.0000 H+ + 7.0000 SO4-- + 8.0000 K+ + log_k -11.0757 + -delta_H 0 # Not possible to calculate enthalpy of reaction Misenite +# Enthalpy of formation: 0 kcal/mol + +Mn + Mn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mn++ + log_k 82.9505 + -delta_H -500.369 kJ/mol # Calculated enthalpy of reaction Mn +# Enthalpy of formation: 0 kJ/mol + -analytic -6.5558e+001 -2.0429e-002 2.7571e+004 2.5098e+001 4.3024e+002 +# -Range: 0-300 + +Mn(OH)2(am) + Mn(OH)2 +2.0000 H+ = + 1.0000 Mn++ + 2.0000 H2O + log_k 15.3102 + -delta_H -97.1779 kJ/mol # Calculated enthalpy of reaction Mn(OH)2(am) +# Enthalpy of formation: -695.096 kJ/mol + -analytic -7.8518e+001 -7.5357e-003 8.0198e+003 2.7955e+001 1.3621e+002 +# -Range: 0-200 + +Mn(OH)3 + Mn(OH)3 +3.0000 H+ = + 1.0000 Mn+++ + 3.0000 H2O + log_k 6.3412 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Mn3(PO4)2 + Mn3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Mn++ + log_k 0.8167 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn3(PO4)2 +# Enthalpy of formation: 0 kcal/mol + +MnCl2:2H2O + MnCl2:2H2O = + 1.0000 Mn++ + 2.0000 Cl- + 2.0000 H2O + log_k 4.0067 + -delta_H -34.4222 kJ/mol # Calculated enthalpy of reaction MnCl2:2H2O +# Enthalpy of formation: -1092.01 kJ/mol + -analytic -6.2823e+001 -2.3959e-002 2.9931e+003 2.5834e+001 5.0850e+001 +# -Range: 0-200 + +MnCl2:4H2O + MnCl2:4H2O = + 1.0000 Mn++ + 2.0000 Cl- + 4.0000 H2O + log_k 2.7563 + -delta_H -10.7019 kJ/mol # Calculated enthalpy of reaction MnCl2:4H2O +# Enthalpy of formation: -1687.41 kJ/mol + -analytic -1.1049e+002 -2.3376e-002 4.0458e+003 4.3097e+001 6.8742e+001 +# -Range: 0-200 + +MnCl2:H2O + MnCl2:H2O = + 1.0000 H2O + 1.0000 Mn++ + 2.0000 Cl- + log_k 5.5517 + -delta_H -50.8019 kJ/mol # Calculated enthalpy of reaction MnCl2:H2O +# Enthalpy of formation: -789.793 kJ/mol + -analytic -4.5051e+001 -2.5923e-002 2.8739e+003 1.9674e+001 4.8818e+001 +# -Range: 0-200 + +MnHPO4 + MnHPO4 = + 1.0000 HPO4-- + 1.0000 Mn++ + log_k -12.9470 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 +# Enthalpy of formation: 0 kcal/mol + +MnO2(gamma) + MnO2 = + 0.5000 Mn++ + 0.5000 MnO4-- + log_k -16.1261 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnO2(gamma) +# Enthalpy of formation: 0 kcal/mol + +MnSO4 + MnSO4 = + 1.0000 Mn++ + 1.0000 SO4-- + log_k 2.6561 + -delta_H -64.8718 kJ/mol # Calculated enthalpy of reaction MnSO4 +# Enthalpy of formation: -1065.33 kJ/mol + -analytic -2.3088e+002 -8.2694e-002 8.1653e+003 9.3256e+001 1.2748e+002 +# -Range: 0-300 + +MnSe + MnSe = + 1.0000 Mn++ + 1.0000 Se-- + log_k -10.6848 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSe +# Enthalpy of formation: -37 kcal/mol + -analytic -5.9960e+001 -1.5963e-002 1.2813e+003 2.0095e+001 2.0010e+001 +# -Range: 0-300 + +MnSeO3 + MnSeO3 = + 1.0000 Mn++ + 1.0000 SeO3-- + log_k -7.2700 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO3 +# Enthalpy of formation: 0 kcal/mol + +MnSeO3:2H2O + MnSeO3:2H2O = + 1.0000 Mn++ + 1.0000 SeO3-- + 2.0000 H2O + log_k -6.3219 + -delta_H 14.0792 kJ/mol # Calculated enthalpy of reaction MnSeO3:2H2O +# Enthalpy of formation: -314.423 kcal/mol + -analytic -4.3625e+001 -2.0426e-002 -2.5368e+002 1.7876e+001 -4.2927e+000 +# -Range: 0-200 + +MnV2O6 + MnV2O6 +2.0000 H2O = + 1.0000 Mn++ + 2.0000 VO4--- + 4.0000 H+ + log_k -52.0751 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnV2O6 +# Enthalpy of formation: -447.9 kcal/mol + +Mo + Mo +1.5000 O2 +1.0000 H2O = + 1.0000 MoO4-- + 2.0000 H+ + log_k 109.3230 + -delta_H -693.845 kJ/mol # Calculated enthalpy of reaction Mo +# Enthalpy of formation: 0 kJ/mol + -analytic -2.0021e+002 -8.3006e-002 4.1629e+004 8.0219e+001 -3.4570e+005 +# -Range: 0-300 + +MoSe2 + MoSe2 +3.0000 H2O +0.5000 O2 = + 1.0000 MoO4-- + 2.0000 Se-- + 6.0000 H+ + log_k -55.1079 + -delta_H 0 # Not possible to calculate enthalpy of reaction MoSe2 +# Enthalpy of formation: -47 kcal/mol + -analytic 1.3882e+002 -1.8590e-003 -1.7231e+004 -5.4797e+001 -2.9265e+002 +# -Range: 0-200 + +Modderite + CoAs +3.0000 H+ = + 1.0000 AsH3 + 1.0000 Co+++ + log_k -49.5512 + -delta_H 189.016 kJ/mol # Calculated enthalpy of reaction Modderite +# Enthalpy of formation: -12.208 kcal/mol + +Molysite + FeCl3 = + 1.0000 Fe+++ + 3.0000 Cl- + log_k 13.5517 + -delta_H -151.579 kJ/mol # Calculated enthalpy of reaction Molysite +# Enthalpy of formation: -399.24 kJ/mol + -analytic -3.1810e+002 -1.2357e-001 1.3860e+004 1.3010e+002 2.1637e+002 +# -Range: 0-300 + +Monohydrocalcite + CaCO3:H2O +1.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 HCO3- + log_k 2.6824 + -delta_H -20.5648 kJ/mol # Calculated enthalpy of reaction Monohydrocalcite +# Enthalpy of formation: -1498.29 kJ/mol + -analytic -7.2614e+001 -1.7217e-002 3.1850e+003 2.8185e+001 5.4111e+001 +# -Range: 0-200 + +Monteponite + CdO +2.0000 H+ = + 1.0000 Cd++ + 1.0000 H2O + log_k 15.0972 + -delta_H -103.386 kJ/mol # Calculated enthalpy of reaction Monteponite +# Enthalpy of formation: -258.35 kJ/mol + -analytic -5.0057e+001 -6.3629e-003 7.0898e+003 1.7486e+001 1.2041e+002 +# -Range: 0-200 + +Monticellite + CaMgSiO4 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 1.0000 SiO2 + 2.0000 H2O + log_k 29.5852 + -delta_H -195.711 kJ/mol # Calculated enthalpy of reaction Monticellite +# Enthalpy of formation: -540.8 kcal/mol + -analytic 1.5730e+001 -3.5567e-003 9.0789e+003 -6.3007e+000 1.4166e+002 +# -Range: 0-300 + +Montmor-Ca + Ca.165Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.1650 Ca++ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 + log_k 2.4952 + -delta_H -100.154 kJ/mol # Calculated enthalpy of reaction Montmor-Ca +# Enthalpy of formation: -1361.5 kcal/mol + -analytic 6.0725e+000 1.0644e-002 1.6024e+004 -1.6334e+001 -1.7982e+006 +# -Range: 0-300 + +Montmor-Cs + Cs.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 Cs+ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 + log_k 1.9913 + -delta_H -87.2259 kJ/mol # Calculated enthalpy of reaction Montmor-Cs +# Enthalpy of formation: -1363.52 kcal/mol + -analytic 9.9136e+000 1.2496e-002 1.5650e+004 -1.7601e+001 -1.8434e+006 +# -Range: 0-300 + +Montmor-K + K.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 K+ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 + log_k 2.1423 + -delta_H -88.184 kJ/mol # Calculated enthalpy of reaction Montmor-K +# Enthalpy of formation: -1362.83 kcal/mol + -analytic 8.4757e+000 1.1219e-002 1.5654e+004 -1.6833e+001 -1.8386e+006 +# -Range: 0-300 + +Montmor-Mg + Mg.495Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.4950 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 + log_k 2.3879 + -delta_H -102.608 kJ/mol # Calculated enthalpy of reaction Montmor-Mg +# Enthalpy of formation: -1357.87 kcal/mol + -analytic -6.8505e+000 9.0710e-003 1.6817e+004 -1.1887e+001 -1.8323e+006 +# -Range: 0-300 + +Montmor-Na + Na.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 Mg++ + 0.3300 Na+ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 + log_k 2.4844 + -delta_H -93.2165 kJ/mol # Calculated enthalpy of reaction Montmor-Na +# Enthalpy of formation: -1360.69 kcal/mol + -analytic 1.9601e+000 1.1342e-002 1.6051e+004 -1.4718e+001 -1.8160e+006 +# -Range: 0-300 + +Montroydite + HgO +2.0000 H+ = + 1.0000 H2O + 1.0000 Hg++ + log_k 2.4486 + -delta_H -24.885 kJ/mol # Calculated enthalpy of reaction Montroydite +# Enthalpy of formation: -90.79 kJ/mol + -analytic -8.7302e+001 -1.7618e-002 4.0086e+003 3.2957e+001 6.2576e+001 +# -Range: 0-300 + +Mordenite + Ca.2895Na.361Al.94Si5.06O12:3.468H2O +3.7600 H+ = + 0.2895 Ca++ + 0.3610 Na+ + 0.9400 Al+++ + 5.0600 SiO2 + 5.3480 H2O + log_k -5.1969 + -delta_H 16.7517 kJ/mol # Calculated enthalpy of reaction Mordenite +# Enthalpy of formation: -6736.64 kJ/mol + -analytic -5.4675e+001 3.2513e-002 2.3412e+004 -1.0419e+000 -3.2292e+006 +# -Range: 0-300 + +Mordenite-dehy + Ca.2895Na.361Al.94Si5.06O12 +3.7600 H+ = + 0.2895 Ca++ + 0.3610 Na+ + 0.9400 Al+++ + 1.8800 H2O + 5.0600 SiO2 + log_k 9.9318 + -delta_H -86.159 kJ/mol # Calculated enthalpy of reaction Mordenite-dehy +# Enthalpy of formation: -5642.44 kJ/mol + -analytic -5.0841e+001 2.5405e-002 2.7621e+004 -1.6331e+000 -3.1618e+006 +# -Range: 0-300 + +Morenosite + NiSO4:7H2O = + 1.0000 Ni++ + 1.0000 SO4-- + 7.0000 H2O + log_k -2.0140 + -delta_H 12.0185 kJ/mol # Calculated enthalpy of reaction Morenosite +# Enthalpy of formation: -2976.46 kJ/mol + -analytic -2.6654e+002 -7.2132e-002 6.7983e+003 1.0636e+002 1.0616e+002 +# -Range: 0-300 + +Muscovite + KAl3Si3O10(OH)2 +10.0000 H+ = + 1.0000 K+ + 3.0000 Al+++ + 3.0000 SiO2 + 6.0000 H2O + log_k 13.5858 + -delta_H -243.224 kJ/mol # Calculated enthalpy of reaction Muscovite +# Enthalpy of formation: -1427.41 kcal/mol + -analytic 3.3085e+001 -1.2425e-002 1.2477e+004 -2.0865e+001 -5.4692e+005 +# -Range: 0-300 + +NH4HSe + NH4HSe = + 1.0000 NH3 + 1.0000 Se-- + 2.0000 H+ + log_k -22.0531 + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4HSe +# Enthalpy of formation: -133.041 kJ/mol + -analytic -8.8685e+000 6.7342e-003 -5.3028e+003 1.0468e+000 -9.0046e+001 +# -Range: 0-200 +Na + Na +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Na+ + log_k 67.3804 + -delta_H -380.185 kJ/mol # Calculated enthalpy of reaction Na +# Enthalpy of formation: 0 kJ/mol + -analytic -4.0458e+001 -8.7899e-003 2.1223e+004 1.5927e+001 -1.2715e+004 +# -Range: 0-300 + +Na2CO3 + Na2CO3 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ + log_k 11.1822 + -delta_H -39.8526 kJ/mol # Calculated enthalpy of reaction Na2CO3 +# Enthalpy of formation: -1130.68 kJ/mol + -analytic -1.5495e+002 -4.3374e-002 6.4821e+003 6.3571e+001 1.0119e+002 +# -Range: 0-300 + +Na2CO3:7H2O + Na2CO3:7H2O +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ + 7.0000 H2O + log_k 9.9459 + -delta_H 27.7881 kJ/mol # Calculated enthalpy of reaction Na2CO3:7H2O +# Enthalpy of formation: -3199.19 kJ/mol + -analytic -2.0593e+002 -3.4509e-003 8.1601e+003 7.6594e+001 1.3864e+002 +# -Range: 0-200 + +Na2Cr2O7 + Na2Cr2O7 +1.0000 H2O = + 2.0000 CrO4-- + 2.0000 H+ + 2.0000 Na+ + log_k -10.1597 + -delta_H 21.9702 kJ/mol # Calculated enthalpy of reaction Na2Cr2O7 +# Enthalpy of formation: -473 kcal/mol + -analytic 4.4885e+001 -2.4919e-002 -5.0321e+003 -1.2430e+001 -8.5468e+001 +# -Range: 0-200 + +Na2CrO4 + Na2CrO4 = + 1.0000 CrO4-- + 2.0000 Na+ + log_k 2.9103 + -delta_H -19.5225 kJ/mol # Calculated enthalpy of reaction Na2CrO4 +# Enthalpy of formation: -320.8 kcal/mol + -analytic 5.4985e+000 -9.9008e-003 1.0510e+002 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +Na2O + Na2O +2.0000 H+ = + 1.0000 H2O + 2.0000 Na+ + log_k 67.4269 + -delta_H -351.636 kJ/mol # Calculated enthalpy of reaction Na2O +# Enthalpy of formation: -99.14 kcal/mol + -analytic -6.3585e+001 -8.4695e-003 2.0923e+004 2.5601e+001 3.2651e+002 +# -Range: 0-300 + +Na2Se + Na2Se = + 1.0000 Se-- + 2.0000 Na+ + log_k 11.8352 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se +# Enthalpy of formation: -81.9 kcal/mol + -analytic -6.0070e+000 8.2821e-003 4.5816e+003 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +Na2Se2 + Na2Se2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 Na+ + 2.0000 Se-- + log_k -61.3466 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se2 +# Enthalpy of formation: -92.8 kcal/mol + -analytic -2.7836e+001 7.7035e-003 -1.5040e+004 5.9131e+000 -2.5539e+002 +# -Range: 0-200 + +Na2SiO3 + Na2SiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 SiO2 + 2.0000 Na+ + log_k 22.2418 + -delta_H -82.7093 kJ/mol # Calculated enthalpy of reaction Na2SiO3 +# Enthalpy of formation: -373.19 kcal/mol + -analytic -3.4928e+001 5.6905e-003 1.0284e+004 1.1197e+001 -6.0134e+005 +# -Range: 0-300 + +Na2U2O7 + Na2U2O7 +6.0000 H+ = + 2.0000 Na+ + 2.0000 UO2++ + 3.0000 H2O + log_k 22.5917 + -delta_H -172.314 kJ/mol # Calculated enthalpy of reaction Na2U2O7 +# Enthalpy of formation: -3203.8 kJ/mol + -analytic -8.6640e+001 -1.0903e-002 1.1841e+004 2.9406e+001 1.8479e+002 +# -Range: 0-300 + +Na2UO4(alpha) + Na2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Na+ + log_k 30.0231 + -delta_H -173.576 kJ/mol # Calculated enthalpy of reaction Na2UO4(alpha) +# Enthalpy of formation: -1897.7 kJ/mol + -analytic -7.9767e+001 -1.0253e-002 1.1963e+004 2.9386e+001 1.8669e+002 +# -Range: 0-300 + +Na3H(SO4)2 + Na3H(SO4)2 = + 1.0000 H+ + 2.0000 SO4-- + 3.0000 Na+ + log_k -0.8906 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na3H(SO4)2 +# Enthalpy of formation: 0 kcal/mol + +Na3UO4 + Na3UO4 +4.0000 H+ = + 1.0000 UO2+ + 2.0000 H2O + 3.0000 Na+ + log_k 56.2574 + -delta_H -293.703 kJ/mol # Calculated enthalpy of reaction Na3UO4 +# Enthalpy of formation: -2024 kJ/mol + -analytic -9.6724e+001 -6.2485e-003 1.9469e+004 3.6180e+001 3.0382e+002 +# -Range: 0-300 + +Na4Ca(SO4)3:2H2O + Na4Ca(SO4)3:2H2O = + 1.0000 Ca++ + 2.0000 H2O + 3.0000 SO4-- + 4.0000 Na+ + log_k -5.8938 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na4Ca(SO4)3:2H2O +# Enthalpy of formation: 0 kcal/mol + +Na4SiO4 + Na4SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 4.0000 Na+ + log_k 70.6449 + -delta_H -327.779 kJ/mol # Calculated enthalpy of reaction Na4SiO4 +# Enthalpy of formation: -497.8 kcal/mol + -analytic -1.1969e+002 -6.5032e-003 2.6469e+004 4.4626e+001 -6.2007e+005 +# -Range: 0-300 + +Na4UO2(CO3)3 + Na4UO2(CO3)3 +3.0000 H+ = + 1.0000 UO2++ + 3.0000 HCO3- + 4.0000 Na+ + log_k 4.0395 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na4UO2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Na6Si2O7 + Na6Si2O7 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 H2O + 6.0000 Na+ + log_k 101.6199 + -delta_H -471.951 kJ/mol # Calculated enthalpy of reaction Na6Si2O7 +# Enthalpy of formation: -856.3 kcal/mol + -analytic -1.0590e+002 4.5576e-003 3.6830e+004 3.8030e+001 -1.0276e+006 +# -Range: 0-300 + +NaBr + NaBr = + 1.0000 Br- + 1.0000 Na+ + log_k 2.9739 + -delta_H -0.741032 kJ/mol # Calculated enthalpy of reaction NaBr +# Enthalpy of formation: -361.062 kJ/mol + -analytic -9.3227e+001 -3.2780e-002 2.2910e+003 3.9713e+001 3.5777e+001 +# -Range: 0-300 + +NaBr:2H2O + NaBr:2H2O = + 1.0000 Br- + 1.0000 Na+ + 2.0000 H2O + log_k 2.1040 + -delta_H 18.4883 kJ/mol # Calculated enthalpy of reaction NaBr:2H2O +# Enthalpy of formation: -951.968 kJ/mol + -analytic -4.1855e+001 -4.6170e-003 8.3883e+002 1.7182e+001 1.4259e+001 +# -Range: 0-200 + +NaFeO2 + NaFeO2 +4.0000 H+ = + 1.0000 Fe+++ + 1.0000 Na+ + 2.0000 H2O + log_k 19.8899 + -delta_H -163.339 kJ/mol # Calculated enthalpy of reaction NaFeO2 +# Enthalpy of formation: -698.218 kJ/mol + -analytic -7.0047e+001 -9.6226e-003 1.0647e+004 2.3071e+001 1.8082e+002 +# -Range: 0-200 + +NaNpO2CO3:3.5H2O + NaNpO2CO3:3.5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Na+ + 1.0000 NpO2+ + 3.5000 H2O + log_k -1.2342 + -delta_H 27.0979 kJ/mol # Calculated enthalpy of reaction NaNpO2CO3:3.5H2O +# Enthalpy of formation: -2935.76 kJ/mol + -analytic -1.4813e+002 -2.7355e-002 3.6537e+003 5.7701e+001 5.7055e+001 +# -Range: 0-300 + +NaTcO4 + NaTcO4 = + 1.0000 Na+ + 1.0000 TcO4- + log_k 1.5208 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaTcO4 +# Enthalpy of formation: 0 kcal/mol + +NaUO3 + NaUO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Na+ + 1.0000 UO2+ + log_k 8.3371 + -delta_H -56.365 kJ/mol # Calculated enthalpy of reaction NaUO3 +# Enthalpy of formation: -1494.9 kJ/mol + -analytic -3.6363e+001 7.0505e-004 4.5359e+003 1.1828e+001 7.0790e+001 +# -Range: 0-300 + +Nahcolite + NaHCO3 = + 1.0000 HCO3- + 1.0000 Na+ + log_k -0.1118 + -delta_H 17.0247 kJ/mol # Calculated enthalpy of reaction Nahcolite +# Enthalpy of formation: -226.4 kcal/mol + -analytic -2.2282e+002 -5.9693e-002 5.4887e+003 8.9744e+001 8.5712e+001 +# -Range: 0-300 + +Nantokite + CuCl = + 1.0000 Cl- + 1.0000 Cu+ + log_k -6.7623 + -delta_H 41.9296 kJ/mol # Calculated enthalpy of reaction Nantokite +# Enthalpy of formation: -137.329 kJ/mol + -analytic -2.2442e+001 -1.1201e-002 -1.8709e+003 1.0221e+001 -3.1763e+001 +# -Range: 0-200 + +Natrolite + Na2Al2Si3O10:2H2O +8.0000 H+ = + 2.0000 Al+++ + 2.0000 Na+ + 3.0000 SiO2 + 6.0000 H2O + log_k 18.5204 + -delta_H -186.971 kJ/mol # Calculated enthalpy of reaction Natrolite +# Enthalpy of formation: -5718.56 kJ/mol + -analytic -2.7712e+001 -2.7963e-003 1.6075e+004 1.5332e+000 -9.5765e+005 +# -Range: 0-300 + +Natron + Na2CO3:10H2O +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ + 10.0000 H2O + log_k 9.6102 + -delta_H 50.4781 kJ/mol # Calculated enthalpy of reaction Natron +# Enthalpy of formation: -4079.39 kJ/mol + -analytic -1.9981e+002 -2.9247e-002 5.2937e+003 8.0973e+001 8.2662e+001 +# -Range: 0-300 + +Natrosilite + Na2Si2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 Na+ + 2.0000 SiO2 + log_k 18.1337 + -delta_H -51.7686 kJ/mol # Calculated enthalpy of reaction Natrosilite +# Enthalpy of formation: -590.36 kcal/mol + -analytic -2.7628e+001 1.6865e-002 1.3302e+004 4.2356e+000 -1.2828e+006 +# -Range: 0-300 + +Naumannite + Ag2Se = + 1.0000 Se-- + 2.0000 Ag+ + log_k -57.4427 + -delta_H 0 # Not possible to calculate enthalpy of reaction Naumannite +# Enthalpy of formation: -37.441 kJ/mol + -analytic -5.3844e+001 -1.0965e-002 -1.4739e+004 1.9842e+001 -2.2998e+002 +# -Range: 0-300 + +Nd + Nd +3.0000 H+ +0.7500 O2 = + 1.0000 Nd+++ + 1.5000 H2O + log_k 182.2233 + -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Nd +# Enthalpy of formation: 0 kJ/mol + -analytic -2.7390e+002 -5.6545e-002 7.1502e+004 9.7969e+001 -8.2482e+005 +# -Range: 0-300 + +Nd(OH)3 + Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O + log_k 18.0852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Nd(OH)3(am) + Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O + log_k 20.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Nd(OH)3(c) + Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O + log_k 15.7852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(c) +# Enthalpy of formation: 0 kcal/mol + +Nd2(CO3)3 + Nd2(CO3)3 +3.0000 H+ = + 2.0000 Nd+++ + 3.0000 HCO3- + log_k -3.6636 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Nd2O3 + Nd2O3 +6.0000 H+ = + 2.0000 Nd+++ + 3.0000 H2O + log_k 58.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2O3 +# Enthalpy of formation: 0 kcal/mol + +NdF3:.5H2O + NdF3:.5H2O = + 0.5000 H2O + 1.0000 Nd+++ + 3.0000 F- + log_k -18.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +NdOHCO3 + NdOHCO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Nd+++ + log_k 2.8239 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdOHCO3 +# Enthalpy of formation: 0 kcal/mol + +NdPO4:10H2O + NdPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Nd+++ + 10.0000 H2O + log_k -12.1782 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Nepheline + NaAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 1.0000 SiO2 + 2.0000 H2O + log_k 13.8006 + -delta_H -135.068 kJ/mol # Calculated enthalpy of reaction Nepheline +# Enthalpy of formation: -500.241 kcal/mol + -analytic -2.4856e+001 -8.8171e-003 8.5653e+003 6.0904e+000 -2.2786e+005 +# -Range: 0-300 + +Nesquehonite + MgCO3:3H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ + 3.0000 H2O + log_k 4.9955 + -delta_H -36.1498 kJ/mol # Calculated enthalpy of reaction Nesquehonite +# Enthalpy of formation: -472.576 kcal/mol + -analytic 1.3771e+002 -6.0397e-002 -3.5049e+004 -1.8831e+001 4.4213e+006 +# -Range: 0-300 + +Ni + Ni +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ni++ + log_k 50.9914 + -delta_H -333.745 kJ/mol # Calculated enthalpy of reaction Ni +# Enthalpy of formation: 0 kcal/mol + -analytic -5.8308e+001 -2.0133e-002 1.8444e+004 2.1590e+001 2.8781e+002 +# -Range: 0-300 + +Ni(OH)2 + Ni(OH)2 +2.0000 H+ = + 1.0000 Ni++ + 2.0000 H2O + log_k 12.7485 + -delta_H -95.6523 kJ/mol # Calculated enthalpy of reaction Ni(OH)2 +# Enthalpy of formation: -529.998 kJ/mol + -analytic -6.5279e+001 -5.9499e-003 7.3471e+003 2.2290e+001 1.2479e+002 +# -Range: 0-200 + +Ni2P2O7 + Ni2P2O7 +1.0000 H2O = + 2.0000 HPO4-- + 2.0000 Ni++ + log_k -8.8991 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2P2O7 +# Enthalpy of formation: 0 kcal/mol + +Ni2SiO4 + Ni2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Ni++ + log_k 14.3416 + -delta_H -127.629 kJ/mol # Calculated enthalpy of reaction Ni2SiO4 +# Enthalpy of formation: -341.705 kcal/mol + -analytic -4.0414e+001 -1.1194e-002 9.6515e+003 1.2026e+001 -3.6336e+005 +# -Range: 0-300 + +Ni3(PO4)2 + Ni3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Ni++ + log_k -6.6414 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni3(PO4)2 +# Enthalpy of formation: 0 kcal/mol + +NiCO3 + NiCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Ni++ + log_k 3.5118 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiCO3 +# Enthalpy of formation: 0 kcal/mol + +NiCl2 + NiCl2 = + 1.0000 Ni++ + 2.0000 Cl- + log_k 8.6113 + -delta_H -82.7969 kJ/mol # Calculated enthalpy of reaction NiCl2 +# Enthalpy of formation: -305.336 kJ/mol + -analytic -1.2416e+000 -2.3139e-002 2.6529e+003 3.1696e+000 4.5052e+001 +# -Range: 0-200 + +NiCl2:2H2O + NiCl2:2H2O = + 1.0000 Ni++ + 2.0000 Cl- + 2.0000 H2O + log_k 3.9327 + -delta_H -37.6746 kJ/mol # Calculated enthalpy of reaction NiCl2:2H2O +# Enthalpy of formation: -922.135 kJ/mol + -analytic -4.8814e+001 -2.2602e-002 2.5951e+003 2.0518e+001 4.4086e+001 +# -Range: 0-200 + +NiCl2:4H2O + NiCl2:4H2O = + 1.0000 Ni++ + 2.0000 Cl- + 4.0000 H2O + log_k 3.8561 + -delta_H -15.4373 kJ/mol # Calculated enthalpy of reaction NiCl2:4H2O +# Enthalpy of formation: -1516.05 kJ/mol + -analytic -1.0545e+002 -2.4691e-002 3.9978e+003 4.1727e+001 6.7926e+001 +# -Range: 0-200 + +NiF2 + NiF2 = + 1.0000 Ni++ + 2.0000 F- + log_k 0.8772 + -delta_H -73.1438 kJ/mol # Calculated enthalpy of reaction NiF2 +# Enthalpy of formation: -651.525 kJ/mol + -analytic -2.5291e+002 -8.4179e-002 9.3429e+003 1.0002e+002 1.4586e+002 +# -Range: 0-300 + +NiF2:4H2O + NiF2:4H2O = + 1.0000 Ni++ + 2.0000 F- + 4.0000 H2O + log_k -4.0588 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiF2:4H2O +# Enthalpy of formation: 0 kcal/mol + +NiSO4 + NiSO4 = + 1.0000 Ni++ + 1.0000 SO4-- + log_k 5.3197 + -delta_H -90.5092 kJ/mol # Calculated enthalpy of reaction NiSO4 +# Enthalpy of formation: -873.066 kJ/mol + -analytic -1.8878e+002 -7.6403e-002 7.9412e+003 7.6866e+001 1.2397e+002 +# -Range: 0-300 + +NiSO4:6H2O(alpha) + NiSO4:6H2O = + 1.0000 Ni++ + 1.0000 SO4-- + 6.0000 H2O + log_k -2.0072 + -delta_H 4.37983 kJ/mol # Calculated enthalpy of reaction NiSO4:6H2O(alpha) +# Enthalpy of formation: -2682.99 kJ/mol + -analytic -1.1937e+002 -1.3785e-002 4.1543e+003 4.3454e+001 7.0587e+001 +# -Range: 0-200 + +Nickelbischofite + NiCl2:6H2O = + 1.0000 Ni++ + 2.0000 Cl- + 6.0000 H2O + log_k 3.1681 + -delta_H 0.064088 kJ/mol # Calculated enthalpy of reaction Nickelbischofite +# Enthalpy of formation: -2103.23 kJ/mol + -analytic -1.4340e+002 -2.1257e-002 5.1858e+003 5.4759e+001 8.8112e+001 +# -Range: 0-200 + +Ningyoite + CaUP2O8:2H2O +2.0000 H+ = + 1.0000 Ca++ + 1.0000 U++++ + 2.0000 H2O + 2.0000 HPO4-- + log_k -29.7931 + -delta_H -36.4769 kJ/mol # Calculated enthalpy of reaction Ningyoite +# Enthalpy of formation: -1016.65 kcal/mol + -analytic -1.0274e+002 -4.9041e-002 1.7779e+003 3.2973e+001 3.0227e+001 +# -Range: 0-200 + +Niter + KNO3 = + 1.0000 K+ + 1.0000 NO3- + log_k -0.2061 + -delta_H 35.4794 kJ/mol # Calculated enthalpy of reaction Niter +# Enthalpy of formation: -494.46 kJ/mol + -analytic -6.5607e+001 -2.8165e-002 -4.0131e+002 3.0361e+001 -6.2425e+000 +# -Range: 0-300 + +Nitrobarite + Ba(NO3)2 = + 1.0000 Ba++ + 2.0000 NO3- + log_k -2.4523 + -delta_H 40.8161 kJ/mol # Calculated enthalpy of reaction Nitrobarite +# Enthalpy of formation: -992.082 kJ/mol + -analytic -1.6179e+002 -6.5831e-002 1.2142e+003 7.0664e+001 1.8995e+001 +# -Range: 0-300 + +Nontronite-Ca + Ca.165Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.1650 Ca++ + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O + log_k -11.5822 + -delta_H -38.138 kJ/mol # Calculated enthalpy of reaction Nontronite-Ca +# Enthalpy of formation: -1166.7 kcal/mol + -analytic 1.6291e+001 4.3557e-003 1.0221e+004 -1.8690e+001 -1.5427e+006 +# -Range: 0-300 + +Nontronite-Cs + Cs.33Si4Fe1.67Mg.33H2O12 +6.0000 H+ = + 0.3300 Cs+ + 0.3300 Mg++ + 1.6700 Fe+++ + 4.0000 H2O + 4.0000 SiO2 + log_k 5.7975 + -delta_H -86.6996 kJ/mol # Calculated enthalpy of reaction Nontronite-Cs +# Enthalpy of formation: -1168.54 kcal/mol + -analytic -1.1646e+001 1.0033e-002 1.7668e+004 -9.0129e+000 -2.0143e+006 +# -Range: 0-300 + +Nontronite-H + H.33Fe2Al.33Si3.67H2O12 +6.9900 H+ = + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O + log_k -12.5401 + -delta_H -30.452 kJ/mol # Calculated enthalpy of reaction Nontronite-H +# Enthalpy of formation: -1147.12 kcal/mol + -analytic 9.7794e+001 1.4055e-002 4.7440e+003 -4.7272e+001 -1.2103e+006 +# -Range: 0-300 + +Nontronite-K + K.33Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 K+ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O + log_k -11.8648 + -delta_H -26.5822 kJ/mol # Calculated enthalpy of reaction Nontronite-K +# Enthalpy of formation: -1167.93 kcal/mol + -analytic 1.3630e+001 4.7708e-003 1.0073e+004 -1.7407e+001 -1.5803e+006 +# -Range: 0-300 + +Nontronite-Mg + Mg.165Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.1650 Mg++ + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O + log_k -11.6200 + -delta_H -41.1779 kJ/mol # Calculated enthalpy of reaction Nontronite-Mg +# Enthalpy of formation: -1162.93 kcal/mol + -analytic 5.5961e+001 1.0139e-002 8.0777e+003 -3.3164e+001 -1.4031e+006 +# -Range: 0-300 + +Nontronite-Na + Na.33Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Na+ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O + log_k -11.5263 + -delta_H -31.5687 kJ/mol # Calculated enthalpy of reaction Nontronite-Na +# Enthalpy of formation: -1165.8 kcal/mol + -analytic 6.7915e+001 1.2851e-002 7.1218e+003 -3.7112e+001 -1.3758e+006 +# -Range: 0-300 + +Np + Np +4.0000 H+ +1.0000 O2 = + 1.0000 Np++++ + 2.0000 H2O + log_k 174.1077 + -delta_H -1115.54 kJ/mol # Calculated enthalpy of reaction Np +# Enthalpy of formation: 0 kJ/mol + -analytic -3.2136e+001 -1.4340e-002 5.7853e+004 6.6512e+000 9.0275e+002 +# -Range: 0-300 + +Np(HPO4)2 + Np(HPO4)2 = + 1.0000 Np++++ + 2.0000 HPO4-- + log_k -30.9786 + -delta_H -18.6219 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 +# Enthalpy of formation: -3121.54 kJ/mol + -analytic -3.6627e+002 -1.3955e-001 7.1370e+003 1.4261e+002 1.1147e+002 +# -Range: 0-300 + +Np(OH)4 + Np(OH)4 +4.0000 H+ = + 1.0000 Np++++ + 4.0000 H2O + log_k 0.8103 + -delta_H -78.4963 kJ/mol # Calculated enthalpy of reaction Np(OH)4 +# Enthalpy of formation: -1620.86 kJ/mol + -analytic -9.5122e+001 -1.0532e-002 7.1132e+003 3.0398e+001 1.1102e+002 +# -Range: 0-300 + +Np2O5 + Np2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 NpO2+ + log_k 9.5000 + -delta_H -94.4576 kJ/mol # Calculated enthalpy of reaction Np2O5 +# Enthalpy of formation: -513.232 kcal/mol + -analytic 5.9974e+003 1.4553e+000 -1.7396e+005 -2.3595e+003 -2.9689e+003 +# -Range: 25-150 + +NpO2 + NpO2 +4.0000 H+ = + 1.0000 Np++++ + 2.0000 H2O + log_k -7.8026 + -delta_H -53.6087 kJ/mol # Calculated enthalpy of reaction NpO2 +# Enthalpy of formation: -1074.07 kJ/mol + -analytic -7.0053e+001 -1.1017e-002 4.4742e+003 2.0421e+001 6.9836e+001 +# -Range: 0-300 + +NpO2(OH)2 + NpO2(OH)2 +2.0000 H+ = + 1.0000 NpO2++ + 2.0000 H2O + log_k 5.9851 + -delta_H -54.9977 kJ/mol # Calculated enthalpy of reaction NpO2(OH)2 +# Enthalpy of formation: -1377.16 kJ/mol + -analytic -2.7351e+001 -1.5987e-003 3.8301e+003 8.4735e+000 5.9773e+001 +# -Range: 0-300 + +NpO2OH(am) + NpO2OH +1.0000 H+ = + 1.0000 H2O + 1.0000 NpO2+ + log_k 4.2364 + -delta_H -39.6673 kJ/mol # Calculated enthalpy of reaction NpO2OH(am) +# Enthalpy of formation: -1224.16 kJ/mol + -analytic -3.8824e+000 6.7122e-003 2.5390e+003 -9.7040e-001 3.9619e+001 +# -Range: 0-300 + +Okenite + CaSi2O4(OH)2:H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 3.0000 H2O + log_k 10.3816 + -delta_H -19.4974 kJ/mol # Calculated enthalpy of reaction Okenite +# Enthalpy of formation: -749.641 kcal/mol + -analytic -7.7353e+001 1.5091e-002 1.3023e+004 2.1337e+001 -1.1831e+006 +# -Range: 0-300 + +Orpiment + As2S3 +6.0000 H2O = + 2.0000 H2AsO3- + 3.0000 HS- + 5.0000 H+ + log_k -79.4159 + -delta_H 406.539 kJ/mol # Calculated enthalpy of reaction Orpiment +# Enthalpy of formation: -169.423 kJ/mol + -analytic -3.3964e+002 -1.4977e-001 -1.5711e+004 1.4448e+002 -2.4505e+002 +# -Range: 0-300 + +Otavite + CdCO3 +1.0000 H+ = + 1.0000 Cd++ + 1.0000 HCO3- + log_k -1.7712 + -delta_H 0 # Not possible to calculate enthalpy of reaction Otavite +# Enthalpy of formation: 0 kcal/mol + +Ottemannite + Sn2S3 +3.0000 H+ = + 1.0000 Sn++ + 1.0000 Sn++++ + 3.0000 HS- + log_k -46.2679 + -delta_H 236.727 kJ/mol # Calculated enthalpy of reaction Ottemannite +# Enthalpy of formation: -63 kcal/mol + -analytic -6.2863e+001 -5.9171e-002 -1.3469e+004 3.2092e+001 -2.2870e+002 +# -Range: 0-200 + +Oxychloride-Mg + Mg2Cl(OH)3:4H2O +3.0000 H+ = + 1.0000 Cl- + 2.0000 Mg++ + 7.0000 H2O + log_k 25.8319 + -delta_H 0 # Not possible to calculate enthalpy of reaction Oxychloride-Mg +# Enthalpy of formation: 0 kcal/mol + +P + P +1.5000 H2O +1.2500 O2 = + 1.0000 HPO4-- + 2.0000 H+ + log_k 132.1032 + -delta_H -848.157 kJ/mol # Calculated enthalpy of reaction P +# Enthalpy of formation: 0 kJ/mol + -analytic -9.2727e+001 -6.8342e-002 4.3465e+004 4.0156e+001 6.7826e+002 +# -Range: 0-300 + +Paragonite + NaAl3Si3O10(OH)2 +10.0000 H+ = + 1.0000 Na+ + 3.0000 Al+++ + 3.0000 SiO2 + 6.0000 H2O + log_k 17.5220 + -delta_H -275.056 kJ/mol # Calculated enthalpy of reaction Paragonite +# Enthalpy of formation: -1416.96 kcal/mol + -analytic 3.5507e+001 -1.0720e-002 1.3519e+004 -2.2283e+001 -4.5657e+005 +# -Range: 0-300 + +Paralaurionite + PbClOH +1.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 Pb++ + log_k 0.2035 + -delta_H 8.41948 kJ/mol # Calculated enthalpy of reaction Paralaurionite +# Enthalpy of formation: -460.417 kJ/mol + -analytic -1.1245e+001 -1.0520e-002 -5.3551e+002 6.6175e+000 -9.0896e+000 +# -Range: 0-200 + +Pargasite + NaCa2Al3Mg4Si6O22(OH)2 +22.0000 H+ = + 1.0000 Na+ + 2.0000 Ca++ + 3.0000 Al+++ + 4.0000 Mg++ + 6.0000 SiO2 + 12.0000 H2O + log_k 101.9939 + -delta_H -880.205 kJ/mol # Calculated enthalpy of reaction Pargasite +# Enthalpy of formation: -3016.62 kcal/mol + -analytic -6.7889e+001 -3.7817e-002 5.0493e+004 9.2705e+000 -1.0163e+006 +# -Range: 0-300 + +Parsonsite + Pb2UO2(PO4)2:2H2O +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 HPO4-- + 2.0000 Pb++ + log_k -27.7911 + -delta_H 0 # Not possible to calculate enthalpy of reaction Parsonsite +# Enthalpy of formation: 0 kcal/mol + +Pb + Pb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pb++ + log_k 47.1871 + -delta_H -278.851 kJ/mol # Calculated enthalpy of reaction Pb +# Enthalpy of formation: 0 kJ/mol + -analytic -3.1784e+001 -1.4816e-002 1.4984e+004 1.3383e+001 2.3381e+002 +# -Range: 0-300 + +Pb(H2PO4)2 + Pb(H2PO4)2 = + 1.0000 Pb++ + 2.0000 H+ + 2.0000 HPO4-- + log_k -9.8400 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(H2PO4)2 +# Enthalpy of formation: 0 kcal/mol + +Pb(IO3)2 + Pb(IO3)2 = + 1.0000 Pb++ + 2.0000 IO3- + log_k -12.5173 + -delta_H 53.7783 kJ/mol # Calculated enthalpy of reaction Pb(IO3)2 +# Enthalpy of formation: -495.525 kJ/mol + -analytic -5.3573e+000 -1.4164e-002 -3.6236e+003 3.7209e+000 -6.1532e+001 +# -Range: 0-200 + +Pb(N3)2(mono) + Pb(N3)2 = + 1.0000 Pb++ + 2.0000 N3- + log_k -8.3583 + -delta_H 72.9495 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(mono) +# Enthalpy of formation: 478.251 kJ/mol + -analytic 6.0051e+001 -1.1168e-002 -7.0041e+003 -1.6812e+001 -1.1896e+002 +# -Range: 0-200 + +Pb(N3)2(orth) + Pb(N3)2 = + 1.0000 Pb++ + 2.0000 N3- + log_k -8.7963 + -delta_H 75.0615 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(orth) +# Enthalpy of formation: 476.139 kJ/mol + -analytic 5.9779e+001 -1.1215e-002 -7.1081e+003 -1.6732e+001 -1.2073e+002 +# -Range: 0-200 + +Pb(Thiocyanate)2 + Pb(Thiocyanate)2 = + 1.0000 Pb++ + 2.0000 Thiocyanate- + log_k -0.0910 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 +# Enthalpy of formation: 151.212 kJ/mol + -analytic 7.4247e+000 -1.6226e-002 0.0000e+000 0.0000e+000 -2.3938e+005 +# -Range: 0-200 + +Pb2Cl2CO3 + Pb2Cl2CO3 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Cl- + 2.0000 Pb++ + log_k -9.6180 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2Cl2CO3 +# Enthalpy of formation: 0 kcal/mol + +Pb2Cl5NH4 + Pb2Cl5NH4 = + 1.0000 H+ + 1.0000 NH3 + 2.0000 Pb++ + 5.0000 Cl- + log_k -19.6100 + -delta_H 119.617 kJ/mol # Calculated enthalpy of reaction Pb2Cl5NH4 +# Enthalpy of formation: -1034.51 kJ/mol + -analytic 1.3149e+001 -4.8598e-002 -9.8473e+003 5.9552e+000 -1.6723e+002 +# -Range: 0-200 + +Pb2O(N3)2 + Pb2O(N3)2 +2.0000 H+ = + 1.0000 H2O + 2.0000 N3- + 2.0000 Pb++ + log_k -13.7066 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2O(N3)2 +# Enthalpy of formation: 0 kcal/mol + +Pb2SiO4 + Pb2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Pb++ + log_k 18.0370 + -delta_H -83.9883 kJ/mol # Calculated enthalpy of reaction Pb2SiO4 +# Enthalpy of formation: -1363.55 kJ/mol + -analytic 2.7287e+002 6.3875e-002 -3.7001e+003 -1.0568e+002 -6.2927e+001 +# -Range: 0-200 + +Pb3(PO4)2 + Pb3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Pb++ + log_k -19.9744 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(PO4)2 +# Enthalpy of formation: 0 kcal/mol + +Pb3SO6 + Pb3SO6 +4.0000 H+ = + 1.0000 SO4-- + 2.0000 H2O + 3.0000 Pb++ + log_k 10.5981 + -delta_H -79.3438 kJ/mol # Calculated enthalpy of reaction Pb3SO6 +# Enthalpy of formation: -1399.17 kJ/mol + -analytic -5.3308e+000 -1.8639e-002 3.0245e+003 4.5760e+000 5.1362e+001 +# -Range: 0-200 + +Pb4Cl2(OH)6 + Pb4Cl2(OH)6 +6.0000 H+ = + 2.0000 Cl- + 4.0000 Pb++ + 6.0000 H2O + log_k 17.2793 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4Cl2(OH)6 +# Enthalpy of formation: 0 kcal/mol + +Pb4O(PO4)2 + Pb4O(PO4)2 +4.0000 H+ = + 1.0000 H2O + 2.0000 HPO4-- + 4.0000 Pb++ + log_k -12.5727 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4O(PO4)2 +# Enthalpy of formation: 0 kcal/mol + +Pb4SO7 + Pb4SO7 +6.0000 H+ = + 1.0000 SO4-- + 3.0000 H2O + 4.0000 Pb++ + log_k 21.7354 + -delta_H -136.566 kJ/mol # Calculated enthalpy of reaction Pb4SO7 +# Enthalpy of formation: -1626.87 kJ/mol + -analytic -2.6884e+001 -2.1429e-002 6.8390e+003 1.2951e+001 1.1614e+002 +# -Range: 0-200 + +PbBr2 + PbBr2 = + 1.0000 Pb++ + 2.0000 Br- + log_k -5.2413 + -delta_H 36.3838 kJ/mol # Calculated enthalpy of reaction PbBr2 +# Enthalpy of formation: -278.47 kJ/mol + -analytic 3.0977e+001 -1.6567e-002 -4.2879e+003 -6.8329e+000 -7.2825e+001 +# -Range: 0-200 + +PbBrF + PbBrF = + 1.0000 Br- + 1.0000 F- + 1.0000 Pb++ + log_k -8.0418 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrF +# Enthalpy of formation: 0 kcal/mol + +PbCO3.PbO + PbCO3.PbO +3.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 2.0000 Pb++ + log_k 9.6711 + -delta_H -55.4286 kJ/mol # Calculated enthalpy of reaction PbCO3.PbO +# Enthalpy of formation: -918.502 kJ/mol + -analytic -4.2160e+001 -1.4124e-002 3.8661e+003 1.7404e+001 6.5667e+001 +# -Range: 0-200 + +PbF2 + PbF2 = + 1.0000 Pb++ + 2.0000 F- + log_k -5.2047 + -delta_H -5.83772 kJ/mol # Calculated enthalpy of reaction PbF2 +# Enthalpy of formation: -663.937 kJ/mol + -analytic -2.2712e+002 -7.9552e-002 5.2198e+003 9.2173e+001 8.1516e+001 +# -Range: 0-300 + +PbFCl + PbFCl = + 1.0000 Cl- + 1.0000 F- + 1.0000 Pb++ + log_k -8.9820 + -delta_H 33.1852 kJ/mol # Calculated enthalpy of reaction PbFCl +# Enthalpy of formation: -534.692 kJ/mol + -analytic 6.1688e+000 -2.0732e-002 -3.4666e+003 1.0697e+000 -5.8869e+001 +# -Range: 0-200 + +PbHPO4 + PbHPO4 = + 1.0000 HPO4-- + 1.0000 Pb++ + log_k -15.7275 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 +# Enthalpy of formation: 0 kcal/mol + +PbI2 + PbI2 = + 1.0000 Pb++ + 2.0000 I- + log_k -8.0418 + -delta_H 62.5717 kJ/mol # Calculated enthalpy of reaction PbI2 +# Enthalpy of formation: -175.456 kJ/mol + -analytic 1.5277e+001 -2.0582e-002 -5.1256e+003 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +PbSO4(NH3)2 + PbSO4(NH3)2 = + 1.0000 Pb++ + 1.0000 SO4-- + 2.0000 NH3 + log_k -2.0213 + -delta_H 28.284 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)2 +# Enthalpy of formation: -1099.64 kJ/mol + -analytic 3.5718e-001 -1.0192e-002 -2.0095e+003 2.9853e+000 -3.4124e+001 +# -Range: 0-200 + +PbSO4(NH3)4 + PbSO4(NH3)4 = + 1.0000 Pb++ + 1.0000 SO4-- + 4.0000 NH3 + log_k 1.5024 + -delta_H 31.155 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)4 +# Enthalpy of formation: -1265.18 kJ/mol + -analytic -4.1080e+001 -7.2307e-003 6.6637e+001 1.7984e+001 1.1460e+000 +# -Range: 0-200 + +PbSeO4 + PbSeO4 = + 1.0000 Pb++ + 1.0000 SeO4-- + log_k -6.9372 + -delta_H 10.8967 kJ/mol # Calculated enthalpy of reaction PbSeO4 +# Enthalpy of formation: -609.125 kJ/mol + -analytic 3.1292e+001 -1.4192e-002 -3.0980e+003 -9.5448e+000 -5.2618e+001 +# -Range: 0-200 + +Pd + Pd +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pd++ + log_k 12.0688 + -delta_H -103.709 kJ/mol # Calculated enthalpy of reaction Pd +# Enthalpy of formation: 0 kcal/mol + -analytic -6.2530e+001 -1.9774e-002 6.7013e+003 2.3441e+001 1.0459e+002 +# -Range: 0-300 + +PdO + PdO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pd++ + log_k 0.0643 + -delta_H -24.422 kJ/mol # Calculated enthalpy of reaction PdO +# Enthalpy of formation: -20.4 kcal/mol + -analytic -8.8921e+001 -1.9031e-002 3.8537e+003 3.3028e+001 6.0159e+001 +# -Range: 0-300 + +Penroseite + NiSe2 +1.0000 H2O = + 0.5000 O2 + 1.0000 Ni++ + 2.0000 H+ + 2.0000 Se-- + log_k -98.8004 + -delta_H 0 # Not possible to calculate enthalpy of reaction Penroseite +# Enthalpy of formation: -26 kcal/mol + -analytic -4.7339e+001 -1.2035e-002 -2.3589e+004 1.2624e+001 -3.6808e+002 +# -Range: 0-300 + +Pentahydrite + MgSO4:5H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 5.0000 H2O + log_k -1.3872 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pentahydrite +# Enthalpy of formation: 0 kcal/mol + +Periclase + MgO +2.0000 H+ = + 1.0000 H2O + 1.0000 Mg++ + log_k 21.3354 + -delta_H -150.139 kJ/mol # Calculated enthalpy of reaction Periclase +# Enthalpy of formation: -143.8 kcal/mol + -analytic -8.8465e+001 -1.8390e-002 1.0414e+004 3.2469e+001 1.6253e+002 +# -Range: 0-300 + +Petalite + LiAlSi4O10 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 2.0000 H2O + 4.0000 SiO2 + log_k -3.8153 + -delta_H -13.1739 kJ/mol # Calculated enthalpy of reaction Petalite +# Enthalpy of formation: -4886.15 kJ/mol + -analytic -6.6355e+000 2.4316e-002 1.5949e+004 -1.3341e+001 -2.2265e+006 +# -Range: 0-300 + +Phlogopite + KAlMg3Si3O10(OH)2 +10.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 3.0000 Mg++ + 3.0000 SiO2 + 6.0000 H2O + log_k 37.4400 + -delta_H -310.503 kJ/mol # Calculated enthalpy of reaction Phlogopite +# Enthalpy of formation: -1488.07 kcal/mol + -analytic -8.7730e+001 -1.7253e-002 2.3748e+004 2.4465e+001 -8.9045e+005 +# -Range: 0-300 + +Phosgenite + Pb2(CO3)Cl2 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Cl- + 2.0000 Pb++ + log_k -9.6355 + -delta_H 49.0844 kJ/mol # Calculated enthalpy of reaction Phosgenite +# Enthalpy of formation: -1071.34 kJ/mol + -analytic 3.4909e+000 -2.9365e-002 -4.6327e+003 4.5068e+000 -7.8671e+001 +# -Range: 0-200 + +Picromerite + K2Mg(SO4)2:6H2O = + 1.0000 Mg++ + 2.0000 K+ + 2.0000 SO4-- + 6.0000 H2O + log_k -4.4396 + -delta_H 0 # Not possible to calculate enthalpy of reaction Picromerite +# Enthalpy of formation: 0 kcal/mol + +Pirssonite + Na2Ca(CO3)2:2H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 H2O + 2.0000 HCO3- + 2.0000 Na+ + log_k 11.3230 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pirssonite +# Enthalpy of formation: 0 kcal/mol + +Plattnerite + PbO2 +4.0000 H+ = + 1.0000 Pb++++ + 2.0000 H2O + log_k -7.9661 + -delta_H 0 # Not possible to calculate enthalpy of reaction Plattnerite +# Enthalpy of formation: -277.363 kJ/mol + +Plumbogummite + PbAl3(PO4)2(OH)5:H2O +7.0000 H+ = + 1.0000 Pb++ + 2.0000 HPO4-- + 3.0000 Al+++ + 6.0000 H2O + log_k -8.1463 + -delta_H 0 # Not possible to calculate enthalpy of reaction Plumbogummite +# Enthalpy of formation: 0 kcal/mol + +Pm + Pm +3.0000 H+ +0.7500 O2 = + 1.0000 Pm+++ + 1.5000 H2O + log_k 180.6737 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm +# Enthalpy of formation: 0 kcal/mol + +Pm(OH)3 + Pm(OH)3 +3.0000 H+ = + 1.0000 Pm+++ + 3.0000 H2O + log_k 17.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Pm(OH)3(am) + Pm(OH)3 +3.0000 H+ = + 1.0000 Pm+++ + 3.0000 H2O + log_k 18.2852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Pm2(CO3)3 + Pm2(CO3)3 +3.0000 H+ = + 2.0000 Pm+++ + 3.0000 HCO3- + log_k -3.5636 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Pm2O3 + Pm2O3 +6.0000 H+ = + 2.0000 Pm+++ + 3.0000 H2O + log_k 48.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2O3 +# Enthalpy of formation: 0 kcal/mol + +PmF3:.5H2O + PmF3:.5H2O = + 0.5000 H2O + 1.0000 Pm+++ + 3.0000 F- + log_k -18.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +PmPO4:10H2O + PmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pm+++ + 10.0000 H2O + log_k -12.1782 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Polydymite + Ni3S4 +2.0000 H+ = + 1.0000 S2-- + 2.0000 HS- + 3.0000 Ni++ + log_k -48.9062 + -delta_H 0 # Not possible to calculate enthalpy of reaction Polydymite +# Enthalpy of formation: -78.014 kcal/mol + -analytic -1.8030e+001 -4.6945e-002 -1.1557e+004 8.8339e+000 -1.9625e+002 +# -Range: 0-200 + +Polyhalite + K2MgCa2(SO4)4:2H2O = + 1.0000 Mg++ + 2.0000 Ca++ + 2.0000 H2O + 2.0000 K+ + 4.0000 SO4-- + log_k -14.3124 + -delta_H 0 # Not possible to calculate enthalpy of reaction Polyhalite +# Enthalpy of formation: 0 kcal/mol + +Portlandite + Ca(OH)2 +2.0000 H+ = + 1.0000 Ca++ + 2.0000 H2O + log_k 22.5552 + -delta_H -128.686 kJ/mol # Calculated enthalpy of reaction Portlandite +# Enthalpy of formation: -986.074 kJ/mol + -analytic -8.3848e+001 -1.8373e-002 9.3154e+003 3.2584e+001 1.4538e+002 +# -Range: 0-300 + +Pr + Pr +3.0000 H+ +0.7500 O2 = + 1.0000 Pr+++ + 1.5000 H2O + log_k 183.6893 + -delta_H -1125.92 kJ/mol # Calculated enthalpy of reaction Pr +# Enthalpy of formation: 0 kJ/mol + -analytic -4.1136e+002 -7.5853e-002 7.9974e+004 1.4718e+002 -1.3148e+006 +# -Range: 0-300 + +Pr(OH)3 + Pr(OH)3 +3.0000 H+ = + 1.0000 Pr+++ + 3.0000 H2O + log_k 19.5852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Pr(OH)3(am) + Pr(OH)3 +3.0000 H+ = + 1.0000 Pr+++ + 3.0000 H2O + log_k 21.0852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Pr2(CO3)3 + Pr2(CO3)3 +3.0000 H+ = + 2.0000 Pr+++ + 3.0000 HCO3- + log_k -3.8136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Pr2O3 + Pr2O3 +6.0000 H+ = + 2.0000 Pr+++ + 3.0000 H2O + log_k 61.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2O3 +# Enthalpy of formation: 0 kcal/mol + +PrF3:.5H2O + PrF3:.5H2O = + 0.5000 H2O + 1.0000 Pr+++ + 3.0000 F- + log_k -18.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PrF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +PrPO4:10H2O + PrPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pr+++ + 10.0000 H2O + log_k -12.2782 + -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Prehnite + Ca2Al2Si3O10(OH)2 +10.0000 H+ = + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O + log_k 32.9305 + -delta_H -311.875 kJ/mol # Calculated enthalpy of reaction Prehnite +# Enthalpy of formation: -1481.65 kcal/mol + -analytic -3.5763e+001 -2.1396e-002 2.0167e+004 6.3554e+000 -7.4967e+005 +# -Range: 0-300 + +Przhevalskite + Pb(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Pb++ + 2.0000 HPO4-- + 2.0000 UO2++ + log_k -20.0403 + -delta_H -71.1058 kJ/mol # Calculated enthalpy of reaction Przhevalskite +# Enthalpy of formation: -1087.51 kcal/mol + -analytic -2.9817e+001 -4.0756e-002 1.0077e+003 7.4885e+000 1.7122e+001 +# -Range: 0-200 + +Pseudowollastonite + CaSiO3 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 SiO2 + log_k 13.9997 + -delta_H -79.4625 kJ/mol # Calculated enthalpy of reaction Pseudowollastonite +# Enthalpy of formation: -388.9 kcal/mol + -analytic 2.6691e+001 6.3323e-003 5.5723e+003 -1.1822e+001 -3.6038e+005 +# -Range: 0-300 + +Pu + Pu +4.0000 H+ +1.0000 O2 = + 1.0000 Pu++++ + 2.0000 H2O + log_k 170.3761 + -delta_H -1095.44 kJ/mol # Calculated enthalpy of reaction Pu +# Enthalpy of formation: 0 kJ/mol + -analytic -1.9321e+002 -3.4314e-002 6.6737e+004 6.3552e+001 -6.4737e+005 +# -Range: 0-300 + +Pu(HPO4)2 + Pu(HPO4)2 = + 1.0000 Pu++++ + 2.0000 HPO4-- + log_k -27.7025 + -delta_H -33.4449 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 +# Enthalpy of formation: -3086.61 kJ/mol + -analytic -3.6565e+002 -1.3961e-001 7.9105e+003 1.4265e+002 1.2354e+002 +# -Range: 0-300 + +Pu(OH)3 + Pu(OH)3 +3.0000 H+ = + 1.0000 Pu+++ + 3.0000 H2O + log_k 22.4499 + -delta_H -148.067 kJ/mol # Calculated enthalpy of reaction Pu(OH)3 +# Enthalpy of formation: -1301 kJ/mol + -analytic -6.1342e+001 -8.6952e-003 9.7733e+003 2.1664e+001 1.5252e+002 +# -Range: 0-300 + +Pu(OH)4 + Pu(OH)4 +4.0000 H+ = + 1.0000 Pu++++ + 4.0000 H2O + log_k 0.7578 + -delta_H -68.6543 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 +# Enthalpy of formation: -1610.59 kJ/mol + -analytic -9.3473e+001 -1.0579e-002 6.5974e+003 3.0415e+001 1.0297e+002 +# -Range: 0-300 + +Pu2O3 + Pu2O3 +6.0000 H+ = + 2.0000 Pu+++ + 3.0000 H2O + log_k 48.1332 + -delta_H -360.26 kJ/mol # Calculated enthalpy of reaction Pu2O3 +# Enthalpy of formation: -1680.36 kJ/mol + -analytic -8.7831e+001 -1.9784e-002 2.0832e+004 2.9096e+001 3.2509e+002 +# -Range: 0-300 + +PuF3 + PuF3 = + 1.0000 Pu+++ + 3.0000 F- + log_k -10.1872 + -delta_H -46.2608 kJ/mol # Calculated enthalpy of reaction PuF3 +# Enthalpy of formation: -1551.33 kJ/mol + -analytic -3.1104e+002 -1.0854e-001 8.7435e+003 1.2279e+002 1.3653e+002 +# -Range: 0-300 + +PuF4 + PuF4 = + 1.0000 Pu++++ + 4.0000 F- + log_k -13.2091 + -delta_H -100.039 kJ/mol # Calculated enthalpy of reaction PuF4 +# Enthalpy of formation: -1777.24 kJ/mol + -analytic -4.3072e+002 -1.4500e-001 1.4076e+004 1.6709e+002 2.1977e+002 +# -Range: 0-300 + +PuO2 + PuO2 +4.0000 H+ = + 1.0000 Pu++++ + 2.0000 H2O + log_k -7.3646 + -delta_H -51.8827 kJ/mol # Calculated enthalpy of reaction PuO2 +# Enthalpy of formation: -1055.69 kJ/mol + -analytic -7.1933e+001 -1.1841e-002 4.4494e+003 2.1491e+001 6.9450e+001 +# -Range: 0-300 + +PuO2(OH)2 + PuO2(OH)2 +2.0000 H+ = + 1.0000 PuO2++ + 2.0000 H2O + log_k 3.5499 + -delta_H -35.7307 kJ/mol # Calculated enthalpy of reaction PuO2(OH)2 +# Enthalpy of formation: -1357.52 kJ/mol + -analytic -2.6536e+001 -1.6542e-003 2.8262e+003 8.5277e+000 4.4108e+001 +# -Range: 0-300 + +PuO2HPO4 + PuO2HPO4 = + 1.0000 HPO4-- + 1.0000 PuO2++ + log_k -12.6074 + -delta_H -10.108 kJ/mol # Calculated enthalpy of reaction PuO2HPO4 +# Enthalpy of formation: -2103.55 kJ/mol + -analytic -1.6296e+002 -6.6166e-002 3.0557e+003 6.4577e+001 4.7729e+001 +# -Range: 0-300 + +PuO2OH(am) + PuO2OH +1.0000 H+ = + 1.0000 H2O + 1.0000 PuO2+ + log_k 5.4628 + -delta_H -42.4933 kJ/mol # Calculated enthalpy of reaction PuO2OH(am) +# Enthalpy of formation: -1157.53 kJ/mol + -analytic -3.1316e+000 6.7573e-003 2.6884e+003 -9.8622e-001 4.1951e+001 +# -Range: 0-300 + +Pyrite + FeS2 +1.0000 H2O = + 0.2500 H+ + 0.2500 SO4-- + 1.0000 Fe++ + 1.7500 HS- + log_k -24.6534 + -delta_H 109.535 kJ/mol # Calculated enthalpy of reaction Pyrite +# Enthalpy of formation: -41 kcal/mol + -analytic -2.4195e+002 -8.7948e-002 -6.2911e+002 9.9248e+001 -9.7454e+000 +# -Range: 0-300 + +Pyrolusite + MnO2 = + 0.5000 Mn++ + 0.5000 MnO4-- + log_k -17.6439 + -delta_H 83.3804 kJ/mol # Calculated enthalpy of reaction Pyrolusite +# Enthalpy of formation: -520.031 kJ/mol + -analytic -1.1541e+002 -4.1665e-002 -1.8960e+003 4.7094e+001 -2.9551e+001 +# -Range: 0-300 + +Pyromorphite + Pb5(PO4)3Cl +3.0000 H+ = + 1.0000 Cl- + 3.0000 HPO4-- + 5.0000 Pb++ + log_k -47.8954 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite +# Enthalpy of formation: 0 kcal/mol + +Pyromorphite-OH + Pb5(OH)(PO4)3 +4.0000 H+ = + 1.0000 H2O + 3.0000 HPO4-- + 5.0000 Pb++ + log_k -26.2653 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite-OH +# Enthalpy of formation: 0 kcal/mol + +Pyrophyllite + Al2Si4O10(OH)2 +6.0000 H+ = + 2.0000 Al+++ + 4.0000 H2O + 4.0000 SiO2 + log_k 0.4397 + -delta_H -102.161 kJ/mol # Calculated enthalpy of reaction Pyrophyllite +# Enthalpy of formation: -1345.31 kcal/mol + -analytic 1.1066e+001 1.2707e-002 1.6417e+004 -1.9596e+001 -1.8791e+006 +# -Range: 0-300 + +Pyrrhotite + FeS +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HS- + log_k -3.7193 + -delta_H -7.9496 kJ/mol # Calculated enthalpy of reaction Pyrrhotite +# Enthalpy of formation: -24 kcal/mol + -analytic -1.5785e+002 -5.2258e-002 3.9711e+003 6.3195e+001 6.2012e+001 +# -Range: 0-300 + +Quartz + SiO2 = + 1.0000 SiO2 + log_k -3.9993 + -delta_H 32.949 kJ/mol # Calculated enthalpy of reaction Quartz +# Enthalpy of formation: -217.65 kcal/mol + -analytic 7.7698e-002 1.0612e-002 3.4651e+003 -4.3551e+000 -7.2138e+005 +# -Range: 0-300 + +Ra + Ra +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ra++ + log_k 141.3711 + -delta_H -807.374 kJ/mol # Calculated enthalpy of reaction Ra +# Enthalpy of formation: 0 kJ/mol + -analytic 4.9867e+001 5.9412e-003 4.0293e+004 -1.8356e+001 6.8421e+002 +# -Range: 0-200 + +Ra(NO3)2 + Ra(NO3)2 = + 1.0000 Ra++ + 2.0000 NO3- + log_k -2.2419 + -delta_H 50.4817 kJ/mol # Calculated enthalpy of reaction Ra(NO3)2 +# Enthalpy of formation: -991.706 kJ/mol + -analytic 2.2001e+001 -9.5263e-003 -3.9389e+003 -3.3143e+000 -6.6896e+001 +# -Range: 0-200 + +RaCl2:2H2O + RaCl2:2H2O = + 1.0000 Ra++ + 2.0000 Cl- + 2.0000 H2O + log_k -0.7647 + -delta_H 32.6266 kJ/mol # Calculated enthalpy of reaction RaCl2:2H2O +# Enthalpy of formation: -1466.07 kJ/mol + -analytic -2.5033e+001 -1.8918e-002 -1.5713e+003 1.4213e+001 -2.6673e+001 +# -Range: 0-200 + +RaSO4 + RaSO4 = + 1.0000 Ra++ + 1.0000 SO4-- + log_k -10.4499 + -delta_H 40.309 kJ/mol # Calculated enthalpy of reaction RaSO4 +# Enthalpy of formation: -1477.51 kJ/mol + -analytic 4.8025e+001 -1.1376e-002 -5.1347e+003 -1.5306e+001 -8.7211e+001 +# -Range: 0-200 + +Rankinite + Ca3Si2O7 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Ca++ + 3.0000 H2O + log_k 51.9078 + -delta_H -302.089 kJ/mol # Calculated enthalpy of reaction Rankinite +# Enthalpy of formation: -941.7 kcal/mol + -analytic -9.6393e+001 -1.6592e-002 2.4832e+004 3.2541e+001 -9.4630e+005 +# -Range: 0-300 + +Rb + Rb +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Rb+ + log_k 71.1987 + -delta_H -391.009 kJ/mol # Calculated enthalpy of reaction Rb +# Enthalpy of formation: 0 kJ/mol + -analytic -2.1179e+001 -8.7978e-003 2.0934e+004 1.0011e+001 3.2667e+002 +# -Range: 0-300 + +Rb2UO4 + Rb2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Rb+ + log_k 34.0089 + -delta_H -170.224 kJ/mol # Calculated enthalpy of reaction Rb2UO4 +# Enthalpy of formation: -1922.7 kJ/mol + -analytic -3.8205e+001 3.1862e-003 1.0973e+004 1.3925e+001 1.8636e+002 +# -Range: 0-200 + +Re + Re +1.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 ReO4- + log_k 105.9749 + -delta_H -623.276 kJ/mol # Calculated enthalpy of reaction Re +# Enthalpy of formation: 0 kJ/mol + -analytic 1.4535e+001 -2.9877e-002 2.9910e+004 0.0000e+000 0.0000e+000 +# -Range: 0-300 + +Realgar + AsS +2.0000 H2O = + 0.5000 S2O4-- + 1.0000 AsH3 + 1.0000 H+ + log_k -60.2768 + -delta_H 0 # Not possible to calculate enthalpy of reaction Realgar +# Enthalpy of formation: -71.406 kJ/mol + +Rhodochrosite + MnCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mn++ + log_k -0.1928 + -delta_H -21.3426 kJ/mol # Calculated enthalpy of reaction Rhodochrosite +# Enthalpy of formation: -212.521 kcal/mol + -analytic -1.6195e+002 -4.9344e-002 5.0937e+003 6.4402e+001 7.9531e+001 +# -Range: 0-300 + +Rhodonite + MnSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Mn++ + 1.0000 SiO2 + log_k 9.7301 + -delta_H -64.7121 kJ/mol # Calculated enthalpy of reaction Rhodonite +# Enthalpy of formation: -1319.42 kJ/mol + -analytic 2.0585e+001 4.9941e-003 4.5816e+003 -9.8212e+000 -3.0658e+005 +# -Range: 0-300 + +Ripidolite-14A + Mg3Fe2Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe++ + 3.0000 Mg++ + 3.0000 SiO2 + 12.0000 H2O + log_k 60.9638 + -delta_H -572.472 kJ/mol # Calculated enthalpy of reaction Ripidolite-14A +# Enthalpy of formation: -1947.87 kcal/mol + -analytic -1.8376e+002 -6.1934e-002 3.2458e+004 6.2290e+001 5.0653e+002 +# -Range: 0-300 + +Ripidolite-7A + Mg3Fe2Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe++ + 3.0000 Mg++ + 3.0000 SiO2 + 12.0000 H2O + log_k 64.3371 + -delta_H -586.325 kJ/mol # Calculated enthalpy of reaction Ripidolite-7A +# Enthalpy of formation: -1944.56 kcal/mol + -analytic -1.9557e+002 -6.3779e-002 3.3634e+004 6.7057e+001 5.2489e+002 +# -Range: 0-300 + +Romarchite + SnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Sn++ + log_k 1.3625 + -delta_H -8.69017 kJ/mol # Calculated enthalpy of reaction Romarchite +# Enthalpy of formation: -68.34 kcal/mol + -analytic -6.3187e+001 -1.5821e-002 2.2786e+003 2.4900e+001 3.5574e+001 +# -Range: 0-300 + +Ru + Ru +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ru++ + log_k 16.6701 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru +# Enthalpy of formation: 0 kJ/mol + +Ru(OH)3:H2O(am) + Ru(OH)3:H2O +3.0000 H+ = + 1.0000 Ru+++ + 4.0000 H2O + log_k 1.6338 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)3:H2O(am) +# Enthalpy of formation: 0 kcal/mol + +RuBr3 + RuBr3 = + 1.0000 Ru+++ + 3.0000 Br- + log_k 3.1479 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuBr3 +# Enthalpy of formation: -147.76 kJ/mol + +RuCl3 + RuCl3 = + 1.0000 Ru+++ + 3.0000 Cl- + log_k 10.8215 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3 +# Enthalpy of formation: -221.291 kJ/mol + +RuI3 + RuI3 = + 1.0000 Ru+++ + 3.0000 I- + log_k -12.4614 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuI3 +# Enthalpy of formation: -58.425 kJ/mol + +RuO2 + RuO2 +2.0000 H+ = + 1.0000 Ru(OH)2++ + log_k -5.4835 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2 +# Enthalpy of formation: -307.233 kJ/mol + +RuO2:2H2O(am) + RuO2:2H2O +2.0000 H+ = + 1.0000 Ru(OH)2++ + 2.0000 H2O + log_k 0.9045 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2:2H2O(am) +# Enthalpy of formation: 0 kcal/mol + +RuO4 + RuO4 = + 1.0000 RuO4 + log_k -0.9636 + -delta_H 6.305 kJ/mol # Calculated enthalpy of reaction RuO4 +# Enthalpy of formation: -244.447 kJ/mol + +RuSe2 + RuSe2 +2.0000 H2O = + 1.0000 Ru(OH)2++ + 2.0000 H+ + 2.0000 Se-- + log_k -113.7236 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSe2 +# Enthalpy of formation: -146.274 kJ/mol + +Rutherfordine + UO2CO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 UO2++ + log_k -4.1064 + -delta_H -19.4032 kJ/mol # Calculated enthalpy of reaction Rutherfordine +# Enthalpy of formation: -1689.53 kJ/mol + -analytic -8.8224e+001 -3.1434e-002 2.6675e+003 3.4161e+001 4.1650e+001 +# -Range: 0-300 + +Rutile + TiO2 +2.0000 H2O = + 1.0000 Ti(OH)4 + log_k -9.6452 + -delta_H 0 # Not possible to calculate enthalpy of reaction Rutile +# Enthalpy of formation: -226.107 kcal/mol + +S + S +1.0000 H2O = + 0.5000 O2 + 1.0000 H+ + 1.0000 HS- + log_k -45.0980 + -delta_H 263.663 kJ/mol # Calculated enthalpy of reaction S +# Enthalpy of formation: 0 kJ/mol + -analytic -8.8928e+001 -2.8454e-002 -1.1516e+004 3.6747e+001 -1.7966e+002 +# -Range: 0-300 + +Safflorite + CoAs2 +2.0000 H2O +1.0000 H+ +0.5000 O2 = + 1.0000 AsH3 + 1.0000 Co++ + 1.0000 H2AsO3- + log_k -3.6419 + -delta_H -52.7226 kJ/mol # Calculated enthalpy of reaction Safflorite +# Enthalpy of formation: -23.087 kcal/mol + +Saleeite + Mg(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Mg++ + 2.0000 HPO4-- + 2.0000 UO2++ + log_k -19.4575 + -delta_H -110.816 kJ/mol # Calculated enthalpy of reaction Saleeite +# Enthalpy of formation: -1189.61 kcal/mol + -analytic -6.0028e+001 -4.4391e-002 3.9168e+003 1.6428e+001 6.6533e+001 +# -Range: 0-200 + +Sanbornite + BaSi2O5 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O + 2.0000 SiO2 + log_k 9.4753 + -delta_H -31.0845 kJ/mol # Calculated enthalpy of reaction Sanbornite +# Enthalpy of formation: -2547.8 kJ/mol + -analytic -2.5381e+001 1.2999e-002 1.2330e+004 2.1053e+000 -1.3913e+006 +# -Range: 0-300 + +Sanidine_high + KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 + log_k 0.9239 + -delta_H -35.0284 kJ/mol # Calculated enthalpy of reaction Sanidine_high +# Enthalpy of formation: -946.538 kcal/mol + -analytic -3.4889e+000 1.4495e-002 1.2856e+004 -9.8978e+000 -1.6572e+006 +# -Range: 0-300 + +Saponite-Ca + Ca.165Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Ca++ + 0.3300 Al+++ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O + log_k 26.2900 + -delta_H -207.971 kJ/mol # Calculated enthalpy of reaction Saponite-Ca +# Enthalpy of formation: -1436.51 kcal/mol + -analytic -4.6904e+001 6.2555e-003 2.2572e+004 5.3198e+000 -1.5725e+006 +# -Range: 0-300 + +Saponite-Cs + Cs.33Si3.67Al.33Mg3O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Cs+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O + log_k 25.8528 + -delta_H -195.407 kJ/mol # Calculated enthalpy of reaction Saponite-Cs +# Enthalpy of formation: -1438.44 kcal/mol + -analytic -7.7732e+001 -3.6418e-005 2.3346e+004 1.7578e+001 -1.6319e+006 +# -Range: 0-300 + +Saponite-H + H.33Mg3Al.33Si3.67O10(OH)2 +6.9900 H+ = + 0.3300 Al+++ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O + log_k 25.3321 + -delta_H -200.235 kJ/mol # Calculated enthalpy of reaction Saponite-H +# Enthalpy of formation: -1416.94 kcal/mol + -analytic -3.9828e+001 8.9566e-003 2.2165e+004 2.3941e+000 -1.5933e+006 +# -Range: 0-300 + +Saponite-K + K.33Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 K+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O + log_k 26.0075 + -delta_H -196.402 kJ/mol # Calculated enthalpy of reaction Saponite-K +# Enthalpy of formation: -1437.74 kcal/mol + -analytic 3.2113e+001 1.8392e-002 1.7918e+004 -2.2874e+001 -1.3542e+006 +# -Range: 0-300 + +Saponite-Mg + Mg3.165Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 3.1650 Mg++ + 3.6700 SiO2 + 4.6600 H2O + log_k 26.2523 + -delta_H -210.822 kJ/mol # Calculated enthalpy of reaction Saponite-Mg +# Enthalpy of formation: -1432.79 kcal/mol + -analytic 9.8888e+000 1.4320e-002 1.9418e+004 -1.5259e+001 -1.3716e+006 +# -Range: 0-300 + +Saponite-Na + Na.33Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Na+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O + log_k 26.3459 + -delta_H -201.401 kJ/mol # Calculated enthalpy of reaction Saponite-Na +# Enthalpy of formation: -1435.61 kcal/mol + -analytic -6.7611e+001 4.7327e-003 2.3586e+004 1.2868e+001 -1.6493e+006 +# -Range: 0-300 + +Sb + Sb +1.5000 H2O +0.7500 O2 = + 1.0000 Sb(OH)3 + log_k 52.7918 + -delta_H -335.931 kJ/mol # Calculated enthalpy of reaction Sb +# Enthalpy of formation: 0 kJ/mol + +Sb(OH)3 + Sb(OH)3 = + 1.0000 Sb(OH)3 + log_k -7.0953 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Sb2O3 + Sb2O3 +3.0000 H2O = + 2.0000 Sb(OH)3 + log_k -8.9600 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2O3 +# Enthalpy of formation: 0 kcal/mol + -analytic 2.3982e+000 -7.6326e-005 -3.3787e+003 0.0000e+000 0.0000e+000 +# -Range: 0-300 + +Sb2O4 + Sb2O4 +3.0000 H2O = + 0.5000 O2 + 2.0000 Sb(OH)3 + log_k -39.6139 + -delta_H 211.121 kJ/mol # Calculated enthalpy of reaction Sb2O4 +# Enthalpy of formation: -907.251 kJ/mol + +Sb2O5 + Sb2O5 +3.0000 H2O = + 1.0000 O2 + 2.0000 Sb(OH)3 + log_k -46.9320 + -delta_H 269.763 kJ/mol # Calculated enthalpy of reaction Sb2O5 +# Enthalpy of formation: -971.96 kJ/mol + +Sb4O6(cubic) + Sb4O6 +6.0000 H2O = + 4.0000 Sb(OH)3 + log_k -19.6896 + -delta_H 59.898 kJ/mol # Calculated enthalpy of reaction Sb4O6(cubic) +# Enthalpy of formation: -1440.02 kJ/mol + +Sb4O6(orthorhombic) + Sb4O6 +6.0000 H2O = + 4.0000 Sb(OH)3 + log_k -17.0442 + -delta_H 37.314 kJ/mol # Calculated enthalpy of reaction Sb4O6(orthorhombic) +# Enthalpy of formation: -1417.44 kJ/mol + +SbBr3 + SbBr3 +3.0000 H2O = + 1.0000 Sb(OH)3 + 3.0000 Br- + 3.0000 H+ + log_k 1.0554 + -delta_H -21.5871 kJ/mol # Calculated enthalpy of reaction SbBr3 +# Enthalpy of formation: -259.197 kJ/mol + +SbCl3 + SbCl3 +3.0000 H2O = + 1.0000 Sb(OH)3 + 3.0000 Cl- + 3.0000 H+ + log_k 0.5878 + -delta_H -35.393 kJ/mol # Calculated enthalpy of reaction SbCl3 +# Enthalpy of formation: -382.12 kJ/mol + +Sc + Sc +3.0000 H+ +0.7500 O2 = + 1.0000 Sc+++ + 1.5000 H2O + log_k 167.2700 + -delta_H -1033.87 kJ/mol # Calculated enthalpy of reaction Sc +# Enthalpy of formation: 0 kJ/mol + -analytic -6.6922e+001 -2.9150e-002 5.4559e+004 2.4189e+001 8.5137e+002 +# -Range: 0-300 + +Scacchite + MnCl2 = + 1.0000 Mn++ + 2.0000 Cl- + log_k 8.7785 + -delta_H -73.4546 kJ/mol # Calculated enthalpy of reaction Scacchite +# Enthalpy of formation: -481.302 kJ/mol + -analytic -2.3476e+002 -8.2437e-002 9.0088e+003 9.6128e+001 1.4064e+002 +# -Range: 0-300 + +Schoepite + UO3:2H2O +2.0000 H+ = + 1.0000 UO2++ + 3.0000 H2O + log_k 4.8333 + -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction Schoepite +# Enthalpy of formation: -1826.1 kJ/mol + -analytic 1.3645e+001 1.0884e-002 2.5412e+003 -8.3167e+000 3.9649e+001 +# -Range: 0-300 + +Schoepite-dehy(.393) + UO3:.393H2O +2.0000 H+ = + 1.0000 UO2++ + 1.3930 H2O + log_k 6.7243 + -delta_H -69.2728 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.393) +# Enthalpy of formation: -1347.9 kJ/mol + -analytic -5.6487e+001 -3.0358e-003 5.7044e+003 1.8179e+001 9.6887e+001 +# -Range: 0-200 + +Schoepite-dehy(.648) + UO3:.648H2O +2.0000 H+ = + 1.0000 UO2++ + 1.6480 H2O + log_k 6.2063 + -delta_H -65.4616 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.648) +# Enthalpy of formation: -1424.6 kJ/mol + -analytic -6.3010e+001 -3.0276e-003 5.8033e+003 2.0471e+001 9.8569e+001 +# -Range: 0-200 + +Schoepite-dehy(.85) + UO3:.85H2O +2.0000 H+ = + 1.0000 UO2++ + 1.8500 H2O + log_k 5.0970 + -delta_H -56.4009 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.85) +# Enthalpy of formation: -1491.4 kJ/mol + -analytic -6.7912e+001 -3.0420e-003 5.5690e+003 2.2323e+001 9.4593e+001 +# -Range: 0-200 + +Schoepite-dehy(.9) + UO3:.9H2O +2.0000 H+ = + 1.0000 UO2++ + 1.9000 H2O + log_k 5.0167 + -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.9) +# Enthalpy of formation: -1506.3 kJ/mol + -analytic -1.5998e+001 -2.0144e-003 3.2910e+003 4.2751e+000 5.1358e+001 +# -Range: 0-300 + +Schoepite-dehy(1.0) + UO3:H2O +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + log_k 5.1031 + -delta_H -57.4767 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(1.0) +# Enthalpy of formation: -1533.2 kJ/mol + -analytic -7.2080e+001 -3.0503e-003 5.8024e+003 2.3695e+001 9.8557e+001 +# -Range: 0-200 + +Scolecite + CaAl2Si3O10:3H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O + log_k 15.8767 + -delta_H -204.93 kJ/mol # Calculated enthalpy of reaction Scolecite +# Enthalpy of formation: -6048.92 kJ/mol + -analytic 5.0656e+001 -3.1485e-003 1.0574e+004 -2.5663e+001 -5.2769e+005 +# -Range: 0-300 + +Se + Se +1.0000 H2O +1.0000 O2 = + 1.0000 SeO3-- + 2.0000 H+ + log_k 26.1436 + -delta_H -211.221 kJ/mol # Calculated enthalpy of reaction Se +# Enthalpy of formation: 0 kJ/mol + -analytic -9.5144e+001 -6.5681e-002 1.0736e+004 4.2358e+001 1.6755e+002 +# -Range: 0-300 + +Se2O5 + Se2O5 +2.0000 H2O = + 1.0000 SeO3-- + 1.0000 SeO4-- + 4.0000 H+ + log_k 9.5047 + -delta_H -123.286 kJ/mol # Calculated enthalpy of reaction Se2O5 +# Enthalpy of formation: -98.8 kcal/mol + -analytic 1.1013e+002 -2.4491e-002 -5.6147e+002 -3.6960e+001 -9.5719e+000 +# -Range: 0-200 + +SeCl4 + SeCl4 +3.0000 H2O = + 1.0000 SeO3-- + 4.0000 Cl- + 6.0000 H+ + log_k 14.4361 + -delta_H -131.298 kJ/mol # Calculated enthalpy of reaction SeCl4 +# Enthalpy of formation: -45.1 kcal/mol + -analytic -4.0215e+002 -1.8323e-001 1.3074e+004 1.7267e+002 2.0413e+002 +# -Range: 0-300 + +SeO3 + SeO3 +1.0000 H2O = + 1.0000 SeO4-- + 2.0000 H+ + log_k 19.2015 + -delta_H -143.022 kJ/mol # Calculated enthalpy of reaction SeO3 +# Enthalpy of formation: -40.7 kcal/mol + -analytic -1.4199e+002 -6.4398e-002 9.5505e+003 5.9941e+001 1.4907e+002 +# -Range: 0-300 + +Sellaite + MgF2 = + 1.0000 Mg++ + 2.0000 F- + log_k -9.3843 + -delta_H -12.4547 kJ/mol # Calculated enthalpy of reaction Sellaite +# Enthalpy of formation: -1124.2 kJ/mol + -analytic -2.6901e+002 -8.5487e-002 6.8237e+003 1.0595e+002 1.0656e+002 +# -Range: 0-300 + +Sepiolite + Mg4Si6O15(OH)2:6H2O +8.0000 H+ = + 4.0000 Mg++ + 6.0000 SiO2 + 11.0000 H2O + log_k 30.4439 + -delta_H -157.339 kJ/mol # Calculated enthalpy of reaction Sepiolite +# Enthalpy of formation: -2418 kcal/mol + -analytic 1.8690e+001 4.7544e-002 2.6765e+004 -2.5301e+001 -2.6498e+006 +# -Range: 0-300 + +Shcherbinaite + V2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 VO2+ + log_k -1.4520 + -delta_H -34.7917 kJ/mol # Calculated enthalpy of reaction Shcherbinaite +# Enthalpy of formation: -1550.6 kJ/mol + -analytic -1.4791e+002 -2.2464e-002 6.6865e+003 5.2832e+001 1.0438e+002 +# -Range: 0-300 + +Si + Si +1.0000 O2 = + 1.0000 SiO2 + log_k 148.9059 + -delta_H -865.565 kJ/mol # Calculated enthalpy of reaction Si +# Enthalpy of formation: 0 kJ/mol + -analytic -5.7245e+002 -7.6302e-002 8.3516e+004 2.0045e+002 -2.8494e+006 +# -Range: 0-300 + +SiO2(am) + SiO2 = + 1.0000 SiO2 + log_k -2.7136 + -delta_H 20.0539 kJ/mol # Calculated enthalpy of reaction SiO2(am) +# Enthalpy of formation: -214.568 kcal/mol + -analytic 1.2109e+000 7.0767e-003 2.3634e+003 -3.4449e+000 -4.8591e+005 +# -Range: 0-300 + +Siderite + FeCO3 +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HCO3- + log_k -0.1920 + -delta_H -32.5306 kJ/mol # Calculated enthalpy of reaction Siderite +# Enthalpy of formation: -179.173 kcal/mol + -analytic -1.5990e+002 -4.9361e-002 5.4947e+003 6.3032e+001 8.5787e+001 +# -Range: 0-300 + +Sillimanite + Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O + log_k 16.3080 + -delta_H -238.442 kJ/mol # Calculated enthalpy of reaction Sillimanite +# Enthalpy of formation: -615.099 kcal/mol + -analytic -7.1610e+001 -3.2196e-002 1.2493e+004 2.2449e+001 1.9496e+002 +# -Range: 0-300 + +Sklodowskite + Mg(H3O)2(UO2)2(SiO4)2:4H2O +6.0000 H+ = + 1.0000 Mg++ + 2.0000 SiO2 + 2.0000 UO2++ + 10.0000 H2O + log_k 13.7915 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sklodowskite +# Enthalpy of formation: 0 kcal/mol + +Sm + Sm +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sm++ + log_k 133.1614 + -delta_H -783.944 kJ/mol # Calculated enthalpy of reaction Sm +# Enthalpy of formation: 0 kJ/mol + -analytic -7.1599e+001 -2.0083e-002 4.2693e+004 2.7291e+001 6.6621e+002 +# -Range: 0-300 + +Sm(OH)3 + Sm(OH)3 +3.0000 H+ = + 1.0000 Sm+++ + 3.0000 H2O + log_k 16.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Sm(OH)3(am) + Sm(OH)3 +3.0000 H+ = + 1.0000 Sm+++ + 3.0000 H2O + log_k 18.5852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Sm2(CO3)3 + Sm2(CO3)3 +3.0000 H+ = + 2.0000 Sm+++ + 3.0000 HCO3- + log_k -3.5136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Sm2(SO4)3 + Sm2(SO4)3 = + 2.0000 Sm+++ + 3.0000 SO4-- + log_k -9.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(SO4)3 +# Enthalpy of formation: 0 kcal/mol + +Sm2O3 + Sm2O3 +6.0000 H+ = + 2.0000 Sm+++ + 3.0000 H2O + log_k 42.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2O3 +# Enthalpy of formation: 0 kcal/mol + +SmF3:.5H2O + SmF3:.5H2O = + 0.5000 H2O + 1.0000 Sm+++ + 3.0000 F- + log_k -17.5000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SmF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +SmPO4:10H2O + SmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Sm+++ + 10.0000 H2O + log_k -12.1782 + -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Smectite-high-Fe-Mg +# Ca.025Na.1K.2Fe++.5Fe+++.2Mg1.15Al1.25Si3.5H2O12 +8.0000 H+ = + 0.0250 Ca++ + 0.1000 Na+ + 0.2000 Fe+++ + 0.2000 K+ + 0.5000 Fe++ + 1.1500 Mg++ + 1.2500 Al+++ + 3.5000 SiO2 + 5.0000 H2O + Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 +8.0000 H+ = + 0.0250 Ca++ + 0.1000 Na+ + 0.2000 Fe+++ + 0.2000 K+ + 0.5000 Fe++ + 1.1500 Mg++ + 1.2500 Al+++ + 3.5000 SiO2 + 5.0000 H2O + log_k 17.4200 + -delta_H -199.841 kJ/mol # Calculated enthalpy of reaction Smectite-high-Fe-Mg +# Enthalpy of formation: -1351.39 kcal/mol + -analytic -9.6102e+000 1.2551e-003 1.8157e+004 -7.9862e+000 -1.3005e+006 +# -Range: 0-300 + +Smectite-low-Fe-Mg +# Ca.02Na.15K.2Fe++.29Fe+++.16Mg.9Al1.25Si3.75H2O1 +7.0000 H+ = + 0.0200 Ca++ + 0.1500 Na+ + 0.1600 Fe+++ + 0.2000 K+ + 0.2900 Fe++ + 0.9000 Mg++ + 1.2500 Al+++ + 3.7500 SiO2 + 4.5000 H2O + Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 +7.0000 H+ = + 0.0200 Ca++ + 0.1500 Na+ + 0.1600 Fe+++ + 0.2000 K+ + 0.2900 Fe++ + 0.9000 Mg++ + 1.2500 Al+++ + 3.7500 SiO2 + 4.5000 H2O + log_k 11.0405 + -delta_H -144.774 kJ/mol # Calculated enthalpy of reaction Smectite-low-Fe-Mg +# Enthalpy of formation: -1352.12 kcal/mol + -analytic -1.7003e+001 6.9848e-003 1.8359e+004 -6.8896e+000 -1.6637e+006 +# -Range: 0-300 + +Smithsonite + ZnCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Zn++ + log_k 0.4633 + -delta_H -30.5348 kJ/mol # Calculated enthalpy of reaction Smithsonite +# Enthalpy of formation: -194.26 kcal/mol + -analytic -1.6452e+002 -5.0231e-002 5.5925e+003 6.5139e+001 8.7314e+001 +# -Range: 0-300 + +Sn + Sn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sn++ + log_k 47.8615 + -delta_H -288.558 kJ/mol # Calculated enthalpy of reaction Sn +# Enthalpy of formation: 0 kcal/mol + -analytic -1.3075e+002 -3.3807e-002 1.9548e+004 5.0382e+001 -1.3868e+005 +# -Range: 0-300 + +Sn(OH)2 + Sn(OH)2 +2.0000 H+ = + 1.0000 Sn++ + 2.0000 H2O + log_k 1.8400 + -delta_H -19.6891 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 +# Enthalpy of formation: -560.774 kJ/mol + -analytic -6.1677e+001 -5.3258e-003 3.3656e+003 2.1748e+001 5.7174e+001 +# -Range: 0-200 + +Sn(SO4)2 + Sn(SO4)2 = + 1.0000 Sn++++ + 2.0000 SO4-- + log_k 16.0365 + -delta_H -159.707 kJ/mol # Calculated enthalpy of reaction Sn(SO4)2 +# Enthalpy of formation: -389.4 kcal/mol + -analytic 1.7787e+001 -5.1758e-002 3.7671e+003 4.1861e-001 6.3965e+001 +# -Range: 0-200 + +Sn3S4 + Sn3S4 +4.0000 H+ = + 1.0000 Sn++++ + 2.0000 Sn++ + 4.0000 HS- + log_k -61.9790 + -delta_H 318.524 kJ/mol # Calculated enthalpy of reaction Sn3S4 +# Enthalpy of formation: -88.5 kcal/mol + -analytic -8.1325e+001 -7.4589e-002 -1.7953e+004 4.1138e+001 -3.0484e+002 +# -Range: 0-200 + +SnBr2 + SnBr2 = + 1.0000 Sn++ + 2.0000 Br- + log_k -1.4369 + -delta_H 8.24248 kJ/mol # Calculated enthalpy of reaction SnBr2 +# Enthalpy of formation: -62.15 kcal/mol + -analytic 2.5384e+001 -1.7350e-002 -2.6653e+003 -5.1400e+000 -4.5269e+001 +# -Range: 0-200 + +SnBr4 + SnBr4 = + 1.0000 Sn++++ + 4.0000 Br- + log_k 11.1272 + -delta_H -78.3763 kJ/mol # Calculated enthalpy of reaction SnBr4 +# Enthalpy of formation: -377.391 kJ/mol + -analytic 1.3516e+001 -5.5193e-002 -8.1888e+001 5.7935e+000 -1.3940e+000 +# -Range: 0-200 + +SnCl2 + SnCl2 = + 1.0000 Sn++ + 2.0000 Cl- + log_k 0.3225 + -delta_H -11.9913 kJ/mol # Calculated enthalpy of reaction SnCl2 +# Enthalpy of formation: -79.1 kcal/mol + -analytic 7.9717e+000 -2.1475e-002 -1.1676e+003 1.0749e+000 -1.9829e+001 +# -Range: 0-200 + +SnSO4 + SnSO4 = + 1.0000 SO4-- + 1.0000 Sn++ + log_k -23.9293 + -delta_H 96.232 kJ/mol # Calculated enthalpy of reaction SnSO4 +# Enthalpy of formation: -242.5 kcal/mol + -analytic 3.0046e+001 -1.4238e-002 -7.5915e+003 -9.8122e+000 -1.2892e+002 +# -Range: 0-200 + +SnSe + SnSe = + 1.0000 Se-- + 1.0000 Sn++ + log_k -32.9506 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe +# Enthalpy of formation: -21.2 kcal/mol + -analytic 4.2342e+000 9.5462e-004 -8.0009e+003 -4.2997e+000 -1.3587e+002 +# -Range: 0-200 + +SnSe2 + SnSe2 = + 1.0000 Sn++++ + 2.0000 Se-- + log_k -66.6570 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe2 +# Enthalpy of formation: -29.8 kcal/mol + -analytic -3.6819e+001 -2.0966e-002 -1.5197e+004 1.1070e+001 -2.5806e+002 +# -Range: 0-200 + +Soddyite + (UO2)2SiO4:2H2O +4.0000 H+ = + 1.0000 SiO2 + 2.0000 UO2++ + 4.0000 H2O + log_k 0.3920 + -delta_H 0 # Not possible to calculate enthalpy of reaction Soddyite +# Enthalpy of formation: 0 kcal/mol + +Sphaerocobaltite + CoCO3 +1.0000 H+ = + 1.0000 Co++ + 1.0000 HCO3- + log_k -0.2331 + -delta_H -30.7064 kJ/mol # Calculated enthalpy of reaction Sphaerocobaltite +# Enthalpy of formation: -171.459 kcal/mol + -analytic -1.5709e+002 -4.8957e-002 5.3158e+003 6.2075e+001 8.2995e+001 +# -Range: 0-300 + +Sphalerite + ZnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Zn++ + log_k -11.4400 + -delta_H 35.5222 kJ/mol # Calculated enthalpy of reaction Sphalerite +# Enthalpy of formation: -49 kcal/mol + -analytic -1.5497e+002 -4.8953e-002 1.7850e+003 6.1472e+001 2.7899e+001 +# -Range: 0-300 + +Spinel + Al2MgO4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Al+++ + 4.0000 H2O + log_k 37.6295 + -delta_H -398.108 kJ/mol # Calculated enthalpy of reaction Spinel +# Enthalpy of formation: -546.847 kcal/mol + -analytic -3.3895e+002 -8.3595e-002 2.9251e+004 1.2260e+002 4.5654e+002 +# -Range: 0-300 + +Spinel-Co + Co3O4 +8.0000 H+ = + 1.0000 Co++ + 2.0000 Co+++ + 4.0000 H2O + log_k -6.4852 + -delta_H -126.415 kJ/mol # Calculated enthalpy of reaction Spinel-Co +# Enthalpy of formation: -891 kJ/mol + -analytic -3.2239e+002 -8.0782e-002 1.4635e+004 1.1755e+002 2.2846e+002 +# -Range: 0-300 + +Spodumene + LiAlSi2O6 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 2.0000 H2O + 2.0000 SiO2 + log_k 6.9972 + -delta_H -89.1817 kJ/mol # Calculated enthalpy of reaction Spodumene +# Enthalpy of formation: -3054.75 kJ/mol + -analytic -9.8111e+000 2.1191e-003 9.6920e+003 -3.0484e+000 -7.8822e+005 +# -Range: 0-300 + +Sr + Sr +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sr++ + log_k 141.7816 + -delta_H -830.679 kJ/mol # Calculated enthalpy of reaction Sr +# Enthalpy of formation: 0 kJ/mol + -analytic -1.6271e+002 -3.1212e-002 5.1520e+004 5.9178e+001 -4.8390e+005 +# -Range: 0-300 + +Sr(NO3)2 + Sr(NO3)2 = + 1.0000 Sr++ + 2.0000 NO3- + log_k 1.1493 + -delta_H 13.7818 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2 +# Enthalpy of formation: -978.311 kJ/mol + -analytic 2.8914e+000 -1.2487e-002 -1.4872e+003 2.8124e+000 -2.5256e+001 +# -Range: 0-200 + +Sr(NO3)2:4H2O + Sr(NO3)2:4H2O = + 1.0000 Sr++ + 2.0000 NO3- + 4.0000 H2O + log_k 0.6976 + -delta_H 47.9045 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2:4H2O +# Enthalpy of formation: -2155.79 kJ/mol + -analytic -8.4518e+001 -9.1155e-003 1.0856e+003 3.4061e+001 1.8464e+001 +# -Range: 0-200 + +Sr(OH)2 + Sr(OH)2 +2.0000 H+ = + 1.0000 Sr++ + 2.0000 H2O + log_k 27.5229 + -delta_H -153.692 kJ/mol # Calculated enthalpy of reaction Sr(OH)2 +# Enthalpy of formation: -968.892 kJ/mol + -analytic -5.1871e+001 -2.9123e-003 1.0175e+004 1.8643e+001 1.7280e+002 +# -Range: 0-200 + +Sr2SiO4 + Sr2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Sr++ + log_k 42.8076 + -delta_H -244.583 kJ/mol # Calculated enthalpy of reaction Sr2SiO4 +# Enthalpy of formation: -2306.61 kJ/mol + -analytic 3.0319e+001 2.0204e-003 1.2729e+004 -1.1584e+001 -1.9480e+005 +# -Range: 0-300 + +Sr3(AsO4)2 + Sr3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Sr++ + log_k 20.6256 + -delta_H -152.354 kJ/mol # Calculated enthalpy of reaction Sr3(AsO4)2 +# Enthalpy of formation: -3319.49 kJ/mol + -analytic -8.4749e+001 -2.9367e-002 9.5849e+003 3.3126e+001 1.6279e+002 +# -Range: 0-200 + +SrBr2 + SrBr2 = + 1.0000 Sr++ + 2.0000 Br- + log_k 13.1128 + -delta_H -75.106 kJ/mol # Calculated enthalpy of reaction SrBr2 +# Enthalpy of formation: -718.808 kJ/mol + -analytic -1.8512e+002 -7.2423e-002 7.6861e+003 7.8401e+001 1.1999e+002 +# -Range: 0-300 + +SrBr2:6H2O + SrBr2:6H2O = + 1.0000 Sr++ + 2.0000 Br- + 6.0000 H2O + log_k 3.6678 + -delta_H 23.367 kJ/mol # Calculated enthalpy of reaction SrBr2:6H2O +# Enthalpy of formation: -2532.31 kJ/mol + -analytic -2.2470e+002 -6.7920e-002 4.9432e+003 9.3758e+001 7.7200e+001 +# -Range: 0-300 + +SrBr2:H2O + SrBr2:H2O = + 1.0000 H2O + 1.0000 Sr++ + 2.0000 Br- + log_k 9.6057 + -delta_H -47.5853 kJ/mol # Calculated enthalpy of reaction SrBr2:H2O +# Enthalpy of formation: -1032.17 kJ/mol + -analytic -1.9103e+002 -7.1402e-002 6.6358e+003 8.0673e+001 1.0360e+002 +# -Range: 0-300 + +SrCl2 + SrCl2 = + 1.0000 Sr++ + 2.0000 Cl- + log_k 7.9389 + -delta_H -55.0906 kJ/mol # Calculated enthalpy of reaction SrCl2 +# Enthalpy of formation: -829.976 kJ/mol + -analytic -2.0097e+002 -7.6193e-002 7.0396e+003 8.4050e+001 1.0991e+002 +# -Range: 0-300 + +SrCl2:2H2O + SrCl2:2H2O = + 1.0000 Sr++ + 2.0000 Cl- + 2.0000 H2O + log_k 3.3248 + -delta_H -17.7313 kJ/mol # Calculated enthalpy of reaction SrCl2:2H2O +# Enthalpy of formation: -1439.01 kJ/mol + -analytic -2.1551e+002 -7.4349e-002 5.9400e+003 8.9330e+001 9.2752e+001 +# -Range: 0-300 + +SrCl2:6H2O + SrCl2:6H2O = + 1.0000 Sr++ + 2.0000 Cl- + 6.0000 H2O + log_k 1.5038 + -delta_H 24.6964 kJ/mol # Calculated enthalpy of reaction SrCl2:6H2O +# Enthalpy of formation: -2624.79 kJ/mol + -analytic -1.3225e+002 -1.8260e-002 3.7077e+003 5.1224e+001 6.3008e+001 +# -Range: 0-200 + +SrCl2:H2O + SrCl2:H2O = + 1.0000 H2O + 1.0000 Sr++ + 2.0000 Cl- + log_k 4.7822 + -delta_H -33.223 kJ/mol # Calculated enthalpy of reaction SrCl2:H2O +# Enthalpy of formation: -1137.68 kJ/mol + -analytic -2.1825e+002 -7.7851e-002 6.5957e+003 9.0555e+001 1.0298e+002 +# -Range: 0-300 + +SrCrO4 + SrCrO4 = + 1.0000 CrO4-- + 1.0000 Sr++ + log_k -3.8849 + -delta_H -1.73636 kJ/mol # Calculated enthalpy of reaction SrCrO4 +# Enthalpy of formation: -341.855 kcal/mol + -analytic 2.3424e+001 -1.5589e-002 -2.1393e+003 -6.2628e+000 -3.6337e+001 +# -Range: 0-200 + +SrF2 + SrF2 = + 1.0000 Sr++ + 2.0000 F- + log_k -8.5400 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrF2 +# Enthalpy of formation: 0 kcal/mol + +SrHPO4 + SrHPO4 = + 1.0000 HPO4-- + 1.0000 Sr++ + log_k -6.2416 + -delta_H -19.7942 kJ/mol # Calculated enthalpy of reaction SrHPO4 +# Enthalpy of formation: -1823.19 kJ/mol + -analytic 5.4057e+000 -1.8533e-002 -8.2021e+002 -1.3667e+000 -1.3930e+001 +# -Range: 0-200 + +SrI2 + SrI2 = + 1.0000 Sr++ + 2.0000 I- + log_k 19.2678 + -delta_H -103.218 kJ/mol # Calculated enthalpy of reaction SrI2 +# Enthalpy of formation: -561.494 kJ/mol + -analytic -1.8168e+002 -7.2083e-002 9.0759e+003 7.7577e+001 1.4167e+002 +# -Range: 0-300 + +SrO + SrO +2.0000 H+ = + 1.0000 H2O + 1.0000 Sr++ + log_k 41.8916 + -delta_H -243.875 kJ/mol # Calculated enthalpy of reaction SrO +# Enthalpy of formation: -592.871 kJ/mol + -analytic -5.8463e+001 -1.4240e-002 1.4417e+004 2.2725e+001 2.2499e+002 +# -Range: 0-300 + +SrS + SrS +1.0000 H+ = + 1.0000 HS- + 1.0000 Sr++ + log_k 14.7284 + -delta_H -93.3857 kJ/mol # Calculated enthalpy of reaction SrS +# Enthalpy of formation: -473.63 kJ/mol + -analytic -1.3048e+002 -4.4837e-002 7.8429e+003 5.3442e+001 1.2242e+002 +# -Range: 0-300 + +SrSeO4 + SrSeO4 = + 1.0000 SeO4-- + 1.0000 Sr++ + log_k -4.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrSeO4 +# Enthalpy of formation: 0 kcal/mol + +SrSiO3 + SrSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 SiO2 + 1.0000 Sr++ + log_k 14.8438 + -delta_H -79.6112 kJ/mol # Calculated enthalpy of reaction SrSiO3 +# Enthalpy of formation: -1634.83 kJ/mol + -analytic 2.2592e+001 6.0821e-003 5.9982e+003 -1.0213e+001 -3.9529e+005 +# -Range: 0-300 + +SrUO4(alpha) + SrUO4 +4.0000 H+ = + 1.0000 Sr++ + 1.0000 UO2++ + 2.0000 H2O + log_k 19.1650 + -delta_H -151.984 kJ/mol # Calculated enthalpy of reaction SrUO4(alpha) +# Enthalpy of formation: -1989.6 kJ/mol + -analytic -7.4169e+001 -1.6686e-002 9.8721e+003 2.6345e+001 1.5407e+002 +# -Range: 0-300 + +SrZrO3 + SrZrO3 +4.0000 H+ = + 1.0000 H2O + 1.0000 Sr++ + 1.0000 Zr(OH)2++ + log_k -131.4664 + -delta_H 706.983 kJ/mol # Calculated enthalpy of reaction SrZrO3 +# Enthalpy of formation: -629.677 kcal/mol + -analytic -5.8512e+001 -9.5738e-003 -3.5254e+004 1.9459e+001 -5.9865e+002 +# -Range: 0-200 + +Starkeyite + MgSO4:4H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 4.0000 H2O + log_k -0.9999 + -delta_H 0 # Not possible to calculate enthalpy of reaction Starkeyite +# Enthalpy of formation: 0 kcal/mol + +Stibnite + Sb2S3 +6.0000 H2O = + 2.0000 Sb(OH)3 + 3.0000 H+ + 3.0000 HS- + log_k -53.1100 + -delta_H 0 # Not possible to calculate enthalpy of reaction Stibnite +# Enthalpy of formation: 0 kcal/mol + -analytic 2.5223e+001 -5.9186e-002 -2.0860e+004 3.6892e+000 -3.2551e+002 +# -Range: 0-300 + +Stilbite + Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O +8.7200 H+ = + 0.0060 K+ + 0.1360 Na+ + 1.0190 Ca++ + 2.1800 Al+++ + 6.8200 SiO2 + 11.6900 H2O + log_k 1.0545 + -delta_H -83.0019 kJ/mol # Calculated enthalpy of reaction Stilbite +# Enthalpy of formation: -11005.7 kJ/mol + -analytic -2.4483e+001 3.0987e-002 2.8013e+004 -1.5802e+001 -3.4491e+006 +# -Range: 0-300 + +Stilleite + ZnSe = + 1.0000 Se-- + 1.0000 Zn++ + log_k -23.9693 + -delta_H 0 # Not possible to calculate enthalpy of reaction Stilleite +# Enthalpy of formation: -37.97 kcal/mol + -analytic -6.1948e+001 -1.7004e-002 -2.4498e+003 2.0712e+001 -3.8209e+001 +# -Range: 0-300 + +Strengite + FePO4:2H2O +1.0000 H+ = + 1.0000 Fe+++ + 1.0000 HPO4-- + 2.0000 H2O + log_k -11.3429 + -delta_H -37.107 kJ/mol # Calculated enthalpy of reaction Strengite +# Enthalpy of formation: -1876.23 kJ/mol + -analytic -2.7752e+002 -9.4014e-002 7.6862e+003 1.0846e+002 1.2002e+002 +# -Range: 0-300 + +Strontianite + SrCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Sr++ + log_k -0.3137 + -delta_H -8.23411 kJ/mol # Calculated enthalpy of reaction Strontianite +# Enthalpy of formation: -294.6 kcal/mol + -analytic -1.3577e+002 -4.4884e-002 3.5729e+003 5.5296e+001 5.5791e+001 +# -Range: 0-300 + +Sulfur from J.Thom + S + H2O = 0.5H+ + 0.25SO4-- + 0.75H2S + log_k -5.20733 + -analytic -7.22926e1 -1.87320e-2 7.37125e2 2.83697e1 -1.00039e2 + +Sylvite + KCl = + 1.0000 Cl- + 1.0000 K+ + log_k 0.8459 + -delta_H 17.4347 kJ/mol # Calculated enthalpy of reaction Sylvite +# Enthalpy of formation: -104.37 kcal/mol + -analytic -8.1204e+001 -3.3074e-002 8.2819e+002 3.6014e+001 1.2947e+001 +# -Range: 0-300 + +Syngenite + K2Ca(SO4)2:H2O = + 1.0000 Ca++ + 1.0000 H2O + 2.0000 K+ + 2.0000 SO4-- + log_k -7.6001 + -delta_H 0 # Not possible to calculate enthalpy of reaction Syngenite +# Enthalpy of formation: 0 kcal/mol + +Tachyhydrite + Mg2CaCl6:12H2O = + 1.0000 Ca++ + 2.0000 Mg++ + 6.0000 Cl- + 12.0000 H2O + log_k 17.1439 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tachyhydrite +# Enthalpy of formation: 0 kcal/mol + +Talc + Mg3Si4O10(OH)2 +6.0000 H+ = + 3.0000 Mg++ + 4.0000 H2O + 4.0000 SiO2 + log_k 21.1383 + -delta_H -148.737 kJ/mol # Calculated enthalpy of reaction Talc +# Enthalpy of formation: -1410.92 kcal/mol + -analytic 1.1164e+001 2.4724e-002 1.9810e+004 -1.7568e+001 -1.8241e+006 +# -Range: 0-300 + +Tarapacaite + K2CrO4 = + 1.0000 CrO4-- + 2.0000 K+ + log_k -0.4037 + -delta_H 17.8238 kJ/mol # Calculated enthalpy of reaction Tarapacaite +# Enthalpy of formation: -335.4 kcal/mol + -analytic 2.7953e+001 -1.0863e-002 -2.7589e+003 -6.4154e+000 -4.6859e+001 +# -Range: 0-200 + +Tb + Tb +3.0000 H+ +0.7500 O2 = + 1.0000 Tb+++ + 1.5000 H2O + log_k 181.4170 + -delta_H -1117.97 kJ/mol # Calculated enthalpy of reaction Tb +# Enthalpy of formation: 0 kJ/mol + -analytic -5.2354e+001 -2.6920e-002 5.8391e+004 1.8555e+001 9.1115e+002 +# -Range: 0-300 + +Tb(OH)3 + Tb(OH)3 +3.0000 H+ = + 1.0000 Tb+++ + 3.0000 H2O + log_k 15.6852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Tb(OH)3(am) + Tb(OH)3 +3.0000 H+ = + 1.0000 Tb+++ + 3.0000 H2O + log_k 18.7852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Tb2(CO3)3 + Tb2(CO3)3 +3.0000 H+ = + 2.0000 Tb+++ + 3.0000 HCO3- + log_k -3.2136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Tb2O3 + Tb2O3 +6.0000 H+ = + 2.0000 Tb+++ + 3.0000 H2O + log_k 47.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2O3 +# Enthalpy of formation: 0 kcal/mol + +TbF3:.5H2O + TbF3:.5H2O = + 0.5000 H2O + 1.0000 Tb+++ + 3.0000 F- + log_k -16.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction TbF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +TbPO4:10H2O + TbPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Tb+++ + 10.0000 H2O + log_k -11.9782 + -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Tc + Tc +1.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 TcO4- + log_k 93.5811 + -delta_H -552.116 kJ/mol # Calculated enthalpy of reaction Tc +# Enthalpy of formation: 0 kJ/mol + -analytic 2.2670e+001 -1.2050e-002 3.0174e+004 -8.4053e+000 -5.2577e+005 +# -Range: 0-300 + +Tc(OH)2 + Tc(OH)2 +3.0000 H+ +0.2500 O2 = + 1.0000 Tc+++ + 2.5000 H2O + log_k 5.2714 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)2 +# Enthalpy of formation: 0 kcal/mol + +Tc(OH)3 + Tc(OH)3 +3.0000 H+ = + 1.0000 Tc+++ + 3.0000 H2O + log_k -9.2425 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Tc2O7 + Tc2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 TcO4- + log_k 13.1077 + -delta_H -26.5357 kJ/mol # Calculated enthalpy of reaction Tc2O7 +# Enthalpy of formation: -1120.16 kJ/mol + -analytic 8.7535e+001 1.5366e-002 -1.1919e+003 -3.0317e+001 -2.0271e+001 +# -Range: 0-200 + +Tc2S7 + Tc2S7 +8.0000 H2O = + 2.0000 TcO4- + 7.0000 HS- + 9.0000 H+ + log_k -230.2410 + -delta_H 1356.41 kJ/mol # Calculated enthalpy of reaction Tc2S7 +# Enthalpy of formation: -615 kJ/mol + -analytic 2.4560e+002 -4.3355e-002 -8.4192e+004 -7.2967e+001 -1.4298e+003 +# -Range: 0-200 + +Tc3O4 + Tc3O4 +9.0000 H+ +0.2500 O2 = + 3.0000 Tc+++ + 4.5000 H2O + log_k -19.2271 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc3O4 +# Enthalpy of formation: 0 kcal/mol + +Tc4O7 + Tc4O7 +10.0000 H+ = + 2.0000 Tc+++ + 2.0000 TcO++ + 5.0000 H2O + log_k -26.0149 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc4O7 +# Enthalpy of formation: 0 kcal/mol + +TcO2:2H2O(am) + TcO2:2H2O +2.0000 H+ = + 1.0000 TcO++ + 3.0000 H2O + log_k -4.2319 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO2:2H2O(am) +# Enthalpy of formation: 0 kcal/mol + +TcO3 + TcO3 +1.0000 H2O = + 1.0000 TcO4-- + 2.0000 H+ + log_k -23.1483 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO3 +# Enthalpy of formation: -540 kJ/mol + +TcOH + TcOH +3.0000 H+ +0.5000 O2 = + 1.0000 Tc+++ + 2.0000 H2O + log_k 24.9009 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcOH +# Enthalpy of formation: 0 kcal/mol + +TcS2 + TcS2 +1.0000 H2O = + 1.0000 TcO++ + 2.0000 HS- + log_k -65.9742 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcS2 +# Enthalpy of formation: -224 kJ/mol + +TcS3 + TcS3 +4.0000 H2O = + 1.0000 TcO4-- + 3.0000 HS- + 5.0000 H+ + log_k -119.5008 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcS3 +# Enthalpy of formation: -276 kJ/mol + +Tenorite + CuO +2.0000 H+ = + 1.0000 Cu++ + 1.0000 H2O + log_k 7.6560 + -delta_H -64.5047 kJ/mol # Calculated enthalpy of reaction Tenorite +# Enthalpy of formation: -37.2 kcal/mol + -analytic -8.9899e+001 -1.8886e-002 6.0346e+003 3.3517e+001 9.4191e+001 +# -Range: 0-300 + +Tephroite + Mn2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Mn++ + log_k 23.0781 + -delta_H -160.1 kJ/mol # Calculated enthalpy of reaction Tephroite +# Enthalpy of formation: -1730.47 kJ/mol + -analytic -3.2440e+001 -1.1023e-002 8.8910e+003 1.1691e+001 1.3875e+002 +# -Range: 0-300 + +Th + Th +4.0000 H+ +1.0000 O2 = + 1.0000 Th++++ + 2.0000 H2O + log_k 209.6028 + -delta_H -1328.56 kJ/mol # Calculated enthalpy of reaction Th +# Enthalpy of formation: 0 kJ/mol + -analytic -2.8256e+001 -1.1963e-002 6.8870e+004 4.2068e+000 1.0747e+003 +# -Range: 0-300 + +Th(NO3)4:5H2O + Th(NO3)4:5H2O = + 1.0000 Th++++ + 4.0000 NO3- + 5.0000 H2O + log_k 1.7789 + -delta_H -18.1066 kJ/mol # Calculated enthalpy of reaction Th(NO3)4:5H2O +# Enthalpy of formation: -3007.35 kJ/mol + -analytic -1.2480e+002 -2.0405e-002 5.1601e+003 4.6613e+001 8.7669e+001 +# -Range: 0-200 + +Th(OH)4 + Th(OH)4 +4.0000 H+ = + 1.0000 Th++++ + 4.0000 H2O + log_k 9.6543 + -delta_H -140.336 kJ/mol # Calculated enthalpy of reaction Th(OH)4 +# Enthalpy of formation: -423.527 kcal/mol + -analytic -1.4031e+002 -9.2493e-003 1.2345e+004 4.4990e+001 2.0968e+002 +# -Range: 0-200 + +Th(SO4)2 + Th(SO4)2 = + 1.0000 Th++++ + 2.0000 SO4-- + log_k -20.3006 + -delta_H -46.1064 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 +# Enthalpy of formation: -2542.12 kJ/mol + -analytic -8.4525e+000 -3.5442e-002 0.0000e+000 0.0000e+000 -1.1540e+005 +# -Range: 0-200 + +Th2S3 + Th2S3 +5.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 Th++++ + 3.0000 HS- + log_k 95.2290 + -delta_H -783.243 kJ/mol # Calculated enthalpy of reaction Th2S3 +# Enthalpy of formation: -1082.89 kJ/mol + -analytic -3.2969e+002 -1.1090e-001 4.6877e+004 1.2152e+002 7.3157e+002 +# -Range: 0-300 + +Th2Se3 + Th2Se3 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 Th++++ + 3.0000 Se-- + log_k 59.1655 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th2Se3 +# Enthalpy of formation: -224 kcal/mol + -analytic -1.0083e+001 6.0240e-003 3.4039e+004 -1.8884e+001 5.7804e+002 +# -Range: 0-200 + +Th7S12 + Th7S12 +16.0000 H+ +1.0000 O2 = + 2.0000 H2O + 7.0000 Th++++ + 12.0000 HS- + log_k 204.0740 + -delta_H -1999.4 kJ/mol # Calculated enthalpy of reaction Th7S12 +# Enthalpy of formation: -4136.58 kJ/mol + -analytic -2.1309e+002 -1.4149e-001 9.8550e+004 5.2042e+001 1.6736e+003 +# -Range: 0-200 + +ThBr4 + ThBr4 = + 1.0000 Th++++ + 4.0000 Br- + log_k 34.0803 + -delta_H -290.23 kJ/mol # Calculated enthalpy of reaction ThBr4 +# Enthalpy of formation: -964.803 kJ/mol + -analytic 2.9902e+001 -3.3109e-002 1.0988e+004 -9.2209e+000 1.8657e+002 +# -Range: 0-200 + +ThCl4 + ThCl4 = + 1.0000 Th++++ + 4.0000 Cl- + log_k 23.8491 + -delta_H -251.094 kJ/mol # Calculated enthalpy of reaction ThCl4 +# Enthalpy of formation: -283.519 kcal/mol + -analytic -5.9340e+000 -4.1640e-002 9.8623e+003 3.6804e+000 1.6748e+002 +# -Range: 0-200 + +ThF4 + ThF4 = + 1.0000 Th++++ + 4.0000 F- + log_k -29.9946 + -delta_H -12.6733 kJ/mol # Calculated enthalpy of reaction ThF4 +# Enthalpy of formation: -501.371 kcal/mol + -analytic -4.2622e+002 -1.4222e-001 9.4201e+003 1.6446e+002 1.4712e+002 +# -Range: 0-300 + +ThF4:2.5H2O + ThF4:2.5H2O = + 1.0000 Th++++ + 2.5000 H2O + 4.0000 F- + log_k -31.8568 + -delta_H 22.6696 kJ/mol # Calculated enthalpy of reaction ThF4:2.5H2O +# Enthalpy of formation: -2847.68 kJ/mol + -analytic -1.1284e+002 -4.5422e-002 -2.5781e+002 3.8547e+001 -4.3396e+000 +# -Range: 0-200 + +ThI4 + ThI4 = + 1.0000 Th++++ + 4.0000 I- + log_k 45.1997 + -delta_H -332.818 kJ/mol # Calculated enthalpy of reaction ThI4 +# Enthalpy of formation: -663.811 kJ/mol + -analytic 1.4224e+000 -4.0379e-002 1.4193e+004 3.3137e+000 2.4102e+002 +# -Range: 0-200 + +ThS + ThS +3.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 HS- + 1.0000 Th++++ + log_k 96.0395 + -delta_H -669.906 kJ/mol # Calculated enthalpy of reaction ThS +# Enthalpy of formation: -394.993 kJ/mol + -analytic -1.3919e+001 -1.2372e-002 3.3883e+004 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +ThS2 + ThS2 +2.0000 H+ = + 1.0000 Th++++ + 2.0000 HS- + log_k 10.7872 + -delta_H -175.369 kJ/mol # Calculated enthalpy of reaction ThS2 +# Enthalpy of formation: -625.867 kJ/mol + -analytic -3.7691e+001 -2.3714e-002 8.4673e+003 1.0970e+001 1.4380e+002 +# -Range: 0-200 + +Thenardite + Na2SO4 = + 1.0000 SO4-- + 2.0000 Na+ + log_k -0.3091 + -delta_H -2.33394 kJ/mol # Calculated enthalpy of reaction Thenardite +# Enthalpy of formation: -1387.87 kJ/mol + -analytic -2.1202e+002 -7.1613e-002 5.1083e+003 8.7244e+001 7.9773e+001 +# -Range: 0-300 + +Thermonatrite + Na2CO3:H2O +1.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 2.0000 Na+ + log_k 10.9623 + -delta_H -27.5869 kJ/mol # Calculated enthalpy of reaction Thermonatrite +# Enthalpy of formation: -1428.78 kJ/mol + -analytic -1.4030e+002 -3.5263e-002 5.7840e+003 5.7528e+001 9.0295e+001 +# -Range: 0-300 + +Thorianite + ThO2 +4.0000 H+ = + 1.0000 Th++++ + 2.0000 H2O + log_k 1.8624 + -delta_H -114.296 kJ/mol # Calculated enthalpy of reaction Thorianite +# Enthalpy of formation: -1226.4 kJ/mol + -analytic -1.4249e+001 -2.4645e-003 4.3110e+003 -1.6605e-002 2.1598e+005 +# -Range: 0-300 + +Ti + Ti +2.0000 H2O +1.0000 O2 = + 1.0000 Ti(OH)4 + log_k 149.2978 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti +# Enthalpy of formation: 0 kJ/mol + +Ti2O3 + Ti2O3 +4.0000 H2O +0.5000 O2 = + 2.0000 Ti(OH)4 + log_k 42.9866 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti2O3 +# Enthalpy of formation: -1520.78 kJ/mol + +Ti3O5 + Ti3O5 +6.0000 H2O +0.5000 O2 = + 3.0000 Ti(OH)4 + log_k 34.6557 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti3O5 +# Enthalpy of formation: -2459.24 kJ/mol + +TiB2 + TiB2 +5.0000 H2O +2.5000 O2 = + 1.0000 Ti(OH)4 + 2.0000 B(OH)3 + log_k 312.4194 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiB2 +# Enthalpy of formation: -323.883 kJ/mol + +TiBr3 + TiBr3 +3.5000 H2O +0.2500 O2 = + 1.0000 Ti(OH)4 + 3.0000 Br- + 3.0000 H+ + log_k 47.7190 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr3 +# Enthalpy of formation: -548.378 kJ/mol + +TiBr4 + TiBr4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Br- + 4.0000 H+ + log_k 32.9379 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4 +# Enthalpy of formation: -616.822 kJ/mol + +TiC + TiC +3.0000 H2O +2.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- + 1.0000 Ti(OH)4 + log_k 181.8139 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiC +# Enthalpy of formation: -184.346 kJ/mol + +TiCl2 + TiCl2 +3.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 + 2.0000 Cl- + 2.0000 H+ + log_k 70.9386 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl2 +# Enthalpy of formation: -514.012 kJ/mol + +TiCl3 + TiCl3 +3.5000 H2O +0.2500 O2 = + 1.0000 Ti(OH)4 + 3.0000 Cl- + 3.0000 H+ + log_k 39.3099 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl3 +# Enthalpy of formation: -720.775 kJ/mol + +TiF4(am) + TiF4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 F- + 4.0000 H+ + log_k -12.4409 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiF4(am) +# Enthalpy of formation: -1649.44 kJ/mol + +TiI4 + TiI4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 H+ + 4.0000 I- + log_k 34.5968 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiI4 +# Enthalpy of formation: -375.555 kJ/mol + +TiN + TiN +3.5000 H2O +0.2500 O2 = + 1.0000 NH3 + 1.0000 Ti(OH)4 + log_k 35.2344 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiN +# Enthalpy of formation: -338.304 kJ/mol + +TiO(alpha) + TiO +2.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 + log_k 61.1282 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(alpha) +# Enthalpy of formation: -519.835 kJ/mol + +Tiemannite + HgSe = + 1.0000 Hg++ + 1.0000 Se-- + log_k -58.2188 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tiemannite +# Enthalpy of formation: -10.4 kcal/mol + -analytic -5.7618e+001 -1.3891e-002 -1.3223e+004 1.9351e+001 -2.0632e+002 +# -Range: 0-300 + +Titanite + CaTiSiO5 +2.0000 H+ +1.0000 H2O = + 1.0000 Ca++ + 1.0000 SiO2 + 1.0000 Ti(OH)4 + log_k 719.5839 + -delta_H 0 # Not possible to calculate enthalpy of reaction Titanite +# Enthalpy of formation: 0 kcal/mol + +Tl + Tl +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Tl+ + log_k 27.1743 + -delta_H -134.53 kJ/mol # Calculated enthalpy of reaction Tl +# Enthalpy of formation: 0 kJ/mol + -analytic -3.7066e+001 -7.8341e-003 9.4594e+003 1.4896e+001 -1.7904e+005 +# -Range: 0-300 + +Tm + Tm +3.0000 H+ +0.7500 O2 = + 1.0000 Tm+++ + 1.5000 H2O + log_k 181.7102 + -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Tm +# Enthalpy of formation: 0 kJ/mol + -analytic -6.7440e+001 -2.8476e-002 5.9332e+004 2.3715e+001 -5.9611e+003 +# -Range: 0-300 + +Tm(OH)3 + Tm(OH)3 +3.0000 H+ = + 1.0000 Tm+++ + 3.0000 H2O + log_k 14.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Tm(OH)3(am) + Tm(OH)3 +3.0000 H+ = + 1.0000 Tm+++ + 3.0000 H2O + log_k 17.2852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Tm2(CO3)3 + Tm2(CO3)3 +3.0000 H+ = + 2.0000 Tm+++ + 3.0000 HCO3- + log_k -2.4136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Tm2O3 + Tm2O3 +6.0000 H+ = + 2.0000 Tm+++ + 3.0000 H2O + log_k 44.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2O3 +# Enthalpy of formation: 0 kcal/mol + +TmF3:.5H2O + TmF3:.5H2O = + 0.5000 H2O + 1.0000 Tm+++ + 3.0000 F- + log_k -16.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction TmF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +TmPO4:10H2O + TmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Tm+++ + 10.0000 H2O + log_k -11.8782 + -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Tobermorite-11A + Ca5Si6H11O22.5 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 10.5000 H2O + log_k 65.6121 + -delta_H -286.861 kJ/mol # Calculated enthalpy of reaction Tobermorite-11A +# Enthalpy of formation: -2556.42 kcal/mol + -analytic 7.9123e+001 3.9150e-002 2.9429e+004 -3.9191e+001 -2.4122e+006 +# -Range: 0-300 + +Tobermorite-14A + Ca5Si6H21O27.5 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 15.5000 H2O + log_k 63.8445 + -delta_H -230.959 kJ/mol # Calculated enthalpy of reaction Tobermorite-14A +# Enthalpy of formation: -2911.36 kcal/mol + -analytic -2.0789e+002 5.2472e-003 3.9698e+004 6.7797e+001 -2.7532e+006 +# -Range: 0-300 + +Tobermorite-9A + Ca5Si6H6O20 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 8.0000 H2O + log_k 69.0798 + -delta_H -329.557 kJ/mol # Calculated enthalpy of reaction Tobermorite-9A +# Enthalpy of formation: -2375.42 kcal/mol + -analytic -6.3384e+001 1.1722e-002 3.8954e+004 1.2268e+001 -2.8681e+006 +# -Range: 0-300 + +Todorokite + Mn7O12:3H2O +16.0000 H+ = + 1.0000 MnO4-- + 6.0000 Mn+++ + 11.0000 H2O + log_k -45.8241 + -delta_H 0 # Not possible to calculate enthalpy of reaction Todorokite +# Enthalpy of formation: 0 kcal/mol + +Torbernite + Cu(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Cu++ + 2.0000 HPO4-- + 2.0000 UO2++ + log_k -20.3225 + -delta_H -97.4022 kJ/mol # Calculated enthalpy of reaction Torbernite +# Enthalpy of formation: -1065.74 kcal/mol + -analytic -6.7128e+001 -4.5878e-002 3.5071e+003 1.9682e+001 5.9579e+001 +# -Range: 0-200 + +Tremolite + Ca2Mg5Si8O22(OH)2 +14.0000 H+ = + 2.0000 Ca++ + 5.0000 Mg++ + 8.0000 H2O + 8.0000 SiO2 + log_k 61.2367 + -delta_H -406.404 kJ/mol # Calculated enthalpy of reaction Tremolite +# Enthalpy of formation: -2944.04 kcal/mol + -analytic 8.5291e+001 4.6337e-002 3.9465e+004 -5.4414e+001 -3.1913e+006 +# -Range: 0-300 + +Trevorite + NiFe2O4 +8.0000 H+ = + 1.0000 Ni++ + 2.0000 Fe+++ + 4.0000 H2O + log_k 9.7876 + -delta_H -215.338 kJ/mol # Calculated enthalpy of reaction Trevorite +# Enthalpy of formation: -1081.15 kJ/mol + -analytic -1.4322e+002 -2.9429e-002 1.4518e+004 4.5698e+001 2.4658e+002 +# -Range: 0-200 + +Tridymite + SiO2 = + 1.0000 SiO2 + log_k -3.8278 + -delta_H 31.3664 kJ/mol # Calculated enthalpy of reaction Tridymite +# Enthalpy of formation: -909.065 kJ/mol + -analytic 3.1594e+002 6.9315e-002 -1.1358e+004 -1.2219e+002 -1.9299e+002 +# -Range: 0-200 + +Troilite + FeS +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HS- + log_k -3.8184 + -delta_H -7.3296 kJ/mol # Calculated enthalpy of reaction Troilite +# Enthalpy of formation: -101.036 kJ/mol + -analytic -1.6146e+002 -5.3170e-002 4.0461e+003 6.4620e+001 6.3183e+001 +# -Range: 0-300 + +Trona-K + K2NaH(CO3)2:2H2O +1.0000 H+ = + 1.0000 Na+ + 2.0000 H2O + 2.0000 HCO3- + 2.0000 K+ + log_k 11.5891 + -delta_H 0 # Not possible to calculate enthalpy of reaction Trona-K +# Enthalpy of formation: 0 kcal/mol + +Tsumebite + Pb2Cu(PO4)(OH)3:3H2O +4.0000 H+ = + 1.0000 Cu++ + 1.0000 HPO4-- + 2.0000 Pb++ + 6.0000 H2O + log_k 2.5318 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tsumebite +# Enthalpy of formation: 0 kcal/mol + +Tyuyamunite + Ca(UO2)2(VO4)2 = + 1.0000 Ca++ + 2.0000 UO2++ + 2.0000 VO4--- + log_k -53.3757 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tyuyamunite +# Enthalpy of formation: -1164.52 kcal/mol + +U + U +2.0000 H+ +1.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ + log_k 212.7800 + -delta_H -1286.64 kJ/mol # Calculated enthalpy of reaction U +# Enthalpy of formation: 0 kJ/mol + -analytic -2.4912e+002 -4.7104e-002 8.1115e+004 8.7008e+001 -1.0158e+006 +# -Range: 0-300 + +U(CO3)2 + U(CO3)2 +2.0000 H+ = + 1.0000 U++++ + 2.0000 HCO3- + log_k 7.5227 + -delta_H -170.691 kJ/mol # Calculated enthalpy of reaction U(CO3)2 +# Enthalpy of formation: -1800.38 kJ/mol + -analytic -8.5952e+001 -2.5086e-002 1.0177e+004 2.7002e+001 1.7285e+002 +# -Range: 0-200 + +U(HPO4)2:4H2O + U(HPO4)2:4H2O = + 1.0000 U++++ + 2.0000 HPO4-- + 4.0000 H2O + log_k -32.8650 + -delta_H 16.1008 kJ/mol # Calculated enthalpy of reaction U(HPO4)2:4H2O +# Enthalpy of formation: -4334.82 kJ/mol + -analytic -3.8694e+002 -1.3874e-001 6.4882e+003 1.5099e+002 1.0136e+002 +# -Range: 0-300 + +U(OH)2SO4 + U(OH)2SO4 +2.0000 H+ = + 1.0000 SO4-- + 1.0000 U++++ + 2.0000 H2O + log_k -3.0731 + -delta_H 0 # Not possible to calculate enthalpy of reaction U(OH)2SO4 +# Enthalpy of formation: 0 kcal/mol + +U(SO3)2 + U(SO3)2 = + 1.0000 U++++ + 2.0000 SO3-- + log_k -36.7499 + -delta_H 20.7008 kJ/mol # Calculated enthalpy of reaction U(SO3)2 +# Enthalpy of formation: -1883 kJ/mol + -analytic 5.8113e+001 -2.9981e-002 -7.0503e+003 -2.5175e+001 -1.1974e+002 +# -Range: 0-200 + +U(SO4)2 + U(SO4)2 = + 1.0000 U++++ + 2.0000 SO4-- + log_k -11.5178 + -delta_H -100.803 kJ/mol # Calculated enthalpy of reaction U(SO4)2 +# Enthalpy of formation: -2309.6 kJ/mol + -analytic 3.2215e+001 -2.8662e-002 7.1066e+002 -1.5190e+001 1.2057e+001 +# -Range: 0-200 + +U(SO4)2:4H2O + U(SO4)2:4H2O = + 1.0000 U++++ + 2.0000 SO4-- + 4.0000 H2O + log_k -11.5287 + -delta_H -70.5565 kJ/mol # Calculated enthalpy of reaction U(SO4)2:4H2O +# Enthalpy of formation: -3483.2 kJ/mol + -analytic -6.9548e+001 -2.9094e-002 3.8763e+003 2.1692e+001 6.5849e+001 +# -Range: 0-200 + +U(SO4)2:8H2O + U(SO4)2:8H2O = + 1.0000 U++++ + 2.0000 SO4-- + 8.0000 H2O + log_k -12.5558 + -delta_H -34.5098 kJ/mol # Calculated enthalpy of reaction U(SO4)2:8H2O +# Enthalpy of formation: -4662.6 kJ/mol + -analytic -1.7141e+002 -2.9548e-002 6.7423e+003 5.8614e+001 1.1455e+002 +# -Range: 0-200 + +U2C3 + U2C3 +4.5000 O2 +3.0000 H+ = + 2.0000 U+++ + 3.0000 HCO3- + log_k 455.3078 + -delta_H -2810.1 kJ/mol # Calculated enthalpy of reaction U2C3 +# Enthalpy of formation: -183.3 kJ/mol + -analytic -3.8340e+002 -1.5374e-001 1.5922e+005 1.4643e+002 -1.0584e+006 +# -Range: 0-300 + +U2F9 + U2F9 +2.0000 H2O = + 1.0000 U++++ + 1.0000 UO2+ + 4.0000 H+ + 9.0000 F- + log_k -45.5022 + -delta_H -46.8557 kJ/mol # Calculated enthalpy of reaction U2F9 +# Enthalpy of formation: -4015.92 kJ/mol + -analytic -8.8191e+002 -3.0477e-001 2.0493e+004 3.4690e+002 3.2003e+002 +# -Range: 0-300 + +U2O2Cl5 + U2O2Cl5 = + 1.0000 U++++ + 1.0000 UO2+ + 5.0000 Cl- + log_k 19.2752 + -delta_H -254.325 kJ/mol # Calculated enthalpy of reaction U2O2Cl5 +# Enthalpy of formation: -2197.4 kJ/mol + -analytic -4.3945e+002 -1.6239e-001 2.1694e+004 1.7551e+002 3.3865e+002 +# -Range: 0-300 + +U2O3F6 + U2O3F6 +1.0000 H2O = + 2.0000 H+ + 2.0000 UO2++ + 6.0000 F- + log_k -2.5066 + -delta_H -185.047 kJ/mol # Calculated enthalpy of reaction U2O3F6 +# Enthalpy of formation: -3579.2 kJ/mol + -analytic -3.2332e+001 -5.9519e-002 5.7857e+003 1.1372e+001 9.8260e+001 +# -Range: 0-200 + +U2S3 + U2S3 +3.0000 H+ = + 2.0000 U+++ + 3.0000 HS- + log_k 6.5279 + -delta_H -147.525 kJ/mol # Calculated enthalpy of reaction U2S3 +# Enthalpy of formation: -879 kJ/mol + -analytic -3.0494e+002 -1.0983e-001 1.3647e+004 1.2059e+002 2.1304e+002 +# -Range: 0-300 + +U2Se3 + U2Se3 +4.5000 O2 = + 2.0000 U+++ + 3.0000 SeO3-- + log_k 248.0372 + -delta_H -1740.18 kJ/mol # Calculated enthalpy of reaction U2Se3 +# Enthalpy of formation: -711 kJ/mol + -analytic 4.9999e+002 -1.6488e-002 6.4991e+004 -1.8795e+002 1.1035e+003 +# -Range: 0-200 + +U3As4 + U3As4 +5.2500 O2 +5.0000 H+ +1.5000 H2O = + 3.0000 U+++ + 4.0000 H2AsO3- + log_k 487.6802 + -delta_H -3114.02 kJ/mol # Calculated enthalpy of reaction U3As4 +# Enthalpy of formation: -720 kJ/mol + -analytic -9.0215e+002 -2.5804e-001 1.9974e+005 3.3331e+002 -2.4911e+006 +# -Range: 0-300 + +U3O5F8 + U3O5F8 +1.0000 H2O = + 2.0000 H+ + 3.0000 UO2++ + 8.0000 F- + log_k -2.7436 + -delta_H -260.992 kJ/mol # Calculated enthalpy of reaction U3O5F8 +# Enthalpy of formation: -5192.95 kJ/mol + -analytic -7.7653e+002 -2.7294e-001 2.9180e+004 3.0599e+002 4.5556e+002 +# -Range: 0-300 + +U3P4 + U3P4 +7.2500 O2 +1.5000 H2O +1.0000 H+ = + 3.0000 U+++ + 4.0000 HPO4-- + log_k 827.5586 + -delta_H -5275.9 kJ/mol # Calculated enthalpy of reaction U3P4 +# Enthalpy of formation: -843 kJ/mol + -analytic -2.7243e+003 -6.2927e-001 4.0130e+005 1.0021e+003 -7.6720e+006 +# -Range: 0-300 + +U3S5 + U3S5 +5.0000 H+ = + 1.0000 U++++ + 2.0000 U+++ + 5.0000 HS- + log_k -0.3680 + -delta_H -218.942 kJ/mol # Calculated enthalpy of reaction U3S5 +# Enthalpy of formation: -1431 kJ/mol + -analytic -1.1011e+002 -6.7959e-002 1.0369e+004 3.8481e+001 1.7611e+002 +# -Range: 0-200 + +U3Sb4 + U3Sb4 +9.0000 H+ +5.2500 O2 +1.5000 H2O = + 3.0000 U+++ + 4.0000 Sb(OH)3 + log_k 575.0349 + -delta_H -3618.1 kJ/mol # Calculated enthalpy of reaction U3Sb4 +# Enthalpy of formation: -451.9 kJ/mol + +U3Se4 + U3Se4 +6.2500 O2 +1.0000 H+ = + 0.5000 H2O + 3.0000 U+++ + 4.0000 SeO3-- + log_k 375.2823 + -delta_H -2588.16 kJ/mol # Calculated enthalpy of reaction U3Se4 +# Enthalpy of formation: -983 kJ/mol + -analytic 6.7219e+002 -2.2708e-002 1.0025e+005 -2.5317e+002 1.7021e+003 +# -Range: 0-200 + +U3Se5 + U3Se5 +7.2500 O2 +0.5000 H2O = + 1.0000 H+ + 3.0000 U+++ + 5.0000 SeO3-- + log_k 376.5747 + -delta_H -2652.38 kJ/mol # Calculated enthalpy of reaction U3Se5 +# Enthalpy of formation: -1130 kJ/mol + -analytic 8.3306e+002 -2.6526e-002 9.5737e+004 -3.1109e+002 1.6255e+003 +# -Range: 0-200 + +U4F17 + U4F17 +2.0000 H2O = + 1.0000 UO2+ + 3.0000 U++++ + 4.0000 H+ + 17.0000 F- + log_k -104.7657 + -delta_H -78.2955 kJ/mol # Calculated enthalpy of reaction U4F17 +# Enthalpy of formation: -7849.66 kJ/mol + -analytic -1.7466e+003 -5.9186e-001 4.0017e+004 6.8046e+002 6.2494e+002 +# -Range: 0-300 + +U5O12Cl + U5O12Cl +4.0000 H+ = + 1.0000 Cl- + 2.0000 H2O + 5.0000 UO2+ + log_k -18.7797 + -delta_H -9.99133 kJ/mol # Calculated enthalpy of reaction U5O12Cl +# Enthalpy of formation: -5854.4 kJ/mol + -analytic -7.3802e+001 2.9180e-002 4.6804e+003 1.2371e+001 7.9503e+001 +# -Range: 0-200 + +UAs + UAs +2.0000 H+ +1.5000 O2 = + 1.0000 H2AsO3- + 1.0000 U+++ + log_k 149.0053 + -delta_H -951.394 kJ/mol # Calculated enthalpy of reaction UAs +# Enthalpy of formation: -234.3 kJ/mol + -analytic -5.0217e+001 -4.2992e-002 4.8480e+004 1.9964e+001 7.5650e+002 +# -Range: 0-300 + +UAs2 + UAs2 +2.2500 O2 +1.5000 H2O +1.0000 H+ = + 1.0000 U+++ + 2.0000 H2AsO3- + log_k 189.1058 + -delta_H -1210.63 kJ/mol # Calculated enthalpy of reaction UAs2 +# Enthalpy of formation: -252 kJ/mol + -analytic -8.7361e+001 -7.5252e-002 6.1445e+004 3.7485e+001 9.5881e+002 +# -Range: 0-300 + +UBr2Cl + UBr2Cl = + 1.0000 Cl- + 1.0000 U+++ + 2.0000 Br- + log_k 17.7796 + -delta_H -148.586 kJ/mol # Calculated enthalpy of reaction UBr2Cl +# Enthalpy of formation: -750.6 kJ/mol + -analytic 3.0364e+000 -3.2187e-002 5.2314e+003 2.7418e+000 8.8836e+001 +# -Range: 0-200 + +UBr2Cl2 + UBr2Cl2 = + 1.0000 U++++ + 2.0000 Br- + 2.0000 Cl- + log_k 26.2185 + -delta_H -260.466 kJ/mol # Calculated enthalpy of reaction UBr2Cl2 +# Enthalpy of formation: -907.9 kJ/mol + -analytic 3.8089e+000 -3.8781e-002 1.0125e+004 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +UBr3 + UBr3 = + 1.0000 U+++ + 3.0000 Br- + log_k 20.2249 + -delta_H -154.91 kJ/mol # Calculated enthalpy of reaction UBr3 +# Enthalpy of formation: -698.7 kJ/mol + -analytic -2.4366e+002 -9.8651e-002 1.2538e+004 1.0151e+002 1.9572e+002 +# -Range: 0-300 + +UBr3Cl + UBr3Cl = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 Br- + log_k 29.1178 + -delta_H -270.49 kJ/mol # Calculated enthalpy of reaction UBr3Cl +# Enthalpy of formation: -852.3 kJ/mol + -analytic 1.1204e+001 -3.7109e-002 1.0473e+004 -2.4905e+000 1.7784e+002 +# -Range: 0-200 + +UBr4 + UBr4 = + 1.0000 U++++ + 4.0000 Br- + log_k 31.2904 + -delta_H -275.113 kJ/mol # Calculated enthalpy of reaction UBr4 +# Enthalpy of formation: -802.1 kJ/mol + -analytic -3.3800e+002 -1.2940e-001 2.0674e+004 1.3678e+002 3.2270e+002 +# -Range: 0-300 + +UBr5 + UBr5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Br- + log_k 41.6312 + -delta_H -250.567 kJ/mol # Calculated enthalpy of reaction UBr5 +# Enthalpy of formation: -810.4 kJ/mol + -analytic -3.2773e+002 -1.4356e-001 1.8709e+004 1.4117e+002 2.9204e+002 +# -Range: 0-300 + +UBrCl2 + UBrCl2 = + 1.0000 Br- + 1.0000 U+++ + 2.0000 Cl- + log_k 14.5048 + -delta_H -132.663 kJ/mol # Calculated enthalpy of reaction UBrCl2 +# Enthalpy of formation: -812.1 kJ/mol + -analytic -5.3713e+000 -3.4256e-002 4.6251e+003 5.8875e+000 7.8542e+001 +# -Range: 0-200 + +UBrCl3 + UBrCl3 = + 1.0000 Br- + 1.0000 U++++ + 3.0000 Cl- + log_k 23.5258 + -delta_H -246.642 kJ/mol # Calculated enthalpy of reaction UBrCl3 +# Enthalpy of formation: -967.3 kJ/mol + -analytic -5.6867e+000 -4.1166e-002 9.6664e+003 3.6579e+000 1.6415e+002 +# -Range: 0-200 + +UC + UC +2.0000 H+ +1.7500 O2 = + 0.5000 H2O + 1.0000 HCO3- + 1.0000 U+++ + log_k 194.8241 + -delta_H -1202.82 kJ/mol # Calculated enthalpy of reaction UC +# Enthalpy of formation: -97.9 kJ/mol + -analytic -4.6329e+001 -4.4600e-002 6.1417e+004 1.9566e+001 9.5836e+002 +# -Range: 0-300 + +UC1.94(alpha) + UC1.94 +2.6900 O2 +1.0600 H+ +0.4400 H2O = + 1.0000 U+++ + 1.9400 HCO3- + log_k 257.1619 + -delta_H -1583.84 kJ/mol # Calculated enthalpy of reaction UC1.94(alpha) +# Enthalpy of formation: -85.324 kJ/mol + -analytic -5.8194e+002 -1.4610e-001 1.0917e+005 2.1638e+002 -1.6852e+006 +# -Range: 0-300 + +UCl2F2 + UCl2F2 = + 1.0000 U++++ + 2.0000 Cl- + 2.0000 F- + log_k -3.5085 + -delta_H -130.055 kJ/mol # Calculated enthalpy of reaction UCl2F2 +# Enthalpy of formation: -1466 kJ/mol + -analytic -3.9662e+002 -1.3879e-001 1.4710e+004 1.5562e+002 2.2965e+002 +# -Range: 0-300 + +UCl2I2 + UCl2I2 = + 1.0000 U++++ + 2.0000 Cl- + 2.0000 I- + log_k 30.2962 + -delta_H -270.364 kJ/mol # Calculated enthalpy of reaction UCl2I2 +# Enthalpy of formation: -768.8 kJ/mol + -analytic -1.2922e+001 -4.3178e-002 1.1219e+004 7.4562e+000 1.9052e+002 +# -Range: 0-200 + +UCl3 + UCl3 = + 1.0000 U+++ + 3.0000 Cl- + log_k 13.0062 + -delta_H -126.639 kJ/mol # Calculated enthalpy of reaction UCl3 +# Enthalpy of formation: -863.7 kJ/mol + -analytic -2.6388e+002 -1.0241e-001 1.1629e+004 1.0846e+002 1.8155e+002 +# -Range: 0-300 + +UCl3F + UCl3F = + 1.0000 F- + 1.0000 U++++ + 3.0000 Cl- + log_k 10.3200 + -delta_H -184.787 kJ/mol # Calculated enthalpy of reaction UCl3F +# Enthalpy of formation: -1243 kJ/mol + -analytic -3.7971e+002 -1.3681e-001 1.7127e+004 1.5086e+002 2.6736e+002 +# -Range: 0-300 + +UCl3I + UCl3I = + 1.0000 I- + 1.0000 U++++ + 3.0000 Cl- + log_k 25.5388 + -delta_H -251.041 kJ/mol # Calculated enthalpy of reaction UCl3I +# Enthalpy of formation: -898.3 kJ/mol + -analytic -1.3362e+001 -4.3214e-002 1.0167e+004 7.1426e+000 1.7265e+002 +# -Range: 0-200 + +UCl4 + UCl4 = + 1.0000 U++++ + 4.0000 Cl- + log_k 21.9769 + -delta_H -240.719 kJ/mol # Calculated enthalpy of reaction UCl4 +# Enthalpy of formation: -1018.8 kJ/mol + -analytic -3.6881e+002 -1.3618e-001 1.9685e+004 1.4763e+002 3.0727e+002 +# -Range: 0-300 + +UCl5 + UCl5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Cl- + log_k 37.3147 + -delta_H -249.849 kJ/mol # Calculated enthalpy of reaction UCl5 +# Enthalpy of formation: -1039 kJ/mol + -analytic -3.6392e+002 -1.5133e-001 1.9617e+004 1.5376e+002 3.0622e+002 +# -Range: 0-300 + +UCl6 + UCl6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 Cl- + log_k 57.5888 + -delta_H -383.301 kJ/mol # Calculated enthalpy of reaction UCl6 +# Enthalpy of formation: -1066.5 kJ/mol + -analytic -4.5589e+002 -1.9203e-001 2.8029e+004 1.9262e+002 4.3750e+002 +# -Range: 0-300 + +UClF3 + UClF3 = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 F- + log_k -17.5122 + -delta_H -74.3225 kJ/mol # Calculated enthalpy of reaction UClF3 +# Enthalpy of formation: -1690 kJ/mol + -analytic -4.1346e+002 -1.4077e-001 1.2237e+004 1.6036e+002 1.9107e+002 +# -Range: 0-300 + +UClI3 + UClI3 = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 I- + log_k 35.2367 + -delta_H -285.187 kJ/mol # Calculated enthalpy of reaction UClI3 +# Enthalpy of formation: -643.8 kJ/mol + -analytic -1.1799e+001 -4.3208e-002 1.2045e+004 7.8829e+000 2.0455e+002 +# -Range: 0-200 + +UF3 + UF3 = + 1.0000 U+++ + 3.0000 F- + log_k -19.4125 + -delta_H 6.2572 kJ/mol # Calculated enthalpy of reaction UF3 +# Enthalpy of formation: -1501.4 kJ/mol + -analytic -3.1530e+002 -1.0945e-001 6.1335e+003 1.2443e+002 9.5799e+001 +# -Range: 0-300 + +UF4 + UF4 = + 1.0000 U++++ + 4.0000 F- + log_k -29.2004 + -delta_H -18.3904 kJ/mol # Calculated enthalpy of reaction UF4 +# Enthalpy of formation: -1914.2 kJ/mol + -analytic -4.2411e+002 -1.4147e-001 9.6621e+003 1.6352e+002 1.5089e+002 +# -Range: 0-300 + +UF4:2.5H2O + UF4:2.5H2O = + 1.0000 U++++ + 2.5000 H2O + 4.0000 F- + log_k -33.3685 + -delta_H 24.2888 kJ/mol # Calculated enthalpy of reaction UF4:2.5H2O +# Enthalpy of formation: -2671.47 kJ/mol + -analytic -4.4218e+002 -1.4305e-001 8.2922e+003 1.7118e+002 1.2952e+002 +# -Range: 0-300 + +UF5(alpha) + UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- + log_k -12.8376 + -delta_H -54.8883 kJ/mol # Calculated enthalpy of reaction UF5(alpha) +# Enthalpy of formation: -2075.3 kJ/mol + -analytic -4.5126e+002 -1.6121e-001 1.1997e+004 1.8030e+002 1.8733e+002 +# -Range: 0-300 + +UF5(beta) + UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- + log_k -13.1718 + -delta_H -46.9883 kJ/mol # Calculated enthalpy of reaction UF5(beta) +# Enthalpy of formation: -2083.2 kJ/mol + -analytic -4.5020e+002 -1.6121e-001 1.1584e+004 1.8030e+002 1.8089e+002 +# -Range: 0-300 + +UF6 + UF6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 F- + log_k 17.4292 + -delta_H -261.709 kJ/mol # Calculated enthalpy of reaction UF6 +# Enthalpy of formation: -2197.7 kJ/mol + -analytic -5.8427e+002 -2.1223e-001 2.5296e+004 2.3440e+002 3.9489e+002 +# -Range: 0-300 + +UH3(beta) + UH3 +3.0000 H+ +1.5000 O2 = + 1.0000 U+++ + 3.0000 H2O + log_k 199.7683 + -delta_H -1201.43 kJ/mol # Calculated enthalpy of reaction UH3(beta) +# Enthalpy of formation: -126.98 kJ/mol + -analytic 5.2870e+001 4.2151e-003 6.0167e+004 -2.2701e+001 1.0217e+003 +# -Range: 0-200 + +UI3 + UI3 = + 1.0000 U+++ + 3.0000 I- + log_k 29.0157 + -delta_H -192.407 kJ/mol # Calculated enthalpy of reaction UI3 +# Enthalpy of formation: -467.4 kJ/mol + -analytic -2.4505e+002 -9.9867e-002 1.4579e+004 1.0301e+002 2.2757e+002 +# -Range: 0-300 + +UI4 + UI4 = + 1.0000 U++++ + 4.0000 I- + log_k 39.3102 + -delta_H -300.01 kJ/mol # Calculated enthalpy of reaction UI4 +# Enthalpy of formation: -518.8 kJ/mol + -analytic -3.4618e+002 -1.3227e-001 2.2320e+004 1.4145e+002 3.4839e+002 +# -Range: 0-300 + +UN + UN +3.0000 H+ = + 1.0000 NH3 + 1.0000 U+++ + log_k 41.7130 + -delta_H -280.437 kJ/mol # Calculated enthalpy of reaction UN +# Enthalpy of formation: -290 kJ/mol + -analytic -1.6393e+002 -1.1679e-003 2.8845e+003 6.5637e+001 3.0122e+006 +# -Range: 0-300 + +UN1.59(alpha) + UN1.59 +1.8850 H2O +1.0000 H+ +0.0575 O2 = + 1.0000 UO2+ + 1.5900 NH3 + log_k 38.3930 + -delta_H -235.75 kJ/mol # Calculated enthalpy of reaction UN1.59(alpha) +# Enthalpy of formation: -379.2 kJ/mol + -analytic 1.8304e+001 1.1109e-002 1.2064e+004 -9.5741e+000 2.0485e+002 +# -Range: 0-200 + +UN1.73(alpha) + UN1.73 +2.0950 H2O +1.0000 H+ = + 0.0475 O2 + 1.0000 UO2+ + 1.7300 NH3 + log_k 27.2932 + -delta_H -169.085 kJ/mol # Calculated enthalpy of reaction UN1.73(alpha) +# Enthalpy of formation: -398.5 kJ/mol + -analytic 1.0012e+001 1.0398e-002 8.9348e+003 -6.3817e+000 1.5172e+002 +# -Range: 0-200 + +UO2(AsO3)2 + UO2(AsO3)2 +2.0000 H2O = + 1.0000 UO2++ + 2.0000 H2AsO4- + log_k 6.9377 + -delta_H -109.843 kJ/mol # Calculated enthalpy of reaction UO2(AsO3)2 +# Enthalpy of formation: -2156.6 kJ/mol + -analytic -1.6050e+002 -6.6472e-002 8.2129e+003 6.4533e+001 1.2820e+002 +# -Range: 0-300 + +UO2(IO3)2 + UO2(IO3)2 = + 1.0000 UO2++ + 2.0000 IO3- + log_k -7.2871 + -delta_H -0.3862 kJ/mol # Calculated enthalpy of reaction UO2(IO3)2 +# Enthalpy of formation: -1461.28 kJ/mol + -analytic -2.7047e+001 -1.4267e-002 -1.5055e+001 9.7226e+000 -2.4640e-001 +# -Range: 0-200 + +UO2(NO3)2 + UO2(NO3)2 = + 1.0000 UO2++ + 2.0000 NO3- + log_k 11.9598 + -delta_H -81.6219 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2 +# Enthalpy of formation: -1351 kJ/mol + -analytic -1.2216e+001 -1.1261e-002 3.9895e+003 5.7166e+000 6.7751e+001 +# -Range: 0-200 + +UO2(NO3)2:2H2O + UO2(NO3)2:2H2O = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 NO3- + log_k 4.9446 + -delta_H -25.5995 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:2H2O +# Enthalpy of formation: -1978.7 kJ/mol + -analytic -1.3989e+002 -5.2130e-002 4.3758e+003 5.8868e+001 6.8322e+001 +# -Range: 0-300 + +UO2(NO3)2:3H2O + UO2(NO3)2:3H2O = + 1.0000 UO2++ + 2.0000 NO3- + 3.0000 H2O + log_k 3.7161 + -delta_H -9.73686 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:3H2O +# Enthalpy of formation: -2280.4 kJ/mol + -analytic -1.5037e+002 -5.2234e-002 4.0783e+003 6.3024e+001 6.3682e+001 +# -Range: 0-300 + +UO2(NO3)2:6H2O + UO2(NO3)2:6H2O = + 1.0000 UO2++ + 2.0000 NO3- + 6.0000 H2O + log_k 2.3189 + -delta_H 19.8482 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:6H2O +# Enthalpy of formation: -3167.5 kJ/mol + -analytic -1.4019e+002 -4.3682e-002 2.7842e+003 5.9070e+001 4.3486e+001 +# -Range: 0-300 + +UO2(NO3)2:H2O + UO2(NO3)2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 NO3- + log_k 8.5103 + -delta_H -54.4602 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:H2O +# Enthalpy of formation: -1664 kJ/mol + -analytic -3.7575e+001 -1.1342e-002 3.7548e+003 1.4899e+001 6.3776e+001 +# -Range: 0-200 + +UO2(OH)2(beta) + UO2(OH)2 +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + log_k 4.9457 + -delta_H -56.8767 kJ/mol # Calculated enthalpy of reaction UO2(OH)2(beta) +# Enthalpy of formation: -1533.8 kJ/mol + -analytic -1.7478e+001 -1.6806e-003 3.4226e+003 4.6260e+000 5.3412e+001 +# -Range: 0-300 + +UO2(PO3)2 + UO2(PO3)2 +2.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 2.0000 HPO4-- + log_k -16.2805 + -delta_H -58.4873 kJ/mol # Calculated enthalpy of reaction UO2(PO3)2 +# Enthalpy of formation: -2973 kJ/mol + -analytic -3.2995e+002 -1.3747e-001 8.0652e+003 1.3237e+002 1.2595e+002 +# -Range: 0-300 + +UO2(am) + UO2 +4.0000 H+ = + 1.0000 U++++ + 2.0000 H2O + log_k 0.1091 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(am) +# Enthalpy of formation: 0 kcal/mol + +UO2.25 + UO2.25 +2.5000 H+ = + 0.5000 U++++ + 0.5000 UO2+ + 1.2500 H2O + log_k -4.8193 + -delta_H -37.1614 kJ/mol # Calculated enthalpy of reaction UO2.25 +# Enthalpy of formation: -1128.3 kJ/mol + -analytic -1.9073e+002 -4.1793e-002 7.3391e+003 7.0213e+001 1.1457e+002 +# -Range: 0-300 + +UO2.25(beta) + UO2.25 +2.5000 H+ = + 0.5000 U++++ + 0.5000 UO2+ + 1.2500 H2O + log_k -4.7593 + -delta_H -38.0614 kJ/mol # Calculated enthalpy of reaction UO2.25(beta) +# Enthalpy of formation: -1127.4 kJ/mol + -analytic -3.6654e+001 -2.4013e-003 2.9632e+003 9.1625e+000 4.6249e+001 +# -Range: 0-300 + +UO2.3333(beta) +# UO2.3333 +8.0000 H+ = + 0.3333 O2 + 2.0000 U++++ + 4.0000 H2O + (UO2.3333)2 + 8.0000 H+ = 0.3333 O2 + 2.0000 U++++ + 4.0000 H2O + log_k -27.7177 + -delta_H -1187.8 kJ/mol # Calculated enthalpy of reaction UO2.3333(beta) +# Enthalpy of formation: -1142 kJ/mol + -analytic -7.4790e+000 -6.8382e-004 -2.7277e+003 -7.2107e+000 6.1873e+005 +# -Range: 0-300 + +UO2.6667 +# UO2.6667 +8.0000 H+ = + 0.6667 O2 + 2.0000 U++++ + 4.0000 H2O + (UO2.6667)2 +8.0000 H+ = + 0.6667 O2 + 2.0000 U++++ + 4.0000 H2O + log_k -43.6051 + -delta_H -1142.24 kJ/mol # Calculated enthalpy of reaction UO2.6667 +# Enthalpy of formation: -1191.6 kJ/mol + -analytic 1.2095e+002 2.0118e-002 -1.4968e+004 -5.3552e+001 1.0813e+006 +# -Range: 0-300 + +UO2Br2 + UO2Br2 = + 1.0000 UO2++ + 2.0000 Br- + log_k 16.5103 + -delta_H -124.607 kJ/mol # Calculated enthalpy of reaction UO2Br2 +# Enthalpy of formation: -1137.4 kJ/mol + -analytic -1.4876e+002 -6.2715e-002 9.0200e+003 6.2108e+001 1.4079e+002 +# -Range: 0-300 + +UO2Br2:3H2O + UO2Br2:3H2O = + 1.0000 UO2++ + 2.0000 Br- + 3.0000 H2O + log_k 9.4113 + -delta_H -61.5217 kJ/mol # Calculated enthalpy of reaction UO2Br2:3H2O +# Enthalpy of formation: -2058 kJ/mol + -analytic -6.8507e+001 -1.6834e-002 5.1409e+003 2.6546e+001 8.7324e+001 +# -Range: 0-200 + +UO2Br2:H2O + UO2Br2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 Br- + log_k 12.1233 + -delta_H -91.945 kJ/mol # Calculated enthalpy of reaction UO2Br2:H2O +# Enthalpy of formation: -1455.9 kJ/mol + -analytic -1.7519e+001 -1.6603e-002 4.3544e+003 8.0748e+000 7.3950e+001 +# -Range: 0-200 + +UO2BrOH:2H2O + UO2BrOH:2H2O +1.0000 H+ = + 1.0000 Br- + 1.0000 UO2++ + 3.0000 H2O + log_k 4.2026 + -delta_H -39.8183 kJ/mol # Calculated enthalpy of reaction UO2BrOH:2H2O +# Enthalpy of formation: -1958.2 kJ/mol + -analytic -8.3411e+001 -1.0024e-002 5.0411e+003 2.9781e+001 8.5633e+001 +# -Range: 0-200 + +UO2CO3 + UO2CO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 UO2++ + log_k -4.1267 + -delta_H -19.2872 kJ/mol # Calculated enthalpy of reaction UO2CO3 +# Enthalpy of formation: -1689.65 kJ/mol + -analytic -4.4869e+001 -1.1541e-002 1.9475e+003 1.5215e+001 3.3086e+001 +# -Range: 0-200 + +UO2Cl + UO2Cl = + 1.0000 Cl- + 1.0000 UO2+ + log_k -0.5154 + -delta_H -21.1067 kJ/mol # Calculated enthalpy of reaction UO2Cl +# Enthalpy of formation: -1171.1 kJ/mol + -analytic -7.3291e+001 -2.5940e-002 2.5753e+003 2.9038e+001 4.0207e+001 +# -Range: 0-300 + +UO2Cl2 + UO2Cl2 = + 1.0000 UO2++ + 2.0000 Cl- + log_k 12.1394 + -delta_H -109.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2 +# Enthalpy of formation: -1243.6 kJ/mol + -analytic -1.6569e+002 -6.6249e-002 8.6920e+003 6.8055e+001 1.3568e+002 +# -Range: 0-300 + +UO2Cl2:3H2O + UO2Cl2:3H2O = + 1.0000 UO2++ + 2.0000 Cl- + 3.0000 H2O + log_k 5.6163 + -delta_H -45.8743 kJ/mol # Calculated enthalpy of reaction UO2Cl2:3H2O +# Enthalpy of formation: -2164.8 kJ/mol + -analytic -8.4932e+001 -2.0867e-002 4.7594e+003 3.2654e+001 8.0850e+001 +# -Range: 0-200 + +UO2Cl2:H2O + UO2Cl2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 Cl- + log_k 8.2880 + -delta_H -79.1977 kJ/mol # Calculated enthalpy of reaction UO2Cl2:H2O +# Enthalpy of formation: -1559.8 kJ/mol + -analytic -3.4458e+001 -2.0630e-002 4.1231e+003 1.4170e+001 7.0029e+001 +# -Range: 0-200 + +UO2ClOH:2H2O + UO2ClOH:2H2O +1.0000 H+ = + 1.0000 Cl- + 1.0000 UO2++ + 3.0000 H2O + log_k 2.3064 + -delta_H -33.1947 kJ/mol # Calculated enthalpy of reaction UO2ClOH:2H2O +# Enthalpy of formation: -2010.4 kJ/mol + -analytic -9.1834e+001 -1.2041e-002 4.9131e+003 3.2835e+001 8.3462e+001 +# -Range: 0-200 + +UO2F2 + UO2F2 = + 1.0000 UO2++ + 2.0000 F- + log_k -7.2302 + -delta_H -36.1952 kJ/mol # Calculated enthalpy of reaction UO2F2 +# Enthalpy of formation: -1653.5 kJ/mol + -analytic -2.0303e+002 -7.1028e-002 5.9356e+003 7.9627e+001 9.2679e+001 +# -Range: 0-300 + +UO2F2:3H2O + UO2F2:3H2O = + 1.0000 UO2++ + 2.0000 F- + 3.0000 H2O + log_k -7.3692 + -delta_H -12.8202 kJ/mol # Calculated enthalpy of reaction UO2F2:3H2O +# Enthalpy of formation: -2534.39 kJ/mol + -analytic -1.0286e+002 -2.1223e-002 3.4855e+003 3.6420e+001 5.9224e+001 +# -Range: 0-200 + +UO2FOH + UO2FOH +1.0000 H+ = + 1.0000 F- + 1.0000 H2O + 1.0000 UO2++ + log_k -1.8426 + -delta_H -41.7099 kJ/mol # Calculated enthalpy of reaction UO2FOH +# Enthalpy of formation: -1598.48 kJ/mol + -analytic -4.9229e+001 -1.1984e-002 3.2086e+003 1.6244e+001 5.4503e+001 +# -Range: 0-200 + +UO2FOH:2H2O + UO2FOH:2H2O +1.0000 H+ = + 1.0000 F- + 1.0000 UO2++ + 3.0000 H2O + log_k -2.6606 + -delta_H -21.8536 kJ/mol # Calculated enthalpy of reaction UO2FOH:2H2O +# Enthalpy of formation: -2190.01 kJ/mol + -analytic -1.0011e+002 -1.2203e-002 4.5446e+003 3.4690e+001 7.7208e+001 +# -Range: 0-200 + +UO2FOH:H2O + UO2FOH:H2O +1.0000 H+ = + 1.0000 F- + 1.0000 UO2++ + 2.0000 H2O + log_k -2.2838 + -delta_H -31.5243 kJ/mol # Calculated enthalpy of reaction UO2FOH:H2O +# Enthalpy of formation: -1894.5 kJ/mol + -analytic -7.4628e+001 -1.2086e-002 3.8625e+003 2.5456e+001 6.5615e+001 +# -Range: 0-200 + +UO2HPO4 + UO2HPO4 = + 1.0000 HPO4-- + 1.0000 UO2++ + log_k -12.6782 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 +# Enthalpy of formation: 0 kcal/mol + +UO2HPO4:4H2O + UO2HPO4:4H2O = + 1.0000 HPO4-- + 1.0000 UO2++ + 4.0000 H2O + log_k -13.0231 + -delta_H 15.5327 kJ/mol # Calculated enthalpy of reaction UO2HPO4:4H2O +# Enthalpy of formation: -3469.97 kJ/mol + -analytic -1.1784e+002 -1.9418e-002 2.7547e+003 4.0963e+001 4.6818e+001 +# -Range: 0-200 + +UO2SO3 + UO2SO3 = + 1.0000 SO3-- + 1.0000 UO2++ + log_k -15.9812 + -delta_H 6.4504 kJ/mol # Calculated enthalpy of reaction UO2SO3 +# Enthalpy of formation: -1661 kJ/mol + -analytic 2.5751e+001 -1.3871e-002 -3.0305e+003 -1.1090e+001 -5.1470e+001 +# -Range: 0-200 + +UO2SO4 + UO2SO4 = + 1.0000 SO4-- + 1.0000 UO2++ + log_k 1.9681 + -delta_H -83.4616 kJ/mol # Calculated enthalpy of reaction UO2SO4 +# Enthalpy of formation: -1845.14 kJ/mol + -analytic -1.5677e+002 -6.5310e-002 6.7411e+003 6.2867e+001 1.0523e+002 +# -Range: 0-300 + +UO2SO4:2.5H2O + UO2SO4:2.5H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 2.5000 H2O + log_k -1.4912 + -delta_H -36.1984 kJ/mol # Calculated enthalpy of reaction UO2SO4:2.5H2O +# Enthalpy of formation: -2607 kJ/mol + -analytic -4.8908e+001 -1.3445e-002 2.8658e+003 1.6894e+001 4.8683e+001 +# -Range: 0-200 + +UO2SO4:3.5H2O + UO2SO4:3.5H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 3.5000 H2O + log_k -1.4805 + -delta_H -27.4367 kJ/mol # Calculated enthalpy of reaction UO2SO4:3.5H2O +# Enthalpy of formation: -2901.6 kJ/mol + -analytic -7.4180e+001 -1.3565e-002 3.5963e+003 2.6136e+001 6.1096e+001 +# -Range: 0-200 + +UO2SO4:3H2O + UO2SO4:3H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 3.0000 H2O + log_k -1.4028 + -delta_H -34.6176 kJ/mol # Calculated enthalpy of reaction UO2SO4:3H2O +# Enthalpy of formation: -2751.5 kJ/mol + -analytic -5.0134e+001 -1.0321e-002 3.0505e+003 1.6799e+001 5.1818e+001 +# -Range: 0-200 + +UO2SO4:H2O + UO2SO4:H2O = + 1.0000 H2O + 1.0000 SO4-- + 1.0000 UO2++ + log_k -6.0233 + -delta_H -39.1783 kJ/mol # Calculated enthalpy of reaction UO2SO4:H2O +# Enthalpy of formation: -519.9 kcal/mol + -analytic -1.8879e+002 -6.9827e-002 5.5636e+003 7.4717e+001 8.6870e+001 +# -Range: 0-300 + +UO3(alpha) + UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ + log_k 8.6391 + -delta_H -87.3383 kJ/mol # Calculated enthalpy of reaction UO3(alpha) +# Enthalpy of formation: -1217.5 kJ/mol + -analytic -1.4099e+001 -1.9063e-003 4.7742e+003 2.9478e+000 7.4501e+001 +# -Range: 0-300 + +UO3(beta) + UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ + log_k 8.3095 + -delta_H -84.5383 kJ/mol # Calculated enthalpy of reaction UO3(beta) +# Enthalpy of formation: -1220.3 kJ/mol + -analytic -1.2298e+001 -1.7800e-003 4.5621e+003 2.3593e+000 7.1191e+001 +# -Range: 0-300 + +UO3(gamma) + UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ + log_k 7.7073 + -delta_H -81.0383 kJ/mol # Calculated enthalpy of reaction UO3(gamma) +# Enthalpy of formation: -1223.8 kJ/mol + -analytic -1.1573e+001 -2.3560e-003 4.3124e+003 2.2305e+000 6.7294e+001 +# -Range: 0-300 + +UO3:.9H2O(alpha) + UO3:.9H2O +2.0000 H+ = + 1.0000 UO2++ + 1.9000 H2O + log_k 5.0167 + -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction UO3:.9H2O(alpha) +# Enthalpy of formation: -1506.3 kJ/mol + -analytic -6.9286e+001 -3.0624e-003 5.5984e+003 2.2809e+001 9.5092e+001 +# -Range: 0-200 + +UO3:2H2O + UO3:2H2O +2.0000 H+ = + 1.0000 UO2++ + 3.0000 H2O + log_k 4.8333 + -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction UO3:2H2O +# Enthalpy of formation: -1826.1 kJ/mol + -analytic -5.9530e+001 -9.8107e-003 4.4975e+003 2.1098e+001 7.0196e+001 +# -Range: 0-300 + +UOBr2 + UOBr2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 Br- + log_k 7.9722 + -delta_H -146.445 kJ/mol # Calculated enthalpy of reaction UOBr2 +# Enthalpy of formation: -973.6 kJ/mol + -analytic -2.0747e+002 -7.0500e-002 1.1746e+004 7.9629e+001 1.8334e+002 +# -Range: 0-300 + +UOBr3 + UOBr3 +1.0000 H2O = + 1.0000 UO2+ + 2.0000 H+ + 3.0000 Br- + log_k 23.5651 + -delta_H -149.799 kJ/mol # Calculated enthalpy of reaction UOBr3 +# Enthalpy of formation: -954 kJ/mol + -analytic -2.0001e+002 -8.4632e-002 1.1381e+004 8.5102e+001 1.7765e+002 +# -Range: 0-300 + +UOCl + UOCl +2.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 U+++ + log_k 10.3872 + -delta_H -108.118 kJ/mol # Calculated enthalpy of reaction UOCl +# Enthalpy of formation: -833.9 kJ/mol + -analytic -1.1989e+002 -4.0791e-002 8.0834e+003 4.6600e+001 1.2617e+002 +# -Range: 0-300 + +UOCl2 + UOCl2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 Cl- + log_k 5.4559 + -delta_H -141.898 kJ/mol # Calculated enthalpy of reaction UOCl2 +# Enthalpy of formation: -1069.3 kJ/mol + -analytic -2.2096e+002 -7.3329e-002 1.1858e+004 8.4250e+001 1.8509e+002 +# -Range: 0-300 + +UOCl3 + UOCl3 +1.0000 H2O = + 1.0000 UO2+ + 2.0000 H+ + 3.0000 Cl- + log_k 12.6370 + -delta_H -100.528 kJ/mol # Calculated enthalpy of reaction UOCl3 +# Enthalpy of formation: -1140 kJ/mol + -analytic -2.1934e+002 -8.8639e-002 9.3198e+003 9.1775e+001 1.4549e+002 +# -Range: 0-300 + +UOF2 + UOF2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 F- + log_k -18.1473 + -delta_H -43.1335 kJ/mol # Calculated enthalpy of reaction UOF2 +# Enthalpy of formation: -1504.6 kJ/mol + -analytic -6.9471e+001 -2.6188e-002 2.5576e+003 2.0428e+001 4.3454e+001 +# -Range: 0-200 + +UOF2:H2O + UOF2:H2O +2.0000 H+ = + 1.0000 U++++ + 2.0000 F- + 2.0000 H2O + log_k -18.7019 + -delta_H -31.5719 kJ/mol # Calculated enthalpy of reaction UOF2:H2O +# Enthalpy of formation: -1802 kJ/mol + -analytic -9.5010e+001 -2.6355e-002 3.1474e+003 2.9746e+001 5.3480e+001 +# -Range: 0-200 + +UOF4 + UOF4 +1.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 4.0000 F- + log_k 4.5737 + -delta_H -149.952 kJ/mol # Calculated enthalpy of reaction UOF4 +# Enthalpy of formation: -1924.6 kJ/mol + -analytic -5.9731e+000 -3.8581e-002 4.6903e+003 2.5464e+000 7.9649e+001 +# -Range: 0-200 + +UOFOH + UOFOH +3.0000 H+ = + 1.0000 F- + 1.0000 U++++ + 2.0000 H2O + log_k -8.9274 + -delta_H -71.5243 kJ/mol # Calculated enthalpy of reaction UOFOH +# Enthalpy of formation: -1426.7 kJ/mol + -analytic -9.2412e+001 -1.7293e-002 5.8150e+003 2.7940e+001 9.8779e+001 +# -Range: 0-200 + +UOFOH:.5H2O + UOFOH:.5H2O +1.0000 H+ +0.5000 O2 = + 1.0000 F- + 1.0000 UO2++ + 1.5000 H2O + log_k 24.5669 + -delta_H -200.938 kJ/mol # Calculated enthalpy of reaction UOFOH:.5H2O +# Enthalpy of formation: -1576.1 kJ/mol + -analytic -1.1024e+001 -7.7180e-003 1.0019e+004 1.7305e+000 1.7014e+002 +# -Range: 0-200 + +UP + UP +2.0000 O2 +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 U+++ + log_k 233.4928 + -delta_H -1487.11 kJ/mol # Calculated enthalpy of reaction UP +# Enthalpy of formation: -269.8 kJ/mol + -analytic -2.1649e+002 -9.0873e-002 8.3804e+004 8.1649e+001 -5.4044e+005 +# -Range: 0-300 + +UP2 + UP2 +3.2500 O2 +1.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 HPO4-- + log_k 360.5796 + -delta_H -2301.07 kJ/mol # Calculated enthalpy of reaction UP2 +# Enthalpy of formation: -304 kJ/mol + -analytic -2.4721e+002 -1.5005e-001 1.2243e+005 9.9521e+001 -3.9706e+005 +# -Range: 0-300 + +UP2O7 + UP2O7 +1.0000 H2O = + 1.0000 U++++ + 2.0000 HPO4-- + log_k -32.9922 + -delta_H -37.5256 kJ/mol # Calculated enthalpy of reaction UP2O7 +# Enthalpy of formation: -2852 kJ/mol + -analytic -3.5910e+002 -1.3819e-001 7.6509e+003 1.3804e+002 1.1949e+002 +# -Range: 0-300 + +UP2O7:20H2O + UP2O7:20H2O = + 1.0000 U++++ + 2.0000 HPO4-- + 19.0000 H2O + log_k -28.6300 + -delta_H 0 # Not possible to calculate enthalpy of reaction UP2O7:20H2O +# Enthalpy of formation: 0 kcal/mol + +UPO5 + UPO5 +1.0000 H2O = + 1.0000 H+ + 1.0000 HPO4-- + 1.0000 UO2+ + log_k -19.5754 + -delta_H 32.6294 kJ/mol # Calculated enthalpy of reaction UPO5 +# Enthalpy of formation: -2064 kJ/mol + -analytic -1.5316e+002 -6.0911e-002 7.3255e+002 6.0317e+001 1.1476e+001 +# -Range: 0-300 + +US + US +2.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 HS- + 1.0000 U+++ + log_k 46.6547 + -delta_H -322.894 kJ/mol # Calculated enthalpy of reaction US +# Enthalpy of formation: -322.2 kJ/mol + -analytic -1.0845e+002 -4.0538e-002 1.8749e+004 4.2147e+001 2.9259e+002 +# -Range: 0-300 + +US1.9 + US1.9 +1.9000 H+ = + 0.2000 U+++ + 0.8000 U++++ + 1.9000 HS- + log_k -2.2816 + -delta_H -91.486 kJ/mol # Calculated enthalpy of reaction US1.9 +# Enthalpy of formation: -509.9 kJ/mol + -analytic -2.0534e+002 -6.8390e-002 8.8888e+003 7.8243e+001 1.3876e+002 +# -Range: 0-300 + +US2 + US2 +2.0000 H+ = + 1.0000 U++++ + 2.0000 HS- + log_k -2.3324 + -delta_H -103.017 kJ/mol # Calculated enthalpy of reaction US2 +# Enthalpy of formation: -520.4 kJ/mol + -analytic -2.1819e+002 -7.1522e-002 9.7782e+003 8.2586e+001 1.5264e+002 +# -Range: 0-300 + +US3 + US3 +2.0000 H2O = + 1.0000 H+ + 1.0000 UO2++ + 3.0000 HS- + log_k -16.6370 + -delta_H 43.9515 kJ/mol # Calculated enthalpy of reaction US3 +# Enthalpy of formation: -539.6 kJ/mol + -analytic -2.3635e+002 -9.5877e-002 1.9170e+003 9.7726e+001 2.9982e+001 +# -Range: 0-300 + +USb + USb +3.0000 H+ +1.5000 O2 = + 1.0000 Sb(OH)3 + 1.0000 U+++ + log_k 176.0723 + -delta_H -1106.19 kJ/mol # Calculated enthalpy of reaction USb +# Enthalpy of formation: -138.5 kJ/mol + +USb2 + USb2 +3.0000 H+ +2.2500 O2 +1.5000 H2O = + 1.0000 U+++ + 2.0000 Sb(OH)3 + log_k 223.1358 + -delta_H -1407.02 kJ/mol # Calculated enthalpy of reaction USb2 +# Enthalpy of formation: -173.6 kJ/mol + +Uranium-selenide + 1.0USe +1.7500 O2 +1.0000 H+ = + 0.5000 H2O + 1.0000 SeO3-- + 1.0000 U+++ + log_k 125.6086 + -delta_H -844.278 kJ/mol # Calculated enthalpy of reaction Uranium-selenide +# Enthalpy of formation: -275.7 kJ/mol + -analytic -1.0853e+002 -7.6251e-002 4.3230e+004 4.5189e+001 6.7460e+002 +# -Range: 0-300 + +USe2(alpha) + USe2 +2.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 SeO3-- + log_k 125.4445 + -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(alpha) +# Enthalpy of formation: -427 kJ/mol + -analytic -2.0454e+002 -1.4191e-001 4.6114e+004 8.7906e+001 7.1963e+002 +# -Range: 0-300 + +USe2(beta) + USe2 +2.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 SeO3-- + log_k 125.2868 + -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(beta) +# Enthalpy of formation: -427 kJ/mol + -analytic -2.0334e+002 -1.4147e-001 4.6082e+004 8.7349e+001 7.1913e+002 +# -Range: 0-300 + +USe3 + USe3 +3.7500 O2 +1.5000 H2O = + 1.0000 U+++ + 3.0000 H+ + 3.0000 SeO3-- + log_k 147.2214 + -delta_H -1090.42 kJ/mol # Calculated enthalpy of reaction USe3 +# Enthalpy of formation: -452 kJ/mol + -analytic 4.9201e+002 -1.3720e-002 3.2168e+004 -1.8131e+002 5.4609e+002 +# -Range: 0-200 + +Umangite + Cu3Se2 = + 1.0000 Cu++ + 2.0000 Cu+ + 2.0000 Se-- + log_k -93.8412 + -delta_H 0 # Not possible to calculate enthalpy of reaction Umangite +# Enthalpy of formation: -25 kcal/mol + -analytic -7.2308e+001 -2.2566e-003 -2.0738e+004 1.9677e+001 -3.5214e+002 +# -Range: 0-200 + +Uraninite + UO2 +4.0000 H+ = + 1.0000 U++++ + 2.0000 H2O + log_k -4.8372 + -delta_H -77.8767 kJ/mol # Calculated enthalpy of reaction Uraninite +# Enthalpy of formation: -1085 kJ/mol + -analytic -7.5776e+001 -1.0558e-002 5.9677e+003 2.1853e+001 9.3142e+001 +# -Range: 0-300 + +Uranocircite + Ba(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Ba++ + 2.0000 HPO4-- + 2.0000 UO2++ + log_k -19.8057 + -delta_H -72.3317 kJ/mol # Calculated enthalpy of reaction Uranocircite +# Enthalpy of formation: -1215.94 kcal/mol + -analytic -3.6843e+001 -4.3076e-002 1.2427e+003 1.0384e+001 2.1115e+001 +# -Range: 0-200 + +Uranophane + Ca(UO2)2(SiO3)2(OH)2 +6.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 2.0000 UO2++ + 4.0000 H2O + log_k 17.2850 + -delta_H 0 # Not possible to calculate enthalpy of reaction Uranophane +# Enthalpy of formation: 0 kcal/mol + +V + V +3.0000 H+ +0.7500 O2 = + 1.0000 V+++ + 1.5000 H2O + log_k 106.9435 + -delta_H -680.697 kJ/mol # Calculated enthalpy of reaction V +# Enthalpy of formation: 0 kJ/mol + -analytic -1.0508e+002 -2.1334e-002 4.0364e+004 3.5012e+001 -3.2290e+005 +# -Range: 0-300 + +V2O4 + V2O4 +4.0000 H+ = + 2.0000 H2O + 2.0000 VO++ + log_k 8.5719 + -delta_H -117.564 kJ/mol # Calculated enthalpy of reaction V2O4 +# Enthalpy of formation: -1427.31 kJ/mol + -analytic -1.4429e+002 -3.7423e-002 9.7046e+003 5.3125e+001 1.5147e+002 +# -Range: 0-300 + +V3O5 + V3O5 +8.0000 H+ = + 1.0000 VO++ + 2.0000 V+++ + 4.0000 H2O + log_k 13.4312 + -delta_H -218.857 kJ/mol # Calculated enthalpy of reaction V3O5 +# Enthalpy of formation: -1933.17 kJ/mol + -analytic -1.7652e+002 -2.1959e-002 1.6814e+004 5.6618e+001 2.8559e+002 +# -Range: 0-200 + +V4O7 + V4O7 +10.0000 H+ = + 2.0000 V+++ + 2.0000 VO++ + 5.0000 H2O + log_k 18.7946 + -delta_H -284.907 kJ/mol # Calculated enthalpy of reaction V4O7 +# Enthalpy of formation: -2639.56 kJ/mol + -analytic -2.2602e+002 -3.0261e-002 2.1667e+004 7.3214e+001 3.6800e+002 +# -Range: 0-200 + +Vaesite + NiS2 +1.0000 H2O = + 0.2500 H+ + 0.2500 SO4-- + 1.0000 Ni++ + 1.7500 HS- + log_k -26.7622 + -delta_H 110.443 kJ/mol # Calculated enthalpy of reaction Vaesite +# Enthalpy of formation: -32.067 kcal/mol + -analytic 1.6172e+001 -2.2673e-002 -8.2514e+003 -3.4392e+000 -1.4013e+002 +# -Range: 0-200 + +Vivianite + Fe3(PO4)2:8H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Fe++ + 8.0000 H2O + log_k -4.7237 + -delta_H 0 # Not possible to calculate enthalpy of reaction Vivianite +# Enthalpy of formation: 0 kcal/mol + +W + W +1.5000 O2 +1.0000 H2O = + 1.0000 WO4-- + 2.0000 H+ + log_k 123.4334 + -delta_H -771.668 kJ/mol # Calculated enthalpy of reaction W +# Enthalpy of formation: 0 kJ/mol + -analytic -1.0433e+002 -6.9470e-002 4.0134e+004 4.5993e+001 6.2629e+002 +# -Range: 0-300 + +Wairakite + CaAl2Si4O10(OH)4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 SiO2 + 6.0000 H2O + log_k 18.0762 + -delta_H -237.781 kJ/mol # Calculated enthalpy of reaction Wairakite +# Enthalpy of formation: -1579.33 kcal/mol + -analytic -1.7914e+001 3.2944e-003 2.2782e+004 -9.0981e+000 -1.6934e+006 +# -Range: 0-300 + +Weeksite + K2(UO2)2(Si2O5)3:4H2O +6.0000 H+ = + 2.0000 K+ + 2.0000 UO2++ + 6.0000 SiO2 + 7.0000 H2O + log_k 15.3750 + -delta_H 0 # Not possible to calculate enthalpy of reaction Weeksite +# Enthalpy of formation: 0 kcal/mol + +Whitlockite + Ca3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Ca++ + log_k -4.2249 + -delta_H -116.645 kJ/mol # Calculated enthalpy of reaction Whitlockite +# Enthalpy of formation: -4096.77 kJ/mol + -analytic -5.3543e+002 -1.8842e-001 1.7176e+004 2.1406e+002 2.6817e+002 +# -Range: 0-300 + +Wilkmanite + Ni3Se4 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 3.0000 Ni++ + 4.0000 Se-- + log_k -152.8793 + -delta_H 0 # Not possible to calculate enthalpy of reaction Wilkmanite +# Enthalpy of formation: -60.285 kcal/mol + -analytic -1.9769e+002 -4.9968e-002 -2.8208e+004 6.2863e+001 -1.1322e+005 +# -Range: 0-300 + +Witherite + BaCO3 +1.0000 H+ = + 1.0000 Ba++ + 1.0000 HCO3- + log_k -2.9965 + -delta_H 17.1628 kJ/mol # Calculated enthalpy of reaction Witherite +# Enthalpy of formation: -297.5 kcal/mol + -analytic -1.2585e+002 -4.4315e-002 2.0227e+003 5.2239e+001 3.1600e+001 +# -Range: 0-300 + +Wollastonite + CaSiO3 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 SiO2 + log_k 13.7605 + -delta_H -76.5756 kJ/mol # Calculated enthalpy of reaction Wollastonite +# Enthalpy of formation: -389.59 kcal/mol + -analytic 3.0931e+001 6.7466e-003 5.1749e+003 -1.3209e+001 -3.4579e+005 +# -Range: 0-300 + +Wurtzite + ZnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Zn++ + log_k -9.1406 + -delta_H 22.3426 kJ/mol # Calculated enthalpy of reaction Wurtzite +# Enthalpy of formation: -45.85 kcal/mol + -analytic -1.5446e+002 -4.8874e-002 2.4551e+003 6.1278e+001 3.8355e+001 +# -Range: 0-300 + +Wustite + Fe.947O +2.0000 H+ = + 0.1060 Fe+++ + 0.8410 Fe++ + 1.0000 H2O + log_k 12.4113 + -delta_H -102.417 kJ/mol # Calculated enthalpy of reaction Wustite +# Enthalpy of formation: -266.265 kJ/mol + -analytic -7.6919e+001 -1.8433e-002 7.3823e+003 2.8312e+001 1.1522e+002 +# -Range: 0-300 + +Xonotlite + Ca6Si6O17(OH)2 +12.0000 H+ = + 6.0000 Ca++ + 6.0000 SiO2 + 7.0000 H2O + log_k 91.8267 + -delta_H -495.457 kJ/mol # Calculated enthalpy of reaction Xonotlite +# Enthalpy of formation: -2397.25 kcal/mol + -analytic 1.6080e+003 3.7309e-001 -2.2548e+004 -6.2716e+002 -3.8346e+002 +# -Range: 0-200 + +Y + Y +3.0000 H+ +0.7500 O2 = + 1.0000 Y+++ + 1.5000 H2O + log_k 184.5689 + -delta_H -1134.7 kJ/mol # Calculated enthalpy of reaction Y +# Enthalpy of formation: 0 kJ/mol + -analytic -6.2641e+001 -2.8062e-002 5.9667e+004 2.2394e+001 9.3107e+002 +# -Range: 0-300 + +Yb + Yb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Yb++ + log_k 137.1930 + -delta_H -810.303 kJ/mol # Calculated enthalpy of reaction Yb +# Enthalpy of formation: 0 kJ/mol + -analytic -7.4712e+001 -2.0993e-002 4.4129e+004 2.8341e+001 6.8862e+002 +# -Range: 0-300 + +Yb(OH)3 + Yb(OH)3 +3.0000 H+ = + 1.0000 Yb+++ + 3.0000 H2O + log_k 14.6852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Yb(OH)3(am) + Yb(OH)3 +3.0000 H+ = + 1.0000 Yb+++ + 3.0000 H2O + log_k 18.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Yb2(CO3)3 + Yb2(CO3)3 +3.0000 H+ = + 2.0000 Yb+++ + 3.0000 HCO3- + log_k -2.3136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Yb2O3 + Yb2O3 +6.0000 H+ = + 2.0000 Yb+++ + 3.0000 H2O + log_k 47.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2O3 +# Enthalpy of formation: 0 kcal/mol + +YbF3:.5H2O + YbF3:.5H2O = + 0.5000 H2O + 1.0000 Yb+++ + 3.0000 F- + log_k -16.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YbF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +YbPO4:10H2O + YbPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Yb+++ + 10.0000 H2O + log_k -11.7782 + -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Zincite + ZnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Zn++ + log_k 11.2087 + -delta_H -88.7638 kJ/mol # Calculated enthalpy of reaction Zincite +# Enthalpy of formation: -350.46 kJ/mol + -analytic -8.6681e+001 -1.9324e-002 7.1034e+003 3.2256e+001 1.1087e+002 +# -Range: 0-300 + +Zircon + ZrSiO4 +2.0000 H+ = + 1.0000 SiO2 + 1.0000 Zr(OH)2++ + log_k -15.4193 + -delta_H 64.8635 kJ/mol # Calculated enthalpy of reaction Zircon +# Enthalpy of formation: -2033.4 kJ/mol + -analytic 9.2639e+000 6.5416e-003 5.0759e+002 -8.4547e+000 -6.6155e+005 +# -Range: 0-300 + +Zn + Zn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zn++ + log_k 68.8035 + -delta_H -433.157 kJ/mol # Calculated enthalpy of reaction Zn +# Enthalpy of formation: 0 kJ/mol + -analytic -6.4131e+001 -2.0009e-002 2.3921e+004 2.3702e+001 3.7329e+002 +# -Range: 0-300 + +Zn(BO2)2 + Zn(BO2)2 +2.0000 H+ +2.0000 H2O = + 1.0000 Zn++ + 2.0000 B(OH)3 + log_k 8.3130 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(BO2)2 +# Enthalpy of formation: 0 kcal/mol + +Zn(ClO4)2:6H2O + Zn(ClO4)2:6H2O = + 1.0000 Zn++ + 2.0000 ClO4- + 6.0000 H2O + log_k 5.6474 + -delta_H 6.31871 kJ/mol # Calculated enthalpy of reaction Zn(ClO4)2:6H2O +# Enthalpy of formation: -2133.39 kJ/mol + -analytic -1.8191e+002 -9.1383e-003 7.4822e+003 6.6751e+001 1.2712e+002 +# -Range: 0-200 + +Zn(IO3)2 + Zn(IO3)2 = + 1.0000 Zn++ + 2.0000 IO3- + log_k -5.3193 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(IO3)2 +# Enthalpy of formation: 0 kcal/mol + +Zn(NO3)2:6H2O + Zn(NO3)2:6H2O = + 1.0000 Zn++ + 2.0000 NO3- + 6.0000 H2O + log_k 3.4102 + -delta_H 24.7577 kJ/mol # Calculated enthalpy of reaction Zn(NO3)2:6H2O +# Enthalpy of formation: -2306.8 kJ/mol + -analytic -1.7152e+002 -1.6875e-002 5.6291e+003 6.5094e+001 9.5649e+001 +# -Range: 0-200 + +Zn(OH)2(beta) + Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O + log_k 11.9341 + -delta_H -83.2111 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(beta) +# Enthalpy of formation: -641.851 kJ/mol + -analytic -7.7810e+001 -7.8548e-003 7.1994e+003 2.7455e+001 1.2228e+002 +# -Range: 0-200 + +Zn(OH)2(epsilon) + Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O + log_k 11.6625 + -delta_H -81.7811 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(epsilon) +# Enthalpy of formation: -643.281 kJ/mol + -analytic -7.7938e+001 -7.8767e-003 7.1282e+003 2.7496e+001 1.2107e+002 +# -Range: 0-200 + +Zn(OH)2(gamma) + Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O + log_k 11.8832 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2(gamma) +# Enthalpy of formation: 0 kcal/mol + +Zn2(OH)3Cl + Zn2(OH)3Cl +3.0000 H+ = + 1.0000 Cl- + 2.0000 Zn++ + 3.0000 H2O + log_k 15.2921 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2(OH)3Cl +# Enthalpy of formation: 0 kcal/mol + +Zn2SO4(OH)2 + Zn2SO4(OH)2 +2.0000 H+ = + 1.0000 SO4-- + 2.0000 H2O + 2.0000 Zn++ + log_k 7.5816 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2SO4(OH)2 +# Enthalpy of formation: 0 kcal/mol + +Zn2SiO4 + Zn2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Zn++ + log_k 13.8695 + -delta_H -119.399 kJ/mol # Calculated enthalpy of reaction Zn2SiO4 +# Enthalpy of formation: -1636.75 kJ/mol + -analytic 2.0970e+002 5.3663e-002 -1.2724e+002 -8.5445e+001 -2.2336e+000 +# -Range: 0-200 + +Zn2TiO4 + Zn2TiO4 +4.0000 H+ = + 1.0000 Ti(OH)4 + 2.0000 Zn++ + log_k 12.3273 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2TiO4 +# Enthalpy of formation: -1647.85 kJ/mol + +Zn3(AsO4)2 + Zn3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Zn++ + log_k 9.3122 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn3(AsO4)2 +# Enthalpy of formation: 0 kcal/mol + +Zn3O(SO4)2 + Zn3O(SO4)2 +2.0000 H+ = + 1.0000 H2O + 2.0000 SO4-- + 3.0000 Zn++ + log_k 19.1188 + -delta_H -258.253 kJ/mol # Calculated enthalpy of reaction Zn3O(SO4)2 +# Enthalpy of formation: -2306.95 kJ/mol + -analytic -3.9661e+001 -4.3860e-002 1.1301e+004 1.3709e+001 1.9193e+002 +# -Range: 0-200 + +Zn5(NO3)2(OH)8 + Zn5(NO3)2(OH)8 +8.0000 H+ = + 2.0000 NO3- + 5.0000 Zn++ + 8.0000 H2O + log_k 42.6674 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn5(NO3)2(OH)8 +# Enthalpy of formation: 0 kcal/mol + +ZnBr2 + ZnBr2 = + 1.0000 Zn++ + 2.0000 Br- + log_k 7.5787 + -delta_H -67.7622 kJ/mol # Calculated enthalpy of reaction ZnBr2 +# Enthalpy of formation: -328.63 kJ/mol + -analytic 6.5789e-002 -2.1477e-002 1.9840e+003 2.9302e+000 3.3691e+001 +# -Range: 0-200 + +ZnBr2:2H2O + ZnBr2:2H2O = + 1.0000 Zn++ + 2.0000 Br- + 2.0000 H2O + log_k 5.2999 + -delta_H -30.9268 kJ/mol # Calculated enthalpy of reaction ZnBr2:2H2O +# Enthalpy of formation: -937.142 kJ/mol + -analytic -4.9260e+001 -2.1682e-002 2.4325e+003 2.1360e+001 4.1324e+001 +# -Range: 0-200 + +ZnCO3:H2O + ZnCO3:H2O +1.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Zn++ + log_k 0.1398 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3:H2O +# Enthalpy of formation: 0 kcal/mol + +ZnCl2 + ZnCl2 = + 1.0000 Zn++ + 2.0000 Cl- + log_k 7.0880 + -delta_H -72.4548 kJ/mol # Calculated enthalpy of reaction ZnCl2 +# Enthalpy of formation: -415.09 kJ/mol + -analytic -1.6157e+001 -2.5405e-002 2.6505e+003 8.8584e+000 4.5015e+001 +# -Range: 0-200 + +ZnCl2(NH3)2 + ZnCl2(NH3)2 = + 1.0000 Zn++ + 2.0000 Cl- + 2.0000 NH3 + log_k -6.9956 + -delta_H 27.2083 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)2 +# Enthalpy of formation: -677.427 kJ/mol + -analytic -5.9409e+001 -2.2698e-002 -2.9178e+002 2.4308e+001 -4.9341e+000 +# -Range: 0-200 + +ZnCl2(NH3)4 + ZnCl2(NH3)4 = + 1.0000 Zn++ + 2.0000 Cl- + 4.0000 NH3 + log_k -6.6955 + -delta_H 56.2004 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)4 +# Enthalpy of formation: -869.093 kJ/mol + -analytic -9.9769e+001 -1.9793e-002 4.2916e+002 3.9412e+001 7.3223e+000 +# -Range: 0-200 + +ZnCl2(NH3)6 + ZnCl2(NH3)6 = + 1.0000 Zn++ + 2.0000 Cl- + 6.0000 NH3 + log_k -4.7311 + -delta_H 77.4225 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)6 +# Enthalpy of formation: -1052.99 kJ/mol + -analytic -1.3984e+002 -1.6896e-002 1.5559e+003 5.4524e+001 2.6470e+001 +# -Range: 0-200 + +ZnCr2O4 + ZnCr2O4 +8.0000 H+ = + 1.0000 Zn++ + 2.0000 Cr+++ + 4.0000 H2O + log_k 7.9161 + -delta_H -221.953 kJ/mol # Calculated enthalpy of reaction ZnCr2O4 +# Enthalpy of formation: -370.88 kcal/mol + -analytic -1.7603e+002 -1.0217e-002 1.7414e+004 5.1966e+001 2.9577e+002 +# -Range: 0-200 + +ZnF2 + ZnF2 = + 1.0000 Zn++ + 2.0000 F- + log_k -0.4418 + -delta_H -59.8746 kJ/mol # Calculated enthalpy of reaction ZnF2 +# Enthalpy of formation: -764.206 kJ/mol + -analytic -2.6085e+002 -8.4594e-002 9.0240e+003 1.0318e+002 1.4089e+002 +# -Range: 0-300 + +ZnI2 + ZnI2 = + 1.0000 Zn++ + 2.0000 I- + log_k 7.3885 + -delta_H -59.2332 kJ/mol # Calculated enthalpy of reaction ZnI2 +# Enthalpy of formation: -207.957 kJ/mol + -analytic -1.6472e+001 -2.5573e-002 2.0796e+003 9.9013e+000 3.5320e+001 +# -Range: 0-200 + +ZnSO4 + ZnSO4 = + 1.0000 SO4-- + 1.0000 Zn++ + log_k 3.5452 + -delta_H -80.132 kJ/mol # Calculated enthalpy of reaction ZnSO4 +# Enthalpy of formation: -982.855 kJ/mol + -analytic 6.9905e+000 -1.8046e-002 2.2566e+003 -2.2819e+000 3.8318e+001 +# -Range: 0-200 + +ZnSO4:6H2O + ZnSO4:6H2O = + 1.0000 SO4-- + 1.0000 Zn++ + 6.0000 H2O + log_k -1.6846 + -delta_H -0.412008 kJ/mol # Calculated enthalpy of reaction ZnSO4:6H2O +# Enthalpy of formation: -2777.61 kJ/mol + -analytic -1.4506e+002 -1.8736e-002 5.2179e+003 5.3121e+001 8.8657e+001 +# -Range: 0-200 + +ZnSO4:7H2O + ZnSO4:7H2O = + 1.0000 SO4-- + 1.0000 Zn++ + 7.0000 H2O + log_k -1.8683 + -delta_H 14.0417 kJ/mol # Calculated enthalpy of reaction ZnSO4:7H2O +# Enthalpy of formation: -3077.9 kJ/mol + -analytic -1.6943e+002 -1.8833e-002 5.6484e+003 6.2326e+001 9.5975e+001 +# -Range: 0-200 + +ZnSO4:H2O + ZnSO4:H2O = + 1.0000 H2O + 1.0000 SO4-- + 1.0000 Zn++ + log_k -0.5383 + -delta_H -44.2824 kJ/mol # Calculated enthalpy of reaction ZnSO4:H2O +# Enthalpy of formation: -1304.54 kJ/mol + -analytic -1.7908e+001 -1.8228e-002 1.5811e+003 7.0677e+000 2.6856e+001 +# -Range: 0-200 + +ZnSeO3:H2O + ZnSeO3:H2O = + 1.0000 H2O + 1.0000 SeO3-- + 1.0000 Zn++ + log_k -6.7408 + -delta_H -17.9056 kJ/mol # Calculated enthalpy of reaction ZnSeO3:H2O +# Enthalpy of formation: -930.511 kJ/mol + -analytic -1.8569e+001 -1.9929e-002 6.4377e+001 7.0892e+000 1.0996e+000 +# -Range: 0-200 + +Zoisite + Ca2Al3(SiO4)3OH +13.0000 H+ = + 2.0000 Ca++ + 3.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O + log_k 43.3017 + -delta_H -458.131 kJ/mol # Calculated enthalpy of reaction Zoisite +# Enthalpy of formation: -1643.69 kcal/mol + -analytic 2.5321e+000 -3.5886e-002 1.9902e+004 -6.2443e+000 3.1055e+002 +# -Range: 0-300 + +Zr + Zr +2.0000 H+ +1.0000 O2 = + 1.0000 Zr(OH)2++ + log_k 177.6471 + -delta_H -1078.71 kJ/mol # Calculated enthalpy of reaction Zr +# Enthalpy of formation: 0 kJ/mol + -analytic -2.8360e+001 -1.5214e-002 5.8045e+004 7.8012e+000 -3.0657e+005 +# -Range: 0-300 + +ZrB2 + ZrB2 +3.0000 H+ +2.0000 H2O +0.5000 O2 = + 1.0000 B(OH)3 + 1.0000 BH4- + 1.0000 Zr++++ + log_k 103.4666 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrB2 +# Enthalpy of formation: -326.628 kJ/mol + +ZrC + ZrC +3.0000 H+ +2.0000 O2 = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Zr++++ + log_k 207.0906 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrC +# Enthalpy of formation: -203.008 kJ/mol + +ZrCl + ZrCl +3.0000 H+ +0.7500 O2 = + 1.0000 Cl- + 1.0000 Zr++++ + 1.5000 H2O + log_k 130.9450 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl +# Enthalpy of formation: -303.211 kJ/mol + +ZrCl2 + ZrCl2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zr++++ + 2.0000 Cl- + log_k 96.3205 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl2 +# Enthalpy of formation: -531.021 kJ/mol + +ZrCl3 + ZrCl3 +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Zr++++ + 3.0000 Cl- + log_k 62.4492 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl3 +# Enthalpy of formation: -754.997 kJ/mol + +ZrCl4 + ZrCl4 = + 1.0000 Zr++++ + 4.0000 Cl- + log_k 27.9824 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl4 +# Enthalpy of formation: -980.762 kJ/mol + +ZrF4(beta) + ZrF4 = + 1.0000 Zr++++ + 4.0000 F- + log_k -27.7564 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(beta) +# Enthalpy of formation: -1911.26 kJ/mol + +ZrH2 + ZrH2 +4.0000 H+ +1.5000 O2 = + 1.0000 Zr++++ + 3.0000 H2O + log_k 198.3224 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrH2 +# Enthalpy of formation: -168.946 kJ/mol + +ZrN + ZrN +4.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 NH3 + 1.0000 Zr++++ + log_k 59.1271 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrN +# Enthalpy of formation: -365 kJ/mol + +O-phthalic_acid + H2O_phthalate = + 1.0000 O_phthalate-2 + 2.0000 H+ + log_k -9.7755 + -delta_H 0 # Not possible to calculate enthalpy of reaction O-phthalic_acid +# Enthalpy of formation: -186.88 kJ/mol + -analytic 7.3450e+001 1.9477e-002 -3.6511e+003 -3.1035e+001 -6.2027e+001 +# -Range: 0-200 +Br2(l) + Br2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Br- + 2.0000 H+ + log_k -6.5419 + -delta_H 36.7648 kJ/mol # Calculated enthalpy of reaction Br2(l) +# Enthalpy of formation: 0 kJ/mol + -analytic -1.5875e+002 -5.8039e-002 1.5583e+003 6.6381e+001 2.4362e+001 +# -Range: 0-300 + +Hg(l) + Hg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hg++ + log_k 14.1505 + -delta_H -109.608 kJ/mol # Calculated enthalpy of reaction Hg(l) +# Enthalpy of formation: 0 kcal/mol + -analytic -6.6462e+001 -1.8504e-002 7.3141e+003 2.4888e+001 1.1415e+002 +# -Range: 0-300 + +Ag(g) + Ag +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Ag+ + log_k 51.0924 + -delta_H -319.035 kJ/mol # Calculated enthalpy of reaction Ag(g) +# Enthalpy of formation: 284.9 kJ/mol + -analytic -5.8006e+000 1.7178e-003 1.6809e+004 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +Al(g) + Al +3.0000 H+ +0.7500 O2 = + 1.0000 Al+++ + 1.5000 H2O + log_k 200.6258 + -delta_H -1288.06 kJ/mol # Calculated enthalpy of reaction Al(g) +# Enthalpy of formation: 330 kJ/mol + -analytic 9.6402e+000 -6.9301e-003 6.5270e+004 -1.0461e+001 1.1084e+003 +# -Range: 0-200 + +Am(g) + Am +3.0000 H+ +0.7500 O2 = + 1.0000 Am+++ + 1.5000 H2O + log_k 211.7865 + -delta_H -1320.16 kJ/mol # Calculated enthalpy of reaction Am(g) +# Enthalpy of formation: 283.8 kJ/mol + -analytic -1.4236e+001 -8.7560e-003 6.8166e+004 0.0000e+000 0.0000e+000 +# -Range: 0-300 + +AmF3(g) + AmF3 = + 1.0000 Am+++ + 3.0000 F- + log_k 49.8631 + -delta_H -455.843 kJ/mol # Calculated enthalpy of reaction AmF3(g) +# Enthalpy of formation: -1166.9 kJ/mol + -analytic -4.7209e+001 -3.6440e-002 2.2278e+004 1.3418e+001 3.7833e+002 +# -Range: 0-200 + +Ar(g) + Ar = + 1.0000 Ar + log_k -2.8587 + -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction Ar(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -7.4387e+000 7.8991e-003 0.0000e+000 0.0000e+000 1.9830e+005 +# -Range: 0-300 + +B(g) + B +1.5000 H2O +0.7500 O2 = + 1.0000 B(OH)3 + log_k 200.8430 + -delta_H -1201.68 kJ/mol # Calculated enthalpy of reaction B(g) +# Enthalpy of formation: 565 kJ/mol + -analytic 1.0834e+002 1.0606e-002 5.8150e+004 -4.2720e+001 9.8743e+002 +# -Range: 0-200 + +BF3(g) + BF3 +3.0000 H2O = + 1.0000 B(OH)3 + 3.0000 F- + 3.0000 H+ + log_k -2.9664 + -delta_H -87.0627 kJ/mol # Calculated enthalpy of reaction BF3(g) +# Enthalpy of formation: -1136 kJ/mol + -analytic 5.2848e+001 -2.4617e-002 -1.8159e+002 -1.9350e+001 -3.1018e+000 +# -Range: 0-200 + +Be(g) + Be +2.0000 H+ +0.5000 O2 = + 1.0000 Be++ + 1.0000 H2O + log_k 361.9343 + -delta_H 0 # Not possible to calculate enthalpy of reaction Be(g) +# Enthalpy of formation: 0 kcal/mol + +Br2(g) + Br2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Br- + 2.0000 H+ + log_k -5.9979 + -delta_H 5.85481 kJ/mol # Calculated enthalpy of reaction Br2(g) +# Enthalpy of formation: 30.91 kJ/mol + -analytic -3.2403e+000 -1.7609e-002 -1.4941e+003 3.0300e+000 -2.5370e+001 +# -Range: 0-200 + +C(g) + C +1.0000 H2O +1.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- + log_k 181.7723 + -delta_H -1108.64 kJ/mol # Calculated enthalpy of reaction C(g) +# Enthalpy of formation: 716.68 kJ/mol + -analytic 1.0485e+002 1.7907e-003 5.2768e+004 -4.0661e+001 8.9605e+002 +# -Range: 0-200 + +C2H4(g) + C2H4 = + 1.0000 C2H4 + log_k -2.3236 + -delta_H -16.4431 kJ/mol # Calculated enthalpy of reaction Ethylene(g) +# Enthalpy of formation: 12.5 kcal/mol + -analytic -7.5368e+000 8.4676e-003 0.0000e+000 0.0000e+000 2.3971e+005 +# -Range: 0-300 + +CH4(g) + CH4 = + 1.0000 CH4 + log_k -2.8502 + -delta_H -13.0959 kJ/mol # Calculated enthalpy of reaction CH4(g) +# Enthalpy of formation: -17.88 kcal/mol + -analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005 +# -Range: 0-300 + +CO(g) +# CO +1.0000 H2O +0.5000 O2 = + 1.0000 H+ + 1.0000 HCO3- +# log_k 38.6934 +# -analytic -6.1217e+001 -3.1388e-002 1.5283e+004 2.3433e+001 2.3850e+002 +# -Range: 0-300 + CO = CO + log_k -3.0068 + -delta_H -10.4349 kJ/mol # Calculated enthalpy of reaction CO(g) +# Enthalpy of formation: -26.416 kcal/mol + -analytic -8.0849e+000 9.2114e-003 0.0000e+000 0.0000e+000 2.0813e+005 +# -Range: 0-300 + +CO2(g) + CO2 +1.0000 H2O = + 1.0000 H+ + 1.0000 HCO3- + log_k -7.8136 + -delta_H -10.5855 kJ/mol # Calculated enthalpy of reaction CO2(g) +# Enthalpy of formation: -94.051 kcal/mol + -analytic -8.5938e+001 -3.0431e-002 2.0702e+003 3.2427e+001 3.2328e+001 +# -Range: 0-300 + +Ca(g) + Ca +2.0000 H+ +0.5000 O2 = + 1.0000 Ca++ + 1.0000 H2O + log_k 165.0778 + -delta_H -1000.65 kJ/mol # Calculated enthalpy of reaction Ca(g) +# Enthalpy of formation: 177.8 kJ/mol + -analytic -7.3029e+000 -4.8208e-003 5.1822e+004 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +Cd(g) + Cd +2.0000 H+ +0.5000 O2 = + 1.0000 Cd++ + 1.0000 H2O + log_k 70.1363 + -delta_H -467.469 kJ/mol # Calculated enthalpy of reaction Cd(g) +# Enthalpy of formation: 111.8 kJ/mol + -analytic -9.8665e+000 -3.0921e-003 2.4126e+004 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +Cl2(g) + Cl2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Cl- + 2.0000 H+ + log_k 3.0004 + -delta_H -54.3878 kJ/mol # Calculated enthalpy of reaction Cl2(g) +# Enthalpy of formation: 0 kJ/mol + -analytic -1.9456e+001 -2.1491e-002 2.0652e+003 8.8629e+000 3.5076e+001 +# -Range: 0-200 + +Cs(g) + Cs +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Cs+ + log_k 81.2805 + -delta_H -474.413 kJ/mol # Calculated enthalpy of reaction Cs(g) +# Enthalpy of formation: 76.5 kJ/mol + -analytic 4.1676e+001 9.1952e-003 2.3401e+004 -1.6824e+001 3.9736e+002 +# -Range: 0-200 + +Cu(g) + Cu +2.0000 H+ +0.5000 O2 = + 1.0000 Cu++ + 1.0000 H2O + log_k 83.6618 + -delta_H -551.483 kJ/mol # Calculated enthalpy of reaction Cu(g) +# Enthalpy of formation: 337.4 kJ/mol + -analytic -1.1249e+001 -2.7585e-003 2.8541e+004 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +F2(g) + F2 +1.0000 H2O = + 0.5000 O2 + 2.0000 F- + 2.0000 H+ + log_k 55.7197 + -delta_H -390.924 kJ/mol # Calculated enthalpy of reaction F2(g) +# Enthalpy of formation: 0 kJ/mol + -analytic -3.2664e+001 -2.1035e-002 1.9974e+004 1.1174e+001 3.3920e+002 +# -Range: 0-200 + +H2(g) +# H2 +0.5000 O2 = + 1.0000 H2O +# log_k 43.0016 +# -analytic -1.1609e+001 -3.7580e-003 1.5068e+004 2.4198e+000 -7.0997e+004 +# -Range: 0-300 + H2 = H2 + log_k -3.1050 + -delta_H -4.184 kJ/mol # Calculated enthalpy of reaction H2(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -9.3114e+000 4.6473e-003 -4.9335e+001 1.4341e+000 1.2815e+005 +# -Range: 0-300 + +H2O(g) + H2O = + 1.0000 H2O + log_k 1.5854 + -delta_H -43.4383 kJ/mol # Calculated enthalpy of reaction H2O(g) +# Enthalpy of formation: -57.935 kcal/mol + -analytic -1.4782e+001 1.0752e-003 2.7519e+003 2.7548e+000 4.2945e+001 +# -Range: 0-300 + +H2S(g) + H2S = + 1.0000 H+ + 1.0000 HS- + log_k -7.9759 + -delta_H 4.5229 kJ/mol # Calculated enthalpy of reaction H2S(g) +# Enthalpy of formation: -4.931 kcal/mol + -analytic -9.7354e+001 -3.1576e-002 1.8285e+003 3.7440e+001 2.8560e+001 +# -Range: 0-300 + +HBr(g) + HBr = + 1.0000 Br- + 1.0000 H+ + log_k 8.8815 + -delta_H -85.2134 kJ/mol # Calculated enthalpy of reaction HBr(g) +# Enthalpy of formation: -36.29 kJ/mol + -analytic 8.1303e+000 -6.6641e-003 3.3951e+003 -3.4973e+000 5.7651e+001 +# -Range: 0-200 + +HCl(g) + HCl = + 1.0000 Cl- + 1.0000 H+ + log_k 6.3055 + -delta_H -74.7697 kJ/mol # Calculated enthalpy of reaction HCl(g) +# Enthalpy of formation: -92.31 kJ/mol + -analytic -2.8144e-001 -8.6776e-003 3.0668e+003 -4.5105e-001 5.2078e+001 +# -Range: 0-200 + +HF(g) + HF = + 1.0000 F- + 1.0000 H+ + log_k 1.1126 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) +# Enthalpy of formation: 619.234 kJ/mol + -analytic -8.5783e+000 -8.8440e-003 2.6279e+003 1.4180e+000 4.4628e+001 +# -Range: 0-200 + +HI(g) + HI = + 1.0000 H+ + 1.0000 I- + log_k 9.3944 + -delta_H -83.4024 kJ/mol # Calculated enthalpy of reaction HI(g) +# Enthalpy of formation: 26.5 kJ/mol + -analytic 5.8250e-003 -8.7146e-003 3.5728e+003 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +He(g) + He = + 1.0000 He + log_k -3.4143 + -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction He(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -1.3402e+001 4.6358e-003 1.8295e+002 2.8070e+000 9.3373e+004 +# -Range: 0-300 + +Hf(g) + Hf +4.0000 H+ +1.0000 O2 = + 1.0000 Hf++++ + 2.0000 H2O + log_k 290.9782 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) +# Enthalpy of formation: 0 kJ/mol + +Hg(g) + Hg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hg++ + log_k 19.7290 + -delta_H -170.988 kJ/mol # Calculated enthalpy of reaction Hg(g) +# Enthalpy of formation: 61.38 kJ/mol + -analytic -1.6232e+001 -3.2863e-003 8.9831e+003 2.7505e+000 1.5255e+002 +# -Range: 0-200 + +I2(g) + I2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 I- + log_k -21.4231 + -delta_H 103.547 kJ/mol # Calculated enthalpy of reaction I2(g) +# Enthalpy of formation: 62.42 kJ/mol + -analytic -2.0271e+001 -2.1890e-002 -6.0267e+003 1.0339e+001 -1.0233e+002 +# -Range: 0-200 + +K(g) + K +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 K+ + log_k 81.5815 + -delta_H -481.055 kJ/mol # Calculated enthalpy of reaction K(g) +# Enthalpy of formation: 89 kJ/mol + -analytic 1.0278e+001 3.0700e-003 2.4729e+004 -5.0763e+000 4.1994e+002 +# -Range: 0-200 + +Kr(g) + Kr = + 1.0000 Kr + log_k -2.6051 + -delta_H -15.2716 kJ/mol # Calculated enthalpy of reaction Kr(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -2.1251e+001 4.8308e-003 4.2971e+002 5.3591e+000 2.2304e+005 +# -Range: 0-300 + +Li(g) + Li +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Li+ + log_k 94.9423 + -delta_H -577.639 kJ/mol # Calculated enthalpy of reaction Li(g) +# Enthalpy of formation: 159.3 kJ/mol + -analytic -2.5692e+001 -1.4385e-003 3.0936e+004 6.9899e+000 5.2535e+002 +# -Range: 0-200 + +Mg(g) + Mg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mg++ + log_k 142.2494 + -delta_H -892.831 kJ/mol # Calculated enthalpy of reaction Mg(g) +# Enthalpy of formation: 147.1 kJ/mol + -analytic -1.3470e+000 -7.7402e-004 4.5992e+004 -4.2207e+000 7.8101e+002 +# -Range: 0-200 + +N2(g) +# N2 +3.0000 H2O = + 1.5000 O2 + 2.0000 NH3 +# log_k -119.6473 +# -analytic 2.4168e+001 1.6489e-002 -3.6869e+004 -1.1181e+001 2.3178e+005 +# -Range: 0-300 + N2 = N2 + log_k -3.1864 + -delta_H -10.4391 kJ/mol # Calculated enthalpy of reaction N2(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -7.6452e+000 7.9606e-003 0.0000e+000 0.0000e+000 1.8604e+005 +# -Range: 0-300 +NH3(g) + NH3 = + 1.0000 NH3 + log_k 1.7966 + -delta_H -35.2251 kJ/mol # Calculated enthalpy of reaction NH3(g) +# Enthalpy of formation: -11.021 kcal/mol + -analytic -1.8758e+001 3.3670e-004 2.5113e+003 4.8619e+000 3.9192e+001 +# -Range: 0-300 + +NO(g) + NO +0.5000 H2O +0.2500 O2 = + 1.0000 H+ + 1.0000 NO2- + log_k 0.7554 + -delta_H -48.8884 kJ/mol # Calculated enthalpy of reaction NO(g) +# Enthalpy of formation: 90.241 kJ/mol + -analytic 8.2147e+000 -1.2708e-001 -6.0593e+003 2.0504e+001 -9.4551e+001 +# -Range: 0-300 + +NO2(g) + NO2 +0.5000 H2O +0.2500 O2 = + 1.0000 H+ + 1.0000 NO3- + log_k 8.3673 + -delta_H -94.0124 kJ/mol # Calculated enthalpy of reaction NO2(g) +# Enthalpy of formation: 33.154 kJ/mol + -analytic 9.4389e+001 -2.7511e-001 -1.6783e+004 2.1127e+001 -2.6191e+002 +# -Range: 0-300 + +Na(g) + Na +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Na+ + log_k 80.8640 + -delta_H -487.685 kJ/mol # Calculated enthalpy of reaction Na(g) +# Enthalpy of formation: 107.5 kJ/mol + -analytic -6.0156e+000 2.4712e-003 2.5682e+004 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +Ne(g) + Ne = + 1.0000 Ne + log_k -3.3462 + -delta_H -3.64008 kJ/mol # Calculated enthalpy of reaction Ne(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -6.5169e+000 6.3991e-003 0.0000e+000 0.0000e+000 1.1271e+005 +# -Range: 0-300 + +O2(g) + O2 = + 1.0000 O2 + log_k -2.8983 + -delta_H -12.1336 kJ/mol # Calculated enthalpy of reaction O2(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005 +# -Range: 0-300 + +Pb(g) + Pb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pb++ + log_k 75.6090 + -delta_H -474.051 kJ/mol # Calculated enthalpy of reaction Pb(g) +# Enthalpy of formation: 195.2 kJ/mol + -analytic 2.5752e+001 2.1307e-003 2.3397e+004 -1.1825e+001 3.9730e+002 +# -Range: 0-200 + +Rb(g) + Rb +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Rb+ + log_k 80.4976 + -delta_H -471.909 kJ/mol # Calculated enthalpy of reaction Rb(g) +# Enthalpy of formation: 80.9 kJ/mol + -analytic 2.6839e+001 5.9775e-003 2.3720e+004 -1.1189e+001 4.0279e+002 +# -Range: 0-200 + +Rn(g) + Rn = + 1.0000 Rn + log_k -2.0451 + -delta_H -20.92 kJ/mol # Calculated enthalpy of reaction Rn(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -3.0258e+001 4.9893e-003 1.4118e+002 8.8798e+000 3.8095e+005 +# -Range: 0-300 + +RuCl3(g) + RuCl3 = + 1.0000 Ru+++ + 3.0000 Cl- + log_k 41.5503 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3(g) +# Enthalpy of formation: 16.84 kJ/mol + +RuO3(g) + RuO3 +1.0000 H2O = + 1.0000 RuO4-- + 2.0000 H+ + log_k 2.3859 + -delta_H -100.369 kJ/mol # Calculated enthalpy of reaction RuO3(g) +# Enthalpy of formation: -70.868 kJ/mol + -analytic 1.1106e+002 1.7191e-002 6.8526e+002 -4.6922e+001 1.1598e+001 +# -Range: 0-200 + +S2(g) + S2 +2.0000 H2O = + 0.5000 SO4-- + 1.5000 HS- + 2.5000 H+ + log_k -7.1449 + -delta_H -35.656 kJ/mol # Calculated enthalpy of reaction S2(g) +# Enthalpy of formation: 30.681 kcal/mol + -analytic -1.8815e+002 -7.7069e-002 4.8816e+003 7.5802e+001 7.6228e+001 +# -Range: 0-300 + +SO2(g) + SO2 = SO2 + log_k 0.1700 + -delta_H 0 # Not possible to calculate enthalpy of reaction SO2(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -2.0205e+001 2.8861e-003 1.4862e+003 5.2958e+000 1.2721e+005 +# -Range: 0-300 + +Si(g) + Si +1.0000 O2 = + 1.0000 SiO2 + log_k 219.9509 + -delta_H -1315.57 kJ/mol # Calculated enthalpy of reaction Si(g) +# Enthalpy of formation: 450 kJ/mol + -analytic 4.1998e+002 8.0113e-002 5.4468e+004 -1.6433e+002 9.2480e+002 +# -Range: 0-200 + +SiF4(g) + SiF4 +2.0000 H2O = + 1.0000 SiO2 + 4.0000 F- + 4.0000 H+ + log_k -15.1931 + -delta_H -32.4123 kJ/mol # Calculated enthalpy of reaction SiF4(g) +# Enthalpy of formation: -1615 kJ/mol + -analytic 3.4941e+002 3.3668e-002 -1.2780e+004 -1.3410e+002 -2.1714e+002 +# -Range: 0-200 + +Sn(g) + Sn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sn++ + log_k 94.5019 + -delta_H -589.758 kJ/mol # Calculated enthalpy of reaction Sn(g) +# Enthalpy of formation: 301.2 kJ/mol + -analytic 1.4875e+001 -5.6877e-005 2.9728e+004 -8.1131e+000 5.0482e+002 +# -Range: 0-200 + +Tc2O7(g) + Tc2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 TcO4- + log_k 21.3593 + -delta_H -158.131 kJ/mol # Calculated enthalpy of reaction Tc2O7(g) +# Enthalpy of formation: -988.569 kJ/mol + -analytic 7.4140e+001 1.5668e-002 5.6360e+003 -3.0860e+001 9.5682e+001 +# -Range: 0-200 + +Th(g) + Th +4.0000 H+ +1.0000 O2 = + 1.0000 Th++++ + 2.0000 H2O + log_k 307.8413 + -delta_H -1930.56 kJ/mol # Calculated enthalpy of reaction Th(g) +# Enthalpy of formation: 602 kJ/mol + -analytic 1.8496e+001 2.7318e-003 9.8807e+004 -1.7332e+001 1.6779e+003 +# -Range: 0-200 + +Ti(g) + Ti +2.0000 H2O +1.0000 O2 = + 1.0000 Ti(OH)4 + log_k 224.3510 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(g) +# Enthalpy of formation: 473 kJ/mol + +TiBr4(g) + TiBr4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Br- + 4.0000 H+ + log_k 36.6695 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4(g) +# Enthalpy of formation: -549.339 kJ/mol + +TiCl4(g) + TiCl4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Cl- + 4.0000 H+ + log_k 28.0518 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl4(g) +# Enthalpy of formation: -763.2 kJ/mol + +TiO(g) + TiO +2.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 + log_k 145.5711 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(g) +# Enthalpy of formation: 17.144 kJ/mol + +U(g) + U +2.0000 H+ +1.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ + log_k 298.3441 + -delta_H -1819.64 kJ/mol # Calculated enthalpy of reaction U(g) +# Enthalpy of formation: 533 kJ/mol + -analytic 3.7536e+001 -6.3804e-003 9.2048e+004 -1.8614e+001 1.4363e+003 +# -Range: 0-300 + +U2Cl10(g) + U2Cl10 +4.0000 H2O = + 2.0000 UO2+ + 8.0000 H+ + 10.0000 Cl- + log_k 82.7621 + -delta_H -609.798 kJ/mol # Calculated enthalpy of reaction U2Cl10(g) +# Enthalpy of formation: -1967.9 kJ/mol + -analytic -7.5513e+002 -3.0070e-001 4.5824e+004 3.1267e+002 7.1526e+002 +# -Range: 0-300 + +U2Cl8(g) + U2Cl8 = + 2.0000 U++++ + 8.0000 Cl- + log_k 82.4059 + -delta_H -769.437 kJ/mol # Calculated enthalpy of reaction U2Cl8(g) +# Enthalpy of formation: -1749.6 kJ/mol + -analytic -7.4441e+002 -2.6943e-001 5.4358e+004 2.9287e+002 8.4843e+002 +# -Range: 0-300 + +U2F10(g) + U2F10 +4.0000 H2O = + 2.0000 UO2+ + 8.0000 H+ + 10.0000 F- + log_k -12.2888 + -delta_H -239.377 kJ/mol # Calculated enthalpy of reaction U2F10(g) +# Enthalpy of formation: -4021 kJ/mol + -analytic -9.1542e+002 -3.2040e-001 3.1047e+004 3.6143e+002 4.8473e+002 +# -Range: 0-300 + +UBr(g) + UBr +1.0000 O2 = + 1.0000 Br- + 1.0000 UO2+ + log_k 224.8412 + -delta_H -1381.5 kJ/mol # Calculated enthalpy of reaction UBr(g) +# Enthalpy of formation: 247 kJ/mol + -analytic -3.1193e+002 -6.3059e-002 8.7633e+004 1.1032e+002 -1.0104e+006 +# -Range: 0-300 + +UBr2(g) + UBr2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 Br- + log_k 192.6278 + -delta_H -1218.87 kJ/mol # Calculated enthalpy of reaction UBr2(g) +# Enthalpy of formation: -31 kJ/mol + -analytic -1.2277e+002 -6.4613e-002 6.4196e+004 4.8209e+001 1.0018e+003 +# -Range: 0-300 + +UBr3(g) + UBr3 = + 1.0000 U+++ + 3.0000 Br- + log_k 67.8918 + -delta_H -489.61 kJ/mol # Calculated enthalpy of reaction UBr3(g) +# Enthalpy of formation: -364 kJ/mol + -analytic -2.5784e+002 -9.7583e-002 3.0225e+004 1.0240e+002 4.7171e+002 +# -Range: 0-300 + +UBr4(g) + UBr4 = + 1.0000 U++++ + 4.0000 Br- + log_k 54.2926 + -delta_H -467.113 kJ/mol # Calculated enthalpy of reaction UBr4(g) +# Enthalpy of formation: -610.1 kJ/mol + -analytic -3.5205e+002 -1.2867e-001 3.0898e+004 1.3781e+002 4.8223e+002 +# -Range: 0-300 + +UBr5(g) + UBr5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Br- + log_k 61.4272 + -delta_H -423.222 kJ/mol # Calculated enthalpy of reaction UBr5(g) +# Enthalpy of formation: -637.745 kJ/mol + -analytic -3.4693e+002 -1.4298e-001 2.8151e+004 1.4406e+002 4.3938e+002 +# -Range: 0-300 + +UCl(g) + UCl +1.0000 O2 = + 1.0000 Cl- + 1.0000 UO2+ + log_k 221.7887 + -delta_H -1368.27 kJ/mol # Calculated enthalpy of reaction UCl(g) +# Enthalpy of formation: 188.2 kJ/mol + -analytic -4.1941e+001 -2.7879e-002 7.0800e+004 1.3954e+001 1.1048e+003 +# -Range: 0-300 + +UCl2(g) + UCl2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 Cl- + log_k 183.7912 + -delta_H -1178.03 kJ/mol # Calculated enthalpy of reaction UCl2(g) +# Enthalpy of formation: -163 kJ/mol + -analytic -1.3677e+002 -6.7829e-002 6.2413e+004 5.3100e+001 9.7394e+002 +# -Range: 0-300 + +UCl3(g) + UCl3 = + 1.0000 U+++ + 3.0000 Cl- + log_k 58.6335 + -delta_H -453.239 kJ/mol # Calculated enthalpy of reaction UCl3(g) +# Enthalpy of formation: -537.1 kJ/mol + -analytic -2.7942e+002 -1.0243e-001 2.8859e+004 1.0982e+002 4.5040e+002 +# -Range: 0-300 + +UCl4(g) + UCl4 = + 1.0000 U++++ + 4.0000 Cl- + log_k 46.3988 + -delta_H -441.419 kJ/mol # Calculated enthalpy of reaction UCl4(g) +# Enthalpy of formation: -818.1 kJ/mol + -analytic -3.7971e+002 -1.3504e-001 3.0243e+004 1.4746e+002 4.7202e+002 +# -Range: 0-300 + +UCl5(g) + UCl5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Cl- + log_k 54.5311 + -delta_H -406.349 kJ/mol # Calculated enthalpy of reaction UCl5(g) +# Enthalpy of formation: -882.5 kJ/mol + -analytic -3.8234e+002 -1.5109e-001 2.8170e+004 1.5654e+002 4.3968e+002 +# -Range: 0-300 + +UCl6(g) + UCl6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 Cl- + log_k 63.4791 + -delta_H -462.301 kJ/mol # Calculated enthalpy of reaction UCl6(g) +# Enthalpy of formation: -987.5 kJ/mol + -analytic -4.7128e+002 -1.9133e-001 3.2528e+004 1.9503e+002 5.0771e+002 +# -Range: 0-300 + +UF(g) + UF +1.0000 O2 = + 1.0000 F- + 1.0000 UO2+ + log_k 206.2684 + -delta_H -1296.34 kJ/mol # Calculated enthalpy of reaction UF(g) +# Enthalpy of formation: -52 kJ/mol + -analytic -6.1248e+001 -3.0360e-002 6.7619e+004 2.0095e+001 1.0551e+003 +# -Range: 0-300 + +UF2(g) + UF2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 F- + log_k 172.3563 + -delta_H -1147.56 kJ/mol # Calculated enthalpy of reaction UF2(g) +# Enthalpy of formation: -530 kJ/mol + -analytic -4.3462e+002 -1.0881e-001 7.6778e+004 1.5835e+002 -8.8536e+005 +# -Range: 0-300 + +UF3(g) + UF3 = + 1.0000 U+++ + 3.0000 F- + log_k 47.2334 + -delta_H -440.943 kJ/mol # Calculated enthalpy of reaction UF3(g) +# Enthalpy of formation: -1054.2 kJ/mol + -analytic -3.3058e+002 -1.0866e-001 2.9694e+004 1.2551e+002 4.6344e+002 +# -Range: 0-300 + +UF4(g) + UF4 = + 1.0000 U++++ + 4.0000 F- + log_k 14.5980 + -delta_H -331.39 kJ/mol # Calculated enthalpy of reaction UF4(g) +# Enthalpy of formation: -1601.2 kJ/mol + -analytic -4.4692e+002 -1.4314e-001 2.6427e+004 1.6791e+002 4.1250e+002 +# -Range: 0-300 + +UF5(g) + UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- + log_k 6.3801 + -delta_H -220.188 kJ/mol # Calculated enthalpy of reaction UF5(g) +# Enthalpy of formation: -1910 kJ/mol + -analytic -4.6981e+002 -1.6177e-001 2.0986e+004 1.8345e+002 3.2760e+002 +# -Range: 0-300 + +UF6(g) + UF6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 F- + log_k 18.2536 + -delta_H -310.809 kJ/mol # Calculated enthalpy of reaction UF6(g) +# Enthalpy of formation: -2148.6 kJ/mol + -analytic -5.7661e+002 -2.0409e-001 2.7680e+004 2.2743e+002 4.3209e+002 +# -Range: 0-300 + +UI(g) + UI +1.0000 O2 = + 1.0000 I- + 1.0000 UO2+ + log_k 230.8161 + -delta_H -1410.9 kJ/mol # Calculated enthalpy of reaction UI(g) +# Enthalpy of formation: 341 kJ/mol + -analytic -3.5819e+001 -2.6631e-002 7.2899e+004 1.2133e+001 1.1375e+003 +# -Range: 0-300 + +UI2(g) + UI2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 I- + log_k 194.5395 + -delta_H -1220.67 kJ/mol # Calculated enthalpy of reaction UI2(g) +# Enthalpy of formation: 100 kJ/mol + -analytic -3.3543e+002 -9.5116e-002 7.6218e+004 1.2543e+002 -6.8683e+005 +# -Range: 0-300 + +UI3(g) + UI3 = + 1.0000 U+++ + 3.0000 I- + log_k 75.6033 + -delta_H -519.807 kJ/mol # Calculated enthalpy of reaction UI3(g) +# Enthalpy of formation: -140 kJ/mol + -analytic -2.6095e+002 -9.8782e-002 3.1972e+004 1.0456e+002 4.9897e+002 +# -Range: 0-300 + +UI4(g) + UI4 = + 1.0000 U++++ + 4.0000 I- + log_k 64.3272 + -delta_H -510.01 kJ/mol # Calculated enthalpy of reaction UI4(g) +# Enthalpy of formation: -308.8 kJ/mol + -analytic -3.5645e+002 -1.3022e-001 3.3347e+004 1.4051e+002 5.2046e+002 +# -Range: 0-300 + +UO(g) + UO +2.0000 H+ +1.0000 O2 = + 1.0000 H2O + 1.0000 UO2++ + log_k 211.6585 + -delta_H -1323.2 kJ/mol # Calculated enthalpy of reaction UO(g) +# Enthalpy of formation: 30.5 kJ/mol + -analytic -1.8007e+002 -3.1985e-002 7.8469e+004 5.8892e+001 -6.8071e+005 +# -Range: 0-300 + +UO2(g) + UO2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ + log_k 125.6027 + -delta_H -820.972 kJ/mol # Calculated enthalpy of reaction UO2(g) +# Enthalpy of formation: -477.8 kJ/mol + -analytic -5.2789e+000 -3.5754e-003 4.2074e+004 -3.7117e+000 6.5653e+002 +# -Range: 0-300 + +UO2Cl2(g) + UO2Cl2 = + 1.0000 UO2++ + 2.0000 Cl- + log_k 47.9630 + -delta_H -381.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2(g) +# Enthalpy of formation: -971.6 kJ/mol + -analytic -1.8035e+002 -6.5574e-002 2.3064e+004 6.8894e+001 3.5994e+002 +# -Range: 0-300 + +UO2F2(g) + UO2F2 = + 1.0000 UO2++ + 2.0000 F- + log_k 34.6675 + -delta_H -337.195 kJ/mol # Calculated enthalpy of reaction UO2F2(g) +# Enthalpy of formation: -1352.5 kJ/mol + -analytic -2.1498e+002 -6.9882e-002 2.1774e+004 7.9780e+001 3.3983e+002 +# -Range: 0-300 + +UO3(g) + UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ + log_k 70.9480 + -delta_H -505.638 kJ/mol # Calculated enthalpy of reaction UO3(g) +# Enthalpy of formation: -799.2 kJ/mol + -analytic -3.2820e+001 -2.6807e-003 2.6914e+004 5.7767e+000 4.1997e+002 +# -Range: 0-300 + +UOF4(g) + UOF4 +1.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 4.0000 F- + log_k 24.2848 + -delta_H -312.552 kJ/mol # Calculated enthalpy of reaction UOF4(g) +# Enthalpy of formation: -1762 kJ/mol + -analytic -3.9592e+002 -1.3699e-001 2.4127e+004 1.5359e+002 3.7660e+002 +# -Range: 0-300 + +Xe(g) + Xe = + 1.0000 Xe + log_k -2.3640 + -delta_H -18.8698 kJ/mol # Calculated enthalpy of reaction Xe(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -2.0636e+001 5.1389e-003 2.0490e+002 5.1913e+000 2.8556e+005 +# -Range: 0-300 + +Zn(g) + Zn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zn++ + log_k 85.4140 + -delta_H -563.557 kJ/mol # Calculated enthalpy of reaction Zn(g) +# Enthalpy of formation: 130.4 kJ/mol + -analytic -1.0898e+001 -3.9871e-003 2.9068e+004 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +Zr(g) + Zr +4.0000 H+ +1.0000 O2 = + 1.0000 Zr++++ + 2.0000 H2O + log_k 277.1324 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(g) +# Enthalpy of formation: 608.948 kJ/mol + +ZrF4(g) + ZrF4 = + 1.0000 Zr++++ + 4.0000 F- + log_k 142.9515 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(g) +# Enthalpy of formation: -858.24 kJ/mol + +EXCHANGE_MASTER_SPECIES + X X- +EXCHANGE_SPECIES + X- = X- + log_k 0.0 + + Na+ + X- = NaX + log_k 0.0 + -llnl_gamma 4.0 + + K+ + X- = KX + log_k 0.7 + -llnl_gamma 3.0 + delta_h -4.3 # Jardine & Sparks, 1984 + + Li+ + X- = LiX + log_k -0.08 + -llnl_gamma 6.0 + delta_h 1.4 # Merriam & Thomas, 1956 + + NH4+ + X- = NH4X + log_k 0.6 + -llnl_gamma 2.5 + delta_h -2.4 # Laudelout et al., 1968 + + Ca+2 + 2X- = CaX2 + log_k 0.8 + -llnl_gamma 6.0 + delta_h 7.2 # Van Bladel & Gheyl, 1980 + + Mg+2 + 2X- = MgX2 + log_k 0.6 + -llnl_gamma 8.0 + delta_h 7.4 # Laudelout et al., 1968 + + Sr+2 + 2X- = SrX2 + log_k 0.91 + -llnl_gamma 5.0 + delta_h 5.5 # Laudelout et al., 1968 + + Ba+2 + 2X- = BaX2 + log_k 0.91 + -llnl_gamma 5.0 + delta_h 4.5 # Laudelout et al., 1968 + + Mn+2 + 2X- = MnX2 + log_k 0.52 + -llnl_gamma 6.0 + + Fe+2 + 2X- = FeX2 + log_k 0.44 + -llnl_gamma 6.0 + + Cu+2 + 2X- = CuX2 + log_k 0.6 + -llnl_gamma 6.0 + + Zn+2 + 2X- = ZnX2 + log_k 0.8 + -llnl_gamma 6.0 + + Cd+2 + 2X- = CdX2 + log_k 0.8 + -llnl_gamma 5.0 + + Pb+2 + 2X- = PbX2 + log_k 1.05 + -llnl_gamma 4.5 + + Al+3 + 3X- = AlX3 + log_k 0.41 + -llnl_gamma 9.0 + + AlOH+2 + 2X- = AlOHX2 + log_k 0.89 + -llnl_gamma 4.5 + +SURFACE_MASTER_SPECIES + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH +SURFACE_SPECIES +# All surface data from +# Dzombak and Morel, 1990 +# +# +# Acid-base data from table 5.7 +# +# strong binding site--Hfo_s, + + Hfo_sOH = Hfo_sOH + log_k 0.0 + + Hfo_sOH + H+ = Hfo_sOH2+ + log_k 7.29 # = pKa1,int + + Hfo_sOH = Hfo_sO- + H+ + log_k -8.93 # = -pKa2,int + +# weak binding site--Hfo_w + + Hfo_wOH = Hfo_wOH + log_k 0.0 + + Hfo_wOH + H+ = Hfo_wOH2+ + log_k 7.29 # = pKa1,int + + Hfo_wOH = Hfo_wO- + H+ + log_k -8.93 # = -pKa2,int + +############################################### +# CATIONS # +############################################### +# +# Cations from table 10.1 or 10.5 +# +# Calcium + Hfo_sOH + Ca+2 = Hfo_sOHCa+2 + log_k 4.97 + + Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ + log_k -5.85 +# Strontium + Hfo_sOH + Sr+2 = Hfo_sOHSr+2 + log_k 5.01 + + Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ + log_k -6.58 + + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ + log_k -17.60 +# Barium + Hfo_sOH + Ba+2 = Hfo_sOHBa+2 + log_k 5.46 + + Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ + log_k -7.2 # table 10.5 +# +# Cations from table 10.2 +# +# Cadmium + Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ + log_k 0.47 + + Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ + log_k -2.91 +# Zinc + Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ + log_k 0.99 + + Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ + log_k -1.99 +# Copper + Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ + log_k 2.89 + + Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ + log_k 0.6 # table 10.5 +# Lead + Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ + log_k 4.65 + + Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ + log_k 0.3 # table 10.5 +# +# Derived constants table 10.5 +# +# Magnesium + Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ + log_k -4.6 +# Manganese + Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ + log_k -0.4 # table 10.5 + + Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ + log_k -3.5 # table 10.5 +# Iron + Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ + log_k 0.7 # LFER using table 10.5 + + Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ + log_k -2.5 # LFER using table 10.5 + +############################################### +# ANIONS # +############################################### +# +# Anions from table 10.6 +# +# Phosphate + Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O + log_k 31.29 + + Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O + log_k 25.39 + + Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O + log_k 17.72 +# +# Anions from table 10.7 +# +# Borate + Hfo_wOH + B(OH)3 = Hfo_wH2BO3 + H2O + log_k 0.62 +# +# Anions from table 10.8 +# +# Sulfate + Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O + log_k 7.78 + + Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 + log_k 0.79 +# +# Derived constants table 10.10 +# + Hfo_wOH + F- + H+ = Hfo_wF + H2O + log_k 8.7 + + Hfo_wOH + F- = Hfo_wOHF- + log_k 1.6 +# +# Carbonate: Van Geen et al., 1994 reoptimized for HFO +# 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L +# +# Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O +# log_k 12.56 +# +# Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O +# log_k 20.62 + +# 9/19/96 +# Added analytical expression for H2S, NH3, KSO4. +# Added species CaHSO4+. +# Added delta H for Goethite. + +RATES + +########### +#K-feldspar +########### +# +# Sverdrup, H.U., 1990, The kinetics of base cation release due to +# chemical weathering: Lund University Press, Lund, 246 p. +# +# Example of KINETICS data block for K-feldspar rate: +# KINETICS 1 +# K-feldspar +# -m0 2.16 # 10% K-fsp, 0.1 mm cubes +# -m 1.94 +# -parms 1.36e4 0.1 + +K-feldspar + -start + 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s + 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) + 3 rem parm(2) = corrects for field rate relative to lab rate + 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) + + 10 dif_temp = 1/TK - 1/298 + 20 pk_H = 12.5 + 3134 * dif_temp + 30 pk_w = 15.3 + 1838 * dif_temp + 40 pk_OH = 14.2 + 3134 * dif_temp + 50 pk_CO2 = 14.6 + 1677 * dif_temp + #60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC + 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 + 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 + #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 + 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time + 81 rem decrease rate on precipitation + 90 if SR("K-feldspar") > 1 then moles = moles * 0.1 + 100 save moles + -end + +########### +#Albite +########### +# +# Sverdrup, H.U., 1990, The kinetics of base cation release due to +# chemical weathering: Lund University Press, Lund, 246 p. +# +# Example of KINETICS data block for Albite rate: +# KINETICS 1 +# Albite +# -m0 0.43 # 2% Albite, 0.1 mm cubes +# -parms 2.72e3 0.1 + +Albite + -start + 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s + 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) + 3 rem parm(2) = corrects for field rate relative to lab rate + 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) + + 10 dif_temp = 1/TK - 1/298 + 20 pk_H = 12.5 + 3359 * dif_temp + 30 pk_w = 14.8 + 2648 * dif_temp + 40 pk_OH = 13.7 + 3359 * dif_temp + #41 rem ^12.9 in Sverdrup, but larger than for oligoclase... + 50 pk_CO2 = 14.0 + 1677 * dif_temp + #60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC + 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 + 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 + #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 + 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time + 81 rem decrease rate on precipitation + 90 if SR("Albite") > 1 then moles = moles * 0.1 + 100 save moles + -end + +######## +#Calcite +######## +# +# Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978, +# American Journal of Science, v. 278, p. 179-216. +# +# Example of KINETICS data block for calcite rate: +# +# KINETICS 1 +# Calcite +# -tol 1e-8 +# -m0 3.e-3 +# -m 3.e-3 +# -parms 5.0 0.6 +Calcite + -start + 1 rem Modified from Plummer and others, 1978 + 2 rem parm(1) = A/V, 1/m parm(2) = exponent for m/m0 + + 10 si_cc = si("Calcite") + 20 if (m <= 0 and si_cc < 0) then goto 200 + 30 k1 = 10^(0.198 - 444.0 / (273.16 + tc) ) + 40 k2 = 10^(2.84 - 2177.0 / (273.16 + tc) ) + 50 if tc <= 25 then k3 = 10^(-5.86 - 317.0 / (273.16 + tc) ) + 60 if tc > 25 then k3 = 10^(-1.1 - 1737.0 / (273.16 + tc) ) + 70 t = 1 + 80 if m0 > 0 then t = m/m0 + 90 if t = 0 then t = 1 + 100 moles = parm(1) * (t)^parm(2) + 110 moles = moles * (k1 * act("H+") + k2 * act("CO2") + k3 * act("H2O")) + 120 moles = moles * (1 - 10^(2/3*si_cc)) + 130 moles = moles * time + 140 if (moles > m) then moles = m + 150 if (moles >= 0) then goto 200 + 160 temp = tot("Ca") + 170 mc = tot("C(4)") + 180 if mc < temp then temp = mc + 190 if -moles > temp then moles = -temp + 200 save moles + -end + +####### +#Pyrite +####### +# +# Williamson, M.A. and Rimstidt, J.D., 1994, +# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454. +# +# Example of KINETICS data block for pyrite rate: +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 2.0 0.67 .5 -0.11 +Pyrite + -start + 1 rem Williamson and Rimstidt, 1994 + 2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0) + 3 rem parm(3) = exp for O2 parm(4) = exp for H+ + + 10 if (m <= 0) then goto 200 + 20 if (si("Pyrite") >= 0) then goto 200 + 20 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0) + 30 moles = 10^rate * time + 40 if (moles > m) then moles = m + 200 save moles + -end + +########## +#Organic_C +########## +# +# Example of KINETICS data block for Organic_C rate: +# KINETICS 1 +# Organic_C +# -tol 1e-8 +# # m in mol/kgw +# -m0 5e-3 +# -m 5e-3 +Organic_C + -start + 1 rem Additive Monod kinetics + 2 rem Electron acceptors: O2, NO3, and SO4 + + 10 if (m <= 0) then goto 200 + 20 mO2 = mol("O2") + 30 mNO3 = tot("N(5)") + 40 mSO4 = tot("S(6)") + 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3) + 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4) + 70 moles = rate * m * (m/m0) * time + 80 if (moles > m) then moles = m + 200 save moles + -end + +########### +#Pyrolusite +########### +# +# Postma, D. and Appelo, C.A.J., 2000, GCA 64, in press +# +# Example of KINETICS data block for Pyrolusite +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +Pyrolusite + -start + 5 if (m <= 0.0) then goto 200 + 7 sr_pl = sr("Pyrolusite") + 9 if abs(1 - sr_pl) < 0.1 then goto 200 + 10 if (sr_pl > 1.0) then goto 100 + #20 rem initially 1 mol Fe+2 = 0.5 mol pyrolusite. k*A/V = 1/time (3 cells) + #22 rem time (3 cells) = 1.432e4. 1/time = 6.98e-5 + 30 Fe_t = tot("Fe(2)") + 32 if Fe_t < 1.e-8 then goto 200 + 40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl) + 50 if moles > Fe_t / 2 then moles = Fe_t / 2 + 70 if moles > m then moles = m + 90 goto 200 + 100 Mn_t = tot("Mn") + 110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time + 120 if moles <= -Mn_t then moles = -Mn_t + 200 save moles + -end +END diff --git a/database/llnl.dat b/database/llnl.dat index 0c1904c4..64b2c231 100644 --- a/database/llnl.dat +++ b/database/llnl.dat @@ -1,8 +1,12 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\llnl.dat, 17/05/2024 14:23, 19306 lines, 776949 bytes, md5=efbcb7244fbe9063e0020cf5d1e00458 +# Created 17 May 2024 14:30:38 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "llnl.dat" + # $Id: llnl.dat 12758 2017-08-01 22:09:36Z dlpark $ #Data are from 'thermo.com.V8.R6.230' prepared by Jim Johnson at #Lawrence Livermore National Laboratory, in Geochemist's Workbench #format. Converted to Phreeqc format by Greg Anderson with help from -#David Parkhurst. A few organic species have been omitted. +#David Parkhurst. A few organic species have been omitted. #Delta H of reaction calculated from Delta H of formations given in #thermo.com.V8.R6.230 (8 Mar 2000). @@ -17,34 +21,34 @@ LLNL_AQUEOUS_MODEL_PARAMETERS -temperatures - 0.0100 25.0000 60.0000 100.0000 - 150.0000 200.0000 250.0000 300.0000 + 0.01 25 60 100 + 150 200 250 300 #debye huckel a (adh) -dh_a - 0.4939 0.5114 0.5465 0.5995 - 0.6855 0.7994 0.9593 1.2180 + 0.4939 0.5114 0.5465 0.5995 + 0.6855 0.7994 0.9593 1.218 #debye huckel b (bdh) -dh_b - 0.3253 0.3288 0.3346 0.3421 - 0.3525 0.3639 0.3766 0.3925 + 0.3253 0.3288 0.3346 0.3421 + 0.3525 0.3639 0.3766 0.3925 -bdot - 0.0374 0.0410 0.0438 0.0460 - 0.0470 0.0470 0.0340 0.0000 + 0.0374 0.041 0.0438 0.046 + 0.047 0.047 0.034 0 #cco2 (coefficients for the Drummond (1981) polynomial) -co2_coefs - -1.0312 0.0012806 - 255.9 0.4445 + -1.0312 0.0012806 + 255.9 0.4445 -0.001606 NAMED_EXPRESSIONS # -# formation of O2 from H2O -# 2H2O = O2 + 4H+ + 4e- +# formation of O2 from H2O +# 2H2O = O2 + 4H+ + 4e- # Log_K_O2 - log_k -85.9951 - -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 + log_k -85.9951 + -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 # Enthalpy of formation: -2.9 kcal/mol - -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 + -analytic 38.0229 7.99407E-3 -2.7655e+4 -1.4506e+1 199838.45 # Range: 0-300 @@ -52,792 +56,792 @@ SOLUTION_MASTER_SPECIES #element species alk gfw_formula element_gfw -Acetate HAcetate 0.0 Acetate 59. -Ag Ag+ 0.0 Ag 107.8682 -Ag(1) Ag+ 0 Ag -Ag(2) Ag+2 0 Ag -Al Al+3 0.0 Al 26.9815 -Alkalinity HCO3- 1.0 Ca0.5(CO3)0.5 50.05 -Am Am+3 0.0 Am 243.0000 -Am(+2) Am+2 0.0 Am -Am(+3) Am+3 0.0 Am -Am(+4) Am+4 0.0 Am -Am(+5) AmO2+ 0.0 Am -Am(+6) AmO2+2 0.0 Am -Ar Ar 0.0 Ar 39.948 -As H2AsO4- 0.0 As 74.9216 -As(-3) AsH3 0.0 As -As(+3) H2AsO3- 0.0 As -As(+5) H2AsO4- 0.0 As -Au Au+ 0.0 Au 196.9665 -Au(+1) Au+ 0.0 Au -Au(+3) Au+3 0.0 Au +Acetate HAcetate 0 Acetate 59 +Ag Ag+ 0 Ag 107.8682 +Ag(1) Ag+ 0 Ag +Ag(2) Ag+2 0 Ag +Al Al+3 0 Al 26.9815 +Alkalinity HCO3- 1 Ca0.5(CO3)0.5 50.05 +Am Am+3 0 Am 243 +Am(+2) Am+2 0 Am +Am(+3) Am+3 0 Am +Am(+4) Am+4 0 Am +Am(+5) AmO2+ 0 Am +Am(+6) AmO2+2 0 Am +Ar Ar 0 Ar 39.948 +As H2AsO4- 0 As 74.9216 +As(-3) AsH3 0 As +As(+3) H2AsO3- 0 As +As(+5) H2AsO4- 0 As +Au Au+ 0 Au 196.9665 +Au(+1) Au+ 0 Au +Au(+3) Au+3 0 Au #B H3BO3 0.0 B 10.811 -B B(OH)3 0.0 B 10.811 -B(3) B(OH)3 0 B -B(-5) BH4- 0 B -Ba Ba+2 0.0 Ba 137.3270 -Be Be+2 0.0 Be 9.0122 -Br Br- 0.0 Br 79.904 -Br(-03) Br3- 0 Br -Br(-1) Br- 0 Br -Br(0) Br2 0 Br -Br(1) BrO- 0 Br -Br(5) BrO3- 0 Br -Br(7) BrO4- 0 Br -C(-4) CH4 0.0 CH4 -C(-3) C2H6 0.0 C2H6 -C(-2) C2H4 0.0 C2H4 -C HCO3- 1.0 HCO3 12.0110 -C(+2) CO 0 C -C(+4) HCO3- 1.0 HCO3 -Ca Ca+2 0.0 Ca 40.078 -Cyanide Cyanide- 1.0 CN 26. -Cd Cd+2 0.0 Cd 112.411 -Ce Ce+3 0.0 Ce 140.115 -Ce(+2) Ce+2 0.0 Ce -Ce(+3) Ce+3 0.0 Ce -Ce(+4) Ce+4 0.0 Ce -Cl Cl- 0.0 Cl 35.4527 -Cl(-1) Cl- 0 Cl -Cl(1) ClO- 0 Cl -Cl(3) ClO2- 0 Cl -Cl(5) ClO3- 0 Cl -Cl(7) ClO4- 0 Cl -Co Co+2 0.0 Co 58.9332 -Co(+2) Co+2 0.0 Co -Co(+3) Co+3 0.0 Co -Cr CrO4-2 0.0 CrO4-2 51.9961 -Cr(+2) Cr+2 0.0 Cr -Cr(+3) Cr+3 0.0 Cr -Cr(+5) CrO4-3 0.0 Cr -Cr(+6) CrO4-2 0.0 Cr -Cs Cs+ 0.0 Cs 132.9054 -Cu Cu+2 0.0 Cu 63.546 -Cu(+1) Cu+1 0.0 Cu -Cu(+2) Cu+2 0.0 Cu -Dy Dy+3 0.0 Dy 162.50 -Dy(+2) Dy+2 0.0 Dy -Dy(+3) Dy+3 0.0 Dy -E e- 0.0 0.0 0.0 -Er Er+3 0.0 Er 167.26 -Er(+2) Er+2 0.0 Er -Er(+3) Er+3 0.0 Er -Ethylene Ethylene 0.0 Ethylene 28.0536 -Eu Eu+3 0.0 Eu 151.965 -Eu(+2) Eu+2 0.0 Eu -Eu(+3) Eu+3 0.0 Eu -F F- 0.0 F 18.9984 -Fe Fe+2 0.0 Fe 55.847 -Fe(+2) Fe+2 0.0 Fe -Fe(+3) Fe+3 -2.0 Fe -Ga Ga+3 0.0 Ga 69.723 -Gd Gd+3 0.0 Gd 157.25 -Gd(+2) Gd+2 0.0 Gd -Gd(+3) Gd+3 0.0 Gd -H H+ -1. H 1.0079 -H(0) H2 0.0 H -H(+1) H+ -1. 0.0 -He He 0.0 He 4.0026 -He(0) He 0.0 He -Hf Hf+4 0.0 Hf 178.49 -Hg Hg+2 0.0 Hg 200.59 -Hg(+1) Hg2+2 0.0 Hg -Hg(+2) Hg+2 0.0 Hg -Ho Ho+3 0.0 Ho 164.9303 -Ho(+2) Ho+2 0.0 Ho -Ho(+3) Ho+3 0.0 Ho -I I- 0.0 I 126.9045 -I(-03) I3- 0 I -I(-1) I- 0.0 I -I(+1) IO- 0.0 I -I(+5) IO3- 0.0 I -I(+7) IO4- 0.0 I -In In+3 0.0 In 114.82 -K K+ 0.0 K 39.0983 -Kr Kr 0.0 Kr 83.80 -Kr(0) Kr 0.0 Kr -La La+3 0.0 La 138.9055 -La(2) La+2 0 La -La(3) La+3 0 La -Li Li+ 0.0 Li 6.9410 -Lu Lu+3 0.0 Lu 174.967 -Mg Mg+2 0.0 Mg 24.305 -Mn Mn+2 0.0 Mn 54.938 -Mn(+2) Mn+2 0.0 Mn -Mn(+3) Mn+3 0.0 Mn -Mn(+6) MnO4-2 0 Mn -Mn(+7) MnO4- 0 Mn -Mo MoO4-2 0.0 Mo 95.94 -N NH3 1.0 N 14.0067 -N(-3) NH3 1.0 N -N(-03) N3- 0.0 N -N(0) N2 0.0 N -N(+3) NO2- 0.0 N -N(+5) NO3- 0.0 N -Na Na+ 0.0 Na 22.9898 -Nd Nd+3 0.0 Nd 144.24 -Nd(+2) Nd+2 0.0 Nd -Nd(+3) Nd+3 0.0 Nd -Ne Ne 0.0 Ne 20.1797 +B B(OH)3 0 B 10.811 +B(3) B(OH)3 0 B +B(-5) BH4- 0 B +Ba Ba+2 0 Ba 137.327 +Be Be+2 0 Be 9.0122 +Br Br- 0 Br 79.904 +Br(-03) Br3- 0 Br +Br(-1) Br- 0 Br +Br(0) Br2 0 Br +Br(1) BrO- 0 Br +Br(5) BrO3- 0 Br +Br(7) BrO4- 0 Br +C(-4) CH4 0 CH4 +C(-3) C2H6 0 C2H6 +C(-2) C2H4 0 C2H4 +C HCO3- 1 HCO3 12.011 +C(+2) CO 0 C +C(+4) HCO3- 1 HCO3 +Ca Ca+2 0 Ca 40.078 +Cyanide Cyanide- 1 CN 26 +Cd Cd+2 0 Cd 112.411 +Ce Ce+3 0 Ce 140.115 +Ce(+2) Ce+2 0 Ce +Ce(+3) Ce+3 0 Ce +Ce(+4) Ce+4 0 Ce +Cl Cl- 0 Cl 35.4527 +Cl(-1) Cl- 0 Cl +Cl(1) ClO- 0 Cl +Cl(3) ClO2- 0 Cl +Cl(5) ClO3- 0 Cl +Cl(7) ClO4- 0 Cl +Co Co+2 0 Co 58.9332 +Co(+2) Co+2 0 Co +Co(+3) Co+3 0 Co +Cr CrO4-2 0 CrO4-2 51.9961 +Cr(+2) Cr+2 0 Cr +Cr(+3) Cr+3 0 Cr +Cr(+5) CrO4-3 0 Cr +Cr(+6) CrO4-2 0 Cr +Cs Cs+ 0 Cs 132.9054 +Cu Cu+2 0 Cu 63.546 +Cu(+1) Cu+1 0 Cu +Cu(+2) Cu+2 0 Cu +Dy Dy+3 0 Dy 162.5 +Dy(+2) Dy+2 0 Dy +Dy(+3) Dy+3 0 Dy +E e- 1 0 0 +Er Er+3 0 Er 167.26 +Er(+2) Er+2 0 Er +Er(+3) Er+3 0 Er +Ethylene Ethylene 0 Ethylene 28.0536 +Eu Eu+3 0 Eu 151.965 +Eu(+2) Eu+2 0 Eu +Eu(+3) Eu+3 0 Eu +F F- 0 F 18.9984 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Ga Ga+3 0 Ga 69.723 +Gd Gd+3 0 Gd 157.25 +Gd(+2) Gd+2 0 Gd +Gd(+3) Gd+3 0 Gd +H H+ -1 H 1.0079 +H(0) H2 0 H +H(+1) H+ -1 0 +He He 0 He 4.0026 +He(0) He 0 He +Hf Hf+4 0 Hf 178.49 +Hg Hg+2 0 Hg 200.59 +Hg(+1) Hg2+2 0 Hg +Hg(+2) Hg+2 0 Hg +Ho Ho+3 0 Ho 164.9303 +Ho(+2) Ho+2 0 Ho +Ho(+3) Ho+3 0 Ho +I I- 0 I 126.9045 +I(-03) I3- 0 I +I(-1) I- 0 I +I(+1) IO- 0 I +I(+5) IO3- 0 I +I(+7) IO4- 0 I +In In+3 0 In 114.82 +K K+ 0 K 39.0983 +Kr Kr 0 Kr 83.8 +Kr(0) Kr 0 Kr +La La+3 0 La 138.9055 +La(2) La+2 0 La +La(3) La+3 0 La +Li Li+ 0 Li 6.941 +Lu Lu+3 0 Lu 174.967 +Mg Mg+2 0 Mg 24.305 +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Mn(+6) MnO4-2 0 Mn +Mn(+7) MnO4- 0 Mn +Mo MoO4-2 0 Mo 95.94 +N NH3 1 N 14.0067 +N(-3) NH3 1 N +N(-03) N3- 0 N +N(0) N2 0 N +N(+3) NO2- 0 N +N(+5) NO3- 0 N +Na Na+ 0 Na 22.9898 +Nd Nd+3 0 Nd 144.24 +Nd(+2) Nd+2 0 Nd +Nd(+3) Nd+3 0 Nd +Ne Ne 0 Ne 20.1797 #Ne(0) Ne 0.0 Ne -Ni Ni+2 0.0 Ni 58.69 -Np Np+4 0.0 Np 237.048 -Np(+3) Np+3 0.0 Np -Np(+4) Np+4 0.0 Np -Np(+5) NpO2+ 0.0 Np -Np(+6) NpO2+2 0.0 Np -O H2O 0.0 O 15.994 -O(-2) H2O 0.0 0.0 -O(0) O2 0.0 O +Ni Ni+2 0 Ni 58.69 +Np Np+4 0 Np 237.048 +Np(+3) Np+3 0 Np +Np(+4) Np+4 0 Np +Np(+5) NpO2+ 0 Np +Np(+6) NpO2+2 0 Np +O H2O 0 O 15.994 +O(-2) H2O 0 0 +O(0) O2 0 O O_phthalate O_phthalate-2 0 1 1 -P HPO4-2 2.0 P 30.9738 -P(-3) PH4+ 0 P -P(5) HPO4-2 2.0 P -Pb Pb+2 0.0 Pb 207.20 -Pb(+2) Pb+2 0.0 Pb -Pb(+4) Pb+4 0.0 Pb -Pd Pd+2 0.0 Pd 106.42 -Pm Pm+3 0.0 Pm 147.00 -Pm(+2) Pm+2 0.0 Pm -Pm(+3) Pm+3 0.0 Pm -Pr Pr+3 0.0 Pr 140.9076 -Pr(+2) Pr+2 0.0 Pr -Pr(+3) Pr+3 0.0 Pr -Pu Pu+4 0.0 Pu 244.00 -Pu(+3) Pu+3 0.0 Pu -Pu(+4) Pu+4 0.0 Pu -Pu(+5) PuO2+ 0.0 Pu -Pu(+6) PuO2+2 0.0 Pu -Ra Ra+2 0.0 Ra 226.025 -Rb Rb+ 0.0 Rb 85.4678 -Re ReO4- 0.0 Re 186.207 -Rn Rn 0.0 Rn 222.00 -Ru RuO4-2 0.0 Ru 101.07 -Ru(+2) Ru+2 0.0 Ru -Ru(+3) Ru+3 0.0 Ru -Ru(+4) Ru(OH)2+2 0.0 Ru -Ru(+6) RuO4-2 0.0 Ru -Ru(+7) RuO4- 0.0 Ru -Ru(+8) RuO4 0.0 Ru -S SO4-2 0.0 SO4 32.066 -S(-2) HS- 1.0 S -S(+2) S2O3-2 0.0 S -S(+3) S2O4-2 0.0 S -S(+4) SO3-2 0.0 S -S(+5) S2O5-2 0.0 S -S(+6) SO4-2 0.0 SO4 -S(+7) S2O8-2 0.0 S -S(+8) HSO5- 0.0 S -Sb Sb(OH)3 0.0 Sb 121.75 -Sc Sc+3 0.0 Sc 44.9559 -Se SeO3-2 0.0 Se 78.96 -Se(-2) HSe- 0.0 Se -Se(+4) SeO3-2 0.0 Se -Se(+6) SeO4-2 0.0 Se -Si SiO2 0.0 SiO2 28.0855 -Sm Sm+3 0.0 Sm 150.36 -Sm(+2) Sm+2 0.0 Sm -Sm(+3) Sm+3 0.0 Sm -Sn Sn+2 0.0 Sn 118.71 -Sn(+2) Sn+2 0.0 Sn -Sn(+4) Sn+4 0.0 Sn -Sr Sr+2 0.0 Sr 87.62 -Tb Tb+3 0.0 Tb 158.9253 -Tb(+2) Tb+2 0.0 Tb -Tb(+3) Tb+3 0.0 Tb -Tc TcO4- 0.0 Tc 98.00 -Tc(+3) Tc+3 0.0 Tc -Tc(+4) TcO+2 0.0 Tc -Tc(+5) TcO4-3 0.0 Tc -Tc(+6) TcO4-2 0.0 Tc -Tc(+7) TcO4- 0.0 Tc -Thiocyanate Thiocyanate- 0.0 SCN 58. -Th Th+4 0.0 Th 232.0381 -Ti Ti(OH)4 0.0 Ti 47.88 -Tl Tl+ 0.0 Tl 204.3833 -Tl(+1) Tl+ 0.0 Tl -Tl(+3) Tl+3 0.0 Tl -Tm Tm+3 0.0 Tm 168.9342 -Tm(+2) Tm+2 0.0 Tm -Tm(+3) Tm+3 0.0 Tm -U UO2+2 0.0 U 238.0289 -U(+3) U+3 0.0 U -U(+4) U+4 0.0 U -U(+5) UO2+ 0.0 U -U(+6) UO2+2 0.0 U -V VO+2 0.0 V 50.9415 -V(+3) V+3 0.0 V -V(+4) VO+2 0.0 V -V(+5) VO2+ 0.0 V -W WO4-2 0.0 W 183.85 -Xe Xe 0.0 Xe 131.29 -Xe(0) Xe 0.0 Xe -Y Y+3 0.0 Y 88.9059 -Yb Yb+3 0.0 Yb 173.04 -Yb(+2) Yb+2 0.0 Yb -Yb(+3) Yb+3 0.0 Yb -Zn Zn+2 0.0 Zn 65.39 -Zr Zr(OH)2+2 0.0 Zr 91.224 +P HPO4-2 2 P 30.9738 +P(-3) PH4+ 0 P +P(5) HPO4-2 2 P +Pb Pb+2 0 Pb 207.2 +Pb(+2) Pb+2 0 Pb +Pb(+4) Pb+4 0 Pb +Pd Pd+2 0 Pd 106.42 +Pm Pm+3 0 Pm 147 +Pm(+2) Pm+2 0 Pm +Pm(+3) Pm+3 0 Pm +Pr Pr+3 0 Pr 140.9076 +Pr(+2) Pr+2 0 Pr +Pr(+3) Pr+3 0 Pr +Pu Pu+4 0 Pu 244 +Pu(+3) Pu+3 0 Pu +Pu(+4) Pu+4 0 Pu +Pu(+5) PuO2+ 0 Pu +Pu(+6) PuO2+2 0 Pu +Ra Ra+2 0 Ra 226.025 +Rb Rb+ 0 Rb 85.4678 +Re ReO4- 0 Re 186.207 +Rn Rn 0 Rn 222 +Ru RuO4-2 0 Ru 101.07 +Ru(+2) Ru+2 0 Ru +Ru(+3) Ru+3 0 Ru +Ru(+4) Ru(OH)2+2 0 Ru +Ru(+6) RuO4-2 0 Ru +Ru(+7) RuO4- 0 Ru +Ru(+8) RuO4 0 Ru +S SO4-2 0 SO4 32.066 +S(-2) HS- 1 S +S(+2) S2O3-2 0 S +S(+3) S2O4-2 0 S +S(+4) SO3-2 0 S +S(+5) S2O5-2 0 S +S(+6) SO4-2 0 SO4 +S(+7) S2O8-2 0 S +S(+8) HSO5- 0 S +Sb Sb(OH)3 0 Sb 121.75 +Sc Sc+3 0 Sc 44.9559 +Se SeO3-2 0 Se 78.96 +Se(-2) HSe- 0 Se +Se(+4) SeO3-2 0 Se +Se(+6) SeO4-2 0 Se +Si SiO2 0 SiO2 28.0855 +Sm Sm+3 0 Sm 150.36 +Sm(+2) Sm+2 0 Sm +Sm(+3) Sm+3 0 Sm +Sn Sn+2 0 Sn 118.71 +Sn(+2) Sn+2 0 Sn +Sn(+4) Sn+4 0 Sn +Sr Sr+2 0 Sr 87.62 +Tb Tb+3 0 Tb 158.9253 +Tb(+2) Tb+2 0 Tb +Tb(+3) Tb+3 0 Tb +Tc TcO4- 0 Tc 98 +Tc(+3) Tc+3 0 Tc +Tc(+4) TcO+2 0 Tc +Tc(+5) TcO4-3 0 Tc +Tc(+6) TcO4-2 0 Tc +Tc(+7) TcO4- 0 Tc +Thiocyanate Thiocyanate- 0 SCN 58 +Th Th+4 0 Th 232.0381 +Ti Ti(OH)4 0 Ti 47.88 +Tl Tl+ 0 Tl 204.3833 +Tl(+1) Tl+ 0 Tl +Tl(+3) Tl+3 0 Tl +Tm Tm+3 0 Tm 168.9342 +Tm(+2) Tm+2 0 Tm +Tm(+3) Tm+3 0 Tm +U UO2+2 0 U 238.0289 +U(+3) U+3 0 U +U(+4) U+4 0 U +U(+5) UO2+ 0 U +U(+6) UO2+2 0 U +V VO+2 0 V 50.9415 +V(+3) V+3 0 V +V(+4) VO+2 0 V +V(+5) VO2+ 0 V +W WO4-2 0 W 183.85 +Xe Xe 0 Xe 131.29 +Xe(0) Xe 0 Xe +Y Y+3 0 Y 88.9059 +Yb Yb+3 0 Yb 173.04 +Yb(+2) Yb+2 0 Yb +Yb(+3) Yb+3 0 Yb +Zn Zn+2 0 Zn 65.39 +Zr Zr(OH)2+2 0 Zr 91.224 SOLUTION_SPECIES -HAcetate = HAcetate - -llnl_gamma 3.0000 +HAcetate = HAcetate + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction HAcetate + -delta_H 0 kJ/mol # Calculated enthalpy of reaction HAcetate # Enthalpy of formation: -116.1 kcal/mol -Ag+ = Ag+ - -llnl_gamma 2.5000 +Ag+ = Ag+ + -llnl_gamma 2.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ag+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ag+ # Enthalpy of formation: 25.275 kcal/mol -Al+3 = Al+3 - -llnl_gamma 9.0000 +Al+3 = Al+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Al+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Al+3 # Enthalpy of formation: -128.681 kcal/mol -Am+3 = Am+3 - -llnl_gamma 5.0000 +Am+3 = Am+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Am+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Am+3 # Enthalpy of formation: -616.7 kJ/mol -Ar = Ar - -llnl_gamma 3.0000 +Ar = Ar + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ar + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ar # Enthalpy of formation: -2.87 kcal/mol -Au+ = Au+ - -llnl_gamma 4.0000 +Au+ = Au+ + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Au+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Au+ # Enthalpy of formation: 47.58 kcal/mol -B(OH)3 = B(OH)3 - -llnl_gamma 3.0000 +B(OH)3 = B(OH)3 + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction B(OH)3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction B(OH)3 # Enthalpy of formation: -256.82 kcal/mol -Ba+2 = Ba+2 - -llnl_gamma 5.0000 +Ba+2 = Ba+2 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ba+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ba+2 # Enthalpy of formation: -128.5 kcal/mol -Be+2 = Be+2 - -llnl_gamma 8.0000 +Be+2 = Be+2 + -llnl_gamma 8 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Be+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Be+2 # Enthalpy of formation: -91.5 kcal/mol -Br- = Br- - -llnl_gamma 3.0000 +Br- = Br- + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Br- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Br- # Enthalpy of formation: -29.04 kcal/mol -Ca+2 = Ca+2 - -llnl_gamma 6.0000 +Ca+2 = Ca+2 + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ca+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ca+2 # Enthalpy of formation: -129.8 kcal/mol -Cd+2 = Cd+2 - -llnl_gamma 5.0000 +Cd+2 = Cd+2 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cd+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cd+2 # Enthalpy of formation: -18.14 kcal/mol -Ce+3 = Ce+3 - -llnl_gamma 9.0000 +Ce+3 = Ce+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ce+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ce+3 # Enthalpy of formation: -167.4 kcal/mol -Cl- = Cl- - -llnl_gamma 3.0000 +Cl- = Cl- + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cl- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cl- # Enthalpy of formation: -39.933 kcal/mol -Co+2 = Co+2 - -llnl_gamma 6.0000 +Co+2 = Co+2 + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Co+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Co+2 # Enthalpy of formation: -13.9 kcal/mol -CrO4-2 = CrO4-2 - -llnl_gamma 4.0000 +CrO4-2 = CrO4-2 + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction CrO4-2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction CrO4-2 # Enthalpy of formation: -210.6 kcal/mol -Cs+ = Cs+ - -llnl_gamma 2.5000 +Cs+ = Cs+ + -llnl_gamma 2.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cs+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cs+ # Enthalpy of formation: -61.67 kcal/mol -Cu+2 = Cu+2 - -llnl_gamma 6.0000 +Cu+2 = Cu+2 + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cu+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cu+2 # Enthalpy of formation: 15.7 kcal/mol -Dy+3 = Dy+3 - -llnl_gamma 5.0000 +Dy+3 = Dy+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Dy+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Dy+3 # Enthalpy of formation: -166.5 kcal/mol -e- = e- +e- = e- log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction e- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction e- # Enthalpy of formation: -0 kJ/mol -Er+3 = Er+3 - -llnl_gamma 5.0000 +Er+3 = Er+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Er+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Er+3 # Enthalpy of formation: -168.5 kcal/mol -Ethylene = Ethylene - -llnl_gamma 3.0000 +Ethylene = Ethylene + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ethylene + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ethylene # Enthalpy of formation: 8.57 kcal/mol -Eu+3 = Eu+3 - -llnl_gamma 5.0000 +Eu+3 = Eu+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Eu+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Eu+3 # Enthalpy of formation: -144.7 kcal/mol -F- = F- - -llnl_gamma 3.5000 +F- = F- + -llnl_gamma 3.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction F- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction F- # Enthalpy of formation: -80.15 kcal/mol -Fe+2 = Fe+2 - -llnl_gamma 6.0000 +Fe+2 = Fe+2 + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Fe+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Fe+2 # Enthalpy of formation: -22.05 kcal/mol -Ga+3 = Ga+3 - -llnl_gamma 5.0000 +Ga+3 = Ga+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ga+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ga+3 # Enthalpy of formation: -50.6 kcal/mol -Gd+3 = Gd+3 - -llnl_gamma 5.0000 +Gd+3 = Gd+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Gd+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Gd+3 # Enthalpy of formation: -164.2 kcal/mol -H+ = H+ - -llnl_gamma 9.0000 +H+ = H+ + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H+ # Enthalpy of formation: -0 kJ/mol -He = He - -llnl_gamma 3.0000 +He = He + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction He + -delta_H 0 kJ/mol # Calculated enthalpy of reaction He # Enthalpy of formation: -0.15 kcal/mol -H2AsO4- = H2AsO4- - -llnl_gamma 4.0000 +H2AsO4- = H2AsO4- + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2AsO4- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2AsO4- # Enthalpy of formation: -217.39 kcal/mol -HCO3- = HCO3- - -llnl_gamma 4.0000 +HCO3- = HCO3- + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction HCO3- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction HCO3- # Enthalpy of formation: -164.898 kcal/mol -HPO4-2 = HPO4-2 - -llnl_gamma 4.0000 +HPO4-2 = HPO4-2 + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction HPO4-2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction HPO4-2 # Enthalpy of formation: -308.815 kcal/mol -Hf+4 = Hf+4 +Hf+4 = Hf+4 log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf+4 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf+4 # Enthalpy of formation: -0 kcal/mol -Hg+2 = Hg+2 - -llnl_gamma 5.0000 +Hg+2 = Hg+2 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Hg+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Hg+2 # Enthalpy of formation: 40.67 kcal/mol -Ho+3 = Ho+3 - -llnl_gamma 5.0000 +Ho+3 = Ho+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ho+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ho+3 # Enthalpy of formation: -169 kcal/mol -I- = I- - -llnl_gamma 3.0000 +I- = I- + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction I- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction I- # Enthalpy of formation: -13.6 kcal/mol -In+3 = In+3 - -llnl_gamma 9.0000 +In+3 = In+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction In+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction In+3 # Enthalpy of formation: -25 kcal/mol -K+ = K+ - -llnl_gamma 3.0000 +K+ = K+ + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction K+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction K+ # Enthalpy of formation: -60.27 kcal/mol -Kr = Kr - -llnl_gamma 3.0000 +Kr = Kr + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Kr + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Kr # Enthalpy of formation: -3.65 kcal/mol -La+3 = La+3 - -llnl_gamma 9.0000 +La+3 = La+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction La+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction La+3 # Enthalpy of formation: -169.6 kcal/mol -Li+ = Li+ - -llnl_gamma 6.0000 +Li+ = Li+ + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Li+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Li+ # Enthalpy of formation: -66.552 kcal/mol -Lu+3 = Lu+3 - -llnl_gamma 5.0000 +Lu+3 = Lu+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Lu+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Lu+3 # Enthalpy of formation: -167.9 kcal/mol -Mg+2 = Mg+2 - -llnl_gamma 8.0000 +Mg+2 = Mg+2 + -llnl_gamma 8 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mg+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mg+2 # Enthalpy of formation: -111.367 kcal/mol -Mn+2 = Mn+2 - -llnl_gamma 6.0000 +Mn+2 = Mn+2 + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mn+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mn+2 # Enthalpy of formation: -52.724 kcal/mol -MoO4-2 = MoO4-2 - -llnl_gamma 4.5000 +MoO4-2 = MoO4-2 + -llnl_gamma 4.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction MoO4-2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction MoO4-2 # Enthalpy of formation: -238.5 kcal/mol -NH3 = NH3 - -llnl_gamma 3.0000 +NH3 = NH3 + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction NH3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction NH3 # Enthalpy of formation: -19.44 kcal/mol -Na+ = Na+ - -llnl_gamma 4.0000 +Na+ = Na+ + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Na+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Na+ # Enthalpy of formation: -57.433 kcal/mol -Nd+3 = Nd+3 - -llnl_gamma 9.0000 +Nd+3 = Nd+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Nd+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Nd+3 # Enthalpy of formation: -166.5 kcal/mol -Ne = Ne - -llnl_gamma 3.0000 +Ne = Ne + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ne + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ne # Enthalpy of formation: -0.87 kcal/mol -Ni+2 = Ni+2 - -llnl_gamma 6.0000 +Ni+2 = Ni+2 + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ni+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ni+2 # Enthalpy of formation: -12.9 kcal/mol -Np+4 = Np+4 - -llnl_gamma 5.5000 +Np+4 = Np+4 + -llnl_gamma 5.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Np+4 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Np+4 # Enthalpy of formation: -556.001 kJ/mol -H2O = H2O - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2O +H2O = H2O + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2O # Enthalpy of formation: -68.317 kcal/mol -O_phthalate-2 = O_phthalate-2 - -llnl_gamma 4.0000 +O_phthalate-2 = O_phthalate-2 + -llnl_gamma 4 log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction O_phthalate-2 + -delta_H 0 # Not possible to calculate enthalpy of reaction O_phthalate-2 # Enthalpy of formation: -0 kcal/mol -Pb+2 = Pb+2 - -llnl_gamma 4.5000 +Pb+2 = Pb+2 + -llnl_gamma 4.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pb+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pb+2 # Enthalpy of formation: 0.22 kcal/mol -Pd+2 = Pd+2 - -llnl_gamma 4.5000 +Pd+2 = Pd+2 + -llnl_gamma 4.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pd+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pd+2 # Enthalpy of formation: 42.08 kcal/mol -Pm+3 = Pm+3 +Pm+3 = Pm+3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pm+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pm+3 # Enthalpy of formation: -688 kJ/mol -Pr+3 = Pr+3 - -llnl_gamma 9.0000 +Pr+3 = Pr+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pr+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pr+3 # Enthalpy of formation: -168.8 kcal/mol -Pu+4 = Pu+4 - -llnl_gamma 5.5000 +Pu+4 = Pu+4 + -llnl_gamma 5.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pu+4 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pu+4 # Enthalpy of formation: -535.893 kJ/mol -Ra+2 = Ra+2 - -llnl_gamma 5.0000 +Ra+2 = Ra+2 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ra+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ra+2 # Enthalpy of formation: -126.1 kcal/mol -Rb+ = Rb+ - -llnl_gamma 2.5000 +Rb+ = Rb+ + -llnl_gamma 2.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rb+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rb+ # Enthalpy of formation: -60.02 kcal/mol -ReO4- = ReO4- - -llnl_gamma 4.0000 +ReO4- = ReO4- + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction ReO4- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction ReO4- # Enthalpy of formation: -188.2 kcal/mol -Rn = Rn - -llnl_gamma 3.0000 +Rn = Rn + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rn + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rn # Enthalpy of formation: -5 kcal/mol -RuO4-2 = RuO4-2 - -llnl_gamma 4.0000 +RuO4-2 = RuO4-2 + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction RuO4-2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction RuO4-2 # Enthalpy of formation: -457.075 kJ/mol -SO4-2 = SO4-2 - -llnl_gamma 4.0000 +SO4-2 = SO4-2 + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SO4-2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SO4-2 # Enthalpy of formation: -217.4 kcal/mol -Sb(OH)3 = Sb(OH)3 - -llnl_gamma 3.0000 +Sb(OH)3 = Sb(OH)3 + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sb(OH)3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sb(OH)3 # Enthalpy of formation: -773.789 kJ/mol -Sc+3 = Sc+3 - -llnl_gamma 9.0000 +Sc+3 = Sc+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sc+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sc+3 # Enthalpy of formation: -146.8 kcal/mol -SeO3-2 = SeO3-2 - -llnl_gamma 4.0000 +SeO3-2 = SeO3-2 + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SeO3-2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SeO3-2 # Enthalpy of formation: -121.7 kcal/mol -SiO2 = SiO2 - -llnl_gamma 3.0000 +SiO2 = SiO2 + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SiO2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SiO2 # Enthalpy of formation: -209.775 kcal/mol -Sm+3 = Sm+3 - -llnl_gamma 9.0000 +Sm+3 = Sm+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sm+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sm+3 # Enthalpy of formation: -165.2 kcal/mol -Sn+2 = Sn+2 - -llnl_gamma 6.0000 +Sn+2 = Sn+2 + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sn+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sn+2 # Enthalpy of formation: -2.1 kcal/mol -Sr+2 = Sr+2 - -llnl_gamma 5.0000 +Sr+2 = Sr+2 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sr+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sr+2 # Enthalpy of formation: -131.67 kcal/mol -Tb+3 = Tb+3 - -llnl_gamma 5.0000 +Tb+3 = Tb+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tb+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tb+3 # Enthalpy of formation: -166.9 kcal/mol -TcO4- = TcO4- - -llnl_gamma 4.0000 +TcO4- = TcO4- + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction TcO4- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction TcO4- # Enthalpy of formation: -716.269 kJ/mol -Th+4 = Th+4 - -llnl_gamma 11.0000 +Th+4 = Th+4 + -llnl_gamma 11 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Th+4 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Th+4 # Enthalpy of formation: -183.8 kcal/mol -Ti(OH)4 = Ti(OH)4 - -llnl_gamma 3.0000 +Ti(OH)4 = Ti(OH)4 + -llnl_gamma 3 log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(OH)4 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(OH)4 # Enthalpy of formation: -0 kcal/mol -Tl+ = Tl+ - -llnl_gamma 2.5000 +Tl+ = Tl+ + -llnl_gamma 2.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tl+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tl+ # Enthalpy of formation: 1.28 kcal/mol -Tm+3 = Tm+3 - -llnl_gamma 5.0000 +Tm+3 = Tm+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tm+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tm+3 # Enthalpy of formation: -168.5 kcal/mol -UO2+2 = UO2+2 - -llnl_gamma 4.5000 +UO2+2 = UO2+2 + -llnl_gamma 4.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction UO2+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction UO2+2 # Enthalpy of formation: -1019 kJ/mol -VO+2 = VO+2 - -llnl_gamma 4.5000 +VO+2 = VO+2 + -llnl_gamma 4.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction VO+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction VO+2 # Enthalpy of formation: -116.3 kcal/mol -WO4-2 = WO4-2 - -llnl_gamma 5.0000 +WO4-2 = WO4-2 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction WO4-2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction WO4-2 # Enthalpy of formation: -257.1 kcal/mol -Xe = Xe - -llnl_gamma 3.0000 +Xe = Xe + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Xe + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Xe # Enthalpy of formation: -4.51 kcal/mol -Y+3 = Y+3 - -llnl_gamma 9.0000 +Y+3 = Y+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Y+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Y+3 # Enthalpy of formation: -170.9 kcal/mol -Yb+3 = Yb+3 - -llnl_gamma 5.0000 +Yb+3 = Yb+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Yb+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Yb+3 # Enthalpy of formation: -160.3 kcal/mol -Zn+2 = Zn+2 - -llnl_gamma 6.0000 +Zn+2 = Zn+2 + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zn+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zn+2 # Enthalpy of formation: -36.66 kcal/mol -Zr(OH)2+2 = Zr(OH)2+2 - -llnl_gamma 4.5000 +Zr(OH)2+2 = Zr(OH)2+2 + -llnl_gamma 4.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zr(OH)2+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zr(OH)2+2 # Enthalpy of formation: -260.717 kcal/mol -2H2O = O2 + 4H+ + 4e- +2 H2O = O2 + 4 H+ + 4 e- -CO2_llnl_gamma - log_k -85.9951 - -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 + log_k -85.9951 + -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 # Enthalpy of formation: -2.9 kcal/mol - -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 + -analytic 38.0229 7.99407E-3 -2.7655e+4 -1.4506e+1 199838.45 # Range: 0-300 - 1.0000 SO4-- + 1.0000 H+ = HS- +2.0000 O2 - -llnl_gamma 3.5 - log_k -138.3169 - -delta_H 869.226 kJ/mol # Calculated enthalpy of reaction HS- + SO4-2 + H+ = HS- + 2 O2 + -llnl_gamma 3.5 + log_k -138.3169 + -delta_H 869.226 kJ/mol # Calculated enthalpy of reaction HS- # Enthalpy of formation: -3.85 kcal/mol - -analytic 2.6251e+001 3.9525e-002 -4.5443e+004 -1.1107e+001 3.1843e+005 + -analytic 2.6251e+1 3.9525e-2 -4.5443e+4 -1.1107e+1 3.1843e+5 # -Range: 0-300 - .5000 O2 + 2.0000 HS- = S2-- + H2O + .5 O2 + 2 HS- = S2-2 + H2O #2 HS- = S2-- +2 H+ + 2e- - -llnl_gamma 4.0 - log_k 33.2673 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2-2 + -llnl_gamma 4 + log_k 33.2673 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.21730E+02 -0.12307E-02 0.10098E+05 -0.88813E+01 0.15757E+03 - -mass_balance S(-2)2 + -analytic 0.2173E+2 -0.12307E-2 0.10098E+5 -0.88813E+1 0.15757E+3 + -mass_balance S(-2)2 # -Range: 0-300 # -add_logk Log_K_O2 0.5 -2.0000 H+ + 2.0000 SO3-- = S2O3-- + O2 + H2O - -llnl_gamma 4.0 - log_k -40.2906 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O3-2 +2 H+ + 2 SO3-2 = S2O3-2 + O2 + H2O + -llnl_gamma 4 + log_k -40.2906 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O3-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.77679E+02 0.65761E-01 -0.15438E+05 -0.34651E+02 -0.24092E+03 + -analytic 0.77679E+2 0.65761E-1 -0.15438E+5 -0.34651E+2 -0.24092E+3 # -Range: 0-300 - 1.0000 H+ + 1.0000 Ag+ + 0.2500 O2 = Ag++ +0.5000 H2O - -llnl_gamma 4.5 - log_k -12.1244 - -delta_H 22.9764 kJ/mol # Calculated enthalpy of reaction Ag+2 + H+ + Ag+ + 0.25 O2 = Ag+2 + 0.5 H2O + -llnl_gamma 4.5 + log_k -12.1244 + -delta_H 22.9764 kJ/mol # Calculated enthalpy of reaction Ag+2 # Enthalpy of formation: 64.2 kcal/mol - -analytic -4.7312e+001 -1.5239e-002 -4.1954e+002 1.6622e+001 -6.5328e+000 + -analytic -4.7312e+1 -1.5239e-2 -4.1954e+2 1.6622e+1 -6.5328e+0 # -Range: 0-300 - 1.0000 Am+++ + 0.5000 H2O = Am++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -60.3792 - -delta_H 401.953 kJ/mol # Calculated enthalpy of reaction Am+2 + Am+3 + 0.5 H2O = Am+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -60.3792 + -delta_H 401.953 kJ/mol # Calculated enthalpy of reaction Am+2 # Enthalpy of formation: -354.633 kJ/mol - -analytic 1.4922e+001 3.5993e-003 -2.0987e+004 -2.4146e+000 -3.2749e+002 + -analytic 1.4922e+1 3.5993e-3 -2.0987e+4 -2.4146e+0 -3.2749e+2 # -Range: 0-300 - 1.0000 H+ + 1.0000 Am+++ + 0.2500 O2 = Am++++ +0.5000 H2O - -llnl_gamma 5.5 - log_k -22.7073 - -delta_H 70.8142 kJ/mol # Calculated enthalpy of reaction Am+4 + H+ + Am+3 + 0.25 O2 = Am+4 + 0.5 H2O + -llnl_gamma 5.5 + log_k -22.7073 + -delta_H 70.8142 kJ/mol # Calculated enthalpy of reaction Am+4 # Enthalpy of formation: -406 kJ/mol - -analytic -1.7460e+001 -2.2336e-003 -3.5139e+003 2.9102e+000 -5.4826e+001 + -analytic -1.746e+1 -2.2336e-3 -3.5139e+3 2.9102e+0 -5.4826e+1 # -Range: 0-300 - 1.0000 H2O + 1.0000 Am+++ + 0.5000 O2 = AmO2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.384 - -delta_H 104.345 kJ/mol # Calculated enthalpy of reaction AmO2+ + H2O + Am+3 + 0.5 O2 = AmO2+ + 2 H+ + -llnl_gamma 4 + log_k -15.384 + -delta_H 104.345 kJ/mol # Calculated enthalpy of reaction AmO2+ # Enthalpy of formation: -804.26 kJ/mol - -analytic 1.4110e+001 6.9728e-003 -4.2098e+003 -6.0936e+000 -2.1192e+005 + -analytic 1.411e+1 6.9728e-3 -4.2098e+3 -6.0936e+0 -2.1192e+5 # -Range: 0-300 - 1.0000 Am+++ + 0.7500 O2 + 0.5000 H2O = AmO2++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -20.862 - -delta_H 117.959 kJ/mol # Calculated enthalpy of reaction AmO2+2 + Am+3 + 0.75 O2 + 0.5 H2O = AmO2+2 + H+ + -llnl_gamma 4.5 + log_k -20.862 + -delta_H 117.959 kJ/mol # Calculated enthalpy of reaction AmO2+2 # Enthalpy of formation: -650.76 kJ/mol - -analytic 5.7163e+001 4.0278e-003 -8.4633e+003 -2.0550e+001 -1.3208e+002 + -analytic 5.7163e+1 4.0278e-3 -8.4633e+3 -2.055e+1 -1.3208e+2 # -Range: 0-300 - 1.0000 H2AsO4- + 1.0000 H+ = AsH3 +2.0000 O2 - -llnl_gamma 3.0 - log_k -155.1907 - -delta_H 931.183 kJ/mol # Calculated enthalpy of reaction AsH3 + H2AsO4- + H+ = AsH3 + 2 O2 + -llnl_gamma 3 + log_k -155.1907 + -delta_H 931.183 kJ/mol # Calculated enthalpy of reaction AsH3 # Enthalpy of formation: 10.968 kcal/mol - -analytic 2.8310e+002 9.6961e-002 -5.4830e+004 -1.1449e+002 -9.3119e+002 + -analytic 2.831e+2 9.6961e-2 -5.483e+4 -1.1449e+2 -9.3119e+2 # -Range: 0-200 - 2.0000 H+ + 1.0000 Au+ + 0.5000 O2 = Au+++ +1.0000 H2O - -llnl_gamma 5.0 - log_k -4.3506 - -delta_H -73.2911 kJ/mol # Calculated enthalpy of reaction Au+3 + 2 H+ + Au+ + 0.5 O2 = Au+3 + H2O + -llnl_gamma 5 + log_k -4.3506 + -delta_H -73.2911 kJ/mol # Calculated enthalpy of reaction Au+3 # Enthalpy of formation: 96.93 kcal/mol - -analytic -6.8661e+001 -2.6838e-002 4.4549e+003 2.3178e+001 6.9534e+001 + -analytic -6.8661e+1 -2.6838e-2 4.4549e+3 2.3178e+1 6.9534e+1 # -Range: 0-300 - 1.0000 H2O + 1.0000 B(OH)3 = BH4- +2.0000 O2 +1.0000 H+ - -llnl_gamma 4.0 - log_k -237.1028 - -delta_H 1384.24 kJ/mol # Calculated enthalpy of reaction BH4- + H2O + B(OH)3 = BH4- + 2 O2 + H+ + -llnl_gamma 4 + log_k -237.1028 + -delta_H 1384.24 kJ/mol # Calculated enthalpy of reaction BH4- # Enthalpy of formation: 48.131 kJ/mol - -analytic -7.4930e+001 -7.2794e-003 -6.9168e+004 2.9105e+001 -1.0793e+003 + -analytic -7.493e+1 -7.2794e-3 -6.9168e+4 2.9105e+1 -1.0793e+3 # -Range: 0-300 - 3.0000 Br- + 2.0000 H+ + 0.5000 O2 = Br3- +1.0000 H2O - -llnl_gamma 4.0 - log_k +7.0696 - -delta_H -45.6767 kJ/mol # Calculated enthalpy of reaction Br3- + 3 Br- + 2 H+ + 0.5 O2 = Br3- + H2O + -llnl_gamma 4 + log_k 7.0696 + -delta_H -45.6767 kJ/mol # Calculated enthalpy of reaction Br3- # Enthalpy of formation: -31.17 kcal/mol - -analytic 1.4899e+002 6.4017e-002 -3.3831e+002 -6.4596e+001 -5.3232e+000 + -analytic 1.4899e+2 6.4017e-2 -3.3831e+2 -6.4596e+1 -5.3232e+0 # -Range: 0-300 - 1.0000 Br- + 0.5000 O2 = BrO- - -llnl_gamma 4.0 - log_k -10.9167 - -delta_H 33.4302 kJ/mol # Calculated enthalpy of reaction BrO- + Br- + 0.5 O2 = BrO- + -llnl_gamma 4 + log_k -10.9167 + -delta_H 33.4302 kJ/mol # Calculated enthalpy of reaction BrO- # Enthalpy of formation: -22.5 kcal/mol - -analytic 5.4335e+001 1.9509e-003 -4.2860e+003 -2.0799e+001 -6.6896e+001 + -analytic 5.4335e+1 1.9509e-3 -4.286e+3 -2.0799e+1 -6.6896e+1 # -Range: 0-300 - 1.5000 O2 + 1.0000 Br- = BrO3- - -llnl_gamma 3.5 - log_k -17.1443 - -delta_H 72.6342 kJ/mol # Calculated enthalpy of reaction BrO3- + 1.5 O2 + Br- = BrO3- + -llnl_gamma 3.5 + log_k -17.1443 + -delta_H 72.6342 kJ/mol # Calculated enthalpy of reaction BrO3- # Enthalpy of formation: -16.03 kcal/mol - -analytic 3.7156e+001 -4.7855e-003 -4.6208e+003 -1.4136e+001 -2.1385e+005 + -analytic 3.7156e+1 -4.7855e-3 -4.6208e+3 -1.4136e+1 -2.1385e+5 # -Range: 0-300 - 2.0000 O2 + 1.0000 Br- = BrO4- - -llnl_gamma 4.0 - log_k -33.104 - -delta_H 158.741 kJ/mol # Calculated enthalpy of reaction BrO4- + 2 O2 + Br- = BrO4- + -llnl_gamma 4 + log_k -33.104 + -delta_H 158.741 kJ/mol # Calculated enthalpy of reaction BrO4- # Enthalpy of formation: 3.1 kcal/mol - -analytic 8.1393e+001 -2.3409e-003 -1.2290e+004 -2.9336e+001 -1.9180e+002 + -analytic 8.1393e+1 -2.3409e-3 -1.229e+4 -2.9336e+1 -1.918e+2 # -Range: 0-300 -# 1.0000 NH3 + 1.0000 HCO3- = CN- +2.0000 H2O +0.5000 O2 -# -llnl_gamma 3.0 +# 1.0000 NH3 + 1.0000 HCO3- = CN- +2.0000 H2O +0.5000 O2 +# -llnl_gamma 3.0 # log_k -56.0505 # -delta_H 344.151 kJ/mol # Calculated enthalpy of reaction CN- # # Enthalpy of formation: 36 kcal/mol @@ -845,493 +849,493 @@ Zr(OH)2+2 = Zr(OH)2+2 # # -Range: 0-300 Cyanide- = Cyanide- - log_k 0 + log_k 0 - H+ + HCO3- + H2O = CH4 + 2.0000 O2 - -llnl_gamma 3.0 - log_k -144.1412 - -delta_H 863.599 kJ/mol # Calculated enthalpy of reaction CH4 + H+ + HCO3- + H2O = CH4 + 2 O2 + -llnl_gamma 3 + log_k -144.1412 + -delta_H 863.599 kJ/mol # Calculated enthalpy of reaction CH4 # Enthalpy of formation: -21.01 kcal/mol - -analytic -0.41698E+02 0.36584E-01 -0.40675E+05 0.93479E+01 -0.63468E+03 + -analytic -0.41698E+2 0.36584E-1 -0.40675E+5 0.93479E+1 -0.63468E+3 # -Range: 0-300 - 2.0000 H+ + 2.0000 HCO3- + H2O = C2H6 + 3.5000 O2 - -llnl_gamma 3.0 - log_k -228.6072 - -delta_H 0 # Not possible to calculate enthalpy of reaction C2H6 + 2 H+ + 2 HCO3- + H2O = C2H6 + 3.5 O2 + -llnl_gamma 3 + log_k -228.6072 + -delta_H 0 # Not possible to calculate enthalpy of reaction C2H6 # Enthalpy of formation: -0 kcal/mol - -analytic -0.10777E+02 0.72105E-01 -0.67489E+05 -0.13915E+02 -0.10531E+04 + -analytic -0.10777E+2 0.72105E-1 -0.67489E+5 -0.13915E+2 -0.10531E+4 # -Range: 0-300 - 2.000 H+ + 2.0000 HCO3- = C2H4 + 3.0000 O2 - -llnl_gamma 3.0 - log_k -254.5034 - -delta_H 1446.6 kJ/mol # Calculated enthalpy of reaction C2H4 + 2 H+ + 2 HCO3- = C2H4 + 3 O2 + -llnl_gamma 3 + log_k -254.5034 + -delta_H 1446.6 kJ/mol # Calculated enthalpy of reaction C2H4 # Enthalpy of formation: 24.65 kcal/mol - -analytic -0.30329E+02 0.71187E-01 -0.73140E+05 0.00000E+00 0.00000E+00 + -analytic -0.30329E+2 0.71187E-1 -0.7314E+5 0E+0 0E+0 # -Range: 0-300 - 1.0000 HCO3- + 1.0000 H+ = CO +1.0000 H2O +0.5000 O2 - -llnl_gamma 3.0 - log_k -41.7002 - -delta_H 277.069 kJ/mol # Calculated enthalpy of reaction CO + HCO3- + H+ = CO + H2O + 0.5 O2 + -llnl_gamma 3 + log_k -41.7002 + -delta_H 277.069 kJ/mol # Calculated enthalpy of reaction CO # Enthalpy of formation: -28.91 kcal/mol - -analytic 1.0028e+002 4.6877e-002 -1.8062e+004 -4.0263e+001 3.8031e+005 + -analytic 1.0028e+2 4.6877e-2 -1.8062e+4 -4.0263e+1 3.8031e+5 # -Range: 0-300 - 1.0000 Ce+++ + 0.5000 H2O = Ce++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -83.6754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+2 + Ce+3 + 0.5 H2O = Ce+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -83.6754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 H+ + 1.0000 Ce+++ + 0.2500 O2 = Ce++++ +0.5000 H2O - -llnl_gamma 5.5 - log_k -7.9154 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+4 + + H+ + Ce+3 + 0.25 O2 = Ce+4 + 0.5 H2O + -llnl_gamma 5.5 + log_k -7.9154 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+4 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Cl- + 0.5000 O2 = ClO- - -llnl_gamma 4.0 - log_k -15.1014 - -delta_H 66.0361 kJ/mol # Calculated enthalpy of reaction ClO- + + Cl- + 0.5 O2 = ClO- + -llnl_gamma 4 + log_k -15.1014 + -delta_H 66.0361 kJ/mol # Calculated enthalpy of reaction ClO- # Enthalpy of formation: -25.6 kcal/mol - -analytic 6.1314e+001 3.4812e-003 -6.0952e+003 -2.3043e+001 -9.5128e+001 + -analytic 6.1314e+1 3.4812e-3 -6.0952e+3 -2.3043e+1 -9.5128e+1 # -Range: 0-300 - 1.0000 O2 + 1.0000 Cl- = ClO2- - -llnl_gamma 4.0 - log_k -23.108 - -delta_H 112.688 kJ/mol # Calculated enthalpy of reaction ClO2- + O2 + Cl- = ClO2- + -llnl_gamma 4 + log_k -23.108 + -delta_H 112.688 kJ/mol # Calculated enthalpy of reaction ClO2- # Enthalpy of formation: -15.9 kcal/mol - -analytic 3.3638e+000 -6.1675e-003 -4.9726e+003 -2.0467e+000 -2.5769e+005 + -analytic 3.3638e+0 -6.1675e-3 -4.9726e+3 -2.0467e+0 -2.5769e+5 # -Range: 0-300 - 1.5000 O2 + 1.0000 Cl- = ClO3- - -llnl_gamma 3.5 - log_k -17.2608 - -delta_H 81.3077 kJ/mol # Calculated enthalpy of reaction ClO3- + 1.5 O2 + Cl- = ClO3- + -llnl_gamma 3.5 + log_k -17.2608 + -delta_H 81.3077 kJ/mol # Calculated enthalpy of reaction ClO3- # Enthalpy of formation: -24.85 kcal/mol - -analytic 2.8852e+001 -4.8281e-003 -4.6779e+003 -1.0772e+001 -2.0783e+005 + -analytic 2.8852e+1 -4.8281e-3 -4.6779e+3 -1.0772e+1 -2.0783e+5 # -Range: 0-300 - 2.0000 O2 + 1.0000 Cl- = ClO4- - -llnl_gamma 3.5 - log_k -15.7091 - -delta_H 62.0194 kJ/mol # Calculated enthalpy of reaction ClO4- + 2 O2 + Cl- = ClO4- + -llnl_gamma 3.5 + log_k -15.7091 + -delta_H 62.0194 kJ/mol # Calculated enthalpy of reaction ClO4- # Enthalpy of formation: -30.91 kcal/mol - -analytic 7.0280e+001 -6.8927e-005 -5.5690e+003 -2.6446e+001 -1.6596e+005 + -analytic 7.028e+1 -6.8927e-5 -5.569e+3 -2.6446e+1 -1.6596e+5 # -Range: 0-300 - 1.0000 H+ + 1.0000 Co++ + 0.2500 O2 = Co+++ +0.5000 H2O - -llnl_gamma 5.0 - log_k -11.4845 - -delta_H 10.3198 kJ/mol # Calculated enthalpy of reaction Co+3 + H+ + Co+2 + 0.25 O2 = Co+3 + 0.5 H2O + -llnl_gamma 5 + log_k -11.4845 + -delta_H 10.3198 kJ/mol # Calculated enthalpy of reaction Co+3 # Enthalpy of formation: 22 kcal/mol - -analytic -2.2827e+001 -1.2222e-002 -7.2117e+002 7.0306e+000 -1.1247e+001 + -analytic -2.2827e+1 -1.2222e-2 -7.2117e+2 7.0306e+0 -1.1247e+1 # -Range: 0-300 - 4.0000 H+ + 1.0000 CrO4-- = Cr++ +2.0000 H2O +1.0000 O2 - -llnl_gamma 4.5 - log_k -21.6373 - -delta_H 153.829 kJ/mol # Calculated enthalpy of reaction Cr+2 + 4 H+ + CrO4-2 = Cr+2 + 2 H2O + O2 + -llnl_gamma 4.5 + log_k -21.6373 + -delta_H 153.829 kJ/mol # Calculated enthalpy of reaction Cr+2 # Enthalpy of formation: -34.3 kcal/mol - -analytic 6.9003e+001 6.2884e-002 -6.9847e+003 -3.4720e+001 -1.0901e+002 + -analytic 6.9003e+1 6.2884e-2 -6.9847e+3 -3.472e+1 -1.0901e+2 # -Range: 0-300 - 5.0000 H+ + 1.0000 CrO4-- = Cr+++ +2.5000 H2O +0.7500 O2 - -llnl_gamma 9.0 - log_k +8.3842 - -delta_H -81.0336 kJ/mol # Calculated enthalpy of reaction Cr+3 + 5 H+ + CrO4-2 = Cr+3 + 2.5 H2O + 0.75 O2 + -llnl_gamma 9 + log_k 8.3842 + -delta_H -81.0336 kJ/mol # Calculated enthalpy of reaction Cr+3 # Enthalpy of formation: -57 kcal/mol - -analytic 5.1963e+001 6.0932e-002 5.4256e+003 -3.2290e+001 8.4645e+001 + -analytic 5.1963e+1 6.0932e-2 5.4256e+3 -3.229e+1 8.4645e+1 # -Range: 0-300 - 0.5000 H2O + 1.0000 CrO4-- = CrO4--- +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.0 - log_k -19.7709 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrO4-3 + 0.5 H2O + CrO4-2 = CrO4-3 + H+ + 0.25 O2 + -llnl_gamma 4 + log_k -19.7709 + -delta_H 0 # Not possible to calculate enthalpy of reaction CrO4-3 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Cu++ + 0.5000 H2O = Cu+ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.0 - log_k -18.7704 - -delta_H 145.877 kJ/mol # Calculated enthalpy of reaction Cu+ + + Cu+2 + 0.5 H2O = Cu+ + H+ + 0.25 O2 + -llnl_gamma 4 + log_k -18.7704 + -delta_H 145.877 kJ/mol # Calculated enthalpy of reaction Cu+ # Enthalpy of formation: 17.132 kcal/mol - -analytic 3.7909e+001 1.3731e-002 -8.1506e+003 -1.3508e+001 -1.2719e+002 + -analytic 3.7909e+1 1.3731e-2 -8.1506e+3 -1.3508e+1 -1.2719e+2 # -Range: 0-300 - 1.0000 Dy+++ + 0.5000 H2O = Dy++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -61.0754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy+2 + Dy+3 + 0.5 H2O = Dy+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -61.0754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Er+++ + 0.5000 H2O = Er++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -70.1754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er+2 + + Er+3 + 0.5 H2O = Er+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -70.1754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Eu+++ + 0.5000 H2O = Eu++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -27.5115 - -delta_H 217.708 kJ/mol # Calculated enthalpy of reaction Eu+2 + + Eu+3 + 0.5 H2O = Eu+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -27.5115 + -delta_H 217.708 kJ/mol # Calculated enthalpy of reaction Eu+2 # Enthalpy of formation: -126.1 kcal/mol - -analytic 3.0300e+001 1.4126e-002 -1.2319e+004 -9.0585e+000 1.5289e+005 + -analytic 3.03e+1 1.4126e-2 -1.2319e+4 -9.0585e+0 1.5289e+5 # -Range: 0-300 - 1.0000 H+ + 1.0000 Fe++ + 0.2500 O2 = Fe+++ +0.5000 H2O - -llnl_gamma 9.0 - log_k +8.4899 - -delta_H -97.209 kJ/mol # Calculated enthalpy of reaction Fe+3 + H+ + Fe+2 + 0.25 O2 = Fe+3 + 0.5 H2O + -llnl_gamma 9 + log_k 8.4899 + -delta_H -97.209 kJ/mol # Calculated enthalpy of reaction Fe+3 # Enthalpy of formation: -11.85 kcal/mol - -analytic -1.7808e+001 -1.1753e-002 4.7609e+003 5.5866e+000 7.4295e+001 + -analytic -1.7808e+1 -1.1753e-2 4.7609e+3 5.5866e+0 7.4295e+1 # -Range: 0-300 - 1.0000 Gd+++ + 0.5000 H2O = Gd++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -84.6754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd+2 + Gd+3 + 0.5 H2O = Gd+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -84.6754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 H2O = H2 +0.5000 O2 + + H2O = H2 + 0.5 O2 -CO2_llnl_gamma - log_k -46.1066 - -delta_H 275.588 kJ/mol # Calculated enthalpy of reaction H2 + log_k -46.1066 + -delta_H 275.588 kJ/mol # Calculated enthalpy of reaction H2 # Enthalpy of formation: -1 kcal/mol - -analytic 6.6835e+001 1.7172e-002 -1.8849e+004 -2.4092e+001 4.2501e+005 + -analytic 6.6835e+1 1.7172e-2 -1.8849e+4 -2.4092e+1 4.2501e+5 # -Range: 0-300 - 1.0000 H2AsO4- = H2AsO3- +0.5000 O2 - -llnl_gamma 4.0 - log_k -30.5349 - -delta_H 188.698 kJ/mol # Calculated enthalpy of reaction H2AsO3- + H2AsO4- = H2AsO3- + 0.5 O2 + -llnl_gamma 4 + log_k -30.5349 + -delta_H 188.698 kJ/mol # Calculated enthalpy of reaction H2AsO3- # Enthalpy of formation: -170.84 kcal/mol - -analytic 7.4245e+001 1.4885e-002 -1.4218e+004 -2.6403e+001 3.3822e+005 + -analytic 7.4245e+1 1.4885e-2 -1.4218e+4 -2.6403e+1 3.3822e+5 # -Range: 0-300 - 1.0000 SO4-- + 1.0000 H+ + 0.5000 O2 = HSO5- - -llnl_gamma 4.0 - log_k -17.2865 - -delta_H 140.038 kJ/mol # Calculated enthalpy of reaction HSO5- + SO4-2 + H+ + 0.5 O2 = HSO5- + -llnl_gamma 4 + log_k -17.2865 + -delta_H 140.038 kJ/mol # Calculated enthalpy of reaction HSO5- # Enthalpy of formation: -185.38 kcal/mol - -analytic 5.9944e+001 3.0904e-002 -7.7494e+003 -2.4420e+001 -1.2094e+002 + -analytic 5.9944e+1 3.0904e-2 -7.7494e+3 -2.442e+1 -1.2094e+2 # -Range: 0-300 - 1.0000 SeO3-- + 1.0000 H+ = HSe- +1.5000 O2 - -llnl_gamma 4.0 - log_k -76.8418 - -delta_H 506.892 kJ/mol # Calculated enthalpy of reaction HSe- + SeO3-2 + H+ = HSe- + 1.5 O2 + -llnl_gamma 4 + log_k -76.8418 + -delta_H 506.892 kJ/mol # Calculated enthalpy of reaction HSe- # Enthalpy of formation: 3.8 kcal/mol - -analytic 4.7105e+001 4.3116e-002 -2.6949e+004 -1.9895e+001 2.5305e+005 + -analytic 4.7105e+1 4.3116e-2 -2.6949e+4 -1.9895e+1 2.5305e+5 # -Range: 0-300 - 2.0000 Hg++ + 1.0000 H2O = Hg2++ +2.0000 H+ +0.5000 O2 - -llnl_gamma 4.0 - log_k -12.208 - -delta_H 106.261 kJ/mol # Calculated enthalpy of reaction Hg2+2 + 2 Hg+2 + H2O = Hg2+2 + 2 H+ + 0.5 O2 + -llnl_gamma 4 + log_k -12.208 + -delta_H 106.261 kJ/mol # Calculated enthalpy of reaction Hg2+2 # Enthalpy of formation: 39.87 kcal/mol - -analytic 5.5010e+001 1.9050e-002 -4.7967e+003 -2.2952e+001 -7.4864e+001 + -analytic 5.501e+1 1.905e-2 -4.7967e+3 -2.2952e+1 -7.4864e+1 # -Range: 0-300 - 1.0000 Ho+++ + 0.5000 H2O = Ho++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -67.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho+2 + Ho+3 + 0.5 H2O = Ho+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -67.3754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho+2 # Enthalpy of formation: -0 kcal/mol - - 3.0000 I- + 2.0000 H+ + 0.5000 O2 = I3- +1.0000 H2O - -llnl_gamma 4.0 - log_k +24.7278 - -delta_H -160.528 kJ/mol # Calculated enthalpy of reaction I3- + + 3 I- + 2 H+ + 0.5 O2 = I3- + H2O + -llnl_gamma 4 + log_k 24.7278 + -delta_H -160.528 kJ/mol # Calculated enthalpy of reaction I3- # Enthalpy of formation: -12.3 kcal/mol - -analytic 1.4788e+002 6.6206e-002 5.7407e+003 -6.5517e+001 8.9535e+001 + -analytic 1.4788e+2 6.6206e-2 5.7407e+3 -6.5517e+1 8.9535e+1 # -Range: 0-300 - 1.0000 I- + 0.5000 O2 = IO- - -llnl_gamma 4.0 - log_k -0.9038 - -delta_H -44.5596 kJ/mol # Calculated enthalpy of reaction IO- + I- + 0.5 O2 = IO- + -llnl_gamma 4 + log_k -0.9038 + -delta_H -44.5596 kJ/mol # Calculated enthalpy of reaction IO- # Enthalpy of formation: -25.7 kcal/mol - -analytic 2.7568e+000 -5.5671e-003 3.2484e+003 -3.9065e+000 -2.8800e+005 + -analytic 2.7568e+0 -5.5671e-3 3.2484e+3 -3.9065e+0 -2.88e+5 # -Range: 0-300 - 1.5000 O2 + 1.0000 I- = IO3- - -llnl_gamma 4.0 - log_k +17.6809 - -delta_H -146.231 kJ/mol # Calculated enthalpy of reaction IO3- + 1.5 O2 + I- = IO3- + -llnl_gamma 4 + log_k 17.6809 + -delta_H -146.231 kJ/mol # Calculated enthalpy of reaction IO3- # Enthalpy of formation: -52.9 kcal/mol - -analytic -2.2971e+001 -1.3478e-002 9.5977e+003 6.6010e+000 -3.4371e+005 + -analytic -2.2971e+1 -1.3478e-2 9.5977e+3 6.601e+0 -3.4371e+5 # -Range: 0-300 - 2.0000 O2 + 1.0000 I- = IO4- - -llnl_gamma 3.5 - log_k +6.9621 - -delta_H -70.2912 kJ/mol # Calculated enthalpy of reaction IO4- + 2 O2 + I- = IO4- + -llnl_gamma 3.5 + log_k 6.9621 + -delta_H -70.2912 kJ/mol # Calculated enthalpy of reaction IO4- # Enthalpy of formation: -36.2 kcal/mol - -analytic 2.1232e+001 -7.8107e-003 3.5803e+003 -8.5272e+000 -2.5422e+005 + -analytic 2.1232e+1 -7.8107e-3 3.5803e+3 -8.5272e+0 -2.5422e+5 # -Range: 0-300 - 1.0000 La+++ + 0.5000 H2O = La++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -72.4754 - -delta_H 0 # Not possible to calculate enthalpy of reaction La+2 + La+3 + 0.5 H2O = La+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -72.4754 + -delta_H 0 # Not possible to calculate enthalpy of reaction La+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Mn++ + 1.0000 H+ + 0.2500 O2 = Mn+++ +0.5000 H2O - -llnl_gamma 5.0 - log_k -4.0811 - -delta_H -65.2892 kJ/mol # Calculated enthalpy of reaction Mn+3 + + Mn+2 + H+ + 0.25 O2 = Mn+3 + 0.5 H2O + -llnl_gamma 5 + log_k -4.0811 + -delta_H -65.2892 kJ/mol # Calculated enthalpy of reaction Mn+3 # Enthalpy of formation: -34.895 kcal/mol - -analytic 3.8873e+001 1.7458e-002 2.0757e+003 -2.2274e+001 3.2378e+001 + -analytic 3.8873e+1 1.7458e-2 2.0757e+3 -2.2274e+1 3.2378e+1 # -Range: 0-300 - 2.0000 H2O + 1.0000 O2 + 1.0000 Mn++ = MnO4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.4146 - -delta_H 151.703 kJ/mol # Calculated enthalpy of reaction MnO4-2 + 2 H2O + O2 + Mn+2 = MnO4-2 + 4 H+ + -llnl_gamma 4 + log_k -32.4146 + -delta_H 151.703 kJ/mol # Calculated enthalpy of reaction MnO4-2 # Enthalpy of formation: -156 kcal/mol - -analytic -1.0407e+001 -4.6464e-002 -1.0515e+004 1.0943e+001 -1.6408e+002 + -analytic -1.0407e+1 -4.6464e-2 -1.0515e+4 1.0943e+1 -1.6408e+2 # -Range: 0-300 - 2.0000 NH3 + 1.5000 O2 = N2 +3.0000 H2O - -llnl_gamma 3.0 - log_k +116.4609 - -delta_H -687.08 kJ/mol # Calculated enthalpy of reaction N2 + 2 NH3 + 1.5 O2 = N2 + 3 H2O + -llnl_gamma 3 + log_k 116.4609 + -delta_H -687.08 kJ/mol # Calculated enthalpy of reaction N2 # Enthalpy of formation: -2.495 kcal/mol - -analytic -8.2621e+001 -1.4671e-002 4.0068e+004 2.9090e+001 -2.5924e+005 + -analytic -8.2621e+1 -1.4671e-2 4.0068e+4 2.909e+1 -2.5924e+5 # -Range: 0-300 - 3.0000 NH3 + 2.0000 O2 = N3- +4.0000 H2O +1.0000 H+ - -llnl_gamma 4.0 - log_k +96.9680 - -delta_H -599.935 kJ/mol # Calculated enthalpy of reaction N3- + 3 NH3 + 2 O2 = N3- + 4 H2O + H+ + -llnl_gamma 4 + log_k 96.968 + -delta_H -599.935 kJ/mol # Calculated enthalpy of reaction N3- # Enthalpy of formation: 275.14 kJ/mol - -analytic -9.1080e+001 -4.0817e-002 3.6350e+004 3.4484e+001 -6.2678e+005 + -analytic -9.108e+1 -4.0817e-2 3.635e+4 3.4484e+1 -6.2678e+5 # -Range: 0-300 - 1.5000 O2 + 1.0000 NH3 = NO2- +1.0000 H+ +1.0000 H2O - -llnl_gamma 3.0 - log_k +46.8653 - -delta_H -290.901 kJ/mol # Calculated enthalpy of reaction NO2- + 1.5 O2 + NH3 = NO2- + H+ + H2O + -llnl_gamma 3 + log_k 46.8653 + -delta_H -290.901 kJ/mol # Calculated enthalpy of reaction NO2- # Enthalpy of formation: -25 kcal/mol - -analytic -1.7011e+001 -3.3459e-002 1.3999e+004 1.1078e+001 -4.8255e+004 + -analytic -1.7011e+1 -3.3459e-2 1.3999e+4 1.1078e+1 -4.8255e+4 # -Range: 0-300 - 2.0000 O2 + 1.0000 NH3 = NO3- +1.0000 H+ +1.0000 H2O - -llnl_gamma 3.0 - log_k +62.1001 - -delta_H -387.045 kJ/mol # Calculated enthalpy of reaction NO3- + 2 O2 + NH3 = NO3- + H+ + H2O + -llnl_gamma 3 + log_k 62.1001 + -delta_H -387.045 kJ/mol # Calculated enthalpy of reaction NO3- # Enthalpy of formation: -49.429 kcal/mol - -analytic -3.9468e+001 -3.9697e-002 2.0614e+004 1.8872e+001 -2.1917e+005 + -analytic -3.9468e+1 -3.9697e-2 2.0614e+4 1.8872e+1 -2.1917e+5 # -Range: 0-300 - 1.0000 Nd+++ + 0.5000 H2O = Nd++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -64.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd+2 + Nd+3 + 0.5 H2O = Nd+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -64.3754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Np++++ + 0.5000 H2O = Np+++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 5.0 - log_k -19.0131 - -delta_H 168.787 kJ/mol # Calculated enthalpy of reaction Np+3 + + Np+4 + 0.5 H2O = Np+3 + H+ + 0.25 O2 + -llnl_gamma 5 + log_k -19.0131 + -delta_H 168.787 kJ/mol # Calculated enthalpy of reaction Np+3 # Enthalpy of formation: -527.1 kJ/mol - -analytic 1.6615e+001 2.4645e-003 -8.9343e+003 -2.5829e+000 -1.3942e+002 + -analytic 1.6615e+1 2.4645e-3 -8.9343e+3 -2.5829e+0 -1.3942e+2 # -Range: 0-300 - 1.5000 H2O + 1.0000 Np++++ + 0.2500 O2 = NpO2+ +3.0000 H+ - -llnl_gamma 4.0 - log_k +10.5928 - -delta_H 9.80089 kJ/mol # Calculated enthalpy of reaction NpO2+ + 1.5 H2O + Np+4 + 0.25 O2 = NpO2+ + 3 H+ + -llnl_gamma 4 + log_k 10.5928 + -delta_H 9.80089 kJ/mol # Calculated enthalpy of reaction NpO2+ # Enthalpy of formation: -977.991 kJ/mol - -analytic 1.2566e+001 7.5467e-003 1.6921e+003 -2.7125e+000 -2.8381e+005 + -analytic 1.2566e+1 7.5467e-3 1.6921e+3 -2.7125e+0 -2.8381e+5 # -Range: 0-300 - 1.0000 Np++++ + 1.0000 H2O + 0.5000 O2 = NpO2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k +11.2107 - -delta_H -12.5719 kJ/mol # Calculated enthalpy of reaction NpO2+2 + Np+4 + H2O + 0.5 O2 = NpO2+2 + 2 H+ + -llnl_gamma 4.5 + log_k 11.2107 + -delta_H -12.5719 kJ/mol # Calculated enthalpy of reaction NpO2+2 # Enthalpy of formation: -860.478 kJ/mol - -analytic 2.5510e+001 1.1973e-003 1.2753e+003 -6.7082e+000 -2.0792e+005 + -analytic 2.551e+1 1.1973e-3 1.2753e+3 -6.7082e+0 -2.0792e+5 # -Range: 0-300 - 2.0000 H+ + 1.0000 Pb++ + 0.5000 O2 = Pb++++ +1.0000 H2O - -llnl_gamma 5.5 - log_k -14.1802 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb+4 + 2 H+ + Pb+2 + 0.5 O2 = Pb+4 + H2O + -llnl_gamma 5.5 + log_k -14.1802 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb+4 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Pm+++ + 0.5000 H2O = Pm++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -65.2754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm+2 + + Pm+3 + 0.5 H2O = Pm+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -65.2754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Pr+++ + 0.5000 H2O = Pr++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -79.9754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr+2 + + Pr+3 + 0.5 H2O = Pr+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -79.9754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Pu++++ + 0.5000 H2O = Pu+++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 5.0 - log_k -4.5071 - -delta_H 84.2268 kJ/mol # Calculated enthalpy of reaction Pu+3 + + Pu+4 + 0.5 H2O = Pu+3 + H+ + 0.25 O2 + -llnl_gamma 5 + log_k -4.5071 + -delta_H 84.2268 kJ/mol # Calculated enthalpy of reaction Pu+3 # Enthalpy of formation: -591.552 kJ/mol - -analytic 2.0655e+001 3.2688e-003 -4.7434e+003 -4.1907e+000 1.2944e+004 + -analytic 2.0655e+1 3.2688e-3 -4.7434e+3 -4.1907e+0 1.2944e+4 # -Range: 0-300 - 1.5000 H2O + 1.0000 Pu++++ + 0.2500 O2 = PuO2+ +3.0000 H+ - -llnl_gamma 4.0 - log_k +2.9369 - -delta_H 53.5009 kJ/mol # Calculated enthalpy of reaction PuO2+ + 1.5 H2O + Pu+4 + 0.25 O2 = PuO2+ + 3 H+ + -llnl_gamma 4 + log_k 2.9369 + -delta_H 53.5009 kJ/mol # Calculated enthalpy of reaction PuO2+ # Enthalpy of formation: -914.183 kJ/mol - -analytic -2.0464e+001 2.8265e-003 1.2131e+003 9.2156e+000 -3.8400e+005 + -analytic -2.0464e+1 2.8265e-3 1.2131e+3 9.2156e+0 -3.84e+5 # -Range: 0-300 - 1.0000 Pu++++ + 1.0000 H2O + 0.5000 O2 = PuO2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k +8.1273 - -delta_H 6.22013 kJ/mol # Calculated enthalpy of reaction PuO2+2 + Pu+4 + H2O + 0.5 O2 = PuO2+2 + 2 H+ + -llnl_gamma 4.5 + log_k 8.1273 + -delta_H 6.22013 kJ/mol # Calculated enthalpy of reaction PuO2+2 # Enthalpy of formation: -821.578 kJ/mol - -analytic 3.5219e+001 2.5202e-003 -2.4760e+002 -1.0120e+001 -1.7569e+005 + -analytic 3.5219e+1 2.5202e-3 -2.476e+2 -1.012e+1 -1.7569e+5 # -Range: 0-300 - 4.0000 H+ + 1.0000 RuO4-- = Ru(OH)2++ +1.0000 H2O +0.5000 O2 - -llnl_gamma 4.5 - log_k +25.2470 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+2 + 4 H+ + RuO4-2 = Ru(OH)2+2 + H2O + 0.5 O2 + -llnl_gamma 4.5 + log_k 25.247 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+2 # Enthalpy of formation: -0 kcal/mol - - 4.0000 H+ + 1.0000 RuO4-- = Ru++ +2.0000 H2O +1.0000 O2 - -llnl_gamma 4.5 - log_k +0.1610 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+2 + + 4 H+ + RuO4-2 = Ru+2 + 2 H2O + O2 + -llnl_gamma 4.5 + log_k 0.161 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+2 # Enthalpy of formation: -0 kcal/mol - - 5.0000 H+ + 1.0000 RuO4-- = Ru+++ +2.5000 H2O +0.7500 O2 - -llnl_gamma 5.0 - log_k +17.6149 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+3 + + 5 H+ + RuO4-2 = Ru+3 + 2.5 H2O + 0.75 O2 + -llnl_gamma 5 + log_k 17.6149 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+3 # Enthalpy of formation: -0 kcal/mol - - 2.0000 H+ + 1.0000 RuO4-- + 0.5000 O2 = RuO4 +1.0000 H2O - -llnl_gamma 3.0 - log_k +16.2672 - -delta_H -60.8385 kJ/mol # Calculated enthalpy of reaction RuO4 + + 2 H+ + RuO4-2 + 0.5 O2 = RuO4 + H2O + -llnl_gamma 3 + log_k 16.2672 + -delta_H -60.8385 kJ/mol # Calculated enthalpy of reaction RuO4 # Enthalpy of formation: -238.142 kJ/mol - -analytic 1.9964e+002 6.8286e-002 -1.2020e+003 -8.0706e+001 -2.0481e+001 + -analytic 1.9964e+2 6.8286e-2 -1.202e+3 -8.0706e+1 -2.0481e+1 # -Range: 0-200 - 1.0000 RuO4-- + 1.0000 H+ + 0.2500 O2 = RuO4- +0.5000 H2O - -llnl_gamma 4.0 - log_k +11.6024 - -delta_H -16.1998 kJ/mol # Calculated enthalpy of reaction RuO4- + RuO4-2 + H+ + 0.25 O2 = RuO4- + 0.5 H2O + -llnl_gamma 4 + log_k 11.6024 + -delta_H -16.1998 kJ/mol # Calculated enthalpy of reaction RuO4- # Enthalpy of formation: -333.389 kJ/mol - -analytic -1.9653e+000 8.8623e-003 1.8588e+003 1.8998e+000 2.9005e+001 + -analytic -1.9653e+0 8.8623e-3 1.8588e+3 1.8998e+0 2.9005e+1 # -Range: 0-300 - 2.0000 H+ + 2.0000 SO3-- = S2O4-- + .500 O2 + H2O - -llnl_gamma 5.0 + 2 H+ + 2 SO3-2 = S2O4-2 + .5 O2 + H2O + -llnl_gamma 5 # log_k -25.2075 - log_k -25.2076 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O4-2 + log_k -25.2076 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O4-2 # Enthalpy of formation: -0 kcal/mol # -analytic -0.15158E+05 -0.31356E+01 0.47072E+06 0.58544E+04 0.73497E+04 - -analytic -2.3172e2 2.0393e-3 -7.1011e0 8.3239e1 9.4155e-1 + -analytic -2.3172e2 2.0393e-3 -7.1011e0 8.3239e1 9.4155e-1 # changed 3/23/04, corrected to supcrt temperature dependence, GMA # -Range: 0-300 # 2.0000 SO3-- + .500 O2 + 2.0000 H+ = S2O6-- + H2O -# H2O = .5 O2 + 2H+ + 2e- -2SO3-- = S2O6-- + 2e- - -llnl_gamma 4.0 - log_k 41.8289 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O6-2 +# H2O = .5 O2 + 2H+ + 2e- +2 SO3-2 = S2O6-2 + 2 e- + -llnl_gamma 4 + log_k 41.8289 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O6-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.14458E+03 0.61449E-01 0.71877E+04 -0.58657E+02 0.11211E+03 + -analytic 0.14458E+3 0.61449E-1 0.71877E+4 -0.58657E+2 0.11211E+3 # -Range: 0-300 - -add_logk Log_K_O2 0.5 + -add_logk Log_K_O2 0.5 - 2.0000 SO3-- + 1.500 O2 + 2.0000 H+ = S2O8-- + H2O - -llnl_gamma 4.0 - log_k 70.7489 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O8-2 + 2 SO3-2 + 1.5 O2 + 2 H+ = S2O8-2 + H2O + -llnl_gamma 4 + log_k 70.7489 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O8-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.18394E+03 0.60414E-01 0.13864E+05 -0.71804E+02 0.21628E+03 + -analytic 0.18394E+3 0.60414E-1 0.13864E+5 -0.71804E+2 0.21628E+3 # -Range: 0-300 -O2 + H+ + 3.0000 HS- = S3-- + 2.0000 H2O +O2 + H+ + 3 HS- = S3-2 + 2 H2O # 2H2O = O2 + 4H+ + 4e- #3HS- = S3-- + 3H+ + 4e- - -llnl_gamma 4.0 - log_k 79.3915 - -delta_H 0 # Not possible to calculate enthalpy of reaction S3-2 + -llnl_gamma 4 + log_k 79.3915 + -delta_H 0 # Not possible to calculate enthalpy of reaction S3-2 # Enthalpy of formation: -0 kcal/mol - -analytic -0.51626E+02 0.70208E-02 0.31797E+05 0.11927E+02 -0.64249E+06 - -mass_balance S(-2)3 + -analytic -0.51626E+2 0.70208E-2 0.31797E+5 0.11927E+2 -0.64249E+6 + -mass_balance S(-2)3 # -Range: 0-300 # -add_logk Log_K_O2 1.0 # 3.0000 SO3-- + 4.0000 H+ = S3O6-- + .500 O2 + 2.0000 H2O # .5 O2 + 2H+ + 2e- = H2O -3SO3-- + 6 H+ + 2e- = S3O6-- + 3H2O - -llnl_gamma 4.0 - log_k -6.2316 - -delta_H 0 # Not possible to calculate enthalpy of reaction S3O6-2 +3 SO3-2 + 6 H+ + 2 e- = S3O6-2 + 3 H2O + -llnl_gamma 4 + log_k -6.2316 + -delta_H 0 # Not possible to calculate enthalpy of reaction S3O6-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.23664E+03 0.12702E+00 -0.10110E+05 -0.99715E+02 -0.15783E+03 + -analytic 0.23664E+3 0.12702E+0 -0.1011E+5 -0.99715E+2 -0.15783E+3 # -Range: 0-300 - -add_logk Log_K_O2 -0.5 + -add_logk Log_K_O2 -0.5 -1.5000 O2 + 2.0000 H+ + 4.0000 HS- = S4-- + 3.0000 H2O +1.5 O2 + 2 H+ + 4 HS- = S4-2 + 3 H2O #4 HS- = S4-- + 4H+ + 6e- - -llnl_gamma 4.0 - log_k 125.2958 - -delta_H 0 # Not possible to calculate enthalpy of reaction S4-2 + -llnl_gamma 4 + log_k 125.2958 + -delta_H 0 # Not possible to calculate enthalpy of reaction S4-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.20875E+03 0.58133E-01 0.33278E+05 -0.85833E+02 0.51921E+03 - -mass_balance S(-2)4 + -analytic 0.20875E+3 0.58133E-1 0.33278E+5 -0.85833E+2 0.51921E+3 + -mass_balance S(-2)4 # -Range: 0-300 # -add_logk Log_K_O2 1.5 # 4.0000 SO3-- + 6.0000 H+ = S4O6-- + 1.500 O2 + 3.0000 H2O -4 SO3-- + 12 H+ + 6e- = S4O6-- + 6H2O - -llnl_gamma 4.0 - log_k -38.3859 - -delta_H 0 # Not possible to calculate enthalpy of reaction S4O6-2 +4 SO3-2 + 12 H+ + 6 e- = S4O6-2 + 6 H2O + -llnl_gamma 4 + log_k -38.3859 + -delta_H 0 # Not possible to calculate enthalpy of reaction S4O6-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.32239E+03 0.19555E+00 -0.23617E+05 -0.13729E+03 -0.36862E+03 + -analytic 0.32239E+3 0.19555E+0 -0.23617E+5 -0.13729E+3 -0.36862E+3 # -Range: 0-300 - -add_logk Log_K_O2 -1.5 + -add_logk Log_K_O2 -1.5 -2.0000 O2 + 3.0000 H+ + 5.0000 HS- = S5-- + 4.0000 H2O +2 O2 + 3 H+ + 5 HS- = S5-2 + 4 H2O #5 HS- = S5-- + 5H+ + 8e- - -llnl_gamma 4.0 - log_k 170.9802 - -delta_H 0 # Not possible to calculate enthalpy of reaction S5-2 + -llnl_gamma 4 + log_k 170.9802 + -delta_H 0 # Not possible to calculate enthalpy of reaction S5-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.30329E+03 0.88033E-01 0.44739E+05 -0.12471E+03 0.69803E+03 - -mass_balance S(-2)5 + -analytic 0.30329E+3 0.88033E-1 0.44739E+5 -0.12471E+3 0.69803E+3 + -mass_balance S(-2)5 # -Range: 0-300 # -add_logk Log_K_O2 2 # 5.0000 SO3-- + 8.0000 H+ = S5O6-- + 2.5000 O2 + 4.0000 H2O # 2.5O2 + 10 H+ + 10e- = 5H2O -5SO3-- + 18H+ + 10e- = S5O6-- + 9H2O - -llnl_gamma 4.0 - log_k -99.4206 - -delta_H 0 # Not possible to calculate enthalpy of reaction S5O6-2 +5 SO3-2 + 18 H+ + 10 e- = S5O6-2 + 9 H2O + -llnl_gamma 4 + log_k -99.4206 + -delta_H 0 # Not possible to calculate enthalpy of reaction S5O6-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.42074E+03 0.25833E+00 -0.43878E+05 -0.18178E+03 -0.68480E+03 + -analytic 0.42074E+3 0.25833E+0 -0.43878E+5 -0.18178E+3 -0.6848E+3 # -Range: 0-300 - -add_logk Log_K_O2 -2.5 + -add_logk Log_K_O2 -2.5 # 1.0000 H+ + HCO3- + HS- + NH3 = SCN- + 3.0000 H2O -# -llnl_gamma 3.5 +# -llnl_gamma 3.5 # log_k 3.0070 # -delta_H 0 # Not possible to calculate enthalpy of reaction SCN- ## Enthalpy of formation: -0 kcal/mol @@ -1339,17541 +1343,17541 @@ O2 + H+ + 3.0000 HS- = S3-- + 2.0000 H2O ## -Range: 0-300 Thiocyanate- = Thiocyanate- - log_k 0.0 + log_k 0 - 1.0000 SO4-- = SO3-- +0.5000 O2 - -llnl_gamma 4.5 - log_k -46.6244 - -delta_H 267.985 kJ/mol # Calculated enthalpy of reaction SO3-2 + SO4-2 = SO3-2 + 0.5 O2 + -llnl_gamma 4.5 + log_k -46.6244 + -delta_H 267.985 kJ/mol # Calculated enthalpy of reaction SO3-2 # Enthalpy of formation: -151.9 kcal/mol - -analytic -1.3771e+001 6.5102e-004 -1.3330e+004 4.7164e+000 -2.0800e+002 + -analytic -1.3771e+1 6.5102e-4 -1.333e+4 4.7164e+0 -2.08e+2 # -Range: 0-300 -1.0000 HSe- = Se-- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -14.9534 - -delta_H 0 # Not possible to calculate enthalpy of reaction Se-2 +HSe- = Se-2 + H+ + -llnl_gamma 4 + log_k -14.9534 + -delta_H 0 # Not possible to calculate enthalpy of reaction Se-2 # Enthalpy of formation: -0 kcal/mol - -analytic 1.0244e+002 3.1346e-002 -5.4190e+003 -4.3871e+001 -8.4589e+001 + -analytic 1.0244e+2 3.1346e-2 -5.419e+3 -4.3871e+1 -8.4589e+1 # -Range: 0-300 - 1.0000 SeO3-- + 0.5000 O2 = SeO4-- - -llnl_gamma 4.0 - log_k +13.9836 - -delta_H -83.8892 kJ/mol # Calculated enthalpy of reaction SeO4-2 + SeO3-2 + 0.5 O2 = SeO4-2 + -llnl_gamma 4 + log_k 13.9836 + -delta_H -83.8892 kJ/mol # Calculated enthalpy of reaction SeO4-2 # Enthalpy of formation: -143.2 kcal/mol - -analytic -7.2314e+001 -1.3657e-002 8.6969e+003 2.6182e+001 -3.1897e+005 + -analytic -7.2314e+1 -1.3657e-2 8.6969e+3 2.6182e+1 -3.1897e+5 # -Range: 0-300 - 1.0000 Sm+++ + 0.5000 H2O = Sm++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -47.9624 - -delta_H 326.911 kJ/mol # Calculated enthalpy of reaction Sm+2 + Sm+3 + 0.5 H2O = Sm+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -47.9624 + -delta_H 326.911 kJ/mol # Calculated enthalpy of reaction Sm+2 # Enthalpy of formation: -120.5 kcal/mol - -analytic -1.0217e+001 7.7548e-003 -1.6285e+004 5.4711e+000 9.1931e+004 + -analytic -1.0217e+1 7.7548e-3 -1.6285e+4 5.4711e+0 9.1931e+4 # -Range: 0-300 - 2.0000 H+ + 1.0000 Sn++ + 0.5000 O2 = Sn++++ +1.0000 H2O - -llnl_gamma 11.0 - log_k +37.7020 - -delta_H -240.739 kJ/mol # Calculated enthalpy of reaction Sn+4 + 2 H+ + Sn+2 + 0.5 O2 = Sn+4 + H2O + -llnl_gamma 11 + log_k 37.702 + -delta_H -240.739 kJ/mol # Calculated enthalpy of reaction Sn+4 # Enthalpy of formation: 7.229 kcal/mol - -analytic 3.2053e+001 -9.2307e-003 1.0378e+004 -1.0666e+001 1.6193e+002 + -analytic 3.2053e+1 -9.2307e-3 1.0378e+4 -1.0666e+1 1.6193e+2 # -Range: 0-300 - 1.0000 Tb+++ + 0.5000 H2O = Tb++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -78.7754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb+2 + Tb+3 + 0.5 H2O = Tb+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -78.7754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb+2 # Enthalpy of formation: -0 kcal/mol - - 4.0000 H+ + 1.0000 TcO4- = Tc+++ +2.0000 H2O +1.0000 O2 - -llnl_gamma 5.0 - log_k -47.614 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc+3 + + 4 H+ + TcO4- = Tc+3 + 2 H2O + O2 + -llnl_gamma 5 + log_k -47.614 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc+3 # Enthalpy of formation: -0 kcal/mol - - 3.0000 H+ + 1.0000 TcO4- = TcO++ +1.5000 H2O +0.7500 O2 - -llnl_gamma 4.5 - log_k -31.5059 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO+2 + + 3 H+ + TcO4- = TcO+2 + 1.5 H2O + 0.75 O2 + -llnl_gamma 4.5 + log_k -31.5059 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 TcO4- + 0.5000 H2O = TcO4-- +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.0 - log_k -31.8197 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-2 + + TcO4- + 0.5 H2O = TcO4-2 + H+ + 0.25 O2 + -llnl_gamma 4 + log_k -31.8197 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 TcO4- + 1.0000 H2O = TcO4--- +2.0000 H+ +0.5000 O2 - -llnl_gamma 4.0 - log_k -63.2889 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-3 + + TcO4- + H2O = TcO4-3 + 2 H+ + 0.5 O2 + -llnl_gamma 4 + log_k -63.2889 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-3 # Enthalpy of formation: -0 kcal/mol - - 2.0000 H+ + 1.0000 Tl+ + 0.5000 O2 = Tl+++ +1.0000 H2O - -llnl_gamma 5.0 - log_k -0.2751 - -delta_H -88.479 kJ/mol # Calculated enthalpy of reaction Tl+3 + + 2 H+ + Tl+ + 0.5 O2 = Tl+3 + H2O + -llnl_gamma 5 + log_k -0.2751 + -delta_H -88.479 kJ/mol # Calculated enthalpy of reaction Tl+3 # Enthalpy of formation: 47 kcal/mol - -analytic -6.7978e+001 -2.6430e-002 5.3106e+003 2.3340e+001 8.2887e+001 + -analytic -6.7978e+1 -2.643e-2 5.3106e+3 2.334e+1 8.2887e+1 # -Range: 0-300 - 1.0000 Tm+++ + 0.5000 H2O = Tm++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -58.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm+2 + Tm+3 + 0.5 H2O = Tm+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -58.3754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 UO2++ + 1.0000 H+ = U+++ +0.7500 O2 +0.5000 H2O - -llnl_gamma 5.0 - log_k -64.8028 - -delta_H 377.881 kJ/mol # Calculated enthalpy of reaction U+3 + + UO2+2 + H+ = U+3 + 0.75 O2 + 0.5 H2O + -llnl_gamma 5 + log_k -64.8028 + -delta_H 377.881 kJ/mol # Calculated enthalpy of reaction U+3 # Enthalpy of formation: -489.1 kJ/mol - -analytic 2.5133e+001 6.4088e-003 -2.2542e+004 -8.1423e+000 3.4793e+005 + -analytic 2.5133e+1 6.4088e-3 -2.2542e+4 -8.1423e+0 3.4793e+5 # -Range: 0-300 - 2.0000 H+ + 1.0000 UO2++ = U++++ +1.0000 H2O +0.5000 O2 - -llnl_gamma 5.5 - log_k -33.9491 - -delta_H 135.895 kJ/mol # Calculated enthalpy of reaction U+4 + 2 H+ + UO2+2 = U+4 + H2O + 0.5 O2 + -llnl_gamma 5.5 + log_k -33.9491 + -delta_H 135.895 kJ/mol # Calculated enthalpy of reaction U+4 # Enthalpy of formation: -591.2 kJ/mol - -analytic 4.4837e+001 1.0129e-002 -1.1787e+004 -1.9194e+001 4.6436e+005 + -analytic 4.4837e+1 1.0129e-2 -1.1787e+4 -1.9194e+1 4.6436e+5 # -Range: 0-300 - 1.0000 UO2++ + 0.5000 H2O = UO2+ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.0 - log_k -20.0169 - -delta_H 133.759 kJ/mol # Calculated enthalpy of reaction UO2+ + UO2+2 + 0.5 H2O = UO2+ + H+ + 0.25 O2 + -llnl_gamma 4 + log_k -20.0169 + -delta_H 133.759 kJ/mol # Calculated enthalpy of reaction UO2+ # Enthalpy of formation: -1025.13 kJ/mol - -analytic 8.0480e+000 9.5845e-003 -6.5994e+003 -3.5515e+000 -1.0298e+002 + -analytic 8.048e+0 9.5845e-3 -6.5994e+3 -3.5515e+0 -1.0298e+2 # -Range: 0-300 - 1.0000 VO++ + 1.0000 H+ = V+++ +0.5000 H2O +0.2500 O2 - -llnl_gamma 5.0 - log_k -15.7191 - -delta_H 79.6069 kJ/mol # Calculated enthalpy of reaction V+3 + VO+2 + H+ = V+3 + 0.5 H2O + 0.25 O2 + -llnl_gamma 5 + log_k -15.7191 + -delta_H 79.6069 kJ/mol # Calculated enthalpy of reaction V+3 # Enthalpy of formation: -62.39 kcal/mol - -analytic 1.6167e+001 1.1963e-002 -4.2112e+003 -8.6126e+000 -6.5717e+001 + -analytic 1.6167e+1 1.1963e-2 -4.2112e+3 -8.6126e+0 -6.5717e+1 # -Range: 0-300 - 1.0000 VO++ + 0.5000 H2O + 0.2500 O2 = VO2+ +1.0000 H+ - -llnl_gamma 4.0 - log_k +4.5774 - -delta_H -17.2234 kJ/mol # Calculated enthalpy of reaction VO2+ + VO+2 + 0.5 H2O + 0.25 O2 = VO2+ + H+ + -llnl_gamma 4 + log_k 4.5774 + -delta_H -17.2234 kJ/mol # Calculated enthalpy of reaction VO2+ # Enthalpy of formation: -155.3 kcal/mol - -analytic 1.9732e+000 5.3936e-003 1.2240e+003 -1.2539e+000 1.9098e+001 + -analytic 1.9732e+0 5.3936e-3 1.224e+3 -1.2539e+0 1.9098e+1 # -Range: 0-300 - 1.0000 VO2+ + 2.0000 H2O = VO4--- +4.0000 H+ - -llnl_gamma 4.0 - log_k -28.4475 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO4-3 + VO2+ + 2 H2O = VO4-3 + 4 H+ + -llnl_gamma 4 + log_k -28.4475 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO4-3 # Enthalpy of formation: -0 kcal/mol - 1.0000 Yb+++ + 0.5000 H2O = Yb++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -39.4595 - -delta_H 280.05 kJ/mol # Calculated enthalpy of reaction Yb+2 + Yb+3 + 0.5 H2O = Yb+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -39.4595 + -delta_H 280.05 kJ/mol # Calculated enthalpy of reaction Yb+2 # Enthalpy of formation: -126.8 kcal/mol - -analytic 1.0773e+000 9.5995e-003 -1.3833e+004 1.0723e+000 3.1365e+004 + -analytic 1.0773e+0 9.5995e-3 -1.3833e+4 1.0723e+0 3.1365e+4 # -Range: 0-300 - 2.0000 H+ + 1.0000 Zr(OH)2++ = Zr++++ +2.0000 H2O - -llnl_gamma 11.0 - log_k +0.2385 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr+4 + 2 H+ + Zr(OH)2+2 = Zr+4 + 2 H2O + -llnl_gamma 11 + log_k 0.2385 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr+4 # Enthalpy of formation: -0 kcal/mol -4.0000 HS- + 4.0000 H+ + 2.0000 Sb(OH)3 + 2.0000 NH3 = (NH4)2Sb2S4 +6.0000 H2O - -llnl_gamma 3.0 - log_k +67.6490 - -delta_H -424.665 kJ/mol # Calculated enthalpy of reaction (NH4)2Sb2S4 +4 HS- + 4 H+ + 2 Sb(OH)3 + 2 NH3 = (NH4)2Sb2S4 + 6 H2O + -llnl_gamma 3 + log_k 67.649 + -delta_H -424.665 kJ/mol # Calculated enthalpy of reaction (NH4)2Sb2S4 # Enthalpy of formation: -484.321 kJ/mol - -analytic -3.9259e+002 -1.1727e-001 3.2073e+004 1.5667e+002 5.4478e+002 + -analytic -3.9259e+2 -1.1727e-1 3.2073e+4 1.5667e+2 5.4478e+2 # -Range: 0-200 -2.0000 NpO2++ + 2.0000 H2O = (NpO2)2(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -6.4 - -delta_H 45.4397 kJ/mol # Calculated enthalpy of reaction (NpO2)2(OH)2+2 +2 NpO2+2 + 2 H2O = (NpO2)2(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k -6.4 + -delta_H 45.4397 kJ/mol # Calculated enthalpy of reaction (NpO2)2(OH)2+2 # Enthalpy of formation: -537.092 kcal/mol - -analytic -4.7462e+001 -3.1413e-002 -2.1954e+003 2.3355e+001 -3.7424e+001 + -analytic -4.7462e+1 -3.1413e-2 -2.1954e+3 2.3355e+1 -3.7424e+1 # -Range: 25-150 -5.0000 H2O + 3.0000 NpO2++ = (NpO2)3(OH)5+ +5.0000 H+ - -llnl_gamma 4.0 - log_k -17.5 - -delta_H 112.322 kJ/mol # Calculated enthalpy of reaction (NpO2)3(OH)5+ +5 H2O + 3 NpO2+2 = (NpO2)3(OH)5+ + 5 H+ + -llnl_gamma 4 + log_k -17.5 + -delta_H 112.322 kJ/mol # Calculated enthalpy of reaction (NpO2)3(OH)5+ # Enthalpy of formation: -931.717 kcal/mol - -analytic 5.4053e+002 9.1693e-002 -2.4404e+004 -2.0349e+002 -4.1639e+002 + -analytic 5.4053e+2 9.1693e-2 -2.4404e+4 -2.0349e+2 -4.1639e+2 # -Range: 25-150 -2.0000 PuO2++ + 2.0000 H2O = (PuO2)2(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -8.2626 - -delta_H 57.8597 kJ/mol # Calculated enthalpy of reaction (PuO2)2(OH)2+2 +2 PuO2+2 + 2 H2O = (PuO2)2(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k -8.2626 + -delta_H 57.8597 kJ/mol # Calculated enthalpy of reaction (PuO2)2(OH)2+2 # Enthalpy of formation: -2156.97 kJ/mol - -analytic 6.5448e+001 -1.6194e-003 -5.9542e+003 -2.1522e+001 -9.2929e+001 + -analytic 6.5448e+1 -1.6194e-3 -5.9542e+3 -2.1522e+1 -9.2929e+1 # -Range: 0-300 -5.0000 H2O + 3.0000 PuO2++ = (PuO2)3(OH)5+ +5.0000 H+ - -llnl_gamma 4.0 - log_k -21.655 - -delta_H 139.617 kJ/mol # Calculated enthalpy of reaction (PuO2)3(OH)5+ +5 H2O + 3 PuO2+2 = (PuO2)3(OH)5+ + 5 H+ + -llnl_gamma 4 + log_k -21.655 + -delta_H 139.617 kJ/mol # Calculated enthalpy of reaction (PuO2)3(OH)5+ # Enthalpy of formation: -3754.31 kJ/mol - -analytic 1.6151e+002 5.8182e-003 -1.4002e+004 -5.5745e+001 -2.1854e+002 + -analytic 1.6151e+2 5.8182e-3 -1.4002e+4 -5.5745e+1 -2.1854e+2 # -Range: 0-300 -4.0000 H2O + 2.0000 TcO++ = (TcO(OH)2)2 +4.0000 H+ - -llnl_gamma 3.0 - log_k -0.1271 - -delta_H 0 # Not possible to calculate enthalpy of reaction (TcO(OH)2)2 +4 H2O + 2 TcO+2 = (TcO(OH)2)2 + 4 H+ + -llnl_gamma 3 + log_k -0.1271 + -delta_H 0 # Not possible to calculate enthalpy of reaction (TcO(OH)2)2 # Enthalpy of formation: -0 kcal/mol - -12.0000 H2O + 11.0000 UO2++ + 6.0000 HCO3- = (UO2)11(CO3)6(OH)12-2 +18.0000 H+ - -llnl_gamma 4.0 - log_k -25.7347 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)11(CO3)6(OH)12-2 + +12 H2O + 11 UO2+2 + 6 HCO3- = (UO2)11(CO3)6(OH)12-2 + 18 H+ + -llnl_gamma 4 + log_k -25.7347 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)11(CO3)6(OH)12-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 UO2++ + 2.0000 H2O = (UO2)2(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -5.6346 - -delta_H 37.6127 kJ/mol # Calculated enthalpy of reaction (UO2)2(OH)2+2 + +2 UO2+2 + 2 H2O = (UO2)2(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k -5.6346 + -delta_H 37.6127 kJ/mol # Calculated enthalpy of reaction (UO2)2(OH)2+2 # Enthalpy of formation: -2572.06 kJ/mol - -analytic 6.4509e+001 -7.6875e-004 -4.8433e+003 -2.1689e+001 -7.5593e+001 + -analytic 6.4509e+1 -7.6875e-4 -4.8433e+3 -2.1689e+1 -7.5593e+1 # -Range: 0-300 -3.0000 H2O + 2.0000 UO2++ + 1.0000 HCO3- = (UO2)2CO3(OH)3- +4.0000 H+ - -llnl_gamma 4.0 - log_k -11.2229 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2CO3(OH)3- +3 H2O + 2 UO2+2 + HCO3- = (UO2)2CO3(OH)3- + 4 H+ + -llnl_gamma 4 + log_k -11.2229 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2CO3(OH)3- # Enthalpy of formation: -0 kcal/mol - -2.0000 UO2++ + 1.0000 H2O = (UO2)2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -2.7072 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2OH+3 + +2 UO2+2 + H2O = (UO2)2OH+3 + H+ + -llnl_gamma 5 + log_k -2.7072 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2OH+3 # Enthalpy of formation: -0 kcal/mol - -6.0000 HCO3- + 3.0000 UO2++ = (UO2)3(CO3)6-6 +6.0000 H+ - -llnl_gamma 4.0 - log_k -8.0601 - -delta_H 25.5204 kJ/mol # Calculated enthalpy of reaction (UO2)3(CO3)6-6 + +6 HCO3- + 3 UO2+2 = (UO2)3(CO3)6-6 + 6 H+ + -llnl_gamma 4 + log_k -8.0601 + -delta_H 25.5204 kJ/mol # Calculated enthalpy of reaction (UO2)3(CO3)6-6 # Enthalpy of formation: -7171.08 kJ/mol - -analytic 7.4044e+002 2.7299e-001 -1.7614e+004 -3.1149e+002 -2.7507e+002 + -analytic 7.4044e+2 2.7299e-1 -1.7614e+4 -3.1149e+2 -2.7507e+2 # -Range: 0-300 -4.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)4++ +4.0000 H+ - -llnl_gamma 4.5 - log_k -11.929 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)4+2 +4 H2O + 3 UO2+2 = (UO2)3(OH)4+2 + 4 H+ + -llnl_gamma 4.5 + log_k -11.929 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)4+2 # Enthalpy of formation: -0 kcal/mol - -5.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)5+ +5.0000 H+ - -llnl_gamma 4.0 - log_k -15.5862 - -delta_H 97.1056 kJ/mol # Calculated enthalpy of reaction (UO2)3(OH)5+ + +5 H2O + 3 UO2+2 = (UO2)3(OH)5+ + 5 H+ + -llnl_gamma 4 + log_k -15.5862 + -delta_H 97.1056 kJ/mol # Calculated enthalpy of reaction (UO2)3(OH)5+ # Enthalpy of formation: -4389.09 kJ/mol - -analytic 1.6004e+002 7.0827e-003 -1.1700e+004 -5.5973e+001 -1.8261e+002 + -analytic 1.6004e+2 7.0827e-3 -1.17e+4 -5.5973e+1 -1.8261e+2 # -Range: 0-300 -4.0000 H2O + 3.0000 UO2++ + 1.0000 HCO3- = (UO2)3(OH)5CO2+ +4.0000 H+ - -llnl_gamma 4.0 - log_k -9.6194 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)5CO2+ +4 H2O + 3 UO2+2 + HCO3- = (UO2)3(OH)5CO2+ + 4 H+ + -llnl_gamma 4 + log_k -9.6194 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)5CO2+ # Enthalpy of formation: -0 kcal/mol - -7.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)7- +7.0000 H+ - -llnl_gamma 4.0 - log_k -31.0508 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)7- + +7 H2O + 3 UO2+2 = (UO2)3(OH)7- + 7 H+ + -llnl_gamma 4 + log_k -31.0508 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)7- # Enthalpy of formation: -0 kcal/mol - -3.0000 UO2++ + 3.0000 H2O + 1.0000 HCO3- = (UO2)3O(OH)2(HCO3)+ +4.0000 H+ - -llnl_gamma 4.0 - log_k -9.7129 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3O(OH)2(HCO3)+ + +3 UO2+2 + 3 H2O + HCO3- = (UO2)3O(OH)2(HCO3)+ + 4 H+ + -llnl_gamma 4 + log_k -9.7129 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3O(OH)2(HCO3)+ # Enthalpy of formation: -0 kcal/mol - -7.0000 H2O + 4.0000 UO2++ = (UO2)4(OH)7+ +7.0000 H+ - -llnl_gamma 4.0 - log_k -21.9508 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)4(OH)7+ + +7 H2O + 4 UO2+2 = (UO2)4(OH)7+ + 7 H+ + -llnl_gamma 4 + log_k -21.9508 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)4(OH)7+ # Enthalpy of formation: -0 kcal/mol - -2.0000 VO++ + 2.0000 H2O = (VO)2(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -6.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)2(OH)2+2 + +2 VO+2 + 2 H2O = (VO)2(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k -6.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)2(OH)2+2 # Enthalpy of formation: -0 kcal/mol - -HAcetate = Acetate- + H+ - -llnl_gamma 4.5 - log_k -4.7572 - -delta_H 0 # Not possible to calculate enthalpy of reaction Acetate- + +HAcetate = Acetate- + H+ + -llnl_gamma 4.5 + log_k -4.7572 + -delta_H 0 # Not possible to calculate enthalpy of reaction Acetate- # Enthalpy of formation: -0 kcal/mol - -analytic -0.96597E+02 -0.34535E-01 0.19753E+04 0.38593E+02 0.30850E+02 + -analytic -0.96597E+2 -0.34535E-1 0.19753E+4 0.38593E+2 0.3085E+2 # Range: 0-300 -2.0000 HAcetate + 1.0000 Ag+ = Ag(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.8716 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ag(Acetate)2- +2 HAcetate + Ag+ = Ag(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -8.8716 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ag(Acetate)2- # Enthalpy of formation: -0 kcal/mol - -analytic -2.8207e+002 -5.3713e-002 9.5343e+003 1.0396e+002 1.4886e+002 + -analytic -2.8207e+2 -5.3713e-2 9.5343e+3 1.0396e+2 1.4886e+2 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Ag+ = Ag(CO3)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -18.5062 - -delta_H 1.34306 kJ/mol # Calculated enthalpy of reaction Ag(CO3)2-3 +2 HCO3- + Ag+ = Ag(CO3)2-3 + 2 H+ + -llnl_gamma 4 + log_k -18.5062 + -delta_H 1.34306 kJ/mol # Calculated enthalpy of reaction Ag(CO3)2-3 # Enthalpy of formation: -304.2 kcal/mol - -analytic -1.6671e+002 -4.5571e-002 3.7190e+003 6.0341e+001 5.8080e+001 + -analytic -1.6671e+2 -4.5571e-2 3.719e+3 6.0341e+1 5.808e+1 # -Range: 0-300 -1.0000 Ag+ + 1.0000 HAcetate = AgAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.0264 - -delta_H -3.4518 kJ/mol # Calculated enthalpy of reaction AgAcetate +Ag+ + HAcetate = AgAcetate + H+ + -llnl_gamma 3 + log_k -4.0264 + -delta_H -3.4518 kJ/mol # Calculated enthalpy of reaction AgAcetate # Enthalpy of formation: -91.65 kcal/mol - -analytic 6.9069e+000 -1.9415e-003 -1.9953e+003 -2.6175e+000 2.5092e+005 + -analytic 6.9069e+0 -1.9415e-3 -1.9953e+3 -2.6175e+0 2.5092e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Ag+ = AgCO3- +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.6416 - -delta_H -8.27177 kJ/mol # Calculated enthalpy of reaction AgCO3- +HCO3- + Ag+ = AgCO3- + H+ + -llnl_gamma 4 + log_k -7.6416 + -delta_H -8.27177 kJ/mol # Calculated enthalpy of reaction AgCO3- # Enthalpy of formation: -141.6 kcal/mol - -analytic 6.5598e+000 -1.6477e-004 -4.7079e+002 -5.0807e+000 -7.3484e+000 + -analytic 6.5598e+0 -1.6477e-4 -4.7079e+2 -5.0807e+0 -7.3484e+0 # -Range: 0-300 -1.0000 Cl- + 1.0000 Ag+ = AgCl - -llnl_gamma 3.0 - log_k +3.2971 - -delta_H -15.1126 kJ/mol # Calculated enthalpy of reaction AgCl +Cl- + Ag+ = AgCl + -llnl_gamma 3 + log_k 3.2971 + -delta_H -15.1126 kJ/mol # Calculated enthalpy of reaction AgCl # Enthalpy of formation: -18.27 kcal/mol - -analytic 1.0904e+002 3.5492e-002 -1.8455e+003 -4.4502e+001 -2.8830e+001 + -analytic 1.0904e+2 3.5492e-2 -1.8455e+3 -4.4502e+1 -2.883e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Ag+ = AgCl2- - -llnl_gamma 4.0 - log_k +5.2989 - -delta_H -27.3592 kJ/mol # Calculated enthalpy of reaction AgCl2- +2 Cl- + Ag+ = AgCl2- + -llnl_gamma 4 + log_k 5.2989 + -delta_H -27.3592 kJ/mol # Calculated enthalpy of reaction AgCl2- # Enthalpy of formation: -61.13 kcal/mol - -analytic 9.2164e+001 4.0261e-002 -1.6597e+002 -3.9721e+001 -2.6171e+000 + -analytic 9.2164e+1 4.0261e-2 -1.6597e+2 -3.9721e+1 -2.6171e+0 # -Range: 0-300 -3.0000 Cl- + 1.0000 Ag+ = AgCl3-- - -llnl_gamma 4.0 - log_k +5.1310 - -delta_H -47.7645 kJ/mol # Calculated enthalpy of reaction AgCl3-2 +3 Cl- + Ag+ = AgCl3-2 + -llnl_gamma 4 + log_k 5.131 + -delta_H -47.7645 kJ/mol # Calculated enthalpy of reaction AgCl3-2 # Enthalpy of formation: -105.94 kcal/mol - -analytic 4.3732e+000 2.9568e-002 3.9818e+003 -8.6428e+000 6.2131e+001 + -analytic 4.3732e+0 2.9568e-2 3.9818e+3 -8.6428e+0 6.2131e+1 # -Range: 0-300 -4.0000 Cl- + 1.0000 Ag+ = AgCl4--- - -llnl_gamma 4.0 - log_k +3.8050 - -delta_H -32.4804 kJ/mol # Calculated enthalpy of reaction AgCl4-3 +4 Cl- + Ag+ = AgCl4-3 + -llnl_gamma 4 + log_k 3.805 + -delta_H -32.4804 kJ/mol # Calculated enthalpy of reaction AgCl4-3 # Enthalpy of formation: -142.22 kcal/mol - -analytic -1.6176e+001 2.9523e-002 0.0000e+000 0.0000e+000 9.9602e+005 + -analytic -1.6176e+1 2.9523e-2 0e+0 0e+0 9.9602e+5 # -Range: 0-300 -1.0000 F- + 1.0000 Ag+ = AgF - -llnl_gamma 3.0 - log_k -0.1668 - -delta_H -9.298 kJ/mol # Calculated enthalpy of reaction AgF +F- + Ag+ = AgF + -llnl_gamma 3 + log_k -0.1668 + -delta_H -9.298 kJ/mol # Calculated enthalpy of reaction AgF # Enthalpy of formation: -238.895 kJ/mol - -analytic -6.6024e+001 -2.2350e-002 1.9514e+003 2.6663e+001 3.3160e+001 + -analytic -6.6024e+1 -2.235e-2 1.9514e+3 2.6663e+1 3.316e+1 # -Range: 0-200 -1.0000 NO3- + 1.0000 Ag+ = AgNO3 - -llnl_gamma 3.0 - log_k -0.1979 - -delta_H 4.45178 kJ/mol # Calculated enthalpy of reaction AgNO3 +NO3- + Ag+ = AgNO3 + -llnl_gamma 3 + log_k -0.1979 + -delta_H 4.45178 kJ/mol # Calculated enthalpy of reaction AgNO3 # Enthalpy of formation: -23.09 kcal/mol - -analytic 7.3866e+001 2.6050e-002 -1.5923e+003 -3.0904e+001 -2.4868e+001 + -analytic 7.3866e+1 2.605e-2 -1.5923e+3 -3.0904e+1 -2.4868e+1 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Al+++ = Al(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.595 - -delta_H -46.8566 kJ/mol # Calculated enthalpy of reaction Al(Acetate)2+ +2 HAcetate + Al+3 = Al(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -5.595 + -delta_H -46.8566 kJ/mol # Calculated enthalpy of reaction Al(Acetate)2+ # Enthalpy of formation: -372.08 kcal/mol - -analytic -4.2528e+001 2.1431e-003 3.1658e+002 1.1585e+001 5.8604e+005 + -analytic -4.2528e+1 2.1431e-3 3.1658e+2 1.1585e+1 5.8604e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Al+++ = Al(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -10.5945 - -delta_H 98.2822 kJ/mol # Calculated enthalpy of reaction Al(OH)2+ +2 H2O + Al+3 = Al(OH)2+ + 2 H+ + -llnl_gamma 4 + log_k -10.5945 + -delta_H 98.2822 kJ/mol # Calculated enthalpy of reaction Al(OH)2+ # Enthalpy of formation: -241.825 kcal/mol - -analytic 4.4036e+001 2.0168e-002 -5.5455e+003 -1.6987e+001 -8.6545e+001 + -analytic 4.4036e+1 2.0168e-2 -5.5455e+3 -1.6987e+1 -8.6545e+1 # -Range: 0-300 -2.0000 SO4-- + 1.0000 Al+++ = Al(SO4)2- - -llnl_gamma 4.0 - log_k +4.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al(SO4)2- +2 SO4-2 + Al+3 = Al(SO4)2- + -llnl_gamma 4 + log_k 4.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Al(SO4)2- # Enthalpy of formation: -0 kcal/mol - -28.0000 H2O + 13.0000 Al+++ = Al13O4(OH)24+7 +32.0000 H+ - -llnl_gamma 6.0 - log_k -98.73 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al13O4(OH)24+7 + +28 H2O + 13 Al+3 = Al13O4(OH)24+7 + 32 H+ + -llnl_gamma 6 + log_k -98.73 + -delta_H 0 # Not possible to calculate enthalpy of reaction Al13O4(OH)24+7 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 2.0000 Al+++ = Al2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -7.6902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al2(OH)2+4 + +2 H2O + 2 Al+3 = Al2(OH)2+4 + 2 H+ + -llnl_gamma 5.5 + log_k -7.6902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Al2(OH)2+4 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 3.0000 Al+++ = Al3(OH)4+5 +4.0000 H+ - -llnl_gamma 6.0 - log_k -13.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al3(OH)4+5 + +4 H2O + 3 Al+3 = Al3(OH)4+5 + 4 H+ + -llnl_gamma 6 + log_k -13.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Al3(OH)4+5 # Enthalpy of formation: -0 kcal/mol - -1.0000 Al+++ + 1.0000 HAcetate = AlAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.6923 - -delta_H -18.1962 kJ/mol # Calculated enthalpy of reaction AlAcetate+2 + +Al+3 + HAcetate = AlAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.6923 + -delta_H -18.1962 kJ/mol # Calculated enthalpy of reaction AlAcetate+2 # Enthalpy of formation: -249.13 kcal/mol - -analytic -1.9847e+001 2.0058e-003 -2.3653e+002 5.5454e+000 3.2362e+005 + -analytic -1.9847e+1 2.0058e-3 -2.3653e+2 5.5454e+0 3.2362e+5 # -Range: 0-300 -1.0000 F- + 1.0000 Al+++ = AlF++ - -llnl_gamma 4.5 - log_k +7.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF+2 +F- + Al+3 = AlF+2 + -llnl_gamma 4.5 + log_k 7 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Al+++ = AlF2+ - -llnl_gamma 4.0 - log_k +12.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF2+ + +2 F- + Al+3 = AlF2+ + -llnl_gamma 4 + log_k 12.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF2+ # Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 1.0000 Al+++ = AlF3 - -llnl_gamma 3.0 - log_k +16.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF3 + +3 F- + Al+3 = AlF3 + -llnl_gamma 3 + log_k 16.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF3 # Enthalpy of formation: -0 kcal/mol - -4.0000 F- + 1.0000 Al+++ = AlF4- - -llnl_gamma 4.0 - log_k +19.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF4- + +4 F- + Al+3 = AlF4- + -llnl_gamma 4 + log_k 19.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF4- # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Al+++ = AlH2PO4++ - -llnl_gamma 4.5 - log_k +3.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlH2PO4+2 + +HPO4-2 + H+ + Al+3 = AlH2PO4+2 + -llnl_gamma 4.5 + log_k 3.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlH2PO4+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Al+++ = AlHPO4+ - -llnl_gamma 4.0 - log_k +7.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlHPO4+ + +HPO4-2 + Al+3 = AlHPO4+ + -llnl_gamma 4 + log_k 7.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlHPO4+ # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Al+++ = AlO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -22.8833 - -delta_H 180.899 kJ/mol # Calculated enthalpy of reaction AlO2- + +2 H2O + Al+3 = AlO2- + 4 H+ + -llnl_gamma 4 + log_k -22.8833 + -delta_H 180.899 kJ/mol # Calculated enthalpy of reaction AlO2- # Enthalpy of formation: -222.079 kcal/mol - -analytic 1.0803e+001 -3.4379e-003 -9.7391e+003 0.0000e+000 0.0000e+000 + -analytic 1.0803e+1 -3.4379e-3 -9.7391e+3 0e+0 0e+0 # -Range: 0-300 -1.0000 H2O + 1.0000 Al+++ = AlOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -4.9571 - -delta_H 49.798 kJ/mol # Calculated enthalpy of reaction AlOH+2 +H2O + Al+3 = AlOH+2 + H+ + -llnl_gamma 4.5 + log_k -4.9571 + -delta_H 49.798 kJ/mol # Calculated enthalpy of reaction AlOH+2 # Enthalpy of formation: -185.096 kcal/mol - -analytic -2.6224e-001 8.8816e-003 -1.8686e+003 -4.3195e-001 -2.9158e+001 + -analytic -2.6224e-1 8.8816e-3 -1.8686e+3 -4.3195e-1 -2.9158e+1 # -Range: 0-300 -1.0000 SO4-- + 1.0000 Al+++ = AlSO4+ - -llnl_gamma 4.0 - log_k +3.0100 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlSO4+ +SO4-2 + Al+3 = AlSO4+ + -llnl_gamma 4 + log_k 3.01 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlSO4+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HCO3- + 1.0000 Am+++ = Am(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.3868 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)2- + +2 HCO3- + Am+3 = Am(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -8.3868 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)2- # Enthalpy of formation: -0 kcal/mol - -3.0000 HCO3- + 1.0000 Am+++ = Am(CO3)3--- +3.0000 H+ - -llnl_gamma 4.0 - log_k -15.8302 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)3-3 + +3 HCO3- + Am+3 = Am(CO3)3-3 + 3 H+ + -llnl_gamma 4 + log_k -15.8302 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)3-3 # Enthalpy of formation: -0 kcal/mol - -5.0000 HCO3- + 1.0000 Am++++ = Am(CO3)5-6 +5.0000 H+ - -llnl_gamma 4.0 - log_k -12.409 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)5-6 + +5 HCO3- + Am+4 = Am(CO3)5-6 + 5 H+ + -llnl_gamma 4 + log_k -12.409 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)5-6 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Am+++ = Am(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -14.1145 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)2+ + +2 H2O + Am+3 = Am(OH)2+ + 2 H+ + -llnl_gamma 4 + log_k -14.1145 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)2+ # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Am+++ = Am(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.7218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 + +3 H2O + Am+3 = Am(OH)3 + 3 H+ + -llnl_gamma 3 + log_k -25.7218 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Am+++ = Am(SO4)2- - -llnl_gamma 4.0 - log_k +5.2407 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(SO4)2- + +2 SO4-2 + Am+3 = Am(SO4)2- + -llnl_gamma 4 + log_k 5.2407 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Am+++ = AmCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.5434 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmCO3+ + +HCO3- + Am+3 = AmCO3+ + H+ + -llnl_gamma 4 + log_k -2.5434 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmCO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Cl- + 1.0000 Am+++ = AmCl++ - -llnl_gamma 4.5 - log_k +1.0374 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmCl+2 + +Cl- + Am+3 = AmCl+2 + -llnl_gamma 4.5 + log_k 1.0374 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmCl+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 F- + 1.0000 Am+++ = AmF++ - -llnl_gamma 4.5 - log_k +3.3601 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmF+2 + +F- + Am+3 = AmF+2 + -llnl_gamma 4.5 + log_k 3.3601 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmF+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Am+++ = AmF2+ - -llnl_gamma 4.0 - log_k +5.7204 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmF2+ + +2 F- + Am+3 = AmF2+ + -llnl_gamma 4 + log_k 5.7204 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmF2+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Am+++ = AmH2PO4++ - -llnl_gamma 4.5 - log_k +11.4119 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmH2PO4+2 + +HPO4-2 + H+ + Am+3 = AmH2PO4+2 + -llnl_gamma 4.5 + log_k 11.4119 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmH2PO4+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 N3- + 1.0000 Am+++ = AmN3++ - -llnl_gamma 4.5 - log_k +1.6699 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmN3+2 + +N3- + Am+3 = AmN3+2 + -llnl_gamma 4.5 + log_k 1.6699 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmN3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Am+++ = AmNO3++ - -llnl_gamma 4.5 - log_k +1.3104 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmNO3+2 + +NO3- + Am+3 = AmNO3+2 + -llnl_gamma 4.5 + log_k 1.3104 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmNO3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Am+++ = AmOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -6.4072 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmOH+2 + +H2O + Am+3 = AmOH+2 + H+ + -llnl_gamma 4.5 + log_k -6.4072 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmOH+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Am+++ = AmSO4+ - -llnl_gamma 4.0 - log_k +3.7703 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmSO4+ + +SO4-2 + Am+3 = AmSO4+ + -llnl_gamma 4 + log_k 3.7703 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmSO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 H2AsO3- + 1.0000 H+ = As(OH)3 - -llnl_gamma 3.0 - log_k +9.2048 - -delta_H -27.4054 kJ/mol # Calculated enthalpy of reaction As(OH)3 + +H2AsO3- + H+ = As(OH)3 + -llnl_gamma 3 + log_k 9.2048 + -delta_H -27.4054 kJ/mol # Calculated enthalpy of reaction As(OH)3 # Enthalpy of formation: -742.2 kJ/mol - -analytic 1.3020e+002 4.7513e-002 -1.1999e+003 -5.2993e+001 -2.0422e+001 + -analytic 1.302e+2 4.7513e-2 -1.1999e+3 -5.2993e+1 -2.0422e+1 # -Range: 0-200 -1.0000 H2AsO3- = AsO2- +1.0000 H2O - -llnl_gamma 4.0 - log_k 0.0111 - -delta_H 0 # Not possible to calculate enthalpy of reaction AsO2- +H2AsO3- = AsO2- + H2O + -llnl_gamma 4 + log_k 0.0111 + -delta_H 0 # Not possible to calculate enthalpy of reaction AsO2- # Enthalpy of formation: -0 kcal/mol - -analytic -2.1509e+001 -1.7680e-002 -1.9261e+001 1.0841e+001 -2.9404e-001 + -analytic -2.1509e+1 -1.768e-2 -1.9261e+1 1.0841e+1 -2.9404e-1 # -Range: 0-300 -1.0000 H2AsO3- = AsO2OH-- +1.0000 H+ - -llnl_gamma 4.0 - log_k -11.0171 - -delta_H 25.514 kJ/mol # Calculated enthalpy of reaction AsO2OH-2 +H2AsO3- = AsO2OH-2 + H+ + -llnl_gamma 4 + log_k -11.0171 + -delta_H 25.514 kJ/mol # Calculated enthalpy of reaction AsO2OH-2 # Enthalpy of formation: -164.742 kcal/mol - -analytic 1.4309e+002 1.8620e-002 -6.8596e+003 -5.5222e+001 -1.0708e+002 + -analytic 1.4309e+2 1.862e-2 -6.8596e+3 -5.5222e+1 -1.0708e+2 # -Range: 0-300 -1.0000 H2AsO4- + 1.0000 F- = AsO3F-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +40.2451 - -delta_H 0 # Not possible to calculate enthalpy of reaction AsO3F-2 +H2AsO4- + F- = AsO3F-2 + H2O + -llnl_gamma 4 + log_k 40.2451 + -delta_H 0 # Not possible to calculate enthalpy of reaction AsO3F-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 H2AsO4- = AsO4--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -18.3604 - -delta_H 21.4198 kJ/mol # Calculated enthalpy of reaction AsO4-3 + +H2AsO4- = AsO4-3 + 2 H+ + -llnl_gamma 4 + log_k -18.3604 + -delta_H 21.4198 kJ/mol # Calculated enthalpy of reaction AsO4-3 # Enthalpy of formation: -888.14 kJ/mol - -analytic -2.4979e+001 -1.2761e-002 2.8369e+003 3.4878e+000 -6.8736e+005 + -analytic -2.4979e+1 -1.2761e-2 2.8369e+3 3.4878e+0 -6.8736e+5 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Au+ = Au(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.0013 - -delta_H -8.91192 kJ/mol # Calculated enthalpy of reaction Au(Acetate)2- +2 HAcetate + Au+ = Au(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -9.0013 + -delta_H -8.91192 kJ/mol # Calculated enthalpy of reaction Au(Acetate)2- # Enthalpy of formation: -186.75 kcal/mol - -analytic -2.2338e+002 -4.6312e-002 7.0942e+003 8.2606e+001 1.1076e+002 + -analytic -2.2338e+2 -4.6312e-2 7.0942e+3 8.2606e+1 1.1076e+2 # -Range: 0-300 -1.0000 Au+ + 1.0000 HAcetate = AuAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.3174 - -delta_H 0.87864 kJ/mol # Calculated enthalpy of reaction AuAcetate +Au+ + HAcetate = AuAcetate + H+ + -llnl_gamma 3 + log_k -4.3174 + -delta_H 0.87864 kJ/mol # Calculated enthalpy of reaction AuAcetate # Enthalpy of formation: -68.31 kcal/mol - -analytic -1.1812e+000 -4.1120e-003 -1.4752e+003 4.5665e-001 1.7019e+005 + -analytic -1.1812e+0 -4.112e-3 -1.4752e+3 4.5665e-1 1.7019e+5 # -Range: 0-300 -2.0000 B(OH)3 = B2O(OH)5- +1.0000 H+ - -llnl_gamma 4.0 - log_k -18.6851 - -delta_H 0 # Not possible to calculate enthalpy of reaction B2O(OH)5- +2 B(OH)3 = B2O(OH)5- + H+ + -llnl_gamma 4 + log_k -18.6851 + -delta_H 0 # Not possible to calculate enthalpy of reaction B2O(OH)5- # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 H+ + 1.0000 B(OH)3 = BF2(OH)2- +1.0000 H2O - -llnl_gamma 4.0 - log_k +6.6174 - -delta_H 0 # Not possible to calculate enthalpy of reaction BF2(OH)2- + +2 F- + H+ + B(OH)3 = BF2(OH)2- + H2O + -llnl_gamma 4 + log_k 6.6174 + -delta_H 0 # Not possible to calculate enthalpy of reaction BF2(OH)2- # Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 2.0000 H+ + 1.0000 B(OH)3 = BF3OH- +2.0000 H2O - -llnl_gamma 4.0 - log_k +13.1908 - -delta_H -178.577 kJ/mol # Calculated enthalpy of reaction BF3OH- + +3 F- + 2 H+ + B(OH)3 = BF3OH- + 2 H2O + -llnl_gamma 4 + log_k 13.1908 + -delta_H -178.577 kJ/mol # Calculated enthalpy of reaction BF3OH- # Enthalpy of formation: -403.317 kcal/mol - -analytic 3.3411e+002 -3.7303e-002 -8.6507e+003 -1.1345e+002 -1.3508e+002 + -analytic 3.3411e+2 -3.7303e-2 -8.6507e+3 -1.1345e+2 -1.3508e+2 # -Range: 0-300 -4.0000 F- + 3.0000 H+ + 1.0000 B(OH)3 = BF4- +3.0000 H2O - -llnl_gamma 4.0 - log_k +18.0049 - -delta_H -16.4473 kJ/mol # Calculated enthalpy of reaction BF4- +4 F- + 3 H+ + B(OH)3 = BF4- + 3 H2O + -llnl_gamma 4 + log_k 18.0049 + -delta_H -16.4473 kJ/mol # Calculated enthalpy of reaction BF4- # Enthalpy of formation: -376.4 kcal/mol - -analytic 2.5491e+002 1.0443e-001 -3.3332e+003 -1.0378e+002 -5.2087e+001 + -analytic 2.5491e+2 1.0443e-1 -3.3332e+3 -1.0378e+2 -5.2087e+1 # -Range: 0-300 -1.0000 B(OH)3 = BO2- +1.0000 H+ +1.0000 H2O - -llnl_gamma 4.0 - log_k -9.2449 - -delta_H 16.3302 kJ/mol # Calculated enthalpy of reaction BO2- +B(OH)3 = BO2- + H+ + H2O + -llnl_gamma 4 + log_k -9.2449 + -delta_H 16.3302 kJ/mol # Calculated enthalpy of reaction BO2- # Enthalpy of formation: -184.6 kcal/mol - -analytic -1.0500e+002 -3.3447e-002 1.4706e+003 4.0724e+001 2.2978e+001 + -analytic -1.05e+2 -3.3447e-2 1.4706e+3 4.0724e+1 2.2978e+1 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Ba++ = Ba(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -8.0118 - -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Ba(Acetate)2 +2 HAcetate + Ba+2 = Ba(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -8.0118 + -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Ba(Acetate)2 # Enthalpy of formation: -358.01 kcal/mol - -analytic -1.4566e+001 3.1394e-004 -3.9564e+003 5.1906e+000 6.1407e+005 + -analytic -1.4566e+1 3.1394e-4 -3.9564e+3 5.1906e+0 6.1407e+5 # -Range: 0-300 -1.0000 O_phthalate-2 + 1.0000 Ba++ = Ba(O_phthalate) - -llnl_gamma 3.0 - log_k +2.3300 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ba(O_phthalate) +O_phthalate-2 + Ba+2 = Ba(O_phthalate) + -llnl_gamma 3 + log_k 2.33 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ba(O_phthalate) # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Ba++ + 1.0000 B(OH)3 = BaB(OH)4+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.8012 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaB(OH)4+ + +H2O + Ba+2 + B(OH)3 = BaB(OH)4+ + H+ + -llnl_gamma 4 + log_k -7.8012 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaB(OH)4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Ba++ + 1.0000 HAcetate = BaAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.7677 - -delta_H 7.322 kJ/mol # Calculated enthalpy of reaction BaAcetate+ + +Ba+2 + HAcetate = BaAcetate+ + H+ + -llnl_gamma 4 + log_k -3.7677 + -delta_H 7.322 kJ/mol # Calculated enthalpy of reaction BaAcetate+ # Enthalpy of formation: -242.85 kcal/mol - -analytic -1.5623e+001 2.9282e-003 -3.9534e+002 4.3959e+000 1.2829e+005 + -analytic -1.5623e+1 2.9282e-3 -3.9534e+2 4.3959e+0 1.2829e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Ba++ = BaCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.6834 - -delta_H 31.5808 kJ/mol # Calculated enthalpy of reaction BaCO3 +HCO3- + Ba+2 = BaCO3 + H+ + -llnl_gamma 3 + log_k -7.6834 + -delta_H 31.5808 kJ/mol # Calculated enthalpy of reaction BaCO3 # Enthalpy of formation: -285.85 kcal/mol - -analytic 2.1878e+002 5.2368e-002 -8.2472e+003 -8.6644e+001 -1.2875e+002 + -analytic 2.1878e+2 5.2368e-2 -8.2472e+3 -8.6644e+1 -1.2875e+2 # -Range: 0-300 -1.0000 Cl- + 1.0000 Ba++ = BaCl+ - -llnl_gamma 4.0 - log_k -0.4977 - -delta_H 11.142 kJ/mol # Calculated enthalpy of reaction BaCl+ +Cl- + Ba+2 = BaCl+ + -llnl_gamma 4 + log_k -0.4977 + -delta_H 11.142 kJ/mol # Calculated enthalpy of reaction BaCl+ # Enthalpy of formation: -165.77 kcal/mol - -analytic 1.1016e+002 4.2325e-002 -2.8039e+003 -4.6010e+001 -4.3785e+001 + -analytic 1.1016e+2 4.2325e-2 -2.8039e+3 -4.601e+1 -4.3785e+1 # -Range: 0-300 -1.0000 F- + 1.0000 Ba++ = BaF+ - -llnl_gamma 4.0 - log_k -0.1833 - -delta_H 8.95376 kJ/mol # Calculated enthalpy of reaction BaF+ +F- + Ba+2 = BaF+ + -llnl_gamma 4 + log_k -0.1833 + -delta_H 8.95376 kJ/mol # Calculated enthalpy of reaction BaF+ # Enthalpy of formation: -206.51 kcal/mol - -analytic 1.0349e+002 4.0336e-002 -2.5195e+003 -4.3334e+001 -3.9346e+001 + -analytic 1.0349e+2 4.0336e-2 -2.5195e+3 -4.3334e+1 -3.9346e+1 # -Range: 0-300 -1.0000 NO3- + 1.0000 Ba++ = BaNO3+ - -llnl_gamma 4.0 - log_k +0.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaNO3+ +NO3- + Ba+2 = BaNO3+ + -llnl_gamma 4 + log_k 0.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaNO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Ba++ = BaOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -13.47 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaOH+ + +H2O + Ba+2 = BaOH+ + H+ + -llnl_gamma 4 + log_k -13.47 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaOH+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Be++ = Be(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -6.8023 - -delta_H -52.4255 kJ/mol # Calculated enthalpy of reaction Be(Acetate)2 + +2 HAcetate + Be+2 = Be(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -6.8023 + -delta_H -52.4255 kJ/mol # Calculated enthalpy of reaction Be(Acetate)2 # Enthalpy of formation: -336.23 kcal/mol - -analytic -3.5242e+001 5.1285e-003 -4.8914e+002 8.2862e+000 7.1774e+005 + -analytic -3.5242e+1 5.1285e-3 -4.8914e+2 8.2862e+0 7.1774e+5 # -Range: 0-300 -1.0000 Be++ + 1.0000 HAcetate = BeAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.1079 - -delta_H -22.761 kJ/mol # Calculated enthalpy of reaction BeAcetate+ +Be+2 + HAcetate = BeAcetate+ + H+ + -llnl_gamma 4 + log_k -3.1079 + -delta_H -22.761 kJ/mol # Calculated enthalpy of reaction BeAcetate+ # Enthalpy of formation: -213.04 kcal/mol - -analytic -1.9418e+001 5.2172e-004 -8.5071e+001 5.2755e+000 3.0215e+005 + -analytic -1.9418e+1 5.2172e-4 -8.5071e+1 5.2755e+0 3.0215e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Be++ = BeO2-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.161 - -delta_H 163.737 kJ/mol # Calculated enthalpy of reaction BeO2-2 +2 H2O + Be+2 = BeO2-2 + 4 H+ + -llnl_gamma 4 + log_k -32.161 + -delta_H 163.737 kJ/mol # Calculated enthalpy of reaction BeO2-2 # Enthalpy of formation: -189 kcal/mol - -analytic 7.0860e+000 -3.8474e-002 -1.1400e+004 4.2138e+000 -1.7789e+002 + -analytic 7.086e+0 -3.8474e-2 -1.14e+4 4.2138e+0 -1.7789e+2 # -Range: 0-300 -2.0000 H+ + 2.0000 Br- + 0.5000 O2 = Br2 +1.0000 H2O - -llnl_gamma 3.0 - log_k +5.6834 - -delta_H 0 # Not possible to calculate enthalpy of reaction Br2 +2 H+ + 2 Br- + 0.5 O2 = Br2 + H2O + -llnl_gamma 3 + log_k 5.6834 + -delta_H 0 # Not possible to calculate enthalpy of reaction Br2 # Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 H+ = CO2 +1.0000 H2O + +HCO3- + H+ = CO2 + H2O -CO2_llnl_gamma - log_k +6.3447 - -delta_H -9.7027 kJ/mol # Calculated enthalpy of reaction CO2 + log_k 6.3447 + -delta_H -9.7027 kJ/mol # Calculated enthalpy of reaction CO2 # Enthalpy of formation: -98.9 kcal/mol - -analytic -1.0534e+001 2.1746e-002 2.5216e+003 7.9125e-001 3.9351e+001 + -analytic -1.0534e+1 2.1746e-2 2.5216e+3 7.9125e-1 3.9351e+1 # -Range: 0-300 -1.0000 HCO3- = CO3-- +1.0000 H+ - -llnl_gamma 4.5 - log_k -10.3288 - -delta_H 14.6984 kJ/mol # Calculated enthalpy of reaction CO3-2 +HCO3- = CO3-2 + H+ + -llnl_gamma 4.5 + log_k -10.3288 + -delta_H 14.6984 kJ/mol # Calculated enthalpy of reaction CO3-2 # Enthalpy of formation: -161.385 kcal/mol - -analytic -6.9958e+001 -3.3526e-002 -7.0846e+001 2.8224e+001 -1.0849e+000 + -analytic -6.9958e+1 -3.3526e-2 -7.0846e+1 2.8224e+1 -1.0849e+0 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Ca++ = Ca(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.3814 - -delta_H -2.7196 kJ/mol # Calculated enthalpy of reaction Ca(Acetate)2 +2 HAcetate + Ca+2 = Ca(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -7.3814 + -delta_H -2.7196 kJ/mol # Calculated enthalpy of reaction Ca(Acetate)2 # Enthalpy of formation: -362.65 kcal/mol - -analytic -1.0320e+001 4.0012e-003 -3.6281e+003 2.4421e+000 7.0175e+005 + -analytic -1.032e+1 4.0012e-3 -3.6281e+3 2.4421e+0 7.0175e+5 # -Range: 0-300 -1.0000 O_phthalate-2 + 1.0000 Ca++ = Ca(O_phthalate) - -llnl_gamma 3.0 - log_k +2.4200 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca(O_phthalate) +O_phthalate-2 + Ca+2 = Ca(O_phthalate) + -llnl_gamma 3 + log_k 2.42 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca(O_phthalate) # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Ca++ + 1.0000 B(OH)3 = CaB(OH)4+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.4222 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaB(OH)4+ + +H2O + Ca+2 + B(OH)3 = CaB(OH)4+ + H+ + -llnl_gamma 4 + log_k -7.4222 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaB(OH)4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Ca++ + 1.0000 HAcetate = CaAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.8263 - -delta_H 1.17152 kJ/mol # Calculated enthalpy of reaction CaAcetate+ + +Ca+2 + HAcetate = CaAcetate+ + H+ + -llnl_gamma 4 + log_k -3.8263 + -delta_H 1.17152 kJ/mol # Calculated enthalpy of reaction CaAcetate+ # Enthalpy of formation: -245.62 kcal/mol - -analytic -8.8826e+000 3.1672e-003 -1.0764e+003 2.0526e+000 2.3599e+005 + -analytic -8.8826e+0 3.1672e-3 -1.0764e+3 2.0526e+0 2.3599e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Ca++ = CaCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.0017 - -delta_H 30.5767 kJ/mol # Calculated enthalpy of reaction CaCO3 +HCO3- + Ca+2 = CaCO3 + H+ + -llnl_gamma 3 + log_k -7.0017 + -delta_H 30.5767 kJ/mol # Calculated enthalpy of reaction CaCO3 # Enthalpy of formation: -287.39 kcal/mol - -analytic 2.3045e+002 5.5350e-002 -8.5056e+003 -9.1096e+001 -1.3279e+002 + -analytic 2.3045e+2 5.535e-2 -8.5056e+3 -9.1096e+1 -1.3279e+2 # -Range: 0-300 -1.0000 Cl- + 1.0000 Ca++ = CaCl+ - -llnl_gamma 4.0 - log_k -0.6956 - -delta_H 2.02087 kJ/mol # Calculated enthalpy of reaction CaCl+ +Cl- + Ca+2 = CaCl+ + -llnl_gamma 4 + log_k -0.6956 + -delta_H 2.02087 kJ/mol # Calculated enthalpy of reaction CaCl+ # Enthalpy of formation: -169.25 kcal/mol - -analytic 8.1498e+001 3.8387e-002 -1.3763e+003 -3.5968e+001 -2.1501e+001 + -analytic 8.1498e+1 3.8387e-2 -1.3763e+3 -3.5968e+1 -2.1501e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Ca++ = CaCl2 - -llnl_gamma 3.0 - log_k -0.6436 - -delta_H -5.8325 kJ/mol # Calculated enthalpy of reaction CaCl2 +2 Cl- + Ca+2 = CaCl2 + -llnl_gamma 3 + log_k -0.6436 + -delta_H -5.8325 kJ/mol # Calculated enthalpy of reaction CaCl2 # Enthalpy of formation: -211.06 kcal/mol - -analytic 1.8178e+002 7.6910e-002 -3.1088e+003 -7.8760e+001 -4.8563e+001 + -analytic 1.8178e+2 7.691e-2 -3.1088e+3 -7.876e+1 -4.8563e+1 # -Range: 0-300 -1.0000 F- + 1.0000 Ca++ = CaF+ - -llnl_gamma 4.0 - log_k +0.6817 - -delta_H 5.6484 kJ/mol # Calculated enthalpy of reaction CaF+ +F- + Ca+2 = CaF+ + -llnl_gamma 4 + log_k 0.6817 + -delta_H 5.6484 kJ/mol # Calculated enthalpy of reaction CaF+ # Enthalpy of formation: -208.6 kcal/mol - -analytic 7.8058e+001 3.8276e-002 -1.3289e+003 -3.4071e+001 -2.0759e+001 + -analytic 7.8058e+1 3.8276e-2 -1.3289e+3 -3.4071e+1 -2.0759e+1 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Ca++ = CaH2PO4+ - -llnl_gamma 4.0 - log_k +1.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaH2PO4+ +HPO4-2 + H+ + Ca+2 = CaH2PO4+ + -llnl_gamma 4 + log_k 1.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaH2PO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Ca++ = CaHCO3+ - -llnl_gamma 4.0 - log_k +1.0467 - -delta_H 1.45603 kJ/mol # Calculated enthalpy of reaction CaHCO3+ + +HCO3- + Ca+2 = CaHCO3+ + -llnl_gamma 4 + log_k 1.0467 + -delta_H 1.45603 kJ/mol # Calculated enthalpy of reaction CaHCO3+ # Enthalpy of formation: -294.35 kcal/mol - -analytic 5.5985e+001 3.4639e-002 -3.6972e+002 -2.5864e+001 -5.7859e+000 + -analytic 5.5985e+1 3.4639e-2 -3.6972e+2 -2.5864e+1 -5.7859e+0 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Ca++ = CaHPO4 - -llnl_gamma 3.0 - log_k +2.7400 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaHPO4 +HPO4-2 + Ca+2 = CaHPO4 + -llnl_gamma 3 + log_k 2.74 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaHPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Ca++ = CaNO3+ - -llnl_gamma 4.0 - log_k +0.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaNO3+ + +NO3- + Ca+2 = CaNO3+ + -llnl_gamma 4 + log_k 0.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaNO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Ca++ = CaOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -12.85 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaOH+ + +H2O + Ca+2 = CaOH+ + H+ + -llnl_gamma 4 + log_k -12.85 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaOH+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ca++ = CaP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +3.0537 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaP2O7-2 + +2 HPO4-2 + Ca+2 = CaP2O7-2 + H2O + -llnl_gamma 4 + log_k 3.0537 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaP2O7-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Ca++ = CaPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.8618 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaPO4- + +HPO4-2 + Ca+2 = CaPO4- + H+ + -llnl_gamma 4 + log_k -5.8618 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaPO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ca++ = CaSO4 - -llnl_gamma 3.0 - log_k +2.1111 - -delta_H 5.4392 kJ/mol # Calculated enthalpy of reaction CaSO4 + +SO4-2 + Ca+2 = CaSO4 + -llnl_gamma 3 + log_k 2.1111 + -delta_H 5.4392 kJ/mol # Calculated enthalpy of reaction CaSO4 # Enthalpy of formation: -345.9 kcal/mol - -analytic 2.8618e+002 8.4084e-002 -7.6880e+003 -1.1449e+002 -1.2005e+002 + -analytic 2.8618e+2 8.4084e-2 -7.688e+3 -1.1449e+2 -1.2005e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Cd++ = Cd(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -6.3625 - -delta_H -17.4891 kJ/mol # Calculated enthalpy of reaction Cd(Acetate)2 +2 HAcetate + Cd+2 = Cd(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -6.3625 + -delta_H -17.4891 kJ/mol # Calculated enthalpy of reaction Cd(Acetate)2 # Enthalpy of formation: -254.52 kcal/mol - -analytic -1.9344e+001 2.5894e-003 -3.2847e+003 5.8489e+000 7.8041e+005 + -analytic -1.9344e+1 2.5894e-3 -3.2847e+3 5.8489e+0 7.8041e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Cd++ = Cd(Acetate)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -10.8558 - -delta_H -40.0409 kJ/mol # Calculated enthalpy of reaction Cd(Acetate)3- +3 HAcetate + Cd+2 = Cd(Acetate)3- + 3 H+ + -llnl_gamma 4 + log_k -10.8558 + -delta_H -40.0409 kJ/mol # Calculated enthalpy of reaction Cd(Acetate)3- # Enthalpy of formation: -376.01 kcal/mol - -analytic 4.8290e+001 -3.4317e-003 -1.5122e+004 -1.3203e+001 2.2479e+006 + -analytic 4.829e+1 -3.4317e-3 -1.5122e+4 -1.3203e+1 2.2479e+6 # -Range: 0-300 -4.0000 HAcetate + 1.0000 Cd++ = Cd(Acetate)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -16.9163 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Acetate)4-2 +4 HAcetate + Cd+2 = Cd(Acetate)4-2 + 4 H+ + -llnl_gamma 4 + log_k -16.9163 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Acetate)4-2 # Enthalpy of formation: -0 kcal/mol - - 2.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)2 - -llnl_gamma 3.0 - log_k +10.3551 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)2 - # Enthalpy of formation: -0 kcal/mol - - 3.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)3- - -llnl_gamma 4.0 - log_k +14.8191 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)3- - # Enthalpy of formation: -0 kcal/mol - - 4.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)4-- - -llnl_gamma 4.0 - log_k +18.2670 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)4-2 - # Enthalpy of formation: -0 kcal/mol - -2.0000 HCO3- + 1.0000 Cd++ = Cd(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -14.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(CO3)2-2 + 2 Cyanide- + Cd+2 = Cd(Cyanide)2 + -llnl_gamma 3 + log_k 10.3551 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)2 + # Enthalpy of formation: -0 kcal/mol + + 3 Cyanide- + Cd+2 = Cd(Cyanide)3- + -llnl_gamma 4 + log_k 14.8191 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)3- + # Enthalpy of formation: -0 kcal/mol + + 4 Cyanide- + Cd+2 = Cd(Cyanide)4-2 + -llnl_gamma 4 + log_k 18.267 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)4-2 + # Enthalpy of formation: -0 kcal/mol + + +2 HCO3- + Cd+2 = Cd(CO3)2-2 + 2 H+ + -llnl_gamma 4 + log_k -14.2576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(CO3)2-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 N3- + 1.0000 Cd++ = Cd(N3)2 - -llnl_gamma 0.0 - log_k +2.4606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)2 + +2 N3- + Cd+2 = Cd(N3)2 + -llnl_gamma 0 + log_k 2.4606 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 N3- + 1.0000 Cd++ = Cd(N3)3- - -llnl_gamma 4.0 - log_k +3.1263 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)3- + +3 N3- + Cd+2 = Cd(N3)3- + -llnl_gamma 4 + log_k 3.1263 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)3- # Enthalpy of formation: -0 kcal/mol - -4.0000 N3- + 1.0000 Cd++ = Cd(N3)4-- - -llnl_gamma 4.0 - log_k +3.4942 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)4-2 + +4 N3- + Cd+2 = Cd(N3)4-2 + -llnl_gamma 4 + log_k 3.4942 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 NH3 + 1.0000 Cd++ = Cd(NH3)++ - -llnl_gamma 4.5 - log_k +2.5295 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(NH3)+2 + +NH3 + Cd+2 = Cd(NH3)+2 + -llnl_gamma 4.5 + log_k 2.5295 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(NH3)+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 NH3 + 1.0000 Cd++ = Cd(NH3)2++ - -llnl_gamma 4.5 - log_k +4.8760 - -delta_H -27.6533 kJ/mol # Calculated enthalpy of reaction Cd(NH3)2+2 + +2 NH3 + Cd+2 = Cd(NH3)2+2 + -llnl_gamma 4.5 + log_k 4.876 + -delta_H -27.6533 kJ/mol # Calculated enthalpy of reaction Cd(NH3)2+2 # Enthalpy of formation: -266.225 kJ/mol - -analytic 1.0738e+002 1.6071e-003 -3.2536e+003 -3.7202e+001 -5.0801e+001 + -analytic 1.0738e+2 1.6071e-3 -3.2536e+3 -3.7202e+1 -5.0801e+1 # -Range: 0-300 -4.0000 NH3 + 1.0000 Cd++ = Cd(NH3)4++ - -llnl_gamma 4.5 - log_k +7.2914 - -delta_H -49.0684 kJ/mol # Calculated enthalpy of reaction Cd(NH3)4+2 +4 NH3 + Cd+2 = Cd(NH3)4+2 + -llnl_gamma 4.5 + log_k 7.2914 + -delta_H -49.0684 kJ/mol # Calculated enthalpy of reaction Cd(NH3)4+2 # Enthalpy of formation: -450.314 kJ/mol - -analytic 1.5670e+002 -9.4949e-003 -5.0986e+003 -5.2316e+001 -7.9603e+001 + -analytic 1.567e+2 -9.4949e-3 -5.0986e+3 -5.2316e+1 -7.9603e+1 # -Range: 0-300 -2.0000 H2O + 1.0000 Cd++ = Cd(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -20.3402 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)2 +2 H2O + Cd+2 = Cd(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -20.3402 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Cd++ = Cd(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -33.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)3- + +3 H2O + Cd+2 = Cd(OH)3- + 3 H+ + -llnl_gamma 4 + log_k -33.2852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)3- # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Cd++ = Cd(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -47.3303 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)4-2 + +4 H2O + Cd+2 = Cd(OH)4-2 + 4 H+ + -llnl_gamma 4 + log_k -47.3303 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Cl- + 1.0000 Cd++ = Cd(OH)Cl +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.4328 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)Cl + +H2O + Cl- + Cd+2 = Cd(OH)Cl + H+ + -llnl_gamma 3 + log_k -7.4328 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)Cl # Enthalpy of formation: -0 kcal/mol - -2.0000 Thiocyanate- + 1.0000 Cd++ = Cd(Thiocyanate)2 - -llnl_gamma 3.0 - log_k +1.8649 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)2 + +2 Thiocyanate- + Cd+2 = Cd(Thiocyanate)2 + -llnl_gamma 3 + log_k 1.8649 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 Thiocyanate- + 1.0000 Cd++ = Cd(Thiocyanate)3- - -llnl_gamma 4.0 - log_k +1.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)3- + +3 Thiocyanate- + Cd+2 = Cd(Thiocyanate)3- + -llnl_gamma 4 + log_k 1.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)3- # Enthalpy of formation: -0 kcal/mol - -2.0000 Cd++ + 1.0000 H2O = Cd2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -9.3851 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd2OH+3 + +2 Cd+2 + H2O = Cd2OH+3 + H+ + -llnl_gamma 5 + log_k -9.3851 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd2OH+3 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 4.0000 Cd++ = Cd4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -362.1263 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd4(OH)4+4 + +4 H2O + 4 Cd+2 = Cd4(OH)4+4 + 4 H+ + -llnl_gamma 5.5 + log_k -362.1263 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd4(OH)4+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Cd++ + 1.0000 Br- = CdBr+ - -llnl_gamma 4.0 - log_k +2.1424 - -delta_H -3.35588 kJ/mol # Calculated enthalpy of reaction CdBr+ + +Cd+2 + Br- = CdBr+ + -llnl_gamma 4 + log_k 2.1424 + -delta_H -3.35588 kJ/mol # Calculated enthalpy of reaction CdBr+ # Enthalpy of formation: -200.757 kJ/mol - -analytic 1.4922e+002 5.0059e-002 -3.3035e+003 -6.0984e+001 -5.1593e+001 + -analytic 1.4922e+2 5.0059e-2 -3.3035e+3 -6.0984e+1 -5.1593e+1 # -Range: 0-300 -2.0000 Br- + 1.0000 Cd++ = CdBr2 - -llnl_gamma 3.0 - log_k +2.8614 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr2 +2 Br- + Cd+2 = CdBr2 + -llnl_gamma 3 + log_k 2.8614 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr2 # Enthalpy of formation: -0 kcal/mol - -3.0000 Br- + 1.0000 Cd++ = CdBr3- - -llnl_gamma 4.0 - log_k +3.0968 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr3- + +3 Br- + Cd+2 = CdBr3- + -llnl_gamma 4 + log_k 3.0968 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr3- # Enthalpy of formation: -0 kcal/mol - -1.0000 Cd++ + 1.0000 HAcetate = CdAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.8294 - -delta_H -7.02912 kJ/mol # Calculated enthalpy of reaction CdAcetate+ + +Cd+2 + HAcetate = CdAcetate+ + H+ + -llnl_gamma 4 + log_k -2.8294 + -delta_H -7.02912 kJ/mol # Calculated enthalpy of reaction CdAcetate+ # Enthalpy of formation: -135.92 kcal/mol - -analytic -8.8425e+000 1.7178e-003 -1.1758e+003 2.4435e+000 3.0321e+005 + -analytic -8.8425e+0 1.7178e-3 -1.1758e+3 2.4435e+0 3.0321e+5 # -Range: 0-300 -1.0000 Cd++ + 1.0000 Cyanide- = CdCyanide+ - -llnl_gamma 4.0 - log_k +5.3129 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdCyanide+ +Cd+2 + Cyanide- = CdCyanide+ + -llnl_gamma 4 + log_k 5.3129 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdCyanide+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Cd++ = CdCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.3288 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdCO3 + +HCO3- + Cd+2 = CdCO3 + H+ + -llnl_gamma 3 + log_k -7.3288 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdCO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Cl- + 1.0000 Cd++ = CdCl+ - -llnl_gamma 4.0 - log_k +2.7059 - -delta_H 2.33843 kJ/mol # Calculated enthalpy of reaction CdCl+ + +Cl- + Cd+2 = CdCl+ + -llnl_gamma 4 + log_k 2.7059 + -delta_H 2.33843 kJ/mol # Calculated enthalpy of reaction CdCl+ # Enthalpy of formation: -240.639 kJ/mol -2.0000 Cl- + 1.0000 Cd++ = CdCl2 - -llnl_gamma 3.0 - log_k +3.3384 - -delta_H 5.1261 kJ/mol # Calculated enthalpy of reaction CdCl2 +2 Cl- + Cd+2 = CdCl2 + -llnl_gamma 3 + log_k 3.3384 + -delta_H 5.1261 kJ/mol # Calculated enthalpy of reaction CdCl2 # Enthalpy of formation: -404.931 kJ/mol - -analytic 1.4052e+002 4.9221e-002 -3.2625e+003 -5.6946e+001 -5.5451e+001 + -analytic 1.4052e+2 4.9221e-2 -3.2625e+3 -5.6946e+1 -5.5451e+1 # -Range: 0-200 -3.0000 Cl- + 1.0000 Cd++ = CdCl3- - -llnl_gamma 4.0 - log_k +2.7112 - -delta_H 15.9388 kJ/mol # Calculated enthalpy of reaction CdCl3- +3 Cl- + Cd+2 = CdCl3- + -llnl_gamma 4 + log_k 2.7112 + -delta_H 15.9388 kJ/mol # Calculated enthalpy of reaction CdCl3- # Enthalpy of formation: -561.198 kJ/mol - -analytic 3.5108e+002 1.0219e-001 -9.9103e+003 -1.3965e+002 -1.5474e+002 + -analytic 3.5108e+2 1.0219e-1 -9.9103e+3 -1.3965e+2 -1.5474e+2 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Cd++ = CdHCO3+ - -llnl_gamma 4.0 - log_k +1.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdHCO3+ +HCO3- + Cd+2 = CdHCO3+ + -llnl_gamma 4 + log_k 1.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdHCO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 I- + 1.0000 Cd++ = CdI+ - -llnl_gamma 4.0 - log_k +2.0710 - -delta_H -9.02584 kJ/mol # Calculated enthalpy of reaction CdI+ + +I- + Cd+2 = CdI+ + -llnl_gamma 4 + log_k 2.071 + -delta_H -9.02584 kJ/mol # Calculated enthalpy of reaction CdI+ # Enthalpy of formation: -141.826 kJ/mol - -analytic 1.5019e+002 5.0320e-002 -3.0810e+003 -6.1738e+001 -4.8120e+001 + -analytic 1.5019e+2 5.032e-2 -3.081e+3 -6.1738e+1 -4.812e+1 # -Range: 0-300 -2.0000 I- + 1.0000 Cd++ = CdI2 - -llnl_gamma 3.0 - log_k +3.4685 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdI2 +2 I- + Cd+2 = CdI2 + -llnl_gamma 3 + log_k 3.4685 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdI2 # Enthalpy of formation: -0 kcal/mol - -3.0000 I- + 1.0000 Cd++ = CdI3- - -llnl_gamma 4.0 - log_k +4.5506 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdI3- + +3 I- + Cd+2 = CdI3- + -llnl_gamma 4 + log_k 4.5506 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdI3- # Enthalpy of formation: -0 kcal/mol - -4.0000 I- + 1.0000 Cd++ = CdI4-- - -llnl_gamma 4.0 - log_k +5.3524 - -delta_H -38.8566 kJ/mol # Calculated enthalpy of reaction CdI4-2 + +4 I- + Cd+2 = CdI4-2 + -llnl_gamma 4 + log_k 5.3524 + -delta_H -38.8566 kJ/mol # Calculated enthalpy of reaction CdI4-2 # Enthalpy of formation: -342.364 kJ/mol - -analytic 4.3154e+002 1.4257e-001 -8.4464e+003 -1.7795e+002 -1.3193e+002 + -analytic 4.3154e+2 1.4257e-1 -8.4464e+3 -1.7795e+2 -1.3193e+2 # -Range: 0-300 -1.0000 N3- + 1.0000 Cd++ = CdN3+ - -llnl_gamma 4.0 - log_k +1.4970 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdN3+ +N3- + Cd+2 = CdN3+ + -llnl_gamma 4 + log_k 1.497 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdN3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 NO2- + 1.0000 Cd++ = CdNO2+ - -llnl_gamma 4.0 - log_k +2.3700 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdNO2+ + +NO2- + Cd+2 = CdNO2+ + -llnl_gamma 4 + log_k 2.37 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdNO2+ # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Cd++ = CdOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -10.0751 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdOH+ + +H2O + Cd+2 = CdOH+ + H+ + -llnl_gamma 4 + log_k -10.0751 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdOH+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Cd++ = CdP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +4.8094 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdP2O7-2 + +2 HPO4-2 + Cd+2 = CdP2O7-2 + H2O + -llnl_gamma 4 + log_k 4.8094 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdP2O7-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Thiocyanate- + 1.0000 Cd++ = CdThiocyanate+ - -llnl_gamma 4.0 - log_k +1.3218 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdThiocyanate+ + +Thiocyanate- + Cd+2 = CdThiocyanate+ + -llnl_gamma 4 + log_k 1.3218 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdThiocyanate+ # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Cd++ = CdSO4 - -llnl_gamma 3.0 - log_k +0.0028 - -delta_H 0.20436 kJ/mol # Calculated enthalpy of reaction CdSO4 + +SO4-2 + Cd+2 = CdSO4 + -llnl_gamma 3 + log_k 0.0028 + -delta_H 0.20436 kJ/mol # Calculated enthalpy of reaction CdSO4 # Enthalpy of formation: -985.295 kJ/mol - -analytic -8.9926e+000 -1.9109e-003 2.7454e+002 3.4949e+000 4.6651e+000 + -analytic -8.9926e+0 -1.9109e-3 2.7454e+2 3.4949e+0 4.6651e+0 # -Range: 0-200 -1.0000 SeO4-- + 1.0000 Cd++ = CdSeO4 - -llnl_gamma 3.0 - log_k +2.2700 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdSeO4 +SeO4-2 + Cd+2 = CdSeO4 + -llnl_gamma 3 + log_k 2.27 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdSeO4 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Ce+++ = Ce(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.8159 - -delta_H -22.9702 kJ/mol # Calculated enthalpy of reaction Ce(Acetate)2+ + +2 HAcetate + Ce+3 = Ce(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.8159 + -delta_H -22.9702 kJ/mol # Calculated enthalpy of reaction Ce(Acetate)2+ # Enthalpy of formation: -405.09 kcal/mol - -analytic -3.4653e+001 2.0716e-004 -6.3400e+002 1.0678e+001 4.8922e+005 + -analytic -3.4653e+1 2.0716e-4 -6.34e+2 1.0678e+1 4.8922e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Ce+++ = Ce(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.151 - -delta_H -38.7438 kJ/mol # Calculated enthalpy of reaction Ce(Acetate)3 +3 HAcetate + Ce+3 = Ce(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.151 + -delta_H -38.7438 kJ/mol # Calculated enthalpy of reaction Ce(Acetate)3 # Enthalpy of formation: -524.96 kcal/mol - -analytic -2.3361e+001 2.3896e-003 -1.8035e+003 5.0888e+000 7.1021e+005 + -analytic -2.3361e+1 2.3896e-3 -1.8035e+3 5.0888e+0 7.1021e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Ce+++ = Ce(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.1576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(CO3)2- +2 HCO3- + Ce+3 = Ce(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -8.1576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ce+++ = Ce(HPO4)2- - -llnl_gamma 4.0 - log_k +8.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(HPO4)2- + +2 HPO4-2 + Ce+3 = Ce(HPO4)2- + -llnl_gamma 4 + log_k 8.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Ce++++ = Ce(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k +2.0098 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)2+2 + +2 H2O + Ce+4 = Ce(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k 2.0098 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)2+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ce+++ = Ce(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -6.1437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(PO4)2-3 + +2 HPO4-2 + Ce+3 = Ce(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -6.1437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 2.0000 Ce++++ = Ce2(OH)2+6 +2.0000 H+ - -llnl_gamma 6.0 - log_k +3.0098 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(OH)2+6 + +2 H2O + 2 Ce+4 = Ce2(OH)2+6 + 2 H+ + -llnl_gamma 6 + log_k 3.0098 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(OH)2+6 # Enthalpy of formation: -0 kcal/mol - -5.0000 H2O + 3.0000 Ce+++ = Ce3(OH)5++++ +5.0000 H+ - -llnl_gamma 5.5 - log_k -33.4754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(OH)5+4 + +5 H2O + 3 Ce+3 = Ce3(OH)5+4 + 5 H+ + -llnl_gamma 5.5 + log_k -33.4754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(OH)5+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Ce+++ + 1.0000 Br- = CeBr++ - -llnl_gamma 4.5 - log_k +0.3797 - -delta_H 3.0585 kJ/mol # Calculated enthalpy of reaction CeBr+2 + +Ce+3 + Br- = CeBr+2 + -llnl_gamma 4.5 + log_k 0.3797 + -delta_H 3.0585 kJ/mol # Calculated enthalpy of reaction CeBr+2 # Enthalpy of formation: -195.709 kcal/mol - -analytic 7.5790e+001 3.6040e-002 -1.2647e+003 -3.3094e+001 -1.9757e+001 + -analytic 7.579e+1 3.604e-2 -1.2647e+3 -3.3094e+1 -1.9757e+1 # -Range: 0-300 -1.0000 Ce+++ + 1.0000 HAcetate = CeAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.0304 - -delta_H -12.0918 kJ/mol # Calculated enthalpy of reaction CeAcetate+2 +Ce+3 + HAcetate = CeAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.0304 + -delta_H -12.0918 kJ/mol # Calculated enthalpy of reaction CeAcetate+2 # Enthalpy of formation: -286.39 kcal/mol - -analytic -1.6080e+001 6.6239e-004 -6.0721e+002 5.0845e+000 2.9512e+005 + -analytic -1.608e+1 6.6239e-4 -6.0721e+2 5.0845e+0 2.9512e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Ce+++ = CeCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.9284 - -delta_H 93.345 kJ/mol # Calculated enthalpy of reaction CeCO3+ +HCO3- + Ce+3 = CeCO3+ + H+ + -llnl_gamma 4 + log_k -2.9284 + -delta_H 93.345 kJ/mol # Calculated enthalpy of reaction CeCO3+ # Enthalpy of formation: -309.988 kcal/mol - -analytic 2.3292e+002 5.3153e-002 -7.1180e+003 -9.2061e+001 -1.1114e+002 + -analytic 2.3292e+2 5.3153e-2 -7.118e+3 -9.2061e+1 -1.1114e+2 # -Range: 0-300 -1.0000 Cl- + 1.0000 Ce+++ = CeCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction CeCl+2 +Cl- + Ce+3 = CeCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction CeCl+2 # Enthalpy of formation: -203.8 kcal/mol - -analytic 8.3534e+001 3.8166e-002 -2.0058e+003 -3.5504e+001 -3.1324e+001 + -analytic 8.3534e+1 3.8166e-2 -2.0058e+3 -3.5504e+1 -3.1324e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Ce+++ = CeCl2+ - -llnl_gamma 4.0 - log_k +0.0308 - -delta_H 20.7777 kJ/mol # Calculated enthalpy of reaction CeCl2+ +2 Cl- + Ce+3 = CeCl2+ + -llnl_gamma 4 + log_k 0.0308 + -delta_H 20.7777 kJ/mol # Calculated enthalpy of reaction CeCl2+ # Enthalpy of formation: -242.3 kcal/mol - -analytic 2.3011e+002 8.1428e-002 -6.1292e+003 -9.4468e+001 -9.5708e+001 + -analytic 2.3011e+2 8.1428e-2 -6.1292e+3 -9.4468e+1 -9.5708e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Ce+++ = CeCl3 - -llnl_gamma 3.0 - log_k -0.3936 - -delta_H 15.4766 kJ/mol # Calculated enthalpy of reaction CeCl3 +3 Cl- + Ce+3 = CeCl3 + -llnl_gamma 3 + log_k -0.3936 + -delta_H 15.4766 kJ/mol # Calculated enthalpy of reaction CeCl3 # Enthalpy of formation: -283.5 kcal/mol - -analytic 4.4073e+002 1.2994e-001 -1.2308e+004 -1.7722e+002 -1.9218e+002 + -analytic 4.4073e+2 1.2994e-1 -1.2308e+4 -1.7722e+2 -1.9218e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Ce+++ = CeCl4- - -llnl_gamma 4.0 - log_k -0.7447 - -delta_H -1.95811 kJ/mol # Calculated enthalpy of reaction CeCl4- +4 Cl- + Ce+3 = CeCl4- + -llnl_gamma 4 + log_k -0.7447 + -delta_H -1.95811 kJ/mol # Calculated enthalpy of reaction CeCl4- # Enthalpy of formation: -327.6 kcal/mol - -analytic 5.2230e+002 1.3490e-001 -1.4859e+004 -2.0747e+002 -2.3201e+002 + -analytic 5.223e+2 1.349e-1 -1.4859e+4 -2.0747e+2 -2.3201e+2 # -Range: 0-300 -1.0000 ClO4- + 1.0000 Ce+++ = CeClO4++ - -llnl_gamma 4.5 - log_k +1.9102 - -delta_H -49.0197 kJ/mol # Calculated enthalpy of reaction CeClO4+2 +ClO4- + Ce+3 = CeClO4+2 + -llnl_gamma 4.5 + log_k 1.9102 + -delta_H -49.0197 kJ/mol # Calculated enthalpy of reaction CeClO4+2 # Enthalpy of formation: -210.026 kcal/mol - -analytic -1.3609e+001 1.8115e-002 3.9869e+003 -1.3033e+000 6.2215e+001 + -analytic -1.3609e+1 1.8115e-2 3.9869e+3 -1.3033e+0 6.2215e+1 # -Range: 0-300 -1.0000 F- + 1.0000 Ce+++ = CeF++ - -llnl_gamma 4.5 - log_k +4.2221 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction CeF+2 +F- + Ce+3 = CeF+2 + -llnl_gamma 4.5 + log_k 4.2221 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction CeF+2 # Enthalpy of formation: -242 kcal/mol - -analytic 1.0303e+002 4.1730e-002 -2.8424e+003 -4.1094e+001 -4.4383e+001 + -analytic 1.0303e+2 4.173e-2 -2.8424e+3 -4.1094e+1 -4.4383e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Ce+++ = CeF2+ - -llnl_gamma 4.0 - log_k +7.2714 - -delta_H 15.0624 kJ/mol # Calculated enthalpy of reaction CeF2+ +2 F- + Ce+3 = CeF2+ + -llnl_gamma 4 + log_k 7.2714 + -delta_H 15.0624 kJ/mol # Calculated enthalpy of reaction CeF2+ # Enthalpy of formation: -324.1 kcal/mol - -analytic 2.5063e+002 8.5224e-002 -6.2219e+003 -1.0017e+002 -9.7160e+001 + -analytic 2.5063e+2 8.5224e-2 -6.2219e+3 -1.0017e+2 -9.716e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Ce+++ = CeF3 - -llnl_gamma 3.0 - log_k +9.5144 - -delta_H -6.0668 kJ/mol # Calculated enthalpy of reaction CeF3 +3 F- + Ce+3 = CeF3 + -llnl_gamma 3 + log_k 9.5144 + -delta_H -6.0668 kJ/mol # Calculated enthalpy of reaction CeF3 # Enthalpy of formation: -409.3 kcal/mol - -analytic 4.6919e+002 1.3664e-001 -1.1745e+004 -1.8629e+002 -1.8340e+002 + -analytic 4.6919e+2 1.3664e-1 -1.1745e+4 -1.8629e+2 -1.834e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Ce+++ = CeF4- - -llnl_gamma 4.0 - log_k +11.3909 - -delta_H -45.6056 kJ/mol # Calculated enthalpy of reaction CeF4- +4 F- + Ce+3 = CeF4- + -llnl_gamma 4 + log_k 11.3909 + -delta_H -45.6056 kJ/mol # Calculated enthalpy of reaction CeF4- # Enthalpy of formation: -498.9 kcal/mol - -analytic 5.3522e+002 1.3856e-001 -1.2722e+004 -2.1112e+002 -1.9868e+002 + -analytic 5.3522e+2 1.3856e-1 -1.2722e+4 -2.1112e+2 -1.9868e+2 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Ce+++ = CeH2PO4++ - -llnl_gamma 4.5 - log_k +9.6684 - -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction CeH2PO4+2 +HPO4-2 + H+ + Ce+3 = CeH2PO4+2 + -llnl_gamma 4.5 + log_k 9.6684 + -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction CeH2PO4+2 # Enthalpy of formation: -480.1 kcal/mol - -analytic 1.1338e+002 6.3771e-002 5.2908e+001 -4.9649e+001 7.9189e-001 + -analytic 1.1338e+2 6.3771e-2 5.2908e+1 -4.9649e+1 7.9189e-1 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Ce+++ = CeHCO3++ - -llnl_gamma 4.5 - log_k +1.9190 - -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction CeHCO3+2 +HCO3- + Ce+3 = CeHCO3+2 + -llnl_gamma 4.5 + log_k 1.919 + -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction CeHCO3+2 # Enthalpy of formation: -330.2 kcal/mol - -analytic 4.4441e+001 3.2077e-002 -3.0714e+002 -2.0622e+001 -4.8060e+000 + -analytic 4.4441e+1 3.2077e-2 -3.0714e+2 -2.0622e+1 -4.806e+0 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Ce+++ = CeHPO4+ - -llnl_gamma 4.0 - log_k +5.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeHPO4+ +HPO4-2 + Ce+3 = CeHPO4+ + -llnl_gamma 4 + log_k 5.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 IO3- + 1.0000 Ce+++ = CeIO3++ - -llnl_gamma 4.5 - log_k +1.9000 - -delta_H -21.1627 kJ/mol # Calculated enthalpy of reaction CeIO3+2 + +IO3- + Ce+3 = CeIO3+2 + -llnl_gamma 4.5 + log_k 1.9 + -delta_H -21.1627 kJ/mol # Calculated enthalpy of reaction CeIO3+2 # Enthalpy of formation: -225.358 kcal/mol - -analytic 3.3756e+001 2.8528e-002 1.2847e+003 -1.8042e+001 2.0036e+001 + -analytic 3.3756e+1 2.8528e-2 1.2847e+3 -1.8042e+1 2.0036e+1 # -Range: 0-300 -1.0000 NO3- + 1.0000 Ce+++ = CeNO3++ - -llnl_gamma 4.5 - log_k +1.3143 - -delta_H -26.6563 kJ/mol # Calculated enthalpy of reaction CeNO3+2 +NO3- + Ce+3 = CeNO3+2 + -llnl_gamma 4.5 + log_k 1.3143 + -delta_H -26.6563 kJ/mol # Calculated enthalpy of reaction CeNO3+2 # Enthalpy of formation: -223.2 kcal/mol - -analytic 2.2772e+001 2.5931e-002 1.9950e+003 -1.4490e+001 3.1124e+001 + -analytic 2.2772e+1 2.5931e-2 1.995e+3 -1.449e+1 3.1124e+1 # -Range: 0-300 -1.0000 H2O + 1.0000 Ce+++ = CeO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.4103 - -delta_H 112.202 kJ/mol # Calculated enthalpy of reaction CeO+ +H2O + Ce+3 = CeO+ + 2 H+ + -llnl_gamma 4 + log_k -16.4103 + -delta_H 112.202 kJ/mol # Calculated enthalpy of reaction CeO+ # Enthalpy of formation: -208.9 kcal/mol - -analytic 1.9881e+002 3.1302e-002 -1.4331e+004 -7.1323e+001 -2.2368e+002 + -analytic 1.9881e+2 3.1302e-2 -1.4331e+4 -7.1323e+1 -2.2368e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Ce+++ = CeO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -38.758 - -delta_H 308.503 kJ/mol # Calculated enthalpy of reaction CeO2- +2 H2O + Ce+3 = CeO2- + 4 H+ + -llnl_gamma 4 + log_k -38.758 + -delta_H 308.503 kJ/mol # Calculated enthalpy of reaction CeO2- # Enthalpy of formation: -230.3 kcal/mol - -analytic 1.0059e+002 3.4824e-003 -1.5873e+004 -3.3056e+001 -4.7656e+005 + -analytic 1.0059e+2 3.4824e-3 -1.5873e+4 -3.3056e+1 -4.7656e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Ce+++ = CeO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -26.1503 - -delta_H 228.17 kJ/mol # Calculated enthalpy of reaction CeO2H +2 H2O + Ce+3 = CeO2H + 3 H+ + -llnl_gamma 3 + log_k -26.1503 + -delta_H 228.17 kJ/mol # Calculated enthalpy of reaction CeO2H # Enthalpy of formation: -249.5 kcal/mol - -analytic 3.5650e+002 4.6708e-002 -2.4320e+004 -1.2731e+002 -3.7959e+002 + -analytic 3.565e+2 4.6708e-2 -2.432e+4 -1.2731e+2 -3.7959e+2 # -Range: 0-300 -1.0000 H2O + 1.0000 Ce+++ = CeOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -8.4206 - -delta_H 73.2911 kJ/mol # Calculated enthalpy of reaction CeOH+2 +H2O + Ce+3 = CeOH+2 + H+ + -llnl_gamma 4.5 + log_k -8.4206 + -delta_H 73.2911 kJ/mol # Calculated enthalpy of reaction CeOH+2 # Enthalpy of formation: -218.2 kcal/mol - -analytic 7.5809e+001 1.2863e-002 -6.7244e+003 -2.6473e+001 -1.0495e+002 + -analytic 7.5809e+1 1.2863e-2 -6.7244e+3 -2.6473e+1 -1.0495e+2 # -Range: 0-300 -1.0000 H2O + 1.0000 Ce++++ = CeOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k +3.2049 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeOH+3 +H2O + Ce+4 = CeOH+3 + H+ + -llnl_gamma 5 + log_k 3.2049 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeOH+3 # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Ce+++ = CePO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.9718 - -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4 + +HPO4-2 + Ce+3 = CePO4 + H+ + -llnl_gamma 3 + log_k -0.9718 + -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ce+++ = CeSO4+ - -llnl_gamma 4.0 - log_k -3.687 - -delta_H 19.2464 kJ/mol # Calculated enthalpy of reaction CeSO4+ + +SO4-2 + Ce+3 = CeSO4+ + -llnl_gamma 4 + log_k -3.687 + -delta_H 19.2464 kJ/mol # Calculated enthalpy of reaction CeSO4+ # Enthalpy of formation: -380.2 kcal/mol - -analytic 3.0156e+002 8.5149e-002 -1.1025e+004 -1.1866e+002 -1.7213e+002 + -analytic 3.0156e+2 8.5149e-2 -1.1025e+4 -1.1866e+2 -1.7213e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Co++ = Co(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.1468 - -delta_H -22.4262 kJ/mol # Calculated enthalpy of reaction Co(Acetate)2 +2 HAcetate + Co+2 = Co(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -7.1468 + -delta_H -22.4262 kJ/mol # Calculated enthalpy of reaction Co(Acetate)2 # Enthalpy of formation: -251.46 kcal/mol - -analytic -2.0661e+001 2.9014e-003 -2.2146e+003 5.1702e+000 6.4968e+005 + -analytic -2.0661e+1 2.9014e-3 -2.2146e+3 5.1702e+0 6.4968e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Co++ = Co(Acetate)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -11.281 - -delta_H -48.2415 kJ/mol # Calculated enthalpy of reaction Co(Acetate)3- +3 HAcetate + Co+2 = Co(Acetate)3- + 3 H+ + -llnl_gamma 4 + log_k -11.281 + -delta_H -48.2415 kJ/mol # Calculated enthalpy of reaction Co(Acetate)3- # Enthalpy of formation: -373.73 kcal/mol - -analytic 6.3384e+001 -4.0669e-003 -1.4715e+004 -1.9518e+001 2.1524e+006 + -analytic 6.3384e+1 -4.0669e-3 -1.4715e+4 -1.9518e+1 2.1524e+6 # -Range: 0-300 -2.0000 HS- + 1.0000 Co++ = Co(HS)2 - -llnl_gamma 3.0 - log_k +9.0306 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(HS)2 +2 HS- + Co+2 = Co(HS)2 + -llnl_gamma 3 + log_k 9.0306 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(HS)2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Co++ = Co(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -18.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 + +2 H2O + Co+2 = Co(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -18.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Co++ = Co(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -45.7803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)4-2 + +4 H2O + Co+2 = Co(OH)4-2 + 4 H+ + -llnl_gamma 4 + log_k -45.7803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 2.0000 Co++ = Co2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -11.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co2OH+3 + +H2O + 2 Co+2 = Co2OH+3 + H+ + -llnl_gamma 5 + log_k -11.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co2OH+3 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 4.0000 Co++ = Co4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -30.3803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co4(OH)4+4 + +4 H2O + 4 Co+2 = Co4(OH)4+4 + 4 H+ + -llnl_gamma 5.5 + log_k -30.3803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co4(OH)4+4 # Enthalpy of formation: -0 kcal/mol - -2.0000 Br- + 1.0000 Co++ = CoBr2 - -llnl_gamma 3.0 - log_k -0.0358 - -delta_H -0.56568 kJ/mol # Calculated enthalpy of reaction CoBr2 + +2 Br- + Co+2 = CoBr2 + -llnl_gamma 3 + log_k -0.0358 + -delta_H -0.56568 kJ/mol # Calculated enthalpy of reaction CoBr2 # Enthalpy of formation: -301.73 kJ/mol - -analytic 5.8731e+000 8.0908e-004 -1.8986e+002 -2.2295e+000 -3.2261e+000 + -analytic 5.8731e+0 8.0908e-4 -1.8986e+2 -2.2295e+0 -3.2261e+0 # -Range: 0-200 -1.0000 Co++ + 1.0000 HAcetate = CoAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.2985 - -delta_H -8.70272 kJ/mol # Calculated enthalpy of reaction CoAcetate+ +Co+2 + HAcetate = CoAcetate+ + H+ + -llnl_gamma 4 + log_k -3.2985 + -delta_H -8.70272 kJ/mol # Calculated enthalpy of reaction CoAcetate+ # Enthalpy of formation: -132.08 kcal/mol - -analytic -5.4858e+000 1.9147e-003 -1.1292e+003 9.0555e-001 2.8223e+005 + -analytic -5.4858e+0 1.9147e-3 -1.1292e+3 9.0555e-1 2.8223e+5 # -Range: 0-300 -1.0000 Co++ + 1.0000 Cl- = CoCl+ - -llnl_gamma 4.0 - log_k +0.1547 - -delta_H 1.71962 kJ/mol # Calculated enthalpy of reaction CoCl+ +Co+2 + Cl- = CoCl+ + -llnl_gamma 4 + log_k 0.1547 + -delta_H 1.71962 kJ/mol # Calculated enthalpy of reaction CoCl+ # Enthalpy of formation: -53.422 kcal/mol - -analytic 1.5234e+002 5.6958e-002 -3.3258e+003 -6.3849e+001 -5.1942e+001 + -analytic 1.5234e+2 5.6958e-2 -3.3258e+3 -6.3849e+1 -5.1942e+1 # -Range: 0-300 -1.0000 HS- + 1.0000 Co++ = CoHS+ - -llnl_gamma 4.0 - log_k +5.9813 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoHS+ +HS- + Co+2 = CoHS+ + -llnl_gamma 4 + log_k 5.9813 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoHS+ # Enthalpy of formation: -0 kcal/mol - -2.0000 I- + 1.0000 Co++ = CoI2 - -llnl_gamma 3.0 - log_k -0.0944 - -delta_H 3.1774 kJ/mol # Calculated enthalpy of reaction CoI2 + +2 I- + Co+2 = CoI2 + -llnl_gamma 3 + log_k -0.0944 + -delta_H 3.1774 kJ/mol # Calculated enthalpy of reaction CoI2 # Enthalpy of formation: -168.785 kJ/mol - -analytic 3.6029e+001 1.0128e-002 -1.1219e+003 -1.4301e+001 -1.9064e+001 + -analytic 3.6029e+1 1.0128e-2 -1.1219e+3 -1.4301e+1 -1.9064e+1 # -Range: 0-200 -1.0000 NO3- + 1.0000 Co++ = CoNO3+ - -llnl_gamma 4.0 - log_k +0.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoNO3+ +NO3- + Co+2 = CoNO3+ + -llnl_gamma 4 + log_k 0.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoNO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Co++ + S2O3-- = CoS2O3 - -llnl_gamma 3.0 - log_k 0.8063 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoS2O3 + +Co+2 + S2O3-2 = CoS2O3 + -llnl_gamma 3 + log_k 0.8063 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoS2O3 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Co++ = CoSO4 - -llnl_gamma 3.0 - log_k +0.0436 - -delta_H 0.3842 kJ/mol # Calculated enthalpy of reaction CoSO4 + +SO4-2 + Co+2 = CoSO4 + -llnl_gamma 3 + log_k 0.0436 + -delta_H 0.3842 kJ/mol # Calculated enthalpy of reaction CoSO4 # Enthalpy of formation: -967.375 kJ/mol - -analytic 2.4606e+000 1.0086e-003 -6.1450e+001 -1.0148e+000 -1.0444e+000 + -analytic 2.4606e+0 1.0086e-3 -6.145e+1 -1.0148e+0 -1.0444e+0 # -Range: 0-200 -1.0000 SeO4-- + 1.0000 Co++ = CoSeO4 - -llnl_gamma 3.0 - log_k +2.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO4 +SeO4-2 + Co+2 = CoSeO4 + -llnl_gamma 3 + log_k 2.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO4 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Cr+++ = Cr(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)2+ + +2 H2O + Cr+3 = Cr(OH)2+ + 2 H+ + -llnl_gamma 4 + log_k -9.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)2+ # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Cr+++ = Cr(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -18 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)3 + +3 H2O + Cr+3 = Cr(OH)3 + 3 H+ + -llnl_gamma 3 + log_k -18 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)3 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Cr+++ = Cr(OH)4- +4.0000 H+ - -llnl_gamma 4.0 - log_k -27.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)4- + +4 H2O + Cr+3 = Cr(OH)4- + 4 H+ + -llnl_gamma 4 + log_k -27.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)4- # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 2.0000 Cr+++ = Cr2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -5.06 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr2(OH)2+4 + +2 H2O + 2 Cr+3 = Cr2(OH)2+4 + 2 H+ + -llnl_gamma 5.5 + log_k -5.06 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr2(OH)2+4 # Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 2.0000 CrO4-- = Cr2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +14.5192 - -delta_H -13.8783 kJ/mol # Calculated enthalpy of reaction Cr2O7-2 + +2 H+ + 2 CrO4-2 = Cr2O7-2 + H2O + -llnl_gamma 4 + log_k 14.5192 + -delta_H -13.8783 kJ/mol # Calculated enthalpy of reaction Cr2O7-2 # Enthalpy of formation: -356.2 kcal/mol - -analytic 1.3749e+002 6.5773e-002 -7.9472e+002 -5.6525e+001 -1.2441e+001 + -analytic 1.3749e+2 6.5773e-2 -7.9472e+2 -5.6525e+1 -1.2441e+1 # -Range: 0-300 -4.0000 H2O + 3.0000 Cr+++ = Cr3(OH)4+5 +4.0000 H+ - -llnl_gamma 6.0 - log_k -8.15 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr3(OH)4+5 +4 H2O + 3 Cr+3 = Cr3(OH)4+5 + 4 H+ + -llnl_gamma 6 + log_k -8.15 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr3(OH)4+5 # Enthalpy of formation: -0 kcal/mol - -1.0000 Cr+++ + 1.0000 Br- = CrBr++ - -llnl_gamma 4.5 - log_k -2.7813 - -delta_H 33.564 kJ/mol # Calculated enthalpy of reaction CrBr+2 + +Cr+3 + Br- = CrBr+2 + -llnl_gamma 4.5 + log_k -2.7813 + -delta_H 33.564 kJ/mol # Calculated enthalpy of reaction CrBr+2 # Enthalpy of formation: -78.018 kcal/mol - -analytic 9.4384e+001 3.4704e-002 -3.6750e+003 -3.8461e+001 -5.7373e+001 + -analytic 9.4384e+1 3.4704e-2 -3.675e+3 -3.8461e+1 -5.7373e+1 # -Range: 0-300 -1.0000 Cr+++ + 1.0000 Cl- = CrCl++ - -llnl_gamma 4.5 - log_k -0.149 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrCl+2 +Cr+3 + Cl- = CrCl+2 + -llnl_gamma 4.5 + log_k -0.149 + -delta_H 0 # Not possible to calculate enthalpy of reaction CrCl+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 Cl- + 1.0000 Cr+++ = CrCl2+ - -llnl_gamma 4.0 - log_k +0.1596 - -delta_H 41.2919 kJ/mol # Calculated enthalpy of reaction CrCl2+ + +2 Cl- + Cr+3 = CrCl2+ + -llnl_gamma 4 + log_k 0.1596 + -delta_H 41.2919 kJ/mol # Calculated enthalpy of reaction CrCl2+ # Enthalpy of formation: -126.997 kcal/mol - -analytic 2.0114e+002 7.3878e-002 -6.2218e+003 -8.1677e+001 -9.7144e+001 + -analytic 2.0114e+2 7.3878e-2 -6.2218e+3 -8.1677e+1 -9.7144e+1 # -Range: 0-300 -1.0000 Cl- + 2.000 H+ + 1.0000 CrO4-- = CrO3Cl- + 1.0000 H2O - -llnl_gamma 4.0 - log_k 7.5270 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrO3Cl- +Cl- + 2 H+ + CrO4-2 = CrO3Cl- + H2O + -llnl_gamma 4 + log_k 7.527 + -delta_H 0 # Not possible to calculate enthalpy of reaction CrO3Cl- # Enthalpy of formation: -0 kcal/mol - -analytic 2.7423e+002 1.0013e-001 -6.0072e+003 -1.1168e+002 -9.3817e+001 + -analytic 2.7423e+2 1.0013e-1 -6.0072e+3 -1.1168e+2 -9.3817e+1 # -Range: 0-300 -1.0000 H2O + 1.0000 Cr+++ = CrOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -4 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrOH+2 +H2O + Cr+3 = CrOH+2 + H+ + -llnl_gamma 4.5 + log_k -4 + -delta_H 0 # Not possible to calculate enthalpy of reaction CrOH+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Cs+ = Cs(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.771 - -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Cs(Acetate)2- + +2 HAcetate + Cs+ = Cs(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -9.771 + -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Cs(Acetate)2- # Enthalpy of formation: -293.57 kcal/mol - -analytic -1.6956e+002 -4.0378e-002 4.5773e+003 6.3241e+001 7.1475e+001 + -analytic -1.6956e+2 -4.0378e-2 4.5773e+3 6.3241e+1 7.1475e+1 # -Range: 0-300 -1.0000 Cs+ + 1.0000 Br- = CsBr - -llnl_gamma 3.0 - log_k -0.2712 - -delta_H 10.9621 kJ/mol # Calculated enthalpy of reaction CsBr +Cs+ + Br- = CsBr + -llnl_gamma 3 + log_k -0.2712 + -delta_H 10.9621 kJ/mol # Calculated enthalpy of reaction CsBr # Enthalpy of formation: -88.09 kcal/mol - -analytic 1.2064e+002 3.2000e-002 -3.8770e+003 -4.7458e+001 -6.0533e+001 + -analytic 1.2064e+2 3.2e-2 -3.877e+3 -4.7458e+1 -6.0533e+1 # -Range: 0-300 -1.0000 Cs+ + 1.0000 HAcetate = CsAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.7352 - -delta_H 6.0668 kJ/mol # Calculated enthalpy of reaction CsAcetate +Cs+ + HAcetate = CsAcetate + H+ + -llnl_gamma 3 + log_k -4.7352 + -delta_H 6.0668 kJ/mol # Calculated enthalpy of reaction CsAcetate # Enthalpy of formation: -176.32 kcal/mol - -analytic 2.4280e+001 -2.8642e-003 -3.1339e+003 -8.1616e+000 2.2684e+005 + -analytic 2.428e+1 -2.8642e-3 -3.1339e+3 -8.1616e+0 2.2684e+5 # -Range: 0-300 -1.0000 Cs+ + 1.0000 Cl- = CsCl - -llnl_gamma 3.0 - log_k -0.1385 - -delta_H 2.73215 kJ/mol # Calculated enthalpy of reaction CsCl +Cs+ + Cl- = CsCl + -llnl_gamma 3 + log_k -0.1385 + -delta_H 2.73215 kJ/mol # Calculated enthalpy of reaction CsCl # Enthalpy of formation: -100.95 kcal/mol - -analytic 1.2472e+002 3.3730e-002 -3.9130e+003 -4.9212e+001 -6.1096e+001 + -analytic 1.2472e+2 3.373e-2 -3.913e+3 -4.9212e+1 -6.1096e+1 # -Range: 0-300 -1.0000 I- + 1.0000 Cs+ = CsI - -llnl_gamma 3.0 - log_k +0.2639 - -delta_H -6.56888 kJ/mol # Calculated enthalpy of reaction CsI +I- + Cs+ = CsI + -llnl_gamma 3 + log_k 0.2639 + -delta_H -6.56888 kJ/mol # Calculated enthalpy of reaction CsI # Enthalpy of formation: -76.84 kcal/mol - -analytic 1.1555e+002 3.1419e-002 -3.3496e+003 -4.5828e+001 -5.2302e+001 + -analytic 1.1555e+2 3.1419e-2 -3.3496e+3 -4.5828e+1 -5.2302e+1 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Cu++ = Cu(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -5.8824 - -delta_H -25.899 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)2 +2 HAcetate + Cu+2 = Cu(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -5.8824 + -delta_H -25.899 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)2 # Enthalpy of formation: -222.69 kcal/mol - -analytic -2.6689e+001 1.8048e-003 -1.8244e+003 7.7008e+000 6.5408e+005 + -analytic -2.6689e+1 1.8048e-3 -1.8244e+3 7.7008e+0 6.5408e+5 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Cu+ = Cu(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.2139 - -delta_H -19.5476 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)2- +2 HAcetate + Cu+ = Cu(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -9.2139 + -delta_H -19.5476 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)2- # Enthalpy of formation: -219.74 kcal/mol - -analytic -3.2712e+002 -5.9087e-002 1.1386e+004 1.2017e+002 1.7777e+002 + -analytic -3.2712e+2 -5.9087e-2 1.1386e+4 1.2017e+2 1.7777e+2 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Cu++ = Cu(Acetate)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -9.3788 - -delta_H -53.2205 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)3- +3 HAcetate + Cu+2 = Cu(Acetate)3- + 3 H+ + -llnl_gamma 4 + log_k -9.3788 + -delta_H -53.2205 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)3- # Enthalpy of formation: -345.32 kcal/mol - -analytic 3.9475e+001 -6.2867e-003 -1.3233e+004 -1.0643e+001 2.1121e+006 + -analytic 3.9475e+1 -6.2867e-3 -1.3233e+4 -1.0643e+1 2.1121e+6 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Cu++ = Cu(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -10.4757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(CO3)2-2 +2 HCO3- + Cu+2 = Cu(CO3)2-2 + 2 H+ + -llnl_gamma 4 + log_k -10.4757 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(CO3)2-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 NH3 + 1.0000 Cu++ = Cu(NH3)2++ - -llnl_gamma 4.5 - log_k +7.4512 - -delta_H -45.1269 kJ/mol # Calculated enthalpy of reaction Cu(NH3)2+2 + +2 NH3 + Cu+2 = Cu(NH3)2+2 + -llnl_gamma 4.5 + log_k 7.4512 + -delta_H -45.1269 kJ/mol # Calculated enthalpy of reaction Cu(NH3)2+2 # Enthalpy of formation: -142.112 kJ/mol - -analytic 1.1526e+002 4.8192e-003 -2.5139e+003 -4.0733e+001 -3.9261e+001 + -analytic 1.1526e+2 4.8192e-3 -2.5139e+3 -4.0733e+1 -3.9261e+1 # -Range: 0-300 -3.0000 NH3 + 1.0000 Cu++ = Cu(NH3)3++ - -llnl_gamma 4.5 - log_k +10.2719 - -delta_H -67.2779 kJ/mol # Calculated enthalpy of reaction Cu(NH3)3+2 +3 NH3 + Cu+2 = Cu(NH3)3+2 + -llnl_gamma 4.5 + log_k 10.2719 + -delta_H -67.2779 kJ/mol # Calculated enthalpy of reaction Cu(NH3)3+2 # Enthalpy of formation: -245.6 kJ/mol - -analytic 1.3945e+002 -3.8236e-004 -2.8137e+003 -4.8336e+001 -4.3946e+001 + -analytic 1.3945e+2 -3.8236e-4 -2.8137e+3 -4.8336e+1 -4.3946e+1 # -Range: 0-300 -2.0000 NO2- + 1.0000 Cu++ = Cu(NO2)2 - -llnl_gamma 3.0 - log_k +3.0300 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(NO2)2 +2 NO2- + Cu+2 = Cu(NO2)2 + -llnl_gamma 3 + log_k 3.03 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(NO2)2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Cu+ + 1.0000 HAcetate = CuAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.4274 - -delta_H -4.19237 kJ/mol # Calculated enthalpy of reaction CuAcetate + +Cu+ + HAcetate = CuAcetate + H+ + -llnl_gamma 3 + log_k -4.4274 + -delta_H -4.19237 kJ/mol # Calculated enthalpy of reaction CuAcetate # Enthalpy of formation: -99.97 kcal/mol - -analytic 6.3784e+000 -4.5464e-004 -1.9995e+003 -2.8359e+000 2.7224e+005 + -analytic 6.3784e+0 -4.5464e-4 -1.9995e+3 -2.8359e+0 2.7224e+5 # -Range: 0-300 -1.0000 Cu++ + 1.0000 HAcetate = CuAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.5252 - -delta_H -11.3805 kJ/mol # Calculated enthalpy of reaction CuAcetate+ +Cu+2 + HAcetate = CuAcetate+ + H+ + -llnl_gamma 4 + log_k -2.5252 + -delta_H -11.3805 kJ/mol # Calculated enthalpy of reaction CuAcetate+ # Enthalpy of formation: -103.12 kcal/mol - -analytic -1.4930e+001 5.1278e-004 -3.4874e+002 4.3605e+000 2.3504e+005 + -analytic -1.493e+1 5.1278e-4 -3.4874e+2 4.3605e+0 2.3504e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 HCO3- + 1.0000 Cu++ = CuCO3(OH)2-- +3.0000 H+ - -llnl_gamma 4.0 - log_k -23.444 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3(OH)2-2 +2 H2O + HCO3- + Cu+2 = CuCO3(OH)2-2 + 3 H+ + -llnl_gamma 4 + log_k -23.444 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3(OH)2-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Cu++ = CuCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -3.3735 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3 + +HCO3- + Cu+2 = CuCO3 + H+ + -llnl_gamma 3 + log_k -3.3735 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Cu++ + 1.0000 Cl- = CuCl+ - -llnl_gamma 4.0 - log_k +0.4370 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl+ + +Cu+2 + Cl- = CuCl+ + -llnl_gamma 4 + log_k 0.437 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl+ # Enthalpy of formation: -0 kcal/mol - -2.0000 Cl- + 1.0000 Cu++ = CuCl2 - -llnl_gamma 3.0 - log_k +0.1585 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2 + +2 Cl- + Cu+2 = CuCl2 + -llnl_gamma 3 + log_k 0.1585 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2 # Enthalpy of formation: -0 kcal/mol - -2.0000 Cl- + 1.0000 Cu+ = CuCl2- - -llnl_gamma 4.0 - log_k +4.8212 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2- + +2 Cl- + Cu+ = CuCl2- + -llnl_gamma 4 + log_k 4.8212 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2- # Enthalpy of formation: -0 kcal/mol - -3.0000 Cl- + 1.0000 Cu+ = CuCl3-- - -llnl_gamma 4.0 - log_k +5.6289 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl3-2 + +3 Cl- + Cu+ = CuCl3-2 + -llnl_gamma 4 + log_k 5.6289 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl3-2 # Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Cu++ = CuCl4-- - -llnl_gamma 4.0 - log_k -4.5681 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl4-2 + +4 Cl- + Cu+2 = CuCl4-2 + -llnl_gamma 4 + log_k -4.5681 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 F- + 1.0000 Cu++ = CuF+ - -llnl_gamma 4.0 - log_k +1.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF+ + +F- + Cu+2 = CuF+ + -llnl_gamma 4 + log_k 1.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Cu++ = CuH2PO4+ - -llnl_gamma 4.0 - log_k +8.9654 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuH2PO4+ + +HPO4-2 + H+ + Cu+2 = CuH2PO4+ + -llnl_gamma 4 + log_k 8.9654 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuH2PO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Cu++ = CuHPO4 - -llnl_gamma 3.0 - log_k +4.0600 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuHPO4 + +HPO4-2 + Cu+2 = CuHPO4 + -llnl_gamma 3 + log_k 4.06 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuHPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 NH3 + 1.0000 Cu++ = CuNH3++ - -llnl_gamma 4.5 - log_k +4.0400 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuNH3+2 + +NH3 + Cu+2 = CuNH3+2 + -llnl_gamma 4.5 + log_k 4.04 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuNH3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 NO2- + 1.0000 Cu++ = CuNO2+ - -llnl_gamma 4.0 - log_k +2.0200 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuNO2+ + +NO2- + Cu+2 = CuNO2+ + -llnl_gamma 4 + log_k 2.02 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuNO2+ # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Cu++ = CuO2-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -39.4497 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuO2-2 + +2 H2O + Cu+2 = CuO2-2 + 4 H+ + -llnl_gamma 4 + log_k -39.4497 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuO2-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Cu++ = CuOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.2875 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuOH+ + +H2O + Cu+2 = CuOH+ + H+ + -llnl_gamma 4 + log_k -7.2875 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuOH+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Cu++ = CuPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.4718 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuPO4- + +HPO4-2 + Cu+2 = CuPO4- + H+ + -llnl_gamma 4 + log_k -2.4718 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuPO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Cu++ = CuSO4 - -llnl_gamma 0.0 - log_k +2.3600 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuSO4 + +SO4-2 + Cu+2 = CuSO4 + -llnl_gamma 0 + log_k 2.36 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuSO4 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Dy+++ = Dy(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -29.3298 kJ/mol # Calculated enthalpy of reaction Dy(Acetate)2+ + +2 HAcetate + Dy+3 = Dy(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9625 + -delta_H -29.3298 kJ/mol # Calculated enthalpy of reaction Dy(Acetate)2+ # Enthalpy of formation: -405.71 kcal/mol - -analytic -2.7249e+001 2.7507e-003 -1.7500e+003 7.9356e+000 6.8668e+005 + -analytic -2.7249e+1 2.7507e-3 -1.75e+3 7.9356e+0 6.8668e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Dy+++ = Dy(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -49.4549 kJ/mol # Calculated enthalpy of reaction Dy(Acetate)3 +3 HAcetate + Dy+3 = Dy(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.3489 + -delta_H -49.4549 kJ/mol # Calculated enthalpy of reaction Dy(Acetate)3 # Enthalpy of formation: -526.62 kcal/mol - -analytic -2.4199e+001 6.2065e-003 -2.8937e+003 5.0176e+000 1.0069e+006 + -analytic -2.4199e+1 6.2065e-3 -2.8937e+3 5.0176e+0 1.0069e+6 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Dy+++ = Dy(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.4576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(CO3)2- +2 HCO3- + Dy+3 = Dy(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.4576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Dy+++ = Dy(HPO4)2- - -llnl_gamma 4.0 - log_k +9.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(HPO4)2- + +2 HPO4-2 + Dy+3 = Dy(HPO4)2- + -llnl_gamma 4 + log_k 9.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(HPO4)2- # Enthalpy of formation: -0 kcal/mol - + # Redundant with DyO2- #4.0000 H2O + 1.0000 Dy+++ = Dy(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 +# -llnl_gamma 4.0 # log_k -33.4803 # -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)4- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Dy+++ = Dy(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.4437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(PO4)2-3 + +2 HPO4-2 + Dy+3 = Dy(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -3.4437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Dy+++ = Dy(SO4)2- - -llnl_gamma 4.0 - log_k +5.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(SO4)2- + +2 SO4-2 + Dy+3 = Dy(SO4)2- + -llnl_gamma 4 + log_k 5 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Dy+++ + 1.0000 HAcetate = DyAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -14.8532 kJ/mol # Calculated enthalpy of reaction DyAcetate+2 + +Dy+3 + HAcetate = DyAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -14.8532 kJ/mol # Calculated enthalpy of reaction DyAcetate+2 # Enthalpy of formation: -286.15 kcal/mol - -analytic -1.3635e+001 1.7329e-003 -9.4636e+002 4.0900e+000 3.6282e+005 + -analytic -1.3635e+1 1.7329e-3 -9.4636e+2 4.09e+0 3.6282e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Dy+++ = DyCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.3324 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction DyCO3+ +HCO3- + Dy+3 = DyCO3+ + H+ + -llnl_gamma 4 + log_k -2.3324 + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction DyCO3+ # Enthalpy of formation: -310.1 kcal/mol - -analytic 2.3742e+002 5.4342e-002 -6.9953e+003 -9.3949e+001 -1.0922e+002 + -analytic 2.3742e+2 5.4342e-2 -6.9953e+3 -9.3949e+1 -1.0922e+2 # -Range: 0-300 -1.0000 Dy+++ + 1.0000 Cl- = DyCl++ - -llnl_gamma 4.5 - log_k +0.2353 - -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction DyCl+2 +Dy+3 + Cl- = DyCl+2 + -llnl_gamma 4.5 + log_k 0.2353 + -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction DyCl+2 # Enthalpy of formation: -203.2 kcal/mol - -analytic 6.9134e+001 3.7129e-002 -1.3839e+003 -3.0432e+001 -2.1615e+001 + -analytic 6.9134e+1 3.7129e-2 -1.3839e+3 -3.0432e+1 -2.1615e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Dy+++ = DyCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction DyCl2+ +2 Cl- + Dy+3 = DyCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction DyCl2+ # Enthalpy of formation: -242.2 kcal/mol - -analytic 1.8868e+002 7.7901e-002 -4.3528e+003 -7.9735e+001 -6.7978e+001 + -analytic 1.8868e+2 7.7901e-2 -4.3528e+3 -7.9735e+1 -6.7978e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Dy+++ = DyCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 8.78222 kJ/mol # Calculated enthalpy of reaction DyCl3 +3 Cl- + Dy+3 = DyCl3 + -llnl_gamma 3 + log_k -0.4669 + -delta_H 8.78222 kJ/mol # Calculated enthalpy of reaction DyCl3 # Enthalpy of formation: -284.2 kcal/mol - -analytic 3.6761e+002 1.2471e-001 -9.0651e+003 -1.5147e+002 -1.4156e+002 + -analytic 3.6761e+2 1.2471e-1 -9.0651e+3 -1.5147e+2 -1.4156e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Dy+++ = DyCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -14.0917 kJ/mol # Calculated enthalpy of reaction DyCl4- +4 Cl- + Dy+3 = DyCl4- + -llnl_gamma 4 + log_k -0.8913 + -delta_H -14.0917 kJ/mol # Calculated enthalpy of reaction DyCl4- # Enthalpy of formation: -329.6 kcal/mol - -analytic 3.9134e+002 1.2288e-001 -9.2351e+003 -1.6078e+002 -1.4422e+002 + -analytic 3.9134e+2 1.2288e-1 -9.2351e+3 -1.6078e+2 -1.4422e+2 # -Range: 0-300 -1.0000 F- + 1.0000 Dy+++ = DyF++ - -llnl_gamma 4.5 - log_k +4.6619 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction DyF+2 +F- + Dy+3 = DyF+2 + -llnl_gamma 4.5 + log_k 4.6619 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction DyF+2 # Enthalpy of formation: -241.1 kcal/mol - -analytic 9.1120e+001 4.1193e-002 -2.3302e+003 -3.6734e+001 -3.6388e+001 + -analytic 9.112e+1 4.1193e-2 -2.3302e+3 -3.6734e+1 -3.6388e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Dy+++ = DyF2+ - -llnl_gamma 4.0 - log_k +8.1510 - -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction DyF2+ +2 F- + Dy+3 = DyF2+ + -llnl_gamma 4 + log_k 8.151 + -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction DyF2+ # Enthalpy of formation: -323.8 kcal/mol - -analytic 2.1325e+002 8.2483e-002 -4.5864e+003 -8.6587e+001 -7.1629e+001 + -analytic 2.1325e+2 8.2483e-2 -4.5864e+3 -8.6587e+1 -7.1629e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Dy+++ = DyF3 - -llnl_gamma 3.0 - log_k +10.7605 - -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction DyF3 +3 F- + Dy+3 = DyF3 + -llnl_gamma 3 + log_k 10.7605 + -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction DyF3 # Enthalpy of formation: -409.8 kcal/mol - -analytic 3.9766e+002 1.3143e-001 -8.5607e+003 -1.6056e+002 -1.3370e+002 + -analytic 3.9766e+2 1.3143e-1 -8.5607e+3 -1.6056e+2 -1.337e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Dy+++ = DyF4- - -llnl_gamma 4.0 - log_k +12.8569 - -delta_H -57.3208 kJ/mol # Calculated enthalpy of reaction DyF4- +4 F- + Dy+3 = DyF4- + -llnl_gamma 4 + log_k 12.8569 + -delta_H -57.3208 kJ/mol # Calculated enthalpy of reaction DyF4- # Enthalpy of formation: -500.8 kcal/mol - -analytic 4.1672e+002 1.2922e-001 -7.4445e+003 -1.6867e+002 -1.1629e+002 + -analytic 4.1672e+2 1.2922e-1 -7.4445e+3 -1.6867e+2 -1.1629e+2 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Dy+++ = DyH2PO4++ - -llnl_gamma 4.5 - log_k +9.3751 - -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction DyH2PO4+2 +HPO4-2 + H+ + Dy+3 = DyH2PO4+2 + -llnl_gamma 4.5 + log_k 9.3751 + -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction DyH2PO4+2 # Enthalpy of formation: -479.7 kcal/mol - -analytic 9.8183e+001 6.2578e-002 7.1784e+002 -4.4383e+001 1.1172e+001 + -analytic 9.8183e+1 6.2578e-2 7.1784e+2 -4.4383e+1 1.1172e+1 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Dy+++ = DyHCO3++ - -llnl_gamma 4.5 - log_k +1.6991 - -delta_H 7.10443 kJ/mol # Calculated enthalpy of reaction DyHCO3+2 +HCO3- + Dy+3 = DyHCO3+2 + -llnl_gamma 4.5 + log_k 1.6991 + -delta_H 7.10443 kJ/mol # Calculated enthalpy of reaction DyHCO3+2 # Enthalpy of formation: -329.7 kcal/mol - -analytic 2.8465e+001 3.0703e-002 3.9229e+002 -1.5036e+001 6.1127e+000 + -analytic 2.8465e+1 3.0703e-2 3.9229e+2 -1.5036e+1 6.1127e+0 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Dy+++ = DyHPO4+ - -llnl_gamma 4.0 - log_k +5.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyHPO4+ +HPO4-2 + Dy+3 = DyHPO4+ + -llnl_gamma 4 + log_k 5.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction DyHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Dy+++ = DyNO3++ - -llnl_gamma 4.5 - log_k +0.1415 - -delta_H -30.4219 kJ/mol # Calculated enthalpy of reaction DyNO3+2 + +NO3- + Dy+3 = DyNO3+2 + -llnl_gamma 4.5 + log_k 0.1415 + -delta_H -30.4219 kJ/mol # Calculated enthalpy of reaction DyNO3+2 # Enthalpy of formation: -223.2 kcal/mol - -analytic 6.4353e+000 2.4556e-002 2.5866e+003 -8.9975e+000 4.0359e+001 + -analytic 6.4353e+0 2.4556e-2 2.5866e+3 -8.9975e+0 4.0359e+1 # -Range: 0-300 -1.0000 H2O + 1.0000 Dy+++ = DyO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.1171 - -delta_H 108.018 kJ/mol # Calculated enthalpy of reaction DyO+ +H2O + Dy+3 = DyO+ + 2 H+ + -llnl_gamma 4 + log_k -16.1171 + -delta_H 108.018 kJ/mol # Calculated enthalpy of reaction DyO+ # Enthalpy of formation: -209 kcal/mol - -analytic 1.9069e+002 3.0358e-002 -1.3796e+004 -6.8532e+001 -2.1532e+002 + -analytic 1.9069e+2 3.0358e-2 -1.3796e+4 -6.8532e+1 -2.1532e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Dy+++ = DyO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -33.4804 - -delta_H 273.776 kJ/mol # Calculated enthalpy of reaction DyO2- +2 H2O + Dy+3 = DyO2- + 4 H+ + -llnl_gamma 4 + log_k -33.4804 + -delta_H 273.776 kJ/mol # Calculated enthalpy of reaction DyO2- # Enthalpy of formation: -237.7 kcal/mol - -analytic 7.7395e+001 4.4204e-004 -1.3570e+004 -2.4546e+001 -4.2320e+005 + -analytic 7.7395e+1 4.4204e-4 -1.357e+4 -2.4546e+1 -4.232e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Dy+++ = DyO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -24.8309 - -delta_H 217.71 kJ/mol # Calculated enthalpy of reaction DyO2H +2 H2O + Dy+3 = DyO2H + 3 H+ + -llnl_gamma 3 + log_k -24.8309 + -delta_H 217.71 kJ/mol # Calculated enthalpy of reaction DyO2H # Enthalpy of formation: -251.1 kcal/mol - -analytic 3.3576e+002 4.6004e-002 -2.2868e+004 -1.2027e+002 -3.5693e+002 + -analytic 3.3576e+2 4.6004e-2 -2.2868e+4 -1.2027e+2 -3.5693e+2 # -Range: 0-300 -1.0000 H2O + 1.0000 Dy+++ = DyOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.8342 - -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction DyOH+2 +H2O + Dy+3 = DyOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.8342 + -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction DyOH+2 # Enthalpy of formation: -216.5 kcal/mol - -analytic 7.0856e+001 1.2473e-002 -6.2419e+003 -2.4841e+001 -9.7420e+001 + -analytic 7.0856e+1 1.2473e-2 -6.2419e+3 -2.4841e+1 -9.742e+1 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Dy+++ = DyPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4 +HPO4-2 + Dy+3 = DyPO4 + H+ + -llnl_gamma 3 + log_k 0.1782 + -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Dy+++ = DySO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction DySO4+ + +SO4-2 + Dy+3 = DySO4+ + -llnl_gamma 4 + log_k 3.643 + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction DySO4+ # Enthalpy of formation: -379 kcal/mol - -analytic 3.0672e+002 8.6459e-002 -9.0386e+003 -1.2063e+002 -1.4113e+002 + -analytic 3.0672e+2 8.6459e-2 -9.0386e+3 -1.2063e+2 -1.4113e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Er+++ = Er(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9844 - -delta_H -32.8026 kJ/mol # Calculated enthalpy of reaction Er(Acetate)2+ +2 HAcetate + Er+3 = Er(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9844 + -delta_H -32.8026 kJ/mol # Calculated enthalpy of reaction Er(Acetate)2+ # Enthalpy of formation: -408.54 kcal/mol - -analytic -3.1458e+001 1.4715e-003 -1.0556e+003 9.1586e+000 6.1669e+005 + -analytic -3.1458e+1 1.4715e-3 -1.0556e+3 9.1586e+0 6.1669e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Er+++ = Er(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3783 - -delta_H -55.187 kJ/mol # Calculated enthalpy of reaction Er(Acetate)3 +3 HAcetate + Er+3 = Er(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.3783 + -delta_H -55.187 kJ/mol # Calculated enthalpy of reaction Er(Acetate)3 # Enthalpy of formation: -529.99 kcal/mol - -analytic -2.1575e+001 5.9740e-003 -2.0489e+003 3.3624e+000 8.8933e+005 + -analytic -2.1575e+1 5.974e-3 -2.0489e+3 3.3624e+0 8.8933e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Er+++ = Er(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(CO3)2- +2 HCO3- + Er+3 = Er(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.2576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Er+++ = Er(HPO4)2- - -llnl_gamma 4.0 - log_k +10.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(HPO4)2- + +2 HPO4-2 + Er+3 = Er(HPO4)2- + -llnl_gamma 4 + log_k 10 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(HPO4)2- # Enthalpy of formation: -0 kcal/mol - + # Redundant with ErO2- #4.0000 H2O + 1.0000 Er+++ = Er(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 +# -llnl_gamma 4.0 # log_k -32.5803 # -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)4- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Er+++ = Er(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(PO4)2-3 + +2 HPO4-2 + Er+3 = Er(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -3.2437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Er+++ = Er(SO4)2- - -llnl_gamma 4.0 - log_k +5.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(SO4)2- + +2 SO4-2 + Er+3 = Er(SO4)2- + -llnl_gamma 4 + log_k 5 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Er+++ + 1.0000 HAcetate = ErAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1184 - -delta_H -16.4013 kJ/mol # Calculated enthalpy of reaction ErAcetate+2 + +Er+3 + HAcetate = ErAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.1184 + -delta_H -16.4013 kJ/mol # Calculated enthalpy of reaction ErAcetate+2 # Enthalpy of formation: -288.52 kcal/mol - -analytic -1.2519e+001 1.5558e-003 -8.5344e+002 3.5918e+000 3.4888e+005 + -analytic -1.2519e+1 1.5558e-3 -8.5344e+2 3.5918e+0 3.4888e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Er+++ = ErCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.1858 - -delta_H 87.0188 kJ/mol # Calculated enthalpy of reaction ErCO3+ +HCO3- + Er+3 = ErCO3+ + H+ + -llnl_gamma 4 + log_k -2.1858 + -delta_H 87.0188 kJ/mol # Calculated enthalpy of reaction ErCO3+ # Enthalpy of formation: -312.6 kcal/mol - -analytic 2.3838e+002 5.4549e-002 -6.9433e+003 -9.4373e+001 -1.0841e+002 + -analytic 2.3838e+2 5.4549e-2 -6.9433e+3 -9.4373e+1 -1.0841e+2 # -Range: 0-300 -1.0000 Er+++ + 1.0000 Cl- = ErCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 12.6901 kJ/mol # Calculated enthalpy of reaction ErCl+2 +Er+3 + Cl- = ErCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 12.6901 kJ/mol # Calculated enthalpy of reaction ErCl+2 # Enthalpy of formation: -205.4 kcal/mol - -analytic 7.4113e+001 3.7462e-002 -1.5300e+003 -3.2257e+001 -2.3896e+001 + -analytic 7.4113e+1 3.7462e-2 -1.53e+3 -3.2257e+1 -2.3896e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Er+++ = ErCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 15.3385 kJ/mol # Calculated enthalpy of reaction ErCl2+ +2 Cl- + Er+3 = ErCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 15.3385 kJ/mol # Calculated enthalpy of reaction ErCl2+ # Enthalpy of formation: -244.7 kcal/mol - -analytic 2.0259e+002 7.8907e-002 -4.8271e+003 -8.4835e+001 -7.5382e+001 + -analytic 2.0259e+2 7.8907e-2 -4.8271e+3 -8.4835e+1 -7.5382e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Er+++ = ErCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 5.01662 kJ/mol # Calculated enthalpy of reaction ErCl3 +3 Cl- + Er+3 = ErCl3 + -llnl_gamma 3 + log_k -0.4669 + -delta_H 5.01662 kJ/mol # Calculated enthalpy of reaction ErCl3 # Enthalpy of formation: -287.1 kcal/mol - -analytic 3.9721e+002 1.2757e-001 -1.0045e+004 -1.6244e+002 -1.5686e+002 + -analytic 3.9721e+2 1.2757e-1 -1.0045e+4 -1.6244e+2 -1.5686e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Er+++ = ErCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -20.7861 kJ/mol # Calculated enthalpy of reaction ErCl4- +4 Cl- + Er+3 = ErCl4- + -llnl_gamma 4 + log_k -0.8913 + -delta_H -20.7861 kJ/mol # Calculated enthalpy of reaction ErCl4- # Enthalpy of formation: -333.2 kcal/mol - -analytic 4.3471e+002 1.2627e-001 -1.0669e+004 -1.7677e+002 -1.6660e+002 + -analytic 4.3471e+2 1.2627e-1 -1.0669e+4 -1.7677e+2 -1.666e+2 # -Range: 0-300 -1.0000 F- + 1.0000 Er+++ = ErF++ - -llnl_gamma 4.5 - log_k +4.7352 - -delta_H 24.058 kJ/mol # Calculated enthalpy of reaction ErF+2 +F- + Er+3 = ErF+2 + -llnl_gamma 4.5 + log_k 4.7352 + -delta_H 24.058 kJ/mol # Calculated enthalpy of reaction ErF+2 # Enthalpy of formation: -242.9 kcal/mol - -analytic 9.7079e+001 4.1707e-002 -2.6028e+003 -3.8805e+001 -4.0643e+001 + -analytic 9.7079e+1 4.1707e-2 -2.6028e+3 -3.8805e+1 -4.0643e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Er+++ = ErF2+ - -llnl_gamma 4.0 - log_k +8.2976 - -delta_H 12.9704 kJ/mol # Calculated enthalpy of reaction ErF2+ +2 F- + Er+3 = ErF2+ + -llnl_gamma 4 + log_k 8.2976 + -delta_H 12.9704 kJ/mol # Calculated enthalpy of reaction ErF2+ # Enthalpy of formation: -325.7 kcal/mol - -analytic 2.2892e+002 8.3842e-002 -5.2174e+003 -9.2172e+001 -8.1481e+001 + -analytic 2.2892e+2 8.3842e-2 -5.2174e+3 -9.2172e+1 -8.1481e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Er+++ = ErF3 - -llnl_gamma 3.0 - log_k +10.9071 - -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction ErF3 +3 F- + Er+3 = ErF3 + -llnl_gamma 3 + log_k 10.9071 + -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction ErF3 # Enthalpy of formation: -411.9 kcal/mol - -analytic 4.2782e+002 1.3425e-001 -9.7064e+003 -1.7148e+002 -1.5158e+002 + -analytic 4.2782e+2 1.3425e-1 -9.7064e+3 -1.7148e+2 -1.5158e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Er+++ = ErF4- - -llnl_gamma 4.0 - log_k +13.0768 - -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction ErF4- +4 F- + Er+3 = ErF4- + -llnl_gamma 4 + log_k 13.0768 + -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction ErF4- # Enthalpy of formation: -503.5 kcal/mol - -analytic 4.6524e+002 1.3372e-001 -9.1895e+003 -1.8636e+002 -1.4353e+002 + -analytic 4.6524e+2 1.3372e-1 -9.1895e+3 -1.8636e+2 -1.4353e+2 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Er+++ = ErH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction ErH2PO4+2 +HPO4-2 + H+ + Er+3 = ErH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction ErH2PO4+2 # Enthalpy of formation: -482.2 kcal/mol - -analytic 1.0254e+002 6.2786e-002 6.3590e+002 -4.6029e+001 9.8920e+000 + -analytic 1.0254e+2 6.2786e-2 6.359e+2 -4.6029e+1 9.892e+0 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Er+++ = ErHCO3++ - -llnl_gamma 4.5 - log_k +1.7724 - -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction ErHCO3+2 +HCO3- + Er+3 = ErHCO3+2 + -llnl_gamma 4.5 + log_k 1.7724 + -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction ErHCO3+2 # Enthalpy of formation: -332.2 kcal/mol - -analytic 3.2450e+001 3.0822e-002 3.1601e+002 -1.6528e+001 4.9212e+000 + -analytic 3.245e+1 3.0822e-2 3.1601e+2 -1.6528e+1 4.9212e+0 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Er+++ = ErHPO4+ - -llnl_gamma 4.0 - log_k +5.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErHPO4+ +HPO4-2 + Er+3 = ErHPO4+ + -llnl_gamma 4 + log_k 5.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction ErHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Er+++ = ErNO3++ - -llnl_gamma 4.5 - log_k +0.1415 - -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction ErNO3+2 + +NO3- + Er+3 = ErNO3+2 + -llnl_gamma 4.5 + log_k 0.1415 + -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction ErNO3+2 # Enthalpy of formation: -226 kcal/mol - -analytic 1.0381e+001 2.4710e-002 2.5752e+003 -1.0596e+001 4.0181e+001 + -analytic 1.0381e+1 2.471e-2 2.5752e+3 -1.0596e+1 4.0181e+1 # -Range: 0-300 -1.0000 H2O + 1.0000 Er+++ = ErO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.9705 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction ErO+ +H2O + Er+3 = ErO+ + 2 H+ + -llnl_gamma 4 + log_k -15.9705 + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction ErO+ # Enthalpy of formation: -211.6 kcal/mol - -analytic 1.7556e+002 2.8655e-002 -1.3134e+004 -6.3050e+001 -2.0499e+002 + -analytic 1.7556e+2 2.8655e-2 -1.3134e+4 -6.305e+1 -2.0499e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Er+++ = ErO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.6008 - -delta_H 266.245 kJ/mol # Calculated enthalpy of reaction ErO2- +2 H2O + Er+3 = ErO2- + 4 H+ + -llnl_gamma 4 + log_k -32.6008 + -delta_H 266.245 kJ/mol # Calculated enthalpy of reaction ErO2- # Enthalpy of formation: -241.5 kcal/mol - -analytic 1.4987e+002 9.1241e-003 -1.8521e+004 -4.9740e+001 -2.8905e+002 + -analytic 1.4987e+2 9.1241e-3 -1.8521e+4 -4.974e+1 -2.8905e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Er+++ = ErO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -24.3178 - -delta_H 212.689 kJ/mol # Calculated enthalpy of reaction ErO2H +2 H2O + Er+3 = ErO2H + 3 H+ + -llnl_gamma 3 + log_k -24.3178 + -delta_H 212.689 kJ/mol # Calculated enthalpy of reaction ErO2H # Enthalpy of formation: -254.3 kcal/mol - -analytic 3.1493e+002 4.4381e-002 -2.1821e+004 -1.1287e+002 -3.4059e+002 + -analytic 3.1493e+2 4.4381e-2 -2.1821e+4 -1.1287e+2 -3.4059e+2 # -Range: 0-300 -1.0000 H2O + 1.0000 Er+++ = ErOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.7609 - -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction ErOH+2 +H2O + Er+3 = ErOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.7609 + -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction ErOH+2 # Enthalpy of formation: -219 kcal/mol - -analytic 5.7142e+001 1.0986e-002 -5.6684e+003 -1.9867e+001 -8.8467e+001 + -analytic 5.7142e+1 1.0986e-2 -5.6684e+3 -1.9867e+1 -8.8467e+1 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Er+++ = ErPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.3782 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4 +HPO4-2 + Er+3 = ErPO4 + H+ + -llnl_gamma 3 + log_k 0.3782 + -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Er+++ = ErSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 20.3008 kJ/mol # Calculated enthalpy of reaction ErSO4+ + +SO4-2 + Er+3 = ErSO4+ + -llnl_gamma 4 + log_k 3.5697 + -delta_H 20.3008 kJ/mol # Calculated enthalpy of reaction ErSO4+ # Enthalpy of formation: -381.048 kcal/mol - -analytic 3.0363e+002 8.5667e-002 -8.9667e+003 -1.1942e+002 -1.4001e+002 + -analytic 3.0363e+2 8.5667e-2 -8.9667e+3 -1.1942e+2 -1.4001e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Eu+++ = Eu(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.6912 - -delta_H -28.3257 kJ/mol # Calculated enthalpy of reaction Eu(Acetate)2+ +2 HAcetate + Eu+3 = Eu(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.6912 + -delta_H -28.3257 kJ/mol # Calculated enthalpy of reaction Eu(Acetate)2+ # Enthalpy of formation: -383.67 kcal/mol - -analytic -2.7589e+001 1.5772e-003 -1.1008e+003 7.9899e+000 5.6652e+005 + -analytic -2.7589e+1 1.5772e-3 -1.1008e+3 7.9899e+0 5.6652e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Eu+++ = Eu(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -7.9824 - -delta_H -47.3629 kJ/mol # Calculated enthalpy of reaction Eu(Acetate)3 +3 HAcetate + Eu+3 = Eu(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -7.9824 + -delta_H -47.3629 kJ/mol # Calculated enthalpy of reaction Eu(Acetate)3 # Enthalpy of formation: -504.32 kcal/mol - -analytic -3.7470e+001 1.9276e-003 -1.0318e+003 9.7078e+000 7.4558e+005 + -analytic -3.747e+1 1.9276e-3 -1.0318e+3 9.7078e+0 7.4558e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Eu+++ = Eu(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.3993 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)2- +2 HCO3- + Eu+3 = Eu(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -8.3993 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)2- # Enthalpy of formation: -0 kcal/mol - -3.0000 HCO3- + 1.0000 Eu+++ = Eu(CO3)3--- +3.0000 H+ - -llnl_gamma 4.0 - log_k -16.8155 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)3-3 + +3 HCO3- + Eu+3 = Eu(CO3)3-3 + 3 H+ + -llnl_gamma 4 + log_k -16.8155 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)3-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Eu+++ = Eu(HPO4)2- - -llnl_gamma 4.0 - log_k +9.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(HPO4)2- + +2 HPO4-2 + Eu+3 = Eu(HPO4)2- + -llnl_gamma 4 + log_k 9.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(HPO4)2- # Enthalpy of formation: -0 kcal/mol - + # Redundant with EuO+ #2.0000 H2O + 1.0000 Eu+++ = Eu(OH)2+ +2.0000 H+ -# -llnl_gamma 4.0 +# -llnl_gamma 4.0 # log_k -14.8609 # -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2+ ## Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 HCO3- + 1.0000 Eu+++ = Eu(OH)2CO3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -17.8462 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2CO3- + +2 H2O + HCO3- + Eu+3 = Eu(OH)2CO3- + 3 H+ + -llnl_gamma 4 + log_k -17.8462 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2CO3- # Enthalpy of formation: -0 kcal/mol - + # Redundant with EuO2H #3.0000 H2O + 1.0000 Eu+++ = Eu(OH)3 +3.0000 H+ -# -llnl_gamma 3.0 +# -llnl_gamma 3.0 # log_k -24.1253 # -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)3 ## Enthalpy of formation: -0 kcal/mol - + # Redundant with EuO2- #4.0000 H2O + 1.0000 Eu+++ = Eu(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 +# -llnl_gamma 4.0 # log_k -36.5958 # -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)4- ## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Eu+++ = Eu(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.9837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(PO4)2-3 + +2 HPO4-2 + Eu+3 = Eu(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -3.9837 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Eu+++ = Eu(SO4)2- - -llnl_gamma 4.0 - log_k +5.4693 - -delta_H 25.627 kJ/mol # Calculated enthalpy of reaction Eu(SO4)2- + +2 SO4-2 + Eu+3 = Eu(SO4)2- + -llnl_gamma 4 + log_k 5.4693 + -delta_H 25.627 kJ/mol # Calculated enthalpy of reaction Eu(SO4)2- # Enthalpy of formation: -2399 kJ/mol - -analytic 4.5178e+002 1.2285e-001 -1.3400e+004 -1.7697e+002 -2.0922e+002 + -analytic 4.5178e+2 1.2285e-1 -1.34e+4 -1.7697e+2 -2.0922e+2 # -Range: 0-300 -2.0000 H2O + 2.0000 Eu+++ = Eu2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -6.9182 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu2(OH)2+4 +2 H2O + 2 Eu+3 = Eu2(OH)2+4 + 2 H+ + -llnl_gamma 5.5 + log_k -6.9182 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu2(OH)2+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Eu+++ + 1.0000 Br- = EuBr++ - -llnl_gamma 4.5 - log_k +0.5572 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr+2 + +Eu+3 + Br- = EuBr+2 + -llnl_gamma 4.5 + log_k 0.5572 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 Br- + 1.0000 Eu+++ = EuBr2+ - -llnl_gamma 4.0 - log_k +0.2145 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr2+ + +2 Br- + Eu+3 = EuBr2+ + -llnl_gamma 4 + log_k 0.2145 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr2+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Eu+++ + 1.0000 BrO3- = EuBrO3++ - -llnl_gamma 4.5 - log_k +4.5823 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBrO3+2 + +Eu+3 + BrO3- = EuBrO3+2 + -llnl_gamma 4.5 + log_k 4.5823 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBrO3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Eu+++ + 1.0000 HAcetate = EuAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -1.9571 - -delta_H -14.5603 kJ/mol # Calculated enthalpy of reaction EuAcetate+2 + +Eu+3 + HAcetate = EuAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -1.9571 + -delta_H -14.5603 kJ/mol # Calculated enthalpy of reaction EuAcetate+2 # Enthalpy of formation: -264.28 kcal/mol - -analytic -1.5090e+001 1.0352e-003 -6.4435e+002 4.6225e+000 3.1649e+005 + -analytic -1.509e+1 1.0352e-3 -6.4435e+2 4.6225e+0 3.1649e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Eu+++ = EuCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.4057 - -delta_H 90.7844 kJ/mol # Calculated enthalpy of reaction EuCO3+ +HCO3- + Eu+3 = EuCO3+ + H+ + -llnl_gamma 4 + log_k -2.4057 + -delta_H 90.7844 kJ/mol # Calculated enthalpy of reaction EuCO3+ # Enthalpy of formation: -287.9 kcal/mol - -analytic 2.3548e+002 5.3819e-002 -6.9908e+003 -9.3137e+001 -1.0915e+002 + -analytic 2.3548e+2 5.3819e-2 -6.9908e+3 -9.3137e+1 -1.0915e+2 # -Range: 0-300 -1.0000 Eu++ + 1.0000 Cl- = EuCl+ - -llnl_gamma 4.0 - log_k +0.3819 - -delta_H 8.50607 kJ/mol # Calculated enthalpy of reaction EuCl+ +Eu+2 + Cl- = EuCl+ + -llnl_gamma 4 + log_k 0.3819 + -delta_H 8.50607 kJ/mol # Calculated enthalpy of reaction EuCl+ # Enthalpy of formation: -164 kcal/mol - -analytic 6.8695e+001 3.7619e-002 -1.0809e+003 -3.0665e+001 -1.6887e+001 + -analytic 6.8695e+1 3.7619e-2 -1.0809e+3 -3.0665e+1 -1.6887e+1 # -Range: 0-300 -1.0000 Eu+++ + 1.0000 Cl- = EuCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction EuCl+2 +Eu+3 + Cl- = EuCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction EuCl+2 # Enthalpy of formation: -181.3 kcal/mol - -analytic 7.9275e+001 3.7878e-002 -1.7895e+003 -3.4041e+001 -2.7947e+001 + -analytic 7.9275e+1 3.7878e-2 -1.7895e+3 -3.4041e+1 -2.7947e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Eu++ = EuCl2 - -llnl_gamma 3.0 - log_k +1.2769 - -delta_H 5.71534 kJ/mol # Calculated enthalpy of reaction EuCl2 +2 Cl- + Eu+2 = EuCl2 + -llnl_gamma 3 + log_k 1.2769 + -delta_H 5.71534 kJ/mol # Calculated enthalpy of reaction EuCl2 # Enthalpy of formation: -204.6 kcal/mol - -analytic 1.0474e+002 6.7132e-002 -7.0448e+002 -4.8928e+001 -1.1024e+001 + -analytic 1.0474e+2 6.7132e-2 -7.0448e+2 -4.8928e+1 -1.1024e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Eu+++ = EuCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 18.6857 kJ/mol # Calculated enthalpy of reaction EuCl2+ +2 Cl- + Eu+3 = EuCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 18.6857 kJ/mol # Calculated enthalpy of reaction EuCl2+ # Enthalpy of formation: -220.1 kcal/mol - -analytic 2.1758e+002 8.0336e-002 -5.5499e+003 -9.0087e+001 -8.6665e+001 + -analytic 2.1758e+2 8.0336e-2 -5.5499e+3 -9.0087e+1 -8.6665e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Eu+++ = EuCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 11.2926 kJ/mol # Calculated enthalpy of reaction EuCl3 +3 Cl- + Eu+3 = EuCl3 + -llnl_gamma 3 + log_k -0.4669 + -delta_H 11.2926 kJ/mol # Calculated enthalpy of reaction EuCl3 # Enthalpy of formation: -261.8 kcal/mol - -analytic 4.2075e+002 1.2890e-001 -1.1288e+004 -1.7043e+002 -1.7627e+002 + -analytic 4.2075e+2 1.289e-1 -1.1288e+4 -1.7043e+2 -1.7627e+2 # -Range: 0-300 -3.0000 Cl- + 1.0000 Eu++ = EuCl3- - -llnl_gamma 4.0 - log_k +2.0253 - -delta_H -3.76978 kJ/mol # Calculated enthalpy of reaction EuCl3- +3 Cl- + Eu+2 = EuCl3- + -llnl_gamma 4 + log_k 2.0253 + -delta_H -3.76978 kJ/mol # Calculated enthalpy of reaction EuCl3- # Enthalpy of formation: -246.8 kcal/mol - -analytic 1.1546e+001 6.4683e-002 3.7299e+003 -1.6672e+001 5.8196e+001 + -analytic 1.1546e+1 6.4683e-2 3.7299e+3 -1.6672e+1 5.8196e+1 # -Range: 0-300 -4.0000 Cl- + 1.0000 Eu+++ = EuCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -9.90771 kJ/mol # Calculated enthalpy of reaction EuCl4- +4 Cl- + Eu+3 = EuCl4- + -llnl_gamma 4 + log_k -0.8913 + -delta_H -9.90771 kJ/mol # Calculated enthalpy of reaction EuCl4- # Enthalpy of formation: -306.8 kcal/mol - -analytic 4.8122e+002 1.3081e-001 -1.2950e+004 -1.9302e+002 -2.0222e+002 + -analytic 4.8122e+2 1.3081e-1 -1.295e+4 -1.9302e+2 -2.0222e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Eu++ = EuCl4-- - -llnl_gamma 4.0 - log_k +2.8470 - -delta_H -19.9493 kJ/mol # Calculated enthalpy of reaction EuCl4-2 +4 Cl- + Eu+2 = EuCl4-2 + -llnl_gamma 4 + log_k 2.847 + -delta_H -19.9493 kJ/mol # Calculated enthalpy of reaction EuCl4-2 # Enthalpy of formation: -290.6 kcal/mol - -analytic -1.2842e+002 5.0789e-002 9.8815e+003 3.3565e+001 1.5423e+002 + -analytic -1.2842e+2 5.0789e-2 9.8815e+3 3.3565e+1 1.5423e+2 # -Range: 0-300 -1.0000 F- + 1.0000 Eu++ = EuF+ - -llnl_gamma 4.0 - log_k -1.3487 - -delta_H 16.9452 kJ/mol # Calculated enthalpy of reaction EuF+ +F- + Eu+2 = EuF+ + -llnl_gamma 4 + log_k -1.3487 + -delta_H 16.9452 kJ/mol # Calculated enthalpy of reaction EuF+ # Enthalpy of formation: -202.2 kcal/mol - -analytic 6.2412e+001 3.5839e-002 -1.3660e+003 -2.8223e+001 -2.1333e+001 + -analytic 6.2412e+1 3.5839e-2 -1.366e+3 -2.8223e+1 -2.1333e+1 # -Range: 0-300 -1.0000 F- + 1.0000 Eu+++ = EuF++ - -llnl_gamma 4.5 - log_k +4.4420 - -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction EuF+2 +F- + Eu+3 = EuF+2 + -llnl_gamma 4.5 + log_k 4.442 + -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction EuF+2 # Enthalpy of formation: -219.2 kcal/mol - -analytic 1.0063e+002 4.1834e-002 -2.7355e+003 -4.0195e+001 -4.2714e+001 + -analytic 1.0063e+2 4.1834e-2 -2.7355e+3 -4.0195e+1 -4.2714e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Eu++ = EuF2 - -llnl_gamma 3.0 - log_k -2.0378 - -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction EuF2 +2 F- + Eu+2 = EuF2 + -llnl_gamma 3 + log_k -2.0378 + -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction EuF2 # Enthalpy of formation: -282.2 kcal/mol - -analytic 1.2065e+002 7.1705e-002 -1.7998e+003 -5.5760e+001 -2.8121e+001 + -analytic 1.2065e+2 7.1705e-2 -1.7998e+3 -5.576e+1 -2.8121e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Eu+++ = EuF2+ - -llnl_gamma 4.0 - log_k +7.7112 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction EuF2+ +2 F- + Eu+3 = EuF2+ + -llnl_gamma 4 + log_k 7.7112 + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction EuF2+ # Enthalpy of formation: -301.7 kcal/mol - -analytic 2.4099e+002 8.4714e-002 -5.7702e+003 -9.6640e+001 -9.0109e+001 + -analytic 2.4099e+2 8.4714e-2 -5.7702e+3 -9.664e+1 -9.0109e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Eu+++ = EuF3 - -llnl_gamma 3.0 - log_k +10.1741 - -delta_H -8.9956 kJ/mol # Calculated enthalpy of reaction EuF3 +3 F- + Eu+3 = EuF3 + -llnl_gamma 3 + log_k 10.1741 + -delta_H -8.9956 kJ/mol # Calculated enthalpy of reaction EuF3 # Enthalpy of formation: -387.3 kcal/mol - -analytic 4.5022e+002 1.3560e-001 -1.0801e+004 -1.7951e+002 -1.6867e+002 + -analytic 4.5022e+2 1.356e-1 -1.0801e+4 -1.7951e+2 -1.6867e+2 # -Range: 0-300 -3.0000 F- + 1.0000 Eu++ = EuF3- - -llnl_gamma 4.0 - log_k -2.5069 - -delta_H 3.5564 kJ/mol # Calculated enthalpy of reaction EuF3- +3 F- + Eu+2 = EuF3- + -llnl_gamma 4 + log_k -2.5069 + -delta_H 3.5564 kJ/mol # Calculated enthalpy of reaction EuF3- # Enthalpy of formation: -365.7 kcal/mol - -analytic -2.8441e+001 5.5972e-002 4.4573e+003 -2.2782e+000 6.9558e+001 + -analytic -2.8441e+1 5.5972e-2 4.4573e+3 -2.2782e+0 6.9558e+1 # -Range: 0-300 -4.0000 F- + 1.0000 Eu+++ = EuF4- - -llnl_gamma 4.0 - log_k +12.1239 - -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction EuF4- +4 F- + Eu+3 = EuF4- + -llnl_gamma 4 + log_k 12.1239 + -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction EuF4- # Enthalpy of formation: -477.8 kcal/mol - -analytic 5.0246e+002 1.3629e-001 -1.1092e+004 -1.9952e+002 -1.7323e+002 + -analytic 5.0246e+2 1.3629e-1 -1.1092e+4 -1.9952e+2 -1.7323e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Eu++ = EuF4-- - -llnl_gamma 4.0 - log_k -2.8294 - -delta_H -37.656 kJ/mol # Calculated enthalpy of reaction EuF4-2 +4 F- + Eu+2 = EuF4-2 + -llnl_gamma 4 + log_k -2.8294 + -delta_H -37.656 kJ/mol # Calculated enthalpy of reaction EuF4-2 # Enthalpy of formation: -455.7 kcal/mol - -analytic -1.8730e+002 3.9237e-002 1.2303e+004 5.3179e+001 1.9204e+002 + -analytic -1.873e+2 3.9237e-2 1.2303e+4 5.3179e+1 1.9204e+2 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Eu+++ = EuH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -17.0916 kJ/mol # Calculated enthalpy of reaction EuH2PO4+2 +HPO4-2 + H+ + Eu+3 = EuH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -17.0916 kJ/mol # Calculated enthalpy of reaction EuH2PO4+2 # Enthalpy of formation: -457.6 kcal/mol - -analytic 1.0873e+002 6.3416e-002 2.7202e+002 -4.8113e+001 4.2122e+000 + -analytic 1.0873e+2 6.3416e-2 2.7202e+2 -4.8113e+1 4.2122e+0 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Eu+++ = EuHCO3++ - -llnl_gamma 4.5 - log_k +1.6258 - -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction EuHCO3+2 +HCO3- + Eu+3 = EuHCO3+2 + -llnl_gamma 4.5 + log_k 1.6258 + -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction EuHCO3+2 # Enthalpy of formation: -307.5 kcal/mol - -analytic 3.9266e+001 3.1608e-002 -9.8731e+001 -1.8875e+001 -1.5524e+000 + -analytic 3.9266e+1 3.1608e-2 -9.8731e+1 -1.8875e+1 -1.5524e+0 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Eu+++ = EuHPO4+ - -llnl_gamma 4.0 - log_k +5.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuHPO4+ +HPO4-2 + Eu+3 = EuHPO4+ + -llnl_gamma 4 + log_k 5.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 IO3- + 1.0000 Eu+++ = EuIO3++ - -llnl_gamma 4.5 - log_k +2.1560 - -delta_H 11.8314 kJ/mol # Calculated enthalpy of reaction EuIO3+2 + +IO3- + Eu+3 = EuIO3+2 + -llnl_gamma 4.5 + log_k 2.156 + -delta_H 11.8314 kJ/mol # Calculated enthalpy of reaction EuIO3+2 # Enthalpy of formation: -814.927 kJ/mol - -analytic 1.4970e+002 4.7369e-002 -4.1559e+003 -5.9687e+001 -6.4893e+001 + -analytic 1.497e+2 4.7369e-2 -4.1559e+3 -5.9687e+1 -6.4893e+1 # -Range: 0-300 -1.0000 NO3- + 1.0000 Eu+++ = EuNO3++ - -llnl_gamma 4.5 - log_k +0.8745 - -delta_H -32.0955 kJ/mol # Calculated enthalpy of reaction EuNO3+2 +NO3- + Eu+3 = EuNO3+2 + -llnl_gamma 4.5 + log_k 0.8745 + -delta_H -32.0955 kJ/mol # Calculated enthalpy of reaction EuNO3+2 # Enthalpy of formation: -201.8 kcal/mol - -analytic 1.7398e+001 2.5467e-002 2.2683e+003 -1.2810e+001 3.5389e+001 + -analytic 1.7398e+1 2.5467e-2 2.2683e+3 -1.281e+1 3.5389e+1 # -Range: 0-300 -1.0000 H2O + 1.0000 Eu+++ = EuO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.337 - -delta_H 110.947 kJ/mol # Calculated enthalpy of reaction EuO+ +H2O + Eu+3 = EuO+ + 2 H+ + -llnl_gamma 4 + log_k -16.337 + -delta_H 110.947 kJ/mol # Calculated enthalpy of reaction EuO+ # Enthalpy of formation: -186.5 kcal/mol - -analytic 1.8876e+002 3.0194e-002 -1.3836e+004 -6.7770e+001 -2.1595e+002 + -analytic 1.8876e+2 3.0194e-2 -1.3836e+4 -6.777e+1 -2.1595e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Eu+++ = EuO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -34.5066 - -delta_H 281.307 kJ/mol # Calculated enthalpy of reaction EuO2- +2 H2O + Eu+3 = EuO2- + 4 H+ + -llnl_gamma 4 + log_k -34.5066 + -delta_H 281.307 kJ/mol # Calculated enthalpy of reaction EuO2- # Enthalpy of formation: -214.1 kcal/mol - -analytic 7.5244e+001 3.7089e-004 -1.3587e+004 -2.3859e+001 -4.6713e+005 + -analytic 7.5244e+1 3.7089e-4 -1.3587e+4 -2.3859e+1 -4.6713e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Eu+++ = EuO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.4173 - -delta_H 222.313 kJ/mol # Calculated enthalpy of reaction EuO2H +2 H2O + Eu+3 = EuO2H + 3 H+ + -llnl_gamma 3 + log_k -25.4173 + -delta_H 222.313 kJ/mol # Calculated enthalpy of reaction EuO2H # Enthalpy of formation: -228.2 kcal/mol - -analytic 3.6754e+002 5.3868e-002 -2.4034e+004 -1.3272e+002 -3.7514e+002 + -analytic 3.6754e+2 5.3868e-2 -2.4034e+4 -1.3272e+2 -3.7514e+2 # -Range: 0-300 -2.0000 HCO3- + 1.0000 H2O + 1.0000 Eu+++ = EuOH(CO3)2-- +3.0000 H+ - -llnl_gamma 4.0 - log_k -15.176 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOH(CO3)2-2 +2 HCO3- + H2O + Eu+3 = EuOH(CO3)2-2 + 3 H+ + -llnl_gamma 4 + log_k -15.176 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOH(CO3)2-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Eu+++ = EuOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.9075 - -delta_H 78.0065 kJ/mol # Calculated enthalpy of reaction EuOH+2 + +H2O + Eu+3 = EuOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 78.0065 kJ/mol # Calculated enthalpy of reaction EuOH+2 # Enthalpy of formation: -194.373 kcal/mol - -analytic 6.7691e+001 1.2066e-002 -6.1871e+003 -2.3617e+001 -9.6563e+001 + -analytic 6.7691e+1 1.2066e-2 -6.1871e+3 -2.3617e+1 -9.6563e+1 # -Range: 0-300 -1.0000 HCO3- + 1.0000 H2O + 1.0000 Eu+++ = EuOHCO3 +2.0000 H+ - -llnl_gamma 3.0 - log_k -8.4941 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 +HCO3- + H2O + Eu+3 = EuOHCO3 + 2 H+ + -llnl_gamma 3 + log_k -8.4941 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Eu+++ = EuPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.1218 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4 + +HPO4-2 + Eu+3 = EuPO4 + H+ + -llnl_gamma 3 + log_k -0.1218 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Eu+++ = EuSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 62.3416 kJ/mol # Calculated enthalpy of reaction EuSO4+ + +SO4-2 + Eu+3 = EuSO4+ + -llnl_gamma 4 + log_k 3.643 + -delta_H 62.3416 kJ/mol # Calculated enthalpy of reaction EuSO4+ # Enthalpy of formation: -347.2 kcal/mol - -analytic 3.0587e+002 8.6208e-002 -9.0387e+003 -1.2026e+002 -1.4113e+002 + -analytic 3.0587e+2 8.6208e-2 -9.0387e+3 -1.2026e+2 -1.4113e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Fe++ = Fe(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.0295 - -delta_H -20.2924 kJ/mol # Calculated enthalpy of reaction Fe(Acetate)2 +2 HAcetate + Fe+2 = Fe(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -7.0295 + -delta_H -20.2924 kJ/mol # Calculated enthalpy of reaction Fe(Acetate)2 # Enthalpy of formation: -259.1 kcal/mol - -analytic -2.9862e+001 1.3901e-003 -1.6908e+003 8.6283e+000 6.0125e+005 + -analytic -2.9862e+1 1.3901e-3 -1.6908e+3 8.6283e+0 6.0125e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Fe++ = Fe(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -20.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2 +2 H2O + Fe+2 = Fe(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -20.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Fe+++ = Fe(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2+ + +2 H2O + Fe+3 = Fe(OH)2+ + 2 H+ + -llnl_gamma 4 + log_k -5.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2+ # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Fe+++ = Fe(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -12 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3 + +3 H2O + Fe+3 = Fe(OH)3 + 3 H+ + -llnl_gamma 3 + log_k -12 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Fe++ = Fe(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -31 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3- + +3 H2O + Fe+2 = Fe(OH)3- + 3 H+ + -llnl_gamma 4 + log_k -31 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3- # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Fe+++ = Fe(OH)4- +4.0000 H+ - -llnl_gamma 4.0 - log_k -21.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4- + +4 H2O + Fe+3 = Fe(OH)4- + 4 H+ + -llnl_gamma 4 + log_k -21.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4- # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Fe++ = Fe(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -46 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4-2 + +4 H2O + Fe+2 = Fe(OH)4-2 + 4 H+ + -llnl_gamma 4 + log_k -46 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Fe+++ = Fe(SO4)2- - -llnl_gamma 4.0 - log_k +3.2137 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(SO4)2- + +2 SO4-2 + Fe+3 = Fe(SO4)2- + -llnl_gamma 4 + log_k 3.2137 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(SO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 2.0000 Fe+++ = Fe2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -2.95 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe2(OH)2+4 + +2 H2O + 2 Fe+3 = Fe2(OH)2+4 + 2 H+ + -llnl_gamma 5.5 + log_k -2.95 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe2(OH)2+4 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 3.0000 Fe+++ = Fe3(OH)4+5 +4.0000 H+ - -llnl_gamma 6.0 - log_k -6.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe3(OH)4+5 + +4 H2O + 3 Fe+3 = Fe3(OH)4+5 + 4 H+ + -llnl_gamma 6 + log_k -6.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe3(OH)4+5 # Enthalpy of formation: -0 kcal/mol - -1.0000 Fe++ + 1.0000 HAcetate = FeAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.4671 - -delta_H -3.80744 kJ/mol # Calculated enthalpy of reaction FeAcetate+ + +Fe+2 + HAcetate = FeAcetate+ + H+ + -llnl_gamma 4 + log_k -3.4671 + -delta_H -3.80744 kJ/mol # Calculated enthalpy of reaction FeAcetate+ # Enthalpy of formation: -139.06 kcal/mol - -analytic -1.3781e+001 9.6253e-004 -7.5310e+002 4.0135e+000 2.3416e+005 + -analytic -1.3781e+1 9.6253e-4 -7.531e+2 4.0135e+0 2.3416e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Fe++ = FeCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -5.5988 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCO3 +HCO3- + Fe+2 = FeCO3 + H+ + -llnl_gamma 3 + log_k -5.5988 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Fe+++ = FeCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -0.6088 - -delta_H -50.208 kJ/mol # Calculated enthalpy of reaction FeCO3+ + +HCO3- + Fe+3 = FeCO3+ + H+ + -llnl_gamma 4 + log_k -0.6088 + -delta_H -50.208 kJ/mol # Calculated enthalpy of reaction FeCO3+ # Enthalpy of formation: -188.748 kcal/mol - -analytic 1.7100e+002 8.0413e-002 -4.3217e+002 -7.8449e+001 -6.7948e+000 + -analytic 1.71e+2 8.0413e-2 -4.3217e+2 -7.8449e+1 -6.7948e+0 # -Range: 0-300 -1.0000 Fe++ + 1.0000 Cl- = FeCl+ - -llnl_gamma 4.0 - log_k -0.1605 - -delta_H 3.02503 kJ/mol # Calculated enthalpy of reaction FeCl+ +Fe+2 + Cl- = FeCl+ + -llnl_gamma 4 + log_k -0.1605 + -delta_H 3.02503 kJ/mol # Calculated enthalpy of reaction FeCl+ # Enthalpy of formation: -61.26 kcal/mol - -analytic 8.2435e+001 3.7755e-002 -1.4765e+003 -3.5918e+001 -2.3064e+001 + -analytic 8.2435e+1 3.7755e-2 -1.4765e+3 -3.5918e+1 -2.3064e+1 # -Range: 0-300 -1.0000 Fe+++ + 1.0000 Cl- = FeCl++ - -llnl_gamma 4.5 - log_k -0.8108 - -delta_H 36.6421 kJ/mol # Calculated enthalpy of reaction FeCl+2 +Fe+3 + Cl- = FeCl+2 + -llnl_gamma 4.5 + log_k -0.8108 + -delta_H 36.6421 kJ/mol # Calculated enthalpy of reaction FeCl+2 # Enthalpy of formation: -180.018 kJ/mol - -analytic 1.6186e+002 5.9436e-002 -5.1913e+003 -6.5852e+001 -8.1053e+001 + -analytic 1.6186e+2 5.9436e-2 -5.1913e+3 -6.5852e+1 -8.1053e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Fe++ = FeCl2 - -llnl_gamma 3.0 - log_k -2.4541 - -delta_H 6.46846 kJ/mol # Calculated enthalpy of reaction FeCl2 +2 Cl- + Fe+2 = FeCl2 + -llnl_gamma 3 + log_k -2.4541 + -delta_H 6.46846 kJ/mol # Calculated enthalpy of reaction FeCl2 # Enthalpy of formation: -100.37 kcal/mol - -analytic 1.9171e+002 7.8070e-002 -4.1048e+003 -8.2292e+001 -6.4108e+001 + -analytic 1.9171e+2 7.807e-2 -4.1048e+3 -8.2292e+1 -6.4108e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Fe+++ = FeCl2+ - -llnl_gamma 4.0 - log_k +2.1300 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl2+ +2 Cl- + Fe+3 = FeCl2+ + -llnl_gamma 4 + log_k 2.13 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl2+ # Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Fe+++ = FeCl4- - -llnl_gamma 4.0 - log_k -0.79 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4- + +4 Cl- + Fe+3 = FeCl4- + -llnl_gamma 4 + log_k -0.79 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4- # Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Fe++ = FeCl4-- - -llnl_gamma 4.0 - log_k -1.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4-2 + +4 Cl- + Fe+2 = FeCl4-2 + -llnl_gamma 4 + log_k -1.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4-2 # Enthalpy of formation: -0 kcal/mol - -analytic -2.4108e+002 -6.0086e-003 9.7979e+003 8.4084e+001 1.5296e+002 + -analytic -2.4108e+2 -6.0086e-3 9.7979e+3 8.4084e+1 1.5296e+2 # -Range: 0-300 -1.0000 Fe++ + 1.0000 F- = FeF+ - -llnl_gamma 4.0 - log_k +1.3600 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeF+ +Fe+2 + F- = FeF+ + -llnl_gamma 4 + log_k 1.36 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeF+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Fe+++ + 1.0000 F- = FeF++ - -llnl_gamma 4.5 - log_k +4.1365 - -delta_H 14.327 kJ/mol # Calculated enthalpy of reaction FeF+2 + +Fe+3 + F- = FeF+2 + -llnl_gamma 4.5 + log_k 4.1365 + -delta_H 14.327 kJ/mol # Calculated enthalpy of reaction FeF+2 # Enthalpy of formation: -370.601 kJ/mol - -analytic 1.7546e+002 6.3754e-002 -4.3166e+003 -7.1052e+001 -6.7408e+001 + -analytic 1.7546e+2 6.3754e-2 -4.3166e+3 -7.1052e+1 -6.7408e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Fe+++ = FeF2+ - -llnl_gamma 4.0 - log_k +8.3498 - -delta_H 23.9776 kJ/mol # Calculated enthalpy of reaction FeF2+ +2 F- + Fe+3 = FeF2+ + -llnl_gamma 4 + log_k 8.3498 + -delta_H 23.9776 kJ/mol # Calculated enthalpy of reaction FeF2+ # Enthalpy of formation: -696.298 kJ/mol - -analytic 2.9080e+002 1.0393e-001 -7.2118e+003 -1.1688e+002 -1.1262e+002 + -analytic 2.908e+2 1.0393e-1 -7.2118e+3 -1.1688e+2 -1.1262e+2 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Fe++ = FeH2PO4+ - -llnl_gamma 4.0 - log_k +2.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+ +HPO4-2 + H+ + Fe+2 = FeH2PO4+ + -llnl_gamma 4 + log_k 2.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Fe+++ = FeH2PO4++ - -llnl_gamma 4.5 - log_k +4.1700 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+2 + +HPO4-2 + H+ + Fe+3 = FeH2PO4+2 + -llnl_gamma 4.5 + log_k 4.17 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Fe++ = FeHCO3+ - -llnl_gamma 4.0 - log_k +2.7200 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHCO3+ + +HCO3- + Fe+2 = FeHCO3+ + -llnl_gamma 4 + log_k 2.72 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHCO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Fe++ = FeHPO4 - -llnl_gamma 3.0 - log_k +3.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4 + +HPO4-2 + Fe+2 = FeHPO4 + -llnl_gamma 3 + log_k 3.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Fe+++ = FeHPO4+ - -llnl_gamma 4.0 - log_k +10.1800 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4+ + +HPO4-2 + Fe+3 = FeHPO4+ + -llnl_gamma 4 + log_k 10.18 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 NO2- + 1.0000 Fe+++ = FeNO2++ - -llnl_gamma 4.5 - log_k +3.1500 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO2+2 + +NO2- + Fe+3 = FeNO2+2 + -llnl_gamma 4.5 + log_k 3.15 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO2+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Fe+++ = FeNO3++ - -llnl_gamma 4.5 - log_k +1.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO3+2 + +NO3- + Fe+3 = FeNO3+2 + -llnl_gamma 4.5 + log_k 1 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Fe++ = FeOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -9.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+ + +H2O + Fe+2 = FeOH+ + H+ + -llnl_gamma 4 + log_k -9.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+ # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Fe+++ = FeOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.19 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+2 + +H2O + Fe+3 = FeOH+2 + H+ + -llnl_gamma 4.5 + log_k -2.19 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Fe++ = FePO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -4.3918 - -delta_H 0 # Not possible to calculate enthalpy of reaction FePO4- + +HPO4-2 + Fe+2 = FePO4- + H+ + -llnl_gamma 4 + log_k -4.3918 + -delta_H 0 # Not possible to calculate enthalpy of reaction FePO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Fe++ = FeSO4 - -llnl_gamma 3.0 - log_k +2.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeSO4 + +SO4-2 + Fe+2 = FeSO4 + -llnl_gamma 3 + log_k 2.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeSO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Fe+++ = FeSO4+ - -llnl_gamma 4.0 - log_k +1.9276 - -delta_H 27.181 kJ/mol # Calculated enthalpy of reaction FeSO4+ + +SO4-2 + Fe+3 = FeSO4+ + -llnl_gamma 4 + log_k 1.9276 + -delta_H 27.181 kJ/mol # Calculated enthalpy of reaction FeSO4+ # Enthalpy of formation: -932.001 kJ/mol - -analytic 2.5178e+002 1.0080e-001 -6.0977e+003 -1.0483e+002 -9.5223e+001 + -analytic 2.5178e+2 1.008e-1 -6.0977e+3 -1.0483e+2 -9.5223e+1 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Gd+++ = Gd(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -22.3426 kJ/mol # Calculated enthalpy of reaction Gd(Acetate)2+ +2 HAcetate + Gd+3 = Gd(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9625 + -delta_H -22.3426 kJ/mol # Calculated enthalpy of reaction Gd(Acetate)2+ # Enthalpy of formation: -401.74 kcal/mol - -analytic -4.3124e+001 1.2995e-004 -4.3494e+002 1.3677e+001 5.1224e+005 + -analytic -4.3124e+1 1.2995e-4 -4.3494e+2 1.3677e+1 5.1224e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Gd+++ = Gd(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -37.9907 kJ/mol # Calculated enthalpy of reaction Gd(Acetate)3 +3 HAcetate + Gd+3 = Gd(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.3489 + -delta_H -37.9907 kJ/mol # Calculated enthalpy of reaction Gd(Acetate)3 # Enthalpy of formation: -521.58 kcal/mol - -analytic -8.8296e+001 -5.0939e-003 1.2268e+003 2.8513e+001 6.0745e+005 + -analytic -8.8296e+1 -5.0939e-3 1.2268e+3 2.8513e+1 6.0745e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Gd+++ = Gd(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.5576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(CO3)2- +2 HCO3- + Gd+3 = Gd(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.5576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Gd+++ = Gd(HPO4)2- - -llnl_gamma 4.0 - log_k +9.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(HPO4)2- + +2 HPO4-2 + Gd+3 = Gd(HPO4)2- + -llnl_gamma 4 + log_k 9.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(HPO4)2- # Enthalpy of formation: -0 kcal/mol - + # Redundant with GdO2- #4.0000 H2O + 1.0000 Gd+++ = Gd(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 +# -llnl_gamma 4.0 # log_k -33.8803 # -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)4- ## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Gd+++ = Gd(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.9437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(PO4)2-3 + +2 HPO4-2 + Gd+3 = Gd(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -3.9437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Gd+++ = Gd(SO4)2- - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(SO4)2- + +2 SO4-2 + Gd+3 = Gd(SO4)2- + -llnl_gamma 4 + log_k 5.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Gd+++ + 1.0000 HAcetate = GdAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -11.7152 kJ/mol # Calculated enthalpy of reaction GdAcetate+2 + +Gd+3 + HAcetate = GdAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -11.7152 kJ/mol # Calculated enthalpy of reaction GdAcetate+2 # Enthalpy of formation: -283.1 kcal/mol - -analytic -1.4118e+001 1.6660e-003 -7.5206e+002 4.2614e+000 3.1187e+005 + -analytic -1.4118e+1 1.666e-3 -7.5206e+2 4.2614e+0 3.1187e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Gd+++ = GdCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.479 - -delta_H 89.9476 kJ/mol # Calculated enthalpy of reaction GdCO3+ +HCO3- + Gd+3 = GdCO3+ + H+ + -llnl_gamma 4 + log_k -2.479 + -delta_H 89.9476 kJ/mol # Calculated enthalpy of reaction GdCO3+ # Enthalpy of formation: -307.6 kcal/mol - -analytic 2.3628e+002 5.4100e-002 -7.0746e+003 -9.3413e+001 -1.1046e+002 + -analytic 2.3628e+2 5.41e-2 -7.0746e+3 -9.3413e+1 -1.1046e+2 # -Range: 0-300 -1.0000 Gd+++ + 1.0000 Cl- = GdCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction GdCl+2 +Gd+3 + Cl- = GdCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction GdCl+2 # Enthalpy of formation: -200.6 kcal/mol - -analytic 8.0750e+001 3.8524e-002 -1.8591e+003 -3.4621e+001 -2.9034e+001 + -analytic 8.075e+1 3.8524e-2 -1.8591e+3 -3.4621e+1 -2.9034e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Gd+++ = GdCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 21.1961 kJ/mol # Calculated enthalpy of reaction GdCl2+ +2 Cl- + Gd+3 = GdCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 21.1961 kJ/mol # Calculated enthalpy of reaction GdCl2+ # Enthalpy of formation: -239 kcal/mol - -analytic 2.1754e+002 8.0996e-002 -5.6121e+003 -9.0067e+001 -8.7635e+001 + -analytic 2.1754e+2 8.0996e-2 -5.6121e+3 -9.0067e+1 -8.7635e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Gd+++ = GdCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 15.895 kJ/mol # Calculated enthalpy of reaction GdCl3 +3 Cl- + Gd+3 = GdCl3 + -llnl_gamma 3 + log_k -0.4669 + -delta_H 15.895 kJ/mol # Calculated enthalpy of reaction GdCl3 # Enthalpy of formation: -280.2 kcal/mol - -analytic 4.1398e+002 1.2829e-001 -1.1230e+004 -1.6770e+002 -1.7535e+002 + -analytic 4.1398e+2 1.2829e-1 -1.123e+4 -1.677e+2 -1.7535e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Gd+++ = GdCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -1.53971 kJ/mol # Calculated enthalpy of reaction GdCl4- +4 Cl- + Gd+3 = GdCl4- + -llnl_gamma 4 + log_k -0.8913 + -delta_H -1.53971 kJ/mol # Calculated enthalpy of reaction GdCl4- # Enthalpy of formation: -324.3 kcal/mol - -analytic 4.7684e+002 1.3157e-001 -1.3068e+004 -1.9118e+002 -2.0405e+002 + -analytic 4.7684e+2 1.3157e-1 -1.3068e+4 -1.9118e+2 -2.0405e+2 # -Range: 0-300 -1.0000 Gd+++ + 1.0000 F- = GdF++ - -llnl_gamma 4.5 - log_k +4.5886 - -delta_H 21.1292 kJ/mol # Calculated enthalpy of reaction GdF+2 +Gd+3 + F- = GdF+2 + -llnl_gamma 4.5 + log_k 4.5886 + -delta_H 21.1292 kJ/mol # Calculated enthalpy of reaction GdF+2 # Enthalpy of formation: -239.3 kcal/mol - -analytic 1.0060e+002 4.2181e-002 -2.6024e+003 -4.0347e+001 -4.0637e+001 + -analytic 1.006e+2 4.2181e-2 -2.6024e+3 -4.0347e+1 -4.0637e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Gd+++ = GdF2+ - -llnl_gamma 4.0 - log_k +7.9311 - -delta_H 11.2968 kJ/mol # Calculated enthalpy of reaction GdF2+ +2 F- + Gd+3 = GdF2+ + -llnl_gamma 4 + log_k 7.9311 + -delta_H 11.2968 kJ/mol # Calculated enthalpy of reaction GdF2+ # Enthalpy of formation: -321.8 kcal/mol - -analytic 2.3793e+002 8.4732e-002 -5.4950e+003 -9.5689e+001 -8.5815e+001 + -analytic 2.3793e+2 8.4732e-2 -5.495e+3 -9.5689e+1 -8.5815e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Gd+++ = GdF3 - -llnl_gamma 3.0 - log_k +10.4673 - -delta_H -11.506 kJ/mol # Calculated enthalpy of reaction GdF3 +3 F- + Gd+3 = GdF3 + -llnl_gamma 3 + log_k 10.4673 + -delta_H -11.506 kJ/mol # Calculated enthalpy of reaction GdF3 # Enthalpy of formation: -407.4 kcal/mol - -analytic 4.4257e+002 1.3500e-001 -1.0377e+004 -1.7680e+002 -1.6205e+002 + -analytic 4.4257e+2 1.35e-1 -1.0377e+4 -1.768e+2 -1.6205e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Gd+++ = GdF4- - -llnl_gamma 4.0 - log_k +12.4904 - -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction GdF4- +4 F- + Gd+3 = GdF4- + -llnl_gamma 4 + log_k 12.4904 + -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction GdF4- # Enthalpy of formation: -497.3 kcal/mol - -analytic 4.9026e+002 1.3534e-001 -1.0586e+004 -1.9501e+002 -1.6533e+002 + -analytic 4.9026e+2 1.3534e-1 -1.0586e+4 -1.9501e+2 -1.6533e+2 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Gd+++ = GdH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -14.9996 kJ/mol # Calculated enthalpy of reaction GdH2PO4+2 +HPO4-2 + H+ + Gd+3 = GdH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -14.9996 kJ/mol # Calculated enthalpy of reaction GdH2PO4+2 # Enthalpy of formation: -476.6 kcal/mol - -analytic 1.1058e+002 6.4124e-002 1.3451e+002 -4.8758e+001 2.0660e+000 + -analytic 1.1058e+2 6.4124e-2 1.3451e+2 -4.8758e+1 2.066e+0 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Gd+++ = GdHCO3++ - -llnl_gamma 4.5 - log_k +1.6991 - -delta_H 10.0332 kJ/mol # Calculated enthalpy of reaction GdHCO3+2 +HCO3- + Gd+3 = GdHCO3+2 + -llnl_gamma 4.5 + log_k 1.6991 + -delta_H 10.0332 kJ/mol # Calculated enthalpy of reaction GdHCO3+2 # Enthalpy of formation: -326.7 kcal/mol - -analytic 4.1973e+001 3.2521e-002 -2.3475e+002 -1.9864e+001 -3.6757e+000 + -analytic 4.1973e+1 3.2521e-2 -2.3475e+2 -1.9864e+1 -3.6757e+0 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Gd+++ = GdHPO4+ - -llnl_gamma 4.0 - log_k -185.109 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdHPO4+ +HPO4-2 + Gd+3 = GdHPO4+ + -llnl_gamma 4 + log_k -185.109 + -delta_H 0 # Not possible to calculate enthalpy of reaction GdHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Gd+++ = GdNO3++ - -llnl_gamma 4.5 - log_k +0.4347 - -delta_H -25.8195 kJ/mol # Calculated enthalpy of reaction GdNO3+2 + +NO3- + Gd+3 = GdNO3+2 + -llnl_gamma 4.5 + log_k 0.4347 + -delta_H -25.8195 kJ/mol # Calculated enthalpy of reaction GdNO3+2 # Enthalpy of formation: -219.8 kcal/mol - -analytic 2.0253e+001 2.6372e-002 1.8785e+003 -1.3723e+001 2.9306e+001 + -analytic 2.0253e+1 2.6372e-2 1.8785e+3 -1.3723e+1 2.9306e+1 # -Range: 0-300 -1.0000 H2O + 1.0000 Gd+++ = GdO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.337 - -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction GdO+ +H2O + Gd+3 = GdO+ + 2 H+ + -llnl_gamma 4 + log_k -16.337 + -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction GdO+ # Enthalpy of formation: -205.5 kcal/mol - -analytic 2.0599e+002 3.2521e-002 -1.4547e+004 -7.4048e+001 -2.2705e+002 + -analytic 2.0599e+2 3.2521e-2 -1.4547e+4 -7.4048e+1 -2.2705e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Gd+++ = GdO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -34.4333 - -delta_H 283.817 kJ/mol # Calculated enthalpy of reaction GdO2- +2 H2O + Gd+3 = GdO2- + 4 H+ + -llnl_gamma 4 + log_k -34.4333 + -delta_H 283.817 kJ/mol # Calculated enthalpy of reaction GdO2- # Enthalpy of formation: -233 kcal/mol - -analytic 1.2067e+002 6.6276e-003 -1.5531e+004 -4.0448e+001 -4.3587e+005 + -analytic 1.2067e+2 6.6276e-3 -1.5531e+4 -4.0448e+1 -4.3587e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Gd+++ = GdO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.2707 - -delta_H 224.405 kJ/mol # Calculated enthalpy of reaction GdO2H +2 H2O + Gd+3 = GdO2H + 3 H+ + -llnl_gamma 3 + log_k -25.2707 + -delta_H 224.405 kJ/mol # Calculated enthalpy of reaction GdO2H # Enthalpy of formation: -247.2 kcal/mol - -analytic 3.6324e+002 4.7938e-002 -2.4275e+004 -1.2988e+002 -3.7889e+002 + -analytic 3.6324e+2 4.7938e-2 -2.4275e+4 -1.2988e+2 -3.7889e+2 # -Range: 0-300 -1.0000 H2O + 1.0000 Gd+++ = GdOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.9075 - -delta_H 79.9855 kJ/mol # Calculated enthalpy of reaction GdOH+2 +H2O + Gd+3 = GdOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 79.9855 kJ/mol # Calculated enthalpy of reaction GdOH+2 # Enthalpy of formation: -213.4 kcal/mol - -analytic 8.3265e+001 1.4153e-002 -6.8229e+003 -2.9301e+001 -1.0649e+002 + -analytic 8.3265e+1 1.4153e-2 -6.8229e+3 -2.9301e+1 -1.0649e+2 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Gd+++ = GdPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.1218 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4 +HPO4-2 + Gd+3 = GdPO4 + H+ + -llnl_gamma 3 + log_k -0.1218 + -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Gd+++ = GdSO4+ - -llnl_gamma 4.0 - log_k -3.687 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction GdSO4+ + +SO4-2 + Gd+3 = GdSO4+ + -llnl_gamma 4 + log_k -3.687 + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction GdSO4+ # Enthalpy of formation: -376.8 kcal/mol - -analytic 3.0783e+002 8.6798e-002 -1.1246e+004 -1.2109e+002 -1.7557e+002 + -analytic 3.0783e+2 8.6798e-2 -1.1246e+4 -1.2109e+2 -1.7557e+2 # -Range: 0-300 -1.0000 O_phthalate-2 + 1.0000 H+ = H(O_phthalate)- - -llnl_gamma 4.0 - log_k +5.4080 - -delta_H 0 # Not possible to calculate enthalpy of reaction H(O_phthalate)- +O_phthalate-2 + H+ = H(O_phthalate)- + -llnl_gamma 4 + log_k 5.408 + -delta_H 0 # Not possible to calculate enthalpy of reaction H(O_phthalate)- # Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 CrO4-- = H2CrO4 - -llnl_gamma 3.0 - log_k +5.1750 - -delta_H 42.8274 kJ/mol # Calculated enthalpy of reaction H2CrO4 + +2 H+ + CrO4-2 = H2CrO4 + -llnl_gamma 3 + log_k 5.175 + -delta_H 42.8274 kJ/mol # Calculated enthalpy of reaction H2CrO4 # Enthalpy of formation: -200.364 kcal/mol - -analytic 4.2958e+002 1.4939e-001 -1.1474e+004 -1.7396e+002 -1.9499e+002 + -analytic 4.2958e+2 1.4939e-1 -1.1474e+4 -1.7396e+2 -1.9499e+2 # -Range: 0-200 -2.0000 H+ + 2.0000 F- = H2F2 - -llnl_gamma 3.0 - log_k +6.7680 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2F2 +2 H+ + 2 F- = H2F2 + -llnl_gamma 3 + log_k 6.768 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2F2 # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 2.0000 H+ = H2P2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +12.0709 - -delta_H 19.7192 kJ/mol # Calculated enthalpy of reaction H2P2O7-2 + +2 HPO4-2 + 2 H+ = H2P2O7-2 + H2O + -llnl_gamma 4 + log_k 12.0709 + -delta_H 19.7192 kJ/mol # Calculated enthalpy of reaction H2P2O7-2 # Enthalpy of formation: -544.6 kcal/mol - -analytic 1.4825e+002 6.7021e-002 -2.8329e+003 -5.9251e+001 -4.4248e+001 + -analytic 1.4825e+2 6.7021e-2 -2.8329e+3 -5.9251e+1 -4.4248e+1 # -Range: 0-300 -3.0000 H+ + 1.0000 HPO4-- + 1.0000 F- = H2PO3F +1.0000 H2O - -llnl_gamma 3.0 - log_k +12.1047 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2PO3F +3 H+ + HPO4-2 + F- = H2PO3F + H2O + -llnl_gamma 3 + log_k 12.1047 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2PO3F # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ = H2PO4- - -llnl_gamma 4.0 - log_k +7.2054 - -delta_H -4.20492 kJ/mol # Calculated enthalpy of reaction H2PO4- + +HPO4-2 + H+ = H2PO4- + -llnl_gamma 4 + log_k 7.2054 + -delta_H -4.20492 kJ/mol # Calculated enthalpy of reaction H2PO4- # Enthalpy of formation: -309.82 kcal/mol - -analytic 8.2149e+001 3.4077e-002 -1.0431e+003 -3.2970e+001 -1.6301e+001 + -analytic 8.2149e+1 3.4077e-2 -1.0431e+3 -3.297e+1 -1.6301e+1 # -Range: 0-300 #1.0000 HS- + 1.0000 H+ = H2S -# -llnl_gamma 3.0 +# -llnl_gamma 3.0 # log_k +6.99 # -analytic 1.2833e+002 5.1641e-002 -1.1681e+003 -5.3665e+001 -1.8266e+001 # -Range: 0-300 -# these (above) H2S values are from +# these (above) H2S values are from # Suleimenov & Seward, Geochim. Cosmochim. Acta, v. 61, p. 5187-5198. # values below are the original Thermo.com.v8.r6.230 data from somewhere -1.0000 HS- + 1.0000 H+ = H2S - -llnl_gamma 3.0 - log_k +6.9877 - -delta_H -21.5518 kJ/mol # Calculated enthalpy of reaction H2S +HS- + H+ = H2S + -llnl_gamma 3 + log_k 6.9877 + -delta_H -21.5518 kJ/mol # Calculated enthalpy of reaction H2S # Enthalpy of formation: -9.001 kcal/mol - -analytic 3.9283e+001 2.8727e-002 1.3477e+003 -1.8331e+001 2.1018e+001 + -analytic 3.9283e+1 2.8727e-2 1.3477e+3 -1.8331e+1 2.1018e+1 # -Range: 0-300 -2.0000 H+ + 1.0000 SO3-- = H2SO3 - -llnl_gamma 3.0 - log_k +9.2132 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO3 +2 H+ + SO3-2 = H2SO3 + -llnl_gamma 3 + log_k 9.2132 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO3 # Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 SO4-- = H2SO4 - -llnl_gamma 3.0 - log_k -1.0209 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO4 + +2 H+ + SO4-2 = H2SO4 + -llnl_gamma 3 + log_k -1.0209 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO4 # Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 Se-- = H2Se - -llnl_gamma 3.0 - log_k +18.7606 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2Se + +2 H+ + Se-2 = H2Se + -llnl_gamma 3 + log_k 18.7606 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2Se # Enthalpy of formation: 19.412 kJ/mol - -analytic 3.6902e+002 1.2855e-001 -5.5900e+003 -1.4946e+002 -9.5054e+001 + -analytic 3.6902e+2 1.2855e-1 -5.59e+3 -1.4946e+2 -9.5054e+1 # -Range: 0-200 -2.0000 H+ + 1.0000 SeO3-- = H2SeO3 - -llnl_gamma 3.0 - log_k +9.8589 - -delta_H 1.7238 kJ/mol # Calculated enthalpy of reaction H2SeO3 +2 H+ + SeO3-2 = H2SeO3 + -llnl_gamma 3 + log_k 9.8589 + -delta_H 1.7238 kJ/mol # Calculated enthalpy of reaction H2SeO3 # Enthalpy of formation: -507.469 kJ/mol - -analytic 2.7850e+002 1.0460e-001 -5.4934e+003 -1.1371e+002 -9.3383e+001 + -analytic 2.785e+2 1.046e-1 -5.4934e+3 -1.1371e+2 -9.3383e+1 # -Range: 0-200 -2.0000 H2O + 1.0000 SiO2 = H2SiO4-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -22.96 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SiO4-2 +2 H2O + SiO2 = H2SiO4-2 + 2 H+ + -llnl_gamma 4 + log_k -22.96 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SiO4-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 TcO4-- = H2TcO4 - -llnl_gamma 3.0 - log_k +9.0049 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2TcO4 + +2 H+ + TcO4-2 = H2TcO4 + -llnl_gamma 3 + log_k 9.0049 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2TcO4 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 VO2+ = H2VO4- + 2.0000 H+ - -llnl_gamma 4.0 - log_k -7.0922 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2VO4- + +2 H2O + VO2+ = H2VO4- + 2 H+ + -llnl_gamma 4 + log_k -7.0922 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2VO4- # Enthalpy of formation: -0 kcal/mol - -analytic 1.7105e+001 -1.7503e-002 -4.2671e+003 -1.8910e+000 -6.6589e+001 + -analytic 1.7105e+1 -1.7503e-2 -4.2671e+3 -1.891e+0 -6.6589e+1 # -Range: 0-300 -1.0000 H2AsO4- + 1.0000 H+ = H3AsO4 - -llnl_gamma 3.0 - log_k +2.2492 - -delta_H 7.17876 kJ/mol # Calculated enthalpy of reaction H3AsO4 +H2AsO4- + H+ = H3AsO4 + -llnl_gamma 3 + log_k 2.2492 + -delta_H 7.17876 kJ/mol # Calculated enthalpy of reaction H3AsO4 # Enthalpy of formation: -902.381 kJ/mol - -analytic 1.4043e+002 4.6288e-002 -3.5868e+003 -5.6560e+001 -6.0957e+001 + -analytic 1.4043e+2 4.6288e-2 -3.5868e+3 -5.656e+1 -6.0957e+1 # -Range: 0-200 -3.0000 H+ + 2.0000 HPO4-- = H3P2O7- +1.0000 H2O - -llnl_gamma 4.0 - log_k +14.4165 - -delta_H 21.8112 kJ/mol # Calculated enthalpy of reaction H3P2O7- +3 H+ + 2 HPO4-2 = H3P2O7- + H2O + -llnl_gamma 4 + log_k 14.4165 + -delta_H 21.8112 kJ/mol # Calculated enthalpy of reaction H3P2O7- # Enthalpy of formation: -544.1 kcal/mol - -analytic 2.3157e+002 1.0161e-001 -4.3723e+003 -9.4050e+001 -6.8295e+001 + -analytic 2.3157e+2 1.0161e-1 -4.3723e+3 -9.405e+1 -6.8295e+1 # -Range: 0-300 -2.0000 H+ + 1.0000 HPO4-- = H3PO4 - -llnl_gamma 3.0 - log_k +9.3751 - -delta_H 3.74468 kJ/mol # Calculated enthalpy of reaction H3PO4 +2 H+ + HPO4-2 = H3PO4 + -llnl_gamma 3 + log_k 9.3751 + -delta_H 3.74468 kJ/mol # Calculated enthalpy of reaction H3PO4 # Enthalpy of formation: -307.92 kcal/mol - -analytic 1.8380e+002 6.7320e-002 -3.7792e+003 -7.3463e+001 -5.9025e+001 + -analytic 1.838e+2 6.732e-2 -3.7792e+3 -7.3463e+1 -5.9025e+1 # -Range: 0-300 -8.0000 H2O + 4.0000 SiO2 = H4(H2SiO4)4---- +4.0000 H+ - -llnl_gamma 4.0 - log_k -35.94 - -delta_H 0 # Not possible to calculate enthalpy of reaction H4(H2SiO4)4-4 +8 H2O + 4 SiO2 = H4(H2SiO4)4-4 + 4 H+ + -llnl_gamma 4 + log_k -35.94 + -delta_H 0 # Not possible to calculate enthalpy of reaction H4(H2SiO4)4-4 # Enthalpy of formation: -0 kcal/mol - -4.0000 H+ + 2.0000 HPO4-- = H4P2O7 +1.0000 H2O - -llnl_gamma 3.0 - log_k +15.9263 - -delta_H 29.7226 kJ/mol # Calculated enthalpy of reaction H4P2O7 + +4 H+ + 2 HPO4-2 = H4P2O7 + H2O + -llnl_gamma 3 + log_k 15.9263 + -delta_H 29.7226 kJ/mol # Calculated enthalpy of reaction H4P2O7 # Enthalpy of formation: -2268.6 kJ/mol - -analytic 6.9026e+002 2.4309e-001 -1.6165e+004 -2.7989e+002 -2.7475e+002 + -analytic 6.9026e+2 2.4309e-1 -1.6165e+4 -2.7989e+2 -2.7475e+2 # -Range: 0-200 -8.0000 H2O + 4.0000 SiO2 = H6(H2SiO4)4-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -13.64 - -delta_H 0 # Not possible to calculate enthalpy of reaction H6(H2SiO4)4-2 +8 H2O + 4 SiO2 = H6(H2SiO4)4-2 + 2 H+ + -llnl_gamma 4 + log_k -13.64 + -delta_H 0 # Not possible to calculate enthalpy of reaction H6(H2SiO4)4-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Al+++ = HAlO2 +3.0000 H+ - -llnl_gamma 3.0 - log_k -16.4329 - -delta_H 144.704 kJ/mol # Calculated enthalpy of reaction HAlO2 + +2 H2O + Al+3 = HAlO2 + 3 H+ + -llnl_gamma 3 + log_k -16.4329 + -delta_H 144.704 kJ/mol # Calculated enthalpy of reaction HAlO2 # Enthalpy of formation: -230.73 kcal/mol - -analytic 4.2012e+001 1.9980e-002 -7.7847e+003 -1.5470e+001 -1.2149e+002 + -analytic 4.2012e+1 1.998e-2 -7.7847e+3 -1.547e+1 -1.2149e+2 # -Range: 0-300 -1.0000 H2AsO3- + 1.0000 H+ = HAsO2 +1.0000 H2O - -llnl_gamma 3.0 - log_k 9.2792 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO2 +H2AsO3- + H+ = HAsO2 + H2O + -llnl_gamma 3 + log_k 9.2792 + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO2 # Enthalpy of formation: -0 kcal/mol - -analytic 3.1290e+002 9.3052e-002 -6.5052e+003 -1.2510e+002 -1.1058e+002 + -analytic 3.129e+2 9.3052e-2 -6.5052e+3 -1.251e+2 -1.1058e+2 # -Range: 0-200 -1.0000 H2AsO4- + 1.0000 H+ + 1.0000 F- = HAsO3F- +1.0000 H2O - -llnl_gamma 4.0 - log_k +46.1158 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO3F- +H2AsO4- + H+ + F- = HAsO3F- + H2O + -llnl_gamma 4 + log_k 46.1158 + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO3F- # Enthalpy of formation: -0 kcal/mol - -1.0000 H2AsO4- = HAsO4-- +1.0000 H+ - -llnl_gamma 4.0 - log_k -6.7583 - -delta_H 3.22168 kJ/mol # Calculated enthalpy of reaction HAsO4-2 + +H2AsO4- = HAsO4-2 + H+ + -llnl_gamma 4 + log_k -6.7583 + -delta_H 3.22168 kJ/mol # Calculated enthalpy of reaction HAsO4-2 # Enthalpy of formation: -216.62 kcal/mol - -analytic -8.4546e+001 -3.4630e-002 1.1829e+003 3.3997e+001 1.8483e+001 + -analytic -8.4546e+1 -3.463e-2 1.1829e+3 3.3997e+1 1.8483e+1 # -Range: 0-300 -3.0000 H+ + 2.0000 HS- + 1.0000 H2AsO3- = HAsS2 +3.0000 H2O - -llnl_gamma 3.0 - log_k +30.4803 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsS2 +3 H+ + 2 HS- + H2AsO3- = HAsS2 + 3 H2O + -llnl_gamma 3 + log_k 30.4803 + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsS2 # Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 BrO- = HBrO - -llnl_gamma 3.0 - log_k +8.3889 - -delta_H 0 # Not possible to calculate enthalpy of reaction HBrO + +H+ + BrO- = HBrO + -llnl_gamma 3 + log_k 8.3889 + -delta_H 0 # Not possible to calculate enthalpy of reaction HBrO # Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 Cyanide- = HCyanide - -llnl_gamma 3.0 - log_k +9.2359 - -delta_H -43.5136 kJ/mol # Calculated enthalpy of reaction HCyanide + +H+ + Cyanide- = HCyanide + -llnl_gamma 3 + log_k 9.2359 + -delta_H -43.5136 kJ/mol # Calculated enthalpy of reaction HCyanide # Enthalpy of formation: 25.6 kcal/mol - -analytic 1.0536e+001 2.3105e-002 3.3038e+003 -7.7786e+000 5.1550e+001 + -analytic 1.0536e+1 2.3105e-2 3.3038e+3 -7.7786e+0 5.155e+1 # -Range: 0-300 -1.0000 H+ + 1.0000 Cl- = HCl - -llnl_gamma 3.0 - log_k -0.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction HCl +H+ + Cl- = HCl + -llnl_gamma 3 + log_k -0.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction HCl # Enthalpy of formation: -0 kcal/mol - -analytic 4.1893e+002 1.1103e-001 -1.1784e+004 -1.6697e+002 -1.8400e+002 + -analytic 4.1893e+2 1.1103e-1 -1.1784e+4 -1.6697e+2 -1.84e+2 # -Range: 0-300 -1.0000 H+ + 1.0000 ClO- = HClO - -llnl_gamma 3.0 - log_k +7.5692 - -delta_H 0 # Not possible to calculate enthalpy of reaction HClO +H+ + ClO- = HClO + -llnl_gamma 3 + log_k 7.5692 + -delta_H 0 # Not possible to calculate enthalpy of reaction HClO # Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 ClO2- = HClO2 - -llnl_gamma 3.0 - log_k +3.1698 - -delta_H 0 # Not possible to calculate enthalpy of reaction HClO2 + +H+ + ClO2- = HClO2 + -llnl_gamma 3 + log_k 3.1698 + -delta_H 0 # Not possible to calculate enthalpy of reaction HClO2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Co++ = HCoO2- +3.0000 H+ - -llnl_gamma 4.0 - log_k -21.243 - -delta_H 0 # Not possible to calculate enthalpy of reaction HCoO2- + +2 H2O + Co+2 = HCoO2- + 3 H+ + -llnl_gamma 4 + log_k -21.243 + -delta_H 0 # Not possible to calculate enthalpy of reaction HCoO2- # Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 CrO4-- = HCrO4- - -llnl_gamma 4.0 - log_k +6.4944 - -delta_H 2.9288 kJ/mol # Calculated enthalpy of reaction HCrO4- + +H+ + CrO4-2 = HCrO4- + -llnl_gamma 4 + log_k 6.4944 + -delta_H 2.9288 kJ/mol # Calculated enthalpy of reaction HCrO4- # Enthalpy of formation: -209.9 kcal/mol - -analytic 4.4944e+001 3.2740e-002 1.8400e+002 -1.9722e+001 2.8578e+000 + -analytic 4.4944e+1 3.274e-2 1.84e+2 -1.9722e+1 2.8578e+0 # -Range: 0-300 -1.0000 H+ + 1.0000 F- = HF - -llnl_gamma 3.0 - log_k +3.1681 - -delta_H 13.87 kJ/mol # Calculated enthalpy of reaction HF +H+ + F- = HF + -llnl_gamma 3 + log_k 3.1681 + -delta_H 13.87 kJ/mol # Calculated enthalpy of reaction HF # Enthalpy of formation: -76.835 kcal/mol - -analytic 8.6626e+001 3.2861e-002 -2.3026e+003 -3.4559e+001 -3.5956e+001 + -analytic 8.6626e+1 3.2861e-2 -2.3026e+3 -3.4559e+1 -3.5956e+1 # -Range: 0-300 -2.0000 F- + 1.0000 H+ = HF2- - -llnl_gamma 4.0 - log_k +2.5509 - -delta_H 20.7526 kJ/mol # Calculated enthalpy of reaction HF2- +2 F- + H+ = HF2- + -llnl_gamma 4 + log_k 2.5509 + -delta_H 20.7526 kJ/mol # Calculated enthalpy of reaction HF2- # Enthalpy of formation: -155.34 kcal/mol - -analytic 1.4359e+002 4.0866e-002 -4.6776e+003 -5.5574e+001 -7.3032e+001 + -analytic 1.4359e+2 4.0866e-2 -4.6776e+3 -5.5574e+1 -7.3032e+1 # -Range: 0-300 -1.0000 IO3- + 1.0000 H+ = HIO3 - -llnl_gamma 3.0 - log_k +0.4915 - -delta_H 0 # Not possible to calculate enthalpy of reaction HIO3 +IO3- + H+ = HIO3 + -llnl_gamma 3 + log_k 0.4915 + -delta_H 0 # Not possible to calculate enthalpy of reaction HIO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 N3- + 1.0000 H+ = HN3 - -llnl_gamma 3.0 - log_k +4.7001 - -delta_H -15 kJ/mol # Calculated enthalpy of reaction HN3 + +N3- + H+ = HN3 + -llnl_gamma 3 + log_k 4.7001 + -delta_H -15 kJ/mol # Calculated enthalpy of reaction HN3 # Enthalpy of formation: 260.14 kJ/mol - -analytic 6.9976e+001 2.4359e-002 -7.1947e+002 -2.8339e+001 -1.2242e+001 + -analytic 6.9976e+1 2.4359e-2 -7.1947e+2 -2.8339e+1 -1.2242e+1 # -Range: 0-200 -1.0000 NO2- + 1.0000 H+ = HNO2 - -llnl_gamma 3.0 - log_k +3.2206 - -delta_H -14.782 kJ/mol # Calculated enthalpy of reaction HNO2 +NO2- + H+ = HNO2 + -llnl_gamma 3 + log_k 3.2206 + -delta_H -14.782 kJ/mol # Calculated enthalpy of reaction HNO2 # Enthalpy of formation: -119.382 kJ/mol - -analytic 1.9653e+000 -1.1603e-004 0.0000e+000 0.0000e+000 1.1569e+005 + -analytic 1.9653e+0 -1.1603e-4 0e+0 0e+0 1.1569e+5 # -Range: 0-200 -1.0000 NO3- + 1.0000 H+ = HNO3 - -llnl_gamma 3.0 - log_k -1.3025 - -delta_H 16.8155 kJ/mol # Calculated enthalpy of reaction HNO3 +NO3- + H+ = HNO3 + -llnl_gamma 3 + log_k -1.3025 + -delta_H 16.8155 kJ/mol # Calculated enthalpy of reaction HNO3 # Enthalpy of formation: -45.41 kcal/mol - -analytic 9.9744e+001 3.4866e-002 -3.0975e+003 -4.0830e+001 -4.8363e+001 + -analytic 9.9744e+1 3.4866e-2 -3.0975e+3 -4.083e+1 -4.8363e+1 # -Range: 0-300 -2.0000 HPO4-- + 1.0000 H+ = HP2O7--- +1.0000 H2O - -llnl_gamma 4.0 - log_k +5.4498 - -delta_H 23.3326 kJ/mol # Calculated enthalpy of reaction HP2O7-3 +2 HPO4-2 + H+ = HP2O7-3 + H2O + -llnl_gamma 4 + log_k 5.4498 + -delta_H 23.3326 kJ/mol # Calculated enthalpy of reaction HP2O7-3 # Enthalpy of formation: -2274.99 kJ/mol - -analytic 3.9159e+002 1.5438e-001 -8.7071e+003 -1.6283e+002 -1.3598e+002 + -analytic 3.9159e+2 1.5438e-1 -8.7071e+3 -1.6283e+2 -1.3598e+2 # -Range: 0-300 -2.0000 H+ + 1.0000 HPO4-- + 1.0000 F- = HPO3F- +1.0000 H2O - -llnl_gamma 4.0 - log_k +11.2988 - -delta_H 0 # Not possible to calculate enthalpy of reaction HPO3F- +2 H+ + HPO4-2 + F- = HPO3F- + H2O + -llnl_gamma 4 + log_k 11.2988 + -delta_H 0 # Not possible to calculate enthalpy of reaction HPO3F- # Enthalpy of formation: -0 kcal/mol - -1.0000 RuO4 + 1.0000 H2O = HRuO5- +1.0000 H+ - -llnl_gamma 4.0 - log_k -11.5244 - -delta_H 0 # Not possible to calculate enthalpy of reaction HRuO5- + +RuO4 + H2O = HRuO5- + H+ + -llnl_gamma 4 + log_k -11.5244 + -delta_H 0 # Not possible to calculate enthalpy of reaction HRuO5- # Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 S2O3-- = HS2O3- - -llnl_gamma 4.0 - log_k 1.0139 - -delta_H 0 # Not possible to calculate enthalpy of reaction HS2O3- + +H+ + S2O3-2 = HS2O3- + -llnl_gamma 4 + log_k 1.0139 + -delta_H 0 # Not possible to calculate enthalpy of reaction HS2O3- # Enthalpy of formation: -0 kcal/mol - -1.0000 SO3-- + 1.0000 H+ = HSO3- - -llnl_gamma 4.0 - log_k +7.2054 - -delta_H 9.33032 kJ/mol # Calculated enthalpy of reaction HSO3- + +SO3-2 + H+ = HSO3- + -llnl_gamma 4 + log_k 7.2054 + -delta_H 9.33032 kJ/mol # Calculated enthalpy of reaction HSO3- # Enthalpy of formation: -149.67 kcal/mol - -analytic 5.5899e+001 3.3623e-002 -5.0120e+002 -2.3040e+001 -7.8373e+000 + -analytic 5.5899e+1 3.3623e-2 -5.012e+2 -2.304e+1 -7.8373e+0 # -Range: 0-300 -1.0000 SO4-- + 1.0000 H+ = HSO4- - -llnl_gamma 4.0 - log_k +1.9791 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HSO4- +SO4-2 + H+ = HSO4- + -llnl_gamma 4 + log_k 1.9791 + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HSO4- # Enthalpy of formation: -212.5 kcal/mol - -analytic 4.9619e+001 3.0368e-002 -1.1558e+003 -2.1335e+001 -1.8051e+001 + -analytic 4.9619e+1 3.0368e-2 -1.1558e+3 -2.1335e+1 -1.8051e+1 # -Range: 0-300 -4.0000 HS- + 3.0000 H+ + 2.0000 Sb(OH)3 = HSb2S4- +6.0000 H2O - -llnl_gamma 4.0 - log_k +50.6100 - -delta_H 0 # Not possible to calculate enthalpy of reaction HSb2S4- +4 HS- + 3 H+ + 2 Sb(OH)3 = HSb2S4- + 6 H2O + -llnl_gamma 4 + log_k 50.61 + -delta_H 0 # Not possible to calculate enthalpy of reaction HSb2S4- # Enthalpy of formation: -0 kcal/mol - -analytic 1.7540e+002 8.2177e-002 1.0786e+004 -7.4874e+001 1.6826e+002 + -analytic 1.754e+2 8.2177e-2 1.0786e+4 -7.4874e+1 1.6826e+2 # -Range: 0-300 -1.0000 SeO3-- + 1.0000 H+ = HSeO3- - -llnl_gamma 4.0 - log_k +7.2861 - -delta_H -5.35552 kJ/mol # Calculated enthalpy of reaction HSeO3- +SeO3-2 + H+ = HSeO3- + -llnl_gamma 4 + log_k 7.2861 + -delta_H -5.35552 kJ/mol # Calculated enthalpy of reaction HSeO3- # Enthalpy of formation: -122.98 kcal/mol - -analytic 5.0427e+001 3.2250e-002 2.9603e+002 -2.1711e+001 4.6044e+000 + -analytic 5.0427e+1 3.225e-2 2.9603e+2 -2.1711e+1 4.6044e+0 # -Range: 0-300 -1.0000 SeO4-- + 1.0000 H+ = HSeO4- - -llnl_gamma 4.0 - log_k +1.9058 - -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction HSeO4- +SeO4-2 + H+ = HSeO4- + -llnl_gamma 4 + log_k 1.9058 + -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction HSeO4- # Enthalpy of formation: -139 kcal/mol - -analytic 1.4160e+002 3.9801e-002 -4.5392e+003 -5.5088e+001 -7.0872e+001 + -analytic 1.416e+2 3.9801e-2 -4.5392e+3 -5.5088e+1 -7.0872e+1 # -Range: 0-300 -1.0000 SiO2 + 1.0000 H2O = HSiO3- +1.0000 H+ - -llnl_gamma 4.0 - log_k -9.9525 - -delta_H 25.991 kJ/mol # Calculated enthalpy of reaction HSiO3- +SiO2 + H2O = HSiO3- + H+ + -llnl_gamma 4 + log_k -9.9525 + -delta_H 25.991 kJ/mol # Calculated enthalpy of reaction HSiO3- # Enthalpy of formation: -271.88 kcal/mol - -analytic 6.4211e+001 -2.4872e-002 -1.2707e+004 -1.4681e+001 1.0853e+006 + -analytic 6.4211e+1 -2.4872e-2 -1.2707e+4 -1.4681e+1 1.0853e+6 # -Range: 0-300 -1.0000 TcO4-- + 1.0000 H+ = HTcO4- - -llnl_gamma 4.0 - log_k +8.7071 - -delta_H 0 # Not possible to calculate enthalpy of reaction HTcO4- +TcO4-2 + H+ = HTcO4- + -llnl_gamma 4 + log_k 8.7071 + -delta_H 0 # Not possible to calculate enthalpy of reaction HTcO4- # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 VO2+ = HVO4-- +3.0000 H+ - -llnl_gamma 4.0 - log_k -15.1553 - -delta_H 0 # Not possible to calculate enthalpy of reaction HVO4-2 + +2 H2O + VO2+ = HVO4-2 + 3 H+ + -llnl_gamma 4 + log_k -15.1553 + -delta_H 0 # Not possible to calculate enthalpy of reaction HVO4-2 # Enthalpy of formation: -0 kcal/mol - -analytic -7.0660e+001 -5.2457e-002 -3.5380e+003 3.3534e+001 -5.5186e+001 + -analytic -7.066e+1 -5.2457e-2 -3.538e+3 3.3534e+1 -5.5186e+1 # -Range: 0-300 -5.0000 H2O + 1.0000 Hf++++ = Hf(OH)5- +5.0000 H+ - -llnl_gamma 4.0 - log_k -17.1754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(OH)5- +5 H2O + Hf+4 = Hf(OH)5- + 5 H+ + -llnl_gamma 4 + log_k -17.1754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(OH)5- # Enthalpy of formation: -0 kcal/mol - -1.0000 Hf++++ + 1.0000 H2O = HfOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -0.2951 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfOH+3 + +Hf+4 + H2O = HfOH+3 + H+ + -llnl_gamma 5 + log_k -0.2951 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfOH+3 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Hg++ = Hg(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -2.6242 - -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Hg(Acetate)2 + +2 HAcetate + Hg+2 = Hg(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -2.6242 + -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Hg(Acetate)2 # Enthalpy of formation: -198.78 kcal/mol - -analytic -2.1959e+001 2.7774e-003 -3.2500e+003 7.7351e+000 9.1508e+005 + -analytic -2.1959e+1 2.7774e-3 -3.25e+3 7.7351e+0 9.1508e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Hg++ = Hg(Acetate)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -4.3247 - -delta_H -59.7057 kJ/mol # Calculated enthalpy of reaction Hg(Acetate)3- +3 HAcetate + Hg+2 = Hg(Acetate)3- + 3 H+ + -llnl_gamma 4 + log_k -4.3247 + -delta_H -59.7057 kJ/mol # Calculated enthalpy of reaction Hg(Acetate)3- # Enthalpy of formation: -321.9 kcal/mol - -analytic 2.1656e+001 -2.0392e-003 -1.2866e+004 -3.2932e+000 2.3073e+006 + -analytic 2.1656e+1 -2.0392e-3 -1.2866e+4 -3.2932e+0 2.3073e+6 # -Range: 0-300 -1.0000 Hg++ + 1.0000 HAcetate = HgAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -0.4691 - -delta_H -16.5686 kJ/mol # Calculated enthalpy of reaction HgAcetate+ +Hg+2 + HAcetate = HgAcetate+ + H+ + -llnl_gamma 4 + log_k -0.4691 + -delta_H -16.5686 kJ/mol # Calculated enthalpy of reaction HgAcetate+ # Enthalpy of formation: -79.39 kcal/mol - -analytic -1.6355e+001 1.9446e-003 -2.6676e+002 5.1978e+000 2.9805e+005 + -analytic -1.6355e+1 1.9446e-3 -2.6676e+2 5.1978e+0 2.9805e+5 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Ho+++ = Ho(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9844 - -delta_H -28.1583 kJ/mol # Calculated enthalpy of reaction Ho(Acetate)2+ +2 HAcetate + Ho+3 = Ho(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9844 + -delta_H -28.1583 kJ/mol # Calculated enthalpy of reaction Ho(Acetate)2+ # Enthalpy of formation: -407.93 kcal/mol - -analytic -2.7925e+001 2.5599e-003 -1.4779e+003 8.0785e+000 6.3736e+005 + -analytic -2.7925e+1 2.5599e-3 -1.4779e+3 8.0785e+0 6.3736e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Ho+++ = Ho(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3783 - -delta_H -47.5721 kJ/mol # Calculated enthalpy of reaction Ho(Acetate)3 +3 HAcetate + Ho+3 = Ho(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.3783 + -delta_H -47.5721 kJ/mol # Calculated enthalpy of reaction Ho(Acetate)3 # Enthalpy of formation: -528.67 kcal/mol - -analytic -6.5547e+001 -1.1963e-004 -1.8887e+002 1.9796e+001 7.9041e+005 + -analytic -6.5547e+1 -1.1963e-4 -1.8887e+2 1.9796e+1 7.9041e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Ho+++ = Ho(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.3576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(CO3)2- +2 HCO3- + Ho+3 = Ho(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.3576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ho+++ = Ho(HPO4)2- - -llnl_gamma 4.0 - log_k +9.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(HPO4)2- + +2 HPO4-2 + Ho+3 = Ho(HPO4)2- + -llnl_gamma 4 + log_k 9.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ho+++ = Ho(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.3437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(PO4)2-3 + +2 HPO4-2 + Ho+3 = Ho(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -3.3437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Ho+++ = Ho(SO4)2- - -llnl_gamma 4.0 - log_k +4.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(SO4)2- + +2 SO4-2 + Ho+3 = Ho(SO4)2- + -llnl_gamma 4 + log_k 4.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Ho+++ + 1.0000 HAcetate = HoAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1184 - -delta_H -14.3093 kJ/mol # Calculated enthalpy of reaction HoAcetate+2 + +Ho+3 + HAcetate = HoAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.1184 + -delta_H -14.3093 kJ/mol # Calculated enthalpy of reaction HoAcetate+2 # Enthalpy of formation: -288.52 kcal/mol - -analytic -1.8265e+001 1.0753e-003 -6.0695e+002 5.7211e+000 3.3055e+005 + -analytic -1.8265e+1 1.0753e-3 -6.0695e+2 5.7211e+0 3.3055e+5 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 HCO3- = HoCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.2591 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction HoCO3+ +Ho+3 + HCO3- = HoCO3+ + H+ + -llnl_gamma 4 + log_k -2.2591 + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction HoCO3+ # Enthalpy of formation: -312.6 kcal/mol - -analytic 2.3773e+002 5.4448e-002 -6.9916e+003 -9.4063e+001 -1.0917e+002 + -analytic 2.3773e+2 5.4448e-2 -6.9916e+3 -9.4063e+1 -1.0917e+2 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 Cl- = HoCl++ - -llnl_gamma 4.5 - log_k +0.2353 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction HoCl+2 +Ho+3 + Cl- = HoCl+2 + -llnl_gamma 4.5 + log_k 0.2353 + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction HoCl+2 # Enthalpy of formation: -205.6 kcal/mol - -analytic 7.3746e+001 3.7733e-002 -1.5627e+003 -3.2126e+001 -2.4407e+001 + -analytic 7.3746e+1 3.7733e-2 -1.5627e+3 -3.2126e+1 -2.4407e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Ho+++ = HoCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 17.8489 kJ/mol # Calculated enthalpy of reaction HoCl2+ +2 Cl- + Ho+3 = HoCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 17.8489 kJ/mol # Calculated enthalpy of reaction HoCl2+ # Enthalpy of formation: -244.6 kcal/mol - -analytic 1.9928e+002 7.9025e-002 -4.7775e+003 -8.3582e+001 -7.4607e+001 + -analytic 1.9928e+2 7.9025e-2 -4.7775e+3 -8.3582e+1 -7.4607e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Ho+++ = HoCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction HoCl3 +3 Cl- + Ho+3 = HoCl3 + -llnl_gamma 3 + log_k -0.4669 + -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction HoCl3 # Enthalpy of formation: -286.4 kcal/mol - -analytic 3.8608e+002 1.2638e-001 -9.8339e+003 -1.5809e+002 -1.5356e+002 + -analytic 3.8608e+2 1.2638e-1 -9.8339e+3 -1.5809e+2 -1.5356e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Ho+++ = HoCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -12.4181 kJ/mol # Calculated enthalpy of reaction HoCl4- +4 Cl- + Ho+3 = HoCl4- + -llnl_gamma 4 + log_k -0.8913 + -delta_H -12.4181 kJ/mol # Calculated enthalpy of reaction HoCl4- # Enthalpy of formation: -331.7 kcal/mol - -analytic 4.2179e+002 1.2576e-001 -1.0495e+004 -1.7172e+002 -1.6388e+002 + -analytic 4.2179e+2 1.2576e-1 -1.0495e+4 -1.7172e+2 -1.6388e+2 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 F- = HoF++ - -llnl_gamma 4.5 - log_k +4.7352 - -delta_H 22.3844 kJ/mol # Calculated enthalpy of reaction HoF+2 +Ho+3 + F- = HoF+2 + -llnl_gamma 4.5 + log_k 4.7352 + -delta_H 22.3844 kJ/mol # Calculated enthalpy of reaction HoF+2 # Enthalpy of formation: -243.8 kcal/mol - -analytic 9.5294e+001 4.1702e-002 -2.4460e+003 -3.8296e+001 -3.8195e+001 + -analytic 9.5294e+1 4.1702e-2 -2.446e+3 -3.8296e+1 -3.8195e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Ho+++ = HoF2+ - -llnl_gamma 4.0 - log_k +8.2976 - -delta_H 11.7152 kJ/mol # Calculated enthalpy of reaction HoF2+ +2 F- + Ho+3 = HoF2+ + -llnl_gamma 4 + log_k 8.2976 + -delta_H 11.7152 kJ/mol # Calculated enthalpy of reaction HoF2+ # Enthalpy of formation: -326.5 kcal/mol - -analytic 2.2330e+002 8.3497e-002 -4.9105e+003 -9.0272e+001 -7.6690e+001 + -analytic 2.233e+2 8.3497e-2 -4.9105e+3 -9.0272e+1 -7.669e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Ho+++ = HoF3 - -llnl_gamma 3.0 - log_k +10.9071 - -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction HoF3 +3 F- + Ho+3 = HoF3 + -llnl_gamma 3 + log_k 10.9071 + -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction HoF3 # Enthalpy of formation: -412.5 kcal/mol - -analytic 4.1587e+002 1.3308e-001 -9.2193e+003 -1.6717e+002 -1.4398e+002 + -analytic 4.1587e+2 1.3308e-1 -9.2193e+3 -1.6717e+2 -1.4398e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Ho+++ = HoF4- - -llnl_gamma 4.0 - log_k +13.0035 - -delta_H -57.7392 kJ/mol # Calculated enthalpy of reaction HoF4- +4 F- + Ho+3 = HoF4- + -llnl_gamma 4 + log_k 13.0035 + -delta_H -57.7392 kJ/mol # Calculated enthalpy of reaction HoF4- # Enthalpy of formation: -503.4 kcal/mol - -analytic 4.4575e+002 1.3182e-001 -8.5485e+003 -1.7916e+002 -1.3352e+002 + -analytic 4.4575e+2 1.3182e-1 -8.5485e+3 -1.7916e+2 -1.3352e+2 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 HPO4-- + 1.0000 H+ = HoH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -17.9284 kJ/mol # Calculated enthalpy of reaction HoH2PO4+2 +Ho+3 + HPO4-2 + H+ = HoH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -17.9284 kJ/mol # Calculated enthalpy of reaction HoH2PO4+2 # Enthalpy of formation: -482.1 kcal/mol - -analytic 1.0273e+002 6.3161e-002 5.5160e+002 -4.6035e+001 8.5766e+000 + -analytic 1.0273e+2 6.3161e-2 5.516e+2 -4.6035e+1 8.5766e+0 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 HCO3- = HoHCO3++ - -llnl_gamma 4.5 - log_k +1.6991 - -delta_H 7.52283 kJ/mol # Calculated enthalpy of reaction HoHCO3+2 +Ho+3 + HCO3- = HoHCO3+2 + -llnl_gamma 4.5 + log_k 1.6991 + -delta_H 7.52283 kJ/mol # Calculated enthalpy of reaction HoHCO3+2 # Enthalpy of formation: -332.1 kcal/mol - -analytic 3.3420e+001 3.1394e-002 1.9804e+002 -1.6859e+001 3.0801e+000 + -analytic 3.342e+1 3.1394e-2 1.9804e+2 -1.6859e+1 3.0801e+0 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 HPO4-- = HoHPO4+ - -llnl_gamma 4.0 - log_k +5.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoHPO4+ +Ho+3 + HPO4-2 = HoHPO4+ + -llnl_gamma 4 + log_k 5.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction HoHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Ho+++ = HoNO3++ - -llnl_gamma 4.5 - log_k +0.2148 - -delta_H -30.0035 kJ/mol # Calculated enthalpy of reaction HoNO3+2 + +NO3- + Ho+3 = HoNO3+2 + -llnl_gamma 4.5 + log_k 0.2148 + -delta_H -30.0035 kJ/mol # Calculated enthalpy of reaction HoNO3+2 # Enthalpy of formation: -225.6 kcal/mol - -analytic 1.1069e+001 2.5142e-002 2.3943e+003 -1.0650e+001 3.7358e+001 + -analytic 1.1069e+1 2.5142e-2 2.3943e+3 -1.065e+1 3.7358e+1 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 H2O = HoO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.0438 - -delta_H 108.437 kJ/mol # Calculated enthalpy of reaction HoO+ +Ho+3 + H2O = HoO+ + 2 H+ + -llnl_gamma 4 + log_k -16.0438 + -delta_H 108.437 kJ/mol # Calculated enthalpy of reaction HoO+ # Enthalpy of formation: -211.4 kcal/mol - -analytic 1.9152e+002 3.0627e-002 -1.3817e+004 -6.8846e+001 -2.1565e+002 + -analytic 1.9152e+2 3.0627e-2 -1.3817e+4 -6.8846e+1 -2.1565e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Ho+++ = HoO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -33.4804 - -delta_H 274.613 kJ/mol # Calculated enthalpy of reaction HoO2- +2 H2O + Ho+3 = HoO2- + 4 H+ + -llnl_gamma 4 + log_k -33.4804 + -delta_H 274.613 kJ/mol # Calculated enthalpy of reaction HoO2- # Enthalpy of formation: -240 kcal/mol - -analytic 1.7987e+002 1.2731e-002 -2.0007e+004 -6.0642e+001 -3.1224e+002 + -analytic 1.7987e+2 1.2731e-2 -2.0007e+4 -6.0642e+1 -3.1224e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Ho+++ = HoO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -24.5377 - -delta_H 216.873 kJ/mol # Calculated enthalpy of reaction HoO2H +2 H2O + Ho+3 = HoO2H + 3 H+ + -llnl_gamma 3 + log_k -24.5377 + -delta_H 216.873 kJ/mol # Calculated enthalpy of reaction HoO2H # Enthalpy of formation: -253.8 kcal/mol - -analytic 3.3877e+002 4.6282e-002 -2.2925e+004 -1.2133e+002 -3.5782e+002 + -analytic 3.3877e+2 4.6282e-2 -2.2925e+4 -1.2133e+2 -3.5782e+2 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 H2O = HoOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.7609 - -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction HoOH+2 +Ho+3 + H2O = HoOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.7609 + -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction HoOH+2 # Enthalpy of formation: -219 kcal/mol - -analytic 7.1326e+001 1.2657e-002 -6.2461e+003 -2.5018e+001 -9.7485e+001 + -analytic 7.1326e+1 1.2657e-2 -6.2461e+3 -2.5018e+1 -9.7485e+1 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 HPO4-- = HoPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4 +Ho+3 + HPO4-2 = HoPO4 + H+ + -llnl_gamma 3 + log_k 0.2782 + -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ho+++ = HoSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HoSO4+ + +SO4-2 + Ho+3 = HoSO4+ + -llnl_gamma 4 + log_k 3.5697 + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HoSO4+ # Enthalpy of formation: -381.5 kcal/mol - -analytic 3.0709e+002 8.6579e-002 -9.0693e+003 -1.2078e+002 -1.4161e+002 + -analytic 3.0709e+2 8.6579e-2 -9.0693e+3 -1.2078e+2 -1.4161e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 K+ = K(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -10.2914 - -delta_H -1.79912 kJ/mol # Calculated enthalpy of reaction K(Acetate)2- +2 HAcetate + K+ = K(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -10.2914 + -delta_H -1.79912 kJ/mol # Calculated enthalpy of reaction K(Acetate)2- # Enthalpy of formation: -292.9 kcal/mol - -analytic -2.3036e+002 -4.6369e-002 7.0305e+003 8.4997e+001 1.0977e+002 + -analytic -2.3036e+2 -4.6369e-2 7.0305e+3 8.4997e+1 1.0977e+2 # -Range: 0-300 -1.0000 K+ + 1.0000 Br- = KBr - -llnl_gamma 3.0 - log_k -1.7372 - -delta_H 12.5102 kJ/mol # Calculated enthalpy of reaction KBr +K+ + Br- = KBr + -llnl_gamma 3 + log_k -1.7372 + -delta_H 12.5102 kJ/mol # Calculated enthalpy of reaction KBr # Enthalpy of formation: -86.32 kcal/mol - -analytic 1.1320e+002 3.4227e-002 -3.6401e+003 -4.5633e+001 -5.6833e+001 + -analytic 1.132e+2 3.4227e-2 -3.6401e+3 -4.5633e+1 -5.6833e+1 # -Range: 0-300 -1.0000 K+ + 1.0000 HAcetate = KAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -5.0211 - -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction KAcetate +K+ + HAcetate = KAcetate + H+ + -llnl_gamma 3 + log_k -5.0211 + -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction KAcetate # Enthalpy of formation: -175.22 kcal/mol - -analytic -2.6676e-001 -3.2675e-003 -1.7143e+003 -7.1907e-003 1.7726e+005 + -analytic -2.6676e-1 -3.2675e-3 -1.7143e+3 -7.1907e-3 1.7726e+5 # -Range: 0-300 -1.0000 K+ + 1.0000 Cl- = KCl - -llnl_gamma 3.0 - log_k -1.4946 - -delta_H 14.1963 kJ/mol # Calculated enthalpy of reaction KCl +K+ + Cl- = KCl + -llnl_gamma 3 + log_k -1.4946 + -delta_H 14.1963 kJ/mol # Calculated enthalpy of reaction KCl # Enthalpy of formation: -96.81 kcal/mol - -analytic 1.3650e+002 3.8405e-002 -4.4014e+003 -5.4421e+001 -6.8721e+001 + -analytic 1.365e+2 3.8405e-2 -4.4014e+3 -5.4421e+1 -6.8721e+1 # -Range: 0-300 -1.0000 K+ + 1.0000 HPO4-- = KHPO4- - -llnl_gamma 4.0 - log_k +0.7800 - -delta_H 0 # Not possible to calculate enthalpy of reaction KHPO4- +K+ + HPO4-2 = KHPO4- + -llnl_gamma 4 + log_k 0.78 + -delta_H 0 # Not possible to calculate enthalpy of reaction KHPO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 K+ + 1.0000 H+ = KHSO4 - -llnl_gamma 3.0 - log_k +0.8136 - -delta_H 29.8319 kJ/mol # Calculated enthalpy of reaction KHSO4 + +SO4-2 + K+ + H+ = KHSO4 + -llnl_gamma 3 + log_k 0.8136 + -delta_H 29.8319 kJ/mol # Calculated enthalpy of reaction KHSO4 # Enthalpy of formation: -270.54 kcal/mol - -analytic 1.2620e+002 5.7349e-002 -3.3670e+003 -5.3003e+001 -5.2576e+001 + -analytic 1.262e+2 5.7349e-2 -3.367e+3 -5.3003e+1 -5.2576e+1 # -Range: 0-300 -1.0000 K+ + 1.0000 I- = KI - -llnl_gamma 3.0 - log_k -1.598 - -delta_H 9.16296 kJ/mol # Calculated enthalpy of reaction KI +K+ + I- = KI + -llnl_gamma 3 + log_k -1.598 + -delta_H 9.16296 kJ/mol # Calculated enthalpy of reaction KI # Enthalpy of formation: -71.68 kcal/mol - -analytic 1.0816e+002 3.3683e-002 -3.2143e+003 -4.4054e+001 -5.0187e+001 + -analytic 1.0816e+2 3.3683e-2 -3.2143e+3 -4.4054e+1 -5.0187e+1 # -Range: 0-300 -1.0000 K+ + 1.0000 H2O = KOH +1.0000 H+ - -llnl_gamma 3.0 - log_k -14.46 - -delta_H 0 # Not possible to calculate enthalpy of reaction KOH +K+ + H2O = KOH + H+ + -llnl_gamma 3 + log_k -14.46 + -delta_H 0 # Not possible to calculate enthalpy of reaction KOH # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 K+ = KP2O7--- +1.0000 H2O - -llnl_gamma 4.0 - log_k -1.4286 - -delta_H 34.1393 kJ/mol # Calculated enthalpy of reaction KP2O7-3 + +2 HPO4-2 + K+ = KP2O7-3 + H2O + -llnl_gamma 4 + log_k -1.4286 + -delta_H 34.1393 kJ/mol # Calculated enthalpy of reaction KP2O7-3 # Enthalpy of formation: -2516.36 kJ/mol - -analytic 4.1930e+002 1.4676e-001 -1.1169e+004 -1.7255e+002 -1.7441e+002 + -analytic 4.193e+2 1.4676e-1 -1.1169e+4 -1.7255e+2 -1.7441e+2 # -Range: 0-300 -1.0000 SO4-- + 1.0000 K+ = KSO4- - -llnl_gamma 4.0 - log_k +0.8796 - -delta_H 2.88696 kJ/mol # Calculated enthalpy of reaction KSO4- +SO4-2 + K+ = KSO4- + -llnl_gamma 4 + log_k 0.8796 + -delta_H 2.88696 kJ/mol # Calculated enthalpy of reaction KSO4- # Enthalpy of formation: -276.98 kcal/mol - -analytic 9.9073e+001 3.7817e-002 -2.1628e+003 -4.1297e+001 -3.3779e+001 + -analytic 9.9073e+1 3.7817e-2 -2.1628e+3 -4.1297e+1 -3.3779e+1 # -Range: 0-300 -2.0000 HAcetate + 1.0000 La+++ = La(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.3949 - -delta_H -23.1375 kJ/mol # Calculated enthalpy of reaction La(Acetate)2+ +2 HAcetate + La+3 = La(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -5.3949 + -delta_H -23.1375 kJ/mol # Calculated enthalpy of reaction La(Acetate)2+ # Enthalpy of formation: -407.33 kcal/mol - -analytic -1.2805e+001 2.8482e-003 -2.2521e+003 2.9108e+000 6.1659e+005 + -analytic -1.2805e+1 2.8482e-3 -2.2521e+3 2.9108e+0 6.1659e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 La+++ = La(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.5982 - -delta_H -41.9237 kJ/mol # Calculated enthalpy of reaction La(Acetate)3 +3 HAcetate + La+3 = La(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.5982 + -delta_H -41.9237 kJ/mol # Calculated enthalpy of reaction La(Acetate)3 # Enthalpy of formation: -527.92 kcal/mol - -analytic -3.3456e+001 1.2371e-003 -1.5978e+003 8.6343e+000 7.5717e+005 + -analytic -3.3456e+1 1.2371e-3 -1.5978e+3 8.6343e+0 7.5717e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 La+++ = La(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(CO3)2- +2 HCO3- + La+3 = La(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -8.8576 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 La+++ = La(HPO4)2- - -llnl_gamma 4.0 - log_k +8.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(HPO4)2- + +2 HPO4-2 + La+3 = La(HPO4)2- + -llnl_gamma 4 + log_k 8.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 La+++ = La(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.0437 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(PO4)2-3 + +2 HPO4-2 + La+3 = La(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -7.0437 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 La+++ = La(SO4)2- - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(SO4)2- + +2 SO4-2 + La+3 = La(SO4)2- + -llnl_gamma 4 + log_k 5.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(SO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 La+++ + 2.0000 H2O = La2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -22.9902 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2(OH)2+4 + +2 La+3 + 2 H2O = La2(OH)2+4 + 2 H+ + -llnl_gamma 5.5 + log_k -22.9902 + -delta_H 0 # Not possible to calculate enthalpy of reaction La2(OH)2+4 # Enthalpy of formation: -0 kcal/mol - -9.0000 H2O + 5.0000 La+++ = La5(OH)9+6 +9.0000 H+ - -llnl_gamma 6.0 - log_k -71.1557 - -delta_H 0 # Not possible to calculate enthalpy of reaction La5(OH)9+6 + +9 H2O + 5 La+3 = La5(OH)9+6 + 9 H+ + -llnl_gamma 6 + log_k -71.1557 + -delta_H 0 # Not possible to calculate enthalpy of reaction La5(OH)9+6 # Enthalpy of formation: -0 kcal/mol - -1.0000 La+++ + 1.0000 HAcetate = LaAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.2063 - -delta_H -12.5938 kJ/mol # Calculated enthalpy of reaction LaAcetate+2 + +La+3 + HAcetate = LaAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.2063 + -delta_H -12.5938 kJ/mol # Calculated enthalpy of reaction LaAcetate+2 # Enthalpy of formation: -288.71 kcal/mol - -analytic -1.0803e+001 8.5239e-004 -1.1143e+003 3.3273e+000 3.4305e+005 + -analytic -1.0803e+1 8.5239e-4 -1.1143e+3 3.3273e+0 3.4305e+5 # -Range: 0-300 -1.0000 La+++ + 1.0000 HCO3- = LaCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.212 - -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction LaCO3+ +La+3 + HCO3- = LaCO3+ + H+ + -llnl_gamma 4 + log_k -3.212 + -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction LaCO3+ # Enthalpy of formation: -313.1 kcal/mol - -analytic 2.3046e+002 5.2419e-002 -7.1063e+003 -9.1109e+001 -1.1095e+002 + -analytic 2.3046e+2 5.2419e-2 -7.1063e+3 -9.1109e+1 -1.1095e+2 # -Range: 0-300 -1.0000 La+++ + 1.0000 Cl- = LaCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction LaCl+2 +La+3 + Cl- = LaCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction LaCl+2 # Enthalpy of formation: -206.1 kcal/mol - -analytic 7.5802e+001 3.6641e-002 -1.7234e+003 -3.2578e+001 -2.6914e+001 + -analytic 7.5802e+1 3.6641e-2 -1.7234e+3 -3.2578e+1 -2.6914e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 La+++ = LaCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 19.1041 kJ/mol # Calculated enthalpy of reaction LaCl2+ +2 Cl- + La+3 = LaCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 19.1041 kJ/mol # Calculated enthalpy of reaction LaCl2+ # Enthalpy of formation: -244.9 kcal/mol - -analytic 2.1632e+002 7.9274e-002 -5.5883e+003 -8.9400e+001 -8.7264e+001 + -analytic 2.1632e+2 7.9274e-2 -5.5883e+3 -8.94e+1 -8.7264e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 La+++ = LaCl3 - -llnl_gamma 3.0 - log_k -0.3936 - -delta_H 12.5478 kJ/mol # Calculated enthalpy of reaction LaCl3 +3 Cl- + La+3 = LaCl3 + -llnl_gamma 3 + log_k -0.3936 + -delta_H 12.5478 kJ/mol # Calculated enthalpy of reaction LaCl3 # Enthalpy of formation: -286.4 kcal/mol - -analytic 4.2210e+002 1.2792e-001 -1.1444e+004 -1.7062e+002 -1.7869e+002 + -analytic 4.221e+2 1.2792e-1 -1.1444e+4 -1.7062e+2 -1.7869e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 La+++ = LaCl4- - -llnl_gamma 4.0 - log_k -0.818 - -delta_H -7.81571 kJ/mol # Calculated enthalpy of reaction LaCl4- +4 Cl- + La+3 = LaCl4- + -llnl_gamma 4 + log_k -0.818 + -delta_H -7.81571 kJ/mol # Calculated enthalpy of reaction LaCl4- # Enthalpy of formation: -331.2 kcal/mol - -analytic 4.8802e+002 1.3053e-001 -1.3344e+004 -1.9518e+002 -2.0836e+002 + -analytic 4.8802e+2 1.3053e-1 -1.3344e+4 -1.9518e+2 -2.0836e+2 # -Range: 0-300 -1.0000 La+++ + 1.0000 F- = LaF++ - -llnl_gamma 4.5 - log_k +3.8556 - -delta_H 26.5684 kJ/mol # Calculated enthalpy of reaction LaF+2 +La+3 + F- = LaF+2 + -llnl_gamma 4.5 + log_k 3.8556 + -delta_H 26.5684 kJ/mol # Calculated enthalpy of reaction LaF+2 # Enthalpy of formation: -243.4 kcal/mol - -analytic 9.6765e+001 4.0513e-002 -2.8042e+003 -3.8617e+001 -4.3785e+001 + -analytic 9.6765e+1 4.0513e-2 -2.8042e+3 -3.8617e+1 -4.3785e+1 # -Range: 0-300 -2.0000 F- + 1.0000 La+++ = LaF2+ - -llnl_gamma 4.0 - log_k +6.6850 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction LaF2+ +2 F- + La+3 = LaF2+ + -llnl_gamma 4 + log_k 6.685 + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction LaF2+ # Enthalpy of formation: -325.2 kcal/mol - -analytic 2.3923e+002 8.3559e-002 -6.0536e+003 -9.5821e+001 -9.4531e+001 + -analytic 2.3923e+2 8.3559e-2 -6.0536e+3 -9.5821e+1 -9.4531e+1 # -Range: 0-300 -3.0000 F- + 1.0000 La+++ = LaF3 - -llnl_gamma 3.0 - log_k +8.7081 - -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction LaF3 +3 F- + La+3 = LaF3 + -llnl_gamma 3 + log_k 8.7081 + -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction LaF3 # Enthalpy of formation: -410.2 kcal/mol - -analytic 4.5123e+002 1.3460e-001 -1.1334e+004 -1.7967e+002 -1.7699e+002 + -analytic 4.5123e+2 1.346e-1 -1.1334e+4 -1.7967e+2 -1.7699e+2 # -Range: 0-300 -4.0000 F- + 1.0000 La+++ = LaF4- - -llnl_gamma 4.0 - log_k +10.3647 - -delta_H -41.4216 kJ/mol # Calculated enthalpy of reaction LaF4- +4 F- + La+3 = LaF4- + -llnl_gamma 4 + log_k 10.3647 + -delta_H -41.4216 kJ/mol # Calculated enthalpy of reaction LaF4- # Enthalpy of formation: -500.1 kcal/mol - -analytic 5.0747e+002 1.3563e-001 -1.1903e+004 -2.0108e+002 -1.8588e+002 + -analytic 5.0747e+2 1.3563e-1 -1.1903e+4 -2.0108e+2 -1.8588e+2 # -Range: 0-300 -1.0000 La+++ + 1.0000 HPO4-- + 1.0000 H+ = LaH2PO4++ - -llnl_gamma 4.5 - log_k +9.7417 - -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction LaH2PO4+2 +La+3 + HPO4-2 + H+ = LaH2PO4+2 + -llnl_gamma 4.5 + log_k 9.7417 + -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction LaH2PO4+2 # Enthalpy of formation: -482.8 kcal/mol - -analytic 1.0530e+002 6.2177e-002 4.0686e+002 -4.6642e+001 6.3174e+000 + -analytic 1.053e+2 6.2177e-2 4.0686e+2 -4.6642e+1 6.3174e+0 # -Range: 0-300 -1.0000 La+++ + 1.0000 HCO3- = LaHCO3++ - -llnl_gamma 4.5 - log_k +1.9923 - -delta_H 6.68603 kJ/mol # Calculated enthalpy of reaction LaHCO3+2 +La+3 + HCO3- = LaHCO3+2 + -llnl_gamma 4.5 + log_k 1.9923 + -delta_H 6.68603 kJ/mol # Calculated enthalpy of reaction LaHCO3+2 # Enthalpy of formation: -332.9 kcal/mol - -analytic 3.6032e+001 3.0405e-002 5.1281e+001 -1.7478e+001 7.8933e-001 + -analytic 3.6032e+1 3.0405e-2 5.1281e+1 -1.7478e+1 7.8933e-1 # -Range: 0-300 -1.0000 La+++ + 1.0000 HPO4-- = LaHPO4+ - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaHPO4+ +La+3 + HPO4-2 = LaHPO4+ + -llnl_gamma 4 + log_k 5.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 La+++ = LaNO3++ - -llnl_gamma 4.5 - log_k +0.5813 - -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction LaNO3+2 + +NO3- + La+3 = LaNO3+2 + -llnl_gamma 4.5 + log_k 0.5813 + -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction LaNO3+2 # Enthalpy of formation: -226 kcal/mol - -analytic 1.4136e+001 2.4247e-002 2.1998e+003 -1.1371e+001 3.4322e+001 + -analytic 1.4136e+1 2.4247e-2 2.1998e+3 -1.1371e+1 3.4322e+1 # -Range: 0-300 -1.0000 La+++ + 1.0000 H2O = LaO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -18.1696 - -delta_H 121.407 kJ/mol # Calculated enthalpy of reaction LaO+ +La+3 + H2O = LaO+ + 2 H+ + -llnl_gamma 4 + log_k -18.1696 + -delta_H 121.407 kJ/mol # Calculated enthalpy of reaction LaO+ # Enthalpy of formation: -208.9 kcal/mol - -analytic 1.8691e+002 2.9275e-002 -1.4385e+004 -6.6906e+001 -2.2452e+002 + -analytic 1.8691e+2 2.9275e-2 -1.4385e+4 -6.6906e+1 -2.2452e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 La+++ = LaO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -40.8105 - -delta_H 318.126 kJ/mol # Calculated enthalpy of reaction LaO2- +2 H2O + La+3 = LaO2- + 4 H+ + -llnl_gamma 4 + log_k -40.8105 + -delta_H 318.126 kJ/mol # Calculated enthalpy of reaction LaO2- # Enthalpy of formation: -230.2 kcal/mol - -analytic 1.8374e+002 1.2355e-002 -2.2472e+004 -6.1779e+001 -3.5070e+002 + -analytic 1.8374e+2 1.2355e-2 -2.2472e+4 -6.1779e+1 -3.507e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 La+++ = LaO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -27.9095 - -delta_H 237.375 kJ/mol # Calculated enthalpy of reaction LaO2H +2 H2O + La+3 = LaO2H + 3 H+ + -llnl_gamma 3 + log_k -27.9095 + -delta_H 237.375 kJ/mol # Calculated enthalpy of reaction LaO2H # Enthalpy of formation: -249.5 kcal/mol - -analytic 3.3862e+002 4.4808e-002 -2.4083e+004 -1.2088e+002 -3.7589e+002 + -analytic 3.3862e+2 4.4808e-2 -2.4083e+4 -1.2088e+2 -3.7589e+2 # -Range: 0-300 -1.0000 La+++ + 1.0000 H2O = LaOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -8.6405 - -delta_H 82.4959 kJ/mol # Calculated enthalpy of reaction LaOH+2 +La+3 + H2O = LaOH+2 + H+ + -llnl_gamma 4.5 + log_k -8.6405 + -delta_H 82.4959 kJ/mol # Calculated enthalpy of reaction LaOH+2 # Enthalpy of formation: -218.2 kcal/mol - -analytic 6.5529e+001 1.1104e-002 -6.3920e+003 -2.2646e+001 -9.9760e+001 + -analytic 6.5529e+1 1.1104e-2 -6.392e+3 -2.2646e+1 -9.976e+1 # -Range: 0-300 -1.0000 La+++ + 1.0000 HPO4-- = LaPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -1.3618 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4 +La+3 + HPO4-2 = LaPO4 + H+ + -llnl_gamma 3 + log_k -1.3618 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 La+++ = LaSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 18.4096 kJ/mol # Calculated enthalpy of reaction LaSO4+ + +SO4-2 + La+3 = LaSO4+ + -llnl_gamma 4 + log_k 3.643 + -delta_H 18.4096 kJ/mol # Calculated enthalpy of reaction LaSO4+ # Enthalpy of formation: -382.6 kcal/mol - -analytic 3.0657e+002 8.4093e-002 -9.1074e+003 -1.2019e+002 -1.4220e+002 + -analytic 3.0657e+2 8.4093e-2 -9.1074e+3 -1.2019e+2 -1.422e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Li+ = Li(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.2674 - -delta_H -24.7609 kJ/mol # Calculated enthalpy of reaction Li(Acetate)2- +2 HAcetate + Li+ = Li(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -9.2674 + -delta_H -24.7609 kJ/mol # Calculated enthalpy of reaction Li(Acetate)2- # Enthalpy of formation: -304.67 kcal/mol - -analytic -3.3702e+002 -6.0849e-002 1.1952e+004 1.2359e+002 1.8659e+002 + -analytic -3.3702e+2 -6.0849e-2 1.1952e+4 1.2359e+2 1.8659e+2 # -Range: 0-300 -1.0000 Li+ + 1.0000 HAcetate = LiAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.4589 - -delta_H -6.64419 kJ/mol # Calculated enthalpy of reaction LiAcetate +Li+ + HAcetate = LiAcetate + H+ + -llnl_gamma 3 + log_k -4.4589 + -delta_H -6.64419 kJ/mol # Calculated enthalpy of reaction LiAcetate # Enthalpy of formation: -184.24 kcal/mol - -analytic -3.8391e+000 -7.3938e-004 -1.0829e+003 3.4134e-001 2.1318e+005 + -analytic -3.8391e+0 -7.3938e-4 -1.0829e+3 3.4134e-1 2.1318e+5 # -Range: 0-300 -1.0000 Li+ + 1.0000 Cl- = LiCl - -llnl_gamma 3.0 - log_k -1.5115 - -delta_H 3.36812 kJ/mol # Calculated enthalpy of reaction LiCl +Li+ + Cl- = LiCl + -llnl_gamma 3 + log_k -1.5115 + -delta_H 3.36812 kJ/mol # Calculated enthalpy of reaction LiCl # Enthalpy of formation: -105.68 kcal/mol - -analytic 1.2484e+002 4.1941e-002 -3.2439e+003 -5.1708e+001 -5.0655e+001 + -analytic 1.2484e+2 4.1941e-2 -3.2439e+3 -5.1708e+1 -5.0655e+1 # -Range: 0-300 -1.0000 Li+ + 1.0000 H2O = LiOH +1.0000 H+ - -llnl_gamma 3.0 - log_k -13.64 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiOH +Li+ + H2O = LiOH + H+ + -llnl_gamma 3 + log_k -13.64 + -delta_H 0 # Not possible to calculate enthalpy of reaction LiOH # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Li+ = LiSO4- - -llnl_gamma 4.0 - log_k +0.7700 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiSO4- + +SO4-2 + Li+ = LiSO4- + -llnl_gamma 4 + log_k 0.77 + -delta_H 0 # Not possible to calculate enthalpy of reaction LiSO4- # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Lu+++ = Lu(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -38.5346 kJ/mol # Calculated enthalpy of reaction Lu(Acetate)2+ + +2 HAcetate + Lu+3 = Lu(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9625 + -delta_H -38.5346 kJ/mol # Calculated enthalpy of reaction Lu(Acetate)2+ # Enthalpy of formation: -409.31 kcal/mol - -analytic -2.7341e+001 2.5097e-003 -1.4157e+003 7.5026e+000 6.9682e+005 + -analytic -2.7341e+1 2.5097e-3 -1.4157e+3 7.5026e+0 6.9682e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Lu+++ = Lu(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -64.5173 kJ/mol # Calculated enthalpy of reaction Lu(Acetate)3 +3 HAcetate + Lu+3 = Lu(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.3489 + -delta_H -64.5173 kJ/mol # Calculated enthalpy of reaction Lu(Acetate)3 # Enthalpy of formation: -531.62 kcal/mol - -analytic -5.0225e+001 3.3508e-003 -6.2901e+002 1.3262e+001 9.0737e+005 + -analytic -5.0225e+1 3.3508e-3 -6.2901e+2 1.3262e+1 9.0737e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Lu+++ = Lu(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -6.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(CO3)2- +2 HCO3- + Lu+3 = Lu(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -6.8576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Lu+++ = Lu(HPO4)2- - -llnl_gamma 4.0 - log_k +10.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(HPO4)2- + +2 HPO4-2 + Lu+3 = Lu(HPO4)2- + -llnl_gamma 4 + log_k 10.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Lu+++ = Lu(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -2.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(PO4)2-3 + +2 HPO4-2 + Lu+3 = Lu(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -2.7437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Lu+++ = Lu(SO4)2- - -llnl_gamma 4.0 - log_k +5.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(SO4)2- + +2 SO4-2 + Lu+3 = Lu(SO4)2- + -llnl_gamma 4 + log_k 5.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Lu+++ + 1.0000 HAcetate = LuAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -18.9703 kJ/mol # Calculated enthalpy of reaction LuAcetate+2 + +Lu+3 + HAcetate = LuAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -18.9703 kJ/mol # Calculated enthalpy of reaction LuAcetate+2 # Enthalpy of formation: -288.534 kcal/mol - -analytic -6.5982e+000 2.4512e-003 -1.2666e+003 1.4226e+000 4.0045e+005 + -analytic -6.5982e+0 2.4512e-3 -1.2666e+3 1.4226e+0 4.0045e+5 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 HCO3- = LuCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.0392 - -delta_H 78.2324 kJ/mol # Calculated enthalpy of reaction LuCO3+ +Lu+3 + HCO3- = LuCO3+ + H+ + -llnl_gamma 4 + log_k -2.0392 + -delta_H 78.2324 kJ/mol # Calculated enthalpy of reaction LuCO3+ # Enthalpy of formation: -314.1 kcal/mol - -analytic 2.3840e+002 5.4774e-002 -6.8317e+003 -9.4500e+001 -1.0667e+002 + -analytic 2.384e+2 5.4774e-2 -6.8317e+3 -9.45e+1 -1.0667e+2 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 Cl- = LuCl++ - -llnl_gamma 4.5 - log_k -0.0579 - -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction LuCl+2 +Lu+3 + Cl- = LuCl+2 + -llnl_gamma 4.5 + log_k -0.0579 + -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction LuCl+2 # Enthalpy of formation: -204.6 kcal/mol - -analytic 6.6161e+001 3.6521e-002 -1.2938e+003 -2.9397e+001 -2.0209e+001 + -analytic 6.6161e+1 3.6521e-2 -1.2938e+3 -2.9397e+1 -2.0209e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Lu+++ = LuCl2+ - -llnl_gamma 4.0 - log_k -0.6289 - -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction LuCl2+ +2 Cl- + Lu+3 = LuCl2+ + -llnl_gamma 4 + log_k -0.6289 + -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction LuCl2+ # Enthalpy of formation: -244 kcal/mol - -analytic 1.8608e+002 7.7283e-002 -4.2349e+003 -7.9007e+001 -6.6137e+001 + -analytic 1.8608e+2 7.7283e-2 -4.2349e+3 -7.9007e+1 -6.6137e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Lu+++ = LuCl3 - -llnl_gamma 3.0 - log_k -1.1999 - -delta_H 3.56895 kJ/mol # Calculated enthalpy of reaction LuCl3 +3 Cl- + Lu+3 = LuCl3 + -llnl_gamma 3 + log_k -1.1999 + -delta_H 3.56895 kJ/mol # Calculated enthalpy of reaction LuCl3 # Enthalpy of formation: -286.846 kcal/mol - -analytic 3.7060e+002 1.2564e-001 -8.9374e+003 -1.5325e+002 -1.3957e+002 + -analytic 3.706e+2 1.2564e-1 -8.9374e+3 -1.5325e+2 -1.3957e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Lu+++ = LuCl4- - -llnl_gamma 4.0 - log_k -1.771 - -delta_H -25.8069 kJ/mol # Calculated enthalpy of reaction LuCl4- +4 Cl- + Lu+3 = LuCl4- + -llnl_gamma 4 + log_k -1.771 + -delta_H -25.8069 kJ/mol # Calculated enthalpy of reaction LuCl4- # Enthalpy of formation: -333.8 kcal/mol - -analytic 3.8876e+002 1.2200e-001 -8.6965e+003 -1.6071e+002 -1.3582e+002 + -analytic 3.8876e+2 1.22e-1 -8.6965e+3 -1.6071e+2 -1.3582e+2 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 F- = LuF++ - -llnl_gamma 4.5 - log_k +4.8085 - -delta_H 25.7316 kJ/mol # Calculated enthalpy of reaction LuF+2 +Lu+3 + F- = LuF+2 + -llnl_gamma 4.5 + log_k 4.8085 + -delta_H 25.7316 kJ/mol # Calculated enthalpy of reaction LuF+2 # Enthalpy of formation: -241.9 kcal/mol - -analytic 9.0303e+001 4.0963e-002 -2.4140e+003 -3.6203e+001 -3.7694e+001 + -analytic 9.0303e+1 4.0963e-2 -2.414e+3 -3.6203e+1 -3.7694e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Lu+++ = LuF2+ - -llnl_gamma 4.0 - log_k +8.4442 - -delta_H 14.2256 kJ/mol # Calculated enthalpy of reaction LuF2+ +2 F- + Lu+3 = LuF2+ + -llnl_gamma 4 + log_k 8.4442 + -delta_H 14.2256 kJ/mol # Calculated enthalpy of reaction LuF2+ # Enthalpy of formation: -324.8 kcal/mol - -analytic 2.1440e+002 8.2559e-002 -4.7009e+003 -8.6790e+001 -7.3417e+001 + -analytic 2.144e+2 8.2559e-2 -4.7009e+3 -8.679e+1 -7.3417e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Lu+++ = LuF3 - -llnl_gamma 3.0 - log_k +11.0999 - -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction LuF3 +3 F- + Lu+3 = LuF3 + -llnl_gamma 3 + log_k 11.0999 + -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction LuF3 # Enthalpy of formation: -411.3 kcal/mol - -analytic 4.0247e+002 1.3233e-001 -8.6775e+003 -1.6232e+002 -1.3552e+002 + -analytic 4.0247e+2 1.3233e-1 -8.6775e+3 -1.6232e+2 -1.3552e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Lu+++ = LuF4- - -llnl_gamma 4.0 - log_k +13.2967 - -delta_H -64.0152 kJ/mol # Calculated enthalpy of reaction LuF4- +4 F- + Lu+3 = LuF4- + -llnl_gamma 4 + log_k 13.2967 + -delta_H -64.0152 kJ/mol # Calculated enthalpy of reaction LuF4- # Enthalpy of formation: -503.8 kcal/mol - -analytic 4.2541e+002 1.3070e-001 -7.4276e+003 -1.7220e+002 -1.1603e+002 + -analytic 4.2541e+2 1.307e-1 -7.4276e+3 -1.722e+2 -1.1603e+2 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 HPO4-- + 1.0000 H+ = LuH2PO4++ - -llnl_gamma 4.5 - log_k +9.5950 - -delta_H -23.786 kJ/mol # Calculated enthalpy of reaction LuH2PO4+2 +Lu+3 + HPO4-2 + H+ = LuH2PO4+2 + -llnl_gamma 4.5 + log_k 9.595 + -delta_H -23.786 kJ/mol # Calculated enthalpy of reaction LuH2PO4+2 # Enthalpy of formation: -482.4 kcal/mol - -analytic 9.4223e+001 6.1797e-002 1.1102e+003 -4.3131e+001 1.7296e+001 + -analytic 9.4223e+1 6.1797e-2 1.1102e+3 -4.3131e+1 1.7296e+1 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 HCO3- = LuHCO3++ - -llnl_gamma 4.5 - log_k +1.9190 - -delta_H 1.66523 kJ/mol # Calculated enthalpy of reaction LuHCO3+2 +Lu+3 + HCO3- = LuHCO3+2 + -llnl_gamma 4.5 + log_k 1.919 + -delta_H 1.66523 kJ/mol # Calculated enthalpy of reaction LuHCO3+2 # Enthalpy of formation: -332.4 kcal/mol - -analytic 2.3187e+001 2.9604e-002 8.1268e+002 -1.3252e+001 1.2674e+001 + -analytic 2.3187e+1 2.9604e-2 8.1268e+2 -1.3252e+1 1.2674e+1 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 HPO4-- = LuHPO4+ - -llnl_gamma 4.0 - log_k +6.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuHPO4+ +Lu+3 + HPO4-2 = LuHPO4+ + -llnl_gamma 4 + log_k 6 + -delta_H 0 # Not possible to calculate enthalpy of reaction LuHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Lu+++ = LuNO3++ - -llnl_gamma 4.5 - log_k +0.5813 - -delta_H -41.7187 kJ/mol # Calculated enthalpy of reaction LuNO3+2 + +NO3- + Lu+3 = LuNO3+2 + -llnl_gamma 4.5 + log_k 0.5813 + -delta_H -41.7187 kJ/mol # Calculated enthalpy of reaction LuNO3+2 # Enthalpy of formation: -227.3 kcal/mol - -analytic 1.7412e+000 2.3703e-002 3.2605e+003 -7.7334e+000 5.0876e+001 + -analytic 1.7412e+0 2.3703e-2 3.2605e+3 -7.7334e+0 5.0876e+1 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 H2O = LuO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.3108 - -delta_H 99.6503 kJ/mol # Calculated enthalpy of reaction LuO+ +Lu+3 + H2O = LuO+ + 2 H+ + -llnl_gamma 4 + log_k -15.3108 + -delta_H 99.6503 kJ/mol # Calculated enthalpy of reaction LuO+ # Enthalpy of formation: -212.4 kcal/mol - -analytic 1.5946e+002 2.6603e-002 -1.2215e+004 -5.7276e+001 -1.9065e+002 + -analytic 1.5946e+2 2.6603e-2 -1.2215e+4 -5.7276e+1 -1.9065e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Lu+++ = LuO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -31.9411 - -delta_H 258.713 kJ/mol # Calculated enthalpy of reaction LuO2- +2 H2O + Lu+3 = LuO2- + 4 H+ + -llnl_gamma 4 + log_k -31.9411 + -delta_H 258.713 kJ/mol # Calculated enthalpy of reaction LuO2- # Enthalpy of formation: -242.7 kcal/mol - -analytic 1.1522e+002 5.0221e-003 -1.6847e+004 -3.7244e+001 -2.6292e+002 + -analytic 1.1522e+2 5.0221e-3 -1.6847e+4 -3.7244e+1 -2.6292e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Lu+++ = LuO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -23.878 - -delta_H 206.832 kJ/mol # Calculated enthalpy of reaction LuO2H +2 H2O + Lu+3 = LuO2H + 3 H+ + -llnl_gamma 3 + log_k -23.878 + -delta_H 206.832 kJ/mol # Calculated enthalpy of reaction LuO2H # Enthalpy of formation: -255.1 kcal/mol - -analytic 2.8768e+002 4.2338e-002 -2.0443e+004 -1.0330e+002 -3.1907e+002 + -analytic 2.8768e+2 4.2338e-2 -2.0443e+4 -1.033e+2 -3.1907e+2 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 H2O = LuOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.6143 - -delta_H 72.0359 kJ/mol # Calculated enthalpy of reaction LuOH+2 +Lu+3 + H2O = LuOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.6143 + -delta_H 72.0359 kJ/mol # Calculated enthalpy of reaction LuOH+2 # Enthalpy of formation: -219 kcal/mol - -analytic 4.2937e+001 9.2421e-003 -4.9953e+003 -1.4769e+001 -7.7960e+001 + -analytic 4.2937e+1 9.2421e-3 -4.9953e+3 -1.4769e+1 -7.796e+1 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 HPO4-- = LuPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4 +Lu+3 + HPO4-2 = LuPO4 + H+ + -llnl_gamma 3 + log_k 0.6782 + -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Lu+++ = LuSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 19.5393 kJ/mol # Calculated enthalpy of reaction LuSO4+ + +SO4-2 + Lu+3 = LuSO4+ + -llnl_gamma 4 + log_k 3.5697 + -delta_H 19.5393 kJ/mol # Calculated enthalpy of reaction LuSO4+ # Enthalpy of formation: -380.63 kcal/mol - -analytic 3.0108e+002 8.5238e-002 -8.8411e+003 -1.1850e+002 -1.3805e+002 + -analytic 3.0108e+2 8.5238e-2 -8.8411e+3 -1.185e+2 -1.3805e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Mg++ = Mg(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.473 - -delta_H -23.8195 kJ/mol # Calculated enthalpy of reaction Mg(Acetate)2 +2 HAcetate + Mg+2 = Mg(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -7.473 + -delta_H -23.8195 kJ/mol # Calculated enthalpy of reaction Mg(Acetate)2 # Enthalpy of formation: -349.26 kcal/mol - -analytic -4.3954e+001 -3.1842e-004 -1.2033e+003 1.3556e+001 6.3058e+005 + -analytic -4.3954e+1 -3.1842e-4 -1.2033e+3 1.3556e+1 6.3058e+5 # -Range: 0-300 -4.0000 Mg++ + 4.0000 H2O = Mg4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -39.75 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mg4(OH)4+4 +4 Mg+2 + 4 H2O = Mg4(OH)4+4 + 4 H+ + -llnl_gamma 5.5 + log_k -39.75 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mg4(OH)4+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Mg++ + 1.0000 H2O + 1.0000 B(OH)3 = MgB(OH)4+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.3467 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgB(OH)4+ + +Mg+2 + H2O + B(OH)3 = MgB(OH)4+ + H+ + -llnl_gamma 4 + log_k -7.3467 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgB(OH)4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Mg++ + 1.0000 HAcetate = MgAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.4781 - -delta_H -8.42239 kJ/mol # Calculated enthalpy of reaction MgAcetate+ + +Mg+2 + HAcetate = MgAcetate+ + H+ + -llnl_gamma 4 + log_k -3.4781 + -delta_H -8.42239 kJ/mol # Calculated enthalpy of reaction MgAcetate+ # Enthalpy of formation: -229.48 kcal/mol - -analytic -2.3548e+001 -1.6071e-003 -4.2228e+002 7.7009e+000 2.5981e+005 + -analytic -2.3548e+1 -1.6071e-3 -4.2228e+2 7.7009e+0 2.5981e+5 # -Range: 0-300 -1.0000 Mg++ + 1.0000 HCO3- = MgCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.3499 - -delta_H 23.8279 kJ/mol # Calculated enthalpy of reaction MgCO3 +Mg+2 + HCO3- = MgCO3 + H+ + -llnl_gamma 3 + log_k -7.3499 + -delta_H 23.8279 kJ/mol # Calculated enthalpy of reaction MgCO3 # Enthalpy of formation: -270.57 kcal/mol - -analytic 2.3465e+002 5.5538e-002 -8.3947e+003 -9.3104e+001 -1.3106e+002 + -analytic 2.3465e+2 5.5538e-2 -8.3947e+3 -9.3104e+1 -1.3106e+2 # -Range: 0-300 -1.0000 Mg++ + 1.0000 Cl- = MgCl+ - -llnl_gamma 4.0 - log_k -0.1349 - -delta_H -0.58576 kJ/mol # Calculated enthalpy of reaction MgCl+ +Mg+2 + Cl- = MgCl+ + -llnl_gamma 4 + log_k -0.1349 + -delta_H -0.58576 kJ/mol # Calculated enthalpy of reaction MgCl+ # Enthalpy of formation: -151.44 kcal/mol - -analytic 4.3363e+001 3.2858e-002 1.1878e+002 -2.1688e+001 1.8403e+000 + -analytic 4.3363e+1 3.2858e-2 1.1878e+2 -2.1688e+1 1.8403e+0 # -Range: 0-300 -1.0000 Mg++ + 1.0000 F- = MgF+ - -llnl_gamma 4.0 - log_k +1.3524 - -delta_H 2.37233 kJ/mol # Calculated enthalpy of reaction MgF+ +Mg+2 + F- = MgF+ + -llnl_gamma 4 + log_k 1.3524 + -delta_H 2.37233 kJ/mol # Calculated enthalpy of reaction MgF+ # Enthalpy of formation: -190.95 kcal/mol - -analytic 6.4311e+001 3.5184e-002 -7.3241e+002 -2.8678e+001 -1.1448e+001 + -analytic 6.4311e+1 3.5184e-2 -7.3241e+2 -2.8678e+1 -1.1448e+1 # -Range: 0-300 -1.0000 Mg++ + 1.0000 HPO4-- + 1.0000 H+ = MgH2PO4+ - -llnl_gamma 4.0 - log_k +1.6600 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgH2PO4+ +Mg+2 + HPO4-2 + H+ = MgH2PO4+ + -llnl_gamma 4 + log_k 1.66 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgH2PO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Mg++ + 1.0000 HCO3- = MgHCO3+ - -llnl_gamma 4.0 - log_k +1.0357 - -delta_H 2.15476 kJ/mol # Calculated enthalpy of reaction MgHCO3+ + +Mg+2 + HCO3- = MgHCO3+ + -llnl_gamma 4 + log_k 1.0357 + -delta_H 2.15476 kJ/mol # Calculated enthalpy of reaction MgHCO3+ # Enthalpy of formation: -275.75 kcal/mol - -analytic 3.8459e+001 3.0076e-002 9.8068e+001 -1.8869e+001 1.5187e+000 + -analytic 3.8459e+1 3.0076e-2 9.8068e+1 -1.8869e+1 1.5187e+0 # -Range: 0-300 -1.0000 Mg++ + 1.0000 HPO4-- = MgHPO4 - -llnl_gamma 3.0 - log_k +2.9100 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgHPO4 +Mg+2 + HPO4-2 = MgHPO4 + -llnl_gamma 3 + log_k 2.91 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgHPO4 # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Mg++ = MgP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +3.4727 - -delta_H 38.5451 kJ/mol # Calculated enthalpy of reaction MgP2O7-2 + +2 HPO4-2 + Mg+2 = MgP2O7-2 + H2O + -llnl_gamma 4 + log_k 3.4727 + -delta_H 38.5451 kJ/mol # Calculated enthalpy of reaction MgP2O7-2 # Enthalpy of formation: -2725.74 kJ/mol - -analytic 4.8038e+002 1.2530e-001 -1.5175e+004 -1.8724e+002 -2.3693e+002 + -analytic 4.8038e+2 1.253e-1 -1.5175e+4 -1.8724e+2 -2.3693e+2 # -Range: 0-300 -1.0000 Mg++ + 1.0000 HPO4-- = MgPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.7328 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgPO4- +Mg+2 + HPO4-2 = MgPO4- + H+ + -llnl_gamma 4 + log_k -5.7328 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgPO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Mg++ = MgSO4 - -llnl_gamma 3.0 - log_k +2.4117 - -delta_H 19.6051 kJ/mol # Calculated enthalpy of reaction MgSO4 + +SO4-2 + Mg+2 = MgSO4 + -llnl_gamma 3 + log_k 2.4117 + -delta_H 19.6051 kJ/mol # Calculated enthalpy of reaction MgSO4 # Enthalpy of formation: -1355.96 kJ/mol - -analytic 1.7994e+002 6.4715e-002 -4.7314e+003 -7.3123e+001 -8.0408e+001 + -analytic 1.7994e+2 6.4715e-2 -4.7314e+3 -7.3123e+1 -8.0408e+1 # -Range: 0-200 -2.0000 HAcetate + 1.0000 Mn++ = Mn(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.4547 - -delta_H -11.4893 kJ/mol # Calculated enthalpy of reaction Mn(Acetate)2 +2 HAcetate + Mn+2 = Mn(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -7.4547 + -delta_H -11.4893 kJ/mol # Calculated enthalpy of reaction Mn(Acetate)2 # Enthalpy of formation: -287.67 kcal/mol - -analytic -9.0558e-001 5.9656e-003 -4.3531e+003 -1.1063e+000 8.0323e+005 + -analytic -9.0558e-1 5.9656e-3 -4.3531e+3 -1.1063e+0 8.0323e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Mn++ = Mn(Acetate)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -11.8747 - -delta_H -30.3591 kJ/mol # Calculated enthalpy of reaction Mn(Acetate)3- +3 HAcetate + Mn+2 = Mn(Acetate)3- + 3 H+ + -llnl_gamma 4 + log_k -11.8747 + -delta_H -30.3591 kJ/mol # Calculated enthalpy of reaction Mn(Acetate)3- # Enthalpy of formation: -408.28 kcal/mol - -analytic -3.8531e+000 -9.9140e-003 -1.2065e+004 5.1424e+000 2.0175e+006 + -analytic -3.8531e+0 -9.914e-3 -1.2065e+4 5.1424e+0 2.0175e+6 # -Range: 0-300 -2.0000 NO3- + 1.0000 Mn++ = Mn(NO3)2 - -llnl_gamma 3.0 - log_k +0.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(NO3)2 +2 NO3- + Mn+2 = Mn(NO3)2 + -llnl_gamma 3 + log_k 0.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(NO3)2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Mn++ = Mn(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -22.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)2 + +2 H2O + Mn+2 = Mn(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -22.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Mn++ = Mn(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -34.2278 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3- + +3 H2O + Mn+2 = Mn(OH)3- + 3 H+ + -llnl_gamma 4 + log_k -34.2278 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3- # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Mn++ = Mn(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -48.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)4-2 + +4 H2O + Mn+2 = Mn(OH)4-2 + 4 H+ + -llnl_gamma 4 + log_k -48.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)4-2 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 2.0000 Mn++ = Mn2(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -23.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2(OH)3+ + +3 H2O + 2 Mn+2 = Mn2(OH)3+ + 3 H+ + -llnl_gamma 4 + log_k -23.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2(OH)3+ # Enthalpy of formation: -0 kcal/mol - -2.0000 Mn++ + 1.0000 H2O = Mn2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -10.56 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2OH+3 + +2 Mn+2 + H2O = Mn2OH+3 + H+ + -llnl_gamma 5 + log_k -10.56 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2OH+3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HAcetate = MnAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.5404 - -delta_H -3.07942 kJ/mol # Calculated enthalpy of reaction MnAcetate+ + +Mn+2 + HAcetate = MnAcetate+ + H+ + -llnl_gamma 4 + log_k -3.5404 + -delta_H -3.07942 kJ/mol # Calculated enthalpy of reaction MnAcetate+ # Enthalpy of formation: -169.56 kcal/mol - -analytic -1.4061e+001 1.8149e-003 -8.6438e+002 4.0354e+000 2.5831e+005 + -analytic -1.4061e+1 1.8149e-3 -8.6438e+2 4.0354e+0 2.5831e+5 # -Range: 0-300 -1.0000 Mn++ + 1.0000 HCO3- = MnCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -5.8088 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnCO3 +Mn+2 + HCO3- = MnCO3 + H+ + -llnl_gamma 3 + log_k -5.8088 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnCO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 Cl- = MnCl+ - -llnl_gamma 4.0 - log_k +0.3013 - -delta_H 18.3134 kJ/mol # Calculated enthalpy of reaction MnCl+ + +Mn+2 + Cl- = MnCl+ + -llnl_gamma 4 + log_k 0.3013 + -delta_H 18.3134 kJ/mol # Calculated enthalpy of reaction MnCl+ # Enthalpy of formation: -88.28 kcal/mol - -analytic 8.7072e+001 4.0361e-002 -2.1786e+003 -3.6966e+001 -3.4022e+001 + -analytic 8.7072e+1 4.0361e-2 -2.1786e+3 -3.6966e+1 -3.4022e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Mn++ = MnCl3- - -llnl_gamma 4.0 - log_k -0.3324 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnCl3- +3 Cl- + Mn+2 = MnCl3- + -llnl_gamma 4 + log_k -0.3324 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnCl3- # Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 F- = MnF+ - -llnl_gamma 4.0 - log_k +1.4300 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnF+ + +Mn+2 + F- = MnF+ + -llnl_gamma 4 + log_k 1.43 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnF+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HPO4-- + 1.0000 H+ = MnH2PO4+ - -llnl_gamma 4.0 - log_k +8.5554 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnH2PO4+ + +Mn+2 + HPO4-2 + H+ = MnH2PO4+ + -llnl_gamma 4 + log_k 8.5554 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnH2PO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HCO3- = MnHCO3+ - -llnl_gamma 4.0 - log_k +0.8816 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHCO3+ + +Mn+2 + HCO3- = MnHCO3+ + -llnl_gamma 4 + log_k 0.8816 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHCO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HPO4-- = MnHPO4 - -llnl_gamma 3.0 - log_k +3.5800 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 + +Mn+2 + HPO4-2 = MnHPO4 + -llnl_gamma 3 + log_k 3.58 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Mn++ = MnNO3+ - -llnl_gamma 4.0 - log_k +0.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnNO3+ + +NO3- + Mn+2 = MnNO3+ + -llnl_gamma 4 + log_k 0.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnNO3+ # Enthalpy of formation: -0 kcal/mol - -1.5000 H2O + 1.2500 O2 + 1.0000 Mn++ = MnO4- +3.0000 H+ - -llnl_gamma 3.5 - log_k -20.2963 - -delta_H 123.112 kJ/mol # Calculated enthalpy of reaction MnO4- + +1.5 H2O + 1.25 O2 + Mn+2 = MnO4- + 3 H+ + -llnl_gamma 3.5 + log_k -20.2963 + -delta_H 123.112 kJ/mol # Calculated enthalpy of reaction MnO4- # Enthalpy of formation: -129.4 kcal/mol - -analytic 1.8544e+001 -1.7618e-002 -6.7332e+003 -3.3193e+000 -2.4924e+005 + -analytic 1.8544e+1 -1.7618e-2 -6.7332e+3 -3.3193e+0 -2.4924e+5 # -Range: 0-300 -1.0000 Mn++ + 1.0000 H2O = MnOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -10.59 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnOH+ +Mn+2 + H2O = MnOH+ + H+ + -llnl_gamma 4 + log_k -10.59 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnOH+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HPO4-- = MnPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.1318 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnPO4- + +Mn+2 + HPO4-2 = MnPO4- + H+ + -llnl_gamma 4 + log_k -5.1318 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnPO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Mn++ = MnSO4 - -llnl_gamma 3.0 - log_k +2.3529 - -delta_H 14.1168 kJ/mol # Calculated enthalpy of reaction MnSO4 + +SO4-2 + Mn+2 = MnSO4 + -llnl_gamma 3 + log_k 2.3529 + -delta_H 14.1168 kJ/mol # Calculated enthalpy of reaction MnSO4 # Enthalpy of formation: -266.75 kcal/mol - -analytic 2.9448e+002 8.5294e-002 -8.1366e+003 -1.1729e+002 -1.2705e+002 + -analytic 2.9448e+2 8.5294e-2 -8.1366e+3 -1.1729e+2 -1.2705e+2 # -Range: 0-300 -1.0000 SeO4-- + 1.0000 Mn++ = MnSeO4 - -llnl_gamma 3.0 - log_k +2.4300 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO4 +SeO4-2 + Mn+2 = MnSeO4 + -llnl_gamma 3 + log_k 2.43 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO4 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 NH3 = NH4(Acetate)2- +1.0000 H+ - -llnl_gamma 4.0 - log_k -0.1928 - -delta_H -56.735 kJ/mol # Calculated enthalpy of reaction NH4(Acetate)2- + +2 HAcetate + NH3 = NH4(Acetate)2- + H+ + -llnl_gamma 4 + log_k -0.1928 + -delta_H -56.735 kJ/mol # Calculated enthalpy of reaction NH4(Acetate)2- # Enthalpy of formation: -265.2 kcal/mol - -analytic 3.7137e+001 -1.2242e-002 -8.4764e+003 -8.4308e+000 1.3883e+006 + -analytic 3.7137e+1 -1.2242e-2 -8.4764e+3 -8.4308e+0 1.3883e+6 # -Range: 0-300 -1.0000 NH3 + 1.0000 H+ = NH4+ - -llnl_gamma 2.5 - log_k +9.2410 - -delta_H -51.9234 kJ/mol # Calculated enthalpy of reaction NH4+ +NH3 + H+ = NH4+ + -llnl_gamma 2.5 + log_k 9.241 + -delta_H -51.9234 kJ/mol # Calculated enthalpy of reaction NH4+ # Enthalpy of formation: -31.85 kcal/mol - -analytic -1.4527e+001 -5.0518e-003 3.0447e+003 6.0865e+000 4.7515e+001 + -analytic -1.4527e+1 -5.0518e-3 3.0447e+3 6.0865e+0 4.7515e+1 # -Range: 0-300 -1.0000 NH3 + 1.0000 HAcetate = NH4Acetate - -llnl_gamma 3.0 - log_k +4.6964 - -delta_H -48.911 kJ/mol # Calculated enthalpy of reaction NH4Acetate +NH3 + HAcetate = NH4Acetate + -llnl_gamma 3 + log_k 4.6964 + -delta_H -48.911 kJ/mol # Calculated enthalpy of reaction NH4Acetate # Enthalpy of formation: -147.23 kcal/mol - -analytic 1.4104e+001 -4.3664e-003 -1.0746e+003 -3.6999e+000 4.1428e+005 + -analytic 1.4104e+1 -4.3664e-3 -1.0746e+3 -3.6999e+0 4.1428e+5 # -Range: 0-300 -1.0000 SO4-- + 1.0000 NH3 + 1.0000 H+ = NH4SO4- - -llnl_gamma 4.0 - log_k +0.9400 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SO4- +SO4-2 + NH3 + H+ = NH4SO4- + -llnl_gamma 4 + log_k 0.94 + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 Sb(OH)3 + 1.0000 NH3 = NH4SbO2 +1.0000 H2O - -llnl_gamma 3.0 - log_k -2.5797 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SbO2 + +Sb(OH)3 + NH3 = NH4SbO2 + H2O + -llnl_gamma 3 + log_k -2.5797 + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SbO2 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Na+ = Na(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.9989 - -delta_H -11.5771 kJ/mol # Calculated enthalpy of reaction Na(Acetate)2- + +2 HAcetate + Na+ = Na(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -9.9989 + -delta_H -11.5771 kJ/mol # Calculated enthalpy of reaction Na(Acetate)2- # Enthalpy of formation: -292.4 kcal/mol - -analytic -2.9232e+002 -5.5708e-002 9.6601e+003 1.0772e+002 1.5082e+002 + -analytic -2.9232e+2 -5.5708e-2 9.6601e+3 1.0772e+2 1.5082e+2 # -Range: 0-300 -1.0000 O_phthalate-2 + 1.0000 Na+ = Na(O_phthalate)- - -llnl_gamma 4.0 - log_k +0.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na(O_phthalate)- +O_phthalate-2 + Na+ = Na(O_phthalate)- + -llnl_gamma 4 + log_k 0.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na(O_phthalate)- # Enthalpy of formation: -0 kcal/mol - -2.0000 Na+ + 2.0000 HPO4-- = Na2P2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +0.4437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2P2O7-2 + +2 Na+ + 2 HPO4-2 = Na2P2O7-2 + H2O + -llnl_gamma 4 + log_k 0.4437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2P2O7-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Na+ + 1.0000 Al+++ = NaAlO2 +4.0000 H+ - -llnl_gamma 3.0 - log_k -23.6266 - -delta_H 190.326 kJ/mol # Calculated enthalpy of reaction NaAlO2 + +2 H2O + Na+ + Al+3 = NaAlO2 + 4 H+ + -llnl_gamma 3 + log_k -23.6266 + -delta_H 190.326 kJ/mol # Calculated enthalpy of reaction NaAlO2 # Enthalpy of formation: -277.259 kcal/mol - -analytic 1.2288e+002 3.4921e-002 -1.2808e+004 -4.6046e+001 -1.9990e+002 + -analytic 1.2288e+2 3.4921e-2 -1.2808e+4 -4.6046e+1 -1.999e+2 # -Range: 0-300 -1.0000 Na+ + 1.0000 H2O + 1.0000 B(OH)3 = NaB(OH)4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -8.974 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaB(OH)4 +Na+ + H2O + B(OH)3 = NaB(OH)4 + H+ + -llnl_gamma 3 + log_k -8.974 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaB(OH)4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Na+ + 1.0000 Br- = NaBr - -llnl_gamma 3.0 - log_k -1.3568 - -delta_H 6.87431 kJ/mol # Calculated enthalpy of reaction NaBr + +Na+ + Br- = NaBr + -llnl_gamma 3 + log_k -1.3568 + -delta_H 6.87431 kJ/mol # Calculated enthalpy of reaction NaBr # Enthalpy of formation: -84.83 kcal/mol - -analytic 1.1871e+002 3.7271e-002 -3.4061e+003 -4.8386e+001 -5.3184e+001 + -analytic 1.1871e+2 3.7271e-2 -3.4061e+3 -4.8386e+1 -5.3184e+1 # -Range: 0-300 -1.0000 Na+ + 1.0000 HAcetate = NaAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8606 - -delta_H -0.029288 kJ/mol # Calculated enthalpy of reaction NaAcetate +Na+ + HAcetate = NaAcetate + H+ + -llnl_gamma 3 + log_k -4.8606 + -delta_H -0.029288 kJ/mol # Calculated enthalpy of reaction NaAcetate # Enthalpy of formation: -173.54 kcal/mol - -analytic 6.4833e+000 -1.8739e-003 -2.0902e+003 -2.6121e+000 2.3990e+005 + -analytic 6.4833e+0 -1.8739e-3 -2.0902e+3 -2.6121e+0 2.399e+5 # -Range: 0-300 -1.0000 Na+ + 1.0000 HCO3- = NaCO3- +1.0000 H+ - -llnl_gamma 4.0 - log_k -9.8144 - -delta_H -5.6521 kJ/mol # Calculated enthalpy of reaction NaCO3- +Na+ + HCO3- = NaCO3- + H+ + -llnl_gamma 4 + log_k -9.8144 + -delta_H -5.6521 kJ/mol # Calculated enthalpy of reaction NaCO3- # Enthalpy of formation: -935.885 kJ/mol - -analytic 1.6939e+002 5.3122e-004 -7.6768e+003 -6.2078e+001 -1.1984e+002 + -analytic 1.6939e+2 5.3122e-4 -7.6768e+3 -6.2078e+1 -1.1984e+2 # -Range: 0-300 -1.0000 Na+ + 1.0000 Cl- = NaCl - -llnl_gamma 3.0 - log_k -0.777 - -delta_H 5.21326 kJ/mol # Calculated enthalpy of reaction NaCl +Na+ + Cl- = NaCl + -llnl_gamma 3 + log_k -0.777 + -delta_H 5.21326 kJ/mol # Calculated enthalpy of reaction NaCl # Enthalpy of formation: -96.12 kcal/mol - -analytic 1.1398e+002 3.6386e-002 -3.0847e+003 -4.6571e+001 -4.8167e+001 + -analytic 1.1398e+2 3.6386e-2 -3.0847e+3 -4.6571e+1 -4.8167e+1 # -Range: 0-300 -1.0000 Na+ + 1.0000 F- = NaF - -llnl_gamma 3.0 - log_k -0.9976 - -delta_H 7.20903 kJ/mol # Calculated enthalpy of reaction NaF +Na+ + F- = NaF + -llnl_gamma 3 + log_k -0.9976 + -delta_H 7.20903 kJ/mol # Calculated enthalpy of reaction NaF # Enthalpy of formation: -135.86 kcal/mol - -analytic 1.2507e+002 3.8619e-002 -3.5436e+003 -5.0787e+001 -5.5332e+001 + -analytic 1.2507e+2 3.8619e-2 -3.5436e+3 -5.0787e+1 -5.5332e+1 # -Range: 0-300 -1.0000 Na+ + 1.0000 HCO3- = NaHCO3 - -llnl_gamma 3.0 - log_k +0.1541 - -delta_H -13.7741 kJ/mol # Calculated enthalpy of reaction NaHCO3 +Na+ + HCO3- = NaHCO3 + -llnl_gamma 3 + log_k 0.1541 + -delta_H -13.7741 kJ/mol # Calculated enthalpy of reaction NaHCO3 # Enthalpy of formation: -944.007 kJ/mol - -analytic -9.0668e+001 -2.9866e-002 2.7947e+003 3.6515e+001 4.7489e+001 + -analytic -9.0668e+1 -2.9866e-2 2.7947e+3 3.6515e+1 4.7489e+1 # -Range: 0-200 -2.0000 HPO4-- + 1.0000 Na+ + 1.0000 H+ = NaHP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +6.8498 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaHP2O7-2 +2 HPO4-2 + Na+ + H+ = NaHP2O7-2 + H2O + -llnl_gamma 4 + log_k 6.8498 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaHP2O7-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Na+ + 1.0000 HPO4-- = NaHPO4- - -llnl_gamma 4.0 - log_k +0.9200 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaHPO4- + +Na+ + HPO4-2 = NaHPO4- + -llnl_gamma 4 + log_k 0.92 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaHPO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 SiO2 + 1.0000 Na+ + 1.0000 H2O = NaHSiO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -8.304 - -delta_H 11.6524 kJ/mol # Calculated enthalpy of reaction NaHSiO3 + +SiO2 + Na+ + H2O = NaHSiO3 + H+ + -llnl_gamma 3 + log_k -8.304 + -delta_H 11.6524 kJ/mol # Calculated enthalpy of reaction NaHSiO3 # Enthalpy of formation: -332.74 kcal/mol - -analytic 3.6045e+001 -9.0411e-003 -6.6605e+003 -1.0447e+001 5.8415e+005 + -analytic 3.6045e+1 -9.0411e-3 -6.6605e+3 -1.0447e+1 5.8415e+5 # -Range: 0-300 -1.0000 Na+ + 1.0000 I- = NaI - -llnl_gamma 3.0 - log_k -1.54 - -delta_H 7.33455 kJ/mol # Calculated enthalpy of reaction NaI +Na+ + I- = NaI + -llnl_gamma 3 + log_k -1.54 + -delta_H 7.33455 kJ/mol # Calculated enthalpy of reaction NaI # Enthalpy of formation: -69.28 kcal/mol - -analytic 9.8742e+001 3.2917e-002 -2.7576e+003 -4.0748e+001 -4.3058e+001 + -analytic 9.8742e+1 3.2917e-2 -2.7576e+3 -4.0748e+1 -4.3058e+1 # -Range: 0-300 -1.0000 Na+ + 1.0000 H2O = NaOH +1.0000 H+ - -llnl_gamma 3.0 - log_k -14.7948 - -delta_H 53.6514 kJ/mol # Calculated enthalpy of reaction NaOH +Na+ + H2O = NaOH + H+ + -llnl_gamma 3 + log_k -14.7948 + -delta_H 53.6514 kJ/mol # Calculated enthalpy of reaction NaOH # Enthalpy of formation: -112.927 kcal/mol - -analytic 8.7326e+001 2.3555e-002 -5.4770e+003 -3.6678e+001 -8.5489e+001 + -analytic 8.7326e+1 2.3555e-2 -5.477e+3 -3.6678e+1 -8.5489e+1 # -Range: 0-300 -2.0000 HPO4-- + 1.0000 Na+ = NaP2O7--- +1.0000 H2O - -llnl_gamma 4.0 - log_k -1.4563 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaP2O7-3 +2 HPO4-2 + Na+ = NaP2O7-3 + H2O + -llnl_gamma 4 + log_k -1.4563 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaP2O7-3 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Na+ = NaSO4- - -llnl_gamma 4.0 - log_k +0.8200 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaSO4- + +SO4-2 + Na+ = NaSO4- + -llnl_gamma 4 + log_k 0.82 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaSO4- # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Nd+++ = Nd(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9771 - -delta_H -22.6354 kJ/mol # Calculated enthalpy of reaction Nd(Acetate)2+ + +2 HAcetate + Nd+3 = Nd(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9771 + -delta_H -22.6354 kJ/mol # Calculated enthalpy of reaction Nd(Acetate)2+ # Enthalpy of formation: -404.11 kcal/mol - -analytic -2.2128e+001 1.0975e-003 -7.1543e+002 5.8799e+000 4.1748e+005 + -analytic -2.2128e+1 1.0975e-3 -7.1543e+2 5.8799e+0 4.1748e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Nd+++ = Nd(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.2976 - -delta_H -38.8694 kJ/mol # Calculated enthalpy of reaction Nd(Acetate)3 +3 HAcetate + Nd+3 = Nd(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.2976 + -delta_H -38.8694 kJ/mol # Calculated enthalpy of reaction Nd(Acetate)3 # Enthalpy of formation: -524.09 kcal/mol - -analytic -4.5726e+001 -2.6143e-003 5.9389e+002 1.2679e+001 4.3320e+005 + -analytic -4.5726e+1 -2.6143e-3 5.9389e+2 1.2679e+1 4.332e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Nd+++ = Nd(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.0576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(CO3)2- +2 HCO3- + Nd+3 = Nd(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -8.0576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Nd+++ = Nd(HPO4)2- - -llnl_gamma 4.0 - log_k +9.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(HPO4)2- + +2 HPO4-2 + Nd+3 = Nd(HPO4)2- + -llnl_gamma 4 + log_k 9.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(HPO4)2- # Enthalpy of formation: -0 kcal/mol - + # Redundant with NdO2- #4.0000 H2O + 1.0000 Nd+++ = Nd(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 +# -llnl_gamma 4.0 # log_k -37.0803 # -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)4- ## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Nd+++ = Nd(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.1437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(PO4)2-3 + +2 HPO4-2 + Nd+3 = Nd(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -5.1437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Nd+++ = Nd(SO4)2- - -llnl_gamma 4.0 - log_k -255.7478 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(SO4)2- + +2 SO4-2 + Nd+3 = Nd(SO4)2- + -llnl_gamma 4 + log_k -255.7478 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(SO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 Nd+++ + 2.0000 H2O = Nd2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -13.8902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(OH)2+4 + +2 Nd+3 + 2 H2O = Nd2(OH)2+4 + 2 H+ + -llnl_gamma 5.5 + log_k -13.8902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(OH)2+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Nd+++ + 1.0000 HAcetate = NdAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.0891 - -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction NdAcetate+2 + +Nd+3 + HAcetate = NdAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.0891 + -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction NdAcetate+2 # Enthalpy of formation: -285.47 kcal/mol - -analytic -1.6006e+001 4.1948e-004 -3.6469e+002 4.9280e+000 2.5187e+005 + -analytic -1.6006e+1 4.1948e-4 -3.6469e+2 4.928e+0 2.5187e+5 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 HCO3- = NdCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.6256 - -delta_H 91.6212 kJ/mol # Calculated enthalpy of reaction NdCO3+ +Nd+3 + HCO3- = NdCO3+ + H+ + -llnl_gamma 4 + log_k -2.6256 + -delta_H 91.6212 kJ/mol # Calculated enthalpy of reaction NdCO3+ # Enthalpy of formation: -309.5 kcal/mol - -analytic 2.3399e+002 5.3454e-002 -7.0513e+003 -9.2500e+001 -1.1010e+002 + -analytic 2.3399e+2 5.3454e-2 -7.0513e+3 -9.25e+1 -1.101e+2 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 Cl- = NdCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction NdCl+2 +Nd+3 + Cl- = NdCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction NdCl+2 # Enthalpy of formation: -203 kcal/mol - -analytic 9.4587e+001 3.9331e-002 -2.4200e+003 -3.9550e+001 -3.7790e+001 + -analytic 9.4587e+1 3.9331e-2 -2.42e+3 -3.955e+1 -3.779e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Nd+++ = NdCl2+ - -llnl_gamma 4.0 - log_k +0.0308 - -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction NdCl2+ +2 Cl- + Nd+3 = NdCl2+ + -llnl_gamma 4 + log_k 0.0308 + -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction NdCl2+ # Enthalpy of formation: -241.5 kcal/mol - -analytic 2.5840e+002 8.4118e-002 -7.2056e+003 -1.0477e+002 -1.1251e+002 + -analytic 2.584e+2 8.4118e-2 -7.2056e+3 -1.0477e+2 -1.1251e+2 # -Range: 0-300 -3.0000 Cl- + 1.0000 Nd+++ = NdCl3 - -llnl_gamma 3.0 - log_k -0.3203 - -delta_H 15.0582 kJ/mol # Calculated enthalpy of reaction NdCl3 +3 Cl- + Nd+3 = NdCl3 + -llnl_gamma 3 + log_k -0.3203 + -delta_H 15.0582 kJ/mol # Calculated enthalpy of reaction NdCl3 # Enthalpy of formation: -282.7 kcal/mol - -analytic 4.9362e+002 1.3485e-001 -1.4309e+004 -1.9645e+002 -2.2343e+002 + -analytic 4.9362e+2 1.3485e-1 -1.4309e+4 -1.9645e+2 -2.2343e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Nd+++ = NdCl4- - -llnl_gamma 4.0 - log_k -0.7447 - -delta_H -3.21331 kJ/mol # Calculated enthalpy of reaction NdCl4- +4 Cl- + Nd+3 = NdCl4- + -llnl_gamma 4 + log_k -0.7447 + -delta_H -3.21331 kJ/mol # Calculated enthalpy of reaction NdCl4- # Enthalpy of formation: -327 kcal/mol - -analytic 6.0548e+002 1.4227e-001 -1.8055e+004 -2.3765e+002 -2.8191e+002 + -analytic 6.0548e+2 1.4227e-1 -1.8055e+4 -2.3765e+2 -2.8191e+2 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 F- = NdF++ - -llnl_gamma 4.5 - log_k +4.3687 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction NdF+2 +Nd+3 + F- = NdF+2 + -llnl_gamma 4.5 + log_k 4.3687 + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction NdF+2 # Enthalpy of formation: -241.2 kcal/mol - -analytic 1.1461e+002 4.3014e-002 -3.2461e+003 -4.5326e+001 -5.0687e+001 + -analytic 1.1461e+2 4.3014e-2 -3.2461e+3 -4.5326e+1 -5.0687e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Nd+++ = NdF2+ - -llnl_gamma 4.0 - log_k +7.5646 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction NdF2+ +2 F- + Nd+3 = NdF2+ + -llnl_gamma 4 + log_k 7.5646 + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction NdF2+ # Enthalpy of formation: -323.5 kcal/mol - -analytic 2.7901e+002 8.7910e-002 -7.2424e+003 -1.1046e+002 -1.1309e+002 + -analytic 2.7901e+2 8.791e-2 -7.2424e+3 -1.1046e+2 -1.1309e+2 # -Range: 0-300 -3.0000 F- + 1.0000 Nd+++ = NdF3 - -llnl_gamma 3.0 - log_k +9.8809 - -delta_H -8.1588 kJ/mol # Calculated enthalpy of reaction NdF3 +3 F- + Nd+3 = NdF3 + -llnl_gamma 3 + log_k 9.8809 + -delta_H -8.1588 kJ/mol # Calculated enthalpy of reaction NdF3 # Enthalpy of formation: -408.9 kcal/mol - -analytic 5.2220e+002 1.4154e-001 -1.3697e+004 -2.0551e+002 -2.1388e+002 + -analytic 5.222e+2 1.4154e-1 -1.3697e+4 -2.0551e+2 -2.1388e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Nd+++ = NdF4- - -llnl_gamma 4.0 - log_k +11.8307 - -delta_H -48.5344 kJ/mol # Calculated enthalpy of reaction NdF4- +4 F- + Nd+3 = NdF4- + -llnl_gamma 4 + log_k 11.8307 + -delta_H -48.5344 kJ/mol # Calculated enthalpy of reaction NdF4- # Enthalpy of formation: -498.7 kcal/mol - -analytic 6.1972e+002 1.4620e-001 -1.5869e+004 -2.4175e+002 -2.4780e+002 + -analytic 6.1972e+2 1.462e-1 -1.5869e+4 -2.4175e+2 -2.478e+2 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 HPO4-- + 1.0000 H+ = NdH2PO4++ - -llnl_gamma 4.5 - log_k +9.5152 - -delta_H -15.736 kJ/mol # Calculated enthalpy of reaction NdH2PO4+2 +Nd+3 + HPO4-2 + H+ = NdH2PO4+2 + -llnl_gamma 4.5 + log_k 9.5152 + -delta_H -15.736 kJ/mol # Calculated enthalpy of reaction NdH2PO4+2 # Enthalpy of formation: -479.076 kcal/mol - -analytic 1.2450e+002 6.4953e-002 -4.0524e+002 -5.3728e+001 -6.3603e+000 + -analytic 1.245e+2 6.4953e-2 -4.0524e+2 -5.3728e+1 -6.3603e+0 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 HCO3- = NdHCO3++ - -llnl_gamma 4.5 - log_k +1.8457 - -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction NdHCO3+2 +Nd+3 + HCO3- = NdHCO3+2 + -llnl_gamma 4.5 + log_k 1.8457 + -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction NdHCO3+2 # Enthalpy of formation: -329.2 kcal/mol - -analytic 5.5530e+001 3.3254e-002 -7.3859e+002 -2.4690e+001 -1.1542e+001 + -analytic 5.553e+1 3.3254e-2 -7.3859e+2 -2.469e+1 -1.1542e+1 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 HPO4-- = NdHPO4+ - -llnl_gamma 4.0 - log_k +5.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdHPO4+ +Nd+3 + HPO4-2 = NdHPO4+ + -llnl_gamma 4 + log_k 5.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Nd+++ + 1.0000 NO3- = NdNO3++ - -llnl_gamma 4.5 - log_k +0.7902 - -delta_H -27.8529 kJ/mol # Calculated enthalpy of reaction NdNO3+2 + +Nd+3 + NO3- = NdNO3+2 + -llnl_gamma 4.5 + log_k 0.7902 + -delta_H -27.8529 kJ/mol # Calculated enthalpy of reaction NdNO3+2 # Enthalpy of formation: -222.586 kcal/mol - -analytic 3.3850e+001 2.7112e-002 1.4404e+003 -1.8570e+001 2.2466e+001 + -analytic 3.385e+1 2.7112e-2 1.4404e+3 -1.857e+1 2.2466e+1 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 H2O = NdO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -17.0701 - -delta_H 116.386 kJ/mol # Calculated enthalpy of reaction NdO+ +Nd+3 + H2O = NdO+ + 2 H+ + -llnl_gamma 4 + log_k -17.0701 + -delta_H 116.386 kJ/mol # Calculated enthalpy of reaction NdO+ # Enthalpy of formation: -207 kcal/mol - -analytic 1.8961e+002 3.0563e-002 -1.4153e+004 -6.8024e+001 -2.2089e+002 + -analytic 1.8961e+2 3.0563e-2 -1.4153e+4 -6.8024e+1 -2.2089e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Nd+++ = NdO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -37.0721 - -delta_H 298.88 kJ/mol # Calculated enthalpy of reaction NdO2- +2 H2O + Nd+3 = NdO2- + 4 H+ + -llnl_gamma 4 + log_k -37.0721 + -delta_H 298.88 kJ/mol # Calculated enthalpy of reaction NdO2- # Enthalpy of formation: -231.7 kcal/mol - -analytic 1.9606e+002 1.4784e-002 -2.1838e+004 -6.6399e+001 -3.4082e+002 + -analytic 1.9606e+2 1.4784e-2 -2.1838e+4 -6.6399e+1 -3.4082e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Nd+++ = NdO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -26.3702 - -delta_H 230.681 kJ/mol # Calculated enthalpy of reaction NdO2H +2 H2O + Nd+3 = NdO2H + 3 H+ + -llnl_gamma 3 + log_k -26.3702 + -delta_H 230.681 kJ/mol # Calculated enthalpy of reaction NdO2H # Enthalpy of formation: -248 kcal/mol - -analytic 3.4617e+002 4.5955e-002 -2.3960e+004 -1.2361e+002 -3.7398e+002 + -analytic 3.4617e+2 4.5955e-2 -2.396e+4 -1.2361e+2 -3.7398e+2 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 H2O = NdOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -8.1274 - -delta_H 80.8223 kJ/mol # Calculated enthalpy of reaction NdOH+2 +Nd+3 + H2O = NdOH+2 + H+ + -llnl_gamma 4.5 + log_k -8.1274 + -delta_H 80.8223 kJ/mol # Calculated enthalpy of reaction NdOH+2 # Enthalpy of formation: -215.5 kcal/mol - -analytic 6.6963e+001 1.2182e-002 -6.2797e+003 -2.3300e+001 -9.8008e+001 + -analytic 6.6963e+1 1.2182e-2 -6.2797e+3 -2.33e+1 -9.8008e+1 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 HPO4-- = NdPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.5218 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4 +Nd+3 + HPO4-2 = NdPO4 + H+ + -llnl_gamma 3 + log_k -0.5218 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Nd+++ = NdSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction NdSO4+ + +SO4-2 + Nd+3 = NdSO4+ + -llnl_gamma 4 + log_k 3.643 + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction NdSO4+ # Enthalpy of formation: -379.1 kcal/mol - -analytic 3.0267e+002 8.5362e-002 -8.9211e+003 -1.1902e+002 -1.3929e+002 + -analytic 3.0267e+2 8.5362e-2 -8.9211e+3 -1.1902e+2 -1.3929e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Ni++ = Ni(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.1908 - -delta_H -25.8571 kJ/mol # Calculated enthalpy of reaction Ni(Acetate)2 +2 HAcetate + Ni+2 = Ni(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -7.1908 + -delta_H -25.8571 kJ/mol # Calculated enthalpy of reaction Ni(Acetate)2 # Enthalpy of formation: -251.28 kcal/mol - -analytic -2.9660e+001 1.0643e-003 -1.0060e+003 7.9358e+000 5.2562e+005 + -analytic -2.966e+1 1.0643e-3 -1.006e+3 7.9358e+0 5.2562e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Ni++ = Ni(Acetate)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -11.3543 - -delta_H -53.6807 kJ/mol # Calculated enthalpy of reaction Ni(Acetate)3- +3 HAcetate + Ni+2 = Ni(Acetate)3- + 3 H+ + -llnl_gamma 4 + log_k -11.3543 + -delta_H -53.6807 kJ/mol # Calculated enthalpy of reaction Ni(Acetate)3- # Enthalpy of formation: -374.03 kcal/mol - -analytic 5.0850e+001 -8.2435e-003 -1.3049e+004 -1.5410e+001 1.9704e+006 + -analytic 5.085e+1 -8.2435e-3 -1.3049e+4 -1.541e+1 1.9704e+6 # -Range: 0-300 -2.0000 NH3 + 1.0000 Ni++ = Ni(NH3)2++ - -llnl_gamma 4.5 - log_k +5.0598 - -delta_H -29.7505 kJ/mol # Calculated enthalpy of reaction Ni(NH3)2+2 +2 NH3 + Ni+2 = Ni(NH3)2+2 + -llnl_gamma 4.5 + log_k 5.0598 + -delta_H -29.7505 kJ/mol # Calculated enthalpy of reaction Ni(NH3)2+2 # Enthalpy of formation: -246.398 kJ/mol - -analytic 1.0002e+002 5.2896e-003 -2.5967e+003 -3.5485e+001 -4.0548e+001 + -analytic 1.0002e+2 5.2896e-3 -2.5967e+3 -3.5485e+1 -4.0548e+1 # -Range: 0-300 -6.0000 NH3 + 1.0000 Ni++ = Ni(NH3)6++ - -llnl_gamma 4.5 - log_k +8.7344 - -delta_H -88.0436 kJ/mol # Calculated enthalpy of reaction Ni(NH3)6+2 +6 NH3 + Ni+2 = Ni(NH3)6+2 + -llnl_gamma 4.5 + log_k 8.7344 + -delta_H -88.0436 kJ/mol # Calculated enthalpy of reaction Ni(NH3)6+2 # Enthalpy of formation: -630.039 kJ/mol - -analytic 1.9406e+002 -1.3467e-002 -5.2321e+003 -6.6168e+001 -8.1699e+001 + -analytic 1.9406e+2 -1.3467e-2 -5.2321e+3 -6.6168e+1 -8.1699e+1 # -Range: 0-300 -2.0000 NO3- + 1.0000 Ni++ = Ni(NO3)2 - -llnl_gamma 3.0 - log_k +0.1899 - -delta_H -1.54153 kJ/mol # Calculated enthalpy of reaction Ni(NO3)2 +2 NO3- + Ni+2 = Ni(NO3)2 + -llnl_gamma 3 + log_k 0.1899 + -delta_H -1.54153 kJ/mol # Calculated enthalpy of reaction Ni(NO3)2 # Enthalpy of formation: -469.137 kJ/mol - -analytic -4.2544e+001 -1.0101e-002 1.3496e+003 1.6663e+001 2.2933e+001 + -analytic -4.2544e+1 -1.0101e-2 1.3496e+3 1.6663e+1 2.2933e+1 # -Range: 0-200 -2.0000 H2O + 1.0000 Ni++ = Ni(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -19.9902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)2 +2 H2O + Ni+2 = Ni(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -19.9902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Ni++ = Ni(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -30.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)3- + +3 H2O + Ni+2 = Ni(OH)3- + 3 H+ + -llnl_gamma 4 + log_k -30.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)3- # Enthalpy of formation: -0 kcal/mol - -2.0000 Ni++ + 1.0000 H2O = Ni2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -10.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2OH+3 + +2 Ni+2 + H2O = Ni2OH+3 + H+ + -llnl_gamma 5 + log_k -10.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2OH+3 # Enthalpy of formation: -0 kcal/mol - -4.0000 Ni++ + 4.0000 H2O = Ni4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -27.6803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni4(OH)4+4 + +4 Ni+2 + 4 H2O = Ni4(OH)4+4 + 4 H+ + -llnl_gamma 5.5 + log_k -27.6803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni4(OH)4+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Ni++ + 1.0000 Br- = NiBr+ - -llnl_gamma 4.0 - log_k -0.37 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiBr+ + +Ni+2 + Br- = NiBr+ + -llnl_gamma 4 + log_k -0.37 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiBr+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Ni++ + 1.0000 HAcetate = NiAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.3278 - -delta_H -10.2508 kJ/mol # Calculated enthalpy of reaction NiAcetate+ + +Ni+2 + HAcetate = NiAcetate+ + H+ + -llnl_gamma 4 + log_k -3.3278 + -delta_H -10.2508 kJ/mol # Calculated enthalpy of reaction NiAcetate+ # Enthalpy of formation: -131.45 kcal/mol - -analytic -3.3110e+000 1.6895e-003 -1.0556e+003 2.7168e-002 2.6350e+005 + -analytic -3.311e+0 1.6895e-3 -1.0556e+3 2.7168e-2 2.635e+5 # -Range: 0-300 -1.0000 Ni++ + 1.0000 Cl- = NiCl+ - -llnl_gamma 4.0 - log_k -0.9962 - -delta_H 5.99567 kJ/mol # Calculated enthalpy of reaction NiCl+ +Ni+2 + Cl- = NiCl+ + -llnl_gamma 4 + log_k -0.9962 + -delta_H 5.99567 kJ/mol # Calculated enthalpy of reaction NiCl+ # Enthalpy of formation: -51.4 kcal/mol - -analytic 9.5370e+001 3.8521e-002 -2.1746e+003 -4.0629e+001 -3.3961e+001 + -analytic 9.537e+1 3.8521e-2 -2.1746e+3 -4.0629e+1 -3.3961e+1 # -Range: 0-300 -2.0000 HPO4-- + 1.0000 Ni++ + 1.0000 H+ = NiHP2O7- +1.0000 H2O - -llnl_gamma 4.0 - log_k +9.2680 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiHP2O7- +2 HPO4-2 + Ni+2 + H+ = NiHP2O7- + H2O + -llnl_gamma 4 + log_k 9.268 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiHP2O7- # Enthalpy of formation: -0 kcal/mol - -1.0000 Ni++ + 1.0000 NO3- = NiNO3+ - -llnl_gamma 4.0 - log_k +0.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiNO3+ + +Ni+2 + NO3- = NiNO3+ + -llnl_gamma 4 + log_k 0.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiNO3+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ni++ = NiP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +3.1012 - -delta_H 9.68819 kJ/mol # Calculated enthalpy of reaction NiP2O7-2 + +2 HPO4-2 + Ni+2 = NiP2O7-2 + H2O + -llnl_gamma 4 + log_k 3.1012 + -delta_H 9.68819 kJ/mol # Calculated enthalpy of reaction NiP2O7-2 # Enthalpy of formation: -2342.61 kJ/mol - -analytic 4.6809e+002 1.0985e-001 -1.4310e+004 -1.8173e+002 -2.2344e+002 + -analytic 4.6809e+2 1.0985e-1 -1.431e+4 -1.8173e+2 -2.2344e+2 # -Range: 0-300 -1.0000 SO4-- + 1.0000 Ni++ = NiSO4 - -llnl_gamma 3.0 - log_k +2.1257 - -delta_H 2.36814 kJ/mol # Calculated enthalpy of reaction NiSO4 +SO4-2 + Ni+2 = NiSO4 + -llnl_gamma 3 + log_k 2.1257 + -delta_H 2.36814 kJ/mol # Calculated enthalpy of reaction NiSO4 # Enthalpy of formation: -229.734 kcal/mol - -analytic 6.1187e+001 2.4211e-002 -1.2180e+003 -2.5130e+001 -2.0705e+001 + -analytic 6.1187e+1 2.4211e-2 -1.218e+3 -2.513e+1 -2.0705e+1 # -Range: 0-200 -1.0000 SeO4-- + 1.0000 Ni++ = NiSeO4 - -llnl_gamma 3.0 - log_k +2.6700 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiSeO4 +SeO4-2 + Ni+2 = NiSeO4 + -llnl_gamma 3 + log_k 2.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiSeO4 # Enthalpy of formation: -0 kcal/mol - -5.0000 HCO3- + 1.0000 Np++++ = Np(CO3)5-6 +5.0000 H+ - -llnl_gamma 4.0 - log_k -13.344 - -delta_H 92.7067 kJ/mol # Calculated enthalpy of reaction Np(CO3)5-6 + +5 HCO3- + Np+4 = Np(CO3)5-6 + 5 H+ + -llnl_gamma 4 + log_k -13.344 + -delta_H 92.7067 kJ/mol # Calculated enthalpy of reaction Np(CO3)5-6 # Enthalpy of formation: -935.22 kcal/mol - -analytic 6.3005e+002 2.3388e-001 -1.8328e+004 -2.6334e+002 -2.8618e+002 + -analytic 6.3005e+2 2.3388e-1 -1.8328e+4 -2.6334e+2 -2.8618e+2 # -Range: 0-300 -2.0000 HPO4-- + 2.0000 H+ + 1.0000 Np+++ = Np(H2PO4)2+ - -llnl_gamma 4.0 - log_k +3.7000 - -delta_H -1.55258 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)2+ +2 HPO4-2 + 2 H+ + Np+3 = Np(H2PO4)2+ + -llnl_gamma 4 + log_k 3.7 + -delta_H -1.55258 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)2+ # Enthalpy of formation: -743.981 kcal/mol - -analytic 7.8161e+002 2.8446e-001 -1.2330e+004 -3.3194e+002 -2.1056e+002 + -analytic 7.8161e+2 2.8446e-1 -1.233e+4 -3.3194e+2 -2.1056e+2 # -Range: 25-150 -3.0000 HPO4-- + 3.0000 H+ + 1.0000 Np+++ = Np(H2PO4)3 - -llnl_gamma 3.0 - log_k +5.6000 - -delta_H -21.8575 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)3 +3 HPO4-2 + 3 H+ + Np+3 = Np(H2PO4)3 + -llnl_gamma 3 + log_k 5.6 + -delta_H -21.8575 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)3 # Enthalpy of formation: -1057.65 kcal/mol - -analytic 1.5150e+003 4.4939e-001 -3.2766e+004 -6.1975e+002 -5.5934e+002 + -analytic 1.515e+3 4.4939e-1 -3.2766e+4 -6.1975e+2 -5.5934e+2 # -Range: 25-150 -2.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)2 - -llnl_gamma 3.0 - log_k +23.7000 - -delta_H -35.24 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 +2 HPO4-2 + Np+4 = Np(HPO4)2 + -llnl_gamma 3 + log_k 23.7 + -delta_H -35.24 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 # Enthalpy of formation: -758.94 kcal/mol - -analytic 4.7722e+002 2.1099e-001 -4.7296e+003 -2.0229e+002 -8.0831e+001 + -analytic 4.7722e+2 2.1099e-1 -4.7296e+3 -2.0229e+2 -8.0831e+1 # -Range: 25-150 -3.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)3-- - -llnl_gamma 4.0 - log_k +33.4000 - -delta_H -44.9093 kJ/mol # Calculated enthalpy of reaction Np(HPO4)3-2 +3 HPO4-2 + Np+4 = Np(HPO4)3-2 + -llnl_gamma 4 + log_k 33.4 + -delta_H -44.9093 kJ/mol # Calculated enthalpy of reaction Np(HPO4)3-2 # Enthalpy of formation: -1070.07 kcal/mol - -analytic -1.5951e+003 -3.6579e-001 5.1343e+004 6.3262e+002 8.7619e+002 + -analytic -1.5951e+3 -3.6579e-1 5.1343e+4 6.3262e+2 8.7619e+2 # -Range: 25-150 -4.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)4---- - -llnl_gamma 4.0 - log_k +43.2000 - -delta_H -67.0803 kJ/mol # Calculated enthalpy of reaction Np(HPO4)4-4 +4 HPO4-2 + Np+4 = Np(HPO4)4-4 + -llnl_gamma 4 + log_k 43.2 + -delta_H -67.0803 kJ/mol # Calculated enthalpy of reaction Np(HPO4)4-4 # Enthalpy of formation: -1384.18 kcal/mol - -analytic 5.8359e+003 1.5194e+000 -1.6349e+005 -2.3025e+003 -2.7903e+003 + -analytic 5.8359e+3 1.5194e+0 -1.6349e+5 -2.3025e+3 -2.7903e+3 # -Range: 25-150 -5.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)5-6 - -llnl_gamma 4.0 - log_k +52.0000 - -delta_H -83.5401 kJ/mol # Calculated enthalpy of reaction Np(HPO4)5-6 +5 HPO4-2 + Np+4 = Np(HPO4)5-6 + -llnl_gamma 4 + log_k 52 + -delta_H -83.5401 kJ/mol # Calculated enthalpy of reaction Np(HPO4)5-6 # Enthalpy of formation: -1696.93 kcal/mol - -analytic -1.8082e+003 -2.0018e-001 7.5155e+004 6.7400e+002 1.2824e+003 + -analytic -1.8082e+3 -2.0018e-1 7.5155e+4 6.74e+2 1.2824e+3 # -Range: 25-150 -2.0000 H2O + 1.0000 Np++++ = Np(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -2.8 - -delta_H 77.0669 kJ/mol # Calculated enthalpy of reaction Np(OH)2+2 +2 H2O + Np+4 = Np(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k -2.8 + -delta_H 77.0669 kJ/mol # Calculated enthalpy of reaction Np(OH)2+2 # Enthalpy of formation: -251.102 kcal/mol - -analytic 2.9299e+003 6.5812e-001 -9.5085e+004 -1.1356e+003 -1.6227e+003 + -analytic 2.9299e+3 6.5812e-1 -9.5085e+4 -1.1356e+3 -1.6227e+3 # -Range: 25-150 -3.0000 H2O + 1.0000 Np++++ = Np(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -5.8 - -delta_H 99.5392 kJ/mol # Calculated enthalpy of reaction Np(OH)3+ +3 H2O + Np+4 = Np(OH)3+ + 3 H+ + -llnl_gamma 4 + log_k -5.8 + -delta_H 99.5392 kJ/mol # Calculated enthalpy of reaction Np(OH)3+ # Enthalpy of formation: -314.048 kcal/mol - -analytic -4.7723e+003 -1.1810e+000 1.3545e+005 1.8850e+003 2.3117e+003 + -analytic -4.7723e+3 -1.181e+0 1.3545e+5 1.885e+3 2.3117e+3 # -Range: 25-150 -4.0000 H2O + 1.0000 Np++++ = Np(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -9.6 - -delta_H 109.585 kJ/mol # Calculated enthalpy of reaction Np(OH)4 +4 H2O + Np+4 = Np(OH)4 + 4 H+ + -llnl_gamma 3 + log_k -9.6 + -delta_H 109.585 kJ/mol # Calculated enthalpy of reaction Np(OH)4 # Enthalpy of formation: -379.964 kcal/mol - -analytic -5.5904e+003 -1.3639e+000 1.6112e+005 2.2013e+003 2.7498e+003 + -analytic -5.5904e+3 -1.3639e+0 1.6112e+5 2.2013e+3 2.7498e+3 # -Range: 25-150 -2.0000 SO4-- + 1.0000 Np++++ = Np(SO4)2 - -llnl_gamma 3.0 - log_k +9.9000 - -delta_H 40.005 kJ/mol # Calculated enthalpy of reaction Np(SO4)2 +2 SO4-2 + Np+4 = Np(SO4)2 + -llnl_gamma 3 + log_k 9.9 + -delta_H 40.005 kJ/mol # Calculated enthalpy of reaction Np(SO4)2 # Enthalpy of formation: -558.126 kcal/mol - -analytic -9.0765e+002 -1.8494e-001 2.7951e+004 3.5521e+002 4.7702e+002 + -analytic -9.0765e+2 -1.8494e-1 2.7951e+4 3.5521e+2 4.7702e+2 # -Range: 25-150 -1.0000 Np++++ + 1.0000 Cl- = NpCl+++ - -llnl_gamma 5.0 - log_k +0.2000 - -delta_H 20.3737 kJ/mol # Calculated enthalpy of reaction NpCl+3 +Np+4 + Cl- = NpCl+3 + -llnl_gamma 5 + log_k 0.2 + -delta_H 20.3737 kJ/mol # Calculated enthalpy of reaction NpCl+3 # Enthalpy of formation: -167.951 kcal/mol - -analytic 8.3169e+002 2.6267e-001 -2.1618e+004 -3.3838e+002 -3.6898e+002 + -analytic 8.3169e+2 2.6267e-1 -2.1618e+4 -3.3838e+2 -3.6898e+2 # -Range: 25-150 -2.0000 Cl- + 1.0000 Np++++ = NpCl2++ - -llnl_gamma 4.5 - log_k -0.1 - -delta_H 94.5853 kJ/mol # Calculated enthalpy of reaction NpCl2+2 +2 Cl- + Np+4 = NpCl2+2 + -llnl_gamma 4.5 + log_k -0.1 + -delta_H 94.5853 kJ/mol # Calculated enthalpy of reaction NpCl2+2 # Enthalpy of formation: -190.147 kcal/mol - -analytic -1.5751e+003 -3.8759e-001 4.2054e+004 6.2619e+002 7.1777e+002 + -analytic -1.5751e+3 -3.8759e-1 4.2054e+4 6.2619e+2 7.1777e+2 # -Range: 25-150 -1.0000 Np++++ + 1.0000 F- = NpF+++ - -llnl_gamma 5.0 - log_k +8.7000 - -delta_H -3.43746 kJ/mol # Calculated enthalpy of reaction NpF+3 +Np+4 + F- = NpF+3 + -llnl_gamma 5 + log_k 8.7 + -delta_H -3.43746 kJ/mol # Calculated enthalpy of reaction NpF+3 # Enthalpy of formation: -213.859 kcal/mol - -analytic 2.7613e+000 1.3498e-003 -1.6411e+003 2.9074e+000 3.4192e+005 + -analytic 2.7613e+0 1.3498e-3 -1.6411e+3 2.9074e+0 3.4192e+5 # -Range: 25-150 -2.0000 F- + 1.0000 Np++++ = NpF2++ - -llnl_gamma 4.5 - log_k +15.4000 - -delta_H 6.03094 kJ/mol # Calculated enthalpy of reaction NpF2+2 +2 F- + Np+4 = NpF2+2 + -llnl_gamma 4.5 + log_k 15.4 + -delta_H 6.03094 kJ/mol # Calculated enthalpy of reaction NpF2+2 # Enthalpy of formation: -291.746 kcal/mol - -analytic -2.6793e+002 -4.2056e-002 9.7952e+003 1.0629e+002 1.6715e+002 + -analytic -2.6793e+2 -4.2056e-2 9.7952e+3 1.0629e+2 1.6715e+2 # -Range: 25-150 -1.0000 Np+++ + 1.0000 HPO4-- + 1.0000 H+ = NpH2PO4++ - -llnl_gamma 4.5 - log_k +2.4000 - -delta_H 6.0874 kJ/mol # Calculated enthalpy of reaction NpH2PO4+2 +Np+3 + HPO4-2 + H+ = NpH2PO4+2 + -llnl_gamma 4.5 + log_k 2.4 + -delta_H 6.0874 kJ/mol # Calculated enthalpy of reaction NpH2PO4+2 # Enthalpy of formation: -433.34 kcal/mol - -analytic 6.0731e+003 1.4733e+000 -1.7919e+005 -2.3880e+003 -3.0582e+003 + -analytic 6.0731e+3 1.4733e+0 -1.7919e+5 -2.388e+3 -3.0582e+3 # -Range: 25-150 -1.0000 Np++++ + 1.0000 HPO4-- = NpHPO4++ - -llnl_gamma 4.5 - log_k +12.9000 - -delta_H 7.54554 kJ/mol # Calculated enthalpy of reaction NpHPO4+2 +Np+4 + HPO4-2 = NpHPO4+2 + -llnl_gamma 4.5 + log_k 12.9 + -delta_H 7.54554 kJ/mol # Calculated enthalpy of reaction NpHPO4+2 # Enthalpy of formation: -439.899 kcal/mol - -analytic -7.2792e+003 -1.7476e+000 2.1770e+005 2.8624e+003 3.7154e+003 + -analytic -7.2792e+3 -1.7476e+0 2.177e+5 2.8624e+3 3.7154e+3 # -Range: 25-150 -2.0000 HCO3- + 1.0000 NpO2++ = NpO2(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -6.6576 - -delta_H 57.2588 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-2 +2 HCO3- + NpO2+2 = NpO2(CO3)2-2 + 2 H+ + -llnl_gamma 4 + log_k -6.6576 + -delta_H 57.2588 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-2 # Enthalpy of formation: -521.77 kcal/mol - -analytic 2.6597e+002 7.5850e-002 -9.9987e+003 -1.0576e+002 -1.5610e+002 + -analytic 2.6597e+2 7.585e-2 -9.9987e+3 -1.0576e+2 -1.561e+2 # -Range: 0-300 -2.0000 HCO3- + 1.0000 NpO2+ = NpO2(CO3)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -13.6576 - -delta_H 58.1553 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-3 +2 HCO3- + NpO2+ = NpO2(CO3)2-3 + 2 H+ + -llnl_gamma 4 + log_k -13.6576 + -delta_H 58.1553 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-3 # Enthalpy of formation: -549.642 kcal/mol - -analytic 2.6012e+002 7.3174e-002 -1.0250e+004 -1.0556e+002 -1.6002e+002 + -analytic 2.6012e+2 7.3174e-2 -1.025e+4 -1.0556e+2 -1.6002e+2 # -Range: 0-300 -3.0000 HCO3- + 1.0000 NpO2+ = NpO2(CO3)3-5 +3.0000 H+ - -llnl_gamma 4.0 - log_k -22.4864 - -delta_H 70.176 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-5 +3 HCO3- + NpO2+ = NpO2(CO3)3-5 + 3 H+ + -llnl_gamma 4 + log_k -22.4864 + -delta_H 70.176 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-5 # Enthalpy of formation: -711.667 kcal/mol - -analytic 3.7433e+002 1.2938e-001 -1.2791e+004 -1.5861e+002 -1.9970e+002 + -analytic 3.7433e+2 1.2938e-1 -1.2791e+4 -1.5861e+2 -1.997e+2 # -Range: 0-300 -3.0000 HCO3- + 1.0000 NpO2++ = NpO2(CO3)3---- +3.0000 H+ - -llnl_gamma 4.0 - log_k -10.5864 - -delta_H 3.14711 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-4 +3 HCO3- + NpO2+2 = NpO2(CO3)3-4 + 3 H+ + -llnl_gamma 4 + log_k -10.5864 + -delta_H 3.14711 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-4 # Enthalpy of formation: -699.601 kcal/mol - -analytic 3.7956e+002 1.1163e-001 -1.0607e+004 -1.5674e+002 -1.6562e+002 + -analytic 3.7956e+2 1.1163e-1 -1.0607e+4 -1.5674e+2 -1.6562e+2 # -Range: 0-300 -1.0000 NpO2+ + 1.0000 HCO3- = NpO2CO3- +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.7288 - -delta_H 69.1634 kJ/mol # Calculated enthalpy of reaction NpO2CO3- +NpO2+ + HCO3- = NpO2CO3- + H+ + -llnl_gamma 4 + log_k -5.7288 + -delta_H 69.1634 kJ/mol # Calculated enthalpy of reaction NpO2CO3- # Enthalpy of formation: -382.113 kcal/mol - -analytic 1.4634e+002 2.6576e-002 -8.2036e+003 -5.3534e+001 -1.2805e+002 + -analytic 1.4634e+2 2.6576e-2 -8.2036e+3 -5.3534e+1 -1.2805e+2 # -Range: 0-300 -1.0000 NpO2+ + 1.0000 Cl- = NpO2Cl - -llnl_gamma 3.0 - log_k -0.4 - -delta_H 15.4492 kJ/mol # Calculated enthalpy of reaction NpO2Cl +NpO2+ + Cl- = NpO2Cl + -llnl_gamma 3 + log_k -0.4 + -delta_H 15.4492 kJ/mol # Calculated enthalpy of reaction NpO2Cl # Enthalpy of formation: -269.986 kcal/mol - -analytic 4.5109e+002 9.0437e-002 -1.5453e+004 -1.7241e+002 -2.6371e+002 + -analytic 4.5109e+2 9.0437e-2 -1.5453e+4 -1.7241e+2 -2.6371e+2 # -Range: 25-150 -1.0000 NpO2++ + 1.0000 Cl- = NpO2Cl+ - -llnl_gamma 4.0 - log_k -0.2 - -delta_H 11.6239 kJ/mol # Calculated enthalpy of reaction NpO2Cl+ +NpO2+2 + Cl- = NpO2Cl+ + -llnl_gamma 4 + log_k -0.2 + -delta_H 11.6239 kJ/mol # Calculated enthalpy of reaction NpO2Cl+ # Enthalpy of formation: -242.814 kcal/mol - -analytic -1.2276e+003 -2.5435e-001 3.8507e+004 4.7447e+002 6.5715e+002 + -analytic -1.2276e+3 -2.5435e-1 3.8507e+4 4.7447e+2 6.5715e+2 # -Range: 25-150 -1.0000 NpO2+ + 1.0000 F- = NpO2F - -llnl_gamma 3.0 - log_k +1.0000 - -delta_H 34.2521 kJ/mol # Calculated enthalpy of reaction NpO2F +NpO2+ + F- = NpO2F + -llnl_gamma 3 + log_k 1 + -delta_H 34.2521 kJ/mol # Calculated enthalpy of reaction NpO2F # Enthalpy of formation: -305.709 kcal/mol - -analytic -1.9364e+002 -4.4083e-002 4.5602e+003 7.7791e+001 7.7840e+001 + -analytic -1.9364e+2 -4.4083e-2 4.5602e+3 7.7791e+1 7.784e+1 # -Range: 25-150 -1.0000 NpO2++ + 1.0000 F- = NpO2F+ - -llnl_gamma 4.0 - log_k +4.6000 - -delta_H 0.883568 kJ/mol # Calculated enthalpy of reaction NpO2F+ +NpO2+2 + F- = NpO2F+ + -llnl_gamma 4 + log_k 4.6 + -delta_H 0.883568 kJ/mol # Calculated enthalpy of reaction NpO2F+ # Enthalpy of formation: -285.598 kcal/mol - -analytic 9.6320e+002 2.4799e-001 -2.7614e+004 -3.7985e+002 -4.7128e+002 + -analytic 9.632e+2 2.4799e-1 -2.7614e+4 -3.7985e+2 -4.7128e+2 # -Range: 25-150 -2.0000 F- + 1.0000 NpO2++ = NpO2F2 - -llnl_gamma 3.0 - log_k +7.8000 - -delta_H 2.60319 kJ/mol # Calculated enthalpy of reaction NpO2F2 +2 F- + NpO2+2 = NpO2F2 + -llnl_gamma 3 + log_k 7.8 + -delta_H 2.60319 kJ/mol # Calculated enthalpy of reaction NpO2F2 # Enthalpy of formation: -365.337 kcal/mol - -analytic 1.9648e+002 6.4083e-002 -4.5601e+003 -7.7790e+001 -7.7840e+001 + -analytic 1.9648e+2 6.4083e-2 -4.5601e+3 -7.779e+1 -7.784e+1 # -Range: 25-150 -1.0000 NpO2+ + 1.0000 HPO4-- + 1.0000 H+ = NpO2H2PO4 - -llnl_gamma 3.0 - log_k +0.6000 - -delta_H 18.717 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4 +NpO2+ + HPO4-2 + H+ = NpO2H2PO4 + -llnl_gamma 3 + log_k 0.6 + -delta_H 18.717 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4 # Enthalpy of formation: -538.087 kcal/mol - -analytic 1.0890e+003 2.7738e-001 -3.0654e+004 -4.3171e+002 -5.2317e+002 + -analytic 1.089e+3 2.7738e-1 -3.0654e+4 -4.3171e+2 -5.2317e+2 # -Range: 25-150 -1.0000 NpO2++ + 1.0000 HPO4-- + 1.0000 H+ = NpO2H2PO4+ - -llnl_gamma 4.0 - log_k +2.3000 - -delta_H 9.31014 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4+ +NpO2+2 + HPO4-2 + H+ = NpO2H2PO4+ + -llnl_gamma 4 + log_k 2.3 + -delta_H 9.31014 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4+ # Enthalpy of formation: -512.249 kcal/mol - -analytic -5.6996e+003 -1.4008e+000 1.6898e+005 2.2441e+003 2.8838e+003 + -analytic -5.6996e+3 -1.4008e+0 1.6898e+5 2.2441e+3 2.8838e+3 # -Range: 25-150 -1.0000 NpO2++ + 1.0000 HPO4-- = NpO2HPO4 - -llnl_gamma 3.0 - log_k +8.2000 - -delta_H -6.47609 kJ/mol # Calculated enthalpy of reaction NpO2HPO4 +NpO2+2 + HPO4-2 = NpO2HPO4 + -llnl_gamma 3 + log_k 8.2 + -delta_H -6.47609 kJ/mol # Calculated enthalpy of reaction NpO2HPO4 # Enthalpy of formation: -516.022 kcal/mol - -analytic 4.8515e+003 1.2189e+000 -1.4069e+005 -1.9135e+003 -2.4011e+003 + -analytic 4.8515e+3 1.2189e+0 -1.4069e+5 -1.9135e+3 -2.4011e+3 # -Range: 25-150 -1.0000 NpO2+ + 1.0000 HPO4-- = NpO2HPO4- - -llnl_gamma 4.0 - log_k +3.5000 - -delta_H 49.8668 kJ/mol # Calculated enthalpy of reaction NpO2HPO4- +NpO2+ + HPO4-2 = NpO2HPO4- + -llnl_gamma 4 + log_k 3.5 + -delta_H 49.8668 kJ/mol # Calculated enthalpy of reaction NpO2HPO4- # Enthalpy of formation: -530.642 kcal/mol - -analytic -4.1705e+003 -9.9302e-001 1.2287e+005 1.6399e+003 2.0969e+003 + -analytic -4.1705e+3 -9.9302e-1 1.2287e+5 1.6399e+3 2.0969e+3 # -Range: 25-150 -1.0000 NpO2+ + 1.0000 H2O = NpO2OH +1.0000 H+ - -llnl_gamma 3.0 - log_k -8.9 - -delta_H 43.6285 kJ/mol # Calculated enthalpy of reaction NpO2OH +NpO2+ + H2O = NpO2OH + H+ + -llnl_gamma 3 + log_k -8.9 + -delta_H 43.6285 kJ/mol # Calculated enthalpy of reaction NpO2OH # Enthalpy of formation: -291.635 kcal/mol - -analytic -4.5710e+002 -1.2286e-001 1.0640e+004 1.8151e+002 1.8163e+002 + -analytic -4.571e+2 -1.2286e-1 1.064e+4 1.8151e+2 1.8163e+2 # -Range: 25-150 -1.0000 NpO2++ + 1.0000 H2O = NpO2OH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.2 - -delta_H 43.3805 kJ/mol # Calculated enthalpy of reaction NpO2OH+ +NpO2+2 + H2O = NpO2OH+ + H+ + -llnl_gamma 4 + log_k -5.2 + -delta_H 43.3805 kJ/mol # Calculated enthalpy of reaction NpO2OH+ # Enthalpy of formation: -263.608 kcal/mol - -analytic 1.7485e+002 4.0017e-002 -7.5154e+003 -6.7399e+001 -1.2823e+002 + -analytic 1.7485e+2 4.0017e-2 -7.5154e+3 -6.7399e+1 -1.2823e+2 # -Range: 25-150 -1.0000 SO4-- + 1.0000 NpO2++ = NpO2SO4 - -llnl_gamma 3.0 - log_k +3.3000 - -delta_H 19.8789 kJ/mol # Calculated enthalpy of reaction NpO2SO4 +SO4-2 + NpO2+2 = NpO2SO4 + -llnl_gamma 3 + log_k 3.3 + -delta_H 19.8789 kJ/mol # Calculated enthalpy of reaction NpO2SO4 # Enthalpy of formation: -418.308 kcal/mol - -analytic -1.5624e+002 7.3296e-003 6.7555e+003 5.4435e+001 1.1527e+002 + -analytic -1.5624e+2 7.3296e-3 6.7555e+3 5.4435e+1 1.1527e+2 # -Range: 25-150 -1.0000 SO4-- + 1.0000 NpO2+ = NpO2SO4- - -llnl_gamma 4.0 - log_k +0.4000 - -delta_H 19.1395 kJ/mol # Calculated enthalpy of reaction NpO2SO4- +SO4-2 + NpO2+ = NpO2SO4- + -llnl_gamma 4 + log_k 0.4 + -delta_H 19.1395 kJ/mol # Calculated enthalpy of reaction NpO2SO4- # Enthalpy of formation: -446.571 kcal/mol - -analytic -3.1804e+002 -9.3472e-002 7.6002e+003 1.2965e+002 1.2973e+002 + -analytic -3.1804e+2 -9.3472e-2 7.6002e+3 1.2965e+2 1.2973e+2 # -Range: 25-150 -1.0000 Np+++ + 1.0000 H2O = NpOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7 - -delta_H 50.1031 kJ/mol # Calculated enthalpy of reaction NpOH+2 +Np+3 + H2O = NpOH+2 + H+ + -llnl_gamma 4.5 + log_k -7 + -delta_H 50.1031 kJ/mol # Calculated enthalpy of reaction NpOH+2 # Enthalpy of formation: -182.322 kcal/mol - -analytic 1.4062e+002 3.2671e-002 -6.7555e+003 -5.4435e+001 -1.1526e+002 + -analytic 1.4062e+2 3.2671e-2 -6.7555e+3 -5.4435e+1 -1.1526e+2 # -Range: 25-150 -1.0000 Np++++ + 1.0000 H2O = NpOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -1 - -delta_H 51.0089 kJ/mol # Calculated enthalpy of reaction NpOH+3 +Np+4 + H2O = NpOH+3 + H+ + -llnl_gamma 5 + log_k -1 + -delta_H 51.0089 kJ/mol # Calculated enthalpy of reaction NpOH+3 # Enthalpy of formation: -189.013 kcal/mol - -analytic -1.8373e+002 -5.2443e-002 2.7025e+003 7.6503e+001 4.6154e+001 + -analytic -1.8373e+2 -5.2443e-2 2.7025e+3 7.6503e+1 4.6154e+1 # -Range: 25-150 -1.0000 SO4-- + 1.0000 Np++++ = NpSO4++ - -llnl_gamma 4.5 - log_k +5.5000 - -delta_H 20.7377 kJ/mol # Calculated enthalpy of reaction NpSO4+2 +SO4-2 + Np+4 = NpSO4+2 + -llnl_gamma 4.5 + log_k 5.5 + -delta_H 20.7377 kJ/mol # Calculated enthalpy of reaction NpSO4+2 # Enthalpy of formation: -345.331 kcal/mol - -analytic 3.9477e+002 1.1981e-001 -1.0978e+004 -1.5687e+002 -1.8736e+002 + -analytic 3.9477e+2 1.1981e-1 -1.0978e+4 -1.5687e+2 -1.8736e+2 # -Range: 25-150 -1.0000 H2O = OH- +1.0000 H+ - -llnl_gamma 3.5 - log_k -13.9951 - -delta_H 55.8146 kJ/mol # Calculated enthalpy of reaction OH- +H2O = OH- + H+ + -llnl_gamma 3.5 + log_k -13.9951 + -delta_H 55.8146 kJ/mol # Calculated enthalpy of reaction OH- # Enthalpy of formation: -54.977 kcal/mol - -analytic -6.7506e+001 -3.0619e-002 -1.9901e+003 2.8004e+001 -3.1033e+001 + -analytic -6.7506e+1 -3.0619e-2 -1.9901e+3 2.8004e+1 -3.1033e+1 # -Range: 0-300 -2.0000 HPO4-- = P2O7---- +1.0000 H2O - -llnl_gamma 4.0 - log_k -3.7463 - -delta_H 27.2256 kJ/mol # Calculated enthalpy of reaction P2O7-4 +2 HPO4-2 = P2O7-4 + H2O + -llnl_gamma 4 + log_k -3.7463 + -delta_H 27.2256 kJ/mol # Calculated enthalpy of reaction P2O7-4 # Enthalpy of formation: -2271.1 kJ/mol - -analytic 4.0885e+002 1.3243e-001 -1.1373e+004 -1.6727e+002 -1.7758e+002 + -analytic 4.0885e+2 1.3243e-1 -1.1373e+4 -1.6727e+2 -1.7758e+2 # -Range: 0-300 -3.0000 H+ + 1.0000 HPO4-- = PH4+ +2.0000 O2 - -llnl_gamma 4.0 - log_k -212.7409 - -delta_H 0 # Not possible to calculate enthalpy of reaction PH4+ +3 H+ + HPO4-2 = PH4+ + 2 O2 + -llnl_gamma 4 + log_k -212.7409 + -delta_H 0 # Not possible to calculate enthalpy of reaction PH4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 F- = PO3F-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +7.1993 - -delta_H 0 # Not possible to calculate enthalpy of reaction PO3F-2 + +HPO4-2 + H+ + F- = PO3F-2 + H2O + -llnl_gamma 4 + log_k 7.1993 + -delta_H 0 # Not possible to calculate enthalpy of reaction PO3F-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- = PO4--- +1.0000 H+ - -llnl_gamma 4.0 - log_k -12.3218 - -delta_H 14.7068 kJ/mol # Calculated enthalpy of reaction PO4-3 + +HPO4-2 = PO4-3 + H+ + -llnl_gamma 4 + log_k -12.3218 + -delta_H 14.7068 kJ/mol # Calculated enthalpy of reaction PO4-3 # Enthalpy of formation: -305.3 kcal/mol - -analytic -7.6170e+001 -3.3574e-002 1.3405e+002 2.9658e+001 2.1140e+000 + -analytic -7.617e+1 -3.3574e-2 1.3405e+2 2.9658e+1 2.114e+0 # -Range: 0-300 -2.0000 BrO3- + 1.0000 Pb++ = Pb(BrO3)2 - -llnl_gamma 3.0 - log_k +5.1939 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(BrO3)2 +2 BrO3- + Pb+2 = Pb(BrO3)2 + -llnl_gamma 3 + log_k 5.1939 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(BrO3)2 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Pb++ = Pb(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -6.1133 - -delta_H 10.5437 kJ/mol # Calculated enthalpy of reaction Pb(Acetate)2 + +2 HAcetate + Pb+2 = Pb(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -6.1133 + -delta_H 10.5437 kJ/mol # Calculated enthalpy of reaction Pb(Acetate)2 # Enthalpy of formation: -229.46 kcal/mol - -analytic -1.7315e+001 -1.0618e-003 -3.6365e+003 6.9263e+000 5.8659e+005 + -analytic -1.7315e+1 -1.0618e-3 -3.6365e+3 6.9263e+0 5.8659e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Pb++ = Pb(Acetate)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -8.972 - -delta_H -2.84512 kJ/mol # Calculated enthalpy of reaction Pb(Acetate)3- +3 HAcetate + Pb+2 = Pb(Acetate)3- + 3 H+ + -llnl_gamma 4 + log_k -8.972 + -delta_H -2.84512 kJ/mol # Calculated enthalpy of reaction Pb(Acetate)3- # Enthalpy of formation: -348.76 kcal/mol - -analytic 1.2417e+001 -3.1481e-003 -9.4152e+003 -1.6846e+000 1.3623e+006 + -analytic 1.2417e+1 -3.1481e-3 -9.4152e+3 -1.6846e+0 1.3623e+6 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Pb++ = Pb(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -11.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(CO3)2-2 +2 HCO3- + Pb+2 = Pb(CO3)2-2 + 2 H+ + -llnl_gamma 4 + log_k -11.2576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(CO3)2-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 ClO3- + 1.0000 Pb++ = Pb(ClO3)2 - -llnl_gamma 3.0 - log_k -0.5133 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(ClO3)2 + +2 ClO3- + Pb+2 = Pb(ClO3)2 + -llnl_gamma 3 + log_k -0.5133 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(ClO3)2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Pb++ = Pb(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -17.0902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)2 + +2 H2O + Pb+2 = Pb(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -17.0902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Pb++ = Pb(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -28.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)3- + +3 H2O + Pb+2 = Pb(OH)3- + 3 H+ + -llnl_gamma 4 + log_k -28.0852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)3- # Enthalpy of formation: -0 kcal/mol - -2.0000 Thiocyanate- + 1.0000 Pb++ = Pb(Thiocyanate)2 - -llnl_gamma 3.0 - log_k +1.2455 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 + +2 Thiocyanate- + Pb+2 = Pb(Thiocyanate)2 + -llnl_gamma 3 + log_k 1.2455 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 # Enthalpy of formation: -0 kcal/mol - -2.0000 Pb++ + 1.0000 H2O = Pb2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -6.3951 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2OH+3 + +2 Pb+2 + H2O = Pb2OH+3 + H+ + -llnl_gamma 5 + log_k -6.3951 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2OH+3 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 3.0000 Pb++ = Pb3(OH)4++ +4.0000 H+ - -llnl_gamma 4.5 - log_k -23.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(OH)4+2 + +4 H2O + 3 Pb+2 = Pb3(OH)4+2 + 4 H+ + -llnl_gamma 4.5 + log_k -23.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(OH)4+2 # Enthalpy of formation: -0 kcal/mol - -4.0000 Pb++ + 4.0000 H2O = Pb4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -20.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4(OH)4+4 + +4 Pb+2 + 4 H2O = Pb4(OH)4+4 + 4 H+ + -llnl_gamma 5.5 + log_k -20.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4(OH)4+4 # Enthalpy of formation: -0 kcal/mol - -8.0000 H2O + 6.0000 Pb++ = Pb6(OH)8++++ +8.0000 H+ - -llnl_gamma 5.5 - log_k -43.5606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb6(OH)8+4 + +8 H2O + 6 Pb+2 = Pb6(OH)8+4 + 8 H+ + -llnl_gamma 5.5 + log_k -43.5606 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb6(OH)8+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 Br- = PbBr+ - -llnl_gamma 4.0 - log_k +1.1831 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr+ + +Pb+2 + Br- = PbBr+ + -llnl_gamma 4 + log_k 1.1831 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr+ # Enthalpy of formation: -0 kcal/mol - -2.0000 Br- + 1.0000 Pb++ = PbBr2 - -llnl_gamma 3.0 - log_k +1.5062 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr2 + +2 Br- + Pb+2 = PbBr2 + -llnl_gamma 3 + log_k 1.5062 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr2 # Enthalpy of formation: -0 kcal/mol - -3.0000 Br- + 1.0000 Pb++ = PbBr3- - -llnl_gamma 4.0 - log_k +1.2336 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr3- + +3 Br- + Pb+2 = PbBr3- + -llnl_gamma 4 + log_k 1.2336 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr3- # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 BrO3- = PbBrO3+ - -llnl_gamma 4.0 - log_k +1.9373 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrO3+ + +Pb+2 + BrO3- = PbBrO3+ + -llnl_gamma 4 + log_k 1.9373 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 HAcetate = PbAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.3603 - -delta_H -2.33147e-15 kJ/mol # Calculated enthalpy of reaction PbAcetate+ + +Pb+2 + HAcetate = PbAcetate+ + H+ + -llnl_gamma 4 + log_k -2.3603 + -delta_H -2.33147e-15 kJ/mol # Calculated enthalpy of reaction PbAcetate+ # Enthalpy of formation: -115.88 kcal/mol - -analytic -2.6822e+001 1.0992e-003 7.3688e+002 8.4407e+000 7.0266e+004 + -analytic -2.6822e+1 1.0992e-3 7.3688e+2 8.4407e+0 7.0266e+4 # -Range: 0-300 -1.0000 Pb++ + 1.0000 HCO3- = PbCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -3.7488 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3 +Pb+2 + HCO3- = PbCO3 + H+ + -llnl_gamma 3 + log_k -3.7488 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 Cl- = PbCl+ - -llnl_gamma 4.0 - log_k +1.4374 - -delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+ + +Pb+2 + Cl- = PbCl+ + -llnl_gamma 4 + log_k 1.4374 + -delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+ # Enthalpy of formation: -38.63 kcal/mol - -analytic 1.1948e+002 4.3527e-002 -2.7666e+003 -4.9190e+001 -4.3206e+001 + -analytic 1.1948e+2 4.3527e-2 -2.7666e+3 -4.919e+1 -4.3206e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Pb++ = PbCl2 - -llnl_gamma 3.0 - log_k +2.0026 - -delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2 +2 Cl- + Pb+2 = PbCl2 + -llnl_gamma 3 + log_k 2.0026 + -delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2 # Enthalpy of formation: -77.7 kcal/mol - -analytic 2.2537e+002 7.7574e-002 -5.5112e+003 -9.2131e+001 -8.6064e+001 + -analytic 2.2537e+2 7.7574e-2 -5.5112e+3 -9.2131e+1 -8.6064e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Pb++ = PbCl3- - -llnl_gamma 4.0 - log_k +1.6881 - -delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3- +3 Cl- + Pb+2 = PbCl3- + -llnl_gamma 4 + log_k 1.6881 + -delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3- # Enthalpy of formation: -117.7 kcal/mol - -analytic 2.5254e+002 8.9159e-002 -6.0116e+003 -1.0395e+002 -9.3880e+001 + -analytic 2.5254e+2 8.9159e-2 -6.0116e+3 -1.0395e+2 -9.388e+1 # -Range: 0-300 -4.0000 Cl- + 1.0000 Pb++ = PbCl4-- - -llnl_gamma 4.0 - log_k +1.4909 - -delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2 +4 Cl- + Pb+2 = PbCl4-2 + -llnl_gamma 4 + log_k 1.4909 + -delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2 # Enthalpy of formation: -161.23 kcal/mol - -analytic 1.4048e+002 7.6332e-002 -1.1507e+003 -6.3786e+001 -1.7997e+001 + -analytic 1.4048e+2 7.6332e-2 -1.1507e+3 -6.3786e+1 -1.7997e+1 # -Range: 0-300 -1.0000 Pb++ + 1.0000 ClO3- = PbClO3+ - -llnl_gamma 4.0 - log_k -0.2208 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbClO3+ +Pb+2 + ClO3- = PbClO3+ + -llnl_gamma 4 + log_k -0.2208 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbClO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 F- = PbF+ - -llnl_gamma 4.0 - log_k +0.8284 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbF+ + +Pb+2 + F- = PbF+ + -llnl_gamma 4 + log_k 0.8284 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF+ # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Pb++ = PbF2 - -llnl_gamma 3.0 - log_k +1.6132 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbF2 + +2 F- + Pb+2 = PbF2 + -llnl_gamma 3 + log_k 1.6132 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 HPO4-- + 1.0000 H+ = PbH2PO4+ - -llnl_gamma 4.0 - log_k +1.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbH2PO4+ + +Pb+2 + HPO4-2 + H+ = PbH2PO4+ + -llnl_gamma 4 + log_k 1.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbH2PO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 HPO4-- = PbHPO4 - -llnl_gamma 3.0 - log_k +3.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 + +Pb+2 + HPO4-2 = PbHPO4 + -llnl_gamma 3 + log_k 3.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 I- = PbI+ - -llnl_gamma 4.0 - log_k +1.9597 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI+ + +Pb+2 + I- = PbI+ + -llnl_gamma 4 + log_k 1.9597 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI+ # Enthalpy of formation: -0 kcal/mol - -2.0000 I- + 1.0000 Pb++ = PbI2 - -llnl_gamma 3.0 - log_k +2.7615 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI2 + +2 I- + Pb+2 = PbI2 + -llnl_gamma 3 + log_k 2.7615 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI2 # Enthalpy of formation: -0 kcal/mol - -3.0000 I- + 1.0000 Pb++ = PbI3- - -llnl_gamma 4.0 - log_k +3.3355 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI3- + +3 I- + Pb+2 = PbI3- + -llnl_gamma 4 + log_k 3.3355 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI3- # Enthalpy of formation: -0 kcal/mol - -4.0000 I- + 1.0000 Pb++ = PbI4-- - -llnl_gamma 4.0 - log_k +4.0672 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI4-2 + +4 I- + Pb+2 = PbI4-2 + -llnl_gamma 4 + log_k 4.0672 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 NO3- = PbNO3+ - -llnl_gamma 4.0 - log_k +1.2271 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbNO3+ + +Pb+2 + NO3- = PbNO3+ + -llnl_gamma 4 + log_k 1.2271 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbNO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 H2O = PbOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.6951 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbOH+ + +Pb+2 + H2O = PbOH+ + H+ + -llnl_gamma 4 + log_k -7.6951 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbOH+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pb++ = PbP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +7.4136 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbP2O7-2 + +2 HPO4-2 + Pb+2 = PbP2O7-2 + H2O + -llnl_gamma 4 + log_k 7.4136 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbP2O7-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Thiocyanate- + 1.0000 Pb++ = PbThiocyanate+ - -llnl_gamma 4.0 - log_k +0.9827 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbThiocyanate+ + +Thiocyanate- + Pb+2 = PbThiocyanate+ + -llnl_gamma 4 + log_k 0.9827 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbThiocyanate+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Pd++ + 1.0000 Cl- = PdCl+ - -llnl_gamma 4.0 - log_k +6.0993 - -delta_H -31.995 kJ/mol # Calculated enthalpy of reaction PdCl+ + +Pd+2 + Cl- = PdCl+ + -llnl_gamma 4 + log_k 6.0993 + -delta_H -31.995 kJ/mol # Calculated enthalpy of reaction PdCl+ # Enthalpy of formation: -5.5 kcal/mol - -analytic 7.2852e+001 3.6886e-002 7.3102e+002 -3.2402e+001 1.1385e+001 + -analytic 7.2852e+1 3.6886e-2 7.3102e+2 -3.2402e+1 1.1385e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Pd++ = PdCl2 - -llnl_gamma 3.0 - log_k +10.7327 - -delta_H -66.1658 kJ/mol # Calculated enthalpy of reaction PdCl2 +2 Cl- + Pd+2 = PdCl2 + -llnl_gamma 3 + log_k 10.7327 + -delta_H -66.1658 kJ/mol # Calculated enthalpy of reaction PdCl2 # Enthalpy of formation: -53.6 kcal/mol - -analytic 1.6849e+002 7.9321e-002 8.2874e+002 -7.4416e+001 1.2882e+001 + -analytic 1.6849e+2 7.9321e-2 8.2874e+2 -7.4416e+1 1.2882e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Pd++ = PdCl3- - -llnl_gamma 4.0 - log_k +13.0937 - -delta_H -101.592 kJ/mol # Calculated enthalpy of reaction PdCl3- +3 Cl- + Pd+2 = PdCl3- + -llnl_gamma 4 + log_k 13.0937 + -delta_H -101.592 kJ/mol # Calculated enthalpy of reaction PdCl3- # Enthalpy of formation: -102 kcal/mol - -analytic 4.5978e+001 6.2999e-002 6.9333e+003 -3.0257e+001 1.0817e+002 + -analytic 4.5978e+1 6.2999e-2 6.9333e+3 -3.0257e+1 1.0817e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Pd++ = PdCl4-- - -llnl_gamma 4.0 - log_k +15.1615 - -delta_H -152.08 kJ/mol # Calculated enthalpy of reaction PdCl4-2 +4 Cl- + Pd+2 = PdCl4-2 + -llnl_gamma 4 + log_k 15.1615 + -delta_H -152.08 kJ/mol # Calculated enthalpy of reaction PdCl4-2 # Enthalpy of formation: -154 kcal/mol - -analytic -3.2209e+001 5.3432e-002 1.2180e+004 -3.7814e+000 1.9006e+002 + -analytic -3.2209e+1 5.3432e-2 1.218e+4 -3.7814e+0 1.9006e+2 # -Range: 0-300 -1.0000 Pd++ + 1.0000 H2O = PdO +2.0000 H+ - -llnl_gamma 3.0 - log_k -2.19 - -delta_H 6.43081 kJ/mol # Calculated enthalpy of reaction PdO +Pd+2 + H2O = PdO + 2 H+ + -llnl_gamma 3 + log_k -2.19 + -delta_H 6.43081 kJ/mol # Calculated enthalpy of reaction PdO # Enthalpy of formation: -24.7 kcal/mol - -analytic 1.3587e+002 2.9292e-002 -4.6645e+003 -5.2997e+001 -7.2825e+001 + -analytic 1.3587e+2 2.9292e-2 -4.6645e+3 -5.2997e+1 -7.2825e+1 # -Range: 0-300 -1.0000 Pd++ + 1.0000 H2O = PdOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -1.0905 - -delta_H -3.19239 kJ/mol # Calculated enthalpy of reaction PdOH+ +Pd+2 + H2O = PdOH+ + H+ + -llnl_gamma 4 + log_k -1.0905 + -delta_H -3.19239 kJ/mol # Calculated enthalpy of reaction PdOH+ # Enthalpy of formation: -27 kcal/mol - -analytic 1.4291e+001 5.8382e-003 -1.9881e+002 -6.6475e+000 -3.1065e+000 + -analytic 1.4291e+1 5.8382e-3 -1.9881e+2 -6.6475e+0 -3.1065e+0 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Pm+++ = Pm(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.9576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(CO3)2- +2 HCO3- + Pm+3 = Pm(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.9576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pm+++ = Pm(HPO4)2- - -llnl_gamma 4.0 - log_k +9.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(HPO4)2- + +2 HPO4-2 + Pm+3 = Pm(HPO4)2- + -llnl_gamma 4 + log_k 9.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Pm+++ = Pm(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.7902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)2+ + +2 H2O + Pm+3 = Pm(OH)2+ + 2 H+ + -llnl_gamma 4 + log_k -16.7902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)2+ # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Pm+++ = Pm(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -26.1852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 + +3 H2O + Pm+3 = Pm(OH)3 + 3 H+ + -llnl_gamma 3 + log_k -26.1852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pm+++ = Pm(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.6837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(PO4)2-3 + +2 HPO4-2 + Pm+3 = Pm(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -4.6837 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Pm+++ = Pm(SO4)2- - -llnl_gamma 4.0 - log_k +5.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(SO4)2- + +2 SO4-2 + Pm+3 = Pm(SO4)2- + -llnl_gamma 4 + log_k 5.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HCO3- = PmCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.6288 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmCO3+ + +Pm+3 + HCO3- = PmCO3+ + H+ + -llnl_gamma 4 + log_k -2.6288 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmCO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 Cl- = PmCl++ - -llnl_gamma 4.5 - log_k +0.3400 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmCl+2 + +Pm+3 + Cl- = PmCl+2 + -llnl_gamma 4.5 + log_k 0.34 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmCl+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 F- = PmF++ - -llnl_gamma 4.5 - log_k +3.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmF+2 + +Pm+3 + F- = PmF+2 + -llnl_gamma 4.5 + log_k 3.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmF+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HPO4-- + 1.0000 H+ = PmH2PO4++ - -llnl_gamma 4.5 - log_k +9.6054 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmH2PO4+2 + +Pm+3 + HPO4-2 + H+ = PmH2PO4+2 + -llnl_gamma 4.5 + log_k 9.6054 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmH2PO4+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HCO3- = PmHCO3++ - -llnl_gamma 4.5 - log_k +2.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmHCO3+2 + +Pm+3 + HCO3- = PmHCO3+2 + -llnl_gamma 4.5 + log_k 2.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmHCO3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HPO4-- = PmHPO4+ - -llnl_gamma 4.0 - log_k +5.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmHPO4+ + +Pm+3 + HPO4-2 = PmHPO4+ + -llnl_gamma 4 + log_k 5.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 NO3- = PmNO3++ - -llnl_gamma 4.5 - log_k +1.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmNO3+2 + +Pm+3 + NO3- = PmNO3+2 + -llnl_gamma 4.5 + log_k 1.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmNO3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 H2O = PmOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.9951 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmOH+2 + +Pm+3 + H2O = PmOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9951 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmOH+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HPO4-- = PmPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.3718 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4 + +Pm+3 + HPO4-2 = PmPO4 + H+ + -llnl_gamma 3 + log_k -0.3718 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Pm+++ = PmSO4+ - -llnl_gamma 4.0 - log_k +3.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmSO4+ + +SO4-2 + Pm+3 = PmSO4+ + -llnl_gamma 4 + log_k 3.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmSO4+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Pr+++ = Pr(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.8525 - -delta_H -23.8906 kJ/mol # Calculated enthalpy of reaction Pr(Acetate)2+ + +2 HAcetate + Pr+3 = Pr(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.8525 + -delta_H -23.8906 kJ/mol # Calculated enthalpy of reaction Pr(Acetate)2+ # Enthalpy of formation: -406.71 kcal/mol - -analytic -1.6464e+001 6.2989e-004 -4.4771e+002 3.6947e+000 3.3816e+005 + -analytic -1.6464e+1 6.2989e-4 -4.4771e+2 3.6947e+0 3.3816e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Pr+++ = Pr(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.2023 - -delta_H -40.3756 kJ/mol # Calculated enthalpy of reaction Pr(Acetate)3 +3 HAcetate + Pr+3 = Pr(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.2023 + -delta_H -40.3756 kJ/mol # Calculated enthalpy of reaction Pr(Acetate)3 # Enthalpy of formation: -526.75 kcal/mol - -analytic -1.2007e+001 4.9332e-004 0.0000e+000 0.0000e+000 3.2789e+005 + -analytic -1.2007e+1 4.9332e-4 0e+0 0e+0 3.2789e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Pr+++ = Pr(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.1076 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(CO3)2- +2 HCO3- + Pr+3 = Pr(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -8.1076 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pr+++ = Pr(HPO4)2- - -llnl_gamma 4.0 - log_k +8.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(HPO4)2- + +2 HPO4-2 + Pr+3 = Pr(HPO4)2- + -llnl_gamma 4 + log_k 8.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pr+++ = Pr(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.5637 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(PO4)2-3 + +2 HPO4-2 + Pr+3 = Pr(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -5.5637 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Pr+++ = Pr(SO4)2- - -llnl_gamma 4.0 - log_k +4.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(SO4)2- + +2 SO4-2 + Pr+3 = Pr(SO4)2- + -llnl_gamma 4 + log_k 4.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Pr+++ + 1.0000 HAcetate = PrAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.0451 - -delta_H -12.4683 kJ/mol # Calculated enthalpy of reaction PrAcetate+2 + +Pr+3 + HAcetate = PrAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.0451 + -delta_H -12.4683 kJ/mol # Calculated enthalpy of reaction PrAcetate+2 # Enthalpy of formation: -287.88 kcal/mol - -analytic -8.5624e+000 9.3878e-004 -5.7551e+002 2.2087e+000 2.4126e+005 + -analytic -8.5624e+0 9.3878e-4 -5.7551e+2 2.2087e+0 2.4126e+5 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 HCO3- = PrCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.7722 - -delta_H 92.458 kJ/mol # Calculated enthalpy of reaction PrCO3+ +Pr+3 + HCO3- = PrCO3+ + H+ + -llnl_gamma 4 + log_k -2.7722 + -delta_H 92.458 kJ/mol # Calculated enthalpy of reaction PrCO3+ # Enthalpy of formation: -311.6 kcal/mol - -analytic 2.2079e+002 5.2156e-002 -6.5821e+003 -8.7701e+001 -1.0277e+002 + -analytic 2.2079e+2 5.2156e-2 -6.5821e+3 -8.7701e+1 -1.0277e+2 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 Cl- = PrCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction PrCl+2 +Pr+3 + Cl- = PrCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction PrCl+2 # Enthalpy of formation: -205.3 kcal/mol - -analytic 7.5152e+001 3.7446e-002 -1.6661e+003 -3.2490e+001 -2.6020e+001 + -analytic 7.5152e+1 3.7446e-2 -1.6661e+3 -3.249e+1 -2.602e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Pr+++ = PrCl2+ - -llnl_gamma 4.0 - log_k +0.0308 - -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction PrCl2+ +2 Cl- + Pr+3 = PrCl2+ + -llnl_gamma 4 + log_k 0.0308 + -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction PrCl2+ # Enthalpy of formation: -243.8 kcal/mol - -analytic 2.2848e+002 8.1250e-002 -6.0401e+003 -9.3909e+001 -9.4318e+001 + -analytic 2.2848e+2 8.125e-2 -6.0401e+3 -9.3909e+1 -9.4318e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Pr+++ = PrCl3 - -llnl_gamma 3.0 - log_k -0.3203 - -delta_H 14.2214 kJ/mol # Calculated enthalpy of reaction PrCl3 +3 Cl- + Pr+3 = PrCl3 + -llnl_gamma 3 + log_k -0.3203 + -delta_H 14.2214 kJ/mol # Calculated enthalpy of reaction PrCl3 # Enthalpy of formation: -285.2 kcal/mol - -analytic 4.5016e+002 1.3095e-001 -1.2588e+004 -1.8075e+002 -1.9656e+002 + -analytic 4.5016e+2 1.3095e-1 -1.2588e+4 -1.8075e+2 -1.9656e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Pr+++ = PrCl4- - -llnl_gamma 4.0 - log_k -0.7447 - -delta_H -4.05011 kJ/mol # Calculated enthalpy of reaction PrCl4- +4 Cl- + Pr+3 = PrCl4- + -llnl_gamma 4 + log_k -0.7447 + -delta_H -4.05011 kJ/mol # Calculated enthalpy of reaction PrCl4- # Enthalpy of formation: -329.5 kcal/mol - -analytic 5.4245e+002 1.3647e-001 -1.5564e+004 -2.1485e+002 -2.4302e+002 + -analytic 5.4245e+2 1.3647e-1 -1.5564e+4 -2.1485e+2 -2.4302e+2 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 F- = PrF++ - -llnl_gamma 4.5 - log_k +4.2221 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction PrF+2 +Pr+3 + F- = PrF+2 + -llnl_gamma 4.5 + log_k 4.2221 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction PrF+2 # Enthalpy of formation: -243.4 kcal/mol - -analytic 9.5146e+001 4.1115e-002 -2.5463e+003 -3.8236e+001 -3.9760e+001 + -analytic 9.5146e+1 4.1115e-2 -2.5463e+3 -3.8236e+1 -3.976e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Pr+++ = PrF2+ - -llnl_gamma 4.0 - log_k +7.3447 - -delta_H 14.644 kJ/mol # Calculated enthalpy of reaction PrF2+ +2 F- + Pr+3 = PrF2+ + -llnl_gamma 4 + log_k 7.3447 + -delta_H 14.644 kJ/mol # Calculated enthalpy of reaction PrF2+ # Enthalpy of formation: -325.6 kcal/mol - -analytic 2.4997e+002 8.5251e-002 -6.1908e+003 -9.9912e+001 -9.6675e+001 + -analytic 2.4997e+2 8.5251e-2 -6.1908e+3 -9.9912e+1 -9.6675e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Pr+++ = PrF3 - -llnl_gamma 3.0 - log_k +9.6610 - -delta_H -6.4852 kJ/mol # Calculated enthalpy of reaction PrF3 +3 F- + Pr+3 = PrF3 + -llnl_gamma 3 + log_k 9.661 + -delta_H -6.4852 kJ/mol # Calculated enthalpy of reaction PrF3 # Enthalpy of formation: -410.8 kcal/mol - -analytic 4.7885e+002 1.3764e-001 -1.2080e+004 -1.8980e+002 -1.8864e+002 + -analytic 4.7885e+2 1.3764e-1 -1.208e+4 -1.898e+2 -1.8864e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Pr+++ = PrF4- - -llnl_gamma 4.0 - log_k +11.5375 - -delta_H -47.2792 kJ/mol # Calculated enthalpy of reaction PrF4- +4 F- + Pr+3 = PrF4- + -llnl_gamma 4 + log_k 11.5375 + -delta_H -47.2792 kJ/mol # Calculated enthalpy of reaction PrF4- # Enthalpy of formation: -500.7 kcal/mol - -analytic 5.5774e+002 1.4067e-001 -1.3523e+004 -2.1933e+002 -2.1118e+002 + -analytic 5.5774e+2 1.4067e-1 -1.3523e+4 -2.1933e+2 -2.1118e+2 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 HPO4-- + 1.0000 H+ = PrH2PO4++ - -llnl_gamma 4.5 - log_k +9.5950 - -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction PrH2PO4+2 +Pr+3 + HPO4-2 + H+ = PrH2PO4+2 + -llnl_gamma 4.5 + log_k 9.595 + -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction PrH2PO4+2 # Enthalpy of formation: -481.5 kcal/mol - -analytic 1.0501e+002 6.3059e-002 3.8161e+002 -4.6656e+001 5.9234e+000 + -analytic 1.0501e+2 6.3059e-2 3.8161e+2 -4.6656e+1 5.9234e+0 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 HCO3- = PrHCO3++ - -llnl_gamma 4.5 - log_k +1.9190 - -delta_H -12.9788 kJ/mol # Calculated enthalpy of reaction PrHCO3+2 +Pr+3 + HCO3- = PrHCO3+2 + -llnl_gamma 4.5 + log_k 1.919 + -delta_H -12.9788 kJ/mol # Calculated enthalpy of reaction PrHCO3+2 # Enthalpy of formation: -336.8 kcal/mol - -analytic 2.2010e+001 2.8541e-002 1.4574e+003 -1.3522e+001 2.2734e+001 + -analytic 2.201e+1 2.8541e-2 1.4574e+3 -1.3522e+1 2.2734e+1 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 HPO4-- = PrHPO4+ - -llnl_gamma 4.0 - log_k +5.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrHPO4+ +Pr+3 + HPO4-2 = PrHPO4+ + -llnl_gamma 4 + log_k 5.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction PrHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Pr+++ + 1.0000 NO3- = PrNO3++ - -llnl_gamma 4.5 - log_k +0.6546 - -delta_H -27.9115 kJ/mol # Calculated enthalpy of reaction PrNO3+2 + +Pr+3 + NO3- = PrNO3+2 + -llnl_gamma 4.5 + log_k 0.6546 + -delta_H -27.9115 kJ/mol # Calculated enthalpy of reaction PrNO3+2 # Enthalpy of formation: -224.9 kcal/mol - -analytic 1.4297e+001 2.5214e-002 2.1756e+003 -1.1490e+001 3.3943e+001 + -analytic 1.4297e+1 2.5214e-2 2.1756e+3 -1.149e+1 3.3943e+1 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 H2O = PrO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -17.29 - -delta_H 117.642 kJ/mol # Calculated enthalpy of reaction PrO+ +Pr+3 + H2O = PrO+ + 2 H+ + -llnl_gamma 4 + log_k -17.29 + -delta_H 117.642 kJ/mol # Calculated enthalpy of reaction PrO+ # Enthalpy of formation: -209 kcal/mol - -analytic 1.7927e+002 2.9467e-002 -1.3815e+004 -6.4259e+001 -2.1562e+002 + -analytic 1.7927e+2 2.9467e-2 -1.3815e+4 -6.4259e+1 -2.1562e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Pr+++ = PrO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -37.5852 - -delta_H 301.39 kJ/mol # Calculated enthalpy of reaction PrO2- +2 H2O + Pr+3 = PrO2- + 4 H+ + -llnl_gamma 4 + log_k -37.5852 + -delta_H 301.39 kJ/mol # Calculated enthalpy of reaction PrO2- # Enthalpy of formation: -233.4 kcal/mol - -analytic -4.4480e+001 -1.6327e-002 -7.9031e+003 1.9348e+001 -8.5440e+005 + -analytic -4.448e+1 -1.6327e-2 -7.9031e+3 1.9348e+1 -8.544e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Pr+++ = PrO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -26.5901 - -delta_H 231.517 kJ/mol # Calculated enthalpy of reaction PrO2H +2 H2O + Pr+3 = PrO2H + 3 H+ + -llnl_gamma 3 + log_k -26.5901 + -delta_H 231.517 kJ/mol # Calculated enthalpy of reaction PrO2H # Enthalpy of formation: -250.1 kcal/mol - -analytic 3.3930e+002 4.4894e-002 -2.3769e+004 -1.2106e+002 -3.7099e+002 + -analytic 3.393e+2 4.4894e-2 -2.3769e+4 -1.2106e+2 -3.7099e+2 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 H2O = PrOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -8.274 - -delta_H 81.2407 kJ/mol # Calculated enthalpy of reaction PrOH+2 +Pr+3 + H2O = PrOH+2 + H+ + -llnl_gamma 4.5 + log_k -8.274 + -delta_H 81.2407 kJ/mol # Calculated enthalpy of reaction PrOH+2 # Enthalpy of formation: -217.7 kcal/mol - -analytic 5.6599e+001 1.1073e-002 -5.9197e+003 -1.9525e+001 -9.2388e+001 + -analytic 5.6599e+1 1.1073e-2 -5.9197e+3 -1.9525e+1 -9.2388e+1 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 HPO4-- = PrPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.7218 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4 +Pr+3 + HPO4-2 = PrPO4 + H+ + -llnl_gamma 3 + log_k -0.7218 + -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Pr+++ = PrSO4+ - -llnl_gamma 4.0 - log_k -3.687 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction PrSO4+ + +SO4-2 + Pr+3 = PrSO4+ + -llnl_gamma 4 + log_k -3.687 + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction PrSO4+ # Enthalpy of formation: -381.5 kcal/mol - -analytic 2.9156e+002 8.4671e-002 -1.0638e+004 -1.1509e+002 -1.6608e+002 + -analytic 2.9156e+2 8.4671e-2 -1.0638e+4 -1.1509e+2 -1.6608e+2 # -Range: 0-300 -2.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)2 - -llnl_gamma 3.0 - log_k +23.8483 - -delta_H 25.9279 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 +2 HPO4-2 + Pu+4 = Pu(HPO4)2 + -llnl_gamma 3 + log_k 23.8483 + -delta_H 25.9279 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 # Enthalpy of formation: -3094.13 kJ/mol - -analytic 9.2387e+002 3.2577e-001 -2.0881e+004 -3.7466e+002 -3.5492e+002 + -analytic 9.2387e+2 3.2577e-1 -2.0881e+4 -3.7466e+2 -3.5492e+2 # -Range: 0-200 -3.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)3-- - -llnl_gamma 4.0 - log_k +33.4599 - -delta_H -6.49412 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)3-2 +3 HPO4-2 + Pu+4 = Pu(HPO4)3-2 + -llnl_gamma 4 + log_k 33.4599 + -delta_H -6.49412 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)3-2 # Enthalpy of formation: -4418.63 kJ/mol - -analytic 6.4515e+002 2.3011e-001 -1.2752e+004 -2.5761e+002 -1.9917e+002 + -analytic 6.4515e+2 2.3011e-1 -1.2752e+4 -2.5761e+2 -1.9917e+2 # -Range: 0-300 -4.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)4---- - -llnl_gamma 4.0 - log_k +43.2467 - -delta_H -77.4832 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)4-4 +4 HPO4-2 + Pu+4 = Pu(HPO4)4-4 + -llnl_gamma 4 + log_k 43.2467 + -delta_H -77.4832 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)4-4 # Enthalpy of formation: -5781.7 kJ/mol - -analytic 8.5301e+002 3.0730e-001 -1.3644e+004 -3.4573e+002 -2.1316e+002 + -analytic 8.5301e+2 3.073e-1 -1.3644e+4 -3.4573e+2 -2.1316e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Pu++++ = Pu(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -2.3235 - -delta_H 74.3477 kJ/mol # Calculated enthalpy of reaction Pu(OH)2+2 +2 H2O + Pu+4 = Pu(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k -2.3235 + -delta_H 74.3477 kJ/mol # Calculated enthalpy of reaction Pu(OH)2+2 # Enthalpy of formation: -1033.22 kJ/mol - -analytic 7.5979e+001 6.8394e-003 -6.3710e+003 -2.3833e+001 -9.9435e+001 + -analytic 7.5979e+1 6.8394e-3 -6.371e+3 -2.3833e+1 -9.9435e+1 # -Range: 0-300 -3.0000 H2O + 1.0000 Pu++++ = Pu(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -5.281 - -delta_H 96.578 kJ/mol # Calculated enthalpy of reaction Pu(OH)3+ +3 H2O + Pu+4 = Pu(OH)3+ + 3 H+ + -llnl_gamma 4 + log_k -5.281 + -delta_H 96.578 kJ/mol # Calculated enthalpy of reaction Pu(OH)3+ # Enthalpy of formation: -1296.83 kJ/mol - -analytic 1.0874e+002 1.4199e-002 -8.4954e+003 -3.6278e+001 -1.3259e+002 + -analytic 1.0874e+2 1.4199e-2 -8.4954e+3 -3.6278e+1 -1.3259e+2 # -Range: 0-300 -4.0000 H2O + 1.0000 Pu++++ = Pu(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -9.5174 - -delta_H 109.113 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 +4 H2O + Pu+4 = Pu(OH)4 + 4 H+ + -llnl_gamma 3 + log_k -9.5174 + -delta_H 109.113 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 # Enthalpy of formation: -1570.13 kJ/mol - -analytic 2.7913e+002 1.0252e-001 -1.1289e+004 -1.1369e+002 -1.9181e+002 + -analytic 2.7913e+2 1.0252e-1 -1.1289e+4 -1.1369e+2 -1.9181e+2 # -Range: 0-200 -2.0000 SO4-- + 1.0000 Pu++++ = Pu(SO4)2 - -llnl_gamma 3.0 - log_k +10.2456 - -delta_H 41.0122 kJ/mol # Calculated enthalpy of reaction Pu(SO4)2 +2 SO4-2 + Pu+4 = Pu(SO4)2 + -llnl_gamma 3 + log_k 10.2456 + -delta_H 41.0122 kJ/mol # Calculated enthalpy of reaction Pu(SO4)2 # Enthalpy of formation: -2314.08 kJ/mol - -analytic 5.3705e+002 1.9308e-001 -1.3213e+004 -2.1824e+002 -2.2457e+002 + -analytic 5.3705e+2 1.9308e-1 -1.3213e+4 -2.1824e+2 -2.2457e+2 # -Range: 0-200 -2.0000 SO4-- + 1.0000 Pu+++ = Pu(SO4)2- - -llnl_gamma 4.0 - log_k +6.3200 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pu(SO4)2- +2 SO4-2 + Pu+3 = Pu(SO4)2- + -llnl_gamma 4 + log_k 6.32 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pu(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Pu++++ + 1.0000 F- = PuF+++ - -llnl_gamma 5.0 - log_k +8.4600 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF+3 + +Pu+4 + F- = PuF+3 + -llnl_gamma 5 + log_k 8.46 + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF+3 # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Pu++++ = PuF2++ - -llnl_gamma 4.5 - log_k +15.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF2+2 + +2 F- + Pu+4 = PuF2+2 + -llnl_gamma 4.5 + log_k 15.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF2+2 # Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 1.0000 Pu++++ = PuF3+ - -llnl_gamma 4.0 - log_k +5.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF3+ + +3 F- + Pu+4 = PuF3+ + -llnl_gamma 4 + log_k 5.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF3+ # Enthalpy of formation: -0 kcal/mol - -4.0000 F- + 1.0000 Pu++++ = PuF4 - -llnl_gamma 3.0 - log_k +4.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF4 + +4 F- + Pu+4 = PuF4 + -llnl_gamma 3 + log_k 4.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pu+++ + 1.0000 HPO4-- + 1.0000 H+ = PuH2PO4++ - -llnl_gamma 4.5 - log_k +9.6817 - -delta_H 28.597 kJ/mol # Calculated enthalpy of reaction PuH2PO4+2 + +Pu+3 + HPO4-2 + H+ = PuH2PO4+2 + -llnl_gamma 4.5 + log_k 9.6817 + -delta_H 28.597 kJ/mol # Calculated enthalpy of reaction PuH2PO4+2 # Enthalpy of formation: -1855.04 kJ/mol - -analytic 2.1595e+002 6.4502e-002 -6.4723e+003 -8.2341e+001 -1.0106e+002 + -analytic 2.1595e+2 6.4502e-2 -6.4723e+3 -8.2341e+1 -1.0106e+2 # -Range: 0-300 -1.0000 Pu++++ + 1.0000 HPO4-- = PuHPO4++ - -llnl_gamma 4.5 - log_k +13.0103 - -delta_H 40.306 kJ/mol # Calculated enthalpy of reaction PuHPO4+2 +Pu+4 + HPO4-2 = PuHPO4+2 + -llnl_gamma 4.5 + log_k 13.0103 + -delta_H 40.306 kJ/mol # Calculated enthalpy of reaction PuHPO4+2 # Enthalpy of formation: -1787.67 kJ/mol - -analytic 2.2662e+002 7.1073e-002 -6.9134e+003 -8.5504e+001 -1.0794e+002 + -analytic 2.2662e+2 7.1073e-2 -6.9134e+3 -8.5504e+1 -1.0794e+2 # -Range: 0-300 -2.0000 HCO3- + 1.0000 PuO2++ = PuO2(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.7428 - -delta_H 52.3345 kJ/mol # Calculated enthalpy of reaction PuO2(CO3)2-2 +2 HCO3- + PuO2+2 = PuO2(CO3)2-2 + 2 H+ + -llnl_gamma 4 + log_k -5.7428 + -delta_H 52.3345 kJ/mol # Calculated enthalpy of reaction PuO2(CO3)2-2 # Enthalpy of formation: -2149.11 kJ/mol - -analytic 2.6589e+002 7.6132e-002 -9.7187e+003 -1.0577e+002 -1.5173e+002 + -analytic 2.6589e+2 7.6132e-2 -9.7187e+3 -1.0577e+2 -1.5173e+2 # -Range: 0-300 -1.0000 PuO2++ + 1.0000 Cl- = PuO2Cl+ - -llnl_gamma 4.0 - log_k -0.2084 - -delta_H 11.6127 kJ/mol # Calculated enthalpy of reaction PuO2Cl+ +PuO2+2 + Cl- = PuO2Cl+ + -llnl_gamma 4 + log_k -0.2084 + -delta_H 11.6127 kJ/mol # Calculated enthalpy of reaction PuO2Cl+ # Enthalpy of formation: -977.045 kJ/mol - -analytic 9.8385e+001 3.8617e-002 -2.5210e+003 -4.1075e+001 -3.9367e+001 + -analytic 9.8385e+1 3.8617e-2 -2.521e+3 -4.1075e+1 -3.9367e+1 # -Range: 0-300 -1.0000 PuO2++ + 1.0000 F- = PuO2F+ - -llnl_gamma 4.0 - log_k +5.6674 - -delta_H -5.2094 kJ/mol # Calculated enthalpy of reaction PuO2F+ +PuO2+2 + F- = PuO2F+ + -llnl_gamma 4 + log_k 5.6674 + -delta_H -5.2094 kJ/mol # Calculated enthalpy of reaction PuO2F+ # Enthalpy of formation: -1162.13 kJ/mol - -analytic 1.1412e+002 4.1224e-002 -2.0503e+003 -4.6009e+001 -3.2027e+001 + -analytic 1.1412e+2 4.1224e-2 -2.0503e+3 -4.6009e+1 -3.2027e+1 # -Range: 0-300 -2.0000 F- + 1.0000 PuO2++ = PuO2F2 - -llnl_gamma 3.0 - log_k +10.9669 - -delta_H -15.4738 kJ/mol # Calculated enthalpy of reaction PuO2F2 +2 F- + PuO2+2 = PuO2F2 + -llnl_gamma 3 + log_k 10.9669 + -delta_H -15.4738 kJ/mol # Calculated enthalpy of reaction PuO2F2 # Enthalpy of formation: -1507.75 kJ/mol - -analytic 2.5502e+002 9.1597e-002 -4.4557e+003 -1.0362e+002 -7.5752e+001 + -analytic 2.5502e+2 9.1597e-2 -4.4557e+3 -1.0362e+2 -7.5752e+1 # -Range: 0-200 -3.0000 F- + 1.0000 PuO2++ = PuO2F3- - -llnl_gamma 4.0 - log_k +15.9160 - -delta_H -29.4032 kJ/mol # Calculated enthalpy of reaction PuO2F3- +3 F- + PuO2+2 = PuO2F3- + -llnl_gamma 4 + log_k 15.916 + -delta_H -29.4032 kJ/mol # Calculated enthalpy of reaction PuO2F3- # Enthalpy of formation: -1857.02 kJ/mol - -analytic 3.6102e+002 8.6364e-002 -8.7129e+003 -1.3805e+002 -1.3606e+002 + -analytic 3.6102e+2 8.6364e-2 -8.7129e+3 -1.3805e+2 -1.3606e+2 # -Range: 0-300 -4.0000 F- + 1.0000 PuO2++ = PuO2F4-- - -llnl_gamma 4.0 - log_k +18.7628 - -delta_H -39.9786 kJ/mol # Calculated enthalpy of reaction PuO2F4-2 +4 F- + PuO2+2 = PuO2F4-2 + -llnl_gamma 4 + log_k 18.7628 + -delta_H -39.9786 kJ/mol # Calculated enthalpy of reaction PuO2F4-2 # Enthalpy of formation: -2202.95 kJ/mol - -analytic 4.6913e+002 1.3649e-001 -9.8336e+003 -1.8510e+002 -1.5358e+002 + -analytic 4.6913e+2 1.3649e-1 -9.8336e+3 -1.851e+2 -1.5358e+2 # -Range: 0-300 -1.0000 PuO2++ + 1.0000 HPO4-- + 1.0000 H+ = PuO2H2PO4+ - -llnl_gamma 4.0 - log_k +11.2059 - -delta_H -6.63904 kJ/mol # Calculated enthalpy of reaction PuO2H2PO4+ +PuO2+2 + HPO4-2 + H+ = PuO2H2PO4+ + -llnl_gamma 4 + log_k 11.2059 + -delta_H -6.63904 kJ/mol # Calculated enthalpy of reaction PuO2H2PO4+ # Enthalpy of formation: -2120.3 kJ/mol - -analytic 2.1053e+002 6.8671e-002 -4.3390e+003 -8.2930e+001 -6.7768e+001 + -analytic 2.1053e+2 6.8671e-2 -4.339e+3 -8.293e+1 -6.7768e+1 # -Range: 0-300 -1.0000 PuO2+ + 1.0000 H2O = PuO2OH +1.0000 H+ - -llnl_gamma 3.0 - log_k -9.6674 - -delta_H 69.1763 kJ/mol # Calculated enthalpy of reaction PuO2OH +PuO2+ + H2O = PuO2OH + H+ + -llnl_gamma 3 + log_k -9.6674 + -delta_H 69.1763 kJ/mol # Calculated enthalpy of reaction PuO2OH # Enthalpy of formation: -1130.85 kJ/mol - -analytic 7.1080e+001 2.6141e-002 -5.0337e+003 -2.8956e+001 -8.5504e+001 + -analytic 7.108e+1 2.6141e-2 -5.0337e+3 -2.8956e+1 -8.5504e+1 # -Range: 0-200 -1.0000 PuO2++ + 1.0000 H2O = PuO2OH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.6379 - -delta_H 45.2823 kJ/mol # Calculated enthalpy of reaction PuO2OH+ +PuO2+2 + H2O = PuO2OH+ + H+ + -llnl_gamma 4 + log_k -5.6379 + -delta_H 45.2823 kJ/mol # Calculated enthalpy of reaction PuO2OH+ # Enthalpy of formation: -1062.13 kJ/mol - -analytic -3.9012e+000 1.1645e-003 -1.1299e+003 1.3419e+000 -1.4364e+005 + -analytic -3.9012e+0 1.1645e-3 -1.1299e+3 1.3419e+0 -1.4364e+5 # -Range: 0-300 -1.0000 SO4-- + 1.0000 PuO2++ = PuO2SO4 - -llnl_gamma 3.0 - log_k +3.2658 - -delta_H 20.0746 kJ/mol # Calculated enthalpy of reaction PuO2SO4 +SO4-2 + PuO2+2 = PuO2SO4 + -llnl_gamma 3 + log_k 3.2658 + -delta_H 20.0746 kJ/mol # Calculated enthalpy of reaction PuO2SO4 # Enthalpy of formation: -1711.11 kJ/mol - -analytic 2.0363e+002 7.3903e-002 -5.1940e+003 -8.2833e+001 -8.8273e+001 + -analytic 2.0363e+2 7.3903e-2 -5.194e+3 -8.2833e+1 -8.8273e+1 # -Range: 0-200 -1.0000 Pu+++ + 1.0000 H2O = PuOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.968 - -delta_H 53.5143 kJ/mol # Calculated enthalpy of reaction PuOH+2 +Pu+3 + H2O = PuOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.968 + -delta_H 53.5143 kJ/mol # Calculated enthalpy of reaction PuOH+2 # Enthalpy of formation: -823.876 kJ/mol - -analytic 3.0065e+000 3.0278e-003 -1.9675e+003 -1.6100e+000 -1.1524e+005 + -analytic 3.0065e+0 3.0278e-3 -1.9675e+3 -1.61e+0 -1.1524e+5 # -Range: 0-300 -1.0000 Pu++++ + 1.0000 H2O = PuOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -0.5048 - -delta_H 48.1823 kJ/mol # Calculated enthalpy of reaction PuOH+3 +Pu+4 + H2O = PuOH+3 + H+ + -llnl_gamma 5 + log_k -0.5048 + -delta_H 48.1823 kJ/mol # Calculated enthalpy of reaction PuOH+3 # Enthalpy of formation: -773.549 kJ/mol - -analytic 4.1056e+001 1.1119e-003 -3.9252e+003 -1.1609e+001 -6.1260e+001 + -analytic 4.1056e+1 1.1119e-3 -3.9252e+3 -1.1609e+1 -6.126e+1 # -Range: 0-300 -1.0000 SO4-- + 1.0000 Pu+++ = PuSO4+ - -llnl_gamma 4.0 - log_k +3.4935 - -delta_H 14.6006 kJ/mol # Calculated enthalpy of reaction PuSO4+ +SO4-2 + Pu+3 = PuSO4+ + -llnl_gamma 4 + log_k 3.4935 + -delta_H 14.6006 kJ/mol # Calculated enthalpy of reaction PuSO4+ # Enthalpy of formation: -1486.55 kJ/mol - -analytic 1.9194e+002 7.7154e-002 -4.2751e+003 -7.9646e+001 -6.6765e+001 + -analytic 1.9194e+2 7.7154e-2 -4.2751e+3 -7.9646e+1 -6.6765e+1 # -Range: 0-300 -1.0000 SO4-- + 1.0000 Pu++++ = PuSO4++ - -llnl_gamma 4.5 - log_k +5.7710 - -delta_H 12.3336 kJ/mol # Calculated enthalpy of reaction PuSO4+2 +SO4-2 + Pu+4 = PuSO4+2 + -llnl_gamma 4.5 + log_k 5.771 + -delta_H 12.3336 kJ/mol # Calculated enthalpy of reaction PuSO4+2 # Enthalpy of formation: -1433.16 kJ/mol - -analytic 1.9418e+002 7.5477e-002 -4.2767e+003 -7.9425e+001 -6.6792e+001 + -analytic 1.9418e+2 7.5477e-2 -4.2767e+3 -7.9425e+1 -6.6792e+1 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Ra++ = Ra(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.9018 - -delta_H 21.0874 kJ/mol # Calculated enthalpy of reaction Ra(Acetate)2 +2 HAcetate + Ra+2 = Ra(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -7.9018 + -delta_H 21.0874 kJ/mol # Calculated enthalpy of reaction Ra(Acetate)2 # Enthalpy of formation: -353.26 kcal/mol - -analytic 2.2767e+001 3.1254e-003 -6.4558e+003 -7.2253e+000 7.0689e+005 + -analytic 2.2767e+1 3.1254e-3 -6.4558e+3 -7.2253e+0 7.0689e+5 # -Range: 0-300 -1.0000 Ra++ + 1.0000 HAcetate = RaAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.709 - -delta_H 11.7989 kJ/mol # Calculated enthalpy of reaction RaAcetate+ +Ra+2 + HAcetate = RaAcetate+ + H+ + -llnl_gamma 4 + log_k -3.709 + -delta_H 11.7989 kJ/mol # Calculated enthalpy of reaction RaAcetate+ # Enthalpy of formation: -239.38 kcal/mol - -analytic -1.8268e+001 2.9956e-003 1.9313e+001 5.2767e+000 4.9771e+004 + -analytic -1.8268e+1 2.9956e-3 1.9313e+1 5.2767e+0 4.9771e+4 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Rb+ = Rb(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.7636 - -delta_H -1.12968 kJ/mol # Calculated enthalpy of reaction Rb(Acetate)2- +2 HAcetate + Rb+ = Rb(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -9.7636 + -delta_H -1.12968 kJ/mol # Calculated enthalpy of reaction Rb(Acetate)2- # Enthalpy of formation: -292.49 kcal/mol - -analytic -1.9198e+002 -4.2101e-002 5.5792e+003 7.1152e+001 8.7114e+001 + -analytic -1.9198e+2 -4.2101e-2 5.5792e+3 7.1152e+1 8.7114e+1 # -Range: 0-300 -1.0000 Rb+ + 1.0000 Br- = RbBr - -llnl_gamma 3.0 - log_k -1.2168 - -delta_H 13.9327 kJ/mol # Calculated enthalpy of reaction RbBr +Rb+ + Br- = RbBr + -llnl_gamma 3 + log_k -1.2168 + -delta_H 13.9327 kJ/mol # Calculated enthalpy of reaction RbBr # Enthalpy of formation: -85.73 kcal/mol - -analytic 1.2054e+002 3.3825e-002 -3.9500e+003 -4.7920e+001 -6.1671e+001 + -analytic 1.2054e+2 3.3825e-2 -3.95e+3 -4.792e+1 -6.1671e+1 # -Range: 0-300 -1.0000 Rb+ + 1.0000 HAcetate = RbAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.7279 - -delta_H 4.89528 kJ/mol # Calculated enthalpy of reaction RbAcetate +Rb+ + HAcetate = RbAcetate + H+ + -llnl_gamma 3 + log_k -4.7279 + -delta_H 4.89528 kJ/mol # Calculated enthalpy of reaction RbAcetate # Enthalpy of formation: -174.95 kcal/mol - -analytic 1.5661e+001 -2.4230e-003 -2.5280e+003 -5.4433e+000 2.0344e+005 + -analytic 1.5661e+1 -2.423e-3 -2.528e+3 -5.4433e+0 2.0344e+5 # -Range: 0-300 -1.0000 Rb+ + 1.0000 Cl- = RbCl - -llnl_gamma 3.0 - log_k -0.9595 - -delta_H 13.1922 kJ/mol # Calculated enthalpy of reaction RbCl +Rb+ + Cl- = RbCl + -llnl_gamma 3 + log_k -0.9595 + -delta_H 13.1922 kJ/mol # Calculated enthalpy of reaction RbCl # Enthalpy of formation: -96.8 kcal/mol - -analytic 1.2689e+002 3.5557e-002 -4.0822e+003 -5.0412e+001 -6.3736e+001 + -analytic 1.2689e+2 3.5557e-2 -4.0822e+3 -5.0412e+1 -6.3736e+1 # -Range: 0-300 -1.0000 Rb+ + 1.0000 F- = RbF - -llnl_gamma 3.0 - log_k +0.9602 - -delta_H 1.92464 kJ/mol # Calculated enthalpy of reaction RbF +Rb+ + F- = RbF + -llnl_gamma 3 + log_k 0.9602 + -delta_H 1.92464 kJ/mol # Calculated enthalpy of reaction RbF # Enthalpy of formation: -139.71 kcal/mol - -analytic 1.3893e+002 3.8188e-002 -3.8677e+003 -5.5109e+001 -6.0393e+001 + -analytic 1.3893e+2 3.8188e-2 -3.8677e+3 -5.5109e+1 -6.0393e+1 # -Range: 0-300 -1.0000 Rb+ + 1.0000 I- = RbI - -llnl_gamma 3.0 - log_k -0.8136 - -delta_H 7.1128 kJ/mol # Calculated enthalpy of reaction RbI +Rb+ + I- = RbI + -llnl_gamma 3 + log_k -0.8136 + -delta_H 7.1128 kJ/mol # Calculated enthalpy of reaction RbI # Enthalpy of formation: -71.92 kcal/mol - -analytic 1.1486e+002 3.3121e-002 -3.4217e+003 -4.6096e+001 -5.3426e+001 + -analytic 1.1486e+2 3.3121e-2 -3.4217e+3 -4.6096e+1 -5.3426e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Ru+++ = Ru(Cl)2+ - -llnl_gamma 4.0 - log_k +3.7527 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)2+ +2 Cl- + Ru+3 = Ru(Cl)2+ + -llnl_gamma 4 + log_k 3.7527 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)2+ # Enthalpy of formation: -0 kcal/mol - -3.0000 Cl- + 1.0000 Ru+++ = Ru(Cl)3 - -llnl_gamma 3.0 - log_k +4.2976 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)3 + +3 Cl- + Ru+3 = Ru(Cl)3 + -llnl_gamma 3 + log_k 4.2976 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)3 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Ru+++ = Ru(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.5148 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+ + +2 H2O + Ru+3 = Ru(OH)2+ + 2 H+ + -llnl_gamma 4 + log_k -3.5148 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Ru(OH)2++ + 1.0000 Cl- = Ru(OH)2Cl+ - -llnl_gamma 4.0 - log_k +1.3858 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl+ + +Ru(OH)2+2 + Cl- = Ru(OH)2Cl+ + -llnl_gamma 4 + log_k 1.3858 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl+ # Enthalpy of formation: -0 kcal/mol - -2.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl2 - -llnl_gamma 3.0 - log_k +1.8081 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl2 + +2 Cl- + Ru(OH)2+2 = Ru(OH)2Cl2 + -llnl_gamma 3 + log_k 1.8081 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl2 # Enthalpy of formation: -0 kcal/mol - -3.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl3- - -llnl_gamma 4.0 - log_k +1.6172 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl3- + +3 Cl- + Ru(OH)2+2 = Ru(OH)2Cl3- + -llnl_gamma 4 + log_k 1.6172 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl3- # Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl4-- - -llnl_gamma 4.0 - log_k +2.7052 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl4-2 + +4 Cl- + Ru(OH)2+2 = Ru(OH)2Cl4-2 + -llnl_gamma 4 + log_k 2.7052 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ru(OH)2++ = Ru(OH)2SO4 - -llnl_gamma 3.0 - log_k +1.7941 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2SO4 + +SO4-2 + Ru(OH)2+2 = Ru(OH)2SO4 + -llnl_gamma 3 + log_k 1.7941 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2SO4 # Enthalpy of formation: -0 kcal/mol - + #3.0000 H2O + 1.0000 Ru++ + 0.5000 O2 = Ru(OH)4 +2.0000 H+ # Ru(OH)2++ +1.0000 H2O +0.5000 O2 = 4.0000 H+ + 1.0000 RuO4-- log_k -25.2470 # 4.0000 H+ + 1.0000 RuO4-- = Ru++ +2.0000 H2O +1.0000 O2 log_k +0.1610 #1 + 2 + 3 -2H2O + Ru(OH)2++ = Ru(OH)4 + 2H+ - -llnl_gamma 3.0 +2 H2O + Ru(OH)2+2 = Ru(OH)4 + 2 H+ + -llnl_gamma 3 # log_k +18.0322 - log_k -7.0538 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)4 + log_k -7.0538 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)4 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Ru+++ = Ru(SO4)2- - -llnl_gamma 4.0 - log_k +3.0627 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(SO4)2- + +2 SO4-2 + Ru+3 = Ru(SO4)2- + -llnl_gamma 4 + log_k 3.0627 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(SO4)2- # Enthalpy of formation: -0 kcal/mol - -4.0000 Ru(OH)2++ + 4.0000 H2O = Ru4(OH)12++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k +7.1960 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru4(OH)12+4 + +4 Ru(OH)2+2 + 4 H2O = Ru4(OH)12+4 + 4 H+ + -llnl_gamma 5.5 + log_k 7.196 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru4(OH)12+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Ru++ + 1.0000 Cl- = RuCl+ - -llnl_gamma 4.0 - log_k -0.4887 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+ + +Ru+2 + Cl- = RuCl+ + -llnl_gamma 4 + log_k -0.4887 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Ru+++ + 1.0000 Cl- = RuCl++ - -llnl_gamma 4.5 - log_k +2.1742 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+2 + +Ru+3 + Cl- = RuCl+2 + -llnl_gamma 4.5 + log_k 2.1742 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+2 # Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Ru+++ = RuCl4- - -llnl_gamma 4.0 - log_k +4.1418 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl4- + +4 Cl- + Ru+3 = RuCl4- + -llnl_gamma 4 + log_k 4.1418 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl4- # Enthalpy of formation: -0 kcal/mol - -5.0000 Cl- + 1.0000 Ru+++ = RuCl5-- - -llnl_gamma 4.0 - log_k +3.8457 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl5-2 + +5 Cl- + Ru+3 = RuCl5-2 + -llnl_gamma 4 + log_k 3.8457 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl5-2 # Enthalpy of formation: -0 kcal/mol - -6.0000 Cl- + 1.0000 Ru+++ = RuCl6--- - -llnl_gamma 4.0 - log_k +3.4446 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl6-3 + +6 Cl- + Ru+3 = RuCl6-3 + -llnl_gamma 4 + log_k 3.4446 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl6-3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Ru+++ + 1.0000 H2O = RuOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.2392 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuOH+2 + +Ru+3 + H2O = RuOH+2 + H+ + -llnl_gamma 4.5 + log_k -2.2392 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuOH+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ru++ = RuSO4 - -llnl_gamma 3.0 - log_k +2.3547 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4 + +SO4-2 + Ru+2 = RuSO4 + -llnl_gamma 3 + log_k 2.3547 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ru+++ = RuSO4+ - -llnl_gamma 4.0 - log_k +1.9518 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4+ + +SO4-2 + Ru+3 = RuSO4+ + -llnl_gamma 4 + log_k 1.9518 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HS- = S-- +1.0000 H+ - -llnl_gamma 5.0 - log_k -12.9351 - -delta_H 49.0364 kJ/mol # Calculated enthalpy of reaction S-2 + +HS- = S-2 + H+ + -llnl_gamma 5 + log_k -12.9351 + -delta_H 49.0364 kJ/mol # Calculated enthalpy of reaction S-2 # Enthalpy of formation: 32.928 kJ/mol - -analytic 9.7756e+001 3.2913e-002 -5.0784e+003 -4.1812e+001 -7.9273e+001 + -analytic 9.7756e+1 3.2913e-2 -5.0784e+3 -4.1812e+1 -7.9273e+1 # -Range: 0-300 -2.0000 H+ + 2.0000 SO3-- = S2O5-- + H2O - -llnl_gamma 4.0 - log_k 9.5934 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O5-2 +2 H+ + 2 SO3-2 = S2O5-2 + H2O + -llnl_gamma 4 + log_k 9.5934 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O5-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.12262E+03 0.62883E-01 -0.18005E+04 -0.50798E+02 -0.28132E+02 + -analytic 0.12262E+3 0.62883E-1 -0.18005E+4 -0.50798E+2 -0.28132E+2 # -Range: 0-300 -2.0000 H+ + 1.0000 SO3-- = SO2 +1.0000 H2O - -llnl_gamma 3.0 - log_k +9.0656 - -delta_H 26.7316 kJ/mol # Calculated enthalpy of reaction SO2 +2 H+ + SO3-2 = SO2 + H2O + -llnl_gamma 3 + log_k 9.0656 + -delta_H 26.7316 kJ/mol # Calculated enthalpy of reaction SO2 # Enthalpy of formation: -77.194 kcal/mol - -analytic 9.4048e+001 6.2127e-002 -1.1072e+003 -4.0310e+001 -1.7305e+001 + -analytic 9.4048e+1 6.2127e-2 -1.1072e+3 -4.031e+1 -1.7305e+1 # -Range: 0-300 -1.0000 Sb(OH)3 + 1.0000 H+ = Sb(OH)2+ +1.0000 H2O - -llnl_gamma 4.0 - log_k +1.4900 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2+ +Sb(OH)3 + H+ = Sb(OH)2+ + H2O + -llnl_gamma 4 + log_k 1.49 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2+ # Enthalpy of formation: -0 kcal/mol - - -analytic -4.9192e+000 -1.6439e-004 1.4777e+003 6.0724e-001 2.3059e+001 + + -analytic -4.9192e+0 -1.6439e-4 1.4777e+3 6.0724e-1 2.3059e+1 # -Range: 0-300 -1.0000 Sb(OH)3 + 1.0000 H+ + 1.0000 F- = Sb(OH)2F +1.0000 H2O - -llnl_gamma 3.0 - log_k +7.1700 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2F +Sb(OH)3 + H+ + F- = Sb(OH)2F + H2O + -llnl_gamma 3 + log_k 7.17 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2F # Enthalpy of formation: -0 kcal/mol - - -analytic -1.6961e+002 5.7364e-002 2.7207e+004 3.7969e+001 -2.2834e+006 + + -analytic -1.6961e+2 5.7364e-2 2.7207e+4 3.7969e+1 -2.2834e+6 # -Range: 0-300 -1.0000 Sb(OH)3 + 1.0000 H2O = Sb(OH)4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -11.92 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)4- +Sb(OH)3 + H2O = Sb(OH)4- + H+ + -llnl_gamma 4 + log_k -11.92 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)4- # Enthalpy of formation: -0 kcal/mol - - -analytic 4.9839e+001 -6.7112e-003 -4.8976e+003 -1.7138e+001 -8.3725e+004 + + -analytic 4.9839e+1 -6.7112e-3 -4.8976e+3 -1.7138e+1 -8.3725e+4 # -Range: 0-300 -4.0000 HS- + 2.0000 Sb(OH)3 + 2.0000 H+ = Sb2S4-- +6.0000 H2O - -llnl_gamma 4.0 - log_k +39.1100 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2S4-2 +4 HS- + 2 Sb(OH)3 + 2 H+ = Sb2S4-2 + 6 H2O + -llnl_gamma 4 + log_k 39.11 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2S4-2 # Enthalpy of formation: -0 kcal/mol - - -analytic 1.7631e+002 8.3686e-002 9.7091e+003 -7.8605e+001 1.5145e+002 + + -analytic 1.7631e+2 8.3686e-2 9.7091e+3 -7.8605e+1 1.5145e+2 # -Range: 0-300 -4.0000 Cl- + 3.0000 H+ + 1.0000 Sb(OH)3 = SbCl4- +3.0000 H2O - -llnl_gamma 4.0 - log_k +3.0720 - -delta_H 0 # Not possible to calculate enthalpy of reaction SbCl4- +4 Cl- + 3 H+ + Sb(OH)3 = SbCl4- + 3 H2O + -llnl_gamma 4 + log_k 3.072 + -delta_H 0 # Not possible to calculate enthalpy of reaction SbCl4- # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Sc+++ = Sc(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.7237 - -delta_H -43.1789 kJ/mol # Calculated enthalpy of reaction Sc(Acetate)2+ + +2 HAcetate + Sc+3 = Sc(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -3.7237 + -delta_H -43.1789 kJ/mol # Calculated enthalpy of reaction Sc(Acetate)2+ # Enthalpy of formation: -389.32 kcal/mol - -analytic -4.1862e+001 -3.9443e-005 2.1444e+002 1.2616e+001 5.5442e+005 + -analytic -4.1862e+1 -3.9443e-5 2.1444e+2 1.2616e+1 5.5442e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Sc+++ = Sc(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -6.6777 - -delta_H -70.0402 kJ/mol # Calculated enthalpy of reaction Sc(Acetate)3 +3 HAcetate + Sc+3 = Sc(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -6.6777 + -delta_H -70.0402 kJ/mol # Calculated enthalpy of reaction Sc(Acetate)3 # Enthalpy of formation: -511.84 kcal/mol - -analytic -5.2525e+001 1.6181e-003 7.5022e+002 1.3988e+001 7.3540e+005 + -analytic -5.2525e+1 1.6181e-3 7.5022e+2 1.3988e+1 7.354e+5 # -Range: 0-300 -1.0000 Sc+++ + 1.0000 HAcetate = ScAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -1.4294 - -delta_H -21.7568 kJ/mol # Calculated enthalpy of reaction ScAcetate+2 +Sc+3 + HAcetate = ScAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -1.4294 + -delta_H -21.7568 kJ/mol # Calculated enthalpy of reaction ScAcetate+2 # Enthalpy of formation: -268.1 kcal/mol - -analytic -2.3400e+001 1.3144e-004 1.1125e+002 7.3527e+000 3.0025e+005 + -analytic -2.34e+1 1.3144e-4 1.1125e+2 7.3527e+0 3.0025e+5 # -Range: 0-300 -6.0000 F- + 4.0000 H+ + 1.0000 SiO2 = SiF6-- +2.0000 H2O - -llnl_gamma 4.0 - log_k +26.2749 - -delta_H -70.9565 kJ/mol # Calculated enthalpy of reaction SiF6-2 +6 F- + 4 H+ + SiO2 = SiF6-2 + 2 H2O + -llnl_gamma 4 + log_k 26.2749 + -delta_H -70.9565 kJ/mol # Calculated enthalpy of reaction SiF6-2 # Enthalpy of formation: -571 kcal/mol - -analytic 2.3209e+002 1.0685e-001 5.8428e+002 -9.6798e+001 9.0486e+000 + -analytic 2.3209e+2 1.0685e-1 5.8428e+2 -9.6798e+1 9.0486e+0 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Sm+++ = Sm(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.7132 - -delta_H -25.5224 kJ/mol # Calculated enthalpy of reaction Sm(Acetate)2+ +2 HAcetate + Sm+3 = Sm(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.7132 + -delta_H -25.5224 kJ/mol # Calculated enthalpy of reaction Sm(Acetate)2+ # Enthalpy of formation: -403.5 kcal/mol - -analytic -1.4192e+001 2.1732e-003 -1.0267e+003 2.9516e+000 4.4389e+005 + -analytic -1.4192e+1 2.1732e-3 -1.0267e+3 2.9516e+0 4.4389e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Sm+++ = Sm(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -7.8798 - -delta_H -43.5554 kJ/mol # Calculated enthalpy of reaction Sm(Acetate)3 +3 HAcetate + Sm+3 = Sm(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -7.8798 + -delta_H -43.5554 kJ/mol # Calculated enthalpy of reaction Sm(Acetate)3 # Enthalpy of formation: -523.91 kcal/mol - -analytic -2.0765e+001 1.1047e-003 -5.1181e+002 3.4797e+000 5.0618e+005 + -analytic -2.0765e+1 1.1047e-3 -5.1181e+2 3.4797e+0 5.0618e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Sm+++ = Sm(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(CO3)2- +2 HCO3- + Sm+3 = Sm(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.8576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Sm+++ = Sm(HPO4)2- - -llnl_gamma 4.0 - log_k +9.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(HPO4)2- + +2 HPO4-2 + Sm+3 = Sm(HPO4)2- + -llnl_gamma 4 + log_k 9.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(HPO4)2- # Enthalpy of formation: -0 kcal/mol - + # Redundant with SmO2- #4.0000 H2O + 1.0000 Sm+++ = Sm(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 +# -llnl_gamma 4.0 # log_k -36.8803 # -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)4- ## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Sm+++ = Sm(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(PO4)2-3 + +2 HPO4-2 + Sm+3 = Sm(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -4.2437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Sm+++ = Sm(SO4)2- - -llnl_gamma 4.0 - log_k +5.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(SO4)2- + +2 SO4-2 + Sm+3 = Sm(SO4)2- + -llnl_gamma 4 + log_k 5.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Sm+++ + 1.0000 HAcetate = SmAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -1.9205 - -delta_H -13.598 kJ/mol # Calculated enthalpy of reaction SmAcetate+2 + +Sm+3 + HAcetate = SmAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -1.9205 + -delta_H -13.598 kJ/mol # Calculated enthalpy of reaction SmAcetate+2 # Enthalpy of formation: -284.55 kcal/mol - -analytic -1.1734e+001 1.0889e-003 -5.1061e+002 3.3317e+000 2.6395e+005 + -analytic -1.1734e+1 1.0889e-3 -5.1061e+2 3.3317e+0 2.6395e+5 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 HCO3- = SmCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.479 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction SmCO3+ +Sm+3 + HCO3- = SmCO3+ + H+ + -llnl_gamma 4 + log_k -2.479 + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction SmCO3+ # Enthalpy of formation: -308.8 kcal/mol - -analytic 2.3486e+002 5.3703e-002 -7.0193e+003 -9.2863e+001 -1.0960e+002 + -analytic 2.3486e+2 5.3703e-2 -7.0193e+3 -9.2863e+1 -1.096e+2 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 Cl- = SmCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction SmCl+2 +Sm+3 + Cl- = SmCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction SmCl+2 # Enthalpy of formation: -201.7 kcal/mol - -analytic 9.4972e+001 3.9428e-002 -2.4198e+003 -3.9718e+001 -3.7787e+001 + -analytic 9.4972e+1 3.9428e-2 -2.4198e+3 -3.9718e+1 -3.7787e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Sm+++ = SmCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 19.9409 kJ/mol # Calculated enthalpy of reaction SmCl2+ +2 Cl- + Sm+3 = SmCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 19.9409 kJ/mol # Calculated enthalpy of reaction SmCl2+ # Enthalpy of formation: -240.3 kcal/mol - -analytic 2.5872e+002 8.4154e-002 -7.2061e+003 -1.0493e+002 -1.1252e+002 + -analytic 2.5872e+2 8.4154e-2 -7.2061e+3 -1.0493e+2 -1.1252e+2 # -Range: 0-300 -3.0000 Cl- + 1.0000 Sm+++ = SmCl3 - -llnl_gamma 3.0 - log_k -0.3936 - -delta_H 13.803 kJ/mol # Calculated enthalpy of reaction SmCl3 +3 Cl- + Sm+3 = SmCl3 + -llnl_gamma 3 + log_k -0.3936 + -delta_H 13.803 kJ/mol # Calculated enthalpy of reaction SmCl3 # Enthalpy of formation: -281.7 kcal/mol - -analytic 4.9535e+002 1.3520e-001 -1.4325e+004 -1.9720e+002 -2.2367e+002 + -analytic 4.9535e+2 1.352e-1 -1.4325e+4 -1.972e+2 -2.2367e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Sm+++ = SmCl4- - -llnl_gamma 4.0 - log_k -0.818 - -delta_H -5.30531 kJ/mol # Calculated enthalpy of reaction SmCl4- +4 Cl- + Sm+3 = SmCl4- + -llnl_gamma 4 + log_k -0.818 + -delta_H -5.30531 kJ/mol # Calculated enthalpy of reaction SmCl4- # Enthalpy of formation: -326.2 kcal/mol - -analytic 6.0562e+002 1.4212e-001 -1.7982e+004 -2.3782e+002 -2.8077e+002 + -analytic 6.0562e+2 1.4212e-1 -1.7982e+4 -2.3782e+2 -2.8077e+2 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 F- = SmF++ - -llnl_gamma 4.5 - log_k +4.3687 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction SmF+2 +Sm+3 + F- = SmF+2 + -llnl_gamma 4.5 + log_k 4.3687 + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction SmF+2 # Enthalpy of formation: -239.9 kcal/mol - -analytic 1.1514e+002 4.3117e-002 -3.2853e+003 -4.5499e+001 -5.1297e+001 + -analytic 1.1514e+2 4.3117e-2 -3.2853e+3 -4.5499e+1 -5.1297e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Sm+++ = SmF2+ - -llnl_gamma 4.0 - log_k +7.6379 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction SmF2+ +2 F- + Sm+3 = SmF2+ + -llnl_gamma 4 + log_k 7.6379 + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction SmF2+ # Enthalpy of formation: -322.2 kcal/mol - -analytic 2.8030e+002 8.8143e-002 -7.2857e+003 -1.1092e+002 -1.1377e+002 + -analytic 2.803e+2 8.8143e-2 -7.2857e+3 -1.1092e+2 -1.1377e+2 # -Range: 0-300 -3.0000 F- + 1.0000 Sm+++ = SmF3 - -llnl_gamma 3.0 - log_k +10.0275 - -delta_H -8.5772 kJ/mol # Calculated enthalpy of reaction SmF3 +3 F- + Sm+3 = SmF3 + -llnl_gamma 3 + log_k 10.0275 + -delta_H -8.5772 kJ/mol # Calculated enthalpy of reaction SmF3 # Enthalpy of formation: -407.7 kcal/mol - -analytic 5.2425e+002 1.4191e-001 -1.3728e+004 -2.0628e+002 -2.1436e+002 + -analytic 5.2425e+2 1.4191e-1 -1.3728e+4 -2.0628e+2 -2.1436e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Sm+++ = SmF4- - -llnl_gamma 4.0 - log_k +11.9773 - -delta_H -49.7896 kJ/mol # Calculated enthalpy of reaction SmF4- +4 F- + Sm+3 = SmF4- + -llnl_gamma 4 + log_k 11.9773 + -delta_H -49.7896 kJ/mol # Calculated enthalpy of reaction SmF4- # Enthalpy of formation: -497.7 kcal/mol - -analytic 6.2228e+002 1.4659e-001 -1.5887e+004 -2.4275e+002 -2.4809e+002 + -analytic 6.2228e+2 1.4659e-1 -1.5887e+4 -2.4275e+2 -2.4809e+2 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 HPO4-- + 1.0000 H+ = SmH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -15.8364 kJ/mol # Calculated enthalpy of reaction SmH2PO4+2 +Sm+3 + HPO4-2 + H+ = SmH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -15.8364 kJ/mol # Calculated enthalpy of reaction SmH2PO4+2 # Enthalpy of formation: -477.8 kcal/mol - -analytic 1.2451e+002 6.4959e-002 -3.9576e+002 -5.3772e+001 -6.2124e+000 + -analytic 1.2451e+2 6.4959e-2 -3.9576e+2 -5.3772e+1 -6.2124e+0 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 HCO3- = SmHCO3++ - -llnl_gamma 4.5 - log_k +1.7724 - -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction SmHCO3+2 +Sm+3 + HCO3- = SmHCO3+2 + -llnl_gamma 4.5 + log_k 1.7724 + -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction SmHCO3+2 # Enthalpy of formation: -327.9 kcal/mol - -analytic 5.5520e+001 3.3265e-002 -7.3142e+002 -2.4727e+001 -1.1430e+001 + -analytic 5.552e+1 3.3265e-2 -7.3142e+2 -2.4727e+1 -1.143e+1 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 HPO4-- = SmHPO4+ - -llnl_gamma 4.0 - log_k +5.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmHPO4+ +Sm+3 + HPO4-2 = SmHPO4+ + -llnl_gamma 4 + log_k 5.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction SmHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Sm+++ + 1.0000 NO3- = SmNO3++ - -llnl_gamma 4.5 - log_k +0.8012 - -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction SmNO3+2 + +Sm+3 + NO3- = SmNO3+2 + -llnl_gamma 4.5 + log_k 0.8012 + -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction SmNO3+2 # Enthalpy of formation: -221.6 kcal/mol - -analytic 3.3782e+001 2.7125e-002 1.5091e+003 -1.8632e+001 2.3537e+001 + -analytic 3.3782e+1 2.7125e-2 1.5091e+3 -1.8632e+1 2.3537e+1 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 H2O = SmO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.4837 - -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction SmO+ +Sm+3 + H2O = SmO+ + 2 H+ + -llnl_gamma 4 + log_k -16.4837 + -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction SmO+ # Enthalpy of formation: -206.5 kcal/mol - -analytic 1.8554e+002 3.0198e-002 -1.3791e+004 -6.6588e+001 -2.1526e+002 + -analytic 1.8554e+2 3.0198e-2 -1.3791e+4 -6.6588e+1 -2.1526e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Sm+++ = SmO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -35.0197 - -delta_H 285.909 kJ/mol # Calculated enthalpy of reaction SmO2- +2 H2O + Sm+3 = SmO2- + 4 H+ + -llnl_gamma 4 + log_k -35.0197 + -delta_H 285.909 kJ/mol # Calculated enthalpy of reaction SmO2- # Enthalpy of formation: -233.5 kcal/mol - -analytic 1.3508e+001 -8.3384e-003 -1.0325e+004 -1.5506e+000 -6.7392e+005 + -analytic 1.3508e+1 -8.3384e-3 -1.0325e+4 -1.5506e+0 -6.7392e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Sm+++ = SmO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.9304 - -delta_H 226.497 kJ/mol # Calculated enthalpy of reaction SmO2H +2 H2O + Sm+3 = SmO2H + 3 H+ + -llnl_gamma 3 + log_k -25.9304 + -delta_H 226.497 kJ/mol # Calculated enthalpy of reaction SmO2H # Enthalpy of formation: -247.7 kcal/mol - -analytic 3.6882e+002 5.3761e-002 -2.4317e+004 -1.3305e+002 -3.7956e+002 + -analytic 3.6882e+2 5.3761e-2 -2.4317e+4 -1.3305e+2 -3.7956e+2 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 H2O = SmOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.9808 - -delta_H 79.1487 kJ/mol # Calculated enthalpy of reaction SmOH+2 +Sm+3 + H2O = SmOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9808 + -delta_H 79.1487 kJ/mol # Calculated enthalpy of reaction SmOH+2 # Enthalpy of formation: -214.6 kcal/mol - -analytic 6.3793e+001 1.1977e-002 -6.0852e+003 -2.2198e+001 -9.4972e+001 + -analytic 6.3793e+1 1.1977e-2 -6.0852e+3 -2.2198e+1 -9.4972e+1 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 HPO4-- = SmPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4 +Sm+3 + HPO4-2 = SmPO4 + H+ + -llnl_gamma 3 + log_k -0.2218 + -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Sm+++ + 1.0000 SO4-- = SmSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction SmSO4+ + +Sm+3 + SO4-2 = SmSO4+ + -llnl_gamma 4 + log_k 3.643 + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction SmSO4+ # Enthalpy of formation: -377.8 kcal/mol - -analytic 3.0597e+002 8.6258e-002 -9.0231e+003 -1.2032e+002 -1.4089e+002 + -analytic 3.0597e+2 8.6258e-2 -9.0231e+3 -1.2032e+2 -1.4089e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Sn++ = Sn(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.9102 - -delta_H 42.0534 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 +2 H2O + Sn+2 = Sn(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -7.9102 + -delta_H 42.0534 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 # Enthalpy of formation: -128.683 kcal/mol - -analytic -3.7979e+001 -1.0893e-002 -1.2048e+003 1.5100e+001 -2.0445e+001 + -analytic -3.7979e+1 -1.0893e-2 -1.2048e+3 1.51e+1 -2.0445e+1 # -Range: 0-200 -2.0000 H2O + 1.0000 Sn++++ = Sn(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -0.1902 - -delta_H -2.02087 kJ/mol # Calculated enthalpy of reaction Sn(OH)2+2 +2 H2O + Sn+4 = Sn(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k -0.1902 + -delta_H -2.02087 kJ/mol # Calculated enthalpy of reaction Sn(OH)2+2 # Enthalpy of formation: -129.888 kcal/mol - -analytic -2.1675e+001 5.9697e-003 3.3953e+003 4.8158e+000 -3.2042e+005 + -analytic -2.1675e+1 5.9697e-3 3.3953e+3 4.8158e+0 -3.2042e+5 # -Range: 0-300 -3.0000 H2O + 1.0000 Sn++++ = Sn(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k +0.5148 - -delta_H -7.59396 kJ/mol # Calculated enthalpy of reaction Sn(OH)3+ +3 H2O + Sn+4 = Sn(OH)3+ + 3 H+ + -llnl_gamma 4 + log_k 0.5148 + -delta_H -7.59396 kJ/mol # Calculated enthalpy of reaction Sn(OH)3+ # Enthalpy of formation: -199.537 kcal/mol - -analytic -3.3294e+001 8.8580e-003 5.3803e+003 7.4994e+000 -4.8389e+005 + -analytic -3.3294e+1 8.858e-3 5.3803e+3 7.4994e+0 -4.8389e+5 # -Range: 0-300 -3.0000 H2O + 1.0000 Sn++ = Sn(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -17.4052 - -delta_H 94.7007 kJ/mol # Calculated enthalpy of reaction Sn(OH)3- +3 H2O + Sn+2 = Sn(OH)3- + 3 H+ + -llnl_gamma 4 + log_k -17.4052 + -delta_H 94.7007 kJ/mol # Calculated enthalpy of reaction Sn(OH)3- # Enthalpy of formation: -184.417 kcal/mol - -analytic 1.5614e+002 1.9943e-002 -1.0700e+004 -5.8031e+001 -1.6701e+002 + -analytic 1.5614e+2 1.9943e-2 -1.07e+4 -5.8031e+1 -1.6701e+2 # -Range: 0-300 -4.0000 H2O + 1.0000 Sn++++ = Sn(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k +0.8497 - -delta_H -11.0583 kJ/mol # Calculated enthalpy of reaction Sn(OH)4 +4 H2O + Sn+4 = Sn(OH)4 + 4 H+ + -llnl_gamma 3 + log_k 0.8497 + -delta_H -11.0583 kJ/mol # Calculated enthalpy of reaction Sn(OH)4 # Enthalpy of formation: -268.682 kcal/mol - -analytic -7.9563e+001 -2.2641e-002 2.6682e+003 3.1614e+001 4.5337e+001 + -analytic -7.9563e+1 -2.2641e-2 2.6682e+3 3.1614e+1 4.5337e+1 # -Range: 0-200 -2.0000 SO4-- + 1.0000 Sn++++ = Sn(SO4)2 - -llnl_gamma 3.0 - log_k -0.8072 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sn(SO4)2 +2 SO4-2 + Sn+4 = Sn(SO4)2 + -llnl_gamma 3 + log_k -0.8072 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sn(SO4)2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Sn++ + 1.0000 Cl- = SnCl+ - -llnl_gamma 4.0 - log_k +1.0500 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl+ + +Sn+2 + Cl- = SnCl+ + -llnl_gamma 4 + log_k 1.05 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl+ # Enthalpy of formation: -0 kcal/mol - - -analytic 3.0558e+002 8.2458e-002 -8.9329e+003 -1.2088e+002 -1.3948e+002 + + -analytic 3.0558e+2 8.2458e-2 -8.9329e+3 -1.2088e+2 -1.3948e+2 # -Range: 0-300 -2.0000 Cl- + 1.0000 Sn++ = SnCl2 - -llnl_gamma 3.0 - log_k +1.7100 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl2 +2 Cl- + Sn+2 = SnCl2 + -llnl_gamma 3 + log_k 1.71 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl2 # Enthalpy of formation: -0 kcal/mol - - -analytic 3.6600e+002 1.0753e-001 -1.0006e+004 -1.4660e+002 -1.5624e+002 + + -analytic 3.66e+2 1.0753e-1 -1.0006e+4 -1.466e+2 -1.5624e+2 # -Range: 0-300 -3.0000 Cl- + 1.0000 Sn++ = SnCl3- - -llnl_gamma 4.0 - log_k +1.6900 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl3- +3 Cl- + Sn+2 = SnCl3- + -llnl_gamma 4 + log_k 1.69 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl3- # Enthalpy of formation: -0 kcal/mol - - -analytic 3.6019e+002 1.0602e-001 -1.0337e+004 -1.4363e+002 -1.6141e+002 + + -analytic 3.6019e+2 1.0602e-1 -1.0337e+4 -1.4363e+2 -1.6141e+2 # -Range: 0-300 -1.0000 Sn++ + 1.0000 F- = SnF+ - -llnl_gamma 4.0 - log_k +4.0800 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF+ +Sn+2 + F- = SnF+ + -llnl_gamma 4 + log_k 4.08 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF+ # Enthalpy of formation: -0 kcal/mol - - -analytic 3.0020e+002 7.5485e-002 -8.4231e+003 -1.1734e+002 -1.3152e+002 + + -analytic 3.002e+2 7.5485e-2 -8.4231e+3 -1.1734e+2 -1.3152e+2 # -Range: 0-300 -2.0000 F- + 1.0000 Sn++ = SnF2 - -llnl_gamma 3.0 - log_k +6.6800 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF2 +2 F- + Sn+2 = SnF2 + -llnl_gamma 3 + log_k 6.68 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF2 # Enthalpy of formation: -0 kcal/mol - - -analytic 4.1241e+002 1.0988e-001 -1.1151e+004 -1.6207e+002 -1.7413e+002 + + -analytic 4.1241e+2 1.0988e-1 -1.1151e+4 -1.6207e+2 -1.7413e+2 # -Range: 0-300 -3.0000 F- + 1.0000 Sn++ = SnF3- - -llnl_gamma 4.0 - log_k +9.4600 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF3- +3 F- + Sn+2 = SnF3- + -llnl_gamma 4 + log_k 9.46 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF3- # Enthalpy of formation: -0 kcal/mol - - -analytic 4.1793e+002 1.0898e-001 -1.1402e+004 -1.6273e+002 -1.7803e+002 + + -analytic 4.1793e+2 1.0898e-1 -1.1402e+4 -1.6273e+2 -1.7803e+2 # -Range: 0-300 -1.0000 Sn++ + 1.0000 H2O = SnOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.9851 - -delta_H 21.2045 kJ/mol # Calculated enthalpy of reaction SnOH+ +Sn+2 + H2O = SnOH+ + H+ + -llnl_gamma 4 + log_k -3.9851 + -delta_H 21.2045 kJ/mol # Calculated enthalpy of reaction SnOH+ # Enthalpy of formation: -65.349 kcal/mol - -analytic 7.7253e+001 1.9149e-002 -3.3745e+003 -3.0560e+001 -5.2679e+001 + -analytic 7.7253e+1 1.9149e-2 -3.3745e+3 -3.056e+1 -5.2679e+1 # -Range: 0-300 -1.0000 Sn++++ + 1.0000 H2O = SnOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k +0.6049 - -delta_H -5.00406 kJ/mol # Calculated enthalpy of reaction SnOH+3 +Sn+4 + H2O = SnOH+3 + H+ + -llnl_gamma 5 + log_k 0.6049 + -delta_H -5.00406 kJ/mol # Calculated enthalpy of reaction SnOH+3 # Enthalpy of formation: -62.284 kcal/mol - -analytic -1.1548e+001 2.8878e-003 1.9476e+003 2.6622e+000 -1.6274e+005 + -analytic -1.1548e+1 2.8878e-3 1.9476e+3 2.6622e+0 -1.6274e+5 # -Range: 0-300 -1.0000 Sn++++ + 1.0000 SO4-- = SnSO4++ - -llnl_gamma 4.5 - log_k -3.1094 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSO4+2 +Sn+4 + SO4-2 = SnSO4+2 + -llnl_gamma 4.5 + log_k -3.1094 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSO4+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Sr++ = Sr(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.8212 - -delta_H 0.54392 kJ/mol # Calculated enthalpy of reaction Sr(Acetate)2 + +2 HAcetate + Sr+2 = Sr(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -7.8212 + -delta_H 0.54392 kJ/mol # Calculated enthalpy of reaction Sr(Acetate)2 # Enthalpy of formation: -363.74 kcal/mol - -analytic 1.2965e+001 4.7082e-003 -5.2538e+003 -5.2337e+000 7.4721e+005 + -analytic 1.2965e+1 4.7082e-3 -5.2538e+3 -5.2337e+0 7.4721e+5 # -Range: 0-300 -1.0000 Sr++ + 1.0000 HAcetate = SrAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.6724 - -delta_H 2.3012 kJ/mol # Calculated enthalpy of reaction SrAcetate+ +Sr+2 + HAcetate = SrAcetate+ + H+ + -llnl_gamma 4 + log_k -3.6724 + -delta_H 2.3012 kJ/mol # Calculated enthalpy of reaction SrAcetate+ # Enthalpy of formation: -247.22 kcal/mol - -analytic -1.4301e+001 1.2481e-003 -7.5690e+002 4.2760e+000 1.9800e+005 + -analytic -1.4301e+1 1.2481e-3 -7.569e+2 4.276e+0 1.98e+5 # -Range: 0-300 -1.0000 Sr++ + 1.0000 HCO3- = SrCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.4635 - -delta_H 33.2544 kJ/mol # Calculated enthalpy of reaction SrCO3 +Sr+2 + HCO3- = SrCO3 + H+ + -llnl_gamma 3 + log_k -7.4635 + -delta_H 33.2544 kJ/mol # Calculated enthalpy of reaction SrCO3 # Enthalpy of formation: -288.62 kcal/mol - -analytic 2.2303e+002 5.2582e-002 -8.4861e+003 -8.7975e+001 -1.3248e+002 + -analytic 2.2303e+2 5.2582e-2 -8.4861e+3 -8.7975e+1 -1.3248e+2 # -Range: 0-300 -1.0000 Sr++ + 1.0000 Cl- = SrCl+ - -llnl_gamma 4.0 - log_k -0.2485 - -delta_H 7.58559 kJ/mol # Calculated enthalpy of reaction SrCl+ +Sr+2 + Cl- = SrCl+ + -llnl_gamma 4 + log_k -0.2485 + -delta_H 7.58559 kJ/mol # Calculated enthalpy of reaction SrCl+ # Enthalpy of formation: -169.79 kcal/mol - -analytic 9.4568e+001 3.9042e-002 -2.1458e+003 -4.0105e+001 -3.3511e+001 + -analytic 9.4568e+1 3.9042e-2 -2.1458e+3 -4.0105e+1 -3.3511e+1 # -Range: 0-300 -1.0000 Sr++ + 1.0000 F- = SrF+ - -llnl_gamma 4.0 - log_k +0.1393 - -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction SrF+ +Sr+2 + F- = SrF+ + -llnl_gamma 4 + log_k 0.1393 + -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction SrF+ # Enthalpy of formation: -210.67 kcal/mol - -analytic 9.0295e+001 3.7609e-002 -1.9012e+003 -3.8379e+001 -2.9693e+001 + -analytic 9.0295e+1 3.7609e-2 -1.9012e+3 -3.8379e+1 -2.9693e+1 # -Range: 0-300 -1.0000 Sr++ + 1.0000 HPO4-- + 1.0000 H+ = SrH2PO4+ - -llnl_gamma 4.0 - log_k +0.7300 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrH2PO4+ +Sr+2 + HPO4-2 + H+ = SrH2PO4+ + -llnl_gamma 4 + log_k 0.73 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrH2PO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Sr++ + 1.0000 HPO4-- = SrHPO4 - -llnl_gamma 3.0 - log_k +2.0600 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrHPO4 + +Sr+2 + HPO4-2 = SrHPO4 + -llnl_gamma 3 + log_k 2.06 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrHPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Sr++ + 1.0000 NO3- = SrNO3+ - -llnl_gamma 4.0 - log_k +0.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrNO3+ + +Sr+2 + NO3- = SrNO3+ + -llnl_gamma 4 + log_k 0.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrNO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Sr++ + 1.0000 H2O = SrOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -13.29 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrOH+ + +Sr+2 + H2O = SrOH+ + H+ + -llnl_gamma 4 + log_k -13.29 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrOH+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Sr++ = SrP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +1.6537 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrP2O7-2 + +2 HPO4-2 + Sr+2 = SrP2O7-2 + H2O + -llnl_gamma 4 + log_k 1.6537 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrP2O7-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Sr++ + 1.0000 SO4-- = SrSO4 - -llnl_gamma 3.0 - log_k +2.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrSO4 + +Sr+2 + SO4-2 = SrSO4 + -llnl_gamma 3 + log_k 2.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrSO4 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Tb+++ = Tb(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -27.9491 kJ/mol # Calculated enthalpy of reaction Tb(Acetate)2+ + +2 HAcetate + Tb+3 = Tb(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9625 + -delta_H -27.9491 kJ/mol # Calculated enthalpy of reaction Tb(Acetate)2+ # Enthalpy of formation: -405.78 kcal/mol - -analytic -2.3910e+001 1.3433e-003 -8.0800e+002 6.3895e+000 4.8619e+005 + -analytic -2.391e+1 1.3433e-3 -8.08e+2 6.3895e+0 4.8619e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Tb+++ = Tb(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -47.1537 kJ/mol # Calculated enthalpy of reaction Tb(Acetate)3 +3 HAcetate + Tb+3 = Tb(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.3489 + -delta_H -47.1537 kJ/mol # Calculated enthalpy of reaction Tb(Acetate)3 # Enthalpy of formation: -526.47 kcal/mol - -analytic -1.0762e+001 4.2361e-003 -1.5620e+003 -3.9317e-001 6.5745e+005 + -analytic -1.0762e+1 4.2361e-3 -1.562e+3 -3.9317e-1 6.5745e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Tb+++ = Tb(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.5576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(CO3)2- +2 HCO3- + Tb+3 = Tb(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.5576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Tb+++ = Tb(HPO4)2- - -llnl_gamma 4.0 - log_k +9.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(HPO4)2- + +2 HPO4-2 + Tb+3 = Tb(HPO4)2- + -llnl_gamma 4 + log_k 9.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Tb+++ = Tb(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.6437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(PO4)2-3 + +2 HPO4-2 + Tb+3 = Tb(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -3.6437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Tb+++ = Tb(SO4)2- - -llnl_gamma 4.0 - log_k +5.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(SO4)2- + +2 SO4-2 + Tb+3 = Tb(SO4)2- + -llnl_gamma 4 + log_k 5 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Tb+++ + 1.0000 HAcetate = TbAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -14.2256 kJ/mol # Calculated enthalpy of reaction TbAcetate+2 + +Tb+3 + HAcetate = TbAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -14.2256 kJ/mol # Calculated enthalpy of reaction TbAcetate+2 # Enthalpy of formation: -286.4 kcal/mol - -analytic -1.6817e+001 6.4290e-004 -3.4442e+002 5.0994e+000 2.7304e+005 + -analytic -1.6817e+1 6.429e-4 -3.4442e+2 5.0994e+0 2.7304e+5 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 HCO3- = TbCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.4057 - -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction TbCO3+ +Tb+3 + HCO3- = TbCO3+ + H+ + -llnl_gamma 4 + log_k -2.4057 + -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction TbCO3+ # Enthalpy of formation: -310.4 kcal/mol - -analytic 2.2347e+002 5.4185e-002 -6.4127e+003 -8.9112e+001 -1.0013e+002 + -analytic 2.2347e+2 5.4185e-2 -6.4127e+3 -8.9112e+1 -1.0013e+2 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 Cl- = TbCl++ - -llnl_gamma 4.5 - log_k +0.2353 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction TbCl+2 +Tb+3 + Cl- = TbCl+2 + -llnl_gamma 4.5 + log_k 0.2353 + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction TbCl+2 # Enthalpy of formation: -203.5 kcal/mol - -analytic 7.1095e+001 3.7367e-002 -1.4676e+003 -3.1140e+001 -2.2921e+001 + -analytic 7.1095e+1 3.7367e-2 -1.4676e+3 -3.114e+1 -2.2921e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Tb+++ = TbCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 18.2673 kJ/mol # Calculated enthalpy of reaction TbCl2+ +2 Cl- + Tb+3 = TbCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 18.2673 kJ/mol # Calculated enthalpy of reaction TbCl2+ # Enthalpy of formation: -242.4 kcal/mol - -analytic 2.0699e+002 7.9609e-002 -5.0958e+003 -8.6337e+001 -7.9576e+001 + -analytic 2.0699e+2 7.9609e-2 -5.0958e+3 -8.6337e+1 -7.9576e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Tb+++ = TbCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction TbCl3 +3 Cl- + Tb+3 = TbCl3 + -llnl_gamma 3 + log_k -0.4669 + -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction TbCl3 # Enthalpy of formation: -284.3 kcal/mol - -analytic 4.0764e+002 1.2809e-001 -1.0704e+004 -1.6583e+002 -1.6715e+002 + -analytic 4.0764e+2 1.2809e-1 -1.0704e+4 -1.6583e+2 -1.6715e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Tb+++ = TbCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -11.5813 kJ/mol # Calculated enthalpy of reaction TbCl4- +4 Cl- + Tb+3 = TbCl4- + -llnl_gamma 4 + log_k -0.8913 + -delta_H -11.5813 kJ/mol # Calculated enthalpy of reaction TbCl4- # Enthalpy of formation: -329.4 kcal/mol - -analytic 4.6247e+002 1.2926e-001 -1.2117e+004 -1.8639e+002 -1.8921e+002 + -analytic 4.6247e+2 1.2926e-1 -1.2117e+4 -1.8639e+2 -1.8921e+2 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 F- = TbF++ - -llnl_gamma 4.5 - log_k +4.6619 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction TbF+2 +Tb+3 + F- = TbF+2 + -llnl_gamma 4.5 + log_k 4.6619 + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction TbF+2 # Enthalpy of formation: -241.6 kcal/mol - -analytic 9.2579e+001 4.1327e-002 -2.3647e+003 -3.7293e+001 -3.6927e+001 + -analytic 9.2579e+1 4.1327e-2 -2.3647e+3 -3.7293e+1 -3.6927e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Tb+++ = TbF2+ - -llnl_gamma 4.0 - log_k +8.1510 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction TbF2+ +2 F- + Tb+3 = TbF2+ + -llnl_gamma 4 + log_k 8.151 + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction TbF2+ # Enthalpy of formation: -324.3 kcal/mol - -analytic 2.3100e+002 8.4094e-002 -5.2548e+003 -9.3051e+001 -8.2065e+001 + -analytic 2.31e+2 8.4094e-2 -5.2548e+3 -9.3051e+1 -8.2065e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Tb+++ = TbF3 - -llnl_gamma 3.0 - log_k +10.6872 - -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction TbF3 +3 F- + Tb+3 = TbF3 + -llnl_gamma 3 + log_k 10.6872 + -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction TbF3 # Enthalpy of formation: -410.2 kcal/mol - -analytic 4.3730e+002 1.3479e-001 -1.0128e+004 -1.7489e+002 -1.5817e+002 + -analytic 4.373e+2 1.3479e-1 -1.0128e+4 -1.7489e+2 -1.5817e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Tb+++ = TbF4- - -llnl_gamma 4.0 - log_k +12.7836 - -delta_H -56.0656 kJ/mol # Calculated enthalpy of reaction TbF4- +4 F- + Tb+3 = TbF4- + -llnl_gamma 4 + log_k 12.7836 + -delta_H -56.0656 kJ/mol # Calculated enthalpy of reaction TbF4- # Enthalpy of formation: -500.9 kcal/mol - -analytic 4.8546e+002 1.3511e-001 -1.0189e+004 -1.9347e+002 -1.5913e+002 + -analytic 4.8546e+2 1.3511e-1 -1.0189e+4 -1.9347e+2 -1.5913e+2 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 HPO4-- + 1.0000 H+ = TbH2PO4++ - -llnl_gamma 4.5 - log_k +9.3751 - -delta_H -17.51 kJ/mol # Calculated enthalpy of reaction TbH2PO4+2 +Tb+3 + HPO4-2 + H+ = TbH2PO4+2 + -llnl_gamma 4.5 + log_k 9.3751 + -delta_H -17.51 kJ/mol # Calculated enthalpy of reaction TbH2PO4+2 # Enthalpy of formation: -479.9 kcal/mol - -analytic 1.0042e+002 6.2886e-002 6.0975e+002 -4.5178e+001 9.4847e+000 + -analytic 1.0042e+2 6.2886e-2 6.0975e+2 -4.5178e+1 9.4847e+0 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 HCO3- = TbHCO3++ - -llnl_gamma 4.5 - log_k +1.6991 - -delta_H -14.6524 kJ/mol # Calculated enthalpy of reaction TbHCO3+2 +Tb+3 + HCO3- = TbHCO3+2 + -llnl_gamma 4.5 + log_k 1.6991 + -delta_H -14.6524 kJ/mol # Calculated enthalpy of reaction TbHCO3+2 # Enthalpy of formation: -335.3 kcal/mol - -analytic 1.7376e+001 2.8365e-002 1.6982e+003 -1.2044e+001 2.6494e+001 + -analytic 1.7376e+1 2.8365e-2 1.6982e+3 -1.2044e+1 2.6494e+1 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 HPO4-- = TbHPO4+ - -llnl_gamma 4.0 - log_k +5.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbHPO4+ +Tb+3 + HPO4-2 = TbHPO4+ + -llnl_gamma 4 + log_k 5.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction TbHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Tb+++ + 1.0000 NO3- = TbNO3++ - -llnl_gamma 4.5 - log_k +0.5080 - -delta_H -31.2587 kJ/mol # Calculated enthalpy of reaction TbNO3+2 + +Tb+3 + NO3- = TbNO3+2 + -llnl_gamma 4.5 + log_k 0.508 + -delta_H -31.2587 kJ/mol # Calculated enthalpy of reaction TbNO3+2 # Enthalpy of formation: -223.8 kcal/mol - -analytic 8.7852e+000 2.4868e-002 2.5553e+003 -9.7944e+000 3.9871e+001 + -analytic 8.7852e+0 2.4868e-2 2.5553e+3 -9.7944e+0 3.9871e+1 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 H2O = TbO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.1904 - -delta_H 109.692 kJ/mol # Calculated enthalpy of reaction TbO+ +Tb+3 + H2O = TbO+ + 2 H+ + -llnl_gamma 4 + log_k -16.1904 + -delta_H 109.692 kJ/mol # Calculated enthalpy of reaction TbO+ # Enthalpy of formation: -209 kcal/mol - -analytic 1.7975e+002 2.9563e-002 -1.3407e+004 -6.4573e+001 -2.0926e+002 + -analytic 1.7975e+2 2.9563e-2 -1.3407e+4 -6.4573e+1 -2.0926e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Tb+++ = TbO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -34.2134 - -delta_H 278.797 kJ/mol # Calculated enthalpy of reaction TbO2- +2 H2O + Tb+3 = TbO2- + 4 H+ + -llnl_gamma 4 + log_k -34.2134 + -delta_H 278.797 kJ/mol # Calculated enthalpy of reaction TbO2- # Enthalpy of formation: -236.9 kcal/mol - -analytic 1.6924e+002 1.1804e-002 -1.9821e+004 -5.6781e+001 -3.0933e+002 + -analytic 1.6924e+2 1.1804e-2 -1.9821e+4 -5.6781e+1 -3.0933e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Tb+++ = TbO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.0508 - -delta_H 219.802 kJ/mol # Calculated enthalpy of reaction TbO2H +2 H2O + Tb+3 = TbO2H + 3 H+ + -llnl_gamma 3 + log_k -25.0508 + -delta_H 219.802 kJ/mol # Calculated enthalpy of reaction TbO2H # Enthalpy of formation: -251 kcal/mol - -analytic 3.2761e+002 4.5225e-002 -2.2652e+004 -1.1727e+002 -3.5356e+002 + -analytic 3.2761e+2 4.5225e-2 -2.2652e+4 -1.1727e+2 -3.5356e+2 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 H2O = TbOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.8342 - -delta_H 77.4751 kJ/mol # Calculated enthalpy of reaction TbOH+2 +Tb+3 + H2O = TbOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.8342 + -delta_H 77.4751 kJ/mol # Calculated enthalpy of reaction TbOH+2 # Enthalpy of formation: -216.7 kcal/mol - -analytic 5.9574e+001 1.1625e-002 -5.8143e+003 -2.0759e+001 -9.0744e+001 + -analytic 5.9574e+1 1.1625e-2 -5.8143e+3 -2.0759e+1 -9.0744e+1 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 HPO4-- = TbPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.0782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4 +Tb+3 + HPO4-2 = TbPO4 + H+ + -llnl_gamma 3 + log_k 0.0782 + -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Tb+++ + 1.0000 SO4-- = TbSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction TbSO4+ + +Tb+3 + SO4-2 = TbSO4+ + -llnl_gamma 4 + log_k 3.643 + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction TbSO4+ # Enthalpy of formation: -379.6 kcal/mol - -analytic 2.9633e+002 8.5155e-002 -8.6346e+003 -1.1682e+002 -1.3482e+002 + -analytic 2.9633e+2 8.5155e-2 -8.6346e+3 -1.1682e+2 -1.3482e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 TcO++ = TcO(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -3.3221 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO(OH)2 +2 H2O + TcO+2 = TcO(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -3.3221 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO(OH)2 # Enthalpy of formation: -0 kcal/mol - -1.0000 TcO++ + 1.0000 H2O = TcOOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -1.1355 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcOOH+ + +TcO+2 + H2O = TcOOH+ + H+ + -llnl_gamma 4 + log_k -1.1355 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcOOH+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 2.0000 H+ + 1.0000 Th++++ = Th(H2PO4)2++ - -llnl_gamma 4.5 - log_k +23.2070 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(H2PO4)2+2 + +2 HPO4-2 + 2 H+ + Th+4 = Th(H2PO4)2+2 + -llnl_gamma 4.5 + log_k 23.207 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(H2PO4)2+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Th++++ = Th(HPO4)2 - -llnl_gamma 3.0 - log_k +22.6939 - -delta_H -13.644 kJ/mol # Calculated enthalpy of reaction Th(HPO4)2 + +2 HPO4-2 + Th+4 = Th(HPO4)2 + -llnl_gamma 3 + log_k 22.6939 + -delta_H -13.644 kJ/mol # Calculated enthalpy of reaction Th(HPO4)2 # Enthalpy of formation: -804.691 kcal/mol - -analytic 6.5208e+002 2.3099e-001 -1.2990e+004 -2.6457e+002 -2.2082e+002 + -analytic 6.5208e+2 2.3099e-1 -1.299e+4 -2.6457e+2 -2.2082e+2 # -Range: 0-200 -3.0000 HPO4-- + 1.0000 Th++++ = Th(HPO4)3-- - -llnl_gamma 4.0 - log_k +31.1894 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(HPO4)3-2 +3 HPO4-2 + Th+4 = Th(HPO4)3-2 + -llnl_gamma 4 + log_k 31.1894 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(HPO4)3-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Th++++ = Th(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -7.1068 - -delta_H 58.668 kJ/mol # Calculated enthalpy of reaction Th(OH)2+2 + +2 H2O + Th+4 = Th(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k -7.1068 + -delta_H 58.668 kJ/mol # Calculated enthalpy of reaction Th(OH)2+2 # Enthalpy of formation: -306.412 kcal/mol - -analytic -1.1274e+001 3.4195e-003 -3.7553e+002 3.1299e+000 -2.9696e+005 + -analytic -1.1274e+1 3.4195e-3 -3.7553e+2 3.1299e+0 -2.9696e+5 # -Range: 0-300 -3.0000 H2O + 1.0000 Th++++ = Th(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -11.8623 - -delta_H 86.1318 kJ/mol # Calculated enthalpy of reaction Th(OH)3+ +3 H2O + Th+4 = Th(OH)3+ + 3 H+ + -llnl_gamma 4 + log_k -11.8623 + -delta_H 86.1318 kJ/mol # Calculated enthalpy of reaction Th(OH)3+ # Enthalpy of formation: -368.165 kcal/mol -4.0000 H2O + 1.0000 Th++++ = Th(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -16.0315 - -delta_H 104.01 kJ/mol # Calculated enthalpy of reaction Th(OH)4 +4 H2O + Th+4 = Th(OH)4 + 4 H+ + -llnl_gamma 3 + log_k -16.0315 + -delta_H 104.01 kJ/mol # Calculated enthalpy of reaction Th(OH)4 # Enthalpy of formation: -432.209 kcal/mol - -analytic 2.9534e+001 1.5550e-002 -5.6680e+003 -1.2598e+001 -9.6262e+001 + -analytic 2.9534e+1 1.555e-2 -5.668e+3 -1.2598e+1 -9.6262e+1 # -Range: 0-200 -2.0000 SO4-- + 1.0000 Th++++ = Th(SO4)2 - -llnl_gamma 3.0 - log_k +9.6170 - -delta_H 32.2377 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 +2 SO4-2 + Th+4 = Th(SO4)2 + -llnl_gamma 3 + log_k 9.617 + -delta_H 32.2377 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 # Enthalpy of formation: -610.895 kcal/mol - -analytic 4.6425e+002 1.6769e-001 -1.1195e+004 -1.8875e+002 -1.9027e+002 + -analytic 4.6425e+2 1.6769e-1 -1.1195e+4 -1.8875e+2 -1.9027e+2 # -Range: 0-200 -3.0000 SO4-- + 1.0000 Th++++ = Th(SO4)3-- - -llnl_gamma 4.0 - log_k +10.4014 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)3-2 +3 SO4-2 + Th+4 = Th(SO4)3-2 + -llnl_gamma 4 + log_k 10.4014 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)3-2 # Enthalpy of formation: -0 kcal/mol - -4.0000 SO4-- + 1.0000 Th++++ = Th(SO4)4---- - -llnl_gamma 4.0 - log_k +8.4003 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)4-4 + +4 SO4-2 + Th+4 = Th(SO4)4-4 + -llnl_gamma 4 + log_k 8.4003 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)4-4 # Enthalpy of formation: -0 kcal/mol - -2.0000 Th++++ + 2.0000 H2O = Th2(OH)2+6 +2.0000 H+ - -llnl_gamma 6.0 - log_k -6.4618 - -delta_H 63.7181 kJ/mol # Calculated enthalpy of reaction Th2(OH)2+6 + +2 Th+4 + 2 H2O = Th2(OH)2+6 + 2 H+ + -llnl_gamma 6 + log_k -6.4618 + -delta_H 63.7181 kJ/mol # Calculated enthalpy of reaction Th2(OH)2+6 # Enthalpy of formation: -489.005 kcal/mol - -analytic 6.8838e+001 -4.1348e-003 -6.4415e+003 -2.1200e+001 -1.0053e+002 + -analytic 6.8838e+1 -4.1348e-3 -6.4415e+3 -2.12e+1 -1.0053e+2 # -Range: 0-300 -8.0000 H2O + 4.0000 Th++++ = Th4(OH)8+8 +8.0000 H+ - -llnl_gamma 6.0 - log_k -21.7568 - -delta_H 245.245 kJ/mol # Calculated enthalpy of reaction Th4(OH)8+8 +8 H2O + 4 Th+4 = Th4(OH)8+8 + 8 H+ + -llnl_gamma 6 + log_k -21.7568 + -delta_H 245.245 kJ/mol # Calculated enthalpy of reaction Th4(OH)8+8 # Enthalpy of formation: -1223.12 kcal/mol - -analytic 2.7826e+002 -2.3504e-003 -2.4410e+004 -8.7873e+001 -3.8097e+002 + -analytic 2.7826e+2 -2.3504e-3 -2.441e+4 -8.7873e+1 -3.8097e+2 # -Range: 0-300 -15.0000 H2O + 6.0000 Th++++ = Th6(OH)15+9 +15.0000 H+ - -llnl_gamma 6.0 - log_k -37.7027 - -delta_H 458.248 kJ/mol # Calculated enthalpy of reaction Th6(OH)15+9 +15 H2O + 6 Th+4 = Th6(OH)15+9 + 15 H+ + -llnl_gamma 6 + log_k -37.7027 + -delta_H 458.248 kJ/mol # Calculated enthalpy of reaction Th6(OH)15+9 # Enthalpy of formation: -2018.03 kcal/mol - -analytic 5.2516e+002 3.3015e-003 -4.5237e+004 -1.6654e+002 -7.0603e+002 + -analytic 5.2516e+2 3.3015e-3 -4.5237e+4 -1.6654e+2 -7.0603e+2 # -Range: 0-300 -1.0000 Th++++ + 1.0000 Cl- = ThCl+++ - -llnl_gamma 5.0 - log_k +0.9536 - -delta_H 0.06276 kJ/mol # Calculated enthalpy of reaction ThCl+3 +Th+4 + Cl- = ThCl+3 + -llnl_gamma 5 + log_k 0.9536 + -delta_H 0.06276 kJ/mol # Calculated enthalpy of reaction ThCl+3 # Enthalpy of formation: -223.718 kcal/mol - -analytic 9.7430e+001 3.9398e-002 -1.8653e+003 -4.1202e+001 -2.9135e+001 + -analytic 9.743e+1 3.9398e-2 -1.8653e+3 -4.1202e+1 -2.9135e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Th++++ = ThCl2++ - -llnl_gamma 4.5 - log_k +0.6758 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl2+2 +2 Cl- + Th+4 = ThCl2+2 + -llnl_gamma 4.5 + log_k 0.6758 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl2+2 # Enthalpy of formation: -0 kcal/mol - -3.0000 Cl- + 1.0000 Th++++ = ThCl3+ - -llnl_gamma 4.0 - log_k +1.4975 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl3+ + +3 Cl- + Th+4 = ThCl3+ + -llnl_gamma 4 + log_k 1.4975 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl3+ # Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Th++++ = ThCl4 - -llnl_gamma 3.0 - log_k +1.0731 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl4 + +4 Cl- + Th+4 = ThCl4 + -llnl_gamma 3 + log_k 1.0731 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Th++++ + 1.0000 F- = ThF+++ - -llnl_gamma 5.0 - log_k +7.8725 - -delta_H -4.87436 kJ/mol # Calculated enthalpy of reaction ThF+3 + +Th+4 + F- = ThF+3 + -llnl_gamma 5 + log_k 7.8725 + -delta_H -4.87436 kJ/mol # Calculated enthalpy of reaction ThF+3 # Enthalpy of formation: -265.115 kcal/mol - -analytic 1.1679e+002 3.9201e-002 -2.2118e+003 -4.5736e+001 -3.4548e+001 + -analytic 1.1679e+2 3.9201e-2 -2.2118e+3 -4.5736e+1 -3.4548e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Th++++ = ThF2++ - -llnl_gamma 4.5 - log_k +14.0884 - -delta_H -7.77806 kJ/mol # Calculated enthalpy of reaction ThF2+2 +2 F- + Th+4 = ThF2+2 + -llnl_gamma 4.5 + log_k 14.0884 + -delta_H -7.77806 kJ/mol # Calculated enthalpy of reaction ThF2+2 # Enthalpy of formation: -345.959 kcal/mol - -analytic 2.3200e+002 7.9567e-002 -4.4418e+003 -9.1617e+001 -6.9379e+001 + -analytic 2.32e+2 7.9567e-2 -4.4418e+3 -9.1617e+1 -6.9379e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Th++++ = ThF3+ - -llnl_gamma 4.0 - log_k +18.7357 - -delta_H -11.7068 kJ/mol # Calculated enthalpy of reaction ThF3+ +3 F- + Th+4 = ThF3+ + -llnl_gamma 4 + log_k 18.7357 + -delta_H -11.7068 kJ/mol # Calculated enthalpy of reaction ThF3+ # Enthalpy of formation: -427.048 kcal/mol - -analytic 3.4511e+002 1.2149e-001 -6.5065e+003 -1.3770e+002 -1.0163e+002 + -analytic 3.4511e+2 1.2149e-1 -6.5065e+3 -1.377e+2 -1.0163e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Th++++ = ThF4 - -llnl_gamma 3.0 - log_k +22.1515 - -delta_H -14.8448 kJ/mol # Calculated enthalpy of reaction ThF4 +4 F- + Th+4 = ThF4 + -llnl_gamma 3 + log_k 22.1515 + -delta_H -14.8448 kJ/mol # Calculated enthalpy of reaction ThF4 # Enthalpy of formation: -507.948 kcal/mol - -analytic 6.1206e+002 2.1878e-001 -1.1938e+004 -2.4857e+002 -2.0294e+002 + -analytic 6.1206e+2 2.1878e-1 -1.1938e+4 -2.4857e+2 -2.0294e+2 # -Range: 0-200 -1.0000 Th++++ + 1.0000 HPO4-- + 1.0000 H+ = ThH2PO4+++ - -llnl_gamma 5.0 - log_k +11.7061 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThH2PO4+3 +Th+4 + HPO4-2 + H+ = ThH2PO4+3 + -llnl_gamma 5 + log_k 11.7061 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThH2PO4+3 # Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 Th++++ + 1.0000 HPO4-- = ThH3PO4++++ - -llnl_gamma 5.5 - log_k +11.1197 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThH3PO4+4 + +2 H+ + Th+4 + HPO4-2 = ThH3PO4+4 + -llnl_gamma 5.5 + log_k 11.1197 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThH3PO4+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Th++++ + 1.0000 HPO4-- = ThHPO4++ - -llnl_gamma 4.5 - log_k +10.6799 - -delta_H 0.1046 kJ/mol # Calculated enthalpy of reaction ThHPO4+2 + +Th+4 + HPO4-2 = ThHPO4+2 + -llnl_gamma 4.5 + log_k 10.6799 + -delta_H 0.1046 kJ/mol # Calculated enthalpy of reaction ThHPO4+2 # Enthalpy of formation: -492.59 kcal/mol -1.0000 Th++++ + 1.0000 H2O = ThOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -3.8871 - -delta_H 25.0275 kJ/mol # Calculated enthalpy of reaction ThOH+3 +Th+4 + H2O = ThOH+3 + H+ + -llnl_gamma 5 + log_k -3.8871 + -delta_H 25.0275 kJ/mol # Calculated enthalpy of reaction ThOH+3 # Enthalpy of formation: -1029.83 kJ/mol - -analytic 1.0495e+001 5.1532e-003 -8.6396e+002 -4.8420e+000 -9.2609e+004 + -analytic 1.0495e+1 5.1532e-3 -8.6396e+2 -4.842e+0 -9.2609e+4 # -Range: 0-300 -1.0000 Th++++ + 1.0000 SO4-- = ThSO4++ - -llnl_gamma 4.5 - log_k +5.3143 - -delta_H 16.3511 kJ/mol # Calculated enthalpy of reaction ThSO4+2 +Th+4 + SO4-2 = ThSO4+2 + -llnl_gamma 4.5 + log_k 5.3143 + -delta_H 16.3511 kJ/mol # Calculated enthalpy of reaction ThSO4+2 # Enthalpy of formation: -397.292 kcal/mol - -analytic 1.9443e+002 7.5245e-002 -4.5010e+003 -7.9379e+001 -7.0291e+001 + -analytic 1.9443e+2 7.5245e-2 -4.501e+3 -7.9379e+1 -7.0291e+1 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Tl+ = Tl(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -10.0129 - -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Tl(Acetate)2- +2 HAcetate + Tl+ = Tl(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -10.0129 + -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Tl(Acetate)2- # Enthalpy of formation: -230.62 kcal/mol - -analytic -1.8123e+002 -4.0616e-002 5.0741e+003 6.7216e+001 7.9229e+001 + -analytic -1.8123e+2 -4.0616e-2 5.0741e+3 6.7216e+1 7.9229e+1 # -Range: 0-300 -1.0000 Tl+ + 1.0000 HAcetate = TlAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8672 - -delta_H 6.15048 kJ/mol # Calculated enthalpy of reaction TlAcetate +Tl+ + HAcetate = TlAcetate + H+ + -llnl_gamma 3 + log_k -4.8672 + -delta_H 6.15048 kJ/mol # Calculated enthalpy of reaction TlAcetate # Enthalpy of formation: -113.35 kcal/mol - -analytic 9.2977e+000 -3.4368e-003 -2.1748e+003 -3.1454e+000 1.7273e+005 + -analytic 9.2977e+0 -3.4368e-3 -2.1748e+3 -3.1454e+0 1.7273e+5 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Tm+++ = Tm(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9844 - -delta_H -32.5934 kJ/mol # Calculated enthalpy of reaction Tm(Acetate)2+ +2 HAcetate + Tm+3 = Tm(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9844 + -delta_H -32.5934 kJ/mol # Calculated enthalpy of reaction Tm(Acetate)2+ # Enthalpy of formation: -408.49 kcal/mol - -analytic -2.8983e+001 2.0256e-003 -1.1525e+003 8.2163e+000 6.1820e+005 + -analytic -2.8983e+1 2.0256e-3 -1.1525e+3 8.2163e+0 6.182e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Tm+++ = Tm(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3783 - -delta_H -54.8104 kJ/mol # Calculated enthalpy of reaction Tm(Acetate)3 +3 HAcetate + Tm+3 = Tm(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.3783 + -delta_H -54.8104 kJ/mol # Calculated enthalpy of reaction Tm(Acetate)3 # Enthalpy of formation: -529.9 kcal/mol - -analytic -2.8900e+001 4.9633e-003 -1.6574e+003 6.0186e+000 8.6624e+005 + -analytic -2.89e+1 4.9633e-3 -1.6574e+3 6.0186e+0 8.6624e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Tm+++ = Tm(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.1576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(CO3)2- +2 HCO3- + Tm+3 = Tm(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.1576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Tm+++ = Tm(HPO4)2- - -llnl_gamma 4.0 - log_k +10.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(HPO4)2- + +2 HPO4-2 + Tm+3 = Tm(HPO4)2- + -llnl_gamma 4 + log_k 10.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Tm+++ = Tm(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.0437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(PO4)2-3 + +2 HPO4-2 + Tm+3 = Tm(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -3.0437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Tm+++ = Tm(SO4)2- - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(SO4)2- + +2 SO4-2 + Tm+3 = Tm(SO4)2- + -llnl_gamma 4 + log_k 5.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Tm+++ + 1.0000 HAcetate = TmAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1184 - -delta_H -16.3176 kJ/mol # Calculated enthalpy of reaction TmAcetate+2 + +Tm+3 + HAcetate = TmAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.1184 + -delta_H -16.3176 kJ/mol # Calculated enthalpy of reaction TmAcetate+2 # Enthalpy of formation: -288.5 kcal/mol - -analytic -1.6068e+001 1.2043e-003 -6.2777e+002 4.8318e+000 3.3363e+005 + -analytic -1.6068e+1 1.2043e-3 -6.2777e+2 4.8318e+0 3.3363e+5 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 HCO3- = TmCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.1125 - -delta_H 86.6004 kJ/mol # Calculated enthalpy of reaction TmCO3+ +Tm+3 + HCO3- = TmCO3+ + H+ + -llnl_gamma 4 + log_k -2.1125 + -delta_H 86.6004 kJ/mol # Calculated enthalpy of reaction TmCO3+ # Enthalpy of formation: -312.7 kcal/mol - -analytic 2.3889e+002 5.4733e-002 -6.9382e+003 -9.4581e+001 -1.0833e+002 + -analytic 2.3889e+2 5.4733e-2 -6.9382e+3 -9.4581e+1 -1.0833e+2 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 Cl- = TmCl++ - -llnl_gamma 4.5 - log_k +0.2353 - -delta_H 13.1085 kJ/mol # Calculated enthalpy of reaction TmCl+2 +Tm+3 + Cl- = TmCl+2 + -llnl_gamma 4.5 + log_k 0.2353 + -delta_H 13.1085 kJ/mol # Calculated enthalpy of reaction TmCl+2 # Enthalpy of formation: -205.3 kcal/mol - -analytic 7.4795e+001 3.7655e-002 -1.5701e+003 -3.2531e+001 -2.4523e+001 + -analytic 7.4795e+1 3.7655e-2 -1.5701e+3 -3.2531e+1 -2.4523e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Tm+++ = TmCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction TmCl2+ +2 Cl- + Tm+3 = TmCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction TmCl2+ # Enthalpy of formation: -244.6 kcal/mol - -analytic 2.0352e+002 7.9173e-002 -4.8574e+003 -8.5202e+001 -7.5855e+001 + -analytic 2.0352e+2 7.9173e-2 -4.8574e+3 -8.5202e+1 -7.5855e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Tm+++ = TmCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 5.43502 kJ/mol # Calculated enthalpy of reaction TmCl3 +3 Cl- + Tm+3 = TmCl3 + -llnl_gamma 3 + log_k -0.4669 + -delta_H 5.43502 kJ/mol # Calculated enthalpy of reaction TmCl3 # Enthalpy of formation: -287 kcal/mol - -analytic 3.9793e+002 1.2777e-001 -1.0070e+004 -1.6272e+002 -1.5725e+002 + -analytic 3.9793e+2 1.2777e-1 -1.007e+4 -1.6272e+2 -1.5725e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Tm+++ = TmCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -20.3677 kJ/mol # Calculated enthalpy of reaction TmCl4- +4 Cl- + Tm+3 = TmCl4- + -llnl_gamma 4 + log_k -0.8913 + -delta_H -20.3677 kJ/mol # Calculated enthalpy of reaction TmCl4- # Enthalpy of formation: -333.1 kcal/mol - -analytic 4.3574e+002 1.2655e-001 -1.0713e+004 -1.7716e+002 -1.6730e+002 + -analytic 4.3574e+2 1.2655e-1 -1.0713e+4 -1.7716e+2 -1.673e+2 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 F- = TmF++ - -llnl_gamma 4.5 - log_k +4.8085 - -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction TmF+2 +Tm+3 + F- = TmF+2 + -llnl_gamma 4.5 + log_k 4.8085 + -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction TmF+2 # Enthalpy of formation: -243 kcal/mol - -analytic 9.7686e+001 4.1890e-002 -2.5909e+003 -3.9059e+001 -4.0457e+001 + -analytic 9.7686e+1 4.189e-2 -2.5909e+3 -3.9059e+1 -4.0457e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Tm+++ = TmF2+ - -llnl_gamma 4.0 - log_k +8.3709 - -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction TmF2+ +2 F- + Tm+3 = TmF2+ + -llnl_gamma 4 + log_k 8.3709 + -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction TmF2+ # Enthalpy of formation: -325.8 kcal/mol - -analytic 2.2986e+002 8.4119e-002 -5.2144e+003 -9.2558e+001 -8.1433e+001 + -analytic 2.2986e+2 8.4119e-2 -5.2144e+3 -9.2558e+1 -8.1433e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Tm+++ = TmF3 - -llnl_gamma 3.0 - log_k +10.9804 - -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction TmF3 +3 F- + Tm+3 = TmF3 + -llnl_gamma 3 + log_k 10.9804 + -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction TmF3 # Enthalpy of formation: -412 kcal/mol - -analytic 4.2855e+002 1.3445e-001 -9.7045e+003 -1.7177e+002 -1.5156e+002 + -analytic 4.2855e+2 1.3445e-1 -9.7045e+3 -1.7177e+2 -1.5156e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Tm+++ = TmF4- - -llnl_gamma 4.0 - log_k +13.1501 - -delta_H -60.668 kJ/mol # Calculated enthalpy of reaction TmF4- +4 F- + Tm+3 = TmF4- + -llnl_gamma 4 + log_k 13.1501 + -delta_H -60.668 kJ/mol # Calculated enthalpy of reaction TmF4- # Enthalpy of formation: -503.6 kcal/mol - -analytic 4.6559e+002 1.3386e-001 -9.1790e+003 -1.8650e+002 -1.4337e+002 + -analytic 4.6559e+2 1.3386e-1 -9.179e+3 -1.865e+2 -1.4337e+2 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 HPO4-- + 1.0000 H+ = TmH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction TmH2PO4+2 +Tm+3 + HPO4-2 + H+ = TmH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction TmH2PO4+2 # Enthalpy of formation: -482.2 kcal/mol - -analytic 1.0360e+002 6.3085e-002 6.0731e+002 -4.6456e+001 9.4456e+000 + -analytic 1.036e+2 6.3085e-2 6.0731e+2 -4.6456e+1 9.4456e+0 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 HCO3- = TmHCO3++ - -llnl_gamma 4.5 - log_k +1.7724 - -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction TmHCO3+2 +Tm+3 + HCO3- = TmHCO3+2 + -llnl_gamma 4.5 + log_k 1.7724 + -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction TmHCO3+2 # Enthalpy of formation: -332.2 kcal/mol - -analytic 3.3102e+001 3.1010e-002 2.9880e+002 -1.6791e+001 4.6524e+000 + -analytic 3.3102e+1 3.101e-2 2.988e+2 -1.6791e+1 4.6524e+0 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 HPO4-- = TmHPO4+ - -llnl_gamma 4.0 - log_k +5.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmHPO4+ +Tm+3 + HPO4-2 = TmHPO4+ + -llnl_gamma 4 + log_k 5.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction TmHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Tm+++ + 1.0000 NO3- = TmNO3++ - -llnl_gamma 4.5 - log_k +0.2148 - -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction TmNO3+2 + +Tm+3 + NO3- = TmNO3+2 + -llnl_gamma 4.5 + log_k 0.2148 + -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction TmNO3+2 # Enthalpy of formation: -226 kcal/mol - -analytic 1.1085e+001 2.4898e-002 2.5664e+003 -1.0861e+001 4.0043e+001 + -analytic 1.1085e+1 2.4898e-2 2.5664e+3 -1.0861e+1 4.0043e+1 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 H2O = TmO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.8972 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction TmO+ +Tm+3 + H2O = TmO+ + 2 H+ + -llnl_gamma 4 + log_k -15.8972 + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction TmO+ # Enthalpy of formation: -211.6 kcal/mol - -analytic 1.7572e+002 2.8756e-002 -1.3096e+004 -6.3150e+001 -2.0441e+002 + -analytic 1.7572e+2 2.8756e-2 -1.3096e+4 -6.315e+1 -2.0441e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Tm+++ = TmO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.6741 - -delta_H 266.663 kJ/mol # Calculated enthalpy of reaction TmO2- +2 H2O + Tm+3 = TmO2- + 4 H+ + -llnl_gamma 4 + log_k -32.6741 + -delta_H 266.663 kJ/mol # Calculated enthalpy of reaction TmO2- # Enthalpy of formation: -241.4 kcal/mol - -analytic 3.3118e+001 -5.2802e-003 -1.1318e+004 -8.4764e+000 -4.6998e+005 + -analytic 3.3118e+1 -5.2802e-3 -1.1318e+4 -8.4764e+0 -4.6998e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Tm+++ = TmO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -24.1712 - -delta_H 211.853 kJ/mol # Calculated enthalpy of reaction TmO2H +2 H2O + Tm+3 = TmO2H + 3 H+ + -llnl_gamma 3 + log_k -24.1712 + -delta_H 211.853 kJ/mol # Calculated enthalpy of reaction TmO2H # Enthalpy of formation: -254.5 kcal/mol - -analytic 3.1648e+002 4.4527e-002 -2.1821e+004 -1.1345e+002 -3.4059e+002 + -analytic 3.1648e+2 4.4527e-2 -2.1821e+4 -1.1345e+2 -3.4059e+2 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 H2O = TmOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.6876 - -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction TmOH+2 +Tm+3 + H2O = TmOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.6876 + -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction TmOH+2 # Enthalpy of formation: -219 kcal/mol - -analytic 5.7572e+001 1.1162e-002 -5.6381e+003 -2.0074e+001 -8.7994e+001 + -analytic 5.7572e+1 1.1162e-2 -5.6381e+3 -2.0074e+1 -8.7994e+1 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 HPO4-- = TmPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.4782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4 +Tm+3 + HPO4-2 = TmPO4 + H+ + -llnl_gamma 3 + log_k 0.4782 + -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Tm+++ + 1.0000 SO4-- = TmSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 19.9995 kJ/mol # Calculated enthalpy of reaction TmSO4+ + +Tm+3 + SO4-2 = TmSO4+ + -llnl_gamma 4 + log_k 3.5697 + -delta_H 19.9995 kJ/mol # Calculated enthalpy of reaction TmSO4+ # Enthalpy of formation: -381.12 kcal/mol - -analytic 3.0441e+002 8.6070e-002 -8.9592e+003 -1.1979e+002 -1.3989e+002 + -analytic 3.0441e+2 8.607e-2 -8.9592e+3 -1.1979e+2 -1.3989e+2 # -Range: 0-300 -4.0000 HCO3- + 1.0000 U++++ = U(CO3)4---- +4.0000 H+ - -llnl_gamma 4.0 - log_k -6.2534 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(CO3)4-4 +4 HCO3- + U+4 = U(CO3)4-4 + 4 H+ + -llnl_gamma 4 + log_k -6.2534 + -delta_H 0 # Not possible to calculate enthalpy of reaction U(CO3)4-4 # Enthalpy of formation: -0 kcal/mol - -5.0000 HCO3- + 1.0000 U++++ = U(CO3)5-6 +5.0000 H+ - -llnl_gamma 4.0 - log_k -17.7169 - -delta_H 53.5172 kJ/mol # Calculated enthalpy of reaction U(CO3)5-6 + +5 HCO3- + U+4 = U(CO3)5-6 + 5 H+ + -llnl_gamma 4 + log_k -17.7169 + -delta_H 53.5172 kJ/mol # Calculated enthalpy of reaction U(CO3)5-6 # Enthalpy of formation: -3987.35 kJ/mol - -analytic 6.3020e+002 1.9391e-001 -1.9238e+004 -2.5912e+002 -3.0038e+002 + -analytic 6.302e+2 1.9391e-1 -1.9238e+4 -2.5912e+2 -3.0038e+2 # -Range: 0-300 -2.0000 NO3- + 1.0000 U++++ = U(NO3)2++ - -llnl_gamma 4.5 - log_k +2.2610 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(NO3)2+2 +2 NO3- + U+4 = U(NO3)2+2 + -llnl_gamma 4.5 + log_k 2.261 + -delta_H 0 # Not possible to calculate enthalpy of reaction U(NO3)2+2 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 U++++ = U(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -4.57 - -delta_H 78.7553 kJ/mol # Calculated enthalpy of reaction U(OH)4 + +4 H2O + U+4 = U(OH)4 + 4 H+ + -llnl_gamma 3 + log_k -4.57 + -delta_H 78.7553 kJ/mol # Calculated enthalpy of reaction U(OH)4 # Enthalpy of formation: -1655.8 kJ/mol - -analytic 2.6685e+002 9.8204e-002 -9.4428e+003 -1.0871e+002 -1.6045e+002 + -analytic 2.6685e+2 9.8204e-2 -9.4428e+3 -1.0871e+2 -1.6045e+2 # -Range: 0-200 -2.0000 Thiocyanate- + 1.0000 U++++ = U(Thiocyanate)2++ - -llnl_gamma 4.5 - log_k +4.2600 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(Thiocyanate)2+2 +2 Thiocyanate- + U+4 = U(Thiocyanate)2+2 + -llnl_gamma 4.5 + log_k 4.26 + -delta_H 0 # Not possible to calculate enthalpy of reaction U(Thiocyanate)2+2 # Enthalpy of formation: -456.4 kJ/mol - -analytic 6.2193e+000 2.7673e-002 2.4326e+003 -7.4158e+000 3.7957e+001 + -analytic 6.2193e+0 2.7673e-2 2.4326e+3 -7.4158e+0 3.7957e+1 # -Range: 0-300 -2.0000 SO4-- + 1.0000 U++++ = U(SO4)2 - -llnl_gamma 3.0 - log_k +10.3507 - -delta_H 33.2232 kJ/mol # Calculated enthalpy of reaction U(SO4)2 +2 SO4-2 + U+4 = U(SO4)2 + -llnl_gamma 3 + log_k 10.3507 + -delta_H 33.2232 kJ/mol # Calculated enthalpy of reaction U(SO4)2 # Enthalpy of formation: -2377.18 kJ/mol - -analytic 4.9476e+002 1.7832e-001 -1.1901e+004 -2.0111e+002 -2.0227e+002 + -analytic 4.9476e+2 1.7832e-1 -1.1901e+4 -2.0111e+2 -2.0227e+2 # -Range: 0-200 -1.0000 U++++ + 1.0000 Br- = UBr+++ - -llnl_gamma 5.0 - log_k +1.4240 - -delta_H 0 # Not possible to calculate enthalpy of reaction UBr+3 +U+4 + Br- = UBr+3 + -llnl_gamma 5 + log_k 1.424 + -delta_H 0 # Not possible to calculate enthalpy of reaction UBr+3 # Enthalpy of formation: -0 kcal/mol - -1.0000 U++++ + 1.0000 Cl- = UCl+++ - -llnl_gamma 5.0 - log_k +1.7073 - -delta_H -18.9993 kJ/mol # Calculated enthalpy of reaction UCl+3 + +U+4 + Cl- = UCl+3 + -llnl_gamma 5 + log_k 1.7073 + -delta_H -18.9993 kJ/mol # Calculated enthalpy of reaction UCl+3 # Enthalpy of formation: -777.279 kJ/mol - -analytic 9.4418e+001 4.1718e-002 -7.0675e+002 -4.1532e+001 -1.1056e+001 + -analytic 9.4418e+1 4.1718e-2 -7.0675e+2 -4.1532e+1 -1.1056e+1 # -Range: 0-300 -1.0000 U++++ + 1.0000 F- = UF+++ - -llnl_gamma 5.0 - log_k +9.2403 - -delta_H -5.6024 kJ/mol # Calculated enthalpy of reaction UF+3 +U+4 + F- = UF+3 + -llnl_gamma 5 + log_k 9.2403 + -delta_H -5.6024 kJ/mol # Calculated enthalpy of reaction UF+3 # Enthalpy of formation: -932.15 kJ/mol - -analytic 1.1828e+002 3.8097e-002 -2.2531e+003 -4.5594e+001 -3.5193e+001 + -analytic 1.1828e+2 3.8097e-2 -2.2531e+3 -4.5594e+1 -3.5193e+1 # -Range: 0-300 -2.0000 F- + 1.0000 U++++ = UF2++ - -llnl_gamma 4.5 - log_k +16.1505 - -delta_H -3.5048 kJ/mol # Calculated enthalpy of reaction UF2+2 +2 F- + U+4 = UF2+2 + -llnl_gamma 4.5 + log_k 16.1505 + -delta_H -3.5048 kJ/mol # Calculated enthalpy of reaction UF2+2 # Enthalpy of formation: -1265.4 kJ/mol - -analytic 2.3537e+002 7.7064e-002 -4.8455e+003 -9.1296e+001 -7.5679e+001 + -analytic 2.3537e+2 7.7064e-2 -4.8455e+3 -9.1296e+1 -7.5679e+1 # -Range: 0-300 -3.0000 F- + 1.0000 U++++ = UF3+ - -llnl_gamma 4.0 - log_k +21.4806 - -delta_H 0.4938 kJ/mol # Calculated enthalpy of reaction UF3+ +3 F- + U+4 = UF3+ + -llnl_gamma 4 + log_k 21.4806 + -delta_H 0.4938 kJ/mol # Calculated enthalpy of reaction UF3+ # Enthalpy of formation: -1596.75 kJ/mol - -analytic 3.5097e+002 1.1714e-001 -7.4569e+003 -1.3714e+002 -1.1646e+002 + -analytic 3.5097e+2 1.1714e-1 -7.4569e+3 -1.3714e+2 -1.1646e+2 # -Range: 0-300 -4.0000 F- + 1.0000 U++++ = UF4 - -llnl_gamma 3.0 - log_k +25.4408 - -delta_H -4.2146 kJ/mol # Calculated enthalpy of reaction UF4 +4 F- + U+4 = UF4 + -llnl_gamma 3 + log_k 25.4408 + -delta_H -4.2146 kJ/mol # Calculated enthalpy of reaction UF4 # Enthalpy of formation: -1936.81 kJ/mol - -analytic 7.8549e+002 2.7922e-001 -1.6213e+004 -3.1881e+002 -2.7559e+002 + -analytic 7.8549e+2 2.7922e-1 -1.6213e+4 -3.1881e+2 -2.7559e+2 # -Range: 0-200 -5.0000 F- + 1.0000 U++++ = UF5- - -llnl_gamma 4.0 - log_k +26.8110 - -delta_H 0 # Not possible to calculate enthalpy of reaction UF5- +5 F- + U+4 = UF5- + -llnl_gamma 4 + log_k 26.811 + -delta_H 0 # Not possible to calculate enthalpy of reaction UF5- # Enthalpy of formation: -0 kcal/mol - -6.0000 F- + 1.0000 U++++ = UF6-- - -llnl_gamma 4.0 - log_k +28.8412 - -delta_H 0 # Not possible to calculate enthalpy of reaction UF6-2 + +6 F- + U+4 = UF6-2 + -llnl_gamma 4 + log_k 28.8412 + -delta_H 0 # Not possible to calculate enthalpy of reaction UF6-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 U++++ + 1.0000 I- = UI+++ - -llnl_gamma 5.0 - log_k +1.2151 - -delta_H 0 # Not possible to calculate enthalpy of reaction UI+3 + +U+4 + I- = UI+3 + -llnl_gamma 5 + log_k 1.2151 + -delta_H 0 # Not possible to calculate enthalpy of reaction UI+3 # Enthalpy of formation: -0 kcal/mol - -1.0000 U++++ + 1.0000 NO3- = UNO3+++ - -llnl_gamma 5.0 - log_k +1.4506 - -delta_H 0 # Not possible to calculate enthalpy of reaction UNO3+3 + +U+4 + NO3- = UNO3+3 + -llnl_gamma 5 + log_k 1.4506 + -delta_H 0 # Not possible to calculate enthalpy of reaction UNO3+3 # Enthalpy of formation: -0 kcal/mol - -2.0000 HCO3- + 1.0000 UO2++ = UO2(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.7467 - -delta_H 47.9065 kJ/mol # Calculated enthalpy of reaction UO2(CO3)2-2 + +2 HCO3- + UO2+2 = UO2(CO3)2-2 + 2 H+ + -llnl_gamma 4 + log_k -3.7467 + -delta_H 47.9065 kJ/mol # Calculated enthalpy of reaction UO2(CO3)2-2 # Enthalpy of formation: -2350.96 kJ/mol - -analytic 2.6569e+002 8.1552e-002 -9.0918e+003 -1.0638e+002 -1.4195e+002 + -analytic 2.6569e+2 8.1552e-2 -9.0918e+3 -1.0638e+2 -1.4195e+2 # -Range: 0-300 -3.0000 HCO3- + 1.0000 UO2+ = UO2(CO3)3-5 +3.0000 H+ - -llnl_gamma 4.0 - log_k -23.6241 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(CO3)3-5 +3 HCO3- + UO2+ = UO2(CO3)3-5 + 3 H+ + -llnl_gamma 4 + log_k -23.6241 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(CO3)3-5 # Enthalpy of formation: -0 kcal/mol - -3.0000 HCO3- + 1.0000 UO2++ = UO2(CO3)3---- +3.0000 H+ - -llnl_gamma 4.0 - log_k -9.4302 - -delta_H 4.9107 kJ/mol # Calculated enthalpy of reaction UO2(CO3)3-4 + +3 HCO3- + UO2+2 = UO2(CO3)3-4 + 3 H+ + -llnl_gamma 4 + log_k -9.4302 + -delta_H 4.9107 kJ/mol # Calculated enthalpy of reaction UO2(CO3)3-4 # Enthalpy of formation: -3083.89 kJ/mol - -analytic 3.7918e+002 1.1789e-001 -1.0233e+004 -1.5738e+002 -1.5978e+002 + -analytic 3.7918e+2 1.1789e-1 -1.0233e+4 -1.5738e+2 -1.5978e+2 # -Range: 0-300 -3.0000 H+ + 2.0000 HPO4-- + 1.0000 UO2++ = UO2(H2PO4)(H3PO4)+ - -llnl_gamma 4.0 - log_k +22.7537 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)(H3PO4)+ +3 H+ + 2 HPO4-2 + UO2+2 = UO2(H2PO4)(H3PO4)+ + -llnl_gamma 4 + log_k 22.7537 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)(H3PO4)+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 2.0000 H+ + 1.0000 UO2++ = UO2(H2PO4)2 - -llnl_gamma 3.0 - log_k +21.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)2 + +2 HPO4-2 + 2 H+ + UO2+2 = UO2(H2PO4)2 + -llnl_gamma 3 + log_k 21.7437 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)2 # Enthalpy of formation: -0 kcal/mol - -2.0000 IO3- + 1.0000 UO2++ = UO2(IO3)2 - -llnl_gamma 3.0 - log_k +2.9969 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(IO3)2 + +2 IO3- + UO2+2 = UO2(IO3)2 + -llnl_gamma 3 + log_k 2.9969 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(IO3)2 # Enthalpy of formation: -0 kcal/mol - -2.0000 N3- + 1.0000 UO2++ = UO2(N3)2 - -llnl_gamma 3.0 - log_k +4.3301 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)2 + +2 N3- + UO2+2 = UO2(N3)2 + -llnl_gamma 3 + log_k 4.3301 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 N3- + 1.0000 UO2++ = UO2(N3)3- - -llnl_gamma 4.0 - log_k +5.7401 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)3- + +3 N3- + UO2+2 = UO2(N3)3- + -llnl_gamma 4 + log_k 5.7401 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)3- # Enthalpy of formation: -0 kcal/mol - -4.0000 N3- + 1.0000 UO2++ = UO2(N3)4-- - -llnl_gamma 4.0 - log_k +4.9200 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)4-2 + +4 N3- + UO2+2 = UO2(N3)4-2 + -llnl_gamma 4 + log_k 4.92 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)4-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 UO2++ = UO2(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -10.3146 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)2 + +2 H2O + UO2+2 = UO2(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -10.3146 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 UO2++ = UO2(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -19.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)3- + +3 H2O + UO2+2 = UO2(OH)3- + 3 H+ + -llnl_gamma 4 + log_k -19.2218 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)3- # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 UO2++ = UO2(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -33.0291 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)4-2 + +4 H2O + UO2+2 = UO2(OH)4-2 + 4 H+ + -llnl_gamma 4 + log_k -33.0291 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)4-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 Thiocyanate- + 1.0000 UO2++ = UO2(Thiocyanate)2 - -llnl_gamma 3.0 - log_k +1.2401 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)2 + +2 Thiocyanate- + UO2+2 = UO2(Thiocyanate)2 + -llnl_gamma 3 + log_k 1.2401 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)2 # Enthalpy of formation: -857.3 kJ/mol - -analytic 9.4216e+001 3.2840e-002 -2.4849e+003 -3.8162e+001 -4.2231e+001 + -analytic 9.4216e+1 3.284e-2 -2.4849e+3 -3.8162e+1 -4.2231e+1 # -Range: 0-200 -3.0000 Thiocyanate- + 1.0000 UO2++ = UO2(Thiocyanate)3- - -llnl_gamma 4.0 - log_k +2.1001 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)3- +3 Thiocyanate- + UO2+2 = UO2(Thiocyanate)3- + -llnl_gamma 4 + log_k 2.1001 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)3- # Enthalpy of formation: -783.8 kJ/mol - -analytic 1.6622e+001 2.2714e-002 4.9707e+002 -9.2785e+000 7.7512e+000 + -analytic 1.6622e+1 2.2714e-2 4.9707e+2 -9.2785e+0 7.7512e+0 # -Range: 0-300 -2.0000 SO3-- + 1.0000 UO2++ = UO2(SO3)2-- - -llnl_gamma 4.0 - log_k +7.9101 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(SO3)2-2 +2 SO3-2 + UO2+2 = UO2(SO3)2-2 + -llnl_gamma 4 + log_k 7.9101 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(SO3)2-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 UO2++ = UO2(SO4)2-- - -llnl_gamma 4.0 - log_k +3.9806 - -delta_H 35.6242 kJ/mol # Calculated enthalpy of reaction UO2(SO4)2-2 + +2 SO4-2 + UO2+2 = UO2(SO4)2-2 + -llnl_gamma 4 + log_k 3.9806 + -delta_H 35.6242 kJ/mol # Calculated enthalpy of reaction UO2(SO4)2-2 # Enthalpy of formation: -2802.58 kJ/mol - -analytic 3.9907e+002 1.3536e-001 -1.0813e+004 -1.6130e+002 -1.6884e+002 + -analytic 3.9907e+2 1.3536e-1 -1.0813e+4 -1.613e+2 -1.6884e+2 # -Range: 0-300 -1.0000 UO2++ + 1.0000 Br- = UO2Br+ - -llnl_gamma 4.0 - log_k +0.1840 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Br+ +UO2+2 + Br- = UO2Br+ + -llnl_gamma 4 + log_k 0.184 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Br+ # Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 BrO3- = UO2BrO3+ - -llnl_gamma 4.0 - log_k +0.5510 - -delta_H 0.46952 kJ/mol # Calculated enthalpy of reaction UO2BrO3+ + +UO2+2 + BrO3- = UO2BrO3+ + -llnl_gamma 4 + log_k 0.551 + -delta_H 0.46952 kJ/mol # Calculated enthalpy of reaction UO2BrO3+ # Enthalpy of formation: -1085.6 kJ/mol - -analytic 8.2618e+001 2.6921e-002 -2.0144e+003 -3.3673e+001 -3.1457e+001 + -analytic 8.2618e+1 2.6921e-2 -2.0144e+3 -3.3673e+1 -3.1457e+1 # -Range: 0-300 -1.0000 UO2++ + 1.0000 HCO3- = UO2CO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.6634 - -delta_H 19.7032 kJ/mol # Calculated enthalpy of reaction UO2CO3 +UO2+2 + HCO3- = UO2CO3 + H+ + -llnl_gamma 3 + log_k -0.6634 + -delta_H 19.7032 kJ/mol # Calculated enthalpy of reaction UO2CO3 # Enthalpy of formation: -1689.23 kJ/mol - -analytic 7.3898e+001 2.8127e-002 -2.4347e+003 -3.0217e+001 -4.1371e+001 + -analytic 7.3898e+1 2.8127e-2 -2.4347e+3 -3.0217e+1 -4.1371e+1 # -Range: 0-200 -1.0000 UO2++ + 1.0000 Cl- = UO2Cl+ - -llnl_gamma 4.0 - log_k +0.1572 - -delta_H 8.00167 kJ/mol # Calculated enthalpy of reaction UO2Cl+ +UO2+2 + Cl- = UO2Cl+ + -llnl_gamma 4 + log_k 0.1572 + -delta_H 8.00167 kJ/mol # Calculated enthalpy of reaction UO2Cl+ # Enthalpy of formation: -1178.08 kJ/mol - -analytic 9.8139e+001 3.8869e-002 -2.3178e+003 -4.1133e+001 -3.6196e+001 + -analytic 9.8139e+1 3.8869e-2 -2.3178e+3 -4.1133e+1 -3.6196e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 UO2++ = UO2Cl2 - -llnl_gamma 3.0 - log_k -1.1253 - -delta_H 15.0013 kJ/mol # Calculated enthalpy of reaction UO2Cl2 +2 Cl- + UO2+2 = UO2Cl2 + -llnl_gamma 3 + log_k -1.1253 + -delta_H 15.0013 kJ/mol # Calculated enthalpy of reaction UO2Cl2 # Enthalpy of formation: -1338.16 kJ/mol - -analytic 3.4087e+001 1.3840e-002 -1.3664e+003 -1.4043e+001 -2.3216e+001 + -analytic 3.4087e+1 1.384e-2 -1.3664e+3 -1.4043e+1 -2.3216e+1 # -Range: 0-200 -1.0000 UO2++ + 1.0000 ClO3- = UO2ClO3+ - -llnl_gamma 4.0 - log_k +0.4919 - -delta_H -3.9266 kJ/mol # Calculated enthalpy of reaction UO2ClO3+ +UO2+2 + ClO3- = UO2ClO3+ + -llnl_gamma 4 + log_k 0.4919 + -delta_H -3.9266 kJ/mol # Calculated enthalpy of reaction UO2ClO3+ # Enthalpy of formation: -1126.9 kJ/mol - -analytic 9.6263e+001 2.8926e-002 -2.3068e+003 -3.9057e+001 -3.6025e+001 + -analytic 9.6263e+1 2.8926e-2 -2.3068e+3 -3.9057e+1 -3.6025e+1 # -Range: 0-300 -1.0000 UO2++ + 1.0000 F- = UO2F+ - -llnl_gamma 4.0 - log_k +5.0502 - -delta_H 1.6976 kJ/mol # Calculated enthalpy of reaction UO2F+ +UO2+2 + F- = UO2F+ + -llnl_gamma 4 + log_k 5.0502 + -delta_H 1.6976 kJ/mol # Calculated enthalpy of reaction UO2F+ # Enthalpy of formation: -1352.65 kJ/mol - -analytic 1.1476e+002 4.0682e-002 -2.4467e+003 -4.5914e+001 -3.8212e+001 + -analytic 1.1476e+2 4.0682e-2 -2.4467e+3 -4.5914e+1 -3.8212e+1 # -Range: 0-300 -2.0000 F- + 1.0000 UO2++ = UO2F2 - -llnl_gamma 3.0 - log_k +8.5403 - -delta_H 2.0962 kJ/mol # Calculated enthalpy of reaction UO2F2 +2 F- + UO2+2 = UO2F2 + -llnl_gamma 3 + log_k 8.5403 + -delta_H 2.0962 kJ/mol # Calculated enthalpy of reaction UO2F2 # Enthalpy of formation: -1687.6 kJ/mol - -analytic 2.7673e+002 9.9190e-002 -5.8371e+003 -1.1242e+002 -9.9219e+001 + -analytic 2.7673e+2 9.919e-2 -5.8371e+3 -1.1242e+2 -9.9219e+1 # -Range: 0-200 -3.0000 F- + 1.0000 UO2++ = UO2F3- - -llnl_gamma 4.0 - log_k +10.7806 - -delta_H 2.3428 kJ/mol # Calculated enthalpy of reaction UO2F3- +3 F- + UO2+2 = UO2F3- + -llnl_gamma 4 + log_k 10.7806 + -delta_H 2.3428 kJ/mol # Calculated enthalpy of reaction UO2F3- # Enthalpy of formation: -2022.7 kJ/mol - -analytic 3.3383e+002 9.2160e-002 -8.7975e+003 -1.2972e+002 -1.3738e+002 + -analytic 3.3383e+2 9.216e-2 -8.7975e+3 -1.2972e+2 -1.3738e+2 # -Range: 0-300 -4.0000 F- + 1.0000 UO2++ = UO2F4-- - -llnl_gamma 4.0 - log_k +11.5407 - -delta_H 0.2814 kJ/mol # Calculated enthalpy of reaction UO2F4-2 +4 F- + UO2+2 = UO2F4-2 + -llnl_gamma 4 + log_k 11.5407 + -delta_H 0.2814 kJ/mol # Calculated enthalpy of reaction UO2F4-2 # Enthalpy of formation: -2360.11 kJ/mol - -analytic 4.4324e+002 1.3808e-001 -1.0705e+004 -1.7657e+002 -1.6718e+002 + -analytic 4.4324e+2 1.3808e-1 -1.0705e+4 -1.7657e+2 -1.6718e+2 # -Range: 0-300 -1.0000 UO2++ + 1.0000 HPO4-- + 1.0000 H+ = UO2H2PO4+ - -llnl_gamma 4.0 - log_k +11.6719 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H2PO4+ +UO2+2 + HPO4-2 + H+ = UO2H2PO4+ + -llnl_gamma 4 + log_k 11.6719 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H2PO4+ # Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 UO2++ + 1.0000 HPO4-- = UO2H3PO4++ - -llnl_gamma 4.5 - log_k +11.3119 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H3PO4+2 + +2 H+ + UO2+2 + HPO4-2 = UO2H3PO4+2 + -llnl_gamma 4.5 + log_k 11.3119 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H3PO4+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 HPO4-- = UO2HPO4 - -llnl_gamma 3.0 - log_k +8.4398 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 + +UO2+2 + HPO4-2 = UO2HPO4 + -llnl_gamma 3 + log_k 8.4398 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 IO3- = UO2IO3+ - -llnl_gamma 4.0 - log_k +1.7036 - -delta_H 11.4336 kJ/mol # Calculated enthalpy of reaction UO2IO3+ + +UO2+2 + IO3- = UO2IO3+ + -llnl_gamma 4 + log_k 1.7036 + -delta_H 11.4336 kJ/mol # Calculated enthalpy of reaction UO2IO3+ # Enthalpy of formation: -1228.9 kJ/mol - -analytic 1.0428e+002 2.9620e-002 -3.2441e+003 -4.0618e+001 -5.0651e+001 + -analytic 1.0428e+2 2.962e-2 -3.2441e+3 -4.0618e+1 -5.0651e+1 # -Range: 0-300 -1.0000 UO2++ + 1.0000 N3- = UO2N3+ - -llnl_gamma 4.0 - log_k +2.5799 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2N3+ +UO2+2 + N3- = UO2N3+ + -llnl_gamma 4 + log_k 2.5799 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2N3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 NO3- = UO2NO3+ - -llnl_gamma 4.0 - log_k +0.2805 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2NO3+ + +UO2+2 + NO3- = UO2NO3+ + -llnl_gamma 4 + log_k 0.2805 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2NO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 H2O = UO2OH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.2073 - -delta_H 43.1813 kJ/mol # Calculated enthalpy of reaction UO2OH+ + +UO2+2 + H2O = UO2OH+ + H+ + -llnl_gamma 4 + log_k -5.2073 + -delta_H 43.1813 kJ/mol # Calculated enthalpy of reaction UO2OH+ # Enthalpy of formation: -1261.66 kJ/mol - -analytic 3.4387e+001 6.0811e-003 -3.3068e+003 -1.2252e+001 -5.1609e+001 + -analytic 3.4387e+1 6.0811e-3 -3.3068e+3 -1.2252e+1 -5.1609e+1 # -Range: 0-300 -1.0000 UO2++ + 1.0000 HPO4-- = UO2PO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k +2.0798 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2PO4- +UO2+2 + HPO4-2 = UO2PO4- + H+ + -llnl_gamma 4 + log_k 2.0798 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2PO4- # Enthalpy of formation: -0 kcal/mol - + #2.0000 SO3-- + 2.0000 H+ + 1.0000 UO2++ = UO2S2O3 +1.0000 H2O +1.0000 O2 #S2O3-- + O2 + H2O = 2.0000 H+ + 2.0000 SO3-- log_k 40.2906 -S2O3-- + UO2++ = UO2S2O3 - -llnl_gamma 3.0 +S2O3-2 + UO2+2 = UO2S2O3 + -llnl_gamma 3 # log_k -38.0666 log_k 2.224 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2S2O3 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2S2O3 # Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 Thiocyanate- = UO2Thiocyanate+ - -llnl_gamma 4.0 - log_k +1.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Thiocyanate+ + +UO2+2 + Thiocyanate- = UO2Thiocyanate+ + -llnl_gamma 4 + log_k 1.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Thiocyanate+ # Enthalpy of formation: -939.38 kJ/mol - -analytic 4.7033e+000 1.2562e-002 4.9095e+002 -3.5097e+000 7.6593e+000 + -analytic 4.7033e+0 1.2562e-2 4.9095e+2 -3.5097e+0 7.6593e+0 # -Range: 0-300 -1.0000 UO2++ + 1.0000 SO3-- = UO2SO3 - -llnl_gamma 3.0 - log_k +6.7532 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2SO3 +UO2+2 + SO3-2 = UO2SO3 + -llnl_gamma 3 + log_k 6.7532 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2SO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 SO4-- = UO2SO4 - -llnl_gamma 3.0 - log_k +3.0703 - -delta_H 19.7626 kJ/mol # Calculated enthalpy of reaction UO2SO4 + +UO2+2 + SO4-2 = UO2SO4 + -llnl_gamma 3 + log_k 3.0703 + -delta_H 19.7626 kJ/mol # Calculated enthalpy of reaction UO2SO4 # Enthalpy of formation: -1908.84 kJ/mol - -analytic 1.9514e+002 7.0951e-002 -4.9949e+003 -7.9394e+001 -8.4888e+001 + -analytic 1.9514e+2 7.0951e-2 -4.9949e+3 -7.9394e+1 -8.4888e+1 # -Range: 0-200 -1.0000 U++++ + 1.0000 H2O = UOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -0.5472 - -delta_H 46.9183 kJ/mol # Calculated enthalpy of reaction UOH+3 +U+4 + H2O = UOH+3 + H+ + -llnl_gamma 5 + log_k -0.5472 + -delta_H 46.9183 kJ/mol # Calculated enthalpy of reaction UOH+3 # Enthalpy of formation: -830.12 kJ/mol - -analytic 4.0793e+001 1.3563e-003 -3.8441e+003 -1.1659e+001 -5.9996e+001 + -analytic 4.0793e+1 1.3563e-3 -3.8441e+3 -1.1659e+1 -5.9996e+1 # -Range: 0-300 -1.0000 U++++ + 1.0000 Thiocyanate- = UThiocyanate+++ - -llnl_gamma 5.0 - log_k +2.9700 - -delta_H 0 # Not possible to calculate enthalpy of reaction UThiocyanate+3 +U+4 + Thiocyanate- = UThiocyanate+3 + -llnl_gamma 5 + log_k 2.97 + -delta_H 0 # Not possible to calculate enthalpy of reaction UThiocyanate+3 # Enthalpy of formation: -541.8 kJ/mol - -analytic 4.0286e-001 1.5909e-002 2.3026e+003 -3.9973e+000 3.5929e+001 + -analytic 4.0286e-1 1.5909e-2 2.3026e+3 -3.9973e+0 3.5929e+1 # -Range: 0-300 -1.0000 U++++ + 1.0000 SO4-- = USO4++ - -llnl_gamma 4.5 - log_k +6.5003 - -delta_H 8.2616 kJ/mol # Calculated enthalpy of reaction USO4+2 +U+4 + SO4-2 = USO4+2 + -llnl_gamma 4.5 + log_k 6.5003 + -delta_H 8.2616 kJ/mol # Calculated enthalpy of reaction USO4+2 # Enthalpy of formation: -1492.54 kJ/mol - -analytic 1.9418e+002 7.5458e-002 -4.0646e+003 -7.9416e+001 -6.3482e+001 + -analytic 1.9418e+2 7.5458e-2 -4.0646e+3 -7.9416e+1 -6.3482e+1 # -Range: 0-300 -2.0000 H2O + 1.0000 V+++ = V(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.9193 - -delta_H 0 # Not possible to calculate enthalpy of reaction V(OH)2+ +2 H2O + V+3 = V(OH)2+ + 2 H+ + -llnl_gamma 4 + log_k -5.9193 + -delta_H 0 # Not possible to calculate enthalpy of reaction V(OH)2+ # Enthalpy of formation: -0 kcal/mol - -2.0000 V+++ + 2.0000 H2O = V2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -3.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction V2(OH)2+4 + +2 V+3 + 2 H2O = V2(OH)2+4 + 2 H+ + -llnl_gamma 5.5 + log_k -3.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction V2(OH)2+4 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 VO2+ = VO(OH)3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -3.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO(OH)3 + +2 H2O + VO2+ = VO(OH)3 + H+ + -llnl_gamma 3 + log_k -3.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO(OH)3 # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 VO2+ = VO2(HPO4)2--- - -llnl_gamma 4.0 - log_k +8.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(HPO4)2-3 + +2 HPO4-2 + VO2+ = VO2(HPO4)2-3 + -llnl_gamma 4 + log_k 8.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(HPO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 VO2+ = VO2(OH)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(OH)2- + +2 H2O + VO2+ = VO2(OH)2- + 2 H+ + -llnl_gamma 4 + log_k -7.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(OH)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 VO2+ + 1.0000 F- = VO2F - -llnl_gamma 3.0 - log_k +3.3500 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F + +VO2+ + F- = VO2F + -llnl_gamma 3 + log_k 3.35 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 VO2+ = VO2F2- - -llnl_gamma 4.0 - log_k +5.8100 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F2- + +2 F- + VO2+ = VO2F2- + -llnl_gamma 4 + log_k 5.81 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F2- # Enthalpy of formation: -0 kcal/mol - -1.0000 VO2+ + 1.0000 HPO4-- + 1.0000 H+ = VO2H2PO4 - -llnl_gamma 3.0 - log_k +1.6800 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2H2PO4 + +VO2+ + HPO4-2 + H+ = VO2H2PO4 + -llnl_gamma 3 + log_k 1.68 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2H2PO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 VO2+ + 1.0000 HPO4-- = VO2HPO4- - -llnl_gamma 4.0 - log_k +5.8300 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2HPO4- + +VO2+ + HPO4-2 = VO2HPO4- + -llnl_gamma 4 + log_k 5.83 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2HPO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 VO2+ + 1.0000 SO4-- = VO2SO4- - -llnl_gamma 4.0 - log_k +1.5800 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2SO4- + +VO2+ + SO4-2 = VO2SO4- + -llnl_gamma 4 + log_k 1.58 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2SO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 VO4--- + 1.0000 H+ = VO3OH-- - -llnl_gamma 4.0 - log_k +14.2600 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO3OH-2 + +VO4-3 + H+ = VO3OH-2 + -llnl_gamma 4 + log_k 14.26 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO3OH-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 VO++ + 1.0000 F- = VOF+ - -llnl_gamma 4.0 - log_k +4.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOF+ + +VO+2 + F- = VOF+ + -llnl_gamma 4 + log_k 4 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOF+ # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 VO++ = VOF2 - -llnl_gamma 3.0 - log_k +6.7800 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOF2 + +2 F- + VO+2 = VOF2 + -llnl_gamma 3 + log_k 6.78 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOF2 # Enthalpy of formation: -0 kcal/mol - -1.0000 V+++ + 1.0000 H2O = VOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.26 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOH+2 + +V+3 + H2O = VOH+2 + H+ + -llnl_gamma 4.5 + log_k -2.26 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOH+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 VO++ + 1.0000 H2O = VOOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOOH+ + +VO+2 + H2O = VOOH+ + H+ + -llnl_gamma 4 + log_k -5.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOOH+ # Enthalpy of formation: -0 kcal/mol - -1.0000 VO++ + 1.0000 SO4-- = VOSO4 - -llnl_gamma 3.0 - log_k +2.4800 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOSO4 + +VO+2 + SO4-2 = VOSO4 + -llnl_gamma 3 + log_k 2.48 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOSO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 V+++ + 1.0000 SO4-- = VSO4+ - -llnl_gamma 4.0 - log_k +3.3300 - -delta_H 0 # Not possible to calculate enthalpy of reaction VSO4+ + +V+3 + SO4-2 = VSO4+ + -llnl_gamma 4 + log_k 3.33 + -delta_H 0 # Not possible to calculate enthalpy of reaction VSO4+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Y+++ = Y(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9844 - -delta_H -34.8109 kJ/mol # Calculated enthalpy of reaction Y(Acetate)2+ + +2 HAcetate + Y+3 = Y(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9844 + -delta_H -34.8109 kJ/mol # Calculated enthalpy of reaction Y(Acetate)2+ # Enthalpy of formation: -411.42 kcal/mol - -analytic -3.3011e+001 6.1979e-004 -7.7468e+002 9.6380e+000 5.8814e+005 + -analytic -3.3011e+1 6.1979e-4 -7.7468e+2 9.638e+0 5.8814e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Y+++ = Y(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3783 - -delta_H -58.4505 kJ/mol # Calculated enthalpy of reaction Y(Acetate)3 +3 HAcetate + Y+3 = Y(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.3783 + -delta_H -58.4505 kJ/mol # Calculated enthalpy of reaction Y(Acetate)3 # Enthalpy of formation: -533.17 kcal/mol - -analytic -3.0086e+001 4.0213e-003 -1.1444e+003 6.1794e+000 8.0827e+005 + -analytic -3.0086e+1 4.0213e-3 -1.1444e+3 6.1794e+0 8.0827e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Y+++ = Y(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.3576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(CO3)2- +2 HCO3- + Y+3 = Y(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.3576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Y+++ = Y(HPO4)2- - -llnl_gamma 4.0 - log_k +9.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(HPO4)2- + +2 HPO4-2 + Y+3 = Y(HPO4)2- + -llnl_gamma 4 + log_k 9.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Y+++ = Y(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.3902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)2+ + +2 H2O + Y+3 = Y(OH)2+ + 2 H+ + -llnl_gamma 4 + log_k -16.3902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)2+ # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Y+++ = Y(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)3 + +3 H2O + Y+3 = Y(OH)3 + 3 H+ + -llnl_gamma 3 + log_k -25.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)3 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Y+++ = Y(OH)4- +4.0000 H+ - -llnl_gamma 4.0 - log_k -36.4803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)4- + +4 H2O + Y+3 = Y(OH)4- + 4 H+ + -llnl_gamma 4 + log_k -36.4803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)4- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Y+++ = Y(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(PO4)2-3 + +2 HPO4-2 + Y+3 = Y(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -3.2437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Y+++ = Y(SO4)2- - -llnl_gamma 4.0 - log_k +4.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(SO4)2- + +2 SO4-2 + Y+3 = Y(SO4)2- + -llnl_gamma 4 + log_k 4.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(SO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 Y+++ + 2.0000 H2O = Y2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -14.1902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y2(OH)2+4 + +2 Y+3 + 2 H2O = Y2(OH)2+4 + 2 H+ + -llnl_gamma 5.5 + log_k -14.1902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y2(OH)2+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HAcetate = YAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1184 - -delta_H -17.2799 kJ/mol # Calculated enthalpy of reaction YAcetate+2 + +Y+3 + HAcetate = YAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.1184 + -delta_H -17.2799 kJ/mol # Calculated enthalpy of reaction YAcetate+2 # Enthalpy of formation: -291.13 kcal/mol - -analytic -1.2080e+001 1.2015e-003 -8.4186e+002 3.4522e+000 3.4647e+005 + -analytic -1.208e+1 1.2015e-3 -8.4186e+2 3.4522e+0 3.4647e+5 # -Range: 0-300 -1.0000 Y+++ + 1.0000 HCO3- = YCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.2788 - -delta_H 0 # Not possible to calculate enthalpy of reaction YCO3+ +Y+3 + HCO3- = YCO3+ + H+ + -llnl_gamma 4 + log_k -2.2788 + -delta_H 0 # Not possible to calculate enthalpy of reaction YCO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 Cl- = YCl++ - -llnl_gamma 4.5 - log_k +0.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YCl+2 + +Y+3 + Cl- = YCl+2 + -llnl_gamma 4.5 + log_k 0.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction YCl+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 F- = YF++ - -llnl_gamma 4.5 - log_k +4.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF+2 + +Y+3 + F- = YF+2 + -llnl_gamma 4.5 + log_k 4.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction YF+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Y+++ = YF2+ - -llnl_gamma 4.0 - log_k +7.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF2+ + +2 F- + Y+3 = YF2+ + -llnl_gamma 4 + log_k 7.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction YF2+ # Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 1.0000 Y+++ = YF3 - -llnl_gamma 3.0 - log_k +11.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF3 + +3 F- + Y+3 = YF3 + -llnl_gamma 3 + log_k 11.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction YF3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HPO4-- + 1.0000 H+ = YH2PO4++ - -llnl_gamma 4.5 - log_k +9.6054 - -delta_H 0 # Not possible to calculate enthalpy of reaction YH2PO4+2 + +Y+3 + HPO4-2 + H+ = YH2PO4+2 + -llnl_gamma 4.5 + log_k 9.6054 + -delta_H 0 # Not possible to calculate enthalpy of reaction YH2PO4+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HCO3- = YHCO3++ - -llnl_gamma 4.5 - log_k +2.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YHCO3+2 + +Y+3 + HCO3- = YHCO3+2 + -llnl_gamma 4.5 + log_k 2.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction YHCO3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HPO4-- = YHPO4+ - -llnl_gamma 4.0 - log_k +5.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YHPO4+ + +Y+3 + HPO4-2 = YHPO4+ + -llnl_gamma 4 + log_k 5.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction YHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 NO3- = YNO3++ - -llnl_gamma 4.5 - log_k +0.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YNO3+2 + +Y+3 + NO3- = YNO3+2 + -llnl_gamma 4.5 + log_k 0.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction YNO3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 H2O = YOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.6951 - -delta_H 0 # Not possible to calculate enthalpy of reaction YOH+2 + +Y+3 + H2O = YOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.6951 + -delta_H 0 # Not possible to calculate enthalpy of reaction YOH+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HPO4-- = YPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YPO4 + +Y+3 + HPO4-2 = YPO4 + H+ + -llnl_gamma 3 + log_k 0.2782 + -delta_H 0 # Not possible to calculate enthalpy of reaction YPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 SO4-- = YSO4+ - -llnl_gamma 4.0 - log_k +3.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YSO4+ + +Y+3 + SO4-2 = YSO4+ + -llnl_gamma 4 + log_k 3.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction YSO4+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Yb+++ = Yb(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.131 - -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Yb(Acetate)2+ + +2 HAcetate + Yb+3 = Yb(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -5.131 + -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Yb(Acetate)2+ # Enthalpy of formation: -399.75 kcal/mol - -analytic -3.4286e+001 9.4069e-004 -6.5120e+002 1.0071e+001 5.4773e+005 + -analytic -3.4286e+1 9.4069e-4 -6.512e+2 1.0071e+1 5.4773e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Yb+++ = Yb(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.5688 - -delta_H -51.4214 kJ/mol # Calculated enthalpy of reaction Yb(Acetate)3 +3 HAcetate + Yb+3 = Yb(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.5688 + -delta_H -51.4214 kJ/mol # Calculated enthalpy of reaction Yb(Acetate)3 # Enthalpy of formation: -520.89 kcal/mol - -analytic -6.2211e+001 -6.1589e-004 5.9577e+002 1.7954e+001 6.6116e+005 + -analytic -6.2211e+1 -6.1589e-4 5.9577e+2 1.7954e+1 6.6116e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Yb+++ = Yb(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.0576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(CO3)2- +2 HCO3- + Yb+3 = Yb(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.0576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Yb+++ = Yb(HPO4)2- - -llnl_gamma 4.0 - log_k +10.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(HPO4)2- + +2 HPO4-2 + Yb+3 = Yb(HPO4)2- + -llnl_gamma 4 + log_k 10.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(HPO4)2- # Enthalpy of formation: -0 kcal/mol - + # Redundant with YbO2- #4.0000 H2O + 1.0000 Yb+++ = Yb(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 +# -llnl_gamma 4.0 # log_k -32.6803 # -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)4- ## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Yb+++ = Yb(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -2.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(PO4)2-3 + +2 HPO4-2 + Yb+3 = Yb(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -2.7437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Yb+++ = Yb(SO4)2- - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(SO4)2- + +2 SO4-2 + Yb+3 = Yb(SO4)2- + -llnl_gamma 4 + log_k 5.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Yb+++ + 1.0000 HAcetate = YbAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.199 - -delta_H -15.2298 kJ/mol # Calculated enthalpy of reaction YbAcetate+2 + +Yb+3 + HAcetate = YbAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.199 + -delta_H -15.2298 kJ/mol # Calculated enthalpy of reaction YbAcetate+2 # Enthalpy of formation: -280.04 kcal/mol - -analytic -8.5003e+000 2.2459e-003 -9.6434e+002 2.0630e+000 3.3550e+005 + -analytic -8.5003e+0 2.2459e-3 -9.6434e+2 2.063e+0 3.355e+5 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 HCO3- = YbCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.0392 - -delta_H 82.8348 kJ/mol # Calculated enthalpy of reaction YbCO3+ +Yb+3 + HCO3- = YbCO3+ + H+ + -llnl_gamma 4 + log_k -2.0392 + -delta_H 82.8348 kJ/mol # Calculated enthalpy of reaction YbCO3+ # Enthalpy of formation: -305.4 kcal/mol - -analytic 2.3533e+002 5.4436e-002 -6.7871e+003 -9.3280e+001 -1.0598e+002 + -analytic 2.3533e+2 5.4436e-2 -6.7871e+3 -9.328e+1 -1.0598e+2 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 Cl- = YbCl++ - -llnl_gamma 4.5 - log_k +0.1620 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction YbCl+2 +Yb+3 + Cl- = YbCl+2 + -llnl_gamma 4.5 + log_k 0.162 + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction YbCl+2 # Enthalpy of formation: -196.9 kcal/mol - -analytic 8.0452e+001 3.8343e-002 -1.8176e+003 -3.4594e+001 -2.8386e+001 + -analytic 8.0452e+1 3.8343e-2 -1.8176e+3 -3.4594e+1 -2.8386e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Yb+++ = YbCl2+ - -llnl_gamma 4.0 - log_k -0.2624 - -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction YbCl2+ +2 Cl- + Yb+3 = YbCl2+ + -llnl_gamma 4 + log_k -0.2624 + -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction YbCl2+ # Enthalpy of formation: -236 kcal/mol - -analytic 2.1708e+002 8.0550e-002 -5.4744e+003 -9.0101e+001 -8.5487e+001 + -analytic 2.1708e+2 8.055e-2 -5.4744e+3 -9.0101e+1 -8.5487e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Yb+++ = YbCl3 - -llnl_gamma 3.0 - log_k -0.7601 - -delta_H 8.36382 kJ/mol # Calculated enthalpy of reaction YbCl3 +3 Cl- + Yb+3 = YbCl3 + -llnl_gamma 3 + log_k -0.7601 + -delta_H 8.36382 kJ/mol # Calculated enthalpy of reaction YbCl3 # Enthalpy of formation: -278.1 kcal/mol - -analytic 4.0887e+002 1.2992e-001 -1.0578e+004 -1.6684e+002 -1.6518e+002 + -analytic 4.0887e+2 1.2992e-1 -1.0578e+4 -1.6684e+2 -1.6518e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Yb+++ = YbCl4- - -llnl_gamma 4.0 - log_k -1.1845 - -delta_H -15.7653 kJ/mol # Calculated enthalpy of reaction YbCl4- +4 Cl- + Yb+3 = YbCl4- + -llnl_gamma 4 + log_k -1.1845 + -delta_H -15.7653 kJ/mol # Calculated enthalpy of reaction YbCl4- # Enthalpy of formation: -323.8 kcal/mol - -analytic 4.7560e+002 1.3032e-001 -1.2452e+004 -1.9149e+002 -1.9444e+002 + -analytic 4.756e+2 1.3032e-1 -1.2452e+4 -1.9149e+2 -1.9444e+2 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 F- = YbF++ - -llnl_gamma 4.5 - log_k +4.8085 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction YbF+2 +Yb+3 + F- = YbF+2 + -llnl_gamma 4.5 + log_k 4.8085 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction YbF+2 # Enthalpy of formation: -234.9 kcal/mol - -analytic 1.0291e+002 4.2493e-002 -2.7637e+003 -4.1008e+001 -4.3156e+001 + -analytic 1.0291e+2 4.2493e-2 -2.7637e+3 -4.1008e+1 -4.3156e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Yb+++ = YbF2+ - -llnl_gamma 4.0 - log_k +8.3709 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction YbF2+ +2 F- + Yb+3 = YbF2+ + -llnl_gamma 4 + log_k 8.3709 + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction YbF2+ # Enthalpy of formation: -317.7 kcal/mol - -analytic 2.4281e+002 8.5385e-002 -5.6900e+003 -9.7299e+001 -8.8859e+001 + -analytic 2.4281e+2 8.5385e-2 -5.69e+3 -9.7299e+1 -8.8859e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Yb+++ = YbF3 - -llnl_gamma 3.0 - log_k +11.0537 - -delta_H -13.1796 kJ/mol # Calculated enthalpy of reaction YbF3 +3 F- + Yb+3 = YbF3 + -llnl_gamma 3 + log_k 11.0537 + -delta_H -13.1796 kJ/mol # Calculated enthalpy of reaction YbF3 # Enthalpy of formation: -403.9 kcal/mol - -analytic 4.5227e+002 1.3659e-001 -1.0595e+004 -1.8038e+002 -1.6546e+002 + -analytic 4.5227e+2 1.3659e-1 -1.0595e+4 -1.8038e+2 -1.6546e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Yb+++ = YbF4- - -llnl_gamma 4.0 - log_k +13.2234 - -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction YbF4- +4 F- + Yb+3 = YbF4- + -llnl_gamma 4 + log_k 13.2234 + -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction YbF4- # Enthalpy of formation: -495.3 kcal/mol - -analytic 5.0369e+002 1.3726e-001 -1.0671e+004 -2.0026e+002 -1.6666e+002 + -analytic 5.0369e+2 1.3726e-1 -1.0671e+4 -2.0026e+2 -1.6666e+2 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 HPO4-- + 1.0000 H+ = YbH2PO4++ - -llnl_gamma 4.5 - log_k +9.5217 - -delta_H -20.0204 kJ/mol # Calculated enthalpy of reaction YbH2PO4+2 +Yb+3 + HPO4-2 + H+ = YbH2PO4+2 + -llnl_gamma 4.5 + log_k 9.5217 + -delta_H -20.0204 kJ/mol # Calculated enthalpy of reaction YbH2PO4+2 # Enthalpy of formation: -473.9 kcal/mol - -analytic 1.0919e+002 6.3749e-002 3.8909e+002 -4.8469e+001 6.0389e+000 + -analytic 1.0919e+2 6.3749e-2 3.8909e+2 -4.8469e+1 6.0389e+0 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 HCO3- = YbHCO3++ - -llnl_gamma 4.5 - log_k +1.8398 - -delta_H 5.43083 kJ/mol # Calculated enthalpy of reaction YbHCO3+2 +Yb+3 + HCO3- = YbHCO3+2 + -llnl_gamma 4.5 + log_k 1.8398 + -delta_H 5.43083 kJ/mol # Calculated enthalpy of reaction YbHCO3+2 # Enthalpy of formation: -323.9 kcal/mol - -analytic 3.9175e+001 3.1796e-002 6.9728e+001 -1.9002e+001 1.0762e+000 + -analytic 3.9175e+1 3.1796e-2 6.9728e+1 -1.9002e+1 1.0762e+0 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 HPO4-- = YbHPO4+ - -llnl_gamma 4.0 - log_k +6.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbHPO4+ +Yb+3 + HPO4-2 = YbHPO4+ + -llnl_gamma 4 + log_k 6 + -delta_H 0 # Not possible to calculate enthalpy of reaction YbHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Yb+++ + 1.0000 NO3- = YbNO3++ - -llnl_gamma 4.5 - log_k +0.2148 - -delta_H -32.9323 kJ/mol # Calculated enthalpy of reaction YbNO3+2 + +Yb+3 + NO3- = YbNO3+2 + -llnl_gamma 4.5 + log_k 0.2148 + -delta_H -32.9323 kJ/mol # Calculated enthalpy of reaction YbNO3+2 # Enthalpy of formation: -217.6 kcal/mol - -analytic 1.7237e+001 2.5684e-002 2.2806e+003 -1.3055e+001 3.5581e+001 + -analytic 1.7237e+1 2.5684e-2 2.2806e+3 -1.3055e+1 3.5581e+1 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 H2O = YbO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.7506 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction YbO+ +Yb+3 + H2O = YbO+ + 2 H+ + -llnl_gamma 4 + log_k -15.7506 + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction YbO+ # Enthalpy of formation: -203.4 kcal/mol - -analytic 1.7675e+002 2.9078e-002 -1.3106e+004 -6.3534e+001 -2.0456e+002 + -analytic 1.7675e+2 2.9078e-2 -1.3106e+4 -6.3534e+1 -2.0456e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Yb+++ = YbO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.6741 - -delta_H 267.918 kJ/mol # Calculated enthalpy of reaction YbO2- +2 H2O + Yb+3 = YbO2- + 4 H+ + -llnl_gamma 4 + log_k -32.6741 + -delta_H 267.918 kJ/mol # Calculated enthalpy of reaction YbO2- # Enthalpy of formation: -232.9 kcal/mol - -analytic 1.5529e+002 1.0053e-002 -1.8749e+004 -5.1764e+001 -2.9260e+002 + -analytic 1.5529e+2 1.0053e-2 -1.8749e+4 -5.1764e+1 -2.926e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Yb+++ = YbO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -23.878 - -delta_H 211.016 kJ/mol # Calculated enthalpy of reaction YbO2H +2 H2O + Yb+3 = YbO2H + 3 H+ + -llnl_gamma 3 + log_k -23.878 + -delta_H 211.016 kJ/mol # Calculated enthalpy of reaction YbO2H # Enthalpy of formation: -246.5 kcal/mol - -analytic 3.2148e+002 4.4821e-002 -2.1971e+004 -1.1519e+002 -3.4293e+002 + -analytic 3.2148e+2 4.4821e-2 -2.1971e+4 -1.1519e+2 -3.4293e+2 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 H2O = YbOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.6143 - -delta_H 74.9647 kJ/mol # Calculated enthalpy of reaction YbOH+2 +Yb+3 + H2O = YbOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.6143 + -delta_H 74.9647 kJ/mol # Calculated enthalpy of reaction YbOH+2 # Enthalpy of formation: -210.7 kcal/mol - -analytic 5.8142e+001 1.1402e-002 -5.6488e+003 -2.0289e+001 -8.8160e+001 + -analytic 5.8142e+1 1.1402e-2 -5.6488e+3 -2.0289e+1 -8.816e+1 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 HPO4-- = YbPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.5782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4 +Yb+3 + HPO4-2 = YbPO4 + H+ + -llnl_gamma 3 + log_k 0.5782 + -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Yb+++ + 1.0000 SO4-- = YbSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 1424.65 kJ/mol # Calculated enthalpy of reaction YbSO4+ + +Yb+3 + SO4-2 = YbSO4+ + -llnl_gamma 4 + log_k 3.5697 + -delta_H 1424.65 kJ/mol # Calculated enthalpy of reaction YbSO4+ # Enthalpy of formation: -37.2 kcal/mol - -analytic 3.0675e+002 8.6527e-002 -9.0298e+003 -1.2069e+002 -1.4099e+002 + -analytic 3.0675e+2 8.6527e-2 -9.0298e+3 -1.2069e+2 -1.4099e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Zn++ = Zn(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -6.062 - -delta_H -11.0458 kJ/mol # Calculated enthalpy of reaction Zn(Acetate)2 +2 HAcetate + Zn+2 = Zn(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -6.062 + -delta_H -11.0458 kJ/mol # Calculated enthalpy of reaction Zn(Acetate)2 # Enthalpy of formation: -271.5 kcal/mol - -analytic -2.2038e+001 2.6133e-003 -2.7652e+003 6.8501e+000 6.7086e+005 + -analytic -2.2038e+1 2.6133e-3 -2.7652e+3 6.8501e+0 6.7086e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Zn++ = Zn(Acetate)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -10.0715 - -delta_H 25.355 kJ/mol # Calculated enthalpy of reaction Zn(Acetate)3- +3 HAcetate + Zn+2 = Zn(Acetate)3- + 3 H+ + -llnl_gamma 4 + log_k -10.0715 + -delta_H 25.355 kJ/mol # Calculated enthalpy of reaction Zn(Acetate)3- # Enthalpy of formation: -378.9 kcal/mol - -analytic 3.5104e+001 -6.1568e-003 -1.3379e+004 -8.7697e+000 2.0670e+006 + -analytic 3.5104e+1 -6.1568e-3 -1.3379e+4 -8.7697e+0 2.067e+6 # -Range: 0-300 -4.0000 Cyanide- + 1.0000 Zn++ = Zn(Cyanide)4-- - -llnl_gamma 4.0 - log_k +16.7040 - -delta_H -107.305 kJ/mol # Calculated enthalpy of reaction Zn(Cyanide)4-2 +4 Cyanide- + Zn+2 = Zn(Cyanide)4-2 + -llnl_gamma 4 + log_k 16.704 + -delta_H -107.305 kJ/mol # Calculated enthalpy of reaction Zn(Cyanide)4-2 # Enthalpy of formation: 341.806 kJ/mol - -analytic 3.6586e+002 1.2655e-001 -2.9546e+003 -1.5232e+002 -4.6213e+001 + -analytic 3.6586e+2 1.2655e-1 -2.9546e+3 -1.5232e+2 -4.6213e+1 # -Range: 0-300 -2.0000 N3- + 1.0000 Zn++ = Zn(N3)2 - -llnl_gamma 3.0 - log_k +1.1954 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(N3)2 +2 N3- + Zn+2 = Zn(N3)2 + -llnl_gamma 3 + log_k 1.1954 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(N3)2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 NH3 = Zn(NH3)++ - -llnl_gamma 4.5 - log_k +2.0527 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)+2 + +Zn+2 + NH3 = Zn(NH3)+2 + -llnl_gamma 4.5 + log_k 2.0527 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 NH3 + 1.0000 Zn++ = Zn(NH3)2++ - -llnl_gamma 4.5 - log_k +4.2590 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)2+2 + +2 NH3 + Zn+2 = Zn(NH3)2+2 + -llnl_gamma 4.5 + log_k 4.259 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)2+2 # Enthalpy of formation: -0 kcal/mol - -3.0000 NH3 + 1.0000 Zn++ = Zn(NH3)3++ - -llnl_gamma 4.5 - log_k +6.4653 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)3+2 + +3 NH3 + Zn+2 = Zn(NH3)3+2 + -llnl_gamma 4.5 + log_k 6.4653 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)3+2 # Enthalpy of formation: -0 kcal/mol - -4.0000 NH3 + 1.0000 Zn++ = Zn(NH3)4++ - -llnl_gamma 4.5 - log_k +8.3738 - -delta_H -54.9027 kJ/mol # Calculated enthalpy of reaction Zn(NH3)4+2 + +4 NH3 + Zn+2 = Zn(NH3)4+2 + -llnl_gamma 4.5 + log_k 8.3738 + -delta_H -54.9027 kJ/mol # Calculated enthalpy of reaction Zn(NH3)4+2 # Enthalpy of formation: -533.636 kJ/mol - -analytic 1.5851e+002 -6.3376e-003 -4.6783e+003 -5.3560e+001 -7.3047e+001 + -analytic 1.5851e+2 -6.3376e-3 -4.6783e+3 -5.356e+1 -7.3047e+1 # -Range: 0-300 -2.0000 H2O + 1.0000 Zn++ = Zn(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -17.3282 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2 +2 H2O + Zn+2 = Zn(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -17.3282 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Zn++ = Zn(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -28.8369 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)3- + +3 H2O + Zn+2 = Zn(OH)3- + 3 H+ + -llnl_gamma 4 + log_k -28.8369 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)3- # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Zn++ = Zn(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -41.6052 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)4-2 + +4 H2O + Zn+2 = Zn(OH)4-2 + 4 H+ + -llnl_gamma 4 + log_k -41.6052 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 H2O + 1.0000 Cl- = Zn(OH)Cl +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.5417 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)Cl + +Zn+2 + H2O + Cl- = Zn(OH)Cl + H+ + -llnl_gamma 3 + log_k -7.5417 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)Cl # Enthalpy of formation: -0 kcal/mol - -2.0000 Thiocyanate- + 1.0000 Zn++ = Zn(Thiocyanate)2 - -llnl_gamma 3.0 - log_k +0.8800 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)2 + +2 Thiocyanate- + Zn+2 = Zn(Thiocyanate)2 + -llnl_gamma 3 + log_k 0.88 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)2 # Enthalpy of formation: -0 kcal/mol - -4.0000 Thiocyanate- + 1.0000 Zn++ = Zn(Thiocyanate)4-- - -llnl_gamma 4.0 - log_k +1.2479 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)4-2 + +4 Thiocyanate- + Zn+2 = Zn(Thiocyanate)4-2 + -llnl_gamma 4 + log_k 1.2479 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 Br- = ZnBr+ - -llnl_gamma 4.0 - log_k -0.6365 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr+ + +Zn+2 + Br- = ZnBr+ + -llnl_gamma 4 + log_k -0.6365 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr+ # Enthalpy of formation: -0 kcal/mol - -2.0000 Br- + 1.0000 Zn++ = ZnBr2 - -llnl_gamma 3.0 - log_k -1.0492 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr2 + +2 Br- + Zn+2 = ZnBr2 + -llnl_gamma 3 + log_k -1.0492 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr2 # Enthalpy of formation: -0 kcal/mol - -3.0000 Br- + 1.0000 Zn++ = ZnBr3- - -llnl_gamma 4.0 - log_k -1.8474 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr3- + +3 Br- + Zn+2 = ZnBr3- + -llnl_gamma 4 + log_k -1.8474 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr3- # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 HAcetate = ZnAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.1519 - -delta_H -9.87424 kJ/mol # Calculated enthalpy of reaction ZnAcetate+ + +Zn+2 + HAcetate = ZnAcetate+ + H+ + -llnl_gamma 4 + log_k -3.1519 + -delta_H -9.87424 kJ/mol # Calculated enthalpy of reaction ZnAcetate+ # Enthalpy of formation: -155.12 kcal/mol - -analytic -7.9367e+000 2.8564e-003 -1.4514e+003 2.5010e+000 2.3343e+005 + -analytic -7.9367e+0 2.8564e-3 -1.4514e+3 2.501e+0 2.3343e+5 # -Range: 0-300 -1.0000 Zn++ + 1.0000 HCO3- = ZnCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -6.4288 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3 +Zn+2 + HCO3- = ZnCO3 + H+ + -llnl_gamma 3 + log_k -6.4288 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 Cl- = ZnCl+ - -llnl_gamma 4.0 - log_k +0.1986 - -delta_H 43.317 kJ/mol # Calculated enthalpy of reaction ZnCl+ + +Zn+2 + Cl- = ZnCl+ + -llnl_gamma 4 + log_k 0.1986 + -delta_H 43.317 kJ/mol # Calculated enthalpy of reaction ZnCl+ # Enthalpy of formation: -66.24 kcal/mol - -analytic 1.1235e+002 4.4461e-002 -4.1662e+003 -4.5023e+001 -6.5042e+001 + -analytic 1.1235e+2 4.4461e-2 -4.1662e+3 -4.5023e+1 -6.5042e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Zn++ = ZnCl2 - -llnl_gamma 3.0 - log_k +0.2507 - -delta_H 31.1541 kJ/mol # Calculated enthalpy of reaction ZnCl2 +2 Cl- + Zn+2 = ZnCl2 + -llnl_gamma 3 + log_k 0.2507 + -delta_H 31.1541 kJ/mol # Calculated enthalpy of reaction ZnCl2 # Enthalpy of formation: -109.08 kcal/mol - -analytic 1.7824e+002 7.5733e-002 -4.6251e+003 -7.4770e+001 -7.2224e+001 + -analytic 1.7824e+2 7.5733e-2 -4.6251e+3 -7.477e+1 -7.2224e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Zn++ = ZnCl3- - -llnl_gamma 4.0 - log_k -0.0198 - -delta_H 22.5894 kJ/mol # Calculated enthalpy of reaction ZnCl3- +3 Cl- + Zn+2 = ZnCl3- + -llnl_gamma 4 + log_k -0.0198 + -delta_H 22.5894 kJ/mol # Calculated enthalpy of reaction ZnCl3- # Enthalpy of formation: -151.06 kcal/mol - -analytic 1.3889e+002 7.4712e-002 -2.1527e+003 -6.2200e+001 -3.3633e+001 + -analytic 1.3889e+2 7.4712e-2 -2.1527e+3 -6.22e+1 -3.3633e+1 # -Range: 0-300 -4.0000 Cl- + 1.0000 Zn++ = ZnCl4-- - -llnl_gamma 4.0 - log_k +0.8605 - -delta_H 4.98733 kJ/mol # Calculated enthalpy of reaction ZnCl4-2 +4 Cl- + Zn+2 = ZnCl4-2 + -llnl_gamma 4 + log_k 0.8605 + -delta_H 4.98733 kJ/mol # Calculated enthalpy of reaction ZnCl4-2 # Enthalpy of formation: -195.2 kcal/mol - -analytic 8.4294e+001 7.0021e-002 3.9150e+002 -4.2664e+001 6.0834e+000 + -analytic 8.4294e+1 7.0021e-2 3.915e+2 -4.2664e+1 6.0834e+0 # -Range: 0-300 -1.0000 Zn++ + 1.0000 ClO4- = ZnClO4+ - -llnl_gamma 4.0 - log_k +1.2768 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnClO4+ +Zn+2 + ClO4- = ZnClO4+ + -llnl_gamma 4 + log_k 1.2768 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnClO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 F- = ZnF+ - -llnl_gamma 4.0 - log_k +1.1500 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnF+ + +Zn+2 + F- = ZnF+ + -llnl_gamma 4 + log_k 1.15 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnF+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 HPO4-- + 1.0000 H+ = ZnH2PO4+ - -llnl_gamma 4.0 - log_k +0.4300 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnH2PO4+ + +Zn+2 + HPO4-2 + H+ = ZnH2PO4+ + -llnl_gamma 4 + log_k 0.43 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnH2PO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 HCO3- = ZnHCO3+ - -llnl_gamma 4.0 - log_k +1.4200 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHCO3+ + +Zn+2 + HCO3- = ZnHCO3+ + -llnl_gamma 4 + log_k 1.42 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHCO3+ # Enthalpy of formation: -0 kcal/mol - -analytic 5.1115e+002 1.2911e-001 -1.5292e+004 -2.0083e+002 -2.2721e+002 + -analytic 5.1115e+2 1.2911e-1 -1.5292e+4 -2.0083e+2 -2.2721e+2 # -Range: 25-300 -1.0000 Zn++ + 1.0000 HPO4-- = ZnHPO4 - -llnl_gamma 3.0 - log_k +3.2600 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHPO4 +Zn+2 + HPO4-2 = ZnHPO4 + -llnl_gamma 3 + log_k 3.26 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 I- = ZnI+ - -llnl_gamma 4.0 - log_k -3.0134 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI+ + +Zn+2 + I- = ZnI+ + -llnl_gamma 4 + log_k -3.0134 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI+ # Enthalpy of formation: -0 kcal/mol - -2.0000 I- + 1.0000 Zn++ = ZnI2 - -llnl_gamma 3.0 - log_k -1.8437 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI2 + +2 I- + Zn+2 = ZnI2 + -llnl_gamma 3 + log_k -1.8437 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI2 # Enthalpy of formation: -0 kcal/mol - -3.0000 I- + 1.0000 Zn++ = ZnI3- - -llnl_gamma 4.0 - log_k -2.0054 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI3- + +3 I- + Zn+2 = ZnI3- + -llnl_gamma 4 + log_k -2.0054 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI3- # Enthalpy of formation: -0 kcal/mol - -4.0000 I- + 1.0000 Zn++ = ZnI4-- - -llnl_gamma 4.0 - log_k -2.6052 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI4-2 + +4 I- + Zn+2 = ZnI4-2 + -llnl_gamma 4 + log_k -2.6052 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 N3- = ZnN3+ - -llnl_gamma 4.0 - log_k +0.4420 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnN3+ + +Zn+2 + N3- = ZnN3+ + -llnl_gamma 4 + log_k 0.442 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnN3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 H2O = ZnOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -8.96 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnOH+ + +Zn+2 + H2O = ZnOH+ + H+ + -llnl_gamma 4 + log_k -8.96 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnOH+ # Enthalpy of formation: -0 kcal/mol - -analytic -7.8600e-001 -2.9499e-004 -2.8673e+003 6.1892e-001 -4.2576e+001 + -analytic -7.86e-1 -2.9499e-4 -2.8673e+3 6.1892e-1 -4.2576e+1 # -Range: 25-300 -1.0000 Zn++ + 1.0000 HPO4-- = ZnPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -4.3018 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnPO4- +Zn+2 + HPO4-2 = ZnPO4- + H+ + -llnl_gamma 4 + log_k -4.3018 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnPO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 SO4-- = ZnSO4 - -llnl_gamma 3.0 - log_k +2.3062 - -delta_H 15.277 kJ/mol # Calculated enthalpy of reaction ZnSO4 + +Zn+2 + SO4-2 = ZnSO4 + -llnl_gamma 3 + log_k 2.3062 + -delta_H 15.277 kJ/mol # Calculated enthalpy of reaction ZnSO4 # Enthalpy of formation: -1047.71 kJ/mol - -analytic 1.3640e+002 5.1256e-002 -3.4422e+003 -5.5695e+001 -5.8501e+001 + -analytic 1.364e+2 5.1256e-2 -3.4422e+3 -5.5695e+1 -5.8501e+1 # -Range: 0-200 -1.0000 Zn++ + 1.0000 SeO4-- = ZnSeO4 - -llnl_gamma 3.0 - log_k +2.1900 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnSeO4 +Zn+2 + SeO4-2 = ZnSeO4 + -llnl_gamma 3 + log_k 2.19 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnSeO4 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Zr++++ = Zr(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -0.6693 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)3+ + +3 H2O + Zr+4 = Zr(OH)3+ + 3 H+ + -llnl_gamma 4 + log_k -0.6693 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)3+ # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Zr++++ = Zr(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -1.4666 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)4 + +4 H2O + Zr+4 = Zr(OH)4 + 4 H+ + -llnl_gamma 3 + log_k -1.4666 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)4 # Enthalpy of formation: -0 kcal/mol - -5.0000 H2O + 1.0000 Zr++++ = Zr(OH)5- +5.0000 H+ - -llnl_gamma 4.0 - log_k -15.9754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)5- + +5 H2O + Zr+4 = Zr(OH)5- + 5 H+ + -llnl_gamma 4 + log_k -15.9754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)5- # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Zr++++ = Zr(SO4)2 - -llnl_gamma 3.0 - log_k +6.2965 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)2 + +2 SO4-2 + Zr+4 = Zr(SO4)2 + -llnl_gamma 3 + log_k 6.2965 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 SO4-- + 1.0000 Zr++++ = Zr(SO4)3-- - -llnl_gamma 4.0 - log_k +7.3007 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)3-2 + +3 SO4-2 + Zr+4 = Zr(SO4)3-2 + -llnl_gamma 4 + log_k 7.3007 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)3-2 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 3.0000 Zr++++ = Zr3(OH)4+8 +4.0000 H+ - -llnl_gamma 6.0 - log_k -0.5803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr3(OH)4+8 + +4 H2O + 3 Zr+4 = Zr3(OH)4+8 + 4 H+ + -llnl_gamma 6 + log_k -0.5803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr3(OH)4+8 # Enthalpy of formation: -0 kcal/mol - -8.0000 H2O + 4.0000 Zr++++ = Zr4(OH)8+8 +8.0000 H+ - -llnl_gamma 6.0 - log_k -5.9606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr4(OH)8+8 + +8 H2O + 4 Zr+4 = Zr4(OH)8+8 + 8 H+ + -llnl_gamma 6 + log_k -5.9606 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr4(OH)8+8 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zr++++ + 1.0000 F- = ZrF+++ - -llnl_gamma 5.0 - log_k +8.5835 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF+3 + +Zr+4 + F- = ZrF+3 + -llnl_gamma 5 + log_k 8.5835 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF+3 # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Zr++++ = ZrF2++ - -llnl_gamma 4.5 - log_k +15.7377 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF2+2 + +2 F- + Zr+4 = ZrF2+2 + -llnl_gamma 4.5 + log_k 15.7377 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF2+2 # Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 1.0000 Zr++++ = ZrF3+ - -llnl_gamma 4.0 - log_k +21.2792 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF3+ + +3 F- + Zr+4 = ZrF3+ + -llnl_gamma 4 + log_k 21.2792 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF3+ # Enthalpy of formation: -0 kcal/mol - -4.0000 F- + 1.0000 Zr++++ = ZrF4 - -llnl_gamma 3.0 - log_k +25.9411 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4 + +4 F- + Zr+4 = ZrF4 + -llnl_gamma 3 + log_k 25.9411 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4 # Enthalpy of formation: -0 kcal/mol - -5.0000 F- + 1.0000 Zr++++ = ZrF5- - -llnl_gamma 4.0 - log_k +30.3098 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF5- + +5 F- + Zr+4 = ZrF5- + -llnl_gamma 4 + log_k 30.3098 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF5- # Enthalpy of formation: -0 kcal/mol - -6.0000 F- + 1.0000 Zr++++ = ZrF6-- - -llnl_gamma 4.0 - log_k +34.0188 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF6-2 + +6 F- + Zr+4 = ZrF6-2 + -llnl_gamma 4 + log_k 34.0188 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF6-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zr++++ + 1.0000 H2O = ZrOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k +0.0457 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrOH+3 + +Zr+4 + H2O = ZrOH+3 + H+ + -llnl_gamma 5 + log_k 0.0457 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrOH+3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zr++++ + 1.0000 SO4-- = ZrSO4++ - -llnl_gamma 4.5 - log_k +3.6064 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrSO4+2 + +Zr+4 + SO4-2 = ZrSO4+2 + -llnl_gamma 4.5 + log_k 3.6064 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrSO4+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 O_phthalate-2 = H2O_phthalate - -llnl_gamma 3.0 - log_k +8.3580 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2O_phthalate + +2 H+ + O_phthalate-2 = H2O_phthalate + -llnl_gamma 3 + log_k 8.358 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2O_phthalate # Enthalpy of formation: -0 kcal/mol - + PHASES # 1122 minerals (UO2)2As2O7 - (UO2)2As2O7 +2.0000 H+ +1.0000 H2O = + 2.0000 H2AsO4- + 2.0000 UO2++ - log_k 7.7066 - -delta_H -145.281 kJ/mol # Calculated enthalpy of reaction (UO2)2As2O7 + (UO2)2As2O7 + 2 H+ + H2O = 2 H2AsO4- + 2 UO2+2 + log_k 7.7066 + -delta_H -145.281 kJ/mol # Calculated enthalpy of reaction (UO2)2As2O7 # Enthalpy of formation: -3426 kJ/mol - -analytic -1.6147e+002 -6.3487e-002 1.0052e+004 6.2384e+001 1.5691e+002 + -analytic -1.6147e+2 -6.3487e-2 1.0052e+4 6.2384e+1 1.5691e+2 # -Range: 0-300 (UO2)2Cl3 - (UO2)2Cl3 = + 1.0000 UO2+ + 1.0000 UO2++ + 3.0000 Cl- - log_k 12.7339 - -delta_H -140.866 kJ/mol # Calculated enthalpy of reaction (UO2)2Cl3 + (UO2)2Cl3 = UO2+ + UO2+2 + 3 Cl- + log_k 12.7339 + -delta_H -140.866 kJ/mol # Calculated enthalpy of reaction (UO2)2Cl3 # Enthalpy of formation: -2404.5 kJ/mol - -analytic -2.3895e+002 -9.2925e-002 1.1722e+004 9.6999e+001 1.8298e+002 + -analytic -2.3895e+2 -9.2925e-2 1.1722e+4 9.6999e+1 1.8298e+2 # -Range: 0-300 (UO2)2P2O7 - (UO2)2P2O7 +1.0000 H2O = + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -14.6827 - -delta_H -103.726 kJ/mol # Calculated enthalpy of reaction (UO2)2P2O7 + (UO2)2P2O7 + H2O = 2 HPO4-2 + 2 UO2+2 + log_k -14.6827 + -delta_H -103.726 kJ/mol # Calculated enthalpy of reaction (UO2)2P2O7 # Enthalpy of formation: -4232.6 kJ/mol - -analytic -3.4581e+002 -1.3987e-001 1.0703e+004 1.3613e+002 1.6712e+002 + -analytic -3.4581e+2 -1.3987e-1 1.0703e+4 1.3613e+2 1.6712e+2 # -Range: 0-300 (UO2)3(AsO4)2 - (UO2)3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 UO2++ - log_k 9.3177 - -delta_H -186.72 kJ/mol # Calculated enthalpy of reaction (UO2)3(AsO4)2 + (UO2)3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 UO2+2 + log_k 9.3177 + -delta_H -186.72 kJ/mol # Calculated enthalpy of reaction (UO2)3(AsO4)2 # Enthalpy of formation: -4689.4 kJ/mol - -analytic -1.9693e+002 -7.3236e-002 1.2936e+004 7.4631e+001 2.0192e+002 + -analytic -1.9693e+2 -7.3236e-2 1.2936e+4 7.4631e+1 2.0192e+2 # -Range: 0-300 (UO2)3(PO4)2 - (UO2)3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 UO2++ - log_k -14.0241 - -delta_H -149.864 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2 + (UO2)3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 UO2+2 + log_k -14.0241 + -delta_H -149.864 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2 # Enthalpy of formation: -5491.3 kJ/mol - -analytic -3.6664e+002 -1.4347e-001 1.3486e+004 1.4148e+002 2.1054e+002 + -analytic -3.6664e+2 -1.4347e-1 1.3486e+4 1.4148e+2 2.1054e+2 # -Range: 0-300 (UO2)3(PO4)2:4H2O - (UO2)3(PO4)2:4H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 UO2++ + 4.0000 H2O - log_k -27.0349 - -delta_H -45.4132 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2:4H2O + (UO2)3(PO4)2:4H2O + 2 H+ = 2 HPO4-2 + 3 UO2+2 + 4 H2O + log_k -27.0349 + -delta_H -45.4132 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2:4H2O # Enthalpy of formation: -6739.1 kJ/mol - -analytic -1.5721e+002 -4.1375e-002 5.2046e+003 5.0531e+001 8.8434e+001 + -analytic -1.5721e+2 -4.1375e-2 5.2046e+3 5.0531e+1 8.8434e+1 # -Range: 0-200 (VO)3(PO4)2 - (VO)3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 VO++ - log_k 48.7864 - -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)3(PO4)2 + (VO)3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 VO+2 + log_k 48.7864 + -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)3(PO4)2 # Enthalpy of formation: 0 kcal/mol Acanthite - Ag2S +1.0000 H+ = + 1.0000 HS- + 2.0000 Ag+ - log_k -36.0346 - -delta_H 226.982 kJ/mol # Calculated enthalpy of reaction Acanthite + Ag2S + H+ = HS- + 2 Ag+ + log_k -36.0346 + -delta_H 226.982 kJ/mol # Calculated enthalpy of reaction Acanthite # Enthalpy of formation: -7.55 kcal/mol - -analytic -1.6067e+002 -4.7139e-002 -7.4522e+003 6.6140e+001 -1.1624e+002 + -analytic -1.6067e+2 -4.7139e-2 -7.4522e+3 6.614e+1 -1.1624e+2 # -Range: 0-300 Afwillite - Ca3Si2O4(OH)6 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Ca++ + 6.0000 H2O - log_k 60.0452 - -delta_H -316.059 kJ/mol # Calculated enthalpy of reaction Afwillite + Ca3Si2O4(OH)6 + 6 H+ = 2 SiO2 + 3 Ca+2 + 6 H2O + log_k 60.0452 + -delta_H -316.059 kJ/mol # Calculated enthalpy of reaction Afwillite # Enthalpy of formation: -1143.31 kcal/mol - -analytic 1.8353e+001 1.9014e-003 1.8478e+004 -6.6311e+000 -4.0227e+005 + -analytic 1.8353e+1 1.9014e-3 1.8478e+4 -6.6311e+0 -4.0227e+5 # -Range: 0-300 Ag - Ag +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Ag+ - log_k 7.9937 - -delta_H -34.1352 kJ/mol # Calculated enthalpy of reaction Ag + Ag + H+ + 0.25 O2 = 0.5 H2O + Ag+ + log_k 7.9937 + -delta_H -34.1352 kJ/mol # Calculated enthalpy of reaction Ag # Enthalpy of formation: 0 kcal/mol - -analytic -1.4144e+001 -3.8466e-003 2.2642e+003 6.3388e+000 3.5334e+001 + -analytic -1.4144e+1 -3.8466e-3 2.2642e+3 6.3388e+0 3.5334e+1 # -Range: 0-300 Ag3PO4 - Ag3PO4 +1.0000 H+ = + 1.0000 HPO4-- + 3.0000 Ag+ - log_k -5.2282 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ag3PO4 + Ag3PO4 + H+ = HPO4-2 + 3 Ag+ + log_k -5.2282 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ag3PO4 # Enthalpy of formation: 0 kcal/mol Ahlfeldite - NiSeO3:2H2O = + 1.0000 Ni++ + 1.0000 SeO3-- + 2.0000 H2O - log_k -4.4894 - -delta_H -25.7902 kJ/mol # Calculated enthalpy of reaction Ahlfeldite + NiSeO3:2H2O = Ni+2 + SeO3-2 + 2 H2O + log_k -4.4894 + -delta_H -25.7902 kJ/mol # Calculated enthalpy of reaction Ahlfeldite # Enthalpy of formation: -265.07 kcal/mol - -analytic -2.6210e+001 -1.6952e-002 1.0405e+003 9.4054e+000 1.7678e+001 + -analytic -2.621e+1 -1.6952e-2 1.0405e+3 9.4054e+0 1.7678e+1 # -Range: 0-200 Akermanite - Ca2MgSi2O7 +6.0000 H+ = + 1.0000 Mg++ + 2.0000 Ca++ + 2.0000 SiO2 + 3.0000 H2O - log_k 45.3190 - -delta_H -288.575 kJ/mol # Calculated enthalpy of reaction Akermanite + Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 SiO2 + 3 H2O + log_k 45.319 + -delta_H -288.575 kJ/mol # Calculated enthalpy of reaction Akermanite # Enthalpy of formation: -926.497 kcal/mol - -analytic -4.8295e+001 -8.5613e-003 2.0880e+004 1.3798e+001 -7.1975e+005 + -analytic -4.8295e+1 -8.5613e-3 2.088e+4 1.3798e+1 -7.1975e+5 # -Range: 0-300 Al - Al +3.0000 H+ +0.7500 O2 = + 1.0000 Al+++ + 1.5000 H2O - log_k 149.9292 - -delta_H -958.059 kJ/mol # Calculated enthalpy of reaction Al + Al + 3 H+ + 0.75 O2 = Al+3 + 1.5 H2O + log_k 149.9292 + -delta_H -958.059 kJ/mol # Calculated enthalpy of reaction Al # Enthalpy of formation: 0 kJ/mol - -analytic -1.8752e+002 -4.6187e-002 5.7127e+004 6.6270e+001 -3.8952e+005 + -analytic -1.8752e+2 -4.6187e-2 5.7127e+4 6.627e+1 -3.8952e+5 # -Range: 0-300 Al2(SO4)3 - Al2(SO4)3 = + 2.0000 Al+++ + 3.0000 SO4-- - log_k 19.0535 - -delta_H -364.566 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3 + Al2(SO4)3 = 2 Al+3 + 3 SO4-2 + log_k 19.0535 + -delta_H -364.566 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3 # Enthalpy of formation: -3441.04 kJ/mol - -analytic -6.1001e+002 -2.4268e-001 2.9194e+004 2.4383e+002 4.5573e+002 + -analytic -6.1001e+2 -2.4268e-1 2.9194e+4 2.4383e+2 4.5573e+2 # -Range: 0-300 Al2(SO4)3:6H2O - Al2(SO4)3:6H2O = + 2.0000 Al+++ + 3.0000 SO4-- + 6.0000 H2O - log_k 1.6849 - -delta_H -208.575 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3:6H2O + Al2(SO4)3:6H2O = 2 Al+3 + 3 SO4-2 + 6 H2O + log_k 1.6849 + -delta_H -208.575 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3:6H2O # Enthalpy of formation: -5312.06 kJ/mol - -analytic -7.1642e+002 -2.4552e-001 2.6064e+004 2.8441e+002 4.0691e+002 + -analytic -7.1642e+2 -2.4552e-1 2.6064e+4 2.8441e+2 4.0691e+2 # -Range: 0-300 AlF3 - AlF3 = + 1.0000 Al+++ + 3.0000 F- - log_k -17.2089 - -delta_H -34.0441 kJ/mol # Calculated enthalpy of reaction AlF3 + AlF3 = Al+3 + 3 F- + log_k -17.2089 + -delta_H -34.0441 kJ/mol # Calculated enthalpy of reaction AlF3 # Enthalpy of formation: -1510.4 kJ/mol - -analytic -3.9865e+002 -1.3388e-001 1.0211e+004 1.5642e+002 1.5945e+002 + -analytic -3.9865e+2 -1.3388e-1 1.0211e+4 1.5642e+2 1.5945e+2 # -Range: 0-300 Alabandite - MnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Mn++ - log_k -0.3944 - -delta_H -23.3216 kJ/mol # Calculated enthalpy of reaction Alabandite + MnS + H+ = HS- + Mn+2 + log_k -0.3944 + -delta_H -23.3216 kJ/mol # Calculated enthalpy of reaction Alabandite # Enthalpy of formation: -51 kcal/mol - -analytic -1.5515e+002 -4.8820e-002 4.9049e+003 6.1765e+001 7.6583e+001 + -analytic -1.5515e+2 -4.882e-2 4.9049e+3 6.1765e+1 7.6583e+1 # -Range: 0-300 Alamosite - PbSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ + 1.0000 SiO2 - log_k 5.6733 - -delta_H -16.5164 kJ/mol # Calculated enthalpy of reaction Alamosite + PbSiO3 + 2 H+ = H2O + Pb+2 + SiO2 + log_k 5.6733 + -delta_H -16.5164 kJ/mol # Calculated enthalpy of reaction Alamosite # Enthalpy of formation: -1146.1 kJ/mol - -analytic 2.9941e+002 6.7871e-002 -8.1706e+003 -1.1582e+002 -1.3885e+002 + -analytic 2.9941e+2 6.7871e-2 -8.1706e+3 -1.1582e+2 -1.3885e+2 # -Range: 0-200 Albite - NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 - log_k 2.7645 - -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite # Enthalpy of formation: -939.68 kcal/mol - -analytic -1.1694e+001 1.4429e-002 1.3784e+004 -7.2866e+000 -1.6136e+006 + -analytic -1.1694e+1 1.4429e-2 1.3784e+4 -7.2866e+0 -1.6136e+6 # -Range: 0-300 Albite_high - NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 - log_k 4.0832 - -delta_H -62.8562 kJ/mol # Calculated enthalpy of reaction Albite_high + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 4.0832 + -delta_H -62.8562 kJ/mol # Calculated enthalpy of reaction Albite_high # Enthalpy of formation: -937.05 kcal/mol - -analytic -1.8957e+001 1.3726e-002 1.4801e+004 -4.9732e+000 -1.6442e+006 + -analytic -1.8957e+1 1.3726e-2 1.4801e+4 -4.9732e+0 -1.6442e+6 # -Range: 0-300 Albite_low - NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 - log_k 2.7645 - -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite_low + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite_low # Enthalpy of formation: -939.68 kcal/mol - -analytic -1.2860e+001 1.4481e-002 1.3913e+004 -6.9417e+000 -1.6256e+006 + -analytic -1.286e+1 1.4481e-2 1.3913e+4 -6.9417e+0 -1.6256e+6 # -Range: 0-300 Alstonite - BaCa(CO3)2 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 Ca++ + 2.0000 HCO3- - log_k 2.5843 - -delta_H 0 # Not possible to calculate enthalpy of reaction Alstonite + BaCa(CO3)2 + 2 H+ = Ba+2 + Ca+2 + 2 HCO3- + log_k 2.5843 + -delta_H 0 # Not possible to calculate enthalpy of reaction Alstonite # Enthalpy of formation: 0 kcal/mol Alum-K - KAl(SO4)2:12H2O = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 SO4-- + 12.0000 H2O - log_k -4.8818 - -delta_H 14.4139 kJ/mol # Calculated enthalpy of reaction Alum-K + KAl(SO4)2:12H2O = Al+3 + K+ + 2 SO4-2 + 12 H2O + log_k -4.8818 + -delta_H 14.4139 kJ/mol # Calculated enthalpy of reaction Alum-K # Enthalpy of formation: -1447 kcal/mol - -analytic -8.8025e+002 -2.5706e-001 2.2399e+004 3.5434e+002 3.4978e+002 + -analytic -8.8025e+2 -2.5706e-1 2.2399e+4 3.5434e+2 3.4978e+2 # -Range: 0-300 Alunite - KAl3(OH)6(SO4)2 +6.0000 H+ = + 1.0000 K+ + 2.0000 SO4-- + 3.0000 Al+++ + 6.0000 H2O - log_k -0.3479 - -delta_H -231.856 kJ/mol # Calculated enthalpy of reaction Alunite + KAl3(OH)6(SO4)2 + 6 H+ = K+ + 2 SO4-2 + 3 Al+3 + 6 H2O + log_k -0.3479 + -delta_H -231.856 kJ/mol # Calculated enthalpy of reaction Alunite # Enthalpy of formation: -1235.6 kcal/mol - -analytic -6.8581e+002 -2.2455e-001 2.6886e+004 2.6758e+002 4.1973e+002 + -analytic -6.8581e+2 -2.2455e-1 2.6886e+4 2.6758e+2 4.1973e+2 # -Range: 0-300 Am - Am +3.0000 H+ +0.7500 O2 = + 1.0000 Am+++ + 1.5000 H2O - log_k 169.3900 - -delta_H -1036.36 kJ/mol # Calculated enthalpy of reaction Am + Am + 3 H+ + 0.75 O2 = Am+3 + 1.5 H2O + log_k 169.39 + -delta_H -1036.36 kJ/mol # Calculated enthalpy of reaction Am # Enthalpy of formation: 0 kJ/mol - -analytic -6.7924e+000 -8.9873e-003 5.3327e+004 0.0000e+000 0.0000e+000 + -analytic -6.7924e+0 -8.9873e-3 5.3327e+4 0e+0 0e+0 # -Range: 0-300 Am(OH)3 - Am(OH)3 +3.0000 H+ = + 1.0000 Am+++ + 3.0000 H2O - log_k 15.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 + Am(OH)3 + 3 H+ = Am+3 + 3 H2O + log_k 15.2218 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 # Enthalpy of formation: 0 kcal/mol Am(OH)3(am) - Am(OH)3 +3.0000 H+ = + 1.0000 Am+++ + 3.0000 H2O - log_k 17.0217 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3(am) + Am(OH)3 + 3 H+ = Am+3 + 3 H2O + log_k 17.0217 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3(am) # Enthalpy of formation: 0 kcal/mol Am2(CO3)3 - Am2(CO3)3 +3.0000 H+ = + 2.0000 Am+++ + 3.0000 HCO3- - log_k -2.3699 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am2(CO3)3 + Am2(CO3)3 + 3 H+ = 2 Am+3 + 3 HCO3- + log_k -2.3699 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am2(CO3)3 # Enthalpy of formation: 0 kcal/mol Am2C3 - Am2C3 +4.5000 O2 +3.0000 H+ = + 2.0000 Am+++ + 3.0000 HCO3- - log_k 503.9594 - -delta_H -3097.6 kJ/mol # Calculated enthalpy of reaction Am2C3 + Am2C3 + 4.5 O2 + 3 H+ = 2 Am+3 + 3 HCO3- + log_k 503.9594 + -delta_H -3097.6 kJ/mol # Calculated enthalpy of reaction Am2C3 # Enthalpy of formation: -151 kJ/mol - -analytic 3.3907e+002 -4.2636e-003 1.4463e+005 -1.2891e+002 2.4559e+003 + -analytic 3.3907e+2 -4.2636e-3 1.4463e+5 -1.2891e+2 2.4559e+3 # -Range: 0-200 Am2O3 - Am2O3 +6.0000 H+ = + 2.0000 Am+++ + 3.0000 H2O - log_k 51.7905 - -delta_H -400.515 kJ/mol # Calculated enthalpy of reaction Am2O3 + Am2O3 + 6 H+ = 2 Am+3 + 3 H2O + log_k 51.7905 + -delta_H -400.515 kJ/mol # Calculated enthalpy of reaction Am2O3 # Enthalpy of formation: -1690.4 kJ/mol - -analytic -9.2044e+001 -1.8883e-002 2.3028e+004 2.9192e+001 3.5935e+002 + -analytic -9.2044e+1 -1.8883e-2 2.3028e+4 2.9192e+1 3.5935e+2 # -Range: 0-300 AmBr3 - AmBr3 = + 1.0000 Am+++ + 3.0000 Br- - log_k 21.7826 - -delta_H -171.21 kJ/mol # Calculated enthalpy of reaction AmBr3 + AmBr3 = Am+3 + 3 Br- + log_k 21.7826 + -delta_H -171.21 kJ/mol # Calculated enthalpy of reaction AmBr3 # Enthalpy of formation: -810 kJ/mol - -analytic 1.0121e+001 -3.0622e-002 6.1964e+003 0.0000e+000 0.0000e+000 + -analytic 1.0121e+1 -3.0622e-2 6.1964e+3 0e+0 0e+0 # -Range: 0-200 AmCl3 - AmCl3 = + 1.0000 Am+++ + 3.0000 Cl- - log_k 14.3513 - -delta_H -140.139 kJ/mol # Calculated enthalpy of reaction AmCl3 + AmCl3 = Am+3 + 3 Cl- + log_k 14.3513 + -delta_H -140.139 kJ/mol # Calculated enthalpy of reaction AmCl3 # Enthalpy of formation: -977.8 kJ/mol - -analytic -1.5000e+001 -3.6701e-002 5.2281e+003 9.1942e+000 8.8785e+001 + -analytic -1.5e+1 -3.6701e-2 5.2281e+3 9.1942e+0 8.8785e+1 # -Range: 0-200 AmF3 - AmF3 = + 1.0000 Am+++ + 3.0000 F- - log_k -13.1190 - -delta_H -34.7428 kJ/mol # Calculated enthalpy of reaction AmF3 + AmF3 = Am+3 + 3 F- + log_k -13.119 + -delta_H -34.7428 kJ/mol # Calculated enthalpy of reaction AmF3 # Enthalpy of formation: -1588 kJ/mol - -analytic -4.0514e+001 -3.7312e-002 4.1626e+002 1.4999e+001 7.0827e+000 + -analytic -4.0514e+1 -3.7312e-2 4.1626e+2 1.4999e+1 7.0827e+0 # -Range: 0-200 AmF4 - AmF4 = + 1.0000 Am++++ + 4.0000 F- - log_k -25.1354 - -delta_H -37.3904 kJ/mol # Calculated enthalpy of reaction AmF4 + AmF4 = Am+4 + 4 F- + log_k -25.1354 + -delta_H -37.3904 kJ/mol # Calculated enthalpy of reaction AmF4 # Enthalpy of formation: -1710 kJ/mol - -analytic -4.9592e+001 -4.5210e-002 -9.7251e+001 1.5457e+001 -1.6348e+000 + -analytic -4.9592e+1 -4.521e-2 -9.7251e+1 1.5457e+1 -1.6348e+0 # -Range: 0-200 AmH2 - AmH2 +2.0000 H+ +1.0000 O2 = + 1.0000 Am++ + 2.0000 H2O - log_k 128.4208 - -delta_H -738.376 kJ/mol # Calculated enthalpy of reaction AmH2 + AmH2 + 2 H+ + O2 = Am+2 + 2 H2O + log_k 128.4208 + -delta_H -738.376 kJ/mol # Calculated enthalpy of reaction AmH2 # Enthalpy of formation: -175.8 kJ/mol - -analytic 3.1175e+001 -1.4062e-002 3.6259e+004 -8.1600e+000 5.6578e+002 + -analytic 3.1175e+1 -1.4062e-2 3.6259e+4 -8.16e+0 5.6578e+2 # -Range: 0-300 AmI3 - AmI3 = + 1.0000 Am+++ + 3.0000 I- - log_k 24.7301 - -delta_H -175.407 kJ/mol # Calculated enthalpy of reaction AmI3 + AmI3 = Am+3 + 3 I- + log_k 24.7301 + -delta_H -175.407 kJ/mol # Calculated enthalpy of reaction AmI3 # Enthalpy of formation: -612 kJ/mol - -analytic -1.3886e+001 -3.6651e-002 7.2094e+003 1.0247e+001 1.2243e+002 + -analytic -1.3886e+1 -3.6651e-2 7.2094e+3 1.0247e+1 1.2243e+2 # -Range: 0-200 AmO2 - AmO2 +4.0000 H+ = + 1.0000 Am++++ + 2.0000 H2O - log_k -9.4203 - -delta_H -45.4767 kJ/mol # Calculated enthalpy of reaction AmO2 + AmO2 + 4 H+ = Am+4 + 2 H2O + log_k -9.4203 + -delta_H -45.4767 kJ/mol # Calculated enthalpy of reaction AmO2 # Enthalpy of formation: -932.2 kJ/mol - -analytic -7.4658e+001 -1.1661e-002 4.2059e+003 2.2070e+001 6.5650e+001 + -analytic -7.4658e+1 -1.1661e-2 4.2059e+3 2.207e+1 6.565e+1 # -Range: 0-300 AmOBr - AmOBr +2.0000 H+ = + 1.0000 Am+++ + 1.0000 Br- + 1.0000 H2O - log_k 13.7637 - -delta_H -131.042 kJ/mol # Calculated enthalpy of reaction AmOBr + AmOBr + 2 H+ = Am+3 + Br- + H2O + log_k 13.7637 + -delta_H -131.042 kJ/mol # Calculated enthalpy of reaction AmOBr # Enthalpy of formation: -893 kJ/mol - -analytic -4.4394e+001 -1.7071e-002 7.3438e+003 1.5605e+001 1.2472e+002 + -analytic -4.4394e+1 -1.7071e-2 7.3438e+3 1.5605e+1 1.2472e+2 # -Range: 0-200 AmOCl - AmOCl +2.0000 H+ = + 1.0000 Am+++ + 1.0000 Cl- + 1.0000 H2O - log_k 11.3229 - -delta_H -119.818 kJ/mol # Calculated enthalpy of reaction AmOCl + AmOCl + 2 H+ = Am+3 + Cl- + H2O + log_k 11.3229 + -delta_H -119.818 kJ/mol # Calculated enthalpy of reaction AmOCl # Enthalpy of formation: -949.8 kJ/mol - -analytic -1.2101e+002 -4.1027e-002 8.6801e+003 4.6651e+001 1.3548e+002 + -analytic -1.2101e+2 -4.1027e-2 8.6801e+3 4.6651e+1 1.3548e+2 # -Range: 0-300 AmOHCO3 - AmOHCO3 +2.0000 H+ = + 1.0000 Am+++ + 1.0000 H2O + 1.0000 HCO3- - log_k 3.1519 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmOHCO3 + AmOHCO3 + 2 H+ = Am+3 + H2O + HCO3- + log_k 3.1519 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmOHCO3 # Enthalpy of formation: 0 kcal/mol AmPO4(am) - AmPO4 +1.0000 H+ = + 1.0000 Am+++ + 1.0000 HPO4-- - log_k -12.4682 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmPO4(am) + AmPO4 + H+ = Am+3 + HPO4-2 + log_k -12.4682 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmPO4(am) # Enthalpy of formation: 0 kcal/mol Amesite-14A - Mg4Al4Si2O10(OH)8 +20.0000 H+ = + 2.0000 SiO2 + 4.0000 Al+++ + 4.0000 Mg++ + 14.0000 H2O - log_k 75.4571 - -delta_H -797.098 kJ/mol # Calculated enthalpy of reaction Amesite-14A + Mg4Al4Si2O10(OH)8 + 20 H+ = 2 SiO2 + 4 Al+3 + 4 Mg+2 + 14 H2O + log_k 75.4571 + -delta_H -797.098 kJ/mol # Calculated enthalpy of reaction Amesite-14A # Enthalpy of formation: -2145.67 kcal/mol - -analytic -5.4326e+002 -1.4144e-001 5.4150e+004 1.9361e+002 8.4512e+002 + -analytic -5.4326e+2 -1.4144e-1 5.415e+4 1.9361e+2 8.4512e+2 # -Range: 0-300 Analcime - Na.96Al.96Si2.04O6:H2O +3.8400 H+ = + 0.9600 Al+++ + 0.9600 Na+ + 2.0400 SiO2 + 2.9200 H2O - log_k 6.1396 - -delta_H -75.844 kJ/mol # Calculated enthalpy of reaction Analcime + Na.96Al.96Si2.04O6:H2O + 3.84 H+ = 0.96 Al+3 + 0.96 Na+ + 2.04 SiO2 + 2.92 H2O + log_k 6.1396 + -delta_H -75.844 kJ/mol # Calculated enthalpy of reaction Analcime # Enthalpy of formation: -3296.86 kJ/mol - -analytic -6.8694e+000 6.6052e-003 9.8260e+003 -4.8540e+000 -8.8780e+005 + -analytic -6.8694e+0 6.6052e-3 9.826e+3 -4.854e+0 -8.878e+5 # -Range: 0-300 Analcime-dehy - Na.96Al.96Si2.04O6 +3.8400 H+ = + 0.9600 Al+++ + 0.9600 Na+ + 1.9200 H2O + 2.0400 SiO2 - log_k 12.5023 - -delta_H -116.641 kJ/mol # Calculated enthalpy of reaction Analcime-dehy + Na.96Al.96Si2.04O6 + 3.84 H+ = 0.96 Al+3 + 0.96 Na+ + 1.92 H2O + 2.04 SiO2 + log_k 12.5023 + -delta_H -116.641 kJ/mol # Calculated enthalpy of reaction Analcime-dehy # Enthalpy of formation: -2970.23 kJ/mol - -analytic -7.1134e+000 5.6181e-003 1.2185e+004 -5.0295e+000 -9.3890e+005 + -analytic -7.1134e+0 5.6181e-3 1.2185e+4 -5.0295e+0 -9.389e+5 # -Range: 0-300 Anatase - TiO2 +2.0000 H2O = + 1.0000 Ti(OH)4 - log_k -8.5586 - -delta_H 0 # Not possible to calculate enthalpy of reaction Anatase + TiO2 + 2 H2O = Ti(OH)4 + log_k -8.5586 + -delta_H 0 # Not possible to calculate enthalpy of reaction Anatase # Enthalpy of formation: -939.942 kJ/mol Andalusite - Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O - log_k 15.9445 - -delta_H -235.233 kJ/mol # Calculated enthalpy of reaction Andalusite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 15.9445 + -delta_H -235.233 kJ/mol # Calculated enthalpy of reaction Andalusite # Enthalpy of formation: -615.866 kcal/mol - -analytic -7.1115e+001 -3.2234e-002 1.2308e+004 2.2357e+001 1.9208e+002 + -analytic -7.1115e+1 -3.2234e-2 1.2308e+4 2.2357e+1 1.9208e+2 # -Range: 0-300 Andradite - Ca3Fe2(SiO4)3 +12.0000 H+ = + 2.0000 Fe+++ + 3.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O - log_k 33.3352 - -delta_H -301.173 kJ/mol # Calculated enthalpy of reaction Andradite + Ca3Fe2(SiO4)3 + 12 H+ = 2 Fe+3 + 3 Ca+2 + 3 SiO2 + 6 H2O + log_k 33.3352 + -delta_H -301.173 kJ/mol # Calculated enthalpy of reaction Andradite # Enthalpy of formation: -1380.35 kcal/mol - -analytic 1.3884e+001 -2.3886e-002 1.5314e+004 -8.1606e+000 -4.2193e+005 + -analytic 1.3884e+1 -2.3886e-2 1.5314e+4 -8.1606e+0 -4.2193e+5 # -Range: 0-300 Anglesite - PbSO4 = + 1.0000 Pb++ + 1.0000 SO4-- - log_k -7.8527 - -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Anglesite + PbSO4 = Pb+2 + SO4-2 + log_k -7.8527 + -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Anglesite # Enthalpy of formation: -219.87 kcal/mol - -analytic -1.8583e+002 -7.3849e-002 2.8528e+003 7.6936e+001 4.4570e+001 + -analytic -1.8583e+2 -7.3849e-2 2.8528e+3 7.6936e+1 4.457e+1 # -Range: 0-300 Anhydrite - CaSO4 = + 1.0000 Ca++ + 1.0000 SO4-- - log_k -4.3064 - -delta_H -18.577 kJ/mol # Calculated enthalpy of reaction Anhydrite + CaSO4 = Ca+2 + SO4-2 + log_k -4.3064 + -delta_H -18.577 kJ/mol # Calculated enthalpy of reaction Anhydrite # Enthalpy of formation: -342.76 kcal/mol - -analytic -2.0986e+002 -7.8823e-002 5.0969e+003 8.5642e+001 7.9594e+001 + -analytic -2.0986e+2 -7.8823e-2 5.0969e+3 8.5642e+1 7.9594e+1 # -Range: 0-300 Annite - KFe3AlSi3O10(OH)2 +10.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 3.0000 Fe++ + 3.0000 SiO2 + 6.0000 H2O - log_k 29.4693 - -delta_H -259.964 kJ/mol # Calculated enthalpy of reaction Annite + KFe3AlSi3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 SiO2 + 6 H2O + log_k 29.4693 + -delta_H -259.964 kJ/mol # Calculated enthalpy of reaction Annite # Enthalpy of formation: -1232.19 kcal/mol - -analytic -4.0186e+001 -1.4238e-002 1.8929e+004 7.9859e+000 -8.4343e+005 + -analytic -4.0186e+1 -1.4238e-2 1.8929e+4 7.9859e+0 -8.4343e+5 # -Range: 0-300 Anorthite - CaAl2(SiO4)2 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 2.0000 SiO2 + 4.0000 H2O - log_k 26.5780 - -delta_H -303.039 kJ/mol # Calculated enthalpy of reaction Anorthite + CaAl2(SiO4)2 + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 4 H2O + log_k 26.578 + -delta_H -303.039 kJ/mol # Calculated enthalpy of reaction Anorthite # Enthalpy of formation: -1007.55 kcal/mol - -analytic 3.9717e-001 -1.8751e-002 1.4897e+004 -6.3078e+000 -2.3885e+005 + -analytic 3.9717e-1 -1.8751e-2 1.4897e+4 -6.3078e+0 -2.3885e+5 # -Range: 0-300 Antarcticite - CaCl2:6H2O = + 1.0000 Ca++ + 2.0000 Cl- + 6.0000 H2O - log_k 4.0933 - -delta_H 0 # Not possible to calculate enthalpy of reaction Antarcticite + CaCl2:6H2O = Ca+2 + 2 Cl- + 6 H2O + log_k 4.0933 + -delta_H 0 # Not possible to calculate enthalpy of reaction Antarcticite # Enthalpy of formation: 0 kcal/mol Anthophyllite - Mg7Si8O22(OH)2 +14.0000 H+ = + 7.0000 Mg++ + 8.0000 H2O + 8.0000 SiO2 - log_k 66.7965 - -delta_H -483.486 kJ/mol # Calculated enthalpy of reaction Anthophyllite + Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 + 8 H2O + 8 SiO2 + log_k 66.7965 + -delta_H -483.486 kJ/mol # Calculated enthalpy of reaction Anthophyllite # Enthalpy of formation: -2888.75 kcal/mol - -analytic -1.2865e+002 1.9705e-002 5.4853e+004 1.9444e+001 -3.8080e+006 + -analytic -1.2865e+2 1.9705e-2 5.4853e+4 1.9444e+1 -3.808e+6 # -Range: 0-300 Antigorite # Mg48Si24O85(OH)62 +96.0000 H+ = + 34.0000 SiO2 + 48.0000 Mg++ + 79.0000 H2O - Mg48Si34O85(OH)62 +96.0000 H+ = + 34.0000 SiO2 + 48.0000 Mg++ + 79.0000 H2O - log_k 477.1943 - -delta_H -3364.43 kJ/mol # Calculated enthalpy of reaction Antigorite + Mg48Si34O85(OH)62 + 96 H+ = 34 SiO2 + 48 Mg+2 + 79 H2O + log_k 477.1943 + -delta_H -3364.43 kJ/mol # Calculated enthalpy of reaction Antigorite # Enthalpy of formation: -17070.9 kcal/mol - -analytic -8.1630e+002 -6.7780e-002 2.5998e+005 2.2029e+002 -9.3275e+006 + -analytic -8.163e+2 -6.778e-2 2.5998e+5 2.2029e+2 -9.3275e+6 # -Range: 0-300 Antlerite - Cu3(SO4)(OH)4 +4.0000 H+ = + 1.0000 SO4-- + 3.0000 Cu++ + 4.0000 H2O - log_k 8.7302 - -delta_H 0 # Not possible to calculate enthalpy of reaction Antlerite + Cu3(SO4)(OH)4 + 4 H+ = SO4-2 + 3 Cu+2 + 4 H2O + log_k 8.7302 + -delta_H 0 # Not possible to calculate enthalpy of reaction Antlerite # Enthalpy of formation: 0 kcal/mol Aphthitalite - NaK3(SO4)2 = + 1.0000 Na+ + 2.0000 SO4-- + 3.0000 K+ - log_k -3.8878 - -delta_H 0 # Not possible to calculate enthalpy of reaction Aphthitalite + NaK3(SO4)2 = Na+ + 2 SO4-2 + 3 K+ + log_k -3.8878 + -delta_H 0 # Not possible to calculate enthalpy of reaction Aphthitalite # Enthalpy of formation: 0 kcal/mol Aragonite - CaCO3 +1.0000 H+ = + 1.0000 Ca++ + 1.0000 HCO3- - log_k 1.9931 - -delta_H -25.8027 kJ/mol # Calculated enthalpy of reaction Aragonite + CaCO3 + H+ = Ca+2 + HCO3- + log_k 1.9931 + -delta_H -25.8027 kJ/mol # Calculated enthalpy of reaction Aragonite # Enthalpy of formation: -288.531 kcal/mol - -analytic -1.4934e+002 -4.8043e-002 4.9089e+003 6.0284e+001 7.6644e+001 + -analytic -1.4934e+2 -4.8043e-2 4.9089e+3 6.0284e+1 7.6644e+1 # -Range: 0-300 Arcanite - K2SO4 = + 1.0000 SO4-- + 2.0000 K+ - log_k -1.8008 - -delta_H 23.836 kJ/mol # Calculated enthalpy of reaction Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.8008 + -delta_H 23.836 kJ/mol # Calculated enthalpy of reaction Arcanite # Enthalpy of formation: -1437.78 kJ/mol - -analytic -1.6428e+002 -6.7762e-002 1.9879e+003 7.1116e+001 3.1067e+001 + -analytic -1.6428e+2 -6.7762e-2 1.9879e+3 7.1116e+1 3.1067e+1 # -Range: 0-300 Arsenolite - As2O3 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO3- - log_k -19.8365 - -delta_H 84.5449 kJ/mol # Calculated enthalpy of reaction Arsenolite + As2O3 + 3 H2O = 2 H+ + 2 H2AsO3- + log_k -19.8365 + -delta_H 84.5449 kJ/mol # Calculated enthalpy of reaction Arsenolite # Enthalpy of formation: -656.619 kJ/mol - -analytic 5.1917e+000 -1.9397e-002 -6.0894e+003 4.7458e-001 -1.0341e+002 + -analytic 5.1917e+0 -1.9397e-2 -6.0894e+3 4.7458e-1 -1.0341e+2 # -Range: 0-200 Arsenopyrite - FeAsS +1.5000 H2O +0.5000 H+ = + 0.5000 AsH3 + 0.5000 H2AsO3- + 1.0000 Fe++ + 1.0000 HS- - log_k -14.4453 - -delta_H 28.0187 kJ/mol # Calculated enthalpy of reaction Arsenopyrite + FeAsS + 1.5 H2O + 0.5 H+ = 0.5 AsH3 + 0.5 H2AsO3- + Fe+2 + HS- + log_k -14.4453 + -delta_H 28.0187 kJ/mol # Calculated enthalpy of reaction Arsenopyrite # Enthalpy of formation: -42.079 kJ/mol Artinite - Mg2CO3(OH)2:3H2O +3.0000 H+ = + 1.0000 HCO3- + 2.0000 Mg++ + 5.0000 H2O - log_k 19.6560 - -delta_H -130.432 kJ/mol # Calculated enthalpy of reaction Artinite + Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O + log_k 19.656 + -delta_H -130.432 kJ/mol # Calculated enthalpy of reaction Artinite # Enthalpy of formation: -698.043 kcal/mol - -analytic -2.8614e+002 -6.7344e-002 1.5230e+004 1.1104e+002 2.3773e+002 + -analytic -2.8614e+2 -6.7344e-2 1.523e+4 1.1104e+2 2.3773e+2 # -Range: 0-300 As - As +1.5000 H2O +0.7500 O2 = + 1.0000 H+ + 1.0000 H2AsO3- - log_k 42.7079 - -delta_H -276.937 kJ/mol # Calculated enthalpy of reaction As + As + 1.5 H2O + 0.75 O2 = H+ + H2AsO3- + log_k 42.7079 + -delta_H -276.937 kJ/mol # Calculated enthalpy of reaction As # Enthalpy of formation: 0 kJ/mol - -analytic -3.4700e+001 -3.1772e-002 1.3788e+004 1.6411e+001 2.1517e+002 + -analytic -3.47e+1 -3.1772e-2 1.3788e+4 1.6411e+1 2.1517e+2 # -Range: 0-300 As2O5 - As2O5 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO4- - log_k 2.1601 - -delta_H -36.7345 kJ/mol # Calculated enthalpy of reaction As2O5 + As2O5 + 3 H2O = 2 H+ + 2 H2AsO4- + log_k 2.1601 + -delta_H -36.7345 kJ/mol # Calculated enthalpy of reaction As2O5 # Enthalpy of formation: -924.87 kJ/mol - -analytic -1.4215e+002 -6.3459e-002 4.1222e+003 6.0369e+001 6.4365e+001 + -analytic -1.4215e+2 -6.3459e-2 4.1222e+3 6.0369e+1 6.4365e+1 # -Range: 0-300 As4O6(cubi) - As4O6 +6.0000 H2O = + 4.0000 H+ + 4.0000 H2AsO3- - log_k -39.7636 - -delta_H 169.792 kJ/mol # Calculated enthalpy of reaction As4O6(cubi) + As4O6 + 6 H2O = 4 H+ + 4 H2AsO3- + log_k -39.7636 + -delta_H 169.792 kJ/mol # Calculated enthalpy of reaction As4O6(cubi) # Enthalpy of formation: -1313.94 kJ/mol - -analytic -2.6300e+002 -1.1822e-001 -4.9004e+003 1.1108e+002 -7.6389e+001 + -analytic -2.63e+2 -1.1822e-1 -4.9004e+3 1.1108e+2 -7.6389e+1 # -Range: 0-300 As4O6(mono) - As4O6 +6.0000 H2O = + 4.0000 H+ + 4.0000 H2AsO3- - log_k -40.0375 - -delta_H 165.452 kJ/mol # Calculated enthalpy of reaction As4O6(mono) + As4O6 + 6 H2O = 4 H+ + 4 H2AsO3- + log_k -40.0375 + -delta_H 165.452 kJ/mol # Calculated enthalpy of reaction As4O6(mono) # Enthalpy of formation: -1309.6 kJ/mol - -analytic 9.2518e+000 -3.8823e-002 -1.1985e+004 9.9966e-001 -2.0352e+002 + -analytic 9.2518e+0 -3.8823e-2 -1.1985e+4 9.9966e-1 -2.0352e+2 # -Range: 0-200 Atacamite - Cu4Cl2(OH)6 +6.0000 H+ = + 2.0000 Cl- + 4.0000 Cu++ + 6.0000 H2O - log_k 14.2836 - -delta_H -132.001 kJ/mol # Calculated enthalpy of reaction Atacamite + Cu4Cl2(OH)6 + 6 H+ = 2 Cl- + 4 Cu+2 + 6 H2O + log_k 14.2836 + -delta_H -132.001 kJ/mol # Calculated enthalpy of reaction Atacamite # Enthalpy of formation: -1654.43 kJ/mol - -analytic -2.6623e+002 -4.8121e-002 1.5315e+004 9.8395e+001 2.6016e+002 + -analytic -2.6623e+2 -4.8121e-2 1.5315e+4 9.8395e+1 2.6016e+2 # -Range: 0-200 Au - Au +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Au+ - log_k -7.0864 - -delta_H 59.189 kJ/mol # Calculated enthalpy of reaction Au + Au + H+ + 0.25 O2 = 0.5 H2O + Au+ + log_k -7.0864 + -delta_H 59.189 kJ/mol # Calculated enthalpy of reaction Au # Enthalpy of formation: 0 kcal/mol - -analytic -7.6610e-001 -2.8520e-003 -3.0861e+003 1.9705e+000 -4.8156e+001 + -analytic -7.661e-1 -2.852e-3 -3.0861e+3 1.9705e+0 -4.8156e+1 # -Range: 0-300 Autunite-H - H2(UO2)2(PO4)2 = + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -25.3372 - -delta_H -31.8599 kJ/mol # Calculated enthalpy of reaction Autunite-H + H2(UO2)2(PO4)2 = 2 HPO4-2 + 2 UO2+2 + log_k -25.3372 + -delta_H -31.8599 kJ/mol # Calculated enthalpy of reaction Autunite-H # Enthalpy of formation: -4590.3 kJ/mol - -analytic -3.2179e+001 -3.8038e-002 -6.8629e+002 8.2724e+000 -1.1644e+001 + -analytic -3.2179e+1 -3.8038e-2 -6.8629e+2 8.2724e+0 -1.1644e+1 # -Range: 0-200 Azurite - Cu3(CO3)2(OH)2 +4.0000 H+ = + 2.0000 H2O + 2.0000 HCO3- + 3.0000 Cu++ - log_k 9.1607 - -delta_H -122.298 kJ/mol # Calculated enthalpy of reaction Azurite + Cu3(CO3)2(OH)2 + 4 H+ = 2 H2O + 2 HCO3- + 3 Cu+2 + log_k 9.1607 + -delta_H -122.298 kJ/mol # Calculated enthalpy of reaction Azurite # Enthalpy of formation: -390.1 kcal/mol - -analytic -4.4042e+002 -1.1934e-001 1.8053e+004 1.7158e+002 2.8182e+002 + -analytic -4.4042e+2 -1.1934e-1 1.8053e+4 1.7158e+2 2.8182e+2 # -Range: 0-300 B - B +1.5000 H2O +0.7500 O2 = + 1.0000 B(OH)3 - log_k 109.5654 - -delta_H -636.677 kJ/mol # Calculated enthalpy of reaction B + B + 1.5 H2O + 0.75 O2 = B(OH)3 + log_k 109.5654 + -delta_H -636.677 kJ/mol # Calculated enthalpy of reaction B # Enthalpy of formation: 0 kJ/mol - -analytic 8.0471e+001 1.2577e-003 2.9653e+004 -2.8593e+001 4.6268e+002 + -analytic 8.0471e+1 1.2577e-3 2.9653e+4 -2.8593e+1 4.6268e+2 # -Range: 0-300 B2O3 - B2O3 +3.0000 H2O = + 2.0000 B(OH)3 - log_k 5.5464 - -delta_H -18.0548 kJ/mol # Calculated enthalpy of reaction B2O3 + B2O3 + 3 H2O = 2 B(OH)3 + log_k 5.5464 + -delta_H -18.0548 kJ/mol # Calculated enthalpy of reaction B2O3 # Enthalpy of formation: -1273.5 kJ/mol - -analytic 9.0905e+001 5.5365e-003 -2.6629e+003 -3.1553e+001 -4.1578e+001 + -analytic 9.0905e+1 5.5365e-3 -2.6629e+3 -3.1553e+1 -4.1578e+1 # -Range: 0-300 Ba - Ba +2.0000 H+ +0.5000 O2 = + 1.0000 Ba++ + 1.0000 H2O - log_k 141.2465 - -delta_H -817.416 kJ/mol # Calculated enthalpy of reaction Ba + Ba + 2 H+ + 0.5 O2 = Ba+2 + H2O + log_k 141.2465 + -delta_H -817.416 kJ/mol # Calculated enthalpy of reaction Ba # Enthalpy of formation: 0 kJ/mol - -analytic -2.5033e+001 -1.3917e-002 4.2849e+004 1.0786e+001 6.6863e+002 + -analytic -2.5033e+1 -1.3917e-2 4.2849e+4 1.0786e+1 6.6863e+2 # -Range: 0-300 Ba(OH)2:8H2O - Ba(OH)2:8H2O +2.0000 H+ = + 1.0000 Ba++ + 10.0000 H2O - log_k 24.4911 - -delta_H -55.4363 kJ/mol # Calculated enthalpy of reaction Ba(OH)2:8H2O + Ba(OH)2:8H2O + 2 H+ = Ba+2 + 10 H2O + log_k 24.4911 + -delta_H -55.4363 kJ/mol # Calculated enthalpy of reaction Ba(OH)2:8H2O # Enthalpy of formation: -3340.59 kJ/mol - -analytic -2.3888e+002 -1.5791e-003 1.4097e+004 8.7518e+001 2.3947e+002 + -analytic -2.3888e+2 -1.5791e-3 1.4097e+4 8.7518e+1 2.3947e+2 # -Range: 0-200 Ba2Si3O8 - Ba2Si3O8 +4.0000 H+ = + 2.0000 Ba++ + 2.0000 H2O + 3.0000 SiO2 - log_k 23.3284 - -delta_H -95.3325 kJ/mol # Calculated enthalpy of reaction Ba2Si3O8 + Ba2Si3O8 + 4 H+ = 2 Ba+2 + 2 H2O + 3 SiO2 + log_k 23.3284 + -delta_H -95.3325 kJ/mol # Calculated enthalpy of reaction Ba2Si3O8 # Enthalpy of formation: -4184.73 kJ/mol - -analytic -8.7226e+001 9.3125e-003 2.3147e+004 2.2012e+001 -2.1714e+006 + -analytic -8.7226e+1 9.3125e-3 2.3147e+4 2.2012e+1 -2.1714e+6 # -Range: 0-300 Ba2SiO4 - Ba2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ba++ + 2.0000 H2O - log_k 44.5930 - -delta_H -237.206 kJ/mol # Calculated enthalpy of reaction Ba2SiO4 + Ba2SiO4 + 4 H+ = SiO2 + 2 Ba+2 + 2 H2O + log_k 44.593 + -delta_H -237.206 kJ/mol # Calculated enthalpy of reaction Ba2SiO4 # Enthalpy of formation: -2287.46 kJ/mol - -analytic -7.0350e+000 -5.1744e-003 1.4786e+004 3.1091e+000 -3.6972e+005 + -analytic -7.035e+0 -5.1744e-3 1.4786e+4 3.1091e+0 -3.6972e+5 # -Range: 0-300 Ba2U2O7 - Ba2U2O7 +6.0000 H+ = + 2.0000 Ba++ + 2.0000 UO2+ + 3.0000 H2O - log_k 36.4635 - -delta_H -243.057 kJ/mol # Calculated enthalpy of reaction Ba2U2O7 + Ba2U2O7 + 6 H+ = 2 Ba+2 + 2 UO2+ + 3 H2O + log_k 36.4635 + -delta_H -243.057 kJ/mol # Calculated enthalpy of reaction Ba2U2O7 # Enthalpy of formation: -3740 kJ/mol - -analytic -9.2562e+001 5.3866e-003 1.6852e+004 2.8647e+001 2.8621e+002 + -analytic -9.2562e+1 5.3866e-3 1.6852e+4 2.8647e+1 2.8621e+2 # -Range: 0-200 Ba3UO6 - Ba3UO6 +8.0000 H+ = + 1.0000 UO2++ + 3.0000 Ba++ + 4.0000 H2O - log_k 94.3709 - -delta_H -564.885 kJ/mol # Calculated enthalpy of reaction Ba3UO6 + Ba3UO6 + 8 H+ = UO2+2 + 3 Ba+2 + 4 H2O + log_k 94.3709 + -delta_H -564.885 kJ/mol # Calculated enthalpy of reaction Ba3UO6 # Enthalpy of formation: -3210.4 kJ/mol - -analytic -1.3001e+002 -1.7395e-002 3.3977e+004 4.6715e+001 5.7703e+002 + -analytic -1.3001e+2 -1.7395e-2 3.3977e+4 4.6715e+1 5.7703e+2 # -Range: 0-200 BaBr2 - BaBr2 = + 1.0000 Ba++ + 2.0000 Br- - log_k 5.6226 - -delta_H -23.3887 kJ/mol # Calculated enthalpy of reaction BaBr2 + BaBr2 = Ba+2 + 2 Br- + log_k 5.6226 + -delta_H -23.3887 kJ/mol # Calculated enthalpy of reaction BaBr2 # Enthalpy of formation: -757.262 kJ/mol - -analytic -1.7689e+002 -7.1918e-002 4.7187e+003 7.6010e+001 7.3683e+001 + -analytic -1.7689e+2 -7.1918e-2 4.7187e+3 7.601e+1 7.3683e+1 # -Range: 0-300 BaBr2:2H2O - BaBr2:2H2O = + 1.0000 Ba++ + 2.0000 Br- + 2.0000 H2O - log_k 2.2523 - -delta_H 13.7736 kJ/mol # Calculated enthalpy of reaction BaBr2:2H2O + BaBr2:2H2O = Ba+2 + 2 Br- + 2 H2O + log_k 2.2523 + -delta_H 13.7736 kJ/mol # Calculated enthalpy of reaction BaBr2:2H2O # Enthalpy of formation: -1366.1 kJ/mol - -analytic -1.5506e+001 -1.6281e-002 -8.5727e+002 1.0296e+001 -1.4552e+001 + -analytic -1.5506e+1 -1.6281e-2 -8.5727e+2 1.0296e+1 -1.4552e+1 # -Range: 0-200 BaCl2 - BaCl2 = + 1.0000 Ba++ + 2.0000 Cl- - log_k 2.2707 - -delta_H -13.1563 kJ/mol # Calculated enthalpy of reaction BaCl2 + BaCl2 = Ba+2 + 2 Cl- + log_k 2.2707 + -delta_H -13.1563 kJ/mol # Calculated enthalpy of reaction BaCl2 # Enthalpy of formation: -858.647 kJ/mol - -analytic -2.0393e+002 -7.8925e-002 4.8846e+003 8.6204e+001 7.6280e+001 + -analytic -2.0393e+2 -7.8925e-2 4.8846e+3 8.6204e+1 7.628e+1 # -Range: 0-300 BaCl2:2H2O - BaCl2:2H2O = + 1.0000 Ba++ + 2.0000 Cl- + 2.0000 H2O - log_k 0.2459 - -delta_H 16.558 kJ/mol # Calculated enthalpy of reaction BaCl2:2H2O + BaCl2:2H2O = Ba+2 + 2 Cl- + 2 H2O + log_k 0.2459 + -delta_H 16.558 kJ/mol # Calculated enthalpy of reaction BaCl2:2H2O # Enthalpy of formation: -1460.04 kJ/mol - -analytic -2.0350e+002 -7.3577e-002 3.7914e+003 8.6051e+001 5.9221e+001 + -analytic -2.035e+2 -7.3577e-2 3.7914e+3 8.6051e+1 5.9221e+1 # -Range: 0-300 BaCl2:H2O - BaCl2:H2O = + 1.0000 Ba++ + 1.0000 H2O + 2.0000 Cl- - log_k 0.8606 - -delta_H 2.89433 kJ/mol # Calculated enthalpy of reaction BaCl2:H2O + BaCl2:H2O = Ba+2 + H2O + 2 Cl- + log_k 0.8606 + -delta_H 2.89433 kJ/mol # Calculated enthalpy of reaction BaCl2:H2O # Enthalpy of formation: -1160.54 kJ/mol - -analytic -1.9572e+002 -7.3938e-002 4.0553e+003 8.2842e+001 6.3336e+001 + -analytic -1.9572e+2 -7.3938e-2 4.0553e+3 8.2842e+1 6.3336e+1 # -Range: 0-300 BaCrO4 - BaCrO4 = + 1.0000 Ba++ + 1.0000 CrO4-- - log_k -9.9322 - -delta_H 25.9115 kJ/mol # Calculated enthalpy of reaction BaCrO4 + BaCrO4 = Ba+2 + CrO4-2 + log_k -9.9322 + -delta_H 25.9115 kJ/mol # Calculated enthalpy of reaction BaCrO4 # Enthalpy of formation: -345.293 kcal/mol - -analytic 2.3142e+001 -1.6617e-002 -3.6883e+003 -6.3687e+000 -6.2640e+001 + -analytic 2.3142e+1 -1.6617e-2 -3.6883e+3 -6.3687e+0 -6.264e+1 # -Range: 0-200 BaHPO4 - BaHPO4 = + 1.0000 Ba++ + 1.0000 HPO4-- - log_k -7.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaHPO4 + BaHPO4 = Ba+2 + HPO4-2 + log_k -7.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaHPO4 # Enthalpy of formation: 0 kcal/mol BaI2 - BaI2 = + 1.0000 Ba++ + 2.0000 I- - log_k 11.0759 - -delta_H -46.0408 kJ/mol # Calculated enthalpy of reaction BaI2 + BaI2 = Ba+2 + 2 I- + log_k 11.0759 + -delta_H -46.0408 kJ/mol # Calculated enthalpy of reaction BaI2 # Enthalpy of formation: -605.408 kJ/mol - -analytic -1.7511e+002 -7.2206e-002 5.8696e+003 7.5974e+001 9.1641e+001 + -analytic -1.7511e+2 -7.2206e-2 5.8696e+3 7.5974e+1 9.1641e+1 # -Range: 0-300 BaMnO4 - BaMnO4 = + 1.0000 Ba++ + 1.0000 MnO4-- - log_k -10.0900 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaMnO4 + BaMnO4 = Ba+2 + MnO4-2 + log_k -10.09 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaMnO4 # Enthalpy of formation: 0 kcal/mol BaO - BaO +2.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O - log_k 47.8036 - -delta_H -270.184 kJ/mol # Calculated enthalpy of reaction BaO + BaO + 2 H+ = Ba+2 + H2O + log_k 47.8036 + -delta_H -270.184 kJ/mol # Calculated enthalpy of reaction BaO # Enthalpy of formation: -553.298 kJ/mol - -analytic -7.3273e+001 -1.7149e-002 1.6811e+004 2.8560e+001 -7.7510e+004 + -analytic -7.3273e+1 -1.7149e-2 1.6811e+4 2.856e+1 -7.751e+4 # -Range: 0-300 BaS - BaS +1.0000 H+ = + 1.0000 Ba++ + 1.0000 HS- - log_k 16.2606 - -delta_H -92.9004 kJ/mol # Calculated enthalpy of reaction BaS + BaS + H+ = Ba+2 + HS- + log_k 16.2606 + -delta_H -92.9004 kJ/mol # Calculated enthalpy of reaction BaS # Enthalpy of formation: -460.852 kJ/mol - -analytic -1.1819e+002 -4.3420e-002 7.4296e+003 4.9489e+001 1.1597e+002 + -analytic -1.1819e+2 -4.342e-2 7.4296e+3 4.9489e+1 1.1597e+2 # -Range: 0-300 BaSeO3 - BaSeO3 = + 1.0000 Ba++ + 1.0000 SeO3-- - log_k -6.5615 - -delta_H -5.5658 kJ/mol # Calculated enthalpy of reaction BaSeO3 + BaSeO3 = Ba+2 + SeO3-2 + log_k -6.5615 + -delta_H -5.5658 kJ/mol # Calculated enthalpy of reaction BaSeO3 # Enthalpy of formation: -1041.27 kJ/mol - -analytic 2.9742e+001 -1.7073e-002 -2.4532e+003 -9.2936e+000 -4.1669e+001 + -analytic 2.9742e+1 -1.7073e-2 -2.4532e+3 -9.2936e+0 -4.1669e+1 # -Range: 0-200 BaSeO4 - BaSeO4 = + 1.0000 Ba++ + 1.0000 SeO4-- - log_k -7.4468 - -delta_H 8.9782 kJ/mol # Calculated enthalpy of reaction BaSeO4 + BaSeO4 = Ba+2 + SeO4-2 + log_k -7.4468 + -delta_H 8.9782 kJ/mol # Calculated enthalpy of reaction BaSeO4 # Enthalpy of formation: -1145.77 kJ/mol - -analytic 2.4274e+001 -1.6289e-002 -2.8520e+003 -6.9949e+000 -4.8439e+001 + -analytic 2.4274e+1 -1.6289e-2 -2.852e+3 -6.9949e+0 -4.8439e+1 # -Range: 0-200 BaSiF6 - BaSiF6 +2.0000 H2O = + 1.0000 Ba++ + 1.0000 SiO2 + 4.0000 H+ + 6.0000 F- - log_k -32.1771 - -delta_H 95.2555 kJ/mol # Calculated enthalpy of reaction BaSiF6 + BaSiF6 + 2 H2O = Ba+2 + SiO2 + 4 H+ + 6 F- + log_k -32.1771 + -delta_H 95.2555 kJ/mol # Calculated enthalpy of reaction BaSiF6 # Enthalpy of formation: -2951.01 kJ/mol - -analytic -6.4766e+000 -3.8410e-002 0.0000e+000 0.0000e+000 -1.2701e+006 + -analytic -6.4766e+0 -3.841e-2 0e+0 0e+0 -1.2701e+6 # -Range: 0-200 BaU2O7 - BaU2O7 +6.0000 H+ = + 1.0000 Ba++ + 2.0000 UO2++ + 3.0000 H2O - log_k 21.9576 - -delta_H -195.959 kJ/mol # Calculated enthalpy of reaction BaU2O7 + BaU2O7 + 6 H+ = Ba+2 + 2 UO2+2 + 3 H2O + log_k 21.9576 + -delta_H -195.959 kJ/mol # Calculated enthalpy of reaction BaU2O7 # Enthalpy of formation: -3237.2 kJ/mol - -analytic -1.2254e+002 -1.0941e-002 1.4452e+004 4.0125e+001 2.4546e+002 + -analytic -1.2254e+2 -1.0941e-2 1.4452e+4 4.0125e+1 2.4546e+2 # -Range: 0-200 BaUO4 - BaUO4 +4.0000 H+ = + 1.0000 Ba++ + 1.0000 UO2++ + 2.0000 H2O - log_k 18.2007 - -delta_H -134.521 kJ/mol # Calculated enthalpy of reaction BaUO4 + BaUO4 + 4 H+ = Ba+2 + UO2+2 + 2 H2O + log_k 18.2007 + -delta_H -134.521 kJ/mol # Calculated enthalpy of reaction BaUO4 # Enthalpy of formation: -1993.8 kJ/mol - -analytic -6.7113e+001 -1.6340e-002 8.7592e+003 2.4571e+001 1.3670e+002 + -analytic -6.7113e+1 -1.634e-2 8.7592e+3 2.4571e+1 1.367e+2 # -Range: 0-300 BaZrO3 - BaZrO3 +4.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O + 1.0000 Zr(OH)2++ - log_k -94.4716 - -delta_H 505.159 kJ/mol # Calculated enthalpy of reaction BaZrO3 + BaZrO3 + 4 H+ = Ba+2 + H2O + Zr(OH)2+2 + log_k -94.4716 + -delta_H 505.159 kJ/mol # Calculated enthalpy of reaction BaZrO3 # Enthalpy of formation: -578.27 kcal/mol - -analytic -5.3606e+001 -1.0096e-002 -2.4894e+004 1.8446e+001 -4.2271e+002 + -analytic -5.3606e+1 -1.0096e-2 -2.4894e+4 1.8446e+1 -4.2271e+2 # -Range: 0-200 Baddeleyite - ZrO2 +2.0000 H+ = + 1.0000 Zr(OH)2++ - log_k -7.9405 - -delta_H 9.72007 kJ/mol # Calculated enthalpy of reaction Baddeleyite + ZrO2 + 2 H+ = Zr(OH)2+2 + log_k -7.9405 + -delta_H 9.72007 kJ/mol # Calculated enthalpy of reaction Baddeleyite # Enthalpy of formation: -1100.56 kJ/mol - -analytic -2.5188e-001 -4.6374e-003 -1.0635e+003 -1.1055e+000 -1.6595e+001 + -analytic -2.5188e-1 -4.6374e-3 -1.0635e+3 -1.1055e+0 -1.6595e+1 # -Range: 0-300 Barite - BaSO4 = + 1.0000 Ba++ + 1.0000 SO4-- - log_k -9.9711 - -delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite + BaSO4 = Ba+2 + SO4-2 + log_k -9.9711 + -delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite # Enthalpy of formation: -352.1 kcal/mol - -analytic -1.8747e+002 -7.5521e-002 2.0790e+003 7.7998e+001 3.2497e+001 + -analytic -1.8747e+2 -7.5521e-2 2.079e+3 7.7998e+1 3.2497e+1 # -Range: 0-300 Barytocalcite - BaCa(CO3)2 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 Ca++ + 2.0000 HCO3- - log_k 2.7420 - -delta_H 0 # Not possible to calculate enthalpy of reaction Barytocalcite + BaCa(CO3)2 + 2 H+ = Ba+2 + Ca+2 + 2 HCO3- + log_k 2.742 + -delta_H 0 # Not possible to calculate enthalpy of reaction Barytocalcite # Enthalpy of formation: 0 kcal/mol Bassanite - CaSO4:0.5H2O = + 0.5000 H2O + 1.0000 Ca++ + 1.0000 SO4-- - log_k -3.6615 - -delta_H -18.711 kJ/mol # Calculated enthalpy of reaction Bassanite + CaSO4:0.5H2O = 0.5 H2O + Ca+2 + SO4-2 + log_k -3.6615 + -delta_H -18.711 kJ/mol # Calculated enthalpy of reaction Bassanite # Enthalpy of formation: -1576.89 kJ/mol - -analytic -2.2010e+002 -8.0230e-002 5.5092e+003 8.9651e+001 8.6031e+001 + -analytic -2.201e+2 -8.023e-2 5.5092e+3 8.9651e+1 8.6031e+1 # -Range: 0-300 Bassetite - Fe(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Fe++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -17.7240 - -delta_H -114.841 kJ/mol # Calculated enthalpy of reaction Bassetite + Fe(UO2)2(PO4)2 + 2 H+ = Fe+2 + 2 HPO4-2 + 2 UO2+2 + log_k -17.724 + -delta_H -114.841 kJ/mol # Calculated enthalpy of reaction Bassetite # Enthalpy of formation: -1099.33 kcal/mol - -analytic -5.7788e+001 -4.5400e-002 4.0119e+003 1.6216e+001 6.8147e+001 + -analytic -5.7788e+1 -4.54e-2 4.0119e+3 1.6216e+1 6.8147e+1 # -Range: 0-200 Be - Be +2.0000 H+ +0.5000 O2 = + 1.0000 Be++ + 1.0000 H2O - log_k 104.2077 - -delta_H -662.608 kJ/mol # Calculated enthalpy of reaction Be + Be + 2 H+ + 0.5 O2 = Be+2 + H2O + log_k 104.2077 + -delta_H -662.608 kJ/mol # Calculated enthalpy of reaction Be # Enthalpy of formation: 0 kJ/mol - -analytic -9.3960e+001 -2.4749e-002 3.6714e+004 3.3295e+001 5.7291e+002 + -analytic -9.396e+1 -2.4749e-2 3.6714e+4 3.3295e+1 5.7291e+2 # -Range: 0-300 Be13U - Be13U +30.0000 H+ +7.5000 O2 = + 1.0000 U++++ + 13.0000 Be++ + 15.0000 H2O - log_k 1504.5350 - -delta_H -9601.04 kJ/mol # Calculated enthalpy of reaction Be13U + Be13U + 30 H+ + 7.5 O2 = U+4 + 13 Be+2 + 15 H2O + log_k 1504.535 + -delta_H -9601.04 kJ/mol # Calculated enthalpy of reaction Be13U # Enthalpy of formation: -163.6 kJ/mol - -analytic -1.2388e+003 -3.2848e-001 5.2816e+005 4.3222e+002 8.2419e+003 + -analytic -1.2388e+3 -3.2848e-1 5.2816e+5 4.3222e+2 8.2419e+3 # -Range: 0-300 Beidellite-Ca - Ca.165Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Ca++ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.5914 - -delta_H -162.403 kJ/mol # Calculated enthalpy of reaction Beidellite-Ca + Ca.165Al2.33Si3.67O10(OH)2 + 7.32 H+ = 0.165 Ca+2 + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O + log_k 5.5914 + -delta_H -162.403 kJ/mol # Calculated enthalpy of reaction Beidellite-Ca # Enthalpy of formation: -1370.66 kcal/mol - -analytic 2.3887e+001 4.4178e-003 1.5296e+004 -2.2343e+001 -1.4025e+006 + -analytic 2.3887e+1 4.4178e-3 1.5296e+4 -2.2343e+1 -1.4025e+6 # -Range: 0-300 Beidellite-Cs - Cs.33Si3.67Al2.33O10(OH)2 +7.3200 H+ = + 0.3300 Cs+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.1541 - -delta_H -149.851 kJ/mol # Calculated enthalpy of reaction Beidellite-Cs + Cs.33Si3.67Al2.33O10(OH)2 + 7.32 H+ = 0.33 Cs+ + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O + log_k 5.1541 + -delta_H -149.851 kJ/mol # Calculated enthalpy of reaction Beidellite-Cs # Enthalpy of formation: -1372.59 kcal/mol - -analytic 2.1244e+001 2.1705e-003 1.4504e+004 -2.0250e+001 -1.3712e+006 + -analytic 2.1244e+1 2.1705e-3 1.4504e+4 -2.025e+1 -1.3712e+6 # -Range: 0-300 Beidellite-H - H.33Al2.33Si3.67O10(OH)2 +6.9900 H+ = + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 4.6335 - -delta_H -154.65 kJ/mol # Calculated enthalpy of reaction Beidellite-H + H.33Al2.33Si3.67O10(OH)2 + 6.99 H+ = 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O + log_k 4.6335 + -delta_H -154.65 kJ/mol # Calculated enthalpy of reaction Beidellite-H # Enthalpy of formation: -1351.1 kcal/mol - -analytic 5.4070e+000 3.4064e-003 1.6284e+004 -1.6028e+001 -1.5014e+006 + -analytic 5.407e+0 3.4064e-3 1.6284e+4 -1.6028e+1 -1.5014e+6 # -Range: 0-300 Beidellite-K - K.33Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 K+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.3088 - -delta_H -150.834 kJ/mol # Calculated enthalpy of reaction Beidellite-K + K.33Al2.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 K+ + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O + log_k 5.3088 + -delta_H -150.834 kJ/mol # Calculated enthalpy of reaction Beidellite-K # Enthalpy of formation: -1371.9 kcal/mol - -analytic 1.0792e+001 3.4419e-003 1.5760e+004 -1.7333e+001 -1.4779e+006 + -analytic 1.0792e+1 3.4419e-3 1.576e+4 -1.7333e+1 -1.4779e+6 # -Range: 0-300 Beidellite-Mg - Mg.165Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Mg++ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.5537 - -delta_H -165.455 kJ/mol # Calculated enthalpy of reaction Beidellite-Mg + Mg.165Al2.33Si3.67O10(OH)2 + 7.32 H+ = 0.165 Mg+2 + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O + log_k 5.5537 + -delta_H -165.455 kJ/mol # Calculated enthalpy of reaction Beidellite-Mg # Enthalpy of formation: -1366.89 kcal/mol - -analytic 1.3375e+001 3.0420e-003 1.5947e+004 -1.8728e+001 -1.4242e+006 + -analytic 1.3375e+1 3.042e-3 1.5947e+4 -1.8728e+1 -1.4242e+6 # -Range: 0-300 Beidellite-Na - Na.33Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Na+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.6473 - -delta_H -155.846 kJ/mol # Calculated enthalpy of reaction Beidellite-Na + Na.33Al2.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 Na+ + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O + log_k 5.6473 + -delta_H -155.846 kJ/mol # Calculated enthalpy of reaction Beidellite-Na # Enthalpy of formation: -1369.76 kcal/mol - -analytic 1.1504e+001 3.9871e-003 1.5818e+004 -1.7762e+001 -1.4485e+006 + -analytic 1.1504e+1 3.9871e-3 1.5818e+4 -1.7762e+1 -1.4485e+6 # -Range: 0-300 Berlinite - AlPO4 +1.0000 H+ = + 1.0000 Al+++ + 1.0000 HPO4-- - log_k -7.2087 - -delta_H -96.6313 kJ/mol # Calculated enthalpy of reaction Berlinite + AlPO4 + H+ = Al+3 + HPO4-2 + log_k -7.2087 + -delta_H -96.6313 kJ/mol # Calculated enthalpy of reaction Berlinite # Enthalpy of formation: -1733.85 kJ/mol - -analytic -2.8134e+002 -9.9933e-002 1.0308e+004 1.0883e+002 1.6094e+002 + -analytic -2.8134e+2 -9.9933e-2 1.0308e+4 1.0883e+2 1.6094e+2 # -Range: 0-300 Berndtite - SnS2 = + 1.0000 S2-- + 1.0000 Sn++ - log_k -34.5393 - -delta_H 0 # Not possible to calculate enthalpy of reaction Berndtite + SnS2 = S2-2 + Sn+2 + log_k -34.5393 + -delta_H 0 # Not possible to calculate enthalpy of reaction Berndtite # Enthalpy of formation: -36.7 kcal/mol - -analytic -2.0311e+002 -7.6462e-002 -4.9879e+003 8.4082e+001 -7.7772e+001 + -analytic -2.0311e+2 -7.6462e-2 -4.9879e+3 8.4082e+1 -7.7772e+1 # -Range: 0-300 Bieberite - CoSO4:7H2O = + 1.0000 Co++ + 1.0000 SO4-- + 7.0000 H2O - log_k -2.5051 - -delta_H 11.3885 kJ/mol # Calculated enthalpy of reaction Bieberite + CoSO4:7H2O = Co+2 + SO4-2 + 7 H2O + log_k -2.5051 + -delta_H 11.3885 kJ/mol # Calculated enthalpy of reaction Bieberite # Enthalpy of formation: -2980.02 kJ/mol - -analytic -2.6405e+002 -7.2497e-002 6.6673e+003 1.0538e+002 1.0411e+002 + -analytic -2.6405e+2 -7.2497e-2 6.6673e+3 1.0538e+2 1.0411e+2 # -Range: 0-300 Birnessite - Mn8O14:5H2O +4.0000 H+ = + 3.0000 MnO4-- + 5.0000 Mn++ + 7.0000 H2O - log_k -85.5463 - -delta_H 0 # Not possible to calculate enthalpy of reaction Birnessite + Mn8O14:5H2O + 4 H+ = 3 MnO4-2 + 5 Mn+2 + 7 H2O + log_k -85.5463 + -delta_H 0 # Not possible to calculate enthalpy of reaction Birnessite # Enthalpy of formation: 0 kcal/mol Bischofite - MgCl2:6H2O = + 1.0000 Mg++ + 2.0000 Cl- + 6.0000 H2O - log_k 4.3923 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bischofite + MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O + log_k 4.3923 + -delta_H 0 # Not possible to calculate enthalpy of reaction Bischofite # Enthalpy of formation: 0 kcal/mol Bixbyite - Mn2O3 +6.0000 H+ = + 2.0000 Mn+++ + 3.0000 H2O - log_k -0.9655 - -delta_H -190.545 kJ/mol # Calculated enthalpy of reaction Bixbyite + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.9655 + -delta_H -190.545 kJ/mol # Calculated enthalpy of reaction Bixbyite # Enthalpy of formation: -958.971 kJ/mol - -analytic -1.1600e+002 -2.8056e-003 1.3418e+004 2.8639e+001 2.0941e+002 + -analytic -1.16e+2 -2.8056e-3 1.3418e+4 2.8639e+1 2.0941e+2 # -Range: 0-300 Bloedite - Na2Mg(SO4)2:4H2O = + 1.0000 Mg++ + 2.0000 Na+ + 2.0000 SO4-- + 4.0000 H2O - log_k -2.4777 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite + Na2Mg(SO4)2:4H2O = Mg+2 + 2 Na+ + 2 SO4-2 + 4 H2O + log_k -2.4777 + -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite # Enthalpy of formation: 0 kcal/mol Boehmite - AlO2H +3.0000 H+ = + 1.0000 Al+++ + 2.0000 H2O - log_k 7.5642 - -delta_H -113.282 kJ/mol # Calculated enthalpy of reaction Boehmite + AlO2H + 3 H+ = Al+3 + 2 H2O + log_k 7.5642 + -delta_H -113.282 kJ/mol # Calculated enthalpy of reaction Boehmite # Enthalpy of formation: -238.24 kcal/mol - -analytic -1.2196e+002 -3.1138e-002 8.8643e+003 4.4075e+001 1.3835e+002 + -analytic -1.2196e+2 -3.1138e-2 8.8643e+3 4.4075e+1 1.3835e+2 # -Range: 0-300 Boltwoodite - K(H3O)(UO2)SiO4 +3.0000 H+ = + 1.0000 K+ + 1.0000 SiO2 + 1.0000 UO2++ + 3.0000 H2O - log_k 14.8857 - -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite + K(H3O)(UO2)SiO4 + 3 H+ = K+ + SiO2 + UO2+2 + 3 H2O + log_k 14.8857 + -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite # Enthalpy of formation: 0 kcal/mol Boltwoodite-Na - Na.7K.3(H3O)(UO2)SiO4:H2O +3.0000 H+ = + 0.3000 K+ + 0.7000 Na+ + 1.0000 SiO2 + 1.0000 UO2++ + 4.0000 H2O - log_k 14.5834 - -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite-Na + Na.7K.3(H3O)(UO2)SiO4:H2O + 3 H+ = 0.3 K+ + 0.7 Na+ + SiO2 + UO2+2 + 4 H2O + log_k 14.5834 + -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite-Na # Enthalpy of formation: 0 kcal/mol Borax - Na2(B4O5(OH)4):8H2O +2.0000 H+ = + 2.0000 Na+ + 4.0000 B(OH)3 + 5.0000 H2O - log_k 12.0395 - -delta_H 80.5145 kJ/mol # Calculated enthalpy of reaction Borax + Na2(B4O5(OH)4):8H2O + 2 H+ = 2 Na+ + 4 B(OH)3 + 5 H2O + log_k 12.0395 + -delta_H 80.5145 kJ/mol # Calculated enthalpy of reaction Borax # Enthalpy of formation: -6288.44 kJ/mol - -analytic 7.8374e+001 1.9328e-002 -5.3279e+003 -2.1914e+001 -8.3160e+001 + -analytic 7.8374e+1 1.9328e-2 -5.3279e+3 -2.1914e+1 -8.316e+1 # -Range: 0-300 Boric_acid - B(OH)3 = + 1.0000 B(OH)3 - log_k -0.1583 - -delta_H 20.2651 kJ/mol # Calculated enthalpy of reaction Boric_acid + B(OH)3 = B(OH)3 + log_k -0.1583 + -delta_H 20.2651 kJ/mol # Calculated enthalpy of reaction Boric_acid # Enthalpy of formation: -1094.8 kJ/mol - -analytic 3.9122e+001 6.4058e-003 -2.2525e+003 -1.3592e+001 -3.5160e+001 + -analytic 3.9122e+1 6.4058e-3 -2.2525e+3 -1.3592e+1 -3.516e+1 # -Range: 0-300 Bornite - Cu5FeS4 +4.0000 H+ = + 1.0000 Cu++ + 1.0000 Fe++ + 4.0000 Cu+ + 4.0000 HS- - log_k -102.4369 - -delta_H 530.113 kJ/mol # Calculated enthalpy of reaction Bornite + Cu5FeS4 + 4 H+ = Cu+2 + Fe+2 + 4 Cu+ + 4 HS- + log_k -102.4369 + -delta_H 530.113 kJ/mol # Calculated enthalpy of reaction Bornite # Enthalpy of formation: -79.922 kcal/mol - -analytic -7.0495e+002 -2.0082e-001 -9.1376e+003 2.8004e+002 -1.4238e+002 + -analytic -7.0495e+2 -2.0082e-1 -9.1376e+3 2.8004e+2 -1.4238e+2 # -Range: 0-300 Brezinaite - Cr3S4 +4.0000 H+ = + 1.0000 Cr++ + 2.0000 Cr+++ + 4.0000 HS- - log_k 2.7883 - -delta_H -216.731 kJ/mol # Calculated enthalpy of reaction Brezinaite + Cr3S4 + 4 H+ = Cr+2 + 2 Cr+3 + 4 HS- + log_k 2.7883 + -delta_H -216.731 kJ/mol # Calculated enthalpy of reaction Brezinaite # Enthalpy of formation: -111.9 kcal/mol - -analytic -7.0528e+001 -3.6568e-002 1.0598e+004 1.9665e+001 1.8000e+002 + -analytic -7.0528e+1 -3.6568e-2 1.0598e+4 1.9665e+1 1.8e+2 # -Range: 0-200 Brochantite - Cu4(SO4)(OH)6 +6.0000 H+ = + 1.0000 SO4-- + 4.0000 Cu++ + 6.0000 H2O - log_k 15.4363 - -delta_H -163.158 kJ/mol # Calculated enthalpy of reaction Brochantite + Cu4(SO4)(OH)6 + 6 H+ = SO4-2 + 4 Cu+2 + 6 H2O + log_k 15.4363 + -delta_H -163.158 kJ/mol # Calculated enthalpy of reaction Brochantite # Enthalpy of formation: -2198.72 kJ/mol - -analytic -2.3609e+002 -3.9046e-002 1.5970e+004 8.4701e+001 2.7127e+002 + -analytic -2.3609e+2 -3.9046e-2 1.597e+4 8.4701e+1 2.7127e+2 # -Range: 0-200 Bromellite - BeO +2.0000 H+ = + 1.0000 Be++ + 1.0000 H2O - log_k 1.1309 - -delta_H -59.2743 kJ/mol # Calculated enthalpy of reaction Bromellite + BeO + 2 H+ = Be+2 + H2O + log_k 1.1309 + -delta_H -59.2743 kJ/mol # Calculated enthalpy of reaction Bromellite # Enthalpy of formation: -609.4 kJ/mol - -analytic 1.4790e+002 -4.6004e-001 -3.2577e+004 4.0273e+001 -5.0837e+002 + -analytic 1.479e+2 -4.6004e-1 -3.2577e+4 4.0273e+1 -5.0837e+2 # -Range: 0-300 Brucite - Mg(OH)2 +2.0000 H+ = + 1.0000 Mg++ + 2.0000 H2O - log_k 16.2980 - -delta_H -111.34 kJ/mol # Calculated enthalpy of reaction Brucite + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.298 + -delta_H -111.34 kJ/mol # Calculated enthalpy of reaction Brucite # Enthalpy of formation: -221.39 kcal/mol - -analytic -1.0280e+002 -1.9759e-002 9.0180e+003 3.8282e+001 1.4075e+002 + -analytic -1.028e+2 -1.9759e-2 9.018e+3 3.8282e+1 1.4075e+2 # -Range: 0-300 Brushite - CaHPO4:2H2O = + 1.0000 Ca++ + 1.0000 HPO4-- + 2.0000 H2O - log_k 6.5500 - -delta_H 0 # Not possible to calculate enthalpy of reaction Brushite + CaHPO4:2H2O = Ca+2 + HPO4-2 + 2 H2O + log_k 6.55 + -delta_H 0 # Not possible to calculate enthalpy of reaction Brushite # Enthalpy of formation: 0 kcal/mol Bunsenite - NiO +2.0000 H+ = + 1.0000 H2O + 1.0000 Ni++ - log_k 12.4719 - -delta_H -100.069 kJ/mol # Calculated enthalpy of reaction Bunsenite + NiO + 2 H+ = H2O + Ni+2 + log_k 12.4719 + -delta_H -100.069 kJ/mol # Calculated enthalpy of reaction Bunsenite # Enthalpy of formation: -57.3 kcal/mol - -analytic -8.1664e+001 -1.9796e-002 7.4064e+003 3.0385e+001 1.1559e+002 + -analytic -8.1664e+1 -1.9796e-2 7.4064e+3 3.0385e+1 1.1559e+2 # -Range: 0-300 Burkeite - Na6CO3(SO4)2 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 SO4-- + 6.0000 Na+ - log_k 9.4866 - -delta_H 0 # Not possible to calculate enthalpy of reaction Burkeite + Na6CO3(SO4)2 + H+ = HCO3- + 2 SO4-2 + 6 Na+ + log_k 9.4866 + -delta_H 0 # Not possible to calculate enthalpy of reaction Burkeite # Enthalpy of formation: 0 kcal/mol C - C +1.0000 H2O +1.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- - log_k 64.1735 - -delta_H -391.961 kJ/mol # Calculated enthalpy of reaction C + C + H2O + O2 = H+ + HCO3- + log_k 64.1735 + -delta_H -391.961 kJ/mol # Calculated enthalpy of reaction C # Enthalpy of formation: 0 kcal/mol - -analytic -3.5556e+001 -3.3691e-002 1.9774e+004 1.7548e+001 3.0856e+002 + -analytic -3.5556e+1 -3.3691e-2 1.9774e+4 1.7548e+1 3.0856e+2 # -Range: 0-300 Ca - Ca +2.0000 H+ +0.5000 O2 = + 1.0000 Ca++ + 1.0000 H2O - log_k 139.8465 - -delta_H -822.855 kJ/mol # Calculated enthalpy of reaction Ca + Ca + 2 H+ + 0.5 O2 = Ca+2 + H2O + log_k 139.8465 + -delta_H -822.855 kJ/mol # Calculated enthalpy of reaction Ca # Enthalpy of formation: 0 kJ/mol - -analytic -1.1328e+002 -2.6554e-002 4.7638e+004 4.1989e+001 -2.3545e+005 + -analytic -1.1328e+2 -2.6554e-2 4.7638e+4 4.1989e+1 -2.3545e+5 # -Range: 0-300 Ca-Al_Pyroxene - CaAl2SiO6 +8.0000 H+ = + 1.0000 Ca++ + 1.0000 SiO2 + 2.0000 Al+++ + 4.0000 H2O - log_k 35.9759 - -delta_H -361.548 kJ/mol # Calculated enthalpy of reaction Ca-Al_Pyroxene + CaAl2SiO6 + 8 H+ = Ca+2 + SiO2 + 2 Al+3 + 4 H2O + log_k 35.9759 + -delta_H -361.548 kJ/mol # Calculated enthalpy of reaction Ca-Al_Pyroxene # Enthalpy of formation: -783.793 kcal/mol - -analytic -1.4664e+002 -5.0409e-002 2.1045e+004 5.1318e+001 3.2843e+002 + -analytic -1.4664e+2 -5.0409e-2 2.1045e+4 5.1318e+1 3.2843e+2 # -Range: 0-300 Ca2Al2O5:8H2O - Ca2Al2O5:8H2O +10.0000 H+ = + 2.0000 Al+++ + 2.0000 Ca++ + 13.0000 H2O - log_k 59.5687 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Al2O5:8H2O + Ca2Al2O5:8H2O + 10 H+ = 2 Al+3 + 2 Ca+2 + 13 H2O + log_k 59.5687 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Al2O5:8H2O # Enthalpy of formation: 0 kcal/mol Ca2Cl2(OH)2:H2O - Ca2Cl2(OH)2:H2O +2.0000 H+ = + 2.0000 Ca++ + 2.0000 Cl- + 3.0000 H2O - log_k 26.2901 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Cl2(OH)2:H2O + Ca2Cl2(OH)2:H2O + 2 H+ = 2 Ca+2 + 2 Cl- + 3 H2O + log_k 26.2901 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Cl2(OH)2:H2O # Enthalpy of formation: 0 kcal/mol Ca2V2O7 - Ca2V2O7 +1.0000 H2O = + 2.0000 Ca++ + 2.0000 H+ + 2.0000 VO4--- - log_k -39.7129 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2V2O7 + Ca2V2O7 + H2O = 2 Ca+2 + 2 H+ + 2 VO4-3 + log_k -39.7129 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2V2O7 # Enthalpy of formation: -3083.46 kJ/mol Ca3(AsO4)2 - Ca3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Ca++ - log_k 17.8160 - -delta_H -149.956 kJ/mol # Calculated enthalpy of reaction Ca3(AsO4)2 + Ca3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Ca+2 + log_k 17.816 + -delta_H -149.956 kJ/mol # Calculated enthalpy of reaction Ca3(AsO4)2 # Enthalpy of formation: -3298.41 kJ/mol - -analytic -1.4011e+002 -4.2945e-002 1.0981e+004 5.4107e+001 1.8652e+002 + -analytic -1.4011e+2 -4.2945e-2 1.0981e+4 5.4107e+1 1.8652e+2 # -Range: 0-200 Ca3Al2O6 - Ca3Al2O6 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 6.0000 H2O - log_k 113.0460 - -delta_H -833.336 kJ/mol # Calculated enthalpy of reaction Ca3Al2O6 + Ca3Al2O6 + 12 H+ = 2 Al+3 + 3 Ca+2 + 6 H2O + log_k 113.046 + -delta_H -833.336 kJ/mol # Calculated enthalpy of reaction Ca3Al2O6 # Enthalpy of formation: -857.492 kcal/mol - -analytic -2.7163e+002 -5.2897e-002 5.0815e+004 9.2946e+001 8.6300e+002 + -analytic -2.7163e+2 -5.2897e-2 5.0815e+4 9.2946e+1 8.63e+2 # -Range: 0-200 Ca3V2O8 - Ca3V2O8 = + 2.0000 VO4--- + 3.0000 Ca++ - log_k -18.3234 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca3V2O8 + Ca3V2O8 = 2 VO4-3 + 3 Ca+2 + log_k -18.3234 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca3V2O8 # Enthalpy of formation: -3778.1 kJ/mol Ca4Al2Fe2O10 - Ca4Al2Fe2O10 +20.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe+++ + 4.0000 Ca++ + 10.0000 H2O - log_k 140.5050 - -delta_H -1139.86 kJ/mol # Calculated enthalpy of reaction Ca4Al2Fe2O10 + Ca4Al2Fe2O10 + 20 H+ = 2 Al+3 + 2 Fe+3 + 4 Ca+2 + 10 H2O + log_k 140.505 + -delta_H -1139.86 kJ/mol # Calculated enthalpy of reaction Ca4Al2Fe2O10 # Enthalpy of formation: -1211 kcal/mol - -analytic -4.1808e+002 -8.2787e-002 7.0288e+004 1.4043e+002 1.1937e+003 + -analytic -4.1808e+2 -8.2787e-2 7.0288e+4 1.4043e+2 1.1937e+3 # -Range: 0-200 Ca4Al2O7:13H2O - Ca4Al2O7:13H2O +14.0000 H+ = + 2.0000 Al+++ + 4.0000 Ca++ + 20.0000 H2O - log_k 107.2537 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:13H2O + Ca4Al2O7:13H2O + 14 H+ = 2 Al+3 + 4 Ca+2 + 20 H2O + log_k 107.2537 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:13H2O # Enthalpy of formation: 0 kcal/mol Ca4Al2O7:19H2O - Ca4Al2O7:19H2O +14.0000 H+ = + 2.0000 Al+++ + 4.0000 Ca++ + 26.0000 H2O - log_k 103.6812 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:19H2O + Ca4Al2O7:19H2O + 14 H+ = 2 Al+3 + 4 Ca+2 + 26 H2O + log_k 103.6812 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:19H2O # Enthalpy of formation: 0 kcal/mol Ca4Cl2(OH)6:13H2O - Ca4Cl2(OH)6:13H2O +6.0000 H+ = + 2.0000 Cl- + 4.0000 Ca++ + 19.0000 H2O - log_k 68.3283 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Cl2(OH)6:13H2O + Ca4Cl2(OH)6:13H2O + 6 H+ = 2 Cl- + 4 Ca+2 + 19 H2O + log_k 68.3283 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Cl2(OH)6:13H2O # Enthalpy of formation: 0 kcal/mol CaAl2O4 - CaAl2O4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 H2O - log_k 46.9541 - -delta_H -436.952 kJ/mol # Calculated enthalpy of reaction CaAl2O4 + CaAl2O4 + 8 H+ = Ca+2 + 2 Al+3 + 4 H2O + log_k 46.9541 + -delta_H -436.952 kJ/mol # Calculated enthalpy of reaction CaAl2O4 # Enthalpy of formation: -555.996 kcal/mol - -analytic -3.0378e+002 -7.9356e-002 3.0096e+004 1.1049e+002 4.6971e+002 + -analytic -3.0378e+2 -7.9356e-2 3.0096e+4 1.1049e+2 4.6971e+2 # -Range: 0-300 CaAl2O4:10H2O - CaAl2O4:10H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 14.0000 H2O - log_k 37.9946 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaAl2O4:10H2O + CaAl2O4:10H2O + 8 H+ = Ca+2 + 2 Al+3 + 14 H2O + log_k 37.9946 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaAl2O4:10H2O # Enthalpy of formation: 0 kcal/mol CaAl4O7 - CaAl4O7 +14.0000 H+ = + 1.0000 Ca++ + 4.0000 Al+++ + 7.0000 H2O - log_k 68.6138 - -delta_H -718.464 kJ/mol # Calculated enthalpy of reaction CaAl4O7 + CaAl4O7 + 14 H+ = Ca+2 + 4 Al+3 + 7 H2O + log_k 68.6138 + -delta_H -718.464 kJ/mol # Calculated enthalpy of reaction CaAl4O7 # Enthalpy of formation: -951.026 kcal/mol - -analytic -3.1044e+002 -6.7078e-002 4.4566e+004 1.0085e+002 7.5689e+002 + -analytic -3.1044e+2 -6.7078e-2 4.4566e+4 1.0085e+2 7.5689e+2 # -Range: 0-200 CaSO4:0.5H2O(beta) - CaSO4:0.5H2O = + 0.5000 H2O + 1.0000 Ca++ + 1.0000 SO4-- - log_k -3.4934 - -delta_H -20.804 kJ/mol # Calculated enthalpy of reaction CaSO4:0.5H2O(beta) + CaSO4:0.5H2O = 0.5 H2O + Ca+2 + SO4-2 + log_k -3.4934 + -delta_H -20.804 kJ/mol # Calculated enthalpy of reaction CaSO4:0.5H2O(beta) # Enthalpy of formation: -1574.8 kJ/mol - -analytic -2.3054e+002 -8.2832e-002 5.9132e+003 9.3705e+001 9.2338e+001 + -analytic -2.3054e+2 -8.2832e-2 5.9132e+3 9.3705e+1 9.2338e+1 # -Range: 0-300 CaSeO3:2H2O - CaSeO3:2H2O = + 1.0000 Ca++ + 1.0000 SeO3-- + 2.0000 H2O - log_k -4.6213 - -delta_H -14.1963 kJ/mol # Calculated enthalpy of reaction CaSeO3:2H2O + CaSeO3:2H2O = Ca+2 + SeO3-2 + 2 H2O + log_k -4.6213 + -delta_H -14.1963 kJ/mol # Calculated enthalpy of reaction CaSeO3:2H2O # Enthalpy of formation: -384.741 kcal/mol - -analytic -4.1771e+001 -2.0735e-002 9.7870e+002 1.6180e+001 1.6634e+001 + -analytic -4.1771e+1 -2.0735e-2 9.787e+2 1.618e+1 1.6634e+1 # -Range: 0-200 CaSeO4 - CaSeO4 = + 1.0000 Ca++ + 1.0000 SeO4-- - log_k -3.0900 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaSeO4 + CaSeO4 = Ca+2 + SeO4-2 + log_k -3.09 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaSeO4 # Enthalpy of formation: 0 kcal/mol CaUO4 - CaUO4 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 UO2++ + 2.0000 H2O - log_k 15.9420 - -delta_H -131.46 kJ/mol # Calculated enthalpy of reaction CaUO4 + CaUO4 + 4 H+ = Ca+2 + UO2+2 + 2 H2O + log_k 15.942 + -delta_H -131.46 kJ/mol # Calculated enthalpy of reaction CaUO4 # Enthalpy of formation: -2002.3 kJ/mol - -analytic -8.7902e+001 -1.9810e-002 9.2354e+003 3.1832e+001 1.4414e+002 + -analytic -8.7902e+1 -1.981e-2 9.2354e+3 3.1832e+1 1.4414e+2 # -Range: 0-300 CaV2O6 - CaV2O6 +2.0000 H2O = + 1.0000 Ca++ + 2.0000 VO4--- + 4.0000 H+ - log_k -51.3617 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaV2O6 + CaV2O6 + 2 H2O = Ca+2 + 2 VO4-3 + 4 H+ + log_k -51.3617 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaV2O6 # Enthalpy of formation: -2329.34 kJ/mol CaZrO3 - CaZrO3 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 Zr(OH)2++ - log_k -148.5015 - -delta_H 801.282 kJ/mol # Calculated enthalpy of reaction CaZrO3 + CaZrO3 + 4 H+ = Ca+2 + H2O + Zr(OH)2+2 + log_k -148.5015 + -delta_H 801.282 kJ/mol # Calculated enthalpy of reaction CaZrO3 # Enthalpy of formation: -650.345 kcal/mol - -analytic -7.7908e+001 -1.4388e-002 -3.9635e+004 2.6932e+001 -6.7303e+002 + -analytic -7.7908e+1 -1.4388e-2 -3.9635e+4 2.6932e+1 -6.7303e+2 # -Range: 0-200 Cadmoselite - CdSe = + 1.0000 Cd++ + 1.0000 Se-- - log_k -33.8428 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cadmoselite + CdSe = Cd+2 + Se-2 + log_k -33.8428 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cadmoselite # Enthalpy of formation: -34.6 kcal/mol - -analytic -5.3432e+001 -1.3973e-002 -5.8989e+003 1.7591e+001 -9.2031e+001 + -analytic -5.3432e+1 -1.3973e-2 -5.8989e+3 1.7591e+1 -9.2031e+1 # -Range: 0-300 Calcite - CaCO3 +1.0000 H+ = + 1.0000 Ca++ + 1.0000 HCO3- - log_k 1.8487 - -delta_H -25.7149 kJ/mol # Calculated enthalpy of reaction Calcite + CaCO3 + H+ = Ca+2 + HCO3- + log_k 1.8487 + -delta_H -25.7149 kJ/mol # Calculated enthalpy of reaction Calcite # Enthalpy of formation: -288.552 kcal/mol - -analytic -1.4978e+002 -4.8370e-002 4.8974e+003 6.0458e+001 7.6464e+001 + -analytic -1.4978e+2 -4.837e-2 4.8974e+3 6.0458e+1 7.6464e+1 # -Range: 0-300 Calomel - Hg2Cl2 = + 1.0000 Hg2++ + 2.0000 Cl- - log_k -17.8241 - -delta_H 98.0267 kJ/mol # Calculated enthalpy of reaction Calomel + Hg2Cl2 = Hg2+2 + 2 Cl- + log_k -17.8241 + -delta_H 98.0267 kJ/mol # Calculated enthalpy of reaction Calomel # Enthalpy of formation: -265.37 kJ/mol - -analytic -4.8868e+001 -2.5540e-002 -2.8439e+003 1.9475e+001 -4.8277e+001 + -analytic -4.8868e+1 -2.554e-2 -2.8439e+3 1.9475e+1 -4.8277e+1 # -Range: 0-200 Carnallite - KMgCl3:6H2O = + 1.0000 K+ + 1.0000 Mg++ + 3.0000 Cl- + 6.0000 H2O - log_k 4.2721 - -delta_H 0 # Not possible to calculate enthalpy of reaction Carnallite + KMgCl3:6H2O = K+ + Mg+2 + 3 Cl- + 6 H2O + log_k 4.2721 + -delta_H 0 # Not possible to calculate enthalpy of reaction Carnallite # Enthalpy of formation: 0 kcal/mol Carnotite - K2(UO2)2(VO4)2 = + 2.0000 K+ + 2.0000 UO2++ + 2.0000 VO4--- - log_k -56.3811 - -delta_H 0 # Not possible to calculate enthalpy of reaction Carnotite + K2(UO2)2(VO4)2 = 2 K+ + 2 UO2+2 + 2 VO4-3 + log_k -56.3811 + -delta_H 0 # Not possible to calculate enthalpy of reaction Carnotite # Enthalpy of formation: -1173.9 kJ/mol Cassiterite - SnO2 +2.0000 H+ = + 0.5000 O2 + 1.0000 H2O + 1.0000 Sn++ - log_k -46.1203 - -delta_H 280.048 kJ/mol # Calculated enthalpy of reaction Cassiterite + SnO2 + 2 H+ = 0.5 O2 + H2O + Sn+2 + log_k -46.1203 + -delta_H 280.048 kJ/mol # Calculated enthalpy of reaction Cassiterite # Enthalpy of formation: -138.8 kcal/mol - -analytic -8.9264e+001 -1.5743e-002 -1.1497e+004 3.4917e+001 -1.7937e+002 + -analytic -8.9264e+1 -1.5743e-2 -1.1497e+4 3.4917e+1 -1.7937e+2 # -Range: 0-300 Cattierite - CoS2 = + 1.0000 Co++ + 1.0000 S2-- - log_k -29.9067 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cattierite + CoS2 = Co+2 + S2-2 + log_k -29.9067 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cattierite # Enthalpy of formation: -36.589 kcal/mol - -analytic -2.1970e+002 -7.8585e-002 -1.9592e+003 8.8809e+001 -3.0507e+001 + -analytic -2.197e+2 -7.8585e-2 -1.9592e+3 8.8809e+1 -3.0507e+1 # -Range: 0-300 Cd - Cd +2.0000 H+ +0.5000 O2 = + 1.0000 Cd++ + 1.0000 H2O - log_k 56.6062 - -delta_H -355.669 kJ/mol # Calculated enthalpy of reaction Cd + Cd + 2 H+ + 0.5 O2 = Cd+2 + H2O + log_k 56.6062 + -delta_H -355.669 kJ/mol # Calculated enthalpy of reaction Cd # Enthalpy of formation: 0 kJ/mol - -analytic -7.2027e+001 -2.0250e-002 2.0474e+004 2.6814e+001 -3.2348e+004 + -analytic -7.2027e+1 -2.025e-2 2.0474e+4 2.6814e+1 -3.2348e+4 # -Range: 0-300 Cd(BO2)2 - Cd(BO2)2 +2.0000 H+ +2.0000 H2O = + 1.0000 Cd++ + 2.0000 B(OH)3 - log_k 9.8299 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(BO2)2 + Cd(BO2)2 + 2 H+ + 2 H2O = Cd+2 + 2 B(OH)3 + log_k 9.8299 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(BO2)2 # Enthalpy of formation: 0 kcal/mol Cd(IO3)2 - Cd(IO3)2 = + 1.0000 Cd++ + 2.0000 IO3- - log_k -7.5848 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(IO3)2 + Cd(IO3)2 = Cd+2 + 2 IO3- + log_k -7.5848 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(IO3)2 # Enthalpy of formation: 0 kcal/mol Cd(OH)2 - Cd(OH)2 +2.0000 H+ = + 1.0000 Cd++ + 2.0000 H2O - log_k 13.7382 - -delta_H -87.0244 kJ/mol # Calculated enthalpy of reaction Cd(OH)2 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.7382 + -delta_H -87.0244 kJ/mol # Calculated enthalpy of reaction Cd(OH)2 # Enthalpy of formation: -560.55 kJ/mol - -analytic -7.7001e+001 -6.9251e-003 7.4684e+003 2.7380e+001 1.2685e+002 + -analytic -7.7001e+1 -6.9251e-3 7.4684e+3 2.738e+1 1.2685e+2 # -Range: 0-200 Cd(OH)Cl - Cd(OH)Cl +1.0000 H+ = + 1.0000 Cd++ + 1.0000 Cl- + 1.0000 H2O - log_k 3.5435 - -delta_H -30.3888 kJ/mol # Calculated enthalpy of reaction Cd(OH)Cl + Cd(OH)Cl + H+ = Cd+2 + Cl- + H2O + log_k 3.5435 + -delta_H -30.3888 kJ/mol # Calculated enthalpy of reaction Cd(OH)Cl # Enthalpy of formation: -498.427 kJ/mol - -analytic -4.5477e+001 -1.5809e-002 2.5333e+003 1.8279e+001 4.3035e+001 + -analytic -4.5477e+1 -1.5809e-2 2.5333e+3 1.8279e+1 4.3035e+1 # -Range: 0-200 Cd3(AsO4)2 - Cd3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Cd++ - log_k 4.0625 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(AsO4)2 + Cd3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Cd+2 + log_k 4.0625 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(AsO4)2 # Enthalpy of formation: 0 kcal/mol Cd3(PO4)2 - Cd3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cd++ - log_k -7.8943 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(PO4)2 + Cd3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Cd+2 + log_k -7.8943 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(PO4)2 # Enthalpy of formation: 0 kcal/mol Cd3(SO4)(OH)4 - Cd3(SO4)(OH)4 +4.0000 H+ = + 1.0000 SO4-- + 3.0000 Cd++ + 4.0000 H2O - log_k 22.5735 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)(OH)4 + Cd3(SO4)(OH)4 + 4 H+ = SO4-2 + 3 Cd+2 + 4 H2O + log_k 22.5735 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)(OH)4 # Enthalpy of formation: 0 kcal/mol Cd3(SO4)2(OH)2 - Cd3(SO4)2(OH)2 +2.0000 H+ = + 2.0000 H2O + 2.0000 SO4-- + 3.0000 Cd++ - log_k 6.7180 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)2(OH)2 + Cd3(SO4)2(OH)2 + 2 H+ = 2 H2O + 2 SO4-2 + 3 Cd+2 + log_k 6.718 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)2(OH)2 # Enthalpy of formation: 0 kcal/mol CdBr2 - CdBr2 = + 1.0000 Cd++ + 2.0000 Br- - log_k -1.8470 - -delta_H -2.67548 kJ/mol # Calculated enthalpy of reaction CdBr2 + CdBr2 = Cd+2 + 2 Br- + log_k -1.847 + -delta_H -2.67548 kJ/mol # Calculated enthalpy of reaction CdBr2 # Enthalpy of formation: -316.229 kJ/mol - -analytic 1.3056e+000 -2.0628e-002 -1.3318e+003 3.0126e+000 -2.2616e+001 + -analytic 1.3056e+0 -2.0628e-2 -1.3318e+3 3.0126e+0 -2.2616e+1 # -Range: 0-200 CdBr2:4H2O - CdBr2:4H2O = + 1.0000 Cd++ + 2.0000 Br- + 4.0000 H2O - log_k -2.3378 - -delta_H 30.2812 kJ/mol # Calculated enthalpy of reaction CdBr2:4H2O + CdBr2:4H2O = Cd+2 + 2 Br- + 4 H2O + log_k -2.3378 + -delta_H 30.2812 kJ/mol # Calculated enthalpy of reaction CdBr2:4H2O # Enthalpy of formation: -1492.54 kJ/mol - -analytic -1.0038e+002 -2.1045e-002 1.6896e+003 3.9864e+001 2.8726e+001 + -analytic -1.0038e+2 -2.1045e-2 1.6896e+3 3.9864e+1 2.8726e+1 # -Range: 0-200 CdCl2 - CdCl2 = + 1.0000 Cd++ + 2.0000 Cl- - log_k -0.6474 - -delta_H -18.5391 kJ/mol # Calculated enthalpy of reaction CdCl2 + CdCl2 = Cd+2 + 2 Cl- + log_k -0.6474 + -delta_H -18.5391 kJ/mol # Calculated enthalpy of reaction CdCl2 # Enthalpy of formation: -391.518 kJ/mol - -analytic -1.5230e+001 -2.4574e-002 -8.1017e+001 8.9599e+000 -1.3702e+000 + -analytic -1.523e+1 -2.4574e-2 -8.1017e+1 8.9599e+0 -1.3702e+0 # -Range: 0-200 CdCl2(NH3)2 - CdCl2(NH3)2 = + 1.0000 Cd++ + 2.0000 Cl- + 2.0000 NH3 - log_k -8.7864 - -delta_H 63.534 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)2 + CdCl2(NH3)2 = Cd+2 + 2 Cl- + 2 NH3 + log_k -8.7864 + -delta_H 63.534 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)2 # Enthalpy of formation: -636.265 kJ/mol - -analytic -5.5283e+001 -2.1791e-002 -2.1150e+003 2.4279e+001 -3.5896e+001 + -analytic -5.5283e+1 -2.1791e-2 -2.115e+3 2.4279e+1 -3.5896e+1 # -Range: 0-200 CdCl2(NH3)4 - CdCl2(NH3)4 = + 1.0000 Cd++ + 2.0000 Cl- + 4.0000 NH3 - log_k -6.8044 - -delta_H 81.7931 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)4 + CdCl2(NH3)4 = Cd+2 + 2 Cl- + 4 NH3 + log_k -6.8044 + -delta_H 81.7931 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)4 # Enthalpy of formation: -817.198 kJ/mol - -analytic -9.5682e+001 -1.8853e-002 -8.3875e+002 3.9322e+001 -1.4210e+001 + -analytic -9.5682e+1 -1.8853e-2 -8.3875e+2 3.9322e+1 -1.421e+1 # -Range: 0-200 CdCl2(NH3)6 - CdCl2(NH3)6 = + 1.0000 Cd++ + 2.0000 Cl- + 6.0000 NH3 - log_k -4.7524 - -delta_H 97.2971 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)6 + CdCl2(NH3)6 = Cd+2 + 2 Cl- + 6 NH3 + log_k -4.7524 + -delta_H 97.2971 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)6 # Enthalpy of formation: -995.376 kJ/mol - -analytic -1.3662e+002 -1.5941e-002 5.8572e+002 5.4415e+001 9.9937e+000 + -analytic -1.3662e+2 -1.5941e-2 5.8572e+2 5.4415e+1 9.9937e+0 # -Range: 0-200 CdCl2:H2O - CdCl2:H2O = + 1.0000 Cd++ + 1.0000 H2O + 2.0000 Cl- - log_k -1.6747 - -delta_H -7.44943 kJ/mol # Calculated enthalpy of reaction CdCl2:H2O + CdCl2:H2O = Cd+2 + H2O + 2 Cl- + log_k -1.6747 + -delta_H -7.44943 kJ/mol # Calculated enthalpy of reaction CdCl2:H2O # Enthalpy of formation: -688.446 kJ/mol - -analytic -4.1097e+001 -2.4685e-002 5.2687e+002 1.8188e+001 8.9615e+000 + -analytic -4.1097e+1 -2.4685e-2 5.2687e+2 1.8188e+1 8.9615e+0 # -Range: 0-200 CdCr2O4 - CdCr2O4 +8.0000 H+ = + 1.0000 Cd++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 14.9969 - -delta_H -255.676 kJ/mol # Calculated enthalpy of reaction CdCr2O4 + CdCr2O4 + 8 H+ = Cd+2 + 2 Cr+3 + 4 H2O + log_k 14.9969 + -delta_H -255.676 kJ/mol # Calculated enthalpy of reaction CdCr2O4 # Enthalpy of formation: -344.3 kcal/mol - -analytic -1.7446e+002 -9.1086e-003 1.9223e+004 5.1605e+001 3.2650e+002 + -analytic -1.7446e+2 -9.1086e-3 1.9223e+4 5.1605e+1 3.265e+2 # -Range: 0-200 CdF2 - CdF2 = + 1.0000 Cd++ + 2.0000 F- - log_k -1.1464 - -delta_H -46.064 kJ/mol # Calculated enthalpy of reaction CdF2 + CdF2 = Cd+2 + 2 F- + log_k -1.1464 + -delta_H -46.064 kJ/mol # Calculated enthalpy of reaction CdF2 # Enthalpy of formation: -700.529 kJ/mol - -analytic -3.0654e+001 -2.4790e-002 1.7893e+003 1.2482e+001 3.0395e+001 + -analytic -3.0654e+1 -2.479e-2 1.7893e+3 1.2482e+1 3.0395e+1 # -Range: 0-200 CdI2 - CdI2 = + 1.0000 Cd++ + 2.0000 I- - log_k -3.4825 - -delta_H 13.7164 kJ/mol # Calculated enthalpy of reaction CdI2 + CdI2 = Cd+2 + 2 I- + log_k -3.4825 + -delta_H 13.7164 kJ/mol # Calculated enthalpy of reaction CdI2 # Enthalpy of formation: -203.419 kJ/mol - -analytic -1.5446e+001 -2.4758e-002 -1.6422e+003 1.0041e+001 -2.7882e+001 + -analytic -1.5446e+1 -2.4758e-2 -1.6422e+3 1.0041e+1 -2.7882e+1 # -Range: 0-200 CdS - CdS +1.0000 H+ = + 1.0000 Cd++ + 1.0000 HS- - log_k -15.9095 - -delta_H 70.1448 kJ/mol # Calculated enthalpy of reaction CdS + CdS + H+ = Cd+2 + HS- + log_k -15.9095 + -delta_H 70.1448 kJ/mol # Calculated enthalpy of reaction CdS # Enthalpy of formation: -162.151 kJ/mol - -analytic -2.9492e+001 -1.5181e-002 -3.4695e+003 1.2019e+001 -5.8907e+001 + -analytic -2.9492e+1 -1.5181e-2 -3.4695e+3 1.2019e+1 -5.8907e+1 # -Range: 0-200 CdSO4 - CdSO4 = + 1.0000 Cd++ + 1.0000 SO4-- - log_k -0.1061 - -delta_H -52.1304 kJ/mol # Calculated enthalpy of reaction CdSO4 + CdSO4 = Cd+2 + SO4-2 + log_k -0.1061 + -delta_H -52.1304 kJ/mol # Calculated enthalpy of reaction CdSO4 # Enthalpy of formation: -933.369 kJ/mol - -analytic 7.7104e+000 -1.7161e-002 8.7067e+002 -2.2763e+000 1.4783e+001 + -analytic 7.7104e+0 -1.7161e-2 8.7067e+2 -2.2763e+0 1.4783e+1 # -Range: 0-200 CdSO4:2.667H2O - CdSO4:2.667H2O = + 1.0000 Cd++ + 1.0000 SO4-- + 2.6670 H2O - log_k -1.8015 - -delta_H -18.5302 kJ/mol # Calculated enthalpy of reaction CdSO4:2.667H2O + CdSO4:2.667H2O = Cd+2 + SO4-2 + 2.667 H2O + log_k -1.8015 + -delta_H -18.5302 kJ/mol # Calculated enthalpy of reaction CdSO4:2.667H2O # Enthalpy of formation: -1729.3 kJ/mol - -analytic -5.0331e+001 -1.4983e-002 2.0271e+003 1.8665e+001 3.4440e+001 + -analytic -5.0331e+1 -1.4983e-2 2.0271e+3 1.8665e+1 3.444e+1 # -Range: 0-200 CdSO4:H2O - CdSO4:H2O = + 1.0000 Cd++ + 1.0000 H2O + 1.0000 SO4-- - log_k -1.6529 - -delta_H -31.6537 kJ/mol # Calculated enthalpy of reaction CdSO4:H2O + CdSO4:H2O = Cd+2 + H2O + SO4-2 + log_k -1.6529 + -delta_H -31.6537 kJ/mol # Calculated enthalpy of reaction CdSO4:H2O # Enthalpy of formation: -1239.68 kJ/mol - -analytic -1.7142e+001 -1.7295e-002 9.9184e+002 6.9943e+000 1.6849e+001 + -analytic -1.7142e+1 -1.7295e-2 9.9184e+2 6.9943e+0 1.6849e+1 # -Range: 0-200 CdSeO3 - CdSeO3 = + 1.0000 Cd++ + 1.0000 SeO3-- - log_k -8.8086 - -delta_H -9.92156 kJ/mol # Calculated enthalpy of reaction CdSeO3 + CdSeO3 = Cd+2 + SeO3-2 + log_k -8.8086 + -delta_H -9.92156 kJ/mol # Calculated enthalpy of reaction CdSeO3 # Enthalpy of formation: -575.169 kJ/mol - -analytic 7.1762e+000 -1.8892e-002 -1.4680e+003 -2.1984e+000 -2.4932e+001 + -analytic 7.1762e+0 -1.8892e-2 -1.468e+3 -2.1984e+0 -2.4932e+1 # -Range: 0-200 CdSeO4 - CdSeO4 = + 1.0000 Cd++ + 1.0000 SeO4-- - log_k -2.2132 - -delta_H -41.9836 kJ/mol # Calculated enthalpy of reaction CdSeO4 + CdSeO4 = Cd+2 + SeO4-2 + log_k -2.2132 + -delta_H -41.9836 kJ/mol # Calculated enthalpy of reaction CdSeO4 # Enthalpy of formation: -633.063 kJ/mol - -analytic -4.9901e+000 -1.9755e-002 7.3162e+002 2.5063e+000 1.2426e+001 + -analytic -4.9901e+0 -1.9755e-2 7.3162e+2 2.5063e+0 1.2426e+1 # -Range: 0-200 CdSiO3 - CdSiO3 +2.0000 H+ = + 1.0000 Cd++ + 1.0000 H2O + 1.0000 SiO2 - log_k 7.5136 - -delta_H -50.3427 kJ/mol # Calculated enthalpy of reaction CdSiO3 + CdSiO3 + 2 H+ = Cd+2 + H2O + SiO2 + log_k 7.5136 + -delta_H -50.3427 kJ/mol # Calculated enthalpy of reaction CdSiO3 # Enthalpy of formation: -1189.09 kJ/mol - -analytic 2.6419e+002 6.2488e-002 -5.3518e+003 -1.0401e+002 -9.0973e+001 + -analytic 2.6419e+2 6.2488e-2 -5.3518e+3 -1.0401e+2 -9.0973e+1 # -Range: 0-200 Ce - Ce +3.0000 H+ +0.7500 O2 = + 1.0000 Ce+++ + 1.5000 H2O - log_k 182.9563 - -delta_H -1120.06 kJ/mol # Calculated enthalpy of reaction Ce + Ce + 3 H+ + 0.75 O2 = Ce+3 + 1.5 H2O + log_k 182.9563 + -delta_H -1120.06 kJ/mol # Calculated enthalpy of reaction Ce # Enthalpy of formation: 0 kJ/mol - -analytic -5.1017e+001 -2.6149e-002 5.8511e+004 1.8382e+001 9.1302e+002 + -analytic -5.1017e+1 -2.6149e-2 5.8511e+4 1.8382e+1 9.1302e+2 # -Range: 0-300 Ce(OH)3 - Ce(OH)3 +3.0000 H+ = + 1.0000 Ce+++ + 3.0000 H2O - log_k 19.8852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3 + Ce(OH)3 + 3 H+ = Ce+3 + 3 H2O + log_k 19.8852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3 # Enthalpy of formation: 0 kcal/mol Ce(OH)3(am) - Ce(OH)3 +3.0000 H+ = + 1.0000 Ce+++ + 3.0000 H2O - log_k 21.1852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3(am) + Ce(OH)3 + 3 H+ = Ce+3 + 3 H2O + log_k 21.1852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3(am) # Enthalpy of formation: 0 kcal/mol Ce2(CO3)3:8H2O - Ce2(CO3)3:8H2O +3.0000 H+ = + 2.0000 Ce+++ + 3.0000 HCO3- + 8.0000 H2O - log_k -4.1136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(CO3)3:8H2O + Ce2(CO3)3:8H2O + 3 H+ = 2 Ce+3 + 3 HCO3- + 8 H2O + log_k -4.1136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(CO3)3:8H2O # Enthalpy of formation: 0 kcal/mol Ce2O3 - Ce2O3 +6.0000 H+ = + 2.0000 Ce+++ + 3.0000 H2O - log_k 62.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2O3 + Ce2O3 + 6 H+ = 2 Ce+3 + 3 H2O + log_k 62.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2O3 # Enthalpy of formation: 0 kcal/mol Ce3(PO4)4 - Ce3(PO4)4 +4.0000 H+ = + 3.0000 Ce++++ + 4.0000 HPO4-- - log_k -40.8127 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(PO4)4 + Ce3(PO4)4 + 4 H+ = 3 Ce+4 + 4 HPO4-2 + log_k -40.8127 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(PO4)4 # Enthalpy of formation: 0 kcal/mol CeF3:.5H2O - CeF3:.5H2O = + 0.5000 H2O + 1.0000 Ce+++ + 3.0000 F- - log_k -18.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeF3:.5H2O + CeF3:.5H2O = 0.5 H2O + Ce+3 + 3 F- + log_k -18.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeF3:.5H2O # Enthalpy of formation: 0 kcal/mol CeO2 - CeO2 +4.0000 H+ = + 1.0000 Ce++++ + 2.0000 H2O - log_k -8.1600 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeO2 + CeO2 + 4 H+ = Ce+4 + 2 H2O + log_k -8.16 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeO2 # Enthalpy of formation: 0 kcal/mol CePO4:10H2O - CePO4:10H2O +1.0000 H+ = + 1.0000 Ce+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -12.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4:10H2O + CePO4:10H2O + H+ = Ce+3 + HPO4-2 + 10 H2O + log_k -12.2782 + -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4:10H2O # Enthalpy of formation: 0 kcal/mol Celadonite - KMgAlSi4O10(OH)2 +6.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 1.0000 Mg++ + 4.0000 H2O + 4.0000 SiO2 - log_k 7.4575 - -delta_H -74.3957 kJ/mol # Calculated enthalpy of reaction Celadonite + KMgAlSi4O10(OH)2 + 6 H+ = Al+3 + K+ + Mg+2 + 4 H2O + 4 SiO2 + log_k 7.4575 + -delta_H -74.3957 kJ/mol # Calculated enthalpy of reaction Celadonite # Enthalpy of formation: -1394.9 kcal/mol - -analytic -3.3097e+001 1.7989e-002 1.8919e+004 -2.1219e+000 -2.0588e+006 + -analytic -3.3097e+1 1.7989e-2 1.8919e+4 -2.1219e+0 -2.0588e+6 # -Range: 0-300 Celestite - SrSO4 = + 1.0000 SO4-- + 1.0000 Sr++ - log_k -5.6771 - -delta_H -7.40568 kJ/mol # Calculated enthalpy of reaction Celestite + SrSO4 = SO4-2 + Sr+2 + log_k -5.6771 + -delta_H -7.40568 kJ/mol # Calculated enthalpy of reaction Celestite # Enthalpy of formation: -347.3 kcal/mol - -analytic -1.9063e+002 -7.4552e-002 3.9050e+003 7.8416e+001 6.0991e+001 + -analytic -1.9063e+2 -7.4552e-2 3.905e+3 7.8416e+1 6.0991e+1 # -Range: 0-300 Cerussite - PbCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Pb++ - log_k -3.2091 - -delta_H 13.8992 kJ/mol # Calculated enthalpy of reaction Cerussite + PbCO3 + H+ = HCO3- + Pb+2 + log_k -3.2091 + -delta_H 13.8992 kJ/mol # Calculated enthalpy of reaction Cerussite # Enthalpy of formation: -168 kcal/mol - -analytic -1.2887e+002 -4.4372e-002 2.2336e+003 5.3091e+001 3.4891e+001 + -analytic -1.2887e+2 -4.4372e-2 2.2336e+3 5.3091e+1 3.4891e+1 # -Range: 0-300 Chalcanthite - CuSO4:5H2O = + 1.0000 Cu++ + 1.0000 SO4-- + 5.0000 H2O - log_k -2.6215 - -delta_H 6.57556 kJ/mol # Calculated enthalpy of reaction Chalcanthite + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.6215 + -delta_H 6.57556 kJ/mol # Calculated enthalpy of reaction Chalcanthite # Enthalpy of formation: -2279.68 kJ/mol - -analytic -1.1262e+002 -1.5544e-002 3.6176e+003 4.1420e+001 6.1471e+001 + -analytic -1.1262e+2 -1.5544e-2 3.6176e+3 4.142e+1 6.1471e+1 # -Range: 0-200 Chalcedony - SiO2 = + 1.0000 SiO2 - log_k -3.7281 - -delta_H 31.4093 kJ/mol # Calculated enthalpy of reaction Chalcedony + SiO2 = SiO2 + log_k -3.7281 + -delta_H 31.4093 kJ/mol # Calculated enthalpy of reaction Chalcedony # Enthalpy of formation: -217.282 kcal/mol - -analytic -9.0068e+000 9.3241e-003 4.0535e+003 -1.0830e+000 -7.5077e+005 + -analytic -9.0068e+0 9.3241e-3 4.0535e+3 -1.083e+0 -7.5077e+5 # -Range: 0-300 Chalcocite - Cu2S +1.0000 H+ = + 1.0000 HS- + 2.0000 Cu+ - log_k -34.7342 - -delta_H 206.748 kJ/mol # Calculated enthalpy of reaction Chalcocite + Cu2S + H+ = HS- + 2 Cu+ + log_k -34.7342 + -delta_H 206.748 kJ/mol # Calculated enthalpy of reaction Chalcocite # Enthalpy of formation: -19 kcal/mol - -analytic -1.3703e+002 -4.0727e-002 -7.1694e+003 5.5963e+001 -1.1183e+002 + -analytic -1.3703e+2 -4.0727e-2 -7.1694e+3 5.5963e+1 -1.1183e+2 # -Range: 0-300 Chalcocyanite - CuSO4 = + 1.0000 Cu++ + 1.0000 SO4-- - log_k 2.9239 - -delta_H -72.5128 kJ/mol # Calculated enthalpy of reaction Chalcocyanite + CuSO4 = Cu+2 + SO4-2 + log_k 2.9239 + -delta_H -72.5128 kJ/mol # Calculated enthalpy of reaction Chalcocyanite # Enthalpy of formation: -771.4 kJ/mol - -analytic 5.8173e+000 -1.6933e-002 2.0097e+003 -1.8583e+000 3.4126e+001 + -analytic 5.8173e+0 -1.6933e-2 2.0097e+3 -1.8583e+0 3.4126e+1 # -Range: 0-200 Chalcopyrite - CuFeS2 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 Fe++ + 2.0000 HS- - log_k -32.5638 - -delta_H 127.206 kJ/mol # Calculated enthalpy of reaction Chalcopyrite + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -32.5638 + -delta_H 127.206 kJ/mol # Calculated enthalpy of reaction Chalcopyrite # Enthalpy of formation: -44.453 kcal/mol - -analytic -3.1575e+002 -9.8947e-002 8.3400e+002 1.2522e+002 1.3106e+001 + -analytic -3.1575e+2 -9.8947e-2 8.34e+2 1.2522e+2 1.3106e+1 # -Range: 0-300 Chamosite-7A - Fe2Al2SiO5(OH)4 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 2.0000 Fe++ + 7.0000 H2O - log_k 32.8416 - -delta_H -364.213 kJ/mol # Calculated enthalpy of reaction Chamosite-7A + Fe2Al2SiO5(OH)4 + 10 H+ = SiO2 + 2 Al+3 + 2 Fe+2 + 7 H2O + log_k 32.8416 + -delta_H -364.213 kJ/mol # Calculated enthalpy of reaction Chamosite-7A # Enthalpy of formation: -902.407 kcal/mol - -analytic -2.5581e+002 -7.0890e-002 2.4619e+004 9.1789e+001 3.8424e+002 + -analytic -2.5581e+2 -7.089e-2 2.4619e+4 9.1789e+1 3.8424e+2 # -Range: 0-300 Chlorargyrite - AgCl = + 1.0000 Ag+ + 1.0000 Cl- - log_k -9.7453 - -delta_H 65.739 kJ/mol # Calculated enthalpy of reaction Chlorargyrite + AgCl = Ag+ + Cl- + log_k -9.7453 + -delta_H 65.739 kJ/mol # Calculated enthalpy of reaction Chlorargyrite # Enthalpy of formation: -30.37 kcal/mol - -analytic -9.6834e+001 -3.4624e-002 -1.1820e+003 4.0962e+001 -1.8415e+001 + -analytic -9.6834e+1 -3.4624e-2 -1.182e+3 4.0962e+1 -1.8415e+1 # -Range: 0-300 Chloromagnesite - MgCl2 = + 1.0000 Mg++ + 2.0000 Cl- - log_k 21.8604 - -delta_H -158.802 kJ/mol # Calculated enthalpy of reaction Chloromagnesite + MgCl2 = Mg+2 + 2 Cl- + log_k 21.8604 + -delta_H -158.802 kJ/mol # Calculated enthalpy of reaction Chloromagnesite # Enthalpy of formation: -641.317 kJ/mol - -analytic -2.3640e+002 -8.2017e-002 1.3480e+004 9.5963e+001 2.1042e+002 + -analytic -2.364e+2 -8.2017e-2 1.348e+4 9.5963e+1 2.1042e+2 # -Range: 0-300 Chromite - FeCr2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 15.1685 - -delta_H -267.755 kJ/mol # Calculated enthalpy of reaction Chromite + FeCr2O4 + 8 H+ = Fe+2 + 2 Cr+3 + 4 H2O + log_k 15.1685 + -delta_H -267.755 kJ/mol # Calculated enthalpy of reaction Chromite # Enthalpy of formation: -1444.83 kJ/mol - -analytic -1.9060e+002 -2.5695e-002 1.9465e+004 5.9865e+001 3.0379e+002 + -analytic -1.906e+2 -2.5695e-2 1.9465e+4 5.9865e+1 3.0379e+2 # -Range: 0-300 Chrysocolla - CuSiH4O5 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 SiO2 + 3.0000 H2O - log_k 6.2142 - -delta_H 0 # Not possible to calculate enthalpy of reaction Chrysocolla + CuSiH4O5 + 2 H+ = Cu+2 + SiO2 + 3 H2O + log_k 6.2142 + -delta_H 0 # Not possible to calculate enthalpy of reaction Chrysocolla # Enthalpy of formation: 0 kcal/mol Chrysotile - Mg3Si2O5(OH)4 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Mg++ + 5.0000 H2O - log_k 31.1254 - -delta_H -218.041 kJ/mol # Calculated enthalpy of reaction Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O + log_k 31.1254 + -delta_H -218.041 kJ/mol # Calculated enthalpy of reaction Chrysotile # Enthalpy of formation: -1043.12 kcal/mol - -analytic -9.2462e+001 -1.1359e-002 1.8312e+004 2.9289e+001 -6.2342e+005 + -analytic -9.2462e+1 -1.1359e-2 1.8312e+4 2.9289e+1 -6.2342e+5 # -Range: 0-300 Cinnabar - HgS +1.0000 H+ = + 1.0000 HS- + 1.0000 Hg++ - log_k -38.9666 - -delta_H 207.401 kJ/mol # Calculated enthalpy of reaction Cinnabar + HgS + H+ = HS- + Hg+2 + log_k -38.9666 + -delta_H 207.401 kJ/mol # Calculated enthalpy of reaction Cinnabar # Enthalpy of formation: -12.75 kcal/mol - -analytic -1.5413e+002 -4.6846e-002 -6.9806e+003 6.1639e+001 -1.0888e+002 + -analytic -1.5413e+2 -4.6846e-2 -6.9806e+3 6.1639e+1 -1.0888e+2 # -Range: 0-300 Claudetite - As2O3 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO3- - log_k -19.7647 - -delta_H 82.3699 kJ/mol # Calculated enthalpy of reaction Claudetite + As2O3 + 3 H2O = 2 H+ + 2 H2AsO3- + log_k -19.7647 + -delta_H 82.3699 kJ/mol # Calculated enthalpy of reaction Claudetite # Enthalpy of formation: -654.444 kJ/mol - -analytic -1.4164e+002 -6.3704e-002 -2.1679e+003 5.9856e+001 -3.3787e+001 + -analytic -1.4164e+2 -6.3704e-2 -2.1679e+3 5.9856e+1 -3.3787e+1 # -Range: 0-300 Clausthalite - PbSe = + 1.0000 Pb++ + 1.0000 Se-- - log_k -36.2531 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clausthalite + PbSe = Pb+2 + Se-2 + log_k -36.2531 + -delta_H 0 # Not possible to calculate enthalpy of reaction Clausthalite # Enthalpy of formation: -102.9 kJ/mol - -analytic -2.6473e+001 -1.0666e-002 -8.5540e+003 8.9226e+000 -1.3347e+002 + -analytic -2.6473e+1 -1.0666e-2 -8.554e+3 8.9226e+0 -1.3347e+2 # -Range: 0-300 Clinochalcomenite - CuSeO3:2H2O = + 1.0000 Cu++ + 1.0000 SeO3-- + 2.0000 H2O - log_k -6.7873 - -delta_H -31.6645 kJ/mol # Calculated enthalpy of reaction Clinochalcomenite + CuSeO3:2H2O = Cu+2 + SeO3-2 + 2 H2O + log_k -6.7873 + -delta_H -31.6645 kJ/mol # Calculated enthalpy of reaction Clinochalcomenite # Enthalpy of formation: -235.066 kcal/mol - -analytic -4.6465e+001 -1.8071e-002 2.0307e+003 1.5455e+001 3.4499e+001 + -analytic -4.6465e+1 -1.8071e-2 2.0307e+3 1.5455e+1 3.4499e+1 # -Range: 0-200 Clinochlore-14A - Mg5Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Mg++ + 12.0000 H2O - log_k 67.2391 - -delta_H -612.379 kJ/mol # Calculated enthalpy of reaction Clinochlore-14A + Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O + log_k 67.2391 + -delta_H -612.379 kJ/mol # Calculated enthalpy of reaction Clinochlore-14A # Enthalpy of formation: -2116.96 kcal/mol - -analytic -2.0441e+002 -6.2268e-002 3.5388e+004 6.9239e+001 5.5225e+002 + -analytic -2.0441e+2 -6.2268e-2 3.5388e+4 6.9239e+1 5.5225e+2 # -Range: 0-300 Clinochlore-7A - Mg5Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Mg++ + 12.0000 H2O - log_k 70.6124 - -delta_H -628.14 kJ/mol # Calculated enthalpy of reaction Clinochlore-7A + Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O + log_k 70.6124 + -delta_H -628.14 kJ/mol # Calculated enthalpy of reaction Clinochlore-7A # Enthalpy of formation: -2113.2 kcal/mol - -analytic -2.1644e+002 -6.4187e-002 3.6548e+004 7.4123e+001 5.7037e+002 + -analytic -2.1644e+2 -6.4187e-2 3.6548e+4 7.4123e+1 5.7037e+2 # -Range: 0-300 Clinoptilolite # Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45F +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 14.5330 SiO2 17.8560 H2O - Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45Fe.017Si14.5330O46.922H21.844 +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O - log_k -9.7861 - -delta_H -20.8784 kJ/mol # Calculated enthalpy of reaction Clinoptilolite + Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45Fe.017Si14.533O46.922H21.844 + 13.868 H+ = 0.002 Mn+2 + 0.017 Fe+3 + 0.036 Sr+2 + 0.062 Ba+2 + 0.124 Mg+2 + 0.543 K+ + 0.761 Ca+2 + 0.954 Na+ + 3.45 Al+3 + 14.533 SiO2 + 17.856 H2O + log_k -9.7861 + -delta_H -20.8784 kJ/mol # Calculated enthalpy of reaction Clinoptilolite # Enthalpy of formation: -20587.8 kJ/mol - -analytic -1.3213e+000 6.4960e-002 5.0630e+004 -4.6120e+001 -7.4699e+006 + -analytic -1.3213e+0 6.496e-2 5.063e+4 -4.612e+1 -7.4699e+6 # -Range: 0-300 Clinoptilolite-Ca - Ca1.7335Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O - log_k -7.0095 - -delta_H -74.6745 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Ca + Ca1.7335Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Ca+2 + 3.45 Al+3 + 14.533 SiO2 + 17.856 H2O + log_k -7.0095 + -delta_H -74.6745 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Ca # Enthalpy of formation: -4919.84 kcal/mol - -analytic -4.4820e+001 5.3696e-002 5.4878e+004 -3.1459e+001 -7.5491e+006 + -analytic -4.482e+1 5.3696e-2 5.4878e+4 -3.1459e+1 -7.5491e+6 # -Range: 0-300 Clinoptilolite-Cs - Cs3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 14.5330 SiO2 + 17.8560 H2O - log_k -13.0578 - -delta_H 96.9005 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Cs + Cs3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Cs+ + 14.533 SiO2 + 17.856 H2O + log_k -13.0578 + -delta_H 96.9005 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Cs # Enthalpy of formation: -4949.65 kcal/mol - -analytic -8.4746e+000 7.1997e-002 4.9675e+004 -4.1406e+001 -8.0632e+006 + -analytic -8.4746e+0 7.1997e-2 4.9675e+4 -4.1406e+1 -8.0632e+6 # -Range: 0-300 Clinoptilolite-K - K3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.5330 SiO2 + 17.8560 H2O - log_k -10.9485 - -delta_H 67.4862 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-K + K3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 14.533 SiO2 + 17.856 H2O + log_k -10.9485 + -delta_H 67.4862 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-K # Enthalpy of formation: -4937.77 kcal/mol - -analytic 1.1697e+001 6.9480e-002 4.7718e+004 -4.7442e+001 -7.6907e+006 + -analytic 1.1697e+1 6.948e-2 4.7718e+4 -4.7442e+1 -7.6907e+6 # -Range: 0-300 Clinoptilolite-NH4 - (NH4)3.467Al3.45Fe.017Si14.533O36:10.922H2O +10.4010 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 NH3 + 14.5330 SiO2 + 17.8560 H2O - log_k -42.4791 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-NH4 + (NH4)3.467Al3.45Fe.017Si14.533O36:10.922H2O + 10.401 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 NH3 + 14.533 SiO2 + 17.856 H2O + log_k -42.4791 + -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-NH4 # Enthalpy of formation: 0 kcal/mol Clinoptilolite-Na - Na3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8560 H2O - log_k -7.1363 - -delta_H 2.32824 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Na + Na3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Na+ + 14.533 SiO2 + 17.856 H2O + log_k -7.1363 + -delta_H 2.32824 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Na # Enthalpy of formation: -4912.36 kcal/mol - -analytic -3.4572e+001 6.8377e-002 5.1962e+004 -3.3426e+001 -7.5586e+006 + -analytic -3.4572e+1 6.8377e-2 5.1962e+4 -3.3426e+1 -7.5586e+6 # -Range: 0-300 Clinoptilolite-Sr - Sr1.7335Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O - log_k -7.1491 - -delta_H -66.2129 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Sr + Sr1.7335Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Sr+2 + 3.45 Al+3 + 14.533 SiO2 + 17.856 H2O + log_k -7.1491 + -delta_H -66.2129 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Sr # Enthalpy of formation: -4925.1 kcal/mol - -analytic 3.2274e+001 6.7050e-002 5.0880e+004 -5.9597e+001 -7.3876e+006 + -analytic 3.2274e+1 6.705e-2 5.088e+4 -5.9597e+1 -7.3876e+6 # -Range: 0-300 Clinoptilolite-dehy # Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45F +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 6.9340 H2O 14.5330 SiO2 - Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 - log_k 25.8490 - -delta_H -276.592 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy + Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.002 Mn+2 + 0.017 Fe+3 + 0.036 Sr+2 + 0.062 Ba+2 + 0.124 Mg+2 + 0.543 K+ + 0.761 Ca+2 + 0.954 Na+ + 3.45 Al+3 + 6.934 H2O + 14.533 SiO2 + log_k 25.849 + -delta_H -276.592 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy # Enthalpy of formation: -17210.2 kJ/mol - -analytic -2.0505e+002 6.0155e-002 8.2682e+004 1.5333e+001 -9.1369e+006 + -analytic -2.0505e+2 6.0155e-2 8.2682e+4 1.5333e+1 -9.1369e+6 # -Range: 0-300 Clinoptilolite-dehy-Ca - Ca1.7335Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 - log_k 28.6255 - -delta_H -329.278 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Ca + Ca1.7335Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 1.7335 Ca+2 + 3.45 Al+3 + 6.934 H2O + 14.533 SiO2 + log_k 28.6255 + -delta_H -329.278 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Ca # Enthalpy of formation: -4112.83 kcal/mol - -analytic -1.2948e+002 6.5698e-002 8.0229e+004 -1.2812e+001 -8.8320e+006 + -analytic -1.2948e+2 6.5698e-2 8.0229e+4 -1.2812e+1 -8.832e+6 # -Range: 0-300 Clinoptilolite-dehy-Cs - Cs3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 6.9340 H2O + 14.5330 SiO2 - log_k 22.5771 - -delta_H -164.837 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Cs + Cs3.467Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Cs+ + 6.934 H2O + 14.533 SiO2 + log_k 22.5771 + -delta_H -164.837 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Cs # Enthalpy of formation: -4140.93 kcal/mol - -analytic -1.2852e+002 7.9047e-002 7.7262e+004 -1.0422e+001 -9.4504e+006 + -analytic -1.2852e+2 7.9047e-2 7.7262e+4 -1.0422e+1 -9.4504e+6 # -Range: 0-300 Clinoptilolite-dehy-K - K3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 6.9340 H2O + 14.5330 SiO2 - log_k 24.6865 - -delta_H -191.289 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-K + K3.467Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 6.934 H2O + 14.533 SiO2 + log_k 24.6865 + -delta_H -191.289 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-K # Enthalpy of formation: -4129.76 kcal/mol - -analytic -1.2241e+002 7.4761e-002 7.6067e+004 -1.1315e+001 -9.1389e+006 + -analytic -1.2241e+2 7.4761e-2 7.6067e+4 -1.1315e+1 -9.1389e+6 # -Range: 0-300 Clinoptilolite-dehy-NH4 - (NH4)3.467Al3.45Fe.017Si14.533O36 +10.4010 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 NH3 + 6.9340 H2O + 14.5330 SiO2 - log_k -6.8441 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-dehy-NH4 + (NH4)3.467Al3.45Fe.017Si14.533O36 + 10.401 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 NH3 + 6.934 H2O + 14.533 SiO2 + log_k -6.8441 + -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-dehy-NH4 # Enthalpy of formation: 0 kcal/mol Clinoptilolite-dehy-Na - Na3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 6.9340 H2O + 14.5330 SiO2 - log_k 28.4987 - -delta_H -253.798 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Na + Na3.467Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Na+ + 6.934 H2O + 14.533 SiO2 + log_k 28.4987 + -delta_H -253.798 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Na # Enthalpy of formation: -4104.98 kcal/mol - -analytic -1.4386e+002 7.6846e-002 7.8723e+004 -5.9741e+000 -8.9159e+006 + -analytic -1.4386e+2 7.6846e-2 7.8723e+4 -5.9741e+0 -8.9159e+6 # -Range: 0-300 Clinoptilolite-dehy-Sr - Sr1.7335Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 - log_k 28.4859 - -delta_H -321.553 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Sr + Sr1.7335Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 1.7335 Sr+2 + 3.45 Al+3 + 6.934 H2O + 14.533 SiO2 + log_k 28.4859 + -delta_H -321.553 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Sr # Enthalpy of formation: -4117.92 kcal/mol - -analytic -1.8410e+002 6.0457e-002 8.3626e+004 6.4304e+000 -9.0962e+006 + -analytic -1.841e+2 6.0457e-2 8.3626e+4 6.4304e+0 -9.0962e+6 # -Range: 0-300 Clinoptilolite-hy-Ca # Ca1.7335Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 18.5790 H2O - Ca1.7335Al3.45Fe.017Si14.533O36:11.645H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 18.5790 H2O - log_k -7.0108 - -delta_H -65.4496 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Ca + Ca1.7335Al3.45Fe.017Si14.533O36:11.645H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Ca+2 + 3.45 Al+3 + 14.533 SiO2 + 18.579 H2O + log_k -7.0108 + -delta_H -65.4496 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Ca # Enthalpy of formation: -4971.44 kcal/mol - -analytic 8.6833e+001 7.1520e-002 4.6854e+004 -7.8023e+001 -7.0900e+006 + -analytic 8.6833e+1 7.152e-2 4.6854e+4 -7.8023e+1 -7.09e+6 # -Range: 0-300 Clinoptilolite-hy-Cs # Cs3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 13.1640 H2O + 14.5330 SiO2 - Cs3.467Al3.45Fe.017Si14.533O36:6.23H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 13.1640 H2O + 14.5330 SiO2 - log_k -13.0621 - -delta_H 44.6397 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Cs + Cs3.467Al3.45Fe.017Si14.533O36:6.23H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Cs+ + 13.164 H2O + 14.533 SiO2 + log_k -13.0621 + -delta_H 44.6397 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Cs # Enthalpy of formation: -4616.61 kcal/mol - -analytic -2.3362e+001 7.4922e-002 5.4544e+004 -4.1092e+001 -8.3387e+006 + -analytic -2.3362e+1 7.4922e-2 5.4544e+4 -4.1092e+1 -8.3387e+6 # -Range: 0-300 Clinoptilolite-hy-K # K3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.4330 H2O + 14.5330 SiO2 - K3.467Al3.45Fe.017Si14.533O36:7.499H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.4330 H2O + 14.5330 SiO2 - log_k -10.9523 - -delta_H 29.5879 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-K + K3.467Al3.45Fe.017Si14.533O36:7.499H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 14.433 H2O + 14.533 SiO2 + log_k -10.9523 + -delta_H 29.5879 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-K # Enthalpy of formation: -4694.86 kcal/mol - -analytic 1.6223e+001 7.3919e-002 5.0447e+004 -5.2790e+001 -7.8484e+006 + -analytic 1.6223e+1 7.3919e-2 5.0447e+4 -5.279e+1 -7.8484e+6 # -Range: 0-300 Clinoptilolite-hy-Na # Na3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8110 H2O - Na3.467Al3.45Fe.017Si14.533O36:10.877H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8110 H2O - log_k -7.1384 - -delta_H 1.88166 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Na + Na3.467Al3.45Fe.017Si14.533O36:10.877H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Na+ + 14.533 SiO2 + 17.811 H2O + log_k -7.1384 + -delta_H 1.88166 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Na # Enthalpy of formation: -4909.18 kcal/mol - -analytic -8.4189e+000 7.2018e-002 5.0501e+004 -4.2851e+001 -7.4714e+006 + -analytic -8.4189e+0 7.2018e-2 5.0501e+4 -4.2851e+1 -7.4714e+6 # -Range: 0-300 Clinoptilolite-hy-Sr # Sr1.7335Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 20.8270 H2O - Sr1.7335Al3.45Fe.017Si14.533O36:13.893H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 20.8270 H2O - log_k -7.1498 - -delta_H -31.6858 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Sr + Sr1.7335Al3.45Fe.017Si14.533O36:13.893H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Sr+2 + 3.45 Al+3 + 14.533 SiO2 + 20.827 H2O + log_k -7.1498 + -delta_H -31.6858 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Sr # Enthalpy of formation: -5136.33 kcal/mol - -analytic 1.0742e-001 5.9065e-002 4.9985e+004 -4.4648e+001 -7.3382e+006 + -analytic 1.0742e-1 5.9065e-2 4.9985e+4 -4.4648e+1 -7.3382e+6 # -Range: 0-300 Clinozoisite - Ca2Al3Si3O12(OH) +13.0000 H+ = + 2.0000 Ca++ + 3.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O - log_k 43.2569 - -delta_H -457.755 kJ/mol # Calculated enthalpy of reaction Clinozoisite + Ca2Al3Si3O12(OH) + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O + log_k 43.2569 + -delta_H -457.755 kJ/mol # Calculated enthalpy of reaction Clinozoisite # Enthalpy of formation: -1643.78 kcal/mol - -analytic -2.8690e+001 -3.7056e-002 2.2770e+004 3.7880e+000 -2.5834e+005 + -analytic -2.869e+1 -3.7056e-2 2.277e+4 3.788e+0 -2.5834e+5 # -Range: 0-300 Co - Co +2.0000 H+ +0.5000 O2 = + 1.0000 Co++ + 1.0000 H2O - log_k 52.5307 - -delta_H -337.929 kJ/mol # Calculated enthalpy of reaction Co + Co + 2 H+ + 0.5 O2 = Co+2 + H2O + log_k 52.5307 + -delta_H -337.929 kJ/mol # Calculated enthalpy of reaction Co # Enthalpy of formation: 0 kJ/mol - -analytic -6.2703e+001 -2.0172e-002 1.8888e+004 2.3391e+001 2.9474e+002 + -analytic -6.2703e+1 -2.0172e-2 1.8888e+4 2.3391e+1 2.9474e+2 # -Range: 0-300 Co(NO3)2 - Co(NO3)2 = + 1.0000 Co++ + 2.0000 NO3- - log_k 8.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(NO3)2 + Co(NO3)2 = Co+2 + 2 NO3- + log_k 8 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(NO3)2 # Enthalpy of formation: 0 kcal/mol Co(OH)2 - Co(OH)2 +2.0000 H+ = + 1.0000 Co++ + 2.0000 H2O - log_k 12.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 + Co(OH)2 + 2 H+ = Co+2 + 2 H2O + log_k 12.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 # Enthalpy of formation: 0 kcal/mol Co2SiO4 - Co2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Co++ + 2.0000 H2O - log_k 6.6808 - -delta_H -88.6924 kJ/mol # Calculated enthalpy of reaction Co2SiO4 + Co2SiO4 + 4 H+ = SiO2 + 2 Co+2 + 2 H2O + log_k 6.6808 + -delta_H -88.6924 kJ/mol # Calculated enthalpy of reaction Co2SiO4 # Enthalpy of formation: -353.011 kcal/mol - -analytic -3.9978e+000 -3.7985e-003 5.1554e+003 -1.5033e+000 -1.6100e+005 + -analytic -3.9978e+0 -3.7985e-3 5.1554e+3 -1.5033e+0 -1.61e+5 # -Range: 0-300 Co3(AsO4)2 - Co3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Co++ - log_k 8.5318 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(AsO4)2 + Co3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Co+2 + log_k 8.5318 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(AsO4)2 # Enthalpy of formation: 0 kcal/mol Co3(PO4)2 - Co3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Co++ - log_k -10.0123 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(PO4)2 + Co3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Co+2 + log_k -10.0123 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(PO4)2 # Enthalpy of formation: 0 kcal/mol CoCl2 - CoCl2 = + 1.0000 Co++ + 2.0000 Cl- - log_k 8.2641 - -delta_H -79.5949 kJ/mol # Calculated enthalpy of reaction CoCl2 + CoCl2 = Co+2 + 2 Cl- + log_k 8.2641 + -delta_H -79.5949 kJ/mol # Calculated enthalpy of reaction CoCl2 # Enthalpy of formation: -312.722 kJ/mol - -analytic -2.2386e+002 -8.0936e-002 8.8631e+003 9.1528e+001 1.3837e+002 + -analytic -2.2386e+2 -8.0936e-2 8.8631e+3 9.1528e+1 1.3837e+2 # -Range: 0-300 CoCl2:2H2O - CoCl2:2H2O = + 1.0000 Co++ + 2.0000 Cl- + 2.0000 H2O - log_k 4.6661 - -delta_H -40.7876 kJ/mol # Calculated enthalpy of reaction CoCl2:2H2O + CoCl2:2H2O = Co+2 + 2 Cl- + 2 H2O + log_k 4.6661 + -delta_H -40.7876 kJ/mol # Calculated enthalpy of reaction CoCl2:2H2O # Enthalpy of formation: -923.206 kJ/mol - -analytic -5.6411e+001 -2.3390e-002 3.0519e+003 2.3361e+001 5.1845e+001 + -analytic -5.6411e+1 -2.339e-2 3.0519e+3 2.3361e+1 5.1845e+1 # -Range: 0-200 CoCl2:6H2O - CoCl2:6H2O = + 1.0000 Co++ + 2.0000 Cl- + 6.0000 H2O - log_k 2.6033 - -delta_H 8.32709 kJ/mol # Calculated enthalpy of reaction CoCl2:6H2O + CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O + log_k 2.6033 + -delta_H 8.32709 kJ/mol # Calculated enthalpy of reaction CoCl2:6H2O # Enthalpy of formation: -2115.67 kJ/mol - -analytic -1.5066e+002 -2.2132e-002 5.0591e+003 5.7743e+001 8.5962e+001 + -analytic -1.5066e+2 -2.2132e-2 5.0591e+3 5.7743e+1 8.5962e+1 # -Range: 0-200 CoF2 - CoF2 = + 1.0000 Co++ + 2.0000 F- - log_k -5.1343 - -delta_H -36.6708 kJ/mol # Calculated enthalpy of reaction CoF2 + CoF2 = Co+2 + 2 F- + log_k -5.1343 + -delta_H -36.6708 kJ/mol # Calculated enthalpy of reaction CoF2 # Enthalpy of formation: -692.182 kJ/mol - -analytic -2.5667e+002 -8.4071e-002 7.6256e+003 1.0143e+002 1.1907e+002 + -analytic -2.5667e+2 -8.4071e-2 7.6256e+3 1.0143e+2 1.1907e+2 # -Range: 0-300 CoF3 - CoF3 = + 1.0000 Co+++ + 3.0000 F- - log_k -4.9558 - -delta_H -103.136 kJ/mol # Calculated enthalpy of reaction CoF3 + CoF3 = Co+3 + 3 F- + log_k -4.9558 + -delta_H -103.136 kJ/mol # Calculated enthalpy of reaction CoF3 # Enthalpy of formation: -193.8 kcal/mol - -analytic -3.7854e+002 -1.2911e-001 1.3215e+004 1.4859e+002 2.0632e+002 + -analytic -3.7854e+2 -1.2911e-1 1.3215e+4 1.4859e+2 2.0632e+2 # -Range: 0-300 CoFe2O4 - CoFe2O4 +8.0000 H+ = + 1.0000 Co++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 0.8729 - -delta_H -160.674 kJ/mol # Calculated enthalpy of reaction CoFe2O4 + CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O + log_k 0.8729 + -delta_H -160.674 kJ/mol # Calculated enthalpy of reaction CoFe2O4 # Enthalpy of formation: -272.466 kcal/mol - -analytic -3.0149e+002 -7.9159e-002 1.5683e+004 1.1046e+002 2.4480e+002 + -analytic -3.0149e+2 -7.9159e-2 1.5683e+4 1.1046e+2 2.448e+2 # -Range: 0-300 CoHPO4 - CoHPO4 = + 1.0000 Co++ + 1.0000 HPO4-- - log_k -6.7223 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoHPO4 + CoHPO4 = Co+2 + HPO4-2 + log_k -6.7223 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoHPO4 # Enthalpy of formation: 0 kcal/mol CoO - CoO +2.0000 H+ = + 1.0000 Co++ + 1.0000 H2O - log_k 13.5553 - -delta_H -106.05 kJ/mol # Calculated enthalpy of reaction CoO + CoO + 2 H+ = Co+2 + H2O + log_k 13.5553 + -delta_H -106.05 kJ/mol # Calculated enthalpy of reaction CoO # Enthalpy of formation: -237.946 kJ/mol - -analytic -8.4424e+001 -1.9457e-002 7.8616e+003 3.1281e+001 1.2270e+002 + -analytic -8.4424e+1 -1.9457e-2 7.8616e+3 3.1281e+1 1.227e+2 # -Range: 0-300 CoS - CoS +1.0000 H+ = + 1.0000 Co++ + 1.0000 HS- - log_k -7.3740 - -delta_H 10.1755 kJ/mol # Calculated enthalpy of reaction CoS + CoS + H+ = Co+2 + HS- + log_k -7.374 + -delta_H 10.1755 kJ/mol # Calculated enthalpy of reaction CoS # Enthalpy of formation: -20.182 kcal/mol - -analytic -1.5128e+002 -4.8484e-002 2.9553e+003 5.9983e+001 4.6158e+001 + -analytic -1.5128e+2 -4.8484e-2 2.9553e+3 5.9983e+1 4.6158e+1 # -Range: 0-300 CoSO4 - CoSO4 = + 1.0000 Co++ + 1.0000 SO4-- - log_k 2.8996 - -delta_H -79.7952 kJ/mol # Calculated enthalpy of reaction CoSO4 + CoSO4 = Co+2 + SO4-2 + log_k 2.8996 + -delta_H -79.7952 kJ/mol # Calculated enthalpy of reaction CoSO4 # Enthalpy of formation: -887.964 kJ/mol - -analytic -1.9907e+002 -7.7890e-002 7.7193e+003 8.0525e+001 1.2051e+002 + -analytic -1.9907e+2 -7.789e-2 7.7193e+3 8.0525e+1 1.2051e+2 # -Range: 0-300 CoSO4.3Co(OH)2 - CoSO4(Co(OH)2)3 +6.0000 H+ = + 1.0000 SO4-- + 4.0000 Co++ + 6.0000 H2O - log_k 33.2193 - -delta_H -379.41 kJ/mol # Calculated enthalpy of reaction CoSO4.3Co(OH)2 + CoSO4(Co(OH)2)3 + 6 H+ = SO4-2 + 4 Co+2 + 6 H2O + log_k 33.2193 + -delta_H -379.41 kJ/mol # Calculated enthalpy of reaction CoSO4.3Co(OH)2 # Enthalpy of formation: -2477.85 kJ/mol - -analytic -2.2830e+002 -4.0197e-002 2.5937e+004 7.5367e+001 4.4053e+002 + -analytic -2.283e+2 -4.0197e-2 2.5937e+4 7.5367e+1 4.4053e+2 # -Range: 0-200 CoSO4:6H2O - CoSO4:6H2O = + 1.0000 Co++ + 1.0000 SO4-- + 6.0000 H2O - log_k -2.3512 - -delta_H 1.08483 kJ/mol # Calculated enthalpy of reaction CoSO4:6H2O + CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O + log_k -2.3512 + -delta_H 1.08483 kJ/mol # Calculated enthalpy of reaction CoSO4:6H2O # Enthalpy of formation: -2683.87 kJ/mol - -analytic -2.5469e+002 -7.3092e-002 6.6767e+003 1.0172e+002 1.0426e+002 + -analytic -2.5469e+2 -7.3092e-2 6.6767e+3 1.0172e+2 1.0426e+2 # -Range: 0-300 CoSO4:H2O - CoSO4:H2O = + 1.0000 Co++ + 1.0000 H2O + 1.0000 SO4-- - log_k -1.2111 - -delta_H -52.6556 kJ/mol # Calculated enthalpy of reaction CoSO4:H2O + CoSO4:H2O = Co+2 + H2O + SO4-2 + log_k -1.2111 + -delta_H -52.6556 kJ/mol # Calculated enthalpy of reaction CoSO4:H2O # Enthalpy of formation: -287.032 kcal/mol - -analytic -1.0570e+001 -1.6196e-002 1.7180e+003 3.4000e+000 2.9178e+001 + -analytic -1.057e+1 -1.6196e-2 1.718e+3 3.4e+0 2.9178e+1 # -Range: 0-200 CoSeO3 - CoSeO3 = + 1.0000 Co++ + 1.0000 SeO3-- - log_k -7.0800 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO3 + CoSeO3 = Co+2 + SeO3-2 + log_k -7.08 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO3 # Enthalpy of formation: 0 kcal/mol CoWO4 - CoWO4 = + 1.0000 Co++ + 1.0000 WO4-- - log_k -12.2779 - -delta_H 13.6231 kJ/mol # Calculated enthalpy of reaction CoWO4 + CoWO4 = Co+2 + WO4-2 + log_k -12.2779 + -delta_H 13.6231 kJ/mol # Calculated enthalpy of reaction CoWO4 # Enthalpy of formation: -274.256 kcal/mol - -analytic -3.7731e+001 -2.4719e-002 -1.0347e+003 1.4663e+001 -1.7558e+001 + -analytic -3.7731e+1 -2.4719e-2 -1.0347e+3 1.4663e+1 -1.7558e+1 # -Range: 0-200 Coesite - SiO2 = + 1.0000 SiO2 - log_k -3.1893 - -delta_H 28.6144 kJ/mol # Calculated enthalpy of reaction Coesite + SiO2 = SiO2 + log_k -3.1893 + -delta_H 28.6144 kJ/mol # Calculated enthalpy of reaction Coesite # Enthalpy of formation: -216.614 kcal/mol - -analytic -9.7312e+000 9.1773e-003 4.2143e+003 -7.8065e-001 -7.4905e+005 + -analytic -9.7312e+0 9.1773e-3 4.2143e+3 -7.8065e-1 -7.4905e+5 # -Range: 0-300 Coffinite - USiO4 +4.0000 H+ = + 1.0000 SiO2 + 1.0000 U++++ + 2.0000 H2O - log_k -8.0530 - -delta_H -49.2493 kJ/mol # Calculated enthalpy of reaction Coffinite + USiO4 + 4 H+ = SiO2 + U+4 + 2 H2O + log_k -8.053 + -delta_H -49.2493 kJ/mol # Calculated enthalpy of reaction Coffinite # Enthalpy of formation: -1991.33 kJ/mol - -analytic 2.3126e+002 6.2389e-002 -4.6189e+003 -9.7976e+001 -7.8517e+001 + -analytic 2.3126e+2 6.2389e-2 -4.6189e+3 -9.7976e+1 -7.8517e+1 # -Range: 0-200 Colemanite - Ca2B6O11:5H2O +4.0000 H+ +2.0000 H2O = + 2.0000 Ca++ + 6.0000 B(OH)3 - log_k 21.5148 - -delta_H 0 # Not possible to calculate enthalpy of reaction Colemanite + Ca2B6O11:5H2O + 4 H+ + 2 H2O = 2 Ca+2 + 6 B(OH)3 + log_k 21.5148 + -delta_H 0 # Not possible to calculate enthalpy of reaction Colemanite # Enthalpy of formation: 0 kcal/mol Cordierite_anhyd - Mg2Al4Si5O18 +16.0000 H+ = + 2.0000 Mg++ + 4.0000 Al+++ + 5.0000 SiO2 + 8.0000 H2O - log_k 52.3035 - -delta_H -626.219 kJ/mol # Calculated enthalpy of reaction Cordierite_anhyd + Mg2Al4Si5O18 + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 8 H2O + log_k 52.3035 + -delta_H -626.219 kJ/mol # Calculated enthalpy of reaction Cordierite_anhyd # Enthalpy of formation: -2183.2 kcal/mol - -analytic 2.6562e+000 -2.3801e-002 3.5192e+004 -1.9911e+001 -1.0894e+006 + -analytic 2.6562e+0 -2.3801e-2 3.5192e+4 -1.9911e+1 -1.0894e+6 # -Range: 0-300 Cordierite_hydr - Mg2Al4Si5O18:H2O +16.0000 H+ = + 2.0000 Mg++ + 4.0000 Al+++ + 5.0000 SiO2 + 9.0000 H2O - log_k 49.8235 - -delta_H -608.814 kJ/mol # Calculated enthalpy of reaction Cordierite_hydr + Mg2Al4Si5O18:H2O + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 9 H2O + log_k 49.8235 + -delta_H -608.814 kJ/mol # Calculated enthalpy of reaction Cordierite_hydr # Enthalpy of formation: -2255.68 kcal/mol - -analytic -1.2985e+002 -4.1335e-002 4.1566e+004 2.7892e+001 -1.4819e+006 + -analytic -1.2985e+2 -4.1335e-2 4.1566e+4 2.7892e+1 -1.4819e+6 # -Range: 0-300 Corkite - PbFe3(PO4)(SO4)(OH)6 +7.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pb++ + 1.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O - log_k -9.7951 - -delta_H 0 # Not possible to calculate enthalpy of reaction Corkite + PbFe3(PO4)(SO4)(OH)6 + 7 H+ = HPO4-2 + Pb+2 + SO4-2 + 3 Fe+3 + 6 H2O + log_k -9.7951 + -delta_H 0 # Not possible to calculate enthalpy of reaction Corkite # Enthalpy of formation: 0 kcal/mol Corundum - Al2O3 +6.0000 H+ = + 2.0000 Al+++ + 3.0000 H2O - log_k 18.3121 - -delta_H -258.626 kJ/mol # Calculated enthalpy of reaction Corundum + Al2O3 + 6 H+ = 2 Al+3 + 3 H2O + log_k 18.3121 + -delta_H -258.626 kJ/mol # Calculated enthalpy of reaction Corundum # Enthalpy of formation: -400.5 kcal/mol - -analytic -1.4278e+002 -7.8519e-002 1.3776e+004 5.5881e+001 2.1501e+002 + -analytic -1.4278e+2 -7.8519e-2 1.3776e+4 5.5881e+1 2.1501e+2 # -Range: 0-300 Cotunnite - PbCl2 = + 1.0000 Pb++ + 2.0000 Cl- - log_k -4.8406 - -delta_H 26.1441 kJ/mol # Calculated enthalpy of reaction Cotunnite + PbCl2 = Pb+2 + 2 Cl- + log_k -4.8406 + -delta_H 26.1441 kJ/mol # Calculated enthalpy of reaction Cotunnite # Enthalpy of formation: -359.383 kJ/mol - -analytic 1.9624e+001 -1.9161e-002 -3.4686e+003 -2.8806e+000 -5.8909e+001 + -analytic 1.9624e+1 -1.9161e-2 -3.4686e+3 -2.8806e+0 -5.8909e+1 # -Range: 0-200 Covellite - CuS +1.0000 H+ = + 1.0000 Cu++ + 1.0000 HS- - log_k -22.8310 - -delta_H 101.88 kJ/mol # Calculated enthalpy of reaction Covellite + CuS + H+ = Cu+2 + HS- + log_k -22.831 + -delta_H 101.88 kJ/mol # Calculated enthalpy of reaction Covellite # Enthalpy of formation: -12.5 kcal/mol - -analytic -1.6068e+002 -4.9040e-002 -1.4234e+003 6.3536e+001 -2.2164e+001 + -analytic -1.6068e+2 -4.904e-2 -1.4234e+3 6.3536e+1 -2.2164e+1 # -Range: 0-300 Cr - Cr +3.0000 H+ +0.7500 O2 = + 1.0000 Cr+++ + 1.5000 H2O - log_k 98.6784 - -delta_H -658.145 kJ/mol # Calculated enthalpy of reaction Cr + Cr + 3 H+ + 0.75 O2 = Cr+3 + 1.5 H2O + log_k 98.6784 + -delta_H -658.145 kJ/mol # Calculated enthalpy of reaction Cr # Enthalpy of formation: 0 kJ/mol - -analytic -2.2488e+001 -5.5886e-003 3.4288e+004 3.1585e+000 5.3503e+002 + -analytic -2.2488e+1 -5.5886e-3 3.4288e+4 3.1585e+0 5.3503e+2 # -Range: 0-300 CrCl3 - CrCl3 = + 1.0000 Cr+++ + 3.0000 Cl- - log_k 17.9728 - -delta_H -183.227 kJ/mol # Calculated enthalpy of reaction CrCl3 + CrCl3 = Cr+3 + 3 Cl- + log_k 17.9728 + -delta_H -183.227 kJ/mol # Calculated enthalpy of reaction CrCl3 # Enthalpy of formation: -556.5 kJ/mol - -analytic -2.6348e+002 -9.5339e-002 1.4785e+004 1.0517e+002 2.3079e+002 + -analytic -2.6348e+2 -9.5339e-2 1.4785e+4 1.0517e+2 2.3079e+2 # -Range: 0-300 CrF3 - CrF3 = + 1.0000 Cr+++ + 3.0000 F- - log_k -8.5713 - -delta_H -85.5293 kJ/mol # Calculated enthalpy of reaction CrF3 + CrF3 = Cr+3 + 3 F- + log_k -8.5713 + -delta_H -85.5293 kJ/mol # Calculated enthalpy of reaction CrF3 # Enthalpy of formation: -277.008 kcal/mol - -analytic -3.2175e+002 -1.0279e-001 1.1394e+004 1.2348e+002 1.7789e+002 + -analytic -3.2175e+2 -1.0279e-1 1.1394e+4 1.2348e+2 1.7789e+2 # -Range: 0-300 CrF4 - CrF4 +2.0000 H2O = + 0.5000 Cr++ + 0.5000 CrO4-- + 4.0000 F- + 4.0000 H+ - log_k -12.3132 - -delta_H -35.2125 kJ/mol # Calculated enthalpy of reaction CrF4 + CrF4 + 2 H2O = 0.5 Cr+2 + 0.5 CrO4-2 + 4 F- + 4 H+ + log_k -12.3132 + -delta_H -35.2125 kJ/mol # Calculated enthalpy of reaction CrF4 # Enthalpy of formation: -298 kcal/mol - -analytic 4.3136e+001 -4.3783e-002 -3.6809e+003 -1.2153e+001 -6.2521e+001 + -analytic 4.3136e+1 -4.3783e-2 -3.6809e+3 -1.2153e+1 -6.2521e+1 # -Range: 0-200 CrI3 - CrI3 = + 1.0000 Cr+++ + 3.0000 I- - log_k 25.6112 - -delta_H -204.179 kJ/mol # Calculated enthalpy of reaction CrI3 + CrI3 = Cr+3 + 3 I- + log_k 25.6112 + -delta_H -204.179 kJ/mol # Calculated enthalpy of reaction CrI3 # Enthalpy of formation: -49 kcal/mol - -analytic 4.9232e+000 -2.5164e-002 8.4026e+003 0.0000e+000 0.0000e+000 + -analytic 4.9232e+0 -2.5164e-2 8.4026e+3 0e+0 0e+0 # -Range: 0-200 CrO2 - CrO2 = + 0.5000 Cr++ + 0.5000 CrO4-- - log_k -19.1332 - -delta_H 85.9812 kJ/mol # Calculated enthalpy of reaction CrO2 + CrO2 = 0.5 Cr+2 + 0.5 CrO4-2 + log_k -19.1332 + -delta_H 85.9812 kJ/mol # Calculated enthalpy of reaction CrO2 # Enthalpy of formation: -143 kcal/mol - -analytic 2.7763e+000 -7.7698e-003 -5.2893e+003 -7.4970e-001 -8.9821e+001 + -analytic 2.7763e+0 -7.7698e-3 -5.2893e+3 -7.497e-1 -8.9821e+1 # -Range: 0-200 CrO3 - CrO3 +1.0000 H2O = + 1.0000 CrO4-- + 2.0000 H+ - log_k -3.5221 - -delta_H -5.78647 kJ/mol # Calculated enthalpy of reaction CrO3 + CrO3 + H2O = CrO4-2 + 2 H+ + log_k -3.5221 + -delta_H -5.78647 kJ/mol # Calculated enthalpy of reaction CrO3 # Enthalpy of formation: -140.9 kcal/mol - -analytic -1.3262e+002 -6.1411e-002 2.2083e+003 5.6564e+001 3.4497e+001 + -analytic -1.3262e+2 -6.1411e-2 2.2083e+3 5.6564e+1 3.4497e+1 # -Range: 0-300 CrS - CrS +1.0000 H+ = + 1.0000 Cr++ + 1.0000 HS- - log_k -0.6304 - -delta_H -26.15 kJ/mol # Calculated enthalpy of reaction CrS + CrS + H+ = Cr+2 + HS- + log_k -0.6304 + -delta_H -26.15 kJ/mol # Calculated enthalpy of reaction CrS # Enthalpy of formation: -31.9 kcal/mol - -analytic -1.1134e+002 -3.5954e-002 3.8744e+003 4.3815e+001 6.0490e+001 + -analytic -1.1134e+2 -3.5954e-2 3.8744e+3 4.3815e+1 6.049e+1 # -Range: 0-300 Cristobalite(alpha) - SiO2 = + 1.0000 SiO2 - log_k -3.4488 - -delta_H 29.2043 kJ/mol # Calculated enthalpy of reaction Cristobalite(alpha) + SiO2 = SiO2 + log_k -3.4488 + -delta_H 29.2043 kJ/mol # Calculated enthalpy of reaction Cristobalite(alpha) # Enthalpy of formation: -216.755 kcal/mol - -analytic -1.1936e+001 9.0520e-003 4.3701e+003 -1.1464e-001 -7.6568e+005 + -analytic -1.1936e+1 9.052e-3 4.3701e+3 -1.1464e-1 -7.6568e+5 # -Range: 0-300 Cristobalite(beta) - SiO2 = + 1.0000 SiO2 - log_k -3.0053 - -delta_H 24.6856 kJ/mol # Calculated enthalpy of reaction Cristobalite(beta) + SiO2 = SiO2 + log_k -3.0053 + -delta_H 24.6856 kJ/mol # Calculated enthalpy of reaction Cristobalite(beta) # Enthalpy of formation: -215.675 kcal/mol - -analytic -4.7414e+000 9.7567e-003 3.8831e+003 -2.5830e+000 -6.9636e+005 + -analytic -4.7414e+0 9.7567e-3 3.8831e+3 -2.583e+0 -6.9636e+5 # -Range: 0-300 Crocoite - PbCrO4 = + 1.0000 CrO4-- + 1.0000 Pb++ - log_k -12.7177 - -delta_H 48.6181 kJ/mol # Calculated enthalpy of reaction Crocoite + PbCrO4 = CrO4-2 + Pb+2 + log_k -12.7177 + -delta_H 48.6181 kJ/mol # Calculated enthalpy of reaction Crocoite # Enthalpy of formation: -222 kcal/mol - -analytic 3.0842e+001 -1.4430e-002 -5.0292e+003 -9.0525e+000 -8.5414e+001 + -analytic 3.0842e+1 -1.443e-2 -5.0292e+3 -9.0525e+0 -8.5414e+1 # -Range: 0-200 Cronstedtite-7A - Fe2Fe2SiO5(OH)4 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Fe++ + 2.0000 Fe+++ + 7.0000 H2O - log_k 16.2603 - -delta_H -244.266 kJ/mol # Calculated enthalpy of reaction Cronstedtite-7A + Fe2Fe2SiO5(OH)4 + 10 H+ = SiO2 + 2 Fe+2 + 2 Fe+3 + 7 H2O + log_k 16.2603 + -delta_H -244.266 kJ/mol # Calculated enthalpy of reaction Cronstedtite-7A # Enthalpy of formation: -697.413 kcal/mol - -analytic -2.3783e+002 -7.1026e-002 1.7752e+004 8.7147e+001 2.7707e+002 + -analytic -2.3783e+2 -7.1026e-2 1.7752e+4 8.7147e+1 2.7707e+2 # -Range: 0-300 Cs - Cs +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Cs+ - log_k 72.5987 - -delta_H -397.913 kJ/mol # Calculated enthalpy of reaction Cs + Cs + H+ + 0.25 O2 = 0.5 H2O + Cs+ + log_k 72.5987 + -delta_H -397.913 kJ/mol # Calculated enthalpy of reaction Cs # Enthalpy of formation: 0 kJ/mol - -analytic -1.2875e+001 -7.3845e-003 2.1019e+004 6.9347e+000 3.2799e+002 + -analytic -1.2875e+1 -7.3845e-3 2.1019e+4 6.9347e+0 3.2799e+2 # -Range: 0-300 Cs2NaAmCl6 - Cs2NaAmCl6 = + 1.0000 Am+++ + 1.0000 Na+ + 2.0000 Cs+ + 6.0000 Cl- - log_k 11.7089 - -delta_H -59.7323 kJ/mol # Calculated enthalpy of reaction Cs2NaAmCl6 + Cs2NaAmCl6 = Am+3 + Na+ + 2 Cs+ + 6 Cl- + log_k 11.7089 + -delta_H -59.7323 kJ/mol # Calculated enthalpy of reaction Cs2NaAmCl6 # Enthalpy of formation: -2315.8 kJ/mol - -analytic 5.1683e+001 -5.0340e-002 -2.3205e+003 -6.9536e+000 -3.9422e+001 + -analytic 5.1683e+1 -5.034e-2 -2.3205e+3 -6.9536e+0 -3.9422e+1 # -Range: 0-200 Cs2U2O7 - Cs2U2O7 +6.0000 H+ = + 2.0000 Cs+ + 2.0000 UO2++ + 3.0000 H2O - log_k 31.0263 - -delta_H -191.57 kJ/mol # Calculated enthalpy of reaction Cs2U2O7 + Cs2U2O7 + 6 H+ = 2 Cs+ + 2 UO2+2 + 3 H2O + log_k 31.0263 + -delta_H -191.57 kJ/mol # Calculated enthalpy of reaction Cs2U2O7 # Enthalpy of formation: -3220 kJ/mol - -analytic -5.1436e+001 -7.4096e-003 1.2524e+004 1.7827e+001 -1.2899e+005 + -analytic -5.1436e+1 -7.4096e-3 1.2524e+4 1.7827e+1 -1.2899e+5 # -Range: 0-300 Cs2U4O12 - Cs2U4O12 +8.0000 H+ = + 2.0000 Cs+ + 2.0000 UO2+ + 2.0000 UO2++ + 4.0000 H2O - log_k 18.9460 - -delta_H -175.862 kJ/mol # Calculated enthalpy of reaction Cs2U4O12 + Cs2U4O12 + 8 H+ = 2 Cs+ + 2 UO2+ + 2 UO2+2 + 4 H2O + log_k 18.946 + -delta_H -175.862 kJ/mol # Calculated enthalpy of reaction Cs2U4O12 # Enthalpy of formation: -5571.8 kJ/mol - -analytic -3.3411e+001 3.6196e-003 1.0508e+004 6.5823e+000 -2.3403e+004 + -analytic -3.3411e+1 3.6196e-3 1.0508e+4 6.5823e+0 -2.3403e+4 # -Range: 0-300 Cs2UO4 - Cs2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 Cs+ + 2.0000 H2O - log_k 35.8930 - -delta_H -178.731 kJ/mol # Calculated enthalpy of reaction Cs2UO4 + Cs2UO4 + 4 H+ = UO2+2 + 2 Cs+ + 2 H2O + log_k 35.893 + -delta_H -178.731 kJ/mol # Calculated enthalpy of reaction Cs2UO4 # Enthalpy of formation: -1928 kJ/mol - -analytic -3.0950e+001 -3.5650e-003 1.0690e+004 1.2949e+001 1.6682e+002 + -analytic -3.095e+1 -3.565e-3 1.069e+4 1.2949e+1 1.6682e+2 # -Range: 0-300 Cu - Cu +2.0000 H+ +0.5000 O2 = + 1.0000 Cu++ + 1.0000 H2O - log_k 31.5118 - -delta_H -214.083 kJ/mol # Calculated enthalpy of reaction Cu + Cu + 2 H+ + 0.5 O2 = Cu+2 + H2O + log_k 31.5118 + -delta_H -214.083 kJ/mol # Calculated enthalpy of reaction Cu # Enthalpy of formation: 0 kcal/mol - -analytic -7.0719e+001 -2.0300e-002 1.2802e+004 2.6401e+001 1.9979e+002 + -analytic -7.0719e+1 -2.03e-2 1.2802e+4 2.6401e+1 1.9979e+2 # -Range: 0-300 Cu3(PO4)2 - Cu3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cu++ - log_k -12.2247 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2 + Cu3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Cu+2 + log_k -12.2247 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2 # Enthalpy of formation: 0 kcal/mol Cu3(PO4)2:3H2O - Cu3(PO4)2:3H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cu++ + 3.0000 H2O - log_k -10.4763 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2:3H2O + Cu3(PO4)2:3H2O + 2 H+ = 2 HPO4-2 + 3 Cu+2 + 3 H2O + log_k -10.4763 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2:3H2O # Enthalpy of formation: 0 kcal/mol CuCl2 - CuCl2 = + 1.0000 Cu++ + 2.0000 Cl- - log_k 3.7308 - -delta_H -48.5965 kJ/mol # Calculated enthalpy of reaction CuCl2 + CuCl2 = Cu+2 + 2 Cl- + log_k 3.7308 + -delta_H -48.5965 kJ/mol # Calculated enthalpy of reaction CuCl2 # Enthalpy of formation: -219.874 kJ/mol - -analytic -1.7803e+001 -2.4432e-002 1.5729e+003 9.5104e+000 2.6716e+001 + -analytic -1.7803e+1 -2.4432e-2 1.5729e+3 9.5104e+0 2.6716e+1 # -Range: 0-200 CuCr2O4 - CuCr2O4 +8.0000 H+ = + 1.0000 Cu++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 16.2174 - -delta_H -268.768 kJ/mol # Calculated enthalpy of reaction CuCr2O4 + CuCr2O4 + 8 H+ = Cu+2 + 2 Cr+3 + 4 H2O + log_k 16.2174 + -delta_H -268.768 kJ/mol # Calculated enthalpy of reaction CuCr2O4 # Enthalpy of formation: -307.331 kcal/mol - -analytic -1.8199e+002 -1.0254e-002 2.0123e+004 5.4062e+001 3.4178e+002 + -analytic -1.8199e+2 -1.0254e-2 2.0123e+4 5.4062e+1 3.4178e+2 # -Range: 0-200 CuF - CuF = + 1.0000 Cu+ + 1.0000 F- - log_k 7.0800 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF + CuF = Cu+ + F- + log_k 7.08 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF # Enthalpy of formation: 0 kcal/mol CuF2 - CuF2 = + 1.0000 Cu++ + 2.0000 F- - log_k -0.6200 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2 + CuF2 = Cu+2 + 2 F- + log_k -0.62 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2 # Enthalpy of formation: 0 kcal/mol CuF2:2H2O - CuF2:2H2O = + 1.0000 Cu++ + 2.0000 F- + 2.0000 H2O - log_k -4.5500 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2:2H2O + CuF2:2H2O = Cu+2 + 2 F- + 2 H2O + log_k -4.55 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2:2H2O # Enthalpy of formation: 0 kcal/mol CuSeO3 - CuSeO3 = + 1.0000 Cu++ + 1.0000 SeO3-- - log_k -7.6767 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuSeO3 + CuSeO3 = Cu+2 + SeO3-2 + log_k -7.6767 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuSeO3 # Enthalpy of formation: 0 kcal/mol Cuprite - Cu2O +2.0000 H+ = + 1.0000 H2O + 2.0000 Cu+ - log_k -1.9031 - -delta_H 28.355 kJ/mol # Calculated enthalpy of reaction Cuprite + Cu2O + 2 H+ = H2O + 2 Cu+ + log_k -1.9031 + -delta_H 28.355 kJ/mol # Calculated enthalpy of reaction Cuprite # Enthalpy of formation: -40.83 kcal/mol - -analytic -8.6240e+001 -1.1445e-002 1.7851e+003 3.3041e+001 2.7880e+001 + -analytic -8.624e+1 -1.1445e-2 1.7851e+3 3.3041e+1 2.788e+1 # -Range: 0-300 Daphnite-14A - Fe5AlAlSi3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Fe++ + 12.0000 H2O - log_k 52.2821 - -delta_H -517.561 kJ/mol # Calculated enthalpy of reaction Daphnite-14A + Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O + log_k 52.2821 + -delta_H -517.561 kJ/mol # Calculated enthalpy of reaction Daphnite-14A # Enthalpy of formation: -1693.04 kcal/mol - -analytic -1.5261e+002 -6.1392e-002 2.8283e+004 5.1788e+001 4.4137e+002 + -analytic -1.5261e+2 -6.1392e-2 2.8283e+4 5.1788e+1 4.4137e+2 # -Range: 0-300 Daphnite-7A - Fe5AlAlSi3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Fe++ + 12.0000 H2O - log_k 55.6554 - -delta_H -532.326 kJ/mol # Calculated enthalpy of reaction Daphnite-7A + Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O + log_k 55.6554 + -delta_H -532.326 kJ/mol # Calculated enthalpy of reaction Daphnite-7A # Enthalpy of formation: -1689.51 kcal/mol - -analytic -1.6430e+002 -6.3160e-002 2.9499e+004 5.6442e+001 4.6035e+002 + -analytic -1.643e+2 -6.316e-2 2.9499e+4 5.6442e+1 4.6035e+2 # -Range: 0-300 Dawsonite - NaAlCO3(OH)2 +3.0000 H+ = + 1.0000 Al+++ + 1.0000 HCO3- + 1.0000 Na+ + 2.0000 H2O - log_k 4.3464 - -delta_H -76.3549 kJ/mol # Calculated enthalpy of reaction Dawsonite + NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O + log_k 4.3464 + -delta_H -76.3549 kJ/mol # Calculated enthalpy of reaction Dawsonite # Enthalpy of formation: -1963.96 kJ/mol - -analytic -1.1393e+002 -2.3487e-002 7.1758e+003 4.0900e+001 1.2189e+002 + -analytic -1.1393e+2 -2.3487e-2 7.1758e+3 4.09e+1 1.2189e+2 # -Range: 0-200 Delafossite - CuFeO2 +4.0000 H+ = + 1.0000 Cu+ + 1.0000 Fe+++ + 2.0000 H2O - log_k -6.4172 - -delta_H -18.6104 kJ/mol # Calculated enthalpy of reaction Delafossite + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -6.4172 + -delta_H -18.6104 kJ/mol # Calculated enthalpy of reaction Delafossite # Enthalpy of formation: -126.904 kcal/mol - -analytic -1.5275e+002 -3.5478e-002 5.1404e+003 5.6437e+001 8.0255e+001 + -analytic -1.5275e+2 -3.5478e-2 5.1404e+3 5.6437e+1 8.0255e+1 # -Range: 0-300 Diaspore - AlHO2 +3.0000 H+ = + 1.0000 Al+++ + 2.0000 H2O - log_k 7.1603 - -delta_H -110.42 kJ/mol # Calculated enthalpy of reaction Diaspore + AlHO2 + 3 H+ = Al+3 + 2 H2O + log_k 7.1603 + -delta_H -110.42 kJ/mol # Calculated enthalpy of reaction Diaspore # Enthalpy of formation: -238.924 kcal/mol - -analytic -1.2618e+002 -3.1671e-002 8.8737e+003 4.5669e+001 1.3850e+002 + -analytic -1.2618e+2 -3.1671e-2 8.8737e+3 4.5669e+1 1.385e+2 # -Range: 0-300 Dicalcium_silicate - Ca2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 2.0000 H2O - log_k 37.1725 - -delta_H -217.642 kJ/mol # Calculated enthalpy of reaction Dicalcium_silicate + Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O + log_k 37.1725 + -delta_H -217.642 kJ/mol # Calculated enthalpy of reaction Dicalcium_silicate # Enthalpy of formation: -2317.9 kJ/mol - -analytic -5.9723e+001 -1.3682e-002 1.5461e+004 2.1547e+001 -3.7732e+005 + -analytic -5.9723e+1 -1.3682e-2 1.5461e+4 2.1547e+1 -3.7732e+5 # -Range: 0-300 Diopside - CaMgSi2O6 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 H2O + 2.0000 SiO2 - log_k 20.9643 - -delta_H -133.775 kJ/mol # Calculated enthalpy of reaction Diopside + CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 + 2 H2O + 2 SiO2 + log_k 20.9643 + -delta_H -133.775 kJ/mol # Calculated enthalpy of reaction Diopside # Enthalpy of formation: -765.378 kcal/mol - -analytic 7.1240e+001 1.5514e-002 8.1437e+003 -3.0672e+001 -5.6880e+005 + -analytic 7.124e+1 1.5514e-2 8.1437e+3 -3.0672e+1 -5.688e+5 # -Range: 0-300 Dioptase - CuSiO2(OH)2 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 SiO2 + 2.0000 H2O - log_k 6.0773 - -delta_H -25.2205 kJ/mol # Calculated enthalpy of reaction Dioptase + CuSiO2(OH)2 + 2 H+ = Cu+2 + SiO2 + 2 H2O + log_k 6.0773 + -delta_H -25.2205 kJ/mol # Calculated enthalpy of reaction Dioptase # Enthalpy of formation: -1358.47 kJ/mol - -analytic 2.3913e+002 6.2669e-002 -5.4030e+003 -9.4420e+001 -9.1834e+001 + -analytic 2.3913e+2 6.2669e-2 -5.403e+3 -9.442e+1 -9.1834e+1 # -Range: 0-200 Dolomite - CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- - log_k 2.5135 - -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 2.5135 + -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite # Enthalpy of formation: -556.631 kcal/mol - -analytic -3.1782e+002 -9.8179e-002 1.0845e+004 1.2657e+002 1.6932e+002 + -analytic -3.1782e+2 -9.8179e-2 1.0845e+4 1.2657e+2 1.6932e+2 # -Range: 0-300 Dolomite-dis - CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- - log_k 4.0579 - -delta_H -72.2117 kJ/mol # Calculated enthalpy of reaction Dolomite-dis + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 4.0579 + -delta_H -72.2117 kJ/mol # Calculated enthalpy of reaction Dolomite-dis # Enthalpy of formation: -553.704 kcal/mol - -analytic -3.1706e+002 -9.7886e-002 1.1442e+004 1.2604e+002 1.7864e+002 + -analytic -3.1706e+2 -9.7886e-2 1.1442e+4 1.2604e+2 1.7864e+2 # -Range: 0-300 Dolomite-ord - CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- - log_k 2.5135 - -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite-ord + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 2.5135 + -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite-ord # Enthalpy of formation: -556.631 kcal/mol - -analytic -3.1654e+002 -9.7902e-002 1.0805e+004 1.2607e+002 1.6870e+002 + -analytic -3.1654e+2 -9.7902e-2 1.0805e+4 1.2607e+2 1.687e+2 # -Range: 0-300 Downeyite - SeO2 +1.0000 H2O = + 1.0000 SeO3-- + 2.0000 H+ - log_k -6.7503 - -delta_H 1.74473 kJ/mol # Calculated enthalpy of reaction Downeyite + SeO2 + H2O = SeO3-2 + 2 H+ + log_k -6.7503 + -delta_H 1.74473 kJ/mol # Calculated enthalpy of reaction Downeyite # Enthalpy of formation: -53.8 kcal/mol - -analytic -1.2868e+002 -6.1183e-002 1.5802e+003 5.4490e+001 2.4696e+001 + -analytic -1.2868e+2 -6.1183e-2 1.5802e+3 5.449e+1 2.4696e+1 # -Range: 0-300 Dy - Dy +3.0000 H+ +0.7500 O2 = + 1.0000 Dy+++ + 1.5000 H2O - log_k 180.8306 - -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Dy + Dy + 3 H+ + 0.75 O2 = Dy+3 + 1.5 H2O + log_k 180.8306 + -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Dy # Enthalpy of formation: 0 kJ/mol - -analytic -6.8317e+001 -2.8321e-002 5.8927e+004 2.4211e+001 9.1953e+002 + -analytic -6.8317e+1 -2.8321e-2 5.8927e+4 2.4211e+1 9.1953e+2 # -Range: 0-300 Dy(OH)3 - Dy(OH)3 +3.0000 H+ = + 1.0000 Dy+++ + 3.0000 H2O - log_k 15.8852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3 + Dy(OH)3 + 3 H+ = Dy+3 + 3 H2O + log_k 15.8852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3 # Enthalpy of formation: 0 kcal/mol Dy(OH)3(am) - Dy(OH)3 +3.0000 H+ = + 1.0000 Dy+++ + 3.0000 H2O - log_k 17.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3(am) + Dy(OH)3 + 3 H+ = Dy+3 + 3 H2O + log_k 17.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3(am) # Enthalpy of formation: 0 kcal/mol Dy2(CO3)3 - Dy2(CO3)3 +3.0000 H+ = + 2.0000 Dy+++ + 3.0000 HCO3- - log_k -3.0136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2(CO3)3 + Dy2(CO3)3 + 3 H+ = 2 Dy+3 + 3 HCO3- + log_k -3.0136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2(CO3)3 # Enthalpy of formation: 0 kcal/mol Dy2O3 - Dy2O3 +6.0000 H+ = + 2.0000 Dy+++ + 3.0000 H2O - log_k 47.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2O3 + Dy2O3 + 6 H+ = 2 Dy+3 + 3 H2O + log_k 47 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2O3 # Enthalpy of formation: 0 kcal/mol DyF3:.5H2O - DyF3:.5H2O = + 0.5000 H2O + 1.0000 Dy+++ + 3.0000 F- - log_k -16.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyF3:.5H2O + DyF3:.5H2O = 0.5 H2O + Dy+3 + 3 F- + log_k -16.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction DyF3:.5H2O # Enthalpy of formation: 0 kcal/mol DyPO4:10H2O - DyPO4:10H2O +1.0000 H+ = + 1.0000 Dy+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4:10H2O + DyPO4:10H2O + H+ = Dy+3 + HPO4-2 + 10 H2O + log_k -11.9782 + -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4:10H2O # Enthalpy of formation: 0 kcal/mol Enstatite - MgSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Mg++ + 1.0000 SiO2 - log_k 11.3269 - -delta_H -82.7302 kJ/mol # Calculated enthalpy of reaction Enstatite + MgSiO3 + 2 H+ = H2O + Mg+2 + SiO2 + log_k 11.3269 + -delta_H -82.7302 kJ/mol # Calculated enthalpy of reaction Enstatite # Enthalpy of formation: -369.686 kcal/mol - -analytic -4.9278e+001 -3.2832e-003 9.5205e+003 1.4437e+001 -5.4324e+005 + -analytic -4.9278e+1 -3.2832e-3 9.5205e+3 1.4437e+1 -5.4324e+5 # -Range: 0-300 Epidote - Ca2FeAl2Si3O12OH +13.0000 H+ = + 1.0000 Fe+++ + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 7.0000 H2O - log_k 32.9296 - -delta_H -386.451 kJ/mol # Calculated enthalpy of reaction Epidote + Ca2FeAl2Si3O12OH + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O + log_k 32.9296 + -delta_H -386.451 kJ/mol # Calculated enthalpy of reaction Epidote # Enthalpy of formation: -1543.99 kcal/mol - -analytic -2.6187e+001 -3.6436e-002 1.9351e+004 3.3671e+000 -3.0319e+005 + -analytic -2.6187e+1 -3.6436e-2 1.9351e+4 3.3671e+0 -3.0319e+5 # -Range: 0-300 Epidote-ord - FeCa2Al2(OH)(SiO4)3 +13.0000 H+ = + 1.0000 Fe+++ + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 7.0000 H2O - log_k 32.9296 - -delta_H -386.351 kJ/mol # Calculated enthalpy of reaction Epidote-ord + FeCa2Al2(OH)(SiO4)3 + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O + log_k 32.9296 + -delta_H -386.351 kJ/mol # Calculated enthalpy of reaction Epidote-ord # Enthalpy of formation: -1544.02 kcal/mol - -analytic 1.9379e+001 -3.2870e-002 1.5692e+004 -1.1901e+001 2.4485e+002 + -analytic 1.9379e+1 -3.287e-2 1.5692e+4 -1.1901e+1 2.4485e+2 # -Range: 0-300 Epsomite - MgSO4:7H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 7.0000 H2O - log_k -1.9623 - -delta_H 0 # Not possible to calculate enthalpy of reaction Epsomite + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.9623 + -delta_H 0 # Not possible to calculate enthalpy of reaction Epsomite # Enthalpy of formation: 0 kcal/mol Er - Er +3.0000 H+ +0.7500 O2 = + 1.0000 Er+++ + 1.5000 H2O - log_k 181.7102 - -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Er + Er + 3 H+ + 0.75 O2 = Er+3 + 1.5 H2O + log_k 181.7102 + -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Er # Enthalpy of formation: 0 kJ/mol - -analytic -1.4459e+002 -3.8221e-002 6.4073e+004 5.1047e+001 -3.1503e+005 + -analytic -1.4459e+2 -3.8221e-2 6.4073e+4 5.1047e+1 -3.1503e+5 # -Range: 0-300 Er(OH)3 - Er(OH)3 +3.0000 H+ = + 1.0000 Er+++ + 3.0000 H2O - log_k 14.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3 + Er(OH)3 + 3 H+ = Er+3 + 3 H2O + log_k 14.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3 # Enthalpy of formation: 0 kcal/mol Er(OH)3(am) - Er(OH)3 +3.0000 H+ = + 1.0000 Er+++ + 3.0000 H2O - log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3(am) + Er(OH)3 + 3 H+ = Er+3 + 3 H2O + log_k 18.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3(am) # Enthalpy of formation: 0 kcal/mol Er2(CO3)3 - Er2(CO3)3 +3.0000 H+ = + 2.0000 Er+++ + 3.0000 HCO3- - log_k -2.6136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er2(CO3)3 + Er2(CO3)3 + 3 H+ = 2 Er+3 + 3 HCO3- + log_k -2.6136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er2(CO3)3 # Enthalpy of formation: 0 kcal/mol Er2O3 - Er2O3 +6.0000 H+ = + 2.0000 Er+++ + 3.0000 H2O - log_k 42.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er2O3 + Er2O3 + 6 H+ = 2 Er+3 + 3 H2O + log_k 42.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er2O3 # Enthalpy of formation: 0 kcal/mol ErF3:.5H2O - ErF3:.5H2O = + 0.5000 H2O + 1.0000 Er+++ + 3.0000 F- - log_k -16.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErF3:.5H2O + ErF3:.5H2O = 0.5 H2O + Er+3 + 3 F- + log_k -16.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction ErF3:.5H2O # Enthalpy of formation: 0 kcal/mol ErPO4:10H2O - ErPO4:10H2O +1.0000 H+ = + 1.0000 Er+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4:10H2O + ErPO4:10H2O + H+ = Er+3 + HPO4-2 + 10 H2O + log_k -11.8782 + -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4:10H2O # Enthalpy of formation: 0 kcal/mol Erythrite - Co3(AsO4)2:8H2O +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Co++ + 8.0000 H2O - log_k 6.3930 - -delta_H 0 # Not possible to calculate enthalpy of reaction Erythrite + Co3(AsO4)2:8H2O + 4 H+ = 2 H2AsO4- + 3 Co+2 + 8 H2O + log_k 6.393 + -delta_H 0 # Not possible to calculate enthalpy of reaction Erythrite # Enthalpy of formation: 0 kcal/mol Eskolaite - Cr2O3 +2.0000 H2O +1.5000 O2 = + 2.0000 CrO4-- + 4.0000 H+ - log_k -9.1306 - -delta_H -32.6877 kJ/mol # Calculated enthalpy of reaction Eskolaite + Cr2O3 + 2 H2O + 1.5 O2 = 2 CrO4-2 + 4 H+ + log_k -9.1306 + -delta_H -32.6877 kJ/mol # Calculated enthalpy of reaction Eskolaite # Enthalpy of formation: -1139.74 kJ/mol - -analytic -2.0411e+002 -1.2809e-001 2.2197e+003 9.1186e+001 3.4697e+001 + -analytic -2.0411e+2 -1.2809e-1 2.2197e+3 9.1186e+1 3.4697e+1 # -Range: 0-300 Ettringite - Ca6Al2(SO4)3(OH)12:26H2O +12.0000 H+ = + 2.0000 Al+++ + 3.0000 SO4-- + 6.0000 Ca++ + 38.0000 H2O - log_k 62.5362 - -delta_H -382.451 kJ/mol # Calculated enthalpy of reaction Ettringite + Ca6Al2(SO4)3(OH)12:26H2O + 12 H+ = 2 Al+3 + 3 SO4-2 + 6 Ca+2 + 38 H2O + log_k 62.5362 + -delta_H -382.451 kJ/mol # Calculated enthalpy of reaction Ettringite # Enthalpy of formation: -4193 kcal/mol - -analytic -1.0576e+003 -1.1585e-001 5.9580e+004 3.8585e+002 1.0121e+003 + -analytic -1.0576e+3 -1.1585e-1 5.958e+4 3.8585e+2 1.0121e+3 # -Range: 0-200 Eu - Eu +3.0000 H+ +0.7500 O2 = + 1.0000 Eu+++ + 1.5000 H2O - log_k 165.1443 - -delta_H -1025.08 kJ/mol # Calculated enthalpy of reaction Eu + Eu + 3 H+ + 0.75 O2 = Eu+3 + 1.5 H2O + log_k 165.1443 + -delta_H -1025.08 kJ/mol # Calculated enthalpy of reaction Eu # Enthalpy of formation: 0 kJ/mol - -analytic -6.5749e+001 -2.8921e-002 5.4018e+004 2.3561e+001 8.4292e+002 + -analytic -6.5749e+1 -2.8921e-2 5.4018e+4 2.3561e+1 8.4292e+2 # -Range: 0-300 Eu(IO3)3:2H2O - Eu(IO3)3:2H2O = + 1.0000 Eu+++ + 2.0000 H2O + 3.0000 IO3- - log_k -11.6999 - -delta_H 20.8847 kJ/mol # Calculated enthalpy of reaction Eu(IO3)3:2H2O + Eu(IO3)3:2H2O = Eu+3 + 2 H2O + 3 IO3- + log_k -11.6999 + -delta_H 20.8847 kJ/mol # Calculated enthalpy of reaction Eu(IO3)3:2H2O # Enthalpy of formation: -1861.99 kJ/mol - -analytic -3.4616e+001 -1.9914e-002 -1.1966e+003 1.3276e+001 -2.0308e+001 + -analytic -3.4616e+1 -1.9914e-2 -1.1966e+3 1.3276e+1 -2.0308e+1 # -Range: 0-200 Eu(NO3)3:6H2O - Eu(NO3)3:6H2O = + 1.0000 Eu+++ + 3.0000 NO3- + 6.0000 H2O - log_k 1.3082 - -delta_H 15.2254 kJ/mol # Calculated enthalpy of reaction Eu(NO3)3:6H2O + Eu(NO3)3:6H2O = Eu+3 + 3 NO3- + 6 H2O + log_k 1.3082 + -delta_H 15.2254 kJ/mol # Calculated enthalpy of reaction Eu(NO3)3:6H2O # Enthalpy of formation: -2956.11 kJ/mol - -analytic -1.3205e+002 -2.0427e-002 3.9623e+003 5.0976e+001 6.7332e+001 + -analytic -1.3205e+2 -2.0427e-2 3.9623e+3 5.0976e+1 6.7332e+1 # -Range: 0-200 Eu(OH)2.5Cl.5 - Eu(OH)2.5Cl.5 +2.5000 H+ = + 0.5000 Cl- + 1.0000 Eu+++ + 2.5000 H2O - log_k 12.5546 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2.5Cl.5 + Eu(OH)2.5Cl.5 + 2.5 H+ = 0.5 Cl- + Eu+3 + 2.5 H2O + log_k 12.5546 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2.5Cl.5 # Enthalpy of formation: 0 kcal/mol Eu(OH)2Cl - Eu(OH)2Cl +2.0000 H+ = + 1.0000 Cl- + 1.0000 Eu+++ + 2.0000 H2O - log_k 8.7974 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2Cl + Eu(OH)2Cl + 2 H+ = Cl- + Eu+3 + 2 H2O + log_k 8.7974 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2Cl # Enthalpy of formation: 0 kcal/mol Eu(OH)3 - Eu(OH)3 +3.0000 H+ = + 1.0000 Eu+++ + 3.0000 H2O - log_k 15.3482 - -delta_H -126.897 kJ/mol # Calculated enthalpy of reaction Eu(OH)3 + Eu(OH)3 + 3 H+ = Eu+3 + 3 H2O + log_k 15.3482 + -delta_H -126.897 kJ/mol # Calculated enthalpy of reaction Eu(OH)3 # Enthalpy of formation: -1336.04 kJ/mol - -analytic -6.3077e+001 -6.1421e-003 8.7323e+003 2.0595e+001 1.4831e+002 + -analytic -6.3077e+1 -6.1421e-3 8.7323e+3 2.0595e+1 1.4831e+2 # -Range: 0-200 Eu2(CO3)3:3H2O - Eu2(CO3)3:3H2O +3.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O + 3.0000 HCO3- - log_k -5.8707 - -delta_H -137.512 kJ/mol # Calculated enthalpy of reaction Eu2(CO3)3:3H2O + Eu2(CO3)3:3H2O + 3 H+ = 2 Eu+3 + 3 H2O + 3 HCO3- + log_k -5.8707 + -delta_H -137.512 kJ/mol # Calculated enthalpy of reaction Eu2(CO3)3:3H2O # Enthalpy of formation: -4000.65 kJ/mol - -analytic -1.4134e+002 -4.0240e-002 9.5883e+003 4.6591e+001 1.6287e+002 + -analytic -1.4134e+2 -4.024e-2 9.5883e+3 4.6591e+1 1.6287e+2 # -Range: 0-200 Eu2(SO4)3:8H2O - Eu2(SO4)3:8H2O = + 2.0000 Eu+++ + 3.0000 SO4-- + 8.0000 H2O - log_k -10.8524 - -delta_H -86.59 kJ/mol # Calculated enthalpy of reaction Eu2(SO4)3:8H2O + Eu2(SO4)3:8H2O = 2 Eu+3 + 3 SO4-2 + 8 H2O + log_k -10.8524 + -delta_H -86.59 kJ/mol # Calculated enthalpy of reaction Eu2(SO4)3:8H2O # Enthalpy of formation: -6139.77 kJ/mol - -analytic -5.6582e+001 -3.8846e-002 3.3821e+003 1.8561e+001 5.7452e+001 + -analytic -5.6582e+1 -3.8846e-2 3.3821e+3 1.8561e+1 5.7452e+1 # -Range: 0-200 Eu2O3(cubic) - Eu2O3 +6.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O - log_k 51.7818 - -delta_H -406.403 kJ/mol # Calculated enthalpy of reaction Eu2O3(cubic) + Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O + log_k 51.7818 + -delta_H -406.403 kJ/mol # Calculated enthalpy of reaction Eu2O3(cubic) # Enthalpy of formation: -1661.96 kJ/mol - -analytic -5.3469e+001 -1.2554e-002 2.1925e+004 1.4324e+001 3.7233e+002 + -analytic -5.3469e+1 -1.2554e-2 2.1925e+4 1.4324e+1 3.7233e+2 # -Range: 0-200 Eu2O3(monoclinic) - Eu2O3 +6.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O - log_k 53.3936 - -delta_H -417.481 kJ/mol # Calculated enthalpy of reaction Eu2O3(monoclinic) + Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O + log_k 53.3936 + -delta_H -417.481 kJ/mol # Calculated enthalpy of reaction Eu2O3(monoclinic) # Enthalpy of formation: -1650.88 kJ/mol - -analytic -5.4022e+001 -1.2627e-002 2.2508e+004 1.4416e+001 3.8224e+002 + -analytic -5.4022e+1 -1.2627e-2 2.2508e+4 1.4416e+1 3.8224e+2 # -Range: 0-200 Eu3O4 - Eu3O4 +8.0000 H+ = + 1.0000 Eu++ + 2.0000 Eu+++ + 4.0000 H2O - log_k 87.0369 - -delta_H -611.249 kJ/mol # Calculated enthalpy of reaction Eu3O4 + Eu3O4 + 8 H+ = Eu+2 + 2 Eu+3 + 4 H2O + log_k 87.0369 + -delta_H -611.249 kJ/mol # Calculated enthalpy of reaction Eu3O4 # Enthalpy of formation: -2270.56 kJ/mol - -analytic -1.1829e+002 -2.0354e-002 3.4981e+004 3.8007e+001 5.9407e+002 + -analytic -1.1829e+2 -2.0354e-2 3.4981e+4 3.8007e+1 5.9407e+2 # -Range: 0-200 EuBr3 - EuBr3 = + 1.0000 Eu+++ + 3.0000 Br- - log_k 29.8934 - -delta_H -217.166 kJ/mol # Calculated enthalpy of reaction EuBr3 + EuBr3 = Eu+3 + 3 Br- + log_k 29.8934 + -delta_H -217.166 kJ/mol # Calculated enthalpy of reaction EuBr3 # Enthalpy of formation: -752.769 kJ/mol - -analytic 6.0207e+001 -2.5234e-002 6.6823e+003 -1.8276e+001 1.1345e+002 + -analytic 6.0207e+1 -2.5234e-2 6.6823e+3 -1.8276e+1 1.1345e+2 # -Range: 0-200 EuCl2 - EuCl2 = + 1.0000 Eu++ + 2.0000 Cl- - log_k 5.9230 - -delta_H -39.2617 kJ/mol # Calculated enthalpy of reaction EuCl2 + EuCl2 = Eu+2 + 2 Cl- + log_k 5.923 + -delta_H -39.2617 kJ/mol # Calculated enthalpy of reaction EuCl2 # Enthalpy of formation: -822.5 kJ/mol - -analytic -2.5741e+001 -2.4956e-002 1.5713e+003 1.3670e+001 2.6691e+001 + -analytic -2.5741e+1 -2.4956e-2 1.5713e+3 1.367e+1 2.6691e+1 # -Range: 0-200 EuCl3 - EuCl3 = + 1.0000 Eu+++ + 3.0000 Cl- - log_k 19.7149 - -delta_H -170.861 kJ/mol # Calculated enthalpy of reaction EuCl3 + EuCl3 = Eu+3 + 3 Cl- + log_k 19.7149 + -delta_H -170.861 kJ/mol # Calculated enthalpy of reaction EuCl3 # Enthalpy of formation: -935.803 kJ/mol - -analytic 3.2865e+001 -3.1877e-002 4.9792e+003 -8.2294e+000 8.4542e+001 + -analytic 3.2865e+1 -3.1877e-2 4.9792e+3 -8.2294e+0 8.4542e+1 # -Range: 0-200 EuCl3:6H2O - EuCl3:6H2O = + 1.0000 Eu+++ + 3.0000 Cl- + 6.0000 H2O - log_k 4.9090 - -delta_H -40.0288 kJ/mol # Calculated enthalpy of reaction EuCl3:6H2O + EuCl3:6H2O = Eu+3 + 3 Cl- + 6 H2O + log_k 4.909 + -delta_H -40.0288 kJ/mol # Calculated enthalpy of reaction EuCl3:6H2O # Enthalpy of formation: -2781.66 kJ/mol - -analytic -1.0987e+002 -2.9851e-002 4.9991e+003 4.3198e+001 8.4930e+001 + -analytic -1.0987e+2 -2.9851e-2 4.9991e+3 4.3198e+1 8.493e+1 # -Range: 0-200 EuF3:0.5H2O - EuF3:0.5H2O = + 0.5000 H2O + 1.0000 Eu+++ + 3.0000 F- - log_k -16.4847 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuF3:0.5H2O + EuF3:0.5H2O = 0.5 H2O + Eu+3 + 3 F- + log_k -16.4847 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuF3:0.5H2O # Enthalpy of formation: 0 kcal/mol EuO - EuO +2.0000 H+ = + 1.0000 Eu++ + 1.0000 H2O - log_k 37.4800 - -delta_H -221.196 kJ/mol # Calculated enthalpy of reaction EuO + EuO + 2 H+ = Eu+2 + H2O + log_k 37.48 + -delta_H -221.196 kJ/mol # Calculated enthalpy of reaction EuO # Enthalpy of formation: -592.245 kJ/mol - -analytic -8.9517e+001 -1.7523e-002 1.4385e+004 3.3933e+001 2.2449e+002 + -analytic -8.9517e+1 -1.7523e-2 1.4385e+4 3.3933e+1 2.2449e+2 # -Range: 0-300 EuOCl - EuOCl +2.0000 H+ = + 1.0000 Cl- + 1.0000 Eu+++ + 1.0000 H2O - log_k 15.6683 - -delta_H -147.173 kJ/mol # Calculated enthalpy of reaction EuOCl + EuOCl + 2 H+ = Cl- + Eu+3 + H2O + log_k 15.6683 + -delta_H -147.173 kJ/mol # Calculated enthalpy of reaction EuOCl # Enthalpy of formation: -911.17 kJ/mol - -analytic -7.7446e+000 -1.4960e-002 6.6242e+003 2.2813e+000 1.1249e+002 + -analytic -7.7446e+0 -1.496e-2 6.6242e+3 2.2813e+0 1.1249e+2 # -Range: 0-200 EuOHCO3 - EuOHCO3 +2.0000 H+ = + 1.0000 Eu+++ + 1.0000 H2O + 1.0000 HCO3- - log_k 2.5239 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 + EuOHCO3 + 2 H+ = Eu+3 + H2O + HCO3- + log_k 2.5239 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 # Enthalpy of formation: 0 kcal/mol EuPO4:10H2O - EuPO4:10H2O +1.0000 H+ = + 1.0000 Eu+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -12.0782 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4:10H2O + EuPO4:10H2O + H+ = Eu+3 + HPO4-2 + 10 H2O + log_k -12.0782 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4:10H2O # Enthalpy of formation: 0 kcal/mol EuS - EuS +1.0000 H+ = + 1.0000 Eu++ + 1.0000 HS- - log_k 14.9068 - -delta_H -96.4088 kJ/mol # Calculated enthalpy of reaction EuS + EuS + H+ = Eu+2 + HS- + log_k 14.9068 + -delta_H -96.4088 kJ/mol # Calculated enthalpy of reaction EuS # Enthalpy of formation: -447.302 kJ/mol - -analytic -4.1026e+001 -1.5582e-002 5.7842e+003 1.6639e+001 9.8238e+001 + -analytic -4.1026e+1 -1.5582e-2 5.7842e+3 1.6639e+1 9.8238e+1 # -Range: 0-200 EuSO4 - EuSO4 = + 1.0000 Eu++ + 1.0000 SO4-- - log_k -8.8449 - -delta_H 33.873 kJ/mol # Calculated enthalpy of reaction EuSO4 + EuSO4 = Eu+2 + SO4-2 + log_k -8.8449 + -delta_H 33.873 kJ/mol # Calculated enthalpy of reaction EuSO4 # Enthalpy of formation: -1471.08 kJ/mol - -analytic 3.0262e-001 -1.7571e-002 -3.0392e+003 2.5356e+000 -5.1610e+001 + -analytic 3.0262e-1 -1.7571e-2 -3.0392e+3 2.5356e+0 -5.161e+1 # -Range: 0-200 Eucryptite - LiAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 1.0000 SiO2 + 2.0000 H2O - log_k 13.6106 - -delta_H -141.818 kJ/mol # Calculated enthalpy of reaction Eucryptite + LiAlSiO4 + 4 H+ = Al+3 + Li+ + SiO2 + 2 H2O + log_k 13.6106 + -delta_H -141.818 kJ/mol # Calculated enthalpy of reaction Eucryptite # Enthalpy of formation: -2124.41 kJ/mol - -analytic -2.2213e+000 -8.2498e-003 6.4838e+003 -1.4183e+000 1.0117e+002 + -analytic -2.2213e+0 -8.2498e-3 6.4838e+3 -1.4183e+0 1.0117e+2 # -Range: 0-300 Fayalite - Fe2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Fe++ + 2.0000 H2O - log_k 19.1113 - -delta_H -152.256 kJ/mol # Calculated enthalpy of reaction Fayalite + Fe2SiO4 + 4 H+ = SiO2 + 2 Fe+2 + 2 H2O + log_k 19.1113 + -delta_H -152.256 kJ/mol # Calculated enthalpy of reaction Fayalite # Enthalpy of formation: -354.119 kcal/mol - -analytic 1.3853e+001 -3.5501e-003 7.1496e+003 -6.8710e+000 -6.3310e+004 + -analytic 1.3853e+1 -3.5501e-3 7.1496e+3 -6.871e+0 -6.331e+4 # -Range: 0-300 Fe - Fe +2.0000 H+ +0.5000 O2 = + 1.0000 Fe++ + 1.0000 H2O - log_k 59.0325 - -delta_H -372.029 kJ/mol # Calculated enthalpy of reaction Fe + Fe + 2 H+ + 0.5 O2 = Fe+2 + H2O + log_k 59.0325 + -delta_H -372.029 kJ/mol # Calculated enthalpy of reaction Fe # Enthalpy of formation: 0 kcal/mol - -analytic -6.2882e+001 -2.0379e-002 2.0690e+004 2.3673e+001 3.2287e+002 + -analytic -6.2882e+1 -2.0379e-2 2.069e+4 2.3673e+1 3.2287e+2 # -Range: 0-300 Fe(OH)2 - Fe(OH)2 +2.0000 H+ = + 1.0000 Fe++ + 2.0000 H2O - log_k 13.9045 - -delta_H -95.4089 kJ/mol # Calculated enthalpy of reaction Fe(OH)2 + Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O + log_k 13.9045 + -delta_H -95.4089 kJ/mol # Calculated enthalpy of reaction Fe(OH)2 # Enthalpy of formation: -568.525 kJ/mol - -analytic -8.6666e+001 -1.8440e-002 7.5723e+003 3.2597e+001 1.1818e+002 + -analytic -8.6666e+1 -1.844e-2 7.5723e+3 3.2597e+1 1.1818e+2 # -Range: 0-300 Fe(OH)3 - Fe(OH)3 +3.0000 H+ = + 1.0000 Fe+++ + 3.0000 H2O - log_k 5.6556 - -delta_H -84.0824 kJ/mol # Calculated enthalpy of reaction Fe(OH)3 + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 5.6556 + -delta_H -84.0824 kJ/mol # Calculated enthalpy of reaction Fe(OH)3 # Enthalpy of formation: -823.013 kJ/mol - -analytic -1.3316e+002 -3.1284e-002 7.9753e+003 4.9052e+001 1.2449e+002 + -analytic -1.3316e+2 -3.1284e-2 7.9753e+3 4.9052e+1 1.2449e+2 # -Range: 0-300 Fe2(SO4)3 - Fe2(SO4)3 = + 2.0000 Fe+++ + 3.0000 SO4-- - log_k 3.2058 - -delta_H -250.806 kJ/mol # Calculated enthalpy of reaction Fe2(SO4)3 + Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 + log_k 3.2058 + -delta_H -250.806 kJ/mol # Calculated enthalpy of reaction Fe2(SO4)3 # Enthalpy of formation: -2577.16 kJ/mol - -analytic -5.8649e+002 -2.3718e-001 2.2736e+004 2.3601e+002 3.5495e+002 + -analytic -5.8649e+2 -2.3718e-1 2.2736e+4 2.3601e+2 3.5495e+2 # -Range: 0-300 FeF2 - FeF2 = + 1.0000 Fe++ + 2.0000 F- - log_k -2.3817 - -delta_H -51.6924 kJ/mol # Calculated enthalpy of reaction FeF2 + FeF2 = Fe+2 + 2 F- + log_k -2.3817 + -delta_H -51.6924 kJ/mol # Calculated enthalpy of reaction FeF2 # Enthalpy of formation: -711.26 kJ/mol - -analytic -2.5687e+002 -8.4091e-002 8.4262e+003 1.0154e+002 1.3156e+002 + -analytic -2.5687e+2 -8.4091e-2 8.4262e+3 1.0154e+2 1.3156e+2 # -Range: 0-300 FeF3 - FeF3 = + 1.0000 Fe+++ + 3.0000 F- - log_k -19.2388 - -delta_H -13.8072 kJ/mol # Calculated enthalpy of reaction FeF3 + FeF3 = Fe+3 + 3 F- + log_k -19.2388 + -delta_H -13.8072 kJ/mol # Calculated enthalpy of reaction FeF3 # Enthalpy of formation: -249 kcal/mol - -analytic -1.6215e+001 -3.7450e-002 -1.8926e+003 5.8485e+000 -3.2134e+001 + -analytic -1.6215e+1 -3.745e-2 -1.8926e+3 5.8485e+0 -3.2134e+1 # -Range: 0-200 FeO - FeO +2.0000 H+ = + 1.0000 Fe++ + 1.0000 H2O - log_k 13.5318 - -delta_H -106.052 kJ/mol # Calculated enthalpy of reaction FeO + FeO + 2 H+ = Fe+2 + H2O + log_k 13.5318 + -delta_H -106.052 kJ/mol # Calculated enthalpy of reaction FeO # Enthalpy of formation: -65.02 kcal/mol - -analytic -7.8750e+001 -1.8268e-002 7.6852e+003 2.9074e+001 1.1994e+002 + -analytic -7.875e+1 -1.8268e-2 7.6852e+3 2.9074e+1 1.1994e+2 # -Range: 0-300 FeSO4 - FeSO4 = + 1.0000 Fe++ + 1.0000 SO4-- - log_k 2.6565 - -delta_H -73.0878 kJ/mol # Calculated enthalpy of reaction FeSO4 + FeSO4 = Fe+2 + SO4-2 + log_k 2.6565 + -delta_H -73.0878 kJ/mol # Calculated enthalpy of reaction FeSO4 # Enthalpy of formation: -928.771 kJ/mol - -analytic -2.0794e+002 -7.6891e-002 7.8705e+003 8.3685e+001 1.2287e+002 + -analytic -2.0794e+2 -7.6891e-2 7.8705e+3 8.3685e+1 1.2287e+2 # -Range: 0-300 FeV2O4 - FeV2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 V+++ + 4.0000 H2O - log_k 280.5528 - -delta_H -1733.42 kJ/mol # Calculated enthalpy of reaction FeV2O4 + FeV2O4 + 8 H+ = Fe+2 + 2 V+3 + 4 H2O + log_k 280.5528 + -delta_H -1733.42 kJ/mol # Calculated enthalpy of reaction FeV2O4 # Enthalpy of formation: -5.8 kcal/mol - -analytic -1.6736e+002 -1.9398e-002 9.5736e+004 5.3582e+001 1.6258e+003 + -analytic -1.6736e+2 -1.9398e-2 9.5736e+4 5.3582e+1 1.6258e+3 # -Range: 0-200 Ferrite-Ca - CaFe2O4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 21.5217 - -delta_H -264.738 kJ/mol # Calculated enthalpy of reaction Ferrite-Ca + CaFe2O4 + 8 H+ = Ca+2 + 2 Fe+3 + 4 H2O + log_k 21.5217 + -delta_H -264.738 kJ/mol # Calculated enthalpy of reaction Ferrite-Ca # Enthalpy of formation: -363.494 kcal/mol - -analytic -2.8472e+002 -7.5870e-002 2.0688e+004 1.0485e+002 3.2289e+002 + -analytic -2.8472e+2 -7.587e-2 2.0688e+4 1.0485e+2 3.2289e+2 # -Range: 0-300 Ferrite-Cu - CuFe2O4 +8.0000 H+ = + 1.0000 Cu++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 10.3160 - -delta_H -211.647 kJ/mol # Calculated enthalpy of reaction Ferrite-Cu + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 10.316 + -delta_H -211.647 kJ/mol # Calculated enthalpy of reaction Ferrite-Cu # Enthalpy of formation: -965.178 kJ/mol - -analytic -3.1271e+002 -7.9976e-002 1.8818e+004 1.1466e+002 2.9374e+002 + -analytic -3.1271e+2 -7.9976e-2 1.8818e+4 1.1466e+2 2.9374e+2 # -Range: 0-300 Ferrite-Dicalcium - Ca2Fe2O5 +10.0000 H+ = + 2.0000 Ca++ + 2.0000 Fe+++ + 5.0000 H2O - log_k 56.8331 - -delta_H -475.261 kJ/mol # Calculated enthalpy of reaction Ferrite-Dicalcium + Ca2Fe2O5 + 10 H+ = 2 Ca+2 + 2 Fe+3 + 5 H2O + log_k 56.8331 + -delta_H -475.261 kJ/mol # Calculated enthalpy of reaction Ferrite-Dicalcium # Enthalpy of formation: -2139.26 kJ/mol - -analytic -3.6277e+002 -9.5015e-002 3.3898e+004 1.3506e+002 5.2906e+002 + -analytic -3.6277e+2 -9.5015e-2 3.3898e+4 1.3506e+2 5.2906e+2 # -Range: 0-300 Ferrite-Mg - MgFe2O4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 21.0551 - -delta_H -280.056 kJ/mol # Calculated enthalpy of reaction Ferrite-Mg + MgFe2O4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O + log_k 21.0551 + -delta_H -280.056 kJ/mol # Calculated enthalpy of reaction Ferrite-Mg # Enthalpy of formation: -1428.42 kJ/mol - -analytic -2.8297e+002 -7.4820e-002 2.1333e+004 1.0295e+002 3.3296e+002 + -analytic -2.8297e+2 -7.482e-2 2.1333e+4 1.0295e+2 3.3296e+2 # -Range: 0-300 Ferrite-Zn - ZnFe2O4 +8.0000 H+ = + 1.0000 Zn++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 11.7342 - -delta_H -226.609 kJ/mol # Calculated enthalpy of reaction Ferrite-Zn + ZnFe2O4 + 8 H+ = Zn+2 + 2 Fe+3 + 4 H2O + log_k 11.7342 + -delta_H -226.609 kJ/mol # Calculated enthalpy of reaction Ferrite-Zn # Enthalpy of formation: -1169.29 kJ/mol - -analytic -2.9809e+002 -7.7263e-002 1.9067e+004 1.0866e+002 2.9761e+002 + -analytic -2.9809e+2 -7.7263e-2 1.9067e+4 1.0866e+2 2.9761e+2 # -Range: 0-300 Ferroselite - FeSe2 +0.5000 H2O = + 0.2500 O2 + 1.0000 Fe+++ + 1.0000 H+ + 2.0000 Se-- - log_k -80.7998 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ferroselite + FeSe2 + 0.5 H2O = 0.25 O2 + Fe+3 + H+ + 2 Se-2 + log_k -80.7998 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ferroselite # Enthalpy of formation: -25 kcal/mol - -analytic -7.2971e+001 -2.4992e-002 -1.6246e+004 2.1860e+001 -2.5348e+002 + -analytic -7.2971e+1 -2.4992e-2 -1.6246e+4 2.186e+1 -2.5348e+2 # -Range: 0-300 Ferrosilite - FeSiO3 +2.0000 H+ = + 1.0000 Fe++ + 1.0000 H2O + 1.0000 SiO2 - log_k 7.4471 - -delta_H -60.6011 kJ/mol # Calculated enthalpy of reaction Ferrosilite + FeSiO3 + 2 H+ = Fe+2 + H2O + SiO2 + log_k 7.4471 + -delta_H -60.6011 kJ/mol # Calculated enthalpy of reaction Ferrosilite # Enthalpy of formation: -285.658 kcal/mol - -analytic 9.0041e+000 3.7917e-003 5.1625e+003 -6.3009e+000 -3.9565e+005 + -analytic 9.0041e+0 3.7917e-3 5.1625e+3 -6.3009e+0 -3.9565e+5 # -Range: 0-300 Fluorapatite - Ca5(PO4)3F +3.0000 H+ = + 1.0000 F- + 3.0000 HPO4-- + 5.0000 Ca++ - log_k -24.9940 - -delta_H -90.8915 kJ/mol # Calculated enthalpy of reaction Fluorapatite + Ca5(PO4)3F + 3 H+ = F- + 3 HPO4-2 + 5 Ca+2 + log_k -24.994 + -delta_H -90.8915 kJ/mol # Calculated enthalpy of reaction Fluorapatite # Enthalpy of formation: -6836.12 kJ/mol - -analytic -9.3648e+002 -3.2688e-001 2.4398e+004 3.7461e+002 3.8098e+002 + -analytic -9.3648e+2 -3.2688e-1 2.4398e+4 3.7461e+2 3.8098e+2 # -Range: 0-300 Fluorite - CaF2 = + 1.0000 Ca++ + 2.0000 F- - log_k -10.0370 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction Fluorite + CaF2 = Ca+2 + 2 F- + log_k -10.037 + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction Fluorite # Enthalpy of formation: -293 kcal/mol - -analytic -2.5036e+002 -8.4183e-002 4.9525e+003 1.0054e+002 7.7353e+001 + -analytic -2.5036e+2 -8.4183e-2 4.9525e+3 1.0054e+2 7.7353e+1 # -Range: 0-300 Forsterite - Mg2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Mg++ - log_k 27.8626 - -delta_H -205.614 kJ/mol # Calculated enthalpy of reaction Forsterite + Mg2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mg+2 + log_k 27.8626 + -delta_H -205.614 kJ/mol # Calculated enthalpy of reaction Forsterite # Enthalpy of formation: -520 kcal/mol - -analytic -7.6195e+001 -1.4013e-002 1.4763e+004 2.5090e+001 -3.0379e+005 + -analytic -7.6195e+1 -1.4013e-2 1.4763e+4 2.509e+1 -3.0379e+5 # -Range: 0-300 Foshagite - Ca4Si3O9(OH)2:0.5H2O +8.0000 H+ = + 3.0000 SiO2 + 4.0000 Ca++ + 5.5000 H2O - log_k 65.9210 - -delta_H -359.839 kJ/mol # Calculated enthalpy of reaction Foshagite + Ca4Si3O9(OH)2:0.5H2O + 8 H+ = 3 SiO2 + 4 Ca+2 + 5.5 H2O + log_k 65.921 + -delta_H -359.839 kJ/mol # Calculated enthalpy of reaction Foshagite # Enthalpy of formation: -1438.27 kcal/mol - -analytic 2.9983e+001 5.5272e-003 2.3427e+004 -1.3879e+001 -8.9461e+005 + -analytic 2.9983e+1 5.5272e-3 2.3427e+4 -1.3879e+1 -8.9461e+5 # -Range: 0-300 Frankdicksonite - BaF2 = + 1.0000 Ba++ + 2.0000 F- - log_k -5.7600 - -delta_H 0 # Not possible to calculate enthalpy of reaction Frankdicksonite + BaF2 = Ba+2 + 2 F- + log_k -5.76 + -delta_H 0 # Not possible to calculate enthalpy of reaction Frankdicksonite # Enthalpy of formation: 0 kcal/mol Freboldite - CoSe = + 1.0000 Co++ + 1.0000 Se-- - log_k -24.3358 - -delta_H 0 # Not possible to calculate enthalpy of reaction Freboldite + CoSe = Co+2 + Se-2 + log_k -24.3358 + -delta_H 0 # Not possible to calculate enthalpy of reaction Freboldite # Enthalpy of formation: -15.295 kcal/mol - -analytic -1.3763e+001 -1.6924e-003 -3.6938e+003 9.3574e-001 -6.2723e+001 + -analytic -1.3763e+1 -1.6924e-3 -3.6938e+3 9.3574e-1 -6.2723e+1 # -Range: 0-200 Ga - Ga +3.0000 H+ +0.7500 O2 = + 1.0000 Ga+++ + 1.5000 H2O - log_k 92.3567 - -delta_H -631.368 kJ/mol # Calculated enthalpy of reaction Ga + Ga + 3 H+ + 0.75 O2 = Ga+3 + 1.5 H2O + log_k 92.3567 + -delta_H -631.368 kJ/mol # Calculated enthalpy of reaction Ga # Enthalpy of formation: 0 kJ/mol - -analytic -1.3027e+002 -3.9539e-002 3.6027e+004 4.6280e+001 -8.5461e+004 + -analytic -1.3027e+2 -3.9539e-2 3.6027e+4 4.628e+1 -8.5461e+4 # -Range: 0-300 Galena - PbS +1.0000 H+ = + 1.0000 HS- + 1.0000 Pb++ - log_k -14.8544 - -delta_H 83.1361 kJ/mol # Calculated enthalpy of reaction Galena + PbS + H+ = HS- + Pb+2 + log_k -14.8544 + -delta_H 83.1361 kJ/mol # Calculated enthalpy of reaction Galena # Enthalpy of formation: -23.5 kcal/mol - -analytic -1.2124e+002 -4.3477e-002 -1.6463e+003 5.0454e+001 -2.5654e+001 + -analytic -1.2124e+2 -4.3477e-2 -1.6463e+3 5.0454e+1 -2.5654e+1 # -Range: 0-300 Gaylussite - CaNa2(CO3)2:5H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 HCO3- + 2.0000 Na+ + 5.0000 H2O - log_k 11.1641 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gaylussite + CaNa2(CO3)2:5H2O + 2 H+ = Ca+2 + 2 HCO3- + 2 Na+ + 5 H2O + log_k 11.1641 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gaylussite # Enthalpy of formation: 0 kcal/mol Gd - Gd +3.0000 H+ +0.7500 O2 = + 1.0000 Gd+++ + 1.5000 H2O - log_k 180.7573 - -delta_H -1106.67 kJ/mol # Calculated enthalpy of reaction Gd + Gd + 3 H+ + 0.75 O2 = Gd+3 + 1.5 H2O + log_k 180.7573 + -delta_H -1106.67 kJ/mol # Calculated enthalpy of reaction Gd # Enthalpy of formation: 0 kJ/mol - -analytic -3.3949e+002 -6.5698e-002 7.4278e+004 1.2189e+002 -9.7055e+005 + -analytic -3.3949e+2 -6.5698e-2 7.4278e+4 1.2189e+2 -9.7055e+5 # -Range: 0-300 Gd(OH)3 - Gd(OH)3 +3.0000 H+ = + 1.0000 Gd+++ + 3.0000 H2O - log_k 15.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3 + Gd(OH)3 + 3 H+ = Gd+3 + 3 H2O + log_k 15.5852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3 # Enthalpy of formation: 0 kcal/mol Gd(OH)3(am) - Gd(OH)3 +3.0000 H+ = + 1.0000 Gd+++ + 3.0000 H2O - log_k 17.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3(am) + Gd(OH)3 + 3 H+ = Gd+3 + 3 H2O + log_k 17.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3(am) # Enthalpy of formation: 0 kcal/mol Gd2(CO3)3 - Gd2(CO3)3 +3.0000 H+ = + 2.0000 Gd+++ + 3.0000 HCO3- - log_k -3.7136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2(CO3)3 + Gd2(CO3)3 + 3 H+ = 2 Gd+3 + 3 HCO3- + log_k -3.7136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2(CO3)3 # Enthalpy of formation: 0 kcal/mol Gd2O3 - Gd2O3 +6.0000 H+ = + 2.0000 Gd+++ + 3.0000 H2O - log_k 53.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2O3 + Gd2O3 + 6 H+ = 2 Gd+3 + 3 H2O + log_k 53.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2O3 # Enthalpy of formation: 0 kcal/mol GdF3:.5H2O - GdF3:.5H2O = + 0.5000 H2O + 1.0000 Gd+++ + 3.0000 F- - log_k -16.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdF3:.5H2O + GdF3:.5H2O = 0.5 H2O + Gd+3 + 3 F- + log_k -16.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction GdF3:.5H2O # Enthalpy of formation: 0 kcal/mol GdPO4:10H2O - GdPO4:10H2O +1.0000 H+ = + 1.0000 Gd+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4:10H2O + GdPO4:10H2O + H+ = Gd+3 + HPO4-2 + 10 H2O + log_k -11.9782 + -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4:10H2O # Enthalpy of formation: 0 kcal/mol Gehlenite - Ca2Al2SiO7 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 2.0000 Ca++ + 5.0000 H2O - log_k 56.2997 - -delta_H -489.934 kJ/mol # Calculated enthalpy of reaction Gehlenite + Ca2Al2SiO7 + 10 H+ = SiO2 + 2 Al+3 + 2 Ca+2 + 5 H2O + log_k 56.2997 + -delta_H -489.934 kJ/mol # Calculated enthalpy of reaction Gehlenite # Enthalpy of formation: -951.225 kcal/mol - -analytic -2.1784e+002 -6.7200e-002 2.9779e+004 7.8488e+001 4.6473e+002 + -analytic -2.1784e+2 -6.72e-2 2.9779e+4 7.8488e+1 4.6473e+2 # -Range: 0-300 Gibbsite - Al(OH)3 +3.0000 H+ = + 1.0000 Al+++ + 3.0000 H2O - log_k 7.7560 - -delta_H -102.788 kJ/mol # Calculated enthalpy of reaction Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 7.756 + -delta_H -102.788 kJ/mol # Calculated enthalpy of reaction Gibbsite # Enthalpy of formation: -309.065 kcal/mol - -analytic -1.1403e+002 -3.6453e-002 7.7236e+003 4.3134e+001 1.2055e+002 + -analytic -1.1403e+2 -3.6453e-2 7.7236e+3 4.3134e+1 1.2055e+2 # -Range: 0-300 Gismondine - Ca2Al4Si4O16:9H2O +16.0000 H+ = + 2.0000 Ca++ + 4.0000 Al+++ + 4.0000 SiO2 + 17.0000 H2O - log_k 41.7170 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gismondine + Ca2Al4Si4O16:9H2O + 16 H+ = 2 Ca+2 + 4 Al+3 + 4 SiO2 + 17 H2O + log_k 41.717 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gismondine # Enthalpy of formation: 0 kcal/mol Glauberite - Na2Ca(SO4)2 = + 1.0000 Ca++ + 2.0000 Na+ + 2.0000 SO4-- - log_k -5.4690 - -delta_H 0 # Not possible to calculate enthalpy of reaction Glauberite + Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2 + log_k -5.469 + -delta_H 0 # Not possible to calculate enthalpy of reaction Glauberite # Enthalpy of formation: 0 kcal/mol Goethite - FeOOH +3.0000 H+ = + 1.0000 Fe+++ + 2.0000 H2O - log_k 0.5345 - -delta_H -61.9291 kJ/mol # Calculated enthalpy of reaction Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 0.5345 + -delta_H -61.9291 kJ/mol # Calculated enthalpy of reaction Goethite # Enthalpy of formation: -559.328 kJ/mol - -analytic -6.0331e+001 -1.0847e-002 4.7759e+003 1.9429e+001 8.1122e+001 + -analytic -6.0331e+1 -1.0847e-2 4.7759e+3 1.9429e+1 8.1122e+1 # -Range: 0-200 Greenalite - Fe3Si2O5(OH)4 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Fe++ + 5.0000 H2O - log_k 22.6701 - -delta_H -165.297 kJ/mol # Calculated enthalpy of reaction Greenalite + Fe3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Fe+2 + 5 H2O + log_k 22.6701 + -delta_H -165.297 kJ/mol # Calculated enthalpy of reaction Greenalite # Enthalpy of formation: -787.778 kcal/mol - -analytic -1.4187e+001 -3.8377e-003 1.1710e+004 1.6442e+000 -4.8290e+005 + -analytic -1.4187e+1 -3.8377e-3 1.171e+4 1.6442e+0 -4.829e+5 # -Range: 0-300 Grossular - Ca3Al2(SiO4)3 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O - log_k 51.9228 - -delta_H -432.006 kJ/mol # Calculated enthalpy of reaction Grossular + Ca3Al2(SiO4)3 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 SiO2 + 6 H2O + log_k 51.9228 + -delta_H -432.006 kJ/mol # Calculated enthalpy of reaction Grossular # Enthalpy of formation: -1582.74 kcal/mol - -analytic 2.9389e+001 -2.2478e-002 2.0323e+004 -1.4624e+001 -2.5674e+005 + -analytic 2.9389e+1 -2.2478e-2 2.0323e+4 -1.4624e+1 -2.5674e+5 # -Range: 0-300 Gypsum - CaSO4:2H2O = + 1.0000 Ca++ + 1.0000 SO4-- + 2.0000 H2O - log_k -4.4823 - -delta_H -1.66746 kJ/mol # Calculated enthalpy of reaction Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.4823 + -delta_H -1.66746 kJ/mol # Calculated enthalpy of reaction Gypsum # Enthalpy of formation: -2022.69 kJ/mol - -analytic -2.4417e+002 -8.3329e-002 5.5958e+003 9.9301e+001 8.7389e+001 + -analytic -2.4417e+2 -8.3329e-2 5.5958e+3 9.9301e+1 8.7389e+1 # -Range: 0-300 Gyrolite - Ca2Si3O7(OH)2:1.5H2O +4.0000 H+ = + 2.0000 Ca++ + 3.0000 SiO2 + 4.5000 H2O - log_k 22.9099 - -delta_H -82.862 kJ/mol # Calculated enthalpy of reaction Gyrolite + Ca2Si3O7(OH)2:1.5H2O + 4 H+ = 2 Ca+2 + 3 SiO2 + 4.5 H2O + log_k 22.9099 + -delta_H -82.862 kJ/mol # Calculated enthalpy of reaction Gyrolite # Enthalpy of formation: -1176.55 kcal/mol - -analytic -2.4416e+001 1.4646e-002 1.6181e+004 2.3723e+000 -1.5369e+006 + -analytic -2.4416e+1 1.4646e-2 1.6181e+4 2.3723e+0 -1.5369e+6 # -Range: 0-300 HTcO4 - HTcO4 = + 1.0000 H+ + 1.0000 TcO4- - log_k 5.9566 - -delta_H -12.324 kJ/mol # Calculated enthalpy of reaction HTcO4 + HTcO4 = H+ + TcO4- + log_k 5.9566 + -delta_H -12.324 kJ/mol # Calculated enthalpy of reaction HTcO4 # Enthalpy of formation: -703.945 kJ/mol - -analytic 3.0005e+001 7.6416e-003 -5.3546e+001 -1.0568e+001 -9.1953e-001 + -analytic 3.0005e+1 7.6416e-3 -5.3546e+1 -1.0568e+1 -9.1953e-1 # -Range: 0-200 Haiweeite - Ca(UO2)2(Si2O5)3:5H2O +6.0000 H+ = + 1.0000 Ca++ + 2.0000 UO2++ + 6.0000 SiO2 + 8.0000 H2O - log_k -7.0413 - -delta_H 0 # Not possible to calculate enthalpy of reaction Haiweeite + Ca(UO2)2(Si2O5)3:5H2O + 6 H+ = Ca+2 + 2 UO2+2 + 6 SiO2 + 8 H2O + log_k -7.0413 + -delta_H 0 # Not possible to calculate enthalpy of reaction Haiweeite # Enthalpy of formation: 0 kcal/mol Halite - NaCl = + 1.0000 Cl- + 1.0000 Na+ - log_k 1.5855 - -delta_H 3.7405 kJ/mol # Calculated enthalpy of reaction Halite + NaCl = Cl- + Na+ + log_k 1.5855 + -delta_H 3.7405 kJ/mol # Calculated enthalpy of reaction Halite # Enthalpy of formation: -98.26 kcal/mol - -analytic -1.0163e+002 -3.4761e-002 2.2796e+003 4.2802e+001 3.5602e+001 + -analytic -1.0163e+2 -3.4761e-2 2.2796e+3 4.2802e+1 3.5602e+1 # -Range: 0-300 Hatrurite - Ca3SiO5 +6.0000 H+ = + 1.0000 SiO2 + 3.0000 Ca++ + 3.0000 H2O - log_k 73.4056 - -delta_H -434.684 kJ/mol # Calculated enthalpy of reaction Hatrurite + Ca3SiO5 + 6 H+ = SiO2 + 3 Ca+2 + 3 H2O + log_k 73.4056 + -delta_H -434.684 kJ/mol # Calculated enthalpy of reaction Hatrurite # Enthalpy of formation: -700.234 kcal/mol - -analytic -4.5448e+001 -1.9998e-002 2.3800e+004 1.8494e+001 -7.3385e+004 + -analytic -4.5448e+1 -1.9998e-2 2.38e+4 1.8494e+1 -7.3385e+4 # -Range: 0-300 Hausmannite - Mn3O4 +8.0000 H+ = + 1.0000 Mn++ + 2.0000 Mn+++ + 4.0000 H2O - log_k 10.1598 - -delta_H -268.121 kJ/mol # Calculated enthalpy of reaction Hausmannite + Mn3O4 + 8 H+ = Mn+2 + 2 Mn+3 + 4 H2O + log_k 10.1598 + -delta_H -268.121 kJ/mol # Calculated enthalpy of reaction Hausmannite # Enthalpy of formation: -1387.83 kJ/mol - -analytic -2.0600e+002 -2.2214e-002 2.0160e+004 6.2700e+001 3.1464e+002 + -analytic -2.06e+2 -2.2214e-2 2.016e+4 6.27e+1 3.1464e+2 # -Range: 0-300 Heazlewoodite - Ni3S2 +4.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 HS- + 3.0000 Ni++ - log_k 28.2477 - -delta_H -270.897 kJ/mol # Calculated enthalpy of reaction Heazlewoodite + Ni3S2 + 4 H+ + 0.5 O2 = H2O + 2 HS- + 3 Ni+2 + log_k 28.2477 + -delta_H -270.897 kJ/mol # Calculated enthalpy of reaction Heazlewoodite # Enthalpy of formation: -203.012 kJ/mol - -analytic -3.5439e+002 -1.1740e-001 2.1811e+004 1.3919e+002 3.4044e+002 + -analytic -3.5439e+2 -1.174e-1 2.1811e+4 1.3919e+2 3.4044e+2 # -Range: 0-300 Hedenbergite - CaFe(SiO3)2 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Fe++ + 2.0000 H2O + 2.0000 SiO2 - log_k 19.6060 - -delta_H -124.507 kJ/mol # Calculated enthalpy of reaction Hedenbergite + CaFe(SiO3)2 + 4 H+ = Ca+2 + Fe+2 + 2 H2O + 2 SiO2 + log_k 19.606 + -delta_H -124.507 kJ/mol # Calculated enthalpy of reaction Hedenbergite # Enthalpy of formation: -678.276 kcal/mol - -analytic -1.9473e+001 1.5288e-003 1.2910e+004 2.1729e+000 -9.0058e+005 + -analytic -1.9473e+1 1.5288e-3 1.291e+4 2.1729e+0 -9.0058e+5 # -Range: 0-300 Hematite - Fe2O3 +6.0000 H+ = + 2.0000 Fe+++ + 3.0000 H2O - log_k 0.1086 - -delta_H -129.415 kJ/mol # Calculated enthalpy of reaction Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 0.1086 + -delta_H -129.415 kJ/mol # Calculated enthalpy of reaction Hematite # Enthalpy of formation: -197.72 kcal/mol - -analytic -2.2015e+002 -6.0290e-002 1.1812e+004 8.0253e+001 1.8438e+002 + -analytic -2.2015e+2 -6.029e-2 1.1812e+4 8.0253e+1 1.8438e+2 # -Range: 0-300 Hercynite - FeAl2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Al+++ + 4.0000 H2O - log_k 28.8484 - -delta_H -345.961 kJ/mol # Calculated enthalpy of reaction Hercynite + FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O + log_k 28.8484 + -delta_H -345.961 kJ/mol # Calculated enthalpy of reaction Hercynite # Enthalpy of formation: -1966.45 kJ/mol - -analytic -3.1848e+002 -7.9501e-002 2.5892e+004 1.1483e+002 4.0412e+002 + -analytic -3.1848e+2 -7.9501e-2 2.5892e+4 1.1483e+2 4.0412e+2 # -Range: 0-300 Herzenbergite - SnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Sn++ - log_k -15.5786 - -delta_H 81.6466 kJ/mol # Calculated enthalpy of reaction Herzenbergite + SnS + H+ = HS- + Sn+2 + log_k -15.5786 + -delta_H 81.6466 kJ/mol # Calculated enthalpy of reaction Herzenbergite # Enthalpy of formation: -25.464 kcal/mol - -analytic -1.3576e+002 -4.6594e-002 -1.1572e+003 5.5740e+001 -1.8018e+001 + -analytic -1.3576e+2 -4.6594e-2 -1.1572e+3 5.574e+1 -1.8018e+1 # -Range: 0-300 Heulandite # Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6 +8.6600 H+ = + 0.0650 Ba++ + 0.1320 K+ + 0.1750 Sr++ + 0.3830 Na+ + 0.5850 Ca++ + 2.1650 Al+++ + 6.8350 SiO2 + 10.3300 H2O - Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6H2O +8.6600 H+ = + 0.0650 Ba++ + 0.1320 K+ + 0.1750 Sr++ + 0.3830 Na+ + 0.5850 Ca++ + 2.1650 Al+++ + 6.8350 SiO2 + 10.3300 H2O - log_k 3.3506 - -delta_H -97.2942 kJ/mol # Calculated enthalpy of reaction Heulandite + Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6H2O + 8.66 H+ = 0.065 Ba+2 + 0.132 K+ + 0.175 Sr+2 + 0.383 Na+ + 0.585 Ca+2 + 2.165 Al+3 + 6.835 SiO2 + 10.33 H2O + log_k 3.3506 + -delta_H -97.2942 kJ/mol # Calculated enthalpy of reaction Heulandite # Enthalpy of formation: -10594.5 kJ/mol - -analytic -1.8364e+001 2.7879e-002 2.8426e+004 -1.7427e+001 -3.4723e+006 + -analytic -1.8364e+1 2.7879e-2 2.8426e+4 -1.7427e+1 -3.4723e+6 # -Range: 0-300 Hexahydrite - MgSO4:6H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 6.0000 H2O - log_k -1.7268 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hexahydrite + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.7268 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hexahydrite # Enthalpy of formation: 0 kcal/mol Hf(s) - Hf +4.0000 H+ +1.0000 O2 = + 1.0000 Hf++++ + 2.0000 H2O - log_k 189.9795 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf + Hf + 4 H+ + O2 = Hf+4 + 2 H2O + log_k 189.9795 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf # Enthalpy of formation: -0.003 kJ/mol HfB2 - HfB2 +2.7500 H+ +2.2500 H2O = + 0.7500 B(OH)3 + 1.0000 Hf++++ + 1.2500 BH4- - log_k 55.7691 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfB2 + HfB2 + 2.75 H+ + 2.25 H2O = 0.75 B(OH)3 + Hf+4 + 1.25 BH4- + log_k 55.7691 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfB2 # Enthalpy of formation: -78.6 kJ/mol HfBr2 - HfBr2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 Br- - log_k 114.9446 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr2 + HfBr2 + 2 H+ + 0.5 O2 = H2O + Hf+4 + 2 Br- + log_k 114.9446 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr2 # Enthalpy of formation: -98 kJ/mol HfBr4 - HfBr4 = + 1.0000 Hf++++ + 4.0000 Br- - log_k 48.2921 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr4 + HfBr4 = Hf+4 + 4 Br- + log_k 48.2921 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr4 # Enthalpy of formation: -183.1 kJ/mol HfC - HfC +3.0000 H+ +2.0000 O2 = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Hf++++ - log_k 215.0827 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfC + HfC + 3 H+ + 2 O2 = H2O + HCO3- + Hf+4 + log_k 215.0827 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfC # Enthalpy of formation: -54 kJ/mol HfCl2 - HfCl2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 Cl- - log_k 109.1624 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl2 + HfCl2 + 2 H+ + 0.5 O2 = H2O + Hf+4 + 2 Cl- + log_k 109.1624 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl2 # Enthalpy of formation: -125 kJ/mol HfCl4 - HfCl4 = + 1.0000 Hf++++ + 4.0000 Cl- - log_k 38.0919 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl4 + HfCl4 = Hf+4 + 4 Cl- + log_k 38.0919 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl4 # Enthalpy of formation: -236.7 kJ/mol HfF2 - HfF2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 F- - log_k 81.7647 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfF2 + HfF2 + 2 H+ + 0.5 O2 = H2O + Hf+4 + 2 F- + log_k 81.7647 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfF2 # Enthalpy of formation: -235 kJ/mol HfF4 - HfF4 = + 1.0000 Hf++++ + 4.0000 F- - log_k -19.2307 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfF4 + HfF4 = Hf+4 + 4 F- + log_k -19.2307 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfF4 # Enthalpy of formation: -461.4 kJ/mol HfI2 - HfI2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 I- - log_k 117.4971 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfI2 + HfI2 + 2 H+ + 0.5 O2 = H2O + Hf+4 + 2 I- + log_k 117.4971 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfI2 # Enthalpy of formation: -65 kJ/mol HfI4 - HfI4 = + 1.0000 Hf++++ + 4.0000 I- - log_k 54.1798 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfI4 + HfI4 = Hf+4 + 4 I- + log_k 54.1798 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfI4 # Enthalpy of formation: -118 kJ/mol HfN - HfN +4.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Hf++++ + 1.0000 NH3 - log_k 69.4646 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfN + HfN + 4 H+ + 0.25 O2 = 0.5 H2O + Hf+4 + NH3 + log_k 69.4646 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfN # Enthalpy of formation: -89.3 kJ/mol HfO2 - HfO2 +4.0000 H+ = + 1.0000 Hf++++ + 2.0000 H2O - log_k 1.1829 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfO2 + HfO2 + 4 H+ = Hf+4 + 2 H2O + log_k 1.1829 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfO2 # Enthalpy of formation: -267.1 kJ/mol HfS2 - HfS2 +2.0000 H+ = + 1.0000 Hf++++ + 2.0000 HS- - log_k -1.5845 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfS2 + HfS2 + 2 H+ = Hf+4 + 2 HS- + log_k -1.5845 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfS2 # Enthalpy of formation: -140 kJ/mol HfS3 - HfS3 +1.0000 H+ = + 1.0000 HS- + 1.0000 Hf++++ + 1.0000 S2-- - log_k -18.9936 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfS3 + HfS3 + H+ = HS- + Hf+4 + S2-2 + log_k -18.9936 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfS3 # Enthalpy of formation: -149 kJ/mol Hg2SO4 - Hg2SO4 = + 1.0000 Hg2++ + 1.0000 SO4-- - log_k -6.1170 - -delta_H 0.30448 kJ/mol # Calculated enthalpy of reaction Hg2SO4 + Hg2SO4 = Hg2+2 + SO4-2 + log_k -6.117 + -delta_H 0.30448 kJ/mol # Calculated enthalpy of reaction Hg2SO4 # Enthalpy of formation: -743.09 kJ/mol - -analytic -3.2342e+001 -1.9881e-002 1.6292e+003 1.0781e+001 2.7677e+001 + -analytic -3.2342e+1 -1.9881e-2 1.6292e+3 1.0781e+1 2.7677e+1 # -Range: 0-200 Hg2SeO3 - Hg2SeO3 = + 1.0000 Hg2++ + 1.0000 SeO3-- - log_k -14.2132 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hg2SeO3 + Hg2SeO3 = Hg2+2 + SeO3-2 + log_k -14.2132 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hg2SeO3 # Enthalpy of formation: 0 kcal/mol HgSeO3 - HgSeO3 = + 1.0000 Hg++ + 1.0000 SeO3-- - log_k -13.8957 - -delta_H 0 # Not possible to calculate enthalpy of reaction HgSeO3 + HgSeO3 = Hg+2 + SeO3-2 + log_k -13.8957 + -delta_H 0 # Not possible to calculate enthalpy of reaction HgSeO3 # Enthalpy of formation: 0 kcal/mol Hillebrandite - Ca2SiO3(OH)2:0.17H2O +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 3.1700 H2O - log_k 36.8190 - -delta_H -203.074 kJ/mol # Calculated enthalpy of reaction Hillebrandite + Ca2SiO3(OH)2:0.17H2O + 4 H+ = SiO2 + 2 Ca+2 + 3.17 H2O + log_k 36.819 + -delta_H -203.074 kJ/mol # Calculated enthalpy of reaction Hillebrandite # Enthalpy of formation: -637.404 kcal/mol - -analytic -1.9360e+001 -7.5176e-003 1.1947e+004 8.0558e+000 -1.4504e+005 + -analytic -1.936e+1 -7.5176e-3 1.1947e+4 8.0558e+0 -1.4504e+5 # -Range: 0-300 Hinsdalite - Al3PPbSO8(OH)6 +7.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pb++ + 1.0000 SO4-- + 3.0000 Al+++ + 6.0000 H2O - log_k 9.8218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hinsdalite + Al3PPbSO8(OH)6 + 7 H+ = HPO4-2 + Pb+2 + SO4-2 + 3 Al+3 + 6 H2O + log_k 9.8218 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hinsdalite # Enthalpy of formation: 0 kcal/mol Ho - Ho +3.0000 H+ +0.7500 O2 = + 1.0000 Ho+++ + 1.5000 H2O - log_k 182.8097 - -delta_H -1126.75 kJ/mol # Calculated enthalpy of reaction Ho + Ho + 3 H+ + 0.75 O2 = Ho+3 + 1.5 H2O + log_k 182.8097 + -delta_H -1126.75 kJ/mol # Calculated enthalpy of reaction Ho # Enthalpy of formation: 0 kJ/mol - -analytic -6.5903e+001 -2.8190e-002 5.9370e+004 2.3421e+001 9.2643e+002 + -analytic -6.5903e+1 -2.819e-2 5.937e+4 2.3421e+1 9.2643e+2 # -Range: 0-300 Ho(OH)3 - Ho(OH)3 +3.0000 H+ = + 1.0000 Ho+++ + 3.0000 H2O - log_k 15.3852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3 + Ho(OH)3 + 3 H+ = Ho+3 + 3 H2O + log_k 15.3852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3 # Enthalpy of formation: 0 kcal/mol Ho(OH)3(am) - Ho(OH)3 +3.0000 H+ = + 1.0000 Ho+++ + 3.0000 H2O - log_k 17.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3(am) + Ho(OH)3 + 3 H+ = Ho+3 + 3 H2O + log_k 17.7852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3(am) # Enthalpy of formation: 0 kcal/mol Ho2(CO3)3 - Ho2(CO3)3 +3.0000 H+ = + 2.0000 Ho+++ + 3.0000 HCO3- - log_k -2.8136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2(CO3)3 + Ho2(CO3)3 + 3 H+ = 2 Ho+3 + 3 HCO3- + log_k -2.8136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2(CO3)3 # Enthalpy of formation: 0 kcal/mol Ho2O3 - Ho2O3 +6.0000 H+ = + 2.0000 Ho+++ + 3.0000 H2O - log_k 47.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2O3 + Ho2O3 + 6 H+ = 2 Ho+3 + 3 H2O + log_k 47.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2O3 # Enthalpy of formation: 0 kcal/mol HoF3:.5H2O - HoF3:.5H2O = + 0.5000 H2O + 1.0000 Ho+++ + 3.0000 F- - log_k -16.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoF3:.5H2O + HoF3:.5H2O = 0.5 H2O + Ho+3 + 3 F- + log_k -16.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction HoF3:.5H2O # Enthalpy of formation: 0 kcal/mol HoPO4:10H2O - HoPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Ho+++ + 10.0000 H2O - log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4:10H2O + HoPO4:10H2O + H+ = HPO4-2 + Ho+3 + 10 H2O + log_k -11.8782 + -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4:10H2O # Enthalpy of formation: 0 kcal/mol Hopeite - Zn3(PO4)2:4H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Zn++ + 4.0000 H2O - log_k -10.6563 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hopeite + Zn3(PO4)2:4H2O + 2 H+ = 2 HPO4-2 + 3 Zn+2 + 4 H2O + log_k -10.6563 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hopeite # Enthalpy of formation: 0 kcal/mol Huntite - CaMg3(CO3)4 +4.0000 H+ = + 1.0000 Ca++ + 3.0000 Mg++ + 4.0000 HCO3- - log_k 10.3010 - -delta_H -171.096 kJ/mol # Calculated enthalpy of reaction Huntite + CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- + log_k 10.301 + -delta_H -171.096 kJ/mol # Calculated enthalpy of reaction Huntite # Enthalpy of formation: -1082.6 kcal/mol - -analytic -6.5000e+002 -1.9671e-001 2.4815e+004 2.5688e+002 3.8740e+002 + -analytic -6.5e+2 -1.9671e-1 2.4815e+4 2.5688e+2 3.874e+2 # -Range: 0-300 Hydroboracite - MgCaB6O11:6H2O +4.0000 H+ +1.0000 H2O = + 1.0000 Ca++ + 1.0000 Mg++ + 6.0000 B(OH)3 - log_k 20.3631 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydroboracite + MgCaB6O11:6H2O + 4 H+ + H2O = Ca+2 + Mg+2 + 6 B(OH)3 + log_k 20.3631 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydroboracite # Enthalpy of formation: 0 kcal/mol Hydrocerussite - Pb3(CO3)2(OH)2 +4.0000 H+ = + 2.0000 H2O + 2.0000 HCO3- + 3.0000 Pb++ - log_k 1.8477 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrocerussite + Pb3(CO3)2(OH)2 + 4 H+ = 2 H2O + 2 HCO3- + 3 Pb+2 + log_k 1.8477 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrocerussite # Enthalpy of formation: 0 kcal/mol Hydromagnesite - Mg5(CO3)4(OH)2:4H2O +6.0000 H+ = + 4.0000 HCO3- + 5.0000 Mg++ + 6.0000 H2O - log_k 30.8539 - -delta_H -289.696 kJ/mol # Calculated enthalpy of reaction Hydromagnesite + Mg5(CO3)4(OH)2:4H2O + 6 H+ = 4 HCO3- + 5 Mg+2 + 6 H2O + log_k 30.8539 + -delta_H -289.696 kJ/mol # Calculated enthalpy of reaction Hydromagnesite # Enthalpy of formation: -1557.09 kcal/mol - -analytic -7.9288e+002 -2.1448e-001 3.6749e+004 3.0888e+002 5.7367e+002 + -analytic -7.9288e+2 -2.1448e-1 3.6749e+4 3.0888e+2 5.7367e+2 # -Range: 0-300 Hydrophilite - CaCl2 = + 1.0000 Ca++ + 2.0000 Cl- - log_k 11.7916 - -delta_H -81.4545 kJ/mol # Calculated enthalpy of reaction Hydrophilite + CaCl2 = Ca+2 + 2 Cl- + log_k 11.7916 + -delta_H -81.4545 kJ/mol # Calculated enthalpy of reaction Hydrophilite # Enthalpy of formation: -795.788 kJ/mol - -analytic -2.2278e+002 -8.1414e-002 9.0298e+003 9.2349e+001 1.4097e+002 + -analytic -2.2278e+2 -8.1414e-2 9.0298e+3 9.2349e+1 1.4097e+2 # -Range: 0-300 Hydroxylapatite - Ca5(OH)(PO4)3 +4.0000 H+ = + 1.0000 H2O + 3.0000 HPO4-- + 5.0000 Ca++ - log_k -3.0746 - -delta_H -191.982 kJ/mol # Calculated enthalpy of reaction Hydroxylapatite + Ca5(OH)(PO4)3 + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + log_k -3.0746 + -delta_H -191.982 kJ/mol # Calculated enthalpy of reaction Hydroxylapatite # Enthalpy of formation: -6685.52 kJ/mol - -analytic -8.5221e+002 -2.9430e-001 2.8125e+004 3.4044e+002 4.3911e+002 + -analytic -8.5221e+2 -2.943e-1 2.8125e+4 3.4044e+2 4.3911e+2 # -Range: 0-300 Hydrozincite - Zn5(OH)6(CO3)2 +8.0000 H+ = + 2.0000 HCO3- + 5.0000 Zn++ + 6.0000 H2O - log_k 30.3076 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrozincite + Zn5(OH)6(CO3)2 + 8 H+ = 2 HCO3- + 5 Zn+2 + 6 H2O + log_k 30.3076 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrozincite # Enthalpy of formation: 0 kcal/mol I2 - I2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 I- - log_k -24.8084 - -delta_H 165.967 kJ/mol # Calculated enthalpy of reaction I2 + I2 + H2O = 0.5 O2 + 2 H+ + 2 I- + log_k -24.8084 + -delta_H 165.967 kJ/mol # Calculated enthalpy of reaction I2 # Enthalpy of formation: 0 kJ/mol - -analytic -1.7135e+002 -6.2810e-002 -4.7225e+003 7.3181e+001 -7.3640e+001 + -analytic -1.7135e+2 -6.281e-2 -4.7225e+3 7.3181e+1 -7.364e+1 # -Range: 0-300 Ice - H2O = + 1.0000 H2O - log_k 0.1387 - -delta_H 6.74879 kJ/mol # Calculated enthalpy of reaction Ice + H2O = H2O + log_k 0.1387 + -delta_H 6.74879 kJ/mol # Calculated enthalpy of reaction Ice # Enthalpy of formation: -69.93 kcal/mol - -analytic -2.3260e+001 4.7948e-004 7.7351e+002 8.3499e+000 1.3143e+001 + -analytic -2.326e+1 4.7948e-4 7.7351e+2 8.3499e+0 1.3143e+1 # -Range: 0-200 Illite - K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 +8.0000 H+ = + 0.2500 Mg++ + 0.6000 K+ + 2.3000 Al+++ + 3.5000 SiO2 + 5.0000 H2O - log_k 9.0260 - -delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite + K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 + 8 H+ = 0.25 Mg+2 + 0.6 K+ + 2.3 Al+3 + 3.5 SiO2 + 5 H2O + log_k 9.026 + -delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite # Enthalpy of formation: -1394.71 kcal/mol - -analytic 2.6069e+001 -1.2553e-003 1.3670e+004 -2.0232e+001 -1.1204e+006 + -analytic 2.6069e+1 -1.2553e-3 1.367e+4 -2.0232e+1 -1.1204e+6 # -Range: 0-300 Ilmenite - FeTiO3 +2.0000 H+ +1.0000 H2O = + 1.0000 Fe++ + 1.0000 Ti(OH)4 - log_k 0.9046 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ilmenite + FeTiO3 + 2 H+ + H2O = Fe+2 + Ti(OH)4 + log_k 0.9046 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ilmenite # Enthalpy of formation: -1236.65 kJ/mol In - In +3.0000 H+ +0.7500 O2 = + 1.0000 In+++ + 1.5000 H2O - log_k 81.6548 - -delta_H -524.257 kJ/mol # Calculated enthalpy of reaction In + In + 3 H+ + 0.75 O2 = In+3 + 1.5 H2O + log_k 81.6548 + -delta_H -524.257 kJ/mol # Calculated enthalpy of reaction In # Enthalpy of formation: 0 kJ/mol - -analytic -1.1773e+002 -3.7657e-002 3.1802e+004 4.2438e+001 -9.6348e+004 + -analytic -1.1773e+2 -3.7657e-2 3.1802e+4 4.2438e+1 -9.6348e+4 # -Range: 0-300 Jadeite - NaAl(SiO3)2 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 2.0000 SiO2 - log_k 8.3888 - -delta_H -84.4415 kJ/mol # Calculated enthalpy of reaction Jadeite + NaAl(SiO3)2 + 4 H+ = Al+3 + Na+ + 2 H2O + 2 SiO2 + log_k 8.3888 + -delta_H -84.4415 kJ/mol # Calculated enthalpy of reaction Jadeite # Enthalpy of formation: -722.116 kcal/mol - -analytic 1.5934e+000 5.0757e-003 9.5602e+003 -7.0164e+000 -8.4454e+005 + -analytic 1.5934e+0 5.0757e-3 9.5602e+3 -7.0164e+0 -8.4454e+5 # -Range: 0-300 Jarosite - KFe3(SO4)2(OH)6 +6.0000 H+ = + 1.0000 K+ + 2.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O - log_k -9.3706 - -delta_H -191.343 kJ/mol # Calculated enthalpy of reaction Jarosite + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 2 SO4-2 + 3 Fe+3 + 6 H2O + log_k -9.3706 + -delta_H -191.343 kJ/mol # Calculated enthalpy of reaction Jarosite # Enthalpy of formation: -894.79 kcal/mol - -analytic -1.0813e+002 -5.0381e-002 9.6893e+003 3.2832e+001 1.6457e+002 + -analytic -1.0813e+2 -5.0381e-2 9.6893e+3 3.2832e+1 1.6457e+2 # -Range: 0-200 Jarosite-Na - NaFe3(SO4)2(OH)6 +6.0000 H+ = + 1.0000 Na+ + 2.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O - log_k -5.4482 - -delta_H 0 # Not possible to calculate enthalpy of reaction Jarosite-Na + NaFe3(SO4)2(OH)6 + 6 H+ = Na+ + 2 SO4-2 + 3 Fe+3 + 6 H2O + log_k -5.4482 + -delta_H 0 # Not possible to calculate enthalpy of reaction Jarosite-Na # Enthalpy of formation: 0 kcal/mol K - K +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 K+ - log_k 70.9861 - -delta_H -392.055 kJ/mol # Calculated enthalpy of reaction K + K + H+ + 0.25 O2 = 0.5 H2O + K+ + log_k 70.9861 + -delta_H -392.055 kJ/mol # Calculated enthalpy of reaction K # Enthalpy of formation: 0 kJ/mol - -analytic -3.1102e+001 -1.0003e-002 2.1338e+004 1.3534e+001 3.3296e+002 + -analytic -3.1102e+1 -1.0003e-2 2.1338e+4 1.3534e+1 3.3296e+2 # -Range: 0-300 K-Feldspar - KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 - log_k -0.2753 - -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction K-Feldspar + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction K-Feldspar # Enthalpy of formation: -949.188 kcal/mol - -analytic -1.0684e+000 1.3111e-002 1.1671e+004 -9.9129e+000 -1.5855e+006 + -analytic -1.0684e+0 1.3111e-2 1.1671e+4 -9.9129e+0 -1.5855e+6 # -Range: 0-300 K2CO3:1.5H2O - K2CO3:1.5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.5000 H2O + 2.0000 K+ - log_k 13.3785 - -delta_H 0 # Not possible to calculate enthalpy of reaction K2CO3:1.5H2O + K2CO3:1.5H2O + H+ = HCO3- + 1.5 H2O + 2 K+ + log_k 13.3785 + -delta_H 0 # Not possible to calculate enthalpy of reaction K2CO3:1.5H2O # Enthalpy of formation: 0 kcal/mol K2O - K2O +2.0000 H+ = + 1.0000 H2O + 2.0000 K+ - log_k 84.0405 - -delta_H -427.006 kJ/mol # Calculated enthalpy of reaction K2O + K2O + 2 H+ = H2O + 2 K+ + log_k 84.0405 + -delta_H -427.006 kJ/mol # Calculated enthalpy of reaction K2O # Enthalpy of formation: -86.8 kcal/mol - -analytic -1.8283e+001 -5.2255e-003 2.3184e+004 1.0553e+001 3.6177e+002 + -analytic -1.8283e+1 -5.2255e-3 2.3184e+4 1.0553e+1 3.6177e+2 # -Range: 0-300 K2Se - K2Se = + 1.0000 Se-- + 2.0000 K+ - log_k 11.2925 - -delta_H 0 # Not possible to calculate enthalpy of reaction K2Se + K2Se = Se-2 + 2 K+ + log_k 11.2925 + -delta_H 0 # Not possible to calculate enthalpy of reaction K2Se # Enthalpy of formation: -92 kcal/mol - -analytic 1.8182e+001 7.8828e-003 2.6345e+003 -7.3075e+000 4.4732e+001 + -analytic 1.8182e+1 7.8828e-3 2.6345e+3 -7.3075e+0 4.4732e+1 # -Range: 0-200 K2UO4 - K2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 K+ - log_k 33.8714 - -delta_H -174.316 kJ/mol # Calculated enthalpy of reaction K2UO4 + K2UO4 + 4 H+ = UO2+2 + 2 H2O + 2 K+ + log_k 33.8714 + -delta_H -174.316 kJ/mol # Calculated enthalpy of reaction K2UO4 # Enthalpy of formation: -1920.7 kJ/mol - -analytic -7.0905e+001 -2.5680e-003 1.2244e+004 2.6056e+001 2.0794e+002 + -analytic -7.0905e+1 -2.568e-3 1.2244e+4 2.6056e+1 2.0794e+2 # -Range: 0-200 K3H(SO4)2 - K3H(SO4)2 = + 1.0000 H+ + 2.0000 SO4-- + 3.0000 K+ - log_k -3.6233 - -delta_H 0 # Not possible to calculate enthalpy of reaction K3H(SO4)2 + K3H(SO4)2 = H+ + 2 SO4-2 + 3 K+ + log_k -3.6233 + -delta_H 0 # Not possible to calculate enthalpy of reaction K3H(SO4)2 # Enthalpy of formation: 0 kcal/mol K8H4(CO3)6:3H2O - K8H4(CO3)6:3H2O +2.0000 H+ = + 3.0000 H2O + 6.0000 HCO3- + 8.0000 K+ - log_k 27.7099 - -delta_H 0 # Not possible to calculate enthalpy of reaction K8H4(CO3)6:3H2O + K8H4(CO3)6:3H2O + 2 H+ = 3 H2O + 6 HCO3- + 8 K+ + log_k 27.7099 + -delta_H 0 # Not possible to calculate enthalpy of reaction K8H4(CO3)6:3H2O # Enthalpy of formation: 0 kcal/mol KAl(SO4)2 - KAl(SO4)2 = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 SO4-- - log_k 3.3647 - -delta_H -139.485 kJ/mol # Calculated enthalpy of reaction KAl(SO4)2 + KAl(SO4)2 = Al+3 + K+ + 2 SO4-2 + log_k 3.3647 + -delta_H -139.485 kJ/mol # Calculated enthalpy of reaction KAl(SO4)2 # Enthalpy of formation: -2470.29 kJ/mol - -analytic -4.2785e+002 -1.6303e-001 1.5311e+004 1.7312e+002 2.3904e+002 + -analytic -4.2785e+2 -1.6303e-1 1.5311e+4 1.7312e+2 2.3904e+2 # -Range: 0-300 KBr - KBr = + 1.0000 Br- + 1.0000 K+ - log_k 1.0691 - -delta_H 20.125 kJ/mol # Calculated enthalpy of reaction KBr + KBr = Br- + K+ + log_k 1.0691 + -delta_H 20.125 kJ/mol # Calculated enthalpy of reaction KBr # Enthalpy of formation: -393.798 kJ/mol - -analytic -7.3164e+001 -3.1240e-002 4.8140e+002 3.3104e+001 7.5336e+000 + -analytic -7.3164e+1 -3.124e-2 4.814e+2 3.3104e+1 7.5336e+0 # -Range: 0-300 KMgCl3 - KMgCl3 = + 1.0000 K+ + 1.0000 Mg++ + 3.0000 Cl- - log_k 21.2618 - -delta_H -132.768 kJ/mol # Calculated enthalpy of reaction KMgCl3 + KMgCl3 = K+ + Mg+2 + 3 Cl- + log_k 21.2618 + -delta_H -132.768 kJ/mol # Calculated enthalpy of reaction KMgCl3 # Enthalpy of formation: -1086.6 kJ/mol - -analytic -8.4641e+000 -3.2688e-002 5.1496e+003 8.9652e+000 8.7450e+001 + -analytic -8.4641e+0 -3.2688e-2 5.1496e+3 8.9652e+0 8.745e+1 # -Range: 0-200 KMgCl3:2H2O - KMgCl3:2H2O = + 1.0000 K+ + 1.0000 Mg++ + 2.0000 H2O + 3.0000 Cl- - log_k 13.9755 - -delta_H -76.8449 kJ/mol # Calculated enthalpy of reaction KMgCl3:2H2O + KMgCl3:2H2O = K+ + Mg+2 + 2 H2O + 3 Cl- + log_k 13.9755 + -delta_H -76.8449 kJ/mol # Calculated enthalpy of reaction KMgCl3:2H2O # Enthalpy of formation: -1714.2 kJ/mol - -analytic -5.9982e+001 -3.3015e-002 4.6174e+003 2.7602e+001 7.8431e+001 + -analytic -5.9982e+1 -3.3015e-2 4.6174e+3 2.7602e+1 7.8431e+1 # -Range: 0-200 KNaCO3:6H2O - KNaCO3:6H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 K+ + 1.0000 Na+ + 6.0000 H2O - log_k 10.2593 - -delta_H 0 # Not possible to calculate enthalpy of reaction KNaCO3:6H2O + KNaCO3:6H2O + H+ = HCO3- + K+ + Na+ + 6 H2O + log_k 10.2593 + -delta_H 0 # Not possible to calculate enthalpy of reaction KNaCO3:6H2O # Enthalpy of formation: 0 kcal/mol KTcO4 - KTcO4 = + 1.0000 K+ + 1.0000 TcO4- - log_k -2.2667 - -delta_H 53.2363 kJ/mol # Calculated enthalpy of reaction KTcO4 + KTcO4 = K+ + TcO4- + log_k -2.2667 + -delta_H 53.2363 kJ/mol # Calculated enthalpy of reaction KTcO4 # Enthalpy of formation: -1021.67 kJ/mol - -analytic 1.8058e+001 -8.4795e-004 -2.3985e+003 -4.1788e+000 -1.5029e+005 + -analytic 1.8058e+1 -8.4795e-4 -2.3985e+3 -4.1788e+0 -1.5029e+5 # -Range: 0-300 KUO2AsO4 - KUO2AsO4 +2.0000 H+ = + 1.0000 H2AsO4- + 1.0000 K+ + 1.0000 UO2++ - log_k -4.1741 - -delta_H 0 # Not possible to calculate enthalpy of reaction KUO2AsO4 + KUO2AsO4 + 2 H+ = H2AsO4- + K+ + UO2+2 + log_k -4.1741 + -delta_H 0 # Not possible to calculate enthalpy of reaction KUO2AsO4 # Enthalpy of formation: 0 kcal/mol Kainite - KMgClSO4:3H2O = + 1.0000 Cl- + 1.0000 K+ + 1.0000 Mg++ + 1.0000 SO4-- + 3.0000 H2O - log_k -0.3114 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kainite + KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O + log_k -0.3114 + -delta_H 0 # Not possible to calculate enthalpy of reaction Kainite # Enthalpy of formation: 0 kcal/mol Kalicinite - KHCO3 = + 1.0000 HCO3- + 1.0000 K+ - log_k 0.2837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kalicinite + KHCO3 = HCO3- + K+ + log_k 0.2837 + -delta_H 0 # Not possible to calculate enthalpy of reaction Kalicinite # Enthalpy of formation: 0 kcal/mol Kalsilite - KAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 1.0000 SiO2 + 2.0000 H2O - log_k 10.8987 - -delta_H -108.583 kJ/mol # Calculated enthalpy of reaction Kalsilite + KAlSiO4 + 4 H+ = Al+3 + K+ + SiO2 + 2 H2O + log_k 10.8987 + -delta_H -108.583 kJ/mol # Calculated enthalpy of reaction Kalsilite # Enthalpy of formation: -509.408 kcal/mol - -analytic -6.7595e+000 -7.4301e-003 6.5380e+003 1.8999e-001 -2.2880e+005 + -analytic -6.7595e+0 -7.4301e-3 6.538e+3 1.8999e-1 -2.288e+5 # -Range: 0-300 Kaolinite - Al2Si2O5(OH)4 +6.0000 H+ = + 2.0000 Al+++ + 2.0000 SiO2 + 5.0000 H2O - log_k 6.8101 - -delta_H -151.779 kJ/mol # Calculated enthalpy of reaction Kaolinite + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 SiO2 + 5 H2O + log_k 6.8101 + -delta_H -151.779 kJ/mol # Calculated enthalpy of reaction Kaolinite # Enthalpy of formation: -982.221 kcal/mol - -analytic 1.6835e+001 -7.8939e-003 7.7636e+003 -1.2190e+001 -3.2354e+005 + -analytic 1.6835e+1 -7.8939e-3 7.7636e+3 -1.219e+1 -3.2354e+5 # -Range: 0-300 Karelianite - V2O3 +6.0000 H+ = + 2.0000 V+++ + 3.0000 H2O - log_k 9.9424 - -delta_H -160.615 kJ/mol # Calculated enthalpy of reaction Karelianite + V2O3 + 6 H+ = 2 V+3 + 3 H2O + log_k 9.9424 + -delta_H -160.615 kJ/mol # Calculated enthalpy of reaction Karelianite # Enthalpy of formation: -1218.98 kJ/mol - -analytic -2.7961e+001 -7.1499e-003 6.7749e+003 5.8146e+000 2.6039e+005 + -analytic -2.7961e+1 -7.1499e-3 6.7749e+3 5.8146e+0 2.6039e+5 # -Range: 0-300 Kasolite - Pb(UO2)SiO4:H2O +4.0000 H+ = + 1.0000 Pb++ + 1.0000 SiO2 + 1.0000 UO2++ + 3.0000 H2O - log_k 7.2524 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kasolite + Pb(UO2)SiO4:H2O + 4 H+ = Pb+2 + SiO2 + UO2+2 + 3 H2O + log_k 7.2524 + -delta_H 0 # Not possible to calculate enthalpy of reaction Kasolite # Enthalpy of formation: 0 kcal/mol Katoite - Ca3Al2H12O12 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 12.0000 H2O - log_k 78.9437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Katoite + Ca3Al2H12O12 + 12 H+ = 2 Al+3 + 3 Ca+2 + 12 H2O + log_k 78.9437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Katoite # Enthalpy of formation: 0 kcal/mol Kieserite - MgSO4:H2O = + 1.0000 H2O + 1.0000 Mg++ + 1.0000 SO4-- - log_k -0.2670 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kieserite + MgSO4:H2O = H2O + Mg+2 + SO4-2 + log_k -0.267 + -delta_H 0 # Not possible to calculate enthalpy of reaction Kieserite # Enthalpy of formation: 0 kcal/mol Klockmannite - CuSe = + 1.0000 Cu++ + 1.0000 Se-- - log_k -41.6172 - -delta_H 0 # Not possible to calculate enthalpy of reaction Klockmannite + CuSe = Cu+2 + Se-2 + log_k -41.6172 + -delta_H 0 # Not possible to calculate enthalpy of reaction Klockmannite # Enthalpy of formation: -10 kcal/mol - -analytic -2.3021e+001 -2.1458e-003 -8.5938e+003 4.3900e+000 -1.4593e+002 + -analytic -2.3021e+1 -2.1458e-3 -8.5938e+3 4.39e+0 -1.4593e+2 # -Range: 0-200 Krutaite - CuSe2 +1.0000 H2O = + 0.5000 O2 + 1.0000 Cu++ + 2.0000 H+ + 2.0000 Se-- - log_k -107.6901 - -delta_H 0 # Not possible to calculate enthalpy of reaction Krutaite + CuSe2 + H2O = 0.5 O2 + Cu+2 + 2 H+ + 2 Se-2 + log_k -107.6901 + -delta_H 0 # Not possible to calculate enthalpy of reaction Krutaite # Enthalpy of formation: -11.5 kcal/mol - -analytic -3.7735e+001 -8.7548e-004 -2.6352e+004 7.5528e+000 -4.4749e+002 + -analytic -3.7735e+1 -8.7548e-4 -2.6352e+4 7.5528e+0 -4.4749e+2 # -Range: 0-200 Kyanite - Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O - log_k 15.6740 - -delta_H -230.919 kJ/mol # Calculated enthalpy of reaction Kyanite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 15.674 + -delta_H -230.919 kJ/mol # Calculated enthalpy of reaction Kyanite # Enthalpy of formation: -616.897 kcal/mol - -analytic -7.3335e+001 -3.2853e-002 1.2166e+004 2.3412e+001 1.8986e+002 + -analytic -7.3335e+1 -3.2853e-2 1.2166e+4 2.3412e+1 1.8986e+2 # -Range: 0-300 La - La +3.0000 H+ +0.7500 O2 = + 1.0000 La+++ + 1.5000 H2O - log_k 184.7155 - -delta_H -1129.26 kJ/mol # Calculated enthalpy of reaction La + La + 3 H+ + 0.75 O2 = La+3 + 1.5 H2O + log_k 184.7155 + -delta_H -1129.26 kJ/mol # Calculated enthalpy of reaction La # Enthalpy of formation: 0 kJ/mol - -analytic -5.9508e+001 -2.7578e-002 5.9327e+004 2.1589e+001 9.2577e+002 + -analytic -5.9508e+1 -2.7578e-2 5.9327e+4 2.1589e+1 9.2577e+2 # -Range: 0-300 La(OH)3 - La(OH)3 +3.0000 H+ = + 1.0000 La+++ + 3.0000 H2O - log_k 20.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3 + La(OH)3 + 3 H+ = La+3 + 3 H2O + log_k 20.2852 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3 # Enthalpy of formation: 0 kcal/mol La(OH)3(am) - La(OH)3 +3.0000 H+ = + 1.0000 La+++ + 3.0000 H2O - log_k 23.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3(am) + La(OH)3 + 3 H+ = La+3 + 3 H2O + log_k 23.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3(am) # Enthalpy of formation: 0 kcal/mol La2(CO3)3:8H2O - La2(CO3)3:8H2O +3.0000 H+ = + 2.0000 La+++ + 3.0000 HCO3- + 8.0000 H2O - log_k -4.3136 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2(CO3)3:8H2O + La2(CO3)3:8H2O + 3 H+ = 2 La+3 + 3 HCO3- + 8 H2O + log_k -4.3136 + -delta_H 0 # Not possible to calculate enthalpy of reaction La2(CO3)3:8H2O # Enthalpy of formation: 0 kcal/mol La2O3 - La2O3 +6.0000 H+ = + 2.0000 La+++ + 3.0000 H2O - log_k 66.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2O3 + La2O3 + 6 H+ = 2 La+3 + 3 H2O + log_k 66.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction La2O3 # Enthalpy of formation: 0 kcal/mol LaCl3 - LaCl3 = + 1.0000 La+++ + 3.0000 Cl- - log_k 14.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3 + LaCl3 = La+3 + 3 Cl- + log_k 14.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3 # Enthalpy of formation: 0 kcal/mol LaCl3:7H2O - LaCl3:7H2O = + 1.0000 La+++ + 3.0000 Cl- + 7.0000 H2O - log_k 4.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3:7H2O + LaCl3:7H2O = La+3 + 3 Cl- + 7 H2O + log_k 4.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3:7H2O # Enthalpy of formation: 0 kcal/mol LaF3:.5H2O - LaF3:.5H2O = + 0.5000 H2O + 1.0000 La+++ + 3.0000 F- - log_k -18.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaF3:.5H2O + LaF3:.5H2O = 0.5 H2O + La+3 + 3 F- + log_k -18.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaF3:.5H2O # Enthalpy of formation: 0 kcal/mol LaPO4:10H2O - LaPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 La+++ + 10.0000 H2O - log_k -12.3782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4:10H2O + LaPO4:10H2O + H+ = HPO4-2 + La+3 + 10 H2O + log_k -12.3782 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4:10H2O # Enthalpy of formation: 0 kcal/mol Lammerite - Cu3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Cu++ - log_k 1.5542 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lammerite + Cu3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Cu+2 + log_k 1.5542 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lammerite # Enthalpy of formation: 0 kcal/mol Lanarkite - Pb2(SO4)O +2.0000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 2.0000 Pb++ - log_k -0.4692 - -delta_H -22.014 kJ/mol # Calculated enthalpy of reaction Lanarkite + Pb2(SO4)O + 2 H+ = H2O + SO4-2 + 2 Pb+2 + log_k -0.4692 + -delta_H -22.014 kJ/mol # Calculated enthalpy of reaction Lanarkite # Enthalpy of formation: -1171.59 kJ/mol - -analytic 5.1071e+000 -1.6655e-002 0.0000e+000 0.0000e+000 -5.5660e+004 + -analytic 5.1071e+0 -1.6655e-2 0e+0 0e+0 -5.566e+4 # -Range: 0-200 Lansfordite - MgCO3:5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ + 5.0000 H2O - log_k 4.8409 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lansfordite + MgCO3:5H2O + H+ = HCO3- + Mg+2 + 5 H2O + log_k 4.8409 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lansfordite # Enthalpy of formation: 0 kcal/mol Larnite - Ca2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 2.0000 H2O - log_k 38.4665 - -delta_H -227.061 kJ/mol # Calculated enthalpy of reaction Larnite + Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O + log_k 38.4665 + -delta_H -227.061 kJ/mol # Calculated enthalpy of reaction Larnite # Enthalpy of formation: -551.74 kcal/mol - -analytic 2.6900e+001 -2.1833e-003 1.0900e+004 -9.5257e+000 -7.2537e+004 + -analytic 2.69e+1 -2.1833e-3 1.09e+4 -9.5257e+0 -7.2537e+4 # -Range: 0-300 Laumontite - CaAl2Si4O12:4H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 SiO2 + 8.0000 H2O - log_k 13.6667 - -delta_H -184.657 kJ/mol # Calculated enthalpy of reaction Laumontite + CaAl2Si4O12:4H2O + 8 H+ = Ca+2 + 2 Al+3 + 4 SiO2 + 8 H2O + log_k 13.6667 + -delta_H -184.657 kJ/mol # Calculated enthalpy of reaction Laumontite # Enthalpy of formation: -1728.66 kcal/mol - -analytic 1.1904e+000 8.1763e-003 1.9005e+004 -1.4561e+001 -1.5851e+006 + -analytic 1.1904e+0 8.1763e-3 1.9005e+4 -1.4561e+1 -1.5851e+6 # -Range: 0-300 Laurite - RuS2 = + 1.0000 Ru++ + 1.0000 S2-- - log_k -73.2649 - -delta_H 0 # Not possible to calculate enthalpy of reaction Laurite + RuS2 = Ru+2 + S2-2 + log_k -73.2649 + -delta_H 0 # Not possible to calculate enthalpy of reaction Laurite # Enthalpy of formation: -199.586 kJ/mol Lawrencite - FeCl2 = + 1.0000 Fe++ + 2.0000 Cl- - log_k 9.0945 - -delta_H -84.7665 kJ/mol # Calculated enthalpy of reaction Lawrencite + FeCl2 = Fe+2 + 2 Cl- + log_k 9.0945 + -delta_H -84.7665 kJ/mol # Calculated enthalpy of reaction Lawrencite # Enthalpy of formation: -341.65 kJ/mol - -analytic -2.2798e+002 -8.1819e-002 9.2620e+003 9.3097e+001 1.4459e+002 + -analytic -2.2798e+2 -8.1819e-2 9.262e+3 9.3097e+1 1.4459e+2 # -Range: 0-300 Lawsonite - CaAl2Si2O7(OH)2:H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 2.0000 SiO2 + 6.0000 H2O - log_k 22.2132 - -delta_H -244.806 kJ/mol # Calculated enthalpy of reaction Lawsonite + CaAl2Si2O7(OH)2:H2O + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 6 H2O + log_k 22.2132 + -delta_H -244.806 kJ/mol # Calculated enthalpy of reaction Lawsonite # Enthalpy of formation: -1158.1 kcal/mol - -analytic 1.3995e+001 -1.7668e-002 1.0119e+004 -8.3100e+000 1.5789e+002 + -analytic 1.3995e+1 -1.7668e-2 1.0119e+4 -8.31e+0 1.5789e+2 # -Range: 0-300 Leonite - K2Mg(SO4)2:4H2O = + 1.0000 Mg++ + 2.0000 K+ + 2.0000 SO4-- + 4.0000 H2O - log_k -4.1123 - -delta_H 0 # Not possible to calculate enthalpy of reaction Leonite + K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O + log_k -4.1123 + -delta_H 0 # Not possible to calculate enthalpy of reaction Leonite # Enthalpy of formation: 0 kcal/mol Li - Li +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Li+ - log_k 72.7622 - -delta_H -418.339 kJ/mol # Calculated enthalpy of reaction Li + Li + H+ + 0.25 O2 = 0.5 H2O + Li+ + log_k 72.7622 + -delta_H -418.339 kJ/mol # Calculated enthalpy of reaction Li # Enthalpy of formation: 0 kJ/mol - -analytic -1.0227e+002 -1.8118e-002 2.6262e+004 3.8056e+001 -1.6166e+005 + -analytic -1.0227e+2 -1.8118e-2 2.6262e+4 3.8056e+1 -1.6166e+5 # -Range: 0-300 Li2Se - Li2Se +1.5000 O2 = + 1.0000 SeO3-- + 2.0000 Li+ - log_k 102.8341 - -delta_H -646.236 kJ/mol # Calculated enthalpy of reaction Li2Se + Li2Se + 1.5 O2 = SeO3-2 + 2 Li+ + log_k 102.8341 + -delta_H -646.236 kJ/mol # Calculated enthalpy of reaction Li2Se # Enthalpy of formation: -96 kcal/mol - -analytic 1.1933e+002 -6.9663e-003 2.7509e+004 -4.3124e+001 4.6710e+002 + -analytic 1.1933e+2 -6.9663e-3 2.7509e+4 -4.3124e+1 4.671e+2 # -Range: 0-200 Li2UO4 - Li2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Li+ - log_k 27.8421 - -delta_H -179.384 kJ/mol # Calculated enthalpy of reaction Li2UO4 + Li2UO4 + 4 H+ = UO2+2 + 2 H2O + 2 Li+ + log_k 27.8421 + -delta_H -179.384 kJ/mol # Calculated enthalpy of reaction Li2UO4 # Enthalpy of formation: -1968.2 kJ/mol - -analytic -1.4470e+002 -1.2024e-002 1.4899e+004 5.0984e+001 2.5306e+002 + -analytic -1.447e+2 -1.2024e-2 1.4899e+4 5.0984e+1 2.5306e+2 # -Range: 0-200 LiUO2AsO4 - LiUO2AsO4 +2.0000 H+ = + 1.0000 H2AsO4- + 1.0000 Li+ + 1.0000 UO2++ - log_k -0.7862 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiUO2AsO4 + LiUO2AsO4 + 2 H+ = H2AsO4- + Li+ + UO2+2 + log_k -0.7862 + -delta_H 0 # Not possible to calculate enthalpy of reaction LiUO2AsO4 # Enthalpy of formation: 0 kcal/mol Lime - CaO +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O - log_k 32.5761 - -delta_H -193.832 kJ/mol # Calculated enthalpy of reaction Lime + CaO + 2 H+ = Ca+2 + H2O + log_k 32.5761 + -delta_H -193.832 kJ/mol # Calculated enthalpy of reaction Lime # Enthalpy of formation: -151.79 kcal/mol - -analytic -7.2686e+001 -1.7654e-002 1.2199e+004 2.8128e+001 1.9037e+002 + -analytic -7.2686e+1 -1.7654e-2 1.2199e+4 2.8128e+1 1.9037e+2 # -Range: 0-300 Linnaeite - Co3S4 +4.0000 H+ = + 1.0000 Co++ + 2.0000 Co+++ + 4.0000 HS- - log_k -106.9017 - -delta_H 420.534 kJ/mol # Calculated enthalpy of reaction Linnaeite + Co3S4 + 4 H+ = Co+2 + 2 Co+3 + 4 HS- + log_k -106.9017 + -delta_H 420.534 kJ/mol # Calculated enthalpy of reaction Linnaeite # Enthalpy of formation: -85.81 kcal/mol - -analytic -6.0034e+002 -2.0179e-001 -9.2145e+003 2.3618e+002 -1.4361e+002 + -analytic -6.0034e+2 -2.0179e-1 -9.2145e+3 2.3618e+2 -1.4361e+2 # -Range: 0-300 Litharge - PbO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ - log_k 12.6388 - -delta_H -65.9118 kJ/mol # Calculated enthalpy of reaction Litharge + PbO + 2 H+ = H2O + Pb+2 + log_k 12.6388 + -delta_H -65.9118 kJ/mol # Calculated enthalpy of reaction Litharge # Enthalpy of formation: -219.006 kJ/mol - -analytic -1.8683e+001 -2.0211e-003 4.1876e+003 7.2239e+000 7.1118e+001 + -analytic -1.8683e+1 -2.0211e-3 4.1876e+3 7.2239e+0 7.1118e+1 # -Range: 0-200 Lopezite - K2Cr2O7 +1.0000 H2O = + 2.0000 CrO4-- + 2.0000 H+ + 2.0000 K+ - log_k -17.4366 - -delta_H 81.9227 kJ/mol # Calculated enthalpy of reaction Lopezite + K2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 K+ + log_k -17.4366 + -delta_H 81.9227 kJ/mol # Calculated enthalpy of reaction Lopezite # Enthalpy of formation: -493.003 kcal/mol - -analytic 7.8359e+001 -2.2908e-002 -9.3812e+003 -2.3245e+001 -1.5933e+002 + -analytic 7.8359e+1 -2.2908e-2 -9.3812e+3 -2.3245e+1 -1.5933e+2 # -Range: 0-200 Lu - Lu +3.0000 H+ +0.7500 O2 = + 1.0000 Lu+++ + 1.5000 H2O - log_k 181.3437 - -delta_H -1122.15 kJ/mol # Calculated enthalpy of reaction Lu + Lu + 3 H+ + 0.75 O2 = Lu+3 + 1.5 H2O + log_k 181.3437 + -delta_H -1122.15 kJ/mol # Calculated enthalpy of reaction Lu # Enthalpy of formation: 0 kJ/mol - -analytic -6.8950e+001 -2.8643e-002 5.9209e+004 2.4332e+001 9.2392e+002 + -analytic -6.895e+1 -2.8643e-2 5.9209e+4 2.4332e+1 9.2392e+2 # -Range: 0-300 Lu(OH)3 - Lu(OH)3 +3.0000 H+ = + 1.0000 Lu+++ + 3.0000 H2O - log_k 14.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3 + Lu(OH)3 + 3 H+ = Lu+3 + 3 H2O + log_k 14.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3 # Enthalpy of formation: 0 kcal/mol Lu(OH)3(am) - Lu(OH)3 +3.0000 H+ = + 1.0000 Lu+++ + 3.0000 H2O - log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3(am) + Lu(OH)3 + 3 H+ = Lu+3 + 3 H2O + log_k 18.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3(am) # Enthalpy of formation: 0 kcal/mol Lu2(CO3)3 - Lu2(CO3)3 +3.0000 H+ = + 2.0000 Lu+++ + 3.0000 HCO3- - log_k -2.0136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2(CO3)3 + Lu2(CO3)3 + 3 H+ = 2 Lu+3 + 3 HCO3- + log_k -2.0136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2(CO3)3 # Enthalpy of formation: 0 kcal/mol Lu2O3 - Lu2O3 +6.0000 H+ = + 2.0000 Lu+++ + 3.0000 H2O - log_k 45.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2O3 + Lu2O3 + 6 H+ = 2 Lu+3 + 3 H2O + log_k 45 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2O3 # Enthalpy of formation: 0 kcal/mol LuF3:.5H2O - LuF3:.5H2O = + 0.5000 H2O + 1.0000 Lu+++ + 3.0000 F- - log_k -15.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuF3:.5H2O + LuF3:.5H2O = 0.5 H2O + Lu+3 + 3 F- + log_k -15.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction LuF3:.5H2O # Enthalpy of formation: 0 kcal/mol LuPO4:10H2O - LuPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Lu+++ + 10.0000 H2O - log_k -11.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4:10H2O + LuPO4:10H2O + H+ = HPO4-2 + Lu+3 + 10 H2O + log_k -11.6782 + -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4:10H2O # Enthalpy of formation: 0 kcal/mol Magnesiochromite - MgCr2O4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 21.6927 - -delta_H -302.689 kJ/mol # Calculated enthalpy of reaction Magnesiochromite + MgCr2O4 + 8 H+ = Mg+2 + 2 Cr+3 + 4 H2O + log_k 21.6927 + -delta_H -302.689 kJ/mol # Calculated enthalpy of reaction Magnesiochromite # Enthalpy of formation: -1783.6 kJ/mol - -analytic -1.7376e+002 -8.7429e-003 2.1600e+004 5.0762e+001 3.6685e+002 + -analytic -1.7376e+2 -8.7429e-3 2.16e+4 5.0762e+1 3.6685e+2 # -Range: 0-200 Magnesite - MgCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ - log_k 2.2936 - -delta_H -44.4968 kJ/mol # Calculated enthalpy of reaction Magnesite + MgCO3 + H+ = HCO3- + Mg+2 + log_k 2.2936 + -delta_H -44.4968 kJ/mol # Calculated enthalpy of reaction Magnesite # Enthalpy of formation: -265.63 kcal/mol - -analytic -1.6665e+002 -4.9469e-002 6.4344e+003 6.5506e+001 1.0045e+002 + -analytic -1.6665e+2 -4.9469e-2 6.4344e+3 6.5506e+1 1.0045e+2 # -Range: 0-300 Magnetite - Fe3O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 10.4724 - -delta_H -216.597 kJ/mol # Calculated enthalpy of reaction Magnetite + Fe3O4 + 8 H+ = Fe+2 + 2 Fe+3 + 4 H2O + log_k 10.4724 + -delta_H -216.597 kJ/mol # Calculated enthalpy of reaction Magnetite # Enthalpy of formation: -267.25 kcal/mol - -analytic -3.0510e+002 -7.9919e-002 1.8709e+004 1.1178e+002 2.9203e+002 + -analytic -3.051e+2 -7.9919e-2 1.8709e+4 1.1178e+2 2.9203e+2 # -Range: 0-300 Malachite - Cu2CO3(OH)2 +3.0000 H+ = + 1.0000 HCO3- + 2.0000 Cu++ + 2.0000 H2O - log_k 5.9399 - -delta_H -76.2827 kJ/mol # Calculated enthalpy of reaction Malachite + Cu2CO3(OH)2 + 3 H+ = HCO3- + 2 Cu+2 + 2 H2O + log_k 5.9399 + -delta_H -76.2827 kJ/mol # Calculated enthalpy of reaction Malachite # Enthalpy of formation: -251.9 kcal/mol - -analytic -2.7189e+002 -6.9454e-002 1.1451e+004 1.0511e+002 1.7877e+002 + -analytic -2.7189e+2 -6.9454e-2 1.1451e+4 1.0511e+2 1.7877e+2 # -Range: 0-300 Manganite - MnO(OH) +3.0000 H+ = + 1.0000 Mn+++ + 2.0000 H2O - log_k -0.1646 - -delta_H 0 # Not possible to calculate enthalpy of reaction Manganite + MnO(OH) + 3 H+ = Mn+3 + 2 H2O + log_k -0.1646 + -delta_H 0 # Not possible to calculate enthalpy of reaction Manganite # Enthalpy of formation: 0 kcal/mol Manganosite - MnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Mn++ - log_k 17.9240 - -delta_H -121.215 kJ/mol # Calculated enthalpy of reaction Manganosite + MnO + 2 H+ = H2O + Mn+2 + log_k 17.924 + -delta_H -121.215 kJ/mol # Calculated enthalpy of reaction Manganosite # Enthalpy of formation: -92.07 kcal/mol - -analytic -8.4114e+001 -1.8490e-002 8.7792e+003 3.1561e+001 1.3702e+002 + -analytic -8.4114e+1 -1.849e-2 8.7792e+3 3.1561e+1 1.3702e+2 # -Range: 0-300 Margarite - CaAl4Si2O10(OH)2 +14.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 4.0000 Al+++ + 8.0000 H2O - log_k 41.0658 - -delta_H -522.192 kJ/mol # Calculated enthalpy of reaction Margarite + CaAl4Si2O10(OH)2 + 14 H+ = Ca+2 + 2 SiO2 + 4 Al+3 + 8 H2O + log_k 41.0658 + -delta_H -522.192 kJ/mol # Calculated enthalpy of reaction Margarite # Enthalpy of formation: -1485.8 kcal/mol - -analytic -2.3138e+002 -8.2788e-002 3.0154e+004 7.9148e+001 4.7060e+002 + -analytic -2.3138e+2 -8.2788e-2 3.0154e+4 7.9148e+1 4.706e+2 # -Range: 0-300 Massicot - PbO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ - log_k 12.8210 - -delta_H -67.6078 kJ/mol # Calculated enthalpy of reaction Massicot + PbO + 2 H+ = H2O + Pb+2 + log_k 12.821 + -delta_H -67.6078 kJ/mol # Calculated enthalpy of reaction Massicot # Enthalpy of formation: -217.31 kJ/mol - -analytic -1.8738e+001 -2.0125e-003 4.2739e+003 7.2018e+000 7.2584e+001 + -analytic -1.8738e+1 -2.0125e-3 4.2739e+3 7.2018e+0 7.2584e+1 # -Range: 0-200 Matlockite - PbFCl = + 1.0000 Cl- + 1.0000 F- + 1.0000 Pb++ - log_k -9.4300 - -delta_H 0 # Not possible to calculate enthalpy of reaction Matlockite + PbFCl = Cl- + F- + Pb+2 + log_k -9.43 + -delta_H 0 # Not possible to calculate enthalpy of reaction Matlockite # Enthalpy of formation: 0 kcal/mol Maximum_Microcline - KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 - log_k -0.2753 - -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction Maximum_Microcline + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction Maximum_Microcline # Enthalpy of formation: -949.188 kcal/mol - -analytic -9.4387e+000 1.3561e-002 1.2656e+004 -7.4925e+000 -1.6795e+006 + -analytic -9.4387e+0 1.3561e-2 1.2656e+4 -7.4925e+0 -1.6795e+6 # -Range: 0-300 Mayenite - Ca12Al14O33 +66.0000 H+ = + 12.0000 Ca++ + 14.0000 Al+++ + 33.0000 H2O - log_k 494.2199 - -delta_H -4056.77 kJ/mol # Calculated enthalpy of reaction Mayenite + Ca12Al14O33 + 66 H+ = 12 Ca+2 + 14 Al+3 + 33 H2O + log_k 494.2199 + -delta_H -4056.77 kJ/mol # Calculated enthalpy of reaction Mayenite # Enthalpy of formation: -4644 kcal/mol - -analytic -1.4778e+003 -2.9898e-001 2.4918e+005 4.9518e+002 4.2319e+003 + -analytic -1.4778e+3 -2.9898e-1 2.4918e+5 4.9518e+2 4.2319e+3 # -Range: 0-200 Melanterite - FeSO4:7H2O = + 1.0000 Fe++ + 1.0000 SO4-- + 7.0000 H2O - log_k -2.3490 - -delta_H 11.7509 kJ/mol # Calculated enthalpy of reaction Melanterite + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.349 + -delta_H 11.7509 kJ/mol # Calculated enthalpy of reaction Melanterite # Enthalpy of formation: -3014.48 kJ/mol - -analytic -2.6230e+002 -7.2469e-002 6.5854e+003 1.0484e+002 1.0284e+002 + -analytic -2.623e+2 -7.2469e-2 6.5854e+3 1.0484e+2 1.0284e+2 # -Range: 0-300 Mercallite - KHSO4 = + 1.0000 H+ + 1.0000 K+ + 1.0000 SO4-- - log_k -1.4389 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mercallite + KHSO4 = H+ + K+ + SO4-2 + log_k -1.4389 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mercallite # Enthalpy of formation: 0 kcal/mol Merwinite - MgCa3(SiO4)2 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 SiO2 + 3.0000 Ca++ + 4.0000 H2O - log_k 68.5140 - -delta_H -430.069 kJ/mol # Calculated enthalpy of reaction Merwinite + MgCa3(SiO4)2 + 8 H+ = Mg+2 + 2 SiO2 + 3 Ca+2 + 4 H2O + log_k 68.514 + -delta_H -430.069 kJ/mol # Calculated enthalpy of reaction Merwinite # Enthalpy of formation: -1090.8 kcal/mol - -analytic -2.2524e+002 -4.2525e-002 3.5619e+004 7.9984e+001 -9.8259e+005 + -analytic -2.2524e+2 -4.2525e-2 3.5619e+4 7.9984e+1 -9.8259e+5 # -Range: 0-300 Mesolite - Na.676Ca.657Al1.99Si3.01O10:2.647H2O +7.9600 H+ = + 0.6570 Ca++ + 0.6760 Na+ + 1.9900 Al+++ + 3.0100 SiO2 + 6.6270 H2O - log_k 13.6191 - -delta_H -179.744 kJ/mol # Calculated enthalpy of reaction Mesolite + Na.676Ca.657Al1.99Si3.01O10:2.647H2O + 7.96 H+ = 0.657 Ca+2 + 0.676 Na+ + 1.99 Al+3 + 3.01 SiO2 + 6.627 H2O + log_k 13.6191 + -delta_H -179.744 kJ/mol # Calculated enthalpy of reaction Mesolite # Enthalpy of formation: -5947.05 kJ/mol - -analytic 7.1993e+000 5.9356e-003 1.4717e+004 -1.3627e+001 -9.8863e+005 + -analytic 7.1993e+0 5.9356e-3 1.4717e+4 -1.3627e+1 -9.8863e+5 # -Range: 0-300 Metacinnabar - HgS +1.0000 H+ = + 1.0000 HS- + 1.0000 Hg++ - log_k -38.5979 - -delta_H 203.426 kJ/mol # Calculated enthalpy of reaction Metacinnabar + HgS + H+ = HS- + Hg+2 + log_k -38.5979 + -delta_H 203.426 kJ/mol # Calculated enthalpy of reaction Metacinnabar # Enthalpy of formation: -11.8 kcal/mol - -analytic -1.5399e+002 -4.6740e-002 -6.7875e+003 6.1456e+001 -1.0587e+002 + -analytic -1.5399e+2 -4.674e-2 -6.7875e+3 6.1456e+1 -1.0587e+2 # -Range: 0-300 Mg - Mg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mg++ - log_k 122.5365 - -delta_H -745.731 kJ/mol # Calculated enthalpy of reaction Mg + Mg + 2 H+ + 0.5 O2 = H2O + Mg+2 + log_k 122.5365 + -delta_H -745.731 kJ/mol # Calculated enthalpy of reaction Mg # Enthalpy of formation: 0 kJ/mol - -analytic -6.5988e+001 -1.9356e-002 4.0318e+004 2.3862e+001 6.2914e+002 + -analytic -6.5988e+1 -1.9356e-2 4.0318e+4 2.3862e+1 6.2914e+2 # -Range: 0-300 Mg1.25SO4(OH)0.5:0.5H2O - Mg1.25SO4(OH)0.5:0.5H2O +0.5000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 1.2500 Mg++ - log_k 5.2600 - -delta_H -97.1054 kJ/mol # Calculated enthalpy of reaction Mg1.25SO4(OH)0.5:0.5H2O + Mg1.25SO4(OH)0.5:0.5H2O + 0.5 H+ = H2O + SO4-2 + 1.25 Mg+2 + log_k 5.26 + -delta_H -97.1054 kJ/mol # Calculated enthalpy of reaction Mg1.25SO4(OH)0.5:0.5H2O # Enthalpy of formation: -401.717 kcal/mol - -analytic -2.6791e+002 -8.7078e-002 1.1090e+004 1.0583e+002 1.7312e+002 + -analytic -2.6791e+2 -8.7078e-2 1.109e+4 1.0583e+2 1.7312e+2 # -Range: 0-300 Mg1.5SO4(OH) - Mg1.5SO4(OH) +1.0000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 1.5000 Mg++ - log_k 9.2551 - -delta_H -125.832 kJ/mol # Calculated enthalpy of reaction Mg1.5SO4(OH) + Mg1.5SO4(OH) + H+ = H2O + SO4-2 + 1.5 Mg+2 + log_k 9.2551 + -delta_H -125.832 kJ/mol # Calculated enthalpy of reaction Mg1.5SO4(OH) # Enthalpy of formation: -422.693 kcal/mol - -analytic -2.8698e+002 -9.1970e-002 1.3088e+004 1.1304e+002 2.0432e+002 + -analytic -2.8698e+2 -9.197e-2 1.3088e+4 1.1304e+2 2.0432e+2 # -Range: 0-300 Mg2V2O7 - Mg2V2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 Mg++ + 2.0000 VO4--- - log_k -30.9025 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mg2V2O7 + Mg2V2O7 + H2O = 2 H+ + 2 Mg+2 + 2 VO4-3 + log_k -30.9025 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mg2V2O7 # Enthalpy of formation: -2836.23 kJ/mol MgBr2 - MgBr2 = + 1.0000 Mg++ + 2.0000 Br- - log_k 28.5302 - -delta_H -190.15 kJ/mol # Calculated enthalpy of reaction MgBr2 + MgBr2 = Mg+2 + 2 Br- + log_k 28.5302 + -delta_H -190.15 kJ/mol # Calculated enthalpy of reaction MgBr2 # Enthalpy of formation: -124 kcal/mol - -analytic -2.1245e+002 -7.6168e-002 1.4466e+004 8.6940e+001 2.2579e+002 + -analytic -2.1245e+2 -7.6168e-2 1.4466e+4 8.694e+1 2.2579e+2 # -Range: 0-300 MgBr2:6H2O - MgBr2:6H2O = + 1.0000 Mg++ + 2.0000 Br- + 6.0000 H2O - log_k 5.1656 - -delta_H -14.2682 kJ/mol # Calculated enthalpy of reaction MgBr2:6H2O + MgBr2:6H2O = Mg+2 + 2 Br- + 6 H2O + log_k 5.1656 + -delta_H -14.2682 kJ/mol # Calculated enthalpy of reaction MgBr2:6H2O # Enthalpy of formation: -2409.73 kJ/mol - -analytic -1.3559e+002 -1.6479e-002 5.8571e+003 5.0924e+001 9.9508e+001 + -analytic -1.3559e+2 -1.6479e-2 5.8571e+3 5.0924e+1 9.9508e+1 # -Range: 0-200 MgCl2:2H2O - MgCl2:2H2O = + 1.0000 Mg++ + 2.0000 Cl- + 2.0000 H2O - log_k 12.7763 - -delta_H -92.0895 kJ/mol # Calculated enthalpy of reaction MgCl2:2H2O + MgCl2:2H2O = Mg+2 + 2 Cl- + 2 H2O + log_k 12.7763 + -delta_H -92.0895 kJ/mol # Calculated enthalpy of reaction MgCl2:2H2O # Enthalpy of formation: -1279.71 kJ/mol - -analytic -2.5409e+002 -8.1413e-002 1.0941e+004 1.0281e+002 1.7080e+002 + -analytic -2.5409e+2 -8.1413e-2 1.0941e+4 1.0281e+2 1.708e+2 # -Range: 0-300 MgCl2:4H2O - MgCl2:4H2O = + 1.0000 Mg++ + 2.0000 Cl- + 4.0000 H2O - log_k 7.3581 - -delta_H -44.4602 kJ/mol # Calculated enthalpy of reaction MgCl2:4H2O + MgCl2:4H2O = Mg+2 + 2 Cl- + 4 H2O + log_k 7.3581 + -delta_H -44.4602 kJ/mol # Calculated enthalpy of reaction MgCl2:4H2O # Enthalpy of formation: -1899.01 kJ/mol - -analytic -2.7604e+002 -8.1648e-002 9.5501e+003 1.1140e+002 1.4910e+002 + -analytic -2.7604e+2 -8.1648e-2 9.5501e+3 1.114e+2 1.491e+2 # -Range: 0-300 MgCl2:H2O - MgCl2:H2O = + 1.0000 H2O + 1.0000 Mg++ + 2.0000 Cl- - log_k 16.1187 - -delta_H -119.326 kJ/mol # Calculated enthalpy of reaction MgCl2:H2O + MgCl2:H2O = H2O + Mg+2 + 2 Cl- + log_k 16.1187 + -delta_H -119.326 kJ/mol # Calculated enthalpy of reaction MgCl2:H2O # Enthalpy of formation: -966.631 kJ/mol - -analytic -2.4414e+002 -8.1310e-002 1.1862e+004 9.8878e+001 1.8516e+002 + -analytic -2.4414e+2 -8.131e-2 1.1862e+4 9.8878e+1 1.8516e+2 # -Range: 0-300 MgOHCl - MgOHCl +1.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 Mg++ - log_k 15.9138 - -delta_H -118.897 kJ/mol # Calculated enthalpy of reaction MgOHCl + MgOHCl + H+ = Cl- + H2O + Mg+2 + log_k 15.9138 + -delta_H -118.897 kJ/mol # Calculated enthalpy of reaction MgOHCl # Enthalpy of formation: -191.2 kcal/mol - -analytic -1.6614e+002 -4.9715e-002 1.0311e+004 6.5578e+001 1.6093e+002 + -analytic -1.6614e+2 -4.9715e-2 1.0311e+4 6.5578e+1 1.6093e+2 # -Range: 0-300 MgSO4 - MgSO4 = + 1.0000 Mg++ + 1.0000 SO4-- - log_k 4.8781 - -delta_H -90.6421 kJ/mol # Calculated enthalpy of reaction MgSO4 + MgSO4 = Mg+2 + SO4-2 + log_k 4.8781 + -delta_H -90.6421 kJ/mol # Calculated enthalpy of reaction MgSO4 # Enthalpy of formation: -1284.92 kJ/mol - -analytic -2.2439e+002 -7.9688e-002 9.3058e+003 8.9622e+001 1.4527e+002 + -analytic -2.2439e+2 -7.9688e-2 9.3058e+3 8.9622e+1 1.4527e+2 # -Range: 0-300 MgSeO3 - MgSeO3 = + 1.0000 Mg++ + 1.0000 SeO3-- - log_k 1.7191 - -delta_H -74.9647 kJ/mol # Calculated enthalpy of reaction MgSeO3 + MgSeO3 = Mg+2 + SeO3-2 + log_k 1.7191 + -delta_H -74.9647 kJ/mol # Calculated enthalpy of reaction MgSeO3 # Enthalpy of formation: -215.15 kcal/mol - -analytic -2.2593e+002 -8.1045e-002 8.4609e+003 9.0278e+001 1.3209e+002 + -analytic -2.2593e+2 -8.1045e-2 8.4609e+3 9.0278e+1 1.3209e+2 # -Range: 0-300 MgSeO3:6H2O - MgSeO3:6H2O = + 1.0000 Mg++ + 1.0000 SeO3-- + 6.0000 H2O - log_k -3.4222 - -delta_H 11.7236 kJ/mol # Calculated enthalpy of reaction MgSeO3:6H2O + MgSeO3:6H2O = Mg+2 + SeO3-2 + 6 H2O + log_k -3.4222 + -delta_H 11.7236 kJ/mol # Calculated enthalpy of reaction MgSeO3:6H2O # Enthalpy of formation: -645.771 kcal/mol - -analytic -1.2807e+002 -1.5418e-002 4.0565e+003 4.6728e+001 6.8929e+001 + -analytic -1.2807e+2 -1.5418e-2 4.0565e+3 4.6728e+1 6.8929e+1 # -Range: 0-200 MgUO4 - MgUO4 +4.0000 H+ = + 1.0000 Mg++ + 1.0000 UO2++ + 2.0000 H2O - log_k 23.0023 - -delta_H -199.336 kJ/mol # Calculated enthalpy of reaction MgUO4 + MgUO4 + 4 H+ = Mg+2 + UO2+2 + 2 H2O + log_k 23.0023 + -delta_H -199.336 kJ/mol # Calculated enthalpy of reaction MgUO4 # Enthalpy of formation: -1857.3 kJ/mol - -analytic -9.9954e+001 -2.0142e-002 1.3078e+004 3.4386e+001 2.0410e+002 + -analytic -9.9954e+1 -2.0142e-2 1.3078e+4 3.4386e+1 2.041e+2 # -Range: 0-300 MgV2O6 - MgV2O6 +2.0000 H2O = + 1.0000 Mg++ + 2.0000 VO4--- + 4.0000 H+ - log_k -45.8458 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgV2O6 + MgV2O6 + 2 H2O = Mg+2 + 2 VO4-3 + 4 H+ + log_k -45.8458 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgV2O6 # Enthalpy of formation: -2201.88 kJ/mol Millerite - NiS +1.0000 H+ = + 1.0000 HS- + 1.0000 Ni++ - log_k -8.0345 - -delta_H 12.089 kJ/mol # Calculated enthalpy of reaction Millerite + NiS + H+ = HS- + Ni+2 + log_k -8.0345 + -delta_H 12.089 kJ/mol # Calculated enthalpy of reaction Millerite # Enthalpy of formation: -82.171 kJ/mol - -analytic -1.4848e+002 -4.8834e-002 2.6981e+003 5.8976e+001 4.2145e+001 + -analytic -1.4848e+2 -4.8834e-2 2.6981e+3 5.8976e+1 4.2145e+1 # -Range: 0-300 Minium - Pb3O4 +8.0000 H+ = + 1.0000 Pb++++ + 2.0000 Pb++ + 4.0000 H2O - log_k 16.2585 - -delta_H 0 # Not possible to calculate enthalpy of reaction Minium + Pb3O4 + 8 H+ = Pb+4 + 2 Pb+2 + 4 H2O + log_k 16.2585 + -delta_H 0 # Not possible to calculate enthalpy of reaction Minium # Enthalpy of formation: -718.493 kJ/mol Minnesotaite - Fe3Si4O10(OH)2 +6.0000 H+ = + 3.0000 Fe++ + 4.0000 H2O + 4.0000 SiO2 - log_k 13.9805 - -delta_H -105.211 kJ/mol # Calculated enthalpy of reaction Minnesotaite + Fe3Si4O10(OH)2 + 6 H+ = 3 Fe+2 + 4 H2O + 4 SiO2 + log_k 13.9805 + -delta_H -105.211 kJ/mol # Calculated enthalpy of reaction Minnesotaite # Enthalpy of formation: -1153.37 kcal/mol - -analytic -1.8812e+001 1.7261e-002 1.9804e+004 -6.4410e+000 -2.0433e+006 + -analytic -1.8812e+1 1.7261e-2 1.9804e+4 -6.441e+0 -2.0433e+6 # -Range: 0-300 Mirabilite - Na2SO4:10H2O = + 1.0000 SO4-- + 2.0000 Na+ + 10.0000 H2O - log_k -1.1398 - -delta_H 79.4128 kJ/mol # Calculated enthalpy of reaction Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + log_k -1.1398 + -delta_H 79.4128 kJ/mol # Calculated enthalpy of reaction Mirabilite # Enthalpy of formation: -4328 kJ/mol - -analytic -2.1877e+002 -3.6692e-003 5.9214e+003 8.0361e+001 1.0063e+002 + -analytic -2.1877e+2 -3.6692e-3 5.9214e+3 8.0361e+1 1.0063e+2 # -Range: 0-200 Misenite - K8H6(SO4)7 = + 6.0000 H+ + 7.0000 SO4-- + 8.0000 K+ - log_k -11.0757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Misenite + K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+ + log_k -11.0757 + -delta_H 0 # Not possible to calculate enthalpy of reaction Misenite # Enthalpy of formation: 0 kcal/mol Mn - Mn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mn++ - log_k 82.9505 - -delta_H -500.369 kJ/mol # Calculated enthalpy of reaction Mn + Mn + 2 H+ + 0.5 O2 = H2O + Mn+2 + log_k 82.9505 + -delta_H -500.369 kJ/mol # Calculated enthalpy of reaction Mn # Enthalpy of formation: 0 kJ/mol - -analytic -6.5558e+001 -2.0429e-002 2.7571e+004 2.5098e+001 4.3024e+002 + -analytic -6.5558e+1 -2.0429e-2 2.7571e+4 2.5098e+1 4.3024e+2 # -Range: 0-300 Mn(OH)2(am) - Mn(OH)2 +2.0000 H+ = + 1.0000 Mn++ + 2.0000 H2O - log_k 15.3102 - -delta_H -97.1779 kJ/mol # Calculated enthalpy of reaction Mn(OH)2(am) + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.3102 + -delta_H -97.1779 kJ/mol # Calculated enthalpy of reaction Mn(OH)2(am) # Enthalpy of formation: -695.096 kJ/mol - -analytic -7.8518e+001 -7.5357e-003 8.0198e+003 2.7955e+001 1.3621e+002 + -analytic -7.8518e+1 -7.5357e-3 8.0198e+3 2.7955e+1 1.3621e+2 # -Range: 0-200 Mn(OH)3 - Mn(OH)3 +3.0000 H+ = + 1.0000 Mn+++ + 3.0000 H2O - log_k 6.3412 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3 + Mn(OH)3 + 3 H+ = Mn+3 + 3 H2O + log_k 6.3412 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3 # Enthalpy of formation: 0 kcal/mol Mn3(PO4)2 - Mn3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Mn++ - log_k 0.8167 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn3(PO4)2 + Mn3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Mn+2 + log_k 0.8167 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn3(PO4)2 # Enthalpy of formation: 0 kcal/mol MnCl2:2H2O - MnCl2:2H2O = + 1.0000 Mn++ + 2.0000 Cl- + 2.0000 H2O - log_k 4.0067 - -delta_H -34.4222 kJ/mol # Calculated enthalpy of reaction MnCl2:2H2O + MnCl2:2H2O = Mn+2 + 2 Cl- + 2 H2O + log_k 4.0067 + -delta_H -34.4222 kJ/mol # Calculated enthalpy of reaction MnCl2:2H2O # Enthalpy of formation: -1092.01 kJ/mol - -analytic -6.2823e+001 -2.3959e-002 2.9931e+003 2.5834e+001 5.0850e+001 + -analytic -6.2823e+1 -2.3959e-2 2.9931e+3 2.5834e+1 5.085e+1 # -Range: 0-200 MnCl2:4H2O - MnCl2:4H2O = + 1.0000 Mn++ + 2.0000 Cl- + 4.0000 H2O - log_k 2.7563 - -delta_H -10.7019 kJ/mol # Calculated enthalpy of reaction MnCl2:4H2O + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.7563 + -delta_H -10.7019 kJ/mol # Calculated enthalpy of reaction MnCl2:4H2O # Enthalpy of formation: -1687.41 kJ/mol - -analytic -1.1049e+002 -2.3376e-002 4.0458e+003 4.3097e+001 6.8742e+001 + -analytic -1.1049e+2 -2.3376e-2 4.0458e+3 4.3097e+1 6.8742e+1 # -Range: 0-200 MnCl2:H2O - MnCl2:H2O = + 1.0000 H2O + 1.0000 Mn++ + 2.0000 Cl- - log_k 5.5517 - -delta_H -50.8019 kJ/mol # Calculated enthalpy of reaction MnCl2:H2O + MnCl2:H2O = H2O + Mn+2 + 2 Cl- + log_k 5.5517 + -delta_H -50.8019 kJ/mol # Calculated enthalpy of reaction MnCl2:H2O # Enthalpy of formation: -789.793 kJ/mol - -analytic -4.5051e+001 -2.5923e-002 2.8739e+003 1.9674e+001 4.8818e+001 + -analytic -4.5051e+1 -2.5923e-2 2.8739e+3 1.9674e+1 4.8818e+1 # -Range: 0-200 MnHPO4 - MnHPO4 = + 1.0000 HPO4-- + 1.0000 Mn++ - log_k -12.9470 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 + MnHPO4 = HPO4-2 + Mn+2 + log_k -12.947 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 # Enthalpy of formation: 0 kcal/mol MnO2(gamma) - MnO2 = + 0.5000 Mn++ + 0.5000 MnO4-- - log_k -16.1261 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnO2(gamma) + MnO2 = 0.5 Mn+2 + 0.5 MnO4-2 + log_k -16.1261 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnO2(gamma) # Enthalpy of formation: 0 kcal/mol MnSO4 - MnSO4 = + 1.0000 Mn++ + 1.0000 SO4-- - log_k 2.6561 - -delta_H -64.8718 kJ/mol # Calculated enthalpy of reaction MnSO4 + MnSO4 = Mn+2 + SO4-2 + log_k 2.6561 + -delta_H -64.8718 kJ/mol # Calculated enthalpy of reaction MnSO4 # Enthalpy of formation: -1065.33 kJ/mol - -analytic -2.3088e+002 -8.2694e-002 8.1653e+003 9.3256e+001 1.2748e+002 + -analytic -2.3088e+2 -8.2694e-2 8.1653e+3 9.3256e+1 1.2748e+2 # -Range: 0-300 MnSe - MnSe = + 1.0000 Mn++ + 1.0000 Se-- - log_k -10.6848 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSe + MnSe = Mn+2 + Se-2 + log_k -10.6848 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSe # Enthalpy of formation: -37 kcal/mol - -analytic -5.9960e+001 -1.5963e-002 1.2813e+003 2.0095e+001 2.0010e+001 + -analytic -5.996e+1 -1.5963e-2 1.2813e+3 2.0095e+1 2.001e+1 # -Range: 0-300 MnSeO3 - MnSeO3 = + 1.0000 Mn++ + 1.0000 SeO3-- - log_k -7.2700 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO3 + MnSeO3 = Mn+2 + SeO3-2 + log_k -7.27 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO3 # Enthalpy of formation: 0 kcal/mol MnSeO3:2H2O - MnSeO3:2H2O = + 1.0000 Mn++ + 1.0000 SeO3-- + 2.0000 H2O - log_k -6.3219 - -delta_H 14.0792 kJ/mol # Calculated enthalpy of reaction MnSeO3:2H2O + MnSeO3:2H2O = Mn+2 + SeO3-2 + 2 H2O + log_k -6.3219 + -delta_H 14.0792 kJ/mol # Calculated enthalpy of reaction MnSeO3:2H2O # Enthalpy of formation: -314.423 kcal/mol - -analytic -4.3625e+001 -2.0426e-002 -2.5368e+002 1.7876e+001 -4.2927e+000 + -analytic -4.3625e+1 -2.0426e-2 -2.5368e+2 1.7876e+1 -4.2927e+0 # -Range: 0-200 MnV2O6 - MnV2O6 +2.0000 H2O = + 1.0000 Mn++ + 2.0000 VO4--- + 4.0000 H+ - log_k -52.0751 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnV2O6 + MnV2O6 + 2 H2O = Mn+2 + 2 VO4-3 + 4 H+ + log_k -52.0751 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnV2O6 # Enthalpy of formation: -447.9 kcal/mol Mo - Mo +1.5000 O2 +1.0000 H2O = + 1.0000 MoO4-- + 2.0000 H+ - log_k 109.3230 - -delta_H -693.845 kJ/mol # Calculated enthalpy of reaction Mo + Mo + 1.5 O2 + H2O = MoO4-2 + 2 H+ + log_k 109.323 + -delta_H -693.845 kJ/mol # Calculated enthalpy of reaction Mo # Enthalpy of formation: 0 kJ/mol - -analytic -2.0021e+002 -8.3006e-002 4.1629e+004 8.0219e+001 -3.4570e+005 + -analytic -2.0021e+2 -8.3006e-2 4.1629e+4 8.0219e+1 -3.457e+5 # -Range: 0-300 MoSe2 - MoSe2 +3.0000 H2O +0.5000 O2 = + 1.0000 MoO4-- + 2.0000 Se-- + 6.0000 H+ - log_k -55.1079 - -delta_H 0 # Not possible to calculate enthalpy of reaction MoSe2 + MoSe2 + 3 H2O + 0.5 O2 = MoO4-2 + 2 Se-2 + 6 H+ + log_k -55.1079 + -delta_H 0 # Not possible to calculate enthalpy of reaction MoSe2 # Enthalpy of formation: -47 kcal/mol - -analytic 1.3882e+002 -1.8590e-003 -1.7231e+004 -5.4797e+001 -2.9265e+002 + -analytic 1.3882e+2 -1.859e-3 -1.7231e+4 -5.4797e+1 -2.9265e+2 # -Range: 0-200 Modderite - CoAs +3.0000 H+ = + 1.0000 AsH3 + 1.0000 Co+++ - log_k -49.5512 - -delta_H 189.016 kJ/mol # Calculated enthalpy of reaction Modderite + CoAs + 3 H+ = AsH3 + Co+3 + log_k -49.5512 + -delta_H 189.016 kJ/mol # Calculated enthalpy of reaction Modderite # Enthalpy of formation: -12.208 kcal/mol Molysite - FeCl3 = + 1.0000 Fe+++ + 3.0000 Cl- - log_k 13.5517 - -delta_H -151.579 kJ/mol # Calculated enthalpy of reaction Molysite + FeCl3 = Fe+3 + 3 Cl- + log_k 13.5517 + -delta_H -151.579 kJ/mol # Calculated enthalpy of reaction Molysite # Enthalpy of formation: -399.24 kJ/mol - -analytic -3.1810e+002 -1.2357e-001 1.3860e+004 1.3010e+002 2.1637e+002 + -analytic -3.181e+2 -1.2357e-1 1.386e+4 1.301e+2 2.1637e+2 # -Range: 0-300 Monohydrocalcite - CaCO3:H2O +1.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 HCO3- - log_k 2.6824 - -delta_H -20.5648 kJ/mol # Calculated enthalpy of reaction Monohydrocalcite + CaCO3:H2O + H+ = Ca+2 + H2O + HCO3- + log_k 2.6824 + -delta_H -20.5648 kJ/mol # Calculated enthalpy of reaction Monohydrocalcite # Enthalpy of formation: -1498.29 kJ/mol - -analytic -7.2614e+001 -1.7217e-002 3.1850e+003 2.8185e+001 5.4111e+001 + -analytic -7.2614e+1 -1.7217e-2 3.185e+3 2.8185e+1 5.4111e+1 # -Range: 0-200 Monteponite - CdO +2.0000 H+ = + 1.0000 Cd++ + 1.0000 H2O - log_k 15.0972 - -delta_H -103.386 kJ/mol # Calculated enthalpy of reaction Monteponite + CdO + 2 H+ = Cd+2 + H2O + log_k 15.0972 + -delta_H -103.386 kJ/mol # Calculated enthalpy of reaction Monteponite # Enthalpy of formation: -258.35 kJ/mol - -analytic -5.0057e+001 -6.3629e-003 7.0898e+003 1.7486e+001 1.2041e+002 + -analytic -5.0057e+1 -6.3629e-3 7.0898e+3 1.7486e+1 1.2041e+2 # -Range: 0-200 Monticellite - CaMgSiO4 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 1.0000 SiO2 + 2.0000 H2O - log_k 29.5852 - -delta_H -195.711 kJ/mol # Calculated enthalpy of reaction Monticellite + CaMgSiO4 + 4 H+ = Ca+2 + Mg+2 + SiO2 + 2 H2O + log_k 29.5852 + -delta_H -195.711 kJ/mol # Calculated enthalpy of reaction Monticellite # Enthalpy of formation: -540.8 kcal/mol - -analytic 1.5730e+001 -3.5567e-003 9.0789e+003 -6.3007e+000 1.4166e+002 + -analytic 1.573e+1 -3.5567e-3 9.0789e+3 -6.3007e+0 1.4166e+2 # -Range: 0-300 Montmor-Ca - Ca.165Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.1650 Ca++ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 2.4952 - -delta_H -100.154 kJ/mol # Calculated enthalpy of reaction Montmor-Ca + Ca.165Mg.33Al1.67Si4O10(OH)2 + 6 H+ = 0.165 Ca+2 + 0.33 Mg+2 + 1.67 Al+3 + 4 H2O + 4 SiO2 + log_k 2.4952 + -delta_H -100.154 kJ/mol # Calculated enthalpy of reaction Montmor-Ca # Enthalpy of formation: -1361.5 kcal/mol - -analytic 6.0725e+000 1.0644e-002 1.6024e+004 -1.6334e+001 -1.7982e+006 + -analytic 6.0725e+0 1.0644e-2 1.6024e+4 -1.6334e+1 -1.7982e+6 # -Range: 0-300 Montmor-Cs - Cs.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 Cs+ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 1.9913 - -delta_H -87.2259 kJ/mol # Calculated enthalpy of reaction Montmor-Cs + Cs.33Mg.33Al1.67Si4O10(OH)2 + 6 H+ = 0.33 Cs+ + 0.33 Mg+2 + 1.67 Al+3 + 4 H2O + 4 SiO2 + log_k 1.9913 + -delta_H -87.2259 kJ/mol # Calculated enthalpy of reaction Montmor-Cs # Enthalpy of formation: -1363.52 kcal/mol - -analytic 9.9136e+000 1.2496e-002 1.5650e+004 -1.7601e+001 -1.8434e+006 + -analytic 9.9136e+0 1.2496e-2 1.565e+4 -1.7601e+1 -1.8434e+6 # -Range: 0-300 Montmor-K - K.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 K+ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 2.1423 - -delta_H -88.184 kJ/mol # Calculated enthalpy of reaction Montmor-K + K.33Mg.33Al1.67Si4O10(OH)2 + 6 H+ = 0.33 K+ + 0.33 Mg+2 + 1.67 Al+3 + 4 H2O + 4 SiO2 + log_k 2.1423 + -delta_H -88.184 kJ/mol # Calculated enthalpy of reaction Montmor-K # Enthalpy of formation: -1362.83 kcal/mol - -analytic 8.4757e+000 1.1219e-002 1.5654e+004 -1.6833e+001 -1.8386e+006 + -analytic 8.4757e+0 1.1219e-2 1.5654e+4 -1.6833e+1 -1.8386e+6 # -Range: 0-300 Montmor-Mg - Mg.495Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.4950 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 2.3879 - -delta_H -102.608 kJ/mol # Calculated enthalpy of reaction Montmor-Mg + Mg.495Al1.67Si4O10(OH)2 + 6 H+ = 0.495 Mg+2 + 1.67 Al+3 + 4 H2O + 4 SiO2 + log_k 2.3879 + -delta_H -102.608 kJ/mol # Calculated enthalpy of reaction Montmor-Mg # Enthalpy of formation: -1357.87 kcal/mol - -analytic -6.8505e+000 9.0710e-003 1.6817e+004 -1.1887e+001 -1.8323e+006 + -analytic -6.8505e+0 9.071e-3 1.6817e+4 -1.1887e+1 -1.8323e+6 # -Range: 0-300 Montmor-Na - Na.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 Mg++ + 0.3300 Na+ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 2.4844 - -delta_H -93.2165 kJ/mol # Calculated enthalpy of reaction Montmor-Na + Na.33Mg.33Al1.67Si4O10(OH)2 + 6 H+ = 0.33 Mg+2 + 0.33 Na+ + 1.67 Al+3 + 4 H2O + 4 SiO2 + log_k 2.4844 + -delta_H -93.2165 kJ/mol # Calculated enthalpy of reaction Montmor-Na # Enthalpy of formation: -1360.69 kcal/mol - -analytic 1.9601e+000 1.1342e-002 1.6051e+004 -1.4718e+001 -1.8160e+006 + -analytic 1.9601e+0 1.1342e-2 1.6051e+4 -1.4718e+1 -1.816e+6 # -Range: 0-300 Montroydite - HgO +2.0000 H+ = + 1.0000 H2O + 1.0000 Hg++ - log_k 2.4486 - -delta_H -24.885 kJ/mol # Calculated enthalpy of reaction Montroydite + HgO + 2 H+ = H2O + Hg+2 + log_k 2.4486 + -delta_H -24.885 kJ/mol # Calculated enthalpy of reaction Montroydite # Enthalpy of formation: -90.79 kJ/mol - -analytic -8.7302e+001 -1.7618e-002 4.0086e+003 3.2957e+001 6.2576e+001 + -analytic -8.7302e+1 -1.7618e-2 4.0086e+3 3.2957e+1 6.2576e+1 # -Range: 0-300 Mordenite - Ca.2895Na.361Al.94Si5.06O12:3.468H2O +3.7600 H+ = + 0.2895 Ca++ + 0.3610 Na+ + 0.9400 Al+++ + 5.0600 SiO2 + 5.3480 H2O - log_k -5.1969 - -delta_H 16.7517 kJ/mol # Calculated enthalpy of reaction Mordenite + Ca.2895Na.361Al.94Si5.06O12:3.468H2O + 3.76 H+ = 0.2895 Ca+2 + 0.361 Na+ + 0.94 Al+3 + 5.06 SiO2 + 5.348 H2O + log_k -5.1969 + -delta_H 16.7517 kJ/mol # Calculated enthalpy of reaction Mordenite # Enthalpy of formation: -6736.64 kJ/mol - -analytic -5.4675e+001 3.2513e-002 2.3412e+004 -1.0419e+000 -3.2292e+006 + -analytic -5.4675e+1 3.2513e-2 2.3412e+4 -1.0419e+0 -3.2292e+6 # -Range: 0-300 Mordenite-dehy - Ca.2895Na.361Al.94Si5.06O12 +3.7600 H+ = + 0.2895 Ca++ + 0.3610 Na+ + 0.9400 Al+++ + 1.8800 H2O + 5.0600 SiO2 - log_k 9.9318 - -delta_H -86.159 kJ/mol # Calculated enthalpy of reaction Mordenite-dehy + Ca.2895Na.361Al.94Si5.06O12 + 3.76 H+ = 0.2895 Ca+2 + 0.361 Na+ + 0.94 Al+3 + 1.88 H2O + 5.06 SiO2 + log_k 9.9318 + -delta_H -86.159 kJ/mol # Calculated enthalpy of reaction Mordenite-dehy # Enthalpy of formation: -5642.44 kJ/mol - -analytic -5.0841e+001 2.5405e-002 2.7621e+004 -1.6331e+000 -3.1618e+006 + -analytic -5.0841e+1 2.5405e-2 2.7621e+4 -1.6331e+0 -3.1618e+6 # -Range: 0-300 Morenosite - NiSO4:7H2O = + 1.0000 Ni++ + 1.0000 SO4-- + 7.0000 H2O - log_k -2.0140 - -delta_H 12.0185 kJ/mol # Calculated enthalpy of reaction Morenosite + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.014 + -delta_H 12.0185 kJ/mol # Calculated enthalpy of reaction Morenosite # Enthalpy of formation: -2976.46 kJ/mol - -analytic -2.6654e+002 -7.2132e-002 6.7983e+003 1.0636e+002 1.0616e+002 + -analytic -2.6654e+2 -7.2132e-2 6.7983e+3 1.0636e+2 1.0616e+2 # -Range: 0-300 Muscovite - KAl3Si3O10(OH)2 +10.0000 H+ = + 1.0000 K+ + 3.0000 Al+++ + 3.0000 SiO2 + 6.0000 H2O - log_k 13.5858 - -delta_H -243.224 kJ/mol # Calculated enthalpy of reaction Muscovite + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 13.5858 + -delta_H -243.224 kJ/mol # Calculated enthalpy of reaction Muscovite # Enthalpy of formation: -1427.41 kcal/mol - -analytic 3.3085e+001 -1.2425e-002 1.2477e+004 -2.0865e+001 -5.4692e+005 + -analytic 3.3085e+1 -1.2425e-2 1.2477e+4 -2.0865e+1 -5.4692e+5 # -Range: 0-300 NH4HSe - NH4HSe = + 1.0000 NH3 + 1.0000 Se-- + 2.0000 H+ - log_k -22.0531 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4HSe + NH4HSe = NH3 + Se-2 + 2 H+ + log_k -22.0531 + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4HSe # Enthalpy of formation: -133.041 kJ/mol - -analytic -8.8685e+000 6.7342e-003 -5.3028e+003 1.0468e+000 -9.0046e+001 + -analytic -8.8685e+0 6.7342e-3 -5.3028e+3 1.0468e+0 -9.0046e+1 # -Range: 0-200 Na - Na +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Na+ - log_k 67.3804 - -delta_H -380.185 kJ/mol # Calculated enthalpy of reaction Na + Na + H+ + 0.25 O2 = 0.5 H2O + Na+ + log_k 67.3804 + -delta_H -380.185 kJ/mol # Calculated enthalpy of reaction Na # Enthalpy of formation: 0 kJ/mol - -analytic -4.0458e+001 -8.7899e-003 2.1223e+004 1.5927e+001 -1.2715e+004 + -analytic -4.0458e+1 -8.7899e-3 2.1223e+4 1.5927e+1 -1.2715e+4 # -Range: 0-300 Na2CO3 - Na2CO3 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ - log_k 11.1822 - -delta_H -39.8526 kJ/mol # Calculated enthalpy of reaction Na2CO3 + Na2CO3 + H+ = HCO3- + 2 Na+ + log_k 11.1822 + -delta_H -39.8526 kJ/mol # Calculated enthalpy of reaction Na2CO3 # Enthalpy of formation: -1130.68 kJ/mol - -analytic -1.5495e+002 -4.3374e-002 6.4821e+003 6.3571e+001 1.0119e+002 + -analytic -1.5495e+2 -4.3374e-2 6.4821e+3 6.3571e+1 1.0119e+2 # -Range: 0-300 Na2CO3:7H2O - Na2CO3:7H2O +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ + 7.0000 H2O - log_k 9.9459 - -delta_H 27.7881 kJ/mol # Calculated enthalpy of reaction Na2CO3:7H2O + Na2CO3:7H2O + H+ = HCO3- + 2 Na+ + 7 H2O + log_k 9.9459 + -delta_H 27.7881 kJ/mol # Calculated enthalpy of reaction Na2CO3:7H2O # Enthalpy of formation: -3199.19 kJ/mol - -analytic -2.0593e+002 -3.4509e-003 8.1601e+003 7.6594e+001 1.3864e+002 + -analytic -2.0593e+2 -3.4509e-3 8.1601e+3 7.6594e+1 1.3864e+2 # -Range: 0-200 Na2Cr2O7 - Na2Cr2O7 +1.0000 H2O = + 2.0000 CrO4-- + 2.0000 H+ + 2.0000 Na+ - log_k -10.1597 - -delta_H 21.9702 kJ/mol # Calculated enthalpy of reaction Na2Cr2O7 + Na2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 Na+ + log_k -10.1597 + -delta_H 21.9702 kJ/mol # Calculated enthalpy of reaction Na2Cr2O7 # Enthalpy of formation: -473 kcal/mol - -analytic 4.4885e+001 -2.4919e-002 -5.0321e+003 -1.2430e+001 -8.5468e+001 + -analytic 4.4885e+1 -2.4919e-2 -5.0321e+3 -1.243e+1 -8.5468e+1 # -Range: 0-200 Na2CrO4 - Na2CrO4 = + 1.0000 CrO4-- + 2.0000 Na+ - log_k 2.9103 - -delta_H -19.5225 kJ/mol # Calculated enthalpy of reaction Na2CrO4 + Na2CrO4 = CrO4-2 + 2 Na+ + log_k 2.9103 + -delta_H -19.5225 kJ/mol # Calculated enthalpy of reaction Na2CrO4 # Enthalpy of formation: -320.8 kcal/mol - -analytic 5.4985e+000 -9.9008e-003 1.0510e+002 0.0000e+000 0.0000e+000 + -analytic 5.4985e+0 -9.9008e-3 1.051e+2 0e+0 0e+0 # -Range: 0-200 Na2O - Na2O +2.0000 H+ = + 1.0000 H2O + 2.0000 Na+ - log_k 67.4269 - -delta_H -351.636 kJ/mol # Calculated enthalpy of reaction Na2O + Na2O + 2 H+ = H2O + 2 Na+ + log_k 67.4269 + -delta_H -351.636 kJ/mol # Calculated enthalpy of reaction Na2O # Enthalpy of formation: -99.14 kcal/mol - -analytic -6.3585e+001 -8.4695e-003 2.0923e+004 2.5601e+001 3.2651e+002 + -analytic -6.3585e+1 -8.4695e-3 2.0923e+4 2.5601e+1 3.2651e+2 # -Range: 0-300 Na2Se - Na2Se = + 1.0000 Se-- + 2.0000 Na+ - log_k 11.8352 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se + Na2Se = Se-2 + 2 Na+ + log_k 11.8352 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se # Enthalpy of formation: -81.9 kcal/mol - -analytic -6.0070e+000 8.2821e-003 4.5816e+003 0.0000e+000 0.0000e+000 + -analytic -6.007e+0 8.2821e-3 4.5816e+3 0e+0 0e+0 # -Range: 0-200 Na2Se2 - Na2Se2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 Na+ + 2.0000 Se-- - log_k -61.3466 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se2 + Na2Se2 + H2O = 0.5 O2 + 2 H+ + 2 Na+ + 2 Se-2 + log_k -61.3466 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se2 # Enthalpy of formation: -92.8 kcal/mol - -analytic -2.7836e+001 7.7035e-003 -1.5040e+004 5.9131e+000 -2.5539e+002 + -analytic -2.7836e+1 7.7035e-3 -1.504e+4 5.9131e+0 -2.5539e+2 # -Range: 0-200 Na2SiO3 - Na2SiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 SiO2 + 2.0000 Na+ - log_k 22.2418 - -delta_H -82.7093 kJ/mol # Calculated enthalpy of reaction Na2SiO3 + Na2SiO3 + 2 H+ = H2O + SiO2 + 2 Na+ + log_k 22.2418 + -delta_H -82.7093 kJ/mol # Calculated enthalpy of reaction Na2SiO3 # Enthalpy of formation: -373.19 kcal/mol - -analytic -3.4928e+001 5.6905e-003 1.0284e+004 1.1197e+001 -6.0134e+005 + -analytic -3.4928e+1 5.6905e-3 1.0284e+4 1.1197e+1 -6.0134e+5 # -Range: 0-300 Na2U2O7 - Na2U2O7 +6.0000 H+ = + 2.0000 Na+ + 2.0000 UO2++ + 3.0000 H2O - log_k 22.5917 - -delta_H -172.314 kJ/mol # Calculated enthalpy of reaction Na2U2O7 + Na2U2O7 + 6 H+ = 2 Na+ + 2 UO2+2 + 3 H2O + log_k 22.5917 + -delta_H -172.314 kJ/mol # Calculated enthalpy of reaction Na2U2O7 # Enthalpy of formation: -3203.8 kJ/mol - -analytic -8.6640e+001 -1.0903e-002 1.1841e+004 2.9406e+001 1.8479e+002 + -analytic -8.664e+1 -1.0903e-2 1.1841e+4 2.9406e+1 1.8479e+2 # -Range: 0-300 Na2UO4(alpha) - Na2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Na+ - log_k 30.0231 - -delta_H -173.576 kJ/mol # Calculated enthalpy of reaction Na2UO4(alpha) + Na2UO4 + 4 H+ = UO2+2 + 2 H2O + 2 Na+ + log_k 30.0231 + -delta_H -173.576 kJ/mol # Calculated enthalpy of reaction Na2UO4(alpha) # Enthalpy of formation: -1897.7 kJ/mol - -analytic -7.9767e+001 -1.0253e-002 1.1963e+004 2.9386e+001 1.8669e+002 + -analytic -7.9767e+1 -1.0253e-2 1.1963e+4 2.9386e+1 1.8669e+2 # -Range: 0-300 Na3H(SO4)2 - Na3H(SO4)2 = + 1.0000 H+ + 2.0000 SO4-- + 3.0000 Na+ - log_k -0.8906 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na3H(SO4)2 + Na3H(SO4)2 = H+ + 2 SO4-2 + 3 Na+ + log_k -0.8906 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na3H(SO4)2 # Enthalpy of formation: 0 kcal/mol Na3UO4 - Na3UO4 +4.0000 H+ = + 1.0000 UO2+ + 2.0000 H2O + 3.0000 Na+ - log_k 56.2574 - -delta_H -293.703 kJ/mol # Calculated enthalpy of reaction Na3UO4 + Na3UO4 + 4 H+ = UO2+ + 2 H2O + 3 Na+ + log_k 56.2574 + -delta_H -293.703 kJ/mol # Calculated enthalpy of reaction Na3UO4 # Enthalpy of formation: -2024 kJ/mol - -analytic -9.6724e+001 -6.2485e-003 1.9469e+004 3.6180e+001 3.0382e+002 + -analytic -9.6724e+1 -6.2485e-3 1.9469e+4 3.618e+1 3.0382e+2 # -Range: 0-300 Na4Ca(SO4)3:2H2O - Na4Ca(SO4)3:2H2O = + 1.0000 Ca++ + 2.0000 H2O + 3.0000 SO4-- + 4.0000 Na+ - log_k -5.8938 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na4Ca(SO4)3:2H2O + Na4Ca(SO4)3:2H2O = Ca+2 + 2 H2O + 3 SO4-2 + 4 Na+ + log_k -5.8938 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na4Ca(SO4)3:2H2O # Enthalpy of formation: 0 kcal/mol Na4SiO4 - Na4SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 4.0000 Na+ - log_k 70.6449 - -delta_H -327.779 kJ/mol # Calculated enthalpy of reaction Na4SiO4 + Na4SiO4 + 4 H+ = SiO2 + 2 H2O + 4 Na+ + log_k 70.6449 + -delta_H -327.779 kJ/mol # Calculated enthalpy of reaction Na4SiO4 # Enthalpy of formation: -497.8 kcal/mol - -analytic -1.1969e+002 -6.5032e-003 2.6469e+004 4.4626e+001 -6.2007e+005 + -analytic -1.1969e+2 -6.5032e-3 2.6469e+4 4.4626e+1 -6.2007e+5 # -Range: 0-300 Na4UO2(CO3)3 - Na4UO2(CO3)3 +3.0000 H+ = + 1.0000 UO2++ + 3.0000 HCO3- + 4.0000 Na+ - log_k 4.0395 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na4UO2(CO3)3 + Na4UO2(CO3)3 + 3 H+ = UO2+2 + 3 HCO3- + 4 Na+ + log_k 4.0395 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na4UO2(CO3)3 # Enthalpy of formation: 0 kcal/mol Na6Si2O7 - Na6Si2O7 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 H2O + 6.0000 Na+ - log_k 101.6199 - -delta_H -471.951 kJ/mol # Calculated enthalpy of reaction Na6Si2O7 + Na6Si2O7 + 6 H+ = 2 SiO2 + 3 H2O + 6 Na+ + log_k 101.6199 + -delta_H -471.951 kJ/mol # Calculated enthalpy of reaction Na6Si2O7 # Enthalpy of formation: -856.3 kcal/mol - -analytic -1.0590e+002 4.5576e-003 3.6830e+004 3.8030e+001 -1.0276e+006 + -analytic -1.059e+2 4.5576e-3 3.683e+4 3.803e+1 -1.0276e+6 # -Range: 0-300 NaBr - NaBr = + 1.0000 Br- + 1.0000 Na+ - log_k 2.9739 - -delta_H -0.741032 kJ/mol # Calculated enthalpy of reaction NaBr + NaBr = Br- + Na+ + log_k 2.9739 + -delta_H -0.741032 kJ/mol # Calculated enthalpy of reaction NaBr # Enthalpy of formation: -361.062 kJ/mol - -analytic -9.3227e+001 -3.2780e-002 2.2910e+003 3.9713e+001 3.5777e+001 + -analytic -9.3227e+1 -3.278e-2 2.291e+3 3.9713e+1 3.5777e+1 # -Range: 0-300 NaBr:2H2O - NaBr:2H2O = + 1.0000 Br- + 1.0000 Na+ + 2.0000 H2O - log_k 2.1040 - -delta_H 18.4883 kJ/mol # Calculated enthalpy of reaction NaBr:2H2O + NaBr:2H2O = Br- + Na+ + 2 H2O + log_k 2.104 + -delta_H 18.4883 kJ/mol # Calculated enthalpy of reaction NaBr:2H2O # Enthalpy of formation: -951.968 kJ/mol - -analytic -4.1855e+001 -4.6170e-003 8.3883e+002 1.7182e+001 1.4259e+001 + -analytic -4.1855e+1 -4.617e-3 8.3883e+2 1.7182e+1 1.4259e+1 # -Range: 0-200 NaFeO2 - NaFeO2 +4.0000 H+ = + 1.0000 Fe+++ + 1.0000 Na+ + 2.0000 H2O - log_k 19.8899 - -delta_H -163.339 kJ/mol # Calculated enthalpy of reaction NaFeO2 + NaFeO2 + 4 H+ = Fe+3 + Na+ + 2 H2O + log_k 19.8899 + -delta_H -163.339 kJ/mol # Calculated enthalpy of reaction NaFeO2 # Enthalpy of formation: -698.218 kJ/mol - -analytic -7.0047e+001 -9.6226e-003 1.0647e+004 2.3071e+001 1.8082e+002 + -analytic -7.0047e+1 -9.6226e-3 1.0647e+4 2.3071e+1 1.8082e+2 # -Range: 0-200 NaNpO2CO3:3.5H2O - NaNpO2CO3:3.5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Na+ + 1.0000 NpO2+ + 3.5000 H2O - log_k -1.2342 - -delta_H 27.0979 kJ/mol # Calculated enthalpy of reaction NaNpO2CO3:3.5H2O + NaNpO2CO3:3.5H2O + H+ = HCO3- + Na+ + NpO2+ + 3.5 H2O + log_k -1.2342 + -delta_H 27.0979 kJ/mol # Calculated enthalpy of reaction NaNpO2CO3:3.5H2O # Enthalpy of formation: -2935.76 kJ/mol - -analytic -1.4813e+002 -2.7355e-002 3.6537e+003 5.7701e+001 5.7055e+001 + -analytic -1.4813e+2 -2.7355e-2 3.6537e+3 5.7701e+1 5.7055e+1 # -Range: 0-300 NaTcO4 - NaTcO4 = + 1.0000 Na+ + 1.0000 TcO4- - log_k 1.5208 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaTcO4 + NaTcO4 = Na+ + TcO4- + log_k 1.5208 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaTcO4 # Enthalpy of formation: 0 kcal/mol NaUO3 - NaUO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Na+ + 1.0000 UO2+ - log_k 8.3371 - -delta_H -56.365 kJ/mol # Calculated enthalpy of reaction NaUO3 + NaUO3 + 2 H+ = H2O + Na+ + UO2+ + log_k 8.3371 + -delta_H -56.365 kJ/mol # Calculated enthalpy of reaction NaUO3 # Enthalpy of formation: -1494.9 kJ/mol - -analytic -3.6363e+001 7.0505e-004 4.5359e+003 1.1828e+001 7.0790e+001 + -analytic -3.6363e+1 7.0505e-4 4.5359e+3 1.1828e+1 7.079e+1 # -Range: 0-300 Nahcolite - NaHCO3 = + 1.0000 HCO3- + 1.0000 Na+ - log_k -0.1118 - -delta_H 17.0247 kJ/mol # Calculated enthalpy of reaction Nahcolite + NaHCO3 = HCO3- + Na+ + log_k -0.1118 + -delta_H 17.0247 kJ/mol # Calculated enthalpy of reaction Nahcolite # Enthalpy of formation: -226.4 kcal/mol - -analytic -2.2282e+002 -5.9693e-002 5.4887e+003 8.9744e+001 8.5712e+001 + -analytic -2.2282e+2 -5.9693e-2 5.4887e+3 8.9744e+1 8.5712e+1 # -Range: 0-300 Nantokite - CuCl = + 1.0000 Cl- + 1.0000 Cu+ - log_k -6.7623 - -delta_H 41.9296 kJ/mol # Calculated enthalpy of reaction Nantokite + CuCl = Cl- + Cu+ + log_k -6.7623 + -delta_H 41.9296 kJ/mol # Calculated enthalpy of reaction Nantokite # Enthalpy of formation: -137.329 kJ/mol - -analytic -2.2442e+001 -1.1201e-002 -1.8709e+003 1.0221e+001 -3.1763e+001 + -analytic -2.2442e+1 -1.1201e-2 -1.8709e+3 1.0221e+1 -3.1763e+1 # -Range: 0-200 Natrolite - Na2Al2Si3O10:2H2O +8.0000 H+ = + 2.0000 Al+++ + 2.0000 Na+ + 3.0000 SiO2 + 6.0000 H2O - log_k 18.5204 - -delta_H -186.971 kJ/mol # Calculated enthalpy of reaction Natrolite + Na2Al2Si3O10:2H2O + 8 H+ = 2 Al+3 + 2 Na+ + 3 SiO2 + 6 H2O + log_k 18.5204 + -delta_H -186.971 kJ/mol # Calculated enthalpy of reaction Natrolite # Enthalpy of formation: -5718.56 kJ/mol - -analytic -2.7712e+001 -2.7963e-003 1.6075e+004 1.5332e+000 -9.5765e+005 + -analytic -2.7712e+1 -2.7963e-3 1.6075e+4 1.5332e+0 -9.5765e+5 # -Range: 0-300 Natron - Na2CO3:10H2O +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ + 10.0000 H2O - log_k 9.6102 - -delta_H 50.4781 kJ/mol # Calculated enthalpy of reaction Natron + Na2CO3:10H2O + H+ = HCO3- + 2 Na+ + 10 H2O + log_k 9.6102 + -delta_H 50.4781 kJ/mol # Calculated enthalpy of reaction Natron # Enthalpy of formation: -4079.39 kJ/mol - -analytic -1.9981e+002 -2.9247e-002 5.2937e+003 8.0973e+001 8.2662e+001 + -analytic -1.9981e+2 -2.9247e-2 5.2937e+3 8.0973e+1 8.2662e+1 # -Range: 0-300 Natrosilite - Na2Si2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 Na+ + 2.0000 SiO2 - log_k 18.1337 - -delta_H -51.7686 kJ/mol # Calculated enthalpy of reaction Natrosilite + Na2Si2O5 + 2 H+ = H2O + 2 Na+ + 2 SiO2 + log_k 18.1337 + -delta_H -51.7686 kJ/mol # Calculated enthalpy of reaction Natrosilite # Enthalpy of formation: -590.36 kcal/mol - -analytic -2.7628e+001 1.6865e-002 1.3302e+004 4.2356e+000 -1.2828e+006 + -analytic -2.7628e+1 1.6865e-2 1.3302e+4 4.2356e+0 -1.2828e+6 # -Range: 0-300 Naumannite - Ag2Se = + 1.0000 Se-- + 2.0000 Ag+ - log_k -57.4427 - -delta_H 0 # Not possible to calculate enthalpy of reaction Naumannite + Ag2Se = Se-2 + 2 Ag+ + log_k -57.4427 + -delta_H 0 # Not possible to calculate enthalpy of reaction Naumannite # Enthalpy of formation: -37.441 kJ/mol - -analytic -5.3844e+001 -1.0965e-002 -1.4739e+004 1.9842e+001 -2.2998e+002 + -analytic -5.3844e+1 -1.0965e-2 -1.4739e+4 1.9842e+1 -2.2998e+2 # -Range: 0-300 Nd - Nd +3.0000 H+ +0.7500 O2 = + 1.0000 Nd+++ + 1.5000 H2O - log_k 182.2233 - -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Nd + Nd + 3 H+ + 0.75 O2 = Nd+3 + 1.5 H2O + log_k 182.2233 + -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Nd # Enthalpy of formation: 0 kJ/mol - -analytic -2.7390e+002 -5.6545e-002 7.1502e+004 9.7969e+001 -8.2482e+005 + -analytic -2.739e+2 -5.6545e-2 7.1502e+4 9.7969e+1 -8.2482e+5 # -Range: 0-300 Nd(OH)3 - Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O - log_k 18.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3 + Nd(OH)3 + 3 H+ = Nd+3 + 3 H2O + log_k 18.0852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3 # Enthalpy of formation: 0 kcal/mol Nd(OH)3(am) - Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O - log_k 20.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(am) + Nd(OH)3 + 3 H+ = Nd+3 + 3 H2O + log_k 20.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(am) # Enthalpy of formation: 0 kcal/mol Nd(OH)3(c) - Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O - log_k 15.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(c) + Nd(OH)3 + 3 H+ = Nd+3 + 3 H2O + log_k 15.7852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(c) # Enthalpy of formation: 0 kcal/mol Nd2(CO3)3 - Nd2(CO3)3 +3.0000 H+ = + 2.0000 Nd+++ + 3.0000 HCO3- - log_k -3.6636 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(CO3)3 + Nd2(CO3)3 + 3 H+ = 2 Nd+3 + 3 HCO3- + log_k -3.6636 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(CO3)3 # Enthalpy of formation: 0 kcal/mol Nd2O3 - Nd2O3 +6.0000 H+ = + 2.0000 Nd+++ + 3.0000 H2O - log_k 58.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2O3 + Nd2O3 + 6 H+ = 2 Nd+3 + 3 H2O + log_k 58.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2O3 # Enthalpy of formation: 0 kcal/mol NdF3:.5H2O - NdF3:.5H2O = + 0.5000 H2O + 1.0000 Nd+++ + 3.0000 F- - log_k -18.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdF3:.5H2O + NdF3:.5H2O = 0.5 H2O + Nd+3 + 3 F- + log_k -18.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdF3:.5H2O # Enthalpy of formation: 0 kcal/mol NdOHCO3 - NdOHCO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Nd+++ - log_k 2.8239 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdOHCO3 + NdOHCO3 + 2 H+ = H2O + HCO3- + Nd+3 + log_k 2.8239 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdOHCO3 # Enthalpy of formation: 0 kcal/mol NdPO4:10H2O - NdPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Nd+++ + 10.0000 H2O - log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4:10H2O + NdPO4:10H2O + H+ = HPO4-2 + Nd+3 + 10 H2O + log_k -12.1782 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4:10H2O # Enthalpy of formation: 0 kcal/mol Nepheline - NaAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 1.0000 SiO2 + 2.0000 H2O - log_k 13.8006 - -delta_H -135.068 kJ/mol # Calculated enthalpy of reaction Nepheline + NaAlSiO4 + 4 H+ = Al+3 + Na+ + SiO2 + 2 H2O + log_k 13.8006 + -delta_H -135.068 kJ/mol # Calculated enthalpy of reaction Nepheline # Enthalpy of formation: -500.241 kcal/mol - -analytic -2.4856e+001 -8.8171e-003 8.5653e+003 6.0904e+000 -2.2786e+005 + -analytic -2.4856e+1 -8.8171e-3 8.5653e+3 6.0904e+0 -2.2786e+5 # -Range: 0-300 Nesquehonite - MgCO3:3H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ + 3.0000 H2O - log_k 4.9955 - -delta_H -36.1498 kJ/mol # Calculated enthalpy of reaction Nesquehonite + MgCO3:3H2O + H+ = HCO3- + Mg+2 + 3 H2O + log_k 4.9955 + -delta_H -36.1498 kJ/mol # Calculated enthalpy of reaction Nesquehonite # Enthalpy of formation: -472.576 kcal/mol - -analytic 1.3771e+002 -6.0397e-002 -3.5049e+004 -1.8831e+001 4.4213e+006 + -analytic 1.3771e+2 -6.0397e-2 -3.5049e+4 -1.8831e+1 4.4213e+6 # -Range: 0-300 Ni - Ni +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ni++ - log_k 50.9914 - -delta_H -333.745 kJ/mol # Calculated enthalpy of reaction Ni + Ni + 2 H+ + 0.5 O2 = H2O + Ni+2 + log_k 50.9914 + -delta_H -333.745 kJ/mol # Calculated enthalpy of reaction Ni # Enthalpy of formation: 0 kcal/mol - -analytic -5.8308e+001 -2.0133e-002 1.8444e+004 2.1590e+001 2.8781e+002 + -analytic -5.8308e+1 -2.0133e-2 1.8444e+4 2.159e+1 2.8781e+2 # -Range: 0-300 Ni(OH)2 - Ni(OH)2 +2.0000 H+ = + 1.0000 Ni++ + 2.0000 H2O - log_k 12.7485 - -delta_H -95.6523 kJ/mol # Calculated enthalpy of reaction Ni(OH)2 + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 12.7485 + -delta_H -95.6523 kJ/mol # Calculated enthalpy of reaction Ni(OH)2 # Enthalpy of formation: -529.998 kJ/mol - -analytic -6.5279e+001 -5.9499e-003 7.3471e+003 2.2290e+001 1.2479e+002 + -analytic -6.5279e+1 -5.9499e-3 7.3471e+3 2.229e+1 1.2479e+2 # -Range: 0-200 Ni2P2O7 - Ni2P2O7 +1.0000 H2O = + 2.0000 HPO4-- + 2.0000 Ni++ - log_k -8.8991 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2P2O7 + Ni2P2O7 + H2O = 2 HPO4-2 + 2 Ni+2 + log_k -8.8991 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2P2O7 # Enthalpy of formation: 0 kcal/mol Ni2SiO4 - Ni2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Ni++ - log_k 14.3416 - -delta_H -127.629 kJ/mol # Calculated enthalpy of reaction Ni2SiO4 + Ni2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Ni+2 + log_k 14.3416 + -delta_H -127.629 kJ/mol # Calculated enthalpy of reaction Ni2SiO4 # Enthalpy of formation: -341.705 kcal/mol - -analytic -4.0414e+001 -1.1194e-002 9.6515e+003 1.2026e+001 -3.6336e+005 + -analytic -4.0414e+1 -1.1194e-2 9.6515e+3 1.2026e+1 -3.6336e+5 # -Range: 0-300 Ni3(PO4)2 - Ni3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Ni++ - log_k -6.6414 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni3(PO4)2 + Ni3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Ni+2 + log_k -6.6414 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni3(PO4)2 # Enthalpy of formation: 0 kcal/mol NiCO3 - NiCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Ni++ - log_k 3.5118 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiCO3 + NiCO3 + H+ = HCO3- + Ni+2 + log_k 3.5118 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiCO3 # Enthalpy of formation: 0 kcal/mol NiCl2 - NiCl2 = + 1.0000 Ni++ + 2.0000 Cl- - log_k 8.6113 - -delta_H -82.7969 kJ/mol # Calculated enthalpy of reaction NiCl2 + NiCl2 = Ni+2 + 2 Cl- + log_k 8.6113 + -delta_H -82.7969 kJ/mol # Calculated enthalpy of reaction NiCl2 # Enthalpy of formation: -305.336 kJ/mol - -analytic -1.2416e+000 -2.3139e-002 2.6529e+003 3.1696e+000 4.5052e+001 + -analytic -1.2416e+0 -2.3139e-2 2.6529e+3 3.1696e+0 4.5052e+1 # -Range: 0-200 NiCl2:2H2O - NiCl2:2H2O = + 1.0000 Ni++ + 2.0000 Cl- + 2.0000 H2O - log_k 3.9327 - -delta_H -37.6746 kJ/mol # Calculated enthalpy of reaction NiCl2:2H2O + NiCl2:2H2O = Ni+2 + 2 Cl- + 2 H2O + log_k 3.9327 + -delta_H -37.6746 kJ/mol # Calculated enthalpy of reaction NiCl2:2H2O # Enthalpy of formation: -922.135 kJ/mol - -analytic -4.8814e+001 -2.2602e-002 2.5951e+003 2.0518e+001 4.4086e+001 + -analytic -4.8814e+1 -2.2602e-2 2.5951e+3 2.0518e+1 4.4086e+1 # -Range: 0-200 NiCl2:4H2O - NiCl2:4H2O = + 1.0000 Ni++ + 2.0000 Cl- + 4.0000 H2O - log_k 3.8561 - -delta_H -15.4373 kJ/mol # Calculated enthalpy of reaction NiCl2:4H2O + NiCl2:4H2O = Ni+2 + 2 Cl- + 4 H2O + log_k 3.8561 + -delta_H -15.4373 kJ/mol # Calculated enthalpy of reaction NiCl2:4H2O # Enthalpy of formation: -1516.05 kJ/mol - -analytic -1.0545e+002 -2.4691e-002 3.9978e+003 4.1727e+001 6.7926e+001 + -analytic -1.0545e+2 -2.4691e-2 3.9978e+3 4.1727e+1 6.7926e+1 # -Range: 0-200 NiF2 - NiF2 = + 1.0000 Ni++ + 2.0000 F- - log_k 0.8772 - -delta_H -73.1438 kJ/mol # Calculated enthalpy of reaction NiF2 + NiF2 = Ni+2 + 2 F- + log_k 0.8772 + -delta_H -73.1438 kJ/mol # Calculated enthalpy of reaction NiF2 # Enthalpy of formation: -651.525 kJ/mol - -analytic -2.5291e+002 -8.4179e-002 9.3429e+003 1.0002e+002 1.4586e+002 + -analytic -2.5291e+2 -8.4179e-2 9.3429e+3 1.0002e+2 1.4586e+2 # -Range: 0-300 NiF2:4H2O - NiF2:4H2O = + 1.0000 Ni++ + 2.0000 F- + 4.0000 H2O - log_k -4.0588 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiF2:4H2O + NiF2:4H2O = Ni+2 + 2 F- + 4 H2O + log_k -4.0588 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiF2:4H2O # Enthalpy of formation: 0 kcal/mol NiSO4 - NiSO4 = + 1.0000 Ni++ + 1.0000 SO4-- - log_k 5.3197 - -delta_H -90.5092 kJ/mol # Calculated enthalpy of reaction NiSO4 + NiSO4 = Ni+2 + SO4-2 + log_k 5.3197 + -delta_H -90.5092 kJ/mol # Calculated enthalpy of reaction NiSO4 # Enthalpy of formation: -873.066 kJ/mol - -analytic -1.8878e+002 -7.6403e-002 7.9412e+003 7.6866e+001 1.2397e+002 + -analytic -1.8878e+2 -7.6403e-2 7.9412e+3 7.6866e+1 1.2397e+2 # -Range: 0-300 NiSO4:6H2O(alpha) - NiSO4:6H2O = + 1.0000 Ni++ + 1.0000 SO4-- + 6.0000 H2O - log_k -2.0072 - -delta_H 4.37983 kJ/mol # Calculated enthalpy of reaction NiSO4:6H2O(alpha) + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.0072 + -delta_H 4.37983 kJ/mol # Calculated enthalpy of reaction NiSO4:6H2O(alpha) # Enthalpy of formation: -2682.99 kJ/mol - -analytic -1.1937e+002 -1.3785e-002 4.1543e+003 4.3454e+001 7.0587e+001 + -analytic -1.1937e+2 -1.3785e-2 4.1543e+3 4.3454e+1 7.0587e+1 # -Range: 0-200 Nickelbischofite - NiCl2:6H2O = + 1.0000 Ni++ + 2.0000 Cl- + 6.0000 H2O - log_k 3.1681 - -delta_H 0.064088 kJ/mol # Calculated enthalpy of reaction Nickelbischofite + NiCl2:6H2O = Ni+2 + 2 Cl- + 6 H2O + log_k 3.1681 + -delta_H 0.064088 kJ/mol # Calculated enthalpy of reaction Nickelbischofite # Enthalpy of formation: -2103.23 kJ/mol - -analytic -1.4340e+002 -2.1257e-002 5.1858e+003 5.4759e+001 8.8112e+001 + -analytic -1.434e+2 -2.1257e-2 5.1858e+3 5.4759e+1 8.8112e+1 # -Range: 0-200 Ningyoite - CaUP2O8:2H2O +2.0000 H+ = + 1.0000 Ca++ + 1.0000 U++++ + 2.0000 H2O + 2.0000 HPO4-- - log_k -29.7931 - -delta_H -36.4769 kJ/mol # Calculated enthalpy of reaction Ningyoite + CaUP2O8:2H2O + 2 H+ = Ca+2 + U+4 + 2 H2O + 2 HPO4-2 + log_k -29.7931 + -delta_H -36.4769 kJ/mol # Calculated enthalpy of reaction Ningyoite # Enthalpy of formation: -1016.65 kcal/mol - -analytic -1.0274e+002 -4.9041e-002 1.7779e+003 3.2973e+001 3.0227e+001 + -analytic -1.0274e+2 -4.9041e-2 1.7779e+3 3.2973e+1 3.0227e+1 # -Range: 0-200 Niter - KNO3 = + 1.0000 K+ + 1.0000 NO3- - log_k -0.2061 - -delta_H 35.4794 kJ/mol # Calculated enthalpy of reaction Niter + KNO3 = K+ + NO3- + log_k -0.2061 + -delta_H 35.4794 kJ/mol # Calculated enthalpy of reaction Niter # Enthalpy of formation: -494.46 kJ/mol - -analytic -6.5607e+001 -2.8165e-002 -4.0131e+002 3.0361e+001 -6.2425e+000 + -analytic -6.5607e+1 -2.8165e-2 -4.0131e+2 3.0361e+1 -6.2425e+0 # -Range: 0-300 Nitrobarite - Ba(NO3)2 = + 1.0000 Ba++ + 2.0000 NO3- - log_k -2.4523 - -delta_H 40.8161 kJ/mol # Calculated enthalpy of reaction Nitrobarite + Ba(NO3)2 = Ba+2 + 2 NO3- + log_k -2.4523 + -delta_H 40.8161 kJ/mol # Calculated enthalpy of reaction Nitrobarite # Enthalpy of formation: -992.082 kJ/mol - -analytic -1.6179e+002 -6.5831e-002 1.2142e+003 7.0664e+001 1.8995e+001 + -analytic -1.6179e+2 -6.5831e-2 1.2142e+3 7.0664e+1 1.8995e+1 # -Range: 0-300 Nontronite-Ca - Ca.165Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.1650 Ca++ + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -11.5822 - -delta_H -38.138 kJ/mol # Calculated enthalpy of reaction Nontronite-Ca + Ca.165Fe2Al.33Si3.67H2O12 + 7.32 H+ = 0.165 Ca+2 + 0.33 Al+3 + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O + log_k -11.5822 + -delta_H -38.138 kJ/mol # Calculated enthalpy of reaction Nontronite-Ca # Enthalpy of formation: -1166.7 kcal/mol - -analytic 1.6291e+001 4.3557e-003 1.0221e+004 -1.8690e+001 -1.5427e+006 + -analytic 1.6291e+1 4.3557e-3 1.0221e+4 -1.869e+1 -1.5427e+6 # -Range: 0-300 Nontronite-Cs - Cs.33Si4Fe1.67Mg.33H2O12 +6.0000 H+ = + 0.3300 Cs+ + 0.3300 Mg++ + 1.6700 Fe+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 5.7975 - -delta_H -86.6996 kJ/mol # Calculated enthalpy of reaction Nontronite-Cs + Cs.33Si4Fe1.67Mg.33H2O12 + 6 H+ = 0.33 Cs+ + 0.33 Mg+2 + 1.67 Fe+3 + 4 H2O + 4 SiO2 + log_k 5.7975 + -delta_H -86.6996 kJ/mol # Calculated enthalpy of reaction Nontronite-Cs # Enthalpy of formation: -1168.54 kcal/mol - -analytic -1.1646e+001 1.0033e-002 1.7668e+004 -9.0129e+000 -2.0143e+006 + -analytic -1.1646e+1 1.0033e-2 1.7668e+4 -9.0129e+0 -2.0143e+6 # -Range: 0-300 Nontronite-H - H.33Fe2Al.33Si3.67H2O12 +6.9900 H+ = + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -12.5401 - -delta_H -30.452 kJ/mol # Calculated enthalpy of reaction Nontronite-H + H.33Fe2Al.33Si3.67H2O12 + 6.99 H+ = 0.33 Al+3 + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O + log_k -12.5401 + -delta_H -30.452 kJ/mol # Calculated enthalpy of reaction Nontronite-H # Enthalpy of formation: -1147.12 kcal/mol - -analytic 9.7794e+001 1.4055e-002 4.7440e+003 -4.7272e+001 -1.2103e+006 + -analytic 9.7794e+1 1.4055e-2 4.744e+3 -4.7272e+1 -1.2103e+6 # -Range: 0-300 Nontronite-K - K.33Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 K+ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -11.8648 - -delta_H -26.5822 kJ/mol # Calculated enthalpy of reaction Nontronite-K + K.33Fe2Al.33Si3.67H2O12 + 7.32 H+ = 0.33 Al+3 + 0.33 K+ + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O + log_k -11.8648 + -delta_H -26.5822 kJ/mol # Calculated enthalpy of reaction Nontronite-K # Enthalpy of formation: -1167.93 kcal/mol - -analytic 1.3630e+001 4.7708e-003 1.0073e+004 -1.7407e+001 -1.5803e+006 + -analytic 1.363e+1 4.7708e-3 1.0073e+4 -1.7407e+1 -1.5803e+6 # -Range: 0-300 Nontronite-Mg - Mg.165Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.1650 Mg++ + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -11.6200 - -delta_H -41.1779 kJ/mol # Calculated enthalpy of reaction Nontronite-Mg + Mg.165Fe2Al.33Si3.67H2O12 + 7.32 H+ = 0.165 Mg+2 + 0.33 Al+3 + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O + log_k -11.62 + -delta_H -41.1779 kJ/mol # Calculated enthalpy of reaction Nontronite-Mg # Enthalpy of formation: -1162.93 kcal/mol - -analytic 5.5961e+001 1.0139e-002 8.0777e+003 -3.3164e+001 -1.4031e+006 + -analytic 5.5961e+1 1.0139e-2 8.0777e+3 -3.3164e+1 -1.4031e+6 # -Range: 0-300 Nontronite-Na - Na.33Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Na+ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -11.5263 - -delta_H -31.5687 kJ/mol # Calculated enthalpy of reaction Nontronite-Na + Na.33Fe2Al.33Si3.67H2O12 + 7.32 H+ = 0.33 Al+3 + 0.33 Na+ + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O + log_k -11.5263 + -delta_H -31.5687 kJ/mol # Calculated enthalpy of reaction Nontronite-Na # Enthalpy of formation: -1165.8 kcal/mol - -analytic 6.7915e+001 1.2851e-002 7.1218e+003 -3.7112e+001 -1.3758e+006 + -analytic 6.7915e+1 1.2851e-2 7.1218e+3 -3.7112e+1 -1.3758e+6 # -Range: 0-300 Np - Np +4.0000 H+ +1.0000 O2 = + 1.0000 Np++++ + 2.0000 H2O - log_k 174.1077 - -delta_H -1115.54 kJ/mol # Calculated enthalpy of reaction Np + Np + 4 H+ + O2 = Np+4 + 2 H2O + log_k 174.1077 + -delta_H -1115.54 kJ/mol # Calculated enthalpy of reaction Np # Enthalpy of formation: 0 kJ/mol - -analytic -3.2136e+001 -1.4340e-002 5.7853e+004 6.6512e+000 9.0275e+002 + -analytic -3.2136e+1 -1.434e-2 5.7853e+4 6.6512e+0 9.0275e+2 # -Range: 0-300 Np(HPO4)2 - Np(HPO4)2 = + 1.0000 Np++++ + 2.0000 HPO4-- - log_k -30.9786 - -delta_H -18.6219 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 + Np(HPO4)2 = Np+4 + 2 HPO4-2 + log_k -30.9786 + -delta_H -18.6219 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 # Enthalpy of formation: -3121.54 kJ/mol - -analytic -3.6627e+002 -1.3955e-001 7.1370e+003 1.4261e+002 1.1147e+002 + -analytic -3.6627e+2 -1.3955e-1 7.137e+3 1.4261e+2 1.1147e+2 # -Range: 0-300 Np(OH)4 - Np(OH)4 +4.0000 H+ = + 1.0000 Np++++ + 4.0000 H2O - log_k 0.8103 - -delta_H -78.4963 kJ/mol # Calculated enthalpy of reaction Np(OH)4 + Np(OH)4 + 4 H+ = Np+4 + 4 H2O + log_k 0.8103 + -delta_H -78.4963 kJ/mol # Calculated enthalpy of reaction Np(OH)4 # Enthalpy of formation: -1620.86 kJ/mol - -analytic -9.5122e+001 -1.0532e-002 7.1132e+003 3.0398e+001 1.1102e+002 + -analytic -9.5122e+1 -1.0532e-2 7.1132e+3 3.0398e+1 1.1102e+2 # -Range: 0-300 Np2O5 - Np2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 NpO2+ - log_k 9.5000 - -delta_H -94.4576 kJ/mol # Calculated enthalpy of reaction Np2O5 + Np2O5 + 2 H+ = H2O + 2 NpO2+ + log_k 9.5 + -delta_H -94.4576 kJ/mol # Calculated enthalpy of reaction Np2O5 # Enthalpy of formation: -513.232 kcal/mol - -analytic 5.9974e+003 1.4553e+000 -1.7396e+005 -2.3595e+003 -2.9689e+003 + -analytic 5.9974e+3 1.4553e+0 -1.7396e+5 -2.3595e+3 -2.9689e+3 # -Range: 25-150 NpO2 - NpO2 +4.0000 H+ = + 1.0000 Np++++ + 2.0000 H2O - log_k -7.8026 - -delta_H -53.6087 kJ/mol # Calculated enthalpy of reaction NpO2 + NpO2 + 4 H+ = Np+4 + 2 H2O + log_k -7.8026 + -delta_H -53.6087 kJ/mol # Calculated enthalpy of reaction NpO2 # Enthalpy of formation: -1074.07 kJ/mol - -analytic -7.0053e+001 -1.1017e-002 4.4742e+003 2.0421e+001 6.9836e+001 + -analytic -7.0053e+1 -1.1017e-2 4.4742e+3 2.0421e+1 6.9836e+1 # -Range: 0-300 NpO2(OH)2 - NpO2(OH)2 +2.0000 H+ = + 1.0000 NpO2++ + 2.0000 H2O - log_k 5.9851 - -delta_H -54.9977 kJ/mol # Calculated enthalpy of reaction NpO2(OH)2 + NpO2(OH)2 + 2 H+ = NpO2+2 + 2 H2O + log_k 5.9851 + -delta_H -54.9977 kJ/mol # Calculated enthalpy of reaction NpO2(OH)2 # Enthalpy of formation: -1377.16 kJ/mol - -analytic -2.7351e+001 -1.5987e-003 3.8301e+003 8.4735e+000 5.9773e+001 + -analytic -2.7351e+1 -1.5987e-3 3.8301e+3 8.4735e+0 5.9773e+1 # -Range: 0-300 NpO2OH(am) - NpO2OH +1.0000 H+ = + 1.0000 H2O + 1.0000 NpO2+ - log_k 4.2364 - -delta_H -39.6673 kJ/mol # Calculated enthalpy of reaction NpO2OH(am) + NpO2OH + H+ = H2O + NpO2+ + log_k 4.2364 + -delta_H -39.6673 kJ/mol # Calculated enthalpy of reaction NpO2OH(am) # Enthalpy of formation: -1224.16 kJ/mol - -analytic -3.8824e+000 6.7122e-003 2.5390e+003 -9.7040e-001 3.9619e+001 + -analytic -3.8824e+0 6.7122e-3 2.539e+3 -9.704e-1 3.9619e+1 # -Range: 0-300 Okenite - CaSi2O4(OH)2:H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 3.0000 H2O - log_k 10.3816 - -delta_H -19.4974 kJ/mol # Calculated enthalpy of reaction Okenite + CaSi2O4(OH)2:H2O + 2 H+ = Ca+2 + 2 SiO2 + 3 H2O + log_k 10.3816 + -delta_H -19.4974 kJ/mol # Calculated enthalpy of reaction Okenite # Enthalpy of formation: -749.641 kcal/mol - -analytic -7.7353e+001 1.5091e-002 1.3023e+004 2.1337e+001 -1.1831e+006 + -analytic -7.7353e+1 1.5091e-2 1.3023e+4 2.1337e+1 -1.1831e+6 # -Range: 0-300 Orpiment - As2S3 +6.0000 H2O = + 2.0000 H2AsO3- + 3.0000 HS- + 5.0000 H+ - log_k -79.4159 - -delta_H 406.539 kJ/mol # Calculated enthalpy of reaction Orpiment + As2S3 + 6 H2O = 2 H2AsO3- + 3 HS- + 5 H+ + log_k -79.4159 + -delta_H 406.539 kJ/mol # Calculated enthalpy of reaction Orpiment # Enthalpy of formation: -169.423 kJ/mol - -analytic -3.3964e+002 -1.4977e-001 -1.5711e+004 1.4448e+002 -2.4505e+002 + -analytic -3.3964e+2 -1.4977e-1 -1.5711e+4 1.4448e+2 -2.4505e+2 # -Range: 0-300 Otavite - CdCO3 +1.0000 H+ = + 1.0000 Cd++ + 1.0000 HCO3- - log_k -1.7712 - -delta_H 0 # Not possible to calculate enthalpy of reaction Otavite + CdCO3 + H+ = Cd+2 + HCO3- + log_k -1.7712 + -delta_H 0 # Not possible to calculate enthalpy of reaction Otavite # Enthalpy of formation: 0 kcal/mol Ottemannite - Sn2S3 +3.0000 H+ = + 1.0000 Sn++ + 1.0000 Sn++++ + 3.0000 HS- - log_k -46.2679 - -delta_H 236.727 kJ/mol # Calculated enthalpy of reaction Ottemannite + Sn2S3 + 3 H+ = Sn+2 + Sn+4 + 3 HS- + log_k -46.2679 + -delta_H 236.727 kJ/mol # Calculated enthalpy of reaction Ottemannite # Enthalpy of formation: -63 kcal/mol - -analytic -6.2863e+001 -5.9171e-002 -1.3469e+004 3.2092e+001 -2.2870e+002 + -analytic -6.2863e+1 -5.9171e-2 -1.3469e+4 3.2092e+1 -2.287e+2 # -Range: 0-200 Oxychloride-Mg - Mg2Cl(OH)3:4H2O +3.0000 H+ = + 1.0000 Cl- + 2.0000 Mg++ + 7.0000 H2O - log_k 25.8319 - -delta_H 0 # Not possible to calculate enthalpy of reaction Oxychloride-Mg + Mg2Cl(OH)3:4H2O + 3 H+ = Cl- + 2 Mg+2 + 7 H2O + log_k 25.8319 + -delta_H 0 # Not possible to calculate enthalpy of reaction Oxychloride-Mg # Enthalpy of formation: 0 kcal/mol P - P +1.5000 H2O +1.2500 O2 = + 1.0000 HPO4-- + 2.0000 H+ - log_k 132.1032 - -delta_H -848.157 kJ/mol # Calculated enthalpy of reaction P + P + 1.5 H2O + 1.25 O2 = HPO4-2 + 2 H+ + log_k 132.1032 + -delta_H -848.157 kJ/mol # Calculated enthalpy of reaction P # Enthalpy of formation: 0 kJ/mol - -analytic -9.2727e+001 -6.8342e-002 4.3465e+004 4.0156e+001 6.7826e+002 + -analytic -9.2727e+1 -6.8342e-2 4.3465e+4 4.0156e+1 6.7826e+2 # -Range: 0-300 Paragonite - NaAl3Si3O10(OH)2 +10.0000 H+ = + 1.0000 Na+ + 3.0000 Al+++ + 3.0000 SiO2 + 6.0000 H2O - log_k 17.5220 - -delta_H -275.056 kJ/mol # Calculated enthalpy of reaction Paragonite + NaAl3Si3O10(OH)2 + 10 H+ = Na+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 17.522 + -delta_H -275.056 kJ/mol # Calculated enthalpy of reaction Paragonite # Enthalpy of formation: -1416.96 kcal/mol - -analytic 3.5507e+001 -1.0720e-002 1.3519e+004 -2.2283e+001 -4.5657e+005 + -analytic 3.5507e+1 -1.072e-2 1.3519e+4 -2.2283e+1 -4.5657e+5 # -Range: 0-300 Paralaurionite - PbClOH +1.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 Pb++ - log_k 0.2035 - -delta_H 8.41948 kJ/mol # Calculated enthalpy of reaction Paralaurionite + PbClOH + H+ = Cl- + H2O + Pb+2 + log_k 0.2035 + -delta_H 8.41948 kJ/mol # Calculated enthalpy of reaction Paralaurionite # Enthalpy of formation: -460.417 kJ/mol - -analytic -1.1245e+001 -1.0520e-002 -5.3551e+002 6.6175e+000 -9.0896e+000 + -analytic -1.1245e+1 -1.052e-2 -5.3551e+2 6.6175e+0 -9.0896e+0 # -Range: 0-200 Pargasite - NaCa2Al3Mg4Si6O22(OH)2 +22.0000 H+ = + 1.0000 Na+ + 2.0000 Ca++ + 3.0000 Al+++ + 4.0000 Mg++ + 6.0000 SiO2 + 12.0000 H2O - log_k 101.9939 - -delta_H -880.205 kJ/mol # Calculated enthalpy of reaction Pargasite + NaCa2Al3Mg4Si6O22(OH)2 + 22 H+ = Na+ + 2 Ca+2 + 3 Al+3 + 4 Mg+2 + 6 SiO2 + 12 H2O + log_k 101.9939 + -delta_H -880.205 kJ/mol # Calculated enthalpy of reaction Pargasite # Enthalpy of formation: -3016.62 kcal/mol - -analytic -6.7889e+001 -3.7817e-002 5.0493e+004 9.2705e+000 -1.0163e+006 + -analytic -6.7889e+1 -3.7817e-2 5.0493e+4 9.2705e+0 -1.0163e+6 # -Range: 0-300 Parsonsite - Pb2UO2(PO4)2:2H2O +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 HPO4-- + 2.0000 Pb++ - log_k -27.7911 - -delta_H 0 # Not possible to calculate enthalpy of reaction Parsonsite + Pb2UO2(PO4)2:2H2O + 2 H+ = UO2+2 + 2 H2O + 2 HPO4-2 + 2 Pb+2 + log_k -27.7911 + -delta_H 0 # Not possible to calculate enthalpy of reaction Parsonsite # Enthalpy of formation: 0 kcal/mol Pb - Pb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pb++ - log_k 47.1871 - -delta_H -278.851 kJ/mol # Calculated enthalpy of reaction Pb + Pb + 2 H+ + 0.5 O2 = H2O + Pb+2 + log_k 47.1871 + -delta_H -278.851 kJ/mol # Calculated enthalpy of reaction Pb # Enthalpy of formation: 0 kJ/mol - -analytic -3.1784e+001 -1.4816e-002 1.4984e+004 1.3383e+001 2.3381e+002 + -analytic -3.1784e+1 -1.4816e-2 1.4984e+4 1.3383e+1 2.3381e+2 # -Range: 0-300 Pb(H2PO4)2 - Pb(H2PO4)2 = + 1.0000 Pb++ + 2.0000 H+ + 2.0000 HPO4-- - log_k -9.8400 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(H2PO4)2 + Pb(H2PO4)2 = Pb+2 + 2 H+ + 2 HPO4-2 + log_k -9.84 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(H2PO4)2 # Enthalpy of formation: 0 kcal/mol Pb(IO3)2 - Pb(IO3)2 = + 1.0000 Pb++ + 2.0000 IO3- - log_k -12.5173 - -delta_H 53.7783 kJ/mol # Calculated enthalpy of reaction Pb(IO3)2 + Pb(IO3)2 = Pb+2 + 2 IO3- + log_k -12.5173 + -delta_H 53.7783 kJ/mol # Calculated enthalpy of reaction Pb(IO3)2 # Enthalpy of formation: -495.525 kJ/mol - -analytic -5.3573e+000 -1.4164e-002 -3.6236e+003 3.7209e+000 -6.1532e+001 + -analytic -5.3573e+0 -1.4164e-2 -3.6236e+3 3.7209e+0 -6.1532e+1 # -Range: 0-200 Pb(N3)2(mono) - Pb(N3)2 = + 1.0000 Pb++ + 2.0000 N3- - log_k -8.3583 - -delta_H 72.9495 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(mono) + Pb(N3)2 = Pb+2 + 2 N3- + log_k -8.3583 + -delta_H 72.9495 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(mono) # Enthalpy of formation: 478.251 kJ/mol - -analytic 6.0051e+001 -1.1168e-002 -7.0041e+003 -1.6812e+001 -1.1896e+002 + -analytic 6.0051e+1 -1.1168e-2 -7.0041e+3 -1.6812e+1 -1.1896e+2 # -Range: 0-200 Pb(N3)2(orth) - Pb(N3)2 = + 1.0000 Pb++ + 2.0000 N3- - log_k -8.7963 - -delta_H 75.0615 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(orth) + Pb(N3)2 = Pb+2 + 2 N3- + log_k -8.7963 + -delta_H 75.0615 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(orth) # Enthalpy of formation: 476.139 kJ/mol - -analytic 5.9779e+001 -1.1215e-002 -7.1081e+003 -1.6732e+001 -1.2073e+002 + -analytic 5.9779e+1 -1.1215e-2 -7.1081e+3 -1.6732e+1 -1.2073e+2 # -Range: 0-200 Pb(Thiocyanate)2 - Pb(Thiocyanate)2 = + 1.0000 Pb++ + 2.0000 Thiocyanate- - log_k -0.0910 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 + Pb(Thiocyanate)2 = Pb+2 + 2 Thiocyanate- + log_k -0.091 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 # Enthalpy of formation: 151.212 kJ/mol - -analytic 7.4247e+000 -1.6226e-002 0.0000e+000 0.0000e+000 -2.3938e+005 + -analytic 7.4247e+0 -1.6226e-2 0e+0 0e+0 -2.3938e+5 # -Range: 0-200 Pb2Cl2CO3 - Pb2Cl2CO3 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Cl- + 2.0000 Pb++ - log_k -9.6180 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2Cl2CO3 + Pb2Cl2CO3 + H+ = HCO3- + 2 Cl- + 2 Pb+2 + log_k -9.618 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2Cl2CO3 # Enthalpy of formation: 0 kcal/mol Pb2Cl5NH4 - Pb2Cl5NH4 = + 1.0000 H+ + 1.0000 NH3 + 2.0000 Pb++ + 5.0000 Cl- - log_k -19.6100 - -delta_H 119.617 kJ/mol # Calculated enthalpy of reaction Pb2Cl5NH4 + Pb2Cl5NH4 = H+ + NH3 + 2 Pb+2 + 5 Cl- + log_k -19.61 + -delta_H 119.617 kJ/mol # Calculated enthalpy of reaction Pb2Cl5NH4 # Enthalpy of formation: -1034.51 kJ/mol - -analytic 1.3149e+001 -4.8598e-002 -9.8473e+003 5.9552e+000 -1.6723e+002 + -analytic 1.3149e+1 -4.8598e-2 -9.8473e+3 5.9552e+0 -1.6723e+2 # -Range: 0-200 Pb2O(N3)2 - Pb2O(N3)2 +2.0000 H+ = + 1.0000 H2O + 2.0000 N3- + 2.0000 Pb++ - log_k -13.7066 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2O(N3)2 + Pb2O(N3)2 + 2 H+ = H2O + 2 N3- + 2 Pb+2 + log_k -13.7066 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2O(N3)2 # Enthalpy of formation: 0 kcal/mol Pb2SiO4 - Pb2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Pb++ - log_k 18.0370 - -delta_H -83.9883 kJ/mol # Calculated enthalpy of reaction Pb2SiO4 + Pb2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Pb+2 + log_k 18.037 + -delta_H -83.9883 kJ/mol # Calculated enthalpy of reaction Pb2SiO4 # Enthalpy of formation: -1363.55 kJ/mol - -analytic 2.7287e+002 6.3875e-002 -3.7001e+003 -1.0568e+002 -6.2927e+001 + -analytic 2.7287e+2 6.3875e-2 -3.7001e+3 -1.0568e+2 -6.2927e+1 # -Range: 0-200 Pb3(PO4)2 - Pb3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Pb++ - log_k -19.9744 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(PO4)2 + Pb3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Pb+2 + log_k -19.9744 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(PO4)2 # Enthalpy of formation: 0 kcal/mol Pb3SO6 - Pb3SO6 +4.0000 H+ = + 1.0000 SO4-- + 2.0000 H2O + 3.0000 Pb++ - log_k 10.5981 - -delta_H -79.3438 kJ/mol # Calculated enthalpy of reaction Pb3SO6 + Pb3SO6 + 4 H+ = SO4-2 + 2 H2O + 3 Pb+2 + log_k 10.5981 + -delta_H -79.3438 kJ/mol # Calculated enthalpy of reaction Pb3SO6 # Enthalpy of formation: -1399.17 kJ/mol - -analytic -5.3308e+000 -1.8639e-002 3.0245e+003 4.5760e+000 5.1362e+001 + -analytic -5.3308e+0 -1.8639e-2 3.0245e+3 4.576e+0 5.1362e+1 # -Range: 0-200 Pb4Cl2(OH)6 - Pb4Cl2(OH)6 +6.0000 H+ = + 2.0000 Cl- + 4.0000 Pb++ + 6.0000 H2O - log_k 17.2793 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4Cl2(OH)6 + Pb4Cl2(OH)6 + 6 H+ = 2 Cl- + 4 Pb+2 + 6 H2O + log_k 17.2793 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4Cl2(OH)6 # Enthalpy of formation: 0 kcal/mol Pb4O(PO4)2 - Pb4O(PO4)2 +4.0000 H+ = + 1.0000 H2O + 2.0000 HPO4-- + 4.0000 Pb++ - log_k -12.5727 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4O(PO4)2 + Pb4O(PO4)2 + 4 H+ = H2O + 2 HPO4-2 + 4 Pb+2 + log_k -12.5727 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4O(PO4)2 # Enthalpy of formation: 0 kcal/mol Pb4SO7 - Pb4SO7 +6.0000 H+ = + 1.0000 SO4-- + 3.0000 H2O + 4.0000 Pb++ - log_k 21.7354 - -delta_H -136.566 kJ/mol # Calculated enthalpy of reaction Pb4SO7 + Pb4SO7 + 6 H+ = SO4-2 + 3 H2O + 4 Pb+2 + log_k 21.7354 + -delta_H -136.566 kJ/mol # Calculated enthalpy of reaction Pb4SO7 # Enthalpy of formation: -1626.87 kJ/mol - -analytic -2.6884e+001 -2.1429e-002 6.8390e+003 1.2951e+001 1.1614e+002 + -analytic -2.6884e+1 -2.1429e-2 6.839e+3 1.2951e+1 1.1614e+2 # -Range: 0-200 PbBr2 - PbBr2 = + 1.0000 Pb++ + 2.0000 Br- - log_k -5.2413 - -delta_H 36.3838 kJ/mol # Calculated enthalpy of reaction PbBr2 + PbBr2 = Pb+2 + 2 Br- + log_k -5.2413 + -delta_H 36.3838 kJ/mol # Calculated enthalpy of reaction PbBr2 # Enthalpy of formation: -278.47 kJ/mol - -analytic 3.0977e+001 -1.6567e-002 -4.2879e+003 -6.8329e+000 -7.2825e+001 + -analytic 3.0977e+1 -1.6567e-2 -4.2879e+3 -6.8329e+0 -7.2825e+1 # -Range: 0-200 PbBrF - PbBrF = + 1.0000 Br- + 1.0000 F- + 1.0000 Pb++ - log_k -8.0418 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrF + PbBrF = Br- + F- + Pb+2 + log_k -8.0418 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrF # Enthalpy of formation: 0 kcal/mol PbCO3.PbO - PbCO3.PbO +3.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 2.0000 Pb++ - log_k 9.6711 - -delta_H -55.4286 kJ/mol # Calculated enthalpy of reaction PbCO3.PbO + PbCO3PbO + 3 H+ = H2O + HCO3- + 2 Pb+2 + log_k 9.6711 + -delta_H -55.4286 kJ/mol # Calculated enthalpy of reaction PbCO3.PbO # Enthalpy of formation: -918.502 kJ/mol - -analytic -4.2160e+001 -1.4124e-002 3.8661e+003 1.7404e+001 6.5667e+001 + -analytic -4.216e+1 -1.4124e-2 3.8661e+3 1.7404e+1 6.5667e+1 # -Range: 0-200 PbF2 - PbF2 = + 1.0000 Pb++ + 2.0000 F- - log_k -5.2047 - -delta_H -5.83772 kJ/mol # Calculated enthalpy of reaction PbF2 + PbF2 = Pb+2 + 2 F- + log_k -5.2047 + -delta_H -5.83772 kJ/mol # Calculated enthalpy of reaction PbF2 # Enthalpy of formation: -663.937 kJ/mol - -analytic -2.2712e+002 -7.9552e-002 5.2198e+003 9.2173e+001 8.1516e+001 + -analytic -2.2712e+2 -7.9552e-2 5.2198e+3 9.2173e+1 8.1516e+1 # -Range: 0-300 PbFCl - PbFCl = + 1.0000 Cl- + 1.0000 F- + 1.0000 Pb++ - log_k -8.9820 - -delta_H 33.1852 kJ/mol # Calculated enthalpy of reaction PbFCl + PbFCl = Cl- + F- + Pb+2 + log_k -8.982 + -delta_H 33.1852 kJ/mol # Calculated enthalpy of reaction PbFCl # Enthalpy of formation: -534.692 kJ/mol - -analytic 6.1688e+000 -2.0732e-002 -3.4666e+003 1.0697e+000 -5.8869e+001 + -analytic 6.1688e+0 -2.0732e-2 -3.4666e+3 1.0697e+0 -5.8869e+1 # -Range: 0-200 PbHPO4 - PbHPO4 = + 1.0000 HPO4-- + 1.0000 Pb++ - log_k -15.7275 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 + PbHPO4 = HPO4-2 + Pb+2 + log_k -15.7275 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 # Enthalpy of formation: 0 kcal/mol PbI2 - PbI2 = + 1.0000 Pb++ + 2.0000 I- - log_k -8.0418 - -delta_H 62.5717 kJ/mol # Calculated enthalpy of reaction PbI2 + PbI2 = Pb+2 + 2 I- + log_k -8.0418 + -delta_H 62.5717 kJ/mol # Calculated enthalpy of reaction PbI2 # Enthalpy of formation: -175.456 kJ/mol - -analytic 1.5277e+001 -2.0582e-002 -5.1256e+003 0.0000e+000 0.0000e+000 + -analytic 1.5277e+1 -2.0582e-2 -5.1256e+3 0e+0 0e+0 # -Range: 0-200 PbSO4(NH3)2 - PbSO4(NH3)2 = + 1.0000 Pb++ + 1.0000 SO4-- + 2.0000 NH3 - log_k -2.0213 - -delta_H 28.284 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)2 + PbSO4(NH3)2 = Pb+2 + SO4-2 + 2 NH3 + log_k -2.0213 + -delta_H 28.284 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)2 # Enthalpy of formation: -1099.64 kJ/mol - -analytic 3.5718e-001 -1.0192e-002 -2.0095e+003 2.9853e+000 -3.4124e+001 + -analytic 3.5718e-1 -1.0192e-2 -2.0095e+3 2.9853e+0 -3.4124e+1 # -Range: 0-200 PbSO4(NH3)4 - PbSO4(NH3)4 = + 1.0000 Pb++ + 1.0000 SO4-- + 4.0000 NH3 - log_k 1.5024 - -delta_H 31.155 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)4 + PbSO4(NH3)4 = Pb+2 + SO4-2 + 4 NH3 + log_k 1.5024 + -delta_H 31.155 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)4 # Enthalpy of formation: -1265.18 kJ/mol - -analytic -4.1080e+001 -7.2307e-003 6.6637e+001 1.7984e+001 1.1460e+000 + -analytic -4.108e+1 -7.2307e-3 6.6637e+1 1.7984e+1 1.146e+0 # -Range: 0-200 PbSeO4 - PbSeO4 = + 1.0000 Pb++ + 1.0000 SeO4-- - log_k -6.9372 - -delta_H 10.8967 kJ/mol # Calculated enthalpy of reaction PbSeO4 + PbSeO4 = Pb+2 + SeO4-2 + log_k -6.9372 + -delta_H 10.8967 kJ/mol # Calculated enthalpy of reaction PbSeO4 # Enthalpy of formation: -609.125 kJ/mol - -analytic 3.1292e+001 -1.4192e-002 -3.0980e+003 -9.5448e+000 -5.2618e+001 + -analytic 3.1292e+1 -1.4192e-2 -3.098e+3 -9.5448e+0 -5.2618e+1 # -Range: 0-200 Pd - Pd +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pd++ - log_k 12.0688 - -delta_H -103.709 kJ/mol # Calculated enthalpy of reaction Pd + Pd + 2 H+ + 0.5 O2 = H2O + Pd+2 + log_k 12.0688 + -delta_H -103.709 kJ/mol # Calculated enthalpy of reaction Pd # Enthalpy of formation: 0 kcal/mol - -analytic -6.2530e+001 -1.9774e-002 6.7013e+003 2.3441e+001 1.0459e+002 + -analytic -6.253e+1 -1.9774e-2 6.7013e+3 2.3441e+1 1.0459e+2 # -Range: 0-300 PdO - PdO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pd++ - log_k 0.0643 - -delta_H -24.422 kJ/mol # Calculated enthalpy of reaction PdO + PdO + 2 H+ = H2O + Pd+2 + log_k 0.0643 + -delta_H -24.422 kJ/mol # Calculated enthalpy of reaction PdO # Enthalpy of formation: -20.4 kcal/mol - -analytic -8.8921e+001 -1.9031e-002 3.8537e+003 3.3028e+001 6.0159e+001 + -analytic -8.8921e+1 -1.9031e-2 3.8537e+3 3.3028e+1 6.0159e+1 # -Range: 0-300 Penroseite - NiSe2 +1.0000 H2O = + 0.5000 O2 + 1.0000 Ni++ + 2.0000 H+ + 2.0000 Se-- - log_k -98.8004 - -delta_H 0 # Not possible to calculate enthalpy of reaction Penroseite + NiSe2 + H2O = 0.5 O2 + Ni+2 + 2 H+ + 2 Se-2 + log_k -98.8004 + -delta_H 0 # Not possible to calculate enthalpy of reaction Penroseite # Enthalpy of formation: -26 kcal/mol - -analytic -4.7339e+001 -1.2035e-002 -2.3589e+004 1.2624e+001 -3.6808e+002 + -analytic -4.7339e+1 -1.2035e-2 -2.3589e+4 1.2624e+1 -3.6808e+2 # -Range: 0-300 Pentahydrite - MgSO4:5H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 5.0000 H2O - log_k -1.3872 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pentahydrite + MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O + log_k -1.3872 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pentahydrite # Enthalpy of formation: 0 kcal/mol Periclase - MgO +2.0000 H+ = + 1.0000 H2O + 1.0000 Mg++ - log_k 21.3354 - -delta_H -150.139 kJ/mol # Calculated enthalpy of reaction Periclase + MgO + 2 H+ = H2O + Mg+2 + log_k 21.3354 + -delta_H -150.139 kJ/mol # Calculated enthalpy of reaction Periclase # Enthalpy of formation: -143.8 kcal/mol - -analytic -8.8465e+001 -1.8390e-002 1.0414e+004 3.2469e+001 1.6253e+002 + -analytic -8.8465e+1 -1.839e-2 1.0414e+4 3.2469e+1 1.6253e+2 # -Range: 0-300 Petalite - LiAlSi4O10 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 2.0000 H2O + 4.0000 SiO2 - log_k -3.8153 - -delta_H -13.1739 kJ/mol # Calculated enthalpy of reaction Petalite + LiAlSi4O10 + 4 H+ = Al+3 + Li+ + 2 H2O + 4 SiO2 + log_k -3.8153 + -delta_H -13.1739 kJ/mol # Calculated enthalpy of reaction Petalite # Enthalpy of formation: -4886.15 kJ/mol - -analytic -6.6355e+000 2.4316e-002 1.5949e+004 -1.3341e+001 -2.2265e+006 + -analytic -6.6355e+0 2.4316e-2 1.5949e+4 -1.3341e+1 -2.2265e+6 # -Range: 0-300 Phlogopite - KAlMg3Si3O10(OH)2 +10.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 3.0000 Mg++ + 3.0000 SiO2 + 6.0000 H2O - log_k 37.4400 - -delta_H -310.503 kJ/mol # Calculated enthalpy of reaction Phlogopite + KAlMg3Si3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 SiO2 + 6 H2O + log_k 37.44 + -delta_H -310.503 kJ/mol # Calculated enthalpy of reaction Phlogopite # Enthalpy of formation: -1488.07 kcal/mol - -analytic -8.7730e+001 -1.7253e-002 2.3748e+004 2.4465e+001 -8.9045e+005 + -analytic -8.773e+1 -1.7253e-2 2.3748e+4 2.4465e+1 -8.9045e+5 # -Range: 0-300 Phosgenite - Pb2(CO3)Cl2 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Cl- + 2.0000 Pb++ - log_k -9.6355 - -delta_H 49.0844 kJ/mol # Calculated enthalpy of reaction Phosgenite + Pb2(CO3)Cl2 + H+ = HCO3- + 2 Cl- + 2 Pb+2 + log_k -9.6355 + -delta_H 49.0844 kJ/mol # Calculated enthalpy of reaction Phosgenite # Enthalpy of formation: -1071.34 kJ/mol - -analytic 3.4909e+000 -2.9365e-002 -4.6327e+003 4.5068e+000 -7.8671e+001 + -analytic 3.4909e+0 -2.9365e-2 -4.6327e+3 4.5068e+0 -7.8671e+1 # -Range: 0-200 Picromerite - K2Mg(SO4)2:6H2O = + 1.0000 Mg++ + 2.0000 K+ + 2.0000 SO4-- + 6.0000 H2O - log_k -4.4396 - -delta_H 0 # Not possible to calculate enthalpy of reaction Picromerite + K2Mg(SO4)2:6H2O = Mg+2 + 2 K+ + 2 SO4-2 + 6 H2O + log_k -4.4396 + -delta_H 0 # Not possible to calculate enthalpy of reaction Picromerite # Enthalpy of formation: 0 kcal/mol Pirssonite - Na2Ca(CO3)2:2H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 H2O + 2.0000 HCO3- + 2.0000 Na+ - log_k 11.3230 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pirssonite + Na2Ca(CO3)2:2H2O + 2 H+ = Ca+2 + 2 H2O + 2 HCO3- + 2 Na+ + log_k 11.323 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pirssonite # Enthalpy of formation: 0 kcal/mol Plattnerite - PbO2 +4.0000 H+ = + 1.0000 Pb++++ + 2.0000 H2O - log_k -7.9661 - -delta_H 0 # Not possible to calculate enthalpy of reaction Plattnerite + PbO2 + 4 H+ = Pb+4 + 2 H2O + log_k -7.9661 + -delta_H 0 # Not possible to calculate enthalpy of reaction Plattnerite # Enthalpy of formation: -277.363 kJ/mol Plumbogummite - PbAl3(PO4)2(OH)5:H2O +7.0000 H+ = + 1.0000 Pb++ + 2.0000 HPO4-- + 3.0000 Al+++ + 6.0000 H2O - log_k -8.1463 - -delta_H 0 # Not possible to calculate enthalpy of reaction Plumbogummite + PbAl3(PO4)2(OH)5:H2O + 7 H+ = Pb+2 + 2 HPO4-2 + 3 Al+3 + 6 H2O + log_k -8.1463 + -delta_H 0 # Not possible to calculate enthalpy of reaction Plumbogummite # Enthalpy of formation: 0 kcal/mol Pm - Pm +3.0000 H+ +0.7500 O2 = + 1.0000 Pm+++ + 1.5000 H2O - log_k 180.6737 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm + Pm + 3 H+ + 0.75 O2 = Pm+3 + 1.5 H2O + log_k 180.6737 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm # Enthalpy of formation: 0 kcal/mol Pm(OH)3 - Pm(OH)3 +3.0000 H+ = + 1.0000 Pm+++ + 3.0000 H2O - log_k 17.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 + Pm(OH)3 + 3 H+ = Pm+3 + 3 H2O + log_k 17.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 # Enthalpy of formation: 0 kcal/mol Pm(OH)3(am) - Pm(OH)3 +3.0000 H+ = + 1.0000 Pm+++ + 3.0000 H2O - log_k 18.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3(am) + Pm(OH)3 + 3 H+ = Pm+3 + 3 H2O + log_k 18.2852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3(am) # Enthalpy of formation: 0 kcal/mol Pm2(CO3)3 - Pm2(CO3)3 +3.0000 H+ = + 2.0000 Pm+++ + 3.0000 HCO3- - log_k -3.5636 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2(CO3)3 + Pm2(CO3)3 + 3 H+ = 2 Pm+3 + 3 HCO3- + log_k -3.5636 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2(CO3)3 # Enthalpy of formation: 0 kcal/mol Pm2O3 - Pm2O3 +6.0000 H+ = + 2.0000 Pm+++ + 3.0000 H2O - log_k 48.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2O3 + Pm2O3 + 6 H+ = 2 Pm+3 + 3 H2O + log_k 48.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2O3 # Enthalpy of formation: 0 kcal/mol PmF3:.5H2O - PmF3:.5H2O = + 0.5000 H2O + 1.0000 Pm+++ + 3.0000 F- - log_k -18.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmF3:.5H2O + PmF3:.5H2O = 0.5 H2O + Pm+3 + 3 F- + log_k -18.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmF3:.5H2O # Enthalpy of formation: 0 kcal/mol PmPO4:10H2O - PmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pm+++ + 10.0000 H2O - log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4:10H2O + PmPO4:10H2O + H+ = HPO4-2 + Pm+3 + 10 H2O + log_k -12.1782 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4:10H2O # Enthalpy of formation: 0 kcal/mol Polydymite - Ni3S4 +2.0000 H+ = + 1.0000 S2-- + 2.0000 HS- + 3.0000 Ni++ - log_k -48.9062 - -delta_H 0 # Not possible to calculate enthalpy of reaction Polydymite + Ni3S4 + 2 H+ = S2-2 + 2 HS- + 3 Ni+2 + log_k -48.9062 + -delta_H 0 # Not possible to calculate enthalpy of reaction Polydymite # Enthalpy of formation: -78.014 kcal/mol - -analytic -1.8030e+001 -4.6945e-002 -1.1557e+004 8.8339e+000 -1.9625e+002 + -analytic -1.803e+1 -4.6945e-2 -1.1557e+4 8.8339e+0 -1.9625e+2 # -Range: 0-200 Polyhalite - K2MgCa2(SO4)4:2H2O = + 1.0000 Mg++ + 2.0000 Ca++ + 2.0000 H2O + 2.0000 K+ + 4.0000 SO4-- - log_k -14.3124 - -delta_H 0 # Not possible to calculate enthalpy of reaction Polyhalite + K2MgCa2(SO4)4:2H2O = Mg+2 + 2 Ca+2 + 2 H2O + 2 K+ + 4 SO4-2 + log_k -14.3124 + -delta_H 0 # Not possible to calculate enthalpy of reaction Polyhalite # Enthalpy of formation: 0 kcal/mol Portlandite - Ca(OH)2 +2.0000 H+ = + 1.0000 Ca++ + 2.0000 H2O - log_k 22.5552 - -delta_H -128.686 kJ/mol # Calculated enthalpy of reaction Portlandite + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.5552 + -delta_H -128.686 kJ/mol # Calculated enthalpy of reaction Portlandite # Enthalpy of formation: -986.074 kJ/mol - -analytic -8.3848e+001 -1.8373e-002 9.3154e+003 3.2584e+001 1.4538e+002 + -analytic -8.3848e+1 -1.8373e-2 9.3154e+3 3.2584e+1 1.4538e+2 # -Range: 0-300 Pr - Pr +3.0000 H+ +0.7500 O2 = + 1.0000 Pr+++ + 1.5000 H2O - log_k 183.6893 - -delta_H -1125.92 kJ/mol # Calculated enthalpy of reaction Pr + Pr + 3 H+ + 0.75 O2 = Pr+3 + 1.5 H2O + log_k 183.6893 + -delta_H -1125.92 kJ/mol # Calculated enthalpy of reaction Pr # Enthalpy of formation: 0 kJ/mol - -analytic -4.1136e+002 -7.5853e-002 7.9974e+004 1.4718e+002 -1.3148e+006 + -analytic -4.1136e+2 -7.5853e-2 7.9974e+4 1.4718e+2 -1.3148e+6 # -Range: 0-300 Pr(OH)3 - Pr(OH)3 +3.0000 H+ = + 1.0000 Pr+++ + 3.0000 H2O - log_k 19.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3 + Pr(OH)3 + 3 H+ = Pr+3 + 3 H2O + log_k 19.5852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3 # Enthalpy of formation: 0 kcal/mol Pr(OH)3(am) - Pr(OH)3 +3.0000 H+ = + 1.0000 Pr+++ + 3.0000 H2O - log_k 21.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3(am) + Pr(OH)3 + 3 H+ = Pr+3 + 3 H2O + log_k 21.0852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3(am) # Enthalpy of formation: 0 kcal/mol Pr2(CO3)3 - Pr2(CO3)3 +3.0000 H+ = + 2.0000 Pr+++ + 3.0000 HCO3- - log_k -3.8136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2(CO3)3 + Pr2(CO3)3 + 3 H+ = 2 Pr+3 + 3 HCO3- + log_k -3.8136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2(CO3)3 # Enthalpy of formation: 0 kcal/mol Pr2O3 - Pr2O3 +6.0000 H+ = + 2.0000 Pr+++ + 3.0000 H2O - log_k 61.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2O3 + Pr2O3 + 6 H+ = 2 Pr+3 + 3 H2O + log_k 61.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2O3 # Enthalpy of formation: 0 kcal/mol PrF3:.5H2O - PrF3:.5H2O = + 0.5000 H2O + 1.0000 Pr+++ + 3.0000 F- - log_k -18.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrF3:.5H2O + PrF3:.5H2O = 0.5 H2O + Pr+3 + 3 F- + log_k -18.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction PrF3:.5H2O # Enthalpy of formation: 0 kcal/mol PrPO4:10H2O - PrPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pr+++ + 10.0000 H2O - log_k -12.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4:10H2O + PrPO4:10H2O + H+ = HPO4-2 + Pr+3 + 10 H2O + log_k -12.2782 + -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4:10H2O # Enthalpy of formation: 0 kcal/mol Prehnite - Ca2Al2Si3O10(OH)2 +10.0000 H+ = + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O - log_k 32.9305 - -delta_H -311.875 kJ/mol # Calculated enthalpy of reaction Prehnite + Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 SiO2 + 6 H2O + log_k 32.9305 + -delta_H -311.875 kJ/mol # Calculated enthalpy of reaction Prehnite # Enthalpy of formation: -1481.65 kcal/mol - -analytic -3.5763e+001 -2.1396e-002 2.0167e+004 6.3554e+000 -7.4967e+005 + -analytic -3.5763e+1 -2.1396e-2 2.0167e+4 6.3554e+0 -7.4967e+5 # -Range: 0-300 Przhevalskite - Pb(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Pb++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -20.0403 - -delta_H -71.1058 kJ/mol # Calculated enthalpy of reaction Przhevalskite + Pb(UO2)2(PO4)2 + 2 H+ = Pb+2 + 2 HPO4-2 + 2 UO2+2 + log_k -20.0403 + -delta_H -71.1058 kJ/mol # Calculated enthalpy of reaction Przhevalskite # Enthalpy of formation: -1087.51 kcal/mol - -analytic -2.9817e+001 -4.0756e-002 1.0077e+003 7.4885e+000 1.7122e+001 + -analytic -2.9817e+1 -4.0756e-2 1.0077e+3 7.4885e+0 1.7122e+1 # -Range: 0-200 Pseudowollastonite - CaSiO3 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 SiO2 - log_k 13.9997 - -delta_H -79.4625 kJ/mol # Calculated enthalpy of reaction Pseudowollastonite + CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 + log_k 13.9997 + -delta_H -79.4625 kJ/mol # Calculated enthalpy of reaction Pseudowollastonite # Enthalpy of formation: -388.9 kcal/mol - -analytic 2.6691e+001 6.3323e-003 5.5723e+003 -1.1822e+001 -3.6038e+005 + -analytic 2.6691e+1 6.3323e-3 5.5723e+3 -1.1822e+1 -3.6038e+5 # -Range: 0-300 Pu - Pu +4.0000 H+ +1.0000 O2 = + 1.0000 Pu++++ + 2.0000 H2O - log_k 170.3761 - -delta_H -1095.44 kJ/mol # Calculated enthalpy of reaction Pu + Pu + 4 H+ + O2 = Pu+4 + 2 H2O + log_k 170.3761 + -delta_H -1095.44 kJ/mol # Calculated enthalpy of reaction Pu # Enthalpy of formation: 0 kJ/mol - -analytic -1.9321e+002 -3.4314e-002 6.6737e+004 6.3552e+001 -6.4737e+005 + -analytic -1.9321e+2 -3.4314e-2 6.6737e+4 6.3552e+1 -6.4737e+5 # -Range: 0-300 Pu(HPO4)2 - Pu(HPO4)2 = + 1.0000 Pu++++ + 2.0000 HPO4-- - log_k -27.7025 - -delta_H -33.4449 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 + Pu(HPO4)2 = Pu+4 + 2 HPO4-2 + log_k -27.7025 + -delta_H -33.4449 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 # Enthalpy of formation: -3086.61 kJ/mol - -analytic -3.6565e+002 -1.3961e-001 7.9105e+003 1.4265e+002 1.2354e+002 + -analytic -3.6565e+2 -1.3961e-1 7.9105e+3 1.4265e+2 1.2354e+2 # -Range: 0-300 Pu(OH)3 - Pu(OH)3 +3.0000 H+ = + 1.0000 Pu+++ + 3.0000 H2O - log_k 22.4499 - -delta_H -148.067 kJ/mol # Calculated enthalpy of reaction Pu(OH)3 + Pu(OH)3 + 3 H+ = Pu+3 + 3 H2O + log_k 22.4499 + -delta_H -148.067 kJ/mol # Calculated enthalpy of reaction Pu(OH)3 # Enthalpy of formation: -1301 kJ/mol - -analytic -6.1342e+001 -8.6952e-003 9.7733e+003 2.1664e+001 1.5252e+002 + -analytic -6.1342e+1 -8.6952e-3 9.7733e+3 2.1664e+1 1.5252e+2 # -Range: 0-300 Pu(OH)4 - Pu(OH)4 +4.0000 H+ = + 1.0000 Pu++++ + 4.0000 H2O - log_k 0.7578 - -delta_H -68.6543 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 + Pu(OH)4 + 4 H+ = Pu+4 + 4 H2O + log_k 0.7578 + -delta_H -68.6543 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 # Enthalpy of formation: -1610.59 kJ/mol - -analytic -9.3473e+001 -1.0579e-002 6.5974e+003 3.0415e+001 1.0297e+002 + -analytic -9.3473e+1 -1.0579e-2 6.5974e+3 3.0415e+1 1.0297e+2 # -Range: 0-300 Pu2O3 - Pu2O3 +6.0000 H+ = + 2.0000 Pu+++ + 3.0000 H2O - log_k 48.1332 - -delta_H -360.26 kJ/mol # Calculated enthalpy of reaction Pu2O3 + Pu2O3 + 6 H+ = 2 Pu+3 + 3 H2O + log_k 48.1332 + -delta_H -360.26 kJ/mol # Calculated enthalpy of reaction Pu2O3 # Enthalpy of formation: -1680.36 kJ/mol - -analytic -8.7831e+001 -1.9784e-002 2.0832e+004 2.9096e+001 3.2509e+002 + -analytic -8.7831e+1 -1.9784e-2 2.0832e+4 2.9096e+1 3.2509e+2 # -Range: 0-300 PuF3 - PuF3 = + 1.0000 Pu+++ + 3.0000 F- - log_k -10.1872 - -delta_H -46.2608 kJ/mol # Calculated enthalpy of reaction PuF3 + PuF3 = Pu+3 + 3 F- + log_k -10.1872 + -delta_H -46.2608 kJ/mol # Calculated enthalpy of reaction PuF3 # Enthalpy of formation: -1551.33 kJ/mol - -analytic -3.1104e+002 -1.0854e-001 8.7435e+003 1.2279e+002 1.3653e+002 + -analytic -3.1104e+2 -1.0854e-1 8.7435e+3 1.2279e+2 1.3653e+2 # -Range: 0-300 PuF4 - PuF4 = + 1.0000 Pu++++ + 4.0000 F- - log_k -13.2091 - -delta_H -100.039 kJ/mol # Calculated enthalpy of reaction PuF4 + PuF4 = Pu+4 + 4 F- + log_k -13.2091 + -delta_H -100.039 kJ/mol # Calculated enthalpy of reaction PuF4 # Enthalpy of formation: -1777.24 kJ/mol - -analytic -4.3072e+002 -1.4500e-001 1.4076e+004 1.6709e+002 2.1977e+002 + -analytic -4.3072e+2 -1.45e-1 1.4076e+4 1.6709e+2 2.1977e+2 # -Range: 0-300 PuO2 - PuO2 +4.0000 H+ = + 1.0000 Pu++++ + 2.0000 H2O - log_k -7.3646 - -delta_H -51.8827 kJ/mol # Calculated enthalpy of reaction PuO2 + PuO2 + 4 H+ = Pu+4 + 2 H2O + log_k -7.3646 + -delta_H -51.8827 kJ/mol # Calculated enthalpy of reaction PuO2 # Enthalpy of formation: -1055.69 kJ/mol - -analytic -7.1933e+001 -1.1841e-002 4.4494e+003 2.1491e+001 6.9450e+001 + -analytic -7.1933e+1 -1.1841e-2 4.4494e+3 2.1491e+1 6.945e+1 # -Range: 0-300 PuO2(OH)2 - PuO2(OH)2 +2.0000 H+ = + 1.0000 PuO2++ + 2.0000 H2O - log_k 3.5499 - -delta_H -35.7307 kJ/mol # Calculated enthalpy of reaction PuO2(OH)2 + PuO2(OH)2 + 2 H+ = PuO2+2 + 2 H2O + log_k 3.5499 + -delta_H -35.7307 kJ/mol # Calculated enthalpy of reaction PuO2(OH)2 # Enthalpy of formation: -1357.52 kJ/mol - -analytic -2.6536e+001 -1.6542e-003 2.8262e+003 8.5277e+000 4.4108e+001 + -analytic -2.6536e+1 -1.6542e-3 2.8262e+3 8.5277e+0 4.4108e+1 # -Range: 0-300 PuO2HPO4 - PuO2HPO4 = + 1.0000 HPO4-- + 1.0000 PuO2++ - log_k -12.6074 - -delta_H -10.108 kJ/mol # Calculated enthalpy of reaction PuO2HPO4 + PuO2HPO4 = HPO4-2 + PuO2+2 + log_k -12.6074 + -delta_H -10.108 kJ/mol # Calculated enthalpy of reaction PuO2HPO4 # Enthalpy of formation: -2103.55 kJ/mol - -analytic -1.6296e+002 -6.6166e-002 3.0557e+003 6.4577e+001 4.7729e+001 + -analytic -1.6296e+2 -6.6166e-2 3.0557e+3 6.4577e+1 4.7729e+1 # -Range: 0-300 PuO2OH(am) - PuO2OH +1.0000 H+ = + 1.0000 H2O + 1.0000 PuO2+ - log_k 5.4628 - -delta_H -42.4933 kJ/mol # Calculated enthalpy of reaction PuO2OH(am) + PuO2OH + H+ = H2O + PuO2+ + log_k 5.4628 + -delta_H -42.4933 kJ/mol # Calculated enthalpy of reaction PuO2OH(am) # Enthalpy of formation: -1157.53 kJ/mol - -analytic -3.1316e+000 6.7573e-003 2.6884e+003 -9.8622e-001 4.1951e+001 + -analytic -3.1316e+0 6.7573e-3 2.6884e+3 -9.8622e-1 4.1951e+1 # -Range: 0-300 Pyrite - FeS2 +1.0000 H2O = + 0.2500 H+ + 0.2500 SO4-- + 1.0000 Fe++ + 1.7500 HS- - log_k -24.6534 - -delta_H 109.535 kJ/mol # Calculated enthalpy of reaction Pyrite + FeS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Fe+2 + 1.75 HS- + log_k -24.6534 + -delta_H 109.535 kJ/mol # Calculated enthalpy of reaction Pyrite # Enthalpy of formation: -41 kcal/mol - -analytic -2.4195e+002 -8.7948e-002 -6.2911e+002 9.9248e+001 -9.7454e+000 + -analytic -2.4195e+2 -8.7948e-2 -6.2911e+2 9.9248e+1 -9.7454e+0 # -Range: 0-300 Pyrolusite - MnO2 = + 0.5000 Mn++ + 0.5000 MnO4-- - log_k -17.6439 - -delta_H 83.3804 kJ/mol # Calculated enthalpy of reaction Pyrolusite + MnO2 = 0.5 Mn+2 + 0.5 MnO4-2 + log_k -17.6439 + -delta_H 83.3804 kJ/mol # Calculated enthalpy of reaction Pyrolusite # Enthalpy of formation: -520.031 kJ/mol - -analytic -1.1541e+002 -4.1665e-002 -1.8960e+003 4.7094e+001 -2.9551e+001 + -analytic -1.1541e+2 -4.1665e-2 -1.896e+3 4.7094e+1 -2.9551e+1 # -Range: 0-300 Pyromorphite - Pb5(PO4)3Cl +3.0000 H+ = + 1.0000 Cl- + 3.0000 HPO4-- + 5.0000 Pb++ - log_k -47.8954 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite + Pb5(PO4)3Cl + 3 H+ = Cl- + 3 HPO4-2 + 5 Pb+2 + log_k -47.8954 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite # Enthalpy of formation: 0 kcal/mol Pyromorphite-OH - Pb5(OH)(PO4)3 +4.0000 H+ = + 1.0000 H2O + 3.0000 HPO4-- + 5.0000 Pb++ - log_k -26.2653 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite-OH + Pb5(OH)(PO4)3 + 4 H+ = H2O + 3 HPO4-2 + 5 Pb+2 + log_k -26.2653 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite-OH # Enthalpy of formation: 0 kcal/mol Pyrophyllite - Al2Si4O10(OH)2 +6.0000 H+ = + 2.0000 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 0.4397 - -delta_H -102.161 kJ/mol # Calculated enthalpy of reaction Pyrophyllite + Al2Si4O10(OH)2 + 6 H+ = 2 Al+3 + 4 H2O + 4 SiO2 + log_k 0.4397 + -delta_H -102.161 kJ/mol # Calculated enthalpy of reaction Pyrophyllite # Enthalpy of formation: -1345.31 kcal/mol - -analytic 1.1066e+001 1.2707e-002 1.6417e+004 -1.9596e+001 -1.8791e+006 + -analytic 1.1066e+1 1.2707e-2 1.6417e+4 -1.9596e+1 -1.8791e+6 # -Range: 0-300 Pyrrhotite - FeS +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HS- - log_k -3.7193 - -delta_H -7.9496 kJ/mol # Calculated enthalpy of reaction Pyrrhotite + FeS + H+ = Fe+2 + HS- + log_k -3.7193 + -delta_H -7.9496 kJ/mol # Calculated enthalpy of reaction Pyrrhotite # Enthalpy of formation: -24 kcal/mol - -analytic -1.5785e+002 -5.2258e-002 3.9711e+003 6.3195e+001 6.2012e+001 + -analytic -1.5785e+2 -5.2258e-2 3.9711e+3 6.3195e+1 6.2012e+1 # -Range: 0-300 Quartz - SiO2 = + 1.0000 SiO2 - log_k -3.9993 - -delta_H 32.949 kJ/mol # Calculated enthalpy of reaction Quartz + SiO2 = SiO2 + log_k -3.9993 + -delta_H 32.949 kJ/mol # Calculated enthalpy of reaction Quartz # Enthalpy of formation: -217.65 kcal/mol - -analytic 7.7698e-002 1.0612e-002 3.4651e+003 -4.3551e+000 -7.2138e+005 + -analytic 7.7698e-2 1.0612e-2 3.4651e+3 -4.3551e+0 -7.2138e+5 # -Range: 0-300 Ra - Ra +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ra++ - log_k 141.3711 - -delta_H -807.374 kJ/mol # Calculated enthalpy of reaction Ra + Ra + 2 H+ + 0.5 O2 = H2O + Ra+2 + log_k 141.3711 + -delta_H -807.374 kJ/mol # Calculated enthalpy of reaction Ra # Enthalpy of formation: 0 kJ/mol - -analytic 4.9867e+001 5.9412e-003 4.0293e+004 -1.8356e+001 6.8421e+002 + -analytic 4.9867e+1 5.9412e-3 4.0293e+4 -1.8356e+1 6.8421e+2 # -Range: 0-200 Ra(NO3)2 - Ra(NO3)2 = + 1.0000 Ra++ + 2.0000 NO3- - log_k -2.2419 - -delta_H 50.4817 kJ/mol # Calculated enthalpy of reaction Ra(NO3)2 + Ra(NO3)2 = Ra+2 + 2 NO3- + log_k -2.2419 + -delta_H 50.4817 kJ/mol # Calculated enthalpy of reaction Ra(NO3)2 # Enthalpy of formation: -991.706 kJ/mol - -analytic 2.2001e+001 -9.5263e-003 -3.9389e+003 -3.3143e+000 -6.6896e+001 + -analytic 2.2001e+1 -9.5263e-3 -3.9389e+3 -3.3143e+0 -6.6896e+1 # -Range: 0-200 RaCl2:2H2O - RaCl2:2H2O = + 1.0000 Ra++ + 2.0000 Cl- + 2.0000 H2O - log_k -0.7647 - -delta_H 32.6266 kJ/mol # Calculated enthalpy of reaction RaCl2:2H2O + RaCl2:2H2O = Ra+2 + 2 Cl- + 2 H2O + log_k -0.7647 + -delta_H 32.6266 kJ/mol # Calculated enthalpy of reaction RaCl2:2H2O # Enthalpy of formation: -1466.07 kJ/mol - -analytic -2.5033e+001 -1.8918e-002 -1.5713e+003 1.4213e+001 -2.6673e+001 + -analytic -2.5033e+1 -1.8918e-2 -1.5713e+3 1.4213e+1 -2.6673e+1 # -Range: 0-200 RaSO4 - RaSO4 = + 1.0000 Ra++ + 1.0000 SO4-- - log_k -10.4499 - -delta_H 40.309 kJ/mol # Calculated enthalpy of reaction RaSO4 + RaSO4 = Ra+2 + SO4-2 + log_k -10.4499 + -delta_H 40.309 kJ/mol # Calculated enthalpy of reaction RaSO4 # Enthalpy of formation: -1477.51 kJ/mol - -analytic 4.8025e+001 -1.1376e-002 -5.1347e+003 -1.5306e+001 -8.7211e+001 + -analytic 4.8025e+1 -1.1376e-2 -5.1347e+3 -1.5306e+1 -8.7211e+1 # -Range: 0-200 Rankinite - Ca3Si2O7 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Ca++ + 3.0000 H2O - log_k 51.9078 - -delta_H -302.089 kJ/mol # Calculated enthalpy of reaction Rankinite + Ca3Si2O7 + 6 H+ = 2 SiO2 + 3 Ca+2 + 3 H2O + log_k 51.9078 + -delta_H -302.089 kJ/mol # Calculated enthalpy of reaction Rankinite # Enthalpy of formation: -941.7 kcal/mol - -analytic -9.6393e+001 -1.6592e-002 2.4832e+004 3.2541e+001 -9.4630e+005 + -analytic -9.6393e+1 -1.6592e-2 2.4832e+4 3.2541e+1 -9.463e+5 # -Range: 0-300 Rb - Rb +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Rb+ - log_k 71.1987 - -delta_H -391.009 kJ/mol # Calculated enthalpy of reaction Rb + Rb + H+ + 0.25 O2 = 0.5 H2O + Rb+ + log_k 71.1987 + -delta_H -391.009 kJ/mol # Calculated enthalpy of reaction Rb # Enthalpy of formation: 0 kJ/mol - -analytic -2.1179e+001 -8.7978e-003 2.0934e+004 1.0011e+001 3.2667e+002 + -analytic -2.1179e+1 -8.7978e-3 2.0934e+4 1.0011e+1 3.2667e+2 # -Range: 0-300 Rb2UO4 - Rb2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Rb+ - log_k 34.0089 - -delta_H -170.224 kJ/mol # Calculated enthalpy of reaction Rb2UO4 + Rb2UO4 + 4 H+ = UO2+2 + 2 H2O + 2 Rb+ + log_k 34.0089 + -delta_H -170.224 kJ/mol # Calculated enthalpy of reaction Rb2UO4 # Enthalpy of formation: -1922.7 kJ/mol - -analytic -3.8205e+001 3.1862e-003 1.0973e+004 1.3925e+001 1.8636e+002 + -analytic -3.8205e+1 3.1862e-3 1.0973e+4 1.3925e+1 1.8636e+2 # -Range: 0-200 Re - Re +1.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 ReO4- - log_k 105.9749 - -delta_H -623.276 kJ/mol # Calculated enthalpy of reaction Re + Re + 1.75 O2 + 0.5 H2O = H+ + ReO4- + log_k 105.9749 + -delta_H -623.276 kJ/mol # Calculated enthalpy of reaction Re # Enthalpy of formation: 0 kJ/mol - -analytic 1.4535e+001 -2.9877e-002 2.9910e+004 0.0000e+000 0.0000e+000 + -analytic 1.4535e+1 -2.9877e-2 2.991e+4 0e+0 0e+0 # -Range: 0-300 Realgar - AsS +2.0000 H2O = + 0.5000 S2O4-- + 1.0000 AsH3 + 1.0000 H+ - log_k -60.2768 - -delta_H 0 # Not possible to calculate enthalpy of reaction Realgar + AsS + 2 H2O = 0.5 S2O4-2 + AsH3 + H+ + log_k -60.2768 + -delta_H 0 # Not possible to calculate enthalpy of reaction Realgar # Enthalpy of formation: -71.406 kJ/mol Rhodochrosite - MnCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mn++ - log_k -0.1928 - -delta_H -21.3426 kJ/mol # Calculated enthalpy of reaction Rhodochrosite + MnCO3 + H+ = HCO3- + Mn+2 + log_k -0.1928 + -delta_H -21.3426 kJ/mol # Calculated enthalpy of reaction Rhodochrosite # Enthalpy of formation: -212.521 kcal/mol - -analytic -1.6195e+002 -4.9344e-002 5.0937e+003 6.4402e+001 7.9531e+001 + -analytic -1.6195e+2 -4.9344e-2 5.0937e+3 6.4402e+1 7.9531e+1 # -Range: 0-300 Rhodonite - MnSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Mn++ + 1.0000 SiO2 - log_k 9.7301 - -delta_H -64.7121 kJ/mol # Calculated enthalpy of reaction Rhodonite + MnSiO3 + 2 H+ = H2O + Mn+2 + SiO2 + log_k 9.7301 + -delta_H -64.7121 kJ/mol # Calculated enthalpy of reaction Rhodonite # Enthalpy of formation: -1319.42 kJ/mol - -analytic 2.0585e+001 4.9941e-003 4.5816e+003 -9.8212e+000 -3.0658e+005 + -analytic 2.0585e+1 4.9941e-3 4.5816e+3 -9.8212e+0 -3.0658e+5 # -Range: 0-300 Ripidolite-14A - Mg3Fe2Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe++ + 3.0000 Mg++ + 3.0000 SiO2 + 12.0000 H2O - log_k 60.9638 - -delta_H -572.472 kJ/mol # Calculated enthalpy of reaction Ripidolite-14A + Mg3Fe2Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 2 Fe+2 + 3 Mg+2 + 3 SiO2 + 12 H2O + log_k 60.9638 + -delta_H -572.472 kJ/mol # Calculated enthalpy of reaction Ripidolite-14A # Enthalpy of formation: -1947.87 kcal/mol - -analytic -1.8376e+002 -6.1934e-002 3.2458e+004 6.2290e+001 5.0653e+002 + -analytic -1.8376e+2 -6.1934e-2 3.2458e+4 6.229e+1 5.0653e+2 # -Range: 0-300 Ripidolite-7A - Mg3Fe2Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe++ + 3.0000 Mg++ + 3.0000 SiO2 + 12.0000 H2O - log_k 64.3371 - -delta_H -586.325 kJ/mol # Calculated enthalpy of reaction Ripidolite-7A + Mg3Fe2Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 2 Fe+2 + 3 Mg+2 + 3 SiO2 + 12 H2O + log_k 64.3371 + -delta_H -586.325 kJ/mol # Calculated enthalpy of reaction Ripidolite-7A # Enthalpy of formation: -1944.56 kcal/mol - -analytic -1.9557e+002 -6.3779e-002 3.3634e+004 6.7057e+001 5.2489e+002 + -analytic -1.9557e+2 -6.3779e-2 3.3634e+4 6.7057e+1 5.2489e+2 # -Range: 0-300 Romarchite - SnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Sn++ - log_k 1.3625 - -delta_H -8.69017 kJ/mol # Calculated enthalpy of reaction Romarchite + SnO + 2 H+ = H2O + Sn+2 + log_k 1.3625 + -delta_H -8.69017 kJ/mol # Calculated enthalpy of reaction Romarchite # Enthalpy of formation: -68.34 kcal/mol - -analytic -6.3187e+001 -1.5821e-002 2.2786e+003 2.4900e+001 3.5574e+001 + -analytic -6.3187e+1 -1.5821e-2 2.2786e+3 2.49e+1 3.5574e+1 # -Range: 0-300 Ru - Ru +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ru++ - log_k 16.6701 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru + Ru + 2 H+ + 0.5 O2 = H2O + Ru+2 + log_k 16.6701 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru # Enthalpy of formation: 0 kJ/mol Ru(OH)3:H2O(am) - Ru(OH)3:H2O +3.0000 H+ = + 1.0000 Ru+++ + 4.0000 H2O - log_k 1.6338 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)3:H2O(am) + Ru(OH)3:H2O + 3 H+ = Ru+3 + 4 H2O + log_k 1.6338 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)3:H2O(am) # Enthalpy of formation: 0 kcal/mol RuBr3 - RuBr3 = + 1.0000 Ru+++ + 3.0000 Br- - log_k 3.1479 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuBr3 + RuBr3 = Ru+3 + 3 Br- + log_k 3.1479 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuBr3 # Enthalpy of formation: -147.76 kJ/mol RuCl3 - RuCl3 = + 1.0000 Ru+++ + 3.0000 Cl- - log_k 10.8215 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3 + RuCl3 = Ru+3 + 3 Cl- + log_k 10.8215 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3 # Enthalpy of formation: -221.291 kJ/mol RuI3 - RuI3 = + 1.0000 Ru+++ + 3.0000 I- - log_k -12.4614 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuI3 + RuI3 = Ru+3 + 3 I- + log_k -12.4614 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuI3 # Enthalpy of formation: -58.425 kJ/mol RuO2 - RuO2 +2.0000 H+ = + 1.0000 Ru(OH)2++ - log_k -5.4835 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2 + RuO2 + 2 H+ = Ru(OH)2+2 + log_k -5.4835 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2 # Enthalpy of formation: -307.233 kJ/mol RuO2:2H2O(am) - RuO2:2H2O +2.0000 H+ = + 1.0000 Ru(OH)2++ + 2.0000 H2O - log_k 0.9045 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2:2H2O(am) + RuO2:2H2O + 2 H+ = Ru(OH)2+2 + 2 H2O + log_k 0.9045 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2:2H2O(am) # Enthalpy of formation: 0 kcal/mol RuO4 - RuO4 = + 1.0000 RuO4 - log_k -0.9636 - -delta_H 6.305 kJ/mol # Calculated enthalpy of reaction RuO4 + RuO4 = RuO4 + log_k -0.9636 + -delta_H 6.305 kJ/mol # Calculated enthalpy of reaction RuO4 # Enthalpy of formation: -244.447 kJ/mol RuSe2 - RuSe2 +2.0000 H2O = + 1.0000 Ru(OH)2++ + 2.0000 H+ + 2.0000 Se-- - log_k -113.7236 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSe2 + RuSe2 + 2 H2O = Ru(OH)2+2 + 2 H+ + 2 Se-2 + log_k -113.7236 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSe2 # Enthalpy of formation: -146.274 kJ/mol Rutherfordine - UO2CO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 UO2++ - log_k -4.1064 - -delta_H -19.4032 kJ/mol # Calculated enthalpy of reaction Rutherfordine + UO2CO3 + H+ = HCO3- + UO2+2 + log_k -4.1064 + -delta_H -19.4032 kJ/mol # Calculated enthalpy of reaction Rutherfordine # Enthalpy of formation: -1689.53 kJ/mol - -analytic -8.8224e+001 -3.1434e-002 2.6675e+003 3.4161e+001 4.1650e+001 + -analytic -8.8224e+1 -3.1434e-2 2.6675e+3 3.4161e+1 4.165e+1 # -Range: 0-300 Rutile - TiO2 +2.0000 H2O = + 1.0000 Ti(OH)4 - log_k -9.6452 - -delta_H 0 # Not possible to calculate enthalpy of reaction Rutile + TiO2 + 2 H2O = Ti(OH)4 + log_k -9.6452 + -delta_H 0 # Not possible to calculate enthalpy of reaction Rutile # Enthalpy of formation: -226.107 kcal/mol S - S +1.0000 H2O = + 0.5000 O2 + 1.0000 H+ + 1.0000 HS- - log_k -45.0980 - -delta_H 263.663 kJ/mol # Calculated enthalpy of reaction S + S + H2O = 0.5 O2 + H+ + HS- + log_k -45.098 + -delta_H 263.663 kJ/mol # Calculated enthalpy of reaction S # Enthalpy of formation: 0 kJ/mol - -analytic -8.8928e+001 -2.8454e-002 -1.1516e+004 3.6747e+001 -1.7966e+002 + -analytic -8.8928e+1 -2.8454e-2 -1.1516e+4 3.6747e+1 -1.7966e+2 # -Range: 0-300 Safflorite - CoAs2 +2.0000 H2O +1.0000 H+ +0.5000 O2 = + 1.0000 AsH3 + 1.0000 Co++ + 1.0000 H2AsO3- - log_k -3.6419 - -delta_H -52.7226 kJ/mol # Calculated enthalpy of reaction Safflorite + CoAs2 + 2 H2O + H+ + 0.5 O2 = AsH3 + Co+2 + H2AsO3- + log_k -3.6419 + -delta_H -52.7226 kJ/mol # Calculated enthalpy of reaction Safflorite # Enthalpy of formation: -23.087 kcal/mol Saleeite - Mg(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Mg++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -19.4575 - -delta_H -110.816 kJ/mol # Calculated enthalpy of reaction Saleeite + Mg(UO2)2(PO4)2 + 2 H+ = Mg+2 + 2 HPO4-2 + 2 UO2+2 + log_k -19.4575 + -delta_H -110.816 kJ/mol # Calculated enthalpy of reaction Saleeite # Enthalpy of formation: -1189.61 kcal/mol - -analytic -6.0028e+001 -4.4391e-002 3.9168e+003 1.6428e+001 6.6533e+001 + -analytic -6.0028e+1 -4.4391e-2 3.9168e+3 1.6428e+1 6.6533e+1 # -Range: 0-200 Sanbornite - BaSi2O5 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O + 2.0000 SiO2 - log_k 9.4753 - -delta_H -31.0845 kJ/mol # Calculated enthalpy of reaction Sanbornite + BaSi2O5 + 2 H+ = Ba+2 + H2O + 2 SiO2 + log_k 9.4753 + -delta_H -31.0845 kJ/mol # Calculated enthalpy of reaction Sanbornite # Enthalpy of formation: -2547.8 kJ/mol - -analytic -2.5381e+001 1.2999e-002 1.2330e+004 2.1053e+000 -1.3913e+006 + -analytic -2.5381e+1 1.2999e-2 1.233e+4 2.1053e+0 -1.3913e+6 # -Range: 0-300 Sanidine_high - KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 - log_k 0.9239 - -delta_H -35.0284 kJ/mol # Calculated enthalpy of reaction Sanidine_high + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k 0.9239 + -delta_H -35.0284 kJ/mol # Calculated enthalpy of reaction Sanidine_high # Enthalpy of formation: -946.538 kcal/mol - -analytic -3.4889e+000 1.4495e-002 1.2856e+004 -9.8978e+000 -1.6572e+006 + -analytic -3.4889e+0 1.4495e-2 1.2856e+4 -9.8978e+0 -1.6572e+6 # -Range: 0-300 Saponite-Ca - Ca.165Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Ca++ + 0.3300 Al+++ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 26.2900 - -delta_H -207.971 kJ/mol # Calculated enthalpy of reaction Saponite-Ca + Ca.165Mg3Al.33Si3.67O10(OH)2 + 7.32 H+ = 0.165 Ca+2 + 0.33 Al+3 + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O + log_k 26.29 + -delta_H -207.971 kJ/mol # Calculated enthalpy of reaction Saponite-Ca # Enthalpy of formation: -1436.51 kcal/mol - -analytic -4.6904e+001 6.2555e-003 2.2572e+004 5.3198e+000 -1.5725e+006 + -analytic -4.6904e+1 6.2555e-3 2.2572e+4 5.3198e+0 -1.5725e+6 # -Range: 0-300 Saponite-Cs - Cs.33Si3.67Al.33Mg3O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Cs+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 25.8528 - -delta_H -195.407 kJ/mol # Calculated enthalpy of reaction Saponite-Cs + Cs.33Si3.67Al.33Mg3O10(OH)2 + 7.32 H+ = 0.33 Al+3 + 0.33 Cs+ + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O + log_k 25.8528 + -delta_H -195.407 kJ/mol # Calculated enthalpy of reaction Saponite-Cs # Enthalpy of formation: -1438.44 kcal/mol - -analytic -7.7732e+001 -3.6418e-005 2.3346e+004 1.7578e+001 -1.6319e+006 + -analytic -7.7732e+1 -3.6418e-5 2.3346e+4 1.7578e+1 -1.6319e+6 # -Range: 0-300 Saponite-H - H.33Mg3Al.33Si3.67O10(OH)2 +6.9900 H+ = + 0.3300 Al+++ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 25.3321 - -delta_H -200.235 kJ/mol # Calculated enthalpy of reaction Saponite-H + H.33Mg3Al.33Si3.67O10(OH)2 + 6.99 H+ = 0.33 Al+3 + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O + log_k 25.3321 + -delta_H -200.235 kJ/mol # Calculated enthalpy of reaction Saponite-H # Enthalpy of formation: -1416.94 kcal/mol - -analytic -3.9828e+001 8.9566e-003 2.2165e+004 2.3941e+000 -1.5933e+006 + -analytic -3.9828e+1 8.9566e-3 2.2165e+4 2.3941e+0 -1.5933e+6 # -Range: 0-300 Saponite-K - K.33Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 K+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 26.0075 - -delta_H -196.402 kJ/mol # Calculated enthalpy of reaction Saponite-K + K.33Mg3Al.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 Al+3 + 0.33 K+ + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O + log_k 26.0075 + -delta_H -196.402 kJ/mol # Calculated enthalpy of reaction Saponite-K # Enthalpy of formation: -1437.74 kcal/mol - -analytic 3.2113e+001 1.8392e-002 1.7918e+004 -2.2874e+001 -1.3542e+006 + -analytic 3.2113e+1 1.8392e-2 1.7918e+4 -2.2874e+1 -1.3542e+6 # -Range: 0-300 Saponite-Mg - Mg3.165Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 3.1650 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 26.2523 - -delta_H -210.822 kJ/mol # Calculated enthalpy of reaction Saponite-Mg + Mg3.165Al.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 Al+3 + 3.165 Mg+2 + 3.67 SiO2 + 4.66 H2O + log_k 26.2523 + -delta_H -210.822 kJ/mol # Calculated enthalpy of reaction Saponite-Mg # Enthalpy of formation: -1432.79 kcal/mol - -analytic 9.8888e+000 1.4320e-002 1.9418e+004 -1.5259e+001 -1.3716e+006 + -analytic 9.8888e+0 1.432e-2 1.9418e+4 -1.5259e+1 -1.3716e+6 # -Range: 0-300 Saponite-Na - Na.33Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Na+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 26.3459 - -delta_H -201.401 kJ/mol # Calculated enthalpy of reaction Saponite-Na + Na.33Mg3Al.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 Al+3 + 0.33 Na+ + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O + log_k 26.3459 + -delta_H -201.401 kJ/mol # Calculated enthalpy of reaction Saponite-Na # Enthalpy of formation: -1435.61 kcal/mol - -analytic -6.7611e+001 4.7327e-003 2.3586e+004 1.2868e+001 -1.6493e+006 + -analytic -6.7611e+1 4.7327e-3 2.3586e+4 1.2868e+1 -1.6493e+6 # -Range: 0-300 Sb - Sb +1.5000 H2O +0.7500 O2 = + 1.0000 Sb(OH)3 - log_k 52.7918 - -delta_H -335.931 kJ/mol # Calculated enthalpy of reaction Sb + Sb + 1.5 H2O + 0.75 O2 = Sb(OH)3 + log_k 52.7918 + -delta_H -335.931 kJ/mol # Calculated enthalpy of reaction Sb # Enthalpy of formation: 0 kJ/mol Sb(OH)3 - Sb(OH)3 = + 1.0000 Sb(OH)3 - log_k -7.0953 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)3 + Sb(OH)3 = Sb(OH)3 + log_k -7.0953 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)3 # Enthalpy of formation: 0 kcal/mol Sb2O3 - Sb2O3 +3.0000 H2O = + 2.0000 Sb(OH)3 - log_k -8.9600 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2O3 + Sb2O3 + 3 H2O = 2 Sb(OH)3 + log_k -8.96 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2O3 # Enthalpy of formation: 0 kcal/mol - -analytic 2.3982e+000 -7.6326e-005 -3.3787e+003 0.0000e+000 0.0000e+000 + -analytic 2.3982e+0 -7.6326e-5 -3.3787e+3 0e+0 0e+0 # -Range: 0-300 Sb2O4 - Sb2O4 +3.0000 H2O = + 0.5000 O2 + 2.0000 Sb(OH)3 - log_k -39.6139 - -delta_H 211.121 kJ/mol # Calculated enthalpy of reaction Sb2O4 + Sb2O4 + 3 H2O = 0.5 O2 + 2 Sb(OH)3 + log_k -39.6139 + -delta_H 211.121 kJ/mol # Calculated enthalpy of reaction Sb2O4 # Enthalpy of formation: -907.251 kJ/mol Sb2O5 - Sb2O5 +3.0000 H2O = + 1.0000 O2 + 2.0000 Sb(OH)3 - log_k -46.9320 - -delta_H 269.763 kJ/mol # Calculated enthalpy of reaction Sb2O5 + Sb2O5 + 3 H2O = O2 + 2 Sb(OH)3 + log_k -46.932 + -delta_H 269.763 kJ/mol # Calculated enthalpy of reaction Sb2O5 # Enthalpy of formation: -971.96 kJ/mol Sb4O6(cubic) - Sb4O6 +6.0000 H2O = + 4.0000 Sb(OH)3 - log_k -19.6896 - -delta_H 59.898 kJ/mol # Calculated enthalpy of reaction Sb4O6(cubic) + Sb4O6 + 6 H2O = 4 Sb(OH)3 + log_k -19.6896 + -delta_H 59.898 kJ/mol # Calculated enthalpy of reaction Sb4O6(cubic) # Enthalpy of formation: -1440.02 kJ/mol Sb4O6(orthorhombic) - Sb4O6 +6.0000 H2O = + 4.0000 Sb(OH)3 - log_k -17.0442 - -delta_H 37.314 kJ/mol # Calculated enthalpy of reaction Sb4O6(orthorhombic) + Sb4O6 + 6 H2O = 4 Sb(OH)3 + log_k -17.0442 + -delta_H 37.314 kJ/mol # Calculated enthalpy of reaction Sb4O6(orthorhombic) # Enthalpy of formation: -1417.44 kJ/mol SbBr3 - SbBr3 +3.0000 H2O = + 1.0000 Sb(OH)3 + 3.0000 Br- + 3.0000 H+ - log_k 1.0554 - -delta_H -21.5871 kJ/mol # Calculated enthalpy of reaction SbBr3 + SbBr3 + 3 H2O = Sb(OH)3 + 3 Br- + 3 H+ + log_k 1.0554 + -delta_H -21.5871 kJ/mol # Calculated enthalpy of reaction SbBr3 # Enthalpy of formation: -259.197 kJ/mol SbCl3 - SbCl3 +3.0000 H2O = + 1.0000 Sb(OH)3 + 3.0000 Cl- + 3.0000 H+ - log_k 0.5878 - -delta_H -35.393 kJ/mol # Calculated enthalpy of reaction SbCl3 + SbCl3 + 3 H2O = Sb(OH)3 + 3 Cl- + 3 H+ + log_k 0.5878 + -delta_H -35.393 kJ/mol # Calculated enthalpy of reaction SbCl3 # Enthalpy of formation: -382.12 kJ/mol Sc - Sc +3.0000 H+ +0.7500 O2 = + 1.0000 Sc+++ + 1.5000 H2O - log_k 167.2700 - -delta_H -1033.87 kJ/mol # Calculated enthalpy of reaction Sc + Sc + 3 H+ + 0.75 O2 = Sc+3 + 1.5 H2O + log_k 167.27 + -delta_H -1033.87 kJ/mol # Calculated enthalpy of reaction Sc # Enthalpy of formation: 0 kJ/mol - -analytic -6.6922e+001 -2.9150e-002 5.4559e+004 2.4189e+001 8.5137e+002 + -analytic -6.6922e+1 -2.915e-2 5.4559e+4 2.4189e+1 8.5137e+2 # -Range: 0-300 Scacchite - MnCl2 = + 1.0000 Mn++ + 2.0000 Cl- - log_k 8.7785 - -delta_H -73.4546 kJ/mol # Calculated enthalpy of reaction Scacchite + MnCl2 = Mn+2 + 2 Cl- + log_k 8.7785 + -delta_H -73.4546 kJ/mol # Calculated enthalpy of reaction Scacchite # Enthalpy of formation: -481.302 kJ/mol - -analytic -2.3476e+002 -8.2437e-002 9.0088e+003 9.6128e+001 1.4064e+002 + -analytic -2.3476e+2 -8.2437e-2 9.0088e+3 9.6128e+1 1.4064e+2 # -Range: 0-300 Schoepite - UO3:2H2O +2.0000 H+ = + 1.0000 UO2++ + 3.0000 H2O - log_k 4.8333 - -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction Schoepite + UO3:2H2O + 2 H+ = UO2+2 + 3 H2O + log_k 4.8333 + -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction Schoepite # Enthalpy of formation: -1826.1 kJ/mol - -analytic 1.3645e+001 1.0884e-002 2.5412e+003 -8.3167e+000 3.9649e+001 + -analytic 1.3645e+1 1.0884e-2 2.5412e+3 -8.3167e+0 3.9649e+1 # -Range: 0-300 Schoepite-dehy(.393) - UO3:.393H2O +2.0000 H+ = + 1.0000 UO2++ + 1.3930 H2O - log_k 6.7243 - -delta_H -69.2728 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.393) + UO3:.393H2O + 2 H+ = UO2+2 + 1.393 H2O + log_k 6.7243 + -delta_H -69.2728 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.393) # Enthalpy of formation: -1347.9 kJ/mol - -analytic -5.6487e+001 -3.0358e-003 5.7044e+003 1.8179e+001 9.6887e+001 + -analytic -5.6487e+1 -3.0358e-3 5.7044e+3 1.8179e+1 9.6887e+1 # -Range: 0-200 Schoepite-dehy(.648) - UO3:.648H2O +2.0000 H+ = + 1.0000 UO2++ + 1.6480 H2O - log_k 6.2063 - -delta_H -65.4616 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.648) + UO3:.648H2O + 2 H+ = UO2+2 + 1.648 H2O + log_k 6.2063 + -delta_H -65.4616 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.648) # Enthalpy of formation: -1424.6 kJ/mol - -analytic -6.3010e+001 -3.0276e-003 5.8033e+003 2.0471e+001 9.8569e+001 + -analytic -6.301e+1 -3.0276e-3 5.8033e+3 2.0471e+1 9.8569e+1 # -Range: 0-200 Schoepite-dehy(.85) - UO3:.85H2O +2.0000 H+ = + 1.0000 UO2++ + 1.8500 H2O - log_k 5.0970 - -delta_H -56.4009 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.85) + UO3:.85H2O + 2 H+ = UO2+2 + 1.85 H2O + log_k 5.097 + -delta_H -56.4009 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.85) # Enthalpy of formation: -1491.4 kJ/mol - -analytic -6.7912e+001 -3.0420e-003 5.5690e+003 2.2323e+001 9.4593e+001 + -analytic -6.7912e+1 -3.042e-3 5.569e+3 2.2323e+1 9.4593e+1 # -Range: 0-200 Schoepite-dehy(.9) - UO3:.9H2O +2.0000 H+ = + 1.0000 UO2++ + 1.9000 H2O - log_k 5.0167 - -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.9) + UO3:.9H2O + 2 H+ = UO2+2 + 1.9 H2O + log_k 5.0167 + -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.9) # Enthalpy of formation: -1506.3 kJ/mol - -analytic -1.5998e+001 -2.0144e-003 3.2910e+003 4.2751e+000 5.1358e+001 + -analytic -1.5998e+1 -2.0144e-3 3.291e+3 4.2751e+0 5.1358e+1 # -Range: 0-300 Schoepite-dehy(1.0) - UO3:H2O +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O - log_k 5.1031 - -delta_H -57.4767 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(1.0) + UO3:H2O + 2 H+ = UO2+2 + 2 H2O + log_k 5.1031 + -delta_H -57.4767 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(1.0) # Enthalpy of formation: -1533.2 kJ/mol - -analytic -7.2080e+001 -3.0503e-003 5.8024e+003 2.3695e+001 9.8557e+001 + -analytic -7.208e+1 -3.0503e-3 5.8024e+3 2.3695e+1 9.8557e+1 # -Range: 0-200 Scolecite - CaAl2Si3O10:3H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O - log_k 15.8767 - -delta_H -204.93 kJ/mol # Calculated enthalpy of reaction Scolecite + CaAl2Si3O10:3H2O + 8 H+ = Ca+2 + 2 Al+3 + 3 SiO2 + 7 H2O + log_k 15.8767 + -delta_H -204.93 kJ/mol # Calculated enthalpy of reaction Scolecite # Enthalpy of formation: -6048.92 kJ/mol - -analytic 5.0656e+001 -3.1485e-003 1.0574e+004 -2.5663e+001 -5.2769e+005 + -analytic 5.0656e+1 -3.1485e-3 1.0574e+4 -2.5663e+1 -5.2769e+5 # -Range: 0-300 Se - Se +1.0000 H2O +1.0000 O2 = + 1.0000 SeO3-- + 2.0000 H+ - log_k 26.1436 - -delta_H -211.221 kJ/mol # Calculated enthalpy of reaction Se + Se + H2O + O2 = SeO3-2 + 2 H+ + log_k 26.1436 + -delta_H -211.221 kJ/mol # Calculated enthalpy of reaction Se # Enthalpy of formation: 0 kJ/mol - -analytic -9.5144e+001 -6.5681e-002 1.0736e+004 4.2358e+001 1.6755e+002 + -analytic -9.5144e+1 -6.5681e-2 1.0736e+4 4.2358e+1 1.6755e+2 # -Range: 0-300 Se2O5 - Se2O5 +2.0000 H2O = + 1.0000 SeO3-- + 1.0000 SeO4-- + 4.0000 H+ - log_k 9.5047 - -delta_H -123.286 kJ/mol # Calculated enthalpy of reaction Se2O5 + Se2O5 + 2 H2O = SeO3-2 + SeO4-2 + 4 H+ + log_k 9.5047 + -delta_H -123.286 kJ/mol # Calculated enthalpy of reaction Se2O5 # Enthalpy of formation: -98.8 kcal/mol - -analytic 1.1013e+002 -2.4491e-002 -5.6147e+002 -3.6960e+001 -9.5719e+000 + -analytic 1.1013e+2 -2.4491e-2 -5.6147e+2 -3.696e+1 -9.5719e+0 # -Range: 0-200 SeCl4 - SeCl4 +3.0000 H2O = + 1.0000 SeO3-- + 4.0000 Cl- + 6.0000 H+ - log_k 14.4361 - -delta_H -131.298 kJ/mol # Calculated enthalpy of reaction SeCl4 + SeCl4 + 3 H2O = SeO3-2 + 4 Cl- + 6 H+ + log_k 14.4361 + -delta_H -131.298 kJ/mol # Calculated enthalpy of reaction SeCl4 # Enthalpy of formation: -45.1 kcal/mol - -analytic -4.0215e+002 -1.8323e-001 1.3074e+004 1.7267e+002 2.0413e+002 + -analytic -4.0215e+2 -1.8323e-1 1.3074e+4 1.7267e+2 2.0413e+2 # -Range: 0-300 SeO3 - SeO3 +1.0000 H2O = + 1.0000 SeO4-- + 2.0000 H+ - log_k 19.2015 - -delta_H -143.022 kJ/mol # Calculated enthalpy of reaction SeO3 + SeO3 + H2O = SeO4-2 + 2 H+ + log_k 19.2015 + -delta_H -143.022 kJ/mol # Calculated enthalpy of reaction SeO3 # Enthalpy of formation: -40.7 kcal/mol - -analytic -1.4199e+002 -6.4398e-002 9.5505e+003 5.9941e+001 1.4907e+002 + -analytic -1.4199e+2 -6.4398e-2 9.5505e+3 5.9941e+1 1.4907e+2 # -Range: 0-300 Sellaite - MgF2 = + 1.0000 Mg++ + 2.0000 F- - log_k -9.3843 - -delta_H -12.4547 kJ/mol # Calculated enthalpy of reaction Sellaite + MgF2 = Mg+2 + 2 F- + log_k -9.3843 + -delta_H -12.4547 kJ/mol # Calculated enthalpy of reaction Sellaite # Enthalpy of formation: -1124.2 kJ/mol - -analytic -2.6901e+002 -8.5487e-002 6.8237e+003 1.0595e+002 1.0656e+002 + -analytic -2.6901e+2 -8.5487e-2 6.8237e+3 1.0595e+2 1.0656e+2 # -Range: 0-300 Sepiolite - Mg4Si6O15(OH)2:6H2O +8.0000 H+ = + 4.0000 Mg++ + 6.0000 SiO2 + 11.0000 H2O - log_k 30.4439 - -delta_H -157.339 kJ/mol # Calculated enthalpy of reaction Sepiolite + Mg4Si6O15(OH)2:6H2O + 8 H+ = 4 Mg+2 + 6 SiO2 + 11 H2O + log_k 30.4439 + -delta_H -157.339 kJ/mol # Calculated enthalpy of reaction Sepiolite # Enthalpy of formation: -2418 kcal/mol - -analytic 1.8690e+001 4.7544e-002 2.6765e+004 -2.5301e+001 -2.6498e+006 + -analytic 1.869e+1 4.7544e-2 2.6765e+4 -2.5301e+1 -2.6498e+6 # -Range: 0-300 Shcherbinaite - V2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 VO2+ - log_k -1.4520 - -delta_H -34.7917 kJ/mol # Calculated enthalpy of reaction Shcherbinaite + V2O5 + 2 H+ = H2O + 2 VO2+ + log_k -1.452 + -delta_H -34.7917 kJ/mol # Calculated enthalpy of reaction Shcherbinaite # Enthalpy of formation: -1550.6 kJ/mol - -analytic -1.4791e+002 -2.2464e-002 6.6865e+003 5.2832e+001 1.0438e+002 + -analytic -1.4791e+2 -2.2464e-2 6.6865e+3 5.2832e+1 1.0438e+2 # -Range: 0-300 Si - Si +1.0000 O2 = + 1.0000 SiO2 - log_k 148.9059 - -delta_H -865.565 kJ/mol # Calculated enthalpy of reaction Si + Si + O2 = SiO2 + log_k 148.9059 + -delta_H -865.565 kJ/mol # Calculated enthalpy of reaction Si # Enthalpy of formation: 0 kJ/mol - -analytic -5.7245e+002 -7.6302e-002 8.3516e+004 2.0045e+002 -2.8494e+006 + -analytic -5.7245e+2 -7.6302e-2 8.3516e+4 2.0045e+2 -2.8494e+6 # -Range: 0-300 SiO2(am) - SiO2 = + 1.0000 SiO2 - log_k -2.7136 - -delta_H 20.0539 kJ/mol # Calculated enthalpy of reaction SiO2(am) + SiO2 = SiO2 + log_k -2.7136 + -delta_H 20.0539 kJ/mol # Calculated enthalpy of reaction SiO2(am) # Enthalpy of formation: -214.568 kcal/mol - -analytic 1.2109e+000 7.0767e-003 2.3634e+003 -3.4449e+000 -4.8591e+005 + -analytic 1.2109e+0 7.0767e-3 2.3634e+3 -3.4449e+0 -4.8591e+5 # -Range: 0-300 Siderite - FeCO3 +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HCO3- - log_k -0.1920 - -delta_H -32.5306 kJ/mol # Calculated enthalpy of reaction Siderite + FeCO3 + H+ = Fe+2 + HCO3- + log_k -0.192 + -delta_H -32.5306 kJ/mol # Calculated enthalpy of reaction Siderite # Enthalpy of formation: -179.173 kcal/mol - -analytic -1.5990e+002 -4.9361e-002 5.4947e+003 6.3032e+001 8.5787e+001 + -analytic -1.599e+2 -4.9361e-2 5.4947e+3 6.3032e+1 8.5787e+1 # -Range: 0-300 Sillimanite - Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O - log_k 16.3080 - -delta_H -238.442 kJ/mol # Calculated enthalpy of reaction Sillimanite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 16.308 + -delta_H -238.442 kJ/mol # Calculated enthalpy of reaction Sillimanite # Enthalpy of formation: -615.099 kcal/mol - -analytic -7.1610e+001 -3.2196e-002 1.2493e+004 2.2449e+001 1.9496e+002 + -analytic -7.161e+1 -3.2196e-2 1.2493e+4 2.2449e+1 1.9496e+2 # -Range: 0-300 Sklodowskite - Mg(H3O)2(UO2)2(SiO4)2:4H2O +6.0000 H+ = + 1.0000 Mg++ + 2.0000 SiO2 + 2.0000 UO2++ + 10.0000 H2O - log_k 13.7915 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sklodowskite + Mg(H3O)2(UO2)2(SiO4)2:4H2O + 6 H+ = Mg+2 + 2 SiO2 + 2 UO2+2 + 10 H2O + log_k 13.7915 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sklodowskite # Enthalpy of formation: 0 kcal/mol Sm - Sm +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sm++ - log_k 133.1614 - -delta_H -783.944 kJ/mol # Calculated enthalpy of reaction Sm + Sm + 2 H+ + 0.5 O2 = H2O + Sm+2 + log_k 133.1614 + -delta_H -783.944 kJ/mol # Calculated enthalpy of reaction Sm # Enthalpy of formation: 0 kJ/mol - -analytic -7.1599e+001 -2.0083e-002 4.2693e+004 2.7291e+001 6.6621e+002 + -analytic -7.1599e+1 -2.0083e-2 4.2693e+4 2.7291e+1 6.6621e+2 # -Range: 0-300 Sm(OH)3 - Sm(OH)3 +3.0000 H+ = + 1.0000 Sm+++ + 3.0000 H2O - log_k 16.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3 + Sm(OH)3 + 3 H+ = Sm+3 + 3 H2O + log_k 16.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3 # Enthalpy of formation: 0 kcal/mol Sm(OH)3(am) - Sm(OH)3 +3.0000 H+ = + 1.0000 Sm+++ + 3.0000 H2O - log_k 18.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3(am) + Sm(OH)3 + 3 H+ = Sm+3 + 3 H2O + log_k 18.5852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3(am) # Enthalpy of formation: 0 kcal/mol Sm2(CO3)3 - Sm2(CO3)3 +3.0000 H+ = + 2.0000 Sm+++ + 3.0000 HCO3- - log_k -3.5136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(CO3)3 + Sm2(CO3)3 + 3 H+ = 2 Sm+3 + 3 HCO3- + log_k -3.5136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(CO3)3 # Enthalpy of formation: 0 kcal/mol Sm2(SO4)3 - Sm2(SO4)3 = + 2.0000 Sm+++ + 3.0000 SO4-- - log_k -9.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(SO4)3 + Sm2(SO4)3 = 2 Sm+3 + 3 SO4-2 + log_k -9.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(SO4)3 # Enthalpy of formation: 0 kcal/mol Sm2O3 - Sm2O3 +6.0000 H+ = + 2.0000 Sm+++ + 3.0000 H2O - log_k 42.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2O3 + Sm2O3 + 6 H+ = 2 Sm+3 + 3 H2O + log_k 42.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2O3 # Enthalpy of formation: 0 kcal/mol SmF3:.5H2O - SmF3:.5H2O = + 0.5000 H2O + 1.0000 Sm+++ + 3.0000 F- - log_k -17.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmF3:.5H2O + SmF3:.5H2O = 0.5 H2O + Sm+3 + 3 F- + log_k -17.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction SmF3:.5H2O # Enthalpy of formation: 0 kcal/mol SmPO4:10H2O - SmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Sm+++ + 10.0000 H2O - log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4:10H2O + SmPO4:10H2O + H+ = HPO4-2 + Sm+3 + 10 H2O + log_k -12.1782 + -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4:10H2O # Enthalpy of formation: 0 kcal/mol Smectite-high-Fe-Mg # Ca.025Na.1K.2Fe++.5Fe+++.2Mg1.15Al1.25Si3.5H2O12 +8.0000 H+ = + 0.0250 Ca++ + 0.1000 Na+ + 0.2000 Fe+++ + 0.2000 K+ + 0.5000 Fe++ + 1.1500 Mg++ + 1.2500 Al+++ + 3.5000 SiO2 + 5.0000 H2O - Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 +8.0000 H+ = + 0.0250 Ca++ + 0.1000 Na+ + 0.2000 Fe+++ + 0.2000 K+ + 0.5000 Fe++ + 1.1500 Mg++ + 1.2500 Al+++ + 3.5000 SiO2 + 5.0000 H2O - log_k 17.4200 - -delta_H -199.841 kJ/mol # Calculated enthalpy of reaction Smectite-high-Fe-Mg + Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 + 8 H+ = 0.025 Ca+2 + 0.1 Na+ + 0.2 Fe+3 + 0.2 K+ + 0.5 Fe+2 + 1.15 Mg+2 + 1.25 Al+3 + 3.5 SiO2 + 5 H2O + log_k 17.42 + -delta_H -199.841 kJ/mol # Calculated enthalpy of reaction Smectite-high-Fe-Mg # Enthalpy of formation: -1351.39 kcal/mol - -analytic -9.6102e+000 1.2551e-003 1.8157e+004 -7.9862e+000 -1.3005e+006 + -analytic -9.6102e+0 1.2551e-3 1.8157e+4 -7.9862e+0 -1.3005e+6 # -Range: 0-300 Smectite-low-Fe-Mg # Ca.02Na.15K.2Fe++.29Fe+++.16Mg.9Al1.25Si3.75H2O1 +7.0000 H+ = + 0.0200 Ca++ + 0.1500 Na+ + 0.1600 Fe+++ + 0.2000 K+ + 0.2900 Fe++ + 0.9000 Mg++ + 1.2500 Al+++ + 3.7500 SiO2 + 4.5000 H2O - Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 +7.0000 H+ = + 0.0200 Ca++ + 0.1500 Na+ + 0.1600 Fe+++ + 0.2000 K+ + 0.2900 Fe++ + 0.9000 Mg++ + 1.2500 Al+++ + 3.7500 SiO2 + 4.5000 H2O - log_k 11.0405 - -delta_H -144.774 kJ/mol # Calculated enthalpy of reaction Smectite-low-Fe-Mg + Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 + 7 H+ = 0.02 Ca+2 + 0.15 Na+ + 0.16 Fe+3 + 0.2 K+ + 0.29 Fe+2 + 0.9 Mg+2 + 1.25 Al+3 + 3.75 SiO2 + 4.5 H2O + log_k 11.0405 + -delta_H -144.774 kJ/mol # Calculated enthalpy of reaction Smectite-low-Fe-Mg # Enthalpy of formation: -1352.12 kcal/mol - -analytic -1.7003e+001 6.9848e-003 1.8359e+004 -6.8896e+000 -1.6637e+006 + -analytic -1.7003e+1 6.9848e-3 1.8359e+4 -6.8896e+0 -1.6637e+6 # -Range: 0-300 Smithsonite - ZnCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Zn++ - log_k 0.4633 - -delta_H -30.5348 kJ/mol # Calculated enthalpy of reaction Smithsonite + ZnCO3 + H+ = HCO3- + Zn+2 + log_k 0.4633 + -delta_H -30.5348 kJ/mol # Calculated enthalpy of reaction Smithsonite # Enthalpy of formation: -194.26 kcal/mol - -analytic -1.6452e+002 -5.0231e-002 5.5925e+003 6.5139e+001 8.7314e+001 + -analytic -1.6452e+2 -5.0231e-2 5.5925e+3 6.5139e+1 8.7314e+1 # -Range: 0-300 Sn - Sn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sn++ - log_k 47.8615 - -delta_H -288.558 kJ/mol # Calculated enthalpy of reaction Sn + Sn + 2 H+ + 0.5 O2 = H2O + Sn+2 + log_k 47.8615 + -delta_H -288.558 kJ/mol # Calculated enthalpy of reaction Sn # Enthalpy of formation: 0 kcal/mol - -analytic -1.3075e+002 -3.3807e-002 1.9548e+004 5.0382e+001 -1.3868e+005 + -analytic -1.3075e+2 -3.3807e-2 1.9548e+4 5.0382e+1 -1.3868e+5 # -Range: 0-300 Sn(OH)2 - Sn(OH)2 +2.0000 H+ = + 1.0000 Sn++ + 2.0000 H2O - log_k 1.8400 - -delta_H -19.6891 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 + Sn(OH)2 + 2 H+ = Sn+2 + 2 H2O + log_k 1.84 + -delta_H -19.6891 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 # Enthalpy of formation: -560.774 kJ/mol - -analytic -6.1677e+001 -5.3258e-003 3.3656e+003 2.1748e+001 5.7174e+001 + -analytic -6.1677e+1 -5.3258e-3 3.3656e+3 2.1748e+1 5.7174e+1 # -Range: 0-200 Sn(SO4)2 - Sn(SO4)2 = + 1.0000 Sn++++ + 2.0000 SO4-- - log_k 16.0365 - -delta_H -159.707 kJ/mol # Calculated enthalpy of reaction Sn(SO4)2 + Sn(SO4)2 = Sn+4 + 2 SO4-2 + log_k 16.0365 + -delta_H -159.707 kJ/mol # Calculated enthalpy of reaction Sn(SO4)2 # Enthalpy of formation: -389.4 kcal/mol - -analytic 1.7787e+001 -5.1758e-002 3.7671e+003 4.1861e-001 6.3965e+001 + -analytic 1.7787e+1 -5.1758e-2 3.7671e+3 4.1861e-1 6.3965e+1 # -Range: 0-200 Sn3S4 - Sn3S4 +4.0000 H+ = + 1.0000 Sn++++ + 2.0000 Sn++ + 4.0000 HS- - log_k -61.9790 - -delta_H 318.524 kJ/mol # Calculated enthalpy of reaction Sn3S4 + Sn3S4 + 4 H+ = Sn+4 + 2 Sn+2 + 4 HS- + log_k -61.979 + -delta_H 318.524 kJ/mol # Calculated enthalpy of reaction Sn3S4 # Enthalpy of formation: -88.5 kcal/mol - -analytic -8.1325e+001 -7.4589e-002 -1.7953e+004 4.1138e+001 -3.0484e+002 + -analytic -8.1325e+1 -7.4589e-2 -1.7953e+4 4.1138e+1 -3.0484e+2 # -Range: 0-200 SnBr2 - SnBr2 = + 1.0000 Sn++ + 2.0000 Br- - log_k -1.4369 - -delta_H 8.24248 kJ/mol # Calculated enthalpy of reaction SnBr2 + SnBr2 = Sn+2 + 2 Br- + log_k -1.4369 + -delta_H 8.24248 kJ/mol # Calculated enthalpy of reaction SnBr2 # Enthalpy of formation: -62.15 kcal/mol - -analytic 2.5384e+001 -1.7350e-002 -2.6653e+003 -5.1400e+000 -4.5269e+001 + -analytic 2.5384e+1 -1.735e-2 -2.6653e+3 -5.14e+0 -4.5269e+1 # -Range: 0-200 SnBr4 - SnBr4 = + 1.0000 Sn++++ + 4.0000 Br- - log_k 11.1272 - -delta_H -78.3763 kJ/mol # Calculated enthalpy of reaction SnBr4 + SnBr4 = Sn+4 + 4 Br- + log_k 11.1272 + -delta_H -78.3763 kJ/mol # Calculated enthalpy of reaction SnBr4 # Enthalpy of formation: -377.391 kJ/mol - -analytic 1.3516e+001 -5.5193e-002 -8.1888e+001 5.7935e+000 -1.3940e+000 + -analytic 1.3516e+1 -5.5193e-2 -8.1888e+1 5.7935e+0 -1.394e+0 # -Range: 0-200 SnCl2 - SnCl2 = + 1.0000 Sn++ + 2.0000 Cl- - log_k 0.3225 - -delta_H -11.9913 kJ/mol # Calculated enthalpy of reaction SnCl2 + SnCl2 = Sn+2 + 2 Cl- + log_k 0.3225 + -delta_H -11.9913 kJ/mol # Calculated enthalpy of reaction SnCl2 # Enthalpy of formation: -79.1 kcal/mol - -analytic 7.9717e+000 -2.1475e-002 -1.1676e+003 1.0749e+000 -1.9829e+001 + -analytic 7.9717e+0 -2.1475e-2 -1.1676e+3 1.0749e+0 -1.9829e+1 # -Range: 0-200 SnSO4 - SnSO4 = + 1.0000 SO4-- + 1.0000 Sn++ - log_k -23.9293 - -delta_H 96.232 kJ/mol # Calculated enthalpy of reaction SnSO4 + SnSO4 = SO4-2 + Sn+2 + log_k -23.9293 + -delta_H 96.232 kJ/mol # Calculated enthalpy of reaction SnSO4 # Enthalpy of formation: -242.5 kcal/mol - -analytic 3.0046e+001 -1.4238e-002 -7.5915e+003 -9.8122e+000 -1.2892e+002 + -analytic 3.0046e+1 -1.4238e-2 -7.5915e+3 -9.8122e+0 -1.2892e+2 # -Range: 0-200 SnSe - SnSe = + 1.0000 Se-- + 1.0000 Sn++ - log_k -32.9506 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe + SnSe = Se-2 + Sn+2 + log_k -32.9506 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe # Enthalpy of formation: -21.2 kcal/mol - -analytic 4.2342e+000 9.5462e-004 -8.0009e+003 -4.2997e+000 -1.3587e+002 + -analytic 4.2342e+0 9.5462e-4 -8.0009e+3 -4.2997e+0 -1.3587e+2 # -Range: 0-200 SnSe2 - SnSe2 = + 1.0000 Sn++++ + 2.0000 Se-- - log_k -66.6570 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe2 + SnSe2 = Sn+4 + 2 Se-2 + log_k -66.657 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe2 # Enthalpy of formation: -29.8 kcal/mol - -analytic -3.6819e+001 -2.0966e-002 -1.5197e+004 1.1070e+001 -2.5806e+002 + -analytic -3.6819e+1 -2.0966e-2 -1.5197e+4 1.107e+1 -2.5806e+2 # -Range: 0-200 Soddyite - (UO2)2SiO4:2H2O +4.0000 H+ = + 1.0000 SiO2 + 2.0000 UO2++ + 4.0000 H2O - log_k 0.3920 - -delta_H 0 # Not possible to calculate enthalpy of reaction Soddyite + (UO2)2SiO4:2H2O + 4 H+ = SiO2 + 2 UO2+2 + 4 H2O + log_k 0.392 + -delta_H 0 # Not possible to calculate enthalpy of reaction Soddyite # Enthalpy of formation: 0 kcal/mol Sphaerocobaltite - CoCO3 +1.0000 H+ = + 1.0000 Co++ + 1.0000 HCO3- - log_k -0.2331 - -delta_H -30.7064 kJ/mol # Calculated enthalpy of reaction Sphaerocobaltite + CoCO3 + H+ = Co+2 + HCO3- + log_k -0.2331 + -delta_H -30.7064 kJ/mol # Calculated enthalpy of reaction Sphaerocobaltite # Enthalpy of formation: -171.459 kcal/mol - -analytic -1.5709e+002 -4.8957e-002 5.3158e+003 6.2075e+001 8.2995e+001 + -analytic -1.5709e+2 -4.8957e-2 5.3158e+3 6.2075e+1 8.2995e+1 # -Range: 0-300 Sphalerite - ZnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Zn++ - log_k -11.4400 - -delta_H 35.5222 kJ/mol # Calculated enthalpy of reaction Sphalerite + ZnS + H+ = HS- + Zn+2 + log_k -11.44 + -delta_H 35.5222 kJ/mol # Calculated enthalpy of reaction Sphalerite # Enthalpy of formation: -49 kcal/mol - -analytic -1.5497e+002 -4.8953e-002 1.7850e+003 6.1472e+001 2.7899e+001 + -analytic -1.5497e+2 -4.8953e-2 1.785e+3 6.1472e+1 2.7899e+1 # -Range: 0-300 Spinel - Al2MgO4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Al+++ + 4.0000 H2O - log_k 37.6295 - -delta_H -398.108 kJ/mol # Calculated enthalpy of reaction Spinel + Al2MgO4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O + log_k 37.6295 + -delta_H -398.108 kJ/mol # Calculated enthalpy of reaction Spinel # Enthalpy of formation: -546.847 kcal/mol - -analytic -3.3895e+002 -8.3595e-002 2.9251e+004 1.2260e+002 4.5654e+002 + -analytic -3.3895e+2 -8.3595e-2 2.9251e+4 1.226e+2 4.5654e+2 # -Range: 0-300 Spinel-Co - Co3O4 +8.0000 H+ = + 1.0000 Co++ + 2.0000 Co+++ + 4.0000 H2O - log_k -6.4852 - -delta_H -126.415 kJ/mol # Calculated enthalpy of reaction Spinel-Co + Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O + log_k -6.4852 + -delta_H -126.415 kJ/mol # Calculated enthalpy of reaction Spinel-Co # Enthalpy of formation: -891 kJ/mol - -analytic -3.2239e+002 -8.0782e-002 1.4635e+004 1.1755e+002 2.2846e+002 + -analytic -3.2239e+2 -8.0782e-2 1.4635e+4 1.1755e+2 2.2846e+2 # -Range: 0-300 Spodumene - LiAlSi2O6 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 2.0000 H2O + 2.0000 SiO2 - log_k 6.9972 - -delta_H -89.1817 kJ/mol # Calculated enthalpy of reaction Spodumene + LiAlSi2O6 + 4 H+ = Al+3 + Li+ + 2 H2O + 2 SiO2 + log_k 6.9972 + -delta_H -89.1817 kJ/mol # Calculated enthalpy of reaction Spodumene # Enthalpy of formation: -3054.75 kJ/mol - -analytic -9.8111e+000 2.1191e-003 9.6920e+003 -3.0484e+000 -7.8822e+005 + -analytic -9.8111e+0 2.1191e-3 9.692e+3 -3.0484e+0 -7.8822e+5 # -Range: 0-300 Sr - Sr +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sr++ - log_k 141.7816 - -delta_H -830.679 kJ/mol # Calculated enthalpy of reaction Sr + Sr + 2 H+ + 0.5 O2 = H2O + Sr+2 + log_k 141.7816 + -delta_H -830.679 kJ/mol # Calculated enthalpy of reaction Sr # Enthalpy of formation: 0 kJ/mol - -analytic -1.6271e+002 -3.1212e-002 5.1520e+004 5.9178e+001 -4.8390e+005 + -analytic -1.6271e+2 -3.1212e-2 5.152e+4 5.9178e+1 -4.839e+5 # -Range: 0-300 Sr(NO3)2 - Sr(NO3)2 = + 1.0000 Sr++ + 2.0000 NO3- - log_k 1.1493 - -delta_H 13.7818 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2 + Sr(NO3)2 = Sr+2 + 2 NO3- + log_k 1.1493 + -delta_H 13.7818 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2 # Enthalpy of formation: -978.311 kJ/mol - -analytic 2.8914e+000 -1.2487e-002 -1.4872e+003 2.8124e+000 -2.5256e+001 + -analytic 2.8914e+0 -1.2487e-2 -1.4872e+3 2.8124e+0 -2.5256e+1 # -Range: 0-200 Sr(NO3)2:4H2O - Sr(NO3)2:4H2O = + 1.0000 Sr++ + 2.0000 NO3- + 4.0000 H2O - log_k 0.6976 - -delta_H 47.9045 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2:4H2O + Sr(NO3)2:4H2O = Sr+2 + 2 NO3- + 4 H2O + log_k 0.6976 + -delta_H 47.9045 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2:4H2O # Enthalpy of formation: -2155.79 kJ/mol - -analytic -8.4518e+001 -9.1155e-003 1.0856e+003 3.4061e+001 1.8464e+001 + -analytic -8.4518e+1 -9.1155e-3 1.0856e+3 3.4061e+1 1.8464e+1 # -Range: 0-200 Sr(OH)2 - Sr(OH)2 +2.0000 H+ = + 1.0000 Sr++ + 2.0000 H2O - log_k 27.5229 - -delta_H -153.692 kJ/mol # Calculated enthalpy of reaction Sr(OH)2 + Sr(OH)2 + 2 H+ = Sr+2 + 2 H2O + log_k 27.5229 + -delta_H -153.692 kJ/mol # Calculated enthalpy of reaction Sr(OH)2 # Enthalpy of formation: -968.892 kJ/mol - -analytic -5.1871e+001 -2.9123e-003 1.0175e+004 1.8643e+001 1.7280e+002 + -analytic -5.1871e+1 -2.9123e-3 1.0175e+4 1.8643e+1 1.728e+2 # -Range: 0-200 Sr2SiO4 - Sr2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Sr++ - log_k 42.8076 - -delta_H -244.583 kJ/mol # Calculated enthalpy of reaction Sr2SiO4 + Sr2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Sr+2 + log_k 42.8076 + -delta_H -244.583 kJ/mol # Calculated enthalpy of reaction Sr2SiO4 # Enthalpy of formation: -2306.61 kJ/mol - -analytic 3.0319e+001 2.0204e-003 1.2729e+004 -1.1584e+001 -1.9480e+005 + -analytic 3.0319e+1 2.0204e-3 1.2729e+4 -1.1584e+1 -1.948e+5 # -Range: 0-300 Sr3(AsO4)2 - Sr3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Sr++ - log_k 20.6256 - -delta_H -152.354 kJ/mol # Calculated enthalpy of reaction Sr3(AsO4)2 + Sr3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Sr+2 + log_k 20.6256 + -delta_H -152.354 kJ/mol # Calculated enthalpy of reaction Sr3(AsO4)2 # Enthalpy of formation: -3319.49 kJ/mol - -analytic -8.4749e+001 -2.9367e-002 9.5849e+003 3.3126e+001 1.6279e+002 + -analytic -8.4749e+1 -2.9367e-2 9.5849e+3 3.3126e+1 1.6279e+2 # -Range: 0-200 SrBr2 - SrBr2 = + 1.0000 Sr++ + 2.0000 Br- - log_k 13.1128 - -delta_H -75.106 kJ/mol # Calculated enthalpy of reaction SrBr2 + SrBr2 = Sr+2 + 2 Br- + log_k 13.1128 + -delta_H -75.106 kJ/mol # Calculated enthalpy of reaction SrBr2 # Enthalpy of formation: -718.808 kJ/mol - -analytic -1.8512e+002 -7.2423e-002 7.6861e+003 7.8401e+001 1.1999e+002 + -analytic -1.8512e+2 -7.2423e-2 7.6861e+3 7.8401e+1 1.1999e+2 # -Range: 0-300 SrBr2:6H2O - SrBr2:6H2O = + 1.0000 Sr++ + 2.0000 Br- + 6.0000 H2O - log_k 3.6678 - -delta_H 23.367 kJ/mol # Calculated enthalpy of reaction SrBr2:6H2O + SrBr2:6H2O = Sr+2 + 2 Br- + 6 H2O + log_k 3.6678 + -delta_H 23.367 kJ/mol # Calculated enthalpy of reaction SrBr2:6H2O # Enthalpy of formation: -2532.31 kJ/mol - -analytic -2.2470e+002 -6.7920e-002 4.9432e+003 9.3758e+001 7.7200e+001 + -analytic -2.247e+2 -6.792e-2 4.9432e+3 9.3758e+1 7.72e+1 # -Range: 0-300 SrBr2:H2O - SrBr2:H2O = + 1.0000 H2O + 1.0000 Sr++ + 2.0000 Br- - log_k 9.6057 - -delta_H -47.5853 kJ/mol # Calculated enthalpy of reaction SrBr2:H2O + SrBr2:H2O = H2O + Sr+2 + 2 Br- + log_k 9.6057 + -delta_H -47.5853 kJ/mol # Calculated enthalpy of reaction SrBr2:H2O # Enthalpy of formation: -1032.17 kJ/mol - -analytic -1.9103e+002 -7.1402e-002 6.6358e+003 8.0673e+001 1.0360e+002 + -analytic -1.9103e+2 -7.1402e-2 6.6358e+3 8.0673e+1 1.036e+2 # -Range: 0-300 SrCl2 - SrCl2 = + 1.0000 Sr++ + 2.0000 Cl- - log_k 7.9389 - -delta_H -55.0906 kJ/mol # Calculated enthalpy of reaction SrCl2 + SrCl2 = Sr+2 + 2 Cl- + log_k 7.9389 + -delta_H -55.0906 kJ/mol # Calculated enthalpy of reaction SrCl2 # Enthalpy of formation: -829.976 kJ/mol - -analytic -2.0097e+002 -7.6193e-002 7.0396e+003 8.4050e+001 1.0991e+002 + -analytic -2.0097e+2 -7.6193e-2 7.0396e+3 8.405e+1 1.0991e+2 # -Range: 0-300 SrCl2:2H2O - SrCl2:2H2O = + 1.0000 Sr++ + 2.0000 Cl- + 2.0000 H2O - log_k 3.3248 - -delta_H -17.7313 kJ/mol # Calculated enthalpy of reaction SrCl2:2H2O + SrCl2:2H2O = Sr+2 + 2 Cl- + 2 H2O + log_k 3.3248 + -delta_H -17.7313 kJ/mol # Calculated enthalpy of reaction SrCl2:2H2O # Enthalpy of formation: -1439.01 kJ/mol - -analytic -2.1551e+002 -7.4349e-002 5.9400e+003 8.9330e+001 9.2752e+001 + -analytic -2.1551e+2 -7.4349e-2 5.94e+3 8.933e+1 9.2752e+1 # -Range: 0-300 SrCl2:6H2O - SrCl2:6H2O = + 1.0000 Sr++ + 2.0000 Cl- + 6.0000 H2O - log_k 1.5038 - -delta_H 24.6964 kJ/mol # Calculated enthalpy of reaction SrCl2:6H2O + SrCl2:6H2O = Sr+2 + 2 Cl- + 6 H2O + log_k 1.5038 + -delta_H 24.6964 kJ/mol # Calculated enthalpy of reaction SrCl2:6H2O # Enthalpy of formation: -2624.79 kJ/mol - -analytic -1.3225e+002 -1.8260e-002 3.7077e+003 5.1224e+001 6.3008e+001 + -analytic -1.3225e+2 -1.826e-2 3.7077e+3 5.1224e+1 6.3008e+1 # -Range: 0-200 SrCl2:H2O - SrCl2:H2O = + 1.0000 H2O + 1.0000 Sr++ + 2.0000 Cl- - log_k 4.7822 - -delta_H -33.223 kJ/mol # Calculated enthalpy of reaction SrCl2:H2O + SrCl2:H2O = H2O + Sr+2 + 2 Cl- + log_k 4.7822 + -delta_H -33.223 kJ/mol # Calculated enthalpy of reaction SrCl2:H2O # Enthalpy of formation: -1137.68 kJ/mol - -analytic -2.1825e+002 -7.7851e-002 6.5957e+003 9.0555e+001 1.0298e+002 + -analytic -2.1825e+2 -7.7851e-2 6.5957e+3 9.0555e+1 1.0298e+2 # -Range: 0-300 SrCrO4 - SrCrO4 = + 1.0000 CrO4-- + 1.0000 Sr++ - log_k -3.8849 - -delta_H -1.73636 kJ/mol # Calculated enthalpy of reaction SrCrO4 + SrCrO4 = CrO4-2 + Sr+2 + log_k -3.8849 + -delta_H -1.73636 kJ/mol # Calculated enthalpy of reaction SrCrO4 # Enthalpy of formation: -341.855 kcal/mol - -analytic 2.3424e+001 -1.5589e-002 -2.1393e+003 -6.2628e+000 -3.6337e+001 + -analytic 2.3424e+1 -1.5589e-2 -2.1393e+3 -6.2628e+0 -3.6337e+1 # -Range: 0-200 SrF2 - SrF2 = + 1.0000 Sr++ + 2.0000 F- - log_k -8.5400 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrF2 + SrF2 = Sr+2 + 2 F- + log_k -8.54 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrF2 # Enthalpy of formation: 0 kcal/mol SrHPO4 - SrHPO4 = + 1.0000 HPO4-- + 1.0000 Sr++ - log_k -6.2416 - -delta_H -19.7942 kJ/mol # Calculated enthalpy of reaction SrHPO4 + SrHPO4 = HPO4-2 + Sr+2 + log_k -6.2416 + -delta_H -19.7942 kJ/mol # Calculated enthalpy of reaction SrHPO4 # Enthalpy of formation: -1823.19 kJ/mol - -analytic 5.4057e+000 -1.8533e-002 -8.2021e+002 -1.3667e+000 -1.3930e+001 + -analytic 5.4057e+0 -1.8533e-2 -8.2021e+2 -1.3667e+0 -1.393e+1 # -Range: 0-200 SrI2 - SrI2 = + 1.0000 Sr++ + 2.0000 I- - log_k 19.2678 - -delta_H -103.218 kJ/mol # Calculated enthalpy of reaction SrI2 + SrI2 = Sr+2 + 2 I- + log_k 19.2678 + -delta_H -103.218 kJ/mol # Calculated enthalpy of reaction SrI2 # Enthalpy of formation: -561.494 kJ/mol - -analytic -1.8168e+002 -7.2083e-002 9.0759e+003 7.7577e+001 1.4167e+002 + -analytic -1.8168e+2 -7.2083e-2 9.0759e+3 7.7577e+1 1.4167e+2 # -Range: 0-300 SrO - SrO +2.0000 H+ = + 1.0000 H2O + 1.0000 Sr++ - log_k 41.8916 - -delta_H -243.875 kJ/mol # Calculated enthalpy of reaction SrO + SrO + 2 H+ = H2O + Sr+2 + log_k 41.8916 + -delta_H -243.875 kJ/mol # Calculated enthalpy of reaction SrO # Enthalpy of formation: -592.871 kJ/mol - -analytic -5.8463e+001 -1.4240e-002 1.4417e+004 2.2725e+001 2.2499e+002 + -analytic -5.8463e+1 -1.424e-2 1.4417e+4 2.2725e+1 2.2499e+2 # -Range: 0-300 SrS - SrS +1.0000 H+ = + 1.0000 HS- + 1.0000 Sr++ - log_k 14.7284 - -delta_H -93.3857 kJ/mol # Calculated enthalpy of reaction SrS + SrS + H+ = HS- + Sr+2 + log_k 14.7284 + -delta_H -93.3857 kJ/mol # Calculated enthalpy of reaction SrS # Enthalpy of formation: -473.63 kJ/mol - -analytic -1.3048e+002 -4.4837e-002 7.8429e+003 5.3442e+001 1.2242e+002 + -analytic -1.3048e+2 -4.4837e-2 7.8429e+3 5.3442e+1 1.2242e+2 # -Range: 0-300 SrSeO4 - SrSeO4 = + 1.0000 SeO4-- + 1.0000 Sr++ - log_k -4.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrSeO4 + SrSeO4 = SeO4-2 + Sr+2 + log_k -4.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrSeO4 # Enthalpy of formation: 0 kcal/mol SrSiO3 - SrSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 SiO2 + 1.0000 Sr++ - log_k 14.8438 - -delta_H -79.6112 kJ/mol # Calculated enthalpy of reaction SrSiO3 + SrSiO3 + 2 H+ = H2O + SiO2 + Sr+2 + log_k 14.8438 + -delta_H -79.6112 kJ/mol # Calculated enthalpy of reaction SrSiO3 # Enthalpy of formation: -1634.83 kJ/mol - -analytic 2.2592e+001 6.0821e-003 5.9982e+003 -1.0213e+001 -3.9529e+005 + -analytic 2.2592e+1 6.0821e-3 5.9982e+3 -1.0213e+1 -3.9529e+5 # -Range: 0-300 SrUO4(alpha) - SrUO4 +4.0000 H+ = + 1.0000 Sr++ + 1.0000 UO2++ + 2.0000 H2O - log_k 19.1650 - -delta_H -151.984 kJ/mol # Calculated enthalpy of reaction SrUO4(alpha) + SrUO4 + 4 H+ = Sr+2 + UO2+2 + 2 H2O + log_k 19.165 + -delta_H -151.984 kJ/mol # Calculated enthalpy of reaction SrUO4(alpha) # Enthalpy of formation: -1989.6 kJ/mol - -analytic -7.4169e+001 -1.6686e-002 9.8721e+003 2.6345e+001 1.5407e+002 + -analytic -7.4169e+1 -1.6686e-2 9.8721e+3 2.6345e+1 1.5407e+2 # -Range: 0-300 SrZrO3 - SrZrO3 +4.0000 H+ = + 1.0000 H2O + 1.0000 Sr++ + 1.0000 Zr(OH)2++ - log_k -131.4664 - -delta_H 706.983 kJ/mol # Calculated enthalpy of reaction SrZrO3 + SrZrO3 + 4 H+ = H2O + Sr+2 + Zr(OH)2+2 + log_k -131.4664 + -delta_H 706.983 kJ/mol # Calculated enthalpy of reaction SrZrO3 # Enthalpy of formation: -629.677 kcal/mol - -analytic -5.8512e+001 -9.5738e-003 -3.5254e+004 1.9459e+001 -5.9865e+002 + -analytic -5.8512e+1 -9.5738e-3 -3.5254e+4 1.9459e+1 -5.9865e+2 # -Range: 0-200 Starkeyite - MgSO4:4H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 4.0000 H2O - log_k -0.9999 - -delta_H 0 # Not possible to calculate enthalpy of reaction Starkeyite + MgSO4:4H2O = Mg+2 + SO4-2 + 4 H2O + log_k -0.9999 + -delta_H 0 # Not possible to calculate enthalpy of reaction Starkeyite # Enthalpy of formation: 0 kcal/mol Stibnite - Sb2S3 +6.0000 H2O = + 2.0000 Sb(OH)3 + 3.0000 H+ + 3.0000 HS- - log_k -53.1100 - -delta_H 0 # Not possible to calculate enthalpy of reaction Stibnite + Sb2S3 + 6 H2O = 2 Sb(OH)3 + 3 H+ + 3 HS- + log_k -53.11 + -delta_H 0 # Not possible to calculate enthalpy of reaction Stibnite # Enthalpy of formation: 0 kcal/mol - -analytic 2.5223e+001 -5.9186e-002 -2.0860e+004 3.6892e+000 -3.2551e+002 + -analytic 2.5223e+1 -5.9186e-2 -2.086e+4 3.6892e+0 -3.2551e+2 # -Range: 0-300 Stilbite - Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O +8.7200 H+ = + 0.0060 K+ + 0.1360 Na+ + 1.0190 Ca++ + 2.1800 Al+++ + 6.8200 SiO2 + 11.6900 H2O - log_k 1.0545 - -delta_H -83.0019 kJ/mol # Calculated enthalpy of reaction Stilbite + Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O + 8.72 H+ = 0.006 K+ + 0.136 Na+ + 1.019 Ca+2 + 2.18 Al+3 + 6.82 SiO2 + 11.69 H2O + log_k 1.0545 + -delta_H -83.0019 kJ/mol # Calculated enthalpy of reaction Stilbite # Enthalpy of formation: -11005.7 kJ/mol - -analytic -2.4483e+001 3.0987e-002 2.8013e+004 -1.5802e+001 -3.4491e+006 + -analytic -2.4483e+1 3.0987e-2 2.8013e+4 -1.5802e+1 -3.4491e+6 # -Range: 0-300 Stilleite - ZnSe = + 1.0000 Se-- + 1.0000 Zn++ - log_k -23.9693 - -delta_H 0 # Not possible to calculate enthalpy of reaction Stilleite + ZnSe = Se-2 + Zn+2 + log_k -23.9693 + -delta_H 0 # Not possible to calculate enthalpy of reaction Stilleite # Enthalpy of formation: -37.97 kcal/mol - -analytic -6.1948e+001 -1.7004e-002 -2.4498e+003 2.0712e+001 -3.8209e+001 + -analytic -6.1948e+1 -1.7004e-2 -2.4498e+3 2.0712e+1 -3.8209e+1 # -Range: 0-300 Strengite - FePO4:2H2O +1.0000 H+ = + 1.0000 Fe+++ + 1.0000 HPO4-- + 2.0000 H2O - log_k -11.3429 - -delta_H -37.107 kJ/mol # Calculated enthalpy of reaction Strengite + FePO4:2H2O + H+ = Fe+3 + HPO4-2 + 2 H2O + log_k -11.3429 + -delta_H -37.107 kJ/mol # Calculated enthalpy of reaction Strengite # Enthalpy of formation: -1876.23 kJ/mol - -analytic -2.7752e+002 -9.4014e-002 7.6862e+003 1.0846e+002 1.2002e+002 + -analytic -2.7752e+2 -9.4014e-2 7.6862e+3 1.0846e+2 1.2002e+2 # -Range: 0-300 Strontianite - SrCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Sr++ - log_k -0.3137 - -delta_H -8.23411 kJ/mol # Calculated enthalpy of reaction Strontianite + SrCO3 + H+ = HCO3- + Sr+2 + log_k -0.3137 + -delta_H -8.23411 kJ/mol # Calculated enthalpy of reaction Strontianite # Enthalpy of formation: -294.6 kcal/mol - -analytic -1.3577e+002 -4.4884e-002 3.5729e+003 5.5296e+001 5.5791e+001 + -analytic -1.3577e+2 -4.4884e-2 3.5729e+3 5.5296e+1 5.5791e+1 # -Range: 0-300 Sylvite - KCl = + 1.0000 Cl- + 1.0000 K+ - log_k 0.8459 - -delta_H 17.4347 kJ/mol # Calculated enthalpy of reaction Sylvite + KCl = Cl- + K+ + log_k 0.8459 + -delta_H 17.4347 kJ/mol # Calculated enthalpy of reaction Sylvite # Enthalpy of formation: -104.37 kcal/mol - -analytic -8.1204e+001 -3.3074e-002 8.2819e+002 3.6014e+001 1.2947e+001 + -analytic -8.1204e+1 -3.3074e-2 8.2819e+2 3.6014e+1 1.2947e+1 # -Range: 0-300 Syngenite - K2Ca(SO4)2:H2O = + 1.0000 Ca++ + 1.0000 H2O + 2.0000 K+ + 2.0000 SO4-- - log_k -7.6001 - -delta_H 0 # Not possible to calculate enthalpy of reaction Syngenite + K2Ca(SO4)2:H2O = Ca+2 + H2O + 2 K+ + 2 SO4-2 + log_k -7.6001 + -delta_H 0 # Not possible to calculate enthalpy of reaction Syngenite # Enthalpy of formation: 0 kcal/mol Tachyhydrite - Mg2CaCl6:12H2O = + 1.0000 Ca++ + 2.0000 Mg++ + 6.0000 Cl- + 12.0000 H2O - log_k 17.1439 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tachyhydrite + Mg2CaCl6:12H2O = Ca+2 + 2 Mg+2 + 6 Cl- + 12 H2O + log_k 17.1439 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tachyhydrite # Enthalpy of formation: 0 kcal/mol Talc - Mg3Si4O10(OH)2 +6.0000 H+ = + 3.0000 Mg++ + 4.0000 H2O + 4.0000 SiO2 - log_k 21.1383 - -delta_H -148.737 kJ/mol # Calculated enthalpy of reaction Talc + Mg3Si4O10(OH)2 + 6 H+ = 3 Mg+2 + 4 H2O + 4 SiO2 + log_k 21.1383 + -delta_H -148.737 kJ/mol # Calculated enthalpy of reaction Talc # Enthalpy of formation: -1410.92 kcal/mol - -analytic 1.1164e+001 2.4724e-002 1.9810e+004 -1.7568e+001 -1.8241e+006 + -analytic 1.1164e+1 2.4724e-2 1.981e+4 -1.7568e+1 -1.8241e+6 # -Range: 0-300 Tarapacaite - K2CrO4 = + 1.0000 CrO4-- + 2.0000 K+ - log_k -0.4037 - -delta_H 17.8238 kJ/mol # Calculated enthalpy of reaction Tarapacaite + K2CrO4 = CrO4-2 + 2 K+ + log_k -0.4037 + -delta_H 17.8238 kJ/mol # Calculated enthalpy of reaction Tarapacaite # Enthalpy of formation: -335.4 kcal/mol - -analytic 2.7953e+001 -1.0863e-002 -2.7589e+003 -6.4154e+000 -4.6859e+001 + -analytic 2.7953e+1 -1.0863e-2 -2.7589e+3 -6.4154e+0 -4.6859e+1 # -Range: 0-200 Tb - Tb +3.0000 H+ +0.7500 O2 = + 1.0000 Tb+++ + 1.5000 H2O - log_k 181.4170 - -delta_H -1117.97 kJ/mol # Calculated enthalpy of reaction Tb + Tb + 3 H+ + 0.75 O2 = Tb+3 + 1.5 H2O + log_k 181.417 + -delta_H -1117.97 kJ/mol # Calculated enthalpy of reaction Tb # Enthalpy of formation: 0 kJ/mol - -analytic -5.2354e+001 -2.6920e-002 5.8391e+004 1.8555e+001 9.1115e+002 + -analytic -5.2354e+1 -2.692e-2 5.8391e+4 1.8555e+1 9.1115e+2 # -Range: 0-300 Tb(OH)3 - Tb(OH)3 +3.0000 H+ = + 1.0000 Tb+++ + 3.0000 H2O - log_k 15.6852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3 + Tb(OH)3 + 3 H+ = Tb+3 + 3 H2O + log_k 15.6852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3 # Enthalpy of formation: 0 kcal/mol Tb(OH)3(am) - Tb(OH)3 +3.0000 H+ = + 1.0000 Tb+++ + 3.0000 H2O - log_k 18.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3(am) + Tb(OH)3 + 3 H+ = Tb+3 + 3 H2O + log_k 18.7852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3(am) # Enthalpy of formation: 0 kcal/mol Tb2(CO3)3 - Tb2(CO3)3 +3.0000 H+ = + 2.0000 Tb+++ + 3.0000 HCO3- - log_k -3.2136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2(CO3)3 + Tb2(CO3)3 + 3 H+ = 2 Tb+3 + 3 HCO3- + log_k -3.2136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2(CO3)3 # Enthalpy of formation: 0 kcal/mol Tb2O3 - Tb2O3 +6.0000 H+ = + 2.0000 Tb+++ + 3.0000 H2O - log_k 47.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2O3 + Tb2O3 + 6 H+ = 2 Tb+3 + 3 H2O + log_k 47.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2O3 # Enthalpy of formation: 0 kcal/mol TbF3:.5H2O - TbF3:.5H2O = + 0.5000 H2O + 1.0000 Tb+++ + 3.0000 F- - log_k -16.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbF3:.5H2O + TbF3:.5H2O = 0.5 H2O + Tb+3 + 3 F- + log_k -16.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction TbF3:.5H2O # Enthalpy of formation: 0 kcal/mol TbPO4:10H2O - TbPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Tb+++ + 10.0000 H2O - log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4:10H2O + TbPO4:10H2O + H+ = HPO4-2 + Tb+3 + 10 H2O + log_k -11.9782 + -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4:10H2O # Enthalpy of formation: 0 kcal/mol Tc - Tc +1.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 TcO4- - log_k 93.5811 - -delta_H -552.116 kJ/mol # Calculated enthalpy of reaction Tc + Tc + 1.75 O2 + 0.5 H2O = H+ + TcO4- + log_k 93.5811 + -delta_H -552.116 kJ/mol # Calculated enthalpy of reaction Tc # Enthalpy of formation: 0 kJ/mol - -analytic 2.2670e+001 -1.2050e-002 3.0174e+004 -8.4053e+000 -5.2577e+005 + -analytic 2.267e+1 -1.205e-2 3.0174e+4 -8.4053e+0 -5.2577e+5 # -Range: 0-300 Tc(OH)2 - Tc(OH)2 +3.0000 H+ +0.2500 O2 = + 1.0000 Tc+++ + 2.5000 H2O - log_k 5.2714 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)2 + Tc(OH)2 + 3 H+ + 0.25 O2 = Tc+3 + 2.5 H2O + log_k 5.2714 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)2 # Enthalpy of formation: 0 kcal/mol Tc(OH)3 - Tc(OH)3 +3.0000 H+ = + 1.0000 Tc+++ + 3.0000 H2O - log_k -9.2425 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)3 + Tc(OH)3 + 3 H+ = Tc+3 + 3 H2O + log_k -9.2425 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)3 # Enthalpy of formation: 0 kcal/mol Tc2O7 - Tc2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 TcO4- - log_k 13.1077 - -delta_H -26.5357 kJ/mol # Calculated enthalpy of reaction Tc2O7 + Tc2O7 + H2O = 2 H+ + 2 TcO4- + log_k 13.1077 + -delta_H -26.5357 kJ/mol # Calculated enthalpy of reaction Tc2O7 # Enthalpy of formation: -1120.16 kJ/mol - -analytic 8.7535e+001 1.5366e-002 -1.1919e+003 -3.0317e+001 -2.0271e+001 + -analytic 8.7535e+1 1.5366e-2 -1.1919e+3 -3.0317e+1 -2.0271e+1 # -Range: 0-200 Tc2S7 - Tc2S7 +8.0000 H2O = + 2.0000 TcO4- + 7.0000 HS- + 9.0000 H+ - log_k -230.2410 - -delta_H 1356.41 kJ/mol # Calculated enthalpy of reaction Tc2S7 + Tc2S7 + 8 H2O = 2 TcO4- + 7 HS- + 9 H+ + log_k -230.241 + -delta_H 1356.41 kJ/mol # Calculated enthalpy of reaction Tc2S7 # Enthalpy of formation: -615 kJ/mol - -analytic 2.4560e+002 -4.3355e-002 -8.4192e+004 -7.2967e+001 -1.4298e+003 + -analytic 2.456e+2 -4.3355e-2 -8.4192e+4 -7.2967e+1 -1.4298e+3 # -Range: 0-200 Tc3O4 - Tc3O4 +9.0000 H+ +0.2500 O2 = + 3.0000 Tc+++ + 4.5000 H2O - log_k -19.2271 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc3O4 + Tc3O4 + 9 H+ + 0.25 O2 = 3 Tc+3 + 4.5 H2O + log_k -19.2271 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc3O4 # Enthalpy of formation: 0 kcal/mol Tc4O7 - Tc4O7 +10.0000 H+ = + 2.0000 Tc+++ + 2.0000 TcO++ + 5.0000 H2O - log_k -26.0149 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc4O7 + Tc4O7 + 10 H+ = 2 Tc+3 + 2 TcO+2 + 5 H2O + log_k -26.0149 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc4O7 # Enthalpy of formation: 0 kcal/mol TcO2:2H2O(am) - TcO2:2H2O +2.0000 H+ = + 1.0000 TcO++ + 3.0000 H2O - log_k -4.2319 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO2:2H2O(am) + TcO2:2H2O + 2 H+ = TcO+2 + 3 H2O + log_k -4.2319 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO2:2H2O(am) # Enthalpy of formation: 0 kcal/mol TcO3 - TcO3 +1.0000 H2O = + 1.0000 TcO4-- + 2.0000 H+ - log_k -23.1483 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO3 + TcO3 + H2O = TcO4-2 + 2 H+ + log_k -23.1483 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO3 # Enthalpy of formation: -540 kJ/mol TcOH - TcOH +3.0000 H+ +0.5000 O2 = + 1.0000 Tc+++ + 2.0000 H2O - log_k 24.9009 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcOH + TcOH + 3 H+ + 0.5 O2 = Tc+3 + 2 H2O + log_k 24.9009 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcOH # Enthalpy of formation: 0 kcal/mol TcS2 - TcS2 +1.0000 H2O = + 1.0000 TcO++ + 2.0000 HS- - log_k -65.9742 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcS2 + TcS2 + H2O = TcO+2 + 2 HS- + log_k -65.9742 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcS2 # Enthalpy of formation: -224 kJ/mol TcS3 - TcS3 +4.0000 H2O = + 1.0000 TcO4-- + 3.0000 HS- + 5.0000 H+ - log_k -119.5008 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcS3 + TcS3 + 4 H2O = TcO4-2 + 3 HS- + 5 H+ + log_k -119.5008 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcS3 # Enthalpy of formation: -276 kJ/mol Tenorite - CuO +2.0000 H+ = + 1.0000 Cu++ + 1.0000 H2O - log_k 7.6560 - -delta_H -64.5047 kJ/mol # Calculated enthalpy of reaction Tenorite + CuO + 2 H+ = Cu+2 + H2O + log_k 7.656 + -delta_H -64.5047 kJ/mol # Calculated enthalpy of reaction Tenorite # Enthalpy of formation: -37.2 kcal/mol - -analytic -8.9899e+001 -1.8886e-002 6.0346e+003 3.3517e+001 9.4191e+001 + -analytic -8.9899e+1 -1.8886e-2 6.0346e+3 3.3517e+1 9.4191e+1 # -Range: 0-300 Tephroite - Mn2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Mn++ - log_k 23.0781 - -delta_H -160.1 kJ/mol # Calculated enthalpy of reaction Tephroite + Mn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mn+2 + log_k 23.0781 + -delta_H -160.1 kJ/mol # Calculated enthalpy of reaction Tephroite # Enthalpy of formation: -1730.47 kJ/mol - -analytic -3.2440e+001 -1.1023e-002 8.8910e+003 1.1691e+001 1.3875e+002 + -analytic -3.244e+1 -1.1023e-2 8.891e+3 1.1691e+1 1.3875e+2 # -Range: 0-300 Th - Th +4.0000 H+ +1.0000 O2 = + 1.0000 Th++++ + 2.0000 H2O - log_k 209.6028 - -delta_H -1328.56 kJ/mol # Calculated enthalpy of reaction Th + Th + 4 H+ + O2 = Th+4 + 2 H2O + log_k 209.6028 + -delta_H -1328.56 kJ/mol # Calculated enthalpy of reaction Th # Enthalpy of formation: 0 kJ/mol - -analytic -2.8256e+001 -1.1963e-002 6.8870e+004 4.2068e+000 1.0747e+003 + -analytic -2.8256e+1 -1.1963e-2 6.887e+4 4.2068e+0 1.0747e+3 # -Range: 0-300 Th(NO3)4:5H2O - Th(NO3)4:5H2O = + 1.0000 Th++++ + 4.0000 NO3- + 5.0000 H2O - log_k 1.7789 - -delta_H -18.1066 kJ/mol # Calculated enthalpy of reaction Th(NO3)4:5H2O + Th(NO3)4:5H2O = Th+4 + 4 NO3- + 5 H2O + log_k 1.7789 + -delta_H -18.1066 kJ/mol # Calculated enthalpy of reaction Th(NO3)4:5H2O # Enthalpy of formation: -3007.35 kJ/mol - -analytic -1.2480e+002 -2.0405e-002 5.1601e+003 4.6613e+001 8.7669e+001 + -analytic -1.248e+2 -2.0405e-2 5.1601e+3 4.6613e+1 8.7669e+1 # -Range: 0-200 Th(OH)4 - Th(OH)4 +4.0000 H+ = + 1.0000 Th++++ + 4.0000 H2O - log_k 9.6543 - -delta_H -140.336 kJ/mol # Calculated enthalpy of reaction Th(OH)4 + Th(OH)4 + 4 H+ = Th+4 + 4 H2O + log_k 9.6543 + -delta_H -140.336 kJ/mol # Calculated enthalpy of reaction Th(OH)4 # Enthalpy of formation: -423.527 kcal/mol - -analytic -1.4031e+002 -9.2493e-003 1.2345e+004 4.4990e+001 2.0968e+002 + -analytic -1.4031e+2 -9.2493e-3 1.2345e+4 4.499e+1 2.0968e+2 # -Range: 0-200 Th(SO4)2 - Th(SO4)2 = + 1.0000 Th++++ + 2.0000 SO4-- - log_k -20.3006 - -delta_H -46.1064 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 + Th(SO4)2 = Th+4 + 2 SO4-2 + log_k -20.3006 + -delta_H -46.1064 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 # Enthalpy of formation: -2542.12 kJ/mol - -analytic -8.4525e+000 -3.5442e-002 0.0000e+000 0.0000e+000 -1.1540e+005 + -analytic -8.4525e+0 -3.5442e-2 0e+0 0e+0 -1.154e+5 # -Range: 0-200 Th2S3 - Th2S3 +5.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 Th++++ + 3.0000 HS- - log_k 95.2290 - -delta_H -783.243 kJ/mol # Calculated enthalpy of reaction Th2S3 + Th2S3 + 5 H+ + 0.5 O2 = H2O + 2 Th+4 + 3 HS- + log_k 95.229 + -delta_H -783.243 kJ/mol # Calculated enthalpy of reaction Th2S3 # Enthalpy of formation: -1082.89 kJ/mol - -analytic -3.2969e+002 -1.1090e-001 4.6877e+004 1.2152e+002 7.3157e+002 + -analytic -3.2969e+2 -1.109e-1 4.6877e+4 1.2152e+2 7.3157e+2 # -Range: 0-300 Th2Se3 - Th2Se3 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 Th++++ + 3.0000 Se-- - log_k 59.1655 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th2Se3 + Th2Se3 + 2 H+ + 0.5 O2 = H2O + 2 Th+4 + 3 Se-2 + log_k 59.1655 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th2Se3 # Enthalpy of formation: -224 kcal/mol - -analytic -1.0083e+001 6.0240e-003 3.4039e+004 -1.8884e+001 5.7804e+002 + -analytic -1.0083e+1 6.024e-3 3.4039e+4 -1.8884e+1 5.7804e+2 # -Range: 0-200 Th7S12 - Th7S12 +16.0000 H+ +1.0000 O2 = + 2.0000 H2O + 7.0000 Th++++ + 12.0000 HS- - log_k 204.0740 - -delta_H -1999.4 kJ/mol # Calculated enthalpy of reaction Th7S12 + Th7S12 + 16 H+ + O2 = 2 H2O + 7 Th+4 + 12 HS- + log_k 204.074 + -delta_H -1999.4 kJ/mol # Calculated enthalpy of reaction Th7S12 # Enthalpy of formation: -4136.58 kJ/mol - -analytic -2.1309e+002 -1.4149e-001 9.8550e+004 5.2042e+001 1.6736e+003 + -analytic -2.1309e+2 -1.4149e-1 9.855e+4 5.2042e+1 1.6736e+3 # -Range: 0-200 ThBr4 - ThBr4 = + 1.0000 Th++++ + 4.0000 Br- - log_k 34.0803 - -delta_H -290.23 kJ/mol # Calculated enthalpy of reaction ThBr4 + ThBr4 = Th+4 + 4 Br- + log_k 34.0803 + -delta_H -290.23 kJ/mol # Calculated enthalpy of reaction ThBr4 # Enthalpy of formation: -964.803 kJ/mol - -analytic 2.9902e+001 -3.3109e-002 1.0988e+004 -9.2209e+000 1.8657e+002 + -analytic 2.9902e+1 -3.3109e-2 1.0988e+4 -9.2209e+0 1.8657e+2 # -Range: 0-200 ThCl4 - ThCl4 = + 1.0000 Th++++ + 4.0000 Cl- - log_k 23.8491 - -delta_H -251.094 kJ/mol # Calculated enthalpy of reaction ThCl4 + ThCl4 = Th+4 + 4 Cl- + log_k 23.8491 + -delta_H -251.094 kJ/mol # Calculated enthalpy of reaction ThCl4 # Enthalpy of formation: -283.519 kcal/mol - -analytic -5.9340e+000 -4.1640e-002 9.8623e+003 3.6804e+000 1.6748e+002 + -analytic -5.934e+0 -4.164e-2 9.8623e+3 3.6804e+0 1.6748e+2 # -Range: 0-200 ThF4 - ThF4 = + 1.0000 Th++++ + 4.0000 F- - log_k -29.9946 - -delta_H -12.6733 kJ/mol # Calculated enthalpy of reaction ThF4 + ThF4 = Th+4 + 4 F- + log_k -29.9946 + -delta_H -12.6733 kJ/mol # Calculated enthalpy of reaction ThF4 # Enthalpy of formation: -501.371 kcal/mol - -analytic -4.2622e+002 -1.4222e-001 9.4201e+003 1.6446e+002 1.4712e+002 + -analytic -4.2622e+2 -1.4222e-1 9.4201e+3 1.6446e+2 1.4712e+2 # -Range: 0-300 ThF4:2.5H2O - ThF4:2.5H2O = + 1.0000 Th++++ + 2.5000 H2O + 4.0000 F- - log_k -31.8568 - -delta_H 22.6696 kJ/mol # Calculated enthalpy of reaction ThF4:2.5H2O + ThF4:2.5H2O = Th+4 + 2.5 H2O + 4 F- + log_k -31.8568 + -delta_H 22.6696 kJ/mol # Calculated enthalpy of reaction ThF4:2.5H2O # Enthalpy of formation: -2847.68 kJ/mol - -analytic -1.1284e+002 -4.5422e-002 -2.5781e+002 3.8547e+001 -4.3396e+000 + -analytic -1.1284e+2 -4.5422e-2 -2.5781e+2 3.8547e+1 -4.3396e+0 # -Range: 0-200 ThI4 - ThI4 = + 1.0000 Th++++ + 4.0000 I- - log_k 45.1997 - -delta_H -332.818 kJ/mol # Calculated enthalpy of reaction ThI4 + ThI4 = Th+4 + 4 I- + log_k 45.1997 + -delta_H -332.818 kJ/mol # Calculated enthalpy of reaction ThI4 # Enthalpy of formation: -663.811 kJ/mol - -analytic 1.4224e+000 -4.0379e-002 1.4193e+004 3.3137e+000 2.4102e+002 + -analytic 1.4224e+0 -4.0379e-2 1.4193e+4 3.3137e+0 2.4102e+2 # -Range: 0-200 ThS - ThS +3.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 HS- + 1.0000 Th++++ - log_k 96.0395 - -delta_H -669.906 kJ/mol # Calculated enthalpy of reaction ThS + ThS + 3 H+ + 0.5 O2 = H2O + HS- + Th+4 + log_k 96.0395 + -delta_H -669.906 kJ/mol # Calculated enthalpy of reaction ThS # Enthalpy of formation: -394.993 kJ/mol - -analytic -1.3919e+001 -1.2372e-002 3.3883e+004 0.0000e+000 0.0000e+000 + -analytic -1.3919e+1 -1.2372e-2 3.3883e+4 0e+0 0e+0 # -Range: 0-200 ThS2 - ThS2 +2.0000 H+ = + 1.0000 Th++++ + 2.0000 HS- - log_k 10.7872 - -delta_H -175.369 kJ/mol # Calculated enthalpy of reaction ThS2 + ThS2 + 2 H+ = Th+4 + 2 HS- + log_k 10.7872 + -delta_H -175.369 kJ/mol # Calculated enthalpy of reaction ThS2 # Enthalpy of formation: -625.867 kJ/mol - -analytic -3.7691e+001 -2.3714e-002 8.4673e+003 1.0970e+001 1.4380e+002 + -analytic -3.7691e+1 -2.3714e-2 8.4673e+3 1.097e+1 1.438e+2 # -Range: 0-200 Thenardite - Na2SO4 = + 1.0000 SO4-- + 2.0000 Na+ - log_k -0.3091 - -delta_H -2.33394 kJ/mol # Calculated enthalpy of reaction Thenardite + Na2SO4 = SO4-2 + 2 Na+ + log_k -0.3091 + -delta_H -2.33394 kJ/mol # Calculated enthalpy of reaction Thenardite # Enthalpy of formation: -1387.87 kJ/mol - -analytic -2.1202e+002 -7.1613e-002 5.1083e+003 8.7244e+001 7.9773e+001 + -analytic -2.1202e+2 -7.1613e-2 5.1083e+3 8.7244e+1 7.9773e+1 # -Range: 0-300 Thermonatrite - Na2CO3:H2O +1.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 2.0000 Na+ - log_k 10.9623 - -delta_H -27.5869 kJ/mol # Calculated enthalpy of reaction Thermonatrite + Na2CO3:H2O + H+ = H2O + HCO3- + 2 Na+ + log_k 10.9623 + -delta_H -27.5869 kJ/mol # Calculated enthalpy of reaction Thermonatrite # Enthalpy of formation: -1428.78 kJ/mol - -analytic -1.4030e+002 -3.5263e-002 5.7840e+003 5.7528e+001 9.0295e+001 + -analytic -1.403e+2 -3.5263e-2 5.784e+3 5.7528e+1 9.0295e+1 # -Range: 0-300 Thorianite - ThO2 +4.0000 H+ = + 1.0000 Th++++ + 2.0000 H2O - log_k 1.8624 - -delta_H -114.296 kJ/mol # Calculated enthalpy of reaction Thorianite + ThO2 + 4 H+ = Th+4 + 2 H2O + log_k 1.8624 + -delta_H -114.296 kJ/mol # Calculated enthalpy of reaction Thorianite # Enthalpy of formation: -1226.4 kJ/mol - -analytic -1.4249e+001 -2.4645e-003 4.3110e+003 -1.6605e-002 2.1598e+005 + -analytic -1.4249e+1 -2.4645e-3 4.311e+3 -1.6605e-2 2.1598e+5 # -Range: 0-300 Ti - Ti +2.0000 H2O +1.0000 O2 = + 1.0000 Ti(OH)4 - log_k 149.2978 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti + Ti + 2 H2O + O2 = Ti(OH)4 + log_k 149.2978 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti # Enthalpy of formation: 0 kJ/mol Ti2O3 - Ti2O3 +4.0000 H2O +0.5000 O2 = + 2.0000 Ti(OH)4 - log_k 42.9866 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti2O3 + Ti2O3 + 4 H2O + 0.5 O2 = 2 Ti(OH)4 + log_k 42.9866 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti2O3 # Enthalpy of formation: -1520.78 kJ/mol Ti3O5 - Ti3O5 +6.0000 H2O +0.5000 O2 = + 3.0000 Ti(OH)4 - log_k 34.6557 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti3O5 + Ti3O5 + 6 H2O + 0.5 O2 = 3 Ti(OH)4 + log_k 34.6557 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti3O5 # Enthalpy of formation: -2459.24 kJ/mol TiB2 - TiB2 +5.0000 H2O +2.5000 O2 = + 1.0000 Ti(OH)4 + 2.0000 B(OH)3 - log_k 312.4194 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiB2 + TiB2 + 5 H2O + 2.5 O2 = Ti(OH)4 + 2 B(OH)3 + log_k 312.4194 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiB2 # Enthalpy of formation: -323.883 kJ/mol TiBr3 - TiBr3 +3.5000 H2O +0.2500 O2 = + 1.0000 Ti(OH)4 + 3.0000 Br- + 3.0000 H+ - log_k 47.7190 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr3 + TiBr3 + 3.5 H2O + 0.25 O2 = Ti(OH)4 + 3 Br- + 3 H+ + log_k 47.719 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr3 # Enthalpy of formation: -548.378 kJ/mol TiBr4 - TiBr4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Br- + 4.0000 H+ - log_k 32.9379 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4 + TiBr4 + 4 H2O = Ti(OH)4 + 4 Br- + 4 H+ + log_k 32.9379 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4 # Enthalpy of formation: -616.822 kJ/mol TiC - TiC +3.0000 H2O +2.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- + 1.0000 Ti(OH)4 - log_k 181.8139 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiC + TiC + 3 H2O + 2 O2 = H+ + HCO3- + Ti(OH)4 + log_k 181.8139 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiC # Enthalpy of formation: -184.346 kJ/mol TiCl2 - TiCl2 +3.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 + 2.0000 Cl- + 2.0000 H+ - log_k 70.9386 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl2 + TiCl2 + 3 H2O + 0.5 O2 = Ti(OH)4 + 2 Cl- + 2 H+ + log_k 70.9386 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl2 # Enthalpy of formation: -514.012 kJ/mol TiCl3 - TiCl3 +3.5000 H2O +0.2500 O2 = + 1.0000 Ti(OH)4 + 3.0000 Cl- + 3.0000 H+ - log_k 39.3099 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl3 + TiCl3 + 3.5 H2O + 0.25 O2 = Ti(OH)4 + 3 Cl- + 3 H+ + log_k 39.3099 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl3 # Enthalpy of formation: -720.775 kJ/mol TiF4(am) - TiF4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 F- + 4.0000 H+ - log_k -12.4409 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiF4(am) + TiF4 + 4 H2O = Ti(OH)4 + 4 F- + 4 H+ + log_k -12.4409 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiF4(am) # Enthalpy of formation: -1649.44 kJ/mol TiI4 - TiI4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 H+ + 4.0000 I- - log_k 34.5968 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiI4 + TiI4 + 4 H2O = Ti(OH)4 + 4 H+ + 4 I- + log_k 34.5968 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiI4 # Enthalpy of formation: -375.555 kJ/mol TiN - TiN +3.5000 H2O +0.2500 O2 = + 1.0000 NH3 + 1.0000 Ti(OH)4 - log_k 35.2344 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiN + TiN + 3.5 H2O + 0.25 O2 = NH3 + Ti(OH)4 + log_k 35.2344 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiN # Enthalpy of formation: -338.304 kJ/mol TiO(alpha) - TiO +2.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 - log_k 61.1282 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(alpha) + TiO + 2 H2O + 0.5 O2 = Ti(OH)4 + log_k 61.1282 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(alpha) # Enthalpy of formation: -519.835 kJ/mol Tiemannite - HgSe = + 1.0000 Hg++ + 1.0000 Se-- - log_k -58.2188 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tiemannite + HgSe = Hg+2 + Se-2 + log_k -58.2188 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tiemannite # Enthalpy of formation: -10.4 kcal/mol - -analytic -5.7618e+001 -1.3891e-002 -1.3223e+004 1.9351e+001 -2.0632e+002 + -analytic -5.7618e+1 -1.3891e-2 -1.3223e+4 1.9351e+1 -2.0632e+2 # -Range: 0-300 Titanite - CaTiSiO5 +2.0000 H+ +1.0000 H2O = + 1.0000 Ca++ + 1.0000 SiO2 + 1.0000 Ti(OH)4 - log_k 719.5839 - -delta_H 0 # Not possible to calculate enthalpy of reaction Titanite + CaTiSiO5 + 2 H+ + H2O = Ca+2 + SiO2 + Ti(OH)4 + log_k 719.5839 + -delta_H 0 # Not possible to calculate enthalpy of reaction Titanite # Enthalpy of formation: 0 kcal/mol Tl - Tl +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Tl+ - log_k 27.1743 - -delta_H -134.53 kJ/mol # Calculated enthalpy of reaction Tl + Tl + H+ + 0.25 O2 = 0.5 H2O + Tl+ + log_k 27.1743 + -delta_H -134.53 kJ/mol # Calculated enthalpy of reaction Tl # Enthalpy of formation: 0 kJ/mol - -analytic -3.7066e+001 -7.8341e-003 9.4594e+003 1.4896e+001 -1.7904e+005 + -analytic -3.7066e+1 -7.8341e-3 9.4594e+3 1.4896e+1 -1.7904e+5 # -Range: 0-300 Tm - Tm +3.0000 H+ +0.7500 O2 = + 1.0000 Tm+++ + 1.5000 H2O - log_k 181.7102 - -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Tm + Tm + 3 H+ + 0.75 O2 = Tm+3 + 1.5 H2O + log_k 181.7102 + -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Tm # Enthalpy of formation: 0 kJ/mol - -analytic -6.7440e+001 -2.8476e-002 5.9332e+004 2.3715e+001 -5.9611e+003 + -analytic -6.744e+1 -2.8476e-2 5.9332e+4 2.3715e+1 -5.9611e+3 # -Range: 0-300 Tm(OH)3 - Tm(OH)3 +3.0000 H+ = + 1.0000 Tm+++ + 3.0000 H2O - log_k 14.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3 + Tm(OH)3 + 3 H+ = Tm+3 + 3 H2O + log_k 14.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3 # Enthalpy of formation: 0 kcal/mol Tm(OH)3(am) - Tm(OH)3 +3.0000 H+ = + 1.0000 Tm+++ + 3.0000 H2O - log_k 17.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3(am) + Tm(OH)3 + 3 H+ = Tm+3 + 3 H2O + log_k 17.2852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3(am) # Enthalpy of formation: 0 kcal/mol Tm2(CO3)3 - Tm2(CO3)3 +3.0000 H+ = + 2.0000 Tm+++ + 3.0000 HCO3- - log_k -2.4136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2(CO3)3 + Tm2(CO3)3 + 3 H+ = 2 Tm+3 + 3 HCO3- + log_k -2.4136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2(CO3)3 # Enthalpy of formation: 0 kcal/mol Tm2O3 - Tm2O3 +6.0000 H+ = + 2.0000 Tm+++ + 3.0000 H2O - log_k 44.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2O3 + Tm2O3 + 6 H+ = 2 Tm+3 + 3 H2O + log_k 44.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2O3 # Enthalpy of formation: 0 kcal/mol TmF3:.5H2O - TmF3:.5H2O = + 0.5000 H2O + 1.0000 Tm+++ + 3.0000 F- - log_k -16.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmF3:.5H2O + TmF3:.5H2O = 0.5 H2O + Tm+3 + 3 F- + log_k -16.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction TmF3:.5H2O # Enthalpy of formation: 0 kcal/mol TmPO4:10H2O - TmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Tm+++ + 10.0000 H2O - log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4:10H2O + TmPO4:10H2O + H+ = HPO4-2 + Tm+3 + 10 H2O + log_k -11.8782 + -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4:10H2O # Enthalpy of formation: 0 kcal/mol Tobermorite-11A - Ca5Si6H11O22.5 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 10.5000 H2O - log_k 65.6121 - -delta_H -286.861 kJ/mol # Calculated enthalpy of reaction Tobermorite-11A + Ca5Si6H11O22.5 + 10 H+ = 5 Ca+2 + 6 SiO2 + 10.5 H2O + log_k 65.6121 + -delta_H -286.861 kJ/mol # Calculated enthalpy of reaction Tobermorite-11A # Enthalpy of formation: -2556.42 kcal/mol - -analytic 7.9123e+001 3.9150e-002 2.9429e+004 -3.9191e+001 -2.4122e+006 + -analytic 7.9123e+1 3.915e-2 2.9429e+4 -3.9191e+1 -2.4122e+6 # -Range: 0-300 Tobermorite-14A - Ca5Si6H21O27.5 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 15.5000 H2O - log_k 63.8445 - -delta_H -230.959 kJ/mol # Calculated enthalpy of reaction Tobermorite-14A + Ca5Si6H21O27.5 + 10 H+ = 5 Ca+2 + 6 SiO2 + 15.5 H2O + log_k 63.8445 + -delta_H -230.959 kJ/mol # Calculated enthalpy of reaction Tobermorite-14A # Enthalpy of formation: -2911.36 kcal/mol - -analytic -2.0789e+002 5.2472e-003 3.9698e+004 6.7797e+001 -2.7532e+006 + -analytic -2.0789e+2 5.2472e-3 3.9698e+4 6.7797e+1 -2.7532e+6 # -Range: 0-300 Tobermorite-9A - Ca5Si6H6O20 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 8.0000 H2O - log_k 69.0798 - -delta_H -329.557 kJ/mol # Calculated enthalpy of reaction Tobermorite-9A + Ca5Si6H6O20 + 10 H+ = 5 Ca+2 + 6 SiO2 + 8 H2O + log_k 69.0798 + -delta_H -329.557 kJ/mol # Calculated enthalpy of reaction Tobermorite-9A # Enthalpy of formation: -2375.42 kcal/mol - -analytic -6.3384e+001 1.1722e-002 3.8954e+004 1.2268e+001 -2.8681e+006 + -analytic -6.3384e+1 1.1722e-2 3.8954e+4 1.2268e+1 -2.8681e+6 # -Range: 0-300 Todorokite - Mn7O12:3H2O +16.0000 H+ = + 1.0000 MnO4-- + 6.0000 Mn+++ + 11.0000 H2O - log_k -45.8241 - -delta_H 0 # Not possible to calculate enthalpy of reaction Todorokite + Mn7O12:3H2O + 16 H+ = MnO4-2 + 6 Mn+3 + 11 H2O + log_k -45.8241 + -delta_H 0 # Not possible to calculate enthalpy of reaction Todorokite # Enthalpy of formation: 0 kcal/mol Torbernite - Cu(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Cu++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -20.3225 - -delta_H -97.4022 kJ/mol # Calculated enthalpy of reaction Torbernite + Cu(UO2)2(PO4)2 + 2 H+ = Cu+2 + 2 HPO4-2 + 2 UO2+2 + log_k -20.3225 + -delta_H -97.4022 kJ/mol # Calculated enthalpy of reaction Torbernite # Enthalpy of formation: -1065.74 kcal/mol - -analytic -6.7128e+001 -4.5878e-002 3.5071e+003 1.9682e+001 5.9579e+001 + -analytic -6.7128e+1 -4.5878e-2 3.5071e+3 1.9682e+1 5.9579e+1 # -Range: 0-200 Tremolite - Ca2Mg5Si8O22(OH)2 +14.0000 H+ = + 2.0000 Ca++ + 5.0000 Mg++ + 8.0000 H2O + 8.0000 SiO2 - log_k 61.2367 - -delta_H -406.404 kJ/mol # Calculated enthalpy of reaction Tremolite + Ca2Mg5Si8O22(OH)2 + 14 H+ = 2 Ca+2 + 5 Mg+2 + 8 H2O + 8 SiO2 + log_k 61.2367 + -delta_H -406.404 kJ/mol # Calculated enthalpy of reaction Tremolite # Enthalpy of formation: -2944.04 kcal/mol - -analytic 8.5291e+001 4.6337e-002 3.9465e+004 -5.4414e+001 -3.1913e+006 + -analytic 8.5291e+1 4.6337e-2 3.9465e+4 -5.4414e+1 -3.1913e+6 # -Range: 0-300 Trevorite - NiFe2O4 +8.0000 H+ = + 1.0000 Ni++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 9.7876 - -delta_H -215.338 kJ/mol # Calculated enthalpy of reaction Trevorite + NiFe2O4 + 8 H+ = Ni+2 + 2 Fe+3 + 4 H2O + log_k 9.7876 + -delta_H -215.338 kJ/mol # Calculated enthalpy of reaction Trevorite # Enthalpy of formation: -1081.15 kJ/mol - -analytic -1.4322e+002 -2.9429e-002 1.4518e+004 4.5698e+001 2.4658e+002 + -analytic -1.4322e+2 -2.9429e-2 1.4518e+4 4.5698e+1 2.4658e+2 # -Range: 0-200 Tridymite - SiO2 = + 1.0000 SiO2 - log_k -3.8278 - -delta_H 31.3664 kJ/mol # Calculated enthalpy of reaction Tridymite + SiO2 = SiO2 + log_k -3.8278 + -delta_H 31.3664 kJ/mol # Calculated enthalpy of reaction Tridymite # Enthalpy of formation: -909.065 kJ/mol - -analytic 3.1594e+002 6.9315e-002 -1.1358e+004 -1.2219e+002 -1.9299e+002 + -analytic 3.1594e+2 6.9315e-2 -1.1358e+4 -1.2219e+2 -1.9299e+2 # -Range: 0-200 Troilite - FeS +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HS- - log_k -3.8184 - -delta_H -7.3296 kJ/mol # Calculated enthalpy of reaction Troilite + FeS + H+ = Fe+2 + HS- + log_k -3.8184 + -delta_H -7.3296 kJ/mol # Calculated enthalpy of reaction Troilite # Enthalpy of formation: -101.036 kJ/mol - -analytic -1.6146e+002 -5.3170e-002 4.0461e+003 6.4620e+001 6.3183e+001 + -analytic -1.6146e+2 -5.317e-2 4.0461e+3 6.462e+1 6.3183e+1 # -Range: 0-300 Trona-K - K2NaH(CO3)2:2H2O +1.0000 H+ = + 1.0000 Na+ + 2.0000 H2O + 2.0000 HCO3- + 2.0000 K+ - log_k 11.5891 - -delta_H 0 # Not possible to calculate enthalpy of reaction Trona-K + K2NaH(CO3)2:2H2O + H+ = Na+ + 2 H2O + 2 HCO3- + 2 K+ + log_k 11.5891 + -delta_H 0 # Not possible to calculate enthalpy of reaction Trona-K # Enthalpy of formation: 0 kcal/mol Tsumebite - Pb2Cu(PO4)(OH)3:3H2O +4.0000 H+ = + 1.0000 Cu++ + 1.0000 HPO4-- + 2.0000 Pb++ + 6.0000 H2O - log_k 2.5318 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tsumebite + Pb2Cu(PO4)(OH)3:3H2O + 4 H+ = Cu+2 + HPO4-2 + 2 Pb+2 + 6 H2O + log_k 2.5318 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tsumebite # Enthalpy of formation: 0 kcal/mol Tyuyamunite - Ca(UO2)2(VO4)2 = + 1.0000 Ca++ + 2.0000 UO2++ + 2.0000 VO4--- - log_k -53.3757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tyuyamunite + Ca(UO2)2(VO4)2 = Ca+2 + 2 UO2+2 + 2 VO4-3 + log_k -53.3757 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tyuyamunite # Enthalpy of formation: -1164.52 kcal/mol U - U +2.0000 H+ +1.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ - log_k 212.7800 - -delta_H -1286.64 kJ/mol # Calculated enthalpy of reaction U + U + 2 H+ + 1.5 O2 = H2O + UO2+2 + log_k 212.78 + -delta_H -1286.64 kJ/mol # Calculated enthalpy of reaction U # Enthalpy of formation: 0 kJ/mol - -analytic -2.4912e+002 -4.7104e-002 8.1115e+004 8.7008e+001 -1.0158e+006 + -analytic -2.4912e+2 -4.7104e-2 8.1115e+4 8.7008e+1 -1.0158e+6 # -Range: 0-300 U(CO3)2 - U(CO3)2 +2.0000 H+ = + 1.0000 U++++ + 2.0000 HCO3- - log_k 7.5227 - -delta_H -170.691 kJ/mol # Calculated enthalpy of reaction U(CO3)2 + U(CO3)2 + 2 H+ = U+4 + 2 HCO3- + log_k 7.5227 + -delta_H -170.691 kJ/mol # Calculated enthalpy of reaction U(CO3)2 # Enthalpy of formation: -1800.38 kJ/mol - -analytic -8.5952e+001 -2.5086e-002 1.0177e+004 2.7002e+001 1.7285e+002 + -analytic -8.5952e+1 -2.5086e-2 1.0177e+4 2.7002e+1 1.7285e+2 # -Range: 0-200 U(HPO4)2:4H2O - U(HPO4)2:4H2O = + 1.0000 U++++ + 2.0000 HPO4-- + 4.0000 H2O - log_k -32.8650 - -delta_H 16.1008 kJ/mol # Calculated enthalpy of reaction U(HPO4)2:4H2O + U(HPO4)2:4H2O = U+4 + 2 HPO4-2 + 4 H2O + log_k -32.865 + -delta_H 16.1008 kJ/mol # Calculated enthalpy of reaction U(HPO4)2:4H2O # Enthalpy of formation: -4334.82 kJ/mol - -analytic -3.8694e+002 -1.3874e-001 6.4882e+003 1.5099e+002 1.0136e+002 + -analytic -3.8694e+2 -1.3874e-1 6.4882e+3 1.5099e+2 1.0136e+2 # -Range: 0-300 U(OH)2SO4 - U(OH)2SO4 +2.0000 H+ = + 1.0000 SO4-- + 1.0000 U++++ + 2.0000 H2O - log_k -3.0731 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(OH)2SO4 + U(OH)2SO4 + 2 H+ = SO4-2 + U+4 + 2 H2O + log_k -3.0731 + -delta_H 0 # Not possible to calculate enthalpy of reaction U(OH)2SO4 # Enthalpy of formation: 0 kcal/mol U(SO3)2 - U(SO3)2 = + 1.0000 U++++ + 2.0000 SO3-- - log_k -36.7499 - -delta_H 20.7008 kJ/mol # Calculated enthalpy of reaction U(SO3)2 + U(SO3)2 = U+4 + 2 SO3-2 + log_k -36.7499 + -delta_H 20.7008 kJ/mol # Calculated enthalpy of reaction U(SO3)2 # Enthalpy of formation: -1883 kJ/mol - -analytic 5.8113e+001 -2.9981e-002 -7.0503e+003 -2.5175e+001 -1.1974e+002 + -analytic 5.8113e+1 -2.9981e-2 -7.0503e+3 -2.5175e+1 -1.1974e+2 # -Range: 0-200 U(SO4)2 - U(SO4)2 = + 1.0000 U++++ + 2.0000 SO4-- - log_k -11.5178 - -delta_H -100.803 kJ/mol # Calculated enthalpy of reaction U(SO4)2 + U(SO4)2 = U+4 + 2 SO4-2 + log_k -11.5178 + -delta_H -100.803 kJ/mol # Calculated enthalpy of reaction U(SO4)2 # Enthalpy of formation: -2309.6 kJ/mol - -analytic 3.2215e+001 -2.8662e-002 7.1066e+002 -1.5190e+001 1.2057e+001 + -analytic 3.2215e+1 -2.8662e-2 7.1066e+2 -1.519e+1 1.2057e+1 # -Range: 0-200 U(SO4)2:4H2O - U(SO4)2:4H2O = + 1.0000 U++++ + 2.0000 SO4-- + 4.0000 H2O - log_k -11.5287 - -delta_H -70.5565 kJ/mol # Calculated enthalpy of reaction U(SO4)2:4H2O + U(SO4)2:4H2O = U+4 + 2 SO4-2 + 4 H2O + log_k -11.5287 + -delta_H -70.5565 kJ/mol # Calculated enthalpy of reaction U(SO4)2:4H2O # Enthalpy of formation: -3483.2 kJ/mol - -analytic -6.9548e+001 -2.9094e-002 3.8763e+003 2.1692e+001 6.5849e+001 + -analytic -6.9548e+1 -2.9094e-2 3.8763e+3 2.1692e+1 6.5849e+1 # -Range: 0-200 U(SO4)2:8H2O - U(SO4)2:8H2O = + 1.0000 U++++ + 2.0000 SO4-- + 8.0000 H2O - log_k -12.5558 - -delta_H -34.5098 kJ/mol # Calculated enthalpy of reaction U(SO4)2:8H2O + U(SO4)2:8H2O = U+4 + 2 SO4-2 + 8 H2O + log_k -12.5558 + -delta_H -34.5098 kJ/mol # Calculated enthalpy of reaction U(SO4)2:8H2O # Enthalpy of formation: -4662.6 kJ/mol - -analytic -1.7141e+002 -2.9548e-002 6.7423e+003 5.8614e+001 1.1455e+002 + -analytic -1.7141e+2 -2.9548e-2 6.7423e+3 5.8614e+1 1.1455e+2 # -Range: 0-200 U2C3 - U2C3 +4.5000 O2 +3.0000 H+ = + 2.0000 U+++ + 3.0000 HCO3- - log_k 455.3078 - -delta_H -2810.1 kJ/mol # Calculated enthalpy of reaction U2C3 + U2C3 + 4.5 O2 + 3 H+ = 2 U+3 + 3 HCO3- + log_k 455.3078 + -delta_H -2810.1 kJ/mol # Calculated enthalpy of reaction U2C3 # Enthalpy of formation: -183.3 kJ/mol - -analytic -3.8340e+002 -1.5374e-001 1.5922e+005 1.4643e+002 -1.0584e+006 + -analytic -3.834e+2 -1.5374e-1 1.5922e+5 1.4643e+2 -1.0584e+6 # -Range: 0-300 U2F9 - U2F9 +2.0000 H2O = + 1.0000 U++++ + 1.0000 UO2+ + 4.0000 H+ + 9.0000 F- - log_k -45.5022 - -delta_H -46.8557 kJ/mol # Calculated enthalpy of reaction U2F9 + U2F9 + 2 H2O = U+4 + UO2+ + 4 H+ + 9 F- + log_k -45.5022 + -delta_H -46.8557 kJ/mol # Calculated enthalpy of reaction U2F9 # Enthalpy of formation: -4015.92 kJ/mol - -analytic -8.8191e+002 -3.0477e-001 2.0493e+004 3.4690e+002 3.2003e+002 + -analytic -8.8191e+2 -3.0477e-1 2.0493e+4 3.469e+2 3.2003e+2 # -Range: 0-300 U2O2Cl5 - U2O2Cl5 = + 1.0000 U++++ + 1.0000 UO2+ + 5.0000 Cl- - log_k 19.2752 - -delta_H -254.325 kJ/mol # Calculated enthalpy of reaction U2O2Cl5 + U2O2Cl5 = U+4 + UO2+ + 5 Cl- + log_k 19.2752 + -delta_H -254.325 kJ/mol # Calculated enthalpy of reaction U2O2Cl5 # Enthalpy of formation: -2197.4 kJ/mol - -analytic -4.3945e+002 -1.6239e-001 2.1694e+004 1.7551e+002 3.3865e+002 + -analytic -4.3945e+2 -1.6239e-1 2.1694e+4 1.7551e+2 3.3865e+2 # -Range: 0-300 U2O3F6 - U2O3F6 +1.0000 H2O = + 2.0000 H+ + 2.0000 UO2++ + 6.0000 F- - log_k -2.5066 - -delta_H -185.047 kJ/mol # Calculated enthalpy of reaction U2O3F6 + U2O3F6 + H2O = 2 H+ + 2 UO2+2 + 6 F- + log_k -2.5066 + -delta_H -185.047 kJ/mol # Calculated enthalpy of reaction U2O3F6 # Enthalpy of formation: -3579.2 kJ/mol - -analytic -3.2332e+001 -5.9519e-002 5.7857e+003 1.1372e+001 9.8260e+001 + -analytic -3.2332e+1 -5.9519e-2 5.7857e+3 1.1372e+1 9.826e+1 # -Range: 0-200 U2S3 - U2S3 +3.0000 H+ = + 2.0000 U+++ + 3.0000 HS- - log_k 6.5279 - -delta_H -147.525 kJ/mol # Calculated enthalpy of reaction U2S3 + U2S3 + 3 H+ = 2 U+3 + 3 HS- + log_k 6.5279 + -delta_H -147.525 kJ/mol # Calculated enthalpy of reaction U2S3 # Enthalpy of formation: -879 kJ/mol - -analytic -3.0494e+002 -1.0983e-001 1.3647e+004 1.2059e+002 2.1304e+002 + -analytic -3.0494e+2 -1.0983e-1 1.3647e+4 1.2059e+2 2.1304e+2 # -Range: 0-300 U2Se3 - U2Se3 +4.5000 O2 = + 2.0000 U+++ + 3.0000 SeO3-- - log_k 248.0372 - -delta_H -1740.18 kJ/mol # Calculated enthalpy of reaction U2Se3 + U2Se3 + 4.5 O2 = 2 U+3 + 3 SeO3-2 + log_k 248.0372 + -delta_H -1740.18 kJ/mol # Calculated enthalpy of reaction U2Se3 # Enthalpy of formation: -711 kJ/mol - -analytic 4.9999e+002 -1.6488e-002 6.4991e+004 -1.8795e+002 1.1035e+003 + -analytic 4.9999e+2 -1.6488e-2 6.4991e+4 -1.8795e+2 1.1035e+3 # -Range: 0-200 U3As4 - U3As4 +5.2500 O2 +5.0000 H+ +1.5000 H2O = + 3.0000 U+++ + 4.0000 H2AsO3- - log_k 487.6802 - -delta_H -3114.02 kJ/mol # Calculated enthalpy of reaction U3As4 + U3As4 + 5.25 O2 + 5 H+ + 1.5 H2O = 3 U+3 + 4 H2AsO3- + log_k 487.6802 + -delta_H -3114.02 kJ/mol # Calculated enthalpy of reaction U3As4 # Enthalpy of formation: -720 kJ/mol - -analytic -9.0215e+002 -2.5804e-001 1.9974e+005 3.3331e+002 -2.4911e+006 + -analytic -9.0215e+2 -2.5804e-1 1.9974e+5 3.3331e+2 -2.4911e+6 # -Range: 0-300 U3O5F8 - U3O5F8 +1.0000 H2O = + 2.0000 H+ + 3.0000 UO2++ + 8.0000 F- - log_k -2.7436 - -delta_H -260.992 kJ/mol # Calculated enthalpy of reaction U3O5F8 + U3O5F8 + H2O = 2 H+ + 3 UO2+2 + 8 F- + log_k -2.7436 + -delta_H -260.992 kJ/mol # Calculated enthalpy of reaction U3O5F8 # Enthalpy of formation: -5192.95 kJ/mol - -analytic -7.7653e+002 -2.7294e-001 2.9180e+004 3.0599e+002 4.5556e+002 + -analytic -7.7653e+2 -2.7294e-1 2.918e+4 3.0599e+2 4.5556e+2 # -Range: 0-300 U3P4 - U3P4 +7.2500 O2 +1.5000 H2O +1.0000 H+ = + 3.0000 U+++ + 4.0000 HPO4-- - log_k 827.5586 - -delta_H -5275.9 kJ/mol # Calculated enthalpy of reaction U3P4 + U3P4 + 7.25 O2 + 1.5 H2O + H+ = 3 U+3 + 4 HPO4-2 + log_k 827.5586 + -delta_H -5275.9 kJ/mol # Calculated enthalpy of reaction U3P4 # Enthalpy of formation: -843 kJ/mol - -analytic -2.7243e+003 -6.2927e-001 4.0130e+005 1.0021e+003 -7.6720e+006 + -analytic -2.7243e+3 -6.2927e-1 4.013e+5 1.0021e+3 -7.672e+6 # -Range: 0-300 U3S5 - U3S5 +5.0000 H+ = + 1.0000 U++++ + 2.0000 U+++ + 5.0000 HS- - log_k -0.3680 - -delta_H -218.942 kJ/mol # Calculated enthalpy of reaction U3S5 + U3S5 + 5 H+ = U+4 + 2 U+3 + 5 HS- + log_k -0.368 + -delta_H -218.942 kJ/mol # Calculated enthalpy of reaction U3S5 # Enthalpy of formation: -1431 kJ/mol - -analytic -1.1011e+002 -6.7959e-002 1.0369e+004 3.8481e+001 1.7611e+002 + -analytic -1.1011e+2 -6.7959e-2 1.0369e+4 3.8481e+1 1.7611e+2 # -Range: 0-200 U3Sb4 - U3Sb4 +9.0000 H+ +5.2500 O2 +1.5000 H2O = + 3.0000 U+++ + 4.0000 Sb(OH)3 - log_k 575.0349 - -delta_H -3618.1 kJ/mol # Calculated enthalpy of reaction U3Sb4 + U3Sb4 + 9 H+ + 5.25 O2 + 1.5 H2O = 3 U+3 + 4 Sb(OH)3 + log_k 575.0349 + -delta_H -3618.1 kJ/mol # Calculated enthalpy of reaction U3Sb4 # Enthalpy of formation: -451.9 kJ/mol U3Se4 - U3Se4 +6.2500 O2 +1.0000 H+ = + 0.5000 H2O + 3.0000 U+++ + 4.0000 SeO3-- - log_k 375.2823 - -delta_H -2588.16 kJ/mol # Calculated enthalpy of reaction U3Se4 + U3Se4 + 6.25 O2 + H+ = 0.5 H2O + 3 U+3 + 4 SeO3-2 + log_k 375.2823 + -delta_H -2588.16 kJ/mol # Calculated enthalpy of reaction U3Se4 # Enthalpy of formation: -983 kJ/mol - -analytic 6.7219e+002 -2.2708e-002 1.0025e+005 -2.5317e+002 1.7021e+003 + -analytic 6.7219e+2 -2.2708e-2 1.0025e+5 -2.5317e+2 1.7021e+3 # -Range: 0-200 U3Se5 - U3Se5 +7.2500 O2 +0.5000 H2O = + 1.0000 H+ + 3.0000 U+++ + 5.0000 SeO3-- - log_k 376.5747 - -delta_H -2652.38 kJ/mol # Calculated enthalpy of reaction U3Se5 + U3Se5 + 7.25 O2 + 0.5 H2O = H+ + 3 U+3 + 5 SeO3-2 + log_k 376.5747 + -delta_H -2652.38 kJ/mol # Calculated enthalpy of reaction U3Se5 # Enthalpy of formation: -1130 kJ/mol - -analytic 8.3306e+002 -2.6526e-002 9.5737e+004 -3.1109e+002 1.6255e+003 + -analytic 8.3306e+2 -2.6526e-2 9.5737e+4 -3.1109e+2 1.6255e+3 # -Range: 0-200 U4F17 - U4F17 +2.0000 H2O = + 1.0000 UO2+ + 3.0000 U++++ + 4.0000 H+ + 17.0000 F- - log_k -104.7657 - -delta_H -78.2955 kJ/mol # Calculated enthalpy of reaction U4F17 + U4F17 + 2 H2O = UO2+ + 3 U+4 + 4 H+ + 17 F- + log_k -104.7657 + -delta_H -78.2955 kJ/mol # Calculated enthalpy of reaction U4F17 # Enthalpy of formation: -7849.66 kJ/mol - -analytic -1.7466e+003 -5.9186e-001 4.0017e+004 6.8046e+002 6.2494e+002 + -analytic -1.7466e+3 -5.9186e-1 4.0017e+4 6.8046e+2 6.2494e+2 # -Range: 0-300 U5O12Cl - U5O12Cl +4.0000 H+ = + 1.0000 Cl- + 2.0000 H2O + 5.0000 UO2+ - log_k -18.7797 - -delta_H -9.99133 kJ/mol # Calculated enthalpy of reaction U5O12Cl + U5O12Cl + 4 H+ = Cl- + 2 H2O + 5 UO2+ + log_k -18.7797 + -delta_H -9.99133 kJ/mol # Calculated enthalpy of reaction U5O12Cl # Enthalpy of formation: -5854.4 kJ/mol - -analytic -7.3802e+001 2.9180e-002 4.6804e+003 1.2371e+001 7.9503e+001 + -analytic -7.3802e+1 2.918e-2 4.6804e+3 1.2371e+1 7.9503e+1 # -Range: 0-200 UAs - UAs +2.0000 H+ +1.5000 O2 = + 1.0000 H2AsO3- + 1.0000 U+++ - log_k 149.0053 - -delta_H -951.394 kJ/mol # Calculated enthalpy of reaction UAs + UAs + 2 H+ + 1.5 O2 = H2AsO3- + U+3 + log_k 149.0053 + -delta_H -951.394 kJ/mol # Calculated enthalpy of reaction UAs # Enthalpy of formation: -234.3 kJ/mol - -analytic -5.0217e+001 -4.2992e-002 4.8480e+004 1.9964e+001 7.5650e+002 + -analytic -5.0217e+1 -4.2992e-2 4.848e+4 1.9964e+1 7.565e+2 # -Range: 0-300 UAs2 - UAs2 +2.2500 O2 +1.5000 H2O +1.0000 H+ = + 1.0000 U+++ + 2.0000 H2AsO3- - log_k 189.1058 - -delta_H -1210.63 kJ/mol # Calculated enthalpy of reaction UAs2 + UAs2 + 2.25 O2 + 1.5 H2O + H+ = U+3 + 2 H2AsO3- + log_k 189.1058 + -delta_H -1210.63 kJ/mol # Calculated enthalpy of reaction UAs2 # Enthalpy of formation: -252 kJ/mol - -analytic -8.7361e+001 -7.5252e-002 6.1445e+004 3.7485e+001 9.5881e+002 + -analytic -8.7361e+1 -7.5252e-2 6.1445e+4 3.7485e+1 9.5881e+2 # -Range: 0-300 UBr2Cl - UBr2Cl = + 1.0000 Cl- + 1.0000 U+++ + 2.0000 Br- - log_k 17.7796 - -delta_H -148.586 kJ/mol # Calculated enthalpy of reaction UBr2Cl + UBr2Cl = Cl- + U+3 + 2 Br- + log_k 17.7796 + -delta_H -148.586 kJ/mol # Calculated enthalpy of reaction UBr2Cl # Enthalpy of formation: -750.6 kJ/mol - -analytic 3.0364e+000 -3.2187e-002 5.2314e+003 2.7418e+000 8.8836e+001 + -analytic 3.0364e+0 -3.2187e-2 5.2314e+3 2.7418e+0 8.8836e+1 # -Range: 0-200 UBr2Cl2 - UBr2Cl2 = + 1.0000 U++++ + 2.0000 Br- + 2.0000 Cl- - log_k 26.2185 - -delta_H -260.466 kJ/mol # Calculated enthalpy of reaction UBr2Cl2 + UBr2Cl2 = U+4 + 2 Br- + 2 Cl- + log_k 26.2185 + -delta_H -260.466 kJ/mol # Calculated enthalpy of reaction UBr2Cl2 # Enthalpy of formation: -907.9 kJ/mol - -analytic 3.8089e+000 -3.8781e-002 1.0125e+004 0.0000e+000 0.0000e+000 + -analytic 3.8089e+0 -3.8781e-2 1.0125e+4 0e+0 0e+0 # -Range: 0-200 UBr3 - UBr3 = + 1.0000 U+++ + 3.0000 Br- - log_k 20.2249 - -delta_H -154.91 kJ/mol # Calculated enthalpy of reaction UBr3 + UBr3 = U+3 + 3 Br- + log_k 20.2249 + -delta_H -154.91 kJ/mol # Calculated enthalpy of reaction UBr3 # Enthalpy of formation: -698.7 kJ/mol - -analytic -2.4366e+002 -9.8651e-002 1.2538e+004 1.0151e+002 1.9572e+002 + -analytic -2.4366e+2 -9.8651e-2 1.2538e+4 1.0151e+2 1.9572e+2 # -Range: 0-300 UBr3Cl - UBr3Cl = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 Br- - log_k 29.1178 - -delta_H -270.49 kJ/mol # Calculated enthalpy of reaction UBr3Cl + UBr3Cl = Cl- + U+4 + 3 Br- + log_k 29.1178 + -delta_H -270.49 kJ/mol # Calculated enthalpy of reaction UBr3Cl # Enthalpy of formation: -852.3 kJ/mol - -analytic 1.1204e+001 -3.7109e-002 1.0473e+004 -2.4905e+000 1.7784e+002 + -analytic 1.1204e+1 -3.7109e-2 1.0473e+4 -2.4905e+0 1.7784e+2 # -Range: 0-200 UBr4 - UBr4 = + 1.0000 U++++ + 4.0000 Br- - log_k 31.2904 - -delta_H -275.113 kJ/mol # Calculated enthalpy of reaction UBr4 + UBr4 = U+4 + 4 Br- + log_k 31.2904 + -delta_H -275.113 kJ/mol # Calculated enthalpy of reaction UBr4 # Enthalpy of formation: -802.1 kJ/mol - -analytic -3.3800e+002 -1.2940e-001 2.0674e+004 1.3678e+002 3.2270e+002 + -analytic -3.38e+2 -1.294e-1 2.0674e+4 1.3678e+2 3.227e+2 # -Range: 0-300 UBr5 - UBr5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Br- - log_k 41.6312 - -delta_H -250.567 kJ/mol # Calculated enthalpy of reaction UBr5 + UBr5 + 2 H2O = UO2+ + 4 H+ + 5 Br- + log_k 41.6312 + -delta_H -250.567 kJ/mol # Calculated enthalpy of reaction UBr5 # Enthalpy of formation: -810.4 kJ/mol - -analytic -3.2773e+002 -1.4356e-001 1.8709e+004 1.4117e+002 2.9204e+002 + -analytic -3.2773e+2 -1.4356e-1 1.8709e+4 1.4117e+2 2.9204e+2 # -Range: 0-300 UBrCl2 - UBrCl2 = + 1.0000 Br- + 1.0000 U+++ + 2.0000 Cl- - log_k 14.5048 - -delta_H -132.663 kJ/mol # Calculated enthalpy of reaction UBrCl2 + UBrCl2 = Br- + U+3 + 2 Cl- + log_k 14.5048 + -delta_H -132.663 kJ/mol # Calculated enthalpy of reaction UBrCl2 # Enthalpy of formation: -812.1 kJ/mol - -analytic -5.3713e+000 -3.4256e-002 4.6251e+003 5.8875e+000 7.8542e+001 + -analytic -5.3713e+0 -3.4256e-2 4.6251e+3 5.8875e+0 7.8542e+1 # -Range: 0-200 UBrCl3 - UBrCl3 = + 1.0000 Br- + 1.0000 U++++ + 3.0000 Cl- - log_k 23.5258 - -delta_H -246.642 kJ/mol # Calculated enthalpy of reaction UBrCl3 + UBrCl3 = Br- + U+4 + 3 Cl- + log_k 23.5258 + -delta_H -246.642 kJ/mol # Calculated enthalpy of reaction UBrCl3 # Enthalpy of formation: -967.3 kJ/mol - -analytic -5.6867e+000 -4.1166e-002 9.6664e+003 3.6579e+000 1.6415e+002 + -analytic -5.6867e+0 -4.1166e-2 9.6664e+3 3.6579e+0 1.6415e+2 # -Range: 0-200 UC - UC +2.0000 H+ +1.7500 O2 = + 0.5000 H2O + 1.0000 HCO3- + 1.0000 U+++ - log_k 194.8241 - -delta_H -1202.82 kJ/mol # Calculated enthalpy of reaction UC + UC + 2 H+ + 1.75 O2 = 0.5 H2O + HCO3- + U+3 + log_k 194.8241 + -delta_H -1202.82 kJ/mol # Calculated enthalpy of reaction UC # Enthalpy of formation: -97.9 kJ/mol - -analytic -4.6329e+001 -4.4600e-002 6.1417e+004 1.9566e+001 9.5836e+002 + -analytic -4.6329e+1 -4.46e-2 6.1417e+4 1.9566e+1 9.5836e+2 # -Range: 0-300 UC1.94(alpha) - UC1.94 +2.6900 O2 +1.0600 H+ +0.4400 H2O = + 1.0000 U+++ + 1.9400 HCO3- - log_k 257.1619 - -delta_H -1583.84 kJ/mol # Calculated enthalpy of reaction UC1.94(alpha) + UC1.94 + 2.69 O2 + 1.06 H+ + 0.44 H2O = U+3 + 1.94 HCO3- + log_k 257.1619 + -delta_H -1583.84 kJ/mol # Calculated enthalpy of reaction UC1.94(alpha) # Enthalpy of formation: -85.324 kJ/mol - -analytic -5.8194e+002 -1.4610e-001 1.0917e+005 2.1638e+002 -1.6852e+006 + -analytic -5.8194e+2 -1.461e-1 1.0917e+5 2.1638e+2 -1.6852e+6 # -Range: 0-300 UCl2F2 - UCl2F2 = + 1.0000 U++++ + 2.0000 Cl- + 2.0000 F- - log_k -3.5085 - -delta_H -130.055 kJ/mol # Calculated enthalpy of reaction UCl2F2 + UCl2F2 = U+4 + 2 Cl- + 2 F- + log_k -3.5085 + -delta_H -130.055 kJ/mol # Calculated enthalpy of reaction UCl2F2 # Enthalpy of formation: -1466 kJ/mol - -analytic -3.9662e+002 -1.3879e-001 1.4710e+004 1.5562e+002 2.2965e+002 + -analytic -3.9662e+2 -1.3879e-1 1.471e+4 1.5562e+2 2.2965e+2 # -Range: 0-300 UCl2I2 - UCl2I2 = + 1.0000 U++++ + 2.0000 Cl- + 2.0000 I- - log_k 30.2962 - -delta_H -270.364 kJ/mol # Calculated enthalpy of reaction UCl2I2 + UCl2I2 = U+4 + 2 Cl- + 2 I- + log_k 30.2962 + -delta_H -270.364 kJ/mol # Calculated enthalpy of reaction UCl2I2 # Enthalpy of formation: -768.8 kJ/mol - -analytic -1.2922e+001 -4.3178e-002 1.1219e+004 7.4562e+000 1.9052e+002 + -analytic -1.2922e+1 -4.3178e-2 1.1219e+4 7.4562e+0 1.9052e+2 # -Range: 0-200 UCl3 - UCl3 = + 1.0000 U+++ + 3.0000 Cl- - log_k 13.0062 - -delta_H -126.639 kJ/mol # Calculated enthalpy of reaction UCl3 + UCl3 = U+3 + 3 Cl- + log_k 13.0062 + -delta_H -126.639 kJ/mol # Calculated enthalpy of reaction UCl3 # Enthalpy of formation: -863.7 kJ/mol - -analytic -2.6388e+002 -1.0241e-001 1.1629e+004 1.0846e+002 1.8155e+002 + -analytic -2.6388e+2 -1.0241e-1 1.1629e+4 1.0846e+2 1.8155e+2 # -Range: 0-300 UCl3F - UCl3F = + 1.0000 F- + 1.0000 U++++ + 3.0000 Cl- - log_k 10.3200 - -delta_H -184.787 kJ/mol # Calculated enthalpy of reaction UCl3F + UCl3F = F- + U+4 + 3 Cl- + log_k 10.32 + -delta_H -184.787 kJ/mol # Calculated enthalpy of reaction UCl3F # Enthalpy of formation: -1243 kJ/mol - -analytic -3.7971e+002 -1.3681e-001 1.7127e+004 1.5086e+002 2.6736e+002 + -analytic -3.7971e+2 -1.3681e-1 1.7127e+4 1.5086e+2 2.6736e+2 # -Range: 0-300 UCl3I - UCl3I = + 1.0000 I- + 1.0000 U++++ + 3.0000 Cl- - log_k 25.5388 - -delta_H -251.041 kJ/mol # Calculated enthalpy of reaction UCl3I + UCl3I = I- + U+4 + 3 Cl- + log_k 25.5388 + -delta_H -251.041 kJ/mol # Calculated enthalpy of reaction UCl3I # Enthalpy of formation: -898.3 kJ/mol - -analytic -1.3362e+001 -4.3214e-002 1.0167e+004 7.1426e+000 1.7265e+002 + -analytic -1.3362e+1 -4.3214e-2 1.0167e+4 7.1426e+0 1.7265e+2 # -Range: 0-200 UCl4 - UCl4 = + 1.0000 U++++ + 4.0000 Cl- - log_k 21.9769 - -delta_H -240.719 kJ/mol # Calculated enthalpy of reaction UCl4 + UCl4 = U+4 + 4 Cl- + log_k 21.9769 + -delta_H -240.719 kJ/mol # Calculated enthalpy of reaction UCl4 # Enthalpy of formation: -1018.8 kJ/mol - -analytic -3.6881e+002 -1.3618e-001 1.9685e+004 1.4763e+002 3.0727e+002 + -analytic -3.6881e+2 -1.3618e-1 1.9685e+4 1.4763e+2 3.0727e+2 # -Range: 0-300 UCl5 - UCl5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Cl- - log_k 37.3147 - -delta_H -249.849 kJ/mol # Calculated enthalpy of reaction UCl5 + UCl5 + 2 H2O = UO2+ + 4 H+ + 5 Cl- + log_k 37.3147 + -delta_H -249.849 kJ/mol # Calculated enthalpy of reaction UCl5 # Enthalpy of formation: -1039 kJ/mol - -analytic -3.6392e+002 -1.5133e-001 1.9617e+004 1.5376e+002 3.0622e+002 + -analytic -3.6392e+2 -1.5133e-1 1.9617e+4 1.5376e+2 3.0622e+2 # -Range: 0-300 UCl6 - UCl6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 Cl- - log_k 57.5888 - -delta_H -383.301 kJ/mol # Calculated enthalpy of reaction UCl6 + UCl6 + 2 H2O = UO2+2 + 4 H+ + 6 Cl- + log_k 57.5888 + -delta_H -383.301 kJ/mol # Calculated enthalpy of reaction UCl6 # Enthalpy of formation: -1066.5 kJ/mol - -analytic -4.5589e+002 -1.9203e-001 2.8029e+004 1.9262e+002 4.3750e+002 + -analytic -4.5589e+2 -1.9203e-1 2.8029e+4 1.9262e+2 4.375e+2 # -Range: 0-300 UClF3 - UClF3 = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 F- - log_k -17.5122 - -delta_H -74.3225 kJ/mol # Calculated enthalpy of reaction UClF3 + UClF3 = Cl- + U+4 + 3 F- + log_k -17.5122 + -delta_H -74.3225 kJ/mol # Calculated enthalpy of reaction UClF3 # Enthalpy of formation: -1690 kJ/mol - -analytic -4.1346e+002 -1.4077e-001 1.2237e+004 1.6036e+002 1.9107e+002 + -analytic -4.1346e+2 -1.4077e-1 1.2237e+4 1.6036e+2 1.9107e+2 # -Range: 0-300 UClI3 - UClI3 = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 I- - log_k 35.2367 - -delta_H -285.187 kJ/mol # Calculated enthalpy of reaction UClI3 + UClI3 = Cl- + U+4 + 3 I- + log_k 35.2367 + -delta_H -285.187 kJ/mol # Calculated enthalpy of reaction UClI3 # Enthalpy of formation: -643.8 kJ/mol - -analytic -1.1799e+001 -4.3208e-002 1.2045e+004 7.8829e+000 2.0455e+002 + -analytic -1.1799e+1 -4.3208e-2 1.2045e+4 7.8829e+0 2.0455e+2 # -Range: 0-200 UF3 - UF3 = + 1.0000 U+++ + 3.0000 F- - log_k -19.4125 - -delta_H 6.2572 kJ/mol # Calculated enthalpy of reaction UF3 + UF3 = U+3 + 3 F- + log_k -19.4125 + -delta_H 6.2572 kJ/mol # Calculated enthalpy of reaction UF3 # Enthalpy of formation: -1501.4 kJ/mol - -analytic -3.1530e+002 -1.0945e-001 6.1335e+003 1.2443e+002 9.5799e+001 + -analytic -3.153e+2 -1.0945e-1 6.1335e+3 1.2443e+2 9.5799e+1 # -Range: 0-300 UF4 - UF4 = + 1.0000 U++++ + 4.0000 F- - log_k -29.2004 - -delta_H -18.3904 kJ/mol # Calculated enthalpy of reaction UF4 + UF4 = U+4 + 4 F- + log_k -29.2004 + -delta_H -18.3904 kJ/mol # Calculated enthalpy of reaction UF4 # Enthalpy of formation: -1914.2 kJ/mol - -analytic -4.2411e+002 -1.4147e-001 9.6621e+003 1.6352e+002 1.5089e+002 + -analytic -4.2411e+2 -1.4147e-1 9.6621e+3 1.6352e+2 1.5089e+2 # -Range: 0-300 UF4:2.5H2O - UF4:2.5H2O = + 1.0000 U++++ + 2.5000 H2O + 4.0000 F- - log_k -33.3685 - -delta_H 24.2888 kJ/mol # Calculated enthalpy of reaction UF4:2.5H2O + UF4:2.5H2O = U+4 + 2.5 H2O + 4 F- + log_k -33.3685 + -delta_H 24.2888 kJ/mol # Calculated enthalpy of reaction UF4:2.5H2O # Enthalpy of formation: -2671.47 kJ/mol - -analytic -4.4218e+002 -1.4305e-001 8.2922e+003 1.7118e+002 1.2952e+002 + -analytic -4.4218e+2 -1.4305e-1 8.2922e+3 1.7118e+2 1.2952e+2 # -Range: 0-300 UF5(alpha) - UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- - log_k -12.8376 - -delta_H -54.8883 kJ/mol # Calculated enthalpy of reaction UF5(alpha) + UF5 + 2 H2O = UO2+ + 4 H+ + 5 F- + log_k -12.8376 + -delta_H -54.8883 kJ/mol # Calculated enthalpy of reaction UF5(alpha) # Enthalpy of formation: -2075.3 kJ/mol - -analytic -4.5126e+002 -1.6121e-001 1.1997e+004 1.8030e+002 1.8733e+002 + -analytic -4.5126e+2 -1.6121e-1 1.1997e+4 1.803e+2 1.8733e+2 # -Range: 0-300 UF5(beta) - UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- - log_k -13.1718 - -delta_H -46.9883 kJ/mol # Calculated enthalpy of reaction UF5(beta) + UF5 + 2 H2O = UO2+ + 4 H+ + 5 F- + log_k -13.1718 + -delta_H -46.9883 kJ/mol # Calculated enthalpy of reaction UF5(beta) # Enthalpy of formation: -2083.2 kJ/mol - -analytic -4.5020e+002 -1.6121e-001 1.1584e+004 1.8030e+002 1.8089e+002 + -analytic -4.502e+2 -1.6121e-1 1.1584e+4 1.803e+2 1.8089e+2 # -Range: 0-300 UF6 - UF6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 F- - log_k 17.4292 - -delta_H -261.709 kJ/mol # Calculated enthalpy of reaction UF6 + UF6 + 2 H2O = UO2+2 + 4 H+ + 6 F- + log_k 17.4292 + -delta_H -261.709 kJ/mol # Calculated enthalpy of reaction UF6 # Enthalpy of formation: -2197.7 kJ/mol - -analytic -5.8427e+002 -2.1223e-001 2.5296e+004 2.3440e+002 3.9489e+002 + -analytic -5.8427e+2 -2.1223e-1 2.5296e+4 2.344e+2 3.9489e+2 # -Range: 0-300 UH3(beta) - UH3 +3.0000 H+ +1.5000 O2 = + 1.0000 U+++ + 3.0000 H2O - log_k 199.7683 - -delta_H -1201.43 kJ/mol # Calculated enthalpy of reaction UH3(beta) + UH3 + 3 H+ + 1.5 O2 = U+3 + 3 H2O + log_k 199.7683 + -delta_H -1201.43 kJ/mol # Calculated enthalpy of reaction UH3(beta) # Enthalpy of formation: -126.98 kJ/mol - -analytic 5.2870e+001 4.2151e-003 6.0167e+004 -2.2701e+001 1.0217e+003 + -analytic 5.287e+1 4.2151e-3 6.0167e+4 -2.2701e+1 1.0217e+3 # -Range: 0-200 UI3 - UI3 = + 1.0000 U+++ + 3.0000 I- - log_k 29.0157 - -delta_H -192.407 kJ/mol # Calculated enthalpy of reaction UI3 + UI3 = U+3 + 3 I- + log_k 29.0157 + -delta_H -192.407 kJ/mol # Calculated enthalpy of reaction UI3 # Enthalpy of formation: -467.4 kJ/mol - -analytic -2.4505e+002 -9.9867e-002 1.4579e+004 1.0301e+002 2.2757e+002 + -analytic -2.4505e+2 -9.9867e-2 1.4579e+4 1.0301e+2 2.2757e+2 # -Range: 0-300 UI4 - UI4 = + 1.0000 U++++ + 4.0000 I- - log_k 39.3102 - -delta_H -300.01 kJ/mol # Calculated enthalpy of reaction UI4 + UI4 = U+4 + 4 I- + log_k 39.3102 + -delta_H -300.01 kJ/mol # Calculated enthalpy of reaction UI4 # Enthalpy of formation: -518.8 kJ/mol - -analytic -3.4618e+002 -1.3227e-001 2.2320e+004 1.4145e+002 3.4839e+002 + -analytic -3.4618e+2 -1.3227e-1 2.232e+4 1.4145e+2 3.4839e+2 # -Range: 0-300 UN - UN +3.0000 H+ = + 1.0000 NH3 + 1.0000 U+++ - log_k 41.7130 - -delta_H -280.437 kJ/mol # Calculated enthalpy of reaction UN + UN + 3 H+ = NH3 + U+3 + log_k 41.713 + -delta_H -280.437 kJ/mol # Calculated enthalpy of reaction UN # Enthalpy of formation: -290 kJ/mol - -analytic -1.6393e+002 -1.1679e-003 2.8845e+003 6.5637e+001 3.0122e+006 + -analytic -1.6393e+2 -1.1679e-3 2.8845e+3 6.5637e+1 3.0122e+6 # -Range: 0-300 UN1.59(alpha) - UN1.59 +1.8850 H2O +1.0000 H+ +0.0575 O2 = + 1.0000 UO2+ + 1.5900 NH3 - log_k 38.3930 - -delta_H -235.75 kJ/mol # Calculated enthalpy of reaction UN1.59(alpha) + UN1.59 + 1.885 H2O + H+ + 0.0575 O2 = UO2+ + 1.59 NH3 + log_k 38.393 + -delta_H -235.75 kJ/mol # Calculated enthalpy of reaction UN1.59(alpha) # Enthalpy of formation: -379.2 kJ/mol - -analytic 1.8304e+001 1.1109e-002 1.2064e+004 -9.5741e+000 2.0485e+002 + -analytic 1.8304e+1 1.1109e-2 1.2064e+4 -9.5741e+0 2.0485e+2 # -Range: 0-200 UN1.73(alpha) - UN1.73 +2.0950 H2O +1.0000 H+ = + 0.0475 O2 + 1.0000 UO2+ + 1.7300 NH3 - log_k 27.2932 - -delta_H -169.085 kJ/mol # Calculated enthalpy of reaction UN1.73(alpha) + UN1.73 + 2.095 H2O + H+ = 0.0475 O2 + UO2+ + 1.73 NH3 + log_k 27.2932 + -delta_H -169.085 kJ/mol # Calculated enthalpy of reaction UN1.73(alpha) # Enthalpy of formation: -398.5 kJ/mol - -analytic 1.0012e+001 1.0398e-002 8.9348e+003 -6.3817e+000 1.5172e+002 + -analytic 1.0012e+1 1.0398e-2 8.9348e+3 -6.3817e+0 1.5172e+2 # -Range: 0-200 UO2(AsO3)2 - UO2(AsO3)2 +2.0000 H2O = + 1.0000 UO2++ + 2.0000 H2AsO4- - log_k 6.9377 - -delta_H -109.843 kJ/mol # Calculated enthalpy of reaction UO2(AsO3)2 + UO2(AsO3)2 + 2 H2O = UO2+2 + 2 H2AsO4- + log_k 6.9377 + -delta_H -109.843 kJ/mol # Calculated enthalpy of reaction UO2(AsO3)2 # Enthalpy of formation: -2156.6 kJ/mol - -analytic -1.6050e+002 -6.6472e-002 8.2129e+003 6.4533e+001 1.2820e+002 + -analytic -1.605e+2 -6.6472e-2 8.2129e+3 6.4533e+1 1.282e+2 # -Range: 0-300 UO2(IO3)2 - UO2(IO3)2 = + 1.0000 UO2++ + 2.0000 IO3- - log_k -7.2871 - -delta_H -0.3862 kJ/mol # Calculated enthalpy of reaction UO2(IO3)2 + UO2(IO3)2 = UO2+2 + 2 IO3- + log_k -7.2871 + -delta_H -0.3862 kJ/mol # Calculated enthalpy of reaction UO2(IO3)2 # Enthalpy of formation: -1461.28 kJ/mol - -analytic -2.7047e+001 -1.4267e-002 -1.5055e+001 9.7226e+000 -2.4640e-001 + -analytic -2.7047e+1 -1.4267e-2 -1.5055e+1 9.7226e+0 -2.464e-1 # -Range: 0-200 UO2(NO3)2 - UO2(NO3)2 = + 1.0000 UO2++ + 2.0000 NO3- - log_k 11.9598 - -delta_H -81.6219 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2 + UO2(NO3)2 = UO2+2 + 2 NO3- + log_k 11.9598 + -delta_H -81.6219 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2 # Enthalpy of formation: -1351 kJ/mol - -analytic -1.2216e+001 -1.1261e-002 3.9895e+003 5.7166e+000 6.7751e+001 + -analytic -1.2216e+1 -1.1261e-2 3.9895e+3 5.7166e+0 6.7751e+1 # -Range: 0-200 UO2(NO3)2:2H2O - UO2(NO3)2:2H2O = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 NO3- - log_k 4.9446 - -delta_H -25.5995 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:2H2O + UO2(NO3)2:2H2O = UO2+2 + 2 H2O + 2 NO3- + log_k 4.9446 + -delta_H -25.5995 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:2H2O # Enthalpy of formation: -1978.7 kJ/mol - -analytic -1.3989e+002 -5.2130e-002 4.3758e+003 5.8868e+001 6.8322e+001 + -analytic -1.3989e+2 -5.213e-2 4.3758e+3 5.8868e+1 6.8322e+1 # -Range: 0-300 UO2(NO3)2:3H2O - UO2(NO3)2:3H2O = + 1.0000 UO2++ + 2.0000 NO3- + 3.0000 H2O - log_k 3.7161 - -delta_H -9.73686 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:3H2O + UO2(NO3)2:3H2O = UO2+2 + 2 NO3- + 3 H2O + log_k 3.7161 + -delta_H -9.73686 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:3H2O # Enthalpy of formation: -2280.4 kJ/mol - -analytic -1.5037e+002 -5.2234e-002 4.0783e+003 6.3024e+001 6.3682e+001 + -analytic -1.5037e+2 -5.2234e-2 4.0783e+3 6.3024e+1 6.3682e+1 # -Range: 0-300 UO2(NO3)2:6H2O - UO2(NO3)2:6H2O = + 1.0000 UO2++ + 2.0000 NO3- + 6.0000 H2O - log_k 2.3189 - -delta_H 19.8482 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:6H2O + UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O + log_k 2.3189 + -delta_H 19.8482 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:6H2O # Enthalpy of formation: -3167.5 kJ/mol - -analytic -1.4019e+002 -4.3682e-002 2.7842e+003 5.9070e+001 4.3486e+001 + -analytic -1.4019e+2 -4.3682e-2 2.7842e+3 5.907e+1 4.3486e+1 # -Range: 0-300 UO2(NO3)2:H2O - UO2(NO3)2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 NO3- - log_k 8.5103 - -delta_H -54.4602 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:H2O + UO2(NO3)2:H2O = H2O + UO2+2 + 2 NO3- + log_k 8.5103 + -delta_H -54.4602 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:H2O # Enthalpy of formation: -1664 kJ/mol - -analytic -3.7575e+001 -1.1342e-002 3.7548e+003 1.4899e+001 6.3776e+001 + -analytic -3.7575e+1 -1.1342e-2 3.7548e+3 1.4899e+1 6.3776e+1 # -Range: 0-200 UO2(OH)2(beta) - UO2(OH)2 +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O - log_k 4.9457 - -delta_H -56.8767 kJ/mol # Calculated enthalpy of reaction UO2(OH)2(beta) + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 4.9457 + -delta_H -56.8767 kJ/mol # Calculated enthalpy of reaction UO2(OH)2(beta) # Enthalpy of formation: -1533.8 kJ/mol - -analytic -1.7478e+001 -1.6806e-003 3.4226e+003 4.6260e+000 5.3412e+001 + -analytic -1.7478e+1 -1.6806e-3 3.4226e+3 4.626e+0 5.3412e+1 # -Range: 0-300 UO2(PO3)2 - UO2(PO3)2 +2.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 2.0000 HPO4-- - log_k -16.2805 - -delta_H -58.4873 kJ/mol # Calculated enthalpy of reaction UO2(PO3)2 + UO2(PO3)2 + 2 H2O = UO2+2 + 2 H+ + 2 HPO4-2 + log_k -16.2805 + -delta_H -58.4873 kJ/mol # Calculated enthalpy of reaction UO2(PO3)2 # Enthalpy of formation: -2973 kJ/mol - -analytic -3.2995e+002 -1.3747e-001 8.0652e+003 1.3237e+002 1.2595e+002 + -analytic -3.2995e+2 -1.3747e-1 8.0652e+3 1.3237e+2 1.2595e+2 # -Range: 0-300 UO2(am) - UO2 +4.0000 H+ = + 1.0000 U++++ + 2.0000 H2O - log_k 0.1091 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(am) + UO2 + 4 H+ = U+4 + 2 H2O + log_k 0.1091 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(am) # Enthalpy of formation: 0 kcal/mol UO2.25 - UO2.25 +2.5000 H+ = + 0.5000 U++++ + 0.5000 UO2+ + 1.2500 H2O - log_k -4.8193 - -delta_H -37.1614 kJ/mol # Calculated enthalpy of reaction UO2.25 + UO2.25 + 2.5 H+ = 0.5 U+4 + 0.5 UO2+ + 1.25 H2O + log_k -4.8193 + -delta_H -37.1614 kJ/mol # Calculated enthalpy of reaction UO2.25 # Enthalpy of formation: -1128.3 kJ/mol - -analytic -1.9073e+002 -4.1793e-002 7.3391e+003 7.0213e+001 1.1457e+002 + -analytic -1.9073e+2 -4.1793e-2 7.3391e+3 7.0213e+1 1.1457e+2 # -Range: 0-300 UO2.25(beta) - UO2.25 +2.5000 H+ = + 0.5000 U++++ + 0.5000 UO2+ + 1.2500 H2O - log_k -4.7593 - -delta_H -38.0614 kJ/mol # Calculated enthalpy of reaction UO2.25(beta) + UO2.25 + 2.5 H+ = 0.5 U+4 + 0.5 UO2+ + 1.25 H2O + log_k -4.7593 + -delta_H -38.0614 kJ/mol # Calculated enthalpy of reaction UO2.25(beta) # Enthalpy of formation: -1127.4 kJ/mol - -analytic -3.6654e+001 -2.4013e-003 2.9632e+003 9.1625e+000 4.6249e+001 + -analytic -3.6654e+1 -2.4013e-3 2.9632e+3 9.1625e+0 4.6249e+1 # -Range: 0-300 UO2.3333(beta) # UO2.3333 +8.0000 H+ = + 0.3333 O2 + 2.0000 U++++ + 4.0000 H2O - (UO2.3333)2 + 8.0000 H+ = 0.3333 O2 + 2.0000 U++++ + 4.0000 H2O - log_k -27.7177 - -delta_H -1187.8 kJ/mol # Calculated enthalpy of reaction UO2.3333(beta) + (UO2.3333)2 + 8 H+ = 0.3333 O2 + 2 U+4 + 4 H2O + log_k -27.7177 + -delta_H -1187.8 kJ/mol # Calculated enthalpy of reaction UO2.3333(beta) # Enthalpy of formation: -1142 kJ/mol - -analytic -7.4790e+000 -6.8382e-004 -2.7277e+003 -7.2107e+000 6.1873e+005 + -analytic -7.479e+0 -6.8382e-4 -2.7277e+3 -7.2107e+0 6.1873e+5 # -Range: 0-300 UO2.6667 # UO2.6667 +8.0000 H+ = + 0.6667 O2 + 2.0000 U++++ + 4.0000 H2O - (UO2.6667)2 +8.0000 H+ = + 0.6667 O2 + 2.0000 U++++ + 4.0000 H2O - log_k -43.6051 - -delta_H -1142.24 kJ/mol # Calculated enthalpy of reaction UO2.6667 + (UO2.6667)2 + 8 H+ = 0.6667 O2 + 2 U+4 + 4 H2O + log_k -43.6051 + -delta_H -1142.24 kJ/mol # Calculated enthalpy of reaction UO2.6667 # Enthalpy of formation: -1191.6 kJ/mol - -analytic 1.2095e+002 2.0118e-002 -1.4968e+004 -5.3552e+001 1.0813e+006 + -analytic 1.2095e+2 2.0118e-2 -1.4968e+4 -5.3552e+1 1.0813e+6 # -Range: 0-300 UO2Br2 - UO2Br2 = + 1.0000 UO2++ + 2.0000 Br- - log_k 16.5103 - -delta_H -124.607 kJ/mol # Calculated enthalpy of reaction UO2Br2 + UO2Br2 = UO2+2 + 2 Br- + log_k 16.5103 + -delta_H -124.607 kJ/mol # Calculated enthalpy of reaction UO2Br2 # Enthalpy of formation: -1137.4 kJ/mol - -analytic -1.4876e+002 -6.2715e-002 9.0200e+003 6.2108e+001 1.4079e+002 + -analytic -1.4876e+2 -6.2715e-2 9.02e+3 6.2108e+1 1.4079e+2 # -Range: 0-300 UO2Br2:3H2O - UO2Br2:3H2O = + 1.0000 UO2++ + 2.0000 Br- + 3.0000 H2O - log_k 9.4113 - -delta_H -61.5217 kJ/mol # Calculated enthalpy of reaction UO2Br2:3H2O + UO2Br2:3H2O = UO2+2 + 2 Br- + 3 H2O + log_k 9.4113 + -delta_H -61.5217 kJ/mol # Calculated enthalpy of reaction UO2Br2:3H2O # Enthalpy of formation: -2058 kJ/mol - -analytic -6.8507e+001 -1.6834e-002 5.1409e+003 2.6546e+001 8.7324e+001 + -analytic -6.8507e+1 -1.6834e-2 5.1409e+3 2.6546e+1 8.7324e+1 # -Range: 0-200 UO2Br2:H2O - UO2Br2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 Br- - log_k 12.1233 - -delta_H -91.945 kJ/mol # Calculated enthalpy of reaction UO2Br2:H2O + UO2Br2:H2O = H2O + UO2+2 + 2 Br- + log_k 12.1233 + -delta_H -91.945 kJ/mol # Calculated enthalpy of reaction UO2Br2:H2O # Enthalpy of formation: -1455.9 kJ/mol - -analytic -1.7519e+001 -1.6603e-002 4.3544e+003 8.0748e+000 7.3950e+001 + -analytic -1.7519e+1 -1.6603e-2 4.3544e+3 8.0748e+0 7.395e+1 # -Range: 0-200 UO2BrOH:2H2O - UO2BrOH:2H2O +1.0000 H+ = + 1.0000 Br- + 1.0000 UO2++ + 3.0000 H2O - log_k 4.2026 - -delta_H -39.8183 kJ/mol # Calculated enthalpy of reaction UO2BrOH:2H2O + UO2BrOH:2H2O + H+ = Br- + UO2+2 + 3 H2O + log_k 4.2026 + -delta_H -39.8183 kJ/mol # Calculated enthalpy of reaction UO2BrOH:2H2O # Enthalpy of formation: -1958.2 kJ/mol - -analytic -8.3411e+001 -1.0024e-002 5.0411e+003 2.9781e+001 8.5633e+001 + -analytic -8.3411e+1 -1.0024e-2 5.0411e+3 2.9781e+1 8.5633e+1 # -Range: 0-200 UO2CO3 - UO2CO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 UO2++ - log_k -4.1267 - -delta_H -19.2872 kJ/mol # Calculated enthalpy of reaction UO2CO3 + UO2CO3 + H+ = HCO3- + UO2+2 + log_k -4.1267 + -delta_H -19.2872 kJ/mol # Calculated enthalpy of reaction UO2CO3 # Enthalpy of formation: -1689.65 kJ/mol - -analytic -4.4869e+001 -1.1541e-002 1.9475e+003 1.5215e+001 3.3086e+001 + -analytic -4.4869e+1 -1.1541e-2 1.9475e+3 1.5215e+1 3.3086e+1 # -Range: 0-200 UO2Cl - UO2Cl = + 1.0000 Cl- + 1.0000 UO2+ - log_k -0.5154 - -delta_H -21.1067 kJ/mol # Calculated enthalpy of reaction UO2Cl + UO2Cl = Cl- + UO2+ + log_k -0.5154 + -delta_H -21.1067 kJ/mol # Calculated enthalpy of reaction UO2Cl # Enthalpy of formation: -1171.1 kJ/mol - -analytic -7.3291e+001 -2.5940e-002 2.5753e+003 2.9038e+001 4.0207e+001 + -analytic -7.3291e+1 -2.594e-2 2.5753e+3 2.9038e+1 4.0207e+1 # -Range: 0-300 UO2Cl2 - UO2Cl2 = + 1.0000 UO2++ + 2.0000 Cl- - log_k 12.1394 - -delta_H -109.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2 + UO2Cl2 = UO2+2 + 2 Cl- + log_k 12.1394 + -delta_H -109.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2 # Enthalpy of formation: -1243.6 kJ/mol - -analytic -1.6569e+002 -6.6249e-002 8.6920e+003 6.8055e+001 1.3568e+002 + -analytic -1.6569e+2 -6.6249e-2 8.692e+3 6.8055e+1 1.3568e+2 # -Range: 0-300 UO2Cl2:3H2O - UO2Cl2:3H2O = + 1.0000 UO2++ + 2.0000 Cl- + 3.0000 H2O - log_k 5.6163 - -delta_H -45.8743 kJ/mol # Calculated enthalpy of reaction UO2Cl2:3H2O + UO2Cl2:3H2O = UO2+2 + 2 Cl- + 3 H2O + log_k 5.6163 + -delta_H -45.8743 kJ/mol # Calculated enthalpy of reaction UO2Cl2:3H2O # Enthalpy of formation: -2164.8 kJ/mol - -analytic -8.4932e+001 -2.0867e-002 4.7594e+003 3.2654e+001 8.0850e+001 + -analytic -8.4932e+1 -2.0867e-2 4.7594e+3 3.2654e+1 8.085e+1 # -Range: 0-200 UO2Cl2:H2O - UO2Cl2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 Cl- - log_k 8.2880 - -delta_H -79.1977 kJ/mol # Calculated enthalpy of reaction UO2Cl2:H2O + UO2Cl2:H2O = H2O + UO2+2 + 2 Cl- + log_k 8.288 + -delta_H -79.1977 kJ/mol # Calculated enthalpy of reaction UO2Cl2:H2O # Enthalpy of formation: -1559.8 kJ/mol - -analytic -3.4458e+001 -2.0630e-002 4.1231e+003 1.4170e+001 7.0029e+001 + -analytic -3.4458e+1 -2.063e-2 4.1231e+3 1.417e+1 7.0029e+1 # -Range: 0-200 UO2ClOH:2H2O - UO2ClOH:2H2O +1.0000 H+ = + 1.0000 Cl- + 1.0000 UO2++ + 3.0000 H2O - log_k 2.3064 - -delta_H -33.1947 kJ/mol # Calculated enthalpy of reaction UO2ClOH:2H2O + UO2ClOH:2H2O + H+ = Cl- + UO2+2 + 3 H2O + log_k 2.3064 + -delta_H -33.1947 kJ/mol # Calculated enthalpy of reaction UO2ClOH:2H2O # Enthalpy of formation: -2010.4 kJ/mol - -analytic -9.1834e+001 -1.2041e-002 4.9131e+003 3.2835e+001 8.3462e+001 + -analytic -9.1834e+1 -1.2041e-2 4.9131e+3 3.2835e+1 8.3462e+1 # -Range: 0-200 UO2F2 - UO2F2 = + 1.0000 UO2++ + 2.0000 F- - log_k -7.2302 - -delta_H -36.1952 kJ/mol # Calculated enthalpy of reaction UO2F2 + UO2F2 = UO2+2 + 2 F- + log_k -7.2302 + -delta_H -36.1952 kJ/mol # Calculated enthalpy of reaction UO2F2 # Enthalpy of formation: -1653.5 kJ/mol - -analytic -2.0303e+002 -7.1028e-002 5.9356e+003 7.9627e+001 9.2679e+001 + -analytic -2.0303e+2 -7.1028e-2 5.9356e+3 7.9627e+1 9.2679e+1 # -Range: 0-300 UO2F2:3H2O - UO2F2:3H2O = + 1.0000 UO2++ + 2.0000 F- + 3.0000 H2O - log_k -7.3692 - -delta_H -12.8202 kJ/mol # Calculated enthalpy of reaction UO2F2:3H2O + UO2F2:3H2O = UO2+2 + 2 F- + 3 H2O + log_k -7.3692 + -delta_H -12.8202 kJ/mol # Calculated enthalpy of reaction UO2F2:3H2O # Enthalpy of formation: -2534.39 kJ/mol - -analytic -1.0286e+002 -2.1223e-002 3.4855e+003 3.6420e+001 5.9224e+001 + -analytic -1.0286e+2 -2.1223e-2 3.4855e+3 3.642e+1 5.9224e+1 # -Range: 0-200 UO2FOH - UO2FOH +1.0000 H+ = + 1.0000 F- + 1.0000 H2O + 1.0000 UO2++ - log_k -1.8426 - -delta_H -41.7099 kJ/mol # Calculated enthalpy of reaction UO2FOH + UO2FOH + H+ = F- + H2O + UO2+2 + log_k -1.8426 + -delta_H -41.7099 kJ/mol # Calculated enthalpy of reaction UO2FOH # Enthalpy of formation: -1598.48 kJ/mol - -analytic -4.9229e+001 -1.1984e-002 3.2086e+003 1.6244e+001 5.4503e+001 + -analytic -4.9229e+1 -1.1984e-2 3.2086e+3 1.6244e+1 5.4503e+1 # -Range: 0-200 UO2FOH:2H2O - UO2FOH:2H2O +1.0000 H+ = + 1.0000 F- + 1.0000 UO2++ + 3.0000 H2O - log_k -2.6606 - -delta_H -21.8536 kJ/mol # Calculated enthalpy of reaction UO2FOH:2H2O + UO2FOH:2H2O + H+ = F- + UO2+2 + 3 H2O + log_k -2.6606 + -delta_H -21.8536 kJ/mol # Calculated enthalpy of reaction UO2FOH:2H2O # Enthalpy of formation: -2190.01 kJ/mol - -analytic -1.0011e+002 -1.2203e-002 4.5446e+003 3.4690e+001 7.7208e+001 + -analytic -1.0011e+2 -1.2203e-2 4.5446e+3 3.469e+1 7.7208e+1 # -Range: 0-200 UO2FOH:H2O - UO2FOH:H2O +1.0000 H+ = + 1.0000 F- + 1.0000 UO2++ + 2.0000 H2O - log_k -2.2838 - -delta_H -31.5243 kJ/mol # Calculated enthalpy of reaction UO2FOH:H2O + UO2FOH:H2O + H+ = F- + UO2+2 + 2 H2O + log_k -2.2838 + -delta_H -31.5243 kJ/mol # Calculated enthalpy of reaction UO2FOH:H2O # Enthalpy of formation: -1894.5 kJ/mol - -analytic -7.4628e+001 -1.2086e-002 3.8625e+003 2.5456e+001 6.5615e+001 + -analytic -7.4628e+1 -1.2086e-2 3.8625e+3 2.5456e+1 6.5615e+1 # -Range: 0-200 UO2HPO4 - UO2HPO4 = + 1.0000 HPO4-- + 1.0000 UO2++ - log_k -12.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 + UO2HPO4 = HPO4-2 + UO2+2 + log_k -12.6782 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 # Enthalpy of formation: 0 kcal/mol UO2HPO4:4H2O - UO2HPO4:4H2O = + 1.0000 HPO4-- + 1.0000 UO2++ + 4.0000 H2O - log_k -13.0231 - -delta_H 15.5327 kJ/mol # Calculated enthalpy of reaction UO2HPO4:4H2O + UO2HPO4:4H2O = HPO4-2 + UO2+2 + 4 H2O + log_k -13.0231 + -delta_H 15.5327 kJ/mol # Calculated enthalpy of reaction UO2HPO4:4H2O # Enthalpy of formation: -3469.97 kJ/mol - -analytic -1.1784e+002 -1.9418e-002 2.7547e+003 4.0963e+001 4.6818e+001 + -analytic -1.1784e+2 -1.9418e-2 2.7547e+3 4.0963e+1 4.6818e+1 # -Range: 0-200 UO2SO3 - UO2SO3 = + 1.0000 SO3-- + 1.0000 UO2++ - log_k -15.9812 - -delta_H 6.4504 kJ/mol # Calculated enthalpy of reaction UO2SO3 + UO2SO3 = SO3-2 + UO2+2 + log_k -15.9812 + -delta_H 6.4504 kJ/mol # Calculated enthalpy of reaction UO2SO3 # Enthalpy of formation: -1661 kJ/mol - -analytic 2.5751e+001 -1.3871e-002 -3.0305e+003 -1.1090e+001 -5.1470e+001 + -analytic 2.5751e+1 -1.3871e-2 -3.0305e+3 -1.109e+1 -5.147e+1 # -Range: 0-200 UO2SO4 - UO2SO4 = + 1.0000 SO4-- + 1.0000 UO2++ - log_k 1.9681 - -delta_H -83.4616 kJ/mol # Calculated enthalpy of reaction UO2SO4 + UO2SO4 = SO4-2 + UO2+2 + log_k 1.9681 + -delta_H -83.4616 kJ/mol # Calculated enthalpy of reaction UO2SO4 # Enthalpy of formation: -1845.14 kJ/mol - -analytic -1.5677e+002 -6.5310e-002 6.7411e+003 6.2867e+001 1.0523e+002 + -analytic -1.5677e+2 -6.531e-2 6.7411e+3 6.2867e+1 1.0523e+2 # -Range: 0-300 UO2SO4:2.5H2O - UO2SO4:2.5H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 2.5000 H2O - log_k -1.4912 - -delta_H -36.1984 kJ/mol # Calculated enthalpy of reaction UO2SO4:2.5H2O + UO2SO4:2.5H2O = SO4-2 + UO2+2 + 2.5 H2O + log_k -1.4912 + -delta_H -36.1984 kJ/mol # Calculated enthalpy of reaction UO2SO4:2.5H2O # Enthalpy of formation: -2607 kJ/mol - -analytic -4.8908e+001 -1.3445e-002 2.8658e+003 1.6894e+001 4.8683e+001 + -analytic -4.8908e+1 -1.3445e-2 2.8658e+3 1.6894e+1 4.8683e+1 # -Range: 0-200 UO2SO4:3.5H2O - UO2SO4:3.5H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 3.5000 H2O - log_k -1.4805 - -delta_H -27.4367 kJ/mol # Calculated enthalpy of reaction UO2SO4:3.5H2O + UO2SO4:3.5H2O = SO4-2 + UO2+2 + 3.5 H2O + log_k -1.4805 + -delta_H -27.4367 kJ/mol # Calculated enthalpy of reaction UO2SO4:3.5H2O # Enthalpy of formation: -2901.6 kJ/mol - -analytic -7.4180e+001 -1.3565e-002 3.5963e+003 2.6136e+001 6.1096e+001 + -analytic -7.418e+1 -1.3565e-2 3.5963e+3 2.6136e+1 6.1096e+1 # -Range: 0-200 UO2SO4:3H2O - UO2SO4:3H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 3.0000 H2O - log_k -1.4028 - -delta_H -34.6176 kJ/mol # Calculated enthalpy of reaction UO2SO4:3H2O + UO2SO4:3H2O = SO4-2 + UO2+2 + 3 H2O + log_k -1.4028 + -delta_H -34.6176 kJ/mol # Calculated enthalpy of reaction UO2SO4:3H2O # Enthalpy of formation: -2751.5 kJ/mol - -analytic -5.0134e+001 -1.0321e-002 3.0505e+003 1.6799e+001 5.1818e+001 + -analytic -5.0134e+1 -1.0321e-2 3.0505e+3 1.6799e+1 5.1818e+1 # -Range: 0-200 UO2SO4:H2O - UO2SO4:H2O = + 1.0000 H2O + 1.0000 SO4-- + 1.0000 UO2++ - log_k -6.0233 - -delta_H -39.1783 kJ/mol # Calculated enthalpy of reaction UO2SO4:H2O + UO2SO4:H2O = H2O + SO4-2 + UO2+2 + log_k -6.0233 + -delta_H -39.1783 kJ/mol # Calculated enthalpy of reaction UO2SO4:H2O # Enthalpy of formation: -519.9 kcal/mol - -analytic -1.8879e+002 -6.9827e-002 5.5636e+003 7.4717e+001 8.6870e+001 + -analytic -1.8879e+2 -6.9827e-2 5.5636e+3 7.4717e+1 8.687e+1 # -Range: 0-300 UO3(alpha) - UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ - log_k 8.6391 - -delta_H -87.3383 kJ/mol # Calculated enthalpy of reaction UO3(alpha) + UO3 + 2 H+ = H2O + UO2+2 + log_k 8.6391 + -delta_H -87.3383 kJ/mol # Calculated enthalpy of reaction UO3(alpha) # Enthalpy of formation: -1217.5 kJ/mol - -analytic -1.4099e+001 -1.9063e-003 4.7742e+003 2.9478e+000 7.4501e+001 + -analytic -1.4099e+1 -1.9063e-3 4.7742e+3 2.9478e+0 7.4501e+1 # -Range: 0-300 UO3(beta) - UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ - log_k 8.3095 - -delta_H -84.5383 kJ/mol # Calculated enthalpy of reaction UO3(beta) + UO3 + 2 H+ = H2O + UO2+2 + log_k 8.3095 + -delta_H -84.5383 kJ/mol # Calculated enthalpy of reaction UO3(beta) # Enthalpy of formation: -1220.3 kJ/mol - -analytic -1.2298e+001 -1.7800e-003 4.5621e+003 2.3593e+000 7.1191e+001 + -analytic -1.2298e+1 -1.78e-3 4.5621e+3 2.3593e+0 7.1191e+1 # -Range: 0-300 UO3(gamma) - UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ - log_k 7.7073 - -delta_H -81.0383 kJ/mol # Calculated enthalpy of reaction UO3(gamma) + UO3 + 2 H+ = H2O + UO2+2 + log_k 7.7073 + -delta_H -81.0383 kJ/mol # Calculated enthalpy of reaction UO3(gamma) # Enthalpy of formation: -1223.8 kJ/mol - -analytic -1.1573e+001 -2.3560e-003 4.3124e+003 2.2305e+000 6.7294e+001 + -analytic -1.1573e+1 -2.356e-3 4.3124e+3 2.2305e+0 6.7294e+1 # -Range: 0-300 UO3:.9H2O(alpha) - UO3:.9H2O +2.0000 H+ = + 1.0000 UO2++ + 1.9000 H2O - log_k 5.0167 - -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction UO3:.9H2O(alpha) + UO3:.9H2O + 2 H+ = UO2+2 + 1.9 H2O + log_k 5.0167 + -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction UO3:.9H2O(alpha) # Enthalpy of formation: -1506.3 kJ/mol - -analytic -6.9286e+001 -3.0624e-003 5.5984e+003 2.2809e+001 9.5092e+001 + -analytic -6.9286e+1 -3.0624e-3 5.5984e+3 2.2809e+1 9.5092e+1 # -Range: 0-200 UO3:2H2O - UO3:2H2O +2.0000 H+ = + 1.0000 UO2++ + 3.0000 H2O - log_k 4.8333 - -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction UO3:2H2O + UO3:2H2O + 2 H+ = UO2+2 + 3 H2O + log_k 4.8333 + -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction UO3:2H2O # Enthalpy of formation: -1826.1 kJ/mol - -analytic -5.9530e+001 -9.8107e-003 4.4975e+003 2.1098e+001 7.0196e+001 + -analytic -5.953e+1 -9.8107e-3 4.4975e+3 2.1098e+1 7.0196e+1 # -Range: 0-300 UOBr2 - UOBr2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 Br- - log_k 7.9722 - -delta_H -146.445 kJ/mol # Calculated enthalpy of reaction UOBr2 + UOBr2 + 2 H+ = H2O + U+4 + 2 Br- + log_k 7.9722 + -delta_H -146.445 kJ/mol # Calculated enthalpy of reaction UOBr2 # Enthalpy of formation: -973.6 kJ/mol - -analytic -2.0747e+002 -7.0500e-002 1.1746e+004 7.9629e+001 1.8334e+002 + -analytic -2.0747e+2 -7.05e-2 1.1746e+4 7.9629e+1 1.8334e+2 # -Range: 0-300 UOBr3 - UOBr3 +1.0000 H2O = + 1.0000 UO2+ + 2.0000 H+ + 3.0000 Br- - log_k 23.5651 - -delta_H -149.799 kJ/mol # Calculated enthalpy of reaction UOBr3 + UOBr3 + H2O = UO2+ + 2 H+ + 3 Br- + log_k 23.5651 + -delta_H -149.799 kJ/mol # Calculated enthalpy of reaction UOBr3 # Enthalpy of formation: -954 kJ/mol - -analytic -2.0001e+002 -8.4632e-002 1.1381e+004 8.5102e+001 1.7765e+002 + -analytic -2.0001e+2 -8.4632e-2 1.1381e+4 8.5102e+1 1.7765e+2 # -Range: 0-300 UOCl - UOCl +2.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 U+++ - log_k 10.3872 - -delta_H -108.118 kJ/mol # Calculated enthalpy of reaction UOCl + UOCl + 2 H+ = Cl- + H2O + U+3 + log_k 10.3872 + -delta_H -108.118 kJ/mol # Calculated enthalpy of reaction UOCl # Enthalpy of formation: -833.9 kJ/mol - -analytic -1.1989e+002 -4.0791e-002 8.0834e+003 4.6600e+001 1.2617e+002 + -analytic -1.1989e+2 -4.0791e-2 8.0834e+3 4.66e+1 1.2617e+2 # -Range: 0-300 UOCl2 - UOCl2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 Cl- - log_k 5.4559 - -delta_H -141.898 kJ/mol # Calculated enthalpy of reaction UOCl2 + UOCl2 + 2 H+ = H2O + U+4 + 2 Cl- + log_k 5.4559 + -delta_H -141.898 kJ/mol # Calculated enthalpy of reaction UOCl2 # Enthalpy of formation: -1069.3 kJ/mol - -analytic -2.2096e+002 -7.3329e-002 1.1858e+004 8.4250e+001 1.8509e+002 + -analytic -2.2096e+2 -7.3329e-2 1.1858e+4 8.425e+1 1.8509e+2 # -Range: 0-300 UOCl3 - UOCl3 +1.0000 H2O = + 1.0000 UO2+ + 2.0000 H+ + 3.0000 Cl- - log_k 12.6370 - -delta_H -100.528 kJ/mol # Calculated enthalpy of reaction UOCl3 + UOCl3 + H2O = UO2+ + 2 H+ + 3 Cl- + log_k 12.637 + -delta_H -100.528 kJ/mol # Calculated enthalpy of reaction UOCl3 # Enthalpy of formation: -1140 kJ/mol - -analytic -2.1934e+002 -8.8639e-002 9.3198e+003 9.1775e+001 1.4549e+002 + -analytic -2.1934e+2 -8.8639e-2 9.3198e+3 9.1775e+1 1.4549e+2 # -Range: 0-300 UOF2 - UOF2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 F- - log_k -18.1473 - -delta_H -43.1335 kJ/mol # Calculated enthalpy of reaction UOF2 + UOF2 + 2 H+ = H2O + U+4 + 2 F- + log_k -18.1473 + -delta_H -43.1335 kJ/mol # Calculated enthalpy of reaction UOF2 # Enthalpy of formation: -1504.6 kJ/mol - -analytic -6.9471e+001 -2.6188e-002 2.5576e+003 2.0428e+001 4.3454e+001 + -analytic -6.9471e+1 -2.6188e-2 2.5576e+3 2.0428e+1 4.3454e+1 # -Range: 0-200 UOF2:H2O - UOF2:H2O +2.0000 H+ = + 1.0000 U++++ + 2.0000 F- + 2.0000 H2O - log_k -18.7019 - -delta_H -31.5719 kJ/mol # Calculated enthalpy of reaction UOF2:H2O + UOF2:H2O + 2 H+ = U+4 + 2 F- + 2 H2O + log_k -18.7019 + -delta_H -31.5719 kJ/mol # Calculated enthalpy of reaction UOF2:H2O # Enthalpy of formation: -1802 kJ/mol - -analytic -9.5010e+001 -2.6355e-002 3.1474e+003 2.9746e+001 5.3480e+001 + -analytic -9.501e+1 -2.6355e-2 3.1474e+3 2.9746e+1 5.348e+1 # -Range: 0-200 UOF4 - UOF4 +1.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 4.0000 F- - log_k 4.5737 - -delta_H -149.952 kJ/mol # Calculated enthalpy of reaction UOF4 + UOF4 + H2O = UO2+2 + 2 H+ + 4 F- + log_k 4.5737 + -delta_H -149.952 kJ/mol # Calculated enthalpy of reaction UOF4 # Enthalpy of formation: -1924.6 kJ/mol - -analytic -5.9731e+000 -3.8581e-002 4.6903e+003 2.5464e+000 7.9649e+001 + -analytic -5.9731e+0 -3.8581e-2 4.6903e+3 2.5464e+0 7.9649e+1 # -Range: 0-200 UOFOH - UOFOH +3.0000 H+ = + 1.0000 F- + 1.0000 U++++ + 2.0000 H2O - log_k -8.9274 - -delta_H -71.5243 kJ/mol # Calculated enthalpy of reaction UOFOH + UOFOH + 3 H+ = F- + U+4 + 2 H2O + log_k -8.9274 + -delta_H -71.5243 kJ/mol # Calculated enthalpy of reaction UOFOH # Enthalpy of formation: -1426.7 kJ/mol - -analytic -9.2412e+001 -1.7293e-002 5.8150e+003 2.7940e+001 9.8779e+001 + -analytic -9.2412e+1 -1.7293e-2 5.815e+3 2.794e+1 9.8779e+1 # -Range: 0-200 UOFOH:.5H2O - UOFOH:.5H2O +1.0000 H+ +0.5000 O2 = + 1.0000 F- + 1.0000 UO2++ + 1.5000 H2O - log_k 24.5669 - -delta_H -200.938 kJ/mol # Calculated enthalpy of reaction UOFOH:.5H2O + UOFOH:.5H2O + H+ + 0.5 O2 = F- + UO2+2 + 1.5 H2O + log_k 24.5669 + -delta_H -200.938 kJ/mol # Calculated enthalpy of reaction UOFOH:.5H2O # Enthalpy of formation: -1576.1 kJ/mol - -analytic -1.1024e+001 -7.7180e-003 1.0019e+004 1.7305e+000 1.7014e+002 + -analytic -1.1024e+1 -7.718e-3 1.0019e+4 1.7305e+0 1.7014e+2 # -Range: 0-200 UP - UP +2.0000 O2 +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 U+++ - log_k 233.4928 - -delta_H -1487.11 kJ/mol # Calculated enthalpy of reaction UP + UP + 2 O2 + H+ = HPO4-2 + U+3 + log_k 233.4928 + -delta_H -1487.11 kJ/mol # Calculated enthalpy of reaction UP # Enthalpy of formation: -269.8 kJ/mol - -analytic -2.1649e+002 -9.0873e-002 8.3804e+004 8.1649e+001 -5.4044e+005 + -analytic -2.1649e+2 -9.0873e-2 8.3804e+4 8.1649e+1 -5.4044e+5 # -Range: 0-300 UP2 - UP2 +3.2500 O2 +1.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 HPO4-- - log_k 360.5796 - -delta_H -2301.07 kJ/mol # Calculated enthalpy of reaction UP2 + UP2 + 3.25 O2 + 1.5 H2O = H+ + U+3 + 2 HPO4-2 + log_k 360.5796 + -delta_H -2301.07 kJ/mol # Calculated enthalpy of reaction UP2 # Enthalpy of formation: -304 kJ/mol - -analytic -2.4721e+002 -1.5005e-001 1.2243e+005 9.9521e+001 -3.9706e+005 + -analytic -2.4721e+2 -1.5005e-1 1.2243e+5 9.9521e+1 -3.9706e+5 # -Range: 0-300 UP2O7 - UP2O7 +1.0000 H2O = + 1.0000 U++++ + 2.0000 HPO4-- - log_k -32.9922 - -delta_H -37.5256 kJ/mol # Calculated enthalpy of reaction UP2O7 + UP2O7 + H2O = U+4 + 2 HPO4-2 + log_k -32.9922 + -delta_H -37.5256 kJ/mol # Calculated enthalpy of reaction UP2O7 # Enthalpy of formation: -2852 kJ/mol - -analytic -3.5910e+002 -1.3819e-001 7.6509e+003 1.3804e+002 1.1949e+002 + -analytic -3.591e+2 -1.3819e-1 7.6509e+3 1.3804e+2 1.1949e+2 # -Range: 0-300 UP2O7:20H2O - UP2O7:20H2O = + 1.0000 U++++ + 2.0000 HPO4-- + 19.0000 H2O - log_k -28.6300 - -delta_H 0 # Not possible to calculate enthalpy of reaction UP2O7:20H2O + UP2O7:20H2O = U+4 + 2 HPO4-2 + 19 H2O + log_k -28.63 + -delta_H 0 # Not possible to calculate enthalpy of reaction UP2O7:20H2O # Enthalpy of formation: 0 kcal/mol UPO5 - UPO5 +1.0000 H2O = + 1.0000 H+ + 1.0000 HPO4-- + 1.0000 UO2+ - log_k -19.5754 - -delta_H 32.6294 kJ/mol # Calculated enthalpy of reaction UPO5 + UPO5 + H2O = H+ + HPO4-2 + UO2+ + log_k -19.5754 + -delta_H 32.6294 kJ/mol # Calculated enthalpy of reaction UPO5 # Enthalpy of formation: -2064 kJ/mol - -analytic -1.5316e+002 -6.0911e-002 7.3255e+002 6.0317e+001 1.1476e+001 + -analytic -1.5316e+2 -6.0911e-2 7.3255e+2 6.0317e+1 1.1476e+1 # -Range: 0-300 US - US +2.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 HS- + 1.0000 U+++ - log_k 46.6547 - -delta_H -322.894 kJ/mol # Calculated enthalpy of reaction US + US + 2 H+ + 0.25 O2 = 0.5 H2O + HS- + U+3 + log_k 46.6547 + -delta_H -322.894 kJ/mol # Calculated enthalpy of reaction US # Enthalpy of formation: -322.2 kJ/mol - -analytic -1.0845e+002 -4.0538e-002 1.8749e+004 4.2147e+001 2.9259e+002 + -analytic -1.0845e+2 -4.0538e-2 1.8749e+4 4.2147e+1 2.9259e+2 # -Range: 0-300 US1.9 - US1.9 +1.9000 H+ = + 0.2000 U+++ + 0.8000 U++++ + 1.9000 HS- - log_k -2.2816 - -delta_H -91.486 kJ/mol # Calculated enthalpy of reaction US1.9 + US1.9 + 1.9 H+ = 0.2 U+3 + 0.8 U+4 + 1.9 HS- + log_k -2.2816 + -delta_H -91.486 kJ/mol # Calculated enthalpy of reaction US1.9 # Enthalpy of formation: -509.9 kJ/mol - -analytic -2.0534e+002 -6.8390e-002 8.8888e+003 7.8243e+001 1.3876e+002 + -analytic -2.0534e+2 -6.839e-2 8.8888e+3 7.8243e+1 1.3876e+2 # -Range: 0-300 US2 - US2 +2.0000 H+ = + 1.0000 U++++ + 2.0000 HS- - log_k -2.3324 - -delta_H -103.017 kJ/mol # Calculated enthalpy of reaction US2 + US2 + 2 H+ = U+4 + 2 HS- + log_k -2.3324 + -delta_H -103.017 kJ/mol # Calculated enthalpy of reaction US2 # Enthalpy of formation: -520.4 kJ/mol - -analytic -2.1819e+002 -7.1522e-002 9.7782e+003 8.2586e+001 1.5264e+002 + -analytic -2.1819e+2 -7.1522e-2 9.7782e+3 8.2586e+1 1.5264e+2 # -Range: 0-300 US3 - US3 +2.0000 H2O = + 1.0000 H+ + 1.0000 UO2++ + 3.0000 HS- - log_k -16.6370 - -delta_H 43.9515 kJ/mol # Calculated enthalpy of reaction US3 + US3 + 2 H2O = H+ + UO2+2 + 3 HS- + log_k -16.637 + -delta_H 43.9515 kJ/mol # Calculated enthalpy of reaction US3 # Enthalpy of formation: -539.6 kJ/mol - -analytic -2.3635e+002 -9.5877e-002 1.9170e+003 9.7726e+001 2.9982e+001 + -analytic -2.3635e+2 -9.5877e-2 1.917e+3 9.7726e+1 2.9982e+1 # -Range: 0-300 USb - USb +3.0000 H+ +1.5000 O2 = + 1.0000 Sb(OH)3 + 1.0000 U+++ - log_k 176.0723 - -delta_H -1106.19 kJ/mol # Calculated enthalpy of reaction USb + USb + 3 H+ + 1.5 O2 = Sb(OH)3 + U+3 + log_k 176.0723 + -delta_H -1106.19 kJ/mol # Calculated enthalpy of reaction USb # Enthalpy of formation: -138.5 kJ/mol USb2 - USb2 +3.0000 H+ +2.2500 O2 +1.5000 H2O = + 1.0000 U+++ + 2.0000 Sb(OH)3 - log_k 223.1358 - -delta_H -1407.02 kJ/mol # Calculated enthalpy of reaction USb2 + USb2 + 3 H+ + 2.25 O2 + 1.5 H2O = U+3 + 2 Sb(OH)3 + log_k 223.1358 + -delta_H -1407.02 kJ/mol # Calculated enthalpy of reaction USb2 # Enthalpy of formation: -173.6 kJ/mol Uranium-selenide - 1.0USe +1.7500 O2 +1.0000 H+ = + 0.5000 H2O + 1.0000 SeO3-- + 1.0000 U+++ - log_k 125.6086 - -delta_H -844.278 kJ/mol # Calculated enthalpy of reaction Uranium-selenide + 1 USe + 1.75 O2 + H+ = 0.5 H2O + SeO3-2 + U+3 + log_k 125.6086 + -delta_H -844.278 kJ/mol # Calculated enthalpy of reaction Uranium-selenide # Enthalpy of formation: -275.7 kJ/mol - -analytic -1.0853e+002 -7.6251e-002 4.3230e+004 4.5189e+001 6.7460e+002 + -analytic -1.0853e+2 -7.6251e-2 4.323e+4 4.5189e+1 6.746e+2 # -Range: 0-300 USe2(alpha) - USe2 +2.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 SeO3-- - log_k 125.4445 - -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(alpha) + USe2 + 2.75 O2 + 0.5 H2O = H+ + U+3 + 2 SeO3-2 + log_k 125.4445 + -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(alpha) # Enthalpy of formation: -427 kJ/mol - -analytic -2.0454e+002 -1.4191e-001 4.6114e+004 8.7906e+001 7.1963e+002 + -analytic -2.0454e+2 -1.4191e-1 4.6114e+4 8.7906e+1 7.1963e+2 # -Range: 0-300 USe2(beta) - USe2 +2.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 SeO3-- - log_k 125.2868 - -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(beta) + USe2 + 2.75 O2 + 0.5 H2O = H+ + U+3 + 2 SeO3-2 + log_k 125.2868 + -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(beta) # Enthalpy of formation: -427 kJ/mol - -analytic -2.0334e+002 -1.4147e-001 4.6082e+004 8.7349e+001 7.1913e+002 + -analytic -2.0334e+2 -1.4147e-1 4.6082e+4 8.7349e+1 7.1913e+2 # -Range: 0-300 USe3 - USe3 +3.7500 O2 +1.5000 H2O = + 1.0000 U+++ + 3.0000 H+ + 3.0000 SeO3-- - log_k 147.2214 - -delta_H -1090.42 kJ/mol # Calculated enthalpy of reaction USe3 + USe3 + 3.75 O2 + 1.5 H2O = U+3 + 3 H+ + 3 SeO3-2 + log_k 147.2214 + -delta_H -1090.42 kJ/mol # Calculated enthalpy of reaction USe3 # Enthalpy of formation: -452 kJ/mol - -analytic 4.9201e+002 -1.3720e-002 3.2168e+004 -1.8131e+002 5.4609e+002 + -analytic 4.9201e+2 -1.372e-2 3.2168e+4 -1.8131e+2 5.4609e+2 # -Range: 0-200 Umangite - Cu3Se2 = + 1.0000 Cu++ + 2.0000 Cu+ + 2.0000 Se-- - log_k -93.8412 - -delta_H 0 # Not possible to calculate enthalpy of reaction Umangite + Cu3Se2 = Cu+2 + 2 Cu+ + 2 Se-2 + log_k -93.8412 + -delta_H 0 # Not possible to calculate enthalpy of reaction Umangite # Enthalpy of formation: -25 kcal/mol - -analytic -7.2308e+001 -2.2566e-003 -2.0738e+004 1.9677e+001 -3.5214e+002 + -analytic -7.2308e+1 -2.2566e-3 -2.0738e+4 1.9677e+1 -3.5214e+2 # -Range: 0-200 Uraninite - UO2 +4.0000 H+ = + 1.0000 U++++ + 2.0000 H2O - log_k -4.8372 - -delta_H -77.8767 kJ/mol # Calculated enthalpy of reaction Uraninite + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.8372 + -delta_H -77.8767 kJ/mol # Calculated enthalpy of reaction Uraninite # Enthalpy of formation: -1085 kJ/mol - -analytic -7.5776e+001 -1.0558e-002 5.9677e+003 2.1853e+001 9.3142e+001 + -analytic -7.5776e+1 -1.0558e-2 5.9677e+3 2.1853e+1 9.3142e+1 # -Range: 0-300 Uranocircite - Ba(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Ba++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -19.8057 - -delta_H -72.3317 kJ/mol # Calculated enthalpy of reaction Uranocircite + Ba(UO2)2(PO4)2 + 2 H+ = Ba+2 + 2 HPO4-2 + 2 UO2+2 + log_k -19.8057 + -delta_H -72.3317 kJ/mol # Calculated enthalpy of reaction Uranocircite # Enthalpy of formation: -1215.94 kcal/mol - -analytic -3.6843e+001 -4.3076e-002 1.2427e+003 1.0384e+001 2.1115e+001 + -analytic -3.6843e+1 -4.3076e-2 1.2427e+3 1.0384e+1 2.1115e+1 # -Range: 0-200 Uranophane - Ca(UO2)2(SiO3)2(OH)2 +6.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 2.0000 UO2++ + 4.0000 H2O - log_k 17.2850 - -delta_H 0 # Not possible to calculate enthalpy of reaction Uranophane + Ca(UO2)2(SiO3)2(OH)2 + 6 H+ = Ca+2 + 2 SiO2 + 2 UO2+2 + 4 H2O + log_k 17.285 + -delta_H 0 # Not possible to calculate enthalpy of reaction Uranophane # Enthalpy of formation: 0 kcal/mol V - V +3.0000 H+ +0.7500 O2 = + 1.0000 V+++ + 1.5000 H2O - log_k 106.9435 - -delta_H -680.697 kJ/mol # Calculated enthalpy of reaction V + V + 3 H+ + 0.75 O2 = V+3 + 1.5 H2O + log_k 106.9435 + -delta_H -680.697 kJ/mol # Calculated enthalpy of reaction V # Enthalpy of formation: 0 kJ/mol - -analytic -1.0508e+002 -2.1334e-002 4.0364e+004 3.5012e+001 -3.2290e+005 + -analytic -1.0508e+2 -2.1334e-2 4.0364e+4 3.5012e+1 -3.229e+5 # -Range: 0-300 V2O4 - V2O4 +4.0000 H+ = + 2.0000 H2O + 2.0000 VO++ - log_k 8.5719 - -delta_H -117.564 kJ/mol # Calculated enthalpy of reaction V2O4 + V2O4 + 4 H+ = 2 H2O + 2 VO+2 + log_k 8.5719 + -delta_H -117.564 kJ/mol # Calculated enthalpy of reaction V2O4 # Enthalpy of formation: -1427.31 kJ/mol - -analytic -1.4429e+002 -3.7423e-002 9.7046e+003 5.3125e+001 1.5147e+002 + -analytic -1.4429e+2 -3.7423e-2 9.7046e+3 5.3125e+1 1.5147e+2 # -Range: 0-300 V3O5 - V3O5 +8.0000 H+ = + 1.0000 VO++ + 2.0000 V+++ + 4.0000 H2O - log_k 13.4312 - -delta_H -218.857 kJ/mol # Calculated enthalpy of reaction V3O5 + V3O5 + 8 H+ = VO+2 + 2 V+3 + 4 H2O + log_k 13.4312 + -delta_H -218.857 kJ/mol # Calculated enthalpy of reaction V3O5 # Enthalpy of formation: -1933.17 kJ/mol - -analytic -1.7652e+002 -2.1959e-002 1.6814e+004 5.6618e+001 2.8559e+002 + -analytic -1.7652e+2 -2.1959e-2 1.6814e+4 5.6618e+1 2.8559e+2 # -Range: 0-200 V4O7 - V4O7 +10.0000 H+ = + 2.0000 V+++ + 2.0000 VO++ + 5.0000 H2O - log_k 18.7946 - -delta_H -284.907 kJ/mol # Calculated enthalpy of reaction V4O7 + V4O7 + 10 H+ = 2 V+3 + 2 VO+2 + 5 H2O + log_k 18.7946 + -delta_H -284.907 kJ/mol # Calculated enthalpy of reaction V4O7 # Enthalpy of formation: -2639.56 kJ/mol - -analytic -2.2602e+002 -3.0261e-002 2.1667e+004 7.3214e+001 3.6800e+002 + -analytic -2.2602e+2 -3.0261e-2 2.1667e+4 7.3214e+1 3.68e+2 # -Range: 0-200 Vaesite - NiS2 +1.0000 H2O = + 0.2500 H+ + 0.2500 SO4-- + 1.0000 Ni++ + 1.7500 HS- - log_k -26.7622 - -delta_H 110.443 kJ/mol # Calculated enthalpy of reaction Vaesite + NiS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Ni+2 + 1.75 HS- + log_k -26.7622 + -delta_H 110.443 kJ/mol # Calculated enthalpy of reaction Vaesite # Enthalpy of formation: -32.067 kcal/mol - -analytic 1.6172e+001 -2.2673e-002 -8.2514e+003 -3.4392e+000 -1.4013e+002 + -analytic 1.6172e+1 -2.2673e-2 -8.2514e+3 -3.4392e+0 -1.4013e+2 # -Range: 0-200 Vivianite - Fe3(PO4)2:8H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Fe++ + 8.0000 H2O - log_k -4.7237 - -delta_H 0 # Not possible to calculate enthalpy of reaction Vivianite + Fe3(PO4)2:8H2O + 2 H+ = 2 HPO4-2 + 3 Fe+2 + 8 H2O + log_k -4.7237 + -delta_H 0 # Not possible to calculate enthalpy of reaction Vivianite # Enthalpy of formation: 0 kcal/mol W - W +1.5000 O2 +1.0000 H2O = + 1.0000 WO4-- + 2.0000 H+ - log_k 123.4334 - -delta_H -771.668 kJ/mol # Calculated enthalpy of reaction W + W + 1.5 O2 + H2O = WO4-2 + 2 H+ + log_k 123.4334 + -delta_H -771.668 kJ/mol # Calculated enthalpy of reaction W # Enthalpy of formation: 0 kJ/mol - -analytic -1.0433e+002 -6.9470e-002 4.0134e+004 4.5993e+001 6.2629e+002 + -analytic -1.0433e+2 -6.947e-2 4.0134e+4 4.5993e+1 6.2629e+2 # -Range: 0-300 Wairakite - CaAl2Si4O10(OH)4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 SiO2 + 6.0000 H2O - log_k 18.0762 - -delta_H -237.781 kJ/mol # Calculated enthalpy of reaction Wairakite + CaAl2Si4O10(OH)4 + 8 H+ = Ca+2 + 2 Al+3 + 4 SiO2 + 6 H2O + log_k 18.0762 + -delta_H -237.781 kJ/mol # Calculated enthalpy of reaction Wairakite # Enthalpy of formation: -1579.33 kcal/mol - -analytic -1.7914e+001 3.2944e-003 2.2782e+004 -9.0981e+000 -1.6934e+006 + -analytic -1.7914e+1 3.2944e-3 2.2782e+4 -9.0981e+0 -1.6934e+6 # -Range: 0-300 Weeksite - K2(UO2)2(Si2O5)3:4H2O +6.0000 H+ = + 2.0000 K+ + 2.0000 UO2++ + 6.0000 SiO2 + 7.0000 H2O - log_k 15.3750 - -delta_H 0 # Not possible to calculate enthalpy of reaction Weeksite + K2(UO2)2(Si2O5)3:4H2O + 6 H+ = 2 K+ + 2 UO2+2 + 6 SiO2 + 7 H2O + log_k 15.375 + -delta_H 0 # Not possible to calculate enthalpy of reaction Weeksite # Enthalpy of formation: 0 kcal/mol Whitlockite - Ca3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Ca++ - log_k -4.2249 - -delta_H -116.645 kJ/mol # Calculated enthalpy of reaction Whitlockite + Ca3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Ca+2 + log_k -4.2249 + -delta_H -116.645 kJ/mol # Calculated enthalpy of reaction Whitlockite # Enthalpy of formation: -4096.77 kJ/mol - -analytic -5.3543e+002 -1.8842e-001 1.7176e+004 2.1406e+002 2.6817e+002 + -analytic -5.3543e+2 -1.8842e-1 1.7176e+4 2.1406e+2 2.6817e+2 # -Range: 0-300 Wilkmanite - Ni3Se4 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 3.0000 Ni++ + 4.0000 Se-- - log_k -152.8793 - -delta_H 0 # Not possible to calculate enthalpy of reaction Wilkmanite + Ni3Se4 + H2O = 0.5 O2 + 2 H+ + 3 Ni+2 + 4 Se-2 + log_k -152.8793 + -delta_H 0 # Not possible to calculate enthalpy of reaction Wilkmanite # Enthalpy of formation: -60.285 kcal/mol - -analytic -1.9769e+002 -4.9968e-002 -2.8208e+004 6.2863e+001 -1.1322e+005 + -analytic -1.9769e+2 -4.9968e-2 -2.8208e+4 6.2863e+1 -1.1322e+5 # -Range: 0-300 Witherite - BaCO3 +1.0000 H+ = + 1.0000 Ba++ + 1.0000 HCO3- - log_k -2.9965 - -delta_H 17.1628 kJ/mol # Calculated enthalpy of reaction Witherite + BaCO3 + H+ = Ba+2 + HCO3- + log_k -2.9965 + -delta_H 17.1628 kJ/mol # Calculated enthalpy of reaction Witherite # Enthalpy of formation: -297.5 kcal/mol - -analytic -1.2585e+002 -4.4315e-002 2.0227e+003 5.2239e+001 3.1600e+001 + -analytic -1.2585e+2 -4.4315e-2 2.0227e+3 5.2239e+1 3.16e+1 # -Range: 0-300 Wollastonite - CaSiO3 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 SiO2 - log_k 13.7605 - -delta_H -76.5756 kJ/mol # Calculated enthalpy of reaction Wollastonite + CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 + log_k 13.7605 + -delta_H -76.5756 kJ/mol # Calculated enthalpy of reaction Wollastonite # Enthalpy of formation: -389.59 kcal/mol - -analytic 3.0931e+001 6.7466e-003 5.1749e+003 -1.3209e+001 -3.4579e+005 + -analytic 3.0931e+1 6.7466e-3 5.1749e+3 -1.3209e+1 -3.4579e+5 # -Range: 0-300 Wurtzite - ZnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Zn++ - log_k -9.1406 - -delta_H 22.3426 kJ/mol # Calculated enthalpy of reaction Wurtzite + ZnS + H+ = HS- + Zn+2 + log_k -9.1406 + -delta_H 22.3426 kJ/mol # Calculated enthalpy of reaction Wurtzite # Enthalpy of formation: -45.85 kcal/mol - -analytic -1.5446e+002 -4.8874e-002 2.4551e+003 6.1278e+001 3.8355e+001 + -analytic -1.5446e+2 -4.8874e-2 2.4551e+3 6.1278e+1 3.8355e+1 # -Range: 0-300 Wustite - Fe.947O +2.0000 H+ = + 0.1060 Fe+++ + 0.8410 Fe++ + 1.0000 H2O - log_k 12.4113 - -delta_H -102.417 kJ/mol # Calculated enthalpy of reaction Wustite + Fe.947O + 2 H+ = 0.106 Fe+3 + 0.841 Fe+2 + H2O + log_k 12.4113 + -delta_H -102.417 kJ/mol # Calculated enthalpy of reaction Wustite # Enthalpy of formation: -266.265 kJ/mol - -analytic -7.6919e+001 -1.8433e-002 7.3823e+003 2.8312e+001 1.1522e+002 + -analytic -7.6919e+1 -1.8433e-2 7.3823e+3 2.8312e+1 1.1522e+2 # -Range: 0-300 Xonotlite - Ca6Si6O17(OH)2 +12.0000 H+ = + 6.0000 Ca++ + 6.0000 SiO2 + 7.0000 H2O - log_k 91.8267 - -delta_H -495.457 kJ/mol # Calculated enthalpy of reaction Xonotlite + Ca6Si6O17(OH)2 + 12 H+ = 6 Ca+2 + 6 SiO2 + 7 H2O + log_k 91.8267 + -delta_H -495.457 kJ/mol # Calculated enthalpy of reaction Xonotlite # Enthalpy of formation: -2397.25 kcal/mol - -analytic 1.6080e+003 3.7309e-001 -2.2548e+004 -6.2716e+002 -3.8346e+002 + -analytic 1.608e+3 3.7309e-1 -2.2548e+4 -6.2716e+2 -3.8346e+2 # -Range: 0-200 Y - Y +3.0000 H+ +0.7500 O2 = + 1.0000 Y+++ + 1.5000 H2O - log_k 184.5689 - -delta_H -1134.7 kJ/mol # Calculated enthalpy of reaction Y + Y + 3 H+ + 0.75 O2 = Y+3 + 1.5 H2O + log_k 184.5689 + -delta_H -1134.7 kJ/mol # Calculated enthalpy of reaction Y # Enthalpy of formation: 0 kJ/mol - -analytic -6.2641e+001 -2.8062e-002 5.9667e+004 2.2394e+001 9.3107e+002 + -analytic -6.2641e+1 -2.8062e-2 5.9667e+4 2.2394e+1 9.3107e+2 # -Range: 0-300 Yb - Yb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Yb++ - log_k 137.1930 - -delta_H -810.303 kJ/mol # Calculated enthalpy of reaction Yb + Yb + 2 H+ + 0.5 O2 = H2O + Yb+2 + log_k 137.193 + -delta_H -810.303 kJ/mol # Calculated enthalpy of reaction Yb # Enthalpy of formation: 0 kJ/mol - -analytic -7.4712e+001 -2.0993e-002 4.4129e+004 2.8341e+001 6.8862e+002 + -analytic -7.4712e+1 -2.0993e-2 4.4129e+4 2.8341e+1 6.8862e+2 # -Range: 0-300 Yb(OH)3 - Yb(OH)3 +3.0000 H+ = + 1.0000 Yb+++ + 3.0000 H2O - log_k 14.6852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3 + Yb(OH)3 + 3 H+ = Yb+3 + 3 H2O + log_k 14.6852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3 # Enthalpy of formation: 0 kcal/mol Yb(OH)3(am) - Yb(OH)3 +3.0000 H+ = + 1.0000 Yb+++ + 3.0000 H2O - log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3(am) + Yb(OH)3 + 3 H+ = Yb+3 + 3 H2O + log_k 18.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3(am) # Enthalpy of formation: 0 kcal/mol Yb2(CO3)3 - Yb2(CO3)3 +3.0000 H+ = + 2.0000 Yb+++ + 3.0000 HCO3- - log_k -2.3136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2(CO3)3 + Yb2(CO3)3 + 3 H+ = 2 Yb+3 + 3 HCO3- + log_k -2.3136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2(CO3)3 # Enthalpy of formation: 0 kcal/mol Yb2O3 - Yb2O3 +6.0000 H+ = + 2.0000 Yb+++ + 3.0000 H2O - log_k 47.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2O3 + Yb2O3 + 6 H+ = 2 Yb+3 + 3 H2O + log_k 47.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2O3 # Enthalpy of formation: 0 kcal/mol YbF3:.5H2O - YbF3:.5H2O = + 0.5000 H2O + 1.0000 Yb+++ + 3.0000 F- - log_k -16.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbF3:.5H2O + YbF3:.5H2O = 0.5 H2O + Yb+3 + 3 F- + log_k -16 + -delta_H 0 # Not possible to calculate enthalpy of reaction YbF3:.5H2O # Enthalpy of formation: 0 kcal/mol YbPO4:10H2O - YbPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Yb+++ + 10.0000 H2O - log_k -11.7782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4:10H2O + YbPO4:10H2O + H+ = HPO4-2 + Yb+3 + 10 H2O + log_k -11.7782 + -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4:10H2O # Enthalpy of formation: 0 kcal/mol Zincite - ZnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Zn++ - log_k 11.2087 - -delta_H -88.7638 kJ/mol # Calculated enthalpy of reaction Zincite + ZnO + 2 H+ = H2O + Zn+2 + log_k 11.2087 + -delta_H -88.7638 kJ/mol # Calculated enthalpy of reaction Zincite # Enthalpy of formation: -350.46 kJ/mol - -analytic -8.6681e+001 -1.9324e-002 7.1034e+003 3.2256e+001 1.1087e+002 + -analytic -8.6681e+1 -1.9324e-2 7.1034e+3 3.2256e+1 1.1087e+2 # -Range: 0-300 Zircon - ZrSiO4 +2.0000 H+ = + 1.0000 SiO2 + 1.0000 Zr(OH)2++ - log_k -15.4193 - -delta_H 64.8635 kJ/mol # Calculated enthalpy of reaction Zircon + ZrSiO4 + 2 H+ = SiO2 + Zr(OH)2+2 + log_k -15.4193 + -delta_H 64.8635 kJ/mol # Calculated enthalpy of reaction Zircon # Enthalpy of formation: -2033.4 kJ/mol - -analytic 9.2639e+000 6.5416e-003 5.0759e+002 -8.4547e+000 -6.6155e+005 + -analytic 9.2639e+0 6.5416e-3 5.0759e+2 -8.4547e+0 -6.6155e+5 # -Range: 0-300 Zn - Zn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zn++ - log_k 68.8035 - -delta_H -433.157 kJ/mol # Calculated enthalpy of reaction Zn + Zn + 2 H+ + 0.5 O2 = H2O + Zn+2 + log_k 68.8035 + -delta_H -433.157 kJ/mol # Calculated enthalpy of reaction Zn # Enthalpy of formation: 0 kJ/mol - -analytic -6.4131e+001 -2.0009e-002 2.3921e+004 2.3702e+001 3.7329e+002 + -analytic -6.4131e+1 -2.0009e-2 2.3921e+4 2.3702e+1 3.7329e+2 # -Range: 0-300 Zn(BO2)2 - Zn(BO2)2 +2.0000 H+ +2.0000 H2O = + 1.0000 Zn++ + 2.0000 B(OH)3 - log_k 8.3130 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(BO2)2 + Zn(BO2)2 + 2 H+ + 2 H2O = Zn+2 + 2 B(OH)3 + log_k 8.313 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(BO2)2 # Enthalpy of formation: 0 kcal/mol Zn(ClO4)2:6H2O - Zn(ClO4)2:6H2O = + 1.0000 Zn++ + 2.0000 ClO4- + 6.0000 H2O - log_k 5.6474 - -delta_H 6.31871 kJ/mol # Calculated enthalpy of reaction Zn(ClO4)2:6H2O + Zn(ClO4)2:6H2O = Zn+2 + 2 ClO4- + 6 H2O + log_k 5.6474 + -delta_H 6.31871 kJ/mol # Calculated enthalpy of reaction Zn(ClO4)2:6H2O # Enthalpy of formation: -2133.39 kJ/mol - -analytic -1.8191e+002 -9.1383e-003 7.4822e+003 6.6751e+001 1.2712e+002 + -analytic -1.8191e+2 -9.1383e-3 7.4822e+3 6.6751e+1 1.2712e+2 # -Range: 0-200 Zn(IO3)2 - Zn(IO3)2 = + 1.0000 Zn++ + 2.0000 IO3- - log_k -5.3193 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(IO3)2 + Zn(IO3)2 = Zn+2 + 2 IO3- + log_k -5.3193 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(IO3)2 # Enthalpy of formation: 0 kcal/mol Zn(NO3)2:6H2O - Zn(NO3)2:6H2O = + 1.0000 Zn++ + 2.0000 NO3- + 6.0000 H2O - log_k 3.4102 - -delta_H 24.7577 kJ/mol # Calculated enthalpy of reaction Zn(NO3)2:6H2O + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.4102 + -delta_H 24.7577 kJ/mol # Calculated enthalpy of reaction Zn(NO3)2:6H2O # Enthalpy of formation: -2306.8 kJ/mol - -analytic -1.7152e+002 -1.6875e-002 5.6291e+003 6.5094e+001 9.5649e+001 + -analytic -1.7152e+2 -1.6875e-2 5.6291e+3 6.5094e+1 9.5649e+1 # -Range: 0-200 Zn(OH)2(beta) - Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O - log_k 11.9341 - -delta_H -83.2111 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(beta) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.9341 + -delta_H -83.2111 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(beta) # Enthalpy of formation: -641.851 kJ/mol - -analytic -7.7810e+001 -7.8548e-003 7.1994e+003 2.7455e+001 1.2228e+002 + -analytic -7.781e+1 -7.8548e-3 7.1994e+3 2.7455e+1 1.2228e+2 # -Range: 0-200 Zn(OH)2(epsilon) - Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O - log_k 11.6625 - -delta_H -81.7811 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(epsilon) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.6625 + -delta_H -81.7811 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(epsilon) # Enthalpy of formation: -643.281 kJ/mol - -analytic -7.7938e+001 -7.8767e-003 7.1282e+003 2.7496e+001 1.2107e+002 + -analytic -7.7938e+1 -7.8767e-3 7.1282e+3 2.7496e+1 1.2107e+2 # -Range: 0-200 Zn(OH)2(gamma) - Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O - log_k 11.8832 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2(gamma) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.8832 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2(gamma) # Enthalpy of formation: 0 kcal/mol Zn2(OH)3Cl - Zn2(OH)3Cl +3.0000 H+ = + 1.0000 Cl- + 2.0000 Zn++ + 3.0000 H2O - log_k 15.2921 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2(OH)3Cl + Zn2(OH)3Cl + 3 H+ = Cl- + 2 Zn+2 + 3 H2O + log_k 15.2921 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2(OH)3Cl # Enthalpy of formation: 0 kcal/mol Zn2SO4(OH)2 - Zn2SO4(OH)2 +2.0000 H+ = + 1.0000 SO4-- + 2.0000 H2O + 2.0000 Zn++ - log_k 7.5816 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2SO4(OH)2 + Zn2SO4(OH)2 + 2 H+ = SO4-2 + 2 H2O + 2 Zn+2 + log_k 7.5816 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2SO4(OH)2 # Enthalpy of formation: 0 kcal/mol Zn2SiO4 - Zn2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Zn++ - log_k 13.8695 - -delta_H -119.399 kJ/mol # Calculated enthalpy of reaction Zn2SiO4 + Zn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Zn+2 + log_k 13.8695 + -delta_H -119.399 kJ/mol # Calculated enthalpy of reaction Zn2SiO4 # Enthalpy of formation: -1636.75 kJ/mol - -analytic 2.0970e+002 5.3663e-002 -1.2724e+002 -8.5445e+001 -2.2336e+000 + -analytic 2.097e+2 5.3663e-2 -1.2724e+2 -8.5445e+1 -2.2336e+0 # -Range: 0-200 Zn2TiO4 - Zn2TiO4 +4.0000 H+ = + 1.0000 Ti(OH)4 + 2.0000 Zn++ - log_k 12.3273 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2TiO4 + Zn2TiO4 + 4 H+ = Ti(OH)4 + 2 Zn+2 + log_k 12.3273 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2TiO4 # Enthalpy of formation: -1647.85 kJ/mol Zn3(AsO4)2 - Zn3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Zn++ - log_k 9.3122 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn3(AsO4)2 + Zn3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Zn+2 + log_k 9.3122 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn3(AsO4)2 # Enthalpy of formation: 0 kcal/mol Zn3O(SO4)2 - Zn3O(SO4)2 +2.0000 H+ = + 1.0000 H2O + 2.0000 SO4-- + 3.0000 Zn++ - log_k 19.1188 - -delta_H -258.253 kJ/mol # Calculated enthalpy of reaction Zn3O(SO4)2 + Zn3O(SO4)2 + 2 H+ = H2O + 2 SO4-2 + 3 Zn+2 + log_k 19.1188 + -delta_H -258.253 kJ/mol # Calculated enthalpy of reaction Zn3O(SO4)2 # Enthalpy of formation: -2306.95 kJ/mol - -analytic -3.9661e+001 -4.3860e-002 1.1301e+004 1.3709e+001 1.9193e+002 + -analytic -3.9661e+1 -4.386e-2 1.1301e+4 1.3709e+1 1.9193e+2 # -Range: 0-200 Zn5(NO3)2(OH)8 - Zn5(NO3)2(OH)8 +8.0000 H+ = + 2.0000 NO3- + 5.0000 Zn++ + 8.0000 H2O - log_k 42.6674 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn5(NO3)2(OH)8 + Zn5(NO3)2(OH)8 + 8 H+ = 2 NO3- + 5 Zn+2 + 8 H2O + log_k 42.6674 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn5(NO3)2(OH)8 # Enthalpy of formation: 0 kcal/mol ZnBr2 - ZnBr2 = + 1.0000 Zn++ + 2.0000 Br- - log_k 7.5787 - -delta_H -67.7622 kJ/mol # Calculated enthalpy of reaction ZnBr2 + ZnBr2 = Zn+2 + 2 Br- + log_k 7.5787 + -delta_H -67.7622 kJ/mol # Calculated enthalpy of reaction ZnBr2 # Enthalpy of formation: -328.63 kJ/mol - -analytic 6.5789e-002 -2.1477e-002 1.9840e+003 2.9302e+000 3.3691e+001 + -analytic 6.5789e-2 -2.1477e-2 1.984e+3 2.9302e+0 3.3691e+1 # -Range: 0-200 ZnBr2:2H2O - ZnBr2:2H2O = + 1.0000 Zn++ + 2.0000 Br- + 2.0000 H2O - log_k 5.2999 - -delta_H -30.9268 kJ/mol # Calculated enthalpy of reaction ZnBr2:2H2O + ZnBr2:2H2O = Zn+2 + 2 Br- + 2 H2O + log_k 5.2999 + -delta_H -30.9268 kJ/mol # Calculated enthalpy of reaction ZnBr2:2H2O # Enthalpy of formation: -937.142 kJ/mol - -analytic -4.9260e+001 -2.1682e-002 2.4325e+003 2.1360e+001 4.1324e+001 + -analytic -4.926e+1 -2.1682e-2 2.4325e+3 2.136e+1 4.1324e+1 # -Range: 0-200 ZnCO3:H2O - ZnCO3:H2O +1.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Zn++ - log_k 0.1398 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3:H2O + ZnCO3:H2O + H+ = H2O + HCO3- + Zn+2 + log_k 0.1398 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3:H2O # Enthalpy of formation: 0 kcal/mol ZnCl2 - ZnCl2 = + 1.0000 Zn++ + 2.0000 Cl- - log_k 7.0880 - -delta_H -72.4548 kJ/mol # Calculated enthalpy of reaction ZnCl2 + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.088 + -delta_H -72.4548 kJ/mol # Calculated enthalpy of reaction ZnCl2 # Enthalpy of formation: -415.09 kJ/mol - -analytic -1.6157e+001 -2.5405e-002 2.6505e+003 8.8584e+000 4.5015e+001 + -analytic -1.6157e+1 -2.5405e-2 2.6505e+3 8.8584e+0 4.5015e+1 # -Range: 0-200 ZnCl2(NH3)2 - ZnCl2(NH3)2 = + 1.0000 Zn++ + 2.0000 Cl- + 2.0000 NH3 - log_k -6.9956 - -delta_H 27.2083 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)2 + ZnCl2(NH3)2 = Zn+2 + 2 Cl- + 2 NH3 + log_k -6.9956 + -delta_H 27.2083 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)2 # Enthalpy of formation: -677.427 kJ/mol - -analytic -5.9409e+001 -2.2698e-002 -2.9178e+002 2.4308e+001 -4.9341e+000 + -analytic -5.9409e+1 -2.2698e-2 -2.9178e+2 2.4308e+1 -4.9341e+0 # -Range: 0-200 ZnCl2(NH3)4 - ZnCl2(NH3)4 = + 1.0000 Zn++ + 2.0000 Cl- + 4.0000 NH3 - log_k -6.6955 - -delta_H 56.2004 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)4 + ZnCl2(NH3)4 = Zn+2 + 2 Cl- + 4 NH3 + log_k -6.6955 + -delta_H 56.2004 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)4 # Enthalpy of formation: -869.093 kJ/mol - -analytic -9.9769e+001 -1.9793e-002 4.2916e+002 3.9412e+001 7.3223e+000 + -analytic -9.9769e+1 -1.9793e-2 4.2916e+2 3.9412e+1 7.3223e+0 # -Range: 0-200 ZnCl2(NH3)6 - ZnCl2(NH3)6 = + 1.0000 Zn++ + 2.0000 Cl- + 6.0000 NH3 - log_k -4.7311 - -delta_H 77.4225 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)6 + ZnCl2(NH3)6 = Zn+2 + 2 Cl- + 6 NH3 + log_k -4.7311 + -delta_H 77.4225 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)6 # Enthalpy of formation: -1052.99 kJ/mol - -analytic -1.3984e+002 -1.6896e-002 1.5559e+003 5.4524e+001 2.6470e+001 + -analytic -1.3984e+2 -1.6896e-2 1.5559e+3 5.4524e+1 2.647e+1 # -Range: 0-200 ZnCr2O4 - ZnCr2O4 +8.0000 H+ = + 1.0000 Zn++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 7.9161 - -delta_H -221.953 kJ/mol # Calculated enthalpy of reaction ZnCr2O4 + ZnCr2O4 + 8 H+ = Zn+2 + 2 Cr+3 + 4 H2O + log_k 7.9161 + -delta_H -221.953 kJ/mol # Calculated enthalpy of reaction ZnCr2O4 # Enthalpy of formation: -370.88 kcal/mol - -analytic -1.7603e+002 -1.0217e-002 1.7414e+004 5.1966e+001 2.9577e+002 + -analytic -1.7603e+2 -1.0217e-2 1.7414e+4 5.1966e+1 2.9577e+2 # -Range: 0-200 ZnF2 - ZnF2 = + 1.0000 Zn++ + 2.0000 F- - log_k -0.4418 - -delta_H -59.8746 kJ/mol # Calculated enthalpy of reaction ZnF2 + ZnF2 = Zn+2 + 2 F- + log_k -0.4418 + -delta_H -59.8746 kJ/mol # Calculated enthalpy of reaction ZnF2 # Enthalpy of formation: -764.206 kJ/mol - -analytic -2.6085e+002 -8.4594e-002 9.0240e+003 1.0318e+002 1.4089e+002 + -analytic -2.6085e+2 -8.4594e-2 9.024e+3 1.0318e+2 1.4089e+2 # -Range: 0-300 ZnI2 - ZnI2 = + 1.0000 Zn++ + 2.0000 I- - log_k 7.3885 - -delta_H -59.2332 kJ/mol # Calculated enthalpy of reaction ZnI2 + ZnI2 = Zn+2 + 2 I- + log_k 7.3885 + -delta_H -59.2332 kJ/mol # Calculated enthalpy of reaction ZnI2 # Enthalpy of formation: -207.957 kJ/mol - -analytic -1.6472e+001 -2.5573e-002 2.0796e+003 9.9013e+000 3.5320e+001 + -analytic -1.6472e+1 -2.5573e-2 2.0796e+3 9.9013e+0 3.532e+1 # -Range: 0-200 ZnSO4 - ZnSO4 = + 1.0000 SO4-- + 1.0000 Zn++ - log_k 3.5452 - -delta_H -80.132 kJ/mol # Calculated enthalpy of reaction ZnSO4 + ZnSO4 = SO4-2 + Zn+2 + log_k 3.5452 + -delta_H -80.132 kJ/mol # Calculated enthalpy of reaction ZnSO4 # Enthalpy of formation: -982.855 kJ/mol - -analytic 6.9905e+000 -1.8046e-002 2.2566e+003 -2.2819e+000 3.8318e+001 + -analytic 6.9905e+0 -1.8046e-2 2.2566e+3 -2.2819e+0 3.8318e+1 # -Range: 0-200 ZnSO4:6H2O - ZnSO4:6H2O = + 1.0000 SO4-- + 1.0000 Zn++ + 6.0000 H2O - log_k -1.6846 - -delta_H -0.412008 kJ/mol # Calculated enthalpy of reaction ZnSO4:6H2O + ZnSO4:6H2O = SO4-2 + Zn+2 + 6 H2O + log_k -1.6846 + -delta_H -0.412008 kJ/mol # Calculated enthalpy of reaction ZnSO4:6H2O # Enthalpy of formation: -2777.61 kJ/mol - -analytic -1.4506e+002 -1.8736e-002 5.2179e+003 5.3121e+001 8.8657e+001 + -analytic -1.4506e+2 -1.8736e-2 5.2179e+3 5.3121e+1 8.8657e+1 # -Range: 0-200 ZnSO4:7H2O - ZnSO4:7H2O = + 1.0000 SO4-- + 1.0000 Zn++ + 7.0000 H2O - log_k -1.8683 - -delta_H 14.0417 kJ/mol # Calculated enthalpy of reaction ZnSO4:7H2O + ZnSO4:7H2O = SO4-2 + Zn+2 + 7 H2O + log_k -1.8683 + -delta_H 14.0417 kJ/mol # Calculated enthalpy of reaction ZnSO4:7H2O # Enthalpy of formation: -3077.9 kJ/mol - -analytic -1.6943e+002 -1.8833e-002 5.6484e+003 6.2326e+001 9.5975e+001 + -analytic -1.6943e+2 -1.8833e-2 5.6484e+3 6.2326e+1 9.5975e+1 # -Range: 0-200 ZnSO4:H2O - ZnSO4:H2O = + 1.0000 H2O + 1.0000 SO4-- + 1.0000 Zn++ - log_k -0.5383 - -delta_H -44.2824 kJ/mol # Calculated enthalpy of reaction ZnSO4:H2O + ZnSO4:H2O = H2O + SO4-2 + Zn+2 + log_k -0.5383 + -delta_H -44.2824 kJ/mol # Calculated enthalpy of reaction ZnSO4:H2O # Enthalpy of formation: -1304.54 kJ/mol - -analytic -1.7908e+001 -1.8228e-002 1.5811e+003 7.0677e+000 2.6856e+001 + -analytic -1.7908e+1 -1.8228e-2 1.5811e+3 7.0677e+0 2.6856e+1 # -Range: 0-200 ZnSeO3:H2O - ZnSeO3:H2O = + 1.0000 H2O + 1.0000 SeO3-- + 1.0000 Zn++ - log_k -6.7408 - -delta_H -17.9056 kJ/mol # Calculated enthalpy of reaction ZnSeO3:H2O + ZnSeO3:H2O = H2O + SeO3-2 + Zn+2 + log_k -6.7408 + -delta_H -17.9056 kJ/mol # Calculated enthalpy of reaction ZnSeO3:H2O # Enthalpy of formation: -930.511 kJ/mol - -analytic -1.8569e+001 -1.9929e-002 6.4377e+001 7.0892e+000 1.0996e+000 + -analytic -1.8569e+1 -1.9929e-2 6.4377e+1 7.0892e+0 1.0996e+0 # -Range: 0-200 Zoisite - Ca2Al3(SiO4)3OH +13.0000 H+ = + 2.0000 Ca++ + 3.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O - log_k 43.3017 - -delta_H -458.131 kJ/mol # Calculated enthalpy of reaction Zoisite + Ca2Al3(SiO4)3OH + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O + log_k 43.3017 + -delta_H -458.131 kJ/mol # Calculated enthalpy of reaction Zoisite # Enthalpy of formation: -1643.69 kcal/mol - -analytic 2.5321e+000 -3.5886e-002 1.9902e+004 -6.2443e+000 3.1055e+002 + -analytic 2.5321e+0 -3.5886e-2 1.9902e+4 -6.2443e+0 3.1055e+2 # -Range: 0-300 Zr - Zr +2.0000 H+ +1.0000 O2 = + 1.0000 Zr(OH)2++ - log_k 177.6471 - -delta_H -1078.71 kJ/mol # Calculated enthalpy of reaction Zr + Zr + 2 H+ + O2 = Zr(OH)2+2 + log_k 177.6471 + -delta_H -1078.71 kJ/mol # Calculated enthalpy of reaction Zr # Enthalpy of formation: 0 kJ/mol - -analytic -2.8360e+001 -1.5214e-002 5.8045e+004 7.8012e+000 -3.0657e+005 + -analytic -2.836e+1 -1.5214e-2 5.8045e+4 7.8012e+0 -3.0657e+5 # -Range: 0-300 ZrB2 - ZrB2 +3.0000 H+ +2.0000 H2O +0.5000 O2 = + 1.0000 B(OH)3 + 1.0000 BH4- + 1.0000 Zr++++ - log_k 103.4666 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrB2 + ZrB2 + 3 H+ + 2 H2O + 0.5 O2 = B(OH)3 + BH4- + Zr+4 + log_k 103.4666 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrB2 # Enthalpy of formation: -326.628 kJ/mol ZrC - ZrC +3.0000 H+ +2.0000 O2 = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Zr++++ - log_k 207.0906 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrC + ZrC + 3 H+ + 2 O2 = H2O + HCO3- + Zr+4 + log_k 207.0906 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrC # Enthalpy of formation: -203.008 kJ/mol ZrCl - ZrCl +3.0000 H+ +0.7500 O2 = + 1.0000 Cl- + 1.0000 Zr++++ + 1.5000 H2O - log_k 130.9450 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl + ZrCl + 3 H+ + 0.75 O2 = Cl- + Zr+4 + 1.5 H2O + log_k 130.945 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl # Enthalpy of formation: -303.211 kJ/mol ZrCl2 - ZrCl2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zr++++ + 2.0000 Cl- - log_k 96.3205 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl2 + ZrCl2 + 2 H+ + 0.5 O2 = H2O + Zr+4 + 2 Cl- + log_k 96.3205 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl2 # Enthalpy of formation: -531.021 kJ/mol ZrCl3 - ZrCl3 +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Zr++++ + 3.0000 Cl- - log_k 62.4492 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl3 + ZrCl3 + H+ + 0.25 O2 = 0.5 H2O + Zr+4 + 3 Cl- + log_k 62.4492 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl3 # Enthalpy of formation: -754.997 kJ/mol ZrCl4 - ZrCl4 = + 1.0000 Zr++++ + 4.0000 Cl- - log_k 27.9824 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl4 + ZrCl4 = Zr+4 + 4 Cl- + log_k 27.9824 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl4 # Enthalpy of formation: -980.762 kJ/mol ZrF4(beta) - ZrF4 = + 1.0000 Zr++++ + 4.0000 F- - log_k -27.7564 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(beta) + ZrF4 = Zr+4 + 4 F- + log_k -27.7564 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(beta) # Enthalpy of formation: -1911.26 kJ/mol ZrH2 - ZrH2 +4.0000 H+ +1.5000 O2 = + 1.0000 Zr++++ + 3.0000 H2O - log_k 198.3224 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrH2 + ZrH2 + 4 H+ + 1.5 O2 = Zr+4 + 3 H2O + log_k 198.3224 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrH2 # Enthalpy of formation: -168.946 kJ/mol ZrN - ZrN +4.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 NH3 + 1.0000 Zr++++ - log_k 59.1271 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrN + ZrN + 4 H+ + 0.25 O2 = 0.5 H2O + NH3 + Zr+4 + log_k 59.1271 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrN # Enthalpy of formation: -365 kJ/mol O-phthalic_acid - H2O_phthalate = + 1.0000 O_phthalate-2 + 2.0000 H+ - log_k -9.7755 - -delta_H 0 # Not possible to calculate enthalpy of reaction O-phthalic_acid + H2O_phthalate = O_phthalate-2 + 2 H+ + log_k -9.7755 + -delta_H 0 # Not possible to calculate enthalpy of reaction O-phthalic_acid # Enthalpy of formation: -186.88 kJ/mol - -analytic 7.3450e+001 1.9477e-002 -3.6511e+003 -3.1035e+001 -6.2027e+001 + -analytic 7.345e+1 1.9477e-2 -3.6511e+3 -3.1035e+1 -6.2027e+1 # -Range: 0-200 Br2(l) - Br2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Br- + 2.0000 H+ - log_k -6.5419 - -delta_H 36.7648 kJ/mol # Calculated enthalpy of reaction Br2(l) + Br2 + H2O = 0.5 O2 + 2 Br- + 2 H+ + log_k -6.5419 + -delta_H 36.7648 kJ/mol # Calculated enthalpy of reaction Br2(l) # Enthalpy of formation: 0 kJ/mol - -analytic -1.5875e+002 -5.8039e-002 1.5583e+003 6.6381e+001 2.4362e+001 + -analytic -1.5875e+2 -5.8039e-2 1.5583e+3 6.6381e+1 2.4362e+1 # -Range: 0-300 Hg(l) - Hg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hg++ - log_k 14.1505 - -delta_H -109.608 kJ/mol # Calculated enthalpy of reaction Hg(l) + Hg + 2 H+ + 0.5 O2 = H2O + Hg+2 + log_k 14.1505 + -delta_H -109.608 kJ/mol # Calculated enthalpy of reaction Hg(l) # Enthalpy of formation: 0 kcal/mol - -analytic -6.6462e+001 -1.8504e-002 7.3141e+003 2.4888e+001 1.1415e+002 + -analytic -6.6462e+1 -1.8504e-2 7.3141e+3 2.4888e+1 1.1415e+2 # -Range: 0-300 Ag(g) - Ag +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Ag+ - log_k 51.0924 - -delta_H -319.035 kJ/mol # Calculated enthalpy of reaction Ag(g) + Ag + H+ + 0.25 O2 = 0.5 H2O + Ag+ + log_k 51.0924 + -delta_H -319.035 kJ/mol # Calculated enthalpy of reaction Ag(g) # Enthalpy of formation: 284.9 kJ/mol - -analytic -5.8006e+000 1.7178e-003 1.6809e+004 0.0000e+000 0.0000e+000 + -analytic -5.8006e+0 1.7178e-3 1.6809e+4 0e+0 0e+0 # -Range: 0-200 Al(g) - Al +3.0000 H+ +0.7500 O2 = + 1.0000 Al+++ + 1.5000 H2O - log_k 200.6258 - -delta_H -1288.06 kJ/mol # Calculated enthalpy of reaction Al(g) + Al + 3 H+ + 0.75 O2 = Al+3 + 1.5 H2O + log_k 200.6258 + -delta_H -1288.06 kJ/mol # Calculated enthalpy of reaction Al(g) # Enthalpy of formation: 330 kJ/mol - -analytic 9.6402e+000 -6.9301e-003 6.5270e+004 -1.0461e+001 1.1084e+003 + -analytic 9.6402e+0 -6.9301e-3 6.527e+4 -1.0461e+1 1.1084e+3 # -Range: 0-200 Am(g) - Am +3.0000 H+ +0.7500 O2 = + 1.0000 Am+++ + 1.5000 H2O - log_k 211.7865 - -delta_H -1320.16 kJ/mol # Calculated enthalpy of reaction Am(g) + Am + 3 H+ + 0.75 O2 = Am+3 + 1.5 H2O + log_k 211.7865 + -delta_H -1320.16 kJ/mol # Calculated enthalpy of reaction Am(g) # Enthalpy of formation: 283.8 kJ/mol - -analytic -1.4236e+001 -8.7560e-003 6.8166e+004 0.0000e+000 0.0000e+000 + -analytic -1.4236e+1 -8.756e-3 6.8166e+4 0e+0 0e+0 # -Range: 0-300 AmF3(g) - AmF3 = + 1.0000 Am+++ + 3.0000 F- - log_k 49.8631 - -delta_H -455.843 kJ/mol # Calculated enthalpy of reaction AmF3(g) + AmF3 = Am+3 + 3 F- + log_k 49.8631 + -delta_H -455.843 kJ/mol # Calculated enthalpy of reaction AmF3(g) # Enthalpy of formation: -1166.9 kJ/mol - -analytic -4.7209e+001 -3.6440e-002 2.2278e+004 1.3418e+001 3.7833e+002 + -analytic -4.7209e+1 -3.644e-2 2.2278e+4 1.3418e+1 3.7833e+2 # -Range: 0-200 Ar(g) - Ar = + 1.0000 Ar - log_k -2.8587 - -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction Ar(g) + Ar = Ar + log_k -2.8587 + -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction Ar(g) # Enthalpy of formation: 0 kcal/mol - -analytic -7.4387e+000 7.8991e-003 0.0000e+000 0.0000e+000 1.9830e+005 + -analytic -7.4387e+0 7.8991e-3 0e+0 0e+0 1.983e+5 # -Range: 0-300 B(g) - B +1.5000 H2O +0.7500 O2 = + 1.0000 B(OH)3 - log_k 200.8430 - -delta_H -1201.68 kJ/mol # Calculated enthalpy of reaction B(g) + B + 1.5 H2O + 0.75 O2 = B(OH)3 + log_k 200.843 + -delta_H -1201.68 kJ/mol # Calculated enthalpy of reaction B(g) # Enthalpy of formation: 565 kJ/mol - -analytic 1.0834e+002 1.0606e-002 5.8150e+004 -4.2720e+001 9.8743e+002 + -analytic 1.0834e+2 1.0606e-2 5.815e+4 -4.272e+1 9.8743e+2 # -Range: 0-200 BF3(g) - BF3 +3.0000 H2O = + 1.0000 B(OH)3 + 3.0000 F- + 3.0000 H+ - log_k -2.9664 - -delta_H -87.0627 kJ/mol # Calculated enthalpy of reaction BF3(g) + BF3 + 3 H2O = B(OH)3 + 3 F- + 3 H+ + log_k -2.9664 + -delta_H -87.0627 kJ/mol # Calculated enthalpy of reaction BF3(g) # Enthalpy of formation: -1136 kJ/mol - -analytic 5.2848e+001 -2.4617e-002 -1.8159e+002 -1.9350e+001 -3.1018e+000 + -analytic 5.2848e+1 -2.4617e-2 -1.8159e+2 -1.935e+1 -3.1018e+0 # -Range: 0-200 Be(g) - Be +2.0000 H+ +0.5000 O2 = + 1.0000 Be++ + 1.0000 H2O - log_k 361.9343 - -delta_H 0 # Not possible to calculate enthalpy of reaction Be(g) + Be + 2 H+ + 0.5 O2 = Be+2 + H2O + log_k 361.9343 + -delta_H 0 # Not possible to calculate enthalpy of reaction Be(g) # Enthalpy of formation: 0 kcal/mol Br2(g) - Br2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Br- + 2.0000 H+ - log_k -5.9979 - -delta_H 5.85481 kJ/mol # Calculated enthalpy of reaction Br2(g) + Br2 + H2O = 0.5 O2 + 2 Br- + 2 H+ + log_k -5.9979 + -delta_H 5.85481 kJ/mol # Calculated enthalpy of reaction Br2(g) # Enthalpy of formation: 30.91 kJ/mol - -analytic -3.2403e+000 -1.7609e-002 -1.4941e+003 3.0300e+000 -2.5370e+001 + -analytic -3.2403e+0 -1.7609e-2 -1.4941e+3 3.03e+0 -2.537e+1 # -Range: 0-200 C(g) - C +1.0000 H2O +1.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- - log_k 181.7723 - -delta_H -1108.64 kJ/mol # Calculated enthalpy of reaction C(g) + C + H2O + O2 = H+ + HCO3- + log_k 181.7723 + -delta_H -1108.64 kJ/mol # Calculated enthalpy of reaction C(g) # Enthalpy of formation: 716.68 kJ/mol - -analytic 1.0485e+002 1.7907e-003 5.2768e+004 -4.0661e+001 8.9605e+002 + -analytic 1.0485e+2 1.7907e-3 5.2768e+4 -4.0661e+1 8.9605e+2 # -Range: 0-200 Ethylene(g) - Ethylene = + 1.0000 Ethylene - log_k -2.3236 - -delta_H -16.4431 kJ/mol # Calculated enthalpy of reaction Ethylene(g) + Ethylene = Ethylene + log_k -2.3236 + -delta_H -16.4431 kJ/mol # Calculated enthalpy of reaction Ethylene(g) # Enthalpy of formation: 12.5 kcal/mol - -analytic -7.5368e+000 8.4676e-003 0.0000e+000 0.0000e+000 2.3971e+005 + -analytic -7.5368e+0 8.4676e-3 0e+0 0e+0 2.3971e+5 # -Range: 0-300 CH4(g) - CH4 = + 1.0000 CH4 - log_k -2.8502 - -delta_H -13.0959 kJ/mol # Calculated enthalpy of reaction CH4(g) + CH4 = CH4 + log_k -2.8502 + -delta_H -13.0959 kJ/mol # Calculated enthalpy of reaction CH4(g) # Enthalpy of formation: -17.88 kcal/mol - -analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005 + -analytic -2.4027e+1 4.7146e-3 3.7227e+2 6.4264e+0 2.3362e+5 # -Range: 0-300 CO(g) -# CO +1.0000 H2O +0.5000 O2 = + 1.0000 H+ + 1.0000 HCO3- +# CO +1.0000 H2O +0.5000 O2 = + 1.0000 H+ + 1.0000 HCO3- # log_k 38.6934 # -analytic -6.1217e+001 -3.1388e-002 1.5283e+004 2.3433e+001 2.3850e+002 # -Range: 0-300 CO = CO - log_k -3.0068 - -delta_H -10.4349 kJ/mol # Calculated enthalpy of reaction CO(g) + log_k -3.0068 + -delta_H -10.4349 kJ/mol # Calculated enthalpy of reaction CO(g) # Enthalpy of formation: -26.416 kcal/mol - -analytic -8.0849e+000 9.2114e-003 0.0000e+000 0.0000e+000 2.0813e+005 + -analytic -8.0849e+0 9.2114e-3 0e+0 0e+0 2.0813e+5 # -Range: 0-300 CO2(g) - CO2 +1.0000 H2O = + 1.0000 H+ + 1.0000 HCO3- - log_k -7.8136 - -delta_H -10.5855 kJ/mol # Calculated enthalpy of reaction CO2(g) + CO2 + H2O = H+ + HCO3- + log_k -7.8136 + -delta_H -10.5855 kJ/mol # Calculated enthalpy of reaction CO2(g) # Enthalpy of formation: -94.051 kcal/mol - -analytic -8.5938e+001 -3.0431e-002 2.0702e+003 3.2427e+001 3.2328e+001 + -analytic -8.5938e+1 -3.0431e-2 2.0702e+3 3.2427e+1 3.2328e+1 # -Range: 0-300 Ca(g) - Ca +2.0000 H+ +0.5000 O2 = + 1.0000 Ca++ + 1.0000 H2O - log_k 165.0778 - -delta_H -1000.65 kJ/mol # Calculated enthalpy of reaction Ca(g) + Ca + 2 H+ + 0.5 O2 = Ca+2 + H2O + log_k 165.0778 + -delta_H -1000.65 kJ/mol # Calculated enthalpy of reaction Ca(g) # Enthalpy of formation: 177.8 kJ/mol - -analytic -7.3029e+000 -4.8208e-003 5.1822e+004 0.0000e+000 0.0000e+000 + -analytic -7.3029e+0 -4.8208e-3 5.1822e+4 0e+0 0e+0 # -Range: 0-200 Cd(g) - Cd +2.0000 H+ +0.5000 O2 = + 1.0000 Cd++ + 1.0000 H2O - log_k 70.1363 - -delta_H -467.469 kJ/mol # Calculated enthalpy of reaction Cd(g) + Cd + 2 H+ + 0.5 O2 = Cd+2 + H2O + log_k 70.1363 + -delta_H -467.469 kJ/mol # Calculated enthalpy of reaction Cd(g) # Enthalpy of formation: 111.8 kJ/mol - -analytic -9.8665e+000 -3.0921e-003 2.4126e+004 0.0000e+000 0.0000e+000 + -analytic -9.8665e+0 -3.0921e-3 2.4126e+4 0e+0 0e+0 # -Range: 0-200 Cl2(g) - Cl2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Cl- + 2.0000 H+ - log_k 3.0004 - -delta_H -54.3878 kJ/mol # Calculated enthalpy of reaction Cl2(g) + Cl2 + H2O = 0.5 O2 + 2 Cl- + 2 H+ + log_k 3.0004 + -delta_H -54.3878 kJ/mol # Calculated enthalpy of reaction Cl2(g) # Enthalpy of formation: 0 kJ/mol - -analytic -1.9456e+001 -2.1491e-002 2.0652e+003 8.8629e+000 3.5076e+001 + -analytic -1.9456e+1 -2.1491e-2 2.0652e+3 8.8629e+0 3.5076e+1 # -Range: 0-200 Cs(g) - Cs +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Cs+ - log_k 81.2805 - -delta_H -474.413 kJ/mol # Calculated enthalpy of reaction Cs(g) + Cs + H+ + 0.25 O2 = 0.5 H2O + Cs+ + log_k 81.2805 + -delta_H -474.413 kJ/mol # Calculated enthalpy of reaction Cs(g) # Enthalpy of formation: 76.5 kJ/mol - -analytic 4.1676e+001 9.1952e-003 2.3401e+004 -1.6824e+001 3.9736e+002 + -analytic 4.1676e+1 9.1952e-3 2.3401e+4 -1.6824e+1 3.9736e+2 # -Range: 0-200 Cu(g) - Cu +2.0000 H+ +0.5000 O2 = + 1.0000 Cu++ + 1.0000 H2O - log_k 83.6618 - -delta_H -551.483 kJ/mol # Calculated enthalpy of reaction Cu(g) + Cu + 2 H+ + 0.5 O2 = Cu+2 + H2O + log_k 83.6618 + -delta_H -551.483 kJ/mol # Calculated enthalpy of reaction Cu(g) # Enthalpy of formation: 337.4 kJ/mol - -analytic -1.1249e+001 -2.7585e-003 2.8541e+004 0.0000e+000 0.0000e+000 + -analytic -1.1249e+1 -2.7585e-3 2.8541e+4 0e+0 0e+0 # -Range: 0-200 F2(g) - F2 +1.0000 H2O = + 0.5000 O2 + 2.0000 F- + 2.0000 H+ - log_k 55.7197 - -delta_H -390.924 kJ/mol # Calculated enthalpy of reaction F2(g) + F2 + H2O = 0.5 O2 + 2 F- + 2 H+ + log_k 55.7197 + -delta_H -390.924 kJ/mol # Calculated enthalpy of reaction F2(g) # Enthalpy of formation: 0 kJ/mol - -analytic -3.2664e+001 -2.1035e-002 1.9974e+004 1.1174e+001 3.3920e+002 + -analytic -3.2664e+1 -2.1035e-2 1.9974e+4 1.1174e+1 3.392e+2 # -Range: 0-200 H2(g) -# H2 +0.5000 O2 = + 1.0000 H2O +# H2 +0.5000 O2 = + 1.0000 H2O # log_k 43.0016 # -analytic -1.1609e+001 -3.7580e-003 1.5068e+004 2.4198e+000 -7.0997e+004 # -Range: 0-300 H2 = H2 - log_k -3.1050 - -delta_H -4.184 kJ/mol # Calculated enthalpy of reaction H2(g) + log_k -3.105 + -delta_H -4.184 kJ/mol # Calculated enthalpy of reaction H2(g) # Enthalpy of formation: 0 kcal/mol - -analytic -9.3114e+000 4.6473e-003 -4.9335e+001 1.4341e+000 1.2815e+005 + -analytic -9.3114e+0 4.6473e-3 -4.9335e+1 1.4341e+0 1.2815e+5 # -Range: 0-300 H2O(g) - H2O = + 1.0000 H2O - log_k 1.5854 - -delta_H -43.4383 kJ/mol # Calculated enthalpy of reaction H2O(g) + H2O = H2O + log_k 1.5854 + -delta_H -43.4383 kJ/mol # Calculated enthalpy of reaction H2O(g) # Enthalpy of formation: -57.935 kcal/mol - -analytic -1.4782e+001 1.0752e-003 2.7519e+003 2.7548e+000 4.2945e+001 + -analytic -1.4782e+1 1.0752e-3 2.7519e+3 2.7548e+0 4.2945e+1 # -Range: 0-300 H2S(g) - H2S = + 1.0000 H+ + 1.0000 HS- - log_k -7.9759 - -delta_H 4.5229 kJ/mol # Calculated enthalpy of reaction H2S(g) + H2S = H+ + HS- + log_k -7.9759 + -delta_H 4.5229 kJ/mol # Calculated enthalpy of reaction H2S(g) # Enthalpy of formation: -4.931 kcal/mol - -analytic -9.7354e+001 -3.1576e-002 1.8285e+003 3.7440e+001 2.8560e+001 + -analytic -9.7354e+1 -3.1576e-2 1.8285e+3 3.744e+1 2.856e+1 # -Range: 0-300 HBr(g) - HBr = + 1.0000 Br- + 1.0000 H+ - log_k 8.8815 - -delta_H -85.2134 kJ/mol # Calculated enthalpy of reaction HBr(g) + HBr = Br- + H+ + log_k 8.8815 + -delta_H -85.2134 kJ/mol # Calculated enthalpy of reaction HBr(g) # Enthalpy of formation: -36.29 kJ/mol - -analytic 8.1303e+000 -6.6641e-003 3.3951e+003 -3.4973e+000 5.7651e+001 + -analytic 8.1303e+0 -6.6641e-3 3.3951e+3 -3.4973e+0 5.7651e+1 # -Range: 0-200 HCl(g) - HCl = + 1.0000 Cl- + 1.0000 H+ - log_k 6.3055 - -delta_H -74.7697 kJ/mol # Calculated enthalpy of reaction HCl(g) + HCl = Cl- + H+ + log_k 6.3055 + -delta_H -74.7697 kJ/mol # Calculated enthalpy of reaction HCl(g) # Enthalpy of formation: -92.31 kJ/mol - -analytic -2.8144e-001 -8.6776e-003 3.0668e+003 -4.5105e-001 5.2078e+001 + -analytic -2.8144e-1 -8.6776e-3 3.0668e+3 -4.5105e-1 5.2078e+1 # -Range: 0-200 HF(g) - HF = + 1.0000 F- + 1.0000 H+ - log_k 1.1126 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) + HF = F- + H+ + log_k 1.1126 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) # Enthalpy of formation: 619.234 kJ/mol - -analytic -8.5783e+000 -8.8440e-003 2.6279e+003 1.4180e+000 4.4628e+001 + -analytic -8.5783e+0 -8.844e-3 2.6279e+3 1.418e+0 4.4628e+1 # -Range: 0-200 HI(g) - HI = + 1.0000 H+ + 1.0000 I- - log_k 9.3944 - -delta_H -83.4024 kJ/mol # Calculated enthalpy of reaction HI(g) + HI = H+ + I- + log_k 9.3944 + -delta_H -83.4024 kJ/mol # Calculated enthalpy of reaction HI(g) # Enthalpy of formation: 26.5 kJ/mol - -analytic 5.8250e-003 -8.7146e-003 3.5728e+003 0.0000e+000 0.0000e+000 + -analytic 5.825e-3 -8.7146e-3 3.5728e+3 0e+0 0e+0 # -Range: 0-200 He(g) - He = + 1.0000 He - log_k -3.4143 - -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction He(g) + He = He + log_k -3.4143 + -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction He(g) # Enthalpy of formation: 0 kcal/mol - -analytic -1.3402e+001 4.6358e-003 1.8295e+002 2.8070e+000 9.3373e+004 + -analytic -1.3402e+1 4.6358e-3 1.8295e+2 2.807e+0 9.3373e+4 # -Range: 0-300 Hf(g) - Hf +4.0000 H+ +1.0000 O2 = + 1.0000 Hf++++ + 2.0000 H2O - log_k 290.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) + Hf + 4 H+ + O2 = Hf+4 + 2 H2O + log_k 290.9782 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) # Enthalpy of formation: 0 kJ/mol Hg(g) - Hg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hg++ - log_k 19.7290 - -delta_H -170.988 kJ/mol # Calculated enthalpy of reaction Hg(g) + Hg + 2 H+ + 0.5 O2 = H2O + Hg+2 + log_k 19.729 + -delta_H -170.988 kJ/mol # Calculated enthalpy of reaction Hg(g) # Enthalpy of formation: 61.38 kJ/mol - -analytic -1.6232e+001 -3.2863e-003 8.9831e+003 2.7505e+000 1.5255e+002 + -analytic -1.6232e+1 -3.2863e-3 8.9831e+3 2.7505e+0 1.5255e+2 # -Range: 0-200 I2(g) - I2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 I- - log_k -21.4231 - -delta_H 103.547 kJ/mol # Calculated enthalpy of reaction I2(g) + I2 + H2O = 0.5 O2 + 2 H+ + 2 I- + log_k -21.4231 + -delta_H 103.547 kJ/mol # Calculated enthalpy of reaction I2(g) # Enthalpy of formation: 62.42 kJ/mol - -analytic -2.0271e+001 -2.1890e-002 -6.0267e+003 1.0339e+001 -1.0233e+002 + -analytic -2.0271e+1 -2.189e-2 -6.0267e+3 1.0339e+1 -1.0233e+2 # -Range: 0-200 K(g) - K +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 K+ - log_k 81.5815 - -delta_H -481.055 kJ/mol # Calculated enthalpy of reaction K(g) + K + H+ + 0.25 O2 = 0.5 H2O + K+ + log_k 81.5815 + -delta_H -481.055 kJ/mol # Calculated enthalpy of reaction K(g) # Enthalpy of formation: 89 kJ/mol - -analytic 1.0278e+001 3.0700e-003 2.4729e+004 -5.0763e+000 4.1994e+002 + -analytic 1.0278e+1 3.07e-3 2.4729e+4 -5.0763e+0 4.1994e+2 # -Range: 0-200 Kr(g) - Kr = + 1.0000 Kr - log_k -2.6051 - -delta_H -15.2716 kJ/mol # Calculated enthalpy of reaction Kr(g) + Kr = Kr + log_k -2.6051 + -delta_H -15.2716 kJ/mol # Calculated enthalpy of reaction Kr(g) # Enthalpy of formation: 0 kcal/mol - -analytic -2.1251e+001 4.8308e-003 4.2971e+002 5.3591e+000 2.2304e+005 + -analytic -2.1251e+1 4.8308e-3 4.2971e+2 5.3591e+0 2.2304e+5 # -Range: 0-300 Li(g) - Li +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Li+ - log_k 94.9423 - -delta_H -577.639 kJ/mol # Calculated enthalpy of reaction Li(g) + Li + H+ + 0.25 O2 = 0.5 H2O + Li+ + log_k 94.9423 + -delta_H -577.639 kJ/mol # Calculated enthalpy of reaction Li(g) # Enthalpy of formation: 159.3 kJ/mol - -analytic -2.5692e+001 -1.4385e-003 3.0936e+004 6.9899e+000 5.2535e+002 + -analytic -2.5692e+1 -1.4385e-3 3.0936e+4 6.9899e+0 5.2535e+2 # -Range: 0-200 Mg(g) - Mg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mg++ - log_k 142.2494 - -delta_H -892.831 kJ/mol # Calculated enthalpy of reaction Mg(g) + Mg + 2 H+ + 0.5 O2 = H2O + Mg+2 + log_k 142.2494 + -delta_H -892.831 kJ/mol # Calculated enthalpy of reaction Mg(g) # Enthalpy of formation: 147.1 kJ/mol - -analytic -1.3470e+000 -7.7402e-004 4.5992e+004 -4.2207e+000 7.8101e+002 + -analytic -1.347e+0 -7.7402e-4 4.5992e+4 -4.2207e+0 7.8101e+2 # -Range: 0-200 N2(g) -# N2 +3.0000 H2O = + 1.5000 O2 + 2.0000 NH3 +# N2 +3.0000 H2O = + 1.5000 O2 + 2.0000 NH3 # log_k -119.6473 # -analytic 2.4168e+001 1.6489e-002 -3.6869e+004 -1.1181e+001 2.3178e+005 # -Range: 0-300 N2 = N2 - log_k -3.1864 - -delta_H -10.4391 kJ/mol # Calculated enthalpy of reaction N2(g) + log_k -3.1864 + -delta_H -10.4391 kJ/mol # Calculated enthalpy of reaction N2(g) # Enthalpy of formation: 0 kcal/mol - -analytic -7.6452e+000 7.9606e-003 0.0000e+000 0.0000e+000 1.8604e+005 + -analytic -7.6452e+0 7.9606e-3 0e+0 0e+0 1.8604e+5 # -Range: 0-300 NH3(g) - NH3 = + 1.0000 NH3 - log_k 1.7966 - -delta_H -35.2251 kJ/mol # Calculated enthalpy of reaction NH3(g) + NH3 = NH3 + log_k 1.7966 + -delta_H -35.2251 kJ/mol # Calculated enthalpy of reaction NH3(g) # Enthalpy of formation: -11.021 kcal/mol - -analytic -1.8758e+001 3.3670e-004 2.5113e+003 4.8619e+000 3.9192e+001 + -analytic -1.8758e+1 3.367e-4 2.5113e+3 4.8619e+0 3.9192e+1 # -Range: 0-300 NO(g) - NO +0.5000 H2O +0.2500 O2 = + 1.0000 H+ + 1.0000 NO2- - log_k 0.7554 - -delta_H -48.8884 kJ/mol # Calculated enthalpy of reaction NO(g) + NO + 0.5 H2O + 0.25 O2 = H+ + NO2- + log_k 0.7554 + -delta_H -48.8884 kJ/mol # Calculated enthalpy of reaction NO(g) # Enthalpy of formation: 90.241 kJ/mol - -analytic 8.2147e+000 -1.2708e-001 -6.0593e+003 2.0504e+001 -9.4551e+001 + -analytic 8.2147e+0 -1.2708e-1 -6.0593e+3 2.0504e+1 -9.4551e+1 # -Range: 0-300 NO2(g) - NO2 +0.5000 H2O +0.2500 O2 = + 1.0000 H+ + 1.0000 NO3- - log_k 8.3673 - -delta_H -94.0124 kJ/mol # Calculated enthalpy of reaction NO2(g) + NO2 + 0.5 H2O + 0.25 O2 = H+ + NO3- + log_k 8.3673 + -delta_H -94.0124 kJ/mol # Calculated enthalpy of reaction NO2(g) # Enthalpy of formation: 33.154 kJ/mol - -analytic 9.4389e+001 -2.7511e-001 -1.6783e+004 2.1127e+001 -2.6191e+002 + -analytic 9.4389e+1 -2.7511e-1 -1.6783e+4 2.1127e+1 -2.6191e+2 # -Range: 0-300 Na(g) - Na +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Na+ - log_k 80.8640 - -delta_H -487.685 kJ/mol # Calculated enthalpy of reaction Na(g) + Na + H+ + 0.25 O2 = 0.5 H2O + Na+ + log_k 80.864 + -delta_H -487.685 kJ/mol # Calculated enthalpy of reaction Na(g) # Enthalpy of formation: 107.5 kJ/mol - -analytic -6.0156e+000 2.4712e-003 2.5682e+004 0.0000e+000 0.0000e+000 + -analytic -6.0156e+0 2.4712e-3 2.5682e+4 0e+0 0e+0 # -Range: 0-200 Ne(g) - Ne = + 1.0000 Ne - log_k -3.3462 - -delta_H -3.64008 kJ/mol # Calculated enthalpy of reaction Ne(g) + Ne = Ne + log_k -3.3462 + -delta_H -3.64008 kJ/mol # Calculated enthalpy of reaction Ne(g) # Enthalpy of formation: 0 kcal/mol - -analytic -6.5169e+000 6.3991e-003 0.0000e+000 0.0000e+000 1.1271e+005 + -analytic -6.5169e+0 6.3991e-3 0e+0 0e+0 1.1271e+5 # -Range: 0-300 O2(g) - O2 = + 1.0000 O2 - log_k -2.8983 - -delta_H -12.1336 kJ/mol # Calculated enthalpy of reaction O2(g) + O2 = O2 + log_k -2.8983 + -delta_H -12.1336 kJ/mol # Calculated enthalpy of reaction O2(g) # Enthalpy of formation: 0 kcal/mol - -analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005 + -analytic -7.5001e+0 7.8981e-3 0e+0 0e+0 2.0027e+5 # -Range: 0-300 Pb(g) - Pb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pb++ - log_k 75.6090 - -delta_H -474.051 kJ/mol # Calculated enthalpy of reaction Pb(g) + Pb + 2 H+ + 0.5 O2 = H2O + Pb+2 + log_k 75.609 + -delta_H -474.051 kJ/mol # Calculated enthalpy of reaction Pb(g) # Enthalpy of formation: 195.2 kJ/mol - -analytic 2.5752e+001 2.1307e-003 2.3397e+004 -1.1825e+001 3.9730e+002 + -analytic 2.5752e+1 2.1307e-3 2.3397e+4 -1.1825e+1 3.973e+2 # -Range: 0-200 Rb(g) - Rb +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Rb+ - log_k 80.4976 - -delta_H -471.909 kJ/mol # Calculated enthalpy of reaction Rb(g) + Rb + H+ + 0.25 O2 = 0.5 H2O + Rb+ + log_k 80.4976 + -delta_H -471.909 kJ/mol # Calculated enthalpy of reaction Rb(g) # Enthalpy of formation: 80.9 kJ/mol - -analytic 2.6839e+001 5.9775e-003 2.3720e+004 -1.1189e+001 4.0279e+002 + -analytic 2.6839e+1 5.9775e-3 2.372e+4 -1.1189e+1 4.0279e+2 # -Range: 0-200 Rn(g) - Rn = + 1.0000 Rn - log_k -2.0451 - -delta_H -20.92 kJ/mol # Calculated enthalpy of reaction Rn(g) + Rn = Rn + log_k -2.0451 + -delta_H -20.92 kJ/mol # Calculated enthalpy of reaction Rn(g) # Enthalpy of formation: 0 kcal/mol - -analytic -3.0258e+001 4.9893e-003 1.4118e+002 8.8798e+000 3.8095e+005 + -analytic -3.0258e+1 4.9893e-3 1.4118e+2 8.8798e+0 3.8095e+5 # -Range: 0-300 RuCl3(g) - RuCl3 = + 1.0000 Ru+++ + 3.0000 Cl- - log_k 41.5503 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3(g) + RuCl3 = Ru+3 + 3 Cl- + log_k 41.5503 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3(g) # Enthalpy of formation: 16.84 kJ/mol RuO3(g) - RuO3 +1.0000 H2O = + 1.0000 RuO4-- + 2.0000 H+ - log_k 2.3859 - -delta_H -100.369 kJ/mol # Calculated enthalpy of reaction RuO3(g) + RuO3 + H2O = RuO4-2 + 2 H+ + log_k 2.3859 + -delta_H -100.369 kJ/mol # Calculated enthalpy of reaction RuO3(g) # Enthalpy of formation: -70.868 kJ/mol - -analytic 1.1106e+002 1.7191e-002 6.8526e+002 -4.6922e+001 1.1598e+001 + -analytic 1.1106e+2 1.7191e-2 6.8526e+2 -4.6922e+1 1.1598e+1 # -Range: 0-200 S2(g) - S2 +2.0000 H2O = + 0.5000 SO4-- + 1.5000 HS- + 2.5000 H+ - log_k -7.1449 - -delta_H -35.656 kJ/mol # Calculated enthalpy of reaction S2(g) + S2 + 2 H2O = 0.5 SO4-2 + 1.5 HS- + 2.5 H+ + log_k -7.1449 + -delta_H -35.656 kJ/mol # Calculated enthalpy of reaction S2(g) # Enthalpy of formation: 30.681 kcal/mol - -analytic -1.8815e+002 -7.7069e-002 4.8816e+003 7.5802e+001 7.6228e+001 + -analytic -1.8815e+2 -7.7069e-2 4.8816e+3 7.5802e+1 7.6228e+1 # -Range: 0-300 SO2(g) SO2 = SO2 - log_k 0.1700 - -delta_H 0 # Not possible to calculate enthalpy of reaction SO2(g) + log_k 0.17 + -delta_H 0 # Not possible to calculate enthalpy of reaction SO2(g) # Enthalpy of formation: 0 kcal/mol - -analytic -2.0205e+001 2.8861e-003 1.4862e+003 5.2958e+000 1.2721e+005 + -analytic -2.0205e+1 2.8861e-3 1.4862e+3 5.2958e+0 1.2721e+5 # -Range: 0-300 Si(g) - Si +1.0000 O2 = + 1.0000 SiO2 - log_k 219.9509 - -delta_H -1315.57 kJ/mol # Calculated enthalpy of reaction Si(g) + Si + O2 = SiO2 + log_k 219.9509 + -delta_H -1315.57 kJ/mol # Calculated enthalpy of reaction Si(g) # Enthalpy of formation: 450 kJ/mol - -analytic 4.1998e+002 8.0113e-002 5.4468e+004 -1.6433e+002 9.2480e+002 + -analytic 4.1998e+2 8.0113e-2 5.4468e+4 -1.6433e+2 9.248e+2 # -Range: 0-200 SiF4(g) - SiF4 +2.0000 H2O = + 1.0000 SiO2 + 4.0000 F- + 4.0000 H+ - log_k -15.1931 - -delta_H -32.4123 kJ/mol # Calculated enthalpy of reaction SiF4(g) + SiF4 + 2 H2O = SiO2 + 4 F- + 4 H+ + log_k -15.1931 + -delta_H -32.4123 kJ/mol # Calculated enthalpy of reaction SiF4(g) # Enthalpy of formation: -1615 kJ/mol - -analytic 3.4941e+002 3.3668e-002 -1.2780e+004 -1.3410e+002 -2.1714e+002 + -analytic 3.4941e+2 3.3668e-2 -1.278e+4 -1.341e+2 -2.1714e+2 # -Range: 0-200 Sn(g) - Sn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sn++ - log_k 94.5019 - -delta_H -589.758 kJ/mol # Calculated enthalpy of reaction Sn(g) + Sn + 2 H+ + 0.5 O2 = H2O + Sn+2 + log_k 94.5019 + -delta_H -589.758 kJ/mol # Calculated enthalpy of reaction Sn(g) # Enthalpy of formation: 301.2 kJ/mol - -analytic 1.4875e+001 -5.6877e-005 2.9728e+004 -8.1131e+000 5.0482e+002 + -analytic 1.4875e+1 -5.6877e-5 2.9728e+4 -8.1131e+0 5.0482e+2 # -Range: 0-200 Tc2O7(g) - Tc2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 TcO4- - log_k 21.3593 - -delta_H -158.131 kJ/mol # Calculated enthalpy of reaction Tc2O7(g) + Tc2O7 + H2O = 2 H+ + 2 TcO4- + log_k 21.3593 + -delta_H -158.131 kJ/mol # Calculated enthalpy of reaction Tc2O7(g) # Enthalpy of formation: -988.569 kJ/mol - -analytic 7.4140e+001 1.5668e-002 5.6360e+003 -3.0860e+001 9.5682e+001 + -analytic 7.414e+1 1.5668e-2 5.636e+3 -3.086e+1 9.5682e+1 # -Range: 0-200 Th(g) - Th +4.0000 H+ +1.0000 O2 = + 1.0000 Th++++ + 2.0000 H2O - log_k 307.8413 - -delta_H -1930.56 kJ/mol # Calculated enthalpy of reaction Th(g) + Th + 4 H+ + O2 = Th+4 + 2 H2O + log_k 307.8413 + -delta_H -1930.56 kJ/mol # Calculated enthalpy of reaction Th(g) # Enthalpy of formation: 602 kJ/mol - -analytic 1.8496e+001 2.7318e-003 9.8807e+004 -1.7332e+001 1.6779e+003 + -analytic 1.8496e+1 2.7318e-3 9.8807e+4 -1.7332e+1 1.6779e+3 # -Range: 0-200 Ti(g) - Ti +2.0000 H2O +1.0000 O2 = + 1.0000 Ti(OH)4 - log_k 224.3510 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(g) + Ti + 2 H2O + O2 = Ti(OH)4 + log_k 224.351 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(g) # Enthalpy of formation: 473 kJ/mol TiBr4(g) - TiBr4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Br- + 4.0000 H+ - log_k 36.6695 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4(g) + TiBr4 + 4 H2O = Ti(OH)4 + 4 Br- + 4 H+ + log_k 36.6695 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4(g) # Enthalpy of formation: -549.339 kJ/mol TiCl4(g) - TiCl4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Cl- + 4.0000 H+ - log_k 28.0518 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl4(g) + TiCl4 + 4 H2O = Ti(OH)4 + 4 Cl- + 4 H+ + log_k 28.0518 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl4(g) # Enthalpy of formation: -763.2 kJ/mol TiO(g) - TiO +2.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 - log_k 145.5711 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(g) + TiO + 2 H2O + 0.5 O2 = Ti(OH)4 + log_k 145.5711 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(g) # Enthalpy of formation: 17.144 kJ/mol U(g) - U +2.0000 H+ +1.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ - log_k 298.3441 - -delta_H -1819.64 kJ/mol # Calculated enthalpy of reaction U(g) + U + 2 H+ + 1.5 O2 = H2O + UO2+2 + log_k 298.3441 + -delta_H -1819.64 kJ/mol # Calculated enthalpy of reaction U(g) # Enthalpy of formation: 533 kJ/mol - -analytic 3.7536e+001 -6.3804e-003 9.2048e+004 -1.8614e+001 1.4363e+003 + -analytic 3.7536e+1 -6.3804e-3 9.2048e+4 -1.8614e+1 1.4363e+3 # -Range: 0-300 U2Cl10(g) - U2Cl10 +4.0000 H2O = + 2.0000 UO2+ + 8.0000 H+ + 10.0000 Cl- - log_k 82.7621 - -delta_H -609.798 kJ/mol # Calculated enthalpy of reaction U2Cl10(g) + U2Cl10 + 4 H2O = 2 UO2+ + 8 H+ + 10 Cl- + log_k 82.7621 + -delta_H -609.798 kJ/mol # Calculated enthalpy of reaction U2Cl10(g) # Enthalpy of formation: -1967.9 kJ/mol - -analytic -7.5513e+002 -3.0070e-001 4.5824e+004 3.1267e+002 7.1526e+002 + -analytic -7.5513e+2 -3.007e-1 4.5824e+4 3.1267e+2 7.1526e+2 # -Range: 0-300 U2Cl8(g) - U2Cl8 = + 2.0000 U++++ + 8.0000 Cl- - log_k 82.4059 - -delta_H -769.437 kJ/mol # Calculated enthalpy of reaction U2Cl8(g) + U2Cl8 = 2 U+4 + 8 Cl- + log_k 82.4059 + -delta_H -769.437 kJ/mol # Calculated enthalpy of reaction U2Cl8(g) # Enthalpy of formation: -1749.6 kJ/mol - -analytic -7.4441e+002 -2.6943e-001 5.4358e+004 2.9287e+002 8.4843e+002 + -analytic -7.4441e+2 -2.6943e-1 5.4358e+4 2.9287e+2 8.4843e+2 # -Range: 0-300 U2F10(g) - U2F10 +4.0000 H2O = + 2.0000 UO2+ + 8.0000 H+ + 10.0000 F- - log_k -12.2888 - -delta_H -239.377 kJ/mol # Calculated enthalpy of reaction U2F10(g) + U2F10 + 4 H2O = 2 UO2+ + 8 H+ + 10 F- + log_k -12.2888 + -delta_H -239.377 kJ/mol # Calculated enthalpy of reaction U2F10(g) # Enthalpy of formation: -4021 kJ/mol - -analytic -9.1542e+002 -3.2040e-001 3.1047e+004 3.6143e+002 4.8473e+002 + -analytic -9.1542e+2 -3.204e-1 3.1047e+4 3.6143e+2 4.8473e+2 # -Range: 0-300 UBr(g) - UBr +1.0000 O2 = + 1.0000 Br- + 1.0000 UO2+ - log_k 224.8412 - -delta_H -1381.5 kJ/mol # Calculated enthalpy of reaction UBr(g) + UBr + O2 = Br- + UO2+ + log_k 224.8412 + -delta_H -1381.5 kJ/mol # Calculated enthalpy of reaction UBr(g) # Enthalpy of formation: 247 kJ/mol - -analytic -3.1193e+002 -6.3059e-002 8.7633e+004 1.1032e+002 -1.0104e+006 + -analytic -3.1193e+2 -6.3059e-2 8.7633e+4 1.1032e+2 -1.0104e+6 # -Range: 0-300 UBr2(g) - UBr2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 Br- - log_k 192.6278 - -delta_H -1218.87 kJ/mol # Calculated enthalpy of reaction UBr2(g) + UBr2 + O2 = UO2+2 + 2 Br- + log_k 192.6278 + -delta_H -1218.87 kJ/mol # Calculated enthalpy of reaction UBr2(g) # Enthalpy of formation: -31 kJ/mol - -analytic -1.2277e+002 -6.4613e-002 6.4196e+004 4.8209e+001 1.0018e+003 + -analytic -1.2277e+2 -6.4613e-2 6.4196e+4 4.8209e+1 1.0018e+3 # -Range: 0-300 UBr3(g) - UBr3 = + 1.0000 U+++ + 3.0000 Br- - log_k 67.8918 - -delta_H -489.61 kJ/mol # Calculated enthalpy of reaction UBr3(g) + UBr3 = U+3 + 3 Br- + log_k 67.8918 + -delta_H -489.61 kJ/mol # Calculated enthalpy of reaction UBr3(g) # Enthalpy of formation: -364 kJ/mol - -analytic -2.5784e+002 -9.7583e-002 3.0225e+004 1.0240e+002 4.7171e+002 + -analytic -2.5784e+2 -9.7583e-2 3.0225e+4 1.024e+2 4.7171e+2 # -Range: 0-300 UBr4(g) - UBr4 = + 1.0000 U++++ + 4.0000 Br- - log_k 54.2926 - -delta_H -467.113 kJ/mol # Calculated enthalpy of reaction UBr4(g) + UBr4 = U+4 + 4 Br- + log_k 54.2926 + -delta_H -467.113 kJ/mol # Calculated enthalpy of reaction UBr4(g) # Enthalpy of formation: -610.1 kJ/mol - -analytic -3.5205e+002 -1.2867e-001 3.0898e+004 1.3781e+002 4.8223e+002 + -analytic -3.5205e+2 -1.2867e-1 3.0898e+4 1.3781e+2 4.8223e+2 # -Range: 0-300 UBr5(g) - UBr5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Br- - log_k 61.4272 - -delta_H -423.222 kJ/mol # Calculated enthalpy of reaction UBr5(g) + UBr5 + 2 H2O = UO2+ + 4 H+ + 5 Br- + log_k 61.4272 + -delta_H -423.222 kJ/mol # Calculated enthalpy of reaction UBr5(g) # Enthalpy of formation: -637.745 kJ/mol - -analytic -3.4693e+002 -1.4298e-001 2.8151e+004 1.4406e+002 4.3938e+002 + -analytic -3.4693e+2 -1.4298e-1 2.8151e+4 1.4406e+2 4.3938e+2 # -Range: 0-300 UCl(g) - UCl +1.0000 O2 = + 1.0000 Cl- + 1.0000 UO2+ - log_k 221.7887 - -delta_H -1368.27 kJ/mol # Calculated enthalpy of reaction UCl(g) + UCl + O2 = Cl- + UO2+ + log_k 221.7887 + -delta_H -1368.27 kJ/mol # Calculated enthalpy of reaction UCl(g) # Enthalpy of formation: 188.2 kJ/mol - -analytic -4.1941e+001 -2.7879e-002 7.0800e+004 1.3954e+001 1.1048e+003 + -analytic -4.1941e+1 -2.7879e-2 7.08e+4 1.3954e+1 1.1048e+3 # -Range: 0-300 UCl2(g) - UCl2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 Cl- - log_k 183.7912 - -delta_H -1178.03 kJ/mol # Calculated enthalpy of reaction UCl2(g) + UCl2 + O2 = UO2+2 + 2 Cl- + log_k 183.7912 + -delta_H -1178.03 kJ/mol # Calculated enthalpy of reaction UCl2(g) # Enthalpy of formation: -163 kJ/mol - -analytic -1.3677e+002 -6.7829e-002 6.2413e+004 5.3100e+001 9.7394e+002 + -analytic -1.3677e+2 -6.7829e-2 6.2413e+4 5.31e+1 9.7394e+2 # -Range: 0-300 UCl3(g) - UCl3 = + 1.0000 U+++ + 3.0000 Cl- - log_k 58.6335 - -delta_H -453.239 kJ/mol # Calculated enthalpy of reaction UCl3(g) + UCl3 = U+3 + 3 Cl- + log_k 58.6335 + -delta_H -453.239 kJ/mol # Calculated enthalpy of reaction UCl3(g) # Enthalpy of formation: -537.1 kJ/mol - -analytic -2.7942e+002 -1.0243e-001 2.8859e+004 1.0982e+002 4.5040e+002 + -analytic -2.7942e+2 -1.0243e-1 2.8859e+4 1.0982e+2 4.504e+2 # -Range: 0-300 UCl4(g) - UCl4 = + 1.0000 U++++ + 4.0000 Cl- - log_k 46.3988 - -delta_H -441.419 kJ/mol # Calculated enthalpy of reaction UCl4(g) + UCl4 = U+4 + 4 Cl- + log_k 46.3988 + -delta_H -441.419 kJ/mol # Calculated enthalpy of reaction UCl4(g) # Enthalpy of formation: -818.1 kJ/mol - -analytic -3.7971e+002 -1.3504e-001 3.0243e+004 1.4746e+002 4.7202e+002 + -analytic -3.7971e+2 -1.3504e-1 3.0243e+4 1.4746e+2 4.7202e+2 # -Range: 0-300 UCl5(g) - UCl5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Cl- - log_k 54.5311 - -delta_H -406.349 kJ/mol # Calculated enthalpy of reaction UCl5(g) + UCl5 + 2 H2O = UO2+ + 4 H+ + 5 Cl- + log_k 54.5311 + -delta_H -406.349 kJ/mol # Calculated enthalpy of reaction UCl5(g) # Enthalpy of formation: -882.5 kJ/mol - -analytic -3.8234e+002 -1.5109e-001 2.8170e+004 1.5654e+002 4.3968e+002 + -analytic -3.8234e+2 -1.5109e-1 2.817e+4 1.5654e+2 4.3968e+2 # -Range: 0-300 UCl6(g) - UCl6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 Cl- - log_k 63.4791 - -delta_H -462.301 kJ/mol # Calculated enthalpy of reaction UCl6(g) + UCl6 + 2 H2O = UO2+2 + 4 H+ + 6 Cl- + log_k 63.4791 + -delta_H -462.301 kJ/mol # Calculated enthalpy of reaction UCl6(g) # Enthalpy of formation: -987.5 kJ/mol - -analytic -4.7128e+002 -1.9133e-001 3.2528e+004 1.9503e+002 5.0771e+002 + -analytic -4.7128e+2 -1.9133e-1 3.2528e+4 1.9503e+2 5.0771e+2 # -Range: 0-300 UF(g) - UF +1.0000 O2 = + 1.0000 F- + 1.0000 UO2+ - log_k 206.2684 - -delta_H -1296.34 kJ/mol # Calculated enthalpy of reaction UF(g) + UF + O2 = F- + UO2+ + log_k 206.2684 + -delta_H -1296.34 kJ/mol # Calculated enthalpy of reaction UF(g) # Enthalpy of formation: -52 kJ/mol - -analytic -6.1248e+001 -3.0360e-002 6.7619e+004 2.0095e+001 1.0551e+003 + -analytic -6.1248e+1 -3.036e-2 6.7619e+4 2.0095e+1 1.0551e+3 # -Range: 0-300 UF2(g) - UF2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 F- - log_k 172.3563 - -delta_H -1147.56 kJ/mol # Calculated enthalpy of reaction UF2(g) + UF2 + O2 = UO2+2 + 2 F- + log_k 172.3563 + -delta_H -1147.56 kJ/mol # Calculated enthalpy of reaction UF2(g) # Enthalpy of formation: -530 kJ/mol - -analytic -4.3462e+002 -1.0881e-001 7.6778e+004 1.5835e+002 -8.8536e+005 + -analytic -4.3462e+2 -1.0881e-1 7.6778e+4 1.5835e+2 -8.8536e+5 # -Range: 0-300 UF3(g) - UF3 = + 1.0000 U+++ + 3.0000 F- - log_k 47.2334 - -delta_H -440.943 kJ/mol # Calculated enthalpy of reaction UF3(g) + UF3 = U+3 + 3 F- + log_k 47.2334 + -delta_H -440.943 kJ/mol # Calculated enthalpy of reaction UF3(g) # Enthalpy of formation: -1054.2 kJ/mol - -analytic -3.3058e+002 -1.0866e-001 2.9694e+004 1.2551e+002 4.6344e+002 + -analytic -3.3058e+2 -1.0866e-1 2.9694e+4 1.2551e+2 4.6344e+2 # -Range: 0-300 UF4(g) - UF4 = + 1.0000 U++++ + 4.0000 F- - log_k 14.5980 - -delta_H -331.39 kJ/mol # Calculated enthalpy of reaction UF4(g) + UF4 = U+4 + 4 F- + log_k 14.598 + -delta_H -331.39 kJ/mol # Calculated enthalpy of reaction UF4(g) # Enthalpy of formation: -1601.2 kJ/mol - -analytic -4.4692e+002 -1.4314e-001 2.6427e+004 1.6791e+002 4.1250e+002 + -analytic -4.4692e+2 -1.4314e-1 2.6427e+4 1.6791e+2 4.125e+2 # -Range: 0-300 UF5(g) - UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- - log_k 6.3801 - -delta_H -220.188 kJ/mol # Calculated enthalpy of reaction UF5(g) + UF5 + 2 H2O = UO2+ + 4 H+ + 5 F- + log_k 6.3801 + -delta_H -220.188 kJ/mol # Calculated enthalpy of reaction UF5(g) # Enthalpy of formation: -1910 kJ/mol - -analytic -4.6981e+002 -1.6177e-001 2.0986e+004 1.8345e+002 3.2760e+002 + -analytic -4.6981e+2 -1.6177e-1 2.0986e+4 1.8345e+2 3.276e+2 # -Range: 0-300 UF6(g) - UF6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 F- - log_k 18.2536 - -delta_H -310.809 kJ/mol # Calculated enthalpy of reaction UF6(g) + UF6 + 2 H2O = UO2+2 + 4 H+ + 6 F- + log_k 18.2536 + -delta_H -310.809 kJ/mol # Calculated enthalpy of reaction UF6(g) # Enthalpy of formation: -2148.6 kJ/mol - -analytic -5.7661e+002 -2.0409e-001 2.7680e+004 2.2743e+002 4.3209e+002 + -analytic -5.7661e+2 -2.0409e-1 2.768e+4 2.2743e+2 4.3209e+2 # -Range: 0-300 UI(g) - UI +1.0000 O2 = + 1.0000 I- + 1.0000 UO2+ - log_k 230.8161 - -delta_H -1410.9 kJ/mol # Calculated enthalpy of reaction UI(g) + UI + O2 = I- + UO2+ + log_k 230.8161 + -delta_H -1410.9 kJ/mol # Calculated enthalpy of reaction UI(g) # Enthalpy of formation: 341 kJ/mol - -analytic -3.5819e+001 -2.6631e-002 7.2899e+004 1.2133e+001 1.1375e+003 + -analytic -3.5819e+1 -2.6631e-2 7.2899e+4 1.2133e+1 1.1375e+3 # -Range: 0-300 UI2(g) - UI2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 I- - log_k 194.5395 - -delta_H -1220.67 kJ/mol # Calculated enthalpy of reaction UI2(g) + UI2 + O2 = UO2+2 + 2 I- + log_k 194.5395 + -delta_H -1220.67 kJ/mol # Calculated enthalpy of reaction UI2(g) # Enthalpy of formation: 100 kJ/mol - -analytic -3.3543e+002 -9.5116e-002 7.6218e+004 1.2543e+002 -6.8683e+005 + -analytic -3.3543e+2 -9.5116e-2 7.6218e+4 1.2543e+2 -6.8683e+5 # -Range: 0-300 UI3(g) - UI3 = + 1.0000 U+++ + 3.0000 I- - log_k 75.6033 - -delta_H -519.807 kJ/mol # Calculated enthalpy of reaction UI3(g) + UI3 = U+3 + 3 I- + log_k 75.6033 + -delta_H -519.807 kJ/mol # Calculated enthalpy of reaction UI3(g) # Enthalpy of formation: -140 kJ/mol - -analytic -2.6095e+002 -9.8782e-002 3.1972e+004 1.0456e+002 4.9897e+002 + -analytic -2.6095e+2 -9.8782e-2 3.1972e+4 1.0456e+2 4.9897e+2 # -Range: 0-300 UI4(g) - UI4 = + 1.0000 U++++ + 4.0000 I- - log_k 64.3272 - -delta_H -510.01 kJ/mol # Calculated enthalpy of reaction UI4(g) + UI4 = U+4 + 4 I- + log_k 64.3272 + -delta_H -510.01 kJ/mol # Calculated enthalpy of reaction UI4(g) # Enthalpy of formation: -308.8 kJ/mol - -analytic -3.5645e+002 -1.3022e-001 3.3347e+004 1.4051e+002 5.2046e+002 + -analytic -3.5645e+2 -1.3022e-1 3.3347e+4 1.4051e+2 5.2046e+2 # -Range: 0-300 UO(g) - UO +2.0000 H+ +1.0000 O2 = + 1.0000 H2O + 1.0000 UO2++ - log_k 211.6585 - -delta_H -1323.2 kJ/mol # Calculated enthalpy of reaction UO(g) + UO + 2 H+ + O2 = H2O + UO2+2 + log_k 211.6585 + -delta_H -1323.2 kJ/mol # Calculated enthalpy of reaction UO(g) # Enthalpy of formation: 30.5 kJ/mol - -analytic -1.8007e+002 -3.1985e-002 7.8469e+004 5.8892e+001 -6.8071e+005 + -analytic -1.8007e+2 -3.1985e-2 7.8469e+4 5.8892e+1 -6.8071e+5 # -Range: 0-300 UO2(g) - UO2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ - log_k 125.6027 - -delta_H -820.972 kJ/mol # Calculated enthalpy of reaction UO2(g) + UO2 + 2 H+ + 0.5 O2 = H2O + UO2+2 + log_k 125.6027 + -delta_H -820.972 kJ/mol # Calculated enthalpy of reaction UO2(g) # Enthalpy of formation: -477.8 kJ/mol - -analytic -5.2789e+000 -3.5754e-003 4.2074e+004 -3.7117e+000 6.5653e+002 + -analytic -5.2789e+0 -3.5754e-3 4.2074e+4 -3.7117e+0 6.5653e+2 # -Range: 0-300 UO2Cl2(g) - UO2Cl2 = + 1.0000 UO2++ + 2.0000 Cl- - log_k 47.9630 - -delta_H -381.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2(g) + UO2Cl2 = UO2+2 + 2 Cl- + log_k 47.963 + -delta_H -381.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2(g) # Enthalpy of formation: -971.6 kJ/mol - -analytic -1.8035e+002 -6.5574e-002 2.3064e+004 6.8894e+001 3.5994e+002 + -analytic -1.8035e+2 -6.5574e-2 2.3064e+4 6.8894e+1 3.5994e+2 # -Range: 0-300 UO2F2(g) - UO2F2 = + 1.0000 UO2++ + 2.0000 F- - log_k 34.6675 - -delta_H -337.195 kJ/mol # Calculated enthalpy of reaction UO2F2(g) + UO2F2 = UO2+2 + 2 F- + log_k 34.6675 + -delta_H -337.195 kJ/mol # Calculated enthalpy of reaction UO2F2(g) # Enthalpy of formation: -1352.5 kJ/mol - -analytic -2.1498e+002 -6.9882e-002 2.1774e+004 7.9780e+001 3.3983e+002 + -analytic -2.1498e+2 -6.9882e-2 2.1774e+4 7.978e+1 3.3983e+2 # -Range: 0-300 UO3(g) - UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ - log_k 70.9480 - -delta_H -505.638 kJ/mol # Calculated enthalpy of reaction UO3(g) + UO3 + 2 H+ = H2O + UO2+2 + log_k 70.948 + -delta_H -505.638 kJ/mol # Calculated enthalpy of reaction UO3(g) # Enthalpy of formation: -799.2 kJ/mol - -analytic -3.2820e+001 -2.6807e-003 2.6914e+004 5.7767e+000 4.1997e+002 + -analytic -3.282e+1 -2.6807e-3 2.6914e+4 5.7767e+0 4.1997e+2 # -Range: 0-300 UOF4(g) - UOF4 +1.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 4.0000 F- - log_k 24.2848 - -delta_H -312.552 kJ/mol # Calculated enthalpy of reaction UOF4(g) + UOF4 + H2O = UO2+2 + 2 H+ + 4 F- + log_k 24.2848 + -delta_H -312.552 kJ/mol # Calculated enthalpy of reaction UOF4(g) # Enthalpy of formation: -1762 kJ/mol - -analytic -3.9592e+002 -1.3699e-001 2.4127e+004 1.5359e+002 3.7660e+002 + -analytic -3.9592e+2 -1.3699e-1 2.4127e+4 1.5359e+2 3.766e+2 # -Range: 0-300 Xe(g) - Xe = + 1.0000 Xe - log_k -2.3640 - -delta_H -18.8698 kJ/mol # Calculated enthalpy of reaction Xe(g) + Xe = Xe + log_k -2.364 + -delta_H -18.8698 kJ/mol # Calculated enthalpy of reaction Xe(g) # Enthalpy of formation: 0 kcal/mol - -analytic -2.0636e+001 5.1389e-003 2.0490e+002 5.1913e+000 2.8556e+005 + -analytic -2.0636e+1 5.1389e-3 2.049e+2 5.1913e+0 2.8556e+5 # -Range: 0-300 Zn(g) - Zn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zn++ - log_k 85.4140 - -delta_H -563.557 kJ/mol # Calculated enthalpy of reaction Zn(g) + Zn + 2 H+ + 0.5 O2 = H2O + Zn+2 + log_k 85.414 + -delta_H -563.557 kJ/mol # Calculated enthalpy of reaction Zn(g) # Enthalpy of formation: 130.4 kJ/mol - -analytic -1.0898e+001 -3.9871e-003 2.9068e+004 0.0000e+000 0.0000e+000 + -analytic -1.0898e+1 -3.9871e-3 2.9068e+4 0e+0 0e+0 # -Range: 0-200 Zr(g) - Zr +4.0000 H+ +1.0000 O2 = + 1.0000 Zr++++ + 2.0000 H2O - log_k 277.1324 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(g) + Zr + 4 H+ + O2 = Zr+4 + 2 H2O + log_k 277.1324 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(g) # Enthalpy of formation: 608.948 kJ/mol ZrF4(g) - ZrF4 = + 1.0000 Zr++++ + 4.0000 F- - log_k 142.9515 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(g) + ZrF4 = Zr+4 + 4 F- + log_k 142.9515 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(g) # Enthalpy of formation: -858.24 kJ/mol EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - log_k 0.0 + log_k 0 Na+ + X- = NaX - log_k 0.0 - -llnl_gamma 4.0 + log_k 0 + -llnl_gamma 4 K+ + X- = KX - log_k 0.7 - -llnl_gamma 3.0 - delta_h -4.3 # Jardine & Sparks, 1984 + log_k 0.7 + -llnl_gamma 3 + delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX - log_k -0.08 - -llnl_gamma 6.0 - delta_h 1.4 # Merriam & Thomas, 1956 + log_k -0.08 + -llnl_gamma 6 + delta_h 1.4 # Merriam & Thomas, 1956 NH4+ + X- = NH4X - log_k 0.6 - -llnl_gamma 2.5 - delta_h -2.4 # Laudelout et al., 1968 + log_k 0.6 + -llnl_gamma 2.5 + delta_h -2.4 # Laudelout et al., 1968 - Ca+2 + 2X- = CaX2 - log_k 0.8 - -llnl_gamma 6.0 - delta_h 7.2 # Van Bladel & Gheyl, 1980 + Ca+2 + 2 X- = CaX2 + log_k 0.8 + -llnl_gamma 6 + delta_h 7.2 # Van Bladel & Gheyl, 1980 - Mg+2 + 2X- = MgX2 - log_k 0.6 - -llnl_gamma 8.0 - delta_h 7.4 # Laudelout et al., 1968 + Mg+2 + 2 X- = MgX2 + log_k 0.6 + -llnl_gamma 8 + delta_h 7.4 # Laudelout et al., 1968 - Sr+2 + 2X- = SrX2 - log_k 0.91 - -llnl_gamma 5.0 - delta_h 5.5 # Laudelout et al., 1968 + Sr+2 + 2 X- = SrX2 + log_k 0.91 + -llnl_gamma 5 + delta_h 5.5 # Laudelout et al., 1968 - Ba+2 + 2X- = BaX2 - log_k 0.91 - -llnl_gamma 5.0 - delta_h 4.5 # Laudelout et al., 1968 + Ba+2 + 2 X- = BaX2 + log_k 0.91 + -llnl_gamma 5 + delta_h 4.5 # Laudelout et al., 1968 - Mn+2 + 2X- = MnX2 - log_k 0.52 - -llnl_gamma 6.0 + Mn+2 + 2 X- = MnX2 + log_k 0.52 + -llnl_gamma 6 - Fe+2 + 2X- = FeX2 - log_k 0.44 - -llnl_gamma 6.0 + Fe+2 + 2 X- = FeX2 + log_k 0.44 + -llnl_gamma 6 - Cu+2 + 2X- = CuX2 - log_k 0.6 - -llnl_gamma 6.0 + Cu+2 + 2 X- = CuX2 + log_k 0.6 + -llnl_gamma 6 - Zn+2 + 2X- = ZnX2 - log_k 0.8 - -llnl_gamma 6.0 + Zn+2 + 2 X- = ZnX2 + log_k 0.8 + -llnl_gamma 6 - Cd+2 + 2X- = CdX2 - log_k 0.8 - -llnl_gamma 5.0 + Cd+2 + 2 X- = CdX2 + log_k 0.8 + -llnl_gamma 5 - Pb+2 + 2X- = PbX2 - log_k 1.05 - -llnl_gamma 4.5 + Pb+2 + 2 X- = PbX2 + log_k 1.05 + -llnl_gamma 4.5 - Al+3 + 3X- = AlX3 - log_k 0.41 - -llnl_gamma 9.0 + Al+3 + 3 X- = AlX3 + log_k 0.41 + -llnl_gamma 9 - AlOH+2 + 2X- = AlOHX2 - log_k 0.89 - -llnl_gamma 4.5 + AlOH+2 + 2 X- = AlOHX2 + log_k 0.89 + -llnl_gamma 4.5 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 @@ -18884,24 +18888,24 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - log_k 0.0 + log_k 0 - Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.29 # = pKa1,int + Hfo_sOH + H+ = Hfo_sOH2+ + log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - log_k 0.0 + log_k 0 - Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.29 # = pKa1,int + Hfo_wOH + H+ = Hfo_wOH2+ + log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int ############################################### # CATIONS # @@ -18911,52 +18915,52 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 + log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - log_k 5.01 + log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ log_k -6.58 - Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ - log_k -17.60 + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ + log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - log_k 5.46 + log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 # table 10.5 + log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - log_k 0.47 + log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - log_k -2.91 + log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - log_k 0.99 + log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - log_k -1.99 + log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - log_k 2.89 + log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - log_k 0.6 # table 10.5 + log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - log_k 4.65 + log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - log_k 0.3 # table 10.5 + log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -18965,16 +18969,16 @@ SURFACE_SPECIES log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - log_k -0.4 # table 10.5 + log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - log_k -3.5 # table 10.5 + log_k -3.5 # table 10.5 # Iron Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - log_k 0.7 # LFER using table 10.5 + log_k 0.7 # LFER using table 10.5 Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ - log_k -2.5 # LFER using table 10.5 + log_k -2.5 # LFER using table 10.5 ############################################### # ANIONS # @@ -18983,44 +18987,44 @@ SURFACE_SPECIES # Anions from table 10.6 # # Phosphate - Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - log_k 31.29 + Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + log_k 31.29 - Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - log_k 25.39 + Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - log_k 17.72 + log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + B(OH)3 = Hfo_wH2BO3 + H2O - log_k 0.62 + log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - log_k 7.78 + log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 + log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - log_k 8.7 + log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - log_k 1.6 + log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for HFO # 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L # # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O # log_k 12.56 -# +# # Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O # log_k 20.62 @@ -19070,38 +19074,38 @@ RATES K-feldspar -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM K-Feldspar parameters -10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME 290 SAVE moles -end @@ -19145,38 +19149,38 @@ K-feldspar Albite -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Albite m^2/mol Albite -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM Albite parameters -10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("Albite")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME 290 SAVE moles -end @@ -19184,7 +19188,7 @@ Albite #Calcite ######## # Example of KINETICS data block for calcite rate, -# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257. +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 # KINETICS 1 # Calcite # -tol 1e-8 @@ -19195,16 +19199,16 @@ Albite Calcite -start -1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite -2 REM PARM(2) = exponent for M/M0 +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 -10 si_cc = SI("Calcite") -20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 -30 k1 = 10^(0.198 - 444.0 / TK ) -40 k2 = 10^(2.84 - 2177.0 /TK ) -50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317.0 / TK) -60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737.0 / TK ) -80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444 / TK ) +40 k2 = 10^(2.84 - 2177 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M 110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) 120 rate = rate * (1 - 10^(2/3*si_cc)) 130 moles = rate * 0.001 * TIME # convert from mmol to mol @@ -19229,18 +19233,18 @@ Calcite # -time 1 day in 10 Pyrite -start -1 REM Williamson and Rimstidt, 1994 -2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) -3 REM PARM(2) = exp for (M/M0) -4 REM PARM(3) = exp for O2 -5 REM PARM(4) = exp for H+ +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ -10 REM Dissolution in presence of DO -20 if (M <= 0) THEN GOTO 200 -30 if (SI("Pyrite") >= 0) THEN GOTO 200 -40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") -50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) -60 moles = 10^(log_area + log_rate) * TIME +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME 200 SAVE moles -end @@ -19257,19 +19261,19 @@ Pyrite # -time 30 year in 15 Organic_C -start -1 REM Additive Monod kinetics for SOC (sediment organic carbon) -2 REM Electron acceptors: O2, NO3, and SO4 +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 -10 if (M <= 0) THEN GOTO 200 -20 mO2 = MOL("O2") -30 mNO3 = TOT("N(5)") -40 mSO4 = TOT("S(6)") -50 k_O2 = 1.57e-9 # 1/sec -60 k_NO3 = 1.67e-11 # 1/sec -70 k_SO4 = 1.e-13 # 1/sec -80 rate = k_O2 * mO2/(2.94e-4 + mO2) -90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) -100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) 110 moles = rate * M * (M/M0) * TIME 200 SAVE moles -end @@ -19290,14 +19294,14 @@ Organic_C # -time 0.5 day in 10 Pyrolusite -start -10 if (M <= 0) THEN GOTO 200 -20 sr_pl = SR("Pyrolusite") -30 if (sr_pl > 1) THEN GOTO 100 -40 REM sr_pl <= 1, undersaturated -50 Fe_t = TOT("Fe(2)") -60 if Fe_t < 1e-8 then goto 200 -70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) -80 GOTO 200 +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 100 REM sr_pl > 1, supersaturated 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL diff --git a/database/minimum.dat b/database/minimum.dat index 9234591c..6f9d3b05 100644 --- a/database/minimum.dat +++ b/database/minimum.dat @@ -1,66 +1,70 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\minimum.dat, 19/11/2023 20:31, 66 lines, 2360 bytes, md5=7edb88ba80cce39d28c29b0da2e5527d +# Created 17 May 2024 14:30:40 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "minimum.dat" + SOLUTION_MASTER_SPECIES -H H+ -1.0 H 1.008 -H(0) H2 0 H -H(1) H+ -1.0 0 1 -E e- 0 0.0 0 -O H2O 0 O 16.0 -O(0) O2 0 O -O(-2) H2O 0 0 -C CO3-2 2.0 HCO3 12.0111 60 12 -Ca Ca+2 0 40.08 40.08 -Al Al+3 0 27 27 -Si H4SiO4 0 SiO2 28.0843 +H H+ -1 H 1.008 +H(0) H2 0 H +H(1) H+ -1 0 1 +E e- 1 0 0 +O H2O 0 O 16 +O(0) O2 0 O +O(-2) H2O 0 0 +C CO3-2 2 HCO3 12.0111 +Ca Ca+2 0 40.08 40.08 +Al Al+3 0 27 27 +Si H4SiO4 0 SiO2 28.0843 SOLUTION_SPECIES H+ = H+ - -gamma 9.0 0 - -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. + -gamma 9 0 + -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3 # Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc # Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) e- = e- H2O = H2O # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Ca+2 = Ca+2 - -gamma 5.0 0.1650 - -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 + -gamma 5 0.165 + -dw 0.793e-9 97 3.4 24.6 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 Al+3 = Al+3 - -gamma 9.0 0 - -dw 0.559e-9 - -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. + -gamma 9 0 + -dw 0.559e-9 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353 H4SiO4 = H4SiO4 - -dw 1.10e-9 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -dw 1.1e-9 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 H2O = OH- + H+ - -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -gamma 3.5 0 - -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -gamma 3.5 0 + -dw 5.27e-9 548 0.52 1e-10 + -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 + -log_k -86.08 -delta_h 134.79 kcal - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt 2 H+ + 2 e- = H2 - -log_k -3.15 + -log_k -3.15 -delta_h -1.759 kcal - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 + -Vm 6.52 0.78 0.12 # supcrt CO3-2 = CO3-2 - -gamma 5.4 0 - -dw 0.955e-9 28.9 14.3 98.1 - -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 + -gamma 5.4 0 + -dw 0.955e-9 28.9 14.3 98.1 + -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 CO3-2 + H+ = HCO3- - -log_k 10.329 - -delta_h -3.561 kcal - -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 - -dw 1.18e-9 -182 0.351 -4.94 - -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 + -log_k 10.329 + -delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 + -dw 1.18e-9 -182 0.351 -4.94 + -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 CO3-2 + 2 H+ = CO2 + H2O - -log_k 16.681 - -delta_h -5.738 kcal - -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 + -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 END diff --git a/database/minteq.dat b/database/minteq.dat index d2c70653..2a356840 100644 --- a/database/minteq.dat +++ b/database/minteq.dat @@ -1,1834 +1,1838 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\minteq.dat, 15/03/2024 15:27, 5650 lines, 159592 bytes, md5=4c6f21f3073c15690f089901794039db +# Created 17 May 2024 14:30:40 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "minteq.dat" + # $Id: minteq.dat 11091 2016-04-21 15:20:05Z dlpark $ SOLUTION_MASTER_SPECIES ####################################################### # essential definitions ####################################################### -Alkalinity CO3-2 2.0 61.0173 61.0173 -E e- 0 0 0 -H H+ -1. 1.008 1.008 -H(0) H2 0.0 1.008 -H(1) H+ -1. 1.008 -O H2O 0 16.00 16.00 -O(-2) H2O 0 16.00 16.00 -O(0) O2 0 16.00 16.00 +Alkalinity CO3-2 2 61.0173 61.0173 +E e- 1 0 0 +H H+ -1 1.008 1.008 +H(0) H2 0 1.008 +H(1) H+ -1 1.008 +O H2O 0 16 16 +O(-2) H2O 0 16 16 +O(0) O2 0 16 16 ####################################################### -Ag Ag+ 0 107.868 107.868 -Al Al+3 0 26.9815 26.9815 -As H3AsO4 -1.0 74.9216 74.9216 -As(+3) H3AsO3 0.0 74.9216 -As(+5) H3AsO4 -1.0 74.9216 -B H3BO3 0.0 10.81 10.81 -Ba Ba+2 0 137.34 137.34 -Be Be+2 0 9.0122 9.0122 -Br Br- 0 79.904 79.904 -C CO3-2 2.0 61.0173 12.0111 -C(+4) CO3-2 2.0 61.0173 +Ag Ag+ 0 107.868 107.868 +Al Al+3 0 26.9815 26.9815 +As H3AsO4 -1 74.9216 74.9216 +As(+3) H3AsO3 0 74.9216 +As(+5) H3AsO4 -1 74.9216 +B H3BO3 0 10.81 10.81 +Ba Ba+2 0 137.34 137.34 +Be Be+2 0 9.0122 9.0122 +Br Br- 0 79.904 79.904 +C CO3-2 2 61.0173 12.0111 +C(+4) CO3-2 2 61.0173 #C(-4) CH4 0.0 16.042 -Cyanide Cyanide- 0 26.018 26.018 -Cyanate Cyanate- 0 42.017 42.017 +Cyanide Cyanide- 0 26.018 26.018 +Cyanate Cyanate- 0 42.017 42.017 #DOM DOM-2.8 0 0 0 #ClIG2 ClIG2 0 0 0 -Ca Ca+2 0 40.08 40.08 -Cd Cd+2 0 112.399 112.399 -Cl Cl- 0 35.453 35.453 -Cr CrO4-2 1 51.996 51.996 -Cr(2) Cr+2 0 51.996 -Cr(3) Cr(OH)2+ 1 51.996 -Cr(6) CrO4-2 1 51.996 -Cu Cu+2 0 63.546 63.546 -Cu(1) Cu+ 0 63.546 -Cu(2) Cu+2 0 63.546 -F F- 0 18.9984 18.9984 -Fe Fe+3 0.0 55.847 55.847 -Fe(+2) Fe+2 0.0 55.847 -Fe(+3) Fe+3 -2.0 55.847 -Hg Hg(OH)2 0 200.59 200.59 -Hg(2) Hg(OH)2 0 200.59 -Hg(1) Hg2+2 0 200.59 -Hg(0) Hg 0 200.59 -I I- 0 126.904 126.904 -K K+ 0 39.102 39.102 -Li Li+ 0 6.939 6.939 -Mg Mg+2 0 24.312 24.312 -Mn Mn+3 0.0 54.938 54.938 -Mn(2) Mn+2 0.0 54.938 -Mn(3) Mn+3 0.0 54.938 -Mn(6) MnO4-2 0.0 54.938 -Mn(7) MnO4- 0.0 54.938 -N NO3- 0.0 14.0067 14.0067 -N(-3) NH4+ 0.0 14.0067 +Ca Ca+2 0 40.08 40.08 +Cd Cd+2 0 112.399 112.399 +Cl Cl- 0 35.453 35.453 +Cr CrO4-2 1 51.996 51.996 +Cr(2) Cr+2 0 51.996 +Cr(3) Cr(OH)2+ 1 51.996 +Cr(6) CrO4-2 1 51.996 +Cu Cu+2 0 63.546 63.546 +Cu(1) Cu+ 0 63.546 +Cu(2) Cu+2 0 63.546 +F F- 0 18.9984 18.9984 +Fe Fe+3 0 55.847 55.847 +Fe(+2) Fe+2 0 55.847 +Fe(+3) Fe+3 -2 55.847 +Hg Hg(OH)2 0 200.59 200.59 +Hg(2) Hg(OH)2 0 200.59 +Hg(1) Hg2+2 0 200.59 +Hg(0) Hg 0 200.59 +I I- 0 126.904 126.904 +K K+ 0 39.102 39.102 +Li Li+ 0 6.939 6.939 +Mg Mg+2 0 24.312 24.312 +Mn Mn+3 0 54.938 54.938 +Mn(2) Mn+2 0 54.938 +Mn(3) Mn+3 0 54.938 +Mn(6) MnO4-2 0 54.938 +Mn(7) MnO4- 0 54.938 +N NO3- 0 14.0067 14.0067 +N(-3) NH4+ 0 14.0067 #N(0) N2 0.0 14.0067 -N(+3) NO2- 0.0 14.0067 -N(+5) NO3- 0.0 14.0067 -Na Na+ 0 22.9898 22.9898 -Ni Ni+2 0 58.71 58.71 -P PO4-3 2.0 30.9738 30.9738 -Pb Pb+2 0 207.19 207.19 -Rb Rb+ 0 85.4699 85.4699 -S SO4-2 0.0 96.0616 32.064 -S(-2) HS- 1.0 32.064 -S(6) SO4-2 0.0 96.0616 -Sb Sb(OH)6- 0. Sb 121.75 -Sb(3) Sb(OH)3 0. Sb -Sb(5) Sb(OH)6- 0 Sb -Se SeO4-2 0.0 78.96 78.96 -Se(-2) HSe- 0.0 78.96 -Se(4) SeO3-2 0.0 78.96 -Se(6) SeO4-2 0.0 78.96 -Si H4SiO4 0 96.1155 28.0843 -Sr Sr+2 0 87.62 87.62 -Tl Tl(OH)3 0 204.37 204.37 -Tl(1) Tl+ 0 204.37 -Tl(3) Tl(OH)3 0 204.37 -U UO2+2 0.0 238.0290 238.0290 -U(3) U+3 0.0 238.0290 -U(4) U+4 0.0 238.0290 -U(5) UO2+ 0.0 238.0290 -U(6) UO2+2 0.0 238.0290 -V VO2+ -2.0 50.94 50.94 -V(2) V+2 0 50.94 -V(3) V+3 -3.0 50.94 -V(4) VO+2 0 50.94 -V(5) VO2+ -2.0 50.94 -Zn Zn+2 0 65.37 65.37 -Benzoate Benzoate- 0 121.12 121.12 -Para_acetate Para_acetate- 1 134.14 134.14 -Isophthalate Isophthalate-2 1 164.12 164.12 -Diethylamine Diethylamine 0 73 73 -Nbutylamine Nbutylamine 1 73 73 -Methylamine Methylamine 1 31.018 31.018 -Dimethylamine Dimethylamine 1 45.028 45.028 -Tributylphosphate Tributylphosphate 0 265.97 265.97 -Hexylamine Hexylamine 1 101 101 -Ethylenediamine Ethylenediamine 2 60.12 60.12 -Npropylamine Npropylamine 1 59.04 59.04 -Isopropylamine Isopropylamine 1 59.04 59.04 -Trimethylamine Trimethylamine 1 59.04 59.04 -Citrate Citrate-3 2 189.06 189.06 -Nta Nta-3 1 188.06 188.06 -Edta Edta-4 2 276 276 -Propanoate Propanoate- 1 73.032 73.032 -Butanoate Butanoate- 0 87.043 87.043 -Isobutyrate Isobutyrate- 1 87.043 87.043 -Two_methylpyridine Two_methylpyridine 1 94 94 -Three_methylpyridine Three_methylpyridine 1 94 94 -Four_methylpyridine Four_methylpyridine 1 94 94 -Formate Formate- 0 45.02 45.02 -Isovalerate Isovalerate- 1 101.13 101.13 -Valerate Valerate- 1 101.13 101.13 -Acetate Acetate- 1 59.05 59.05 -Tartrate Tartrate-2 0 148.09 148.09 -Glycine Glycine- 1 74.07 74.07 -Salicylate Salicylate-2 1 136.12 136.12 -Glutamate Glutamate-2 1 145.13 145.13 -Phthalate Phthalate-2 1 164.13 164.13 +N(+3) NO2- 0 14.0067 +N(+5) NO3- 0 14.0067 +Na Na+ 0 22.9898 22.9898 +Ni Ni+2 0 58.71 58.71 +P PO4-3 2 30.9738 30.9738 +Pb Pb+2 0 207.19 207.19 +Rb Rb+ 0 85.4699 85.4699 +S SO4-2 0 96.0616 32.064 +S(-2) HS- 1 32.064 +S(6) SO4-2 0 96.0616 +Sb Sb(OH)6- 0 Sb 121.75 +Sb(3) Sb(OH)3 0 Sb +Sb(5) Sb(OH)6- 0 Sb +Se SeO4-2 0 78.96 78.96 +Se(-2) HSe- 0 78.96 +Se(4) SeO3-2 0 78.96 +Se(6) SeO4-2 0 78.96 +Si H4SiO4 0 96.1155 28.0843 +Sr Sr+2 0 87.62 87.62 +Tl Tl(OH)3 0 204.37 204.37 +Tl(1) Tl+ 0 204.37 +Tl(3) Tl(OH)3 0 204.37 +U UO2+2 0 238.029 238.029 +U(3) U+3 0 238.029 +U(4) U+4 0 238.029 +U(5) UO2+ 0 238.029 +U(6) UO2+2 0 238.029 +V VO2+ -2 50.94 50.94 +V(2) V+2 0 50.94 +V(3) V+3 -3 50.94 +V(4) VO+2 0 50.94 +V(5) VO2+ -2 50.94 +Zn Zn+2 0 65.37 65.37 +Benzoate Benzoate- 0 121.12 121.12 +Para_acetate Para_acetate- 1 134.14 134.14 +Isophthalate Isophthalate-2 1 164.12 164.12 +Diethylamine Diethylamine 0 73 73 +Nbutylamine Nbutylamine 1 73 73 +Methylamine Methylamine 1 31.018 31.018 +Dimethylamine Dimethylamine 1 45.028 45.028 +Tributylphosphate Tributylphosphate 0 265.97 265.97 +Hexylamine Hexylamine 1 101 101 +Ethylenediamine Ethylenediamine 2 60.12 60.12 +Npropylamine Npropylamine 1 59.04 59.04 +Isopropylamine Isopropylamine 1 59.04 59.04 +Trimethylamine Trimethylamine 1 59.04 59.04 +Citrate Citrate-3 2 189.06 189.06 +Nta Nta-3 1 188.06 188.06 +Edta Edta-4 2 276 276 +Propanoate Propanoate- 1 73.032 73.032 +Butanoate Butanoate- 0 87.043 87.043 +Isobutyrate Isobutyrate- 1 87.043 87.043 +Two_methylpyridine Two_methylpyridine 1 94 94 +Three_methylpyridine Three_methylpyridine 1 94 94 +Four_methylpyridine Four_methylpyridine 1 94 94 +Formate Formate- 0 45.02 45.02 +Isovalerate Isovalerate- 1 101.13 101.13 +Valerate Valerate- 1 101.13 101.13 +Acetate Acetate- 1 59.05 59.05 +Tartrate Tartrate-2 0 148.09 148.09 +Glycine Glycine- 1 74.07 74.07 +Salicylate Salicylate-2 1 136.12 136.12 +Glutamate Glutamate-2 1 145.13 145.13 +Phthalate Phthalate-2 1 164.13 164.13 SOLUTION_SPECIES ####################################################### # essential definitions ####################################################### e- = e- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal H+ = H+ - log_k 0 - delta_h 0 kcal - -gamma 9.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 9 0 H2O = H2O - log_k 0 - delta_h 0 kcal -2H2O = O2 + 4H+ + 4e- - log_k -86.08 + log_k 0 + delta_h 0 kcal +2 H2O = O2 + 4 H+ + 4 e- + log_k -86.08 delta_h 134.79 kcal 2 H+ + 2 e- = H2 - log_k -3.15 - delta_h -1.759 kcal + log_k -3.15 + delta_h -1.759 kcal CO3-2 = CO3-2 - log_k 0 - delta_h 0 kcal - -gamma 5.4 0.0 + log_k 0 + delta_h 0 kcal + -gamma 5.4 0 ####################################################### Ag+ = Ag+ - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Al+3 = Al+3 - log_k 0 - delta_h 0 kcal - -gamma 9.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 9 0 H3AsO4 = H3AsO4 - log_k 0 - delta_h 0 kcal -H3AsO4 + 2e- + 2H+ = H3AsO3 + H2O - log_k 19.444 + log_k 0 + delta_h 0 kcal +H3AsO4 + 2 e- + 2 H+ = H3AsO3 + H2O + log_k 19.444 delta_h -30.015 kcal H3BO3 = H3BO3 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Ba+2 = Ba+2 - log_k 0 - delta_h 0 kcal - -gamma 5.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 5 0 Be+2 = Be+2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Br- = Br- - log_k 0 - delta_h 0 kcal - -gamma 4.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 4 0 Cyanide- = Cyanide- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Cyanate- = Cyanate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Ca+2 = Ca+2 - log_k 0 - delta_h 0 kcal - -gamma 6.0 .165 + log_k 0 + delta_h 0 kcal + -gamma 6 .165 Cd+2 = Cd+2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Cl- = Cl- - log_k 0 - delta_h 0 kcal - -gamma 3.0 .015 + log_k 0 + delta_h 0 kcal + -gamma 3 .015 CrO4-2 = CrO4-2 - log_k 0 - delta_h 0 kcal - -gamma 4.0 0.0 -Cr(OH)2+ + 2H+ + e- = Cr+2 + 2H2O - log_k 2.947 - delta_h 6.36 kcal -CrO4-2 + 6H+ + 3e- = Cr(OH)2+ + 2H2O - log_k 67.376 - delta_h -103 kcal + log_k 0 + delta_h 0 kcal + -gamma 4 0 +Cr(OH)2+ + 2 H+ + e- = Cr+2 + 2 H2O + log_k 2.947 + delta_h 6.36 kcal +CrO4-2 + 6 H+ + 3 e- = Cr(OH)2+ + 2 H2O + log_k 67.376 + delta_h -103 kcal Cu+2 = Cu+2 - log_k 0 - delta_h 0 kcal - -gamma 2.5 0.0 + log_k 0 + delta_h 0 kcal + -gamma 2.5 0 Cu+2 + e- = Cu+ - log_k 2.72 - delta_h 1.65 kcal - -gamma 2.5 0.0 + log_k 2.72 + delta_h 1.65 kcal + -gamma 2.5 0 F- = F- - log_k 0 - delta_h 0 kcal - -gamma 3.5 0.0 + log_k 0 + delta_h 0 kcal + -gamma 3.5 0 Fe+3 = Fe+3 - log_k 0 - delta_h 0 kcal - -gamma 9.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 9 0 Fe+3 + e- = Fe+2 - log_k 13.032 - delta_h -10 kcal - -gamma 6.0 0.0 + log_k 13.032 + delta_h -10 kcal + -gamma 6 0 Hg(OH)2 = Hg(OH)2 - log_k 0 - delta_h 0 kcal -2Hg(OH)2 + 4H+ + 2e- = Hg2+2 + 4H2O - log_k 42.987 - delta_h -63.59 kcal - -gamma 4.0 0.0 -0.5Hg2+2 + e- = Hg - log_k 6.9316 + log_k 0 + delta_h 0 kcal +2 Hg(OH)2 + 4 H+ + 2 e- = Hg2+2 + 4 H2O + log_k 42.987 + delta_h -63.59 kcal + -gamma 4 0 +0.5 Hg2+2 + e- = Hg + log_k 6.9316 delta_h -16.605 kcal I- = I- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal K+ = K+ - log_k 0 - delta_h 0 kcal - -gamma 3.0 .015 + log_k 0 + delta_h 0 kcal + -gamma 3 .015 Li+ = Li+ - log_k 0 - delta_h 0 kcal - -gamma 6.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 6 0 Mg+2 = Mg+2 - log_k 0 - delta_h 0 kcal - -gamma 6.5 .20 -Mn+2 + 4H2O = MnO4- + 8H+ + 5e- - log_k -127.824 - delta_h 176.62 kcal - -gamma 3.0 0 -Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- - log_k -118.44 - delta_h 150.02 kcal - -gamma 5.0 0 + log_k 0 + delta_h 0 kcal + -gamma 6.5 .2 +Mn+2 + 4 H2O = MnO4- + 8 H+ + 5 e- + log_k -127.824 + delta_h 176.62 kcal + -gamma 3 0 +Mn+2 + 4 H2O = MnO4-2 + 8 H+ + 4 e- + log_k -118.44 + delta_h 150.02 kcal + -gamma 5 0 Mn+3 = Mn+3 - log_k 0 - delta_h 0 kcal - -gamma 9.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 9 0 Mn+3 + e- = Mn+2 - log_k 25.507 - delta_h 25.76 kcal - -gamma 6.0 0.0 + log_k 25.507 + delta_h 25.76 kcal + -gamma 6 0 NO3- = NO3- - log_k 0 - delta_h 0 kcal - -gamma 3.0 0.0 -NO3- + 2H+ + 2e- = NO2- + H2O - log_k 28.57 - delta_h -43.76 kcal -NO3- + 10H+ + 8e- = NH4+ + 3H2O - log_k 119.077 - delta_h -187.055 kcal - -gamma 2.5 0.0 + log_k 0 + delta_h 0 kcal + -gamma 3 0 +NO3- + 2 H+ + 2 e- = NO2- + H2O + log_k 28.57 + delta_h -43.76 kcal +NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + log_k 119.077 + delta_h -187.055 kcal + -gamma 2.5 0 Na+ = Na+ - log_k 0 - delta_h 0 kcal - -gamma 4.0 .075 + log_k 0 + delta_h 0 kcal + -gamma 4 .075 Ni+2 = Ni+2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal PO4-3 = PO4-3 - log_k 0 - delta_h 0 kcal - -gamma 5.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 5 0 Pb+2 = Pb+2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Rb+ = Rb+ - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal SO4-2 = SO4-2 - log_k 0 - delta_h 0 kcal - -gamma 4.0 -.04 -SO4-2 + 9H+ + 8e- = HS- + 4H2O - log_k 33.66 - delta_h -60.14 kcal - -gamma 3.5 0.0 + log_k 0 + delta_h 0 kcal + -gamma 4 -.04 +SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O + log_k 33.66 + delta_h -60.14 kcal + -gamma 3.5 0 Sb(OH)6- = Sb(OH)6- - log_k 0 - delta_h 0 kcal -Sb(OH)6- + 2e- + 3H+ = Sb(OH)3 + 3H2O - log_k 25.7791 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal +Sb(OH)6- + 2 e- + 3 H+ = Sb(OH)3 + 3 H2O + log_k 25.7791 + delta_h 0 kcal SeO4-2 = SeO4-2 - log_k 0 - delta_h 0 kcal - -gamma 4.0 0.0 -HSeO3- + 6e- + 6H+ = HSe- + 3H2O - log_k 35.38 - delta_h -78.17 kcal -SeO4-2 + 2e- + 3H+ = HSeO3- + H2O - log_k 36.319 + log_k 0 + delta_h 0 kcal + -gamma 4 0 +HSeO3- + 6 e- + 6 H+ = HSe- + 3 H2O + log_k 35.38 + delta_h -78.17 kcal +SeO4-2 + 2 e- + 3 H+ = HSeO3- + H2O + log_k 36.319 delta_h -48.095 kcal H4SiO4 = H4SiO4 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Sr+2 = Sr+2 - log_k 0 - delta_h 0 kcal - -gamma 5.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 5 0 Tl(OH)3 = Tl(OH)3 - log_k 0 - delta_h 0 kcal -Tl(OH)3 + 2e- + 3H+ = Tl+ + 3H2O - log_k 48.0178 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal +Tl(OH)3 + 2 e- + 3 H+ = Tl+ + 3 H2O + log_k 48.0178 + delta_h 0 kcal UO2+2 = UO2+2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal UO2+2 + e- = UO2+ - log_k 2.785 - delta_h -3.3 kcal -UO2+2 + 2e- + 4H+ = U+4 + 2H2O - log_k 9.216 - delta_h -34.43 kcal -UO2+2 + 3e- + 4H+ = U+3 + 2H2O - log_k 0.42 - delta_h -10.03 kcal + log_k 2.785 + delta_h -3.3 kcal +UO2+2 + 2 e- + 4 H+ = U+4 + 2 H2O + log_k 9.216 + delta_h -34.43 kcal +UO2+2 + 3 e- + 4 H+ = U+3 + 2 H2O + log_k 0.42 + delta_h -10.03 kcal VO2+ = VO2+ - log_k 0 - delta_h 0 kcal -VO2+ + e- + 2H+ = VO+2 + H2O - log_k 16.93 - delta_h -29.32 kcal -VO2+ + 2e- + 4H+ = V+3 + 2H2O - log_k 22.61 - delta_h -44.23 kcal -VO2+ + 3e- + 4H+ = V+2 + 2H2O - log_k 18.38 - delta_h -35.33 kcal + log_k 0 + delta_h 0 kcal +VO2+ + e- + 2 H+ = VO+2 + H2O + log_k 16.93 + delta_h -29.32 kcal +VO2+ + 2 e- + 4 H+ = V+3 + 2 H2O + log_k 22.61 + delta_h -44.23 kcal +VO2+ + 3 e- + 4 H+ = V+2 + 2 H2O + log_k 18.38 + delta_h -35.33 kcal Zn+2 = Zn+2 - log_k 0 - delta_h 0 kcal - -gamma 6.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 6 0 Benzoate- = Benzoate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Para_acetate- = Para_acetate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Isophthalate-2 = Isophthalate-2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Diethylamine = Diethylamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Nbutylamine = Nbutylamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Methylamine = Methylamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Dimethylamine = Dimethylamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Tributylphosphate = Tributylphosphate - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Hexylamine = Hexylamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Ethylenediamine = Ethylenediamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Npropylamine = Npropylamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Isopropylamine = Isopropylamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Trimethylamine = Trimethylamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Citrate-3 = Citrate-3 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Nta-3 = Nta-3 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Edta-4 = Edta-4 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Propanoate- = Propanoate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Butanoate- = Butanoate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Isobutyrate- = Isobutyrate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Two_methylpyridine = Two_methylpyridine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Three_methylpyridine = Three_methylpyridine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Four_methylpyridine = Four_methylpyridine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Formate- = Formate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Isovalerate- = Isovalerate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Valerate- = Valerate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Acetate- = Acetate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Tartrate-2 = Tartrate-2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Glycine- = Glycine- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Salicylate-2 = Salicylate-2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Glutamate-2 = Glutamate-2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Phthalate-2 = Phthalate-2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal SOLUTION_SPECIES H2O = OH- + H+ - log_k -13.998 - delta_h 13.345 kcal - -gamma 3.5 0 + log_k -13.998 + delta_h 13.345 kcal + -gamma 3.5 0 H4SiO4 = H3SiO4- + H+ - log_k -9.93 - delta_h 8.935 kcal - -gamma 4 0 - -analytical 6.368 -0.016346 -3405.9 -H4SiO4 = H2SiO4-2 + 2H+ - log_k -21.619 - delta_h 29.714 kcal - -gamma 5.4 0 - -analytical 39.478 -0.065927 -12355.1 -H4SiO4 + 6F- + 4H+ = SiF6-2 + 4H2O - log_k 30.18 - delta_h -16.26 kcal - -gamma 5 0 + log_k -9.93 + delta_h 8.935 kcal + -gamma 4 0 + -analytical 6.368 -0.016346 -3405.9 +H4SiO4 = H2SiO4-2 + 2 H+ + log_k -21.619 + delta_h 29.714 kcal + -gamma 5.4 0 + -analytical 39.478 -0.065927 -12355.1 +H4SiO4 + 6 F- + 4 H+ = SiF6-2 + 4 H2O + log_k 30.18 + delta_h -16.26 kcal + -gamma 5 0 H3BO3 = H2BO3- + H+ - log_k -9.24 - delta_h 3.224 kcal - -gamma 2.5 0 - -analytical 24.3919 0.012078 -1343.9 -13.2258 + log_k -9.24 + delta_h 3.224 kcal + -gamma 2.5 0 + -analytical 24.3919 0.012078 -1343.9 -13.2258 H3BO3 + F- = BF(OH)3- - log_k -0.399 - delta_h 1.85 kcal - -gamma 2.5 0 -H3BO3 + 2F- + H+ = BF2(OH)2- + H2O - log_k 7.63 - delta_h 1.635 kcal - -gamma 2.5 0 -H3BO3 + 3F- + 2H+ = BF3OH- + 2H2O - log_k 13.667 - delta_h -1.58 kcal - -gamma 2.5 0 -H3BO3 + 4F- + 3H+ = BF4- + 3H2O - log_k 20.274 - delta_h -1.795 kcal - -gamma 2.5 0 + log_k -0.399 + delta_h 1.85 kcal + -gamma 2.5 0 +H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O + log_k 7.63 + delta_h 1.635 kcal + -gamma 2.5 0 +H3BO3 + 3 F- + 2 H+ = BF3OH- + 2 H2O + log_k 13.667 + delta_h -1.58 kcal + -gamma 2.5 0 +H3BO3 + 4 F- + 3 H+ = BF4- + 3 H2O + log_k 20.274 + delta_h -1.795 kcal + -gamma 2.5 0 NH4+ = NH3 + H+ - log_k -9.252 - delta_h 12.48 kcal - -analytical 0.6322 -0.001225 -2835.76 + log_k -9.252 + delta_h 12.48 kcal + -analytical 0.6322 -0.001225 -2835.76 NH4+ + SO4-2 = NH4SO4- - log_k 1.11 - delta_h 0 kcal - -gamma 5 0 + log_k 1.11 + delta_h 0 kcal + -gamma 5 0 Mg+2 + H2O = MgOH+ + H+ - log_k -11.79 - delta_h 15.935 kcal - -gamma 6.5 0 - -analytical -3.53 0.00513 -2917.1 + log_k -11.79 + delta_h 15.935 kcal + -gamma 6.5 0 + -analytical -3.53 0.00513 -2917.1 Mg+2 + F- = MgF+ - log_k 1.82 - delta_h 4.674 kcal - -gamma 4.5 0 + log_k 1.82 + delta_h 4.674 kcal + -gamma 4.5 0 Mg+2 + CO3-2 = MgCO3 - log_k 2.98 - delta_h 2.022 kcal - -analytical 0.991 0.00667 + log_k 2.98 + delta_h 2.022 kcal + -analytical 0.991 0.00667 Mg+2 + CO3-2 + H+ = MgHCO3+ - log_k 11.4 - delta_h -2.43 kcal - -gamma 4 0 -# Minteq a_e has more constants than phreeqc, can not use + log_k 11.4 + delta_h -2.43 kcal + -gamma 4 0 +# Minteq a_e has more constants than phreeqc, can not use # -analytical_expression -4.179 0.012734 2902.39 0.0 2.29812E-5 Mg+2 + SO4-2 = MgSO4 - log_k 2.25 - delta_h 1.399 kcal + log_k 2.25 + delta_h 1.399 kcal Mg+2 + PO4-3 = MgPO4- - log_k 6.589 - delta_h 3.1 kcal - -gamma 5.4 0 -Mg+2 + PO4-3 + 2H+ = MgH2PO4+ - log_k 21.066 - delta_h -1.12 kcal - -gamma 5.4 0 + log_k 6.589 + delta_h 3.1 kcal + -gamma 5.4 0 +Mg+2 + PO4-3 + 2 H+ = MgH2PO4+ + log_k 21.066 + delta_h -1.12 kcal + -gamma 5.4 0 Mg+2 + PO4-3 + H+ = MgHPO4 - log_k 15.22 - delta_h -0.23 kcal + log_k 15.22 + delta_h -0.23 kcal Ca+2 + H2O = CaOH+ + H+ - log_k -12.598 - delta_h 14.535 kcal - -gamma 6 0 + log_k -12.598 + delta_h 14.535 kcal + -gamma 6 0 Ca+2 + CO3-2 + H+ = CaHCO3+ - log_k 11.33 - delta_h 1.79 kcal - -gamma 6 0 - -analytical -9.448 0.03709 2902.39 + log_k 11.33 + delta_h 1.79 kcal + -gamma 6 0 + -analytical -9.448 0.03709 2902.39 Ca+2 + CO3-2 = CaCO3 - log_k 3.15 - delta_h 4.03 kcal - -analytical -27.393 0.05617 4114.0 + log_k 3.15 + delta_h 4.03 kcal + -analytical -27.393 0.05617 4114 Ca+2 + SO4-2 = CaSO4 - log_k 2.309 - delta_h 1.47 kcal + log_k 2.309 + delta_h 1.47 kcal Ca+2 + PO4-3 + H+ = CaHPO4 - log_k 15.085 - delta_h -0.23 kcal + log_k 15.085 + delta_h -0.23 kcal Ca+2 + PO4-3 = CaPO4- - log_k 6.459 - delta_h 3.1 kcal - -gamma 5.4 0 -Ca+2 + PO4-3 + 2H+ = CaH2PO4+ - log_k 20.96 - delta_h -1.12 kcal - -gamma 5.4 0 + log_k 6.459 + delta_h 3.1 kcal + -gamma 5.4 0 +Ca+2 + PO4-3 + 2 H+ = CaH2PO4+ + log_k 20.96 + delta_h -1.12 kcal + -gamma 5.4 0 Ca+2 + F- = CaF+ - log_k 0.94 - delta_h 3.798 kcal - -gamma 5 0 + log_k 0.94 + delta_h 3.798 kcal + -gamma 5 0 Na+ + CO3-2 = NaCO3- - log_k 1.268 - delta_h 8.911 kcal - -gamma 5.4 0 + log_k 1.268 + delta_h 8.911 kcal + -gamma 5.4 0 Na+ + CO3-2 + H+ = NaHCO3 - log_k 10.08 - delta_h 0 kcal + log_k 10.08 + delta_h 0 kcal Na+ + SO4-2 = NaSO4- - log_k 0.7 - delta_h 1.12 kcal - -gamma 5.4 0 + log_k 0.7 + delta_h 1.12 kcal + -gamma 5.4 0 Na+ + PO4-3 + H+ = NaHPO4- - log_k 12.636 - delta_h 0 kcal - -gamma 5.4 0 + log_k 12.636 + delta_h 0 kcal + -gamma 5.4 0 Na+ + F- = NaF - log_k -0.79 - delta_h 0 kcal + log_k -0.79 + delta_h 0 kcal K+ + SO4-2 = KSO4- - log_k 0.85 - delta_h 2.25 kcal - -gamma 5.4 0 - -analytical 3.106 0.00 -673.6 + log_k 0.85 + delta_h 2.25 kcal + -gamma 5.4 0 + -analytical 3.106 0 -673.6 K+ + PO4-3 + H+ = KHPO4- - log_k 12.64 - -gamma 5.4 0 - delta_h 0 kcal + log_k 12.64 + -gamma 5.4 0 + delta_h 0 kcal Al+3 + H2O = AlOH+2 + H+ - log_k -4.99 - delta_h 11.899 kcal - -gamma 5.4 0 -Al+3 + 2H2O = Al(OH)2+ + 2H+ - log_k -10.1 - delta_h 0 kcal - -gamma 5.4 0 -Al+3 + 4H2O = Al(OH)4- + 4H+ - log_k -23 - delta_h 44.06 kcal - -gamma 4.5 0 + log_k -4.99 + delta_h 11.899 kcal + -gamma 5.4 0 +Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + log_k -10.1 + delta_h 0 kcal + -gamma 5.4 0 +Al+3 + 4 H2O = Al(OH)4- + 4 H+ + log_k -23 + delta_h 44.06 kcal + -gamma 4.5 0 Al+3 + F- = AlF+2 - log_k 7.01 - delta_h 0 kcal - -gamma 5.4 0 -Al+3 + 2F- = AlF2+ - log_k 12.75 - delta_h 20 kcal - -gamma 5.4 0 -Al+3 + 3F- = AlF3 - log_k 17.02 - delta_h 2.5 kcal -Al+3 + 4F- = AlF4- - log_k 19.72 - delta_h 0 kcal - -gamma 4.5 0 + log_k 7.01 + delta_h 0 kcal + -gamma 5.4 0 +Al+3 + 2 F- = AlF2+ + log_k 12.75 + delta_h 20 kcal + -gamma 5.4 0 +Al+3 + 3 F- = AlF3 + log_k 17.02 + delta_h 2.5 kcal +Al+3 + 4 F- = AlF4- + log_k 19.72 + delta_h 0 kcal + -gamma 4.5 0 Al+3 + SO4-2 = AlSO4+ - log_k 3.02 - delta_h 2.15 kcal - -gamma 4.5 0 -Al+3 + 2SO4-2 = Al(SO4)2- - log_k 4.92 - delta_h 2.84 kcal - -gamma 4.5 0 -Al+3 + 3H2O = Al(OH)3 + 3H+ - log_k -16 - delta_h 0 kcal + log_k 3.02 + delta_h 2.15 kcal + -gamma 4.5 0 +Al+3 + 2 SO4-2 = Al(SO4)2- + log_k 4.92 + delta_h 2.84 kcal + -gamma 4.5 0 +Al+3 + 3 H2O = Al(OH)3 + 3 H+ + log_k -16 + delta_h 0 kcal Fe+2 + H2O = FeOH+ + H+ - log_k -9.5 - delta_h 13.199 kcal - -gamma 5 0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ - log_k -31 - delta_h 30.3 kcal - -gamma 5 0 + log_k -9.5 + delta_h 13.199 kcal + -gamma 5 0 +Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + log_k -31 + delta_h 30.3 kcal + -gamma 5 0 Fe+2 + SO4-2 = FeSO4 - log_k 2.25 - delta_h 3.23 kcal -Fe+2 + PO4-3 + 2H+ = FeH2PO4+ - log_k 22.253 - delta_h 0 kcal - -gamma 5.4 0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ - log_k -20.57 - delta_h 28.565 kcal + log_k 2.25 + delta_h 3.23 kcal +Fe+2 + PO4-3 + 2 H+ = FeH2PO4+ + log_k 22.253 + delta_h 0 kcal + -gamma 5.4 0 +Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + log_k -20.57 + delta_h 28.565 kcal Fe+2 + PO4-3 + H+ = FeHPO4 - log_k 15.95 - delta_h 0 kcal -Fe+2 + 2HS- = Fe(HS)2 - log_k 8.95 - delta_h 0 kcal -Fe+2 + 3HS- = Fe(HS)3- - log_k 10.987 - delta_h 0 kcal + log_k 15.95 + delta_h 0 kcal +Fe+2 + 2 HS- = Fe(HS)2 + log_k 8.95 + delta_h 0 kcal +Fe+2 + 3 HS- = Fe(HS)3- + log_k 10.987 + delta_h 0 kcal Fe+3 + H2O = FeOH+2 + H+ - log_k -2.19 - delta_h 10.399 kcal - -gamma 5 0 + log_k -2.19 + delta_h 10.399 kcal + -gamma 5 0 Fe+3 + PO4-3 + H+ = FeHPO4+ - log_k 17.78 - delta_h -7.3 kcal - -gamma 5.4 0 + log_k 17.78 + delta_h -7.3 kcal + -gamma 5.4 0 Fe+3 + SO4-2 = FeSO4+ - log_k 3.92 - delta_h 3.91 kcal - -gamma 5 0 + log_k 3.92 + delta_h 3.91 kcal + -gamma 5 0 Fe+3 + Cl- = FeCl+2 - log_k 1.48 - delta_h 5.6 kcal - -gamma 5 0 -Fe+3 + 2Cl- = FeCl2+ - log_k 2.13 - delta_h 0 kcal - -gamma 5 0 -Fe+3 + 3Cl- = FeCl3 - log_k 1.13 - delta_h 0 kcal -Fe+3 + 2H2O = Fe(OH)2+ + 2H+ - log_k -5.67 - delta_h 0 kcal - -gamma 5.4 0 -Fe+3 + 3H2O = Fe(OH)3 + 3H+ - log_k -13.6 - delta_h 0 kcal -Fe+3 + 4H2O = Fe(OH)4- + 4H+ - log_k -21.6 - delta_h 0 kcal - -gamma 5.4 0 -Fe+3 + PO4-3 + 2H+ = FeH2PO4+2 - log_k 24.98 - delta_h 0 kcal - -gamma 5.4 0 + log_k 1.48 + delta_h 5.6 kcal + -gamma 5 0 +Fe+3 + 2 Cl- = FeCl2+ + log_k 2.13 + delta_h 0 kcal + -gamma 5 0 +Fe+3 + 3 Cl- = FeCl3 + log_k 1.13 + delta_h 0 kcal +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + log_k -5.67 + delta_h 0 kcal + -gamma 5.4 0 +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + log_k -13.6 + delta_h 0 kcal +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + log_k -21.6 + delta_h 0 kcal + -gamma 5.4 0 +Fe+3 + PO4-3 + 2 H+ = FeH2PO4+2 + log_k 24.98 + delta_h 0 kcal + -gamma 5.4 0 Fe+3 + F- = FeF+2 - log_k 6.199 - delta_h 2.699 kcal - -gamma 5 0 -Fe+3 + 2F- = FeF2+ - log_k 10.8 - delta_h 4.8 kcal - -gamma 5 0 -Fe+3 + 3F- = FeF3 - log_k 14 - delta_h 5.399 kcal -Fe+3 + 2SO4-2 = Fe(SO4)2- - log_k 5.42 - delta_h 4.6 kcal -2Fe+3 + 2H2O = Fe2(OH)2+4 + 2H+ - log_k -2.95 - delta_h 13.5 kcal -3Fe+3 + 4H2O = Fe3(OH)4+5 + 4H+ - log_k -6.3 - delta_h 14.3 kcal + log_k 6.199 + delta_h 2.699 kcal + -gamma 5 0 +Fe+3 + 2 F- = FeF2+ + log_k 10.8 + delta_h 4.8 kcal + -gamma 5 0 +Fe+3 + 3 F- = FeF3 + log_k 14 + delta_h 5.399 kcal +Fe+3 + 2 SO4-2 = Fe(SO4)2- + log_k 5.42 + delta_h 4.6 kcal +2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + log_k -2.95 + delta_h 13.5 kcal +3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + log_k -6.3 + delta_h 14.3 kcal Li+ + SO4-2 = LiSO4- - log_k 0.64 - delta_h 0 kcal - -gamma 5 0 + log_k 0.64 + delta_h 0 kcal + -gamma 5 0 Sr+2 + H2O = SrOH+ + H+ - log_k -13.178 - delta_h 14.495 kcal - -gamma 5 0 + log_k -13.178 + delta_h 14.495 kcal + -gamma 5 0 Ba+2 + H2O = BaOH+ + H+ - log_k -13.358 - delta_h 15.095 kcal - -gamma 5 0 + log_k -13.358 + delta_h 15.095 kcal + -gamma 5 0 Mn+2 + Cl- = MnCl+ - log_k 0.607 - delta_h 0 kcal - -gamma 5 0 -Mn+2 + 2Cl- = MnCl2 - log_k 0.041 - delta_h 0 kcal -Mn+2 + 3Cl- = MnCl3- - log_k -0.305 - delta_h 0 kcal - -gamma 5 0 + log_k 0.607 + delta_h 0 kcal + -gamma 5 0 +Mn+2 + 2 Cl- = MnCl2 + log_k 0.041 + delta_h 0 kcal +Mn+2 + 3 Cl- = MnCl3- + log_k -0.305 + delta_h 0 kcal + -gamma 5 0 Mn+2 + H2O = MnOH+ + H+ - log_k -10.59 - delta_h 14.399 kcal - -gamma 5 0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ - log_k -34.8 - delta_h 0 kcal - -gamma 5 0 + log_k -10.59 + delta_h 14.399 kcal + -gamma 5 0 +Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + log_k -34.8 + delta_h 0 kcal + -gamma 5 0 Mn+2 + F- = MnF+ - log_k 0.85 - delta_h 0 kcal - -gamma 5 0 + log_k 0.85 + delta_h 0 kcal + -gamma 5 0 Mn+2 + SO4-2 = MnSO4 - log_k 2.26 - delta_h 2.17 kcal -Mn+2 + 2NO3- = Mn(NO3)2 - log_k 0.6 - delta_h -0.396 kcal + log_k 2.26 + delta_h 2.17 kcal +Mn+2 + 2 NO3- = Mn(NO3)2 + log_k 0.6 + delta_h -0.396 kcal Mn+2 + CO3-2 + H+ = MnHCO3+ - log_k 11.6 - delta_h 0 kcal - -gamma 5 0 -Cu+ + 2Cl- = CuCl2- - log_k 5.5 - delta_h -0.42 kcal - -gamma 4 0 -Cu+ + 3Cl- = CuCl3-2 - log_k 5.7 - delta_h 0.26 kcal - -gamma 5 0 -Cu+ + 2HS- = Cu(S4)2-3 + 2H+ - log_k 3.39 - delta_h 0 kcal - -gamma 23 0 + log_k 11.6 + delta_h 0 kcal + -gamma 5 0 +Cu+ + 2 Cl- = CuCl2- + log_k 5.5 + delta_h -0.42 kcal + -gamma 4 0 +Cu+ + 3 Cl- = CuCl3-2 + log_k 5.7 + delta_h 0.26 kcal + -gamma 5 0 +Cu+ + 2 HS- = Cu(S4)2-3 + 2 H+ + log_k 3.39 + delta_h 0 kcal + -gamma 23 0 -no_check -mass_balance Cu(1)(S(-2)4)2 -Cu+ + 2HS- = CuS4S5-3 + 2H+ - log_k 2.66 - delta_h 0 kcal - -gamma 25 0 +Cu+ + 2 HS- = CuS4S5-3 + 2 H+ + log_k 2.66 + delta_h 0 kcal + -gamma 25 0 -no_check -mass_balance Cu(1)S(-2)4S(-2)5 Cu+2 + Acetate- = CuAcetate+ - log_k 2.22 - delta_h 0 kcal + log_k 2.22 + delta_h 0 kcal Cu+2 + Glycine- = CuGlycine+ - log_k 8.62 - delta_h 0 kcal -2Cu+2 + Glycine- = Cu2Glycine+3 - log_k 15.64 - delta_h 0 kcal + log_k 8.62 + delta_h 0 kcal +2 Cu+2 + Glycine- = Cu2Glycine+3 + log_k 15.64 + delta_h 0 kcal Cu+2 + Salicylate-2 = CuSalicylate - log_k 10.64 - delta_h 0 kcal -2Cu+2 + Salicylate-2 = Cu2Salicylate+2 - log_k 16.94 - delta_h 0 kcal + log_k 10.64 + delta_h 0 kcal +2 Cu+2 + Salicylate-2 = Cu2Salicylate+2 + log_k 16.94 + delta_h 0 kcal Cu+2 + Glutamate-2 = CuGlutamate - log_k 8.33 - delta_h 0 kcal -2Cu+2 + Glutamate-2 = Cu2Glutamate+2 - log_k 14.84 - delta_h 0 kcal -2Cu+2 + Phthalate-2 = Cu2Phthalate+2 - log_k 5.3 - delta_h 0 kcal + log_k 8.33 + delta_h 0 kcal +2 Cu+2 + Glutamate-2 = Cu2Glutamate+2 + log_k 14.84 + delta_h 0 kcal +2 Cu+2 + Phthalate-2 = Cu2Phthalate+2 + log_k 5.3 + delta_h 0 kcal Cu+2 + CO3-2 = CuCO3 - log_k 6.73 - delta_h 0 kcal -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - log_k 9.83 - delta_h 0 kcal + log_k 6.73 + delta_h 0 kcal +Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + log_k 9.83 + delta_h 0 kcal Cu+2 + Cl- = CuCl+ - log_k 0.43 - delta_h 8.65 kcal - -gamma 4 0 -Cu+2 + 2Cl- = CuCl2 - log_k 0.16 - delta_h 10.56 kcal -Cu+2 + 3Cl- = CuCl3- - log_k -2.29 - delta_h 13.69 kcal - -gamma 4 0 -Cu+2 + 4Cl- = CuCl4-2 - log_k -4.59 - delta_h 7.78 kcal - -gamma 5 0 + log_k 0.43 + delta_h 8.65 kcal + -gamma 4 0 +Cu+2 + 2 Cl- = CuCl2 + log_k 0.16 + delta_h 10.56 kcal +Cu+2 + 3 Cl- = CuCl3- + log_k -2.29 + delta_h 13.69 kcal + -gamma 4 0 +Cu+2 + 4 Cl- = CuCl4-2 + log_k -4.59 + delta_h 7.78 kcal + -gamma 5 0 Cu+2 + F- = CuF+ - log_k 1.26 - delta_h 1.62 kcal + log_k 1.26 + delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ - log_k -8 - delta_h 0 kcal - -gamma 4 0 -Cu+2 + 2H2O = Cu(OH)2 + 2H+ - log_k -13.68 - delta_h 0 kcal -Cu+2 + 3H2O = Cu(OH)3- + 3H+ - log_k -26.899 - delta_h 0 kcal -Cu+2 + 4H2O = Cu(OH)4-2 + 4H+ - log_k -39.6 - delta_h 0 kcal -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ - log_k -10.359 - delta_h 17.539 kcal - -analytical 2.497 0.0 -3833.0 + log_k -8 + delta_h 0 kcal + -gamma 4 0 +Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + log_k -13.68 + delta_h 0 kcal +Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + log_k -26.899 + delta_h 0 kcal +Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + log_k -39.6 + delta_h 0 kcal +2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + log_k -10.359 + delta_h 17.539 kcal + -analytical 2.497 0 -3833 Cu+2 + SO4-2 = CuSO4 - log_k 2.31 - delta_h 1.22 kcal -Cu+2 + 3HS- = Cu(HS)3- - log_k 25.899 - delta_h 0 kcal + log_k 2.31 + delta_h 1.22 kcal +Cu+2 + 3 HS- = Cu(HS)3- + log_k 25.899 + delta_h 0 kcal Cu+2 + CO3-2 + H+ = CuHCO3+ - log_k 13 - delta_h 0 kcal + log_k 13 + delta_h 0 kcal Zn+2 + Cl- = ZnCl+ - log_k 0.43 - delta_h 7.79 kcal - -gamma 4 0 -Zn+2 + 2Cl- = ZnCl2 - log_k 0.45 - delta_h 8.5 kcal -Zn+2 + 3Cl- = ZnCl3- - log_k 0.5 - delta_h 9.56 kcal - -gamma 4 0 -Zn+2 + 4Cl- = ZnCl4-2 - log_k 0.199 - delta_h 10.96 kcal - -gamma 5 0 + log_k 0.43 + delta_h 7.79 kcal + -gamma 4 0 +Zn+2 + 2 Cl- = ZnCl2 + log_k 0.45 + delta_h 8.5 kcal +Zn+2 + 3 Cl- = ZnCl3- + log_k 0.5 + delta_h 9.56 kcal + -gamma 4 0 +Zn+2 + 4 Cl- = ZnCl4-2 + log_k 0.199 + delta_h 10.96 kcal + -gamma 5 0 Zn+2 + F- = ZnF+ - log_k 1.15 - delta_h 2.22 kcal + log_k 1.15 + delta_h 2.22 kcal Zn+2 + H2O = ZnOH+ + H+ - log_k -8.96 - delta_h 13.399 kcal -Zn+2 + 2H2O = Zn(OH)2 + 2H+ - log_k -16.899 - delta_h 0 kcal -Zn+2 + 3H2O = Zn(OH)3- + 3H+ - log_k -28.399 - delta_h 0 kcal -Zn+2 + 4H2O = Zn(OH)4-2 + 4H+ - log_k -41.199 - delta_h 0 kcal + log_k -8.96 + delta_h 13.399 kcal +Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + log_k -16.899 + delta_h 0 kcal +Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + log_k -28.399 + delta_h 0 kcal +Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + log_k -41.199 + delta_h 0 kcal Zn+2 + H2O + Cl- = ZnOHCl + H+ - log_k -7.48 - delta_h 0 kcal -Zn+2 + 2HS- = Zn(HS)2 - log_k 14.94 - delta_h 0 kcal -Zn+2 + 3HS- = Zn(HS)3- - log_k 16.1 - delta_h 0 kcal + log_k -7.48 + delta_h 0 kcal +Zn+2 + 2 HS- = Zn(HS)2 + log_k 14.94 + delta_h 0 kcal +Zn+2 + 3 HS- = Zn(HS)3- + log_k 16.1 + delta_h 0 kcal Zn+2 + SO4-2 = ZnSO4 - log_k 2.37 - delta_h 1.36 kcal -Zn+2 + 2SO4-2 = Zn(SO4)2-2 - log_k 3.28 - delta_h 0 kcal + log_k 2.37 + delta_h 1.36 kcal +Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + log_k 3.28 + delta_h 0 kcal Zn+2 + Br- = ZnBr+ - log_k -0.58 - delta_h 0 kcal -Zn+2 + 2Br- = ZnBr2 - log_k -0.98 - delta_h 0 kcal + log_k -0.58 + delta_h 0 kcal +Zn+2 + 2 Br- = ZnBr2 + log_k -0.98 + delta_h 0 kcal Zn+2 + I- = ZnI+ - log_k -2.91 - delta_h 0 kcal -Zn+2 + 2I- = ZnI2 - log_k -1.69 - delta_h 0 kcal + log_k -2.91 + delta_h 0 kcal +Zn+2 + 2 I- = ZnI2 + log_k -1.69 + delta_h 0 kcal Zn+2 + CO3-2 + H+ = ZnHCO3+ - log_k 12.4 - delta_h 0 kcal + log_k 12.4 + delta_h 0 kcal Zn+2 + CO3-2 = ZnCO3 - log_k 5.3 - delta_h 0 kcal -Zn+2 + 2CO3-2 = Zn(CO3)2-2 - log_k 9.63 - delta_h 0 kcal + log_k 5.3 + delta_h 0 kcal +Zn+2 + 2 CO3-2 = Zn(CO3)2-2 + log_k 9.63 + delta_h 0 kcal Cd+2 + Cl- = CdCl+ - log_k 1.98 - delta_h 0.59 kcal -Cd+2 + 2Cl- = CdCl2 - log_k 2.6 - delta_h 1.24 kcal -Cd+2 + 3Cl- = CdCl3- - log_k 2.399 - delta_h 3.9 kcal + log_k 1.98 + delta_h 0.59 kcal +Cd+2 + 2 Cl- = CdCl2 + log_k 2.6 + delta_h 1.24 kcal +Cd+2 + 3 Cl- = CdCl3- + log_k 2.399 + delta_h 3.9 kcal Cd+2 + F- = CdF+ - log_k 1.1 - delta_h 0 kcal -Cd+2 + 2F- = CdF2 - log_k 1.5 - delta_h 0 kcal -Cd+2 + 3CO3-2 = Cd(CO3)3-4 - log_k 6.22 - delta_h 0 kcal + log_k 1.1 + delta_h 0 kcal +Cd+2 + 2 F- = CdF2 + log_k 1.5 + delta_h 0 kcal +Cd+2 + 3 CO3-2 = Cd(CO3)3-4 + log_k 6.22 + delta_h 0 kcal Cd+2 + H2O = CdOH+ + H+ - log_k -10.08 - delta_h 13.1 kcal -Cd+2 + 2H2O = Cd(OH)2 + 2H+ - log_k -20.35 - delta_h 0 kcal -Cd+2 + 3H2O = Cd(OH)3- + 3H+ - log_k -33.3 - delta_h 0 kcal -Cd+2 + 4H2O = Cd(OH)4-2 + 4H+ - log_k -47.35 - delta_h 0 kcal -2Cd+2 + H2O = Cd2OH+3 + H+ - log_k -9.39 - delta_h 10.899 kcal + log_k -10.08 + delta_h 13.1 kcal +Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + log_k -20.35 + delta_h 0 kcal +Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + log_k -33.3 + delta_h 0 kcal +Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + log_k -47.35 + delta_h 0 kcal +2 Cd+2 + H2O = Cd2OH+3 + H+ + log_k -9.39 + delta_h 10.899 kcal Cd+2 + H2O + Cl- = CdOHCl + H+ - log_k -7.404 - delta_h 4.355 kcal + log_k -7.404 + delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ - log_k 0.399 - delta_h -5.2 kcal + log_k 0.399 + delta_h -5.2 kcal Cd+2 + SO4-2 = CdSO4 - log_k 2.46 - delta_h 1.08 kcal + log_k 2.46 + delta_h 1.08 kcal Cd+2 + HS- = CdHS+ - log_k 10.17 - delta_h 0 kcal -Cd+2 + 2HS- = Cd(HS)2 - log_k 16.53 - delta_h 0 kcal -Cd+2 + 3HS- = Cd(HS)3- - log_k 18.71 - delta_h 0 kcal -Cd+2 + 4HS- = Cd(HS)4-2 - log_k 20.9 - delta_h 0 kcal + log_k 10.17 + delta_h 0 kcal +Cd+2 + 2 HS- = Cd(HS)2 + log_k 16.53 + delta_h 0 kcal +Cd+2 + 3 HS- = Cd(HS)3- + log_k 18.71 + delta_h 0 kcal +Cd+2 + 4 HS- = Cd(HS)4-2 + log_k 20.9 + delta_h 0 kcal Cd+2 + Br- = CdBr+ - log_k 2.17 - delta_h -0.81 kcal -Cd+2 + 2Br- = CdBr2 - log_k 2.899 - delta_h 0 kcal + log_k 2.17 + delta_h -0.81 kcal +Cd+2 + 2 Br- = CdBr2 + log_k 2.899 + delta_h 0 kcal Cd+2 + I- = CdI+ - log_k 2.15 - delta_h -2.37 kcal -Cd+2 + 2I- = CdI2 - log_k 3.59 - delta_h 0 kcal + log_k 2.15 + delta_h -2.37 kcal +Cd+2 + 2 I- = CdI2 + log_k 3.59 + delta_h 0 kcal Cd+2 + CO3-2 + H+ = CdHCO3+ - log_k 12.4 - delta_h 0 kcal + log_k 12.4 + delta_h 0 kcal Cd+2 + CO3-2 = CdCO3 - log_k 5.399 - delta_h 0 kcal -Cd+2 + 2SO4-2 = Cd(SO4)2-2 - log_k 3.5 - delta_h 0 kcal + log_k 5.399 + delta_h 0 kcal +Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + log_k 3.5 + delta_h 0 kcal Pb+2 + Cl- = PbCl+ - log_k 1.6 - delta_h 4.38 kcal -Pb+2 + 2Cl- = PbCl2 - log_k 1.8 - delta_h 1.08 kcal -Pb+2 + 3Cl- = PbCl3- - log_k 1.699 - delta_h 2.17 kcal -Pb+2 + 4Cl- = PbCl4-2 - log_k 1.38 - delta_h 3.53 kcal -Pb+2 + 2CO3-2 = Pb(CO3)2-2 - log_k 10.64 - delta_h 0 kcal + log_k 1.6 + delta_h 4.38 kcal +Pb+2 + 2 Cl- = PbCl2 + log_k 1.8 + delta_h 1.08 kcal +Pb+2 + 3 Cl- = PbCl3- + log_k 1.699 + delta_h 2.17 kcal +Pb+2 + 4 Cl- = PbCl4-2 + log_k 1.38 + delta_h 3.53 kcal +Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + log_k 10.64 + delta_h 0 kcal Pb+2 + F- = PbF+ - log_k 1.25 - delta_h 0 kcal -Pb+2 + 2F- = PbF2 - log_k 2.56 - delta_h 0 kcal -Pb+2 + 3F- = PbF3- - log_k 3.42 - delta_h 0 kcal -Pb+2 + 4F- = PbF4-2 - log_k 3.1 - delta_h 0 kcal + log_k 1.25 + delta_h 0 kcal +Pb+2 + 2 F- = PbF2 + log_k 2.56 + delta_h 0 kcal +Pb+2 + 3 F- = PbF3- + log_k 3.42 + delta_h 0 kcal +Pb+2 + 4 F- = PbF4-2 + log_k 3.1 + delta_h 0 kcal Pb+2 + H2O = PbOH+ + H+ - log_k -7.71 - delta_h 0 kcal -Pb+2 + 2H2O = Pb(OH)2 + 2H+ - log_k -17.12 - delta_h 0 kcal -Pb+2 + 3H2O = Pb(OH)3- + 3H+ - log_k -28.06 - delta_h 0 kcal -2Pb+2 + H2O = Pb2OH+3 + H+ - log_k -6.36 - delta_h 0 kcal + log_k -7.71 + delta_h 0 kcal +Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + log_k -17.12 + delta_h 0 kcal +Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + log_k -28.06 + delta_h 0 kcal +2 Pb+2 + H2O = Pb2OH+3 + H+ + log_k -6.36 + delta_h 0 kcal Pb+2 + NO3- = PbNO3+ - log_k 1.17 - delta_h 0 kcal + log_k 1.17 + delta_h 0 kcal Pb+2 + SO4-2 = PbSO4 - log_k 2.75 - delta_h 0 kcal -Pb+2 + 2HS- = Pb(HS)2 - log_k 15.27 - delta_h 0 kcal -Pb+2 + 3HS- = Pb(HS)3- - log_k 16.57 - delta_h 0 kcal -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ - log_k -23.88 - delta_h 26.5 kcal + log_k 2.75 + delta_h 0 kcal +Pb+2 + 2 HS- = Pb(HS)2 + log_k 15.27 + delta_h 0 kcal +Pb+2 + 3 HS- = Pb(HS)3- + log_k 16.57 + delta_h 0 kcal +3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + log_k -23.88 + delta_h 26.5 kcal Pb+2 + Br- = PbBr+ - log_k 1.77 - delta_h 2.88 kcal -Pb+2 + 2Br- = PbBr2 - log_k 1.44 - delta_h 0 kcal + log_k 1.77 + delta_h 2.88 kcal +Pb+2 + 2 Br- = PbBr2 + log_k 1.44 + delta_h 0 kcal Pb+2 + I- = PbI+ - log_k 1.94 - delta_h 0 kcal -Pb+2 + 2I- = PbI2 - log_k 3.199 - delta_h 0 kcal + log_k 1.94 + delta_h 0 kcal +Pb+2 + 2 I- = PbI2 + log_k 3.199 + delta_h 0 kcal Pb+2 + CO3-2 = PbCO3 - log_k 7.24 - delta_h 0 kcal -Pb+2 + 4H2O = Pb(OH)4-2 + 4H+ - log_k -39.699 - delta_h 0 kcal -Pb+2 + 2SO4-2 = Pb(SO4)2-2 - log_k 3.47 - delta_h 0 kcal + log_k 7.24 + delta_h 0 kcal +Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + log_k -39.699 + delta_h 0 kcal +Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + log_k 3.47 + delta_h 0 kcal Pb+2 + CO3-2 + H+ = PbHCO3+ - log_k 13.2 - delta_h 0 kcal + log_k 13.2 + delta_h 0 kcal Ni+2 + Br- = NiBr+ - log_k 0.5 - delta_h 0 kcal + log_k 0.5 + delta_h 0 kcal Ni+2 + Cl- = NiCl+ - log_k 0.399 - delta_h 0 kcal + log_k 0.399 + delta_h 0 kcal Ni+2 + F- = NiF+ - log_k 1.3 - delta_h 0 kcal + log_k 1.3 + delta_h 0 kcal Ni+2 + H2O = NiOH+ + H+ - log_k -9.86 - delta_h 12.42 kcal -Ni+2 + 2H2O = Ni(OH)2 + 2H+ - log_k -19 - delta_h 0 kcal -Ni+2 + 3H2O = Ni(OH)3- + 3H+ - log_k -30 - delta_h 0 kcal + log_k -9.86 + delta_h 12.42 kcal +Ni+2 + 2 H2O = Ni(OH)2 + 2 H+ + log_k -19 + delta_h 0 kcal +Ni+2 + 3 H2O = Ni(OH)3- + 3 H+ + log_k -30 + delta_h 0 kcal Ni+2 + SO4-2 = NiSO4 - log_k 2.29 - delta_h 1.52 kcal -Ni+2 + 2Cl- = NiCl2 - log_k 0.96 - delta_h 0 kcal + log_k 2.29 + delta_h 1.52 kcal +Ni+2 + 2 Cl- = NiCl2 + log_k 0.96 + delta_h 0 kcal Ni+2 + CO3-2 + H+ = NiHCO3+ - log_k 12.47 - delta_h 0 kcal + log_k 12.47 + delta_h 0 kcal Ni+2 + CO3-2 = NiCO3 - log_k 6.87 - delta_h 0 kcal -Ni+2 + 2CO3-2 = Ni(CO3)2-2 - log_k 10.11 - delta_h 0 kcal -Ni+2 + 2SO4-2 = Ni(SO4)2-2 - log_k 1.02 - delta_h 0 kcal + log_k 6.87 + delta_h 0 kcal +Ni+2 + 2 CO3-2 = Ni(CO3)2-2 + log_k 10.11 + delta_h 0 kcal +Ni+2 + 2 SO4-2 = Ni(SO4)2-2 + log_k 1.02 + delta_h 0 kcal Ni+2 + Acetate- = NiAcetate+ - log_k 1.43 - delta_h 0 kcal + log_k 1.43 + delta_h 0 kcal Ni+2 + Glycine- = NiGlycine+ - log_k 6.18 - delta_h 0 kcal -2Ni+2 + Glycine- = Ni2Glycine+3 - log_k 11.13 - delta_h 0 kcal + log_k 6.18 + delta_h 0 kcal +2 Ni+2 + Glycine- = Ni2Glycine+3 + log_k 11.13 + delta_h 0 kcal Ni+2 + Salicylate-2 = NiSalicylate - log_k 6.95 - delta_h 0 kcal -2Ni+2 + Salicylate-2 = Ni2Salicylate+2 - log_k 11.75 - delta_h 0 kcal + log_k 6.95 + delta_h 0 kcal +2 Ni+2 + Salicylate-2 = Ni2Salicylate+2 + log_k 11.75 + delta_h 0 kcal Ni+2 + Glutamate-2 = NiGlutamate - log_k 5.9 - delta_h 0 kcal -2Ni+2 + Glutamate-2 = Ni2Glutamate+2 - log_k 10.34 - delta_h 0 kcal + log_k 5.9 + delta_h 0 kcal +2 Ni+2 + Glutamate-2 = Ni2Glutamate+2 + log_k 10.34 + delta_h 0 kcal Ni+2 + Phthalate-2 = NiPhthalate - log_k 2.95 - delta_h 0 kcal + log_k 2.95 + delta_h 0 kcal Ag+ + Br- = AgBr - log_k 4.24 - delta_h 0 kcal -Ag+ + 2Br- = AgBr2- - log_k 7.28 - delta_h 0 kcal + log_k 4.24 + delta_h 0 kcal +Ag+ + 2 Br- = AgBr2- + log_k 7.28 + delta_h 0 kcal Ag+ + Cl- = AgCl - log_k 3.27 - delta_h -2.68 kcal -Ag+ + 2Cl- = AgCl2- - log_k 5.27 - delta_h -3.93 kcal -Ag+ + 3Cl- = AgCl3-2 - log_k 5.29 - delta_h 0 kcal -Ag+ + 4Cl- = AgCl4-3 - log_k 5.51 - delta_h 0 kcal + log_k 3.27 + delta_h -2.68 kcal +Ag+ + 2 Cl- = AgCl2- + log_k 5.27 + delta_h -3.93 kcal +Ag+ + 3 Cl- = AgCl3-2 + log_k 5.29 + delta_h 0 kcal +Ag+ + 4 Cl- = AgCl4-3 + log_k 5.51 + delta_h 0 kcal Ag+ + F- = AgF - log_k 0.36 - delta_h -2.83 kcal + log_k 0.36 + delta_h -2.83 kcal Ag+ + HS- = AgHS - log_k 14.05 - delta_h 0 kcal -Ag+ + 2HS- = Ag(HS)2- - log_k 18.45 - delta_h 0 kcal + log_k 14.05 + delta_h 0 kcal +Ag+ + 2 HS- = Ag(HS)2- + log_k 18.45 + delta_h 0 kcal Ag+ + I- = AgI - log_k 6.6 - delta_h 0 kcal -Ag+ + 2I- = AgI2- - log_k 10.68 - delta_h 0 kcal + log_k 6.6 + delta_h 0 kcal +Ag+ + 2 I- = AgI2- + log_k 10.68 + delta_h 0 kcal Ag+ + H2O = AgOH + H+ - log_k -12 - delta_h 0 kcal -Ag+ + 2H2O = Ag(OH)2- + 2H+ - log_k -24 - delta_h 0 kcal + log_k -12 + delta_h 0 kcal +Ag+ + 2 H2O = Ag(OH)2- + 2 H+ + log_k -24 + delta_h 0 kcal Ag+ + SO4-2 = AgSO4- - log_k 1.29 - delta_h 1.49 kcal + log_k 1.29 + delta_h 1.49 kcal Ag+ + NO3- = AgNO3 - log_k -0.29 - delta_h 0 kcal -Ag+ + 2NO2- = Ag(NO2)2- - log_k 2.22 - delta_h 0 kcal -Ag+ + 3Br- = AgBr3-2 - log_k 8.71 - delta_h 0 kcal -Ag+ + 3I- = AgI3-2 - log_k 13.37 - delta_h -27.03 kcal -Ag+ + 4I- = AgI4-3 - log_k 14.08 - delta_h 0 kcal -Ag+ + 2HS- = Ag(S4)2-3 + 2H+ - log_k 0.991 - delta_h 0 kcal - -gamma 22 0 + log_k -0.29 + delta_h 0 kcal +Ag+ + 2 NO2- = Ag(NO2)2- + log_k 2.22 + delta_h 0 kcal +Ag+ + 3 Br- = AgBr3-2 + log_k 8.71 + delta_h 0 kcal +Ag+ + 3 I- = AgI3-2 + log_k 13.37 + delta_h -27.03 kcal +Ag+ + 4 I- = AgI4-3 + log_k 14.08 + delta_h 0 kcal +Ag+ + 2 HS- = Ag(S4)2-3 + 2 H+ + log_k 0.991 + delta_h 0 kcal + -gamma 22 0 -no_check -mass_balance Ag(S(-2)4)2 -Ag+ + 2HS- = AgS4S5-3 + 2H+ - log_k 0.68 - delta_h 0 kcal - -gamma 24 0 +Ag+ + 2 HS- = AgS4S5-3 + 2 H+ + log_k 0.68 + delta_h 0 kcal + -gamma 24 0 -no_check -mass_balance AgS(-2)4S(-2)5 -Ag+ + 2HS- = Ag(HS)S4-2 + H+ - log_k 10.431 - delta_h 0 kcal - -gamma 15 0 +Ag+ + 2 HS- = Ag(HS)S4-2 + H+ + log_k 10.431 + delta_h 0 kcal + -gamma 15 0 -no_check -mass_balance Ag(HS(-2))S(-2)4 H3AsO3 = H2AsO3- + H+ - log_k -9.228 - delta_h 6.56 kcal -H3AsO3 = HAsO3-2 + 2H+ - log_k -21.33 - delta_h 14.199 kcal -H3AsO3 = AsO3-3 + 3H+ - log_k -34.744 - delta_h 20.25 kcal + log_k -9.228 + delta_h 6.56 kcal +H3AsO3 = HAsO3-2 + 2 H+ + log_k -21.33 + delta_h 14.199 kcal +H3AsO3 = AsO3-3 + 3 H+ + log_k -34.744 + delta_h 20.25 kcal H3AsO3 + H+ = H4AsO3+ - log_k -0.305 - delta_h 0 kcal + log_k -0.305 + delta_h 0 kcal H3AsO4 = H2AsO4- + H+ - log_k -2.243 - delta_h -1.69 kcal -H3AsO4 = HAsO4-2 + 2H+ - log_k -9.001 - delta_h -0.92 kcal -H3AsO4 = AsO4-3 + 3H+ - log_k -20.597 - delta_h 3.43 kcal + log_k -2.243 + delta_h -1.69 kcal +H3AsO4 = HAsO4-2 + 2 H+ + log_k -9.001 + delta_h -0.92 kcal +H3AsO4 = AsO4-3 + 3 H+ + log_k -20.597 + delta_h 3.43 kcal Sb(OH)3 = HSbO2 + H2O - log_k -0.0073 - delta_h -0.015 kcal -Sb(OH)3 + F- + H+ = SbOF + 2H2O - log_k 6.1864 - delta_h 0 kcal + log_k -0.0073 + delta_h -0.015 kcal +Sb(OH)3 + F- + H+ = SbOF + 2 H2O + log_k 6.1864 + delta_h 0 kcal Sb(OH)3 + F- + H+ = Sb(OH)2F + H2O - log_k 6.1937 - delta_h 0 kcal -Sb(OH)3 + H+ = SbO+ + 2H2O - log_k 0.9228 - delta_h 1.97 kcal + log_k 6.1937 + delta_h 0 kcal +Sb(OH)3 + H+ = SbO+ + 2 H2O + log_k 0.9228 + delta_h 1.97 kcal Sb(OH)3 = SbO2- + H2O + H+ - log_k -11.8011 - delta_h 16.775 kcal + log_k -11.8011 + delta_h 16.775 kcal Sb(OH)3 + H+ = Sb(OH)2+ + H2O - log_k 1.3853 - delta_h 0 kcal -2Sb(OH)3 + 4HS- + 2H+ = Sb2S4-2 + 6H2O - log_k 49.3005 - delta_h -75.68 kcal -Sb(OH)6- = SbO3- + 3H2O - log_k 2.9319 - delta_h 0 kcal -Sb(OH)6- + 2H+ = SbO2+ + 4H2O - log_k 2.3895 - delta_h 0 kcal + log_k 1.3853 + delta_h 0 kcal +2 Sb(OH)3 + 4 HS- + 2 H+ = Sb2S4-2 + 6 H2O + log_k 49.3005 + delta_h -75.68 kcal +Sb(OH)6- = SbO3- + 3 H2O + log_k 2.9319 + delta_h 0 kcal +Sb(OH)6- + 2 H+ = SbO2+ + 4 H2O + log_k 2.3895 + delta_h 0 kcal Sb(OH)3 + H2O = Sb(OH)4- + H+ - log_k -12.0429 - delta_h 16.695 kcal + log_k -12.0429 + delta_h 16.695 kcal CO3-2 + H+ = HCO3- - log_k 10.33 - delta_h -3.617 kcal - -gamma 5.4 0 - -analytical -6.498 0.02379 2902.39 -CO3-2 + 2H+ = H2CO3 - log_k 16.681 - delta_h -2.247 kcal + log_k 10.33 + delta_h -3.617 kcal + -gamma 5.4 0 + -analytical -6.498 0.02379 2902.39 +CO3-2 + 2 H+ = H2CO3 + log_k 16.681 + delta_h -2.247 kcal SO4-2 + H+ = HSO4- - log_k 1.987 - delta_h 4.91 kcal - -gamma 4.5 0 - -analytical -5.3505 0.0183412 557.2461 + log_k 1.987 + delta_h 4.91 kcal + -gamma 4.5 0 + -analytical -5.3505 0.0183412 557.2461 F- + H+ = HF - log_k 3.169 - delta_h 3.46 kcal -2F- + H+ = HF2- - log_k 3.749 - delta_h 4.55 kcal - -gamma 3.5 0 -2F- + 2H+ = H2F2 - log_k 6.768 - delta_h 0 kcal + log_k 3.169 + delta_h 3.46 kcal +2 F- + H+ = HF2- + log_k 3.749 + delta_h 4.55 kcal + -gamma 3.5 0 +2 F- + 2 H+ = H2F2 + log_k 6.768 + delta_h 0 kcal PO4-3 + H+ = HPO4-2 - log_k 12.346 - delta_h -3.53 kcal - -gamma 5 0 -PO4-3 + 2H+ = H2PO4- - log_k 19.553 - delta_h -4.52 kcal - -gamma 5.4 0 -PO4-3 + 3H+ = H3PO4 - log_k 21.7 - delta_h 0 kcal + log_k 12.346 + delta_h -3.53 kcal + -gamma 5 0 +PO4-3 + 2 H+ = H2PO4- + log_k 19.553 + delta_h -4.52 kcal + -gamma 5.4 0 +PO4-3 + 3 H+ = H3PO4 + log_k 21.7 + delta_h 0 kcal HS- + H+ = H2S - log_k 6.994 - delta_h -5.3 kcal - -analytical -11.17 0.02386 3279.0 + log_k 6.994 + delta_h -5.3 kcal + -analytical -11.17 0.02386 3279 HS- = S-2 + H+ - log_k -12.918 - delta_h 12.1 kcal - -gamma 5 0 + log_k -12.918 + delta_h 12.1 kcal + -gamma 5 0 U+4 + H2O = UOH+3 + H+ - log_k -0.656 - delta_h 11.715 kcal - -analytical -9.16 0.0285 -U+4 + 2H2O = U(OH)2+2 + 2H+ - log_k -2.27 - delta_h 17.73 kcal -U+4 + 3H2O = U(OH)3+ + 3H+ - log_k -4.935 - delta_h 22.645 kcal -U+4 + 4H2O = U(OH)4 + 4H+ - log_k -8.498 - delta_h 24.76 kcal -U+4 + 5H2O = U(OH)5- + 5H+ - log_k -13.12 - delta_h 27.575 kcal -6U+4 + 15H2O = U6(OH)15+9 + 15H+ - log_k -17.229 - delta_h 0 kcal + log_k -0.656 + delta_h 11.715 kcal + -analytical -9.16 0.0285 +U+4 + 2 H2O = U(OH)2+2 + 2 H+ + log_k -2.27 + delta_h 17.73 kcal +U+4 + 3 H2O = U(OH)3+ + 3 H+ + log_k -4.935 + delta_h 22.645 kcal +U+4 + 4 H2O = U(OH)4 + 4 H+ + log_k -8.498 + delta_h 24.76 kcal +U+4 + 5 H2O = U(OH)5- + 5 H+ + log_k -13.12 + delta_h 27.575 kcal +6 U+4 + 15 H2O = U6(OH)15+9 + 15 H+ + log_k -17.229 + delta_h 0 kcal U+4 + F- = UF+3 - log_k 8.659 - delta_h 5.05 kcal -U+4 + 2F- = UF2+2 - log_k 14.457 - delta_h 7.2 kcal -U+4 + 3F- = UF3+ - log_k 19.115 - delta_h 7.15 kcal -U+4 + 4F- = UF4 - log_k 23.64 - delta_h 4.6 kcal -U+4 + 5F- = UF5- - log_k 25.238 - delta_h 4.85 kcal -U+4 + 6F- = UF6-2 - log_k 27.718 - delta_h 3.3 kcal + log_k 8.659 + delta_h 5.05 kcal +U+4 + 2 F- = UF2+2 + log_k 14.457 + delta_h 7.2 kcal +U+4 + 3 F- = UF3+ + log_k 19.115 + delta_h 7.15 kcal +U+4 + 4 F- = UF4 + log_k 23.64 + delta_h 4.6 kcal +U+4 + 5 F- = UF5- + log_k 25.238 + delta_h 4.85 kcal +U+4 + 6 F- = UF6-2 + log_k 27.718 + delta_h 3.3 kcal U+4 + Cl- = UCl+3 - log_k 1.338 - delta_h 9.933 kcal + log_k 1.338 + delta_h 9.933 kcal U+4 + SO4-2 = USO4+2 - log_k 5.461 - delta_h 3.7 kcal -U+4 + 2SO4-2 = U(SO4)2 - log_k 9.749 - delta_h 7.6 kcal + log_k 5.461 + delta_h 3.7 kcal +U+4 + 2 SO4-2 = U(SO4)2 + log_k 9.749 + delta_h 7.6 kcal U+4 + PO4-3 + H+ = UHPO4+2 - log_k 24.443 - delta_h 7.5 kcal -U+4 + 2PO4-3 + 2H+ = U(HPO4)2 - log_k 46.833 - delta_h 1.7 kcal -U+4 + 3PO4-3 + 3H+ = U(HPO4)3-2 - log_k 67.564 - delta_h -7.8 kcal -U+4 + 4PO4-3 + 4H+ = U(HPO4)4-4 - log_k 88.483 - delta_h -26.5 kcal + log_k 24.443 + delta_h 7.5 kcal +U+4 + 2 PO4-3 + 2 H+ = U(HPO4)2 + log_k 46.833 + delta_h 1.7 kcal +U+4 + 3 PO4-3 + 3 H+ = U(HPO4)3-2 + log_k 67.564 + delta_h -7.8 kcal +U+4 + 4 PO4-3 + 4 H+ = U(HPO4)4-4 + log_k 88.483 + delta_h -26.5 kcal UO2+2 + H2O = UO2OH+ + H+ - log_k -5.09 - delta_h 10.216 kcal -2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+ - log_k -5.645 - delta_h 10.23 kcal -3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+ - log_k -15.593 - delta_h 25.075 kcal + log_k -5.09 + delta_h 10.216 kcal +2 UO2+2 + 2 H2O = (UO2)2(OH)2+2 + 2 H+ + log_k -5.645 + delta_h 10.23 kcal +3 UO2+2 + 5 H2O = (UO2)3(OH)5+ + 5 H+ + log_k -15.593 + delta_h 25.075 kcal UO2+2 + CO3-2 = UO2CO3 - log_k 10.071 - delta_h 0.84 kcal - -analytical -9.56 0.03434 2809.0 -UO2+2 + 2CO3-2 = UO2(CO3)2-2 - log_k 17.008 - delta_h 3.48 kcal - -analytical 14.14 0.0096 -UO2+2 + 3CO3-2 = UO2(CO3)3-4 - log_k 21.384 - delta_h -8.78 kcal + log_k 10.071 + delta_h 0.84 kcal + -analytical -9.56 0.03434 2809 +UO2+2 + 2 CO3-2 = UO2(CO3)2-2 + log_k 17.008 + delta_h 3.48 kcal + -analytical 14.14 0.0096 +UO2+2 + 3 CO3-2 = UO2(CO3)3-4 + log_k 21.384 + delta_h -8.78 kcal UO2+2 + F- = UO2F+ - log_k 5.105 - delta_h -0.45 kcal -UO2+2 + 2F- = UO2F2 - log_k 8.92 - delta_h -0.9 kcal -UO2+2 + 3F- = UO2F3- - log_k 11.364 - delta_h -0.85 kcal -UO2+2 + 4F- = UO2F4-2 - log_k 12.607 - delta_h -1.1 kcal + log_k 5.105 + delta_h -0.45 kcal +UO2+2 + 2 F- = UO2F2 + log_k 8.92 + delta_h -0.9 kcal +UO2+2 + 3 F- = UO2F3- + log_k 11.364 + delta_h -0.85 kcal +UO2+2 + 4 F- = UO2F4-2 + log_k 12.607 + delta_h -1.1 kcal UO2+2 + Cl- = UO2Cl+ - log_k 0.22 - delta_h 1.233 kcal + log_k 0.22 + delta_h 1.233 kcal UO2+2 + SO4-2 = UO2SO4 - log_k 2.709 - delta_h 5.1 kcal -# Minteq a_e has more constants than phreeqc, can not use + log_k 2.709 + delta_h 5.1 kcal +# Minteq a_e has more constants than phreeqc, can not use # -analytical 11.384 -0.07088 0.0 0.0 1.40277E-4 -UO2+2 + 2SO4-2 = UO2(SO4)2-2 - log_k 4.183 - delta_h 6.1 kcal -# Minteq a_e has more constants than phreeqc, can not use +UO2+2 + 2 SO4-2 = UO2(SO4)2-2 + log_k 4.183 + delta_h 6.1 kcal +# Minteq a_e has more constants than phreeqc, can not use # -analytical 12.130 -0.068297 0.0 0.0 1.3987E-04 UO2+2 + PO4-3 + H+ = UO2HPO4 - log_k 20.814 - delta_h -2.1 kcal -UO2+2 + 2PO4-3 + 2H+ = UO2(HPO4)2-2 - log_k 42.988 + log_k 20.814 + delta_h -2.1 kcal +UO2+2 + 2 PO4-3 + 2 H+ = UO2(HPO4)2-2 + log_k 42.988 delta_h -11.399 kcal -UO2+2 + PO4-3 + 2H+ = UO2H2PO4+ - log_k 22.643 - delta_h -3.7 kcal -UO2+2 + 2PO4-3 + 4H+ = UO2(H2PO4)2 - log_k 44.7 - delta_h -16.5 kcal -UO2+2 + 3PO4-3 + 6H+ = UO2(H2PO4)3- - log_k 66.245 - delta_h -28.6 kcal +UO2+2 + PO4-3 + 2 H+ = UO2H2PO4+ + log_k 22.643 + delta_h -3.7 kcal +UO2+2 + 2 PO4-3 + 4 H+ = UO2(H2PO4)2 + log_k 44.7 + delta_h -16.5 kcal +UO2+2 + 3 PO4-3 + 6 H+ = UO2(H2PO4)3- + log_k 66.245 + delta_h -28.6 kcal UO2+2 + H4SiO4 = UO2H3SiO4+ + H+ - log_k -2.4 - delta_h 0 kcal -HS- = S2-2 + H+ - log_k -14.528 - delta_h 11.4 kcal + log_k -2.4 + delta_h 0 kcal +HS- = S2-2 + H+ + log_k -14.528 + delta_h 11.4 kcal -no_check -mass_balance S(-2)2 -HS- = S3-2 + H+ - log_k -13.282 - delta_h 10.4 kcal +HS- = S3-2 + H+ + log_k -13.282 + delta_h 10.4 kcal -no_check -mass_balance S(-2)3 -HS- = S4-2 + H+ - log_k -9.829 - delta_h 9.7 kcal +HS- = S4-2 + H+ + log_k -9.829 + delta_h 9.7 kcal -no_check -mass_balance S(-2)4 -HS- = S5-2 + H+ - log_k -9.595 - delta_h 9.3 kcal +HS- = S5-2 + H+ + log_k -9.595 + delta_h 9.3 kcal -no_check -mass_balance S(-2)5 -HS- = S6-2 + H+ - log_k -9.881 - delta_h 0 kcal +HS- = S6-2 + H+ + log_k -9.881 + delta_h 0 kcal -no_check -mass_balance S(-2)6 V+2 + H2O = VOH+ + H+ - log_k -5.64 - delta_h 0 kcal + log_k -5.64 + delta_h 0 kcal V+3 + H2O = VOH+2 + H+ - log_k -2.3 - delta_h 9.35 kcal -V+3 + 2H2O = V(OH)2+ + 2H+ - log_k -5.83 - delta_h 0 kcal -V+3 + 3H2O = V(OH)3 + 3H+ - log_k -11.02 - delta_h 0 kcal + log_k -2.3 + delta_h 9.35 kcal +V+3 + 2 H2O = V(OH)2+ + 2 H+ + log_k -5.83 + delta_h 0 kcal +V+3 + 3 H2O = V(OH)3 + 3 H+ + log_k -11.02 + delta_h 0 kcal V+3 + SO4-2 = VSO4+ - log_k 1.44 - delta_h 0 kcal -2V+3 + 3H2O = V2(OH)3+3 + 3H+ - log_k -7.5 - delta_h 0 kcal -2V+3 + 2H2O = V2(OH)2+4 + 2H+ - log_k -3.75 - delta_h 0 kcal -VO+2 + 2H2O = V(OH)3+ + H+ - log_k -5.67 - delta_h 0 kcal -2VO+2 + 2H2O = H2V2O4+2 + 2H+ - log_k -6.44 - delta_h 0 kcal + log_k 1.44 + delta_h 0 kcal +2 V+3 + 3 H2O = V2(OH)3+3 + 3 H+ + log_k -7.5 + delta_h 0 kcal +2 V+3 + 2 H2O = V2(OH)2+4 + 2 H+ + log_k -3.75 + delta_h 0 kcal +VO+2 + 2 H2O = V(OH)3+ + H+ + log_k -5.67 + delta_h 0 kcal +2 VO+2 + 2 H2O = H2V2O4+2 + 2 H+ + log_k -6.44 + delta_h 0 kcal VO+2 + F- = VOF+ - log_k 3.34 - delta_h 1.9 kcal -VO+2 + 2F- = VOF2 - log_k 5.74 - delta_h 3.5 kcal -VO+2 + 3F- = VOF3- - log_k 7.3 - delta_h 4.9 kcal -VO+2 + 4F- = VOF4-2 - log_k 8.11 - delta_h 6.4 kcal + log_k 3.34 + delta_h 1.9 kcal +VO+2 + 2 F- = VOF2 + log_k 5.74 + delta_h 3.5 kcal +VO+2 + 3 F- = VOF3- + log_k 7.3 + delta_h 4.9 kcal +VO+2 + 4 F- = VOF4-2 + log_k 8.11 + delta_h 6.4 kcal VO+2 + SO4-2 = VOSO4 - log_k 2.45 - delta_h 3.72 kcal + log_k 2.45 + delta_h 3.72 kcal VO+2 + Cl- = VOCl+ - log_k 0.02 - delta_h 0 kcal -VO2+ + 2H2O = H3VO4 + H+ - log_k -3.3 - delta_h 10.63 kcal -VO2+ + 2H2O = H2VO4- + 2H+ - log_k -7.09 - delta_h 11.33 kcal -VO2+ + 2H2O = HVO4-2 + 3H+ - log_k -15.15 - delta_h 14.93 kcal -VO2+ + 2H2O = VO4-3 + 4H+ - log_k -28.4 - delta_h 19.53 kcal -2VO2+ + 3H2O = V2O7-4 + 6H+ - log_k -29.08 - delta_h 0 kcal -2VO2+ + 3H2O = HV2O7-3 + 5H+ - log_k -16.32 - delta_h 0 kcal -2VO2+ + 3H2O = H3V2O7- + 3H+ - log_k -3.79 - delta_h 0 kcal -3VO2+ + 3H2O = V3O9-3 + 6H+ - log_k -15.88 - delta_h 0 kcal -4VO2+ + 4H2O = V4O12-4 + 8H+ - log_k -20.79 - delta_h 0 kcal -10VO2+ + 8H2O = V10O28-6 + 16H+ - log_k -17.53 - delta_h 0 kcal -10VO2+ + 8H2O = HV10O28-5 + 15H+ - log_k -11.35 - delta_h 21.52 kcal -10VO2+ + 8H2O = H2V10O28-4 + 14H+ - log_k -7.71 - delta_h 0 kcal + log_k 0.02 + delta_h 0 kcal +VO2+ + 2 H2O = H3VO4 + H+ + log_k -3.3 + delta_h 10.63 kcal +VO2+ + 2 H2O = H2VO4- + 2 H+ + log_k -7.09 + delta_h 11.33 kcal +VO2+ + 2 H2O = HVO4-2 + 3 H+ + log_k -15.15 + delta_h 14.93 kcal +VO2+ + 2 H2O = VO4-3 + 4 H+ + log_k -28.4 + delta_h 19.53 kcal +2 VO2+ + 3 H2O = V2O7-4 + 6 H+ + log_k -29.08 + delta_h 0 kcal +2 VO2+ + 3 H2O = HV2O7-3 + 5 H+ + log_k -16.32 + delta_h 0 kcal +2 VO2+ + 3 H2O = H3V2O7- + 3 H+ + log_k -3.79 + delta_h 0 kcal +3 VO2+ + 3 H2O = V3O9-3 + 6 H+ + log_k -15.88 + delta_h 0 kcal +4 VO2+ + 4 H2O = V4O12-4 + 8 H+ + log_k -20.79 + delta_h 0 kcal +10 VO2+ + 8 H2O = V10O28-6 + 16 H+ + log_k -17.53 + delta_h 0 kcal +10 VO2+ + 8 H2O = HV10O28-5 + 15 H+ + log_k -11.35 + delta_h 21.52 kcal +10 VO2+ + 8 H2O = H2V10O28-4 + 14 H+ + log_k -7.71 + delta_h 0 kcal VO2+ + F- = VO2F - log_k 3.12 - delta_h 0 kcal -VO2+ + 2F- = VO2F2- - log_k 5.67 - delta_h 0 kcal -VO2+ + 3F- = VO2F3-2 - log_k 6.97 - delta_h 0 kcal -VO2+ + 4F- = VO2F4-3 - log_k 7.07 - delta_h 0 kcal + log_k 3.12 + delta_h 0 kcal +VO2+ + 2 F- = VO2F2- + log_k 5.67 + delta_h 0 kcal +VO2+ + 3 F- = VO2F3-2 + log_k 6.97 + delta_h 0 kcal +VO2+ + 4 F- = VO2F4-3 + log_k 7.07 + delta_h 0 kcal VO2+ + SO4-2 = VO2SO4- - log_k 1.71 - delta_h 0 kcal + log_k 1.71 + delta_h 0 kcal VO2+ + NO3- = VO2NO3 - log_k -0.43 - delta_h 0 kcal + log_k -0.43 + delta_h 0 kcal Tl+ + H2O = TlOH + H+ - log_k -13.1717 - delta_h 13.935 kcal + log_k -13.1717 + delta_h 13.935 kcal Tl+ + F- = TlF - log_k -0.4251 - delta_h 0 kcal + log_k -0.4251 + delta_h 0 kcal Tl+ + Cl- = TlCl - log_k 0.6824 - delta_h -1.147 kcal -Tl+ + 2Cl- = TlCl2- - log_k 0.2434 - delta_h 0 kcal + log_k 0.6824 + delta_h -1.147 kcal +Tl+ + 2 Cl- = TlCl2- + log_k 0.2434 + delta_h 0 kcal Tl+ + Br- = TlBr - log_k 0.9477 - delta_h -2.461 kcal -Tl+ + 2Br- = TlBr2- - log_k 0.9719 - delta_h 2.998 kcal + log_k 0.9477 + delta_h -2.461 kcal +Tl+ + 2 Br- = TlBr2- + log_k 0.9719 + delta_h 2.998 kcal Tl+ + Br- + Cl- = TlBrCl- - log_k 0.8165 - delta_h 0 kcal + log_k 0.8165 + delta_h 0 kcal Tl+ + I- = TlI - log_k 1.4279 - delta_h 0 kcal -Tl+ + 2I- = TlI2- - log_k 1.8588 - delta_h 0 kcal + log_k 1.4279 + delta_h 0 kcal +Tl+ + 2 I- = TlI2- + log_k 1.8588 + delta_h 0 kcal Tl+ + I- + Br- = TlIBr- - log_k 2.185 - delta_h 0 kcal + log_k 2.185 + delta_h 0 kcal Tl+ + SO4-2 = TlSO4- - log_k 1.3853 - delta_h -0.22 kcal + log_k 1.3853 + delta_h -0.22 kcal Tl+ + NO3- = TlNO3 - log_k 0.3665 - delta_h -0.65 kcal + log_k 0.3665 + delta_h -0.65 kcal Tl+ + NO2- = TlNO2 - log_k 0.9969 - delta_h 0 kcal + log_k 0.9969 + delta_h 0 kcal Tl+ + HS- = TlHS - log_k 1.8178 - delta_h 0 kcal -2Tl+ + HS- = Tl2HS+ - log_k 7.6979 - delta_h 0 kcal -2Tl+ + 3HS- + H2O = Tl2OH(HS)3-2 + H+ - log_k 1.0044 - delta_h 0 kcal -2Tl+ + 2HS- + 2H2O = Tl2(OH)2(HS)2-2 + 2H+ - log_k -11.0681 - delta_h 0 kcal -Tl(OH)3 + 3H+ = Tl+3 + 3H2O - log_k 4.7424 - delta_h 0 kcal -Tl(OH)3 + 2H+ = TlOH+2 + 2H2O - log_k 3.577 - delta_h 0 kcal + log_k 1.8178 + delta_h 0 kcal +2 Tl+ + HS- = Tl2HS+ + log_k 7.6979 + delta_h 0 kcal +2 Tl+ + 3 HS- + H2O = Tl2OH(HS)3-2 + H+ + log_k 1.0044 + delta_h 0 kcal +2 Tl+ + 2 HS- + 2 H2O = Tl2(OH)2(HS)2-2 + 2 H+ + log_k -11.0681 + delta_h 0 kcal +Tl(OH)3 + 3 H+ = Tl+3 + 3 H2O + log_k 4.7424 + delta_h 0 kcal +Tl(OH)3 + 2 H+ = TlOH+2 + 2 H2O + log_k 3.577 + delta_h 0 kcal Tl(OH)3 + H+ = Tl(OH)2+ + H2O - log_k 2.1183 - delta_h 0 kcal + log_k 2.1183 + delta_h 0 kcal Tl(OH)3 + H2O = Tl(OH)4- + H+ - log_k -10.2545 - delta_h 0 kcal -Tl(OH)3 + Cl- + 3H+ = TlCl+2 + 3H2O - log_k 12.2342 - delta_h 0 kcal -Tl(OH)3 + 2Cl- + 3H+ = TlCl2+ + 3H2O - log_k 18.0402 - delta_h 0 kcal -Tl(OH)3 + 3Cl- + 3H+ = TlCl3 + 3H2O - log_k 21.4273 - delta_h 0 kcal -Tl(OH)3 + 4Cl- + 3H+ = TlCl4- + 3H2O - log_k 24.2281 - delta_h 0 kcal -Tl(OH)3 + Br- + 3H+ = TlBr+2 + 3H2O - log_k 14.2221 - delta_h 0 kcal -Tl(OH)3 + 2Br- + 3H+ = TlBr2+ + 3H2O - log_k 21.5761 - delta_h 0 kcal -Tl(OH)3 + 3Br- + 3H+ = TlBr3 + 3H2O - log_k 27.0244 - delta_h 0 kcal -Tl(OH)3 + 4Br- + 3H+ = TlBr4- + 3H2O - log_k 31.1533 - delta_h 0 kcal -Tl(OH)3 + 4I- + 3H+ = TlI4- + 3H2O - log_k 34.7596 - delta_h 0 kcal -Tl(OH)3 + NO3- + 3H+ = TlNO3+2 + 3H2O - log_k 7.0073 - delta_h 0 kcal -Tl(OH)3 + Cl- + 2H+ = TlOHCl+ + 2H2O - log_k 10.629 - delta_h 0 kcal + log_k -10.2545 + delta_h 0 kcal +Tl(OH)3 + Cl- + 3 H+ = TlCl+2 + 3 H2O + log_k 12.2342 + delta_h 0 kcal +Tl(OH)3 + 2 Cl- + 3 H+ = TlCl2+ + 3 H2O + log_k 18.0402 + delta_h 0 kcal +Tl(OH)3 + 3 Cl- + 3 H+ = TlCl3 + 3 H2O + log_k 21.4273 + delta_h 0 kcal +Tl(OH)3 + 4 Cl- + 3 H+ = TlCl4- + 3 H2O + log_k 24.2281 + delta_h 0 kcal +Tl(OH)3 + Br- + 3 H+ = TlBr+2 + 3 H2O + log_k 14.2221 + delta_h 0 kcal +Tl(OH)3 + 2 Br- + 3 H+ = TlBr2+ + 3 H2O + log_k 21.5761 + delta_h 0 kcal +Tl(OH)3 + 3 Br- + 3 H+ = TlBr3 + 3 H2O + log_k 27.0244 + delta_h 0 kcal +Tl(OH)3 + 4 Br- + 3 H+ = TlBr4- + 3 H2O + log_k 31.1533 + delta_h 0 kcal +Tl(OH)3 + 4 I- + 3 H+ = TlI4- + 3 H2O + log_k 34.7596 + delta_h 0 kcal +Tl(OH)3 + NO3- + 3 H+ = TlNO3+2 + 3 H2O + log_k 7.0073 + delta_h 0 kcal +Tl(OH)3 + Cl- + 2 H+ = TlOHCl+ + 2 H2O + log_k 10.629 + delta_h 0 kcal HSe- = Se-2 + H+ - log_k -14.9529 - delta_h 11.5 kcal + log_k -14.9529 + delta_h 11.5 kcal HSe- + H+ = H2Se - log_k 3.8115 - delta_h 0.8 kcal + log_k 3.8115 + delta_h 0.8 kcal HSe- + Mn+2 = MnSe + H+ - log_k -6.7435 - delta_h 0 kcal -HSe- + 2Ag+ = Ag2Se + H+ - log_k 34.0677 - delta_h 0 kcal -2HSe- + Ag+ + H2O = AgOH(Se)2-4 + 3H+ - log_k -18.6237 - delta_h 0 kcal + log_k -6.7435 + delta_h 0 kcal +HSe- + 2 Ag+ = Ag2Se + H+ + log_k 34.0677 + delta_h 0 kcal +2 HSe- + Ag+ + H2O = AgOH(Se)2-4 + 3 H+ + log_k -18.6237 + delta_h 0 kcal HSeO3- = SeO3-2 + H+ - log_k -8.48 - delta_h 1.28 kcal + log_k -8.48 + delta_h 1.28 kcal HSeO3- + H+ = H2SeO3 - log_k 2.65 - delta_h 1.69 kcal + log_k 2.65 + delta_h 1.69 kcal HSeO3- + Fe+3 = FeHSeO3+2 - log_k 3.61 - delta_h 0 kcal + log_k 3.61 + delta_h 0 kcal HSeO3- + Ag+ = AgSeO3- + H+ - log_k -5.5985 - delta_h 0 kcal -2HSeO3- + Ag+ = Ag(SeO3)2-3 + 2H+ - log_k -13.2 - delta_h 0 kcal -2HSeO3- + Cd+2 = Cd(SeO3)2-2 + 2H+ - log_k -11.189 - delta_h 0 kcal + log_k -5.5985 + delta_h 0 kcal +2 HSeO3- + Ag+ = Ag(SeO3)2-3 + 2 H+ + log_k -13.2 + delta_h 0 kcal +2 HSeO3- + Cd+2 = Cd(SeO3)2-2 + 2 H+ + log_k -11.189 + delta_h 0 kcal SeO4-2 + H+ = HSeO4- - log_k 1.9058 - delta_h 4.2 kcal + log_k 1.9058 + delta_h 4.2 kcal SeO4-2 + Mn+2 = MnSeO4 - log_k 2.4188 - delta_h 3.46 kcal + log_k 2.4188 + delta_h 3.46 kcal SeO4-2 + Ni+2 = NiSeO4 - log_k 2.6387 - delta_h 3.5 kcal + log_k 2.6387 + delta_h 3.5 kcal SeO4-2 + Cd+2 = CdSeO4 - log_k 2.2415 - delta_h 0 kcal + log_k 2.2415 + delta_h 0 kcal SeO4-2 + Zn+2 = ZnSeO4 - log_k 2.2019 - delta_h 0 kcal -2SeO4-2 + Zn+2 = Zn(SeO4)2-2 - log_k -0.0704 - delta_h 0 kcal -Hg(OH)2 + 2H+ = Hg+2 + 2H2O - log_k 6.097 - delta_h -11.06 kcal -Hg(OH)2 + Br- + 2H+ = HgBr+ + 2H2O - log_k 15.8347 - delta_h 0 kcal -Hg(OH)2 + 2Br- + 2H+ = HgBr2 + 2H2O - log_k 23.6065 + log_k 2.2019 + delta_h 0 kcal +2 SeO4-2 + Zn+2 = Zn(SeO4)2-2 + log_k -0.0704 + delta_h 0 kcal +Hg(OH)2 + 2 H+ = Hg+2 + 2 H2O + log_k 6.097 + delta_h -11.06 kcal +Hg(OH)2 + Br- + 2 H+ = HgBr+ + 2 H2O + log_k 15.8347 + delta_h 0 kcal +Hg(OH)2 + 2 Br- + 2 H+ = HgBr2 + 2 H2O + log_k 23.6065 delta_h -30.832 kcal -Hg(OH)2 + 2H+ + 3Br- = HgBr3- + 2H2O - log_k 25.7857 - delta_h 0 kcal -Hg(OH)2 + 2H+ + 4Br- = HgBr4-2 + 2H2O - log_k 27.0633 - delta_h 0 kcal -Hg(OH)2 + Br- + Cl- + 2H+ = HgBrCl + 2H2O - log_k 22.0145 - delta_h 0 kcal -Hg(OH)2 + Br- + I- + 2H+ = HgBrI + 2H2O - log_k 27.1212 - delta_h 0 kcal -Hg(OH)2 + Br- + 3I- + 2H+ = HgBrI3-2 + 2H2O - log_k 34.2135 - delta_h 0 kcal -Hg(OH)2 + 2Br- + 2I- + 2H+ = HgBr2I2-2 + 2H2O - log_k 32.3994 - delta_h 0 kcal -Hg(OH)2 + 3Br- + I- + 2H+ = HgBr3I-2 + 2H2O - log_k 30.1528 - delta_h 0 kcal +Hg(OH)2 + 2 H+ + 3 Br- = HgBr3- + 2 H2O + log_k 25.7857 + delta_h 0 kcal +Hg(OH)2 + 2 H+ + 4 Br- = HgBr4-2 + 2 H2O + log_k 27.0633 + delta_h 0 kcal +Hg(OH)2 + Br- + Cl- + 2 H+ = HgBrCl + 2 H2O + log_k 22.0145 + delta_h 0 kcal +Hg(OH)2 + Br- + I- + 2 H+ = HgBrI + 2 H2O + log_k 27.1212 + delta_h 0 kcal +Hg(OH)2 + Br- + 3 I- + 2 H+ = HgBrI3-2 + 2 H2O + log_k 34.2135 + delta_h 0 kcal +Hg(OH)2 + 2 Br- + 2 I- + 2 H+ = HgBr2I2-2 + 2 H2O + log_k 32.3994 + delta_h 0 kcal +Hg(OH)2 + 3 Br- + I- + 2 H+ = HgBr3I-2 + 2 H2O + log_k 30.1528 + delta_h 0 kcal Hg(OH)2 + Br- + H+ = HgBrOH + H2O - log_k 11.598 - delta_h 0 kcal -Hg(OH)2 + Cl- + 2H+ = HgCl+ + 2H2O - log_k 12.85 - delta_h 0 kcal -Hg(OH)2 + 2Cl- + 2H+ = HgCl2 + 2H2O - log_k 19.2203 - delta_h 0 kcal -Hg(OH)2 + 3Cl- + 2H+ = HgCl3- + 2H2O - log_k 20.1226 - delta_h 0 kcal -Hg(OH)2 + 4Cl- + 2H+ = HgCl4-2 + 2H2O - log_k 20.5338 - delta_h 0 kcal -Hg(OH)2 + Cl- + I- + 2H+ = HgClI + 2H2O - log_k 25.3532 - delta_h 0 kcal + log_k 11.598 + delta_h 0 kcal +Hg(OH)2 + Cl- + 2 H+ = HgCl+ + 2 H2O + log_k 12.85 + delta_h 0 kcal +Hg(OH)2 + 2 Cl- + 2 H+ = HgCl2 + 2 H2O + log_k 19.2203 + delta_h 0 kcal +Hg(OH)2 + 3 Cl- + 2 H+ = HgCl3- + 2 H2O + log_k 20.1226 + delta_h 0 kcal +Hg(OH)2 + 4 Cl- + 2 H+ = HgCl4-2 + 2 H2O + log_k 20.5338 + delta_h 0 kcal +Hg(OH)2 + Cl- + I- + 2 H+ = HgClI + 2 H2O + log_k 25.3532 + delta_h 0 kcal Hg(OH)2 + Cl- + H+ = HgClOH + H2O - log_k 9.317 + log_k 9.317 delta_h -12.482 kcal -Hg(OH)2 + F- + 2H+ = HgF+ + 2H2O - log_k 8.0848 - delta_h 0 kcal -Hg(OH)2 + I- + 2H+ = HgI+ + 2H2O - log_k 18.8949 - delta_h 0 kcal -Hg(OH)2 + 2I- + 2H+ = HgI2 + 2H2O - log_k 30.1081 +Hg(OH)2 + F- + 2 H+ = HgF+ + 2 H2O + log_k 8.0848 + delta_h 0 kcal +Hg(OH)2 + I- + 2 H+ = HgI+ + 2 H2O + log_k 18.8949 + delta_h 0 kcal +Hg(OH)2 + 2 I- + 2 H+ = HgI2 + 2 H2O + log_k 30.1081 delta_h -44.522 kcal -Hg(OH)2 + 3I- + 2H+ = HgI3- + 2H2O - log_k 33.7935 +Hg(OH)2 + 3 I- + 2 H+ = HgI3- + 2 H2O + log_k 33.7935 delta_h -47.943 kcal -Hg(OH)2 + 4I- + 2H+ = HgI4-2 + 2H2O - log_k 35.7858 - delta_h 0 kcal -Hg(OH)2 + NH4+ + H+ = HgNH3+2 + 2H2O - log_k 5.6139 - delta_h 0 kcal -Hg(OH)2 + 2NH4+ = Hg(NH3)2+2 + 2H2O - log_k 5.0341 - delta_h 0 kcal -Hg(OH)2 + 3NH4+ = Hg(NH3)3+2 + H+ + 2H2O - log_k -3.2493 - delta_h 0 kcal -Hg(OH)2 + 4NH4+ = Hg(NH3)4+2 + 2H+ + 2H2O - log_k -11.7307 - delta_h 0 kcal -Hg(OH)2 + NO3- + 2H+ = HgNO3+ + 2H2O - log_k 6.4503 - delta_h 0 kcal -Hg(OH)2 + 2NO3- + 2H+ = Hg(NO3)2 + 2H2O - log_k 4.7791 - delta_h 0 kcal +Hg(OH)2 + 4 I- + 2 H+ = HgI4-2 + 2 H2O + log_k 35.7858 + delta_h 0 kcal +Hg(OH)2 + NH4+ + H+ = HgNH3+2 + 2 H2O + log_k 5.6139 + delta_h 0 kcal +Hg(OH)2 + 2 NH4+ = Hg(NH3)2+2 + 2 H2O + log_k 5.0341 + delta_h 0 kcal +Hg(OH)2 + 3 NH4+ = Hg(NH3)3+2 + H+ + 2 H2O + log_k -3.2493 + delta_h 0 kcal +Hg(OH)2 + 4 NH4+ = Hg(NH3)4+2 + 2 H+ + 2 H2O + log_k -11.7307 + delta_h 0 kcal +Hg(OH)2 + NO3- + 2 H+ = HgNO3+ + 2 H2O + log_k 6.4503 + delta_h 0 kcal +Hg(OH)2 + 2 NO3- + 2 H+ = Hg(NO3)2 + 2 H2O + log_k 4.7791 + delta_h 0 kcal Hg(OH)2 + H+ = HgOH+ + H2O - log_k 2.6974 - delta_h 0 kcal + log_k 2.6974 + delta_h 0 kcal Hg(OH)2 + H2O = Hg(OH)3- + H+ - log_k -15.0042 - delta_h 0 kcal -Hg(OH)2 + 2HS- = HgS2-2 + 2H2O - log_k 31.2398 - delta_h 0 kcal -Hg(OH)2 + 2HS- + 2H+ = Hg(HS)2 + 2H2O - log_k 43.8178 - delta_h 0 kcal -Hg(OH)2 + SO4-2 + 2H+ = HgSO4 + 2H2O - log_k 7.4911 - delta_h 0 kcal -Cr(OH)2+ + 2H+ = Cr+3 + 2H2O - log_k 9.62 - delta_h -20.14 kcal + log_k -15.0042 + delta_h 0 kcal +Hg(OH)2 + 2 HS- = HgS2-2 + 2 H2O + log_k 31.2398 + delta_h 0 kcal +Hg(OH)2 + 2 HS- + 2 H+ = Hg(HS)2 + 2 H2O + log_k 43.8178 + delta_h 0 kcal +Hg(OH)2 + SO4-2 + 2 H+ = HgSO4 + 2 H2O + log_k 7.4911 + delta_h 0 kcal +Cr(OH)2+ + 2 H+ = Cr+3 + 2 H2O + log_k 9.62 + delta_h -20.14 kcal Cr(OH)2+ + H+ = Cr(OH)+2 + H2O - log_k 5.62 - delta_h 0 kcal + log_k 5.62 + delta_h 0 kcal Cr(OH)2+ + H2O = Cr(OH)3 + H+ - log_k -7.13 - delta_h 0 kcal -Cr(OH)2+ + 2H2O = Cr(OH)4- + 2H+ - log_k -18.15 - delta_h 0 kcal -Cr(OH)2+ = CrO2- + 2H+ - log_k -17.7456 - delta_h 0 kcal -Cr(OH)2+ + Br- + 2H+ = CrBr+2 + 2H2O - log_k 7.5519 + log_k -7.13 + delta_h 0 kcal +Cr(OH)2+ + 2 H2O = Cr(OH)4- + 2 H+ + log_k -18.15 + delta_h 0 kcal +Cr(OH)2+ = CrO2- + 2 H+ + log_k -17.7456 + delta_h 0 kcal +Cr(OH)2+ + Br- + 2 H+ = CrBr+2 + 2 H2O + log_k 7.5519 delta_h -11.211 kcal -Cr(OH)2+ + Cl- + 2H+ = CrCl+2 + 2H2O - log_k 9.3683 +Cr(OH)2+ + Cl- + 2 H+ = CrCl+2 + 2 H2O + log_k 9.3683 delta_h -13.847 kcal -Cr(OH)2+ + 2Cl- + 2H+ = CrCl2+ + 2H2O - log_k 8.658 - delta_h -9.374 kcal -Cr(OH)2+ + 2Cl- + H+ = CrOHCl2 + H2O - log_k 2.9627 - delta_h 0 kcal -Cr(OH)2+ + F- + 2H+ = CrF+2 + 2H2O - log_k 14.5424 +Cr(OH)2+ + 2 Cl- + 2 H+ = CrCl2+ + 2 H2O + log_k 8.658 + delta_h -9.374 kcal +Cr(OH)2+ + 2 Cl- + H+ = CrOHCl2 + H2O + log_k 2.9627 + delta_h 0 kcal +Cr(OH)2+ + F- + 2 H+ = CrF+2 + 2 H2O + log_k 14.5424 delta_h -16.789 kcal -Cr(OH)2+ + I- + 2H+ = CrI+2 + 2H2O - log_k 4.8289 - delta_h 0 kcal -Cr(OH)2+ + 6NH4+ = Cr(NH3)6+3 + 4H+ + 2H2O - log_k -32.5709 - delta_h 0 kcal -Cr(OH)2+ + 5NH4+ = Cr(NH3)5OH+2 + 4H+ + H2O - log_k -30.2759 - delta_h 0 kcal -Cr(OH)2+ + 4NH4+ = Cr(NH3)4(OH)2+ + 4H+ - log_k -29.8574 - delta_h 0 kcal +Cr(OH)2+ + I- + 2 H+ = CrI+2 + 2 H2O + log_k 4.8289 + delta_h 0 kcal +Cr(OH)2+ + 6 NH4+ = Cr(NH3)6+3 + 4 H+ + 2 H2O + log_k -32.5709 + delta_h 0 kcal +Cr(OH)2+ + 5 NH4+ = Cr(NH3)5OH+2 + 4 H+ + H2O + log_k -30.2759 + delta_h 0 kcal +Cr(OH)2+ + 4 NH4+ = Cr(NH3)4(OH)2+ + 4 H+ + log_k -29.8574 + delta_h 0 kcal # Don't know difference with previous species # MINTEQ had "CCrNH3)4OH2" for one and "TCrNH3)4OH2" # Equations were the same. @@ -1836,364 +1840,364 @@ Cr(OH)2+ + 4NH4+ = Cr(NH3)4(OH)2+ + 4H+ #Cr(OH)2+ + 4NH4+ = Cr(NH3)4(OH)2+ + 4H+ # log_k -30.5537 # delta_h 0 kcal -Cr(OH)2+ + 6NH4+ + Cl- = Cr(NH3)6Cl+2 + 2H2O + 4H+ - log_k -31.7932 - delta_h 0 kcal -Cr(OH)2+ + 6NH4+ + Br- = Cr(NH3)6Br+2 + 4H+ + 2H2O - log_k -31.887 - delta_h 0 kcal -Cr(OH)2+ + 6NH4+ + I- = Cr(NH3)6I+2 + 4H+ + 2H2O - log_k -32.008 - delta_h 0 kcal -Cr(OH)2+ + NO3- + 2H+ = CrNO3+2 + 2H2O - log_k 8.2094 - delta_h -15.64 kcal -Cr(OH)2+ + 4H+ + PO4-3 = CrH2PO4+2 + 2H2O - log_k 31.9068 - delta_h 0 kcal -Cr(OH)2+ + SO4-2 + 2H+ = CrSO4+ + 2H2O - log_k 10.9654 - delta_h -12.62 kcal +Cr(OH)2+ + 6 NH4+ + Cl- = Cr(NH3)6Cl+2 + 2 H2O + 4 H+ + log_k -31.7932 + delta_h 0 kcal +Cr(OH)2+ + 6 NH4+ + Br- = Cr(NH3)6Br+2 + 4 H+ + 2 H2O + log_k -31.887 + delta_h 0 kcal +Cr(OH)2+ + 6 NH4+ + I- = Cr(NH3)6I+2 + 4 H+ + 2 H2O + log_k -32.008 + delta_h 0 kcal +Cr(OH)2+ + NO3- + 2 H+ = CrNO3+2 + 2 H2O + log_k 8.2094 + delta_h -15.64 kcal +Cr(OH)2+ + 4 H+ + PO4-3 = CrH2PO4+2 + 2 H2O + log_k 31.9068 + delta_h 0 kcal +Cr(OH)2+ + SO4-2 + 2 H+ = CrSO4+ + 2 H2O + log_k 10.9654 + delta_h -12.62 kcal Cr(OH)2+ + SO4-2 + H+ = CrOHSO4 + H2O - log_k 8.2754 - delta_h 0 kcal -2Cr(OH)2+ + 2SO4-2 + 2H+ = Cr2(OH)2(SO4)2 + 2H2O - log_k 14.5278 - delta_h 0 kcal + log_k 8.2754 + delta_h 0 kcal +2 Cr(OH)2+ + 2 SO4-2 + 2 H+ = Cr2(OH)2(SO4)2 + 2 H2O + log_k 14.5278 + delta_h 0 kcal # Not sure about these two species # One was "Cr2OH2SO4)S" other was "Cr2OH2SO42" # Equation was the same #2Cr(OH)2+ + 2SO4-2 + 2H+ = Cr2(OH)2(SO4)2 + 2H2O # log_k 17.9288 # delta_h 0 kcal -2Cr(OH)2+ + SO4-2 + 2H+ = Cr2(OH)2SO4+2 + 2H2O - log_k 16.155 - delta_h 0 kcal +2 Cr(OH)2+ + SO4-2 + 2 H+ = Cr2(OH)2SO4+2 + 2 H2O + log_k 16.155 + delta_h 0 kcal CrO4-2 + H+ = HCrO4- - log_k 6.5089 - delta_h 0.9 kcal -CrO4-2 + 2H+ = H2CrO4 - log_k 5.6513 - delta_h 0 kcal -2CrO4-2 + 2H+ = Cr2O7-2 + H2O - log_k 14.5571 - delta_h -2.995 kcal -CrO4-2 + Cl- + 2H+ = CrO3Cl- + H2O - log_k 7.3086 - delta_h 0 kcal -CrO4-2 + 4H+ + PO4-3 = CrO3H2PO4- + H2O - log_k 29.3634 - delta_h 0 kcal -CrO4-2 + 3H+ + PO4-3 = CrO3HPO4-2 + H2O - log_k 26.6806 - delta_h 0 kcal -CrO4-2 + SO4-2 + 2H+ = CrO3SO4-2 + H2O - log_k 8.9937 - delta_h 0 kcal + log_k 6.5089 + delta_h 0.9 kcal +CrO4-2 + 2 H+ = H2CrO4 + log_k 5.6513 + delta_h 0 kcal +2 CrO4-2 + 2 H+ = Cr2O7-2 + H2O + log_k 14.5571 + delta_h -2.995 kcal +CrO4-2 + Cl- + 2 H+ = CrO3Cl- + H2O + log_k 7.3086 + delta_h 0 kcal +CrO4-2 + 4 H+ + PO4-3 = CrO3H2PO4- + H2O + log_k 29.3634 + delta_h 0 kcal +CrO4-2 + 3 H+ + PO4-3 = CrO3HPO4-2 + H2O + log_k 26.6806 + delta_h 0 kcal +CrO4-2 + SO4-2 + 2 H+ = CrO3SO4-2 + H2O + log_k 8.9937 + delta_h 0 kcal CrO4-2 + Na+ = NaCrO4- - log_k 0.6963 - delta_h 0 kcal + log_k 0.6963 + delta_h 0 kcal CrO4-2 + K+ = KCrO4- - log_k 0.799 - delta_h 0 kcal -Ba+2 + Fe+3 + 6Cyanide- = BaFe(Cyanide)6- - log_k 55.4356 - delta_h -69.68 kcal -Ca+2 + H+ + Fe+2 + 6Cyanide- + e- = CaHFe(Cyanide)6-2 - log_k 52.7097 - delta_h -82 kcal -K+ + Fe+2 + 6Cyanide- = KFe(Cyanide)6-3 - log_k 48.1204 - delta_h -84 kcal -2K+ + Fe+2 + 6Cyanide- = K2Fe(Cyanide)6-2 - log_k 48.978 - delta_h -77.3 kcal -K+ + H+ + Fe+2 + 6Cyanide- = KHFe(Cyanide)6-2 - log_k 51.4702 - delta_h -78.1 kcal -2Li+ + Fe+2 + 6Cyanide- = Li2Fe(Cyanide)6-2 - log_k 48.5338 + log_k 0.799 + delta_h 0 kcal +Ba+2 + Fe+3 + 6 Cyanide- = BaFe(Cyanide)6- + log_k 55.4356 + delta_h -69.68 kcal +Ca+2 + H+ + Fe+2 + 6 Cyanide- + e- = CaHFe(Cyanide)6-2 + log_k 52.7097 + delta_h -82 kcal +K+ + Fe+2 + 6 Cyanide- = KFe(Cyanide)6-3 + log_k 48.1204 + delta_h -84 kcal +2 K+ + Fe+2 + 6 Cyanide- = K2Fe(Cyanide)6-2 + log_k 48.978 + delta_h -77.3 kcal +K+ + H+ + Fe+2 + 6 Cyanide- = KHFe(Cyanide)6-2 + log_k 51.4702 + delta_h -78.1 kcal +2 Li+ + Fe+2 + 6 Cyanide- = Li2Fe(Cyanide)6-2 + log_k 48.5338 delta_h -83.498 kcal -Li+ + H+ + Fe+2 + 6Cyanide- = LiHFe(Cyanide)6-2 - log_k 51.2188 +Li+ + H+ + Fe+2 + 6 Cyanide- = LiHFe(Cyanide)6-2 + log_k 51.2188 delta_h -80.999 kcal -NH4+ + Fe+2 + 6Cyanide- = NH4Fe(Cyanide)6-3 - log_k 48.0684 - delta_h -84.5 kcal -NH4+ + H+ + Fe+2 + 6Cyanide- = NH5Fe(Cyanide)6-2 - log_k 51.4035 - delta_h -83.9 kcal -Na+ + Fe+2 + 6Cyanide- = NaFe(Cyanide)6-3 - log_k 47.9885 - delta_h -84.9 kcal -2Na+ + Fe+2 + 6Cyanide- = Na2Fe(Cyanide)6-2 - log_k 48.7435 - delta_h -85 kcal -Na+ + H+ + Fe+2 + 6Cyanide- = NaHFe(Cyanide)6-2 - log_k 51.4335 - delta_h -85.6 kcal -2NH4+ + Fe+2 + 6Cyanide- = (NH4)2FeCyanide6-2 - log_k 48.8666 - delta_h -83 kcal +NH4+ + Fe+2 + 6 Cyanide- = NH4Fe(Cyanide)6-3 + log_k 48.0684 + delta_h -84.5 kcal +NH4+ + H+ + Fe+2 + 6 Cyanide- = NH5Fe(Cyanide)6-2 + log_k 51.4035 + delta_h -83.9 kcal +Na+ + Fe+2 + 6 Cyanide- = NaFe(Cyanide)6-3 + log_k 47.9885 + delta_h -84.9 kcal +2 Na+ + Fe+2 + 6 Cyanide- = Na2Fe(Cyanide)6-2 + log_k 48.7435 + delta_h -85 kcal +Na+ + H+ + Fe+2 + 6 Cyanide- = NaHFe(Cyanide)6-2 + log_k 51.4335 + delta_h -85.6 kcal +2 NH4+ + Fe+2 + 6 Cyanide- = (NH4)2FeCyanide6-2 + log_k 48.8666 + delta_h -83 kcal Cyanide- + Ag+ + H2O = Ag(Cyanide)OH- + H+ - log_k -0.56 - delta_h 0 kcal -2Cyanide- + Ag+ = Ag(Cyanide)2- - log_k 20.3814 + log_k -0.56 + delta_h 0 kcal +2 Cyanide- + Ag+ = Ag(Cyanide)2- + log_k 20.3814 delta_h -32.675 kcal -6Cyanide- + 2K+ + 2H+ + Fe+2 = K2H2Fe(Cyanide)6 - log_k 52.3058 - delta_h -85.86 kcal -6Cyanide- + Ca+2 + Fe+3 = CaFe(Cyanide)6- - log_k 55.473 - delta_h -69.5 kcal -6Cyanide- + Ca+2 + Fe+2 = CaFe(Cyanide)6-2 - log_k 49.6898 - delta_h -83.1 kcal -6Cyanide- + 2Ca+2 + Fe+2 = Ca2Fe(Cyanide)6 - log_k 50.9952 - delta_h -83.7 kcal +6 Cyanide- + 2 K+ + 2 H+ + Fe+2 = K2H2Fe(Cyanide)6 + log_k 52.3058 + delta_h -85.86 kcal +6 Cyanide- + Ca+2 + Fe+3 = CaFe(Cyanide)6- + log_k 55.473 + delta_h -69.5 kcal +6 Cyanide- + Ca+2 + Fe+2 = CaFe(Cyanide)6-2 + log_k 49.6898 + delta_h -83.1 kcal +6 Cyanide- + 2 Ca+2 + Fe+2 = Ca2Fe(Cyanide)6 + log_k 50.9952 + delta_h -83.7 kcal Cyanide- + Cd+2 = CdCyanide+ - log_k 5.32 - delta_h 0 kcal -2Cyanide- + Cd+2 = Cd(Cyanide)2 - log_k 10.3703 - delta_h -13 kcal -3Cyanide- + Cd+2 = Cd(Cyanide)3- - log_k 14.8341 - delta_h -21.6 kcal -4Cyanide- + Cd+2 = Cd(Cyanide)4-2 - log_k 18.2938 - delta_h -23.56 kcal -4Cyanide- + Cu+ = Cu(Cyanide)4-3 - log_k 30.3456 - delta_h -51.4 kcal -2Cyanide- + Cu+ = Cu(Cyanide)2- - log_k 24.0272 - delta_h -29.1 kcal -3Cyanide- + Cu+ = Cu(Cyanide)3-2 - log_k 28.6524 - delta_h -40.2 kcal -6Cyanide- + Fe+2 = Fe(Cyanide)6-4 - log_k 45.6063 - delta_h -85.8 kcal -6Cyanide- + Fe+2 + H+ = HFe(Cyanide)6-3 - log_k 49.9969 - delta_h -84.16 kcal -6Cyanide- + 2H+ + Fe+2 = H2Fe(Cyanide)6-2 - log_k 52.445 - delta_h -83.1 kcal -6Cyanide- + Fe+3 = Fe(Cyanide)6-3 - log_k 52.6283 - delta_h -70.1 kcal + log_k 5.32 + delta_h 0 kcal +2 Cyanide- + Cd+2 = Cd(Cyanide)2 + log_k 10.3703 + delta_h -13 kcal +3 Cyanide- + Cd+2 = Cd(Cyanide)3- + log_k 14.8341 + delta_h -21.6 kcal +4 Cyanide- + Cd+2 = Cd(Cyanide)4-2 + log_k 18.2938 + delta_h -23.56 kcal +4 Cyanide- + Cu+ = Cu(Cyanide)4-3 + log_k 30.3456 + delta_h -51.4 kcal +2 Cyanide- + Cu+ = Cu(Cyanide)2- + log_k 24.0272 + delta_h -29.1 kcal +3 Cyanide- + Cu+ = Cu(Cyanide)3-2 + log_k 28.6524 + delta_h -40.2 kcal +6 Cyanide- + Fe+2 = Fe(Cyanide)6-4 + log_k 45.6063 + delta_h -85.8 kcal +6 Cyanide- + Fe+2 + H+ = HFe(Cyanide)6-3 + log_k 49.9969 + delta_h -84.16 kcal +6 Cyanide- + 2 H+ + Fe+2 = H2Fe(Cyanide)6-2 + log_k 52.445 + delta_h -83.1 kcal +6 Cyanide- + Fe+3 = Fe(Cyanide)6-3 + log_k 52.6283 + delta_h -70.1 kcal Cyanide- + H+ = HCyanide - log_k 9.2356 - delta_h -10.4 kcal + log_k 9.2356 + delta_h -10.4 kcal Cyanate- + H+ = HCyanate - log_k 3.445 - delta_h -2 kcal -Cyanide- + Hg(OH)2 + 2H+ = HgCyanide+ + 2H2O - log_k 24.1738 - delta_h -33.83 kcal -2Cyanide- + Hg(OH)2 + 2H+ = Hg(Cyanide)2 + 2H2O - log_k 40.6513 - delta_h -57.24 kcal -3Cyanide- + Hg(OH)2 + 2H+ = Hg(Cyanide)3- + 2H2O - log_k 44.4042 - delta_h -64.83 kcal -4Cyanide- + Hg(OH)2 + 2H+ = Hg(Cyanide)4-2 + 2H2O - log_k 47.4094 - delta_h -69.93 kcal -2Cyanide- + Cl- + Hg(OH)2 + 2H+ = Hg(Cyanide)2Cl- + 2H2O - log_k 40.3735 - delta_h 0 kcal -3Cyanide- + Cl- + Hg(OH)2 + 2H+ = Hg(Cyanide)3Cl-2 + 2H2O - log_k 43.8332 - delta_h 0 kcal -3Cyanide- + Br- + Hg(OH)2 + 2H+ = Hg(Cyanide)3Br-2 + 2H2O - log_k 44.9415 - delta_h 0 kcal -Cyanide- + 2I- = I2Cyanide- + 2e- - log_k -11.848 - delta_h 0 kcal -2Cyanide- + I- = I(Cyanide)2- + 2e- - log_k -11.458 - delta_h 0 kcal -6Cyanide- + 3K+ + H+ + Fe+2 = K3HFe(Cyanide)6 - log_k 50.2241 - delta_h -85.99 kcal -6Cyanide- + Li+ + Fe+2 = LiFe(Cyanide)6-3 - log_k 47.6858 + log_k 3.445 + delta_h -2 kcal +Cyanide- + Hg(OH)2 + 2 H+ = HgCyanide+ + 2 H2O + log_k 24.1738 + delta_h -33.83 kcal +2 Cyanide- + Hg(OH)2 + 2 H+ = Hg(Cyanide)2 + 2 H2O + log_k 40.6513 + delta_h -57.24 kcal +3 Cyanide- + Hg(OH)2 + 2 H+ = Hg(Cyanide)3- + 2 H2O + log_k 44.4042 + delta_h -64.83 kcal +4 Cyanide- + Hg(OH)2 + 2 H+ = Hg(Cyanide)4-2 + 2 H2O + log_k 47.4094 + delta_h -69.93 kcal +2 Cyanide- + Cl- + Hg(OH)2 + 2 H+ = Hg(Cyanide)2Cl- + 2 H2O + log_k 40.3735 + delta_h 0 kcal +3 Cyanide- + Cl- + Hg(OH)2 + 2 H+ = Hg(Cyanide)3Cl-2 + 2 H2O + log_k 43.8332 + delta_h 0 kcal +3 Cyanide- + Br- + Hg(OH)2 + 2 H+ = Hg(Cyanide)3Br-2 + 2 H2O + log_k 44.9415 + delta_h 0 kcal +Cyanide- + 2 I- = I2Cyanide- + 2 e- + log_k -11.848 + delta_h 0 kcal +2 Cyanide- + I- = I(Cyanide)2- + 2 e- + log_k -11.458 + delta_h 0 kcal +6 Cyanide- + 3 K+ + H+ + Fe+2 = K3HFe(Cyanide)6 + log_k 50.2241 + delta_h -85.99 kcal +6 Cyanide- + Li+ + Fe+2 = LiFe(Cyanide)6-3 + log_k 47.6858 delta_h -80.149 kcal -6Cyanide- + Mg+2 + Fe+3 = MgFe(Cyanide)6- - log_k 55.3916 - delta_h -69.31 kcal -6Cyanide- + Mg+2 + Fe+2 = MgFe(Cyanide)6-2 - log_k 49.4251 - delta_h 0 kcal -4Cyanide- + Ni+2 = Ni(Cyanide)4-2 - log_k 30.1257 - delta_h -43.19 kcal -Sr+2 + Fe+3 + 6Cyanide- = SrFe(Cyanide)6- - log_k 55.6181 - delta_h -69.83 kcal -4Cyanide- + Tl+ = Tl(Cyanide)4- + 2e- - log_k -8.0189 - delta_h 0 kcal -6Cyanide- + Tl+ + Fe+2 = TlFe(Cyanide)6-3 - log_k 48.7508 - delta_h -84.88 kcal -4Cyanide- + Zn+2 = Zn(Cyanide)4-2 - log_k 16.715 +6 Cyanide- + Mg+2 + Fe+3 = MgFe(Cyanide)6- + log_k 55.3916 + delta_h -69.31 kcal +6 Cyanide- + Mg+2 + Fe+2 = MgFe(Cyanide)6-2 + log_k 49.4251 + delta_h 0 kcal +4 Cyanide- + Ni+2 = Ni(Cyanide)4-2 + log_k 30.1257 + delta_h -43.19 kcal +Sr+2 + Fe+3 + 6 Cyanide- = SrFe(Cyanide)6- + log_k 55.6181 + delta_h -69.83 kcal +4 Cyanide- + Tl+ = Tl(Cyanide)4- + 2 e- + log_k -8.0189 + delta_h 0 kcal +6 Cyanide- + Tl+ + Fe+2 = TlFe(Cyanide)6-3 + log_k 48.7508 + delta_h -84.88 kcal +4 Cyanide- + Zn+2 = Zn(Cyanide)4-2 + log_k 16.715 delta_h -25.539 kcal -3Cyanide- + Zn+2 = Zn(Cyanide)3- - log_k 16.048 +3 Cyanide- + Zn+2 = Zn(Cyanide)3- + log_k 16.048 delta_h -20.199 kcal -2Cyanide- + Zn+2 = Zn(Cyanide)2 - log_k 11.071 +2 Cyanide- + Zn+2 = Zn(Cyanide)2 + log_k 11.071 delta_h -10.999 kcal -3Cyanide- + Ni+2 = Ni(Cyanide)3- - log_k 22.6346 - delta_h 0 kcal -4Cyanide- + Ni+2 + H+ = NiH(Cyanide)4- - log_k 36.7482 - delta_h 0 kcal -4Cyanide- + Ni+2 + 2H+ = NiH2Cyanide4 - log_k 41.4576 - delta_h 0 kcal -4Cyanide- + Ni+2 + 3H+ = NiH3(Cyanide)4+ - log_k 43.9498 - delta_h 0 kcal -2Cyanide- + Ni+2 = Ni(Cyanide)2 - log_k 14.5864 - delta_h 0 kcal -6Cyanide- + 2Fe+3 = Fe2(Cyanide)6 - log_k 56.9822 - delta_h 0 kcal -2Cyanate- + Ag+ = Ag(Cyanate)2- - log_k 5.0034 - delta_h 0 kcal -3Cyanide- + Ag+ = Ag(Cyanide)3-2 - log_k 21.4002 +3 Cyanide- + Ni+2 = Ni(Cyanide)3- + log_k 22.6346 + delta_h 0 kcal +4 Cyanide- + Ni+2 + H+ = NiH(Cyanide)4- + log_k 36.7482 + delta_h 0 kcal +4 Cyanide- + Ni+2 + 2 H+ = NiH2Cyanide4 + log_k 41.4576 + delta_h 0 kcal +4 Cyanide- + Ni+2 + 3 H+ = NiH3(Cyanide)4+ + log_k 43.9498 + delta_h 0 kcal +2 Cyanide- + Ni+2 = Ni(Cyanide)2 + log_k 14.5864 + delta_h 0 kcal +6 Cyanide- + 2 Fe+3 = Fe2(Cyanide)6 + log_k 56.9822 + delta_h 0 kcal +2 Cyanate- + Ag+ = Ag(Cyanate)2- + log_k 5.0034 + delta_h 0 kcal +3 Cyanide- + Ag+ = Ag(Cyanide)3-2 + log_k 21.4002 delta_h -33.495 kcal -6Cyanide- + Fe+2 + Ba+2 = BaFe(Cyanide)6-2 - log_k 49.4032 - delta_h 0 kcal +6 Cyanide- + Fe+2 + Ba+2 = BaFe(Cyanide)6-2 + log_k 49.4032 + delta_h 0 kcal Acetate- + H+ = HAcetate - log_k 4.76 - delta_h 0 kcal - -gamma 0 0.06 + log_k 4.76 + delta_h 0 kcal + -gamma 0 0.06 Tartrate-2 + H+ = HTartrate- - log_k 4.16 - delta_h 0 kcal - -gamma 0 0.01 -Tartrate-2 + 2H+ = H2Tartrate - log_k 6.67 - delta_h 0 kcal - -gamma 0 0.01 + log_k 4.16 + delta_h 0 kcal + -gamma 0 0.01 +Tartrate-2 + 2 H+ = H2Tartrate + log_k 6.67 + delta_h 0 kcal + -gamma 0 0.01 Glycine- + H+ = HGlycine - log_k 9.78 - delta_h 0 kcal - -gamma 0 0.07 -Glycine- + 2H+ = H2Glycine+ - log_k 12.12 - delta_h 0 kcal - -gamma 0 0.07 + log_k 9.78 + delta_h 0 kcal + -gamma 0 0.07 +Glycine- + 2 H+ = H2Glycine+ + log_k 12.12 + delta_h 0 kcal + -gamma 0 0.07 Salicylate-2 + H+ = HSalicylate- - log_k 13.4 - delta_h 0 kcal - -gamma 0 0.01 -Salicylate-2 + 2H+ = H2Salicylate - log_k 16.4 - delta_h 0 kcal - -gamma 0 0.01 + log_k 13.4 + delta_h 0 kcal + -gamma 0 0.01 +Salicylate-2 + 2 H+ = H2Salicylate + log_k 16.4 + delta_h 0 kcal + -gamma 0 0.01 Glutamate-2 + H+ = HGlutamate- - log_k 9.95 - delta_h 0 kcal - -gamma 0 0.01 -Glutamate-2 + 2H+ = H2Glutamate - log_k 14.37 - delta_h 0 kcal - -gamma 0 0.01 + log_k 9.95 + delta_h 0 kcal + -gamma 0 0.01 +Glutamate-2 + 2 H+ = H2Glutamate + log_k 14.37 + delta_h 0 kcal + -gamma 0 0.01 Phthalate-2 + H+ = HPhthalate- - log_k 5.4 - delta_h 0 kcal - -gamma 0 0.01 -Phthalate-2 + 2H+ = H2Phthalate - log_k 8.35 - delta_h 0 kcal - -gamma 0 0.01 + log_k 5.4 + delta_h 0 kcal + -gamma 0 0.01 +Phthalate-2 + 2 H+ = H2Phthalate + log_k 8.35 + delta_h 0 kcal + -gamma 0 0.01 Cd+2 + Acetate- = CdAcetate+ - log_k 1.93 - delta_h 0 kcal - -gamma 0 0.01 + log_k 1.93 + delta_h 0 kcal + -gamma 0 0.01 Cd+2 + Tartrate-2 = CdTartrate - log_k 3.9 - delta_h 0 kcal - -gamma 0 0.02 + log_k 3.9 + delta_h 0 kcal + -gamma 0 0.02 Cd+2 + Glycine- = CdGlycine+ - log_k 4.8 - delta_h 0 kcal -Cd+2 + 2Glycine- = CdGlycine2 - log_k 8.4 - delta_h 0 kcal + log_k 4.8 + delta_h 0 kcal +Cd+2 + 2 Glycine- = CdGlycine2 + log_k 8.4 + delta_h 0 kcal Cd+2 + Glutamate-2 = CdGlutamate - log_k 4.78 - delta_h 0 kcal -Cd+2 + 2Glutamate-2 = CdGlutamate2-2 - log_k 2.78 - delta_h 0 kcal + log_k 4.78 + delta_h 0 kcal +Cd+2 + 2 Glutamate-2 = CdGlutamate2-2 + log_k 2.78 + delta_h 0 kcal Cd+2 + Phthalate-2 = CdPhthalate - log_k 2.5 - delta_h 0 kcal + log_k 2.5 + delta_h 0 kcal Pb+2 + Tartrate-2 = PbTartrate - log_k 3.78 - delta_h 0 kcal + log_k 3.78 + delta_h 0 kcal Pb+2 + Glycine- = PbGlycine+ - log_k 5.47 - delta_h 0 kcal -Pb+2 + 2Glycine- = PbGlycine2 - log_k 8.32 - delta_h 0 kcal + log_k 5.47 + delta_h 0 kcal +Pb+2 + 2 Glycine- = PbGlycine2 + log_k 8.32 + delta_h 0 kcal Ba+2 + Acetate- = BaAcetate+ - log_k 1.07 - delta_h 0 kcal + log_k 1.07 + delta_h 0 kcal Ba+2 + Tartrate-2 = BaTartrate - log_k 2.54 - delta_h 0 kcal + log_k 2.54 + delta_h 0 kcal Ba+2 + Glycine- = BaGlycine+ - log_k 0.77 - delta_h 0 kcal + log_k 0.77 + delta_h 0 kcal Ba+2 + Salicylate-2 = BaSalicylate - log_k 0.21 - delta_h 0 kcal + log_k 0.21 + delta_h 0 kcal Ba+2 + Glutamate-2 = BaGlutamate - log_k 1.28 - delta_h 0 kcal + log_k 1.28 + delta_h 0 kcal Ba+2 + Phthalate-2 = BaPhthalate - log_k 2.33 - delta_h 0 kcal + log_k 2.33 + delta_h 0 kcal Ag+ + Acetate- = AgAcetate - log_k 0.73 - delta_h 0 kcal -Ag+ + 2Acetate- = AgAcetate2- - log_k 0.64 - delta_h 0 kcal + log_k 0.73 + delta_h 0 kcal +Ag+ + 2 Acetate- = AgAcetate2- + log_k 0.64 + delta_h 0 kcal Ag+ + Glycine- = AgGlycine - log_k 3.51 - delta_h 0 kcal -Ag+ + 2Glycine- = AgGlycine2- - log_k 3.38 - delta_h 0 kcal -Cr(OH)2+ + Acetate- + 2H+ = CrAcetate+2 + 2H2O - log_k 14.25 - delta_h 0 kcal -Cr(OH)2+ + 2Acetate- + 2H+ = CrAcetate2+ + 2H2O - log_k 16.68 - delta_h 0 kcal -Cr(OH)2+ + 3Acetate- + 2H+ = CrAcetate3 + 2H2O - log_k 19.2 - delta_h 0 kcal + log_k 3.51 + delta_h 0 kcal +Ag+ + 2 Glycine- = AgGlycine2- + log_k 3.38 + delta_h 0 kcal +Cr(OH)2+ + Acetate- + 2 H+ = CrAcetate+2 + 2 H2O + log_k 14.25 + delta_h 0 kcal +Cr(OH)2+ + 2 Acetate- + 2 H+ = CrAcetate2+ + 2 H2O + log_k 16.68 + delta_h 0 kcal +Cr(OH)2+ + 3 Acetate- + 2 H+ = CrAcetate3 + 2 H2O + log_k 19.2 + delta_h 0 kcal # Could not interpret MINTEQ data #Cr(OH)2+ + Glycine- = CrGlycine+2 # log_k 8.4 @@ -2204,2654 +2208,2654 @@ Cr(OH)2+ + 3Acetate- + 2H+ = CrAcetate3 + 2H2O #Cr(OH)2+ + 3Glycine- = CrGlycine3- # log_k 5.7 # delta_h 0 kcal -Cr(OH)2+ + Phthalate-2 + 2H+ = CrPhthalate+ + 2H2O - log_k 15.14 - delta_h 0 kcal -Cr(OH)2+ + 2Phthalate-2 + 2H+ = CrPhthalate2- + 2H2O - log_k 19.62 - delta_h 0 kcal -Cr(OH)2+ + 3Phthalate-2 + 2H+ = CrPhthalate3-3 + 2H2O - log_k 22.1 - delta_h 0 kcal +Cr(OH)2+ + Phthalate-2 + 2 H+ = CrPhthalate+ + 2 H2O + log_k 15.14 + delta_h 0 kcal +Cr(OH)2+ + 2 Phthalate-2 + 2 H+ = CrPhthalate2- + 2 H2O + log_k 19.62 + delta_h 0 kcal +Cr(OH)2+ + 3 Phthalate-2 + 2 H+ = CrPhthalate3-3 + 2 H2O + log_k 22.1 + delta_h 0 kcal Tl+ + Tartrate-2 = TlTartrate- - log_k 1.39 - delta_h 0 kcal + log_k 1.39 + delta_h 0 kcal Hg2+2 + Glycine- = Hg2Glycine+ - log_k 10.8 - delta_h 0 kcal -Hg2+2 + 2Glycine- = Hg2Glycine2 - log_k 20 - delta_h 0 kcal + log_k 10.8 + delta_h 0 kcal +Hg2+2 + 2 Glycine- = Hg2Glycine2 + log_k 20 + delta_h 0 kcal Cd+2 + Butanoate- = CdButanoate+ - log_k 1.25 - delta_h 0 kcal + log_k 1.25 + delta_h 0 kcal Cd+2 + Citrate-3 = CdCitrate- - log_k 5.3 - delta_h 0 kcal -Cd+2 + Citrate-3 + 2H+ = CdH2Citrate+ - log_k 2.05 - delta_h 0 kcal + log_k 5.3 + delta_h 0 kcal +Cd+2 + Citrate-3 + 2 H+ = CdH2Citrate+ + log_k 2.05 + delta_h 0 kcal Cd+2 + Citrate-3 + H+ = CdHCitrate - log_k 3.37 - delta_h 0 kcal -Cd+2 + 2Citrate-3 = CdCitrate2-4 - log_k 5.34 - delta_h 0 kcal + log_k 3.37 + delta_h 0 kcal +Cd+2 + 2 Citrate-3 = CdCitrate2-4 + log_k 5.34 + delta_h 0 kcal Cd+2 + Edta-4 + H+ = CdHEdta- - log_k 2.9 - delta_h 0 kcal -Cd+2 + 2Acetate- = CdAcetate2 - log_k 3.15 - delta_h 0 kcal -Cd+2 + 3Acetate- = CdAcetate3- - log_k 2.17 - delta_h 0 kcal -Cd+2 + 4Acetate- = CdAcetate4-2 - log_k 2.04 - delta_h 0 kcal + log_k 2.9 + delta_h 0 kcal +Cd+2 + 2 Acetate- = CdAcetate2 + log_k 3.15 + delta_h 0 kcal +Cd+2 + 3 Acetate- = CdAcetate3- + log_k 2.17 + delta_h 0 kcal +Cd+2 + 4 Acetate- = CdAcetate4-2 + log_k 2.04 + delta_h 0 kcal Cd+2 + Diethylamine = CdDiethylamine+2 - log_k 2.62 - delta_h 0 kcal -Cd+2 + 2Diethylamine = CdDiethylamine2+2 - log_k 4.86 - delta_h 0 kcal -Cd+2 + 3Diethylamine = CdDiethylamine3+2 - log_k 6.36 - delta_h 0 kcal -Cd+2 + 4Diethylamine = CdDiethylamine4+2 - log_k 7.31 - delta_h 0 kcal + log_k 2.62 + delta_h 0 kcal +Cd+2 + 2 Diethylamine = CdDiethylamine2+2 + log_k 4.86 + delta_h 0 kcal +Cd+2 + 3 Diethylamine = CdDiethylamine3+2 + log_k 6.36 + delta_h 0 kcal +Cd+2 + 4 Diethylamine = CdDiethylamine4+2 + log_k 7.31 + delta_h 0 kcal Cd+2 + Propanoate- = CdPropanoate+ - log_k 1.19 - delta_h 0 kcal -Cd+2 + 2Propanoate- = CdPropanoate2 - log_k 1.86 - delta_h 0 kcal -Cd+2 + 3Propanoate- = CdPropanoate3- - log_k 2.345 - delta_h 0 kcal -Cd+2 + 4Propanoate- = CdPropanoate4-2 - log_k 1.98 - delta_h 0 kcal -Cd+2 + 2Butanoate- = CdButanoate2 - log_k 1.98 - delta_h 0 kcal -Cd+2 + 3Butanoate- = CdButanoate3- - log_k 2.34 - delta_h 0 kcal -Cd+2 + 4Butanoate- = CdButanoate4-2 - log_k 1.98 - delta_h 0 kcal + log_k 1.19 + delta_h 0 kcal +Cd+2 + 2 Propanoate- = CdPropanoate2 + log_k 1.86 + delta_h 0 kcal +Cd+2 + 3 Propanoate- = CdPropanoate3- + log_k 2.345 + delta_h 0 kcal +Cd+2 + 4 Propanoate- = CdPropanoate4-2 + log_k 1.98 + delta_h 0 kcal +Cd+2 + 2 Butanoate- = CdButanoate2 + log_k 1.98 + delta_h 0 kcal +Cd+2 + 3 Butanoate- = CdButanoate3- + log_k 2.34 + delta_h 0 kcal +Cd+2 + 4 Butanoate- = CdButanoate4-2 + log_k 1.98 + delta_h 0 kcal Cd+2 + Npropylamine = CdNpropylamine+2 - log_k 2.62 - delta_h 0 kcal -Cd+2 + 2Npropylamine = CdNpropylamine2+2 - log_k 4.64 - delta_h 0 kcal -Cd+2 + 3Npropylamine = CdNpropylamine3+2 - log_k 6.03 - delta_h 0 kcal + log_k 2.62 + delta_h 0 kcal +Cd+2 + 2 Npropylamine = CdNpropylamine2+2 + log_k 4.64 + delta_h 0 kcal +Cd+2 + 3 Npropylamine = CdNpropylamine3+2 + log_k 6.03 + delta_h 0 kcal Cd+2 + Isopropylamine = CdIsopropylamine+2 - log_k 2.55 - delta_h 0 kcal -Cd+2 + 2Isopropylamine = CdIsopropylamine2+2 - log_k 4.57 - delta_h 0 kcal -Cd+2 + 3Isopropylamine = CdIsopropylamine3+2 - log_k 6.07 - delta_h 0 kcal -Cd+2 + 4Isopropylamine = CdIsopropylamine4+2 - log_k 6.9 - delta_h 0 kcal + log_k 2.55 + delta_h 0 kcal +Cd+2 + 2 Isopropylamine = CdIsopropylamine2+2 + log_k 4.57 + delta_h 0 kcal +Cd+2 + 3 Isopropylamine = CdIsopropylamine3+2 + log_k 6.07 + delta_h 0 kcal +Cd+2 + 4 Isopropylamine = CdIsopropylamine4+2 + log_k 6.9 + delta_h 0 kcal Benzoate- + H+ = HBenzoate - log_k 4.2 - delta_h 0 kcal -Para_acetate- + 2H+ = H2Para_acetate+ - log_k 4.31 - delta_h 0 kcal + log_k 4.2 + delta_h 0 kcal +Para_acetate- + 2 H+ = H2Para_acetate+ + log_k 4.31 + delta_h 0 kcal Isophthalate-2 + H+ = HIsophthalate- - log_k 3.5 - delta_h 0 kcal -Isophthalate-2 + 2H+ = H2Isophthalate - log_k 8 - delta_h 0 kcal + log_k 3.5 + delta_h 0 kcal +Isophthalate-2 + 2 H+ = H2Isophthalate + log_k 8 + delta_h 0 kcal Propanoate- + Fe+3 = FePropanoate+2 - log_k 3.4 - delta_h 0 kcal + log_k 3.4 + delta_h 0 kcal Isobutyrate- + Fe+3 = FeIsobutyrate+2 - log_k 3.6 - delta_h 0 kcal + log_k 3.6 + delta_h 0 kcal Butanoate- + Fe+3 = FeButanoate+2 - log_k 5.56 - delta_h 0 kcal + log_k 5.56 + delta_h 0 kcal Isovalerate- + Fe+3 = FeIsovalerate+2 - log_k 5.58 - delta_h 0 kcal + log_k 5.58 + delta_h 0 kcal Valerate- + Fe+3 = FeValerate+2 - log_k 5.58 - delta_h 0 kcal + log_k 5.58 + delta_h 0 kcal Benzoate- + Cu+2 = CuBenzoate+ - log_k 2.1 - delta_h 0 kcal + log_k 2.1 + delta_h 0 kcal Para_acetate- + Cu+2 = CuPara_acetate+ - log_k 1.97 - delta_h 0 kcal + log_k 1.97 + delta_h 0 kcal Isobutyrate- + Ba+2 = BaIsobutyrate+ - log_k 0.64 - delta_h 0 kcal + log_k 0.64 + delta_h 0 kcal Isovalerate- + Ba+2 = BaIsovalerate+ - log_k 0.68 - delta_h 0 kcal + log_k 0.68 + delta_h 0 kcal Valerate- + Ba+2 = BaValerate+ - log_k 0.66 - delta_h 0 kcal + log_k 0.66 + delta_h 0 kcal Isophthalate-2 + Ba+2 = BaIsophthalate - log_k 1.55 - delta_h 0 kcal + log_k 1.55 + delta_h 0 kcal Isobutyrate- + Cd+2 = CdIsobutyrate+ - log_k 1.17 - delta_h 0 kcal + log_k 1.17 + delta_h 0 kcal Valerate- + Cd+2 = CdValerate+ - log_k 1.19 - delta_h 0 kcal + log_k 1.19 + delta_h 0 kcal Benzoate- + Cd+2 = CdBenzoate+ - log_k 1.9 - delta_h 0 kcal -2Benzoate- + Cd+2 = CdBenzoate2 - log_k 1.65 - delta_h 0 kcal + log_k 1.9 + delta_h 0 kcal +2 Benzoate- + Cd+2 = CdBenzoate2 + log_k 1.65 + delta_h 0 kcal Para_acetate- + Zn+2 = ZnPara_acetate+ - log_k 1.67 - delta_h 0 kcal + log_k 1.67 + delta_h 0 kcal Para_acetate- + Cd+2 = CdPara_acetate+ - log_k 1.15 - delta_h 0 kcal -2Para_acetate- + Cd+2 = CdPara_acetate2 - log_k 1.92 - delta_h 0 kcal + log_k 1.15 + delta_h 0 kcal +2 Para_acetate- + Cd+2 = CdPara_acetate2 + log_k 1.92 + delta_h 0 kcal Isophthalate-2 + Cd+2 = CdIsophthalate - log_k 1.33 - delta_h 0 kcal -2Isophthalate-2 + Cd+2 = CdIsophthalate2-2 - log_k 2.17 - delta_h 0 kcal -2Isophthalate-2 + Cd+2 + H+ = CdIsophthalate2H- - log_k 5.32 - delta_h 0 kcal -2H+ + Isobutyrate- + Cr(OH)2+ = CrIsobutyrate+2 + 2H2O - log_k 12.73 - delta_h 0 kcal -2H+ + Butanoate- + Cr(OH)2+ = CrButanoate+2 + 2H2O - log_k 12.74 - delta_h 0 kcal -2H+ + Isovalerate- + Cr(OH)2+ = CrIsovalerate+2 + 2H2O - log_k 12.76 - delta_h 0 kcal -2H+ + Valerate- + Cr(OH)2+ = CrValerate+2 + 2H2O - log_k 12.75 - delta_h 0 kcal + log_k 1.33 + delta_h 0 kcal +2 Isophthalate-2 + Cd+2 = CdIsophthalate2-2 + log_k 2.17 + delta_h 0 kcal +2 Isophthalate-2 + Cd+2 + H+ = CdIsophthalate2H- + log_k 5.32 + delta_h 0 kcal +2 H+ + Isobutyrate- + Cr(OH)2+ = CrIsobutyrate+2 + 2 H2O + log_k 12.73 + delta_h 0 kcal +2 H+ + Butanoate- + Cr(OH)2+ = CrButanoate+2 + 2 H2O + log_k 12.74 + delta_h 0 kcal +2 H+ + Isovalerate- + Cr(OH)2+ = CrIsovalerate+2 + 2 H2O + log_k 12.76 + delta_h 0 kcal +2 H+ + Valerate- + Cr(OH)2+ = CrValerate+2 + 2 H2O + log_k 12.75 + delta_h 0 kcal Isobutyrate- + Pb+2 = PbIsobutyrate+ - log_k 2.67 - delta_h 0 kcal + log_k 2.67 + delta_h 0 kcal Isovalerate- + Pb+2 = PbIsovalerate+ - log_k 2.05 - delta_h 0 kcal + log_k 2.05 + delta_h 0 kcal Valerate- + Pb+2 = PbValerate+ - log_k 2.06 - delta_h 0 kcal + log_k 2.06 + delta_h 0 kcal Benzoate- + Pb+2 = PbBenzoate+ - log_k 2.5 - delta_h 0 kcal + log_k 2.5 + delta_h 0 kcal Benzoate- + Mg+2 = MgBenzoate+ - log_k 0.1 - delta_h 0 kcal + log_k 0.1 + delta_h 0 kcal Benzoate- + Ca+2 = CaBenzoate+ - log_k 0.2 - delta_h 0 kcal + log_k 0.2 + delta_h 0 kcal Benzoate- + Zn+2 = ZnBenzoate+ - log_k 1.4 - delta_h 0 kcal + log_k 1.4 + delta_h 0 kcal Isophthalate-2 + Pb+2 = PbIsophthalate - log_k 2.17 - delta_h 0 kcal -2Isophthalate-2 + Pb+2 = PbIsophthalate2-2 - log_k 3.36 - delta_h 0 kcal + log_k 2.17 + delta_h 0 kcal +2 Isophthalate-2 + Pb+2 = PbIsophthalate2-2 + log_k 3.36 + delta_h 0 kcal Isophthalate-2 + Pb+2 + H+ = PbIsophthalateH+ - log_k 6.28 - delta_h 0 kcal -2H+ + Isobutyrate- + Hg(OH)2 = HgIsobutyrate+ + 2H2O - log_k 10.687 - delta_h 0 kcal -2H+ + Butanoate- + Hg(OH)2 = HgButanoate+ + 2H2O - log_k 10.097 - delta_h 0 kcal -2H+ + Isovalerate- + Hg(OH)2 = HgIsovalerate+ + 2H2O - log_k 10.717 - delta_h 0 kcal -2H+ + Valerate- + Hg(OH)2 = HgValerate+ + 2H2O - log_k 10.727 - delta_h 0 kcal -2H+ + Phthalate-2 + Hg(OH)2 = HgPhthalate + 2H2O - log_k 10.997 - delta_h 0 kcal + log_k 6.28 + delta_h 0 kcal +2 H+ + Isobutyrate- + Hg(OH)2 = HgIsobutyrate+ + 2 H2O + log_k 10.687 + delta_h 0 kcal +2 H+ + Butanoate- + Hg(OH)2 = HgButanoate+ + 2 H2O + log_k 10.097 + delta_h 0 kcal +2 H+ + Isovalerate- + Hg(OH)2 = HgIsovalerate+ + 2 H2O + log_k 10.717 + delta_h 0 kcal +2 H+ + Valerate- + Hg(OH)2 = HgValerate+ + 2 H2O + log_k 10.727 + delta_h 0 kcal +2 H+ + Phthalate-2 + Hg(OH)2 = HgPhthalate + 2 H2O + log_k 10.997 + delta_h 0 kcal Isobutyrate- + Ni+2 = NiIsobutyrate+ - log_k 1.23 - delta_h 0 kcal + log_k 1.23 + delta_h 0 kcal Isovalerate- + Ni+2 = NiIsovalerate+ - log_k 1.27 - delta_h 0 kcal + log_k 1.27 + delta_h 0 kcal Valerate- + Ni+2 = NiValerate+ - log_k 1.26 - delta_h 0 kcal + log_k 1.26 + delta_h 0 kcal Benzoate- + Ni+2 = NiBenzoate+ - log_k 1.4 - delta_h 0 kcal + log_k 1.4 + delta_h 0 kcal Para_acetate- + Ni+2 = NiPara_acetate+ - log_k 0.65 - delta_h 0 kcal -2Para_acetate- + Ni+2 = NiPara_acetate2 - log_k 0.99 - delta_h 0 kcal + log_k 0.65 + delta_h 0 kcal +2 Para_acetate- + Ni+2 = NiPara_acetate2 + log_k 0.99 + delta_h 0 kcal Phthalate-2 + Ni+2 + H+ = NiPhthalateH+ - log_k 6.1 - delta_h 0 kcal + log_k 6.1 + delta_h 0 kcal Cr+2 + Edta-4 + H+ = CrHEdta- - log_k 6.1 - delta_h 0 kcal -Cr(OH)2+ + Propanoate- + 2H+ = CrPropanoate+2 + 2H2O - log_k 14.32 - delta_h 0 kcal -Cr(OH)2+ + 2Propanoate- + 2H+ = CrPropanoate2+ + 2H2O - log_k 16.66 - delta_h 0 kcal -Cr(OH)2+ + 3Propanoate- + 2H+ = CrPropanoate3 + 2H2O - log_k 19.32 - delta_h 0 kcal + log_k 6.1 + delta_h 0 kcal +Cr(OH)2+ + Propanoate- + 2 H+ = CrPropanoate+2 + 2 H2O + log_k 14.32 + delta_h 0 kcal +Cr(OH)2+ + 2 Propanoate- + 2 H+ = CrPropanoate2+ + 2 H2O + log_k 16.66 + delta_h 0 kcal +Cr(OH)2+ + 3 Propanoate- + 2 H+ = CrPropanoate3 + 2 H2O + log_k 19.32 + delta_h 0 kcal Cr+2 + Acetate- = CrAcetate+ - log_k 1.8 - delta_h 0 kcal -Cr+2 + 2Acetate- = CrAcetate2 - log_k 2.92 - delta_h 0 kcal + log_k 1.8 + delta_h 0 kcal +Cr+2 + 2 Acetate- = CrAcetate2 + log_k 2.92 + delta_h 0 kcal Cu+2 + Edta-4 = CuEdta-2 - log_k 18.785 - delta_h 0 kcal + log_k 18.785 + delta_h 0 kcal Cu+2 + Edta-4 + H+ = CuHEdta- - log_k 11.195 - delta_h 0 kcal -Cu+2 + 2Acetate- = CuAcetate2 - log_k 3.63 - delta_h 0 kcal -Cu+2 + 3Acetate- = CuAcetate3- - log_k 3.1 - delta_h 0 kcal -Cu+2 + 4Acetate- = CuAcetate4-2 - log_k 2.9 - delta_h 0 kcal + log_k 11.195 + delta_h 0 kcal +Cu+2 + 2 Acetate- = CuAcetate2 + log_k 3.63 + delta_h 0 kcal +Cu+2 + 3 Acetate- = CuAcetate3- + log_k 3.1 + delta_h 0 kcal +Cu+2 + 4 Acetate- = CuAcetate4-2 + log_k 2.9 + delta_h 0 kcal Cu+2 + Propanoate- = CuPropanoate+ - log_k 2.22 - delta_h 0 kcal -Cu+2 + 2Propanoate- = CuPropanoate2 - log_k 2.62 - delta_h 0 kcal -Cu+2 + 3Propanoate- = CuPropanoate3- - log_k 2.3 - delta_h 0 kcal -Cu+2 + 4Propanoate- = CuPropanoate4-2 - log_k 2.7 - delta_h 0 kcal -Cu+2 + 2Methylamine = CuMethylamine2+2 - log_k 7.51 - delta_h 0 kcal + log_k 2.22 + delta_h 0 kcal +Cu+2 + 2 Propanoate- = CuPropanoate2 + log_k 2.62 + delta_h 0 kcal +Cu+2 + 3 Propanoate- = CuPropanoate3- + log_k 2.3 + delta_h 0 kcal +Cu+2 + 4 Propanoate- = CuPropanoate4-2 + log_k 2.7 + delta_h 0 kcal +Cu+2 + 2 Methylamine = CuMethylamine2+2 + log_k 7.51 + delta_h 0 kcal Cu+2 + Dimethylamine = CuDimethylamine+2 - log_k 3.21 - delta_h 0 kcal -Cu+2 + 2Dimethylamine = CuDimethylamine2+2 - log_k 5.66 - delta_h 0 kcal -Cu+2 + 3Dimethylamine = CuDimethylamine3+2 - log_k 7.26 - delta_h 0 kcal + log_k 3.21 + delta_h 0 kcal +Cu+2 + 2 Dimethylamine = CuDimethylamine2+2 + log_k 5.66 + delta_h 0 kcal +Cu+2 + 3 Dimethylamine = CuDimethylamine3+2 + log_k 7.26 + delta_h 0 kcal Cu+2 + Butanoate- = CuButanoate+ - log_k 2.14 - delta_h 0 kcal -Cu+2 + 2Butanoate- = CuButanoate2 - log_k 2.6 - delta_h 0 kcal -Cu+2 + 3Butanoate- = CuButanoate3- - log_k 2.3 - delta_h 0 kcal -Cu+2 + 4Butanoate- = CuButanoate4-2 - log_k 2.95 - delta_h 0 kcal + log_k 2.14 + delta_h 0 kcal +Cu+2 + 2 Butanoate- = CuButanoate2 + log_k 2.6 + delta_h 0 kcal +Cu+2 + 3 Butanoate- = CuButanoate3- + log_k 2.3 + delta_h 0 kcal +Cu+2 + 4 Butanoate- = CuButanoate4-2 + log_k 2.95 + delta_h 0 kcal Cu+2 + Isobutyrate- = CuIsobutyrate+ - log_k 2.17 - delta_h 0 kcal -Cu+2 + 2Isobutyrate- = CuIsobutyrate2 - log_k 2.7 - delta_h 0 kcal + log_k 2.17 + delta_h 0 kcal +Cu+2 + 2 Isobutyrate- = CuIsobutyrate2 + log_k 2.7 + delta_h 0 kcal Pb+2 + Citrate-3 = PbCitrate- - log_k 4.34 - delta_h 0 kcal -Pb+2 + 2Citrate-3 = PbCitrate2-4 - log_k 6.08 - delta_h 0 kcal -Pb+2 + 3Citrate-3 = PbCitrate3-7 - log_k 6.97 - delta_h 0 kcal + log_k 4.34 + delta_h 0 kcal +Pb+2 + 2 Citrate-3 = PbCitrate2-4 + log_k 6.08 + delta_h 0 kcal +Pb+2 + 3 Citrate-3 = PbCitrate3-7 + log_k 6.97 + delta_h 0 kcal Pb+2 + Nta-3 = PbNta- - log_k 11.6233 - delta_h 0 kcal + log_k 11.6233 + delta_h 0 kcal Pb+2 + Nta-3 + H+ = PbHNta - log_k 3.795 - delta_h 0 kcal + log_k 3.795 + delta_h 0 kcal Pb+2 + Edta-4 + H+ = PbHEdta- - log_k 9.68 - delta_h 0 kcal -Pb+2 + Edta-4 + 2H+ = PbH2Edta - log_k 6.22 - delta_h 0 kcal + log_k 9.68 + delta_h 0 kcal +Pb+2 + Edta-4 + 2 H+ = PbH2Edta + log_k 6.22 + delta_h 0 kcal Pb+2 + Acetate- = PbAcetate+ - log_k 2.87 - delta_h 0 kcal -Pb+2 + 2Acetate- = PbAcetate2 - log_k 4.08 - delta_h 0 kcal -Pb+2 + 3Acetate- = PbAcetate3- - log_k 3.59 - delta_h 0 kcal + log_k 2.87 + delta_h 0 kcal +Pb+2 + 2 Acetate- = PbAcetate2 + log_k 4.08 + delta_h 0 kcal +Pb+2 + 3 Acetate- = PbAcetate3- + log_k 3.59 + delta_h 0 kcal Pb+2 + Propanoate- = PbPropanoate+ - log_k 2.64 - delta_h 0 kcal -Pb+2 + 2Propanoate- = PbPropanoate2 - log_k 4.15 - delta_h 0 kcal -Pb+2 + 3Propanoate- = PbPropanoate3- - log_k 2.99 - delta_h 0 kcal -Pb+2 + 4Propanoate- = PbPropanoate4-2 - log_k 4.18 - delta_h 0 kcal + log_k 2.64 + delta_h 0 kcal +Pb+2 + 2 Propanoate- = PbPropanoate2 + log_k 4.15 + delta_h 0 kcal +Pb+2 + 3 Propanoate- = PbPropanoate3- + log_k 2.99 + delta_h 0 kcal +Pb+2 + 4 Propanoate- = PbPropanoate4-2 + log_k 4.18 + delta_h 0 kcal Pb+2 + Butanoate- = PbButanoate+ - log_k 2.125 - delta_h 0 kcal -Pb+2 + 2Butanoate- = PbButanoate2 - log_k 3.735 - delta_h 0 kcal -Pb+2 + 3Butanoate- = PbButanoate3- - log_k 4.125 - delta_h 0 kcal -Pb+2 + 4Butanoate- = PbButanoate4-2 - log_k 4.43 - delta_h 0 kcal + log_k 2.125 + delta_h 0 kcal +Pb+2 + 2 Butanoate- = PbButanoate2 + log_k 3.735 + delta_h 0 kcal +Pb+2 + 3 Butanoate- = PbButanoate3- + log_k 4.125 + delta_h 0 kcal +Pb+2 + 4 Butanoate- = PbButanoate4-2 + log_k 4.43 + delta_h 0 kcal Ni+2 + Citrate-3 = NiCitrate- - log_k 6.62 - delta_h 0 kcal + log_k 6.62 + delta_h 0 kcal Ni+2 + Citrate-3 + H+ = NiCitrateH - log_k 4.09 - delta_h 0 kcal -Ni+2 + Citrate-3 + 2H+ = NiCitrateH2+ - log_k 2.13 - delta_h 0 kcal + log_k 4.09 + delta_h 0 kcal +Ni+2 + Citrate-3 + 2 H+ = NiCitrateH2+ + log_k 2.13 + delta_h 0 kcal Ni+2 + Edta-4 = NiEdta-2 - log_k 20.33 - delta_h 0 kcal + log_k 20.33 + delta_h 0 kcal Ni+2 + Edta-4 + H+ = NiHEdta- - log_k 11.56 - delta_h 0 kcal + log_k 11.56 + delta_h 0 kcal Ni+2 + Propanoate- = NiPropanoate+ - log_k 0.73 - delta_h 0 kcal -Ni+2 + 2Propanoate- = NiPropanoate2 - log_k 0.8 - delta_h 0 kcal -Ni+2 + 3Propanoate- = NiPropanoate3- - log_k 0.97 - delta_h 0 kcal + log_k 0.73 + delta_h 0 kcal +Ni+2 + 2 Propanoate- = NiPropanoate2 + log_k 0.8 + delta_h 0 kcal +Ni+2 + 3 Propanoate- = NiPropanoate3- + log_k 0.97 + delta_h 0 kcal Ni+2 + Butanoate- = NiButanoate+ - log_k 0.77 - delta_h 0 kcal -Ni+2 + 2Butanoate- = NiButanoate2 - log_k 0.85 - delta_h 0 kcal -Ni+2 + 3Butanoate- = NiButanoate3- - log_k 1.34 - delta_h 0 kcal + log_k 0.77 + delta_h 0 kcal +Ni+2 + 2 Butanoate- = NiButanoate2 + log_k 0.85 + delta_h 0 kcal +Ni+2 + 3 Butanoate- = NiButanoate3- + log_k 1.34 + delta_h 0 kcal Ni+2 + Npropylamine = NiNpropylamine+2 - log_k 2.81 - delta_h 0 kcal -Ni+2 + 2Npropylamine = NiNpropylamine2+2 - log_k 5.02 - delta_h 0 kcal -Ni+2 + 3Npropylamine = NiNpropylamine3+2 - log_k 6.79 - delta_h 0 kcal -Ni+2 + 4Npropylamine = NiNpropylamine4+2 - log_k 8.31 - delta_h 0 kcal + log_k 2.81 + delta_h 0 kcal +Ni+2 + 2 Npropylamine = NiNpropylamine2+2 + log_k 5.02 + delta_h 0 kcal +Ni+2 + 3 Npropylamine = NiNpropylamine3+2 + log_k 6.79 + delta_h 0 kcal +Ni+2 + 4 Npropylamine = NiNpropylamine4+2 + log_k 8.31 + delta_h 0 kcal Ni+2 + Isopropylamine = NiIsopropylamine+2 - log_k 2.71 - delta_h 0 kcal -Ni+2 + 2Isopropylamine = NiIsopropylamine2+2 - log_k 4.86 - delta_h 0 kcal -Ni+2 + 3Isopropylamine = NiIsopropylamine3+2 - log_k 6.57 - delta_h 0 kcal -Ni+2 + 4Isopropylamine = NiIsopropylamine4+2 - log_k 7.83 - delta_h 0 kcal -Ni+2 + 5Isopropylamine = NiIsopropylamine5+2 - log_k 8.43 - delta_h 0 kcal + log_k 2.71 + delta_h 0 kcal +Ni+2 + 2 Isopropylamine = NiIsopropylamine2+2 + log_k 4.86 + delta_h 0 kcal +Ni+2 + 3 Isopropylamine = NiIsopropylamine3+2 + log_k 6.57 + delta_h 0 kcal +Ni+2 + 4 Isopropylamine = NiIsopropylamine4+2 + log_k 7.83 + delta_h 0 kcal +Ni+2 + 5 Isopropylamine = NiIsopropylamine5+2 + log_k 8.43 + delta_h 0 kcal Ag+ + Diethylamine = AgDiethylamine+ - log_k 3.965 - delta_h 0 kcal -Ag+ + 2Diethylamine = AgDiethylamine2+ - log_k 7.02 - delta_h 0 kcal + log_k 3.965 + delta_h 0 kcal +Ag+ + 2 Diethylamine = AgDiethylamine2+ + log_k 7.02 + delta_h 0 kcal Ag+ + Methylamine = AgMethylamine+ - log_k 3.18 - delta_h 0 kcal -Ag+ + 2Methylamine = AgMethylamine2+ - log_k 7.14 - delta_h 0 kcal + log_k 3.18 + delta_h 0 kcal +Ag+ + 2 Methylamine = AgMethylamine2+ + log_k 7.14 + delta_h 0 kcal Ag+ + Hexylamine = AgHexylamine+ - log_k 3.66 - delta_h 0 kcal -Ag+ + 2Hexylamine = AgHexylamine2+ - log_k 7.35 - delta_h 0 kcal + log_k 3.66 + delta_h 0 kcal +Ag+ + 2 Hexylamine = AgHexylamine2+ + log_k 7.35 + delta_h 0 kcal Ag+ + Isopropylamine = AgIsopropylamine+ - log_k 3.19 - delta_h 0 kcal -Ag+ + 2Isopropylamine = AgIsopropylamine2+ - log_k 6.85 - delta_h 0 kcal + log_k 3.19 + delta_h 0 kcal +Ag+ + 2 Isopropylamine = AgIsopropylamine2+ + log_k 6.85 + delta_h 0 kcal Ag+ + Nbutylamine = AgNbutylamine+ - log_k 3.55 - delta_h 0 kcal -Ag+ + 2Nbutylamine = AgNbutylamine2+ - log_k 7.77 - delta_h 0 kcal + log_k 3.55 + delta_h 0 kcal +Ag+ + 2 Nbutylamine = AgNbutylamine2+ + log_k 7.77 + delta_h 0 kcal Ag+ + Glutamate-2 = AgGlutamate- - log_k 3.79 - delta_h 0 kcal -Ag+ + 2Glutamate-2 = AgGlutamate2-3 - log_k 6.55 - delta_h 0 kcal + log_k 3.79 + delta_h 0 kcal +Ag+ + 2 Glutamate-2 = AgGlutamate2-3 + log_k 6.55 + delta_h 0 kcal Ag+ + Nta-3 = AgNta-2 - log_k 5.36 - delta_h 0 kcal + log_k 5.36 + delta_h 0 kcal Ag+ + Edta-4 = AgEdta-3 - log_k 7.355 - delta_h 0 kcal -Ag+ + 2Edta-4 = AgEdta2-7 - log_k 11.355 - delta_h 0 kcal + log_k 7.355 + delta_h 0 kcal +Ag+ + 2 Edta-4 = AgEdta2-7 + log_k 11.355 + delta_h 0 kcal Ag+ + Edta-4 + H+ = AgHEdta-2 - log_k 3.36 - delta_h 0 kcal + log_k 3.36 + delta_h 0 kcal Ag+ + Two_methylpyridine = AgTwo_methylpyridine+ - log_k 2.32 - delta_h 0 kcal -Ag+ + 2Two_methylpyridine = AgTwo_methylpyridine2+ - log_k 4.68 - delta_h 0 kcal + log_k 2.32 + delta_h 0 kcal +Ag+ + 2 Two_methylpyridine = AgTwo_methylpyridine2+ + log_k 4.68 + delta_h 0 kcal Ag+ + Three_methylpyridine = AgThree_methylpyridine+ - log_k 2.2 - delta_h 0 kcal -Ag+ + 2Three_methylpyridine = AgThree_methylpyridine2+ - log_k 4.46 - delta_h 0 kcal + log_k 2.2 + delta_h 0 kcal +Ag+ + 2 Three_methylpyridine = AgThree_methylpyridine2+ + log_k 4.46 + delta_h 0 kcal Ag+ + Four_methylpyridine = AgFour_methylpyridine+ - log_k 2.21 - delta_h 0 kcal -Ag+ + 2Four_methylpyridine = AgFour_methylpyridine2+ - log_k 4.67 - delta_h 0 kcal + log_k 2.21 + delta_h 0 kcal +Ag+ + 2 Four_methylpyridine = AgFour_methylpyridine2+ + log_k 4.67 + delta_h 0 kcal Ag+ + Npropylamine = AgNpropylamine+ - log_k 3.47 - delta_h 0 kcal -Ag+ + 2Npropylamine = AgNpropylamine2+ - log_k 7.51 - delta_h 0 kcal + log_k 3.47 + delta_h 0 kcal +Ag+ + 2 Npropylamine = AgNpropylamine2+ + log_k 7.51 + delta_h 0 kcal Zn+2 + Glutamate-2 = ZnGlutamate - log_k 3.79 - delta_h 0 kcal -Zn+2 + 2Glutamate-2 = ZnGlutamate2-2 - log_k 8.25 - delta_h 0 kcal -Zn+2 + 3Glutamate-2 = ZnGlutamate3-4 - log_k 9.8 - delta_h 0 kcal + log_k 3.79 + delta_h 0 kcal +Zn+2 + 2 Glutamate-2 = ZnGlutamate2-2 + log_k 8.25 + delta_h 0 kcal +Zn+2 + 3 Glutamate-2 = ZnGlutamate3-4 + log_k 9.8 + delta_h 0 kcal Zn+2 + Three_methylpyridine = ZnThree_methylpyridine+2 - log_k 1 - delta_h 0 kcal -Zn+2 + 2Three_methylpyridine = ZnThree_methylpyridine2+2 - log_k 2.1 - delta_h 0 kcal -Zn+2 + 3Three_methylpyridine = ZnThree_methylpyridine3+2 - log_k 2.6 - delta_h 0 kcal -Zn+2 + 4Three_methylpyridine = ZnThree_methylpyridine4+2 - log_k 3.7 - delta_h 0 kcal + log_k 1 + delta_h 0 kcal +Zn+2 + 2 Three_methylpyridine = ZnThree_methylpyridine2+2 + log_k 2.1 + delta_h 0 kcal +Zn+2 + 3 Three_methylpyridine = ZnThree_methylpyridine3+2 + log_k 2.6 + delta_h 0 kcal +Zn+2 + 4 Three_methylpyridine = ZnThree_methylpyridine4+2 + log_k 3.7 + delta_h 0 kcal Zn+2 + Glycine- = ZnGlycine+ - log_k 5.38 - delta_h 0 kcal -Zn+2 + 2Glycine- = ZnGlycine2 - log_k 9.81 - delta_h 0 kcal -Zn+2 + 3Glycine- = ZnGlycine3- - log_k 12.3 - delta_h 0 kcal + log_k 5.38 + delta_h 0 kcal +Zn+2 + 2 Glycine- = ZnGlycine2 + log_k 9.81 + delta_h 0 kcal +Zn+2 + 3 Glycine- = ZnGlycine3- + log_k 12.3 + delta_h 0 kcal Zn+2 + Citrate-3 = ZnCitrate- - log_k 6.1 - delta_h 0 kcal -Zn+2 + 2Citrate-3 = ZnCitrate2-4 - log_k 6.7 - delta_h 0 kcal + log_k 6.1 + delta_h 0 kcal +Zn+2 + 2 Citrate-3 = ZnCitrate2-4 + log_k 6.7 + delta_h 0 kcal Zn+2 + Citrate-3 + H+ = ZnCitrateH - log_k 3.78 - delta_h 0 kcal -Zn+2 + Citrate-3 + 2H+ = ZnCitrateH2+ - log_k 1.68 - delta_h 0 kcal + log_k 3.78 + delta_h 0 kcal +Zn+2 + Citrate-3 + 2 H+ = ZnCitrateH2+ + log_k 1.68 + delta_h 0 kcal Zn+2 + Phthalate-2 = ZnPhthalate - log_k 2.91 - delta_h 0 kcal -Zn+2 + 2Phthalate-2 = ZnPhthalate2-2 - log_k 4.2 - delta_h 0 kcal + log_k 2.91 + delta_h 0 kcal +Zn+2 + 2 Phthalate-2 = ZnPhthalate2-2 + log_k 4.2 + delta_h 0 kcal Pb+2 + Glutamate-2 = PbGlutamate - log_k 4.7 - delta_h 0 kcal -Pb+2 + 2Glutamate-2 = PbGlutamate2-2 - log_k 7.55 - delta_h 0 kcal + log_k 4.7 + delta_h 0 kcal +Pb+2 + 2 Glutamate-2 = PbGlutamate2-2 + log_k 7.55 + delta_h 0 kcal Pb+2 + Edta-4 = PbEdta-2 - log_k 17.88 - delta_h 0 kcal + log_k 17.88 + delta_h 0 kcal Pb+2 + Phthalate-2 = PbPhthalate - log_k 2.78 - delta_h 0 kcal -Pb+2 + 2Phthalate-2 = PbPhthalate2-2 - log_k 4.01 - delta_h 0 kcal + log_k 2.78 + delta_h 0 kcal +Pb+2 + 2 Phthalate-2 = PbPhthalate2-2 + log_k 4.01 + delta_h 0 kcal Pb+2 + Phthalate-2 + H+ = PbPhthalateH+ - log_k 6.56 - delta_h 0 kcal -Pb+2 + 4Acetate- = PbAcetate4-2 - log_k 3.4 - delta_h 0 kcal + log_k 6.56 + delta_h 0 kcal +Pb+2 + 4 Acetate- = PbAcetate4-2 + log_k 3.4 + delta_h 0 kcal Cu+2 + Nta-3 = CuNta- - log_k 13.1 - delta_h 0 kcal -Cu+2 + 2Nta-3 = CuNta2-4 - log_k 17.5 - delta_h 0 kcal + log_k 13.1 + delta_h 0 kcal +Cu+2 + 2 Nta-3 = CuNta2-4 + log_k 17.5 + delta_h 0 kcal Cu+2 + Methylamine = CuMethylamine+2 - log_k 4.11 - delta_h 0 kcal -Cu+2 + 3Methylamine = CuMethylamine3+2 - log_k 10.21 - delta_h 0 kcal -Cu+2 + 4Methylamine = CuMethylamine4+2 - log_k 12.08 - delta_h 0 kcal + log_k 4.11 + delta_h 0 kcal +Cu+2 + 3 Methylamine = CuMethylamine3+2 + log_k 10.21 + delta_h 0 kcal +Cu+2 + 4 Methylamine = CuMethylamine4+2 + log_k 12.08 + delta_h 0 kcal Cu+2 + Three_methylpyridine = CuThree_methylpyridine+2 - log_k 2.74 - delta_h 0 kcal -Cu+2 + 2Three_methylpyridine = CuThree_methylpyridine2+2 - log_k 4.8 - delta_h 0 kcal -Cu+2 + 3Three_methylpyridine = CuThree_methylpyridine3+2 - log_k 6.3 - delta_h 0 kcal -Cu+2 + 4Three_methylpyridine = CuThree_methylpyridine4+2 - log_k 7.2 - delta_h 0 kcal + log_k 2.74 + delta_h 0 kcal +Cu+2 + 2 Three_methylpyridine = CuThree_methylpyridine2+2 + log_k 4.8 + delta_h 0 kcal +Cu+2 + 3 Three_methylpyridine = CuThree_methylpyridine3+2 + log_k 6.3 + delta_h 0 kcal +Cu+2 + 4 Three_methylpyridine = CuThree_methylpyridine4+2 + log_k 7.2 + delta_h 0 kcal Cu+2 + Four_methylpyridine = CuFour_methylpyridine+2 - log_k 2.88 - delta_h 0 kcal -Cu+2 + 2Four_methylpyridine = CuFour_methylpyridine2+2 - log_k 5.16 - delta_h 0 kcal -Cu+2 + 3Four_methylpyridine = CuFour_methylpyridine3+2 - log_k 6.77 - delta_h 0 kcal -Cu+2 + 4Four_methylpyridine = CuFour_methylpyridine4+2 - log_k 8.08 - delta_h 0 kcal -Cu+2 + 5Four_methylpyridine = CuFour_methylpyridine5+2 - log_k 8.3 - delta_h 0 kcal + log_k 2.88 + delta_h 0 kcal +Cu+2 + 2 Four_methylpyridine = CuFour_methylpyridine2+2 + log_k 5.16 + delta_h 0 kcal +Cu+2 + 3 Four_methylpyridine = CuFour_methylpyridine3+2 + log_k 6.77 + delta_h 0 kcal +Cu+2 + 4 Four_methylpyridine = CuFour_methylpyridine4+2 + log_k 8.08 + delta_h 0 kcal +Cu+2 + 5 Four_methylpyridine = CuFour_methylpyridine5+2 + log_k 8.3 + delta_h 0 kcal # Duplicate entry #Cu+2 + Glutamate-2 = CuGlutamate # log_k 8.33 # delta_h 0 kcal Cu+2 + Citrate-3 = CuCitrate- - log_k 7.26 - delta_h 0 kcal -Cu+2 + 2Citrate-3 = CuCitrate2-4 - log_k 8.72 - delta_h 0 kcal + log_k 7.26 + delta_h 0 kcal +Cu+2 + 2 Citrate-3 = CuCitrate2-4 + log_k 8.72 + delta_h 0 kcal Cu+2 + Citrate-3 + H+ = CuHCitrate - log_k 4.27 - delta_h 0 kcal -Cu+2 + Citrate-3 + 2H+ = CuH2Citrate+ - log_k 2.2 - delta_h 0 kcal + log_k 4.27 + delta_h 0 kcal +Cu+2 + Citrate-3 + 2 H+ = CuH2Citrate+ + log_k 2.2 + delta_h 0 kcal Cu+2 + Isovalerate- = CuIsovalerate+ - log_k 2.08 - delta_h 0 kcal + log_k 2.08 + delta_h 0 kcal Cu+2 + Phthalate-2 = CuPhthalate - log_k 4.04 - delta_h 0 kcal + log_k 4.04 + delta_h 0 kcal Cu+2 + Phthalate-2 + H+ = CuPhthalateH+ - log_k 6.74 - delta_h 0 kcal - -gamma 4 0 + log_k 6.74 + delta_h 0 kcal + -gamma 4 0 Cu+2 + Valerate- = CuValerate+ - log_k 2.12 - delta_h 0 kcal -Cu+2 + 2Valerate- = CuValerate2 - log_k 3 - delta_h 0 kcal + log_k 2.12 + delta_h 0 kcal +Cu+2 + 2 Valerate- = CuValerate2 + log_k 3 + delta_h 0 kcal Ba+2 + Edta-4 = BaEdta-2 - log_k 8 - delta_h 0 kcal + log_k 8 + delta_h 0 kcal Ba+2 + Citrate-3 = BaCitrate- - log_k 4.06 - delta_h 0 kcal + log_k 4.06 + delta_h 0 kcal Ba+2 + Citrate-3 + H+ = BaCitrateH - log_k 2.7 - delta_h 0 kcal -Ba+2 + Citrate-3 + 2H+ = BaCitrateH2+ - log_k 1.27 - delta_h 0 kcal + log_k 2.7 + delta_h 0 kcal +Ba+2 + Citrate-3 + 2 H+ = BaCitrateH2+ + log_k 1.27 + delta_h 0 kcal Ba+2 + Propanoate- = BaPropanoate+ - log_k 0.34 - delta_h 0 kcal + log_k 0.34 + delta_h 0 kcal Ba+2 + Butanoate- = BaButanoate+ - log_k 0.94 - delta_h 0 kcal + log_k 0.94 + delta_h 0 kcal Cr+2 + Edta-4 = CrEdta-2 - log_k 13.61 - delta_h 0 kcal + log_k 13.61 + delta_h 0 kcal Ni+2 + Two_methylpyridine = NiTwo_methylpyridine+2 - log_k 0.4 - delta_h 0 kcal + log_k 0.4 + delta_h 0 kcal Ni+2 + Three_methylpyridine = NiThree_methylpyridine+2 - log_k 2.02 - delta_h 0 kcal -Ni+2 + 2Three_methylpyridine = NiThree_methylpyridine2+2 - log_k 3.3 - delta_h 0 kcal -Ni+2 + 3Three_methylpyridine = NiThree_methylpyridine3+2 - log_k 4.1 - delta_h 0 kcal -Ni+2 + 4Three_methylpyridine = NiThree_methylpyridine4+2 - log_k 4.6 - delta_h 0 kcal + log_k 2.02 + delta_h 0 kcal +Ni+2 + 2 Three_methylpyridine = NiThree_methylpyridine2+2 + log_k 3.3 + delta_h 0 kcal +Ni+2 + 3 Three_methylpyridine = NiThree_methylpyridine3+2 + log_k 4.1 + delta_h 0 kcal +Ni+2 + 4 Three_methylpyridine = NiThree_methylpyridine4+2 + log_k 4.6 + delta_h 0 kcal Ni+2 + Four_methylpyridine = NiFour_methylpyridine+2 - log_k 2.11 - delta_h 0 kcal -Ni+2 + 2Four_methylpyridine = NiFour_methylpyridine2+2 - log_k 3.59 - delta_h 0 kcal -Ni+2 + 3Four_methylpyridine = NiFour_methylpyridine3+2 - log_k 4.34 - delta_h 0 kcal -Ni+2 + 4Four_methylpyridine = NiFour_methylpyridine4+2 - log_k 4.7 - delta_h 0 kcal - -gamma 0 0.04 -Ni+2 + Diethylamine = NiDiethylamine1+2 - log_k 2.78 - delta_h 0 kcal -Ni+2 + 2Diethylamine = NiDiethylamine2+2 - log_k 4.97 - delta_h 0 kcal -Ni+2 + 3Diethylamine = NiDiethylamine3+2 - log_k 6.72 - delta_h 0 kcal -Ni+2 + 4Diethylamine = NiDiethylamine4+2 - log_k 7.93 - delta_h 0 kcal -Ni+2 + 5Diethylamine = NiDiethylamine5+2 - log_k 8.87 - delta_h 0 kcal -Ni+2 + 3Glycine- = NiGlycine3- - log_k 14.2 - delta_h 0 kcal + log_k 2.11 + delta_h 0 kcal +Ni+2 + 2 Four_methylpyridine = NiFour_methylpyridine2+2 + log_k 3.59 + delta_h 0 kcal +Ni+2 + 3 Four_methylpyridine = NiFour_methylpyridine3+2 + log_k 4.34 + delta_h 0 kcal +Ni+2 + 4 Four_methylpyridine = NiFour_methylpyridine4+2 + log_k 4.7 + delta_h 0 kcal + -gamma 0 0.04 +Ni+2 + Diethylamine = NiDiethylamine+2 + log_k 2.78 + delta_h 0 kcal +Ni+2 + 2 Diethylamine = NiDiethylamine2+2 + log_k 4.97 + delta_h 0 kcal +Ni+2 + 3 Diethylamine = NiDiethylamine3+2 + log_k 6.72 + delta_h 0 kcal +Ni+2 + 4 Diethylamine = NiDiethylamine4+2 + log_k 7.93 + delta_h 0 kcal +Ni+2 + 5 Diethylamine = NiDiethylamine5+2 + log_k 8.87 + delta_h 0 kcal +Ni+2 + 3 Glycine- = NiGlycine3- + log_k 14.2 + delta_h 0 kcal Cd+2 + Three_methylpyridine = CdThree_methylpyridine+2 - log_k 1.62 - delta_h 0 kcal -Cd+2 + 2Three_methylpyridine = CdThree_methylpyridine2+2 - log_k 2.8 - delta_h 0 kcal -Cd+2 + 3Three_methylpyridine = CdThree_methylpyridine3+2 - log_k 3.6 - delta_h 0 kcal -Cd+2 + 4Three_methylpyridine = CdThree_methylpyridine4+2 - log_k 4 - delta_h 0 kcal + log_k 1.62 + delta_h 0 kcal +Cd+2 + 2 Three_methylpyridine = CdThree_methylpyridine2+2 + log_k 2.8 + delta_h 0 kcal +Cd+2 + 3 Three_methylpyridine = CdThree_methylpyridine3+2 + log_k 3.6 + delta_h 0 kcal +Cd+2 + 4 Three_methylpyridine = CdThree_methylpyridine4+2 + log_k 4 + delta_h 0 kcal Cd+2 + Four_methylpyridine = CdFour_methylpyridine+2 - log_k 1.51 - delta_h 0 kcal -Cd+2 + 2Four_methylpyridine = CdFour_methylpyridine2+2 - log_k 2.5 - delta_h 0 kcal -Cd+2 + 3Four_methylpyridine = CdFour_methylpyridine3+2 - log_k 2.9 - delta_h 0 kcal -Cd+2 + 4Four_methylpyridine = CdFour_methylpyridine4+2 - log_k 4 - delta_h 0 kcal -Cd+2 + 3Glycine- = CdGlycine3- - log_k 10.7 - delta_h 0 kcal -Cd+2 + 2Phthalate-2 = CdPhthalate2-2 - log_k 2.88 - delta_h 0 kcal + log_k 1.51 + delta_h 0 kcal +Cd+2 + 2 Four_methylpyridine = CdFour_methylpyridine2+2 + log_k 2.5 + delta_h 0 kcal +Cd+2 + 3 Four_methylpyridine = CdFour_methylpyridine3+2 + log_k 2.9 + delta_h 0 kcal +Cd+2 + 4 Four_methylpyridine = CdFour_methylpyridine4+2 + log_k 4 + delta_h 0 kcal +Cd+2 + 3 Glycine- = CdGlycine3- + log_k 10.7 + delta_h 0 kcal +Cd+2 + 2 Phthalate-2 = CdPhthalate2-2 + log_k 2.88 + delta_h 0 kcal Cd+2 + Phthalate-2 + H+ = CdPhthalateH+ - log_k 5.88 - delta_h 0 kcal + log_k 5.88 + delta_h 0 kcal Cd+2 + Isovalerate- = CdIsovalerate+ - log_k 1.34 - delta_h 0 kcal -Cd+2 + 2Isovalerate- = CdIsovalerate2 - log_k 2.3 - delta_h 0 kcal -Cd+2 + 3Isovalerate- = CdIsovalerate3- - log_k 2.5 - delta_h 0 kcal -Cd+2 + 4Isovalerate- = CdIsovalerate4-2 - log_k 2 - delta_h 0 kcal -0.5Hg2+2 + Formate- = HgFormate - log_k 2.94 - delta_h 0 kcal -0.5Hg2+2 + 2Formate- = HgFormate2- - log_k 5.45 - delta_h 0 kcal -0.5Hg2+2 + Acetate- = HgAcetate - log_k 7.14 - delta_h 0 kcal -0.5Hg2+2 + 2Acetate- = HgAcetate2- - log_k 13.26 - delta_h 0 kcal -0.5Hg2+2 + Propanoate- = HgPropanoate - log_k 3.72 - delta_h 0 kcal -0.5Hg2+2 + 2Propanoate- = HgPropanoate2- - log_k 6.99 - delta_h 0 kcal -Hg(OH)2 + Propanoate- + 2H+ = HgPropanoate+ + 2H2O - log_k 9.417 - delta_h 0 kcal -Hg(OH)2 + 2Propanoate- + 2H+ = HgPropanoate2 + 2H2O - log_k 13.107 - delta_h 0 kcal + log_k 1.34 + delta_h 0 kcal +Cd+2 + 2 Isovalerate- = CdIsovalerate2 + log_k 2.3 + delta_h 0 kcal +Cd+2 + 3 Isovalerate- = CdIsovalerate3- + log_k 2.5 + delta_h 0 kcal +Cd+2 + 4 Isovalerate- = CdIsovalerate4-2 + log_k 2 + delta_h 0 kcal +0.5 Hg2+2 + Formate- = HgFormate + log_k 2.94 + delta_h 0 kcal +0.5 Hg2+2 + 2 Formate- = HgFormate2- + log_k 5.45 + delta_h 0 kcal +0.5 Hg2+2 + Acetate- = HgAcetate + log_k 7.14 + delta_h 0 kcal +0.5 Hg2+2 + 2 Acetate- = HgAcetate2- + log_k 13.26 + delta_h 0 kcal +0.5 Hg2+2 + Propanoate- = HgPropanoate + log_k 3.72 + delta_h 0 kcal +0.5 Hg2+2 + 2 Propanoate- = HgPropanoate2- + log_k 6.99 + delta_h 0 kcal +Hg(OH)2 + Propanoate- + 2 H+ = HgPropanoate+ + 2 H2O + log_k 9.417 + delta_h 0 kcal +Hg(OH)2 + 2 Propanoate- + 2 H+ = HgPropanoate2 + 2 H2O + log_k 13.107 + delta_h 0 kcal Tl+ + Citrate-3 = TlCitrate-2 - log_k 1.61 - delta_h 0 kcal + log_k 1.61 + delta_h 0 kcal Tl+ + Nta-3 = TlNta-2 - log_k 4.71 - delta_h 0 kcal + log_k 4.71 + delta_h 0 kcal Tl+ + Edta-4 = TlEdta-3 - log_k 6.41 - delta_h 0 kcal + log_k 6.41 + delta_h 0 kcal Tl+ + Acetate- = TlAcetate - log_k -0.11 - delta_h 0 kcal + log_k -0.11 + delta_h 0 kcal Zn+2 + Edta-4 = ZnEdta-2 - log_k 16.44 - delta_h 0 kcal + log_k 16.44 + delta_h 0 kcal Zn+2 + Edta-4 + H+ = ZnHEdta- - log_k 9 - delta_h 0 kcal + log_k 9 + delta_h 0 kcal Zn+2 + Acetate- = ZnAcetate+ - log_k 1.57 - delta_h 0 kcal -Zn+2 + 2Acetate- = ZnAcetate2 - log_k 1.9 - delta_h 0 kcal -Zn+2 + 3Acetate- = ZnAcetate3- - log_k 1.57 - delta_h 0 kcal -Zn+2 + 4Acetate- = ZnAcetate4-2 - log_k 1.36 - delta_h 0 kcal + log_k 1.57 + delta_h 0 kcal +Zn+2 + 2 Acetate- = ZnAcetate2 + log_k 1.9 + delta_h 0 kcal +Zn+2 + 3 Acetate- = ZnAcetate3- + log_k 1.57 + delta_h 0 kcal +Zn+2 + 4 Acetate- = ZnAcetate4-2 + log_k 1.36 + delta_h 0 kcal Zn+2 + Diethylamine = ZnDiethylamine+2 - log_k 2.51 - delta_h 0 kcal -Zn+2 + 2Diethylamine = ZnDiethylamine2+2 - log_k 4.96 - delta_h 20 kcal -Zn+2 + 3Diethylamine = ZnDiethylamine3+2 - log_k 7.49 - delta_h 0 kcal -Zn+2 + 4Diethylamine = ZnDiethylamine4+2 - log_k 9.83 - delta_h 0 kcal + log_k 2.51 + delta_h 0 kcal +Zn+2 + 2 Diethylamine = ZnDiethylamine2+2 + log_k 4.96 + delta_h 20 kcal +Zn+2 + 3 Diethylamine = ZnDiethylamine3+2 + log_k 7.49 + delta_h 0 kcal +Zn+2 + 4 Diethylamine = ZnDiethylamine4+2 + log_k 9.83 + delta_h 0 kcal Zn+2 + Propanoate- = ZnPropanoate+ - log_k 0.72 - delta_h 0 kcal -Zn+2 + 2Propanoate- = ZnPropanoate2 - log_k 1.23 - delta_h 0 kcal -Zn+2 + 3Propanoate- = ZnPropanoate3- - log_k 1.82 - delta_h 0 kcal -Zn+2 + 4Propanoate- = ZnPropanoate4-2 - log_k 1.36 - delta_h 0 kcal + log_k 0.72 + delta_h 0 kcal +Zn+2 + 2 Propanoate- = ZnPropanoate2 + log_k 1.23 + delta_h 0 kcal +Zn+2 + 3 Propanoate- = ZnPropanoate3- + log_k 1.82 + delta_h 0 kcal +Zn+2 + 4 Propanoate- = ZnPropanoate4-2 + log_k 1.36 + delta_h 0 kcal Zn+2 + Butanoate- = ZnButanoate+ - log_k 0.983 - delta_h 0 kcal -Zn+2 + 2Butanoate- = ZnButanoate2 - log_k 1.65 - delta_h 0 kcal -Zn+2 + 3Butanoate- = ZnButanoate3- - log_k 1.69 - delta_h 0 kcal -Zn+2 + 4Butanoate- = ZnButanoate4-2 - log_k 2.05 - delta_h 0 kcal + log_k 0.983 + delta_h 0 kcal +Zn+2 + 2 Butanoate- = ZnButanoate2 + log_k 1.65 + delta_h 0 kcal +Zn+2 + 3 Butanoate- = ZnButanoate3- + log_k 1.69 + delta_h 0 kcal +Zn+2 + 4 Butanoate- = ZnButanoate4-2 + log_k 2.05 + delta_h 0 kcal Zn+2 + Npropylamine = ZnNpropylamine+2 - log_k 2.42 - delta_h 0 kcal -Zn+2 + 2Npropylamine = ZnNpropylamine2+2 - log_k 4.85 - delta_h 0 kcal -Zn+2 + 3Npropylamine = ZnNpropylamine3+2 - log_k 7.38 - delta_h 0 kcal -Zn+2 + 4Npropylamine = ZnNpropylamine4+2 - log_k 9.49 - delta_h 0 kcal -Zn+2 + Isopropylamine = ZnIsopropylamine1+2 - log_k 2.37 - delta_h 0 kcal -Zn+2 + 2Isopropylamine = ZnIsopropylamine2+2 - log_k 4.67 - delta_h 0 kcal -Zn+2 + 3Isopropylamine = ZnIsopropylamine3+2 - log_k 7.14 - delta_h 0 kcal -Zn+2 + 4Isopropylamine = ZnIsopropylamine4+2 - log_k 9.44 - delta_h 0 kcal + log_k 2.42 + delta_h 0 kcal +Zn+2 + 2 Npropylamine = ZnNpropylamine2+2 + log_k 4.85 + delta_h 0 kcal +Zn+2 + 3 Npropylamine = ZnNpropylamine3+2 + log_k 7.38 + delta_h 0 kcal +Zn+2 + 4 Npropylamine = ZnNpropylamine4+2 + log_k 9.49 + delta_h 0 kcal +Zn+2 + Isopropylamine = ZnIsopropylamine+2 + log_k 2.37 + delta_h 0 kcal +Zn+2 + 2 Isopropylamine = ZnIsopropylamine2+2 + log_k 4.67 + delta_h 0 kcal +Zn+2 + 3 Isopropylamine = ZnIsopropylamine3+2 + log_k 7.14 + delta_h 0 kcal +Zn+2 + 4 Isopropylamine = ZnIsopropylamine4+2 + log_k 9.44 + delta_h 0 kcal H+ + Citrate-3 = CitrateH-2 - log_k 6.33 - delta_h 0 kcal -2H+ + Citrate-3 = CitrateH2- - log_k 11.05 - delta_h 0 kcal -3H+ + Citrate-3 = CitrateH3 - log_k 14.18 - delta_h 0 kcal + log_k 6.33 + delta_h 0 kcal +2 H+ + Citrate-3 = CitrateH2- + log_k 11.05 + delta_h 0 kcal +3 H+ + Citrate-3 = CitrateH3 + log_k 14.18 + delta_h 0 kcal Ca+2 + Citrate-3 = CaCitrate- - log_k 4.73 - delta_h 0 kcal + log_k 4.73 + delta_h 0 kcal Ca+2 + Citrate-3 + H+ = CaCitrateH - log_k 3.02 - delta_h 0 kcal -Ca+2 + Citrate-3 + 2H+ = CaCitrateH2+ - log_k 1.29 - delta_h 0 kcal + log_k 3.02 + delta_h 0 kcal +Ca+2 + Citrate-3 + 2 H+ = CaCitrateH2+ + log_k 1.29 + delta_h 0 kcal Mn+2 + Citrate-3 = MnCitrate- - log_k 5.28 - delta_h 0 kcal + log_k 5.28 + delta_h 0 kcal Mn+2 + Citrate-3 + H+ = MnCitrateH - log_k 3.02 - delta_h 0 kcal + log_k 3.02 + delta_h 0 kcal Fe+2 + Citrate-3 = FeCitrate- - log_k 5.7 - delta_h 0 kcal + log_k 5.7 + delta_h 0 kcal Fe+2 + Citrate-3 + H+ = FeCitrateH - log_k 3.5 - delta_h 0 kcal + log_k 3.5 + delta_h 0 kcal Fe+3 + Citrate-3 = FeCitrate - log_k 12.55 - delta_h 0 kcal + log_k 12.55 + delta_h 0 kcal Fe+3 + Citrate-3 + H+ = FeCitrateH+ - log_k 19.8 - delta_h 0 kcal + log_k 19.8 + delta_h 0 kcal H+ + Ethylenediamine = HEthylenediamine+ - log_k 9.96 - delta_h 0 kcal -2H+ + Ethylenediamine = H2Ethylenediamine+2 - log_k 16.85 - delta_h 0 kcal + log_k 9.96 + delta_h 0 kcal +2 H+ + Ethylenediamine = H2Ethylenediamine+2 + log_k 16.85 + delta_h 0 kcal Cu+2 + Ethylenediamine = CuEthylenediamine+2 - log_k 10.49 - delta_h 0 kcal -Cu+2 + 2Ethylenediamine = CuEthylenediamine2+2 - log_k 19.62 - delta_h 0 kcal + log_k 10.49 + delta_h 0 kcal +Cu+2 + 2 Ethylenediamine = CuEthylenediamine2+2 + log_k 19.62 + delta_h 0 kcal Cd+2 + Ethylenediamine = CdEthylenediamine+2 - log_k 5.61 - delta_h 0 kcal -Cd+2 + 2Ethylenediamine = CdEthylenediamine2+2 - log_k 10.34 - delta_h 0 kcal -Cd+2 + 3Ethylenediamine = CdEthylenediamine3+2 - log_k 12.26 - delta_h 0 kcal + log_k 5.61 + delta_h 0 kcal +Cd+2 + 2 Ethylenediamine = CdEthylenediamine2+2 + log_k 10.34 + delta_h 0 kcal +Cd+2 + 3 Ethylenediamine = CdEthylenediamine3+2 + log_k 12.26 + delta_h 0 kcal Ag+ + Ethylenediamine = AgEthylenediamine+ - log_k 4.7 - delta_h 0 kcal -Ag+ + 2Ethylenediamine = AgEthylenediamine2+ - log_k 7.7 - delta_h 0 kcal + log_k 4.7 + delta_h 0 kcal +Ag+ + 2 Ethylenediamine = AgEthylenediamine2+ + log_k 7.7 + delta_h 0 kcal Ag+ + Ethylenediamine + H+ = AgEthylenediamineH+2 - log_k 7.31 - delta_h 0 kcal -2Ag+ + Ethylenediamine = Ag2Ethylenediamine+2 - log_k 1.43 - delta_h 0 kcal -2Ag+ + 2Ethylenediamine = Ag2Ethylenediamine2+2 - log_k 12.73 - delta_h 0 kcal + log_k 7.31 + delta_h 0 kcal +2 Ag+ + Ethylenediamine = Ag2Ethylenediamine+2 + log_k 1.43 + delta_h 0 kcal +2 Ag+ + 2 Ethylenediamine = Ag2Ethylenediamine2+2 + log_k 12.73 + delta_h 0 kcal Ni+2 + Ethylenediamine = NiEthylenediamine+2 - log_k 7.24 - delta_h 0 kcal -Ni+2 + 2Ethylenediamine = NiEthylenediamine2+2 - log_k 13.36 - delta_h 0 kcal -Ni+2 + 3Ethylenediamine = NiEthylenediamine3+2 - log_k 17.54 - delta_h 0 kcal + log_k 7.24 + delta_h 0 kcal +Ni+2 + 2 Ethylenediamine = NiEthylenediamine2+2 + log_k 13.36 + delta_h 0 kcal +Ni+2 + 3 Ethylenediamine = NiEthylenediamine3+2 + log_k 17.54 + delta_h 0 kcal Pb+2 + Ethylenediamine = PbEthylenediamine+2 - log_k 7 - delta_h 0 kcal -Pb+2 + 2Ethylenediamine = PbEthylenediamine2+2 - log_k 8.45 - delta_h 0 kcal + log_k 7 + delta_h 0 kcal +Pb+2 + 2 Ethylenediamine = PbEthylenediamine2+2 + log_k 8.45 + delta_h 0 kcal Zn+2 + Ethylenediamine = ZnEthylenediamine+2 - log_k 5.65 - delta_h 0 kcal -Zn+2 + 2Ethylenediamine = ZnEthylenediamine2+2 - log_k 10.62 - delta_h 0 kcal -Zn+2 + 3Ethylenediamine = ZnEthylenediamine3+2 - log_k 13.83 - delta_h 0 kcal + log_k 5.65 + delta_h 0 kcal +Zn+2 + 2 Ethylenediamine = ZnEthylenediamine2+2 + log_k 10.62 + delta_h 0 kcal +Zn+2 + 3 Ethylenediamine = ZnEthylenediamine3+2 + log_k 13.83 + delta_h 0 kcal Mn+2 + Ethylenediamine = MnEthylenediamine+2 - log_k 2.67 - delta_h 0 kcal -Mn+2 + 2Ethylenediamine = MnEthylenediamine2+2 - log_k 4.2 - delta_h 0 kcal + log_k 2.67 + delta_h 0 kcal +Mn+2 + 2 Ethylenediamine = MnEthylenediamine2+2 + log_k 4.2 + delta_h 0 kcal Fe+2 + Ethylenediamine = FeEthylenediamine+2 - log_k 4.36 - delta_h 0 kcal -Fe+2 + 2Ethylenediamine = FeEthylenediamine2+2 - log_k 7.65 - delta_h 0 kcal -Fe+2 + 3Ethylenediamine = FeEthylenediamine3+2 - log_k 9.68 - delta_h 0 kcal + log_k 4.36 + delta_h 0 kcal +Fe+2 + 2 Ethylenediamine = FeEthylenediamine2+2 + log_k 7.65 + delta_h 0 kcal +Fe+2 + 3 Ethylenediamine = FeEthylenediamine3+2 + log_k 9.68 + delta_h 0 kcal H+ + Nta-3 = NtaH-2 - log_k 10.334 - delta_h 0 kcal -2H+ + Nta-3 = NtaH2- - log_k 13.27 - delta_h 0 kcal -3H+ + Nta-3 = NtaH3 - log_k 14.12 - delta_h 0 kcal + log_k 10.334 + delta_h 0 kcal +2 H+ + Nta-3 = NtaH2- + log_k 13.27 + delta_h 0 kcal +3 H+ + Nta-3 = NtaH3 + log_k 14.12 + delta_h 0 kcal H+ + Edta-4 = EdtaH-3 - log_k 9.96 - delta_h 0 kcal -2H+ + Edta-4 = EdtaH2-2 - log_k 16.21 - delta_h 0 kcal -3H+ + Edta-4 = EdtaH3- - log_k 18.86 - delta_h 0 kcal -4H+ + Edta-4 = EdtaH4 - log_k 20.93 - delta_h 0 kcal + log_k 9.96 + delta_h 0 kcal +2 H+ + Edta-4 = EdtaH2-2 + log_k 16.21 + delta_h 0 kcal +3 H+ + Edta-4 = EdtaH3- + log_k 18.86 + delta_h 0 kcal +4 H+ + Edta-4 = EdtaH4 + log_k 20.93 + delta_h 0 kcal H+ + Propanoate- = PropanoateH - log_k 4.874 - delta_h 0 kcal + log_k 4.874 + delta_h 0 kcal H+ + Methylamine = MethylamineH+ - log_k 10.72 - delta_h 0 kcal + log_k 10.72 + delta_h 0 kcal H+ + Hexylamine = HexylamineH+ - log_k 10.63 - delta_h 0 kcal + log_k 10.63 + delta_h 0 kcal H+ + Butanoate- = ButanoateH - log_k 4.73 - delta_h 0 kcal -4H+ + Nta-3 = NtaH4+ - log_k 16.224 - delta_h 0 kcal -5H+ + Edta-4 = EdtaH5+ - log_k 23.464 - delta_h 0 kcal + log_k 4.73 + delta_h 0 kcal +4 H+ + Nta-3 = NtaH4+ + log_k 16.224 + delta_h 0 kcal +5 H+ + Edta-4 = EdtaH5+ + log_k 23.464 + delta_h 0 kcal H+ + Diethylamine = DiethylamineH+ - log_k 10.774 - delta_h 0 kcal + log_k 10.774 + delta_h 0 kcal H+ + Trimethylamine = TrimethylamineH+ - log_k 9.8 - delta_h 0 kcal + log_k 9.8 + delta_h 0 kcal H+ + Two_methylpyridine = Two_methylpyridineH+ - log_k 5.95 - delta_h 0 kcal + log_k 5.95 + delta_h 0 kcal H+ + Three_methylpyridine = Three_methylpyridineH+ - log_k 5.7 - delta_h 0 kcal + log_k 5.7 + delta_h 0 kcal H+ + Four_methylpyridine = Four_methylpyridineH+ - log_k 6 - delta_h 0 kcal + log_k 6 + delta_h 0 kcal H+ + Npropylamine = NpropylamineH+ - log_k 10.8 - delta_h 0 kcal -3H+ + Glutamate-2 = GlutamateH3+ - log_k 16.6 - delta_h 0 kcal + log_k 10.8 + delta_h 0 kcal +3 H+ + Glutamate-2 = GlutamateH3+ + log_k 16.6 + delta_h 0 kcal H+ + Formate- = FormateH - log_k 3.745 - delta_h 0 kcal + log_k 3.745 + delta_h 0 kcal H+ + Isovalerate- = IsovalerateH - log_k 4.781 - delta_h 0 kcal + log_k 4.781 + delta_h 0 kcal H+ + Isobutyrate- = IsobutyrateH - log_k 4.849 - delta_h 0 kcal + log_k 4.849 + delta_h 0 kcal H+ + Valerate- = ValerateH - log_k 4.843 - delta_h 0 kcal + log_k 4.843 + delta_h 0 kcal Cd+2 + Edta-4 = CdEdta-2 - log_k 16.275 - delta_h 0 kcal + log_k 16.275 + delta_h 0 kcal Cd+2 + Nta-3 = CdNta- - log_k 9.4 - delta_h 0 kcal -Cd+2 + 2Nta-3 = CdNta2-4 - log_k 14.3 - delta_h 0 kcal + log_k 9.4 + delta_h 0 kcal +Cd+2 + 2 Nta-3 = CdNta2-4 + log_k 14.3 + delta_h 0 kcal Mg+2 + Ethylenediamine = MgEthylenediamine+2 - log_k 0.37 - delta_h 0 kcal + log_k 0.37 + delta_h 0 kcal Ca+2 + Ethylenediamine = CaEthylenediamine+2 - log_k 0.1 - delta_h 0 kcal + log_k 0.1 + delta_h 0 kcal Mg+2 + Citrate-3 = MgCitrate- - log_k 3.37 - delta_h 0 kcal + log_k 3.37 + delta_h 0 kcal Mg+2 + Citrate-3 + H+ = MgCitrateH - log_k 8.17 - delta_h 0 kcal -Mg+2 + Citrate-3 + 2H+ = MgCitrateH2+ - log_k 11.59 - delta_h 0 kcal + log_k 8.17 + delta_h 0 kcal +Mg+2 + Citrate-3 + 2 H+ = MgCitrateH2+ + log_k 11.59 + delta_h 0 kcal Na+ + Acetate- = NaAcetate - log_k -0.18 - delta_h 0 kcal + log_k -0.18 + delta_h 0 kcal Na+ + Phthalate-2 = NaPhthalate- - log_k 0.7 - delta_h 0 kcal + log_k 0.7 + delta_h 0 kcal Mg+2 + Acetate- = MgAcetate+ - log_k 1.27 - delta_h 0 kcal + log_k 1.27 + delta_h 0 kcal Mg+2 + Propanoate- = MgPropanoate+ - log_k 0.54 - delta_h 0 kcal + log_k 0.54 + delta_h 0 kcal Mg+2 + Butanoate- = MgButanoate+ - log_k 0.53 - delta_h 0 kcal + log_k 0.53 + delta_h 0 kcal Ca+2 + Acetate- = CaAcetate+ - log_k 1.18 - delta_h 0 kcal + log_k 1.18 + delta_h 0 kcal Ca+2 + Isophthalate-2 = CaIsophthalate - log_k 2 - delta_h 0 kcal + log_k 2 + delta_h 0 kcal Ca+2 + Propanoate- = CaPropanoate+ - log_k 0.5 - delta_h 0 kcal + log_k 0.5 + delta_h 0 kcal Ca+2 + Butanoate- = CaButanoate+ - log_k 0.51 - delta_h 0 kcal + log_k 0.51 + delta_h 0 kcal Ca+2 + Phthalate-2 = CaPhthalate - log_k 2.42 - delta_h 0 kcal + log_k 2.42 + delta_h 0 kcal Mn+2 + Acetate- = MnAcetate+ - log_k 1.4 - delta_h 0 kcal + log_k 1.4 + delta_h 0 kcal Fe+2 + Acetate- = FeAcetate+ - log_k 1.4 - delta_h 0 kcal -Hg(OH)2 + Acetate- + 2H+ = HgAcetate+ + 2H2O - log_k 9.417 - delta_h 0 kcal -Hg(OH)2 + 2Acetate- + 2H+ = HgAcetate2 + 2H2O - log_k 13.11 - delta_h 0 kcal -Hg(OH)2 + 3Acetate- + 2H+ = HgAcetate3- + 2H2O - log_k 19.38 - delta_h 0 kcal -Hg(OH)2 + 4Acetate- + 2H+ = HgAcetate4-2 + 2H2O - log_k 23.16 - delta_h 0 kcal + log_k 1.4 + delta_h 0 kcal +Hg(OH)2 + Acetate- + 2 H+ = HgAcetate+ + 2 H2O + log_k 9.417 + delta_h 0 kcal +Hg(OH)2 + 2 Acetate- + 2 H+ = HgAcetate2 + 2 H2O + log_k 13.11 + delta_h 0 kcal +Hg(OH)2 + 3 Acetate- + 2 H+ = HgAcetate3- + 2 H2O + log_k 19.38 + delta_h 0 kcal +Hg(OH)2 + 4 Acetate- + 2 H+ = HgAcetate4-2 + 2 H2O + log_k 23.16 + delta_h 0 kcal Fe+3 + Acetate- = FeAcetate+2 - log_k 3.21 - delta_h 0 kcal -Fe+3 + 2Acetate- = FeAcetate2+ - log_k 6.5 - delta_h 0 kcal -Fe+3 + 3Acetate- = FeAcetate3 - log_k 8.3 - delta_h 0 kcal + log_k 3.21 + delta_h 0 kcal +Fe+3 + 2 Acetate- = FeAcetate2+ + log_k 6.5 + delta_h 0 kcal +Fe+3 + 3 Acetate- = FeAcetate3 + log_k 8.3 + delta_h 0 kcal Ca+2 + Edta-4 = CaEdta-2 - log_k 12.4 - delta_h 0 kcal + log_k 12.4 + delta_h 0 kcal Ca+2 + Edta-4 + H+ = CaHEdta- - log_k 16 - delta_h 0 kcal + log_k 16 + delta_h 0 kcal Mg+2 + Edta-4 = MgEdta-2 - log_k 10.6 - delta_h 0 kcal + log_k 10.6 + delta_h 0 kcal Mg+2 + Edta-4 + H+ = MgHEdta- - log_k 15.1 - delta_h 0 kcal + log_k 15.1 + delta_h 0 kcal Fe+3 + Edta-4 = FeEdta- - log_k 27.7 - delta_h 0 kcal + log_k 27.7 + delta_h 0 kcal Fe+2 + Edta-4 = FeEdta-2 - log_k 16.1 - delta_h 0 kcal + log_k 16.1 + delta_h 0 kcal Fe+3 + Edta-4 + H+ = FeHEdta - log_k 29.2 - delta_h 0 kcal + log_k 29.2 + delta_h 0 kcal Fe+2 + Edta-4 + H+ = FeHEdta- - log_k 19.3 - delta_h 0 kcal + log_k 19.3 + delta_h 0 kcal Fe+3 + Edta-4 + H2O = FeOHEdta-2 + H+ - log_k 19.8 - delta_h 0 kcal -Fe+3 + Edta-4 + 2H2O = Fe(OH)2Edta-3 + 2H+ - log_k 9.7 - delta_h 0 kcal + log_k 19.8 + delta_h 0 kcal +Fe+3 + Edta-4 + 2 H2O = Fe(OH)2Edta-3 + 2 H+ + log_k 9.7 + delta_h 0 kcal Fe+2 + Edta-4 + H2O = FeOHEdta-3 + H+ - log_k 6.4 - delta_h 0 kcal -Fe+2 + Edta-4 + 2H2O = Fe(OH)2Edta-4 + 2H+ - log_k -4.3 - delta_h 0 kcal + log_k 6.4 + delta_h 0 kcal +Fe+2 + Edta-4 + 2 H2O = Fe(OH)2Edta-4 + 2 H+ + log_k -4.3 + delta_h 0 kcal Al+3 + Edta-4 = AlEdta- - log_k 18.9 - delta_h 0 kcal + log_k 18.9 + delta_h 0 kcal Al+3 + Edta-4 + H+ = AlHEdta - log_k 21.6 - delta_h 0 kcal + log_k 21.6 + delta_h 0 kcal K+ + Edta-4 = KEdta-3 - log_k 1.7 - delta_h 0 kcal + log_k 1.7 + delta_h 0 kcal Na+ + Edta-4 = NaEdta-3 - log_k 2.5 - delta_h 0 kcal + log_k 2.5 + delta_h 0 kcal PHASES Uraninite - UO2 + 4H+ = U+4 + 2H2O - log_k -4.7 - delta_h -18.63 kcal + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.7 + delta_h -18.63 kcal UO2(am) - UO2 + 4H+ = U+4 + 2H2O - log_k 0.934 - delta_h -26.23 kcal + UO2 + 4 H+ = U+4 + 2 H2O + log_k 0.934 + delta_h -26.23 kcal U4O9(C) - U4O9 + 18H+ + 2e- = 4U+4 + 9H2O - log_k -3.384 - delta_h -101.235 kcal + U4O9 + 18 H+ + 2 e- = 4 U+4 + 9 H2O + log_k -3.384 + delta_h -101.235 kcal U3O8(C) - U3O8 + 16H+ + 4e- = 3U+4 + 8H2O - log_k 21.107 + U3O8 + 16 H+ + 4 e- = 3 U+4 + 8 H2O + log_k 21.107 delta_h -116.02 kcal USiO4(C) - USiO4 + 4H+ = U+4 + H4SiO4 - log_k -7.62 + USiO4 + 4 H+ = U+4 + H4SiO4 + log_k -7.62 delta_h -14.548 kcal UF4(C) - UF4 = U+4 + 4F- - log_k -18.606 - delta_h -18.9 kcal + UF4 = U+4 + 4 F- + log_k -18.606 + delta_h -18.9 kcal UF4:2.5H2O - UF4:2.5H2O = U+4 + 4F- + 2.5H2O - log_k -27.57 - delta_h -0.588 kcal + UF4:2.5H2O = U+4 + 4 F- + 2.5 H2O + log_k -27.57 + delta_h -0.588 kcal U(HPO4)2 # Minteq equation: # U(HPO4)2 = U+4 + 2PO4-3 + 2H+ + 4H2O - U(HPO4)2 = U+4 + 2PO4-3 + 2H+ - log_k -51.584 - delta_h 3.84 kcal + U(HPO4)2 = U+4 + 2 PO4-3 + 2 H+ + log_k -51.584 + delta_h 3.84 kcal Ningyoite - CaU(PO4)2:2H2O = U+4 + Ca+2 + 2PO4-3 + 2H2O - log_k -53.906 - delta_h -2.27 kcal + CaU(PO4)2:2H2O = U+4 + Ca+2 + 2 PO4-3 + 2 H2O + log_k -53.906 + delta_h -2.27 kcal UO3(C) - UO3 + 2H+ = UO2+2 + H2O - log_k 7.719 + UO3 + 2 H+ = UO2+2 + H2O + log_k 7.719 delta_h -19.315 kcal Gummite - UO3 + 2H+ = UO2+2 + H2O - log_k 10.403 + UO3 + 2 H+ = UO2+2 + H2O + log_k 10.403 delta_h -23.015 kcal B_UO2(OH)2 - UO2(OH)2 + 2H+ = UO2+2 + 2H2O - log_k 5.544 - delta_h -13.73 kcal + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 5.544 + delta_h -13.73 kcal Schoepite - UO2(OH)2:H2O + 2H+ = UO2+2 + 3H2O - log_k 5.404 + UO2(OH)2:H2O + 2 H+ = UO2+2 + 3 H2O + log_k 5.404 delta_h -12.045 kcal Rutherfordine UO2CO3 = UO2+2 + CO3-2 - log_k -14.439 - delta_h -1.44 kcal - -analytical 4.54 -0.03318 -2716.0 + log_k -14.439 + delta_h -1.44 kcal + -analytical 4.54 -0.03318 -2716 (UO2)3(PO4)2 - (UO2)3(PO4)2 = 3UO2+2 + 2PO4-3 - log_k -49.037 - delta_h 94.9 kcal + (UO2)3(PO4)2 = 3 UO2+2 + 2 PO4-3 + log_k -49.037 + delta_h 94.9 kcal H-Autunite - H2(UO2)2(PO4)2 = 2H+ + 2UO2+2 + 2PO4-3 - log_k -47.931 - delta_h -3.6 kcal + H2(UO2)2(PO4)2 = 2 H+ + 2 UO2+2 + 2 PO4-3 + log_k -47.931 + delta_h -3.6 kcal Na-Autunite - Na2(UO2)2(PO4)2 = 2Na+ + 2UO2+2 + 2PO4-3 - log_k -47.409 - delta_h -0.46 kcal + Na2(UO2)2(PO4)2 = 2 Na+ + 2 UO2+2 + 2 PO4-3 + log_k -47.409 + delta_h -0.46 kcal K-Autunite - K2(UO2)2(PO4)2 = 2K+ + 2UO2+2 + 2PO4-3 - log_k -48.244 - delta_h 5.86 kcal + K2(UO2)2(PO4)2 = 2 K+ + 2 UO2+2 + 2 PO4-3 + log_k -48.244 + delta_h 5.86 kcal Uramphite - (NH4)2(UO2)2(PO4)2 = 2UO2+2 + 2NH4+ + 2PO4-3 - log_k -51.749 - delta_h 9.7 kcal + (NH4)2(UO2)2(PO4)2 = 2 UO2+2 + 2 NH4+ + 2 PO4-3 + log_k -51.749 + delta_h 9.7 kcal Saleeite - Mg(UO2)2(PO4)2 = 2UO2+2 + Mg+2 + 2PO4-3 - log_k -43.646 - delta_h -20.18 kcal + Mg(UO2)2(PO4)2 = 2 UO2+2 + Mg+2 + 2 PO4-3 + log_k -43.646 + delta_h -20.18 kcal Autunite - Ca(UO2)2(PO4)2 = 2UO2+2 + Ca+2 + 2PO4-3 - log_k -43.927 - delta_h -14.34 kcal + Ca(UO2)2(PO4)2 = 2 UO2+2 + Ca+2 + 2 PO4-3 + log_k -43.927 + delta_h -14.34 kcal Sr-Autunite - Sr(UO2)2(PO4)2 = 2UO2+2 + Sr+2 + 2PO4-3 - log_k -44.457 - delta_h -13.05 kcal + Sr(UO2)2(PO4)2 = 2 UO2+2 + Sr+2 + 2 PO4-3 + log_k -44.457 + delta_h -13.05 kcal Uranocircite - Ba(UO2)2(PO4)2 = 2UO2+2 + Ba+2 + 2PO4-3 - log_k -44.631 - delta_h -10.1 kcal + Ba(UO2)2(PO4)2 = 2 UO2+2 + Ba+2 + 2 PO4-3 + log_k -44.631 + delta_h -10.1 kcal Bassetite - Fe(UO2)2(PO4)2 = 2UO2+2 + Fe+2 + 2PO4-3 - log_k -44.485 - delta_h -19.9 kcal + Fe(UO2)2(PO4)2 = 2 UO2+2 + Fe+2 + 2 PO4-3 + log_k -44.485 + delta_h -19.9 kcal Torbernite - Cu(UO2)2(PO4)2 = 2UO2+2 + Cu+2 + 2PO4-3 - log_k -45.279 - delta_h -15.9 kcal + Cu(UO2)2(PO4)2 = 2 UO2+2 + Cu+2 + 2 PO4-3 + log_k -45.279 + delta_h -15.9 kcal Przhevalskite - Pb(UO2)2(PO4)2 = 2UO2+2 + Pb+2 + 2PO4-3 - log_k -44.365 - delta_h -11 kcal + Pb(UO2)2(PO4)2 = 2 UO2+2 + Pb+2 + 2 PO4-3 + log_k -44.365 + delta_h -11 kcal Uranophane - Ca(UO2)2(SiO3OH)2 + 6H+ = 2UO2+2 + Ca+2 + 2H4SiO4 - log_k 17.49 - delta_h -0 kcal + Ca(UO2)2(SiO3OH)2 + 6 H+ = 2 UO2+2 + Ca+2 + 2 H4SiO4 + log_k 17.49 + delta_h -0 kcal UO2(NO3)2 - UO2(NO3)2 = UO2+2 + 2NO3- - log_k 12.369 - delta_h -20.14 kcal + UO2(NO3)2 = UO2+2 + 2 NO3- + log_k 12.369 + delta_h -20.14 kcal UO2(NO3)2:2H2O - UO2(NO3)2:2H2O = UO2+2 + 2NO3- + 2H2O - log_k 4.851 - delta_h -6.06 kcal + UO2(NO3)2:2H2O = UO2+2 + 2 NO3- + 2 H2O + log_k 4.851 + delta_h -6.06 kcal UO2(NO3)2:3H2O - UO2(NO3)2:3H2O = UO2+2 + 2NO3- + 3H2O - log_k 3.642 - delta_h -2.405 kcal + UO2(NO3)2:3H2O = UO2+2 + 2 NO3- + 3 H2O + log_k 3.642 + delta_h -2.405 kcal UO2(NO3)2:6H2O - UO2(NO3)2:6H2O = UO2+2 + 2NO3- + 6H2O - log_k 2.3 - delta_h 4.77 kcal + UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O + log_k 2.3 + delta_h 4.77 kcal Al(OH)3(a) - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 10.38 + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 10.38 delta_h -27.045 kcal AlOHSO4 AlOHSO4 + H+ = Al+3 + SO4-2 + H2O - log_k -3.23 - delta_h -0 kcal + log_k -3.23 + delta_h -0 kcal Al4(OH)10SO4 - Al4(OH)10SO4 + 10H+ = 4Al+3 + SO4-2 + 10H2O - log_k 22.7 - delta_h -0 kcal + Al4(OH)10SO4 + 10 H+ = 4 Al+3 + SO4-2 + 10 H2O + log_k 22.7 + delta_h -0 kcal AlumK - KAl(SO4)2:12H2O = K+ + Al+3 + 2SO4-2 + 12H2O - log_k -5.17 - delta_h 7.22 kcal + KAl(SO4)2:12H2O = K+ + Al+3 + 2 SO4-2 + 12 H2O + log_k -5.17 + delta_h 7.22 kcal Alunite - KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O - log_k -1.346 - delta_h 3.918 kcal + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + log_k -1.346 + delta_h 3.918 kcal Anhydrite CaSO4 = Ca+2 + SO4-2 - log_k -4.637 - delta_h -3.769 kcal + log_k -4.637 + delta_h -3.769 kcal Aragonite CaCO3 = Ca+2 + CO3-2 - log_k -8.36 - delta_h -2.615 kcal -# Minteq a_e has more constants than phreeqc, can not use + log_k -8.36 + delta_h -2.615 kcal +# Minteq a_e has more constants than phreeqc, can not use # -analytical_expression 10.21 -0.0217 0.0 0.0 5.170E-005 # This a_e is from wateq4f - -analytical -171.9773 -0.077993 2903.293 71.595 0.0 + -analytical -171.9773 -0.077993 2903.293 71.595 0 Artinite - MgCO3:Mg(OH)2:3H2O + 2H+ = 2Mg+2 + CO3-2 + 5H2O - log_k 9.6 + MgCO3:Mg(OH)2:3H2O + 2 H+ = 2 Mg+2 + CO3-2 + 5 H2O + log_k 9.6 delta_h -28.742 kcal BaF2 - BaF2 = Ba+2 + 2F- - log_k -5.76 - delta_h 1 kcal + BaF2 = Ba+2 + 2 F- + log_k -5.76 + delta_h 1 kcal Barite BaSO4 = Ba+2 + SO4-2 - log_k -9.976 - delta_h 6.28 kcal + log_k -9.976 + delta_h 6.28 kcal Boehmite - AlOOH + 3H+ = Al+3 + 2H2O - log_k 8.578 - delta_h -28.13 kcal + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 8.578 + delta_h -28.13 kcal Brucite - Mg(OH)2 + 2H+ = Mg+2 + 2H2O - log_k 16.792 - delta_h -25.84 kcal + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.792 + delta_h -25.84 kcal Calcite CaCO3 = Ca+2 + CO3-2 - log_k -8.475 - delta_h -2.585 kcal - -analytical_expression 13.543 -0.0401 -3000.0 + log_k -8.475 + delta_h -2.585 kcal + -analytical_expression 13.543 -0.0401 -3000 Celestite SrSO4 = Sr+2 + SO4-2 - log_k -6.465 - delta_h -0.47 kcal + log_k -6.465 + delta_h -0.47 kcal Chalcedony - SiO2 + 2H2O = H4SiO4 - log_k -3.523 - delta_h 4.615 kcal + SiO2 + 2 H2O = H4SiO4 + log_k -3.523 + delta_h 4.615 kcal Chrysotile - Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + H2O - log_k 32.188 + Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O + log_k 32.188 delta_h -52.485 kcal Clinoenstatite - MgSiO3 + H2O + 2H+ = Mg+2 + H4SiO4 - log_k 11.338 + MgSiO3 + H2O + 2 H+ = Mg+2 + H4SiO4 + log_k 11.338 delta_h -20.015 kcal Cristobalite - SiO2 + 2H2O = H4SiO4 - log_k -3.587 - delta_h 5.5 kcal + SiO2 + 2 H2O = H4SiO4 + log_k -3.587 + delta_h 5.5 kcal Diaspore - AlOOH + 3H+ = Al+3 + 2H2O - log_k 6.873 - delta_h -24.63 kcal + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 6.873 + delta_h -24.63 kcal Diopside - CaMgSi2O6 + 2H2O + 4H+ = Ca+2 + Mg+2 + 2H4SiO4 - log_k 19.886 - delta_h -32.28 kcal + CaMgSi2O6 + 2 H2O + 4 H+ = Ca+2 + Mg+2 + 2 H4SiO4 + log_k 19.886 + delta_h -32.28 kcal Dolomite - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -17 - delta_h -8.29 kcal + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17 + delta_h -8.29 kcal Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7H2O - log_k -2.14 - delta_h 2.82 kcal + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -2.14 + delta_h 2.82 kcal Sepiolite(c) - Mg2Si3O7.5OH:3H2O + 0.5H2O + 4H+ = 2Mg+2 + 3H4SiO4 - log_k 15.913 + Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 + log_k 15.913 delta_h -27.268 kcal Ferrihydrite - Fe(OH)3 + 3H+ = Fe+3 + 3H2O - log_k 4.891 - delta_h -0 kcal + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 4.891 + delta_h -0 kcal Fe3(OH)8 - Fe3(OH)8 + 8H+ = 2Fe+3 + Fe+2 + 8H2O - log_k 20.222 - delta_h -0 kcal + Fe3(OH)8 + 8 H+ = 2 Fe+3 + Fe+2 + 8 H2O + log_k 20.222 + delta_h -0 kcal Fe(OH)2.7Cl0.3 - Fe(OH)2.7Cl0.3 + 2.7H+ = Fe+3 + 2.7H2O + 0.3Cl- - log_k -3.04 - delta_h -0 kcal + Fe(OH)2.7Cl0.3 + 2.7 H+ = Fe+3 + 2.7 H2O + 0.3 Cl- + log_k -3.04 + delta_h -0 kcal FeS(ppt) FeS + H+ = Fe+2 + HS- - log_k -3.915 - delta_h -0 kcal + log_k -3.915 + delta_h -0 kcal Fe2(SO4)3 - Fe2(SO4)3 = 2Fe+3 + 3SO4-2 - log_k 3.58 - delta_h -59.12 kcal + Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 + log_k 3.58 + delta_h -59.12 kcal Hydroxyapatite - Ca5(PO4)3OH + H+ = 5Ca+2 + 3PO4-3 + H2O - log_k -44.199 - delta_h -0 kcal + Ca5(PO4)3OH + H+ = 5 Ca+2 + 3 PO4-3 + H2O + log_k -44.199 + delta_h -0 kcal FCO3Apatite # FCO3APATITE = 9.496Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48F- - Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48F- - log_k -114.4 - delta_h 39.39 kcal + Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316 Ca+2 + 0.36 Na+ + 0.144 Mg+2 + 4.8 PO4-3 + 1.2 CO3-2 + 2.48 F- + log_k -114.4 + delta_h 39.39 kcal Fluorite - CaF2 = Ca+2 + 2F- - log_k -10.96 - delta_h 4.71 kcal -# Minteq a_e has more constants than phreeqc, can not use + CaF2 = Ca+2 + 2 F- + log_k -10.96 + delta_h 4.71 kcal +# Minteq a_e has more constants than phreeqc, can not use # -analytical_expression -109.25 -0.0024 3120.98 37.624 4.900E-007 2088.47 298.4 # This a_e is from wateq4f - -analytical 66.348 0.0 -4298.2 -25.271 0.0 + -analytical 66.348 0 -4298.2 -25.271 0 Forsterite - Mg2SiO4 + 4H+ = 2Mg+2 + H4SiO4 - log_k 28.298 - delta_h -48.51 kcal + Mg2SiO4 + 4 H+ = 2 Mg+2 + H4SiO4 + log_k 28.298 + delta_h -48.51 kcal Gibbsite(C) - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 8.77 - delta_h -22.8 kcal + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 8.77 + delta_h -22.8 kcal Al2O3 - Al2O3 + 6H+ = 2Al+3 + 3H2O - log_k 22.98 - delta_h -0 kcal + Al2O3 + 6 H+ = 2 Al+3 + 3 H2O + log_k 22.98 + delta_h -0 kcal Goethite - FeOOH + 3H+ = Fe+3 + 2H2O - log_k 0.5 - delta_h -14.48 kcal + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 0.5 + delta_h -14.48 kcal Greenalite - Fe3Si2O5(OH)4 + 6H+ = 3Fe+2 + 2H4SiO4 + H2O - log_k 20.81 - delta_h -0 kcal + Fe3Si2O5(OH)4 + 6 H+ = 3 Fe+2 + 2 H4SiO4 + H2O + log_k 20.81 + delta_h -0 kcal Greigite - Fe3S4 + 4H+ = 2Fe+3 + Fe+2 + 4HS- - log_k -45.035 - delta_h -0 kcal + Fe3S4 + 4 H+ = 2 Fe+3 + Fe+2 + 4 HS- + log_k -45.035 + delta_h -0 kcal Gypsum - CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O # # Log K gives too small a solubility < 10 mmol/L # # D. Parkhurst 7/13/09, Replacing log K with minteq version 4 log K -# log_k -4.848 +# log_k -4.848 # delta_h 0.261 kcal - log_k -4.61 - delta_h 1 kJ + log_k -4.61 + delta_h 1 kJ Halite NaCl = Na+ + Cl- - log_k 1.582 - delta_h 0.918 kcal + log_k 1.582 + delta_h 0.918 kcal Hematite - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k -4.008 + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k -4.008 delta_h -30.845 kcal Huntite - CaMg3(CO3)4 = 3Mg+2 + Ca+2 + 4CO3-2 - log_k -29.968 - delta_h -25.76 kcal + CaMg3(CO3)4 = 3 Mg+2 + Ca+2 + 4 CO3-2 + log_k -29.968 + delta_h -25.76 kcal Hydromagnesite - Mg5(CO3)4(OH)2:4H2O + 2H+ = 5Mg+2 + 4CO3-2 + 6H2O - log_k -8.766 - delta_h -52.21 kcal + Mg5(CO3)4(OH)2:4H2O + 2 H+ = 5 Mg+2 + 4 CO3-2 + 6 H2O + log_k -8.766 + delta_h -52.21 kcal Jarosite-Na - NaFe3(SO4)2(OH)6 + 6H+ = Na+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -11.2 - delta_h -36.18 kcal + NaFe3(SO4)2(OH)6 + 6 H+ = Na+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -11.2 + delta_h -36.18 kcal Jarosite-K - KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -14.8 - delta_h -31.28 kcal + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -14.8 + delta_h -31.28 kcal Jarosite-H - (H3O)Fe3(SO4)2(OH)6 + 5H+ = 3Fe+3 + 2SO4-2 + 7H2O - log_k -12.1 - delta_h -55.15 kcal + (H3O)Fe3(SO4)2(OH)6 + 5 H+ = 3 Fe+3 + 2 SO4-2 + 7 H2O + log_k -12.1 + delta_h -55.15 kcal Mackinawite FeS + H+ = Fe+2 + HS- - log_k -4.648 - delta_h -0 kcal + log_k -4.648 + delta_h -0 kcal Magadiite - NaSi7O13(OH)3:3H2O + H+ + 9H2O = Na+ + 7H4SiO4 - log_k -14.3 - delta_h -0 kcal + NaSi7O13(OH)3:3H2O + H+ + 9 H2O = Na+ + 7 H4SiO4 + log_k -14.3 + delta_h -0 kcal Maghemite - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k 6.386 - delta_h -0 kcal + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 6.386 + delta_h -0 kcal Magnesite MgCO3 = Mg+2 + CO3-2 - log_k -8.029 - delta_h -6.169 kcal + log_k -8.029 + delta_h -6.169 kcal Magnetite - Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O - log_k 3.737 - delta_h -50.46 kcal + Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O + log_k 3.737 + delta_h -50.46 kcal Melanterite - FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O - log_k -2.47 - delta_h 2.86 kcal + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.47 + delta_h 2.86 kcal Mirabilite - Na2SO4:10H2O = 2Na+ + SO4-2 + 10H2O - log_k -1.114 - delta_h 18.987 kcal + Na2SO4:10H2O = 2 Na+ + SO4-2 + 10 H2O + log_k -1.114 + delta_h 18.987 kcal Natron - Na2CO3:10H2O = 2Na+ + CO3-2 + 10H2O - log_k -1.311 - delta_h 15.745 kcal + Na2CO3:10H2O = 2 Na+ + CO3-2 + 10 H2O + log_k -1.311 + delta_h 15.745 kcal Nesquehonite - MgCO3:3H2O = Mg+2 + CO3-2 + 3H2O - log_k -5.621 - delta_h -5.789 kcal + MgCO3:3H2O = Mg+2 + CO3-2 + 3 H2O + log_k -5.621 + delta_h -5.789 kcal Phlogopite - KMg3AlSi3O10(OH)2 + 10H+ = K+ + 3Mg+2 + Al+3 + 3H4SiO4 - log_k 66.3 - delta_h -86.36 kcal + KMg3AlSi3O10(OH)2 + 10 H+ = K+ + 3 Mg+2 + Al+3 + 3 H4SiO4 + log_k 66.3 + delta_h -86.36 kcal Pyrite - FeS2 + 2H+ + 2e- = Fe+2 + 2HS- - log_k -18.479 - delta_h 11.3 kcal + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + log_k -18.479 + delta_h 11.3 kcal Quartz - SiO2 + 2H2O = H4SiO4 - log_k -4.006 - delta_h 6.22 kcal + SiO2 + 2 H2O = H4SiO4 + log_k -4.006 + delta_h 6.22 kcal Sepiolite(a) - Mg2Si3O7.5OH:3H2O + 0.5H2O + 4H+ = 2Mg+2 + 3H4SiO4 - log_k 18.78 - delta_h -0 kcal + Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 + log_k 18.78 + delta_h -0 kcal Siderite FeCO3 = Fe+2 + CO3-2 - log_k -10.55 - delta_h -5.328 kcal + log_k -10.55 + delta_h -5.328 kcal SiO2(a) - SiO2 + 2H2O = H4SiO4 - log_k -3.018 - delta_h 4.44 kcal + SiO2 + 2 H2O = H4SiO4 + log_k -3.018 + delta_h 4.44 kcal SiO2(am) - SiO2 + 2H2O = H4SiO4 - log_k -2.71 - delta_h 3.91 kcal + SiO2 + 2 H2O = H4SiO4 + log_k -2.71 + delta_h 3.91 kcal SrF2 - SrF2 = Sr+2 + 2F- - log_k -8.54 - delta_h 1.25 kcal + SrF2 = Sr+2 + 2 F- + log_k -8.54 + delta_h 1.25 kcal Strengite - FePO4:2H2O = Fe+3 + PO4-3 + 2H2O - log_k -26.4 - delta_h -2.03 kcal + FePO4:2H2O = Fe+3 + PO4-3 + 2 H2O + log_k -26.4 + delta_h -2.03 kcal Strontianite SrCO3 = Sr+2 + CO3-2 - log_k -9.25 - delta_h -0.69 kcal + log_k -9.25 + delta_h -0.69 kcal Talc - Mg3Si4O10(OH)2 + 4H2O + 6H+ = 3Mg+2 + 4H4SiO4 - log_k 23.055 + Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 + log_k 23.055 delta_h -35.005 kcal Thenardite - Na2SO4 = 2Na+ + SO4-2 - log_k -0.179 - delta_h -0.572 kcal + Na2SO4 = 2 Na+ + SO4-2 + log_k -0.179 + delta_h -0.572 kcal Thermonatrite - Na2CO3:H2O = 2Na+ + CO3-2 + H2O - log_k 0.125 - delta_h -2.802 kcal + Na2CO3:H2O = 2 Na+ + CO3-2 + H2O + log_k 0.125 + delta_h -2.802 kcal Tremolite - Ca2Mg5Si8O22(OH)2 + 8H2O + 14H+ = 2Ca+2 + 5Mg+2 + 8H4SiO4 - log_k 56.546 + Ca2Mg5Si8O22(OH)2 + 8 H2O + 14 H+ = 2 Ca+2 + 5 Mg+2 + 8 H4SiO4 + log_k 56.546 delta_h -96.615 kcal Vivianite - Fe3(PO4)2:8H2O = 3Fe+2 + 2PO4-3 + 8H2O - log_k -36 - delta_h -0 kcal + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + log_k -36 + delta_h -0 kcal Witherite BaCO3 = Ba+2 + CO3-2 - log_k -8.585 - delta_h 0.36 kcal + log_k -8.585 + delta_h 0.36 kcal Pyrolusite - MnO2 + 4H+ + e- = Mn+3 + 2H2O - log_k 15.861 - delta_h -29.18 kcal + MnO2 + 4 H+ + e- = Mn+3 + 2 H2O + log_k 15.861 + delta_h -29.18 kcal Birnessite - MnO2 + 4H+ + e- = Mn+3 + 2H2O - log_k 18.091 - delta_h -0 kcal + MnO2 + 4 H+ + e- = Mn+3 + 2 H2O + log_k 18.091 + delta_h -0 kcal Nsutite - MnO2 + 4H+ + e- = Mn+3 + 2H2O - log_k 17.504 - delta_h -0 kcal + MnO2 + 4 H+ + e- = Mn+3 + 2 H2O + log_k 17.504 + delta_h -0 kcal Bixbyite - Mn2O3 + 6H+ = 2Mn+3 + 3H2O - log_k -0.611 + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.611 delta_h -15.245 kcal Hausmannite - Mn3O4 + 8H+ + 2e- = 3Mn+2 + 4H2O - log_k 61.54 - delta_h -80.14 kcal + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + log_k 61.54 + delta_h -80.14 kcal Pyrocroite - Mn(OH)2 + 2H+ = Mn+2 + 2H2O - log_k 15.088 - delta_h -22.59 kcal + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.088 + delta_h -22.59 kcal Manganite - MnOOH + 3H+ = Mn+3 + 2H2O - log_k -0.238 - delta_h -0 kcal + MnOOH + 3 H+ = Mn+3 + 2 H2O + log_k -0.238 + delta_h -0 kcal Rhodochrosite MnCO3 = Mn+2 + CO3-2 - log_k -10.41 - delta_h -2.079 kcal + log_k -10.41 + delta_h -2.079 kcal MnCl2:4H2O - MnCl2:4H2O = Mn+2 + 2Cl- + 4H2O - log_k 2.71 - delta_h 17.38 kcal + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.71 + delta_h 17.38 kcal MnS(Green) MnS + H+ = Mn+2 + HS- - log_k 3.8 - delta_h -5.79 kcal + log_k 3.8 + delta_h -5.79 kcal MnSO4 MnSO4 = Mn+2 + SO4-2 - log_k 2.669 - delta_h -15.48 kcal + log_k 2.669 + delta_h -15.48 kcal Mn2(SO4)3 - Mn2(SO4)3 = 2Mn+3 + 3SO4-2 - log_k -5.711 - delta_h -39.06 kcal + Mn2(SO4)3 = 2 Mn+3 + 3 SO4-2 + log_k -5.711 + delta_h -39.06 kcal Mn3(PO4)2 - Mn3(PO4)2 = 3Mn+2 + 2PO4-3 - log_k -23.827 - delta_h 2.12 kcal + Mn3(PO4)2 = 3 Mn+2 + 2 PO4-3 + log_k -23.827 + delta_h 2.12 kcal CuMetal Cu = Cu+ + e- - log_k -8.76 - delta_h 17.13 kcal + log_k -8.76 + delta_h 17.13 kcal Nantokite CuCl = Cu+ + Cl- - log_k -6.76 - delta_h 9.98 kcal + log_k -6.76 + delta_h 9.98 kcal CuF CuF = Cu+ + F- - log_k 7.08 - delta_h -12.37 kcal + log_k 7.08 + delta_h -12.37 kcal Cuprite - Cu2O + 2H+ = 2Cu+ + H2O - log_k -1.55 - delta_h 6.245 kcal + Cu2O + 2 H+ = 2 Cu+ + H2O + log_k -1.55 + delta_h 6.245 kcal Chalcocite - Cu2S + H+ = 2Cu+ + HS- - log_k -34.619 - delta_h 49.35 kcal + Cu2S + H+ = 2 Cu+ + HS- + log_k -34.619 + delta_h 49.35 kcal Djurleite - Cu0.066Cu1.868S + H+ = 0.066Cu+2 + 1.868Cu+ + HS- - log_k -33.92 - delta_h 47.881 kcal + Cu0.066Cu1.868S + H+ = 0.066 Cu+2 + 1.868 Cu+ + HS- + log_k -33.92 + delta_h 47.881 kcal Anilite - Cu0.25Cu1.5S + H+ = 0.25Cu+2 + 1.5Cu+ + HS- - log_k -31.878 - delta_h 43.535 kcal + Cu0.25Cu1.5S + H+ = 0.25 Cu+2 + 1.5 Cu+ + HS- + log_k -31.878 + delta_h 43.535 kcal BlaubleiII - Cu0.6Cu0.8S + H+ = 0.6Cu+2 + 0.8Cu+ + HS- - log_k -27.279 - delta_h -0 kcal + Cu0.6Cu0.8S + H+ = 0.6 Cu+2 + 0.8 Cu+ + HS- + log_k -27.279 + delta_h -0 kcal BlaubleiI - Cu0.9Cu0.2S + H+ = 0.9Cu+2 + 0.2Cu+ + HS- - log_k -24.162 - delta_h -0 kcal + Cu0.9Cu0.2S + H+ = 0.9 Cu+2 + 0.2 Cu+ + HS- + log_k -24.162 + delta_h -0 kcal Covellite CuS + H+ = Cu+2 + HS- - log_k -23.038 - delta_h 24.01 kcal + log_k -23.038 + delta_h 24.01 kcal Cu2SO4 - Cu2SO4 = 2Cu+ + SO4-2 - log_k -1.95 - delta_h -4.56 kcal + Cu2SO4 = 2 Cu+ + SO4-2 + log_k -1.95 + delta_h -4.56 kcal CuprousFerrite - CuFeO2 + 4H+ = Cu+ + Fe+3 + 2H2O - log_k -8.92 - delta_h -3.8 kcal + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -8.92 + delta_h -3.8 kcal Melanothallite - CuCl2 = Cu+2 + 2Cl- - log_k 3.73 - delta_h -12.32 kcal + CuCl2 = Cu+2 + 2 Cl- + log_k 3.73 + delta_h -12.32 kcal CuCO3 CuCO3 = Cu+2 + CO3-2 - log_k -9.63 - delta_h -0 kcal + log_k -9.63 + delta_h -0 kcal CuF2 - CuF2 = Cu+2 + 2F- - log_k -0.62 - delta_h -13.32 kcal + CuF2 = Cu+2 + 2 F- + log_k -0.62 + delta_h -13.32 kcal CuF2:2H2O - CuF2:2H2O = Cu+2 + 2F- + 2H2O - log_k -4.55 - delta_h -3.65 kcal + CuF2:2H2O = Cu+2 + 2 F- + 2 H2O + log_k -4.55 + delta_h -3.65 kcal Cu(OH)2 - Cu(OH)2 + 2H+ = Cu+2 + 2H2O - log_k 8.64 - delta_h -15.25 kcal + Cu(OH)2 + 2 H+ = Cu+2 + 2 H2O + log_k 8.64 + delta_h -15.25 kcal Atacamite - Cu2(OH)3Cl + 3H+ = 2Cu+2 + 3H2O + Cl- - log_k 7.34 - delta_h -18.69 kcal + Cu2(OH)3Cl + 3 H+ = 2 Cu+2 + 3 H2O + Cl- + log_k 7.34 + delta_h -18.69 kcal Cu2(OH)3NO3 - Cu2(OH)3NO3 + 3H+ = 2Cu+2 + 3H2O + NO3- - log_k 9.24 - delta_h -17.35 kcal + Cu2(OH)3NO3 + 3 H+ = 2 Cu+2 + 3 H2O + NO3- + log_k 9.24 + delta_h -17.35 kcal Antlerite - Cu3(OH)4SO4 + 4H+ = 3Cu+2 + 4H2O + SO4-2 - log_k 8.29 - delta_h -0 kcal + Cu3(OH)4SO4 + 4 H+ = 3 Cu+2 + 4 H2O + SO4-2 + log_k 8.29 + delta_h -0 kcal Brochantite - Cu4(OH)6SO4 + 6H+ = 4Cu+2 + 6H2O + SO4-2 - log_k 15.34 - delta_h -0 kcal + Cu4(OH)6SO4 + 6 H+ = 4 Cu+2 + 6 H2O + SO4-2 + log_k 15.34 + delta_h -0 kcal Langite - Cu4(OH)6SO4:H2O + 6H+ = 4Cu+2 + 7H2O + SO4-2 - log_k 16.79 - delta_h -39.61 kcal + Cu4(OH)6SO4:H2O + 6 H+ = 4 Cu+2 + 7 H2O + SO4-2 + log_k 16.79 + delta_h -39.61 kcal Tenorite - CuO + 2H+ = Cu+2 + H2O - log_k 7.62 - delta_h -15.24 kcal + CuO + 2 H+ = Cu+2 + H2O + log_k 7.62 + delta_h -15.24 kcal CuOCuSO4 - CuO:CuSO4 + 2H+ = 2Cu+2 + H2O + SO4-2 - log_k 11.53 + CuO:CuSO4 + 2 H+ = 2 Cu+2 + H2O + SO4-2 + log_k 11.53 delta_h -35.575 kcal Cu3(PO4)2 - Cu3(PO4)2 = 3Cu+2 + 2PO4-3 - log_k -36.85 - delta_h -0 kcal + Cu3(PO4)2 = 3 Cu+2 + 2 PO4-3 + log_k -36.85 + delta_h -0 kcal Cu3(PO4)2:3H2O - Cu3(PO4)2:3H2O = 3Cu+2 + 2PO4-3 + 3H2O - log_k -35.12 - delta_h -0 kcal + Cu3(PO4)2:3H2O = 3 Cu+2 + 2 PO4-3 + 3 H2O + log_k -35.12 + delta_h -0 kcal CuSO4 CuSO4 = Cu+2 + SO4-2 - log_k 3.01 - delta_h -18.14 kcal + log_k 3.01 + delta_h -18.14 kcal Chalcanthite - CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O - log_k -2.64 - delta_h 1.44 kcal + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.64 + delta_h 1.44 kcal Dioptase - CuSiO3:H2O + 2H+ = Cu+2 + H4SiO4 - log_k 6.5 - delta_h -8.96 kcal + CuSiO3:H2O + 2 H+ = Cu+2 + H4SiO4 + log_k 6.5 + delta_h -8.96 kcal CupricFerrite - CuFe2O4 + 8H+ = Cu+2 + 2Fe+3 + 4H2O - log_k 5.88 - delta_h -38.69 kcal + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 5.88 + delta_h -38.69 kcal Chalcopyrite - CuFeS2 + 2H+ = Cu+2 + Fe+2 + 2HS- - log_k -35.27 - delta_h 35.48 kcal + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -35.27 + delta_h 35.48 kcal CuBr CuBr = Cu+ + Br- - log_k -8.21 - delta_h 13.08 kcal + log_k -8.21 + delta_h 13.08 kcal CuI CuI = Cu+ + I- - log_k -11.89 - delta_h 20.14 kcal + log_k -11.89 + delta_h 20.14 kcal ZnMetal - Zn = Zn+2 + 2e- - log_k 25.757 - delta_h -36.78 kcal + Zn = Zn+2 + 2 e- + log_k 25.757 + delta_h -36.78 kcal ZnCl2 - ZnCl2 = Zn+2 + 2Cl- - log_k 7.03 - delta_h -17.48 kcal + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.03 + delta_h -17.48 kcal Smithsonite ZnCO3 = Zn+2 + CO3-2 - log_k -10 - delta_h -4.36 kcal + log_k -10 + delta_h -4.36 kcal ZnCO3:H2O ZnCO3:H2O = Zn+2 + CO3-2 + H2O - log_k -10.26 - delta_h -0 kcal + log_k -10.26 + delta_h -0 kcal ZnF2 - ZnF2 = Zn+2 + 2F- - log_k -1.52 - delta_h -13.08 kcal + ZnF2 = Zn+2 + 2 F- + log_k -1.52 + delta_h -13.08 kcal Zn(OH)2(A) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.45 - delta_h -0 kcal + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.45 + delta_h -0 kcal Zn(OH)2(C) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.2 - delta_h -0 kcal + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.2 + delta_h -0 kcal Zn(OH)2(B) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.75 - delta_h -0 kcal + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.75 + delta_h -0 kcal Zn(OH)2(G) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.71 - delta_h -0 kcal + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.71 + delta_h -0 kcal Zn(OH)2(E) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.5 - delta_h -0 kcal + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.5 + delta_h -0 kcal Zn2(OH)3Cl - Zn2(OH)3Cl + 3H+ = 2Zn+2 + 3H2O + Cl- - log_k 15.2 - delta_h -0 kcal + Zn2(OH)3Cl + 3 H+ = 2 Zn+2 + 3 H2O + Cl- + log_k 15.2 + delta_h -0 kcal Zn5(OH)8Cl2 - Zn5(OH)8Cl2 + 8H+ = 5Zn+2 + 8H2O + 2Cl- - log_k 38.5 - delta_h -0 kcal + Zn5(OH)8Cl2 + 8 H+ = 5 Zn+2 + 8 H2O + 2 Cl- + log_k 38.5 + delta_h -0 kcal Zn2(OH)2SO4 - Zn2(OH)2SO4 + 2H+ = 2Zn+2 + 2H2O + SO4-2 - log_k 7.5 - delta_h -0 kcal + Zn2(OH)2SO4 + 2 H+ = 2 Zn+2 + 2 H2O + SO4-2 + log_k 7.5 + delta_h -0 kcal Zn4(OH)6SO4 - Zn4(OH)6SO4 + 6H+ = 4Zn+2 + 6H2O + SO4-2 - log_k 28.4 - delta_h -0 kcal + Zn4(OH)6SO4 + 6 H+ = 4 Zn+2 + 6 H2O + SO4-2 + log_k 28.4 + delta_h -0 kcal Zn(NO3)2:6H2O - Zn(NO3)2:6H2O = Zn+2 + 2NO3- + 6H2O - log_k 3.44 - delta_h 5.51 kcal + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.44 + delta_h 5.51 kcal ZnO(Active) - ZnO + 2H+ = Zn+2 + H2O - log_k 11.31 - delta_h -0 kcal + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.31 + delta_h -0 kcal Zincite - ZnO + 2H+ = Zn+2 + H2O - log_k 11.14 - delta_h -21.86 kcal + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.14 + delta_h -21.86 kcal Zn3O(SO4)2 - Zn3O(SO4)2 + 2H+ = 3Zn+2 + 2SO4-2 + H2O - log_k 19.02 - delta_h -62 kcal + Zn3O(SO4)2 + 2 H+ = 3 Zn+2 + 2 SO4-2 + H2O + log_k 19.02 + delta_h -62 kcal Zn3(PO4)2:4H2O - Zn3(PO4)2:4H2O = 3Zn+2 + 2PO4-3 + 4H2O - log_k -32.04 - delta_h -0 kcal + Zn3(PO4)2:4H2O = 3 Zn+2 + 2 PO4-3 + 4 H2O + log_k -32.04 + delta_h -0 kcal ZnS(A) ZnS + H+ = Zn+2 + HS- - log_k -9.052 - delta_h 3.67 kcal + log_k -9.052 + delta_h 3.67 kcal Sphalerite ZnS + H+ = Zn+2 + HS- - log_k -11.618 - delta_h 8.25 kcal + log_k -11.618 + delta_h 8.25 kcal Wurtzite ZnS + H+ = Zn+2 + HS- - log_k -9.682 - delta_h 5.06 kcal + log_k -9.682 + delta_h 5.06 kcal ZnSiO3 - ZnSiO3 + 2H+ + H2O = Zn+2 + H4SiO4 - log_k 2.93 - delta_h -18.27 kcal + ZnSiO3 + 2 H+ + H2O = Zn+2 + H4SiO4 + log_k 2.93 + delta_h -18.27 kcal Willemite - Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - log_k 15.33 - delta_h -33.37 kcal + Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 + log_k 15.33 + delta_h -33.37 kcal Zincosite ZnSO4 = Zn+2 + SO4-2 - log_k 3.01 - delta_h -19.2 kcal + log_k 3.01 + delta_h -19.2 kcal ZnSO4:H2O ZnSO4:H2O = Zn+2 + SO4-2 + H2O - log_k -0.57 - delta_h -10.64 kcal + log_k -0.57 + delta_h -10.64 kcal Bianchite - ZnSO4:6H2O = Zn+2 + SO4-2 + 6H2O - log_k -1.765 - delta_h -0.16 kcal + ZnSO4:6H2O = Zn+2 + SO4-2 + 6 H2O + log_k -1.765 + delta_h -0.16 kcal Goslarite - ZnSO4:7H2O = Zn+2 + SO4-2 + 7H2O - log_k -1.96 - delta_h 3.3 kcal + ZnSO4:7H2O = Zn+2 + SO4-2 + 7 H2O + log_k -1.96 + delta_h 3.3 kcal ZnBr2:2H2O - ZnBr2:2H2O = Zn+2 + 2Br- + 2H2O - log_k 5.21 - delta_h -7.51 kcal + ZnBr2:2H2O = Zn+2 + 2 Br- + 2 H2O + log_k 5.21 + delta_h -7.51 kcal ZnI2 - ZnI2 = Zn+2 + 2I- - log_k 7.23 - delta_h -13.44 kcal + ZnI2 = Zn+2 + 2 I- + log_k 7.23 + delta_h -13.44 kcal CdMetal - Cd = Cd+2 + 2e- - log_k 13.49 - delta_h -18 kcal + Cd = Cd+2 + 2 e- + log_k 13.49 + delta_h -18 kcal Cd(Gamma) - Cd = Cd+2 + 2e- - log_k 13.59 - delta_h -18.14 kcal + Cd = Cd+2 + 2 e- + log_k 13.59 + delta_h -18.14 kcal Otavite CdCO3 = Cd+2 + CO3-2 - log_k -13.74 - delta_h -0.58 kcal + log_k -13.74 + delta_h -0.58 kcal CdCl2 - CdCl2 = Cd+2 + 2Cl- - log_k -0.68 - delta_h -4.47 kcal + CdCl2 = Cd+2 + 2 Cl- + log_k -0.68 + delta_h -4.47 kcal CdCl2:H2O - CdCl2:H2O = Cd+2 + 2Cl- + H2O - log_k -1.71 - delta_h -1.82 kcal + CdCl2:H2O = Cd+2 + 2 Cl- + H2O + log_k -1.71 + delta_h -1.82 kcal CdCl2:2.5H2O - CdCl2:2.5H2O = Cd+2 + 2Cl- + 2.5H2O - log_k -1.94 - delta_h 1.71 kcal + CdCl2:2.5H2O = Cd+2 + 2 Cl- + 2.5 H2O + log_k -1.94 + delta_h 1.71 kcal CdF2 - CdF2 = Cd+2 + 2F- - log_k -2.98 - delta_h -9.72 kcal + CdF2 = Cd+2 + 2 F- + log_k -2.98 + delta_h -9.72 kcal Cd(OH)2(A) - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.73 - delta_h -20.77 kcal + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.73 + delta_h -20.77 kcal Cd(OH)2(C) - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.65 - delta_h -0 kcal + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.65 + delta_h -0 kcal CdOHCl CdOHCl + H+ = Cd+2 + H2O + Cl- - log_k 3.52 - delta_h -7.407 kcal + log_k 3.52 + delta_h -7.407 kcal Cd3(OH)4SO4 - Cd3(OH)4SO4 + 4H+ = 3Cd+2 + 4H2O + SO4-2 - log_k 22.56 - delta_h -0 kcal + Cd3(OH)4SO4 + 4 H+ = 3 Cd+2 + 4 H2O + SO4-2 + log_k 22.56 + delta_h -0 kcal Cd3(OH)2(SO4)2 - Cd3(OH)2(SO4)2 + 2H+ = 3Cd+2 + 2H2O + 2SO4-2 - log_k 6.71 - delta_h -0 kcal + Cd3(OH)2(SO4)2 + 2 H+ = 3 Cd+2 + 2 H2O + 2 SO4-2 + log_k 6.71 + delta_h -0 kcal Cd4(OH)6SO4 - Cd4(OH)6SO4 + 6H+ = 4Cd+2 + 6H2O + SO4-2 - log_k 28.4 - delta_h -0 kcal + Cd4(OH)6SO4 + 6 H+ = 4 Cd+2 + 6 H2O + SO4-2 + log_k 28.4 + delta_h -0 kcal Monteponite - CdO + 2H+ = Cd+2 + H2O - log_k 15.12 - delta_h -24.76 kcal + CdO + 2 H+ = Cd+2 + H2O + log_k 15.12 + delta_h -24.76 kcal Cd3(PO4)2 - Cd3(PO4)2 = 3Cd+2 + 2PO4-3 - log_k -32.6 - delta_h -0 kcal + Cd3(PO4)2 = 3 Cd+2 + 2 PO4-3 + log_k -32.6 + delta_h -0 kcal CdSiO3 - CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - log_k 9.06 - delta_h -16.63 kcal + CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 + log_k 9.06 + delta_h -16.63 kcal CdSO4 CdSO4 = Cd+2 + SO4-2 - log_k -0.1 - delta_h -14.74 kcal + log_k -0.1 + delta_h -14.74 kcal CdSO4:H2O CdSO4:H2O = Cd+2 + SO4-2 + H2O - log_k -1.657 - delta_h -7.52 kcal + log_k -1.657 + delta_h -7.52 kcal CdSO4:2.67H2O - CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67H2O - log_k -1.873 - delta_h -4.3 kcal + CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67 H2O + log_k -1.873 + delta_h -4.3 kcal Greenockite CdS + H+ = Cd+2 + HS- - log_k -15.93 - delta_h 16.36 kcal + log_k -15.93 + delta_h 16.36 kcal CdBr2:4H2O - CdBr2:4H2O = Cd+2 + 2Br- + 4H2O - log_k -2.42 - delta_h 7.23 kcal + CdBr2:4H2O = Cd+2 + 2 Br- + 4 H2O + log_k -2.42 + delta_h 7.23 kcal CdI2 - CdI2 = Cd+2 + 2I- - log_k -3.61 - delta_h 4.08 kcal + CdI2 = Cd+2 + 2 I- + log_k -3.61 + delta_h 4.08 kcal PbMetal - Pb = Pb+2 + 2e- - log_k 4.27 - delta_h 0.4 kcal + Pb = Pb+2 + 2 e- + log_k 4.27 + delta_h 0.4 kcal Cotunnite - PbCl2 = Pb+2 + 2Cl- - log_k -4.77 - delta_h 5.6 kcal + PbCl2 = Pb+2 + 2 Cl- + log_k -4.77 + delta_h 5.6 kcal Matlockite PbClF = Pb+2 + Cl- + F- - log_k -9.43 - delta_h 7.95 kcal + log_k -9.43 + delta_h 7.95 kcal Phosgenite - PbCl2:PbCO3 = 2Pb+2 + 2Cl- + CO3-2 - log_k -19.81 - delta_h -0 kcal + PbCl2:PbCO3 = 2 Pb+2 + 2 Cl- + CO3-2 + log_k -19.81 + delta_h -0 kcal Cerussite PbCO3 = Pb+2 + CO3-2 - log_k -13.13 - delta_h 4.86 kcal + log_k -13.13 + delta_h 4.86 kcal PbF2 - PbF2 = Pb+2 + 2F- - log_k -7.44 - delta_h -0.7 kcal + PbF2 = Pb+2 + 2 F- + log_k -7.44 + delta_h -0.7 kcal Massicot - PbO + 2H+ = Pb+2 + H2O - log_k 12.91 - delta_h -16.78 kcal + PbO + 2 H+ = Pb+2 + H2O + log_k 12.91 + delta_h -16.78 kcal Litharge - PbO + 2H+ = Pb+2 + H2O - log_k 12.72 - delta_h -16.38 kcal + PbO + 2 H+ = Pb+2 + H2O + log_k 12.72 + delta_h -16.38 kcal PbO:0.3H2O - PbO:0.33H2O + 2H+ = Pb+2 + 1.33H2O - log_k 12.98 - delta_h -0 kcal + PbO:0.33H2O + 2 H+ = Pb+2 + 1.33 H2O + log_k 12.98 + delta_h -0 kcal Pb2OCO3 - Pb2OCO3 + 2H+ = 2Pb+2 + H2O + CO3-2 - log_k -0.5 - delta_h -11.46 kcal + Pb2OCO3 + 2 H+ = 2 Pb+2 + H2O + CO3-2 + log_k -0.5 + delta_h -11.46 kcal Larnakite - PbO:PbSO4 + 2H+ = 2Pb+2 + SO4-2 + H2O - log_k -0.28 - delta_h -6.44 kcal + PbO:PbSO4 + 2 H+ = 2 Pb+2 + SO4-2 + H2O + log_k -0.28 + delta_h -6.44 kcal Pb3O2SO4 - Pb3O2SO4 + 4H+ = 3Pb+2 + SO4-2 + 2H2O - log_k 10.4 - delta_h -20.75 kcal + Pb3O2SO4 + 4 H+ = 3 Pb+2 + SO4-2 + 2 H2O + log_k 10.4 + delta_h -20.75 kcal Pb4O3SO4 - Pb4O3SO4 + 6H+ = 4Pb+2 + SO4-2 + 3H2O - log_k 22.1 - delta_h -35.07 kcal + Pb4O3SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 3 H2O + log_k 22.1 + delta_h -35.07 kcal ClPyromorphite - Pb5(PO4)3Cl = 5Pb+2 + 3PO4-3 + Cl- - log_k -84.43 - delta_h -0 kcal + Pb5(PO4)3Cl = 5 Pb+2 + 3 PO4-3 + Cl- + log_k -84.43 + delta_h -0 kcal Hxypyromorphite - Pb5(PO4)3OH + H+ = 5Pb+2 + 3PO4-3 + H2O - log_k -62.79 - delta_h -0 kcal + Pb5(PO4)3OH + H+ = 5 Pb+2 + 3 PO4-3 + H2O + log_k -62.79 + delta_h -0 kcal Pb3O2CO3 - Pb3O2CO3 + 4H+ = 3Pb+2 + CO3-2 + 2H2O - log_k 11.02 - delta_h -26.43 kcal + Pb3O2CO3 + 4 H+ = 3 Pb+2 + CO3-2 + 2 H2O + log_k 11.02 + delta_h -26.43 kcal Plumbogummite - PbAl3(PO4)2(OH)5:H2O + 5H+ = Pb+2 + 3Al+3 + 2PO4-3 + 6H2O - log_k -32.79 - delta_h -0 kcal + PbAl3(PO4)2(OH)5:H2O + 5 H+ = Pb+2 + 3 Al+3 + 2 PO4-3 + 6 H2O + log_k -32.79 + delta_h -0 kcal Hinsdalite - PbAl3PO4SO4(OH)6 + 6H+ = Pb+2 + 3Al+3 + PO4-3 + SO4-2 + 6H2O - log_k -2.5 - delta_h -0 kcal + PbAl3PO4SO4(OH)6 + 6 H+ = Pb+2 + 3 Al+3 + PO4-3 + SO4-2 + 6 H2O + log_k -2.5 + delta_h -0 kcal Tsumebite - Pb2CuPO4(OH)3:3H2O + 3H+ = 2Pb+2 + Cu+2 + PO4-3 + 6H2O - log_k -9.79 - delta_h -0 kcal + Pb2CuPO4(OH)3:3H2O + 3 H+ = 2 Pb+2 + Cu+2 + PO4-3 + 6 H2O + log_k -9.79 + delta_h -0 kcal PbSiO3 - PbSiO3 + H2O + 2H+ = Pb+2 + H4SiO4 - log_k 7.32 - delta_h -9.26 kcal + PbSiO3 + H2O + 2 H+ = Pb+2 + H4SiO4 + log_k 7.32 + delta_h -9.26 kcal Pb2SiO4 - Pb2SiO4 + 4H+ = 2Pb+2 + H4SiO4 - log_k 19.76 - delta_h -26 kcal + Pb2SiO4 + 4 H+ = 2 Pb+2 + H4SiO4 + log_k 19.76 + delta_h -26 kcal Anglesite PbSO4 = Pb+2 + SO4-2 - log_k -7.79 - delta_h 2.15 kcal + log_k -7.79 + delta_h 2.15 kcal Galena PbS + H+ = Pb+2 + HS- - log_k -15.132 - delta_h 19.4 kcal + log_k -15.132 + delta_h 19.4 kcal Plattnerite - PbO2 + 4H+ + 2e- = Pb+2 + 2H2O - log_k 49.3 - delta_h -70.73 kcal + PbO2 + 4 H+ + 2 e- = Pb+2 + 2 H2O + log_k 49.3 + delta_h -70.73 kcal Pb2O3 - Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2O - log_k 61.04 - delta_h -0 kcal + Pb2O3 + 6 H+ + 2 e- = 2 Pb+2 + 3 H2O + log_k 61.04 + delta_h -0 kcal Minium - Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2O - log_k 73.69 + Pb3O4 + 8 H+ + 2 e- = 3 Pb+2 + 4 H2O + log_k 73.69 delta_h -102.76 kcal Pb(OH)2(C) - Pb(OH)2 + 2H+ = Pb+2 + 2H2O - log_k 8.15 - delta_h -13.99 kcal + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + log_k 8.15 + delta_h -13.99 kcal Laurionite PbOHCl + H+ = Pb+2 + Cl- + H2O - log_k 0.623 - delta_h -0 kcal + log_k 0.623 + delta_h -0 kcal Pb2(OH)3Cl - Pb2(OH)3Cl + 3H+ = 2Pb+2 + 3H2O + Cl- - log_k 8.793 - delta_h -0 kcal + Pb2(OH)3Cl + 3 H+ = 2 Pb+2 + 3 H2O + Cl- + log_k 8.793 + delta_h -0 kcal Hydcerussite - Pb(OH)2:2PbCO3 + 2H+ = 3Pb+2 + 2CO3-2 + 2H2O - log_k -17.46 - delta_h -0 kcal + Pb(OH)2:2PbCO3 + 2 H+ = 3 Pb+2 + 2 CO3-2 + 2 H2O + log_k -17.46 + delta_h -0 kcal Pb2O(OH)2 - Pb2O(OH)2 + 4H+ = 2Pb+2 + 3H2O - log_k 26.2 - delta_h -0 kcal + Pb2O(OH)2 + 4 H+ = 2 Pb+2 + 3 H2O + log_k 26.2 + delta_h -0 kcal PbBr2 - PbBr2 = Pb+2 + 2Br- - log_k -5.18 - delta_h 8.1 kcal + PbBr2 = Pb+2 + 2 Br- + log_k -5.18 + delta_h 8.1 kcal PbBrF PbBrF = Pb+2 + Br- + F- - log_k -8.49 - delta_h -0 kcal + log_k -8.49 + delta_h -0 kcal PbI2 - PbI2 = Pb+2 + 2I- - log_k -8.07 - delta_h 15.16 kcal + PbI2 = Pb+2 + 2 I- + log_k -8.07 + delta_h 15.16 kcal Pb4(OH)6SO4 - Pb4(OH)6SO4 + 6H+ = 4Pb+2 + SO4-2 + 6H2O - log_k 21.1 - delta_h -0 kcal + Pb4(OH)6SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 6 H2O + log_k 21.1 + delta_h -0 kcal NiCO3 NiCO3 = Ni+2 + CO3-2 - log_k -6.84 - delta_h -9.94 kcal + log_k -6.84 + delta_h -9.94 kcal Ni(OH)2 - Ni(OH)2 + 2H+ = Ni+2 + 2H2O - log_k 10.8 - delta_h 30.45 kcal + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 10.8 + delta_h 30.45 kcal Ni4(OH)6SO4 - Ni4(OH)6SO4 + 6H+ = 4Ni+2 + SO4-2 + 6H2O - log_k 32 - delta_h -0 kcal + Ni4(OH)6SO4 + 6 H+ = 4 Ni+2 + SO4-2 + 6 H2O + log_k 32 + delta_h -0 kcal Bunsenite - NiO + 2H+ = Ni+2 + H2O - log_k 12.45 - delta_h -23.92 kcal + NiO + 2 H+ = Ni+2 + H2O + log_k 12.45 + delta_h -23.92 kcal Ni3(PO4)2 - Ni3(PO4)2 = 3Ni+2 + 2PO4-3 - log_k -31.3 - delta_h -0 kcal + Ni3(PO4)2 = 3 Ni+2 + 2 PO4-3 + log_k -31.3 + delta_h -0 kcal Millerite NiS + H+ = Ni+2 + HS- - log_k -8.042 - delta_h 2.5 kcal + log_k -8.042 + delta_h 2.5 kcal Retgersite - NiSO4:6H2O = Ni+2 + SO4-2 + 6H2O - log_k -2.04 - delta_h 1.1 kcal + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.04 + delta_h 1.1 kcal Morenosite - NiSO4:7H2O = Ni+2 + SO4-2 + 7H2O - log_k -2.36 - delta_h 2.94 kcal + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.36 + delta_h 2.94 kcal Ni2SiO4 - Ni2SiO4 + 4H+ = 2Ni+2 + H4SiO4 - log_k 14.54 - delta_h -33.36 kcal + Ni2SiO4 + 4 H+ = 2 Ni+2 + H4SiO4 + log_k 14.54 + delta_h -33.36 kcal AgMetal Ag = Ag+ + e- - log_k -13.51 - delta_h 25.234 kcal + log_k -13.51 + delta_h 25.234 kcal Bromyrite AgBr = Ag+ + Br- - log_k -12.27 - delta_h 20.17 kcal + log_k -12.27 + delta_h 20.17 kcal Cerargyrite AgCl = Ag+ + Cl- - log_k -9.75 - delta_h 15.652 kcal + log_k -9.75 + delta_h 15.652 kcal Ag2CO3 - Ag2CO3 = 2Ag+ + CO3-2 - log_k -11.07 - delta_h 9.53 kcal + Ag2CO3 = 2 Ag+ + CO3-2 + log_k -11.07 + delta_h 9.53 kcal AgF:4H2O - AgF:4H2O = Ag+ + F- + 4H2O - log_k 0.55 - delta_h 4.27 kcal + AgF:4H2O = Ag+ + F- + 4 H2O + log_k 0.55 + delta_h 4.27 kcal Iodyrite AgI = Ag+ + I- - log_k -16.07 - delta_h 26.82 kcal + log_k -16.07 + delta_h 26.82 kcal Ag2O - Ag2O + 2H+ = 2Ag+ + H2O - log_k 12.58 - delta_h -10.43 kcal + Ag2O + 2 H+ = 2 Ag+ + H2O + log_k 12.58 + delta_h -10.43 kcal Ag3PO4 - Ag3PO4 = 3Ag+ + PO4-3 - log_k -17.55 - delta_h -0 kcal + Ag3PO4 = 3 Ag+ + PO4-3 + log_k -17.55 + delta_h -0 kcal Acanthite - Ag2S + H+ = 2Ag+ + HS- - log_k -36.05 - delta_h 53.3 kcal + Ag2S + H+ = 2 Ag+ + HS- + log_k -36.05 + delta_h 53.3 kcal Ag2SO4 - Ag2SO4 = 2Ag+ + SO4-2 - log_k -4.92 - delta_h 4.25 kcal + Ag2SO4 = 2 Ag+ + SO4-2 + log_k -4.92 + delta_h 4.25 kcal Analcime - NaAlSi2O6:H2O + H2O + 4H+ = Na+ + Al+3 + 2H4SiO4 - log_k 6.719 - delta_h -22.84 kcal + NaAlSi2O6:H2O + H2O + 4 H+ = Na+ + Al+3 + 2 H4SiO4 + log_k 6.719 + delta_h -22.84 kcal Halloysite - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 8.994 - delta_h -39.73 kcal + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 8.994 + delta_h -39.73 kcal Kaolinite - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 5.726 - delta_h -35.28 kcal + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 5.726 + delta_h -35.28 kcal Leonhardite - Ca2Al4Si8O24:7H2O + H2O + 16H+ = 2Ca+2 + 8H4SiO4 + 4Al+3 - log_k 16.49 - delta_h -85.36 kcal + Ca2Al4Si8O24:7H2O + H2O + 16 H+ = 2 Ca+2 + 8 H4SiO4 + 4 Al+3 + log_k 16.49 + delta_h -85.36 kcal Albite(low) - NaAlSi3O8 + 4H+ + 4H2O = Na+ + Al+3 + 3H4SiO4 - log_k 2.592 - delta_h -17.4 kcal + NaAlSi3O8 + 4 H+ + 4 H2O = Na+ + Al+3 + 3 H4SiO4 + log_k 2.592 + delta_h -17.4 kcal Albite - NaAlSi3O8 + 4H+ + 4H2O = Na+ + Al+3 + 3H4SiO4 - log_k 3.506 - delta_h -20 kcal + NaAlSi3O8 + 4 H+ + 4 H2O = Na+ + Al+3 + 3 H4SiO4 + log_k 3.506 + delta_h -20 kcal Muscovite - KAl3Si3O10(OH)2 + 10H+ = K+ + 3Al+3 + 3H4SiO4 - log_k 12.99 - delta_h -59.34 kcal + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 + log_k 12.99 + delta_h -59.34 kcal Annite - KFe3AlSi3O10(OH)2 + 10H+ = K+ + 3Fe+2 + Al+3 + 3H4SiO4 - log_k 23.29 - delta_h -65.72 kcal + KFe3AlSi3O10(OH)2 + 10 H+ = K+ + 3 Fe+2 + Al+3 + 3 H4SiO4 + log_k 23.29 + delta_h -65.72 kcal Anorthite - CaAl2Si2O8 + 8H+ = Ca+2 + 2Al+3 + 2H4SiO4 - log_k 25.43 - delta_h -70.66 kcal + CaAl2Si2O8 + 8 H+ = Ca+2 + 2 Al+3 + 2 H4SiO4 + log_k 25.43 + delta_h -70.66 kcal Pyrophyllite - Al2Si4O10(OH)2 + 4H2O + 6H+ = 2Al+3 + 4H4SiO4 - log_k -1.598 - delta_h -0 kcal + Al2Si4O10(OH)2 + 4 H2O + 6 H+ = 2 Al+3 + 4 H4SiO4 + log_k -1.598 + delta_h -0 kcal Laumontite - CaAl2Si4O12:4H2O + 8H+ = Ca+2 + 2Al+3 + 4H4SiO4 - log_k 14.46 - delta_h -50.45 kcal + CaAl2Si4O12:4H2O + 8 H+ = Ca+2 + 2 Al+3 + 4 H4SiO4 + log_k 14.46 + delta_h -50.45 kcal Wairakite - CaAl2Si4O12:2H2O + 8H+ + 2H2O = Ca+2 + 2Al+3 + 4H4SiO4 - log_k 18.87 - delta_h -63.15 kcal + CaAl2Si4O12:2H2O + 8 H+ + 2 H2O = Ca+2 + 2 Al+3 + 4 H4SiO4 + log_k 18.87 + delta_h -63.15 kcal Malachite - Cu2(OH)2CO3 + 2H+ = 2Cu+2 + 2H2O + CO3-2 - log_k -5.18 - delta_h -15.61 kcal + Cu2(OH)2CO3 + 2 H+ = 2 Cu+2 + 2 H2O + CO3-2 + log_k -5.18 + delta_h -15.61 kcal Azurite - Cu3(OH)2(CO3)2 + 2H+ = 3Cu+2 + 2H2O + 2CO3-2 - log_k -16.92 - delta_h -23.77 kcal + Cu3(OH)2(CO3)2 + 2 H+ = 3 Cu+2 + 2 H2O + 2 CO3-2 + log_k -16.92 + delta_h -23.77 kcal Arsenolite - As4O6 + 6H2O = 4H3AsO3 - log_k -2.801 - delta_h 14.33 kcal + As4O6 + 6 H2O = 4 H3AsO3 + log_k -2.801 + delta_h 14.33 kcal Claudetite - As4O6 + 6H2O = 4H3AsO3 - log_k -3.065 - delta_h 13.29 kcal + As4O6 + 6 H2O = 4 H3AsO3 + log_k -3.065 + delta_h 13.29 kcal AsI3 - AsI3 + 3H2O = H3AsO3 + 3I- + 3H+ - log_k 4.155 - delta_h 1.875 kcal + AsI3 + 3 H2O = H3AsO3 + 3 I- + 3 H+ + log_k 4.155 + delta_h 1.875 kcal Oripment - As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ - log_k -60.971 - delta_h 82.89 kcal + As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ + log_k -60.971 + delta_h 82.89 kcal Realgar - AsS + 3H2O = H3AsO3 + HS- + 2H+ + e- - log_k -19.747 - delta_h 30.545 kcal + AsS + 3 H2O = H3AsO3 + HS- + 2 H+ + e- + log_k -19.747 + delta_h 30.545 kcal As2O5 - As2O5 + 3H2O = 2H3AsO4 - log_k 6.699 - delta_h -5.405 kcal + As2O5 + 3 H2O = 2 H3AsO4 + log_k 6.699 + delta_h -5.405 kcal Sb - Sb + 3H2O = Sb(OH)3 + 3H+ + 3e- - log_k -11.7058 - delta_h 20.045 kcal + Sb + 3 H2O = Sb(OH)3 + 3 H+ + 3 e- + log_k -11.7058 + delta_h 20.045 kcal Stibnite - Sb2S3 + 6H2O = 2Sb(OH)3 + 3HS- + 3H+ - log_k -60.156 - delta_h 69.29 kcal + Sb2S3 + 6 H2O = 2 Sb(OH)3 + 3 HS- + 3 H+ + log_k -60.156 + delta_h 69.29 kcal Sb2Se3 - Sb2Se3 + 6H2O = 2Sb(OH)3 + 3HSe- + 3H+ - log_k -67.7571 - delta_h 81.99 kcal + Sb2Se3 + 6 H2O = 2 Sb(OH)3 + 3 HSe- + 3 H+ + log_k -67.7571 + delta_h 81.99 kcal NiSb - NiSb + 3H2O = Sb(OH)3 + 5e- + 3H+ + Ni+2 - log_k -18.5225 - delta_h 22.945 kcal + NiSb + 3 H2O = Sb(OH)3 + 5 e- + 3 H+ + Ni+2 + log_k -18.5225 + delta_h 22.945 kcal ZnSb - ZnSb + 3H2O = Sb(OH)3 + 5e- + Zn+2 + 3H+ - log_k 11.0138 + ZnSb + 3 H2O = Sb(OH)3 + 5 e- + Zn+2 + 3 H+ + log_k 11.0138 delta_h -13.116 kcal AlSb - AlSb + 3H2O = Sb(OH)3 + 6e- + Al+3 + 3H+ - log_k 65.6241 - delta_h -0 kcal + AlSb + 3 H2O = Sb(OH)3 + 6 e- + Al+3 + 3 H+ + log_k 65.6241 + delta_h -0 kcal CdSb - CdSb + 3H2O = Sb(OH)3 + 5e- + 3H+ + Cd+2 - log_k -0.3943 - delta_h 5.345 kcal + CdSb + 3 H2O = Sb(OH)3 + 5 e- + 3 H+ + Cd+2 + log_k -0.3943 + delta_h 5.345 kcal Mg2Sb3 - Mg2Sb3 + 9H2O = 2Mg+2 + 3Sb(OH)3 + 9H+ + 13e- - log_k 74.6838 - delta_h -0 kcal + Mg2Sb3 + 9 H2O = 2 Mg+2 + 3 Sb(OH)3 + 9 H+ + 13 e- + log_k 74.6838 + delta_h -0 kcal Ag3Sb - Ag3Sb + 3H2O = Sb(OH)3 + 6e- + 3Ag+ + 3H+ - log_k -56.1818 - delta_h -0 kcal + Ag3Sb + 3 H2O = Sb(OH)3 + 6 e- + 3 Ag+ + 3 H+ + log_k -56.1818 + delta_h -0 kcal Na3Sb - Na3Sb + 3H2O = 3Na+ + Sb(OH)3 + 3H+ + 6e- - log_k 94.4084 - delta_h -103.245 kcal + Na3Sb + 3 H2O = 3 Na+ + Sb(OH)3 + 3 H+ + 6 e- + log_k 94.4084 + delta_h -103.245 kcal NaSb - NaSb + 3H2O = Na+ + Sb(OH)3 + 3H+ + 4e- - log_k 23.177 + NaSb + 3 H2O = Na+ + Sb(OH)3 + 3 H+ + 4 e- + log_k 23.177 delta_h -22.385 kcal Mn2Sb - Mn2Sb + 3H2O = 2Mn+2 + Sb(OH)3 + 7e- + 3H+ - log_k 61.0796 - delta_h -0 kcal + Mn2Sb + 3 H2O = 2 Mn+2 + Sb(OH)3 + 7 e- + 3 H+ + log_k 61.0796 + delta_h -0 kcal Ca3Sb2 - Ca3Sb2 + 6H2O = 3Ca+2 + 2Sb(OH)3 + 6H+ + 12e- - log_k 142.974 + Ca3Sb2 + 6 H2O = 3 Ca+2 + 2 Sb(OH)3 + 6 H+ + 12 e- + log_k 142.974 delta_h -175.13 kcal USb2 - USb2 + 8H2O = UO2+2 + 2Sb(OH)3 + 12e- + 10H+ - log_k 29.5246 - delta_h -24.68 kcal + USb2 + 8 H2O = UO2+2 + 2 Sb(OH)3 + 12 e- + 10 H+ + log_k 29.5246 + delta_h -24.68 kcal Cu2Sb - Cu2Sb + 3H2O = Sb(OH)3 + 6e- + 3H+ + Cu+ + Cu+2 - log_k -34.8827 - delta_h 55.745 kcal + Cu2Sb + 3 H2O = Sb(OH)3 + 6 e- + 3 H+ + Cu+ + Cu+2 + log_k -34.8827 + delta_h 55.745 kcal MnSb - MnSb + 3H2O = Mn+3 + Sb(OH)3 + 6e- + 3H+ - log_k -2.9099 - delta_h 5.045 kcal + MnSb + 3 H2O = Mn+3 + Sb(OH)3 + 6 e- + 3 H+ + log_k -2.9099 + delta_h 5.045 kcal Cu3Sb - Cu3Sb + 3H2O = Sb(OH)3 + 6e- + 3H+ + 3Cu+ - log_k -42.5937 - delta_h 73.645 kcal + Cu3Sb + 3 H2O = Sb(OH)3 + 6 e- + 3 H+ + 3 Cu+ + log_k -42.5937 + delta_h 73.645 kcal U3Sb4 - U3Sb4 + 12H2O = 3U+4 + 4Sb(OH)3 + 24e- + 12H+ - log_k 152.329 + U3Sb4 + 12 H2O = 3 U+4 + 4 Sb(OH)3 + 24 e- + 12 H+ + log_k 152.329 delta_h -235.72 kcal Sb2O4 - Sb2O4 + 2H2O + 2H+ + 2e- = 2Sb(OH)3 - log_k 3.4597 - delta_h -16.27 kcal + Sb2O4 + 2 H2O + 2 H+ + 2 e- = 2 Sb(OH)3 + log_k 3.4597 + delta_h -16.27 kcal Sb4O6II - Sb4O6 + 6H2O = 4Sb(OH)3 - log_k -19.6586 - delta_h 14.6 kcal + Sb4O6 + 6 H2O = 4 Sb(OH)3 + log_k -19.6586 + delta_h 14.6 kcal Sb4O6I - Sb4O6 + 6H2O = 4Sb(OH)3 - log_k -17.0346 - delta_h 8.99 kcal + Sb4O6 + 6 H2O = 4 Sb(OH)3 + log_k -17.0346 + delta_h 8.99 kcal Sb(OH)3(s) Sb(OH)3 = Sb(OH)3 - log_k -7.1099 - delta_h 7.2 kcal + log_k -7.1099 + delta_h 7.2 kcal Cu(SbO3)2 - Cu(SbO3)2 + 6H+ + 4e- = 2Sb(OH)3 + Cu+2 - log_k 45.2105 - delta_h -0 kcal + Cu(SbO3)2 + 6 H+ + 4 e- = 2 Sb(OH)3 + Cu+2 + log_k 45.2105 + delta_h -0 kcal Sb2O3 - Sb2O3 + 3H2O = 2Sb(OH)3 - log_k -12.3654 - delta_h 7.325 kcal + Sb2O3 + 3 H2O = 2 Sb(OH)3 + log_k -12.3654 + delta_h 7.325 kcal Sb2O3 - Sb2O3 + 3H2O = 2Sb(OH)3 - log_k -8.4806 - delta_h 4.545 kcal + Sb2O3 + 3 H2O = 2 Sb(OH)3 + log_k -8.4806 + delta_h 4.545 kcal Sb2O5 - Sb2O5 + 7H2O = 2Sb(OH)6- + 2H+ - log_k -12.4827 - delta_h -0 kcal + Sb2O5 + 7 H2O = 2 Sb(OH)6- + 2 H+ + log_k -12.4827 + delta_h -0 kcal SbO2 - SbO2 + 4H2O = Sb(OH)6- + e- + 2H+ - log_k -27.8241 - delta_h -0 kcal + SbO2 + 4 H2O = Sb(OH)6- + e- + 2 H+ + log_k -27.8241 + delta_h -0 kcal SbBr3 - SbBr3 + 3H2O = Sb(OH)3 + 3Br- + 3H+ - log_k 1.0562 - delta_h -5.072 kcal + SbBr3 + 3 H2O = Sb(OH)3 + 3 Br- + 3 H+ + log_k 1.0562 + delta_h -5.072 kcal SbCl3 - SbCl3 + 3H2O = Sb(OH)3 + 3Cl- + 3H+ - log_k 0.5915 - delta_h -8.414 kcal + SbCl3 + 3 H2O = Sb(OH)3 + 3 Cl- + 3 H+ + log_k 0.5915 + delta_h -8.414 kcal SbF3 - SbF3 + 3H2O = Sb(OH)3 + 3H+ + 3F- - log_k -10.2251 - delta_h -1.608 kcal + SbF3 + 3 H2O = Sb(OH)3 + 3 H+ + 3 F- + log_k -10.2251 + delta_h -1.608 kcal SbI3 - SbI3 + 3H2O = Sb(OH)3 + 3H+ + 3I- - log_k -0.538 - delta_h 3.248 kcal + SbI3 + 3 H2O = Sb(OH)3 + 3 H+ + 3 I- + log_k -0.538 + delta_h 3.248 kcal Zn(BO2)2 - Zn(BO2)2 + 2H2O + 2H+ = Zn+2 + 2H3BO3 - log_k 8.29 - delta_h -0 kcal + Zn(BO2)2 + 2 H2O + 2 H+ = Zn+2 + 2 H3BO3 + log_k 8.29 + delta_h -0 kcal Cd(BO2)2 - Cd(BO2)2 + 2H2O + 2H+ = Cd+2 + 2H3BO3 - log_k 9.84 - delta_h -0 kcal + Cd(BO2)2 + 2 H2O + 2 H+ = Cd+2 + 2 H3BO3 + log_k 9.84 + delta_h -0 kcal Pb(BO2)2 - Pb(BO2)2 + 2H2O + 2H+ = Pb+2 + 2H3BO3 - log_k 7.61 - delta_h -5.8 kcal + Pb(BO2)2 + 2 H2O + 2 H+ = Pb+2 + 2 H3BO3 + log_k 7.61 + delta_h -5.8 kcal MnHPO4(C) MnHPO4 = Mn+2 + PO4-3 + H+ - log_k -25.4 - delta_h -0 kcal + log_k -25.4 + delta_h -0 kcal PbHPO4 PbHPO4 = Pb+2 + PO4-3 + H+ - log_k -23.9 - delta_h -0 kcal + log_k -23.9 + delta_h -0 kcal Pb3(PO4)2 - Pb3(PO4)2 = 3Pb+2 + 2PO4-3 - log_k -44.5 - delta_h -0 kcal + Pb3(PO4)2 = 3 Pb+2 + 2 PO4-3 + log_k -44.5 + delta_h -0 kcal Sulfur - S + H+ + 2e- = HS- - log_k -2.11 - delta_h -4.2 kcal + S + H+ + 2 e- = HS- + log_k -2.11 + delta_h -4.2 kcal AlAsO4:2H2O - AlAsO4:2H2O + 3H+ = Al+3 + H3AsO4 + 2H2O - log_k 4.8 - delta_h -0 kcal + AlAsO4:2H2O + 3 H+ = Al+3 + H3AsO4 + 2 H2O + log_k 4.8 + delta_h -0 kcal Ca3(AsO4)2:6H2O - Ca3(AsO4)2:6H2O + 6H+ = 3Ca+2 + 2H3AsO4 + 6H2O - log_k 22.3 - delta_h -0 kcal + Ca3(AsO4)2:6H2O + 6 H+ = 3 Ca+2 + 2 H3AsO4 + 6 H2O + log_k 22.3 + delta_h -0 kcal Cu3(AsO4)2:6H2O - Cu3(AsO4)2:6H2O + 6H+ = 3Cu+2 + 2H3AsO4 + 6H2O - log_k 6.1 - delta_h -0 kcal + Cu3(AsO4)2:6H2O + 6 H+ = 3 Cu+2 + 2 H3AsO4 + 6 H2O + log_k 6.1 + delta_h -0 kcal FeAsO4:2H2O - FeAsO4:2H2O + 3H+ = Fe+3 + H3AsO4 + 2H2O - log_k 0.4 - delta_h -0 kcal + FeAsO4:2H2O + 3 H+ = Fe+3 + H3AsO4 + 2 H2O + log_k 0.4 + delta_h -0 kcal Mn3(AsO4)2:8H2O - Mn3(AsO4)2:8H2O + 6H+ = 3Mn+2 + 2H3AsO4 + 8H2O - log_k 12.5 - delta_h -0 kcal + Mn3(AsO4)2:8H2O + 6 H+ = 3 Mn+2 + 2 H3AsO4 + 8 H2O + log_k 12.5 + delta_h -0 kcal Ni3(AsO4)2:8H2O - Ni3(AsO4)2:8H2O + 6H+ = 3Ni+2 + 2H3AsO4 + 8H2O - log_k 15.7 - delta_h -0 kcal + Ni3(AsO4)2:8H2O + 6 H+ = 3 Ni+2 + 2 H3AsO4 + 8 H2O + log_k 15.7 + delta_h -0 kcal Pb3(AsO4)2 - Pb3(AsO4)2 + 6H+ = 3Pb+2 + 2H3AsO4 - log_k 5.8 - delta_h -0 kcal + Pb3(AsO4)2 + 6 H+ = 3 Pb+2 + 2 H3AsO4 + log_k 5.8 + delta_h -0 kcal Zn3(AsO4)2:2.5H2O - Zn3(AsO4)2:2.5H2O + 6H+ = 3Zn+2 + 2H3AsO4 + 2.5H2O - log_k 13.65 - delta_h -0 kcal + Zn3(AsO4)2:2.5H2O + 6 H+ = 3 Zn+2 + 2 H3AsO4 + 2.5 H2O + log_k 13.65 + delta_h -0 kcal Ba3(AsO4)2 - Ba3(AsO4)2 + 6H+ = 3Ba+2 + 2H3AsO4 - log_k -8.91 - delta_h 2.64 kcal + Ba3(AsO4)2 + 6 H+ = 3 Ba+2 + 2 H3AsO4 + log_k -8.91 + delta_h 2.64 kcal VMetal - V = V+3 + 3e- - log_k 42.35 - delta_h -62.9 kcal + V = V+3 + 3 e- + log_k 42.35 + delta_h -62.9 kcal VO - VO + 2H+ = V+3 + H2O + e- - log_k 13.08 - delta_h -28.02 kcal + VO + 2 H+ = V+3 + H2O + e- + log_k 13.08 + delta_h -28.02 kcal VCl2 - VCl2 = V+3 + 2Cl- + e- - log_k 17.97 - delta_h -35.8 kcal + VCl2 = V+3 + 2 Cl- + e- + log_k 17.97 + delta_h -35.8 kcal V2O3 - VO1.5 + 3H+ = V+3 + 1.5H2O - log_k 4.9 - delta_h -19.72 kcal + VO1.5 + 3 H+ = V+3 + 1.5 H2O + log_k 4.9 + delta_h -19.72 kcal V(OH)3 - V(OH)3 + 3H+ = V+3 + 3H2O - log_k 7.65 - delta_h -0 kcal + V(OH)3 + 3 H+ = V+3 + 3 H2O + log_k 7.65 + delta_h -0 kcal VCl3 - VCl3 = V+3 + 3Cl- - log_k 21.73 - delta_h -43.96 kcal + VCl3 = V+3 + 3 Cl- + log_k 21.73 + delta_h -43.96 kcal VOCl - VOCl + 2H+ = V+3 + Cl- + H2O - log_k 9.41 - delta_h -26.17 kcal + VOCl + 2 H+ = V+3 + Cl- + H2O + log_k 9.41 + delta_h -26.17 kcal V2O4 - VO2 + 2H+ = VO+2 + H2O - log_k 4.27 - delta_h -14.07 kcal + VO2 + 2 H+ = VO+2 + H2O + log_k 4.27 + delta_h -14.07 kcal VO(OH)2 - VO(OH)2 + 2H+ = VO+2 + 2H2O - log_k 5.85 - delta_h -0 kcal + VO(OH)2 + 2 H+ = VO+2 + 2 H2O + log_k 5.85 + delta_h -0 kcal VF4 - VF4 + H2O = VO+2 + 4F- + 2H+ - log_k 14.93 - delta_h -47.59 kcal + VF4 + H2O = VO+2 + 4 F- + 2 H+ + log_k 14.93 + delta_h -47.59 kcal VOSO4(C) VOSO4 = VO+2 + SO4-2 - log_k 3.57 - delta_h -20.72 kcal + log_k 3.57 + delta_h -20.72 kcal # equation does not balance #(VO)3(PO4)2 # (VO)3(PO4)2 = VO+2 + 0.667PO4-3 # log_k -8.37 # delta_h -0 kcal VOCl2 - VOCl2 = VO+2 + 2Cl- - log_k 12.79 - delta_h -28.2 kcal + VOCl2 = VO+2 + 2 Cl- + log_k 12.79 + delta_h -28.2 kcal V2O5 - VO2.5 + H+ = VO2+ + 0.5H2O - log_k -0.72 - delta_h -4.16 kcal + VO2.5 + H+ = VO2+ + 0.5 H2O + log_k -0.72 + delta_h -4.16 kcal Tyuyamunite - Ca0.5UO2VO4 + 4H+ = 0.5Ca+2 + UO2+2 + VO2+ + 2H2O - log_k 2.04 - delta_h -18.3 kcal + Ca0.5UO2VO4 + 4 H+ = 0.5 Ca+2 + UO2+2 + VO2+ + 2 H2O + log_k 2.04 + delta_h -18.3 kcal Ca_Vanadate - Ca0.5VO3 + 2H+ = 0.5Ca+2 + VO2+ + H2O - log_k 2.83 - delta_h -10.13 kcal + Ca0.5VO3 + 2 H+ = 0.5 Ca+2 + VO2+ + H2O + log_k 2.83 + delta_h -10.13 kcal Ca3(VO4)2 - Ca1.5VO4 + 4H+ = 1.5Ca+2 + VO2+ + 2H2O - log_k 19.48 - delta_h -35.07 kcal + Ca1.5VO4 + 4 H+ = 1.5 Ca+2 + VO2+ + 2 H2O + log_k 19.48 + delta_h -35.07 kcal Ca2V2O7 - CaVO3.5 + 3H+ = Ca+2 + VO2+ + 1.5H2O - log_k 8.75 - delta_h -19.06 kcal + CaVO3.5 + 3 H+ = Ca+2 + VO2+ + 1.5 H2O + log_k 8.75 + delta_h -19.06 kcal Fe_Vanadate - Fe0.5VO3 + 2H+ = 0.5Fe+2 + VO2+ + H2O - log_k -1.86 - delta_h -7.37 kcal + Fe0.5VO3 + 2 H+ = 0.5 Fe+2 + VO2+ + H2O + log_k -1.86 + delta_h -7.37 kcal Mg_Vanadate - Mg0.5VO3 + 2H+ = 0.5Mg+2 + VO2+ + H2O - log_k 5.64 - delta_h -16.33 kcal + Mg0.5VO3 + 2 H+ = 0.5 Mg+2 + VO2+ + H2O + log_k 5.64 + delta_h -16.33 kcal Mg2V2O7 - MgVO3.5 + 3H+ = Mg+2 + VO2+ + 1.5H2O - log_k 13.18 - delta_h -30.5 kcal + MgVO3.5 + 3 H+ = Mg+2 + VO2+ + 1.5 H2O + log_k 13.18 + delta_h -30.5 kcal Mn_Vanadate - Mn0.5VO3 + 2H+ = 0.5Mn+2 + VO2+ + H2O - log_k 2.45 - delta_h -11.05 kcal + Mn0.5VO3 + 2 H+ = 0.5 Mn+2 + VO2+ + H2O + log_k 2.45 + delta_h -11.05 kcal NH4VO3 - NH4VO3 + 2H+ = NH4+ + VO2+ + H2O - log_k 2.69 - delta_h -3.77 kcal + NH4VO3 + 2 H+ = NH4+ + VO2+ + H2O + log_k 2.69 + delta_h -3.77 kcal Na_Vanadate - NaVO3 + 2H+ = Na+ + VO2+ + H2O - log_k 3.71 - delta_h -7.01 kcal + NaVO3 + 2 H+ = Na+ + VO2+ + H2O + log_k 3.71 + delta_h -7.01 kcal Na3VO4 - Na3VO4 + 4H+ = 3Na+ + VO2+ + 2H2O - log_k 36.94 - delta_h -44.42 kcal + Na3VO4 + 4 H+ = 3 Na+ + VO2+ + 2 H2O + log_k 36.94 + delta_h -44.42 kcal Na4V2O7 - Na2VO3.5 + 3H+ = 2Na+ + VO2+ + 1.5H2O - log_k 18.7 - delta_h -24.03 kcal + Na2VO3.5 + 3 H+ = 2 Na+ + VO2+ + 1.5 H2O + log_k 18.7 + delta_h -24.03 kcal Pb3(VO4)2 - Pb1.5VO4 + 4H+ = 1.5Pb+2 + VO2+ + 2H2O - log_k 3.07 - delta_h -8.68 kcal + Pb1.5VO4 + 4 H+ = 1.5 Pb+2 + VO2+ + 2 H2O + log_k 3.07 + delta_h -8.68 kcal Pb2V2O7 - PbVO3.5 + 3H+ = Pb+2 + VO2+ + 1.5H2O - log_k -0.95 - delta_h -3.22 kcal + PbVO3.5 + 3 H+ = Pb+2 + VO2+ + 1.5 H2O + log_k -0.95 + delta_h -3.22 kcal Carnotite - KUO2VO4 + 4H+ = K+ + UO2+2 + VO2+ + 2H2O - log_k 0.23 - delta_h -8.7 kcal + KUO2VO4 + 4 H+ = K+ + UO2+2 + VO2+ + 2 H2O + log_k 0.23 + delta_h -8.7 kcal Ag_Vanadate - AgVO3 + 2H+ = Ag+ + VO2+ + H2O - log_k 0.77 - delta_h -0 kcal + AgVO3 + 2 H+ = Ag+ + VO2+ + H2O + log_k 0.77 + delta_h -0 kcal Ag2HVO4 - Ag2HVO4 + 3H+ = 2Ag+ + VO2+ + 2H2O - log_k 1.48 - delta_h -0 kcal + Ag2HVO4 + 3 H+ = 2 Ag+ + VO2+ + 2 H2O + log_k 1.48 + delta_h -0 kcal Ag3H2VO5 - Ag3H2VO5 + 4H+ = 3Ag+ + VO2+ + 3H2O - log_k 5.18 - delta_h -0 kcal + Ag3H2VO5 + 4 H+ = 3 Ag+ + VO2+ + 3 H2O + log_k 5.18 + delta_h -0 kcal VO2Cl VO2Cl = VO2+ + Cl- - log_k 2.81 - delta_h -9.65 kcal + log_k 2.81 + delta_h -9.65 kcal V3O5 - V3O5 + 4H+ = 3VO+2 + 2H2O + 2e- - log_k 1.87 - delta_h -23.53 kcal + V3O5 + 4 H+ = 3 VO+2 + 2 H2O + 2 e- + log_k 1.87 + delta_h -23.53 kcal V4O7 - V4O7 + 6H+ = 4VO+2 + 3H2O + 2e- - log_k 7.14 - delta_h -39.15 kcal + V4O7 + 6 H+ = 4 VO+2 + 3 H2O + 2 e- + log_k 7.14 + delta_h -39.15 kcal V6O13 - V6O13 + 2H+ = 6VO2+ + H2O + 4e- - log_k -60.86 - delta_h 64.89 kcal + V6O13 + 2 H+ = 6 VO2+ + H2O + 4 e- + log_k -60.86 + delta_h 64.89 kcal Lime - CaO + 2H+ = Ca+2 + H2O - log_k 32.797 + CaO + 2 H+ = Ca+2 + H2O + log_k 32.797 delta_h -46.265 kcal Portlandite - Ca(OH)2 + 2H+ = Ca+2 + 2H2O - log_k 22.675 - delta_h -30.69 kcal + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.675 + delta_h -30.69 kcal # not balanced #Wustite @@ -4859,213 +4863,213 @@ Portlandite # log_k 11.687 # delta_h -24.846 kcal Periclase - MgO + 2H+ = Mg+2 + H2O - log_k 21.51 + MgO + 2 H+ = Mg+2 + H2O + log_k 21.51 delta_h -36.135 kcal Hercynite - FeAl2O4 + 8H+ = Fe+2 + 2Al+3 + 4H2O - log_k 27.162 - delta_h -78.36 kcal + FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O + log_k 27.162 + delta_h -78.36 kcal Spinel - MgAl2O4 + 8H+ = Mg+2 + 2Al+3 + 4H2O - log_k 36.333 + MgAl2O4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O + log_k 36.333 delta_h -89.089 kcal Mg-Ferrite - MgFe2O4 + 8H+ = Mg+2 + 2Fe+3 + 4H2O - log_k 16.765 + MgFe2O4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O + log_k 16.765 delta_h -66.639 kcal Cryolite - Na3AlF6 = Al+3 + 3Na+ + 6F- - log_k -31.49 - delta_h 10.904 kcal + Na3AlF6 = Al+3 + 3 Na+ + 6 F- + log_k -31.49 + delta_h 10.904 kcal Wollastonite - CaSiO3 + H2O + 2H+ = H4SiO4 + Ca+2 - log_k 12.996 + CaSiO3 + H2O + 2 H+ = H4SiO4 + Ca+2 + log_k 12.996 delta_h -19.498 kcal P-Wollstanite - CaSiO3 + H2O + 2H+ = H4SiO4 + Ca+2 - log_k 13.846 + CaSiO3 + H2O + 2 H+ = H4SiO4 + Ca+2 + log_k 13.846 delta_h -21.068 kcal Ca-Olivine - Ca2SiO4 + 4H+ = H4SiO4 + 2Ca+2 - log_k 37.649 + Ca2SiO4 + 4 H+ = H4SiO4 + 2 Ca+2 + log_k 37.649 delta_h -54.695 kcal Larnite - Ca2SiO4 + 4H+ = H4SiO4 + 2Ca+2 - log_k 39.141 + Ca2SiO4 + 4 H+ = H4SiO4 + 2 Ca+2 + log_k 39.141 delta_h -57.238 kcal Ca3SiO5 - Ca3SiO5 + 6H+ = H4SiO4 + 3Ca+2 + H2O - log_k 73.867 - delta_h -106.335 kcal + Ca3SiO5 + 6 H+ = H4SiO4 + 3 Ca+2 + H2O + log_k 73.867 + delta_h -106.335 kcal Monticellite - CaMgSiO4 + 4H+ = H4SiO4 + Ca+2 + Mg+2 - log_k 30.272 + CaMgSiO4 + 4 H+ = H4SiO4 + Ca+2 + Mg+2 + log_k 30.272 delta_h -49.421 kcal Akerminite - Ca2MgSi2O7 + H2O + 6H+ = 2H4SiO4 + 2Ca+2 + Mg+2 - log_k 47.472 + Ca2MgSi2O7 + H2O + 6 H+ = 2 H4SiO4 + 2 Ca+2 + Mg+2 + log_k 47.472 delta_h -76.445 kcal Merwinite - Ca3MgSi2O8 + 8H+ = 2H4SiO4 + Mg+2 + 3Ca+2 - log_k 68.543 - delta_h -107.111 kcal + Ca3MgSi2O8 + 8 H+ = 2 H4SiO4 + Mg+2 + 3 Ca+2 + log_k 68.543 + delta_h -107.111 kcal Kalsilite - KAlSiO4 + 4H+ = H4SiO4 + Al+3 + K+ - log_k 12.838 + KAlSiO4 + 4 H+ = H4SiO4 + Al+3 + K+ + log_k 12.838 delta_h -28.919 kcal Leucite - KAlSi2O6 + 2H2O + 4H+ = 2H4SiO4 + Al+3 + K+ - log_k 6.423 + KAlSi2O6 + 2 H2O + 4 H+ = 2 H4SiO4 + Al+3 + K+ + log_k 6.423 delta_h -22.085 kcal Microcline - KAlSi3O8 + 4H2O + 4H+ = 3H4SiO4 + Al+3 + K+ - log_k 0.616 + KAlSi3O8 + 4 H2O + 4 H+ = 3 H4SiO4 + Al+3 + K+ + log_k 0.616 delta_h -12.309 kcal Sanidine(H) - KAlSi3O8 + 4H2O + 4H+ = 3H4SiO4 + Al+3 + K+ - log_k 1.062 + KAlSi3O8 + 4 H2O + 4 H+ = 3 H4SiO4 + Al+3 + K+ + log_k 1.062 delta_h -14.252 kcal Nepheline - NaAlSiO4 + 4H+ = H4SiO4 + Al+3 + Na+ - log_k 14.218 + NaAlSiO4 + 4 H+ = H4SiO4 + Al+3 + Na+ + log_k 14.218 delta_h -33.204 kcal Gehlenite - Ca2Al2SiO7 + 10H+ = 2Al+3 + H4SiO4 + 2Ca+2 + 3H2O - log_k 56.822 - delta_h -116.125 kcal + Ca2Al2SiO7 + 10 H+ = 2 Al+3 + H4SiO4 + 2 Ca+2 + 3 H2O + log_k 56.822 + delta_h -116.125 kcal Lepidocrocite - FeOOH + 3H+ = Fe+3 + 2H2O - log_k 1.371 - delta_h -0 kcal + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 1.371 + delta_h -0 kcal Na-Nontronite - Fe2Al.33Si3.67O10(OH)2Na0.33 + 7.32H+ + 2.68H2O = 0.33Al+3 + 2Fe+3 + 0.33Na+ + 3.67H4SiO4 - log_k -14.504 - delta_h -0 kcal + Fe2Al.33Si3.67O10(OH)2Na0.33 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 2 Fe+3 + 0.33 Na+ + 3.67 H4SiO4 + log_k -14.504 + delta_h -0 kcal K-Nontronite - Fe2Al.33Si3.67O10(OH)2K0.33 + 7.32H+ + 2.68H2O = 0.33Al+3 + 2Fe+3 + 0.33K+ + 3.67H4SiO4 - log_k -15.549 - delta_h -0 kcal + Fe2Al.33Si3.67O10(OH)2K0.33 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 2 Fe+3 + 0.33 K+ + 3.67 H4SiO4 + log_k -15.549 + delta_h -0 kcal Ca-Nontronite - Fe2Al.33Si3.67O10(OH)2Ca0.165 + 7.32H+ + 2.68H2O = 0.33Al+3 + 2Fe+3 + 0.165Ca+2 + 3.67H4SiO4 - log_k -20.889 - delta_h -0 kcal + Fe2Al.33Si3.67O10(OH)2Ca0.165 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 2 Fe+3 + 0.165 Ca+2 + 3.67 H4SiO4 + log_k -20.889 + delta_h -0 kcal Mg-Nontronite - Fe2Al.33Si3.67O10(OH)2Mg0.165 + 7.32H+ + 2.68H2O = 0.33Al+3 + 2Fe+3 + 0.165Mg+2 + 3.67H4SiO4 - log_k -20.589 - delta_h -0 kcal + Fe2Al.33Si3.67O10(OH)2Mg0.165 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 2 Fe+3 + 0.165 Mg+2 + 3.67 H4SiO4 + log_k -20.589 + delta_h -0 kcal Montmorillonite - Mg0.485Fe.22Al1.71Si3.81O10(OH)2 + 6.76H+ + 3.24H2O = 3.81H4SiO4 + 0.485Mg+2 + 0.22Fe+3 + 1.71Al+3 - log_k 2.67 - delta_h -0 kcal + Mg0.485Fe.22Al1.71Si3.81O10(OH)2 + 6.76 H+ + 3.24 H2O = 3.81 H4SiO4 + 0.485 Mg+2 + 0.22 Fe+3 + 1.71 Al+3 + log_k 2.67 + delta_h -0 kcal TlMetal Tl = Tl+ + e- - log_k 5.6733 - delta_h 1.28 kcal + log_k 5.6733 + delta_h 1.28 kcal Tl2O - Tl2O + 2H+ = 2Tl+ + H2O - log_k 27.0984 + Tl2O + 2 H+ = 2 Tl+ + H2O + log_k 27.0984 delta_h -23.055 kcal TlOH TlOH + H+ = Tl+ + H2O - log_k 12.9225 - delta_h -9.935 kcal + log_k 12.9225 + delta_h -9.935 kcal TlCl TlCl = Tl+ + Cl- - log_k -3.7243 - delta_h 10.137 kcal + log_k -3.7243 + delta_h 10.137 kcal TlBr TlBr = Tl+ + Br- - log_k -5.419 - delta_h 13.641 kcal + log_k -5.419 + delta_h 13.641 kcal TlI TlI = Tl+ + I- - log_k -7.1964 - delta_h 17.281 kcal + log_k -7.1964 + delta_h 17.281 kcal Tl2S - Tl2S + H+ = 2Tl+ + HS- - log_k -7.1832 - delta_h 21.56 kcal + Tl2S + H+ = 2 Tl+ + HS- + log_k -7.1832 + delta_h 21.56 kcal Tl2SO4 - Tl2SO4 = 2Tl+ + SO4-2 - log_k -3.6942 - delta_h 7.94 kcal + Tl2SO4 = 2 Tl+ + SO4-2 + log_k -3.6942 + delta_h 7.94 kcal Tl2Se - Tl2Se + H+ = 2Tl+ + HSe- - log_k -6.6848 - delta_h 20.36 kcal + Tl2Se + H+ = 2 Tl+ + HSe- + log_k -6.6848 + delta_h 20.36 kcal Tl2SeO4 - Tl2SeO4 = 2Tl+ + SeO4-2 - log_k -4.0168 - delta_h 9.76 kcal + Tl2SeO4 = 2 Tl+ + SeO4-2 + log_k -4.0168 + delta_h 9.76 kcal TlNO3 TlNO3 = Tl+ + NO3- - log_k -1.5319 - delta_h 10.02 kcal + log_k -1.5319 + delta_h 10.02 kcal Tl2CO3 - Tl2CO3 = 2Tl+ + CO3-2 - log_k -3.8482 - delta_h 8.02 kcal + Tl2CO3 = 2 Tl+ + CO3-2 + log_k -3.8482 + delta_h 8.02 kcal Tl(OH)3 Tl(OH)3 = Tl(OH)3 - log_k -6.4503 - delta_h -0 kcal + log_k -6.4503 + delta_h -0 kcal Avicennite - Tl2O3 + 3H2O = 2Tl(OH)3 - log_k -16.3236 - delta_h -0 kcal + Tl2O3 + 3 H2O = 2 Tl(OH)3 + log_k -16.3236 + delta_h -0 kcal Se(hex) - Se + H+ + 2e- = HSe- - log_k -7.6963 - delta_h 3.8 kcal + Se + H+ + 2 e- = HSe- + log_k -7.6963 + delta_h 3.8 kcal Se(A) - Se + H+ + 2e- = HSe- - log_k -7.1099 - delta_h 2.6 kcal + Se + H+ + 2 e- = HSe- + log_k -7.1099 + delta_h 2.6 kcal Ferroselite - FeSe2 + 2H+ + 2e- = 2HSe- + Fe+2 - log_k -18.5959 - delta_h 11.3 kcal + FeSe2 + 2 H+ + 2 e- = 2 HSe- + Fe+2 + log_k -18.5959 + delta_h 11.3 kcal Clausthalite PbSe + H+ = HSe- + Pb+2 - log_k -21.2162 - delta_h 28 kcal + log_k -21.2162 + delta_h 28 kcal Ag2Se - Ag2Se + H+ = HSe- + 2Ag+ - log_k -43.6448 - delta_h 64.95 kcal + Ag2Se + H+ = HSe- + 2 Ag+ + log_k -43.6448 + delta_h 64.95 kcal CdSe CdSe + H+ = HSe- + Cd+2 - log_k -18.0739 - delta_h 18.16 kcal + log_k -18.0739 + delta_h 18.16 kcal CuSe CuSe + H+ = HSe- + Cu+2 - log_k -26.5121 - delta_h 28.95 kcal + log_k -26.5121 + delta_h 28.95 kcal Cu2Se(alpha) - Cu2Se + H+ = HSe- + 2Cu+ - log_k -36.0922 - delta_h 51.21 kcal + Cu2Se + H+ = HSe- + 2 Cu+ + log_k -36.0922 + delta_h 51.21 kcal CuSe2 - CuSe2 + 2H+ + 2e- = 2HSe- + Cu+2 - log_k -33.3655 - delta_h 33.6 kcal + CuSe2 + 2 H+ + 2 e- = 2 HSe- + Cu+2 + log_k -33.3655 + delta_h 33.6 kcal Cu3Se2 - Cu3Se2 + 2H+ = 2HSe- + 2Cu+ + Cu+2 - log_k -63.4911 - delta_h 81.34 kcal + Cu3Se2 + 2 H+ = 2 HSe- + 2 Cu+ + Cu+2 + log_k -63.4911 + delta_h 81.34 kcal FeSe FeSe + H+ = HSe- + Fe+2 - log_k -7.1466 - delta_h 0.5 kcal + log_k -7.1466 + delta_h 0.5 kcal MnSe MnSe + H+ = HSe- + Mn+2 - log_k 5.3508 - delta_h -13.46 kcal + log_k 5.3508 + delta_h -13.46 kcal ZnSe ZnSe + H+ = HSe- + Zn+2 - log_k -11.3642 - delta_h 6.439 kcal + log_k -11.3642 + delta_h 6.439 kcal # cobalt not defined #CoSe @@ -5075,52 +5079,52 @@ ZnSe NiSe NiSe + H+ = HSe- + Ni+2 - log_k -17.7382 - delta_h -0 kcal + log_k -17.7382 + delta_h -0 kcal SeO2 SeO2 + H2O = HSeO3- + H+ - log_k 0.1246 - delta_h 0.335 kcal + log_k 0.1246 + delta_h 0.335 kcal BaSeO3 BaSeO3 + H+ = HSeO3- + Ba+2 - log_k 4.1634 - delta_h -6.28 kcal + log_k 4.1634 + delta_h -6.28 kcal CaSeO3:2H2O - CaSeO3:2H2O + H+ = HSeO3- + Ca+2 + 2H2O - log_k 2.8139 - delta_h -4.65 kcal + CaSeO3:2H2O + H+ = HSeO3- + Ca+2 + 2 H2O + log_k 2.8139 + delta_h -4.65 kcal CuSeO3:2H2O - CuSeO3:2H2O + H+ = HSeO3- + Cu+2 + 2H2O - log_k 0.4838 - delta_h -8.81 kcal + CuSeO3:2H2O + H+ = HSeO3- + Cu+2 + 2 H2O + log_k 0.4838 + delta_h -8.81 kcal Fe2(SeO3)3:2H2O - Fe2(SeO3)3:2H2O + 3H+ = 3HSeO3- + 2Fe+3 + 2H2O - log_k -20.6262 - delta_h -0 kcal + Fe2(SeO3)3:2H2O + 3 H+ = 3 HSeO3- + 2 Fe+3 + 2 H2O + log_k -20.6262 + delta_h -0 kcal Fe2(OH)4SeO3 - Fe2(OH)4SeO3 + 5H+ = HSeO3- + 2Fe+3 + 4H2O - log_k 1.5539 - delta_h -0 kcal + Fe2(OH)4SeO3 + 5 H+ = HSeO3- + 2 Fe+3 + 4 H2O + log_k 1.5539 + delta_h -0 kcal MgSeO3:6H2O - MgSeO3:6H2O + H+ = HSeO3- + Mg+2 + 6H2O - log_k 4.0314 - delta_h 1.25 kcal + MgSeO3:6H2O + H+ = HSeO3- + Mg+2 + 6 H2O + log_k 4.0314 + delta_h 1.25 kcal MnSeO3:2H2O - MnSeO3:2H2O + H+ = HSeO3- + Mn+2 + 2H2O - log_k 0.9822 - delta_h 2.03 kcal + MnSeO3:2H2O + H+ = HSeO3- + Mn+2 + 2 H2O + log_k 0.9822 + delta_h 2.03 kcal NiSeO3:2H2O - NiSeO3:2H2O + H+ = HSeO3- + Ni+2 + 2H2O - log_k 2.8147 - delta_h -7.41 kcal + NiSeO3:2H2O + H+ = HSeO3- + Ni+2 + 2 H2O + log_k 2.8147 + delta_h -7.41 kcal SrSeO3 SrSeO3 + H+ = HSeO3- + Sr+2 - log_k 0.1034 - delta_h -0 kcal + log_k 0.1034 + delta_h -0 kcal MnSeO3 MnSeO3 + H+ = HSeO3- + Mn+2 - log_k 1.21 - delta_h -0 kcal + log_k 1.21 + delta_h -0 kcal # cobalt not defined #CoSeO3 @@ -5128,181 +5132,181 @@ MnSeO3 # log_k 0.1906 # delta_h -0 kcal Ag2SeO3 - Ag2SeO3 + H+ = HSeO3- + 2Ag+ - log_k -7.07 - delta_h 9.47 kcal + Ag2SeO3 + H+ = HSeO3- + 2 Ag+ + log_k -7.07 + delta_h 9.47 kcal SeO3 - SeO3 + H2O = SeO4-2 + 2H+ - log_k 21.044 + SeO3 + H2O = SeO4-2 + 2 H+ + log_k 21.044 delta_h -34.985 kcal Ag2SeO4 - Ag2SeO4 = SeO4-2 + 2Ag+ - log_k -8.9014 - delta_h 10.45 kcal + Ag2SeO4 = SeO4-2 + 2 Ag+ + log_k -8.9014 + delta_h 10.45 kcal BaSeO4 BaSeO4 = SeO4-2 + Ba+2 - log_k -5.1895 - delta_h 2 kcal + log_k -5.1895 + delta_h 2 kcal CaSeO4:2H2O - CaSeO4:2H2O = SeO4-2 + Ca+2 + 2H2O - log_k -2.9473 - delta_h 0.88 kcal + CaSeO4:2H2O = SeO4-2 + Ca+2 + 2 H2O + log_k -2.9473 + delta_h 0.88 kcal PbSeO4 PbSeO4 = SeO4-2 + Pb+2 - log_k -6.8387 - delta_h 3.8 kcal + log_k -6.8387 + delta_h 3.8 kcal SrSeO4 SrSeO4 = SeO4-2 + Sr+2 - log_k -6.8747 - delta_h 2.69 kcal + log_k -6.8747 + delta_h 2.69 kcal HgMetal - Hg = 0.5Hg2+2 + e- - log_k -13.4552 - delta_h 19.935 kcal + Hg = 0.5 Hg2+2 + e- + log_k -13.4552 + delta_h 19.935 kcal Hg2Br2 - Hg2Br2 = Hg2+2 + 2Br- - log_k -22.2091 - delta_h 31.252 kcal + Hg2Br2 = Hg2+2 + 2 Br- + log_k -22.2091 + delta_h 31.252 kcal Hg2CO3 Hg2CO3 = Hg2+2 + CO3-2 - log_k -13.9586 - delta_h -0 kcal + log_k -13.9586 + delta_h -0 kcal Calomel - Hg2Cl2 = Hg2+2 + 2Cl- - log_k -17.8427 - delta_h 23.444 kcal + Hg2Cl2 = Hg2+2 + 2 Cl- + log_k -17.8427 + delta_h 23.444 kcal Hg2F2 - Hg2F2 = Hg2+2 + 2F- - log_k -3.0811 - delta_h -4.432 kcal + Hg2F2 = Hg2+2 + 2 F- + log_k -3.0811 + delta_h -4.432 kcal Hg2I2 - Hg2I2 = Hg2+2 + 2I- - log_k -28.2782 - delta_h -0 kcal + Hg2I2 = Hg2+2 + 2 I- + log_k -28.2782 + delta_h -0 kcal Hg2(OH)2 - Hg2(OH)2 + 2H+ = Hg2+2 + 2H2O - log_k 5.2603 - delta_h -0 kcal + Hg2(OH)2 + 2 H+ = Hg2+2 + 2 H2O + log_k 5.2603 + delta_h -0 kcal Hg2HPO4 Hg2HPO4 = Hg2+2 + H+ + PO4-3 - log_k -25.9795 - delta_h -0 kcal + log_k -25.9795 + delta_h -0 kcal Hg2S Hg2S + H+ = Hg2+2 + HS- - log_k -11.6765 - delta_h 16.67 kcal + log_k -11.6765 + delta_h 16.67 kcal Hg2SO4 Hg2SO4 = Hg2+2 + SO4-2 - log_k -6.1593 - delta_h 0.23 kcal + log_k -6.1593 + delta_h 0.23 kcal Hg2SeO3 Hg2SeO3 + H+ = Hg2+2 + HSeO3- - log_k -4.657 - delta_h -0 kcal + log_k -4.657 + delta_h -0 kcal HgBr2 - HgBr2 + 2H2O = Hg(OH)2 + 2Br- + 2H+ - log_k -25.373 - delta_h 34.452 kcal + HgBr2 + 2 H2O = Hg(OH)2 + 2 Br- + 2 H+ + log_k -25.373 + delta_h 34.452 kcal HgCO3 - HgCO3 + 2H2O = Hg(OH)2 + CO3-2 + 2H+ - log_k -28.6817 - delta_h 22.13 kcal + HgCO3 + 2 H2O = Hg(OH)2 + CO3-2 + 2 H+ + log_k -28.6817 + delta_h 22.13 kcal HgCl2 - HgCl2 + 2H2O = Hg(OH)2 + 2Cl- + 2H+ - log_k -21.7858 - delta_h 27.264 kcal + HgCl2 + 2 H2O = Hg(OH)2 + 2 Cl- + 2 H+ + log_k -21.7858 + delta_h 27.264 kcal Coccinite - HgI2 + 2H2O = Hg(OH)2 + 2I- + 2H+ - log_k -34.6599 - delta_h 49.732 kcal + HgI2 + 2 H2O = Hg(OH)2 + 2 I- + 2 H+ + log_k -34.6599 + delta_h 49.732 kcal Montroydite HgO + H2O = Hg(OH)2 - log_k -3.6503 - delta_h 5.115 kcal + log_k -3.6503 + delta_h 5.115 kcal Hg(OH)2 Hg(OH)2 = Hg(OH)2 - log_k -3.4963 - delta_h -0 kcal + log_k -3.4963 + delta_h -0 kcal Cinnabar - HgS + 2H2O = Hg(OH)2 + HS- + H+ - log_k -45.1885 - delta_h 60.43 kcal + HgS + 2 H2O = Hg(OH)2 + HS- + H+ + log_k -45.1885 + delta_h 60.43 kcal Metacinnabar - HgS + 2H2O = Hg(OH)2 + HS- + H+ - log_k -44.822 - delta_h 59.53 kcal + HgS + 2 H2O = Hg(OH)2 + HS- + H+ + log_k -44.822 + delta_h 59.53 kcal HgSO4 - HgSO4 + 2H2O = Hg(OH)2 + SO4-2 + 2H+ - log_k -9.4189 - delta_h 3.51 kcal + HgSO4 + 2 H2O = Hg(OH)2 + SO4-2 + 2 H+ + log_k -9.4189 + delta_h 3.51 kcal HgSeO3 - HgSeO3 + 2H2O = Hg(OH)2 + HSeO3- + H+ - log_k -12.6953 - delta_h -0 kcal + HgSeO3 + 2 H2O = Hg(OH)2 + HSeO3- + H+ + log_k -12.6953 + delta_h -0 kcal HgI2:2NH3 - HgI2:2NH3 + 2H2O = Hg(OH)2 + 2I- + 2NH4+ - log_k -16.1066 - delta_h 32.632 kcal + HgI2:2NH3 + 2 H2O = Hg(OH)2 + 2 I- + 2 NH4+ + log_k -16.1066 + delta_h 32.632 kcal HgI2:6NH3 - HgI2:6NH3 + 2H2O + 4H+ = Hg(OH)2 + 2I- + 6NH4+ - log_k 33.8566 + HgI2:6NH3 + 2 H2O + 4 H+ = Hg(OH)2 + 2 I- + 6 NH4+ + log_k 33.8566 delta_h -20.568 kcal Cr(OH)2 - Cr(OH)2 + 2H+ = Cr+2 + 2H2O - log_k 10.8189 - delta_h -8.51 kcal + Cr(OH)2 + 2 H+ = Cr+2 + 2 H2O + log_k 10.8189 + delta_h -8.51 kcal CrBr3 - CrBr3 + 2H2O = Cr(OH)2+ + 3Br- + 2H+ - log_k 19.9086 + CrBr3 + 2 H2O = Cr(OH)2+ + 3 Br- + 2 H+ + log_k 19.9086 delta_h -33.777 kcal CrCl3 - CrCl3 + 2H2O = Cr(OH)2+ + 3Cl- + 2H+ - log_k 13.5067 + CrCl3 + 2 H2O = Cr(OH)2+ + 3 Cl- + 2 H+ + log_k 13.5067 delta_h -27.509 kcal CrF3 - CrF3 + 2H2O = Cr(OH)2+ + 3F- + 2H+ - log_k -13.2597 - delta_h -4.363 kcal + CrF3 + 2 H2O = Cr(OH)2+ + 3 F- + 2 H+ + log_k -13.2597 + delta_h -4.363 kcal CrI3 - CrI3 + 2H2O = Cr(OH)2+ + 3I- + 2H+ - log_k 20.4767 + CrI3 + 2 H2O = Cr(OH)2+ + 3 I- + 2 H+ + log_k 20.4767 delta_h -32.127 kcal FeCr2O4 - FeCr2O4 + 4H+ = 2Cr(OH)2+ + Fe+2 - log_k -0.9016 - delta_h -24.86 kcal + FeCr2O4 + 4 H+ = 2 Cr(OH)2+ + Fe+2 + log_k -0.9016 + delta_h -24.86 kcal MgCr2O4 - MgCr2O4 + 4H+ = 2Cr(OH)2+ + Mg+2 - log_k 12.0796 - delta_h -39.86 kcal + MgCr2O4 + 4 H+ = 2 Cr(OH)2+ + Mg+2 + log_k 12.0796 + delta_h -39.86 kcal CrMetal - Cr = Cr+2 + 2e- - log_k 32.244 - delta_h -34.3 kcal + Cr = Cr+2 + 2 e- + log_k 32.244 + delta_h -34.3 kcal Cr2O3 - Cr2O3 + 2H+ + H2O = 2Cr(OH)2+ - log_k -3.3937 + Cr2O3 + 2 H+ + H2O = 2 Cr(OH)2+ + log_k -3.3937 delta_h -12.125 kcal Cr(OH)3(A) Cr(OH)3 + H+ = Cr(OH)2+ + H2O - log_k -0.75 - delta_h -0 kcal + log_k -0.75 + delta_h -0 kcal Cr(OH)3(C) Cr(OH)3 + H+ = Cr(OH)2+ + H2O - log_k 1.7005 - delta_h -7.115 kcal + log_k 1.7005 + delta_h -7.115 kcal CrCl2 - CrCl2 = Cr+2 + 2Cl- - log_k 15.8676 + CrCl2 = Cr+2 + 2 Cl- + log_k 15.8676 delta_h -19.666 kcal Ag2CrO4 - Ag2CrO4 = CrO4-2 + 2Ag+ - log_k -11.5548 - delta_h 14.04 kcal + Ag2CrO4 = CrO4-2 + 2 Ag+ + log_k -11.5548 + delta_h 14.04 kcal BaCrO4 BaCrO4 = CrO4-2 + Ba+2 - log_k -9.6681 - delta_h 6.39 kcal + log_k -9.6681 + delta_h 6.39 kcal # Cesium not defined #Cs2CrO4 @@ -5316,335 +5320,335 @@ BaCrO4 CuCrO4 CuCrO4 = CrO4-2 + Cu+2 - log_k -5.4754 - delta_h -0 kcal + log_k -5.4754 + delta_h -0 kcal K2CrO4 - K2CrO4 = CrO4-2 + 2K+ - log_k 0.0073 - delta_h 4.25 kcal + K2CrO4 = CrO4-2 + 2 K+ + log_k 0.0073 + delta_h 4.25 kcal K2Cr2O7 - K2Cr2O7 + H2O = 2CrO4-2 + 2K+ + 2H+ - log_k -15.6712 - delta_h 18.125 kcal + K2Cr2O7 + H2O = 2 CrO4-2 + 2 K+ + 2 H+ + log_k -15.6712 + delta_h 18.125 kcal Li2CrO4 - Li2CrO4 = CrO4-2 + 2Li+ - log_k 4.8568 + Li2CrO4 = CrO4-2 + 2 Li+ + log_k 4.8568 delta_h -10.822 kcal MgCrO4 MgCrO4 = CrO4-2 + Mg+2 - log_k 5.3801 - delta_h -21.26 kcal + log_k 5.3801 + delta_h -21.26 kcal (NH4)2CrO4 - (NH4)2CrO4 = CrO4-2 + 2NH4+ - log_k 0.4046 - delta_h 2.19 kcal + (NH4)2CrO4 = CrO4-2 + 2 NH4+ + log_k 0.4046 + delta_h 2.19 kcal Na2CrO4 - Na2CrO4 = CrO4-2 + 2Na+ - log_k 3.2618 - delta_h -4.61 kcal + Na2CrO4 = CrO4-2 + 2 Na+ + log_k 3.2618 + delta_h -4.61 kcal Na2Cr2O7 - Na2Cr2O7 + H2O = 2CrO4-2 + 2Na+ + 2H+ - log_k -9.8953 - delta_h 5.305 kcal + Na2Cr2O7 + H2O = 2 CrO4-2 + 2 Na+ + 2 H+ + log_k -9.8953 + delta_h 5.305 kcal PbCrO4 PbCrO4 = CrO4-2 + Pb+2 - log_k -13.6848 - delta_h 10.23 kcal + log_k -13.6848 + delta_h 10.23 kcal Rb2CrO4 - Rb2CrO4 = CrO4-2 + 2Rb+ - log_k -0.0968 - delta_h 5.892 kcal + Rb2CrO4 = CrO4-2 + 2 Rb+ + log_k -0.0968 + delta_h 5.892 kcal SrCrO4 SrCrO4 = CrO4-2 + Sr+2 - log_k -4.8443 - delta_h -2.42 kcal + log_k -4.8443 + delta_h -2.42 kcal CrO3 - CrO3 + H2O = CrO4-2 + 2H+ - log_k -3.2105 - delta_h -1.245 kcal + CrO3 + H2O = CrO4-2 + 2 H+ + log_k -3.2105 + delta_h -1.245 kcal CaCrO4 CaCrO4 = Ca+2 + CrO4-2 - log_k -2.2657 - delta_h -6.44 kcal + log_k -2.2657 + delta_h -6.44 kcal Hg2CrO4 Hg2CrO4 = Hg2+2 + CrO4-2 - log_k -8.7031 - delta_h -0 kcal + log_k -8.7031 + delta_h -0 kcal Tl2CrO4 - Tl2CrO4 = 2Tl+ + CrO4-2 - log_k -12.0136 - delta_h 25.31 kcal + Tl2CrO4 = 2 Tl+ + CrO4-2 + log_k -12.0136 + delta_h 25.31 kcal Ag4FeCyanide6:H2O - Ag4FeCyanide6:H2O = 6Cyanide- + 4Ag+ + Fe+2 + H2O - log_k -89.6909 - delta_h -0 kcal + Ag4FeCyanide6:H2O = 6 Cyanide- + 4 Ag+ + Fe+2 + H2O + log_k -89.6909 + delta_h -0 kcal AgCyanide AgCyanide = Cyanide- + Ag+ - log_k -16.218 - delta_h 26.385 kcal + log_k -16.218 + delta_h 26.385 kcal Cd2FeCyanide6:7H2O - Cd2FeCyanide6:7H2O = 6Cyanide- + 2Cd+2 + Fe+2 + 7H2O - log_k -62.9824 - delta_h -0 kcal + Cd2FeCyanide6:7H2O = 6 Cyanide- + 2 Cd+2 + Fe+2 + 7 H2O + log_k -62.9824 + delta_h -0 kcal CrCyanide CrCyanide = Cyanide- + Cr+2 + e- - log_k 23.888 - delta_h -0 kcal + log_k 23.888 + delta_h -0 kcal Cr2Cyanide - Cr2Cyanide = Cyanide- + 2Cr+2 + 3e- - log_k 56.645 - delta_h -0 kcal + Cr2Cyanide = Cyanide- + 2 Cr+2 + 3 e- + log_k 56.645 + delta_h -0 kcal CuCyanide CuCyanide = Cyanide- + Cu+ - log_k -19.4974 - delta_h 30.2 kcal + log_k -19.4974 + delta_h 30.2 kcal Cu2FeCyanide6 - Cu2FeCyanide6 = 6Cyanide- + 2Cu+2 + Fe+2 - log_k -61.4168 - delta_h -0 kcal + Cu2FeCyanide6 = 6 Cyanide- + 2 Cu+2 + Fe+2 + log_k -61.4168 + delta_h -0 kcal CyanideI - CyanideI + 2e- = Cyanide- + I- - log_k 11.3114 + CyanideI + 2 e- = Cyanide- + I- + log_k 11.3114 delta_h -17.309 kcal K12Ni8(FeCyanide6)7 - K12Ni8(FeCyanide6)7 = 42Cyanide- + 12K+ + 8Ni+2 + 7Fe+2 - log_k -431.09 - delta_h -0 kcal + K12Ni8(FeCyanide6)7 = 42 Cyanide- + 12 K+ + 8 Ni+2 + 7 Fe+2 + log_k -431.09 + delta_h -0 kcal KCyanide(I) KCyanide = Cyanide- + K+ - log_k 1.4403 - delta_h 2.74 kcal + log_k 1.4403 + delta_h 2.74 kcal K2CdFeCyanide6 - K2CdFeCyanide6 = 6Cyanide- + 2K+ + Cd+2 + Fe+2 - log_k -63.0279 - delta_h -0 kcal + K2CdFeCyanide6 = 6 Cyanide- + 2 K+ + Cd+2 + Fe+2 + log_k -63.0279 + delta_h -0 kcal K4Ni4(FeCyanide6)3 - K4Ni4(FeCyanide6)3 = 18Cyanide- + 4K+ + 4Ni+2 + 3Fe+2 - log_k -183.547 - delta_h -0 kcal + K4Ni4(FeCyanide6)3 = 18 Cyanide- + 4 K+ + 4 Ni+2 + 3 Fe+2 + log_k -183.547 + delta_h -0 kcal K4FeCyanide6 - K4FeCyanide6 = 6Cyanide- + 4K+ + Fe+2 - log_k -48.8241 - delta_h 95.62 kcal + K4FeCyanide6 = 6 Cyanide- + 4 K+ + Fe+2 + log_k -48.8241 + delta_h 95.62 kcal K2Mn3(FeCyanide6)2 - K2Mn3(FeCyanide6)2 = 12Cyanide- + 2K+ + 3Mn+2 + 2Fe+2 - log_k -121.001 - delta_h -0 kcal + K2Mn3(FeCyanide6)2 = 12 Cyanide- + 2 K+ + 3 Mn+2 + 2 Fe+2 + log_k -121.001 + delta_h -0 kcal K2Ni3(FeCyanide6)2 - K2Ni3(FeCyanide6)2 = 12Cyanide- + 2K+ + 3Ni+2 + 2Fe+2 - log_k -123.127 - delta_h -0 kcal + K2Ni3(FeCyanide6)2 = 12 Cyanide- + 2 K+ + 3 Ni+2 + 2 Fe+2 + log_k -123.127 + delta_h -0 kcal K4FeCyanide6:3H2O - K4FeCyanide6:3H2O = 6Cyanide- + 4K+ + Fe+2 + 3H2O - log_k -49.5424 - delta_h 99.175 kcal + K4FeCyanide6:3H2O = 6 Cyanide- + 4 K+ + Fe+2 + 3 H2O + log_k -49.5424 + delta_h 99.175 kcal K12Cd8(FeCyanide6)7 - K12Cd8(FeCyanide6)7 = 42Cyanide- + 12K+ + 8Cd+2 + 7Fe+2 - log_k -441.985 - delta_h -0 kcal + K12Cd8(FeCyanide6)7 = 42 Cyanide- + 12 K+ + 8 Cd+2 + 7 Fe+2 + log_k -441.985 + delta_h -0 kcal KZn1.5FeCyanide6 - KZn1.5FeCyanide6 = 6Cyanide- + K+ + 1.5Zn+2 + Fe+2 - log_k -66.8086 - delta_h -0 kcal + KZn1.5FeCyanide6 = 6 Cyanide- + K+ + 1.5 Zn+2 + Fe+2 + log_k -66.8086 + delta_h -0 kcal K3FeCyanide6 - K3FeCyanide6 = 6Cyanide- + 3K+ + Fe+3 - log_k -54.644 - delta_h 83.29 kcal + K3FeCyanide6 = 6 Cyanide- + 3 K+ + Fe+3 + log_k -54.644 + delta_h 83.29 kcal K8Mn6(FeCyanide6)5 - K8Mn6(FeCyanide6)5 = 30Cyanide- + 8K+ + 6Mn+2 + 5Fe+2 - log_k -293.685 - delta_h -0 kcal + K8Mn6(FeCyanide6)5 = 30 Cyanide- + 8 K+ + 6 Mn+2 + 5 Fe+2 + log_k -293.685 + delta_h -0 kcal K2Cu2FeCyanide6 - K2Cu2FeCyanide6 = 6Cyanide- + 2K+ + 2Cu+ + Fe+2 - log_k -72.5142 - delta_h -0 kcal + K2Cu2FeCyanide6 = 6 Cyanide- + 2 K+ + 2 Cu+ + Fe+2 + log_k -72.5142 + delta_h -0 kcal Mn2FeCyanide6 - Mn2FeCyanide6 = 6Cyanide- + 2Mn+2 + Fe+2 - log_k -59.0272 - delta_h -0 kcal + Mn2FeCyanide6 = 6 Cyanide- + 2 Mn+2 + Fe+2 + log_k -59.0272 + delta_h -0 kcal NaCyanide NaCyanide = Cyanide- + Na+ - log_k 2.2869 - delta_h -0.52 kcal + log_k 2.2869 + delta_h -0.52 kcal Pb2FeCyanide6:3H2O - Pb2FeCyanide6:3H2O = 6Cyanide- + 2Pb+2 + Fe+2 + 3H2O - log_k -63.6011 - delta_h -0 kcal + Pb2FeCyanide6:3H2O = 6 Cyanide- + 2 Pb+2 + Fe+2 + 3 H2O + log_k -63.6011 + delta_h -0 kcal Tl4FeCyanide6:2H2O - Tl4FeCyanide6:2H2O = 6Cyanide- + 4Tl+ + Fe+2 + 2H2O - log_k -56.9162 - delta_h -0 kcal + Tl4FeCyanide6:2H2O = 6 Cyanide- + 4 Tl+ + Fe+2 + 2 H2O + log_k -56.9162 + delta_h -0 kcal Zn2FeCyanide6:2H2O - Zn2FeCyanide6:2H2O = 6Cyanide- + 2Zn+2 + Fe+2 + 2H2O - log_k -61.2321 - delta_h -0 kcal + Zn2FeCyanide6:2H2O = 6 Cyanide- + 2 Zn+2 + Fe+2 + 2 H2O + log_k -61.2321 + delta_h -0 kcal AgCyanate AgCyanate = Cyanate- + Ag+ - log_k -6.6159 - delta_h 13.175 kcal + log_k -6.6159 + delta_h 13.175 kcal Ag4Fe(Cyanide)6 - Ag4Fe(Cyanide)6 = 6Cyanide- + 4Ag+ + Fe+2 - log_k -193.914 - delta_h 260.91 kcal + Ag4Fe(Cyanide)6 = 6 Cyanide- + 4 Ag+ + Fe+2 + log_k -193.914 + delta_h 260.91 kcal Cd2Fe(Cyanide)6 - Cd2Fe(Cyanide)6 = 6Cyanide- + 2Cd+2 + Fe+2 - log_k -28.2243 - delta_h -0 kcal + Cd2Fe(Cyanide)6 = 6 Cyanide- + 2 Cd+2 + Fe+2 + log_k -28.2243 + delta_h -0 kcal Hg(Cyanide)2 - Hg(Cyanide)2 + 2H2O = Hg(OH)2 + 2Cyanide- + 2H+ - log_k -45.3791 - delta_h 60.73 kcal + Hg(Cyanide)2 + 2 H2O = Hg(OH)2 + 2 Cyanide- + 2 H+ + log_k -45.3791 + delta_h 60.73 kcal Pb2Fe(Cyanide)6 - Pb2Fe(Cyanide)6 = 6Cyanide- + 2Pb+2 + Fe+2 - log_k -27.5895 - delta_h -0 kcal + Pb2Fe(Cyanide)6 = 6 Cyanide- + 2 Pb+2 + Fe+2 + log_k -27.5895 + delta_h -0 kcal Zn2Fe(Cyanide)6 - Zn2Fe(Cyanide)6 = 6Cyanide- + 2Zn+2 + Fe+2 - log_k -29.9263 - delta_h -0 kcal + Zn2Fe(Cyanide)6 = 6 Cyanide- + 2 Zn+2 + Fe+2 + log_k -29.9263 + delta_h -0 kcal CH4(g) - CH4 + 3H2O = CO3-2 + 8e- + 10H+ - log_k -40.1 - delta_h 61 kcal + CH4 + 3 H2O = CO3-2 + 8 e- + 10 H+ + log_k -40.1 + delta_h 61 kcal CO2(g) - CO2 + H2O = CO3-2 + 2H+ - log_k -18.16 - delta_h 0.53 kcal + CO2 + H2O = CO3-2 + 2 H+ + log_k -18.16 + delta_h 0.53 kcal O2(g) - O2 + 4H+ + 4e- = 2H2O - log_k 83.12 + O2 + 4 H+ + 4 e- = 2 H2O + log_k 83.12 delta_h -133.83 kcal Hg(g) - Hg = 0.5Hg2+2 + e- - log_k -7.8708 - delta_h 5.265 kcal + Hg = 0.5 Hg2+2 + e- + log_k -7.8708 + delta_h 5.265 kcal Hg2(g) - Hg2 = Hg2+2 + 2e- - log_k -14.963 - delta_h 13.87 kcal + Hg2 = Hg2+2 + 2 e- + log_k -14.963 + delta_h 13.87 kcal Hg(CH3)2(g) - Hg(CH3)2 + 8H2O = Hg(OH)2 + 2CO3-2 + 16e- + 20H+ - log_k -73.724 - delta_h 115.4 kcal + Hg(CH3)2 + 8 H2O = Hg(OH)2 + 2 CO3-2 + 16 e- + 20 H+ + log_k -73.724 + delta_h 115.4 kcal HgBr(g) - HgBr = 0.5Hg2+2 + Br- - log_k 16.79 + HgBr = 0.5 Hg2+2 + Br- + log_k 16.79 delta_h -34.004 kcal HgCl(g) - HgCl = 0.5Hg2+2 + Cl- - log_k 20.5 + HgCl = 0.5 Hg2+2 + Cl- + log_k 20.5 delta_h -40.098 kcal HgF(g) - HgF = 0.5Hg2+2 + F- - log_k 32.72 + HgF = 0.5 Hg2+2 + F- + log_k 32.72 delta_h -60.916 kcal HgI(g) - HgI = 0.5Hg2+2 + I- - log_k 11.15 + HgI = 0.5 Hg2+2 + I- + log_k 11.15 delta_h -25.264 kcal HgBr2(g) - HgBr2 + 2H2O = Hg(OH)2 + 2Br- + 2H+ - log_k -18.47 - delta_h 14.35 kcal + HgBr2 + 2 H2O = Hg(OH)2 + 2 Br- + 2 H+ + log_k -18.47 + delta_h 14.35 kcal HgF2(g) - HgF2 + 2H2O = Hg(OH)2 + 2F- + 2H+ - log_k 0.38 - delta_h -0 kcal + HgF2 + 2 H2O = Hg(OH)2 + 2 F- + 2 H+ + log_k 0.38 + delta_h -0 kcal HgI2(g) - HgI2 + 2H2O = Hg(OH)2 + 2I- + 2H+ - log_k -27.28 - delta_h 28.63 kcal + HgI2 + 2 H2O = Hg(OH)2 + 2 I- + 2 H+ + log_k -27.28 + delta_h 28.63 kcal SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES -Hfo_wOH = Hfo_wOH - log_k 0.0 -Hfo_sOH = Hfo_sOH - log_k 0.0 -Hfo_wOH = Hfo_wO- + H+ - log_k -8.93 -Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.29 -Hfo_sOH = Hfo_sO- + H+ - log_k -8.93 -Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.29 -Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - log_k -1.99 -Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - log_k 0.97 -Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - log_k -2.9 -Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - log_k 0.43 -Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - log_k 2.85 -Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - log_k 0.6 -Hfo_sOH + Be+2 = Hfo_sOBe+ + H+ - log_k 1.898 -Hfo_wOH + Be+2 = Hfo_wOBe+ + H+ - log_k -0.8626 -Hfo_sOH + Ni+2 = Hfo_sONi+ + H+ - log_k 0.15 -Hfo_wOH + Ni+2 = Hfo_wONi+ + H+ - log_k -2.5 -Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - log_k 4.71 -Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - log_k 0.3 -Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ - log_k -5.85 +Hfo_wOH = Hfo_wOH + log_k 0 +Hfo_sOH = Hfo_sOH + log_k 0 +Hfo_wOH = Hfo_wO- + H+ + log_k -8.93 +Hfo_wOH + H+ = Hfo_wOH2+ + log_k 7.29 +Hfo_sOH = Hfo_sO- + H+ + log_k -8.93 +Hfo_sOH + H+ = Hfo_sOH2+ + log_k 7.29 +Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ + log_k -1.99 +Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ + log_k 0.97 +Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ + log_k -2.9 +Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ + log_k 0.43 +Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ + log_k 2.85 +Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ + log_k 0.6 +Hfo_sOH + Be+2 = Hfo_sOBe+ + H+ + log_k 1.898 +Hfo_wOH + Be+2 = Hfo_wOBe+ + H+ + log_k -0.8626 +Hfo_sOH + Ni+2 = Hfo_sONi+ + H+ + log_k 0.15 +Hfo_wOH + Ni+2 = Hfo_wONi+ + H+ + log_k -2.5 +Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ + log_k 4.71 +Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ + log_k 0.3 +Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ + log_k -5.85 Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 + log_k 4.97 Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - log_k 5.46 + log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 -Hfo_sOH + H+ + SO4-2 = Hfo_sSO4- + H2O - log_k 7.78 -Hfo_wOH + H+ + SO4-2 = Hfo_wSO4- + H2O - log_k 7.78 + log_k -7.2 +Hfo_sOH + H+ + SO4-2 = Hfo_sSO4- + H2O + log_k 7.78 +Hfo_wOH + H+ + SO4-2 = Hfo_wSO4- + H2O + log_k 7.78 Hfo_sOH + SO4-2 = Hfo_sOHSO4-2 - log_k 0.79 + log_k 0.79 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 -Hfo_sOH + PO4-3 + 3H+ = Hfo_sH2PO4 + H2O - log_k 31.29 -Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - log_k 31.29 -Hfo_sOH + PO4-3 + 2H+ = Hfo_sHPO4- + H2O - log_k 25.39 -Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - log_k 25.39 + log_k 0.79 +Hfo_sOH + PO4-3 + 3 H+ = Hfo_sH2PO4 + H2O + log_k 31.29 +Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + log_k 31.29 +Hfo_sOH + PO4-3 + 2 H+ = Hfo_sHPO4- + H2O + log_k 25.39 +Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + log_k 25.39 Hfo_sOH + PO4-3 + H+ = Hfo_sPO4-2 + H2O - log_k 17.72 + log_k 17.72 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - log_k 17.72 + log_k 17.72 Hfo_sOH + H3AsO3 = Hfo_sH2AsO3 + H2O - log_k 5.41 + log_k 5.41 Hfo_wOH + H3AsO3 = Hfo_wH2AsO3 + H2O - log_k 5.41 + log_k 5.41 Hfo_sOH + H3AsO4 = Hfo_sH2AsO4 + H2O - log_k 8.67 + log_k 8.67 Hfo_wOH + H3AsO4 = Hfo_wH2AsO4 + H2O - log_k 8.67 -Hfo_sOH + H3AsO4 = Hfo_sHAsO4- + H2O + H+ - log_k 2.99 -Hfo_wOH + H3AsO4 = Hfo_wHAsO4- + H2O + H+ - log_k 2.99 -Hfo_sOH + H3AsO4 = Hfo_sAsO4-2 + H2O + 2H+ - log_k -4.7 -Hfo_wOH + H3AsO4 = Hfo_wAsO4-2 + H2O + 2H+ - log_k -4.7 -Hfo_sOH + H3AsO4 = Hfo_sOHAsO4-3 + 3H+ - log_k -10.15 -Hfo_wOH + H3AsO4 = Hfo_wOHAsO4-3 + 3H+ - log_k -10.15 + log_k 8.67 +Hfo_sOH + H3AsO4 = Hfo_sHAsO4- + H2O + H+ + log_k 2.99 +Hfo_wOH + H3AsO4 = Hfo_wHAsO4- + H2O + H+ + log_k 2.99 +Hfo_sOH + H3AsO4 = Hfo_sAsO4-2 + H2O + 2 H+ + log_k -4.7 +Hfo_wOH + H3AsO4 = Hfo_wAsO4-2 + H2O + 2 H+ + log_k -4.7 +Hfo_sOH + H3AsO4 = Hfo_sOHAsO4-3 + 3 H+ + log_k -10.15 +Hfo_wOH + H3AsO4 = Hfo_wOHAsO4-3 + 3 H+ + log_k -10.15 Hfo_sOH + H3BO3 = Hfo_sH2BO3 + H2O - log_k 0.62 + log_k 0.62 Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - log_k 0.62 + log_k 0.62 END diff --git a/database/minteq.v4.dat b/database/minteq.v4.dat index 48f51bca..3e81fd8f 100644 --- a/database/minteq.v4.dat +++ b/database/minteq.v4.dat @@ -1,127 +1,131 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\minteq.v4.dat, 15/03/2024 15:27, 13208 lines, 399299 bytes, md5=fa307060a8f8affd6f41cb15d2225ff6 +# Created 17 May 2024 14:30:41 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "minteq.v4.dat" + # $Id: minteq.v4.dat 11091 2016-04-21 15:20:05Z dlpark $ SOLUTION_MASTER_SPECIES -Alkalinity CO3-2 2.0 HCO3 61.0173 -E e- 0 0 0 -O H2O 0 O 16.00 -O(-2) H2O 0 O -O(0) O2 0 O -Ag Ag+ 0.0 Ag 107.868 -Al Al+3 0.0 Al 26.9815 -As H3AsO4 -1.0 As 74.9216 -As(3) H3AsO3 0.0 As -As(5) H3AsO4 -1.0 As -B H3BO3 0.0 B 10.81 -Ba Ba+2 0.0 Ba 137.33 -Be Be+2 0.0 Be 9.0122 -Br Br- 0.0 Br 79.904 -C CO3-2 2.0 CO3 12.0111 -C(4) CO3-2 2.0 CO3 12.0111 -Cyanide Cyanide- 1.0 Cyanide 26.0177 -Dom_a Dom_a 0.0 C 12.0111 -Dom_b Dom_b 0.0 C 12.0111 -Dom_c Dom_c 0.0 C 12.0111 -Ca Ca+2 0.0 Ca 40.078 -Cd Cd+2 0.0 Cd 112.41 -Cl Cl- 0.0 Cl 35.453 -Co Co+3 -1.0 Co 58.9332 -Co(2) Co+2 0.0 Co -Co(3) Co+3 -1.0 Co -Cr CrO4-2 1.0 Cr 51.996 -Cr(2) Cr+2 0.0 Cr -Cr(3) Cr(OH)2+ 0.0 Cr -Cr(6) CrO4-2 1.0 Cr -Cu Cu+2 0.0 Cu 63.546 -Cu(1) Cu+ 0.0 Cu -Cu(2) Cu+2 0.0 Cu -F F- 0.0 F 18.9984 -Fe Fe+3 -2.0 Fe 55.847 -Fe(2) Fe+2 0.0 Fe -Fe(3) Fe+3 -2.0 Fe -H H+ -1.0 H 1.0079 -H(0) H2 0 H -H(1) H+ -1.0 H -Hg Hg(OH)2 0.0 Hg 200.59 -Hg(0) Hg 0.0 Hg -Hg(1) Hg2+2 0.0 Hg -Hg(2) Hg(OH)2 0.0 Hg -I I- 0.0 I 126.904 -K K+ 0.0 K 39.0983 -Li Li+ 0.0 Li 6.941 -Mg Mg+2 0.0 Mg 24.305 -Mn Mn+3 0.0 Mn 54.938 -Mn(2) Mn+2 0.0 Mn -Mn(3) Mn+3 0.0 Mn -Mn(6) MnO4-2 0.0 Mn -Mn(7) MnO4- 0.0 Mn -Mo MoO4-2 0.0 Mo 95.94 -N NO3- 0.0 N 14.0067 -N(-3) NH4+ 0.0 N -N(3) NO2- 0.0 N -N(5) NO3- 0.0 N -Na Na+ 0.0 Na 22.9898 -Ni Ni+2 0.0 Ni 58.69 -P PO4-3 2.0 P 30.9738 -Pb Pb+2 0.0 Pb 207.2 -S SO4-2 0.0 SO4 32.066 -S(-2) HS- 1.0 S +Alkalinity CO3-2 2 HCO3 61.0173 +E e- 1 0 0 +O H2O 0 O 16 +O(-2) H2O 0 O +O(0) O2 0 O +Ag Ag+ 0 Ag 107.868 +Al Al+3 0 Al 26.9815 +As H3AsO4 -1 As 74.9216 +As(3) H3AsO3 0 As +As(5) H3AsO4 -1 As +B H3BO3 0 B 10.81 +Ba Ba+2 0 Ba 137.33 +Be Be+2 0 Be 9.0122 +Br Br- 0 Br 79.904 +C CO3-2 2 CO3 12.0111 +C(4) CO3-2 2 CO3 12.0111 +Cyanide Cyanide- 1 Cyanide 26.0177 +Dom_a Dom_a 0 C 12.0111 +Dom_b Dom_b 0 C 12.0111 +Dom_c Dom_c 0 C 12.0111 +Ca Ca+2 0 Ca 40.078 +Cd Cd+2 0 Cd 112.41 +Cl Cl- 0 Cl 35.453 +Co Co+3 -1 Co 58.9332 +Co(2) Co+2 0 Co +Co(3) Co+3 -1 Co +Cr CrO4-2 1 Cr 51.996 +Cr(2) Cr+2 0 Cr +Cr(3) Cr(OH)2+ 0 Cr +Cr(6) CrO4-2 1 Cr +Cu Cu+2 0 Cu 63.546 +Cu(1) Cu+ 0 Cu +Cu(2) Cu+2 0 Cu +F F- 0 F 18.9984 +Fe Fe+3 -2 Fe 55.847 +Fe(2) Fe+2 0 Fe +Fe(3) Fe+3 -2 Fe +H H+ -1 H 1.0079 +H(0) H2 0 H +H(1) H+ -1 H +Hg Hg(OH)2 0 Hg 200.59 +Hg(0) Hg 0 Hg +Hg(1) Hg2+2 0 Hg +Hg(2) Hg(OH)2 0 Hg +I I- 0 I 126.904 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.941 +Mg Mg+2 0 Mg 24.305 +Mn Mn+3 0 Mn 54.938 +Mn(2) Mn+2 0 Mn +Mn(3) Mn+3 0 Mn +Mn(6) MnO4-2 0 Mn +Mn(7) MnO4- 0 Mn +Mo MoO4-2 0 Mo 95.94 +N NO3- 0 N 14.0067 +N(-3) NH4+ 0 N +N(3) NO2- 0 N +N(5) NO3- 0 N +Na Na+ 0 Na 22.9898 +Ni Ni+2 0 Ni 58.69 +P PO4-3 2 P 30.9738 +Pb Pb+2 0 Pb 207.2 +S SO4-2 0 SO4 32.066 +S(-2) HS- 1 S #S(0) S 0.0 S -S(6) SO4-2 0.0 SO4 -Sb Sb(OH)6- 0.0 Sb 121.75 -Sb(3) Sb(OH)3 0.0 Sb -Sb(5) Sb(OH)6- 0.0 Sb -Se SeO4-2 0.0 Se 78.96 -Se(-2) HSe- 0.0 Se -Se(4) HSeO3- 0.0 Se -Se(6) SeO4-2 0.0 Se -Si H4SiO4 0.0 SiO2 28.0843 -Sn Sn(OH)6-2 0.0 Sn 118.71 -Sn(2) Sn(OH)2 0.0 Sn -Sn(4) Sn(OH)6-2 0.0 Sn -Sr Sr+2 0.0 Sr 87.62 -Tl Tl(OH)3 0.0 Tl 204.383 -Tl(1) Tl+ 0.0 Tl -Tl(3) Tl(OH)3 0.0 Tl -U UO2+2 0.0 U 238.029 -U(3) U+3 0.0 U -U(4) U+4 -4.0 U -U(5) UO2+ 0.0 U -U(6) UO2+2 0.0 U -V VO2+ -2.0 V 50.94 -V(2) V+2 0.0 V -V(3) V+3 -3.0 V -V(4) VO+2 0.0 V -V(5) VO2+ -2.0 V -Zn Zn+2 0.0 Zn 65.39 -Benzoate Benzoate- 0.0 121.116 121.116 -Phenylacetate Phenylacetate- 0.0 135.142 135.142 -Isophthalate Isophthalate-2 0.0 164.117 164.117 -Diethylamine Diethylamine 1.0 73.138 73.138 -Butylamine Butylamine 1.0 73.138 73.138 -Methylamine Methylamine 1.0 31.057 31.057 -Dimethylamine Dimethylamine 1.0 45.084 45.084 -Hexylamine Hexylamine 1.0 101.192 101.192 -Ethylenediamine Ethylenediamine 2.0 60.099 60.099 -Propylamine Propylamine 1.0 59.111 59.111 -Isopropylamine Isopropylamine 1.0 59.111 59.111 -Trimethylamine Trimethylamine 1.0 59.111 59.111 -Citrate Citrate-3 2.0 189.102 189.102 -Nta Nta-3 1.0 188.117 188.117 -Edta Edta-4 2.0 288.214 288.214 -Propionate Propionate- 1.0 73.072 73.072 -Butyrate Butyrate- 1.0 87.098 87.098 -Isobutyrate Isobutyrate- 1.0 87.098 87.098 -Two_picoline Two_picoline 1.0 93.128 93.128 -Three_picoline Three_picoline 1.0 93.128 93.128 -Four_picoline Four_picoline 1.0 93.128 93.128 -Formate Formate- 0.0 45.018 45.018 -Isovalerate Isovalerate- 1.0 101.125 101.125 -Valerate Valerate- 1.0 101.125 101.125 -Acetate Acetate- 1.0 59.045 59.045 -Tartarate Tartarate-2 0.0 148.072 148.072 -Glycine Glycine- 1.0 74.059 74.059 -Salicylate Salicylate-2 1.0 136.107 136.107 -Glutamate Glutamate-2 1.0 145.115 145.115 -Phthalate Phthalate-2 1.0 164.117 164.117 +S(6) SO4-2 0 SO4 +Sb Sb(OH)6- 0 Sb 121.75 +Sb(3) Sb(OH)3 0 Sb +Sb(5) Sb(OH)6- 0 Sb +Se SeO4-2 0 Se 78.96 +Se(-2) HSe- 0 Se +Se(4) HSeO3- 0 Se +Se(6) SeO4-2 0 Se +Si H4SiO4 0 SiO2 28.0843 +Sn Sn(OH)6-2 0 Sn 118.71 +Sn(2) Sn(OH)2 0 Sn +Sn(4) Sn(OH)6-2 0 Sn +Sr Sr+2 0 Sr 87.62 +Tl Tl(OH)3 0 Tl 204.383 +Tl(1) Tl+ 0 Tl +Tl(3) Tl(OH)3 0 Tl +U UO2+2 0 U 238.029 +U(3) U+3 0 U +U(4) U+4 -4 U +U(5) UO2+ 0 U +U(6) UO2+2 0 U +V VO2+ -2 V 50.94 +V(2) V+2 0 V +V(3) V+3 -3 V +V(4) VO+2 0 V +V(5) VO2+ -2 V +Zn Zn+2 0 Zn 65.39 +Benzoate Benzoate- 0 121.116 121.116 +Phenylacetate Phenylacetate- 0 135.142 135.142 +Isophthalate Isophthalate-2 0 164.117 164.117 +Diethylamine Diethylamine 1 73.138 73.138 +Butylamine Butylamine 1 73.138 73.138 +Methylamine Methylamine 1 31.057 31.057 +Dimethylamine Dimethylamine 1 45.084 45.084 +Hexylamine Hexylamine 1 101.192 101.192 +Ethylenediamine Ethylenediamine 2 60.099 60.099 +Propylamine Propylamine 1 59.111 59.111 +Isopropylamine Isopropylamine 1 59.111 59.111 +Trimethylamine Trimethylamine 1 59.111 59.111 +Citrate Citrate-3 2 189.102 189.102 +Nta Nta-3 1 188.117 188.117 +Edta Edta-4 2 288.214 288.214 +Propionate Propionate- 1 73.072 73.072 +Butyrate Butyrate- 1 87.098 87.098 +Isobutyrate Isobutyrate- 1 87.098 87.098 +Two_picoline Two_picoline 1 93.128 93.128 +Three_picoline Three_picoline 1 93.128 93.128 +Four_picoline Four_picoline 1 93.128 93.128 +Formate Formate- 0 45.018 45.018 +Isovalerate Isovalerate- 1 101.125 101.125 +Valerate Valerate- 1 101.125 101.125 +Acetate Acetate- 1 59.045 59.045 +Tartarate Tartarate-2 0 148.072 148.072 +Glycine Glycine- 1 74.059 74.059 +Salicylate Salicylate-2 1 136.107 136.107 +Glutamate Glutamate-2 1 145.115 145.115 +Phthalate Phthalate-2 1 164.117 164.117 SOLUTION_SPECIES e- = e- log_k 0 @@ -143,7 +147,7 @@ Br- = Br- log_k 0 CO3-2 = CO3-2 log_k 0 -Cyanide- = Cyanide- +Cyanide- = Cyanide- log_k 0 Dom_a = Dom_a log_k 0 @@ -275,12933 +279,12933 @@ Phthalate-2 = Phthalate-2 log_k 0 SOLUTION_SPECIES Fe+3 + e- = Fe+2 - log_k 13.032 - delta_h -42.7 kJ - -gamma 0 0 + log_k 13.032 + delta_h -42.7 kJ + -gamma 0 0 # Id: 2802810 - # log K source: Bard85 - # Delta H source: Bard85 - #T and ionic strength: -H3AsO4 + 2e- + 2H+ = H3AsO3 + H2O - log_k 18.898 - delta_h -125.6 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: Bard85 + #T and ionic strength: +H3AsO4 + 2 e- + 2 H+ = H3AsO3 + H2O + log_k 18.898 + delta_h -125.6 kJ + -gamma 0 0 # Id: 600610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sb(OH)6- + 2e- + 3H+ = Sb(OH)3 + 3H2O - log_k 24.31 - delta_h 0 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sb(OH)6- + 2 e- + 3 H+ = Sb(OH)3 + 3 H2O + log_k 24.31 + delta_h 0 kJ + -gamma 0 0 # Id: 7407410 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + 3e- + 4H+ = U+3 + 2H2O - log_k 0.42 - delta_h -42 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + 3 e- + 4 H+ = U+3 + 2 H2O + log_k 0.42 + delta_h -42 kJ + -gamma 0 0 # Id: 8908930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + 2e- + 4H+ = U+4 + 2H2O - log_k 9.216 - delta_h -144.1 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + 2 e- + 4 H+ = U+4 + 2 H2O + log_k 9.216 + delta_h -144.1 kJ + -gamma 0 0 # Id: 8918930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + e- = UO2+ - log_k 2.785 - delta_h -13.8 kJ - -gamma 0 0 + log_k 2.785 + delta_h -13.8 kJ + -gamma 0 0 # Id: 8928930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: e- + Mn+3 = Mn+2 - log_k 25.35 - delta_h -107.8 kJ - -gamma 0 0 + log_k 25.35 + delta_h -107.8 kJ + -gamma 0 0 # Id: 4704710 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Co+3 + e- = Co+2 - log_k 32.4 - delta_h 0 kJ - -gamma 0 0 + log_k 32.4 + delta_h 0 kJ + -gamma 0 0 # Id: 2002010 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Cu+2 + e- = Cu+ - log_k 2.69 - delta_h 6.9 kJ - -gamma 0 0 + log_k 2.69 + delta_h 6.9 kJ + -gamma 0 0 # Id: 2302310 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: V+3 + e- = V+2 - log_k -4.31 - delta_h 0 kJ - -gamma 0 0 + log_k -4.31 + delta_h 0 kJ + -gamma 0 0 # Id: 9009010 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -VO+2 + e- + 2H+ = V+3 + H2O - log_k 5.696 - delta_h 0 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +VO+2 + e- + 2 H+ = V+3 + H2O + log_k 5.696 + delta_h 0 kJ + -gamma 0 0 # Id: 9019020 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -VO2+ + e- + 2H+ = VO+2 + H2O - log_k 16.903 - delta_h -122.7 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +VO2+ + e- + 2 H+ = VO+2 + H2O + log_k 16.903 + delta_h -122.7 kJ + -gamma 0 0 # Id: 9029030 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -SO4-2 + 9H+ + 8e- = HS- + 4H2O - log_k 33.66 - delta_h -60.14 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O + log_k 33.66 + delta_h -60.14 kJ + -gamma 0 0 # Id: 7307320 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sn(OH)6-2 + 2e- + 4H+ = Sn(OH)2 + 4H2O - log_k 19.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sn(OH)6-2 + 2 e- + 4 H+ = Sn(OH)2 + 4 H2O + log_k 19.2 + delta_h 0 kJ + -gamma 0 0 # Id: 7907910 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl(OH)3 + 2e- + 3H+ = Tl+ + 3H2O - log_k 45.55 - delta_h 0 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl(OH)3 + 2 e- + 3 H+ = Tl+ + 3 H2O + log_k 45.55 + delta_h 0 kJ + -gamma 0 0 # Id: 8708710 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -HSeO3- + 6e- + 6H+ = HSe- + 3H2O - log_k 44.86 - delta_h 0 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +HSeO3- + 6 e- + 6 H+ = HSe- + 3 H2O + log_k 44.86 + delta_h 0 kJ + -gamma 0 0 # Id: 7607610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -SeO4-2 + 2e- + 3H+ = HSeO3- + H2O - log_k 36.308 - delta_h -201.2 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +SeO4-2 + 2 e- + 3 H+ = HSeO3- + H2O + log_k 36.308 + delta_h -201.2 kJ + -gamma 0 0 # Id: 7617620 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -0.5Hg2+2 + e- = Hg - log_k 6.5667 - delta_h -45.735 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +0.5 Hg2+2 + e- = Hg + log_k 6.5667 + delta_h -45.735 kJ + -gamma 0 0 # Id: 3600000 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: -2Hg(OH)2 + 4H+ + 2e- = Hg2+2 + 4H2O - log_k 43.185 - delta_h -63.59 kJ - -gamma 0 0 +2 Hg(OH)2 + 4 H+ + 2 e- = Hg2+2 + 4 H2O + log_k 43.185 + delta_h -63.59 kJ + -gamma 0 0 # Id: 3603610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 2H+ + e- = Cr+2 + 2H2O - log_k 2.947 - delta_h 6.36 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 2 H+ + e- = Cr+2 + 2 H2O + log_k 2.947 + delta_h 6.36 kJ + -gamma 0 0 # Id: 2102110 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + 6H+ + 3e- = Cr(OH)2+ + 2H2O - log_k 67.376 - delta_h -103 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + 6 H+ + 3 e- = Cr(OH)2+ + 2 H2O + log_k 67.376 + delta_h -103 kJ + -gamma 0 0 # Id: 2112120 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: -2H2O = O2 + 4H+ + 4e- +2 H2O = O2 + 4 H+ + 4 e- # Adjusted for equation to aqueous species - log_k -85.9951 - -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 + log_k -85.9951 + -analytic 38.0229 7.99407E-3 -2.7655e+4 -1.4506e+1 199838.45 2 H+ + 2 e- = H2 - log_k -3.15 + log_k -3.15 delta_h -1.759 kcal NO3- + 2 H+ + 2 e- = NO2- + H2O - log_k 28.570 - delta_h -43.760 kcal - -gamma 3.0000 0.0000 + log_k 28.57 + delta_h -43.76 kcal + -gamma 3 0 NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O - log_k 119.077 - delta_h -187.055 kcal - -gamma 2.5000 0.0000 + log_k 119.077 + delta_h -187.055 kcal + -gamma 2.5 0 -Mn+2 + 4H2O = MnO4- + 8H+ + 5e- - log_k -127.794 - delta_h 822.67 kJ - -gamma 3 0 +Mn+2 + 4 H2O = MnO4- + 8 H+ + 5 e- + log_k -127.794 + delta_h 822.67 kJ + -gamma 3 0 # Id: 4700020 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- - log_k -118.422 - delta_h 711.07 kJ - -gamma 5 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Mn+2 + 4 H2O = MnO4-2 + 8 H+ + 4 e- + log_k -118.422 + delta_h 711.07 kJ + -gamma 5 0 # Id: 4700021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S-2 + H+ - log_k -17.3 - delta_h 49.4 kJ - -gamma 5 0 + log_k -17.3 + delta_h 49.4 kJ + -gamma 5 0 # Id: 3307301 - # log K source: LMa1987 - # Delta H source: NIST2.1.1 + # log K source: LMa1987 + # Delta H source: NIST2.1.1 #T and ionic strength: 0.00 25.0 HSe- = Se-2 + H+ - log_k -15 - delta_h 48.116 kJ - -gamma 0 0 + log_k -15 + delta_h 48.116 kJ + -gamma 0 0 # Id: 3307601 - # log K source: SCD3.02 (1968 DKa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1968 DKa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ = Tl+3 + 3H2O - log_k 3.291 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + 3 H+ = Tl+3 + 3 H2O + log_k 3.291 + delta_h 0 kJ + -gamma 0 0 # Id: 8713300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -0.5Hg2+2 + e- = Hg - log_k 6.5667 - delta_h -45.735 kJ - -gamma 0 0 +0.5 Hg2+2 + e- = Hg + log_k 6.5667 + delta_h -45.735 kJ + -gamma 0 0 # Id: 3600000 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Hg(OH)2 + 2H+ = Hg+2 + 2H2O - log_k 6.194 - delta_h -39.72 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Hg(OH)2 + 2 H+ = Hg+2 + 2 H2O + log_k 6.194 + delta_h -39.72 kJ + -gamma 0 0 # Id: 3613300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ = Cr+3 + 2H2O - log_k 9.5688 - delta_h -129.62 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ = Cr+3 + 2 H2O + log_k 9.5688 + delta_h -129.62 kJ + -gamma 0 0 # Id: 2113300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.10 20.0 H2O = OH- + H+ - log_k -13.997 - delta_h 55.81 kJ - -gamma 3.5 0 + log_k -13.997 + delta_h 55.81 kJ + -gamma 3.5 0 # Id: 3300020 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ = Sn+2 + 2H2O - log_k 7.094 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ = Sn+2 + 2 H2O + log_k 7.094 + delta_h 0 kJ + -gamma 0 0 # Id: 7903301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Sn(OH)2 + H+ = SnOH+ + H2O - log_k 3.697 - delta_h 0 kJ - -gamma 0 0 + log_k 3.697 + delta_h 0 kJ + -gamma 0 0 # Id: 7903302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Sn(OH)2 + H2O = Sn(OH)3- + H+ - log_k -9.497 - delta_h 0 kJ - -gamma 0 0 + log_k -9.497 + delta_h 0 kJ + -gamma 0 0 # Id: 7903303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2Sn(OH)2 + 2H+ = Sn2(OH)2+2 + 2H2O - log_k 9.394 - delta_h 0 kJ - -gamma 0 0 +2 Sn(OH)2 + 2 H+ = Sn2(OH)2+2 + 2 H2O + log_k 9.394 + delta_h 0 kJ + -gamma 0 0 # Id: 7903304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -3Sn(OH)2 + 2H+ = Sn3(OH)4+2 + 2H2O - log_k 14.394 - delta_h 0 kJ - -gamma 0 0 +3 Sn(OH)2 + 2 H+ = Sn3(OH)4+2 + 2 H2O + log_k 14.394 + delta_h 0 kJ + -gamma 0 0 # Id: 7903305 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Sn(OH)2 = HSnO2- + H+ - log_k -8.9347 - delta_h 0 kJ - -gamma 0 0 + log_k -8.9347 + delta_h 0 kJ + -gamma 0 0 # Id: 7903306 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sn(OH)6-2 + 6H+ = Sn+4 + 6H2O - log_k 21.2194 - delta_h 0 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sn(OH)6-2 + 6 H+ = Sn+4 + 6 H2O + log_k 21.2194 + delta_h 0 kJ + -gamma 0 0 # Id: 7913301 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sn(OH)6-2 = SnO3-2 + 3H2O - log_k -2.2099 - delta_h 0 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sn(OH)6-2 = SnO3-2 + 3 H2O + log_k -2.2099 + delta_h 0 kJ + -gamma 0 0 # Id: 7913302 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Pb+2 + H2O = PbOH+ + H+ - log_k -7.597 - delta_h 0 kJ - -gamma 0 0 + log_k -7.597 + delta_h 0 kJ + -gamma 0 0 # Id: 6003300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Pb+2 + 2H2O = Pb(OH)2 + 2H+ - log_k -17.094 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + log_k -17.094 + delta_h 0 kJ + -gamma 0 0 # Id: 6003301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Pb+2 + 3H2O = Pb(OH)3- + 3H+ - log_k -28.091 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + log_k -28.091 + delta_h 0 kJ + -gamma 0 0 # Id: 6003302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2Pb+2 + H2O = Pb2OH+3 + H+ - log_k -6.397 - delta_h 0 kJ - -gamma 0 0 +2 Pb+2 + H2O = Pb2OH+3 + H+ + log_k -6.397 + delta_h 0 kJ + -gamma 0 0 # Id: 6003303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ - log_k -23.888 - delta_h 115.24 kJ - -gamma 0 0 +3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + log_k -23.888 + delta_h 115.24 kJ + -gamma 0 0 # Id: 6003304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Pb+2 + 4H2O = Pb(OH)4-2 + 4H+ - log_k -39.699 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + log_k -39.699 + delta_h 0 kJ + -gamma 0 0 # Id: 6003305 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -4Pb+2 + 4H2O = Pb4(OH)4+4 + 4H+ - log_k -19.988 - delta_h 88.24 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +4 Pb+2 + 4 H2O = Pb4(OH)4+4 + 4 H+ + log_k -19.988 + delta_h 88.24 kJ + -gamma 0 0 # Id: 6003306 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 H3BO3 + F- = BF(OH)3- - log_k -0.399 - delta_h 7.7404 kJ - -gamma 2.5 0 + log_k -0.399 + delta_h 7.7404 kJ + -gamma 2.5 0 # Id: 902700 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3BO3 + 2F- + H+ = BF2(OH)2- + H2O - log_k 7.63 - delta_h 6.8408 kJ - -gamma 2.5 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O + log_k 7.63 + delta_h 6.8408 kJ + -gamma 2.5 0 # Id: 902701 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3BO3 + 3F- + 2H+ = BF3OH- + 2H2O - log_k 13.22 - delta_h -20.4897 kJ - -gamma 2.5 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3BO3 + 3 F- + 2 H+ = BF3OH- + 2 H2O + log_k 13.22 + delta_h -20.4897 kJ + -gamma 2.5 0 # Id: 902702 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Al+3 + H2O = AlOH+2 + H+ - log_k -4.997 - delta_h 47.81 kJ - -gamma 5.4 0 + log_k -4.997 + delta_h 47.81 kJ + -gamma 5.4 0 # Id: 303300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Al+3 + 2H2O = Al(OH)2+ + 2H+ - log_k -10.094 - delta_h 0 kJ - -gamma 5.4 0 +Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + log_k -10.094 + delta_h 0 kJ + -gamma 5.4 0 # Id: 303301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Al+3 + 3H2O = Al(OH)3 + 3H+ - log_k -16.791 - delta_h 0 kJ - -gamma 0 0 +Al+3 + 3 H2O = Al(OH)3 + 3 H+ + log_k -16.791 + delta_h 0 kJ + -gamma 0 0 # Id: 303303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Al+3 + 4H2O = Al(OH)4- + 4H+ - log_k -22.688 - delta_h 173.24 kJ - -gamma 4.5 0 +Al+3 + 4 H2O = Al(OH)4- + 4 H+ + log_k -22.688 + delta_h 173.24 kJ + -gamma 4.5 0 # Id: 303302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Tl+ + H2O = TlOH + H+ - log_k -13.207 - delta_h 56.81 kJ - -gamma 0 0 + log_k -13.207 + delta_h 56.81 kJ + -gamma 0 0 # Id: 8703300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 2H+ = TlOH+2 + 2H2O - log_k 2.694 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + 2 H+ = TlOH+2 + 2 H2O + log_k 2.694 + delta_h 0 kJ + -gamma 0 0 # Id: 8713301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Tl(OH)3 + H+ = Tl(OH)2+ + H2O - log_k 1.897 - delta_h 0 kJ - -gamma 0 0 + log_k 1.897 + delta_h 0 kJ + -gamma 0 0 # Id: 8713302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Tl(OH)3 + H2O = Tl(OH)4- + H+ - log_k -11.697 - delta_h 0 kJ - -gamma 0 0 + log_k -11.697 + delta_h 0 kJ + -gamma 0 0 # Id: 8713303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + H2O = ZnOH+ + H+ - log_k -8.997 - delta_h 55.81 kJ - -gamma 0 0 + log_k -8.997 + delta_h 55.81 kJ + -gamma 0 0 # Id: 9503300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Zn+2 + 2H2O = Zn(OH)2 + 2H+ - log_k -17.794 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + log_k -17.794 + delta_h 0 kJ + -gamma 0 0 # Id: 9503301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Zn+2 + 3H2O = Zn(OH)3- + 3H+ - log_k -28.091 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + log_k -28.091 + delta_h 0 kJ + -gamma 0 0 # Id: 9503302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Zn+2 + 4H2O = Zn(OH)4-2 + 4H+ - log_k -40.488 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + log_k -40.488 + delta_h 0 kJ + -gamma 0 0 # Id: 9503303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cd+2 + H2O = CdOH+ + H+ - log_k -10.097 - delta_h 54.81 kJ - -gamma 0 0 + log_k -10.097 + delta_h 54.81 kJ + -gamma 0 0 # Id: 1603300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 2H2O = Cd(OH)2 + 2H+ - log_k -20.294 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + log_k -20.294 + delta_h 0 kJ + -gamma 0 0 # Id: 1603301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cd+2 + 3H2O = Cd(OH)3- + 3H+ - log_k -32.505 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + log_k -32.505 + delta_h 0 kJ + -gamma 0 0 # Id: 1603302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 -Cd+2 + 4H2O = Cd(OH)4-2 + 4H+ - log_k -47.288 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + log_k -47.288 + delta_h 0 kJ + -gamma 0 0 # Id: 1603303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2Cd+2 + H2O = Cd2OH+3 + H+ - log_k -9.397 - delta_h 45.81 kJ - -gamma 0 0 +2 Cd+2 + H2O = Cd2OH+3 + H+ + log_k -9.397 + delta_h 45.81 kJ + -gamma 0 0 # Id: 1603304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Hg(OH)2 + H+ = HgOH+ + H2O - log_k 2.797 - delta_h -18.91 kJ - -gamma 0 0 + log_k 2.797 + delta_h -18.91 kJ + -gamma 0 0 # Id: 3613302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Hg(OH)2 + H2O = Hg(OH)3- + H+ - log_k -14.897 - delta_h 0 kJ - -gamma 0 0 + log_k -14.897 + delta_h 0 kJ + -gamma 0 0 # Id: 3613303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cu+2 + H2O = CuOH+ + H+ - log_k -7.497 - delta_h 35.81 kJ - -gamma 4 0 + log_k -7.497 + delta_h 35.81 kJ + -gamma 4 0 # Id: 2313300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cu+2 + 2H2O = Cu(OH)2 + 2H+ - log_k -16.194 - delta_h 0 kJ - -gamma 0 0 +Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + log_k -16.194 + delta_h 0 kJ + -gamma 0 0 # Id: 2313301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cu+2 + 3H2O = Cu(OH)3- + 3H+ - log_k -26.879 - delta_h 0 kJ - -gamma 0 0 +Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + log_k -26.879 + delta_h 0 kJ + -gamma 0 0 # Id: 2313302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Cu+2 + 4H2O = Cu(OH)4-2 + 4H+ - log_k -39.98 - delta_h 0 kJ - -gamma 0 0 +Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + log_k -39.98 + delta_h 0 kJ + -gamma 0 0 # Id: 2313303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ - log_k -10.594 - delta_h 76.62 kJ - -gamma 0 0 +2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + log_k -10.594 + delta_h 76.62 kJ + -gamma 0 0 # Id: 2313304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ag+ + H2O = AgOH + H+ - log_k -11.997 - delta_h 0 kJ - -gamma 0 0 + log_k -11.997 + delta_h 0 kJ + -gamma 0 0 # Id: 203300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Ag+ + 2H2O = Ag(OH)2- + 2H+ - log_k -24.004 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 2 H2O = Ag(OH)2- + 2 H+ + log_k -24.004 + delta_h 0 kJ + -gamma 0 0 # Id: 203301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ni+2 + H2O = NiOH+ + H+ - log_k -9.897 - delta_h 51.81 kJ - -gamma 0 0 + log_k -9.897 + delta_h 51.81 kJ + -gamma 0 0 # Id: 5403300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Ni+2 + 2H2O = Ni(OH)2 + 2H+ - log_k -18.994 - delta_h 0 kJ - -gamma 0 0 +Ni+2 + 2 H2O = Ni(OH)2 + 2 H+ + log_k -18.994 + delta_h 0 kJ + -gamma 0 0 # Id: 5403301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Ni+2 + 3H2O = Ni(OH)3- + 3H+ - log_k -29.991 - delta_h 0 kJ - -gamma 0 0 +Ni+2 + 3 H2O = Ni(OH)3- + 3 H+ + log_k -29.991 + delta_h 0 kJ + -gamma 0 0 # Id: 5403302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + H2O = CoOH+ + H+ - log_k -9.697 - delta_h 0 kJ - -gamma 0 0 + log_k -9.697 + delta_h 0 kJ + -gamma 0 0 # Id: 2003300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Co+2 + 2H2O = Co(OH)2 + 2H+ - log_k -18.794 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 H2O = Co(OH)2 + 2 H+ + log_k -18.794 + delta_h 0 kJ + -gamma 0 0 # Id: 2003301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Co+2 + 3H2O = Co(OH)3- + 3H+ - log_k -31.491 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 3 H2O = Co(OH)3- + 3 H+ + log_k -31.491 + delta_h 0 kJ + -gamma 0 0 # Id: 2003302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Co+2 + 4H2O = Co(OH)4-2 + 4H+ - log_k -46.288 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 4 H2O = Co(OH)4-2 + 4 H+ + log_k -46.288 + delta_h 0 kJ + -gamma 0 0 # Id: 2003303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2Co+2 + H2O = Co2OH+3 + H+ - log_k -10.997 - delta_h 0 kJ - -gamma 0 0 +2 Co+2 + H2O = Co2OH+3 + H+ + log_k -10.997 + delta_h 0 kJ + -gamma 0 0 # Id: 2003304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -4Co+2 + 4H2O = Co4(OH)4+4 + 4H+ - log_k -30.488 - delta_h 0 kJ - -gamma 0 0 +4 Co+2 + 4 H2O = Co4(OH)4+4 + 4 H+ + log_k -30.488 + delta_h 0 kJ + -gamma 0 0 # Id: 2003306 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Co+2 + 2H2O = CoOOH- + 3H+ - log_k -32.0915 - delta_h 260.454 kJ - -gamma 0 0 +Co+2 + 2 H2O = CoOOH- + 3 H+ + log_k -32.0915 + delta_h 260.454 kJ + -gamma 0 0 # Id: 2003305 - # log K source: NIST2.1.1 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: MTQ3.11 + #T and ionic strength: Co+3 + H2O = CoOH+2 + H+ - log_k -1.291 - delta_h 0 kJ - -gamma 0 0 + log_k -1.291 + delta_h 0 kJ + -gamma 0 0 # Id: 2013300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 Fe+2 + H2O = FeOH+ + H+ - log_k -9.397 - delta_h 55.81 kJ - -gamma 5 0 + log_k -9.397 + delta_h 55.81 kJ + -gamma 5 0 # Id: 2803300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ - log_k -20.494 - delta_h 119.62 kJ - -gamma 0 0 +Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + log_k -20.494 + delta_h 119.62 kJ + -gamma 0 0 # Id: 2803302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ - log_k -28.991 - delta_h 126.43 kJ - -gamma 5 0 +Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + log_k -28.991 + delta_h 126.43 kJ + -gamma 5 0 # Id: 2803301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Fe+3 + H2O = FeOH+2 + H+ - log_k -2.187 - delta_h 41.81 kJ - -gamma 5 0 + log_k -2.187 + delta_h 41.81 kJ + -gamma 5 0 # Id: 2813300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Fe+3 + 2H2O = Fe(OH)2+ + 2H+ - log_k -4.594 - delta_h 0 kJ - -gamma 5.4 0 +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + log_k -4.594 + delta_h 0 kJ + -gamma 5.4 0 # Id: 2813301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Fe+3 + 3H2O = Fe(OH)3 + 3H+ - log_k -12.56 - delta_h 103.8 kJ - -gamma 0 0 +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + log_k -12.56 + delta_h 103.8 kJ + -gamma 0 0 # Id: 2813302 - # log K source: Nord90 - # Delta H source: Nord90 + # log K source: Nord90 + # Delta H source: Nord90 #T and ionic strength: 0.00 25.0 -Fe+3 + 4H2O = Fe(OH)4- + 4H+ - log_k -21.588 - delta_h 0 kJ - -gamma 5.4 0 +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + log_k -21.588 + delta_h 0 kJ + -gamma 5.4 0 # Id: 2813303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2Fe+3 + 2H2O = Fe2(OH)2+4 + 2H+ - log_k -2.854 - delta_h 57.62 kJ - -gamma 0 0 +2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + log_k -2.854 + delta_h 57.62 kJ + -gamma 0 0 # Id: 2813304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -3Fe+3 + 4H2O = Fe3(OH)4+5 + 4H+ - log_k -6.288 - delta_h 65.24 kJ - -gamma 0 0 +3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + log_k -6.288 + delta_h 65.24 kJ + -gamma 0 0 # Id: 2813305 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Mn+2 + H2O = MnOH+ + H+ - log_k -10.597 - delta_h 55.81 kJ - -gamma 5 0 + log_k -10.597 + delta_h 55.81 kJ + -gamma 5 0 # Id: 4703300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ - log_k -34.8 - delta_h 0 kJ - -gamma 5 0 +Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + log_k -34.8 + delta_h 0 kJ + -gamma 5 0 # Id: 4703301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Mn+2 + 4H2O = Mn(OH)4-2 + 4H+ - log_k -48.288 - delta_h 0 kJ - -gamma 5 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Mn+2 + 4 H2O = Mn(OH)4-2 + 4 H+ + log_k -48.288 + delta_h 0 kJ + -gamma 5 0 # Id: 4703302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Mn+2 + 4H2O = MnO4- + 8H+ + 5e- - log_k -127.794 - delta_h 822.67 kJ - -gamma 3 0 +Mn+2 + 4 H2O = MnO4- + 8 H+ + 5 e- + log_k -127.794 + delta_h 822.67 kJ + -gamma 3 0 # Id: 4700020 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- - log_k -118.422 - delta_h 711.07 kJ - -gamma 5 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Mn+2 + 4 H2O = MnO4-2 + 8 H+ + 4 e- + log_k -118.422 + delta_h 711.07 kJ + -gamma 5 0 # Id: 4700021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Cr(OH)2+ + H+ = Cr(OH)+2 + H2O - log_k 5.9118 - delta_h -77.91 kJ - -gamma 0 0 + log_k 5.9118 + delta_h -77.91 kJ + -gamma 0 0 # Id: 2113301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cr(OH)2+ + H2O = Cr(OH)3 + H+ - log_k -8.4222 - delta_h 0 kJ - -gamma 0 0 + log_k -8.4222 + delta_h 0 kJ + -gamma 0 0 # Id: 2113302 - # log K source: SCD3.02 (1983 RCa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1983 RCa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H2O = Cr(OH)4- + 2H+ - log_k -17.8192 - delta_h 0 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H2O = Cr(OH)4- + 2 H+ + log_k -17.8192 + delta_h 0 kJ + -gamma 0 0 # Id: 2113303 - # log K source: SCD3.02 (1983 RCa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1983 RCa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cr(OH)2+ = CrO2- + 2H+ - log_k -17.7456 - delta_h 0 kJ - -gamma 0 0 +Cr(OH)2+ = CrO2- + 2 H+ + log_k -17.7456 + delta_h 0 kJ + -gamma 0 0 # Id: 2113304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: V+2 + H2O = VOH+ + H+ - log_k -6.487 - delta_h 59.81 kJ - -gamma 0 0 + log_k -6.487 + delta_h 59.81 kJ + -gamma 0 0 # Id: 9003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 V+3 + H2O = VOH+2 + H+ - log_k -2.297 - delta_h 43.81 kJ - -gamma 0 0 + log_k -2.297 + delta_h 43.81 kJ + -gamma 0 0 # Id: 9013300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -V+3 + 2H2O = V(OH)2+ + 2H+ - log_k -6.274 - delta_h 0 kJ - -gamma 0 0 +V+3 + 2 H2O = V(OH)2+ + 2 H+ + log_k -6.274 + delta_h 0 kJ + -gamma 0 0 # Id: 9013301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 -V+3 + 3H2O = V(OH)3 + 3H+ - log_k -3.0843 - delta_h 0 kJ - -gamma 0 0 +V+3 + 3 H2O = V(OH)3 + 3 H+ + log_k -3.0843 + delta_h 0 kJ + -gamma 0 0 # Id: 9013302 - # log K source: SCD3.02 (1978 TKa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1978 TKa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 -2V+3 + 2H2O = V2(OH)2+4 + 2H+ - log_k -3.794 - delta_h 0 kJ - -gamma 0 0 +2 V+3 + 2 H2O = V2(OH)2+4 + 2 H+ + log_k -3.794 + delta_h 0 kJ + -gamma 0 0 # Id: 9013304 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2V+3 + 3H2O = V2(OH)3+3 + 3H+ - log_k -10.1191 - delta_h 0 kJ - -gamma 0 0 +2 V+3 + 3 H2O = V2(OH)3+3 + 3 H+ + log_k -10.1191 + delta_h 0 kJ + -gamma 0 0 # Id: 9013303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 -VO+2 + 2H2O = V(OH)3+ + H+ - log_k -5.697 - delta_h 0 kJ - -gamma 0 0 +VO+2 + 2 H2O = V(OH)3+ + H+ + log_k -5.697 + delta_h 0 kJ + -gamma 0 0 # Id: 9023300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2VO+2 + 2H2O = H2V2O4+2 + 2H+ - log_k -6.694 - delta_h 53.62 kJ - -gamma 0 0 +2 VO+2 + 2 H2O = H2V2O4+2 + 2 H+ + log_k -6.694 + delta_h 53.62 kJ + -gamma 0 0 # Id: 9023301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 U+4 + H2O = UOH+3 + H+ - log_k -0.597 - delta_h 47.81 kJ - -gamma 0 0 + log_k -0.597 + delta_h 47.81 kJ + -gamma 0 0 # Id: 8913300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -U+4 + 2H2O = U(OH)2+2 + 2H+ - log_k -2.27 - delta_h 74.1823 kJ - -gamma 0 0 +U+4 + 2 H2O = U(OH)2+2 + 2 H+ + log_k -2.27 + delta_h 74.1823 kJ + -gamma 0 0 # Id: 8913301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 3H2O = U(OH)3+ + 3H+ - log_k -4.935 - delta_h 94.7467 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 3 H2O = U(OH)3+ + 3 H+ + log_k -4.935 + delta_h 94.7467 kJ + -gamma 0 0 # Id: 8913302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 4H2O = U(OH)4 + 4H+ - log_k -8.498 - delta_h 103.596 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 4 H2O = U(OH)4 + 4 H+ + log_k -8.498 + delta_h 103.596 kJ + -gamma 0 0 # Id: 8913303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 5H2O = U(OH)5- + 5H+ - log_k -13.12 - delta_h 115.374 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 5 H2O = U(OH)5- + 5 H+ + log_k -13.12 + delta_h 115.374 kJ + -gamma 0 0 # Id: 8913304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -6U+4 + 15H2O = U6(OH)15+9 + 15H+ - log_k -17.155 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +6 U+4 + 15 H2O = U6(OH)15+9 + 15 H+ + log_k -17.155 + delta_h 0 kJ + -gamma 0 0 # Id: 8913305 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 UO2+2 + H2O = UO2OH+ + H+ - log_k -5.897 - delta_h 47.81 kJ - -gamma 0 0 + log_k -5.897 + delta_h 47.81 kJ + -gamma 0 0 # Id: 8933300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+ - log_k -5.574 - delta_h 41.82 kJ - -gamma 0 0 +2 UO2+2 + 2 H2O = (UO2)2(OH)2+2 + 2 H+ + log_k -5.574 + delta_h 41.82 kJ + -gamma 0 0 # Id: 8933301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+ - log_k -15.585 - delta_h 108.05 kJ - -gamma 0 0 +3 UO2+2 + 5 H2O = (UO2)3(OH)5+ + 5 H+ + log_k -15.585 + delta_h 108.05 kJ + -gamma 0 0 # Id: 8933302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Be+2 + H2O = BeOH+ + H+ - log_k -5.397 - delta_h 0 kJ - -gamma 6.5 0 + log_k -5.397 + delta_h 0 kJ + -gamma 6.5 0 # Id: 1103301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Be+2 + 2H2O = Be(OH)2 + 2H+ - log_k -13.594 - delta_h 0 kJ - -gamma 6.5 0 +Be+2 + 2 H2O = Be(OH)2 + 2 H+ + log_k -13.594 + delta_h 0 kJ + -gamma 6.5 0 # Id: 1103302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Be+2 + 3H2O = Be(OH)3- + 3H+ - log_k -23.191 - delta_h 0 kJ - -gamma 6.5 0 +Be+2 + 3 H2O = Be(OH)3- + 3 H+ + log_k -23.191 + delta_h 0 kJ + -gamma 6.5 0 # Id: 1103303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Be+2 + 4H2O = Be(OH)4-2 + 4H+ - log_k -37.388 - delta_h 0 kJ - -gamma 6.5 0 +Be+2 + 4 H2O = Be(OH)4-2 + 4 H+ + log_k -37.388 + delta_h 0 kJ + -gamma 6.5 0 # Id: 1103304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2Be+2 + H2O = Be2OH+3 + H+ - log_k -3.177 - delta_h 0 kJ - -gamma 6.5 0 +2 Be+2 + H2O = Be2OH+3 + H+ + log_k -3.177 + delta_h 0 kJ + -gamma 6.5 0 # Id: 1103305 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 -3Be+2 + 3H2O = Be3(OH)3+3 + 3H+ - log_k -8.8076 - delta_h 0 kJ - -gamma 6.5 0 +3 Be+2 + 3 H2O = Be3(OH)3+3 + 3 H+ + log_k -8.8076 + delta_h 0 kJ + -gamma 6.5 0 # Id: 1103306 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 Mg+2 + H2O = MgOH+ + H+ - log_k -11.397 - delta_h 67.81 kJ - -gamma 6.5 0 + log_k -11.397 + delta_h 67.81 kJ + -gamma 6.5 0 # Id: 4603300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + H2O = CaOH+ + H+ - log_k -12.697 - delta_h 64.11 kJ - -gamma 6 0 + log_k -12.697 + delta_h 64.11 kJ + -gamma 6 0 # Id: 1503300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Sr+2 + H2O = SrOH+ + H+ - log_k -13.177 - delta_h 60.81 kJ - -gamma 5 0 + log_k -13.177 + delta_h 60.81 kJ + -gamma 5 0 # Id: 8003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ba+2 + H2O = BaOH+ + H+ - log_k -13.357 - delta_h 60.81 kJ - -gamma 5 0 + log_k -13.357 + delta_h 60.81 kJ + -gamma 5 0 # Id: 1003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 H+ + F- = HF - log_k 3.17 - delta_h 13.3 kJ - -gamma 0 0 + log_k 3.17 + delta_h 13.3 kJ + -gamma 0 0 # Id: 3302700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -H+ + 2F- = HF2- - log_k 3.75 - delta_h 17.4 kJ - -gamma 3.5 0 +H+ + 2 F- = HF2- + log_k 3.75 + delta_h 17.4 kJ + -gamma 3.5 0 # Id: 3302701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -2F- + 2H+ = H2F2 - log_k 6.768 - delta_h 0 kJ - -gamma 0 0 +2 F- + 2 H+ = H2F2 + log_k 6.768 + delta_h 0 kJ + -gamma 0 0 # Id: 3302702 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sb(OH)3 + F- + H+ = SbOF + 2H2O - log_k 6.1864 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sb(OH)3 + F- + H+ = SbOF + 2 H2O + log_k 6.1864 + delta_h 0 kJ + -gamma 0 0 # Id: 7402700 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)3 + F- + H+ = Sb(OH)2F + H2O - log_k 6.1937 - delta_h 0 kJ - -gamma 0 0 + log_k 6.1937 + delta_h 0 kJ + -gamma 0 0 # Id: 7402702 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -H4SiO4 + 4H+ + 6F- = SiF6-2 + 4H2O - log_k 30.18 - delta_h -68 kJ - -gamma 5 0 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O + log_k 30.18 + delta_h -68 kJ + -gamma 5 0 # Id: 7702700 - # log K source: Nord90 - # Delta H source: Nord90 + # log K source: Nord90 + # Delta H source: Nord90 #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + F- = SnF+ + 2H2O - log_k 11.582 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + F- = SnF+ + 2 H2O + log_k 11.582 + delta_h 0 kJ + -gamma 0 0 # Id: 7902701 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Sn(OH)2 + 2H+ + 2F- = SnF2 + 2H2O - log_k 14.386 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + 2 F- = SnF2 + 2 H2O + log_k 14.386 + delta_h 0 kJ + -gamma 0 0 # Id: 7902702 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Sn(OH)2 + 2H+ + 3F- = SnF3- + 2H2O - log_k 17.206 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + 3 F- = SnF3- + 2 H2O + log_k 17.206 + delta_h 0 kJ + -gamma 0 0 # Id: 7902703 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Sn(OH)6-2 + 6H+ + 6F- = SnF6-2 + 6H2O - log_k 33.5844 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)6-2 + 6 H+ + 6 F- = SnF6-2 + 6 H2O + log_k 33.5844 + delta_h 0 kJ + -gamma 0 0 # Id: 7912701 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Pb+2 + F- = PbF+ - log_k 1.848 - delta_h 0 kJ - -gamma 0 0 + log_k 1.848 + delta_h 0 kJ + -gamma 0 0 # Id: 6002700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Pb+2 + 2F- = PbF2 - log_k 3.142 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 2 F- = PbF2 + log_k 3.142 + delta_h 0 kJ + -gamma 0 0 # Id: 6002701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Pb+2 + 3F- = PbF3- - log_k 3.42 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 3 F- = PbF3- + log_k 3.42 + delta_h 0 kJ + -gamma 0 0 # Id: 6002702 - # log K source: SCD3.02 (1956 TKa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1956 TKa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Pb+2 + 4F- = PbF4-2 - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 4 F- = PbF4-2 + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 # Id: 6002703 - # log K source: SCD3.02 (1956 TKa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1956 TKa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -H3BO3 + 3H+ + 4F- = BF4- + 3H2O - log_k 19.912 - delta_h -18.67 kJ - -gamma 2.5 0 +H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O + log_k 19.912 + delta_h -18.67 kJ + -gamma 2.5 0 # Id: 902703 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 #T and ionic strength: 1.00 25.0 Al+3 + F- = AlF+2 - log_k 7 - delta_h 4.6 kJ - -gamma 5.4 0 + log_k 7 + delta_h 4.6 kJ + -gamma 5.4 0 # Id: 302700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Al+3 + 2F- = AlF2+ - log_k 12.6 - delta_h 8.3 kJ - -gamma 5.4 0 +Al+3 + 2 F- = AlF2+ + log_k 12.6 + delta_h 8.3 kJ + -gamma 5.4 0 # Id: 302701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Al+3 + 3F- = AlF3 - log_k 16.7 - delta_h 8.7 kJ - -gamma 0 0 +Al+3 + 3 F- = AlF3 + log_k 16.7 + delta_h 8.7 kJ + -gamma 0 0 # Id: 302702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Al+3 + 4F- = AlF4- - log_k 19.4 - delta_h 8.7 kJ - -gamma 4.5 0 +Al+3 + 4 F- = AlF4- + log_k 19.4 + delta_h 8.7 kJ + -gamma 4.5 0 # Id: 302703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Tl+ + F- = TlF - log_k 0.1 - delta_h 0 kJ - -gamma 0 0 + log_k 0.1 + delta_h 0 kJ + -gamma 0 0 # Id: 8702700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + F- = ZnF+ - log_k 1.3 - delta_h 11 kJ - -gamma 0 0 + log_k 1.3 + delta_h 11 kJ + -gamma 0 0 # Id: 9502700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cd+2 + F- = CdF+ - log_k 1.2 - delta_h 5 kJ - -gamma 0 0 + log_k 1.2 + delta_h 5 kJ + -gamma 0 0 # Id: 1602700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 2F- = CdF2 - log_k 1.5 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 2 F- = CdF2 + log_k 1.5 + delta_h 0 kJ + -gamma 0 0 # Id: 1602701 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 2H+ + F- = HgF+ + 2H2O - log_k 7.763 - delta_h -35.72 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 2 H+ + F- = HgF+ + 2 H2O + log_k 7.763 + delta_h -35.72 kJ + -gamma 0 0 # Id: 3612701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 Cu+2 + F- = CuF+ - log_k 1.8 - delta_h 13 kJ - -gamma 0 0 + log_k 1.8 + delta_h 13 kJ + -gamma 0 0 # Id: 2312700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ag+ + F- = AgF - log_k 0.4 - delta_h 12 kJ - -gamma 0 0 + log_k 0.4 + delta_h 12 kJ + -gamma 0 0 # Id: 202700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ni+2 + F- = NiF+ - log_k 1.4 - delta_h 7.1 kJ - -gamma 0 0 + log_k 1.4 + delta_h 7.1 kJ + -gamma 0 0 # Id: 5402700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Co+2 + F- = CoF+ - log_k 1.5 - delta_h 9.2 kJ - -gamma 0 0 + log_k 1.5 + delta_h 9.2 kJ + -gamma 0 0 # Id: 2002700 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Fe+3 + F- = FeF+2 - log_k 6.04 - delta_h 10 kJ - -gamma 5 0 + log_k 6.04 + delta_h 10 kJ + -gamma 5 0 # Id: 2812700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Fe+3 + 2F- = FeF2+ - log_k 10.4675 - delta_h 17 kJ - -gamma 5 0 +Fe+3 + 2 F- = FeF2+ + log_k 10.4675 + delta_h 17 kJ + -gamma 5 0 # Id: 2812701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 -Fe+3 + 3F- = FeF3 - log_k 13.617 - delta_h 29 kJ - -gamma 0 0 +Fe+3 + 3 F- = FeF3 + log_k 13.617 + delta_h 29 kJ + -gamma 0 0 # Id: 2812702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 Mn+2 + F- = MnF+ - log_k 1.6 - delta_h 11 kJ - -gamma 5 0 + log_k 1.6 + delta_h 11 kJ + -gamma 5 0 # Id: 4702700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ + F- = CrF+2 + 2H2O - log_k 14.7688 - delta_h -70.2452 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + F- = CrF+2 + 2 H2O + log_k 14.7688 + delta_h -70.2452 kJ + -gamma 0 0 # Id: 2112700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 VO+2 + F- = VOF+ - log_k 3.778 - delta_h 7.9 kJ - -gamma 0 0 + log_k 3.778 + delta_h 7.9 kJ + -gamma 0 0 # Id: 9022700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 -VO+2 + 2F- = VOF2 - log_k 6.352 - delta_h 14 kJ - -gamma 0 0 +VO+2 + 2 F- = VOF2 + log_k 6.352 + delta_h 14 kJ + -gamma 0 0 # Id: 9022701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 -VO+2 + 3F- = VOF3- - log_k 7.902 - delta_h 20 kJ - -gamma 0 0 +VO+2 + 3 F- = VOF3- + log_k 7.902 + delta_h 20 kJ + -gamma 0 0 # Id: 9022702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 -VO+2 + 4F- = VOF4-2 - log_k 8.508 - delta_h 26 kJ - -gamma 0 0 +VO+2 + 4 F- = VOF4-2 + log_k 8.508 + delta_h 26 kJ + -gamma 0 0 # Id: 9022703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 VO2+ + F- = VO2F - log_k 3.244 - delta_h 0 kJ - -gamma 0 0 + log_k 3.244 + delta_h 0 kJ + -gamma 0 0 # Id: 9032700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -VO2+ + 2F- = VO2F2- - log_k 5.804 - delta_h 0 kJ - -gamma 0 0 +VO2+ + 2 F- = VO2F2- + log_k 5.804 + delta_h 0 kJ + -gamma 0 0 # Id: 9032701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 -VO2+ + 3F- = VO2F3-2 - log_k 6.9 - delta_h 0 kJ - -gamma 0 0 +VO2+ + 3 F- = VO2F3-2 + log_k 6.9 + delta_h 0 kJ + -gamma 0 0 # Id: 9032702 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 -VO2+ + 4F- = VO2F4-3 - log_k 6.592 - delta_h 0 kJ - -gamma 0 0 +VO2+ + 4 F- = VO2F4-3 + log_k 6.592 + delta_h 0 kJ + -gamma 0 0 # Id: 9032703 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 U+4 + F- = UF+3 - log_k 9.3 - delta_h 21.1292 kJ - -gamma 0 0 + log_k 9.3 + delta_h 21.1292 kJ + -gamma 0 0 # Id: 8912700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -U+4 + 2F- = UF2+2 - log_k 16.4 - delta_h 30.1248 kJ - -gamma 0 0 +U+4 + 2 F- = UF2+2 + log_k 16.4 + delta_h 30.1248 kJ + -gamma 0 0 # Id: 8912701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -U+4 + 3F- = UF3+ - log_k 21.6 - delta_h 29.9156 kJ - -gamma 0 0 +U+4 + 3 F- = UF3+ + log_k 21.6 + delta_h 29.9156 kJ + -gamma 0 0 # Id: 8912702 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -U+4 + 4F- = UF4 - log_k 23.64 - delta_h 19.2464 kJ - -gamma 0 0 +U+4 + 4 F- = UF4 + log_k 23.64 + delta_h 19.2464 kJ + -gamma 0 0 # Id: 8912703 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 5F- = UF5- - log_k 25.238 - delta_h 20.2924 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 5 F- = UF5- + log_k 25.238 + delta_h 20.2924 kJ + -gamma 0 0 # Id: 8912704 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 6F- = UF6-2 - log_k 27.718 - delta_h 13.8072 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 6 F- = UF6-2 + log_k 27.718 + delta_h 13.8072 kJ + -gamma 0 0 # Id: 8912705 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + F- = UO2F+ - log_k 5.14 - delta_h 1 kJ - -gamma 0 0 + log_k 5.14 + delta_h 1 kJ + -gamma 0 0 # Id: 8932700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -UO2+2 + 2F- = UO2F2 - log_k 8.6 - delta_h 2 kJ - -gamma 0 0 +UO2+2 + 2 F- = UO2F2 + log_k 8.6 + delta_h 2 kJ + -gamma 0 0 # Id: 8932701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -UO2+2 + 3F- = UO2F3- - log_k 11 - delta_h 2 kJ - -gamma 0 0 +UO2+2 + 3 F- = UO2F3- + log_k 11 + delta_h 2 kJ + -gamma 0 0 # Id: 8932702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -UO2+2 + 4F- = UO2F4-2 - log_k 11.9 - delta_h 0.4 kJ - -gamma 0 0 +UO2+2 + 4 F- = UO2F4-2 + log_k 11.9 + delta_h 0.4 kJ + -gamma 0 0 # Id: 8932703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Be+2 + F- = BeF+ - log_k 5.249 - delta_h 0 kJ - -gamma 0 0 + log_k 5.249 + delta_h 0 kJ + -gamma 0 0 # Id: 1102701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 -Be+2 + 2F- = BeF2 - log_k 9.1285 - delta_h -4 kJ - -gamma 0 0 +Be+2 + 2 F- = BeF2 + log_k 9.1285 + delta_h -4 kJ + -gamma 0 0 # Id: 1102702 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 -Be+2 + 3F- = BeF3- - log_k 11.9085 - delta_h -8 kJ - -gamma 0 0 +Be+2 + 3 F- = BeF3- + log_k 11.9085 + delta_h -8 kJ + -gamma 0 0 # Id: 1102703 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Mg+2 + F- = MgF+ - log_k 2.05 - delta_h 13 kJ - -gamma 4.5 0 + log_k 2.05 + delta_h 13 kJ + -gamma 4.5 0 # Id: 4602700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + F- = CaF+ - log_k 1.038 - delta_h 14 kJ - -gamma 5 0 + log_k 1.038 + delta_h 14 kJ + -gamma 5 0 # Id: 1502700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 Sr+2 + F- = SrF+ - log_k 0.548 - delta_h 16 kJ - -gamma 0 0 + log_k 0.548 + delta_h 16 kJ + -gamma 0 0 # Id: 8002701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 1.00 25.0 Na+ + F- = NaF - log_k -0.2 - delta_h 12 kJ - -gamma 0 0 + log_k -0.2 + delta_h 12 kJ + -gamma 0 0 # Id: 5002700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + Cl- = SnCl+ + 2H2O - log_k 8.734 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + Cl- = SnCl+ + 2 H2O + log_k 8.734 + delta_h 0 kJ + -gamma 0 0 # Id: 7901801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + 2Cl- = SnCl2 + 2H2O - log_k 9.524 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + 2 Cl- = SnCl2 + 2 H2O + log_k 9.524 + delta_h 0 kJ + -gamma 0 0 # Id: 7901802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + 3Cl- = SnCl3- + 2H2O - log_k 8.3505 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + 3 Cl- = SnCl3- + 2 H2O + log_k 8.3505 + delta_h 0 kJ + -gamma 0 0 # Id: 7901803 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 2.00 25.0 Pb+2 + Cl- = PbCl+ - log_k 1.55 - delta_h 8.7 kJ - -gamma 0 0 + log_k 1.55 + delta_h 8.7 kJ + -gamma 0 0 # Id: 6001800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Pb+2 + 2Cl- = PbCl2 - log_k 2.2 - delta_h 12 kJ - -gamma 0 0 +Pb+2 + 2 Cl- = PbCl2 + log_k 2.2 + delta_h 12 kJ + -gamma 0 0 # Id: 6001801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Pb+2 + 3Cl- = PbCl3- - log_k 1.8 - delta_h 4 kJ - -gamma 0 0 +Pb+2 + 3 Cl- = PbCl3- + log_k 1.8 + delta_h 4 kJ + -gamma 0 0 # Id: 6001802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Pb+2 + 4Cl- = PbCl4-2 - log_k 1.46 - delta_h 14.7695 kJ - -gamma 0 0 +Pb+2 + 4 Cl- = PbCl4-2 + log_k 1.46 + delta_h 14.7695 kJ + -gamma 0 0 # Id: 6001803 - # log K source: SCD3.02 (1984 SEa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1984 SEa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Tl+ + Cl- = TlCl - log_k 0.51 - delta_h -6.2 kJ - -gamma 0 0 + log_k 0.51 + delta_h -6.2 kJ + -gamma 0 0 # Id: 8701800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Tl+ + 2Cl- = TlCl2- - log_k 0.28 - delta_h 0 kJ - -gamma 0 0 +Tl+ + 2 Cl- = TlCl2- + log_k 0.28 + delta_h 0 kJ + -gamma 0 0 # Id: 8701801 - # log K source: SCD3.02 (1992 RAb) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1992 RAb) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ + Cl- = TlCl+2 + 3H2O - log_k 11.011 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + 3 H+ + Cl- = TlCl+2 + 3 H2O + log_k 11.011 + delta_h 0 kJ + -gamma 0 0 # Id: 8711800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ + 2Cl- = TlCl2+ + 3H2O - log_k 16.771 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + 3 H+ + 2 Cl- = TlCl2+ + 3 H2O + log_k 16.771 + delta_h 0 kJ + -gamma 0 0 # Id: 8711801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ + 3Cl- = TlCl3 + 3H2O - log_k 19.791 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + 3 H+ + 3 Cl- = TlCl3 + 3 H2O + log_k 19.791 + delta_h 0 kJ + -gamma 0 0 # Id: 8711802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ + 4Cl- = TlCl4- + 3H2O - log_k 21.591 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + 3 H+ + 4 Cl- = TlCl4- + 3 H2O + log_k 21.591 + delta_h 0 kJ + -gamma 0 0 # Id: 8711803 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Tl(OH)3 + Cl- + 2H+ = TlOHCl+ + 2H2O - log_k 10.629 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + Cl- + 2 H+ = TlOHCl+ + 2 H2O + log_k 10.629 + delta_h 0 kJ + -gamma 0 0 # Id: 8711804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + Cl- = ZnCl+ - log_k 0.4 - delta_h 5.4 kJ - -gamma 4 0 + log_k 0.4 + delta_h 5.4 kJ + -gamma 4 0 # Id: 9501800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Zn+2 + 2Cl- = ZnCl2 - log_k 0.6 - delta_h 37 kJ - -gamma 0 0 +Zn+2 + 2 Cl- = ZnCl2 + log_k 0.6 + delta_h 37 kJ + -gamma 0 0 # Id: 9501801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Zn+2 + 3Cl- = ZnCl3- - log_k 0.5 - delta_h 39.999 kJ - -gamma 4 0 +Zn+2 + 3 Cl- = ZnCl3- + log_k 0.5 + delta_h 39.999 kJ + -gamma 4 0 # Id: 9501802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + 4Cl- = ZnCl4-2 - log_k 0.199 - delta_h 45.8566 kJ - -gamma 5 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + 4 Cl- = ZnCl4-2 + log_k 0.199 + delta_h 45.8566 kJ + -gamma 5 0 # Id: 9501803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + H2O + Cl- = ZnOHCl + H+ - log_k -7.48 - delta_h 0 kJ - -gamma 0 0 + log_k -7.48 + delta_h 0 kJ + -gamma 0 0 # Id: 9501804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + Cl- = CdCl+ - log_k 1.98 - delta_h 1 kJ - -gamma 0 0 + log_k 1.98 + delta_h 1 kJ + -gamma 0 0 # Id: 1601800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 2Cl- = CdCl2 - log_k 2.6 - delta_h 3 kJ - -gamma 0 0 +Cd+2 + 2 Cl- = CdCl2 + log_k 2.6 + delta_h 3 kJ + -gamma 0 0 # Id: 1601801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 3Cl- = CdCl3- - log_k 2.4 - delta_h 10 kJ - -gamma 0 0 +Cd+2 + 3 Cl- = CdCl3- + log_k 2.4 + delta_h 10 kJ + -gamma 0 0 # Id: 1601802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cd+2 + H2O + Cl- = CdOHCl + H+ - log_k -7.404 - delta_h 18.2213 kJ - -gamma 0 0 + log_k -7.404 + delta_h 18.2213 kJ + -gamma 0 0 # Id: 1601803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 2H+ + Cl- = HgCl+ + 2H2O - log_k 13.494 - delta_h -62.72 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 2 H+ + Cl- = HgCl+ + 2 H2O + log_k 13.494 + delta_h -62.72 kJ + -gamma 0 0 # Id: 3611800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 2Cl- = HgCl2 + 2H2O - log_k 20.194 - delta_h -92.42 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 2 Cl- = HgCl2 + 2 H2O + log_k 20.194 + delta_h -92.42 kJ + -gamma 0 0 # Id: 3611801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 3Cl- = HgCl3- + 2H2O - log_k 21.194 - delta_h -94.02 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 3 Cl- = HgCl3- + 2 H2O + log_k 21.194 + delta_h -94.02 kJ + -gamma 0 0 # Id: 3611802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 4Cl- = HgCl4-2 + 2H2O - log_k 21.794 - delta_h -100.72 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 4 Cl- = HgCl4-2 + 2 H2O + log_k 21.794 + delta_h -100.72 kJ + -gamma 0 0 # Id: 3611803 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + Cl- + I- + 2H+ = HgClI + 2H2O - log_k 25.532 - delta_h -135.3 kJ - -gamma 0 0 +Hg(OH)2 + Cl- + I- + 2 H+ = HgClI + 2 H2O + log_k 25.532 + delta_h -135.3 kJ + -gamma 0 0 # Id: 3611804 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Hg(OH)2 + H+ + Cl- = HgClOH + H2O - log_k 10.444 - delta_h -42.72 kJ - -gamma 0 0 + log_k 10.444 + delta_h -42.72 kJ + -gamma 0 0 # Id: 3611805 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 Cu+2 + Cl- = CuCl+ - log_k 0.2 - delta_h 8.3 kJ - -gamma 4 0 + log_k 0.2 + delta_h 8.3 kJ + -gamma 4 0 # Id: 2311800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cu+2 + 2Cl- = CuCl2 - log_k -0.26 - delta_h 44.183 kJ - -gamma 0 0 +Cu+2 + 2 Cl- = CuCl2 + log_k -0.26 + delta_h 44.183 kJ + -gamma 0 0 # Id: 2311801 - # log K source: SCD3.02 (1989 IPa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1989 IPa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cu+2 + 3Cl- = CuCl3- - log_k -2.29 - delta_h 57.279 kJ - -gamma 4 0 +Cu+2 + 3 Cl- = CuCl3- + log_k -2.29 + delta_h 57.279 kJ + -gamma 4 0 # Id: 2311802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cu+2 + 4Cl- = CuCl4-2 - log_k -4.59 - delta_h 32.5515 kJ - -gamma 5 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cu+2 + 4 Cl- = CuCl4-2 + log_k -4.59 + delta_h 32.5515 kJ + -gamma 5 0 # Id: 2311803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cu+ + 2Cl- = CuCl2- - log_k 5.42 - delta_h -1.7573 kJ - -gamma 4 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cu+ + 2 Cl- = CuCl2- + log_k 5.42 + delta_h -1.7573 kJ + -gamma 4 0 # Id: 2301800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cu+ + 3Cl- = CuCl3-2 - log_k 4.75 - delta_h 1.0878 kJ - -gamma 5 0 +Cu+ + 3 Cl- = CuCl3-2 + log_k 4.75 + delta_h 1.0878 kJ + -gamma 5 0 # Id: 2301801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cu+ + Cl- = CuCl - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 # Id: 2301802 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ag+ + Cl- = AgCl - log_k 3.31 - delta_h -12 kJ - -gamma 0 0 + log_k 3.31 + delta_h -12 kJ + -gamma 0 0 # Id: 201800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Ag+ + 2Cl- = AgCl2- - log_k 5.25 - delta_h -16 kJ - -gamma 0 0 +Ag+ + 2 Cl- = AgCl2- + log_k 5.25 + delta_h -16 kJ + -gamma 0 0 # Id: 201801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Ag+ + 3Cl- = AgCl3-2 - log_k 5.2 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 3 Cl- = AgCl3-2 + log_k 5.2 + delta_h 0 kJ + -gamma 0 0 # Id: 201802 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Ag+ + 4Cl- = AgCl4-3 - log_k 5.51 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 4 Cl- = AgCl4-3 + log_k 5.51 + delta_h 0 kJ + -gamma 0 0 # Id: 201803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Ni+2 + Cl- = NiCl+ - log_k 0.408 - delta_h 2 kJ - -gamma 0 0 + log_k 0.408 + delta_h 2 kJ + -gamma 0 0 # Id: 5401800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 -Ni+2 + 2Cl- = NiCl2 - log_k -1.89 - delta_h 0 kJ - -gamma 0 0 +Ni+2 + 2 Cl- = NiCl2 + log_k -1.89 + delta_h 0 kJ + -gamma 0 0 # Id: 5401801 - # log K source: SCD3.02 (1989 IPa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1989 IPa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + Cl- = CoCl+ - log_k 0.539 - delta_h 2 kJ - -gamma 0 0 + log_k 0.539 + delta_h 2 kJ + -gamma 0 0 # Id: 2001800 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Co+3 + Cl- = CoCl+2 - log_k 2.3085 - delta_h 16 kJ - -gamma 0 0 + log_k 2.3085 + delta_h 16 kJ + -gamma 0 0 # Id: 2011800 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Fe+3 + Cl- = FeCl+2 - log_k 1.48 - delta_h 23 kJ - -gamma 5 0 + log_k 1.48 + delta_h 23 kJ + -gamma 5 0 # Id: 2811800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Fe+3 + 2Cl- = FeCl2+ - log_k 2.13 - delta_h 0 kJ - -gamma 5 0 +Fe+3 + 2 Cl- = FeCl2+ + log_k 2.13 + delta_h 0 kJ + -gamma 5 0 # Id: 2811801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Fe+3 + 3Cl- = FeCl3 - log_k 1.13 - delta_h 0 kJ - -gamma 0 0 +Fe+3 + 3 Cl- = FeCl3 + log_k 1.13 + delta_h 0 kJ + -gamma 0 0 # Id: 2811802 - # log K source: Nord90 - # Delta H source: MTQ3.11 + # log K source: Nord90 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Mn+2 + Cl- = MnCl+ - log_k 0.1 - delta_h 0 kJ - -gamma 5 0 + log_k 0.1 + delta_h 0 kJ + -gamma 5 0 # Id: 4701800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 20.0 -Mn+2 + 2Cl- = MnCl2 - log_k 0.25 - delta_h 0 kJ - -gamma 0 0 +Mn+2 + 2 Cl- = MnCl2 + log_k 0.25 + delta_h 0 kJ + -gamma 0 0 # Id: 4701801 - # log K source: Nord90 - # Delta H source: MTQ3.11 + # log K source: Nord90 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Mn+2 + 3Cl- = MnCl3- - log_k -0.31 - delta_h 0 kJ - -gamma 5 0 +Mn+2 + 3 Cl- = MnCl3- + log_k -0.31 + delta_h 0 kJ + -gamma 5 0 # Id: 4701802 - # log K source: Nord90 - # Delta H source: MTQ3.11 + # log K source: Nord90 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ + Cl- = CrCl+2 + 2H2O - log_k 9.6808 - delta_h -103.62 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + Cl- = CrCl+2 + 2 H2O + log_k 9.6808 + delta_h -103.62 kJ + -gamma 0 0 # Id: 2111800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 -Cr(OH)2+ + 2Cl- + 2H+ = CrCl2+ + 2H2O - log_k 8.658 - delta_h -39.2208 kJ - -gamma 0 0 +Cr(OH)2+ + 2 Cl- + 2 H+ = CrCl2+ + 2 H2O + log_k 8.658 + delta_h -39.2208 kJ + -gamma 0 0 # Id: 2111801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 2Cl- + H+ = CrOHCl2 + H2O - log_k 2.9627 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 2 Cl- + H+ = CrOHCl2 + H2O + log_k 2.9627 + delta_h 0 kJ + -gamma 0 0 # Id: 2111802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: VO+2 + Cl- = VOCl+ - log_k 0.448 - delta_h 0 kJ - -gamma 0 0 + log_k 0.448 + delta_h 0 kJ + -gamma 0 0 # Id: 9021800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 U+4 + Cl- = UCl+3 - log_k 1.7 - delta_h -20 kJ - -gamma 0 0 + log_k 1.7 + delta_h -20 kJ + -gamma 0 0 # Id: 8911800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 UO2+2 + Cl- = UO2Cl+ - log_k 0.21 - delta_h 16 kJ - -gamma 0 0 + log_k 0.21 + delta_h 16 kJ + -gamma 0 0 # Id: 8931800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Be+2 + Cl- = BeCl+ - log_k 0.2009 - delta_h 0 kJ - -gamma 5 0 + log_k 0.2009 + delta_h 0 kJ + -gamma 5 0 # Id: 1101801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.70 20.0 -Sn(OH)2 + 2H+ + Br- = SnBr+ + 2H2O - log_k 8.254 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + Br- = SnBr+ + 2 H2O + log_k 8.254 + delta_h 0 kJ + -gamma 0 0 # Id: 7901301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + 2Br- = SnBr2 + 2H2O - log_k 8.794 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + 2 Br- = SnBr2 + 2 H2O + log_k 8.794 + delta_h 0 kJ + -gamma 0 0 # Id: 7901302 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + 3Br- = SnBr3- + 2H2O - log_k 7.48 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + 3 Br- = SnBr3- + 2 H2O + log_k 7.48 + delta_h 0 kJ + -gamma 0 0 # Id: 7901303 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 3.00 25.0 Pb+2 + Br- = PbBr+ - log_k 1.7 - delta_h 8 kJ - -gamma 0 0 + log_k 1.7 + delta_h 8 kJ + -gamma 0 0 # Id: 6001300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Pb+2 + 2Br- = PbBr2 - log_k 2.6 - delta_h -4 kJ - -gamma 0 0 +Pb+2 + 2 Br- = PbBr2 + log_k 2.6 + delta_h -4 kJ + -gamma 0 0 # Id: 6001301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Tl+ + Br- = TlBr - log_k 0.91 - delta_h -12 kJ - -gamma 0 0 + log_k 0.91 + delta_h -12 kJ + -gamma 0 0 # Id: 8701300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Tl+ + 2Br- = TlBr2- - log_k -0.384 - delta_h 12.36 kJ - -gamma 0 0 +Tl+ + 2 Br- = TlBr2- + log_k -0.384 + delta_h 12.36 kJ + -gamma 0 0 # Id: 8701301 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 #T and ionic strength: 4.00 25.0 Tl+ + Br- + Cl- = TlBrCl- - log_k 0.8165 - delta_h 0 kJ - -gamma 0 0 + log_k 0.8165 + delta_h 0 kJ + -gamma 0 0 # Id: 8701302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl+ + I- + Br- = TlIBr- - log_k 2.185 - delta_h 0 kJ - -gamma 0 0 + log_k 2.185 + delta_h 0 kJ + -gamma 0 0 # Id: 8703802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl(OH)3 + 3H+ + Br- = TlBr+2 + 3H2O - log_k 12.803 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl(OH)3 + 3 H+ + Br- = TlBr+2 + 3 H2O + log_k 12.803 + delta_h 0 kJ + -gamma 0 0 # Id: 8711300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Tl(OH)3 + 3H+ + 2Br- = TlBr2+ + 3H2O - log_k 20.711 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + 3 H+ + 2 Br- = TlBr2+ + 3 H2O + log_k 20.711 + delta_h 0 kJ + -gamma 0 0 # Id: 8711301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Tl(OH)3 + 3Br- + 3H+ = TlBr3 + 3H2O - log_k 27.0244 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + 3 Br- + 3 H+ = TlBr3 + 3 H2O + log_k 27.0244 + delta_h 0 kJ + -gamma 0 0 # Id: 8711302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl(OH)3 + 4Br- + 3H+ = TlBr4- + 3H2O - log_k 31.1533 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl(OH)3 + 4 Br- + 3 H+ = TlBr4- + 3 H2O + log_k 31.1533 + delta_h 0 kJ + -gamma 0 0 # Id: 8711303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + Br- = ZnBr+ - log_k -0.07 - delta_h 1 kJ - -gamma 0 0 + log_k -0.07 + delta_h 1 kJ + -gamma 0 0 # Id: 9501300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Zn+2 + 2Br- = ZnBr2 - log_k -0.98 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 Br- = ZnBr2 + log_k -0.98 + delta_h 0 kJ + -gamma 0 0 # Id: 9501301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + Br- = CdBr+ - log_k 2.15 - delta_h -3 kJ - -gamma 0 0 + log_k 2.15 + delta_h -3 kJ + -gamma 0 0 # Id: 1601300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 2Br- = CdBr2 - log_k 3 - delta_h -3 kJ - -gamma 0 0 +Cd+2 + 2 Br- = CdBr2 + log_k 3 + delta_h -3 kJ + -gamma 0 0 # Id: 1601301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + Br- = HgBr+ + 2H2O - log_k 15.803 - delta_h -81.92 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + Br- = HgBr+ + 2 H2O + log_k 15.803 + delta_h -81.92 kJ + -gamma 0 0 # Id: 3611301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 2Br- = HgBr2 + 2H2O - log_k 24.2725 - delta_h -127.12 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 2 Br- = HgBr2 + 2 H2O + log_k 24.2725 + delta_h -127.12 kJ + -gamma 0 0 # Id: 3611302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 3Br- = HgBr3- + 2H2O - log_k 26.7025 - delta_h -138.82 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 3 Br- = HgBr3- + 2 H2O + log_k 26.7025 + delta_h -138.82 kJ + -gamma 0 0 # Id: 3611303 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 4Br- = HgBr4-2 + 2H2O - log_k 27.933 - delta_h -153.72 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 4 Br- = HgBr4-2 + 2 H2O + log_k 27.933 + delta_h -153.72 kJ + -gamma 0 0 # Id: 3611304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + Br- + Cl- + 2H+ = HgBrCl + 2H2O - log_k 22.1811 - delta_h -113.77 kJ - -gamma 0 0 +Hg(OH)2 + Br- + Cl- + 2 H+ = HgBrCl + 2 H2O + log_k 22.1811 + delta_h -113.77 kJ + -gamma 0 0 # Id: 3611305 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Hg(OH)2 + Br- + I- + 2H+ = HgBrI + 2H2O - log_k 27.3133 - delta_h -151.27 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Hg(OH)2 + Br- + I- + 2 H+ = HgBrI + 2 H2O + log_k 27.3133 + delta_h -151.27 kJ + -gamma 0 0 # Id: 3611306 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Hg(OH)2 + Br- + 3I- + 2H+ = HgBrI3-2 + 2H2O - log_k 34.2135 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Hg(OH)2 + Br- + 3 I- + 2 H+ = HgBrI3-2 + 2 H2O + log_k 34.2135 + delta_h 0 kJ + -gamma 0 0 # Id: 3611307 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 2Br- + 2I- + 2H+ = HgBr2I2-2 + 2H2O - log_k 32.3994 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 2 Br- + 2 I- + 2 H+ = HgBr2I2-2 + 2 H2O + log_k 32.3994 + delta_h 0 kJ + -gamma 0 0 # Id: 3611308 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 3Br- + I- + 2H+ = HgBr3I-2 + 2H2O - log_k 30.1528 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 3 Br- + I- + 2 H+ = HgBr3I-2 + 2 H2O + log_k 30.1528 + delta_h 0 kJ + -gamma 0 0 # Id: 3611309 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Hg(OH)2 + H+ + Br- = HgBrOH + H2O - log_k 12.433 - delta_h 0 kJ - -gamma 0 0 + log_k 12.433 + delta_h 0 kJ + -gamma 0 0 # Id: 3613301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Ag+ + Br- = AgBr - log_k 4.6 - delta_h 0 kJ - -gamma 0 0 + log_k 4.6 + delta_h 0 kJ + -gamma 0 0 # Id: 201300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Ag+ + 2Br- = AgBr2- - log_k 7.5 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 2 Br- = AgBr2- + log_k 7.5 + delta_h 0 kJ + -gamma 0 0 # Id: 201301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Ag+ + 3Br- = AgBr3-2 - log_k 8.1 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 3 Br- = AgBr3-2 + log_k 8.1 + delta_h 0 kJ + -gamma 0 0 # Id: 201302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ni+2 + Br- = NiBr+ - log_k 0.5 - delta_h 0 kJ - -gamma 0 0 + log_k 0.5 + delta_h 0 kJ + -gamma 0 0 # Id: 5401300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + Br- + 2H+ = CrBr+2 + 2H2O - log_k 7.5519 - delta_h -46.9068 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + Br- + 2 H+ = CrBr+2 + 2 H2O + log_k 7.5519 + delta_h -46.9068 kJ + -gamma 0 0 # Id: 2111300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Be+2 + Br- = BeBr+ - log_k 0.1009 - delta_h 0 kJ - -gamma 5 0 + log_k 0.1009 + delta_h 0 kJ + -gamma 5 0 # Id: 1101301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.70 20.0 Pb+2 + I- = PbI+ - log_k 2 - delta_h 0 kJ - -gamma 0 0 + log_k 2 + delta_h 0 kJ + -gamma 0 0 # Id: 6003800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Pb+2 + 2I- = PbI2 - log_k 3.2 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 2 I- = PbI2 + log_k 3.2 + delta_h 0 kJ + -gamma 0 0 # Id: 6003801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Tl+ + I- = TlI - log_k 1.4279 - delta_h 0 kJ - -gamma 0 0 + log_k 1.4279 + delta_h 0 kJ + -gamma 0 0 # Id: 8703800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl+ + 2I- = TlI2- - log_k 1.8588 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl+ + 2 I- = TlI2- + log_k 1.8588 + delta_h 0 kJ + -gamma 0 0 # Id: 8703801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl(OH)3 + 4I- + 3H+ = TlI4- + 3H2O - log_k 34.7596 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl(OH)3 + 4 I- + 3 H+ = TlI4- + 3 H2O + log_k 34.7596 + delta_h 0 kJ + -gamma 0 0 # Id: 8713800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + I- = ZnI+ - log_k -2.0427 - delta_h -4 kJ - -gamma 0 0 + log_k -2.0427 + delta_h -4 kJ + -gamma 0 0 # Id: 9503800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 3.00 25.0 -Zn+2 + 2I- = ZnI2 - log_k -1.69 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 I- = ZnI2 + log_k -1.69 + delta_h 0 kJ + -gamma 0 0 # Id: 9503801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + I- = CdI+ - log_k 2.28 - delta_h -9.6 kJ - -gamma 0 0 + log_k 2.28 + delta_h -9.6 kJ + -gamma 0 0 # Id: 1603800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 2I- = CdI2 - log_k 3.92 - delta_h -12 kJ - -gamma 0 0 +Cd+2 + 2 I- = CdI2 + log_k 3.92 + delta_h -12 kJ + -gamma 0 0 # Id: 1603801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + I- = HgI+ + 2H2O - log_k 19.603 - delta_h -111.22 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + I- = HgI+ + 2 H2O + log_k 19.603 + delta_h -111.22 kJ + -gamma 0 0 # Id: 3613801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 2I- = HgI2 + 2H2O - log_k 30.8225 - delta_h -182.72 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 2 I- = HgI2 + 2 H2O + log_k 30.8225 + delta_h -182.72 kJ + -gamma 0 0 # Id: 3613802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 3I- = HgI3- + 2H2O - log_k 34.6025 - delta_h -194.22 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 3 I- = HgI3- + 2 H2O + log_k 34.6025 + delta_h -194.22 kJ + -gamma 0 0 # Id: 3613803 - # log K source: NIST46.4 - # Delta H source: NIST2.1.1 + # log K source: NIST46.4 + # Delta H source: NIST2.1.1 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 4I- = HgI4-2 + 2H2O - log_k 36.533 - delta_h -220.72 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 4 I- = HgI4-2 + 2 H2O + log_k 36.533 + delta_h -220.72 kJ + -gamma 0 0 # Id: 3613804 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Ag+ + I- = AgI - log_k 6.6 - delta_h 0 kJ - -gamma 0 0 + log_k 6.6 + delta_h 0 kJ + -gamma 0 0 # Id: 203800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 18.0 -Ag+ + 2I- = AgI2- - log_k 11.7 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 2 I- = AgI2- + log_k 11.7 + delta_h 0 kJ + -gamma 0 0 # Id: 203801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 18.0 -Ag+ + 3I- = AgI3-2 - log_k 12.6 - delta_h -122 kJ - -gamma 0 0 +Ag+ + 3 I- = AgI3-2 + log_k 12.6 + delta_h -122 kJ + -gamma 0 0 # Id: 203802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Ag+ + 4I- = AgI4-3 - log_k 14.229 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 4 I- = AgI4-3 + log_k 14.229 + delta_h 0 kJ + -gamma 0 0 # Id: 203803 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 2.00 25.0 -Cr(OH)2+ + I- + 2H+ = CrI+2 + 2H2O - log_k 4.8289 - delta_h 0 kJ - -gamma 0 0 +Cr(OH)2+ + I- + 2 H+ = CrI+2 + 2 H2O + log_k 4.8289 + delta_h 0 kJ + -gamma 0 0 # Id: 2113800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H+ + HS- = H2S - log_k 7.02 - delta_h -22 kJ - -gamma 0 0 + log_k 7.02 + delta_h -22 kJ + -gamma 0 0 # Id: 3307300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Pb+2 + 2HS- = Pb(HS)2 - log_k 15.27 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 2 HS- = Pb(HS)2 + log_k 15.27 + delta_h 0 kJ + -gamma 0 0 # Id: 6007300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Pb+2 + 3HS- = Pb(HS)3- - log_k 16.57 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Pb+2 + 3 HS- = Pb(HS)3- + log_k 16.57 + delta_h 0 kJ + -gamma 0 0 # Id: 6007301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl+ + HS- = TlHS - log_k 2.474 - delta_h 0 kJ - -gamma 0 0 + log_k 2.474 + delta_h 0 kJ + -gamma 0 0 # Id: 8707300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -2Tl+ + HS- = Tl2HS+ - log_k 5.974 - delta_h 0 kJ - -gamma 0 0 +2 Tl+ + HS- = Tl2HS+ + log_k 5.974 + delta_h 0 kJ + -gamma 0 0 # Id: 8707301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -2Tl+ + 3HS- + H2O = Tl2OH(HS)3-2 + H+ - log_k 1.0044 - delta_h 0 kJ - -gamma 0 0 +2 Tl+ + 3 HS- + H2O = Tl2OH(HS)3-2 + H+ + log_k 1.0044 + delta_h 0 kJ + -gamma 0 0 # Id: 8707302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -2Tl+ + 2HS- + 2H2O = Tl2(OH)2(HS)2-2 + 2H+ - log_k -11.0681 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +2 Tl+ + 2 HS- + 2 H2O = Tl2(OH)2(HS)2-2 + 2 H+ + log_k -11.0681 + delta_h 0 kJ + -gamma 0 0 # Id: 8707303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + 2HS- = Zn(HS)2 - log_k 12.82 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + 2 HS- = Zn(HS)2 + log_k 12.82 + delta_h 0 kJ + -gamma 0 0 # Id: 9507300 - # log K source: DHa1993 - # Delta H source: MTQ3.11 + # log K source: DHa1993 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Zn+2 + 3HS- = Zn(HS)3- - log_k 16.1 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 3 HS- = Zn(HS)3- + log_k 16.1 + delta_h 0 kJ + -gamma 0 0 # Id: 9507301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + 3HS- = ZnS(HS)2-2 + H+ - log_k 6.12 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + 3 HS- = ZnS(HS)2-2 + H+ + log_k 6.12 + delta_h 0 kJ + -gamma 0 0 # Id: 9507302 - # log K source: DHa1993 - # Delta H source: MTQ3.11 + # log K source: DHa1993 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Zn+2 + 2HS- + 2HS- = Zn(HS)4-2 - log_k 14.64 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 HS- + 2 HS- = Zn(HS)4-2 + log_k 14.64 + delta_h 0 kJ + -gamma 0 0 # Id: 9507303 - # log K source: DHa1993 - # Delta H source: MTQ3.11 + # log K source: DHa1993 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Zn+2 + 2HS- = ZnS(HS)- + H+ - log_k 6.81 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 HS- = ZnS(HS)- + H+ + log_k 6.81 + delta_h 0 kJ + -gamma 0 0 # Id: 9507304 - # log K source: DHa1993 - # Delta H source: MTQ3.11 + # log K source: DHa1993 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cd+2 + HS- = CdHS+ - log_k 8.008 - delta_h 0 kJ - -gamma 0 0 + log_k 8.008 + delta_h 0 kJ + -gamma 0 0 # Id: 1607300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Cd+2 + 2HS- = Cd(HS)2 - log_k 15.212 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 2 HS- = Cd(HS)2 + log_k 15.212 + delta_h 0 kJ + -gamma 0 0 # Id: 1607301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Cd+2 + 3HS- = Cd(HS)3- - log_k 17.112 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 3 HS- = Cd(HS)3- + log_k 17.112 + delta_h 0 kJ + -gamma 0 0 # Id: 1607302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Cd+2 + 4HS- = Cd(HS)4-2 - log_k 19.308 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 4 HS- = Cd(HS)4-2 + log_k 19.308 + delta_h 0 kJ + -gamma 0 0 # Id: 1607303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Hg(OH)2 + 2HS- = HgS2-2 + 2H2O - log_k 29.414 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 HS- = HgS2-2 + 2 H2O + log_k 29.414 + delta_h 0 kJ + -gamma 0 0 # Id: 3617300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 -Hg(OH)2 + 2H+ + 2HS- = Hg(HS)2 + 2H2O - log_k 44.516 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 2 HS- = Hg(HS)2 + 2 H2O + log_k 44.516 + delta_h 0 kJ + -gamma 0 0 # Id: 3617301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 -Hg(OH)2 + H+ + 2HS- = HgHS2- + 2H2O - log_k 38.122 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + H+ + 2 HS- = HgHS2- + 2 H2O + log_k 38.122 + delta_h 0 kJ + -gamma 0 0 # Id: 3617302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 -Cu+2 + 3HS- = Cu(HS)3- - log_k 25.899 - delta_h 0 kJ - -gamma 0 0 +Cu+2 + 3 HS- = Cu(HS)3- + log_k 25.899 + delta_h 0 kJ + -gamma 0 0 # Id: 2317300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Ag+ + HS- = AgHS - log_k 13.8145 - delta_h 0 kJ - -gamma 0 0 + log_k 13.8145 + delta_h 0 kJ + -gamma 0 0 # Id: 207300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 -Ag+ + 2HS- = Ag(HS)2- - log_k 17.9145 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 2 HS- = Ag(HS)2- + log_k 17.9145 + delta_h 0 kJ + -gamma 0 0 # Id: 207301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 -Fe+2 + 2HS- = Fe(HS)2 - log_k 8.95 - delta_h 0 kJ - -gamma 0 0 +Fe+2 + 2 HS- = Fe(HS)2 + log_k 8.95 + delta_h 0 kJ + -gamma 0 0 # Id: 2807300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Fe+2 + 3HS- = Fe(HS)3- - log_k 10.987 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Fe+2 + 3 HS- = Fe(HS)3- + log_k 10.987 + delta_h 0 kJ + -gamma 0 0 # Id: 2807301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: HS- = S2-2 + H+ - log_k -11.7828 - delta_h 46.4 kJ - -gamma 0 0 + log_k -11.7828 + delta_h 46.4 kJ + -gamma 0 0 -no_check # Id: 7317300 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S3-2 + H+ - log_k -10.7667 - delta_h 42.2 kJ - -gamma 0 0 + log_k -10.7667 + delta_h 42.2 kJ + -gamma 0 0 -no_check # Id: 7317301 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S4-2 + H+ - log_k -9.9608 - delta_h 39.3 kJ - -gamma 0 0 + log_k -9.9608 + delta_h 39.3 kJ + -gamma 0 0 -no_check # Id: 7317302 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S5-2 + H+ - log_k -9.3651 - delta_h 37.6 kJ - -gamma 0 0 + log_k -9.3651 + delta_h 37.6 kJ + -gamma 0 0 -no_check # Id: 7317303 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S6-2 + H+ - log_k -9.881 - delta_h 0 kJ - -gamma 0 0 + log_k -9.881 + delta_h 0 kJ + -gamma 0 0 -no_check # Id: 7317304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -2Sb(OH)3 + 4HS- + 2H+ = Sb2S4-2 + 6H2O - log_k 49.3886 - delta_h -321.78 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +2 Sb(OH)3 + 4 HS- + 2 H+ = Sb2S4-2 + 6 H2O + log_k 49.3886 + delta_h -321.78 kJ + -gamma 0 0 # Id: 7407300 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Cu+ + 2HS- = Cu(S4)2-3 + 2H+ - log_k 3.39 - delta_h 0 kJ - -gamma 23 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Cu+ + 2 HS- = Cu(S4)2-3 + 2 H+ + log_k 3.39 + delta_h 0 kJ + -gamma 23 0 -no_check # Id: 2307300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cu+ + 2HS- = CuS4S5-3 + 2H+ - log_k 2.66 - delta_h 0 kJ - -gamma 25 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cu+ + 2 HS- = CuS4S5-3 + 2 H+ + log_k 2.66 + delta_h 0 kJ + -gamma 25 0 -no_check # Id: 2307301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Ag+ + 2HS- = Ag(S4)2-3 + 2H+ - log_k 0.991 - delta_h 0 kJ - -gamma 22 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Ag+ + 2 HS- = Ag(S4)2-3 + 2 H+ + log_k 0.991 + delta_h 0 kJ + -gamma 22 0 -no_check # Id: 207302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Ag+ + 2HS- = AgS4S5-3 + 2H+ - log_k 0.68 - delta_h 0 kJ - -gamma 24 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Ag+ + 2 HS- = AgS4S5-3 + 2 H+ + log_k 0.68 + delta_h 0 kJ + -gamma 24 0 -no_check # Id: 207303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Ag+ + 2HS- = Ag(HS)S4-2 + H+ - log_k 10.431 - delta_h 0 kJ - -gamma 15 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Ag+ + 2 HS- = Ag(HS)S4-2 + H+ + log_k 10.431 + delta_h 0 kJ + -gamma 15 0 -no_check # Id: 207304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H+ + SO4-2 = HSO4- - log_k 1.99 - delta_h 22 kJ - -gamma 4.5 0 + log_k 1.99 + delta_h 22 kJ + -gamma 4.5 0 # Id: 3307320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 NH4+ + SO4-2 = NH4SO4- - log_k 1.03 - delta_h 0 kJ - -gamma 5 0 + log_k 1.03 + delta_h 0 kJ + -gamma 5 0 # Id: 4907320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Pb+2 + SO4-2 = PbSO4 - log_k 2.69 - delta_h 0 kJ - -gamma 0 0 + log_k 2.69 + delta_h 0 kJ + -gamma 0 0 # Id: 6007320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Pb+2 + 2SO4-2 = Pb(SO4)2-2 - log_k 3.47 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + log_k 3.47 + delta_h 0 kJ + -gamma 0 0 # Id: 6007321 - # log K source: SCD3.02 (1960 RKa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1960 RKa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Al+3 + SO4-2 = AlSO4+ - log_k 3.89 - delta_h 28 kJ - -gamma 4.5 0 + log_k 3.89 + delta_h 28 kJ + -gamma 4.5 0 # Id: 307320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Al+3 + 2SO4-2 = Al(SO4)2- - log_k 4.92 - delta_h 11.9 kJ - -gamma 4.5 0 +Al+3 + 2 SO4-2 = Al(SO4)2- + log_k 4.92 + delta_h 11.9 kJ + -gamma 4.5 0 # Id: 307321 - # log K source: Nord90 - # Delta H source: Nord90 + # log K source: Nord90 + # Delta H source: Nord90 #T and ionic strength: 0.00 25.0 Tl+ + SO4-2 = TlSO4- - log_k 1.37 - delta_h -0.8 kJ - -gamma 0 0 + log_k 1.37 + delta_h -0.8 kJ + -gamma 0 0 # Id: 8707320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Zn+2 + SO4-2 = ZnSO4 - log_k 2.34 - delta_h 6.2 kJ - -gamma 0 0 + log_k 2.34 + delta_h 6.2 kJ + -gamma 0 0 # Id: 9507320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Zn+2 + 2SO4-2 = Zn(SO4)2-2 - log_k 3.28 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + log_k 3.28 + delta_h 0 kJ + -gamma 0 0 # Id: 9507321 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + SO4-2 = CdSO4 - log_k 2.37 - delta_h 8.7 kJ - -gamma 0 0 + log_k 2.37 + delta_h 8.7 kJ + -gamma 0 0 # Id: 1607320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 2SO4-2 = Cd(SO4)2-2 - log_k 3.5 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + log_k 3.5 + delta_h 0 kJ + -gamma 0 0 # Id: 1607321 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 2H+ + SO4-2 = HgSO4 + 2H2O - log_k 8.612 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 2 H+ + SO4-2 = HgSO4 + 2 H2O + log_k 8.612 + delta_h 0 kJ + -gamma 0 0 # Id: 3617320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Cu+2 + SO4-2 = CuSO4 - log_k 2.36 - delta_h 8.7 kJ - -gamma 0 0 + log_k 2.36 + delta_h 8.7 kJ + -gamma 0 0 # Id: 2317320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ag+ + SO4-2 = AgSO4- - log_k 1.3 - delta_h 6.2 kJ - -gamma 0 0 + log_k 1.3 + delta_h 6.2 kJ + -gamma 0 0 # Id: 207320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ni+2 + SO4-2 = NiSO4 - log_k 2.3 - delta_h 5.8 kJ - -gamma 0 0 + log_k 2.3 + delta_h 5.8 kJ + -gamma 0 0 # Id: 5407320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Ni+2 + 2SO4-2 = Ni(SO4)2-2 - log_k 0.82 - delta_h 0 kJ - -gamma 0 0 +Ni+2 + 2 SO4-2 = Ni(SO4)2-2 + log_k 0.82 + delta_h 0 kJ + -gamma 0 0 # Id: 5407321 - # log K source: SCD3.02 (1978 BLa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1978 BLa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + SO4-2 = CoSO4 - log_k 2.3 - delta_h 6.2 kJ - -gamma 0 0 + log_k 2.3 + delta_h 6.2 kJ + -gamma 0 0 # Id: 2007320 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Fe+2 + SO4-2 = FeSO4 - log_k 2.39 - delta_h 8 kJ - -gamma 0 0 + log_k 2.39 + delta_h 8 kJ + -gamma 0 0 # Id: 2807320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Fe+3 + SO4-2 = FeSO4+ - log_k 4.05 - delta_h 25 kJ - -gamma 5 0 + log_k 4.05 + delta_h 25 kJ + -gamma 5 0 # Id: 2817320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Fe+3 + 2SO4-2 = Fe(SO4)2- - log_k 5.38 - delta_h 19.2 kJ - -gamma 0 0 +Fe+3 + 2 SO4-2 = Fe(SO4)2- + log_k 5.38 + delta_h 19.2 kJ + -gamma 0 0 # Id: 2817321 - # log K source: Nord90 - # Delta H source: Nord90 + # log K source: Nord90 + # Delta H source: Nord90 #T and ionic strength: 0.00 25.0 Mn+2 + SO4-2 = MnSO4 - log_k 2.25 - delta_h 8.7 kJ - -gamma 0 0 + log_k 2.25 + delta_h 8.7 kJ + -gamma 0 0 # Id: 4707320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ + SO4-2 = CrSO4+ + 2H2O - log_k 12.9371 - delta_h -98.62 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + SO4-2 = CrSO4+ + 2 H2O + log_k 12.9371 + delta_h -98.62 kJ + -gamma 0 0 # Id: 2117320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 50.0 Cr(OH)2+ + H+ + SO4-2 = CrOHSO4 + H2O - log_k 8.2871 - delta_h 0 kJ - -gamma 0 0 + log_k 8.2871 + delta_h 0 kJ + -gamma 0 0 # Id: 2117321 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 -2Cr(OH)2+ + SO4-2 + 2H+ = Cr2(OH)2SO4+2 + 2H2O - log_k 16.155 - delta_h 0 kJ - -gamma 0 0 +2 Cr(OH)2+ + SO4-2 + 2 H+ = Cr2(OH)2SO4+2 + 2 H2O + log_k 16.155 + delta_h 0 kJ + -gamma 0 0 # Id: 2117323 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -2Cr(OH)2+ + 2SO4-2 + 2H+ = Cr2(OH)2(SO4)2 + 2H2O - log_k 17.9288 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +2 Cr(OH)2+ + 2 SO4-2 + 2 H+ = Cr2(OH)2(SO4)2 + 2 H2O + log_k 17.9288 + delta_h 0 kJ + -gamma 0 0 # Id: 2117324 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + SO4-2 = USO4+2 - log_k 6.6 - delta_h 8 kJ - -gamma 0 0 + log_k 6.6 + delta_h 8 kJ + -gamma 0 0 # Id: 8917320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -U+4 + 2SO4-2 = U(SO4)2 - log_k 10.5 - delta_h 33 kJ - -gamma 0 0 +U+4 + 2 SO4-2 = U(SO4)2 + log_k 10.5 + delta_h 33 kJ + -gamma 0 0 # Id: 8917321 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 UO2+2 + SO4-2 = UO2SO4 - log_k 3.18 - delta_h 20 kJ - -gamma 0 0 + log_k 3.18 + delta_h 20 kJ + -gamma 0 0 # Id: 8937320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -UO2+2 + 2SO4-2 = UO2(SO4)2-2 - log_k 4.3 - delta_h 38 kJ - -gamma 0 0 +UO2+2 + 2 SO4-2 = UO2(SO4)2-2 + log_k 4.3 + delta_h 38 kJ + -gamma 0 0 # Id: 8937321 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 V+3 + SO4-2 = VSO4+ - log_k 2.674 - delta_h 0 kJ - -gamma 0 0 + log_k 2.674 + delta_h 0 kJ + -gamma 0 0 # Id: 9017320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 VO+2 + SO4-2 = VOSO4 - log_k 2.44 - delta_h 17 kJ - -gamma 0 0 + log_k 2.44 + delta_h 17 kJ + -gamma 0 0 # Id: 9027320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 VO2+ + SO4-2 = VO2SO4- - log_k 1.378 - delta_h 0 kJ - -gamma 0 0 + log_k 1.378 + delta_h 0 kJ + -gamma 0 0 # Id: 9037320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 Be+2 + SO4-2 = BeSO4 - log_k 2.19 - delta_h 29 kJ - -gamma 0 0 + log_k 2.19 + delta_h 29 kJ + -gamma 0 0 # Id: 1107321 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Be+2 + 2SO4-2 = Be(SO4)2-2 - log_k 2.596 - delta_h 0 kJ - -gamma 0 0 +Be+2 + 2 SO4-2 = Be(SO4)2-2 + log_k 2.596 + delta_h 0 kJ + -gamma 0 0 # Id: 1107322 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Mg+2 + SO4-2 = MgSO4 - log_k 2.26 - delta_h 5.8 kJ - -gamma 0 0 + log_k 2.26 + delta_h 5.8 kJ + -gamma 0 0 # Id: 4607320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + SO4-2 = CaSO4 - log_k 2.36 - delta_h 7.1 kJ - -gamma 0 0 + log_k 2.36 + delta_h 7.1 kJ + -gamma 0 0 # Id: 1507320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Sr+2 + SO4-2 = SrSO4 - log_k 2.3 - delta_h 8 kJ - -gamma 0 0 + log_k 2.3 + delta_h 8 kJ + -gamma 0 0 # Id: 8007321 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Li+ + SO4-2 = LiSO4- - log_k 0.64 - delta_h 0 kJ - -gamma 5 0 + log_k 0.64 + delta_h 0 kJ + -gamma 5 0 # Id: 4407320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Na+ + SO4-2 = NaSO4- - log_k 0.73 - delta_h 1 kJ - -gamma 5.4 0 + log_k 0.73 + delta_h 1 kJ + -gamma 5.4 0 # Id: 5007320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 K+ + SO4-2 = KSO4- - log_k 0.85 - delta_h 4.1 kJ - -gamma 5.4 0 + log_k 0.85 + delta_h 4.1 kJ + -gamma 5.4 0 # Id: 4107320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 HSe- + H+ = H2Se - log_k 3.89 - delta_h 3.3 kJ - -gamma 0 0 + log_k 3.89 + delta_h 3.3 kJ + -gamma 0 0 # Id: 3307600 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 #T and ionic strength: 0.00 25.0 -2Ag+ + HSe- = Ag2Se + H+ - log_k 34.911 - delta_h 0 kJ - -gamma 0 0 +2 Ag+ + HSe- = Ag2Se + H+ + log_k 34.911 + delta_h 0 kJ + -gamma 0 0 # Id: 207600 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Ag+ + H2O + 2HSe- = AgOH(Se)2-4 + 3H+ - log_k -20.509 - delta_h 0 kJ - -gamma 0 0 +Ag+ + H2O + 2 HSe- = AgOH(Se)2-4 + 3 H+ + log_k -20.509 + delta_h 0 kJ + -gamma 0 0 # Id: 207601 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Mn+2 + HSe- = MnSe + H+ - log_k -5.385 - delta_h 0 kJ - -gamma 0 0 + log_k -5.385 + delta_h 0 kJ + -gamma 0 0 # Id: 4707600 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 HSeO3- = SeO3-2 + H+ - log_k -8.4 - delta_h 5.02 kJ - -gamma 0 0 + log_k -8.4 + delta_h 5.02 kJ + -gamma 0 0 # Id: 3307611 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 HSeO3- + H+ = H2SeO3 - log_k 2.63 - delta_h 6.2 kJ - -gamma 0 0 + log_k 2.63 + delta_h 6.2 kJ + -gamma 0 0 # Id: 3307610 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 2HSeO3- = Cd(SeO3)2-2 + 2H+ - log_k -10.884 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 2 HSeO3- = Cd(SeO3)2-2 + 2 H+ + log_k -10.884 + delta_h 0 kJ + -gamma 0 0 # Id: 1607610 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Ag+ + HSeO3- = AgSeO3- + H+ - log_k -5.592 - delta_h 0 kJ - -gamma 0 0 + log_k -5.592 + delta_h 0 kJ + -gamma 0 0 # Id: 207610 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Ag+ + 2HSeO3- = Ag(SeO3)2-3 + 2H+ - log_k -13.04 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 2 HSeO3- = Ag(SeO3)2-3 + 2 H+ + log_k -13.04 + delta_h 0 kJ + -gamma 0 0 # Id: 207611 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Fe+3 + HSeO3- = FeHSeO3+2 - log_k 3.422 - delta_h 25 kJ - -gamma 0 0 + log_k 3.422 + delta_h 25 kJ + -gamma 0 0 # Id: 2817610 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 SeO4-2 + H+ = HSeO4- - log_k 1.7 - delta_h 23 kJ - -gamma 0 0 + log_k 1.7 + delta_h 23 kJ + -gamma 0 0 # Id: 3307620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Zn+2 + SeO4-2 = ZnSeO4 - log_k 2.19 - delta_h 0 kJ - -gamma 0 0 + log_k 2.19 + delta_h 0 kJ + -gamma 0 0 # Id: 9507620 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Zn+2 + 2SeO4-2 = Zn(SeO4)2-2 - log_k 2.196 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 SeO4-2 = Zn(SeO4)2-2 + log_k 2.196 + delta_h 0 kJ + -gamma 0 0 # Id: 9507621 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Cd+2 + SeO4-2 = CdSeO4 - log_k 2.27 - delta_h 0 kJ - -gamma 0 0 + log_k 2.27 + delta_h 0 kJ + -gamma 0 0 # Id: 1607620 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ni+2 + SeO4-2 = NiSeO4 - log_k 2.67 - delta_h 14 kJ - -gamma 0 0 + log_k 2.67 + delta_h 14 kJ + -gamma 0 0 # Id: 5407620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Co+2 + SeO4-2 = CoSeO4 - log_k 2.7 - delta_h 12 kJ - -gamma 0 0 + log_k 2.7 + delta_h 12 kJ + -gamma 0 0 # Id: 2007621 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Mn+2 + SeO4-2 = MnSeO4 - log_k 2.43 - delta_h 14 kJ - -gamma 0 0 + log_k 2.43 + delta_h 14 kJ + -gamma 0 0 # Id: 4707620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 NH4+ = NH3 + H+ - log_k -9.244 - delta_h 52 kJ - -gamma 0 0 + log_k -9.244 + delta_h 52 kJ + -gamma 0 0 # Id: 3304900 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ag+ + NH4+ = AgNH3+ + H+ - log_k -5.934 - delta_h -72 kJ - -gamma 0 0 + log_k -5.934 + delta_h -72 kJ + -gamma 0 0 # Id: 204901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ag+ + 2NH4+ = Ag(NH3)2+ + 2H+ - log_k -11.268 - delta_h -160 kJ - -gamma 0 0 +Ag+ + 2 NH4+ = Ag(NH3)2+ + 2 H+ + log_k -11.268 + delta_h -160 kJ + -gamma 0 0 # Id: 204902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + H+ + NH4+ = HgNH3+2 + 2H2O - log_k 5.75 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + H+ + NH4+ = HgNH3+2 + 2 H2O + log_k 5.75 + delta_h 0 kJ + -gamma 0 0 # Id: 3614900 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 2.00 22.0 -Hg(OH)2 + 2NH4+ = Hg(NH3)2+2 + 2H2O - log_k 5.506 - delta_h -246.72 kJ - -gamma 0 0 +Hg(OH)2 + 2 NH4+ = Hg(NH3)2+2 + 2 H2O + log_k 5.506 + delta_h -246.72 kJ + -gamma 0 0 # Id: 3614901 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 -Hg(OH)2 + 3NH4+ = Hg(NH3)3+2 + 2H2O + H+ - log_k -3.138 - delta_h -312.72 kJ - -gamma 0 0 +Hg(OH)2 + 3 NH4+ = Hg(NH3)3+2 + 2 H2O + H+ + log_k -3.138 + delta_h -312.72 kJ + -gamma 0 0 # Id: 3614902 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 2.00 25.0 -Hg(OH)2 + 4NH4+ = Hg(NH3)4+2 + 2H2O + 2H+ - log_k -11.482 - delta_h -379.72 kJ - -gamma 0 0 +Hg(OH)2 + 4 NH4+ = Hg(NH3)4+2 + 2 H2O + 2 H+ + log_k -11.482 + delta_h -379.72 kJ + -gamma 0 0 # Id: 3614903 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.10 25.0 Cu+2 + NH4+ = CuNH3+2 + H+ - log_k -5.234 - delta_h -72 kJ - -gamma 0 0 + log_k -5.234 + delta_h -72 kJ + -gamma 0 0 # Id: 2314901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ni+2 + NH4+ = NiNH3+2 + H+ - log_k -6.514 - delta_h -67 kJ - -gamma 0 0 + log_k -6.514 + delta_h -67 kJ + -gamma 0 0 # Id: 5404901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Ni+2 + 2NH4+ = Ni(NH3)2+2 + 2H+ - log_k -13.598 - delta_h -111.6 kJ - -gamma 0 0 +Ni+2 + 2 NH4+ = Ni(NH3)2+2 + 2 H+ + log_k -13.598 + delta_h -111.6 kJ + -gamma 0 0 # Id: 5404902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Co+2 + NH4+ = Co(NH3)+2 + H+ - log_k -7.164 - delta_h -65 kJ - -gamma 0 0 + log_k -7.164 + delta_h -65 kJ + -gamma 0 0 # Id: 2004900 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Co+2 + 2NH4+ = Co(NH3)2+2 + 2H+ - log_k -14.778 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 NH4+ = Co(NH3)2+2 + 2 H+ + log_k -14.778 + delta_h 0 kJ + -gamma 0 0 # Id: 2004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 2.00 25.0 -Co+2 + 3NH4+ = Co(NH3)3+2 + 3H+ - log_k -22.922 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 3 NH4+ = Co(NH3)3+2 + 3 H+ + log_k -22.922 + delta_h 0 kJ + -gamma 0 0 # Id: 2004902 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 2.00 25.0 -Co+2 + 4NH4+ = Co(NH3)4+2 + 4H+ - log_k -31.446 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 4 NH4+ = Co(NH3)4+2 + 4 H+ + log_k -31.446 + delta_h 0 kJ + -gamma 0 0 # Id: 2004903 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 2.00 30.0 -Co+2 + 5NH4+ = Co(NH3)5+2 + 5H+ - log_k -40.47 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 5 NH4+ = Co(NH3)5+2 + 5 H+ + log_k -40.47 + delta_h 0 kJ + -gamma 0 0 # Id: 2004904 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 2.00 30.0 -Co+3 + 6NH4+ + H2O = Co(NH3)6OH+2 + 7H+ - log_k -43.7148 - delta_h 0 kJ - -gamma 0 0 +Co+3 + 6 NH4+ + H2O = Co(NH3)6OH+2 + 7 H+ + log_k -43.7148 + delta_h 0 kJ + -gamma 0 0 # Id: 2014901 - # log K source: NIST2.1.1 - # Delta H source: MTQ3.11 - #T and ionic strength: -Co+3 + 5NH4+ + Cl- = Co(NH3)5Cl+2 + 5H+ - log_k -17.9584 - delta_h 113.38 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: MTQ3.11 + #T and ionic strength: +Co+3 + 5 NH4+ + Cl- = Co(NH3)5Cl+2 + 5 H+ + log_k -17.9584 + delta_h 113.38 kJ + -gamma 0 0 # Id: 2014902 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Co+3 + 6NH4+ + Cl- = Co(NH3)6Cl+2 + 6H+ - log_k -33.9179 - delta_h 104.34 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Co+3 + 6 NH4+ + Cl- = Co(NH3)6Cl+2 + 6 H+ + log_k -33.9179 + delta_h 104.34 kJ + -gamma 0 0 # Id: 2014903 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Co+3 + 6NH4+ + Br- = Co(NH3)6Br+2 + 6H+ - log_k -33.8884 - delta_h 110.57 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Co+3 + 6 NH4+ + Br- = Co(NH3)6Br+2 + 6 H+ + log_k -33.8884 + delta_h 110.57 kJ + -gamma 0 0 # Id: 2014904 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Co+3 + 6NH4+ + I- = Co(NH3)6I+2 + 6H+ - log_k -33.4808 - delta_h 115.44 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Co+3 + 6 NH4+ + I- = Co(NH3)6I+2 + 6 H+ + log_k -33.4808 + delta_h 115.44 kJ + -gamma 0 0 # Id: 2014905 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Co+3 + 6NH4+ + SO4-2 = Co(NH3)6SO4+ + 6H+ - log_k -28.9926 - delta_h 124.5 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Co+3 + 6 NH4+ + SO4-2 = Co(NH3)6SO4+ + 6 H+ + log_k -28.9926 + delta_h 124.5 kJ + -gamma 0 0 # Id: 2014906 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Cr(OH)2+ + 6NH4+ = Cr(NH3)6+3 + 2H2O + 4H+ - log_k -32.8952 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Cr(OH)2+ + 6 NH4+ = Cr(NH3)6+3 + 2 H2O + 4 H+ + log_k -32.8952 + delta_h 0 kJ + -gamma 0 0 # Id: 2114900 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 4.50 25.0 -Cr(OH)2+ + 5NH4+ = Cr(NH3)5OH+2 + 4H+ + H2O - log_k -30.2759 - delta_h 0 kJ - -gamma 0 0 +Cr(OH)2+ + 5 NH4+ = Cr(NH3)5OH+2 + 4 H+ + H2O + log_k -30.2759 + delta_h 0 kJ + -gamma 0 0 # Id: 2114901 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 6NH4+ + Cl- = Cr(NH3)6Cl+2 + 2H2O + 4H+ - log_k -31.7932 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 6 NH4+ + Cl- = Cr(NH3)6Cl+2 + 2 H2O + 4 H+ + log_k -31.7932 + delta_h 0 kJ + -gamma 0 0 # Id: 2114904 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 6NH4+ + Br- = Cr(NH3)6Br+2 + 4H+ + 2H2O - log_k -31.887 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 6 NH4+ + Br- = Cr(NH3)6Br+2 + 4 H+ + 2 H2O + log_k -31.887 + delta_h 0 kJ + -gamma 0 0 # Id: 2114905 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 6NH4+ + I- = Cr(NH3)6I+2 + 4H+ + 2H2O - log_k -32.008 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 6 NH4+ + I- = Cr(NH3)6I+2 + 4 H+ + 2 H2O + log_k -32.008 + delta_h 0 kJ + -gamma 0 0 # Id: 2114906 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: #Cr(OH)2+ + 4NH4+ = cis+ + 4H+ # log_k -29.8574 # delta_h 0 kJ # -gamma 0 0 # # Id: 4902113 -# # log K source: MTQ3.11 -# # Delta H source: MTQ3.11 -# #T and ionic strength: +# # log K source: MTQ3.11 +# # Delta H source: MTQ3.11 +# #T and ionic strength: #Cr(OH)2+ + 4NH4+ = trans+ + 4H+ # log_k -30.5537 # delta_h 0 kJ # -gamma 0 0 # # Id: 4902114 -# # log K source: MTQ3.11 -# # Delta H source: MTQ3.11 -# #T and ionic strength: +# # log K source: MTQ3.11 +# # Delta H source: MTQ3.11 +# #T and ionic strength: Ca+2 + NH4+ = CaNH3+2 + H+ - log_k -9.144 - delta_h 0 kJ - -gamma 0 0 + log_k -9.144 + delta_h 0 kJ + -gamma 0 0 # Id: 1504901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 -Ca+2 + 2NH4+ = Ca(NH3)2+2 + 2H+ - log_k -18.788 - delta_h 0 kJ - -gamma 0 0 +Ca+2 + 2 NH4+ = Ca(NH3)2+2 + 2 H+ + log_k -18.788 + delta_h 0 kJ + -gamma 0 0 # Id: 1504902 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Sr+2 + NH4+ = SrNH3+2 + H+ - log_k -9.344 - delta_h 0 kJ - -gamma 0 0 + log_k -9.344 + delta_h 0 kJ + -gamma 0 0 # Id: 8004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Ba+2 + NH4+ = BaNH3+2 + H+ - log_k -9.444 - delta_h 0 kJ - -gamma 0 0 + log_k -9.444 + delta_h 0 kJ + -gamma 0 0 # Id: 1004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Tl+ + NO2- = TlNO2 - log_k 0.83 - delta_h 0 kJ - -gamma 0 0 + log_k 0.83 + delta_h 0 kJ + -gamma 0 0 # Id: 8704910 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ag+ + NO2- = AgNO2 - log_k 2.32 - delta_h -29 kJ - -gamma 0 0 + log_k 2.32 + delta_h -29 kJ + -gamma 0 0 # Id: 204911 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ag+ + 2NO2- = Ag(NO2)2- - log_k 2.51 - delta_h -46 kJ - -gamma 0 0 +Ag+ + 2 NO2- = Ag(NO2)2- + log_k 2.51 + delta_h -46 kJ + -gamma 0 0 # Id: 204910 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cu+2 + NO2- = CuNO2+ - log_k 2.02 - delta_h 0 kJ - -gamma 0 0 + log_k 2.02 + delta_h 0 kJ + -gamma 0 0 # Id: 2314911 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cu+2 + 2NO2- = Cu(NO2)2 - log_k 3.03 - delta_h 0 kJ - -gamma 0 0 +Cu+2 + 2 NO2- = Cu(NO2)2 + log_k 3.03 + delta_h 0 kJ + -gamma 0 0 # Id: 2314912 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + NO2- = CoNO2+ - log_k 0.848 - delta_h 0 kJ - -gamma 0 0 + log_k 0.848 + delta_h 0 kJ + -gamma 0 0 # Id: 2004911 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Sn(OH)2 + 2H+ + NO3- = SnNO3+ + 2H2O - log_k 7.942 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + NO3- = SnNO3+ + 2 H2O + log_k 7.942 + delta_h 0 kJ + -gamma 0 0 # Id: 7904921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Pb+2 + NO3- = PbNO3+ - log_k 1.17 - delta_h 2 kJ - -gamma 0 0 + log_k 1.17 + delta_h 2 kJ + -gamma 0 0 # Id: 6004920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Pb+2 + 2NO3- = Pb(NO3)2 - log_k 1.4 - delta_h -6.6 kJ - -gamma 0 0 +Pb+2 + 2 NO3- = Pb(NO3)2 + log_k 1.4 + delta_h -6.6 kJ + -gamma 0 0 # Id: 6004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Tl+ + NO3- = TlNO3 - log_k 0.33 - delta_h -2 kJ - -gamma 0 0 + log_k 0.33 + delta_h -2 kJ + -gamma 0 0 # Id: 8704920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Tl(OH)3 + NO3- + 3H+ = TlNO3+2 + 3H2O - log_k 7.0073 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + NO3- + 3 H+ = TlNO3+2 + 3 H2O + log_k 7.0073 + delta_h 0 kJ + -gamma 0 0 # Id: 8714920 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + NO3- = CdNO3+ - log_k 0.5 - delta_h -21 kJ - -gamma 0 0 + log_k 0.5 + delta_h -21 kJ + -gamma 0 0 # Id: 1604920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 2NO3- = Cd(NO3)2 - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 2 NO3- = Cd(NO3)2 + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 # Id: 1604921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + NO3- = HgNO3+ + 2H2O - log_k 5.7613 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + NO3- = HgNO3+ + 2 H2O + log_k 5.7613 + delta_h 0 kJ + -gamma 0 0 # Id: 3614920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 -Hg(OH)2 + 2H+ + 2NO3- = Hg(NO3)2 + 2H2O - log_k 5.38 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 2 NO3- = Hg(NO3)2 + 2 H2O + log_k 5.38 + delta_h 0 kJ + -gamma 0 0 # Id: 3614921 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 Cu+2 + NO3- = CuNO3+ - log_k 0.5 - delta_h -4.1 kJ - -gamma 0 0 + log_k 0.5 + delta_h -4.1 kJ + -gamma 0 0 # Id: 2314921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cu+2 + 2NO3- = Cu(NO3)2 - log_k -0.4 - delta_h 0 kJ - -gamma 0 0 +Cu+2 + 2 NO3- = Cu(NO3)2 + log_k -0.4 + delta_h 0 kJ + -gamma 0 0 # Id: 2314922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + NO3- = ZnNO3+ - log_k 0.4 - delta_h -4.6 kJ - -gamma 0 0 + log_k 0.4 + delta_h -4.6 kJ + -gamma 0 0 # Id: 9504921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Zn+2 + 2NO3- = Zn(NO3)2 - log_k -0.3 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 NO3- = Zn(NO3)2 + log_k -0.3 + delta_h 0 kJ + -gamma 0 0 # Id: 9504922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ag+ + NO3- = AgNO3 - log_k -0.1 - delta_h 22.6 kJ - -gamma 0 0 + log_k -0.1 + delta_h 22.6 kJ + -gamma 0 0 # Id: 204920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ni+2 + NO3- = NiNO3+ - log_k 0.4 - delta_h 0 kJ - -gamma 0 0 + log_k 0.4 + delta_h 0 kJ + -gamma 0 0 # Id: 5404921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + NO3- = CoNO3+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2004921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Co+2 + 2NO3- = Co(NO3)2 - log_k 0.5085 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 NO3- = Co(NO3)2 + log_k 0.5085 + delta_h 0 kJ + -gamma 0 0 # Id: 2004922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Fe+3 + NO3- = FeNO3+2 - log_k 1 - delta_h -37 kJ - -gamma 0 0 + log_k 1 + delta_h -37 kJ + -gamma 0 0 # Id: 2814921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Mn+2 + NO3- = MnNO3+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 # Id: 4704921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Mn+2 + 2NO3- = Mn(NO3)2 - log_k 0.6 - delta_h -1.6569 kJ - -gamma 0 0 +Mn+2 + 2 NO3- = Mn(NO3)2 + log_k 0.6 + delta_h -1.6569 kJ + -gamma 0 0 # Id: 4704920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + NO3- + 2H+ = CrNO3+2 + 2H2O - log_k 8.2094 - delta_h -65.4378 kJ - -gamma 0 0 +Cr(OH)2+ + NO3- + 2 H+ = CrNO3+2 + 2 H2O + log_k 8.2094 + delta_h -65.4378 kJ + -gamma 0 0 # Id: 2114920 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + NO3- = UO2NO3+ - log_k 0.3 - delta_h -12 kJ - -gamma 0 0 + log_k 0.3 + delta_h -12 kJ + -gamma 0 0 # Id: 8934921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 VO2+ + NO3- = VO2NO3 - log_k -0.296 - delta_h 0 kJ - -gamma 0 0 + log_k -0.296 + delta_h 0 kJ + -gamma 0 0 # Id: 9034920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 Ca+2 + NO3- = CaNO3+ - log_k 0.5 - delta_h -5.4 kJ - -gamma 0 0 + log_k 0.5 + delta_h -5.4 kJ + -gamma 0 0 # Id: 1504921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sr+2 + NO3- = SrNO3+ - log_k 0.6 - delta_h -10 kJ - -gamma 0 0 + log_k 0.6 + delta_h -10 kJ + -gamma 0 0 # Id: 8004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + NO3- = BaNO3+ - log_k 0.7 - delta_h -13 kJ - -gamma 0 0 + log_k 0.7 + delta_h -13 kJ + -gamma 0 0 # Id: 1004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 H+ + Cyanide- = HCyanide - log_k 9.21 - delta_h -43.63 kJ - -gamma 0 0 + log_k 9.21 + delta_h -43.63 kJ + -gamma 0 0 # Id: 3301431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Cd+2 + Cyanide- = CdCyanide+ - log_k 6.01 - delta_h -30 kJ - -gamma 0 0 + log_k 6.01 + delta_h -30 kJ + -gamma 0 0 # Id: 1601431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cd+2 + 2Cyanide- = Cd(Cyanide)2 - log_k 11.12 - delta_h -54.3 kJ - -gamma 0 0 +Cd+2 + 2 Cyanide- = Cd(Cyanide)2 + log_k 11.12 + delta_h -54.3 kJ + -gamma 0 0 # Id: 1601432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cd+2 + 3Cyanide- = Cd(Cyanide)3- - log_k 15.65 - delta_h -90.3 kJ - -gamma 0 0 +Cd+2 + 3 Cyanide- = Cd(Cyanide)3- + log_k 15.65 + delta_h -90.3 kJ + -gamma 0 0 # Id: 1601433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cd+2 + 4Cyanide- = Cd(Cyanide)4-2 - log_k 17.92 - delta_h -112 kJ - -gamma 0 0 +Cd+2 + 4 Cyanide- = Cd(Cyanide)4-2 + log_k 17.92 + delta_h -112 kJ + -gamma 0 0 # Id: 1601434 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + Cyanide- = HgCyanide+ + 2H2O - log_k 23.194 - delta_h -136.72 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + Cyanide- = HgCyanide+ + 2 H2O + log_k 23.194 + delta_h -136.72 kJ + -gamma 0 0 # Id: 3611431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 2Cyanide- = Hg(Cyanide)2 + 2H2O - log_k 38.944 - delta_h 154.28 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 2 Cyanide- = Hg(Cyanide)2 + 2 H2O + log_k 38.944 + delta_h 154.28 kJ + -gamma 0 0 # Id: 3611432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 3Cyanide- = Hg(Cyanide)3- + 2H2O - log_k 42.504 - delta_h -262.72 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 3 Cyanide- = Hg(Cyanide)3- + 2 H2O + log_k 42.504 + delta_h -262.72 kJ + -gamma 0 0 # Id: 3611433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 4Cyanide- = Hg(Cyanide)4-2 + 2H2O - log_k 45.164 - delta_h -288.72 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 4 Cyanide- = Hg(Cyanide)4-2 + 2 H2O + log_k 45.164 + delta_h -288.72 kJ + -gamma 0 0 # Id: 3611434 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cu+ + 2Cyanide- = Cu(Cyanide)2- - log_k 21.9145 - delta_h -121 kJ - -gamma 0 0 +Cu+ + 2 Cyanide- = Cu(Cyanide)2- + log_k 21.9145 + delta_h -121 kJ + -gamma 0 0 # Id: 2301432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Cu+ + 3Cyanide- = Cu(Cyanide)3-2 - log_k 27.2145 - delta_h -167.4 kJ - -gamma 0 0 +Cu+ + 3 Cyanide- = Cu(Cyanide)3-2 + log_k 27.2145 + delta_h -167.4 kJ + -gamma 0 0 # Id: 2301433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cu+ + 4Cyanide- = Cu(Cyanide)4-3 - log_k 28.7145 - delta_h -214.2 kJ - -gamma 0 0 +Cu+ + 4 Cyanide- = Cu(Cyanide)4-3 + log_k 28.7145 + delta_h -214.2 kJ + -gamma 0 0 # Id: 2301431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ag+ + 2Cyanide- = Ag(Cyanide)2- - log_k 20.48 - delta_h -137 kJ - -gamma 0 0 +Ag+ + 2 Cyanide- = Ag(Cyanide)2- + log_k 20.48 + delta_h -137 kJ + -gamma 0 0 # Id: 201432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ag+ + 3Cyanide- = Ag(Cyanide)3-2 - log_k 21.7 - delta_h -140 kJ - -gamma 0 0 +Ag+ + 3 Cyanide- = Ag(Cyanide)3-2 + log_k 21.7 + delta_h -140 kJ + -gamma 0 0 # Id: 201433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ag+ + H2O + Cyanide- = Ag(Cyanide)OH- + H+ - log_k -0.777 - delta_h 0 kJ - -gamma 0 0 + log_k -0.777 + delta_h 0 kJ + -gamma 0 0 # Id: 201431 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Ni+2 + 4Cyanide- = Ni(Cyanide)4-2 - log_k 30.2 - delta_h -180 kJ - -gamma 0 0 +Ni+2 + 4 Cyanide- = Ni(Cyanide)4-2 + log_k 30.2 + delta_h -180 kJ + -gamma 0 0 # Id: 5401431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ni+2 + 4Cyanide- + H+ = NiH(Cyanide)4- - log_k 36.0289 - delta_h 0 kJ - -gamma 0 0 +Ni+2 + 4 Cyanide- + H+ = NiH(Cyanide)4- + log_k 36.0289 + delta_h 0 kJ + -gamma 0 0 # Id: 5401432 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 -Ni+2 + 4Cyanide- + 2H+ = NiH2Cyanide4 - log_k 40.7434 - delta_h 0 kJ - -gamma 0 0 +Ni+2 + 4 Cyanide- + 2 H+ = NiH2Cyanide4 + log_k 40.7434 + delta_h 0 kJ + -gamma 0 0 # Id: 5401433 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 -Ni+2 + 4Cyanide- + 3H+ = NiH3(Cyanide)4+ - log_k 43.3434 - delta_h 0 kJ - -gamma 0 0 +Ni+2 + 4 Cyanide- + 3 H+ = NiH3(Cyanide)4+ + log_k 43.3434 + delta_h 0 kJ + -gamma 0 0 # Id: 5401434 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 -Co+2 + 3Cyanide- = Co(Cyanide)3- - log_k 14.312 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 3 Cyanide- = Co(Cyanide)3- + log_k 14.312 + delta_h 0 kJ + -gamma 0 0 # Id: 2001431 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Co+2 + 5Cyanide- = Co(Cyanide)5-3 - log_k 23 - delta_h -257 kJ - -gamma 0 0 +Co+2 + 5 Cyanide- = Co(Cyanide)5-3 + log_k 23 + delta_h -257 kJ + -gamma 0 0 # Id: 2001432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 1.00 25.0 -Fe+2 + 6Cyanide- = Fe(Cyanide)6-4 - log_k 35.4 - delta_h -358 kJ - -gamma 0 0 +Fe+2 + 6 Cyanide- = Fe(Cyanide)6-4 + log_k 35.4 + delta_h -358 kJ + -gamma 0 0 # Id: 2801431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -H+ + Fe+2 + 6Cyanide- = HFe(Cyanide)6-3 - log_k 39.71 - delta_h -356 kJ - -gamma 0 0 +H+ + Fe+2 + 6 Cyanide- = HFe(Cyanide)6-3 + log_k 39.71 + delta_h -356 kJ + -gamma 0 0 # Id: 2801432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -2H+ + Fe+2 + 6Cyanide- = H2Fe(Cyanide)6-2 - log_k 42.11 - delta_h -352 kJ - -gamma 0 0 +2 H+ + Fe+2 + 6 Cyanide- = H2Fe(Cyanide)6-2 + log_k 42.11 + delta_h -352 kJ + -gamma 0 0 # Id: 2801433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Fe+3 + 6Cyanide- = Fe(Cyanide)6-3 - log_k 43.6 - delta_h -293 kJ - -gamma 0 0 +Fe+3 + 6 Cyanide- = Fe(Cyanide)6-3 + log_k 43.6 + delta_h -293 kJ + -gamma 0 0 # Id: 2811431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -2Fe+3 + 6Cyanide- = Fe2(Cyanide)6 - log_k 47.6355 - delta_h -218 kJ - -gamma 0 0 +2 Fe+3 + 6 Cyanide- = Fe2(Cyanide)6 + log_k 47.6355 + delta_h -218 kJ + -gamma 0 0 # Id: 2811432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 -Sn(OH)2 + Fe+3 + 6Cyanide- + 2H+ = SnFe(Cyanide)6- + 2H2O - log_k 53.54 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + Fe+3 + 6 Cyanide- + 2 H+ = SnFe(Cyanide)6- + 2 H2O + log_k 53.54 + delta_h 0 kJ + -gamma 0 0 # Id: 7901431 - # log K source: Ba1987 - # Delta H source: + # log K source: Ba1987 + # Delta H source: #T and ionic strength: 0.00 25.0 -NH4+ + Fe+2 + 6Cyanide- = NH4Fe(Cyanide)6-3 - log_k 37.7 - delta_h -354 kJ - -gamma 0 0 +NH4+ + Fe+2 + 6 Cyanide- = NH4Fe(Cyanide)6-3 + log_k 37.7 + delta_h -354 kJ + -gamma 0 0 # Id: 4901431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Tl+ + Fe+2 + 6Cyanide- = TlFe(Cyanide)6-3 - log_k 38.4 - delta_h -365.5 kJ - -gamma 0 0 +Tl+ + Fe+2 + 6 Cyanide- = TlFe(Cyanide)6-3 + log_k 38.4 + delta_h -365.5 kJ + -gamma 0 0 # Id: 8701432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Mg+2 + Fe+3 + 6Cyanide- = MgFe(Cyanide)6- - log_k 46.39 - delta_h -290 kJ - -gamma 0 0 +Mg+2 + Fe+3 + 6 Cyanide- = MgFe(Cyanide)6- + log_k 46.39 + delta_h -290 kJ + -gamma 0 0 # Id: 4601431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Mg+2 + Fe+2 + 6Cyanide- = MgFe(Cyanide)6-2 - log_k 39.21 - delta_h -346 kJ - -gamma 0 0 +Mg+2 + Fe+2 + 6 Cyanide- = MgFe(Cyanide)6-2 + log_k 39.21 + delta_h -346 kJ + -gamma 0 0 # Id: 4601432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ca+2 + Fe+3 + 6Cyanide- = CaFe(Cyanide)6- - log_k 46.43 - delta_h -291 kJ - -gamma 0 0 +Ca+2 + Fe+3 + 6 Cyanide- = CaFe(Cyanide)6- + log_k 46.43 + delta_h -291 kJ + -gamma 0 0 # Id: 1501431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ca+2 + Fe+2 + 6Cyanide- = CaFe(Cyanide)6-2 - log_k 39.1 - delta_h -347 kJ - -gamma 0 0 +Ca+2 + Fe+2 + 6 Cyanide- = CaFe(Cyanide)6-2 + log_k 39.1 + delta_h -347 kJ + -gamma 0 0 # Id: 1501432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -2Ca+2 + Fe+2 + 6Cyanide- = Ca2Fe(Cyanide)6 - log_k 40.6 - delta_h -350.201 kJ - -gamma 0 0 +2 Ca+2 + Fe+2 + 6 Cyanide- = Ca2Fe(Cyanide)6 + log_k 40.6 + delta_h -350.201 kJ + -gamma 0 0 # Id: 1501433 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Sr+2 + Fe+3 + 6Cyanide- = SrFe(Cyanide)6- - log_k 46.45 - delta_h -292 kJ - -gamma 0 0 +Sr+2 + Fe+3 + 6 Cyanide- = SrFe(Cyanide)6- + log_k 46.45 + delta_h -292 kJ + -gamma 0 0 # Id: 8001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Sr+2 + Fe+2 + 6Cyanide- = SrFe(Cyanide)6-2 - log_k 39.1 - delta_h -350 kJ - -gamma 0 0 +Sr+2 + Fe+2 + 6 Cyanide- = SrFe(Cyanide)6-2 + log_k 39.1 + delta_h -350 kJ + -gamma 0 0 # Id: 8001432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ba+2 + Fe+2 + 6Cyanide- = BaFe(Cyanide)6-2 - log_k 39.19 - delta_h -342 kJ - -gamma 0 0 +Ba+2 + Fe+2 + 6 Cyanide- = BaFe(Cyanide)6-2 + log_k 39.19 + delta_h -342 kJ + -gamma 0 0 # Id: 1001430 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ba+2 + Fe+3 + 6Cyanide- = BaFe(Cyanide)6- - log_k 46.48 - delta_h -292 kJ - -gamma 0 0 +Ba+2 + Fe+3 + 6 Cyanide- = BaFe(Cyanide)6- + log_k 46.48 + delta_h -292 kJ + -gamma 0 0 # Id: 1001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Na+ + Fe+2 + 6Cyanide- = NaFe(Cyanide)6-3 - log_k 37.6 - delta_h -354 kJ - -gamma 0 0 +Na+ + Fe+2 + 6 Cyanide- = NaFe(Cyanide)6-3 + log_k 37.6 + delta_h -354 kJ + -gamma 0 0 # Id: 5001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -K+ + Fe+2 + 6Cyanide- = KFe(Cyanide)6-3 - log_k 37.75 - delta_h -353.9 kJ - -gamma 0 0 +K+ + Fe+2 + 6 Cyanide- = KFe(Cyanide)6-3 + log_k 37.75 + delta_h -353.9 kJ + -gamma 0 0 # Id: 4101433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -K+ + Fe+3 + 6Cyanide- = KFe(Cyanide)6-2 - log_k 45.04 - delta_h -291 kJ - -gamma 0 0 +K+ + Fe+3 + 6 Cyanide- = KFe(Cyanide)6-2 + log_k 45.04 + delta_h -291 kJ + -gamma 0 0 # Id: 4101430 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 H+ + PO4-3 = HPO4-2 - log_k 12.375 - delta_h -15 kJ - -gamma 5 0 + log_k 12.375 + delta_h -15 kJ + -gamma 5 0 # Id: 3305800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -2H+ + PO4-3 = H2PO4- - log_k 19.573 - delta_h -18 kJ - -gamma 5.4 0 +2 H+ + PO4-3 = H2PO4- + log_k 19.573 + delta_h -18 kJ + -gamma 5.4 0 # Id: 3305801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -3H+ + PO4-3 = H3PO4 - log_k 21.721 - delta_h -10.1 kJ - -gamma 0 0 +3 H+ + PO4-3 = H3PO4 + log_k 21.721 + delta_h -10.1 kJ + -gamma 0 0 # Id: 3305802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Co+2 + H+ + PO4-3 = CoHPO4 - log_k 15.4128 - delta_h 0 kJ - -gamma 0 0 + log_k 15.4128 + delta_h 0 kJ + -gamma 0 0 # Id: 2005800 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 -Fe+2 + 2H+ + PO4-3 = FeH2PO4+ - log_k 22.273 - delta_h 0 kJ - -gamma 5.4 0 +Fe+2 + 2 H+ + PO4-3 = FeH2PO4+ + log_k 22.273 + delta_h 0 kJ + -gamma 5.4 0 # Id: 2805800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Fe+2 + H+ + PO4-3 = FeHPO4 - log_k 15.975 - delta_h 0 kJ - -gamma 0 0 + log_k 15.975 + delta_h 0 kJ + -gamma 0 0 # Id: 2805801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Fe+3 + 2H+ + PO4-3 = FeH2PO4+2 - log_k 23.8515 - delta_h 0 kJ - -gamma 5.4 0 +Fe+3 + 2 H+ + PO4-3 = FeH2PO4+2 + log_k 23.8515 + delta_h 0 kJ + -gamma 5.4 0 # Id: 2815801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Fe+3 + H+ + PO4-3 = FeHPO4+ - log_k 22.292 - delta_h -30.5432 kJ - -gamma 5.4 0 + log_k 22.292 + delta_h -30.5432 kJ + -gamma 5.4 0 # Id: 2815800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 4H+ + PO4-3 = CrH2PO4+2 + 2H2O - log_k 31.9068 - delta_h 0 kJ - -gamma 0 0 +Cr(OH)2+ + 4 H+ + PO4-3 = CrH2PO4+2 + 2 H2O + log_k 31.9068 + delta_h 0 kJ + -gamma 0 0 # Id: 2115800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + PO4-3 + H+ = UHPO4+2 - log_k 24.443 - delta_h 31.38 kJ - -gamma 0 0 + log_k 24.443 + delta_h 31.38 kJ + -gamma 0 0 # Id: 8915800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 2PO4-3 + 2H+ = U(HPO4)2 - log_k 46.833 - delta_h 7.1128 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 2 PO4-3 + 2 H+ = U(HPO4)2 + log_k 46.833 + delta_h 7.1128 kJ + -gamma 0 0 # Id: 8915801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 3PO4-3 + 3H+ = U(HPO4)3-2 - log_k 67.564 - delta_h -32.6352 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 3 PO4-3 + 3 H+ = U(HPO4)3-2 + log_k 67.564 + delta_h -32.6352 kJ + -gamma 0 0 # Id: 8915802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 4PO4-3 + 4H+ = U(HPO4)4-4 - log_k 88.483 - delta_h -110.876 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 4 PO4-3 + 4 H+ = U(HPO4)4-4 + log_k 88.483 + delta_h -110.876 kJ + -gamma 0 0 # Id: 8915803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + H+ + PO4-3 = UO2HPO4 - log_k 19.655 - delta_h -8.7864 kJ - -gamma 0 0 + log_k 19.655 + delta_h -8.7864 kJ + -gamma 0 0 # Id: 8935800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -UO2+2 + 2PO4-3 + 2H+ = UO2(HPO4)2-2 - log_k 42.988 - delta_h -47.6934 kJ - -gamma 0 0 +UO2+2 + 2 PO4-3 + 2 H+ = UO2(HPO4)2-2 + log_k 42.988 + delta_h -47.6934 kJ + -gamma 0 0 # Id: 8935801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + 2H+ + PO4-3 = UO2H2PO4+ - log_k 22.833 - delta_h -15.4808 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + 2 H+ + PO4-3 = UO2H2PO4+ + log_k 22.833 + delta_h -15.4808 kJ + -gamma 0 0 # Id: 8935802 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -UO2+2 + 2PO4-3 + 4H+ = UO2(H2PO4)2 - log_k 44.7 - delta_h -69.036 kJ - -gamma 0 0 +UO2+2 + 2 PO4-3 + 4 H+ = UO2(H2PO4)2 + log_k 44.7 + delta_h -69.036 kJ + -gamma 0 0 # Id: 8935803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + 3PO4-3 + 6H+ = UO2(H2PO4)3- - log_k 66.245 - delta_h -119.662 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + 3 PO4-3 + 6 H+ = UO2(H2PO4)3- + log_k 66.245 + delta_h -119.662 kJ + -gamma 0 0 # Id: 8935804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + PO4-3 = UO2PO4- - log_k 13.25 - delta_h 0 kJ - -gamma 0 0 + log_k 13.25 + delta_h 0 kJ + -gamma 0 0 # Id: 8935805 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Mg+2 + PO4-3 = MgPO4- - log_k 4.654 - delta_h 12.9704 kJ - -gamma 5.4 0 + log_k 4.654 + delta_h 12.9704 kJ + -gamma 5.4 0 # Id: 4605800 - # log K source: SCD3.02 (1993 GMa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1993 GMa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.20 25.0 -Mg+2 + 2H+ + PO4-3 = MgH2PO4+ - log_k 21.2561 - delta_h -4.6861 kJ - -gamma 5.4 0 +Mg+2 + 2 H+ + PO4-3 = MgH2PO4+ + log_k 21.2561 + delta_h -4.6861 kJ + -gamma 5.4 0 # Id: 4605801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 37.0 Mg+2 + H+ + PO4-3 = MgHPO4 - log_k 15.175 - delta_h -3 kJ - -gamma 0 0 + log_k 15.175 + delta_h -3 kJ + -gamma 0 0 # Id: 4605802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + H+ + PO4-3 = CaHPO4 - log_k 15.035 - delta_h -3 kJ - -gamma 0 0 + log_k 15.035 + delta_h -3 kJ + -gamma 0 0 # Id: 1505800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + PO4-3 = CaPO4- - log_k 6.46 - delta_h 12.9704 kJ - -gamma 5.4 0 + log_k 6.46 + delta_h 12.9704 kJ + -gamma 5.4 0 # Id: 1505801 - # log K source: SCD3.02 (1993 GMa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1993 GMa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Ca+2 + 2H+ + PO4-3 = CaH2PO4+ - log_k 20.923 - delta_h -6 kJ - -gamma 5.4 0 +Ca+2 + 2 H+ + PO4-3 = CaH2PO4+ + log_k 20.923 + delta_h -6 kJ + -gamma 5.4 0 # Id: 1505802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Sr+2 + H+ + PO4-3 = SrHPO4 - log_k 14.8728 - delta_h 0 kJ - -gamma 0 0 + log_k 14.8728 + delta_h 0 kJ + -gamma 0 0 # Id: 8005800 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 -Sr+2 + 2H+ + PO4-3 = SrH2PO4+ - log_k 20.4019 - delta_h 0 kJ - -gamma 0 0 +Sr+2 + 2 H+ + PO4-3 = SrH2PO4+ + log_k 20.4019 + delta_h 0 kJ + -gamma 0 0 # Id: 8005801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 Na+ + H+ + PO4-3 = NaHPO4- - log_k 13.445 - delta_h 0 kJ - -gamma 5.4 0 + log_k 13.445 + delta_h 0 kJ + -gamma 5.4 0 # Id: 5005800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 K+ + H+ + PO4-3 = KHPO4- - log_k 13.255 - delta_h 0 kJ - -gamma 5.4 0 + log_k 13.255 + delta_h 0 kJ + -gamma 5.4 0 # Id: 4105800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -H3AsO3 = AsO3-3 + 3H+ - log_k -34.744 - delta_h 84.726 kJ - -gamma 0 0 +H3AsO3 = AsO3-3 + 3 H+ + log_k -34.744 + delta_h 84.726 kJ + -gamma 0 0 # Id: 3300602 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3AsO3 = HAsO3-2 + 2H+ - log_k -21.33 - delta_h 59.4086 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3AsO3 = HAsO3-2 + 2 H+ + log_k -21.33 + delta_h 59.4086 kJ + -gamma 0 0 # Id: 3300601 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H3AsO3 = H2AsO3- + H+ - log_k -9.29 - delta_h 27.41 kJ - -gamma 0 0 + log_k -9.29 + delta_h 27.41 kJ + -gamma 0 0 # Id: 3300600 - # log K source: NIST46.4 - # Delta H source: NIST2.1.1 + # log K source: NIST46.4 + # Delta H source: NIST2.1.1 #T and ionic strength: 0.00 25.0 H3AsO3 + H+ = H4AsO3+ - log_k -0.305 - delta_h 0 kJ - -gamma 0 0 + log_k -0.305 + delta_h 0 kJ + -gamma 0 0 # Id: 3300603 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3AsO4 = AsO4-3 + 3H+ - log_k -20.7 - delta_h 12.9 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3AsO4 = AsO4-3 + 3 H+ + log_k -20.7 + delta_h 12.9 kJ + -gamma 0 0 # Id: 3300613 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -H3AsO4 = HAsO4-2 + 2H+ - log_k -9.2 - delta_h -4.1 kJ - -gamma 0 0 +H3AsO4 = HAsO4-2 + 2 H+ + log_k -9.2 + delta_h -4.1 kJ + -gamma 0 0 # Id: 3300612 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 H3AsO4 = H2AsO4- + H+ - log_k -2.24 - delta_h -7.1 kJ - -gamma 0 0 + log_k -2.24 + delta_h -7.1 kJ + -gamma 0 0 # Id: 3300611 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sb(OH)3 + H2O = Sb(OH)4- + H+ - log_k -12.0429 - delta_h 69.8519 kJ - -gamma 0 0 + log_k -12.0429 + delta_h 69.8519 kJ + -gamma 0 0 # Id: 7400020 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)3 + H+ = Sb(OH)2+ + H2O - log_k 1.3853 - delta_h 0 kJ - -gamma 0 0 + log_k 1.3853 + delta_h 0 kJ + -gamma 0 0 # Id: 7403302 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)3 = HSbO2 + H2O - log_k -0.0105 - delta_h -0.13 kJ - -gamma 0 0 + log_k -0.0105 + delta_h -0.13 kJ + -gamma 0 0 # Id: 7400021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Sb(OH)3 = SbO2- + H2O + H+ - log_k -11.8011 - delta_h 70.1866 kJ - -gamma 0 0 + log_k -11.8011 + delta_h 70.1866 kJ + -gamma 0 0 # Id: 7403301 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)3 + H+ = SbO+ + 2H2O - log_k 0.9228 - delta_h 8.2425 kJ - -gamma 0 0 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)3 + H+ = SbO+ + 2 H2O + log_k 0.9228 + delta_h 8.2425 kJ + -gamma 0 0 # Id: 7403300 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)6- = SbO3- + 3H2O - log_k 2.9319 - delta_h 0 kJ - -gamma 0 0 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)6- = SbO3- + 3 H2O + log_k 2.9319 + delta_h 0 kJ + -gamma 0 0 # Id: 7410021 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)6- + 2H+ = SbO2+ + 4H2O - log_k 2.3895 - delta_h 0 kJ - -gamma 0 0 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)6- + 2 H+ = SbO2+ + 4 H2O + log_k 2.3895 + delta_h 0 kJ + -gamma 0 0 # Id: 7413300 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: H+ + CO3-2 = HCO3- - log_k 10.329 - delta_h -14.6 kJ - -gamma 5.4 0 + log_k 10.329 + delta_h -14.6 kJ + -gamma 5.4 0 # Id: 3301400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -2H+ + CO3-2 = H2CO3 - log_k 16.681 - delta_h -23.76 kJ - -gamma 0 0 +2 H+ + CO3-2 = H2CO3 + log_k 16.681 + delta_h -23.76 kJ + -gamma 0 0 # Id: 3301401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Pb+2 + 2CO3-2 = Pb(CO3)2-2 - log_k 9.938 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + log_k 9.938 + delta_h 0 kJ + -gamma 0 0 # Id: 6001400 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Pb+2 + CO3-2 = PbCO3 - log_k 6.478 - delta_h 0 kJ - -gamma 0 0 + log_k 6.478 + delta_h 0 kJ + -gamma 0 0 # Id: 6001401 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Pb+2 + CO3-2 + H+ = PbHCO3+ - log_k 13.2 - delta_h 0 kJ - -gamma 0 0 + log_k 13.2 + delta_h 0 kJ + -gamma 0 0 # Id: 6001402 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + CO3-2 = ZnCO3 - log_k 4.76 - delta_h 0 kJ - -gamma 0 0 + log_k 4.76 + delta_h 0 kJ + -gamma 0 0 # Id: 9501401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + H+ + CO3-2 = ZnHCO3+ - log_k 11.829 - delta_h 0 kJ - -gamma 0 0 + log_k 11.829 + delta_h 0 kJ + -gamma 0 0 # Id: 9501400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + CO3-2 = HgCO3 + 2H2O - log_k 18.272 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + CO3-2 = HgCO3 + 2 H2O + log_k 18.272 + delta_h 0 kJ + -gamma 0 0 # Id: 3611401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 2CO3-2 = Hg(CO3)2-2 + 2H2O - log_k 21.772 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 2 CO3-2 = Hg(CO3)2-2 + 2 H2O + log_k 21.772 + delta_h 0 kJ + -gamma 0 0 # Id: 3611402 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 3H+ + CO3-2 = HgHCO3+ + 2H2O - log_k 22.542 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 3 H+ + CO3-2 = HgHCO3+ + 2 H2O + log_k 22.542 + delta_h 0 kJ + -gamma 0 0 # Id: 3611403 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Cd+2 + CO3-2 = CdCO3 - log_k 4.3578 - delta_h 0 kJ - -gamma 0 0 + log_k 4.3578 + delta_h 0 kJ + -gamma 0 0 # Id: 1601401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 Cd+2 + H+ + CO3-2 = CdHCO3+ - log_k 10.6863 - delta_h 0 kJ - -gamma 0 0 + log_k 10.6863 + delta_h 0 kJ + -gamma 0 0 # Id: 1601400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 -Cd+2 + 2CO3-2 = Cd(CO3)2-2 - log_k 7.2278 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + log_k 7.2278 + delta_h 0 kJ + -gamma 0 0 # Id: 1601403 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 Cu+2 + CO3-2 = CuCO3 - log_k 6.77 - delta_h 0 kJ - -gamma 0 0 + log_k 6.77 + delta_h 0 kJ + -gamma 0 0 # Id: 2311400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cu+2 + H+ + CO3-2 = CuHCO3+ - log_k 12.129 - delta_h 0 kJ - -gamma 0 0 + log_k 12.129 + delta_h 0 kJ + -gamma 0 0 # Id: 2311402 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - log_k 10.2 - delta_h 0 kJ - -gamma 0 0 +Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + log_k 10.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2311401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ni+2 + CO3-2 = NiCO3 - log_k 4.5718 - delta_h 0 kJ - -gamma 0 0 + log_k 4.5718 + delta_h 0 kJ + -gamma 0 0 # Id: 5401401 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.70 25.0 Ni+2 + H+ + CO3-2 = NiHCO3+ - log_k 12.4199 - delta_h 0 kJ - -gamma 0 0 + log_k 12.4199 + delta_h 0 kJ + -gamma 0 0 # Id: 5401400 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.70 25.0 Co+2 + CO3-2 = CoCO3 - log_k 4.228 - delta_h 0 kJ - -gamma 0 0 + log_k 4.228 + delta_h 0 kJ + -gamma 0 0 # Id: 2001400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Co+2 + H+ + CO3-2 = CoHCO3+ - log_k 12.2199 - delta_h 0 kJ - -gamma 0 0 + log_k 12.2199 + delta_h 0 kJ + -gamma 0 0 # Id: 2001401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.70 25.0 Fe+2 + H+ + CO3-2 = FeHCO3+ - log_k 11.429 - delta_h 0 kJ - -gamma 6 0 + log_k 11.429 + delta_h 0 kJ + -gamma 6 0 # Id: 2801400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Mn+2 + H+ + CO3-2 = MnHCO3+ - log_k 11.629 - delta_h -10.6 kJ - -gamma 5 0 + log_k 11.629 + delta_h -10.6 kJ + -gamma 5 0 # Id: 4701400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 UO2+2 + CO3-2 = UO2CO3 - log_k 9.6 - delta_h 4 kJ - -gamma 0 0 + log_k 9.6 + delta_h 4 kJ + -gamma 0 0 # Id: 8931400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -UO2+2 + 2CO3-2 = UO2(CO3)2-2 - log_k 16.9 - delta_h 16 kJ - -gamma 0 0 +UO2+2 + 2 CO3-2 = UO2(CO3)2-2 + log_k 16.9 + delta_h 16 kJ + -gamma 0 0 # Id: 8931401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -UO2+2 + 3CO3-2 = UO2(CO3)3-4 - log_k 21.6 - delta_h -40 kJ - -gamma 0 0 +UO2+2 + 3 CO3-2 = UO2(CO3)3-4 + log_k 21.6 + delta_h -40 kJ + -gamma 0 0 # Id: 8931402 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Be+2 + CO3-2 = BeCO3 - log_k 6.2546 - delta_h 0 kJ - -gamma 0 0 + log_k 6.2546 + delta_h 0 kJ + -gamma 0 0 # Id: 1101401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 Mg+2 + CO3-2 = MgCO3 - log_k 2.92 - delta_h 12 kJ - -gamma 0 0 + log_k 2.92 + delta_h 12 kJ + -gamma 0 0 # Id: 4601400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Mg+2 + H+ + CO3-2 = MgHCO3+ - log_k 11.339 - delta_h -10.6 kJ - -gamma 4 0 + log_k 11.339 + delta_h -10.6 kJ + -gamma 4 0 # Id: 4601401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + H+ + CO3-2 = CaHCO3+ - log_k 11.599 - delta_h 5.4 kJ - -gamma 6 0 + log_k 11.599 + delta_h 5.4 kJ + -gamma 6 0 # Id: 1501400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 CO3-2 + Ca+2 = CaCO3 - log_k 3.2 - delta_h 16 kJ - -gamma 0 0 + log_k 3.2 + delta_h 16 kJ + -gamma 0 0 # Id: 1501401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Sr+2 + CO3-2 = SrCO3 - log_k 2.81 - delta_h 20 kJ - -gamma 0 0 + log_k 2.81 + delta_h 20 kJ + -gamma 0 0 # Id: 8001401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sr+2 + H+ + CO3-2 = SrHCO3+ - log_k 11.539 - delta_h 10.4 kJ - -gamma 6 0 + log_k 11.539 + delta_h 10.4 kJ + -gamma 6 0 # Id: 8001400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + CO3-2 = BaCO3 - log_k 2.71 - delta_h 16 kJ - -gamma 0 0 + log_k 2.71 + delta_h 16 kJ + -gamma 0 0 # Id: 1001401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + H+ + CO3-2 = BaHCO3+ - log_k 11.309 - delta_h 10.4 kJ - -gamma 6 0 + log_k 11.309 + delta_h 10.4 kJ + -gamma 6 0 # Id: 1001400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Na+ + CO3-2 = NaCO3- - log_k 1.27 - delta_h -20.35 kJ - -gamma 5.4 0 + log_k 1.27 + delta_h -20.35 kJ + -gamma 5.4 0 # Id: 5001400 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 #T and ionic strength: 0.00 25.0 Na+ + H+ + CO3-2 = NaHCO3 - log_k 10.079 - delta_h -28.3301 kJ - -gamma 0 0 + log_k 10.079 + delta_h -28.3301 kJ + -gamma 0 0 # Id: 5001401 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 #T and ionic strength: 0.00 25.0 -H4SiO4 = H2SiO4-2 + 2H+ - log_k -23.04 - delta_h 61 kJ - -gamma 5.4 0 +H4SiO4 = H2SiO4-2 + 2 H+ + log_k -23.04 + delta_h 61 kJ + -gamma 5.4 0 # Id: 3307701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 H4SiO4 = H3SiO4- + H+ - log_k -9.84 - delta_h 20 kJ - -gamma 4 0 + log_k -9.84 + delta_h 20 kJ + -gamma 4 0 # Id: 3307700 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 UO2+2 + H4SiO4 = UO2H3SiO4+ + H+ - log_k -1.9111 - delta_h 0 kJ - -gamma 0 0 + log_k -1.9111 + delta_h 0 kJ + -gamma 0 0 # Id: 8937700 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 H3BO3 = H2BO3- + H+ - log_k -9.236 - delta_h 13 kJ - -gamma 2.5 0 + log_k -9.236 + delta_h 13 kJ + -gamma 2.5 0 # Id: 3300900 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -2H3BO3 = H5(BO3)2- + H+ - log_k -9.306 - delta_h 8.4 kJ - -gamma 2.5 0 +2 H3BO3 = H5(BO3)2- + H+ + log_k -9.306 + delta_h 8.4 kJ + -gamma 2.5 0 # Id: 3300901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -3H3BO3 = H8(BO3)3- + H+ - log_k -7.306 - delta_h 29.4 kJ - -gamma 2.5 0 +3 H3BO3 = H8(BO3)3- + H+ + log_k -7.306 + delta_h 29.4 kJ + -gamma 2.5 0 # Id: 3300902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ag+ + H3BO3 = AgH2BO3 + H+ - log_k -8.036 - delta_h 0 kJ - -gamma 2.5 0 + log_k -8.036 + delta_h 0 kJ + -gamma 2.5 0 # Id: 200901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Mg+2 + H3BO3 = MgH2BO3+ + H+ - log_k -7.696 - delta_h 13 kJ - -gamma 2.5 0 + log_k -7.696 + delta_h 13 kJ + -gamma 2.5 0 # Id: 4600901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ca+2 + H3BO3 = CaH2BO3+ + H+ - log_k -7.476 - delta_h 17 kJ - -gamma 2.5 0 + log_k -7.476 + delta_h 17 kJ + -gamma 2.5 0 # Id: 1500901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sr+2 + H3BO3 = SrH2BO3+ + H+ - log_k -7.686 - delta_h 17 kJ - -gamma 2.5 0 + log_k -7.686 + delta_h 17 kJ + -gamma 2.5 0 # Id: 8000901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + H3BO3 = BaH2BO3+ + H+ - log_k -7.746 - delta_h 17 kJ - -gamma 2.5 0 + log_k -7.746 + delta_h 17 kJ + -gamma 2.5 0 # Id: 1000901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Na+ + H3BO3 = NaH2BO3 + H+ - log_k -9.036 - delta_h 0 kJ - -gamma 2.5 0 + log_k -9.036 + delta_h 0 kJ + -gamma 2.5 0 # Id: 5000901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 CrO4-2 + H+ = HCrO4- - log_k 6.51 - delta_h 2 kJ - -gamma 0 0 + log_k 6.51 + delta_h 2 kJ + -gamma 0 0 # Id: 2123300 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -CrO4-2 + 2H+ = H2CrO4 - log_k 6.4188 - delta_h 39 kJ - -gamma 0 0 +CrO4-2 + 2 H+ = H2CrO4 + log_k 6.4188 + delta_h 39 kJ + -gamma 0 0 # Id: 2123301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 20.0 -2CrO4-2 + 2H+ = Cr2O7-2 + H2O - log_k 14.56 - delta_h -15 kJ - -gamma 0 0 +2 CrO4-2 + 2 H+ = Cr2O7-2 + H2O + log_k 14.56 + delta_h -15 kJ + -gamma 0 0 # Id: 2123302 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -CrO4-2 + Cl- + 2H+ = CrO3Cl- + H2O - log_k 7.3086 - delta_h 0 kJ - -gamma 0 0 +CrO4-2 + Cl- + 2 H+ = CrO3Cl- + H2O + log_k 7.3086 + delta_h 0 kJ + -gamma 0 0 # Id: 2121800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + SO4-2 + 2H+ = CrO3SO4-2 + H2O - log_k 8.9937 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + SO4-2 + 2 H+ = CrO3SO4-2 + H2O + log_k 8.9937 + delta_h 0 kJ + -gamma 0 0 # Id: 2127320 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + 4H+ + PO4-3 = CrO3H2PO4- + H2O - log_k 29.3634 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + 4 H+ + PO4-3 = CrO3H2PO4- + H2O + log_k 29.3634 + delta_h 0 kJ + -gamma 0 0 # Id: 2125800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + 3H+ + PO4-3 = CrO3HPO4-2 + H2O - log_k 26.6806 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + 3 H+ + PO4-3 = CrO3HPO4-2 + H2O + log_k 26.6806 + delta_h 0 kJ + -gamma 0 0 # Id: 2125801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: CrO4-2 + Na+ = NaCrO4- - log_k 0.6963 - delta_h 0 kJ - -gamma 0 0 + log_k 0.6963 + delta_h 0 kJ + -gamma 0 0 # Id: 5002120 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: K+ + CrO4-2 = KCrO4- - log_k 0.57 - delta_h 0 kJ - -gamma 0 0 + log_k 0.57 + delta_h 0 kJ + -gamma 0 0 # Id: 4102120 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 18.0 MoO4-2 + H+ = HMoO4- - log_k 4.2988 - delta_h 20 kJ - -gamma 0 0 + log_k 4.2988 + delta_h 20 kJ + -gamma 0 0 # Id: 3304801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 20.0 -MoO4-2 + 2H+ = H2MoO4 - log_k 8.1636 - delta_h -26 kJ - -gamma 0 0 +MoO4-2 + 2 H+ = H2MoO4 + log_k 8.1636 + delta_h -26 kJ + -gamma 0 0 # Id: 3304802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 20.0 -7MoO4-2 + 8H+ = Mo7O24-6 + 4H2O - log_k 52.99 - delta_h -228 kJ - -gamma 0 0 +7 MoO4-2 + 8 H+ = Mo7O24-6 + 4 H2O + log_k 52.99 + delta_h -228 kJ + -gamma 0 0 # Id: 3304803 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -7MoO4-2 + 9H+ = HMo7O24-5 + 4H2O - log_k 59.3768 - delta_h -218 kJ - -gamma 0 0 +7 MoO4-2 + 9 H+ = HMo7O24-5 + 4 H2O + log_k 59.3768 + delta_h -218 kJ + -gamma 0 0 # Id: 3304804 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -7MoO4-2 + 10H+ = H2Mo7O24-4 + 4H2O - log_k 64.159 - delta_h -215 kJ - -gamma 0 0 +7 MoO4-2 + 10 H+ = H2Mo7O24-4 + 4 H2O + log_k 64.159 + delta_h -215 kJ + -gamma 0 0 # Id: 3304805 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -7MoO4-2 + 11H+ = H3Mo7O24-3 + 4H2O - log_k 67.405 - delta_h -217 kJ - -gamma 0 0 +7 MoO4-2 + 11 H+ = H3Mo7O24-3 + 4 H2O + log_k 67.405 + delta_h -217 kJ + -gamma 0 0 # Id: 3304806 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 1.00 25.0 -6MoO4-2 + Al+3 + 6H+ = AlMo6O21-3 + 3H2O - log_k 54.9925 - delta_h 0 kJ - -gamma 0 0 +6 MoO4-2 + Al+3 + 6 H+ = AlMo6O21-3 + 3 H2O + log_k 54.9925 + delta_h 0 kJ + -gamma 0 0 # Id: 304801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 -MoO4-2 + 2Ag+ = Ag2MoO4 - log_k -0.4219 - delta_h -1.18 kJ - -gamma 0 0 +MoO4-2 + 2 Ag+ = Ag2MoO4 + log_k -0.4219 + delta_h -1.18 kJ + -gamma 0 0 # Id: 204801 - # log K source: Bard85 - # Delta H source: Bard85 - #T and ionic strength: -VO2+ + 2H2O = VO4-3 + 4H+ - log_k -30.2 - delta_h -25 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: Bard85 + #T and ionic strength: +VO2+ + 2 H2O = VO4-3 + 4 H+ + log_k -30.2 + delta_h -25 kJ + -gamma 0 0 # Id: 9033303 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -VO2+ + 2H2O = HVO4-2 + 3H+ - log_k -15.9 - delta_h 0 kJ - -gamma 0 0 +VO2+ + 2 H2O = HVO4-2 + 3 H+ + log_k -15.9 + delta_h 0 kJ + -gamma 0 0 # Id: 9033302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -VO2+ + 2H2O = H2VO4- + 2H+ - log_k -7.3 - delta_h 0 kJ - -gamma 0 0 +VO2+ + 2 H2O = H2VO4- + 2 H+ + log_k -7.3 + delta_h 0 kJ + -gamma 0 0 # Id: 9033301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -VO2+ + 2H2O = H3VO4 + H+ - log_k -3.3 - delta_h 44.4759 kJ - -gamma 0 0 +VO2+ + 2 H2O = H3VO4 + H+ + log_k -3.3 + delta_h 44.4759 kJ + -gamma 0 0 # Id: 9033300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -2VO2+ + 3H2O = V2O7-4 + 6H+ - log_k -31.24 - delta_h -28 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +2 VO2+ + 3 H2O = V2O7-4 + 6 H+ + log_k -31.24 + delta_h -28 kJ + -gamma 0 0 # Id: 9030020 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -2VO2+ + 3H2O = HV2O7-3 + 5H+ - log_k -20.67 - delta_h 0 kJ - -gamma 0 0 +2 VO2+ + 3 H2O = HV2O7-3 + 5 H+ + log_k -20.67 + delta_h 0 kJ + -gamma 0 0 # Id: 9030021 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2VO2+ + 3H2O = H3V2O7- + 3H+ - log_k -3.79 - delta_h 0 kJ - -gamma 0 0 +2 VO2+ + 3 H2O = H3V2O7- + 3 H+ + log_k -3.79 + delta_h 0 kJ + -gamma 0 0 # Id: 9030022 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -3VO2+ + 3H2O = V3O9-3 + 6H+ - log_k -15.88 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +3 VO2+ + 3 H2O = V3O9-3 + 6 H+ + log_k -15.88 + delta_h 0 kJ + -gamma 0 0 # Id: 9030023 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -4VO2+ + 4H2O = V4O12-4 + 8H+ - log_k -20.56 - delta_h -87 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +4 VO2+ + 4 H2O = V4O12-4 + 8 H+ + log_k -20.56 + delta_h -87 kJ + -gamma 0 0 # Id: 9030024 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -10VO2+ + 8H2O = V10O28-6 + 16H+ - log_k -24.0943 - delta_h 0 kJ - -gamma 0 0 +10 VO2+ + 8 H2O = V10O28-6 + 16 H+ + log_k -24.0943 + delta_h 0 kJ + -gamma 0 0 # Id: 9030025 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 -10VO2+ + 8H2O = HV10O28-5 + 15H+ - log_k -15.9076 - delta_h 90.0397 kJ - -gamma 0 0 +10 VO2+ + 8 H2O = HV10O28-5 + 15 H+ + log_k -15.9076 + delta_h 90.0397 kJ + -gamma 0 0 # Id: 9030026 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 -10VO2+ + 8H2O = H2V10O28-4 + 14H+ - log_k -10.7 - delta_h 0 kJ - -gamma 0 0 +10 VO2+ + 8 H2O = H2V10O28-4 + 14 H+ + log_k -10.7 + delta_h 0 kJ + -gamma 0 0 # Id: 9030027 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Benzoate- + H+ = H(Benzoate) - log_k 4.202 - delta_h -0.4602 kJ - -gamma 0 0 + log_k 4.202 + delta_h -0.4602 kJ + -gamma 0 0 # Id: 3309171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Pb+2 = Pb(Benzoate)+ - log_k 2.4 - delta_h 0 kJ - -gamma 0 0 + log_k 2.4 + delta_h 0 kJ + -gamma 0 0 # Id: 6009171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Al+3 = Al(Benzoate)+2 - log_k 2.05 - delta_h 0 kJ - -gamma 0 0 + log_k 2.05 + delta_h 0 kJ + -gamma 0 0 # Id: 309171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Al+3 + H2O = AlOH(Benzoate)+ + H+ - log_k -0.56 - delta_h 0 kJ - -gamma 0 0 + log_k -0.56 + delta_h 0 kJ + -gamma 0 0 # Id: 309172 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Zn+2 = Zn(Benzoate)+ - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 # Id: 9509171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Benzoate- + Cd+2 = Cd(Benzoate)+ - log_k 1.8 - delta_h 0 kJ - -gamma 0 0 + log_k 1.8 + delta_h 0 kJ + -gamma 0 0 # Id: 1609171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Benzoate- + Cd+2 = Cd(Benzoate)2 - log_k 1.82 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 Benzoate- + Cd+2 = Cd(Benzoate)2 + log_k 1.82 + delta_h 0 kJ + -gamma 0 0 # Id: 1609172 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Benzoate- + Cu+2 = Cu(Benzoate)+ - log_k 2.19 - delta_h 0 kJ - -gamma 0 0 + log_k 2.19 + delta_h 0 kJ + -gamma 0 0 # Id: 2319171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Ag+ = Ag(Benzoate) - log_k 0.91 - delta_h 0 kJ - -gamma 0 0 + log_k 0.91 + delta_h 0 kJ + -gamma 0 0 # Id: 209171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Ni+2 = Ni(Benzoate)+ - log_k 1.86 - delta_h 0 kJ - -gamma 0 0 + log_k 1.86 + delta_h 0 kJ + -gamma 0 0 # Id: 5409171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Co+2 + Benzoate- = Co(Benzoate)+ - log_k 1.0537 - delta_h 12 kJ - -gamma 0 0 + log_k 1.0537 + delta_h 12 kJ + -gamma 0 0 # Id: 2009171 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 30.0 Benzoate- + Mn+2 = Mn(Benzoate)+ - log_k 2.06 - delta_h 0 kJ - -gamma 0 0 + log_k 2.06 + delta_h 0 kJ + -gamma 0 0 # Id: 4709171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Mg+2 = Mg(Benzoate)+ - log_k 1.26 - delta_h 0 kJ - -gamma 0 0 + log_k 1.26 + delta_h 0 kJ + -gamma 0 0 # Id: 4609171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Benzoate- + Ca+2 = Ca(Benzoate)+ - log_k 1.55 - delta_h 0 kJ - -gamma 0 0 + log_k 1.55 + delta_h 0 kJ + -gamma 0 0 # Id: 1509171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Phenylacetate- + H+ = H(Phenylacetate) - log_k 4.31 - delta_h 2.1757 kJ - -gamma 0 0 + log_k 4.31 + delta_h 2.1757 kJ + -gamma 0 0 # Id: 3309181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Phenylacetate- + Zn+2 = Zn(Phenylacetate)+ - log_k 1.57 - delta_h 0 kJ - -gamma 0 0 + log_k 1.57 + delta_h 0 kJ + -gamma 0 0 # Id: 9509181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Phenylacetate- + Cu+2 = Cu(Phenylacetate)+ - log_k 1.97 - delta_h 0 kJ - -gamma 0 0 + log_k 1.97 + delta_h 0 kJ + -gamma 0 0 # Id: 2319181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Phenylacetate- = Co(Phenylacetate)+ - log_k 0.591 - delta_h 0 kJ - -gamma 0 0 + log_k 0.591 + delta_h 0 kJ + -gamma 0 0 # Id: 2009181 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 2.00 25.0 -Co+2 + 2Phenylacetate- = Co(Phenylacetate)2 - log_k 0.4765 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Phenylacetate- = Co(Phenylacetate)2 + log_k 0.4765 + delta_h 0 kJ + -gamma 0 0 # Id: 2009182 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 2.00 25.0 Isophthalate-2 + H+ = H(Isophthalate)- - log_k 4.5 - delta_h 1.6736 kJ - -gamma 0 0 + log_k 4.5 + delta_h 1.6736 kJ + -gamma 0 0 # Id: 3309201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Isophthalate-2 + 2H+ = H2(Isophthalate) - log_k 8 - delta_h 1.6736 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Isophthalate-2 + 2 H+ = H2(Isophthalate) + log_k 8 + delta_h 1.6736 kJ + -gamma 0 0 # Id: 3309202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Pb+2 = Pb(Isophthalate) - log_k 2.99 - delta_h 0 kJ - -gamma 0 0 + log_k 2.99 + delta_h 0 kJ + -gamma 0 0 # Id: 6009201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Isophthalate-2 + Pb+2 = Pb(Isophthalate)2-2 - log_k 4.18 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 Isophthalate-2 + Pb+2 = Pb(Isophthalate)2-2 + log_k 4.18 + delta_h 0 kJ + -gamma 0 0 # Id: 6009202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Pb+2 + H+ = PbH(Isophthalate)+ - log_k 6.69 - delta_h 0 kJ - -gamma 0 0 + log_k 6.69 + delta_h 0 kJ + -gamma 0 0 # Id: 6009203 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Cd+2 = Cd(Isophthalate) - log_k 2.15 - delta_h 0 kJ - -gamma 0 0 + log_k 2.15 + delta_h 0 kJ + -gamma 0 0 # Id: 1609201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Isophthalate-2 + Cd+2 = Cd(Isophthalate)2-2 - log_k 2.99 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 Isophthalate-2 + Cd+2 = Cd(Isophthalate)2-2 + log_k 2.99 + delta_h 0 kJ + -gamma 0 0 # Id: 1609202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Cd+2 + H+ = CdH(Isophthalate)+ - log_k 5.73 - delta_h 0 kJ - -gamma 0 0 + log_k 5.73 + delta_h 0 kJ + -gamma 0 0 # Id: 1609203 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Ca+2 = Ca(Isophthalate) - log_k 2 - delta_h 0 kJ - -gamma 0 0 + log_k 2 + delta_h 0 kJ + -gamma 0 0 # Id: 1509200 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Ba+2 = Ba(Isophthalate) - log_k 1.55 - delta_h 0 kJ - -gamma 0 0 + log_k 1.55 + delta_h 0 kJ + -gamma 0 0 # Id: 1009201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Diethylamine = H(Diethylamine)+ - log_k 10.933 - delta_h -53.1368 kJ - -gamma 0 0 + log_k 10.933 + delta_h -53.1368 kJ + -gamma 0 0 # Id: 3309551 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Diethylamine = Zn(Diethylamine)+2 - log_k 2.74 - delta_h 0 kJ - -gamma 0 0 + log_k 2.74 + delta_h 0 kJ + -gamma 0 0 # Id: 9509551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 2Diethylamine = Zn(Diethylamine)2+2 - log_k 5.27 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 2 Diethylamine = Zn(Diethylamine)2+2 + log_k 5.27 + delta_h 0 kJ + -gamma 0 0 # Id: 9509552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 3Diethylamine = Zn(Diethylamine)3+2 - log_k 7.71 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 3 Diethylamine = Zn(Diethylamine)3+2 + log_k 7.71 + delta_h 0 kJ + -gamma 0 0 # Id: 9509553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 4Diethylamine = Zn(Diethylamine)4+2 - log_k 9.84 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 4 Diethylamine = Zn(Diethylamine)4+2 + log_k 9.84 + delta_h 0 kJ + -gamma 0 0 # Id: 9509554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Diethylamine = Cd(Diethylamine)+2 - log_k 2.73 - delta_h 0 kJ - -gamma 0 0 + log_k 2.73 + delta_h 0 kJ + -gamma 0 0 # Id: 1609551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Diethylamine = Cd(Diethylamine)2+2 - log_k 4.86 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2 Diethylamine = Cd(Diethylamine)2+2 + log_k 4.86 + delta_h 0 kJ + -gamma 0 0 # Id: 1609552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Diethylamine = Cd(Diethylamine)3+2 - log_k 6.37 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3 Diethylamine = Cd(Diethylamine)3+2 + log_k 6.37 + delta_h 0 kJ + -gamma 0 0 # Id: 1609553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 4Diethylamine = Cd(Diethylamine)4+2 - log_k 7.32 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 4 Diethylamine = Cd(Diethylamine)4+2 + log_k 7.32 + delta_h 0 kJ + -gamma 0 0 # Id: 1609554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ag+ + Diethylamine = Ag(Diethylamine)+ - log_k 2.98 - delta_h 0 kJ - -gamma 0 0 + log_k 2.98 + delta_h 0 kJ + -gamma 0 0 # Id: 209551 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Diethylamine = Ag(Diethylamine)2+ - log_k 6.38 - delta_h -44.7688 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Diethylamine = Ag(Diethylamine)2+ + log_k 6.38 + delta_h -44.7688 kJ + -gamma 0 0 # Id: 209552 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Diethylamine = Ni(Diethylamine)+2 - log_k 2.78 - delta_h 0 kJ - -gamma 0 0 + log_k 2.78 + delta_h 0 kJ + -gamma 0 0 # Id: 5409551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 2Diethylamine = Ni(Diethylamine)2+2 - log_k 4.97 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 2 Diethylamine = Ni(Diethylamine)2+2 + log_k 4.97 + delta_h 0 kJ + -gamma 0 0 # Id: 5409552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 3Diethylamine = Ni(Diethylamine)3+2 - log_k 6.72 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 3 Diethylamine = Ni(Diethylamine)3+2 + log_k 6.72 + delta_h 0 kJ + -gamma 0 0 # Id: 5409553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 4Diethylamine = Ni(Diethylamine)4+2 - log_k 7.93 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 4 Diethylamine = Ni(Diethylamine)4+2 + log_k 7.93 + delta_h 0 kJ + -gamma 0 0 # Id: 5409554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 5Diethylamine = Ni(Diethylamine)5+2 - log_k 8.87 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 5 Diethylamine = Ni(Diethylamine)5+2 + log_k 8.87 + delta_h 0 kJ + -gamma 0 0 # Id: 5409555 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Butylamine = H(Butylamine)+ - log_k 10.64 - delta_h -58.2831 kJ - -gamma 0 0 + log_k 10.64 + delta_h -58.2831 kJ + -gamma 0 0 # Id: 3309561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Butylamine + 2H+ = Hg(Butylamine)+2 + 2H2O - log_k 14.84 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Butylamine + 2 H+ = Hg(Butylamine)+2 + 2 H2O + log_k 14.84 + delta_h 0 kJ + -gamma 0 0 # Id: 3619561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Butylamine + 2H+ = Hg(Butylamine)2+2 + 2H2O - log_k 24.24 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2 Butylamine + 2 H+ = Hg(Butylamine)2+2 + 2 H2O + log_k 24.24 + delta_h 0 kJ + -gamma 0 0 # Id: 3619562 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 3Butylamine + 2H+ = Hg(Butylamine)3+2 + 2H2O - log_k 25.1 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 3 Butylamine + 2 H+ = Hg(Butylamine)3+2 + 2 H2O + log_k 25.1 + delta_h 0 kJ + -gamma 0 0 # Id: 3619563 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 4Butylamine + 2H+ = Hg(Butylamine)4+2 + 2H2O - log_k 26.1 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 4 Butylamine + 2 H+ = Hg(Butylamine)4+2 + 2 H2O + log_k 26.1 + delta_h 0 kJ + -gamma 0 0 # Id: 3619564 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Butylamine = Ag(Butylamine)+ - log_k 3.42 - delta_h -16.736 kJ - -gamma 0 0 + log_k 3.42 + delta_h -16.736 kJ + -gamma 0 0 # Id: 209561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Butylamine = Ag(Butylamine)2+ - log_k 7.47 - delta_h -52.7184 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Butylamine = Ag(Butylamine)2+ + log_k 7.47 + delta_h -52.7184 kJ + -gamma 0 0 # Id: 209562 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Methylamine = H(Methylamine)+ - log_k 10.64 - delta_h -55.2288 kJ - -gamma 0 0 + log_k 10.64 + delta_h -55.2288 kJ + -gamma 0 0 # Id: 3309581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Methylamine = Cd(Methylamine)+2 - log_k 2.75 - delta_h 0 kJ - -gamma 0 0 + log_k 2.75 + delta_h 0 kJ + -gamma 0 0 # Id: 1609581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Methylamine = Cd(Methylamine)2+2 - log_k 4.81 - delta_h -29.288 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2 Methylamine = Cd(Methylamine)2+2 + log_k 4.81 + delta_h -29.288 kJ + -gamma 0 0 # Id: 1609582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 3Methylamine = Cd(Methylamine)3+2 - log_k 5.94 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 3 Methylamine = Cd(Methylamine)3+2 + log_k 5.94 + delta_h 0 kJ + -gamma 0 0 # Id: 1609583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 4Methylamine = Cd(Methylamine)4+2 - log_k 6.55 - delta_h -58.576 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 4 Methylamine = Cd(Methylamine)4+2 + log_k 6.55 + delta_h -58.576 kJ + -gamma 0 0 # Id: 1609584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Methylamine + 2H+ = Hg(Methylamine)+2 + 2H2O - log_k 14.76 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Methylamine + 2 H+ = Hg(Methylamine)+2 + 2 H2O + log_k 14.76 + delta_h 0 kJ + -gamma 0 0 # Id: 3619581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Methylamine + 2H+ = Hg(Methylamine)2+2 + 2H2O - log_k 23.96 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2 Methylamine + 2 H+ = Hg(Methylamine)2+2 + 2 H2O + log_k 23.96 + delta_h 0 kJ + -gamma 0 0 # Id: 3619582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 3Methylamine + 2H+ = Hg(Methylamine)3+2 + 2H2O - log_k 24.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 3 Methylamine + 2 H+ = Hg(Methylamine)3+2 + 2 H2O + log_k 24.3 + delta_h 0 kJ + -gamma 0 0 # Id: 3619583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 4Methylamine + 2H+ = Hg(Methylamine)4+2 + 2H2O - log_k 24.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 4 Methylamine + 2 H+ = Hg(Methylamine)4+2 + 2 H2O + log_k 24.6 + delta_h 0 kJ + -gamma 0 0 # Id: 3619584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Methylamine = Cu(Methylamine)+2 - log_k 4.11 - delta_h 0 kJ - -gamma 0 0 + log_k 4.11 + delta_h 0 kJ + -gamma 0 0 # Id: 2319581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Methylamine = Cu(Methylamine)2+2 - log_k 7.51 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Methylamine = Cu(Methylamine)2+2 + log_k 7.51 + delta_h 0 kJ + -gamma 0 0 # Id: 2319582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 3Methylamine = Cu(Methylamine)3+2 - log_k 10.21 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 3 Methylamine = Cu(Methylamine)3+2 + log_k 10.21 + delta_h 0 kJ + -gamma 0 0 # Id: 2319583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 4Methylamine = Cu(Methylamine)4+2 - log_k 12.08 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 4 Methylamine = Cu(Methylamine)4+2 + log_k 12.08 + delta_h 0 kJ + -gamma 0 0 # Id: 2319584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Methylamine = Ag(Methylamine)+ - log_k 3.07 - delta_h -12.552 kJ - -gamma 0 0 + log_k 3.07 + delta_h -12.552 kJ + -gamma 0 0 # Id: 209581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Methylamine = Ag(Methylamine)2+ - log_k 6.89 - delta_h -48.9528 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Methylamine = Ag(Methylamine)2+ + log_k 6.89 + delta_h -48.9528 kJ + -gamma 0 0 # Id: 209582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Methylamine = Ni(Methylamine)+2 - log_k 2.23 - delta_h 0 kJ - -gamma 0 0 + log_k 2.23 + delta_h 0 kJ + -gamma 0 0 # Id: 5409581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Dimethylamine = H(Dimethylamine)+ - log_k 10.774 - delta_h -50.208 kJ - -gamma 0 0 + log_k 10.774 + delta_h -50.208 kJ + -gamma 0 0 # Id: 3309591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Dimethylamine = Ag(Dimethylamine)2+ - log_k 5.37 - delta_h -40.5848 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Dimethylamine = Ag(Dimethylamine)2+ + log_k 5.37 + delta_h -40.5848 kJ + -gamma 0 0 # Id: 209591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Dimethylamine = Ni(Dimethylamine)+2 - log_k 1.47 - delta_h 0 kJ - -gamma 0 0 + log_k 1.47 + delta_h 0 kJ + -gamma 0 0 # Id: 5409591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Hexylamine = H(Hexylamine)+ - log_k 10.63 - delta_h -58.576 kJ - -gamma 0 0 + log_k 10.63 + delta_h -58.576 kJ + -gamma 0 0 # Id: 3309611 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Hexylamine = Ag(Hexylamine)+ - log_k 3.54 - delta_h -25.104 kJ - -gamma 0 0 + log_k 3.54 + delta_h -25.104 kJ + -gamma 0 0 # Id: 209611 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Hexylamine = Ag(Hexylamine)2+ - log_k 7.55 - delta_h -53.1368 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Hexylamine = Ag(Hexylamine)2+ + log_k 7.55 + delta_h -53.1368 kJ + -gamma 0 0 # Id: 209612 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Ethylenediamine = H(Ethylenediamine)+ - log_k 9.928 - delta_h -49.7896 kJ - -gamma 0 0 + log_k 9.928 + delta_h -49.7896 kJ + -gamma 0 0 # Id: 3309631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Ethylenediamine = H2(Ethylenediamine)+2 - log_k 16.776 - delta_h -95.3952 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Ethylenediamine = H2(Ethylenediamine)+2 + log_k 16.776 + delta_h -95.3952 kJ + -gamma 0 0 # Id: 3309632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Ethylenediamine = Pb(Ethylenediamine)+2 - log_k 5.04 - delta_h 0 kJ - -gamma 0 0 + log_k 5.04 + delta_h 0 kJ + -gamma 0 0 # Id: 6009631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + 2Ethylenediamine = Pb(Ethylenediamine)2+2 - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + 2 Ethylenediamine = Pb(Ethylenediamine)2+2 + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 # Id: 6009632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Ethylenediamine = Zn(Ethylenediamine)+2 - log_k 5.66 - delta_h -29.288 kJ - -gamma 0 0 + log_k 5.66 + delta_h -29.288 kJ + -gamma 0 0 # Id: 9509631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Ethylenediamine = Zn(Ethylenediamine)2+2 - log_k 10.6 - delta_h -48.116 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2 Ethylenediamine = Zn(Ethylenediamine)2+2 + log_k 10.6 + delta_h -48.116 kJ + -gamma 0 0 # Id: 9509632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 3Ethylenediamine = Zn(Ethylenediamine)3+2 - log_k 13.9 - delta_h -71.5464 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 3 Ethylenediamine = Zn(Ethylenediamine)3+2 + log_k 13.9 + delta_h -71.5464 kJ + -gamma 0 0 # Id: 9509633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Ethylenediamine = Cd(Ethylenediamine)+2 - log_k 5.41 - delta_h -28.4512 kJ - -gamma 0 0 + log_k 5.41 + delta_h -28.4512 kJ + -gamma 0 0 # Id: 1609631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Ethylenediamine = Cd(Ethylenediamine)2+2 - log_k 9.9 - delta_h -55.6472 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2 Ethylenediamine = Cd(Ethylenediamine)2+2 + log_k 9.9 + delta_h -55.6472 kJ + -gamma 0 0 # Id: 1609632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 3Ethylenediamine = Cd(Ethylenediamine)3+2 - log_k 11.6 - delta_h -82.4248 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 3 Ethylenediamine = Cd(Ethylenediamine)3+2 + log_k 11.6 + delta_h -82.4248 kJ + -gamma 0 0 # Id: 1609633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Ethylenediamine + 2H+ = Hg(Ethylenediamine)+2 + 2H2O - log_k 20.4 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Ethylenediamine + 2 H+ = Hg(Ethylenediamine)+2 + 2 H2O + log_k 20.4 + delta_h 0 kJ + -gamma 0 0 # Id: 3619631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Ethylenediamine + 2H+ = Hg(Ethylenediamine)2+2 + 2H2O - log_k 29.3 - delta_h -173.218 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2 Ethylenediamine + 2 H+ = Hg(Ethylenediamine)2+2 + 2 H2O + log_k 29.3 + delta_h -173.218 kJ + -gamma 0 0 # Id: 3619632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Ethylenediamine + 3H+ = HgH(Ethylenediamine)2+3 + 2H2O - log_k 34.7 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2 Ethylenediamine + 3 H+ = HgH(Ethylenediamine)2+3 + 2 H2O + log_k 34.7 + delta_h 0 kJ + -gamma 0 0 # Id: 3619633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 2Ethylenediamine = Cu(Ethylenediamine)2+ - log_k 11.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 2 Ethylenediamine = Cu(Ethylenediamine)2+ + log_k 11.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2309631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Ethylenediamine = Cu(Ethylenediamine)+2 - log_k 10.5 - delta_h -52.7184 kJ - -gamma 0 0 + log_k 10.5 + delta_h -52.7184 kJ + -gamma 0 0 # Id: 2319631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Ethylenediamine = Cu(Ethylenediamine)2+2 - log_k 19.6 - delta_h -105.437 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Ethylenediamine = Cu(Ethylenediamine)2+2 + log_k 19.6 + delta_h -105.437 kJ + -gamma 0 0 # Id: 2319632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Ethylenediamine = Ag(Ethylenediamine)+ - log_k 4.6 - delta_h -48.9528 kJ - -gamma 0 0 + log_k 4.6 + delta_h -48.9528 kJ + -gamma 0 0 # Id: 209631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Ethylenediamine = Ag(Ethylenediamine)2+ - log_k 7.5 - delta_h -52.3 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Ethylenediamine = Ag(Ethylenediamine)2+ + log_k 7.5 + delta_h -52.3 kJ + -gamma 0 0 # Id: 209632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Ethylenediamine + H+ = AgH(Ethylenediamine)+2 - log_k 11.99 - delta_h -75.312 kJ - -gamma 0 0 + log_k 11.99 + delta_h -75.312 kJ + -gamma 0 0 # Id: 209633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Ag+ + Ethylenediamine = Ag2(Ethylenediamine)+2 - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 Ag+ + Ethylenediamine = Ag2(Ethylenediamine)+2 + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 # Id: 209634 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Ag+ + 2Ethylenediamine = Ag2(Ethylenediamine)2+2 - log_k 12.7 - delta_h -97.0688 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 Ag+ + 2 Ethylenediamine = Ag2(Ethylenediamine)2+2 + log_k 12.7 + delta_h -97.0688 kJ + -gamma 0 0 # Id: 209635 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Ethylenediamine + 2H+ = Ag(HEthylenediamine)2+3 - log_k 24 - delta_h -150.206 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Ethylenediamine + 2 H+ = Ag(HEthylenediamine)2+3 + log_k 24 + delta_h -150.206 kJ + -gamma 0 0 # Id: 209636 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Ethylenediamine + H+ = AgH(Ethylenediamine)2+2 - log_k 8.4 - delta_h -47.6976 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Ethylenediamine + H+ = AgH(Ethylenediamine)2+2 + log_k 8.4 + delta_h -47.6976 kJ + -gamma 0 0 # Id: 209637 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Ethylenediamine = Ni(Ethylenediamine)+2 - log_k 7.32 - delta_h -37.656 kJ - -gamma 0 0 + log_k 7.32 + delta_h -37.656 kJ + -gamma 0 0 # Id: 5409631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Ethylenediamine = Ni(Ethylenediamine)2+2 - log_k 13.5 - delta_h -76.5672 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Ethylenediamine = Ni(Ethylenediamine)2+2 + log_k 13.5 + delta_h -76.5672 kJ + -gamma 0 0 # Id: 5409632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 3Ethylenediamine = Ni(Ethylenediamine)3+2 - log_k 17.6 - delta_h -117.152 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 3 Ethylenediamine = Ni(Ethylenediamine)3+2 + log_k 17.6 + delta_h -117.152 kJ + -gamma 0 0 # Id: 5409633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Ethylenediamine = Co(Ethylenediamine)+2 - log_k 5.5 - delta_h -28 kJ - -gamma 0 0 + log_k 5.5 + delta_h -28 kJ + -gamma 0 0 # Id: 2009631 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Co+2 + 2Ethylenediamine = Co(Ethylenediamine)2+2 - log_k 10.1 - delta_h -58.5 kJ - -gamma 0 0 +Co+2 + 2 Ethylenediamine = Co(Ethylenediamine)2+2 + log_k 10.1 + delta_h -58.5 kJ + -gamma 0 0 # Id: 2009632 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Co+2 + 3Ethylenediamine = Co(Ethylenediamine)3+2 - log_k 13.2 - delta_h -92.8 kJ - -gamma 0 0 +Co+2 + 3 Ethylenediamine = Co(Ethylenediamine)3+2 + log_k 13.2 + delta_h -92.8 kJ + -gamma 0 0 # Id: 2009633 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Co+3 + 2Ethylenediamine = Co(Ethylenediamine)2+3 - log_k 34.7 - delta_h 0 kJ - -gamma 0 0 +Co+3 + 2 Ethylenediamine = Co(Ethylenediamine)2+3 + log_k 34.7 + delta_h 0 kJ + -gamma 0 0 # Id: 2019631 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 -Co+3 + 3Ethylenediamine = Co(Ethylenediamine)3+3 - log_k 48.69 - delta_h 0 kJ - -gamma 0 0 +Co+3 + 3 Ethylenediamine = Co(Ethylenediamine)3+3 + log_k 48.69 + delta_h 0 kJ + -gamma 0 0 # Id: 2019632 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.50 30.0 Fe+2 + Ethylenediamine = Fe(Ethylenediamine)+2 - log_k 4.26 - delta_h 0 kJ - -gamma 0 0 + log_k 4.26 + delta_h 0 kJ + -gamma 0 0 # Id: 2809631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 2Ethylenediamine = Fe(Ethylenediamine)2+2 - log_k 7.73 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 2 Ethylenediamine = Fe(Ethylenediamine)2+2 + log_k 7.73 + delta_h 0 kJ + -gamma 0 0 # Id: 2809632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 3Ethylenediamine = Fe(Ethylenediamine)3+2 - log_k 10.17 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 3 Ethylenediamine = Fe(Ethylenediamine)3+2 + log_k 10.17 + delta_h 0 kJ + -gamma 0 0 # Id: 2809633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Ethylenediamine = Mn(Ethylenediamine)+2 - log_k 2.74 - delta_h -11.7152 kJ - -gamma 0 0 + log_k 2.74 + delta_h -11.7152 kJ + -gamma 0 0 # Id: 4709631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + 2Ethylenediamine = Mn(Ethylenediamine)2+2 - log_k 4.8 - delta_h -25.104 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + 2 Ethylenediamine = Mn(Ethylenediamine)2+2 + log_k 4.8 + delta_h -25.104 kJ + -gamma 0 0 # Id: 4709632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + 2Ethylenediamine + 2H+ = Cr(Ethylenediamine)2+3 + 2H2O - log_k 22.57 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + 2 Ethylenediamine + 2 H+ = Cr(Ethylenediamine)2+3 + 2 H2O + log_k 22.57 + delta_h 0 kJ + -gamma 0 0 # Id: 2119631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + 3Ethylenediamine + 2H+ = Cr(Ethylenediamine)3+3 + 2H2O - log_k 29 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + 3 Ethylenediamine + 2 H+ = Cr(Ethylenediamine)3+3 + 2 H2O + log_k 29 + delta_h 0 kJ + -gamma 0 0 # Id: 2119632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Ethylenediamine = Mg(Ethylenediamine)+2 - log_k 0.37 - delta_h 0 kJ - -gamma 0 0 + log_k 0.37 + delta_h 0 kJ + -gamma 0 0 # Id: 4609631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Ethylenediamine = Ca(Ethylenediamine)+2 - log_k 0.11 - delta_h 0 kJ - -gamma 0 0 + log_k 0.11 + delta_h 0 kJ + -gamma 0 0 # Id: 1509631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Propylamine = H(Propylamine)+ - log_k 10.566 - delta_h -57.53 kJ - -gamma 0 0 + log_k 10.566 + delta_h -57.53 kJ + -gamma 0 0 # Id: 3309641 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Propylamine = Zn(Propylamine)+2 - log_k 2.42 - delta_h 0 kJ - -gamma 0 0 + log_k 2.42 + delta_h 0 kJ + -gamma 0 0 # Id: 9509641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 2Propylamine = Zn(Propylamine)2+2 - log_k 4.85 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 2 Propylamine = Zn(Propylamine)2+2 + log_k 4.85 + delta_h 0 kJ + -gamma 0 0 # Id: 9509642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 3Propylamine = Zn(Propylamine)3+2 - log_k 7.38 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 3 Propylamine = Zn(Propylamine)3+2 + log_k 7.38 + delta_h 0 kJ + -gamma 0 0 # Id: 9509643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 4Propylamine = Zn(Propylamine)4+2 - log_k 9.49 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 4 Propylamine = Zn(Propylamine)4+2 + log_k 9.49 + delta_h 0 kJ + -gamma 0 0 # Id: 9509644 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Propylamine = Cd(Propylamine)+2 - log_k 2.62 - delta_h 0 kJ - -gamma 0 0 + log_k 2.62 + delta_h 0 kJ + -gamma 0 0 # Id: 1609641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Propylamine = Cd(Propylamine)2+2 - log_k 4.64 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2 Propylamine = Cd(Propylamine)2+2 + log_k 4.64 + delta_h 0 kJ + -gamma 0 0 # Id: 1609642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Propylamine = Cd(Propylamine)3+2 - log_k 6.03 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3 Propylamine = Cd(Propylamine)3+2 + log_k 6.03 + delta_h 0 kJ + -gamma 0 0 # Id: 1609643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ag+ + Propylamine = Ag(Propylamine)+ - log_k 3.45 - delta_h -12.552 kJ - -gamma 0 0 + log_k 3.45 + delta_h -12.552 kJ + -gamma 0 0 # Id: 209641 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Propylamine = Ag(Propylamine)2+ - log_k 7.44 - delta_h -53.1368 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Propylamine = Ag(Propylamine)2+ + log_k 7.44 + delta_h -53.1368 kJ + -gamma 0 0 # Id: 209642 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Propylamine = Ni(Propylamine)+2 - log_k 2.81 - delta_h 0 kJ - -gamma 0 0 + log_k 2.81 + delta_h 0 kJ + -gamma 0 0 # Id: 5409641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 2Propylamine = Ni(Propylamine)2+2 - log_k 5.02 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 2 Propylamine = Ni(Propylamine)2+2 + log_k 5.02 + delta_h 0 kJ + -gamma 0 0 # Id: 5409642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 3Propylamine = Ni(Propylamine)3+2 - log_k 6.79 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 3 Propylamine = Ni(Propylamine)3+2 + log_k 6.79 + delta_h 0 kJ + -gamma 0 0 # Id: 5409643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 4Propylamine = Ni(Propylamine)4+2 - log_k 8.31 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 4 Propylamine = Ni(Propylamine)4+2 + log_k 8.31 + delta_h 0 kJ + -gamma 0 0 # Id: 5409644 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Isopropylamine = H(Isopropylamine)+ - log_k 10.67 - delta_h -58.3668 kJ - -gamma 0 0 + log_k 10.67 + delta_h -58.3668 kJ + -gamma 0 0 # Id: 3309651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Isopropylamine = Zn(Isopropylamine)+2 - log_k 2.37 - delta_h 0 kJ - -gamma 0 0 + log_k 2.37 + delta_h 0 kJ + -gamma 0 0 # Id: 9509651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 2Isopropylamine = Zn(Isopropylamine)2+2 - log_k 4.67 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 2 Isopropylamine = Zn(Isopropylamine)2+2 + log_k 4.67 + delta_h 0 kJ + -gamma 0 0 # Id: 9509652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 3Isopropylamine = Zn(Isopropylamine)3+2 - log_k 7.14 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 3 Isopropylamine = Zn(Isopropylamine)3+2 + log_k 7.14 + delta_h 0 kJ + -gamma 0 0 # Id: 9509653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 4Isopropylamine = Zn(Isopropylamine)4+2 - log_k 9.44 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 4 Isopropylamine = Zn(Isopropylamine)4+2 + log_k 9.44 + delta_h 0 kJ + -gamma 0 0 # Id: 9509654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Isopropylamine = Cd(Isopropylamine)+2 - log_k 2.55 - delta_h 0 kJ - -gamma 0 0 + log_k 2.55 + delta_h 0 kJ + -gamma 0 0 # Id: 1609651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Isopropylamine = Cd(Isopropylamine)2+2 - log_k 4.57 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2 Isopropylamine = Cd(Isopropylamine)2+2 + log_k 4.57 + delta_h 0 kJ + -gamma 0 0 # Id: 1609652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Isopropylamine = Cd(Isopropylamine)3+2 - log_k 6.07 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3 Isopropylamine = Cd(Isopropylamine)3+2 + log_k 6.07 + delta_h 0 kJ + -gamma 0 0 # Id: 1609653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 4Isopropylamine = Cd(Isopropylamine)4+2 - log_k 6.9 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 4 Isopropylamine = Cd(Isopropylamine)4+2 + log_k 6.9 + delta_h 0 kJ + -gamma 0 0 # Id: 1609654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Hg(OH)2 + Isopropylamine + 2H+ = Hg(Isopropylamine)+2 + 2H2O - log_k 14.85 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Hg(OH)2 + Isopropylamine + 2 H+ = Hg(Isopropylamine)+2 + 2 H2O + log_k 14.85 + delta_h 0 kJ + -gamma 0 0 # Id: 3619651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Isopropylamine + 2H+ = Hg(Isopropylamine)2+2 + 2H2O - log_k 24.37 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2 Isopropylamine + 2 H+ = Hg(Isopropylamine)2+2 + 2 H2O + log_k 24.37 + delta_h 0 kJ + -gamma 0 0 # Id: 3619652 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Isopropylamine = Ag(Isopropylamine)+ - log_k 3.67 - delta_h -23.8488 kJ - -gamma 0 0 + log_k 3.67 + delta_h -23.8488 kJ + -gamma 0 0 # Id: 209651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Isopropylamine = Ag(Isopropylamine)2+ - log_k 7.77 - delta_h -59.8312 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Isopropylamine = Ag(Isopropylamine)2+ + log_k 7.77 + delta_h -59.8312 kJ + -gamma 0 0 # Id: 209652 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Isopropylamine = Ni(Isopropylamine)+2 - log_k 2.71 - delta_h 0 kJ - -gamma 0 0 + log_k 2.71 + delta_h 0 kJ + -gamma 0 0 # Id: 5409651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 2Isopropylamine = Ni(Isopropylamine)2+2 - log_k 4.86 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 2 Isopropylamine = Ni(Isopropylamine)2+2 + log_k 4.86 + delta_h 0 kJ + -gamma 0 0 # Id: 5409652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 3Isopropylamine = Ni(Isopropylamine)3+2 - log_k 6.57 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 3 Isopropylamine = Ni(Isopropylamine)3+2 + log_k 6.57 + delta_h 0 kJ + -gamma 0 0 # Id: 5409653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 4Isopropylamine = Ni(Isopropylamine)4+2 - log_k 7.83 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 4 Isopropylamine = Ni(Isopropylamine)4+2 + log_k 7.83 + delta_h 0 kJ + -gamma 0 0 # Id: 5409654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 5Isopropylamine = Ni(Isopropylamine)5+2 - log_k 8.43 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 5 Isopropylamine = Ni(Isopropylamine)5+2 + log_k 8.43 + delta_h 0 kJ + -gamma 0 0 # Id: 5409655 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Trimethylamine = H(Trimethylamine)+ - log_k 9.8 - delta_h -36.8192 kJ - -gamma 0 0 + log_k 9.8 + delta_h -36.8192 kJ + -gamma 0 0 # Id: 3309661 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Trimethylamine = Ag(Trimethylamine)+ - log_k 1.701 - delta_h 0 kJ - -gamma 0 0 + log_k 1.701 + delta_h 0 kJ + -gamma 0 0 # Id: 209661 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Citrate-3 = H(Citrate)-2 - log_k 6.396 - delta_h 3.3472 kJ - -gamma 0 0 + log_k 6.396 + delta_h 3.3472 kJ + -gamma 0 0 # Id: 3309671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Citrate-3 = H2(Citrate)- - log_k 11.157 - delta_h 1.297 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Citrate-3 = H2(Citrate)- + log_k 11.157 + delta_h 1.297 kJ + -gamma 0 0 # Id: 3309672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -3H+ + Citrate-3 = H3(Citrate) - log_k 14.285 - delta_h -2.7614 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +3 H+ + Citrate-3 = H3(Citrate) + log_k 14.285 + delta_h -2.7614 kJ + -gamma 0 0 # Id: 3309673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Citrate-3 = Pb(Citrate)- - log_k 7.27 - delta_h 0 kJ - -gamma 0 0 + log_k 7.27 + delta_h 0 kJ + -gamma 0 0 # Id: 6009671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Pb+2 + 2Citrate-3 = Pb(Citrate)2-4 - log_k 6.53 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Pb+2 + 2 Citrate-3 = Pb(Citrate)2-4 + log_k 6.53 + delta_h 0 kJ + -gamma 0 0 # Id: 6009672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Citrate-3 = Al(Citrate) - log_k 9.97 - delta_h 0 kJ - -gamma 0 0 + log_k 9.97 + delta_h 0 kJ + -gamma 0 0 # Id: 309671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + 2Citrate-3 = Al(Citrate)2-3 - log_k 14.8 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + 2 Citrate-3 = Al(Citrate)2-3 + log_k 14.8 + delta_h 0 kJ + -gamma 0 0 # Id: 309672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Citrate-3 + H+ = AlH(Citrate)+ - log_k 12.85 - delta_h 0 kJ - -gamma 0 0 + log_k 12.85 + delta_h 0 kJ + -gamma 0 0 # Id: 309673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Citrate-3 = Tl(Citrate)-2 - log_k 1.48 - delta_h 0 kJ - -gamma 0 0 + log_k 1.48 + delta_h 0 kJ + -gamma 0 0 # Id: 8709671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Citrate-3 = Zn(Citrate)- - log_k 6.21 - delta_h 8.368 kJ - -gamma 0 0 + log_k 6.21 + delta_h 8.368 kJ + -gamma 0 0 # Id: 9509671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Citrate-3 = Zn(Citrate)2-4 - log_k 7.4 - delta_h 25.104 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2 Citrate-3 = Zn(Citrate)2-4 + log_k 7.4 + delta_h 25.104 kJ + -gamma 0 0 # Id: 9509672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Citrate-3 + H+ = ZnH(Citrate) - log_k 10.2 - delta_h 3.3472 kJ - -gamma 0 0 + log_k 10.2 + delta_h 3.3472 kJ + -gamma 0 0 # Id: 9509673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Citrate-3 + 2H+ = ZnH2(Citrate)+ - log_k 12.84 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Citrate-3 + 2 H+ = ZnH2(Citrate)+ + log_k 12.84 + delta_h 0 kJ + -gamma 0 0 # Id: 9509674 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Citrate-3 = Cd(Citrate)- - log_k 4.98 - delta_h 8.368 kJ - -gamma 0 0 + log_k 4.98 + delta_h 8.368 kJ + -gamma 0 0 # Id: 1609671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Citrate-3 + H+ = CdH(Citrate) - log_k 9.44 - delta_h 3.3472 kJ - -gamma 0 0 + log_k 9.44 + delta_h 3.3472 kJ + -gamma 0 0 # Id: 1609672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Citrate-3 + 2H+ = CdH2(Citrate)+ - log_k 12.9 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Citrate-3 + 2 H+ = CdH2(Citrate)+ + log_k 12.9 + delta_h 0 kJ + -gamma 0 0 # Id: 1609673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Citrate-3 = Cd(Citrate)2-4 - log_k 5.9 - delta_h 20.92 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2 Citrate-3 = Cd(Citrate)2-4 + log_k 5.9 + delta_h 20.92 kJ + -gamma 0 0 # Id: 1609674 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Citrate-3 + 2H+ = Hg(Citrate)- + 2H2O - log_k 18.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Citrate-3 + 2 H+ = Hg(Citrate)- + 2 H2O + log_k 18.3 + delta_h 0 kJ + -gamma 0 0 # Id: 3619671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Citrate-3 = Cu(Citrate)- - log_k 7.57 - delta_h 0 kJ - -gamma 0 0 + log_k 7.57 + delta_h 0 kJ + -gamma 0 0 # Id: 2319671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cu+2 + 2Citrate-3 = Cu(Citrate)2-4 - log_k 8.9 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cu+2 + 2 Citrate-3 = Cu(Citrate)2-4 + log_k 8.9 + delta_h 0 kJ + -gamma 0 0 # Id: 2319672 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cu+2 + Citrate-3 + H+ = CuH(Citrate) - log_k 10.87 - delta_h 11.7152 kJ - -gamma 0 0 + log_k 10.87 + delta_h 11.7152 kJ + -gamma 0 0 # Id: 2319673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Citrate-3 + 2H+ = CuH2(Citrate)+ - log_k 13.23 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Citrate-3 + 2 H+ = CuH2(Citrate)+ + log_k 13.23 + delta_h 0 kJ + -gamma 0 0 # Id: 2319674 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -2Cu+2 + 2Citrate-3 = Cu2(Citrate)2-2 - log_k 16.9 - delta_h 41.84 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +2 Cu+2 + 2 Citrate-3 = Cu2(Citrate)2-2 + log_k 16.9 + delta_h 41.84 kJ + -gamma 0 0 # Id: 2319675 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Citrate-3 = Ni(Citrate)- - log_k 6.59 - delta_h 16.736 kJ - -gamma 0 0 + log_k 6.59 + delta_h 16.736 kJ + -gamma 0 0 # Id: 5409671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Citrate-3 + H+ = NiH(Citrate) - log_k 10.5 - delta_h 15.8992 kJ - -gamma 0 0 + log_k 10.5 + delta_h 15.8992 kJ + -gamma 0 0 # Id: 5409672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Citrate-3 + 2H+ = NiH2(Citrate)+ - log_k 13.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Citrate-3 + 2 H+ = NiH2(Citrate)+ + log_k 13.3 + delta_h 0 kJ + -gamma 0 0 # Id: 5409673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Citrate-3 = Ni(Citrate)2-4 - log_k 8.77 - delta_h 12.552 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Citrate-3 = Ni(Citrate)2-4 + log_k 8.77 + delta_h 12.552 kJ + -gamma 0 0 # Id: 5409674 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Citrate-3 + H+ = NiH(Citrate)2-3 - log_k 14.9 - delta_h 32.6352 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Citrate-3 + H+ = NiH(Citrate)2-3 + log_k 14.9 + delta_h 32.6352 kJ + -gamma 0 0 # Id: 5409675 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Citrate-3 = Co(Citrate)- - log_k 6.1867 - delta_h 0 kJ - -gamma 0 0 + log_k 6.1867 + delta_h 0 kJ + -gamma 0 0 # Id: 2009671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Co+2 + H+ + Citrate-3 = CoHCitrate - log_k 10.4438 - delta_h 0 kJ - -gamma 0 0 + log_k 10.4438 + delta_h 0 kJ + -gamma 0 0 # Id: 2009672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 -Co+2 + 2H+ + Citrate-3 = CoH2Citrate+ - log_k 12.7859 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 H+ + Citrate-3 = CoH2Citrate+ + log_k 12.7859 + delta_h 0 kJ + -gamma 0 0 # Id: 2009673 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Fe+2 + Citrate-3 = Fe(Citrate)- - log_k 6.1 - delta_h 0 kJ - -gamma 0 0 + log_k 6.1 + delta_h 0 kJ + -gamma 0 0 # Id: 2809671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Citrate-3 + H+ = FeH(Citrate) - log_k 10.2 - delta_h 0 kJ - -gamma 0 0 + log_k 10.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2809672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Citrate-3 = Fe(Citrate) - log_k 13.1 - delta_h 0 kJ - -gamma 0 0 + log_k 13.1 + delta_h 0 kJ + -gamma 0 0 # Id: 2819671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Citrate-3 + H+ = FeH(Citrate)+ - log_k 14.4 - delta_h 0 kJ - -gamma 0 0 + log_k 14.4 + delta_h 0 kJ + -gamma 0 0 # Id: 2819672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Citrate-3 = Mn(Citrate)- - log_k 4.28 - delta_h 0 kJ - -gamma 0 0 + log_k 4.28 + delta_h 0 kJ + -gamma 0 0 # Id: 4709671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mn+2 + Citrate-3 + H+ = MnH(Citrate) - log_k 9.6 - delta_h 0 kJ - -gamma 0 0 + log_k 9.6 + delta_h 0 kJ + -gamma 0 0 # Id: 4709672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Be+2 + Citrate-3 = Be(Citrate)- - log_k 5.534 - delta_h 0 kJ - -gamma 0 0 + log_k 5.534 + delta_h 0 kJ + -gamma 0 0 # Id: 1109671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 Be+2 + H+ + Citrate-3 = BeH(Citrate) - log_k 9.442 - delta_h 0 kJ - -gamma 0 0 + log_k 9.442 + delta_h 0 kJ + -gamma 0 0 # Id: 1109672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 Ca+2 + Citrate-3 = Ca(Citrate)- - log_k 4.87 - delta_h -8.368 kJ - -gamma 0 0 + log_k 4.87 + delta_h -8.368 kJ + -gamma 0 0 # Id: 1509671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Citrate-3 + H+ = CaH(Citrate) - log_k 9.26 - delta_h -0.8368 kJ - -gamma 0 0 + log_k 9.26 + delta_h -0.8368 kJ + -gamma 0 0 # Id: 1509672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Citrate-3 + 2H+ = CaH2(Citrate)+ - log_k 12.257 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Citrate-3 + 2 H+ = CaH2(Citrate)+ + log_k 12.257 + delta_h 0 kJ + -gamma 0 0 # Id: 1509673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mg+2 + Citrate-3 = Mg(Citrate)- - log_k 4.89 - delta_h 8.368 kJ - -gamma 0 0 + log_k 4.89 + delta_h 8.368 kJ + -gamma 0 0 # Id: 4609671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Citrate-3 + H+ = MgH(Citrate) - log_k 8.91 - delta_h 3.3472 kJ - -gamma 0 0 + log_k 8.91 + delta_h 3.3472 kJ + -gamma 0 0 # Id: 4609672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Citrate-3 + 2H+ = MgH2(Citrate)+ - log_k 12.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Citrate-3 + 2 H+ = MgH2(Citrate)+ + log_k 12.2 + delta_h 0 kJ + -gamma 0 0 # Id: 4609673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Sr+2 + Citrate-3 = Sr(Citrate)- - log_k 4.3367 - delta_h 0 kJ - -gamma 0 0 + log_k 4.3367 + delta_h 0 kJ + -gamma 0 0 # Id: 8009671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Sr+2 + H+ + Citrate-3 = SrH(Citrate) - log_k 8.9738 - delta_h 0 kJ - -gamma 0 0 + log_k 8.9738 + delta_h 0 kJ + -gamma 0 0 # Id: 8009672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 -Sr+2 + 2H+ + Citrate-3 = SrH2(Citrate)+ - log_k 12.4859 - delta_h 0 kJ - -gamma 0 0 +Sr+2 + 2 H+ + Citrate-3 = SrH2(Citrate)+ + log_k 12.4859 + delta_h 0 kJ + -gamma 0 0 # Id: 8009673 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Ba+2 + Citrate-3 = Ba(Citrate)- - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 # Id: 1009671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Citrate-3 + H+ = BaH(Citrate) - log_k 8.74 - delta_h 0 kJ - -gamma 0 0 + log_k 8.74 + delta_h 0 kJ + -gamma 0 0 # Id: 1009672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ba+2 + Citrate-3 + 2H+ = BaH2(Citrate)+ - log_k 12.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ba+2 + Citrate-3 + 2 H+ = BaH2(Citrate)+ + log_k 12.3 + delta_h 0 kJ + -gamma 0 0 # Id: 1009673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Na+ + Citrate-3 = Na(Citrate)-2 - log_k 1.03 - delta_h -2.8033 kJ - -gamma 0 0 + log_k 1.03 + delta_h -2.8033 kJ + -gamma 0 0 # Id: 5009671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -2Na+ + Citrate-3 = Na2(Citrate)- - log_k 1.5 - delta_h -5.1045 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +2 Na+ + Citrate-3 = Na2(Citrate)- + log_k 1.5 + delta_h -5.1045 kJ + -gamma 0 0 # Id: 5009672 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Na+ + Citrate-3 + H+ = NaH(Citrate)- - log_k 6.45 - delta_h -3.5982 kJ - -gamma 0 0 + log_k 6.45 + delta_h -3.5982 kJ + -gamma 0 0 # Id: 5009673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: K+ + Citrate-3 = K(Citrate)-2 - log_k 1.1 - delta_h 5.4392 kJ - -gamma 0 0 + log_k 1.1 + delta_h 5.4392 kJ + -gamma 0 0 # Id: 4109671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Nta-3 = H(Nta)-2 - log_k 10.278 - delta_h -18.828 kJ - -gamma 0 0 + log_k 10.278 + delta_h -18.828 kJ + -gamma 0 0 # Id: 3309681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Nta-3 = H2(Nta)- - log_k 13.22 - delta_h -17.9912 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Nta-3 = H2(Nta)- + log_k 13.22 + delta_h -17.9912 kJ + -gamma 0 0 # Id: 3309682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -3H+ + Nta-3 = H3(Nta) - log_k 15.22 - delta_h -16.3176 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +3 H+ + Nta-3 = H3(Nta) + log_k 15.22 + delta_h -16.3176 kJ + -gamma 0 0 # Id: 3309683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -4H+ + Nta-3 = H4(Nta)+ - log_k 16.22 - delta_h -16.3176 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +4 H+ + Nta-3 = H4(Nta)+ + log_k 16.22 + delta_h -16.3176 kJ + -gamma 0 0 # Id: 3309684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Nta-3 = Pb(Nta)- - log_k 12.7 - delta_h -15.8992 kJ - -gamma 0 0 + log_k 12.7 + delta_h -15.8992 kJ + -gamma 0 0 # Id: 6009681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Nta-3 + H+ = PbH(Nta) - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 # Id: 6009682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Nta-3 = Al(Nta) - log_k 13.3 - delta_h 0 kJ - -gamma 0 0 + log_k 13.3 + delta_h 0 kJ + -gamma 0 0 # Id: 309681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Nta-3 + H+ = AlH(Nta)+ - log_k 15.2 - delta_h 0 kJ - -gamma 0 0 + log_k 15.2 + delta_h 0 kJ + -gamma 0 0 # Id: 309682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Nta-3 + H2O = AlOH(Nta)- + H+ - log_k 8 - delta_h 0 kJ - -gamma 0 0 + log_k 8 + delta_h 0 kJ + -gamma 0 0 # Id: 309683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Nta-3 = Tl(Nta)-2 - log_k 5.39 - delta_h 0 kJ - -gamma 0 0 + log_k 5.39 + delta_h 0 kJ + -gamma 0 0 # Id: 8709681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Nta-3 = Zn(Nta)- - log_k 11.95 - delta_h -3.7656 kJ - -gamma 0 0 + log_k 11.95 + delta_h -3.7656 kJ + -gamma 0 0 # Id: 9509681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Nta-3 = Zn(Nta)2-4 - log_k 14.88 - delta_h -15.0624 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2 Nta-3 = Zn(Nta)2-4 + log_k 14.88 + delta_h -15.0624 kJ + -gamma 0 0 # Id: 9509682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Nta-3 + H2O = ZnOH(Nta)-2 + H+ - log_k 1.46 - delta_h 46.4424 kJ - -gamma 0 0 + log_k 1.46 + delta_h 46.4424 kJ + -gamma 0 0 # Id: 9509683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Nta-3 = Cd(Nta)- - log_k 11.07 - delta_h -16.736 kJ - -gamma 0 0 + log_k 11.07 + delta_h -16.736 kJ + -gamma 0 0 # Id: 1609681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Nta-3 = Cd(Nta)2-4 - log_k 15.03 - delta_h -38.0744 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2 Nta-3 = Cd(Nta)2-4 + log_k 15.03 + delta_h -38.0744 kJ + -gamma 0 0 # Id: 1609682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Nta-3 + H2O = CdOH(Nta)-2 + H+ - log_k -0.61 - delta_h 29.288 kJ - -gamma 0 0 + log_k -0.61 + delta_h 29.288 kJ + -gamma 0 0 # Id: 1609683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Nta-3 + 2H+ = Hg(Nta)- + 2H2O - log_k 21.7 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Nta-3 + 2 H+ = Hg(Nta)- + 2 H2O + log_k 21.7 + delta_h 0 kJ + -gamma 0 0 # Id: 3619681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Nta-3 = Cu(Nta)- - log_k 14.4 - delta_h -7.9496 kJ - -gamma 0 0 + log_k 14.4 + delta_h -7.9496 kJ + -gamma 0 0 # Id: 2319681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Nta-3 = Cu(Nta)2-4 - log_k 18.1 - delta_h -37.2376 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Nta-3 = Cu(Nta)2-4 + log_k 18.1 + delta_h -37.2376 kJ + -gamma 0 0 # Id: 2319682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Nta-3 + H+ = CuH(Nta) - log_k 16.2 - delta_h 0 kJ - -gamma 0 0 + log_k 16.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2319683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Nta-3 + H2O = CuOH(Nta)-2 + H+ - log_k 4.8 - delta_h 25.5224 kJ - -gamma 0 0 + log_k 4.8 + delta_h 25.5224 kJ + -gamma 0 0 # Id: 2319684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Nta-3 = Ag(Nta)-2 - log_k 6 - delta_h -26.3592 kJ - -gamma 0 0 + log_k 6 + delta_h -26.3592 kJ + -gamma 0 0 # Id: 209681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Nta-3 = Ni(Nta)- - log_k 12.79 - delta_h -10.0416 kJ - -gamma 0 0 + log_k 12.79 + delta_h -10.0416 kJ + -gamma 0 0 # Id: 5409681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Nta-3 = Ni(Nta)2-4 - log_k 16.96 - delta_h -32.6352 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Nta-3 = Ni(Nta)2-4 + log_k 16.96 + delta_h -32.6352 kJ + -gamma 0 0 # Id: 5409682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Nta-3 + H2O = NiOH(Nta)-2 + H+ - log_k 1.5 - delta_h 15.0624 kJ - -gamma 0 0 + log_k 1.5 + delta_h 15.0624 kJ + -gamma 0 0 # Id: 5409683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Nta-3 = Co(Nta)- - log_k 11.6667 - delta_h -0.4 kJ - -gamma 0 0 + log_k 11.6667 + delta_h -0.4 kJ + -gamma 0 0 # Id: 2009681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Co+2 + 2Nta-3 = Co(Nta)2-4 - log_k 14.9734 - delta_h -20 kJ - -gamma 0 0 +Co+2 + 2 Nta-3 = Co(Nta)2-4 + log_k 14.9734 + delta_h -20 kJ + -gamma 0 0 # Id: 2009682 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Co+2 + Nta-3 + H2O = CoOH(Nta)-2 + H+ - log_k 0.4378 - delta_h 45.6 kJ - -gamma 0 0 + log_k 0.4378 + delta_h 45.6 kJ + -gamma 0 0 # Id: 2009683 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Fe+2 + Nta-3 = Fe(Nta)- - log_k 10.19 - delta_h 0 kJ - -gamma 0 0 + log_k 10.19 + delta_h 0 kJ + -gamma 0 0 # Id: 2809681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 2Nta-3 = Fe(Nta)2-4 - log_k 12.62 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 2 Nta-3 = Fe(Nta)2-4 + log_k 12.62 + delta_h 0 kJ + -gamma 0 0 # Id: 2809682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Nta-3 + H+ = FeH(Nta) - log_k 12.29 - delta_h 0 kJ - -gamma 0 0 + log_k 12.29 + delta_h 0 kJ + -gamma 0 0 # Id: 2809683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Nta-3 + H2O = FeOH(Nta)-2 + H+ - log_k -1.06 - delta_h 0 kJ - -gamma 0 0 + log_k -1.06 + delta_h 0 kJ + -gamma 0 0 # Id: 2809684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Nta-3 = Fe(Nta) - log_k 17.8 - delta_h 13.3888 kJ - -gamma 0 0 + log_k 17.8 + delta_h 13.3888 kJ + -gamma 0 0 # Id: 2819681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + 2Nta-3 = Fe(Nta)2-3 - log_k 25.9 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + 2 Nta-3 = Fe(Nta)2-3 + log_k 25.9 + delta_h 0 kJ + -gamma 0 0 # Id: 2819682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Nta-3 + H2O = FeOH(Nta)- + H+ - log_k 13.23 - delta_h 0 kJ - -gamma 0 0 + log_k 13.23 + delta_h 0 kJ + -gamma 0 0 # Id: 2819683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Nta-3 = Mn(Nta)- - log_k 8.573 - delta_h 5.8576 kJ - -gamma 0 0 + log_k 8.573 + delta_h 5.8576 kJ + -gamma 0 0 # Id: 4709681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + 2Nta-3 = Mn(Nta)2-4 - log_k 11.58 - delta_h -17.1544 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + 2 Nta-3 = Mn(Nta)2-4 + log_k 11.58 + delta_h -17.1544 kJ + -gamma 0 0 # Id: 4709682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Nta-3 + 2H+ = Cr(Nta) + 2H2O - log_k 21.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Nta-3 + 2 H+ = Cr(Nta) + 2 H2O + log_k 21.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2119681 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 2Nta-3 + 2H+ = Cr(Nta)2-3 + 2H2O - log_k 29.5 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 2 Nta-3 + 2 H+ = Cr(Nta)2-3 + 2 H2O + log_k 29.5 + delta_h 0 kJ + -gamma 0 0 # Id: 2119682 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -MoO4-2 + 2H+ + Nta-3 = MoO3(Nta)-3 + H2O - log_k 19.5434 - delta_h -69 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +MoO4-2 + 2 H+ + Nta-3 = MoO3(Nta)-3 + H2O + log_k 19.5434 + delta_h -69 kJ + -gamma 0 0 # Id: 4809681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -MoO4-2 + 3H+ + Nta-3 = MoO3H(Nta)-2 + H2O - log_k 23.3954 - delta_h -71 kJ - -gamma 0 0 +MoO4-2 + 3 H+ + Nta-3 = MoO3H(Nta)-2 + H2O + log_k 23.3954 + delta_h -71 kJ + -gamma 0 0 # Id: 4809682 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 1.00 25.0 -MoO4-2 + 4H+ + Nta-3 = MoO3H2(Nta)- + H2O - log_k 25.3534 - delta_h -71 kJ - -gamma 0 0 +MoO4-2 + 4 H+ + Nta-3 = MoO3H2(Nta)- + H2O + log_k 25.3534 + delta_h -71 kJ + -gamma 0 0 # Id: 4809683 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 1.00 25.0 Be+2 + Nta-3 = Be(Nta)- - log_k 9.0767 - delta_h 25 kJ - -gamma 0 0 + log_k 9.0767 + delta_h 25 kJ + -gamma 0 0 # Id: 1109681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Mg+2 + Nta-3 = Mg(Nta)- - log_k 6.5 - delta_h 17.9912 kJ - -gamma 0 0 + log_k 6.5 + delta_h 17.9912 kJ + -gamma 0 0 # Id: 4609681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Nta-3 = Ca(Nta)- - log_k 7.608 - delta_h -5.6902 kJ - -gamma 0 0 + log_k 7.608 + delta_h -5.6902 kJ + -gamma 0 0 # Id: 1509681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + 2Nta-3 = Ca(Nta)2-4 - log_k 8.81 - delta_h -32.6352 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + 2 Nta-3 = Ca(Nta)2-4 + log_k 8.81 + delta_h -32.6352 kJ + -gamma 0 0 # Id: 1509682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Nta-3 = Sr(Nta)- - log_k 6.2767 - delta_h -2.2 kJ - -gamma 0 0 + log_k 6.2767 + delta_h -2.2 kJ + -gamma 0 0 # Id: 8009681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Ba+2 + Nta-3 = Ba(Nta)- - log_k 5.875 - delta_h -6.025 kJ - -gamma 0 0 + log_k 5.875 + delta_h -6.025 kJ + -gamma 0 0 # Id: 1009681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Edta-4 = H(Edta)-3 - log_k 10.948 - delta_h -23.4304 kJ - -gamma 0 0 + log_k 10.948 + delta_h -23.4304 kJ + -gamma 0 0 # Id: 3309691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Edta-4 = H2(Edta)-2 - log_k 17.221 - delta_h -41.0032 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Edta-4 = H2(Edta)-2 + log_k 17.221 + delta_h -41.0032 kJ + -gamma 0 0 # Id: 3309692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -3H+ + Edta-4 = H3(Edta)- - log_k 20.34 - delta_h -35.564 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +3 H+ + Edta-4 = H3(Edta)- + log_k 20.34 + delta_h -35.564 kJ + -gamma 0 0 # Id: 3309693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -4H+ + Edta-4 = H4(Edta) - log_k 22.5 - delta_h -34.3088 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +4 H+ + Edta-4 = H4(Edta) + log_k 22.5 + delta_h -34.3088 kJ + -gamma 0 0 # Id: 3309694 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -5H+ + Edta-4 = H5(Edta)+ - log_k 24 - delta_h -32.2168 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +5 H+ + Edta-4 = H5(Edta)+ + log_k 24 + delta_h -32.2168 kJ + -gamma 0 0 # Id: 3309695 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sn(OH)2 + 2H+ + Edta-4 = Sn(Edta)-2 + 2H2O - log_k 27.026 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sn(OH)2 + 2 H+ + Edta-4 = Sn(Edta)-2 + 2 H2O + log_k 27.026 + delta_h 0 kJ + -gamma 0 0 # Id: 7909691 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 20.0 -Sn(OH)2 + 3H+ + Edta-4 = SnH(Edta)- + 2H2O - log_k 29.934 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 3 H+ + Edta-4 = SnH(Edta)- + 2 H2O + log_k 29.934 + delta_h 0 kJ + -gamma 0 0 # Id: 7909692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 20.0 -Sn(OH)2 + 4H+ + Edta-4 = SnH2(Edta) + 2H2O - log_k 31.638 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 4 H+ + Edta-4 = SnH2(Edta) + 2 H2O + log_k 31.638 + delta_h 0 kJ + -gamma 0 0 # Id: 7909693 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 20.0 Pb+2 + Edta-4 = Pb(Edta)-2 - log_k 19.8 - delta_h -54.8104 kJ - -gamma 0 0 + log_k 19.8 + delta_h -54.8104 kJ + -gamma 0 0 # Id: 6009691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Edta-4 + H+ = PbH(Edta)- - log_k 23 - delta_h 0 kJ - -gamma 0 0 + log_k 23 + delta_h 0 kJ + -gamma 0 0 # Id: 6009692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Edta-4 + 2H+ = PbH2(Edta) - log_k 24.9 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Edta-4 + 2 H+ = PbH2(Edta) + log_k 24.9 + delta_h 0 kJ + -gamma 0 0 # Id: 6009693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Edta-4 = Al(Edta)- - log_k 19.1 - delta_h 52.7184 kJ - -gamma 0 0 + log_k 19.1 + delta_h 52.7184 kJ + -gamma 0 0 # Id: 309690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Edta-4 + H+ = AlH(Edta) - log_k 21.8 - delta_h 36.4008 kJ - -gamma 0 0 + log_k 21.8 + delta_h 36.4008 kJ + -gamma 0 0 # Id: 309691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Edta-4 + H2O = AlOH(Edta)-2 + H+ - log_k 12.8 - delta_h 73.6384 kJ - -gamma 0 0 + log_k 12.8 + delta_h 73.6384 kJ + -gamma 0 0 # Id: 309692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Edta-4 = Tl(Edta)-3 - log_k 7.27 - delta_h -43.5136 kJ - -gamma 0 0 + log_k 7.27 + delta_h -43.5136 kJ + -gamma 0 0 # Id: 8709691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Edta-4 + H+ = TlH(Edta)-2 - log_k 13.68 - delta_h 0 kJ - -gamma 0 0 + log_k 13.68 + delta_h 0 kJ + -gamma 0 0 # Id: 8709692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Edta-4 = Zn(Edta)-2 - log_k 18 - delta_h -19.2464 kJ - -gamma 0 0 + log_k 18 + delta_h -19.2464 kJ + -gamma 0 0 # Id: 9509691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Edta-4 + H+ = ZnH(Edta)- - log_k 21.4 - delta_h -28.4512 kJ - -gamma 0 0 + log_k 21.4 + delta_h -28.4512 kJ + -gamma 0 0 # Id: 9509692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Edta-4 + H2O = ZnOH(Edta)-3 + H+ - log_k 5.8 - delta_h 0 kJ - -gamma 0 0 + log_k 5.8 + delta_h 0 kJ + -gamma 0 0 # Id: 9509693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Edta-4 = Cd(Edta)-2 - log_k 18.2 - delta_h -38.0744 kJ - -gamma 0 0 + log_k 18.2 + delta_h -38.0744 kJ + -gamma 0 0 # Id: 1609691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Edta-4 + H+ = CdH(Edta)- - log_k 21.5 - delta_h -39.748 kJ - -gamma 0 0 + log_k 21.5 + delta_h -39.748 kJ + -gamma 0 0 # Id: 1609692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Edta-4 + 2H+ = Hg(Edta)-2 + 2H2O - log_k 29.3 - delta_h -125.102 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Edta-4 + 2 H+ = Hg(Edta)-2 + 2 H2O + log_k 29.3 + delta_h -125.102 kJ + -gamma 0 0 # Id: 3619691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Edta-4 + 3H+ = HgH(Edta)- + 2H2O - log_k 32.9 - delta_h -128.449 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Edta-4 + 3 H+ = HgH(Edta)- + 2 H2O + log_k 32.9 + delta_h -128.449 kJ + -gamma 0 0 # Id: 3619692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Edta-4 = Cu(Edta)-2 - log_k 20.5 - delta_h -34.7272 kJ - -gamma 0 0 + log_k 20.5 + delta_h -34.7272 kJ + -gamma 0 0 # Id: 2319691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Edta-4 + H+ = CuH(Edta)- - log_k 24 - delta_h -43.0952 kJ - -gamma 0 0 + log_k 24 + delta_h -43.0952 kJ + -gamma 0 0 # Id: 2319692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Edta-4 + 2H+ = CuH2(Edta) - log_k 26.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Edta-4 + 2 H+ = CuH2(Edta) + log_k 26.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2319693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Edta-4 + H2O = CuOH(Edta)-3 + H+ - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 # Id: 2319694 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Edta-4 = Ag(Edta)-3 - log_k 8.08 - delta_h -31.38 kJ - -gamma 0 0 + log_k 8.08 + delta_h -31.38 kJ + -gamma 0 0 # Id: 209691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Edta-4 + H+ = AgH(Edta)-2 - log_k 15.21 - delta_h 0 kJ - -gamma 0 0 + log_k 15.21 + delta_h 0 kJ + -gamma 0 0 # Id: 209693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + Edta-4 = Ni(Edta)-2 - log_k 20.1 - delta_h -30.9616 kJ - -gamma 0 0 + log_k 20.1 + delta_h -30.9616 kJ + -gamma 0 0 # Id: 5409691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Edta-4 + H+ = NiH(Edta)- - log_k 23.6 - delta_h -38.4928 kJ - -gamma 0 0 + log_k 23.6 + delta_h -38.4928 kJ + -gamma 0 0 # Id: 5409692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Edta-4 + H2O = NiOH(Edta)-3 + H+ - log_k 7.6 - delta_h 0 kJ - -gamma 0 0 + log_k 7.6 + delta_h 0 kJ + -gamma 0 0 # Id: 5409693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Edta-4 = Co(Edta)-2 - log_k 18.1657 - delta_h -15 kJ - -gamma 0 0 + log_k 18.1657 + delta_h -15 kJ + -gamma 0 0 # Id: 2009691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Co+2 + Edta-4 + H+ = CoH(Edta)- - log_k 21.5946 - delta_h -22.9 kJ - -gamma 0 0 + log_k 21.5946 + delta_h -22.9 kJ + -gamma 0 0 # Id: 2009692 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Co+2 + Edta-4 + 2H+ = CoH2(Edta) - log_k 23.4986 - delta_h 0 kJ - -gamma 0 0 +Co+2 + Edta-4 + 2 H+ = CoH2(Edta) + log_k 23.4986 + delta_h 0 kJ + -gamma 0 0 # Id: 2009693 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 Co+3 + Edta-4 = Co(Edta)- - log_k 43.9735 - delta_h 0 kJ - -gamma 0 0 + log_k 43.9735 + delta_h 0 kJ + -gamma 0 0 # Id: 2019691 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Co+3 + Edta-4 + H+ = CoH(Edta) - log_k 47.168 - delta_h 0 kJ - -gamma 0 0 + log_k 47.168 + delta_h 0 kJ + -gamma 0 0 # Id: 2019692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Fe+2 + Edta-4 = Fe(Edta)-2 - log_k 16 - delta_h -16.736 kJ - -gamma 0 0 + log_k 16 + delta_h -16.736 kJ + -gamma 0 0 # Id: 2809690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Edta-4 + H+ = FeH(Edta)- - log_k 19.06 - delta_h -27.6144 kJ - -gamma 0 0 + log_k 19.06 + delta_h -27.6144 kJ + -gamma 0 0 # Id: 2809691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Edta-4 + H2O = FeOH(Edta)-3 + H+ - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 # Id: 2809692 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Fe+2 + Edta-4 + 2H2O = Fe(OH)2(Edta)-4 + 2H+ - log_k -4 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Fe+2 + Edta-4 + 2 H2O = Fe(OH)2(Edta)-4 + 2 H+ + log_k -4 + delta_h 0 kJ + -gamma 0 0 # Id: 2809693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Fe+3 + Edta-4 = Fe(Edta)- - log_k 27.7 - delta_h -11.2968 kJ - -gamma 0 0 + log_k 27.7 + delta_h -11.2968 kJ + -gamma 0 0 # Id: 2819690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Edta-4 + H+ = FeH(Edta) - log_k 29.2 - delta_h -11.7152 kJ - -gamma 0 0 + log_k 29.2 + delta_h -11.7152 kJ + -gamma 0 0 # Id: 2819691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Edta-4 + H2O = FeOH(Edta)-2 + H+ - log_k 19.9 - delta_h 0 kJ - -gamma 0 0 + log_k 19.9 + delta_h 0 kJ + -gamma 0 0 # Id: 2819692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Edta-4 + 2H2O = Fe(OH)2(Edta)-3 + 2H+ - log_k 9.85 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Edta-4 + 2 H2O = Fe(OH)2(Edta)-3 + 2 H+ + log_k 9.85 + delta_h 0 kJ + -gamma 0 0 # Id: 2819693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mn+2 + Edta-4 = Mn(Edta)-2 - log_k 15.6 - delta_h -19.2464 kJ - -gamma 0 0 + log_k 15.6 + delta_h -19.2464 kJ + -gamma 0 0 # Id: 4709691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Edta-4 + H+ = MnH(Edta)- - log_k 19.1 - delta_h -24.2672 kJ - -gamma 0 0 + log_k 19.1 + delta_h -24.2672 kJ + -gamma 0 0 # Id: 4709692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr+2 + Edta-4 = Cr(Edta)-2 - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2109691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr+2 + Edta-4 + H+ = CrH(Edta)- - log_k 19.1 - delta_h 0 kJ - -gamma 0 0 + log_k 19.1 + delta_h 0 kJ + -gamma 0 0 # Id: 2109692 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + Edta-4 + 2H+ = Cr(Edta)- + 2H2O - log_k 35.5 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + Edta-4 + 2 H+ = Cr(Edta)- + 2 H2O + log_k 35.5 + delta_h 0 kJ + -gamma 0 0 # Id: 2119691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Edta-4 + 3H+ = CrH(Edta) + 2H2O - log_k 37.4 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Edta-4 + 3 H+ = CrH(Edta) + 2 H2O + log_k 37.4 + delta_h 0 kJ + -gamma 0 0 # Id: 2119692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr(OH)2+ + Edta-4 + H+ = CrOH(Edta)-2 + H2O - log_k 27.7 - delta_h 0 kJ - -gamma 0 0 + log_k 27.7 + delta_h 0 kJ + -gamma 0 0 # Id: 2119693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Be+2 + Edta-4 = Be(Edta)-2 - log_k 11.4157 - delta_h 41 kJ - -gamma 0 0 + log_k 11.4157 + delta_h 41 kJ + -gamma 0 0 # Id: 1109691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Mg+2 + Edta-4 = Mg(Edta)-2 - log_k 10.57 - delta_h 13.8072 kJ - -gamma 0 0 + log_k 10.57 + delta_h 13.8072 kJ + -gamma 0 0 # Id: 4609690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Edta-4 + H+ = MgH(Edta)- - log_k 14.97 - delta_h 0 kJ - -gamma 0 0 + log_k 14.97 + delta_h 0 kJ + -gamma 0 0 # Id: 4609691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Edta-4 = Ca(Edta)-2 - log_k 12.42 - delta_h -25.5224 kJ - -gamma 0 0 + log_k 12.42 + delta_h -25.5224 kJ + -gamma 0 0 # Id: 1509690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Edta-4 + H+ = CaH(Edta)- - log_k 15.9 - delta_h 0 kJ - -gamma 0 0 + log_k 15.9 + delta_h 0 kJ + -gamma 0 0 # Id: 1509691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Edta-4 = Sr(Edta)-2 - log_k 10.4357 - delta_h -17 kJ - -gamma 0 0 + log_k 10.4357 + delta_h -17 kJ + -gamma 0 0 # Id: 8009691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Sr+2 + Edta-4 + H+ = SrH(Edta)- - log_k 14.7946 - delta_h 0 kJ - -gamma 0 0 + log_k 14.7946 + delta_h 0 kJ + -gamma 0 0 # Id: 8009692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Ba+2 + Edta-4 = Ba(Edta)-2 - log_k 7.72 - delta_h -20.5016 kJ - -gamma 0 0 + log_k 7.72 + delta_h -20.5016 kJ + -gamma 0 0 # Id: 1009691 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Na+ + Edta-4 = Na(Edta)-3 - log_k 2.7 - delta_h -5.8576 kJ - -gamma 0 0 + log_k 2.7 + delta_h -5.8576 kJ + -gamma 0 0 # Id: 5009690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: K+ + Edta-4 = K(Edta)-3 - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 # Id: 4109690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Propionate- = H(Propionate) - log_k 4.874 - delta_h 0.66 kJ - -gamma 0 0 + log_k 4.874 + delta_h 0.66 kJ + -gamma 0 0 # Id: 3309711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Pb+2 + Propionate- = Pb(Propionate)+ - log_k 2.64 - delta_h 0 kJ - -gamma 0 0 + log_k 2.64 + delta_h 0 kJ + -gamma 0 0 # Id: 6009711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.00 35.0 -Pb+2 + 2Propionate- = Pb(Propionate)2 - log_k 3.1765 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 2 Propionate- = Pb(Propionate)2 + log_k 3.1765 + delta_h 0 kJ + -gamma 0 0 # Id: 6009712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 2.00 25.0 Zn+2 + Propionate- = Zn(Propionate)+ - log_k 1.4389 - delta_h 0 kJ - -gamma 0 0 + log_k 1.4389 + delta_h 0 kJ + -gamma 0 0 # Id: 9509711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 -Zn+2 + 2Propionate- = Zn(Propionate)2 - log_k 1.842 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 Propionate- = Zn(Propionate)2 + log_k 1.842 + delta_h 0 kJ + -gamma 0 0 # Id: 9509712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 Cd+2 + Propionate- = Cd(Propionate)+ - log_k 1.598 - delta_h 0 kJ - -gamma 0 0 + log_k 1.598 + delta_h 0 kJ + -gamma 0 0 # Id: 1609711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 -Cd+2 + 2Propionate- = Cd(Propionate)2 - log_k 2.472 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 2 Propionate- = Cd(Propionate)2 + log_k 2.472 + delta_h 0 kJ + -gamma 0 0 # Id: 1609712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 -Hg(OH)2 + 2H+ + Propionate- = Hg(Propionate)+ + 2H2O - log_k 10.594 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + Propionate- = Hg(Propionate)+ + 2 H2O + log_k 10.594 + delta_h 0 kJ + -gamma 0 0 # Id: 3619711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Cu+2 + Propionate- = Cu(Propionate)+ - log_k 2.22 - delta_h 4.1 kJ - -gamma 0 0 + log_k 2.22 + delta_h 4.1 kJ + -gamma 0 0 # Id: 2319711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cu+2 + 2Propionate- = Cu(Propionate)2 - log_k 3.5 - delta_h 0 kJ - -gamma 0 0 +Cu+2 + 2 Propionate- = Cu(Propionate)2 + log_k 3.5 + delta_h 0 kJ + -gamma 0 0 # Id: 2319712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Ni+2 + Propionate- = Ni(Propionate)+ - log_k 0.908 - delta_h 0 kJ - -gamma 0 0 + log_k 0.908 + delta_h 0 kJ + -gamma 0 0 # Id: 5409711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 1.00 25.0 Co+2 + Propionate- = Co(Propionate)+ - log_k 0.671 - delta_h 4.6 kJ - -gamma 0 0 + log_k 0.671 + delta_h 4.6 kJ + -gamma 0 0 # Id: 2009711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 2.00 25.0 -Co+2 + 2Propionate- = Co(Propionate)2 - log_k 0.5565 - delta_h 16 kJ - -gamma 0 0 +Co+2 + 2 Propionate- = Co(Propionate)2 + log_k 0.5565 + delta_h 16 kJ + -gamma 0 0 # Id: 2009712 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 2.00 25.0 Fe+3 + Propionate- = Fe(Propionate)+2 - log_k 4.012 - delta_h 0 kJ - -gamma 0 0 + log_k 4.012 + delta_h 0 kJ + -gamma 0 0 # Id: 2819711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 20.0 -Cr(OH)2+ + 2H+ + Propionate- = Cr(Propionate)+2 + 2H2O - log_k 15.0773 - delta_h 0 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + Propionate- = Cr(Propionate)+2 + 2 H2O + log_k 15.0773 + delta_h 0 kJ + -gamma 0 0 # Id: 2119711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 2H+ + 2Propionate- = Cr(Propionate)2+ + 2H2O - log_k 17.9563 - delta_h 0 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + 2 Propionate- = Cr(Propionate)2+ + 2 H2O + log_k 17.9563 + delta_h 0 kJ + -gamma 0 0 # Id: 2119712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 2H+ + 3Propionate- = Cr(Propionate)3 + 2H2O - log_k 20.8858 - delta_h 0 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + 3 Propionate- = Cr(Propionate)3 + 2 H2O + log_k 20.8858 + delta_h 0 kJ + -gamma 0 0 # Id: 2119713 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.50 25.0 Mg+2 + Propionate- = Mg(Propionate)+ - log_k 0.9689 - delta_h 4.2677 kJ - -gamma 0 0 + log_k 0.9689 + delta_h 4.2677 kJ + -gamma 0 0 # Id: 4609710 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 Ca+2 + Propionate- = Ca(Propionate)+ - log_k 0.9289 - delta_h 3.3472 kJ - -gamma 0 0 + log_k 0.9289 + delta_h 3.3472 kJ + -gamma 0 0 # Id: 1509710 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 Sr+2 + Propionate- = Sr(Propionate)+ - log_k 0.8589 - delta_h 0 kJ - -gamma 0 0 + log_k 0.8589 + delta_h 0 kJ + -gamma 0 0 # Id: 8009711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Ba+2 + Propionate- = Ba(Propionate)+ - log_k 0.7689 - delta_h 0 kJ - -gamma 0 0 + log_k 0.7689 + delta_h 0 kJ + -gamma 0 0 # Id: 1009711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 -Ba+2 + 2Propionate- = Ba(Propionate)2 - log_k 0.9834 - delta_h 0 kJ - -gamma 0 0 +Ba+2 + 2 Propionate- = Ba(Propionate)2 + log_k 0.9834 + delta_h 0 kJ + -gamma 0 0 # Id: 1009712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 H+ + Butyrate- = H(Butyrate) - log_k 4.819 - delta_h 2.8 kJ - -gamma 0 0 + log_k 4.819 + delta_h 2.8 kJ + -gamma 0 0 # Id: 3309721 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Pb+2 + Butyrate- = Pb(Butyrate)+ - log_k 2.101 - delta_h 0 kJ - -gamma 0 0 + log_k 2.101 + delta_h 0 kJ + -gamma 0 0 # Id: 6009721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 2.00 25.0 Zn+2 + Butyrate- = Zn(Butyrate)+ - log_k 1.4289 - delta_h 0 kJ - -gamma 0 0 + log_k 1.4289 + delta_h 0 kJ + -gamma 0 0 # Id: 9509721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 -Hg(OH)2 + 2H+ + Butyrate- = Hg(Butyrate)+ + 2H2O - log_k 10.3529 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + Butyrate- = Hg(Butyrate)+ + 2 H2O + log_k 10.3529 + delta_h 0 kJ + -gamma 0 0 # Id: 3619721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Cu+2 + Butyrate- = Cu(Butyrate)+ - log_k 2.14 - delta_h 0 kJ - -gamma 0 0 + log_k 2.14 + delta_h 0 kJ + -gamma 0 0 # Id: 2319721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Ni+2 + Butyrate- = Ni(Butyrate)+ - log_k 0.691 - delta_h 0 kJ - -gamma 0 0 + log_k 0.691 + delta_h 0 kJ + -gamma 0 0 # Id: 5409721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 2.00 25.0 Co+2 + Butyrate- = Co(Butyrate)+ - log_k 0.591 - delta_h 0 kJ - -gamma 0 0 + log_k 0.591 + delta_h 0 kJ + -gamma 0 0 # Id: 2009721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 2.00 25.0 -Co+2 + 2Butyrate- = Co(Butyrate)2 - log_k 0.7765 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Butyrate- = Co(Butyrate)2 + log_k 0.7765 + delta_h 0 kJ + -gamma 0 0 # Id: 2009722 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 2.00 25.0 Mg+2 + Butyrate- = Mg(Butyrate)+ - log_k 0.9589 - delta_h 0 kJ - -gamma 0 0 + log_k 0.9589 + delta_h 0 kJ + -gamma 0 0 # Id: 4609720 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 Ca+2 + Butyrate- = Ca(Butyrate)+ - log_k 0.9389 - delta_h 3.3472 kJ - -gamma 0 0 + log_k 0.9389 + delta_h 3.3472 kJ + -gamma 0 0 # Id: 1509720 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 Sr+2 + Butyrate- = Sr(Butyrate)+ - log_k 0.7889 - delta_h 0 kJ - -gamma 0 0 + log_k 0.7889 + delta_h 0 kJ + -gamma 0 0 # Id: 8009721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Ba+2 + Butyrate- = Ba(Butyrate)+ - log_k 0.7389 - delta_h 0 kJ - -gamma 0 0 + log_k 0.7389 + delta_h 0 kJ + -gamma 0 0 # Id: 1009721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 -Ba+2 + 2Butyrate- = Ba(Butyrate)2 - log_k 0.88 - delta_h 0 kJ - -gamma 0 0 +Ba+2 + 2 Butyrate- = Ba(Butyrate)2 + log_k 0.88 + delta_h 0 kJ + -gamma 0 0 # Id: 1009722 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Isobutyrate- = H(Isobutyrate) - log_k 4.849 - delta_h 3.2217 kJ - -gamma 0 0 + log_k 4.849 + delta_h 3.2217 kJ + -gamma 0 0 # Id: 3309731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Isobutyrate- = Zn(Isobutyrate)+ - log_k 1.44 - delta_h 0 kJ - -gamma 0 0 + log_k 1.44 + delta_h 0 kJ + -gamma 0 0 # Id: 9509731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Isobutyrate- = Cu(Isobutyrate)+ - log_k 2.17 - delta_h 0 kJ - -gamma 0 0 + log_k 2.17 + delta_h 0 kJ + -gamma 0 0 # Id: 2319731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Isobutyrate- = Cu(Isobutyrate)2 - log_k 3.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Isobutyrate- = Cu(Isobutyrate)2 + log_k 3.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2319732 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Isobutyrate- = Fe(Isobutyrate)+2 - log_k 4.2 - delta_h 0 kJ - -gamma 0 0 + log_k 4.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2819731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Isobutyrate- = Ca(Isobutyrate)+ - log_k 0.51 - delta_h 0 kJ - -gamma 0 0 + log_k 0.51 + delta_h 0 kJ + -gamma 0 0 # Id: 1509731 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Two_picoline = H(Two_picoline)+ - log_k 5.95 - delta_h -25.5224 kJ - -gamma 0 0 + log_k 5.95 + delta_h -25.5224 kJ + -gamma 0 0 # Id: 3309801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Two_picoline = Cu(Two_picoline)+2 - log_k 1.3 - delta_h 0 kJ - -gamma 0 0 + log_k 1.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2319801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Two_picoline = Cu(Two_picoline)2+2 - log_k 2.8 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Two_picoline = Cu(Two_picoline)2+2 + log_k 2.8 + delta_h 0 kJ + -gamma 0 0 # Id: 2319802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + Two_picoline = Cu(Two_picoline)+ - log_k 5.4 - delta_h 0 kJ - -gamma 0 0 + log_k 5.4 + delta_h 0 kJ + -gamma 0 0 # Id: 2309801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 2Two_picoline = Cu(Two_picoline)2+ - log_k 7.65 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 2 Two_picoline = Cu(Two_picoline)2+ + log_k 7.65 + delta_h 0 kJ + -gamma 0 0 # Id: 2309802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 3Two_picoline = Cu(Two_picoline)3+ - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 3 Two_picoline = Cu(Two_picoline)3+ + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 # Id: 2309803 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Two_picoline = Ag(Two_picoline)+ - log_k 2.32 - delta_h -24.2672 kJ - -gamma 0 0 + log_k 2.32 + delta_h -24.2672 kJ + -gamma 0 0 # Id: 209801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Two_picoline = Ag(Two_picoline)2+ - log_k 4.68 - delta_h -42.6768 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Two_picoline = Ag(Two_picoline)2+ + log_k 4.68 + delta_h -42.6768 kJ + -gamma 0 0 # Id: 209802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Two_picoline = Ni(Two_picoline)+2 - log_k 0.4 - delta_h 0 kJ - -gamma 0 0 + log_k 0.4 + delta_h 0 kJ + -gamma 0 0 # Id: 5409801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Three_picoline = H(Three_picoline)+ - log_k 5.7 - delta_h -23.8488 kJ - -gamma 0 0 + log_k 5.7 + delta_h -23.8488 kJ + -gamma 0 0 # Id: 3309811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Three_picoline = Zn(Three_picoline)+2 - log_k 1 - delta_h 0 kJ - -gamma 0 0 + log_k 1 + delta_h 0 kJ + -gamma 0 0 # Id: 9509811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Three_picoline = Zn(Three_picoline)2+2 - log_k 2.1 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2 Three_picoline = Zn(Three_picoline)2+2 + log_k 2.1 + delta_h 0 kJ + -gamma 0 0 # Id: 9509812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 3Three_picoline = Zn(Three_picoline)3+2 - log_k 2.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 3 Three_picoline = Zn(Three_picoline)3+2 + log_k 2.6 + delta_h 0 kJ + -gamma 0 0 # Id: 9509813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 4Three_picoline = Zn(Three_picoline)4+2 - log_k 3.7 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 4 Three_picoline = Zn(Three_picoline)4+2 + log_k 3.7 + delta_h 0 kJ + -gamma 0 0 # Id: 9509814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Three_picoline = Cd(Three_picoline)+2 - log_k 1.42 - delta_h 0 kJ - -gamma 0 0 + log_k 1.42 + delta_h 0 kJ + -gamma 0 0 # Id: 1609811 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Three_picoline = Cd(Three_picoline)2+2 - log_k 2.27 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2 Three_picoline = Cd(Three_picoline)2+2 + log_k 2.27 + delta_h 0 kJ + -gamma 0 0 # Id: 1609812 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Three_picoline = Cd(Three_picoline)3+2 - log_k 3.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3 Three_picoline = Cd(Three_picoline)3+2 + log_k 3.6 + delta_h 0 kJ + -gamma 0 0 # Id: 1609813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 4Three_picoline = Cd(Three_picoline)4+2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 4 Three_picoline = Cd(Three_picoline)4+2 + log_k 4 + delta_h 0 kJ + -gamma 0 0 # Id: 1609814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + Three_picoline = Cu(Three_picoline)+ - log_k 5.6 - delta_h 0 kJ - -gamma 0 0 + log_k 5.6 + delta_h 0 kJ + -gamma 0 0 # Id: 2309811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 2Three_picoline = Cu(Three_picoline)2+ - log_k 7.78 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 2 Three_picoline = Cu(Three_picoline)2+ + log_k 7.78 + delta_h 0 kJ + -gamma 0 0 # Id: 2309812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 3Three_picoline = Cu(Three_picoline)3+ - log_k 8.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 3 Three_picoline = Cu(Three_picoline)3+ + log_k 8.6 + delta_h 0 kJ + -gamma 0 0 # Id: 2309813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 4Three_picoline = Cu(Three_picoline)4+ - log_k 9 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 4 Three_picoline = Cu(Three_picoline)4+ + log_k 9 + delta_h 0 kJ + -gamma 0 0 # Id: 2309814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Three_picoline = Cu(Three_picoline)+2 - log_k 2.77 - delta_h 0 kJ - -gamma 0 0 + log_k 2.77 + delta_h 0 kJ + -gamma 0 0 # Id: 2319811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Three_picoline = Cu(Three_picoline)2+2 - log_k 4.8 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Three_picoline = Cu(Three_picoline)2+2 + log_k 4.8 + delta_h 0 kJ + -gamma 0 0 # Id: 2319812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 3Three_picoline = Cu(Three_picoline)3+2 - log_k 6.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 3 Three_picoline = Cu(Three_picoline)3+2 + log_k 6.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2319813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 4Three_picoline = Cu(Three_picoline)4+2 - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 4 Three_picoline = Cu(Three_picoline)4+2 + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2319814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Three_picoline = Ag(Three_picoline)+ - log_k 2.2 - delta_h -21.7568 kJ - -gamma 0 0 + log_k 2.2 + delta_h -21.7568 kJ + -gamma 0 0 # Id: 209811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Three_picoline = Ag(Three_picoline)2+ - log_k 4.46 - delta_h -49.7896 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Three_picoline = Ag(Three_picoline)2+ + log_k 4.46 + delta_h -49.7896 kJ + -gamma 0 0 # Id: 209812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Three_picoline = Ni(Three_picoline)+2 - log_k 1.87 - delta_h 0 kJ - -gamma 0 0 + log_k 1.87 + delta_h 0 kJ + -gamma 0 0 # Id: 5409811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Three_picoline = Ni(Three_picoline)2+2 - log_k 3.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Three_picoline = Ni(Three_picoline)2+2 + log_k 3.3 + delta_h 0 kJ + -gamma 0 0 # Id: 5409812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 3Three_picoline = Ni(Three_picoline)3+2 - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 3 Three_picoline = Ni(Three_picoline)3+2 + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 # Id: 5409813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 4Three_picoline = Ni(Three_picoline)4+2 - log_k 4.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 4 Three_picoline = Ni(Three_picoline)4+2 + log_k 4.6 + delta_h 0 kJ + -gamma 0 0 # Id: 5409814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Three_picoline = Co(Three_picoline)+2 - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 # Id: 2009811 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 -Co+2 + 2Three_picoline = Co(Three_picoline)2+2 - log_k 2.2 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Three_picoline = Co(Three_picoline)2+2 + log_k 2.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2009812 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 -Co+2 + 3Three_picoline = Co(Three_picoline)3+2 - log_k 2.5 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 3 Three_picoline = Co(Three_picoline)3+2 + log_k 2.5 + delta_h 0 kJ + -gamma 0 0 # Id: 2009813 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 H+ + Four_picoline = H(Four_picoline)+ - log_k 6.03 - delta_h -25.3132 kJ - -gamma 0 0 + log_k 6.03 + delta_h -25.3132 kJ + -gamma 0 0 # Id: 3309821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Four_picoline = Zn(Four_picoline)+2 - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 # Id: 9509821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Four_picoline = Zn(Four_picoline)2+2 - log_k 2.11 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2 Four_picoline = Zn(Four_picoline)2+2 + log_k 2.11 + delta_h 0 kJ + -gamma 0 0 # Id: 9509822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 3Four_picoline = Zn(Four_picoline)3+2 - log_k 2.85 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 3 Four_picoline = Zn(Four_picoline)3+2 + log_k 2.85 + delta_h 0 kJ + -gamma 0 0 # Id: 9509823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Four_picoline = Cd(Four_picoline)+2 - log_k 1.59 - delta_h 0 kJ - -gamma 0 0 + log_k 1.59 + delta_h 0 kJ + -gamma 0 0 # Id: 1609821 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Four_picoline = Cd(Four_picoline)2+2 - log_k 2.4 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2 Four_picoline = Cd(Four_picoline)2+2 + log_k 2.4 + delta_h 0 kJ + -gamma 0 0 # Id: 1609822 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Four_picoline = Cd(Four_picoline)3+2 - log_k 3.18 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3 Four_picoline = Cd(Four_picoline)3+2 + log_k 3.18 + delta_h 0 kJ + -gamma 0 0 # Id: 1609823 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 4Four_picoline = Cd(Four_picoline)4+2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 4 Four_picoline = Cd(Four_picoline)4+2 + log_k 4 + delta_h 0 kJ + -gamma 0 0 # Id: 1609824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + Four_picoline = Cu(Four_picoline)+ - log_k 5.65 - delta_h 0 kJ - -gamma 0 0 + log_k 5.65 + delta_h 0 kJ + -gamma 0 0 # Id: 2309821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 2Four_picoline = Cu(Four_picoline)2+ - log_k 8.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 2 Four_picoline = Cu(Four_picoline)2+ + log_k 8.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2309822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 3Four_picoline = Cu(Four_picoline)3+ - log_k 8.8 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 3 Four_picoline = Cu(Four_picoline)3+ + log_k 8.8 + delta_h 0 kJ + -gamma 0 0 # Id: 2309823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 4Four_picoline = Cu(Four_picoline)4+ - log_k 9.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 4 Four_picoline = Cu(Four_picoline)4+ + log_k 9.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2309824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Four_picoline = Cu(Four_picoline)+2 - log_k 2.88 - delta_h 0 kJ - -gamma 0 0 + log_k 2.88 + delta_h 0 kJ + -gamma 0 0 # Id: 2319821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Four_picoline = Cu(Four_picoline)2+2 - log_k 5.16 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Four_picoline = Cu(Four_picoline)2+2 + log_k 5.16 + delta_h 0 kJ + -gamma 0 0 # Id: 2319822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 3Four_picoline = Cu(Four_picoline)3+2 - log_k 6.77 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 3 Four_picoline = Cu(Four_picoline)3+2 + log_k 6.77 + delta_h 0 kJ + -gamma 0 0 # Id: 2319823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 4Four_picoline = Cu(Four_picoline)4+2 - log_k 8.08 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 4 Four_picoline = Cu(Four_picoline)4+2 + log_k 8.08 + delta_h 0 kJ + -gamma 0 0 # Id: 2319824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 5Four_picoline = Cu(Four_picoline)5+2 - log_k 8.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 5 Four_picoline = Cu(Four_picoline)5+2 + log_k 8.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2319825 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Four_picoline = Ag(Four_picoline)+ - log_k 2.03 - delta_h -25.5224 kJ - -gamma 0 0 + log_k 2.03 + delta_h -25.5224 kJ + -gamma 0 0 # Id: 209821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Four_picoline = Ag(Four_picoline)2+ - log_k 4.39 - delta_h -53.5552 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Four_picoline = Ag(Four_picoline)2+ + log_k 4.39 + delta_h -53.5552 kJ + -gamma 0 0 # Id: 209822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Four_picoline = Ni(Four_picoline)+2 - log_k 2.11 - delta_h 0 kJ - -gamma 0 0 + log_k 2.11 + delta_h 0 kJ + -gamma 0 0 # Id: 5409821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Four_picoline = Ni(Four_picoline)2+2 - log_k 3.59 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Four_picoline = Ni(Four_picoline)2+2 + log_k 3.59 + delta_h 0 kJ + -gamma 0 0 # Id: 5409822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 3Four_picoline = Ni(Four_picoline)3+2 - log_k 4.34 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 3 Four_picoline = Ni(Four_picoline)3+2 + log_k 4.34 + delta_h 0 kJ + -gamma 0 0 # Id: 5409823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 4Four_picoline = Ni(Four_picoline)4+2 - log_k 4.7 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 4 Four_picoline = Ni(Four_picoline)4+2 + log_k 4.7 + delta_h 0 kJ + -gamma 0 0 # Id: 5409824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Four_picoline = Co(Four_picoline)+2 - log_k 1.56 - delta_h 0 kJ - -gamma 0 0 + log_k 1.56 + delta_h 0 kJ + -gamma 0 0 # Id: 2009821 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 -Co+2 + 2Four_picoline = Co(Four_picoline)2+2 - log_k 2.51 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Four_picoline = Co(Four_picoline)2+2 + log_k 2.51 + delta_h 0 kJ + -gamma 0 0 # Id: 2009822 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 -Co+2 + 3Four_picoline = Co(Four_picoline)3+2 - log_k 2.94 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 3 Four_picoline = Co(Four_picoline)3+2 + log_k 2.94 + delta_h 0 kJ + -gamma 0 0 # Id: 2009823 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 -Co+2 + 4Four_picoline = Co(Four_picoline)4+2 - log_k 3.17 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 4 Four_picoline = Co(Four_picoline)4+2 + log_k 3.17 + delta_h 0 kJ + -gamma 0 0 # Id: 2009824 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 H+ + Formate- = H(Formate) - log_k 3.745 - delta_h 0.1674 kJ - -gamma 0 0 + log_k 3.745 + delta_h 0.1674 kJ + -gamma 0 0 # Id: 3309831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Formate- = Pb(Formate)+ - log_k 2.2 - delta_h 0 kJ - -gamma 0 0 + log_k 2.2 + delta_h 0 kJ + -gamma 0 0 # Id: 6009831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + Formate- = Zn(Formate)+ - log_k 1.44 - delta_h 0 kJ - -gamma 0 0 + log_k 1.44 + delta_h 0 kJ + -gamma 0 0 # Id: 9509831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Formate- = Cd(Formate)+ - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 # Id: 1609831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Hg(OH)2 + Formate- + 2H+ = Hg(Formate)+ + 2H2O - log_k 9.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Hg(OH)2 + Formate- + 2 H+ = Hg(Formate)+ + 2 H2O + log_k 9.6 + delta_h 0 kJ + -gamma 0 0 # Id: 3619831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Formate- = Cu(Formate)+ - log_k 2 - delta_h 0 kJ - -gamma 0 0 + log_k 2 + delta_h 0 kJ + -gamma 0 0 # Id: 2319831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Formate- = Ni(Formate)+ - log_k 1.22 - delta_h 0 kJ - -gamma 0 0 + log_k 1.22 + delta_h 0 kJ + -gamma 0 0 # Id: 5409831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Co+2 + Formate- = Co(Formate)+ - log_k 1.209 - delta_h 0 kJ - -gamma 0 0 + log_k 1.209 + delta_h 0 kJ + -gamma 0 0 # Id: 2009831 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 30.0 -Co+2 + 2Formate- = Co(Formate)2 - log_k 1.1365 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Formate- = Co(Formate)2 + log_k 1.1365 + delta_h 0 kJ + -gamma 0 0 # Id: 2009832 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 2.00 25.0 Cr+2 + Formate- = Cr(Formate)+ - log_k 1.07 - delta_h 0 kJ - -gamma 0 0 + log_k 1.07 + delta_h 0 kJ + -gamma 0 0 # Id: 2109831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Formate- = Mg(Formate)+ - log_k 1.43 - delta_h 0 kJ - -gamma 0 0 + log_k 1.43 + delta_h 0 kJ + -gamma 0 0 # Id: 4609831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Formate- = Ca(Formate)+ - log_k 1.43 - delta_h 4.184 kJ - -gamma 0 0 + log_k 1.43 + delta_h 4.184 kJ + -gamma 0 0 # Id: 1509831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Formate- = Sr(Formate)+ - log_k 1.39 - delta_h 4 kJ - -gamma 0 0 + log_k 1.39 + delta_h 4 kJ + -gamma 0 0 # Id: 8009831 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + Formate- = Ba(Formate)+ - log_k 1.38 - delta_h 0 kJ - -gamma 0 0 + log_k 1.38 + delta_h 0 kJ + -gamma 0 0 # Id: 1009831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Isovalerate- = H(Isovalerate) - log_k 4.781 - delta_h 4.5606 kJ - -gamma 0 0 + log_k 4.781 + delta_h 4.5606 kJ + -gamma 0 0 # Id: 3309841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Isovalerate- = Zn(Isovalerate)+ - log_k 1.39 - delta_h 0 kJ - -gamma 0 0 + log_k 1.39 + delta_h 0 kJ + -gamma 0 0 # Id: 9509841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Isovalerate- = Cu(Isovalerate)+ - log_k 2.08 - delta_h 0 kJ - -gamma 0 0 + log_k 2.08 + delta_h 0 kJ + -gamma 0 0 # Id: 2319841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Isovalerate- = Ca(Isovalerate)+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 # Id: 1509841 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Valerate- = H(Valerate) - log_k 4.843 - delta_h 2.887 kJ - -gamma 0 0 + log_k 4.843 + delta_h 2.887 kJ + -gamma 0 0 # Id: 3309851 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Valerate- = Cu(Valerate)+ - log_k 2.12 - delta_h 0 kJ - -gamma 0 0 + log_k 2.12 + delta_h 0 kJ + -gamma 0 0 # Id: 2319851 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Valerate- = Ca(Valerate)+ - log_k 0.3 - delta_h 0 kJ - -gamma 0 0 + log_k 0.3 + delta_h 0 kJ + -gamma 0 0 # Id: 1509851 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ba+2 + Valerate- = Ba(Valerate)+ - log_k -0.2 - delta_h 0 kJ - -gamma 0 0 + log_k -0.2 + delta_h 0 kJ + -gamma 0 0 # Id: 1009851 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Acetate- = H(Acetate) - log_k 4.757 - delta_h 0.41 kJ - -gamma 0 0 + log_k 4.757 + delta_h 0.41 kJ + -gamma 0 0 # Id: 3309921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + Acetate- = Sn(Acetate)+ + 2H2O - log_k 10.0213 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + Acetate- = Sn(Acetate)+ + 2 H2O + log_k 10.0213 + delta_h 0 kJ + -gamma 0 0 # Id: 7909921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 3.00 25.0 -Sn(OH)2 + 2H+ + 2Acetate- = Sn(Acetate)2 + 2H2O - log_k 12.32 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + 2 Acetate- = Sn(Acetate)2 + 2 H2O + log_k 12.32 + delta_h 0 kJ + -gamma 0 0 # Id: 7909922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 3.00 25.0 -Sn(OH)2 + 2H+ + 3Acetate- = Sn(Acetate)3- + 2H2O - log_k 13.55 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + 3 Acetate- = Sn(Acetate)3- + 2 H2O + log_k 13.55 + delta_h 0 kJ + -gamma 0 0 # Id: 7909923 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 3.00 25.0 Pb+2 + Acetate- = Pb(Acetate)+ - log_k 2.68 - delta_h -0.4 kJ - -gamma 0 0 + log_k 2.68 + delta_h -0.4 kJ + -gamma 0 0 # Id: 6009921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Pb+2 + 2Acetate- = Pb(Acetate)2 - log_k 4.08 - delta_h -0.8 kJ - -gamma 0 0 +Pb+2 + 2 Acetate- = Pb(Acetate)2 + log_k 4.08 + delta_h -0.8 kJ + -gamma 0 0 # Id: 6009922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Tl+ + Acetate- = Tl(Acetate) - log_k -0.11 - delta_h 0 kJ - -gamma 0 0 + log_k -0.11 + delta_h 0 kJ + -gamma 0 0 # Id: 8709921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Zn+2 + Acetate- = Zn(Acetate)+ - log_k 1.58 - delta_h 8.3 kJ - -gamma 0 0 + log_k 1.58 + delta_h 8.3 kJ + -gamma 0 0 # Id: 9509921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Zn+2 + 2Acetate- = Zn(Acetate)2 - log_k 2.6434 - delta_h 22 kJ - -gamma 0 0 +Zn+2 + 2 Acetate- = Zn(Acetate)2 + log_k 2.6434 + delta_h 22 kJ + -gamma 0 0 # Id: 9509922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Cd+2 + Acetate- = Cd(Acetate)+ - log_k 1.93 - delta_h 9.6 kJ - -gamma 0 0 + log_k 1.93 + delta_h 9.6 kJ + -gamma 0 0 # Id: 1609921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cd+2 + 2Acetate- = Cd(Acetate)2 - log_k 2.86 - delta_h 15 kJ - -gamma 0 0 +Cd+2 + 2 Acetate- = Cd(Acetate)2 + log_k 2.86 + delta_h 15 kJ + -gamma 0 0 # Id: 1609922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + Acetate- = Hg(Acetate)+ + 2H2O - log_k 10.494 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + Acetate- = Hg(Acetate)+ + 2 H2O + log_k 10.494 + delta_h 0 kJ + -gamma 0 0 # Id: 3619920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 2Acetate- = Hg(Acetate)2 + 2H2O - log_k 13.83 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 2 Acetate- = Hg(Acetate)2 + 2 H2O + log_k 13.83 + delta_h 0 kJ + -gamma 0 0 # Id: 3619921 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 3.00 25.0 Cu+2 + Acetate- = Cu(Acetate)+ - log_k 2.21 - delta_h 7.1 kJ - -gamma 0 0 + log_k 2.21 + delta_h 7.1 kJ + -gamma 0 0 # Id: 2319921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cu+2 + 2Acetate- = Cu(Acetate)2 - log_k 3.4 - delta_h 12 kJ - -gamma 0 0 +Cu+2 + 2 Acetate- = Cu(Acetate)2 + log_k 3.4 + delta_h 12 kJ + -gamma 0 0 # Id: 2319922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cu+2 + 3Acetate- = Cu(Acetate)3- - log_k 3.9434 - delta_h 6.2 kJ - -gamma 0 0 +Cu+2 + 3 Acetate- = Cu(Acetate)3- + log_k 3.9434 + delta_h 6.2 kJ + -gamma 0 0 # Id: 2319923 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Ag+ + Acetate- = Ag(Acetate) - log_k 0.73 - delta_h 3 kJ - -gamma 0 0 + log_k 0.73 + delta_h 3 kJ + -gamma 0 0 # Id: 209921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ag+ + 2Acetate- = Ag(Acetate)2- - log_k 0.64 - delta_h 3 kJ - -gamma 0 0 +Ag+ + 2 Acetate- = Ag(Acetate)2- + log_k 0.64 + delta_h 3 kJ + -gamma 0 0 # Id: 209922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ni+2 + Acetate- = Ni(Acetate)+ - log_k 1.37 - delta_h 8.7 kJ - -gamma 0 0 + log_k 1.37 + delta_h 8.7 kJ + -gamma 0 0 # Id: 5409921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ni+2 + 2Acetate- = Ni(Acetate)2 - log_k 2.1 - delta_h 10 kJ - -gamma 0 0 +Ni+2 + 2 Acetate- = Ni(Acetate)2 + log_k 2.1 + delta_h 10 kJ + -gamma 0 0 # Id: 5409922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Co+2 + Acetate- = Co(Acetate)+ - log_k 1.38 - delta_h 0 kJ - -gamma 0 0 + log_k 1.38 + delta_h 0 kJ + -gamma 0 0 # Id: 2009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 -Co+2 + 2Acetate- = Co(Acetate)2 - log_k 0.7565 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Acetate- = Co(Acetate)2 + log_k 0.7565 + delta_h 0 kJ + -gamma 0 0 # Id: 2009922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 2.00 25.0 Fe+2 + Acetate- = Fe(Acetate)+ - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 # Id: 2809920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Fe+3 + Acetate- = Fe(Acetate)+2 - log_k 4.0234 - delta_h 0 kJ - -gamma 0 0 + log_k 4.0234 + delta_h 0 kJ + -gamma 0 0 # Id: 2819920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 -Fe+3 + 2Acetate- = Fe(Acetate)2+ - log_k 7.5723 - delta_h 0 kJ - -gamma 0 0 +Fe+3 + 2 Acetate- = Fe(Acetate)2+ + log_k 7.5723 + delta_h 0 kJ + -gamma 0 0 # Id: 2819921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 -Fe+3 + 3Acetate- = Fe(Acetate)3 - log_k 9.5867 - delta_h 0 kJ - -gamma 0 0 +Fe+3 + 3 Acetate- = Fe(Acetate)3 + log_k 9.5867 + delta_h 0 kJ + -gamma 0 0 # Id: 2819922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Mn+2 + Acetate- = Mn(Acetate)+ - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 # Id: 4709920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Cr+2 + Acetate- = Cr(Acetate)+ - log_k 1.8 - delta_h 0 kJ - -gamma 0 0 + log_k 1.8 + delta_h 0 kJ + -gamma 0 0 # Id: 2109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 -Cr+2 + 2Acetate- = Cr(Acetate)2 - log_k 2.92 - delta_h 0 kJ - -gamma 0 0 +Cr+2 + 2 Acetate- = Cr(Acetate)2 + log_k 2.92 + delta_h 0 kJ + -gamma 0 0 # Id: 2109922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ + Acetate- = Cr(Acetate)+2 + 2H2O - log_k 15.0073 - delta_h -125.62 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + Acetate- = Cr(Acetate)+2 + 2 H2O + log_k 15.0073 + delta_h -125.62 kJ + -gamma 0 0 # Id: 2119921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 2H+ + 2Acetate- = Cr(Acetate)2+ + 2H2O - log_k 17.9963 - delta_h -117.62 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + 2 Acetate- = Cr(Acetate)2+ + 2 H2O + log_k 17.9963 + delta_h -117.62 kJ + -gamma 0 0 # Id: 2119922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 2H+ + 3Acetate- = Cr(Acetate)3 + 2H2O - log_k 20.7858 - delta_h -96.62 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + 3 Acetate- = Cr(Acetate)3 + 2 H2O + log_k 20.7858 + delta_h -96.62 kJ + -gamma 0 0 # Id: 2119923 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Be+2 + Acetate- = Be(Acetate)+ - log_k 2.0489 - delta_h 0 kJ - -gamma 0 0 + log_k 2.0489 + delta_h 0 kJ + -gamma 0 0 # Id: 1109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 -Be+2 + 2Acetate- = Be(Acetate)2 - log_k 3.0034 - delta_h 0 kJ - -gamma 0 0 +Be+2 + 2 Acetate- = Be(Acetate)2 + log_k 3.0034 + delta_h 0 kJ + -gamma 0 0 # Id: 1109922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Mg+2 + Acetate- = Mg(Acetate)+ - log_k 1.27 - delta_h 0 kJ - -gamma 0 0 + log_k 1.27 + delta_h 0 kJ + -gamma 0 0 # Id: 4609920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Ca+2 + Acetate- = Ca(Acetate)+ - log_k 1.18 - delta_h 4 kJ - -gamma 0 0 + log_k 1.18 + delta_h 4 kJ + -gamma 0 0 # Id: 1509920 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sr+2 + Acetate- = Sr(Acetate)+ - log_k 1.14 - delta_h 0 kJ - -gamma 0 0 + log_k 1.14 + delta_h 0 kJ + -gamma 0 0 # Id: 8009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Ba+2 + Acetate- = Ba(Acetate)+ - log_k 1.07 - delta_h 0 kJ - -gamma 0 0 + log_k 1.07 + delta_h 0 kJ + -gamma 0 0 # Id: 1009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Na+ + Acetate- = Na(Acetate) - log_k -0.18 - delta_h 12 kJ - -gamma 0 0 + log_k -0.18 + delta_h 12 kJ + -gamma 0 0 # Id: 5009920 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 K+ + Acetate- = K(Acetate) - log_k -0.1955 - delta_h 4.184 kJ - -gamma 0 0 + log_k -0.1955 + delta_h 4.184 kJ + -gamma 0 0 # Id: 4109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 H+ + Tartarate-2 = H(Tartarate)- - log_k 4.366 - delta_h -0.7531 kJ - -gamma 0 0 + log_k 4.366 + delta_h -0.7531 kJ + -gamma 0 0 # Id: 3309931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Tartarate-2 = H2(Tartarate) - log_k 7.402 - delta_h -3.6819 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Tartarate-2 = H2(Tartarate) + log_k 7.402 + delta_h -3.6819 kJ + -gamma 0 0 # Id: 3309932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sn(OH)2 + 2H+ + Tartarate-2 = Sn(Tartarate) + 2H2O - log_k 13.1518 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sn(OH)2 + 2 H+ + Tartarate-2 = Sn(Tartarate) + 2 H2O + log_k 13.1518 + delta_h 0 kJ + -gamma 0 0 # Id: 7909931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Pb+2 + Tartarate-2 = Pb(Tartarate) - log_k 3.98 - delta_h 0 kJ - -gamma 0 0 + log_k 3.98 + delta_h 0 kJ + -gamma 0 0 # Id: 6009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + 2Tartarate-2 = Al(Tartarate)2- - log_k 9.37 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + 2 Tartarate-2 = Al(Tartarate)2- + log_k 9.37 + delta_h 0 kJ + -gamma 0 0 # Id: 309931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Tartarate-2 = Tl(Tartarate)- - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 # Id: 8709931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Tartarate-2 + H+ = TlH(Tartarate) - log_k 4.8 - delta_h 0 kJ - -gamma 0 0 + log_k 4.8 + delta_h 0 kJ + -gamma 0 0 # Id: 8709932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Tartarate-2 = Zn(Tartarate) - log_k 3.43 - delta_h 0 kJ - -gamma 0 0 + log_k 3.43 + delta_h 0 kJ + -gamma 0 0 # Id: 9509931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Tartarate-2 = Zn(Tartarate)2-2 - log_k 5.5 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2 Tartarate-2 = Zn(Tartarate)2-2 + log_k 5.5 + delta_h 0 kJ + -gamma 0 0 # Id: 9509932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Tartarate-2 + H+ = ZnH(Tartarate)+ - log_k 5.9 - delta_h 0 kJ - -gamma 0 0 + log_k 5.9 + delta_h 0 kJ + -gamma 0 0 # Id: 9509933 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Tartarate-2 = Cd(Tartarate) - log_k 2.7 - delta_h 0 kJ - -gamma 0 0 + log_k 2.7 + delta_h 0 kJ + -gamma 0 0 # Id: 1609931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Tartarate-2 = Cd(Tartarate)2-2 - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2 Tartarate-2 = Cd(Tartarate)2-2 + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 # Id: 1609932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Tartarate-2 + 2H+ = Hg(Tartarate) + 2H2O - log_k 14 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Tartarate-2 + 2 H+ = Hg(Tartarate) + 2 H2O + log_k 14 + delta_h 0 kJ + -gamma 0 0 # Id: 3619931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Tartarate-2 = Cu(Tartarate) - log_k 3.97 - delta_h 0 kJ - -gamma 0 0 + log_k 3.97 + delta_h 0 kJ + -gamma 0 0 # Id: 2319931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Tartarate-2 + H+ = CuH(Tartarate)+ - log_k 6.7 - delta_h 0 kJ - -gamma 0 0 + log_k 6.7 + delta_h 0 kJ + -gamma 0 0 # Id: 2319932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Tartarate-2 = Ni(Tartarate) - log_k 3.46 - delta_h 0 kJ - -gamma 0 0 + log_k 3.46 + delta_h 0 kJ + -gamma 0 0 # Id: 5409931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Tartarate-2 + H+ = NiH(Tartarate)+ - log_k 5.89 - delta_h 0 kJ - -gamma 0 0 + log_k 5.89 + delta_h 0 kJ + -gamma 0 0 # Id: 5409932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Tartarate-2 = Co(Tartarate) - log_k 3.05 - delta_h 0 kJ - -gamma 0 0 + log_k 3.05 + delta_h 0 kJ + -gamma 0 0 # Id: 2009931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 -Co+2 + 2Tartarate-2 = Co(Tartarate)2-2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Tartarate-2 = Co(Tartarate)2-2 + log_k 4 + delta_h 0 kJ + -gamma 0 0 # Id: 2009932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Co+2 + H+ + Tartarate-2 = CoH(Tartarate)+ - log_k 5.754 - delta_h 0 kJ - -gamma 0 0 + log_k 5.754 + delta_h 0 kJ + -gamma 0 0 # Id: 2009933 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 20.0 Fe+2 + Tartarate-2 = Fe(Tartarate) - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 # Id: 2809931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Tartarate-2 = Fe(Tartarate)+ - log_k 7.78 - delta_h 0 kJ - -gamma 0 0 + log_k 7.78 + delta_h 0 kJ + -gamma 0 0 # Id: 2819931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Tartarate-2 = Mn(Tartarate) - log_k 3.38 - delta_h 0 kJ - -gamma 0 0 + log_k 3.38 + delta_h 0 kJ + -gamma 0 0 # Id: 4709931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Tartarate-2 + H+ = MnH(Tartarate)+ - log_k 6 - delta_h 0 kJ - -gamma 0 0 + log_k 6 + delta_h 0 kJ + -gamma 0 0 # Id: 4709932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Tartarate-2 = Mg(Tartarate) - log_k 2.3 - delta_h 0 kJ - -gamma 0 0 + log_k 2.3 + delta_h 0 kJ + -gamma 0 0 # Id: 4609931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Tartarate-2 + H+ = MgH(Tartarate)+ - log_k 5.75 - delta_h 0 kJ - -gamma 0 0 + log_k 5.75 + delta_h 0 kJ + -gamma 0 0 # Id: 4609932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Be+2 + Tartarate-2 = Be(Tartarate) - log_k 2.768 - delta_h 0 kJ - -gamma 0 0 + log_k 2.768 + delta_h 0 kJ + -gamma 0 0 # Id: 1109931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 -Be+2 + 2Tartarate-2 = Be(Tartarate)2-2 - log_k 4.008 - delta_h 0 kJ - -gamma 0 0 +Be+2 + 2 Tartarate-2 = Be(Tartarate)2-2 + log_k 4.008 + delta_h 0 kJ + -gamma 0 0 # Id: 1109932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 Ca+2 + Tartarate-2 = Ca(Tartarate) - log_k 2.8 - delta_h -8.368 kJ - -gamma 0 0 + log_k 2.8 + delta_h -8.368 kJ + -gamma 0 0 # Id: 1509931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Tartarate-2 + H+ = CaH(Tartarate)+ - log_k 5.86 - delta_h -9.1211 kJ - -gamma 0 0 + log_k 5.86 + delta_h -9.1211 kJ + -gamma 0 0 # Id: 1509932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Tartarate-2 = Sr(Tartarate) - log_k 2.55 - delta_h 0 kJ - -gamma 0 0 + log_k 2.55 + delta_h 0 kJ + -gamma 0 0 # Id: 8009931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 20.0 Sr+2 + H+ + Tartarate-2 = SrH(Tartarate)+ - log_k 5.8949 - delta_h 0 kJ - -gamma 0 0 + log_k 5.8949 + delta_h 0 kJ + -gamma 0 0 # Id: 8009932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Ba+2 + Tartarate-2 = Ba(Tartarate) - log_k 2.54 - delta_h 0 kJ - -gamma 0 0 + log_k 2.54 + delta_h 0 kJ + -gamma 0 0 # Id: 1009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Tartarate-2 + H+ = BaH(Tartarate)+ - log_k 5.77 - delta_h 0 kJ - -gamma 0 0 + log_k 5.77 + delta_h 0 kJ + -gamma 0 0 # Id: 1009932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Na+ + Tartarate-2 = Na(Tartarate)- - log_k 0.9 - delta_h -0.8368 kJ - -gamma 0 0 + log_k 0.9 + delta_h -0.8368 kJ + -gamma 0 0 # Id: 5009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Na+ + Tartarate-2 + H+ = NaH(Tartarate) - log_k 4.58 - delta_h -2.8451 kJ - -gamma 0 0 + log_k 4.58 + delta_h -2.8451 kJ + -gamma 0 0 # Id: 5009932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: K+ + Tartarate-2 = K(Tartarate)- - log_k 0.8 - delta_h 0 kJ - -gamma 0 0 + log_k 0.8 + delta_h 0 kJ + -gamma 0 0 # Id: 4109931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Glycine- = H(Glycine) - log_k 9.778 - delta_h -44.3504 kJ - -gamma 0 0 + log_k 9.778 + delta_h -44.3504 kJ + -gamma 0 0 # Id: 3309941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Glycine- = H2(Glycine)+ - log_k 12.128 - delta_h -48.4507 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Glycine- = H2(Glycine)+ + log_k 12.128 + delta_h -48.4507 kJ + -gamma 0 0 # Id: 3309942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Glycine- = Pb(Glycine)+ - log_k 5.47 - delta_h 0 kJ - -gamma 0 0 + log_k 5.47 + delta_h 0 kJ + -gamma 0 0 # Id: 6009941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + 2Glycine- = Pb(Glycine)2 - log_k 8.86 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + 2 Glycine- = Pb(Glycine)2 + log_k 8.86 + delta_h 0 kJ + -gamma 0 0 # Id: 6009942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Tl+ + Glycine- = Tl(Glycine) - log_k 1.72 - delta_h 0 kJ - -gamma 0 0 + log_k 1.72 + delta_h 0 kJ + -gamma 0 0 # Id: 8709941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Glycine- = Zn(Glycine)+ - log_k 5.38 - delta_h -11.7152 kJ - -gamma 0 0 + log_k 5.38 + delta_h -11.7152 kJ + -gamma 0 0 # Id: 9509941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Glycine- = Zn(Glycine)2 - log_k 9.81 - delta_h -24.2672 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2 Glycine- = Zn(Glycine)2 + log_k 9.81 + delta_h -24.2672 kJ + -gamma 0 0 # Id: 9509942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 3Glycine- = Zn(Glycine)3- - log_k 12.3 - delta_h -39.748 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 3 Glycine- = Zn(Glycine)3- + log_k 12.3 + delta_h -39.748 kJ + -gamma 0 0 # Id: 9509943 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Glycine- = Cd(Glycine)+ - log_k 4.69 - delta_h -8.7864 kJ - -gamma 0 0 + log_k 4.69 + delta_h -8.7864 kJ + -gamma 0 0 # Id: 1609941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Glycine- = Cd(Glycine)2 - log_k 8.4 - delta_h -22.5936 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2 Glycine- = Cd(Glycine)2 + log_k 8.4 + delta_h -22.5936 kJ + -gamma 0 0 # Id: 1609942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 3Glycine- = Cd(Glycine)3- - log_k 10.7 - delta_h -35.9824 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 3 Glycine- = Cd(Glycine)3- + log_k 10.7 + delta_h -35.9824 kJ + -gamma 0 0 # Id: 1609943 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Glycine- + 2H+ = Hg(Glycine)+ + 2H2O - log_k 17 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Glycine- + 2 H+ = Hg(Glycine)+ + 2 H2O + log_k 17 + delta_h 0 kJ + -gamma 0 0 # Id: 3619941 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Hg(OH)2 + 2Glycine- + 2H+ = Hg(Glycine)2 + 2H2O - log_k 25.8 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Hg(OH)2 + 2 Glycine- + 2 H+ = Hg(Glycine)2 + 2 H2O + log_k 25.8 + delta_h 0 kJ + -gamma 0 0 # Id: 3619942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cu+ + 2Glycine- = Cu(Glycine)2- - log_k 10.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cu+ + 2 Glycine- = Cu(Glycine)2- + log_k 10.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2309941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Glycine- = Cu(Glycine)+ - log_k 8.57 - delta_h -25.104 kJ - -gamma 0 0 + log_k 8.57 + delta_h -25.104 kJ + -gamma 0 0 # Id: 2319941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Glycine- = Cu(Glycine)2 - log_k 15.7 - delta_h -54.8104 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Glycine- = Cu(Glycine)2 + log_k 15.7 + delta_h -54.8104 kJ + -gamma 0 0 # Id: 2319942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Glycine- = Ag(Glycine) - log_k 3.51 - delta_h -19.2464 kJ - -gamma 0 0 + log_k 3.51 + delta_h -19.2464 kJ + -gamma 0 0 # Id: 209941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Glycine- = Ag(Glycine)2- - log_k 6.89 - delta_h -48.116 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Glycine- = Ag(Glycine)2- + log_k 6.89 + delta_h -48.116 kJ + -gamma 0 0 # Id: 209942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Glycine- = Ni(Glycine)+ - log_k 6.15 - delta_h -18.828 kJ - -gamma 0 0 + log_k 6.15 + delta_h -18.828 kJ + -gamma 0 0 # Id: 5409941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Glycine- = Ni(Glycine)2 - log_k 11.12 - delta_h -38.0744 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Glycine- = Ni(Glycine)2 + log_k 11.12 + delta_h -38.0744 kJ + -gamma 0 0 # Id: 5409942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 3Glycine- = Ni(Glycine)3- - log_k 14.63 - delta_h -62.3416 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 3 Glycine- = Ni(Glycine)3- + log_k 14.63 + delta_h -62.3416 kJ + -gamma 0 0 # Id: 5409943 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Co+2 + Glycine- = Co(Glycine)+ - log_k 5.07 - delta_h -12 kJ - -gamma 0 0 + log_k 5.07 + delta_h -12 kJ + -gamma 0 0 # Id: 2009941 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Co+2 + 2Glycine- = Co(Glycine)2 - log_k 9.07 - delta_h -26 kJ - -gamma 0 0 +Co+2 + 2 Glycine- = Co(Glycine)2 + log_k 9.07 + delta_h -26 kJ + -gamma 0 0 # Id: 2009942 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Co+2 + 3Glycine- = Co(Glycine)3- - log_k 11.6 - delta_h -41 kJ - -gamma 0 0 +Co+2 + 3 Glycine- = Co(Glycine)3- + log_k 11.6 + delta_h -41 kJ + -gamma 0 0 # Id: 2009943 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Co+2 + Glycine- + H2O = CoOH(Glycine) + H+ - log_k -5.02 - delta_h 0 kJ - -gamma 0 0 + log_k -5.02 + delta_h 0 kJ + -gamma 0 0 # Id: 2009944 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Fe+2 + Glycine- = Fe(Glycine)+ - log_k 4.31 - delta_h -15.0624 kJ - -gamma 0 0 + log_k 4.31 + delta_h -15.0624 kJ + -gamma 0 0 # Id: 2809941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 2Glycine- = Fe(Glycine)2 - log_k 8.29 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 2 Glycine- = Fe(Glycine)2 + log_k 8.29 + delta_h 0 kJ + -gamma 0 0 # Id: 2809942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Glycine- = Fe(Glycine)+2 - log_k 9.38 - delta_h 0 kJ - -gamma 0 0 + log_k 9.38 + delta_h 0 kJ + -gamma 0 0 # Id: 2819941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Glycine- + H+ = FeH(Glycine)+3 - log_k 11.55 - delta_h 0 kJ - -gamma 0 0 + log_k 11.55 + delta_h 0 kJ + -gamma 0 0 # Id: 2819942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Glycine- = Mn(Glycine)+ - log_k 3.19 - delta_h -1.2552 kJ - -gamma 0 0 + log_k 3.19 + delta_h -1.2552 kJ + -gamma 0 0 # Id: 4709941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + 2Glycine- = Mn(Glycine)2 - log_k 5.4 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + 2 Glycine- = Mn(Glycine)2 + log_k 5.4 + delta_h 0 kJ + -gamma 0 0 # Id: 4709942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Glycine- + 2H+ = Cr(Glycine)+2 + 2H2O - log_k 18.7 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Glycine- + 2 H+ = Cr(Glycine)+2 + 2 H2O + log_k 18.7 + delta_h 0 kJ + -gamma 0 0 # Id: 2119941 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 2Glycine- + 2H+ = Cr(Glycine)2+ + 2H2O - log_k 25.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 2 Glycine- + 2 H+ = Cr(Glycine)2+ + 2 H2O + log_k 25.6 + delta_h 0 kJ + -gamma 0 0 # Id: 2119942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 3Glycine- + 2H+ = Cr(Glycine)3 + 2H2O - log_k 31.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 3 Glycine- + 2 H+ = Cr(Glycine)3 + 2 H2O + log_k 31.6 + delta_h 0 kJ + -gamma 0 0 # Id: 2119943 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mg+2 + Glycine- = Mg(Glycine)+ - log_k 2.08 - delta_h 4.184 kJ - -gamma 0 0 + log_k 2.08 + delta_h 4.184 kJ + -gamma 0 0 # Id: 4609941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Glycine- = Ca(Glycine)+ - log_k 1.39 - delta_h -4.184 kJ - -gamma 0 0 + log_k 1.39 + delta_h -4.184 kJ + -gamma 0 0 # Id: 1509941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Glycine- + H+ = CaH(Glycine)+2 - log_k 10.1 - delta_h -35.9824 kJ - -gamma 0 0 + log_k 10.1 + delta_h -35.9824 kJ + -gamma 0 0 # Id: 1509942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Glycine- = Sr(Glycine)+ - log_k 0.91 - delta_h 0 kJ - -gamma 0 0 + log_k 0.91 + delta_h 0 kJ + -gamma 0 0 # Id: 8009941 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Ba+2 + Glycine- = Ba(Glycine)+ - log_k 0.77 - delta_h 0 kJ - -gamma 0 0 + log_k 0.77 + delta_h 0 kJ + -gamma 0 0 # Id: 1009941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Salicylate-2 = H(Salicylate)- - log_k 13.7 - delta_h -35.7732 kJ - -gamma 0 0 + log_k 13.7 + delta_h -35.7732 kJ + -gamma 0 0 # Id: 3309951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Salicylate-2 = H2(Salicylate) - log_k 16.8 - delta_h -38.7857 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Salicylate-2 = H2(Salicylate) + log_k 16.8 + delta_h -38.7857 kJ + -gamma 0 0 # Id: 3309952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Salicylate-2 = Zn(Salicylate) - log_k 7.71 - delta_h 0 kJ - -gamma 0 0 + log_k 7.71 + delta_h 0 kJ + -gamma 0 0 # Id: 9509951 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + Salicylate-2 + H+ = ZnH(Salicylate)+ - log_k 15.5 - delta_h 0 kJ - -gamma 0 0 + log_k 15.5 + delta_h 0 kJ + -gamma 0 0 # Id: 9509952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Salicylate-2 = Cd(Salicylate) - log_k 6.2 - delta_h 0 kJ - -gamma 0 0 + log_k 6.2 + delta_h 0 kJ + -gamma 0 0 # Id: 1609951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Salicylate-2 + H+ = CdH(Salicylate)+ - log_k 16 - delta_h 0 kJ - -gamma 0 0 + log_k 16 + delta_h 0 kJ + -gamma 0 0 # Id: 1609952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Salicylate-2 = Cu(Salicylate) - log_k 11.3 - delta_h -17.9912 kJ - -gamma 0 0 + log_k 11.3 + delta_h -17.9912 kJ + -gamma 0 0 # Id: 2319951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Salicylate-2 = Cu(Salicylate)2-2 - log_k 19.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Salicylate-2 = Cu(Salicylate)2-2 + log_k 19.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2319952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Salicylate-2 + H+ = CuH(Salicylate)+ - log_k 14.8 - delta_h 0 kJ - -gamma 0 0 + log_k 14.8 + delta_h 0 kJ + -gamma 0 0 # Id: 2319953 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Salicylate-2 = Ni(Salicylate) - log_k 8.2 - delta_h 0 kJ - -gamma 0 0 + log_k 8.2 + delta_h 0 kJ + -gamma 0 0 # Id: 5409951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Salicylate-2 = Ni(Salicylate)2-2 - log_k 12.64 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Salicylate-2 = Ni(Salicylate)2-2 + log_k 12.64 + delta_h 0 kJ + -gamma 0 0 # Id: 5409952 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Co+2 + Salicylate-2 = Co(Salicylate) - log_k 7.4289 - delta_h 0 kJ - -gamma 0 0 + log_k 7.4289 + delta_h 0 kJ + -gamma 0 0 # Id: 2009951 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 -Co+2 + 2Salicylate-2 = Co(Salicylate)2-2 - log_k 11.8 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Salicylate-2 = Co(Salicylate)2-2 + log_k 11.8 + delta_h 0 kJ + -gamma 0 0 # Id: 2009952 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Fe+2 + Salicylate-2 = Fe(Salicylate) - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2809951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 2Salicylate-2 = Fe(Salicylate)2-2 - log_k 11.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 2 Salicylate-2 = Fe(Salicylate)2-2 + log_k 11.6 + delta_h 0 kJ + -gamma 0 0 # Id: 2809952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Salicylate-2 = Fe(Salicylate)+ - log_k 17.6 - delta_h 0 kJ - -gamma 0 0 + log_k 17.6 + delta_h 0 kJ + -gamma 0 0 # Id: 2819951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + 2Salicylate-2 = Fe(Salicylate)2- - log_k 29.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + 2 Salicylate-2 = Fe(Salicylate)2- + log_k 29.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2819952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Salicylate-2 = Mn(Salicylate) - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 # Id: 4709951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + 2Salicylate-2 = Mn(Salicylate)2-2 - log_k 10.1 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + 2 Salicylate-2 = Mn(Salicylate)2-2 + log_k 10.1 + delta_h 0 kJ + -gamma 0 0 # Id: 4709952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Be+2 + Salicylate-2 = Be(Salicylate) - log_k 13.3889 - delta_h -31.7732 kJ - -gamma 0 0 + log_k 13.3889 + delta_h -31.7732 kJ + -gamma 0 0 # Id: 1109951 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Be+2 + 2Salicylate-2 = Be(Salicylate)2-2 - log_k 23.25 - delta_h 0 kJ - -gamma 0 0 +Be+2 + 2 Salicylate-2 = Be(Salicylate)2-2 + log_k 23.25 + delta_h 0 kJ + -gamma 0 0 # Id: 1109952 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Mg+2 + Salicylate-2 = Mg(Salicylate) - log_k 5.76 - delta_h 0 kJ - -gamma 0 0 + log_k 5.76 + delta_h 0 kJ + -gamma 0 0 # Id: 4609951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Salicylate-2 + H+ = MgH(Salicylate)+ - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 # Id: 4609952 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ca+2 + Salicylate-2 = Ca(Salicylate) - log_k 4.05 - delta_h 0 kJ - -gamma 0 0 + log_k 4.05 + delta_h 0 kJ + -gamma 0 0 # Id: 1509951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Salicylate-2 + H+ = CaH(Salicylate)+ - log_k 14.3 - delta_h 0 kJ - -gamma 0 0 + log_k 14.3 + delta_h 0 kJ + -gamma 0 0 # Id: 1509952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Salicylate-2 + H+ = BaH(Salicylate)+ - log_k 13.9 - delta_h 0 kJ - -gamma 0 0 + log_k 13.9 + delta_h 0 kJ + -gamma 0 0 # Id: 1009951 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Glutamate-2 = H(Glutamate)- - log_k 9.96 - delta_h -41.0032 kJ - -gamma 0 0 + log_k 9.96 + delta_h -41.0032 kJ + -gamma 0 0 # Id: 3309961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Glutamate-2 = H2(Glutamate) - log_k 14.26 - delta_h -43.5136 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Glutamate-2 = H2(Glutamate) + log_k 14.26 + delta_h -43.5136 kJ + -gamma 0 0 # Id: 3309962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -3H+ + Glutamate-2 = H3(Glutamate)+ - log_k 16.42 - delta_h -46.8608 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +3 H+ + Glutamate-2 = H3(Glutamate)+ + log_k 16.42 + delta_h -46.8608 kJ + -gamma 0 0 # Id: 3309963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Glutamate-2 = Pb(Glutamate) - log_k 6.43 - delta_h 0 kJ - -gamma 0 0 + log_k 6.43 + delta_h 0 kJ + -gamma 0 0 # Id: 6009961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Pb+2 + 2Glutamate-2 = Pb(Glutamate)2-2 - log_k 8.61 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Pb+2 + 2 Glutamate-2 = Pb(Glutamate)2-2 + log_k 8.61 + delta_h 0 kJ + -gamma 0 0 # Id: 6009962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Pb+2 + Glutamate-2 + H+ = PbH(Glutamate)+ - log_k 14.08 - delta_h 0 kJ - -gamma 0 0 + log_k 14.08 + delta_h 0 kJ + -gamma 0 0 # Id: 6009963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Al+3 + Glutamate-2 + H+ = AlH(Glutamate)+2 - log_k 13.07 - delta_h 0 kJ - -gamma 0 0 + log_k 13.07 + delta_h 0 kJ + -gamma 0 0 # Id: 309961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Glutamate-2 = Zn(Glutamate) - log_k 6.2 - delta_h 0 kJ - -gamma 0 0 + log_k 6.2 + delta_h 0 kJ + -gamma 0 0 # Id: 9509961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 2Glutamate-2 = Zn(Glutamate)2-2 - log_k 9.13 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 2 Glutamate-2 = Zn(Glutamate)2-2 + log_k 9.13 + delta_h 0 kJ + -gamma 0 0 # Id: 9509962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 3Glutamate-2 = Zn(Glutamate)3-4 - log_k 9.8 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 3 Glutamate-2 = Zn(Glutamate)3-4 + log_k 9.8 + delta_h 0 kJ + -gamma 0 0 # Id: 9509963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Glutamate-2 = Cd(Glutamate) - log_k 4.7 - delta_h 0 kJ - -gamma 0 0 + log_k 4.7 + delta_h 0 kJ + -gamma 0 0 # Id: 1609961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Glutamate-2 = Cd(Glutamate)2-2 - log_k 7.59 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2 Glutamate-2 = Cd(Glutamate)2-2 + log_k 7.59 + delta_h 0 kJ + -gamma 0 0 # Id: 1609962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Glutamate-2 + 2H+ = Hg(Glutamate) + 2H2O - log_k 19.8 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Glutamate-2 + 2 H+ = Hg(Glutamate) + 2 H2O + log_k 19.8 + delta_h 0 kJ + -gamma 0 0 # Id: 3619961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Hg(OH)2 + 2Glutamate-2 + 2H+ = Hg(Glutamate)2-2 + 2H2O - log_k 26.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Hg(OH)2 + 2 Glutamate-2 + 2 H+ = Hg(Glutamate)2-2 + 2 H2O + log_k 26.2 + delta_h 0 kJ + -gamma 0 0 # Id: 3619962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cu+2 + Glutamate-2 = Cu(Glutamate) - log_k 9.17 - delta_h -20.92 kJ - -gamma 0 0 + log_k 9.17 + delta_h -20.92 kJ + -gamma 0 0 # Id: 2319961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Glutamate-2 = Cu(Glutamate)2-2 - log_k 15.78 - delta_h -48.116 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Glutamate-2 = Cu(Glutamate)2-2 + log_k 15.78 + delta_h -48.116 kJ + -gamma 0 0 # Id: 2319962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Glutamate-2 + H+ = CuH(Glutamate)+ - log_k 13.3 - delta_h -28.0328 kJ - -gamma 0 0 + log_k 13.3 + delta_h -28.0328 kJ + -gamma 0 0 # Id: 2319963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Glutamate-2 = Ag(Glutamate)- - log_k 4.22 - delta_h 0 kJ - -gamma 0 0 + log_k 4.22 + delta_h 0 kJ + -gamma 0 0 # Id: 209961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Glutamate-2 = Ag(Glutamate)2-3 - log_k 7.36 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Glutamate-2 = Ag(Glutamate)2-3 + log_k 7.36 + delta_h 0 kJ + -gamma 0 0 # Id: 209962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -2Ag+ + Glutamate-2 = Ag2(Glutamate) - log_k 3.4 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +2 Ag+ + Glutamate-2 = Ag2(Glutamate) + log_k 3.4 + delta_h 0 kJ + -gamma 0 0 # Id: 209963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Glutamate-2 = Ni(Glutamate) - log_k 6.47 - delta_h 0 kJ - -gamma 0 0 + log_k 6.47 + delta_h 0 kJ + -gamma 0 0 # Id: 5409961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Glutamate-2 = Ni(Glutamate)2-2 - log_k 10.7 - delta_h -30.9616 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Glutamate-2 = Ni(Glutamate)2-2 + log_k 10.7 + delta_h -30.9616 kJ + -gamma 0 0 # Id: 5409962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Glutamate-2 = Co(Glutamate) - log_k 5.4178 - delta_h 0 kJ - -gamma 0 0 + log_k 5.4178 + delta_h 0 kJ + -gamma 0 0 # Id: 2009961 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 -Co+2 + 2Glutamate-2 = Co(Glutamate)2-2 - log_k 8.7178 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Glutamate-2 = Co(Glutamate)2-2 + log_k 8.7178 + delta_h 0 kJ + -gamma 0 0 # Id: 2009962 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Mn+2 + Glutamate-2 = Mn(Glutamate) - log_k 4.95 - delta_h 0 kJ - -gamma 0 0 + log_k 4.95 + delta_h 0 kJ + -gamma 0 0 # Id: 4709961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Mn+2 + 2Glutamate-2 = Mn(Glutamate)2-2 - log_k 8.48 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Mn+2 + 2 Glutamate-2 = Mn(Glutamate)2-2 + log_k 8.48 + delta_h 0 kJ + -gamma 0 0 # Id: 4709962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + Glutamate-2 + 2H+ = Cr(Glutamate)+ + 2H2O - log_k 22.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + Glutamate-2 + 2 H+ = Cr(Glutamate)+ + 2 H2O + log_k 22.6 + delta_h 0 kJ + -gamma 0 0 # Id: 2119961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 2Glutamate-2 + 2H+ = Cr(Glutamate)2- + 2H2O - log_k 30.7 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 2 Glutamate-2 + 2 H+ = Cr(Glutamate)2- + 2 H2O + log_k 30.7 + delta_h 0 kJ + -gamma 0 0 # Id: 2119962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + Glutamate-2 + 3H+ = CrH(Glutamate)+2 + 2H2O - log_k 25.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + Glutamate-2 + 3 H+ = CrH(Glutamate)+2 + 2 H2O + log_k 25.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2119963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mg+2 + Glutamate-2 = Mg(Glutamate) - log_k 2.8 - delta_h 0 kJ - -gamma 0 0 + log_k 2.8 + delta_h 0 kJ + -gamma 0 0 # Id: 4609961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Glutamate-2 = Ca(Glutamate) - log_k 2.06 - delta_h 0 kJ - -gamma 0 0 + log_k 2.06 + delta_h 0 kJ + -gamma 0 0 # Id: 1509961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Glutamate-2 + H+ = CaH(Glutamate)+ - log_k 11.13 - delta_h 0 kJ - -gamma 0 0 + log_k 11.13 + delta_h 0 kJ + -gamma 0 0 # Id: 1509962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Glutamate-2 = Sr(Glutamate) - log_k 2.2278 - delta_h 0 kJ - -gamma 0 0 + log_k 2.2278 + delta_h 0 kJ + -gamma 0 0 # Id: 8009961 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Ba+2 + Glutamate-2 = Ba(Glutamate) - log_k 2.14 - delta_h 0 kJ - -gamma 0 0 + log_k 2.14 + delta_h 0 kJ + -gamma 0 0 # Id: 1009961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Phthalate-2 = H(Phthalate)- - log_k 5.408 - delta_h 2.1757 kJ - -gamma 0 0 + log_k 5.408 + delta_h 2.1757 kJ + -gamma 0 0 # Id: 3309971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Phthalate-2 = H2(Phthalate) - log_k 8.358 - delta_h 4.8534 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Phthalate-2 = H2(Phthalate) + log_k 8.358 + delta_h 4.8534 kJ + -gamma 0 0 # Id: 3309972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Phthalate-2 = Pb(Phthalate) - log_k 4.26 - delta_h 0 kJ - -gamma 0 0 + log_k 4.26 + delta_h 0 kJ + -gamma 0 0 # Id: 6009971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Pb+2 + 2Phthalate-2 = Pb(Phthalate)2-2 - log_k 4.83 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Pb+2 + 2 Phthalate-2 = Pb(Phthalate)2-2 + log_k 4.83 + delta_h 0 kJ + -gamma 0 0 # Id: 6009972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Phthalate-2 + H+ = PbH(Phthalate)+ - log_k 6.98 - delta_h 0 kJ - -gamma 0 0 + log_k 6.98 + delta_h 0 kJ + -gamma 0 0 # Id: 6009973 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Phthalate-2 = Al(Phthalate)+ - log_k 4.56 - delta_h 0 kJ - -gamma 0 0 + log_k 4.56 + delta_h 0 kJ + -gamma 0 0 # Id: 309971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + 2Phthalate-2 = Al(Phthalate)2- - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + 2 Phthalate-2 = Al(Phthalate)2- + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 # Id: 309972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Phthalate-2 = Zn(Phthalate) - log_k 2.91 - delta_h 13.3888 kJ - -gamma 0 0 + log_k 2.91 + delta_h 13.3888 kJ + -gamma 0 0 # Id: 9509971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Phthalate-2 = Zn(Phthalate)2-2 - log_k 4.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2 Phthalate-2 = Zn(Phthalate)2-2 + log_k 4.2 + delta_h 0 kJ + -gamma 0 0 # Id: 9509972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Phthalate-2 = Cd(Phthalate) - log_k 3.43 - delta_h 0 kJ - -gamma 0 0 + log_k 3.43 + delta_h 0 kJ + -gamma 0 0 # Id: 1609971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Phthalate-2 + H+ = CdH(Phthalate)+ - log_k 6.3 - delta_h 0 kJ - -gamma 0 0 + log_k 6.3 + delta_h 0 kJ + -gamma 0 0 # Id: 1609973 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Phthalate-2 = Cd(Phthalate)2-2 - log_k 3.7 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2 Phthalate-2 = Cd(Phthalate)2-2 + log_k 3.7 + delta_h 0 kJ + -gamma 0 0 # Id: 1609972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Phthalate-2 = Cu(Phthalate) - log_k 4.02 - delta_h 8.368 kJ - -gamma 0 0 + log_k 4.02 + delta_h 8.368 kJ + -gamma 0 0 # Id: 2319971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Phthalate-2 + H+ = CuH(Phthalate)+ - log_k 7.1 - delta_h 3.8493 kJ - -gamma 0 0 + log_k 7.1 + delta_h 3.8493 kJ + -gamma 0 0 # Id: 2319970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Phthalate-2 = Cu(Phthalate)2-2 - log_k 5.3 - delta_h 15.8992 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Phthalate-2 = Cu(Phthalate)2-2 + log_k 5.3 + delta_h 15.8992 kJ + -gamma 0 0 # Id: 2319972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Phthalate-2 = Ni(Phthalate) - log_k 2.95 - delta_h 7.5312 kJ - -gamma 0 0 + log_k 2.95 + delta_h 7.5312 kJ + -gamma 0 0 # Id: 5409971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Phthalate-2 + H+ = NiH(Phthalate)+ - log_k 6.6 - delta_h 0 kJ - -gamma 0 0 + log_k 6.6 + delta_h 0 kJ + -gamma 0 0 # Id: 5409972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Phthalate-2 = Co(Phthalate) - log_k 2.83 - delta_h 7.9 kJ - -gamma 0 0 + log_k 2.83 + delta_h 7.9 kJ + -gamma 0 0 # Id: 2009971 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Co+2 + H+ + Phthalate-2 = CoH(Phthalate)+ - log_k 7.227 - delta_h 0 kJ - -gamma 0 0 + log_k 7.227 + delta_h 0 kJ + -gamma 0 0 # Id: 2009972 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 Mn+2 + Phthalate-2 = Mn(Phthalate) - log_k 2.74 - delta_h 10.0416 kJ - -gamma 0 0 + log_k 2.74 + delta_h 10.0416 kJ + -gamma 0 0 # Id: 4709971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Phthalate-2 + 2H+ = Cr(Phthalate)+ + 2H2O - log_k 16.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Phthalate-2 + 2 H+ = Cr(Phthalate)+ + 2 H2O + log_k 16.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2119971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 2Phthalate-2 + 2H+ = Cr(Phthalate)2- + 2H2O - log_k 21.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 2 Phthalate-2 + 2 H+ = Cr(Phthalate)2- + 2 H2O + log_k 21.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2119972 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 3Phthalate-2 + 2H+ = Cr(Phthalate)3-3 + 2H2O - log_k 23.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 3 Phthalate-2 + 2 H+ = Cr(Phthalate)3-3 + 2 H2O + log_k 23.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2119973 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Be+2 + Phthalate-2 = Be(Phthalate) - log_k 4.8278 - delta_h 0 kJ - -gamma 0 0 + log_k 4.8278 + delta_h 0 kJ + -gamma 0 0 # Id: 1109971 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 -Be+2 + 2Phthalate-2 = Be(Phthalate)2-2 - log_k 6.5478 - delta_h 0 kJ - -gamma 0 0 +Be+2 + 2 Phthalate-2 = Be(Phthalate)2-2 + log_k 6.5478 + delta_h 0 kJ + -gamma 0 0 # Id: 1109972 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Mg+2 + Phthalate-2 = Mg(Phthalate) - log_k 2.49 - delta_h 0 kJ - -gamma 0 0 + log_k 2.49 + delta_h 0 kJ + -gamma 0 0 # Id: 4609971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ca+2 + Phthalate-2 = Ca(Phthalate) - log_k 2.45 - delta_h 0 kJ - -gamma 0 0 + log_k 2.45 + delta_h 0 kJ + -gamma 0 0 # Id: 1509970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Phthalate-2 + H+ = CaH(Phthalate)+ - log_k 6.43 - delta_h 0 kJ - -gamma 0 0 + log_k 6.43 + delta_h 0 kJ + -gamma 0 0 # Id: 1509971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Phthalate-2 = Ba(Phthalate) - log_k 2.33 - delta_h 0 kJ - -gamma 0 0 + log_k 2.33 + delta_h 0 kJ + -gamma 0 0 # Id: 1009971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Na+ + Phthalate-2 = Na(Phthalate)- - log_k 0.8 - delta_h 4.184 kJ - -gamma 0 0 + log_k 0.8 + delta_h 4.184 kJ + -gamma 0 0 # Id: 5009970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: K+ + Phthalate-2 = K(Phthalate)- - log_k 0.7 - delta_h 3.7656 kJ - -gamma 0 0 + log_k 0.7 + delta_h 3.7656 kJ + -gamma 0 0 # Id: 4109971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: PHASES Sulfur - S + H+ + 2e- = HS- - log_k -2.1449 - delta_h -16.3 kJ + S + H+ + 2 e- = HS- + log_k -2.1449 + delta_h -16.3 kJ Semetal(hex - Se + H+ + 2e- = HSe- - log_k -7.7084 - delta_h 15.9 kJ + Se + H+ + 2 e- = HSe- + log_k -7.7084 + delta_h 15.9 kJ Semetal(am) - Se + H+ + 2e- = HSe- - log_k -7.1099 - delta_h 10.8784 kJ + Se + H+ + 2 e- = HSe- + log_k -7.1099 + delta_h 10.8784 kJ Sbmetal - Sb + 3H2O = Sb(OH)3 + 3H+ + 3e- - log_k -11.6889 - delta_h 83.89 kJ + Sb + 3 H2O = Sb(OH)3 + 3 H+ + 3 e- + log_k -11.6889 + delta_h 83.89 kJ Snmetal(wht) - Sn + 2H2O = Sn(OH)2 + 2H+ + 2e- - log_k -2.3266 - delta_h -0 kJ + Sn + 2 H2O = Sn(OH)2 + 2 H+ + 2 e- + log_k -2.3266 + delta_h -0 kJ Pbmetal - Pb = Pb+2 + 2e- - log_k 4.2462 - delta_h 0.92 kJ + Pb = Pb+2 + 2 e- + log_k 4.2462 + delta_h 0.92 kJ Tlmetal Tl = Tl+ + e- - log_k 5.6762 - delta_h 5.36 kJ + log_k 5.6762 + delta_h 5.36 kJ Znmetal - Zn = Zn+2 + 2e- - log_k 25.7886 - delta_h -153.39 kJ + Zn = Zn+2 + 2 e- + log_k 25.7886 + delta_h -153.39 kJ Cdmetal(alpha) - Cd = Cd+2 + 2e- - log_k 13.5147 - delta_h -75.33 kJ + Cd = Cd+2 + 2 e- + log_k 13.5147 + delta_h -75.33 kJ Cdmetal(gamma) - Cd = Cd+2 + 2e- - log_k 13.618 - delta_h -75.92 kJ + Cd = Cd+2 + 2 e- + log_k 13.618 + delta_h -75.92 kJ Hgmetal(l) - Hg = 0.5Hg2+2 + e- - log_k -13.4517 - delta_h 83.435 kJ + Hg = 0.5 Hg2+2 + e- + log_k -13.4517 + delta_h 83.435 kJ Cumetal Cu = Cu+ + e- - log_k -8.756 - delta_h 71.67 kJ + log_k -8.756 + delta_h 71.67 kJ Agmetal Ag = Ag+ + e- - log_k -13.5065 - delta_h 105.79 kJ + log_k -13.5065 + delta_h 105.79 kJ Crmetal - Cr = Cr+2 + 2e- - log_k 30.4831 - delta_h -172 kJ + Cr = Cr+2 + 2 e- + log_k 30.4831 + delta_h -172 kJ Vmetal - V = V+3 + 3e- - log_k 44.0253 - delta_h -259 kJ + V = V+3 + 3 e- + log_k 44.0253 + delta_h -259 kJ Stibnite - Sb2S3 + 6H2O = 2Sb(OH)3 + 3H+ + 3HS- - log_k -50.46 - delta_h 293.78 kJ + Sb2S3 + 6 H2O = 2 Sb(OH)3 + 3 H+ + 3 HS- + log_k -50.46 + delta_h 293.78 kJ Orpiment - As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ - log_k -61.0663 - delta_h 350.68 kJ + As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ + log_k -61.0663 + delta_h 350.68 kJ Realgar - AsS + 3H2O = H3AsO3 + HS- + 2H+ + e- - log_k -19.747 - delta_h 127.8 kJ + AsS + 3 H2O = H3AsO3 + HS- + 2 H+ + e- + log_k -19.747 + delta_h 127.8 kJ SnS - SnS + 2H2O = Sn(OH)2 + H+ + HS- - log_k -19.114 - delta_h -0 kJ + SnS + 2 H2O = Sn(OH)2 + H+ + HS- + log_k -19.114 + delta_h -0 kJ SnS2 - SnS2 + 6H2O = Sn(OH)6-2 + 4H+ + 2HS- - log_k -57.4538 - delta_h -0 kJ + SnS2 + 6 H2O = Sn(OH)6-2 + 4 H+ + 2 HS- + log_k -57.4538 + delta_h -0 kJ Galena PbS + H+ = Pb+2 + HS- - log_k -13.97 - delta_h 80 kJ + log_k -13.97 + delta_h 80 kJ Tl2S - Tl2S + H+ = 2Tl+ + HS- - log_k -7.19 - delta_h 91.52 kJ + Tl2S + H+ = 2 Tl+ + HS- + log_k -7.19 + delta_h 91.52 kJ ZnS(am) ZnS + H+ = Zn+2 + HS- - log_k -9.052 - delta_h 15.3553 kJ + log_k -9.052 + delta_h 15.3553 kJ Sphalerite ZnS + H+ = Zn+2 + HS- - log_k -11.45 - delta_h 30 kJ + log_k -11.45 + delta_h 30 kJ Wurtzite ZnS + H+ = Zn+2 + HS- - log_k -8.95 - delta_h 21.171 kJ + log_k -8.95 + delta_h 21.171 kJ Greenockite CdS + H+ = Cd+2 + HS- - log_k -14.36 - delta_h 55 kJ + log_k -14.36 + delta_h 55 kJ Hg2S Hg2S + H+ = Hg2+2 + HS- - log_k -11.6765 - delta_h 69.7473 kJ + log_k -11.6765 + delta_h 69.7473 kJ Cinnabar - HgS + 2H2O = Hg(OH)2 + H+ + HS- - log_k -45.694 - delta_h 253.76 kJ + HgS + 2 H2O = Hg(OH)2 + H+ + HS- + log_k -45.694 + delta_h 253.76 kJ Metacinnabar - HgS + 2H2O = Hg(OH)2 + H+ + HS- - log_k -45.094 - delta_h 253.72 kJ + HgS + 2 H2O = Hg(OH)2 + H+ + HS- + log_k -45.094 + delta_h 253.72 kJ Chalcocite - Cu2S + H+ = 2Cu+ + HS- - log_k -34.92 - delta_h 168 kJ + Cu2S + H+ = 2 Cu+ + HS- + log_k -34.92 + delta_h 168 kJ Djurleite - Cu0.066Cu1.868S + H+ = 0.066Cu+2 + 1.868Cu+ + HS- - log_k -33.92 - delta_h 200.334 kJ + Cu0.066Cu1.868S + H+ = 0.066 Cu+2 + 1.868 Cu+ + HS- + log_k -33.92 + delta_h 200.334 kJ Anilite - Cu0.25Cu1.5S + H+ = 0.25Cu+2 + 1.5Cu+ + HS- - log_k -31.878 - delta_h 182.15 kJ + Cu0.25Cu1.5S + H+ = 0.25 Cu+2 + 1.5 Cu+ + HS- + log_k -31.878 + delta_h 182.15 kJ BlaubleiII - Cu0.6Cu0.8S + H+ = 0.6Cu+2 + 0.8Cu+ + HS- - log_k -27.279 - delta_h -0 kJ + Cu0.6Cu0.8S + H+ = 0.6 Cu+2 + 0.8 Cu+ + HS- + log_k -27.279 + delta_h -0 kJ BlaubleiI - Cu0.9Cu0.2S + H+ = 0.9Cu+2 + 0.2Cu+ + HS- - log_k -24.162 - delta_h -0 kJ + Cu0.9Cu0.2S + H+ = 0.9 Cu+2 + 0.2 Cu+ + HS- + log_k -24.162 + delta_h -0 kJ Covellite CuS + H+ = Cu+2 + HS- - log_k -22.3 - delta_h 97 kJ + log_k -22.3 + delta_h 97 kJ Chalcopyrite - CuFeS2 + 2H+ = Cu+2 + Fe+2 + 2HS- - log_k -35.27 - delta_h 148.448 kJ + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -35.27 + delta_h 148.448 kJ Acanthite - Ag2S + H+ = 2Ag+ + HS- - log_k -36.22 - delta_h 227 kJ + Ag2S + H+ = 2 Ag+ + HS- + log_k -36.22 + delta_h 227 kJ NiS(alpha) NiS + H+ = Ni+2 + HS- - log_k -5.6 - delta_h -0 kJ + log_k -5.6 + delta_h -0 kJ NiS(beta) NiS + H+ = Ni+2 + HS- - log_k -11.1 - delta_h -0 kJ + log_k -11.1 + delta_h -0 kJ NiS(gamma) NiS + H+ = Ni+2 + HS- - log_k -12.8 - delta_h -0 kJ + log_k -12.8 + delta_h -0 kJ CoS(alpha) CoS + H+ = Co+2 + HS- - log_k -7.44 - delta_h -0 kJ + log_k -7.44 + delta_h -0 kJ CoS(beta) CoS + H+ = Co+2 + HS- - log_k -11.07 - delta_h -0 kJ + log_k -11.07 + delta_h -0 kJ FeS(ppt) FeS + H+ = Fe+2 + HS- - log_k -2.95 - delta_h -11 kJ + log_k -2.95 + delta_h -11 kJ Greigite - Fe3S4 + 4H+ = 2Fe+3 + Fe+2 + 4HS- - log_k -45.035 - delta_h -0 kJ + Fe3S4 + 4 H+ = 2 Fe+3 + Fe+2 + 4 HS- + log_k -45.035 + delta_h -0 kJ Mackinawite FeS + H+ = Fe+2 + HS- - log_k -3.6 - delta_h -0 kJ + log_k -3.6 + delta_h -0 kJ Pyrite - FeS2 + 2H+ + 2e- = Fe+2 + 2HS- - log_k -18.5082 - delta_h 49.844 kJ + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + log_k -18.5082 + delta_h 49.844 kJ MnS(grn) MnS + H+ = Mn+2 + HS- - log_k 0.17 - delta_h -32 kJ + log_k 0.17 + delta_h -32 kJ MnS(pnk) MnS + H+ = Mn+2 + HS- - log_k 3.34 - delta_h -0 kJ + log_k 3.34 + delta_h -0 kJ MoS2 - MoS2 + 4H2O = MoO4-2 + 6H+ + 2HS- + 2e- - log_k -70.2596 - delta_h 389.02 kJ + MoS2 + 4 H2O = MoO4-2 + 6 H+ + 2 HS- + 2 e- + log_k -70.2596 + delta_h 389.02 kJ BeS BeS + H+ = Be+2 + HS- - log_k 19.38 - delta_h -0 kJ + log_k 19.38 + delta_h -0 kJ BaS BaS + H+ = Ba+2 + HS- - log_k 16.18 - delta_h -0 kJ + log_k 16.18 + delta_h -0 kJ Hg2(Cyanide)2 - Hg2(Cyanide)2 = Hg2+2 + 2Cyanide- - log_k -39.3 - delta_h -0 kJ + Hg2(Cyanide)2 = Hg2+2 + 2 Cyanide- + log_k -39.3 + delta_h -0 kJ CuCyanide CuCyanide = Cu+ + Cyanide- - log_k -19.5 - delta_h -19 kJ + log_k -19.5 + delta_h -19 kJ AgCyanide AgCyanide = Ag+ + Cyanide- - log_k -15.74 - delta_h 110.395 kJ + log_k -15.74 + delta_h 110.395 kJ Ag2(Cyanide)2 - Ag2(Cyanide)2 = 2Ag+ + 2Cyanide- - log_k -11.3289 - delta_h -0 kJ + Ag2(Cyanide)2 = 2 Ag+ + 2 Cyanide- + log_k -11.3289 + delta_h -0 kJ NaCyanide(cubic) NaCyanide = Cyanide- + Na+ - log_k 1.6012 - delta_h 0.969 kJ + log_k 1.6012 + delta_h 0.969 kJ KCyanide(cubic) KCyanide = Cyanide- + K+ - log_k 1.4188 - delta_h 11.93 kJ + log_k 1.4188 + delta_h 11.93 kJ Pb2Fe(Cyanide)6 - Pb2Fe(Cyanide)6 = 2Pb+2 + Fe+2 + 6Cyanide- - log_k -53.42 - delta_h -0 kJ + Pb2Fe(Cyanide)6 = 2 Pb+2 + Fe+2 + 6 Cyanide- + log_k -53.42 + delta_h -0 kJ Zn2Fe(Cyanide)6 - Zn2Fe(Cyanide)6 = 2Zn+2 + Fe+2 + 6Cyanide- - log_k -51.08 - delta_h -0 kJ + Zn2Fe(Cyanide)6 = 2 Zn+2 + Fe+2 + 6 Cyanide- + log_k -51.08 + delta_h -0 kJ Cd2Fe(Cyanide)6 - Cd2Fe(Cyanide)6 = 2Cd+2 + Fe+2 + 6Cyanide- - log_k -52.78 - delta_h -0 kJ + Cd2Fe(Cyanide)6 = 2 Cd+2 + Fe+2 + 6 Cyanide- + log_k -52.78 + delta_h -0 kJ Ag4Fe(Cyanide)6 - Ag4Fe(Cyanide)6 = 4Ag+ + Fe+2 + 6Cyanide- - log_k -79.47 - delta_h -0 kJ + Ag4Fe(Cyanide)6 = 4 Ag+ + Fe+2 + 6 Cyanide- + log_k -79.47 + delta_h -0 kJ Ag3Fe(Cyanide)6 - Ag3Fe(Cyanide)6 = 3Ag+ + Fe+3 + 6Cyanide- - log_k -72.7867 - delta_h -0 kJ + Ag3Fe(Cyanide)6 = 3 Ag+ + Fe+3 + 6 Cyanide- + log_k -72.7867 + delta_h -0 kJ Mn3(Fe(Cyanide)6)2 - Mn3(Fe(Cyanide)6)2 = 3Mn+2 + 2Fe+3 + 12Cyanide- - log_k -105.4 - delta_h -0 kJ + Mn3(Fe(Cyanide)6)2 = 3 Mn+2 + 2 Fe+3 + 12 Cyanide- + log_k -105.4 + delta_h -0 kJ Sb2Se3 - Sb2Se3 + 6H2O = 2Sb(OH)3 + 3HSe- + 3H+ - log_k -67.7571 - delta_h 343.046 kJ + Sb2Se3 + 6 H2O = 2 Sb(OH)3 + 3 HSe- + 3 H+ + log_k -67.7571 + delta_h 343.046 kJ SnSe - SnSe + 2H2O = Sn(OH)2 + H+ + HSe- - log_k -30.494 - delta_h -0 kJ + SnSe + 2 H2O = Sn(OH)2 + H+ + HSe- + log_k -30.494 + delta_h -0 kJ SnSe2 - SnSe2 + 6H2O = Sn(OH)6-2 + 4H+ + 2HSe- - log_k -65.1189 - delta_h -0 kJ + SnSe2 + 6 H2O = Sn(OH)6-2 + 4 H+ + 2 HSe- + log_k -65.1189 + delta_h -0 kJ Clausthalite PbSe + H+ = Pb+2 + HSe- - log_k -27.1 - delta_h 119.72 kJ + log_k -27.1 + delta_h 119.72 kJ Tl2Se - Tl2Se + H+ = 2Tl+ + HSe- - log_k -18.1 - delta_h 85.62 kJ + Tl2Se + H+ = 2 Tl+ + HSe- + log_k -18.1 + delta_h 85.62 kJ ZnSe ZnSe + H+ = Zn+2 + HSe- - log_k -14.4 - delta_h 25.51 kJ + log_k -14.4 + delta_h 25.51 kJ CdSe CdSe + H+ = Cd+2 + HSe- - log_k -20.2 - delta_h 75.9814 kJ + log_k -20.2 + delta_h 75.9814 kJ HgSe - HgSe + 2H2O = Hg(OH)2 + H+ + HSe- - log_k -55.694 - delta_h -0 kJ + HgSe + 2 H2O = Hg(OH)2 + H+ + HSe- + log_k -55.694 + delta_h -0 kJ Cu2Se(alpha) - Cu2Se + H+ = 2Cu+ + HSe- - log_k -45.8 - delta_h 214.263 kJ + Cu2Se + H+ = 2 Cu+ + HSe- + log_k -45.8 + delta_h 214.263 kJ Cu3Se2 - Cu3Se2 + 2H+ = 2HSe- + 2Cu+ + Cu+2 - log_k -63.4911 - delta_h 340.327 kJ + Cu3Se2 + 2 H+ = 2 HSe- + 2 Cu+ + Cu+2 + log_k -63.4911 + delta_h 340.327 kJ CuSe CuSe + H+ = Cu+2 + HSe- - log_k -33.1 - delta_h 121.127 kJ + log_k -33.1 + delta_h 121.127 kJ CuSe2 - CuSe2 + 2H+ + 2e- = 2HSe- + Cu+2 - log_k -33.3655 - delta_h 140.582 kJ + CuSe2 + 2 H+ + 2 e- = 2 HSe- + Cu+2 + log_k -33.3655 + delta_h 140.582 kJ Ag2Se - Ag2Se + H+ = 2Ag+ + HSe- - log_k -48.7 - delta_h 265.48 kJ + Ag2Se + H+ = 2 Ag+ + HSe- + log_k -48.7 + delta_h 265.48 kJ NiSe NiSe + H+ = Ni+2 + HSe- - log_k -17.7 - delta_h -0 kJ + log_k -17.7 + delta_h -0 kJ CoSe CoSe + H+ = Co+2 + HSe- - log_k -16.2 - delta_h -0 kJ + log_k -16.2 + delta_h -0 kJ FeSe FeSe + H+ = Fe+2 + HSe- - log_k -11 - delta_h 2.092 kJ + log_k -11 + delta_h 2.092 kJ Ferroselite - FeSe2 + 2H+ + 2e- = 2HSe- + Fe+2 - log_k -18.5959 - delta_h 47.2792 kJ + FeSe2 + 2 H+ + 2 e- = 2 HSe- + Fe+2 + log_k -18.5959 + delta_h 47.2792 kJ MnSe MnSe + H+ = Mn+2 + HSe- - log_k 3.5 - delta_h -98.15 kJ + log_k 3.5 + delta_h -98.15 kJ AlSb - AlSb + 3H2O = Sb(OH)3 + 6e- + Al+3 + 3H+ - log_k 65.6241 - delta_h -0 kJ + AlSb + 3 H2O = Sb(OH)3 + 6 e- + Al+3 + 3 H+ + log_k 65.6241 + delta_h -0 kJ ZnSb - ZnSb + 3H2O = Sb(OH)3 + 5e- + Zn+2 + 3H+ - log_k 11.0138 - delta_h -54.8773 kJ + ZnSb + 3 H2O = Sb(OH)3 + 5 e- + Zn+2 + 3 H+ + log_k 11.0138 + delta_h -54.8773 kJ CdSb - CdSb + 3H2O = Sb(OH)3 + 5e- + 3H+ + Cd+2 - log_k -0.3501 - delta_h 22.36 kJ + CdSb + 3 H2O = Sb(OH)3 + 5 e- + 3 H+ + Cd+2 + log_k -0.3501 + delta_h 22.36 kJ Cu2Sb:3H2O - Cu2Sb:3H2O = Sb(OH)3 + 6e- + 3H+ + Cu+ + Cu+2 - log_k -34.8827 - delta_h 233.237 kJ + Cu2Sb:3H2O = Sb(OH)3 + 6 e- + 3 H+ + Cu+ + Cu+2 + log_k -34.8827 + delta_h 233.237 kJ Cu3Sb - Cu3Sb + 3H2O = Sb(OH)3 + 6e- + 3H+ + 3Cu+ - log_k -42.5937 - delta_h 308.131 kJ + Cu3Sb + 3 H2O = Sb(OH)3 + 6 e- + 3 H+ + 3 Cu+ + log_k -42.5937 + delta_h 308.131 kJ #Ag4Sb # Ag4Sb + 3H2O = Sb(OH)3 + 6e- + 3Ag+ + 3H+ # log_k -56.1818 # delta_h -0 kJ Breithauptite - NiSb + 3H2O = Sb(OH)3 + 5e- + 3H+ + Ni+2 - log_k -18.5225 - delta_h 96.0019 kJ + NiSb + 3 H2O = Sb(OH)3 + 5 e- + 3 H+ + Ni+2 + log_k -18.5225 + delta_h 96.0019 kJ MnSb - MnSb + 3H2O = Mn+3 + Sb(OH)3 + 6e- + 3H+ - log_k -2.9099 - delta_h 21.1083 kJ + MnSb + 3 H2O = Mn+3 + Sb(OH)3 + 6 e- + 3 H+ + log_k -2.9099 + delta_h 21.1083 kJ Mn2Sb - Mn2Sb + 3H2O = 2Mn+2 + Sb(OH)3 + 7e- + 3H+ - log_k 61.0796 - delta_h -0 kJ + Mn2Sb + 3 H2O = 2 Mn+2 + Sb(OH)3 + 7 e- + 3 H+ + log_k 61.0796 + delta_h -0 kJ USb2 - USb2 + 8H2O = UO2+2 + 2Sb(OH)3 + 12e- + 10H+ - log_k 29.5771 - delta_h -103.56 kJ + USb2 + 8 H2O = UO2+2 + 2 Sb(OH)3 + 12 e- + 10 H+ + log_k 29.5771 + delta_h -103.56 kJ U3Sb4 - U3Sb4 + 12H2O = 3U+4 + 4Sb(OH)3 + 24e- + 12H+ - log_k 152.383 - delta_h -986.04 kJ + U3Sb4 + 12 H2O = 3 U+4 + 4 Sb(OH)3 + 24 e- + 12 H+ + log_k 152.383 + delta_h -986.04 kJ Mg2Sb3 - Mg2Sb3 + 9H2O = 2Mg+2 + 3Sb(OH)3 + 9H+ + 13e- - log_k 74.6838 - delta_h -0 kJ + Mg2Sb3 + 9 H2O = 2 Mg+2 + 3 Sb(OH)3 + 9 H+ + 13 e- + log_k 74.6838 + delta_h -0 kJ Ca3Sb2 - Ca3Sb2 + 6H2O = 3Ca+2 + 2Sb(OH)3 + 6H+ + 12e- - log_k 142.974 - delta_h -732.744 kJ + Ca3Sb2 + 6 H2O = 3 Ca+2 + 2 Sb(OH)3 + 6 H+ + 12 e- + log_k 142.974 + delta_h -732.744 kJ NaSb - NaSb + 3H2O = Na+ + Sb(OH)3 + 3H+ + 4e- - log_k 23.1658 - delta_h -93.45 kJ + NaSb + 3 H2O = Na+ + Sb(OH)3 + 3 H+ + 4 e- + log_k 23.1658 + delta_h -93.45 kJ Na3Sb - Na3Sb + 3H2O = 3Na+ + Sb(OH)3 + 3H+ + 6e- - log_k 94.4517 - delta_h -432.13 kJ + Na3Sb + 3 H2O = 3 Na+ + Sb(OH)3 + 3 H+ + 6 e- + log_k 94.4517 + delta_h -432.13 kJ SeO2 SeO2 + H2O = HSeO3- + H+ - log_k 0.1246 - delta_h 1.4016 kJ + log_k 0.1246 + delta_h 1.4016 kJ SeO3 - SeO3 + H2O = SeO4-2 + 2H+ - log_k 21.044 - delta_h -146.377 kJ + SeO3 + H2O = SeO4-2 + 2 H+ + log_k 21.044 + delta_h -146.377 kJ Sb2O5 - Sb2O5 + 7H2O = 2Sb(OH)6- + 2H+ - log_k -9.6674 - delta_h -0 kJ + Sb2O5 + 7 H2O = 2 Sb(OH)6- + 2 H+ + log_k -9.6674 + delta_h -0 kJ SbO2 - SbO2 + 4H2O = Sb(OH)6- + e- + 2H+ - log_k -27.8241 - delta_h -0 kJ + SbO2 + 4 H2O = Sb(OH)6- + e- + 2 H+ + log_k -27.8241 + delta_h -0 kJ Sb2O4 - Sb2O4 + 2H2O + 2H+ + 2e- = 2Sb(OH)3 - log_k 3.4021 - delta_h -68.04 kJ + Sb2O4 + 2 H2O + 2 H+ + 2 e- = 2 Sb(OH)3 + log_k 3.4021 + delta_h -68.04 kJ Sb4O6(cubic) - Sb4O6 + 6H2O = 4Sb(OH)3 - log_k -18.2612 - delta_h 61.1801 kJ + Sb4O6 + 6 H2O = 4 Sb(OH)3 + log_k -18.2612 + delta_h 61.1801 kJ Sb4O6(orth) - Sb4O6 + 6H2O = 4Sb(OH)3 - log_k -17.9012 - delta_h 37.6801 kJ + Sb4O6 + 6 H2O = 4 Sb(OH)3 + log_k -17.9012 + delta_h 37.6801 kJ Sb(OH)3 Sb(OH)3 = Sb(OH)3 - log_k -7.1099 - delta_h 30.1248 kJ + log_k -7.1099 + delta_h 30.1248 kJ Senarmontite - Sb2O3 + 3H2O = 2Sb(OH)3 - log_k -12.3654 - delta_h 30.6478 kJ + Sb2O3 + 3 H2O = 2 Sb(OH)3 + log_k -12.3654 + delta_h 30.6478 kJ Valentinite - Sb2O3 + 3H2O = 2Sb(OH)3 - log_k -8.4806 - delta_h 19.0163 kJ + Sb2O3 + 3 H2O = 2 Sb(OH)3 + log_k -8.4806 + delta_h 19.0163 kJ Chalcedony - SiO2 + 2H2O = H4SiO4 - log_k -3.55 - delta_h 19.7 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -3.55 + delta_h 19.7 kJ Cristobalite - SiO2 + 2H2O = H4SiO4 - log_k -3.35 - delta_h 20.006 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -3.35 + delta_h 20.006 kJ Quartz - SiO2 + 2H2O = H4SiO4 - log_k -4 - delta_h 22.36 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -4 + delta_h 22.36 kJ SiO2(am-gel) - SiO2 + 2H2O = H4SiO4 - log_k -2.71 - delta_h 14 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -2.71 + delta_h 14 kJ SiO2(am-ppt) - SiO2 + 2H2O = H4SiO4 - log_k -2.74 - delta_h 15.15 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -2.74 + delta_h 15.15 kJ SnO SnO + H2O = Sn(OH)2 - log_k -4.9141 - delta_h -0 kJ + log_k -4.9141 + delta_h -0 kJ SnO2 - SnO2 + 4H2O = Sn(OH)6-2 + 2H+ - log_k -28.9749 - delta_h -0 kJ + SnO2 + 4 H2O = Sn(OH)6-2 + 2 H+ + log_k -28.9749 + delta_h -0 kJ Sn(OH)2 Sn(OH)2 = Sn(OH)2 - log_k -5.4309 - delta_h -0 kJ + log_k -5.4309 + delta_h -0 kJ Sn(OH)4 - Sn(OH)4 + 2H2O = Sn(OH)6-2 + 2H+ - log_k -22.2808 - delta_h -0 kJ + Sn(OH)4 + 2 H2O = Sn(OH)6-2 + 2 H+ + log_k -22.2808 + delta_h -0 kJ H2Sn(OH)6 - H2Sn(OH)6 = Sn(OH)6-2 + 2H+ - log_k -23.5281 - delta_h -0 kJ + H2Sn(OH)6 = Sn(OH)6-2 + 2 H+ + log_k -23.5281 + delta_h -0 kJ Massicot - PbO + 2H+ = Pb+2 + H2O - log_k 12.894 - delta_h -66.848 kJ + PbO + 2 H+ = Pb+2 + H2O + log_k 12.894 + delta_h -66.848 kJ Litharge - PbO + 2H+ = Pb+2 + H2O - log_k 12.694 - delta_h -65.501 kJ + PbO + 2 H+ = Pb+2 + H2O + log_k 12.694 + delta_h -65.501 kJ PbO:0.3H2O - PbO:0.33H2O + 2H+ = Pb+2 + 1.33H2O - log_k 12.98 - delta_h -0 kJ + PbO:0.33H2O + 2 H+ = Pb+2 + 1.33 H2O + log_k 12.98 + delta_h -0 kJ Plattnerite - PbO2 + 4H+ + 2e- = Pb+2 + 2H2O - log_k 49.6001 - delta_h -296.27 kJ + PbO2 + 4 H+ + 2 e- = Pb+2 + 2 H2O + log_k 49.6001 + delta_h -296.27 kJ Pb(OH)2 - Pb(OH)2 + 2H+ = Pb+2 + 2H2O - log_k 8.15 - delta_h -58.5342 kJ + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + log_k 8.15 + delta_h -58.5342 kJ Pb2O(OH)2 - Pb2O(OH)2 + 4H+ = 2Pb+2 + 3H2O - log_k 26.188 - delta_h -0 kJ + Pb2O(OH)2 + 4 H+ = 2 Pb+2 + 3 H2O + log_k 26.188 + delta_h -0 kJ Al(OH)3(am) - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 10.8 - delta_h -111 kJ + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 10.8 + delta_h -111 kJ Boehmite - AlOOH + 3H+ = Al+3 + 2H2O - log_k 8.578 - delta_h -117.696 kJ + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 8.578 + delta_h -117.696 kJ Diaspore - AlOOH + 3H+ = Al+3 + 2H2O - log_k 6.873 - delta_h -103.052 kJ + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 6.873 + delta_h -103.052 kJ Gibbsite - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 8.291 - delta_h -95.3952 kJ + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 8.291 + delta_h -95.3952 kJ Tl2O - Tl2O + 2H+ = 2Tl+ + H2O - log_k 27.0915 - delta_h -96.41 kJ + Tl2O + 2 H+ = 2 Tl+ + H2O + log_k 27.0915 + delta_h -96.41 kJ TlOH TlOH + H+ = Tl+ + H2O - log_k 12.9186 - delta_h -41.57 kJ + log_k 12.9186 + delta_h -41.57 kJ Avicennite - Tl2O3 + 3H2O = 2Tl(OH)3 - log_k -13 - delta_h -0 kJ + Tl2O3 + 3 H2O = 2 Tl(OH)3 + log_k -13 + delta_h -0 kJ Tl(OH)3 Tl(OH)3 = Tl(OH)3 - log_k -5.441 - delta_h -0 kJ + log_k -5.441 + delta_h -0 kJ Zn(OH)2(am) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.474 - delta_h -80.62 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.474 + delta_h -80.62 kJ Zn(OH)2 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.2 - delta_h -0 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.2 + delta_h -0 kJ Zn(OH)2(beta) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.754 - delta_h -83.14 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.754 + delta_h -83.14 kJ Zn(OH)2(gamma) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.734 - delta_h -0 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.734 + delta_h -0 kJ Zn(OH)2(epsilon) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.534 - delta_h -81.8 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.534 + delta_h -81.8 kJ ZnO(active) - ZnO + 2H+ = Zn+2 + H2O - log_k 11.1884 - delta_h -88.76 kJ + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.1884 + delta_h -88.76 kJ Zincite - ZnO + 2H+ = Zn+2 + H2O - log_k 11.334 - delta_h -89.62 kJ + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.334 + delta_h -89.62 kJ Cd(OH)2(am) - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.73 - delta_h -86.9017 kJ + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.73 + delta_h -86.9017 kJ Cd(OH)2 - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.644 - delta_h -94.62 kJ + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.644 + delta_h -94.62 kJ Monteponite - CdO + 2H+ = Cd+2 + H2O - log_k 15.1034 - delta_h -103.4 kJ + CdO + 2 H+ = Cd+2 + H2O + log_k 15.1034 + delta_h -103.4 kJ Hg2(OH)2 - Hg2(OH)2 + 2H+ = Hg2+2 + 2H2O - log_k 5.2603 - delta_h -0 kJ + Hg2(OH)2 + 2 H+ = Hg2+2 + 2 H2O + log_k 5.2603 + delta_h -0 kJ Montroydite HgO + H2O = Hg(OH)2 - log_k -3.64 - delta_h -38.9 kJ + log_k -3.64 + delta_h -38.9 kJ Hg(OH)2 Hg(OH)2 = Hg(OH)2 - log_k -3.4963 - delta_h -0 kJ + log_k -3.4963 + delta_h -0 kJ Cuprite - Cu2O + 2H+ = 2Cu+ + H2O - log_k -1.406 - delta_h -124.02 kJ + Cu2O + 2 H+ = 2 Cu+ + H2O + log_k -1.406 + delta_h -124.02 kJ Cu(OH)2 - Cu(OH)2 + 2H+ = Cu+2 + 2H2O - log_k 8.674 - delta_h -56.42 kJ + Cu(OH)2 + 2 H+ = Cu+2 + 2 H2O + log_k 8.674 + delta_h -56.42 kJ Tenorite - CuO + 2H+ = Cu+2 + H2O - log_k 7.644 - delta_h -64.867 kJ + CuO + 2 H+ = Cu+2 + H2O + log_k 7.644 + delta_h -64.867 kJ Ag2O - Ag2O + 2H+ = 2Ag+ + H2O - log_k 12.574 - delta_h -45.62 kJ + Ag2O + 2 H+ = 2 Ag+ + H2O + log_k 12.574 + delta_h -45.62 kJ Ni(OH)2 - Ni(OH)2 + 2H+ = Ni+2 + 2H2O - log_k 12.794 - delta_h -95.96 kJ + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 12.794 + delta_h -95.96 kJ Bunsenite - NiO + 2H+ = Ni+2 + H2O - log_k 12.4456 - delta_h -100.13 kJ + NiO + 2 H+ = Ni+2 + H2O + log_k 12.4456 + delta_h -100.13 kJ CoO - CoO + 2H+ = Co+2 + H2O - log_k 13.5864 - delta_h -106.295 kJ + CoO + 2 H+ = Co+2 + H2O + log_k 13.5864 + delta_h -106.295 kJ Co(OH)2 - Co(OH)2 + 2H+ = Co+2 + 2H2O - log_k 13.094 - delta_h -0 kJ + Co(OH)2 + 2 H+ = Co+2 + 2 H2O + log_k 13.094 + delta_h -0 kJ Co(OH)3 - Co(OH)3 + 3H+ = Co+3 + 3H2O - log_k -2.309 - delta_h -92.43 kJ + Co(OH)3 + 3 H+ = Co+3 + 3 H2O + log_k -2.309 + delta_h -92.43 kJ #Wustite-0.11 # WUSTITE-0.11 + 2H+ = 0.947Fe+2 + H2O # log_k 11.6879 # delta_h -103.938 kJ Fe(OH)2 - Fe(OH)2 + 2H+ = Fe+2 + 2H2O - log_k 13.564 - delta_h -0 kJ + Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O + log_k 13.564 + delta_h -0 kJ Ferrihydrite - Fe(OH)3 + 3H+ = Fe+3 + 3H2O - log_k 3.191 - delta_h -73.374 kJ + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 3.191 + delta_h -73.374 kJ Fe3(OH)8 - Fe3(OH)8 + 8H+ = 2Fe+3 + Fe+2 + 8H2O - log_k 20.222 - delta_h -0 kJ + Fe3(OH)8 + 8 H+ = 2 Fe+3 + Fe+2 + 8 H2O + log_k 20.222 + delta_h -0 kJ Goethite - FeOOH + 3H+ = Fe+3 + 2H2O - log_k 0.491 - delta_h -60.5843 kJ + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 0.491 + delta_h -60.5843 kJ Pyrolusite - MnO2 + 4H+ + 2e- = Mn+2 + 2H2O - log_k 41.38 - delta_h -272 kJ + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 41.38 + delta_h -272 kJ Birnessite - MnO2 + 4H+ + e- = Mn+3 + 2H2O - log_k 18.091 - delta_h -0 kJ + MnO2 + 4 H+ + e- = Mn+3 + 2 H2O + log_k 18.091 + delta_h -0 kJ Nsutite - MnO2 + 4H+ + e- = Mn+3 + 2H2O - log_k 17.504 - delta_h -0 kJ + MnO2 + 4 H+ + e- = Mn+3 + 2 H2O + log_k 17.504 + delta_h -0 kJ Pyrochroite - Mn(OH)2 + 2H+ = Mn+2 + 2H2O - log_k 15.194 - delta_h -97.0099 kJ + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.194 + delta_h -97.0099 kJ Manganite - MnOOH + 3H+ + e- = Mn+2 + 2H2O - log_k 25.34 - delta_h -0 kJ + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + log_k 25.34 + delta_h -0 kJ Cr(OH)2 - Cr(OH)2 + 2H+ = Cr+2 + 2H2O - log_k 10.8189 - delta_h -35.6058 kJ + Cr(OH)2 + 2 H+ = Cr+2 + 2 H2O + log_k 10.8189 + delta_h -35.6058 kJ Cr(OH)3(am) Cr(OH)3 + H+ = Cr(OH)2+ + H2O - log_k -0.75 - delta_h -0 kJ + log_k -0.75 + delta_h -0 kJ Cr(OH)3 Cr(OH)3 + H+ = Cr(OH)2+ + H2O - log_k 1.3355 - delta_h -29.7692 kJ + log_k 1.3355 + delta_h -29.7692 kJ CrO3 - CrO3 + H2O = CrO4-2 + 2H+ - log_k -3.2105 - delta_h -5.2091 kJ + CrO3 + H2O = CrO4-2 + 2 H+ + log_k -3.2105 + delta_h -5.2091 kJ MoO3 - MoO3 + H2O = MoO4-2 + 2H+ - log_k -8 - delta_h -0 kJ + MoO3 + H2O = MoO4-2 + 2 H+ + log_k -8 + delta_h -0 kJ VO - VO + 2H+ = V+3 + H2O + e- - log_k 14.7563 - delta_h -113.041 kJ + VO + 2 H+ = V+3 + H2O + e- + log_k 14.7563 + delta_h -113.041 kJ V(OH)3 - V(OH)3 + 3H+ = V+3 + 3H2O - log_k 7.591 - delta_h -0 kJ + V(OH)3 + 3 H+ = V+3 + 3 H2O + log_k 7.591 + delta_h -0 kJ VO(OH)2 - VO(OH)2 + 2H+ = VO+2 + 2H2O - log_k 5.1506 - delta_h -0 kJ + VO(OH)2 + 2 H+ = VO+2 + 2 H2O + log_k 5.1506 + delta_h -0 kJ Uraninite - UO2 + 4H+ = U+4 + 2H2O - log_k -4.6693 - delta_h -77.86 kJ + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.6693 + delta_h -77.86 kJ UO2(am) - UO2 + 4H+ = U+4 + 2H2O - log_k 0.934 - delta_h -109.746 kJ + UO2 + 4 H+ = U+4 + 2 H2O + log_k 0.934 + delta_h -109.746 kJ UO3 - UO3 + 2H+ = UO2+2 + H2O - log_k 7.7 - delta_h -81.0299 kJ + UO3 + 2 H+ = UO2+2 + H2O + log_k 7.7 + delta_h -81.0299 kJ Gummite - UO3 + 2H+ = UO2+2 + H2O - log_k 7.6718 - delta_h -81.0299 kJ + UO3 + 2 H+ = UO2+2 + H2O + log_k 7.6718 + delta_h -81.0299 kJ UO2(OH)2(beta) - UO2(OH)2 + 2H+ = UO2+2 + 2H2O - log_k 5.6116 - delta_h -56.7599 kJ + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 5.6116 + delta_h -56.7599 kJ Schoepite - UO2(OH)2:H2O + 2H+ = UO2+2 + 3H2O - log_k 5.994 - delta_h -49.79 kJ + UO2(OH)2:H2O + 2 H+ = UO2+2 + 3 H2O + log_k 5.994 + delta_h -49.79 kJ Be(OH)2(am) - Be(OH)2 + 2H+ = Be+2 + 2H2O - log_k 7.194 - delta_h -0 kJ + Be(OH)2 + 2 H+ = Be+2 + 2 H2O + log_k 7.194 + delta_h -0 kJ Be(OH)2(alpha) - Be(OH)2 + 2H+ = Be+2 + 2H2O - log_k 6.894 - delta_h -0 kJ + Be(OH)2 + 2 H+ = Be+2 + 2 H2O + log_k 6.894 + delta_h -0 kJ Be(OH)2(beta) - Be(OH)2 + 2H+ = Be+2 + 2H2O - log_k 6.494 - delta_h -0 kJ + Be(OH)2 + 2 H+ = Be+2 + 2 H2O + log_k 6.494 + delta_h -0 kJ Brucite - Mg(OH)2 + 2H+ = Mg+2 + 2H2O - log_k 16.844 - delta_h -113.996 kJ + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.844 + delta_h -113.996 kJ Periclase - MgO + 2H+ = Mg+2 + H2O - log_k 21.5841 - delta_h -151.23 kJ + MgO + 2 H+ = Mg+2 + H2O + log_k 21.5841 + delta_h -151.23 kJ Mg(OH)2(active) - Mg(OH)2 + 2H+ = Mg+2 + 2H2O - log_k 18.794 - delta_h -0 kJ + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 18.794 + delta_h -0 kJ Lime - CaO + 2H+ = Ca+2 + H2O - log_k 32.6993 - delta_h -193.91 kJ + CaO + 2 H+ = Ca+2 + H2O + log_k 32.6993 + delta_h -193.91 kJ Portlandite - Ca(OH)2 + 2H+ = Ca+2 + 2H2O - log_k 22.804 - delta_h -128.62 kJ + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.804 + delta_h -128.62 kJ Ba(OH)2:8H2O - Ba(OH)2:8H2O + 2H+ = Ba+2 + 10H2O - log_k 24.394 - delta_h -54.32 kJ + Ba(OH)2:8H2O + 2 H+ = Ba+2 + 10 H2O + log_k 24.394 + delta_h -54.32 kJ Cu(SbO3)2 - Cu(SbO3)2 + 6H+ + 4e- = 2Sb(OH)3 + Cu+2 - log_k 45.2105 - delta_h -0 kJ + Cu(SbO3)2 + 6 H+ + 4 e- = 2 Sb(OH)3 + Cu+2 + log_k 45.2105 + delta_h -0 kJ Arsenolite - As4O6 + 6H2O = 4H3AsO3 - log_k -2.76 - delta_h 59.9567 kJ + As4O6 + 6 H2O = 4 H3AsO3 + log_k -2.76 + delta_h 59.9567 kJ Claudetite - As4O6 + 6H2O = 4H3AsO3 - log_k -3.065 - delta_h 55.6054 kJ + As4O6 + 6 H2O = 4 H3AsO3 + log_k -3.065 + delta_h 55.6054 kJ As2O5 - As2O5 + 3H2O = 2H3AsO4 - log_k 6.7061 - delta_h -22.64 kJ + As2O5 + 3 H2O = 2 H3AsO4 + log_k 6.7061 + delta_h -22.64 kJ Pb2O3 - Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2O - log_k 61.04 - delta_h -0 kJ + Pb2O3 + 6 H+ + 2 e- = 2 Pb+2 + 3 H2O + log_k 61.04 + delta_h -0 kJ Minium - Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2O - log_k 73.5219 - delta_h -421.874 kJ + Pb3O4 + 8 H+ + 2 e- = 3 Pb+2 + 4 H2O + log_k 73.5219 + delta_h -421.874 kJ Al2O3 - Al2O3 + 6H+ = 2Al+3 + 3H2O - log_k 19.6524 - delta_h -258.59 kJ + Al2O3 + 6 H+ = 2 Al+3 + 3 H2O + log_k 19.6524 + delta_h -258.59 kJ Co3O4 - Co3O4 + 8H+ = Co+2 + 2Co+3 + 4H2O - log_k -10.4956 - delta_h -107.5 kJ + Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O + log_k -10.4956 + delta_h -107.5 kJ CoFe2O4 - CoFe2O4 + 8H+ = Co+2 + 2Fe+3 + 4H2O - log_k -3.5281 - delta_h -158.82 kJ + CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O + log_k -3.5281 + delta_h -158.82 kJ Magnetite - Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O - log_k 3.4028 - delta_h -208.526 kJ + Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O + log_k 3.4028 + delta_h -208.526 kJ Hercynite - FeAl2O4 + 8H+ = Fe+2 + 2Al+3 + 4H2O - log_k 22.893 - delta_h -313.92 kJ + FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O + log_k 22.893 + delta_h -313.92 kJ Hematite - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k -1.418 - delta_h -128.987 kJ + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k -1.418 + delta_h -128.987 kJ Maghemite - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k 6.386 - delta_h -0 kJ + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 6.386 + delta_h -0 kJ Lepidocrocite - FeOOH + 3H+ = Fe+3 + 2H2O - log_k 1.371 - delta_h -0 kJ + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 1.371 + delta_h -0 kJ Hausmannite - Mn3O4 + 8H+ + 2e- = 3Mn+2 + 4H2O - log_k 61.03 - delta_h -421 kJ + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + log_k 61.03 + delta_h -421 kJ Bixbyite - Mn2O3 + 6H+ = 2Mn+3 + 3H2O - log_k -0.6445 - delta_h -124.49 kJ + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.6445 + delta_h -124.49 kJ Cr2O3 - Cr2O3 + H2O + 2H+ = 2Cr(OH)2+ - log_k -2.3576 - delta_h -50.731 kJ + Cr2O3 + H2O + 2 H+ = 2 Cr(OH)2+ + log_k -2.3576 + delta_h -50.731 kJ #V2O3 # V2O3 + 3H+ = V+3 + 1.5H2O # log_k 4.9 # delta_h -82.5085 kJ V3O5 - V3O5 + 4H+ = 3VO+2 + 2H2O + 2e- - log_k 1.8361 - delta_h -98.46 kJ + V3O5 + 4 H+ = 3 VO+2 + 2 H2O + 2 e- + log_k 1.8361 + delta_h -98.46 kJ #V2O4 # V2O4 + 2H+ = VO+2 + H2O # log_k 4.27 # delta_h -58.8689 kJ V4O7 - V4O7 + 6H+ = 4VO+2 + 3H2O + 2e- - log_k 7.1865 - delta_h -163.89 kJ + V4O7 + 6 H+ = 4 VO+2 + 3 H2O + 2 e- + log_k 7.1865 + delta_h -163.89 kJ V6O13 - V6O13 + 2H+ = 6VO2+ + H2O + 4e- - log_k -60.86 - delta_h 271.5 kJ + V6O13 + 2 H+ = 6 VO2+ + H2O + 4 e- + log_k -60.86 + delta_h 271.5 kJ V2O5 - V2O5 + 2H+ = 2VO2+ + H2O - log_k -1.36 - delta_h 34 kJ + V2O5 + 2 H+ = 2 VO2+ + H2O + log_k -1.36 + delta_h 34 kJ U4O9 - U4O9 + 18H+ + 2e- = 4U+4 + 9H2O - log_k -3.0198 - delta_h -426.87 kJ + U4O9 + 18 H+ + 2 e- = 4 U+4 + 9 H2O + log_k -3.0198 + delta_h -426.87 kJ U3O8 - U3O8 + 16H+ + 4e- = 3U+4 + 8H2O - log_k 21.0834 - delta_h -485.44 kJ + U3O8 + 16 H+ + 4 e- = 3 U+4 + 8 H2O + log_k 21.0834 + delta_h -485.44 kJ Spinel - MgAl2O4 + 8H+ = Mg+2 + 2Al+3 + 4H2O - log_k 36.8476 - delta_h -388.012 kJ + MgAl2O4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O + log_k 36.8476 + delta_h -388.012 kJ Magnesioferrite - Fe2MgO4 + 8H+ = Mg+2 + 2Fe+3 + 4H2O - log_k 16.8597 - delta_h -278.92 kJ + Fe2MgO4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O + log_k 16.8597 + delta_h -278.92 kJ Natron - Na2CO3:10H2O = 2Na+ + CO3-2 + 10H2O - log_k -1.311 - delta_h 65.8771 kJ + Na2CO3:10H2O = 2 Na+ + CO3-2 + 10 H2O + log_k -1.311 + delta_h 65.8771 kJ Cuprousferrite - CuFeO2 + 4H+ = Cu+ + Fe+3 + 2H2O - log_k -8.9171 - delta_h -15.89 kJ + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -8.9171 + delta_h -15.89 kJ Cupricferrite - CuFe2O4 + 8H+ = Cu+2 + 2Fe+3 + 4H2O - log_k 5.9882 - delta_h -210.21 kJ + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 5.9882 + delta_h -210.21 kJ FeCr2O4 - FeCr2O4 + 4H+ = 2Cr(OH)2+ + Fe+2 - log_k 7.2003 - delta_h -140.4 kJ + FeCr2O4 + 4 H+ = 2 Cr(OH)2+ + Fe+2 + log_k 7.2003 + delta_h -140.4 kJ MgCr2O4 - MgCr2O4 + 4H+ = 2Cr(OH)2+ + Mg+2 - log_k 16.2007 - delta_h -179.4 kJ + MgCr2O4 + 4 H+ = 2 Cr(OH)2+ + Mg+2 + log_k 16.2007 + delta_h -179.4 kJ SbF3 - SbF3 + 3H2O = Sb(OH)3 + 3H+ + 3F- - log_k -10.2251 - delta_h -6.7279 kJ + SbF3 + 3 H2O = Sb(OH)3 + 3 H+ + 3 F- + log_k -10.2251 + delta_h -6.7279 kJ PbF2 - PbF2 = Pb+2 + 2F- - log_k -7.44 - delta_h 20 kJ + PbF2 = Pb+2 + 2 F- + log_k -7.44 + delta_h 20 kJ ZnF2 - ZnF2 = Zn+2 + 2F- - log_k -0.5343 - delta_h -59.69 kJ + ZnF2 = Zn+2 + 2 F- + log_k -0.5343 + delta_h -59.69 kJ CdF2 - CdF2 = Cd+2 + 2F- - log_k -1.2124 - delta_h -46.22 kJ + CdF2 = Cd+2 + 2 F- + log_k -1.2124 + delta_h -46.22 kJ Hg2F2 - Hg2F2 = Hg2+2 + 2F- - log_k -10.3623 - delta_h -18.486 kJ + Hg2F2 = Hg2+2 + 2 F- + log_k -10.3623 + delta_h -18.486 kJ CuF CuF = Cu+ + F- - log_k -4.9056 - delta_h 16.648 kJ + log_k -4.9056 + delta_h 16.648 kJ CuF2 - CuF2 = Cu+2 + 2F- - log_k 1.115 - delta_h -66.901 kJ + CuF2 = Cu+2 + 2 F- + log_k 1.115 + delta_h -66.901 kJ CuF2:2H2O - CuF2:2H2O = Cu+2 + 2F- + 2H2O - log_k -4.55 - delta_h -15.2716 kJ + CuF2:2H2O = Cu+2 + 2 F- + 2 H2O + log_k -4.55 + delta_h -15.2716 kJ AgF:4H2O - AgF:4H2O = Ag+ + F- + 4H2O - log_k 1.0491 - delta_h 15.4202 kJ + AgF:4H2O = Ag+ + F- + 4 H2O + log_k 1.0491 + delta_h 15.4202 kJ CoF2 - CoF2 = Co+2 + 2F- - log_k -1.5969 - delta_h -57.368 kJ + CoF2 = Co+2 + 2 F- + log_k -1.5969 + delta_h -57.368 kJ CoF3 - CoF3 = Co+3 + 3F- - log_k -1.4581 - delta_h -123.692 kJ + CoF3 = Co+3 + 3 F- + log_k -1.4581 + delta_h -123.692 kJ CrF3 - CrF3 + 2H2O = Cr(OH)2+ + 3F- + 2H+ - log_k -11.3367 - delta_h -23.3901 kJ + CrF3 + 2 H2O = Cr(OH)2+ + 3 F- + 2 H+ + log_k -11.3367 + delta_h -23.3901 kJ VF4 - VF4 + H2O = VO+2 + 4F- + 2H+ - log_k 14.93 - delta_h -199.117 kJ + VF4 + H2O = VO+2 + 4 F- + 2 H+ + log_k 14.93 + delta_h -199.117 kJ UF4 - UF4 = U+4 + 4F- - log_k -29.5371 - delta_h -79.0776 kJ + UF4 = U+4 + 4 F- + log_k -29.5371 + delta_h -79.0776 kJ UF4:2.5H2O - UF4:2.5H2O = U+4 + 4F- + 2.5H2O - log_k -32.7179 - delta_h 24.325 kJ + UF4:2.5H2O = U+4 + 4 F- + 2.5 H2O + log_k -32.7179 + delta_h 24.325 kJ MgF2 - MgF2 = Mg+2 + 2F- - log_k -8.13 - delta_h -8 kJ + MgF2 = Mg+2 + 2 F- + log_k -8.13 + delta_h -8 kJ Fluorite - CaF2 = Ca+2 + 2F- - log_k -10.5 - delta_h 8 kJ + CaF2 = Ca+2 + 2 F- + log_k -10.5 + delta_h 8 kJ SrF2 - SrF2 = Sr+2 + 2F- - log_k -8.58 - delta_h 4 kJ + SrF2 = Sr+2 + 2 F- + log_k -8.58 + delta_h 4 kJ BaF2 - BaF2 = Ba+2 + 2F- - log_k -5.82 - delta_h 4 kJ + BaF2 = Ba+2 + 2 F- + log_k -5.82 + delta_h 4 kJ Cryolite - Na3AlF6 = 3Na+ + Al+3 + 6F- - log_k -33.84 - delta_h 38 kJ + Na3AlF6 = 3 Na+ + Al+3 + 6 F- + log_k -33.84 + delta_h 38 kJ SbCl3 - SbCl3 + 3H2O = Sb(OH)3 + 3Cl- + 3H+ - log_k 0.5719 - delta_h -35.18 kJ + SbCl3 + 3 H2O = Sb(OH)3 + 3 Cl- + 3 H+ + log_k 0.5719 + delta_h -35.18 kJ SnCl2 - SnCl2 + 2H2O = Sn(OH)2 + 2H+ + 2Cl- - log_k -9.2752 - delta_h -0 kJ + SnCl2 + 2 H2O = Sn(OH)2 + 2 H+ + 2 Cl- + log_k -9.2752 + delta_h -0 kJ Cotunnite - PbCl2 = Pb+2 + 2Cl- - log_k -4.78 - delta_h 26.166 kJ + PbCl2 = Pb+2 + 2 Cl- + log_k -4.78 + delta_h 26.166 kJ Matlockite PbClF = Pb+2 + Cl- + F- - log_k -8.9733 - delta_h 33.19 kJ + log_k -8.9733 + delta_h 33.19 kJ Phosgenite - PbCl2:PbCO3 = 2Pb+2 + 2Cl- + CO3-2 - log_k -19.81 - delta_h -0 kJ + PbCl2:PbCO3 = 2 Pb+2 + 2 Cl- + CO3-2 + log_k -19.81 + delta_h -0 kJ Laurionite PbOHCl + H+ = Pb+2 + Cl- + H2O - log_k 0.623 - delta_h -0 kJ + log_k 0.623 + delta_h -0 kJ Pb2(OH)3Cl - Pb2(OH)3Cl + 3H+ = 2Pb+2 + 3H2O + Cl- - log_k 8.793 - delta_h -0 kJ + Pb2(OH)3Cl + 3 H+ = 2 Pb+2 + 3 H2O + Cl- + log_k 8.793 + delta_h -0 kJ TlCl TlCl = Tl+ + Cl- - log_k -3.74 - delta_h 41 kJ + log_k -3.74 + delta_h 41 kJ ZnCl2 - ZnCl2 = Zn+2 + 2Cl- - log_k 7.05 - delta_h -72.5 kJ + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.05 + delta_h -72.5 kJ Zn2(OH)3Cl - Zn2(OH)3Cl + 3H+ = 2Zn+2 + 3H2O + Cl- - log_k 15.191 - delta_h -0 kJ + Zn2(OH)3Cl + 3 H+ = 2 Zn+2 + 3 H2O + Cl- + log_k 15.191 + delta_h -0 kJ Zn5(OH)8Cl2 - Zn5(OH)8Cl2 + 8H+ = 5Zn+2 + 8H2O + 2Cl- - log_k 38.5 - delta_h -0 kJ + Zn5(OH)8Cl2 + 8 H+ = 5 Zn+2 + 8 H2O + 2 Cl- + log_k 38.5 + delta_h -0 kJ CdCl2 - CdCl2 = Cd+2 + 2Cl- - log_k -0.6588 - delta_h -18.58 kJ + CdCl2 = Cd+2 + 2 Cl- + log_k -0.6588 + delta_h -18.58 kJ CdCl2:1H2O - CdCl2:1H2O = Cd+2 + 2Cl- + H2O - log_k -1.6932 - delta_h -7.47 kJ + CdCl2:H2O = Cd+2 + 2 Cl- + H2O + log_k -1.6932 + delta_h -7.47 kJ CdCl2:2.5H2O - CdCl2:2.5H2O = Cd+2 + 2Cl- + 2.5H2O - log_k -1.913 - delta_h 7.2849 kJ + CdCl2:2.5H2O = Cd+2 + 2 Cl- + 2.5 H2O + log_k -1.913 + delta_h 7.2849 kJ CdOHCl CdOHCl + H+ = Cd+2 + H2O + Cl- - log_k 3.5373 - delta_h -30.93 kJ + log_k 3.5373 + delta_h -30.93 kJ Calomel - Hg2Cl2 = Hg2+2 + 2Cl- - log_k -17.91 - delta_h 92 kJ + Hg2Cl2 = Hg2+2 + 2 Cl- + log_k -17.91 + delta_h 92 kJ HgCl2 - HgCl2 + 2H2O = Hg(OH)2 + 2Cl- + 2H+ - log_k -21.2621 - delta_h 107.82 kJ + HgCl2 + 2 H2O = Hg(OH)2 + 2 Cl- + 2 H+ + log_k -21.2621 + delta_h 107.82 kJ Nantokite CuCl = Cu+ + Cl- - log_k -6.73 - delta_h 42.662 kJ + log_k -6.73 + delta_h 42.662 kJ Melanothallite - CuCl2 = Cu+2 + 2Cl- - log_k 6.2572 - delta_h -63.407 kJ + CuCl2 = Cu+2 + 2 Cl- + log_k 6.2572 + delta_h -63.407 kJ Atacamite - Cu2(OH)3Cl + 3H+ = 2Cu+2 + 3H2O + Cl- - log_k 7.391 - delta_h -93.43 kJ + Cu2(OH)3Cl + 3 H+ = 2 Cu+2 + 3 H2O + Cl- + log_k 7.391 + delta_h -93.43 kJ Cerargyrite AgCl = Ag+ + Cl- - log_k -9.75 - delta_h 65.2 kJ + log_k -9.75 + delta_h 65.2 kJ CoCl2 - CoCl2 = Co+2 + 2Cl- - log_k 8.2672 - delta_h -79.815 kJ + CoCl2 = Co+2 + 2 Cl- + log_k 8.2672 + delta_h -79.815 kJ CoCl2:6H2O - CoCl2:6H2O = Co+2 + 2Cl- + 6H2O - log_k 2.5365 - delta_h 8.0598 kJ + CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O + log_k 2.5365 + delta_h 8.0598 kJ (Co(NH3)6)Cl3 - (Co(NH3)6)Cl3 + 6H+ = Co+3 + 6NH4+ + 3Cl- - log_k 20.0317 - delta_h -33.1 kJ + (Co(NH3)6)Cl3 + 6 H+ = Co+3 + 6 NH4+ + 3 Cl- + log_k 20.0317 + delta_h -33.1 kJ (Co(NH3)5OH2)Cl3 - (Co(NH3)5OH2)Cl3 + 5H+ = Co+3 + 5NH4+ + 3Cl- + H2O - log_k 11.7351 - delta_h -25.37 kJ + (Co(NH3)5OH2)Cl3 + 5 H+ = Co+3 + 5 NH4+ + 3 Cl- + H2O + log_k 11.7351 + delta_h -25.37 kJ (Co(NH3)5Cl)Cl2 - (Co(NH3)5Cl)Cl2 + 5H+ = Co+3 + 5NH4+ + 3Cl- - log_k 4.5102 - delta_h -10.74 kJ + (Co(NH3)5Cl)Cl2 + 5 H+ = Co+3 + 5 NH4+ + 3 Cl- + log_k 4.5102 + delta_h -10.74 kJ Fe(OH)2.7Cl.3 - Fe(OH)2.7Cl.3 + 2.7H+ = Fe+3 + 2.7H2O + 0.3Cl- - log_k -3.04 - delta_h -0 kJ + Fe(OH)2.7Cl.3 + 2.7 H+ = Fe+3 + 2.7 H2O + 0.3 Cl- + log_k -3.04 + delta_h -0 kJ MnCl2:4H2O - MnCl2:4H2O = Mn+2 + 2Cl- + 4H2O - log_k 2.7151 - delta_h -10.83 kJ + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.7151 + delta_h -10.83 kJ CrCl2 - CrCl2 = Cr+2 + 2Cl- - log_k 14.0917 - delta_h -110.76 kJ + CrCl2 = Cr+2 + 2 Cl- + log_k 14.0917 + delta_h -110.76 kJ CrCl3 - CrCl3 + 2H2O = Cr(OH)2+ + 3Cl- + 2H+ - log_k 15.1145 - delta_h -121.08 kJ + CrCl3 + 2 H2O = Cr(OH)2+ + 3 Cl- + 2 H+ + log_k 15.1145 + delta_h -121.08 kJ VCl2 - VCl2 = V+3 + 2Cl- + e- - log_k 18.8744 - delta_h -141.16 kJ + VCl2 = V+3 + 2 Cl- + e- + log_k 18.8744 + delta_h -141.16 kJ VCl3 - VCl3 = V+3 + 3Cl- - log_k 23.4326 - delta_h -179.54 kJ + VCl3 = V+3 + 3 Cl- + log_k 23.4326 + delta_h -179.54 kJ VOCl - VOCl + 2H+ = V+3 + Cl- + H2O - log_k 11.1524 - delta_h -104.91 kJ + VOCl + 2 H+ = V+3 + Cl- + H2O + log_k 11.1524 + delta_h -104.91 kJ VOCl2 - VOCl2 = VO+2 + 2Cl- - log_k 12.7603 - delta_h -117.76 kJ + VOCl2 = VO+2 + 2 Cl- + log_k 12.7603 + delta_h -117.76 kJ VO2Cl VO2Cl = VO2+ + Cl- - log_k 2.8413 - delta_h -40.28 kJ + log_k 2.8413 + delta_h -40.28 kJ Halite NaCl = Na+ + Cl- - log_k 1.6025 - delta_h 3.7 kJ + log_k 1.6025 + delta_h 3.7 kJ SbBr3 - SbBr3 + 3H2O = Sb(OH)3 + 3Br- + 3H+ - log_k 0.9689 - delta_h -20.94 kJ + SbBr3 + 3 H2O = Sb(OH)3 + 3 Br- + 3 H+ + log_k 0.9689 + delta_h -20.94 kJ SnBr2 - SnBr2 + 2H2O = Sn(OH)2 + 2H+ + 2Br- - log_k -9.5443 - delta_h -0 kJ + SnBr2 + 2 H2O = Sn(OH)2 + 2 H+ + 2 Br- + log_k -9.5443 + delta_h -0 kJ SnBr4 - SnBr4 + 6H2O = Sn(OH)6-2 + 6H+ + 4Br- - log_k -28.8468 - delta_h -0 kJ + SnBr4 + 6 H2O = Sn(OH)6-2 + 6 H+ + 4 Br- + log_k -28.8468 + delta_h -0 kJ PbBr2 - PbBr2 = Pb+2 + 2Br- - log_k -5.3 - delta_h 35.499 kJ + PbBr2 = Pb+2 + 2 Br- + log_k -5.3 + delta_h 35.499 kJ PbBrF PbBrF = Pb+2 + Br- + F- - log_k -8.49 - delta_h -0 kJ + log_k -8.49 + delta_h -0 kJ TlBr TlBr = Tl+ + Br- - log_k -5.44 - delta_h 54 kJ + log_k -5.44 + delta_h 54 kJ ZnBr2:2H2O - ZnBr2:2H2O = Zn+2 + 2Br- + 2H2O - log_k 5.2005 - delta_h -30.67 kJ + ZnBr2:2H2O = Zn+2 + 2 Br- + 2 H2O + log_k 5.2005 + delta_h -30.67 kJ CdBr2:4H2O - CdBr2:4H2O = Cd+2 + 2Br- + 4H2O - log_k -2.425 - delta_h 30.5001 kJ + CdBr2:4H2O = Cd+2 + 2 Br- + 4 H2O + log_k -2.425 + delta_h 30.5001 kJ Hg2Br2 - Hg2Br2 = Hg2+2 + 2Br- - log_k -22.25 - delta_h 133 kJ + Hg2Br2 = Hg2+2 + 2 Br- + log_k -22.25 + delta_h 133 kJ HgBr2 - HgBr2 + 2H2O = Hg(OH)2 + 2Br- + 2H+ - log_k -25.2734 - delta_h 138.492 kJ + HgBr2 + 2 H2O = Hg(OH)2 + 2 Br- + 2 H+ + log_k -25.2734 + delta_h 138.492 kJ CuBr CuBr = Cu+ + Br- - log_k -8.3 - delta_h 54.86 kJ + log_k -8.3 + delta_h 54.86 kJ Cu2(OH)3Br - Cu2(OH)3Br + 3H+ = 2Cu+2 + 3H2O + Br- - log_k 7.9085 - delta_h -93.43 kJ + Cu2(OH)3Br + 3 H+ = 2 Cu+2 + 3 H2O + Br- + log_k 7.9085 + delta_h -93.43 kJ Bromyrite AgBr = Ag+ + Br- - log_k -12.3 - delta_h 84.5 kJ + log_k -12.3 + delta_h 84.5 kJ (Co(NH3)6)Br3 - (Co(NH3)6)Br3 + 6H+ = Co+3 + 6NH4+ + 3Br- - log_k 18.3142 - delta_h -21.1899 kJ + (Co(NH3)6)Br3 + 6 H+ = Co+3 + 6 NH4+ + 3 Br- + log_k 18.3142 + delta_h -21.1899 kJ (Co(NH3)5Cl)Br2 - (Co(NH3)5Cl)Br2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2Br- - log_k 5.0295 - delta_h -6.4 kJ + (Co(NH3)5Cl)Br2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 Br- + log_k 5.0295 + delta_h -6.4 kJ CrBr3 - CrBr3 + 2H2O = Cr(OH)2+ + 3Br- + 2H+ - log_k 19.9086 - delta_h -141.323 kJ + CrBr3 + 2 H2O = Cr(OH)2+ + 3 Br- + 2 H+ + log_k 19.9086 + delta_h -141.323 kJ AsI3 - AsI3 + 3H2O = H3AsO3 + 3I- + 3H+ - log_k 4.2307 - delta_h 3.15 kJ + AsI3 + 3 H2O = H3AsO3 + 3 I- + 3 H+ + log_k 4.2307 + delta_h 3.15 kJ SbI3 - SbI3 + 3H2O = Sb(OH)3 + 3H+ + 3I- - log_k -0.538 - delta_h 13.5896 kJ + SbI3 + 3 H2O = Sb(OH)3 + 3 H+ + 3 I- + log_k -0.538 + delta_h 13.5896 kJ PbI2 - PbI2 = Pb+2 + 2I- - log_k -8.1 - delta_h 62 kJ + PbI2 = Pb+2 + 2 I- + log_k -8.1 + delta_h 62 kJ TlI TlI = Tl+ + I- - log_k -7.23 - delta_h 75 kJ + log_k -7.23 + delta_h 75 kJ ZnI2 - ZnI2 = Zn+2 + 2I- - log_k 7.3055 - delta_h -58.92 kJ + ZnI2 = Zn+2 + 2 I- + log_k 7.3055 + delta_h -58.92 kJ CdI2 - CdI2 = Cd+2 + 2I- - log_k -3.5389 - delta_h 13.82 kJ + CdI2 = Cd+2 + 2 I- + log_k -3.5389 + delta_h 13.82 kJ Hg2I2 - Hg2I2 = Hg2+2 + 2I- - log_k -28.34 - delta_h 163 kJ + Hg2I2 = Hg2+2 + 2 I- + log_k -28.34 + delta_h 163 kJ Coccinite - HgI2 + 2H2O = Hg(OH)2 + 2H+ + 2I- - log_k -34.9525 - delta_h 210.72 kJ + HgI2 + 2 H2O = Hg(OH)2 + 2 H+ + 2 I- + log_k -34.9525 + delta_h 210.72 kJ HgI2:2NH3 - HgI2:2NH3 + 2H2O = Hg(OH)2 + 2I- + 2NH4+ - log_k -16.2293 - delta_h 132.18 kJ + HgI2:2NH3 + 2 H2O = Hg(OH)2 + 2 I- + 2 NH4+ + log_k -16.2293 + delta_h 132.18 kJ HgI2:6NH3 - HgI2:6NH3 + 2H2O + 4H+ = Hg(OH)2 + 2I- + 6NH4+ - log_k 33.7335 - delta_h -90.3599 kJ + HgI2:6NH3 + 2 H2O + 4 H+ = Hg(OH)2 + 2 I- + 6 NH4+ + log_k 33.7335 + delta_h -90.3599 kJ CuI CuI = Cu+ + I- - log_k -12 - delta_h 82.69 kJ + log_k -12 + delta_h 82.69 kJ Iodyrite AgI = Ag+ + I- - log_k -16.08 - delta_h 110 kJ + log_k -16.08 + delta_h 110 kJ (Co(NH3)6)I3 - (Co(NH3)6)I3 + 6H+ = Co+3 + 6NH4+ + 3I- - log_k 16.5831 - delta_h -9.6999 kJ + (Co(NH3)6)I3 + 6 H+ = Co+3 + 6 NH4+ + 3 I- + log_k 16.5831 + delta_h -9.6999 kJ (Co(NH3)5Cl)I2 - (Co(NH3)5Cl)I2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2I- - log_k 5.5981 - delta_h 0.66 kJ + (Co(NH3)5Cl)I2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 I- + log_k 5.5981 + delta_h 0.66 kJ CrI3 - CrI3 + 2H2O = Cr(OH)2+ + 3I- + 2H+ - log_k 20.4767 - delta_h -134.419 kJ + CrI3 + 2 H2O = Cr(OH)2+ + 3 I- + 2 H+ + log_k 20.4767 + delta_h -134.419 kJ Cerussite PbCO3 = Pb+2 + CO3-2 - log_k -13.13 - delta_h 24.79 kJ + log_k -13.13 + delta_h 24.79 kJ Pb2OCO3 - Pb2OCO3 + 2H+ = 2Pb+2 + H2O + CO3-2 - log_k -0.5578 - delta_h -40.8199 kJ + Pb2OCO3 + 2 H+ = 2 Pb+2 + H2O + CO3-2 + log_k -0.5578 + delta_h -40.8199 kJ Pb3O2CO3 - Pb3O2CO3 + 4H+ = 3Pb+2 + CO3-2 + 2H2O - log_k 11.02 - delta_h -110.583 kJ + Pb3O2CO3 + 4 H+ = 3 Pb+2 + CO3-2 + 2 H2O + log_k 11.02 + delta_h -110.583 kJ Hydrocerussite - Pb3(OH)2(CO3)2 + 2H+ = 3Pb+2 + 2H2O + 2CO3-2 - log_k -18.7705 - delta_h -0 kJ + Pb3(OH)2(CO3)2 + 2 H+ = 3 Pb+2 + 2 H2O + 2 CO3-2 + log_k -18.7705 + delta_h -0 kJ Pb10(OH)6O(CO3)6 - Pb10(OH)6O(CO3)6 + 8H+ = 10Pb+2 + 6CO3-2 + 7H2O - log_k -8.76 - delta_h -0 kJ + Pb10(OH)6O(CO3)6 + 8 H+ = 10 Pb+2 + 6 CO3-2 + 7 H2O + log_k -8.76 + delta_h -0 kJ Tl2CO3 - Tl2CO3 = 2Tl+ + CO3-2 - log_k -3.8367 - delta_h 35.49 kJ + Tl2CO3 = 2 Tl+ + CO3-2 + log_k -3.8367 + delta_h 35.49 kJ Smithsonite ZnCO3 = Zn+2 + CO3-2 - log_k -10 - delta_h -15.84 kJ + log_k -10 + delta_h -15.84 kJ ZnCO3:1H2O - ZnCO3:1H2O = Zn+2 + CO3-2 + H2O - log_k -10.26 - delta_h -0 kJ + ZnCO3:H2O = Zn+2 + CO3-2 + H2O + log_k -10.26 + delta_h -0 kJ Otavite CdCO3 = Cd+2 + CO3-2 - log_k -12 - delta_h -0.55 kJ + log_k -12 + delta_h -0.55 kJ Hg2CO3 Hg2CO3 = Hg2+2 + CO3-2 - log_k -16.05 - delta_h 45.14 kJ + log_k -16.05 + delta_h 45.14 kJ Hg3O2CO3 - Hg3O2CO3 + 4H2O = 3Hg(OH)2 + 2H+ + CO3-2 - log_k -29.682 - delta_h -0 kJ + Hg3O2CO3 + 4 H2O = 3 Hg(OH)2 + 2 H+ + CO3-2 + log_k -29.682 + delta_h -0 kJ CuCO3 CuCO3 = Cu+2 + CO3-2 - log_k -11.5 - delta_h -0 kJ + log_k -11.5 + delta_h -0 kJ Malachite - Cu2(OH)2CO3 + 2H+ = 2Cu+2 + 2H2O + CO3-2 - log_k -5.306 - delta_h 76.38 kJ + Cu2(OH)2CO3 + 2 H+ = 2 Cu+2 + 2 H2O + CO3-2 + log_k -5.306 + delta_h 76.38 kJ Azurite - Cu3(OH)2(CO3)2 + 2H+ = 3Cu+2 + 2H2O + 2CO3-2 - log_k -16.906 - delta_h -95.22 kJ + Cu3(OH)2(CO3)2 + 2 H+ = 3 Cu+2 + 2 H2O + 2 CO3-2 + log_k -16.906 + delta_h -95.22 kJ Ag2CO3 - Ag2CO3 = 2Ag+ + CO3-2 - log_k -11.09 - delta_h 42.15 kJ + Ag2CO3 = 2 Ag+ + CO3-2 + log_k -11.09 + delta_h 42.15 kJ NiCO3 NiCO3 = Ni+2 + CO3-2 - log_k -6.87 - delta_h -41.589 kJ + log_k -6.87 + delta_h -41.589 kJ CoCO3 CoCO3 = Co+2 + CO3-2 - log_k -9.98 - delta_h -12.7612 kJ + log_k -9.98 + delta_h -12.7612 kJ Siderite FeCO3 = Fe+2 + CO3-2 - log_k -10.24 - delta_h -16 kJ + log_k -10.24 + delta_h -16 kJ Rhodochrosite MnCO3 = Mn+2 + CO3-2 - log_k -10.58 - delta_h -1.88 kJ + log_k -10.58 + delta_h -1.88 kJ Rutherfordine UO2CO3 = UO2+2 + CO3-2 - log_k -14.5 - delta_h -3.03 kJ + log_k -14.5 + delta_h -3.03 kJ Artinite - MgCO3:Mg(OH)2:3H2O + 2H+ = 2Mg+2 + CO3-2 + 5H2O - log_k 9.6 - delta_h -120.257 kJ + MgCO3:Mg(OH)2:3H2O + 2 H+ = 2 Mg+2 + CO3-2 + 5 H2O + log_k 9.6 + delta_h -120.257 kJ Hydromagnesite - Mg5(CO3)4(OH)2:4H2O + 2H+ = 5Mg+2 + 4CO3-2 + 6H2O - log_k -8.766 - delta_h -218.447 kJ + Mg5(CO3)4(OH)2:4H2O + 2 H+ = 5 Mg+2 + 4 CO3-2 + 6 H2O + log_k -8.766 + delta_h -218.447 kJ Magnesite MgCO3 = Mg+2 + CO3-2 - log_k -7.46 - delta_h 20 kJ + log_k -7.46 + delta_h 20 kJ Nesquehonite - MgCO3:3H2O = Mg+2 + CO3-2 + 3H2O - log_k -4.67 - delta_h -24.2212 kJ + MgCO3:3H2O = Mg+2 + CO3-2 + 3 H2O + log_k -4.67 + delta_h -24.2212 kJ Aragonite CaCO3 = Ca+2 + CO3-2 - log_k -8.3 - delta_h -12 kJ + log_k -8.3 + delta_h -12 kJ Calcite CaCO3 = Ca+2 + CO3-2 - log_k -8.48 - delta_h -8 kJ + log_k -8.48 + delta_h -8 kJ Dolomite(ordered) - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -17.09 - delta_h -39.5 kJ + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17.09 + delta_h -39.5 kJ Dolomite(disordered) - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -16.54 - delta_h -46.4 kJ + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -16.54 + delta_h -46.4 kJ Huntite - CaMg3(CO3)4 = 3Mg+2 + Ca+2 + 4CO3-2 - log_k -29.968 - delta_h -107.78 kJ + CaMg3(CO3)4 = 3 Mg+2 + Ca+2 + 4 CO3-2 + log_k -29.968 + delta_h -107.78 kJ Strontianite SrCO3 = Sr+2 + CO3-2 - log_k -9.27 - delta_h -0 kJ + log_k -9.27 + delta_h -0 kJ Witherite BaCO3 = Ba+2 + CO3-2 - log_k -8.57 - delta_h 4 kJ + log_k -8.57 + delta_h 4 kJ Thermonatrite - Na2CO3:H2O = 2Na+ + CO3-2 + H2O - log_k 0.637 - delta_h -10.4799 kJ + Na2CO3:H2O = 2 Na+ + CO3-2 + H2O + log_k 0.637 + delta_h -10.4799 kJ TlNO3 TlNO3 = Tl+ + NO3- - log_k -1.6127 - delta_h 42.44 kJ + log_k -1.6127 + delta_h 42.44 kJ Zn(NO3)2:6H2O - Zn(NO3)2:6H2O = Zn+2 + 2NO3- + 6H2O - log_k 3.3153 - delta_h 24.5698 kJ + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.3153 + delta_h 24.5698 kJ Cu2(OH)3NO3 - Cu2(OH)3NO3 + 3H+ = 2Cu+2 + 3H2O + NO3- - log_k 9.251 - delta_h -72.5924 kJ + Cu2(OH)3NO3 + 3 H+ = 2 Cu+2 + 3 H2O + NO3- + log_k 9.251 + delta_h -72.5924 kJ (Co(NH3)6)(NO3)3 - (Co(NH3)6)(NO3)3 + 6H+ = Co+3 + 6NH4+ + 3NO3- - log_k 17.9343 - delta_h 1.59 kJ + (Co(NH3)6)(NO3)3 + 6 H+ = Co+3 + 6 NH4+ + 3 NO3- + log_k 17.9343 + delta_h 1.59 kJ (Co(NH3)5Cl)(NO3)2 - (Co(NH3)5Cl)(NO3)2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2NO3- - log_k 6.2887 - delta_h 6.4199 kJ + (Co(NH3)5Cl)(NO3)2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 NO3- + log_k 6.2887 + delta_h 6.4199 kJ UO2(NO3)2 - UO2(NO3)2 = UO2+2 + 2NO3- - log_k 12.1476 - delta_h -83.3999 kJ + UO2(NO3)2 = UO2+2 + 2 NO3- + log_k 12.1476 + delta_h -83.3999 kJ UO2(NO3)2:2H2O - UO2(NO3)2:2H2O = UO2+2 + 2NO3- + 2H2O - log_k 4.851 - delta_h -25.355 kJ + UO2(NO3)2:2H2O = UO2+2 + 2 NO3- + 2 H2O + log_k 4.851 + delta_h -25.355 kJ UO2(NO3)2:3H2O - UO2(NO3)2:3H2O = UO2+2 + 2NO3- + 3H2O - log_k 3.39 - delta_h -9.1599 kJ + UO2(NO3)2:3H2O = UO2+2 + 2 NO3- + 3 H2O + log_k 3.39 + delta_h -9.1599 kJ UO2(NO3)2:6H2O - UO2(NO3)2:6H2O = UO2+2 + 2NO3- + 6H2O - log_k 2.0464 - delta_h 20.8201 kJ + UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O + log_k 2.0464 + delta_h 20.8201 kJ Pb(BO2)2 - Pb(BO2)2 + 2H2O + 2H+ = Pb+2 + 2H3BO3 - log_k 6.5192 - delta_h -15.6119 kJ + Pb(BO2)2 + 2 H2O + 2 H+ = Pb+2 + 2 H3BO3 + log_k 6.5192 + delta_h -15.6119 kJ Zn(BO2)2 - Zn(BO2)2 + 2H2O + 2H+ = Zn+2 + 2H3BO3 - log_k 8.29 - delta_h -0 kJ + Zn(BO2)2 + 2 H2O + 2 H+ = Zn+2 + 2 H3BO3 + log_k 8.29 + delta_h -0 kJ Cd(BO2)2 - Cd(BO2)2 + 2H2O + 2H+ = Cd+2 + 2H3BO3 - log_k 9.84 - delta_h -0 kJ + Cd(BO2)2 + 2 H2O + 2 H+ = Cd+2 + 2 H3BO3 + log_k 9.84 + delta_h -0 kJ Co(BO2)2 - Co(BO2)2 + 2H2O + 2H+ = Co+2 + 2H3BO3 - log_k 27.0703 - delta_h -0 kJ + Co(BO2)2 + 2 H2O + 2 H+ = Co+2 + 2 H3BO3 + log_k 27.0703 + delta_h -0 kJ SnSO4 - SnSO4 + 2H2O = Sn(OH)2 + 2H+ + SO4-2 - log_k -56.9747 - delta_h -0 kJ + SnSO4 + 2 H2O = Sn(OH)2 + 2 H+ + SO4-2 + log_k -56.9747 + delta_h -0 kJ Sn(SO4)2 - Sn(SO4)2 + 6H2O = Sn(OH)6-2 + 6H+ + 2SO4-2 - log_k -15.2123 - delta_h -0 kJ + Sn(SO4)2 + 6 H2O = Sn(OH)6-2 + 6 H+ + 2 SO4-2 + log_k -15.2123 + delta_h -0 kJ Larnakite - PbO:PbSO4 + 2H+ = 2Pb+2 + SO4-2 + H2O - log_k -0.4344 - delta_h -21.83 kJ + PbO:PbSO4 + 2 H+ = 2 Pb+2 + SO4-2 + H2O + log_k -0.4344 + delta_h -21.83 kJ Pb3O2SO4 - Pb3O2SO4 + 4H+ = 3Pb+2 + SO4-2 + 2H2O - log_k 10.6864 - delta_h -79.14 kJ + Pb3O2SO4 + 4 H+ = 3 Pb+2 + SO4-2 + 2 H2O + log_k 10.6864 + delta_h -79.14 kJ Pb4O3SO4 - Pb4O3SO4 + 6H+ = 4Pb+2 + SO4-2 + 3H2O - log_k 21.8772 - delta_h -136.45 kJ + Pb4O3SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 3 H2O + log_k 21.8772 + delta_h -136.45 kJ Anglesite PbSO4 = Pb+2 + SO4-2 - log_k -7.79 - delta_h 12 kJ + log_k -7.79 + delta_h 12 kJ Pb4(OH)6SO4 - Pb4(OH)6SO4 + 6H+ = 4Pb+2 + SO4-2 + 6H2O - log_k 21.1 - delta_h -0 kJ + Pb4(OH)6SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 6 H2O + log_k 21.1 + delta_h -0 kJ AlOHSO4 AlOHSO4 + H+ = Al+3 + SO4-2 + H2O - log_k -3.23 - delta_h -0 kJ + log_k -3.23 + delta_h -0 kJ Al4(OH)10SO4 - Al4(OH)10SO4 + 10H+ = 4Al+3 + SO4-2 + 10H2O - log_k 22.7 - delta_h -0 kJ + Al4(OH)10SO4 + 10 H+ = 4 Al+3 + SO4-2 + 10 H2O + log_k 22.7 + delta_h -0 kJ Tl2SO4 - Tl2SO4 = 2Tl+ + SO4-2 - log_k -3.7868 - delta_h 33.1799 kJ + Tl2SO4 = 2 Tl+ + SO4-2 + log_k -3.7868 + delta_h 33.1799 kJ Zn2(OH)2SO4 - Zn2(OH)2SO4 + 2H+ = 2Zn+2 + 2H2O + SO4-2 - log_k 7.5 - delta_h -0 kJ + Zn2(OH)2SO4 + 2 H+ = 2 Zn+2 + 2 H2O + SO4-2 + log_k 7.5 + delta_h -0 kJ Zn4(OH)6SO4 - Zn4(OH)6SO4 + 6H+ = 4Zn+2 + 6H2O + SO4-2 - log_k 28.4 - delta_h -0 kJ + Zn4(OH)6SO4 + 6 H+ = 4 Zn+2 + 6 H2O + SO4-2 + log_k 28.4 + delta_h -0 kJ Zn3O(SO4)2 - Zn3O(SO4)2 + 2H+ = 3Zn+2 + 2SO4-2 + H2O - log_k 18.9135 - delta_h -258.08 kJ + Zn3O(SO4)2 + 2 H+ = 3 Zn+2 + 2 SO4-2 + H2O + log_k 18.9135 + delta_h -258.08 kJ Zincosite ZnSO4 = Zn+2 + SO4-2 - log_k 3.9297 - delta_h -82.586 kJ + log_k 3.9297 + delta_h -82.586 kJ ZnSO4:1H2O - ZnSO4:1H2O = Zn+2 + SO4-2 + H2O - log_k -0.638 - delta_h -44.0699 kJ + ZnSO4:H2O = Zn+2 + SO4-2 + H2O + log_k -0.638 + delta_h -44.0699 kJ Bianchite - ZnSO4:6H2O = Zn+2 + SO4-2 + 6H2O - log_k -1.765 - delta_h -0.6694 kJ + ZnSO4:6H2O = Zn+2 + SO4-2 + 6 H2O + log_k -1.765 + delta_h -0.6694 kJ Goslarite - ZnSO4:7H2O = Zn+2 + SO4-2 + 7H2O - log_k -2.0112 - delta_h 14.21 kJ + ZnSO4:7H2O = Zn+2 + SO4-2 + 7 H2O + log_k -2.0112 + delta_h 14.21 kJ Cd3(OH)4SO4 - Cd3(OH)4SO4 + 4H+ = 3Cd+2 + 4H2O + SO4-2 - log_k 22.56 - delta_h -0 kJ + Cd3(OH)4SO4 + 4 H+ = 3 Cd+2 + 4 H2O + SO4-2 + log_k 22.56 + delta_h -0 kJ Cd3(OH)2(SO4)2 - Cd3(OH)2(SO4)2 + 2H+ = 3Cd+2 + 2H2O + 2SO4-2 - log_k 6.71 - delta_h -0 kJ + Cd3(OH)2(SO4)2 + 2 H+ = 3 Cd+2 + 2 H2O + 2 SO4-2 + log_k 6.71 + delta_h -0 kJ Cd4(OH)6SO4 - Cd4(OH)6SO4 + 6H+ = 4Cd+2 + 6H2O + SO4-2 - log_k 28.4 - delta_h -0 kJ + Cd4(OH)6SO4 + 6 H+ = 4 Cd+2 + 6 H2O + SO4-2 + log_k 28.4 + delta_h -0 kJ CdSO4 CdSO4 = Cd+2 + SO4-2 - log_k -0.1722 - delta_h -51.98 kJ + log_k -0.1722 + delta_h -51.98 kJ CdSO4:1H2O - CdSO4:1H2O = Cd+2 + SO4-2 + H2O - log_k -1.7261 - delta_h -31.5399 kJ + CdSO4:H2O = Cd+2 + SO4-2 + H2O + log_k -1.7261 + delta_h -31.5399 kJ CdSO4:2.67H2O - CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67H2O - log_k -1.873 - delta_h -17.9912 kJ + CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67 H2O + log_k -1.873 + delta_h -17.9912 kJ Hg2SO4 Hg2SO4 = Hg2+2 + SO4-2 - log_k -6.13 - delta_h 5.4 kJ + log_k -6.13 + delta_h 5.4 kJ HgSO4 - HgSO4 + 2H2O = Hg(OH)2 + SO4-2 + 2H+ - log_k -9.4189 - delta_h 14.6858 kJ + HgSO4 + 2 H2O = Hg(OH)2 + SO4-2 + 2 H+ + log_k -9.4189 + delta_h 14.6858 kJ Cu2SO4 - Cu2SO4 = 2Cu+ + SO4-2 - log_k -1.95 - delta_h -19.079 kJ + Cu2SO4 = 2 Cu+ + SO4-2 + log_k -1.95 + delta_h -19.079 kJ Antlerite - Cu3(OH)4SO4 + 4H+ = 3Cu+2 + 4H2O + SO4-2 - log_k 8.788 - delta_h -0 kJ + Cu3(OH)4SO4 + 4 H+ = 3 Cu+2 + 4 H2O + SO4-2 + log_k 8.788 + delta_h -0 kJ Brochantite - Cu4(OH)6SO4 + 6H+ = 4Cu+2 + 6H2O + SO4-2 - log_k 15.222 - delta_h -202.86 kJ + Cu4(OH)6SO4 + 6 H+ = 4 Cu+2 + 6 H2O + SO4-2 + log_k 15.222 + delta_h -202.86 kJ Langite - Cu4(OH)6SO4:H2O + 6H+ = 4Cu+2 + 7H2O + SO4-2 - log_k 17.4886 - delta_h -165.55 kJ + Cu4(OH)6SO4:H2O + 6 H+ = 4 Cu+2 + 7 H2O + SO4-2 + log_k 17.4886 + delta_h -165.55 kJ CuOCuSO4 - CuOCuSO4 + 2H+ = 2Cu+2 + H2O + SO4-2 - log_k 10.3032 - delta_h -137.777 kJ + CuOCuSO4 + 2 H+ = 2 Cu+2 + H2O + SO4-2 + log_k 10.3032 + delta_h -137.777 kJ CuSO4 CuSO4 = Cu+2 + SO4-2 - log_k 2.9395 - delta_h -73.04 kJ + log_k 2.9395 + delta_h -73.04 kJ Chalcanthite - CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O - log_k -2.64 - delta_h 6.025 kJ + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.64 + delta_h 6.025 kJ Ag2SO4 - Ag2SO4 = 2Ag+ + SO4-2 - log_k -4.82 - delta_h 17 kJ + Ag2SO4 = 2 Ag+ + SO4-2 + log_k -4.82 + delta_h 17 kJ Ni4(OH)6SO4 - Ni4(OH)6SO4 + 6H+ = 4Ni+2 + SO4-2 + 6H2O - log_k 32 - delta_h -0 kJ + Ni4(OH)6SO4 + 6 H+ = 4 Ni+2 + SO4-2 + 6 H2O + log_k 32 + delta_h -0 kJ Retgersite - NiSO4:6H2O = Ni+2 + SO4-2 + 6H2O - log_k -2.04 - delta_h 4.6024 kJ + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.04 + delta_h 4.6024 kJ Morenosite - NiSO4:7H2O = Ni+2 + SO4-2 + 7H2O - log_k -2.1449 - delta_h 12.1802 kJ + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.1449 + delta_h 12.1802 kJ CoSO4 CoSO4 = Co+2 + SO4-2 - log_k 2.8024 - delta_h -79.277 kJ + log_k 2.8024 + delta_h -79.277 kJ CoSO4:6H2O - CoSO4:6H2O = Co+2 + SO4-2 + 6H2O - log_k -2.4726 - delta_h 1.0801 kJ + CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O + log_k -2.4726 + delta_h 1.0801 kJ Melanterite - FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O - log_k -2.209 - delta_h 20.5 kJ + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.209 + delta_h 20.5 kJ Fe2(SO4)3 - Fe2(SO4)3 = 2Fe+3 + 3SO4-2 - log_k -3.7343 - delta_h -242.028 kJ + Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 + log_k -3.7343 + delta_h -242.028 kJ H-Jarosite - (H3O)Fe3(SO4)2(OH)6 + 5H+ = 3Fe+3 + 2SO4-2 + 7H2O - log_k -12.1 - delta_h -230.748 kJ + (H3O)Fe3(SO4)2(OH)6 + 5 H+ = 3 Fe+3 + 2 SO4-2 + 7 H2O + log_k -12.1 + delta_h -230.748 kJ Na-Jarosite - NaFe3(SO4)2(OH)6 + 6H+ = Na+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -11.2 - delta_h -151.377 kJ + NaFe3(SO4)2(OH)6 + 6 H+ = Na+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -11.2 + delta_h -151.377 kJ K-Jarosite - KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -14.8 - delta_h -130.875 kJ + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -14.8 + delta_h -130.875 kJ MnSO4 MnSO4 = Mn+2 + SO4-2 - log_k 2.5831 - delta_h -64.8401 kJ + log_k 2.5831 + delta_h -64.8401 kJ Mn2(SO4)3 - Mn2(SO4)3 = 2Mn+3 + 3SO4-2 - log_k -5.711 - delta_h -163.427 kJ + Mn2(SO4)3 = 2 Mn+3 + 3 SO4-2 + log_k -5.711 + delta_h -163.427 kJ VOSO4 VOSO4 = VO+2 + SO4-2 - log_k 3.6097 - delta_h -86.7401 kJ + log_k 3.6097 + delta_h -86.7401 kJ Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7H2O - log_k -2.1265 - delta_h 11.5601 kJ + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -2.1265 + delta_h 11.5601 kJ Anhydrite CaSO4 = Ca+2 + SO4-2 - log_k -4.36 - delta_h -7.2 kJ + log_k -4.36 + delta_h -7.2 kJ Gypsum - CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O - log_k -4.61 - delta_h 1 kJ + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.61 + delta_h 1 kJ Celestite SrSO4 = Sr+2 + SO4-2 - log_k -6.62 - delta_h 2 kJ + log_k -6.62 + delta_h 2 kJ Barite BaSO4 = Ba+2 + SO4-2 - log_k -9.98 - delta_h 23 kJ + log_k -9.98 + delta_h 23 kJ Mirabilite - Na2SO4:10H2O = 2Na+ + SO4-2 + 10H2O - log_k -1.114 - delta_h 79.4416 kJ + Na2SO4:10H2O = 2 Na+ + SO4-2 + 10 H2O + log_k -1.114 + delta_h 79.4416 kJ Thenardite - Na2SO4 = 2Na+ + SO4-2 - log_k 0.3217 - delta_h -9.121 kJ + Na2SO4 = 2 Na+ + SO4-2 + log_k 0.3217 + delta_h -9.121 kJ K-Alum - KAl(SO4)2:12H2O = K+ + Al+3 + 2SO4-2 + 12H2O - log_k -5.17 - delta_h 30.2085 kJ + KAl(SO4)2:12H2O = K+ + Al+3 + 2 SO4-2 + 12 H2O + log_k -5.17 + delta_h 30.2085 kJ Alunite - KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O - log_k -1.4 - delta_h -210 kJ + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + log_k -1.4 + delta_h -210 kJ (NH4)2CrO4 - (NH4)2CrO4 = CrO4-2 + 2NH4+ - log_k 0.4046 - delta_h 9.163 kJ + (NH4)2CrO4 = CrO4-2 + 2 NH4+ + log_k 0.4046 + delta_h 9.163 kJ PbCrO4 PbCrO4 = Pb+2 + CrO4-2 - log_k -12.6 - delta_h 44.18 kJ + log_k -12.6 + delta_h 44.18 kJ Tl2CrO4 - Tl2CrO4 = 2Tl+ + CrO4-2 - log_k -12.01 - delta_h 74.27 kJ + Tl2CrO4 = 2 Tl+ + CrO4-2 + log_k -12.01 + delta_h 74.27 kJ Hg2CrO4 Hg2CrO4 = Hg2+2 + CrO4-2 - log_k -8.7 - delta_h -0 kJ + log_k -8.7 + delta_h -0 kJ CuCrO4 CuCrO4 = Cu+2 + CrO4-2 - log_k -5.44 - delta_h -0 kJ + log_k -5.44 + delta_h -0 kJ Ag2CrO4 - Ag2CrO4 = 2Ag+ + CrO4-2 - log_k -11.59 - delta_h 62 kJ + Ag2CrO4 = 2 Ag+ + CrO4-2 + log_k -11.59 + delta_h 62 kJ MgCrO4 MgCrO4 = CrO4-2 + Mg+2 - log_k 5.3801 - delta_h -88.9518 kJ + log_k 5.3801 + delta_h -88.9518 kJ CaCrO4 CaCrO4 = Ca+2 + CrO4-2 - log_k -2.2657 - delta_h -26.945 kJ + log_k -2.2657 + delta_h -26.945 kJ SrCrO4 SrCrO4 = Sr+2 + CrO4-2 - log_k -4.65 - delta_h -10.1253 kJ + log_k -4.65 + delta_h -10.1253 kJ BaCrO4 BaCrO4 = Ba+2 + CrO4-2 - log_k -9.67 - delta_h 33 kJ + log_k -9.67 + delta_h 33 kJ Li2CrO4 - Li2CrO4 = CrO4-2 + 2Li+ - log_k 4.8568 - delta_h -45.2792 kJ + Li2CrO4 = CrO4-2 + 2 Li+ + log_k 4.8568 + delta_h -45.2792 kJ Na2CrO4 - Na2CrO4 = CrO4-2 + 2Na+ - log_k 2.9302 - delta_h -19.6301 kJ + Na2CrO4 = CrO4-2 + 2 Na+ + log_k 2.9302 + delta_h -19.6301 kJ Na2Cr2O7 - Na2Cr2O7 + H2O = 2CrO4-2 + 2Na+ + 2H+ - log_k -9.8953 - delta_h 22.1961 kJ + Na2Cr2O7 + H2O = 2 CrO4-2 + 2 Na+ + 2 H+ + log_k -9.8953 + delta_h 22.1961 kJ K2CrO4 - K2CrO4 = CrO4-2 + 2K+ - log_k -0.5134 - delta_h 18.2699 kJ + K2CrO4 = CrO4-2 + 2 K+ + log_k -0.5134 + delta_h 18.2699 kJ K2Cr2O7 - K2Cr2O7 + H2O = 2CrO4-2 + 2K+ + 2H+ - log_k -17.2424 - delta_h 80.7499 kJ + K2Cr2O7 + H2O = 2 CrO4-2 + 2 K+ + 2 H+ + log_k -17.2424 + delta_h 80.7499 kJ Hg2SeO3 Hg2SeO3 + H+ = Hg2+2 + HSeO3- - log_k -4.657 - delta_h -0 kJ + log_k -4.657 + delta_h -0 kJ HgSeO3 - HgSeO3 + 2H2O = Hg(OH)2 + H+ + HSeO3- - log_k -12.43 - delta_h -0 kJ + HgSeO3 + 2 H2O = Hg(OH)2 + H+ + HSeO3- + log_k -12.43 + delta_h -0 kJ Ag2SeO3 - Ag2SeO3 + H+ = 2Ag+ + HSeO3- - log_k -7.15 - delta_h 39.68 kJ + Ag2SeO3 + H+ = 2 Ag+ + HSeO3- + log_k -7.15 + delta_h 39.68 kJ CuSeO3:2H2O - CuSeO3:2H2O + H+ = Cu+2 + HSeO3- + 2H2O - log_k 0.5116 - delta_h -36.861 kJ + CuSeO3:2H2O + H+ = Cu+2 + HSeO3- + 2 H2O + log_k 0.5116 + delta_h -36.861 kJ NiSeO3:2H2O - NiSeO3:2H2O + H+ = HSeO3- + Ni+2 + 2H2O - log_k 2.8147 - delta_h -31.0034 kJ + NiSeO3:2H2O + H+ = HSeO3- + Ni+2 + 2 H2O + log_k 2.8147 + delta_h -31.0034 kJ CoSeO3 CoSeO3 + H+ = Co+2 + HSeO3- - log_k 1.32 - delta_h -0 kJ + log_k 1.32 + delta_h -0 kJ Fe2(SeO3)3:2H2O - Fe2(SeO3)3:2H2O + 3H+ = 3HSeO3- + 2Fe+3 + 2H2O - log_k -20.6262 - delta_h -0 kJ + Fe2(SeO3)3:2H2O + 3 H+ = 3 HSeO3- + 2 Fe+3 + 2 H2O + log_k -20.6262 + delta_h -0 kJ Fe2(OH)4SeO3 - Fe2(OH)4SeO3 + 5H+ = HSeO3- + 2Fe+3 + 4H2O - log_k 1.5539 - delta_h -0 kJ + Fe2(OH)4SeO3 + 5 H+ = HSeO3- + 2 Fe+3 + 4 H2O + log_k 1.5539 + delta_h -0 kJ MnSeO3 MnSeO3 + H+ = Mn+2 + HSeO3- - log_k 1.13 - delta_h -0 kJ + log_k 1.13 + delta_h -0 kJ MnSeO3:2H2O - MnSeO3:2H2O + H+ = HSeO3- + Mn+2 + 2H2O - log_k 0.9822 - delta_h 8.4935 kJ + MnSeO3:2H2O + H+ = HSeO3- + Mn+2 + 2 H2O + log_k 0.9822 + delta_h 8.4935 kJ MgSeO3:6H2O - MgSeO3:6H2O + H+ = Mg+2 + HSeO3- + 6H2O - log_k 3.0554 - delta_h 5.23 kJ + MgSeO3:6H2O + H+ = Mg+2 + HSeO3- + 6 H2O + log_k 3.0554 + delta_h 5.23 kJ CaSeO3:2H2O - CaSeO3:2H2O + H+ = HSeO3- + Ca+2 + 2H2O - log_k 2.8139 - delta_h -19.4556 kJ + CaSeO3:2H2O + H+ = HSeO3- + Ca+2 + 2 H2O + log_k 2.8139 + delta_h -19.4556 kJ SrSeO3 SrSeO3 + H+ = Sr+2 + HSeO3- - log_k 2.3 - delta_h -0 kJ + log_k 2.3 + delta_h -0 kJ BaSeO3 BaSeO3 + H+ = Ba+2 + HSeO3- - log_k 1.83 - delta_h 11.98 kJ + log_k 1.83 + delta_h 11.98 kJ Na2SeO3:5H2O - Na2SeO3:5H2O + H+ = 2Na+ + HSeO3- + 5H2O - log_k 10.3 - delta_h -0 kJ + Na2SeO3:5H2O + H+ = 2 Na+ + HSeO3- + 5 H2O + log_k 10.3 + delta_h -0 kJ PbSeO4 PbSeO4 = Pb+2 + SeO4-2 - log_k -6.84 - delta_h 15 kJ + log_k -6.84 + delta_h 15 kJ Tl2SeO4 - Tl2SeO4 = 2Tl+ + SeO4-2 - log_k -4.1 - delta_h 43 kJ + Tl2SeO4 = 2 Tl+ + SeO4-2 + log_k -4.1 + delta_h 43 kJ ZnSeO4:6H2O - ZnSeO4:6H2O = Zn+2 + SeO4-2 + 6H2O - log_k -1.52 - delta_h -0 kJ + ZnSeO4:6H2O = Zn+2 + SeO4-2 + 6 H2O + log_k -1.52 + delta_h -0 kJ CdSeO4:2H2O - CdSeO4:2H2O = Cd+2 + SeO4-2 + 2H2O - log_k -1.85 - delta_h -0 kJ + CdSeO4:2H2O = Cd+2 + SeO4-2 + 2 H2O + log_k -1.85 + delta_h -0 kJ Ag2SeO4 - Ag2SeO4 = 2Ag+ + SeO4-2 - log_k -8.91 - delta_h -43.5 kJ + Ag2SeO4 = 2 Ag+ + SeO4-2 + log_k -8.91 + delta_h -43.5 kJ CuSeO4:5H2O - CuSeO4:5H2O = Cu+2 + SeO4-2 + 5H2O - log_k -2.44 - delta_h -0 kJ + CuSeO4:5H2O = Cu+2 + SeO4-2 + 5 H2O + log_k -2.44 + delta_h -0 kJ NiSeO4:6H2O - NiSeO4:6H2O = Ni+2 + SeO4-2 + 6H2O - log_k -1.52 - delta_h -0 kJ + NiSeO4:6H2O = Ni+2 + SeO4-2 + 6 H2O + log_k -1.52 + delta_h -0 kJ CoSeO4:6H2O - CoSeO4:6H2O = Co+2 + SeO4-2 + 6H2O - log_k -1.53 - delta_h -0 kJ + CoSeO4:6H2O = Co+2 + SeO4-2 + 6 H2O + log_k -1.53 + delta_h -0 kJ MnSeO4:5H2O - MnSeO4:5H2O = Mn+2 + SeO4-2 + 5H2O - log_k -2.05 - delta_h -0 kJ + MnSeO4:5H2O = Mn+2 + SeO4-2 + 5 H2O + log_k -2.05 + delta_h -0 kJ UO2SeO4:4H2O - UO2SeO4:4H2O = UO2+2 + SeO4-2 + 4H2O - log_k -2.25 - delta_h -0 kJ + UO2SeO4:4H2O = UO2+2 + SeO4-2 + 4 H2O + log_k -2.25 + delta_h -0 kJ MgSeO4:6H2O - MgSeO4:6H2O = Mg+2 + SeO4-2 + 6H2O - log_k -1.2 - delta_h -0 kJ + MgSeO4:6H2O = Mg+2 + SeO4-2 + 6 H2O + log_k -1.2 + delta_h -0 kJ CaSeO4:2H2O - CaSeO4:2H2O = Ca+2 + SeO4-2 + 2H2O - log_k -3.02 - delta_h -8.3 kJ + CaSeO4:2H2O = Ca+2 + SeO4-2 + 2 H2O + log_k -3.02 + delta_h -8.3 kJ SrSeO4 SrSeO4 = Sr+2 + SeO4-2 - log_k -4.4 - delta_h 0.4 kJ + log_k -4.4 + delta_h 0.4 kJ BaSeO4 BaSeO4 = Ba+2 + SeO4-2 - log_k -7.46 - delta_h 22 kJ + log_k -7.46 + delta_h 22 kJ BeSeO4:4H2O - BeSeO4:4H2O = Be+2 + SeO4-2 + 4H2O - log_k -2.94 - delta_h -0 kJ + BeSeO4:4H2O = Be+2 + SeO4-2 + 4 H2O + log_k -2.94 + delta_h -0 kJ Na2SeO4 - Na2SeO4 = 2Na+ + SeO4-2 - log_k 1.28 - delta_h -0 kJ + Na2SeO4 = 2 Na+ + SeO4-2 + log_k 1.28 + delta_h -0 kJ K2SeO4 - K2SeO4 = 2K+ + SeO4-2 - log_k -0.73 - delta_h -0 kJ + K2SeO4 = 2 K+ + SeO4-2 + log_k -0.73 + delta_h -0 kJ (NH4)2SeO4 - (NH4)2SeO4 = 2NH4+ + SeO4-2 - log_k 0.45 - delta_h -0 kJ + (NH4)2SeO4 = 2 NH4+ + SeO4-2 + log_k 0.45 + delta_h -0 kJ H2MoO4 - H2MoO4 = MoO4-2 + 2H+ - log_k -12.8765 - delta_h 49 kJ + H2MoO4 = MoO4-2 + 2 H+ + log_k -12.8765 + delta_h 49 kJ PbMoO4 PbMoO4 = Pb+2 + MoO4-2 - log_k -15.62 - delta_h 53.93 kJ + log_k -15.62 + delta_h 53.93 kJ Al2(MoO4)3 - Al2(MoO4)3 = 3MoO4-2 + 2Al+3 - log_k 2.3675 - delta_h -260.8 kJ + Al2(MoO4)3 = 3 MoO4-2 + 2 Al+3 + log_k 2.3675 + delta_h -260.8 kJ Tl2MoO4 - Tl2MoO4 = MoO4-2 + 2Tl+ - log_k -7.9887 - delta_h -0 kJ + Tl2MoO4 = MoO4-2 + 2 Tl+ + log_k -7.9887 + delta_h -0 kJ ZnMoO4 ZnMoO4 = MoO4-2 + Zn+2 - log_k -10.1254 - delta_h -10.6901 kJ + log_k -10.1254 + delta_h -10.6901 kJ CdMoO4 CdMoO4 = MoO4-2 + Cd+2 - log_k -14.1497 - delta_h 19.48 kJ + log_k -14.1497 + delta_h 19.48 kJ CuMoO4 CuMoO4 = MoO4-2 + Cu+2 - log_k -13.0762 - delta_h 12.2 kJ + log_k -13.0762 + delta_h 12.2 kJ Ag2MoO4 - Ag2MoO4 = 2Ag+ + MoO4-2 - log_k -11.55 - delta_h 52.7 kJ + Ag2MoO4 = 2 Ag+ + MoO4-2 + log_k -11.55 + delta_h 52.7 kJ NiMoO4 NiMoO4 = MoO4-2 + Ni+2 - log_k -11.1421 - delta_h 1.3 kJ + log_k -11.1421 + delta_h 1.3 kJ CoMoO4 CoMoO4 = MoO4-2 + Co+2 - log_k -7.7609 - delta_h -23.3999 kJ + log_k -7.7609 + delta_h -23.3999 kJ FeMoO4 FeMoO4 = MoO4-2 + Fe+2 - log_k -10.091 - delta_h -11.1 kJ + log_k -10.091 + delta_h -11.1 kJ BeMoO4 BeMoO4 = MoO4-2 + Be+2 - log_k -1.7817 - delta_h -56.4 kJ + log_k -1.7817 + delta_h -56.4 kJ MgMoO4 MgMoO4 = Mg+2 + MoO4-2 - log_k -1.85 - delta_h -0 kJ + log_k -1.85 + delta_h -0 kJ CaMoO4 CaMoO4 = Ca+2 + MoO4-2 - log_k -7.95 - delta_h -2 kJ + log_k -7.95 + delta_h -2 kJ BaMoO4 BaMoO4 = MoO4-2 + Ba+2 - log_k -6.9603 - delta_h 10.96 kJ + log_k -6.9603 + delta_h 10.96 kJ Li2MoO4 - Li2MoO4 = MoO4-2 + 2Li+ - log_k 2.4416 - delta_h -33.9399 kJ + Li2MoO4 = MoO4-2 + 2 Li+ + log_k 2.4416 + delta_h -33.9399 kJ Na2MoO4 - Na2MoO4 = MoO4-2 + 2Na+ - log_k 1.4901 - delta_h -9.98 kJ + Na2MoO4 = MoO4-2 + 2 Na+ + log_k 1.4901 + delta_h -9.98 kJ Na2MoO4:2H2O - Na2MoO4:2H2O = MoO4-2 + 2Na+ + 2H2O - log_k 1.224 - delta_h -0 kJ + Na2MoO4:2H2O = MoO4-2 + 2 Na+ + 2 H2O + log_k 1.224 + delta_h -0 kJ Na2Mo2O7 - Na2Mo2O7 + H2O = 2MoO4-2 + 2Na+ + 2H+ - log_k -16.5966 - delta_h 56.2502 kJ + Na2Mo2O7 + H2O = 2 MoO4-2 + 2 Na+ + 2 H+ + log_k -16.5966 + delta_h 56.2502 kJ K2MoO4 - K2MoO4 = MoO4-2 + 2K+ - log_k 3.2619 - delta_h -3.38 kJ + K2MoO4 = MoO4-2 + 2 K+ + log_k 3.2619 + delta_h -3.38 kJ PbHPO4 PbHPO4 = Pb+2 + H+ + PO4-3 - log_k -23.805 - delta_h -0 kJ + log_k -23.805 + delta_h -0 kJ Pb3(PO4)2 - Pb3(PO4)2 = 3Pb+2 + 2PO4-3 - log_k -43.53 - delta_h -0 kJ + Pb3(PO4)2 = 3 Pb+2 + 2 PO4-3 + log_k -43.53 + delta_h -0 kJ Pyromorphite - Pb5(PO4)3Cl = 5Pb+2 + 3PO4-3 + Cl- - log_k -84.43 - delta_h -0 kJ + Pb5(PO4)3Cl = 5 Pb+2 + 3 PO4-3 + Cl- + log_k -84.43 + delta_h -0 kJ Hydroxylpyromorphite - Pb5(PO4)3OH + H+ = 5Pb+2 + 3PO4-3 + H2O - log_k -62.79 - delta_h -0 kJ + Pb5(PO4)3OH + H+ = 5 Pb+2 + 3 PO4-3 + H2O + log_k -62.79 + delta_h -0 kJ Plumbgummite - PbAl3(PO4)2(OH)5:H2O + 5H+ = Pb+2 + 3Al+3 + 2PO4-3 + 6H2O - log_k -32.79 - delta_h -0 kJ + PbAl3(PO4)2(OH)5:H2O + 5 H+ = Pb+2 + 3 Al+3 + 2 PO4-3 + 6 H2O + log_k -32.79 + delta_h -0 kJ Hinsdalite - PbAl3PO4SO4(OH)6 + 6H+ = Pb+2 + 3Al+3 + PO4-3 + SO4-2 + 6H2O - log_k -2.5 - delta_h -0 kJ + PbAl3PO4SO4(OH)6 + 6 H+ = Pb+2 + 3 Al+3 + PO4-3 + SO4-2 + 6 H2O + log_k -2.5 + delta_h -0 kJ Tsumebite - Pb2CuPO4(OH)3:3H2O + 3H+ = 2Pb+2 + Cu+2 + PO4-3 + 6H2O - log_k -9.79 - delta_h -0 kJ + Pb2CuPO4(OH)3:3H2O + 3 H+ = 2 Pb+2 + Cu+2 + PO4-3 + 6 H2O + log_k -9.79 + delta_h -0 kJ Zn3(PO4)2:4H2O - Zn3(PO4)2:4H2O = 3Zn+2 + 2PO4-3 + 4H2O - log_k -35.42 - delta_h -0 kJ + Zn3(PO4)2:4H2O = 3 Zn+2 + 2 PO4-3 + 4 H2O + log_k -35.42 + delta_h -0 kJ Cd3(PO4)2 - Cd3(PO4)2 = 3Cd+2 + 2PO4-3 - log_k -32.6 - delta_h -0 kJ + Cd3(PO4)2 = 3 Cd+2 + 2 PO4-3 + log_k -32.6 + delta_h -0 kJ Hg2HPO4 Hg2HPO4 = Hg2+2 + H+ + PO4-3 - log_k -24.775 - delta_h -0 kJ + log_k -24.775 + delta_h -0 kJ Cu3(PO4)2 - Cu3(PO4)2 = 3Cu+2 + 2PO4-3 - log_k -36.85 - delta_h -0 kJ + Cu3(PO4)2 = 3 Cu+2 + 2 PO4-3 + log_k -36.85 + delta_h -0 kJ Cu3(PO4)2:3H2O - Cu3(PO4)2:3H2O = 3Cu+2 + 2PO4-3 + 3H2O - log_k -35.12 - delta_h -0 kJ + Cu3(PO4)2:3H2O = 3 Cu+2 + 2 PO4-3 + 3 H2O + log_k -35.12 + delta_h -0 kJ Ag3PO4 - Ag3PO4 = 3Ag+ + PO4-3 - log_k -17.59 - delta_h -0 kJ + Ag3PO4 = 3 Ag+ + PO4-3 + log_k -17.59 + delta_h -0 kJ Ni3(PO4)2 - Ni3(PO4)2 = 3Ni+2 + 2PO4-3 - log_k -31.3 - delta_h -0 kJ + Ni3(PO4)2 = 3 Ni+2 + 2 PO4-3 + log_k -31.3 + delta_h -0 kJ CoHPO4 CoHPO4 = Co+2 + PO4-3 + H+ - log_k -19.0607 - delta_h -0 kJ + log_k -19.0607 + delta_h -0 kJ Co3(PO4)2 - Co3(PO4)2 = 3Co+2 + 2PO4-3 - log_k -34.6877 - delta_h -0 kJ + Co3(PO4)2 = 3 Co+2 + 2 PO4-3 + log_k -34.6877 + delta_h -0 kJ Vivianite - Fe3(PO4)2:8H2O = 3Fe+2 + 2PO4-3 + 8H2O - log_k -36 - delta_h -0 kJ + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + log_k -36 + delta_h -0 kJ Strengite - FePO4:2H2O = Fe+3 + PO4-3 + 2H2O - log_k -26.4 - delta_h -9.3601 kJ + FePO4:2H2O = Fe+3 + PO4-3 + 2 H2O + log_k -26.4 + delta_h -9.3601 kJ Mn3(PO4)2 - Mn3(PO4)2 = 3Mn+2 + 2PO4-3 - log_k -23.827 - delta_h 8.8701 kJ + Mn3(PO4)2 = 3 Mn+2 + 2 PO4-3 + log_k -23.827 + delta_h 8.8701 kJ MnHPO4 MnHPO4 = Mn+2 + PO4-3 + H+ - log_k -25.4 - delta_h -0 kJ + log_k -25.4 + delta_h -0 kJ (VO)3(PO4)2 - (VO)3(PO4)2 = 3VO+2 + 2PO4-3 - log_k -25.1 - delta_h -0 kJ + (VO)3(PO4)2 = 3 VO+2 + 2 PO4-3 + log_k -25.1 + delta_h -0 kJ Mg3(PO4)2 - Mg3(PO4)2 = 3Mg+2 + 2PO4-3 - log_k -23.28 - delta_h -0 kJ + Mg3(PO4)2 = 3 Mg+2 + 2 PO4-3 + log_k -23.28 + delta_h -0 kJ MgHPO4:3H2O - MgHPO4:3H2O = Mg+2 + H+ + PO4-3 + 3H2O - log_k -18.175 - delta_h -0 kJ + MgHPO4:3H2O = Mg+2 + H+ + PO4-3 + 3 H2O + log_k -18.175 + delta_h -0 kJ FCO3Apatite - Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48F- - log_k -114.4 - delta_h 164.808 kJ + Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316 Ca+2 + 0.36 Na+ + 0.144 Mg+2 + 4.8 PO4-3 + 1.2 CO3-2 + 2.48 F- + log_k -114.4 + delta_h 164.808 kJ Hydroxylapatite - Ca5(PO4)3OH + H+ = 5Ca+2 + 3PO4-3 + H2O - log_k -44.333 - delta_h -0 kJ + Ca5(PO4)3OH + H+ = 5 Ca+2 + 3 PO4-3 + H2O + log_k -44.333 + delta_h -0 kJ CaHPO4:2H2O - CaHPO4:2H2O = Ca+2 + H+ + PO4-3 + 2H2O - log_k -18.995 - delta_h 23 kJ + CaHPO4:2H2O = Ca+2 + H+ + PO4-3 + 2 H2O + log_k -18.995 + delta_h 23 kJ CaHPO4 CaHPO4 = Ca+2 + H+ + PO4-3 - log_k -19.275 - delta_h 31 kJ + log_k -19.275 + delta_h 31 kJ Ca3(PO4)2(beta) - Ca3(PO4)2 = 3Ca+2 + 2PO4-3 - log_k -28.92 - delta_h 54 kJ + Ca3(PO4)2 = 3 Ca+2 + 2 PO4-3 + log_k -28.92 + delta_h 54 kJ Ca4H(PO4)3:3H2O - Ca4H(PO4)3:3H2O = 4Ca+2 + H+ + 3PO4-3 + 3H2O - log_k -47.08 - delta_h -0 kJ + Ca4H(PO4)3:3H2O = 4 Ca+2 + H+ + 3 PO4-3 + 3 H2O + log_k -47.08 + delta_h -0 kJ SrHPO4 SrHPO4 = Sr+2 + H+ + PO4-3 - log_k -19.295 - delta_h -0 kJ + log_k -19.295 + delta_h -0 kJ BaHPO4 BaHPO4 = Ba+2 + H+ + PO4-3 - log_k -19.775 - delta_h -0 kJ + log_k -19.775 + delta_h -0 kJ U(HPO4)2:4H2O - U(HPO4)2:4H2O = U+4 + 2PO4-3 + 2H+ + 4H2O - log_k -51.584 - delta_h 16.0666 kJ + U(HPO4)2:4H2O = U+4 + 2 PO4-3 + 2 H+ + 4 H2O + log_k -51.584 + delta_h 16.0666 kJ (UO2)3(PO4)2 - (UO2)3(PO4)2 = 3UO2+2 + 2PO4-3 - log_k -49.4 - delta_h 397.062 kJ + (UO2)3(PO4)2 = 3 UO2+2 + 2 PO4-3 + log_k -49.4 + delta_h 397.062 kJ UO2HPO4 UO2HPO4 = UO2+2 + H+ + PO4-3 - log_k -24.225 - delta_h -0 kJ + log_k -24.225 + delta_h -0 kJ Uramphite - (NH4)2(UO2)2(PO4)2 = 2UO2+2 + 2NH4+ + 2PO4-3 - log_k -51.749 - delta_h 40.5848 kJ + (NH4)2(UO2)2(PO4)2 = 2 UO2+2 + 2 NH4+ + 2 PO4-3 + log_k -51.749 + delta_h 40.5848 kJ Przhevalskite - Pb(UO2)2(PO4)2 = 2UO2+2 + Pb+2 + 2PO4-3 - log_k -44.365 - delta_h -46.024 kJ + Pb(UO2)2(PO4)2 = 2 UO2+2 + Pb+2 + 2 PO4-3 + log_k -44.365 + delta_h -46.024 kJ Torbernite - Cu(UO2)2(PO4)2 = 2UO2+2 + Cu+2 + 2PO4-3 - log_k -45.279 - delta_h -66.5256 kJ + Cu(UO2)2(PO4)2 = 2 UO2+2 + Cu+2 + 2 PO4-3 + log_k -45.279 + delta_h -66.5256 kJ Bassetite - Fe(UO2)2(PO4)2 = 2UO2+2 + Fe+2 + 2PO4-3 - log_k -44.485 - delta_h -83.2616 kJ + Fe(UO2)2(PO4)2 = 2 UO2+2 + Fe+2 + 2 PO4-3 + log_k -44.485 + delta_h -83.2616 kJ Saleeite - Mg(UO2)2(PO4)2 = 2UO2+2 + Mg+2 + 2PO4-3 - log_k -43.646 - delta_h -84.4331 kJ + Mg(UO2)2(PO4)2 = 2 UO2+2 + Mg+2 + 2 PO4-3 + log_k -43.646 + delta_h -84.4331 kJ Ningyoite - CaU(PO4)2:2H2O = U+4 + Ca+2 + 2PO4-3 + 2H2O - log_k -53.906 - delta_h -9.4977 kJ + CaU(PO4)2:2H2O = U+4 + Ca+2 + 2 PO4-3 + 2 H2O + log_k -53.906 + delta_h -9.4977 kJ H-Autunite - H2(UO2)2(PO4)2 = 2UO2+2 + 2H+ + 2PO4-3 - log_k -47.931 - delta_h -15.0624 kJ + H2(UO2)2(PO4)2 = 2 UO2+2 + 2 H+ + 2 PO4-3 + log_k -47.931 + delta_h -15.0624 kJ Autunite - Ca(UO2)2(PO4)2 = 2UO2+2 + Ca+2 + 2PO4-3 - log_k -43.927 - delta_h -59.9986 kJ + Ca(UO2)2(PO4)2 = 2 UO2+2 + Ca+2 + 2 PO4-3 + log_k -43.927 + delta_h -59.9986 kJ Sr-Autunite - Sr(UO2)2(PO4)2 = 2UO2+2 + Sr+2 + 2PO4-3 - log_k -44.457 - delta_h -54.6012 kJ + Sr(UO2)2(PO4)2 = 2 UO2+2 + Sr+2 + 2 PO4-3 + log_k -44.457 + delta_h -54.6012 kJ Na-Autunite - Na2(UO2)2(PO4)2 = 2UO2+2 + 2Na+ + 2PO4-3 - log_k -47.409 - delta_h -1.9246 kJ + Na2(UO2)2(PO4)2 = 2 UO2+2 + 2 Na+ + 2 PO4-3 + log_k -47.409 + delta_h -1.9246 kJ K-Autunite - K2(UO2)2(PO4)2 = 2UO2+2 + 2K+ + 2PO4-3 - log_k -48.244 - delta_h 24.5182 kJ + K2(UO2)2(PO4)2 = 2 UO2+2 + 2 K+ + 2 PO4-3 + log_k -48.244 + delta_h 24.5182 kJ Uranocircite - Ba(UO2)2(PO4)2 = 2UO2+2 + Ba+2 + 2PO4-3 - log_k -44.631 - delta_h -42.2584 kJ + Ba(UO2)2(PO4)2 = 2 UO2+2 + Ba+2 + 2 PO4-3 + log_k -44.631 + delta_h -42.2584 kJ Pb3(AsO4)2 - Pb3(AsO4)2 + 6H+ = 3Pb+2 + 2H3AsO4 - log_k 5.8 - delta_h -0 kJ + Pb3(AsO4)2 + 6 H+ = 3 Pb+2 + 2 H3AsO4 + log_k 5.8 + delta_h -0 kJ AlAsO4:2H2O - AlAsO4:2H2O + 3H+ = Al+3 + H3AsO4 + 2H2O - log_k 4.8 - delta_h -0 kJ + AlAsO4:2H2O + 3 H+ = Al+3 + H3AsO4 + 2 H2O + log_k 4.8 + delta_h -0 kJ Zn3(AsO4)2:2.5H2O - Zn3(AsO4)2:2.5H2O + 6H+ = 3Zn+2 + 2H3AsO4 + 2.5H2O - log_k 13.65 - delta_h -0 kJ + Zn3(AsO4)2:2.5H2O + 6 H+ = 3 Zn+2 + 2 H3AsO4 + 2.5 H2O + log_k 13.65 + delta_h -0 kJ Cu3(AsO4)2:2H2O - Cu3(AsO4)2:2H2O + 6H+ = 3Cu+2 + 2H3AsO4 + 2H2O - log_k 6.1 - delta_h -0 kJ + Cu3(AsO4)2:2H2O + 6 H+ = 3 Cu+2 + 2 H3AsO4 + 2 H2O + log_k 6.1 + delta_h -0 kJ Ag3AsO3 - Ag3AsO3 + 3H+ = 3Ag+ + H3AsO3 - log_k 2.1573 - delta_h -0 kJ + Ag3AsO3 + 3 H+ = 3 Ag+ + H3AsO3 + log_k 2.1573 + delta_h -0 kJ Ag3AsO4 - Ag3AsO4 + 3H+ = 3Ag+ + H3AsO4 - log_k -2.7867 - delta_h -0 kJ + Ag3AsO4 + 3 H+ = 3 Ag+ + H3AsO4 + log_k -2.7867 + delta_h -0 kJ Ni3(AsO4)2:8H2O - Ni3(AsO4)2:8H2O + 6H+ = 3Ni+2 + 2H3AsO4 + 8H2O - log_k 15.7 - delta_h -0 kJ + Ni3(AsO4)2:8H2O + 6 H+ = 3 Ni+2 + 2 H3AsO4 + 8 H2O + log_k 15.7 + delta_h -0 kJ Co3(AsO4)2 - Co3(AsO4)2 + 6H+ = 3Co+2 + 2H3AsO4 - log_k 13.0341 - delta_h -0 kJ + Co3(AsO4)2 + 6 H+ = 3 Co+2 + 2 H3AsO4 + log_k 13.0341 + delta_h -0 kJ FeAsO4:2H2O - FeAsO4:2H2O + 3H+ = Fe+3 + H3AsO4 + 2H2O - log_k 0.4 - delta_h -0 kJ + FeAsO4:2H2O + 3 H+ = Fe+3 + H3AsO4 + 2 H2O + log_k 0.4 + delta_h -0 kJ Mn3(AsO4)2:8H2O - Mn3(AsO4)2:8H2O + 6H+ = 3Mn+2 + 2H3AsO4 + 8H2O - log_k 12.5 - delta_h -0 kJ + Mn3(AsO4)2:8H2O + 6 H+ = 3 Mn+2 + 2 H3AsO4 + 8 H2O + log_k 12.5 + delta_h -0 kJ Ca3(AsO4)2:4H2O - Ca3(AsO4)2:4H2O + 6H+ = 3Ca+2 + 2H3AsO4 + 4H2O - log_k 22.3 - delta_h -0 kJ + Ca3(AsO4)2:4H2O + 6 H+ = 3 Ca+2 + 2 H3AsO4 + 4 H2O + log_k 22.3 + delta_h -0 kJ Ba3(AsO4)2 - Ba3(AsO4)2 + 6H+ = 3Ba+2 + 2H3AsO4 - log_k -8.91 - delta_h 11.0458 kJ + Ba3(AsO4)2 + 6 H+ = 3 Ba+2 + 2 H3AsO4 + log_k -8.91 + delta_h 11.0458 kJ #NH4VO3 # NH4VO3 + 2H+ = 2VO2+ + H2O # log_k 3.8 # delta_h 30 kJ Pb3(VO4)2 - Pb3(VO4)2 + 8H+ = 3Pb+2 + 2VO2+ + 4H2O - log_k 6.14 - delta_h -72.6342 kJ + Pb3(VO4)2 + 8 H+ = 3 Pb+2 + 2 VO2+ + 4 H2O + log_k 6.14 + delta_h -72.6342 kJ Pb2V2O7 - Pb2V2O7 + 6H+ = 2Pb+2 + 2VO2+ + 3H2O - log_k -1.9 - delta_h -26.945 kJ + Pb2V2O7 + 6 H+ = 2 Pb+2 + 2 VO2+ + 3 H2O + log_k -1.9 + delta_h -26.945 kJ AgVO3 - AgVO3 + 2H+ = Ag+ + VO2+ + H2O - log_k 0.77 - delta_h -0 kJ + AgVO3 + 2 H+ = Ag+ + VO2+ + H2O + log_k 0.77 + delta_h -0 kJ Ag2HVO4 - Ag2HVO4 + 3H+ = 2Ag+ + VO2+ + 2H2O - log_k 1.48 - delta_h -0 kJ + Ag2HVO4 + 3 H+ = 2 Ag+ + VO2+ + 2 H2O + log_k 1.48 + delta_h -0 kJ Ag3H2VO5 - Ag3H2VO5 + 4H+ = 3Ag+ + VO2+ + 3H2O - log_k 5.18 - delta_h -0 kJ + Ag3H2VO5 + 4 H+ = 3 Ag+ + VO2+ + 3 H2O + log_k 5.18 + delta_h -0 kJ Fe(VO3)2 - Fe(VO3)2 + 4H+ = Fe+2 + 2VO2+ + 2H2O - log_k -3.72 - delta_h -61.6722 kJ + Fe(VO3)2 + 4 H+ = Fe+2 + 2 VO2+ + 2 H2O + log_k -3.72 + delta_h -61.6722 kJ Mn(VO3)2 - Mn(VO3)2 + 4H+ = Mn+2 + 2VO2+ + 2H2O - log_k 4.9 - delta_h -92.4664 kJ + Mn(VO3)2 + 4 H+ = Mn+2 + 2 VO2+ + 2 H2O + log_k 4.9 + delta_h -92.4664 kJ Mg(VO3)2 - Mg(VO3)2 + 4H+ = Mg+2 + 2VO2+ + 2H2O - log_k 11.28 - delta_h -136.649 kJ + Mg(VO3)2 + 4 H+ = Mg+2 + 2 VO2+ + 2 H2O + log_k 11.28 + delta_h -136.649 kJ Mg2V2O7 - Mg2V2O7 + 6H+ = 2Mg+2 + 2VO2+ + 3H2O - log_k 26.36 - delta_h -255.224 kJ + Mg2V2O7 + 6 H+ = 2 Mg+2 + 2 VO2+ + 3 H2O + log_k 26.36 + delta_h -255.224 kJ Carnotite - KUO2VO4 + 4H+ = K+ + UO2+2 + VO2+ + 2H2O - log_k 0.23 - delta_h -36.4008 kJ + KUO2VO4 + 4 H+ = K+ + UO2+2 + VO2+ + 2 H2O + log_k 0.23 + delta_h -36.4008 kJ Tyuyamunite - Ca(UO2)2(VO4)2 + 8H+ = Ca+2 + 2UO2+2 + 2VO2+ + 4H2O - log_k 4.08 - delta_h -153.134 kJ + Ca(UO2)2(VO4)2 + 8 H+ = Ca+2 + 2 UO2+2 + 2 VO2+ + 4 H2O + log_k 4.08 + delta_h -153.134 kJ Ca(VO3)2 - Ca(VO3)2 + 4H+ = Ca+2 + 2VO2+ + 2H2O - log_k 5.66 - delta_h -84.7678 kJ + Ca(VO3)2 + 4 H+ = Ca+2 + 2 VO2+ + 2 H2O + log_k 5.66 + delta_h -84.7678 kJ Ca3(VO4)2 - Ca3(VO4)2 + 8H+ = 3Ca+2 + 2VO2+ + 4H2O - log_k 38.96 - delta_h -293.466 kJ + Ca3(VO4)2 + 8 H+ = 3 Ca+2 + 2 VO2+ + 4 H2O + log_k 38.96 + delta_h -293.466 kJ Ca2V2O7 - Ca2V2O7 + 6H+ = 2Ca+2 + 2VO2+ + 3H2O - log_k 17.5 - delta_h -159.494 kJ + Ca2V2O7 + 6 H+ = 2 Ca+2 + 2 VO2+ + 3 H2O + log_k 17.5 + delta_h -159.494 kJ Ca3(VO4)2:4H2O - Ca3(VO4)2:4H2O + 8H+ = 3Ca+2 + 2VO2+ + 8H2O - log_k 39.86 - delta_h -0 kJ + Ca3(VO4)2:4H2O + 8 H+ = 3 Ca+2 + 2 VO2+ + 8 H2O + log_k 39.86 + delta_h -0 kJ Ca2V2O7:2H2O - Ca2V2O7:2H2O + 6H+ = 2Ca+2 + 2VO2+ + 5H2O - log_k 21.552 - delta_h -0 kJ + Ca2V2O7:2H2O + 6 H+ = 2 Ca+2 + 2 VO2+ + 5 H2O + log_k 21.552 + delta_h -0 kJ Ba3(VO4)2:4H2O - Ba3(VO4)2:4H2O + 8H+ = 3Ba+2 + 2VO2+ + 8H2O - log_k 32.94 - delta_h -0 kJ + Ba3(VO4)2:4H2O + 8 H+ = 3 Ba+2 + 2 VO2+ + 8 H2O + log_k 32.94 + delta_h -0 kJ Ba2V2O7:2H2O - Ba2V2O7:2H2O + 6H+ = 2Ba+2 + 2VO2+ + 5H2O - log_k 15.872 - delta_h -0 kJ + Ba2V2O7:2H2O + 6 H+ = 2 Ba+2 + 2 VO2+ + 5 H2O + log_k 15.872 + delta_h -0 kJ NaVO3 - NaVO3 + 2H+ = Na+ + VO2+ + H2O - log_k 3.8582 - delta_h -30.1799 kJ + NaVO3 + 2 H+ = Na+ + VO2+ + H2O + log_k 3.8582 + delta_h -30.1799 kJ Na3VO4 - Na3VO4 + 4H+ = 3Na+ + VO2+ + 2H2O - log_k 36.6812 - delta_h -184.61 kJ + Na3VO4 + 4 H+ = 3 Na+ + VO2+ + 2 H2O + log_k 36.6812 + delta_h -184.61 kJ Na4V2O7 - Na4V2O7 + 6H+ = 4Na+ + 2VO2+ + 3H2O - log_k 37.4 - delta_h -201.083 kJ + Na4V2O7 + 6 H+ = 4 Na+ + 2 VO2+ + 3 H2O + log_k 37.4 + delta_h -201.083 kJ Halloysite - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 9.5749 - delta_h -181.43 kJ + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 9.5749 + delta_h -181.43 kJ Kaolinite - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 7.435 - delta_h -148 kJ + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 7.435 + delta_h -148 kJ Greenalite - Fe3Si2O5(OH)4 + 6H+ = 3Fe+2 + 2H4SiO4 + H2O - log_k 20.81 - delta_h -0 kJ + Fe3Si2O5(OH)4 + 6 H+ = 3 Fe+2 + 2 H4SiO4 + H2O + log_k 20.81 + delta_h -0 kJ Chrysotile - Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + H2O - log_k 32.2 - delta_h -196 kJ + Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O + log_k 32.2 + delta_h -196 kJ Sepiolite - Mg2Si3O7.5OH:3H2O + 4H+ + 0.5H2O = 2Mg+2 + 3H4SiO4 - log_k 15.76 - delta_h -114.089 kJ + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + log_k 15.76 + delta_h -114.089 kJ Sepiolite(A) - Mg2Si3O7.5OH:3H2O + 0.5H2O + 4H+ = 2Mg+2 + 3H4SiO4 - log_k 18.78 - delta_h -0 kJ + Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 + log_k 18.78 + delta_h -0 kJ PHASES O2(g) - O2 + 4H+ + 4e- = 2H2O - log_k 83.0894 - delta_h -571.66 kJ + O2 + 4 H+ + 4 e- = 2 H2O + log_k 83.0894 + delta_h -571.66 kJ CH4(g) - CH4 + 3H2O = CO3-2 + 8e- + 10H+ - log_k -41.0452 - delta_h 257.133 kJ + CH4 + 3 H2O = CO3-2 + 8 e- + 10 H+ + log_k -41.0452 + delta_h 257.133 kJ CO2(g) - CO2 + H2O = 2H+ + CO3-2 - log_k -18.147 - delta_h 4.06 kJ + CO2 + H2O = 2 H+ + CO3-2 + log_k -18.147 + delta_h 4.06 kJ H2S(g) H2S = H+ + HS- - log_k -8.01 - delta_h -0 kJ + log_k -8.01 + delta_h -0 kJ H2Se(g) H2Se = HSe- + H+ - log_k -4.96 - delta_h -15.3 kJ + log_k -4.96 + delta_h -15.3 kJ Hg(g) - Hg = 0.5Hg2+2 + e- - log_k -7.8733 - delta_h 22.055 kJ + Hg = 0.5 Hg2+2 + e- + log_k -7.8733 + delta_h 22.055 kJ Hg2(g) - Hg2 = Hg2+2 + 2e- - log_k -14.9554 - delta_h 58.07 kJ + Hg2 = Hg2+2 + 2 e- + log_k -14.9554 + delta_h 58.07 kJ Hg(CH3)2(g) - Hg(CH3)2 + 8H2O = Hg(OH)2 + 2CO3-2 + 16e- + 20H+ - log_k -73.7066 - delta_h 481.99 kJ + Hg(CH3)2 + 8 H2O = Hg(OH)2 + 2 CO3-2 + 16 e- + 20 H+ + log_k -73.7066 + delta_h 481.99 kJ HgF(g) - HgF = 0.5Hg2+2 + F- - log_k 32.6756 - delta_h -254.844 kJ + HgF = 0.5 Hg2+2 + F- + log_k 32.6756 + delta_h -254.844 kJ HgF2(g) - HgF2 + 2H2O = Hg(OH)2 + 2F- + 2H+ - log_k 12.5652 - delta_h -165.186 kJ + HgF2 + 2 H2O = Hg(OH)2 + 2 F- + 2 H+ + log_k 12.5652 + delta_h -165.186 kJ HgCl(g) - HgCl = 0.5Hg2+2 + Cl- - log_k 19.4966 - delta_h -162.095 kJ + HgCl = 0.5 Hg2+2 + Cl- + log_k 19.4966 + delta_h -162.095 kJ HgBr(g) - HgBr = 0.5Hg2+2 + Br- - log_k 16.7566 - delta_h -142.157 kJ + HgBr = 0.5 Hg2+2 + Br- + log_k 16.7566 + delta_h -142.157 kJ HgBr2(g) - HgBr2 + 2H2O = Hg(OH)2 + 2Br- + 2H+ - log_k -18.3881 - delta_h 54.494 kJ + HgBr2 + 2 H2O = Hg(OH)2 + 2 Br- + 2 H+ + log_k -18.3881 + delta_h 54.494 kJ HgI(g) - HgI = 0.5Hg2+2 + I- - log_k 11.3322 - delta_h -106.815 kJ + HgI = 0.5 Hg2+2 + I- + log_k 11.3322 + delta_h -106.815 kJ HgI2(g) - HgI2 + 2H2O = Hg(OH)2 + 2I- + 2H+ - log_k -27.2259 - delta_h 114.429 kJ + HgI2 + 2 H2O = Hg(OH)2 + 2 I- + 2 H+ + log_k -27.2259 + delta_h 114.429 kJ SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES -Hfo_wOH = Hfo_wOH - log_k 0.0 -Hfo_sOH = Hfo_sOH - log_k 0.0 +Hfo_wOH = Hfo_wOH + log_k 0 +Hfo_sOH = Hfo_sOH + log_k 0 Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.29 - delta_h 0 kJ + log_k 7.29 + delta_h 0 kJ # Id: 8113302 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH = Hfo_sO- + H+ - log_k -8.93 - delta_h 0 kJ + log_k -8.93 + delta_h 0 kJ # Id: 8113301 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.29 - delta_h 0 kJ + log_k 7.29 + delta_h 0 kJ # Id: 8123302 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH = Hfo_wO- + H+ - log_k -8.93 - delta_h 0 kJ + log_k -8.93 + delta_h 0 kJ # Id: 8123301 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - log_k 5.46 - delta_h 0 kJ + log_k 5.46 + delta_h 0 kJ # Id: 8111000 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 - delta_h 0 kJ + log_k -7.2 + delta_h 0 kJ # Id: 8121000 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 - delta_h 0 kJ + log_k 4.97 + delta_h 0 kJ # Id: 8111500 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ - log_k -5.85 - delta_h 0 kJ + log_k -5.85 + delta_h 0 kJ # Id: 8121500 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ - log_k -4.6 - delta_h 0 kJ + log_k -4.6 + delta_h 0 kJ # Id: 8124600 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Ag+ = Hfo_sOAg + H+ - log_k -1.72 - delta_h 0 kJ + log_k -1.72 + delta_h 0 kJ # Id: 8110200 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Ag+ = Hfo_wOAg + H+ - log_k -5.3 - delta_h 0 kJ + log_k -5.3 + delta_h 0 kJ # Id: 8120200 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Ni+2 = Hfo_sONi+ + H+ - log_k 0.37 - delta_h 0 kJ + log_k 0.37 + delta_h 0 kJ # Id: 8115400 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Ni+2 = Hfo_wONi+ + H+ - log_k -2.5 - delta_h 0 kJ + log_k -2.5 + delta_h 0 kJ # Id: 8125400 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - log_k 0.47 - delta_h 0 kJ + log_k 0.47 + delta_h 0 kJ # Id: 8111600 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - log_k -2.9 - delta_h 0 kJ + log_k -2.9 + delta_h 0 kJ # Id: 8121600 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Co+2 = Hfo_sOCo+ + H+ - log_k -0.46 - delta_h 0 kJ + log_k -0.46 + delta_h 0 kJ # Id: 8112000 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Co+2 = Hfo_wOCo+ + H+ - log_k -3.01 - delta_h 0 kJ + log_k -3.01 + delta_h 0 kJ # Id: 8122000 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - log_k 0.99 - delta_h 0 kJ + log_k 0.99 + delta_h 0 kJ # Id: 8119500 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - log_k -1.99 - delta_h 0 kJ + log_k -1.99 + delta_h 0 kJ # Id: 8129500 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - log_k 2.89 - delta_h 0 kJ + log_k 2.89 + delta_h 0 kJ # Id: 8112310 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - log_k 0.6 - delta_h 0 kJ + log_k 0.6 + delta_h 0 kJ # Id: 8123100 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - log_k 4.65 - delta_h 0 kJ + log_k 4.65 + delta_h 0 kJ # Id: 8116000 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - log_k 0.3 - delta_h 0 kJ + log_k 0.3 + delta_h 0 kJ # Id: 8126000 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Be+2 = Hfo_sOBe+ + H+ - log_k 5.7 - delta_h 0 kJ + log_k 5.7 + delta_h 0 kJ # Id: 8111100 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Be+2 = Hfo_wOBe+ + H+ - log_k 3.3 - delta_h 0 kJ + log_k 3.3 + delta_h 0 kJ # Id: 8121100 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_sOH + Hg(OH)2 + H+ = Hfo_sOHg+ + 2H2O - log_k 13.95 - delta_h 0 kJ +Hfo_sOH + Hg(OH)2 + H+ = Hfo_sOHg+ + 2 H2O + log_k 13.95 + delta_h 0 kJ # Id: 8113610 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_wOH + Hg(OH)2 + H+ = Hfo_wOHg+ + 2H2O - log_k 12.64 - delta_h 0 kJ +Hfo_wOH + Hg(OH)2 + H+ = Hfo_wOHg+ + 2 H2O + log_k 12.64 + delta_h 0 kJ # Id: 8123610 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_sOH + Sn(OH)2 + H+ = Hfo_sOSn+ + 2H2O - log_k 15.1 - delta_h 0 kJ +Hfo_sOH + Sn(OH)2 + H+ = Hfo_sOSn+ + 2 H2O + log_k 15.1 + delta_h 0 kJ # Id: 8117900 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_wOH + Sn(OH)2 + H+ = Hfo_wOSn+ + 2H2O - log_k 13 - delta_h 0 kJ +Hfo_wOH + Sn(OH)2 + H+ = Hfo_wOSn+ + 2 H2O + log_k 13 + delta_h 0 kJ # Id: 8127900 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Cr(OH)2+ = Hfo_sOCrOH+ + H2O - log_k 11.63 - delta_h 0 kJ + log_k 11.63 + delta_h 0 kJ # Id: 8112110 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + H3AsO3 = Hfo_sH2AsO3 + H2O - log_k 5.41 - delta_h 0 kJ + log_k 5.41 + delta_h 0 kJ # Id: 8110600 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + H3AsO3 = Hfo_wH2AsO3 + H2O - log_k 5.41 - delta_h 0 kJ + log_k 5.41 + delta_h 0 kJ # Id: 8120600 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + H3BO3 = Hfo_sH2BO3 + H2O - log_k 0.62 - delta_h 0 kJ + log_k 0.62 + delta_h 0 kJ # Id: 8110900 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - log_k 0.62 - delta_h 0 kJ + log_k 0.62 + delta_h 0 kJ # Id: 8120900 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_sOH + PO4-3 + 3H+ = Hfo_sH2PO4 + H2O - log_k 31.29 - delta_h 0 kJ +Hfo_sOH + PO4-3 + 3 H+ = Hfo_sH2PO4 + H2O + log_k 31.29 + delta_h 0 kJ # Id: 8115800 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - log_k 31.29 - delta_h 0 kJ +Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + log_k 31.29 + delta_h 0 kJ # Id: 8125800 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_sOH + PO4-3 + 2H+ = Hfo_sHPO4- + H2O - log_k 25.39 - delta_h 0 kJ +Hfo_sOH + PO4-3 + 2 H+ = Hfo_sHPO4- + H2O + log_k 25.39 + delta_h 0 kJ # Id: 8115801 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - log_k 25.39 - delta_h 0 kJ +Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + log_k 25.39 + delta_h 0 kJ # Id: 8125801 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + PO4-3 + H+ = Hfo_sPO4-2 + H2O - log_k 17.72 - delta_h 0 kJ + log_k 17.72 + delta_h 0 kJ # Id: 8115802 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - log_k 17.72 - delta_h 0 kJ + log_k 17.72 + delta_h 0 kJ # Id: 8125802 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + H3AsO4 = Hfo_sH2AsO4 + H2O - log_k 8.61 - delta_h 0 kJ + log_k 8.61 + delta_h 0 kJ # Id: 8110610 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + H3AsO4 = Hfo_wH2AsO4 + H2O - log_k 8.61 - delta_h 0 kJ + log_k 8.61 + delta_h 0 kJ # Id: 8120610 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + H3AsO4 = Hfo_sHAsO4- + H2O + H+ - log_k 2.81 - delta_h 0 kJ + log_k 2.81 + delta_h 0 kJ # Id: 8110611 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + H3AsO4 = Hfo_wHAsO4- + H2O + H+ - log_k 2.81 - delta_h 0 kJ + log_k 2.81 + delta_h 0 kJ # Id: 8120611 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_sOH + H3AsO4 = Hfo_sOHAsO4-3 + 3H+ - log_k -10.12 - delta_h 0 kJ +Hfo_sOH + H3AsO4 = Hfo_sOHAsO4-3 + 3 H+ + log_k -10.12 + delta_h 0 kJ # Id: 8110613 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_wOH + H3AsO4 = Hfo_wOHAsO4-3 + 3H+ - log_k -10.12 - delta_h 0 kJ +Hfo_wOH + H3AsO4 = Hfo_wOHAsO4-3 + 3 H+ + log_k -10.12 + delta_h 0 kJ # Id: 8120613 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_sOH + VO2+ + 2H2O = Hfo_sOHVO4-3 + 4H+ - log_k -16.63 - delta_h 0 kJ +Hfo_sOH + VO2+ + 2 H2O = Hfo_sOHVO4-3 + 4 H+ + log_k -16.63 + delta_h 0 kJ # Id: 8119031 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_wOH + VO2+ + 2H2O = Hfo_wOHVO4-3 + 4H+ - log_k -16.63 - delta_h 0 kJ +Hfo_wOH + VO2+ + 2 H2O = Hfo_wOHVO4-3 + 4 H+ + log_k -16.63 + delta_h 0 kJ # Id: 8129031 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + SO4-2 + H+ = Hfo_sSO4- + H2O - log_k 7.78 - delta_h 0 kJ + log_k 7.78 + delta_h 0 kJ # Id: 8117320 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - log_k 7.78 - delta_h 0 kJ + log_k 7.78 + delta_h 0 kJ # Id: 8127320 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + SO4-2 = Hfo_sOHSO4-2 - log_k 0.79 - delta_h 0 kJ + log_k 0.79 + delta_h 0 kJ # Id: 8117321 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 - delta_h 0 kJ + log_k 0.79 + delta_h 0 kJ # Id: 8127321 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + HSeO3- = Hfo_sSeO3- + H2O - log_k 4.29 - delta_h 0 kJ + log_k 4.29 + delta_h 0 kJ # Id: 8117610 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + HSeO3- = Hfo_wSeO3- + H2O - log_k 4.29 - delta_h 0 kJ + log_k 4.29 + delta_h 0 kJ # Id: 8127610 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + HSeO3- = Hfo_sOHSeO3-2 + H+ - log_k -3.23 - delta_h 0 kJ + log_k -3.23 + delta_h 0 kJ # Id: 8117611 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + HSeO3- = Hfo_wOHSeO3-2 + H+ - log_k -3.23 - delta_h 0 kJ + log_k -3.23 + delta_h 0 kJ # Id: 8127611 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + SeO4-2 + H+ = Hfo_sSeO4- + H2O - log_k 7.73 - delta_h 0 kJ + log_k 7.73 + delta_h 0 kJ # Id: 8117620 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + SeO4-2 + H+ = Hfo_wSeO4- + H2O - log_k 7.73 - delta_h 0 kJ + log_k 7.73 + delta_h 0 kJ # Id: 8127620 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + SeO4-2 = Hfo_sOHSeO4-2 - log_k 0.8 - delta_h 0 kJ + log_k 0.8 + delta_h 0 kJ # Id: 8117621 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + SeO4-2 = Hfo_wOHSeO4-2 - log_k 0.8 - delta_h 0 kJ + log_k 0.8 + delta_h 0 kJ # Id: 8127621 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + CrO4-2 + H+ = Hfo_sCrO4- + H2O - log_k 10.85 - delta_h 0 kJ + log_k 10.85 + delta_h 0 kJ # Id: 8112120 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + CrO4-2 + H+ = Hfo_wCrO4- + H2O - log_k 10.85 - delta_h 0 kJ + log_k 10.85 + delta_h 0 kJ # Id: 8122120 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + CrO4-2 = Hfo_sOHCrO4-2 - log_k 3.9 - delta_h 0 kJ + log_k 3.9 + delta_h 0 kJ # Id: 8112121 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + CrO4-2 = Hfo_wOHCrO4-2 - log_k 3.9 - delta_h 0 kJ + log_k 3.9 + delta_h 0 kJ # Id: 8122121 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + MoO4-2 + H+ = Hfo_sMoO4- + H2O - log_k 9.5 - delta_h 0 kJ + log_k 9.5 + delta_h 0 kJ # Id: 8114800 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + MoO4-2 + H+ = Hfo_wMoO4- + H2O - log_k 9.5 - delta_h 0 kJ + log_k 9.5 + delta_h 0 kJ # Id: 8124800 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + MoO4-2 = Hfo_sOHMoO4-2 - log_k 2.4 - delta_h 0 kJ + log_k 2.4 + delta_h 0 kJ # Id: 8114801 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + MoO4-2 = Hfo_wOHMoO4-2 - log_k 2.4 - delta_h 0 kJ + log_k 2.4 + delta_h 0 kJ # Id: 8124801 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_sOH + Sb(OH)6- + H+ = Hfo_sSbO(OH)4 + 2H2O - log_k 8.4 - delta_h 0 kJ +Hfo_sOH + Sb(OH)6- + H+ = Hfo_sSbO(OH)4 + 2 H2O + log_k 8.4 + delta_h 0 kJ # Id: 8117410 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_wOH + Sb(OH)6- + H+ = Hfo_wSbO(OH)4 + 2H2O - log_k 8.4 - delta_h 0 kJ +Hfo_wOH + Sb(OH)6- + H+ = Hfo_wSbO(OH)4 + 2 H2O + log_k 8.4 + delta_h 0 kJ # Id: 8127410 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Sb(OH)6- = Hfo_sOHSbO(OH)4- + H2O - log_k 1.3 - delta_h 0 kJ + log_k 1.3 + delta_h 0 kJ # Id: 8117411 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Sb(OH)6- = Hfo_wOHSbO(OH)4- + H2O - log_k 1.3 - delta_h 0 kJ + log_k 1.3 + delta_h 0 kJ # Id: 8127411 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Cyanide- + H+ = Hfo_sCyanide + H2O - log_k 13 - delta_h 0 kJ + log_k 13 + delta_h 0 kJ # Id: 8111430 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Cyanide- + H+ = Hfo_wCyanide + H2O - log_k 13 - delta_h 0 kJ + log_k 13 + delta_h 0 kJ # Id: 8121430 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Cyanide- = Hfo_sOHCyanide- - log_k 5.7 - delta_h 0 kJ + log_k 5.7 + delta_h 0 kJ # Id: 8111431 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Cyanide- = Hfo_wOHCyanide- - log_k 5.7 - delta_h 0 kJ + log_k 5.7 + delta_h 0 kJ # Id: 8121431 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: END diff --git a/database/phreeqc.dat b/database/phreeqc.dat index 65c1656f..04fe478e 100644 --- a/database/phreeqc.dat +++ b/database/phreeqc.dat @@ -1,1417 +1,1417 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\Amm.dat, 22/05/2024 19:38, 1948 lines, 55817 bytes, md5=78b3659799b73ddca128328b6ee7533b +# Created 22 May 2024 19:55:37 +# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts Amm.dat + # PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES # -#element species alk gfw_formula element_gfw +#element species alk gfw_formula element_gfw # -H H+ -1.0 H 1.008 -H(0) H2 0 H -H(1) H+ -1.0 0 -E e- 0 0.0 0 -O H2O 0 O 16.0 -O(0) O2 0 O -O(-2) H2O 0 0 -Ca Ca+2 0 Ca 40.08 -Mg Mg+2 0 Mg 24.312 -Na Na+ 0 Na 22.9898 -K K+ 0 K 39.102 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2.0 Fe -Mn Mn+2 0 Mn 54.938 -Mn(+2) Mn+2 0 Mn -Mn(+3) Mn+3 0 Mn -Al Al+3 0 Al 26.9815 -Ba Ba+2 0 Ba 137.34 -Sr Sr+2 0 Sr 87.62 -Si H4SiO4 0 SiO2 28.0843 -Cl Cl- 0 Cl 35.453 -C CO3-2 2.0 HCO3 12.0111 -C(+4) CO3-2 2.0 HCO3 -C(-4) CH4 0 CH4 -Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 -S SO4-2 0 SO4 32.064 -S(6) SO4-2 0 SO4 -S(-2) HS- 1.0 S -N NO3- 0 N 14.0067 -N(+5) NO3- 0 N -N(+3) NO2- 0 N -N(0) N2 0 N -N(-3) NH4+ 0 N 14.0067 -#Amm AmmH+ 0 AmmH 17.031 -B H3BO3 0 B 10.81 -P PO4-3 2.0 P 30.9738 -F F- 0 F 18.9984 -Li Li+ 0 Li 6.939 -Br Br- 0 Br 79.904 -Zn Zn+2 0 Zn 65.37 -Cd Cd+2 0 Cd 112.4 -Pb Pb+2 0 Pb 207.19 -Cu Cu+2 0 Cu 63.546 -Cu(+2) Cu+2 0 Cu -Cu(+1) Cu+1 0 Cu -# redox-uncoupled gases -Hdg Hdg 0 Hdg 2.016 # H2 gas -Oxg Oxg 0 Oxg 32 # O2 gas -Mtg Mtg 0 Mtg 16.032 # CH4 gas -Sg H2Sg 0.0 H2Sg 32.064 # H2S gas -Ntg Ntg 0 Ntg 28.0134 # N2 gas +H H+ -1 H 1.008 +H(0) H2 0 H +H(1) H+ -1 H +E e- 1 0 0 +O H2O 0 O 16 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.9815 +Ba Ba+2 0 Ba 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO3-2 2 HCO3 12.0111 +C(+4) CO3-2 2 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +S(-2) HS- 1 S +N NO3- 0 N 14.0067 +N(+5) NO3- 0 N +N(+3) NO2- 0 N +N(0) N2 0 N +N(-3) NH4+ 0 N 14.0067 +#Amm AmmH+ 0 AmmH 17.031 +B H3BO3 0 B 10.81 +P PO4-3 2 P 30.9738 +F F- 0 F 18.9984 +Li Li+ 0 Li 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.37 +Cd Cd+2 0 Cd 112.4 +Pb Pb+2 0 Pb 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu +# redox-uncoupled gases +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # O2 gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas +Sg H2Sg 0 H2Sg 32.064 # H2S gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -gamma 9.0 0 - -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc -# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) - -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 + -gamma 9 0 + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 + -dw 9.31e-9 838 16.315 0 2.376 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif +# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif + +# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 2.376 for H+) +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. (a2 = Vm = 0 for H+, the reference for Vm) +# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) +# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) + +# If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O + -dw 2.299e-9 -254 # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence -Ca+2 = Ca+2 - -gamma 5.0 0.1650 - -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 - -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M -Mg+2 = Mg+2 - -gamma 5.5 0.20 - -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 -Na+ = Na+ - -gamma 4.0 0.075 - -gamma 4.08 0.082 # halite solubility - -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 -# for calculating densities (rho) when I > 3... - # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 - -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 -K+ = K+ - -gamma 3.5 0.015 - -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 - -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 -Fe+2 = Fe+2 - -gamma 6.0 0 - -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 -Mn+2 = Mn+2 - -gamma 6.0 0 - -dw 0.688e-9 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 -Al+3 = Al+3 - -gamma 9.0 0 - -dw 0.559e-9 - -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. -Ba+2 = Ba+2 - -gamma 5.0 0 - -gamma 4.0 0.153 # Barite solubility - -dw 0.848e-9 100 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 - -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 -Sr+2 = Sr+2 - -gamma 5.260 0.121 - -dw 0.794e-9 161 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 -H4SiO4 = H4SiO4 - -dw 1.10e-9 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 -Cl- = Cl- - -gamma 3.5 0.015 - -gamma 3.63 0.017 # cf. pitzer.dat - -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 - -viscosity 0 0 0 0 0 0 1 # the reference solute -CO3-2 = CO3-2 - -gamma 5.4 0 - -dw 0.955e-9 28.9 14.3 98.1 - -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 - -viscosity 0 0.301 4.12e-2 1.44e-3 1.41e-2 1.364 -2.00 -SO4-2 = SO4-2 - -gamma 5.0 -0.04 - -dw 1.07e-9 187 2.64 22.6 - -Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143 -NO3- = NO3- - -gamma 3.0 0 - -dw 1.9e-9 184 1.85 3.85 - -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 - -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 -#AmmH+ = AmmH+ -# -gamma 2.5 0 -# -dw 1.98e-9 312 0.95 4.53 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 -# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 -H3BO3 = H3BO3 - -dw 1.1e-9 - -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt -PO4-3 = PO4-3 - -gamma 4.0 0 - -dw 0.612e-9 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 -F- = F- - -gamma 3.5 0 - -dw 1.46e-9 10 - -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 Li+ = Li+ - -gamma 6.0 0 - -dw 1.03e-9 80 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 + -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 +Na+ = Na+ + -gamma 4 0.075 + -gamma 4.08 0.082 # halite solubility + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 +K+ = K+ + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 + -dw 1.96e-9 254 3.484 0 0.1964 +Mg+2 = Mg+2 + -gamma 5.5 0.2 + -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 +Ca+2 = Ca+2 + -gamma 5 0.165 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 +Sr+2 = Sr+2 + -gamma 5.26 0.121 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 +Ba+2 = Ba+2 + -gamma 5 0 + -gamma 4 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3 +Fe+2 = Fe+2 + -gamma 6 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +Mn+2 = Mn+2 + -gamma 6 0 + -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +Al+3 = Al+3 + -gamma 9 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353 + -dw 0.559e-9 +H4SiO4 = H4SiO4 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 + -dw 1.1e-9 +Cl- = Cl- + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.16 0.2071 0.7432 +CO3-2 = CO3-2 + -gamma 5.4 0 + -Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 +SO4-2 = SO4-2 + -gamma 5 -0.04 + -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 + -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 +NO3- = NO3- + -gamma 3 0 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 + -dw 1.9e-9 104 1.11 +# AmmH+ = AmmH+ +# -gamma 2.5 0 +# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 +# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 +# -dw 1.98e-9 203 1.47 2.644 6.81e-2 +H3BO3 = H3BO3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt + -dw 1.1e-9 +PO4-3 = PO4-3 + -gamma 4 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 +F- = F- + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 -36 4.352 Br- = Br- - -gamma 3.0 0 - -dw 2.01e-9 258 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 - -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 + -gamma 3 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.82 + -dw 2.09e-9 208 3.5 0 0.5737 Zn+2 = Zn+2 - -gamma 5.0 0 - -dw 0.715e-9 - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -gamma 5 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 Cd+2 = Cd+2 - -dw 0.717e-9 - -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 Pb+2 = Pb+2 - -dw 0.945e-9 - -Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 Cu+2 = Cu+2 - -gamma 6.0 0 - -dw 0.733e-9 - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -gamma 6 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 # redox-uncoupled gases Hdg = Hdg # H2 - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 Oxg = Oxg # O2 - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 Mtg = Mtg # CH4 - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 Ntg = Ntg # N2 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 # aqueous species H2O = OH- + H+ - -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -gamma 3.5 0 - -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 - -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -gamma 3.5 0 + -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 + -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 + -log_k -86.08 -delta_h 134.79 kcal - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 2 H+ + 2 e- = H2 - -log_k -3.15 + -log_k -3.15 -delta_h -1.759 kcal - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 H+ + Cl- = HCl - -log_k -0.5 - -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C - -gamma 0 0.4256 - -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- - -log_k 10.329 - -delta_h -3.561 kcal - -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 - -dw 1.18e-9 -182 0.351 -4.94 - -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 - -viscosity 0 0.117 -2.91e-2 0 0 0 0.896 + -log_k 10.329; -delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 CO3-2 + 2 H+ = CO2 + H2O - -log_k 16.681 - -delta_h -5.738 kcal - -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 -2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T -log_k -1.8 - -analytical_expression 8.68 -0.0103 -2190 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 14.58 1.84 4.14 -2.46 -3.20 + -analytical_expression 8.68 -0.0103 -2190 + -Vm 14.58 1.84 4.14 -2.46 -3.2 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O - -log_k 41.071 + -log_k 41.071 -delta_h -61.039 kcal - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 SO4-2 + H+ = HSO4- - -log_k 1.988 - -delta_h 3.85 kcal - -analytic -56.889 0.006473 2307.9 19.8858 - -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15 2.861 HS- = S-2 + H+ - -log_k -12.918 - -delta_h 12.1 kcal - -gamma 5.0 0 - -dw 0.731e-9 + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5 0 + -dw 0.731e-9 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O - -log_k 33.65 - -delta_h -60.140 kcal - -gamma 3.5 0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -log_k 33.65 + -delta_h -60.14 kcal + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 HS- + H+ = H2S - -log_k 6.994 - -delta_h -5.30 kcal - -analytical -11.17 0.02386 3279.0 - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 -2H2S = (H2S)2 # activity correction for H2S solubility at high P, T - -analytical_expression 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -log_k 6.994; -delta_h -5.3 kcal + -analytical -11.17 0.02386 3279 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 H2Sg = HSg- + H+ - -log_k -6.994 - -delta_h 5.30 kcal - -analytical_expression 11.17 -0.02386 -3279.0 - -gamma 3.5 0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt -2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T - -analytical_expression 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -log_k -6.994; -delta_h 5.3 kcal + -analytical_expression 11.17 -0.02386 -3279 + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 NO3- + 2 H+ + 2 e- = NO2- + H2O - -log_k 28.570 - -delta_h -43.760 kcal - -gamma 3.0 0 - -dw 1.91e-9 - -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt + -log_k 28.57 + -delta_h -43.76 kcal + -gamma 3 0 + -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O - -log_k 207.08 - -delta_h -312.130 kcal - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 -#AmmH+ = Amm + H+ + -log_k 207.08 + -delta_h -312.13 kcal + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O - -log_k 119.077 - -delta_h -187.055 kcal - -gamma 2.5 0 - -dw 1.98e-9 312 0.95 4.53 - -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 - -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 - + -log_k 119.077 + -delta_h -187.055 kcal + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 +#AmmH+ = Amm + H+ NH4+ = NH3 + H+ - -log_k -9.252 - -delta_h 12.48 kcal - -analytic 0.6322 -0.001225 -2835.76 - -dw 2.28e-9 - -Vm 6.69 2.8 3.58 -2.88 1.43 - -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 -#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O -# -log_k 119.077 -# -delta_h -187.055 kcal -# -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -log_k 1.11; -delta_h 13.2 kcal - -gamma 5 -0.163 - -Vm 13.56 0 -31.15 0 0 0 11.20 0 -0.1287 1 - -dw 1.1e-9 400 1.85 200 - -viscosity 0.262 0 0 9.49e-2 3.81e-2 0.438 0.507 + -gamma 6.54 -0.08 + -log_k 1.106; -delta_h 4.3 kcal + -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 + -viscosity 0.24 0 0 3.3e-3 -0.1 0.528 0.748 + -dw 1.35e-9 500 12.5 3 -1 H3BO3 = H2BO3- + H+ - -log_k -9.24 - -delta_h 3.224 kcal + -log_k -9.24 + -delta_h 3.224 kcal H3BO3 + F- = BF(OH)3- - -log_k -0.4 - -delta_h 1.850 kcal + -log_k -0.4 + -delta_h 1.85 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O - -log_k 7.63 - -delta_h 1.618 kcal + -log_k 7.63 + -delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O - -log_k 13.67 - -delta_h -1.614 kcal + -log_k 13.67 + -delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O - -log_k 20.28 - -delta_h -1.846 kcal + -log_k 20.28 + -delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 - -log_k 12.346 - -delta_h -3.530 kcal - -gamma 5.0 0 - -dw 0.69e-9 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 + -log_k 12.346 + -delta_h -3.53 kcal + -gamma 5 0 + -dw 0.69e-9 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- - -log_k 19.553 - -delta_h -4.520 kcal - -gamma 5.4 0 - -dw 0.846e-9 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 -PO4-3 + 3H+ = H3PO4 - log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 - delta_h -10.1 kJ - -Vm 7.47 12.4 6.29 -3.29 0 + -log_k 19.553 + -delta_h -4.52 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 +PO4-3 + 3 H+ = H3PO4 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF - -log_k 3.18 - -delta_h 3.18 kcal - -analytic -2.033 0.012645 429.01 - -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt H+ + 2 F- = HF2- - -log_k 3.76 - -delta_h 4.550 kcal - -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt + -log_k 3.76 + -delta_h 4.55 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt Ca+2 + H2O = CaOH+ + H+ - -log_k -12.78 + -log_k -12.78 Ca+2 + CO3-2 = CaCO3 - -log_k 3.224 - -delta_h 3.545 kcal - -analytic -1228.732 -0.299440 35512.75 485.818 - -dw 4.46e-10 # complexes: calc'd with the Pikal formula - -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.29944 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ - -log_k 11.435 - -delta_h -0.871 kcal - -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 - -gamma 6.0 0 + -log_k 10.91; -delta_h 4.38 kcal + -analytic -6.009 3.377e-2 2044 + -gamma 6 0 + -Vm 30.19 .01 5.75 -2.78 .308 5.4 -dw 5.06e-10 - -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt Ca+2 + SO4-2 = CaSO4 - -log_k 2.25 - -delta_h 1.325 kcal + -log_k 2.25 + -delta_h 1.325 kcal -dw 4.71e-10 - -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt + -Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt Ca+2 + HSO4- = CaHSO4+ - -log_k 1.08 + -log_k 1.08 Ca+2 + PO4-3 = CaPO4- - -log_k 6.459 - -delta_h 3.10 kcal - -gamma 5.4 0.0 + -log_k 6.459 + -delta_h 3.1 kcal + -gamma 5.4 0 Ca+2 + HPO4-2 = CaHPO4 - -log_k 2.739 + -log_k 2.739 -delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ - -log_k 1.408 + -log_k 1.408 -delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 # Ca+2 + F- = CaF+ # -log_k 0.94 # -delta_h 4.120 kcal - # -gamma 5.5 0.0 - # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt + # -gamma 5.5 0.0 + # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt Mg+2 + H2O = MgOH+ + H+ - -log_k -11.44 + -log_k -11.44 -delta_h 15.952 kcal - -gamma 6.5 0 + -gamma 6.5 0 Mg+2 + CO3-2 = MgCO3 - -log_k 2.98 - -delta_h 2.713 kcal - -analytic 0.9910 0.00667 + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.991 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt -dw 4.21e-10 - -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt Mg+2 + H+ + CO3-2 = MgHCO3+ - -log_k 11.399 + -log_k 11.399 -delta_h -2.771 kcal - -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 - -gamma 4.0 0 + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt -dw 4.78e-10 - -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt Mg+2 + SO4-2 = MgSO4 - -log_k 2.42; -delta_h 19.0 kJ - -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -gamma 0 0.20 - -Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0 - -dw 4.45e-10 - -viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0 + -gamma 0 0.2 + -log_k 2.42; -delta_h 19 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 8.65 -10.21 29.58 -18.6 1.061 + -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696 + -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 - -log_k 0.52; -delta_h -13.6 kJ - -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -gamma 7 0.047 - -Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2 - -Dw 1e-9 -2926 6.10e-2 -5.41 - -viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 + -viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3 + -dw 0.845e-9 -200 8 0 0.965 Mg+2 + PO4-3 = MgPO4- - -log_k 6.589 - -delta_h 3.10 kcal - -gamma 5.4 0 + -log_k 6.589 + -delta_h 3.1 kcal + -gamma 5.4 0 Mg+2 + HPO4-2 = MgHPO4 - -log_k 2.87 + -log_k 2.87 -delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ - -log_k 1.513 + -log_k 1.513 -delta_h 3.4 kcal - -gamma 5.4 0 + -gamma 5.4 0 Mg+2 + F- = MgF+ - -log_k 1.82 - -delta_h 3.20 kcal - -gamma 4.5 0 - -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt + -log_k 1.82 + -delta_h 3.2 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH - -log_k -10 # remove this complex -# Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC - # -log_k 1.27 - # -delta_h 8.91 kcal - # -dw 1.2e-9 -400 1e-10 1e-10 - # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 - # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 + -log_k -10 # remove this complex Na+ + HCO3- = NaHCO3 - -log_k -0.18; -delta_h 27 kJ - -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 62–71. - -gamma 0 0.23 - -dw 6.73e-10 -400 1e-10 1e-10 - -Vm 9 -6 - -viscosity 0 0 0 0.1 3e-2 + -log_k -0.06; -delta_h 21 kJ + -gamma 0 0.2 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 Na+ + SO4-2 = NaSO4- - -log_k 0.6; -delta_h -14.4 kJ - -analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -gamma 0 0 - -Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672 - -dw 1.183e-9 438 1e-10 1e-10 - -viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120 + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325 + -viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208 + -dw 1.13e-9 -23 8.5 0.392 0.521 Na+ + HPO4-2 = NaHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF - -log_k -0.24 - -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt +K+ + HCO3- = KHCO3 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- - -log_k 0.6; -delta_h -10.4 kJ - -analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC - -gamma 0 8.3e-3 - -Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166 - -dw 5.11e-10 1694 -0.587 -4.43 - -viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975 + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919 + -viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69 + -dw 0.9e-9 63 8.48 0 1.8 K+ + HPO4-2 = KHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ - -log_k -9.5 - -delta_h 13.20 kcal - -gamma 5.0 0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ - -log_k -31.0 + -log_k -9.5 + -delta_h 13.2 kcal + -gamma 5 0 +Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + -log_k -31 -delta_h 30.3 kcal - -gamma 5.0 0 + -gamma 5 0 Fe+2 + Cl- = FeCl+ - -log_k 0.14 + -log_k 0.14 Fe+2 + CO3-2 = FeCO3 - -log_k 4.38 + -log_k 4.38 Fe+2 + HCO3- = FeHCO3+ - -log_k 2.0 + -log_k 2 Fe+2 + SO4-2 = FeSO4 - -log_k 2.25 - -delta_h 3.230 kcal - -Vm -13 0 123 + -log_k 2.25 + -delta_h 3.23 kcal + -Vm -13 0 123 Fe+2 + HSO4- = FeHSO4+ - -log_k 1.08 -Fe+2 + 2HS- = Fe(HS)2 - -log_k 8.95 -Fe+2 + 3HS- = Fe(HS)3- - -log_k 10.987 + -log_k 1.08 +Fe+2 + 2 HS- = Fe(HS)2 + -log_k 8.95 +Fe+2 + 3 HS- = Fe(HS)3- + -log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 - -log_k 3.6 + -log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ - -log_k 2.7 - -gamma 5.4 0 + -log_k 2.7 + -gamma 5.4 0 Fe+2 + F- = FeF+ - -log_k 1.0 + -log_k 1 Fe+2 = Fe+3 + e- - -log_k -13.02 - -delta_h 9.680 kcal - -gamma 9.0 0 + -log_k -13.02 + -delta_h 9.68 kcal + -gamma 9 0 Fe+3 + H2O = FeOH+2 + H+ - -log_k -2.19 - -delta_h 10.4 kcal - -gamma 5.0 0 + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5 0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ - -log_k -5.67 - -delta_h 17.1 kcal - -gamma 5.4 0 + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ - -log_k -12.56 - -delta_h 24.8 kcal + -log_k -12.56 + -delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ - -log_k -21.6 - -delta_h 31.9 kcal - -gamma 5.4 0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ - -log_k -20.57 - -delta_h 28.565 kcal + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + -log_k -20.57 + -delta_h 28.565 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ - -log_k -2.95 - -delta_h 13.5 kcal + -log_k -2.95 + -delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ - -log_k -6.3 - -delta_h 14.3 kcal + -log_k -6.3 + -delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 - -log_k 1.48 - -delta_h 5.6 kcal - -gamma 5.0 0 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5 0 Fe+3 + 2 Cl- = FeCl2+ - -log_k 2.13 - -gamma 5.0 0 + -log_k 2.13 + -gamma 5 0 Fe+3 + 3 Cl- = FeCl3 - -log_k 1.13 + -log_k 1.13 Fe+3 + SO4-2 = FeSO4+ - -log_k 4.04 - -delta_h 3.91 kcal - -gamma 5.0 0 + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5 0 Fe+3 + HSO4- = FeHSO4+2 - -log_k 2.48 + -log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- - -log_k 5.38 - -delta_h 4.60 kcal + -log_k 5.38 + -delta_h 4.6 kcal Fe+3 + HPO4-2 = FeHPO4+ - -log_k 5.43 - -delta_h 5.76 kcal - -gamma 5.0 0 + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5 0 Fe+3 + H2PO4- = FeH2PO4+2 - -log_k 5.43 - -gamma 5.4 0 + -log_k 5.43 + -gamma 5.4 0 Fe+3 + F- = FeF+2 - -log_k 6.2 - -delta_h 2.7 kcal - -gamma 5.0 0 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5 0 Fe+3 + 2 F- = FeF2+ - -log_k 10.8 - -delta_h 4.8 kcal - -gamma 5.0 0 + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5 0 Fe+3 + 3 F- = FeF3 - -log_k 14.0 - -delta_h 5.4 kcal + -log_k 14 + -delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ - -log_k -10.59 - -delta_h 14.40 kcal - -gamma 5.0 0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ - -log_k -34.8 - -gamma 5.0 0 + -log_k -10.59 + -delta_h 14.4 kcal + -gamma 5 0 +Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + -log_k -34.8 + -gamma 5 0 Mn+2 + Cl- = MnCl+ - -log_k 0.61 - -gamma 5.0 0 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 + -log_k 0.61 + -gamma 5 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 - -log_k 0.25 - -Vm 1e-5 0 144 + -log_k 0.25 + -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- - -log_k -0.31 - -gamma 5.0 0 - -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 + -log_k -0.31 + -gamma 5 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 - -log_k 4.9 + -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ - -log_k 1.95 - -gamma 5.0 0 + -log_k 1.95 + -gamma 5 0 Mn+2 + SO4-2 = MnSO4 - -log_k 2.25 - -delta_h 3.370 kcal - -Vm -1.31 -1.83 62.3 -2.7 + -log_k 2.25 + -delta_h 3.37 kcal + -Vm -1.31 -1.83 62.3 -2.7 Mn+2 + 2 NO3- = Mn(NO3)2 - -log_k 0.6 - -delta_h -0.396 kcal - -Vm 6.16 0 29.4 0 0.9 + -log_k 0.6 + -delta_h -0.396 kcal + -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ - -log_k 0.84 - -gamma 5.0 0 + -log_k 0.84 + -gamma 5 0 Mn+2 = Mn+3 + e- - -log_k -25.51 - -delta_h 25.80 kcal - -gamma 9.0 0 + -log_k -25.51 + -delta_h 25.8 kcal + -gamma 9 0 Al+3 + H2O = AlOH+2 + H+ - -log_k -5.0 - -delta_h 11.49 kcal - -analytic -38.253 0.0 -656.27 14.327 - -gamma 5.4 0 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. + -log_k -5 + -delta_h 11.49 kcal + -analytic -38.253 0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353 Al+3 + 2 H2O = Al(OH)2+ + 2 H+ - -log_k -10.1 - -delta_h 26.90 kcal - -gamma 5.4 0 - -analytic 88.50 0.0 -9391.6 -27.121 + -log_k -10.1 + -delta_h 26.9 kcal + -gamma 5.4 0 + -analytic 88.5 0 -9391.6 -27.121 Al+3 + 3 H2O = Al(OH)3 + 3 H+ - -log_k -16.9 - -delta_h 39.89 kcal - -analytic 226.374 0.0 -18247.8 -73.597 + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ - -log_k -22.7 - -delta_h 42.30 kcal - -analytic 51.578 0.0 -11168.9 -14.865 - -gamma 4.5 0 + -log_k -22.7 + -delta_h 42.3 kcal + -analytic 51.578 0 -11168.9 -14.865 + -gamma 4.5 0 -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 Al+3 + SO4-2 = AlSO4+ - -log_k 3.5 + -log_k 3.5 -delta_h 2.29 kcal - -gamma 4.5 0 -Al+3 + 2SO4-2 = Al(SO4)2- - -log_k 5.0 + -gamma 4.5 0 +Al+3 + 2 SO4-2 = Al(SO4)2- + -log_k 5 -delta_h 3.11 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + HSO4- = AlHSO4+2 - -log_k 0.46 + -log_k 0.46 Al+3 + F- = AlF+2 - -log_k 7.0 - -delta_h 1.060 kcal - -gamma 5.4 0 + -log_k 7 + -delta_h 1.06 kcal + -gamma 5.4 0 Al+3 + 2 F- = AlF2+ - -log_k 12.7 - -delta_h 1.980 kcal - -gamma 5.4 0 + -log_k 12.7 + -delta_h 1.98 kcal + -gamma 5.4 0 Al+3 + 3 F- = AlF3 - -log_k 16.8 - -delta_h 2.160 kcal + -log_k 16.8 + -delta_h 2.16 kcal Al+3 + 4 F- = AlF4- - -log_k 19.4 - -delta_h 2.20 kcal - -gamma 4.5 0 + -log_k 19.4 + -delta_h 2.2 kcal + -gamma 4.5 0 # Al+3 + 5 F- = AlF5-2 - # log_k 20.6 - # delta_h 1.840 kcal + # log_k 20.6 + # delta_h 1.840 kcal # Al+3 + 6 F- = AlF6-3 - # log_k 20.6 + # log_k 20.6 # delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ - -log_k -9.83 - -delta_h 6.12 kcal - -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -gamma 4 0 - -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ - -log_k -23.0 - -delta_h 17.6 kcal - -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 - -gamma 5.4 0 + -log_k -23 + -delta_h 17.6 kcal + -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 + -gamma 5.4 0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O - -log_k 30.18 - -delta_h -16.260 kcal - -gamma 5.0 0 - -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt + -log_k 30.18 + -delta_h -16.26 kcal + -gamma 5 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt Ba+2 + H2O = BaOH+ + H+ - -log_k -13.47 - -gamma 5.0 0 + -log_k -13.47 + -gamma 5 0 Ba+2 + CO3-2 = BaCO3 - -log_k 2.71 - -delta_h 3.55 kcal - -analytic 0.113 0.008721 - -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt Ba+2 + HCO3- = BaHCO3+ - -log_k 0.982 + -log_k 0.982 -delta_h 5.56 kcal - -analytic -3.0938 0.013669 + -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 - -log_k 2.7 + -log_k 2.7 Sr+2 + H2O = SrOH+ + H+ - -log_k -13.29 - -gamma 5.0 0 + -log_k -13.29 + -gamma 5 0 Sr+2 + CO3-2 + H+ = SrHCO3+ - -log_k 11.509 - -delta_h 2.489 kcal - -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 Sr+2 + CO3-2 = SrCO3 - -log_k 2.81 - -delta_h 5.22 kcal - -analytic -1.019 0.012826 - -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt Sr+2 + SO4-2 = SrSO4 - -log_k 2.29 - -delta_h 2.08 kcal - -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility Li+ + SO4-2 = LiSO4- - -log_k 0.64 - -gamma 5.0 0 + -log_k 0.64 + -gamma 5 0 Cu+2 + e- = Cu+ - -log_k 2.72 - -delta_h 1.65 kcal - -gamma 2.5 0 -Cu+ + 2Cl- = CuCl2- - -log_k 5.50 + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 +Cu+ + 2 Cl- = CuCl2- + -log_k 5.5 -delta_h -0.42 kcal - -gamma 4.0 0 -Cu+ + 3Cl- = CuCl3-2 - -log_k 5.70 + -gamma 4 0 +Cu+ + 3 Cl- = CuCl3-2 + -log_k 5.7 -delta_h 0.26 kcal - -gamma 5.0 0.0 -Cu+2 + CO3-2 = CuCO3 - -log_k 6.73 -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - -log_k 9.83 + -gamma 5 0 +Cu+2 + CO3-2 = CuCO3 + -log_k 6.73 +Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + -log_k 9.83 Cu+2 + HCO3- = CuHCO3+ - -log_k 2.7 -Cu+2 + Cl- = CuCl+ - -log_k 0.43 + -log_k 2.7 +Cu+2 + Cl- = CuCl+ + -log_k 0.43 -delta_h 8.65 kcal - -gamma 4.0 0 - -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 -Cu+2 + 2Cl- = CuCl2 - -log_k 0.16 + -gamma 4 0 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2 Cl- = CuCl2 + -log_k 0.16 -delta_h 10.56 kcal - -Vm 26.8 0 -136 -Cu+2 + 3Cl- = CuCl3- - -log_k -2.29 + -Vm 26.8 0 -136 +Cu+2 + 3 Cl- = CuCl3- + -log_k -2.29 -delta_h 13.69 kcal - -gamma 4.0 0 -Cu+2 + 4Cl- = CuCl4-2 - -log_k -4.59 + -gamma 4 0 +Cu+2 + 4 Cl- = CuCl4-2 + -log_k -4.59 -delta_h 17.78 kcal - -gamma 5.0 0 -Cu+2 + F- = CuF+ - -log_k 1.26 + -gamma 5 0 +Cu+2 + F- = CuF+ + -log_k 1.26 -delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ - -log_k -8.0 - -gamma 4.0 0 + -log_k -8 + -gamma 4 0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ - -log_k -13.68 + -log_k -13.68 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ - -log_k -26.9 + -log_k -26.9 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ - -log_k -39.6 -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ - -log_k -10.359 + -log_k -39.6 +2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + -log_k -10.359 -delta_h 17.539 kcal - -analytical 2.497 0.0 -3833.0 + -analytical 2.497 0 -3833 Cu+2 + SO4-2 = CuSO4 - -log_k 2.31 - -delta_h 1.220 kcal - -Vm 5.21 0 -14.6 -Cu+2 + 3HS- = Cu(HS)3- - -log_k 25.9 + -log_k 2.31 + -delta_h 1.22 kcal + -Vm 5.21 0 -14.6 +Cu+2 + 3 HS- = Cu(HS)3- + -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ - -log_k -8.96 + -log_k -8.96 -delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ - -log_k -16.9 + -log_k -16.9 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ - -log_k -28.4 + -log_k -28.4 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ - -log_k -41.2 + -log_k -41.2 Zn+2 + Cl- = ZnCl+ - -log_k 0.43 + -log_k 0.43 -delta_h 7.79 kcal - -gamma 4.0 0 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 + -gamma 4 0 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 - -log_k 0.45 + -log_k 0.45 -delta_h 8.5 kcal - -Vm -10.1 4.57 241 -2.97 -1e-3 -Zn+2 + 3Cl- = ZnCl3- - -log_k 0.5 + -Vm -10.1 4.57 241 -2.97 -1e-3 +Zn+2 + 3 Cl- = ZnCl3- + -log_k 0.5 -delta_h 9.56 kcal - -gamma 4.0 0 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 -Zn+2 + 4Cl- = ZnCl4-2 - -log_k 0.2 + -gamma 4 0 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 +Zn+2 + 4 Cl- = ZnCl4-2 + -log_k 0.2 -delta_h 10.96 kcal - -gamma 5.0 0 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 -Zn+2 + H2O + Cl- = ZnOHCl + H+ - -log_k -7.48 -Zn+2 + 2HS- = Zn(HS)2 - -log_k 14.94 -Zn+2 + 3HS- = Zn(HS)3- - -log_k 16.1 + -gamma 5 0 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 +Zn+2 + H2O + Cl- = ZnOHCl + H+ + -log_k -7.48 +Zn+2 + 2 HS- = Zn(HS)2 + -log_k 14.94 +Zn+2 + 3 HS- = Zn(HS)3- + -log_k 16.1 Zn+2 + CO3-2 = ZnCO3 - -log_k 5.3 -Zn+2 + 2CO3-2 = Zn(CO3)2-2 - -log_k 9.63 + -log_k 5.3 +Zn+2 + 2 CO3-2 = Zn(CO3)2-2 + -log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ - -log_k 2.1 + -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 - -log_k 2.37 + -log_k 2.37 -delta_h 1.36 kcal - -Vm 2.51 0 18.8 -Zn+2 + 2SO4-2 = Zn(SO4)2-2 - -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 -Zn+2 + Br- = ZnBr+ - -log_k -0.58 -Zn+2 + 2Br- = ZnBr2 - -log_k -0.98 -Zn+2 + F- = ZnF+ - -log_k 1.15 + -Vm 2.51 0 18.8 +Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 +Zn+2 + Br- = ZnBr+ + -log_k -0.58 +Zn+2 + 2 Br- = ZnBr2 + -log_k -0.98 +Zn+2 + F- = ZnF+ + -log_k 1.15 -delta_h 2.22 kcal Cd+2 + H2O = CdOH+ + H+ - -log_k -10.08 + -log_k -10.08 -delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ - -log_k -20.35 + -log_k -20.35 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ - -log_k -33.3 + -log_k -33.3 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ - -log_k -47.35 -2Cd+2 + H2O = Cd2OH+3 + H+ - -log_k -9.39 + -log_k -47.35 +2 Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -9.39 -delta_h 10.9 kcal -Cd+2 + H2O + Cl- = CdOHCl + H+ - -log_k -7.404 +Cd+2 + H2O + Cl- = CdOHCl + H+ + -log_k -7.404 -delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ - -log_k 0.4 + -log_k 0.4 -delta_h -5.2 kcal - -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ - -log_k 1.98 + -log_k 1.98 -delta_h 0.59 kcal - -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 - -log_k 2.6 + -log_k 2.6 -delta_h 1.24 kcal - -Vm 5.53 + -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- - -log_k 2.4 + -log_k 2.4 -delta_h 3.9 kcal - -Vm 4.6 0 83.9 0 0 0 0 0 0 1 + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 - -log_k 2.9 -Cd+2 + 2CO3-2 = Cd(CO3)2-2 - -log_k 6.4 + -log_k 2.9 +Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + -log_k 6.4 Cd+2 + HCO3- = CdHCO3+ - -log_k 1.5 + -log_k 1.5 Cd+2 + SO4-2 = CdSO4 - -log_k 2.46 + -log_k 2.46 -delta_h 1.08 kcal - -Vm 10.4 0 57.9 -Cd+2 + 2SO4-2 = Cd(SO4)2-2 - -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 -Cd+2 + Br- = CdBr+ - -log_k 2.17 + -Vm 10.4 0 57.9 +Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 +Cd+2 + Br- = CdBr+ + -log_k 2.17 -delta_h -0.81 kcal -Cd+2 + 2Br- = CdBr2 - -log_k 2.9 -Cd+2 + F- = CdF+ - -log_k 1.1 -Cd+2 + 2F- = CdF2 - -log_k 1.5 -Cd+2 + HS- = CdHS+ - -log_k 10.17 -Cd+2 + 2HS- = Cd(HS)2 - -log_k 16.53 -Cd+2 + 3HS- = Cd(HS)3- - -log_k 18.71 -Cd+2 + 4HS- = Cd(HS)4-2 - -log_k 20.9 +Cd+2 + 2 Br- = CdBr2 + -log_k 2.9 +Cd+2 + F- = CdF+ + -log_k 1.1 +Cd+2 + 2 F- = CdF2 + -log_k 1.5 +Cd+2 + HS- = CdHS+ + -log_k 10.17 +Cd+2 + 2 HS- = Cd(HS)2 + -log_k 16.53 +Cd+2 + 3 HS- = Cd(HS)3- + -log_k 18.71 +Cd+2 + 4 HS- = Cd(HS)4-2 + -log_k 20.9 Pb+2 + H2O = PbOH+ + H+ - -log_k -7.71 + -log_k -7.71 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ - -log_k -17.12 + -log_k -17.12 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ - -log_k -28.06 + -log_k -28.06 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ - -log_k -39.7 + -log_k -39.7 2 Pb+2 + H2O = Pb2OH+3 + H+ - -log_k -6.36 + -log_k -6.36 Pb+2 + Cl- = PbCl+ - -log_k 1.6 + -log_k 1.6 -delta_h 4.38 kcal - -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt Pb+2 + 2 Cl- = PbCl2 - -log_k 1.8 + -log_k 1.8 -delta_h 1.08 kcal - -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt + -Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt Pb+2 + 3 Cl- = PbCl3- - -log_k 1.7 + -log_k 1.7 -delta_h 2.17 kcal - -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt Pb+2 + 4 Cl- = PbCl4-2 - -log_k 1.38 + -log_k 1.38 -delta_h 3.53 kcal - -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt + -Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt Pb+2 + CO3-2 = PbCO3 - -log_k 7.24 + -log_k 7.24 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 - -log_k 10.64 + -log_k 10.64 Pb+2 + HCO3- = PbHCO3+ - -log_k 2.9 + -log_k 2.9 Pb+2 + SO4-2 = PbSO4 - -log_k 2.75 + -log_k 2.75 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 - -log_k 3.47 -Pb+2 + 2HS- = Pb(HS)2 - -log_k 15.27 -Pb+2 + 3HS- = Pb(HS)3- - -log_k 16.57 -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ - -log_k -23.88 - -delta_h 26.5 kcal + -log_k 3.47 +Pb+2 + 2 HS- = Pb(HS)2 + -log_k 15.27 +Pb+2 + 3 HS- = Pb(HS)3- + -log_k 16.57 +3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + -log_k -23.88 + -delta_h 26.5 kcal Pb+2 + NO3- = PbNO3+ - -log_k 1.17 -Pb+2 + Br- = PbBr+ - -log_k 1.77 + -log_k 1.17 +Pb+2 + Br- = PbBr+ + -log_k 1.77 -delta_h 2.88 kcal -Pb+2 + 2Br- = PbBr2 - -log_k 1.44 -Pb+2 + F- = PbF+ - -log_k 1.25 -Pb+2 + 2F- = PbF2 - -log_k 2.56 -Pb+2 + 3F- = PbF3- - -log_k 3.42 -Pb+2 + 4F- = PbF4-2 - -log_k 3.1 +Pb+2 + 2 Br- = PbBr2 + -log_k 1.44 +Pb+2 + F- = PbF+ + -log_k 1.25 +Pb+2 + 2 F- = PbF2 + -log_k 2.56 +Pb+2 + 3 F- = PbF3- + -log_k 3.42 +Pb+2 + 4 F- = PbF4-2 + -log_k 3.1 PHASES Calcite CaCO3 = CO3-2 + Ca+2 - -log_k -8.48 + -log_k -8.48 -delta_h -2.297 kcal - -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 + -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 - -log_k -8.336 + -log_k -8.336 -delta_h -2.589 kcal - -analytic -171.9773 -0.077993 2903.293 71.595 + -analytic -171.9773 -0.077993 2903.293 71.595 -Vm 34.04 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - -log_k -17.09 - -delta_h -9.436 kcal - -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275. + -log_k -17.09 + -delta_h -9.436 kcal + -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275 -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 - -log_k -10.89 - -delta_h -2.480 kcal + -log_k -10.89 + -delta_h -2.48 kcal -Vm 29.2 Rhodochrosite MnCO3 = Mn+2 + CO3-2 - -log_k -11.13 - -delta_h -1.430 kcal + -log_k -11.13 + -delta_h -1.43 kcal -Vm 31.1 Strontianite SrCO3 = Sr+2 + CO3-2 - -log_k -9.271 - -delta_h -0.400 kcal - -analytic 155.0305 0.0 -7239.594 -56.58638 + -log_k -9.271 + -delta_h -0.4 kcal + -analytic 155.0305 0 -7239.594 -56.58638 -Vm 39.69 Witherite BaCO3 = Ba+2 + CO3-2 - -log_k -8.562 - -delta_h 0.703 kcal - -analytic 607.642 0.121098 -20011.25 -236.4948 + -log_k -8.562 + -delta_h 0.703 kcal + -analytic 607.642 0.121098 -20011.25 -236.4948 -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58 + -log_k -4.58 -delta_h -0.109 kcal - -analytic 68.2401 0.0 -3221.51 -25.0627 - -analytical_expression 93.7 5.99E-03 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 - -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) + -analytic 68.2401 0 -3221.51 -25.0627 + -analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 + -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) Anhydrite CaSO4 = Ca+2 + SO4-2 - -log_k -4.36 - -delta_h -1.710 kcal - -analytic 84.90 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323. + -log_k -4.36 + -delta_h -1.71 kcal + -analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 - -log_k -6.63 + -log_k -6.63 -delta_h -4.037 kcal -# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 - -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464. +# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 + -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 - -log_k -9.97 - -delta_h 6.35 kcal - -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 + -log_k -9.97 + -delta_h 6.35 kcal + -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 Arcanite - K2SO4 = SO4-2 + 2 K+ - log_k -1.776; -delta_h 5 kcal - -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 -Vm 65.5 Mirabilite - Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O - -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 Vm 216 Thenardite Na2SO4 = 2 Na+ + SO4-2 - -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 -Vm 52.9 Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.74; -delta_h 10.57 kJ - -analytical_expression -3.59 6.21e-3 - Vm 147 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 Hexahydrite - MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.57; -delta_h 2.35 kJ - -analytical_expression -1.978 1.38e-3 - Vm 132 + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 Kieserite - MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -1.16; -delta_h 9.22 kJ - -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 - Vm 53.8 + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 - -log_k -3.421 + -log_k -3.421 -delta_h -36.155 kcal -Vm 128.9 Fluorite CaF2 = Ca+2 + 2 F- - -log_k -10.6 - -delta_h 4.69 kcal - -analytic 66.348 0.0 -4298.2 -25.271 + -log_k -10.6 + -delta_h 4.69 kcal + -analytic 66.348 0 -4298.2 -25.271 -Vm 15.7 SiO2(a) SiO2 + 2 H2O = H4SiO4 - -log_k -2.71 - -delta_h 3.340 kcal - -analytic -0.26 0.0 -731.0 + -log_k -2.71 + -delta_h 3.34 kcal + -analytic -0.26 0 -731 Chalcedony SiO2 + 2 H2O = H4SiO4 - -log_k -3.55 - -delta_h 4.720 kcal - -analytic -0.09 0.0 -1032.0 + -log_k -3.55 + -delta_h 4.72 kcal + -analytic -0.09 0 -1032 -Vm 23.1 Quartz SiO2 + 2 H2O = H4SiO4 - -log_k -3.98 - -delta_h 5.990 kcal - -analytic 0.41 0.0 -1309.0 + -log_k -3.98 + -delta_h 5.99 kcal + -analytic 0.41 0 -1309 -Vm 22.67 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 8.11 - -delta_h -22.800 kcal + -log_k 8.11 + -delta_h -22.8 kcal -Vm 32.22 Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 10.8 - -delta_h -26.500 kcal + -log_k 10.8 + -delta_h -26.5 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 - -log_k 7.435 - -delta_h -35.300 kcal + -log_k 7.435 + -delta_h -35.3 kcal -Vm 99.35 Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 - -log_k -18.002 + -log_k -18.002 -delta_h 25.896 kcal -Vm 101.31 Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 - -log_k -19.714 - -delta_h 11.580 kcal + -log_k -19.714 + -delta_h 11.58 kcal -Vm 105.05 K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 - -log_k -20.573 - -delta_h 30.820 kcal + -log_k -20.573 + -delta_h 30.82 kcal -Vm 108.15 K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 - -log_k 12.703 + -log_k 12.703 -delta_h -59.376 kcal Chlorite(14A) - Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O - -log_k 68.38 + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + -log_k 68.38 -delta_h -151.494 kcal Ca-Montmorillonite - Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ - -log_k -45.027 - -delta_h 58.373 kcal + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + -log_k -45.027 + -delta_h 58.373 kcal -Vm 156.16 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 - -log_k 21.399 + -log_k 21.399 -delta_h -46.352 kcal -Vm 68.34 Illite - K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ - -log_k -40.267 + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ + -log_k -40.267 -delta_h 54.684 kcal -Vm 141.48 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 - -log_k 32.2 - -delta_h -46.800 kcal - -analytic 13.248 0.0 10217.1 -6.1894 - -Vm 106.5808 # 277.11/2.60 + -log_k 32.2 + -delta_h -46.8 kcal + -analytic 13.248 0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 Sepiolite - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 15.760 - -delta_h -10.700 kcal + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 15.76 + -delta_h -10.7 kcal -Vm 143.765 Sepiolite(d) - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 18.66 + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 18.66 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - -log_k -4.008 + -log_k -4.008 -delta_h -30.845 kcal -Vm 30.39 Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O - -log_k -1.0 - -delta_h -14.48 kcal + -log_k -1 + -delta_h -14.48 kcal -Vm 20.84 Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O - -log_k 4.891 + -log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- - -log_k -18.479 - -delta_h 11.300 kcal + -log_k -18.479 + -delta_h 11.3 kcal -Vm 23.48 FeS(ppt) FeS + H+ = Fe+2 + HS- - -log_k -3.915 + -log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- - -log_k -4.648 + -log_k -4.648 -Vm 20.45 Sulfur - S + 2H+ + 2e- = H2S - -log_k 4.882 + S + 2 H+ + 2 e- = H2S + -log_k 4.882 -delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O - -log_k -36.0 -Pyrolusite # H2O added for surface calc's + -log_k -36 +Pyrolusite # H2O added for surface calc's MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O - -log_k 41.38 - -delta_h -65.110 kcal + -log_k 41.38 + -delta_h -65.11 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O - -log_k 61.03 - -delta_h -100.640 kcal + -log_k 61.03 + -delta_h -100.64 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O - -log_k 25.34 + -log_k 25.34 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O - -log_k 15.2 + -log_k 15.2 Halite - NaCl = Cl- + Na+ - log_k 1.570 - -delta_h 1.37 + NaCl = Cl- + Na+ + log_k 1.57 + -delta_h 1.37 #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. -Vm 27.1 Sylvite - KCl = K+ + Cl- - log_k 0.900 - -delta_h 8.5 - # -analytic 3.984 0.0 -919.55 + KCl = K+ + Cl- + log_k 0.9 + -delta_h 8.5 + # -analytic 3.984 0.0 -919.55 Vm 37.5 # Gases... CO2(g) CO2 = CO2 - -log_k -1.468 + -log_k -1.468 -delta_h -4.776 kcal - -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 - -T_c 304.2 # critical T, K - -P_c 72.86 # critical P, atm + -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 + -T_c 304.2 # critical T, K + -P_c 72.86 # critical P, atm -Omega 0.225 # acentric factor H2O(g) H2O = H2O - -log_k 1.506; delta_h -44.03 kJ - -T_c 647.3; -P_c 217.60; -Omega 0.344 - -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 + -log_k 1.506; delta_h -44.03 kJ + -T_c 647.3; -P_c 217.6; -Omega 0.344 + -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 O2(g) O2 = O2 - -log_k -2.8983 - -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 - -T_c 154.6; -P_c 49.80; -Omega 0.021 + -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 H2(g) H2 = H2 - -log_k -3.1050 - -delta_h -4.184 kJ - -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 - -T_c 33.2; -P_c 12.80; -Omega -0.225 + -log_k -3.105 + -delta_h -4.184 kJ + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 N2(g) N2 = N2 - -log_k -3.1864 - -analytic -58.453 1.818e-3 3199 17.909 -27460 - -T_c 126.2; -P_c 33.50; -Omega 0.039 + -log_k -3.1864 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + -T_c 126.2; -P_c 33.5; -Omega 0.039 H2S(g) - H2S = H+ + HS- - log_k -7.93 - -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 - -T_c 373.2; -P_c 88.20; -Omega 0.1 + H2S = H+ + HS- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 CH4(g) CH4 = CH4 -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C - -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 #Amm(g) # Amm = Amm NH3(g) NH3 = NH3 - -log_k 1.7966 - -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 - -T_c 405.6; -P_c 111.3; -Omega 0.25 + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 # redox-uncoupled gases Oxg(g) Oxg = Oxg - -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 - -T_c 154.6 ; -P_c 49.80 ; -Omega 0.021 + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 Hdg(g) Hdg = Hdg - -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 - -T_c 33.2 ; -P_c 12.80 ; -Omega -0.225 + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 Ntg(g) Ntg = Ntg - -analytic -58.453 1.81800e-3 3199 17.909 -27460 - T_c 126.2 ; -P_c 33.50 ; -Omega 0.039 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + T_c 126.2; -P_c 33.5; -Omega 0.039 Mtg(g) Mtg = Mtg -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C - -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 H2Sg(g) - H2Sg = H+ + HSg- - log_k -7.93 - -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 - -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 + H2Sg = H+ + HSg- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 - -log_k -2.209 - -delta_h 4.910 kcal - -analytic 1.447 -0.004153 0.0 0.0 -214949.0 + -log_k -2.209 + -delta_h 4.91 kcal + -analytic 1.447 -0.004153 0 0 -214949 Alunite - KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O - -log_k -1.4 - -delta_h -50.250 kcal + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + -log_k -1.4 + -delta_h -50.25 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 - -log_k -9.21 - -delta_h -31.280 kcal + -log_k -9.21 + -delta_h -31.28 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - -log_k 11.5 + -log_k 11.5 Smithsonite ZnCO3 = Zn+2 + CO3-2 - -log_k -10.0 - -delta_h -4.36 kcal + -log_k -10 + -delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- - -log_k -11.618 - -delta_h 8.250 kcal -Willemite 289 - Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - -log_k 15.33 - -delta_h -33.37 kcal + -log_k -11.618 + -delta_h 8.25 kcal +Willemite 289 + Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 + -log_k 15.33 + -delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O - -log_k 13.65 -Otavite 315 + -log_k 13.65 +Otavite 315 CdCO3 = Cd+2 + CO3-2 - -log_k -12.1 - -delta_h -0.019 kcal -CdSiO3 328 - CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - -log_k 9.06 - -delta_h -16.63 kcal -CdSO4 329 + -log_k -12.1 + -delta_h -0.019 kcal +CdSiO3 328 + CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 + -log_k 9.06 + -delta_h -16.63 kcal +CdSO4 329 CdSO4 = Cd+2 + SO4-2 - -log_k -0.1 - -delta_h -14.74 kcal -Cerussite 365 + -log_k -0.1 + -delta_h -14.74 kcal +Cerussite 365 PbCO3 = Pb+2 + CO3-2 - -log_k -13.13 - -delta_h 4.86 kcal -Anglesite 384 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 PbSO4 = Pb+2 + SO4-2 - -log_k -7.79 - -delta_h 2.15 kcal -Pb(OH)2 389 - Pb(OH)2 + 2H+ = Pb+2 + 2H2O - -log_k 8.15 - -delta_h -13.99 kcal + -log_k -7.79 + -delta_h 2.15 kcal +Pb(OH)2 389 + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + -log_k 8.15 + -delta_h -13.99 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - -log_k 0.0 + -log_k 0 Na+ + X- = NaX - -log_k 0.0 - -gamma 4.08 0.082 + -log_k 0 + -gamma 4.08 0.082 K+ + X- = KX - -log_k 0.7 - -gamma 3.5 0.015 - -delta_h -4.3 # Jardine & Sparks, 1984 + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX - -log_k -0.08 - -gamma 6.0 0 - -delta_h 1.4 # Merriam & Thomas, 1956 + -log_k -0.08 + -gamma 6 0 + -delta_h 1.4 # Merriam & Thomas, 1956 # !!!!! -# H+ + X- = HX -# -log_k 1.0 -# -gamma 9.0 0 +# H+ + X- = HX +# -log_k 1.0 +# -gamma 9.0 0 # AmmH+ + X- = AmmHX NH4+ + X- = NH4X - -log_k 0.6 - -gamma 2.5 0 - -delta_h -2.4 # Laudelout et al., 1968 + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 - Ca+2 + 2X- = CaX2 - -log_k 0.8 - -gamma 5.0 0.165 - -delta_h 7.2 # Van Bladel & Gheyl, 1980 + Ca+2 + 2 X- = CaX2 + -log_k 0.8 + -gamma 5 0.165 + -delta_h 7.2 # Van Bladel & Gheyl, 1980 - Mg+2 + 2X- = MgX2 - -log_k 0.6 - -gamma 5.5 0.2 - -delta_h 7.4 # Laudelout et al., 1968 + Mg+2 + 2 X- = MgX2 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 - Sr+2 + 2X- = SrX2 - -log_k 0.91 - -gamma 5.26 0.121 - -delta_h 5.5 # Laudelout et al., 1968 + Sr+2 + 2 X- = SrX2 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 - Ba+2 + 2X- = BaX2 - -log_k 0.91 - -gamma 4.0 0.153 - -delta_h 4.5 # Laudelout et al., 1968 + Ba+2 + 2 X- = BaX2 + -log_k 0.91 + -gamma 4 0.153 + -delta_h 4.5 # Laudelout et al., 1968 - Mn+2 + 2X- = MnX2 - -log_k 0.52 - -gamma 6.0 0 + Mn+2 + 2 X- = MnX2 + -log_k 0.52 + -gamma 6 0 - Fe+2 + 2X- = FeX2 - -log_k 0.44 - -gamma 6.0 0 + Fe+2 + 2 X- = FeX2 + -log_k 0.44 + -gamma 6 0 - Cu+2 + 2X- = CuX2 - -log_k 0.6 - -gamma 6.0 0 + Cu+2 + 2 X- = CuX2 + -log_k 0.6 + -gamma 6 0 - Zn+2 + 2X- = ZnX2 - -log_k 0.8 - -gamma 5.0 0 + Zn+2 + 2 X- = ZnX2 + -log_k 0.8 + -gamma 5 0 - Cd+2 + 2X- = CdX2 - -log_k 0.8 - -gamma 0.0 0 + Cd+2 + 2 X- = CdX2 + -log_k 0.8 + -gamma 0 0 - Pb+2 + 2X- = PbX2 - -log_k 1.05 - -gamma 0.0 0 + Pb+2 + 2 X- = PbX2 + -log_k 1.05 + -gamma 0 0 - Al+3 + 3X- = AlX3 - -log_k 0.41 - -gamma 9.0 0 + Al+3 + 3 X- = AlX3 + -log_k 0.41 + -gamma 9 0 - AlOH+2 + 2X- = AlOHX2 - -log_k 0.89 - -gamma 0.0 0 + AlOH+2 + 2 X- = AlOHX2 + -log_k 0.89 + -gamma 0 0 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 @@ -1422,24 +1422,24 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - -log_k 0 + -log_k 0 - Hfo_sOH + H+ = Hfo_sOH2+ - -log_k 7.29 # = pKa1,int + Hfo_sOH + H+ = Hfo_sOH2+ + -log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - -log_k 0 + -log_k 0 - Hfo_wOH + H+ = Hfo_wOH2+ - -log_k 7.29 # = pKa1,int + Hfo_wOH + H+ = Hfo_wOH2+ + -log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### @@ -1448,52 +1448,52 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - -log_k 4.97 + -log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ -log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - -log_k 5.01 + -log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ -log_k -6.58 - Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ -log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - -log_k 5.46 + -log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - -log_k -7.2 # table 10.5 + -log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - -log_k 0.47 + -log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - -log_k -2.91 + -log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - -log_k 0.99 + -log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - -log_k -1.99 + -log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - -log_k 2.89 + -log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - -log_k 0.6 # table 10.5 + -log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - -log_k 4.65 + -log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - -log_k 0.3 # table 10.5 + -log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -1502,18 +1502,18 @@ SURFACE_SPECIES -log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - -log_k -0.4 # table 10.5 + -log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - -log_k -3.5 # table 10.5 + -log_k -3.5 # table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - -log_k -0.95 + -log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ -log_k -2.98 - Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ -log_k -11.55 ############################################### # ANIONS # @@ -1522,51 +1522,74 @@ SURFACE_SPECIES # Anions from table 10.6 # # Phosphate - Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - -log_k 31.29 + Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + -log_k 31.29 - Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - -log_k 25.39 + Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + -log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - -log_k 17.72 + -log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - -log_k 0.62 + -log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - -log_k 7.78 + -log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - -log_k 0.79 + -log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - -log_k 8.7 + -log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - -log_k 1.6 + -log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for D&M model # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O - -log_k 12.56 + -log_k 12.56 - Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O - -log_k 20.62 + Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O + -log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 - Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 + +MEAN_GAMMAS +CaCl2 Ca+2 1 Cl- 2 +CaSO4 Ca+2 1 SO4-2 1 +CaCO3 Ca+2 1 CO3-2 1 +Ca(OH)2 Ca+2 1 OH- 2 +MgCl2 Mg+2 1 Cl- 2 +MgSO4 Mg+2 1 SO4-2 1 +MgCO3 Mg+2 1 CO3-2 1 +Mg(OH)2 Mg+2 1 OH- 2 +NaCl Na+ 1 Cl- 1 +Na2SO4 Na+ 2 SO4-2 1 +NaHCO3 Na+ 1 HCO3- 1 +Na2CO3 Na+ 2 CO3-2 1 +NaOH Na+ 1 OH- 1 +KCl K+ 1 Cl- 1 +K2SO4 K+ 2 SO4-2 1 +HCO3 K+ 1 HCO3- 1 +K2CO3 K+ 2 CO3-2 1 +KOH K+ 1 OH- 1 +HCl H+ 1 Cl- 1 +H2SO4 H+ 2 SO4-2 1 +HBr H+ 1 Br- 1 RATES @@ -1576,25 +1599,25 @@ RATES # ####### # Example of quartz kinetic rates block: -# KINETICS -# Quartz -# -m0 158.8 # 90 % Qu -# -parms 0.146 1.5 -# -step 3.1536e8 in 10 -# -tol 1e-12 +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 Quartz -start -1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 -2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol -3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) -4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz -5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp -40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) -# Integrate... +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +# Integrate... 50 SAVE moles * TIME -end @@ -1616,60 +1639,60 @@ Quartz # GFW Kspar 0.278 kg/mol # # Moles of Kspar per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space -# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space +# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space # # Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere -# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere +# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere # Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar # # # Example of KINETICS data block for K-feldspar rate: -# KINETICS 1 -# K-feldspar -# -m0 2.18 # 10% Kspar, 0.1 mm cubes -# -m 2.18 # Moles per L pore space -# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 +# KINETICS 1 +# K-feldspar +# -m0 2.18 # 10% Kspar, 0.1 mm cubes +# -m 2.18 # Moles per L pore space +# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 K-feldspar -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM K-Feldspar parameters -10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME 290 SAVE moles -end @@ -1688,63 +1711,63 @@ K-feldspar # p. 162-163 and 395-399. # # Example of KINETICS data block for Albite rate: -# KINETICS 1 -# Albite -# -m0 0.46 # 2% Albite, 0.1 mm cubes -# -m 0.46 # Moles per L pore space -# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 +# KINETICS 1 +# Albite +# -m0 0.46 # 2% Albite, 0.1 mm cubes +# -m 0.46 # Moles per L pore space +# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 # # Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) # Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L # GFW Albite 0.262 kg/mol # # Moles of Albite per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space -# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space +# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space # # Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere -# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere -# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere +# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite Albite -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Albite m^2/mol Albite -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM Albite parameters -10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("Albite")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME 290 SAVE moles -end @@ -1752,27 +1775,27 @@ Albite #Calcite ######## # Example of KINETICS data block for calcite rate, -# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257. +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 # KINETICS 1 # Calcite # -tol 1e-8 # -m0 3.e-3 -# -m 3.e-3 +# -m 3.e-3 # -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor # -time 1 day Calcite -start -1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite -2 REM PARM(2) = exponent for M/M0 +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 -10 si_cc = SI("Calcite") -20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 -30 k1 = 10^(0.198 - 444.0 / TK ) -40 k2 = 10^(2.84 - 2177.0 /TK ) -50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317.0 / TK) -60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737.0 / TK ) -80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444 / TK ) +40 k2 = 10^(2.84 - 2177 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M 110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) 120 rate = rate * (1 - 10^(2/3*si_cc)) 130 moles = rate * 0.001 * TIME # convert from mmol to mol @@ -1788,27 +1811,27 @@ Calcite # rate equation is mol m^-2 s^-1. # # Example of KINETICS data block for pyrite rate: -# KINETICS 1 -# Pyrite -# -tol 1e-8 -# -m0 5.e-4 -# -m 5.e-4 -# -parms 0.3 0.67 .5 -0.11 -# -time 1 day in 10 +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 0.3 0.67 .5 -0.11 +# -time 1 day in 10 Pyrite -start -1 REM Williamson and Rimstidt, 1994 -2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) -3 REM PARM(2) = exp for (M/M0) -4 REM PARM(3) = exp for O2 -5 REM PARM(4) = exp for H+ +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ -10 REM Dissolution in presence of DO -20 if (M <= 0) THEN GOTO 200 -30 if (SI("Pyrite") >= 0) THEN GOTO 200 -40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") -50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) -60 moles = 10^(log_area + log_rate) * TIME +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME 200 SAVE moles -end @@ -1817,27 +1840,27 @@ Pyrite ########## # # Example of KINETICS data block for SOC (sediment organic carbon): -# KINETICS 1 -# Organic_C -# -formula C -# -tol 1e-8 -# -m 5e-3 # SOC in mol -# -time 30 year in 15 +# KINETICS 1 +# Organic_C +# -formula C +# -tol 1e-8 +# -m 5e-3 # SOC in mol +# -time 30 year in 15 Organic_C -start -1 REM Additive Monod kinetics for SOC (sediment organic carbon) -2 REM Electron acceptors: O2, NO3, and SO4 +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 -10 if (M <= 0) THEN GOTO 200 -20 mO2 = MOL("O2") -30 mNO3 = TOT("N(5)") -40 mSO4 = TOT("S(6)") -50 k_O2 = 1.57e-9 # 1/sec -60 k_NO3 = 1.67e-11 # 1/sec -70 k_SO4 = 1.e-13 # 1/sec -80 rate = k_O2 * mO2/(2.94e-4 + mO2) -90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) -100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) 110 moles = rate * M * (M/M0) * TIME 200 SAVE moles -end @@ -1850,33 +1873,34 @@ Organic_C # Rate equation given as mol L^-1 s^-1 # # Example of KINETICS data block for Pyrolusite -# KINETICS 1-12 -# Pyrolusite -# -tol 1.e-7 -# -m0 0.1 -# -m 0.1 -# -time 0.5 day in 10 +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +# -time 0.5 day in 10 Pyrolusite -start -10 if (M <= 0) THEN GOTO 200 -20 sr_pl = SR("Pyrolusite") -30 if (sr_pl > 1) THEN GOTO 100 -40 REM sr_pl <= 1, undersaturated -50 Fe_t = TOT("Fe(2)") -60 if Fe_t < 1e-8 then goto 200 -70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) -80 GOTO 200 +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 100 REM sr_pl > 1, supersaturated 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end + END # ============================================================================================= -#(a) means amorphous. (d) means disordered, or less crystalline. -#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), -#precipitated, indicates an initial precipitate that is less crystalline. +#(a) means amorphous. (d) means disordered, or less crystalline. +#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), +#precipitated, indicates an initial precipitate that is less crystalline. #Zn(OH)2(e) indicates a specific crystal form, epsilon. -# ============================================================================================= +# ============================================================================================= # For the reaction aA + bB = cC + dD, # with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), # PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). @@ -1888,36 +1912,36 @@ END # H2O 0.49 0.19 0.19 0.49 # ============================================================================================= # The molar volumes of solids are entered with -# -Vm vm cm3/mol +# -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. -# -------------------- +# -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- -# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with -# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + -# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) -# + z^2 / 2 * Av * f(I^0.5) -# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 +# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) +# + z^2 / 2 * Av * f(I^0.5) +# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 # Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). # 41.84 transforms cal/bar/mol into cm3/mol. # pb is pressure in bar. # W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, -# W is fitted on measured solution densities. +# W is fitted on measured solution densities. # z is charge of the solute species. # Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-Hückel equation: -# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), -# a0 = -gamma x for cations, = 0 for anions. +# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), +# a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 -# # b0 b1 b2 d1 d2 d3 tan +# # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions @@ -1925,7 +1949,7 @@ END # n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. # -# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. # ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. # ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp diff --git a/database/phreeqc_rates.dat b/database/phreeqc_rates.dat new file mode 100644 index 00000000..50a5e0d4 --- /dev/null +++ b/database/phreeqc_rates.dat @@ -0,0 +1,3149 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc_rates.dat, 24/05/2024 01:41, 3147 lines, 110328 bytes, md5=7fc916311a573d0ad7ce880f996a9bbf +# Created 24 May 2024 01:58:45 +# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts phreeqc_rates.dat + +# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Augmented with kinetic rates for minerals from compilations. Based on: +# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. +# Details are given at the end of this file. + +SOLUTION_MASTER_SPECIES +# +#element species alk gfw_formula element_gfw +# +H H+ -1 H 1.008 +H(0) H2 0 H +H(1) H+ -1 H +E e- 1 0 0 +O H2O 0 O 16 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.9815 +Ba Ba+2 0 Ba 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO3-2 2 HCO3 12.0111 +C(+4) CO3-2 2 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +S(-2) HS- 1 S +N NO3- 0 N 14.0067 +N(+5) NO3- 0 N +N(+3) NO2- 0 N +N(0) N2 0 N +N(-3) NH4+ 0 N 14.0067 +#Amm AmmH+ 0 AmmH 17.031 +B H3BO3 0 B 10.81 +P PO4-3 2 P 30.9738 +F F- 0 F 18.9984 +Li Li+ 0 Li 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.37 +Cd Cd+2 0 Cd 112.4 +Pb Pb+2 0 Pb 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu +# redox-uncoupled gases +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # O2 gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas +Sg H2Sg 0 H2Sg 32.064 # H2S gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas + +SOLUTION_SPECIES +H+ = H+ + -gamma 9 0 + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 + -dw 9.31e-9 838 16.315 0 2.376 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif +# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif + +# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 2.376 for H+) +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. (a2 = Vm = 0 for H+, the reference for Vm) +# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) +# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) + +# If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. +e- = e- +H2O = H2O + -dw 2.299e-9 -254 +# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence +Li+ = Li+ + -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 +Na+ = Na+ + -gamma 4 0.075 + -gamma 4.08 0.082 # halite solubility + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 +K+ = K+ + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 + -dw 1.96e-9 254 3.484 0 0.1964 +Mg+2 = Mg+2 + -gamma 5.5 0.2 + -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 +Ca+2 = Ca+2 + -gamma 5 0.165 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 +Sr+2 = Sr+2 + -gamma 5.26 0.121 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 +Ba+2 = Ba+2 + -gamma 5 0 + -gamma 4 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3 +Fe+2 = Fe+2 + -gamma 6 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +Mn+2 = Mn+2 + -gamma 6 0 + -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +Al+3 = Al+3 + -gamma 9 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353 + -dw 0.559e-9 +H4SiO4 = H4SiO4 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 + -dw 1.1e-9 +Cl- = Cl- + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.16 0.2071 0.7432 +CO3-2 = CO3-2 + -gamma 5.4 0 + -Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 +SO4-2 = SO4-2 + -gamma 5 -0.04 + -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 + -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 +NO3- = NO3- + -gamma 3 0 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 + -dw 1.9e-9 104 1.11 +# AmmH+ = AmmH+ + # -gamma 2.50 + # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + # -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + # -dw 1.98e-9 203 1.47 2.644 6.81e-2 +H3BO3 = H3BO3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt + -dw 1.1e-9 +PO4-3 = PO4-3 + -gamma 4 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 +F- = F- + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 -36 4.352 +Br- = Br- + -gamma 3 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.82 + -dw 2.09e-9 208 3.5 0 0.5737 +Zn+2 = Zn+2 + -gamma 5 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 +Cd+2 = Cd+2 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 +Pb+2 = Pb+2 + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 +Cu+2 = Cu+2 + -gamma 6 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 +# redox-uncoupled gases +Hdg = Hdg # H2 + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 +Oxg = Oxg # O2 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 +Mtg = Mtg # CH4 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 +Ntg = Ntg # N2 + -Vm 7 # Pray et al., 1952, IEC 44, 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 +H2Sg = H2Sg # H2S + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +# aqueous species +H2O = OH- + H+ + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -gamma 3.5 0 + -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 + -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -dw 5.27e-9 478 0.8695 +2 H2O = O2 + 4 H+ + 4 e- + -log_k -86.08 + -delta_h 134.79 kcal + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 +2 H+ + 2 e- = H2 + -log_k -3.15 + -delta_h -1.759 kcal + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 +H+ + Cl- = HCl + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 +CO3-2 + H+ = HCO3- + -log_k 10.329; -delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 +CO3-2 + 2 H+ = CO2 + H2O + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T + -log_k -1.8 + -analytical_expression 8.68 -0.0103 -2190 + -Vm 14.58 1.84 4.14 -2.46 -3.2 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O + -log_k 41.071 + -delta_h -61.039 kcal + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 +SO4-2 + H+ = HSO4- + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15 2.861 +HS- = S-2 + H+ + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5 0 + -dw 0.731e-9 +SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O + -log_k 33.65 + -delta_h -60.14 kcal + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +HS- + H+ = H2S + -log_k 6.994; -delta_h -5.3 kcal + -analytical -11.17 0.02386 3279 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 +H2Sg = HSg- + H+ + -log_k -6.994; -delta_h 5.3 kcal + -analytical_expression 11.17 -0.02386 -3279 + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 +NO3- + 2 H+ + 2 e- = NO2- + H2O + -log_k 28.57 + -delta_h -43.76 kcal + -gamma 3 0 + -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 +2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O + -log_k 207.08 + -delta_h -312.13 kcal + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 +NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + -log_k 119.077 + -delta_h -187.055 kcal + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 +#AmmH+ = Amm + H+ +NH4+ = NH3 + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 +#AmmH+ + SO4-2 = AmmHSO4- +NH4+ + SO4-2 = NH4SO4- + -gamma 6.54 -0.08 + -log_k 1.106; -delta_h 4.3 kcal + -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 + -viscosity 0.24 0 0 3.3e-3 -0.1 0.528 0.748 + -dw 1.35e-9 500 12.5 3 -1 +H3BO3 = H2BO3- + H+ + -log_k -9.24 + -delta_h 3.224 kcal +H3BO3 + F- = BF(OH)3- + -log_k -0.4 + -delta_h 1.85 kcal +H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O + -log_k 7.63 + -delta_h 1.618 kcal +H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O + -log_k 13.67 + -delta_h -1.614 kcal +H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O + -log_k 20.28 + -delta_h -1.846 kcal +PO4-3 + H+ = HPO4-2 + -log_k 12.346 + -delta_h -3.53 kcal + -gamma 5 0 + -dw 0.69e-9 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 +PO4-3 + 2 H+ = H2PO4- + -log_k 19.553 + -delta_h -4.52 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 +PO4-3 + 3 H+ = H3PO4 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 +H+ + F- = HF + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt +H+ + 2 F- = HF2- + -log_k 3.76 + -delta_h 4.55 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt +Ca+2 + H2O = CaOH+ + H+ + -log_k -12.78 +Ca+2 + CO3-2 = CaCO3 + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.29944 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt +Ca+2 + CO3-2 + H+ = CaHCO3+ + -log_k 10.91; -delta_h 4.38 kcal + -analytic -6.009 3.377e-2 2044 + -gamma 6 0 + -Vm 30.19 .01 5.75 -2.78 .308 5.4 + -dw 5.06e-10 +Ca+2 + SO4-2 = CaSO4 + -log_k 2.25 + -delta_h 1.325 kcal + -dw 4.71e-10 + -Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt +Ca+2 + HSO4- = CaHSO4+ + -log_k 1.08 +Ca+2 + PO4-3 = CaPO4- + -log_k 6.459 + -delta_h 3.1 kcal + -gamma 5.4 0 +Ca+2 + HPO4-2 = CaHPO4 + -log_k 2.739 + -delta_h 3.3 kcal +Ca+2 + H2PO4- = CaH2PO4+ + -log_k 1.408 + -delta_h 3.4 kcal + -gamma 5.4 0 +# Ca+2 + F- = CaF+ + # -log_k 0.94 + # -delta_h 4.120 kcal + # -gamma 5.5 0.0 + # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt +Mg+2 + H2O = MgOH+ + H+ + -log_k -11.44 + -delta_h 15.952 kcal + -gamma 6.5 0 +Mg+2 + CO3-2 = MgCO3 + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.991 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt + -dw 4.21e-10 +Mg+2 + H+ + CO3-2 = MgHCO3+ + -log_k 11.399 + -delta_h -2.771 kcal + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -dw 4.78e-10 +Mg+2 + SO4-2 = MgSO4 + -gamma 0 0.2 + -log_k 2.42; -delta_h 19 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 8.65 -10.21 29.58 -18.6 1.061 + -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696 + -dw 4.45e-10 +SO4-2 + MgSO4 = Mg(SO4)2-2 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 + -viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3 + -dw 0.845e-9 -200 8 0 0.965 +Mg+2 + PO4-3 = MgPO4- + -log_k 6.589 + -delta_h 3.1 kcal + -gamma 5.4 0 +Mg+2 + HPO4-2 = MgHPO4 + -log_k 2.87 + -delta_h 3.3 kcal +Mg+2 + H2PO4- = MgH2PO4+ + -log_k 1.513 + -delta_h 3.4 kcal + -gamma 5.4 0 +Mg+2 + F- = MgF+ + -log_k 1.82 + -delta_h 3.2 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt +Na+ + OH- = NaOH + -log_k -10 # remove this complex +Na+ + HCO3- = NaHCO3 + -log_k -0.06; -delta_h 21 kJ + -gamma 0 0.2 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 +Na+ + SO4-2 = NaSO4- + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325 + -viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208 + -dw 1.13e-9 -23 8.5 0.392 0.521 +Na+ + HPO4-2 = NaHPO4- + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 +Na+ + F- = NaF + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt +K+ + HCO3- = KHCO3 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 +K+ + SO4-2 = KSO4- + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919 + -viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69 + -dw 0.9e-9 63 8.48 0 1.8 +K+ + HPO4-2 = KHPO4- + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 +Fe+2 + H2O = FeOH+ + H+ + -log_k -9.5 + -delta_h 13.2 kcal + -gamma 5 0 +Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + -log_k -31 + -delta_h 30.3 kcal + -gamma 5 0 +Fe+2 + Cl- = FeCl+ + -log_k 0.14 +Fe+2 + CO3-2 = FeCO3 + -log_k 4.38 +Fe+2 + HCO3- = FeHCO3+ + -log_k 2 +Fe+2 + SO4-2 = FeSO4 + -log_k 2.25 + -delta_h 3.23 kcal + -Vm -13 0 123 +Fe+2 + HSO4- = FeHSO4+ + -log_k 1.08 +Fe+2 + 2 HS- = Fe(HS)2 + -log_k 8.95 +Fe+2 + 3 HS- = Fe(HS)3- + -log_k 10.987 +Fe+2 + HPO4-2 = FeHPO4 + -log_k 3.6 +Fe+2 + H2PO4- = FeH2PO4+ + -log_k 2.7 + -gamma 5.4 0 +Fe+2 + F- = FeF+ + -log_k 1 +Fe+2 = Fe+3 + e- + -log_k -13.02 + -delta_h 9.68 kcal + -gamma 9 0 +Fe+3 + H2O = FeOH+2 + H+ + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5 0 +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + -log_k -12.56 + -delta_h 24.8 kcal +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + -log_k -20.57 + -delta_h 28.565 kcal +2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + -log_k -2.95 + -delta_h 13.5 kcal +3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + -log_k -6.3 + -delta_h 14.3 kcal +Fe+3 + Cl- = FeCl+2 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5 0 +Fe+3 + 2 Cl- = FeCl2+ + -log_k 2.13 + -gamma 5 0 +Fe+3 + 3 Cl- = FeCl3 + -log_k 1.13 +Fe+3 + SO4-2 = FeSO4+ + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5 0 +Fe+3 + HSO4- = FeHSO4+2 + -log_k 2.48 +Fe+3 + 2 SO4-2 = Fe(SO4)2- + -log_k 5.38 + -delta_h 4.6 kcal +Fe+3 + HPO4-2 = FeHPO4+ + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5 0 +Fe+3 + H2PO4- = FeH2PO4+2 + -log_k 5.43 + -gamma 5.4 0 +Fe+3 + F- = FeF+2 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5 0 +Fe+3 + 2 F- = FeF2+ + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5 0 +Fe+3 + 3 F- = FeF3 + -log_k 14 + -delta_h 5.4 kcal +Mn+2 + H2O = MnOH+ + H+ + -log_k -10.59 + -delta_h 14.4 kcal + -gamma 5 0 +Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + -log_k -34.8 + -gamma 5 0 +Mn+2 + Cl- = MnCl+ + -log_k 0.61 + -gamma 5 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 +Mn+2 + 2 Cl- = MnCl2 + -log_k 0.25 + -Vm 1e-5 0 144 +Mn+2 + 3 Cl- = MnCl3- + -log_k -0.31 + -gamma 5 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 +Mn+2 + CO3-2 = MnCO3 + -log_k 4.9 +Mn+2 + HCO3- = MnHCO3+ + -log_k 1.95 + -gamma 5 0 +Mn+2 + SO4-2 = MnSO4 + -log_k 2.25 + -delta_h 3.37 kcal + -Vm -1.31 -1.83 62.3 -2.7 +Mn+2 + 2 NO3- = Mn(NO3)2 + -log_k 0.6 + -delta_h -0.396 kcal + -Vm 6.16 0 29.4 0 0.9 +Mn+2 + F- = MnF+ + -log_k 0.84 + -gamma 5 0 +Mn+2 = Mn+3 + e- + -log_k -25.51 + -delta_h 25.8 kcal + -gamma 9 0 +Al+3 + H2O = AlOH+2 + H+ + -log_k -5 + -delta_h 11.49 kcal + -analytic -38.253 0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353 +Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + -log_k -10.1 + -delta_h 26.9 kcal + -gamma 5.4 0 + -analytic 88.5 0 -9391.6 -27.121 +Al+3 + 3 H2O = Al(OH)3 + 3 H+ + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0 -18247.8 -73.597 +Al+3 + 4 H2O = Al(OH)4- + 4 H+ + -log_k -22.7 + -delta_h 42.3 kcal + -analytic 51.578 0 -11168.9 -14.865 + -gamma 4.5 0 + -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 +Al+3 + SO4-2 = AlSO4+ + -log_k 3.5 + -delta_h 2.29 kcal + -gamma 4.5 0 +Al+3 + 2 SO4-2 = Al(SO4)2- + -log_k 5 + -delta_h 3.11 kcal + -gamma 4.5 0 +Al+3 + HSO4- = AlHSO4+2 + -log_k 0.46 +Al+3 + F- = AlF+2 + -log_k 7 + -delta_h 1.06 kcal + -gamma 5.4 0 +Al+3 + 2 F- = AlF2+ + -log_k 12.7 + -delta_h 1.98 kcal + -gamma 5.4 0 +Al+3 + 3 F- = AlF3 + -log_k 16.8 + -delta_h 2.16 kcal +Al+3 + 4 F- = AlF4- + -log_k 19.4 + -delta_h 2.2 kcal + -gamma 4.5 0 +# Al+3 + 5 F- = AlF5-2 + # log_k 20.6 + # delta_h 1.840 kcal +# Al+3 + 6 F- = AlF6-3 + # log_k 20.6 + # delta_h -1.670 kcal +H4SiO4 = H3SiO4- + H+ + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt H2O in a1 +H4SiO4 = H2SiO4-2 + 2 H+ + -log_k -23 + -delta_h 17.6 kcal + -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 + -gamma 5.4 0 +H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O + -log_k 30.18 + -delta_h -16.26 kcal + -gamma 5 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt +Ba+2 + H2O = BaOH+ + H+ + -log_k -13.47 + -gamma 5 0 +Ba+2 + CO3-2 = BaCO3 + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt +Ba+2 + HCO3- = BaHCO3+ + -log_k 0.982 + -delta_h 5.56 kcal + -analytic -3.0938 0.013669 +Ba+2 + SO4-2 = BaSO4 + -log_k 2.7 +Sr+2 + H2O = SrOH+ + H+ + -log_k -13.29 + -gamma 5 0 +Sr+2 + CO3-2 + H+ = SrHCO3+ + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 +Sr+2 + CO3-2 = SrCO3 + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt +Sr+2 + SO4-2 = SrSO4 + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility +Li+ + SO4-2 = LiSO4- + -log_k 0.64 + -gamma 5 0 +Cu+2 + e- = Cu+ + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 +Cu+ + 2 Cl- = CuCl2- + -log_k 5.5 + -delta_h -0.42 kcal + -gamma 4 0 +Cu+ + 3 Cl- = CuCl3-2 + -log_k 5.7 + -delta_h 0.26 kcal + -gamma 5 0 +Cu+2 + CO3-2 = CuCO3 + -log_k 6.73 +Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + -log_k 9.83 +Cu+2 + HCO3- = CuHCO3+ + -log_k 2.7 +Cu+2 + Cl- = CuCl+ + -log_k 0.43 + -delta_h 8.65 kcal + -gamma 4 0 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2 Cl- = CuCl2 + -log_k 0.16 + -delta_h 10.56 kcal + -Vm 26.8 0 -136 +Cu+2 + 3 Cl- = CuCl3- + -log_k -2.29 + -delta_h 13.69 kcal + -gamma 4 0 +Cu+2 + 4 Cl- = CuCl4-2 + -log_k -4.59 + -delta_h 17.78 kcal + -gamma 5 0 +Cu+2 + F- = CuF+ + -log_k 1.26 + -delta_h 1.62 kcal +Cu+2 + H2O = CuOH+ + H+ + -log_k -8 + -gamma 4 0 +Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + -log_k -13.68 +Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + -log_k -26.9 +Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + -log_k -39.6 +2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + -log_k -10.359 + -delta_h 17.539 kcal + -analytical 2.497 0 -3833 +Cu+2 + SO4-2 = CuSO4 + -log_k 2.31 + -delta_h 1.22 kcal + -Vm 5.21 0 -14.6 +Cu+2 + 3 HS- = Cu(HS)3- + -log_k 25.9 +Zn+2 + H2O = ZnOH+ + H+ + -log_k -8.96 + -delta_h 13.4 kcal +Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + -log_k -16.9 +Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + -log_k -28.4 +Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + -log_k -41.2 +Zn+2 + Cl- = ZnCl+ + -log_k 0.43 + -delta_h 7.79 kcal + -gamma 4 0 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 +Zn+2 + 2 Cl- = ZnCl2 + -log_k 0.45 + -delta_h 8.5 kcal + -Vm -10.1 4.57 241 -2.97 -1e-3 +Zn+2 + 3 Cl- = ZnCl3- + -log_k 0.5 + -delta_h 9.56 kcal + -gamma 4 0 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 +Zn+2 + 4 Cl- = ZnCl4-2 + -log_k 0.2 + -delta_h 10.96 kcal + -gamma 5 0 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 +Zn+2 + H2O + Cl- = ZnOHCl + H+ + -log_k -7.48 +Zn+2 + 2 HS- = Zn(HS)2 + -log_k 14.94 +Zn+2 + 3 HS- = Zn(HS)3- + -log_k 16.1 +Zn+2 + CO3-2 = ZnCO3 + -log_k 5.3 +Zn+2 + 2 CO3-2 = Zn(CO3)2-2 + -log_k 9.63 +Zn+2 + HCO3- = ZnHCO3+ + -log_k 2.1 +Zn+2 + SO4-2 = ZnSO4 + -log_k 2.37 + -delta_h 1.36 kcal + -Vm 2.51 0 18.8 +Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 +Zn+2 + Br- = ZnBr+ + -log_k -0.58 +Zn+2 + 2 Br- = ZnBr2 + -log_k -0.98 +Zn+2 + F- = ZnF+ + -log_k 1.15 + -delta_h 2.22 kcal +Cd+2 + H2O = CdOH+ + H+ + -log_k -10.08 + -delta_h 13.1 kcal +Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + -log_k -20.35 +Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + -log_k -33.3 +Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + -log_k -47.35 +2 Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -9.39 + -delta_h 10.9 kcal +Cd+2 + H2O + Cl- = CdOHCl + H+ + -log_k -7.404 + -delta_h 4.355 kcal +Cd+2 + NO3- = CdNO3+ + -log_k 0.4 + -delta_h -5.2 kcal + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 +Cd+2 + Cl- = CdCl+ + -log_k 1.98 + -delta_h 0.59 kcal + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 +Cd+2 + 2 Cl- = CdCl2 + -log_k 2.6 + -delta_h 1.24 kcal + -Vm 5.53 +Cd+2 + 3 Cl- = CdCl3- + -log_k 2.4 + -delta_h 3.9 kcal + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 +Cd+2 + CO3-2 = CdCO3 + -log_k 2.9 +Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + -log_k 6.4 +Cd+2 + HCO3- = CdHCO3+ + -log_k 1.5 +Cd+2 + SO4-2 = CdSO4 + -log_k 2.46 + -delta_h 1.08 kcal + -Vm 10.4 0 57.9 +Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 +Cd+2 + Br- = CdBr+ + -log_k 2.17 + -delta_h -0.81 kcal +Cd+2 + 2 Br- = CdBr2 + -log_k 2.9 +Cd+2 + F- = CdF+ + -log_k 1.1 +Cd+2 + 2 F- = CdF2 + -log_k 1.5 +Cd+2 + HS- = CdHS+ + -log_k 10.17 +Cd+2 + 2 HS- = Cd(HS)2 + -log_k 16.53 +Cd+2 + 3 HS- = Cd(HS)3- + -log_k 18.71 +Cd+2 + 4 HS- = Cd(HS)4-2 + -log_k 20.9 +Pb+2 + H2O = PbOH+ + H+ + -log_k -7.71 +Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + -log_k -17.12 +Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + -log_k -28.06 +Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + -log_k -39.7 +2 Pb+2 + H2O = Pb2OH+3 + H+ + -log_k -6.36 +Pb+2 + Cl- = PbCl+ + -log_k 1.6 + -delta_h 4.38 kcal + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt +Pb+2 + 2 Cl- = PbCl2 + -log_k 1.8 + -delta_h 1.08 kcal + -Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt +Pb+2 + 3 Cl- = PbCl3- + -log_k 1.7 + -delta_h 2.17 kcal + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt +Pb+2 + 4 Cl- = PbCl4-2 + -log_k 1.38 + -delta_h 3.53 kcal + -Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt +Pb+2 + CO3-2 = PbCO3 + -log_k 7.24 +Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + -log_k 10.64 +Pb+2 + HCO3- = PbHCO3+ + -log_k 2.9 +Pb+2 + SO4-2 = PbSO4 + -log_k 2.75 +Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + -log_k 3.47 +Pb+2 + 2 HS- = Pb(HS)2 + -log_k 15.27 +Pb+2 + 3 HS- = Pb(HS)3- + -log_k 16.57 +3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + -log_k -23.88 + -delta_h 26.5 kcal +Pb+2 + NO3- = PbNO3+ + -log_k 1.17 +Pb+2 + Br- = PbBr+ + -log_k 1.77 + -delta_h 2.88 kcal +Pb+2 + 2 Br- = PbBr2 + -log_k 1.44 +Pb+2 + F- = PbF+ + -log_k 1.25 +Pb+2 + 2 F- = PbF2 + -log_k 2.56 +Pb+2 + 3 F- = PbF3- + -log_k 3.42 +Pb+2 + 4 F- = PbF4-2 + -log_k 3.1 + +PHASES +Calcite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.48 + -delta_h -2.297 kcal + -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 + -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) +Aragonite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.336 + -delta_h -2.589 kcal + -analytic -171.9773 -0.077993 2903.293 71.595 + -Vm 34.04 +Dolomite + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + -log_k -17.09 + -delta_h -9.436 kcal + -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275 + -Vm 64.5 +Siderite + FeCO3 = Fe+2 + CO3-2 + -log_k -10.89 + -delta_h -2.48 kcal + -Vm 29.2 +Rhodochrosite + MnCO3 = Mn+2 + CO3-2 + -log_k -11.13 + -delta_h -1.43 kcal + -Vm 31.1 +Strontianite + SrCO3 = Sr+2 + CO3-2 + -log_k -9.271 + -delta_h -0.4 kcal + -analytic 155.0305 0 -7239.594 -56.58638 + -Vm 39.69 +Witherite + BaCO3 = Ba+2 + CO3-2 + -log_k -8.562 + -delta_h 0.703 kcal + -analytic 607.642 0.121098 -20011.25 -236.4948 + -Vm 46 +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + -log_k -4.58 + -delta_h -0.109 kcal + -analytic 68.2401 0 -3221.51 -25.0627 + -analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 + -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) +Anhydrite + CaSO4 = Ca+2 + SO4-2 + -log_k -4.36 + -delta_h -1.71 kcal + -analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 + -Vm 46.1 # 136.14 / 2.95 +Celestite + SrSO4 = Sr+2 + SO4-2 + -log_k -6.63 + -delta_h -4.037 kcal +# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 + -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 + -Vm 46.4 +Barite + BaSO4 = Ba+2 + SO4-2 + -log_k -9.97 + -delta_h 6.35 kcal + -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 + -Vm 52.9 +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 + -Vm 65.5 +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Vm 216 +Thenardite + Na2SO4 = 2 Na+ + SO4-2 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -Vm 52.9 +Epsomite + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 +Hexahydrite + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 +Kieserite + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 +Hydroxyapatite + Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + -log_k -3.421 + -delta_h -36.155 kcal + -Vm 128.9 +Fluorite + CaF2 = Ca+2 + 2 F- + -log_k -10.6 + -delta_h 4.69 kcal + -analytic 66.348 0 -4298.2 -25.271 + -Vm 15.7 +SiO2(a) + SiO2 + 2 H2O = H4SiO4 + -log_k -2.71 + -delta_h 3.34 kcal + -analytic -0.26 0 -731 +Chalcedony + SiO2 + 2 H2O = H4SiO4 + -log_k -3.55 + -delta_h 4.72 kcal + -analytic -0.09 0 -1032 + -Vm 23.1 +Quartz + SiO2 + 2 H2O = H4SiO4 + -log_k -3.98 + -delta_h 5.99 kcal + -analytic 0.41 0 -1309 + -Vm 22.67 +Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + -log_k 8.11 + -delta_h -22.8 kcal + -Vm 32.22 +Al(OH)3(a) + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + -log_k 10.8 + -delta_h -26.5 kcal +Kaolinite + Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 + -log_k 7.435 + -delta_h -35.3 kcal + -Vm 99.35 +Albite + NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 + -log_k -18.002 + -delta_h 25.896 kcal + -Vm 101.31 +Anorthite + CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 + -log_k -19.714 + -delta_h 11.58 kcal + -Vm 105.05 +K-feldspar + KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 + -log_k -20.573 + -delta_h 30.82 kcal + -Vm 108.15 +K-mica + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 + -log_k 12.703 + -delta_h -59.376 kcal +Chlorite(14A) + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + -log_k 68.38 + -delta_h -151.494 kcal +Ca-Montmorillonite + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + -log_k -45.027 + -delta_h 58.373 kcal + -Vm 156.16 +Talc + Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 + -log_k 21.399 + -delta_h -46.352 kcal + -Vm 68.34 +Illite + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ + -log_k -40.267 + -delta_h 54.684 kcal + -Vm 141.48 +Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 + -log_k 32.2 + -delta_h -46.8 kcal + -analytic 13.248 0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 +Sepiolite + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 15.76 + -delta_h -10.7 kcal + -Vm 143.765 +Sepiolite(d) + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 18.66 +Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + -log_k -4.008 + -delta_h -30.845 kcal + -Vm 30.39 +Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + -log_k -1 + -delta_h -14.48 kcal + -Vm 20.84 +Fe(OH)3(a) + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + -log_k 4.891 +Pyrite + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + -log_k -18.479 + -delta_h 11.3 kcal + -Vm 23.48 +FeS(ppt) + FeS + H+ = Fe+2 + HS- + -log_k -3.915 +Mackinawite + FeS + H+ = Fe+2 + HS- + -log_k -4.648 + -Vm 20.45 +Sulfur + S + 2 H+ + 2 e- = H2S + -log_k 4.882 + -delta_h -9.5 kcal +Vivianite + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + -log_k -36 +Pyrolusite # H2O added for surface calc's + MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O + -log_k 41.38 + -delta_h -65.11 kcal +Hausmannite + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + -log_k 61.03 + -delta_h -100.64 kcal +Manganite + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + -log_k 25.34 +Pyrochroite + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + -log_k 15.2 +Halite + NaCl = Cl- + Na+ + log_k 1.57 + -delta_h 1.37 + #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. + -Vm 27.1 +Sylvite + KCl = K+ + Cl- + log_k 0.9 + -delta_h 8.5 + # -analytic 3.984 0.0 -919.55 + Vm 37.5 +# Gases... +CO2(g) + CO2 = CO2 + -log_k -1.468 + -delta_h -4.776 kcal + -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 + -T_c 304.2 # critical T, K + -P_c 72.86 # critical P, atm + -Omega 0.225 # acentric factor +H2O(g) + H2O = H2O + -log_k 1.506; delta_h -44.03 kJ + -T_c 647.3; -P_c 217.6; -Omega 0.344 + -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 +O2(g) + O2 = O2 + -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 +H2(g) + H2 = H2 + -log_k -3.105 + -delta_h -4.184 kJ + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 +N2(g) + N2 = N2 + -log_k -3.1864 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + -T_c 126.2; -P_c 33.5; -Omega 0.039 +H2S(g) + H2S = H+ + HS- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 +CH4(g) + CH4 = CH4 + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 +#Amm(g) +# Amm = Amm +NH3(g) + NH3 = NH3 + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 +# redox-uncoupled gases +Oxg(g) + Oxg = Oxg + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 +Hdg(g) + Hdg = Hdg + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 +Ntg(g) + Ntg = Ntg + -analytic -58.453 1.818e-3 3199 17.909 -27460 + T_c 126.2; -P_c 33.5; -Omega 0.039 +Mtg(g) + Mtg = Mtg + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 +H2Sg(g) + H2Sg = H+ + HSg- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 +Melanterite + FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 + -log_k -2.209 + -delta_h 4.91 kcal + -analytic 1.447 -0.004153 0 0 -214949 +Alunite + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + -log_k -1.4 + -delta_h -50.25 kcal +Jarosite-K + KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 + -log_k -9.21 + -delta_h -31.28 kcal +Zn(OH)2(e) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + -log_k 11.5 +Smithsonite + ZnCO3 = Zn+2 + CO3-2 + -log_k -10 + -delta_h -4.36 kcal +Sphalerite + ZnS + H+ = Zn+2 + HS- + -log_k -11.618 + -delta_h 8.25 kcal +Willemite 289 + Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 + -log_k 15.33 + -delta_h -33.37 kcal +Cd(OH)2 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + -log_k 13.65 +Otavite 315 + CdCO3 = Cd+2 + CO3-2 + -log_k -12.1 + -delta_h -0.019 kcal +CdSiO3 328 + CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 + -log_k 9.06 + -delta_h -16.63 kcal +CdSO4 329 + CdSO4 = Cd+2 + SO4-2 + -log_k -0.1 + -delta_h -14.74 kcal +Cerussite 365 + PbCO3 = Pb+2 + CO3-2 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 + PbSO4 = Pb+2 + SO4-2 + -log_k -7.79 + -delta_h 2.15 kcal +Pb(OH)2 389 + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + -log_k 8.15 + -delta_h -13.99 kcal + +EXCHANGE_MASTER_SPECIES + X X- +EXCHANGE_SPECIES + X- = X- + -log_k 0 + + Na+ + X- = NaX + -log_k 0 + -gamma 4.08 0.082 + + K+ + X- = KX + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 + + Li+ + X- = LiX + -log_k -0.08 + -gamma 6 0 + -delta_h 1.4 # Merriam & Thomas, 1956 + +# !!!!! +# H+ + X- = HX +# -log_k 1.0 +# -gamma 9.0 0 + +# AmmH+ + X- = AmmHX + NH4+ + X- = NH4X + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 + + Ca+2 + 2 X- = CaX2 + -log_k 0.8 + -gamma 5 0.165 + -delta_h 7.2 # Van Bladel & Gheyl, 1980 + + Mg+2 + 2 X- = MgX2 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 + + Sr+2 + 2 X- = SrX2 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 + + Ba+2 + 2 X- = BaX2 + -log_k 0.91 + -gamma 4 0.153 + -delta_h 4.5 # Laudelout et al., 1968 + + Mn+2 + 2 X- = MnX2 + -log_k 0.52 + -gamma 6 0 + + Fe+2 + 2 X- = FeX2 + -log_k 0.44 + -gamma 6 0 + + Cu+2 + 2 X- = CuX2 + -log_k 0.6 + -gamma 6 0 + + Zn+2 + 2 X- = ZnX2 + -log_k 0.8 + -gamma 5 0 + + Cd+2 + 2 X- = CdX2 + -log_k 0.8 + -gamma 0 0 + + Pb+2 + 2 X- = PbX2 + -log_k 1.05 + -gamma 0 0 + + Al+3 + 3 X- = AlX3 + -log_k 0.41 + -gamma 9 0 + + AlOH+2 + 2 X- = AlOHX2 + -log_k 0.89 + -gamma 0 0 + +SURFACE_MASTER_SPECIES + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH +SURFACE_SPECIES +# All surface data from +# Dzombak and Morel, 1990 +# +# +# Acid-base data from table 5.7 +# +# strong binding site--Hfo_s, + + Hfo_sOH = Hfo_sOH + -log_k 0 + + Hfo_sOH + H+ = Hfo_sOH2+ + -log_k 7.29 # = pKa1,int + + Hfo_sOH = Hfo_sO- + H+ + -log_k -8.93 # = -pKa2,int + +# weak binding site--Hfo_w + + Hfo_wOH = Hfo_wOH + -log_k 0 + + Hfo_wOH + H+ = Hfo_wOH2+ + -log_k 7.29 # = pKa1,int + + Hfo_wOH = Hfo_wO- + H+ + -log_k -8.93 # = -pKa2,int +############################################### +# CATIONS # +############################################### +# +# Cations from table 10.1 or 10.5 +# +# Calcium + Hfo_sOH + Ca+2 = Hfo_sOHCa+2 + -log_k 4.97 + + Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ + -log_k -5.85 +# Strontium + Hfo_sOH + Sr+2 = Hfo_sOHSr+2 + -log_k 5.01 + + Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ + -log_k -6.58 + + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ + -log_k -17.6 +# Barium + Hfo_sOH + Ba+2 = Hfo_sOHBa+2 + -log_k 5.46 + + Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ + -log_k -7.2 # table 10.5 +# +# Cations from table 10.2 +# +# Cadmium + Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ + -log_k 0.47 + + Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ + -log_k -2.91 +# Zinc + Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ + -log_k 0.99 + + Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ + -log_k -1.99 +# Copper + Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ + -log_k 2.89 + + Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ + -log_k 0.6 # table 10.5 +# Lead + Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ + -log_k 4.65 + + Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ + -log_k 0.3 # table 10.5 +# +# Derived constants table 10.5 +# +# Magnesium + Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ + -log_k -4.6 +# Manganese + Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ + -log_k -0.4 # table 10.5 + + Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ + -log_k -3.5 # table 10.5 +# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 + Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ + -log_k -0.95 +# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M + Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ + -log_k -2.98 + + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ + -log_k -11.55 +############################################### +# ANIONS # +############################################### +# +# Anions from table 10.6 +# +# Phosphate + Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + -log_k 31.29 + + Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + -log_k 25.39 + + Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O + -log_k 17.72 +# +# Anions from table 10.7 +# +# Borate + Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O + -log_k 0.62 +# +# Anions from table 10.8 +# +# Sulfate + Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O + -log_k 7.78 + + Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 + -log_k 0.79 +# +# Derived constants table 10.10 +# + Hfo_wOH + F- + H+ = Hfo_wF + H2O + -log_k 8.7 + + Hfo_wOH + F- = Hfo_wOHF- + -log_k 1.6 +# +# Carbonate: Van Geen et al., 1994 reoptimized for D&M model +# + Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O + -log_k 12.56 + + Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O + -log_k 20.62 +# +# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. +# + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 + +MEAN_GAMMAS +CaCl2 Ca+2 1 Cl- 2 +CaSO4 Ca+2 1 SO4-2 1 +CaCO3 Ca+2 1 CO3-2 1 +Ca(OH)2 Ca+2 1 OH- 2 +MgCl2 Mg+2 1 Cl- 2 +MgSO4 Mg+2 1 SO4-2 1 +MgCO3 Mg+2 1 CO3-2 1 +Mg(OH)2 Mg+2 1 OH- 2 +NaCl Na+ 1 Cl- 1 +Na2SO4 Na+ 2 SO4-2 1 +NaHCO3 Na+ 1 HCO3- 1 +Na2CO3 Na+ 2 CO3-2 1 +NaOH Na+ 1 OH- 1 +KCl K+ 1 Cl- 1 +K2SO4 K+ 2 SO4-2 1 +HCO3 K+ 1 HCO3- 1 +K2CO3 K+ 2 CO3-2 1 +KOH K+ 1 OH- 1 +HCl H+ 1 Cl- 1 +H2SO4 H+ 2 SO4-2 1 +HBr H+ 1 Br- 1 + +RATES + +########### +#Quartz +########### +# +####### +# Example of quartz kinetic rates block: +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 + +Quartz + -start +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 + +10 dif_temp = 1/TK - 1/298 +20 pk_w = 13.7 + 4700.4 * dif_temp +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +# Integrate... +50 SAVE moles * TIME + -end + +########### +#K-feldspar +########### +# +# Sverdrup and Warfvinge, 1995, Estimating field weathering rates +# using laboratory kinetics: Reviews in mineralogy and geochemistry, +# vol. 31, p. 485-541. +# +# As described in: +# Appelo and Postma, 2005, Geochemistry, groundwater +# and pollution, 2nd Edition: A.A. Balkema Publishers, +# p. 162-163 and 395-399. +# +# Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm) +# Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L +# GFW Kspar 0.278 kg/mol +# +# Moles of Kspar per liter pore space calculation: +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space +# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space +# +# Specific area calculation: +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere +# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar +# +# +# Example of KINETICS data block for K-feldspar rate: +# KINETICS 1 +# K-feldspar +# -m0 2.18 # 10% Kspar, 0.1 mm cubes +# -m 2.18 # Moles per L pore space +# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 + +K-feldspar + -start +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 +100 REM Generic rate follows +110 dif_temp = 1/TK - 1/281 +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +130 REM rate by H+ +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +160 REM rate by hydrolysis +170 pk_H2O = pk_H2O + e_H2O * dif_temp +180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) +190 REM rate by OH- +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +220 REM rate by CO2 +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME +290 SAVE moles + -end + + +########### +#Albite +########### +# +# Sverdrup and Warfvinge, 1995, Estimating field weathering rates +# using laboratory kinetics: Reviews in mineralogy and geochemistry, +# vol. 31, p. 485-541. +# +# As described in: +# Appelo and Postma, 2005, Geochemistry, groundwater +# and pollution, 2nd Edition: A.A. Balkema Publishers, +# p. 162-163 and 395-399. +# +# Example of KINETICS data block for Albite rate: +# KINETICS 1 +# Albite +# -m0 0.46 # 2% Albite, 0.1 mm cubes +# -m 0.46 # Moles per L pore space +# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 +# +# Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) +# Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L +# GFW Albite 0.262 kg/mol +# +# Moles of Albite per liter pore space calculation: +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space +# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space +# +# Specific area calculation: +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere +# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite + +Albite + -start +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 +100 REM Generic rate follows +110 dif_temp = 1/TK - 1/281 +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +130 REM rate by H+ +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +160 REM rate by hydrolysis +170 pk_H2O = pk_H2O + e_H2O * dif_temp +180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) +190 REM rate by OH- +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +220 REM rate by CO2 +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME +290 SAVE moles + -end + +######## +#Calcite +######## +# Example of KINETICS data block for calcite rate, +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 +# KINETICS 1 +# Calcite +# -tol 1e-8 +# -m0 3.e-3 +# -m 3.e-3 +# -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor +# -time 1 day + +Calcite + -start +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 + +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444 / TK ) +40 k2 = 10^(2.84 - 2177 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) +120 rate = rate * (1 - 10^(2/3*si_cc)) +130 moles = rate * 0.001 * TIME # convert from mmol to mol +200 SAVE moles + -end + +####### +#Pyrite +####### +# +# Williamson, M.A. and Rimstidt, J.D., 1994, +# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454, +# rate equation is mol m^-2 s^-1. +# +# Example of KINETICS data block for pyrite rate: +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 0.3 0.67 .5 -0.11 +# -time 1 day in 10 +Pyrite + -start +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ + +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME +200 SAVE moles + -end + +########## +#Organic_C +########## +# +# Example of KINETICS data block for SOC (sediment organic carbon): +# KINETICS 1 +# Organic_C +# -formula C +# -tol 1e-8 +# -m 5e-3 # SOC in mol +# -time 30 year in 15 +Organic_C + -start +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 + +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +110 moles = rate * M * (M/M0) * TIME +200 SAVE moles + -end + +########### +#Pyrolusite +########### +# +# Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247. +# Rate equation given as mol L^-1 s^-1 +# +# Example of KINETICS data block for Pyrolusite +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +# -time 0.5 day in 10 +Pyrolusite + -start +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 +100 REM sr_pl > 1, supersaturated +110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME +200 SAVE moles * SOLN_VOL + -end + +# +# Additional definition of PHASES, RATE parameters, and RATES examples +# +# RATE_PARAMETERS_PK has parameters from Palandri and Kharaka (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. +# +# RATE_PARAMETERS_SVD has two examples from Sverdrup, Oelkers, Lampa, Belyazid, Kurz, and Akselsson (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. +# +# RATE_PARAMETERS_HERMANSKA has parameters from Hermanska, Voigt, Marieni, Declercq, and Oelkers (2022, 2023). A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807, Part II: Secondary silicate minerals. Chemical Geology, p.121632. + +# +# Example RATES definitions and input files with KINETICS show the application in +# Albite_PK # Palandri and Kharaka +# Albite_Svd # Sverdrup +# Albite_Hermanska +# Calcite_PK # Palandri and Kharaka +# Calcite # Plummer, Wigley, Parkhurst 1978, AJS 278, 179-216. +# Quartz_PK # Palandri and Kharaka +# Quartz_Svd # Sverdrup +# Quartz_Hermanska # +# Quartz_Rimstidt_Barnes +# Montmorillonite # Na, K, Mg, Ca exchange, Hermanska rate for the TOT layer +# +PHASES # defined for formulas and affinities of kinetic (mostly) dissolving minerals +# Unless noted otherwise, data from ThermoddemV1.10_15Dec2020.dat, +# tidied with lsp.exe from https://phreeplot.org/lsp/lsp.html + +Actinolite # Hornblende, Ferroactinolite +Ca2(Mg2.25Fe2.5Al0.25)(Si7.75Al0.25)O22(OH)2 + 15 H+ + 7 H2O = 0.5 Al+3 + 2 Ca+2 + 2.5 Fe+2 + 2.25 Mg+2 + 7.75 H4SiO4 + log_k 7.128 + delta_h -181.662 #kJ/mol #19bla/lac + -analytic -5.0954182E3 -6.949504E-1 3.0825312E5 1.8133351E3 -1.8767155E7 + +Almandine # (alpha) +Fe3Al2Si3O12 + 12 H+ = 2 Al+3 + 3 Fe+2 + 3 H4SiO4 + log_k 42.18 + delta_h -458.683 #kJ/mol #95rob/hem + -analytic -3.0848427E3 -4.4981168E-1 1.9672956E5 1.0990475E3 -1.0509115E7 + +Analcime +Na0.99Al0.99Si2.01O6:H2O + 3.96 H+ + 1.04 H2O = 0.99 Al+3 + 0.99 Na+ + 2.01 H4SiO4 + log_k 6.654 + delta_h -98 #kJ/mol #04neu/hov + -analytic -1.3403358E3 -1.8135021E-1 8.3684586E4 4.7527556E2 -4.9476886E6 + +Andalusite +Al2SiO5 + 6 H+ = 2 Al+3 + H4SiO4 + H2O + log_k 16.206 + delta_h -244.61 #kJ/mol #Internal calculation + -analytic -1.339469E3 -2.048042E-1 8.5279067E4 4.7661954E2 -4.3249835E6 + +Andesine # defined for elemental release +Na0.6Ca0.4Si2.6Al1.4O8 + 8 H2O = 0.6 Na+ + 0.4 Ca+2 + 2.6 H4SiO4 + 1.4 Al(OH)4- + +Andradite +Ca3Fe2Si3O12 + 12 H+ = 3 Ca+2 + 2 Fe+3 + 3 H4SiO4 + log_k 33.787 + delta_h -327.864 #kJ/mol #Internal calculation + -analytic -2.9077837E3 -4.2372897E-1 1.7981493E5 1.040602E3 -9.7870213E6 + +Anglesite +PbSO4 = Pb+2 + SO4-2 + log_k -7.848 + delta_h 11.55 #kJ/mol #89cox/wag + -analytic -1.6531905E3 -2.6395706E-1 9.1051907E4 5.9877724E2 -5.5987833E6 + +Annite +KFe3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + 3 Fe+2 + K+ + 3 H4SiO4 + log_k 32.771 + delta_h -306.153 #kJ/mol #92cir/nav + -analytic -2.6382558E3 -3.7460641E-1 1.6621477E5 9.4111433E2 -9.2002058E6 + +Anorthite +Ca(Al2Si2)O8 + 8 H+ = 2 Al+3 + Ca+2 + 2 H4SiO4 + log_k 24.235 + delta_h -303.522 #kJ/mol #95rob/hem + -analytic -1.9788284E3 -2.9190197E-1 1.2612201E5 7.0425974E2 -6.7173266E6 + +Anthophyllite +Mg7Si8O22(OH)2 + 14 H+ + 8 H2O = 7 Mg+2 + 8 H4SiO4 + log_k 73.783 + delta_h -583.247 #kJ/mol #95rob/hem + -analytic -5.2321622E3 -7.0079895E-1 3.3845592E5 1.8579984E3 -1.9360477E7 + +Antigorite +Mg48Si34O85(OH)62 + 96 H+ = 48 Mg+2 + 34 H4SiO4 + 11 H2O + log_k 500.08 + delta_h -3743.421 #kJ/mol #98hol/pow + -analytic -2.9383249E4 -4.0195982 1.8738549E6 1.0481455E4 -1.0123582E8 + +# As2S3 # Orpiment # no As in phreeqc.dat +# As2S3 + 6H2O = 2H2AsO3- + 3HS- + 5H+ +# log_k -65.110 +# delta_h 334.975 #kJ/mol #Internal calculation +# -analytic -2.5599772E+3 -4.2267991E-1 1.1988784E+5 9.3328822E+2 -8.0517057E+6 + +Augite # Pyroxene(CaAl) +CaAl(AlSi)O6 + 8 H+ = 2 Al+3 + Ca+2 + H4SiO4 + 2 H2O + log_k 36.234 + delta_h -370.792 #kJ/mol #Internal calculation + -analytic -1.5908243E3 -2.4603865E-1 1.0453251E5 5.681931E2 -4.9909659E6 + +Biotite # defined for elemental release +KFe3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 H4SiO4 + +Bronzite # defined for elemental release +Mg0.8Fe0.2SiO3 + 2 H+ + H2O = 0.8 Mg+2 + 0.2 Fe+2 + H4SiO4 + +Brucite +Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 17.112 + delta_h -114.518 #kJ/mol #08bla + -analytic -3.5641635E2 -5.3167189E-2 2.4317829E4 1.2873122E2 -9.5286882E5 + +Bytownite # defined for elemental release +Na0.2Ca0.8Si2.2Al1.8O8 + 8 H2O = 0.2 Na+ + 0.8 Ca+2 + 2.2 H4SiO4 + 1.8 Al(OH)4- + +Chabazite +Ca(Al2Si4)O12:6H2O + 8 H+ = 2 Al+3 + Ca+2 + 4 H4SiO4 + 2 H2O + log_k 11.541 + delta_h -200.464 #kJ/mol #08bla + -analytic -2.5875779E3 -3.5298441E-1 1.6180839E5 9.1700928E2 -9.5494778E6 + +Chamosite(Daphnite) +Fe5Al(AlSi3)O10(OH)8 + 16 H+ = 2 Al+3 + 5 Fe+2 + 3 H4SiO4 + 6 H2O + log_k 47.603 + delta_h -497.518 #kJ/mol #01vid/par + -analytic -3.7422355E3 -5.4789298E-1 2.3185338E5 1.338448E3 -1.2120616E7 + +Chrysotile +Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O + log_k 33.182 + delta_h -244.552 #kJ/mol #04eva + -analytic -1.8039877E3 -2.4743291E-1 1.1552931E5 6.4375706E2 -6.1763163E6 + +Clinochlore +Mg5Al(AlSi3)O10(OH)8 + 16 H+ = 2 Al+3 + 5 Mg+2 + 3 H4SiO4 + 6 H2O + log_k 61.706 + delta_h -593.773 #kJ/mol #05vid/par + -analytic -3.933293E3 -5.6860144E-1 2.4698841E5 1.4055516E3 -1.2607E7 + +Clinoptilolite(Ca) +Ca0.55(Si4.9Al1.1)O12:3.9H2O + 4.4 H+ + 3.7 H2O = 1.1 Al+3 + 0.55 Ca+2 + 4.9 H4SiO4 + log_k -2.085 + delta_h -58.407 #kJ/mol #09bla + -analytic -2.3815518E3 -3.0085981E-1 1.4942318E5 8.390927E2 -9.6254008E6 + +Clinoptilolite(K) +K1.1(Si4.9Al1.1)O12:2.7H2O + 4.4 H+ + 4.9 H2O = 1.1 Al+3 + 1.1 K+ + 4.9 H4SiO4 + log_k -1.142 + delta_h -49.035 #kJ/mol #09bla + -analytic -2.3148616E3 -2.905299E-1 1.4612903E5 8.1530832E2 -9.5298429E6 + +Clinoptilolite(Na) +Na1.1(Si4.9Al1.1)O12:3.5H2O + 4.4 H+ + 4.1 H2O = 1.1 Al+3 + 1.1 Na+ + 4.9 H4SiO4 + log_k -0.113 + delta_h -50.769 #kJ/mol #09bla + -analytic -2.3846087E3 -2.9645291E-1 1.4988094E5 8.401942E2 -9.6738611E6 + +Cordierite +Mg2Al3(AlSi5)O18 + 16 H+ + 2 H2O = 4 Al+3 + 2 Mg+2 + 5 H4SiO4 + log_k 49.433 + delta_h -648.745 #kJ/mol #95rob/hem + -analytic -4.3696636E3 -6.2958321E-1 2.8022776E5 1.5507866E3 -1.5147654E7 + +Cristobalite # (alpha) +SiO2 + 2 H2O = H4SiO4 + log_k -3.158 + delta_h 18.829 #kJ/mol #04fab/sax + -analytic -3.544017E2 -4.1702635E-2 2.2114271E4 1.2427357E2 -1.6001472E6 + +# Cristobalite(beta) +# SiO2 + 2H2O = 1H4SiO4 +# log_k -3.096 +# #delta_h 0 #kJ/mol +# -analytic -3.6088361E+2 -4.1957223E-2 2.2873339E+4 1.2628239E+2 -1.6799304E+6 + +Dawsonite +NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O + log_k 4.327 + delta_h -76.33 #kJ/mol #76fer/stu + -analytic -1.21599E3 -1.9110794E-1 6.8919359E4 4.3970018E2 -3.7220307E6 + +Diaspore +AlO(OH) + 3 H+ = Al+3 + 2 H2O + log_k 6.866 + delta_h -108.76 #kJ/mol #95rob/hem + -analytic -4.8201662E2 -7.7930965E-2 2.9964822E4 1.7237439E2 -1.3257386E6 + +Diopside +CaMg(SiO3)2 + 4 H+ + 2 H2O = Ca+2 + Mg+2 + 2 H4SiO4 + log_k 21.743 + delta_h -153.574 #kJ/mol #Internal calculation + -analytic -1.332806E3 -1.8198553E-1 8.603858E4 4.749095E2 -4.8802351E6 + +Dolomite(disordered) +CaMg(CO3)2 + 2 H+ = 2 HCO3- + Ca+2 + Mg+2 + log_k 4.299 + delta_h -73.162 #kJ/mol #78hel/del,92ajoh + -analytic -1.7814432E3 -2.8852695E-1 9.9263747E4 6.4714027E2 -5.5533944E6 + +Edenite # (alpha) +Na(Ca2Mg5)(AlSi7)O22(OH)2 + 18 H+ + 4 H2O = Al+3 + 2 Ca+2 + 5 Mg+2 + Na+ + 7 H4SiO4 + log_k 81.946 + delta_h -679.296 #kJ/mol #97got + -analytic -5.4623009E3 -7.5241996E-1 3.5051336E5 1.9444511E3 -1.942E7 + +Enstatite # (alpha) +MgSiO3 + 2 H+ + H2O = Mg+2 + H4SiO4 + log_k 11.844 + delta_h -93.265 #kJ/mol #78hel/del + -analytic -7.0139177E2 -9.4618096E-2 4.5846726E4 2.4912172E2 -2.5565294E6 + +Epidote +Ca2FeAl2Si3O12(OH) + 13 H+ = 2 Al+3 + 2 Ca+2 + Fe+3 + 3 H4SiO4 + H2O + log_k 32.23 + delta_h -411.613 #kJ/mol #04got + -analytic -3.1567388E3 -4.6487997E-1 1.9676775E5 1.1260692E3 -1.0558252E7 + +Fayalite +Fe2SiO4 + 4 H+ = 2 Fe+2 + H4SiO4 + log_k 19.03 + delta_h -157.157 #kJ/mol #Internal calculation + -analytic -1.0258478E3 -1.4618015E-1 6.6129821E4 3.6618221E2 -3.5053712E6 + +Ferroactinolite # = Ferrotremolite +(Ca2Fe5)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Ca+2 + 5 Fe+2 + 8 H4SiO4 + log_k 53.699 + delta_h -412.225 #kJ/mol #Internal calculation + -analytic -4.942592E3 -6.6976495E-1 3.1400258E5 1.7585882E3 -1.8552107E7 + +Fluorapatite # (Natur) +Ca5(PO4)3F + 6 H+ = 5 Ca+2 + F- + 3 H2PO4- + log_k -0.91 + delta_h -115.601 #kJ/mol #Internal calculation + -analytic -3.7675938E3 -6.2227437E-1 2.0719593E5 1.369906E3 -1.1775417E7 + +Forsterite +Mg2SiO4 + 4 H+ = 2 Mg+2 + H4SiO4 + log_k 28.609 + delta_h -217.115 #kJ/mol #Internal calculation + -analytic -1.0983766E3 -1.5385695E-1 7.321503E4 3.91599E2 -3.7061609E6 + +Glauconite +(K0.75Mg0.25Fe1.5Al0.25)(Al0.25Si3.75)O10(OH)2 + 7 H+ + 3 H2O = 0.5 Al+3 + 1.25 Fe+3 + 0.75 K+ + 0.25 Mg+2 + 3.75 H4SiO4 + 0.25 Fe+2 + log_k 1.873 + delta_h -120.903 #kJ/mol #15bla/vie + -analytic -2.3976207E3 -3.2091227E-1 1.4807364E5 8.4865741E2 -9.0151175E6 + +Glaucophane +Na2(Mg3Al2)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Al+3 + 3 Mg+2 + 2 Na+ + 8 H4SiO4 + log_k 37.026 + delta_h -378.727 #kJ/mol #95rob/hem + -analytic -5.095188E3 -6.8518568E-1 3.2040873E5 1.8087612E3 -1.9006796E7 + +Grossular +Ca3Al2Si3O12 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 H4SiO4 + log_k 49.372 + delta_h -442.383 #kJ/mol #95rob/hem + -analytic -2.9566754E3 -4.3410622E-1 1.8868769E5 1.057027E3 -1.0038715E7 +# Hornblende # see Actinolite, Edenite, Pargasite, Ferroactinolite + +Heulandite(Ca) +Ca1.07Al2.14Si6.86O18:6.17H2O + 8.56 H+ + 3.27 H2O = 2.14 Al+3 + 1.07 Ca+2 + 6.86 H4SiO4 + log_k 2.457 + delta_h -139.108 #kJ/mol #09bla + -analytic -3.7607701E3 -5.0483789E-1 2.3083824E5 1.3337643E3 -1.4294418E7 + +# Ilmenite # Ti not in phreeqc.dat +# FeTiO3 + 2H+ + 1H2O = 1Fe+2 + 1Ti(OH)4 +# log_k 1.816 +# delta_h -87.445 #kJ/mol #Internal calculation +# -analytic -7.7719505E+2 -8.1479565E-2 4.34898E+4 2.7302259E+2 -1.612373E+6 + +Heulandite(Na) +Na2.14Al2.14Si6.86O18:6.17H2O + 8.56 H+ + 3.27 H2O = 2.14 Al+3 + 2.14 Na+ + 6.86 H4SiO4 + log_k 2.797 + delta_h -126.775 #kJ/mol #09bla + -analytic -3.7890714E3 -4.9720069E-1 2.3269508E5 1.3423841E3 -1.4400431E7 + +Jadeite +NaAl(SiO3)2 + 4 H+ + 2 H2O = Al+3 + Na+ + 2 H4SiO4 + log_k 7.561 + delta_h -95.502 #kJ/mol #95rob/hem + -analytic -1.3237509E3 -1.8118316E-1 8.2628986E4 4.7016122E2 -4.9060741E6 + +Kyanite +Al2SiO5 + 6 H+ = 2 Al+3 + H4SiO4 + H2O + log_k 15.936 + delta_h -240.322 #kJ/mol #Internal calculation + -analytic -1.3447799E3 -2.0581745E-1 8.5324148E4 4.7877192E2 -4.3369481E6 + +Labradorite # defined for elemental release +Na0.4Ca0.6Si2.4Al1.6O8 + 8 H2O = 0.4 Na+ + 0.6 Ca+2 + 2.4 H4SiO4 + 1.6 Al(OH)4- + +Larnite(alpha) +Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4 + log_k 39.044 + delta_h -238.161 #kJ/mol #95rob/hem + -analytic -8.9908942E2 -1.301379E-1 6.3335055E4 3.2296168E2 -3.0793446E6 + +Larnite(beta) +Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4 + log_k 39.322 +#delta_h 0 #kJ/mol + -analytic -9.0365527E2 -1.3027777E-1 6.4015139E4 3.243254E2 -3.1477489E6 + +Larnite(gamma) +Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4 + log_k 41.444 +#delta_h 0 #kJ/mol + -analytic -8.7896206E2 -1.2907359E-1 6.3430487E4 3.1585123E2 -3.1477489E6 + +Laumontite +Ca(Al2Si4)O12:4H2O + 8 H+ = 2 Al+3 + Ca+2 + 4 H4SiO4 + log_k 11.695 + delta_h -204.244 #kJ/mol #96kis/nav + -analytic -2.6447429E3 -3.6684244E-1 1.6419074E5 9.3900001E2 -9.6343473E6 + +Leonhardtite +MgSO4:4H2O = Mg+2 + SO4-2 + 4 H2O + log_k -0.886 + delta_h -24.03 #kJ/mol #74nau/ryz + -analytic -1.8009396E3 -2.6450971E-1 9.9216758E4 6.5010323E2 -5.5554353E6 + +Leucite # minteq.dat +KAlSi2O6 + 2 H2O + 4 H+ = 2 H4SiO4 + Al+3 + K+ + log_k 6.423 + delta_h -22.085 kcal + +Lizardite +Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O + log_k 33.093 + delta_h -242.552 #kJ/mol #04eva + -analytic -1.8045338E3 -2.475614E-1 1.1546724E5 6.4405193E2 -6.1786442E6 + +Magnetite +Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O + log_k 10.362 + delta_h -215.594 #kJ/mol #90hem + -analytic -1.3520774E3 -2.1498134E-1 8.0017747E4 4.8502632E2 -3.7344997E6 + +Microcline +K(AlSi3)O8 + 4 H+ + 4 H2O = Al+3 + K+ + 3 H4SiO4 + log_k 0.015 + delta_h -49.203 #kJ/mol #95rob/hem + -analytic -1.6018728E3 -2.1339241E-1 9.9207574E4 5.6723025E2 -6.2943433E6 + +Montmorillonite(HcCa) +Ca0.3Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.3 Ca+2 + 0.6 Mg+2 + 4 H4SiO4 + log_k 6.903 + delta_h -154.564 #kJ/mol #15bla/vie + -analytic -2.3616529E3 -3.1379357E-1 1.4899818E5 8.3431323E2 -9.0744862E6 + +Montmorillonite(HcK) +K0.6Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.6 K+ + 0.6 Mg+2 + 4 H4SiO4 + log_k 4.449 + delta_h -119.628 #kJ/mol #15bla/vie + -analytic -2.3324885E3 -3.0832834E-1 1.4605682E5 8.2462838E2 -9.022722E6 + +Montmorillonite(HcMg) +Mg0.3Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.9 Mg+2 + 4 H4SiO4 + log_k 5.996 + delta_h -156.964 #kJ/mol #15bla/vie + -analytic -2.3909331E3 -3.1726069E-1 1.5070041E5 8.4429278E2 -9.163021E6 + +Montmorillonite(HcNa) +Na0.6Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.6 Mg+2 + 0.6 Na+ + 4 H4SiO4 + log_k 5.472 + delta_h -135.658 #kJ/mol #15bla/vie + -analytic -2.3671642E3 -3.1193536E-1 1.486659E5 8.3634354E2 -9.1085654E6 + +Montmorillonite(MgCa) +Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.17 Ca+2 + 0.34 Mg+2 + 4 H4SiO4 + log_k 4.222 + delta_h -146.668 #kJ/mol #15bla/vie + -analytic -2.3648299E3 -3.1580182E-1 1.4861699E5 8.3532612E2 -9.0862785E6 + +Montmorillonite(MgK) +K0.34Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.34 K+ + 0.34 Mg+2 + 4 H4SiO4 + log_k 2.83 + delta_h -126.865 #kJ/mol #15bla/vie + -analytic -2.3483045E3 -3.1270489E-1 1.4694997E5 8.2983827E2 -9.056946E6 + +Montmorillonite(MgMg) +Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.51 Mg+2 + 4 H4SiO4 + log_k 3.708 + delta_h -148.028 #kJ/mol #15bla/vie + -analytic -2.3814282E3 -3.1776702E-1 1.4958186E5 8.4098328E2 -9.1364559E6 + +Montmorillonite(MgNa) +Na0.34Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.34 Mg+2 + 0.34 Na+ + 4 H4SiO4 + log_k 3.411 + delta_h -135.953 #kJ/mol #15bla/vie + -analytic -2.3679565E3 -3.1474933E-1 1.4842879E5 8.3647775E2 -9.1055977E6 + +MordeniteB # (Ca) +Ca0.515Al1.03Si4.97O12:3.1H2O + 4.12 H+ + 4.78 H2O = 1.03 Al+3 + 0.515 Ca+2 + 4.97 H4SiO4 + log_k -2.898 + delta_h -56.278 #kJ/mol #09bla + -analytic -2.3577543E3 -2.9682032E-1 1.4847577E5 8.2993876E2 -9.6241393E6 + +MordeniteJ +Ca0.289Na0.362Al0.94Si5.06O12:3.468H2O + 3.76 H+ + 4.772 H2O = 0.94 Al+3 + 0.289 Ca+2 + 0.362 Na+ + 5.06 H4SiO4 + log_k -4.16 + delta_h -29.442 #kJ/mol #92joh/tas + -analytic -2.3112502E3 -2.9430315E-1 1.4403365E5 8.1541676E2 -9.418252E6 + +Muscovite # (ordered) +KAl2(AlSi3)O10(OH)2 + 10 H+ = 3 Al+3 + K+ + 3 H4SiO4 + log_k 11.353 + delta_h -253.923 #kJ/mol #06bla/pia + -analytic -2.5862792E3 -3.7607072E-1 1.5907562E5 9.2024545E2 -8.9668534E6 + +Natrolite +Na2(Al2Si3)O10:2H2O + 8 H+ = 2 Al+3 + 2 Na+ + 3 H4SiO4 + log_k 19.326 + delta_h -215.463 #kJ/mol #83joh/flo + -analytic -2.303612E3 -3.1993458E-1 1.4352482E5 8.1980235E2 -8.1431211E6 + +Nepheline +Na(AlSi)O4 + 4 H+ = Al+3 + Na+ + H4SiO4 + log_k 14.077 + delta_h -144.506 #kJ/mol #Internal calculation + -analytic -9.7409139E2 -1.3955693E-1 6.2423687E4 3.467383E2 -3.3400695E6 + +Oligoclase # defined for elemental release +Na0.8Ca0.2Si2.8Al1.2O8 + 8 H2O = 0.8 Na+ + 0.2 Ca+2 + 2.8 H4SiO4 + 1.2 Al(OH)4- + +Palygorskite # defined for elemental release +Mg2Al2Si8O20(OH)2:8H2O + 10 H+ + 2 H2O = 2 Mg+2 + 2 Al+3 + 8 H4SiO4 + +Paragonite +NaAl2(AlSi3)O10(OH)2 + 10 H+ = 3 Al+3 + Na+ + 3 H4SiO4 + log_k 16.804 + delta_h -294.623 #kJ/mol #96rou/hov + -analytic -2.6452559E3 -3.8247258E-1 1.64246E5 9.4070011E2 -9.1107641E6 + +Pargasite # Hornblende +Na(Ca2Mg4Al)(Al2Si6)O22(OH)2 + 22 H+ = 3 Al+3 + 2 Ca+2 + 4 Mg+2 + Na+ + 6 H4SiO4 + log_k 104.557 + delta_h -940.614 #kJ/mol #Internal calculation + -analytic -5.7962939E3 -8.2700886E-1 3.7555969E5 2.0652064E3 -1.9772394E7 + +Phlogopite +KMg3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 H4SiO4 + log_k 41.098 + delta_h -353.123 #kJ/mol #92cir/nav + -analytic -2.7194067E3 -3.8106546E-1 1.7318081E5 9.69566E2 -9.4102646E6 + +Prehnite +Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 H4SiO4 + log_k 32.596 + delta_h -339.617 #kJ/mol #98cha/kru + -analytic -2.6255465E3 -3.8041883E-1 1.6586587E5 9.3642007E2 -9.0549681E6 + +Pyrophyllite +Al2Si4O10(OH)2 + 6 H+ + 4 H2O = 2 Al+3 + 4 H4SiO4 + log_k -0.418 + delta_h -128.924 #kJ/mol #95rob/hem + -analytic -2.3595061E3 -3.237303E-1 1.4585394E5 8.3524091E2 -8.9193526E6 + +Pyrrhotite(Hx) # Pyrrhotite +FeS + H+ = Fe+2 + HS- + log_k -3.679 + delta_h -10.009 #kJ/mol #05wal/pel + -analytic -1.1321823E3 -1.8235764E-1 6.1304821E4 4.1103628E2 -3.5403537E6 + +Pyrrhotite(Mc) # Pyrrhotite +FeS + H+ = Fe+2 + HS- + log_k -3.679 + delta_h -10.009 #kJ/mol #05wal/pel + -analytic -1.1321823E3 -1.8235764E-1 6.1304821E4 4.1103628E2 -3.5403537E6 + +Rhyolite # a mixture of minerals, defined for elemental release... +Na0.078K0.046Al0.26Si1.23O2.912 + 3.048 H2O = 0.136 H+ + 0.078 Na+ + 0.046 K+ + 0.26 Al(OH)4- + 1.23 H4SiO4 + +Riebeckite +Na2(Fe3Fe2)Si8O22(OH)2 + 14 H+ + 8 H2O = 3 Fe+2 + 2 Na+ + 8 H4SiO4 + 2 Fe+3 + log_k 9.199 + delta_h -197.377 #kJ/mol #98hol/pow + -analytic -5.0079102E3 -6.7170777E-1 3.0608951E5 1.7785742E3 -1.8686839E7 + +Saponite(Ca) +Ca0.17Mg3Al0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 0.17 Ca+2 + 3 Mg+2 + 3.66 H4SiO4 + log_k 29.355 + delta_h -262.766 #kJ/mol #15bla/vie + -analytic -2.5667428E3 -3.4039957E-1 1.6475488E5 9.099285E2 -9.472597E6 + +Saponite(FeCa) +Ca0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 0.17 Ca+2 + Fe+2 + 2 Mg+2 + 3.66 H4SiO4 + log_k 26.569 + delta_h -250.636 #kJ/mol #15bla/vie + -analytic -2.5356344E3 -3.373844E-1 1.6236385E5 8.9871835E2 -9.386812E6 + +Saponite(FeK) +K0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 0.34 K+ + 2 Mg+2 + 3.66 H4SiO4 + log_k 25.398 + delta_h -232.093 #kJ/mol #15bla/vie + -analytic -2.515955E3 -3.3384661E-1 1.6058454E5 8.9209651E2 -9.3470003E6 + +Saponite(FeMg) +Mg0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 2.17 Mg+2 + 3.66 H4SiO4 + log_k 26.022 + delta_h -251.806 #kJ/mol #15bla/vie + -analytic -2.5507675E3 -3.3914471E-1 1.6323608E5 9.0384868E2 -9.4321235E6 + +Saponite(FeNa) +Na0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 2 Mg+2 + 0.34 Na+ + 3.66 H4SiO4 + log_k 25.896 + delta_h -240.711 #kJ/mol #15bla/vie + -analytic -2.5368817E3 -3.3606965E-1 1.6211086E5 8.9919435E2 -9.3999007E6 + +Saponite(K) +K0.33Mg3Al0.33Si3.67O10(OH)2 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 0.33 K+ + 3 Mg+2 + 3.67 H4SiO4 + log_k 27.43 + delta_h -239.483 #kJ/mol #15bla/vie + -analytic -2.544416E3 -3.3629993E-1 1.6263915E5 9.0231366E2 -9.4312976E6 + +Saponite(Mg) +Mg0.17Mg3Al0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 3.17 Mg+2 + 3.66 H4SiO4 + log_k 28.81 + delta_h -263.946 #kJ/mol #15bla/vie + -analytic -2.5818719E3 -3.4215988E-1 1.6562747E5 9.1505763E2 -9.5179085E6 + +Saponite(Na) +Na0.33Mg3Al0.33Si3.67O10(OH)2 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 3 Mg+2 + 0.33 Na+ + 3.67 H4SiO4 + log_k 27.971 + delta_h -248.219 #kJ/mol #15bla/vie + -analytic -2.5647603E3 -3.3846001E-1 1.6414122E5 9.0921188E2 -9.482682E6 + +Saponite(SapCa) +(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.055)O10(OH)2 + 7.724 H+ + 2.276 H2O = 0.397 Al+3 + 0.038 Ca+2 + 0.034 Fe+3 + 0.021 K+ + 2.949 Mg+2 + 0.394 Na+ + 3.569 H4SiO4 + 0.021 Fe+2 + log_k 31.473 + delta_h -277.172 #kJ/mol #13gai/bla + -analytic -2.5790231E3 -3.508959E-1 1.6429225E5 9.168404E2 -9.2969386E6 + +Scolecite +CaAl2Si3O10:3H2O + 8 H+ = 2 Al+3 + Ca+2 + 3 H4SiO4 + H2O + log_k 16.647 + delta_h -233.213 #kJ/mol #83joh/flo + -analytic -2.3692738E3 -3.4026162E-1 1.4623007E5 8.4431312E2 -8.2035956E6 + +Smectite # (MX80) +Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2 + 7.048 H+ + 2.952 H2O = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2 + log_k 5.278 + delta_h -175.308 #kJ/mol #12gai/bla + -analytic -2.4267042E3 -3.3712249E-1 1.5038583E5 8.6021197E2 -8.9284687E6 + +Smectite(MX80:3.989H2O) +Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:3.989H2O + 7.048 H+ = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2 + 1.037 H2O + log_k 1.774 + delta_h -148.524 #kJ/mol #12gai/bla + -analytic -2.3838609E3 -3.2232449E-1 1.4844358E5 8.4261556E2 -8.9910004E6 + +Smectite(MX80:5.189H2O) +Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:5.189H2O + 7.048 H+ = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2 + 2.237 H2O + log_k 1.435 + delta_h -140.43 #kJ/mol #12gai/bla + -analytic -2.3706061E3 -3.2008903E-1 1.4737914E5 8.3812012E2 -8.9524821E6 + +Spodumene # from core10.dat +LiAlSi2O6 + 4 H+ + 2 H2O = Al+3 + Li+ + 2 H4SiO4 + log_k 6.9972 + delta_h -89.1817 + -analytic -9.8111 2.1191e-3 9.692e3 -3.0484 -7.8822e5 + -Vm 58.37 + +Staurolite +Fe2Al9Si4O23(OH) + 31 H+ = 9 Al+3 + 2 Fe+2 + 4 H4SiO4 + 8 H2O + log_k 216.34 + delta_h -1956.484 #kJ/mol #87woo/gar + -analytic -6.5297334E3 -1.0061427 4.5225123E5 2.3281295E3 -2.0588442E7 + +Stilbite +NaCa2(Al5Si13)O36:16H2O + 20 H+ = 5 Al+3 + 2 Ca+2 + Na+ + 13 H4SiO4 + log_k 23.044 + delta_h -403.823 #kJ/mol #01fri/neu + -analytic -7.4700792E3 -1.0099722 4.6170528E5 2.6510812E3 -2.7934606E7 + +Thomsonite # defined for elemental release +Na0.5CaAl2.5Si2.5O10:3H2O + 10 H+ = 2.5 Al+3 + 0.5 Na+ + Ca+2 + 2.5 H4SiO4 + 3 H2O + +Tourmaline # defined for elemental release +NaFe1.5Mg1.5Al6B3Si6O27(OH)4 + 26 H2O + H+ = Na+ + 1.5 Fe+2 + 1.5 Mg+2 + 6 Al(OH)4- + 3 H3BO3 + 6 H4SiO4 + +Tremolite +(Ca2Mg5)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Ca+2 + 5 Mg+2 + 8 H4SiO4 + log_k 67.281 + delta_h -502.247 #kJ/mol #95rob/hem + -analytic -5.0977019E3 -6.8545317E-1 3.2680746E5 1.8129659E3 -1.8919407E7 + +# Uraninite +# UO2 + 4 H+ = U+4 + 2 H2O +# log_k -3.490 +# delta_h -18.630 kcal + +Wollastonite +CaSiO3 + 2 H+ + H2O = Ca+2 + H4SiO4 + log_k 14.047 + delta_h -85.986 #kJ/mol #78hel/del,92ajoh + -analytic -6.3184784E2 -8.6944016E-2 4.1722732E4 2.2563038E2 -2.3494013E6 + +Zoisite +Ca2Al3Si3O12(OH) + 13 H+ = 3 Al+3 + 2 Ca+2 + 3 H4SiO4 + H2O + log_k 43.848 + delta_h -485.113 #kJ/mol #01sme/fra + -analytic -3.1722373E3 -4.6912132E-1 2.0150433E5 1.1315082E3 -1.0643978E7 + +RATE_PARAMETERS_PK +# Acid Neutral Base +# log K E n(H+) log K E log K E n(OH-) +# ================================================================ +Quartz -30 0 0 -13.4 90.9 -30 0 0 # Table 4 +# +SiO2(a) -30 0 0 -12.31 76 -30 0 0 # Table 6 +Cristobalite -30 0 0 -12.31 65 -30 0 0 +# +Albite -10.16 65 0.317 -12.56 65 -15.6 66.5 -0.471 # Table 1 +Oligoclase -9.67 65 0.457 -11.84 69.8 -30 0 0 # Table 13 +Andesine -8.88 53.5 0.541 -11.47 57.4 -30 0 0 +Labradorite -7.87 42.1 0.626 -10.91 45.2 -30 0 0 +Bytownite -5.85 29.3 1.018 -9.82 31.5 -30 0 0 +Anorthite -3.5 16.6 1.411 -9.12 17.8 -30 0 0 +# +K-feldspar -10.06 51.7 0.5 -12.41 38 -21.2 94.1 -0.823 # Table 15 +# +Nepheline -2.73 62.9 1.13 -8.56 65.4 -10.76 37.8 -0.2 # Table 18 +Leucite -6 132.2 0.7 -9.2 75.5 -10.66 56.6 -0.2 +# +Forsterite -6.85 67.2 0.47 -10.64 79 -30 0 0 # Table 23 +Fayalite -4.8 94.4 0 -12.8 94.4 -30 0 0 +Almandine -5.2 94.4 1 -10.7 103.8 -13.71 37.8 -0.35 +Grossular -5.1 85 1 -10.7 103.8 -30 0 0 +Andradite -5.2 94.4 1 -10.7 103.8 -30 0 0 +Kyanite -10.17 -53.9 1.268 -17.44 53.9 -30 0 0 +Staurolite -6.9 18.9 1 -12.2 56.6 -14.9 47.2 -0.3 +Epidote -10.6 71.1 0.338 -11.99 70.7 -17.33 79.1 -0.556 +Zoisite -7.5 66.1 0.5 -11.2 66.1 -30 0 0 +# +Cordierite -3.8 113.3 1 -11.2 28.3 -30 0 0 # Table 25 +Tourmaline -6.5 75.5 1 -11.2 85 -30 0 0 +# +augite -6.82 78 0.7 -11.97 78 -30 0 0 # Table 26 +bronzite -8.3 47.2 0.65 -11.7 66.1 -30 0 0 +diopside -6.36 96.1 0.71 -11.11 40.6 -30 0 0 +enstatite -9.02 80 0.6 -12.72 80 -30 0 0 +jadeite -6 132.2 0.7 -9.5 94.4 -30 0 0 +spodumene -4.6 94.4 0.7 -9.3 66.1 -30 0 0 +wollastonite -5.37 54.7 0.4 -8.88 54.7 -30 0 0 +# +anthophyllite -11.94 51 0.44 -14.24 51 -30 0 0 # Table 27 +glaucophane -5.6 85 0.7 -10.1 94.4 -30 0 0 +hornblende -7 75.5 0.6 -10.3 94.4 -30 0 0 +riebeckite -7.7 56.6 0.7 -12.2 47.2 -30 0 0 +tremolite -8.4 18.9 0.7 -10.6 94.4 -30 0 0 +# +biotite -9.84 22 0.525 -12.55 22 -30 0 0 # Table 28 +glauconite -4.8 85 0.7 -9.1 85 -30 0 0 +muscovite -11.85 22 0.37 -13.55 22 -14.55 22 -0.22 +muscovite -30 0 0 -13 22 -30 0 0 +paragonite -30 0 0 -13 22 -30 0 0 +phlogopite -30 0 0 -12.4 29 -30 0 0 +pyrophyllite -30 0 0 -12.4 29 -30 0 0 +# +kaolinite -11.31 65.9 0.777 -13.18 22.2 -17.05 17.9 -0.472 # Table 29 +montmorillonite -12.71 48 0.22 -14.41 48 -14.41 48 -0.13 # Montmorillonite, K0.318(Si3.975Al0.025)(Al1.509Fe0.205Mg0.283)(OH)2. +smectite -10.98 23.6 0.34 -12.78 35 -16.52 58.9 -0.4 # Smectite, K0.04Ca0.5(Al2.8Fe0.53Mg0.7)(Si7.65Al0.35)O20(OH)4. +# +lizardite -5.7 75.5 0.8 -12.4 56.6 -30 0 0 # Table 30 +chrysotile -30 0 0 -12 73.5 -13.58 73.5 -0.23 +chlorite(14A) -11.11 88 0.5 -12.52 88 -30 0 0 +talc -30 0 0 -12 42 -30 0 0 +prehnite -10.66 80.5 0.256 -13.16 93.4 -14.86 93.4 -0.2 +# +goethite -30 0 0 -7.94 86.5 -30 0 0 # Table 31 +hematite -9.39 66.2 1 -14.6 66.2 -30 0 0 +magnetite -8.59 18.6 0.279 -10.78 18.6 -30 0 0 +ilmenite -8.35 37.9 0.421 -11.16 37.9 -30 0 0 +uraninite -30 0 0 -7.98 32 -30 0 0 +# +brucite -4.73 59 0.5 -8.24 42 -30 0 0 # Table 32 +gibbsite -7.65 47.5 0.992 -11.5 61.2 -16.65 80.1 -0.784 +diaspore -30 0 0 -13.33 47.5 -23.6 47.5 -1.503 +# +anglesite -5.58 31.3 0.298 -6.5 31.3 -30 0 0 # Table 34 +anhydrite -30 0 0 -3.19 14.3 -30 0 0 +gypsum -30 0 0 -2.79 0 -30 0 0 +barite -6.9 30.8 0.22 -7.9 30.8 -30 0 0 +celestite -5.66 23.8 0.109 -30 0 -30 0 0 +# +hydroxyapatite -4.29 250 0.171 -6 250 -30 0 0 # Table 36 +fluorapatite -3.73 250 0.613 -8 250 -30 0 0 +# +halite -30 0 0 -0.21 7.4 -30 0 0 # Table 37 +fluorite -7.14 73 1 -13.79 73 -30 0 0 +# +# Acid Neutral P_CO2 +# log K E n(H+) log K E log K E n(P_CO2) Table +# ================================================================================ +calcite -0.3 14.4 1 -5.81 23.5 -3.48 35.4 1 33 # specify Table number for P_CO2^n(P_CO2) +dawsonite -30 0 0 -7 62.8 -30 0 0 33 +dolomite(d) -3.19 36.1 0.5 -7.53 52.2 -5.11 34.8 0.5 33 +dolomite -3.76 56.7 0.5 -8.6 95.3 -5.37 45.7 0.5 33 +magnesite -6.38 14.4 1 -9.34 23.5 -5.22 62.8 1 33 +# +# Acid and Fe+3 Neutral and O2 Base +# log K E n(H+) n(Fe+3) log K E n(O2) log K E n(OH-) Table +# ========================================================================================= +pyrite -7.52 56.9 -0.5 0.5 -4.55 56.9 0.5 -30 0 0 35 # specify Table number for Fe+3 and O2 +pyrrhotite(Mc) -8.04 50.8 -0.597 0.355 -30 0 0 -30 0 0 35 +pyrrhotite(Hx) -6.79 63 -0.09 0.356 -30 0 0 -30 0 0 35 +As2S3(a) -30 0 0 0 -9.83 8.7 0.18 -17.39 8.7 -1.208 35 + +RATE_PARAMETERS_SVD +# Table 4: E's Table 3: H+-reaction H2O-reaction CO2-reaction Organic_acids OH--reaction Table 5 +# H+ H2O CO2 Organic acids OH- pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi # Num Mineral Formula +# ================================================================================================================================================================================================================================================================================================= +Albite 3350 2500 1680 1200 3100 14.6 0.5 0.4 0.4 0.4 0.5 16.8 0.15 4 0.15 200 3 900 16.05 0.6 14.7 0.5 5 15.4 0.3 0.1 12 0.5 5 3 900 # 1.6 Albite NaAlSi3O8 +Quartz 3890 0 2200 2000 3320 18.4 0.3 0.3 5 0 500 17.8 0 5 0 5000 4 900 18 0.5 16.3 0.5 5 14.1 0.3 0.4 200 0 5000 1 900 # 8.3 Quartz SiO2 + + +RATE_PARAMETERS_HERMANSKA +# Acid mechanism Neutral mechanism Basic mechanism +# logk25 Aa Eaa n(H+) logk25 Ab Eab logk25 Ac Eac n(OH) # Formula +# ================================================================================================================================ +# Amphiboles +Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 0 0 0 0 +Ferroactinolite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0 +Riebeckite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0 +Tremolite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0 +Glaucophane -6.1 2.20E+02 50 0.7 0 0 0 -12.8 1.00E-04 48 -0.1 # Na0.14K0.09Ca2Fe1.78Mg2Al2Si7O22(OH)2 +Hornblende -10.7 5.00E-03 50 0.2 0 0 0 -13.4 2.10E-05 48 -0.1 # Ca2Mg4Al0.75Fe0.25(Si7AlO22)(OH)2 +# Feldspars +Albite -10.32 0.7 58 0.3 -11.19 0.21 60 -13.58 1.50E-05 50 -0.3 +Andesine -7.99 147 58 0.7 -11.23 0.19 60 -13.58 1.50E-05 50 -0.3 +Anorthite -5.17 9.80E+04 58 1.2 -11.34 0.15 60 -13.58 1.50E-05 50 -0.3 +Bytownite -5.88 1.90E+04 58 1.1 -11.28 0.17 60 -13.58 1.50E-05 50 -0.3 +K-feldspar -10.36 5.00E-02 51.7 0.5 -12.48 1.10E-02 60 -20.78 1.20E-10 62 -0.8 # or Microcline +Labradorite -6.39 5.90E+03 58 1 -11.28 0.17 60 -13.58 1.50E-05 50 -0.3 +Oligoclase -9.33 6.8 58 0.4 -11.21 0.2 60 -13.58 1.50E-05 50 -0.3 +# Glass +Rhyolite -9.1 1.60E-03 36 0.5 0 0 0 -16.27 7.00E-08 52 -0.6 +# Mica # Also valid for +Annite -9.42 5.90E-07 18.2 0.5 -12.2 5.00E-09 22 -13.9 4.00E-10 25.5 -0.2 # Biotite, Phlogopite +Muscovite -11.1 1.26E-04 41.3 0.4 -12.1 6.31E-06 39 -14.5 3.16E-05 57 -0.2 +# Olivines +Fayalite -6.26 1.20E+06 70.4 0.4 0 0 0 -7.39 1.91E+03 60.9 0.2 +Forsterite -7.16 1.48E+05 70.4 0.4 0 0 0 -8.33 2.20E+02 60.9 0.2 +Larnite -3.61 5.25E+08 70.4 0.4 0 0 0 -4.75 8.25E+05 60.9 0.2 +# Pyroxenes +Augite -8.2 1.52E+06 81.8 0.7 -12.8 350 83 0 0 0 0 +Bronzite -9.8 9.50E-04 38.5 0.6 -11.7 7.60E-01 66.1 0 0 0 0 +Diopside -9.8 8.55E-05 32.7 0.3 -11.01 4.30E-05 43.9 0 0 0 0 +Enstatite -8.3 0.574 46.1 0.5 -11.9 6.30E+03 89.5 0 0 0 0 +# SiO2 polymorphs +Quartz -11.4 4.03E-04 45.6 0.3 0 0 0 -15 0.105 80 -0.4 # Cristobalite +SiO2(a) -10.6 4.56E-04 41.6 0.3 0 0 0 -14.2 3.53E-02 73 -0.4 + +# 2023, Table 1 Also valid for +Almandine -5.21 2.00E+05 60 1 -11.2 2.31E-04 43.2 -14.6 6.00E-08 42.3 -0.4 # Grossular +Analcime -3.3 5.00E+07 63 1 -11.3 1.00E-01 58.5 -14.3 7.50E-05 58 -0.4 # Nepheline +Andalusite -10.57 3.90E-01 60 0.15 -12.61 8.00E-03 43.2 -22.82 8.80E-15 42.3 -1.2 +Andradite -5.1 2.60E+05 60 1 -11.1 3.20E-04 43.2 0 0 0 0 +Antigorite -10.3 2.80E-06 27 0.25 -12.4 2.00E-08 27 0 0 0 0 # Chrysotile, Lizardite +Chabazite -6.56 2.21E-01 33.7 0.82 -11.55 1.56E-04 44.2 -12.05 4.94E-05 44.2 -0.2 # Laumontite, Leonhardite +Clinochlore -9.08 1.50E-04 30 0.74 -13 4.70E-11 15 -14.3 2.00E-12 15 -0.2 # Chamosite, Daphnite +Clinoptilolite -7.51 2.48E-02 33.7 0.82 -12.6 1.39E-05 44.2 -13.2 3.50E-06 44.2 -0.2 # Heulandite, Mordenite, Stilbite +Epidote -10.47 1.09 60 0.3 -11.9 5.13E-05 43.2 -16.3 1.40E-09 42.3 -0.4 # Zoisite +Glauconite -11.68 9.55E-07 32.3 0.37 -13.53 1.10E-07 37.5 0 0 0 0 +Illite -11.9 7.30E-04 50 0.55 -14.68 3.84E-03 70 -20.19 6.00E-08 74 -0.6 +Jadeite -6.68 25 46.1 0.5 -10.26 2.70E+05 89.5 0 0 0 0 +Kaolinite -12.3 2.85 73 0.45 -14.1 4.15E-03 67 -21.3 2.40E-11 61 -0.76 +Kyanite -11.1 1.15E-01 60 0.15 -13.5 1.00E-03 43.2 -21.6 1.50E-13 50 -1 +Mesolite -5.61 1.97E+00 33.7 0.82 -10.7 1.11E-03 44.2 -11 5.54E-04 44.2 -0.2 # Natrolite, Scolecite, Thomsonite +Montmorillonite -11.7 1.66E-03 50.8 0.55 -14.3 9.00E-10 30 -17.2 1.50E-09 48 -0.3 # Saponite, Smectite +Paragonite -11.9 7.30E-04 50 0.55 -14.68 3.84E-03 70 -20.19 6.00E-08 74 -0.6 +Prehnite -10.4 1.30E+03 77 0.35 -14 1 80 -12.8 15 80 -0.075 +Pyrophyllite -8.6 1.60E+04 73 0.7 -12.6 1.50E-01 67 -18.4 2.00E-08 61 -0.7 +Sepiolite -11 5.89E-03 50.2 0.25 -13.2 8.00E-07 40.7 0 0 0 0 # Palygorskite +Spodumene -5.38 4.90E+02 46.1 0.5 -8.95 5.40E+06 89.5 0 0 0 0 +Talc -11.1 4.42E-03 50.2 0.36 -12.9 1.56E-06 40.7 0 0 0 0 +Wollastonite -6.97 700 56 0.4 0 0 0 -7.81 200 52 0.15 + +# # Example input files with RATES for KINETICS calculations +# # +# # compare Albite kinetics using rates from the compilations + # # for the PARMS, see https://www.hydrochemistry.eu/exmpls/kin_silicates.html +# # ========================================================= +# +# RATES +# Albite_PK # Palandri and Kharaka, 2004 +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +# 20 rate = RATE_PK("Albite") +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + +# KINETICS 1 +# Albite_PK +# -formula NaAlSi3O8; -parms 0 1 1 0.67 +# -m0 1; -time 1 # default +# END + +# SOLUTION 1 +# PHASES + # Fix_pH; H+ = H+ + # LiBr; LiBr = Li+ + Br-; -log_k -20 # (very) unsoluble phase with base cation and acid anion, permits to use HBr or LiOH as reactant +# SELECTED_OUTPUT 1 + # -file kinetic_rates_pH.inc + # -reset false +# USER_PUNCH 1 # write out the pH's to equilibrate... + # 10 FOR i = 0 to 14 STEP 0.5 + # 20 punch EOL$ + 'USE solution 1' + # 30 punch EOL$ + 'EQUILIBRIUM_PHASES 1' + # 40 punch EOL$ + ' LiBr' + # 50 punch EOL$ + ' Fix_pH ' + TRIM(STR$(-i)) + ' LiOH 10' # ...or HBr as reactant + # 60 punch EOL$ + 'USE kinetics 1' + # 70 punch EOL$ + 'END' + # 80 NEXT i +# END + +# PRINT; -reset false +# SELECTED_OUTPUT 1; -active false +# USER_GRAPH 1; -headings pH Palandri +# -axis_titles pH "log10(initial rate / (mol / m2 / s))" +# -axis_scale x_axis 0 14 +# 10 graph_x -la("H+") +# 20 graph_sy log10(tot("Al")) +# INCLUDE$ kinetic_rates_pH.inc +# END + +# RATES +# Albite_Svd # Sverdrup, 2019 +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +# 20 rate = RATE_SVD("Albite") +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + +# KINETICS 1 +# Albite_Svd +# -formula NaAlSi3O8; -parms 0 1 20 0.67 # roughness = 20 +# USER_GRAPH 1; -headings pH Sverdup*20 +# INCLUDE$ kinetic_rates_pH.inc +# END + +# KINETICS 1 +# Albite # from Sverdrup and Warfvinge, 1995 +# -formula NaAlSi3O8; -parms 1 20 # roughness = 20 +# USER_GRAPH 1; -headings pH Sverdup`95*20 +# INCLUDE$ kinetic_rates_pH.inc +# END + +# RATES +# Albite_Hermanska # 2022 +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +# 20 rate = RATE_HERMANSKA("Albite") +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + +# KINETICS 1 +# Albite_Hermanska +# -formula NaAlSi3O8; -parms 0 1 1 0.67 +# USER_GRAPH 1; -headings pH Hermanska +# INCLUDE$ kinetic_rates_pH.inc +# END + +# USE solution 1 +# REACTION_TEMPERATURE 1; 25 25 in 21 +# USER_GRAPH 1; -headings Albite_data +# 10 data 1.1, 2.05, 2.45, 2.9, 3, 3.5, 4.1, 5.1, 5.35, 5.47, 5.63, 5.63, 5.73, 7.73, 9.95, 9.95, 9.95, 10.6, 11.2, 11.55, 12.3 +# 20 data -10.25, -10.55, -10.82, -11.25, -11.1, -11.4, -11.47, -11.82, -11.75, -11.65, -11.83, -11.92, -11.92, -11.83, -10.97, -11.05, -11.13, -10.95, -10.55, -10.6, -10.38 # Chou, L., Wollast, R., 1985. Steady-state kinetics and dissolution mechanisms of albite. Am. J. Sci. 285, 963–993. +# 30 restore 10 : dim ph(21) : for i = 1 to step_no : read ph(i) : next i +# 40 restore 20 : dim lk(21) : for i = 1 to step_no : read lk(i) : next i +# 50 i = step_no : plot_xy ph(i), lk(i), line_width = 0, color = Black, y_axis = 2, symbol_size = 10, symbol = Circle +# END + +# # compare rates for calcite dissolution +# # of Palandri and Kharaka, 2004 and Plummer, Wigley and Parkhurst, 1978 +# # at different initial CO2 concentrations. +# # ===================================== + +# USER_GRAPH 1; -active false + +# RATES +# Calcite_PK # Palandri and Kharaka, 2004 +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("calcite") : if affinity < parm(1) then SAVE 0 : END +# 20 rate = RATE_PK("calcite") +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + +# SOLUTION 1 +# pH 7 charge; C(4) 1 CO2(g) -2.5 +# KINETICS 1 +# calcite_PK +# -formula CaCO3; -parms 0 1e-2 1 0.67 +# -time 0.1 10*1 hour +# INCREMENTAL_REACTIONS true +# USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-2.5 +# -axis_titles "time / hours" "Calcite dissolved / (mmol/kgw)" +# 10 graph_x total_time / 3600 : graph_sy tot("Ca") * 1e3 +# END + +# USE solution 1 +# KINETICS 1 +# Calcite +# -parms 1e2 0.67 # cm^2/mol calcite, exp factor +# -time 0.1 10*1 hour +# USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst +# END + +# SOLUTION 1 +# pH 7 charge; C(4) 1 CO2(g) -1.5 +# KINETICS 1 +# calcite_PK +# -formula CaCO3 +# -parms 0 1e-2 1 0.67 +# -time 0.1 10*1 hour +# USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-1.5 +# END + +# USE solution 1 +# KINETICS 1 +# Calcite +# -parms 1e2 0.67 +# -time 0.1 10*1 hour +# USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst +# END + +# # compare rates for quartz dissolution +# # and the effect of NaCl +# # ===================================== + +# USER_GRAPH 2; -active false + +# RATES +# Quartz_PK # Palandri and Kharaka, 2004 +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END +# 20 rate = RATE_PK("Quartz") +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + +# SOLUTION 1 +# pH 7 charge +# KINETICS 1 +# Quartz_PK +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# INCREMENTAL_REACTIONS true +# USER_GRAPH 3; -headings h Palandri +# -axis_titles "time / years" "Quartz dissolved / (mmol/kgw)" +# 10 graph_x total_time / 3.15e7 : graph_sy tot("Si") * 1e3 +# END + +# RATES +# Quartz_Hermanska # +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END +# 20 rate = RATE_HERMANSKA("Quartz") +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + +# USE solution 1 +# KINETICS 1 +# Quartz_Hermanska +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# USER_GRAPH 3 +# -headings H Hermanska +# END + +# RATES +# Quartz_Svd # Sverdrup, 2019 +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END +# 20 rate = RATE_SVD("Quartz") +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + +# USE solution 1 +# KINETICS 1 +# Quartz_Svd +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# USER_GRAPH 3 +# -headings H Sverdup +# END + +# RATES +# Quartz_Rimstidt +# #1 rem Specific rate k = 10^-13.34 mol/m2/s (25 C), Ea = 74 kJ/mol, Rimstidt, 2015, GCA 167, 195 +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END +# 20 rate = 10^-(13.3 + 4700 * (1 / 298 - 1 / TK)) * (1 + 1500*tot("Na")) # salt correction, Dove and Rimstidt, 1994, MSA Rev. 29, 259 +# 20 rate = 10^-(13.3 + 4700 * (1 / 298 - 1 / TK)) + 11.2e3 * act("Na+")^0.33 * act("OH-")^0.44 * exp(-71.6/(8.314e-3 * TK)) # salt correction, Rimstidt, 2015, GCA 167, 195 +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + +# USE solution 1 +# KINETICS 1 +# Quartz_Rimstidt +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# USER_GRAPH 3 +# -headings H Rimstidt +# END + +# SOLUTION 1 +# pH 7 charge; Na 1; Cl 1 +# KINETICS 1 +# Quartz_Rimstidt +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# USER_GRAPH 3 +# -headings H Rimstidt_1.mM.NaCl +# END + +# # Example input file for calculating kinetic dissolution of Montmorillonite, +# # a solid solution with exchangeable cations reacting fast; +# # their ratios are related to the changing solution composition, +# # and their amounts are connected to the kinetic reacting TOT layer. +# # +# # The affinity is related to a solid solution member, given by the fraction of the +# # exchangeable cation (here Na+ or Ca+2). For the Gapon exchange formula, +# # the exchange species and their log_k`s are from the solid solution members in ThermoddemV1 +# # For the Gaines Thomas formula, the Mg+2 and Ca+2 species are redefined. +# # It also shows how the default X exchanger can be invkoed. +# # # ============================================================== + +# USER_GRAPH 3; -active false + +# RATES +# Montmorillonite +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# # Gapon and Gaines-Tomas exchange formulas +# 7 f_Na = (mol("Na0.34X_montm_mg") / tot("X_montm_mg")) +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na +# 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na + +# # # Gapon, with Ca as exchange species... +# # 7 f_Ca = (mol("Ca0.17X_montm_mg") / tot("X_montm_mg")) +# # # use SR("Montmorillonite(Mgca)") +# # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgCa)") / f_Ca +# # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Ca + +# # # Gaines-Thomas exchange formula, with Ca as exchange species, uncomment the Gaines-Thomas EXCHANGE_SPECIES +# # 7 f_Ca = (mol("Ca0.34X_montm_mg2") / 2 / tot("X_montm_mg")) : ex = 0.5 +# # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgCa)") / f_Ca^ex +# # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Ca^ex + +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + +# EXCHANGE_MASTER_SPECIES +# X_montm_mg X_montm_mg-0.34 +# EXCHANGE_SPECIES +# # The Gapon formulation is easiest, with constants from Montmorillonite(Mg..) in PHASES + # X_montm_mg-0.34 = X_montm_mg-0.34 +# 0.34 Na+ + X_montm_mg-0.34 = Na0.34X_montm_mg; log_k -3.411 # 0 # +# 0.34 K+ + X_montm_mg-0.34 = K0.34X_montm_mg; log_k -2.83 # 0.581 # +# 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708 # -0.297 # +# 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222 # -0.811 # + +# # # The divalent cations have rather low log_k, cf. A&P, p.254, log_k Ca0.5X ~ log_k KX +# # # uncomment the following lines to see the effect... +# # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -2.86 +# # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -2.83 +# # # also adapt the log_k`s of the solids... +# # PHASES +# # Montmorillonite(MgMg) +# # Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.510Mg+2 + 4H4SiO4 + # # log_k 2.86 +# # Montmorillonite(MgCa) +# # Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4H4SiO4 + # # log_k 2.83 + +# # # The divalent cations can be defined with the Gaines-Thomas convention... +# # EXCHANGE_SPECIES +# # # undefine the previous set... +# # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708e10 +# # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222e10 +# # # write the Gaines-Thomas formulas... +# # 0.34 Mg+2 + 2 X_montm_mg-0.34 = Mg0.34X_montm_mg2 ; log_k -7.416 # -0.297 # +# # 0.34 Ca+2 + 2 X_montm_mg-0.34 = Ca0.34X_montm_mg2 ; log_k -8.444 # -0.811 # + +# # # The default exchanger X can be used, uncomment the follwing lines +# # # redefine f_Na in the rate... +# # RATES +# # Montmorillonite +# # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# # 7 f_Na = (mol("NaX") / tot("X")) # when running with the default X exchange +# # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na +# # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na +# # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# # 40 SAVE area * rate * affinity * TIME +# # -end +# # # adapt log_k`s of the solids with default exchanger X: +# # PHASES +# # Montmorillonite(MgK) +# # K0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340K+ + 0.340Mg+2 + 4H4SiO4 + # # log_k 2.6 # 3.41 - 0.7 * 0.34 = 3.17 expected, but is fraction-dependent, A&P, problems p. 305 +# # Montmorillonite(MgMg) +# # Mg0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 1.02 Mg+2 + 8 H4SiO4 + # # log_k 6.27 # 3.41 * 2 - 0.6 * 0.34 = 6.62 +# # Montmorillonite(MgCa) +# # Ca0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 0.68 Mg+2 + 8 H4SiO4 + 0.34 Ca+2 + # # log_k 6.2 # 3.41 * 2 - 0.8 * 0.34 = 6.55 +# # # in EXCHANGE 1, comment X_montm_mg, uncomment X... +# END + +# SOLUTION 1 +# pH 7 charge +# Na 1e-5 +# K 1e-5 +# Mg 1e-5 +# Ca 1e-5 +# END + +# # Give the solution composition for calculating the ininitial exchanger +# SOLUTION 99 +# pH 7 charge +# EQUILIBRIUM_PHASES 1 +# # solid solution of the end-members, SI = log10(fraction = 0.25) +# Montmorillonite(MgNa) -0.602 1e-2 +# Montmorillonite(MgCa) -0.602 1e-2 +# Montmorillonite(MgK) -0.602 1e-2 +# Montmorillonite(MgMg) -0.602 1e-2 +# Kaolinite 0 0 +# SAVE solution 99 +# END + +# # # with Gapon only, initial exchanger can be defined explicitly +# EXCHANGE 1 +# Na0.34X_montm_mg 1e-2 +# Ca0.17X_montm_mg 1e-2 +# K0.34X_montm_mg 1e-2 +# Mg0.17X_montm_mg 1e-2 +# END + +# USE solution 1 +# EQUILIBRIUM_PHASES 1 +# Kaolinite 0 0 +# # USE EXCHANGE 1 # with Gapon only, uncomment in KINETICS: # X_montm_mg -1 +# EXCHANGE 1 +# X_montm_mg Montmorillonite kin 1; -equil 99 # comment in KINETICS: # X_montm_mg -1 +# # X Montmorillonite kin 0.34; -equil 99 # default exchanger X, comment in KINETICS: # X_montm_mg -1 +# KINETICS 1 +# Montmorillonite +# -formula Mg0.34Al1.66Si4O10(OH)2 1 # X_montm_mg -1 +# -m 4e-2 +# -parms 0 2.5e5 1 0.67 +# -step 30 100 1e3 1e4 2e4 2e4 3e4 3e4 3e4 3e4 1e5 1e5 1e5 3e5 6e5 1e6 3e6 +# -cvode true +# INCREMENTAL_REACTIONS true +# USER_GRAPH 4 + # -headings time Na K Mg Ca mm_diss + # -axis_titles "Time / days" "Molality" "Montmorillonite dissolved / (mmol/kgw)" + # -axis_scale x_axis auto auto auto auto log + # -axis_scale y_axis auto auto auto auto log +# 1 t = TOTAL_TIME / (3600 * 24) : put(t, 1) +# 10 GRAPH_X t +# 12 mg = tot("Mg") : if mg < 1e-24 then mg = 1e-24 +# 14 ca = tot("Ca") : if ca < 1e-24 then ca = 1e-24 +# 20 GRAPH_Y TOT("Na"), TOT("K"), mg, ca +# 30 GRAPH_SY (4e-2 - kin("Montmorillonite")) * 1e3 +# END +# USE solution 99; REACTION +# USER_GRAPH 4; -connect_simulations false; -headings Solution_99 +# 1 t = get(1) +# 10 plot_xy t, tot("Na"), symbol = Circle , symbol_size = 15, color = Red +# 20 plot_xy t, tot("K"), symbol = Circle , symbol_size = 15, color = Green +# 30 plot_xy t, tot("Mg"), symbol = Circle , symbol_size = 15, color = Blue +# 40 plot_xy t, tot("Ca"), symbol = Circle , symbol_size = 15, color = Orange + +# ============================================================================================= +#(a) means amorphous. (d) means disordered, or less crystalline. +#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), +#precipitated, indicates an initial precipitate that is less crystalline. +#Zn(OH)2(e) indicates a specific crystal form, epsilon. +# ============================================================================================= +# For the reaction aA + bB = cC + dD, +# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), +# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). +# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. +# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. +# Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are +# hard-coded in calc_PR(): +# kij CH4 CO2 H2S N2 +# H2O 0.49 0.19 0.19 0.49 +# ============================================================================================= +# The molar volumes of solids are entered with +# -Vm vm cm3/mol +# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. +# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from +# Deer, Howie and Zussman, The rock-forming minerals, Longman. +# -------------------- +# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- +# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# The volume (cm3/mol) is +# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + +# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) +# + z^2 / 2 * Av * f(I^0.5) +# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 +# Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). +# 41.84 transforms cal/bar/mol into cm3/mol. +# pb is pressure in bar. +# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, +# W is fitted on measured solution densities. +# z is charge of the solute species. +# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). +# a0 is the ion-size parameter in the extended Debye-Hückel equation: +# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), +# a0 = -gamma x for cations, = 0 for anions. +# For details, consult ref. 1. +# ============================================================================================= +# The viscosity is calculated with a (modified) Jones-Dole equation: +# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) +# Parameters are for calculating the B and D terms: +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan +# z_i is absolute charge number, m_i is molality of i +# B_i = b0 + b1 exp(-b2 * tc) +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# D_i = d1 + exp(-d2 tc) +# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term. +# For details, consult ref. 4. +# +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. +# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. +# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. +# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp +# +# ============================================================================================= +# It remains the responsibility of the user to check the calculated results, for example with +# measured solubilities as a function of (P, T). diff --git a/database/pitzer.dat b/database/pitzer.dat index 69274d1d..0f7579f9 100644 --- a/database/pitzer.dat +++ b/database/pitzer.dat @@ -1,506 +1,518 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\pitzer.dat, 22/05/2024 19:46, 1033 lines, 38088 bytes, md5=d70476773ed110a269ebbcaf334f1133 +# Created 22 May 2024 19:49:25 +# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts pitzer.dat + # Pitzer.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution, using # diffusion coefficients of species, molal volumina of aqueous species and minerals, and critical temperatures and pressures of gases used in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES -Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 -B B(OH)3 0 B 10.81 -Ba Ba+2 0 Ba 137.33 -Br Br- 0 Br 79.904 -C CO3-2 2 HCO3 12.0111 -C(4) CO3-2 2 HCO3 12.0111 -Ca Ca+2 0 Ca 40.08 -Cl Cl- 0 Cl 35.453 -E e- 0 0.0 0.0 -Fe Fe+2 0 Fe 55.847 -H H+ -1 H 1.008 -H(1) H+ -1 0.0 -K K+ 0 K 39.0983 -Li Li+ 0 Li 6.941 -Mg Mg+2 0 Mg 24.305 -Mn Mn+2 0 Mn 54.938 -Na Na+ 0 Na 22.9898 -O H2O 0 O 16.00 -O(-2) H2O 0 0.0 -S SO4-2 0 SO4 32.064 -S(6) SO4-2 0 SO4 -Si H4SiO4 0 SiO2 28.0843 -Sr Sr+2 0 Sr 87.62 -# redox-uncoupled gases -Hdg Hdg 0 Hdg 2.016 # H2 gas -Oxg Oxg 0 Oxg 32 # Oxygen gas -Mtg Mtg 0.0 Mtg 16.032 # CH4 gas -Sg H2Sg 0.0 H2Sg 32.064 # H2S gas -Ntg Ntg 0 Ntg 28.0134 # N2 gas +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 +B B(OH)3 0 B 10.81 +Ba Ba+2 0 Ba 137.33 +Br Br- 0 Br 79.904 +C CO3-2 2 HCO3 12.0111 +C(4) CO3-2 2 HCO3 12.0111 +Ca Ca+2 0 Ca 40.08 +Cl Cl- 0 Cl 35.453 +E e- 1 0.0 0.0 +Fe Fe+2 0 Fe 55.847 +H H+ -1 H 1.008 +H(1) H+ -1 0.0 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.941 +Mg Mg+2 0 Mg 24.305 +Mn Mn+2 0 Mn 54.938 +Na Na+ 0 Na 22.9898 +O H2O 0 O 16.00 +O(-2) H2O 0 0.0 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +Si H4SiO4 0 SiO2 28.0843 +Sr Sr+2 0 Sr 87.62 +# redox-uncoupled gases +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # Oxygen gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas +Sg H2Sg 0 H2Sg 32.064 # H2S gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 4. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc -# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) - -viscosity 9.35e-2 -7.87e-2 2.89e-2 2.7e-4 3.42e-2 1.704 # for viscosity parameters see ref. 5 + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 + -dw 9.31e-9 823 5.55 0 3.07 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif +# Dw(TK) = 9.31e-9 * exp(823 / TK - 823 / 298.15) * viscos_0_25 / viscos_0_tc +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif + +# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 3.07 for H+) +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. (a2 = Vm = 0 for H+, the reference for Vm) +# a3 = -10 ? ka = DH_B * a * mu^a2 in DHO. (Define a3 = -10.) +# -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) + +# If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O + -dw 2.299e-9 -254 Li+ = Li+ - -dw 1.03e-9 80 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.41e-2 3.91e-2 9.6e-4 6.3e-4 2.094 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2 For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ - -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # for calculating densities (rho) when I > 3... # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 - -viscosity 0.139 -8.71e-2 1.24e-2 1.45e-2 7.5e-3 1.062 + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ - -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.70 0 1 - -viscosity 0.114 -0.203 1.60e-2 2.42e-2 2.53e-2 0.682 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 + -dw 1.96e-9 254 3.484 0 0.1964 Mg+2 = Mg+2 - -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.423 0 0 1.67e-3 8.1e-3 2.50 + -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 - -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 - -viscosity 0.379 -0.171 3.59e-2 1.55e-3 9.0e-3 2.282 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 - -dw 0.794e-9 161 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 Ba+2 = Ba+2 - -dw 0.848e-9 46 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 - -viscosity 0.339 -0.226 1.38e-2 3.06e-2 0 0.768 + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3 Mn+2 = Mn+2 - -dw 0.688e-9 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 + -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 + -dw 0.688e-9 Fe+2 = Fe+2 - -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 Cl- = Cl- - -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 - -viscosity 0 0 0 0 0 0 1 # the reference solute + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.16 0.2071 0.7432 CO3-2 = CO3-2 - -dw 0.955e-9 225 1.002 3.96 - -Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872 - -viscosity 0 0.296 3.63e-2 2e-4 -1.90e-2 1.881 -1.754 + -Vm 8.569 -10.4 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872 + -viscosity 0 0.296 3.63e-2 2e-4 -1.9e-2 1.881 -1.754 + -dw 0.955e-9 -60 2.257 0.1022 0.4136 SO4-2 = SO4-2 - -dw 1.07e-9 138 3.95 25.9 - -Vm 8.75 5.48 0 -6.41 3.32 0 0 0 -9.33E-2 0 - -viscosity -7.63e-2 0.229 1.34e-2 1.76e-3 -1.52e-3 2.079 0.271 + -Vm -7.77 43.17 176 -51.45 3.794 0 4.97 20.5 -5.77e-2 0.45 + -viscosity -4.1e-2 0.1735 1.308e-2 2.16e-4 2.83e-2 3.375 0.21 + -dw 1.07e-9 -63 0.397 0.982 1.01 B(OH)3 = B(OH)3 - -dw 1.1e-9 - -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt + -Vm 7.0643 8.8547 3.5844 -3.1451 -.2 # supcrt + -dw 1.1e-9 Br- = Br- - -dw 2.01e-9 258 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2 - -viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818 + -dw 2.09e-9 208 3.5 0 0.5737 H4SiO4 = H4SiO4 - -dw 1.10e-9 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 + -dw 1.1e-9 # redox-uncoupled gases Hdg = Hdg # H2 - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 Oxg = Oxg # O2 - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 Mtg = Mtg # CH4 - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 Ntg = Ntg # N2 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 # aqueous species H2O = OH- + H+ - -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 - -viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 + -viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH + -dw 5.27e-9 491 1.851 0 0.3256 CO3-2 + H+ = HCO3- - log_k 10.3393 - delta_h -3.561 kcal - -analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9 - -dw 1.18e-9 -79.0 0.956 -3.29 - -Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691 - -viscosity 0 0.633 7.2e-3 0 0 0 1.087 + log_k 10.3393; delta_h -3.561 kcal + -analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9 + -Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691 + -viscosity 0 0.633 7.2e-3 0 0 0 1.087 + -dw 1.18e-9 -108 9.955 0 1.4928 CO3-2 + 2 H+ = CO2 + H2O - log_k 16.6767 - delta_h -5.738 kcal - -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + log_k 16.6767 + delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 SO4-2 + H+ = HSO4- - log_k 1.979 - delta_h 4.91 kcal - -analytic -5.3585 0.0183412 557.2461 - -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 3.29e-2 -4.86e-2 0.409 1e-5 4.23e-2 1.069 0.7371 + -dw 0.731e-9 1e3 7.082 3 0.86 H2Sg = HSg- + H+ - log_k -6.994 - delta_h 5.30 kcal - -analytical 11.17 -0.02386 -3279.0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt -2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T - -analytical 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + log_k -6.994 + delta_h 5.3 kcal + -analytical 11.17 -0.02386 -3279 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T + -analytical 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 B(OH)3 + H2O = B(OH)4- + H+ - log_k -9.239 - delta_h 0 kcal -3B(OH)3 = B3O3(OH)4- + 2H2O + H+ - log_k -7.528 - delta_h 0 kcal -4B(OH)3 = B4O5(OH)4-2 + 3H2O + 2H+ - log_k -16.134 - delta_h 0 kcal + log_k -9.239 + delta_h 0 kcal +3 B(OH)3 = B3O3(OH)4- + 2 H2O + H+ + log_k -7.528 + delta_h 0 kcal +4 B(OH)3 = B4O5(OH)4-2 + 3 H2O + 2 H+ + log_k -16.134 + delta_h 0 kcal Ca+2 + B(OH)3 + H2O = CaB(OH)4+ + H+ - log_k -7.589 - delta_h 0 kcal + log_k -7.589 + delta_h 0 kcal Mg+2 + B(OH)3 + H2O = MgB(OH)4+ + H+ - log_k -7.840 - delta_h 0 kcal + log_k -7.84 + delta_h 0 kcal # Ca+2 + CO3-2 = CaCO3 - # log_k 3.151 + # log_k 3.151 # delta_h 3.547 kcal # -analytic -1228.806 -0.299440 35512.75 485.818 - # -dw 4.46e-10 # complexes: calc'd with the Pikal formula - # -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt + # -dw 4.46e-10 # complexes: calc'd with the Pikal formula + # -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Mg+2 + H2O = MgOH+ + H+ - log_k -11.809 + log_k -11.809 delta_h 15.419 kcal Mg+2 + CO3-2 = MgCO3 - log_k 2.928 - delta_h 2.535 kcal - -analytic -32.225 0.0 1093.486 12.72433 + log_k 2.928 + delta_h 2.535 kcal + -analytic -32.225 0 1093.486 12.72433 -dw 4.21e-10 - -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -Vm -.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt H4SiO4 = H3SiO4- + H+ - -log_k -9.83; -delta_h 6.12 kcal - -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 + -log_k -9.83; -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ - -log_k -23.0; -delta_h 17.6 kcal - -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 + -log_k -23; -delta_h 17.6 kcal + -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 PHASES Akermanite - Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 H4SiO4 - H2O # llnl.dat - log_k 45.23 - -delta_H -289 kJ/mol + Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 H4SiO4 - H2O # llnl.dat + log_k 45.23 + -delta_H -289 kJ/mol Vm 92.6 Anhydrite CaSO4 = Ca+2 + SO4-2 - log_k -4.362 - -analytical_expression 5.009 -2.21e-2 -796.4 # ref. 3 + log_k -4.362 + -analytical_expression 5.009 -2.21e-2 -796.4 # ref. 3 -Vm 46.1 # 136.14 / 2.95 Anthophyllite - Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 - 8 H2O + 8 H4SiO4 # llnl.dat - log_k 66.80 - -delta_H -483 kJ/mol + Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 - 8 H2O + 8 H4SiO4 # llnl.dat + log_k 66.8 + -delta_H -483 kJ/mol Vm 269 Antigorite - Mg48Si34O85(OH)62 + 96 H+ = 34 H4SiO4 + 48 Mg+2 + 11 H2O # llnl.dat - log_k 477.19 - -delta_H -3364 kJ/mol + Mg48Si34O85(OH)62 + 96 H+ = 34 H4SiO4 + 48 Mg+2 + 11 H2O # llnl.dat + log_k 477.19 + -delta_H -3364 kJ/mol Vm 1745 Aragonite CaCO3 = CO3-2 + Ca+2 - log_k -8.336 + log_k -8.336 delta_h -2.589 kcal - -analytic -171.8607 -.077993 2903.293 71.595 + -analytic -171.8607 -.077993 2903.293 71.595 -Vm 34.04 Arcanite - K2SO4 = SO4-2 + 2 K+ - log_k -1.776; -delta_h 5 kcal - -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 -Vm 65.5 Artinite - Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O # llnl.dat - log_k 19.66 - -delta_H -130 kJ/mol + Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O # llnl.dat + log_k 19.66 + -delta_H -130 kJ/mol Vm 97.4 Barite BaSO4 = Ba+2 + SO4-2 - log_k -9.97; delta_h 6.35 kcal - -analytical_expression -282.43 -8.972e-2 5822 113.08 # ref. 3 + log_k -9.97; delta_h 6.35 kcal + -analytical_expression -282.43 -8.972e-2 5822 113.08 # ref. 3 -Vm 52.9 Bischofite - MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O - log_k 4.455 - -analytical_expression 7.526 -1.114e-2 115.7 # ref. 3 + MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O + log_k 4.455 + -analytical_expression 7.526 -1.114e-2 115.7 # ref. 3 Vm 127.1 Bloedite - Na2Mg(SO4)2:4H2O = Mg++ + 2 Na+ + 2 SO4-- + 4 H2O - log_k -2.347 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite + Na2Mg(SO4)2:4H2O = Mg+2 + 2 Na+ + 2 SO4-2 + 4 H2O + log_k -2.347 + -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite Vm 147 Brucite - Mg(OH)2 = Mg++ + 2 OH- - log_k -10.88 - -delta_H 4.85 kcal/mol + Mg(OH)2 = Mg+2 + 2 OH- + log_k -10.88 + -delta_H 4.85 kcal/mol Vm 24.6 Burkeite - Na6CO3(SO4)2 = CO3-2 + 2 SO4-- + 6 Na+ - log_k -0.772 + Na6CO3(SO4)2 = CO3-2 + 2 SO4-2 + 6 Na+ + log_k -0.772 Vm 152 Calcite CaCO3 = CO3-2 + Ca+2 - log_k -8.406 + log_k -8.406 delta_h -2.297 kcal - -analytic 8.481 -0.032644 -2133 # ref. 3 with data from Ellis, 1959, Plummer and Busenberg, 1982 + -analytic 8.481 -0.032644 -2133 # ref. 3 with data from Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 Carnallite - KMgCl3:6H2O = K+ + Mg+2 + 3Cl- + 6H2O - log_k 4.35; -delta_h 1.17 - -analytical_expression 24.06 -3.11e-2 -3.09e3 # ref. 3 + KMgCl3:6H2O = K+ + Mg+2 + 3 Cl- + 6 H2O + log_k 4.35; -delta_h 1.17 + -analytical_expression 24.06 -3.11e-2 -3.09e3 # ref. 3 Vm 173.7 Celestite SrSO4 = Sr+2 + SO4-2 - log_k -6.630 - -analytic -7.14 6.11E-03 75 0 0 -1.79E-05 # ref. 3 + log_k -6.63 + -analytic -7.14 6.11E-3 75 0 0 -1.79E-5 # ref. 3 -Vm 46.4 Chalcedony SiO2 + 2 H2O = H4SiO4 - -log_k -3.55; -delta_h 4.720 kcal + -log_k -3.55; -delta_h 4.72 kcal -Vm 23.1 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 # phreeqc.dat - -log_k 32.2 - -delta_h -46.800 kcal - -analytic 13.248 0.0 10217.1 -6.1894 + -log_k 32.2 + -delta_h -46.8 kcal + -analytic 13.248 0 10217.1 -6.1894 -Vm 110 Diopside - CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 - 2 H2O + 2 H4SiO4 # llnl.dat - log_k 20.96 - -delta_H -134 kJ/mol + CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 - 2 H2O + 2 H4SiO4 # llnl.dat + log_k 20.96 + -delta_H -134 kJ/mol Vm 67.2 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - log_k -17.09 + log_k -17.09 delta_h -9.436 kcal - -analytic -120.63 -0.1051 0 54.509 # 50–175°C, Bénézeth et al., 2018, GCA 224, 262-275. + -analytic -120.63 -0.1051 0 54.509 # 50–175°C, Bénézeth et al., 2018, GCA 224, 262-275 -Vm 64.5 Enstatite - MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat - log_k 11.33 - -delta_H -83 kJ/mol + MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat + log_k 11.33 + -delta_H -83 kJ/mol Vm 31.3 Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.881 - -analytical_expression 4.479 -6.99e-3 -1.265e3 # ref. 3 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.881 + -analytical_expression 4.479 -6.99e-3 -1.265e3 # ref. 3 Vm 147 Forsterite - Mg2SiO4 + 4 H+ = H4SiO4 + 2 Mg+2 # llnl.dat - log_k 27.86 - -delta_H -206 kJ/mol + Mg2SiO4 + 4 H+ = H4SiO4 + 2 Mg+2 # llnl.dat + log_k 27.86 + -delta_H -206 kJ/mol Vm 43.7 Gaylussite CaNa2(CO3)2:5H2O = Ca+2 + 2 CO3-2 + 2 Na+ + 5 H2O - log_k -9.421 + log_k -9.421 Glaserite - NaK3(SO4)2 = Na+ + 3K+ + 2SO4-2 - log_k -3.803; -delta_h 25 + NaK3(SO4)2 = Na+ + 3 K+ + 2 SO4-2 + log_k -3.803; -delta_h 25 -Vm 123 Glauberite - Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2 - log_k -5.31 - -analytical_expression 218.142 0 -9285 -77.735 # ref. 3 + Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2 + log_k -5.31 + -analytical_expression 218.142 0 -9285 -77.735 # ref. 3 Vm 100.4 Goergeyite - K2Ca5(SO4)6H2O = 2K+ + 5Ca+2 + 6SO4-2 + H2O + K2Ca5(SO4)6H2O = 2 K+ + 5 Ca+2 + 6 SO4-2 + H2O log_k -29.5 - -analytical_expression 1056.787 0 -52300 -368.06 # ref. 3 - -Vm 295.9 + -analytical_expression 1056.787 0 -52300 -368.06 # ref. 3 + -Vm 295.9 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58; -delta_h -0.109 kcal - -analytical_expression 82.381 0 -3804.5 -29.9952 # ref. 3 + -log_k -4.58; -delta_h -0.109 kcal + -analytical_expression 82.381 0 -3804.5 -29.9952 # ref. 3 -Vm 73.9 Halite - NaCl = Cl- + Na+ - log_k 1.570 - -analytical_expression 159.605 8.4294e-2 -3975.6 -66.857 0 -4.9364e-5 # ref. 3 + NaCl = Cl- + Na+ + log_k 1.57 + -analytical_expression 159.605 8.4294e-2 -3975.6 -66.857 0 -4.9364e-5 # ref. 3 -Vm 27.1 Hexahydrite - MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.635 - -analytical_expression -0.733 -2.80e-3 -8.57e-3 # ref. 3 + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.635 + -analytical_expression -0.733 -2.8e-3 -8.57e-3 # ref. 3 Vm 132 Huntite - CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- # llnl.dat - log_k 10.30 - -analytical_expression -1.145e3 -3.249e-1 3.941e4 4.526e2 + CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- # llnl.dat + log_k 10.3 + -analytical_expression -1.145e3 -3.249e-1 3.941e4 4.526e2 Vm 130.8 Kainite - KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O - log_k -0.193 + KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O + log_k -0.193 Kalicinite - KHCO3 = K+ + H+ + CO3-2 - log_k -9.94 # Harvie et al., 1984 + KHCO3 = K+ + H+ + CO3-2 + log_k -9.94 # Harvie et al., 1984 Kieserite - MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -0.123 - -analytical_expression 47.24 -0.12077 -5.356e3 0 0 7.272e-5 # ref. 3 + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -0.123 + -analytical_expression 47.24 -0.12077 -5.356e3 0 0 7.272e-5 # ref. 3 Vm 53.8 Labile_S - Na4Ca(SO4)3:2H2O = 4Na+ + Ca+2 + 3SO4-2 + 2H2O - log_k -5.672 + Na4Ca(SO4)3:2H2O = 4 Na+ + Ca+2 + 3 SO4-2 + 2 H2O + log_k -5.672 Leonhardite - MgSO4:4H2O = Mg+2 + SO4-2 + 4H2O - log_k -0.887 + MgSO4:4H2O = Mg+2 + SO4-2 + 4 H2O + log_k -0.887 Leonite - K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O - log_k -3.979 + K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O + log_k -3.979 Magnesite - MgCO3 = CO3-2 + Mg+2 - log_k -7.834 - delta_h -6.169 + MgCO3 = CO3-2 + Mg+2 + log_k -7.834 + delta_h -6.169 Vm 28.3 MgCl2_2H2O - MgCl2:2H2O = Mg+2 + 2 Cl- + 2 H2O - -analytical_expression -10.273 0 7.403e3 # ref. 3 + MgCl2:2H2O = Mg+2 + 2 Cl- + 2 H2O + -analytical_expression -10.273 0 7.403e3 # ref. 3 MgCl2_4H2O - MgCl2:4H2O = Mg+2 + 2 Cl- + 4 H2O - -analytical_expression 12.98 -2.013e-2 # ref. 3 + MgCl2:4H2O = Mg+2 + 2 Cl- + 4 H2O + -analytical_expression 12.98 -2.013e-2 # ref. 3 Mirabilite - Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O - -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 Vm 216 Misenite - K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+ - log_k -10.806 + K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+ + log_k -10.806 Nahcolite - NaHCO3 = CO3-2 + H+ + Na+ - log_k -10.742 - Vm 38.0 + NaHCO3 = CO3-2 + H+ + Na+ + log_k -10.742 + Vm 38 Natron Na2CO3:10H2O = CO3-2 + 2 Na+ + 10 H2O - log_k -0.825 + log_k -0.825 Nesquehonite - MgCO3:3H2O = CO3-2 + Mg+2 + 3 H2O - log_k -5.167 + MgCO3:3H2O = CO3-2 + Mg+2 + 3 H2O + log_k -5.167 Pentahydrite - MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O - log_k -1.285 + MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O + log_k -1.285 Pirssonite - Na2Ca(CO3)2:2H2O = 2Na+ + Ca+2 + 2CO3-2 + 2 H2O - log_k -9.234 + Na2Ca(CO3)2:2H2O = 2 Na+ + Ca+2 + 2 CO3-2 + 2 H2O + log_k -9.234 Polyhalite - K2MgCa2(SO4)4:2H2O = 2K+ + Mg+2 + 2 Ca+2 + 4SO4-2 + 2 H2O - log_k -13.744 + K2MgCa2(SO4)4:2H2O = 2 K+ + Mg+2 + 2 Ca+2 + 4 SO4-2 + 2 H2O + log_k -13.744 Vm 218 Portlandite - Ca(OH)2 = Ca+2 + 2 OH- - log_k -5.190 + Ca(OH)2 = Ca+2 + 2 OH- + log_k -5.19 Quartz SiO2 + 2 H2O = H4SiO4 - -log_k -3.98; -delta_h 5.990 kcal + -log_k -3.98; -delta_h 5.99 kcal -Vm 22.67 Schoenite - K2Mg(SO4)2:6H2O = 2K+ + Mg+2 + 2 SO4-2 + 6H2O - log_k -4.328 + K2Mg(SO4)2:6H2O = 2 K+ + Mg+2 + 2 SO4-2 + 6 H2O + log_k -4.328 Sepiolite(d) - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat - -log_k 18.66 + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat + -log_k 18.66 -Vm 162 Sepiolite - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat - -log_k 15.760 - -delta_h -10.700 kcal + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat + -log_k 15.76 + -delta_h -10.7 kcal -Vm 154 SiO2(a) SiO2 + 2 H2O = H4SiO4 - -log_k -2.71; -delta_h 3.340 kcal - -analytic 20.42 3.107e-3 -1492 -7.68 # ref. 3 + -log_k -2.71; -delta_h 3.34 kcal + -analytic 20.42 3.107e-3 -1492 -7.68 # ref. 3 -Vm 25.7 Sylvite - KCl = K+ + Cl- - log_k 0.90; -delta_h 8 - -analytical_expression -50.571 9.8815e-2 1.3135e4 0 -1.3754e6 -7.393e-5 # ref. 3 + KCl = K+ + Cl- + log_k 0.9; -delta_h 8 + -analytical_expression -50.571 9.8815e-2 1.3135e4 0 -1.3754e6 -7.393e-5 # ref. 3 Vm 37.5 Syngenite - K2Ca(SO4)2:H2O = 2K+ + Ca+2 + 2SO4-2 + H2O - log_k -6.43; -delta_h -32.65 # ref. 3 - -Vm 127.3 + K2Ca(SO4)2:H2O = 2 K+ + Ca+2 + 2 SO4-2 + H2O + log_k -6.43; -delta_h -32.65 # ref. 3 + -Vm 127.3 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 # phreeqc.dat - -log_k 21.399 + -log_k 21.399 -delta_h -46.352 kcal -Vm 140 Thenardite Na2SO4 = 2 Na+ + SO4-2 - -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 -Vm 52.9 Trona - Na3H(CO3)2:2H2O = 3 Na+ + H+ + 2CO3-2 + 2H2O - log_k -11.384 + Na3H(CO3)2:2H2O = 3 Na+ + H+ + 2 CO3-2 + 2 H2O + log_k -11.384 Vm 106 Borax - Na2(B4O5(OH)4):8H2O + 2 H+ = 4 B(OH)3 + 2 Na+ + 5 H2O - log_k 12.464 + Na2(B4O5(OH)4):8H2O + 2 H+ = 4 B(OH)3 + 2 Na+ + 5 H2O + log_k 12.464 Vm 223 Boric_acid,s - B(OH)3 = B(OH)3 - log_k -0.030 + B(OH)3 = B(OH)3 + log_k -0.03 KB5O8:4H2O - KB5O8:4H2O + 3H2O + H+ = 5B(OH)3 + K+ - log_k 4.671 + KB5O8:4H2O + 3 H2O + H+ = 5 B(OH)3 + K+ + log_k 4.671 K2B4O7:4H2O - K2B4O7:4H2O + H2O + 2H+ = 4B(OH)3 + 2K+ - log_k 13.906 + K2B4O7:4H2O + H2O + 2 H+ = 4 B(OH)3 + 2 K+ + log_k 13.906 NaBO2:4H2O - NaBO2:4H2O + H+ = B(OH)3 + Na+ + 3H2O - log_k 9.568 + NaBO2:4H2O + H+ = B(OH)3 + Na+ + 3 H2O + log_k 9.568 NaB5O8:5H2O - NaB5O8:5H2O + 2H2O + H+ = 5B(OH)3 + Na+ - log_k 5.895 + NaB5O8:5H2O + 2 H2O + H+ = 5 B(OH)3 + Na+ + log_k 5.895 Teepleite - Na2B(OH)4Cl + H+ = B(OH)3 + 2Na+ + Cl- + H2O - log_k 10.840 + Na2B(OH)4Cl + H+ = B(OH)3 + 2 Na+ + Cl- + H2O + log_k 10.84 CO2(g) CO2 = CO2 - log_k -1.468 + log_k -1.468 delta_h -4.776 kcal - -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 - -T_c 304.2 # critical T, K - -P_c 72.80 # critical P, atm + -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 + -T_c 304.2 # critical T, K + -P_c 72.8 # critical P, atm -Omega 0.225 # acentric factor H2O(g) H2O = H2O - log_k 1.506; delta_h -44.03 kJ - -T_c 647.3 # critical T, K - -P_c 217.60 # critical P, atm - -Omega 0.344 # acentric factor - -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 + log_k 1.506; delta_h -44.03 kJ + -T_c 647.3 # critical T, K + -P_c 217.6 # critical P, atm + -Omega 0.344 # acentric factor + -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 # redox-uncoupled gases Oxg(g) Oxg = Oxg - -analytic -7.5001 7.8981e-003 0.0 0.0 2.0027e+005 - T_c 154.6 ; -P_c 49.80 ; -Omega 0.021 + -analytic -7.5001 7.8981e-3 0 0 2.0027e+5 + T_c 154.6; -P_c 49.8; -Omega 0.021 Hdg(g) Hdg = Hdg - -analytic -9.3114e+000 4.6473e-003 -4.9335e+001 1.4341e+000 1.2815e+005 - -T_c 33.2 ; -P_c 12.80 ; -Omega -0.225 + -analytic -9.3114e+0 4.6473e-3 -4.9335e+1 1.4341e+0 1.2815e+5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 Ntg(g) Ntg = Ntg - -analytic -58.453 1.81800E-03 3199 17.909 -27460 - T_c 126.2 ; -P_c 33.50 ; -Omega 0.039 + -analytic -58.453 1.818E-3 3199 17.909 -27460 + T_c 126.2; -P_c 33.5; -Omega 0.039 Mtg(g) Mtg = Mtg - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C - T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + T_c 190.6; -P_c 45.4; -Omega 0.008 H2Sg(g) - H2Sg = H+ + HSg- - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 - T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 + H2Sg = H+ + HSg- + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + T_c 373.2; -P_c 88.2; -Omega 0.1 PITZER -B0 B(OH)4- K+ 0.035 @@ -512,14 +524,14 @@ PITZER Ba+2 Br- 0.31455 0 0 -0.33825E-3 Ba+2 Cl- 0.5268 0 0 0 0 4.75e4 # ref. 3 Ba+2 OH- 0.17175 - Br- H+ 0.1960 0 0 -2.049E-4 + Br- H+ 0.196 0 0 -2.049E-4 Br- K+ 0.0569 0 0 7.39E-4 Br- Li+ 0.1748 0 0 -1.819E-4 Br- Mg+2 0.4327 0 0 -5.625E-5 Br- Na+ 0.0973 0 0 7.692E-4 Br- Sr+2 0.331125 0 0 -0.32775E-3 Ca+2 Br- 0.3816 0 0 -5.2275E-4 - Ca+2 Cl- 0.3159 0 0 -3.27e-4 1.4e-7 # ref. 3 + Ca+2 Cl- 0.3159 0 0 -3.27e-4 1.4e-7 # ref. 3 Ca+2 HCO3- 0.4 Ca+2 HSO4- 0.2145 Ca+2 OH- -0.1747 @@ -527,13 +539,13 @@ PITZER CaB(OH)4+ Cl- 0.12 Cl- Fe+2 0.335925 Cl- H+ 0.1775 0 0 -3.081E-4 - Cl- K+ 0.04808 -758.48 -4.7062 0.010072 -3.7599e-6 # ref. 3 + Cl- K+ 0.04808 -758.48 -4.7062 0.010072 -3.7599e-6 # ref. 3 Cl- Li+ 0.1494 0 0 -1.685E-4 - Cl- Mg+2 0.351 0 0 -9.32e-4 5.94e-7 # ref. 3 + Cl- Mg+2 0.351 0 0 -9.32e-4 5.94e-7 # ref. 3 Cl- MgB(OH)4+ 0.16 Cl- MgOH+ -0.1 Cl- Mn+2 0.327225 - Cl- Na+ 7.534e-2 9598.4 35.48 -5.8731e-2 1.798e-5 -5e5 # ref. 3 + Cl- Na+ 7.534e-2 9598.4 35.48 -5.8731e-2 1.798e-5 -5e5 # ref. 3 Cl- Sr+2 0.2858 0 0 0.717E-3 CO3-2 K+ 0.1488 0 0 1.788E-3 CO3-2 Na+ 0.0399 0 0 1.79E-3 @@ -552,21 +564,21 @@ PITZER K+ SO4-2 3.17e-2 0 0 9.28e-4 # ref. 3 Li+ OH- 0.015 Li+ SO4-2 0.136275 0 0 0.5055E-3 - Mg+2 SO4-2 0.2135 -951 0 -2.34e-2 2.28e-5 # ref. 3 + Mg+2 SO4-2 0.2135 -951 0 -2.34e-2 2.28e-5 # ref. 3 Mn+2 SO4-2 0.2065 - Na+ OH- 0.0864 0 0 7.00E-4 - Na+ SO4-2 2.73e-2 0 -5.8 9.89e-3 0 -1.563e5 # ref. 3 - SO4-2 Sr+2 0.200 0 0 -2.9E-3 + Na+ OH- 0.0864 0 0 7E-4 + Na+ SO4-2 2.73e-2 0 -5.8 9.89e-3 0 -1.563e5 # ref. 3 + SO4-2 Sr+2 0.2 0 0 -2.9E-3 -B1 B(OH)4- K+ 0.14 B(OH)4- Na+ 0.089 - B3O3(OH)4- Na+ -0.910 - B4O5(OH)4-2 Na+ -0.40 + B3O3(OH)4- Na+ -0.91 + B4O5(OH)4-2 Na+ -0.4 Ba+2 Br- 1.56975 0 0 6.78E-3 Ba+2 Cl- 0.687 0 0 1.417e-2 # ref. 3 Ba+2 OH- 1.2 Br- H+ 0.3564 0 0 4.467E-4 - Br- K+ 0.2212 0 0 17.40E-4 + Br- K+ 0.2212 0 0 17.4E-4 Br- Li+ 0.2547 0 0 6.636E-4 Br- Mg+2 1.753 0 0 3.8625E-3 Br- Na+ 0.2791 0 0 10.79E-4 @@ -581,7 +593,7 @@ PITZER Cl- H+ 0.2945 0 0 1.419E-4 Cl- K+ 0.2168 0 -6.895 2.262e-2 -9.293e-6 -1e5 # ref. 3 Cl- Li+ 0.3074 0 0 5.366E-4 - Cl- Mg+2 1.65 0 0 -1.09e-2 2.60e-5 # ref. 3 + Cl- Mg+2 1.65 0 0 -1.09e-2 2.6e-5 # ref. 3 Cl- MgOH+ 1.658 Cl- Mn+2 1.55025 Cl- Na+ 0.2769 1.377e4 46.8 -6.9512e-2 2e-5 -7.4823e5 # ref. 3 @@ -610,7 +622,7 @@ PITZER Ca+2 Cl- -1.13 0 0 -0.0476 # ref. 3 Ca+2 OH- -5.72 Ca+2 SO4-2 -59.3 0 0 -0.443 -3.96e-6 # ref. 3 - Fe+2 SO4-2 -42.0 + Fe+2 SO4-2 -42 HCO3- Na+ 8.22 0 0 -0.049 # ref. 3 + new -analytic for calcite Mg+2 SO4-2 -32.45 0 -3.236e3 21.812 -1.8859e-2 # ref. 3 Mn+2 SO4-2 -40.0 @@ -621,28 +633,28 @@ PITZER Ba+2 Cl- -0.143 -114.5 # ref. 3 Br- Ca+2 -0.00257 Br- H+ 0.00827 0 0 -5.685E-5 - Br- K+ -0.00180 0 0 -7.004E-5 + Br- K+ -0.0018 0 0 -7.004E-5 Br- Li+ 0.0053 0 0 -2.813E-5 Br- Mg+2 0.00312 - Br- Na+ 0.00116 0 0 -9.30E-5 + Br- Na+ 0.00116 0 0 -9.3E-5 Br- Sr+2 0.00122506 Ca+2 Cl- 1.4e-4 -57 -0.098 -7.83e-4 7.18e-7 # ref. 3 Ca+2 SO4-2 0.114 # ref. 3 Cl- Fe+2 -0.00860725 Cl- H+ 0.0008 0 0 6.213E-5 - Cl- K+ -7.88e-4 91.27 0.58643 -1.298e-3 4.9567e-7 # ref. 3 - Cl- Li+ 0.00359 0 0 -4.520E-5 - Cl- Mg+2 0.00651 0 0 -2.50e-4 2.418e-7 # ref. 3 + Cl- K+ -7.88e-4 91.27 0.58643 -1.298e-3 4.9567e-7 # ref. 3 + Cl- Li+ 0.00359 0 0 -4.52E-5 + Cl- Mg+2 0.00651 0 0 -2.5e-4 2.418e-7 # ref. 3 Cl- Mn+2 -0.0204972 Cl- Na+ 1.48e-3 -120.5 -0.2081 0 1.166e-7 11121 # ref. 3 - Cl- Sr+2 -0.00130 + Cl- Sr+2 -0.0013 CO3-2 K+ -0.0015 CO3-2 Na+ 0.0044 Fe+2 SO4-2 0.0209 H+ SO4-2 0.0438 HCO3- K+ -0.008 K+ OH- 0.0041 - K+ SO4-2 8.18e-3 -625 -3.30 4.06e-3 # ref. 3 + K+ SO4-2 8.18e-3 -625 -3.3 4.06e-3 # ref. 3 Li+ SO4-2 -0.00399338 0 0 -2.33345e-4 Mg+2 SO4-2 2.875e-2 0 -2.084 1.1428e-2 -8.228e-6 # ref. 3 Mn+2 SO4-2 0.01636 @@ -652,8 +664,8 @@ PITZER B(OH)4- Cl- -0.065 B(OH)4- SO4-2 -0.012 B3O3(OH)4- Cl- 0.12 - B3O3(OH)4- HCO3- -0.10 - B3O3(OH)4- SO4-2 0.10 + B3O3(OH)4- HCO3- -0.1 + B3O3(OH)4- SO4-2 0.1 B4O5(OH)4-2 Cl- 0.074 B4O5(OH)4-2 HCO3- -0.087 B4O5(OH)4-2 SO4-2 0.12 @@ -684,7 +696,7 @@ PITZER B(OH)3 K+ -0.14 B(OH)3 Na+ -0.097 B(OH)3 SO4-2 0.018 - B3O3(OH)4- B(OH)3 -0.20 + B3O3(OH)4- B(OH)3 -0.2 Ca+2 CO2 0.183 Ca+2 H4SiO4 0.238 # ref. 3 Cl- CO2 -0.005 @@ -770,52 +782,52 @@ PITZER HSO4- Mg+2 SO4-2 -0.0425 HSO4- Na+ SO4-2 -0.0094 K+ Mg+2 SO4-2 -0.048 - K+ Na+ SO4-2 -0.010 - K+ OH- SO4-2 -0.050 + K+ Na+ SO4-2 -0.01 + K+ OH- SO4-2 -0.05 Mg+2 Na+ SO4-2 -0.015 Na+ OH- SO4-2 -0.009 EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - log_k 0.0 + log_k 0 Na+ + X- = NaX - log_k 0.0 + log_k 0 K+ + X- = KX - log_k 0.7 - delta_h -4.3 # Jardine & Sparks, 1984 + log_k 0.7 + delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX - log_k -0.08 - delta_h 1.4 # Merriam & Thomas, 1956 + log_k -0.08 + delta_h 1.4 # Merriam & Thomas, 1956 - Ca+2 + 2X- = CaX2 - log_k 0.8 - delta_h 7.2 # Van Bladel & Gheyl, 1980 + Ca+2 + 2 X- = CaX2 + log_k 0.8 + delta_h 7.2 # Van Bladel & Gheyl, 1980 - Mg+2 + 2X- = MgX2 - log_k 0.6 - delta_h 7.4 # Laudelout et al., 1968 + Mg+2 + 2 X- = MgX2 + log_k 0.6 + delta_h 7.4 # Laudelout et al., 1968 - Sr+2 + 2X- = SrX2 - log_k 0.91 - delta_h 5.5 # Laudelout et al., 1968 + Sr+2 + 2 X- = SrX2 + log_k 0.91 + delta_h 5.5 # Laudelout et al., 1968 - Ba+2 + 2X- = BaX2 - log_k 0.91 - delta_h 4.5 # Laudelout et al., 1968 + Ba+2 + 2 X- = BaX2 + log_k 0.91 + delta_h 4.5 # Laudelout et al., 1968 - Mn+2 + 2X- = MnX2 - log_k 0.52 + Mn+2 + 2 X- = MnX2 + log_k 0.52 - Fe+2 + 2X- = FeX2 - log_k 0.44 + Fe+2 + 2 X- = FeX2 + log_k 0.44 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 @@ -826,52 +838,52 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - log_k 0.0 + log_k 0 - Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.29 # = pKa1,int + Hfo_sOH + H+ = Hfo_sOH2+ + log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - log_k 0.0 + log_k 0 - Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.29 # = pKa1,int + Hfo_wOH + H+ = Hfo_wOH2+ + log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int ############################################### -# CATIONS # +# CATIONS # ############################################### # # Cations from table 10.1 or 10.5 # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 + log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - log_k 5.01 + log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ log_k -6.58 - Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ - log_k -17.60 + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ + log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - log_k 5.46 + log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 # table 10.5 + log_k -7.2 # table 10.5 # # Derived constants table 10.5 # @@ -880,10 +892,10 @@ SURFACE_SPECIES log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - log_k -0.4 # table 10.5 + log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - log_k -3.5 # table 10.5 + log_k -3.5 # table 10.5 # Iron # Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ # log_k 0.7 # LFER using table 10.5 @@ -892,17 +904,17 @@ SURFACE_SPECIES # log_k -2.5 # LFER using table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. - Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - log_k -0.95 + Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ + log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M - Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ - log_k -2.98 + Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ + log_k -2.98 - Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ - log_k -11.55 + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ + log_k -11.55 ############################################### -# ANIONS # +# ANIONS # ############################################### # # Anions from table 10.6 @@ -912,56 +924,54 @@ SURFACE_SPECIES # # Borate Hfo_wOH + B(OH)3 = Hfo_wH2BO3 + H2O - log_k 0.62 + log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - log_k 7.78 + log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 + log_k 0.79 # # Carbonate: Van Geen et al., 1994 reoptimized for HFO # 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O - log_k 12.56 + log_k 12.56 - Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O - log_k 20.62 + Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O + log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 - Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 - -END -MEAN GAM -CaCl2 -CaSO4 -CaCO3 -Ca(OH)2 -MgCl2 -MgSO4 -MgCO3 -Mg(OH)2 -NaCl -Na2SO4 -NaHCO3 -Na2CO3 -NaOH -KCl -K2SO4 -KHCO3 -K2CO3 -KOH -HCl -H2SO4 -HBr + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 +MEAN_GAMMAS +CaCl2 Ca+2 1 Cl- 2 +CaSO4 Ca+2 1 SO4-2 1 +CaCO3 Ca+2 1 CO3-2 1 +Ca(OH)2 Ca+2 1 OH- 2 +MgCl2 Mg+2 1 Cl- 2 +MgSO4 Mg+2 1 SO4-2 1 +MgCO3 Mg+2 1 CO3-2 1 +Mg(OH)2 Mg+2 1 OH- 2 +NaCl Na+ 1 Cl- 1 +Na2SO4 Na+ 2 SO4-2 1 +NaHCO3 Na+ 1 HCO3- 1 +Na2CO3 Na+ 2 CO3-2 1 +NaOH Na+ 1 OH- 1 +KCl K+ 1 Cl- 1 +K2SO4 K+ 2 SO4-2 1 +HCO3 K+ 1 HCO3- 1 +K2CO3 K+ 2 CO3-2 1 +KOH K+ 1 OH- 1 +HCl H+ 1 Cl- 1 +H2SO4 H+ 2 SO4-2 1 +HBr H+ 1 Br- 1 END # For the reaction aA + bB = cC + dD, @@ -975,14 +985,14 @@ END # H2O 0.49 0.19 0.19 0.49 # ============================================================================================= # The molar volumes of solids are entered with -# -Vm vm cm3/mol +# -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. # -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- # type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with -# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + # a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) diff --git a/database/sit.dat b/database/sit.dat index 596a0d32..a14fc99d 100644 --- a/database/sit.dat +++ b/database/sit.dat @@ -1,15343 +1,14348 @@ + +SOLUTION_SPECIES # PHREEQC database -# Thermodynamic database ANDRA/RWM - THERMOCHIMIE-TDB (www.thermochimie-tdb.com) -# Version 9b0 -# Nom : ThermoChimie project -# BDD Date: 10/8/2015 -# Comment: no comment - -# NAMED_EXPRESSIONS - -# -# formation of O2 from H2O -# 2H2O = O2 + 4H+ + 4e- -# -# Log_K_O2 -# log_k -85.980 -# delta_H 559.526 kJ/mol -# -# -analytic 1.20446E+1 0E+0 -2.9226E+4 0E+0 0E+0 - +# Thermodynamic database ANDRA - NWS - ONDRAF THERMO_CHIMIE (www.thermochimie-tdb.com) +# Version 12a +# Name : ThermoChimie project +# Database date: 22/08/2023 0:00:00 +# Generated by XCheck Tool v5.2.0 +# Comment: tidied with lsp.exe from https://phreeplot.org/lsp/lsp.html +# Redox states modified by David Parkhurst May 18, 2024 +# GFW of S(6) and Si modified by David Parkhurst May 18, 2024 SOLUTION_MASTER_SPECIES - -#element species alk gfw_formula element_gfw -E e- 0 0 0 -Acetate Acetate- 0 Acetate 59.01 -Adipate Adipate-2 0 Adipate 144.07 -Ag Ag+ 0 Ag 107.8682 -Al Al+3 0 Al 26.9815 -Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 -Am Am+3 0 Am 243 -Am(+2) Am+2 0 Am 243 -Am(+3) Am+3 0 Am 243 -Am(+4) Am+4 0 Am 243 -Am(+5) AmO2+ 0 Am 243 -Am(+6) AmO2+2 0 Am 243 -As AsO4-3 0 As 74.9216 -As(+3) H3(AsO3) 0 As 74.9216 -As(+5) AsO4-3 2 As 74.9216 -B B(OH)4- 1 B 10.811 -Ba Ba+2 0 Ba 137.327 -Br Br- 0 Br 79.904 -C CO3-2 2 CO3 12.011 -C(+4) CO3-2 2 CO3 12.011 -C(-4) CH4 0 CH4 12.011 -Ca Ca+2 0 Ca 40.078 -Cd Cd+2 0 Cd 112.411 -Cit Cit-3 0 Cit 189.1013 -Cl Cl- 0 Cl 35.4527 -Cm Cm+3 0 Cm 247 -Cn Cn- 0 Cn 26.018 -Co Co+2 0 Co 58.9332 -Cr CrO4-2 0 CrO4 51.9961 -Cr(+2) Cr+2 0 Cr 51.9961 -Cr(+3) Cr+3 -1 Cr 51.9961 -Cr(+6) CrO4-2 1 CrO4 51.9961 -Cs Cs+ 0 Cs 132.9054 -Cu Cu+2 0 Cu 63.546 -Cu(+1) Cu+ 0 Cu 63.546 -Cu(+2) Cu+2 0 Cu 63.546 -Edta Edta-4 0 Edta 288.2134 -Eu Eu+3 0 Eu 151.965 -Eu(+2) Eu+2 0 Eu 151.965 -Eu(+3) Eu+3 0 Eu 151.965 -F F- 0 F 18.9984 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe 55.847 -Fe(+3) Fe+3 0 Fe 55.847 -Glu HGlu- 0 Glu 195.1459 -H H+ -1 H 1.0079 -H(+1) H+ -1 H 1.0079 -H(0) H2 0 H 1.0079 -Hf Hf+4 -4 Hf 178.49 -Hg Hg+2 0 Hg 200.59 -Hg(+2) Hg+2 0 Hg 200.59 -Hg(+1) Hg2+2 0 Hg2 401.18 -Ho Ho+3 0 Ho 164.9303 -I I- 0 I 126.9045 -I(+5) IO3- 0 I 126.9045 -I(-1) I- 0 I 126.9045 -Isa HIsa- 0 HIsa 180.1548 -K K+ 0 K 39.0983 -Li Li+ 0 Li 6.941 -Malonate Malonate-2 0 Malonate 63.99 -Mg Mg+2 0 Mg 24.305 -Mn Mn+2 0 Mn 54.938 -Mo MoO4-2 0 Mo 95.94 -N NO3- 0 N 14.0067 -N(+5) NO3- 0 N 14.0067 -N(-3) NH3 1 N 14.0067 -Na Na+ 0 Na 22.9898 -Nb Nb(OH)6- 0 Nb 92.9064 -Ni Ni+2 0 Ni 58.69 -Np NpO2+2 0 Np 237.048 -Np(+3) Np+3 0 Np 237.048 -Np(+4) Np+4 0 Np 237.048 -Np(+5) NpO2+ 0 Np 237.048 -Np(+6) NpO2+2 0 Np 237.048 -Nta Nta-3 0 Nta 188.1165 -O H2O 0 O 15.999 -O(0) O2 0 O 15.9994 -O(-2) H2O 0 O 15.9994 -Ox Ox-2 0 Ox 88.0196 -P H2(PO4)- 1 P 30.9738 -Pa Pa+4 0 Pa 231.0359 -Pa(+4) Pa+4 0 Pa 231.0359 -Pa(+5) PaO2+ 0 Pa 231.0359 -Pb Pb+2 0 Pb 207.2 -Pd Pd+2 -2 Pd 106.42 -Phthalat Phthalat-2 0 Phthalat 164.084 -Pu PuO2+2 0 Pu 244 -Pu(+3) Pu+3 0 Pu 244 -Pu(+4) Pu+4 0 Pu 244 -Pu(+5) PuO2+ 0 Pu 244 -Pu(+6) PuO2+2 0 Pu 244 -Pyrophos Pyrophos-4 0 Pyrophos 173.95 -Ra Ra+2 0 Ra 226.025 -Rb Rb+ 0 Rb 85.4678 -S SO4-2 0 SO4 32.066 -S(+2) S2O3-2 0 S 32.066 -S(+3) S2O4-2 0 S2O4-2 128.128 -S(+4) SO3-2 0 S 32.066 -S(+6) SO4-2 0 SO4 32.066 -S(-2) HS- 1 S 32.066 -Sb Sb(OH)3 0 Sb 121.76 -Sb(+3) Sb(OH)3 0 Sb 121.76 -Sb(+5) Sb(OH)5 0 Sb 121.76 -Scn Scn- 0 Scn 58.084 -Se SeO4-2 0 Se 78.96 -Se(+4) SeO3-2 0 Se 78.96 -Se(+6) SeO4-2 0 Se 78.96 -Se(-2) HSe- 0 Se 78.96 -Si H4(SiO4) 0 Si 28.0855 -Sm Sm+3 0 Sm 150.36 -Sn Sn+2 -1 Sn 118.71 -Sn(+2) Sn+2 -1 Sn 118.71 -Sn(+4) Sn+4 -4 Sn 118.71 -Sr Sr+2 0 Sr 87.62 -Suberate Suberate-2 0 Suberate 170.16 -Succinat Succinat-2 0 Succinat 116.07 -Tc TcO(OH)2 0 Tc 98 -Tc(+4) TcO(OH)2 0 Tc 98 -Tc(+6) TcO4-2 0 Tc 98 -Tc(+7) TcO4- 0 Tc 98 -Th Th+4 -3 Th 232.0381 -U UO2+2 0 U 238.0289 -U(+3) U+3 0 U 238.0289 -U(+4) U+4 0 U 238.0289 -U(+5) UO2+ 0 U 238.0289 -U(+6) UO2+2 0 U 238.0289 -Zn Zn+2 0 Zn 65.39 -Zr Zr+4 -4 Zr 91.22 - +#element species alk gfw_formula element_gfw +E e- 1 0 0 +# DLP: Set Alkalinity to 1 to account for non-master species with e- in equations +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.0436 +Adipate Adipate-2 1 Adipate 144.0700 +Acetate Acetate- 1 Acetate 59.0100 +Ag Ag+ -2 Ag 107.8682 +Al Al+3 0 Al 26.9815 +Am Am+3 0 Am 243.0000 +Am(+3) Am+3 0 Am 243.0000 +Am(+2) Am+2 0 Am 243.0000 +Am(+4) Am+4 0 Am 243.0000 +Am(+5) AmO2+ 0 Am 243.0000 +Am(+6) AmO2+2 0 Am 243.0000 +As AsO4-3 2 As 74.9216 +As(+5) AsO4-3 2 As 74.9216 +As(+3) H3(AsO3) 0 As 74.9216 +B B(OH)4- 1 B 10.8110 +Ba Ba+2 0 Ba 137.3270 +Be Be+2 0 Be 9.0122 +Br Br- 0 Br 79.9040 +C CO3-2 2 C 12.0110 +C(2) CO 0 C # DLP +C(+4) CO3-2 2 C 12.0110 +C(-4) CH4 0 C 12.0110 +Ca Ca+2 0 Ca 40.0780 +Cd Cd+2 -1 Cd 112.4110 +Cit Cit-3 1 Cit 189.1013 +Cl Cl- 0 Cl 35.4527 +Cl(-1) Cl- 0 Cl # DLP +Cl(0) Cl2 0 Cl # DLP +Cl(7) ClO4- 0 Cl # DLP +Cm Cm+3 0 Cm 247.0000 +Co Co+2 0 Co 58.9332 +Cr CrO4-2 1 Cr 51.9961 +Cr(+6) CrO4-2 1 Cr 51.9961 +Cr(+2) Cr+2 -1 Cr 51.9961 +Cr(+3) Cr+3 2 Cr 51.9961 +Cs Cs+ 0 Cs 132.9054 +Cu Cu+2 0 Cu 63.5460 +Cu(+2) Cu+2 0 Cu 63.5460 +Cu(+1) Cu+ -2 Cu 63.5460 +Edta Edta-4 2 Edta 288.2134 +Eu Eu+3 0 Eu 151.9650 +Eu(+3) Eu+3 0 Eu 151.9650 +Eu(+2) Eu+2 0 Eu 151.9650 +F F- 0 F 18.9984 +Fe Fe+2 0 Fe 55.8470 +Fe(+2) Fe+2 0 Fe 55.8470 +Fe(+3) Fe+3 -2 Fe 55.8470 +Glu HGlu- 0 Glu 194.1380 +H H+ -1 H 1.0079 +H(+1) H+ -1 H 1.0079 +H(0) H2 0 H 1.0079 +Hf Hf+4 -4 Hf 178.4900 +Hg Hg+2 -2 Hg 200.5900 +Hg(+2) Hg+2 -2 Hg 200.5900 +Hg(+1) Hg2+2 0 Hg 200.5900 +Ho Ho+3 0 Ho 164.9303 +I I- 0 I 126.9045 +I(-1) I- 0 I 126.9045 +I(1) IO- 0 I # DLP +I(+5) IO3- 0 I 126.9045 +I(7) IO4- 0 I # DLP +Isa HIsa- 0 Isa 178.1421 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.9410 +Malonate Malonate-2 1 Malonate 102.0464 +Mg Mg+2 0 Mg 24.3050 +Mn Mn+2 0 Mn 54.9380 +Mn(+2) Mn+2 0 Mn # DLP +Mn(+3) Mn+3 0 Mn # DLP +Mn(+5) MnO4-3 0 Mn # DLP +Mn(+6) MnO4-2 0 Mn # DLP +Mn(+7) MnO4- 0 Mn # DLP +Mo MoO4-2 0 Mo 95.9400 +Mo(6) MoO4-2 0 Mo # DLP +Mo(3) Mo+3 0 Mo # DLP +N NO3- 0 N 14.0067 +N(+5) NO3- 0 N 14.0067 +N(-3) NH3 1 N 14.0067 +Na Na+ 0 Na 22.9898 +Nb Nb(OH)6- 1 Nb 92.9064 +Ni Ni+2 0 Ni 58.6900 +Np NpO2+2 0 Np 237.0480 +Np(+6) NpO2+2 0 Np 237.0480 +Np(+3) Np+3 0 Np 237.0480 +Np(+4) Np+4 -3 Np 237.0480 +Np(+5) NpO2+ 0 Np 237.0480 +Nta Nta-3 1 Nta 188.1165 +O H2O 0 O 15.9994 +O(-2) H2O 0 O 15.9994 +O(0) O2 0 O 15.9994 +Ox Ox-2 0 Ox 88.0196 +P H2(PO4)- 0 P 30.9738 +Pa Pa+4 -3 Pa 231.0359 +Pa(+4) Pa+4 -3 Pa 231.0359 +Pa(+5) PaO2+ 0 Pa 231.0359 +Pb Pb+2 -1 Pb 207.2000 +Pd Pd+2 -4 Pd 106.4200 +Phthalat Phthalat-2 2 Phthalat 164.0840 +Pu PuO2+2 0 Pu 244.0000 +Pu(+6) PuO2+2 0 Pu 244.0000 +Pu(+3) Pu+3 0 Pu 244.0000 +Pu(+4) Pu+4 -3 Pu 244.0000 +Pu(+5) PuO2+ -1 Pu 244.0000 +Pyrophos Pyrophos-4 2 Pyrophos 173.9500 +Ra Ra+2 0 Ra 226.0250 +Rb Rb+ 0 Rb 85.4678 +S SO4-2 0 S 32.0660 +S(+6) SO4-2 0 SO4 32.0660 # DLP +S(-2) HS- 1 S 32.0660 +S(+2) S2O3-2 0 S 32.0660 +S(+3) S2O4-2 0 S 32.0660 +S(+4) SO3-2 1 S 32.0660 +S(8) HSO5- 0 S # DLP +Sb Sb(OH)3 0 Sb 121.7600 +Sb(+3) Sb(OH)3 0 Sb 121.7600 +Sb(+5) Sb(OH)5 -6 Sb 121.7600 +Se SeO4-2 0 Se 78.9600 +Se(+6) SeO4-2 0 Se 78.9600 +Se(-2) HSe- -1 Se 78.9600 +Se(+4) SeO3-2 1 Se 78.9600 +Si H4(SiO4) 0 SiO2 28.0855 # DLP +Sm Sm+3 0 Sm 150.3600 +Sn Sn+2 -2 Sn 118.7100 +Sn(+2) Sn+2 -2 Sn 118.7100 +Sn(+4) Sn+4 -4 Sn 118.7100 +Sr Sr+2 0 Sr 87.6200 +Succinat Succinat-2 1 Succinat 116.0700 +Suberate Suberate-2 1 Suberate 172.1804 +Tc TcO(OH)2 0 Tc 98.0000 +Tc(+4) TcO(OH)2 0 Tc 98.0000 +Tc(+7) TcO4- 0 Tc 98.0000 +Tc(+6) TcO4-2 0 Tc 98.0000 +Th Th+4 0 Th 232.0381 +U UO2+2 0 U 238.0289 +U(+6) UO2+2 0 U 238.0289 +U(+3) U+3 0 U 238.0289 +U(+4) U+4 -3 U 238.0289 +U(+5) UO2+ 0 U 238.0289 +Zn Zn+2 0 Zn 65.3900 +Zr Zr+4 -4 Zr 91.2200 SIT -epsilon -(NpO2)2(OH)2+2 Cl- -0.248 -(NpO2)2(OH)2+2 ClO4- 0.57 -(NpO2)2CO3(OH)3- Na+ 0 -(NpO2)3(CO3)6-6 Na+ -0.46 -(NpO2)3(OH)5+ Cl- -0.226 -(NpO2)3(OH)5+ ClO4- 0.45 -(PuO2)2(OH)2+2 Cl- -0.248 -(PuO2)3(CO3)6-6 Na+ -0.46 -(UO2)2(CO3)(OH)3- Na+ 0 -(UO2)2(NpO2)(CO3)6-6 Na+ 0.09 -(UO2)2(OH)2+2 Cl- 0.69 -(UO2)2(OH)2+2 ClO4- 0.57 -(UO2)2(OH)2+2 NO3- 0.49 -(UO2)3(CO3)6-6 Na+ 0.37 -(UO2)3(OH)4+2 Cl- 0.5 -(UO2)3(OH)5+ Cl- 0.81 -Ag(SeO3)- Na+ -0.024 -Ag+ Cl- 0.031 -Al(OH)+2 Cl- 0.09 -Al(OH)2+ Cl- 0.09 -Al+3 Cl- 0.33 -Am(CO3)+ Cl- 0.129 -Am(CO3)+ ClO4- 0.17 -Am(CO3)2- Na+ -0.14 -Am(CO3)3-3 Na+ -0.23 -Am(CO3)5-6 Na+ -0.3 -Am(Edta)- Na+ 0.01 -Am(H2PO4)+2 Cl- 0.191 -Am(H2PO4)+2 ClO4- 0.39 -Am(NO3)+2 Cl- 0.191 -Am(NO3)+2 ClO4- 0.39 -Am(OH)+2 Cl- -0.04 -Am(OH)+2 ClO4- 0.39 -Am(OH)2+ Cl- -0.29 -Am(OH)2+ ClO4- 0.17 -Am(Ox)+ ClO4- 0.08 -Am(Ox)2- Na+ -0.21 -Am(Ox)3-3 Na+ -0.23 -Am(SO4)+ Cl- 0.157 -Am(SO4)+ ClO4- 0.22 -Am(SO4)2- Na+ -0.05 -Am+3 Cl- 0.23 -Am+3 ClO4- 0.49 -AmCl+2 Cl- 0.191 -AmCl+2 ClO4- 0.39 -AmCl2+ Cl- 0.129 -AmF+2 Cl- 0.191 -AmF+2 ClO4- 0.39 -AmF2+ Cl- 0.129 -AmF2+ ClO4- 0.17 -AmO2(CO3)- Na+ -0.18 -AmO2(CO3)2-3 Na+ -0.33 -AmO2(CO3)3-5 Na+ -0.53 -AmO2+ Cl- 0.09 -AmO2+2 Cl- 0.39 -B(OH)4- Na+ -0.07 -Ba+2 Cl- 0.07 -Ba+2 ClO4- 0.15 -Ba+2 NO3- -0.28 -Br- Na+ 0.05 -CO3-2 Na+ -0.08 -Ca+2 Cl- 0.14 -Ca+2 ClO4- 0.27 -Ca+2 NO3- 0.02 -Ca4Th(OH)8+4 Cl- -0.01 -Ca4Th(OH)8+4 ClO4- 0.21 -Cd(HCO3)+ Cl- 0.2 -Cd+2 Cl- 0.16 -Cd+2 NO3- 0.09 -CdCl+ Cl- 0.127 -CdCl+ ClO4- 0.25 -CdI+ Cl- 0.136 -CdI+ ClO4- 0.27 -Cit-3 Na+ -0.076 -Cl- Na+ 0.03 -Cm(CO3)2- Na+ 0.34 -Cm(CO3)3-3 Na+ 0.16 -Cm(H2PO4)+2 Cl- 0.191 -Cm(H2PO4)+2 ClO4- 0.39 -Cm(OH)+2 Cl- -0.04 -Cm(OH)+2 ClO4- 0.39 -Cm(OH)2+ Cl- -0.27 -Cm(OH)2+ ClO4- 0.17 -Cm(SO4)2- Na+ -0.05 -Cm+3 Cl- 0.23 -Cm+3 ClO4- 0.49 -CmCO3+ Cl- 0.35 -CmCl+2 Cl- 0.191 -CmCl+2 ClO4- 0.39 -CmCl2+ Cl- 0.129 -CmF+2 ClO4- 0.39 -CmF2+ ClO4- 0.17 -CmNO3+2 ClO4- 0.39 -CmSO4+ Cl- 0.157 -CmSO4+ ClO4- 0.22 -Cn- Na+ 0.07 -Co+2 Cl- 0.16 -Co+2 ClO4- 0.34 -Co+2 NO3- 0.14 -Cr+3 Cl- 0.3 -Cr+3 NO3- 0.27 -Cu+ ClO4- 0.11 -Cu+2 Cl- 0.08 -Cu+2 ClO4- 0.32 -Cu+2 NO3- 0.11 -Edta-4 Na+ 0.32 -Eu(CO3)+ Cl- 0.129 -Eu(CO3)+ ClO4- 0.17 -Eu(CO3)2- Na+ -0.14 -Eu(CO3)3-3 Na+ -0.23 -Eu(H2PO4)+2 Cl- 0.191 -Eu(H2PO4)+2 ClO4- 0.39 -Eu(NO3)+2 Cl- 0.191 -Eu(NO3)+2 ClO4- 0.39 -Eu(OH)+2 Cl- -0.04 -Eu(OH)+2 ClO4- 0.39 -Eu(OH)2+ Cl- -0.29 -Eu(OH)2+ ClO4- 0.17 -Eu(SO4)+ Cl- 0.157 -Eu(SO4)+ ClO4- 0.22 -Eu(SO4)2- Na+ -0.05 -Eu+3 Cl- 0.23 -Eu+3 ClO4- 0.49 -EuCl+2 Cl- 0.191 -EuCl+2 ClO4- 0.39 -EuCl2+ Cl- 0.129 -EuF+2 Cl- 0.191 -EuF2+ Cl- 0.129 -F- Na+ 0.02 -Fe(OH)+2 Cl- 0.186 -Fe+3 ClO4- 0.56 -Fe+3 NO3- 0.42 -H(Cit)-2 Na+ -0.04 -H(Edta)-3 Na+ -0.1 -H(Ox)- Na+ -0.07 -H(SO4)- Na+ -0.01 -H(SeO3)- Na+ 0.02 -H(SeO4)- Na+ 0 -H+ Cl- 0.12 -H+ ClO4- 0.14 -H+ NO3- 0.07 -H2(Cit)- Na+ -0.05 -H2(Edta)-2 Na+ -0.37 -H2(PO4)- Na+ -0.08 -H2(SiO4)-2 Na+ -0.1 -H3(Edta)- Na+ -0.33 -H3(SiO4)- Na+ -0.08 -H5(Edta)+ Cl- -0.23 -H5(Edta)+ ClO4- -0.23 -H5(Edta)+ NO3- -0.23 -H6(Edta)+2 Cl- -0.2 -H6(Edta)+2 ClO4- -0.2 -H6(Edta)+2 NO3- -0.2 -HCO3- Na+ 0 -HGlu- Na+ -0.07 -HIsa- Na+ -0.07 -HMoO4- Na+ -0.099 -HPO4-2 Na+ -0.15 -Hf(NO3)2+2 ClO4- 0.84 -Hf(OH)+3 ClO4- 0.57 -Hf+4 Cl- 0.89 -Hf+4 ClO4- 0.89 -Hf+4 NO3- 0.89 -HfCl+3 ClO4- 0.87 -HfCl2+2 ClO4- 0.84 -HfF+3 ClO4- 0.63 -HfF2+2 ClO4- 0.47 -HfNO3+3 ClO4- 0.91 -Hg(SeO3)2-2 Na+ 0.008 -Hg+2 Cl- 0.168 -Hg2+2 Cl- 0.054 -Ho(CO3)+ Cl- 0.129 -Ho(CO3)+ ClO4- 0.17 -Ho(CO3)2- Na+ -0.14 -Ho(CO3)3-3 Na+ -0.23 -Ho(H2PO4)+2 Cl- 0.191 -Ho(H2PO4)+2 ClO4- 0.39 -Ho(NO3)+2 Cl- 0.191 -Ho(NO3)+2 ClO4- 0.39 -Ho(OH)+2 Cl- -0.04 -Ho(OH)+2 ClO4- 0.39 -Ho(OH)2+ Cl- -0.29 -Ho(OH)2+ ClO4- 0.17 -Ho(SO4)+ Cl- 0.157 -Ho(SO4)+ ClO4- 0.22 -Ho(SO4)2- Na+ -0.05 -Ho+3 Cl- 0.23 -Ho+3 ClO4- 0.49 -HoCl+2 Cl- 0.191 -HoCl+2 ClO4- 0.39 -HoCl2+ Cl- 0.129 -HoF+2 Cl- 0.191 -HoF+2 ClO4- 0.39 -HoF2+ Cl- 0.129 -HoF2+ ClO4- 0.17 -I- Na+ 0.08 -IO3- Na+ -0.06 -K+ Cl- 0 -K+ NO3- -0.11 -Li+ Cl- 0.1 -Li+ ClO4- 0.15 -Li+ NO3- 0.08 -Mg(Cit)- Na+ 0.03 -Mg(Edta)-2 Na+ -0.01 -Mg(HEdta)- Na+ 0.11 -Mg(Ox)2-2 Na+ -0.15 -Mg+2 Cl- 0.19 -Mg+2 ClO4- 0.33 -Mg+2 NO3- 0.17 -Mn+2 Cl- 0.13 -Mo7O21(OH)3-3 Na+ -1.455 -Mo7O22(OH)2-4 Na+ -1.346 -Mo7O23(OH)-5 Na+ -1.145 -Mo7O24-6 Na+ -1.265 -MoO4-2 Na+ 0.034 -NH4+ Cl- -0.01 -NH4+ ClO4- -0.08 -NH4+ NO3- -0.06 -NO3- Na+ -0.04 -Na+ ClO4- 0.01 -Ni(CO3)2-2 Na+ 0.003 -Ni(Cit)- Na+ 0.22 -Ni(Cn)4-2 Na+ 0.185 -Ni(Cn)5-3 Na+ 0.25 -Ni(HCO3)+ Cl- 0.085 -Ni(NO3)+ Cl- 0.06 -Ni(NO3)+ ClO4- 0.44 -Ni(OH)+ Cl- -0.01 -Ni(OH)+ ClO4- 0.14 -Ni(OH)3- Na+ 0.88 -Ni(SO4)2-2 Na+ -0.263 -Ni(Scn)+ Cl- 0.11 -Ni(Scn)+ ClO4- 0.31 -Ni(Scn)3- Na+ 0.66 -Ni+2 Cl- 0.17 -Ni+2 ClO4- 0.37 -Ni+2 NO3- 0.182 -Ni4(OH)4+4 ClO4- 1.08 -NiCl+ Cl- 0.1 -NiCl+ ClO4- 0.34 -NiF+ Cl- 0.065 -NiF+ ClO4- 0.34 -NiHS+ ClO4- -0.85 -Np(CO3)(OH)3- Na+ -0.11 -Np(CO3)+ Cl- 0.129 -Np(CO3)+ ClO4- 0.17 -Np(CO3)2- Na+ -0.14 -Np(CO3)3-3 Na+ -0.23 -Np(CO3)4-4 Na+ -0.09 -Np(CO3)5-6 Na+ 0 -Np(NO3)+3 ClO4- 0.71 -Np(OH)+2 Cl- -0.04 -Np(OH)+2 ClO4- 0.39 -Np(OH)+3 Cl- 0.2 -Np(OH)+3 ClO4- 0.5 -Np(OH)2+ Cl- -0.29 -Np(OH)2+ ClO4- 0.17 -Np(OH)2+2 Cl- 0.1 -Np(OH)3+ Cl- 0.05 -Np(OH)4(CO3)-2 Na+ -0.13 -Np(SO4)+ Cl- 0.157 -Np(SO4)+ ClO4- 0.22 -Np(SO4)+2 Cl- 0.232 -Np(SO4)+2 ClO4- 0.48 -Np(SO4)2- Na+ -0.05 -Np+3 Cl- 0.23 -Np+3 ClO4- 0.49 -Np+4 Cl- 0.4 -Np+4 ClO4- 0.84 -NpCl+3 ClO4- 0.81 -NpF+3 ClO4- 0.58 -NpF2+2 Cl- 0.186 -NpF2+2 ClO4- 0.38 -NpF3+ Cl- 0.1 -NpI+3 ClO4- 0.77 -NpO2(CO3)- Na+ -0.18 -NpO2(CO3)2-2 Na+ -0.02 -NpO2(CO3)2-3 Na+ -0.33 -NpO2(CO3)2OH-4 Na+ -0.4 -NpO2(CO3)3-4 Na+ -0.4 -NpO2(CO3)3-5 Na+ -0.53 -NpO2(Cit)-2 Na+ -0.06 -NpO2(Edta)-3 Na+ 0.2 -NpO2(HEdta)-2 Na+ 0.07 -NpO2(HPO4)2-2 Na+ -0.1 -NpO2(NO3)+ Cl- 0.22 -NpO2(NO3)+ ClO4- 0.33 -NpO2(OH)+ Cl- -0.003 -NpO2(OH)+ ClO4- -0.06 -NpO2(OH)2- Na+ -0.01 -NpO2(Ox)- Na+ -0.4 -NpO2(Ox)2-3 Na+ -0.3 -NpO2(SO4)- Na+ -0.74 -NpO2(SO4)2-2 Na+ -0.12 -NpO2+ Cl- 0.09 -NpO2+ ClO4- 0.25 -NpO2+2 Cl- 0.223 -NpO2+2 ClO4- 0.46 -NpO2Cl+ Cl- 0.318 -NpO2Cl+ ClO4- 0.5 -NpO2F+ Cl- 0.197 -NpO2F+ ClO4- 0.29 -OH- Na+ 0.04 -Ox-2 Na+ -0.08 -PO4-3 Na+ -0.25 -Pa+4 Cl- 0.3 -PaO(OH)+2 Cl- 0.13 -Pb(OH)3- Na+ 0.02 -Pb(SO4)2-2 Na+ -0.52 -Pb+2 Cl- 0.081 -Pb+2 ClO4- 0.15 -Pb+2 NO3- -0.2 -PbF+ Cl- 0.14 -Pd(SO4)2-2 Na+ -0.12 -Pd+2 Cl- 0.16 -PdBr+ Cl- 0.175 -PdBr3- Na+ 0 -PdBr4-2 Na+ 0.1 -PdCl+ Cl- 0.175 -PdCl3- Na+ 0 -PdCl4-2 Na+ 0.1 -Pu(CO3)+ Cl- 0.129 -Pu(CO3)+ ClO4- 0.17 -Pu(CO3)2- Na+ -0.14 -Pu(CO3)3-3 Na+ -0.23 -Pu(CO3)4-4 Na+ -0.09 -Pu(CO3)5-6 Na+ 0 -Pu(NO3)+2 Cl- 0.191 -Pu(NO3)+2 ClO4- 0.39 -Pu(NO3)+3 ClO4- 0.59 -Pu(OH)+2 Cl- -0.04 -Pu(OH)+2 ClO4- 0.39 -Pu(OH)+3 Cl- 0.2 -Pu(OH)+3 ClO4- 0.5 -Pu(OH)2+ Cl- -0.29 -Pu(OH)2+ ClO4- 0.17 -Pu(OH)2+2 Cl- 0.1 -Pu(OH)3+ Cl- 0.05 -Pu(SO4)+ Cl- 0.157 -Pu(SO4)+ ClO4- 0.22 -Pu(SO4)+2 Cl- 0.232 -Pu(SO4)+2 ClO4- 0.36 -Pu(SO4)2- Na+ -0.05 -Pu+3 Cl- 0.23 -Pu+3 ClO4- 0.49 -Pu+4 Cl- 0.37 -Pu+4 ClO4- 0.82 -PuBr+3 Cl- 0.1 -PuBr+3 ClO4- 0.58 -PuCl+3 Cl- 0.1 -PuCl+3 ClO4- 0.85 -PuF+3 Cl- 0.1 -PuF+3 ClO4- 0.56 -PuF2+2 Cl- 0.177 -PuF2+2 ClO4- 0.36 -PuF3+ Cl- 0.1 -PuI+2 Cl- 0.191 -PuI+2 ClO4- 0.39 -PuI+3 Cl- 0.1 -PuO2(CO3)2-2 Na+ -0.7 -PuO2(CO3)3-4 Na+ -0.2 -PuO2(CO3)3-5 Na+ -0.53 -PuO2(OH)+ Cl- -0.003 -PuO2(SO4)- Na+ -0.74 -PuO2(SO4)2-2 Na+ -0.12 -PuO2+ Cl- 0.129 -PuO2+ ClO4- 0.24 -PuO2+2 Cl- 0.223 -PuO2+2 ClO4- 0.46 -PuO2CO3- Na+ -0.18 -PuO2Cl+ Cl- 0.318 -PuO2Cl+ ClO4- 0.5 -PuO2F+ Cl- 0.197 -PuO2F+ ClO4- 0.29 -PuO2F3- Na+ 0 -PuO2NO3+ Cl- 0.22 -PuO2NO3+ ClO4- 0.33 -SO3-2 Na+ -0.08 -SO4-2 Na+ -0.12 -Scn- Na+ 0.05 -SeO3-2 Na+ -0.08 -SeO4-2 Na+ -0.12 -Si2O2(OH)5- Na+ -0.08 -Si2O3(OH)4-2 Na+ -0.15 -Si3O5(OH)5-3 Na+ -0.25 -Si3O6(OH)3-3 Na+ -0.25 -Si4O8(OH)4-4 Na+ -0.26 -Sm(CO3)+ Cl- 0.129 -Sm(CO3)+ ClO4- 0.17 -Sm(CO3)2- Na+ -0.14 -Sm(CO3)3-3 Na+ -0.23 -Sm(H2PO4)+2 Cl- 0.191 -Sm(H2PO4)+2 ClO4- 0.39 -Sm(NO3)+2 Cl- 0.191 -Sm(NO3)+2 ClO4- 0.39 -Sm(OH)+2 Cl- -0.04 -Sm(OH)+2 ClO4- 0.39 -Sm(OH)2+ Cl- -0.29 -Sm(OH)2+ ClO4- 0.17 -Sm(SO4)+ Cl- 0.157 -Sm(SO4)+ ClO4- 0.22 -Sm(SO4)2- Na+ -0.05 -Sm+3 Cl- 0.23 -Sm+3 ClO4- 0.49 -SmCl+2 Cl- 0.191 -SmCl+2 ClO4- 0.39 -SmF+2 Cl- 0.191 -SmF+2 ClO4- 0.39 -Sn(OH)+ ClO4- -0.07 -Sn(OH)3- Na+ 0.22 -Sn+2 Cl- 0.14 -Sn+2 ClO4- 0.19 -Sn+4 ClO4- 0.7 -Sn3(OH)4+2 ClO4- -0.02 -SnBr+ ClO4- 0.17 -SnBr3- Na+ 0.16 -SnCl+ ClO4- 0.08 -SnCl3- Na+ 0.04 -SnF+ ClO4- 0.14 -Th(CO3)5-6 Na+ -0.3 -Th(H2PO4)+3 ClO4- 0.5 -Th(H2PO4)2+2 ClO4- 0.4 -Th(H3PO4)(H2PO4)+3 ClO4- 0.5 -Th(H3PO4)+4 ClO4- 0.7 -Th(NO3)+3 ClO4- 0.56 -Th(NO3)+3 NO3- 0.56 -Th(NO3)2+2 ClO4- 0.43 -Th(NO3)2+2 NO3- 0.43 -Th(OH)(CO3)4-5 Na+ -0.22 -Th(OH)+3 Cl- 0.19 -Th(OH)+3 ClO4- 0.48 -Th(OH)+3 NO3- 0.2 -Th(OH)2(CO3)2-2 Na+ -0.1 -Th(OH)2+2 Cl- 0.13 -Th(OH)2+2 ClO4- 0.33 -Th(OH)2+2 NO3- 0.1 -Th(OH)3(CO3)- Na+ -0.05 -Th(OH)3+ Cl- 0.06 -Th(OH)3+ ClO4- 0.15 -Th(OH)3+ NO3- 0.05 -Th(OH)4(CO3)-2 Na+ -0.1 -Th(SO4)+2 Cl- 0.14 -Th(SO4)+2 ClO4- 0.3 -Th(SO4)3-2 Na+ -0.091 -Th+4 Cl- 0.7 -Th+4 ClO4- 0.7 -Th+4 NO3- 0.7 -Th2(OH)2+6 Cl- 0.4 -Th2(OH)2+6 ClO4- 1.22 -Th2(OH)2+6 NO3- 0.69 -Th2(OH)3+5 Cl- 0.29 -Th2(OH)3+5 ClO4- 0.91 -Th2(OH)3+5 NO3- 0.69 -Th4(OH)12+4 Cl- 0.25 -Th4(OH)12+4 ClO4- 0.56 -Th4(OH)12+4 NO3- 0.42 -Th4(OH)8+8 Cl- 0.7 -Th4(OH)8+8 ClO4- 1.69 -Th4(OH)8+8 NO3- 1.59 -Th6(OH)14+10 Cl- 0.83 -Th6(OH)14+10 ClO4- 2.2 -Th6(OH)14+10 NO3- 2.9 -Th6(OH)15+9 Cl- 0.72 -Th6(OH)15+9 ClO4- 1.85 -Th6(OH)15+9 NO3- 2.2 -ThCl+3 Cl- 0.62 -ThCl+3 ClO4- 0.62 -ThF+3 ClO4- 0.48 -ThF+3 NO3- 0.25 -ThF2+2 ClO4- 0.3 -ThF2+2 NO3- 0.15 -ThF3+ ClO4- 0.1 -ThF3+ NO3- 0 -U(CO3)4-4 Na+ -0.09 -U(CO3)5-6 Na+ -0.3 -U(NO3)+3 ClO4- 0.62 -U(NO3)2+2 Cl- 0.236 -U(NO3)2+2 ClO4- 0.49 -U(OH)+3 Cl- 0.2 -U(OH)+3 ClO4- 0.48 -U(OH)2+2 Cl- 0.1 -U(OH)3+ Cl- 0.05 -U(SO4)+2 Cl- 0.149 -U(SO4)+2 ClO4- 0.3 -U+3 Cl- 0.23 -U+3 ClO4- 0.49 -U+4 Cl- 0.36 -U+4 ClO4- 0.76 -UBr+3 ClO4- 0.52 -UCl+3 Cl- 0.1 -UCl+3 ClO4- 0.5 -UF+3 Cl- 0.1 -UF+3 ClO4- 0.48 -UF2+2 Cl- 0.149 -UF2+2 ClO4- 0.3 -UF3+ Cl- 0.1 -UF3+ ClO4- 0.1 -UI+3 ClO4- 0.55 -UI+3 NO3- 0.56 -UO2(CO3)2-2 Na+ -0.02 -UO2(CO3)3-4 Na+ -0.01 -UO2(CO3)3-5 Na+ -0.62 -UO2(Cit)- Na+ -0.11 -UO2(NO3)+ Cl- 0.22 -UO2(NO3)+ ClO4- 0.33 -UO2(OH)+ Cl- -0.003 -UO2(OH)+ ClO4- -0.06 -UO2(OH)+ NO3- 0.51 -UO2(OH)3- Na+ -0.09 -UO2(Ox)2-2 Na+ -0.18 -UO2(Ox)3-4 Na+ -0.01 -UO2(SO4)2-2 Na+ -0.12 -UO2+ Cl- 0.18 -UO2+ ClO4- 0.26 -UO2+2 Cl- 0.46 -UO2+2 ClO4- 0.46 -UO2+2 NO3- 0.46 -UO2Br+ Cl- 0.169 -UO2Br+ ClO4- 0.24 -UO2Cl+ Cl- 0.22 -UO2Cl+ ClO4- 0.33 -UO2F+ Cl- 0.04 -UO2F+ ClO4- 0.28 -UO2F3- Na+ -0.14 -UO2F4-2 Na+ -0.3 -Zn+2 Cl- 0.163 -Zn+2 ClO4- 0.33 -Zn+2 NO3- 0.16 -Zr(CO3)4-4 Na+ -0.09 -Zr(NO3)2+2 ClO4- 0.84 -Zr(OH)+3 ClO4- 0.57 -Zr(OH)2+2 ClO4- 0.62 -Zr(OH)6-2 Na+ -0.1 -Zr+4 Cl- 0.89 -Zr+4 ClO4- 0.89 -Zr+4 NO3- 0.89 -Zr4(OH)15+ ClO4- 0.09 -ZrCl+3 ClO4- 0.87 -ZrCl2+2 ClO4- 0.84 -ZrF+3 ClO4- 0.63 -ZrF2+2 ClO4- 0.47 -ZrF5- Na+ -0.14 -ZrF6-2 Na+ -0.15 -ZrNO3+3 ClO4- 0.88 - +(NpO2)2(OH)2+2 Cl- -0.248 +(NpO2)2(OH)2+2 ClO4- 0.570 +(NpO2)2CO3(OH)3- Na+ 0.000 +(NpO2)3(CO3)6-6 Na+ -0.460 +(NpO2)3(OH)5+ Cl- -0.226 +(NpO2)3(OH)5+ ClO4- 0.450 +(PuO2)2(OH)2+2 Cl- -0.248 +(PuO2)3(CO3)6-6 Na+ -0.460 +(UO2)2(Cit)(OH)2- Na+ 0.600 +(UO2)2(Cit)2(OH)2-4 Na+ 0.560 +(UO2)2(Cit)2(OH)-3 Na+ 0.700 +(UO2)2(Cit)2-2 Na+ -0.110 +(UO2)2(CO3)(OH)3- Na+ 0.000 +(UO2)2(NpO2)(CO3)6-6 Na+ 0.090 +(UO2)2(OH)2+2 Cl- 0.690 +(UO2)2(OH)2+2 ClO4- 0.570 +(UO2)2(OH)2+2 NO3- 0.490 +(UO2)3(CO3)6-6 Na+ 0.370 +(UO2)3(OH)4+2 Cl- 0.500 +(UO2)3(OH)4+2 ClO4- 0.890 +(UO2)3(OH)4+2 NO3- 0.720 +(UO2)3(OH)5+ Cl- 0.810 +(UO2)3(OH)5+ ClO4- 0.450 +(UO2)3(OH)5+ NO3- 0.410 +Ag(SeO3)- Na+ -0.024 +Ag+ Cl- 0.031 +Al(OH)+2 Cl- 0.090 +Al(OH)2+ Cl- 0.090 +Al+3 Cl- 0.330 +Am(CO3)+ Cl- 0.210 +Am(CO3)+ ClO4- 0.210 +Am(CO3)2- Na+ 0.060 +Am(CO3)3-3 Na+ 0.080 +Am(CO3)5-6 Na+ -0.300 +Am(Edta)- Na+ 0.010 +Am(H2PO4)+2 Cl- 0.191 +Am(H2PO4)+2 ClO4- 0.390 +Am(NO3)+2 ClO4- 0.390 +Am(OH)+2 Cl- -0.040 +Am(OH)+2 ClO4- 0.390 +Am(OH)2+ Cl- -0.290 +Am(OH)2+ ClO4- 0.170 +Am(Ox)+ ClO4- 0.080 +Am(Ox)2- Na+ -0.210 +Am(Ox)3-3 Na+ -0.230 +Am(SO4)+ Cl- 0.157 +Am(SO4)+ ClO4- 0.220 +Am(SO4)2- Na+ -0.050 +Am+3 Cl- 0.230 +Am+3 ClO4- 0.490 +AmCl+2 Cl- 0.191 +AmCl+2 ClO4- 0.390 +AmCl2+ Cl- 0.129 +AmF+2 Cl- 0.191 +AmF+2 ClO4- 0.390 +AmF2+ Cl- 0.129 +AmF2+ ClO4- 0.170 +AmO2(CO3)- Na+ -0.180 +AmO2(CO3)2-3 Na+ -0.330 +AmO2(CO3)3-5 Na+ -0.530 +AmO2+ Cl- 0.090 +AmO2+2 Cl- 0.390 +B(OH)4- Na+ -0.070 +Ba+2 Cl- 0.070 +Ba+2 ClO4- 0.150 +Ba+2 NO3- -0.280 +Be(OH)+ ClO4- 0.220 +Be(OH)3- Na+ 0.020 +Be(OH)4-2 Na+ 0.030 +Be+2 Cl- 0.100 +Be+2 ClO4- 0.300 +Be+2 NO3- 0.160 +Be2(OH)+3 Cl- 0.300 +Be2(OH)+3 ClO4- 0.500 +Be2(OH)+3 NO3- 0.270 +Be3(OH)(CO3)+3 ClO4- 0.510 +Be3(OH)3+3 Cl- 0.300 +Be3(OH)3+3 ClO4- 0.510 +Be3(OH)3+3 NO3- 0.290 +Be5(OH)4(CO3)+4 ClO4- 0.800 +Be5(OH)6+4 ClO4- 0.800 +Be6(OH)5(CO3)2+3 Cl- 0.510 +Be6(OH)8+4 ClO4- 0.600 +Be6(OH)8+4 NO3- 0.600 +BeCl+ Cl- 0.090 +Br- Na+ 0.050 +Ca(Am(OH)3)+2 Cl- 0.050 +Ca(Cm(OH)3)+2 Cl- 0.050 +Ca(NpO2(OH)2)+ Cl- -0.070 +Ca+2 Cl- 0.140 +Ca+2 ClO4- 0.270 +Ca+2 NO3- 0.020 +Ca2(Am(OH)4)+3 Cl- 0.290 +Ca2(Cm(OH)4)+3 Cl- 0.290 +Ca3(Am(OH)6)+3 Cl- 0.000 +Ca3(Cm(OH)6)+3 Cl- 0.000 +Ca3(NpO2(OH)5)+2 Cl- -0.200 +Ca4Pu(OH)8+4 Cl- 0.120 +Ca4Th(OH)8+4 Cl- -0.010 +Ca4Th(OH)8+4 ClO4- 0.210 +CaUO2(CO3)3-2 Na+ -0.020 +Cd(HCO3)+ Cl- 0.200 +Cd+2 Cl- 0.160 +Cd+2 NO3- 0.090 +CdCl+ Cl- 0.127 +CdCl+ ClO4- 0.250 +CdI+ Cl- 0.136 +CdI+ ClO4- 0.270 +Cit-3 Na+ -0.076 +Cl- Na+ 0.030 +Cm(CO3)+ Cl- 0.210 +Cm(CO3)+ ClO4- 0.210 +Cm(CO3)2- Na+ 0.060 +Cm(CO3)3-3 Na+ 0.080 +Cm(H2PO4)+2 Cl- 0.191 +Cm(H2PO4)+2 ClO4- 0.390 +Cm(NO3)+2 ClO4- 0.390 +Cm(OH)+2 Cl- -0.040 +Cm(OH)+2 ClO4- 0.390 +Cm(OH)2+ Cl- -0.270 +Cm(OH)2+ ClO4- 0.170 +Cm(SO4)+ Cl- 0.157 +Cm(SO4)+ ClO4- 0.220 +Cm(SO4)2- Na+ -0.050 +Cm+3 Cl- 0.230 +Cm+3 ClO4- 0.490 +CmCl+2 Cl- 0.191 +CmCl+2 ClO4- 0.390 +CmCl2+ Cl- 0.129 +CmF+2 ClO4- 0.390 +CmF2+ ClO4- 0.170 +Co+2 Cl- 0.160 +Co+2 ClO4- 0.340 +Co+2 NO3- 0.140 +CO3-2 Na+ -0.080 +Cr+3 Cl- 0.300 +Cr+3 NO3- 0.270 +Cu(OH)+ ClO4- -0.130 +Cu(OH)4-2 Na+ 0.190 +Cu+ ClO4- 0.110 +Cu+2 Cl- 0.080 +Cu+2 ClO4- 0.320 +Cu+2 NO3- 0.110 +Cu2(OH)+3 ClO4- 0.470 +Cu2(OH)2+2 ClO4- 0.330 +CuCl+ ClO4- 0.310 +CuCl2- Na+ 0.070 +CuCl3- Na+ 0.000 +CuCl3-2 Na+ 0.140 +CuCl4-2 Na+ -0.050 +Edta-4 Na+ 0.320 +Eu(CO3)+ Cl- 0.129 +Eu(CO3)+ ClO4- 0.170 +Eu(CO3)2- Na+ -0.140 +Eu(CO3)3-3 Na+ -0.230 +Eu(H2PO4)+2 Cl- 0.191 +Eu(H2PO4)+2 ClO4- 0.390 +Eu(NO3)+2 Cl- 0.191 +Eu(NO3)+2 ClO4- 0.390 +Eu(OH)+2 Cl- -0.040 +Eu(OH)+2 ClO4- 0.390 +Eu(OH)2+ Cl- -0.290 +Eu(OH)2+ ClO4- 0.170 +Eu(SO4)+ Cl- 0.157 +Eu(SO4)+ ClO4- 0.220 +Eu(SO4)2- Na+ -0.050 +Eu+3 Cl- 0.230 +Eu+3 ClO4- 0.490 +EuCl+2 Cl- 0.191 +EuCl+2 ClO4- 0.390 +EuCl2+ Cl- 0.129 +EuF+2 Cl- 0.191 +EuF2+ Cl- 0.129 +F- Na+ 0.020 +Fe(OH)+2 Cl- 0.186 +Fe(OH)+2 ClO4- 0.460 +Fe(OH)2+ ClO4- 0.370 +Fe+2 Cl- 0.170 +Fe+2 ClO4- 0.370 +Fe+3 Cl- 0.760 +Fe+3 ClO4- 0.730 +Fe+3 NO3- 0.420 +Fe2(OH)2+4 ClO4- 1.040 +FeCl+ Cl- 0.160 +FeCl+2 Cl- 0.640 +FeCl+2 ClO4- 0.630 +FeCl2+ ClO4- 0.520 +FeF+ ClO4- 0.340 +H(Cit)-2 Na+ -0.040 +H(Edta)-3 Na+ -0.100 +H(Ox)- Na+ -0.070 +H(SeO3)- Na+ 0.020 +H(SeO4)- Na+ 0.000 +H(SO4)- Na+ -0.010 +H+ Cl- 0.120 +H+ ClO4- 0.140 +H+ NO3- 0.070 +H2(Cit)- Na+ -0.050 +H2(Edta)-2 Na+ -0.370 +H2(PO4)- Na+ -0.080 +H2(SiO4)-2 Na+ -0.100 +H3(Edta)- Na+ -0.330 +H3(SiO4)- Na+ -0.080 +H5(Edta)+ Cl- -0.230 +H5(Edta)+ ClO4- -0.230 +H5(Edta)+ NO3- -0.230 +H6(Edta)+2 Cl- -0.200 +H6(Edta)+2 ClO4- -0.200 +H6(Edta)+2 NO3- -0.200 +HCO3- Na+ 0.000 +Hf(NO3)2+2 ClO4- 0.840 +Hf(OH)+3 ClO4- 0.570 +Hf+4 Cl- 0.890 +Hf+4 ClO4- 0.890 +Hf+4 NO3- 0.890 +HfCl+3 ClO4- 0.870 +HfCl2+2 ClO4- 0.840 +HfF+3 ClO4- 0.630 +HfF2+2 ClO4- 0.470 +HfNO3+3 ClO4- 0.910 +Hg(OH)+ ClO4- 0.060 +Hg+2 ClO4- 0.340 +Hg+2 NO3- -0.100 +Hg2+2 ClO4- 0.090 +Hg2+2 NO3- -0.200 +HgCl+ ClO4- 0.190 +HgCl3- Na+ 0.050 +HgCl4-2 Na+ 0.080 +HGlu- Na+ -0.070 +HIsa- Na+ -0.070 +HMoO4- Na+ -0.099 +Ho(CO3)+ Cl- 0.129 +Ho(CO3)+ ClO4- 0.170 +Ho(CO3)2- Na+ -0.140 +Ho(CO3)3-3 Na+ -0.230 +Ho(H2PO4)+2 Cl- 0.191 +Ho(H2PO4)+2 ClO4- 0.390 +Ho(NO3)+2 Cl- 0.191 +Ho(NO3)+2 ClO4- 0.390 +Ho(OH)+2 Cl- -0.040 +Ho(OH)+2 ClO4- 0.390 +Ho(OH)2+ Cl- -0.290 +Ho(OH)2+ ClO4- 0.170 +Ho(SO4)+ Cl- 0.157 +Ho(SO4)+ ClO4- 0.220 +Ho(SO4)2- Na+ -0.050 +Ho+3 Cl- 0.230 +Ho+3 ClO4- 0.490 +HoCl+2 Cl- 0.191 +HoCl+2 ClO4- 0.390 +HoCl2+ Cl- 0.129 +HoF+2 Cl- 0.191 +HoF+2 ClO4- 0.390 +HoF2+ Cl- 0.129 +HoF2+ ClO4- 0.170 +HPO4-2 Na+ -0.150 +I- Na+ 0.080 +IO3- Na+ -0.060 +K+ Cl- 0.000 +K+ NO3- -0.110 +Li+ Cl- 0.100 +Li+ ClO4- 0.150 +Li+ NO3- 0.080 +Mg(Cit)- Na+ 0.030 +Mg(Edta)-2 Na+ -0.010 +Mg(HEdta)- Na+ 0.110 +Mg(Ox)2-2 Na+ -0.150 +Mg+2 Cl- 0.190 +Mg+2 ClO4- 0.330 +Mg+2 NO3- 0.170 +MgUO2(CO3)3-2 Na+ -0.020 +Mn+2 Cl- 0.130 +Mo7O21(OH)3-3 Na+ -1.455 +Mo7O22(OH)2-4 Na+ -1.346 +Mo7O23(OH)-5 Na+ -1.145 +Mo7O24-6 Na+ -1.265 +MoO4-2 Na+ 0.034 +Na+ ClO4- 0.010 +NH4+ Cl- -0.010 +NH4+ ClO4- -0.080 +NH4+ NO3- -0.060 +Ni(Cit)- Na+ 0.220 +Ni(CO3)2-2 Na+ 0.003 +Ni(HCO3)+ Cl- 0.085 +Ni(NO3)+ Cl- 0.060 +Ni(NO3)+ ClO4- 0.440 +Ni(OH)+ Cl- -0.010 +Ni(OH)+ ClO4- 0.140 +Ni(SO4)2-2 Na+ -0.263 +Ni+2 Cl- 0.170 +Ni+2 ClO4- 0.370 +Ni+2 NO3- 0.182 +Ni4(OH)4+4 ClO4- 1.080 +NiCl+ Cl- 0.100 +NiCl+ ClO4- 0.470 +NiF+ Cl- 0.065 +NiF+ ClO4- 0.340 +NiHS+ ClO4- -0.850 +NO3- Na+ -0.040 +Np(CO3)+ Cl- 0.129 +Np(CO3)+ ClO4- 0.170 +Np(CO3)2- Na+ -0.140 +Np(CO3)3-3 Na+ -0.230 +Np(CO3)4-4 Na+ -0.090 +Np(CO3)5-6 Na+ 0.000 +Np(NO3)+3 ClO4- 0.710 +Np(OH)+2 Cl- -0.040 +Np(OH)+2 ClO4- 0.390 +Np(OH)+3 Cl- 0.200 +Np(OH)+3 ClO4- 0.500 +Np(OH)2+ Cl- -0.290 +Np(OH)2+ ClO4- 0.170 +Np(OH)2+2 Cl- 0.100 +Np(OH)3+ Cl- 0.050 +Np(SO4)+ Cl- 0.157 +Np(SO4)+ ClO4- 0.220 +Np(SO4)+2 Cl- 0.232 +Np(SO4)+2 ClO4- 0.480 +Np(SO4)2- Na+ -0.050 +Np+3 Cl- 0.230 +Np+3 ClO4- 0.490 +Np+4 Cl- 0.400 +Np+4 ClO4- 0.840 +NpCl+3 ClO4- 0.810 +NpF+3 ClO4- 0.580 +NpF2+2 Cl- 0.186 +NpF2+2 ClO4- 0.380 +NpF3+ Cl- 0.100 +NpI+3 ClO4- 0.770 +NpO2(Cit)-2 Na+ -0.060 +NpO2(CO3)- Na+ -0.180 +NpO2(CO3)2-2 Na+ -0.020 +NpO2(CO3)2-3 Na+ -0.330 +NpO2(CO3)2OH-4 Na+ -0.400 +NpO2(CO3)3-4 Na+ -0.400 +NpO2(CO3)3-5 Na+ -0.530 +NpO2(Edta)-3 Na+ 0.200 +NpO2(HEdta)-2 Na+ 0.070 +NpO2(HPO4)- Na+ -0.050 +NpO2(HPO4)2-2 Na+ -0.100 +NpO2(NO3)+ Cl- 0.220 +NpO2(NO3)+ ClO4- 0.330 +NpO2(OH)+ Cl- -0.003 +NpO2(OH)+ ClO4- -0.060 +NpO2(OH)2- Na+ -0.010 +NpO2(OH)3- Na+ -0.200 +NpO2(OH)4-2 Na+ -0.120 +NpO2(Ox)- Na+ -0.400 +NpO2(Ox)2-3 Na+ -0.300 +NpO2(SO4)- Na+ 0.070 +NpO2(SO4)2-2 Na+ -0.120 +NpO2+ Cl- 0.090 +NpO2+ ClO4- 0.250 +NpO2+2 Cl- 0.223 +NpO2+2 ClO4- 0.460 +NpO2Cl+ Cl- 0.318 +NpO2Cl+ ClO4- 0.500 +NpO2F+ Cl- 0.197 +NpO2F+ ClO4- 0.290 +OH- Na+ 0.040 +Ox-2 Na+ -0.080 +Pa+4 Cl- 0.300 +PaO(OH)+2 Cl- 0.130 +Pb(OH)3- Na+ 0.020 +Pb(SO4)2-2 Na+ -0.520 +Pb+2 Cl- 0.081 +Pb+2 ClO4- 0.150 +Pb+2 NO3- -0.200 +PbF+ Cl- 0.140 +Pd(OH)3- Na+ 0.110 +Pd(SO4)2-2 Na+ -0.120 +Pd+2 Cl- 0.160 +Pd+2 ClO4- 0.220 +PdBr+ Cl- 0.175 +PdBr3- Na+ 0.000 +PdBr4-2 Na+ 0.100 +PdCl+ Cl- 0.175 +PdCl+ ClO4- 0.250 +PdCl3- Na+ 0.030 +PdCl3(OH)-2 Na+ -0.044 +PdCl4-2 Na+ -0.044 +PO4-3 Na+ -0.250 +Pu(CO3)+ Cl- 0.129 +Pu(CO3)+ ClO4- 0.170 +Pu(CO3)2- Na+ -0.140 +Pu(CO3)3-3 Na+ -0.230 +Pu(CO3)4-4 Na+ -0.090 +Pu(CO3)5-6 Na+ 0.000 +Pu(NO3)+2 Cl- 0.191 +Pu(NO3)+2 ClO4- 0.390 +Pu(NO3)+3 ClO4- 0.590 +Pu(OH)+2 Cl- -0.040 +Pu(OH)+2 ClO4- 0.390 +Pu(OH)+3 Cl- 0.200 +Pu(OH)+3 ClO4- 0.500 +Pu(OH)2+ Cl- -0.290 +Pu(OH)2+ ClO4- 0.170 +Pu(OH)2+2 Cl- 0.100 +Pu(OH)3+ Cl- 0.050 +Pu(SO4)+ Cl- 0.157 +Pu(SO4)+ ClO4- 0.220 +Pu(SO4)+2 Cl- 0.232 +Pu(SO4)+2 ClO4- 0.360 +Pu(SO4)2- Na+ -0.050 +Pu+3 Cl- 0.230 +Pu+3 ClO4- 0.490 +Pu+4 ClO4- 0.820 +PuBr+3 Cl- 0.100 +PuBr+3 ClO4- 0.580 +PuCl+3 Cl- 0.100 +PuCl+3 ClO4- 0.850 +PuF+3 Cl- 0.100 +PuF+3 ClO4- 0.560 +PuF2+2 Cl- 0.177 +PuF2+2 ClO4- 0.360 +PuF3+ Cl- 0.100 +PuI+2 Cl- 0.191 +PuI+2 ClO4- 0.390 +PuI+3 Cl- 0.100 +PuO2(CO3)- Na+ -0.180 +PuO2(CO3)2-2 Na+ -0.700 +PuO2(CO3)3-4 Na+ -0.200 +PuO2(CO3)3-5 Na+ -0.530 +PuO2(OH)+ Cl- -0.003 +PuO2(SO4)- Na+ -0.070 +PuO2(SO4)2-2 Na+ -0.120 +PuO2+ Cl- 0.129 +PuO2+ ClO4- 0.240 +PuO2+2 Cl- 0.223 +PuO2+2 ClO4- 0.460 +PuO2Cl+ Cl- 0.318 +PuO2Cl+ ClO4- 0.500 +PuO2F+ Cl- 0.197 +PuO2F+ ClO4- 0.290 +PuO2F3- Na+ 0.000 +PuO2NO3+ Cl- 0.220 +PuO2NO3+ ClO4- 0.330 +SeO3-2 Na+ -0.080 +SeO4-2 Na+ -0.120 +Si2O2(OH)5- Na+ -0.080 +Si2O3(OH)4-2 Na+ -0.150 +Si3O5(OH)5-3 Na+ -0.250 +Si3O6(OH)3-3 Na+ -0.250 +Si4O8(OH)4-4 Na+ -0.260 +Sm(CO3)+ Cl- 0.129 +Sm(CO3)+ ClO4- 0.170 +Sm(CO3)2- Na+ -0.140 +Sm(CO3)3-3 Na+ -0.230 +Sm(H2PO4)+2 Cl- 0.191 +Sm(H2PO4)+2 ClO4- 0.390 +Sm(NO3)+2 Cl- 0.191 +Sm(NO3)+2 ClO4- 0.390 +Sm(OH)+2 Cl- -0.040 +Sm(OH)+2 ClO4- 0.390 +Sm(OH)2+ Cl- -0.290 +Sm(OH)2+ ClO4- 0.170 +Sm(SO4)+ Cl- 0.157 +Sm(SO4)+ ClO4- 0.220 +Sm(SO4)2- Na+ -0.050 +Sm+3 Cl- 0.230 +Sm+3 ClO4- 0.490 +SmCl+2 Cl- 0.191 +SmCl+2 ClO4- 0.390 +SmF+2 Cl- 0.191 +SmF+2 ClO4- 0.390 +Sn(OH)+ ClO4- -0.070 +Sn(OH)3- Na+ 0.220 +Sn+2 Cl- 0.140 +Sn+2 ClO4- 0.190 +Sn+4 ClO4- 0.700 +Sn3(OH)4+2 ClO4- -0.020 +SnBr+ ClO4- 0.150 +SnBr3- Na+ 0.160 +SnCl+ ClO4- 0.080 +SnCl3- Na+ 0.040 +SnF+ ClO4- 0.140 +SO3-2 Na+ -0.080 +SO4-2 Na+ -0.120 +Tc2O2(OH)2+2 Cl- -0.430 +TcO(OH)3- Na+ -0.080 +Th(CO3)5-6 Na+ -0.300 +Th(H2PO4)+3 ClO4- 0.500 +Th(H2PO4)2+2 ClO4- 0.400 +Th(H3PO4)(H2PO4)+3 ClO4- 0.500 +Th(H3PO4)+4 ClO4- 0.700 +Th(NO3)+3 ClO4- 0.560 +Th(NO3)+3 NO3- 0.560 +Th(NO3)2+2 ClO4- 0.430 +Th(NO3)2+2 NO3- 0.430 +Th(OH)(CO3)4-5 Na+ -0.220 +Th(OH)+3 Cl- 0.190 +Th(OH)+3 ClO4- 0.480 +Th(OH)+3 NO3- 0.200 +Th(OH)2(CO3)2-2 Na+ -0.100 +Th(OH)2+2 Cl- 0.130 +Th(OH)2+2 ClO4- 0.330 +Th(OH)2+2 NO3- 0.100 +Th(OH)3(CO3)- Na+ -0.050 +Th(OH)3+ Cl- 0.060 +Th(OH)3+ ClO4- 0.150 +Th(OH)3+ NO3- 0.050 +Th(OH)4(CO3)-2 Na+ -0.100 +Th(SO4)+2 Cl- 0.140 +Th(SO4)+2 ClO4- 0.300 +Th(SO4)3-2 Na+ -0.091 +Th+4 Cl- 0.250 +Th+4 ClO4- 0.700 +Th+4 NO3- 0.310 +Th2(OH)2+6 Cl- 0.400 +Th2(OH)2+6 ClO4- 1.220 +Th2(OH)2+6 NO3- 0.690 +Th2(OH)3+5 Cl- 0.290 +Th2(OH)3+5 ClO4- 0.910 +Th2(OH)3+5 NO3- 0.690 +Th4(OH)12+4 Cl- 0.250 +Th4(OH)12+4 ClO4- 0.560 +Th4(OH)12+4 NO3- 0.420 +Th4(OH)8+8 Cl- 0.700 +Th4(OH)8+8 ClO4- 1.690 +Th4(OH)8+8 NO3- 1.590 +Th6(OH)14+10 Cl- 0.830 +Th6(OH)14+10 ClO4- 2.200 +Th6(OH)14+10 NO3- 2.900 +Th6(OH)15+9 Cl- 0.720 +Th6(OH)15+9 ClO4- 1.850 +Th6(OH)15+9 NO3- 2.200 +ThCl+3 Cl- 0.620 +ThCl+3 ClO4- 0.620 +ThF+3 ClO4- 0.480 +ThF+3 NO3- 0.250 +ThF2+2 ClO4- 0.300 +ThF2+2 NO3- 0.150 +ThF3+ ClO4- 0.100 +ThF3+ NO3- 0.000 +U(CO3)4-4 Na+ -0.090 +U(CO3)5-6 Na+ -0.300 +U(NO3)+3 ClO4- 0.620 +U(NO3)2+2 Cl- 0.236 +U(NO3)2+2 ClO4- 0.490 +U(OH)+3 Cl- 0.200 +U(OH)+3 ClO4- 0.480 +U(OH)2+2 Cl- 0.100 +U(OH)3+ Cl- 0.050 +U(SO4)+2 Cl- 0.149 +U(SO4)+2 ClO4- 0.300 +U+3 Cl- 0.230 +U+3 ClO4- 0.490 +U+4 Cl- 0.360 +U+4 ClO4- 0.760 +UBr+3 ClO4- 0.520 +UCl+3 Cl- 0.100 +UCl+3 ClO4- 0.500 +UF+3 Cl- 0.100 +UF+3 ClO4- 0.480 +UF2+2 Cl- 0.149 +UF2+2 ClO4- 0.300 +UF3+ Cl- 0.100 +UF3+ ClO4- 0.100 +UI+3 ClO4- 0.550 +UI+3 NO3- 0.560 +UO2(Cit)- Na+ -0.110 +UO2(CO3)2-2 Na+ -0.020 +UO2(CO3)3-4 Na+ -0.010 +UO2(CO3)3-5 Na+ -0.620 +UO2(NO3)+ Cl- 0.220 +UO2(NO3)+ ClO4- 0.330 +UO2(OH)+ Cl- -0.003 +UO2(OH)+ ClO4- -0.060 +UO2(OH)+ NO3- 0.510 +UO2(OH)3- Na+ -0.240 +UO2(OH)4-2 Na+ 0.010 +UO2(Ox)2-2 Na+ -0.180 +UO2(Ox)3-4 Na+ -0.010 +UO2(SO4)2-2 Na+ -0.120 +UO2+ Cl- 0.180 +UO2+ ClO4- 0.260 +UO2+2 Cl- 0.460 +UO2+2 ClO4- 0.460 +UO2+2 NO3- 0.460 +UO2Br+ Cl- 0.169 +UO2Br+ ClO4- 0.240 +UO2Cl+ Cl- 0.220 +UO2Cl+ ClO4- 0.330 +UO2F+ Cl- 0.040 +UO2F+ ClO4- 0.280 +UO2F3- Na+ -0.140 +UO2F4-2 Na+ -0.300 +Zn+2 Cl- 0.163 +Zn+2 ClO4- 0.330 +Zn+2 NO3- 0.160 +Zr(CO3)4-4 Na+ -0.090 +Zr(NO3)2+2 ClO4- 0.840 +Zr(OH)+3 ClO4- 0.570 +Zr(OH)2+2 ClO4- 0.620 +Zr(OH)6-2 Na+ -0.100 +Zr+4 Cl- 0.890 +Zr+4 ClO4- 0.890 +Zr+4 NO3- 0.890 +Zr4(OH)15+ ClO4- 0.090 +ZrCl+3 ClO4- 0.870 +ZrCl2+2 ClO4- 0.840 +ZrF+3 ClO4- 0.630 +ZrF2+2 ClO4- 0.470 +ZrF5- Na+ -0.140 +ZrF6-2 Na+ -0.150 +ZrNO3+3 ClO4- 0.880 SOLUTION_SPECIES -1.000H2O = H2O - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ = H+ - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000e- = e- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Acetate- = Acetate- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -486.01 #kJ/mol #82WAG/EVA - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Adipate-2 = Adipate-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ag+ = Ag+ - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 105.79 #kJ/mol #95SIL/BID - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 = Al+3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -538.4 #kJ/mol #95POK/HEL - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 = Am+3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -616.7 #kJ/mol #95SIL/BID - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000AsO4-3 = AsO4-3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -888.14 #kJ/mol #09RAN/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000B(OH)4- = B(OH)4- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1345.116 #kJ/mol #99RAR/RAN - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ba+2 = Ba+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -534.8 #kJ/mol #95SIL/BID - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Br- = Br- - log_k 0.000 #95SIL/BID - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -121.41 #kJ/mol #95SIL/BID - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000CO3-2 = CO3-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -675.23 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 = Ca+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -543 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 = Cd+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -75.92 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cit-3 = Cit-3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1519.92 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cl- = Cl- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -167.08 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cm+3 = Cm+3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -615 #kJ/mol #01KON2 - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cn- = Cn- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 150.624 #kJ/mol #92JOH/OEL - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 = Co+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -57.6 #kJ/mol #98PLY/ZHA1 - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000CrO4-2 = CrO4-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -879 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cs+ = Cs+ - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -258 #kJ/mol #95SIL/BID - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cu+2 = Cu+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 64.9 #kJ/mol #92GRE/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Edta-4 = Edta-4 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1704.8 #kJ/mol #05HUM/AND - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 = Eu+3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -605.331 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000F- = F- - log_k 0.000 #95SIL/BID - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -335.35 #kJ/mol #95SIL/BID - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 = Fe+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -90 #kJ/mol #98CHI - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H2(PO4)- = H2(PO4)- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1302.6 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H4(SiO4) = H4(SiO4) - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1461.194 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000HGlu- = HGlu- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000HIsa- = HIsa- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Hf+4 = Hf+4 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -628.91 #kJ/mol #99VAS/LYT - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Hg+2 = Hg+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 170.21 #kJ/mol #92GRE/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ho+3 = Ho+3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -707.042 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000I- = I- - log_k 0.000 #92GRE/FUG - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -56.78 #kJ/mol #92GRE/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000K+ = K+ - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -252.14 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Li+ = Li+ - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Malonate-2 = Malonate-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 = Mg+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -467 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 = Mn+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -220.8 #kJ/mol #95ROB/HEM - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000MoO4-2 = MoO4-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -997 #kJ/mol #74OHA - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NO3- = NO3- - log_k 0.000 #92GRE/FUG - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -206.85 #kJ/mol #92GRE/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Na+ = Na+ - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -240.34 #kJ/mol #92GRE/FUG (89COX/WAG) - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Nb(OH)6- = Nb(OH)6- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1925.665 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 = Ni+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -55.012 #kJ/mol #05GAM/BUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 = NpO2+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -860.733 #kJ/mol #01LEM/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Nta-3 = Nta-3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ox-2 = Ox-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -830.66 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pa+4 = Pa+4 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -620 #kJ/mol #85BAR/PAR - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 = Pb+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 0.92 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pd+2 = Pd+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 189.883 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Phthalat-2 = Phthalat-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 = PuO2+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -822.036 #kJ/mol #01LEM/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pyrophos-4 = Pyrophos-4 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ra+2 = Ra+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -528.025 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Rb+ = Rb+ - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -251.12 #kJ/mol #92GRE/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000SO4-2 = SO4-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -909.34 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sb(OH)3 = Sb(OH)3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -733.892 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Scn- = Scn- - log_k 0.000 #92GRE/FUG - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 76.4 #kJ/mol #92GRE/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000SeO4-2 = SeO4-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -603.5 #kJ/mol #05OLI/NOL - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 = Sm+3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -691.199 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 = Sn+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -9.617 #kJ/mol #12GAM/GAJ - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 = Sr+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -550.9 #kJ/mol #84BUS/PLUS - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Suberate-2 = Suberate-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Succinat-2 = Succinat-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 = TcO(OH)2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -749.32 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 = Th+4 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -768.7 #kJ/mol #09RAN/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 = UO2+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1019 #kJ/mol #92GRE/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Zn+2 = Zn+2 - log_k 0.000 #92GRE/FUG - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -153.39 #kJ/mol #92GRE/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Zr+4 = Zr+4 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -608.5 #kJ/mol #05BRO/CUR - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - - -1.000Am+3 + 0.500H2O - 1.000H+ - 0.250O2 = Am+2 - log_k -60.375 #95SIL/BID - delta_h 401.958 #kJ/mol - # Enthalpy of formation: -354.624 #kJ/mol - -analytic 1.00448E+1 0E+0 -2.09957E+4 0E+0 0E+0 - -1.000Am+3 - 0.500H2O + 1.000H+ + 0.250O2 = Am+4 - log_k -22.715 - delta_h 70.819 #kJ/mol - # Enthalpy of formation: -406 #kJ/mol #95SIL/BID - -analytic -1.03081E+1 0E+0 -3.6991E+3 0E+0 0E+0 - -- 2.000H+ + 1.000Am+3 + 1.000H2O + 0.500O2 = AmO2+ - log_k -15.380 - delta_h 104.337 #kJ/mol #95SIL/BID - # Enthalpy of formation: -804.26 #kJ/mol - -analytic 2.89903E+0 0E+0 -5.44989E+3 0E+0 0E+0 - -- 1.000H+ + 1.000Am+3 + 0.500H2O + 0.750O2 = AmO2+2 - log_k -20.865 - delta_h 117.956 #kJ/mol #95SIL/BID - # Enthalpy of formation: -650.76 #kJ/mol - -analytic -2.00114E-1 0E+0 -6.16124E+3 0E+0 0E+0 - -2.000H+ + 1.000CO3-2 + 1.000H2O - 2.000O2 = CH4 - log_k -133.770 - delta_h 848.886 #kJ/mol - # Enthalpy of formation: -87.906 #kJ/mol #01SCH/SHO - -analytic 1.49482E+1 0E+0 -4.43403E+4 0E+0 0E+0 - -4.000H+ + 1.000CrO4-2 - 2.000H2O - 1.000O2 = Cr+2 - log_k -18.760 #04CHI - delta_h 137.587 #kJ/mol - # Enthalpy of formation: -157.62 #kJ/mol - -analytic 5.34417E+0 0E+0 -7.18666E+3 0E+0 0E+0 - -5.000H+ + 1.000CrO4-2 - 2.500H2O - 0.750O2 = Cr+3 - log_k 9.135 - delta_h -85.176 #kJ/mol - # Enthalpy of formation: -240.5 #kJ/mol #04CHI - -analytic -5.78709E+0 0E+0 4.44902E+3 0E+0 0E+0 - -1.000Cu+2 + 0.500H2O - 1.000H+ - 0.250O2 = Cu+ - log_k -18.855 - delta_h 146.652 #kJ/mol - # Enthalpy of formation: 71.67 #kJ/mol #82WAG/EVA - -analytic 6.8372E+0 0E+0 -7.66013E+3 0E+0 0E+0 - -1.000Eu+3 + 0.500H2O - 1.000H+ - 0.250O2 = Eu+2 - log_k -27.465 - delta_h 217.611 #kJ/mol - # Enthalpy of formation: -527.602 #kJ/mol #92JOH/OEL - -analytic 1.06587E+1 0E+0 -1.13666E+4 0E+0 0E+0 - -1.000Fe+2 - 0.500H2O + 1.000H+ + 0.250O2 = Fe+3 - log_k 8.485 - delta_h -98.882 #kJ/mol - # Enthalpy of formation: -49 #kJ/mol #98CHI - -analytic -8.83827E+0 0E+0 5.16493E+3 0E+0 0E+0 - -1.000H2O - 0.500O2 = H2 - log_k -46.070 - delta_h 275.563 #kJ/mol - # Enthalpy of formation: -4.2 #kJ/mol #82WAG/EVA - -analytic 2.20649E+0 0E+0 -1.43936E+4 0E+0 0E+0 - -3.000H+ + 1.000AsO4-3 - 0.500O2 = H3(AsO3) - log_k -2.960 - delta_h 139.873 #kJ/mol - # Enthalpy of formation: -742.2 #kJ/mol #09RAN/FUG - -analytic 2.15447E+1 0E+0 -7.30606E+3 0E+0 0E+0 - -1.000H+ + 1.000SO4-2 - 2.000O2 = HS- - log_k -138.270 - delta_h 868.772 #kJ/mol - # Enthalpy of formation: -16.3 #kJ/mol #89COX/WAG - -analytic 1.39321E+1 0E+0 -4.53791E+4 0E+0 0E+0 - -1.000H+ + 1.000SeO4-2 - 2.000O2 = HSe- - log_k -90.390 - delta_h 593.532 #kJ/mol - # Enthalpy of formation: 14.3 #kJ/mol #05OLI/NOL - -analytic 1.35922E+1 0E+0 -3.10023E+4 0E+0 0E+0 - -2.000Hg+2 + 1.000H2O - 2.000H+ - 0.500O2 = Hg2+2 - log_k -12.200 - delta_h 106.213 #kJ/mol - # Enthalpy of formation: 166.87 #kJ/mol #01LEM/FUG - -analytic 6.40769E+0 0E+0 -5.54788E+3 0E+0 0E+0 - -1.000I- + 1.500O2 = IO3- - log_k 17.410 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -219.7 #kJ/mol #92GRE/FUG - -analytic 1.741E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000NO3- + 1.000H2O - 2.000O2 = NH3 - log_k -61.960 #95SIL/BID - delta_h 387.242 #kJ/mol - # Enthalpy of formation: -81.17 #kJ/mol #95SIL/BID - -analytic 5.88179E+0 0E+0 -2.0227E+4 0E+0 0E+0 - -1.000Np+4 + 0.500H2O - 1.000H+ - 0.250O2 = Np+3 - log_k -17.795 - delta_h 168.720 #kJ/mol - # Enthalpy of formation: -527.184 #kJ/mol #01LEM/FUG - -analytic 1.17633E+1 0E+0 -8.81282E+3 0E+0 0E+0 - -1.000NpO2+ + 3.000H+ - 1.500H2O - 0.250O2 = Np+4 - log_k -11.285 - delta_h -9.620 #kJ/mol - # Enthalpy of formation: -556.022 #kJ/mol #01LEM/FUG - -analytic -1.29703E+1 0E+0 5.02461E+2 0E+0 0E+0 - -1.000NpO2+2 + 0.500H2O - 1.000H+ - 0.250O2 = NpO2+ - log_k -1.905 - delta_h 22.434 #kJ/mol - # Enthalpy of formation: -978.181 #kJ/mol #01LEM/FUG - -analytic 2.02517E+0 0E+0 -1.17178E+3 0E+0 0E+0 - -- 4.000H+ - 4.000e- + 2.000H2O = O2 - log_k -85.980 #89COX/WAG - delta_h 559.526 #kJ/mol - # Enthalpy of formation: -12.134 #kJ/mol #01SCH/SHO - -analytic 1.20446E+1 0E+0 -2.9226E+4 0E+0 0E+0 - -- 3.000H+ + 1.000Pa+4 + 1.500H2O + 0.250O2 = PaO2+ - log_k 25.715 #85BAR/PAR, 76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.5715E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 0.500H2O - 1.000H+ - 0.250O2 = Pu+3 - log_k -3.805 - delta_h 87.987 #kJ/mol - # Enthalpy of formation: -591.79 #kJ/mol #01LEM/FUG - -analytic 1.16096E+1 0E+0 -4.59585E+3 0E+0 0E+0 - -1.000PuO2+ + 3.000H+ - 1.500H2O - 0.250O2 = Pu+4 - log_k -4.045 - delta_h -61.547 #kJ/mol - # Enthalpy of formation: -539.895 #kJ/mol #01LEM/FUG - -analytic -1.48275E+1 0E+0 3.21479E+3 0E+0 0E+0 - -1.000PuO2+2 + 0.500H2O - 1.000H+ - 0.250O2 = PuO2+ - log_k -5.675 - delta_h 51.791 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -910.127 #kJ/mol - -analytic 3.39829E+0 0E+0 -2.7052E+3 0E+0 0E+0 - -2.000H+ + 2.000SO4-2 - 1.000H2O - 2.000O2 = S2O3-2 - log_k -133.400 - delta_h 856.296 #kJ/mol - # Enthalpy of formation: -652.286 #kJ/mol #04CHI - -analytic 1.66164E+1 0E+0 -4.47274E+4 0E+0 0E+0 - -2.000H+ + 2.000SO4-2 - 1.000H2O - 1.500O2 = S2O4-2 - log_k -118.270 - delta_h 761.149 #kJ/mol - # Enthalpy of formation: -735.5 #kJ/mol #82WAG/EVA - -analytic 1.50774E+1 0E+0 -3.97575E+4 0E+0 0E+0 - -1.000SO4-2 - 0.500O2 = SO3-2 - log_k -46.610 - delta_h 272.213 #kJ/mol - # Enthalpy of formation: -631.06 #kJ/mol #85GOL/PAR - -analytic 1.0796E+0 0E+0 -1.42187E+4 0E+0 0E+0 - -1.000Sb(OH)3 + 1.000H2O + 0.500O2 = Sb(OH)5 - log_k 21.250 #99LOT/OCH recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.125E+1 0E+0 0E+0 0E+0 0E+0 - -1.000SeO4-2 - 0.500O2 = SeO3-2 - log_k -14.950 #05OLI/NOL - delta_h 90.273 #kJ/mol - # Enthalpy of formation: -507.16 #kJ/mol #05OLI/NOL - -analytic 8.65128E-1 0E+0 -4.71528E+3 0E+0 0E+0 - -1.000Sn+2 - 1.000H2O + 2.000H+ + 0.500O2 = Sn+4 - log_k 30.010 #12GAM/GAJ; E°=0.384V for Sn2+/Sn4+ reaction ( I=0) - delta_h -301.645 #kJ/mol - # Enthalpy of formation: -31.499 #kJ/mol - -analytic -2.28359E+1 0E+0 1.5756E+4 0E+0 0E+0 - -1.000TcO(OH)2 - 1.000H+ - 0.500H2O + 0.750O2 = TcO4- - log_k 35.055 - delta_h -113.895 #kJ/mol - # Enthalpy of formation: -729.4 #kJ/mol #99RAR/RAN - -analytic 1.51016E+1 0E+0 5.94912E+3 0E+0 0E+0 - -1.000TcO4- + 0.500H2O - 1.000H+ - 0.250O2 = TcO4-2 - log_k -32.295 #99RAR/RAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.2295E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 0.500H2O - 1.000H+ - 0.250O2 = U+3 - log_k -30.845 #92GRE/FUG - delta_h 241.982 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -489.1 #kJ/mol - -analytic 1.15483E+1 0E+0 -1.26396E+4 0E+0 0E+0 - -1.000UO2+2 + 2.000H+ - 1.000H2O - 0.500O2 = U+4 - log_k -33.950 #92GRE/FUG - delta_h 135.903 #kJ/mol - # Enthalpy of formation: -591.2 #kJ/mol #92GRE/FUG - -analytic -1.01409E+1 0E+0 -7.0987E+3 0E+0 0E+0 - -1.000UO2+2 + 0.500H2O - 1.000H+ - 0.250O2 = UO2+ - log_k -20.015 - delta_h 133.755 #kJ/mol - # Enthalpy of formation: -1025.127 #kJ/mol - -analytic 3.41775E+0 0E+0 -6.98647E+3 0E+0 0E+0 - - -2.000NpO2+2 - 2.000H+ + 2.000H2O = (NpO2)2(OH)2+2 - log_k -6.270 #01LEM/FUG - delta_h 44.996 #kJ/mol - # Enthalpy of formation: -2248.13 #kJ/mol - -analytic 1.61295E+0 0E+0 -2.3503E+3 0E+0 0E+0 - -2.000NpO2+2 - 3.000H+ + 1.000CO3-2 + 3.000H2O = (NpO2)2CO3(OH)3- - log_k -2.870 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.87E+0 0E+0 0E+0 0E+0 0E+0 - -3.000NpO2+2 + 6.000CO3-2 = (NpO2)3(CO3)6-6 - log_k 49.840 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.984E+1 0E+0 0E+0 0E+0 0E+0 - -3.000NpO2+2 - 5.000H+ + 5.000H2O = (NpO2)3(OH)5+ - log_k -17.120 #01LEM/FUG - delta_h 110.667 #kJ/mol - # Enthalpy of formation: -3900.682 #kJ/mol - -analytic 2.268E+0 0E+0 -5.78053E+3 0E+0 0E+0 - -2.000PuO2+2 - 2.000H+ + 2.000H2O = (PuO2)2(OH)2+2 - log_k -7.500 #01LEM/FUG - delta_h 43.583 #kJ/mol - # Enthalpy of formation: -2172.149 #kJ/mol - -analytic 1.35403E-1 0E+0 -2.2765E+3 0E+0 0E+0 - -3.000PuO2+2 + 6.000CO3-2 = (PuO2)3(CO3)6-6 - log_k 46.020 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.602E+1 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 - 1.000H+ + 1.000H2O = (TcO)(OH)3- - log_k -10.800 - delta_h 39.030 #kJ/mol #97NGU/LAN - # Enthalpy of formation: -996.12 #kJ/mol - -analytic -3.96225E+0 0E+0 -2.03868E+3 0E+0 0E+0 - -2.000Th+4 - 2.000H+ + 2.000Edta-4 + 2.000H2O = (Th(OH)(Edta))2-2 - log_k 43.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.37E+1 0E+0 0E+0 0E+0 0E+0 - -2.000U+4 - 2.000H+ + 2.000Edta-4 + 2.000H2O = (U(OH)(Edta))2-2 - log_k 51.700 #63ERM/KRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.17E+1 0E+0 0E+0 0E+0 0E+0 - -11.000UO2+2 - 12.000H+ + 6.000CO3-2 + 12.000H2O = (UO2)11(CO3)6(OH)12-2 - log_k 36.430 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.643E+1 0E+0 0E+0 0E+0 0E+0 - -2.000UO2+2 - 3.000H+ + 1.000CO3-2 + 3.000H2O = (UO2)2(CO3)(OH)3- - log_k -0.860 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -8.6E-1 0E+0 0E+0 0E+0 0E+0 - -2.000UO2+2 + 2.000Cit-3 = (UO2)2(Cit)2-2 - log_k 21.300 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.13E+1 0E+0 0E+0 0E+0 0E+0 - -2.000UO2+2 + 1.000Edta-4 = (UO2)2(Edta) - log_k 20.600 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.06E+1 0E+0 0E+0 0E+0 0E+0 - -2.000UO2+2 + 1.000NpO2+2 + 6.000CO3-2 = (UO2)2(NpO2)(CO3)6-6 - log_k 53.590 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.359E+1 0E+0 0E+0 0E+0 0E+0 - -2.000UO2+2 - 1.000H+ + 1.000H2O = (UO2)2(OH)+3 - log_k -2.700 #92GRE/FUG - delta_h 14.354 #kJ/mol - # Enthalpy of formation: -2309.476 #kJ/mol - -analytic -1.85291E-1 0E+0 -7.49761E+2 0E+0 0E+0 - -2.000UO2+2 - 2.000H+ + 2.000H2O = (UO2)2(OH)2+2 - log_k -5.620 #92GRE/FUG - delta_h 37.595 #kJ/mol - # Enthalpy of formation: -2572.065 #kJ/mol - -analytic 9.66352E-1 0E+0 -1.96372E+3 0E+0 0E+0 - -3.000UO2+2 - 3.000H+ + 1.000CO3-2 + 3.000H2O = (UO2)3(CO3)(OH)3+ - log_k 0.660 #92GRE/FUG - delta_h 81.159 #kJ/mol - # Enthalpy of formation: -4361.23 #kJ/mol - -analytic 1.48784E+1 0E+0 -4.23922E+3 0E+0 0E+0 - -3.000UO2+2 + 6.000CO3-2 = (UO2)3(CO3)6-6 - log_k 54.000 #92GRE/FUG - delta_h -62.700 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -7171.08 #kJ/mol - -analytic 4.30154E+1 0E+0 3.27504E+3 0E+0 0E+0 - -3.000UO2+2 - 4.000H+ + 4.000H2O = (UO2)3(OH)4+2 - log_k -11.900 #92GRE/FUG - delta_h 84.264 #kJ/mol - # Enthalpy of formation: -4251.906 #kJ/mol - -analytic 2.8624E+0 0E+0 -4.40141E+3 0E+0 0E+0 - -3.000UO2+2 - 5.000H+ + 5.000H2O = (UO2)3(OH)5+ - log_k -15.550 #92GRE/FUG - delta_h 97.063 #kJ/mol - # Enthalpy of formation: -4389.086 #kJ/mol - -analytic 1.45468E+0 0E+0 -5.06995E+3 0E+0 0E+0 - -3.000UO2+2 - 7.000H+ + 7.000H2O = (UO2)3(OH)7- - log_k -32.200 #92SAN/BRU - delta_h 229.868 #kJ/mol - # Enthalpy of formation: -4827.942 #kJ/mol - -analytic 8.07109E+0 0E+0 -1.20068E+4 0E+0 0E+0 - -4.000UO2+2 - 7.000H+ + 7.000H2O = (UO2)4(OH)7+ - log_k -21.900 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.19E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ag+ + 2.000CO3-2 = Ag(CO3)2-3 - log_k 2.160 #97SVE/SHO - delta_h -28.044 #kJ/mol - # Enthalpy of formation: -1272.714 #kJ/mol - -analytic -2.75309E+0 0E+0 1.46484E+3 0E+0 0E+0 - -1.000Ag+ + 1.000HS- = Ag(HS) - log_k 14.050 #74NAU/RYZ in 91BAL/NOR - delta_h -78.826 #kJ/mol - # Enthalpy of formation: 10.664 #kJ/mol - -analytic 2.40298E-1 0E+0 4.11736E+3 0E+0 0E+0 - -1.000Ag+ + 2.000HS- = Ag(HS)2- - log_k 18.450 #74NAU/RYZ in 91BAL/NOR - delta_h -105.805 #kJ/mol - # Enthalpy of formation: -32.615 #kJ/mol - -analytic -8.62131E-2 0E+0 5.52657E+3 0E+0 0E+0 - -1.000Ag+ - 1.000H+ + 1.000H2O = Ag(OH) - log_k -12.000 #76BAE/MES - delta_h 47.178 #kJ/mol - # Enthalpy of formation: -132.862 #kJ/mol - -analytic -3.73478E+0 0E+0 -2.46427E+3 0E+0 0E+0 - -1.000Ag+ - 2.000H+ + 2.000H2O = Ag(OH)2- - log_k -24.000 #76BAE/MES - delta_h 111.634 #kJ/mol - # Enthalpy of formation: -354.236 #kJ/mol - -analytic -4.44259E+0 0E+0 -5.83104E+3 0E+0 0E+0 - -1.000Ag+ + 1.000S2O3-2 = Ag(S2O3)- - log_k 9.230 #74BEL/MAR in 82HÖG - delta_h -58.994 #kJ/mol #74BEL/MAR in 82HÖG - # Enthalpy of formation: -601.724 #kJ/mol - -analytic -1.10529E+0 0E+0 3.08147E+3 0E+0 0E+0 - -1.000Ag+ + 2.000S2O3-2 = Ag(S2O3)2-3 - log_k 13.640 #72POU/RIG in 82HÖG - delta_h -94.450 #kJ/mol - # Enthalpy of formation: -1285.7 #kJ/mol #82WAG/EVA - -analytic -2.90691E+0 0E+0 4.93346E+3 0E+0 0E+0 - -1.000Ag+ + 1.000SO3-2 = Ag(SO3)- - log_k 5.210 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.21E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ag+ + 1.000SO4-2 = Ag(SO4)- - log_k 1.380 - delta_h 4.646 #kJ/mol - # Enthalpy of formation: -798.904 #kJ/mol - -analytic 2.19394E+0 0E+0 -2.42677E+2 0E+0 0E+0 - -1.000Ag+ + 3.000H+ + 3.000Cn- + 3.000HSe- - 3.000H2O + 1.500O2 = Ag(SeCn)3-2 - log_k 181.900 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.819E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Ag+ + 1.000SeO3-2 = Ag(SeO3)- - log_k 3.200 #Data from 68MEH and 69MEH/GUB in 05OLI/NOL corrected to I=0 by DH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ag+ + 1.000Br- = AgBr - log_k 4.240 #91BAL/NOR, 68WAG - delta_h -23.129 #kJ/mol - # Enthalpy of formation: -38.749 #kJ/mol - -analytic 1.87979E-1 0E+0 1.20811E+3 0E+0 0E+0 - -1.000Ag+ + 2.000Br- = AgBr2- - log_k 7.280 #91BAL/NOR, 68WAG - delta_h -45.296 #kJ/mol - # Enthalpy of formation: -182.326 #kJ/mol - -analytic -6.55507E-1 0E+0 2.36597E+3 0E+0 0E+0 - -1.000Ag+ + 3.000Br- = AgBr3-2 - log_k 8.710 #91BAL/NOR, 68WAG - delta_h -66.741 #kJ/mol - # Enthalpy of formation: -325.181 #kJ/mol - -analytic -2.9825E+0 0E+0 3.48612E+3 0E+0 0E+0 - -1.000Ag+ + 1.000CO3-2 = AgCO3- - log_k 2.690 #97SVE/SHO - delta_h -22.832 #kJ/mol - # Enthalpy of formation: -592.272 #kJ/mol - -analytic -1.30999E+0 0E+0 1.1926E+3 0E+0 0E+0 - -1.000Ag+ + 1.000Cl- = AgCl - log_k 3.270 #91BAL/NOR - delta_h -17.099 #kJ/mol - # Enthalpy of formation: -78.389 #kJ/mol - -analytic 2.74388E-1 0E+0 8.93142E+2 0E+0 0E+0 - -1.000Ag+ + 2.000Cl- = AgCl2- - log_k 5.270 #91BAL/NOR - delta_h -28.752 #kJ/mol - # Enthalpy of formation: -257.122 #kJ/mol - -analytic 2.32873E-1 0E+0 1.50182E+3 0E+0 0E+0 - -1.000Ag+ + 3.000Cl- = AgCl3-2 - log_k 5.290 #91BAL/NOR - delta_h -29.163 #kJ/mol - # Enthalpy of formation: -424.613 #kJ/mol - -analytic 1.80869E-1 0E+0 1.52329E+3 0E+0 0E+0 - -1.000Ag+ + 4.000Cl- = AgCl4-3 - log_k 5.510 #91BAL/NOR - delta_h -26.094 #kJ/mol - # Enthalpy of formation: -588.624 #kJ/mol - -analytic 9.38534E-1 0E+0 1.36298E+3 0E+0 0E+0 - -1.000Ag+ + 1.000I- = AgI - log_k 6.580 #76SMI/MAR - delta_h -36.962 #kJ/mol - # Enthalpy of formation: 12.048 #kJ/mol - -analytic 1.04545E-1 0E+0 1.93066E+3 0E+0 0E+0 - -1.000Ag+ + 2.000I- = AgI2- - log_k 11.700 #76SMI/MAR - delta_h -76.578 #kJ/mol - # Enthalpy of formation: -84.348 #kJ/mol - -analytic -1.71587E+0 0E+0 3.99994E+3 0E+0 0E+0 - -1.000Ag+ + 3.000I- = AgI3-2 - log_k 13.280 - delta_h -114.911 #kJ/mol - # Enthalpy of formation: -179.461 #kJ/mol - -analytic -6.85151E+0 0E+0 6.00221E+3 0E+0 0E+0 - -1.000Ag+ + 1.000NO3- = AgNO3 - log_k -0.290 #91BAL/NOR, 68WAG - delta_h -0.740 #kJ/mol - # Enthalpy of formation: -101.8 #kJ/mol #82WAG/EVA - -analytic -4.19642E-1 0E+0 3.86528E+1 0E+0 0E+0 - -1.000Al+3 + 1.000Cit-3 = Al(Cit) - log_k 9.900 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 - 1.000H+ + 2.000Cit-3 + 1.000H2O = Al(Cit)2(OH)-4 - log_k 10.190 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.019E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 2.000Cit-3 = Al(Cit)2-3 - log_k 14.130 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.413E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000Edta-4 = Al(Edta)- - log_k 19.080 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.908E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000H+ + 1.000Cit-3 = Al(HCit)+ - log_k 12.900 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.29E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000H+ + 1.000Edta-4 = Al(HEdta) - log_k 21.820 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.182E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000H+ + 1.000Nta-3 = Al(HNta)+ - log_k 15.130 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.513E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000H+ + 1.000Ox-2 = Al(HOx)+2 - log_k 7.500 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000IO3- = Al(IO3)+2 - log_k 2.460 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.46E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 2.000IO3- = Al(IO3)2+ - log_k 4.300 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000Nta-3 = Al(Nta) - log_k 13.230 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.323E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 - 2.000H+ + 1.000Nta-3 + 2.000H2O = Al(Nta)(OH)2-2 - log_k -0.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 2.000Nta-3 = Al(Nta)2-3 - log_k 20.800 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.08E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 - 1.000H+ + 1.000Cit-3 + 1.000H2O = Al(OH)(Cit)- - log_k 8.100 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 - 1.000H+ + 1.000Edta-4 + 1.000H2O = Al(OH)(Edta)-2 - log_k 13.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 - 1.000H+ + 1.000Nta-3 + 1.000H2O = Al(OH)(Nta)- - log_k 6.790 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.79E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 - 1.000H+ + 1.000H2O = Al(OH)+2 - log_k -4.950 #95POK/HEL - delta_h 49.760 #kJ/mol - # Enthalpy of formation: -774.47 #kJ/mol - -analytic 3.76756E+0 0E+0 -2.59914E+3 0E+0 0E+0 - -1.000Al+3 - 2.000H+ + 1.000Edta-4 + 2.000H2O = Al(OH)2(Edta)-3 - log_k 2.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 - 2.000H+ + 2.000H2O = Al(OH)2+ - log_k -10.580 - delta_h 98.264 #kJ/mol - # Enthalpy of formation: -1011.796 #kJ/mol #95POK/HEL - -analytic 6.63509E+0 0E+0 -5.13268E+3 0E+0 0E+0 - -1.000Al+3 - 2.000H+ + 1.000F- + 2.000H2O = Al(OH)2F - log_k -4.210 - delta_h 118.636 #kJ/mol - # Enthalpy of formation: -1326.774 #kJ/mol #01TAG/SCH - -analytic 1.65741E+1 0E+0 -6.19678E+3 0E+0 0E+0 - -1.000Al+3 - 2.000H+ + 2.000F- + 2.000H2O = Al(OH)2F2- - log_k -1.990 - delta_h 134.839 #kJ/mol - # Enthalpy of formation: -1645.921 #kJ/mol #01TAG/SCH - -analytic 2.16327E+1 0E+0 -7.04312E+3 0E+0 0E+0 - -1.000Al+3 - 3.000H+ + 3.000H2O = Al(OH)3 - log_k -16.420 - delta_h 144.686 #kJ/mol - # Enthalpy of formation: -1251.204 #kJ/mol #95POK/HEL - -analytic 8.92786E+0 0E+0 -7.55747E+3 0E+0 0E+0 - -1.000Al+3 - 4.000H+ + 4.000H2O = Al(OH)4- - log_k -22.870 - delta_h 180.881 #kJ/mol - # Enthalpy of formation: -1500.839 #kJ/mol #95POK/HEL - -analytic 8.81894E+0 0E+0 -9.44806E+3 0E+0 0E+0 - -1.000Al+3 + 1.000Ox-2 = Al(Ox)+ - log_k 9.400 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 2.000Ox-2 = Al(Ox)2- - log_k 15.390 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.539E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 3.000Ox-2 = Al(Ox)3-3 - log_k 18.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.83E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000SO4-2 = Al(SO4)+ - log_k 3.170 #01TAG/SCH - delta_h 18.870 #kJ/mol - # Enthalpy of formation: -1428.87 #kJ/mol - -analytic 6.47588E+0 0E+0 -9.85647E+2 0E+0 0E+0 - -2.000Al+3 - 2.000H+ + 4.000Ox-2 + 2.000H2O = Al2(Ox)4(OH)2-4 - log_k -6.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6E+0 0E+0 0E+0 0E+0 0E+0 - -3.000Al+3 - 4.000H+ + 3.000Cit-3 + 4.000H2O = Al3(Cit)3(OH)4-4 - log_k 20.600 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.06E+1 0E+0 0E+0 0E+0 0E+0 - -3.000Al+3 - 3.000H+ + 3.000Ox-2 + 3.000H2O = Al3(Ox)3(OH)3 - log_k 16.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.6E+1 0E+0 0E+0 0E+0 0E+0 - -4.000Al+3 - 4.000H+ + 4.000Ox-2 + 4.000H2O = Al4(Ox)4(OH)4 - log_k 21.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.1E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000F- = AlF+2 - log_k 6.980 #01TAG/SCH - delta_h -0.346 #kJ/mol - # Enthalpy of formation: -874.096 #kJ/mol - -analytic 6.91938E+0 0E+0 1.80728E+1 0E+0 0E+0 - -1.000Al+3 + 2.000F- = AlF2+ - log_k 12.500 #01TAG/SCH - delta_h 0.420 #kJ/mol - # Enthalpy of formation: -1208.68 #kJ/mol - -analytic 1.25736E+1 0E+0 -2.19381E+1 0E+0 0E+0 - -1.000Al+3 + 3.000F- = AlF3 - log_k 16.550 #01TAG/SCH - delta_h 0.615 #kJ/mol - # Enthalpy of formation: -1543.835 #kJ/mol - -analytic 1.66577E+1 0E+0 -3.21236E+1 0E+0 0E+0 - -1.000Al+3 + 4.000F- = AlF4- - log_k 18.930 #01TAG/SCH - delta_h 0.823 #kJ/mol - # Enthalpy of formation: -1878.977 #kJ/mol - -analytic 1.90742E+1 0E+0 -4.29882E+1 0E+0 0E+0 - -1.000Al+3 - 1.000H+ + 1.000H4(SiO4) = AlH3SiO4+2 - log_k -2.380 #01TAG/SCH - delta_h 77.389 #kJ/mol - # Enthalpy of formation: -1922.205 #kJ/mol - -analytic 1.1178E+1 0E+0 -4.0423E+3 0E+0 0E+0 - -1.000Al+3 - 1.000H+ + 2.000F- + 1.000H2O = AlOHF2 - log_k 0.210 - delta_h 139.337 #kJ/mol - # Enthalpy of formation: -1355.593 #kJ/mol #01TAG/SCH - -analytic 2.46208E+1 0E+0 -7.27807E+3 0E+0 0E+0 - -1.000Am+3 + 1.000Acetate- = Am(Acetate)+2 - log_k 2.940 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.94E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 2.000Acetate- = Am(Acetate)2+ - log_k 5.070 #69MOS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.07E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 3.000Acetate- = Am(Acetate)3 - log_k 6.540 #69MOS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.54E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 1.000CO3-2 = Am(CO3)+ - log_k 7.900 #recalculated from 03GUI/FAN - delta_h 158.156 #kJ/mol - # Enthalpy of formation: -1133.774 #kJ/mol - -analytic 3.56077E+1 0E+0 -8.26105E+3 0E+0 0E+0 - -1.000Am+3 + 2.000CO3-2 = Am(CO3)2- - log_k 12.600 #recalculated from 03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.26E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 3.000CO3-2 = Am(CO3)3-3 - log_k 14.600 #Recalculated from 03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.46E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 5.000CO3-2 - 0.500H2O + 1.000H+ + 0.250O2 = Am(CO3)5-6 - log_k 16.395 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.6395E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 1.000Cit-3 = Am(Cit) - log_k 8.550 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.55E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 2.000Cit-3 = Am(Cit)2-3 - log_k 13.900 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.39E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 1.000Edta-4 = Am(Edta)- - log_k 19.670 #05HUM/AND - delta_h -10.600 #kJ/mol - # Enthalpy of formation: -2332.1 #kJ/mol - -analytic 1.7813E+1 0E+0 5.53676E+2 0E+0 0E+0 - -1.000Am+3 + 1.000H2(PO4)- = Am(H2PO4)+2 - log_k 3.000 #95SIL/BID - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Am+3 + 1.000CO3-2 = Am(HCO3)+2 - log_k 13.430 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.343E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Am+3 + 1.000Cit-3 = Am(HCit)+ - log_k 12.860 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.286E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000Am+3 + 2.000Cit-3 = Am(HCit)2- - log_k 23.520 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.352E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Am+3 + 1.000Edta-4 = Am(HEdta) - log_k 21.840 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.184E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Am+3 + 1.000H2(PO4)- = Am(HPO4)+ - log_k -1.740 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.74E+0 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 1.000Am+3 + 2.000H2(PO4)- = Am(HPO4)2- - log_k -5.310 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.31E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 1.000NO3- = Am(NO3)+2 - log_k 1.330 #95SIL/BID - delta_h 1.800 #kJ/mol #09SKE/PAN - # Enthalpy of formation: -821.75 #kJ/mol - -analytic 1.64535E+0 0E+0 -9.40204E+1 0E+0 0E+0 - -1.000Am+3 + 1.000Nta-3 = Am(Nta) - log_k 13.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 2.000Nta-3 = Am(Nta)2-3 - log_k 22.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.2E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Am+3 + 1.000H2O = Am(OH)+2 - log_k -7.200 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE - delta_h 78.411 #kJ/mol - # Enthalpy of formation: -824.119 #kJ/mol - -analytic 6.537E+0 0E+0 -4.09569E+3 0E+0 0E+0 - -- 2.000H+ + 1.000Am+3 + 2.000H2O = Am(OH)2+ - log_k -15.100 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE - delta_h 143.704 #kJ/mol - # Enthalpy of formation: -1044.656 #kJ/mol - -analytic 1.00758E+1 0E+0 -7.50617E+3 0E+0 0E+0 - -- 3.000H+ + 1.000Am+3 + 3.000H2O = Am(OH)3 - log_k -26.200 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE - delta_h 230.125 #kJ/mol - # Enthalpy of formation: -1244.065 #kJ/mol - -analytic 1.41161E+1 0E+0 -1.20202E+4 0E+0 0E+0 - -- 3.000H+ + 1.000Am+3 + 1.000HGlu- + 3.000H2O = Am(OH)3(HGlu)- - log_k -19.700 #05TIT/WIE - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.97E+1 0E+0 0E+0 0E+0 0E+0 - -- 3.000H+ + 1.000Am+3 + 1.000HIsa- + 3.000H2O = Am(OH)3(HIsa)- - log_k -21.500 #05TIT/WIE - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.15E+1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 1.000Am+3 + 4.000H2O = Am(OH)4- - log_k -40.700 #07NEC/ALT2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.07E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 1.000Ox-2 = Am(Ox)+ - log_k 6.510 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.51E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 2.000Ox-2 = Am(Ox)2- - log_k 10.710 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.071E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 3.000Ox-2 = Am(Ox)3-3 - log_k 13.000 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E+1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 1.000Am+3 + 2.000H2(PO4)- = Am(PO4)2-3 - log_k -19.430 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.943E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 1.000Phthalat-2 = Am(Phthalat)+ - log_k 4.930 #In analogy with Cm - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.93E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 1.000SO4-2 = Am(SO4)+ - log_k 3.450 #12GRI/GAR1 - delta_h 15.493 #kJ/mol - # Enthalpy of formation: -1510.547 #kJ/mol - -analytic 6.16425E+0 0E+0 -8.09255E+2 0E+0 0E+0 - -1.000Am+3 + 2.000SO4-2 = Am(SO4)2- - log_k 4.570 #12GRI/GAR1 - delta_h 20.927 #kJ/mol - # Enthalpy of formation: -2414.453 #kJ/mol - -analytic 8.23625E+0 0E+0 -1.09309E+3 0E+0 0E+0 - -1.000Am+3 + 1.000Cl- = AmCl+2 - log_k 0.240 #97KÖN/FAN - delta_h 25.106 #kJ/mol - # Enthalpy of formation: -758.674 #kJ/mol - -analytic 4.63838E+0 0E+0 -1.31138E+3 0E+0 0E+0 - -1.000Am+3 + 2.000Cl- = AmCl2+ - log_k -0.740 #97KÖN/FAN - delta_h 40.568 #kJ/mol - # Enthalpy of formation: -910.292 #kJ/mol - -analytic 6.3672E+0 0E+0 -2.11901E+3 0E+0 0E+0 - -1.000Am+3 + 1.000F- = AmF+2 - log_k 3.400 #03GUI/FAN - delta_h 27.134 #kJ/mol - # Enthalpy of formation: -924.916 #kJ/mol - -analytic 8.15367E+0 0E+0 -1.41731E+3 0E+0 0E+0 - -1.000Am+3 + 2.000F- = AmF2+ - log_k 5.800 #95SIL/BID - delta_h 22.320 #kJ/mol - # Enthalpy of formation: -1265.08 #kJ/mol - -analytic 9.71029E+0 0E+0 -1.16585E+3 0E+0 0E+0 - -1.000Am+3 + 3.000F- = AmF3 - log_k 10.820 #69AZI/LYL - delta_h -12.119 #kJ/mol - # Enthalpy of formation: -1634.869 #kJ/mol - -analytic 8.69685E+0 0E+0 6.33019E+2 0E+0 0E+0 - -1.000AmO2+ + 1.000CO3-2 = AmO2(CO3)- - log_k 5.100 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000AmO2+ + 2.000CO3-2 = AmO2(CO3)2-3 - log_k 6.700 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000AmO2+ + 3.000CO3-2 = AmO2(CO3)3-5 - log_k 5.100 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.1E+0 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 1.000AmO2+ + 2.000H2O = AmO2(OH)2- - log_k -23.600 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.36E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000AmO2+ + 1.000H2O = AmO2OH - log_k -11.300 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.13E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Am+3 + 1.000H4(SiO4) = AmOSi(OH)3+2 - log_k -2.310 #Original data 07THA/SIN, 05PAN/KIM and 97STE/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.31E+0 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 1.000Am+3 + 1.000H2(PO4)- = AmPO4 - log_k -7.760 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.76E+0 0E+0 0E+0 0E+0 0E+0 - -- 3.000H+ + 1.000H3(AsO3) = AsO3-3 - log_k -38.590 #79IVA/VOR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.859E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000B(OH)4- - 1.000H2O = B(OH)3 - log_k 9.240 - delta_h -13.514 #kJ/mol - # Enthalpy of formation: -1072.8 #kJ/mol #01LEM/FUG - -analytic 6.87245E+0 0E+0 7.05884E+2 0E+0 0E+0 - -2.000H+ + 3.000B(OH)4- - 7.000H2O = B3O5- - log_k 20.900 #97CRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.09E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 4.000B(OH)4- - 9.000H2O = B4O7-2 - log_k 21.900 #97CRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.19E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000F- + 1.000B(OH)4- - 1.000H2O = BF(OH)3- - log_k 8.940 #77NOR/JEN - delta_h -39.078 #kJ/mol #77NOR/JEN - # Enthalpy of formation: -1433.714 #kJ/mol - -analytic 2.09384E+0 0E+0 2.04118E+3 0E+0 0E+0 - -2.000H+ + 2.000F- + 1.000B(OH)4- - 2.000H2O = BF2(OH)2- - log_k 16.970 #77NOR/JEN - delta_h -38.702 #kJ/mol #77NOR/JEN - # Enthalpy of formation: -1482.858 #kJ/mol - -analytic 1.01897E+1 0E+0 2.02154E+3 0E+0 0E+0 - -3.000H+ + 3.000F- + 1.000B(OH)4- - 3.000H2O = BF3(OH)- - log_k 23.010 #77NOR/JEN - delta_h -38.326 #kJ/mol #77NOR/JEN - # Enthalpy of formation: -1532.002 #kJ/mol - -analytic 1.62956E+1 0E+0 2.0019E+3 0E+0 0E+0 - -4.000H+ + 4.000F- + 1.000B(OH)4- - 4.000H2O = BF4- - log_k 29.620 #77NOR/JEN - delta_h 73.680 #kJ/mol #77NOR/JEN - # Enthalpy of formation: -1616.876 #kJ/mol - -analytic 4.25282E+1 0E+0 -3.84857E+3 0E+0 0E+0 - -1.000Ba+2 + 1.000CO3-2 = Ba(CO3) - log_k 2.710 #86BUS/PLU - delta_h 14.841 #kJ/mol #86BUS/PLU - # Enthalpy of formation: -1195.189 #kJ/mol - -analytic 5.31003E+0 0E+0 -7.75198E+2 0E+0 0E+0 - -1.000Ba+2 + 1.000H+ + 1.000CO3-2 = Ba(HCO3)+ - log_k 11.310 #86BUS/PLU - delta_h 8.560 #kJ/mol #86BUS/PLU - # Enthalpy of formation: -1201.47 #kJ/mol - -analytic 1.28096E+1 0E+0 -4.47119E+2 0E+0 0E+0 - -1.000Ba+2 + 1.000NO3- = Ba(NO3)+ - log_k -0.310 - delta_h 6.819 #kJ/mol - # Enthalpy of formation: -734.831 #kJ/mol - -analytic 8.84636E-1 0E+0 -3.56181E+2 0E+0 0E+0 - -1.000Ba+2 - 1.000H+ + 1.000H2O = Ba(OH)+ - log_k -13.470 #76BAE/MES - delta_h 87.395 #kJ/mol - # Enthalpy of formation: -733.235 #kJ/mol - -analytic 1.84092E+0 0E+0 -4.56495E+3 0E+0 0E+0 - -1.000Ba+2 + 1.000SO4-2 = Ba(SO4) - log_k 2.700 #76SMI/MAR - delta_h 7.367 #kJ/mol - # Enthalpy of formation: -1436.773 #kJ/mol - -analytic 3.99064E+0 0E+0 -3.84805E+2 0E+0 0E+0 - -1.000Ba+2 + 1.000B(OH)4- = BaB(OH)4+ - log_k 1.490 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.49E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ba+2 + 1.000F- = BaF+ - log_k 0.400 - delta_h 6.697 #kJ/mol - # Enthalpy of formation: -863.452 #kJ/mol #97SVE/SHO - -analytic 1.57326E+0 0E+0 -3.49808E+2 0E+0 0E+0 - -2.000H+ + 1.000CO3-2 - 1.000H2O - 0.500O2 = CO - log_k -31.390 - delta_h 262.373 #kJ/mol - # Enthalpy of formation: -120.96 #kJ/mol #82WAG/EVA - -analytic 1.45757E+1 0E+0 -1.37047E+4 0E+0 0E+0 - -2.000H+ + 1.000CO3-2 - 1.000H2O = CO2 - log_k 16.680 - delta_h -23.860 #kJ/mol - # Enthalpy of formation: -413.26 #kJ/mol #89COX/WAG - -analytic 1.24999E+1 0E+0 1.24629E+3 0E+0 0E+0 - -1.000Ca+2 + 1.000Acetate- = Ca(Acetate)+ - log_k 1.120 #95DER/DIG - delta_h -19.338 #kJ/mol - # Enthalpy of formation: -1048.348 #kJ/mol - -analytic -2.26787E+0 0E+0 1.01009E+3 0E+0 0E+0 - -1.000Ca+2 + 1.000Adipate-2 = Ca(Adipate) - log_k 2.190 #04MAR/SMI from 40TOP/DAV - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.19E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 - 3.000H+ + 1.000Am+3 + 3.000H2O = Ca(Am(OH)3)+2 - log_k -26.300 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.63E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000AsO4-3 = Ca(AsO4)- - log_k 5.770 #10MAR/ACC - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.77E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000Cit-3 = Ca(Cit)- - log_k 4.800 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -2062.92 #kJ/mol - -analytic 4.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 - 3.000H+ + 1.000Cm+3 + 3.000H2O = Ca(Cm(OH)3)+2 - log_k -26.300 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.63E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000Edta-4 = Ca(Edta)-2 - log_k 12.690 #05HUM/AND - delta_h -22.200 #kJ/mol - # Enthalpy of formation: -2270 #kJ/mol - -analytic 8.80073E+0 0E+0 1.15959E+3 0E+0 0E+0 - -1.000Ca+2 + 1.000Eu+3 - 3.000H+ + 3.000H2O = Ca(Eu(OH)3)+2 - log_k -26.300 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.63E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 2.000H+ + 1.000AsO4-3 = Ca(H2AsO4)+ - log_k 19.870 #10MAR/ACC - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.987E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 2.000H+ + 1.000Cit-3 = Ca(H2Cit)+ - log_k 12.670 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.267E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000H2(PO4)- = Ca(H2PO4)+ - log_k 1.410 #68CHU/MAR - delta_h 14.226 #kJ/mol #68CHU/MAR - # Enthalpy of formation: -1831.374 #kJ/mol - -analytic 3.90228E+0 0E+0 -7.43075E+2 0E+0 0E+0 - -1.000Ca+2 - 1.000H+ + 1.000H4(SiO4) = Ca(H3SiO4)+ - log_k -8.830 #97SVE/SHO - delta_h 31.633 #kJ/mol - # Enthalpy of formation: -1972.561 #kJ/mol - -analytic -3.28814E+0 0E+0 -1.6523E+3 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000AsO4-3 = Ca(HAsO4) - log_k 13.900 #10MAR/ACC - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.39E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000CO3-2 = Ca(HCO3)+ - log_k 11.430 #96BOU1 - delta_h -23.597 #kJ/mol - # Enthalpy of formation: -1241.827 #kJ/mol - -analytic 7.29599E+0 0E+0 1.23256E+3 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000Cit-3 = Ca(HCit) - log_k 9.280 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.28E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000Edta-4 = Ca(HEdta)- - log_k 16.230 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.623E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000HGlu- = Ca(HGlu)+ - log_k 1.730 #52SCH/LIN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.73E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000HIsa- = Ca(HIsa)+ - log_k 1.700 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000Malonate-2 = Ca(HMalonate)+ - log_k 6.640 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.64E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000Nta-3 = Ca(HNta) - log_k 13.400 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.34E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 2.000H+ + 2.000Nta-3 = Ca(HNta)2-2 - log_k 23.630 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.363E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 - 1.000H+ + 1.000H2(PO4)- = Ca(HPO4) - log_k -4.470 #68CHU/MAR - delta_h 17.407 #kJ/mol #68CHU/MAR - # Enthalpy of formation: -1828.193 #kJ/mol - -analytic -1.42043E+0 0E+0 -9.0923E+2 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000Phthalat-2 = Ca(HPhthalat)+ - log_k 6.420 #85DAN/DER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.42E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000Pyrophos-4 = Ca(HPyrophos)- - log_k 13.800 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.38E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000Succinat-2 = Ca(HSuccinat)+ - log_k 6.790 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.79E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 - 3.000H+ + 1.000Ho+3 + 3.000H2O = Ca(Ho(OH)3)+2 - log_k -26.300 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.63E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000IO3- = Ca(IO3)+ - log_k 0.400 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 - 1.000H+ + 1.000HIsa- = Ca(Isa) - log_k -10.400 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.04E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000Malonate-2 = Ca(Malonate) - log_k 2.430 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.43E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000NH3 = Ca(NH3)+2 - log_k -0.100 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 2.000NH3 = Ca(NH3)2+2 - log_k -0.700 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 3.000NH3 = Ca(NH3)3+2 - log_k -1.500 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 4.000NH3 = Ca(NH3)4+2 - log_k -2.600 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000Nta-3 = Ca(Nta)- - log_k 7.730 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.73E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 - 1.000H+ + 1.000HGlu- + 1.000H2O = Ca(OH)(HGlu) - log_k -10.400 #02TIT/WIE - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.04E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 - 1.000H+ + 1.000H2O = Ca(OH)+ - log_k -12.780 #87GAR/PAR - delta_h 77.206 #kJ/mol - # Enthalpy of formation: -751.624 #kJ/mol - -analytic 7.45891E-1 0E+0 -4.03274E+3 0E+0 0E+0 - -1.000Ca+2 + 1.000Ox-2 = Ca(Ox) - log_k 3.190 #05HUM/AND - delta_h 6.807 #kJ/mol - # Enthalpy of formation: -1366.853 #kJ/mol - -analytic 4.38253E+0 0E+0 -3.55554E+2 0E+0 0E+0 - -1.000Ca+2 + 2.000Ox-2 = Ca(Ox)2-2 - log_k 4.020 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.02E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 - 2.000H+ + 1.000H2(PO4)- = Ca(PO4)- - log_k -13.100 #68CHU/MAR - delta_h 31.170 #kJ/mol - # Enthalpy of formation: -1814.43 #kJ/mol - -analytic -7.63926E+0 0E+0 -1.62812E+3 0E+0 0E+0 - -1.000Ca+2 + 1.000Phthalat-2 = Ca(Phthalat) - log_k 2.490 #85DAN/DER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.49E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000Pyrophos-4 = Ca(Pyrophos)-2 - log_k 7.500 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000S2O3-2 = Ca(S2O3) - log_k 1.900 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de Hatches3.0) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1191.5 #kJ/mol - -analytic 1.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000SO4-2 = Ca(SO4) - log_k 2.310 #53BEL/GEO - delta_h 4.292 #kJ/mol - # Enthalpy of formation: -1448.048 #kJ/mol - -analytic 3.06193E+0 0E+0 -2.24186E+2 0E+0 0E+0 - -1.000Ca+2 + 1.000SeO4-2 = Ca(SeO4) - log_k 2.000 #05OLI/NOL - delta_h 1.475 #kJ/mol - # Enthalpy of formation: -1145.025 #kJ/mol - -analytic 2.25841E+0 0E+0 -7.70445E+1 0E+0 0E+0 - -1.000Ca+2 + 1.000Sm+3 - 3.000H+ + 3.000H2O = Ca(Sm(OH)3)+2 - log_k -26.300 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.63E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000Succinat-2 = Ca(Succinat) - log_k 2.340 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.34E+0 0E+0 0E+0 0E+0 0E+0 - -2.000Ca+2 - 4.000H+ + 1.000Am+3 + 4.000H2O = Ca2(Am(OH)4)+3 - log_k -37.200 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.72E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Ca+2 - 4.000H+ + 1.000Cm+3 + 4.000H2O = Ca2(Cm(OH)4)+3 - log_k -37.200 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.72E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Ca+2 + 1.000Eu+3 - 4.000H+ + 4.000H2O = Ca2(Eu(OH)4)+3 - log_k -37.200 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.72E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Ca+2 - 4.000H+ + 1.000Ho+3 + 4.000H2O = Ca2(Ho(OH)4)+3 - log_k -37.200 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.72E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Ca+2 + 1.000Sm+3 - 4.000H+ + 4.000H2O = Ca2(Sm(OH)4)+3 - log_k -37.200 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.72E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Ca+2 + 3.000CO3-2 + 1.000UO2+2 = Ca2UO2(CO3)3 - log_k 30.700 #06DON/BRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.07E+1 0E+0 0E+0 0E+0 0E+0 - -3.000Ca+2 - 6.000H+ + 1.000Am+3 + 6.000H2O = Ca3(Am(OH)6)+3 - log_k -60.700 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.07E+1 0E+0 0E+0 0E+0 0E+0 - -3.000Ca+2 - 6.000H+ + 1.000Cm+3 + 6.000H2O = Ca3(Cm(OH)6)+3 - log_k -60.700 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.07E+1 0E+0 0E+0 0E+0 0E+0 - -3.000Ca+2 + 1.000Eu+3 - 6.000H+ + 6.000H2O = Ca3(Eu(OH)6)+3 - log_k -60.700 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.07E+1 0E+0 0E+0 0E+0 0E+0 - -3.000Ca+2 - 6.000H+ + 1.000Ho+3 + 6.000H2O = Ca3(Ho(OH)6)+3 - log_k -60.700 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.07E+1 0E+0 0E+0 0E+0 0E+0 - -3.000Ca+2 + 1.000Sm+3 - 6.000H+ + 6.000H2O = Ca3(Sm(OH)6)+3 - log_k -60.700 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.07E+1 0E+0 0E+0 0E+0 0E+0 - -4.000Ca+2 + 1.000Th+4 - 8.000H+ + 8.000H2O = Ca4Th(OH)8+4 - log_k -63.100 #08ALT/NEC - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.31E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000B(OH)4- = CaB(OH)4+ - log_k 1.800 #97CRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000CO3-2 = CaCO3 - log_k 3.220 #96BOU1 - delta_h 14.830 #kJ/mol - # Enthalpy of formation: -1203.4 #kJ/mol #96BOU1 - -analytic 5.8181E+0 0E+0 -7.74624E+2 0E+0 0E+0 - -1.000Ca+2 + 1.000CrO4-2 = CaCrO4 - log_k 2.770 #00PER/PAL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.77E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000F- = CaF+ - log_k 0.940 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel - delta_h 17.238 #kJ/mol - # Enthalpy of formation: -861.112 #kJ/mol - -analytic 3.95996E+0 0E+0 -9.00402E+2 0E+0 0E+0 - -1.000Ca+2 + 1.000I- = CaI+ - log_k 0.140 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.4E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 2.000I- = CaI2 - log_k -0.020 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2E-2 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000Th+4 - 4.000H+ + 1.000HGlu- + 4.000H2O = CaTh(OH)4(HGlu)+ - log_k -9.000 #13COL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000Th+4 - 4.000H+ + 1.000HIsa- + 4.000H2O = CaTh(OH)4(HIsa)+ - log_k -9.000 #13COL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000UO2+2 + 3.000CO3-2 = CaUO2(CO3)3-2 - log_k 27.180 #06DON/BRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.718E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000CO3-2 = Cd(CO3) - log_k 4.700 #91RAI/FEL1 - delta_h 4.299 #kJ/mol - # Enthalpy of formation: -746.851 #kJ/mol - -analytic 5.45315E+0 0E+0 -2.24552E+2 0E+0 0E+0 - -1.000Cd+2 + 2.000CO3-2 = Cd(CO3)2-2 - log_k 6.500 #91RAI/FEL1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000Cn- = Cd(Cn)+ - log_k 5.300 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 2.000Cn- = Cd(Cn)2 - log_k 10.340 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.034E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 3.000Cn- = Cd(Cn)3- - log_k 14.810 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.481E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 4.000Cn- = Cd(Cn)4-2 - log_k 18.250 - delta_h -98.480 #kJ/mol - # Enthalpy of formation: 428.096 #kJ/mol - -analytic 9.9707E-1 0E+0 5.14396E+3 0E+0 0E+0 - -1.000Cd+2 + 1.000H2(PO4)- = Cd(H2PO4)+ - log_k 1.800 #01AYA/MAD - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000H+ + 1.000CO3-2 = Cd(HCO3)+ - log_k 11.830 #93STI/PAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.183E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 2.000HS- = Cd(HS)2 - log_k 14.430 #99WAN/TES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.443E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000NH3 = Cd(NH3)+2 - log_k 2.520 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.52E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 2.000NH3 = Cd(NH3)2+2 - log_k 4.870 - delta_h -27.965 #kJ/mol - # Enthalpy of formation: -266.225 #kJ/mol - -analytic -2.92505E-2 0E+0 1.46071E+3 0E+0 0E+0 - -1.000Cd+2 + 3.000NH3 = Cd(NH3)3+2 - log_k 5.930 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.93E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 4.000NH3 = Cd(NH3)4+2 - log_k 7.300 - delta_h -49.714 #kJ/mol - # Enthalpy of formation: -450.314 #kJ/mol - -analytic -1.40951E+0 0E+0 2.59674E+3 0E+0 0E+0 - -1.000Cd+2 + 1.000NO3- = Cd(NO3)+ - log_k 0.460 #74FED/ROB in 82HÖG - delta_h -21.757 #kJ/mol #74NAU/RYZ in 91BAL/NOR - # Enthalpy of formation: -304.527 #kJ/mol - -analytic -3.35166E+0 0E+0 1.13645E+3 0E+0 0E+0 - -1.000Cd+2 + 2.000NO3- = Cd(NO3)2 - log_k 0.170 #97CRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.7E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 - 1.000H+ + 1.000H2O = Cd(OH)+ - log_k -10.080 #81BAE/MES - delta_h 54.810 #kJ/mol #81BAE/MES - # Enthalpy of formation: -306.94 #kJ/mol - -analytic -4.77714E-1 0E+0 -2.86292E+3 0E+0 0E+0 - -1.000Cd+2 - 2.000H+ + 2.000H2O = Cd(OH)2 - log_k -20.900 #91RAI/FEL1 - delta_h 114.900 #kJ/mol - # Enthalpy of formation: -532.68 #kJ/mol - -analytic -7.70414E-1 0E+0 -6.00164E+3 0E+0 0E+0 - -1.000Cd+2 - 3.000H+ + 3.000H2O = Cd(OH)3- - log_k -33.300 #81BAE/MES - delta_h 156.416 #kJ/mol - # Enthalpy of formation: -776.994 #kJ/mol - -analytic -5.89713E+0 0E+0 -8.17016E+3 0E+0 0E+0 - -1.000Cd+2 - 4.000H+ + 4.000H2O = Cd(OH)4-2 - log_k -47.480 #91RAI/FEL1 - delta_h 229.571 #kJ/mol - # Enthalpy of formation: -989.669 #kJ/mol - -analytic -7.26095E+0 0E+0 -1.19913E+4 0E+0 0E+0 - -1.000Cd+2 + 1.000Pyrophos-4 = Cd(Pyrophos)-2 - log_k 8.700 #92CLE/DER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000S2O3-2 = Cd(S2O3) - log_k 2.460 - delta_h 5.405 #kJ/mol - # Enthalpy of formation: -722.801 #kJ/mol #74NAU/RYZ - -analytic 3.40691E+0 0E+0 -2.82322E+2 0E+0 0E+0 - -1.000Cd+2 + 1.000SO4-2 = Cd(SO4) - log_k 2.370 #97MAR/SMI - delta_h 8.700 #kJ/mol #97MAR/SMI - # Enthalpy of formation: -976.56 #kJ/mol - -analytic 3.89417E+0 0E+0 -4.54432E+2 0E+0 0E+0 - -1.000Cd+2 + 2.000SO4-2 = Cd(SO4)2-2 - log_k 3.440 #76SMI/MAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.44E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000H+ + 1.000Cn- + 1.000HSe- - 1.000H2O + 0.500O2 = Cd(SeCn)+ - log_k 58.260 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.826E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 2.000H+ + 2.000Cn- + 2.000HSe- - 2.000H2O + 1.000O2 = Cd(SeCn)2 - log_k 115.370 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.1537E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 3.000H+ + 3.000Cn- + 3.000HSe- - 3.000H2O + 1.500O2 = Cd(SeCn)3- - log_k 171.860 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.7186E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 4.000H+ + 4.000Cn- + 4.000HSe- - 4.000H2O + 2.000O2 = Cd(SeCn)4-2 - log_k 228.670 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.2867E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000SeO4-2 = Cd(SeO4) - log_k 2.270 #05OLI/NOL - delta_h 8.300 #kJ/mol #05OLI/NOL - # Enthalpy of formation: -671.12 #kJ/mol - -analytic 3.7241E+0 0E+0 -4.33539E+2 0E+0 0E+0 - -4.000Cd+2 - 4.000H+ + 4.000H2O = Cd4(OH)4+4 - log_k -32.070 - delta_h 172.135 #kJ/mol - # Enthalpy of formation: -1274.865 #kJ/mol #99YUN/GLU - -analytic -1.91329E+0 0E+0 -8.99122E+3 0E+0 0E+0 - -1.000Cd+2 + 1.000Br- = CdBr+ - log_k 2.160 - delta_h -7.959 #kJ/mol - # Enthalpy of formation: -205.289 #kJ/mol - -analytic 7.65645E-1 0E+0 4.15727E+2 0E+0 0E+0 - -1.000Cd+2 + 2.000Br- = CdBr2 - log_k 2.920 - delta_h -15.742 #kJ/mol - # Enthalpy of formation: -334.482 #kJ/mol - -analytic 1.62124E-1 0E+0 8.22261E+2 0E+0 0E+0 - -1.000Cd+2 + 3.000Br- = CdBr3- - log_k 3.190 - delta_h -28.845 #kJ/mol - # Enthalpy of formation: -468.995 #kJ/mol - -analytic -1.86342E+0 0E+0 1.50668E+3 0E+0 0E+0 - -1.000Cd+2 + 1.000Cl- = CdCl+ - log_k 1.970 #76BAE/MES - delta_h -5.520 #kJ/mol - # Enthalpy of formation: -248.52 #kJ/mol - -analytic 1.00294E+0 0E+0 2.88329E+2 0E+0 0E+0 - -1.000Cd+2 + 2.000Cl- = CdCl2 - log_k 2.590 #76BAE/MES - delta_h -14.068 #kJ/mol - # Enthalpy of formation: -424.148 #kJ/mol - -analytic 1.25396E-1 0E+0 7.34822E+2 0E+0 0E+0 - -1.000Cd+2 + 3.000Cl- = CdCl3- - log_k 2.400 #76BAE/MES - delta_h -25.804 #kJ/mol - # Enthalpy of formation: -602.964 #kJ/mol - -analytic -2.12066E+0 0E+0 1.34783E+3 0E+0 0E+0 - -1.000Cd+2 + 4.000Cl- = CdCl4-2 - log_k 1.470 #76BAE/MES - delta_h -44.765 #kJ/mol - # Enthalpy of formation: -789.005 #kJ/mol - -analytic -6.37248E+0 0E+0 2.33824E+3 0E+0 0E+0 - -1.000Cd+2 - 1.000H+ + 1.000H2(PO4)- = CdHPO4 - log_k -2.380 #01AYA/MAD - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.38E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000HS- = CdHS+ - log_k 7.380 #99WAN/TES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.38E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000I- = CdI+ - log_k 2.090 - delta_h -8.739 #kJ/mol - # Enthalpy of formation: -141.439 #kJ/mol - -analytic 5.58995E-1 0E+0 4.56469E+2 0E+0 0E+0 - -1.000Cd+2 + 2.000I- = CdI2 - log_k 3.520 - delta_h -18.988 #kJ/mol - # Enthalpy of formation: -208.468 #kJ/mol - -analytic 1.9345E-1 0E+0 9.91811E+2 0E+0 0E+0 - -1.000Cd+2 + 3.000I- = CdI3- - log_k 4.640 - delta_h -38.647 #kJ/mol - # Enthalpy of formation: -284.907 #kJ/mol - -analytic -2.13065E+0 0E+0 2.01867E+3 0E+0 0E+0 - -1.000Cd+2 + 4.000I- = CdI4-2 - log_k 5.480 - delta_h -75.609 #kJ/mol - # Enthalpy of formation: -378.649 #kJ/mol - -analytic -7.76611E+0 0E+0 3.94933E+3 0E+0 0E+0 - -2.000Cl- - 1.000H2O + 2.000H+ + 0.500O2 = Cl2 - log_k -4.220 - delta_h 30.997 #kJ/mol - # Enthalpy of formation: -23.4 #kJ/mol #82WAG/EVA - -analytic 1.21043E+0 0E+0 -1.61908E+3 0E+0 0E+0 - -1.000Cl- + 2.000O2 = ClO4- - log_k -16.130 - delta_h 63.248 #kJ/mol - # Enthalpy of formation: -128.1 #kJ/mol #89COX/WAG - -analytic -5.04944E+0 0E+0 -3.30367E+3 0E+0 0E+0 - -1.000Cm+3 + 1.000Acetate- = Cm(Acetate)+2 - log_k 3.010 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.01E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cm+3 + 2.000Acetate- = Cm(Acetate)2+ - log_k 4.960 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.96E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cm+3 + 3.000Acetate- = Cm(Acetate)3 - log_k 6.300 #69MOS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.3E+0 0E+0 0E+0 0E+0 0E+0 - -2.000CO3-2 + 1.000Cm+3 = Cm(CO3)2- - log_k 12.600 #06DUR/CER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.26E+1 0E+0 0E+0 0E+0 0E+0 - -3.000CO3-2 + 1.000Cm+3 = Cm(CO3)3-3 - log_k 14.600 #06DUR/CER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.46E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H2(PO4)- + 1.000Cm+3 = Cm(H2PO4)+2 - log_k 2.400 #estimated by correlation with Ln(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.4E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000H2(PO4)- + 1.000Cm+3 = Cm(HPO4)+ - log_k -1.700 #estimated by correlation with Ln(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.7E+0 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 2.000H2(PO4)- + 1.000Cm+3 = Cm(HPO4)2- - log_k -5.210 #estimated by correlation with Ln(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.21E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Cm+3 + 1.000H2O = Cm(OH)+2 - log_k -7.200 #03GUI/FAN - delta_h 79.365 #kJ/mol - # Enthalpy of formation: -821.465 #kJ/mol - -analytic 6.70413E+0 0E+0 -4.14552E+3 0E+0 0E+0 - -- 2.000H+ + 1.000Cm+3 + 2.000H2O = Cm(OH)2+ - log_k -15.100 #03GUI/FAN - delta_h 144.956 #kJ/mol - # Enthalpy of formation: -1041.704 #kJ/mol - -analytic 1.02952E+1 0E+0 -7.57157E+3 0E+0 0E+0 - -- 3.000H+ + 1.000Cm+3 + 3.000H2O = Cm(OH)3 - log_k -26.200 #03GUI/FAN - delta_h 231.675 #kJ/mol - # Enthalpy of formation: -1240.815 #kJ/mol - -analytic 1.43877E+1 0E+0 -1.21012E+4 0E+0 0E+0 - -- 4.000H+ + 1.000Cm+3 + 4.000H2O = Cm(OH)4- - log_k -40.700 #07NEC/ALT2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.07E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ox-2 + 1.000Cm+3 = Cm(Ox)+ - log_k 6.480 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.48E+0 0E+0 0E+0 0E+0 0E+0 - -2.000Ox-2 + 1.000Cm+3 = Cm(Ox)2- - log_k 10.400 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.04E+1 0E+0 0E+0 0E+0 0E+0 - -3.000Ox-2 + 1.000Cm+3 = Cm(Ox)3-3 - log_k 12.840 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.284E+1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 2.000H2(PO4)- + 1.000Cm+3 = Cm(PO4)2-3 - log_k -19.230 #estimated by corrlation with Ln(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.923E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cm+3 + 1.000Phthalat-2 = Cm(Phthalat)+ - log_k 4.930 #11GRI/COL3 from 95PAN/KLE - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.93E+0 0E+0 0E+0 0E+0 0E+0 - -2.000SO4-2 + 1.000Cm+3 = Cm(SO4)2- - log_k 4.570 #12SKE/PAN, same as Am, revised in the 2012 update. - delta_h 20.880 #kJ/mol - # Enthalpy of formation: -2412.8 #kJ/mol #estimated by analogy with Ln - -analytic 8.22801E+0 0E+0 -1.09064E+3 0E+0 0E+0 - -1.000CO3-2 + 1.000Cm+3 = CmCO3+ - log_k 7.900 #06DUR/CER - delta_h 153.982 #kJ/mol - # Enthalpy of formation: -1136.248 #kJ/mol - -analytic 3.48764E+1 0E+0 -8.04303E+3 0E+0 0E+0 - -1.000Cl- + 1.000Cm+3 = CmCl+2 - log_k 0.240 #03GUI/FAN, same as Am - delta_h 22.512 #kJ/mol - # Enthalpy of formation: -759.568 #kJ/mol - -analytic 4.18393E+0 0E+0 -1.17588E+3 0E+0 0E+0 - -2.000Cl- + 1.000Cm+3 = CmCl2+ - log_k -0.740 #03GUI/FAN, same as Am - delta_h 41.165 #kJ/mol - # Enthalpy of formation: -907.995 #kJ/mol - -analytic 6.47179E+0 0E+0 -2.15019E+3 0E+0 0E+0 - -1.000F- + 1.000Cm+3 = CmF+2 - log_k 3.400 #03GUI/FAN, same as Am - delta_h 25.613 #kJ/mol - # Enthalpy of formation: -924.737 #kJ/mol - -analytic 7.8872E+0 0E+0 -1.33786E+3 0E+0 0E+0 - -2.000F- + 1.000Cm+3 = CmF2+ - log_k 5.800 #03GUI/FAN, same as Am - delta_h 20.620 #kJ/mol - # Enthalpy of formation: -1265.08 #kJ/mol - -analytic 9.41246E+0 0E+0 -1.07706E+3 0E+0 0E+0 - -3.000F- + 1.000Cm+3 = CmF3 - log_k 11.180 #69AZI/LYL - delta_h -15.485 #kJ/mol - # Enthalpy of formation: -1636.535 #kJ/mol - -analytic 8.46715E+0 0E+0 8.08837E+2 0E+0 0E+0 - -1.000H+ + 1.000CO3-2 + 1.000Cm+3 = CmHCO3+2 - log_k 13.430 #03GUI/FAN, same as Am - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.343E+1 0E+0 0E+0 0E+0 0E+0 - -1.000NO3- + 1.000Cm+3 = CmNO3+2 - log_k 1.330 #95SIL/BID - delta_h 1.800 #kJ/mol #09SKE/PAN - # Enthalpy of formation: -819.926 #kJ/mol - -analytic 1.64535E+0 0E+0 -9.40204E+1 0E+0 0E+0 - -- 2.000H+ + 1.000H2(PO4)- + 1.000Cm+3 = CmPO4 - log_k -7.660 #estimated by correlation with Ln(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.66E+0 0E+0 0E+0 0E+0 0E+0 - -1.000SO4-2 + 1.000Cm+3 = CmSO4+ - log_k 3.450 #12SKE/PAN, same as Am, revised in the 2012 update. - delta_h 15.640 #kJ/mol - # Enthalpy of formation: -1508.7 #kJ/mol #estimated by analogy with Ln - -analytic 6.19001E+0 0E+0 -8.16933E+2 0E+0 0E+0 - -- 1.000H+ + 1.000H4(SiO4) + 1.000Cm+3 = CmSiO(OH)3+2 - log_k -2.310 #Original data 07THA/SIN, 05PAN/KIM and 97STE/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.31E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 + 2.000HS- = Co(HS)2 - log_k 8.770 #66KHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.77E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 - 1.000H+ + 1.000H2O = Co(OH)+ - log_k -9.230 #98PLY/ZHA1 - delta_h 45.962 #kJ/mol - # Enthalpy of formation: -297.468 #kJ/mol - -analytic -1.17782E+0 0E+0 -2.40076E+3 0E+0 0E+0 - -1.000Co+2 - 2.000H+ + 2.000H2O = Co(OH)2 - log_k -18.600 #98PLY/ZHA1 - delta_h 105.707 #kJ/mol - # Enthalpy of formation: -523.553 #kJ/mol - -analytic -8.09557E-2 0E+0 -5.52145E+3 0E+0 0E+0 - -1.000Co+2 - 3.000H+ + 3.000H2O = Co(OH)3- - log_k -31.700 #98PLY/ZHA1 - delta_h 160.297 #kJ/mol - # Enthalpy of formation: -754.792 #kJ/mol - -analytic -3.61721E+0 0E+0 -8.37288E+3 0E+0 0E+0 - -1.000Co+2 - 4.000H+ + 4.000H2O = Co(OH)4-2 - log_k -46.420 #98PLY/ZHA1 - delta_h 214.483 #kJ/mol - # Enthalpy of formation: -986.436 #kJ/mol - -analytic -8.84425E+0 0E+0 -1.12032E+4 0E+0 0E+0 - -1.000Co+2 + 1.000H+ + 1.000Cn- + 1.000HSe- - 1.000H2O + 0.500O2 = Co(SeCn)+ - log_k 57.520 #75SAT/SAH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.752E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 + 1.000SeO4-2 = Co(SeO4) - log_k 2.700 #05OLI/NOL - delta_h -3.654 #kJ/mol - # Enthalpy of formation: -664.754 #kJ/mol - -analytic 2.05985E+0 0E+0 1.90861E+2 0E+0 0E+0 - -2.000Co+2 - 1.000H+ + 1.000H2O = Co2(OH)+3 - log_k -9.830 #98PLY/ZHA1 - delta_h 30.030 #kJ/mol - # Enthalpy of formation: -371 #kJ/mol #98PLY/ZHA1 - -analytic -4.56898E+0 0E+0 -1.56857E+3 0E+0 0E+0 - -4.000Co+2 - 4.000H+ + 4.000H2O = Co4(OH)4+4 - log_k -29.880 #98PLY/ZHA1 - delta_h 149.720 #kJ/mol - # Enthalpy of formation: -1224 #kJ/mol #98PLY/ZHA1 - -analytic -3.65022E+0 0E+0 -7.82041E+3 0E+0 0E+0 - -1.000Co+2 + 1.000CO3-2 = CoCO3 - log_k 4.230 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.23E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 + 1.000Cl- = CoCl+ - log_k 0.570 #81TUR/WHI - delta_h -2.180 #kJ/mol - # Enthalpy of formation: -226.859 #kJ/mol - -analytic 1.88081E-1 0E+0 1.13869E+2 0E+0 0E+0 - -1.000Co+2 + 2.000Cl- = CoCl2 - log_k 0.020 #06BLA/IGN - delta_h 4.074 #kJ/mol #06BLA/IGN - # Enthalpy of formation: -387.686 #kJ/mol - -analytic 7.33733E-1 0E+0 -2.128E+2 0E+0 0E+0 - -1.000Co+2 + 3.000Cl- = CoCl3- - log_k -1.710 #06BLA/IGN - delta_h 6.688 #kJ/mol #06BLA/IGN - # Enthalpy of formation: -552.152 #kJ/mol - -analytic -5.38314E-1 0E+0 -3.49338E+2 0E+0 0E+0 - -1.000Co+2 + 4.000Cl- = CoCl4-2 - log_k -2.090 #06BLA/IGN - delta_h 22.570 #kJ/mol #06BLA/IGN - # Enthalpy of formation: -703.35 #kJ/mol - -analytic 1.86409E+0 0E+0 -1.17891E+3 0E+0 0E+0 - -1.000Co+2 + 1.000F- = CoF+ - log_k 1.500 #97MAR/SMI - delta_h -0.631 #kJ/mol - # Enthalpy of formation: -393.581 #kJ/mol - -analytic 1.38945E+0 0E+0 3.29594E+1 0E+0 0E+0 - -1.000Co+2 + 1.000H+ + 1.000CO3-2 = CoHCO3+ - log_k 12.220 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.222E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 - 1.000H+ + 1.000H2(PO4)- = CoHPO4 - log_k -4.150 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.15E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 + 1.000HS- = CoHS+ - log_k 5.670 #66KHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.67E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 + 1.000S2O3-2 = CoS2O3 - log_k 2.050 #51DEN/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.05E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 + 1.000SO4-2 = CoSO4 - log_k 2.300 #97MAR/SMI - delta_h 2.092 #kJ/mol #74NAU/RYZ - # Enthalpy of formation: -964.848 #kJ/mol - -analytic 2.6665E+0 0E+0 -1.09273E+2 0E+0 0E+0 - -1.000H2(PO4)- + 1.000Cr+3 = Cr(H2PO4)+2 - log_k 2.560 #66LAH/ADI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.56E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000H2(PO4)- + 1.000Cr+3 = Cr(HPO4)+ - log_k 2.250 #76ALE/MAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.25E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cr+3 + 2.000CO3-2 + 1.000H2O - 1.000H+ = Cr(OH)(CO3)2-2 - log_k 9.730 #07RAI/MOO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.73E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Cr+2 + 1.000H2O = Cr(OH)+ - log_k -5.300 #83MIC/DEB, 04CHI - delta_h 30.327 #kJ/mol - # Enthalpy of formation: -413.123 #kJ/mol - -analytic 1.30545E-2 0E+0 -1.58409E+3 0E+0 0E+0 - -- 1.000H+ + 1.000Cr+3 + 1.000H2O = Cr(OH)+2 - log_k -3.420 #04RAI/MOO - delta_h 37.165 #kJ/mol - # Enthalpy of formation: -489.164 #kJ/mol - -analytic 3.09102E+0 0E+0 -1.94126E+3 0E+0 0E+0 - -- 2.000H+ + 1.000Cr+3 + 2.000H2O = Cr(OH)2+ - log_k -8.900 #11GRI/COL4 - delta_h 93.201 #kJ/mol - # Enthalpy of formation: -718.958 #kJ/mol - -analytic 7.42809E+0 0E+0 -4.86822E+3 0E+0 0E+0 - -- 3.000H+ + 1.000Cr+3 + 3.000H2O = Cr(OH)3 - log_k -14.340 #04RAI/MOO - delta_h 143.689 #kJ/mol - # Enthalpy of formation: -954.3 #kJ/mol - -analytic 1.08332E+1 0E+0 -7.50539E+3 0E+0 0E+0 - -- 3.000H+ + 1.000H2(PO4)- + 1.000Cr+3 + 3.000H2O = Cr(OH)3(H2PO4)- - log_k -11.560 #04RAI/MOO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.156E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H2(PO4)- + 1.000Cr+3 + 3.000H2O - 3.000H+ = Cr(OH)3(H2PO4)2-2 - log_k -10.860 #04RAI/MOO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.086E+1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 1.000H2(PO4)- + 1.000Cr+3 + 3.000H2O = Cr(OH)3(HPO4)-2 - log_k -19.580 #04RAI/MOO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.958E+1 0E+0 0E+0 0E+0 0E+0 - -- 5.000H+ + 1.000H2(PO4)- + 1.000Cr+3 + 3.000H2O = Cr(OH)3(PO4)-3 - log_k -30.240 #98ZIE/JON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.024E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cr+3 + 1.000CO3-2 + 4.000H2O - 4.000H+ = Cr(OH)4(CO3)-3 - log_k -25.690 #07RAI/MOO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.569E+1 0E+0 0E+0 0E+0 0E+0 - -- 5.000H+ + 2.000H2(PO4)- + 1.000Cr+3 + 4.000H2O = Cr(OH)4(HPO4)(H2PO4)-4 - log_k -28.760 #98ZIE/JON - delta_h 14.000 #kJ/mol #98ZIE/JON - # Enthalpy of formation: -3975.04 #kJ/mol - -analytic -2.63073E+1 0E+0 -7.3127E+2 0E+0 0E+0 - -- 4.000H+ + 1.000Cr+3 + 4.000H2O = Cr(OH)4- - log_k -25.860 #04RAI/MOO - delta_h 193.604 #kJ/mol - # Enthalpy of formation: -1190.214 #kJ/mol - -analytic 8.05792E+0 0E+0 -1.01126E+4 0E+0 0E+0 - -1.000Cr+3 + 1.000CO3-2 + 1.000H2O - 1.000H+ = Cr(OH)CO3 - log_k 4.000 #07RAI/MOO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 2.000Cl- + 1.000Cr+3 + 1.000H2O = Cr(OH)Cl2 - log_k -5.730 - delta_h 32.720 #kJ/mol - # Enthalpy of formation: -827.77 #kJ/mol #76DEL/HEP - -analytic 2.28952E-3 0E+0 -1.70908E+3 0E+0 0E+0 - -- 2.000H+ + 2.000Cr+3 + 2.000H2O = Cr2(OH)2+4 - log_k -4.000 #11GRI/COL4 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 2.000CrO4-2 - 1.000H2O = Cr2O7-2 - log_k 14.750 #87PAL/WES, 04CHI - delta_h -3.752 #kJ/mol - # Enthalpy of formation: -1475.923 #kJ/mol - -analytic 1.40927E+1 0E+0 1.9598E+2 0E+0 0E+0 - -- 4.000H+ + 3.000Cr+3 + 4.000H2O = Cr3(OH)4+5 - log_k -7.600 #11GRI/COL4 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Br- + 1.000Cr+3 = CrBr+2 - log_k -0.620 - delta_h 22.600 #kJ/mol - # Enthalpy of formation: -339.322 #kJ/mol #76DEL/HEP - -analytic 3.33934E+0 0E+0 -1.18048E+3 0E+0 0E+0 - -1.000Cl- + 1.000Cr+2 = CrCl+ - log_k 5.600 #91ALL/BRO - delta_h -20.200 #kJ/mol #91ALL/BRO - # Enthalpy of formation: -344.9 #kJ/mol - -analytic 2.06112E+0 0E+0 1.05512E+3 0E+0 0E+0 - -1.000Cl- + 1.000Cr+3 = CrCl+2 - log_k 0.620 #64SIL/MAR - delta_h 20.920 #kJ/mol #64SIL/MAR - # Enthalpy of formation: -386.66 #kJ/mol - -analytic 4.28502E+0 0E+0 -1.09273E+3 0E+0 0E+0 - -2.000Cl- + 1.000Cr+3 = CrCl2+ - log_k -0.710 #64SIL/MAR - delta_h 20.920 #kJ/mol #64SIL/MAR - # Enthalpy of formation: -553.74 #kJ/mol - -analytic 2.95502E+0 0E+0 -1.09273E+3 0E+0 0E+0 - -1.000F- + 1.000Cr+3 = CrF+2 - log_k 5.210 #81TUR/WHI - delta_h -2.510 #kJ/mol #53HEP/JOL - # Enthalpy of formation: -578.36 #kJ/mol - -analytic 4.77027E+0 0E+0 1.31106E+2 0E+0 0E+0 - -2.000F- + 1.000Cr+3 = CrF2+ - log_k 9.310 #81TUR/WHI - delta_h -0.418 #kJ/mol #53HEP/JOL - # Enthalpy of formation: -911.618 #kJ/mol - -analytic 9.23677E+0 0E+0 2.18336E+1 0E+0 0E+0 - -3.000F- + 1.000Cr+3 = CrF3 - log_k 11.910 #81TUR/WHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.191E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000Cl- + 1.000CrO4-2 - 1.000H2O = CrO3Cl- - log_k 8.080 - delta_h 5.500 #kJ/mol - # Enthalpy of formation: -754.8 #kJ/mol #76DEL/HEP - -analytic 9.04356E+0 0E+0 -2.87285E+2 0E+0 0E+0 - -1.000SO4-2 + 1.000Cr+3 = CrSO4+ - log_k 4.610 #81TUR/WHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.61E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cs+ + 1.000Cit-3 = Cs(Cit)-2 - log_k 0.980 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.8E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Cs+ + 1.000Edta-4 = Cs(Edta)-3 - log_k 1.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cs+ + 1.000Nta-3 = Cs(Nta)-2 - log_k 0.850 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.5E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Cs+ - 1.000H+ + 1.000H2O = Cs(OH) - log_k -15.640 - delta_h 65.736 #kJ/mol - # Enthalpy of formation: -478.094 #kJ/mol #97SHO/SAS2 - -analytic -4.12356E+0 0E+0 -3.43363E+3 0E+0 0E+0 - -1.000Cs+ + 1.000Br- = CsBr - log_k 0.090 - delta_h 5.922 #kJ/mol - # Enthalpy of formation: -373.488 #kJ/mol - -analytic 1.12749E+0 0E+0 -3.09327E+2 0E+0 0E+0 - -1.000Cs+ + 1.000Cl- = CsCl - log_k -0.090 - delta_h 7.523 #kJ/mol - # Enthalpy of formation: -417.557 #kJ/mol - -analytic 1.22797E+0 0E+0 -3.92953E+2 0E+0 0E+0 - -1.000Cs+ + 1.000F- = CsF - log_k -0.380 - delta_h 2.446 #kJ/mol - # Enthalpy of formation: -590.904 #kJ/mol - -analytic 4.85202E-2 0E+0 -1.27763E+2 0E+0 0E+0 - -1.000Cs+ + 1.000I- = CsI - log_k 1.050 - delta_h -0.055 #kJ/mol - # Enthalpy of formation: -314.835 #kJ/mol - -analytic 1.04036E+0 0E+0 2.87285E+0 0E+0 0E+0 - -1.000Cu+2 + 1.000B(OH)4- = Cu(B(OH)4)+ - log_k 7.130 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.13E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cu+2 + 2.000B(OH)4- = Cu(B(OH)4)2 - log_k 12.450 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.245E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cu+2 + 3.000B(OH)4- = Cu(B(OH)4)3- - log_k 15.170 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.517E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cu+2 + 1.000SeO4-2 = Cu(SeO4) - log_k 2.200 #Upper value suggested in 05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000Acetate- = Eu(Acetate)+2 - log_k 2.900 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 2.000Acetate- = Eu(Acetate)2+ - log_k 4.800 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 3.000Acetate- = Eu(Acetate)3 - log_k 5.600 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000CO3-2 = Eu(CO3)+ - log_k 7.900 #95SPA/BRU - delta_h 167.549 #kJ/mol - # Enthalpy of formation: -1113.013 #kJ/mol - -analytic 3.72533E+1 0E+0 -8.75168E+3 0E+0 0E+0 - -1.000Eu+3 + 2.000CO3-2 = Eu(CO3)2- - log_k 12.900 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.29E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 3.000CO3-2 = Eu(CO3)3-3 - log_k 14.800 #05VER/VIT2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.48E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000H2(PO4)- = Eu(H2PO4)+2 - log_k 2.400 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000H+ + 1.000CO3-2 = Eu(HCO3)+2 - log_k 12.430 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.243E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 - 1.000H+ + 1.000H2(PO4)- = Eu(HPO4)+ - log_k -1.510 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.51E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 - 2.000H+ + 2.000H2(PO4)- = Eu(HPO4)2- - log_k -4.820 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.82E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000Malonate-2 = Eu(Malonate)+ - log_k 5.430 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.43E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 2.000Malonate-2 = Eu(Malonate)2- - log_k 7.780 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 - log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 - 1.000H+ + 1.000H2O = Eu(OH)+2 - log_k -7.800 #95SPA/BRU - delta_h 79.824 #kJ/mol - # Enthalpy of formation: -811.337 #kJ/mol - -analytic 6.18454E+0 0E+0 -4.16949E+3 0E+0 0E+0 - -1.000Eu+3 - 2.000H+ + 2.000H2O = Eu(OH)2+ - log_k -15.700 #07NEC/ALT2 - delta_h 144.521 #kJ/mol - # Enthalpy of formation: -1032.471 #kJ/mol - -analytic 9.61896E+0 0E+0 -7.54885E+3 0E+0 0E+0 - -1.000Eu+3 - 3.000H+ + 3.000H2O = Eu(OH)3 - log_k -26.200 #07NEC/ALT2 - delta_h 226.860 #kJ/mol - # Enthalpy of formation: -1235.961 #kJ/mol - -analytic 1.35441E+1 0E+0 -1.18497E+4 0E+0 0E+0 - -1.000HIsa- + 1.000Eu+3 + 3.000H2O - 3.000H+ = Eu(OH)3(HIsa)- - log_k -20.900 #05TIT/WIE - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.09E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 - 4.000H+ + 4.000H2O = Eu(OH)4- - log_k -40.700 #07NEC/ALT2 - delta_h 296.791 #kJ/mol - # Enthalpy of formation: -1451.86 #kJ/mol - -analytic 1.12955E+1 0E+0 -1.55025E+4 0E+0 0E+0 - -1.000Eu+3 + 1.000Ox-2 = Eu(Ox)+ - log_k 6.550 #Richard et al. 2011. Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.55E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 2.000Ox-2 = Eu(Ox)2- - log_k 10.930 # Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.093E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 3.000Ox-2 = Eu(Ox)3-3 - log_k 12.480 #Richard et al. 2011. Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.248E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 - 2.000H+ + 1.000H2(PO4)- = Eu(PO4) - log_k -7.360 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.36E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 - 4.000H+ + 2.000H2(PO4)- = Eu(PO4)2-3 - log_k -18.460 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.846E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000Phthalat-2 = Eu(Phthalat)+ - log_k 4.960 #11GRI/COL3 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.96E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 2.000Phthalat-2 = Eu(Phthalat)2- - log_k 7.340 #11GRI/COL3 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.34E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000SO4-2 = Eu(SO4)+ - log_k 3.500 #95SPA/BRU - delta_h 15.577 #kJ/mol - # Enthalpy of formation: -1499.094 #kJ/mol - -analytic 6.22897E+0 0E+0 -8.13642E+2 0E+0 0E+0 - -1.000Eu+3 + 2.000SO4-2 = Eu(SO4)2- - log_k 5.200 #95SPA/BRU - delta_h 27.787 #kJ/mol - # Enthalpy of formation: -2396.224 #kJ/mol - -analytic 1.00681E+1 0E+0 -1.45141E+3 0E+0 0E+0 - -1.000Eu+3 + 1.000Succinat-2 = Eu(Succinat)+ - log_k 4.360 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.36E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 2.000Succinat-2 = Eu(Succinat)2- - log_k 6.500 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000Br- = EuBr+2 - log_k 0.250 #95SPA/BRU - delta_h 16.223 #kJ/mol - # Enthalpy of formation: -710.518 #kJ/mol - -analytic 3.09214E+0 0E+0 -8.47385E+2 0E+0 0E+0 - -1.000Eu+3 + 2.000Br- = EuBr2+ - log_k -0.090 #95SPA/BRU - delta_h 26.498 #kJ/mol - # Enthalpy of formation: -821.653 #kJ/mol - -analytic 4.55224E+0 0E+0 -1.38408E+3 0E+0 0E+0 - -1.000Eu+3 + 1.000Cl- = EuCl+2 - log_k 0.760 #Original data 01LUO/BYR and 04LUO/BYR - delta_h 21.929 #kJ/mol - # Enthalpy of formation: -750.482 #kJ/mol - -analytic 4.60179E+0 0E+0 -1.14543E+3 0E+0 0E+0 - -1.000Eu+3 + 2.000Cl- = EuCl2+ - log_k -0.050 #95SPA/BRU - delta_h 35.334 #kJ/mol - # Enthalpy of formation: -904.158 #kJ/mol - -analytic 6.14024E+0 0E+0 -1.84562E+3 0E+0 0E+0 - -1.000Eu+3 + 1.000F- = EuF+2 - log_k 4.330 #07LUO/BYR - delta_h 24.956 #kJ/mol - # Enthalpy of formation: -915.725 #kJ/mol - -analytic 8.7021E+0 0E+0 -1.30354E+3 0E+0 0E+0 - -1.000Eu+3 + 2.000F- = EuF2+ - log_k 6.550 #Original data from 99SCH/BYR and 04LUO/BYR - delta_h 21.483 #kJ/mol - # Enthalpy of formation: -1254.548 #kJ/mol - -analytic 1.03137E+1 0E+0 -1.12213E+3 0E+0 0E+0 - -1.000Eu+3 + 3.000F- = EuF3 - log_k 10.600 #95SPA/BRU - delta_h -8.343 #kJ/mol - # Enthalpy of formation: -1619.724 #kJ/mol - -analytic 9.13837E+0 0E+0 4.35785E+2 0E+0 0E+0 - -1.000Eu+3 - 1.000H+ + 1.000H4(SiO4) = EuSiO(OH)3+2 - log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000B(OH)4- = Fe(B(OH)4)+2 - log_k 8.580 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.58E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 2.000B(OH)4- = Fe(B(OH)4)2+ - log_k 15.540 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.554E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000CO3-2 = Fe(CO3) - log_k 5.690 #99CHI3 - delta_h -5.764 #kJ/mol - # Enthalpy of formation: -770.994 #kJ/mol - -analytic 4.68019E+0 0E+0 3.01074E+2 0E+0 0E+0 - -1.000Fe+2 + 2.000CO3-2 = Fe(CO3)2-2 - log_k 7.450 #98KIN in 99CHI3 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.45E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 3.000CO3-2 = Fe(CO3)3-3 - log_k 24.240 #05GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.424E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000Cit-3 = Fe(Cit) - log_k 12.650 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.265E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 1.000H+ + 1.000Cit-3 + 1.000H2O = Fe(Cit)(OH)- - log_k 10.330 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.033E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000Cit-3 = Fe(Cit)- - log_k 6.100 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 2.000H+ + 2.000Cit-3 + 2.000H2O = Fe(Cit)2(OH)2-5 - log_k 3.440 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.44E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 2.000Cit-3 = Fe(Cit)2-3 - log_k 18.150 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.815E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 6.000Cn- = Fe(Cn)6-3 - log_k 43.600 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.36E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 6.000Cn- = Fe(Cn)6-4 - log_k 35.400 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.54E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000Edta-4 = Fe(Edta)- - log_k 27.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.77E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000Edta-4 = Fe(Edta)-2 - log_k 16.020 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.602E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 2.000H+ + 1.000Cit-3 = Fe(H2Cit)+ - log_k 24.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.47E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 2.000H+ + 1.000Cit-3 = Fe(H2Cit)+2 - log_k 30.400 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.04E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000H2(PO4)- = Fe(H2PO4)+ - log_k 2.690 #USGS original - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.69E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000H2(PO4)- = Fe(H2PO4)+2 - log_k 5.420 #USGS original - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.42E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 1.000H+ + 1.000H4(SiO4) = Fe(H3SiO4)+2 - log_k 0.360 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.6E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000H+ + 1.000Cit-3 = Fe(HCit) - log_k 10.020 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.002E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000H+ + 2.000Cit-3 = Fe(HCit)(Cit)-2 - log_k 19.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.93E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000H+ + 1.000Cit-3 = Fe(HCit)+ - log_k 13.560 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.356E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 2.000H+ + 2.000Cit-3 = Fe(HCit)2- - log_k 24.920 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.492E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000H+ + 1.000Edta-4 = Fe(HEdta) - log_k 29.200 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.92E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000H+ + 1.000Edta-4 = Fe(HEdta)- - log_k 18.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.83E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000H+ + 1.000Nta-3 = Fe(HNta) - log_k 12.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.23E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000H+ + 1.000Ox-2 = Fe(HOx)+2 - log_k 9.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 - 1.000H+ + 1.000H2(PO4)- = Fe(HPO4) - log_k -3.610 #USGS original - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.61E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 1.000H+ + 1.000H2(PO4)- = Fe(HPO4)+ - log_k 1.630 #96BOU4 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.63E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000HS- = Fe(HS)+ - log_k 4.340 #04CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.34E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 2.000HS- = Fe(HS)2 - log_k 6.450 #04CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.45E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000H+ + 1.000SO4-2 = Fe(HSO4)+ - log_k 3.070 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.07E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000H+ + 1.000SeO3-2 = Fe(HSeO3)+2 - log_k 12.350 #01SEB/POT2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.235E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000NH3 = Fe(NH3)+2 - log_k 1.300 #82SCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 2.000NH3 = Fe(NH3)2+2 - log_k 2.100 #82SCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 4.000NH3 = Fe(NH3)4+2 - log_k 3.600 #82SCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000NO3- = Fe(NO3)+2 - log_k 0.950 #HATCHES 8.0 1996 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.5E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000Nta-3 = Fe(Nta) - log_k 18.600 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.86E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000Nta-3 = Fe(Nta)- - log_k 10.600 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.06E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 2.000Nta-3 = Fe(Nta)2-3 - log_k 27.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.7E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 2.000Nta-3 = Fe(Nta)2-4 - log_k 13.500 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.35E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 - 1.000H+ + 1.000Cit-3 + 1.000H2O = Fe(OH)(Cit)-2 - log_k 1.500 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 1.000H+ + 1.000Edta-4 + 1.000H2O = Fe(OH)(Edta)-2 - log_k 20.840 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.084E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 - 1.000H+ + 1.000Edta-4 + 1.000H2O = Fe(OH)(Edta)-3 - log_k 6.400 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 1.000H+ + 1.000Nta-3 + 1.000H2O = Fe(OH)(Nta)- - log_k 14.600 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.46E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 - 1.000H+ + 1.000Nta-3 + 1.000H2O = Fe(OH)(Nta)-2 - log_k -0.120 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.2E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 - 1.000H+ + 1.000H2O = Fe(OH)+ - log_k -9.500 #76BAE/MES in 99CHI3 - delta_h 55.304 #kJ/mol - # Enthalpy of formation: -320.526 #kJ/mol - -analytic 1.88831E-1 0E+0 -2.88872E+3 0E+0 0E+0 - -1.000Fe+3 - 1.000H+ + 1.000H2O = Fe(OH)+2 - log_k -2.190 #76BAE/MES in 98CHI - delta_h 43.514 #kJ/mol - # Enthalpy of formation: -291.316 #kJ/mol - -analytic 5.43331E+0 0E+0 -2.27289E+3 0E+0 0E+0 - -1.000Fe+2 - 2.000H+ + 2.000H2O = Fe(OH)2 - log_k -20.600 #76BAE/MES in 99CHI3 - delta_h 119.662 #kJ/mol - # Enthalpy of formation: -541.998 #kJ/mol - -analytic 3.63852E-1 0E+0 -6.25037E+3 0E+0 0E+0 - -1.000Fe+3 - 2.000H+ + 1.000Cit-3 + 2.000H2O = Fe(OH)2(Cit)-2 - log_k 2.900 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 2.000H+ + 1.000Edta-4 + 2.000H2O = Fe(OH)2(Edta)-3 - log_k 10.060 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.006E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 - 2.000H+ + 1.000Edta-4 + 2.000H2O = Fe(OH)2(Edta)-4 - log_k -4.400 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 2.000H+ + 1.000Nta-3 + 2.000H2O = Fe(OH)2(Nta)-2 - log_k 6.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 2.000H+ + 2.000H2O = Fe(OH)2+ - log_k -5.670 #76BAE/MES in 98CHI - delta_h 71.546 #kJ/mol - # Enthalpy of formation: -549.114 #kJ/mol - -analytic 6.8643E+0 0E+0 -3.7371E+3 0E+0 0E+0 - -1.000Fe+3 - 3.000H+ + 3.000H2O = Fe(OH)3 - log_k -12.560 #91PEA/BER in 98CHI - delta_h 103.764 #kJ/mol - # Enthalpy of formation: -802.726 #kJ/mol - -analytic 5.61865E+0 0E+0 -5.41996E+3 0E+0 0E+0 - -1.000Fe+3 - 3.000H+ + 1.000Edta-4 + 3.000H2O = Fe(OH)3(Edta)-4 - log_k 8.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 - 3.000H+ + 3.000H2O = Fe(OH)3- - log_k -31.900 #76BAE/MES in 99CHI3 - delta_h 138.072 #kJ/mol - # Enthalpy of formation: -809.418 #kJ/mol - -analytic -7.71086E+0 0E+0 -7.21199E+3 0E+0 0E+0 - -1.000Fe+3 - 4.000H+ + 4.000H2O = Fe(OH)4- - log_k -21.600 #76BAE/MES in 98CHI - delta_h 133.471 #kJ/mol - # Enthalpy of formation: -1058.849 #kJ/mol - -analytic 1.78308E+0 0E+0 -6.97167E+3 0E+0 0E+0 - -1.000Fe+2 - 4.000H+ + 4.000H2O = Fe(OH)4-2 - log_k -46.000 #76BAE/MES in 99CHI3 - delta_h 158.797 #kJ/mol - # Enthalpy of formation: -1074.523 #kJ/mol - -analytic -1.818E+1 0E+0 -8.29453E+3 0E+0 0E+0 - -1.000Fe+2 + 1.000Ox-2 = Fe(Ox) - log_k 4.100 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000Ox-2 = Fe(Ox)+ - log_k 9.530 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.53E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 2.000Ox-2 = Fe(Ox)2- - log_k 15.750 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.575E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 2.000Ox-2 = Fe(Ox)2-2 - log_k 6.200 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 3.000Ox-2 = Fe(Ox)3-3 - log_k 20.200 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.02E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 3.000Ox-2 = Fe(Ox)3-4 - log_k 5.220 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.22E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000SO4-2 = Fe(SO4) - log_k 2.200 #91PEA/BER in 98CHI - delta_h 13.514 #kJ/mol - # Enthalpy of formation: -985.826 #kJ/mol - -analytic 4.56755E+0 0E+0 -7.05884E+2 0E+0 0E+0 - -1.000Fe+3 + 1.000SO4-2 = Fe(SO4)+ - log_k 4.100 #95BOU in 98CHI - delta_h 16.359 #kJ/mol - # Enthalpy of formation: -941.981 #kJ/mol - -analytic 6.96597E+0 0E+0 -8.54489E+2 0E+0 0E+0 - -1.000Fe+3 + 2.000SO4-2 = Fe(SO4)2- - log_k 5.400 #91PEA/BER in 98CHI - delta_h 19.248 #kJ/mol - # Enthalpy of formation: -1848.432 #kJ/mol - -analytic 8.7721E+0 0E+0 -1.00539E+3 0E+0 0E+0 - -1.000Fe+3 + 1.000SeO3-2 = Fe(SeO3)+ - log_k 11.150 #05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.115E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000SeO4-2 = Fe(SeO4) - log_k 2.710 #01SEB/POT2 - delta_h -12.601 #kJ/mol - # Enthalpy of formation: -706.101 #kJ/mol - -analytic 5.02403E-1 0E+0 6.58195E+2 0E+0 0E+0 - -2.000Fe+3 - 2.000H+ + 2.000Cit-3 + 2.000H2O = Fe2(Cit)2(OH)2-2 - log_k 45.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.5E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Fe+3 - 2.000H+ + 2.000Edta-4 + 2.000H2O = Fe2(OH)2(Edta)2-4 - log_k 68.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.8E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Fe+3 - 2.000H+ + 2.000H2O = Fe2(OH)2+4 - log_k -2.950 #91PEA/BER in 98CHI - delta_h 56.484 #kJ/mol - # Enthalpy of formation: -613.175 #kJ/mol - -analytic 6.94556E+0 0E+0 -2.95036E+3 0E+0 0E+0 - -3.000Fe+3 - 4.000H+ + 4.000H2O = Fe3(OH)4+5 - log_k -6.300 #76BAE/MES in 98CHI - delta_h 59.831 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.18193E+0 0E+0 -3.12519E+3 0E+0 0E+0 - -1.000Fe+3 + 1.000Br- = FeBr+2 - log_k 0.700 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 2.000Br- = FeBr2+ - log_k 0.900 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 1.000H+ + 1.000CO3-2 + 1.000H2O = FeCO3OH - log_k 10.760 #05GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.076E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 - 1.000H+ + 1.000CO3-2 + 1.000H2O = FeCO3OH- - log_k -4.030 #98KIN in 99CHI3 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.03E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000Cl- = FeCl+ - log_k 0.140 #91PEA/BER in 98CHI - delta_h -0.078 #kJ/mol - # Enthalpy of formation: -257.158 #kJ/mol - -analytic 1.26335E-1 0E+0 4.07422E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000Cl- = FeCl+2 - log_k 1.400 #95BOU in 98CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 2.000Cl- = FeCl2 - log_k -0.520 #95CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.2E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 2.000Cl- = FeCl2+ - log_k 2.100 #95BOU in 98CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 3.000Cl- = FeCl3 - log_k 1.130 #90NOR/PLU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.13E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 3.000Cl- = FeCl3- - log_k 1.020 #95CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.02E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 4.000Cl- = FeCl4- - log_k -0.790 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.9E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000CrO4-2 = FeCrO4+ - log_k 7.800 #96BAR/PAL - delta_h 19.100 #kJ/mol #96BAR/PAL - # Enthalpy of formation: -908.9 #kJ/mol - -analytic 1.11462E+1 0E+0 -9.97661E+2 0E+0 0E+0 - -1.000Fe+2 + 1.000F- = FeF+ - log_k 1.000 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000F- = FeF+2 - log_k 6.130 #92PEA/BER in 98CHI - delta_h 11.297 #kJ/mol - # Enthalpy of formation: -373.053 #kJ/mol - -analytic 8.10915E+0 0E+0 -5.90083E+2 0E+0 0E+0 - -1.000Fe+3 + 2.000F- = FeF2+ - log_k 10.800 #92PEA/BER in 98CHI - delta_h 19.665 #kJ/mol - # Enthalpy of formation: -700.035 #kJ/mol - -analytic 1.42452E+1 0E+0 -1.02717E+3 0E+0 0E+0 - -1.000Fe+3 + 3.000F- = FeF3 - log_k 14.000 #92PEA/BER in 98CHI - delta_h 22.595 #kJ/mol - # Enthalpy of formation: -1032.455 #kJ/mol - -analytic 1.79585E+1 0E+0 -1.18022E+3 0E+0 0E+0 - -1.000Fe+3 + 2.000H+ + 1.000Pyrophos-4 = FeH2Pyrophos+ - log_k 26.000 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.6E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000H+ + 1.000CO3-2 = FeHCO3+ - log_k 11.770 #95CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.177E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000H+ + 1.000SO4-2 = FeHSO4+2 - log_k 4.470 #90NOR/PLU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.47E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000I- = FeI+2 - log_k 2.100 #96BOU2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000S2O3-2 = FeS2O3+ - log_k 3.900 #82SCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000Scn- = FeScn+2 - log_k 3.100 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Adipate-2 = H(Adipate)- - log_k 5.450 #04MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.45E+0 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 1.000H3(AsO3) = H(AsO3)-2 - log_k -23.620 #79IVA/VOR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.362E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000AsO4-3 = H(AsO4)-2 - log_k 11.600 - delta_h -18.200 #kJ/mol - # Enthalpy of formation: -906.34 #kJ/mol #09RAN/FUG - -analytic 8.4115E+0 0E+0 9.50651E+2 0E+0 0E+0 - -1.000H+ + 1.000Cit-3 = H(Cit)-2 - log_k 6.360 #05HUM/AND - delta_h 3.300 #kJ/mol - # Enthalpy of formation: -1516.62 #kJ/mol - -analytic 6.93813E+0 0E+0 -1.72371E+2 0E+0 0E+0 - -1.000H+ + 1.000Edta-4 = H(Edta)-3 - log_k 11.240 #05HUM/AND - delta_h -19.800 #kJ/mol - # Enthalpy of formation: -1724.6 #kJ/mol - -analytic 7.77119E+0 0E+0 1.03422E+3 0E+0 0E+0 - -1.000H+ + 1.000Malonate-2 = H(Malonate)- - log_k 5.710 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.71E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Nta-3 = H(Nta)-2 - log_k 10.280 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.028E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Ox-2 = H(Ox)- - log_k 4.250 #05HUM/AND - delta_h 7.300 #kJ/mol - # Enthalpy of formation: -823.36 #kJ/mol - -analytic 5.5289E+0 0E+0 -3.81305E+2 0E+0 0E+0 - -1.000H+ + 1.000Pyrophos-4 = H(Pyrophos)-3 - log_k 9.400 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000S2O3-2 = H(S2O3)- - log_k 1.720 #04CHI - delta_h 8.253 #kJ/mol - # Enthalpy of formation: -644.033 #kJ/mol - -analytic 3.16586E+0 0E+0 -4.31084E+2 0E+0 0E+0 - -1.000H+ + 1.000SO3-2 = H(SO3)- - log_k 7.170 #85GOL/PAR - delta_h 3.668 #kJ/mol - # Enthalpy of formation: -627.392 #kJ/mol - -analytic 7.81261E+0 0E+0 -1.91593E+2 0E+0 0E+0 - -1.000H+ + 1.000SO4-2 = H(SO4)- - log_k 1.980 - delta_h 22.440 #kJ/mol - # Enthalpy of formation: -886.9 #kJ/mol - -analytic 5.91131E+0 0E+0 -1.17212E+3 0E+0 0E+0 - -1.000H+ + 1.000SeO3-2 = H(SeO3)- - log_k 8.360 #05OLI/NOL - delta_h -5.170 #kJ/mol - # Enthalpy of formation: -512.33 #kJ/mol #05OLI/NOL - -analytic 7.45426E+0 0E+0 2.70048E+2 0E+0 0E+0 - -1.000H+ + 1.000SeO4-2 = H(SeO4)- - log_k 1.750 #05OLI/NOL - delta_h 20.800 #kJ/mol #05OLI/NOL - # Enthalpy of formation: -582.7 #kJ/mol - -analytic 5.394E+0 0E+0 -1.08646E+3 0E+0 0E+0 - -1.000H+ + 1.000Suberate-2 = H(Suberate)- - log_k 5.400 #31GAN/ING - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Succinat-2 = H(Succinat)- - log_k 5.710 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.71E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000Adipate-2 = H2(Adipate) - log_k 9.890 #04MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.89E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000H3(AsO3) = H2(AsO3)- - log_k -9.220 - delta_h 27.410 #kJ/mol - # Enthalpy of formation: -714.79 #kJ/mol #10RAN/FUG - -analytic -4.41798E+0 0E+0 -1.43172E+3 0E+0 0E+0 - -2.000H+ + 1.000AsO4-3 = H2(AsO4)- - log_k 18.370 - delta_h -21.420 #kJ/mol - # Enthalpy of formation: -909.56 #kJ/mol #09RAN/FUG - -analytic 1.46174E+1 0E+0 1.11884E+3 0E+0 0E+0 - -2.000H+ + 1.000Cit-3 = H2(Cit)- - log_k 11.140 #05HUM/AND - delta_h 0.900 #kJ/mol - # Enthalpy of formation: -1519.02 #kJ/mol - -analytic 1.12977E+1 0E+0 -4.70102E+1 0E+0 0E+0 - -2.000H+ + 1.000Edta-4 = H2(Edta)-2 - log_k 18.040 #05HUM/AND - delta_h -35.000 #kJ/mol - # Enthalpy of formation: -1739.8 #kJ/mol - -analytic 1.19083E+1 0E+0 1.82817E+3 0E+0 0E+0 - -2.000H+ + 1.000Malonate-2 = H2(Malonate) - log_k 8.670 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.67E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000Nta-3 = H2(Nta)- - log_k 13.200 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.32E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000Ox-2 = H2(Ox) - log_k 5.650 #05HUM/AND - delta_h 10.600 #kJ/mol #05HUM/AND - # Enthalpy of formation: -820.06 #kJ/mol - -analytic 7.50704E+0 0E+0 -5.53676E+2 0E+0 0E+0 - -2.000H+ + 1.000Pyrophos-4 = H2(Pyrophos)-2 - log_k 16.050 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.605E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000S2O3-2 = H2(S2O3) - log_k 2.320 #04CHI - delta_h 22.917 #kJ/mol - # Enthalpy of formation: -629.369 #kJ/mol - -analytic 6.33488E+0 0E+0 -1.19704E+3 0E+0 0E+0 - -2.000H+ + 1.000SO3-2 = H2(SO3) - log_k 9.030 #85GOL/PAR - delta_h 21.453 #kJ/mol - # Enthalpy of formation: -609.607 #kJ/mol - -analytic 1.27884E+1 0E+0 -1.12057E+3 0E+0 0E+0 - -2.000H+ + 1.000SeO3-2 = H2(SeO3) - log_k 11.000 #05OLI/NOL - delta_h 1.840 #kJ/mol - # Enthalpy of formation: -505.32 #kJ/mol #05OLI/NOL - -analytic 1.13224E+1 0E+0 -9.61098E+1 0E+0 0E+0 - -- 2.000H+ + 1.000H4(SiO4) = H2(SiO4)-2 - log_k -23.140 #92GRE/FUG - delta_h 75.000 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1386.194 #kJ/mol - -analytic -1.00006E+1 0E+0 -3.91752E+3 0E+0 0E+0 - -2.000H+ + 1.000Suberate-2 = H2(Suberate) - log_k 9.920 #31GAN/ING - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.92E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000Succinat-2 = H2(Succinat) - log_k 9.950 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.95E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000CrO4-2 = H2CrO4 - log_k 6.320 #76BAE/MES, 04CHI - delta_h 39.596 #kJ/mol - # Enthalpy of formation: -839.404 #kJ/mol - -analytic 1.32569E+1 0E+0 -2.06824E+3 0E+0 0E+0 - -2.000H+ + 1.000H2(PO4)- + 1.000CrO4-2 - 1.000H2O = H2CrPO7- - log_k 9.020 - delta_h -51.490 #kJ/mol - # Enthalpy of formation: -1947.26 #kJ/mol #76DEL/HAL - -analytic -6.47544E-4 0E+0 2.68951E+3 0E+0 0E+0 - -1.000H+ + 1.000HGlu- = H2Glu - log_k 3.900 #98ZUB/CAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000HIsa- = H2Isa - log_k 4.000 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000MoO4-2 = H2MoO4 - log_k 8.150 #68SAS/SIL, 64AVE/ANA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.15E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000Phthalat-2 = H2Phthalat - log_k 8.320 #10RIC/SAB1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.32E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000HS- = H2S - log_k 6.990 - delta_h -22.300 #kJ/mol - # Enthalpy of formation: -38.6 #kJ/mol #89COX/WAG - -analytic 3.08321E+0 0E+0 1.16481E+3 0E+0 0E+0 - -2.000H+ + 1.000S2O4-2 = H2S2O4 - log_k 2.800 #04CHI - delta_h 20.207 #kJ/mol - # Enthalpy of formation: -733.293 #kJ/mol - -analytic 6.34011E+0 0E+0 -1.05548E+3 0E+0 0E+0 - -1.000H+ + 1.000HSe- = H2Se - log_k 3.850 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: 14.3 #kJ/mol #05OLI/NOL - -analytic 3.85E+0 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 1.000AsO4-3 = H3(AsO4) - log_k 20.630 - delta_h -14.360 #kJ/mol - # Enthalpy of formation: -902.5 #kJ/mol #09RAN/FUG - -analytic 1.81142E+1 0E+0 7.50074E+2 0E+0 0E+0 - -3.000H+ + 1.000Cit-3 = H3(Cit) - log_k 14.270 #05HUM/AND - delta_h -3.600 #kJ/mol - # Enthalpy of formation: -1523.52 #kJ/mol - -analytic 1.36393E+1 0E+0 1.88041E+2 0E+0 0E+0 - -3.000H+ + 1.000Edta-4 = H3(Edta)- - log_k 21.190 #05HUM/AND - delta_h -27.900 #kJ/mol - # Enthalpy of formation: -1732.7 #kJ/mol - -analytic 1.63021E+1 0E+0 1.45732E+3 0E+0 0E+0 - -3.000H+ + 1.000Nta-3 = H3(Nta) - log_k 15.330 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.533E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000H2(PO4)- = H3(PO4) - log_k 2.140 #92GRE/FUG - delta_h 8.480 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1294.12 #kJ/mol - -analytic 3.62563E+0 0E+0 -4.42941E+2 0E+0 0E+0 - -3.000H+ + 1.000Pyrophos-4 = H3(Pyrophos)- - log_k 18.300 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.83E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000H4(SiO4) = H3(SiO4)- - log_k -9.840 #06BLA/PIA - delta_h 29.363 #kJ/mol - # Enthalpy of formation: -1431.831 #kJ/mol - -analytic -4.69583E+0 0E+0 -1.53373E+3 0E+0 0E+0 - -4.000H+ + 1.000Edta-4 = H4(Edta) - log_k 23.420 #05HUM/AND - delta_h -26.000 #kJ/mol - # Enthalpy of formation: -1730.8 #kJ/mol - -analytic 1.8865E+1 0E+0 1.35807E+3 0E+0 0E+0 - -4.000H+ + 1.000Nta-3 = H4(Nta)+ - log_k 16.130 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.613E+1 0E+0 0E+0 0E+0 0E+0 - -4.000H+ + 1.000Pyrophos-4 = H4(Pyrophos) - log_k 19.300 #92GRE/FUG - delta_h 6.684 #kJ/mol - # Enthalpy of formation: -2280.21 #kJ/mol #92GRE/FUG - -analytic 2.0471E+1 0E+0 -3.49129E+2 0E+0 0E+0 - -5.000H+ + 1.000Edta-4 = H5(Edta)+ - log_k 24.720 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.472E+1 0E+0 0E+0 0E+0 0E+0 - -6.000H+ + 1.000Edta-4 = H6(Edta)+2 - log_k 24.220 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.422E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Acetate- = HAcetate - log_k 4.760 - delta_h 0.250 #kJ/mol - # Enthalpy of formation: -485.76 #kJ/mol #82WAG/EVA - -analytic 4.8038E+0 0E+0 -1.30584E+1 0E+0 0E+0 - -1.000H+ + 2.000B(OH)4- - 4.000H2O = HB2O4- - log_k 9.170 #97CRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.17E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000CO3-2 = HCO3- - log_k 10.330 - delta_h -14.700 #kJ/mol - # Enthalpy of formation: -689.93 #kJ/mol #89COX/WAG - -analytic 7.75467E+0 0E+0 7.67833E+2 0E+0 0E+0 - -1.000H+ + 1.000Cl- = HCl - log_k -0.710 #97TAG/ZOT - delta_h -12.298 #kJ/mol - # Enthalpy of formation: -179.378 #kJ/mol - -analytic -2.86451E+0 0E+0 6.42368E+2 0E+0 0E+0 - -1.000H+ + 1.000CrO4-2 = HCrO4- - log_k 6.520 #87PAL/WES, 04CHI - delta_h 6.016 #kJ/mol - # Enthalpy of formation: -872.984 #kJ/mol - -analytic 7.57396E+0 0E+0 -3.14237E+2 0E+0 0E+0 - -1.000H+ + 1.000H2(PO4)- + 1.000CrO4-2 - 1.000H2O = HCrPO7-2 - log_k 6.370 - delta_h -36.390 #kJ/mol - # Enthalpy of formation: -1932.16 #kJ/mol #76DEL/HEP - -analytic -5.24498E-3 0E+0 1.90078E+3 0E+0 0E+0 - -1.000H+ + 1.000MoO4-2 = HMoO4- - log_k 4.110 #68SAS/SIL, 64AVE/ANA - delta_h 58.576 #kJ/mol #68ARN/SZI in 76BAE/MES - # Enthalpy of formation: -938.424 #kJ/mol - -analytic 1.43721E+1 0E+0 -3.05963E+3 0E+0 0E+0 - -- 1.000H+ + 1.000H2(PO4)- = HPO4-2 - log_k -7.210 - delta_h 3.600 #kJ/mol - # Enthalpy of formation: -1299 #kJ/mol #89COX/WAG - -analytic -6.57931E+0 0E+0 -1.88041E+2 0E+0 0E+0 - -1.000H+ + 1.000Phthalat-2 = HPhthalat- - log_k 5.340 #10RIC/SAB1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.34E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000S2O4-2 = HS2O4- - log_k 2.500 #04CHI - delta_h 3.834 #kJ/mol - # Enthalpy of formation: -749.666 #kJ/mol - -analytic 3.17169E+0 0E+0 -2.00263E+2 0E+0 0E+0 - -1.000H+ + 1.000SO4-2 + 0.500O2 = HSO5- - log_k -17.220 - delta_h 139.777 #kJ/mol - # Enthalpy of formation: -775.63 #kJ/mol #88SHO/HEL - -analytic 7.26784E+0 0E+0 -7.30105E+3 0E+0 0E+0 - -4.000CO3-2 + 1.000Hf+4 = Hf(CO3)4-4 - log_k 42.900 #analogy with Zr - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.29E+1 0E+0 0E+0 0E+0 0E+0 - -2.000NO3- + 1.000Hf+4 = Hf(NO3)2+2 - log_k 2.490 #65DES/KHO recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.49E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Hf+4 + 1.000H2O = Hf(OH)+3 - log_k -0.200 #01RAI/XIA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2E-1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 1.000Hf+4 + 4.000H2O = Hf(OH)4 - log_k -11.200 #01RAI/XIA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.12E+1 0E+0 0E+0 0E+0 0E+0 - -- 5.000H+ + 1.000Hf+4 + 5.000H2O = Hf(OH)5- - log_k -20.300 #01RAI/XIA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.03E+1 0E+0 0E+0 0E+0 0E+0 - -- 6.000H+ + 1.000Hf+4 + 6.000H2O = Hf(OH)6-2 - log_k -32.800 #01RAI/XIA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.28E+1 0E+0 0E+0 0E+0 0E+0 - -2.000SO4-2 + 1.000Hf+4 = Hf(SO4)2 - log_k 10.110 #65DES/KHO recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.011E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Br- + 1.000Hf+4 = HfBr+3 - log_k 0.380 #67HAL/POH recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.8E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Cl- + 1.000Hf+4 = HfCl+3 - log_k 2.200 #65DES/KHO and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.2E+0 0E+0 0E+0 0E+0 0E+0 - -2.000Cl- + 1.000Hf+4 = HfCl2+2 - log_k 2.050 #65DES/KHO and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.05E+0 0E+0 0E+0 0E+0 0E+0 - -1.000F- + 1.000Hf+4 = HfF+3 - log_k 9.290 #05SAW/THA and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.29E+0 0E+0 0E+0 0E+0 0E+0 - -2.000F- + 1.000Hf+4 = HfF2+2 - log_k 17.850 #05SAW/THA and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.785E+1 0E+0 0E+0 0E+0 0E+0 - -3.000F- + 1.000Hf+4 = HfF3+ - log_k 25.080 #05SAW/THA and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.508E+1 0E+0 0E+0 0E+0 0E+0 - -4.000F- + 1.000Hf+4 = HfF4 - log_k 31.410 #05SAW/THA and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.141E+1 0E+0 0E+0 0E+0 0E+0 - -1.000I- + 1.000Hf+4 = HfI+3 - log_k 0.020 #67HAL/POH recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2E-2 0E+0 0E+0 0E+0 0E+0 - -1.000NO3- + 1.000Hf+4 = HfNO3+3 - log_k 1.850 #65DES/KHO 69HAL/SMO recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.85E+0 0E+0 0E+0 0E+0 0E+0 - -1.000SO4-2 + 1.000Hf+4 = HfSO4+2 - log_k 6.060 #65DES/KHO recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.06E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Hg+2 + 2.000H+ + 2.000Cn- + 2.000HSe- - 2.000H2O + 1.000O2 = Hg(SeCn)2 - log_k 134.330 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3433E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Hg+2 + 3.000H+ + 3.000Cn- + 3.000HSe- - 3.000H2O + 1.500O2 = Hg(SeCn)3- - log_k 194.850 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.9485E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Hg+2 + 4.000H+ + 4.000Cn- + 4.000HSe- - 4.000H2O + 2.000O2 = Hg(SeCn)4-2 - log_k 253.370 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.5337E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Hg+2 + 2.000SeO3-2 = Hg(SeO3)2-2 - log_k 14.850 #05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.485E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Hg+2 - 1.000H+ + 1.000HSe- = HgSe - log_k 37.590 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.759E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Hg+2 - 2.000H+ + 2.000HSe- = HgSe2-2 - log_k 32.630 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.263E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ho+3 + 1.000CO3-2 = Ho(CO3)+ - log_k 8.000 #95SPA/BRU - delta_h 168.562 #kJ/mol - # Enthalpy of formation: -1213.71 #kJ/mol - -analytic 3.75308E+1 0E+0 -8.80459E+3 0E+0 0E+0 - -1.000Ho+3 + 2.000CO3-2 = Ho(CO3)2- - log_k 13.300 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.33E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ho+3 + 3.000CO3-2 = Ho(CO3)3-3 - log_k 14.800 #05VER/VIT2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.48E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ho+3 + 1.000H2(PO4)- = Ho(H2PO4)+2 - log_k 2.300 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Ho+3 + 1.000CO3-2 = Ho(HCO3)+2 - log_k 12.500 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.25E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Ho+3 + 1.000H2(PO4)- = Ho(HPO4)+ - log_k -1.410 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.41E+0 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 1.000Ho+3 + 2.000H2(PO4)- = Ho(HPO4)2- - log_k -4.520 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.52E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ho+3 + 1.000NO3- = Ho(NO3)+2 - log_k 0.500 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5E-1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Ho+3 + 1.000H2O = Ho(OH)+2 - log_k -7.900 #95SPA/BRU - delta_h 79.900 #kJ/mol - # Enthalpy of formation: -912.972 #kJ/mol - -analytic 6.09786E+0 0E+0 -4.17346E+3 0E+0 0E+0 - -- 2.000H+ + 1.000Ho+3 + 2.000H2O = Ho(OH)2+ - log_k -15.700 #07NEC/ALT2 - delta_h 143.846 #kJ/mol - # Enthalpy of formation: -1134.856 #kJ/mol - -analytic 9.5007E+0 0E+0 -7.51359E+3 0E+0 0E+0 - -- 3.000H+ + 1.000Ho+3 + 3.000H2O = Ho(OH)3 - log_k -26.200 #07NEC/ALT2 - delta_h 226.067 #kJ/mol - # Enthalpy of formation: -1338.465 #kJ/mol - -analytic 1.34052E+1 0E+0 -1.18083E+4 0E+0 0E+0 - -- 4.000H+ + 1.000Ho+3 + 4.000H2O = Ho(OH)4- - log_k -40.700 #07NEC/ALT2 - delta_h 295.822 #kJ/mol - # Enthalpy of formation: -1554.54 #kJ/mol - -analytic 1.11257E+1 0E+0 -1.54518E+4 0E+0 0E+0 - -- 2.000H+ + 1.000Ho+3 + 1.000H2(PO4)- = Ho(PO4) - log_k -6.960 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.96E+0 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 1.000Ho+3 + 2.000H2(PO4)- = Ho(PO4)2-3 - log_k -17.820 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.782E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ho+3 + 1.000SO4-2 = Ho(SO4)+ - log_k 3.400 #95SPA/BRU - delta_h 15.387 #kJ/mol - # Enthalpy of formation: -1600.995 #kJ/mol - -analytic 6.09568E+0 0E+0 -8.03718E+2 0E+0 0E+0 - -1.000Ho+3 + 2.000SO4-2 = Ho(SO4)2- - log_k 4.900 #95SPA/BRU - delta_h 23.670 #kJ/mol - # Enthalpy of formation: -2502.052 #kJ/mol - -analytic 9.0468E+0 0E+0 -1.23637E+3 0E+0 0E+0 - -1.000Ho+3 + 1.000Cl- = HoCl+2 - log_k 0.740 #Original data from 01LUO/BYR and 04LUO/BYR - delta_h 22.013 #kJ/mol - # Enthalpy of formation: -852.109 #kJ/mol - -analytic 4.59651E+0 0E+0 -1.14982E+3 0E+0 0E+0 - -1.000Ho+3 + 2.000Cl- = HoCl2+ - log_k -0.290 #81TUR/WHI - delta_h 36.300 #kJ/mol - # Enthalpy of formation: -1004.902 #kJ/mol - -analytic 6.06948E+0 0E+0 -1.89608E+3 0E+0 0E+0 - -1.000Ho+3 + 1.000F- = HoF+2 - log_k 4.330 #07LUO/BYR - delta_h 25.761 #kJ/mol - # Enthalpy of formation: -1016.631 #kJ/mol - -analytic 8.84313E+0 0E+0 -1.34559E+3 0E+0 0E+0 - -1.000Ho+3 + 2.000F- = HoF2+ - log_k 6.520 #Original data from 99SCH/BYR and 04LUO/BYR - delta_h 21.110 #kJ/mol #04LUO/MIL - # Enthalpy of formation: -1356.632 #kJ/mol - -analytic 1.02183E+1 0E+0 -1.10265E+3 0E+0 0E+0 - -- 1.000H+ + 1.000Ho+3 + 1.000H4(SiO4) = HoSiO(OH)3+2 - log_k -2.620 #Original data from 07THA/SIN and 96JEN/CHO1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 - -3.000I- - 1.000H2O + 2.000H+ + 0.500O2 = I3- - log_k 24.820 - delta_h -160.886 #kJ/mol - # Enthalpy of formation: -51.463 #kJ/mol - -analytic -3.36598E+0 0E+0 8.40365E+3 0E+0 0E+0 - -2.000Cl- + 1.000I- - 1.000H2O + 2.000H+ + 0.500O2 = ICl2- - log_k 16.190 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.619E+1 0E+0 0E+0 0E+0 0E+0 - -1.000I- + 0.500O2 = IO- - log_k -1.010 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.01E+0 0E+0 0E+0 0E+0 0E+0 - -1.000I- + 2.000O2 = IO4- - log_k 6.980 - delta_h -70.413 #kJ/mol - # Enthalpy of formation: -151.461 #kJ/mol - -analytic -5.35581E+0 0E+0 3.67792E+3 0E+0 0E+0 - -1.000K+ + 1.000Edta-4 = K(Edta)-3 - log_k 1.800 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000K+ + 1.000H+ + 1.000Nta-3 = K(HNta)- - log_k 10.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.03E+1 0E+0 0E+0 0E+0 0E+0 - -1.000K+ - 1.000H+ + 1.000H2(PO4)- = K(HPO4)- - log_k -6.400 #97MAR/SMI - delta_h 31.589 #kJ/mol #97MAR/SMI - # Enthalpy of formation: -1523.151 #kJ/mol - -analytic -8.65853E-1 0E+0 -1.65001E+3 0E+0 0E+0 - -1.000K+ + 1.000IO3- = K(IO3) - log_k 0.020 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2E-2 0E+0 0E+0 0E+0 0E+0 - -1.000K+ + 1.000Nta-3 = K(Nta)-2 - log_k 1.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000K+ + 1.000Pyrophos-4 = K(Pyrophos)-3 - log_k 2.100 #76MAR/SMI - delta_h 7.113 #kJ/mol #76MAR/SMI - # Enthalpy of formation: -2531.921 #kJ/mol - -analytic 3.34614E+0 0E+0 -3.71537E+2 0E+0 0E+0 - -1.000K+ + 1.000Al+3 - 4.000H+ + 4.000H2O = KAl(OH)4 - log_k -24.220 - delta_h 211.675 #kJ/mol - # Enthalpy of formation: -1722.185 #kJ/mol #97POK/HEL2 - -analytic 1.28638E+1 0E+0 -1.10565E+4 0E+0 0E+0 - -1.000K+ + 1.000H2(PO4)- = KH2PO4 - log_k 0.440 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.4E-1 0E+0 0E+0 0E+0 0E+0 - -1.000K+ + 1.000I- = KI - log_k -1.570 #estimation NEA87 08/2/95 - delta_h 9.011 #kJ/mol - # Enthalpy of formation: -299.909 #kJ/mol - -analytic 8.65712E-3 0E+0 -4.70677E+2 0E+0 0E+0 - -1.000K+ - 2.000H+ + 1.000H2(PO4)- = KPO4-2 - log_k -18.260 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.826E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000CO3-2 = Mg(CO3) - log_k 2.980 #97SVE/SHO - delta_h 8.804 #kJ/mol - # Enthalpy of formation: -1133.426 #kJ/mol - -analytic 4.52239E+0 0E+0 -4.59864E+2 0E+0 0E+0 - -1.000Mg+2 + 1.000Cit-3 = Mg(Cit)- - log_k 4.810 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.81E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000Edta-4 = Mg(Edta)-2 - log_k 10.900 #05HUM/AND - delta_h 19.800 #kJ/mol - # Enthalpy of formation: -2152 #kJ/mol - -analytic 1.43688E+1 0E+0 -1.03422E+3 0E+0 0E+0 - -1.000Mg+2 + 2.000H+ + 1.000Cit-3 = Mg(H2Cit)+ - log_k 12.450 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.245E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000H2(PO4)- = Mg(H2PO4)+ - log_k 1.170 #81TUR/WHI - delta_h 13.514 #kJ/mol #96BOU1 - # Enthalpy of formation: -1756.086 #kJ/mol - -analytic 3.53755E+0 0E+0 -7.05884E+2 0E+0 0E+0 - -1.000Mg+2 - 1.000H+ + 1.000H4(SiO4) = Mg(H3SiO4)+ - log_k -8.580 #97SVE/SHO - delta_h 27.114 #kJ/mol - # Enthalpy of formation: -1901.08 #kJ/mol - -analytic -3.82984E+0 0E+0 -1.41626E+3 0E+0 0E+0 - -1.000Mg+2 + 1.000H+ + 1.000CO3-2 = Mg(HCO3)+ - log_k 11.370 #95SHO/KOR - delta_h -12.859 #kJ/mol - # Enthalpy of formation: -1155.089 #kJ/mol - -analytic 9.1172E+0 0E+0 6.71671E+2 0E+0 0E+0 - -1.000Mg+2 + 1.000H+ + 1.000Cit-3 = Mg(HCit) - log_k 8.960 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.96E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000H+ + 1.000Edta-4 = Mg(HEdta)- - log_k 15.400 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.54E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000H+ + 1.000Malonate-2 = Mg(HMalonate)+ - log_k 7.050 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.05E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 - 1.000H+ + 1.000H2(PO4)- = Mg(HPO4) - log_k -4.300 #76SMI/MAR - delta_h 16.152 #kJ/mol #76SMI/MAR - # Enthalpy of formation: -1753.448 #kJ/mol - -analytic -1.4703E+0 0E+0 -8.43676E+2 0E+0 0E+0 - -1.000Mg+2 + 1.000H+ + 1.000Succinat-2 = Mg(HSuccinat)+ - log_k 6.720 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.72E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000IO3- = Mg(IO3)+ - log_k 0.700 #estimation NEA87 08/2/95 ; - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000Malonate-2 = Mg(Malonate) - log_k 2.860 #76KLA/OST - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.86E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000NH3 = Mg(NH3)+2 - log_k 0.100 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -548.148 #kJ/mol - -analytic 1E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 3.000NH3 = Mg(NH3)3+2 - log_k -0.300 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -710.444 #kJ/mol - -analytic -3E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 4.000NH3 = Mg(NH3)4+2 - log_k -1.000 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -791.592 #kJ/mol - -analytic -1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000Nta-3 = Mg(Nta)- - log_k 6.790 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.79E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 - 1.000H+ + 1.000H2O = Mg(OH)+ - log_k -11.680 #97SHO/SAS2 - delta_h 62.835 #kJ/mol - # Enthalpy of formation: -689.995 #kJ/mol - -analytic -6.71797E-1 0E+0 -3.2821E+3 0E+0 0E+0 - -1.000Mg+2 + 1.000Ox-2 = Mg(Ox) - log_k 3.560 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.56E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 2.000Ox-2 = Mg(Ox)2-2 - log_k 5.170 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.17E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 - 2.000H+ + 1.000H2(PO4)- = Mg(PO4)- - log_k -14.710 #81TUR/WHI - delta_h 31.170 #kJ/mol #96BOU1 - # Enthalpy of formation: -1738.43 #kJ/mol - -analytic -9.24926E+0 0E+0 -1.62812E+3 0E+0 0E+0 - -1.000Mg+2 + 1.000Pyrophos-4 = Mg(Pyrophos)-2 - log_k 7.200 #76SMI/MAR - delta_h 12.542 #kJ/mol - # Enthalpy of formation: -2741.352 #kJ/mol - -analytic 9.39726E+0 0E+0 -6.55113E+2 0E+0 0E+0 - -1.000Mg+2 + 1.000S2O3-2 = Mg(S2O3) - log_k 1.820 #76SMI/MAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.82E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000SO4-2 = Mg(SO4) - log_k 2.230 #76SMI/MAR - delta_h 5.858 #kJ/mol #76SMI/MAR - # Enthalpy of formation: -1370.482 #kJ/mol - -analytic 3.25628E+0 0E+0 -3.05984E+2 0E+0 0E+0 - -1.000Mg+2 + 1.000SeO4-2 = Mg(SeO4) - log_k 2.200 #05OLI/NOL - delta_h -6.614 #kJ/mol - # Enthalpy of formation: -1077.114 #kJ/mol - -analytic 1.04128E+0 0E+0 3.45473E+2 0E+0 0E+0 - -1.000Mg+2 + 1.000Succinat-2 = Mg(Succinat) - log_k 2.270 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.27E+0 0E+0 0E+0 0E+0 0E+0 - -4.000Mg+2 - 4.000H+ + 4.000H2O = Mg4(OH)4+4 - log_k -39.750 #76BAE/MES - delta_h 229.186 #kJ/mol - # Enthalpy of formation: -2782.134 #kJ/mol - -analytic 4.01605E-1 0E+0 -1.19712E+4 0E+0 0E+0 - -1.000Mg+2 + 1.000B(OH)4- = MgB(OH)4+ - log_k 1.600 #97CRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000Br- = MgBr+ - log_k -0.140 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.4E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000Cl- = MgCl+ - log_k 0.350 #96BOU1 - delta_h -1.729 #kJ/mol - # Enthalpy of formation: -635.809 #kJ/mol - -analytic 4.70926E-2 0E+0 9.03118E+1 0E+0 0E+0 - -1.000Mg+2 + 1.000F- = MgF+ - log_k 1.800 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel - delta_h 13.389 #kJ/mol - # Enthalpy of formation: -788.961 #kJ/mol - -analytic 4.14565E+0 0E+0 -6.99355E+2 0E+0 0E+0 - -1.000Mg+2 + 1.000I- = MgI+ - log_k 0.180 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.8E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 2.000I- = MgI2 - log_k 0.030 #estimation NEA87 08/2/95 ; - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3E-2 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000CO3-2 = Mn(CO3) - log_k 6.500 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000H+ + 1.000CO3-2 = Mn(HCO3)+ - log_k 11.610 #95CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.161E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 - 1.000H+ + 1.000H2(PO4)- = Mn(HPO4) - log_k -3.260 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.26E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 - 2.000H+ + 2.000H2(PO4)- = Mn(HPO4)2-2 - log_k -9.120 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -9.12E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000IO3- = Mn(IO3)+ - log_k 0.840 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.4E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 2.000IO3- = Mn(IO3)2 - log_k 0.130 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000NH3 = Mn(NH3)+2 - log_k 0.700 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 2.000NH3 = Mn(NH3)2+2 - log_k 1.200 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000NO3- = Mn(NO3)+ - log_k 0.160 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.6E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 2.000NO3- = Mn(NO3)2 - log_k 0.500 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 - 1.000H+ + 1.000H2O = Mn(OH)+ - log_k -10.590 #95CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.059E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 - 2.000H+ + 2.000H2O = Mn(OH)2 - log_k -22.200 #95CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.22E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 - 3.000H+ + 3.000H2O = Mn(OH)3- - log_k -34.800 #95CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.48E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 - 4.000H+ + 4.000H2O = Mn(OH)4-2 - log_k -48.300 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/91PEA/BER 11891 EN ; Nagra TR 91-18 (mai 1992, Hatches 3.0) (provient de la base 0391 MINEQL- PSY) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.83E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000Pyrophos-4 = Mn(Pyrophos)-2 - log_k 6.000 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000S2O3-2 = Mn(S2O3) - log_k 1.900 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000SO4-2 = Mn(SO4) - log_k 2.250 #95CHI - delta_h 14.100 #kJ/mol - # Enthalpy of formation: -1115.99 #kJ/mol - -analytic 4.72021E+0 0E+0 -7.36493E+2 0E+0 0E+0 - -1.000Mn+2 + 1.000Scn- = Mn(Scn)+ - log_k 1.400 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000SeO4-2 = Mn(SeO4) - log_k 2.430 #05OLI/NOL - delta_h -1.282 #kJ/mol - # Enthalpy of formation: -825.582 #kJ/mol - -analytic 2.2054E+0 0E+0 6.69634E+1 0E+0 0E+0 - -1.000Mn+2 - 0.500H2O + 1.000H+ + 0.250O2 = Mn+3 - log_k -4.015 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.015E+0 0E+0 0E+0 0E+0 0E+0 - -2.000Mn+2 - 1.000H+ + 1.000H2O = Mn2(OH)+3 - log_k -10.100 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.01E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Mn+2 - 3.000H+ + 3.000H2O = Mn2(OH)3+ - log_k -24.900 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.49E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000Br- = MnBr+ - log_k 0.130 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000Cl- = MnCl+ - log_k 0.300 - delta_h 18.466 #kJ/mol - # Enthalpy of formation: -369.364 #kJ/mol - -analytic 3.5351E+0 0E+0 -9.64545E+2 0E+0 0E+0 - -1.000Mn+2 + 2.000Cl- = MnCl2 - log_k 0.250 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.5E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 3.000Cl- = MnCl3- - log_k -0.310 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.1E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000F- = MnF+ - log_k 0.850 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.5E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 2.000F- = MnF2 - log_k 9.040 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.04E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 3.000F- = MnF3- - log_k 11.640 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.164E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 4.000F- = MnF4-2 - log_k 13.400 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.34E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 5.000F- = MnF5-3 - log_k 14.700 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.47E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 6.000F- = MnF6-4 - log_k 15.500 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.55E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000I- = MnI+ - log_k 0.230 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.3E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 - 3.000H+ + 1.500H2O + 1.250O2 = MnO4- - log_k -20.305 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 - delta_h 123.253 #kJ/mol - # Enthalpy of formation: -541.41 #kJ/mol - -analytic 1.28788E+0 0E+0 -6.43792E+3 0E+0 0E+0 - -1.000Mn+2 - 4.000H+ + 2.000H2O + 1.000O2 = MnO4-2 - log_k -32.420 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 - delta_h 151.840 #kJ/mol - # Enthalpy of formation: -652.704 #kJ/mol - -analytic -5.81881E+0 0E+0 -7.93114E+3 0E+0 0E+0 - -1.000Mn+2 - 5.000H+ + 2.500H2O + 0.750O2 = MnO4-3 - log_k -48.515 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.8515E+1 0E+0 0E+0 0E+0 0E+0 - -5.000H+ + 1.000MoO4-2 - 2.500H2O - 0.750O2 = Mo+3 - log_k -42.725 #68SAS/SIL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.2725E+1 0E+0 0E+0 0E+0 0E+0 - -34.000H+ + 19.000MoO4-2 - 17.000H2O = Mo19O59-4 - log_k 196.300 #68SAS/SIL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.963E+2 0E+0 0E+0 0E+0 0E+0 - -5.000H+ + 2.000MoO4-2 - 2.000H2O = Mo2O5(OH)+ - log_k 19.000 #68SAS/SIL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.9E+1 0E+0 0E+0 0E+0 0E+0 - -11.000H+ + 7.000MoO4-2 - 4.000H2O = Mo7O21(OH)3-3 - log_k 66.480 #68SAS/SIL, 64AVE/ANA - delta_h -222.589 #kJ/mol #68ARN/SZI in 76BAE/MES - # Enthalpy of formation: -6058.269 #kJ/mol - -analytic 2.74841E+1 0E+0 1.16266E+4 0E+0 0E+0 - -10.000H+ + 7.000MoO4-2 - 4.000H2O = Mo7O22(OH)2-4 - log_k 62.710 #68SAS/SIL, 64AVE/ANA - delta_h -220.079 #kJ/mol #68ARN/SZI in 76BAE/MES - # Enthalpy of formation: -6055.759 #kJ/mol - -analytic 2.41539E+1 0E+0 1.14955E+4 0E+0 0E+0 - -9.000H+ + 7.000MoO4-2 - 4.000H2O = Mo7O23(OH)-5 - log_k 57.210 #68SAS/SIL, 64AVE/ANA - delta_h -223.426 #kJ/mol #68ARN/SZI in 76BAE/MES - # Enthalpy of formation: -6059.106 #kJ/mol - -analytic 1.80675E+1 0E+0 1.16703E+4 0E+0 0E+0 - -8.000H+ + 7.000MoO4-2 - 4.000H2O = Mo7O24-6 - log_k 50.350 #68SAS/SIL, 64AVE/ANA - delta_h -234.304 #kJ/mol #68ARN/SZI in 76BAE/MES - # Enthalpy of formation: -6069.984 #kJ/mol - -analytic 9.30176E+0 0E+0 1.22385E+4 0E+0 0E+0 - -1.000H+ + 1.000NH3 = NH4+ - log_k 9.230 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -133.26 #kJ/mol #92GRE/FUG - -analytic 9.23E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Na+ + 1.000CO3-2 = Na(CO3)- - log_k 1.270 #90NOR/PLU - delta_h 37.279 #kJ/mol #90NOR/PLU - # Enthalpy of formation: -878.291 #kJ/mol - -analytic 7.80099E+0 0E+0 -1.94721E+3 0E+0 0E+0 - -1.000Na+ + 1.000Edta-4 = Na(Edta)-3 - log_k 2.800 #05HUM/AND - delta_h -4.000 #kJ/mol - # Enthalpy of formation: -1949.14 #kJ/mol - -analytic 2.09923E+0 0E+0 2.08934E+2 0E+0 0E+0 - -1.000Na+ + 1.000H+ + 1.000CO3-2 = Na(HCO3) - log_k 10.080 #90NOR/PLU - delta_h -26.127 #kJ/mol - # Enthalpy of formation: -941.697 #kJ/mol - -analytic 5.50275E+0 0E+0 1.36471E+3 0E+0 0E+0 - -1.000Na+ + 1.000H+ + 1.000Nta-3 = Na(HNta)- - log_k 10.320 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.032E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Na+ - 1.000H+ + 1.000H2(PO4)- = Na(HPO4)- - log_k -6.340 #97MAR/SMI - delta_h 34.936 #kJ/mol #97MAR/SMI - # Enthalpy of formation: -1508.004 #kJ/mol - -analytic -2.19485E-1 0E+0 -1.82483E+3 0E+0 0E+0 - -1.000Na+ + 1.000IO3- = Na(IO3) - log_k 0.060 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6E-2 0E+0 0E+0 0E+0 0E+0 - -1.000Na+ + 1.000Nta-3 = Na(Nta)-2 - log_k 1.880 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.88E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Na+ + 1.000S2O3-2 = Na(S2O3)- - log_k 0.610 - delta_h 4.656 #kJ/mol - # Enthalpy of formation: -887.97 #kJ/mol #82WAG/EVA - -analytic 1.42569E+0 0E+0 -2.43199E+2 0E+0 0E+0 - -2.000Na+ + 1.000Pyrophos-4 = Na2(Pyrophos)-2 - log_k 2.290 #76SMI/MAR - delta_h 5.858 #kJ/mol #76SMI/MAR - # Enthalpy of formation: -2761.716 #kJ/mol - -analytic 3.31628E+0 0E+0 -3.05984E+2 0E+0 0E+0 - -1.000Na+ + 1.000Al+3 - 4.000H+ + 4.000H2O = NaAl(OH)4 - log_k -23.630 - delta_h 190.348 #kJ/mol - # Enthalpy of formation: -1731.712 #kJ/mol #95POK/HEL - -analytic 9.71749E+0 0E+0 -9.94255E+3 0E+0 0E+0 - -1.000Na+ + 1.000B(OH)4- = NaB(OH)4 - log_k -0.100 - delta_h 1.226 #kJ/mol - # Enthalpy of formation: -1584.23 #kJ/mol - -analytic 1.14786E-1 0E+0 -6.40383E+1 0E+0 0E+0 - -1.000Na+ + 1.000F- = NaF - log_k -0.450 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel - delta_h -12.552 #kJ/mol - # Enthalpy of formation: -588.242 #kJ/mol - -analytic -2.64901E+0 0E+0 6.55636E+2 0E+0 0E+0 - -1.000Na+ + 1.000H2(PO4)- = NaH2PO4 - log_k 0.410 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.1E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Na+ + 1.000I- = NaI - log_k -1.520 #estimation NEA87 08/2/95 - delta_h 7.252 #kJ/mol - # Enthalpy of formation: -289.868 #kJ/mol - -analytic -2.49506E-1 0E+0 -3.78798E+2 0E+0 0E+0 - -1.000Na+ - 2.000H+ + 1.000H2(PO4)- = NaPO4-2 - log_k -18.070 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.807E+1 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 1.000Nb(OH)6- - 3.000H2O = Nb(OH)3+2 - log_k 7.500 #97PEI/NGU - delta_h -10.230 #kJ/mol #97PEI/NGU - # Enthalpy of formation: -1078.405 #kJ/mol - -analytic 5.70778E+0 0E+0 5.34349E+2 0E+0 0E+0 - -2.000H+ + 1.000Nb(OH)6- - 2.000H2O = Nb(OH)4+ - log_k 6.640 #97PEI/NGU - delta_h -35.350 #kJ/mol #97PEI/NGU - # Enthalpy of formation: -1389.355 #kJ/mol - -analytic 4.46955E-1 0E+0 1.84646E+3 0E+0 0E+0 - -1.000H+ + 1.000Nb(OH)6- - 1.000H2O = Nb(OH)5 - log_k 5.080 #97PEI/NGU - delta_h -13.390 #kJ/mol #97PEI/NGU - # Enthalpy of formation: -1653.225 #kJ/mol - -analytic 2.73418E+0 0E+0 6.99407E+2 0E+0 0E+0 - -- 1.000H+ + 1.000Nb(OH)6- + 1.000H2O = Nb(OH)7-2 - log_k -8.880 #97PEI/NGU - delta_h 10.170 #kJ/mol #97PEI/NGU - # Enthalpy of formation: -2201.325 #kJ/mol - -analytic -7.0983E+0 0E+0 -5.31215E+2 0E+0 0E+0 - -5.000H+ + 1.000Nb(OH)6- + 1.000Cit-3 - 4.000H2O = NbO2(H3Cit)+ - log_k 25.640 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.564E+1 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 1.000Nb(OH)6- + 1.000Ox-2 - 4.000H2O = NbO2(HOx) - log_k 13.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.37E+1 0E+0 0E+0 0E+0 0E+0 - -4.000H+ + 1.000Nb(OH)6- + 2.000Ox-2 - 4.000H2O = NbO2(HOx)2- - log_k 20.960 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.096E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000Nb(OH)6- + 1.000Ox-2 - 4.000H2O = NbO2(Ox)- - log_k 10.940 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.094E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000Acetate- = Ni(Acetate)+ - log_k 1.340 #11RIC/GRI - delta_h -28.257 #kJ/mol - # Enthalpy of formation: -569.279 #kJ/mol - -analytic -3.61041E+0 0E+0 1.47596E+3 0E+0 0E+0 - -1.000Ni+2 + 1.000CO3-2 = Ni(CO3) - log_k 4.200 #03BAE/BRA in 05GAM/BUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000CO3-2 = Ni(CO3)2-2 - log_k 6.200 #03BAE/BRA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000Cit-3 = Ni(Cit)- - log_k 6.760 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.76E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000Cit-3 = Ni(Cit)2-4 - log_k 8.500 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 4.000Cn- = Ni(Cn)4-2 - log_k 30.200 - delta_h -180.700 #kJ/mol #05GAM/BUG - # Enthalpy of formation: 353.688 #kJ/mol - -analytic -1.45723E+0 0E+0 9.4386E+3 0E+0 0E+0 - -1.000Ni+2 + 5.000Cn- = Ni(Cn)5-3 - log_k 28.500 - delta_h -191.100 #kJ/mol #05GAM/BUG - # Enthalpy of formation: 490.638 #kJ/mol - -analytic -4.97923E+0 0E+0 9.98183E+3 0E+0 0E+0 - -1.000Ni+2 + 1.000Edta-4 = Ni(Edta)-2 - log_k 20.540 #05HUM/AND - delta_h -26.100 #kJ/mol - # Enthalpy of formation: -1785.912 #kJ/mol - -analytic 1.59675E+1 0E+0 1.3633E+3 0E+0 0E+0 - -1.000Ni+2 + 2.000H+ + 1.000Cit-3 = Ni(H2Cit)+ - log_k 13.190 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.319E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000H+ + 1.000CO3-2 = Ni(HCO3)+ - log_k 11.730 #03BAE/BRA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.173E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000H+ + 1.000Cit-3 = Ni(HCit) - log_k 10.520 #05HUM/BER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.052E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000H+ + 1.000Edta-4 = Ni(HEdta)- - log_k 24.200 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.42E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000HIsa- = Ni(HIsa)+ - log_k 2.800 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 - 1.000H+ + 1.000H2(PO4)- = Ni(HPO4) - log_k -4.160 #05GAM/BUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.16E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000HS- = Ni(HS)2 - log_k 11.100 #02HUM/BER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.11E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000Malonate-2 = Ni(Malonate) - log_k 4.390 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.39E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000Malonate-2 = Ni(Malonate)2-2 - log_k 8.150 #98KHA/RAD - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.15E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000NH3 = Ni(NH3)+2 - log_k 2.610 #70LET - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.61E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000NH3 = Ni(NH3)2+2 - log_k 4.760 #70LET - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.76E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 3.000NH3 = Ni(NH3)3+2 - log_k 6.790 #70LET - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.79E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 4.000NH3 = Ni(NH3)4+2 - log_k 8.340 #70LET - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.34E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000NO3- = Ni(NO3)+ - log_k 0.500 #05GAM/BUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000NO3- = Ni(NO3)2 - log_k -0.600 #76SMI/MAR in 89BAE/McK - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000Nta-3 = Ni(Nta)- - log_k 12.750 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.275E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000Nta-3 = Ni(Nta)2-4 - log_k 16.950 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.695E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 - 1.000H+ + 1.000Nta-3 + 1.000H2O = Ni(OH)(Nta)-2 - log_k 1.470 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.47E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 - 1.000H+ + 1.000H2O = Ni(OH)+ - log_k -9.540 #05GAM/BUG - delta_h 53.800 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -287.042 #kJ/mol - -analytic -1.14658E-1 0E+0 -2.81017E+3 0E+0 0E+0 - -1.000Ni+2 - 2.000H+ + 2.000H2O = Ni(OH)2 - log_k -18.000 #49GAY/GAR reevaluated in 05GAM/BUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.8E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 - 3.000H+ + 1.000H2(PO4)- + 2.000H2O = Ni(OH)2(HPO4)-2 - log_k -23.240 #95LEM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.324E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000HIsa- + 3.000H2O - 3.000H+ = Ni(OH)3(HIsa)-2 - log_k -26.500 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.65E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 - 3.000H+ + 3.000H2O = Ni(OH)3- - log_k -29.380 #49GAY/GAR reevaluated in 05GAM/BUG - delta_h 121.200 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -791.302 #kJ/mol - -analytic -8.1467E+0 0E+0 -6.33071E+3 0E+0 0E+0 - -1.000Ni+2 + 1.000Ox-2 = Ni(Ox) - log_k 5.190 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -885.672 #kJ/mol - -analytic 5.19E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000Ox-2 = Ni(Ox)2-2 - log_k 7.640 #05HUM/AND - delta_h -7.800 #kJ/mol - # Enthalpy of formation: -1724.132 #kJ/mol - -analytic 6.2735E+0 0E+0 4.07422E+2 0E+0 0E+0 - -1.000Ni+2 + 1.000Phthalat-2 = Ni(Phthalat) - log_k 3.000 #11GRI/COL3 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000Pyrophos-4 = Ni(Pyrophos)-2 - log_k 8.730 #05GAM/BUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.73E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000S2O3-2 = Ni(S2O3) - log_k 2.060 #51DEU/HEI in 64SIL/MAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.06E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000SO4-2 = Ni(SO4) - log_k 2.350 #05GAM/BUG - delta_h 5.660 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -958.692 #kJ/mol - -analytic 3.34159E+0 0E+0 -2.95642E+2 0E+0 0E+0 - -1.000Ni+2 + 2.000SO4-2 = Ni(SO4)2-2 - log_k 3.010 #89BAE/McK - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.01E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000Scn- = Ni(Scn)+ - log_k 1.810 - delta_h -11.800 #kJ/mol #05GAM/BUG - # Enthalpy of formation: 9.588 #kJ/mol - -analytic -2.57268E-1 0E+0 6.16356E+2 0E+0 0E+0 - -1.000Ni+2 + 2.000Scn- = Ni(Scn)2 - log_k 2.690 - delta_h -21.000 #kJ/mol #05GAM/BUG - # Enthalpy of formation: 76.788 #kJ/mol - -analytic -9.89037E-1 0E+0 1.0969E+3 0E+0 0E+0 - -1.000Ni+2 + 3.000Scn- = Ni(Scn)3- - log_k 3.020 - delta_h -29.000 #kJ/mol #05GAM/BUG - # Enthalpy of formation: 145.188 #kJ/mol - -analytic -2.06057E+0 0E+0 1.51477E+3 0E+0 0E+0 - -1.000Ni+2 + 1.000H+ + 1.000Cn- + 1.000HSe- - 1.000H2O + 0.500O2 = Ni(SeCn)+ - log_k 57.790 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.779E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000H+ + 2.000Cn- + 2.000HSe- - 2.000H2O + 1.000O2 = Ni(SeCn)2 - log_k 114.270 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.1427E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000SeO4-2 = Ni(SeO4) - log_k 2.670 #05OLI/NOL - delta_h -0.675 #kJ/mol - # Enthalpy of formation: -659.187 #kJ/mol - -analytic 2.55175E+0 0E+0 3.52577E+1 0E+0 0E+0 - -2.000Ni+2 - 1.000H+ + 1.000H2O = Ni2(OH)+3 - log_k -10.600 #05GAM/BUG - delta_h 45.900 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -349.954 #kJ/mol - -analytic -2.55868E+0 0E+0 -2.39752E+3 0E+0 0E+0 - -4.000Ni+2 - 4.000H+ + 4.000H2O = Ni4(OH)4+4 - log_k -27.520 #05GAM/BUG - delta_h 190.000 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -1173.368 #kJ/mol - -analytic 5.76652E+0 0E+0 -9.92438E+3 0E+0 0E+0 - -1.000Ni+2 + 1.000Cl- = NiCl+ - log_k 0.080 #05GAM/BUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8E-2 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000F- = NiF+ - log_k 1.430 #05GAM/BUG - delta_h 9.500 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -380.862 #kJ/mol - -analytic 3.09433E+0 0E+0 -4.96219E+2 0E+0 0E+0 - -1.000Ni+2 + 1.000H+ + 1.000AsO4-3 = NiHAsO4 - log_k 14.500 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.45E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000H+ + 1.000Pyrophos-4 = NiHPyrophos- - log_k 14.540 #05GAM/BUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.454E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000HS- = NiHS+ - log_k 5.500 #02HUM/BER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 1.000Acetate- = Np(Acetate)+3 - log_k 5.830 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.83E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 2.000Acetate- = Np(Acetate)2+2 - log_k 10.000 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 - 3.000H+ + 1.000CO3-2 + 3.000H2O = Np(CO3)(OH)3- - log_k 3.820 #93ERI/NDA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.82E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 + 1.000CO3-2 = Np(CO3)+ - log_k 7.670 #Estimated by correlation with An(III) in function of ionic radii - delta_h 156.370 #kJ/mol - # Enthalpy of formation: -1046.044 #kJ/mol - -analytic 3.50648E+1 0E+0 -8.16776E+3 0E+0 0E+0 - -1.000Np+3 + 2.000CO3-2 = Np(CO3)2- - log_k 12.600 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.26E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 + 3.000CO3-2 = Np(CO3)3-3 - log_k 15.660 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.566E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 4.000CO3-2 = Np(CO3)4-4 - log_k 36.680 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.668E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 5.000CO3-2 = Np(CO3)5-6 - log_k 35.610 #01LEM/FUG - delta_h -1.612 #kJ/mol - # Enthalpy of formation: -3933.784 #kJ/mol - -analytic 3.53276E+1 0E+0 8.42005E+1 0E+0 0E+0 - -1.000Np+4 + 1.000Edta-4 = Np(Edta) - log_k 31.200 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.12E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 + 1.000Edta-4 = Np(Edta)- - log_k 19.900 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.99E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 - 2.000H+ + 2.000H2(PO4)- = Np(HPO4)2- - log_k -5.380 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.38E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 1.000NO3- = Np(NO3)+3 - log_k 1.900 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 + 1.000Nta-3 = Np(Nta) - log_k 13.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 1.000Nta-3 = Np(Nta)+ - log_k 20.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.07E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 2.000Nta-3 = Np(Nta)2-2 - log_k 36.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.63E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 - 1.000H+ + 1.000H2O = Np(OH)+2 - log_k -6.800 #01LEM/FUG - delta_h 77.089 #kJ/mol - # Enthalpy of formation: -735.925 #kJ/mol - -analytic 6.70539E+0 0E+0 -4.02663E+3 0E+0 0E+0 - -1.000Np+4 - 1.000H+ + 1.000H2O = Np(OH)+3 - log_k 0.550 #03GUI/FAN - delta_h 38.192 #kJ/mol - # Enthalpy of formation: -803.66 #kJ/mol - -analytic 7.24094E+0 0E+0 -1.9949E+3 0E+0 0E+0 - -1.000Np+4 - 2.000H+ + 2.000CO3-2 + 2.000H2O = Np(OH)2(CO3)2-2 - log_k 15.170 #99RAI/HES2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.517E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 - 2.000H+ + 2.000H2O = Np(OH)2+ - log_k -17.000 #80ALL/KIP - delta_h 155.529 #kJ/mol - # Enthalpy of formation: -943.315 #kJ/mol - -analytic 1.02475E+1 0E+0 -8.12383E+3 0E+0 0E+0 - -1.000Np+4 - 2.000H+ + 2.000H2O = Np(OH)2+2 - log_k 0.350 #03GUI/FAN - delta_h 54.530 #kJ/mol - # Enthalpy of formation: -1073.152 #kJ/mol - -analytic 9.90323E+0 0E+0 -2.8483E+3 0E+0 0E+0 - -1.000Np+3 - 3.000H+ + 3.000H2O = Np(OH)3 - log_k -27.000 #80ALL/KIP - delta_h 235.824 #kJ/mol - # Enthalpy of formation: -1148.85 #kJ/mol - -analytic 1.43145E+1 0E+0 -1.23179E+4 0E+0 0E+0 - -1.000Np+4 - 3.000H+ + 1.000HGlu- + 3.000H2O = Np(OH)3(HGlu) - log_k 3.270 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.27E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 - 3.000H+ + 1.000HIsa- + 3.000H2O = Np(OH)3(HIsa) - log_k 3.270 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.27E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 - 3.000H+ + 2.000HIsa- + 3.000H2O = Np(OH)3(HIsa)2- - log_k 5.380 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.38E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 - 3.000H+ + 3.000H2O = Np(OH)3+ - log_k -2.800 #01NEC/KIM, 99NEC - delta_h 74.932 #kJ/mol - # Enthalpy of formation: -1338.58 #kJ/mol - -analytic 1.03275E+1 0E+0 -3.91397E+3 0E+0 0E+0 - -1.000Np+4 - 4.000H+ + 4.000H2O = Np(OH)4 - log_k -8.300 #03GUI/FAN - delta_h 101.442 #kJ/mol - # Enthalpy of formation: -1597.9 #kJ/mol - -analytic 9.47185E+0 0E+0 -5.29868E+3 0E+0 0E+0 - -1.000Np+4 - 4.000H+ + 1.000CO3-2 + 4.000H2O = Np(OH)4(CO3)-2 - log_k -6.830 #93ERI/NDA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.83E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 - 4.000H+ + 1.000HGlu- + 4.000H2O = Np(OH)4(HGlu)- - log_k -3.700 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 - 4.000H+ + 1.000HIsa- + 4.000H2O = Np(OH)4(HIsa)- - log_k -4.060 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.06E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 - 4.000H+ + 2.000HIsa- + 4.000H2O = Np(OH)4(HIsa)2-2 - log_k -2.200 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 1.000Ox-2 = Np(Ox)+2 - log_k 11.160 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.116E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 2.000Ox-2 = Np(Ox)2 - log_k 19.940 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.994E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 3.000Ox-2 = Np(Ox)3-2 - log_k 25.190 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.519E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 - 4.000H+ + 2.000H2(PO4)- = Np(PO4)2-3 - log_k -19.570 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.957E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 + 1.000SO4-2 = Np(SO4)+ - log_k 3.860 #Estimated by correlation with An(III) in function of ionic radii - delta_h 17.889 #kJ/mol - # Enthalpy of formation: -1418.638 #kJ/mol - -analytic 6.99401E+0 0E+0 -9.34406E+2 0E+0 0E+0 - -1.000Np+4 + 1.000SO4-2 = Np(SO4)+2 - log_k 6.850 #01LEM/FUG - delta_h 29.840 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -1435.522 #kJ/mol #01LEM/FUG - -analytic 1.20777E+1 0E+0 -1.55865E+3 0E+0 0E+0 - -1.000Np+4 + 2.000SO4-2 = Np(SO4)2 - log_k 11.050 #01LEM/FUG - delta_h 55.380 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -2319.322 #kJ/mol - -analytic 2.07521E+1 0E+0 -2.89269E+3 0E+0 0E+0 - -1.000Np+3 + 2.000SO4-2 = Np(SO4)2- - log_k 5.560 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.56E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 1.000Br- = NpBr+3 - log_k 1.550 #Estimated by correlation with An(IV) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.55E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 1.000Cl- = NpCl+3 - log_k 1.500 #01LEM/FUG - delta_h 24.173 #kJ/mol - # Enthalpy of formation: -698.929 #kJ/mol - -analytic 5.73492E+0 0E+0 -1.26264E+3 0E+0 0E+0 - -1.000Np+4 + 1.000F- = NpF+3 - log_k 8.960 #01LEM/FUG - delta_h 1.500 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -889.872 #kJ/mol - -analytic 9.22279E+0 0E+0 -7.83503E+1 0E+0 0E+0 - -1.000Np+4 + 2.000F- = NpF2+2 - log_k 15.700 #01LEM/FUG - delta_h 15.930 #kJ/mol - # Enthalpy of formation: -1210.792 #kJ/mol - -analytic 1.84908E+1 0E+0 -8.32081E+2 0E+0 0E+0 - -1.000Np+4 + 3.000F- = NpF3+ - log_k 20.050 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.005E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 4.000F- = NpF4 - log_k 25.950 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.595E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 - 1.000H+ + 1.000H2(PO4)- = NpHPO4+ - log_k -1.780 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.78E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 1.000I- = NpI+3 - log_k 1.500 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 1.000Acetate- = NpO2(Acetate) - log_k 1.320 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.32E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 2.000Acetate- = NpO2(Acetate)2- - log_k 3.420 #09TAK/TAK - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.42E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 3.000Acetate- = NpO2(Acetate)3-2 - log_k 3.570 #09TAK/TAK - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.57E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 + 1.000CO3-2 = NpO2(CO3) - log_k 9.320 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.32E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 - 2.000H+ + 1.000CO3-2 + 2.000H2O = NpO2(CO3)(OH)2-2 - log_k -7.690 #99CHO/BRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.69E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 1.000CO3-2 = NpO2(CO3)- - log_k 4.960 #01LEM/FUG - delta_h 59.904 #kJ/mol - # Enthalpy of formation: -1593.507 #kJ/mol - -analytic 1.54547E+1 0E+0 -3.129E+3 0E+0 0E+0 - -1.000NpO2+2 + 2.000CO3-2 = NpO2(CO3)2-2 - log_k 16.520 #01LEM/FUG - delta_h 13.776 #kJ/mol - # Enthalpy of formation: -2197.417 #kJ/mol - -analytic 1.89334E+1 0E+0 -7.1957E+2 0E+0 0E+0 - -1.000NpO2+ + 2.000CO3-2 = NpO2(CO3)2-3 - log_k 6.530 #01LEM/FUG - delta_h 39.027 #kJ/mol - # Enthalpy of formation: -2289.614 #kJ/mol - -analytic 1.33672E+1 0E+0 -2.03852E+3 0E+0 0E+0 - -1.000NpO2+ - 1.000H+ + 2.000CO3-2 + 1.000H2O = NpO2(CO3)2OH-4 - log_k -5.310 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.31E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 + 3.000CO3-2 = NpO2(CO3)3-4 - log_k 19.370 - delta_h -41.900 #kJ/mol - # Enthalpy of formation: -2928.323 #kJ/mol #01LEM/FUG - -analytic 1.20294E+1 0E+0 2.18859E+3 0E+0 0E+0 - -1.000NpO2+ + 3.000CO3-2 = NpO2(CO3)3-5 - log_k 5.500 - delta_h -13.249 #kJ/mol - # Enthalpy of formation: -3017.12 #kJ/mol #01LEM/FUG - -analytic 3.17888E+0 0E+0 6.92042E+2 0E+0 0E+0 - -1.000NpO2+ + 1.000Cit-3 = NpO2(Cit)-2 - log_k 3.680 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.68E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 1.000Edta-4 = NpO2(Edta)-3 - log_k 9.230 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.23E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 2.000H+ + 1.000Edta-4 = NpO2(H2Edta)- - log_k 22.510 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.251E+1 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 1.000H+ + 1.000Edta-4 = NpO2(HEdta)-2 - log_k 17.060 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.706E+1 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 1.000H+ + 1.000Nta-3 = NpO2(HNta)- - log_k 11.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.17E+1 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 - 1.000H+ + 1.000H2(PO4)- = NpO2(HPO4) - log_k -1.010 #01LEM/FUG - delta_h 92.209 #kJ/mol - # Enthalpy of formation: -2071.124 #kJ/mol - -analytic 1.51443E+1 0E+0 -4.8164E+3 0E+0 0E+0 - -1.000NpO2+2 - 2.000H+ + 2.000H2(PO4)- = NpO2(HPO4)2-2 - log_k -4.920 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.92E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 + 1.000NO3- = NpO2(NO3)+ - log_k 0.100 #12GRI/GAR2 in analogy to UO2(NO3)+ - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1E-1 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 + 1.000Nta-3 = NpO2(Nta)- - log_k 11.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.1E+1 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 1.000Nta-3 = NpO2(Nta)-2 - log_k 7.460 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.46E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ - 1.000H+ + 1.000H2O = NpO2(OH) - log_k -11.300 #01LEM/FUG - delta_h 64.785 #kJ/mol - # Enthalpy of formation: -1199.226 #kJ/mol - -analytic 4.98281E-2 0E+0 -3.38395E+3 0E+0 0E+0 - -1.000NpO2+ - 1.000H+ + 1.000Nta-3 + 1.000H2O = NpO2(OH)(Nta)-3 - log_k -4.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 - 1.000H+ + 1.000H2O = NpO2(OH)+ - log_k -5.100 #01LEM/FUG - delta_h 42.957 #kJ/mol - # Enthalpy of formation: -1103.606 #kJ/mol - -analytic 2.42573E+0 0E+0 -2.2438E+3 0E+0 0E+0 - -1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 - log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ - 2.000H+ + 2.000H2O = NpO2(OH)2- - log_k -23.600 #01LEM/FUG - delta_h 118.610 #kJ/mol - # Enthalpy of formation: -1431.23 #kJ/mol - -analytic -2.82045E+0 0E+0 -6.19542E+3 0E+0 0E+0 - -1.000NpO2+ + 1.000Ox-2 = NpO2(Ox)- - log_k 3.900 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 2.000Ox-2 = NpO2(Ox)2-3 - log_k 5.800 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 + 1.000SO4-2 = NpO2(SO4) - log_k 3.280 #01LEM/FUG - delta_h 16.700 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -1753.373 #kJ/mol - -analytic 6.20571E+0 0E+0 -8.723E+2 0E+0 0E+0 - -1.000NpO2+ + 1.000SO4-2 = NpO2(SO4)- - log_k 0.440 #01LEM/FUG - delta_h 23.200 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -1864.321 #kJ/mol - -analytic 4.50446E+0 0E+0 -1.21182E+3 0E+0 0E+0 - -1.000NpO2+2 + 2.000SO4-2 = NpO2(SO4)2-2 - log_k 4.700 #01LEM/FUG - delta_h 26.000 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -2653.413 #kJ/mol - -analytic 9.255E+0 0E+0 -1.35807E+3 0E+0 0E+0 - -1.000NpO2+ + 1.000Cl- = NpO2Cl - log_k -0.930 #94NEC/KIM - delta_h 25.972 #kJ/mol - # Enthalpy of formation: -1119.289 #kJ/mol - -analytic 3.62009E+0 0E+0 -1.35661E+3 0E+0 0E+0 - -1.000NpO2+2 + 1.000Cl- = NpO2Cl+ - log_k 0.400 #01LEM/FUG - delta_h 8.387 #kJ/mol - # Enthalpy of formation: -1019.426 #kJ/mol - -analytic 1.86934E+0 0E+0 -4.38083E+2 0E+0 0E+0 - -1.000NpO2+ + 1.000F- = NpO2F - log_k 1.200 #01LEM/FUG - delta_h 40.768 #kJ/mol - # Enthalpy of formation: -1272.763 #kJ/mol - -analytic 8.34224E+0 0E+0 -2.12946E+3 0E+0 0E+0 - -1.000NpO2+2 + 1.000F- = NpO2F+ - log_k 4.570 #01LEM/FUG - delta_h 1.400 #kJ/mol - # Enthalpy of formation: -1194.683 #kJ/mol - -analytic 4.81527E+0 0E+0 -7.3127E+1 0E+0 0E+0 - -1.000NpO2+2 + 2.000F- = NpO2F2 - log_k 7.600 #01LEM/FUG - delta_h 4.321 #kJ/mol - # Enthalpy of formation: -1527.112 #kJ/mol - -analytic 8.35701E+0 0E+0 -2.25701E+2 0E+0 0E+0 - -1.000NpO2+2 + 1.000H2(PO4)- = NpO2H2PO4+ - log_k 3.320 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.32E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ - 1.000H+ + 1.000H2(PO4)- = NpO2HPO4- - log_k -4.260 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.26E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 - 2.000H+ + 1.000H2(PO4)- = NpPO4 - log_k -7.830 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.83E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000H2O = OH- - log_k -14.000 - delta_h 55.815 #kJ/mol - # Enthalpy of formation: -230.015 #kJ/mol #89COX/WAG - -analytic -4.22165E+0 0E+0 -2.91542E+3 0E+0 0E+0 - -- 2.000H+ + 1.000H2(PO4)- = PO4-3 - log_k -19.560 #89COX/WAG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1284.4 #kJ/mol #89COX/WAG - -analytic -1.956E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Pa+4 + 1.000H2O = Pa(OH)+3 - log_k 0.840 #76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.4E-1 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 1.000Pa+4 + 2.000H2O = Pa(OH)2+2 - log_k -0.020 #76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2E-2 0E+0 0E+0 0E+0 0E+0 - -- 3.000H+ + 1.000Pa+4 + 3.000H2O = Pa(OH)3+ - log_k -1.500 #76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000PaO2+ = PaO(OH)+2 - log_k 1.250 #Original data 03TRU/LEN and 04FOU/PER - delta_h -5.700 #kJ/mol #03TRU/LEN - # Enthalpy of formation: #kJ/mol - -analytic 2.51404E-1 0E+0 2.97731E+2 0E+0 0E+0 - -2.000H+ + 1.000SO4-2 + 1.000PaO2+ - 1.000H2O = PaO(SO4)+ - log_k 5.130 #07GIA/TRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.13E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 2.000SO4-2 + 1.000PaO2+ - 1.000H2O = PaO(SO4)2- - log_k 8.240 #07GIA/TRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.24E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 3.000SO4-2 + 1.000PaO2+ - 1.000H2O = PaO(SO4)3-3 - log_k 9.830 #07GIA/TRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.83E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000PaO2+ + 1.000H2O = PaO2(OH) - log_k -7.000 #Original data 03TRU/LEN and 04FOU/PER - delta_h 61.000 #kJ/mol #03TRU/LEN - # Enthalpy of formation: #kJ/mol - -analytic 3.68673E+0 0E+0 -3.18625E+3 0E+0 0E+0 - -- 2.000H+ + 1.000PaO2+ + 2.000H2O = PaO2(OH)2- - log_k -16.400 #04FOU/PER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.64E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 + 1.000B(OH)4- = Pb(B(OH)4)+ - log_k 5.200 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 + 3.000B(OH)4- = Pb(B(OH)4)3- - log_k 11.180 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.118E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 + 1.000CO3-2 = Pb(CO3) - log_k 7.000 #06BLA/PIA - delta_h -3.015 #kJ/mol - # Enthalpy of formation: -677.325 #kJ/mol - -analytic 6.4718E+0 0E+0 1.57484E+2 0E+0 0E+0 - -1.000Pb+2 + 2.000CO3-2 = Pb(CO3)2-2 - log_k 10.130 #99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.013E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 + 1.000H2(PO4)- = Pb(H2PO4)+ - log_k 1.500 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 + 2.000HS- = Pb(HS)2 - log_k 15.010 #06BLA/PIA - delta_h -65.579 #kJ/mol - # Enthalpy of formation: -97.259 #kJ/mol - -analytic 3.52107E+0 0E+0 3.42542E+3 0E+0 0E+0 - -1.000Pb+2 + 3.000HS- = Pb(HS)3- - log_k 16.260 #06BLA/PIA - delta_h -73.328 #kJ/mol - # Enthalpy of formation: -121.308 #kJ/mol - -analytic 3.4135E+0 0E+0 3.83018E+3 0E+0 0E+0 - -1.000Pb+2 + 1.000NO3- = Pb(NO3)+ - log_k 1.060 #99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.06E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 + 2.000NO3- = Pb(NO3)2 - log_k 1.480 #99LOT/OCH - delta_h -11.012 #kJ/mol - # Enthalpy of formation: 401.768 #kJ/mol - -analytic -4.49217E-1 0E+0 5.75196E+2 0E+0 0E+0 - -1.000Pb+2 - 1.000H+ + 1.000H2O = Pb(OH)+ - log_k -7.510 #99LOT/OCH - delta_h 53.920 #kJ/mol - # Enthalpy of formation: -230.99 #kJ/mol - -analytic 1.93636E+0 0E+0 -2.81643E+3 0E+0 0E+0 - -1.000Pb+2 - 2.000H+ + 2.000H2O = Pb(OH)2 - log_k -16.950 #99LOT/OCH - delta_h 97.824 #kJ/mol - # Enthalpy of formation: -472.916 #kJ/mol - -analytic 1.88004E-1 0E+0 -5.1097E+3 0E+0 0E+0 - -1.000Pb+2 - 3.000H+ + 3.000H2O = Pb(OH)3- - log_k -27.200 #01PER/HEF - delta_h 130.485 #kJ/mol - # Enthalpy of formation: -726.085 #kJ/mol - -analytic -4.34004E+0 0E+0 -6.8157E+3 0E+0 0E+0 - -1.000Pb+2 - 4.000H+ + 4.000H2O = Pb(OH)4-2 - log_k -38.900 #01PER/HEF - delta_h 197.474 #kJ/mol - # Enthalpy of formation: -944.926 #kJ/mol - -analytic -4.30409E+0 0E+0 -1.03148E+4 0E+0 0E+0 - -1.000Pb+2 + 1.000SO4-2 = Pb(SO4) - log_k 2.820 #99LOT/OCH - delta_h 6.861 #kJ/mol - # Enthalpy of formation: -901.559 #kJ/mol - -analytic 4.02199E+0 0E+0 -3.58374E+2 0E+0 0E+0 - -1.000Pb+2 + 2.000SO4-2 = Pb(SO4)2-2 - log_k 3.470 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.47E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 + 1.000SeO3-2 = Pb(SeO3) - log_k 5.730 #01SEB/POT2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.73E+0 0E+0 0E+0 0E+0 0E+0 - -2.000Pb+2 - 1.000H+ + 1.000H2O = Pb2(OH)+3 - log_k -7.180 #99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.18E+0 0E+0 0E+0 0E+0 0E+0 - -4.000Pb+2 - 4.000H+ + 4.000H2O = Pb4(OH)4+4 - log_k -20.630 #99LOT/OCH - delta_h 82.038 #kJ/mol - # Enthalpy of formation: -1057.602 #kJ/mol - -analytic -6.25758E+0 0E+0 -4.28514E+3 0E+0 0E+0 - -6.000Pb+2 - 8.000H+ + 8.000H2O = Pb6(OH)8+4 - log_k -42.680 #99LOT/OCH - delta_h 192.157 #kJ/mol - # Enthalpy of formation: -2088.963 #kJ/mol - -analytic -9.01559E+0 0E+0 -1.0037E+4 0E+0 0E+0 - -1.000Pb+2 + 1.000Br- = PbBr+ - log_k 1.700 #82HÖG - delta_h 4.228 #kJ/mol - # Enthalpy of formation: -116.262 #kJ/mol - -analytic 2.44071E+0 0E+0 -2.20843E+2 0E+0 0E+0 - -1.000Pb+2 + 2.000Br- = PbBr2 - log_k 1.900 #82HÖG - delta_h 10.991 #kJ/mol - # Enthalpy of formation: -230.909 #kJ/mol - -analytic 3.82554E+0 0E+0 -5.74099E+2 0E+0 0E+0 - -1.000Pb+2 + 3.000Br- = PbBr3- - log_k 2.900 #82HÖG - delta_h 10.653 #kJ/mol - # Enthalpy of formation: -352.657 #kJ/mol - -analytic 4.76632E+0 0E+0 -5.56444E+2 0E+0 0E+0 - -1.000Pb+2 + 1.000Cl- = PbCl+ - log_k 1.440 #97SVE/SHO - delta_h 4.318 #kJ/mol - # Enthalpy of formation: -161.842 #kJ/mol - -analytic 2.19648E+0 0E+0 -2.25545E+2 0E+0 0E+0 - -1.000Pb+2 + 2.000Cl- = PbCl2 - log_k 2.000 #97SVE/SHO - delta_h 7.949 #kJ/mol - # Enthalpy of formation: -325.291 #kJ/mol - -analytic 3.3926E+0 0E+0 -4.15205E+2 0E+0 0E+0 - -1.000Pb+2 + 3.000Cl- = PbCl3- - log_k 1.690 #97SVE/SHO - delta_h 7.813 #kJ/mol - # Enthalpy of formation: -492.507 #kJ/mol - -analytic 3.05878E+0 0E+0 -4.08101E+2 0E+0 0E+0 - -1.000Pb+2 + 4.000Cl- = PbCl4-2 - log_k 1.400 #97SVE/SHO - delta_h 1.323 #kJ/mol - # Enthalpy of formation: -666.077 #kJ/mol - -analytic 1.63178E+0 0E+0 -6.9105E+1 0E+0 0E+0 - -1.000Pb+2 + 1.000F- = PbF+ - log_k 2.270 #99LOT/OCH - delta_h -4.054 #kJ/mol - # Enthalpy of formation: -338.484 #kJ/mol - -analytic 1.55977E+0 0E+0 2.11755E+2 0E+0 0E+0 - -1.000Pb+2 + 2.000F- = PbF2 - log_k 3.010 #99LOT/OCH - delta_h -8.881 #kJ/mol - # Enthalpy of formation: -678.661 #kJ/mol - -analytic 1.45412E+0 0E+0 4.63886E+2 0E+0 0E+0 - -1.000Pb+2 - 1.000H+ + 1.000H2(PO4)- = PbHPO4 - log_k -4.110 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.11E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 + 1.000I- = PbI+ - log_k 1.980 #82HÖG - delta_h 3.874 #kJ/mol - # Enthalpy of formation: -51.986 #kJ/mol - -analytic 2.65869E+0 0E+0 -2.02353E+2 0E+0 0E+0 - -1.000Pb+2 + 2.000I- = PbI2 - log_k 3.150 #82HÖG - delta_h 7.106 #kJ/mol - # Enthalpy of formation: -105.534 #kJ/mol - -analytic 4.39492E+0 0E+0 -3.71172E+2 0E+0 0E+0 - -1.000Pb+2 + 3.000I- = PbI3- - log_k 3.810 #82HÖG - delta_h 3.163 #kJ/mol - # Enthalpy of formation: -166.257 #kJ/mol - -analytic 4.36413E+0 0E+0 -1.65215E+2 0E+0 0E+0 - -1.000Pb+2 + 4.000I- = PbI4-2 - log_k 3.750 #82HÖG - delta_h -15.561 #kJ/mol - # Enthalpy of formation: -241.761 #kJ/mol - -analytic 1.02383E+0 0E+0 8.12806E+2 0E+0 0E+0 - -1.000Pb+2 + 1.000Pyrophos-4 = PbPyrophos-2 - log_k 8.330 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.33E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pd+2 + 1.000CO3-2 = Pd(CO3) - log_k 6.830 #87BRO/WAN - delta_h -8.829 #kJ/mol - # Enthalpy of formation: -494.175 #kJ/mol - -analytic 5.28323E+0 0E+0 4.6117E+2 0E+0 0E+0 - -1.000Pd+2 + 2.000CO3-2 = Pd(CO3)2-2 - log_k 12.530 #87BRO/WAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.253E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pd+2 + 1.000NH3 = Pd(NH3)+2 - log_k 9.600 #68RAS/JOR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pd+2 + 2.000NH3 = Pd(NH3)2+2 - log_k 18.500 #68RAS/JOR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.85E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pd+2 + 3.000NH3 = Pd(NH3)3+2 - log_k 26.000 #68RAS/JOR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.6E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pd+2 + 4.000NH3 = Pd(NH3)4+2 - log_k 32.800 #68RAS/JOR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.28E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Pd+2 + 1.000H2O = Pd(OH)+ - log_k -1.860 #70NAB/KAL - delta_h 11.900 #kJ/mol - # Enthalpy of formation: -84.047 #kJ/mol - -analytic 2.24787E-1 0E+0 -6.21579E+2 0E+0 0E+0 - -- 2.000H+ + 1.000Pd+2 + 2.000H2O = Pd(OH)2 - log_k -3.790 #70NAB/KAL - delta_h 15.293 #kJ/mol - # Enthalpy of formation: -366.483 #kJ/mol - -analytic -1.11079E+0 0E+0 -7.98808E+2 0E+0 0E+0 - -- 3.000H+ + 1.000Pd+2 + 3.000H2O = Pd(OH)3- - log_k -15.930 #70NAB/KAL - delta_h 54.863 #kJ/mol - # Enthalpy of formation: -612.744 #kJ/mol - -analytic -6.31843E+0 0E+0 -2.86569E+3 0E+0 0E+0 - -- 4.000H+ + 1.000Pd+2 + 4.000H2O = Pd(OH)4-2 - log_k -29.360 #70NAB/KAL - delta_h 118.563 #kJ/mol - # Enthalpy of formation: -834.874 #kJ/mol - -analytic -8.58868E+0 0E+0 -6.19297E+3 0E+0 0E+0 - -1.000Pd+2 + 1.000SO4-2 = Pd(SO4) - log_k 2.910 #87BRO/WAN - delta_h 4.596 #kJ/mol - # Enthalpy of formation: -714.86 #kJ/mol - -analytic 3.71518E+0 0E+0 -2.40065E+2 0E+0 0E+0 - -1.000Pd+2 + 2.000SO4-2 = Pd(SO4)2-2 - log_k 4.170 #82HOG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.17E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pd+2 + 1.000Br- = PdBr+ - log_k 5.770 #72ELD - delta_h -30.140 #kJ/mol - # Enthalpy of formation: 38.344 #kJ/mol - -analytic 4.89706E-1 0E+0 1.57432E+3 0E+0 0E+0 - -1.000Pd+2 + 2.000Br- = PdBr2 - log_k 10.060 #72ELD - delta_h -57.708 #kJ/mol - # Enthalpy of formation: -110.645 #kJ/mol - -analytic -4.99928E-2 0E+0 3.01429E+3 0E+0 0E+0 - -1.000Pd+2 + 3.000Br- = PdBr3- - log_k 13.750 #72ELD - delta_h -92.385 #kJ/mol - # Enthalpy of formation: -266.731 #kJ/mol - -analytic -2.43513E+0 0E+0 4.8256E+3 0E+0 0E+0 - -1.000Pd+2 + 4.000Br- = PdBr4-2 - log_k 15.110 #72ELD - delta_h -126.683 #kJ/mol - # Enthalpy of formation: -422.439 #kJ/mol - -analytic -7.08388E+0 0E+0 6.6171E+3 0E+0 0E+0 - -1.000Pd+2 + 1.000Cl- = PdCl+ - log_k 5.100 #99LOT/OCH - delta_h -24.542 #kJ/mol - # Enthalpy of formation: -1.739 #kJ/mol - -analytic 8.00432E-1 0E+0 1.28192E+3 0E+0 0E+0 - -1.000Pd+2 + 2.000Cl- = PdCl2 - log_k 8.300 #99LOT/OCH - delta_h -47.297 #kJ/mol - # Enthalpy of formation: -191.573 #kJ/mol - -analytic 1.39334E-2 0E+0 2.47049E+3 0E+0 0E+0 - -- 1.000H+ + 1.000Pd+2 + 3.000Cl- + 1.000H2O = PdCl3(OH)-2 - log_k 2.310 #00BYR/YAO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.31E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pd+2 + 3.000Cl- = PdCl3- - log_k 10.900 #99LOT/OCH - delta_h -77.344 #kJ/mol - # Enthalpy of formation: -388.7 #kJ/mol - -analytic -2.65007E+0 0E+0 4.03995E+3 0E+0 0E+0 - -1.000Pd+2 + 4.000Cl- = PdCl4-2 - log_k 11.700 #99LOT/OCH - delta_h -112.469 #kJ/mol - # Enthalpy of formation: -590.906 #kJ/mol - -analytic -8.00369E+0 0E+0 5.87466E+3 0E+0 0E+0 - -1.000Pd+2 + 1.000I- = PdI+ - log_k 10.400 #89BAE/McK - delta_h -58.201 #kJ/mol - # Enthalpy of formation: 74.902 #kJ/mol - -analytic 2.03637E-1 0E+0 3.04005E+3 0E+0 0E+0 - -1.000Pd+2 + 2.000I- = PdI2 - log_k 14.500 #97BOU - delta_h -83.420 #kJ/mol - # Enthalpy of formation: -7.096 #kJ/mol - -analytic -1.14535E-1 0E+0 4.35732E+3 0E+0 0E+0 - -1.000Pd+2 + 3.000I- = PdI3- - log_k 18.600 #97BOU - delta_h -121.750 #kJ/mol - # Enthalpy of formation: -102.207 #kJ/mol - -analytic -2.72965E+0 0E+0 6.35944E+3 0E+0 0E+0 - -1.000Pd+2 + 4.000I- = PdI4-2 - log_k 24.640 - delta_h -190.052 #kJ/mol - # Enthalpy of formation: -227.288 #kJ/mol - -analytic -8.65563E+0 0E+0 9.92709E+3 0E+0 0E+0 - -1.000Pu+3 + 1.000Acetate- = Pu(Acetate)+2 - log_k 2.850 #69MOS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.85E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 1.000Acetate- = Pu(Acetate)+3 - log_k 5.930 #62SCH/NEB - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.93E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 2.000Acetate- = Pu(Acetate)2+ - log_k 5.060 #69MOS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.06E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 2.000Acetate- = Pu(Acetate)2+2 - log_k 10.090 #62SCH/NEB - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.009E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 3.000Acetate- = Pu(Acetate)3 - log_k 6.570 #69MOS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.57E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 1.000CO3-2 = Pu(CO3)+ - log_k 7.640 #Estimated by correlation with An(III) in function of ionic radii - delta_h 152.754 #kJ/mol - # Enthalpy of formation: -1114.266 #kJ/mol - -analytic 3.44013E+1 0E+0 -7.97889E+3 0E+0 0E+0 - -1.000Pu+4 - 2.000H+ + 2.000CO3-2 + 2.000H2O = Pu(CO3)2(OH)2-2 - log_k 16.760 #99RAI/HES1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.676E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 2.000CO3-2 = Pu(CO3)2- - log_k 12.540 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.254E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 3.000CO3-2 = Pu(CO3)3-3 - log_k 16.400 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.64E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 4.000CO3-2 = Pu(CO3)4-4 - log_k 37.000 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.7E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 5.000CO3-2 = Pu(CO3)5-6 - log_k 35.650 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.565E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 1.000Edta-4 = Pu(Edta) - log_k 31.800 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.18E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 1.000Edta-4 = Pu(Edta)- - log_k 20.180 #05HUM/AND - delta_h -8.700 #kJ/mol - # Enthalpy of formation: -2305.29 #kJ/mol - -analytic 1.86558E+1 0E+0 4.54432E+2 0E+0 0E+0 - -1.000Pu+3 + 1.000H2(PO4)- = Pu(H2PO4)+2 - log_k 2.200 #10RAI/MOO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 1.000H+ + 1.000Edta-4 = Pu(HEdta) - log_k 22.020 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.202E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 - 1.000H+ + 1.000H2(PO4)- = Pu(HPO4)+ - log_k -1.820 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.82E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 - 2.000H+ + 2.000H2(PO4)- = Pu(HPO4)2- - log_k -5.460 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.46E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 1.000NO3- = Pu(NO3)+2 - log_k 1.330 #95SIL/BID, LogK selected in analogy to Am (NEA recommendation 95SIL/BID) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.33E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 1.000NO3- = Pu(NO3)+3 - log_k 1.950 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.95E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 1.000Nta-3 = Pu(Nta) - log_k 13.100 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.31E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 1.000Nta-3 = Pu(Nta)+ - log_k 21.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.1E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 - 1.000H+ + 1.000H2O = Pu(OH)+2 - log_k -6.900 #01LEM/FUG - delta_h 78.274 #kJ/mol - # Enthalpy of formation: -799.346 #kJ/mol - -analytic 6.813E+0 0E+0 -4.08853E+3 0E+0 0E+0 - -1.000Pu+4 - 1.000H+ + 1.000H2O = Pu(OH)+3 - log_k 0.600 #99NEC, 01NEC/KIM, 03GUI/FAN - delta_h 36.000 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -789.725 #kJ/mol - -analytic 6.90692E+0 0E+0 -1.88041E+3 0E+0 0E+0 - -1.000Pu+3 - 2.000H+ + 2.000H2O = Pu(OH)2+ - log_k -15.900 #80ALL/KIP - delta_h 150.342 #kJ/mol - # Enthalpy of formation: -1013.108 #kJ/mol - -analytic 1.04387E+1 0E+0 -7.8529E+3 0E+0 0E+0 - -1.000Pu+4 - 2.000H+ + 2.000H2O = Pu(OH)2+2 - log_k 0.600 #99NEC, 01NEC/KIM, 03GUI/FAN - delta_h 49.569 #kJ/mol - # Enthalpy of formation: -1061.986 #kJ/mol - -analytic 9.2841E+0 0E+0 -2.58917E+3 0E+0 0E+0 - -1.000Pu+3 - 3.000H+ + 3.000H2O = Pu(OH)3 - log_k -25.300 #80ALL/KIP - delta_h 227.540 #kJ/mol - # Enthalpy of formation: -1221.74 #kJ/mol - -analytic 1.45632E+1 0E+0 -1.18852E+4 0E+0 0E+0 - -1.000Pu+4 - 3.000H+ + 1.000HGlu- + 3.000H2O = Pu(OH)3(HGlu) - log_k 4.750 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.75E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 - 3.000H+ + 1.000HIsa- + 3.000H2O = Pu(OH)3(HIsa) - log_k 4.750 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.75E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 - 3.000H+ + 2.000HIsa- + 3.000H2O = Pu(OH)3(HIsa)2- - log_k 6.860 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.86E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 - 3.000H+ + 3.000H2O = Pu(OH)3+ - log_k -2.300 #99NEC, 01NEC/KIM, 03GUI/FAN - delta_h 68.543 #kJ/mol - # Enthalpy of formation: -1328.842 #kJ/mol - -analytic 9.7082E+0 0E+0 -3.58024E+3 0E+0 0E+0 - -1.000Pu+4 - 4.000H+ + 4.000H2O = Pu(OH)4 - log_k -8.500 #03GUI/FAN - delta_h 99.049 #kJ/mol - # Enthalpy of formation: -1584.166 #kJ/mol - -analytic 8.85261E+0 0E+0 -5.17368E+3 0E+0 0E+0 - -1.000Pu+4 - 4.000H+ + 1.000HGlu- + 4.000H2O = Pu(OH)4(HGlu)- - log_k -2.700 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 - 4.000H+ + 1.000HIsa- + 4.000H2O = Pu(OH)4(HIsa)- - log_k -3.600 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 - 4.000H+ + 2.000HIsa- + 4.000H2O = Pu(OH)4(HIsa)2-2 - log_k 0.700 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 1.000Ox-2 = Pu(Ox)+2 - log_k 11.400 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.14E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 2.000Ox-2 = Pu(Ox)2 - log_k 20.600 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.06E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 2.000Ox-2 = Pu(Ox)2- - log_k 10.620 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.062E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 3.000Ox-2 = Pu(Ox)3-2 - log_k 25.690 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.569E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 3.000Ox-2 = Pu(Ox)3-3 - log_k 13.220 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.322E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 - 4.000H+ + 2.000H2(PO4)- = Pu(PO4)2-3 - log_k -19.730 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.973E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 1.000SO4-2 = Pu(SO4)+ - log_k 3.910 #01LEM/FUG - delta_h 17.240 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -1483.89 #kJ/mol - -analytic 6.93031E+0 0E+0 -9.00507E+2 0E+0 0E+0 - -1.000Pu+4 + 1.000SO4-2 = Pu(SO4)+2 - log_k 6.890 #01LEM/FUG - delta_h 13.753 #kJ/mol - # Enthalpy of formation: -1435.482 #kJ/mol - -analytic 9.29942E+0 0E+0 -7.18368E+2 0E+0 0E+0 - -1.000Pu+4 + 2.000SO4-2 = Pu(SO4)2 - log_k 11.140 #01LEM/FUG - delta_h 43.906 #kJ/mol - # Enthalpy of formation: -2314.669 #kJ/mol - -analytic 1.8832E+1 0E+0 -2.29337E+3 0E+0 0E+0 - -1.000Pu+3 + 2.000SO4-2 = Pu(SO4)2- - log_k 5.700 #01LEM/FUG - delta_h 11.880 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -2398.59 #kJ/mol - -analytic 7.78128E+0 0E+0 -6.20535E+2 0E+0 0E+0 - -1.000Pu+4 + 1.000Br- = PuBr+3 - log_k 1.600 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 1.000Cl- = PuCl+3 - log_k 1.800 #01LEM/FUG - delta_h 19.820 #kJ/mol - # Enthalpy of formation: -687.155 #kJ/mol - -analytic 5.27231E+0 0E+0 -1.03527E+3 0E+0 0E+0 - -1.000Pu+4 + 1.000F- = PuF+3 - log_k 8.840 #01LEM/FUG - delta_h 9.100 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -866.145 #kJ/mol - -analytic 1.04342E+1 0E+0 -4.75325E+2 0E+0 0E+0 - -1.000Pu+4 + 2.000F- = PuF2+2 - log_k 15.700 #01LEM/FUG - delta_h 11.000 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -1199.595 #kJ/mol - -analytic 1.76271E+1 0E+0 -5.74569E+2 0E+0 0E+0 - -1.000Pu+4 + 3.000F- = PuF3+ - log_k 20.110 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.011E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 1.000H+ + 1.000H2(PO4)- = PuH3PO4+4 - log_k 4.540 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.54E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 1.000I- = PuI+2 - log_k 1.100 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 1.000I- = PuI+3 - log_k 1.620 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.62E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 1.000Acetate- = PuO2(Acetate)+ - log_k 2.870 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.87E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 2.000Acetate- = PuO2(Acetate)2 - log_k 4.770 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.77E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 3.000Acetate- = PuO2(Acetate)3- - log_k 6.190 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.19E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 1.000CO3-2 = PuO2(CO3) - log_k 9.500 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 2.000CO3-2 = PuO2(CO3)2-2 - log_k 14.700 #03GUI/FAN - delta_h -27.000 #kJ/mol #03GUI/FAN - # Enthalpy of formation: -2199.496 #kJ/mol - -analytic 9.96981E+0 0E+0 1.41031E+3 0E+0 0E+0 - -1.000PuO2+2 + 3.000CO3-2 = PuO2(CO3)3-4 - log_k 18.000 #03GUI/FAN - delta_h -38.600 #kJ/mol #03GUI/FAN - # Enthalpy of formation: -2886.326 #kJ/mol - -analytic 1.12376E+1 0E+0 2.01622E+3 0E+0 0E+0 - -1.000PuO2+ + 3.000CO3-2 = PuO2(CO3)3-5 - log_k 5.030 - delta_h -19.110 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -2954.927 #kJ/mol - -analytic 1.68208E+0 0E+0 9.98183E+2 0E+0 0E+0 - -2.000UO2+2 + 1.000PuO2+2 + 6.000CO3-2 = PuO2(CO3)6(UO2)2-6 - log_k 53.480 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.348E+1 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+ - 1.000H+ + 1.000H2(PO4)- = PuO2(HPO4)- - log_k -4.860 #NEA Guidelines in 01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.86E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 1.000Nta-3 = PuO2(Nta)- - log_k 11.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.1E+1 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+ + 1.000Nta-3 = PuO2(Nta)-2 - log_k 7.500 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 - 1.000H+ + 1.000H2O = PuO2(OH)+ - log_k -5.500 #01LEM/FUG - delta_h 28.000 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -1079.866 #kJ/mol - -analytic -5.94618E-1 0E+0 -1.46254E+3 0E+0 0E+0 - -1.000PuO2+2 - 2.000H+ + 2.000H2O = PuO2(OH)2 - log_k -13.200 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.32E+1 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 - 1.000H+ + 1.000H4(SiO4) = PuO2(OSi(OH)3)+ - log_k -3.640 #03YUS/FED - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.64E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 1.000Ox-2 = PuO2(Ox) - log_k 7.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 2.000Ox-2 = PuO2(Ox)2-2 - log_k 10.500 #73POR/DEP in 95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.05E+1 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 1.000Phthalat-2 = PuO2(Phthalat) - log_k 5.760 #11GRI/COL3 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.76E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 1.000SO4-2 = PuO2(SO4) - log_k 3.380 #01LEM/FUG - delta_h 16.100 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -1715.276 #kJ/mol - -analytic 6.20059E+0 0E+0 -8.4096E+2 0E+0 0E+0 - -1.000PuO2+ + 1.000SO4-2 = PuO2(SO4)- - log_k 0.440 #Duro et al. (2006), In analogy to NpO2(SO4)- - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.4E-1 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 2.000SO4-2 = PuO2(SO4)2-2 - log_k 4.400 #01LEM/FUG - delta_h 43.000 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -2597.716 #kJ/mol - -analytic 1.19333E+1 0E+0 -2.24604E+3 0E+0 0E+0 - -1.000PuO2+ + 1.000CO3-2 = PuO2CO3- - log_k 5.120 #01LEM/FUG - delta_h 44.874 #kJ/mol - # Enthalpy of formation: -1540.483 #kJ/mol - -analytic 1.29816E+1 0E+0 -2.34393E+3 0E+0 0E+0 - -1.000PuO2+2 + 1.000Cl- = PuO2Cl+ - log_k 0.230 #03GUI/FAN - delta_h 4.187 #kJ/mol - # Enthalpy of formation: -984.929 #kJ/mol - -analytic 9.6353E-1 0E+0 -2.18702E+2 0E+0 0E+0 - -1.000PuO2+2 + 2.000Cl- = PuO2Cl2 - log_k -1.150 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.15E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+ + 1.000F- = PuO2F - log_k 1.200 #In analogy to NpO2)F - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 1.000F- = PuO2F+ - log_k 4.560 #01LEM/FUG - delta_h -3.653 #kJ/mol - # Enthalpy of formation: -1161.039 #kJ/mol - -analytic 3.92002E+0 0E+0 1.90809E+2 0E+0 0E+0 - -1.000PuO2+2 + 2.000F- = PuO2F2 - log_k 7.250 #01LEM/FUG - delta_h 1.208 #kJ/mol - # Enthalpy of formation: -1491.528 #kJ/mol - -analytic 7.46163E+0 0E+0 -6.30981E+1 0E+0 0E+0 - -1.000PuO2+2 + 3.000F- = PuO2F3- - log_k 9.590 #85SAW/CHA - delta_h 2.401 #kJ/mol - # Enthalpy of formation: -1825.685 #kJ/mol - -analytic 1.00106E+1 0E+0 -1.25413E+2 0E+0 0E+0 - -1.000PuO2+2 + 1.000NO3- = PuO2NO3+ - log_k 0.100 #12GRI/GAR1 (LogK selected in analogy to U (NEA recommendation), logK(UO2NO3 +)) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1E-1 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+ - 1.000H+ + 1.000H2O = PuO2OH - log_k -11.300 #01LEM/FUG - delta_h 71.826 #kJ/mol - # Enthalpy of formation: -1124.131 #kJ/mol - -analytic 1.28336E+0 0E+0 -3.75173E+3 0E+0 0E+0 - -1.000Pu+3 + 1.000Ox-2 = PuOx+ - log_k 6.490 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.49E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 - 2.000H+ + 1.000H2(PO4)- = PuPO4 - log_k -7.920 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.92E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ra+2 + 1.000CO3-2 = Ra(CO3) - log_k 2.500 #99SCH - delta_h 4.496 #kJ/mol - # Enthalpy of formation: -1198.76 #kJ/mol - -analytic 3.28766E+0 0E+0 -2.34842E+2 0E+0 0E+0 - -1.000H+ + 1.000Ra+2 + 1.000CO3-2 = Ra(HCO3)+ - log_k 10.920 #02ILE/TWE - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.092E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Ra+2 + 1.000H2O = Ra(OH)+ - log_k -13.490 - delta_h 60.417 #kJ/mol #85LAN/RIE - # Enthalpy of formation: -753.438 #kJ/mol - -analytic -2.90541E+0 0E+0 -3.1558E+3 0E+0 0E+0 - -- 2.000H+ + 1.000Ra+2 + 2.000H2O = Ra(OH)2 - log_k -28.070 - delta_h 112.197 #kJ/mol - # Enthalpy of formation: -987.488 #kJ/mol - -analytic -8.41396E+0 0E+0 -5.86045E+3 0E+0 0E+0 - -1.000Ra+2 + 1.000SO4-2 = Ra(SO4) - log_k 2.760 - delta_h 5.481 #kJ/mol - # Enthalpy of formation: -1431.884 #kJ/mol - -analytic 3.72023E+0 0E+0 -2.86292E+2 0E+0 0E+0 - -1.000Ra+2 + 1.000Cl- = RaCl+ - log_k -0.100 #85LAN/RIE - delta_h 2.479 #kJ/mol - # Enthalpy of formation: -692.626 #kJ/mol - -analytic 3.34302E-1 0E+0 -1.29487E+2 0E+0 0E+0 - -1.000Ra+2 + 2.000Cl- = RaCl2 - log_k -0.100 - delta_h 0.496 #kJ/mol - # Enthalpy of formation: -861.689 #kJ/mol - -analytic -1.31047E-2 0E+0 -2.59078E+1 0E+0 0E+0 - -1.000Ra+2 + 1.000F- = RaF+ - log_k 0.480 #87BRO/WAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.8E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Br- + 1.000Rb+ = RbBr - log_k -1.240 - delta_h 13.836 #kJ/mol - # Enthalpy of formation: -358.694 #kJ/mol #97SVE/SHO - -analytic 1.18396E+0 0E+0 -7.22704E+2 0E+0 0E+0 - -1.000Cl- + 1.000Rb+ = RbCl - log_k -1.010 - delta_h 13.189 #kJ/mol - # Enthalpy of formation: -405.011 #kJ/mol #97SVE/SHO - -analytic 1.30061E+0 0E+0 -6.88908E+2 0E+0 0E+0 - -1.000F- + 1.000Rb+ = RbF - log_k 0.940 - delta_h 1.923 #kJ/mol - # Enthalpy of formation: -584.547 #kJ/mol #97SVE/SHO - -analytic 1.27689E+0 0E+0 -1.00445E+2 0E+0 0E+0 - -1.000I- + 1.000Rb+ = RbI - log_k -0.840 - delta_h 6.987 #kJ/mol - # Enthalpy of formation: -300.913 #kJ/mol #97SVE/SHO - -analytic 3.84068E-1 0E+0 -3.64956E+2 0E+0 0E+0 - -- 1.000H+ + 1.000Rb+ + 1.000H2O = RbOH - log_k -14.260 - delta_h 64.158 #kJ/mol - # Enthalpy of formation: -472.792 #kJ/mol #97SHO/SAS2 - -analytic -3.02002E+0 0E+0 -3.3512E+3 0E+0 0E+0 - -- 1.000H+ + 1.000HS- = S-2 - log_k -17.100 #04CHI - delta_h 73.278 #kJ/mol - # Enthalpy of formation: 56.978 #kJ/mol - -analytic -4.26226E+0 0E+0 -3.82757E+3 0E+0 0E+0 - -2.000HS- - 1.000H2O + 0.500O2 = S2-2 - log_k 32.450 - delta_h -212.123 #kJ/mol - # Enthalpy of formation: 35.04 #kJ/mol #04CHI - -analytic -4.7123E+0 0E+0 1.10799E+4 0E+0 0E+0 - -2.000H+ + 2.000SO3-2 - 1.000H2O = S2O5-2 - log_k 12.850 #85GOL/PAR - delta_h 2.606 #kJ/mol - # Enthalpy of formation: -973.684 #kJ/mol - -analytic 1.33066E+1 0E+0 -1.36121E+2 0E+0 0E+0 - -2.000SO4-2 - 1.000H2O + 2.000H+ + 0.500O2 = S2O8-2 - log_k -22.390 - delta_h 194.217 #kJ/mol - # Enthalpy of formation: -1344.7 #kJ/mol #82WAG/EVA - -analytic 1.16353E+1 0E+0 -1.01446E+4 0E+0 0E+0 - -1.000H+ + 3.000HS- - 2.000H2O + 1.000O2 = S3-2 - log_k 79.470 - delta_h -484.686 #kJ/mol - # Enthalpy of formation: 25.94 #kJ/mol #74NAU/RYZ - -analytic -5.44322E+0 0E+0 2.53169E+4 0E+0 0E+0 - -4.000H+ + 3.000SO3-2 - 2.000H2O - 0.500O2 = S3O6-2 - log_k -6.170 - delta_h 148.117 #kJ/mol - # Enthalpy of formation: -1167.336 #kJ/mol #04CHI - -analytic 1.97789E+1 0E+0 -7.73668E+3 0E+0 0E+0 - -2.000H+ + 4.000HS- - 3.000H2O + 1.500O2 = S4-2 - log_k 125.390 - delta_h -751.079 #kJ/mol - # Enthalpy of formation: 23.01 #kJ/mol #74NAU/RYZ - -analytic -6.1932E+0 0E+0 3.92315E+4 0E+0 0E+0 - -6.000H+ + 4.000SO3-2 - 3.000H2O - 1.500O2 = S4O6-2 - log_k -38.170 - delta_h 424.311 #kJ/mol - # Enthalpy of formation: -1224.238 #kJ/mol #04CHI - -analytic 3.6166E+1 0E+0 -2.21633E+4 0E+0 0E+0 - -3.000H+ + 5.000HS- - 4.000H2O + 2.000O2 = S5-2 - log_k 171.090 - delta_h -1016.212 #kJ/mol - # Enthalpy of formation: 21.34 #kJ/mol #74NAU/RYZ - -analytic -6.94244E+0 0E+0 5.30804E+4 0E+0 0E+0 - -8.000H+ + 5.000SO3-2 - 4.000H2O - 2.500O2 = S5O6-2 - log_k -99.570 - delta_h 805.941 #kJ/mol - # Enthalpy of formation: -1175.704 #kJ/mol #04CHI - -analytic 4.16246E+1 0E+0 -4.20972E+4 0E+0 0E+0 - -2.000H+ + 1.000SO3-2 - 1.000H2O = SO2 - log_k 9.030 - delta_h 21.450 #kJ/mol - # Enthalpy of formation: -323.78 #kJ/mol #85GOL/PAR - -analytic 1.27879E+1 0E+0 -1.12041E+3 0E+0 0E+0 - -2.000H+ + 1.000Sb(OH)3 - 2.000H2O = Sb(OH)+2 - log_k 0.740 #99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.4E-1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Sb(OH)3 - 1.000H2O = Sb(OH)2+ - log_k 1.330 #77ANT/NEV and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.33E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Sb(OH)5 - 1.000H2O = Sb(OH)4+ - log_k -3.260 #57PIT/POU in 99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.26E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Sb(OH)3 + 1.000H2O = Sb(OH)4- - log_k -11.820 #52GAY/GAR recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.182E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Sb(OH)5 + 1.000H2O = Sb(OH)6- - log_k -2.720 #63LEF/MAR in 76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.72E+0 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 1.000Sb(OH)3 - 3.000H2O = Sb+3 - log_k -0.730 #99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.3E-1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 12.000Sb(OH)5 + 4.000H2O = Sb12(OH)64-4 - log_k 20.340 #63LEF/MAR in 76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.034E+1 0E+0 0E+0 0E+0 0E+0 - -- 5.000H+ + 12.000Sb(OH)5 + 5.000H2O = Sb12(OH)65-5 - log_k 16.720 #63LEF/MAR in 76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.672E+1 0E+0 0E+0 0E+0 0E+0 - -- 6.000H+ + 12.000Sb(OH)5 + 6.000H2O = Sb12(OH)66-6 - log_k 11.890 #63LEF/MAR in 76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.189E+1 0E+0 0E+0 0E+0 0E+0 - -- 7.000H+ + 12.000Sb(OH)5 + 7.000H2O = Sb12(OH)67-7 - log_k 6.070 #63LEF/MAR in 76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.07E+0 0E+0 0E+0 0E+0 0E+0 - -4.000H+ + 4.000HS- + 2.000Sb(OH)3 - 6.000H2O = Sb2H2S4 - log_k 57.810 #88KRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.781E+1 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 4.000HS- + 2.000Sb(OH)3 - 6.000H2O = Sb2HS4- - log_k 52.900 #88KRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.29E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 4.000HS- + 2.000Sb(OH)3 - 6.000H2O = Sb2S4-2 - log_k 43.380 #88KRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.338E+1 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 1.000Cl- + 1.000Sb(OH)3 - 3.000H2O = SbCl+2 - log_k 2.800 #70BON/WAU and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.8E+0 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 2.000Cl- + 1.000Sb(OH)3 - 3.000H2O = SbCl2+ - log_k 3.270 #70BON/WAU and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.27E+0 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 1.000F- + 1.000Sb(OH)3 - 3.000H2O = SbF+2 - log_k 6.370 #70BON recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.37E+0 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 2.000F- + 1.000Sb(OH)3 - 3.000H2O = SbF2+ - log_k 12.420 #70BON recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.242E+1 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 3.000F- + 1.000Sb(OH)3 - 3.000H2O = SbF3 - log_k 18.200 #70BON recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.82E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000HSe- = Se-2 - log_k -14.910 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.491E+1 0E+0 0E+0 0E+0 0E+0 - -2.000HSe- - 1.000H2O + 0.500O2 = Se2-2 - log_k 38.490 #05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.849E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 3.000HSe- - 2.000H2O + 1.000O2 = Se3-2 - log_k 91.220 #05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.122E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 4.000HSe- - 3.000H2O + 1.500O2 = Se4-2 - log_k 142.350 #05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.4235E+2 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Cn- + 1.000HSe- - 1.000H2O + 0.500O2 = SeCn- - log_k 56.020 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.602E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 2.000H4(SiO4) - 1.000H2O = Si2O2(OH)5- - log_k -8.500 #01FEL/CHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -8.5E+0 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 2.000H4(SiO4) - 1.000H2O = Si2O3(OH)4-2 - log_k -19.400 #01FEL/CHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.94E+1 0E+0 0E+0 0E+0 0E+0 - -- 3.000H+ + 3.000H4(SiO4) - 2.000H2O = Si3O5(OH)5-3 - log_k -29.400 #01FEL/CHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.94E+1 0E+0 0E+0 0E+0 0E+0 - -- 3.000H+ + 3.000H4(SiO4) - 3.000H2O = Si3O6(OH)3-3 - log_k -29.300 #01FEL/CHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.93E+1 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 4.000H4(SiO4) - 4.000H2O = Si4O6(OH)6-2 - log_k -15.600 #01FEL/CHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.56E+1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 4.000H4(SiO4) - 3.000H2O = Si4O7(OH)6-4 - log_k -39.100 #01FEL/CHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.91E+1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 4.000H4(SiO4) - 4.000H2O = Si4O8(OH)4-4 - log_k -39.200 #01FEL/CHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.92E+1 0E+0 0E+0 0E+0 0E+0 - -- 6.000H+ + 6.000H4(SiO4) - 9.000H2O = Si6O15-6 - log_k -61.800 #01FEL/CHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.18E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 + 1.000CO3-2 = Sm(CO3)+ - log_k 7.800 #95SPA/BRU - delta_h 163.392 #kJ/mol - # Enthalpy of formation: -1203.037 #kJ/mol - -analytic 3.6425E+1 0E+0 -8.53455E+3 0E+0 0E+0 - -1.000Sm+3 + 2.000CO3-2 = Sm(CO3)2- - log_k 12.800 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.28E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 + 3.000CO3-2 = Sm(CO3)3-3 - log_k 14.800 #05VER/VIT2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.48E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 + 1.000H2(PO4)- = Sm(H2PO4)+2 - log_k 2.350 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.35E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 + 1.000H+ + 1.000CO3-2 = Sm(HCO3)+2 - log_k 12.430 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.243E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 - 1.000H+ + 1.000H2(PO4)- = Sm(HPO4)+ - log_k -1.610 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.61E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 - 2.000H+ + 2.000H2(PO4)- = Sm(HPO4)2- - log_k -5.020 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.02E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 + 1.000NO3- = Sm(NO3)+2 - log_k 0.900 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 - 1.000H+ + 1.000H2O = Sm(OH)+2 - log_k -7.900 #95SPA/BRU - delta_h 81.304 #kJ/mol - # Enthalpy of formation: -895.725 #kJ/mol - -analytic 6.34383E+0 0E+0 -4.2468E+3 0E+0 0E+0 - -1.000Sm+3 - 2.000H+ + 2.000H2O = Sm(OH)2+ - log_k -15.700 #07NEC/ALT2 - delta_h 145.698 #kJ/mol - # Enthalpy of formation: -1117.161 #kJ/mol - -analytic 9.82516E+0 0E+0 -7.61033E+3 0E+0 0E+0 - -1.000Sm+3 - 3.000H+ + 3.000H2O = Sm(OH)3 - log_k -26.200 #07NEC/ALT2 - delta_h 228.395 #kJ/mol - # Enthalpy of formation: -1320.294 #kJ/mol - -analytic 1.3813E+1 0E+0 -1.19299E+4 0E+0 0E+0 - -1.000Sm+3 - 4.000H+ + 4.000H2O = Sm(OH)4- - log_k -40.700 #07NEC/ALT2 - delta_h 298.594 #kJ/mol - # Enthalpy of formation: -1535.925 #kJ/mol - -analytic 1.16113E+1 0E+0 -1.55966E+4 0E+0 0E+0 - -1.000Sm+3 - 2.000H+ + 1.000H2(PO4)- = Sm(PO4) - log_k -7.460 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.46E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 - 4.000H+ + 2.000H2(PO4)- = Sm(PO4)2-3 - log_k -18.720 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.872E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 + 1.000SO4-2 = Sm(SO4)+ - log_k 3.500 #95SPA/BRU - delta_h 16.575 #kJ/mol - # Enthalpy of formation: -1583.964 #kJ/mol - -analytic 6.40381E+0 0E+0 -8.65771E+2 0E+0 0E+0 - -1.000Sm+3 + 2.000SO4-2 = Sm(SO4)2- - log_k 5.200 #95SPA/BRU - delta_h 24.910 #kJ/mol - # Enthalpy of formation: -2484.969 #kJ/mol - -analytic 9.56404E+0 0E+0 -1.30114E+3 0E+0 0E+0 - -1.000Sm+3 + 1.000Br- = SmBr+2 - log_k 0.230 #96FAL/REA - delta_h 17.023 #kJ/mol - # Enthalpy of formation: -795.586 #kJ/mol - -analytic 3.2123E+0 0E+0 -8.89172E+2 0E+0 0E+0 - -1.000Sm+3 + 1.000Cl- = SmCl+2 - log_k 0.720 #Original data 01LUO/BYR and 07LUO/BYR - delta_h 22.277 #kJ/mol - # Enthalpy of formation: -836.002 #kJ/mol - -analytic 4.62276E+0 0E+0 -1.16361E+3 0E+0 0E+0 - -1.000Sm+3 + 1.000F- = SmF+2 - log_k 4.210 #07LUO/BYR - delta_h 24.180 #kJ/mol - # Enthalpy of formation: -1002.369 #kJ/mol - -analytic 8.44615E+0 0E+0 -1.26301E+3 0E+0 0E+0 - -1.000Sm+3 + 2.000F- = SmF2+ - log_k 6.430 #Original data 99SCH/BYR and 04LUO/BYR - delta_h 18.850 #kJ/mol - # Enthalpy of formation: -1343.049 #kJ/mol - -analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0 - -1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 - log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000Cit-3 = Sn(Cit)- - log_k 8.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 2.000Cit-3 = Sn(Cit)2-4 - log_k 11.900 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.19E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000Edta-4 = Sn(Edta)-2 - log_k 24.600 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.46E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 2.000H+ + 1.000Edta-4 = Sn(H2Edta) - log_k 24.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.43E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000H+ + 1.000Edta-4 = Sn(HEdta)- - log_k 23.400 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.34E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000Nta-3 = Sn(Nta)- - log_k 13.400 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.34E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 - 1.000H+ + 1.000H2O = Sn(OH)+ - log_k -3.530 #12GAM/GAJ - delta_h 18.612 #kJ/mol - # Enthalpy of formation: -276.835 #kJ/mol - -analytic -2.69322E-1 0E+0 -9.72171E+2 0E+0 0E+0 - -1.000Sn+2 - 2.000H+ + 2.000H2O = Sn(OH)2 - log_k -7.680 #12GAM/GAJ - delta_h 40.762 #kJ/mol - # Enthalpy of formation: -540.515 #kJ/mol - -analytic -5.38815E-1 0E+0 -2.12914E+3 0E+0 0E+0 - -1.000Sn+2 - 3.000H+ + 3.000H2O = Sn(OH)3- - log_k -61.190 #13COL/GRI - delta_h 344.633 #kJ/mol - # Enthalpy of formation: -522.474 #kJ/mol - -analytic -8.12979E-1 0E+0 -1.80014E+4 0E+0 0E+0 - -1.000Sn+4 - 4.000H+ + 4.000H2O = Sn(OH)4 - log_k 7.540 - delta_h -49.215 #kJ/mol - # Enthalpy of formation: -1224.035 #kJ/mol - -analytic -1.08209E+0 0E+0 2.57067E+3 0E+0 0E+0 - -1.000Sn+4 - 5.000H+ + 5.000H2O = Sn(OH)5- - log_k -1.060 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.06E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+4 - 6.000H+ + 6.000H2O = Sn(OH)6-2 - log_k -11.130 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.113E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 - 1.000H+ + 1.000Cl- + 1.000H2O = Sn(OH)Cl - log_k -3.100 #52VAN/RHO recalculated in 02HUM/BER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000Ox-2 = Sn(Ox) - log_k 6.500 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 2.000Ox-2 = Sn(Ox)2-2 - log_k 12.900 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.29E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 3.000Ox-2 = Sn(Ox)3-4 - log_k 17.100 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.71E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000SO4-2 = Sn(SO4) - log_k 3.430 #12GAM/GAJ - delta_h 16.900 #kJ/mol #Suggested but not selected in 12GAM/GAJ - # Enthalpy of formation: -902.057 #kJ/mol - -analytic 6.39075E+0 0E+0 -8.82747E+2 0E+0 0E+0 - -3.000Sn+2 - 4.000H+ + 4.000H2O = Sn3(OH)4+2 - log_k -5.600 #12GAM/GAJ - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000Br- = SnBr+ - log_k 1.330 #12GAM/GAJ - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.33E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 2.000Br- = SnBr2 - log_k 1.970 #12GAM/GAJ - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.97E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 3.000Br- = SnBr3- - log_k 1.930 #12GAM/GAJ - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.93E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000Cl- = SnCl+ - log_k 1.520 #12GAM/GAJ - delta_h 12.700 #kJ/mol #12GAM/GAJ - # Enthalpy of formation: -163.997 #kJ/mol - -analytic 3.74494E+0 0E+0 -6.63366E+2 0E+0 0E+0 - -1.000Sn+2 + 2.000Cl- = SnCl2 - log_k 2.170 #12GAM/GAJ - delta_h 19.700 #kJ/mol #12GAM/GAJ - # Enthalpy of formation: -324.077 #kJ/mol - -analytic 5.62129E+0 0E+0 -1.029E+3 0E+0 0E+0 - -1.000Sn+2 + 3.000Cl- = SnCl3- - log_k 2.130 #12GAM/GAJ - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.13E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 4.000Cl- = SnCl4-2 - log_k 2.030 #12GAM/GAJ - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.03E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000F- = SnF+ - log_k 5.250 #12GAM/GAJ - delta_h -9.579 #kJ/mol - # Enthalpy of formation: -354.546 #kJ/mol - -analytic 3.57183E+0 0E+0 5.00345E+2 0E+0 0E+0 - -1.000Sn+2 + 2.000F- = SnF2 - log_k 8.890 #12GAM/GAJ - delta_h -9.968 #kJ/mol - # Enthalpy of formation: -690.285 #kJ/mol - -analytic 7.14368E+0 0E+0 5.20664E+2 0E+0 0E+0 - -1.000Sn+2 + 3.000F- = SnF3- - log_k 11.500 #12GAM/GAJ - delta_h -4.478 #kJ/mol - # Enthalpy of formation: -1020.145 #kJ/mol - -analytic 1.07155E+1 0E+0 2.33902E+2 0E+0 0E+0 - -1.000Sn+2 - 1.000H+ + 1.000H2(PO4)- = SnHPO4 - log_k 2.290 #00CIA/IUL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.29E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000I- = SnI+ - log_k 1.740 #68HAI/JOH1 recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.74E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 2.000I- = SnI2 - log_k 2.690 #68HAI/JOH1 recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.69E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 - 2.000H+ + 1.000H2(PO4)- = SnPO4- - log_k -1.560 #00CIA/IUL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.56E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000CO3-2 = Sr(CO3) - log_k 2.810 #84BUS/PLU - delta_h 21.824 #kJ/mol - # Enthalpy of formation: -1204.306 #kJ/mol - -analytic 6.6334E+0 0E+0 -1.13995E+3 0E+0 0E+0 - -1.000Sr+2 + 1.000Cit-3 = Sr(Cit)- - log_k 4.240 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.24E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 - 1.000H+ + 2.000Cit-3 + 1.000H2O = Sr(Cit)2(OH)-5 - log_k -1.780 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.78E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 2.000Cit-3 = Sr(Cit)2-4 - log_k 4.840 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.84E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000Cn- = Sr(Cn)+ - log_k 0.710 #estimation NEA87 08/02/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.1E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 2.000Cn- = Sr(Cn)2 - log_k 0.200 #estimation NEA87 08/02/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000Edta-4 = Sr(Edta)-2 - log_k 10.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.03E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 2.000H+ + 1.000Cit-3 = Sr(H2Cit)+ - log_k 12.460 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.246E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000H2(PO4)- = Sr(H2PO4)+ - log_k 0.830 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.3E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000H+ + 1.000CO3-2 = Sr(HCO3)+ - log_k 11.510 #84BUS/PLUS - delta_h 10.598 #kJ/mol - # Enthalpy of formation: -1215.533 #kJ/mol - -analytic 1.33667E+1 0E+0 -5.53571E+2 0E+0 0E+0 - -1.000Sr+2 + 1.000H+ + 1.000Cit-3 = Sr(HCit) - log_k 9.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000H+ + 1.000Edta-4 = Sr(HEdta)- - log_k 14.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.47E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000H+ + 1.000Ox-2 = Sr(HOx)+ - log_k 5.800 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 2.000H+ + 2.000Ox-2 = Sr(HOx)2 - log_k 10.800 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.08E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 - 1.000H+ + 1.000H2(PO4)- = Sr(HPO4) - log_k -4.700 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000IO3- = Sr(IO3)+ - log_k 0.330 #estimation NEA87 01/02/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.3E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 2.000IO3- = Sr(IO3)2 - log_k -0.550 #estimation NEA87 01/02/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.5E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000NH3 = Sr(NH3)+2 - log_k -0.550 #estimation NEA87 08/02/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.5E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000NO3- = Sr(NO3)+ - log_k 0.600 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 2.000NO3- = Sr(NO3)2 - log_k 0.310 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.1E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000Nta-3 = Sr(Nta)- - log_k 6.250 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.25E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 - 1.000H+ + 1.000H2O = Sr(OH)+ - log_k -13.290 #76BAE/MES - delta_h 82.609 #kJ/mol - # Enthalpy of formation: -754.12 #kJ/mol - -analytic 1.18245E+0 0E+0 -4.31496E+3 0E+0 0E+0 - -1.000Sr+2 + 1.000Ox-2 = Sr(Ox) - log_k 2.540 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.54E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 2.000Ox-2 = Sr(Ox)2-2 - log_k 3.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 - 2.000H+ + 1.000H2(PO4)- = Sr(PO4)- - log_k -13.560 #96BOU1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.356E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000Pyrophos-4 = Sr(Pyrophos)-2 - log_k 5.400 #76SMI/MAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000S2O3-2 = Sr(S2O3) - log_k 2.040 #76SMI/MAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.04E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000SO4-2 = Sr(SO4) - log_k 2.300 #06BLA/IGN - delta_h 7.029 #kJ/mol #06BLA/IGN - # Enthalpy of formation: -1453.211 #kJ/mol - -analytic 3.53143E+0 0E+0 -3.6715E+2 0E+0 0E+0 - -2.000Sr+2 - 1.000H+ + 1.000Cit-3 + 1.000H2O = Sr2(Cit)(OH) - log_k 0.380 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.8E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000B(OH)4- = SrB(OH)4+ - log_k 1.550 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.55E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000Cl- = SrCl+ - log_k 0.230 #96BOU1 - delta_h 4.924 #kJ/mol - # Enthalpy of formation: -713.054 #kJ/mol - -analytic 1.09265E+0 0E+0 -2.57198E+2 0E+0 0E+0 - -1.000Sr+2 + 1.000F- = SrF+ - log_k 0.300 - delta_h 16.740 #kJ/mol - # Enthalpy of formation: -869.51 #kJ/mol - -analytic 3.23272E+0 0E+0 -8.7439E+2 0E+0 0E+0 - -1.000Sr+2 + 2.000F- = SrF2 - log_k 2.020 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.02E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000I- = SrI+ - log_k 0.140 #estimation NEA87 01/02/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.4E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 2.000I- = SrI2 - log_k -0.040 #estimation NEA87 01/02/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4E-2 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 2.000H+ + 1.000CO3-2 - 1.000H2O = Tc(OH)2CO3 - log_k 19.260 #99RAR/RAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.926E+1 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 1.000H+ + 1.000CO3-2 = Tc(OH)3CO3- - log_k 10.960 #99RAR/RAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.096E+1 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 1.000H+ - 1.000H2O + 1.000Acetate- = TcO(OH)(Acetate) - log_k 5.550 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.55E+0 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 1.000H+ + 1.000Edta-4 - 1.000H2O = TcO(OH)(Edta)-3 - log_k 19.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.9E+1 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 1.000H+ + 1.000Nta-3 - 1.000H2O = TcO(OH)(Nta)-2 - log_k 13.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.33E+1 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 1.000H+ + 2.000Nta-3 - 1.000H2O = TcO(OH)(Nta)2-5 - log_k 11.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.17E+1 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 1.000H+ - 1.000H2O = TcO(OH)+ - log_k 2.790 - delta_h 4.020 #kJ/mol #97NGU/LAN - # Enthalpy of formation: -459.47 #kJ/mol - -analytic 3.49427E+0 0E+0 -2.09979E+2 0E+0 0E+0 - -1.000TcO(OH)2 + 2.000H+ + 1.000Ox-2 - 2.000H2O = TcO(Ox) - log_k 9.800 #06XIA/HES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 2.000H+ + 2.000Ox-2 - 2.000H2O = TcO(Ox)2-2 - log_k 13.660 #06XIA/HES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.366E+1 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 2.000H+ - 2.000H2O = TcO+2 - log_k 2.580 #97NGU/LAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.58E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000Acetate- = Th(Acetate)+3 - log_k 5.240 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.24E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000Acetate- = Th(Acetate)2+2 - log_k 9.440 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.44E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 3.000Acetate- = Th(Acetate)3+ - log_k 12.560 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.256E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 4.000Acetate- = Th(Acetate)4 - log_k 14.380 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.438E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 5.000Acetate- = Th(Acetate)5- - log_k 15.370 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.537E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 5.000CO3-2 = Th(CO3)5-6 - log_k 31.000 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.1E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000Cit-3 = Th(Cit)+ - log_k 16.800 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.68E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000Cit-3 = Th(Cit)2-2 - log_k 25.800 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.58E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000Edta-4 = Th(Edta) - log_k 26.950 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.695E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000H2(PO4)- = Th(H2PO4)+3 - log_k 5.590 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.59E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000H2(PO4)- = Th(H2PO4)2+2 - log_k 10.480 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.048E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000H+ + 2.000H2(PO4)- = Th(H3PO4)(H2PO4)+3 - log_k 9.700 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000H+ + 1.000H2(PO4)- = Th(H3PO4)+4 - log_k 4.030 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.03E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000H+ + 1.000Edta-4 = Th(HEdta)+ - log_k 28.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.87E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000H+ + 1.000Ox-2 = Th(HOx)+3 - log_k 11.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.1E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000H+ + 2.000Ox-2 = Th(HOx)2+2 - log_k 18.130 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.813E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 4.000H+ + 4.000Ox-2 = Th(HOx)4 - log_k 24.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.43E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000Malonate-2 = Th(Malonate)+2 - log_k 9.320 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.32E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000Malonate-2 = Th(Malonate)2 - log_k 16.070 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.607E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 3.000Malonate-2 = Th(Malonate)3-2 - log_k 19.630 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.963E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000NO3- = Th(NO3)+3 - log_k 1.300 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000NO3- = Th(NO3)2+2 - log_k 2.300 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000Nta-3 = Th(Nta)+ - log_k 17.150 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.715E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 1.000H+ + 4.000CO3-2 + 1.000H2O = Th(OH)(CO3)4-5 - log_k 21.600 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.16E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 1.000H+ + 1.000Edta-4 + 1.000H2O = Th(OH)(Edta)- - log_k 19.500 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.95E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 1.000H+ + 1.000Nta-3 + 1.000H2O = Th(OH)(Nta) - log_k 25.200 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.52E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 1.000H+ + 1.000H2O = Th(OH)+3 - log_k -2.500 #09RAN/FUG - delta_h 44.200 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -1010.33 #kJ/mol - -analytic 5.2435E+0 0E+0 -2.30872E+3 0E+0 0E+0 - -1.000Th+4 - 2.000H+ + 1.000CO3-2 + 2.000H2O = Th(OH)2(CO3) - log_k 2.500 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 2.000H+ + 2.000CO3-2 + 2.000H2O = Th(OH)2(CO3)2-2 - log_k 8.800 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 2.000H+ + 1.000Nta-3 + 2.000H2O = Th(OH)2(Nta)- - log_k 35.200 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.52E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 2.000H+ + 2.000H2O = Th(OH)2+2 - log_k -6.200 #09RAN/FUG - delta_h 85.700 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -1254.66 #kJ/mol - -analytic 8.81397E+0 0E+0 -4.47642E+3 0E+0 0E+0 - -1.000Th+4 - 3.000H+ + 1.000CO3-2 + 3.000H2O = Th(OH)3(CO3)- - log_k -3.700 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 3.000H+ + 1.000HGlu- + 3.000H2O = Th(OH)3(HGlu) - log_k -6.700 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 3.000H+ + 1.000HIsa- + 3.000H2O = Th(OH)3(HIsa) - log_k -5.650 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.65E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 3.000H+ + 2.000HIsa- + 3.000H2O = Th(OH)3(HIsa)2- - log_k -4.900 #09RAI/YUI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 3.000H+ + 3.000H2O = Th(OH)3+ - log_k -11.000 #10GRI/RIB - delta_h 125.623 #kJ/mol - # Enthalpy of formation: -1500.554 #kJ/mol - -analytic 1.10082E+1 0E+0 -6.56174E+3 0E+0 0E+0 - -1.000Th+4 - 4.000H+ + 4.000H2O = Th(OH)4 - log_k -17.400 #09RAN/FUG - delta_h 152.688 #kJ/mol - # Enthalpy of formation: -1759.319 #kJ/mol - -analytic 9.34975E+0 0E+0 -7.97544E+3 0E+0 0E+0 - -1.000Th+4 - 4.000H+ + 1.000CO3-2 + 4.000H2O = Th(OH)4(CO3)-2 - log_k -15.600 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.56E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 4.000H+ + 1.000HGlu- + 4.000H2O = Th(OH)4(HGlu)- - log_k -11.800 #13COL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.18E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000HGlu- + 4.000H2O - 4.000H+ = Th(OH)4(HGlu)2-2 - log_k -9.900 #13COL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -9.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 4.000H+ + 1.000HIsa- + 4.000H2O = Th(OH)4(HIsa)- - log_k -13.200 #13COL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.32E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 4.000H+ + 2.000HIsa- + 4.000H2O = Th(OH)4(HIsa)2-2 - log_k -10.400 #13COL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.04E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000Ox-2 = Th(Ox)+2 - log_k 9.700 #08SAS/TAK; 09KOB/SAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000Ox-2 = Th(Ox)2 - log_k 16.000 #08SAS/TAK; 09KOB/SAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.6E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 3.000Ox-2 = Th(Ox)3-2 - log_k 22.200 #08SAS/TAK; 09KOB/SAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.22E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000SO4-2 = Th(SO4)+2 - log_k 6.170 #09RAN/FUG - delta_h 20.920 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -1657.12 #kJ/mol - -analytic 9.83502E+0 0E+0 -1.09273E+3 0E+0 0E+0 - -1.000Th+4 + 2.000SO4-2 = Th(SO4)2 - log_k 9.690 #09RAN/FUG - delta_h 40.380 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -2547 #kJ/mol - -analytic 1.67643E+1 0E+0 -2.10919E+3 0E+0 0E+0 - -1.000Th+4 + 3.000SO4-2 = Th(SO4)3-2 - log_k 10.750 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.075E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000Succinat-2 = Th(Succinat)+2 - log_k 8.490 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.49E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000Succinat-2 = Th(Succinat)2 - log_k 12.920 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.292E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 3.000Succinat-2 = Th(Succinat)3-2 - log_k 16.620 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.662E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Th+4 - 2.000H+ + 2.000H2O = Th2(OH)2+6 - log_k -5.900 #09RAN/FUG - delta_h 58.300 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -2050.76 #kJ/mol - -analytic 4.31371E+0 0E+0 -3.04522E+3 0E+0 0E+0 - -2.000Th+4 - 3.000H+ + 3.000H2O = Th2(OH)3+5 - log_k -6.800 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.8E+0 0E+0 0E+0 0E+0 0E+0 - -2.000Th+4 - 1.000H+ + 1.000Ox-2 + 1.000H2O = Th2(Ox)(OH)+5 - log_k 26.240 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.624E+1 0E+0 0E+0 0E+0 0E+0 - -4.000Th+4 - 12.000H+ + 12.000H2O = Th4(OH)12+4 - log_k -26.600 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.66E+1 0E+0 0E+0 0E+0 0E+0 - -4.000Th+4 - 8.000H+ + 8.000H2O = Th4(OH)8+8 - log_k -20.400 #09RAN/FUG - delta_h 243.000 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -5118.44 #kJ/mol - -analytic 2.21717E+1 0E+0 -1.26928E+4 0E+0 0E+0 - -6.000Th+4 - 14.000H+ + 14.000H2O = Th6(OH)14+10 - log_k -36.800 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.68E+1 0E+0 0E+0 0E+0 0E+0 - -6.000Th+4 - 15.000H+ + 15.000H2O = Th6(OH)15+9 - log_k -36.800 #09RAN/FUG - delta_h 472.800 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -8426.85 #kJ/mol - -analytic 4.60309E+1 0E+0 -2.4696E+4 0E+0 0E+0 - -1.000Th+4 + 1.000Cl- = ThCl+3 - log_k 1.700 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000F- = ThF+3 - log_k 8.870 #09RAN/FUG - delta_h -0.400 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -1104.45 #kJ/mol - -analytic 8.79992E+0 0E+0 2.08934E+1 0E+0 0E+0 - -1.000Th+4 + 2.000F- = ThF2+2 - log_k 15.630 #09RAN/FUG - delta_h -3.300 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -1442.7 #kJ/mol - -analytic 1.50519E+1 0E+0 1.72371E+2 0E+0 0E+0 - -1.000Th+4 + 3.000F- = ThF3+ - log_k 20.670 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.067E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 4.000F- = ThF4 - log_k 25.580 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.558E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 1.000Acetate- = U(Acetate)+3 - log_k 5.640 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.64E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 2.000Acetate- = U(Acetate)2+2 - log_k 9.810 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.81E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 4.000CO3-2 = U(CO3)4-4 - log_k 35.120 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.512E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 5.000CO3-2 = U(CO3)5-6 - log_k 34.000 #03GUI/FAN - delta_h -20.000 #kJ/mol #03GUI/FAN - # Enthalpy of formation: -3987.35 #kJ/mol - -analytic 3.04962E+1 0E+0 1.04467E+3 0E+0 0E+0 - -1.000U+4 + 1.000Edta-4 = U(Edta) - log_k 29.500 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.95E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 1.000NO3- = U(NO3)+3 - log_k 1.470 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.47E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 2.000NO3- = U(NO3)2+2 - log_k 2.300 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 1.000Nta-3 = U(Nta)+ - log_k 20.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 - 1.000H+ + 1.000Edta-4 + 1.000H2O = U(OH)(Edta)- - log_k 24.600 #63ERM/KRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.46E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 - 1.000H+ + 1.000H2O = U(OH)+3 - log_k -0.540 #92GRE/FUG - delta_h 46.910 #kJ/mol - # Enthalpy of formation: -830.12 #kJ/mol - -analytic 7.67827E+0 0E+0 -2.45028E+3 0E+0 0E+0 - -1.000U+4 - 2.000H+ + 1.000Edta-4 + 2.000H2O = U(OH)2(Edta)-2 - log_k 16.500 #63ERM/KRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.65E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 - 2.000H+ + 2.000H2O = U(OH)2+2 - log_k -1.100 #01NEC/KIM - delta_h 59.974 #kJ/mol - # Enthalpy of formation: -1102.886 #kJ/mol - -analytic 9.40698E+0 0E+0 -3.13266E+3 0E+0 0E+0 - -1.000U+4 - 3.000H+ + 1.000HGlu- + 3.000H2O = U(OH)3(HGlu) - log_k 0.290 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.9E-1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 - 3.000H+ + 1.000HIsa- + 3.000H2O = U(OH)3(HIsa) - log_k 0.290 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.9E-1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 - 3.000H+ + 2.000HIsa- + 3.000H2O = U(OH)3(HIsa)2- - log_k 2.400 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 - 3.000H+ + 3.000H2O = U(OH)3+ - log_k -4.700 #01NEC/KIM - delta_h 82.944 #kJ/mol - # Enthalpy of formation: -1365.746 #kJ/mol - -analytic 9.83114E+0 0E+0 -4.33246E+3 0E+0 0E+0 - -1.000U+4 - 4.000H+ + 4.000H2O = U(OH)4 - log_k -10.000 #03GUI/FAN - delta_h 109.881 #kJ/mol - # Enthalpy of formation: -1624.639 #kJ/mol - -analytic 9.2503E+0 0E+0 -5.73948E+3 0E+0 0E+0 - -1.000U+4 - 4.000H+ + 1.000HGlu- + 4.000H2O = U(OH)4(HGlu)- - log_k -5.940 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.94E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 - 4.000H+ + 1.000HIsa- + 4.000H2O = U(OH)4(HIsa)- - log_k -6.700 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 - 4.000H+ + 2.000HIsa- + 4.000H2O = U(OH)4(HIsa)2-2 - log_k -5.100 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 2.000Ox-2 = U(Ox)2 - log_k 18.630 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.863E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 3.000Ox-2 = U(Ox)3-2 - log_k 24.190 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.419E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 1.000SO4-2 = U(SO4)+2 - log_k 6.580 #92GRE/FUG - delta_h 8.000 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1492.54 #kJ/mol - -analytic 7.98154E+0 0E+0 -4.17868E+2 0E+0 0E+0 - -1.000U+4 + 2.000SO4-2 = U(SO4)2 - log_k 10.510 #92GRE/FUG - delta_h 32.700 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -2377.18 #kJ/mol - -analytic 1.62388E+1 0E+0 -1.70804E+3 0E+0 0E+0 - -1.000U+4 + 1.000Br- = UBr+3 - log_k 1.460 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.46E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 1.000Cl- = UCl+3 - log_k 1.720 #92GRE/FUG - delta_h -19.000 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -777.28 #kJ/mol - -analytic -1.60865E+0 0E+0 9.92438E+2 0E+0 0E+0 - -1.000U+4 + 1.000F- = UF+3 - log_k 9.420 #03GUI/FAN - delta_h -5.600 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -932.15 #kJ/mol - -analytic 8.43892E+0 0E+0 2.92508E+2 0E+0 0E+0 - -1.000U+4 + 2.000F- = UF2+2 - log_k 16.560 #03GUI/FAN - delta_h -3.500 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1265.4 #kJ/mol - -analytic 1.59468E+1 0E+0 1.82817E+2 0E+0 0E+0 - -1.000U+4 + 3.000F- = UF3+ - log_k 21.890 #03GUI/FAN - delta_h 0.500 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1596.75 #kJ/mol - -analytic 2.19776E+1 0E+0 -2.61168E+1 0E+0 0E+0 - -1.000U+4 + 4.000F- = UF4 - log_k 26.340 #03GUI/FAN - delta_h -8.429 #kJ/mol - # Enthalpy of formation: -1941.029 #kJ/mol - -analytic 2.48633E+1 0E+0 4.40277E+2 0E+0 0E+0 - -1.000U+4 + 5.000F- = UF5- - log_k 27.730 #03GUI/FAN - delta_h -11.624 #kJ/mol - # Enthalpy of formation: -2279.574 #kJ/mol - -analytic 2.56936E+1 0E+0 6.07163E+2 0E+0 0E+0 - -1.000U+4 + 6.000F- = UF6-2 - log_k 29.800 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.98E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 1.000I- = UI+3 - log_k 1.250 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.25E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000Acetate- = UO2(Acetate)+ - log_k 3.020 #11RIC/GRI - delta_h -35.366 #kJ/mol - # Enthalpy of formation: -1540.376 #kJ/mol - -analytic -3.17585E+0 0E+0 1.84729E+3 0E+0 0E+0 - -1.000UO2+2 + 2.000Acetate- = UO2(Acetate)2 - log_k 5.200 #11RIC/GRI - delta_h -34.958 #kJ/mol - # Enthalpy of formation: -2025.978 #kJ/mol - -analytic -9.2437E-1 0E+0 1.82598E+3 0E+0 0E+0 - -1.000UO2+2 + 3.000Acetate- = UO2(Acetate)3- - log_k 7.030 #11RIC/GRI - delta_h -45.947 #kJ/mol - # Enthalpy of formation: -2522.977 #kJ/mol - -analytic -1.01956E+0 0E+0 2.39998E+3 0E+0 0E+0 - -1.000UO2+2 + 1.000CO3-2 = UO2(CO3) - log_k 9.940 #03GUI/FAN - delta_h 5.000 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1689.23 #kJ/mol - -analytic 1.0816E+1 0E+0 -2.61168E+2 0E+0 0E+0 - -1.000UO2+2 + 2.000CO3-2 = UO2(CO3)2-2 - log_k 16.610 #03GUI/FAN - delta_h 18.500 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -2350.96 #kJ/mol - -analytic 1.98511E+1 0E+0 -9.66321E+2 0E+0 0E+0 - -1.000UO2+2 + 3.000CO3-2 = UO2(CO3)3-4 - log_k 21.840 #03GUI/FAN - delta_h -39.200 #kJ/mol - # Enthalpy of formation: -3083.89 #kJ/mol - -analytic 1.49725E+1 0E+0 2.04756E+3 0E+0 0E+0 - -1.000UO2+ + 3.000CO3-2 = UO2(CO3)3-5 - log_k 6.950 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.95E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000Cit-3 = UO2(Cit)- - log_k 8.960 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.96E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000Edta-4 = UO2(Edta)-2 - log_k 13.700 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.37E+1 0E+0 0E+0 0E+0 0E+0 - -1.000AsO4-3 + 1.000UO2+2 + 2.000H+ = UO2(H2AsO4)+ - log_k 21.960 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.196E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 4.000H+ + 2.000AsO4-3 = UO2(H2AsO4)2 - log_k 41.530 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.153E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000H+ + 2.000H2(PO4)- = UO2(H2PO4)(H3PO4)+ - log_k 5.930 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.93E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000H2(PO4)- = UO2(H2PO4)+ - log_k 3.260 #92GRE/FUG - delta_h -15.340 #kJ/mol - # Enthalpy of formation: -2336.94 #kJ/mol - -analytic 5.72551E-1 0E+0 8.01263E+2 0E+0 0E+0 - -1.000UO2+2 + 2.000H2(PO4)- = UO2(H2PO4)2 - log_k 4.920 #92GRE/FUG - delta_h -51.871 #kJ/mol - # Enthalpy of formation: -6902.925 #kJ/mol - -analytic -4.1674E+0 0E+0 2.70941E+3 0E+0 0E+0 - -1.000UO2+2 + 1.000H+ + 1.000H2(PO4)- = UO2(H3PO4)+2 - log_k 2.900 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000AsO4-3 + 1.000UO2+2 + 1.000H+ = UO2(HAsO4) - log_k 18.760 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.876E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000H+ + 1.000Cit-3 = UO2(HCit) - log_k 11.360 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.136E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000H+ + 1.000Edta-4 = UO2(HEdta)- - log_k 19.610 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.961E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000HIsa- = UO2(HIsa)+ - log_k 3.700 #04RAO/GAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 2.000HIsa- = UO2(HIsa)2 - log_k 6.600 #04RAO/GAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 3.000HIsa- = UO2(HIsa)3- - log_k 8.500 #04RAO/GAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000H+ + 1.000Nta-3 = UO2(HNta) - log_k 9.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 - 1.000H+ + 1.000H2(PO4)- = UO2(HPO4) - log_k 0.030 #92GRE/FUG - delta_h 2.795 #kJ/mol - # Enthalpy of formation: -4408.507 #kJ/mol - -analytic 5.19662E-1 0E+0 -1.45993E+2 0E+0 0E+0 - -1.000UO2+2 + 2.000I- + 3.000O2 = UO2(IO3)2 - log_k 38.400 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.84E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000NO3- = UO2(NO3)+ - log_k 0.100 #08RAO/TIA - delta_h 3.900 #kJ/mol #08RAO/TIA - # Enthalpy of formation: -1221.95 #kJ/mol - -analytic 7.8325E-1 0E+0 -2.03711E+2 0E+0 0E+0 - -1.000UO2+2 + 1.000Nta-3 = UO2(Nta)- - log_k 10.800 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.08E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 - 1.000H+ + 1.000Ox-2 + 1.000H2O = UO2(OH)(Ox)- - log_k 0.630 #56GRI/PTI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.3E-1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 - 1.000H+ + 1.000H2O = UO2(OH)+ - log_k -5.250 #03GUI/FAN - delta_h 43.458 #kJ/mol - # Enthalpy of formation: -1261.372 #kJ/mol - -analytic 2.3635E+0 0E+0 -2.26997E+3 0E+0 0E+0 - -1.000UO2+2 - 2.000H+ + 2.000H2O = UO2(OH)2 - log_k -12.150 #03GUI/FAN - delta_h 111.160 #kJ/mol - # Enthalpy of formation: -1479.5 #kJ/mol #82WAG/EVA - -analytic 7.32437E+0 0E+0 -5.80628E+3 0E+0 0E+0 - -1.000UO2+2 - 3.000H+ + 3.000H2O = UO2(OH)3- - log_k -20.250 #03GUI/FAN - delta_h 148.060 #kJ/mol #Estimated by linear correlations - # Enthalpy of formation: -1728.43 #kJ/mol - -analytic 5.68896E+0 0E+0 -7.7337E+3 0E+0 0E+0 - -1.000UO2+2 - 4.000H+ + 1.000HIsa- + 4.000H2O = UO2(OH)4(HIsa)-3 - log_k -28.100 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.81E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 - 4.000H+ + 4.000H2O = UO2(OH)4-2 - log_k -32.400 #03GUI/FAN - delta_h 156.138 #kJ/mol - # Enthalpy of formation: -2006.182 #kJ/mol - -analytic -5.04584E+0 0E+0 -8.15564E+3 0E+0 0E+0 - -1.000UO2+2 + 1.000Ox-2 = UO2(Ox) - log_k 7.130 #05HUM/AND - delta_h 25.360 #kJ/mol - # Enthalpy of formation: -1824.3 #kJ/mol #05HUM/AND - -analytic 1.15729E+1 0E+0 -1.32464E+3 0E+0 0E+0 - -1.000UO2+2 + 2.000Ox-2 = UO2(Ox)2-2 - log_k 11.650 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.165E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 3.000Ox-2 = UO2(Ox)3-4 - log_k 13.800 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.38E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 - 2.000H+ + 1.000H2(PO4)- = UO2(PO4)- - log_k -6.330 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.33E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000Phthalat-2 = UO2(Phthalat) - log_k 5.560 #11GRI/COL3 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.56E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000S2O3-2 = UO2(S2O3) - log_k 2.800 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000SO3-2 = UO2(SO3) - log_k 6.600 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000SO4-2 = UO2(SO4) - log_k 3.150 #03GUI/FAN - delta_h 19.500 #kJ/mol #03GUI/FAN - # Enthalpy of formation: -1908.84 #kJ/mol - -analytic 6.56625E+0 0E+0 -1.01855E+3 0E+0 0E+0 - -1.000UO2+2 + 2.000SO4-2 = UO2(SO4)2-2 - log_k 4.140 #03GUI/FAN - delta_h 35.100 #kJ/mol #03GUI/FAN - # Enthalpy of formation: -2802.58 #kJ/mol - -analytic 1.02892E+1 0E+0 -1.8334E+3 0E+0 0E+0 - -1.000UO2+2 + 3.000SO4-2 = UO2(SO4)3-4 - log_k 3.020 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.02E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000SeO4-2 = UO2(SeO4) - log_k 2.740 #05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.74E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 2.000SeO4-2 = UO2(SeO4)2-2 - log_k 3.100 #99DJO/PIZ recalculated in 05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000Succinat-2 = UO2(Succinat) - log_k 5.280 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.28E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000Br- = UO2Br+ - log_k 0.220 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.2E-1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000Br- + 1.500O2 = UO2BrO3+ - log_k -16.570 #92GRE/FUG - delta_h 73.011 #kJ/mol - # Enthalpy of formation: -1085.6 #kJ/mol - -analytic -3.77904E+0 0E+0 -3.81362E+3 0E+0 0E+0 - -1.000UO2+2 + 1.000Cl- = UO2Cl+ - log_k 0.170 #92GRE/FUG - delta_h 8.000 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1178.08 #kJ/mol - -analytic 1.57154E+0 0E+0 -4.17868E+2 0E+0 0E+0 - -1.000UO2+2 + 2.000Cl- = UO2Cl2 - log_k -1.100 #92GRE/FUG - delta_h 15.000 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1338.16 #kJ/mol - -analytic 1.52788E+0 0E+0 -7.83503E+2 0E+0 0E+0 - -1.000UO2+2 + 1.000Cl- + 1.500O2 = UO2ClO3+ - log_k -16.770 #92GRE/FUG - delta_h 77.381 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1126.9 #kJ/mol - -analytic -3.21345E+0 0E+0 -4.04189E+3 0E+0 0E+0 - -1.000UO2+2 + 1.000F- = UO2F+ - log_k 5.160 #03GUI/FAN - delta_h 1.700 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1352.65 #kJ/mol - -analytic 5.45783E+0 0E+0 -8.87971E+1 0E+0 0E+0 - -1.000UO2+2 + 2.000F- = UO2F2 - log_k 8.830 #03GUI/FAN - delta_h 2.100 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1687.6 #kJ/mol - -analytic 9.1979E+0 0E+0 -1.0969E+2 0E+0 0E+0 - -1.000UO2+2 + 3.000F- = UO2F3- - log_k 10.900 #03GUI/FAN - delta_h 2.350 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -2022.7 #kJ/mol - -analytic 1.13117E+1 0E+0 -1.22749E+2 0E+0 0E+0 - -1.000UO2+2 + 4.000F- = UO2F4-2 - log_k 11.840 #03GUI/FAN - delta_h 0.290 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -2360.11 #kJ/mol - -analytic 1.18908E+1 0E+0 -1.51477E+1 0E+0 0E+0 - -1.000UO2+2 + 1.000I- + 1.500O2 = UO2IO3+ - log_k 19.410 #92GRE/FUG - delta_h -134.919 #kJ/mol - # Enthalpy of formation: -1228.9 #kJ/mol - -analytic -4.22676E+0 0E+0 7.0473E+3 0E+0 0E+0 - -1.000UO2+2 - 1.000H+ + 1.000H4(SiO4) = UO2SiO(OH)3+ - log_k -1.840 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.84E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 1.000Ox-2 = UOx+2 - log_k 10.670 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.067E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Zn+2 + 1.000H+ + 1.000Cn- + 1.000HSe- - 1.000H2O + 0.500O2 = Zn(SeCn)+ - log_k 57.230 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.723E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Zn+2 + 2.000H+ + 2.000Cn- + 2.000HSe- - 2.000H2O + 1.000O2 = Zn(SeCn)2 - log_k 113.710 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.1371E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Zn+2 + 1.000SeO4-2 = Zn(SeO4) - log_k 2.160 #05OLI/NOL - delta_h 4.600 #kJ/mol #05OLI/NOL - # Enthalpy of formation: -752.29 #kJ/mol - -analytic 2.96588E+0 0E+0 -2.40274E+2 0E+0 0E+0 - -4.000CO3-2 + 1.000Zr+4 = Zr(CO3)4-4 - log_k 42.900 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.29E+1 0E+0 0E+0 0E+0 0E+0 - -2.000NO3- + 1.000Zr+4 = Zr(NO3)2+2 - log_k 2.640 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.64E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Zr+4 + 1.000H2O = Zr(OH)+3 - log_k 0.320 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.2E-1 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 1.000Zr+4 + 2.000H2O = Zr(OH)2+2 - log_k 0.980 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.8E-1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 1.000Zr+4 + 4.000H2O = Zr(OH)4 - log_k -2.190 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.19E+0 0E+0 0E+0 0E+0 0E+0 - -- 6.000H+ + 1.000Zr+4 + 6.000H2O = Zr(OH)6-2 - log_k -29.000 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.9E+1 0E+0 0E+0 0E+0 0E+0 - -2.000SO4-2 + 1.000Zr+4 = Zr(SO4)2 - log_k 11.540 #05BRO/CUR - delta_h 67.380 #kJ/mol - # Enthalpy of formation: -2359.8 #kJ/mol #05BRO/CUR - -analytic 2.33445E+1 0E+0 -3.5195E+3 0E+0 0E+0 - -3.000SO4-2 + 1.000Zr+4 = Zr(SO4)3-2 - log_k 14.300 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.43E+1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 3.000Zr+4 + 4.000H2O = Zr3(OH)4+8 - log_k 0.400 #05BRO/CUR - delta_h -1.980 #kJ/mol - # Enthalpy of formation: -2970.8 #kJ/mol #05BRO/CUR - -analytic 5.31194E-2 0E+0 1.03422E+2 0E+0 0E+0 - -- 15.000H+ + 4.000Zr+4 + 15.000H2O = Zr4(OH)15+ - log_k 12.580 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.258E+1 0E+0 0E+0 0E+0 0E+0 - -- 16.000H+ + 4.000Zr+4 + 16.000H2O = Zr4(OH)16 - log_k 8.390 #05BRO/CUR - delta_h 301.120 #kJ/mol - # Enthalpy of formation: -6706.16 #kJ/mol #05BRO/CUR - -analytic 6.11439E+1 0E+0 -1.57286E+4 0E+0 0E+0 - -1.000Cl- + 1.000Zr+4 = ZrCl+3 - log_k 1.590 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.59E+0 0E+0 0E+0 0E+0 0E+0 - -2.000Cl- + 1.000Zr+4 = ZrCl2+2 - log_k 2.170 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.17E+0 0E+0 0E+0 0E+0 0E+0 - -1.000F- + 1.000Zr+4 = ZrF+3 - log_k 10.120 #05BRO/CUR - delta_h -17.500 #kJ/mol #05BRO/CUR - # Enthalpy of formation: -961.35 #kJ/mol - -analytic 7.05414E+0 0E+0 9.14087E+2 0E+0 0E+0 - -2.000F- + 1.000Zr+4 = ZrF2+2 - log_k 18.550 #05BRO/CUR - delta_h -16.800 #kJ/mol #05BRO/CUR - # Enthalpy of formation: -1296 #kJ/mol - -analytic 1.56068E+1 0E+0 8.77524E+2 0E+0 0E+0 - -3.000F- + 1.000Zr+4 = ZrF3+ - log_k 24.720 #05BRO/CUR - delta_h -11.200 #kJ/mol #05BRO/CUR - # Enthalpy of formation: -1625.75 #kJ/mol - -analytic 2.27578E+1 0E+0 5.85016E+2 0E+0 0E+0 - -4.000F- + 1.000Zr+4 = ZrF4 - log_k 30.110 #05BRO/CUR - delta_h -22.000 #kJ/mol #05BRO/CUR - # Enthalpy of formation: -1971.9 #kJ/mol - -analytic 2.62558E+1 0E+0 1.14914E+3 0E+0 0E+0 - -5.000F- + 1.000Zr+4 = ZrF5- - log_k 34.600 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.46E+1 0E+0 0E+0 0E+0 0E+0 - -6.000F- + 1.000Zr+4 = ZrF6-2 - log_k 38.110 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.811E+1 0E+0 0E+0 0E+0 0E+0 - -1.000NO3- + 1.000Zr+4 = ZrNO3+3 - log_k 1.590 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.59E+0 0E+0 0E+0 0E+0 0E+0 - -1.000SO4-2 + 1.000Zr+4 = ZrSO4+2 - log_k 7.040 #05BRO/CUR - delta_h 36.940 #kJ/mol - # Enthalpy of formation: -1480.9 #kJ/mol #05BRO/CUR - -analytic 1.35116E+1 0E+0 -1.92951E+3 0E+0 0E+0 - - +Acetate- = Acetate- + log_k 0 +# Enthalpy of formation: -486.010 kJ/mol 82WAG/EVA + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Adipate-2 = Adipate-2 + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Ag+ = Ag+ + log_k 0 +# Enthalpy of formation: +105.790 kJ/mol 95SIL/BID + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Al+3 = Al+3 + log_k 0 +# Enthalpy of formation: -538.400 kJ/mol 95POK/HEL + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Am+3 = Am+3 + log_k 0 +# Enthalpy of formation: -616.700 kJ/mol 95SIL/BID + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +AsO4-3 = AsO4-3 + log_k 0 +# Enthalpy of formation: -888.140 kJ/mol 09RAN/FUG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +B(OH)4- = B(OH)4- + log_k 0 +# Enthalpy of formation: -1345.116 kJ/mol 99RAR/RAN + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Ba+2 = Ba+2 + log_k 0 +# Enthalpy of formation: -534.800 kJ/mol 95SIL/BID + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Be+2 = Be+2 + log_k 0 +# Enthalpy of formation: -382.800 kJ/mol 89COX/WAG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Br- = Br- + log_k 0 +# Enthalpy of formation: -121.410 kJ/mol 95SIL/BID + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 = Ca+2 + log_k 0 +# Enthalpy of formation: -543.000 kJ/mol 89COX/WAG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Cd+2 = Cd+2 + log_k 0 +# Enthalpy of formation: -75.920 kJ/mol 89COX/WAG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Cit-3 = Cit-3 + log_k 0 +# Enthalpy of formation: -1519.920 kJ/mol 05HUM/AND + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Cl- = Cl- + log_k 0 +# Enthalpy of formation: -167.080 kJ/mol 89COX/WAG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Cm+3 = Cm+3 + log_k 0 +# Enthalpy of formation: -615.000 kJ/mol 01KON2 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Co+2 = Co+2 + log_k 0 +# Enthalpy of formation: -57.600 kJ/mol 98PLY/ZHA1 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +CO3-2 = CO3-2 + log_k 0 +# Enthalpy of formation: -675.230 kJ/mol 89COX/WAG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +CrO4-2 = CrO4-2 + log_k 0 +# Enthalpy of formation: -879.000 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Cs+ = Cs+ + log_k 0 +# Enthalpy of formation: -258.000 kJ/mol 95SIL/BID + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Cu+2 = Cu+2 + log_k 0 +# Enthalpy of formation: +64.900 kJ/mol 92GRE/FUG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +e- = e- + log_k 0 +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Edta-4 = Edta-4 + log_k 0 +# Enthalpy of formation: -1704.800 kJ/mol 05HUM/AND + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 = Eu+3 + log_k 0 +# Enthalpy of formation: -605.325 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +F- = F- + log_k 0 +# Enthalpy of formation: -335.350 kJ/mol 95SIL/BID + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 = Fe+2 + log_k 0 +# Enthalpy of formation: -90.295 kJ/mol 13LEM/BER + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +H+ = H+ + log_k 0 +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +H2(PO4)- = H2(PO4)- + log_k 0 +# Enthalpy of formation: -1302.600 kJ/mol 89COX/WAG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +H2O = H2O + log_k 0 +# Enthalpy of formation: -285.830 kJ/mol 89COX/WAG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +H4(SiO4) = H4(SiO4) + log_k 0 +# Enthalpy of formation: -1461.194 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Hf+4 = Hf+4 + log_k 0 +# Enthalpy of formation: -628.910 kJ/mol 99VAS/LYT + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Hg+2 = Hg+2 + log_k 0 +# Enthalpy of formation: +170.210 kJ/mol 89COX/WAG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +HGlu- = HGlu- + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +HIsa- = HIsa- + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Ho+3 = Ho+3 + log_k 0 +# Enthalpy of formation: -707.042 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +I- = I- + log_k 0 +# Enthalpy of formation: -56.780 kJ/mol 92GRE/FUG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +K+ = K+ + log_k 0 +# Enthalpy of formation: -252.140 kJ/mol 89COX/WAG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Li+ = Li+ + log_k 0 +# Enthalpy of formation: -278.470 kJ/mol 92GRE/FUG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Malonate-2 = Malonate-2 + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Mg+2 = Mg+2 + log_k 0 +# Enthalpy of formation: -467.000 kJ/mol 89COX/WAG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Mn+2 = Mn+2 + log_k 0 +# Enthalpy of formation: -220.800 kJ/mol 95ROB/HEM + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +MoO4-2 = MoO4-2 + log_k 0 +# Enthalpy of formation: -997.000 kJ/mol 74OHA + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Na+ = Na+ + log_k 0 +# Enthalpy of formation: -240.340 kJ/mol 92GRE/FUG (89COX/WAG) + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Nb(OH)6- = Nb(OH)6- + log_k 0 +# Enthalpy of formation: -1925.658 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 = Ni+2 + log_k 0 +# Enthalpy of formation: -55.012 kJ/mol 05GAM/BUG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +NO3- = NO3- + log_k 0 +# Enthalpy of formation: -206.850 kJ/mol 92GRE/FUG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +NpO2+2 = NpO2+2 + log_k 0 +# Enthalpy of formation: -860.733 kJ/mol 01LEM/FUG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Nta-3 = Nta-3 + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Ox-2 = Ox-2 + log_k 0 +# Enthalpy of formation: -830.660 kJ/mol 05HUM/AND + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Pa+4 = Pa+4 + log_k 0 +# Enthalpy of formation: -620.000 kJ/mol 85BAR/PAR + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Pb+2 = Pb+2 + log_k 0 +# Enthalpy of formation: +0.920 kJ/mol 89COX/WAG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Pd+2 = Pd+2 + log_k 0 +# Enthalpy of formation: +189.889 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Phthalat-2 = Phthalat-2 + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 = PuO2+2 + log_k 0 +# Enthalpy of formation: -822.036 kJ/mol 01LEM/FUG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Pyrophos-4 = Pyrophos-4 + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Ra+2 = Ra+2 + log_k 0 +# Enthalpy of formation: -528.025 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Rb+ = Rb+ + log_k 0 +# Enthalpy of formation: -251.120 kJ/mol 92GRE/FUG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Sb(OH)3 = Sb(OH)3 + log_k 0 +# Enthalpy of formation: -773.893 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +SeO4-2 = SeO4-2 + log_k 0 +# Enthalpy of formation: -603.500 kJ/mol 05OLI/NOL + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Sm+3 = Sm+3 + log_k 0 +# Enthalpy of formation: -691.198 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 = Sn+2 + log_k 0 +# Enthalpy of formation: -9.617 kJ/mol 12GAM/GAJ + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +SO4-2 = SO4-2 + log_k 0 +# Enthalpy of formation: -909.340 kJ/mol 89COX/WAG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Sr+2 = Sr+2 + log_k 0 +# Enthalpy of formation: -550.900 kJ/mol 84BUS/PLUS + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Suberate-2 = Suberate-2 + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Succinat-2 = Succinat-2 + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 = TcO(OH)2 + log_k 0 +# Enthalpy of formation: -749.243 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 = Th+4 + log_k 0 +# Enthalpy of formation: -768.700 kJ/mol 09RAN/FUG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 = UO2+2 + log_k 0 +# Enthalpy of formation: -1019.000 kJ/mol 92GRE/FUG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Zn+2 = Zn+2 + log_k 0 +# Enthalpy of formation: -153.390 kJ/mol 92GRE/FUG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Zr+4 = Zr+4 + log_k 0 +# Enthalpy of formation: -608.500 kJ/mol 05BRO/CUR + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 + +Am+3 + e- = Am+2 + log_k -38.88 #95SIL/BID + delta_h 262.076 #kJ/mol +# Enthalpy of formation: -354.624 kJ/mol + -analytic 70.33744E-1 00E+0 -13.68918E+3 00E+0 00E+0 + +Am+3 - e- = Am+4 + log_k -44.21 + delta_h 210.7 #kJ/mol +# Enthalpy of formation: -406.000 kJ/mol 95SIL/BID + -analytic -72.96945E-1 00E+0 -11.00563E+3 00E+0 00E+0 + +- 4 H+ + Am+3 - 2 e- + 2 H2O = AmO2+ + log_k -58.37 + delta_h 384.1 #kJ/mol 95SIL/BID +# Enthalpy of formation: -804.260 kJ/mol + -analytic 89.21431E-1 00E+0 -20.06294E+3 00E+0 00E+0 + +- 4 H+ + Am+3 - 3 e- + 2 H2O = AmO2+2 + log_k -85.35 + delta_h 537.6 #kJ/mol 95SIL/BID +# Enthalpy of formation: -650.760 kJ/mol + -analytic 88.33477E-1 00E+0 -28.0808E+3 00E+0 00E+0 + +10 H+ + 8 e- + CO3-2 - 3 H2O = CH4 + log_k 37.93 + delta_h -270.166 #kJ/mol +# Enthalpy of formation: -87.906 kJ/mol 01SCH/SHO + -analytic -94.01051E-1 00E+0 14.11175E+3 00E+0 00E+0 + +8 H+ + 4 e- + CrO4-2 - 4 H2O = Cr+2 + log_k 67.22 #04CHI + delta_h -421.933 #kJ/mol +# Enthalpy of formation: -157.614 kJ/mol + -analytic -66.99489E-1 00E+0 22.0391E+3 00E+0 00E+0 + +8 H+ + 3 e- + CrO4-2 - 4 H2O = Cr+3 + log_k 73.62 + delta_h -504.82 #kJ/mol +# Enthalpy of formation: -240.500 kJ/mol 04CHI + -analytic -14.82067E+0 00E+0 26.36859E+3 00E+0 00E+0 + +Cu+2 + e- = Cu+ + log_k 2.83 #80CIA/FER + delta_h 5.689 #kJ/mol +# Enthalpy of formation: +70.589 kJ/mol + -analytic 38.2667E-1 00E+0 -29.71572E+1 00E+0 00E+0 + +Eu+3 + e- = Eu+2 + log_k -5.97 + delta_h 77.723 #kJ/mol +# Enthalpy of formation: -527.602 kJ/mol 92JOH/OEL + -analytic 76.46485E-1 00E+0 -40.59755E+2 00E+0 00E+0 + +Fe+2 - e- = Fe+3 + log_k -13.05 + delta_h 40.239 #kJ/mol +# Enthalpy of formation: -50.056 kJ/mol 13LEM/BER + -analytic -60.0043E-1 00E+0 -21.01829E+2 00E+0 00E+0 + +2 H+ + 2 e- = H2 + log_k -3.08 + delta_h -4.2 #kJ/mol +# Enthalpy of formation: -4.200 kJ/mol 82WAG/EVA + -analytic -38.15808E-1 00E+0 21.93813E+1 00E+0 00E+0 + +5 H+ + 2 e- + AsO4-3 - H2O = H3(AsO3) + log_k 40.02 + delta_h -139.89 #kJ/mol +# Enthalpy of formation: -742.200 kJ/mol 09RAN/FUG + -analytic 15.51232E+0 00E+0 73.06964E+2 00E+0 00E+0 + +2 e- + 2 Hg+2 = Hg2+2 + log_k 30.79 + delta_h -173.6 #kJ/mol +# Enthalpy of formation: +166.820 kJ/mol 85BAR/PAR + -analytic 37.65855E-2 00E+0 90.6776E+2 00E+0 00E+0 + +9 H+ + 8 e- + SO4-2 - 4 H2O = HS- + log_k 33.69 + delta_h -250.28 #kJ/mol +# Enthalpy of formation: -16.300 kJ/mol 89COX/WAG + -analytic -10.15717E+0 00E+0 13.07303E+3 00E+0 00E+0 + +9 H+ + 8 e- + SeO4-2 - 4 H2O = HSe- + log_k 81.57 + delta_h -525.52 #kJ/mol +# Enthalpy of formation: +14.300 kJ/mol 05OLI/NOL + -analytic -10.49715E+0 00E+0 27.44982E+3 00E+0 00E+0 + +- 6 H+ - 6 e- + I- + 3 H2O = IO3- + log_k -111.56 + delta_h 694.57 #kJ/mol +# Enthalpy of formation: -219.700 kJ/mol 92GRE/FUG + -analytic 10.12344E+0 00E+0 -36.27992E+3 00E+0 00E+0 + +9 H+ + 8 e- + NO3- - 3 H2O = NH3 + log_k 109.9 + delta_h -731.81 #kJ/mol +# Enthalpy of formation: -81.170 kJ/mol 95SIL/BID + -analytic -18.30761E+0 00E+0 38.2251E+3 00E+0 00E+0 + +Np+4 + e- = Np+3 + log_k 3.7 + delta_h 28.838 #kJ/mol +# Enthalpy of formation: -527.184 kJ/mol 01LEM/FUG + -analytic 87.52201E-1 00E+0 -15.06314E+2 00E+0 00E+0 + +NpO2+ + 4 H+ + e- - 2 H2O = Np+4 + log_k 10.21 + delta_h -149.501 #kJ/mol +# Enthalpy of formation: -556.022 kJ/mol 03GUI/FAN + -analytic -15.98145E+0 00E+0 78.08981E+2 00E+0 00E+0 + +NpO2+2 + e- = NpO2+ + log_k 19.59 + delta_h -117.448 #kJ/mol +# Enthalpy of formation: -978.181 kJ/mol 01LEM/FUG + -analytic -98.60064E-2 00E+0 61.34736E+2 00E+0 00E+0 + +- 4 H+ - 4 e- + 2 H2O = O2 + log_k -85.99 + delta_h 559.526 #kJ/mol +# Enthalpy of formation: -12.134 kJ/mol 89SHO/HEL (Uncertainty in order to cover available data) + -analytic 12.03475E+0 00E+0 -29.22608E+3 00E+0 00E+0 + +- 4 H+ - e- + Pa+4 + 2 H2O = PaO2+ + log_k 4.22 #85BAR/PAR, 76BAE/MES + -analytic 42.2E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + e- = Pu+3 + log_k 17.69 + delta_h -51.895 #kJ/mol +# Enthalpy of formation: -591.790 kJ/mol 01LEM/FUG + -analytic 85.98386E-1 00E+0 27.10665E+2 00E+0 00E+0 + +PuO2+ + 4 H+ + e- - 2 H2O = Pu+4 + log_k 17.45 + delta_h -201.428 #kJ/mol +# Enthalpy of formation: -539.895 kJ/mol 01LEM/FUG + -analytic -17.83867E+0 00E+0 10.52132E+3 00E+0 00E+0 + +PuO2+2 + e- = PuO2+ + log_k 15.82 + delta_h -88.091 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -910.127 kJ/mol + -analytic 38.71193E-2 00E+0 46.01313E+2 00E+0 00E+0 + +10 H+ + 8 e- + 2 SO4-2 - 5 H2O = S2O3-2 + log_k 38.57 + delta_h -262.756 #kJ/mol +# Enthalpy of formation: -652.286 kJ/mol 04CHI + -analytic -74.62875E-1 00E+0 13.7247E+3 00E+0 00E+0 + +8 H+ + 6 e- + 2 SO4-2 - 4 H2O = S2O4-2 + log_k 10.7 + delta_h -78.14 #kJ/mol +# Enthalpy of formation: -753.500 kJ/mol 82WAG/EVA + -analytic -29.8954E-1 00E+0 40.81536E+2 00E+0 00E+0 + +- 2 H+ - 2 e- + Sb(OH)3 + 2 H2O = Sb(OH)5 + log_k -21.74 #99LOT/OCH recalculated + -analytic -21.74E+0 00E+0 00E+0 00E+0 00E+0 + +2 H+ + 2 e- + SeO4-2 - H2O = SeO3-2 + log_k 28.04 #05OLI/NOL + delta_h -189.49 #kJ/mol +# Enthalpy of formation: -507.160 kJ/mol 05OLI/NOL + -analytic -51.57223E-1 00E+0 98.97752E+2 00E+0 00E+0 + +Sn+2 - 2 e- = Sn+4 + log_k -12.98 #12GAM/GAJ; Eº = 0.384 VforSn2 + / Sn4 + reaction (I=0) + delta_h -21.894 #kJ/mol +# Enthalpy of formation: -31.511 kJ/mol + -analytic -16.81566E+0 00E+0 11.43603E+2 00E+0 00E+0 + +2 H+ + 2 e- + SO4-2 - H2O = SO3-2 + log_k -3.62 + delta_h -7.55 #kJ/mol +# Enthalpy of formation: -631.060 kJ/mol 85GOL/PAR + -analytic -49.42703E-1 00E+0 39.4364E+1 00E+0 00E+0 + +TcO(OH)2 - 4 H+ - 3 e- + H2O = TcO4- + log_k -30.17 + delta_h 305.673 #kJ/mol +# Enthalpy of formation: -729.400 kJ/mol 99RAR/RAN + -analytic 23.38161E+0 00E+0 -15.96641E+3 00E+0 00E+0 + +e- + TcO4- = TcO4-2 + log_k -10.8 #20GRE/GAO + -analytic -10.8E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 + e- = U+3 + log_k -9.35 #92GRE/FUG + delta_h 102.1 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -489.100 kJ/mol + -analytic 85.37152E-1 00E+0 -53.33054E+2 00E+0 00E+0 + +UO2+2 + 4 H+ + 2 e- - 2 H2O = U+4 + log_k 9.04 #92GRE/FUG + delta_h -143.86 #kJ/mol +# Enthalpy of formation: -591.200 kJ/mol 92GRE/FUG + -analytic -16.16319E+0 00E+0 75.14331E+2 00E+0 00E+0 + +UO2+2 + e- = UO2+ + log_k 1.48 + delta_h -6.127 #kJ/mol +# Enthalpy of formation: -1025.127 kJ/mol + -analytic 40.65957E-2 00E+0 32.00355E+1 00E+0 00E+0 + +- 2 H+ + 2 CH4 + Hg+2 = (CH3)2Hg + log_k 19 #18BLA/BUR + -analytic 19E+0 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ + 2 CH4 + H2O + 2 Hg+2 = (CH3Hg)2OH+ + log_k 3.85 #18BLA/BUR + -analytic 38.5E-1 00E+0 00E+0 00E+0 00E+0 + +2 NpO2+2 - 2 H+ + 2 H2O = (NpO2)2(OH)2+2 + log_k -6.27 #01LEM/FUG + delta_h 44.995 #kJ/mol +# Enthalpy of formation: -2248.130 kJ/mol + -analytic 16.12786E-1 00E+0 -23.50253E+2 00E+0 00E+0 + +2 NpO2+2 - 3 H+ + CO3-2 + 3 H2O = (NpO2)2CO3(OH)3- + log_k -1.78 #20GRE/GAO + -analytic -17.8E-1 00E+0 00E+0 00E+0 00E+0 + +3 NpO2+2 + 6 CO3-2 = (NpO2)3(CO3)6-6 + log_k 51.43 #20GRE/GAO + -analytic 51.43E+0 00E+0 00E+0 00E+0 00E+0 + +3 NpO2+2 - 5 H+ + 5 H2O = (NpO2)3(OH)5+ + log_k -17.12 #01LEM/FUG + delta_h 110.665 #kJ/mol +# Enthalpy of formation: -3900.682 kJ/mol + -analytic 22.67676E-1 00E+0 -57.80436E+2 00E+0 00E+0 + +2 PuO2+2 - 2 H+ + 2 H2O = (PuO2)2(OH)2+2 + log_k -7.5 #01LEM/FUG + delta_h 43.583 #kJ/mol +# Enthalpy of formation: -2172.149 kJ/mol + -analytic 13.54138E-2 00E+0 -22.76499E+2 00E+0 00E+0 + +3 PuO2+2 + 6 CO3-2 = (PuO2)3(CO3)6-6 + log_k 51 #20GRE/GAO + -analytic 51E+0 00E+0 00E+0 00E+0 00E+0 + +11 UO2+2 - 12 H+ + 6 CO3-2 + 12 H2O = (UO2)11(CO3)6(OH)12-2 + log_k 36.4 #03GUI/FAN + -analytic 36.4E+0 00E+0 00E+0 00E+0 00E+0 + +2 UO2+2 - H+ + Cit-3 + H2O = (UO2)2(Cit)(OH) + log_k 9.65 #12BER/CRE + -analytic 96.5E-1 00E+0 00E+0 00E+0 00E+0 + +2 UO2+2 - 2 H+ + Cit-3 + 2 H2O = (UO2)2(Cit)(OH)2- + log_k 5.3 #12BER/CRE + -analytic 53E-1 00E+0 00E+0 00E+0 00E+0 + +2 UO2+2 - 2 H+ + 2 Cit-3 + 2 H2O = (UO2)2(Cit)2(OH)2-4 + log_k 9.29 #12BER/CRE + -analytic 92.9E-1 00E+0 00E+0 00E+0 00E+0 + +2 UO2+2 - H+ + 2 Cit-3 + H2O = (UO2)2(Cit)2(OH)-3 + log_k 16.04 #12BER/CRE + -analytic 16.04E+0 00E+0 00E+0 00E+0 00E+0 + +2 UO2+2 + 2 Cit-3 = (UO2)2(Cit)2-2 + log_k 21.3 #05HUM/AND + -analytic 21.3E+0 00E+0 00E+0 00E+0 00E+0 + +2 UO2+2 - 3 H+ + CO3-2 + 3 H2O = (UO2)2(CO3)(OH)3- + log_k -0.86 #03GUI/FAN + -analytic -86E-2 00E+0 00E+0 00E+0 00E+0 + +2 UO2+2 + Edta-4 = (UO2)2(Edta) + log_k 20.6 #05HUM/AND + -analytic 20.6E+0 00E+0 00E+0 00E+0 00E+0 + +2 UO2+2 + NpO2+2 + 6 CO3-2 = (UO2)2(NpO2)(CO3)6-6 + log_k 53.59 #01LEM/FUG + -analytic 53.59E+0 00E+0 00E+0 00E+0 00E+0 + +2 UO2+2 - H+ + H2O = (UO2)2(OH)+3 + log_k -2.7 #92GRE/FUG + delta_h 14.353 #kJ/mol +# Enthalpy of formation: -2309.477 kJ/mol + -analytic -18.54623E-2 00E+0 -74.97094E+1 00E+0 00E+0 + +2 UO2+2 - 2 H+ + 2 H2O = (UO2)2(OH)2+2 + log_k -5.62 #20GRE/GAO + delta_h 47.8 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2561.860 kJ/mol + -analytic 27.54201E-1 00E+0 -24.96768E+2 00E+0 00E+0 + +3 UO2+2 - 3 H+ + CO3-2 + 3 H2O = (UO2)3(CO3)(OH)3+ + log_k 0.66 #03GUI/FAN + delta_h 81.131 #kJ/mol +# Enthalpy of formation: -4508.589 kJ/mol + -analytic 14.87354E+0 00E+0 -42.37767E+2 00E+0 00E+0 + +3 UO2+2 + 6 CO3-2 = (UO2)3(CO3)6-6 + log_k 54 #92GRE/FUG + delta_h -62.7 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -7171.080 kJ/mol + -analytic 43.01543E+0 00E+0 32.75049E+2 00E+0 00E+0 + +3 UO2+2 - 4 H+ + 4 H2O = (UO2)3(OH)4+2 + log_k -11.9 #92GRE/FUG + delta_h 99.2 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -4101.120 kJ/mol + -analytic 54.79094E-1 00E+0 -51.81577E+2 00E+0 00E+0 + +3 UO2+2 - 5 H+ + 5 H2O = (UO2)3(OH)5+ + log_k -15.55 #92GRE/FUG + delta_h 120.7 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -4365.450 kJ/mol + -analytic 55.95732E-1 00E+0 -63.046E+2 00E+0 00E+0 + +3 UO2+2 - 7 H+ + 7 H2O = (UO2)3(OH)7- + log_k -32.2 #92SAN/BRU + delta_h 227.015 #kJ/mol +# Enthalpy of formation: -4830.794 kJ/mol + -analytic 75.71321E-1 00E+0 -11.85782E+3 00E+0 00E+0 + +4 UO2+2 - 7 H+ + 7 H2O = (UO2)4(OH)7+ + log_k -21.9 #92GRE/FUG + -analytic -21.9E+0 00E+0 00E+0 00E+0 00E+0 + +Ag+ + 2 CO3-2 = Ag(CO3)2-3 + log_k 2.16 #97SVE/SHO + delta_h -28.115 #kJ/mol +# Enthalpy of formation: -1272.786 kJ/mol + -analytic -27.65537E-1 00E+0 14.68549E+2 00E+0 00E+0 + +Ag+ + HS- = Ag(HS) + log_k 14.05 #74NAU/RYZ in 91BAL/NOR; Uncertainty to include available data. + delta_h -78.811 #kJ/mol +# Enthalpy of formation: +10.679 kJ/mol + -analytic 24.29055E-2 00E+0 41.16585E+2 00E+0 00E+0 + +Ag+ + 2 HS- = Ag(HS)2- + log_k 18.45 #74NAU/RYZ in 91BAL/NOR; Uncertainty to include available data. + delta_h -105.805 #kJ/mol +# Enthalpy of formation: -32.615 kJ/mol + -analytic -86.24032E-3 00E+0 55.2658E+2 00E+0 00E+0 + +Ag+ - H+ + H2O = Ag(OH) + log_k -12 #76BAE/MES + delta_h 47.198 #kJ/mol +# Enthalpy of formation: -132.842 kJ/mol + -analytic -37.31265E-1 00E+0 -24.65323E+2 00E+0 00E+0 + +Ag+ - 2 H+ + 2 H2O = Ag(OH)2- + log_k -24 #76BAE/MES + delta_h 111.635 #kJ/mol +# Enthalpy of formation: -354.235 kJ/mol + -analytic -44.42388E-1 00E+0 -58.31102E+2 00E+0 00E+0 + +Ag+ + S2O3-2 = Ag(S2O3)- + log_k 9.23 #74BEL/MAR in 82HÖG + delta_h -58.994 #kJ/mol 74BEL/MAR in 82HÖG +# Enthalpy of formation: -605.490 kJ/mol + -analytic -11.05305E-1 00E+0 30.81471E+2 00E+0 00E+0 + +Ag+ + 2 S2O3-2 = Ag(S2O3)2-3 + log_k 13.64 #72POU/RIG in 82HÖG + delta_h -86.918 #kJ/mol +# Enthalpy of formation: -1285.700 kJ/mol 82WAG/EVA + -analytic -15.8738E-1 00E+0 45.40043E+2 00E+0 00E+0 + +Ag+ + SeO3-2 = Ag(SeO3)- + log_k +3.20 #Data from 68MEH and 69MEH/GUB in 05OLI/NOL corrected to I=0 by DH + -analytic 32E-1 00E+0 00E+0 00E+0 00E+0 + +Ag+ + SO3-2 = Ag(SO3)- + log_k 5.43 + -analytic 54.3E-1 00E+0 00E+0 00E+0 00E+0 + +Ag+ + SO4-2 = Ag(SO4)- + log_k 1.38 + delta_h 4.645 #kJ/mol +# Enthalpy of formation: -798.904 kJ/mol + -analytic 21.93769E-1 00E+0 -24.26252E+1 00E+0 00E+0 + +Ag+ + Br- = AgBr + log_k 4.24 #91BAL/NOR, 68WAG + delta_h -23.129 #kJ/mol +# Enthalpy of formation: -38.748 kJ/mol + -analytic 18.79731E-2 00E+0 12.08112E+2 00E+0 00E+0 + +Ag+ + 2 Br- = AgBr2- + log_k 7.28 #91BAL/NOR, 68WAG + delta_h -45.296 #kJ/mol +# Enthalpy of formation: -182.325 kJ/mol + -analytic -65.55186E-2 00E+0 23.65975E+2 00E+0 00E+0 + +Ag+ + 3 Br- = AgBr3-2 + log_k 8.71 #91BAL/NOR, 68WAG + delta_h -66.741 #kJ/mol +# Enthalpy of formation: -325.180 kJ/mol + -analytic -29.82521E-1 00E+0 34.86125E+2 00E+0 00E+0 + +Ag+ + Cl- = AgCl + log_k 3.27 #91BAL/NOR; Uncertainty to include available data. + delta_h -17.1 #kJ/mol +# Enthalpy of formation: -78.390 kJ/mol + -analytic 27.42086E-2 00E+0 89.31952E+1 00E+0 00E+0 + +Ag+ + 2 Cl- = AgCl2- + log_k 5.27 #91BAL/NOR; Uncertainty to include available data. + delta_h -28.754 #kJ/mol +# Enthalpy of formation: -257.124 kJ/mol + -analytic 23.25154E-2 00E+0 15.01926E+2 00E+0 00E+0 + +Ag+ + 3 Cl- = AgCl3-2 + log_k 5.29 #91BAL/NOR; Uncertainty to include available data. + delta_h -29.167 #kJ/mol +# Enthalpy of formation: -424.616 kJ/mol + -analytic 18.01609E-2 00E+0 15.23499E+2 00E+0 00E+0 + +Ag+ + 4 Cl- = AgCl4-3 + log_k 5.51 #91BAL/NOR; Uncertainty to include available data. + delta_h -26.099 #kJ/mol +# Enthalpy of formation: -588.628 kJ/mol + -analytic 93.76515E-2 00E+0 13.63246E+2 00E+0 00E+0 + +Ag+ + CO3-2 = AgCO3- + log_k 2.69 #97SVE/SHO + delta_h -22.838 #kJ/mol +# Enthalpy of formation: -592.278 kJ/mol + -analytic -13.11046E-1 00E+0 11.92912E+2 00E+0 00E+0 + +Ag+ + I- = AgI + log_k 6.58 #76SMI/MAR + delta_h -36.962 #kJ/mol +# Enthalpy of formation: +12.048 kJ/mol + -analytic 10.45356E-2 00E+0 19.3066E+2 00E+0 00E+0 + +Ag+ + 2 I- = AgI2- + log_k 11.7 #76SMI/MAR + delta_h -76.578 #kJ/mol +# Enthalpy of formation: -84.347 kJ/mol + -analytic -17.1589E-1 00E+0 39.99948E+2 00E+0 00E+0 + +Ag+ + 3 I- = AgI3-2 + log_k 13.28 + delta_h -114.914 #kJ/mol +# Enthalpy of formation: -179.463 kJ/mol + -analytic -68.52069E-1 00E+0 60.02376E+2 00E+0 00E+0 + +Ag+ + NO3- = AgNO3 + log_k -0.29 #91BAL/NOR, 68WAG; Uncertainty to include available data. + delta_h -0.74 #kJ/mol +# Enthalpy of formation: -101.800 kJ/mol 82WAG/EVA + -analytic -41.96424E-2 00E+0 38.65289E+0 00E+0 00E+0 + +Al+3 + Cit-3 = Al(Cit) + log_k 9.9 #95AKR/BOU + -analytic 99E-1 00E+0 00E+0 00E+0 00E+0 + +Al+3 - H+ + 2 Cit-3 + H2O = Al(Cit)2(OH)-4 + log_k 10.19 #95AKR/BOU + -analytic 10.19E+0 00E+0 00E+0 00E+0 00E+0 + +Al+3 + 2 Cit-3 = Al(Cit)2-3 + log_k 14.13 #95AKR/BOU + -analytic 14.13E+0 00E+0 00E+0 00E+0 00E+0 + +Al+3 + Edta-4 = Al(Edta)- + log_k 19.08 #95AKR/BOU + -analytic 19.08E+0 00E+0 00E+0 00E+0 00E+0 + +Al+3 + H+ + Cit-3 = Al(HCit)+ + log_k 12.9 #95AKR/BOU + -analytic 12.9E+0 00E+0 00E+0 00E+0 00E+0 + +Al+3 + H+ + Edta-4 = Al(HEdta) + log_k 21.82 #95AKR/BOU + -analytic 21.82E+0 00E+0 00E+0 00E+0 00E+0 + +Al+3 + HGlu- = Al(HGlu)+2 + log_k 3.2 #08LAK/KIS + -analytic 32E-1 00E+0 00E+0 00E+0 00E+0 + +Al+3 + H+ + Nta-3 = Al(HNta)+ + log_k 15.13 #95AKR/BOU + -analytic 15.13E+0 00E+0 00E+0 00E+0 00E+0 + +Al+3 + H+ + Ox-2 = Al(HOx)+2 + log_k 7.5 #95AKR/BOU + -analytic 75E-1 00E+0 00E+0 00E+0 00E+0 + +Al+3 + IO3- = Al(IO3)+2 + log_k 2.46 #estimation NEA87 08/2/95 + -analytic 24.6E-1 00E+0 00E+0 00E+0 00E+0 + +Al+3 + 2 IO3- = Al(IO3)2+ + log_k 4.3 #estimation NEA87 08/2/95 + -analytic 43E-1 00E+0 00E+0 00E+0 00E+0 + +Al+3 + Nta-3 = Al(Nta) + log_k 13.23 #95AKR/BOU + -analytic 13.23E+0 00E+0 00E+0 00E+0 00E+0 + +Al+3 - 2 H+ + Nta-3 + 2 H2O = Al(Nta)(OH)2-2 + log_k -0.3 #95AKR/BOU + -analytic -30E-2 00E+0 00E+0 00E+0 00E+0 + +Al+3 + 2 Nta-3 = Al(Nta)2-3 + log_k 20.8 #95AKR/BOU + -analytic 20.8E+0 00E+0 00E+0 00E+0 00E+0 + +Al+3 - H+ + Cit-3 + H2O = Al(OH)(Cit)- + log_k 8.1 #95AKR/BOU + -analytic 81E-1 00E+0 00E+0 00E+0 00E+0 + +Al+3 - H+ + Edta-4 + H2O = Al(OH)(Edta)-2 + log_k 13 #95AKR/BOU + -analytic 13E+0 00E+0 00E+0 00E+0 00E+0 + +Al+3 - H+ + HGlu- + H2O = Al(OH)(HGlu)+ + log_k -0.39 #08LAK/KIS + -analytic -39E-2 00E+0 00E+0 00E+0 00E+0 + +Al+3 - H+ + 2 HGlu- + H2O = Al(OH)(HGlu)2 + log_k 2.85 #08LAK/KIS + -analytic 28.5E-1 00E+0 00E+0 00E+0 00E+0 + +Al+3 - H+ + Nta-3 + H2O = Al(OH)(Nta)- + log_k 6.79 #95AKR/BOU + -analytic 67.9E-1 00E+0 00E+0 00E+0 00E+0 + +Al+3 - H+ + H2O = Al(OH)+2 + log_k -4.95 #95POK/HEL + delta_h 49.759 #kJ/mol +# Enthalpy of formation: -774.471 kJ/mol + -analytic 37.67403E-1 00E+0 -25.99094E+2 00E+0 00E+0 + +Al+3 - 2 H+ + Edta-4 + 2 H2O = Al(OH)2(Edta)-3 + log_k 2.3 #95AKR/BOU + -analytic 23E-1 00E+0 00E+0 00E+0 00E+0 + +Al+3 - 2 H+ + HGlu- + 2 H2O = Al(OH)2(HGlu) + log_k -4.85 #08LAK/KIS + -analytic -48.5E-1 00E+0 00E+0 00E+0 00E+0 + +Al+3 - 2 H+ + 2 HGlu- + 2 H2O = Al(OH)2(HGlu)2- + log_k -2.6 #08LAK/KIS + -analytic -26E-1 00E+0 00E+0 00E+0 00E+0 + +Al+3 - 2 H+ + 2 H2O = Al(OH)2+ + log_k -10.58 + delta_h 98.264 #kJ/mol +# Enthalpy of formation: -1011.796 kJ/mol 95POK/HEL + -analytic 66.35114E-1 00E+0 -51.32686E+2 00E+0 00E+0 + +Al+3 - 2 H+ + F- + 2 H2O = Al(OH)2F + log_k -4.21 + delta_h 118.636 #kJ/mol +# Enthalpy of formation: -1326.774 kJ/mol 01TAG/SCH + -analytic 16.57414E+0 00E+0 -61.9679E+2 00E+0 00E+0 + +Al+3 - 2 H+ + 2 F- + 2 H2O = Al(OH)2F2- + log_k -1.99 + delta_h 134.839 #kJ/mol +# Enthalpy of formation: -1645.921 kJ/mol 01TAG/SCH + -analytic 21.63278E+0 00E+0 -70.43131E+2 00E+0 00E+0 + +Al+3 - 3 H+ + 3 H2O = Al(OH)3 + log_k -16.42 + delta_h 144.686 #kJ/mol +# Enthalpy of formation: -1251.204 kJ/mol 95POK/HEL + -analytic 89.27899E-1 00E+0 -75.57476E+2 00E+0 00E+0 + +Al+3 - 3 H+ + HGlu- + 3 H2O = Al(OH)3(HGlu)- + log_k -11.11 #08LAK/KIS + -analytic -11.11E+0 00E+0 00E+0 00E+0 00E+0 + +Al+3 - 4 H+ + 4 H2O = Al(OH)4- + log_k -22.87 + delta_h 180.881 #kJ/mol +# Enthalpy of formation: -1500.839 kJ/mol 95POK/HEL + -analytic 88.18991E-1 00E+0 -94.48073E+2 00E+0 00E+0 + +Al+3 - 4 H+ + HGlu- + 4 H2O = Al(OH)4(HGlu)-2 + log_k -20.47 #13PAL/TAS + -analytic -20.47E+0 00E+0 00E+0 00E+0 00E+0 + +Al+3 + Ox-2 = Al(Ox)+ + log_k 9.4 #95AKR/BOU + -analytic 94E-1 00E+0 00E+0 00E+0 00E+0 + +Al+3 + 2 Ox-2 = Al(Ox)2- + log_k 15.39 #95AKR/BOU + -analytic 15.39E+0 00E+0 00E+0 00E+0 00E+0 + +Al+3 + 3 Ox-2 = Al(Ox)3-3 + log_k 18.3 #95AKR/BOU + -analytic 18.3E+0 00E+0 00E+0 00E+0 00E+0 + +Al+3 + SO4-2 = Al(SO4)+ + log_k 3.17 #01TAG/SCH + delta_h 18.869 #kJ/mol +# Enthalpy of formation: -1428.870 kJ/mol + -analytic 64.75707E-1 00E+0 -98.55965E+1 00E+0 00E+0 + +2 Al+3 - 2 H+ + 4 Ox-2 + 2 H2O = Al2(Ox)4(OH)2-4 + log_k 22 #95AKR/BOU + -analytic 22E+0 00E+0 00E+0 00E+0 00E+0 + +3 Al+3 - 4 H+ + 3 Cit-3 + 4 H2O = Al3(Cit)3(OH)4-4 + log_k 20.6 #95AKR/BOU + -analytic 20.6E+0 00E+0 00E+0 00E+0 00E+0 + +3 Al+3 - 3 H+ + 3 Ox-2 + 3 H2O = Al3(Ox)3(OH)3 + log_k 16 #95AKR/BOU + -analytic 16E+0 00E+0 00E+0 00E+0 00E+0 + +4 Al+3 - 4 H+ + 4 Ox-2 + 4 H2O = Al4(Ox)4(OH)4 + log_k 21 #95AKR/BOU + -analytic 21E+0 00E+0 00E+0 00E+0 00E+0 + +Al+3 + F- = AlF+2 + log_k 6.98 #01TAG/SCH + delta_h -0.345 #kJ/mol +# Enthalpy of formation: -874.094 kJ/mol + -analytic 69.19559E-1 00E+0 18.02061E+0 00E+0 00E+0 + +Al+3 + 2 F- = AlF2+ + log_k 12.5 #01TAG/SCH + delta_h 74.869 #kJ/mol +# Enthalpy of formation: -1134.230 kJ/mol + -analytic 25.61649E+0 00E+0 -39.1068E+2 00E+0 00E+0 + +Al+3 + 3 F- = AlF3 + log_k 16.55 #01TAG/SCH + delta_h 0.616 #kJ/mol +# Enthalpy of formation: -1543.833 kJ/mol + -analytic 16.65792E+0 00E+0 -32.17592E+0 00E+0 00E+0 + +Al+3 + 4 F- = AlF4- + log_k 18.93 #01TAG/SCH + delta_h 0.824 #kJ/mol +# Enthalpy of formation: -1878.974 kJ/mol + -analytic 19.07436E+0 00E+0 -43.04052E+0 00E+0 00E+0 + +Al+3 - H+ + H4(SiO4) = AlH3SiO4+2 + log_k -2.38 #01TAG/SCH + delta_h 77.382 #kJ/mol +# Enthalpy of formation: -1922.212 kJ/mol + -analytic 11.17674E+0 00E+0 -40.41943E+2 00E+0 00E+0 + +Al+3 - H+ + 2 F- + H2O = AlOHF2 + log_k 0.21 + delta_h 139.337 #kJ/mol +# Enthalpy of formation: -1355.593 kJ/mol 01TAG/SCH + -analytic 24.62079E+0 00E+0 -72.78078E+2 00E+0 00E+0 + +Am+3 + Acetate- = Am(Acetate)+2 + log_k 2.94 #11RIC/GRI + -analytic 29.4E-1 00E+0 00E+0 00E+0 00E+0 + +Am+3 + 2 Acetate- = Am(Acetate)2+ + log_k 5.07 #69MOS + -analytic 50.7E-1 00E+0 00E+0 00E+0 00E+0 + +Am+3 + 3 Acetate- = Am(Acetate)3 + log_k 6.54 #69MOS + -analytic 65.4E-1 00E+0 00E+0 00E+0 00E+0 + +Am+3 + Cit-3 = Am(Cit) + log_k 8.55 #05HUM/AND + -analytic 85.5E-1 00E+0 00E+0 00E+0 00E+0 + +Am+3 + 2 Cit-3 = Am(Cit)2-3 + log_k 13.9 #05HUM/AND + -analytic 13.9E+0 00E+0 00E+0 00E+0 00E+0 + +Am+3 + CO3-2 = Am(CO3)+ + log_k 7.9 #recalculated from 03GUI/FAN + delta_h 18.174 #kJ/mol +# Enthalpy of formation: -1273.757 kJ/mol + -analytic 11.08395E+0 00E+0 -94.92941E+1 00E+0 00E+0 + +Am+3 + 2 CO3-2 = Am(CO3)2- + log_k 12.6 #recalculated from 03GUI/FAN + -analytic 12.6E+0 00E+0 00E+0 00E+0 00E+0 + +Am+3 + 3 CO3-2 = Am(CO3)3-3 + log_k 14.6 #Recalculated from 03GUI/FAN + -analytic 14.6E+0 00E+0 00E+0 00E+0 00E+0 + +Am+3 - e- + 5 CO3-2 = Am(CO3)5-6 +# This reaction should be written with Am+4 + log_k -5.1 #03GUI/FAN + -analytic -51E-1 00E+0 00E+0 00E+0 00E+0 + +Am+3 + Edta-4 = Am(Edta)- + log_k 19.67 #05HUM/AND + delta_h -10.6 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2332.100 kJ/mol + -analytic 17.81296E+0 00E+0 55.36766E+1 00E+0 00E+0 + +Am+3 + H2(PO4)- = Am(H2PO4)+2 + log_k 2.46 #20GRE/GAO + -analytic 24.6E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + Am+3 + Cit-3 = Am(HCit)+ + log_k 12.86 #05HUM/AND + -analytic 12.86E+0 00E+0 00E+0 00E+0 00E+0 + +2 H+ + Am+3 + 2 Cit-3 = Am(HCit)2- + log_k 23.52 #05HUM/AND + -analytic 23.52E+0 00E+0 00E+0 00E+0 00E+0 + +H+ + Am+3 + CO3-2 = Am(HCO3)+2 + log_k 13.43 #03GUI/FAN + -analytic 13.43E+0 00E+0 00E+0 00E+0 00E+0 + +H+ + Am+3 + Edta-4 = Am(HEdta) + log_k 21.84 #05HUM/AND + -analytic 21.84E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + Am+3 + H2(PO4)- = Am(HPO4)+ + log_k -1.74 #Estimated by correlation with An(III) in function of ionic radii. + -analytic -17.4E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + Am+3 + 2 H2(PO4)- = Am(HPO4)2- + log_k -5.3 #Estimated by correlation with An(III) in function of ionic radii. + -analytic -53E-1 00E+0 00E+0 00E+0 00E+0 + +Am+3 + NO3- = Am(NO3)+2 + log_k 1.28 #20GRE/GAO + delta_h 1.8 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -821.750 kJ/mol + -analytic 15.95346E-1 00E+0 -94.02055E+0 00E+0 00E+0 + +Am+3 + 2 NO3- = Am(NO3)2+ + log_k 0.88 #20GRE/GAO + delta_h 10.8 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1019.600 kJ/mol + -analytic 27.72079E-1 00E+0 -56.41233E+1 00E+0 00E+0 + +Am+3 + Nta-3 = Am(Nta) + log_k 13 #95AKR/BOU + -analytic 13E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + Am+3 + H2O = Am(OH)+2 + log_k -7.2 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE + delta_h 41.492 #kJ/mol +# Enthalpy of formation: -861.038 kJ/mol + -analytic 69.08637E-3 00E+0 -21.67278E+2 00E+0 00E+0 + +- 2 H+ + Am+3 + HGlu- + 2 H2O = Am(OH)2(HGlu) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97E+0 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + Am+3 + HIsa- + 2 H2O = Am(OH)2(HIsa) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97E+0 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + Am+3 + 2 H2O = Am(OH)2+ + log_k -15.1 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE + delta_h 94.628 #kJ/mol +# Enthalpy of formation: -1093.732 kJ/mol + -analytic 14.78114E-1 00E+0 -49.42765E+2 00E+0 00E+0 + +- 3 H+ + Am+3 + 3 H2O = Am(OH)3 + log_k -26.2 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE + delta_h 156.808 #kJ/mol +# Enthalpy of formation: -1317.382 kJ/mol + -analytic 12.71582E-1 00E+0 -81.90652E+2 00E+0 00E+0 + +Am+3 + Ox-2 = Am(Ox)+ + log_k 6.51 #05HUM/AND + -analytic 65.1E-1 00E+0 00E+0 00E+0 00E+0 + +Am+3 + 2 Ox-2 = Am(Ox)2- + log_k 10.71 #05HUM/AND + -analytic 10.71E+0 00E+0 00E+0 00E+0 00E+0 + +Am+3 + 3 Ox-2 = Am(Ox)3-3 + log_k 13 #05HUM/AND + -analytic 13E+0 00E+0 00E+0 00E+0 00E+0 + +Am+3 + Phthalat-2 = Am(Phthalat)+ + log_k 4.93 #In analogy with Cm + -analytic 49.3E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + Am+3 + H2(PO4)- = Am(PO4) + log_k -7.76 #1. Estimated by correlation with An(III) in function of ionic radii + -analytic -77.6E-1 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + Am+3 + 2 H2(PO4)- = Am(PO4)2-3 + log_k -19.41 #Estimated by correlation with An(III) in function of ionic radii. + -analytic -19.41E+0 00E+0 00E+0 00E+0 00E+0 + +Am+3 + SO4-2 = Am(SO4)+ + log_k 3.5 #20GRE/GAO + delta_h 40 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1486.040 kJ/mol + -analytic 10.5077E+0 00E+0 -20.89346E+2 00E+0 00E+0 + +Am+3 + 2 SO4-2 = Am(SO4)2- + log_k 5 #20GRE/GAO + delta_h 70 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2365.380 kJ/mol + -analytic 17.26347E+0 00E+0 -36.56355E+2 00E+0 00E+0 + +Am+3 + Cl- = AmCl+2 + log_k 0.24 #20GRE/GAO + delta_h 19.39 #kJ/mol 00YEH/MAD +# Enthalpy of formation: -764.390 kJ/mol + -analytic 36.36982E-1 00E+0 -10.1281E+2 00E+0 00E+0 + +Am+3 + 2 Cl- = AmCl2+ + log_k -0.81 #20GRE/GAO + delta_h 54.9 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -895.960 kJ/mol + -analytic 88.08067E-1 00E+0 -28.67627E+2 00E+0 00E+0 + +Am+3 + F- = AmF+2 + log_k 3.4 #20GRE/GAO + delta_h 12.1 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -939.950 kJ/mol + -analytic 55.19829E-1 00E+0 -63.2027E+1 00E+0 00E+0 + +Am+3 + 2 F- = AmF2+ + log_k 5.8 #20GRE/GAO + delta_h 45.1 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1242.300 kJ/mol + -analytic 13.70118E+0 00E+0 -23.55737E+2 00E+0 00E+0 + +Am+3 + 3 F- = AmF3 + log_k 10.82 #69AZI/LYL + delta_h 20.407 #kJ/mol +# Enthalpy of formation: -1602.342 kJ/mol + -analytic 14.39515E+0 00E+0 -10.65932E+2 00E+0 00E+0 + +AmO2+ + CO3-2 = AmO2(CO3)- + log_k 5.1 #03GUI/FAN + -analytic 51E-1 00E+0 00E+0 00E+0 00E+0 + +AmO2+ + 2 CO3-2 = AmO2(CO3)2-3 + log_k 6.7 #03GUI/FAN + -analytic 67E-1 00E+0 00E+0 00E+0 00E+0 + +AmO2+ + 3 CO3-2 = AmO2(CO3)3-5 + log_k 5.1 #03GUI/FAN + -analytic 51E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + AmO2+ + 2 H2O = AmO2(OH)2- + log_k -23.6 #03GUI/FAN + -analytic -23.6E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + AmO2+ + H2O = AmO2OH + log_k -11.3 #03GUI/FAN + -analytic -11.3E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + Am+3 + H4(SiO4) = AmSiO(OH)3+2 + log_k -2.31 #Original data 07THA/SIN, 05PAN/KIM and 97STE/FAN + delta_h 47.963 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2029.931 kJ/mol + -analytic 60.92757E-1 00E+0 -25.05282E+2 00E+0 00E+0 + +- 3 H+ + H3(AsO3) = AsO3-3 + log_k -38.59 #79IVA/VOR + -analytic -38.59E+0 00E+0 00E+0 00E+0 00E+0 + +H+ + B(OH)4- - H2O = B(OH)3 + log_k 9.24 + delta_h -13.514 #kJ/mol +# Enthalpy of formation: -1072.800 kJ/mol 01LEM/FUG + -analytic 68.72449E-1 00E+0 70.58854E+1 00E+0 00E+0 + +2 H+ + 3 B(OH)4- - 7 H2O = B3O5- + log_k 20.9 #97CRO + -analytic 20.9E+0 00E+0 00E+0 00E+0 00E+0 + +2 H+ + 4 B(OH)4- - 9 H2O = B4O7-2 + log_k 21.9 #97CRO + -analytic 21.9E+0 00E+0 00E+0 00E+0 00E+0 + +Ba+2 + CO3-2 = Ba(CO3) + log_k 2.71 #86BUS/PLU + delta_h 14.841 #kJ/mol 86BUS/PLU +# Enthalpy of formation: -1195.189 kJ/mol + -analytic 53.10032E-1 00E+0 -77.51994E+1 00E+0 00E+0 + +Ba+2 + H+ + CO3-2 = Ba(HCO3)+ + log_k 11.31 #86BUS/PLU + delta_h 8.56 #kJ/mol 86BUS/PLU +# Enthalpy of formation: -1201.470 kJ/mol + -analytic 12.80965E+0 00E+0 -44.71199E+1 00E+0 00E+0 + +Ba+2 + NO3- = Ba(NO3)+ + log_k -0.31 + delta_h 6.819 #kJ/mol +# Enthalpy of formation: -734.831 kJ/mol + -analytic 88.46375E-2 00E+0 -35.61812E+1 00E+0 00E+0 + +Ba+2 - H+ + H2O = Ba(OH)+ + log_k -13.47 #76BAE/MES + delta_h 87.397 #kJ/mol +# Enthalpy of formation: -733.233 kJ/mol + -analytic 18.41297E-1 00E+0 -45.65063E+2 00E+0 00E+0 + +Ba+2 + SO4-2 = Ba(SO4) + log_k 2.7 #76SMI/MAR; Uncertainty to include available data. + delta_h 7.367 #kJ/mol +# Enthalpy of formation: -1436.772 kJ/mol + -analytic 39.90643E-1 00E+0 -38.48052E+1 00E+0 00E+0 + +2 Ba+2 + UO2+2 + 3 CO3-2 = Ba2UO2(CO3)3 + log_k 29.75 #06DON/BRO + -analytic 29.75E+0 00E+0 00E+0 00E+0 00E+0 + +Ba+2 + B(OH)4- = BaB(OH)4+ + log_k 1.49 #80BAS + -analytic 14.9E-1 00E+0 00E+0 00E+0 00E+0 + +Ba+2 + F- = BaF+ + log_k 0.4 + delta_h 6.698 #kJ/mol +# Enthalpy of formation: -863.452 kJ/mol 97SVE/SHO + -analytic 15.73439E-1 00E+0 -34.98609E+1 00E+0 00E+0 + +Ba+2 + UO2+2 + 3 CO3-2 = BaUO2(CO3)3-2 + log_k 25.6 #20GRE/GAO + -analytic 25.6E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + CO3-2 + H2O + Be+2 = Be(OH)(CO3)- + log_k 1.85 #87BRU/GRE + -analytic 18.5E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + H2O + Be+2 = Be(OH)+ + log_k -5.49 #17CAM/COL + -analytic -54.9E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + 2 H2O + Be+2 = Be(OH)2 + log_k -13.7 #20ÇEV/GAO + -analytic -13.7E+0 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + CO3-2 + 2 H2O + Be+2 = Be(OH)2(CO3)-2 + log_k -6.04 #87BRU/GRE + -analytic -60.4E-1 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ + 3 H2O + Be+2 = Be(OH)3- + log_k -24.3 #20ÇEV/GAO + -analytic -24.3E+0 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + 4 H2O + Be+2 = Be(OH)4-2 + log_k -37.6 #20ÇEV/GAO + -analytic -37.6E+0 00E+0 00E+0 00E+0 00E+0 + +2 SO4-2 + Be+2 = Be(SO4)2-2 + log_k 3.35 #67SEI/SAK + -analytic 33.5E-1 00E+0 00E+0 00E+0 00E+0 + +3 SO4-2 + Be+2 = Be(SO4)3-4 + log_k 4.58 #67SEI/SAK + -analytic 45.8E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + H2O + 2 Be+2 = Be2(OH)+3 + log_k -3.47 #87BRU + delta_h 20.42 #kJ/mol 67MES/BAE +# Enthalpy of formation: -1031.010 kJ/mol + -analytic 10.74304E-2 00E+0 -10.66611E+2 00E+0 00E+0 + +- H+ + CO3-2 + H2O + 3 Be+2 = Be3(OH)(CO3)+3 + log_k 9.47 #87BRU/GRE + -analytic 94.7E-1 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ + 3 CO3-2 + 3 H2O + 3 Be+2 = Be3(OH)3(CO3)3-3 + log_k 9.04 #87BRU/GRE + -analytic 90.4E-1 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ + 3 H2O + 3 Be+2 = Be3(OH)3+3 + log_k -8.86 #87BRU + delta_h 66.944 #kJ/mol 67MES/BAE +# Enthalpy of formation: -1938.946 kJ/mol + -analytic 28.68085E-1 00E+0 -34.96729E+2 00E+0 00E+0 + +- 4 H+ + 3 CO3-2 + 4 H2O + 3 Be+2 = Be3(OH)4(CO3)3-4 + log_k 1.06 #87BRU/GRE + -analytic 10.6E-1 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + CO3-2 + 4 H2O + 5 Be+2 = Be5(OH)4(CO3)+4 + log_k 1.16 #87BRU/GREa + -analytic 11.6E-1 00E+0 00E+0 00E+0 00E+0 + +- 6 H+ + 6 H2O + 5 Be+2 = Be5(OH)6+4 + log_k -19.5 #87BRU + -analytic -19.5E+0 00E+0 00E+0 00E+0 00E+0 + +- 5 H+ + 2 CO3-2 + 5 H2O + 6 Be+2 = Be6(OH)5(CO3)2+3 + log_k 8.91 #87BRU/GREa + -analytic 89.1E-1 00E+0 00E+0 00E+0 00E+0 + +- 8 H+ + 8 H2O + 6 Be+2 = Be6(OH)8+4 + log_k -26.3 #87BRU + -analytic -26.3E+0 00E+0 00E+0 00E+0 00E+0 + +Cl- + Be+2 = BeCl+ + log_k 0.19 #65MOR/JON + -analytic 19E-2 00E+0 00E+0 00E+0 00E+0 + +CO3-2 + Be+2 = BeCO3 + log_k 8.57 #87BRU/GRE + -analytic 85.7E-1 00E+0 00E+0 00E+0 00E+0 + +F- + Be+2 = BeF+ + log_k 5.52 #69MES/BAE + delta_h -1.464 #kJ/mol 69MES/BAE +# Enthalpy of formation: -719.614 kJ/mol + -analytic 52.63518E-1 00E+0 76.47005E+0 00E+0 00E+0 + +2 F- + Be+2 = BeF2 + log_k 9.67 #69MES/BAE + delta_h -6.318 #kJ/mol 69MES/BAE +# Enthalpy of formation: -1059.818 kJ/mol + -analytic 85.63134E-1 00E+0 33.00121E+1 00E+0 00E+0 + +3 F- + Be+2 = BeF3- + log_k 12.44 #69MES/BAE + delta_h -7.531 #kJ/mol 69MES/BAE +# Enthalpy of formation: -1396.381 kJ/mol + -analytic 11.12063E+0 00E+0 39.33715E+1 00E+0 00E+0 + +4 F- + Be+2 = BeF4-2 + log_k 13.44 #69MES/BAE + delta_h -9.456 #kJ/mol 69MES/BAE +# Enthalpy of formation: -1733.656 kJ/mol + -analytic 11.78338E+0 00E+0 49.39213E+1 00E+0 00E+0 + +SO4-2 + Be+2 = BeSO4 + log_k 2.03 #62BEL/KOL + -analytic 20.3E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + F- + B(OH)4- - H2O = BF(OH)3- + log_k 8.94 #77NOR/JEN + delta_h -39.078 #kJ/mol 77NOR/JEN +# Enthalpy of formation: -1433.714 kJ/mol + -analytic 20.93828E-1 00E+0 20.41186E+2 00E+0 00E+0 + +2 H+ + 2 F- + B(OH)4- - 2 H2O = BF2(OH)2- + log_k 16.97 #77NOR/JEN + delta_h -38.702 #kJ/mol 77NOR/JEN +# Enthalpy of formation: -1482.858 kJ/mol + -analytic 10.1897E+0 00E+0 20.21546E+2 00E+0 00E+0 + +3 H+ + 3 F- + B(OH)4- - 3 H2O = BF3(OH)- + log_k 23.01 #77NOR/JEN + delta_h -38.326 #kJ/mol 77NOR/JEN +# Enthalpy of formation: -1532.002 kJ/mol + -analytic 16.29557E+0 00E+0 20.01906E+2 00E+0 00E+0 + +4 H+ + 4 F- + B(OH)4- - 4 H2O = BF4- + log_k 29.62 #77NOR/JEN + delta_h 73.68 #kJ/mol 77NOR/JEN +# Enthalpy of formation: -1469.516 kJ/mol + -analytic 42.52818E+0 00E+0 -38.48574E+2 00E+0 00E+0 + +Ca+2 + Acetate- = Ca(Acetate)+ + log_k 1.12 #95DER/DIG + delta_h 0.143 #kJ/mol +# Enthalpy of formation: -1028.867 kJ/mol + -analytic 11.45053E-1 00E+0 -74.6941E-1 00E+0 00E+0 + +Ca+2 + Adipate-2 = Ca(Adipate) + log_k 2.19 #04MAR/SMI from 40TOP/DAV + -analytic 21.9E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 - 3 H+ + Am+3 + 3 H2O = Ca(Am(OH)3)+2 + log_k -26.3 #07RAB/ALT + -analytic -26.3E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + AsO4-3 = Ca(AsO4)- + log_k 5.77 #10MAR/ACC + -analytic 57.7E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + Cit-3 = Ca(Cit)- + log_k 4.8 #05HUM/AND + delta_h 0 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2062.920 kJ/mol + -analytic 48E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 - 3 H+ + Cm+3 + 3 H2O = Ca(Cm(OH)3)+2 + log_k -26.3 #07RAB/ALT + -analytic -26.3E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + Edta-4 = Ca(Edta)-2 + log_k 12.69 #05HUM/AND + delta_h -22.2 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2270.000 kJ/mol + -analytic 88.00727E-1 00E+0 11.59587E+2 00E+0 00E+0 + +Ca+2 + Eu+3 - 3 H+ + 3 H2O = Ca(Eu(OH)3)+2 + log_k -26.3 #07RAB/ALT + -analytic -26.3E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + 2 H+ + AsO4-3 = Ca(H2AsO4)+ + log_k 19.87 #10MAR/ACC + -analytic 19.87E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + 2 H+ + Cit-3 = Ca(H2Cit)+ + log_k 12.67 #05HUM/AND + -analytic 12.67E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + H2(PO4)- = Ca(H2PO4)+ + log_k 1.41 #68CHU/MAR + delta_h 14.226 #kJ/mol 68CHU/MAR +# Enthalpy of formation: -1831.374 kJ/mol + -analytic 39.02288E-1 00E+0 -74.30757E+1 00E+0 00E+0 + +Ca+2 - H+ + H4(SiO4) = Ca(H3SiO4)+ + log_k -8.83 #97SVE/SHO + delta_h 31.633 #kJ/mol +# Enthalpy of formation: -1972.561 kJ/mol + -analytic -32.88136E-1 00E+0 -16.52307E+2 00E+0 00E+0 + +Ca+2 + H+ + AsO4-3 = Ca(HAsO4) + log_k 13.9 #10MAR/ACC + -analytic 13.9E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + H+ + Cit-3 = Ca(HCit) + log_k 9.28 #05HUM/AND + -analytic 92.8E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + H+ + CO3-2 = Ca(HCO3)+ + log_k 11.43 #96BOU1 + delta_h -23.595 #kJ/mol +# Enthalpy of formation: -1241.826 kJ/mol + -analytic 72.96333E-1 00E+0 12.32453E+2 00E+0 00E+0 + +Ca+2 + H+ + Edta-4 = Ca(HEdta)- + log_k 16.23 #05HUM/AND + -analytic 16.23E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + HGlu- = Ca(HGlu)+ + log_k 1.73 #52SCH/LIN + -analytic 17.3E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + HIsa- = Ca(HIsa)+ + log_k 1.7 #05HUM/AND + -analytic 17E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + H+ + Malonate-2 = Ca(HMalonate)+ + log_k 6.64 #13GRI/CAM + -analytic 66.4E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + H+ + Nta-3 = Ca(HNta) + log_k 13.4 #95AKR/BOU + -analytic 13.4E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + 2 H+ + 2 Nta-3 = Ca(HNta)2-2 + log_k 23.63 #95AKR/BOU + -analytic 23.63E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 - 3 H+ + Ho+3 + 3 H2O = Ca(Ho(OH)3)+2 + log_k -26.3 #07RAB/ALT + -analytic -26.3E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + H+ + Phthalat-2 = Ca(HPhthalat)+ + log_k 6.42 #85DAN/DER + -analytic 64.2E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 - H+ + H2(PO4)- = Ca(HPO4) + log_k -4.47 #68CHU/MAR + delta_h 17.407 #kJ/mol 68CHU/MAR +# Enthalpy of formation: -1828.193 kJ/mol + -analytic -14.20425E-1 00E+0 -90.92309E+1 00E+0 00E+0 + +Ca+2 + H+ + Pyrophos-4 = Ca(HPyrophos)- + log_k 13.8 #88CHA/NEW + -analytic 13.8E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + H+ + Succinat-2 = Ca(HSuccinat)+ + log_k 6.79 #13GRI/CAM + -analytic 67.9E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + IO3- = Ca(IO3)+ + log_k 0.4 #estimation NEA87 08/2/95 + -analytic 40E-2 00E+0 00E+0 00E+0 00E+0 + +Ca+2 - H+ + HIsa- = Ca(Isa) + log_k -10.4 #05HUM/AND + -analytic -10.4E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + Malonate-2 = Ca(Malonate) + log_k 2.43 #13GRI/CAM + -analytic 24.3E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + NH3 = Ca(NH3)+2 + log_k -0.1 #88CHA/NEW + -analytic -10E-2 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + 2 NH3 = Ca(NH3)2+2 + log_k -0.7 #88CHA/NEW + -analytic -70E-2 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + 3 NH3 = Ca(NH3)3+2 + log_k -1.5 #88CHA/NEW + -analytic -15E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + 4 NH3 = Ca(NH3)4+2 + log_k -2.6 #88CHA/NEW + -analytic -26E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + NpO2+ - 2 H+ + 2 H2O = Ca(NpO2(OH)2)+ + log_k -20.6 #20GRE/GAO + -analytic -20.6E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + Nta-3 = Ca(Nta)- + log_k 7.73 #95AKR/BOU + -analytic 77.3E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 - H+ + HGlu- + H2O = Ca(OH)(HGlu) + log_k -10.4 #02TIT/WIE + -analytic -10.4E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 - H+ + H2O = Ca(OH)+ + log_k -12.78 #87GAR/PAR + delta_h 77.207 #kJ/mol +# Enthalpy of formation: -751.623 kJ/mol + -analytic 74.60858E-2 00E+0 -40.32802E+2 00E+0 00E+0 + +Ca+2 + Ox-2 = Ca(Ox) + log_k 3.19 #05HUM/AND + delta_h 6.811 #kJ/mol +# Enthalpy of formation: -1366.849 kJ/mol + -analytic 43.83236E-1 00E+0 -35.57633E+1 00E+0 00E+0 + +Ca+2 + 2 Ox-2 = Ca(Ox)2-2 + log_k 4.02 #05HUM/AND + -analytic 40.2E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + Phthalat-2 = Ca(Phthalat) + log_k 2.49 #85DAN/DER + -analytic 24.9E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 - 2 H+ + H2(PO4)- = Ca(PO4)- + log_k -13.1 #68CHU/MAR + delta_h 31.17 #kJ/mol 68CHU/MAR +# Enthalpy of formation: -1814.430 kJ/mol + -analytic -76.3925E-1 00E+0 -16.28122E+2 00E+0 00E+0 + +Ca+2 + Pyrophos-4 = Ca(Pyrophos)-2 + log_k 7.5 #88CHA/NEW + -analytic 75E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + S2O3-2 = Ca(S2O3) + log_k 1.35 + delta_h 3.786 #kJ/mol +# Enthalpy of formation: -1191.500 kJ/mol 03-91 MINTEQL-PSI + -analytic 20.13279E-1 00E+0 -19.77566E+1 00E+0 00E+0 + +Ca+2 + SeO4-2 = Ca(SeO4) + log_k 2 #05OLI/NOL + delta_h 1.475 #kJ/mol +# Enthalpy of formation: -1145.025 kJ/mol + -analytic 22.58409E-1 00E+0 -77.04462E+0 00E+0 00E+0 + +Ca+2 + Sm+3 - 3 H+ + 3 H2O = Ca(Sm(OH)3)+2 + log_k -26.3 #07RAB/ALT + -analytic -26.3E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + SO4-2 = Ca(SO4) + log_k 2.31 #53BEL/GEO + delta_h 4.292 #kJ/mol +# Enthalpy of formation: -1448.047 kJ/mol + -analytic 30.61926E-1 00E+0 -22.41868E+1 00E+0 00E+0 + +Ca+2 + Succinat-2 = Ca(Succinat) + log_k 2.34 #13GRI/CAM + -analytic 23.4E-1 00E+0 00E+0 00E+0 00E+0 + +2 Ca+2 - 4 H+ + Am+3 + 4 H2O = Ca2(Am(OH)4)+3 + log_k -37.2 #07RAB/ALT + -analytic -37.2E+0 00E+0 00E+0 00E+0 00E+0 + +2 Ca+2 - 4 H+ + Cm+3 + 4 H2O = Ca2(Cm(OH)4)+3 + log_k -37.2 #07RAB/ALT + -analytic -37.2E+0 00E+0 00E+0 00E+0 00E+0 + +2 Ca+2 + Eu+3 - 4 H+ + 4 H2O = Ca2(Eu(OH)4)+3 + log_k -37.2 #07RAB/ALT + -analytic -37.2E+0 00E+0 00E+0 00E+0 00E+0 + +2 Ca+2 - 4 H+ + Ho+3 + 4 H2O = Ca2(Ho(OH)4)+3 + log_k -37.2 #07RAB/ALT + -analytic -37.2E+0 00E+0 00E+0 00E+0 00E+0 + +2 Ca+2 + Sm+3 - 4 H+ + 4 H2O = Ca2(Sm(OH)4)+3 + log_k -37.2 #07RAB/ALT + -analytic -37.2E+0 00E+0 00E+0 00E+0 00E+0 + +2 Ca+2 + UO2+2 + 3 CO3-2 = Ca2UO2(CO3)3 + log_k 30.8 #20GRE/GAO + delta_h -47 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -4177.690 kJ/mol + -analytic 22.56595E+0 00E+0 24.54981E+2 00E+0 00E+0 + +3 Ca+2 - 6 H+ + Am+3 + 6 H2O = Ca3(Am(OH)6)+3 + log_k -60.7 #07RAB/ALT + -analytic -60.7E+0 00E+0 00E+0 00E+0 00E+0 + +3 Ca+2 - 6 H+ + Cm+3 + 6 H2O = Ca3(Cm(OH)6)+3 + log_k -60.7 #07RAB/ALT + -analytic -60.7E+0 00E+0 00E+0 00E+0 00E+0 + +3 Ca+2 + Eu+3 - 6 H+ + 6 H2O = Ca3(Eu(OH)6)+3 + log_k -60.7 #07RAB/ALT + -analytic -60.7E+0 00E+0 00E+0 00E+0 00E+0 + +3 Ca+2 - 6 H+ + Ho+3 + 6 H2O = Ca3(Ho(OH)6)+3 + log_k -60.7 #07RAB/ALT + -analytic -60.7E+0 00E+0 00E+0 00E+0 00E+0 + +3 Ca+2 + NpO2+ - 5 H+ + 5 H2O = Ca3(NpO2(OH)5)+2 + log_k -54.8 #20GRE/GAO + -analytic -54.8E+0 00E+0 00E+0 00E+0 00E+0 + +3 Ca+2 + Sm+3 - 6 H+ + 6 H2O = Ca3(Sm(OH)6)+3 + log_k -60.7 #07RAB/ALT + -analytic -60.7E+0 00E+0 00E+0 00E+0 00E+0 + +4 Ca+2 + Pu+4 - 8 H+ + 8 H2O = Ca4Pu(OH)8+4 + log_k -56.97 #20GRE/GAO + -analytic -56.97E+0 00E+0 00E+0 00E+0 00E+0 + +4 Ca+2 + Th+4 - 8 H+ + 8 H2O = Ca4Th(OH)8+4 + log_k -63.1 #08ALT/NEC + -analytic -63.1E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + B(OH)4- = CaB(OH)4+ + log_k 1.8 #97CRO + -analytic 18E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + CO3-2 = CaCO3 + log_k 3.22 #96BOU1 + delta_h 14.83 #kJ/mol +# Enthalpy of formation: -1203.400 kJ/mol 96BOU1 + -analytic 58.18104E-1 00E+0 -77.46248E+1 00E+0 00E+0 + +Ca+2 + CrO4-2 = CaCrO4 + log_k 2.77 #00PER/PAL + -analytic 27.7E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + F- = CaF+ + log_k 0.94 #96BOU + delta_h 17.238 #kJ/mol 96BOU +# Enthalpy of formation: -861.112 kJ/mol + -analytic 39.59968E-1 00E+0 -90.04034E+1 00E+0 00E+0 + +Ca+2 + I- = CaI+ + log_k 0.14 #92JOH/OEL + -analytic 14E-2 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + 2 I- = CaI2 + log_k -0.02 #92JOH/OEL + -analytic -20E-3 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + Pu+4 - 4 H+ + HIsa- + 4 H2O = CaPu(OH)4(HIsa)+ + log_k -1.66 #18TAS/GAO1 + -analytic -16.6E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + Pu+4 - 5 H+ + HIsa- + 5 H2O = CaPu(OH)5(HIsa) + log_k -12.7 #18TAS/GAO1 + -analytic -12.7E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + UO2+2 + 3 CO3-2 = CaUO2(CO3)3-2 + log_k 27 #20GRE/GAO + delta_h -47 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -3634.690 kJ/mol + -analytic 18.76595E+0 00E+0 24.54981E+2 00E+0 00E+0 + +Cd+2 + CO3-2 = Cd(CO3) + log_k 4.7 #91RAI/FEL1 + delta_h 4.299 #kJ/mol +# Enthalpy of formation: -746.851 kJ/mol + -analytic 54.53152E-1 00E+0 -22.45524E+1 00E+0 00E+0 + +Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + log_k 6.5 #91RAI/FEL1 + -analytic 65E-1 00E+0 00E+0 00E+0 00E+0 + +Cd+2 + H2(PO4)- = Cd(H2PO4)+ + log_k 1.8 #01AYA/MAD + -analytic 18E-1 00E+0 00E+0 00E+0 00E+0 + +Cd+2 + H+ + CO3-2 = Cd(HCO3)+ + log_k 11.83 #93STI/PAR + -analytic 11.83E+0 00E+0 00E+0 00E+0 00E+0 + +Cd+2 + 2 HS- = Cd(HS)2 + log_k 14.43 #99WAN/TES + -analytic 14.43E+0 00E+0 00E+0 00E+0 00E+0 + +Cd+2 + NH3 = Cd(NH3)+2 + log_k 2.52 + -analytic 25.2E-1 00E+0 00E+0 00E+0 00E+0 + +Cd+2 + 2 NH3 = Cd(NH3)2+2 + log_k 4.87 + delta_h -27.965 #kJ/mol +# Enthalpy of formation: -266.225 kJ/mol + -analytic -29.2577E-3 00E+0 14.60714E+2 00E+0 00E+0 + +Cd+2 + 3 NH3 = Cd(NH3)3+2 + log_k 5.93 #ANDRA report (C RP 0ENQ 02-001, Interpolated + -analytic 59.3E-1 00E+0 00E+0 00E+0 00E+0 + +Cd+2 + 4 NH3 = Cd(NH3)4+2 + log_k 7.3 + delta_h -49.714 #kJ/mol +# Enthalpy of formation: -450.314 kJ/mol + -analytic -14.09519E-1 00E+0 25.96743E+2 00E+0 00E+0 + +Cd+2 + NO3- = Cd(NO3)+ + log_k 0.46 #74FED/ROB in 82HÖG + delta_h -21.757 #kJ/mol 74NAU/RYZ in 91BAL/NOR +# Enthalpy of formation: -304.527 kJ/mol + -analytic -33.51663E-1 00E+0 11.36447E+2 00E+0 00E+0 + +Cd+2 + 2 NO3- = Cd(NO3)2 + log_k 0.17 #97CRO + -analytic 17E-2 00E+0 00E+0 00E+0 00E+0 + +Cd+2 - H+ + H2O = Cd(OH)+ + log_k -10.08 #81BAE/MES + delta_h 54.81 #kJ/mol 81BAE/MES +# Enthalpy of formation: -306.940 kJ/mol + -analytic -47.77002E-2 00E+0 -28.62926E+2 00E+0 00E+0 + +Cd+2 - 2 H+ + 2 H2O = Cd(OH)2 + log_k -20.9 #91RAI/FEL1 + delta_h 114.9 #kJ/mol +# Enthalpy of formation: -532.680 kJ/mol + -analytic -77.03841E-2 00E+0 -60.01645E+2 00E+0 00E+0 + +Cd+2 - 3 H+ + 3 H2O = Cd(OH)3- + log_k -33.3 #81BAE/MES + delta_h 156.416 #kJ/mol +# Enthalpy of formation: -776.994 kJ/mol + -analytic -58.97093E-1 00E+0 -81.70177E+2 00E+0 00E+0 + +Cd+2 - 4 H+ + 4 H2O = Cd(OH)4-2 + log_k -47.48 #91RAI/FEL1 + delta_h 229.57 #kJ/mol +# Enthalpy of formation: -989.669 kJ/mol + -analytic -72.61062E-1 00E+0 -11.99128E+3 00E+0 00E+0 + +Cd+2 + Pyrophos-4 = Cd(Pyrophos)-2 + log_k 8.7 #92CLE/DER + -analytic 87E-1 00E+0 00E+0 00E+0 00E+0 + +Cd+2 + S2O3-2 = Cd(S2O3) + log_k 2.46 + delta_h 5.405 #kJ/mol +# Enthalpy of formation: -722.801 kJ/mol 74NAU/RYZ + -analytic 34.06915E-1 00E+0 -28.23228E+1 00E+0 00E+0 + +Cd+2 + SeO4-2 = Cd(SeO4) + log_k 2.27 #05OLI/NOL + delta_h 8.3 #kJ/mol 05OLI/NOL +# Enthalpy of formation: -671.120 kJ/mol + -analytic 37.24098E-1 00E+0 -43.35392E+1 00E+0 00E+0 + +Cd+2 + SO4-2 = Cd(SO4) + log_k 2.37 #97MAR/SMI + delta_h 8.7 #kJ/mol 97MAR/SMI +# Enthalpy of formation: -976.560 kJ/mol + -analytic 38.94175E-1 00E+0 -45.44326E+1 00E+0 00E+0 + +Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + log_k 3.44 #76SMI/MAR + -analytic 34.4E-1 00E+0 00E+0 00E+0 00E+0 + +4 Cd+2 - 4 H+ + 4 H2O = Cd4(OH)4+4 + log_k -32.07 + delta_h 172.135 #kJ/mol +# Enthalpy of formation: -1274.865 kJ/mol 99YUN/GLU + -analytic -19.13243E-1 00E+0 -89.91237E+2 00E+0 00E+0 + +Cd+2 + Br- = CdBr+ + log_k 2.16 + delta_h -7.959 #kJ/mol +# Enthalpy of formation: -205.289 kJ/mol + -analytic 76.56431E-2 00E+0 41.57275E+1 00E+0 00E+0 + +Cd+2 + 2 Br- = CdBr2 + log_k 2.92 + delta_h -15.743 #kJ/mol +# Enthalpy of formation: -334.482 kJ/mol + -analytic 16.19448E-2 00E+0 82.23142E+1 00E+0 00E+0 + +Cd+2 + 3 Br- = CdBr3- + log_k 3.19 + delta_h -28.846 #kJ/mol +# Enthalpy of formation: -468.995 kJ/mol + -analytic -18.63602E-1 00E+0 15.06732E+2 00E+0 00E+0 + +Cd+2 + Cl- = CdCl+ + log_k 1.97 #76BAE/MES + delta_h -5.52 #kJ/mol +# Enthalpy of formation: -248.520 kJ/mol + -analytic 10.02938E-1 00E+0 28.83297E+1 00E+0 00E+0 + +Cd+2 + 2 Cl- = CdCl2 + log_k 2.59 #76BAE/MES + delta_h -14.068 #kJ/mol +# Enthalpy of formation: -424.148 kJ/mol + -analytic 12.53922E-2 00E+0 73.48228E+1 00E+0 00E+0 + +Cd+2 + 3 Cl- = CdCl3- + log_k 2.4 #76BAE/MES + delta_h -25.804 #kJ/mol +# Enthalpy of formation: -602.963 kJ/mol + -analytic -21.20667E-1 00E+0 13.47837E+2 00E+0 00E+0 + +Cd+2 + 4 Cl- = CdCl4-2 + log_k 1.47 #76BAE/MES + delta_h -44.765 #kJ/mol +# Enthalpy of formation: -789.004 kJ/mol + -analytic -63.72491E-1 00E+0 23.38239E+2 00E+0 00E+0 + +Cd+2 - H+ + H2(PO4)- = CdHPO4 + log_k -2.38 #01AYA/MAD + -analytic -23.8E-1 00E+0 00E+0 00E+0 00E+0 + +Cd+2 + HS- = CdHS+ + log_k 7.38 #99WAN/TES + -analytic 73.8E-1 00E+0 00E+0 00E+0 00E+0 + +Cd+2 + I- = CdI+ + log_k 2.09 + delta_h -8.739 #kJ/mol +# Enthalpy of formation: -141.439 kJ/mol + -analytic 55.89929E-2 00E+0 45.64698E+1 00E+0 00E+0 + +Cd+2 + 2 I- = CdI2 + log_k 3.53 + delta_h -18.988 #kJ/mol +# Enthalpy of formation: -208.468 kJ/mol + -analytic 20.34452E-2 00E+0 99.18123E+1 00E+0 00E+0 + +Cd+2 + 3 I- = CdI3- + log_k 4.64 + delta_h -38.648 #kJ/mol +# Enthalpy of formation: -284.907 kJ/mol + -analytic -21.30839E-1 00E+0 20.18726E+2 00E+0 00E+0 + +Cd+2 + 4 I- = CdI4-2 + log_k 5.48 + delta_h -75.61 #kJ/mol +# Enthalpy of formation: -378.649 kJ/mol + -analytic -77.66303E-1 00E+0 39.49385E+2 00E+0 00E+0 + +- H+ + CH4 = CH3- + log_k -46 #18BLA/BUR + -analytic -46E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + CH4 + Hg+2 = CH3Hg+ + log_k 3 #18BLA/BUR + -analytic 30E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + Cl- + CH4 + Hg+2 = CH3HgCl + log_k 8.45 #18BLA/BUR + -analytic 84.5E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + CO3-2 + CH4 + Hg+2 = CH3HgCO3- + log_k 9.1 #18BLA/BUR + -analytic 91E-1 00E+0 00E+0 00E+0 00E+0 + +CO3-2 + CH4 + Hg+2 = CH3HgHCO3 + log_k 15.93 #18BLA/BUR + -analytic 15.93E+0 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + CH4 + H2O + Hg+2 = CH3HgOH + log_k -1.53 #18BLA/BUR + -analytic -15.3E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + HS- + CH4 + Hg+2 = CH3HgS- + log_k 7 #18BLA/BUR + -analytic 70E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + HS- + CH4 + Hg+2 = CH3HgSH + log_k 17.5 #18BLA/BUR + -analytic 17.5E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + SO4-2 + CH4 + Hg+2 = CH3HgSO4- + log_k 5.64 #18BLA/BUR + -analytic 56.4E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 e- + 2 Cl- = Cl2 + log_k -47.21 + delta_h 310.76 #kJ/mol +# Enthalpy of formation: -23.400 kJ/mol 82WAG/EVA + -analytic 72.32815E-1 00E+0 -16.23213E+3 00E+0 00E+0 + +- 8 H+ - 8 e- + Cl- + 4 H2O = ClO4- + log_k -187.79 + delta_h 1182.3 #kJ/mol +# Enthalpy of formation: -128.100 kJ/mol 89COX/WAG + -analytic 19.34007E+0 00E+0 -61.75583E+3 00E+0 00E+0 + +Cm+3 + Acetate- = Cm(Acetate)+2 + log_k 3.01 #11RIC/GRI + -analytic 30.1E-1 00E+0 00E+0 00E+0 00E+0 + +Cm+3 + 2 Acetate- = Cm(Acetate)2+ + log_k 4.96 #12GRI/GAR2 + -analytic 49.6E-1 00E+0 00E+0 00E+0 00E+0 + +Cm+3 + 3 Acetate- = Cm(Acetate)3 + log_k 6.3 #69MOS + -analytic 63E-1 00E+0 00E+0 00E+0 00E+0 + +Cit-3 + Cm+3 = Cm(Cit) + log_k 8.55 #Analogy with Am + -analytic 85.5E-1 00E+0 00E+0 00E+0 00E+0 + +2 Cit-3 + Cm+3 = Cm(Cit)2-3 + log_k 13.9 #Analogy with Am + -analytic 13.9E+0 00E+0 00E+0 00E+0 00E+0 + +CO3-2 + Cm+3 = Cm(CO3)+ + log_k 7.9 #06DUR/CER + delta_h 16.981 #kJ/mol +# Enthalpy of formation: -1273.250 kJ/mol + -analytic 10.87494E+0 00E+0 -88.69794E+1 00E+0 00E+0 + +2 CO3-2 + Cm+3 = Cm(CO3)2- + log_k 12.6 #06DUR/CER + -analytic 12.6E+0 00E+0 00E+0 00E+0 00E+0 + +3 CO3-2 + Cm+3 = Cm(CO3)3-3 + log_k 14.6 #06DUR/CER + -analytic 14.6E+0 00E+0 00E+0 00E+0 00E+0 + +Edta-4 + Cm+3 = Cm(Edta)- + log_k 19.67 #Analogy with Am(Edta)- + -analytic 19.67E+0 00E+0 00E+0 00E+0 00E+0 + +H2(PO4)- + Cm+3 = Cm(H2PO4)+2 + log_k 2.46 #20GRE/GAO + -analytic 24.6E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + Cit-3 + Cm+3 = Cm(HCit)+ + log_k 12.86 #Analogy with Am + -analytic 12.86E+0 00E+0 00E+0 00E+0 00E+0 + +2 H+ + 2 Cit-3 + Cm+3 = Cm(HCit)2- + log_k 23.52 #Analogy with Am + -analytic 23.52E+0 00E+0 00E+0 00E+0 00E+0 + +H+ + Edta-4 + Cm+3 = Cm(HEdta) + log_k 21.84 #Analogy with Am(HEdta) + -analytic 21.84E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + H2(PO4)- + Cm+3 = Cm(HPO4)+ + log_k -1.69 #Estimated by correlation with An(III) in function of ionic radii + -analytic -16.9E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + 2 H2(PO4)- + Cm+3 = Cm(HPO4)2- + log_k -5.19 #Estimated by correlation with An(III) in function of ionic radii + -analytic -51.9E-1 00E+0 00E+0 00E+0 00E+0 + +NO3- + Cm+3 = Cm(NO3)+2 + log_k 1.28 #20GRE/GAO + delta_h 1.8 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -820.050 kJ/mol + -analytic 15.95346E-1 00E+0 -94.02055E+0 00E+0 00E+0 + +2 NO3- + Cm+3 = Cm(NO3)2+ + log_k 0.88 #20GRE/GAO + delta_h 10.8 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1017.900 kJ/mol + -analytic 27.72079E-1 00E+0 -56.41233E+1 00E+0 00E+0 + +Nta-3 + Cm+3 = Cm(Nta) + log_k 13 #Analogy with Am(Nta)(aq) + -analytic 13E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + Cm+3 + H2O = Cm(OH)+2 + log_k -7.2 #03GUI/FAN + delta_h 38.51 #kJ/mol +# Enthalpy of formation: -862.320 kJ/mol + -analytic -45.33376E-2 00E+0 -20.11517E+2 00E+0 00E+0 + +- 2 H+ + HGlu- + Cm+3 + 2 H2O = Cm(OH)2(HGlu) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97E+0 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + HIsa- + Cm+3 + 2 H2O = Cm(OH)2(HIsa) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97E+0 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + Cm+3 + 2 H2O = Cm(OH)2+ + log_k -15.1 #03GUI/FAN + delta_h 91.646 #kJ/mol +# Enthalpy of formation: -1095.013 kJ/mol + -analytic 95.569E-2 00E+0 -47.87004E+2 00E+0 00E+0 + +- 3 H+ + Cm+3 + 3 H2O = Cm(OH)3 + log_k -26.2 #03GUI/FAN + delta_h 153.826 #kJ/mol +# Enthalpy of formation: -1318.663 kJ/mol + -analytic 74.91584E-2 00E+0 -80.34892E+2 00E+0 00E+0 + +Ox-2 + Cm+3 = Cm(Ox)+ + log_k 6.48 #95AKR/BOU + -analytic 64.8E-1 00E+0 00E+0 00E+0 00E+0 + +2 Ox-2 + Cm+3 = Cm(Ox)2- + log_k 10.4 #95AKR/BOU + -analytic 10.4E+0 00E+0 00E+0 00E+0 00E+0 + +3 Ox-2 + Cm+3 = Cm(Ox)3-3 + log_k 12.84 #95AKR/BOU + -analytic 12.84E+0 00E+0 00E+0 00E+0 00E+0 + +Cm+3 + Phthalat-2 = Cm(Phthalat)+ + log_k 4.93 #11GRI/COL2 from 95PAN/KLE + -analytic 49.3E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + H2(PO4)- + Cm+3 = Cm(PO4) + log_k -7.65 #Estimated by correlation with An(III) in function of ionic radii. + -analytic -76.5E-1 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + 2 H2(PO4)- + Cm+3 = Cm(PO4)2-3 + log_k -19.2 #Estimated by correlation with An(III) in function of ionic radii + -analytic -19.2E+0 00E+0 00E+0 00E+0 00E+0 + +SO4-2 + Cm+3 = Cm(SO4)+ + log_k 3.5 #20GRE/GAO + delta_h 40 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1484.340 kJ/mol + -analytic 10.5077E+0 00E+0 -20.89346E+2 00E+0 00E+0 + +2 SO4-2 + Cm+3 = Cm(SO4)2- + log_k 5 #20GRE/GAO + delta_h 70 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2363.680 kJ/mol + -analytic 17.26347E+0 00E+0 -36.56355E+2 00E+0 00E+0 + +Cl- + Cm+3 = CmCl+2 + log_k 0.24 #20GRE/GAO + delta_h 44.483 #kJ/mol +# Enthalpy of formation: -737.597 kJ/mol + -analytic 80.33087E-1 00E+0 -23.23509E+2 00E+0 00E+0 + +2 Cl- + Cm+3 = CmCl2+ + log_k -0.81 #20GRE/GAO + delta_h 54.9 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -894.260 kJ/mol + -analytic 88.08067E-1 00E+0 -28.67627E+2 00E+0 00E+0 + +F- + Cm+3 = CmF+2 + log_k 3.4 #20GRE/GAO + delta_h 12.1 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -938.250 kJ/mol + -analytic 55.19829E-1 00E+0 -63.2027E+1 00E+0 00E+0 + +2 F- + Cm+3 = CmF2+ + log_k 5.8 #20GRE/GAO + delta_h 45.1 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1240.600 kJ/mol + -analytic 13.70118E+0 00E+0 -23.55737E+2 00E+0 00E+0 + +3 F- + Cm+3 = CmF3 + log_k 11.18 #69AZI/LYL + delta_h 15.371 #kJ/mol +# Enthalpy of formation: -1605.678 kJ/mol + -analytic 13.87288E+0 00E+0 -80.28832E+1 00E+0 00E+0 + +H+ + CO3-2 + Cm+3 = CmHCO3+2 + log_k 13.43 #03GUI/FAN, same as Am + -analytic 13.43E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + H4(SiO4) + Cm+3 = CmSiO(OH)3+2 + log_k -2.31 #Original data 07THA/SIN, 05PAN/KIM and 97STE/FAN + delta_h 47.963 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2028.231 kJ/mol + -analytic 60.92757E-1 00E+0 -25.05282E+2 00E+0 00E+0 + +4 H+ + 2 e- + CO3-2 - 2 H2O = CO + log_k 11.6 + delta_h -17.39 #kJ/mol +# Enthalpy of formation: -120.960 kJ/mol 82WAG/EVA + -analytic 85.53403E-1 00E+0 90.8343E+1 00E+0 00E+0 + +Co+2 + 2 HS- = Co(HS)2 + log_k 8.77 #66KHO; Uncertainty to include available data. + -analytic 87.7E-1 00E+0 00E+0 00E+0 00E+0 + +Co+2 - H+ + H2O = Co(OH)+ + log_k -9.23 #98PLY/ZHA1 + delta_h 45.962 #kJ/mol +# Enthalpy of formation: -297.468 kJ/mol + -analytic -11.77803E-1 00E+0 -24.00762E+2 00E+0 00E+0 + +Co+2 - 2 H+ + 2 H2O = Co(OH)2 + log_k -18.6 #98PLY/ZHA1 + delta_h 105.707 #kJ/mol +# Enthalpy of formation: -523.552 kJ/mol + -analytic -80.92855E-3 00E+0 -55.21461E+2 00E+0 00E+0 + +Co+2 - 3 H+ + 3 H2O = Co(OH)3- + log_k -31.7 #98PLY/ZHA1 + delta_h 160.297 #kJ/mol +# Enthalpy of formation: -754.792 kJ/mol + -analytic -36.17171E-1 00E+0 -83.72895E+2 00E+0 00E+0 + +Co+2 - 4 H+ + 4 H2O = Co(OH)4-2 + log_k -46.42 #98PLY/ZHA1 + delta_h 214.483 #kJ/mol +# Enthalpy of formation: -986.435 kJ/mol + -analytic -88.44191E-1 00E+0 -11.20323E+3 00E+0 00E+0 + +Co+2 + SeO4-2 = Co(SeO4) + log_k 2.7 #05OLI/NOL + delta_h -3.617 #kJ/mol +# Enthalpy of formation: -664.716 kJ/mol + -analytic 20.66329E-1 00E+0 18.89291E+1 00E+0 00E+0 + +2 H+ + CO3-2 - H2O = CO2 + log_k 16.68 + delta_h -23.86 #kJ/mol +# Enthalpy of formation: -413.260 kJ/mol 89COX/WAG + -analytic 12.49991E+0 00E+0 12.46295E+2 00E+0 00E+0 + +2 Co+2 - H+ + H2O = Co2(OH)+3 + log_k -9.83 #98PLY/ZHA1 + delta_h 30.03 #kJ/mol +# Enthalpy of formation: -371.000 kJ/mol 98PLY/ZHA1 + -analytic -45.6897E-1 00E+0 -15.68576E+2 00E+0 00E+0 + +4 Co+2 - 4 H+ + 4 H2O = Co4(OH)4+4 + log_k -29.88 #98PLY/ZHA1 + delta_h 149.72 #kJ/mol +# Enthalpy of formation: -1224.000 kJ/mol 98PLY/ZHA1 + -analytic -36.50182E-1 00E+0 -78.2042E+2 00E+0 00E+0 + +Co+2 + Cl- = CoCl+ + log_k 0.57 #81TUR/WHI; Uncertainty to include available data. + delta_h -2.18 #kJ/mol +# Enthalpy of formation: -226.859 kJ/mol + -analytic 18.80804E-2 00E+0 11.38693E+1 00E+0 00E+0 + +Co+2 + 2 Cl- = CoCl2 + log_k 0.02 #06BLA/IGN; Uncertainty from 89PAN/SUS + delta_h 4.074 #kJ/mol 06BLA/IGN +# Enthalpy of formation: -387.686 kJ/mol + -analytic 73.37342E-2 00E+0 -21.27998E+1 00E+0 00E+0 + +Co+2 + 3 Cl- = CoCl3- + log_k -1.71 #06BLA/IGN; Uncertainty 89PAN/SUS + delta_h 6.688 #kJ/mol 06BLA/IGN +# Enthalpy of formation: -552.152 kJ/mol + -analytic -53.83127E-2 00E+0 -34.93386E+1 00E+0 00E+0 + +Co+2 + 4 Cl- = CoCl4-2 + log_k -2.09 #06BLA/IGN + delta_h 22.57 #kJ/mol 06BLA/IGN +# Enthalpy of formation: -703.350 kJ/mol + -analytic 18.64094E-1 00E+0 -11.78913E+2 00E+0 00E+0 + +Co+2 + CO3-2 = CoCO3 + log_k 4.23 #97MAR/SMI; Uncertainty to include available data. + -analytic 42.3E-1 00E+0 00E+0 00E+0 00E+0 + +Co+2 + F- = CoF+ + log_k 1.5 #97MAR/SMI + delta_h -0.631 #kJ/mol +# Enthalpy of formation: -393.580 kJ/mol + -analytic 13.89454E-1 00E+0 32.95943E+0 00E+0 00E+0 + +Co+2 + H+ + CO3-2 = CoHCO3+ + log_k 12.22 #97MAR/SMI; Uncertainty to include available data. + -analytic 12.22E+0 00E+0 00E+0 00E+0 00E+0 + +Co+2 - H+ + H2(PO4)- = CoHPO4 + log_k -4.15 #97MAR/SMI; Uncertainty to include available data and is preliminary. + -analytic -41.5E-1 00E+0 00E+0 00E+0 00E+0 + +Co+2 + HS- = CoHS+ + log_k 5.67 #66KHO; Uncertainty to include available data. + -analytic 56.7E-1 00E+0 00E+0 00E+0 00E+0 + +Co+2 + S2O3-2 = CoS2O3 + log_k 2.05 #51DEN/MON + -analytic 20.5E-1 00E+0 00E+0 00E+0 00E+0 + +Co+2 + SO4-2 = CoSO4 + log_k 2.3 #97MAR/SMI; Uncertainty to include available data. + delta_h 2.092 #kJ/mol 74NAU/RYZ +# Enthalpy of formation: -964.848 kJ/mol + -analytic 26.66503E-1 00E+0 -10.92728E+1 00E+0 00E+0 + +H2(PO4)- + Cr+3 = Cr(H2PO4)+2 + log_k 2.56 #66LAH/ADI + -analytic 25.6E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + H2(PO4)- + Cr+3 = Cr(HPO4)+ + log_k 2.25 #76ALE/MAS + -analytic 22.5E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + 2 CO3-2 + Cr+3 + H2O = Cr(OH)(CO3)2-2 + log_k 9.73 #07RAI/MOO + -analytic 97.3E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + Cr+2 + H2O = Cr(OH)+ + log_k -5.3 #83MIC/DEB, 04CHI + delta_h 30.327 #kJ/mol +# Enthalpy of formation: -413.117 kJ/mol + -analytic 13.06233E-3 00E+0 -15.8409E+2 00E+0 00E+0 + +- H+ + Cr+3 + H2O = Cr(OH)+2 + log_k -3.42 #04RAI/MOO + delta_h 37.222 #kJ/mol +# Enthalpy of formation: -489.108 kJ/mol + -analytic 31.01014E-1 00E+0 -19.4424E+2 00E+0 00E+0 + +- 2 H+ + Cr+3 + 2 H2O = Cr(OH)2+ + log_k -8.9 #11GRI/COL4 + delta_h 93.198 #kJ/mol +# Enthalpy of formation: -718.961 kJ/mol + -analytic 74.27589E-1 00E+0 -48.68071E+2 00E+0 00E+0 + +- 3 H+ + Cr+3 + 3 H2O = Cr(OH)3 + log_k -14.34 #04RAI/MOO + delta_h 143.704 #kJ/mol +# Enthalpy of formation: -954.285 kJ/mol + -analytic 10.83586E+0 00E+0 -75.06183E+2 00E+0 00E+0 + +- 3 H+ + H2(PO4)- + Cr+3 + 3 H2O = Cr(OH)3(H2PO4)- + log_k -11.56 #04RAI/MOO + -analytic -11.56E+0 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ + 2 H2(PO4)- + Cr+3 + 3 H2O = Cr(OH)3(H2PO4)2-2 + log_k -10.86 #04RAI/MOO + -analytic -10.86E+0 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + H2(PO4)- + Cr+3 + 3 H2O = Cr(OH)3(HPO4)-2 + log_k -19.58 #04RAI/MOO + -analytic -19.58E+0 00E+0 00E+0 00E+0 00E+0 + +- 5 H+ + H2(PO4)- + Cr+3 + 3 H2O = Cr(OH)3(PO4)-3 + log_k -30.24 #98ZIE/JON + -analytic -30.24E+0 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + Cr+3 + 4 H2O = Cr(OH)4- + log_k -25.86 #04RAI/MOO + delta_h 193.614 #kJ/mol +# Enthalpy of formation: -1190.205 kJ/mol + -analytic 80.59717E-1 00E+0 -10.11316E+3 00E+0 00E+0 + +- 4 H+ + CO3-2 + Cr+3 + 4 H2O = Cr(OH)4(CO3)-3 + log_k -25.69 #07RAI/MOO + -analytic -25.69E+0 00E+0 00E+0 00E+0 00E+0 + +- 5 H+ + 2 H2(PO4)- + Cr+3 + 4 H2O = Cr(OH)4(HPO4)(H2PO4)-4 + log_k -28.76 #98ZIE/JON + delta_h 14 #kJ/mol 98ZIE/JON +# Enthalpy of formation: -3975.020 kJ/mol + -analytic -26.30731E+0 00E+0 -73.12709E+1 00E+0 00E+0 + +- H+ + 2 Cl- + Cr+3 + H2O = Cr(OH)Cl2 + log_k -5.73 + delta_h 32.72 #kJ/mol +# Enthalpy of formation: -827.770 kJ/mol 76DEL/HEP + -analytic 22.97936E-4 00E+0 -17.09085E+2 00E+0 00E+0 + +- H+ + CO3-2 + Cr+3 + H2O = Cr(OH)CO3 + log_k 4 #07RAI/MOO + -analytic 40E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + 2 Cr+3 + 2 H2O = Cr2(OH)2+4 + log_k -4 #11GRI/COL4 + -analytic -40E-1 00E+0 00E+0 00E+0 00E+0 + +2 H+ + 2 CrO4-2 - H2O = Cr2O7-2 + log_k 14.75 #87PAL/WES, 04CHI + delta_h -3.752 #kJ/mol +# Enthalpy of formation: -1475.923 kJ/mol + -analytic 14.09268E+0 00E+0 19.59806E+1 00E+0 00E+0 + +- 4 H+ + 3 Cr+3 + 4 H2O = Cr3(OH)4+5 + log_k -7.6 #11GRI/COL4 + -analytic -76E-1 00E+0 00E+0 00E+0 00E+0 + +Br- + Cr+3 = CrBr+2 + log_k -0.62 + delta_h 22.588 #kJ/mol +# Enthalpy of formation: -339.322 kJ/mol 76DEL/HEP + -analytic 33.37248E-1 00E+0 -11.79853E+2 00E+0 00E+0 + +Cl- + Cr+2 = CrCl+ + log_k 5.6 #91ALL/BRO + delta_h -20.2 #kJ/mol 91ALL/BRO +# Enthalpy of formation: -344.894 kJ/mol + -analytic 20.61112E-1 00E+0 10.55119E+2 00E+0 00E+0 + +Cl- + Cr+3 = CrCl+2 + log_k 0.62 #64SIL/MAR + delta_h 20.92 #kJ/mol 64SIL/MAR +# Enthalpy of formation: -386.660 kJ/mol + -analytic 42.85027E-1 00E+0 -10.92728E+2 00E+0 00E+0 + +2 Cl- + Cr+3 = CrCl2+ + log_k -0.71 #64SIL/MAR + delta_h 20.92 #kJ/mol 64SIL/MAR +# Enthalpy of formation: -553.740 kJ/mol + -analytic 29.55027E-1 00E+0 -10.92728E+2 00E+0 00E+0 + +F- + Cr+3 = CrF+2 + log_k 5.21 #81TUR/WHI + delta_h -2.51 #kJ/mol 53HEP/JOL +# Enthalpy of formation: -578.360 kJ/mol + -analytic 47.70267E-1 00E+0 13.11064E+1 00E+0 00E+0 + +2 F- + Cr+3 = CrF2+ + log_k 9.31 #81TUR/WHI + delta_h -0.418 #kJ/mol 53HEP/JOL +# Enthalpy of formation: -911.618 kJ/mol + -analytic 92.3677E-1 00E+0 21.83366E+0 00E+0 00E+0 + +3 F- + Cr+3 = CrF3 + log_k 11.91 #81TUR/WHI + -analytic 11.91E+0 00E+0 00E+0 00E+0 00E+0 + +2 H+ + Cl- + CrO4-2 - H2O = CrO3Cl- + log_k 8.08 + delta_h 5.45 #kJ/mol +# Enthalpy of formation: -754.800 kJ/mol 76DEL/HEP + -analytic 90.34799E-1 00E+0 -28.46733E+1 00E+0 00E+0 + +SO4-2 + Cr+3 = CrSO4+ + log_k 4.61 #81TUR/WHI + -analytic 46.1E-1 00E+0 00E+0 00E+0 00E+0 + +Cs+ + Cit-3 = Cs(Cit)-2 + log_k 0.98 #95AKR/BOU + -analytic 98E-2 00E+0 00E+0 00E+0 00E+0 + +Cs+ + Edta-4 = Cs(Edta)-3 + log_k 1.3 #95AKR/BOU + -analytic 13E-1 00E+0 00E+0 00E+0 00E+0 + +Cs+ + Nta-3 = Cs(Nta)-2 + log_k 0.85 #95AKR/BOU + -analytic 85E-2 00E+0 00E+0 00E+0 00E+0 + +Cs+ - H+ + H2O = Cs(OH) + log_k -15.64 + delta_h 65.736 #kJ/mol +# Enthalpy of formation: -478.094 kJ/mol 97SHO/SAS2 + -analytic -41.23547E-1 00E+0 -34.3363E+2 00E+0 00E+0 + +Cs+ + Br- = CsBr + log_k 0.1 + delta_h 5.912 #kJ/mol +# Enthalpy of formation: -373.497 kJ/mol + -analytic 11.35738E-1 00E+0 -30.88053E+1 00E+0 00E+0 + +Cs+ + Cl- = CsCl + log_k -0.09 + delta_h 7.514 #kJ/mol +# Enthalpy of formation: -417.566 kJ/mol + -analytic 12.26396E-1 00E+0 -39.24836E+1 00E+0 00E+0 + +Cs+ + F- = CsF + log_k -0.38 + delta_h 2.436 #kJ/mol +# Enthalpy of formation: -590.913 kJ/mol + -analytic 46.76888E-3 00E+0 -12.72411E+1 00E+0 00E+0 + +Cs+ + I- = CsI + log_k 1.05 + delta_h -0.071 #kJ/mol +# Enthalpy of formation: -314.850 kJ/mol + -analytic 10.37561E-1 00E+0 37.08588E-1 00E+0 00E+0 + +Cu+2 + B(OH)4- = Cu(B(OH)4)+ + log_k 7.13 #80BAS + -analytic 71.3E-1 00E+0 00E+0 00E+0 00E+0 + +Cu+2 + 2 B(OH)4- = Cu(B(OH)4)2 + log_k 12.45 #80BAS + -analytic 12.45E+0 00E+0 00E+0 00E+0 00E+0 + +Cu+2 + 3 B(OH)4- = Cu(B(OH)4)3- + log_k 15.17 #80BAS + -analytic 15.17E+0 00E+0 00E+0 00E+0 00E+0 + +Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + log_k 10.3 #07POW/BRO + delta_h 36.616 #kJ/mol +# Enthalpy of formation: -1248.945 kJ/mol + -analytic 16.71485E+0 00E+0 -19.12587E+2 00E+0 00E+0 + +Cu+ + 2 HS- = Cu(HS)2- + log_k 17.18 #99MON/SEW + delta_h -78.863 #kJ/mol +# Enthalpy of formation: -40.875 kJ/mol + -analytic 33.63795E-1 00E+0 41.19301E+2 00E+0 00E+0 + +Cu+2 - H+ + H2O = Cu(OH)+ + log_k -7.97 #97PLY/WAN + delta_h 36 #kJ/mol 76ARE/CAL in 97PLY/WAN +# Enthalpy of formation: -184.930 kJ/mol + -analytic -16.63071E-1 00E+0 -18.80411E+2 00E+0 00E+0 + +Cu+2 - 2 H+ + 2 H2O = Cu(OH)2 + log_k -16.23 #97PLY/WAN + delta_h 92.82 #kJ/mol 76ARE/CAL in 97PLY/WAN +# Enthalpy of formation: -413.940 kJ/mol + -analytic 31.36597E-3 00E+0 -48.48326E+2 00E+0 00E+0 + +Cu+ - 2 H+ + 2 H2O = Cu(OH)2- + log_k -18.2 #11PAL + delta_h 57.672 #kJ/mol +# Enthalpy of formation: -443.399 kJ/mol + -analytic -80.96299E-1 00E+0 -30.12418E+2 00E+0 00E+0 + +Cu+2 - 3 H+ + 3 H2O = Cu(OH)3- + log_k -26.63 #36DOW/JOH in 97PLY/WAN + delta_h 114.482 #kJ/mol +# Enthalpy of formation: -678.107 kJ/mol + -analytic -65.73615E-1 00E+0 -59.79811E+2 00E+0 00E+0 + +Cu+2 - 4 H+ + 4 H2O = Cu(OH)4-2 + log_k -39.73 #36DOW/JOH, 67AKH in 97PLY/WAN + -analytic -39.73E+0 00E+0 00E+0 00E+0 00E+0 + +Cu+2 + SeO4-2 = Cu(SeO4) + log_k 2.2 #Upper value suggested in 05OLI/NOL + -analytic 22E-1 00E+0 00E+0 00E+0 00E+0 + +2 Cu+2 - H+ + H2O = Cu2(OH)+3 + log_k -6.71 #97PLY/WAN + delta_h 46.1 #kJ/mol 97ROB/STE +# Enthalpy of formation: -109.930 kJ/mol + -analytic 13.66373E-1 00E+0 -24.07971E+2 00E+0 00E+0 + +2 Cu+2 - 2 H+ + 2 H2O = Cu2(OH)2+2 + log_k -10.55 #97PLY/WAN + delta_h 75.4 #kJ/mol 97PLY/WAN +# Enthalpy of formation: -366.460 kJ/mol + -analytic 26.59513E-1 00E+0 -39.38416E+2 00E+0 00E+0 + +2 Cu+ + 4 Cl- = Cu2Cl4-2 + log_k 10.55 #80FRIN in 00PUI/TAX + delta_h -54.86 #kJ/mol 00PUI/TAX +# Enthalpy of formation: -582.002 kJ/mol + -analytic 93.89406E-2 00E+0 28.65537E+2 00E+0 00E+0 + +2 Cu+ - H+ + 3 HS- = Cu2S(HS)2-2 + log_k 29.87 #99MON/SEW + delta_h -314.862 #kJ/mol +# Enthalpy of formation: -222.586 kJ/mol + -analytic -25.29145E+0 00E+0 16.44639E+3 00E+0 00E+0 + +3 Cu+2 - 4 H+ + 4 H2O = Cu3(OH)4+2 + log_k -20.94 #76ARE/CAL in 97PLY/WAN + delta_h 110 #kJ/mol 76ARE/CAL in 97PLY/WAN +# Enthalpy of formation: -838.620 kJ/mol + -analytic -16.68827E-1 00E+0 -57.457E+2 00E+0 00E+0 + +3 Cu+ + 6 Cl- = Cu3Cl6-3 + log_k 15.99 #80FRI in 00PUI/TAX + delta_h 124.51 #kJ/mol 00PUI/TAX +# Enthalpy of formation: -666.203 kJ/mol + -analytic 37.80322E+0 00E+0 -65.0361E+2 00E+0 00E+0 + +Cu+ + Cl- = CuCl + log_k 3.3 #98XIA/GAM + delta_h 3.763 #kJ/mol +# Enthalpy of formation: -92.728 kJ/mol + -analytic 39.59249E-1 00E+0 -19.65552E+1 00E+0 00E+0 + +Cu+2 + Cl- = CuCl+ + log_k 0.64 #97WAN/ZHA + delta_h 8.7 #kJ/mol 97WAN/ZHA +# Enthalpy of formation: -93.480 kJ/mol + -analytic 21.64175E-1 00E+0 -45.44326E+1 00E+0 00E+0 + +Cu+2 + 2 Cl- = CuCl2 + log_k 0.6 #97WAN/ZHA + delta_h 23 #kJ/mol 97WAN/ZHA +# Enthalpy of formation: -246.260 kJ/mol + -analytic 46.29427E-1 00E+0 -12.01374E+2 00E+0 00E+0 + +Cu+ + 2 Cl- = CuCl2- + log_k 5.68 #97WAN/ZHA + delta_h -14.25 #kJ/mol 84FRI in 97WAN/ZHA +# Enthalpy of formation: -277.821 kJ/mol + -analytic 31.83507E-1 00E+0 74.43293E+1 00E+0 00E+0 + +Cu+2 + 3 Cl- = CuCl3- + log_k -1.28 #97WAN/ZHA + delta_h 22.2 #kJ/mol 97WAN/ZHA +# Enthalpy of formation: -414.140 kJ/mol + -analytic 26.09273E-1 00E+0 -11.59587E+2 00E+0 00E+0 + +Cu+ + 3 Cl- = CuCl3-2 + log_k 5.03 #97WAN/ZHA + delta_h -27.33 #kJ/mol 97WAN/ZHA +# Enthalpy of formation: -457.981 kJ/mol + -analytic 24.19895E-2 00E+0 14.27545E+2 00E+0 00E+0 + +Cu+2 + 4 Cl- = CuCl4-2 + log_k -3.98 #97WAN/ZHA + delta_h 28 #kJ/mol 97WAN/ZHA +# Enthalpy of formation: -575.420 kJ/mol + -analytic 92.53894E-2 00E+0 -14.62542E+2 00E+0 00E+0 + +Cu+2 + CO3-2 = CuCO3 + log_k 6.75 #07POW/BRO + delta_h 10.4 #kJ/mol 89SOL/BYR +# Enthalpy of formation: -599.930 kJ/mol + -analytic 85.72002E-1 00E+0 -54.32298E+1 00E+0 00E+0 + +Cu+2 + H+ + CO3-2 = CuHCO3+ + log_k 12.17 #07POW/BRO + delta_h -5.841 #kJ/mol +# Enthalpy of formation: -616.172 kJ/mol + -analytic 11.1467E+0 00E+0 30.50967E+1 00E+0 00E+0 + +Cu+ + HS- = CuHS + log_k 13 #99MON/SEW + delta_h -44.866 #kJ/mol +# Enthalpy of formation: +9.422 kJ/mol + -analytic 51.39814E-1 00E+0 23.43514E+2 00E+0 00E+0 + +Cu+ - H+ + H2O = CuOH + log_k -7.68 #11PAL + -analytic -76.8E-1 00E+0 00E+0 00E+0 00E+0 + +Cu+ + S2O3-2 = CuS2O3- + log_k 10.13 + delta_h -51.13 #kJ/mol +# Enthalpy of formation: -632.828 kJ/mol + -analytic 11.72409E-1 00E+0 26.70706E+2 00E+0 00E+0 + +Cu+2 + SO4-2 = CuSO4 + log_k 2.31 + delta_h 5.102 #kJ/mol +# Enthalpy of formation: -839.338 kJ/mol + -analytic 32.03832E-1 00E+0 -26.6496E+1 00E+0 00E+0 + +Eu+3 + Acetate- = Eu(Acetate)+2 + log_k 2.9 #12GRI/GAR2 + -analytic 29E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 2 Acetate- = Eu(Acetate)2+ + log_k 4.8 #12GRI/GAR2 + -analytic 48E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 3 Acetate- = Eu(Acetate)3 + log_k 5.6 #12GRI/GAR2 + -analytic 56E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + Cit-3 = Eu(Cit) + log_k 8.55 #Analogy with Am + -analytic 85.5E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 2 Cit-3 = Eu(Cit)2-3 + log_k 13.9 #Analogy with Am + -analytic 13.9E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + CO3-2 = Eu(CO3)+ + log_k 7.9 #95SPA/BRU + delta_h 26.15 #kJ/mol +# Enthalpy of formation: -1254.406 kJ/mol + -analytic 12.48128E+0 00E+0 -13.6591E+2 00E+0 00E+0 + +Eu+3 + 2 CO3-2 = Eu(CO3)2- + log_k 12.9 #95SPA/BRU + -analytic 12.9E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 3 CO3-2 = Eu(CO3)3-3 + log_k 14.8 #05VER/VIT2 + -analytic 14.8E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + Edta-4 = Eu(Edta)- + log_k 19.67 #Analoly with Am(Edta)- + -analytic 19.67E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + H2(PO4)- = Eu(H2PO4)+2 + log_k 2.4 #95SPA/BRU + -analytic 24E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + H+ + Cit-3 = Eu(HCit)+ + log_k 12.86 #Analogy with Am + -analytic 12.86E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 2 H+ + 2 Cit-3 = Eu(HCit)2- + log_k 23.52 #Analogy with Am + -analytic 23.52E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + H+ + CO3-2 = Eu(HCO3)+2 + log_k 12.43 #95SPA/BRU + -analytic 12.43E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + H+ + Edta-4 = Eu(HEdta) + log_k 21.84 #Analogy with Am(HEdta) + -analytic 21.84E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 - H+ + H2(PO4)- = Eu(HPO4)+ + log_k -1.51 #95SPA/BRU + -analytic -15.1E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 - 2 H+ + 2 H2(PO4)- = Eu(HPO4)2- + log_k -4.82 #95SPA/BRU + -analytic -48.2E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + Malonate-2 = Eu(Malonate)+ + log_k 5.43 #13GRI/CAM + -analytic 54.3E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 2 Malonate-2 = Eu(Malonate)2- + log_k 7.78 #13GRI/CAM + -analytic 77.8E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + NO3- = Eu(NO3)+2 + log_k 1.21 #09RAO/TIA1 (Calculated usig SIT) + -analytic 12.1E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + Nta-3 = Eu(Nta) + log_k 13 #Analogy with Am(Nta)(aq) + -analytic 13E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 - H+ + H2O = Eu(OH)+2 + log_k -7.8 #95SPA/BRU + delta_h 51.104 #kJ/mol +# Enthalpy of formation: -840.051 kJ/mol + -analytic 11.53036E-1 00E+0 -26.69348E+2 00E+0 00E+0 + +Eu+3 - 2 H+ + HGlu- + 2 H2O = Eu(OH)2(HGlu) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 - 2 H+ + HIsa- + 2 H2O = Eu(OH)2(HIsa) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 - 2 H+ + 2 H2O = Eu(OH)2+ + log_k -15.7 #07NEC/ALT2 + delta_h 104.24 #kJ/mol +# Enthalpy of formation: -1072.744 kJ/mol + -analytic 25.62064E-1 00E+0 -54.44834E+2 00E+0 00E+0 + +Eu+3 - 3 H+ + 3 H2O = Eu(OH)3 + log_k -26.2 #07NEC/ALT2 + delta_h 162.995 #kJ/mol +# Enthalpy of formation: -1299.819 kJ/mol + -analytic 23.55498E-1 00E+0 -85.13822E+2 00E+0 00E+0 + +Eu+3 - 4 H+ + 4 H2O = Eu(OH)4- + log_k -40.7 #07NEC/ALT2 + delta_h 235.317 #kJ/mol +# Enthalpy of formation: -1513.326 kJ/mol + -analytic 52.57687E-2 00E+0 -12.29146E+3 00E+0 00E+0 + +Eu+3 + Ox-2 = Eu(Ox)+ + log_k +6.55 #Richard et al. 2011 Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR + -analytic 65.5E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 2 Ox-2 = Eu(Ox)2- + log_k +10.93 # Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR + -analytic 10.93E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 3 Ox-2 = Eu(Ox)3-3 + log_k +12.48 #Richard et al. 2011 Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR + -analytic 12.48E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + Phthalat-2 = Eu(Phthalat)+ + log_k 4.96 #11GRI/COL2 + -analytic 49.6E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 2 Phthalat-2 = Eu(Phthalat)2- + log_k 7.34 #11GRI/COL2 + -analytic 73.4E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 - 2 H+ + H2(PO4)- = Eu(PO4) + log_k -7.36 #95SPA/BRU + -analytic -73.6E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 - 4 H+ + 2 H2(PO4)- = Eu(PO4)2-3 + log_k -18.46 #95SPA/BRU + -analytic -18.46E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + SO4-2 = Eu(SO4)+ + log_k 3.5 #95SPA/BRU + delta_h 15.577 #kJ/mol +# Enthalpy of formation: -1499.088 kJ/mol + -analytic 62.28973E-1 00E+0 -81.36434E+1 00E+0 00E+0 + +Eu+3 + 2 SO4-2 = Eu(SO4)2- + log_k 5.2 #95SPA/BRU + delta_h 23.017 #kJ/mol +# Enthalpy of formation: -2400.987 kJ/mol + -analytic 92.32405E-1 00E+0 -12.02262E+2 00E+0 00E+0 + +Eu+3 + Succinat-2 = Eu(Succinat)+ + log_k 4.36 #13GRI/CAM + -analytic 43.6E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 2 Succinat-2 = Eu(Succinat)2- + log_k 6.5 #13GRI/CAM + -analytic 65E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + Br- = EuBr+2 + log_k 0.25 #95SPA/BRU + delta_h 1.397 #kJ/mol +# Enthalpy of formation: -725.337 kJ/mol + -analytic 49.47439E-2 00E+0 -72.97039E+0 00E+0 00E+0 + +Eu+3 + 2 Br- = EuBr2+ + log_k -0.09 #95SPA/BRU + delta_h 7.625 #kJ/mol +# Enthalpy of formation: -840.520 kJ/mol + -analytic 12.45843E-1 00E+0 -39.82815E+1 00E+0 00E+0 + +Eu+3 + Cl- = EuCl+2 + log_k 0.76 #Original data 01LUO/BYR and 04LUO/BYR + delta_h 19.94 #kJ/mol 00YEH +# Enthalpy of formation: -752.465 kJ/mol + -analytic 42.53338E-1 00E+0 -10.41539E+2 00E+0 00E+0 + +Eu+3 + 2 Cl- = EuCl2+ + log_k -0.05 #95SPA/BRU + delta_h 22.87 #kJ/mol +# Enthalpy of formation: -916.614 kJ/mol + -analytic 39.56652E-1 00E+0 -11.94583E+2 00E+0 00E+0 + +Eu+3 + F- = EuF+2 + log_k 4.33 #07LUO/BYR + delta_h 8.19 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -932.485 kJ/mol + -analytic 57.64826E-1 00E+0 -42.77935E+1 00E+0 00E+0 + +Eu+3 + 2 F- = EuF2+ + log_k 6.55 #Original data from 99SCH/BYR and 04LUO/BYR + delta_h 18.58 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -1257.445 kJ/mol + -analytic 98.05076E-1 00E+0 -97.0501E+1 00E+0 00E+0 + +Eu+3 + 3 F- = EuF3 + log_k 10.6 #95SPA/BRU + delta_h 27.85 #kJ/mol +# Enthalpy of formation: -1583.524 kJ/mol + -analytic 15.47911E+0 00E+0 -14.54707E+2 00E+0 00E+0 + +Eu+3 - H+ + H4(SiO4) = EuSiO(OH)3+2 + log_k -2.62 #Original data 07THA/SIN and 96JEN/CHO1 + -analytic -26.2E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + B(OH)4- = Fe(B(OH)4)+2 + log_k 8.58 #80BAS + -analytic 85.8E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 2 B(OH)4- = Fe(B(OH)4)2+ + log_k 15.54 #80BAS + -analytic 15.54E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + Cit-3 = Fe(Cit) + log_k 12.65 #95AKR/BOU + -analytic 12.65E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + Cit-3 = Fe(Cit)- + log_k 6.1 #95AKR/BOU + -analytic 61E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - H+ + Cit-3 + H2O = Fe(Cit)(OH)- + log_k 10.33 #95AKR/BOU + -analytic 10.33E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 2 Cit-3 = Fe(Cit)2-3 + log_k 18.15 #95AKR/BOU + -analytic 18.15E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + 2 CO3-2 = Fe(CO3)2-2 + log_k 7.04 #13LEM/BER + delta_h 58.257 #kJ/mol +# Enthalpy of formation: -1382.499 kJ/mol + -analytic 17.24619E+0 00E+0 -30.42975E+2 00E+0 00E+0 + +Fe+3 + 3 CO3-2 = Fe(CO3)3-3 + log_k 24 #05GRI in 13LEM/BER + -analytic 24E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + Edta-4 = Fe(Edta)- + log_k 27.7 #95AKR/BOU + -analytic 27.7E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + Edta-4 = Fe(Edta)-2 + log_k 16.02 #95AKR/BOU + -analytic 16.02E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + 2 H+ + Cit-3 = Fe(H2Cit)+ + log_k 13.64 #91DUF/JOH + -analytic 13.64E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 2 H+ + Cit-3 = Fe(H2Cit)+2 + log_k 14.13 #82NAM/PAL + -analytic 14.13E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + H2(PO4)- = Fe(H2PO4)+ + log_k 2.7 #20LEM/PAL + -analytic 27E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + H2(PO4)- = Fe(H2PO4)+2 + log_k 5.43 #Recalculated from 72NRIa in 20LEM/PAL + -analytic 54.3E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - H+ + H4(SiO4) = Fe(H3SiO4)+2 + log_k 0.36 #88CHA/NEW + -analytic 36E-2 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + H+ + Cit-3 = Fe(HCit) + log_k 10.02 #95AKR/BOU + -analytic 10.02E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + H+ + 2 Cit-3 = Fe(HCit)(Cit)-2 + log_k 19.3 #95AKR/BOU + -analytic 19.3E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + H+ + Cit-3 = Fe(HCit)+ + log_k 13.56 #95AKR/BOU + -analytic 13.56E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 2 H+ + 2 Cit-3 = Fe(HCit)2- + log_k 24.92 #95AKR/BOU + -analytic 24.92E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + H+ + Edta-4 = Fe(HEdta) + log_k 29.2 #95AKR/BOU + -analytic 29.2E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + H+ + Edta-4 = Fe(HEdta)- + log_k 18.3 #95AKR/BOU + -analytic 18.3E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + H+ + Nta-3 = Fe(HNta) + log_k 12.3 #95AKR/BOU + -analytic 12.3E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + H+ + Ox-2 = Fe(HOx)+2 + log_k 9.3 #95AKR/BOU + -analytic 93E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+2 - H+ + H2(PO4)- = Fe(HPO4) + log_k -3.61 #USGS original + -analytic -36.1E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + HS- = Fe(HS)+ + log_k 4.34 #04CHI + -analytic 43.4E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + 2 HS- = Fe(HS)2 + log_k 6.45 #04CHI + -analytic 64.5E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + H+ + SeO3-2 = Fe(HSeO3)+2 + log_k 12.35 #01SEB/POT2 + -analytic 12.35E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + NH3 = Fe(NH3)+2 + log_k 1.3 #82SCH + -analytic 13E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + 2 NH3 = Fe(NH3)2+2 + log_k 2.1 #82SCH + -analytic 21E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + 4 NH3 = Fe(NH3)4+2 + log_k 3.6 #82SCH + -analytic 36E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + NO3- = Fe(NO3)+2 + log_k 0.95 #HATCHES 8 1996 + -analytic 95E-2 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + Nta-3 = Fe(Nta) + log_k 18.6 #95AKR/BOU + -analytic 18.6E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + Nta-3 = Fe(Nta)- + log_k 10.6 #95AKR/BOU + -analytic 10.6E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 2 Nta-3 = Fe(Nta)2-3 + log_k 27 #95AKR/BOU + -analytic 27E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + 2 Nta-3 = Fe(Nta)2-4 + log_k 13.5 #95AKR/BOU + -analytic 13.5E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 - H+ + Cit-3 + H2O = Fe(OH)(Cit)-2 + log_k -0.86 #91DUF/JOH + -analytic -86E-2 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - H+ + Edta-4 + H2O = Fe(OH)(Edta)-2 + log_k 20.84 #95AKR/BOU + -analytic 20.84E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 - H+ + Edta-4 + H2O = Fe(OH)(Edta)-3 + log_k 6.4 #95AKR/BOU + -analytic 64E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - H+ + Nta-3 + H2O = Fe(OH)(Nta)- + log_k 14.6 #95AKR/BOU + -analytic 14.6E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 - H+ + Nta-3 + H2O = Fe(OH)(Nta)-2 + log_k -0.12 #95AKR/BOU + -analytic -12E-2 00E+0 00E+0 00E+0 00E+0 + +Fe+2 - H+ + H2O = Fe(OH)+ + log_k -9.25 #21RIB/BEG + delta_h 40.921 #kJ/mol 21RIB/BEG +# Enthalpy of formation: -335.204 kJ/mol + -analytic -20.80949E-1 00E+0 -21.37453E+2 00E+0 00E+0 + +Fe+3 - H+ + H2O = Fe(OH)+2 + log_k -2.15 #13LEM/BER + delta_h 38.8 #kJ/mol 13LEM/BER +# Enthalpy of formation: -297.086 kJ/mol + -analytic 46.47468E-1 00E+0 -20.26665E+2 00E+0 00E+0 + +Fe+2 - 2 H+ + 2 H2O = Fe(OH)2 + log_k -20.84 #21RIB/BEG + delta_h 114.131 #kJ/mol 21RIB/BEG +# Enthalpy of formation: -547.824 kJ/mol + -analytic -84.51071E-2 00E+0 -59.61477E+2 00E+0 00E+0 + +Fe+3 - 2 H+ + Cit-3 + 2 H2O = Fe(OH)2(Cit)-2 + log_k 2.9 #95AKR/BOU + -analytic 29E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - 2 H+ + Edta-4 + 2 H2O = Fe(OH)2(Edta)-3 + log_k 10.06 #95AKR/BOU + -analytic 10.06E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 - 2 H+ + Edta-4 + 2 H2O = Fe(OH)2(Edta)-4 + log_k -4.4 #95AKR/BOU + -analytic -44E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - 2 H+ + Nta-3 + 2 H2O = Fe(OH)2(Nta)-2 + log_k 6 #95AKR/BOU + -analytic 60E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - 2 H+ + 2 H2O = Fe(OH)2+ + log_k -4.8 #13LEM/BER + delta_h 71.546 #kJ/mol 76BAE/MES in 98CHI +# Enthalpy of formation: -550.170 kJ/mol + -analytic 77.34321E-1 00E+0 -37.37108E+2 00E+0 00E+0 + +Fe+3 - 3 H+ + 3 H2O = Fe(OH)3 + log_k -12.56 #95BOU in 04CHI + delta_h 103.764 #kJ/mol 95BOU in 04CHI +# Enthalpy of formation: -803.782 kJ/mol + -analytic 56.18672E-1 00E+0 -54.19971E+2 00E+0 00E+0 + +Fe+2 - 3 H+ + 3 H2O = Fe(OH)3- + log_k -33.84 #21RIB/BEG + delta_h 162.231 #kJ/mol 21RIB/BEG +# Enthalpy of formation: -785.554 kJ/mol + -analytic -54.18349E-1 00E+0 -84.73915E+2 00E+0 00E+0 + +Fe+3 - 3 H+ + Edta-4 + 3 H2O = Fe(OH)3(Edta)-4 + log_k -2.24 #51SCH/HEL + -analytic -22.4E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - 4 H+ + 4 H2O = Fe(OH)4- + log_k -21.6 #76BAE/MES in 04CHI + delta_h 133.471 #kJ/mol 95BOU in 04CHI +# Enthalpy of formation: -1059.905 kJ/mol + -analytic 17.83115E-1 00E+0 -69.71676E+2 00E+0 00E+0 + +Fe+2 - 4 H+ + 4 H2O = Fe(OH)4-2 + log_k -46.32 #21RIB/BEG from 56GAY/WOO + delta_h 160.75 #kJ/mol +# Enthalpy of formation: -1072.864 kJ/mol + -analytic -18.15781E+0 00E+0 -83.96557E+2 00E+0 00E+0 + +Fe+3 - H+ + CO3-2 + H2O = Fe(OH)CO3 + log_k 10.7 #05GRI + -analytic 10.7E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + Ox-2 = Fe(Ox) + log_k 4.1 #95AKR/BOU + -analytic 41E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + Ox-2 = Fe(Ox)+ + log_k 9.53 #95AKR/BOU + -analytic 95.3E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 2 Ox-2 = Fe(Ox)2- + log_k 15.75 #95AKR/BOU + -analytic 15.75E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + 2 Ox-2 = Fe(Ox)2-2 + log_k 6.2 #95AKR/BOU + -analytic 62E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 3 Ox-2 = Fe(Ox)3-3 + log_k 20.2 #95AKR/BOU + -analytic 20.2E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + 3 Ox-2 = Fe(Ox)3-4 + log_k 5.22 #95AKR/BOU + -analytic 52.2E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - 2 H+ + H2(PO4)- = Fe(PO4) + log_k 3.44 #Recalculated from 07IUL/CIA in 20LEM/PAL + -analytic 34.4E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + SeO3-2 = Fe(SeO3)+ + log_k 11.15 #05OLI/NOL + -analytic 11.15E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + SeO4-2 = Fe(SeO4) + log_k 2.71 #01SEB/POT2 + delta_h -12.425 #kJ/mol +# Enthalpy of formation: -706.220 kJ/mol + -analytic 53.32334E-2 00E+0 64.90029E+1 00E+0 00E+0 + +Fe+2 + SO4-2 = Fe(SO4) + log_k 2.44 #13LEM/BER + delta_h 8.4 #kJ/mol 13LEM/BER +# Enthalpy of formation: -991.235 kJ/mol + -analytic 39.11617E-1 00E+0 -43.87626E+1 00E+0 00E+0 + +Fe+3 + SO4-2 = Fe(SO4)+ + log_k 4.25 #13LEM/BER + delta_h 26 #kJ/mol Suggested but not selected 13LEM/BER +# Enthalpy of formation: -933.396 kJ/mol + -analytic 88.05004E-1 00E+0 -13.58075E+2 00E+0 00E+0 + +Fe+3 + 2 SO4-2 = Fe(SO4)2- + log_k 6.22 #91PEA/BER in 98CHI + -analytic 62.2E-1 00E+0 00E+0 00E+0 00E+0 + +2 Fe+3 - 2 H+ + 2 Cit-3 + 2 H2O = Fe2(Cit)2(OH)2-2 + log_k 17 #95AKR/BOU + -analytic 17E+0 00E+0 00E+0 00E+0 00E+0 + +2 Fe+3 - 2 H+ + 2 Edta-4 + 2 H2O = Fe2(OH)2(Edta)2-4 + log_k 40 #95AKR/BOU + -analytic 40E+0 00E+0 00E+0 00E+0 00E+0 + +2 Fe+3 - 2 H+ + 2 H2O = Fe2(OH)2+4 + log_k -2.82 #13LEM/BER + delta_h 44 #kJ/mol 13LEM/BER +# Enthalpy of formation: -627.772 kJ/mol + -analytic 48.88469E-1 00E+0 -22.9828E+2 00E+0 00E+0 + +3 Fe+3 - 4 H+ + 4 H2O = Fe3(OH)4+5 + log_k -6.3 #76BAE/MES in 98CHI + delta_h 59.831 #kJ/mol 76BAE/MES +# Enthalpy of formation: -1233.657 kJ/mol + -analytic 41.81941E-1 00E+0 -31.25191E+2 00E+0 00E+0 + +Fe+3 + Br- = FeBr+2 + log_k 0.7 #88CHA/NEW + -analytic 70E-2 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 2 Br- = FeBr2+ + log_k 0.9 #96FAL/REA + -analytic 90E-2 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + Cl- = FeCl+ + log_k 1 #Suggested in 13LEM/BER + delta_h 21.551 #kJ/mol 13LEM/BER +# Enthalpy of formation: -235.824 kJ/mol + -analytic 47.75573E-1 00E+0 -11.25687E+2 00E+0 00E+0 + +Fe+3 + Cl- = FeCl+2 + log_k 1.52 #13LEM/BER + delta_h 22.5 #kJ/mol 13LEM/BER +# Enthalpy of formation: -194.636 kJ/mol + -analytic 54.61831E-1 00E+0 -11.75257E+2 00E+0 00E+0 + +Fe+3 + 2 Cl- = FeCl2+ + log_k 2.22 #13LEM/BER + -analytic 22.2E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 3 Cl- = FeCl3 + log_k 1.02 #13LEM/BER + -analytic 10.2E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 4 Cl- = FeCl4- + log_k -0.98 #13LEM/BER + -analytic -98E-2 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + CO3-2 = FeCO3 + log_k 5.27 #13LEM/BER + delta_h -3.367 #kJ/mol +# Enthalpy of formation: -768.892 kJ/mol + -analytic 46.80127E-1 00E+0 17.58707E+1 00E+0 00E+0 + +Fe+3 + CrO4-2 = FeCrO4+ + log_k 7.8 #96BAR/PAL + delta_h 19.1 #kJ/mol 96BAR/PAL +# Enthalpy of formation: -909.956 kJ/mol + -analytic 11.14618E+0 00E+0 -99.76625E+1 00E+0 00E+0 + +Fe+2 + F- = FeF+ + log_k 1.7 #13LEM/BER + -analytic 17E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + F- = FeF+2 + log_k 6.09 #20LEM/PAL + delta_h 12.8 #kJ/mol 20LEM/PAL +# Enthalpy of formation: -372.606 kJ/mol + -analytic 83.32464E-1 00E+0 -66.85906E+1 00E+0 00E+0 + +Fe+3 + 2 F- = FeF2+ + log_k 10.41 #Calculated in 20LEM/PAL + delta_h 22 #kJ/mol Calculated in 20LEM/PAL +# Enthalpy of formation: -698.756 kJ/mol + -analytic 14.26423E+0 00E+0 -11.4914E+2 00E+0 00E+0 + +Fe+3 + 2 H+ + Pyrophos-4 = FeH2Pyrophos+ + log_k 26 #88CHA/NEW + -analytic 26E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + I- = FeI+2 + log_k 2.1 #96BOU2 + -analytic 21E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + S2O3-2 = FeS2O3+ + log_k 3.9 #82SCH + -analytic 39E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + Adipate-2 = H(Adipate)- + log_k 5.45 #04MAR/SMI + -analytic 54.5E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + H3(AsO3) = H(AsO3)-2 + log_k -23.62 #79IVA/VOR + -analytic -23.62E+0 00E+0 00E+0 00E+0 00E+0 + +H+ + AsO4-3 = H(AsO4)-2 + log_k 11.6 + delta_h -18.2 #kJ/mol +# Enthalpy of formation: -906.340 kJ/mol 09RAN/FUG + -analytic 84.11497E-1 00E+0 95.06522E+1 00E+0 00E+0 + +H+ + Cit-3 = H(Cit)-2 + log_k 6.36 #05HUM/AND + delta_h 3.3 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1516.620 kJ/mol + -analytic 69.38135E-1 00E+0 -17.2371E+1 00E+0 00E+0 + +H+ + Edta-4 = H(Edta)-3 + log_k 11.24 #05HUM/AND + delta_h -19.8 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1724.600 kJ/mol + -analytic 77.71189E-1 00E+0 10.34226E+2 00E+0 00E+0 + +H+ + Malonate-2 = H(Malonate)- + log_k 5.71 #13GRI/CAM + -analytic 57.1E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + Nta-3 = H(Nta)-2 + log_k 10.28 #95AKR/BOU + -analytic 10.28E+0 00E+0 00E+0 00E+0 00E+0 + +H+ + Ox-2 = H(Ox)- + log_k 4.25 #05HUM/AND + delta_h 7.3 #kJ/mol 05HUM/AND +# Enthalpy of formation: -823.360 kJ/mol + -analytic 55.28905E-1 00E+0 -38.13056E+1 00E+0 00E+0 + +H+ + Pyrophos-4 = H(Pyrophos)-3 + log_k 9.4 #92GRE/FUG + -analytic 94E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + S2O3-2 = H(S2O3)- + log_k 1.72 #04CHI + delta_h 8.253 #kJ/mol +# Enthalpy of formation: -644.033 kJ/mol + -analytic 31.65864E-1 00E+0 -43.10842E+1 00E+0 00E+0 + +H+ + SeO3-2 = H(SeO3)- + log_k 8.36 #05OLI/NOL + delta_h -5.17 #kJ/mol +# Enthalpy of formation: -512.330 kJ/mol 05OLI/NOL + -analytic 74.54255E-1 00E+0 27.00479E+1 00E+0 00E+0 + +H+ + SeO4-2 = H(SeO4)- + log_k 1.75 #05OLI/NOL + delta_h 20.8 #kJ/mol 05OLI/NOL +# Enthalpy of formation: -582.700 kJ/mol + -analytic 53.94004E-1 00E+0 -10.8646E+2 00E+0 00E+0 + +H+ + SO3-2 = H(SO3)- + log_k 7.17 #85GOL/PAR + delta_h 3.668 #kJ/mol +# Enthalpy of formation: -627.392 kJ/mol + -analytic 78.12606E-1 00E+0 -19.1593E+1 00E+0 00E+0 + +H+ + SO4-2 = H(SO4)- + log_k 1.98 + delta_h 22.44 #kJ/mol +# Enthalpy of formation: -886.900 kJ/mol 92GRE/FUG + -analytic 59.11319E-1 00E+0 -11.72123E+2 00E+0 00E+0 + +H+ + Suberate-2 = H(Suberate)- + log_k 5.4 #31GAN/ING + -analytic 54E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + Succinat-2 = H(Succinat)- + log_k 5.71 #13GRI/CAM + -analytic 57.1E-1 00E+0 00E+0 00E+0 00E+0 + +2 H+ + Adipate-2 = H2(Adipate) + log_k 9.89 #04MAR/SMI + -analytic 98.9E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + H3(AsO3) = H2(AsO3)- + log_k -9.22 + delta_h 27.41 #kJ/mol +# Enthalpy of formation: -714.790 kJ/mol 10RAN/FUG + -analytic -44.17974E-1 00E+0 -14.31724E+2 00E+0 00E+0 + +2 H+ + AsO4-3 = H2(AsO4)- + log_k 18.37 + delta_h -21.42 #kJ/mol +# Enthalpy of formation: -909.560 kJ/mol 09RAN/FUG + -analytic 14.61738E+0 00E+0 11.18845E+2 00E+0 00E+0 + +2 H+ + Cit-3 = H2(Cit)- + log_k 11.14 #05HUM/AND + delta_h 0.9 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1519.020 kJ/mol + -analytic 11.29767E+0 00E+0 -47.01027E+0 00E+0 00E+0 + +2 H+ + Edta-4 = H2(Edta)-2 + log_k 18.04 #05HUM/AND + delta_h -35 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1739.800 kJ/mol + -analytic 11.90826E+0 00E+0 18.28177E+2 00E+0 00E+0 + +2 H+ + Malonate-2 = H2(Malonate) + log_k 8.67 #13GRI/CAM + -analytic 86.7E-1 00E+0 00E+0 00E+0 00E+0 + +2 H+ + Nta-3 = H2(Nta)- + log_k 13.2 #95AKR/BOU + -analytic 13.2E+0 00E+0 00E+0 00E+0 00E+0 + +2 H+ + Ox-2 = H2(Ox) + log_k 5.65 #05HUM/AND + delta_h 10.6 #kJ/mol 05HUM/AND +# Enthalpy of formation: -820.060 kJ/mol + -analytic 75.0704E-1 00E+0 -55.36766E+1 00E+0 00E+0 + +2 H+ + Pyrophos-4 = H2(Pyrophos)-2 + log_k 16.05 #92GRE/FUG + -analytic 16.05E+0 00E+0 00E+0 00E+0 00E+0 + +2 H+ + S2O3-2 = H2(S2O3) + log_k 2.32 #04CHI + delta_h 22.917 #kJ/mol +# Enthalpy of formation: -629.369 kJ/mol + -analytic 63.34886E-1 00E+0 -11.97038E+2 00E+0 00E+0 + +2 H+ + SeO3-2 = H2(SeO3) + log_k 11 #05OLI/NOL + delta_h 1.84 #kJ/mol +# Enthalpy of formation: -505.320 kJ/mol 05OLI/NOL + -analytic 11.32235E+0 00E+0 -96.10989E+0 00E+0 00E+0 + +- 2 H+ + H4(SiO4) = H2(SiO4)-2 + log_k -23.14 #92GRE/FUG + delta_h 75 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1386.194 kJ/mol + -analytic -10.00056E+0 00E+0 -39.17523E+2 00E+0 00E+0 + +2 H+ + SO3-2 = H2(SO3) + log_k 9.03 #85GOL/PAR + delta_h 21.453 #kJ/mol +# Enthalpy of formation: -609.607 kJ/mol + -analytic 12.7884E+0 00E+0 -11.20568E+2 00E+0 00E+0 + +2 H+ + Suberate-2 = H2(Suberate) + log_k 9.92 #31GAN/ING + -analytic 99.2E-1 00E+0 00E+0 00E+0 00E+0 + +2 H+ + Succinat-2 = H2(Succinat) + log_k 9.95 #13GRI/CAM + -analytic 99.5E-1 00E+0 00E+0 00E+0 00E+0 + +2 H+ + CrO4-2 = H2CrO4 + log_k 6.32 #76BAE/MES, 04CHI + delta_h 39.596 #kJ/mol +# Enthalpy of formation: -839.404 kJ/mol + -analytic 13.25692E+0 00E+0 -20.68243E+2 00E+0 00E+0 + +2 H+ + H2(PO4)- + CrO4-2 - H2O = H2CrPO7- + log_k 9.02 + delta_h -51.49 #kJ/mol +# Enthalpy of formation: -1947.260 kJ/mol 76DEL/HAL + -analytic -66.07802E-5 00E+0 26.8951E+2 00E+0 00E+0 + +H+ + HGlu- = H2Glu + log_k 3.9 #98ZUB/CAS + -analytic 39E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + HIsa- = H2Isa + log_k 4 #05HUM/AND + -analytic 40E-1 00E+0 00E+0 00E+0 00E+0 + +2 H+ + MoO4-2 = H2MoO4 + log_k 8.15 #68SAS/SIL, 64AVE/ANA + -analytic 81.5E-1 00E+0 00E+0 00E+0 00E+0 + +2 H+ + Phthalat-2 = H2Phthalat + log_k 8.32 #10RIC/SAB1 + -analytic 83.2E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + HS- = H2S + log_k 6.99 + delta_h -22.3 #kJ/mol +# Enthalpy of formation: -38.600 kJ/mol 89COX/WAG + -analytic 30.83208E-1 00E+0 11.6481E+2 00E+0 00E+0 + +2 H+ + S2O4-2 = H2S2O4 + log_k 2.8 #04CHI + delta_h 20.193 #kJ/mol +# Enthalpy of formation: -733.307 kJ/mol + -analytic 63.37662E-1 00E+0 -10.54754E+2 00E+0 00E+0 + +H+ + HSe- = H2Se + log_k 3.85 + delta_h 0 #kJ/mol +# Enthalpy of formation: +14.300 kJ/mol 05OLI/NOL + -analytic 38.5E-1 00E+0 00E+0 00E+0 00E+0 + +3 H+ + AsO4-3 = H3(AsO4) + log_k 20.63 + delta_h -14.36 #kJ/mol +# Enthalpy of formation: -902.500 kJ/mol 09RAN/FUG + -analytic 18.11424E+0 00E+0 75.0075E+1 00E+0 00E+0 + +3 H+ + Cit-3 = H3(Cit) + log_k 14.27 #05HUM/AND + delta_h -3.6 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1523.520 kJ/mol + -analytic 13.63931E+0 00E+0 18.80411E+1 00E+0 00E+0 + +3 H+ + Edta-4 = H3(Edta)- + log_k 21.19 #05HUM/AND + delta_h -27.9 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1732.700 kJ/mol + -analytic 16.30213E+0 00E+0 14.57318E+2 00E+0 00E+0 + +3 H+ + Nta-3 = H3(Nta) + log_k 15.33 #95AKR/BOU + -analytic 15.33E+0 00E+0 00E+0 00E+0 00E+0 + +H+ + H2(PO4)- = H3(PO4) + log_k 2.14 #92GRE/FUG + delta_h 8.48 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1294.120 kJ/mol + -analytic 36.25632E-1 00E+0 -44.29412E+1 00E+0 00E+0 + +3 H+ + Pyrophos-4 = H3(Pyrophos)- + log_k 18.3 #92GRE/FUG + -analytic 18.3E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + H4(SiO4) = H3(SiO4)- + log_k -9.84 #06BLA/PIA; Uncertainty to include available data. + delta_h 29.363 #kJ/mol +# Enthalpy of formation: -1431.831 kJ/mol + -analytic -46.95823E-1 00E+0 -15.33736E+2 00E+0 00E+0 + +4 H+ + Edta-4 = H4(Edta) + log_k 23.42 #05HUM/AND + delta_h -26 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1730.800 kJ/mol + -analytic 18.865E+0 00E+0 13.58075E+2 00E+0 00E+0 + +4 H+ + Nta-3 = H4(Nta)+ + log_k 16.13 #95AKR/BOU + -analytic 16.13E+0 00E+0 00E+0 00E+0 00E+0 + +4 H+ + Pyrophos-4 = H4(Pyrophos) + log_k 19.3 #92GRE/FUG +# Enthalpy of formation: -2280.210 kJ/mol 92GRE/FUG + -analytic 19.3E+0 00E+0 00E+0 00E+0 00E+0 + +5 H+ + Edta-4 = H5(Edta)+ + log_k 24.72 #05HUM/AND + -analytic 24.72E+0 00E+0 00E+0 00E+0 00E+0 + +6 H+ + Edta-4 = H6(Edta)+2 + log_k 24.22 #05HUM/AND + -analytic 24.22E+0 00E+0 00E+0 00E+0 00E+0 + +H+ + Acetate- = HAcetate + log_k 4.76 + delta_h 0.25 #kJ/mol +# Enthalpy of formation: -485.760 kJ/mol 82WAG/EVA + -analytic 48.03798E-1 00E+0 -13.05841E+0 00E+0 00E+0 + +H+ + 2 B(OH)4- - 4 H2O = HB2O4- + log_k 9.17 #97CRO + -analytic 91.7E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + CO3-2 = HCO3- + log_k 10.33 + delta_h -14.7 #kJ/mol +# Enthalpy of formation: -689.930 kJ/mol 89COX/WAG + -analytic 77.54671E-1 00E+0 76.78345E+1 00E+0 00E+0 + +H+ + CrO4-2 = HCrO4- + log_k 6.52 #87PAL/WES, 04CHI + delta_h 6.016 #kJ/mol +# Enthalpy of formation: -872.985 kJ/mol + -analytic 75.73958E-1 00E+0 -31.42376E+1 00E+0 00E+0 + +H+ + H2(PO4)- + CrO4-2 - H2O = HCrPO7-2 + log_k 6.37 + delta_h -36.39 #kJ/mol +# Enthalpy of formation: -1932.160 kJ/mol 76DEL/HEP + -analytic -52.54337E-4 00E+0 19.00782E+2 00E+0 00E+0 + +4 CO3-2 + Hf+4 = Hf(CO3)4-4 + log_k 42.9 #analogy with Zr + -analytic 42.9E+0 00E+0 00E+0 00E+0 00E+0 + +2 NO3- + Hf+4 = Hf(NO3)2+2 + log_k 2.49 #65DES/KHO recalculated; Uncertainty to include available data. + -analytic 24.9E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + Hf+4 + H2O = Hf(OH)+3 + log_k -0.2 #01RAI/XIA; Uncertainty to include available data. + -analytic -20E-2 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + Hf+4 + 4 H2O = Hf(OH)4 + log_k -11.2 #01RAI/XIA; Uncertainty to include available data. + -analytic -11.2E+0 00E+0 00E+0 00E+0 00E+0 + +- 5 H+ + Hf+4 + 5 H2O = Hf(OH)5- + log_k -20.3 #01RAI/XIA + -analytic -20.3E+0 00E+0 00E+0 00E+0 00E+0 + +- 6 H+ + Hf+4 + 6 H2O = Hf(OH)6-2 + log_k -32.8 #01RAI/XIA + -analytic -32.8E+0 00E+0 00E+0 00E+0 00E+0 + +2 SO4-2 + Hf+4 = Hf(SO4)2 + log_k 10.11 #65DES/KHO recalculated;Uncertainty to include available data. + -analytic 10.11E+0 00E+0 00E+0 00E+0 00E+0 + +Br- + Hf+4 = HfBr+3 + log_k 0.38 #67HAL/POH recalculated + -analytic 38E-2 00E+0 00E+0 00E+0 00E+0 + +Cl- + Hf+4 = HfCl+3 + log_k 2.2 #65DES/KHO and others recalculated + -analytic 22E-1 00E+0 00E+0 00E+0 00E+0 + +2 Cl- + Hf+4 = HfCl2+2 + log_k 2.05 #65DES/KHO and others recalculated; Uncertainty to include available data. + -analytic 20.5E-1 00E+0 00E+0 00E+0 00E+0 + +F- + Hf+4 = HfF+3 + log_k 9.29 #05SAW/THA and others recalculated + -analytic 92.9E-1 00E+0 00E+0 00E+0 00E+0 + +2 F- + Hf+4 = HfF2+2 + log_k 17.85 #05SAW/THA and others recalculated + -analytic 17.85E+0 00E+0 00E+0 00E+0 00E+0 + +3 F- + Hf+4 = HfF3+ + log_k 25.08 #05SAW/THA and others recalculated + -analytic 25.08E+0 00E+0 00E+0 00E+0 00E+0 + +4 F- + Hf+4 = HfF4 + log_k 31.41 #05SAW/THA and others recalculated + -analytic 31.41E+0 00E+0 00E+0 00E+0 00E+0 + +I- + Hf+4 = HfI+3 + log_k 0.02 #67HAL/POH recalculated + -analytic 20E-3 00E+0 00E+0 00E+0 00E+0 + +NO3- + Hf+4 = HfNO3+3 + log_k 1.85 #65DES/KHO 69HAL/SMO recalculated; Uncertainty to include available data. + -analytic 18.5E-1 00E+0 00E+0 00E+0 00E+0 + +SO4-2 + Hf+4 = HfSO4+2 + log_k 6.06 #65DES/KHO recalculated; Uncertainty to include available data. + -analytic 60.6E-1 00E+0 00E+0 00E+0 00E+0 + +CO3-2 + Hg+2 = Hg(CO3) + log_k 11.47 #05POW/BRO + -analytic 11.47E+0 00E+0 00E+0 00E+0 00E+0 + +H+ + CO3-2 + Hg+2 = Hg(HCO3)+ + log_k 15.8 #05POW/BRO + -analytic 15.8E+0 00E+0 00E+0 00E+0 00E+0 + +HS- + Hg+2 = Hg(HS)+ + log_k 30.5 #99BEN/GIL + -analytic 30.5E+0 00E+0 00E+0 00E+0 00E+0 + +2 HS- + Hg+2 = Hg(HS)2 + log_k 37.5 #99BEN/GIL + -analytic 37.5E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + H2O + Hg+2 = Hg(OH)+ + log_k -3.4 #05POW/BRO + -analytic -34E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + 2 H2O + Hg+2 = Hg(OH)2 + log_k -5.98 #05POW/BRO + delta_h 51.5 #kJ/mol 05POW/BRO +# Enthalpy of formation: -349.950 kJ/mol + -analytic 30.42413E-1 00E+0 -26.90032E+2 00E+0 00E+0 + +- 3 H+ + 3 H2O + Hg+2 = Hg(OH)3- + log_k -21.1 #05POW/BRO + -analytic -21.1E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + Cl- + H2O + Hg+2 = Hg(OH)Cl + log_k 4.27 #05POW/BRO + -analytic 42.7E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + CO3-2 + H2O + Hg+2 = Hg(OH)CO3- + log_k 5.33 #05POW/BRO + -analytic 53.3E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + H2O + Hg2+2 = Hg2(OH)+ + log_k -5 #76BAE/MES + -analytic -50E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + H2O + 2 Hg+2 = Hg2(OH)+3 + log_k -3.33 #76BAE/MES + -analytic -33.3E-1 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ + 3 H2O + 3 Hg+2 = Hg3(OH)3+3 + log_k -6.42 #76BAE/MES + -analytic -64.2E-1 00E+0 00E+0 00E+0 00E+0 + +Cl- + Hg+2 = HgCl+ + log_k 7.31 #05POW/BRO + delta_h -21.3 #kJ/mol 05POW/BRO +# Enthalpy of formation: -18.170 kJ/mol + -analytic 35.784E-1 00E+0 11.12576E+2 00E+0 00E+0 + +2 Cl- + Hg+2 = HgCl2 + log_k 14 #05POW/BRO + delta_h -49.1 #kJ/mol 05POW/BRO +# Enthalpy of formation: -213.050 kJ/mol + -analytic 53.98049E-1 00E+0 25.64672E+2 00E+0 00E+0 + +3 Cl- + Hg+2 = HgCl3- + log_k 14.93 #05POW/BRO + delta_h -48.6 #kJ/mol 05POW/BRO +# Enthalpy of formation: -379.630 kJ/mol + -analytic 64.15645E-1 00E+0 25.38555E+2 00E+0 00E+0 + +4 Cl- + Hg+2 = HgCl4-2 + log_k 15.54 #05POW/BRO + delta_h -59.1 #kJ/mol 05POW/BRO +# Enthalpy of formation: -557.210 kJ/mol + -analytic 51.86124E-1 00E+0 30.87008E+2 00E+0 00E+0 + +- H+ + H2(PO4)- + Hg+2 = HgHPO4 + log_k 2.86 #05POW/BRO + -analytic 28.6E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + H2(PO4)- + Hg+2 = HgPO4- + log_k -2.63 #05POW/BRO + -analytic -26.3E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + HS- + Hg+2 = HgS + log_k 26.5 #99BEN/GIL + -analytic 26.5E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + 2 HS- + Hg+2 = HgS(HS)- + log_k 32 #99BEN/GIL + -analytic 32E+0 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + 2 HS- + Hg+2 = HgS2-2 + log_k 23.5 #99BEN/GIL + -analytic 23.5E+0 00E+0 00E+0 00E+0 00E+0 + +SO4-2 + Hg+2 = HgSO4 + log_k 2.68 #05POW/BRO + -analytic 26.8E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + MoO4-2 = HMoO4- + log_k 4.11 #68SAS/SIL, 64AVE/ANA + delta_h 58.576 #kJ/mol 68ARN/SZI in 76BAE/MES +# Enthalpy of formation: -938.424 kJ/mol + -analytic 14.37207E+0 00E+0 -30.59638E+2 00E+0 00E+0 + +Ho+3 + CO3-2 = Ho(CO3)+ + log_k 8 #95SPA/BRU + delta_h -55.444 #kJ/mol +# Enthalpy of formation: -1437.717 kJ/mol + -analytic -17.13372E-1 00E+0 28.96042E+2 00E+0 00E+0 + +Ho+3 + 2 CO3-2 = Ho(CO3)2- + log_k 13.3 #95SPA/BRU + -analytic 13.3E+0 00E+0 00E+0 00E+0 00E+0 + +Ho+3 + 3 CO3-2 = Ho(CO3)3-3 + log_k 14.8 #05VER/VIT2 + -analytic 14.8E+0 00E+0 00E+0 00E+0 00E+0 + +Ho+3 + H2(PO4)- = Ho(H2PO4)+2 + log_k 2.3 #95SPA/BRU + -analytic 23E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + Ho+3 + CO3-2 = Ho(HCO3)+2 + log_k 12.5 #95SPA/BRU + -analytic 12.5E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + Ho+3 + H2(PO4)- = Ho(HPO4)+ + log_k -1.41 #95SPA/BRU + -analytic -14.1E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + Ho+3 + 2 H2(PO4)- = Ho(HPO4)2- + log_k -4.52 #95SPA/BRU + -analytic -45.2E-1 00E+0 00E+0 00E+0 00E+0 + +Ho+3 + NO3- = Ho(NO3)+2 + log_k 0.5 #95SPA/BRU + -analytic 50E-2 00E+0 00E+0 00E+0 00E+0 + +- H+ + Ho+3 + H2O = Ho(OH)+2 + log_k -7.9 #95SPA/BRU + delta_h 53.296 #kJ/mol +# Enthalpy of formation: -939.576 kJ/mol + -analytic 14.37058E-1 00E+0 -27.83844E+2 00E+0 00E+0 + +- 2 H+ + Ho+3 + 2 H2O = Ho(OH)2+ + log_k -15.7 #07NEC/ALT2 + delta_h 105.862 #kJ/mol +# Enthalpy of formation: -1172.840 kJ/mol + -analytic 28.46226E-1 00E+0 -55.29557E+2 00E+0 00E+0 + +- 3 H+ + Ho+3 + 3 H2O = Ho(OH)3 + log_k -26.2 #07NEC/ALT2 + delta_h 164.617 #kJ/mol +# Enthalpy of formation: -1399.915 kJ/mol + -analytic 26.3966E-1 00E+0 -85.98545E+2 00E+0 00E+0 + +- 4 H+ + Ho+3 + 4 H2O = Ho(OH)4- + log_k -40.7 #07NEC/ALT2 + delta_h 236.939 #kJ/mol +# Enthalpy of formation: -1613.422 kJ/mol + -analytic 80.99309E-2 00E+0 -12.37619E+3 00E+0 00E+0 + +- 2 H+ + Ho+3 + H2(PO4)- = Ho(PO4) + log_k -6.96 #95SPA/BRU + -analytic -69.6E-1 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + Ho+3 + 2 H2(PO4)- = Ho(PO4)2-3 + log_k -17.82 #95SPA/BRU + -analytic -17.82E+0 00E+0 00E+0 00E+0 00E+0 + +Ho+3 + SO4-2 = Ho(SO4)+ + log_k 3.4 #95SPA/BRU + delta_h 15.384 #kJ/mol +# Enthalpy of formation: -1600.998 kJ/mol + -analytic 60.95161E-1 00E+0 -80.35623E+1 00E+0 00E+0 + +Ho+3 + 2 SO4-2 = Ho(SO4)2- + log_k 4.9 #95SPA/BRU + delta_h 23.668 #kJ/mol +# Enthalpy of formation: -2502.054 kJ/mol + -analytic 90.46456E-1 00E+0 -12.36266E+2 00E+0 00E+0 + +Ho+3 + Cl- = HoCl+2 + log_k 0.74 #Original data from 01LUO/BYR and 04LUO/BYR + delta_h 7.959 #kJ/mol +# Enthalpy of formation: -866.163 kJ/mol + -analytic 21.34357E-1 00E+0 -41.57275E+1 00E+0 00E+0 + +Ho+3 + 2 Cl- = HoCl2+ + log_k -0.29 #81TUR/WHI + delta_h 25.862 #kJ/mol +# Enthalpy of formation: -1015.340 kJ/mol + -analytic 42.40828E-1 00E+0 -13.50866E+2 00E+0 00E+0 + +Ho+3 + F- = HoF+2 + log_k 4.33 #07LUO/BYR + delta_h 10.02 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -1032.372 kJ/mol + -analytic 60.85429E-1 00E+0 -52.33811E+1 00E+0 00E+0 + +Ho+3 + 2 F- = HoF2+ + log_k 6.52 #Original data from 99SCH/BYR and 04LUO/BYR + delta_h 21.11 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -1356.632 kJ/mol + -analytic 10.21831E+0 00E+0 -11.02652E+2 00E+0 00E+0 + +- H+ + Ho+3 + H4(SiO4) = HoSiO(OH)3+2 + log_k -2.62 #Original data from 07THA/SIN and 96JEN/CHO1 + -analytic -26.2E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + Phthalat-2 = HPhthalat- + log_k 5.34 #10RIC/SAB1 + -analytic 53.4E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + H2(PO4)- = HPO4-2 + log_k -7.21 + delta_h 3.6 #kJ/mol +# Enthalpy of formation: -1299.000 kJ/mol 89COX/WAG + -analytic -65.79307E-1 00E+0 -18.80411E+1 00E+0 00E+0 + +H+ + S2O4-2 = HS2O4- + log_k 2.5 #04CHI + delta_h 3.818 #kJ/mol +# Enthalpy of formation: -749.683 kJ/mol + -analytic 31.68885E-1 00E+0 -19.9428E+1 00E+0 00E+0 + +- H+ - 2 e- + SO4-2 + H2O = HSO5- + log_k -60.21 + delta_h 419.54 #kJ/mol +# Enthalpy of formation: -775.630 kJ/mol 88SHO/HEL + -analytic 13.29025E+0 00E+0 -21.9141E+3 00E+0 00E+0 + +- 2 e- + 3 I- = I3- +# DLP: This species will be in the I(-1) mole balance + log_k -18.17 + delta_h 118.877 #kJ/mol +# Enthalpy of formation: -51.463 kJ/mol 92JOH/OEL + -analytic 26.56356E-1 00E+0 -62.09378E+2 00E+0 00E+0 + +- 2 e- + 2 Cl- + I- = ICl2- +# DLP: This species will be in the I(-1) and Cl(-1) mole balances + log_k -26.8 #96FAL/REA + -analytic -26.8E+0 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ - 2 e- + I- + H2O = IO- + log_k -44 #96FAL/REA + -analytic -44E+0 00E+0 00E+0 00E+0 00E+0 + +- 8 H+ - 8 e- + I- + 4 H2O = IO4- + log_k -164.98 + delta_h 1048.639 #kJ/mol +# Enthalpy of formation: -151.461 kJ/mol 92JOH/OEL + -analytic 18.73367E+0 00E+0 -54.77423E+3 00E+0 00E+0 + +K+ + Edta-4 = K(Edta)-3 + log_k 1.8 #05HUM/AND + -analytic 18E-1 00E+0 00E+0 00E+0 00E+0 + +K+ + H+ + Nta-3 = K(HNta)- + log_k 10.3 #95AKR/BOU + -analytic 10.3E+0 00E+0 00E+0 00E+0 00E+0 + +K+ - H+ + H2(PO4)- = K(HPO4)- + log_k -6.4 #97MAR/SMI + delta_h 31.589 #kJ/mol 97MAR/SMI +# Enthalpy of formation: -1523.151 kJ/mol + -analytic -86.58448E-2 00E+0 -16.50008E+2 00E+0 00E+0 + +K+ + IO3- = K(IO3) + log_k 0.02 #estimation NEA87 08/2/95 + -analytic 20E-3 00E+0 00E+0 00E+0 00E+0 + +K+ + Nta-3 = K(Nta)-2 + log_k 1.3 #95AKR/BOU + -analytic 13E-1 00E+0 00E+0 00E+0 00E+0 + +K+ + Pyrophos-4 = K(Pyrophos)-3 + log_k 2.1 #76MAR/SMI + delta_h 7.113 #kJ/mol 76MAR/SMI + -analytic 33.46144E-1 00E+0 -37.15379E+1 00E+0 00E+0 + +K+ + I- = KI + log_k -1.57 + delta_h 9.011 #kJ/mol +# Enthalpy of formation: -299.909 kJ/mol 92JOH/OEL + -analytic 86.59435E-4 00E+0 -47.06773E+1 00E+0 00E+0 + +K+ - 2 H+ + H2(PO4)- = KPO4-2 + log_k -18.26 #97MAR/SMI + -analytic -18.26E+0 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + Cit-3 = Mg(Cit)- + log_k 4.81 #05HUM/AND + -analytic 48.1E-1 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + CO3-2 = Mg(CO3) + log_k 2.98 #97SVE/SHO + delta_h 8.81 #kJ/mol +# Enthalpy of formation: -1133.420 kJ/mol + -analytic 45.23446E-1 00E+0 -46.01783E+1 00E+0 00E+0 + +Mg+2 + Edta-4 = Mg(Edta)-2 + log_k 10.9 #05HUM/AND + delta_h 19.8 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2152.000 kJ/mol + -analytic 14.36881E+0 00E+0 -10.34226E+2 00E+0 00E+0 + +Mg+2 + 2 H+ + Cit-3 = Mg(H2Cit)+ + log_k 12.45 #05HUM/AND + -analytic 12.45E+0 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + H2(PO4)- = Mg(H2PO4)+ + log_k 1.17 #81TUR/WHI + delta_h 13.514 #kJ/mol 96BOU1 +# Enthalpy of formation: -1756.086 kJ/mol + -analytic 35.37551E-1 00E+0 -70.58854E+1 00E+0 00E+0 + +Mg+2 - H+ + H4(SiO4) = Mg(H3SiO4)+ + log_k -8.58 #97SVE/SHO + delta_h 27.114 #kJ/mol +# Enthalpy of formation: -1901.080 kJ/mol + -analytic -38.29831E-1 00E+0 -14.16263E+2 00E+0 00E+0 + +Mg+2 + H+ + Cit-3 = Mg(HCit) + log_k 8.96 #05HUM/AND + -analytic 89.6E-1 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + H+ + CO3-2 = Mg(HCO3)+ + log_k 11.37 #95SHO/KOR + delta_h -12.888 #kJ/mol +# Enthalpy of formation: -1155.118 kJ/mol + -analytic 91.12119E-1 00E+0 67.31871E+1 00E+0 00E+0 + +Mg+2 + H+ + Edta-4 = Mg(HEdta)- + log_k 15.4 #05HUM/AND + -analytic 15.4E+0 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + HGlu- = Mg(HGlu)+ + log_k 0.81 #19KUT/DUD + -analytic 81E-2 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + HIsa- = Mg(HIsa)+ + log_k 0.81 #Analogy with Mg(HGlu)+ + -analytic 81E-2 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + H+ + Malonate-2 = Mg(HMalonate)+ + log_k 7.05 #13GRI/CAM + -analytic 70.5E-1 00E+0 00E+0 00E+0 00E+0 + +Mg+2 - H+ + H2(PO4)- = Mg(HPO4) + log_k -4.3 #76SMI/MAR + delta_h 16.152 #kJ/mol 76SMI/MAR +# Enthalpy of formation: -1753.448 kJ/mol + -analytic -14.70291E-1 00E+0 -84.36777E+1 00E+0 00E+0 + +Mg+2 + H+ + Succinat-2 = Mg(HSuccinat)+ + log_k 6.72 #13GRI/CAM + -analytic 67.2E-1 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + IO3- = Mg(IO3)+ + log_k 0.7 #estimation NEA87 08/2/95 + -analytic 70E-2 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + Malonate-2 = Mg(Malonate) + log_k 2.86 #76KLA/OST + -analytic 28.6E-1 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + NH3 = Mg(NH3)+2 + log_k 0.1 + delta_h 0.022 #kJ/mol +# Enthalpy of formation: -548.148 kJ/mol 03-91 MINTEQL-PSI + -analytic 10.38542E-2 00E+0 -11.4914E-1 00E+0 00E+0 + +Mg+2 + 2 NH3 = Mg(NH3)2+2 + log_k 0 + delta_h 0.044 #kJ/mol +# Enthalpy of formation: -629.296 kJ/mol 03-91 MINTEQL-PSI + -analytic 77.08469E-4 00E+0 -22.9828E-1 00E+0 00E+0 + +Mg+2 + 3 NH3 = Mg(NH3)3+2 + log_k -0.3 + delta_h 0.066 #kJ/mol +# Enthalpy of formation: -710.444 kJ/mol 03-91 MINTEQL-PSI + -analytic -28.84373E-2 00E+0 -34.4742E-1 00E+0 00E+0 + +Mg+2 + 4 NH3 = Mg(NH3)4+2 + log_k -1 + delta_h 0.088 #kJ/mol +# Enthalpy of formation: -791.592 kJ/mol 03-91 MINTEQL-PSI + -analytic -98.45831E-2 00E+0 -45.9656E-1 00E+0 00E+0 + +Mg+2 + Nta-3 = Mg(Nta)- + log_k 6.79 #95AKR/BOU + -analytic 67.9E-1 00E+0 00E+0 00E+0 00E+0 + +Mg+2 - H+ + HGlu- + H2O = Mg(OH)(HGlu) + log_k -9.1 #19KUT/DUD + -analytic -91E-1 00E+0 00E+0 00E+0 00E+0 + +Mg+2 - H+ + HIsa- + H2O = Mg(OH)(HIsa) + log_k -9.1 #Analogy with Mg(OH)(HGlu) + -analytic -91E-1 00E+0 00E+0 00E+0 00E+0 + +Mg+2 - H+ + H2O = Mg(OH)+ + log_k -11.68 #97SHO/SAS2; Uncertainty to include available data. + delta_h 62.834 #kJ/mol +# Enthalpy of formation: -689.995 kJ/mol + -analytic -67.19557E-2 00E+0 -32.82048E+2 00E+0 00E+0 + +Mg+2 - 2 H+ + HGlu- + 2 H2O = Mg(OH)2(HGlu)- + log_k -20.44 #19KUT/DUD + -analytic -20.44E+0 00E+0 00E+0 00E+0 00E+0 + +Mg+2 - 2 H+ + HIsa- + 2 H2O = Mg(OH)2(HIsa)- + log_k -20.44 #Analogy with Mg(OH)2(HGlu)- + -analytic -20.44E+0 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + Ox-2 = Mg(Ox) + log_k 3.56 #05HUM/AND + -analytic 35.6E-1 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + 2 Ox-2 = Mg(Ox)2-2 + log_k 5.17 #05HUM/AND + -analytic 51.7E-1 00E+0 00E+0 00E+0 00E+0 + +Mg+2 - 2 H+ + H2(PO4)- = Mg(PO4)- + log_k -14.71 #81TUR/WHI + delta_h 31.17 #kJ/mol 96BOU1 +# Enthalpy of formation: -1738.430 kJ/mol + -analytic -92.4925E-1 00E+0 -16.28122E+2 00E+0 00E+0 + +Mg+2 + Pyrophos-4 = Mg(Pyrophos)-2 + log_k 7.2 #76SMI/MAR + delta_h 12.54 #kJ/mol + -analytic 93.96914E-1 00E+0 -65.50098E+1 00E+0 00E+0 + +Mg+2 + S2O3-2 = Mg(S2O3) + log_k 1.82 #76SMI/MAR + -analytic 18.2E-1 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + SeO4-2 = Mg(SeO4) + log_k 2.2 #05OLI/NOL + delta_h -6.614 #kJ/mol +# Enthalpy of formation: -1077.114 kJ/mol + -analytic 10.41277E-1 00E+0 34.54733E+1 00E+0 00E+0 + +Mg+2 + SO4-2 = Mg(SO4) + log_k 2.23 #76SMI/MAR + delta_h 5.858 #kJ/mol 76SMI/MAR +# Enthalpy of formation: -1370.482 kJ/mol + -analytic 32.56278E-1 00E+0 -30.59847E+1 00E+0 00E+0 + +Mg+2 + Succinat-2 = Mg(Succinat) + log_k 2.27 #13GRI/CAM + -analytic 22.7E-1 00E+0 00E+0 00E+0 00E+0 + +2 Mg+2 + UO2+2 + 3 CO3-2 = Mg2UO2(CO3)3 + log_k 27.1 #20GRE/GAO + -analytic 27.1E+0 00E+0 00E+0 00E+0 00E+0 + +4 Mg+2 - 4 H+ + 4 H2O = Mg4(OH)4+4 + log_k -39.75 #76BAE/MES + delta_h 229.186 #kJ/mol +# Enthalpy of formation: -2782.132 kJ/mol + -analytic 40.16637E-2 00E+0 -11.97122E+3 00E+0 00E+0 + +Mg+2 + B(OH)4- = MgB(OH)4+ + log_k 1.6 #97CRO + -analytic 16E-1 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + Br- = MgBr+ + log_k -0.14 #88CHA/NEW + -analytic -14E-2 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + Cl- = MgCl+ + log_k 0.35 #96BOU1 + delta_h -1.728 #kJ/mol +# Enthalpy of formation: -635.808 kJ/mol + -analytic 47.2674E-3 00E+0 90.25973E+0 00E+0 00E+0 + +Mg+2 + F- = MgF+ + log_k 1.8 #96BOU + delta_h 13.389 #kJ/mol 96BOU +# Enthalpy of formation: -788.961 kJ/mol + -analytic 41.45652E-1 00E+0 -69.93562E+1 00E+0 00E+0 + +Mg+2 + I- = MgI+ + log_k 0.18 #92JOH/OEL + -analytic 18E-2 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + 2 I- = MgI2 + log_k 0.03 #92JOH/OEL + -analytic 30E-3 00E+0 00E+0 00E+0 00E+0 + +Mg+2 + UO2+2 + 3 CO3-2 = MgUO2(CO3)3-2 + log_k 26.2 #20GRE/GAO + delta_h -50.9 #kJ/mol 21SHA/REI +# Enthalpy of formation: -3562.590 kJ/mol + -analytic 17.2827E+0 00E+0 26.58692E+2 00E+0 00E+0 + +Mn+2 + CO3-2 = Mn(CO3) + log_k 6.5 #96FAL/REA + -analytic 65E-1 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + H+ + CO3-2 = Mn(HCO3)+ + log_k 11.61 #95CHI + -analytic 11.61E+0 00E+0 00E+0 00E+0 00E+0 + +Mn+2 - H+ + H2(PO4)- = Mn(HPO4) + log_k -3.26 #96FAL/REA + -analytic -32.6E-1 00E+0 00E+0 00E+0 00E+0 + +Mn+2 - 2 H+ + 2 H2(PO4)- = Mn(HPO4)2-2 + log_k -9.12 #96FAL/REA + -analytic -91.2E-1 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + IO3- = Mn(IO3)+ + log_k 0.84 #estimation NEA87 08/2/95 + -analytic 84E-2 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + 2 IO3- = Mn(IO3)2 + log_k 0.13 #estimation NEA87 08/2/95 + -analytic 13E-2 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + NH3 = Mn(NH3)+2 + log_k 0.7 #88CHA/NEW + -analytic 70E-2 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + 2 NH3 = Mn(NH3)2+2 + log_k 1.2 #88CHA/NEW + -analytic 12E-1 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + NO3- = Mn(NO3)+ + log_k 0.16 #96FAL/REA + -analytic 16E-2 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + 2 NO3- = Mn(NO3)2 + log_k 0.5 #96FAL/REA + -analytic 50E-2 00E+0 00E+0 00E+0 00E+0 + +Mn+2 - H+ + H2O = Mn(OH)+ + log_k -10.59 #95CHI + -analytic -10.59E+0 00E+0 00E+0 00E+0 00E+0 + +Mn+2 - 2 H+ + 2 H2O = Mn(OH)2 + log_k -22.2 #95CHI + -analytic -22.2E+0 00E+0 00E+0 00E+0 00E+0 + +Mn+2 - 3 H+ + 3 H2O = Mn(OH)3- + log_k -34.8 #95CHI + -analytic -34.8E+0 00E+0 00E+0 00E+0 00E+0 + +Mn+2 - 4 H+ + 4 H2O = Mn(OH)4-2 + log_k -48.3 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/91PEA/BER 11891 EN; Nagra TR 91-18 (mai 1992, Hatches 3.0) (provient de la base 0391 MINEQL- PSY) + -analytic -48.3E+0 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + Pyrophos-4 = Mn(Pyrophos)-2 + log_k 6 #88CHA/NEW + -analytic 60E-1 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + S2O3-2 = Mn(S2O3) + log_k 1.9 #88CHA/NEW + -analytic 19E-1 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + SeO4-2 = Mn(SeO4) + log_k 2.43 #05OLI/NOL + delta_h -1.56 #kJ/mol +# Enthalpy of formation: -825.861 kJ/mol + -analytic 21.567E-1 00E+0 81.48448E+0 00E+0 00E+0 + +Mn+2 + SO4-2 = Mn(SO4) + log_k 2.25 #95CHI + delta_h 14.1 #kJ/mol 95CHI +# Enthalpy of formation: -1116.040 kJ/mol + -analytic 47.20214E-1 00E+0 -73.64943E+1 00E+0 00E+0 + +Mn+2 - e- = Mn+3 + log_k -25.51 #96FAL/REA + -analytic -25.51E+0 00E+0 00E+0 00E+0 00E+0 + +2 Mn+2 - H+ + H2O = Mn2(OH)+3 + log_k -10.1 #96FAL/REA + -analytic -10.1E+0 00E+0 00E+0 00E+0 00E+0 + +2 Mn+2 - 3 H+ + 3 H2O = Mn2(OH)3+ + log_k -24.9 #96FAL/REA + -analytic -24.9E+0 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + Br- = MnBr+ + log_k 0.13 #88CHA/NEW + -analytic 13E-2 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + Cl- = MnCl+ + log_k 0.27 + delta_h 18.516 #kJ/mol +# Enthalpy of formation: -369.364 kJ/mol 97SVE/SHO + -analytic 35.13864E-1 00E+0 -96.7158E+1 00E+0 00E+0 + +Mn+2 + 2 Cl- = MnCl2 + log_k 0.25 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) + -analytic 25E-2 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + 3 Cl- = MnCl3- + log_k -0.31 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) + -analytic -31E-2 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + F- = MnF+ + log_k 0.85 #96FAL/REA + -analytic 85E-2 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + 2 F- = MnF2 + log_k 9.04 #88CHA/NEW + -analytic 90.4E-1 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + 3 F- = MnF3- + log_k 11.64 #88CHA/NEW + -analytic 11.64E+0 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + 4 F- = MnF4-2 + log_k 13.4 #88CHA/NEW + -analytic 13.4E+0 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + 5 F- = MnF5-3 + log_k 14.7 #88CHA/NEW + -analytic 14.7E+0 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + 6 F- = MnF6-4 + log_k 15.5 #88CHA/NEW + -analytic 15.5E+0 00E+0 00E+0 00E+0 00E+0 + +Mn+2 + I- = MnI+ + log_k 0.23 #92JOH/OEL + -analytic 23E-2 00E+0 00E+0 00E+0 00E+0 + +Mn+2 - 8 H+ - 5 e- + 4 H2O = MnO4- + log_k -127.81 + delta_h 822.71 #kJ/mol +# Enthalpy of formation: -541.410 kJ/mol 92JOH/OEL + -analytic 16.3226E+0 00E+0 -42.97314E+3 00E+0 00E+0 + +Mn+2 - 8 H+ - 4 e- + 4 H2O = MnO4-2 + log_k -118.43 + delta_h 711.416 #kJ/mol +# Enthalpy of formation: -652.704 kJ/mol 92JOH/OEL + -analytic 62.04733E-1 00E+0 -37.15985E+3 00E+0 00E+0 + +Mn+2 - 8 H+ - 3 e- + 4 H2O = MnO4-3 + log_k -113 #96FAL/REA + -analytic -11.3E+1 00E+0 00E+0 00E+0 00E+0 + +8 H+ + 3 e- + MoO4-2 - 4 H2O = Mo+3 + log_k 21.76 #68SAS/SIL + -analytic 21.76E+0 00E+0 00E+0 00E+0 00E+0 + +34 H+ + 19 MoO4-2 - 17 H2O = Mo19O59-4 + log_k 196.3 #68SAS/SIL + -analytic 19.63E+1 00E+0 00E+0 00E+0 00E+0 + +5 H+ + 2 MoO4-2 - 2 H2O = Mo2O5(OH)+ + log_k 19 #68SAS/SIL + -analytic 19E+0 00E+0 00E+0 00E+0 00E+0 + +11 H+ + 7 MoO4-2 - 4 H2O = Mo7O21(OH)3-3 + log_k 66.48 #68SAS/SIL, 64AVE/ANA + delta_h -222.589 #kJ/mol 68ARN/SZI in 76BAE/MES +# Enthalpy of formation: -6058.269 kJ/mol + -analytic 27.48408E+0 00E+0 11.62663E+3 00E+0 00E+0 + +10 H+ + 7 MoO4-2 - 4 H2O = Mo7O22(OH)2-4 + log_k 62.71 #68SAS/SIL, 64AVE/ANA + delta_h -220.079 #kJ/mol 68ARN/SZI in 76BAE/MES +# Enthalpy of formation: -6055.759 kJ/mol + -analytic 24.15381E+0 00E+0 11.49553E+3 00E+0 00E+0 + +9 H+ + 7 MoO4-2 - 4 H2O = Mo7O23(OH)-5 + log_k 57.21 #68SAS/SIL, 64AVE/ANA + delta_h -223.426 #kJ/mol 68ARN/SZI in 76BAE/MES +# Enthalpy of formation: -6059.106 kJ/mol + -analytic 18.06745E+0 00E+0 11.67035E+3 00E+0 00E+0 + +8 H+ + 7 MoO4-2 - 4 H2O = Mo7O24-6 + log_k 50.35 #68SAS/SIL, 64AVE/ANA + delta_h -234.304 #kJ/mol 68ARN/SZI in 76BAE/MES +# Enthalpy of formation: -6069.984 kJ/mol + -analytic 93.01701E-1 00E+0 12.23855E+3 00E+0 00E+0 + +Na+ + CO3-2 = Na(CO3)- + log_k 1.27 #90NOR/PLU + delta_h 37.279 #kJ/mol 90NOR/PLU +# Enthalpy of formation: -878.291 kJ/mol + -analytic 78.01E-1 00E+0 -19.47218E+2 00E+0 00E+0 + +Na+ + Edta-4 = Na(Edta)-3 + log_k 2.8 #05HUM/AND + delta_h -4 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1949.140 kJ/mol + -analytic 20.9923E-1 00E+0 20.89346E+1 00E+0 00E+0 + +Na+ + H+ + CO3-2 = Na(HCO3) + log_k 10.08 #90NOR/PLU + delta_h -26.127 #kJ/mol +# Enthalpy of formation: -941.697 kJ/mol + -analytic 55.02746E-1 00E+0 13.64708E+2 00E+0 00E+0 + +Na+ + H+ + Nta-3 = Na(HNta)- + log_k 10.32 #95AKR/BOU + -analytic 10.32E+0 00E+0 00E+0 00E+0 00E+0 + +Na+ - H+ + H2(PO4)- = Na(HPO4)- + log_k -6.34 #97MAR/SMI + delta_h 34.936 #kJ/mol 97MAR/SMI +# Enthalpy of formation: -1508.004 kJ/mol + -analytic -21.94755E-2 00E+0 -18.24834E+2 00E+0 00E+0 + +Na+ + IO3- = Na(IO3) + log_k 0.06 #estimation NEA87 08/2/95 + -analytic 60E-3 00E+0 00E+0 00E+0 00E+0 + +Na+ + Nta-3 = Na(Nta)-2 + log_k 1.88 #95AKR/BOU + -analytic 18.8E-1 00E+0 00E+0 00E+0 00E+0 + +Na+ + S2O3-2 = Na(S2O3)- + log_k 0.61 + delta_h 4.656 #kJ/mol +# Enthalpy of formation: -887.970 kJ/mol 82WAG/EVA + -analytic 14.25696E-1 00E+0 -24.31998E+1 00E+0 00E+0 + +2 Na+ + Pyrophos-4 = Na2(Pyrophos)-2 + log_k 2.29 #76SMI/MAR + delta_h 5.858 #kJ/mol 76SMI/MAR + -analytic 33.16278E-1 00E+0 -30.59847E+1 00E+0 00E+0 + +Na+ + Al+3 - 4 H+ + 4 H2O = NaAl(OH)4 + log_k -23.63 + delta_h 190.348 #kJ/mol +# Enthalpy of formation: -1731.712 kJ/mol 95POK/HEL + -analytic 97.17538E-1 00E+0 -99.42568E+2 00E+0 00E+0 + +Na+ + B(OH)4- = NaB(OH)4 + log_k -0.1 + delta_h 1.226 #kJ/mol +# Enthalpy of formation: -1584.230 kJ/mol + -analytic 11.4786E-2 00E+0 -64.03844E+0 00E+0 00E+0 + +Na+ + F- = NaF + log_k -0.45 #96BOU + delta_h -12.552 #kJ/mol 96BOU +# Enthalpy of formation: -588.242 kJ/mol + -analytic -26.49016E-1 00E+0 65.56366E+1 00E+0 00E+0 + +Na+ + H2(PO4)- = NaH2PO4 + log_k 0.41 #97MAR/SMI + -analytic 41E-2 00E+0 00E+0 00E+0 00E+0 + +Na+ + I- = NaI + log_k -1.52 + delta_h 7.252 #kJ/mol +# Enthalpy of formation: -289.868 kJ/mol 92JOH/OEL + -analytic -24.95041E-2 00E+0 -37.87983E+1 00E+0 00E+0 + +Na+ - 2 H+ + H2(PO4)- = NaPO4-2 + log_k -18.07 #97MAR/SMI + -analytic -18.07E+0 00E+0 00E+0 00E+0 00E+0 + +3 H+ + Nb(OH)6- - 3 H2O = Nb(OH)3+2 + log_k 7.5 #97PEI/NGU + delta_h -10.23 #kJ/mol 97PEI/NGU +# Enthalpy of formation: -1078.398 kJ/mol + -analytic 57.07781E-1 00E+0 53.43501E+1 00E+0 00E+0 + +2 H+ + Nb(OH)6- - 2 H2O = Nb(OH)4+ + log_k 6.64 #97PEI/NGU + delta_h -35.35 #kJ/mol 97PEI/NGU +# Enthalpy of formation: -1389.348 kJ/mol + -analytic 44.69458E-2 00E+0 18.46459E+2 00E+0 00E+0 + +H+ + Nb(OH)6- - H2O = Nb(OH)5 + log_k 5.08 #97PEI/NGU + delta_h -13.39 #kJ/mol 97PEI/NGU +# Enthalpy of formation: -1653.218 kJ/mol + -analytic 27.34173E-1 00E+0 69.94084E+1 00E+0 00E+0 + +- H+ + Nb(OH)6- + H2O = Nb(OH)7-2 + log_k -8.88 #97PEI/NGU + delta_h 10.17 #kJ/mol 97PEI/NGU +# Enthalpy of formation: -2201.318 kJ/mol + -analytic -70.98292E-1 00E+0 -53.12161E+1 00E+0 00E+0 + +5 H+ + Nb(OH)6- + Cit-3 - 4 H2O = NbO2(H3Cit)+ + log_k 25.64 #95AKR/BOU + -analytic 25.64E+0 00E+0 00E+0 00E+0 00E+0 + +3 H+ + Nb(OH)6- + Ox-2 - 4 H2O = NbO2(HOx) + log_k 13.7 #95AKR/BOU + -analytic 13.7E+0 00E+0 00E+0 00E+0 00E+0 + +4 H+ + Nb(OH)6- + 2 Ox-2 - 4 H2O = NbO2(HOx)2- + log_k 20.96 #95AKR/BOU + -analytic 20.96E+0 00E+0 00E+0 00E+0 00E+0 + +2 H+ + Nb(OH)6- + Ox-2 - 4 H2O = NbO2(Ox)- + log_k 10.94 #95AKR/BOU + -analytic 10.94E+0 00E+0 00E+0 00E+0 00E+0 + +H+ + NH3 = NH4+ + log_k 9.24 + delta_h -52.09 #kJ/mol +# Enthalpy of formation: -133.260 kJ/mol 92GRE/FUG + -analytic 11.42237E-2 00E+0 27.2085E+2 00E+0 00E+0 + +Ni+2 + Acetate- = Ni(Acetate)+ + log_k 1.34 #11RIC/GRI + delta_h -8.761 #kJ/mol +# Enthalpy of formation: -549.783 kJ/mol + -analytic -19.48613E-2 00E+0 45.76189E+1 00E+0 00E+0 + +Ni+2 + Cit-3 = Ni(Cit)- + log_k 6.76 #05HUM/AND + -analytic 67.6E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 2 Cit-3 = Ni(Cit)2-4 + log_k 8.5 #05HUM/AND + -analytic 85E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + CO3-2 = Ni(CO3) + log_k 4.2 #03BAE/BRA in 05GAM/BUG + delta_h 3.546 #kJ/mol +# Enthalpy of formation: -726.696 kJ/mol + -analytic 48.21233E-1 00E+0 -18.52205E+1 00E+0 00E+0 + +Ni+2 + 2 CO3-2 = Ni(CO3)2-2 + log_k 6.2 #03BAE/BRA; Uncertainty 03HUM/CUR + -analytic 62E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + Edta-4 = Ni(Edta)-2 + log_k 20.54 #05HUM/AND + delta_h -26.1 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1785.912 kJ/mol + -analytic 15.96748E+0 00E+0 13.63298E+2 00E+0 00E+0 + +Ni+2 + 2 H+ + Cit-3 = Ni(H2Cit)+ + log_k 13.19 #05HUM/AND + -analytic 13.19E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + H+ + Cit-3 = Ni(HCit) + log_k 10.52 #05HUM/BER + -analytic 10.52E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + H+ + CO3-2 = Ni(HCO3)+ + log_k 11.73 #03BAE/BRA; Uncertainty 03HUM/CUR + -analytic 11.73E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + H+ + Edta-4 = Ni(HEdta)- + log_k 24.2 #05HUM/AND + -analytic 24.2E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 - H+ + H2(PO4)- = Ni(HPO4) + log_k -4.16 #05GAM/BUG + -analytic -41.6E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 2 HS- = Ni(HS)2 + log_k 11.1 #02HUM/BER + -analytic 11.1E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + Malonate-2 = Ni(Malonate) + log_k 4.39 #13GRI/CAM + -analytic 43.9E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 2 Malonate-2 = Ni(Malonate)2-2 + log_k 8.15 #98KHA/RAD + -analytic 81.5E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + NH3 = Ni(NH3)+2 + log_k 2.61 #70LET + -analytic 26.1E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 2 NH3 = Ni(NH3)2+2 + log_k 4.76 #70LET + -analytic 47.6E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 3 NH3 = Ni(NH3)3+2 + log_k 6.79 #70LET + -analytic 67.9E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 4 NH3 = Ni(NH3)4+2 + log_k 8.34 #70LET + -analytic 83.4E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + NO3- = Ni(NO3)+ + log_k 0.5 #05GAM/BUG + -analytic 50E-2 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 2 NO3- = Ni(NO3)2 + log_k -0.6 #76SMI/MAR in 89BAE/McK; Uncertainty is by analogy with Ni(NO3)+ and is preliminary. + -analytic -60E-2 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + Nta-3 = Ni(Nta)- + log_k 12.75 #95AKR/BOU + -analytic 12.75E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 2 Nta-3 = Ni(Nta)2-4 + log_k 16.95 #95AKR/BOU + -analytic 16.95E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 - H+ + Edta-4 + H2O = Ni(OH)(Edta)-3 + log_k 6.5 #04FEL/QAF + -analytic 65E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 - H+ + HIsa- + H2O = Ni(OH)(HIsa) + log_k -6.5 #18GON/GAO + -analytic -65E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 - H+ + Nta-3 + H2O = Ni(OH)(Nta)-2 + log_k 1.47 #95AKR/BOU + -analytic 14.7E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 - H+ + H2O = Ni(OH)+ + log_k -9.54 #05GAM/BUG + delta_h 53.8 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -287.042 kJ/mol + -analytic -11.46446E-2 00E+0 -28.1017E+2 00E+0 00E+0 + +Ni+2 - 2 H+ + 2 H2O = Ni(OH)2 + log_k -18 #49GAY/GAR reevaluated in 05GAM/BUG + -analytic -18E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 - 2 H+ + HIsa- + 2 H2O = Ni(OH)2(HIsa)- + log_k -17.6 #18GON/GAO + -analytic -17.6E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 - 3 H+ + H2(PO4)- + 2 H2O = Ni(OH)2(HPO4)-2 + log_k -23.24 #95LEM + -analytic -23.24E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 - 3 H+ + HIsa- + 3 H2O = Ni(OH)3(HIsa)-2 + log_k -31 #18GON/GAO + -analytic -31E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + Ox-2 = Ni(Ox) + log_k 5.19 #05HUM/AND + delta_h 0 #kJ/mol 05HUM/AND +# Enthalpy of formation: -885.672 kJ/mol + -analytic 51.9E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 2 Ox-2 = Ni(Ox)2-2 + log_k 7.64 #05HUM/AND + delta_h -7.8 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1724.132 kJ/mol + -analytic 62.73499E-1 00E+0 40.74224E+1 00E+0 00E+0 + +Ni+2 + Phthalat-2 = Ni(Phthalat) + log_k 3 #11GRI/COL2 + -analytic 30E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + Pyrophos-4 = Ni(Pyrophos)-2 + log_k 8.73 #05GAM/BUG + -analytic 87.3E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + S2O3-2 = Ni(S2O3) + log_k 2.06 #51DEU/HEI in 64SIL/MAR + -analytic 20.6E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + SeO4-2 = Ni(SeO4) + log_k 2.67 #05OLI/NOL + delta_h -0.68 #kJ/mol +# Enthalpy of formation: -659.192 kJ/mol + -analytic 25.50869E-1 00E+0 35.51887E+0 00E+0 00E+0 + +Ni+2 + SO4-2 = Ni(SO4) + log_k 2.35 #05GAM/BUG + delta_h 5.66 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -958.692 kJ/mol + -analytic 33.41589E-1 00E+0 -29.56424E+1 00E+0 00E+0 + +Ni+2 + 2 SO4-2 = Ni(SO4)2-2 + log_k 3.01 #89BAE/McK + -analytic 30.1E-1 00E+0 00E+0 00E+0 00E+0 + +2 Ni+2 - H+ + H2O = Ni2(OH)+3 + log_k -10.6 #05GAM/BUG + delta_h 45.9 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -349.954 kJ/mol + -analytic -25.58665E-1 00E+0 -23.97524E+2 00E+0 00E+0 + +4 Ni+2 - 4 H+ + 4 H2O = Ni4(OH)4+4 + log_k -27.52 #05GAM/BUG + delta_h 190 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -1173.368 kJ/mol + -analytic 57.66571E-1 00E+0 -99.24391E+2 00E+0 00E+0 + +Ni+2 + Cl- = NiCl+ + log_k 0.08 #05GAM/BUG + -analytic 80E-3 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + F- = NiF+ + log_k 1.43 #05GAM/BUG + delta_h 9.5 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -380.862 kJ/mol + -analytic 30.94329E-1 00E+0 -49.62196E+1 00E+0 00E+0 + +Ni+2 + H+ + AsO4-3 = NiHAsO4 + log_k 14.5 + -analytic 14.5E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + H+ + Pyrophos-4 = NiHPyrophos- + log_k 14.54 #05GAM/BUG + -analytic 14.54E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + HS- = NiHS+ + log_k 5.5 #02HUM/BER + -analytic 55E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 + Acetate- = Np(Acetate)+3 + log_k 5.83 #12GRI/GAR2 + -analytic 58.3E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 + 2 Acetate- = Np(Acetate)2+2 + log_k 10 #11RIC/GRI + -analytic 10E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 + CO3-2 = Np(CO3)+ + log_k 7.67 #Estimated by correlation with An(III) in function of ionic radii + delta_h 19.064 #kJ/mol +# Enthalpy of formation: -1183.350 kJ/mol + -analytic 11.00987E+0 00E+0 -99.57821E+1 00E+0 00E+0 + +Np+3 + 2 CO3-2 = Np(CO3)2- + log_k 12.6 #Estimated by correlation with An(III) in function of ionic radii + -analytic 12.6E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 + 3 CO3-2 = Np(CO3)3-3 + log_k 15.66 #01LEM/FUG + -analytic 15.66E+0 00E+0 00E+0 00E+0 00E+0 + +Np+4 + 4 CO3-2 = Np(CO3)4-4 + log_k 36.68 #01LEM/FUG + -analytic 36.68E+0 00E+0 00E+0 00E+0 00E+0 + +Np+4 + 5 CO3-2 = Np(CO3)5-6 + log_k 35.61 #01LEM/FUG + delta_h -1.595 #kJ/mol +# Enthalpy of formation: -3933.768 kJ/mol + -analytic 35.33057E+0 00E+0 83.31265E+0 00E+0 00E+0 + +Np+4 + Edta-4 = Np(Edta) + log_k 31.2 #05HUM/AND + -analytic 31.2E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 + Edta-4 = Np(Edta)- + log_k 19.9 #Recommended in 05HUM/AND + -analytic 19.9E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 + H2(PO4)- = Np(H2PO4)+2 + log_k 2.39 #Estimated by correlation with An(III) in function of ionic radii. + -analytic 23.9E-1 00E+0 00E+0 00E+0 00E+0 + +Np+3 + H+ + Edta-4 = Np(HEdta) + log_k 22.02 #Analogy with Pu(HEdta) + -analytic 22.02E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 - H+ + H2(PO4)- = Np(HPO4)+ + log_k -1.88 #Estimated by correlation with An(III) in function of ionic radii + -analytic -18.8E-1 00E+0 00E+0 00E+0 00E+0 + +Np+3 - 2 H+ + 2 H2(PO4)- = Np(HPO4)2- + log_k -5.61 #Estimated by correlation with An(III) in function of ionic radii + -analytic -56.1E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 + NO3- = Np(NO3)+3 + log_k 1.9 #01LEM/FUG + -analytic 19E-1 00E+0 00E+0 00E+0 00E+0 + +Np+3 + Nta-3 = Np(Nta) + log_k 13 #95AKR/BOU + -analytic 13E+0 00E+0 00E+0 00E+0 00E+0 + +Np+4 + Nta-3 = Np(Nta)+ + log_k 20.7 #95AKR/BOU + -analytic 20.7E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 - H+ + H2O = Np(OH)+2 + log_k -6.8 #01LEM/FUG + delta_h 36.997 #kJ/mol +# Enthalpy of formation: -776.017 kJ/mol + -analytic -31.84038E-2 00E+0 -19.32488E+2 00E+0 00E+0 + +Np+4 - H+ + H2O = Np(OH)+3 + log_k 0.55 #03GUI/FAN + delta_h 26.743 #kJ/mol +# Enthalpy of formation: -815.109 kJ/mol + -analytic 52.35172E-1 00E+0 -13.96884E+2 00E+0 00E+0 + +Np+4 - 2 H+ + 2 CO3-2 + 2 H2O = Np(OH)2(CO3)2-2 + log_k 16.92 #99RAI/HES2 + -analytic 16.92E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 - 2 H+ + 2 H2O = Np(OH)2+ + log_k -17 #80ALL/KIP + delta_h 103.262 #kJ/mol +# Enthalpy of formation: -995.582 kJ/mol + -analytic 10.90726E-1 00E+0 -53.9375E+2 00E+0 00E+0 + +Np+4 - 2 H+ + 2 H2O = Np(OH)2+2 + log_k 0.35 #03GUI/FAN + delta_h 44.742 #kJ/mol +# Enthalpy of formation: -1082.939 kJ/mol + -analytic 81.88462E-1 00E+0 -23.37037E+2 00E+0 00E+0 + +Np+4 - 2 H+ + Edta-4 + 2 H2O = Np(OH)2Edta-2 + log_k 18.24 #23ROD/COL + -analytic 18.24E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 - 3 H+ + 3 H2O = Np(OH)3 + log_k -27 #80ALL/KIP + delta_h 159.163 #kJ/mol +# Enthalpy of formation: -1225.510 kJ/mol + -analytic 88.41606E-2 00E+0 -83.13662E+2 00E+0 00E+0 + +Np+4 - 3 H+ + 3 H2O = Np(OH)3+ + log_k -2.8 #01NEC/KIM, 99NEC + delta_h 70.765 #kJ/mol +# Enthalpy of formation: -1342.745 kJ/mol + -analytic 95.97496E-1 00E+0 -36.96313E+2 00E+0 00E+0 + +Np+4 - 3 H+ + Edta-4 + 3 H2O = Np(OH)3Edta-3 + log_k 8.62 #23ROD/COL + -analytic 86.2E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 - 4 H+ + 4 H2O = Np(OH)4 + log_k -8.3 #20GRE/GAO + delta_h 100.98 #kJ/mol +# Enthalpy of formation: -1598.360 kJ/mol + -analytic 93.90937E-1 00E+0 -52.74553E+2 00E+0 00E+0 + +Np+4 - 4 H+ + HGlu- + 4 H2O = Np(OH)4(HGlu)- + log_k -5.89 #Analogy with An(IV)-ISA + -analytic -58.9E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 - 4 H+ + 2 HGlu- + 4 H2O = Np(OH)4(HGlu)2-2 + log_k -3.69 #Analogy with An(IV)-ISA + -analytic -36.9E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 - 4 H+ + HIsa- + 4 H2O = Np(OH)4(HIsa)- + log_k -5.89 #23ROD/COL + -analytic -58.9E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 - 4 H+ + 2 HIsa- + 4 H2O = Np(OH)4(HIsa)2-2 + log_k -3.69 #23ROD/COL + -analytic -36.9E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 - H+ + Edta-4 + H2O = Np(OH)Edta- + log_k 23.73 #23ROD/COL + -analytic 23.73E+0 00E+0 00E+0 00E+0 00E+0 + +Np+4 + Ox-2 = Np(Ox)+2 + log_k 11.16 #12GRI/GAR2 + -analytic 11.16E+0 00E+0 00E+0 00E+0 00E+0 + +Np+4 + 2 Ox-2 = Np(Ox)2 + log_k 19.94 #12GRI/GAR2 + -analytic 19.94E+0 00E+0 00E+0 00E+0 00E+0 + +Np+4 + 3 Ox-2 = Np(Ox)3-2 + log_k 25.19 #12GRI/GAR2 + -analytic 25.19E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 - 2 H+ + H2(PO4)- = Np(PO4) + log_k -8.07 #Estimated by correlation with An(III) in function of ionic radii + -analytic -80.7E-1 00E+0 00E+0 00E+0 00E+0 + +Np+3 - 4 H+ + 2 H2(PO4)- = Np(PO4)2-3 + log_k -20.03 #Estimated by correlation with An(III) in function of ionic radii + -analytic -20.03E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 + SO4-2 = Np(SO4)+ + log_k 3.72 #Estimated by correlation with An(III) in function of ionic radii + delta_h 21.188 #kJ/mol +# Enthalpy of formation: -1415.336 kJ/mol + -analytic 74.31978E-1 00E+0 -11.06726E+2 00E+0 00E+0 + +Np+4 + SO4-2 = Np(SO4)+2 + log_k 6.85 #01LEM/FUG + delta_h 29.84 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1435.522 kJ/mol + -analytic 12.07774E+0 00E+0 -15.58652E+2 00E+0 00E+0 + +Np+4 + 2 SO4-2 = Np(SO4)2 + log_k 11.05 #01LEM/FUG + delta_h 55.38 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -2319.322 kJ/mol + -analytic 20.75216E+0 00E+0 -28.92699E+2 00E+0 00E+0 + +Np+3 + 2 SO4-2 = Np(SO4)2- + log_k 5.16 #Estimated by correlation with An(III) in function of ionic radii + -analytic 51.6E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 + Br- = NpBr+3 + log_k 1.55 #Estimated by correlation with An(IV) in function of ionic radii + -analytic 15.5E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 + Cl- = NpCl+3 + log_k 1.5 #01LEM/FUG + delta_h 24.173 #kJ/mol +# Enthalpy of formation: -698.928 kJ/mol + -analytic 57.34928E-1 00E+0 -12.62644E+2 00E+0 00E+0 + +Np+4 + F- = NpF+3 + log_k 8.96 #01LEM/FUG + delta_h 1.5 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -889.872 kJ/mol + -analytic 92.22789E-1 00E+0 -78.35046E+0 00E+0 00E+0 + +Np+4 + 2 F- = NpF2+2 + log_k 15.7 #01LEM/FUG + delta_h 15.928 #kJ/mol +# Enthalpy of formation: -1210.793 kJ/mol + -analytic 18.49047E+0 00E+0 -83.19774E+1 00E+0 00E+0 + +Np+4 + 3 F- = NpF3+ + log_k 20.05 #01LEM/FUG + -analytic 20.05E+0 00E+0 00E+0 00E+0 00E+0 + +Np+4 + 4 F- = NpF4 + log_k 25.95 #01LEM/FUG + -analytic 25.95E+0 00E+0 00E+0 00E+0 00E+0 + +Np+4 + I- = NpI+3 + log_k 1.5 #01LEM/FUG + -analytic 15E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + Acetate- = NpO2(Acetate) + log_k 1.32 #11RIC/GRI + -analytic 13.2E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + 2 Acetate- = NpO2(Acetate)2- + log_k 3.42 #09TAK/TAK + -analytic 34.2E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + 3 Acetate- = NpO2(Acetate)3-2 + log_k 3.57 #09TAK/TAK + -analytic 35.7E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + Cit-3 = NpO2(Cit)-2 + log_k 3.68 #05HUM/AND + -analytic 36.8E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + CO3-2 = NpO2(CO3)- + log_k 4.96 #01LEM/FUG + delta_h 59.912 #kJ/mol +# Enthalpy of formation: -1593.499 kJ/mol + -analytic 15.45613E+0 00E+0 -31.29422E+2 00E+0 00E+0 + +NpO2+2 - 2 H+ + CO3-2 + 2 H2O = NpO2(CO3)(OH)2-2 + log_k -7.69 #99CHO/BRO + -analytic -76.9E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+2 + 2 CO3-2 = NpO2(CO3)2-2 + log_k 15 #Upper limit value in 20GRE/GAO + -analytic 15E+0 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + 2 CO3-2 = NpO2(CO3)2-3 + log_k 6.53 #01LEM/FUG + delta_h 39.024 #kJ/mol +# Enthalpy of formation: -2289.617 kJ/mol + -analytic 13.36671E+0 00E+0 -20.38365E+2 00E+0 00E+0 + +NpO2+ - H+ + 2 CO3-2 + H2O = NpO2(CO3)2OH-4 + log_k -5.31 #01LEM/FUG + -analytic -53.1E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+2 + 3 CO3-2 = NpO2(CO3)3-4 + log_k 19.9 #20GRE/GAO + delta_h -41.9 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -2928.323 kJ/mol + -analytic 12.55944E+0 00E+0 21.88589E+2 00E+0 00E+0 + +NpO2+ + 3 CO3-2 = NpO2(CO3)3-5 + log_k 5.5 + delta_h -13.249 #kJ/mol +# Enthalpy of formation: -3017.120 kJ/mol 01LEM/FUG + -analytic 31.78875E-1 00E+0 69.20435E+1 00E+0 00E+0 + +NpO2+ + Edta-4 = NpO2(Edta)-3 + log_k 9.23 #05HUM/AND + -analytic 92.3E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + 2 H+ + Edta-4 = NpO2(H2Edta)- + log_k 22.51 #05HUM/AND + -analytic 22.51E+0 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + H2(PO4)- = NpO2(H2PO4) + log_k 1.4 #20GRE/GAO + -analytic 14E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + H+ + Edta-4 = NpO2(HEdta)-2 + log_k 17.06 #05HUM/AND + -analytic 17.06E+0 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + HGlu- = NpO2(HGlu) + log_k 1.68 #06ZHA/CLA + -analytic 16.8E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + 2 HGlu- = NpO2(HGlu)2- + log_k 2.39 #06ZHA/CLA + -analytic 23.9E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + H+ + Nta-3 = NpO2(HNta)- + log_k 11.7 #95AKR/BOU + -analytic 11.7E+0 00E+0 00E+0 00E+0 00E+0 + +NpO2+2 - H+ + H2(PO4)- = NpO2(HPO4) + log_k -1.01 #01LEM/FUG + delta_h 92.195 #kJ/mol +# Enthalpy of formation: -2071.137 kJ/mol + -analytic 15.14187E+0 00E+0 -48.1568E+2 00E+0 00E+0 + +NpO2+ - H+ + H2(PO4)- = NpO2(HPO4)- + log_k -4.26 #20GRE/GAO + delta_h -7.4 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2288.181 kJ/mol + -analytic -55.56424E-1 00E+0 38.65289E+1 00E+0 00E+0 + +NpO2+2 - 2 H+ + 2 H2(PO4)- = NpO2(HPO4)2-2 + log_k -4.92 #01LEM/FUG + -analytic -49.2E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+2 + NO3- = NpO2(NO3)+ + log_k 0.1 #12GRI/GAR2 in analogy to UO2(NO3)+ + -analytic 10E-2 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + Nta-3 = NpO2(Nta)-2 + log_k 7.46 #95AKR/BOU + -analytic 74.6E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+ - H+ + H2O = NpO2(OH) + log_k -11.3 #01LEM/FUG + delta_h 64.785 #kJ/mol +# Enthalpy of formation: -1199.226 kJ/mol + -analytic 49.8448E-3 00E+0 -33.83956E+2 00E+0 00E+0 + +NpO2+2 - H+ + H2O = NpO2(OH)+ + log_k -5.1 #01LEM/FUG + delta_h 42.956 #kJ/mol +# Enthalpy of formation: -1103.606 kJ/mol + -analytic 24.25568E-1 00E+0 -22.43748E+2 00E+0 00E+0 + +NpO2+2 - 2 H+ + 2 H2O = NpO2(OH)2 + log_k -12.21 #Estimated by correlation with An(VI) in funciton of ionic radii + -analytic -12.21E+0 00E+0 00E+0 00E+0 00E+0 + +NpO2+ - 2 H+ + 2 H2O = NpO2(OH)2- + log_k -23.6 #01LEM/FUG + delta_h 118.61 #kJ/mol +# Enthalpy of formation: -1431.230 kJ/mol + -analytic -28.2042E-1 00E+0 -61.95432E+2 00E+0 00E+0 + +NpO2+2 - 3 H+ + 3 H2O = NpO2(OH)3- + log_k -21.2 #20GRE/GAO + -analytic -21.2E+0 00E+0 00E+0 00E+0 00E+0 + +NpO2+2 - 4 H+ + 4 H2O = NpO2(OH)4-2 + log_k -32 #20GRE/GAO + -analytic -32E+0 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + Ox-2 = NpO2(Ox)- + log_k 3.9 #05HUM/AND + delta_h -1.3 #kJ/mol 20MAI/TRU +# Enthalpy of formation: -1810.141 kJ/mol + -analytic 36.7225E-1 00E+0 67.90373E+0 00E+0 00E+0 + +NpO2+ + 2 Ox-2 = NpO2(Ox)2-3 + log_k 5.8 #05HUM/AND + delta_h -8.7 #kJ/mol 20MAI/TRU +# Enthalpy of formation: -2648.201 kJ/mol + -analytic 42.75825E-1 00E+0 45.44326E+1 00E+0 00E+0 + +NpO2+2 + SO4-2 = NpO2(SO4) + log_k 3.28 #01LEM/FUG + delta_h 16.7 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1753.373 kJ/mol + -analytic 62.05714E-1 00E+0 -87.23018E+1 00E+0 00E+0 + +NpO2+ + SO4-2 = NpO2(SO4)- + log_k 1.3 #20GRE/GAO + delta_h 22 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1865.521 kJ/mol + -analytic 51.54235E-1 00E+0 -11.4914E+2 00E+0 00E+0 + +NpO2+2 + 2 SO4-2 = NpO2(SO4)2-2 + log_k 4.7 #01LEM/FUG + delta_h 26 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -2653.413 kJ/mol + -analytic 92.55004E-1 00E+0 -13.58075E+2 00E+0 00E+0 + +NpO2+ + Cl- = NpO2Cl + log_k -0.93 #94NEC/KIM + delta_h 25.971 #kJ/mol +# Enthalpy of formation: -1119.289 kJ/mol + -analytic 36.19924E-1 00E+0 -13.5656E+2 00E+0 00E+0 + +NpO2+2 + Cl- = NpO2Cl+ + log_k 0.4 #01LEM/FUG + delta_h 8.387 #kJ/mol +# Enthalpy of formation: -1019.426 kJ/mol + -analytic 18.69339E-1 00E+0 -43.80835E+1 00E+0 00E+0 + +NpO2+2 + CO3-2 = NpO2CO3 + log_k 9.86 #20GRE/GAO + -analytic 98.6E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + F- = NpO2F + log_k 1.4 #20GRE/GAO + -analytic 14E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+2 + F- = NpO2F+ + log_k 4.57 #01LEM/FUG + delta_h 1.4 #kJ/mol +# Enthalpy of formation: -1194.682 kJ/mol + -analytic 48.15269E-1 00E+0 -73.12709E+0 00E+0 00E+0 + +NpO2+2 + 2 F- = NpO2F2 + log_k 7.6 #01LEM/FUG + delta_h 4.32 #kJ/mol +# Enthalpy of formation: -1527.113 kJ/mol + -analytic 83.56832E-1 00E+0 -22.56493E+1 00E+0 00E+0 + +NpO2+ + 2 F- = NpO2F2- + log_k 1.9 #20GRE/GAO + -analytic 19E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+2 + H2(PO4)- = NpO2H2PO4+ + log_k 3.32 #01LEM/FUG + -analytic 33.2E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + H2O = OH- + log_k -14 + delta_h 55.815 #kJ/mol +# Enthalpy of formation: -230.015 kJ/mol 89COX/WAG + -analytic -42.21632E-1 00E+0 -29.1542E+2 00E+0 00E+0 + +- H+ + Pa+4 + H2O = Pa(OH)+3 + log_k 0.84 #76BAE/MES + -analytic 84E-2 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + Pa+4 + 2 H2O = Pa(OH)2+2 + log_k -0.02 #76BAE/MES + -analytic -20E-3 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ + Pa+4 + 3 H2O = Pa(OH)3+ + log_k -1.5 #76BAE/MES + -analytic -15E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + PaO2+ = PaO(OH)+2 + log_k 1.25 #Original data 03TRU/LEN and 04FOU/PER + delta_h -5.7 #kJ/mol 03TRU/LEN + -analytic 25.14029E-2 00E+0 29.77317E+1 00E+0 00E+0 + +2 H+ + SO4-2 + PaO2+ - H2O = PaO(SO4)+ + log_k 5.13 #07GIA/TRU + -analytic 51.3E-1 00E+0 00E+0 00E+0 00E+0 + +2 H+ + 2 SO4-2 + PaO2+ - H2O = PaO(SO4)2- + log_k 8.24 #07GIA/TRU + -analytic 82.4E-1 00E+0 00E+0 00E+0 00E+0 + +2 H+ + 3 SO4-2 + PaO2+ - H2O = PaO(SO4)3-3 + log_k 9.83 #07GIA/TRU + -analytic 98.3E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + PaO2+ + H2O = PaO2(OH) + log_k -7 #Original data 03TRU/LEN and 04FOU/PER + delta_h 61 #kJ/mol 03TRU/LEN + -analytic 36.86741E-1 00E+0 -31.86252E+2 00E+0 00E+0 + +- 2 H+ + PaO2+ + 2 H2O = PaO2(OH)2- + log_k -16.4 #04FOU/PER + -analytic -16.4E+0 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + B(OH)4- = Pb(B(OH)4)+ + log_k 5.2 #80BAS + -analytic 52E-1 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + 3 B(OH)4- = Pb(B(OH)4)3- + log_k 11.18 #80BAS + -analytic 11.18E+0 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + CO3-2 = Pb(CO3) + log_k 7 #06BLA/PIA + delta_h -3.015 #kJ/mol +# Enthalpy of formation: -677.326 kJ/mol + -analytic 64.71795E-1 00E+0 15.74844E+1 00E+0 00E+0 + +Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + log_k 10.13 #99LOT/OCH; Uncertainty to include available data. + -analytic 10.13E+0 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + Edta-4 = Pb(Edta)-2 + log_k 18.8 #04MAR/SMI + -analytic 18.8E+0 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + 2 H+ + Edta-4 = Pb(H2Edta) + log_k 24.9 #04MAR/SMI + -analytic 24.9E+0 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + H2(PO4)- = Pb(H2PO4)+ + log_k 1.5 #74NRI + -analytic 15E-1 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + H+ + Edta-4 = Pb(HEdta)- + log_k 23 #04MAR/SMI + -analytic 23E+0 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + 2 HS- = Pb(HS)2 + log_k 15.01 #06BLA/PIA; Uncertainty to include available data. + delta_h -65.579 #kJ/mol +# Enthalpy of formation: -97.259 kJ/mol + -analytic 35.21052E-1 00E+0 34.2543E+2 00E+0 00E+0 + +Pb+2 + 3 HS- = Pb(HS)3- + log_k 16.26 #06BLA/PIA; Uncertainty to include available data. + delta_h -73.329 #kJ/mol +# Enthalpy of formation: -121.309 kJ/mol + -analytic 34.13311E-1 00E+0 38.3024E+2 00E+0 00E+0 + +Pb+2 + NO3- = Pb(NO3)+ + log_k 1.06 #99LOT/OCH + -analytic 10.6E-1 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + 2 NO3- = Pb(NO3)2 + log_k 1.48 #99LOT/OCH + delta_h -11.012 #kJ/mol +# Enthalpy of formation: -423.792 kJ/mol + -analytic -44.92196E-2 00E+0 57.51968E+1 00E+0 00E+0 + +Pb+2 - H+ + H2O = Pb(OH)+ + log_k -7.51 #99LOT/OCH; Uncertainty to include available data. + delta_h 53.92 #kJ/mol +# Enthalpy of formation: -230.990 kJ/mol + -analytic 19.36379E-1 00E+0 -28.16438E+2 00E+0 00E+0 + +Pb+2 - 2 H+ + 2 H2O = Pb(OH)2 + log_k -16.95 #99LOT/OCH; Uncertainty to include available data. + delta_h 97.824 #kJ/mol +# Enthalpy of formation: -472.915 kJ/mol + -analytic 18.80291E-2 00E+0 -51.09703E+2 00E+0 00E+0 + +Pb+2 - 3 H+ + 3 H2O = Pb(OH)3- + log_k -27.2 #01PER/HEF + delta_h 130.485 #kJ/mol +# Enthalpy of formation: -726.085 kJ/mol + -analytic -43.40009E-1 00E+0 -68.15706E+2 00E+0 00E+0 + +Pb+2 - 4 H+ + 4 H2O = Pb(OH)4-2 + log_k -38.9 #01PER/HEF + delta_h 197.474 #kJ/mol +# Enthalpy of formation: -944.925 kJ/mol + -analytic -43.0404E-1 00E+0 -10.31479E+3 00E+0 00E+0 + +Pb+2 + Ox-2 = Pb(Ox) + log_k 5.85 #13XIO/KIR + -analytic 58.5E-1 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + 2 Ox-2 = Pb(Ox)2-2 + log_k 8.05 #13XIO/KIR + -analytic 80.5E-1 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + SeO3-2 = Pb(SeO3) + log_k 5.73 #01SEB/POT2 + -analytic 57.3E-1 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + SO4-2 = Pb(SO4) + log_k 2.82 #99LOT/OCH; Uncertainty to include available data. + delta_h 6.861 #kJ/mol +# Enthalpy of formation: -901.559 kJ/mol + -analytic 40.21996E-1 00E+0 -35.8375E+1 00E+0 00E+0 + +Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + log_k 3.47 #97MAR/SMI; Uncertainty to include available data. + -analytic 34.7E-1 00E+0 00E+0 00E+0 00E+0 + +2 Pb+2 - H+ + H2O = Pb2(OH)+3 + log_k -7.18 #99LOT/OCH; Uncertainty to include available data. + -analytic -71.8E-1 00E+0 00E+0 00E+0 00E+0 + +4 Pb+2 - 4 H+ + 4 H2O = Pb4(OH)4+4 + log_k -20.63 #99LOT/OCH; Uncertainty to include available data. + delta_h 82.038 #kJ/mol +# Enthalpy of formation: -1057.601 kJ/mol + -analytic -62.57559E-1 00E+0 -42.85143E+2 00E+0 00E+0 + +6 Pb+2 - 8 H+ + 8 H2O = Pb6(OH)8+4 + log_k -42.68 #99LOT/OCH + delta_h 192.157 #kJ/mol +# Enthalpy of formation: -2088.961 kJ/mol + -analytic -90.15539E-1 00E+0 -10.03706E+3 00E+0 00E+0 + +Pb+2 + Br- = PbBr+ + log_k 1.7 #82HÖG + delta_h 4.22 #kJ/mol +# Enthalpy of formation: -116.270 kJ/mol + -analytic 24.39312E-1 00E+0 -22.0426E+1 00E+0 00E+0 + +Pb+2 + 2 Br- = PbBr2 + log_k 1.9 #82HÖG + delta_h 10.979 #kJ/mol +# Enthalpy of formation: -230.920 kJ/mol + -analytic 38.23438E-1 00E+0 -57.34731E+1 00E+0 00E+0 + +Pb+2 + 3 Br- = PbBr3- + log_k 2.9 #82HÖG + delta_h 10.653 #kJ/mol +# Enthalpy of formation: -352.656 kJ/mol + -analytic 47.66325E-1 00E+0 -55.64449E+1 00E+0 00E+0 + +Pb+2 + Cl- = PbCl+ + log_k 1.44 #97SVE/SHO; Uncertainty to include available data. + delta_h 4.318 #kJ/mol +# Enthalpy of formation: -161.841 kJ/mol + -analytic 21.96481E-1 00E+0 -22.55448E+1 00E+0 00E+0 + +Pb+2 + 2 Cl- = PbCl2 + log_k 2 #97SVE/SHO; Uncertainty to include available data. + delta_h 7.948 #kJ/mol +# Enthalpy of formation: -325.291 kJ/mol + -analytic 33.9243E-1 00E+0 -41.5153E+1 00E+0 00E+0 + +Pb+2 + 3 Cl- = PbCl3- + log_k 1.69 #97SVE/SHO; 22 Uncertainty to include available data. + delta_h 7.812 #kJ/mol +# Enthalpy of formation: -492.507 kJ/mol + -analytic 30.58604E-1 00E+0 -40.80492E+1 00E+0 00E+0 + +Pb+2 + 4 Cl- = PbCl4-2 + log_k 1.4 #97SVE/SHO; 22 Uncertainty to include available data. + delta_h 1.324 #kJ/mol +# Enthalpy of formation: -666.074 kJ/mol + -analytic 16.31955E-1 00E+0 -69.15734E+0 00E+0 00E+0 + +Pb+2 + F- = PbF+ + log_k 2.27 #99LOT/OCH + delta_h -4.054 #kJ/mol +# Enthalpy of formation: -338.484 kJ/mol + -analytic 15.5977E-1 00E+0 21.17552E+1 00E+0 00E+0 + +Pb+2 + 2 F- = PbF2 + log_k 3.01 #99LOT/OCH + delta_h -8.879 #kJ/mol +# Enthalpy of formation: -678.659 kJ/mol + -analytic 14.54466E-1 00E+0 46.37825E+1 00E+0 00E+0 + +Pb+2 - H+ + H2(PO4)- = PbHPO4 + log_k -4.11 #74NRI + -analytic -41.1E-1 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + I- = PbI+ + log_k 1.98 #82HÖG + delta_h 3.874 #kJ/mol +# Enthalpy of formation: -51.986 kJ/mol + -analytic 26.58696E-1 00E+0 -20.23531E+1 00E+0 00E+0 + +Pb+2 + 2 I- = PbI2 + log_k 3.15 #82HÖG + delta_h 7.106 #kJ/mol +# Enthalpy of formation: -105.533 kJ/mol + -analytic 43.94918E-1 00E+0 -37.11722E+1 00E+0 00E+0 + +Pb+2 + 3 I- = PbI3- + log_k 3.81 #82HÖG + delta_h 3.163 #kJ/mol +# Enthalpy of formation: -166.256 kJ/mol + -analytic 43.64134E-1 00E+0 -16.5215E+1 00E+0 00E+0 + +Pb+2 + 4 I- = PbI4-2 + log_k 3.75 #82HÖG + delta_h -15.561 #kJ/mol +# Enthalpy of formation: -241.760 kJ/mol + -analytic 10.2383E-1 00E+0 81.28076E+1 00E+0 00E+0 + +Pb+2 + Pyrophos-4 = PbPyrophos-2 + log_k 8.33 #82WAG/EVA + -analytic 83.3E-1 00E+0 00E+0 00E+0 00E+0 + +Pd+2 + CO3-2 = Pd(CO3) + log_k 6.83 #87BRO/WAN + delta_h -8.843 #kJ/mol +# Enthalpy of formation: -494.184 kJ/mol + -analytic 52.80773E-1 00E+0 46.19021E+1 00E+0 00E+0 + +Pd+2 + 2 CO3-2 = Pd(CO3)2-2 + log_k 12.53 #87BRO/WAN + -analytic 12.53E+0 00E+0 00E+0 00E+0 00E+0 + +Pd+2 + NH3 = Pd(NH3)+2 + log_k 9.6 #68RAS/JOR + -analytic 96E-1 00E+0 00E+0 00E+0 00E+0 + +Pd+2 + 2 NH3 = Pd(NH3)2+2 + log_k 18.5 #68RAS/JOR + -analytic 18.5E+0 00E+0 00E+0 00E+0 00E+0 + +Pd+2 + 3 NH3 = Pd(NH3)3+2 + log_k 26 #68RAS/JOR + -analytic 26E+0 00E+0 00E+0 00E+0 00E+0 + +Pd+2 + 4 NH3 = Pd(NH3)4+2 + log_k 32.8 #68RAS/JOR + -analytic 32.8E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + Pd+2 + H2O = Pd(OH)+ + log_k -1.86 #70NAB/KAL + delta_h 11.908 #kJ/mol +# Enthalpy of formation: -84.032 kJ/mol + -analytic 22.6192E-2 00E+0 -62.19982E+1 00E+0 00E+0 + +- 2 H+ + Pd+2 + 2 H2O = Pd(OH)2 + log_k -3.49 #12RAI/YUI + delta_h 13.576 #kJ/mol +# Enthalpy of formation: -368.195 kJ/mol + -analytic -11.11587E-1 00E+0 -70.91239E+1 00E+0 00E+0 + +- 3 H+ + Pd+2 + 3 H2O = Pd(OH)3- + log_k -15.48 #12RAI/YUI + delta_h 52.289 #kJ/mol +# Enthalpy of formation: -615.311 kJ/mol + -analytic -63.1936E-1 00E+0 -27.31245E+2 00E+0 00E+0 + +Pd+2 + SO4-2 = Pd(SO4) + log_k 2.91 #87BRO/WAN + delta_h 4.588 #kJ/mol +# Enthalpy of formation: -714.862 kJ/mol + -analytic 37.13783E-1 00E+0 -23.96479E+1 00E+0 00E+0 + +Pd+2 + 2 SO4-2 = Pd(SO4)2-2 + log_k 4.17 #82HOG + -analytic 41.7E-1 00E+0 00E+0 00E+0 00E+0 + +Pd+2 + Br- = PdBr+ + log_k 5.77 #72ELD + delta_h -30.145 #kJ/mol +# Enthalpy of formation: +38.334 kJ/mol + -analytic 48.88227E-2 00E+0 15.74583E+2 00E+0 00E+0 + +Pd+2 + 2 Br- = PdBr2 + log_k 10.06 #72ELD + delta_h -57.714 #kJ/mol +# Enthalpy of formation: -110.644 kJ/mol + -analytic -51.05877E-3 00E+0 30.14612E+2 00E+0 00E+0 + +Pd+2 + 3 Br- = PdBr3- + log_k 13.75 #72ELD + delta_h -92.39 #kJ/mol +# Enthalpy of formation: -266.730 kJ/mol + -analytic -24.36033E-1 00E+0 48.25866E+2 00E+0 00E+0 + +Pd+2 + 4 Br- = PdBr4-2 + log_k 15.11 #72ELD + delta_h -126.688 #kJ/mol +# Enthalpy of formation: -422.437 kJ/mol + -analytic -70.84785E-1 00E+0 66.17375E+2 00E+0 00E+0 + +Pd+2 + Cl- = PdCl+ + log_k 5 #12RAI/YUI + delta_h -23.954 #kJ/mol +# Enthalpy of formation: -1.145 kJ/mol + -analytic 80.34393E-2 00E+0 12.51205E+2 00E+0 00E+0 + +Pd+2 + 2 Cl- = PdCl2 + log_k 8.42 #12RAI/YUI + delta_h -48.037 #kJ/mol +# Enthalpy of formation: -192.307 kJ/mol + -analytic 42.78852E-4 00E+0 25.09147E+2 00E+0 00E+0 + +Pd+2 + 3 Cl- = PdCl3- + log_k 10.93 #12RAI/YUI + delta_h -77.749 #kJ/mol +# Enthalpy of formation: -389.099 kJ/mol + -analytic -26.9104E-1 00E+0 40.61113E+2 00E+0 00E+0 + +- H+ + Pd+2 + 3 Cl- + H2O = PdCl3(OH)-2 + log_k 2.42 #12RAI/YUI + -analytic 24.2E-1 00E+0 00E+0 00E+0 00E+0 + +Pd+2 + 4 Cl- = PdCl4-2 + log_k 13.05 #12RAI/YUI + delta_h -120.18 #kJ/mol +# Enthalpy of formation: -598.610 kJ/mol + -analytic -80.04632E-1 00E+0 62.77439E+2 00E+0 00E+0 + +Pd+2 + I- = PdI+ + log_k 10.4 #89BAE/McK + delta_h -58.206 #kJ/mol +# Enthalpy of formation: +74.903 kJ/mol + -analytic 20.27465E-2 00E+0 30.40311E+2 00E+0 00E+0 + +Pd+2 + 2 I- = PdI2 + log_k 14.5 #97BOU + delta_h -83.425 #kJ/mol +# Enthalpy of formation: -7.096 kJ/mol + -analytic -11.54326E-2 00E+0 43.57591E+2 00E+0 00E+0 + +Pd+2 + 3 I- = PdI3- + log_k 18.6 #97BOU + delta_h -121.755 #kJ/mol +# Enthalpy of formation: -102.205 kJ/mol + -analytic -27.3056E-1 00E+0 63.59707E+2 00E+0 00E+0 + +Pd+2 + 4 I- = PdI4-2 + log_k 24.64 + delta_h -190.061 #kJ/mol +# Enthalpy of formation: -227.291 kJ/mol + -analytic -86.57258E-1 00E+0 99.27577E+2 00E+0 00E+0 + +- 2 H+ + H2(PO4)- = PO4-3 + log_k -19.56 #89COX/WAG + delta_h 18.2 #kJ/mol +# Enthalpy of formation: -1284.400 kJ/mol 89COX/WAG + -analytic -16.3715E+0 00E+0 -95.06522E+1 00E+0 00E+0 + +Pu+3 + Acetate- = Pu(Acetate)+2 + log_k 2.85 #69MOS + -analytic 28.5E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + Acetate- = Pu(Acetate)+3 + log_k 5.93 #62SCH/NEB + -analytic 59.3E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + 2 Acetate- = Pu(Acetate)2+ + log_k 5.06 #69MOS + -analytic 50.6E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + 2 Acetate- = Pu(Acetate)2+2 + log_k 10.09 #62SCH/NEB + -analytic 10.09E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + 3 Acetate- = Pu(Acetate)3 + log_k 6.57 #69MOS + -analytic 65.7E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + Cit-3 = Pu(Cit) + log_k 8.55 #Analogy with Am + -analytic 85.5E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + 2 Cit-3 = Pu(Cit)2-3 + log_k 13.9 #Analogy with Am + -analytic 13.9E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + CO3-2 = Pu(CO3)+ + log_k 7.64 #Estimated by correlation with An(III) in function of ionic radii + delta_h 14.742 #kJ/mol +# Enthalpy of formation: -1252.279 kJ/mol + -analytic 10.22269E+0 00E+0 -77.00283E+1 00E+0 00E+0 + +Pu+3 + 2 CO3-2 = Pu(CO3)2- + log_k 12.54 #Estimated by correlation with An(III) in function of ionic radii + -analytic 12.54E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + 3 CO3-2 = Pu(CO3)3-3 + log_k 15.2 #Estimated by correlation with An(III) in function of ionic radii + -analytic 15.2E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + 4 CO3-2 = Pu(CO3)4-4 + log_k 37 #03GUI/FAN + -analytic 37E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + 5 CO3-2 = Pu(CO3)5-6 + log_k 35.65 #03GUI/FAN + -analytic 35.65E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + Edta-4 = Pu(Edta) + log_k 31.8 #Recommended in 05HUM/AND + -analytic 31.8E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + Edta-4 = Pu(Edta)- + log_k 20.18 #05HUM/AND + delta_h -8.7 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2305.290 kJ/mol + -analytic 18.65583E+0 00E+0 45.44326E+1 00E+0 00E+0 + +Pu+3 + H2(PO4)- = Pu(H2PO4)+2 + log_k 2.2 #10RAI/MOO + -analytic 22E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + H+ + Cit-3 = Pu(HCit)+ + log_k 12.86 #Analogy with Am + -analytic 12.86E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + 2 H+ + 2 Cit-3 = Pu(HCit)2- + log_k 23.52 #Analogy with Am + -analytic 23.52E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + H+ + Edta-4 = Pu(HEdta) + log_k 22.02 #05HUM/AND + -analytic 22.02E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - H+ + H2(PO4)- = Pu(HPO4)+ + log_k -1.81 #Estimated by correlation with An(III) in function of ionic radii + -analytic -18.1E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - 2 H+ + 2 H2(PO4)- = Pu(HPO4)2- + log_k -5.45 #Estimated by correlation with An(III) in function of ionic radii + -analytic -54.5E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + NO3- = Pu(NO3)+2 + log_k 1.33 #95SIL/BID, LogK selected in analogy to Am (NEA recommendation 95SIL/BID) + -analytic 13.3E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + NO3- = Pu(NO3)+3 + log_k 1.95 #01LEM/FUG + -analytic 19.5E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + Nta-3 = Pu(Nta) + log_k 13.1 #95AKR/BOU + -analytic 13.1E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + Nta-3 = Pu(Nta)+ + log_k 25.72 #16BON/AUP + -analytic 25.72E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - H+ + H2O = Pu(OH)+2 + log_k -6.18 #20GRE/GAO + delta_h 30.753 #kJ/mol +# Enthalpy of formation: -846.866 kJ/mol + -analytic -79.23057E-2 00E+0 -16.06341E+2 00E+0 00E+0 + +Pu+4 - H+ + H2O = Pu(OH)+3 + log_k 0.6 #99NEC, 01NEC/KIM, 03GUI/FAN + delta_h 22.922 #kJ/mol +# Enthalpy of formation: -802.803 kJ/mol + -analytic 46.15762E-1 00E+0 -11.97299E+2 00E+0 00E+0 + +Pu+4 - 2 H+ + 2 CO3-2 + 2 H2O = Pu(OH)2(CO3)2-2 + log_k 18.21 #99RAI/HES1 + -analytic 18.21E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - 2 H+ + HGlu- + 2 H2O = Pu(OH)2(HGlu) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - 2 H+ + HIsa- + 2 H2O = Pu(OH)2(HIsa) + log_k -10.97 #18TAS/GAO + -analytic -10.97E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - 2 H+ + 2 H2O = Pu(OH)2+ + log_k -15.1 #Analogy with Am(III) + delta_h 89.712 #kJ/mol +# Enthalpy of formation: -1073.737 kJ/mol + -analytic 61.68677E-2 00E+0 -46.85984E+2 00E+0 00E+0 + +Pu+4 - 2 H+ + 2 H2O = Pu(OH)2+2 + log_k 0.6 #99NEC, 01NEC/KIM, 03GUI/FAN + delta_h 39.78 #kJ/mol +# Enthalpy of formation: -1071.775 kJ/mol + -analytic 75.69157E-1 00E+0 -20.77854E+2 00E+0 00E+0 + +Pu+4 - 2 H+ + Edta-4 + 2 H2O = Pu(OH)2Edta-2 + log_k 18.02 #21DIB/TAS + -analytic 18.02E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - 3 H+ + 3 H2O = Pu(OH)3 + log_k -26.2 #20GRE/GAO + delta_h 151.892 #kJ/mol +# Enthalpy of formation: -1297.387 kJ/mol + -analytic 41.03361E-2 00E+0 -79.33872E+2 00E+0 00E+0 + +Pu+4 - 3 H+ + HGlu- + 3 H2O = Pu(OH)3(HGlu) + log_k 4.75 #06GAO/GRI + -analytic 47.5E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 - 3 H+ + 3 H2O = Pu(OH)3+ + log_k -2.3 #99NEC, 01NEC/KIM, 03GUI/FAN + delta_h 64.376 #kJ/mol +# Enthalpy of formation: -1333.008 kJ/mol + -analytic 89.78191E-1 00E+0 -33.62593E+2 00E+0 00E+0 + +Pu+4 - 3 H+ + Edta-4 + 3 H2O = Pu(OH)3Edta-3 + log_k 8.5 #21DIB/TAS + -analytic 85E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 - 4 H+ + 4 H2O = Pu(OH)4 + log_k -8.5 #03GUI/FAN + delta_h 98.586 #kJ/mol +# Enthalpy of formation: -1584.627 kJ/mol + -analytic 87.71526E-1 00E+0 -51.49505E+2 00E+0 00E+0 + +Pu+4 - 4 H+ + HGlu- + 4 H2O = Pu(OH)4(HGlu)- + log_k -2.7 #06GAO/GRI + -analytic -27E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 - 4 H+ + 2 HGlu- + 4 H2O = Pu(OH)4(HGlu)2-2 + log_k -2.83 #Analogy with An(IV)-ISA + -analytic -28.3E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 - 4 H+ + HIsa- + 4 H2O = Pu(OH)4(HIsa)- + log_k -5.03 #18TAS/GAO & TAS/GAO1 + -analytic -50.3E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 - 4 H+ + 2 HIsa- + 4 H2O = Pu(OH)4(HIsa)2-2 + log_k -2.83 #23ROD/COL + -analytic -28.3E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 - 5 H+ + HGlu- + 5 H2O = Pu(OH)5(HGlu)-2 + log_k -16.92 #Analogy with An(IV)-ISA + -analytic -16.92E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 - 5 H+ + HIsa- + 5 H2O = Pu(OH)5(HIsa)-2 + log_k -16.92 #18TAS/GAO & 18TAS/GAO1 + -analytic -16.92E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 - H+ + Edta-4 + H2O = Pu(OH)Edta- + log_k 23 #21DIB/TAS + -analytic 23E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + Ox-2 = Pu(Ox)+ + log_k 6.49 #12GRI/GAR2 + -analytic 64.9E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + Ox-2 = Pu(Ox)+2 + log_k 11.4 #05HUM/AND + -analytic 11.4E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + 2 Ox-2 = Pu(Ox)2 + log_k 20.6 #05HUM/AND + -analytic 20.6E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + 2 Ox-2 = Pu(Ox)2- + log_k 10.62 #12GRI/GAR2 + -analytic 10.62E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + 3 Ox-2 = Pu(Ox)3-2 + log_k 25.69 #05HUM/AND + -analytic 25.69E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + 3 Ox-2 = Pu(Ox)3-3 + log_k 13.22 #12GRI/GAR2 + -analytic 13.22E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - 2 H+ + H2(PO4)- = Pu(PO4) + log_k -7.91 #Estimated by correlation with An(III) in function of ionic radii + -analytic -79.1E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - 4 H+ + 2 H2(PO4)- = Pu(PO4)2-3 + log_k -19.71 #Estimated by correlation with An(III) in function of ionic radii + -analytic -19.71E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + SO4-2 = Pu(SO4)+ + log_k 3.91 #01LEM/FUG + delta_h 17.24 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1483.890 kJ/mol + -analytic 69.30318E-1 00E+0 -90.05079E+1 00E+0 00E+0 + +Pu+4 + SO4-2 = Pu(SO4)+2 + log_k 6.89 #01LEM/FUG + delta_h 13.754 #kJ/mol +# Enthalpy of formation: -1435.481 kJ/mol + -analytic 92.99597E-1 00E+0 -71.84215E+1 00E+0 00E+0 + +Pu+4 + 2 SO4-2 = Pu(SO4)2 + log_k 11.14 #01LEM/FUG + delta_h 43.907 #kJ/mol +# Enthalpy of formation: -2314.667 kJ/mol + -analytic 18.83218E+0 00E+0 -22.93422E+2 00E+0 00E+0 + +Pu+3 + 2 SO4-2 = Pu(SO4)2- + log_k 5.7 #01LEM/FUG + delta_h 11.88 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -2398.590 kJ/mol + -analytic 77.81287E-1 00E+0 -62.05356E+1 00E+0 00E+0 + +Pu+4 + Br- = PuBr+3 + log_k 1.6 #01LEM/FUG + -analytic 16E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + Cl- = PuCl+3 + log_k 1.8 #01LEM/FUG + delta_h 19.82 #kJ/mol +# Enthalpy of formation: -687.155 kJ/mol + -analytic 52.72315E-1 00E+0 -10.35271E+2 00E+0 00E+0 + +Pu+4 + F- = PuF+3 + log_k 8.84 #01LEM/FUG + delta_h 9.1 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -866.145 kJ/mol + -analytic 10.43425E+0 00E+0 -47.53261E+1 00E+0 00E+0 + +Pu+4 + 2 F- = PuF2+2 + log_k 15.7 #01LEM/FUG + delta_h 11 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1199.595 kJ/mol + -analytic 17.62712E+0 00E+0 -57.457E+1 00E+0 00E+0 + +Pu+4 + 3 F- = PuF3+ + log_k 20.11 #01LEM/FUG + -analytic 20.11E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + H+ + H2(PO4)- = PuH3PO4+4 + log_k 4.54 #01LEM/FUG + -analytic 45.4E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + I- = PuI+2 + log_k 1.1 #01LEM/FUG + -analytic 11E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + I- = PuI+3 + log_k 1.62 #ANDRA report (C RP 0ENQ 02-001,Estimated by correlation with An(IV) in function of ionic radii) + -analytic 16.2E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + Acetate- = PuO2(Acetate)+ + log_k 2.87 #11RIC/GRI + -analytic 28.7E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + 2 Acetate- = PuO2(Acetate)2 + log_k 4.77 #11RIC/GRI + -analytic 47.7E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + 3 Acetate- = PuO2(Acetate)3- + log_k 6.19 #11RIC/GRI + -analytic 61.9E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + CO3-2 = PuO2(CO3) + log_k 9.5 #03GUI/FAN + -analytic 95E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+ + CO3-2 = PuO2(CO3)- + log_k 5.03 #20GRE/GAO + -analytic 50.3E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + 2 CO3-2 = PuO2(CO3)2-2 + log_k 14.7 #03GUI/FAN + delta_h -27 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -2199.496 kJ/mol + -analytic 99.69803E-1 00E+0 14.10308E+2 00E+0 00E+0 + +PuO2+ + 2 CO3-2 = PuO2(CO3)2-3 + log_k 6.34 #20GRE/GAO + -analytic 63.4E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + 3 CO3-2 = PuO2(CO3)3-4 + log_k 18 #03GUI/FAN + delta_h -38.6 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -2886.326 kJ/mol + -analytic 11.23757E+0 00E+0 20.16218E+2 00E+0 00E+0 + +PuO2+ + 3 CO3-2 = PuO2(CO3)3-5 + log_k 5.61 #20GRE/GAO + -analytic 56.1E-1 00E+0 00E+0 00E+0 00E+0 + +2 UO2+2 + PuO2+2 + 6 CO3-2 = PuO2(CO3)6(UO2)2-6 + log_k 53.48 #20GRE/GAO + -analytic 53.48E+0 00E+0 00E+0 00E+0 00E+0 + +PuO2+ - H+ + H2(PO4)- = PuO2(HPO4)- + log_k -4.86 #NEA Guidelines in 01LEM/FUG + -analytic -48.6E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+ + Nta-3 = PuO2(Nta)-2 + log_k 7.5 #95AKR/BOU + -analytic 75E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 - H+ + H2O = PuO2(OH)+ + log_k -5.5 #01LEM/FUG + delta_h 28 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1079.866 kJ/mol + -analytic -59.46106E-2 00E+0 -14.62542E+2 00E+0 00E+0 + +PuO2+2 - 2 H+ + 2 H2O = PuO2(OH)2 + log_k -13.2 #01LEM/FUG + -analytic -13.2E+0 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 - 3 H+ + 3 H2O = PuO2(OH)3- + log_k -24 #20GRE/GAO + -analytic -24E+0 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 - H+ + H4(SiO4) = PuO2(OSi(OH)3)+ + log_k -3.64 #03YUS/FED + -analytic -36.4E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + Ox-2 = PuO2(Ox) + log_k 7 #95AKR/BOU + -analytic 70E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + 2 Ox-2 = PuO2(Ox)2-2 + log_k 10.5 #73POR/DEP in 95AKR/BOU + -analytic 10.5E+0 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + Phthalat-2 = PuO2(Phthalat) + log_k 5.76 #11GRI/COL3 + -analytic 57.6E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + SO4-2 = PuO2(SO4) + log_k 3.38 #01LEM/FUG + delta_h 16.1 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1715.276 kJ/mol + -analytic 62.00599E-1 00E+0 -84.09616E+1 00E+0 00E+0 + +PuO2+ + SO4-2 = PuO2(SO4)- + log_k 1.26 #20GRE/GAO + -analytic 12.6E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + 2 SO4-2 = PuO2(SO4)2-2 + log_k 4.4 #01LEM/FUG + delta_h 43 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -2597.716 kJ/mol + -analytic 11.93328E+0 00E+0 -22.46046E+2 00E+0 00E+0 + +PuO2+2 + Cl- = PuO2Cl+ + log_k 0.23 #03GUI/FAN + delta_h 4.187 #kJ/mol +# Enthalpy of formation: -984.929 kJ/mol + -analytic 96.35309E-2 00E+0 -21.87022E+1 00E+0 00E+0 + +PuO2+2 + 2 Cl- = PuO2Cl2 + log_k -1.15 #03GUI/FAN + -analytic -11.5E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+ + F- = PuO2F + log_k 1.2 #In analogy to NpO2)F + -analytic 12E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + F- = PuO2F+ + log_k 4.56 #01LEM/FUG + delta_h -3.654 #kJ/mol +# Enthalpy of formation: -1161.039 kJ/mol + -analytic 39.19847E-1 00E+0 19.08617E+1 00E+0 00E+0 + +PuO2+2 + 2 F- = PuO2F2 + log_k 7.25 #01LEM/FUG + delta_h 1.206 #kJ/mol +# Enthalpy of formation: -1491.529 kJ/mol + -analytic 74.61282E-1 00E+0 -62.99377E+0 00E+0 00E+0 + +PuO2+2 + 3 F- = PuO2F3- + log_k 9.59 #85SAW/CHA + delta_h 2.399 #kJ/mol +# Enthalpy of formation: -1825.686 kJ/mol + -analytic 10.01029E+0 00E+0 -12.53085E+1 00E+0 00E+0 + +PuO2+2 + NO3- = PuO2NO3+ + log_k 0.1 #12GRI/GAR1 (LogK selected in analogy to U (NEA recommendation), logK(UO2NO3 +)) + -analytic 10E-2 00E+0 00E+0 00E+0 00E+0 + +PuO2+ - H+ + H2O = PuO2OH + log_k -11.3 #01LEM/FUG + delta_h 71.826 #kJ/mol +# Enthalpy of formation: -1124.131 kJ/mol + -analytic 12.83375E-1 00E+0 -37.51733E+2 00E+0 00E+0 + +Ra+2 + CO3-2 = Ra(CO3) + log_k 2.5 #99SCH + delta_h 4.496 #kJ/mol +# Enthalpy of formation: -1198.760 kJ/mol + -analytic 32.87665E-1 00E+0 -23.48424E+1 00E+0 00E+0 + +H+ + Ra+2 + CO3-2 = Ra(HCO3)+ + log_k 10.92 #02ILE/TWE; Uncertainty to include available data. + -analytic 10.92E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + Ra+2 + H2O = Ra(OH)+ + log_k -13.49 + delta_h 60.417 #kJ/mol 85LAN/RIE +# Enthalpy of formation: -753.438 kJ/mol + -analytic -29.05396E-1 00E+0 -31.558E+2 00E+0 00E+0 + +- 2 H+ + Ra+2 + 2 H2O = Ra(OH)2 + log_k -28.07 + delta_h 112.197 #kJ/mol +# Enthalpy of formation: -987.488 kJ/mol + -analytic -84.13929E-1 00E+0 -58.60457E+2 00E+0 00E+0 + +Ra+2 + SO4-2 = Ra(SO4) + log_k 2.76 + delta_h 5.472 #kJ/mol +# Enthalpy of formation: -1431.892 kJ/mol + -analytic 37.18653E-1 00E+0 -28.58225E+1 00E+0 00E+0 + +Ra+2 + Cl- = RaCl+ + log_k -0.1 #85LAN/RIE; Uncertainty to include available data. + delta_h 2.479 #kJ/mol +# Enthalpy of formation: -692.626 kJ/mol + -analytic 33.43022E-2 00E+0 -12.94872E+1 00E+0 00E+0 + +Ra+2 + 2 Cl- = RaCl2 + log_k -0.1 + delta_h 0.495 #kJ/mol +# Enthalpy of formation: -861.689 kJ/mol + -analytic -13.27972E-3 00E+0 -25.85565E+0 00E+0 00E+0 + +Ra+2 + F- = RaF+ + log_k 0.48 #87BRO/WAN + -analytic 48E-2 00E+0 00E+0 00E+0 00E+0 + +Br- + Rb+ = RbBr + log_k -1.24 + delta_h 13.836 #kJ/mol +# Enthalpy of formation: -358.694 kJ/mol 97SVE/SHO + -analytic 11.83963E-1 00E+0 -72.27046E+1 00E+0 00E+0 + +Cl- + Rb+ = RbCl + log_k -1.01 + delta_h 13.189 #kJ/mol +# Enthalpy of formation: -405.011 kJ/mol 97SVE/SHO + -analytic 13.00614E-1 00E+0 -68.89094E+1 00E+0 00E+0 + +F- + Rb+ = RbF + log_k 0.94 + delta_h 1.923 #kJ/mol +# Enthalpy of formation: -584.547 kJ/mol 97SVE/SHO + -analytic 12.76895E-1 00E+0 -10.04453E+1 00E+0 00E+0 + +I- + Rb+ = RbI + log_k -0.84 + delta_h 6.987 #kJ/mol +# Enthalpy of formation: -300.913 kJ/mol 97SVE/SHO + -analytic 38.40699E-2 00E+0 -36.49564E+1 00E+0 00E+0 + +- H+ + Rb+ + H2O = RbOH + log_k -14.26 + delta_h 64.158 #kJ/mol +# Enthalpy of formation: -472.792 kJ/mol 97SHO/SAS2 + -analytic -30.20001E-1 00E+0 -33.51206E+2 00E+0 00E+0 + +- H+ + HS- = S-2 + log_k -17.1 #04CHI + delta_h 73.278 #kJ/mol +# Enthalpy of formation: +56.978 kJ/mol + -analytic -42.62245E-1 00E+0 -38.27577E+2 00E+0 00E+0 + +- 2 H+ - 2 e- + 2 HS- = S2-2 +# DLP: This species will be in the S(-2) mole balance + log_k -10.54 + delta_h 67.64 #kJ/mol +# Enthalpy of formation: +35.040 kJ/mol 04CHI + -analytic 13.10019E-1 00E+0 -35.33083E+2 00E+0 00E+0 + +2 H+ + 2 SO3-2 - H2O = S2O5-2 +# DLP: This species will be in the S(4) mole balance + log_k 12.85 #85GOL/PAR + delta_h 2.606 #kJ/mol +# Enthalpy of formation: -973.684 kJ/mol + -analytic 13.30655E+0 00E+0 -13.61209E+1 00E+0 00E+0 + +- 2 e- + 2 SO4-2 = S2O8-2 +# DLP: This species will be in the S(6) mole balance + log_k -65.38 + delta_h 473.98 #kJ/mol +# Enthalpy of formation: -1344.700 kJ/mol 82WAG/EVA + -analytic 17.65773E+0 00E+0 -24.7577E+3 00E+0 00E+0 + +- 3 H+ - 4 e- + 3 HS- = S3-2 +# DLP: This species will be in the S(-2) mole balance + log_k -6.51 + delta_h 74.84 #kJ/mol +# Enthalpy of formation: +25.940 kJ/mol 74NAU/RYZ + -analytic 66.01405E-1 00E+0 -39.09165E+2 00E+0 00E+0 + +6 H+ + 2 e- + 3 SO3-2 - 3 H2O = S3O6-2 +# DLP: This species will be in the S(4) mole balance + log_k 36.82 + delta_h -131.646 #kJ/mol +# Enthalpy of formation: -1167.336 kJ/mol 04CHI + -analytic 13.75661E+0 00E+0 68.76349E+2 00E+0 00E+0 + +- 4 H+ - 6 e- + 4 HS- = S4-2 +# DLP: This species will be in the S(-2) mole balance + log_k -3.58 + delta_h 88.21 #kJ/mol +# Enthalpy of formation: +23.010 kJ/mol 74NAU/RYZ + -analytic 11.87373E+0 00E+0 -46.07529E+2 00E+0 00E+0 + +12 H+ + 6 e- + 4 SO3-2 - 6 H2O = S4O6-2 + log_k 90.8 + delta_h -414.978 #kJ/mol +# Enthalpy of formation: -1224.238 kJ/mol 04CHI + -analytic 18.09898E+0 00E+0 21.67581E+3 00E+0 00E+0 + +- 5 H+ - 8 e- + 5 HS- = S5-2 +# DLP: This species will be in the S(-2) mole balance + log_k -0.87 + delta_h 102.84 #kJ/mol +# Enthalpy of formation: +21.340 kJ/mol 74NAU/RYZ + -analytic 17.14679E+0 00E+0 -53.71707E+2 00E+0 00E+0 + +18 H+ + 10 e- + 5 SO3-2 - 9 H2O = S5O6-2 +# DLP: This species will be in the S(4) mole balance + log_k 115.39 + delta_h -592.874 #kJ/mol +# Enthalpy of formation: -1175.704 kJ/mol 04CHI + -analytic 11.52293E+0 00E+0 30.96797E+3 00E+0 00E+0 + +2 H+ + Sb(OH)3 - 2 H2O = Sb(OH)+2 + log_k 0.74 #99LOT/OCH + -analytic 74E-2 00E+0 00E+0 00E+0 00E+0 + +H+ + Sb(OH)3 - H2O = Sb(OH)2+ + log_k 1.33 #77ANT/NEV and others recalculated + -analytic 13.3E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + Sb(OH)3 + H2O = Sb(OH)4- + log_k -11.82 #52GAY/GAR recalculated + -analytic -11.82E+0 00E+0 00E+0 00E+0 00E+0 + +H+ + Sb(OH)5 - H2O = Sb(OH)4+ + log_k -3.26 #57PIT/POU in 99LOT/OCH + -analytic -32.6E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + Sb(OH)5 + H2O = Sb(OH)6- + log_k -2.72 #63LEF/MAR in 76BAE/MES + -analytic -27.2E-1 00E+0 00E+0 00E+0 00E+0 + +3 H+ + Sb(OH)3 - 3 H2O = Sb+3 + log_k -0.73 #99LOT/OCH + -analytic -73E-2 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + 12 Sb(OH)5 + 4 H2O = Sb12(OH)64-4 + log_k 20.34 #63LEF/MAR in 76BAE/MES + -analytic 20.34E+0 00E+0 00E+0 00E+0 00E+0 + +- 5 H+ + 12 Sb(OH)5 + 5 H2O = Sb12(OH)65-5 + log_k 16.72 #63LEF/MAR in 76BAE/MES + -analytic 16.72E+0 00E+0 00E+0 00E+0 00E+0 + +- 6 H+ + 12 Sb(OH)5 + 6 H2O = Sb12(OH)66-6 + log_k 11.89 #63LEF/MAR in 76BAE/MES + -analytic 11.89E+0 00E+0 00E+0 00E+0 00E+0 + +- 7 H+ + 12 Sb(OH)5 + 7 H2O = Sb12(OH)67-7 + log_k 6.07 #63LEF/MAR in 76BAE/MES + -analytic 60.7E-1 00E+0 00E+0 00E+0 00E+0 + +4 H+ + 4 HS- + 2 Sb(OH)3 - 6 H2O = Sb2H2S4 + log_k 57.81 #88KRU + -analytic 57.81E+0 00E+0 00E+0 00E+0 00E+0 + +3 H+ + 4 HS- + 2 Sb(OH)3 - 6 H2O = Sb2HS4- + log_k 52.9 #88KRU + -analytic 52.9E+0 00E+0 00E+0 00E+0 00E+0 + +2 H+ + 4 HS- + 2 Sb(OH)3 - 6 H2O = Sb2S4-2 + log_k 43.38 #88KRU + -analytic 43.38E+0 00E+0 00E+0 00E+0 00E+0 + +3 H+ + Cl- + Sb(OH)3 - 3 H2O = SbCl+2 + log_k 2.8 #70BON/WAU and others recalculated + -analytic 28E-1 00E+0 00E+0 00E+0 00E+0 + +3 H+ + 2 Cl- + Sb(OH)3 - 3 H2O = SbCl2+ + log_k 3.27 #70BON/WAU and others recalculated + -analytic 32.7E-1 00E+0 00E+0 00E+0 00E+0 + +3 H+ + F- + Sb(OH)3 - 3 H2O = SbF+2 + log_k 6.37 #70BON recalculated + -analytic 63.7E-1 00E+0 00E+0 00E+0 00E+0 + +3 H+ + 2 F- + Sb(OH)3 - 3 H2O = SbF2+ + log_k 12.42 #70BON recalculated + -analytic 12.42E+0 00E+0 00E+0 00E+0 00E+0 + +3 H+ + 3 F- + Sb(OH)3 - 3 H2O = SbF3 + log_k 18.2 #70BON recalculated + -analytic 18.2E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + HSe- = Se-2 + log_k -14.91 + -analytic -14.91E+0 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ - 2 e- + 2 HSe- = Se2-2 +# DLP: This species will be in the Se(-2) mole balance + log_k -4.5 #05OLI/NOL + -analytic -45E-1 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ - 4 e- + 3 HSe- = Se3-2 +# DLP: This species will be in the Se(-2) mole balance + log_k 5.24 #05OLI/NOL + -analytic 52.4E-1 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ - 6 e- + 4 HSe- = Se4-2 +# DLP: This species will be in the Se(-2) mole balance + log_k 13.38 #05OLI/NOL + -analytic 13.38E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + 2 H4(SiO4) - H2O = Si2O2(OH)5- + log_k -8.5 #01FEL/CHO + -analytic -85E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + 2 H4(SiO4) - H2O = Si2O3(OH)4-2 + log_k -19.4 #01FEL/CHO + -analytic -19.4E+0 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ + 3 H4(SiO4) - 2 H2O = Si3O5(OH)5-3 + log_k -29.4 #01FEL/CHO + -analytic -29.4E+0 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ + 3 H4(SiO4) - 3 H2O = Si3O6(OH)3-3 + log_k -29.3 #01FEL/CHO + -analytic -29.3E+0 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + 4 H4(SiO4) - 4 H2O = Si4O6(OH)6-2 + log_k -15.6 #01FEL/CHO + -analytic -15.6E+0 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + 4 H4(SiO4) - 3 H2O = Si4O7(OH)6-4 + log_k -39.1 #01FEL/CHO + -analytic -39.1E+0 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + 4 H4(SiO4) - 4 H2O = Si4O8(OH)4-4 + log_k -39.2 #01FEL/CHO + -analytic -39.2E+0 00E+0 00E+0 00E+0 00E+0 + +- 6 H+ + 6 H4(SiO4) - 9 H2O = Si6O15-6 + log_k -61.8 #01FEL/CHO + -analytic -61.8E+0 00E+0 00E+0 00E+0 00E+0 + +Sm+3 + CO3-2 = Sm(CO3)+ + log_k 7.8 #95SPA/BRU + delta_h 23.851 #kJ/mol +# Enthalpy of formation: -1342.577 kJ/mol + -analytic 11.97852E+0 00E+0 -12.45824E+2 00E+0 00E+0 + +Sm+3 + 2 CO3-2 = Sm(CO3)2- + log_k 12.8 #95SPA/BRU + -analytic 12.8E+0 00E+0 00E+0 00E+0 00E+0 + +Sm+3 + 3 CO3-2 = Sm(CO3)3-3 + log_k 14.8 #05VER/VIT2 + -analytic 14.8E+0 00E+0 00E+0 00E+0 00E+0 + +Sm+3 + H2(PO4)- = Sm(H2PO4)+2 + log_k 2.35 #95SPA/BRU + -analytic 23.5E-1 00E+0 00E+0 00E+0 00E+0 + +Sm+3 + H+ + CO3-2 = Sm(HCO3)+2 + log_k 12.43 #95SPA/BRU + -analytic 12.43E+0 00E+0 00E+0 00E+0 00E+0 + +Sm+3 - H+ + H2(PO4)- = Sm(HPO4)+ + log_k -1.61 #95SPA/BRU + -analytic -16.1E-1 00E+0 00E+0 00E+0 00E+0 + +Sm+3 - 2 H+ + 2 H2(PO4)- = Sm(HPO4)2- + log_k -5.02 #95SPA/BRU + -analytic -50.2E-1 00E+0 00E+0 00E+0 00E+0 + +Sm+3 + NO3- = Sm(NO3)+2 + log_k 0.9 #95SPA/BRU + -analytic 90E-2 00E+0 00E+0 00E+0 00E+0 + +Sm+3 - H+ + H2O = Sm(OH)+2 + log_k -7.9 #95SPA/BRU + delta_h 48.805 #kJ/mol +# Enthalpy of formation: -928.223 kJ/mol + -analytic 65.0269E-2 00E+0 -25.49263E+2 00E+0 00E+0 + +Sm+3 - 2 H+ + 2 H2O = Sm(OH)2+ + log_k -15.7 #07NEC/ALT2 + delta_h 101.371 #kJ/mol +# Enthalpy of formation: -1161.487 kJ/mol + -analytic 20.59437E-1 00E+0 -52.94976E+2 00E+0 00E+0 + +Sm+3 - 3 H+ + 3 H2O = Sm(OH)3 + log_k -26.2 #07NEC/ALT2 + delta_h 160.126 #kJ/mol +# Enthalpy of formation: -1388.562 kJ/mol + -analytic 18.52871E-1 00E+0 -83.63963E+2 00E+0 00E+0 + +Sm+3 - 4 H+ + 4 H2O = Sm(OH)4- + log_k -40.7 #07NEC/ALT2 + delta_h 232.448 #kJ/mol +# Enthalpy of formation: -1602.069 kJ/mol + -analytic 23.14152E-3 00E+0 -12.1416E+3 00E+0 00E+0 + +Sm+3 - 2 H+ + H2(PO4)- = Sm(PO4) + log_k -7.46 #95SPA/BRU + -analytic -74.6E-1 00E+0 00E+0 00E+0 00E+0 + +Sm+3 - 4 H+ + 2 H2(PO4)- = Sm(PO4)2-3 + log_k -18.72 #95SPA/BRU + -analytic -18.72E+0 00E+0 00E+0 00E+0 00E+0 + +Sm+3 + SO4-2 = Sm(SO4)+ + log_k 3.5 #95SPA/BRU + delta_h 16.584 #kJ/mol +# Enthalpy of formation: -1583.954 kJ/mol + -analytic 64.05392E-1 00E+0 -86.62426E+1 00E+0 00E+0 + +Sm+3 + 2 SO4-2 = Sm(SO4)2- + log_k 5.2 #95SPA/BRU + delta_h 24.918 #kJ/mol +# Enthalpy of formation: -2484.959 kJ/mol + -analytic 95.65446E-1 00E+0 -13.01558E+2 00E+0 00E+0 + +Sm+3 + Br- = SmBr+2 + log_k 0.23 #96FAL/REA + delta_h -1.358 #kJ/mol +# Enthalpy of formation: -813.965 kJ/mol + -analytic -79.11387E-4 00E+0 70.93328E+0 00E+0 00E+0 + +Sm+3 + Cl- = SmCl+2 + log_k 0.72 #Original data 01LUO/BYR and 07LUO/BYR + delta_h 3.583 #kJ/mol +# Enthalpy of formation: -854.695 kJ/mol + -analytic 13.47715E-1 00E+0 -18.71531E+1 00E+0 00E+0 + +Sm+3 + F- = SmF+2 + log_k 4.21 #07LUO/BYR + delta_h 7.97 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -1018.578 kJ/mol + -analytic 56.06284E-1 00E+0 -41.63021E+1 00E+0 00E+0 + +Sm+3 + 2 F- = SmF2+ + log_k 6.43 #Original data 99SCH/BYR and 04LUO/BYR + delta_h 18.85 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -1343.048 kJ/mol + -analytic 97.32378E-1 00E+0 -98.46041E+1 00E+0 00E+0 + +Sm+3 - H+ + H4(SiO4) = SmSiO(OH)3+2 + log_k -2.62 #Orginal data 07THA/SIN and 96JEN/CHO1 + -analytic -26.2E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + Cit-3 = Sn(Cit)- + log_k 8.7 #95AKR/BOU + -analytic 87E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + 2 Cit-3 = Sn(Cit)2-4 + log_k 11.9 #95AKR/BOU + -analytic 11.9E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + Edta-4 = Sn(Edta)-2 + log_k 24.6 #95AKR/BOU + -analytic 24.6E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + 2 H+ + Edta-4 = Sn(H2Edta) + log_k 24.3 #95AKR/BOU + -analytic 24.3E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + H+ + Edta-4 = Sn(HEdta)- + log_k 23.4 #95AKR/BOU + -analytic 23.4E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + Nta-3 = Sn(Nta)- + log_k 13.4 #95AKR/BOU + -analytic 13.4E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 - H+ + H2O = Sn(OH)+ + log_k -3.53 #12GAM/GAJ + delta_h 18.611 #kJ/mol +# Enthalpy of formation: -276.835 kJ/mol + -analytic -26.94928E-2 00E+0 -97.21202E+1 00E+0 00E+0 + +Sn+2 - 2 H+ + 2 H2O = Sn(OH)2 + log_k -7.68 #12GAM/GAJ + delta_h 40.762 #kJ/mol +# Enthalpy of formation: -540.515 kJ/mol + -analytic -53.88041E-2 00E+0 -21.29148E+2 00E+0 00E+0 + +Sn+2 - 3 H+ + 3 H2O = Sn(OH)3- + log_k -16.43 + delta_h 89.189 #kJ/mol +# Enthalpy of formation: -777.917 kJ/mol + -analytic -80.47579E-2 00E+0 -46.58666E+2 00E+0 00E+0 + +Sn+4 - 4 H+ + 4 H2O = Sn(OH)4 + log_k 7.54 + delta_h -49.205 #kJ/mol +# Enthalpy of formation: -1224.035 kJ/mol + -analytic -10.80346E-1 00E+0 25.70156E+2 00E+0 00E+0 + +Sn+4 - 5 H+ + 5 H2O = Sn(OH)5- + log_k -1.06 + -analytic -10.6E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+4 - 6 H+ + 6 H2O = Sn(OH)6-2 + log_k -11.13 + -analytic -11.13E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 - H+ + Cl- + H2O = Sn(OH)Cl + log_k -3.1 #52VAN/RHO recalculated in 02HUM/BER + -analytic -31E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + Ox-2 = Sn(Ox) + log_k 6.5 #95AKR/BOU + -analytic 65E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + 2 Ox-2 = Sn(Ox)2-2 + log_k 12.9 #95AKR/BOU + -analytic 12.9E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + 3 Ox-2 = Sn(Ox)3-4 + log_k 17.1 #95AKR/BOU + -analytic 17.1E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + SO4-2 = Sn(SO4) + log_k 3.43 #12GAM/GAJ + delta_h 16.9 #kJ/mol Suggested but not selected in 12GAM/GAJ +# Enthalpy of formation: -902.057 kJ/mol + -analytic 63.90753E-1 00E+0 -88.27485E+1 00E+0 00E+0 + +3 Sn+2 - 4 H+ + 4 H2O = Sn3(OH)4+2 + log_k -5.6 #12GAM/GAJ + -analytic -56E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + Br- = SnBr+ + log_k 1.33 #12GAM/GAJ + -analytic 13.3E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + 2 Br- = SnBr2 + log_k 1.97 #12GAM/GAJ + -analytic 19.7E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + 3 Br- = SnBr3- + log_k 1.93 #12GAM/GAJ + -analytic 19.3E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + Cl- = SnCl+ + log_k 1.52 #12GAM/GAJ + delta_h 12.7 #kJ/mol 12GAM/GAJ +# Enthalpy of formation: -163.997 kJ/mol + -analytic 37.44944E-1 00E+0 -66.33672E+1 00E+0 00E+0 + +Sn+2 + 2 Cl- = SnCl2 + log_k 2.17 #12GAM/GAJ + delta_h 19.7 #kJ/mol 12GAM/GAJ +# Enthalpy of formation: -324.077 kJ/mol + -analytic 56.21292E-1 00E+0 -10.29003E+2 00E+0 00E+0 + +Sn+2 + 3 Cl- = SnCl3- + log_k 2.13 #12GAM/GAJ + -analytic 21.3E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + 4 Cl- = SnCl4-2 + log_k 2.03 #12GAM/GAJ + -analytic 20.3E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + F- = SnF+ + log_k 5.25 #12GAM/GAJ + delta_h -9.58 #kJ/mol +# Enthalpy of formation: -354.546 kJ/mol + -analytic 35.71656E-1 00E+0 50.03983E+1 00E+0 00E+0 + +Sn+2 + 2 F- = SnF2 + log_k 8.89 #12GAM/GAJ + delta_h -9.969 #kJ/mol +# Enthalpy of formation: -690.285 kJ/mol + -analytic 71.43506E-1 00E+0 52.07171E+1 00E+0 00E+0 + +Sn+2 + 3 F- = SnF3- + log_k 11.5 #12GAM/GAJ + delta_h -4.479 #kJ/mol +# Enthalpy of formation: -1020.145 kJ/mol + -analytic 10.71531E+0 00E+0 23.39545E+1 00E+0 00E+0 + +Sn+2 - H+ + H2(PO4)- = SnHPO4 + log_k 2.29 #00CIA/IUL + -analytic 22.9E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + I- = SnI+ + log_k 1.74 #68HAI/JOH1 recalculated + -analytic 17.4E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + 2 I- = SnI2 + log_k 2.69 #68HAI/JOH1 recalculated + -analytic 26.9E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 - 2 H+ + H2(PO4)- = SnPO4- + log_k -1.56 #00CIA/IUL + -analytic -15.6E-1 00E+0 00E+0 00E+0 00E+0 + +2 H+ + SO3-2 - H2O = SO2 + log_k 9.03 + delta_h 21.45 #kJ/mol +# Enthalpy of formation: -323.780 kJ/mol 85GOL/PAR + -analytic 12.78788E+0 00E+0 -11.20412E+2 00E+0 00E+0 + +Sr+2 + Cit-3 = Sr(Cit)- + log_k 4.24 #95AKR/BOU + -analytic 42.4E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 - H+ + 2 Cit-3 + H2O = Sr(Cit)2(OH)-5 + log_k -1.78 #95AKR/BOU + -analytic -17.8E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + 2 Cit-3 = Sr(Cit)2-4 + log_k 4.84 #95AKR/BOU + -analytic 48.4E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + CO3-2 = Sr(CO3) + log_k 2.81 #84BUS/PLU + delta_h 21.796 #kJ/mol +# Enthalpy of formation: -1204.335 kJ/mol + -analytic 66.28495E-1 00E+0 -11.38484E+2 00E+0 00E+0 + +Sr+2 + Edta-4 = Sr(Edta)-2 + log_k 10.3 #95AKR/BOU + -analytic 10.3E+0 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + 2 H+ + Cit-3 = Sr(H2Cit)+ + log_k 12.46 #95AKR/BOU + -analytic 12.46E+0 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + H2(PO4)- = Sr(H2PO4)+ + log_k 0.83 #97MAR/SMI; Uncertainty to include available data. + -analytic 83E-2 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + H+ + Cit-3 = Sr(HCit) + log_k 9 #95AKR/BOU + -analytic 90E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + H+ + CO3-2 = Sr(HCO3)+ + log_k 11.51 #84BUS/PLUS + delta_h 10.597 #kJ/mol +# Enthalpy of formation: -1215.533 kJ/mol + -analytic 13.36651E+0 00E+0 -55.35199E+1 00E+0 00E+0 + +Sr+2 + H+ + Edta-4 = Sr(HEdta)- + log_k 14.7 #95AKR/BOU + -analytic 14.7E+0 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + H+ + Ox-2 = Sr(HOx)+ + log_k 5.8 #95AKR/BOU + -analytic 58E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + 2 H+ + 2 Ox-2 = Sr(HOx)2 + log_k 10.8 #95AKR/BOU + -analytic 10.8E+0 00E+0 00E+0 00E+0 00E+0 + +Sr+2 - H+ + H2(PO4)- = Sr(HPO4) + log_k -4.7 #97MAR/SMI; Uncertainty to include available data. + -analytic -47E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + IO3- = Sr(IO3)+ + log_k 0.33 #estimation NEA87 01/02/95 + -analytic 33E-2 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + 2 IO3- = Sr(IO3)2 + log_k -0.55 #estimation NEA87 01/02/95 + -analytic -55E-2 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + NH3 = Sr(NH3)+2 + log_k -0.55 #estimation NEA87 08/02/95 + -analytic -55E-2 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + NO3- = Sr(NO3)+ + log_k 0.6 #96FAL/REA + -analytic 60E-2 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + 2 NO3- = Sr(NO3)2 + log_k 0.31 #96FAL/REA + -analytic 31E-2 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + Nta-3 = Sr(Nta)- + log_k 6.25 #95AKR/BOU + -analytic 62.5E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 - H+ + H2O = Sr(OH)+ + log_k -13.29 #76BAE/MES + delta_h 82.608 #kJ/mol +# Enthalpy of formation: -754.122 kJ/mol + -analytic 11.823E-1 00E+0 -43.14916E+2 00E+0 00E+0 + +Sr+2 + Ox-2 = Sr(Ox) + log_k 2.54 #95AKR/BOU + -analytic 25.4E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + 2 Ox-2 = Sr(Ox)2-2 + log_k 3 #95AKR/BOU + -analytic 30E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 - 2 H+ + H2(PO4)- = Sr(PO4)- + log_k -13.56 #96BOU1 + -analytic -13.56E+0 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + Pyrophos-4 = Sr(Pyrophos)-2 + log_k 5.4 #76SMI/MAR + -analytic 54E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + S2O3-2 = Sr(S2O3) + log_k 2.04 #76SMI/MAR + -analytic 20.4E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + SO4-2 = Sr(SO4) + log_k 2.3 #06BLA/IGN + delta_h 7.029 #kJ/mol 06BLA/IGN +# Enthalpy of formation: -1453.211 kJ/mol + -analytic 35.31428E-1 00E+0 -36.71502E+1 00E+0 00E+0 + +2 Sr+2 - H+ + Cit-3 + H2O = Sr2(Cit)(OH) + log_k 0.38 #95AKR/BOU + -analytic 38E-2 00E+0 00E+0 00E+0 00E+0 + +2 Sr+2 + UO2+2 + 3 CO3-2 = Sr2UO2(CO3)3 + log_k 29.7 #20GRE/GAO + -analytic 29.7E+0 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + B(OH)4- = SrB(OH)4+ + log_k 1.55 #80BAS + -analytic 15.5E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + Cl- = SrCl+ + log_k 0.23 #96BOU1 + delta_h 4.926 #kJ/mol +# Enthalpy of formation: -713.054 kJ/mol + -analytic 10.92998E-1 00E+0 -25.73029E+1 00E+0 00E+0 + +Sr+2 + F- = SrF+ + log_k 0.3 #96BOU + delta_h 16.74 #kJ/mol 96BOU +# Enthalpy of formation: -869.510 kJ/mol + -analytic 32.32722E-1 00E+0 -87.43911E+1 00E+0 00E+0 + +Sr+2 + 2 F- = SrF2 + log_k 2.02 #96FAL/REA + -analytic 20.2E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + I- = SrI+ + log_k 0.14 #estimation NEA87 01/02/95 + -analytic 14E-2 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + 2 I- = SrI2 + log_k -0.04 #estimation NEA87 01/02/95 + -analytic -40E-3 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + UO2+2 + 3 CO3-2 = SrUO2(CO3)3-2 + log_k 25.9 #20GRE/GAO + -analytic 25.9E+0 00E+0 00E+0 00E+0 00E+0 + +2 TcO(OH)2 + 2 H+ - 2 H2O = Tc2O2(OH)2+2 + log_k 12.99 #20GRE/GAO + -analytic 12.99E+0 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 + 2 H+ + CO3-2 - H2O = TcCO3(OH)2 + log_k 19.25 #99RAR/RAN + -analytic 19.25E+0 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 + H+ + CO3-2 = TcCO3(OH)3- + log_k 10.95 #99RAR/RAN + -analytic 10.95E+0 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 + H+ - H2O + Acetate- = TcO(OH)(Acetate) + log_k 5.55 #11RIC/GRI + -analytic 55.5E-1 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 + H+ + Nta-3 - H2O = TcO(OH)(Nta)-2 + log_k 13.3 #95AKR/BOU + -analytic 13.3E+0 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 + H+ + 2 Nta-3 - H2O = TcO(OH)(Nta)2-5 + log_k 11.7 #95AKR/BOU + -analytic 11.7E+0 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 + Cit-3 = TcO(OH)2Cit-3 + log_k 2.8 #13WAL/KAR + -analytic 28E-1 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 - H+ + H2O = TcO(OH)3- + log_k -10.92 #20GRE/GAO + delta_h 39.03 #kJ/mol 97NGU/LAN +# Enthalpy of formation: -996.043 kJ/mol + -analytic -40.82238E-1 00E+0 -20.38679E+2 00E+0 00E+0 + +TcO(OH)2 + 2 H+ + Ox-2 - 2 H2O = TcO(Ox) + log_k 9.8 #06XIA/HES + -analytic 98E-1 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 + 2 H+ + 2 Ox-2 - 2 H2O = TcO(Ox)2-2 + log_k 13.66 #06XIA/HES + -analytic 13.66E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + Acetate- = Th(Acetate)+3 + log_k 5.24 #11RIC/GRI + -analytic 52.4E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 2 Acetate- = Th(Acetate)2+2 + log_k 9.44 #11RIC/GRI + -analytic 94.4E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 3 Acetate- = Th(Acetate)3+ + log_k 12.56 #11RIC/GRI + -analytic 12.56E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 4 Acetate- = Th(Acetate)4 + log_k 14.38 #11RIC/GRI + -analytic 14.38E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 5 Acetate- = Th(Acetate)5- + log_k 15.37 #11RIC/GRI + -analytic 15.37E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + Cit-3 = Th(Cit)+ + log_k 14.13 #87RAY/DUF + -analytic 14.13E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 2 Cit-3 = Th(Cit)2-2 + log_k 24.29 #87RAY/DUF + -analytic 24.29E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 5 CO3-2 = Th(CO3)5-6 + log_k 31 #09RAN/FUG + -analytic 31E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + Edta-4 = Th(Edta) + log_k 26.95 #95AKR/BOU + -analytic 26.95E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + H2(PO4)- = Th(H2PO4)+3 + log_k 5.59 #09RAN/FUG + -analytic 55.9E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 2 H2(PO4)- = Th(H2PO4)2+2 + log_k 10.48 #09RAN/FUG + -analytic 10.48E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + H+ + 2 H2(PO4)- = Th(H3PO4)(H2PO4)+3 + log_k 9.7 #09RAN/FUG + -analytic 97E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + H+ + H2(PO4)- = Th(H3PO4)+4 + log_k 4.03 #09RAN/FUG + -analytic 40.3E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + H+ + Edta-4 = Th(HEdta)+ + log_k 28.7 #95AKR/BOU + -analytic 28.7E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + H+ + Ox-2 = Th(HOx)+3 + log_k 11 #95AKR/BOU + -analytic 11E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 2 H+ + 2 Ox-2 = Th(HOx)2+2 + log_k 18.13 #95AKR/BOU + -analytic 18.13E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 4 H+ + 4 Ox-2 = Th(HOx)4 + log_k 24.3 #95AKR/BOU + -analytic 24.3E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + Malonate-2 = Th(Malonate)+2 + log_k 9.32 #13GRI/CAM + -analytic 93.2E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 2 Malonate-2 = Th(Malonate)2 + log_k 16.07 #13GRI/CAM + -analytic 16.07E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 3 Malonate-2 = Th(Malonate)3-2 + log_k 19.63 #13GRI/CAM + -analytic 19.63E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + NO3- = Th(NO3)+3 + log_k 1.3 #09RAN/FUG + -analytic 13E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 2 NO3- = Th(NO3)2+2 + log_k 2.3 #09RAN/FUG + -analytic 23E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + Nta-3 = Th(Nta)+ + log_k 19.73 #16BON/AUP + -analytic 19.73E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 - H+ + 4 CO3-2 + H2O = Th(OH)(CO3)4-5 + log_k 21.6 #09RAN/FUG + -analytic 21.6E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 - H+ + Edta-4 + H2O = Th(OH)(Edta)- + log_k 19.5 #95AKR/BOU + -analytic 19.5E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 - H+ + H2O = Th(OH)+3 + log_k -2.5 #09RAN/FUG + delta_h 44.2 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -1010.330 kJ/mol + -analytic 52.43508E-1 00E+0 -23.08727E+2 00E+0 00E+0 + +Th+4 - 2 H+ + CO3-2 + 2 H2O = Th(OH)2(CO3) + log_k 2.5 #09RAN/FUG + -analytic 25E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 2 H+ + 2 CO3-2 + 2 H2O = Th(OH)2(CO3)2-2 + log_k 8.8 #09RAN/FUG + -analytic 88E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 2 H+ + 2 H2O = Th(OH)2+2 + log_k -6.2 #09RAN/FUG + delta_h 85.7 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -1254.660 kJ/mol + -analytic 88.13996E-1 00E+0 -44.76423E+2 00E+0 00E+0 + +Th+4 - 2 H+ + Edta-4 + 2 H2O = Th(OH)2Edta-2 + log_k 11.5 #03XIA/FEL + -analytic 11.5E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 3 H+ + CO3-2 + 3 H2O = Th(OH)3(CO3)- + log_k -3.7 #09RAN/FUG + -analytic -37E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 3 H+ + 2 HGlu- + 3 H2O = Th(OH)3(HGlu)2- + log_k -4.9 #Analogy with An(IV)-ISA + -analytic -49E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 3 H+ + 2 HIsa- + 3 H2O = Th(OH)3(HIsa)2- + log_k -4.9 #09RAI/YUI + -analytic -49E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 3 H+ + 3 H2O = Th(OH)3+ + log_k -11 #10GRI/RIB + delta_h 125.623 #kJ/mol +# Enthalpy of formation: -1500.566 kJ/mol + -analytic 11.0082E+0 00E+0 -65.61746E+2 00E+0 00E+0 + +Th+4 - 3 H+ + Edta-4 + 3 H2O = Th(OH)3Edta-3 + log_k -4 #03XIA/FEL + -analytic -40E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 4 H+ + 4 H2O = Th(OH)4 + log_k -17.4 #09RAN/FUG + delta_h 152.688 #kJ/mol +# Enthalpy of formation: -1759.331 kJ/mol + -analytic 93.49789E-1 00E+0 -79.7545E+2 00E+0 00E+0 + +Th+4 - 4 H+ + CO3-2 + 4 H2O = Th(OH)4(CO3)-2 + log_k -15.6 #09RAN/FUG + -analytic -15.6E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 4 H+ + HGlu- + 4 H2O = Th(OH)4(HGlu)- + log_k -14.7 #Analogy with An(IV)-ISA + -analytic -14.7E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 4 H+ + 2 HGlu- + 4 H2O = Th(OH)4(HGlu)2-2 + log_k -12.5 #Analogy with An(IV)-ISA + -analytic -12.5E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 4 H+ + HIsa- + 4 H2O = Th(OH)4(HIsa)- + log_k -14.7 #Reevaluated from 09RAI/YUI + -analytic -14.7E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 4 H+ + 2 HIsa- + 4 H2O = Th(OH)4(HIsa)2-2 + log_k -12.5 #Reevaluated from 09RAI/YUI + -analytic -12.5E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + Ox-2 = Th(Ox)+2 + log_k 9.7 #08SAS/TAK; 09KOB/SAS + -analytic 97E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 2 Ox-2 = Th(Ox)2 + log_k 16 #08SAS/TAK; 09KOB/SAS + -analytic 16E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 3 Ox-2 = Th(Ox)3-2 + log_k 22.2 #08SAS/TAK; 09KOB/SAS + -analytic 22.2E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + SO4-2 = Th(SO4)+2 + log_k 6.17 #09RAN/FUG + delta_h 20.92 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -1657.120 kJ/mol + -analytic 98.35027E-1 00E+0 -10.92728E+2 00E+0 00E+0 + +Th+4 + 2 SO4-2 = Th(SO4)2 + log_k 9.69 #09RAN/FUG + delta_h 40.38 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -2547.000 kJ/mol + -analytic 16.76427E+0 00E+0 -21.09194E+2 00E+0 00E+0 + +Th+4 + 3 SO4-2 = Th(SO4)3-2 + log_k 10.75 #09RAN/FUG + -analytic 10.75E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + Succinat-2 = Th(Succinat)+2 + log_k 8.49 #13GRI/CAM + -analytic 84.9E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 2 Succinat-2 = Th(Succinat)2 + log_k 12.92 #13GRI/CAM + -analytic 12.92E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 3 Succinat-2 = Th(Succinat)3-2 + log_k 16.62 #13GRI/CAM + -analytic 16.62E+0 00E+0 00E+0 00E+0 00E+0 + +2 Th+4 - 2 H+ + 2 H2O = Th2(OH)2+6 + log_k -5.9 #09RAN/FUG + delta_h 58.3 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -2050.760 kJ/mol + -analytic 43.13722E-1 00E+0 -30.45221E+2 00E+0 00E+0 + +2 Th+4 - 3 H+ + 3 H2O = Th2(OH)3+5 + log_k -6.8 #09RAN/FUG + -analytic -68E-1 00E+0 00E+0 00E+0 00E+0 + +4 Th+4 - 12 H+ + 12 H2O = Th4(OH)12+4 + log_k -26.6 #09RAN/FUG + -analytic -26.6E+0 00E+0 00E+0 00E+0 00E+0 + +4 Th+4 - 8 H+ + 8 H2O = Th4(OH)8+8 + log_k -20.4 #09RAN/FUG + delta_h 243 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -5118.440 kJ/mol + -analytic 22.17177E+0 00E+0 -12.69277E+3 00E+0 00E+0 + +6 Th+4 - 14 H+ + 14 H2O = Th6(OH)14+10 + log_k -36.8 #09RAN/FUG + -analytic -36.8E+0 00E+0 00E+0 00E+0 00E+0 + +6 Th+4 - 15 H+ + 15 H2O = Th6(OH)15+9 + log_k -36.8 #09RAN/FUG + delta_h 472.8 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -8426.850 kJ/mol + -analytic 46.031E+0 00E+0 -24.69606E+3 00E+0 00E+0 + +Th+4 + Cl- = ThCl+3 + log_k 1.7 #09RAN/FUG + -analytic 17E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + F- = ThF+3 + log_k 8.87 #09RAN/FUG + delta_h -0.4 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -1104.450 kJ/mol + -analytic 87.99923E-1 00E+0 20.89346E+0 00E+0 00E+0 + +Th+4 + 2 F- = ThF2+2 + log_k 15.63 #09RAN/FUG + delta_h -3.3 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -1442.700 kJ/mol + -analytic 15.05186E+0 00E+0 17.2371E+1 00E+0 00E+0 + +Th+4 + 3 F- = ThF3+ + log_k 20.67 #09RAN/FUG + -analytic 20.67E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 4 F- = ThF4 + log_k 25.58 #09RAN/FUG + -analytic 25.58E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 + Acetate- = U(Acetate)+3 + log_k 5.64 #12GRI/GAR2 + -analytic 56.4E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 + 2 Acetate- = U(Acetate)2+2 + log_k 9.81 #12GRI/GAR2 + -analytic 98.1E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 + 4 CO3-2 = U(CO3)4-4 + log_k 35.12 #03GUI/FAN + -analytic 35.12E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 + 5 CO3-2 = U(CO3)5-6 + log_k 34 #03GUI/FAN + delta_h -20 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -3987.350 kJ/mol + -analytic 30.49615E+0 00E+0 10.44673E+2 00E+0 00E+0 + +U+4 + Edta-4 = U(Edta) + log_k 29.5 #05HUM/AND + -analytic 29.5E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 + NO3- = U(NO3)+3 + log_k 1.47 #92GRE/FUG + -analytic 14.7E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 + 2 NO3- = U(NO3)2+2 + log_k 2.3 #92GRE/FUG + -analytic 23E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 + Nta-3 = U(Nta)+ + log_k 20 #95AKR/BOU + -analytic 20E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 - H+ + Edta-4 + H2O = U(OH)(Edta)- + log_k 22.7 #23ROD/COL + -analytic 22.7E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 - H+ + H2O = U(OH)+3 + log_k -0.54 #20GRE/GAO + delta_h 46.91 #kJ/mol +# Enthalpy of formation: -830.119 kJ/mol + -analytic 76.78279E-1 00E+0 -24.5028E+2 00E+0 00E+0 + +U+4 - 2 H+ + 2 CO3-2 + 2 H2O = U(OH)2(CO3)2-2 + log_k 14.36 #98RAI/HES + -analytic 14.36E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 - 2 H+ + Edta-4 + 2 H2O = U(OH)2(Edta)-2 + log_k 16.68 #23ROD/COL + -analytic 16.68E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 - 2 H+ + 2 H2O = U(OH)2+2 + log_k -1.9 #20GRE/GAO + delta_h 59.014 #kJ/mol +# Enthalpy of formation: -1103.845 kJ/mol + -analytic 84.38809E-1 00E+0 -30.82516E+2 00E+0 00E+0 + +U+4 - 3 H+ + Edta-4 + 3 H2O = U(OH)3(Edta)-3 + log_k 7.06 #23ROD/COL + -analytic 70.6E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 - 3 H+ + 3 H2O = U(OH)3+ + log_k -5.2 #20GRE/GAO + delta_h 89.407 #kJ/mol +# Enthalpy of formation: -1359.281 kJ/mol + -analytic 10.46343E+0 00E+0 -46.70053E+2 00E+0 00E+0 + +U+4 - 4 H+ + 4 H2O = U(OH)4 + log_k -10 #03GUI/FAN + delta_h 109.87 #kJ/mol +# Enthalpy of formation: -1624.649 kJ/mol + -analytic 92.48398E-1 00E+0 -57.3891E+2 00E+0 00E+0 + +U+4 - 4 H+ + HGlu- + 4 H2O = U(OH)4(HGlu)- + log_k -7.6 #Analogy with An(IV)-ISA + -analytic -76E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 - 4 H+ + 2 HGlu- + 4 H2O = U(OH)4(HGlu)2-2 + log_k -5.4 #Analogy with An(IV)-ISA + -analytic -54E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 - 4 H+ + HIsa- + 4 H2O = U(OH)4(HIsa)- + log_k -7.6 #19KOB/SAS + -analytic -76E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 - 4 H+ + 2 HIsa- + 4 H2O = U(OH)4(HIsa)2-2 + log_k -5.4 #19KOB/SAS + -analytic -54E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 + 2 Ox-2 = U(Ox)2 + log_k 18.63 #12GRI/GAR2 + -analytic 18.63E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 + 3 Ox-2 = U(Ox)3-2 + log_k 24.19 #12GRI/GAR2 + -analytic 24.19E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 + SO4-2 = U(SO4)+2 + log_k 6.58 #92GRE/FUG + delta_h 8 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1492.540 kJ/mol + -analytic 79.8154E-1 00E+0 -41.78691E+1 00E+0 00E+0 + +U+4 + 2 SO4-2 = U(SO4)2 + log_k 10.51 #92GRE/FUG + delta_h 32.7 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -2377.180 kJ/mol + -analytic 16.23879E+0 00E+0 -17.0804E+2 00E+0 00E+0 + +U+4 + Br- = UBr+3 + log_k 1.46 #92GRE/FUG + -analytic 14.6E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 + Cl- = UCl+3 + log_k 1.72 #92GRE/FUG + delta_h -19 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -777.280 kJ/mol + -analytic -16.08657E-1 00E+0 99.24391E+1 00E+0 00E+0 + +U+4 + F- = UF+3 + log_k 9.42 #03GUI/FAN + delta_h -5.6 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -932.150 kJ/mol + -analytic 84.38922E-1 00E+0 29.25084E+1 00E+0 00E+0 + +U+4 + 2 F- = UF2+2 + log_k 16.56 #03GUI/FAN + delta_h -3.5 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1265.400 kJ/mol + -analytic 15.94683E+0 00E+0 18.28177E+1 00E+0 00E+0 + +U+4 + 3 F- = UF3+ + log_k 21.89 #03GUI/FAN + delta_h 0.5 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1596.750 kJ/mol + -analytic 21.9776E+0 00E+0 -26.11682E+0 00E+0 00E+0 + +U+4 + 4 F- = UF4 + log_k 26.34 #03GUI/FAN + delta_h -8.43 #kJ/mol +# Enthalpy of formation: -1941.028 kJ/mol + -analytic 24.86313E+0 00E+0 44.03296E+1 00E+0 00E+0 + +U+4 + 5 F- = UF5- + log_k 27.73 #03GUI/FAN + delta_h -11.636 #kJ/mol +# Enthalpy of formation: -2279.584 kJ/mol + -analytic 25.69146E+0 00E+0 60.77906E+1 00E+0 00E+0 + +U+4 + 6 F- = UF6-2 + log_k 29.8 #03GUI/FAN + -analytic 29.8E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 + I- = UI+3 + log_k 1.25 #92GRE/FUG + -analytic 12.5E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + Acetate- = UO2(Acetate)+ + log_k 3.02 #11RIC/GRI + delta_h -15.894 #kJ/mol +# Enthalpy of formation: -1520.904 kJ/mol + -analytic 23.54907E-2 00E+0 83.02014E+1 00E+0 00E+0 + +UO2+2 + 2 Acetate- = UO2(Acetate)2 + log_k 5.2 #11RIC/GRI + delta_h -34.94 #kJ/mol +# Enthalpy of formation: -2025.960 kJ/mol + -analytic -92.12252E-2 00E+0 18.25043E+2 00E+0 00E+0 + +UO2+2 + 3 Acetate- = UO2(Acetate)3- + log_k 7.03 #11RIC/GRI + delta_h -65.46 #kJ/mol +# Enthalpy of formation: -2542.491 kJ/mol + -analytic -44.381E-1 00E+0 34.19214E+2 00E+0 00E+0 + +UO2+2 + Cit-3 = UO2(Cit)- + log_k 8.96 #05HUM/AND + -analytic 89.6E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + CO3-2 = UO2(CO3) + log_k 9.94 #03GUI/FAN + delta_h 5 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1689.230 kJ/mol + -analytic 10.81596E+0 00E+0 -26.11682E+1 00E+0 00E+0 + +UO2+2 + 2 CO3-2 = UO2(CO3)2-2 + log_k 16.61 #03GUI/FAN + delta_h 18.5 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -2350.960 kJ/mol + -analytic 19.85106E+0 00E+0 -96.63223E+1 00E+0 00E+0 + +UO2+2 + 3 CO3-2 = UO2(CO3)3-4 + log_k 21.84 #03GUI/FAN + delta_h -39.2 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -3083.890 kJ/mol + -analytic 14.97245E+0 00E+0 20.47559E+2 00E+0 00E+0 + +UO2+ + 3 CO3-2 = UO2(CO3)3-5 + log_k 6.95 #03GUI/FAN + -analytic 69.5E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + Edta-4 = UO2(Edta)-2 + log_k 13.7 #05HUM/AND + -analytic 13.7E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + 2 H+ + AsO4-3 = UO2(H2AsO4)+ + log_k 21.96 #03GUI/FAN + -analytic 21.96E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + 4 H+ + 2 AsO4-3 = UO2(H2AsO4)2 + log_k 41.53 #03GUI/FAN + -analytic 41.53E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + H+ + 2 H2(PO4)- = UO2(H2PO4)(H3PO4)+ + log_k 5.93 #92GRE/FUG + -analytic 59.3E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + H2(PO4)- = UO2(H2PO4)+ + log_k 3.26 #92GRE/FUG + delta_h -15.34 #kJ/mol +# Enthalpy of formation: -2336.940 kJ/mol + -analytic 57.25474E-2 00E+0 80.1264E+1 00E+0 00E+0 + +UO2+2 + 2 H2(PO4)- = UO2(H2PO4)2 + log_k 4.92 #92GRE/FUG + delta_h -51.871 #kJ/mol +# Enthalpy of formation: -3676.070 kJ/mol + -analytic -41.67409E-1 00E+0 27.09411E+2 00E+0 00E+0 + +UO2+2 + H+ + H2(PO4)- = UO2(H3PO4)+2 + log_k 2.9 #92GRE/FUG + -analytic 29E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + H+ + AsO4-3 = UO2(HAsO4) + log_k 18.76 #03GUI/FAN + -analytic 18.76E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + H+ + Cit-3 = UO2(HCit) + log_k 11.36 #05HUM/AND + -analytic 11.36E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + H+ + Edta-4 = UO2(HEdta)- + log_k 19.61 #05HUM/AND + -analytic 19.61E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + HGlu- = UO2(HGlu)+ + log_k 2.59 #09ZHA/HEL + -analytic 25.9E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + HIsa- = UO2(HIsa)+ + log_k 3.7 #04RAO/GAR + -analytic 37E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + 2 HIsa- = UO2(HIsa)2 + log_k 6.6 #04RAO/GAR + -analytic 66E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + 3 HIsa- = UO2(HIsa)3- + log_k 8.5 #04RAO/GAR + -analytic 85E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + H+ + Nta-3 = UO2(HNta) + log_k 14.5 #06DES/GIA + -analytic 14.5E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 - H+ + H2(PO4)- = UO2(HPO4) + log_k 0.03 #92GRE/FUG + delta_h 2.783 #kJ/mol +# Enthalpy of formation: -2318.816 kJ/mol + -analytic 51.75607E-2 00E+0 -14.53662E+1 00E+0 00E+0 + +UO2+2 + 2 H+ + 2 SeO3-2 = UO2(HSeO3)2 + log_k 22.23 #20GRE/GAO + -analytic 22.23E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 - 12 H+ - 12 e- + 2 I- + 6 H2O = UO2(IO3)2 + log_k -219.54 #92GRE/FUG + -analytic -21.954E+1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + NO3- = UO2(NO3)+ + log_k -0.19 #20GRE/GAO + delta_h 20.9 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1204.950 kJ/mol + -analytic 34.71523E-1 00E+0 -10.91683E+2 00E+0 00E+0 + +UO2+2 + Nta-3 = UO2(Nta)- + log_k 10.15 #06DES/GIA + -analytic 10.15E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 - H+ + HGlu- + H2O = UO2(OH)(HGlu) + log_k 0.2 #09ZHA/HEL + -analytic 20E-2 00E+0 00E+0 00E+0 00E+0 + +UO2+2 - H+ + Ox-2 + H2O = UO2(OH)(Ox)- + log_k 0.63 #56GRI/PTI + -analytic 63E-2 00E+0 00E+0 00E+0 00E+0 + +UO2+2 - H+ + H2O = UO2(OH)+ + log_k -5.25 #03GUI/FAN + delta_h 43.3 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1261.530 kJ/mol + -analytic 23.35834E-1 00E+0 -22.61717E+2 00E+0 00E+0 + +UO2+2 - 2 H+ + 2 H2O = UO2(OH)2 + log_k -12.15 #03GUI/FAN + delta_h 76.821 #kJ/mol +# Enthalpy of formation: -1513.839 kJ/mol + -analytic 13.08461E-1 00E+0 -40.1264E+2 00E+0 00E+0 + +UO2+2 - 3 H+ + 3 H2O = UO2(OH)3- + log_k -20.25 #03GUI/FAN + delta_h 113.757 #kJ/mol +# Enthalpy of formation: -1762.732 kJ/mol + -analytic -32.06291E-2 00E+0 -59.41942E+2 00E+0 00E+0 + +UO2+2 - 3 H+ + 2 HIsa- + 3 H2O = UO2(OH)3(HIsa)2-3 + log_k -14.5 #19KOB/SAS + -analytic -14.5E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 - 4 H+ + 4 H2O = UO2(OH)4-2 + log_k -32.4 #03GUI/FAN + delta_h 164.152 #kJ/mol +# Enthalpy of formation: -1998.167 kJ/mol + -analytic -36.41804E-1 00E+0 -85.74256E+2 00E+0 00E+0 + +UO2+2 + Ox-2 = UO2(Ox) + log_k 7.13 #05HUM/AND + delta_h 25.36 #kJ/mol +# Enthalpy of formation: -1824.300 kJ/mol 05HUM/AND + -analytic 11.57288E+0 00E+0 -13.24645E+2 00E+0 00E+0 + +UO2+2 + 2 Ox-2 = UO2(Ox)2-2 + log_k 11.65 #05HUM/AND + -analytic 11.65E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + 3 Ox-2 = UO2(Ox)3-4 + log_k 13.8 #05HUM/AND + -analytic 13.8E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + Phthalat-2 = UO2(Phthalat) + log_k 5.56 #11GRI/COL2 + -analytic 55.6E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 - 2 H+ + H2(PO4)- = UO2(PO4)- + log_k -8.55 #20GRE/GAO + -analytic -85.5E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + S2O3-2 = UO2(S2O3) + log_k 2.8 #92GRE/FUG + -analytic 28E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + SeO4-2 = UO2(SeO4) + log_k 2.93 #20GRE/GAO + delta_h 20 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1602.500 kJ/mol + -analytic 64.3385E-1 00E+0 -10.44673E+2 00E+0 00E+0 + +UO2+2 + 2 SeO4-2 = UO2(SeO4)2-2 + log_k 4.03 #20GRE/GAO + delta_h 31 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2195.000 kJ/mol + -analytic 94.60967E-1 00E+0 -16.19243E+2 00E+0 00E+0 + +UO2+2 + SO3-2 = UO2(SO3) + log_k 6.6 #92GRE/FUG + -analytic 66E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + SO4-2 = UO2(SO4) + log_k 3.15 #20GRE/GAO + delta_h 19.5 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -1908.840 kJ/mol + -analytic 65.66253E-1 00E+0 -10.18556E+2 00E+0 00E+0 + +UO2+2 + 2 SO4-2 = UO2(SO4)2-2 + log_k 4.14 #20GRE/GAO + delta_h 35.1 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -2802.580 kJ/mol + -analytic 10.28926E+0 00E+0 -18.33401E+2 00E+0 00E+0 + +UO2+2 + 3 SO4-2 = UO2(SO4)3-4 + log_k 3.02 #03GUI/FAN + -analytic 30.2E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + Succinat-2 = UO2(Succinat) + log_k 5.28 #13GRI/CAM + -analytic 52.8E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + Br- = UO2Br+ + log_k 0.22 #92GRE/FUG + -analytic 22E-2 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + Cl- = UO2Cl+ + log_k 0.17 #92GRE/FUG + delta_h 8 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1178.080 kJ/mol + -analytic 15.7154E-1 00E+0 -41.78691E+1 00E+0 00E+0 + +UO2+2 + 2 Cl- = UO2Cl2 + log_k -1.1 #92GRE/FUG + delta_h 15 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1338.160 kJ/mol + -analytic 15.27887E-1 00E+0 -78.35046E+1 00E+0 00E+0 + +UO2+2 + CO3-2 + F- = UO2CO3F- + log_k 13.7 #03GUI/FAN + -analytic 13.7E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + CO3-2 + 2 F- = UO2CO3F2-2 + log_k 15.57 #03GUI/FAN + -analytic 15.57E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + CO3-2 + 3 F- = UO2CO3F3-3 + log_k 16.38 #03GUI/FAN + -analytic 16.38E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + F- = UO2F+ + log_k 5.16 #03GUI/FAN + delta_h -0.54 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1354.890 kJ/mol + -analytic 50.65396E-1 00E+0 28.20616E+0 00E+0 00E+0 + +UO2+2 + 2 F- = UO2F2 + log_k 8.83 #03GUI/FAN + delta_h -1.34 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1691.040 kJ/mol + -analytic 85.95242E-1 00E+0 69.99307E+0 00E+0 00E+0 + +UO2+2 + 3 F- = UO2F3- + log_k 10.9 #03GUI/FAN + delta_h -1.18 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2026.230 kJ/mol + -analytic 10.69327E+0 00E+0 61.63569E+0 00E+0 00E+0 + +UO2+2 + 4 F- = UO2F4-2 + log_k 11.84 #03GUI/FAN + delta_h -2.12 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2362.520 kJ/mol + -analytic 11.46859E+0 00E+0 11.07353E+1 00E+0 00E+0 + +UO2+2 + H+ + SeO3-2 = UO2HSeO3+ + log_k 11.63 #20GRE/GAO + -analytic 11.63E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 - 6 H+ - 6 e- + I- + 3 H2O = UO2IO3+ +# DLP: This species will be in the U(6) and I(-1) mole balance + log_k -109.56 #92GRE/FUG + delta_h 704.37 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1228.900 kJ/mol + -analytic 13.84033E+0 00E+0 -36.79181E+3 00E+0 00E+0 + +UO2+2 - H+ + H4(SiO4) = UO2SiO(OH)3+ + log_k -1.88 #20GRE/GAO + delta_h 40 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2440.194 kJ/mol + -analytic 51.27699E-1 00E+0 -20.89346E+2 00E+0 00E+0 + +U+4 + Ox-2 = UOx+2 + log_k 10.67 #12GRI/GAR2 + -analytic 10.67E+0 00E+0 00E+0 00E+0 00E+0 + +Zn+2 + SeO4-2 = Zn(SeO4) + log_k 2.16 #05OLI/NOL + delta_h 4.6 #kJ/mol 05OLI/NOL +# Enthalpy of formation: -752.290 kJ/mol + -analytic 29.65885E-1 00E+0 -24.02747E+1 00E+0 00E+0 + +4 CO3-2 + Zr+4 = Zr(CO3)4-4 + log_k 42.9 #05BRO/CUR + -analytic 42.9E+0 00E+0 00E+0 00E+0 00E+0 + +2 NO3- + Zr+4 = Zr(NO3)2+2 + log_k 2.64 #05BRO/CUR + -analytic 26.4E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + Zr+4 + H2O = Zr(OH)+3 + log_k 0.32 #05BRO/CUR + -analytic 32E-2 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + Zr+4 + 2 H2O = Zr(OH)2+2 + log_k 0.98 #05BRO/CUR + -analytic 98E-2 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + Zr+4 + 4 H2O = Zr(OH)4 + log_k -2.19 #05BRO/CUR + -analytic -21.9E-1 00E+0 00E+0 00E+0 00E+0 + +- 6 H+ + Zr+4 + 6 H2O = Zr(OH)6-2 + log_k -29 #05BRO/CUR + -analytic -29E+0 00E+0 00E+0 00E+0 00E+0 + +2 SO4-2 + Zr+4 = Zr(SO4)2 + log_k 11.54 #05BRO/CUR + delta_h 67.38 #kJ/mol +# Enthalpy of formation: -2359.800 kJ/mol 05BRO/CUR + -analytic 23.34447E+0 00E+0 -35.19503E+2 00E+0 00E+0 + +3 SO4-2 + Zr+4 = Zr(SO4)3-2 + log_k 14.3 #05BRO/CUR + -analytic 14.3E+0 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + 3 Zr+4 + 4 H2O = Zr3(OH)4+8 + log_k 0.4 #05BRO/CUR + delta_h -1.98 #kJ/mol +# Enthalpy of formation: -2970.800 kJ/mol 05BRO/CUR + -analytic 53.11889E-3 00E+0 10.34226E+1 00E+0 00E+0 + +- 15 H+ + 4 Zr+4 + 15 H2O = Zr4(OH)15+ + log_k 12.58 #05BRO/CUR + -analytic 12.58E+0 00E+0 00E+0 00E+0 00E+0 + +- 16 H+ + 4 Zr+4 + 16 H2O = Zr4(OH)16 + log_k 8.39 #05BRO/CUR + delta_h 301.12 #kJ/mol +# Enthalpy of formation: -6706.160 kJ/mol 05BRO/CUR + -analytic 61.14396E+0 00E+0 -15.72859E+3 00E+0 00E+0 + +Cl- + Zr+4 = ZrCl+3 + log_k 1.59 #05BRO/CUR + -analytic 15.9E-1 00E+0 00E+0 00E+0 00E+0 + +2 Cl- + Zr+4 = ZrCl2+2 + log_k 2.17 #05BRO/CUR + -analytic 21.7E-1 00E+0 00E+0 00E+0 00E+0 + +F- + Zr+4 = ZrF+3 + log_k 10.12 #05BRO/CUR + delta_h -17.5 #kJ/mol 05BRO/CUR +# Enthalpy of formation: -961.350 kJ/mol + -analytic 70.54132E-1 00E+0 91.40887E+1 00E+0 00E+0 + +2 F- + Zr+4 = ZrF2+2 + log_k 18.55 #05BRO/CUR + delta_h -16.8 #kJ/mol 05BRO/CUR +# Enthalpy of formation: -1296.000 kJ/mol + -analytic 15.60677E+0 00E+0 87.75251E+1 00E+0 00E+0 + +3 F- + Zr+4 = ZrF3+ + log_k 24.72 #05BRO/CUR + delta_h -11.2 #kJ/mol 05BRO/CUR +# Enthalpy of formation: -1625.750 kJ/mol + -analytic 22.75784E+0 00E+0 58.50167E+1 00E+0 00E+0 + +4 F- + Zr+4 = ZrF4 + log_k 30.11 #05BRO/CUR + delta_h -22 #kJ/mol 05BRO/CUR +# Enthalpy of formation: -1971.900 kJ/mol + -analytic 26.25577E+0 00E+0 11.4914E+2 00E+0 00E+0 + +5 F- + Zr+4 = ZrF5- + log_k 34.6 #05BRO/CUR + -analytic 34.6E+0 00E+0 00E+0 00E+0 00E+0 + +6 F- + Zr+4 = ZrF6-2 + log_k 38.11 #05BRO/CUR + -analytic 38.11E+0 00E+0 00E+0 00E+0 00E+0 + +NO3- + Zr+4 = ZrNO3+3 + log_k 1.59 #05BRO/CUR + -analytic 15.9E-1 00E+0 00E+0 00E+0 00E+0 + +SO4-2 + Zr+4 = ZrSO4+2 + log_k 7.04 #05BRO/CUR + delta_h 36.94 #kJ/mol +# Enthalpy of formation: -1480.900 kJ/mol 05BRO/CUR + -analytic 13.51161E+0 00E+0 -19.29511E+2 00E+0 00E+0 PHASES +(HgOH)3PO4(s) +(HgOH)3PO4 = -5 H+ + H2(PO4)- + 3 H2O + 3 Hg+2 + log_k -3.8 #05POW/BRO + -analytic -38E-1 00E+0 00E+0 00E+0 00E+0 + +(NH4)4NpO2(CO3)3(cr) +(NH4)4NpO2(CO3)3 = NpO2+2 + 4 H+ + 3 CO3-2 + 4 NH3 + log_k -64.3 #20GRE/GAO + -analytic -64.3E+0 00E+0 00E+0 00E+0 00E+0 + +(PuO2)3(PO4)2:4H2O(am) +(PuO2)3(PO4)2:4H2O = 3 PuO2+2 - 4 H+ + 2 H2(PO4)- + 4 H2O + log_k -9.85 #20GRE/GAO + -analytic -98.5E-1 00E+0 00E+0 00E+0 00E+0 + (UO2)2(As2O7)(cr) -(UO2)2(As2O7) = 2.000UO2+2 + 2.000H+ + 2.000AsO4-3 - 1.000H2O - log_k -29.010 - delta_h -102.450 #kJ/mol - # Enthalpy of formation: -3426 #kJ/mol #92GRE/FUG - -analytic -4.69584E+1 0E+0 5.35133E+3 0E+0 0E+0 +(UO2)2(As2O7) = 2 UO2+2 + 2 H+ + 2 AsO4-3 - H2O + log_k -29.01 + delta_h -102.45 #kJ/mol +# Enthalpy of formation: -3426.000 kJ/mol 92GRE/FUG + -analytic -46.95847E+0 00E+0 53.51336E+2 00E+0 00E+0 (UO2)3(AsO4)2(cr) -(UO2)3(AsO4)2 = 3.000UO2+2 + 2.000AsO4-3 - log_k -27.400 - delta_h -143.880 #kJ/mol - # Enthalpy of formation: -4689.4 #kJ/mol #92GRE/FUG - -analytic -5.26067E+1 0E+0 7.51536E+3 0E+0 0E+0 +(UO2)3(AsO4)2 = 3 UO2+2 + 2 AsO4-3 + log_k -27.4 + delta_h -143.88 #kJ/mol +# Enthalpy of formation: -4689.400 kJ/mol 92GRE/FUG + -analytic -52.60669E+0 00E+0 75.15376E+2 00E+0 00E+0 (UO2)3(PO4)2(cr) -(UO2)3(PO4)2 = 3.000UO2+2 - 4.000H+ + 2.000H2(PO4)- - log_k 2.800 - delta_h -170.900 #kJ/mol - # Enthalpy of formation: -5491.3 #kJ/mol #92GRE/FUG - -analytic -2.71404E+1 0E+0 8.92672E+3 0E+0 0E+0 +(UO2)3(PO4)2 = 3 UO2+2 - 4 H+ + 2 H2(PO4)- + log_k 2.8 + delta_h -170.9 #kJ/mol +# Enthalpy of formation: -5491.300 kJ/mol 92GRE/FUG + -analytic -27.14039E+0 00E+0 89.26729E+2 00E+0 00E+0 (UO2)3(PO4)2:4H2O(cr) -(UO2)3(PO4)2:4H2O = 3.000UO2+2 - 4.000H+ + 2.000H2(PO4)- + 4.000H2O - log_k -14.150 #92SAN/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.415E+1 0E+0 0E+0 0E+0 0E+0 +(UO2)3(PO4)2:4H2O = 3 UO2+2 - 4 H+ + 2 H2(PO4)- + 4 H2O + log_k -10.24 #20GRE/GAO + -analytic -10.24E+0 00E+0 00E+0 00E+0 00E+0 (UO2)3(PO4)2:6H2O(s) -(UO2)3(PO4)2:6H2O = 3.000UO2+2 - 4.000H+ + 2.000H2(PO4)- + 6.000H2O - log_k -10.200 - delta_h -48.780 #kJ/mol - # Enthalpy of formation: -7328.4 #kJ/mol #03GUI/FAN - -analytic -1.87459E+1 0E+0 2.54795E+3 0E+0 0E+0 +(UO2)3(PO4)2:6H2O = 3 UO2+2 - 4 H+ + 2 H2(PO4)- + 6 H2O + log_k -10.2 + delta_h -48.78 #kJ/mol +# Enthalpy of formation: -7328.400 kJ/mol 03GUI/FAN + -analytic -18.74589E+0 00E+0 25.47957E+2 00E+0 00E+0 Acanthite -Ag2S = 2.000Ag+ - 1.000H+ + 1.000HS- - log_k -36.070 - delta_h 224.768 #kJ/mol - # Enthalpy of formation: -29.488 #kJ/mol - -analytic 3.30761E+0 0E+0 -1.17404E+4 0E+0 0E+0 +Ag2S = 2 Ag+ - H+ + HS- + log_k -36.07 + delta_h 224.768 #kJ/mol +# Enthalpy of formation: -29.488 kJ/mol + -analytic 33.07663E-1 00E+0 -11.74045E+3 00E+0 00E+0 Acmite -NaFeSi2O6 = 1.000Na+ + 1.000Fe+3 - 4.000H+ + 2.000H4(SiO4) - 2.000H2O - log_k 0.920 - delta_h -55.568 #kJ/mol - # Enthalpy of formation: -2584.5 #kJ/mol #95ROB/HEM - -analytic -8.81508E+0 0E+0 2.90251E+3 0E+0 0E+0 +NaFeSi2O6 = Na+ + Fe+3 - 4 H+ + 2 H4(SiO4) - 2 H2O + log_k 0.89 + delta_h -56.624 #kJ/mol +# Enthalpy of formation: -2584.500 kJ/mol 95ROB/HEM + -analytic -90.30099E-1 00E+0 29.57678E+2 00E+0 00E+0 + -Vm 64.6 Afwillite -Ca3Si2O4(OH)6 = 3.000Ca+2 - 6.000H+ + 2.000H4(SiO4) + 2.000H2O - log_k 49.420 #10BLA/BOU1 - delta_h -269.228 #kJ/mol - # Enthalpy of formation: -4853.82 #kJ/mol #10BLA/BOU1 - -analytic 2.25335E+0 0E+0 1.40627E+4 0E+0 0E+0 +Ca3Si2O4(OH)6 = 3 Ca+2 - 6 H+ + 2 H4(SiO4) + 2 H2O + log_k 49.42 #10BLA/BOU1 + delta_h -269.228 #kJ/mol +# Enthalpy of formation: -4853.820 kJ/mol 10BLA/BOU1 + -analytic 22.53279E-1 00E+0 14.06276E+3 00E+0 00E+0 + -Vm 129.53 + +Ag(cr) +Ag = Ag+ + e- + log_k -13.51 + delta_h 105.79 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 95SIL/BID + -analytic 50.23612E-1 00E+0 -55.25797E+2 00E+0 00E+0 Ag(OH)(s) -Ag(OH) = 1.000Ag+ - 1.000H+ + 1.000H2O - log_k 6.300 #76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.3E+0 0E+0 0E+0 0E+0 0E+0 - -Ag(SeCn)(cr) -Ag(SeCn) = 1.000Ag+ + 1.000H+ + 1.000Cn- + 1.000HSe- - 1.000H2O + 0.500O2 - log_k -70.020 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.002E+1 0E+0 0E+0 0E+0 0E+0 - -Ag(s) -Ag = 1.000Ag+ + 0.500H2O - 1.000H+ - 0.250O2 - log_k 7.985 - delta_h -34.092 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #95SIL/BID - -analytic 2.01243E+0 0E+0 1.78072E+3 0E+0 0E+0 +Ag(OH) = Ag+ - H+ + H2O + log_k 6.3 #76BAE/MES + -analytic 63E-1 00E+0 00E+0 00E+0 00E+0 Ag2(CO3)(s) -Ag2(CO3) = 2.000Ag+ + 1.000CO3-2 - log_k -11.050 - delta_h 42.073 #kJ/mol - # Enthalpy of formation: -505.723 #kJ/mol - -analytic -3.67914E+0 0E+0 -2.19762E+3 0E+0 0E+0 +Ag2(CO3) = 2 Ag+ + CO3-2 + log_k -11.05 + delta_h 42.072 #kJ/mol +# Enthalpy of formation: -505.723 kJ/mol + -analytic -36.79302E-1 00E+0 -21.97574E+2 00E+0 00E+0 Ag2(MoO4)(s) -Ag2(MoO4) = 2.000Ag+ + 1.000MoO4-2 - log_k -11.460 - delta_h 55.354 #kJ/mol - # Enthalpy of formation: -840.774 #kJ/mol - -analytic -1.76241E+0 0E+0 -2.89134E+3 0E+0 0E+0 - -Ag2(SO4)(s) -Ag2(SO4) = 2.000Ag+ + 1.000SO4-2 - log_k -5.010 - delta_h 18.162 #kJ/mol - # Enthalpy of formation: -715.922 #kJ/mol - -analytic -1.82816E+0 0E+0 -9.48666E+2 0E+0 0E+0 +Ag2(MoO4) = 2 Ag+ + MoO4-2 + log_k -11.46 + delta_h 55.324 #kJ/mol +# Enthalpy of formation: -840.744 kJ/mol + -analytic -17.67651E-1 00E+0 -28.89774E+2 00E+0 00E+0 Ag2(SeO3)(s) -Ag2(SeO3) = 2.000Ag+ + 1.000SeO3-2 - log_k -15.800 #05OLI/NOL - delta_h 67.860 #kJ/mol - # Enthalpy of formation: -363.44 #kJ/mol #05OLI/NOL - -analytic -3.91146E+0 0E+0 -3.54457E+3 0E+0 0E+0 +Ag2(SeO3) = 2 Ag+ + SeO3-2 + log_k -15.8 #05OLI/NOL + delta_h 67.86 #kJ/mol +# Enthalpy of formation: -363.440 kJ/mol 05OLI/NOL + -analytic -39.11438E-1 00E+0 -35.44575E+2 00E+0 00E+0 Ag2(SeO4)(s) -Ag2(SeO4) = 2.000Ag+ + 1.000SeO4-2 - log_k -7.860 #05OLI/NOL - delta_h 30.590 #kJ/mol - # Enthalpy of formation: -422.51 #kJ/mol #05OLI/NOL - -analytic -2.50087E+0 0E+0 -1.59782E+3 0E+0 0E+0 +Ag2(SeO4) = 2 Ag+ + SeO4-2 + log_k -7.86 #05OLI/NOL + delta_h 30.59 #kJ/mol +# Enthalpy of formation: -422.510 kJ/mol 05OLI/NOL + -analytic -25.00862E-1 00E+0 -15.97827E+2 00E+0 00E+0 + +Ag2(SO4)(s) +Ag2(SO4) = 2 Ag+ + SO4-2 + log_k -5.01 + delta_h 18.163 #kJ/mol +# Enthalpy of formation: -715.922 kJ/mol + -analytic -18.27979E-1 00E+0 -94.87196E+1 00E+0 00E+0 Ag2Se(alfa) -Ag2Se = 2.000Ag+ - 1.000H+ + 1.000HSe- - log_k -42.850 - delta_h 266.009 #kJ/mol - # Enthalpy of formation: -40.129 #kJ/mol - -analytic 3.75271E+0 0E+0 -1.38946E+4 0E+0 0E+0 +Ag2Se = 2 Ag+ - H+ + HSe- + log_k -42.85 + delta_h 266.009 #kJ/mol +# Enthalpy of formation: -40.129 kJ/mol + -analytic 37.52776E-1 00E+0 -13.89462E+3 00E+0 00E+0 Ag3(PO4)(s) -Ag3(PO4) = 3.000Ag+ - 2.000H+ + 1.000H2(PO4)- - log_k 2.010 #03BÖT in 76SMI/MAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.01E+0 0E+0 0E+0 0E+0 0E+0 +Ag3(PO4) = 3 Ag+ - 2 H+ + H2(PO4)- + log_k 2.01 #03BÖT in 76SMI/MAR + -analytic 20.1E-1 00E+0 00E+0 00E+0 00E+0 AgBr(s) -AgBr = 1.000Ag+ + 1.000Br- - log_k -12.290 - delta_h 84.725 #kJ/mol - # Enthalpy of formation: -100.345 #kJ/mol - -analytic 2.55316E+0 0E+0 -4.42549E+3 0E+0 0E+0 +AgBr = Ag+ + Br- + log_k -12.29 + delta_h 84.726 #kJ/mol +# Enthalpy of formation: -100.345 kJ/mol + -analytic 25.53358E-1 00E+0 -44.25547E+2 00E+0 00E+0 AgCl(cr) -AgCl = 1.000Ag+ + 1.000Cl- - log_k -9.750 - delta_h 65.720 #kJ/mol - # Enthalpy of formation: -127.01 #kJ/mol #92GRE/FUG - -analytic 1.76363E+0 0E+0 -3.43279E+3 0E+0 0E+0 +AgCl = Ag+ + Cl- + log_k -9.75 + delta_h 65.72 #kJ/mol +# Enthalpy of formation: -127.010 kJ/mol 92GRE/FUG + -analytic 17.6365E-1 00E+0 -34.32795E+2 00E+0 00E+0 AgI(s) -AgI = 1.000Ag+ + 1.000I- - log_k -16.040 - delta_h 110.764 #kJ/mol - # Enthalpy of formation: -61.754 #kJ/mol - -analytic 3.36499E+0 0E+0 -5.7856E+3 0E+0 0E+0 +AgI = Ag+ + I- + log_k -16.04 + delta_h 110.764 #kJ/mol +# Enthalpy of formation: -61.754 kJ/mol + -analytic 33.6502E-1 00E+0 -57.85607E+2 00E+0 00E+0 + +Al(cr) +Al = Al+3 + 3 e- + log_k 85.43 + delta_h -538.4 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 95POK/HEL + -analytic -88.93631E-1 00E+0 28.12259E+3 00E+0 00E+0 Al(PO4)(cr) -Al(PO4) = 1.000Al+3 - 2.000H+ + 1.000H2(PO4)- - log_k -2.940 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1822.8 #kJ/mol - -analytic -2.94E+0 0E+0 0E+0 0E+0 0E+0 +Al(PO4) = Al+3 - 2 H+ + H2(PO4)- + log_k -3.62 + delta_h -18.2 #kJ/mol +# Enthalpy of formation: -1822.800 kJ/mol 03-91 MINTEQL-PSI + -analytic -68.08503E-1 00E+0 95.06522E+1 00E+0 00E+0 Al(PO4):2H2O(s) -Al(PO4):2H2O = 1.000Al+3 - 2.000H+ + 1.000H2(PO4)- + 2.000H2O - log_k -2.510 #620BRG91.025 ANDRA 21.10.94 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.51E+0 0E+0 0E+0 0E+0 0E+0 - -Al(s) -Al = 1.000Al+3 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 149.915 - delta_h -958.045 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #95POK/HEL - -analytic -1.79269E+1 0E+0 5.00421E+4 0E+0 0E+0 - -Al2(OH)(PO4)2(s) -Al2(OH)(PO4)2 = 2.000Al+3 - 4.000H+ + 2.000H2(PO4)- + 0.500H2O + 0.250O2 - log_k -37.375 #620BRG91.025 ANDRA 21.10.94 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.7375E+1 0E+0 0E+0 0E+0 0E+0 +Al(PO4):2H2O = Al+3 - 2 H+ + H2(PO4)- + 2 H2O + log_k -2.51 #620BRG91.025 ANDRA 21.10.94 + -analytic -25.1E-1 00E+0 00E+0 00E+0 00E+0 Alabandite -MnS = 1.000Mn+2 - 1.000H+ + 1.000HS- - log_k 0.900 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9E-1 0E+0 0E+0 0E+0 0E+0 +MnS = Mn+2 - H+ + HS- + log_k 0.9 #88CHA/NEW + -analytic 90E-2 00E+0 00E+0 00E+0 00E+0 Alamosite -PbSiO3 = 1.000Pb+2 - 2.000H+ + 1.000H4(SiO4) - 1.000H2O - log_k 6.170 - delta_h -29.451 #kJ/mol - # Enthalpy of formation: -1144.993 #kJ/mol #98CHA - -analytic 1.01041E+0 0E+0 1.53833E+3 0E+0 0E+0 +PbSiO3 = Pb+2 - 2 H+ + H4(SiO4) - H2O + log_k 6.17 + delta_h -29.451 #kJ/mol +# Enthalpy of formation: -1144.993 kJ/mol 98CHA + -analytic 10.10406E-1 00E+0 15.38333E+2 00E+0 00E+0 Albite-high -NaAlSi3O8 = 1.000Na+ + 1.000Al+3 - 4.000H+ + 3.000H4(SiO4) - 4.000H2O - log_k 4.140 - delta_h -95.623 #kJ/mol - # Enthalpy of formation: -3923.38 #kJ/mol #99ARN/STE - -analytic -1.26124E+1 0E+0 4.99473E+3 0E+0 0E+0 +NaAlSi3O8 = Na+ + Al+3 - 4 H+ + 3 H4(SiO4) - 4 H2O + log_k 4.14 + delta_h -95.622 #kJ/mol +# Enthalpy of formation: -3923.380 kJ/mol 99ARN/STE + -analytic -12.61226E+0 00E+0 49.94685E+2 00E+0 00E+0 Albite-low -NaAlSi3O8 = 1.000Na+ + 1.000Al+3 - 4.000H+ + 3.000H4(SiO4) - 4.000H2O - log_k 2.740 - delta_h -82.813 #kJ/mol - # Enthalpy of formation: -3936.19 #kJ/mol #99ARN/STE - -analytic -1.17682E+1 0E+0 4.32562E+3 0E+0 0E+0 - -Am(CO3)(OH)(am) -Am(CO3)(OH) = - 1.000H+ + 1.000Am+3 + 1.000CO3-2 + 1.000H2O - log_k -6.200 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.2E+0 0E+0 0E+0 0E+0 0E+0 - -Am(CO3)(OH)(cr) -Am(CO3)(OH) = - 1.000H+ + 1.000Am+3 + 1.000CO3-2 + 1.000H2O - log_k -11.510 - delta_h -25.260 #kJ/mol - # Enthalpy of formation: -1552.5 #kJ/mol #05ROR/FUG - -analytic -1.59354E+1 0E+0 1.31942E+3 0E+0 0E+0 - -Am(CO3)(OH):0.5H2O(cr) -Am(CO3)(OH):0.5H2O = - 1.000H+ + 1.000Am+3 + 1.000CO3-2 + 1.500H2O - log_k -8.400 #03GUI/FAN - delta_h -37.775 #kJ/mol - # Enthalpy of formation: -1682.9 #kJ/mol #03GUI/FAN - -analytic -1.50179E+1 0E+0 1.97312E+3 0E+0 0E+0 - -Am(CO3)2Na:5H2O(s) -Am(CO3)2Na:5H2O = 1.000Na+ + 1.000Am+3 + 2.000CO3-2 + 5.000H2O - log_k -21.000 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.1E+1 0E+0 0E+0 0E+0 0E+0 - -Am(OH)3(am) -Am(OH)3 = - 3.000H+ + 1.000Am+3 + 3.000H2O - log_k 16.900 #03GUI/FAN, 83RAI/STR, 83EDE/BUC, 85NIT/EDE - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.69E+1 0E+0 0E+0 0E+0 0E+0 - -Am(OH)3(cr) -Am(OH)3 = - 3.000H+ + 1.000Am+3 + 3.000H2O - log_k 15.600 #03GUI/FAN, 82SIL, 88STA/KIM1 - delta_h -120.992 #kJ/mol - # Enthalpy of formation: -1353.2 #kJ/mol - -analytic -5.59686E+0 0E+0 6.31984E+3 0E+0 0E+0 - -Am(PO4):xH2O(am) -Am(PO4) = - 2.000H+ + 1.000Am+3 + 1.000H2(PO4)- - log_k -5.230 #95SIL/BID - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.23E+0 0E+0 0E+0 0E+0 0E+0 +NaAlSi3O8 = Na+ + Al+3 - 4 H+ + 3 H4(SiO4) - 4 H2O + log_k 2.74 + delta_h -82.812 #kJ/mol +# Enthalpy of formation: -3936.190 kJ/mol 99ARN/STE + -analytic -11.76804E+0 00E+0 43.25572E+2 00E+0 00E+0 + -Vm 100.07 Am(cr) -Am = 1.000Am+3 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 169.375 - delta_h -1036.345 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #95SIL/BID - -analytic -1.21845E+1 0E+0 5.4132E+4 0E+0 0E+0 +Am = Am+3 + 3 e- + log_k 104.89 + delta_h -616.7 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 95SIL/BID + -analytic -31.51202E-1 00E+0 32.21248E+3 00E+0 00E+0 -Am2(CO3)3(cr) -Am2(CO3)3 = 2.000Am+3 + 3.000CO3-2 - log_k -33.400 #95SIL/BID - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.34E+1 0E+0 0E+0 0E+0 0E+0 +Am(OH)3(am) +Am(OH)3 = -3 H+ + Am+3 + 3 H2O + log_k 16.9 #03GUI/FAN, 83RAI/STR, 83EDE/BUC, 85NIT/EDE + -analytic 16.9E+0 00E+0 00E+0 00E+0 00E+0 + +Am(OH)3(cr) +Am(OH)3 = -3 H+ + Am+3 + 3 H2O + log_k 15.6 #03GUI/FAN, 82SIL, 88STA/KIM1 + delta_h -120.992 #kJ/mol +# Enthalpy of formation: -1353.198 kJ/mol + -analytic -55.96889E-1 00E+0 63.19852E+2 00E+0 00E+0 + +Am(PO4):0.5H2O(am) +Am(PO4):0.5H2O = -2 H+ + Am+3 + H2(PO4)- + 0.5 H2O + log_k -5.23 #95SIL/BID + -analytic -52.3E-1 00E+0 00E+0 00E+0 00E+0 + +Am2(CO3)3(s) +Am2(CO3)3 = 2 Am+3 + 3 CO3-2 + log_k -33.4 #03GUI/FAN + -analytic -33.4E+0 00E+0 00E+0 00E+0 00E+0 Am2O3(cr) -Am2O3 = - 6.000H+ + 2.000Am+3 + 3.000H2O - log_k 53.150 - delta_h -400.490 #kJ/mol - # Enthalpy of formation: -1690.4 #kJ/mol #95SIL/BID - -analytic -1.70127E+1 0E+0 2.0919E+4 0E+0 0E+0 +Am2O3 = -6 H+ + 2 Am+3 + 3 H2O + log_k 53.12 + delta_h -400.49 #kJ/mol +# Enthalpy of formation: -1690.400 kJ/mol 95SIL/BID + -analytic -17.04284E+0 00E+0 20.91905E+3 00E+0 00E+0 AmBr3(cr) -AmBr3 = 1.000Am+3 + 3.000Br- - log_k 23.930 - delta_h -176.930 #kJ/mol - # Enthalpy of formation: -804 #kJ/mol #03GUI/FAN - -analytic -7.06676E+0 0E+0 9.24168E+3 0E+0 0E+0 +AmBr3 = Am+3 + 3 Br- + log_k 23.93 + delta_h -176.93 #kJ/mol +# Enthalpy of formation: -804.000 kJ/mol 03GUI/FAN + -analytic -70.66805E-1 00E+0 92.41698E+2 00E+0 00E+0 AmCl3(cr) -AmCl3 = 1.000Am+3 + 3.000Cl- - log_k 15.280 - delta_h -140.140 #kJ/mol - # Enthalpy of formation: -977.8 #kJ/mol #95SIL/BID - -analytic -9.27144E+0 0E+0 7.32001E+3 0E+0 0E+0 +AmCl3 = Am+3 + 3 Cl- + log_k 15.29 + delta_h -140.14 #kJ/mol +# Enthalpy of formation: -977.800 kJ/mol 95SIL/BID + -analytic -92.61474E-1 00E+0 73.20022E+2 00E+0 00E+0 AmCl6Cs2Na(cr) -AmCl6Cs2Na = 1.000Na+ + 2.000Cs+ + 1.000Am+3 + 6.000Cl- - log_k 12.560 - delta_h -59.720 #kJ/mol - # Enthalpy of formation: -2315.8 #kJ/mol #03GUI/FAN - -analytic 2.09752E+0 0E+0 3.11939E+3 0E+0 0E+0 +AmCl6Cs2Na = Na+ + 2 Cs+ + Am+3 + 6 Cl- + log_k 12.56 + delta_h -59.72 #kJ/mol +# Enthalpy of formation: -2315.800 kJ/mol 03GUI/FAN + -analytic 20.97505E-1 00E+0 31.19393E+2 00E+0 00E+0 -AmF3(cr) -AmF3 = 1.000Am+3 + 3.000F- - log_k -13.400 - delta_h -28.750 #kJ/mol - # Enthalpy of formation: -1594 #kJ/mol #03GUI/FAN - -analytic -1.84368E+1 0E+0 1.50171E+3 0E+0 0E+0 +AmCO3OH(cr) +Am(CO3)(OH) = - H+ + Am+3 + CO3-2 + H2O + log_k -11.51 + delta_h -25.26 #kJ/mol +# Enthalpy of formation: -1552.500 kJ/mol 05ROR/FUG + -analytic -15.93536E+0 00E+0 13.19422E+2 00E+0 00E+0 -AmI3(cr) -AmI3 = 1.000Am+3 + 3.000I- - log_k 25.300 - delta_h -172.040 #kJ/mol - # Enthalpy of formation: -615 #kJ/mol #03GUI/FAN - -analytic -4.84007E+0 0E+0 8.98626E+3 0E+0 0E+0 +AmCO3OH(s) +Am(CO3)(OH) = - H+ + Am+3 + CO3-2 + H2O + log_k -6.2 #03GUI/FAN + -analytic -62E-1 00E+0 00E+0 00E+0 00E+0 -AmO2(cr) -AmO2 = - 3.000H+ + 1.000Am+3 + 1.500H2O + 0.250O2 - log_k 12.715 - delta_h -116.279 #kJ/mol - # Enthalpy of formation: -932.2 #kJ/mol #95SIL/BID - -analytic -7.65609E+0 0E+0 6.07364E+3 0E+0 0E+0 - -AmO2OH(am) -AmO2OH = - 1.000H+ + 1.000AmO2+ + 1.000H2O - log_k 5.300 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.3E+0 0E+0 0E+0 0E+0 0E+0 - -AmOBr(cr) -AmOBr = - 2.000H+ + 1.000Am+3 + 1.000Br- + 1.000H2O - log_k 15.980 - delta_h -136.940 #kJ/mol - # Enthalpy of formation: -887 #kJ/mol #03GUI/FAN - -analytic -8.01082E+0 0E+0 7.15286E+3 0E+0 0E+0 - -AmOCl(cr) -AmOCl = - 2.000H+ + 1.000Am+3 + 1.000Cl- + 1.000H2O - log_k 12.260 - delta_h -119.810 #kJ/mol - # Enthalpy of formation: -949.8 #kJ/mol #95SIL/BID - -analytic -8.72978E+0 0E+0 6.2581E+3 0E+0 0E+0 +AmCO3OH:0.5H2O(s) +Am(CO3)(OH):0.5H2O = - H+ + Am+3 + CO3-2 + 1.5 H2O + log_k -8.4 #03GUI/FAN + delta_h -37.775 #kJ/mol +# Enthalpy of formation: -1682.900 kJ/mol 03GUI/FAN + -analytic -15.0179E+0 00E+0 19.73126E+2 00E+0 00E+0 Amesite -Mg4Al4Si2O10(OH)8 = 4.000Mg+2 + 4.000Al+3 - 20.000H+ + 2.000H4(SiO4) + 10.000H2O - log_k 69.420 - delta_h -766.388 #kJ/mol - # Enthalpy of formation: -9035.9 #kJ/mol #05VID/PAR - -analytic -6.48452E+1 0E+0 4.00312E+4 0E+0 0E+0 +Mg4Al4Si2O10(OH)8 = 4 Mg+2 + 4 Al+3 - 20 H+ + 2 H4(SiO4) + 10 H2O + log_k 69.39 + delta_h -766.388 #kJ/mol +# Enthalpy of formation: -9035.900 kJ/mol 05VID/PAR + -analytic -64.87541E+0 00E+0 40.03123E+3 00E+0 00E+0 + -Vm 205.2 Amesite-Fe -Fe4Al4Si2O10(OH)8 = 4.000Fe+2 + 4.000Al+3 - 20.000H+ + 2.000H4(SiO4) + 10.000H2O - log_k 57.040 - delta_h -686.828 #kJ/mol - # Enthalpy of formation: -7607.46 #kJ/mol #05VID/PAR - -analytic -6.32869E+1 0E+0 3.58755E+4 0E+0 0E+0 +Fe4Al4Si2O10(OH)8 = 4 Fe+2 + 4 Al+3 - 20 H+ + 2 H4(SiO4) + 10 H2O + log_k 57.1 + delta_h -688.008 #kJ/mol +# Enthalpy of formation: -7607.460 kJ/mol 05VID/PAR + -analytic -63.43383E+0 00E+0 35.93716E+3 00E+0 00E+0 + -Vm 209 + +AmF3(cr) +AmF3 = Am+3 + 3 F- + log_k -13.4 + delta_h -28.75 #kJ/mol +# Enthalpy of formation: -1594.000 kJ/mol 03GUI/FAN + -analytic -18.43678E+0 00E+0 15.01717E+2 00E+0 00E+0 + +AmI3(cr) +AmI3 = Am+3 + 3 I- + log_k 25.3 + delta_h -172.04 #kJ/mol +# Enthalpy of formation: -615.000 kJ/mol 03GUI/FAN + -analytic -48.40114E-1 00E+0 89.86275E+2 00E+0 00E+0 + +AmO2(cr) +AmO2 = -4 H+ + Am+3 - e- + 2 H2O + log_k 34.33 + delta_h -256.16 #kJ/mol +# Enthalpy of formation: -932.200 kJ/mol 95SIL/BID + -analytic -10.54731E+0 00E+0 13.38017E+3 00E+0 00E+0 + +AmO2OH(am) +AmO2OH = - H+ + AmO2+ + H2O + log_k 5.3 #03GUI/FAN + -analytic 53E-1 00E+0 00E+0 00E+0 00E+0 + +AmOBr(cr) +AmOBr = -2 H+ + Am+3 + Br- + H2O + log_k 15.98 + delta_h -136.94 #kJ/mol +# Enthalpy of formation: -887.000 kJ/mol 03GUI/FAN + -analytic -80.10858E-1 00E+0 71.52874E+2 00E+0 00E+0 + +AmOCl(cr) +AmOCl = -2 H+ + Am+3 + Cl- + H2O + log_k 12.26 + delta_h -119.81 #kJ/mol +# Enthalpy of formation: -949.800 kJ/mol 95SIL/BID + -analytic -87.29811E-1 00E+0 62.58112E+2 00E+0 00E+0 Analcime -Na0.99Al0.99Si2.01O6:H2O = 0.990Na+ + 0.990Al+3 - 3.960H+ + 2.010H4(SiO4) - 1.040H2O - log_k 6.650 - delta_h -102.689 #kJ/mol - # Enthalpy of formation: -3308 #kJ/mol #04NEU/HOV - -analytic -1.13403E+1 0E+0 5.36381E+3 0E+0 0E+0 +Na0.99Al0.99Si2.01O6:H2O = 0.99 Na+ + 0.99 Al+3 - 3.96 H+ + 2.01 H4(SiO4) - 1.04 H2O + log_k 6.64 + delta_h -102.689 #kJ/mol +# Enthalpy of formation: -3308.000 kJ/mol 04NEU/HOV + -analytic -11.35034E+0 00E+0 53.6382E+2 00E+0 00E+0 + -Vm 97.09 -Anapaite -Ca2Fe(PO4)2:4H2O = 2.000Ca+2 + 1.000Fe+2 - 4.000H+ + 2.000H2(PO4)- + 4.000H2O - log_k 5.020 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.02E+0 0E+0 0E+0 0E+0 0E+0 +Andersonite +Na2CaUO2(CO3)3:6H2O = Ca+2 + 2 Na+ + UO2+2 + 3 CO3-2 + 6 H2O + log_k -31.8 #19LEE/AMA + -analytic -31.8E+0 00E+0 00E+0 00E+0 00E+0 Anglesite -Pb(SO4) = 1.000Pb+2 + 1.000SO4-2 - log_k -7.850 - delta_h 11.550 #kJ/mol - # Enthalpy of formation: -919.97 #kJ/mol #89COX/WAG - -analytic -5.82653E+0 0E+0 -6.03298E+2 0E+0 0E+0 +Pb(SO4) = Pb+2 + SO4-2 + log_k -7.85 + delta_h 11.55 #kJ/mol +# Enthalpy of formation: -919.970 kJ/mol 89COX/WAG + -analytic -58.26527E-1 00E+0 -60.32985E+1 00E+0 00E+0 Anhydrite -Ca(SO4) = 1.000Ca+2 + 1.000SO4-2 - log_k -4.440 - delta_h -17.940 #kJ/mol - # Enthalpy of formation: -1434.4 #kJ/mol #95ROB/HEM - -analytic -7.58295E+0 0E+0 9.3707E+2 0E+0 0E+0 +Ca(SO4) = Ca+2 + SO4-2 + log_k -4.44 + delta_h -17.94 #kJ/mol +# Enthalpy of formation: -1434.400 kJ/mol 95ROB/HEM + -analytic -75.82953E-1 00E+0 93.70715E+1 00E+0 00E+0 + -Vm 46.01 Annite -KFe3Si3AlO10(OH)2 = 1.000K+ + 3.000Fe+2 + 1.000Al+3 - 10.000H+ + 3.000H4(SiO4) - log_k 32.770 - delta_h -313.152 #kJ/mol - # Enthalpy of formation: -5130.97 #kJ/mol #95DAC/BEN - -analytic -2.20918E+1 0E+0 1.6357E+4 0E+0 0E+0 +KFe3Si3AlO10(OH)2 = K+ + 3 Fe+2 + Al+3 - 10 H+ + 3 H4(SiO4) + log_k 32.82 + delta_h -314.037 #kJ/mol +# Enthalpy of formation: -5130.970 kJ/mol 95DAC/BEN + -analytic -22.19692E+0 00E+0 16.40329E+3 00E+0 00E+0 + -Vm 154.3 Anorthite -CaAl2Si2O8 = 1.000Ca+2 + 2.000Al+3 - 8.000H+ + 2.000H4(SiO4) - log_k 25.310 - delta_h -314.358 #kJ/mol - # Enthalpy of formation: -4227.83 #kJ/mol #99ARN/STE - -analytic -2.97631E+1 0E+0 1.642E+4 0E+0 0E+0 +CaAl2Si2O8 = Ca+2 + 2 Al+3 - 8 H+ + 2 H4(SiO4) + log_k 25.31 + delta_h -314.358 #kJ/mol +# Enthalpy of formation: -4227.830 kJ/mol 99ARN/STE + -analytic -29.76316E+0 00E+0 16.42006E+3 00E+0 00E+0 Antarcticite -CaCl2:6H2O = 1.000Ca+2 + 2.000Cl- + 6.000H2O - log_k 3.940 - delta_h 13.990 #kJ/mol - # Enthalpy of formation: -2606.13 #kJ/mol #87GAR/PAR - -analytic 6.39094E+0 0E+0 -7.30748E+2 0E+0 0E+0 +CaCl2:6H2O = Ca+2 + 2 Cl- + 6 H2O + log_k 3.94 + delta_h 13.99 #kJ/mol +# Enthalpy of formation: -2606.130 kJ/mol 87GAR/PAR + -analytic 63.90943E-1 00E+0 -73.07486E+1 00E+0 00E+0 Antigorite -Mg48Si34O85(OH)62 = 48.000Mg+2 - 96.000H+ + 34.000H4(SiO4) + 11.000H2O - log_k 500.160 - delta_h -3822.746 #kJ/mol - # Enthalpy of formation: -71417.98 #kJ/mol #98HOL/POW - -analytic -1.69555E+2 0E+0 1.99676E+5 0E+0 0E+0 +Mg48Si34O85(OH)62 = 48 Mg+2 - 96 H+ + 34 H4(SiO4) + 11 H2O + log_k 499.89 + delta_h -3822.746 #kJ/mol +# Enthalpy of formation: -71417.980kJ/mol 98HOL/POW + -analytic -16.98264E+1 00E+0 19.96759E+4 00E+0 00E+0 + -Vm 1754.8 + +Antlerite +Cu3SO4(OH)4 = 3 Cu+2 - 4 H+ + SO4-2 + 4 H2O + log_k 8.91 + delta_h -117.063 #kJ/mol +# Enthalpy of formation: -1740.896 kJ/mol + -analytic -11.59856E+0 00E+0 61.14626E+2 00E+0 00E+0 Aragonite -CaCO3 = 1.000Ca+2 + 1.000CO3-2 - log_k -8.310 - delta_h -10.454 #kJ/mol - # Enthalpy of formation: -1207.776 #kJ/mol #87GAR/PAR - -analytic -1.01415E+1 0E+0 5.4605E+2 0E+0 0E+0 +CaCO3 = Ca+2 + CO3-2 + log_k -8.31 + delta_h -10.454 #kJ/mol +# Enthalpy of formation: -1207.776 kJ/mol 87GAR/PAR + -analytic -10.14146E+0 00E+0 54.60504E+1 00E+0 00E+0 + -Vm 34.15 Arcanite -K2SO4 = 2.000K+ + 1.000SO4-2 - log_k -1.850 - delta_h 24.080 #kJ/mol - # Enthalpy of formation: -1437.7 #kJ/mol #95ROB/HEM - -analytic 2.36863E+0 0E+0 -1.25778E+3 0E+0 0E+0 +K2SO4 = 2 K+ + SO4-2 + log_k -1.85 + delta_h 24.08 #kJ/mol +# Enthalpy of formation: -1437.700 kJ/mol 95ROB/HEM + -analytic 23.68635E-1 00E+0 -12.57786E+2 00E+0 00E+0 + -Vm 65.5 Artinite -Mg2(CO3)(OH)2:3H2O = 2.000Mg+2 - 2.000H+ + 1.000CO3-2 + 5.000H2O - log_k 9.810 - delta_h -117.780 #kJ/mol - # Enthalpy of formation: -2920.6 #kJ/mol #73HEM/ROB - -analytic -1.08241E+1 0E+0 6.15207E+3 0E+0 0E+0 +Mg2(CO3)(OH)2:3H2O = 2 Mg+2 - 2 H+ + CO3-2 + 5 H2O + log_k 9.81 + delta_h -117.78 #kJ/mol +# Enthalpy of formation: -2920.600 kJ/mol 73HEM/ROB + -analytic -10.82417E+0 00E+0 61.52078E+2 00E+0 00E+0 -As(s) -As = 3.000H+ + 1.000AsO4-3 - 1.500H2O - 1.250O2 - log_k 54.885 - delta_h -444.228 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #09RAN/FUG - -analytic -2.29402E+1 0E+0 2.32036E+4 0E+0 0E+0 +As(cr) +As = 8 H+ + 5 e- + AsO4-3 - 4 H2O + log_k -52.59 + delta_h 255.18 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 09RAN/FUG + -analytic -78.84383E-1 00E+0 -13.32898E+3 00E+0 00E+0 As2O5(s) -As2O5 = 6.000H+ + 2.000AsO4-3 - 3.000H2O - log_k -35.340 - delta_h 10.640 #kJ/mol - # Enthalpy of formation: -929.43 #kJ/mol #65BEE/MOR - -analytic -3.3476E+1 0E+0 -5.55765E+2 0E+0 0E+0 +As2O5 = 6 H+ + 2 AsO4-3 - 3 H2O + log_k -35.34 + delta_h 10.64 #kJ/mol +# Enthalpy of formation: -929.430 kJ/mol 65BEE/MOR + -analytic -33.47595E+0 00E+0 -55.57659E+1 00E+0 00E+0 -B(OH)3(cr) -B(OH)3 = 1.000H+ + 1.000B(OH)4- - 1.000H2O - log_k -9.310 - delta_h 35.514 #kJ/mol - # Enthalpy of formation: -1094.8 #kJ/mol #01LEM/FUG - -analytic -3.08822E+0 0E+0 -1.85502E+3 0E+0 0E+0 +Azurite +Cu3(CO3)2(OH)2 = 3 Cu+2 - 2 H+ + 2 CO3-2 + 2 H2O + log_k -16.91 #91BAL/NOR in 07POW/BRO + delta_h -55.087 #kJ/mol +# Enthalpy of formation: -1672.333 kJ/mol + -analytic -26.56083E+0 00E+0 28.77394E+2 00E+0 00E+0 B(cr) -B = 1.000H+ + 1.000B(OH)4- - 2.500H2O - 0.750O2 - log_k 100.415 - delta_h -621.441 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #92GRE/FUG - -analytic -8.45654E+0 0E+0 3.24601E+4 0E+0 0E+0 +B = 4 H+ + 3 e- + B(OH)4- - 4 H2O + log_k 35.93 + delta_h -201.796 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG + -analytic 57.68584E-2 00E+0 10.54054E+3 00E+0 00E+0 + +B(OH)3(cr) +B(OH)3 = H+ + B(OH)4- - H2O + log_k -9.31 + delta_h 35.514 #kJ/mol +# Enthalpy of formation: -1094.800 kJ/mol 01LEM/FUG + -analytic -30.88214E-1 00E+0 -18.55025E+2 00E+0 00E+0 B2O3(am) -B2O3 = 2.000H+ + 2.000B(OH)4- - 5.000H2O - log_k -10.630 - delta_h -6.711 #kJ/mol - # Enthalpy of formation: -1254.371 #kJ/mol - -analytic -1.18057E+1 0E+0 3.50539E+2 0E+0 0E+0 +B2O3 = 2 H+ + 2 B(OH)4- - 5 H2O + log_k -10.63 + delta_h -6.712 #kJ/mol +# Enthalpy of formation: -1254.371 kJ/mol + -analytic -11.80589E+0 00E+0 35.05922E+1 00E+0 00E+0 B2O3(cr) -B2O3 = 2.000H+ + 2.000B(OH)4- - 5.000H2O - log_k -12.740 - delta_h 12.418 #kJ/mol - # Enthalpy of formation: -1273.5 #kJ/mol #01LEM/FUG - -analytic -1.05645E+1 0E+0 -6.48636E+2 0E+0 0E+0 - -Ba(OH)2:8H2O(cr) -Ba(OH)2:8H2O = 1.000Ba+2 - 2.000H+ + 10.000H2O - log_k 23.870 - delta_h -52.509 #kJ/mol - # Enthalpy of formation: -3340.591 #kJ/mol - -analytic 1.46708E+1 0E+0 2.74273E+3 0E+0 0E+0 - -Ba(SeO3)(s) -Ba(SeO3) = 1.000Ba+2 + 1.000SeO3-2 - log_k -6.500 #05OLI/NOL - delta_h -5.260 #kJ/mol - # Enthalpy of formation: -1036.7 #kJ/mol #05OLI/NOL - -analytic -7.42151E+0 0E+0 2.74749E+2 0E+0 0E+0 - -Ba(SeO4)(cr) -Ba(SeO4) = 1.000Ba+2 + 1.000SeO4-2 - log_k -7.560 #05OLI/NOL - delta_h 5.700 #kJ/mol - # Enthalpy of formation: -1144 #kJ/mol #05OLI/NOL - -analytic -6.5614E+0 0E+0 -2.97731E+2 0E+0 0E+0 +B2O3 = 2 H+ + 2 B(OH)4- - 5 H2O + log_k -12.74 + delta_h 12.418 #kJ/mol +# Enthalpy of formation: -1273.500 kJ/mol 01LEM/FUG + -analytic -10.56446E+0 00E+0 -64.86373E+1 00E+0 00E+0 Ba(cr) -Ba = 1.000Ba+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 140.690 - delta_h -814.563 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #92GRE/FUG - -analytic -2.0151E+0 0E+0 4.25475E+4 0E+0 0E+0 +Ba = Ba+2 + 2 e- + log_k 97.7 + delta_h -534.8 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG + -analytic 40.07062E-1 00E+0 27.93455E+3 00E+0 00E+0 + +Ba(OH)2:8H2O(cr) +Ba(OH)2:8H2O = Ba+2 - 2 H+ + 10 H2O + log_k 23.87 + delta_h -52.506 #kJ/mol +# Enthalpy of formation: -3340.591 kJ/mol + -analytic 14.67134E+0 00E+0 27.42579E+2 00E+0 00E+0 + +Ba(SeO3)(s) +Ba(SeO3) = Ba+2 + SeO3-2 + log_k -6.5 #05OLI/NOL + delta_h -5.26 #kJ/mol +# Enthalpy of formation: -1036.700 kJ/mol 05OLI/NOL + -analytic -74.21512E-1 00E+0 27.47489E+1 00E+0 00E+0 + +Ba(SeO4)(cr) +Ba(SeO4) = Ba+2 + SeO4-2 + log_k -7.56 #05OLI/NOL + delta_h 5.7 #kJ/mol +# Enthalpy of formation: -1144.000 kJ/mol 05OLI/NOL + -analytic -65.61403E-1 00E+0 -29.77317E+1 00E+0 00E+0 BaCl2(cr) -BaCl2 = 1.000Ba+2 + 2.000Cl- - log_k 2.300 - delta_h -13.760 #kJ/mol - # Enthalpy of formation: -855.2 #kJ/mol #95SIL/BID - -analytic -1.10645E-1 0E+0 7.18734E+2 0E+0 0E+0 +BaCl2 = Ba+2 + 2 Cl- + log_k 2.3 + delta_h -13.76 #kJ/mol +# Enthalpy of formation: -855.200 kJ/mol 95SIL/BID + -analytic -11.06485E-2 00E+0 71.87349E+1 00E+0 00E+0 BaCl2:2H2O(s) -BaCl2:2H2O = 1.000Ba+2 + 2.000Cl- + 2.000H2O - log_k -0.340 - delta_h 19.418 #kJ/mol - # Enthalpy of formation: -1460.038 #kJ/mol - -analytic 3.06188E+0 0E+0 -1.01427E+3 0E+0 0E+0 +BaCl2:2H2O = Ba+2 + 2 Cl- + 2 H2O + log_k -0.34 + delta_h 19.42 #kJ/mol +# Enthalpy of formation: -1460.038 kJ/mol + -analytic 30.62238E-1 00E+0 -10.14377E+2 00E+0 00E+0 BaCl2:H2O(s) -BaCl2:H2O = 1.000Ba+2 + 2.000Cl- + 1.000H2O - log_k 0.280 - delta_h 5.746 #kJ/mol - # Enthalpy of formation: -1160.536 #kJ/mol - -analytic 1.28665E+0 0E+0 -3.00134E+2 0E+0 0E+0 +BaCl2:H2O = Ba+2 + 2 Cl- + H2O + log_k 0.28 + delta_h 5.747 #kJ/mol +# Enthalpy of formation: -1160.536 kJ/mol + -analytic 12.86831E-1 00E+0 -30.01867E+1 00E+0 00E+0 BaF2(cr) -BaF2 = 1.000Ba+2 + 2.000F- - log_k -6.320 - delta_h 1.631 #kJ/mol - # Enthalpy of formation: -1207.131 #kJ/mol - -analytic -6.03426E+0 0E+0 -8.51929E+1 0E+0 0E+0 +BaF2 = Ba+2 + 2 F- + log_k -6.32 + delta_h 1.644 #kJ/mol +# Enthalpy of formation: -1207.143 kJ/mol + -analytic -60.31984E-1 00E+0 -85.8721E+0 00E+0 00E+0 BaHPO4(s) -BaHPO4 = 1.000Ba+2 - 1.000H+ + 1.000H2(PO4)- - log_k -0.190 #66SPI/MIK in 76SMI/MAR - delta_h -22.800 #kJ/mol - # Enthalpy of formation: -1814.6 #kJ/mol #82WAG/EVA - -analytic -4.18438E+0 0E+0 1.19093E+3 0E+0 0E+0 +BaHPO4 = Ba+2 - H+ + H2(PO4)- + log_k -0.19 #66SPI/MIK in 76SMI/MAR + delta_h -22.8 #kJ/mol +# Enthalpy of formation: -1814.600 kJ/mol 82WAG/EVA + -analytic -41.84389E-1 00E+0 11.90927E+2 00E+0 00E+0 BaMoO4(s) -BaMoO4 = 1.000Ba+2 + 1.000MoO4-2 - log_k -7.830 - delta_h 13.822 #kJ/mol - # Enthalpy of formation: -1545.622 #kJ/mol - -analytic -5.40849E+0 0E+0 -7.21972E+2 0E+0 0E+0 +BaMoO4 = Ba+2 + MoO4-2 + log_k -7.83 + delta_h 13.779 #kJ/mol +# Enthalpy of formation: -1545.578 kJ/mol + -analytic -54.16023E-1 00E+0 -71.97273E+1 00E+0 00E+0 BaO(cr) -BaO = 1.000Ba+2 - 2.000H+ + 1.000H2O - log_k 48.070 - delta_h -272.530 #kJ/mol - # Enthalpy of formation: -548.1 #kJ/mol #95SIL/BID - -analytic 3.24864E-1 0E+0 1.42352E+4 0E+0 0E+0 - -BaS(s) -BaS = 1.000Ba+2 - 1.000H+ + 1.000HS- - log_k 15.660 - delta_h -90.248 #kJ/mol - # Enthalpy of formation: -460.852 #kJ/mol - -analytic -1.50748E-1 0E+0 4.71397E+3 0E+0 0E+0 +BaO = Ba+2 - 2 H+ + H2O + log_k 48.07 + delta_h -272.53 #kJ/mol +# Enthalpy of formation: -548.100 kJ/mol 95SIL/BID + -analytic 32.47935E-2 00E+0 14.23523E+3 00E+0 00E+0 Barite -Ba(SO4) = 1.000Ba+2 + 1.000SO4-2 - log_k -9.970 #85LAN/MEL in 90NOR/PLU - delta_h 26.460 #kJ/mol #85LAN/MEL in 90NOR/PLU - # Enthalpy of formation: -1470.6 #kJ/mol - -analytic -5.33441E+0 0E+0 -1.3821E+3 0E+0 0E+0 +Ba(SO4) = Ba+2 + SO4-2 + log_k -9.97 #85LAN/MEL in 90NOR/PLU; Uncertainty to include available data. + delta_h 26.46 #kJ/mol 85LAN/MEL in 90NOR/PLU +# Enthalpy of formation: -1470.600 kJ/mol + -analytic -53.34407E-1 00E+0 -13.82102E+2 00E+0 00E+0 + -Vm 52.1 + +BaS(s) +BaS = Ba+2 - H+ + HS- + log_k 15.66 + delta_h -90.248 #kJ/mol +# Enthalpy of formation: -460.852 kJ/mol + -analytic -15.07709E-2 00E+0 47.13981E+2 00E+0 00E+0 Bassanite -CaSO4:0.5H2O = 1.000Ca+2 + 1.000SO4-2 + 0.500H2O - log_k -3.920 #06BLA/PIA - delta_h -17.358 #kJ/mol - # Enthalpy of formation: -1577.897 #kJ/mol - -analytic -6.96099E+0 0E+0 9.0667E+2 0E+0 0E+0 +CaSO4:0.5H2O = Ca+2 + SO4-2 + 0.5 H2O + log_k -3.92 #06BLA/PIA + delta_h -17.358 #kJ/mol +# Enthalpy of formation: -1577.897 kJ/mol + -analytic -69.60991E-1 00E+0 90.66715E+1 00E+0 00E+0 Bassetite -Fe(UO2)2(PO4)2 = 1.000Fe+2 + 2.000UO2+2 - 4.000H+ + 2.000H2(PO4)- - log_k -1.070 #65MUT/HIR - delta_h -36.464 #kJ/mol - # Enthalpy of formation: -8996.928 #kJ/mol - -analytic -7.45821E+0 0E+0 1.90464E+3 0E+0 0E+0 +Fe(UO2)2(PO4)2 = Fe+2 + 2 UO2+2 - 4 H+ + 2 H2(PO4)- + log_k -1.07 #65MUT/HIR + delta_h -36.645 #kJ/mol +# Enthalpy of formation: -4696.849 kJ/mol + -analytic -74.89928E-1 00E+0 19.14102E+2 00E+0 00E+0 + +Be(cr) +Be = 2 e- + Be+2 + log_k 66.62 + delta_h -382.8 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -44.36812E-2 00E+0 19.99504E+3 00E+0 00E+0 + +Be(OH)2(alpha,cr) +Be(OH)2 = -2 H+ + 2 H2O + Be+2 + log_k 6.9 #20ÇEV/GAO + delta_h -51.812 #kJ/mol +# Enthalpy of formation: -902.647 kJ/mol + -analytic -21.77073E-1 00E+0 27.06329E+2 00E+0 00E+0 + +Be(OH)2(beta,cr) +Be(OH)2 = -2 H+ + 2 H2O + Be+2 + log_k 5.9 #87BRU/GRE + delta_h -45.603 #kJ/mol +# Enthalpy of formation: -908.856 kJ/mol + -analytic -20.89303E-1 00E+0 23.82011E+2 00E+0 00E+0 + +BeCl2(alpha,cr) +BeCl2 = 2 Cl- + Be+2 + log_k 34.42 + delta_h -226.03 #kJ/mol +# Enthalpy of formation: -490.930 kJ/mol 98CHA + -analytic -51.78756E-1 00E+0 11.80637E+3 00E+0 00E+0 + +BeCl2(beta,cr) +BeCl2 = 2 Cl- + Be+2 + log_k 33.85 + delta_h -220.738 #kJ/mol +# Enthalpy of formation: -496.222 kJ/mol 98CHA + -analytic -48.21638E-1 00E+0 11.52995E+3 00E+0 00E+0 Becquerelite(nat) -Ca(UO2)6O4(OH)6:8H2O = 1.000Ca+2 + 6.000UO2+2 - 14.000H+ + 18.000H2O - log_k 29.000 #97CAS/BRU - delta_h -378.310 #kJ/mol - # Enthalpy of formation: -11423.63 #kJ/mol #99CHE/EWI - -analytic -3.7277E+1 0E+0 1.97605E+4 0E+0 0E+0 +Ca(UO2)6O4(OH)6:8H2O = Ca+2 + 6 UO2+2 - 14 H+ + 18 H2O + log_k 29 #97CAS/BRU + delta_h -378.31 #kJ/mol +# Enthalpy of formation: -11423.630kJ/mol 99CHE/EWI + -analytic -37.27707E+0 00E+0 19.76051E+3 00E+0 00E+0 Becquerelite(syn) -Ca(UO2)6O4(OH)6:8H2O = 1.000Ca+2 + 6.000UO2+2 - 14.000H+ + 18.000H2O - log_k 40.500 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.05E+1 0E+0 0E+0 0E+0 0E+0 +Ca(UO2)6O4(OH)6:8H2O = Ca+2 + 6 UO2+2 - 14 H+ + 18 H2O + log_k 40.5 #03GUI/FAN + -analytic 40.5E+0 00E+0 00E+0 00E+0 00E+0 -Beidellite-Ca -Ca0.17Al2.34Si3.66O10(OH)2 = 0.170Ca+2 + 2.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 5.770 - delta_h -207.635 #kJ/mol - # Enthalpy of formation: -5737.91 #kJ/mol #15BLA/VIE - -analytic -3.0606E+1 0E+0 1.08455E+4 0E+0 0E+0 - -Beidellite-K -K0.34Al2.34Si3.66O10(OH)2 = 0.340K+ + 2.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 4.600 - delta_h -189.102 #kJ/mol - # Enthalpy of formation: -5749.86 #kJ/mol #15BLA/VIE - -analytic -2.85292E+1 0E+0 9.87747E+3 0E+0 0E+0 - -Beidellite-Mg -Mg0.17Al2.34Si3.66O10(OH)2 = 0.170Mg+2 + 2.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 5.230 - delta_h -208.815 #kJ/mol - # Enthalpy of formation: -5723.81 #kJ/mol #15BLA/VIE - -analytic -3.13528E+1 0E+0 1.09072E+4 0E+0 0E+0 - -Beidellite-Na -Na0.34Al2.34Si3.66O10(OH)2 = 0.340Na+ + 2.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 5.100 - delta_h -197.720 #kJ/mol - # Enthalpy of formation: -5737.23 #kJ/mol #15BLA/VIE - -analytic -2.9539E+1 0E+0 1.03276E+4 0E+0 0E+0 +BeF2(alfa,cr) +BeF2 = 2 F- + Be+2 + log_k -6.32 + delta_h -26.746 #kJ/mol +# Enthalpy of formation: -1026.754 kJ/mol 98CHA + -analytic -11.0057E+0 00E+0 13.97041E+2 00E+0 00E+0 Beidellite_SBld-1 -Ca0.185K0.104(Si3.574Al0.426)(Al1.812Mg0.090Fe0.112)O10(OH)2 = 0.185Ca+2 + 0.090Mg+2 + 0.104K+ + 0.112Fe+3 + 2.238Al+3 - 7.704H+ + 3.574H4(SiO4) - 2.296H2O - log_k 7.590 - delta_h -224.486 #kJ/mol - # Enthalpy of formation: -5720.69 #kJ/mol #12GAI/BLA - -analytic -3.17382E+1 0E+0 1.17257E+4 0E+0 0E+0 +Ca0.185K0.104(Si3.574Al0.426)(Al1.812Mg0.09Fe0.112)O10(OH)2 = 0.185 Ca+2 + 0.09 Mg+2 + 0.104 K+ + 0.112 Fe+3 + 2.238 Al+3 - 7.704 H+ + 3.574 H4(SiO4) - 2.296 H2O + log_k 7.58 + delta_h -224.605 #kJ/mol +# Enthalpy of formation: -5720.690 kJ/mol 12GAI/BLA + -analytic -31.76911E+0 00E+0 11.73194E+3 00E+0 00E+0 + -Vm 137.98 Beidellite_SBld-1(4.576H2O) -Ca0.185K0.104Si3.574Al2.238Mg0.090Fe0.112O10(OH)2:4.576H2O = 0.185Ca+2 + 0.090Mg+2 + 0.104K+ + 0.112Fe+3 + 2.238Al+3 - 7.704H+ + 3.574H4(SiO4) + 2.280H2O - log_k 4.290 - delta_h -193.685 #kJ/mol - # Enthalpy of formation: -7059.45 #kJ/mol #12GAI/BLA - -analytic -2.96421E+1 0E+0 1.01169E+4 0E+0 0E+0 +Ca0.185K0.104Si3.574Al2.238Mg0.09Fe0.112O10(OH)2:4.576H2O = 0.185 Ca+2 + 0.09 Mg+2 + 0.104 K+ + 0.112 Fe+3 + 2.238 Al+3 - 7.704 H+ + 3.574 H4(SiO4) + 2.28 H2O + log_k 4.26 + delta_h -193.803 #kJ/mol +# Enthalpy of formation: -7059.450 kJ/mol 12GAI/BLA + -analytic -29.69283E+0 00E+0 10.12304E+3 00E+0 00E+0 + -Vm 220.67 + +Beidellite-Ca +Ca0.17Al2.34Si3.66O10(OH)2 = 0.17 Ca+2 + 2.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 5.77 + delta_h -207.635 #kJ/mol +# Enthalpy of formation: -5737.910 kJ/mol 15BLA/VIE + -analytic -30.60609E+0 00E+0 10.84553E+3 00E+0 00E+0 + -Vm 134.1 + +Beidellite-K +K0.34Al2.34Si3.66O10(OH)2 = 0.34 K+ + 2.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 4.6 + delta_h -189.102 #kJ/mol +# Enthalpy of formation: -5749.860 kJ/mol 15BLA/VIE + -analytic -28.52925E+0 00E+0 98.77485E+2 00E+0 00E+0 + -Vm 133.22 + +Beidellite-Mg +Mg0.17Al2.34Si3.66O10(OH)2 = 0.17 Mg+2 + 2.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 5.23 + delta_h -208.815 #kJ/mol +# Enthalpy of formation: -5723.810 kJ/mol 15BLA/VIE + -analytic -31.35282E+0 00E+0 10.90717E+3 00E+0 00E+0 + -Vm 130.11 + +Beidellite-Na +Na0.34Al2.34Si3.66O10(OH)2 = 0.34 Na+ + 2.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 5.1 + delta_h -197.72 #kJ/mol +# Enthalpy of formation: -5737.230 kJ/mol 15BLA/VIE + -analytic -29.53906E+0 00E+0 10.32763E+3 00E+0 00E+0 + -Vm 132.49 + +BeO(cr) +BeO = -2 H+ + H2O + Be+2 + log_k 6.72 + delta_h -60.276 #kJ/mol +# Enthalpy of formation: -608.354 kJ/mol 98CHA + -analytic -38.39902E-1 00E+0 31.48435E+2 00E+0 00E+0 Berlinite -Al(PO4) = 1.000Al+3 - 2.000H+ + 1.000H2(PO4)- - log_k -0.570 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.7E-1 0E+0 0E+0 0E+0 0E+0 +Al(PO4) = Al+3 - 2 H+ + H2(PO4)- + log_k -0.57 #96FAL/REA + -analytic -57E-2 00E+0 00E+0 00E+0 00E+0 Berndtite -SnS2 = 1.000Sn+4 - 2.000H+ + 2.000HS- - log_k -37.560 - delta_h 87.401 #kJ/mol - # Enthalpy of formation: -151.5 #kJ/mol #12GAM/GAJ - -analytic -2.2248E+1 0E+0 -4.56527E+3 0E+0 0E+0 +SnS2 = Sn+4 - 2 H+ + 2 HS- + log_k -37.56 + delta_h 87.389 #kJ/mol +# Enthalpy of formation: -151.500 kJ/mol 12GAM/GAJ + -analytic -22.2501E+0 00E+0 -45.64645E+2 00E+0 00E+0 Berthierine(FeII) -(Fe2Al)(SiAl)O5(OH)4 = 2.000Al+3 + 1.000H4(SiO4) + 2.000Fe+2 + 5.000H2O - 10.000H+ - log_k 34.560 - delta_h -376.684 #kJ/mol - # Enthalpy of formation: -3770.46 #kJ/mol #15BLA/VIE - -analytic -3.14321E+1 0E+0 1.96755E+4 0E+0 0E+0 +(Fe2Al)(SiAl)O5(OH)4 = 2 Fe+2 + 2 Al+3 - 10 H+ + H4(SiO4) + 5 H2O + log_k 34.61 + delta_h -377.274 #kJ/mol +# Enthalpy of formation: -3770.460 kJ/mol 15BLA/VIE + -analytic -31.48557E+0 00E+0 19.70639E+3 00E+0 00E+0 + -Vm 103.86 Berthierine(FeIII) -(Fe2.34Fe0.33Al0.33)(Si1.34Al0.66)O5(OH)4 = 0.330Fe+3 + 2.340Fe+2 + 0.990Al+3 - 8.640H+ + 1.340H4(SiO4) + 3.640H2O - log_k 28.800 - delta_h -300.177 #kJ/mol - # Enthalpy of formation: -3458.03 #kJ/mol #15BLA/VIE - -analytic -2.37887E+1 0E+0 1.56793E+4 0E+0 0E+0 +(Fe2.34Fe0.33Al0.33)(Si1.34Al0.66)O5(OH)4 = 0.33 Fe+3 + 2.34 Fe+2 + 0.99 Al+3 - 8.64 H+ + 1.34 H4(SiO4) + 3.64 H2O + log_k 28.85 + delta_h -301.216 #kJ/mol +# Enthalpy of formation: -3458.030 kJ/mol 15BLA/VIE + -analytic -23.92078E+0 00E+0 15.73361E+3 00E+0 00E+0 + -Vm 103.27 Berthierine_ISGS -(Si1.332Al0.668)(Al0.976Fe0.182Fe1.44Mg0.157)O5(OH)4 = 0.157Mg+2 + 0.182Fe+3 + 1.644Al+3 + 1.332H4(SiO4) + 1.440Fe+2 + 3.672H2O - 8.672H+ - log_k 27.930 - delta_h -318.385 #kJ/mol - # Enthalpy of formation: -3774.46 #kJ/mol #13BLA/GAI2 - -analytic -2.78486E+1 0E+0 1.66304E+4 0E+0 0E+0 +(Si1.332Al0.668)(Al0.976Fe0.182Fe1.44Mg0.157)O5(OH)4 = 0.157 Mg+2 + 0.182 Fe+3 + 1.44 Fe+2 + 1.644 Al+3 - 8.672 H+ + 1.332 H4(SiO4) + 3.672 H2O + log_k 27.94 + delta_h -319.002 #kJ/mol +# Enthalpy of formation: -3774.460 kJ/mol 13BLA/GAI2 + -analytic -27.94675E+0 00E+0 16.66263E+3 00E+0 00E+0 + -Vm 101.16 Berthierine_Lorraine -Fe0.608Fe0.936Mg0.37Al1.052Si1.52O5(OH)4 = 0.370Mg+2 + 0.936Fe+3 + 0.608Fe+2 + 1.052Al+3 - 7.920H+ + 1.520H4(SiO4) + 2.920H2O - log_k 1.030 - delta_h -162.510 #kJ/mol - # Enthalpy of formation: -3732.9 #kJ/mol #08GAI - -analytic -2.74405E+1 0E+0 8.48848E+3 0E+0 0E+0 +Fe0.608Fe0.936Mg0.37Al1.052Si1.52O5(OH)4 = 0.37 Mg+2 + 0.936 Fe+3 + 0.608 Fe+2 + 1.052 Al+3 - 7.92 H+ + 1.52 H4(SiO4) + 2.92 H2O + log_k 1.01 + delta_h -163.677 #kJ/mol +# Enthalpy of formation: -3732.900 kJ/mol 08GAI + -analytic -27.66498E+0 00E+0 85.49445E+2 00E+0 00E+0 + -Vm 103.8 + +BeSO4(alfa,cr) +BeSO4 = SO4-2 + Be+2 + log_k 6.12 + delta_h -91.34 #kJ/mol +# Enthalpy of formation: -1200.800 kJ/mol 98CHA + -analytic -98.82081E-1 00E+0 47.7102E+2 00E+0 00E+0 Bieberite -CoSO4:7H2O = 1.000Co+2 + 1.000SO4-2 + 7.000H2O - log_k -2.350 - delta_h 11.840 #kJ/mol - # Enthalpy of formation: -2979.59 #kJ/mol #74NAU/RYZ - -analytic -2.75724E-1 0E+0 -6.18445E+2 0E+0 0E+0 +CoSO4:7H2O = Co+2 + SO4-2 + 7 H2O + log_k -2.35 + delta_h 11.84 #kJ/mol +# Enthalpy of formation: -2979.590 kJ/mol 74NAU/RYZ + -analytic -27.5721E-2 00E+0 -61.84463E+1 00E+0 00E+0 Bischofite -MgCl2:6H2O = 1.000Mg+2 + 2.000Cl- + 6.000H2O - log_k 4.460 #84HAR/MOL - delta_h -8.710 #kJ/mol - # Enthalpy of formation: -2507.43 #kJ/mol - -analytic 2.93408E+0 0E+0 4.54954E+2 0E+0 0E+0 +MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O + log_k 4.46 #84HAR/MOL + delta_h -8.71 #kJ/mol +# Enthalpy of formation: -2507.430 kJ/mol 84HAR/MOL + -analytic 29.34074E-1 00E+0 45.4955E+1 00E+0 00E+0 Bloedite -Na2Mg(SO4)2:4H2O = 1.000Mg+2 + 2.000Na+ + 2.000SO4-2 + 4.000H2O - log_k -2.350 #84HAR/MOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.35E+0 0E+0 0E+0 0E+0 0E+0 +Na2Mg(SO4)2:4H2O = Mg+2 + 2 Na+ + 2 SO4-2 + 4 H2O + log_k -2.35 #84HAR/MOL + -analytic -23.5E-1 00E+0 00E+0 00E+0 00E+0 Boehmite -AlO(OH) = 1.000Al+3 - 3.000H+ + 2.000H2O - log_k 7.620 - delta_h -113.660 #kJ/mol - # Enthalpy of formation: -996.4 #kJ/mol #95ROB/HEM - -analytic -1.22923E+1 0E+0 5.93687E+3 0E+0 0E+0 +AlO(OH) = Al+3 - 3 H+ + 2 H2O + log_k 7.62 + delta_h -113.66 #kJ/mol +# Enthalpy of formation: -996.400 kJ/mol 95ROB/HEM + -analytic -12.29238E+0 00E+0 59.36875E+2 00E+0 00E+0 + +Br2(l) +Br2 = -2 e- + 2 Br- + log_k -36.39 + delta_h 242.82 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 61.50238E-1 00E+0 -12.68337E+3 00E+0 00E+0 + +Brochantite +Cu4SO4(OH)6 = 4 Cu+2 - 6 H+ + SO4-2 + 6 H2O + log_k 15.54 + delta_h -176.191 #kJ/mol +# Enthalpy of formation: -2188.527 kJ/mol + -analytic -15.32734E+0 00E+0 92.03097E+2 00E+0 00E+0 Brucite -Mg(OH)2 = 1.000Mg+2 - 2.000H+ + 2.000H2O - log_k 17.100 #03ALT/MET - delta_h -114.160 #kJ/mol - # Enthalpy of formation: -924.5 #kJ/mol #95ROB/HEM - -analytic -2.89994E+0 0E+0 5.96298E+3 0E+0 0E+0 +Mg(OH)2 = Mg+2 - 2 H+ + 2 H2O + log_k 17.1 #03ALT/MET + delta_h -114.16 #kJ/mol +# Enthalpy of formation: -924.500 kJ/mol 95ROB/HEM + -analytic -28.99973E-1 00E+0 59.62992E+2 00E+0 00E+0 + -Vm 24.63 Brushite -Ca(HPO4):2H2O = 1.000Ca+2 - 1.000H+ + 1.000H2(PO4)- + 2.000H2O - log_k 0.600 #84NAN - delta_h -7.375 #kJ/mol - # Enthalpy of formation: -2409.885 #kJ/mol - -analytic -6.92043E-1 0E+0 3.85223E+2 0E+0 0E+0 +Ca(HPO4):2H2O = Ca+2 - H+ + H2(PO4)- + 2 H2O + log_k 0.6 #84NAN + delta_h -7.375 #kJ/mol +# Enthalpy of formation: -2409.884 kJ/mol + -analytic -69.20445E-2 00E+0 38.52231E+1 00E+0 00E+0 Bunsenite -NiO = 1.000Ni+2 - 2.000H+ + 1.000H2O - log_k 12.480 - delta_h -101.142 #kJ/mol - # Enthalpy of formation: -239.7 #kJ/mol #05GAM/BUG - -analytic -5.23929E+0 0E+0 5.28301E+3 0E+0 0E+0 +NiO = Ni+2 - 2 H+ + H2O + log_k 12.48 + delta_h -101.142 #kJ/mol +# Enthalpy of formation: -239.700 kJ/mol 05GAM/BUG + -analytic -52.39318E-1 00E+0 52.83015E+2 00E+0 00E+0 Burkeite -Na6(CO3)(SO4)2 = 6.000Na+ + 1.000CO3-2 + 2.000SO4-2 - log_k -0.770 #84HAR/MOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.7E-1 0E+0 0E+0 0E+0 0E+0 +Na6(CO3)(SO4)2 = 6 Na+ + CO3-2 + 2 SO4-2 + log_k -0.77 #84HAR/MOL + -analytic -77E-2 00E+0 00E+0 00E+0 00E+0 C(cr) -C = 2.000H+ + 1.000CO3-2 - 1.000H2O - 1.000O2 - log_k 53.830 - delta_h -377.266 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -1.22641E+1 0E+0 1.97059E+4 0E+0 0E+0 +C = 6 H+ + 4 e- + CO3-2 - 3 H2O + log_k -32.15 + delta_h 182.26 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -21.94186E-2 00E+0 -95.20103E+2 00E+0 00E+0 C2SH(alpha) -Ca2(HSiO4)(OH) = 2.000Ca+2 - 4.000H+ + 1.000H4(SiO4) + 1.000H2O - log_k 35.540 - delta_h -198.104 #kJ/mol - # Enthalpy of formation: -2634.92 #kJ/mol #10BLA/BOU1 - -analytic 8.3372E-1 0E+0 1.03477E+4 0E+0 0E+0 +Ca2(HSiO4)(OH) = 2 Ca+2 - 4 H+ + H4(SiO4) + H2O + log_k 35.54 + delta_h -198.104 #kJ/mol +# Enthalpy of formation: -2634.920 kJ/mol 10BLA/BOU1 + -analytic 83.3669E-2 00E+0 10.34769E+3 00E+0 00E+0 + -Vm 71.12 C3AH6 -Ca3Al2(OH)12 = 3.000Ca+2 + 2.000Al+3 - 12.000H+ + 12.000H2O - log_k 80.320 #10BLA/BOU2 - delta_h -584.260 #kJ/mol - # Enthalpy of formation: -5551.5 #kJ/mol #99SCH/NAV - -analytic -2.20378E+1 0E+0 3.0518E+4 0E+0 0E+0 +Ca3Al2(OH)12 = 3 Ca+2 + 2 Al+3 - 12 H+ + 12 H2O + log_k 80.32 #10BLA/BOU2 + delta_h -584.26 #kJ/mol +# Enthalpy of formation: -5551.500 kJ/mol 99SCH/NAV + -analytic -22.03796E+0 00E+0 30.51803E+3 00E+0 00E+0 + -Vm 149.52 C3FH6 -Ca3Fe2(OH)12 = 3.000Ca+2 + 2.000Fe+3 - 12.000H+ + 12.000H2O - log_k 72.390 - delta_h -509.370 #kJ/mol - # Enthalpy of formation: -4647.59 #kJ/mol #10BLA/BOU2 - -analytic -1.68477E+1 0E+0 2.66062E+4 0E+0 0E+0 +Ca3Fe2(OH)12 = 3 Ca+2 + 2 Fe+3 - 12 H+ + 12 H2O + log_k 72.33 + delta_h -511.482 #kJ/mol +# Enthalpy of formation: -4647.590 kJ/mol 10BLA/BOU2 + -analytic -17.2778E+0 00E+0 26.71657E+3 00E+0 00E+0 + -Vm 154.5 C4AH13 -Ca4Al2(OH)14:6H2O = 4.000Ca+2 + 2.000Al+3 - 14.000H+ + 20.000H2O - log_k 103.650 #10BLA/BOU2 - delta_h -647.400 #kJ/mol - # Enthalpy of formation: -8318 #kJ/mol #76HOU/STE - -analytic -9.76944E+0 0E+0 3.3816E+4 0E+0 0E+0 +Ca4Al2(OH)14:6H2O = 4 Ca+2 + 2 Al+3 - 14 H+ + 20 H2O + log_k 103.65 #10BLA/BOU2 + delta_h -647.4 #kJ/mol +# Enthalpy of formation: -8318.000 kJ/mol 76HOU/STE + -analytic -97.69611E-1 00E+0 33.81606E+3 00E+0 00E+0 + -Vm 269.2 C4FH13 -Ca4Fe2(OH)14:6H2O = 4.000Ca+2 + 2.000Fe+3 - 14.000H+ + 20.000H2O - log_k 95.160 - delta_h -569.200 #kJ/mol - # Enthalpy of formation: -7417.4 #kJ/mol #10BLA/BOU2 - -analytic -4.55941E+0 0E+0 2.97313E+4 0E+0 0E+0 - -CSH0.8 -Ca0.8SiO2.8:1.54H2O = 0.800Ca+2 - 1.600H+ + 1.000H4(SiO4) + 0.340H2O - log_k 11.050 #10BLA/BOU1 - delta_h -47.646 #kJ/mol - # Enthalpy of formation: -1945.13 #kJ/mol #10BLA/BOU1 - -analytic 2.70279E+0 0E+0 2.48872E+3 0E+0 0E+0 - -CSH1.2 -Ca1.2SiO3.2:2.06H2O = 1.200Ca+2 - 2.400H+ + 1.000H4(SiO4) + 1.260H2O - log_k 19.300 #10BLA/BOU1 - delta_h -88.600 #kJ/mol - # Enthalpy of formation: -2384.34 #kJ/mol #10BLA/BOU1 - -analytic 3.77797E+0 0E+0 4.62789E+3 0E+0 0E+0 - -CSH1.6 -Ca1.6SiO3.6:2.58H2O = 1.600Ca+2 - 3.200H+ + 1.000H4(SiO4) + 2.180H2O - log_k 28.000 #10BLA/BOU1 - delta_h -133.313 #kJ/mol - # Enthalpy of formation: -2819.79 #kJ/mol #10BLA/BOU1 - -analytic 4.6446E+0 0E+0 6.96341E+3 0E+0 0E+0 +Ca4Fe2(OH)14:6H2O = 4 Ca+2 + 2 Fe+3 - 14 H+ + 20 H2O + log_k 95.08 + delta_h -571.312 #kJ/mol +# Enthalpy of formation: -7417.400 kJ/mol 10BLA/BOU2 + -analytic -50.09566E-1 00E+0 29.8417E+3 00E+0 00E+0 + -Vm 274.4 Ca(Adipate)(s) -Ca(Adipate) = 1.000Ca+2 + 1.000Adipate-2 - log_k -3.300 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.3E+0 0E+0 0E+0 0E+0 0E+0 +Ca(Adipate) = Ca+2 + Adipate-2 + log_k -3.3 #12GRI/GAR2 + -analytic -33E-1 00E+0 00E+0 00E+0 00E+0 + +Ca(cr) +Ca = Ca+2 + 2 e- + log_k 96.85 + delta_h -543 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 17.20484E-1 00E+0 28.36287E+3 00E+0 00E+0 Ca(HGlu)2(s) -Ca(HGlu)2 = 1.000Ca+2 + 2.000HGlu- - log_k -4.190 #99VAN/GLA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.19E+0 0E+0 0E+0 0E+0 0E+0 +Ca(HGlu)2 = Ca+2 + 2 HGlu- + log_k -4.19 #99VAN/GLA + -analytic -41.9E-1 00E+0 00E+0 00E+0 00E+0 Ca(HIsa)2(cr) -Ca(HIsa)2 = 1.000Ca+2 + 2.000HIsa- - log_k -6.400 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.4E+0 0E+0 0E+0 0E+0 0E+0 +Ca(HIsa)2 = Ca+2 + 2 HIsa- + log_k -6.4 #05HUM/AND + -analytic -64E-1 00E+0 00E+0 00E+0 00E+0 Ca(HPO4)(s) -Ca(HPO4) = 1.000Ca+2 - 1.000H+ + 1.000H2(PO4)- - log_k 0.300 #84NAN - delta_h -24.098 #kJ/mol - # Enthalpy of formation: -1821.502 #kJ/mol - -analytic -3.92178E+0 0E+0 1.25872E+3 0E+0 0E+0 +Ca(HPO4) = Ca+2 - H+ + H2(PO4)- + log_k 0.3 #84NAN + delta_h -24.098 #kJ/mol +# Enthalpy of formation: -1821.502 kJ/mol + -analytic -39.21788E-1 00E+0 12.58726E+2 00E+0 00E+0 Ca(NO3)2(s) -Ca(NO3)2 = 1.000Ca+2 + 2.000NO3- - log_k 5.890 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.89E+0 0E+0 0E+0 0E+0 0E+0 +Ca(NO3)2 = Ca+2 + 2 NO3- + log_k 5.89 #96FAL/REA + -analytic 58.9E-1 00E+0 00E+0 00E+0 00E+0 Ca(Ox):2H2O(s) -Ca(Ox):2H2O = 1.000Ca+2 + 1.000Ox-2 + 2.000H2O - log_k -8.300 #05HUM/AND - delta_h 25.200 #kJ/mol - # Enthalpy of formation: -1970.52 #kJ/mol - -analytic -3.88516E+0 0E+0 -1.31629E+3 0E+0 0E+0 +Ca(Ox):2H2O = Ca+2 + Ox-2 + 2 H2O + log_k -8.3 #05HUM/AND + delta_h 25.2 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1970.520 kJ/mol + -analytic -38.8515E-1 00E+0 -13.16288E+2 00E+0 00E+0 Ca(Ox):3H2O(s) -Ca(Ox):3H2O = 1.000Ca+2 + 1.000Ox-2 + 3.000H2O - log_k -8.190 #05HUM/AND - delta_h 29.700 #kJ/mol - # Enthalpy of formation: -2260.85 #kJ/mol - -analytic -2.98679E+0 0E+0 -1.55134E+3 0E+0 0E+0 +Ca(Ox):3H2O = Ca+2 + Ox-2 + 3 H2O + log_k -8.19 #05HUM/AND + delta_h 29.7 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2260.850 kJ/mol + -analytic -29.86783E-1 00E+0 -15.51339E+2 00E+0 00E+0 Ca(Ox):H2O(s) -Ca(Ox):H2O = 1.000Ca+2 + 1.000Ox-2 + 1.000H2O - log_k -8.730 #05HUM/AND - delta_h 21.500 #kJ/mol - # Enthalpy of formation: -1680.99 #kJ/mol - -analytic -4.96337E+0 0E+0 -1.12302E+3 0E+0 0E+0 - -Ca(SO3)(s) -Ca(SO3) = 1.000Ca+2 + 1.000SO3-2 - log_k -6.500 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.5E+0 0E+0 0E+0 0E+0 0E+0 +Ca(Ox):H2O = Ca+2 + Ox-2 + H2O + log_k -8.73 #05HUM/AND + delta_h 21.5 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1680.990 kJ/mol + -analytic -49.63362E-1 00E+0 -11.23023E+2 00E+0 00E+0 Ca(SeO3):H2O(s) -Ca(SeO3):H2O = 1.000Ca+2 + 1.000SeO3-2 + 1.000H2O - log_k -6.400 #05OLI/NOL - delta_h -11.190 #kJ/mol - # Enthalpy of formation: -1324.8 #kJ/mol #05OLI/NOL - -analytic -8.3604E+0 0E+0 5.84494E+2 0E+0 0E+0 +Ca(SeO3):H2O = Ca+2 + SeO3-2 + H2O + log_k -6.4 #05OLI/NOL + delta_h -11.19 #kJ/mol +# Enthalpy of formation: -1324.800 kJ/mol 05OLI/NOL + -analytic -83.60404E-1 00E+0 58.44944E+1 00E+0 00E+0 Ca(SeO4):2H2O(s) -Ca(SeO4):2H2O = 1.000Ca+2 + 1.000SeO4-2 + 2.000H2O - log_k -2.680 #05OLI/NOL - delta_h -9.160 #kJ/mol - # Enthalpy of formation: -1709 #kJ/mol #05OLI/NOL - -analytic -4.28476E+0 0E+0 4.78459E+2 0E+0 0E+0 +Ca(SeO4):2H2O = Ca+2 + SeO4-2 + 2 H2O + log_k -2.68 #05OLI/NOL + delta_h -9.16 #kJ/mol +# Enthalpy of formation: -1709.000 kJ/mol 05OLI/NOL + -analytic -42.84763E-1 00E+0 47.84601E+1 00E+0 00E+0 -Ca(s) -Ca = 1.000Ca+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 139.840 - delta_h -822.763 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -4.30168E+0 0E+0 4.29758E+4 0E+0 0E+0 +Ca(SO3)(s) +Ca(SO3) = Ca+2 + SO3-2 + log_k -6.5 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) + -analytic -65E-1 00E+0 00E+0 00E+0 00E+0 + +Ca0.5NpO2(OH)2:1.3H2O(cr) +Ca0.5NpO2(OH)2:1.3H2O = 0.5 Ca+2 + NpO2+ - 2 H+ + 3.3 H2O + log_k 12.3 #20GRE/GAO + -analytic 12.3E+0 00E+0 00E+0 00E+0 00E+0 Ca2(Pyrophos)(s) -Ca2(Pyrophos) = 2.000Ca+2 + 1.000Pyrophos-4 - log_k -15.500 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.55E+1 0E+0 0E+0 0E+0 0E+0 +Ca2(Pyrophos) = 2 Ca+2 + Pyrophos-4 + log_k -15.5 #88CHA/NEW + -analytic -15.5E+0 00E+0 00E+0 00E+0 00E+0 Ca2Cl2(OH)2:H2O(s) -Ca2Cl2(OH)2:H2O = 2.000Ca+2 - 2.000H+ + 2.000Cl- + 3.000H2O - log_k 26.530 #84HAR/MOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.653E+1 0E+0 0E+0 0E+0 0E+0 +Ca2Cl2(OH)2:H2O = 2 Ca+2 - 2 H+ + 2 Cl- + 3 H2O + log_k 26.53 #84HAR/MOL + -analytic 26.53E+0 00E+0 00E+0 00E+0 00E+0 Ca2Fe2O5(s) -Ca2Fe2O5 = 2.000Ca+2 + 2.000Fe+3 - 10.000H+ + 5.000H2O - log_k 56.760 - delta_h -473.870 #kJ/mol - # Enthalpy of formation: -2138.3 #kJ/mol - -analytic -2.62583E+1 0E+0 2.47519E+4 0E+0 0E+0 +Ca2Fe2O5 = 2 Ca+2 + 2 Fe+3 - 10 H+ + 5 H2O + log_k 56.74 + delta_h -476.962 #kJ/mol +# Enthalpy of formation: -2138.300 kJ/mol 95ROB/HEM + -analytic -26.82016E+0 00E+0 24.91346E+3 00E+0 00E+0 Ca2ZrSi3O12(cr) -Ca2ZrSi3O12 = 2.000Ca+2 - 8.000H+ + 3.000H4(SiO4) + 1.000Zr+4 - 2.000H2O + 1.000O2 - log_k -154.250 - delta_h 764.444 #kJ/mol - # Enthalpy of formation: -6283 #kJ/mol #05BRO/CUR - -analytic -2.03254E+1 0E+0 -3.99296E+4 0E+0 0E+0 +Ca2ZrSi3O12 = 2 Ca+2 - 12 H+ - 4 e- + 3 H4(SiO4) + Zr+4 + log_k -68.27 + delta_h 204.918 #kJ/mol +# Enthalpy of formation: -6283.000 kJ/mol 05BRO/CUR + -analytic -32.36991E+0 00E+0 -10.70361E+3 00E+0 00E+0 Ca3(AsO4)2:xH2O -Ca3(AsO4)2 = 3.000Ca+2 + 2.000AsO4-3 - log_k -21.000 #11GRI/COL4 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.1E+1 0E+0 0E+0 0E+0 0E+0 +Ca3(AsO4)2 = 3 Ca+2 + 2 AsO4-3 + log_k -21 #11GRI/COL4 + -analytic -21E+0 00E+0 00E+0 00E+0 00E+0 Ca3(Cit)2:4H2O(s) -Ca3(Cit)2:4H2O = 3.000Ca+2 + 2.000Cit-3 + 4.000H2O - log_k -17.900 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.79E+1 0E+0 0E+0 0E+0 0E+0 +Ca3(Cit)2:4H2O = 3 Ca+2 + 2 Cit-3 + 4 H2O + log_k -17.9 #05HUM/AND + -analytic -17.9E+0 00E+0 00E+0 00E+0 00E+0 Ca3(PO4)2(alfa) -Ca3(PO4)2 = 3.000Ca+2 - 4.000H+ + 2.000H2(PO4)- - log_k 10.220 #84NAN - delta_h -125.300 #kJ/mol - # Enthalpy of formation: -4108.9 #kJ/mol - -analytic -1.17316E+1 0E+0 6.54487E+3 0E+0 0E+0 +Ca3(PO4)2 = 3 Ca+2 - 4 H+ + 2 H2(PO4)- + log_k 10.22 #84NAN + delta_h -125.3 #kJ/mol +# Enthalpy of formation: -4108.898 kJ/mol + -analytic -11.73162E+0 00E+0 65.44875E+2 00E+0 00E+0 Ca3B2O6(s) -Ca3B2O6 = 3.000Ca+2 - 4.000H+ + 2.000B(OH)4- - 2.000H2O - log_k 40.580 - delta_h -318.306 #kJ/mol - # Enthalpy of formation: -3429.266 #kJ/mol - -analytic -1.51847E+1 0E+0 1.66263E+4 0E+0 0E+0 +Ca3B2O6 = 3 Ca+2 - 4 H+ + 2 B(OH)4- - 2 H2O + log_k 40.58 + delta_h -318.306 #kJ/mol +# Enthalpy of formation: -3429.266 kJ/mol + -analytic -15.18482E+0 00E+0 16.62628E+3 00E+0 00E+0 Ca3ZrSi2O9(cr) -Ca3ZrSi2O9 = 3.000Ca+2 - 10.000H+ + 2.000H4(SiO4) + 1.000Zr+4 + 1.000H2O - log_k 47.870 - delta_h -416.718 #kJ/mol - # Enthalpy of formation: -5029 #kJ/mol #05BRO/CUR - -analytic -2.51358E+1 0E+0 2.17667E+4 0E+0 0E+0 +Ca3ZrSi2O9 = 3 Ca+2 - 10 H+ + 2 H4(SiO4) + Zr+4 + H2O + log_k 47.87 + delta_h -416.718 #kJ/mol +# Enthalpy of formation: -5029.000 kJ/mol 05BRO/CUR + -analytic -25.13586E+0 00E+0 21.7667E+3 00E+0 00E+0 Ca4Al2O6(CrO4):15H2O(s) -Ca4Al2O6(CrO4):15H2O = 4.000Ca+2 + 2.000Al+3 - 12.000H+ + 1.000CrO4-2 + 21.000H2O - log_k 71.360 #01PER/PAL - delta_h -545.980 #kJ/mol #01PER/PAL - # Enthalpy of formation: -9584.25 #kJ/mol - -analytic -2.42914E+1 0E+0 2.85185E+4 0E+0 0E+0 +Ca4Al2O6(CrO4):15H2O = 4 Ca+2 + 2 Al+3 - 12 H+ + CrO4-2 + 21 H2O + log_k 71.36 #01PER/PAL + delta_h -545.98 #kJ/mol 01PER/PAL +# Enthalpy of formation: -9584.250 kJ/mol + -analytic -24.29159E+0 00E+0 28.51852E+3 00E+0 00E+0 Ca4Cl2(OH)6:13H2O(s) -Ca4Cl2(OH)6:13H2O = 4.000Ca+2 - 6.000H+ + 2.000Cl- + 19.000H2O - log_k 68.730 #84HAR/MOL - delta_h -271.930 #kJ/mol - # Enthalpy of formation: -7665 #kJ/mol #82WAG/EVA - -analytic 2.109E+1 0E+0 1.42039E+4 0E+0 0E+0 +Ca4Cl2(OH)6:13H2O = 4 Ca+2 - 6 H+ + 2 Cl- + 19 H2O + log_k 68.73 #84HAR/MOL + delta_h -271.93 #kJ/mol +# Enthalpy of formation: -7665.000 kJ/mol 82WAG/EVA + -analytic 21.08991E+0 00E+0 14.20389E+3 00E+0 00E+0 Ca4H(PO4)3:2.5H2O(s) -Ca4H(PO4)3:2.5H2O = 4.000Ca+2 - 5.000H+ + 3.000H2(PO4)- + 2.500H2O - log_k 11.810 #84NAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.181E+1 0E+0 0E+0 0E+0 0E+0 +Ca4H(PO4)3:2.5H2O = 4 Ca+2 - 5 H+ + 3 H2(PO4)- + 2.5 H2O + log_k 11.81 #84NAN + -analytic 11.81E+0 00E+0 00E+0 00E+0 00E+0 Ca6(Al(OH)6)2(CrO4)3:26H2O(s) -Ca6(Al(OH)6)2(CrO4)3:26H2O = 6.000Ca+2 + 2.000Al+3 - 12.000H+ + 3.000CrO4-2 + 38.000H2O - log_k 60.280 #00PER/PAL - delta_h -509.590 #kJ/mol #00PER/PAL - # Enthalpy of formation: -17323.75 #kJ/mol - -analytic -2.89962E+1 0E+0 2.66177E+4 0E+0 0E+0 +Ca6(Al(OH)6)2(CrO4)3:26H2O = 6 Ca+2 + 2 Al+3 - 12 H+ + 3 CrO4-2 + 38 H2O + log_k 60.28 #00PER/PAL + delta_h -509.59 #kJ/mol 00PER/PAL +# Enthalpy of formation: -17323.750kJ/mol + -analytic -28.99634E+0 00E+0 26.61774E+3 00E+0 00E+0 CaB2O4(s) -CaB2O4 = 1.000Ca+2 + 2.000B(OH)4- - 4.000H2O - log_k -2.180 - delta_h -58.908 #kJ/mol - # Enthalpy of formation: -2031.004 #kJ/mol - -analytic -1.25002E+1 0E+0 3.07697E+3 0E+0 0E+0 +CaB2O4 = Ca+2 + 2 B(OH)4- - 4 H2O + log_k -2.18 + delta_h -58.894 #kJ/mol +# Enthalpy of formation: -2031.019 kJ/mol + -analytic -12.49779E+0 00E+0 30.76248E+2 00E+0 00E+0 CaB4O7(s) -CaB4O7 = 1.000Ca+2 + 2.000H+ + 4.000B(OH)4- - 9.000H2O - log_k -23.440 - delta_h 9.373 #kJ/mol - # Enthalpy of formation: -3360.367 #kJ/mol - -analytic -2.17979E+1 0E+0 -4.89585E+2 0E+0 0E+0 - -CaCO3:H2O(s) -CaCO3:H2O = 1.000Ca+2 + 1.000CO3-2 + 1.000H2O - log_k -7.600 #73HUL/TUR - delta_h -5.770 #kJ/mol - # Enthalpy of formation: -1498.29 #kJ/mol #73HUL/TUR - -analytic -8.61086E+0 0E+0 3.01388E+2 0E+0 0E+0 +CaB4O7 = Ca+2 + 2 H+ + 4 B(OH)4- - 9 H2O + log_k -23.44 + delta_h 9.371 #kJ/mol +# Enthalpy of formation: -3360.367 kJ/mol + -analytic -21.79827E+0 00E+0 -48.94814E+1 00E+0 00E+0 CaCl2:2H2O(cr) -CaCl2:2H2O = 1.000Ca+2 + 2.000Cl- + 2.000H2O - log_k 7.950 - delta_h -44.790 #kJ/mol - # Enthalpy of formation: -1404.03 #kJ/mol #87GAR/PAR - -analytic 1.0314E-1 0E+0 2.33954E+3 0E+0 0E+0 +CaCl2:2H2O = Ca+2 + 2 Cl- + 2 H2O + log_k 7.95 + delta_h -44.79 #kJ/mol +# Enthalpy of formation: -1404.030 kJ/mol 87GAR/PAR + -analytic 10.31288E-2 00E+0 23.39545E+2 00E+0 00E+0 CaCl2:4H2O(cr) -CaCl2:4H2O = 1.000Ca+2 + 2.000Cl- + 4.000H2O - log_k 5.350 - delta_h -11.310 #kJ/mol - # Enthalpy of formation: -2009.17 #kJ/mol #87GAR/PAR - -analytic 3.36858E+0 0E+0 5.90762E+2 0E+0 0E+0 +CaCl2:4H2O = Ca+2 + 2 Cl- + 4 H2O + log_k 5.35 + delta_h -11.31 #kJ/mol +# Enthalpy of formation: -2009.170 kJ/mol 87GAR/PAR + -analytic 33.68573E-1 00E+0 59.07624E+1 00E+0 00E+0 CaCl2:H2O(s) -CaCl2:H2O = 1.000Ca+2 + 2.000Cl- + 1.000H2O - log_k 7.850 - delta_h -52.160 #kJ/mol - # Enthalpy of formation: -1110.83 #kJ/mol #87GAR/PAR - -analytic -1.28803E+0 0E+0 2.7245E+3 0E+0 0E+0 +CaCl2:H2O = Ca+2 + 2 Cl- + H2O + log_k 7.85 + delta_h -52.16 #kJ/mol +# Enthalpy of formation: -1110.830 kJ/mol 87GAR/PAR + -analytic -12.8804E-1 00E+0 27.24507E+2 00E+0 00E+0 + +CaCO3:H2O(s) +CaCO3:H2O = Ca+2 + CO3-2 + H2O + log_k -7.6 #73HUL/TUR + delta_h -5.77 #kJ/mol +# Enthalpy of formation: -1498.290 kJ/mol 73HUL/TUR + -analytic -86.10861E-1 00E+0 30.13881E+1 00E+0 00E+0 CaCrO4(s) -CaCrO4 = 1.000Ca+2 + 1.000CrO4-2 - log_k -3.150 #03DEA - delta_h -22.814 #kJ/mol - # Enthalpy of formation: -1399.186 #kJ/mol - -analytic -7.14684E+0 0E+0 1.19166E+3 0E+0 0E+0 - -CaF2:6H2O(s) -CaF2:6H2O = 1.000Ca+2 + 2.000F- + 6.000H2O - log_k -5.480 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.48E+0 0E+0 0E+0 0E+0 0E+0 - -CaFe2O4(s) -CaFe2O4 = 1.000Ca+2 + 2.000Fe+3 - 8.000H+ + 4.000H2O - log_k 21.240 #79ROB - delta_h -263.980 #kJ/mol - # Enthalpy of formation: -1520.34 #kJ/mol - -analytic -2.50072E+1 0E+0 1.37886E+4 0E+0 0E+0 - -CaI2(s) -CaI2 = 1.000Ca+2 + 2.000I- - log_k 22.500 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.25E+1 0E+0 0E+0 0E+0 0E+0 - -CaMg3(CO3)4(s) -CaMg3(CO3)4 = 1.000Ca+2 + 3.000Mg+2 + 4.000CO3-2 - log_k -30.810 # - delta_h -112.340 #kJ/mol - # Enthalpy of formation: -4532.58 #kJ/mol #73HEM/ROB - -analytic -5.04911E+1 0E+0 5.86792E+3 0E+0 0E+0 - -CaMoO4(s) -CaMoO4 = 1.000Ca+2 + 1.000MoO4-2 - log_k -7.900 - delta_h 1.424 #kJ/mol - # Enthalpy of formation: -1541.424 #kJ/mol - -analytic -7.65053E+0 0E+0 -7.43806E+1 0E+0 0E+0 - -CaO(cr) -CaO = 1.000Ca+2 - 2.000H+ + 1.000H2O - log_k 32.700 - delta_h -193.910 #kJ/mol - # Enthalpy of formation: -634.92 #kJ/mol #89COX/WAG - -analytic -1.27152E+0 0E+0 1.01286E+4 0E+0 0E+0 - -CaSn(OH)6(s) -CaSn(OH)6 = 1.000Ca+2 + 1.000Sn+4 - 6.000H+ + 6.000H2O - log_k -0.740 #Log K¿ estimated as the mean value of data in 00LOT/OCH2 (uncertainty to include both values) recalculated using values of Sn(OH)6-2 selected in this work - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.4E-1 0E+0 0E+0 0E+0 0E+0 - -CaU2O7:3H2O(cr) -CaU2O7:3H2O = 1.000Ca+2 + 2.000UO2+2 - 6.000H+ + 6.000H2O - log_k 23.400 #05ALT/NEC - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.34E+1 0E+0 0E+0 0E+0 0E+0 +CaCrO4 = Ca+2 + CrO4-2 + log_k -3.15 #03DEA + delta_h -22.807 #kJ/mol +# Enthalpy of formation: -1399.193 kJ/mol + -analytic -71.45615E-1 00E+0 11.91293E+2 00E+0 00E+0 Cadmoselite -CdSe = 1.000Cd+2 - 1.000H+ + 1.000HSe- - log_k -18.680 - delta_h 81.480 #kJ/mol - # Enthalpy of formation: -143.1 #kJ/mol #05OLI/NOL - -analytic -4.40534E+0 0E+0 -4.25599E+3 0E+0 0E+0 +CdSe = Cd+2 - H+ + HSe- + log_k -18.68 + delta_h 81.48 #kJ/mol +# Enthalpy of formation: -143.100 kJ/mol 05OLI/NOL + -analytic -44.05317E-1 00E+0 -42.55997E+2 00E+0 00E+0 + +CaF2:6H2O(s) +CaF2:6H2O = Ca+2 + 2 F- + 6 H2O + log_k -5.48 #96FAL/REA + -analytic -54.8E-1 00E+0 00E+0 00E+0 00E+0 + +CaFe2O4(s) +CaFe2O4 = Ca+2 + 2 Fe+3 - 8 H+ + 4 H2O + log_k 21.24 #79ROB + delta_h -263.98 #kJ/mol 79ROB +# Enthalpy of formation: -1522.452 kJ/mol + -analytic -25.00731E+0 00E+0 13.78864E+3 00E+0 00E+0 + +CaI2(s) +CaI2 = Ca+2 + 2 I- + log_k 22.5 #96FAL/REA + -analytic 22.5E+0 00E+0 00E+0 00E+0 00E+0 Calcite -CaCO3 = 1.000Ca+2 + 1.000CO3-2 - log_k -8.480 #82PLUM/BUS - delta_h -10.620 #kJ/mol #82PLUM/BUS - # Enthalpy of formation: -1207.61 #kJ/mol - -analytic -1.03405E+1 0E+0 5.5472E+2 0E+0 0E+0 +CaCO3 = Ca+2 + CO3-2 + log_k -8.48 #82PLUM/BUS + delta_h -10.62 #kJ/mol 82PLUM/BUS +# Enthalpy of formation: -1207.610 kJ/mol + -analytic -10.34054E+0 00E+0 55.47212E+1 00E+0 00E+0 + -Vm 36.93 + +CaMg3(CO3)4(s) +CaMg3(CO3)4 = Ca+2 + 3 Mg+2 + 4 CO3-2 + log_k -30.81 + delta_h -112.34 #kJ/mol +# Enthalpy of formation: -4532.580 kJ/mol 73HEM/ROB + -analytic -50.49112E+0 00E+0 58.67927E+2 00E+0 00E+0 + +CaMoO4(s) +CaMoO4 = Ca+2 + MoO4-2 + log_k -7.9 + delta_h 1.427 #kJ/mol +# Enthalpy of formation: -1541.427 kJ/mol + -analytic -76.5E-1 00E+0 -74.5374E+0 00E+0 00E+0 + +CaO(cr) +CaO = Ca+2 - 2 H+ + H2O + log_k 32.7 + delta_h -193.91 #kJ/mol +# Enthalpy of formation: -634.920 kJ/mol 89COX/WAG + -analytic -12.71574E-1 00E+0 10.12862E+3 00E+0 00E+0 Carnallite -KMgCl3:6H2O = 1.000Mg+2 + 1.000K+ + 3.000Cl- + 6.000H2O - log_k 4.330 #84HAR/MOL - delta_h 9.339 #kJ/mol - # Enthalpy of formation: -2944.699 #kJ/mol #74NAU/RYZ - -analytic 5.96612E+0 0E+0 -4.87809E+2 0E+0 0E+0 +KMgCl3:6H2O = Mg+2 + K+ + 3 Cl- + 6 H2O + log_k 4.33 #84HAR/MOL + delta_h 9.339 #kJ/mol +# Enthalpy of formation: -2944.699 kJ/mol 74NAU/RYZ + -analytic 59.66123E-1 00E+0 -48.78099E+1 00E+0 00E+0 + +CaSn(OH)6(s) +CaSn(OH)6 = Ca+2 + Sn+4 - 6 H+ + 6 H2O + log_k -0.74 #Log Kº estimated as the mean value of data in 00LOT/OCH2 (uncertainty to include both values) recalculated using values of Sn(OH)6-2 selected in this work + -analytic -74E-2 00E+0 00E+0 00E+0 00E+0 Cassiterite -SnO2 = 1.000Sn+4 - 4.000H+ + 2.000H2O - log_k -15.600 - delta_h -25.529 #kJ/mol - # Enthalpy of formation: -577.63 #kJ/mol #12GAM/GAJ - -analytic -2.00725E+1 0E+0 1.33347E+3 0E+0 0E+0 +SnO2 = Sn+4 - 4 H+ + 2 H2O + log_k -15.6 + delta_h -25.541 #kJ/mol +# Enthalpy of formation: -577.630 kJ/mol 12GAM/GAJ + -analytic -20.07459E+0 00E+0 13.34099E+2 00E+0 00E+0 Cattierite -CoS2 = 1.000Co+2 + 2.000HS- - 1.000H2O + 0.500O2 - log_k -62.970 - delta_h 340.463 #kJ/mol - # Enthalpy of formation: -150.9 #kJ/mol #95ROB/HEM - -analytic -3.32353E+0 0E+0 -1.77836E+4 0E+0 0E+0 +CoS2 = Co+2 - 2 H+ - 2 e- + 2 HS- + log_k -19.98 + delta_h 60.7 #kJ/mol +# Enthalpy of formation: -150.900 kJ/mol 95ROB/HEM + -analytic -93.45816E-1 00E+0 -31.70582E+2 00E+0 00E+0 + +CaU2O7:3H2O(cr) +CaU2O7:3H2O = Ca+2 + 2 UO2+2 - 6 H+ + 6 H2O + log_k 23.4 #05ALT/NEC + -analytic 23.4E+0 00E+0 00E+0 00E+0 00E+0 Cd(CO3)(s) -Cd(CO3) = 1.000Cd+2 + 1.000CO3-2 - log_k -12.100 #91RAI/FEL1 - delta_h 1.482 #kJ/mol - # Enthalpy of formation: -752.632 #kJ/mol - -analytic -1.18404E+1 0E+0 -7.74101E+1 0E+0 0E+0 - -Cd(OH)2(s) -Cd(OH)2 = 1.000Cd+2 - 2.000H+ + 2.000H2O - log_k 13.860 #91RAI/FEL1 - delta_h -87.730 #kJ/mol - # Enthalpy of formation: -559.85 #kJ/mol - -analytic -1.50961E+0 0E+0 4.58245E+3 0E+0 0E+0 - -Cd(SO4)(cr) -Cd(SO4) = 1.000Cd+2 + 1.000SO4-2 - log_k -0.160 - delta_h -51.980 #kJ/mol - # Enthalpy of formation: -933.28 #kJ/mol #82WAG/EVA - -analytic -9.26649E+0 0E+0 2.7151E+3 0E+0 0E+0 - -Cd(SO4):2.67H2O(cr) -Cd(SO4):2.67H2O = 1.000Cd+2 + 1.000SO4-2 + 2.670H2O - log_k -1.550 - delta_h -20.126 #kJ/mol - # Enthalpy of formation: -1728.3 #kJ/mol #89COX/WAG - -analytic -5.07592E+0 0E+0 1.05125E+3 0E+0 0E+0 - -Cd(SeCn)2(cr) -Cd(SeCn)2 = 1.000Cd+2 + 2.000H+ + 2.000Cn- + 2.000HSe- - 2.000H2O + 1.000O2 - log_k -117.730 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.1773E+2 0E+0 0E+0 0E+0 0E+0 +Cd(CO3) = Cd+2 + CO3-2 + log_k -12.1 #91RAI/FEL1 + delta_h 1.482 #kJ/mol +# Enthalpy of formation: -752.633 kJ/mol + -analytic -11.84036E+0 00E+0 -77.41025E+0 00E+0 00E+0 Cd(cr) -Cd = 1.000Cd+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 56.610 - delta_h -355.683 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -5.7029E+0 0E+0 1.85786E+4 0E+0 0E+0 +Cd = Cd+2 + 2 e- + log_k 13.62 + delta_h -75.92 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 31.93869E-2 00E+0 39.65578E+2 00E+0 00E+0 + +Cd(OH)2(s) +Cd(OH)2 = Cd+2 - 2 H+ + 2 H2O + log_k 13.86 #91RAI/FEL1 + delta_h -87.73 #kJ/mol +# Enthalpy of formation: -559.850 kJ/mol + -analytic -15.09636E-1 00E+0 45.82457E+2 00E+0 00E+0 + +Cd(SO4)(cr) +Cd(SO4) = Cd+2 + SO4-2 + log_k -0.16 + delta_h -51.98 #kJ/mol +# Enthalpy of formation: -933.280 kJ/mol 82WAG/EVA + -analytic -92.66505E-1 00E+0 27.15104E+2 00E+0 00E+0 + +Cd(SO4):2.67H2O(cr) +Cd(SO4):2.67H2O = Cd+2 + SO4-2 + 2.67 H2O + log_k -1.55 + delta_h -20.126 #kJ/mol +# Enthalpy of formation: -1728.300 kJ/mol 89COX/WAG + -analytic -50.75924E-1 00E+0 10.51254E+2 00E+0 00E+0 Cd3(AsO4)2(s) -Cd3(AsO4)2 = 3.000Cd+2 + 2.000AsO4-3 - log_k -32.620 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.262E+1 0E+0 0E+0 0E+0 0E+0 +Cd3(AsO4)2 = 3 Cd+2 + 2 AsO4-3 + log_k -32.62 + -analytic -32.62E+0 00E+0 00E+0 00E+0 00E+0 Cd3(PO4)2(s) -Cd3(PO4)2 = 3.000Cd+2 - 4.000H+ + 2.000H2(PO4)- - log_k 8.970 - delta_h -206.960 #kJ/mol - # Enthalpy of formation: -2626 #kJ/mol #01BEN/JEM - -analytic -2.72878E+1 0E+0 1.08103E+4 0E+0 0E+0 +Cd3(PO4)2 = 3 Cd+2 - 4 H+ + 2 H2(PO4)- + log_k 8.97 + delta_h -206.96 #kJ/mol +# Enthalpy of formation: -2626.000 kJ/mol 01BEN/JEM + -analytic -27.28784E+0 00E+0 10.81027E+3 00E+0 00E+0 Cd5(PO4)3Cl(cr) -Cd5(PO4)3Cl = 5.000Cd+2 - 6.000H+ + 1.000Cl- + 3.000H2(PO4)- - log_k 12.670 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.267E+1 0E+0 0E+0 0E+0 0E+0 +Cd5(PO4)3Cl = 5 Cd+2 - 6 H+ + Cl- + 3 H2(PO4)- + log_k 12.67 + -analytic 12.67E+0 00E+0 00E+0 00E+0 00E+0 Cd5(PO4)3OH(cr) -Cd5(PO4)3OH = 5.000Cd+2 - 7.000H+ + 3.000H2(PO4)- + 1.000H2O - log_k 19.840 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.984E+1 0E+0 0E+0 0E+0 0E+0 +Cd5(PO4)3OH = 5 Cd+2 - 7 H+ + 3 H2(PO4)- + H2O + log_k 19.84 + -analytic 19.84E+0 00E+0 00E+0 00E+0 00E+0 CdB2O4(s) -CdB2O4 = 1.000Cd+2 + 2.000B(OH)4- - 4.000H2O - log_k -8.640 #91BAL/NOR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -8.64E+0 0E+0 0E+0 0E+0 0E+0 +CdB2O4 = Cd+2 + 2 B(OH)4- - 4 H2O + log_k -8.64 #91BAL/NOR + -analytic -86.4E-1 00E+0 00E+0 00E+0 00E+0 CdCl2(s) -CdCl2 = 1.000Cd+2 + 2.000Cl- - log_k -0.660 - delta_h -18.580 #kJ/mol - # Enthalpy of formation: -391.5 #kJ/mol #74NAU/RYZ - -analytic -3.91507E+0 0E+0 9.705E+2 0E+0 0E+0 +CdCl2 = Cd+2 + 2 Cl- + log_k -0.66 + delta_h -18.58 #kJ/mol +# Enthalpy of formation: -391.500 kJ/mol 74NAU/RYZ + -analytic -39.15076E-1 00E+0 97.0501E+1 00E+0 00E+0 CdCl2:2.5H2O(s) -CdCl2:2.5H2O = 1.000Cd+2 + 2.000Cl- + 2.500H2O - log_k -1.900 - delta_h 7.285 #kJ/mol - # Enthalpy of formation: -1131.94 #kJ/mol #82WAG/EVA - -analytic -6.23725E-1 0E+0 -3.80521E+2 0E+0 0E+0 +CdCl2:2.5H2O = Cd+2 + 2 Cl- + 2.5 H2O + log_k -1.9 + delta_h 7.285 #kJ/mol +# Enthalpy of formation: -1131.940 kJ/mol 82WAG/EVA + -analytic -62.37228E-2 00E+0 -38.05221E+1 00E+0 00E+0 CdCl2:H2O(cr) -CdCl2:H2O = 1.000Cd+2 + 2.000Cl- + 1.000H2O - log_k -1.690 - delta_h -7.470 #kJ/mol - # Enthalpy of formation: -688.44 #kJ/mol #82WAG/EVA - -analytic -2.99869E+0 0E+0 3.90185E+2 0E+0 0E+0 +CdCl2:H2O = Cd+2 + 2 Cl- + H2O + log_k -1.69 + delta_h -7.47 #kJ/mol +# Enthalpy of formation: -688.440 kJ/mol 82WAG/EVA + -analytic -29.98688E-1 00E+0 39.01853E+1 00E+0 00E+0 CdO(s) -CdO = 1.000Cd+2 - 2.000H+ + 1.000H2O - log_k 15.100 - delta_h -103.400 #kJ/mol - # Enthalpy of formation: -258.35 #kJ/mol #89COX/WAG - -analytic -3.01488E+0 0E+0 5.40095E+3 0E+0 0E+0 +CdO = Cd+2 - 2 H+ + H2O + log_k 15.1 + delta_h -103.4 #kJ/mol +# Enthalpy of formation: -258.350 kJ/mol 89COX/WAG + -analytic -30.14902E-1 00E+0 54.00958E+2 00E+0 00E+0 CdS(s) -CdS = 1.000Cd+2 - 1.000H+ + 1.000HS- - log_k -14.820 #99WAN/TES - delta_h 56.570 #kJ/mol - # Enthalpy of formation: -148.79 #kJ/mol #06DEO/NAV - -analytic -4.90938E+0 0E+0 -2.95485E+3 0E+0 0E+0 +CdS = Cd+2 - H+ + HS- + log_k -14.82 #99WAN/TES + delta_h 56.57 #kJ/mol +# Enthalpy of formation: -148.790 kJ/mol 06DEO/NAV + -analytic -49.09361E-1 00E+0 -29.54857E+2 00E+0 00E+0 CdSiO3(cr) -CdSiO3 = 1.000Cd+2 - 2.000H+ + 1.000H4(SiO4) - 1.000H2O - log_k 7.790 - delta_h -62.194 #kJ/mol - # Enthalpy of formation: -1189.09 #kJ/mol #77BAR/KNA - -analytic -3.10591E+0 0E+0 3.24861E+3 0E+0 0E+0 +CdSiO3 = Cd+2 - 2 H+ + H4(SiO4) - H2O + log_k 7.79 + delta_h -62.194 #kJ/mol +# Enthalpy of formation: -1189.090 kJ/mol 77BAR/KNA + -analytic -31.05921E-1 00E+0 32.48619E+2 00E+0 00E+0 Celadonite-Fe -KFeAlSi4O10(OH)2 = 1.000K+ + 1.000Fe+2 + 1.000Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 10.220 - delta_h -103.866 #kJ/mol - # Enthalpy of formation: -5478.13 #kJ/mol #02 - -analytic -7.97652E+0 0E+0 5.42529E+3 0E+0 0E+0 +KFeAlSi4O10(OH)2 = K+ + Fe+2 + Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 6.45 + delta_h -104.161 #kJ/mol +# Enthalpy of formation: -5478.130 kJ/mol 02PAR/VID + -analytic -11.79822E+0 00E+0 54.40708E+2 00E+0 00E+0 + -Vm 143.01 Celadonite-Mg -KMgAlSi4O10(OH)2 = 1.000Mg+2 + 1.000K+ + 1.000Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 10.220 - delta_h -124.256 #kJ/mol - # Enthalpy of formation: -5834.74 #kJ/mol #02PAR/VID - -analytic -1.15487E+1 0E+0 6.49033E+3 0E+0 0E+0 +KMgAlSi4O10(OH)2 = Mg+2 + K+ + Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 10.2 + delta_h -124.256 #kJ/mol +# Enthalpy of formation: -5834.740 kJ/mol 02PAR/VID + -analytic -11.56872E+0 00E+0 64.90343E+2 00E+0 00E+0 + -Vm 139.62 Celestite -Sr(SO4) = 1.000Sr+2 + 1.000SO4-2 - log_k -6.620 #06BLA/IGN - delta_h -2.451 #kJ/mol - # Enthalpy of formation: -1457.788 #kJ/mol - -analytic -7.0494E+0 0E+0 1.28024E+2 0E+0 0E+0 +Sr(SO4) = Sr+2 + SO4-2 + log_k -6.62 #06BLA/IGN + delta_h -2.451 #kJ/mol +# Enthalpy of formation: -1457.789 kJ/mol + -analytic -70.49397E-1 00E+0 12.80246E+1 00E+0 00E+0 + -Vm 46.25 Cerussite -Pb(CO3) = 1.000Pb+2 + 1.000CO3-2 - log_k -13.290 - delta_h 27.414 #kJ/mol - # Enthalpy of formation: -701.723 #kJ/mol - -analytic -8.48728E+0 0E+0 -1.43193E+3 0E+0 0E+0 +Pb(CO3) = Pb+2 + CO3-2 + log_k -13.29 + delta_h 27.425 #kJ/mol +# Enthalpy of formation: -701.735 kJ/mol + -analytic -84.85346E-1 00E+0 -14.32508E+2 00E+0 00E+0 Chabazite -CaAl2Si4O12:6H2O = 1.000Ca+2 + 2.000Al+3 - 8.000H+ + 4.000H4(SiO4) + 2.000H2O - log_k 11.540 - delta_h -209.796 #kJ/mol - # Enthalpy of formation: -7826.44 #kJ/mol #09BLA - -analytic -2.52146E+1 0E+0 1.09584E+4 0E+0 0E+0 +CaAl2Si4O12:6H2O = Ca+2 + 2 Al+3 - 8 H+ + 4 H4(SiO4) + 2 H2O + log_k 11.52 + delta_h -209.796 #kJ/mol +# Enthalpy of formation: -7826.440 kJ/mol 09BLA + -analytic -25.23468E+0 00E+0 10.95841E+3 00E+0 00E+0 + -Vm 251.16 + +Chalcanthite +CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.69 + delta_h 6.108 #kJ/mol +# Enthalpy of formation: -2279.696 kJ/mol + -analytic -16.19924E-1 00E+0 -31.90431E+1 00E+0 00E+0 + +Chalcocite +Cu2S = 2 Cu+ - H+ + HS- + log_k -34.02 #94THO/HEL + delta_h 204.317 #kJ/mol +# Enthalpy of formation: -79.440 kJ/mol + -analytic 17.74802E-1 00E+0 -10.67222E+3 00E+0 00E+0 + +Chalcocyanite +CuSO4 = Cu+2 + SO4-2 + log_k 2.94 + delta_h -73.025 #kJ/mol +# Enthalpy of formation: -771.415 kJ/mol + -analytic -98.53431E-1 00E+0 38.14361E+2 00E+0 00E+0 Chamosite -Fe5Al2Si3O10(OH)8 = 5.000Fe+2 + 2.000Al+3 - 16.000H+ + 3.000H4(SiO4) + 6.000H2O - log_k 47.600 - delta_h -504.512 #kJ/mol - # Enthalpy of formation: -7120.85 #kJ/mol #05VID/PAR - -analytic -4.07866E+1 0E+0 2.63525E+4 0E+0 0E+0 +Fe5Al2Si3O10(OH)8 = 5 Fe+2 + 2 Al+3 - 16 H+ + 3 H4(SiO4) + 6 H2O + log_k 47.68 + delta_h -505.987 #kJ/mol +# Enthalpy of formation: -7120.850 kJ/mol 05VID/PAR + -analytic -40.96512E+0 00E+0 26.42954E+3 00E+0 00E+0 + -Vm 215.88 Chloroapatite -Ca5Cl(PO4)3 = 5.000Ca+2 - 6.000H+ + 1.000Cl- + 3.000H2(PO4)- - log_k 5.210 #68VAL/KOG - delta_h -132.541 #kJ/mol - # Enthalpy of formation: -6657.339 #kJ/mol - -analytic -1.80102E+1 0E+0 6.92309E+3 0E+0 0E+0 +Ca5Cl(PO4)3 = 5 Ca+2 - 6 H+ + Cl- + 3 H2(PO4)- + log_k 5.21 #68VAL/KOG + delta_h -132.541 #kJ/mol +# Enthalpy of formation: -6657.337 kJ/mol + -analytic -18.01019E+0 00E+0 69.23099E+2 00E+0 00E+0 Chromite -FeCr2O4 = 1.000Fe+2 - 8.000H+ + 2.000Cr+3 + 4.000H2O - log_k 15.120 - delta_h -268.820 #kJ/mol - # Enthalpy of formation: -1445.5 #kJ/mol #95ROB/HEM - -analytic -3.19752E+1 0E+0 1.40414E+4 0E+0 0E+0 +FeCr2O4 = Fe+2 - 8 H+ + 2 Cr+3 + 4 H2O + log_k 15.14 + delta_h -269.115 #kJ/mol +# Enthalpy of formation: -1445.500 kJ/mol 95ROB/HEM + -analytic -32.00692E+0 00E+0 14.05686E+3 00E+0 00E+0 + +Chukanovite +Fe2(OH)2CO3 = 2 Fe+2 - 2 H+ + CO3-2 + 2 H2O + log_k 2.97 + -analytic 29.7E-1 00E+0 00E+0 00E+0 00E+0 + +Cinnabar +HgS = - H+ + HS- + Hg+2 + log_k -39.18 + delta_h 208.21 #kJ/mol +# Enthalpy of formation: -54.300 kJ/mol 95ROB/HEM + -analytic -27.03174E-1 00E+0 -10.87557E+3 00E+0 00E+0 Clarkeite -Na(UO2)O(OH) = 1.000Na+ + 1.000UO2+2 - 3.000H+ + 2.000H2O - log_k 9.400 #08GOR/FEI - delta_h -106.300 #kJ/mol - # Enthalpy of formation: -1724.7 #kJ/mol #06KUB/HEL - -analytic -9.22293E+0 0E+0 5.55243E+3 0E+0 0E+0 +Na(UO2)O(OH) = Na+ + UO2+2 - 3 H+ + 2 H2O + log_k 9.4 #08GOR/FEI + delta_h -106.3 #kJ/mol +# Enthalpy of formation: -1724.700 kJ/mol 06KUB/HEL + -analytic -92.22961E-1 00E+0 55.52436E+2 00E+0 00E+0 Claudetite -As2O3 = - 3.000H2O + 2.000H3(AsO3) - log_k -1.460 - delta_h 28.240 #kJ/mol - # Enthalpy of formation: -655.15 #kJ/mol - -analytic 3.48743E+0 0E+0 -1.47508E+3 0E+0 0E+0 +As2O3 = -3 H2O + 2 H3(AsO3) + log_k -1.46 + delta_h 28.238 #kJ/mol +# Enthalpy of formation: -655.150 kJ/mol + -analytic 34.87085E-1 00E+0 -14.74973E+2 00E+0 00E+0 Clausthalite -PbSe = 1.000Pb+2 - 1.000H+ + 1.000HSe- - log_k -20.530 - delta_h 113.720 #kJ/mol - # Enthalpy of formation: -98.5 #kJ/mol #05OLI/NOL - -analytic -6.0714E-1 0E+0 -5.94E+3 0E+0 0E+0 +PbSe = Pb+2 - H+ + HSe- + log_k -20.53 + delta_h 113.72 #kJ/mol +# Enthalpy of formation: -98.500 kJ/mol 05OLI/NOL + -analytic -60.71112E-2 00E+0 -59.40009E+2 00E+0 00E+0 Clinochlore -Mg5Al2Si3O10(OH)8 = 5.000Mg+2 + 2.000Al+3 - 16.000H+ + 3.000H4(SiO4) + 6.000H2O - log_k 61.720 - delta_h -600.772 #kJ/mol - # Enthalpy of formation: -8909.59 #kJ/mol #05VID/PAR - -analytic -4.35306E+1 0E+0 3.13805E+4 0E+0 0E+0 +Mg5Al2Si3O10(OH)8 = 5 Mg+2 + 2 Al+3 - 16 H+ + 3 H4(SiO4) + 6 H2O + log_k 61.68 + delta_h -600.772 #kJ/mol +# Enthalpy of formation: -8909.590 kJ/mol 05VID/PAR + -analytic -43.57074E+0 00E+0 31.38051E+3 00E+0 00E+0 + -Vm 211.47 Clinoptilolite_Ca -Ca0.55(Si4.9Al1.1)O12:3.9H2O = 0.550Ca+2 + 1.100Al+3 - 4.400H+ + 4.900H4(SiO4) - 3.700H2O - log_k -2.350 #09BLA - delta_h -68.512 #kJ/mol - # Enthalpy of formation: -6924.658 #kJ/mol - -analytic -1.43528E+1 0E+0 3.57863E+3 0E+0 0E+0 +Ca0.55(Si4.9Al1.1)O12:3.9H2O = 0.55 Ca+2 + 1.1 Al+3 - 4.4 H+ + 4.9 H4(SiO4) - 3.7 H2O + log_k -2.35 #09BLA + delta_h -68.491 #kJ/mol +# Enthalpy of formation: -6924.681 kJ/mol + -analytic -14.34911E+0 00E+0 35.77534E+2 00E+0 00E+0 + -Vm 209.66 Clinoptilolite_K -K1.1(Si4.9Al1.1)O12:2.7H2O = 1.100K+ + 1.100Al+3 - 4.400H+ + 4.900H4(SiO4) - 4.900H2O - log_k -1.230 #09BLA - delta_h -60.128 #kJ/mol - # Enthalpy of formation: -6568.749 #kJ/mol - -analytic -1.1764E+1 0E+0 3.1407E+3 0E+0 0E+0 +K1.1(Si4.9Al1.1)O12:2.7H2O = 1.1 K+ + 1.1 Al+3 - 4.4 H+ + 4.9 H4(SiO4) - 4.9 H2O + log_k -1.23 #09BLA + delta_h -60.121 #kJ/mol +# Enthalpy of formation: -6568.760 kJ/mol + -analytic -11.76275E+0 00E+0 31.40339E+2 00E+0 00E+0 + -Vm 210.73 Clinoptilolite_Na -Na1.1(Si4.9Al1.1)O12:3.5H2O = 1.100Na+ + 1.100Al+3 - 4.400H+ + 4.900H4(SiO4) - 4.100H2O - log_k -0.090 #09BLA - delta_h -62.470 #kJ/mol - # Enthalpy of formation: -6782.091 #kJ/mol - -analytic -1.10343E+1 0E+0 3.26303E+3 0E+0 0E+0 - -Cm(CO3)(OH)(cr) -Cm(CO3)(OH) = - 1.000H+ + 1.000CO3-2 + 1.000Cm+3 + 1.000H2O - log_k -10.340 #estimated by correlation with Ln(III) and An(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.034E+1 0E+0 0E+0 0E+0 0E+0 - -Cm(CO3)(OH):0.5H2O(s) -Cm(CO3)(OH):0.5H2O = - 1.000H+ + 1.000CO3-2 + 1.000Cm+3 + 1.500H2O - log_k -7.780 #estimated by correlation with Ln(III) and An(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.78E+0 0E+0 0E+0 0E+0 0E+0 - -Cm(OH)3(am) -Cm(OH)3 = - 3.000H+ + 1.000Cm+3 + 3.000H2O - log_k 17.900 #estimated from ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.79E+1 0E+0 0E+0 0E+0 0E+0 - -Cm(OH)3(cr) -Cm(OH)3 = - 3.000H+ + 1.000Cm+3 + 3.000H2O - log_k 15.600 #estimated from ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.56E+1 0E+0 0E+0 0E+0 0E+0 - -Cm(PO4):xH2O(s) -Cm(PO4) = - 2.000H+ + 1.000H2(PO4)- + 1.000Cm+3 - log_k -4.970 #estimated by correlation with Ln(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.97E+0 0E+0 0E+0 0E+0 0E+0 +Na1.1(Si4.9Al1.1)O12:3.5H2O = 1.1 Na+ + 1.1 Al+3 - 4.4 H+ + 4.9 H4(SiO4) - 4.1 H2O + log_k -0.09 #09BLA + delta_h -62.46 #kJ/mol +# Enthalpy of formation: -6782.105 kJ/mol + -analytic -11.03252E+0 00E+0 32.62513E+2 00E+0 00E+0 + -Vm 214.78 Cm(cr) -Cm = 1.000Cm+3 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 168.795 #01KON2 - delta_h -1034.645 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - -analytic -1.24667E+1 0E+0 5.40432E+4 0E+0 0E+0 +Cm = 3 e- + Cm+3 + log_k 104.31 + delta_h -615 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 01KON2 + -analytic -34.33375E-1 00E+0 32.12369E+3 00E+0 00E+0 -Cm2(CO3)3(am) -Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 - log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 +Cm(OH)3(am) +Cm(OH)3 = -3 H+ + Cm+3 + 3 H2O + log_k 17.8 #Estimated by correlation with An(III) in function of ionic radii. + -analytic 17.8E+0 00E+0 00E+0 00E+0 00E+0 + +Cm(OH)3(cr) +Cm(OH)3 = -3 H+ + Cm+3 + 3 H2O + log_k 15.67 #estimated from ionic radii + -analytic 15.67E+0 00E+0 00E+0 00E+0 00E+0 + +Cm(PO4):0.5H2O(am) +Cm(PO4):0.5H2O = -2 H+ + H2(PO4)- + Cm+3 + 0.5 H2O + log_k -4.97 #estimated by correlation with Ln(III) + -analytic -49.7E-1 00E+0 00E+0 00E+0 00E+0 + +Cm2(CO3)3(s) +Cm2(CO3)3 = 3 CO3-2 + 2 Cm+3 + log_k -34.3 #Estimated by correlation with An(III). + -analytic -34.3E+0 00E+0 00E+0 00E+0 00E+0 Cm2O3(cr) -Cm2O3 = - 6.000H+ + 2.000Cm+3 + 3.000H2O - log_k 53.100 - delta_h -403.490 #kJ/mol - # Enthalpy of formation: -1684 #kJ/mol #01KON2 - -analytic -1.75883E+1 0E+0 2.10757E+4 0E+0 0E+0 +Cm2O3 = -6 H+ + 2 Cm+3 + 3 H2O + log_k 52.97 + delta_h -403.49 #kJ/mol +# Enthalpy of formation: -1684.000 kJ/mol 01KON2 + -analytic -17.71841E+0 00E+0 21.07575E+3 00E+0 00E+0 CmCl3(cr) -CmCl3 = 3.000Cl- + 1.000Cm+3 - log_k 15.070 - delta_h -141.840 #kJ/mol - # Enthalpy of formation: -974.4 #kJ/mol #85BAR/PAR - -analytic -9.77926E+0 0E+0 7.40881E+3 0E+0 0E+0 +CmCl3 = 3 Cl- + Cm+3 + log_k 15.07 + delta_h -141.84 #kJ/mol +# Enthalpy of formation: -974.400 kJ/mol 85BAR/PAR + -analytic -97.79301E-1 00E+0 74.08819E+2 00E+0 00E+0 + +CmCO3OH(cr) +Cm(CO3)(OH) = - H+ + CO3-2 + Cm+3 + H2O + log_k -10.34 #Estimation. Correlation with An(III). + -analytic -10.34E+0 00E+0 00E+0 00E+0 00E+0 + +CmCO3OH(s) +CmOHCO3 = - H+ + CO3-2 + Cm+3 + H2O + log_k -6.15 #Estimated using the data for AmCO3OH(s). + -analytic -61.5E-1 00E+0 00E+0 00E+0 00E+0 + +CmCO3OH:0.5H2O(s) +Cm(CO3)(OH):0.5H2O = - H+ + CO3-2 + Cm+3 + 1.5 H2O + log_k -7.72 #Estimated by correlation with An(III) in function of ionic radii. + -analytic -77.2E-1 00E+0 00E+0 00E+0 00E+0 CmF3(cr) -CmF3 = 3.000F- + 1.000Cm+3 - log_k -13.160 - delta_h -32.036 #kJ/mol - # Enthalpy of formation: -1589.014 #kJ/mol #estimated by 97SVE/SHO equation - -analytic -1.87725E+1 0E+0 1.67335E+3 0E+0 0E+0 +CmF3 = 3 F- + Cm+3 + log_k -13.16 + delta_h -32.036 #kJ/mol +# Enthalpy of formation: -1589.014 kJ/mol estimated by 97SVE/SHO equation + -analytic -18.77247E+0 00E+0 16.73357E+2 00E+0 00E+0 CmOCl(cr) -CmOCl = - 2.000H+ + 1.000Cl- + 1.000Cm+3 + 1.000H2O - log_k 9.490 - delta_h -104.710 #kJ/mol - # Enthalpy of formation: -963.2 #kJ/mol #85BAR/PAR - -analytic -8.85438E+0 0E+0 5.46938E+3 0E+0 0E+0 - -CmOHCO3(am) -CmOHCO3 = - 1.000H+ + 1.000CO3-2 + 1.000Cm+3 + 1.000H2O - log_k -6.120 #estimated in anlogy with Ln(III) and Am(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.12E+0 0E+0 0E+0 0E+0 0E+0 - -Co(FeO2)2(alpha) -Co(FeO2)2 = 2.000Fe+3 + 1.000Co+2 - 8.000H+ + 4.000H2O - log_k 0.770 - delta_h -159.200 #kJ/mol - # Enthalpy of formation: -1139.72 #kJ/mol #74NAU/RYZ - -analytic -2.71206E+1 0E+0 8.31558E+3 0E+0 0E+0 - -Co(OH)2(s,blue) -Co(OH)2 = 1.000Co+2 - 2.000H+ + 2.000H2O - log_k 13.800 #98PLY/ZHA1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.38E+1 0E+0 0E+0 0E+0 0E+0 - -Co(OH)2(s,rose1) -Co(OH)2 = 1.000Co+2 - 2.000H+ + 2.000H2O - log_k 12.200 #98PLY/ZHA1 - delta_h -88.460 #kJ/mol - # Enthalpy of formation: -540.8 #kJ/mol #98PLY/ZHA1 - -analytic -3.2975E+0 0E+0 4.62058E+3 0E+0 0E+0 - -Co(OH)2(s,rose2) -Co(OH)2 = 1.000Co+2 - 2.000H+ + 2.000H2O - log_k 13.200 #98PLY/ZHA1 - delta_h -93.560 #kJ/mol - # Enthalpy of formation: -535.7 #kJ/mol #98PLY/ZHA1 - -analytic -3.19098E+0 0E+0 4.88697E+3 0E+0 0E+0 - -Co(SeO3):2H2O(s) -Co(SeO3):2H2O = 1.000Co+2 + 1.000SeO3-2 + 2.000H2O - log_k -7.900 #05OLI/NOL - delta_h -20.860 #kJ/mol - # Enthalpy of formation: -1115.56 #kJ/mol #05OLI/NOL - -analytic -1.15545E+1 0E+0 1.08959E+3 0E+0 0E+0 - -Co(SeO4):6H2O(s) -Co(SeO4):6H2O = 1.000Co+2 + 1.000SeO4-2 + 6.000H2O - log_k -1.760 #05OLI/NOL - delta_h -3.299 #kJ/mol - # Enthalpy of formation: -2372.781 #kJ/mol - -analytic -2.33796E+0 0E+0 1.72319E+2 0E+0 0E+0 +CmOCl = -2 H+ + Cl- + Cm+3 + H2O + log_k 9.49 + delta_h -104.71 #kJ/mol +# Enthalpy of formation: -963.200 kJ/mol 85BAR/PAR + -analytic -88.54405E-1 00E+0 54.69384E+2 00E+0 00E+0 Co(cr) -Co = 1.000Co+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 52.730 - delta_h -337.363 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - -analytic -6.37337E+0 0E+0 1.76217E+4 0E+0 0E+0 +Co = Co+2 + 2 e- + log_k 9.74 + delta_h -57.6 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 87FER + -analytic -35.10868E-2 00E+0 30.08658E+2 00E+0 00E+0 + +Co(FeO2)2(alpha) +Co(FeO2)2 = 2 Fe+3 + Co+2 - 8 H+ + 4 H2O + log_k 0.73 + delta_h -161.312 #kJ/mol +# Enthalpy of formation: -1139.720 kJ/mol 74NAU/RYZ + -analytic -27.53065E+0 00E+0 84.25913E+2 00E+0 00E+0 + +Co(OH)2(s,blue) +Co(OH)2 = Co+2 - 2 H+ + 2 H2O + log_k 13.8 #98PLY/ZHA1; Uncertainty by analogy with Co(OH)2(s,rose1). + -analytic 13.8E+0 00E+0 00E+0 00E+0 00E+0 + +Co(OH)2(s,rose1) +Co(OH)2 = Co+2 - 2 H+ + 2 H2O + log_k 12.2 #98PLY/ZHA1 + delta_h -88.46 #kJ/mol +# Enthalpy of formation: -540.800 kJ/mol 98PLY/ZHA1 + -analytic -32.97527E-1 00E+0 46.20588E+2 00E+0 00E+0 + +Co(OH)2(s,rose2) +Co(OH)2 = Co+2 - 2 H+ + 2 H2O + log_k 13.2 #98PLY/ZHA1; Uncertainty by analogy with Co(OH)2(s,rose1). + delta_h -93.56 #kJ/mol +# Enthalpy of formation: -535.700 kJ/mol 98PLY/ZHA1 + -analytic -31.91008E-1 00E+0 48.86979E+2 00E+0 00E+0 + +Co(SeO3):2H2O(s) +Co(SeO3):2H2O = Co+2 + SeO3-2 + 2 H2O + log_k -7.9 #05OLI/NOL + delta_h -20.86 #kJ/mol +# Enthalpy of formation: -1115.560 kJ/mol 05OLI/NOL + -analytic -11.55452E+0 00E+0 10.89594E+2 00E+0 00E+0 + +Co(SeO4):6H2O(s) +Co(SeO4):6H2O = Co+2 + SeO4-2 + 6 H2O + log_k -1.76 #05OLI/NOL + delta_h -3.4 #kJ/mol +# Enthalpy of formation: -2372.678 kJ/mol + -analytic -23.55654E-1 00E+0 17.75944E+1 00E+0 00E+0 Co0.84Se(cr) -Co0.84Se = 0.840Co+2 - 0.680H+ + 1.000HSe- - 0.160H2O + 0.080O2 - log_k -16.178 - delta_h 66.078 #kJ/mol - # Enthalpy of formation: -55.4 #kJ/mol #05OLI/NOL - -analytic -4.60203E+0 0E+0 -3.45149E+3 0E+0 0E+0 +Co0.84Se = 0.84 Co+2 - H+ - 0.32 e- + HSe- + log_k -9.3 + delta_h 21.316 #kJ/mol +# Enthalpy of formation: -55.400 kJ/mol 05OLI/NOL + -analytic -55.65597E-1 00E+0 -11.13412E+2 00E+0 00E+0 Co2SiO4(s) -Co2SiO4 = 2.000Co+2 - 4.000H+ + 1.000H4(SiO4) - log_k 7.350 - delta_h -99.394 #kJ/mol - # Enthalpy of formation: -1477 #kJ/mol #82WAG/EVA - -analytic -1.00631E+1 0E+0 5.1917E+3 0E+0 0E+0 +Co2SiO4 = 2 Co+2 - 4 H+ + H4(SiO4) + log_k 7.35 + delta_h -99.394 #kJ/mol +# Enthalpy of formation: -1477.000 kJ/mol 82WAG/EVA + -analytic -10.06308E+0 00E+0 51.9171E+2 00E+0 00E+0 Co3(AsO4)2(s) -Co3(AsO4)2 = 3.000Co+2 + 2.000AsO4-3 - log_k -27.560 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.756E+1 0E+0 0E+0 0E+0 0E+0 +Co3(AsO4)2 = 3 Co+2 + 2 AsO4-3 + log_k -27.56 + -analytic -27.56E+0 00E+0 00E+0 00E+0 00E+0 Co3(PO4)2(s) -Co3(PO4)2 = 3.000Co+2 - 4.000H+ + 2.000H2(PO4)- - log_k 4.360 #84VIE/TAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.36E+0 0E+0 0E+0 0E+0 0E+0 +Co3(PO4)2 = 3 Co+2 - 4 H+ + 2 H2(PO4)- + log_k 4.36 #84VIE/TAR + -analytic 43.6E-1 00E+0 00E+0 00E+0 00E+0 Co3O4(s) -Co3O4 = 3.000Co+2 - 6.000H+ + 3.000H2O + 0.500O2 - log_k 11.870 - delta_h -117.537 #kJ/mol - # Enthalpy of formation: -918.8 #kJ/mol #95ROB/HEM - -analytic -8.72157E+0 0E+0 6.13938E+3 0E+0 0E+0 +Co3O4 = 3 Co+2 - 8 H+ - 2 e- + 4 H2O + log_k 54.86 + delta_h -397.32 #kJ/mol +# Enthalpy of formation: -918.800 kJ/mol 95ROB/HEM + -analytic -14.74748E+0 00E+0 20.75347E+3 00E+0 00E+0 CoCl2(s) -CoCl2 = 1.000Co+2 + 2.000Cl- - log_k 8.470 - delta_h -79.220 #kJ/mol - # Enthalpy of formation: -312.54 #kJ/mol #98CHA - -analytic -5.40873E+0 0E+0 4.13794E+3 0E+0 0E+0 +CoCl2 = Co+2 + 2 Cl- + log_k 8.47 + delta_h -79.22 #kJ/mol +# Enthalpy of formation: -312.540 kJ/mol 98CHA + -analytic -54.08748E-1 00E+0 41.37949E+2 00E+0 00E+0 CoCl2:6H2O(s) -CoCl2:6H2O = 1.000Co+2 + 2.000Cl- + 6.000H2O - log_k 2.540 #97MAR/SMI - delta_h 8.060 #kJ/mol #97MAR/SMI - # Enthalpy of formation: -2114.8 #kJ/mol - -analytic 3.95205E+0 0E+0 -4.21003E+2 0E+0 0E+0 +CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O + log_k 2.54 #97MAR/SMI + delta_h 8.06 #kJ/mol 97MAR/SMI +# Enthalpy of formation: -2114.800 kJ/mol + -analytic 39.52051E-1 00E+0 -42.10031E+1 00E+0 00E+0 CoF2(s) -CoF2 = 1.000Co+2 + 2.000F- - log_k -1.390 - delta_h -56.770 #kJ/mol - # Enthalpy of formation: -671.53 #kJ/mol #98CHA - -analytic -1.13357E+1 0E+0 2.9653E+3 0E+0 0E+0 - -CoHPO4(s) -CoHPO4 = 1.000Co+2 - 1.000H+ + 1.000H2(PO4)- - log_k 0.490 #84VIE/TAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.9E-1 0E+0 0E+0 0E+0 0E+0 - -CoO(s) -CoO = 1.000Co+2 - 2.000H+ + 1.000H2O - log_k 13.770 - delta_h -105.530 #kJ/mol - # Enthalpy of formation: -237.9 #kJ/mol #95ROB/HEM - -analytic -4.71804E+0 0E+0 5.51221E+3 0E+0 0E+0 - -CoS(alpha) -CoS = 1.000Co+2 - 1.000H+ + 1.000HS- - log_k -7.440 #90DYR/KRE - delta_h 11.836 #kJ/mol - # Enthalpy of formation: -85.736 #kJ/mol - -analytic -5.36642E+0 0E+0 -6.18236E+2 0E+0 0E+0 - -CoS(beta) -CoS = 1.000Co+2 - 1.000H+ + 1.000HS- - log_k -11.070 #90DYR/KRE - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.107E+1 0E+0 0E+0 0E+0 0E+0 - -CoSO4(s) -CoSO4 = 1.000Co+2 + 1.000SO4-2 - log_k 3.010 - delta_h -78.680 #kJ/mol - # Enthalpy of formation: -888.26 #kJ/mol #98CHA - -analytic -1.07741E+1 0E+0 4.10974E+3 0E+0 0E+0 - -CoSO4:6H2O(s) -CoSO4:6H2O = 1.000Co+2 + 1.000SO4-2 + 6.000H2O - log_k -2.200 - delta_h 1.570 #kJ/mol - # Enthalpy of formation: -2683.49 #kJ/mol #74NAU/RYZ - -analytic -1.92495E+0 0E+0 -8.20067E+1 0E+0 0E+0 - -CoSO4:H2O(s) -CoSO4:H2O = 1.000Co+2 + 1.000SO4-2 + 1.000H2O - log_k -1.050 - delta_h -52.050 #kJ/mol - # Enthalpy of formation: -1200.72 #kJ/mol #74NAU/RYZ - -analytic -1.01688E+1 0E+0 2.71876E+3 0E+0 0E+0 - -CoSe2(cr) -CoSe2 = 1.000Co+2 + 2.000HSe- - 1.000H2O + 0.500O2 - log_k -66.080 - delta_h 356.263 #kJ/mol - # Enthalpy of formation: -105.5 #kJ/mol #05OLI/NOL - -analytic -3.66549E+0 0E+0 -1.86089E+4 0E+0 0E+0 +CoF2 = Co+2 + 2 F- + log_k -1.39 + delta_h -56.77 #kJ/mol +# Enthalpy of formation: -671.530 kJ/mol 98CHA + -analytic -11.33568E+0 00E+0 29.65304E+2 00E+0 00E+0 Coffinite -U(SiO4) = 1.000U+4 - 4.000H+ + 1.000H4(SiO4) - log_k -7.800 - delta_h -61.070 #kJ/mol - # Enthalpy of formation: -1991.326 #kJ/mol - -analytic -1.8499E+1 0E+0 3.1899E+3 0E+0 0E+0 +U(SiO4) = U+4 - 4 H+ + H4(SiO4) + log_k -4.47 + delta_h -78.577 #kJ/mol +# Enthalpy of formation: -1973.817 kJ/mol + -analytic -18.2361E+0 00E+0 41.04363E+2 00E+0 00E+0 -Coffinite(am) -U(SiO4) = 1.000U+4 - 4.000H+ + 1.000H4(SiO4) - log_k -1.500 #Estimation based on NEA Guidelines - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.5E+0 0E+0 0E+0 0E+0 0E+0 +CoHPO4(s) +CoHPO4 = Co+2 - H+ + H2(PO4)- + log_k 0.49 #84VIE/TAR + -analytic 49E-2 00E+0 00E+0 00E+0 00E+0 Compreignacite -K2(UO2)6O4(OH)6:7H2O = 2.000K+ + 6.000UO2+2 - 14.000H+ + 17.000H2O - log_k 35.800 #08GOR/FEI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.58E+1 0E+0 0E+0 0E+0 0E+0 +K2(UO2)6O4(OH)6:7H2O = 2 K+ + 6 UO2+2 - 14 H+ + 17 H2O + log_k 35.8 #08GOR/FEI + -analytic 35.8E+0 00E+0 00E+0 00E+0 00E+0 + +CoO(s) +CoO = Co+2 - 2 H+ + H2O + log_k 13.77 + delta_h -105.53 #kJ/mol +# Enthalpy of formation: -237.900 kJ/mol 95ROB/HEM + -analytic -47.18062E-1 00E+0 55.12216E+2 00E+0 00E+0 Corundum -Al2O3 = 2.000Al+3 - 6.000H+ + 3.000H2O - log_k 18.300 - delta_h -258.590 #kJ/mol - # Enthalpy of formation: -1675.7 #kJ/mol #89COX/WAG - -analytic -2.7003E+1 0E+0 1.35071E+4 0E+0 0E+0 +Al2O3 = 2 Al+3 - 6 H+ + 3 H2O + log_k 18.3 + delta_h -258.59 #kJ/mol +# Enthalpy of formation: -1675.700 kJ/mol 89COX/WAG + -analytic -27.00302E+0 00E+0 13.5071E+3 00E+0 00E+0 + +CoS(alpha) +CoS = Co+2 - H+ + HS- + log_k -7.44 #90DYR/KRE + delta_h 11.836 #kJ/mol +# Enthalpy of formation: -85.735 kJ/mol + -analytic -53.66422E-1 00E+0 -61.82373E+1 00E+0 00E+0 + +CoS(beta) +CoS = Co+2 - H+ + HS- + log_k -11.07 #90DYR/KRE + -analytic -11.07E+0 00E+0 00E+0 00E+0 00E+0 + +CoSe2(cr) +CoSe2 = Co+2 - 2 H+ - 2 e- + 2 HSe- + log_k -23.09 + delta_h 76.5 #kJ/mol +# Enthalpy of formation: -105.500 kJ/mol 05OLI/NOL + -analytic -96.87775E-1 00E+0 -39.95873E+2 00E+0 00E+0 + +CoSO4(s) +CoSO4 = Co+2 + SO4-2 + log_k 3.01 + delta_h -78.68 #kJ/mol +# Enthalpy of formation: -888.260 kJ/mol 98CHA + -analytic -10.77414E+0 00E+0 41.09743E+2 00E+0 00E+0 + +CoSO4:6H2O(s) +CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O + log_k -2.2 + delta_h 1.57 #kJ/mol +# Enthalpy of formation: -2683.490 kJ/mol 74NAU/RYZ + -analytic -19.24948E-1 00E+0 -82.00681E+0 00E+0 00E+0 + +CoSO4:H2O(s) +CoSO4:H2O = Co+2 + SO4-2 + H2O + log_k -1.05 + delta_h -52.05 #kJ/mol +# Enthalpy of formation: -1200.720 kJ/mol 74NAU/RYZ + -analytic -10.16877E+0 00E+0 27.18761E+2 00E+0 00E+0 Cotunnite -PbCl2 = 1.000Pb+2 + 2.000Cl- - log_k -4.810 - delta_h 26.160 #kJ/mol - # Enthalpy of formation: -359.4 #kJ/mol #98CHA - -analytic -2.26971E-1 0E+0 -1.36643E+3 0E+0 0E+0 +PbCl2 = Pb+2 + 2 Cl- + log_k -4.81 + delta_h 26.16 #kJ/mol +# Enthalpy of formation: -359.400 kJ/mol 98CHA + -analytic -22.69647E-2 00E+0 -13.66432E+2 00E+0 00E+0 -Cr(OH)2(H2PO4)(s) -Cr(OH)2(H2PO4) = 1.000H2(PO4)- + 1.000Cr+3 + 2.000H2O - 2.000H+ - log_k 0.890 #04RAI/MOO - delta_h -5.080 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.3509E-5 0E+0 2.65346E+2 0E+0 0E+0 +Covellite +CuS = Cu+2 - H+ + HS- + log_k -22.06 #94THO/HEL + delta_h 97.475 #kJ/mol +# Enthalpy of formation: -48.875 kJ/mol + -analytic -49.83113E-1 00E+0 -50.91474E+2 00E+0 00E+0 + +Cr(cr) +Cr = 8 H+ + 6 e- + CrO4-2 - 4 H2O + log_k -39.31 + delta_h 264.32 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 98CHA, 04CHI + -analytic 69.96876E-1 00E+0 -13.8064E+3 00E+0 00E+0 Cr(OH)2(cr) -Cr(OH)2 = - 2.000H+ + 1.000Cr+2 + 2.000H2O - log_k 11.000 #41HUM/STO, 04CHI - delta_h -75.459 #kJ/mol - # Enthalpy of formation: -653.82 #kJ/mol - -analytic -2.21983E+0 0E+0 3.94149E+3 0E+0 0E+0 +Cr(OH)2 = -2 H+ + Cr+2 + 2 H2O + log_k 11 #41HUM/STO, 04CHI + delta_h -75.459 #kJ/mol +# Enthalpy of formation: -653.814 kJ/mol + -analytic -22.19849E-1 00E+0 39.41498E+2 00E+0 00E+0 + +Cr(OH)2(H2PO4)(s) +Cr(OH)2(H2PO4) = -2 H+ + H2(PO4)- + Cr+3 + 2 H2O + log_k 0.89 #04RAI/MOO + -analytic 89E-2 00E+0 00E+0 00E+0 00E+0 Cr(OH)3(cr) -Cr(OH)3 = - 3.000H+ + 1.000Cr+3 + 3.000H2O - log_k 7.500 #04RAI/MOO - delta_h -104.751 #kJ/mol - # Enthalpy of formation: -993.238 #kJ/mol - -analytic -1.08516E+1 0E+0 5.47152E+3 0E+0 0E+0 - -Cr(s) -Cr = 2.000H+ + 1.000CrO4-2 - 1.000H2O - 1.500O2 - log_k 89.660 - delta_h -574.989 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - -analytic -1.10736E+1 0E+0 3.00337E+4 0E+0 0E+0 +Cr(OH)3 = -3 H+ + Cr+3 + 3 H2O + log_k 7.5 #04RAI/MOO + delta_h -104.751 #kJ/mol +# Enthalpy of formation: -993.239 kJ/mol + -analytic -10.85159E+0 00E+0 54.71526E+2 00E+0 00E+0 Cr2(SO4)3(s) -Cr2(SO4)3 = 3.000SO4-2 + 2.000Cr+3 - log_k 4.380 - delta_h -277.720 #kJ/mol - # Enthalpy of formation: -2931.3 #kJ/mol #91KNA/KUB - -analytic -4.42744E+1 0E+0 1.45063E+4 0E+0 0E+0 +Cr2(SO4)3 = 3 SO4-2 + 2 Cr+3 + log_k 4.38 + delta_h -277.72 #kJ/mol +# Enthalpy of formation: -2931.300 kJ/mol 91KNA/KUB + -analytic -44.27446E+0 00E+0 14.50633E+3 00E+0 00E+0 Cr2O3(cr) -Cr2O3 = - 6.000H+ + 2.000Cr+3 + 3.000H2O - log_k 7.750 - delta_h -198.000 #kJ/mol - # Enthalpy of formation: -1140.5 #kJ/mol #04CHI - -analytic -2.69381E+1 0E+0 1.03422E+4 0E+0 0E+0 +Cr2O3 = -6 H+ + 2 Cr+3 + 3 H2O + log_k 7.75 + delta_h -197.99 #kJ/mol +# Enthalpy of formation: -1140.500 kJ/mol 04CHI + -analytic -26.93636E+0 00E+0 10.34174E+3 00E+0 00E+0 Cr2S3(s) -Cr2S3 = - 3.000H+ + 3.000HS- + 2.000Cr+3 - log_k 3.260 - delta_h -195.200 #kJ/mol - # Enthalpy of formation: -334.7 #kJ/mol #84PAN - -analytic -3.09375E+1 0E+0 1.0196E+4 0E+0 0E+0 +Cr2S3 = -3 H+ + 3 HS- + 2 Cr+3 + log_k 3.26 + delta_h -195.2 #kJ/mol +# Enthalpy of formation: -334.700 kJ/mol 84PAN + -analytic -30.93757E+0 00E+0 10.19601E+3 00E+0 00E+0 CrCl2(cr) -CrCl2 = 2.000Cl- + 1.000Cr+2 - log_k 12.730 - delta_h -103.500 #kJ/mol - # Enthalpy of formation: -388.3 #kJ/mol #98BAL/NOR - -analytic -5.4024E+0 0E+0 5.40617E+3 0E+0 0E+0 +CrCl2 = 2 Cl- + Cr+2 + log_k 12.73 + delta_h -103.474 #kJ/mol +# Enthalpy of formation: -388.300 kJ/mol 98BAL/NOR + -analytic -53.97867E-1 00E+0 54.04823E+2 00E+0 00E+0 CrCl3(cr) -CrCl3 = 3.000Cl- + 1.000Cr+3 - log_k 20.190 - delta_h -197.300 #kJ/mol - # Enthalpy of formation: -544.4 #kJ/mol #98BAL/NOR - -analytic -1.43754E+1 0E+0 1.03057E+4 0E+0 0E+0 - -CrO2(cr) -CrO2 = 2.000H+ + 1.000CrO4-2 - 1.000H2O - 0.500O2 - log_k -8.690 - delta_h 10.797 #kJ/mol - # Enthalpy of formation: -597.9 #kJ/mol #93BAR, 04CHI - -analytic -6.79845E+0 0E+0 -5.63966E+2 0E+0 0E+0 - -CrO3(cr) -CrO3 = 2.000H+ + 1.000CrO4-2 - 1.000H2O - log_k -3.020 - delta_h -10.070 #kJ/mol - # Enthalpy of formation: -583.1 #kJ/mol #98BAL/NOR, 04CHI - -analytic -4.78419E+0 0E+0 5.25992E+2 0E+0 0E+0 - -CrPO4(green) -CrPO4 = - 2.000H+ + 1.000H2(PO4)- + 1.000Cr+3 - log_k -3.060 #51ZHA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.06E+0 0E+0 0E+0 0E+0 0E+0 - -CrPO4(purple) -CrPO4 = - 2.000H+ + 1.000H2(PO4)- + 1.000Cr+3 - log_k 2.560 #51ZHA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.56E+0 0E+0 0E+0 0E+0 0E+0 - -CrS(s) -CrS = - 1.000H+ + 1.000HS- + 1.000Cr+2 - log_k 1.660 - delta_h -38.800 #kJ/mol - # Enthalpy of formation: -135.143 #kJ/mol #84PAN - -analytic -5.13746E+0 0E+0 2.02666E+3 0E+0 0E+0 +CrCl3 = 3 Cl- + Cr+3 + log_k 20.19 + delta_h -197.34 #kJ/mol +# Enthalpy of formation: -544.400 kJ/mol 98BAL/NOR + -analytic -14.38248E+0 00E+0 10.30779E+3 00E+0 00E+0 Cristobalite -SiO2 = 1.000H4(SiO4) - 2.000H2O - log_k -3.160 - delta_h 16.500 #kJ/mol - # Enthalpy of formation: -906.034 #kJ/mol #04FAB/SAX - -analytic -2.69328E-1 0E+0 -8.61854E+2 0E+0 0E+0 +SiO2 = H4(SiO4) - 2 H2O + log_k -3.16 + delta_h 16.5 #kJ/mol +# Enthalpy of formation: -906.034 kJ/mol 04FAB/SAX + -analytic -26.93241E-2 00E+0 -86.1855E+1 00E+0 00E+0 + +CrO2(cr) +CrO2 = 4 H+ + 2 e- + CrO4-2 - 2 H2O + log_k -51.68 + delta_h 290.56 #kJ/mol +# Enthalpy of formation: -597.900 kJ/mol 93BAR, 04CHI + -analytic -77.60731E-2 00E+0 -15.17701E+3 00E+0 00E+0 + +CrO3(cr) +CrO3 = 2 H+ + CrO4-2 - H2O + log_k -3.02 + delta_h -10.07 #kJ/mol +# Enthalpy of formation: -583.100 kJ/mol 98BAL/NOR, 04CHI + -analytic -47.84188E-1 00E+0 52.59927E+1 00E+0 00E+0 Crocoite -PbCrO4 = 1.000Pb+2 + 1.000CrO4-2 - log_k -12.550 #42KOL/PER - delta_h 48.940 #kJ/mol - # Enthalpy of formation: -927.02 #kJ/mol #75DEL/MCC - -analytic -3.97609E+0 0E+0 -2.55631E+3 0E+0 0E+0 +PbCrO4 = Pb+2 + CrO4-2 + log_k -12.55 #42KOL/PER + delta_h 48.94 #kJ/mol +# Enthalpy of formation: -927.020 kJ/mol 75DEL/MCC + -analytic -39.7608E-1 00E+0 -25.56314E+2 00E+0 00E+0 Cronstedtite-Th -Fe4SiO5(OH)4 = 2.000Fe+3 + 2.000Fe+2 - 10.000H+ + 1.000H4(SiO4) + 5.000H2O - log_k 16.110 - delta_h -253.794 #kJ/mol - # Enthalpy of formation: -2914.55 #kJ/mol #15BLA/VIE - -analytic -2.83527E+1 0E+0 1.32566E+4 0E+0 0E+0 +Fe4SiO5(OH)4 = 2 Fe+3 + 2 Fe+2 - 10 H+ + H4(SiO4) + 5 H2O + log_k 16.11 + delta_h -256.496 #kJ/mol +# Enthalpy of formation: -2914.550 kJ/mol 15BLA/VIE + -analytic -28.82617E+0 00E+0 13.39772E+3 00E+0 00E+0 + -Vm 76.8 -Cs(s) -Cs = 1.000Cs+ + 0.500H2O - 1.000H+ - 0.250O2 - log_k 72.555 - delta_h -397.882 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #92GRE/FUG - -analytic 2.84926E+0 0E+0 2.07828E+4 0E+0 0E+0 +CrPO4(green) +CrPO4 = -2 H+ + H2(PO4)- + Cr+3 + log_k -3.06 #51ZHA + -analytic -30.6E-1 00E+0 00E+0 00E+0 00E+0 + +CrPO4(purple) +CrPO4 = -2 H+ + H2(PO4)- + Cr+3 + log_k 2.56 #51ZHA + -analytic 25.6E-1 00E+0 00E+0 00E+0 00E+0 + +CrS(s) +CrS = - H+ + HS- + Cr+2 + log_k 1.66 + delta_h -38.771 #kJ/mol +# Enthalpy of formation: -135.143 kJ/mol 84PAN + -analytic -51.32388E-1 00E+0 20.2515E+2 00E+0 00E+0 + +Cs(cr) +Cs = Cs+ + e- + log_k 51.06 + delta_h -258 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG + -analytic 58.6034E-1 00E+0 13.47628E+3 00E+0 00E+0 Cs2(CO3)(s) -Cs2(CO3) = 2.000Cs+ + 1.000CO3-2 - log_k 9.900 - delta_h -55.348 #kJ/mol - # Enthalpy of formation: -1135.882 #kJ/mol - -analytic 2.03461E-1 0E+0 2.89102E+3 0E+0 0E+0 +Cs2(CO3) = 2 Cs+ + CO3-2 + log_k 9.9 + delta_h -53.609 #kJ/mol +# Enthalpy of formation: -1137.620 kJ/mol + -analytic 50.81064E-2 00E+0 28.00193E+2 00E+0 00E+0 Cs2(SO4)(s) -Cs2(SO4) = 2.000Cs+ + 1.000SO4-2 - log_k 0.580 - delta_h 17.756 #kJ/mol - # Enthalpy of formation: -1443.096 #kJ/mol - -analytic 3.69071E+0 0E+0 -9.27459E+2 0E+0 0E+0 +Cs2(SO4) = 2 Cs+ + SO4-2 + log_k 0.58 + delta_h 17.769 #kJ/mol +# Enthalpy of formation: -1443.108 kJ/mol + -analytic 36.92995E-1 00E+0 -92.81395E+1 00E+0 00E+0 Cs2MoO4(s) -Cs2MoO4 = 2.000Cs+ + 1.000MoO4-2 - log_k 2.210 - delta_h 1.581 #kJ/mol - # Enthalpy of formation: -1514.581 #kJ/mol - -analytic 2.48698E+0 0E+0 -8.25813E+1 0E+0 0E+0 +Cs2MoO4 = 2 Cs+ + MoO4-2 + log_k 2.21 + delta_h 1.731 #kJ/mol +# Enthalpy of formation: -1514.730 kJ/mol + -analytic 25.13258E-1 00E+0 -90.41643E+0 00E+0 00E+0 Cs2O(s) -Cs2O = 2.000Cs+ - 2.000H+ + 1.000H2O - log_k 89.680 - delta_h -456.100 #kJ/mol - # Enthalpy of formation: -345.73 #kJ/mol - -analytic 9.77483E+0 0E+0 2.38237E+4 0E+0 0E+0 +Cs2O = 2 Cs+ - 2 H+ + H2O + log_k 89.68 + delta_h -456.069 #kJ/mol +# Enthalpy of formation: -345.759 kJ/mol + -analytic 97.80141E-1 00E+0 23.82214E+3 00E+0 00E+0 CsBr(cr) -CsBr = 1.000Cs+ + 1.000Br- - log_k 0.720 - delta_h 26.190 #kJ/mol - # Enthalpy of formation: -405.6 #kJ/mol #01LEM/FUG - -analytic 5.30828E+0 0E+0 -1.368E+3 0E+0 0E+0 +CsBr = Cs+ + Br- + log_k 0.72 + delta_h 26.19 #kJ/mol +# Enthalpy of formation: -405.600 kJ/mol 01LEM/FUG + -analytic 53.08291E-1 00E+0 -13.67999E+2 00E+0 00E+0 CsCl(cr) -CsCl = 1.000Cs+ + 1.000Cl- - log_k 1.550 - delta_h 17.230 #kJ/mol - # Enthalpy of formation: -442.31 #kJ/mol #01LEM/FUG - -analytic 4.56856E+0 0E+0 -8.99984E+2 0E+0 0E+0 +CsCl = Cs+ + Cl- + log_k 1.55 + delta_h 17.23 #kJ/mol +# Enthalpy of formation: -442.310 kJ/mol 01LEM/FUG + -analytic 45.68566E-1 00E+0 -89.99856E+1 00E+0 00E+0 -Cu(SeO3):2H2O(s) -Cu(SeO3):2H2O = 1.000Cu+2 + 1.000SeO3-2 + 2.000H2O - log_k -9.500 #Average value from 56CHU2 and 93SLA/POP in 05OLI/NOL - delta_h -15.320 #kJ/mol - # Enthalpy of formation: -998.6 #kJ/mol #05OLI/NOL - -analytic -1.21839E+1 0E+0 8.00218E+2 0E+0 0E+0 +CSH0.8 +Ca0.8SiO2.8:1.54H2O = 0.8 Ca+2 - 1.6 H+ + H4(SiO4) + 0.34 H2O + log_k 11.05 #10BLA/BOU1 + delta_h -47.646 #kJ/mol +# Enthalpy of formation: -1945.130 kJ/mol 10BLA/BOU1 + -analytic 27.02779E-1 00E+0 24.88724E+2 00E+0 00E+0 + -Vm 59.29 -Cu(SeO4):5H2O(s) -Cu(SeO4):5H2O = 1.000Cu+2 + 1.000SeO4-2 + 5.000H2O - log_k -2.440 #05OLI/NOL - delta_h 5.580 #kJ/mol - # Enthalpy of formation: -1973.33 #kJ/mol #05OLI/NOL - -analytic -1.46243E+0 0E+0 -2.91463E+2 0E+0 0E+0 +CSH1.2 +Ca1.2SiO3.2:2.06H2O = 1.2 Ca+2 - 2.4 H+ + H4(SiO4) + 1.26 H2O + log_k 19.3 #10BLA/BOU1 + delta_h -88.6 #kJ/mol +# Enthalpy of formation: -2384.340 kJ/mol 10BLA/BOU1 + -analytic 37.77946E-1 00E+0 46.279E+2 00E+0 00E+0 + -Vm 71.95 + +CSH1.6 +Ca1.6SiO3.6:2.58H2O = 1.6 Ca+2 - 3.2 H+ + H4(SiO4) + 2.18 H2O + log_k 28 #10BLA/BOU1 + delta_h -133.313 #kJ/mol +# Enthalpy of formation: -2819.790 kJ/mol 10BLA/BOU1 + -analytic 46.44565E-1 00E+0 69.63423E+2 00E+0 00E+0 + -Vm 84.68 Cu(cr) -Cu = 1.000Cu+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 31.600 - delta_h -214.863 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #01LEM/FUG - -analytic -6.04233E+0 0E+0 1.12231E+4 0E+0 0E+0 +Cu = Cu+2 + 2 e- + log_k -11.39 + delta_h 64.9 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 01LEM/FUG + -analytic -20.00807E-3 00E+0 -33.89963E+2 00E+0 00E+0 + +Cu(OH)2(s) +Cu(OH)2 = Cu+2 - 2 H+ + 2 H2O + log_k 8.64 #97BEV/PUI + delta_h -62.764 #kJ/mol +# Enthalpy of formation: -443.996 kJ/mol + -analytic -23.55781E-1 00E+0 32.78392E+2 00E+0 00E+0 + +Cu(SeO3):2H2O(s) +Cu(SeO3):2H2O = Cu+2 + SeO3-2 + 2 H2O + log_k -9.5 #Average value from 56CHU2 and 93SLA/POP in 05OLI/NOL + delta_h -15.32 #kJ/mol +# Enthalpy of formation: -998.600 kJ/mol 05OLI/NOL + -analytic -12.18395E+0 00E+0 80.02193E+1 00E+0 00E+0 + +Cu(SeO4):5H2O(s) +Cu(SeO4):5H2O = Cu+2 + SeO4-2 + 5 H2O + log_k -2.44 #05OLI/NOL + delta_h 5.58 #kJ/mol +# Enthalpy of formation: -1973.330 kJ/mol 05OLI/NOL + -analytic -14.62426E-1 00E+0 -29.14637E+1 00E+0 00E+0 + +Cu1.75S(cr) +Cu1.75S = 0.25 Cu+2 + 1.5 Cu+ - H+ + HS- + log_k -31.22 #94THO/HEL + delta_h 179.717 #kJ/mol +# Enthalpy of formation: -73.910 kJ/mol + -analytic 26.50669E-2 00E+0 -93.87273E+2 00E+0 00E+0 + +Cu1.934S(cr) +Cu1.934S = 0.066 Cu+2 + 1.868 Cu+ - H+ + HS- + log_k -33.33 #94THO/HEL + delta_h 198.224 #kJ/mol +# Enthalpy of formation: -78.382 kJ/mol + -analytic 13.97354E-1 00E+0 -10.35396E+3 00E+0 00E+0 + +Cu2Cl(OH)3(am) +Cu2Cl(OH)3 = 2 Cu+2 - 3 H+ + Cl- + 3 H2O + log_k 7.46 #00PUI/TAX + delta_h -79.445 #kJ/mol 97LUB/KOL +# Enthalpy of formation: -815.325 kJ/mol + -analytic -64.58167E-1 00E+0 41.49701E+2 00E+0 00E+0 + +Cu2Cl(OH)3(s) +Cu2Cl(OH)3 = 2 Cu+2 - 3 H+ + Cl- + 3 H2O + log_k 6.9 #97LUB/KOL + delta_h -79.445 #kJ/mol 97LUB/KOL +# Enthalpy of formation: -815.325 kJ/mol + -analytic -70.18167E-1 00E+0 41.49701E+2 00E+0 00E+0 + +Cu2O(cr) +Cu2O = 2 Cu+ - 2 H+ + H2O + log_k -0.62 #11PAL + delta_h 18.446 #kJ/mol +# Enthalpy of formation: -163.099 kJ/mol + -analytic 26.116E-1 00E+0 -96.35017E+1 00E+0 00E+0 Cu2Se(alfa) -Cu2Se = 2.000Cu+ - 1.000H+ + 1.000HSe- - log_k -45.890 #01SEB/POT2 - delta_h 216.940 #kJ/mol - # Enthalpy of formation: -59.3 #kJ/mol #05OLI/NOL - -analytic -7.8838E+0 0E+0 -1.13315E+4 0E+0 0E+0 +Cu2Se = 2 Cu+ - H+ + HSe- + log_k -45.89 #01SEB/POT2 + delta_h 214.778 #kJ/mol +# Enthalpy of formation: -59.300 kJ/mol 05OLI/NOL + -analytic -82.6251E-1 00E+0 -11.21864E+3 00E+0 00E+0 Cu3(AsO4)2(s) -Cu3(AsO4)2 = 3.000Cu+2 + 2.000AsO4-3 - log_k -34.880 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.488E+1 0E+0 0E+0 0E+0 0E+0 +Cu3(AsO4)2 = 3 Cu+2 + 2 AsO4-3 + log_k -34.88 + -analytic -34.88E+0 00E+0 00E+0 00E+0 00E+0 + +CuCl(s) +CuCl = Cu+ + Cl- + log_k -6.82 #97WAN/ZHA + delta_h 41.579 #kJ/mol +# Enthalpy of formation: -138.070 kJ/mol 85CHA/DAV + -analytic 46.43281E-2 00E+0 -21.71822E+2 00E+0 00E+0 + +CuCO3(s) +CuCO3 = Cu+2 + CO3-2 + log_k -11.45 #99GRA/BER in 00PUI/TAX + delta_h -4.977 #kJ/mol +# Enthalpy of formation: -605.353 kJ/mol + -analytic -12.32193E+0 00E+0 25.99668E+1 00E+0 00E+0 + +CuO(s) +CuO = Cu+2 - 2 H+ + H2O + log_k 7.63 #21RIB/COL from 65SCH/ALT + delta_h -64.616 #kJ/mol +# Enthalpy of formation: -156.313 kJ/mol + -analytic -36.90237E-1 00E+0 33.75129E+2 00E+0 00E+0 CuSe(alfa) -CuSe = 1.000Cu+2 - 1.000H+ + 1.000HSe- - log_k -25.460 - delta_h 118.700 #kJ/mol - # Enthalpy of formation: -39.5 #kJ/mol #05OLI/NOL - -analytic -4.66468E+0 0E+0 -6.20012E+3 0E+0 0E+0 +CuSe = Cu+2 - H+ + HSe- + log_k -25.46 + delta_h 118.7 #kJ/mol +# Enthalpy of formation: -39.500 kJ/mol 05OLI/NOL + -analytic -46.64653E-1 00E+0 -62.00133E+2 00E+0 00E+0 CuSe(beta) -CuSe = 1.000Cu+2 - 1.000H+ + 1.000HSe- - log_k -25.130 - delta_h 116.000 #kJ/mol - # Enthalpy of formation: -36.8 #kJ/mol #05OLI/NOL - -analytic -4.8077E+0 0E+0 -6.05909E+3 0E+0 0E+0 +CuSe = Cu+2 - H+ + HSe- + log_k -25.13 + delta_h 116 #kJ/mol +# Enthalpy of formation: -36.800 kJ/mol 05OLI/NOL + -analytic -48.07672E-1 00E+0 -60.59102E+2 00E+0 00E+0 Dawsonite -NaAl(CO3)(OH)2 = 1.000Na+ + 1.000Al+3 - 2.000H+ + 1.000CO3-2 + 2.000H2O - log_k -6.000 - delta_h -61.630 #kJ/mol - # Enthalpy of formation: -1964 #kJ/mol #76FER/STU - -analytic -1.67971E+1 0E+0 3.21915E+3 0E+0 0E+0 +NaAl(CO3)(OH)2 = Na+ + Al+3 - 2 H+ + CO3-2 + 2 H2O + log_k -6 + delta_h -61.63 #kJ/mol +# Enthalpy of formation: -1964.000 kJ/mol 76FER/STU + -analytic -16.79711E+0 00E+0 32.19159E+2 00E+0 00E+0 + -Vm 59.3 Diaspore -AlO(OH) = 1.000Al+3 - 3.000H+ + 2.000H2O - log_k 6.860 - delta_h -108.760 #kJ/mol - # Enthalpy of formation: -1001.3 #kJ/mol #95ROB/HEM - -analytic -1.21939E+1 0E+0 5.68092E+3 0E+0 0E+0 +AlO(OH) = Al+3 - 3 H+ + 2 H2O + log_k 6.87 + delta_h -108.76 #kJ/mol +# Enthalpy of formation: -1001.300 kJ/mol 95ROB/HEM + -analytic -12.18393E+0 00E+0 56.8093E+2 00E+0 00E+0 Dickite -Al2Si2O5(OH)4 = 2.000Al+3 - 6.000H+ + 2.000H4(SiO4) + 1.000H2O - log_k 9.390 - delta_h -185.218 #kJ/mol - # Enthalpy of formation: -4099.8 #kJ/mol #03FIA/MAJ - -analytic -2.30588E+1 0E+0 9.6746E+3 0E+0 0E+0 +Al2Si2O5(OH)4 = 2 Al+3 - 6 H+ + 2 H4(SiO4) + H2O + log_k 9.39 + delta_h -185.218 #kJ/mol +# Enthalpy of formation: -4099.800 kJ/mol 03FIA/MAJ + -analytic -23.0588E+0 00E+0 96.7461E+2 00E+0 00E+0 Dolomite -CaMg(CO3)2 = 1.000Ca+2 + 1.000Mg+2 + 2.000CO3-2 - log_k -17.120 - delta_h -35.960 #kJ/mol - # Enthalpy of formation: -2324.5 #kJ/mol #95ROB/HEM - -analytic -2.34199E+1 0E+0 1.87832E+3 0E+0 0E+0 +CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17.13 + delta_h -35.96 #kJ/mol +# Enthalpy of formation: -2324.500 kJ/mol 95ROB/HEM + -analytic -23.42992E+0 00E+0 18.78322E+2 00E+0 00E+0 + -Vm 64.37 Downeyite -SeO2 = 2.000H+ + 1.000SeO3-2 - 1.000H2O - log_k -8.150 - delta_h 4.060 #kJ/mol - # Enthalpy of formation: -225.39 #kJ/mol #05OLI/NOL - -analytic -7.43872E+0 0E+0 -2.12068E+2 0E+0 0E+0 +SeO2 = 2 H+ + SeO3-2 - H2O + log_k -8.15 + delta_h 4.06 #kJ/mol +# Enthalpy of formation: -225.390 kJ/mol 05OLI/NOL + -analytic -74.38719E-1 00E+0 -21.20686E+1 00E+0 00E+0 Eastonite -KMg2Al3Si2O10(OH)2 = 2.000Mg+2 + 1.000K+ + 3.000Al+3 - 14.000H+ + 2.000H4(SiO4) + 4.000H2O - log_k 46.320 - delta_h -518.108 #kJ/mol - # Enthalpy of formation: -6348.94 #kJ/mol #98HOL/POW - -analytic -4.44485E+1 0E+0 2.70626E+4 0E+0 0E+0 +KMg2Al3Si2O10(OH)2 = 2 Mg+2 + K+ + 3 Al+3 - 14 H+ + 2 H4(SiO4) + 4 H2O + log_k 46.3 + delta_h -518.108 #kJ/mol +# Enthalpy of formation: -6348.940 kJ/mol 98HOL/POW + -analytic -44.46863E+0 00E+0 27.06267E+3 00E+0 00E+0 + -Vm 147.51 Epsonite -Mg(SO4):7H2O = 1.000Mg+2 + 1.000SO4-2 + 7.000H2O - log_k -1.880 #84HAR/MOL - delta_h 10.990 #kJ/mol - # Enthalpy of formation: -3388.14 #kJ/mol - -analytic 4.53625E-2 0E+0 -5.74047E+2 0E+0 0E+0 +Mg(SO4):7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.88 #84HAR/MOL + delta_h 10.99 #kJ/mol +# Enthalpy of formation: -3388.138 kJ/mol + -analytic 45.36535E-3 00E+0 -57.40477E+1 00E+0 00E+0 Ettringite -Ca6Al2(SO4)3(OH)12:26H2O = 6.000Ca+2 + 2.000Al+3 - 12.000H+ + 3.000SO4-2 + 38.000H2O - log_k 56.970 #10BLA/BOU2 - delta_h -379.830 #kJ/mol - # Enthalpy of formation: -17544.53 #kJ/mol #10BLA/BOU2 - -analytic -9.57326E+0 0E+0 1.98399E+4 0E+0 0E+0 +Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al+3 - 12 H+ + 3 SO4-2 + 38 H2O + log_k 56.97 #10BLA/BOU2 + delta_h -379.83 #kJ/mol +# Enthalpy of formation: -17544.530kJ/mol 10BLA/BOU2 + -analytic -95.7336E-1 00E+0 19.8399E+3 00E+0 00E+0 + -Vm 710.32 Ettringite-Fe -Ca6Fe2(SO4)3(OH)12:26H2O = 6.000Ca+2 + 2.000Fe+3 - 12.000H+ + 3.000SO4-2 + 38.000H2O - log_k 54.550 #10BLA/BOU2 - delta_h -343.754 #kJ/mol - # Enthalpy of formation: -16601.806 #kJ/mol - -analytic -5.67303E+0 0E+0 1.79555E+4 0E+0 0E+0 - -Eu(CO3)(OH)(cr) -Eu(CO3)(OH) = 1.000Eu+3 - 1.000H+ + 1.000CO3-2 + 1.000H2O - log_k -9.630 - delta_h -43.391 #kJ/mol - # Enthalpy of formation: -1523 #kJ/mol #05ROR/FUG - -analytic -1.72318E+1 0E+0 2.26647E+3 0E+0 0E+0 - -Eu(CO3)(OH):0.5H2O(s) -Eu(CO3)(OH):0.5H2O = 1.000Eu+3 - 1.000H+ + 1.000CO3-2 + 1.500H2O - log_k -7.800 #95SPA/BRU - delta_h -55.906 #kJ/mol - # Enthalpy of formation: -1653.4 #kJ/mol #05ROR/FUG - -analytic -1.75943E+1 0E+0 2.92017E+3 0E+0 0E+0 - -Eu(NO3)3:6H2O(s) -Eu(NO3)3:6H2O = 1.000Eu+3 + 3.000NO3- + 6.000H2O - log_k 1.840 #95SPA/BRU - delta_h 16.839 #kJ/mol - # Enthalpy of formation: -2957.7 #kJ/mol #82WAG/EVA - -analytic 4.79006E+0 0E+0 -8.79561E+2 0E+0 0E+0 - -Eu(OH)3(am) -Eu(OH)3 = 1.000Eu+3 - 3.000H+ + 3.000H2O - log_k 17.600 #98DIA/RAG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.76E+1 0E+0 0E+0 0E+0 0E+0 - -Eu(OH)3(cr) -Eu(OH)3 = 1.000Eu+3 - 3.000H+ + 3.000H2O - log_k 15.460 #98DIA/RAG - delta_h -127.542 #kJ/mol - # Enthalpy of formation: -1335.279 #kJ/mol - -analytic -6.88437E+0 0E+0 6.66197E+3 0E+0 0E+0 - -Eu(PO4):xH2O(s) -Eu(PO4) = 1.000Eu+3 - 2.000H+ + 1.000H2(PO4)- - log_k -4.840 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.84E+0 0E+0 0E+0 0E+0 0E+0 +Ca6Fe2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Fe+3 - 12 H+ + 3 SO4-2 + 38 H2O + log_k 54.55 #10BLA/BOU2 + delta_h -346.706 #kJ/mol +# Enthalpy of formation: -16600.951kJ/mol + -analytic -61.90284E-1 00E+0 18.10972E+3 00E+0 00E+0 + -Vm 711.8 Eu(cr) -Eu = 1.000Eu+3 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 165.125 - delta_h -1024.976 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #82WAG/EVA - -analytic -1.44427E+1 0E+0 5.35381E+4 0E+0 0E+0 +Eu = Eu+3 + 3 e- + log_k 100.64 + delta_h -605.325 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA + -analytic -54.08388E-1 00E+0 31.61833E+3 00E+0 00E+0 -Eu2(CO3)3:3H2O(s) -Eu2(CO3)3:3H2O = 2.000Eu+3 + 3.000CO3-2 + 3.000H2O - log_k -35.000 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.5E+1 0E+0 0E+0 0E+0 0E+0 +Eu(NO3)3:6H2O(s) +Eu(NO3)3:6H2O = Eu+3 + 3 NO3- + 6 H2O + log_k 1.84 #95SPA/BRU + delta_h 16.845 #kJ/mol +# Enthalpy of formation: -2957.700 kJ/mol 82WAG/EVA + -analytic 47.91117E-1 00E+0 -87.98756E+1 00E+0 00E+0 + +Eu(OH)3(am) +Eu(OH)3 = Eu+3 - 3 H+ + 3 H2O + log_k 17.6 #98DIA/RAG + -analytic 17.6E+0 00E+0 00E+0 00E+0 00E+0 + +Eu(OH)3(cr) +Eu(OH)3 = Eu+3 - 3 H+ + 3 H2O + log_k 15.46 #98DIA/RAG + delta_h -127.543 #kJ/mol +# Enthalpy of formation: -1335.272 kJ/mol + -analytic -68.84574E-1 00E+0 66.62035E+2 00E+0 00E+0 + +Eu(PO4):xH2O(s) +Eu(PO4) = Eu+3 - 2 H+ + H2(PO4)- + log_k -4.84 #95SPA/BRU + -analytic -48.4E-1 00E+0 00E+0 00E+0 00E+0 + +Eu2(CO3)3(s) +Eu2(CO3)3 = 2 Eu+3 + 3 CO3-2 + log_k -35 #95SPA/BRU + -analytic -35E+0 00E+0 00E+0 00E+0 00E+0 Eu2(SO4)3:8H2O(s) -Eu2(SO4)3:8H2O = 2.000Eu+3 + 3.000SO4-2 + 8.000H2O - log_k -10.200 #95SPA/BRU - delta_h -90.974 #kJ/mol - # Enthalpy of formation: -6134.348 #kJ/mol - -analytic -2.61379E+1 0E+0 4.7519E+3 0E+0 0E+0 +Eu2(SO4)3:8H2O = 2 Eu+3 + 3 SO4-2 + 8 H2O + log_k -10.2 #95SPA/BRU + delta_h -90.974 #kJ/mol +# Enthalpy of formation: -6134.332 kJ/mol + -analytic -26.13796E+0 00E+0 47.51903E+2 00E+0 00E+0 Eu2O3(cubic) -Eu2O3 = 2.000Eu+3 - 6.000H+ + 3.000H2O - log_k 52.400 #95SPA/BRU - delta_h -405.453 #kJ/mol - # Enthalpy of formation: -1662.7 #kJ/mol #82WAG/EVA - -analytic -1.86322E+1 0E+0 2.11783E+4 0E+0 0E+0 +Eu2O3 = 2 Eu+3 - 6 H+ + 3 H2O + log_k 52.4 #95SPA/BRU + delta_h -405.44 #kJ/mol +# Enthalpy of formation: -1662.700 kJ/mol 82WAG/EVA + -analytic -18.63004E+0 00E+0 21.17761E+3 00E+0 00E+0 Eu2O3(monoclinic) -Eu2O3 = 2.000Eu+3 - 6.000H+ + 3.000H2O - log_k 53.470 - delta_h -418.514 #kJ/mol - # Enthalpy of formation: -1649.638 #kJ/mol - -analytic -1.98504E+1 0E+0 2.18605E+4 0E+0 0E+0 +Eu2O3 = 2 Eu+3 - 6 H+ + 3 H2O + log_k 53.47 + delta_h -418.513 #kJ/mol +# Enthalpy of formation: -1649.626 kJ/mol + -analytic -19.85033E+0 00E+0 21.86046E+3 00E+0 00E+0 Eu3O4(s) -Eu3O4 = 3.000Eu+3 - 9.000H+ + 4.500H2O - 0.250O2 - log_k 114.515 - delta_h -829.196 #kJ/mol - # Enthalpy of formation: -2270 #kJ/mol - -analytic -3.07536E+1 0E+0 4.33118E+4 0E+0 0E+0 +Eu3O4 = 3 Eu+3 - 8 H+ + e- + 4 H2O + log_k 93.02 + delta_h -688.765 #kJ/mol +# Enthalpy of formation: -2270.529 kJ/mol + -analytic -27.64645E+0 00E+0 35.9767E+3 00E+0 00E+0 EuBr3(s) -EuBr3 = 1.000Eu+3 + 3.000Br- - log_k 30.190 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.019E+1 0E+0 0E+0 0E+0 0E+0 +EuBr3 = Eu+3 + 3 Br- + log_k 30.19 #95SPA/BRU + -analytic 30.19E+0 00E+0 00E+0 00E+0 00E+0 EuCl(OH)2(s) -EuCl(OH)2 = 1.000Eu+3 - 2.000H+ + 1.000Cl- + 2.000H2O - log_k 9.130 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.13E+0 0E+0 0E+0 0E+0 0E+0 +EuCl(OH)2 = Eu+3 - 2 H+ + Cl- + 2 H2O + log_k 9.13 #95SPA/BRU + -analytic 91.3E-1 00E+0 00E+0 00E+0 00E+0 EuCl2(s) -EuCl2 = 1.000Eu+3 + 2.000Cl- + 0.500H2O - 1.000H+ - 0.250O2 - log_k 32.715 #95SPA/BRU - delta_h -255.373 #kJ/mol - # Enthalpy of formation: -824 #kJ/mol #82WAG/EVA - -analytic -1.20243E+1 0E+0 1.3339E+4 0E+0 0E+0 +EuCl2 = Eu+3 + e- + 2 Cl- + log_k 11.22 #95SPA/BRU + delta_h -115.485 #kJ/mol +# Enthalpy of formation: -824.000 kJ/mol 82WAG/EVA + -analytic -90.12104E-1 00E+0 60.32202E+2 00E+0 00E+0 EuCl3(s) -EuCl3 = 1.000Eu+3 + 3.000Cl- - log_k 19.720 #96FAL/REA - delta_h -170.571 #kJ/mol - # Enthalpy of formation: -936 #kJ/mol #82WAG/EVA - -analytic -1.01627E+1 0E+0 8.90953E+3 0E+0 0E+0 +EuCl3 = Eu+3 + 3 Cl- + log_k 19.72 #96FAL/REA + delta_h -170.565 #kJ/mol +# Enthalpy of formation: -936.000 kJ/mol 82WAG/EVA + -analytic -10.16171E+0 00E+0 89.0923E+2 00E+0 00E+0 EuCl3:6H2O(s) -EuCl3:6H2O = 1.000Eu+3 + 3.000Cl- + 6.000H2O - log_k 5.200 #95SPA/BRU - delta_h -41.414 #kJ/mol - # Enthalpy of formation: -2780.137 #kJ/mol - -analytic -2.05541E+0 0E+0 2.1632E+3 0E+0 0E+0 +EuCl3:6H2O = Eu+3 + 3 Cl- + 6 H2O + log_k 5.2 #95SPA/BRU + delta_h -41.414 #kJ/mol +# Enthalpy of formation: -2780.128 kJ/mol + -analytic -20.55421E-1 00E+0 21.63204E+2 00E+0 00E+0 + +EuCO3OH(cr) +Eu(CO3)(OH) = Eu+3 - H+ + CO3-2 + H2O + log_k -9.63 + delta_h -43.385 #kJ/mol +# Enthalpy of formation: -1523.000 kJ/mol 05ROR/FUG + -analytic -17.23073E+0 00E+0 22.66156E+2 00E+0 00E+0 + +EuCO3OH:0.5H2O(s) +Eu(CO3)(OH):0.5H2O = Eu+3 - H+ + CO3-2 + 1.5 H2O + log_k -7.8 #95SPA/BRU + delta_h -55.9 #kJ/mol +# Enthalpy of formation: -1653.400 kJ/mol 05ROR/FUG + -analytic -17.59326E+0 00E+0 29.1986E+2 00E+0 00E+0 EuF3(s) -EuF3 = 1.000Eu+3 + 3.000F- - log_k -18.500 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.85E+1 0E+0 0E+0 0E+0 0E+0 +EuF3 = Eu+3 + 3 F- + log_k -18.5 #96FAL/REA + -analytic -18.5E+0 00E+0 00E+0 00E+0 00E+0 EuF3:0.5H2O(s) -EuF3:0.5H2O = 1.000Eu+3 + 3.000F- + 0.500H2O - log_k -17.200 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.72E+1 0E+0 0E+0 0E+0 0E+0 +EuF3:0.5H2O = Eu+3 + 3 F- + 0.5 H2O + log_k -17.2 #95SPA/BRU + -analytic -17.2E+0 00E+0 00E+0 00E+0 00E+0 EuO(s) -EuO = 1.000Eu+3 - 3.000H+ + 1.500H2O - 0.250O2 - log_k 66.265 - delta_h -439.894 #kJ/mol - # Enthalpy of formation: -591.149 #kJ/mol - -analytic -1.08009E+1 0E+0 2.29772E+4 0E+0 0E+0 +EuO = Eu+3 - 2 H+ + e- + H2O + log_k 44.77 + delta_h -300.012 #kJ/mol +# Enthalpy of formation: -591.143 kJ/mol + -analytic -77.89846E-1 00E+0 15.67072E+3 00E+0 00E+0 EuOCl(s) -EuOCl = 1.000Eu+3 - 2.000H+ + 1.000Cl- + 1.000H2O - log_k 15.810 #95SPA/BRU - delta_h -154.741 #kJ/mol - # Enthalpy of formation: -903.5 #kJ/mol - -analytic -1.12994E+1 0E+0 8.08267E+3 0E+0 0E+0 +EuOCl = Eu+3 - 2 H+ + Cl- + H2O + log_k 15.81 #95SPA/BRU + delta_h -154.735 #kJ/mol +# Enthalpy of formation: -903.500 kJ/mol 98BUR/PET + -analytic -11.29841E+0 00E+0 80.82372E+2 00E+0 00E+0 EuPO4:H2O(cr) -EuPO4:H2O = 1.000Eu+3 - 2.000H+ + 1.000H2(PO4)- + 1.000H2O - log_k -6.440 #97LIU/BYR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.44E+0 0E+0 0E+0 0E+0 0E+0 +EuPO4:H2O = Eu+3 - 2 H+ + H2(PO4)- + H2O + log_k -6.44 #97LIU/BYR + -analytic -64.4E-1 00E+0 00E+0 00E+0 00E+0 EuSO4(s) -EuSO4 = 1.000Eu+3 + 1.000SO4-2 + 0.500H2O - 1.000H+ - 0.250O2 - log_k 18.975 #95SPA/BRU - delta_h -232.746 #kJ/mol - # Enthalpy of formation: -1421.807 #kJ/mol - -analytic -2.18002E+1 0E+0 1.21571E+4 0E+0 0E+0 +EuSO4 = Eu+3 + e- + SO4-2 + log_k -2.52 #95SPA/BRU + delta_h -92.864 #kJ/mol +# Enthalpy of formation: -1421.801 kJ/mol + -analytic -18.78907E+0 00E+0 48.50625E+2 00E+0 00E+0 Fayalite -Fe2(SiO4) = 2.000Fe+2 - 4.000H+ + 1.000H4(SiO4) - log_k 19.510 - delta_h -163.054 #kJ/mol - # Enthalpy of formation: -1478.14 #kJ/mol #95ROB/HEM - -analytic -9.05579E+0 0E+0 8.51689E+3 0E+0 0E+0 +Fe2(SiO4) = 2 Fe+2 - 4 H+ + H4(SiO4) + log_k 19.55 + delta_h -163.644 #kJ/mol +# Enthalpy of formation: -1478.140 kJ/mol 95ROB/HEM + -analytic -91.19198E-1 00E+0 85.47721E+2 00E+0 00E+0 + +Fe(alpha,cr) +Fe = Fe+2 + 2 e- + log_k 15.89 + delta_h -90.295 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 13LEM/BER + -analytic 70.99504E-3 00E+0 47.16436E+2 00E+0 00E+0 Fe(OH)2(cr) -Fe(OH)2 = 1.000Fe+2 - 2.000H+ + 2.000H2O - log_k 12.760 - delta_h -99.056 #kJ/mol - # Enthalpy of formation: -574.011 #kJ/mol - -analytic -4.59384E+0 0E+0 5.17405E+3 0E+0 0E+0 +Fe(OH)2 = Fe+2 - 2 H+ + 2 H2O + log_k 12.78 + delta_h -87.915 #kJ/mol +# Enthalpy of formation: -574.040 kJ/mol 98CHA in 04CHI + -analytic -26.22047E-1 00E+0 45.9212E+2 00E+0 00E+0 Fe(PO4)(cr) -Fe(PO4) = 1.000Fe+3 - 2.000H+ + 1.000H2(PO4)- - log_k -6.240 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) - delta_h -18.600 #kJ/mol - # Enthalpy of formation: -1333 #kJ/mol - -analytic -9.49858E+0 0E+0 9.71544E+2 0E+0 0E+0 +Fe(PO4) = Fe+3 - 2 H+ + H2(PO4)- + log_k -1.39 + delta_h -85.096 #kJ/mol +# Enthalpy of formation: -1267.560 kJ/mol 20LEM/PAL + -analytic -16.29818E+0 00E+0 44.44874E+2 00E+0 00E+0 -Fe(s) -Fe = 1.000Fe+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 58.850 #95PAR/KHO in 98CHI - delta_h -369.763 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - -analytic -5.9296E+0 0E+0 1.9314E+4 0E+0 0E+0 +Fe0.932O(s) +Fe0.932O = 0.932 Fe+2 - 2 H+ - 0.136 e- + H2O + log_k 13.51 + delta_h -104.185 #kJ/mol +# Enthalpy of formation: -265.800 kJ/mol 20LEM/PAL + -analytic -47.42428E-1 00E+0 54.41962E+2 00E+0 00E+0 Fe1.04Se(beta) -Fe1.04Se = 1.040Fe+2 - 1.080H+ + 1.000HSe- + 0.040H2O - 0.020O2 - log_k -1.680 - delta_h -20.891 #kJ/mol - # Enthalpy of formation: -69.6 #kJ/mol #05OLI/NOL - -analytic -5.34026E+0 0E+0 1.09119E+3 0E+0 0E+0 +Fe1.04Se = 1.04 Fe+2 - H+ + 0.08 e- + HSe- + log_k -3.38 + delta_h -10.007 #kJ/mol +# Enthalpy of formation: -69.600 kJ/mol 05OLI/NOL + -analytic -51.33151E-1 00E+0 52.2702E+1 00E+0 00E+0 Fe2(SeO3)3:6H2O(s) -Fe2(SeO3)3:6H2O = 2.000Fe+3 + 3.000SeO3-2 + 6.000H2O - log_k -41.580 #05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.158E+1 0E+0 0E+0 0E+0 0E+0 +Fe2(SeO3)3:6H2O = 2 Fe+3 + 3 SeO3-2 + 6 H2O + log_k -41.58 #05OLI/NOL + -analytic -41.58E+0 00E+0 00E+0 00E+0 00E+0 + +Fe3O4(s) +Fe3O4 = 2 Fe+3 + Fe+2 - 8 H+ + 4 H2O + log_k 12.6 #18BRU/GON + -analytic 12.6E+0 00E+0 00E+0 00E+0 00E+0 Fe3Se4(gamma) -Fe3Se4 = 3.000Fe+2 - 2.000H+ + 4.000HSe- - 1.000H2O + 0.500O2 - log_k -68.590 - delta_h 301.963 #kJ/mol - # Enthalpy of formation: -235 #kJ/mol #05OLI/NOL - -analytic -1.56884E+1 0E+0 -1.57726E+4 0E+0 0E+0 - -Fe5(OH)(PO4)3(s) -Fe5(OH)(PO4)3 = 5.000Fe+2 - 7.000H+ + 3.000H2(PO4)- + 1.000H2O - log_k -402.320 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.0232E+2 0E+0 0E+0 0E+0 0E+0 +Fe3Se4 = 3 Fe+2 - 4 H+ - 2 e- + 4 HSe- + log_k -25.53 + delta_h 21.315 #kJ/mol +# Enthalpy of formation: -235.000 kJ/mol 05OLI/NOL + -analytic -21.79577E+0 00E+0 -11.1336E+2 00E+0 00E+0 Fe7Se8(alfa) -Fe7Se8 = 7.000Fe+2 - 6.000H+ + 8.000HSe- - 1.000H2O + 0.500O2 - log_k -78.590 - delta_h 227.663 #kJ/mol - # Enthalpy of formation: -463.5 #kJ/mol #05OLI/NOL - -analytic -3.87052E+1 0E+0 -1.18916E+4 0E+0 0E+0 +Fe7Se8 = 7 Fe+2 - 8 H+ - 2 e- + 8 HSe- + log_k -35.44 + delta_h -54.165 #kJ/mol +# Enthalpy of formation: -463.500 kJ/mol 05OLI/NOL + -analytic -44.9293E+0 00E+0 28.29235E+2 00E+0 00E+0 FeAl2O4(s) -FeAl2O4 = 1.000Fe+2 + 2.000Al+3 - 8.000H+ + 4.000H2O - log_k 27.200 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.72E+1 0E+0 0E+0 0E+0 0E+0 +FeAl2O4 = Fe+2 + 2 Al+3 - 8 H+ + 4 H2O + log_k 27.2 #96FAL/REA + -analytic 27.2E+0 00E+0 00E+0 00E+0 00E+0 + +FeF2(cr) +FeF2 = Fe+2 + 2 F- + log_k -2.76 + delta_h -48.895 #kJ/mol +# Enthalpy of formation: -712.100 kJ/mol 13LEM/BER + -analytic -11.32604E+0 00E+0 25.53964E+2 00E+0 00E+0 FeMoO4(s) -FeMoO4 = 1.000Fe+2 + 1.000MoO4-2 - log_k -8.350 - delta_h -11.534 #kJ/mol - # Enthalpy of formation: -1075.466 #kJ/mol - -analytic -1.03707E+1 0E+0 6.02462E+2 0E+0 0E+0 +FeMoO4 = Fe+2 + MoO4-2 + log_k -8.32 + delta_h -11.893 #kJ/mol +# Enthalpy of formation: -1075.402 kJ/mol + -analytic -10.40356E+0 00E+0 62.12147E+1 00E+0 00E+0 FeO(s) -FeO = 1.000Fe+2 - 2.000H+ + 1.000H2O - log_k 13.370 #95ROB/HEM - delta_h -103.830 #kJ/mol - # Enthalpy of formation: -272 #kJ/mol - -analytic -4.82021E+0 0E+0 5.42341E+3 0E+0 0E+0 - -FeS(am) -FeS = 1.000Fe+2 - 1.000H+ + 1.000HS- - log_k -2.950 #91DAV - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.95E+0 0E+0 0E+0 0E+0 0E+0 +FeO = Fe+2 - 2 H+ + H2O + log_k 13.39 + delta_h -104.125 #kJ/mol +# Enthalpy of formation: -272.000 kJ/mol 95ROB/HEM + -analytic -48.51917E-1 00E+0 54.38828E+2 00E+0 00E+0 + -Vm 12 Ferrihydrite(am) -Fe(OH)3 = 1.000Fe+3 - 3.000H+ + 3.000H2O - log_k 2.540 #63SCH/MIC - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.54E+0 0E+0 0E+0 0E+0 0E+0 +Fe(OH)3 = Fe+3 - 3 H+ + 3 H2O + log_k 3.92 #21RIB/BEG from 04MAJ/NAV + -analytic 39.2E-1 00E+0 00E+0 00E+0 00E+0 + +Ferrihydrite(cr) +Fe(OH)3 = Fe+3 - 3 H+ + 3 H2O + log_k 1.22 #21RIB/BEG from 05GRI + -analytic 12.2E-1 00E+0 00E+0 00E+0 00E+0 + +Ferrihydrite(s) +Fe(OH)3 = Fe+3 - 3 H+ + 3 H2O + log_k 2.78 #21RIB/BEG from 63SCH/MIC + -analytic 27.8E-1 00E+0 00E+0 00E+0 00E+0 Ferroselite -FeSe2 = 1.000Fe+2 + 2.000HSe- - 1.000H2O + 0.500O2 - log_k -60.120 #05OLI/NOL - delta_h 327.063 #kJ/mol - # Enthalpy of formation: -108.7 #kJ/mol #05OLI/NOL - -analytic -2.82111E+0 0E+0 -1.70837E+4 0E+0 0E+0 +FeSe2 = Fe+2 - 2 H+ - 2 e- + 2 HSe- + log_k -17.1 + delta_h 47.005 #kJ/mol +# Enthalpy of formation: -108.700 kJ/mol 05OLI/NOL + -analytic -88.65077E-1 00E+0 -24.55242E+2 00E+0 00E+0 Ferrosilite -FeSiO3 = 1.000Fe+2 - 2.000H+ + 1.000H4(SiO4) - 1.000H2O - log_k 32.710 #95TRO: CEA, N.T.SESD n° 95/49, L. TROTIGNON avril 1996; Critique et sélection de données thermodynamiques en vue de modéliser les équilibres minéral - solution, rapport annuel 1995 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.271E+1 0E+0 0E+0 0E+0 0E+0 +FeSiO3 = Fe+2 - 2 H+ + H4(SiO4) - H2O + log_k 32.71 #95TRO: CEA, N.T.SESD n° 95/49, L. TROTIGNON avril 1996; Critique et sélection de données thermodynamiques en vue de modéliser les équilibres minéral - solution, rapport annuel 1995 + -analytic 32.71E+0 00E+0 00E+0 00E+0 00E+0 -Ferryhydrite -Fe(OH)3 = 1.000Fe+3 - 3.000H+ + 3.000H2O - log_k 1.190 #05GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.19E+0 0E+0 0E+0 0E+0 0E+0 +FeS(am) +FeS = Fe+2 - H+ + HS- + log_k -2.95 #91DAV + -analytic -29.5E-1 00E+0 00E+0 00E+0 00E+0 Fluorapatite -Ca5F(PO4)3 = 5.000Ca+2 - 6.000H+ + 1.000F- + 3.000H2(PO4)- - log_k -0.910 #74HAG - delta_h -115.603 #kJ/mol - # Enthalpy of formation: -6842.547 #kJ/mol - -analytic -2.11627E+1 0E+0 6.03836E+3 0E+0 0E+0 +Ca5F(PO4)3 = 5 Ca+2 - 6 H+ + F- + 3 H2(PO4)- + log_k -0.91 #74HAG + delta_h -115.603 #kJ/mol +# Enthalpy of formation: -6842.544 kJ/mol + -analytic -21.16278E+0 00E+0 60.38365E+2 00E+0 00E+0 + -Vm 157.6 Fluorite -CaF2 = 1.000Ca+2 + 2.000F- - log_k -10.600 - delta_h 19.623 #kJ/mol - # Enthalpy of formation: -1233.323 #kJ/mol - -analytic -7.1622E+0 0E+0 -1.02498E+3 0E+0 0E+0 +CaF2 = Ca+2 + 2 F- + log_k -10.6 #96FAL/REA + delta_h 19.623 #kJ/mol 90NOR/PLU +# Enthalpy of formation: -1233.323 kJ/mol + -analytic -71.62198E-1 00E+0 -10.24981E+2 00E+0 00E+0 + -Vm 24.54 Foshagite -Ca4Si3O9(OH)2:0.5H2O = 4.000Ca+2 - 8.000H+ + 3.000H4(SiO4) - 0.500H2O - log_k 65.960 #10BLA/BOU1 - delta_h -380.237 #kJ/mol - # Enthalpy of formation: -6032.43 #kJ/mol #56NEW - -analytic -6.54565E-1 0E+0 1.98611E+4 0E+0 0E+0 +Ca4Si3O9(OH)2:0.5H2O = 4 Ca+2 - 8 H+ + 3 H4(SiO4) - 0.5 H2O + log_k 65.96 #10BLA/BOU1 + delta_h -380.237 #kJ/mol +# Enthalpy of formation: -6032.430 kJ/mol 56NEW + -analytic -65.46629E-2 00E+0 19.86116E+3 00E+0 00E+0 + -Vm 160.66 Friedel-salt -Ca4Al2(OH)12Cl2:4H2O = 4.000Ca+2 + 2.000Al+3 - 12.000H+ + 2.000Cl- + 16.000H2O - log_k 74.930 #10BLA/BOU2 - delta_h -486.200 #kJ/mol - # Enthalpy of formation: -7670.04 #kJ/mol #76HOU/STE - -analytic -1.02485E+1 0E+0 2.5396E+4 0E+0 0E+0 +Ca4Al2(OH)12Cl2:4H2O = 4 Ca+2 + 2 Al+3 - 12 H+ + 2 Cl- + 16 H2O + log_k 74.93 #10BLA/BOU2 + delta_h -486.2 #kJ/mol +# Enthalpy of formation: -7670.040 kJ/mol 76HOU/STE + -analytic -10.24858E+0 00E+0 25.39599E+3 00E+0 00E+0 + -Vm 276.24 Galena -PbS = 1.000Pb+2 - 1.000H+ + 1.000HS- - log_k -14.840 - delta_h 82.940 #kJ/mol - # Enthalpy of formation: -98.32 #kJ/mol #98CHA - -analytic -3.09557E-1 0E+0 -4.33225E+3 0E+0 0E+0 +PbS = Pb+2 - H+ + HS- + log_k -14.84 + delta_h 82.94 #kJ/mol +# Enthalpy of formation: -98.320 kJ/mol 98CHA + -analytic -30.95357E-2 00E+0 -43.32258E+2 00E+0 00E+0 Gaylussite -CaNa2(CO3)2:5H2O = 1.000Ca+2 + 2.000Na+ + 2.000CO3-2 + 5.000H2O - log_k -9.430 #99KON/KON - delta_h 31.099 #kJ/mol - # Enthalpy of formation: -3834.389 #kJ/mol - -analytic -3.9817E+0 0E+0 -1.62441E+3 0E+0 0E+0 +CaNa2(CO3)2:5H2O = Ca+2 + 2 Na+ + 2 CO3-2 + 5 H2O + log_k -9.43 #99KON/KON + delta_h 31.099 #kJ/mol +# Enthalpy of formation: -3834.387 kJ/mol + -analytic -39.81689E-1 00E+0 -16.24414E+2 00E+0 00E+0 Gibbsite -Al(OH)3 = 1.000Al+3 - 3.000H+ + 3.000H2O - log_k 7.740 #95POK/HEL - delta_h -102.759 #kJ/mol - # Enthalpy of formation: -1293.131 #kJ/mol - -analytic -1.02626E+1 0E+0 5.36747E+3 0E+0 0E+0 +Al(OH)3 = Al+3 - 3 H+ + 3 H2O + log_k 7.74 #95POK/HEL + delta_h -102.784 #kJ/mol +# Enthalpy of formation: -1293.105 kJ/mol + -analytic -10.26698E+0 00E+0 53.68782E+2 00E+0 00E+0 + -Vm 31.96 Gismondine -Ca2Al4Si4O16:9H2O = 2.000Ca+2 + 4.000Al+3 - 16.000H+ + 4.000H4(SiO4) + 9.000H2O - log_k 39.010 - delta_h -477.046 #kJ/mol - # Enthalpy of formation: -11179.8 #kJ/mol #89CHE/RIM - -analytic -4.45647E+1 0E+0 2.49178E+4 0E+0 0E+0 +Ca2Al4Si4O16:9H2O = 2 Ca+2 + 4 Al+3 - 16 H+ + 4 H4(SiO4) + 9 H2O + log_k 38.97 + delta_h -477.046 #kJ/mol +# Enthalpy of formation: -11179.800kJ/mol 89CHE/RIM + -analytic -44.60487E+0 00E+0 24.91785E+3 00E+0 00E+0 + -Vm 315.07 Glaserite -Na2K6(SO4)4 = 6.000K+ + 2.000Na+ + 4.000SO4-2 - log_k -7.610 #80HAR/WEA - delta_h 78.360 #kJ/mol - # Enthalpy of formation: -5709.24 #kJ/mol - -analytic 6.11806E+0 0E+0 -4.09302E+3 0E+0 0E+0 +Na2K6(SO4)4 = 6 K+ + 2 Na+ + 4 SO4-2 + log_k -7.61 #80HAR/WEA + delta_h 78.36 #kJ/mol +# Enthalpy of formation: -5709.240 kJ/mol 80HAR/WEA + -analytic 61.18083E-1 00E+0 -40.93028E+2 00E+0 00E+0 Glauberite -Na2Ca(SO4)2 = 1.000Ca+2 + 2.000Na+ + 2.000SO4-2 - log_k 1.970 #84HAR/MOL - delta_h -13.160 #kJ/mol - # Enthalpy of formation: -2829.2 #kJ/mol #82WAG/EVA - -analytic -3.3553E-1 0E+0 6.87394E+2 0E+0 0E+0 +Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2 + log_k 1.97 #84HAR/MOL + delta_h -13.16 #kJ/mol +# Enthalpy of formation: -2829.200 kJ/mol 82WAG/EVA + -analytic -33.5533E-2 00E+0 68.73947E+1 00E+0 00E+0 Glauconite -(K0.75Mg0.25Fe1.5Al0.25)(Al0.25Si3.75)O10(OH)2 = 0.250Mg+2 + 0.750K+ + 1.250Fe+3 + 0.250Fe+2 + 0.500Al+3 - 7.000H+ + 3.750H4(SiO4) - 3.000H2O - log_k 1.860 - delta_h -129.662 #kJ/mol - # Enthalpy of formation: -5151.13 #kJ/mol #15BLA/VIE - -analytic -2.08558E+1 0E+0 6.77271E+3 0E+0 0E+0 +(K0.75Mg0.25Fe1.5Al0.25)(Al0.25Si3.75)O10(OH)2 = 0.25 Mg+2 + 0.75 K+ + 1.25 Fe+3 + 0.25 Fe+2 + 0.5 Al+3 - 7 H+ + 3.75 H4(SiO4) - 3 H2O + log_k 1.84 + delta_h -131.056 #kJ/mol +# Enthalpy of formation: -5151.130 kJ/mol 15BLA/VIE + -analytic -21.12003E+0 00E+0 68.45532E+2 00E+0 00E+0 + -Vm 139.76 Goethite -FeOOH = 1.000Fe+3 - 3.000H+ + 2.000H2O - log_k 0.390 #63SCH/MIC - delta_h -61.522 #kJ/mol - # Enthalpy of formation: -559.124 #kJ/mol - -analytic -1.03882E+1 0E+0 3.21351E+3 0E+0 0E+0 +FeOOH = Fe+3 - 3 H+ + 2 H2O + log_k 0.17 + delta_h -61.256 #kJ/mol +# Enthalpy of formation: -560.460 kJ/mol 13LEM/BER + -analytic -10.56159E+0 00E+0 31.99624E+2 00E+0 00E+0 + -Vm 20.82 + +GR-Cl +Fe3Fe(OH)8Cl = 4 Fe+2 - 8 H+ - e- + Cl- + 8 H2O + log_k 41.8 + -analytic 41.8E+0 00E+0 00E+0 00E+0 00E+0 + +GR-CO3 +Fe4Fe2(OH)12CO3:2H2O = 6 Fe+2 - 12 H+ - 2 e- + CO3-2 + 14 H2O + log_k 55.5 + -analytic 55.5E+0 00E+0 00E+0 00E+0 00E+0 Greenalite -Fe3Si2O5(OH)4 = 3.000Fe+2 - 6.000H+ + 2.000H4(SiO4) + 1.000H2O - log_k 21.770 - delta_h -177.218 #kJ/mol - # Enthalpy of formation: -3301 #kJ/mol #83MIY/KLE - -analytic -9.27722E+0 0E+0 9.25673E+3 0E+0 0E+0 +Fe3Si2O5(OH)4 = 3 Fe+2 - 6 H+ + 2 H4(SiO4) + H2O + log_k 21.82 + delta_h -178.103 #kJ/mol +# Enthalpy of formation: -3301.000 kJ/mol 83MIY/KLE + -analytic -93.82306E-1 00E+0 93.02968E+2 00E+0 00E+0 + -Vm 115 + +Greigite +Fe3S4 = 3 Fe+2 - 4 H+ - 2 e- + 4 HS- + log_k -15.03 + -analytic -15.03E+0 00E+0 00E+0 00E+0 00E+0 + +GR-SO4 +Fe4Fe2(OH)12SO4 = 6 Fe+2 - 12 H+ - 2 e- + SO4-2 + 12 H2O + log_k 58.3 + -analytic 58.3E+0 00E+0 00E+0 00E+0 00E+0 Gypsum -CaSO4:2H2O = 1.000Ca+2 + 1.000SO4-2 + 2.000H2O - log_k -4.610 - delta_h -1.050 #kJ/mol - # Enthalpy of formation: -2022.95 #kJ/mol #87GAR/PAR - -analytic -4.79395E+0 0E+0 5.48452E+1 0E+0 0E+0 +CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.61 + delta_h -1.05 #kJ/mol +# Enthalpy of formation: -2022.950 kJ/mol 87GAR/PAR + -analytic -47.93952E-1 00E+0 54.84532E+0 00E+0 00E+0 + -Vm 74.69 Gyrolite -Ca2Si3O7.5(OH):2H2O = 2.000Ca+2 - 4.000H+ + 3.000H4(SiO4) - 1.500H2O - log_k 22.340 #10BLA/BOU1 - delta_h -122.847 #kJ/mol - # Enthalpy of formation: -4917.99 #kJ/mol #10BLA/BOU1 - -analytic 8.18161E-1 0E+0 6.41674E+3 0E+0 0E+0 +Ca2Si3O7.5(OH):2H2O = 2 Ca+2 - 4 H+ + 3 H4(SiO4) - 1.5 H2O + log_k 22.34 #10BLA/BOU1 + delta_h -122.847 #kJ/mol +# Enthalpy of formation: -4917.990 kJ/mol 10BLA/BOU1 + -analytic 81.81294E-2 00E+0 64.16746E+2 00E+0 00E+0 + -Vm 137.34 H2MoO4(s) -H2MoO4 = 2.000H+ + 1.000MoO4-2 - log_k -13.170 - delta_h 48.763 #kJ/mol - # Enthalpy of formation: -1045.763 #kJ/mol - -analytic -4.6271E+0 0E+0 -2.54707E+3 0E+0 0E+0 +H2MoO4 = 2 H+ + MoO4-2 + log_k -13.17 + delta_h 48.763 #kJ/mol +# Enthalpy of formation: -1045.763 kJ/mol + -analytic -46.27089E-1 00E+0 -25.47069E+2 00E+0 00E+0 H3Cit:H2O(cr) -H3Cit:H2O = 3.000H+ + 1.000Cit-3 + 1.000H2O - log_k -12.940 #05HUM/AND - delta_h 32.710 #kJ/mol - # Enthalpy of formation: -1838.46 #kJ/mol - -analytic -7.20946E+0 0E+0 -1.70856E+3 0E+0 0E+0 +H3Cit:H2O = 3 H+ + Cit-3 + H2O + log_k -12.94 #05HUM/AND + delta_h 32.71 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1838.460 kJ/mol + -analytic -72.09454E-1 00E+0 -17.08562E+2 00E+0 00E+0 H4Edta(cr) -H4Edta = 4.000H+ + 1.000Edta-4 - log_k -27.220 #05HUM/AND - delta_h 55.000 #kJ/mol - # Enthalpy of formation: -1759.8 #kJ/mol - -analytic -1.75844E+1 0E+0 -2.87285E+3 0E+0 0E+0 - -HBeidellite-Ca -Ca0.17Al2.34Si3.66O10(OH)2:4.45H2O = 0.170Ca+2 + 2.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.810H2O - log_k 2.110 - delta_h -160.492 #kJ/mol - # Enthalpy of formation: -7056.996 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.6007E+1 0E+0 8.38307E+3 0E+0 0E+0 - -HBeidellite-K -K0.34Al2.34Si3.66O10(OH)2:1.96H2O = 0.340K+ + 2.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 0.680H2O - log_k 2.240 - delta_h -167.142 #kJ/mol - # Enthalpy of formation: -6332.047 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.7042E+1 0E+0 8.73042E+3 0E+0 0E+0 - -HBeidellite-Mg -Mg0.17Al2.34Si3.66O10(OH)2:4.61H2O = 0.170Mg+2 + 2.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.970H2O - log_k 2.240 - delta_h -159.892 #kJ/mol - # Enthalpy of formation: -7090.409 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.57718E+1 0E+0 8.35173E+3 0E+0 0E+0 - -HBeidellite-Na -Na0.34Al2.34Si3.66O10(OH)2:3.84H2O = 0.340Na+ + 2.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.200H2O - log_k 1.860 - delta_h -171.523 #kJ/mol - # Enthalpy of formation: -6861.015 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.81895E+1 0E+0 8.95926E+3 0E+0 0E+0 - -HMontmorillonite-BCCa -Ca0.17Mg0.34Al1.66Si4O10(OH)2:4.45H2O = 0.170Ca+2 + 0.340Mg+2 + 1.660Al+3 - 6.000H+ + 4.000H4(SiO4) + 0.450H2O - log_k 2.200 - delta_h -118.557 #kJ/mol - # Enthalpy of formation: -6999.676 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.85703E+1 0E+0 6.19265E+3 0E+0 0E+0 - -HMontmorillonite-BCK -K0.34Mg0.34Al1.66Si4O10(OH)2:1.96H2O = 0.340Mg+2 + 0.340K+ + 1.660Al+3 - 6.000H+ + 4.000H4(SiO4) - 2.040H2O - log_k 2.090 - delta_h -123.828 #kJ/mol - # Enthalpy of formation: -6276.107 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.96037E+1 0E+0 6.46798E+3 0E+0 0E+0 - -HMontmorillonite-BCMg -Mg0.17Mg0.34Al1.66Si4O10(OH)2:4.61H2O = 0.510Mg+2 + 1.660Al+3 - 6.000H+ + 4.000H4(SiO4) + 0.610H2O - log_k 2.350 - delta_h -118.107 #kJ/mol - # Enthalpy of formation: -7032.939 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.83414E+1 0E+0 6.16915E+3 0E+0 0E+0 - -HMontmorillonite-BCNa -Na0.34Mg0.34Al1.66Si4O10(OH)2:3.84H2O = 0.340Mg+2 + 0.340Na+ + 1.660Al+3 - 6.000H+ + 4.000H4(SiO4) - 0.160H2O - log_k 1.790 - delta_h -128.688 #kJ/mol - # Enthalpy of formation: -6804.595 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.07551E+1 0E+0 6.72183E+3 0E+0 0E+0 - -HMontmorillonite-HCCa -Ca0.3Mg0.6Al1.4Si4O10(OH)2:4.45H2O = 0.300Ca+2 + 0.600Mg+2 + 1.400Al+3 - 6.000H+ + 4.000H4(SiO4) + 0.450H2O - log_k 6.180 - delta_h -134.133 #kJ/mol - # Enthalpy of formation: -7036.126 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.73191E+1 0E+0 7.00624E+3 0E+0 0E+0 - -HMontmorillonite-HCK -K0.6Mg0.6Al1.4Si4O10(OH)2:1.96H2O = 0.600Mg+2 + 0.600K+ + 1.400Al+3 - 6.000H+ + 4.000H4(SiO4) - 2.040H2O - log_k 4.260 - delta_h -119.730 #kJ/mol - # Enthalpy of formation: -6327.197 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.67158E+1 0E+0 6.25392E+3 0E+0 0E+0 - -HMontmorillonite-HCMg -Mg0.3Mg0.6Al1.4Si4O10(OH)2:4.61H2O = 0.900Mg+2 + 1.400Al+3 - 6.000H+ + 4.000H4(SiO4) + 0.610H2O - log_k 6.500 - delta_h -133.713 #kJ/mol - # Enthalpy of formation: -7059.479 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.69255E+1 0E+0 6.98431E+3 0E+0 0E+0 - -HMontmorillonite-HCNa -Na0.6Mg0.6Al1.4Si4O10(OH)2:3.84H2O = 0.600Mg+2 + 0.600Na+ + 1.400Al+3 - 6.000H+ + 4.000H4(SiO4) - 0.160H2O - log_k 4.560 - delta_h -132.493 #kJ/mol - # Enthalpy of formation: -6844.715 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.86517E+1 0E+0 6.92058E+3 0E+0 0E+0 - -HNontronite-Ca -Ca0.17Fe1.67Al0.67Si3.66O10(OH)2:4.45H2O = 0.170Ca+2 + 1.670Fe+3 + 0.670Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.810H2O - log_k -2.830 - delta_h -109.854 #kJ/mol - # Enthalpy of formation: -6290.336 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.20756E+1 0E+0 5.73807E+3 0E+0 0E+0 - -HNontronite-K -K0.34Fe1.67Al0.67Si3.66O10(OH)2:1.96H2O = 0.340K+ + 1.670Fe+3 + 0.670Al+3 - 7.360H+ + 3.660H4(SiO4) - 0.680H2O - log_k -2.700 - delta_h -116.514 #kJ/mol - # Enthalpy of formation: -5565.377 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.31123E+1 0E+0 6.08594E+3 0E+0 0E+0 - -HNontronite-Mg -Mg0.17Fe1.67Al0.67Si3.66O10(OH)2:4.61H2O = 0.170Mg+2 + 1.670Fe+3 + 0.670Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.970H2O - log_k -2.530 - delta_h -109.254 #kJ/mol - # Enthalpy of formation: -6323.749 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.16705E+1 0E+0 5.70673E+3 0E+0 0E+0 - -HNontronite-Na -Na0.34Fe1.67Al0.67Si3.66O10(OH)2:3.84H2O = 0.340Na+ + 1.670Fe+3 + 0.670Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.200H2O - log_k -3.090 - delta_h -120.885 #kJ/mol - # Enthalpy of formation: -6094.355 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.42681E+1 0E+0 6.31425E+3 0E+0 0E+0 - -HSaponite-Ca -Ca0.17Mg3Al0.34Si3.66O10(OH)2:4.45H2O = 0.170Ca+2 + 3.000Mg+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.810H2O - log_k 28.390 - delta_h -239.662 #kJ/mol - # Enthalpy of formation: -7302.026 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.35969E+1 0E+0 1.25184E+4 0E+0 0E+0 - -HSaponite-FeCa -Ca0.17Mg2FeAl0.34Si3.66O10(OH)2:4.45H2O = 0.170Ca+2 + 2.000Mg+2 + 1.000Fe+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.810H2O - log_k 27.980 - delta_h -235.552 #kJ/mol - # Enthalpy of formation: -6929.136 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.32869E+1 0E+0 1.23037E+4 0E+0 0E+0 - -HSaponite-FeK -K0.34Mg2FeAl0.34Si3.66O10(OH)2:1.96H2O = 2.000Mg+2 + 0.340K+ + 1.000Fe+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 0.680H2O - log_k 28.110 - delta_h -242.212 #kJ/mol - # Enthalpy of formation: -6204.177 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.43237E+1 0E+0 1.26516E+4 0E+0 0E+0 - -HSaponite-FeMg -Mg0.17Mg2FeAl0.34Si3.66O10(OH)2:4.61H2O = 2.170Mg+2 + 1.000Fe+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.970H2O - log_k 28.070 - delta_h -234.962 #kJ/mol - # Enthalpy of formation: -6962.539 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.30935E+1 0E+0 1.22729E+4 0E+0 0E+0 - -HSaponite-FeNa -Na0.34Mg2FeAl0.34Si3.66O10(OH)2:3.84H2O = 2.000Mg+2 + 0.340Na+ + 1.000Fe+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.200H2O - log_k 27.720 - delta_h -246.583 #kJ/mol - # Enthalpy of formation: -6733.155 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.54794E+1 0E+0 1.28799E+4 0E+0 0E+0 - -HSaponite-K -K0.34Mg3Al0.34Si3.66O10(OH)2:1.96H2O = 3.000Mg+2 + 0.340K+ + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 0.680H2O - log_k 28.520 - delta_h -246.322 #kJ/mol - # Enthalpy of formation: -6577.067 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.46337E+1 0E+0 1.28663E+4 0E+0 0E+0 - -HSaponite-Mg -Mg0.17Mg3Al0.34Si3.66O10(OH)2:4.61H2O = 3.170Mg+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.970H2O - log_k 28.510 - delta_h -239.062 #kJ/mol - # Enthalpy of formation: -7335.439 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.33718E+1 0E+0 1.24871E+4 0E+0 0E+0 - -HSaponite-Na -Na0.34Mg3Al0.34Si3.66O10(OH)2:3.84H2O = 3.000Mg+2 + 0.340Na+ + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.200H2O - log_k 28.130 - delta_h -250.693 #kJ/mol - # Enthalpy of formation: -7106.45 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.57895E+1 0E+0 1.30946E+4 0E+0 0E+0 - -HVermiculite-Ca -Ca0.43Mg3.00Si3.14Al0.86O10(OH)2:4.45H2O = 0.430Ca+2 + 3.000Mg+2 + 0.860Al+3 - 9.440H+ + 3.140H4(SiO4) + 3.890H2O - log_k 97.850 - delta_h -683.046 #kJ/mol - # Enthalpy of formation: -7114.496 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.18143E+1 0E+0 3.56779E+4 0E+0 0E+0 - -HVermiculite-K -K0.86Mg3.00Si3.14Al0.86O10(OH)2:1.96H2O = 3.000Mg+2 + 0.860K+ + 0.860Al+3 - 9.440H+ + 3.140H4(SiO4) + 1.400H2O - log_k 87.710 - delta_h -609.749 #kJ/mol - # Enthalpy of formation: -6459.427 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.91133E+1 0E+0 3.18494E+4 0E+0 0E+0 - -HVermiculite-Mg -Mg0.43Mg3.00Si3.14Al0.86O10(OH)2:4.61H2O = 3.430Mg+2 + 0.860Al+3 - 9.440H+ + 3.140H4(SiO4) + 4.050H2O - log_k 68.210 - delta_h -523.376 #kJ/mol - # Enthalpy of formation: -7287.219 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.34814E+1 0E+0 2.73378E+4 0E+0 0E+0 - -HVermiculite-Na -Na0.86Mg3.00Si3.14Al0.86O10(OH)2:3.84H2O = 3.000Mg+2 + 0.860Na+ + 0.860Al+3 - 9.440H+ + 3.140H4(SiO4) + 3.280H2O - log_k 96.550 - delta_h -673.353 #kJ/mol - # Enthalpy of formation: -6923.035 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.14162E+1 0E+0 3.51716E+4 0E+0 0E+0 +H4Edta = 4 H+ + Edta-4 + log_k -27.22 #05HUM/AND + delta_h 55 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1759.800 kJ/mol + -analytic -17.58441E+0 00E+0 -28.7285E+2 00E+0 00E+0 Halite -NaCl = 1.000Na+ + 1.000Cl- - log_k 1.590 - delta_h 3.700 #kJ/mol - # Enthalpy of formation: -411.12 #kJ/mol #98CHA - -analytic 2.23821E+0 0E+0 -1.93264E+2 0E+0 0E+0 +NaCl = Na+ + Cl- + log_k 1.59 + delta_h 3.7 #kJ/mol +# Enthalpy of formation: -411.120 kJ/mol 98CHA + -analytic 22.38212E-1 00E+0 -19.32645E+1 00E+0 00E+0 + -Vm 27.02 Halloysite -Al2Si2O5(OH)4 = 2.000Al+3 - 6.000H+ + 2.000H4(SiO4) + 1.000H2O - log_k 10.320 - delta_h -192.418 #kJ/mol - # Enthalpy of formation: -4092.6 #kJ/mol #99DEL/NAV - -analytic -2.33901E+1 0E+0 1.00507E+4 0E+0 0E+0 +Al2Si2O5(OH)4 = 2 Al+3 - 6 H+ + 2 H4(SiO4) + H2O + log_k 10.32 + delta_h -192.418 #kJ/mol +# Enthalpy of formation: -4092.600 kJ/mol 99DEL/NAV + -analytic -23.39019E+0 00E+0 10.05069E+3 00E+0 00E+0 Hausmannite -Mn3O4 = 3.000Mn+2 - 6.000H+ + 3.000H2O + 0.500O2 - log_k 18.330 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.833E+1 0E+0 0E+0 0E+0 0E+0 +Mn3O4 = 3 Mn+2 - 8 H+ - 2 e- + 4 H2O + log_k 61.32 #96FAL/REA + -analytic 61.32E+0 00E+0 00E+0 00E+0 00E+0 + +HBeidellite-Ca +Ca0.17Al2.34Si3.66O10(OH)2:4.45H2O = 0.17 Ca+2 + 2.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.81 H2O + log_k 2.09 + delta_h -160.492 #kJ/mol +# Enthalpy of formation: -7056.996 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -26.02699E+0 00E+0 83.83081E+2 00E+0 00E+0 + -Vm 214.55 + +HBeidellite-K +K0.34Al2.34Si3.66O10(OH)2:1.96H2O = 0.34 K+ + 2.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 0.68 H2O + log_k 2.22 + delta_h -167.142 #kJ/mol +# Enthalpy of formation: -6332.047 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -27.06202E+0 00E+0 87.30435E+2 00E+0 00E+0 + -Vm 168.65 + +HBeidellite-Mg +Mg0.17Al2.34Si3.66O10(OH)2:4.61H2O = 0.17 Mg+2 + 2.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.97 H2O + log_k 2.21 + delta_h -159.892 #kJ/mol +# Enthalpy of formation: -7090.409 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -25.80188E+0 00E+0 83.51741E+2 00E+0 00E+0 + -Vm 212.61 + +HBeidellite-Na +Na0.34Al2.34Si3.66O10(OH)2:3.84H2O = 0.34 Na+ + 2.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.2 H2O + log_k 1.83 + delta_h -171.523 #kJ/mol +# Enthalpy of formation: -6861.015 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -28.21954E+0 00E+0 89.5927E+2 00E+0 00E+0 + -Vm 201.94 Heazlewoodite -Ni3S2 = 3.000Ni+2 - 4.000H+ + 2.000HS- + 1.000H2O - 0.500O2 - log_k 25.760 - delta_h -260.199 #kJ/mol - # Enthalpy of formation: -217.2 #kJ/mol #05GAM/BUG - -analytic -1.98248E+1 0E+0 1.35911E+4 0E+0 0E+0 +Ni3S2 = 3 Ni+2 - 2 H+ + 2 e- + 2 HS- + log_k -17.23 + delta_h 19.564 #kJ/mol +# Enthalpy of formation: -217.200 kJ/mol 05GAM/BUG + -analytic -13.80253E+0 00E+0 -10.21899E+2 00E+0 00E+0 -Hematite -Fe2O3 = 2.000Fe+3 - 6.000H+ + 3.000H2O - log_k -1.020 #05GRI - delta_h -123.679 #kJ/mol - # Enthalpy of formation: -831.811 #kJ/mol - -analytic -2.26876E+1 0E+0 6.46019E+3 0E+0 0E+0 +Hematite(cr) +Fe2O3 = 2 Fe+3 - 6 H+ + 3 H2O + log_k -0.83 #21RIB/BEG from 05GRI + delta_h -127.15 #kJ/mol +# Enthalpy of formation: -830.451 kJ/mol + -analytic -23.10572E+0 00E+0 66.41507E+2 00E+0 00E+0 + +Hematite(s) +Fe2O3 = 2 Fe+3 - 6 H+ + 3 H2O + log_k -0.1 + delta_h -131.312 #kJ/mol +# Enthalpy of formation: -826.290 kJ/mol 13LEM/BER + -analytic -23.10487E+0 00E+0 68.58903E+2 00E+0 00E+0 + -Vm 30.27 Hemicarboaluminate -Ca6O6:Al4O6:CaCO3:Ca(OH)2:21H2O = 8.000Ca+2 + 4.000Al+3 - 26.000H+ + 1.000CO3-2 + 35.000H2O - log_k 173.200 #07MAT/LOT1 - delta_h -1188.595 #kJ/mol - # Enthalpy of formation: -15988.285 #kJ/mol - -analytic -3.50326E+1 0E+0 6.20845E+4 0E+0 0E+0 +Ca6O6:Al4O6:CaCO3:Ca(OH)2:21H2O = 8 Ca+2 + 4 Al+3 - 26 H+ + CO3-2 + 35 H2O + log_k 173.2 #07MAT/LOT1 + delta_h -1189.079 #kJ/mol +# Enthalpy of formation: -15987.789kJ/mol + -analytic -35.1177E+0 00E+0 62.10992E+3 00E+0 00E+0 + -Vm 569.02 Herzenbergite -SnS = 1.000Sn+2 - 1.000H+ + 1.000HS- - log_k -16.210 - delta_h 83.683 #kJ/mol - # Enthalpy of formation: -109.6 #kJ/mol #12GAM/GAJ - -analytic -1.54939E+0 0E+0 -4.37106E+3 0E+0 0E+0 +SnS = Sn+2 - H+ + HS- + log_k -16.21 + delta_h 83.683 #kJ/mol +# Enthalpy of formation: -109.600 kJ/mol 12GAM/GAJ + -analytic -15.49368E-1 00E+0 -43.71068E+2 00E+0 00E+0 Heulandite_Ca -Ca1.07Al2.14Si6.86O18:6.17H2O = 1.070Ca+2 + 2.140Al+3 - 8.560H+ + 6.860H4(SiO4) - 3.270H2O - log_k 2.460 #09BLA - delta_h -155.113 #kJ/mol - # Enthalpy of formation: -10667.2 #kJ/mol #09BLA - -analytic -2.47146E+1 0E+0 8.1021E+3 0E+0 0E+0 +Ca1.07Al2.14Si6.86O18:6.17H2O = 1.07 Ca+2 + 2.14 Al+3 - 8.56 H+ + 6.86 H4(SiO4) - 3.27 H2O + log_k 2.46 #09BLA + delta_h -155.113 #kJ/mol +# Enthalpy of formation: -10667.200kJ/mol 09BLA + -analytic -24.71463E+0 00E+0 81.02116E+2 00E+0 00E+0 + -Vm 322.06 Heulandite_Na -Na2.14Al2.14Si6.86O18:6.17H2O = 2.140Na+ + 2.140Al+3 - 8.560H+ + 6.860H4(SiO4) - 3.270H2O - log_k 2.800 #09BLA - delta_h -142.780 #kJ/mol - # Enthalpy of formation: -10612.85 #kJ/mol #09BLA - -analytic -2.22139E+1 0E+0 7.45791E+3 0E+0 0E+0 +Na2.14Al2.14Si6.86O18:6.17H2O = 2.14 Na+ + 2.14 Al+3 - 8.56 H+ + 6.86 H4(SiO4) - 3.27 H2O + log_k 2.8 #09BLA + delta_h -142.78 #kJ/mol +# Enthalpy of formation: -10612.850kJ/mol 09BLA + -analytic -22.21398E+0 00E+0 74.57919E+2 00E+0 00E+0 + -Vm 325 Hexahydrite -Mg(SO4):6H2O = 1.000Mg+2 + 1.000SO4-2 + 6.000H2O - log_k -1.640 #84HAR/MOL - delta_h -4.625 #kJ/mol - # Enthalpy of formation: -3086.695 #kJ/mol - -analytic -2.45026E+0 0E+0 2.4158E+2 0E+0 0E+0 +Mg(SO4):6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.64 #84HAR/MOL + delta_h -4.625 #kJ/mol +# Enthalpy of formation: -3086.692 kJ/mol + -analytic -24.50265E-1 00E+0 24.15806E+1 00E+0 00E+0 + +Hf(cr) +Hf = 4 e- + Hf+4 + log_k 97.2 + delta_h -628.91 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 79ROB/HEM + -analytic -12.9803E+0 00E+0 32.85026E+3 00E+0 00E+0 Hf(HPO4)2:H2O(s) -Hf(HPO4)2:H2O = - 2.000H+ + 2.000H2(PO4)- + 1.000Hf+4 + 1.000H2O - log_k -21.050 #25HEV/KIM recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -3481.6 #kJ/mol #97KAR/CHE - -analytic -2.105E+1 0E+0 0E+0 0E+0 0E+0 - -#Hf(cr) -#Hf = 1.000Hf+4 + 2.000H2O - 4.000H+ - 1.000O2 - # log_k - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - # -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 +Hf(HPO4)2:H2O = -2 H+ + 2 H2(PO4)- + Hf+4 + H2O + log_k -21.05 #25HEV/KIM recalculated; Uncertainty is by analogy with Zr(HPO4)2:H2O(s) and is preliminary. + delta_h -38.34 #kJ/mol +# Enthalpy of formation: -3481.600 kJ/mol 97KAR/CHE + -analytic -27.76688E+0 00E+0 20.02638E+2 00E+0 00E+0 HfO2(am) -HfO2 = - 4.000H+ + 1.000Hf+4 + 2.000H2O - log_k 0.900 #01RAI/XIA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1101.7 #kJ/mol #98KAR/CHE - -analytic 9E-1 0E+0 0E+0 0E+0 0E+0 +HfO2 = -4 H+ + Hf+4 + 2 H2O + log_k 0.9 #01RAI/XIA + delta_h -98.87 #kJ/mol +# Enthalpy of formation: -1101.700 kJ/mol 98KAR/CHE + -analytic -16.42128E+0 00E+0 51.6434E+2 00E+0 00E+0 HfO2(cr) -HfO2 = - 4.000H+ + 1.000Hf+4 + 2.000H2O - log_k -5.600 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1117.63 #kJ/mol #75KOR/USH - -analytic -5.6E+0 0E+0 0E+0 0E+0 0E+0 +HfO2 = -4 H+ + Hf+4 + 2 H2O + log_k -5.62 + delta_h -82.94 #kJ/mol +# Enthalpy of formation: -1117.630 kJ/mol 75KOR/USH + -analytic -20.15046E+0 00E+0 43.32258E+2 00E+0 00E+0 -Hg2SeO3(s) -Hg2SeO3 = 1.000SeO3-2 + 1.000Hg2+2 - log_k -15.200 #05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.52E+1 0E+0 0E+0 0E+0 0E+0 +Hg(l) +Hg = 2 e- + Hg+2 + log_k 28.85 + delta_h -170.21 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -96.9512E-2 00E+0 88.90687E+2 00E+0 00E+0 -HgSeO3(s) -HgSeO3 = 1.000Hg+2 + 1.000SeO3-2 - log_k -16.200 #05OLI/NOL - delta_h 36.650 #kJ/mol - # Enthalpy of formation: -373.6 #kJ/mol #05OLI/NOL - -analytic -9.77921E+0 0E+0 -1.91436E+3 0E+0 0E+0 +Hg2Cl2(s) +Hg2Cl2 = 2 Cl- + Hg2+2 + log_k -17.85 + delta_h 98.03 #kJ/mol +# Enthalpy of formation: -265.370 kJ/mol 89COX/WAG + -analytic -67.58812E-2 00E+0 -51.20464E+2 00E+0 00E+0 + +Hg3(PO4)2(s) +Hg3(PO4)2 = -4 H+ + 2 H2(PO4)- + 3 Hg+2 + log_k -13.01 #05POW/BRO + -analytic -13.01E+0 00E+0 00E+0 00E+0 00E+0 + +HgCl2(s) +HgCl2 = 2 Cl- + Hg+2 + log_k -14.57 #74AND/CUM + -analytic -14.57E+0 00E+0 00E+0 00E+0 00E+0 + +HgCO3:2HgO(s) +HgCO3:2HgO = -4 H+ + CO3-2 + 2 H2O + 3 Hg+2 + log_k -11.48 #05POW/BRO + -analytic -11.48E+0 00E+0 00E+0 00E+0 00E+0 + +HgHPO4(s) +HgHPO4 = - H+ + H2(PO4)- + Hg+2 + log_k -7.16 #05POW/BRO + -analytic -71.6E-1 00E+0 00E+0 00E+0 00E+0 + +HgO(s) +HgO = -2 H+ + H2O + Hg+2 + log_k 2.37 #05POW/BRO + delta_h -25.3 #kJ/mol 05POW/BRO +# Enthalpy of formation: -90.320 kJ/mol + -analytic -20.6237E-1 00E+0 13.21511E+2 00E+0 00E+0 Hillebrandite -Ca2SiO3(OH)2:0.17H2O = 2.000Ca+2 - 4.000H+ + 1.000H4(SiO4) + 1.170H2O - log_k 36.950 #10BLA/BOU1 - delta_h -219.135 #kJ/mol - # Enthalpy of formation: -2662.48 #kJ/mol #56NEW - -analytic -1.44075E+0 0E+0 1.14462E+4 0E+0 0E+0 +Ca2SiO3(OH)2:0.17H2O = 2 Ca+2 - 4 H+ + H4(SiO4) + 1.17 H2O + log_k 36.95 #10BLA/BOU1 + delta_h -219.135 #kJ/mol +# Enthalpy of formation: -2662.480 kJ/mol 56NEW + -analytic -14.40804E-1 00E+0 11.44622E+3 00E+0 00E+0 + -Vm 72.58 -Ho(OH)3(am) -Ho(OH)3 = - 3.000H+ + 1.000Ho+3 + 3.000H2O - log_k 17.480 #98DIA/RAG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.748E+1 0E+0 0E+0 0E+0 0E+0 +HMontmorillonite-BCCa +Ca0.17Mg0.34Al1.66Si4O10(OH)2:4.45H2O = 0.17 Ca+2 + 0.34 Mg+2 + 1.66 Al+3 - 6 H+ + 4 H4(SiO4) + 0.45 H2O + log_k 2.18 + delta_h -118.558 #kJ/mol +# Enthalpy of formation: -6999.676 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -18.59047E+0 00E+0 61.92716E+2 00E+0 00E+0 + -Vm 216.02 -Ho(OH)3(s) -Ho(OH)3 = - 3.000H+ + 1.000Ho+3 + 3.000H2O - log_k 15.430 #98DIA/RAG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.543E+1 0E+0 0E+0 0E+0 0E+0 +HMontmorillonite-BCK +K0.34Mg0.34Al1.66Si4O10(OH)2:1.96H2O = 0.34 Mg+2 + 0.34 K+ + 1.66 Al+3 - 6 H+ + 4 H4(SiO4) - 2.04 H2O + log_k 2.07 + delta_h -123.827 #kJ/mol +# Enthalpy of formation: -6276.107 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -19.62356E+0 00E+0 64.67935E+2 00E+0 00E+0 + -Vm 170.13 -Ho(PO4):xH2O(s) -Ho(PO4) = - 2.000H+ + 1.000Ho+3 + 1.000H2(PO4)- - log_k -4.640 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.64E+0 0E+0 0E+0 0E+0 0E+0 +HMontmorillonite-BCMg +Mg0.17Mg0.34Al1.66Si4O10(OH)2:4.61H2O = 0.51 Mg+2 + 1.66 Al+3 - 6 H+ + 4 H4(SiO4) + 0.61 H2O + log_k 2.33 + delta_h -118.107 #kJ/mol +# Enthalpy of formation: -7032.939 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -18.36146E+0 00E+0 61.69158E+2 00E+0 00E+0 + -Vm 214.08 + +HMontmorillonite-BCNa +Na0.34Mg0.34Al1.66Si4O10(OH)2:3.84H2O = 0.34 Mg+2 + 0.34 Na+ + 1.66 Al+3 - 6 H+ + 4 H4(SiO4) - 0.16 H2O + log_k 1.77 + delta_h -128.688 #kJ/mol +# Enthalpy of formation: -6804.595 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -20.77517E+0 00E+0 67.21842E+2 00E+0 00E+0 + -Vm 203.42 + +HMontmorillonite-HCCa +Ca0.3Mg0.6Al1.4Si4O10(OH)2:4.45H2O = 0.3 Ca+2 + 0.6 Mg+2 + 1.4 Al+3 - 6 H+ + 4 H4(SiO4) + 0.45 H2O + log_k 6.15 + delta_h -134.134 #kJ/mol +# Enthalpy of formation: -7036.126 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -17.34927E+0 00E+0 70.06307E+2 00E+0 00E+0 + -Vm 220.76 + +HMontmorillonite-HCK +K0.6Mg0.6Al1.4Si4O10(OH)2:1.96H2O = 0.6 Mg+2 + 0.6 K+ + 1.4 Al+3 - 6 H+ + 4 H4(SiO4) - 2.04 H2O + log_k 4.24 + delta_h -119.73 #kJ/mol +# Enthalpy of formation: -6327.197 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -16.7358E+0 00E+0 62.53933E+2 00E+0 00E+0 + -Vm 174.18 + +HMontmorillonite-HCMg +Mg0.3Mg0.6Al1.4Si4O10(OH)2:4.61H2O = 0.9 Mg+2 + 1.4 Al+3 - 6 H+ + 4 H4(SiO4) + 0.61 H2O + log_k 6.47 + delta_h -133.713 #kJ/mol +# Enthalpy of formation: -7059.479 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -16.95551E+0 00E+0 69.84316E+2 00E+0 00E+0 + -Vm 215.18 + +HMontmorillonite-HCNa +Na0.6Mg0.6Al1.4Si4O10(OH)2:3.84H2O = 0.6 Mg+2 + 0.6 Na+ + 1.4 Al+3 - 6 H+ + 4 H4(SiO4) - 0.16 H2O + log_k 4.54 + delta_h -132.492 #kJ/mol +# Enthalpy of formation: -6844.715 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -18.6716E+0 00E+0 69.20539E+2 00E+0 00E+0 + -Vm 206.92 + +HNontronite-Ca +Ca0.17Fe1.67Al0.67Si3.66O10(OH)2:4.45H2O = 0.17 Ca+2 + 1.67 Fe+3 + 0.67 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.81 H2O + log_k -2.89 + delta_h -111.618 #kJ/mol +# Enthalpy of formation: -6290.336 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -22.44463E+0 00E+0 58.30214E+2 00E+0 00E+0 + -Vm 214.18 + +HNontronite-K +K0.34Fe1.67Al0.67Si3.66O10(OH)2:1.96H2O = 0.34 K+ + 1.67 Fe+3 + 0.67 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 0.68 H2O + log_k 0.38 + delta_h -118.278 #kJ/mol +# Enthalpy of formation: -5565.377 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -20.34142E+0 00E+0 61.7809E+2 00E+0 00E+0 + -Vm 168.28 + +HNontronite-Mg +Mg0.17Fe1.67Al0.67Si3.66O10(OH)2:4.61H2O = 0.17 Mg+2 + 1.67 Fe+3 + 0.67 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.97 H2O + log_k -2.59 + delta_h -111.018 #kJ/mol +# Enthalpy of formation: -6323.749 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -22.03952E+0 00E+0 57.98874E+2 00E+0 00E+0 + -Vm 212.67 + +HNontronite-Na +Na0.34Fe1.67Al0.67Si3.66O10(OH)2:3.84H2O = 0.34 Na+ + 1.67 Fe+3 + 0.67 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.2 H2O + log_k -3.14 + delta_h -122.648 #kJ/mol +# Enthalpy of formation: -6094.355 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -24.62701E+0 00E+0 64.06351E+2 00E+0 00E+0 + -Vm 201.57 Ho(cr) -Ho = 1.000Ho+3 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 182.795 - delta_h -1126.687 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #82WAG/EVA - -analytic -1.45917E+1 0E+0 5.88508E+4 0E+0 0E+0 +Ho = Ho+3 + 3 e- + log_k 118.31 + delta_h -707.042 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA + -analytic -55.58441E-1 00E+0 36.93138E+3 00E+0 00E+0 -Ho2(CO3)3(cr) -Ho2(CO3)3 = 2.000Ho+3 + 3.000CO3-2 - log_k -33.800 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.38E+1 0E+0 0E+0 0E+0 0E+0 +Ho(OH)3(am) +Ho(OH)3 = -3 H+ + Ho+3 + 3 H2O + log_k 17.48 #98DIA/RAG + -analytic 17.48E+0 00E+0 00E+0 00E+0 00E+0 + +Ho(OH)3(s) +Ho(OH)3 = -3 H+ + Ho+3 + 3 H2O + log_k 15.43 #98DIA/RAG + -analytic 15.43E+0 00E+0 00E+0 00E+0 00E+0 + +Ho(PO4):xH2O(s) +Ho(PO4) = -2 H+ + Ho+3 + H2(PO4)- + log_k -4.64 #95SPA/BRU + -analytic -46.4E-1 00E+0 00E+0 00E+0 00E+0 + +Ho2(CO3)3(s) +Ho2(CO3)3 = 2 Ho+3 + 3 CO3-2 + log_k -33.8 #95SPA/BRU + -analytic -33.8E+0 00E+0 00E+0 00E+0 00E+0 Ho2O3(s) -Ho2O3 = - 6.000H+ + 2.000Ho+3 + 3.000H2O - log_k 47.410 - delta_h -390.718 #kJ/mol - # Enthalpy of formation: -1880.856 #kJ/mol - -analytic -2.10408E+1 0E+0 2.04086E+4 0E+0 0E+0 +Ho2O3 = -6 H+ + 2 Ho+3 + 3 H2O + log_k 47.41 + delta_h -390.706 #kJ/mol +# Enthalpy of formation: -1880.868 kJ/mol + -analytic -21.03875E+0 00E+0 20.408E+3 00E+0 00E+0 HoCl3:6H2O(s) -HoCl3:6H2O = 1.000Ho+3 + 3.000Cl- + 6.000H2O - log_k 5.390 #95SPA/BRU - delta_h -43.855 #kJ/mol - # Enthalpy of formation: -2879.407 #kJ/mol - -analytic -2.29305E+0 0E+0 2.2907E+3 0E+0 0E+0 +HoCl3:6H2O = Ho+3 + 3 Cl- + 6 H2O + log_k 5.39 #95SPA/BRU + delta_h -43.846 #kJ/mol +# Enthalpy of formation: -2879.413 kJ/mol + -analytic -22.91489E-1 00E+0 22.90236E+2 00E+0 00E+0 HoF3:0.5H2O(s) -HoF3:0.5H2O = 1.000Ho+3 + 3.000F- + 0.500H2O - log_k -16.400 #95SPA/BRU - delta_h -149.007 #kJ/mol - # Enthalpy of formation: -1707 #kJ/mol #82WAG/EVA - -analytic -4.25049E+1 0E+0 7.78317E+3 0E+0 0E+0 +HoF3:0.5H2O = Ho+3 + 3 F- + 0.5 H2O + log_k -16.4 #95SPA/BRU + delta_h -149.007 #kJ/mol +# Enthalpy of formation: -1707.000 kJ/mol 82WAG/EVA + -analytic -42.50491E+0 00E+0 77.83178E+2 00E+0 00E+0 HoPO4:H2O(cr) -HoPO4:H2O = - 2.000H+ + 1.000Ho+3 + 1.000H2(PO4)- + 1.000H2O - log_k -5.560 #97LIU/BYR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.56E+0 0E+0 0E+0 0E+0 0E+0 +HoPO4:H2O = -2 H+ + Ho+3 + H2(PO4)- + H2O + log_k -5.56 #97LIU/BYR + -analytic -55.6E-1 00E+0 00E+0 00E+0 00E+0 + +HSaponite-Ca +Ca0.17Mg3Al0.34Si3.66O10(OH)2:4.45H2O = 0.17 Ca+2 + 3 Mg+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.81 H2O + log_k 28.36 + delta_h -239.662 #kJ/mol +# Enthalpy of formation: -7302.026 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -13.62698E+0 00E+0 12.51842E+3 00E+0 00E+0 + -Vm 223.01 + +HSaponite-FeCa +Ca0.17Mg2FeAl0.34Si3.66O10(OH)2:4.45H2O = 0.17 Ca+2 + 2 Mg+2 + Fe+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.81 H2O + log_k 27.97 + delta_h -235.847 #kJ/mol +# Enthalpy of formation: -6929.136 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -13.34862E+0 00E+0 12.31915E+3 00E+0 00E+0 + -Vm 225.59 + +HSaponite-FeK +K0.34Mg2FeAl0.34Si3.66O10(OH)2:1.96H2O = 2 Mg+2 + 0.34 K+ + Fe+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 0.68 H2O + log_k 28.11 + delta_h -242.507 #kJ/mol +# Enthalpy of formation: -6204.177 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -14.3754E+0 00E+0 12.66702E+3 00E+0 00E+0 + -Vm 179.69 + +HSaponite-FeMg +Mg0.17Mg2FeAl0.34Si3.66O10(OH)2:4.61H2O = 2.17 Mg+2 + Fe+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.97 H2O + log_k 28.07 + delta_h -235.257 #kJ/mol +# Enthalpy of formation: -6962.539 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -13.14526E+0 00E+0 12.28833E+3 00E+0 00E+0 + -Vm 223.85 + +HSaponite-FeNa +Na0.34Mg2FeAl0.34Si3.66O10(OH)2:3.84H2O = 2 Mg+2 + 0.34 Na+ + Fe+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.2 H2O + log_k 27.72 + delta_h -246.878 #kJ/mol +# Enthalpy of formation: -6733.155 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -15.53117E+0 00E+0 12.89534E+3 00E+0 00E+0 + -Vm 212.99 + +HSaponite-K +K0.34Mg3Al0.34Si3.66O10(OH)2:1.96H2O = 3 Mg+2 + 0.34 K+ + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 0.68 H2O + log_k 28.49 + delta_h -246.322 #kJ/mol +# Enthalpy of formation: -6577.067 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -14.66376E+0 00E+0 12.86629E+3 00E+0 00E+0 + -Vm 177.11 + +HSaponite-Mg +Mg0.17Mg3Al0.34Si3.66O10(OH)2:4.61H2O = 3.17 Mg+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.97 H2O + log_k 28.48 + delta_h -239.062 #kJ/mol +# Enthalpy of formation: -7335.439 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -13.40186E+0 00E+0 12.48708E+3 00E+0 00E+0 + -Vm 221.08 + +HSaponite-Na +Na0.34Mg3Al0.34Si3.66O10(OH)2:3.84H2O = 3 Mg+2 + 0.34 Na+ + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.2 H2O + log_k 28.03 + delta_h -250.288 #kJ/mol +# Enthalpy of formation: -7106.450 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -15.81858E+0 00E+0 13.07345E+3 00E+0 00E+0 + -Vm 210.4 + +HVermiculite-Ca +Ca0.43Mg3Si3.14Al0.86O10(OH)2:4.45H2O = 0.43 Ca+2 + 3 Mg+2 + 0.86 Al+3 - 9.44 H+ + 3.14 H4(SiO4) + 3.89 H2O + log_k 97.82 + delta_h -683.046 #kJ/mol +# Enthalpy of formation: -7114.496 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -21.84452E+0 00E+0 35.67798E+3 00E+0 00E+0 + -Vm 219.36 + +HVermiculite-K +K0.86Mg3Si3.14Al0.86O10(OH)2:1.96H2O = 3 Mg+2 + 0.86 K+ + 0.86 Al+3 - 9.44 H+ + 3.14 H4(SiO4) + 1.4 H2O + log_k 87.68 + delta_h -609.749 #kJ/mol +# Enthalpy of formation: -6459.427 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -19.14344E+0 00E+0 31.84941E+3 00E+0 00E+0 + -Vm 175.49 + +HVermiculite-Mg +Mg0.43Mg3Si3.14Al0.86O10(OH)2:4.61H2O = 3.43 Mg+2 + 0.86 Al+3 - 9.44 H+ + 3.14 H4(SiO4) + 4.05 H2O + log_k 68.18 + delta_h -523.376 #kJ/mol +# Enthalpy of formation: -7287.219 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -23.51154E+0 00E+0 27.33783E+3 00E+0 00E+0 + -Vm 222.24 + +HVermiculite-Na +Na0.86Mg3Si3.14Al0.86O10(OH)2:3.84H2O = 3 Mg+2 + 0.86 Na+ + 0.86 Al+3 - 9.44 H+ + 3.14 H4(SiO4) + 3.28 H2O + log_k 96.52 + delta_h -673.353 #kJ/mol +# Enthalpy of formation: -6923.035 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -21.44638E+0 00E+0 35.17168E+3 00E+0 00E+0 + -Vm 210.12 Hydrocerussite -Pb3(CO3)2(OH)2 = 3.000Pb+2 - 2.000H+ + 2.000CO3-2 + 2.000H2O - log_k -17.910 - delta_h -5.160 #kJ/mol - # Enthalpy of formation: -1914.2 #kJ/mol #83SAN/BAR - -analytic -1.8814E+1 0E+0 2.69525E+2 0E+0 0E+0 +Pb3(CO3)2(OH)2 = 3 Pb+2 - 2 H+ + 2 CO3-2 + 2 H2O + log_k -17.91 + delta_h -5.16 #kJ/mol +# Enthalpy of formation: -1914.200 kJ/mol 83SAN/BAR + -analytic -18.81399E+0 00E+0 26.95256E+1 00E+0 00E+0 Hydrophilite -CaCl2 = 1.000Ca+2 + 2.000Cl- - log_k 11.770 - delta_h -81.360 #kJ/mol - # Enthalpy of formation: -795.8 #kJ/mol #98CHA - -analytic -2.48364E+0 0E+0 4.24972E+3 0E+0 0E+0 +CaCl2 = Ca+2 + 2 Cl- + log_k 11.77 + delta_h -81.36 #kJ/mol +# Enthalpy of formation: -795.800 kJ/mol 98CHA + -analytic -24.8366E-1 00E+0 42.49729E+2 00E+0 00E+0 Hydrotalcite -Mg4Al2(OH)14:3H2O = 4.000Mg+2 + 2.000Al+3 - 14.000H+ + 17.000H2O - log_k 73.740 #92ATK/GLA - delta_h -583.985 #kJ/mol - # Enthalpy of formation: -7219.925 #kJ/mol - -analytic -2.85696E+1 0E+0 3.05036E+4 0E+0 0E+0 +Mg4Al2(OH)14:3H2O = 4 Mg+2 + 2 Al+3 - 14 H+ + 17 H2O + log_k 73.74 #92ATK/GLA + delta_h -584.22 #kJ/mol +# Enthalpy of formation: -7219.684 kJ/mol + -analytic -28.61095E+0 00E+0 30.51594E+3 00E+0 00E+0 + -Vm 227.36 Hydrotalcite-CO3 -Mg4Al2(OH)12CO3:2H2O = 4.000Mg+2 + 2.000Al+3 - 12.000H+ + 1.000CO3-2 + 14.000H2O - log_k 50.860 #03JOH/GLA - delta_h -542.565 #kJ/mol - # Enthalpy of formation: -7079.085 #kJ/mol - -analytic -4.41932E+1 0E+0 2.83401E+4 0E+0 0E+0 +Mg4Al2(OH)12CO3:2H2O = 4 Mg+2 + 2 Al+3 - 12 H+ + CO3-2 + 14 H2O + log_k 50.86 #03JOH/GLA + delta_h -542.756 #kJ/mol +# Enthalpy of formation: -7078.889 kJ/mol + -analytic -44.22677E+0 00E+0 28.35012E+3 00E+0 00E+0 + -Vm 231.46 Hydroxyapatite -Ca5(OH)(PO4)3 = 5.000Ca+2 - 7.000H+ + 3.000H2(PO4)- + 1.000H2O - log_k 14.350 #84NAN - delta_h -178.487 #kJ/mol - # Enthalpy of formation: -6730.143 #kJ/mol - -analytic -1.69195E+1 0E+0 9.32301E+3 0E+0 0E+0 +Ca5(OH)(PO4)3 = 5 Ca+2 - 7 H+ + 3 H2(PO4)- + H2O + log_k 14.35 #84NAN + delta_h -178.487 #kJ/mol +# Enthalpy of formation: -6730.141 kJ/mol + -analytic -16.91958E+0 00E+0 93.23025E+2 00E+0 00E+0 + -Vm 159.6 -Illite-Al -K0.85Al2.85Si3.15O10(OH)2 = 0.850K+ + 2.850Al+3 - 9.400H+ + 3.150H4(SiO4) - 0.600H2O - log_k 13.020 - delta_h -266.372 #kJ/mol - # Enthalpy of formation: -5913.65 #kJ/mol #15BLA/VIE - -analytic -3.36463E+1 0E+0 1.39136E+4 0E+0 0E+0 +I2(cr) +I2 = -2 e- + 2 I- + log_k 18.12 + delta_h -113.56 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -17.74858E-1 00E+0 59.31652E+2 00E+0 00E+0 -Illite-FeII -K0.85Fe0.25Al2.35Si3.4O10(OH)2 = 0.850K+ + 0.250Fe+2 + 2.350Al+3 - 8.400H+ + 3.400H4(SiO4) - 1.600H2O - log_k 9.450 - delta_h -216.501 #kJ/mol - # Enthalpy of formation: -5796.29 #kJ/mol #15BLA/VIE - -analytic -2.84793E+1 0E+0 1.13086E+4 0E+0 0E+0 - -Illite-Mg -K0.85Mg0.25Al2.35Si3.4O10(OH)2 = 0.250Mg+2 + 0.850K+ + 2.350Al+3 - 8.400H+ + 3.400H4(SiO4) - 1.600H2O - log_k 11.010 - delta_h -225.651 #kJ/mol - # Enthalpy of formation: -5881.39 #kJ/mol #15BLA/VIE - -analytic -2.85223E+1 0E+0 1.17866E+4 0E+0 0E+0 - -Illite-Smec_ISCz-1(2.996H2O) -(Na0.134K0.53)(Si3.565Al0.435)(Al1.717Fe0.05Fe0.017Mg0.218)O10(OH)2:2.996H2O = 0.218Mg+2 + 0.530K+ + 0.134Na+ + 0.050Fe+3 + 0.017Fe+2 + 2.152Al+3 - 7.740H+ + 3.565H4(SiO4) + 0.736H2O - log_k 13.650 - delta_h -225.171 #kJ/mol - # Enthalpy of formation: -6624.62 #kJ/mol #09GAI - -analytic -2.57982E+1 0E+0 1.17615E+4 0E+0 0E+0 - -Illite/smectiteISCz-1 -(Ca0.092K0.439)(Si3.559Al0.441)(Al1.728Fe0.011Fe0.034Mg0.255)O10(OH)2 = 0.092Ca+2 + 0.255Mg+2 + 0.439K+ + 0.034Fe+3 + 0.011Fe+2 + 2.169Al+3 - 7.764H+ + 3.559H4(SiO4) - 2.236H2O - log_k 10.900 - delta_h -224.050 #kJ/mol - # Enthalpy of formation: -5787.4 #kJ/mol #14BLA/GAI - -analytic -2.83518E+1 0E+0 1.17029E+4 0E+0 0E+0 +Illite/smectite ISCz-1 +(Ca0.092K0.439)(Si3.559Al0.441)(Al1.728Fe0.011Fe0.034Mg0.255)O10(OH)2 = 0.092 Ca+2 + 0.255 Mg+2 + 0.439 K+ + 0.034 Fe+3 + 0.011 Fe+2 + 2.169 Al+3 - 7.764 H+ + 3.559 H4(SiO4) - 2.236 H2O + log_k 10.89 + delta_h -224.089 #kJ/mol +# Enthalpy of formation: -5787.400 kJ/mol 14BLA/GAI + -analytic -28.36871E+0 00E+0 11.70498E+3 00E+0 00E+0 + -Vm 137.13 Illite_Imt-2 -(Na0.044K0.762)(Si3.387Al0.613)(Al1.427Fe0.292Fe0.084Mg0.241)O10(OH)2 = 0.241Mg+2 + 0.762K+ + 0.044Na+ + 0.292Fe+3 + 0.084Fe+2 + 2.040Al+3 - 8.452H+ + 3.387H4(SiO4) - 1.548H2O - log_k 11.540 - delta_h -230.806 #kJ/mol - # Enthalpy of formation: -5711.25 #kJ/mol #12GAI/BLA - -analytic -2.88954E+1 0E+0 1.20558E+4 0E+0 0E+0 +(Na0.044K0.762)(Si3.387Al0.613)(Al1.427Fe0.292Fe0.084Mg0.241)O10(OH)2 = 0.241 Mg+2 + 0.762 K+ + 0.044 Na+ + 0.292 Fe+3 + 0.084 Fe+2 + 2.04 Al+3 - 8.452 H+ + 3.387 H4(SiO4) - 1.548 H2O + log_k 11.52 + delta_h -231.139 #kJ/mol +# Enthalpy of formation: -5711.250 kJ/mol 12GAI/BLA + -analytic -28.97381E+0 00E+0 12.07323E+3 00E+0 00E+0 + -Vm 139.18 + +Illite-Al +K0.85Al2.85Si3.15O10(OH)2 = 0.85 K+ + 2.85 Al+3 - 9.4 H+ + 3.15 H4(SiO4) - 0.6 H2O + log_k 13.02 + delta_h -266.372 #kJ/mol +# Enthalpy of formation: -5913.650 kJ/mol 15BLA/VIE + -analytic -33.64637E+0 00E+0 13.91358E+3 00E+0 00E+0 + -Vm 138.98 + +Illite-FeII +K0.85Fe0.25Al2.35Si3.4O10(OH)2 = 0.85 K+ + 0.25 Fe+2 + 2.35 Al+3 - 8.4 H+ + 3.4 H4(SiO4) - 1.6 H2O + log_k 9.46 + delta_h -216.574 #kJ/mol +# Enthalpy of formation: -5796.290 kJ/mol 15BLA/VIE + -analytic -28.48214E+0 00E+0 11.31245E+3 00E+0 00E+0 + -Vm 140.67 + +Illite-FeIII +K0.85Fe0.25Al2.6Si3.15O10(OH)2 = 0.85 K+ + 0.25 Fe+3 + 2.6 Al+3 - 9.4 H+ + 3.15 H4(SiO4) - 0.6 H2O + log_k 12.36 + delta_h -262.546 #kJ/mol +# Enthalpy of formation: -5795.390 kJ/mol 15BLA/VIE + -analytic -33.63608E+0 00E+0 13.71373E+3 00E+0 00E+0 + -Vm 138.92 + +Illite-Mg +K0.85Mg0.25Al2.35Si3.4O10(OH)2 = 0.25 Mg+2 + 0.85 K+ + 2.35 Al+3 - 8.4 H+ + 3.4 H4(SiO4) - 1.6 H2O + log_k 11.01 + delta_h -225.651 #kJ/mol +# Enthalpy of formation: -5881.390 kJ/mol 15BLA/VIE + -analytic -28.52236E+0 00E+0 11.78657E+3 00E+0 00E+0 + -Vm 140.06 + +Illite-Smec_ISCz-1(2.996H2O) +(Na0.134K0.53)(Si3.565Al0.435)(Al1.717Fe0.05Fe0.017Mg0.218)O10(OH)2:2.996H2O = 0.218 Mg+2 + 0.53 K+ + 0.134 Na+ + 0.05 Fe+3 + 0.017 Fe+2 + 2.152 Al+3 - 7.74 H+ + 3.565 H4(SiO4) + 0.736 H2O + log_k 13.61 + delta_h -225.228 #kJ/mol +# Enthalpy of formation: -6624.620 kJ/mol 09GAI + -analytic -25.84825E+0 00E+0 11.76448E+3 00E+0 00E+0 + -Vm 192.42 Jaffeite -Ca6(Si2O7)(OH)6 = 6.000Ca+2 - 12.000H+ + 2.000H4(SiO4) + 5.000H2O - log_k 114.060 - delta_h -636.768 #kJ/mol - # Enthalpy of formation: -6972.77 #kJ/mol #10BLA/BOU1 - -analytic 2.5032E+0 0E+0 3.32607E+4 0E+0 0E+0 +Ca6(Si2O7)(OH)6 = 6 Ca+2 - 12 H+ + 2 H4(SiO4) + 5 H2O + log_k 114.06 + delta_h -636.768 #kJ/mol +# Enthalpy of formation: -6972.770 kJ/mol 10BLA/BOU1 + -analytic 25.03035E-1 00E+0 33.26071E+3 00E+0 00E+0 + -Vm 174.38 Jennite -Ca9Si6O16(OH)10:6(H2O) = 9.000Ca+2 - 18.000H+ + 6.000H4(SiO4) + 8.000H2O - log_k 147.330 #10BLA/BOU1 - delta_h -751.764 #kJ/mol - # Enthalpy of formation: -15189.04 #kJ/mol #10BLA/BOU1 - -analytic 1.56268E+1 0E+0 3.92673E+4 0E+0 0E+0 - -K(NO3)(s) -K(NO3) = 1.000K+ + 1.000NO3- - log_k -0.100 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1E-1 0E+0 0E+0 0E+0 0E+0 - -K(OH)(s) -K(OH) = 1.000K+ - 1.000H+ + 1.000H2O - log_k 24.600 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.46E+1 0E+0 0E+0 0E+0 0E+0 - -K(TcO4)(s) -K(TcO4) = 1.000K+ + 1.000TcO4- - log_k -2.280 - delta_h 53.560 #kJ/mol - # Enthalpy of formation: -1035.1 #kJ/mol #99RAR/RAN - -analytic 7.1033E+0 0E+0 -2.79763E+3 0E+0 0E+0 +Ca9Si6O16(OH)10:6H2O = 9 Ca+2 - 18 H+ + 6 H4(SiO4) + 8 H2O + log_k 147.33 #10BLA/BOU1 + delta_h -751.764 #kJ/mol +# Enthalpy of formation: -15189.040kJ/mol 10BLA/BOU1 + -analytic 15.6266E+0 00E+0 39.26737E+3 00E+0 00E+0 + -Vm 456.4 K(cr) -K = 1.000K+ + 0.500H2O - 1.000H+ - 0.250O2 - log_k 70.985 - delta_h -392.022 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic 2.30588E+0 0E+0 2.04767E+4 0E+0 0E+0 +K = K+ + e- + log_k 49.49 + delta_h -252.14 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 53.16968E-1 00E+0 13.17019E+3 00E+0 00E+0 -K-carbonate -K2CO3:1.5H2O = 2.000K+ + 1.000CO3-2 + 1.500H2O - log_k 3.030 #84HAR/MOL - delta_h -1.188 #kJ/mol - # Enthalpy of formation: -1607.067 #kJ/mol - -analytic 2.82187E+0 0E+0 6.20535E+1 0E+0 0E+0 +K(NO3)(s) +K(NO3) = K+ + NO3- + log_k -0.1 #96FAL/REA + -analytic -10E-2 00E+0 00E+0 00E+0 00E+0 -K-trona -K2NaH(CO3)2:2H2O = 2.000K+ + 1.000Na+ + 1.000H+ + 2.000CO3-2 + 2.000H2O - log_k -9.100 #84HAR/MOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -9.1E+0 0E+0 0E+0 0E+0 0E+0 +K(OH)(s) +K(OH) = K+ - H+ + H2O + log_k 24.6 #96FAL/REA + -analytic 24.6E+0 00E+0 00E+0 00E+0 00E+0 K2CO3(cr) -K2CO3 = 2.000K+ + 1.000CO3-2 - log_k 5.410 - delta_h -31.798 #kJ/mol - # Enthalpy of formation: -1147.712 #kJ/mol - -analytic -1.60762E-1 0E+0 1.66092E+3 0E+0 0E+0 +K2CO3 = 2 K+ + CO3-2 + log_k 5.41 + delta_h -31.798 #kJ/mol 74NAU/RYZ +# Enthalpy of formation: -1147.712 kJ/mol + -analytic -16.07705E-2 00E+0 16.60925E+2 00E+0 00E+0 K2O(s) -K2O = 2.000K+ - 2.000H+ + 1.000H2O - log_k 84.110 - delta_h -426.940 #kJ/mol - # Enthalpy of formation: -363.17 #kJ/mol #98CHA - -analytic 9.31343E+0 0E+0 2.23006E+4 0E+0 0E+0 +K2O = 2 K+ - 2 H+ + H2O + log_k 84.11 + delta_h -426.94 #kJ/mol +# Enthalpy of formation: -363.170 kJ/mol 98CHA + -analytic 93.13323E-1 00E+0 22.30063E+3 00E+0 00E+0 -K4NpO2(CO3)3(s) -K4NpO2(CO3)3 = 4.000K+ + 1.000NpO2+2 + 3.000CO3-2 - log_k -26.400 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.64E+1 0E+0 0E+0 0E+0 0E+0 +K3NpO2(CO3)2(cr) +K3NpO2(CO3)2 = 3 K+ + NpO2+ + 2 CO3-2 + log_k -15.46 #03GUI/FAN + -analytic -15.46E+0 00E+0 00E+0 00E+0 00E+0 -KAl(SO4)2(s) -KAl(SO4)2 = 1.000K+ + 1.000Al+3 + 2.000SO4-2 - log_k 3.740 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.74E+0 0E+0 0E+0 0E+0 0E+0 - -KAl(SO4)2:12H2O(s) -KAl(SO4)2:12H2O = 1.000K+ + 1.000Al+3 + 2.000SO4-2 + 12.000H2O - log_k -6.680 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.68E+0 0E+0 0E+0 0E+0 0E+0 - -KBr(s) -KBr = 1.000K+ + 1.000Br- - log_k 1.130 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.13E+0 0E+0 0E+0 0E+0 0E+0 - -KFe(CrO4)2:2H2O(s) -KFe(CrO4)2:2H2O = 1.000K+ + 1.000Fe+3 + 2.000CrO4-2 + 2.000H2O - log_k -19.390 #98BAR/PAL - delta_h 27.540 #kJ/mol #98BAR/PAL - # Enthalpy of formation: -2658.34 #kJ/mol - -analytic -1.45652E+1 0E+0 -1.43851E+3 0E+0 0E+0 - -KFe3(CrO4)2(OH)6(cr) -KFe3(CrO4)2(OH)6 = 1.000K+ + 3.000Fe+3 - 6.000H+ + 2.000CrO4-2 + 6.000H2O - log_k -18.400 #96BAR/PAL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.84E+1 0E+0 0E+0 0E+0 0E+0 - -KH2PO4(cr) -KH2PO4 = 1.000K+ + 1.000H2(PO4)- - log_k -0.370 - delta_h 19.686 #kJ/mol #74NAU/RYZ - # Enthalpy of formation: -1574.426 #kJ/mol - -analytic 3.07883E+0 0E+0 -1.02827E+3 0E+0 0E+0 - -KI(s) -KI = 1.000K+ + 1.000I- - log_k 1.740 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.74E+0 0E+0 0E+0 0E+0 0E+0 +K4NpO2(CO3)3(cr) +K4NpO2(CO3)3 = 4 K+ + NpO2+2 + 3 CO3-2 + log_k -26.93 #01LEM/FUG + -analytic -26.93E+0 00E+0 00E+0 00E+0 00E+0 Kainite -KMgCl(SO4):3H2O = 1.000Mg+2 + 1.000K+ + 1.000SO4-2 + 1.000Cl- + 3.000H2O - log_k -0.190 #84HAR/MOL - delta_h -12.950 #kJ/mol - # Enthalpy of formation: -2640.1 #kJ/mol #82WAG/EVA - -analytic -2.45874E+0 0E+0 6.76425E+2 0E+0 0E+0 +KMgCl(SO4):3H2O = Mg+2 + K+ + SO4-2 + Cl- + 3 H2O + log_k -0.19 #84HAR/MOL + delta_h -12.95 #kJ/mol +# Enthalpy of formation: -2640.100 kJ/mol 82WAG/EVA + -analytic -24.58743E-1 00E+0 67.64256E+1 00E+0 00E+0 + +KAl(OH)4 +KAl(OH)4 = K+ + Al+3 - 4 H+ + 4 H2O + log_k 24.22 + delta_h -211.675 #kJ/mol +# Enthalpy of formation: -1722.185 kJ/mol 97POK/HEL2 + -analytic -12.86387E+0 00E+0 11.05656E+3 00E+0 00E+0 + +KAl(SO4)2(s) +KAl(SO4)2 = K+ + Al+3 + 2 SO4-2 + log_k 3.74 #96FAL/REA + -analytic 37.4E-1 00E+0 00E+0 00E+0 00E+0 + +KAl(SO4)2:12H2O(s) +KAl(SO4)2:12H2O = K+ + Al+3 + 2 SO4-2 + 12 H2O + log_k -6.68 #96FAL/REA + -analytic -66.8E-1 00E+0 00E+0 00E+0 00E+0 Kalicinite -KHCO3 = 1.000K+ + 1.000H+ + 1.000CO3-2 - log_k -10.060 #84HAR/MOL - delta_h 34.950 #kJ/mol - # Enthalpy of formation: -962.32 #kJ/mol #74NAU/RYZ - -analytic -3.93703E+0 0E+0 -1.82556E+3 0E+0 0E+0 +KHCO3 = K+ + H+ + CO3-2 + log_k -10.06 #84HAR/MOL + delta_h 34.95 #kJ/mol +# Enthalpy of formation: -962.320 kJ/mol 74NAU/RYZ + -analytic -39.37023E-1 00E+0 -18.25566E+2 00E+0 00E+0 Kaolinite -Al2(Si2O5)(OH)4 = 2.000Al+3 - 6.000H+ + 2.000H4(SiO4) + 1.000H2O - log_k 6.510 - delta_h -169.718 #kJ/mol - # Enthalpy of formation: -4115.3 #kJ/mol #01FIA/NAV - -analytic -2.32233E+1 0E+0 8.86498E+3 0E+0 0E+0 +Al2(Si2O5)(OH)4 = 2 Al+3 - 6 H+ + 2 H4(SiO4) + H2O + log_k 6.5 + delta_h -169.718 #kJ/mol +# Enthalpy of formation: -4115.300 kJ/mol 01FIA/NAV + -analytic -23.23332E+0 00E+0 88.64989E+2 00E+0 00E+0 + -Vm 99.34 Katoite -Ca3Al2(SiO4)(OH)8 = 3.000Ca+2 + 2.000Al+3 - 12.000H+ + 1.000H4(SiO4) + 8.000H2O - log_k 71.160 #10BLA/BOU2 - delta_h -545.657 #kJ/mol - # Enthalpy of formation: -5907.977 #kJ/mol - -analytic -2.44349E+1 0E+0 2.85016E+4 0E+0 0E+0 +Ca3Al2(SiO4)(OH)8 = 3 Ca+2 + 2 Al+3 - 12 H+ + H4(SiO4) + 8 H2O + log_k 71.16 #10BLA/BOU2 + delta_h -545.767 #kJ/mol +# Enthalpy of formation: -5907.865 kJ/mol + -analytic -24.45427E+0 00E+0 28.5074E+3 00E+0 00E+0 + -Vm 141.51 + +K-Boltwoodite +K(UO2)(SiO3OH):H2O = K+ + UO2+2 - 3 H+ + H4(SiO4) + H2O + log_k 4.48 #20GRE/GAO + delta_h -27.146 #kJ/mol +# Enthalpy of formation: -2991.019 kJ/mol + -analytic -27.57751E-2 00E+0 14.17934E+2 00E+0 00E+0 + +KBr(s) +KBr = K+ + Br- + log_k 1.13 #96FAL/REA + -analytic 11.3E-1 00E+0 00E+0 00E+0 00E+0 + +K-carbonate +K2CO3:1.5H2O = 2 K+ + CO3-2 + 1.5 H2O + log_k 3.03 #84HAR/MOL + delta_h -1.188 #kJ/mol +# Enthalpy of formation: -1607.068 kJ/mol + -analytic 28.21871E-1 00E+0 62.05356E+0 00E+0 00E+0 + +KFe(CrO4)2:2H2O(s) +KFe(CrO4)2:2H2O = K+ + Fe+3 + 2 CrO4-2 + 2 H2O + log_k -19.39 #98BAR/PAL + delta_h 27.54 #kJ/mol 98BAR/PAL +# Enthalpy of formation: -2659.396 kJ/mol + -analytic -14.5652E+0 00E+0 -14.38514E+2 00E+0 00E+0 + +KFe3(CrO4)2(OH)6(cr) +KFe3(CrO4)2(OH)6 = K+ + 3 Fe+3 - 6 H+ + 2 CrO4-2 + 6 H2O + log_k -18.4 #96BAR/PAL + -analytic -18.4E+0 00E+0 00E+0 00E+0 00E+0 + +KH2PO4 +KH2PO4 = K+ + H2(PO4)- + log_k -0.44 #97MAR/SMI + -analytic -44E-2 00E+0 00E+0 00E+0 00E+0 + +KH2PO4(cr) +KH2PO4 = K+ + H2(PO4)- + log_k -0.37 + delta_h 19.686 #kJ/mol 74NAU/RYZ +# Enthalpy of formation: -1574.426 kJ/mol + -analytic 30.78839E-1 00E+0 -10.28271E+2 00E+0 00E+0 + +KI(s) +KI = K+ + I- + log_k 1.74 #96FAL/REA + -analytic 17.4E-1 00E+0 00E+0 00E+0 00E+0 + +KNpO2CO3(cr) +KNpO2CO3 = K+ + NpO2+ + CO3-2 + log_k -13.15 #03GUI/FAN + -analytic -13.15E+0 00E+0 00E+0 00E+0 00E+0 + +KTcO4(cr) +KTcO4 = K+ + TcO4- + log_k -2.29 #99RAR/RAN + delta_h 53.26 #kJ/mol 99RAR/RAN +# Enthalpy of formation: -1034.800 kJ/mol + -analytic 70.40751E-1 00E+0 -27.81964E+2 00E+0 00E+0 + +K-trona +K2NaH(CO3)2:2H2O = 2 K+ + Na+ + H+ + 2 CO3-2 + 2 H2O + log_k -9.1 #84HAR/MOL + -analytic -91E-1 00E+0 00E+0 00E+0 00E+0 Lanarkite -PbSO4:PbO = 2.000Pb+2 - 2.000H+ + 1.000SO4-2 + 1.000H2O - log_k 2.630 #82ABD/THO - delta_h -39.234 #kJ/mol - # Enthalpy of formation: -1154.096 #kJ/mol - -analytic -4.24349E+0 0E+0 2.04933E+3 0E+0 0E+0 +PbSO4:PbO = 2 Pb+2 - 2 H+ + SO4-2 + H2O + log_k 2.63 #82ABD/THO + delta_h -39.234 #kJ/mol +# Enthalpy of formation: -1154.096 kJ/mol + -analytic -42.43502E-1 00E+0 20.49335E+2 00E+0 00E+0 + +Langite +Cu4SO4(OH)6:H2O = 4 Cu+2 - 6 H+ + SO4-2 + 7 H2O + log_k 17.49 + delta_h -165.074 #kJ/mol +# Enthalpy of formation: -2485.474 kJ/mol + -analytic -11.42972E+0 00E+0 86.22416E+2 00E+0 00E+0 Lansfordite -Mg(CO3):5H2O = 1.000Mg+2 + 1.000CO3-2 + 5.000H2O - log_k -5.040 - delta_h 2.890 #kJ/mol - # Enthalpy of formation: -2574.27 #kJ/mol #99KON/KON - -analytic -4.53369E+0 0E+0 -1.50955E+2 0E+0 0E+0 +Mg(CO3):5H2O = Mg+2 + CO3-2 + 5 H2O + log_k -5.04 + delta_h 2.89 #kJ/mol +# Enthalpy of formation: -2574.270 kJ/mol 99KON/KON + -analytic -45.33694E-1 00E+0 -15.09552E+1 00E+0 00E+0 Laumontite -CaAl2Si4O12:4H2O = 1.000Ca+2 + 2.000Al+3 - 8.000H+ + 4.000H4(SiO4) - log_k 11.700 - delta_h -213.576 #kJ/mol - # Enthalpy of formation: -7251 #kJ/mol #96KIS/NAV - -analytic -2.57169E+1 0E+0 1.11558E+4 0E+0 0E+0 +CaAl2Si4O12:4H2O = Ca+2 + 2 Al+3 - 8 H+ + 4 H4(SiO4) + log_k 11.67 + delta_h -213.576 #kJ/mol +# Enthalpy of formation: -7251.000 kJ/mol 96KIS/NAV + -analytic -25.74691E+0 00E+0 11.15585E+3 00E+0 00E+0 + -Vm 207.53 Laurionite -PbClOH = 1.000Pb+2 - 1.000H+ + 1.000Cl- + 1.000H2O - log_k 0.620 #99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.2E-1 0E+0 0E+0 0E+0 0E+0 +PbClOH = Pb+2 - H+ + Cl- + H2O + log_k 0.62 #99LOT/OCH + -analytic 62E-2 00E+0 00E+0 00E+0 00E+0 Lawrencite -FeCl2 = 1.000Fe+2 + 2.000Cl- - log_k 8.890 - delta_h -82.460 #kJ/mol - # Enthalpy of formation: -341.7 #kJ/mol #95ROB/HEM - -analytic -5.55635E+0 0E+0 4.30718E+3 0E+0 0E+0 +FeCl2 = Fe+2 + 2 Cl- + log_k 8.93 + delta_h -82.921 #kJ/mol +# Enthalpy of formation: -341.534 kJ/mol 13LEM/BER + -analytic -55.97136E-1 00E+0 43.31265E+2 00E+0 00E+0 Leonhardtite -MgSO4:4H2O = 1.000Mg+2 + 1.000SO4-2 + 4.000H2O - log_k -0.890 #80HAR/WEA - delta_h -24.030 #kJ/mol - # Enthalpy of formation: -2495.63 #kJ/mol #74NAU/RYZ - -analytic -5.09987E+0 0E+0 1.25517E+3 0E+0 0E+0 +MgSO4:4H2O = Mg+2 + SO4-2 + 4 H2O + log_k -0.89 #80HAR/WEA + delta_h -24.03 #kJ/mol +# Enthalpy of formation: -2495.630 kJ/mol 74NAU/RYZ + -analytic -50.99875E-1 00E+0 12.55174E+2 00E+0 00E+0 Leonite -K2Mg(SO4)2:4H2O = 1.000Mg+2 + 2.000K+ + 2.000SO4-2 + 4.000H2O - log_k -3.980 #84HAR/MOL - delta_h 15.290 #kJ/mol - # Enthalpy of formation: -3948.57 #kJ/mol #74NAU/RYZ - -analytic -1.30131E+0 0E+0 -7.98651E+2 0E+0 0E+0 +K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O + log_k -3.98 #84HAR/MOL + delta_h 15.29 #kJ/mol +# Enthalpy of formation: -3948.570 kJ/mol 74NAU/RYZ + -analytic -13.01307E-1 00E+0 -79.86523E+1 00E+0 00E+0 Lepidocrocite -FeOOH = 1.000Fe+3 - 3.000H+ + 2.000H2O - log_k 0.750 #98DIA2 in 98CHI - delta_h -64.260 #kJ/mol - # Enthalpy of formation: -556.4 #kJ/mol - -analytic -1.05079E+1 0E+0 3.35653E+3 0E+0 0E+0 +FeOOH = Fe+3 - 3 H+ + 2 H2O + log_k 1.86 + delta_h -72.516 #kJ/mol +# Enthalpy of formation: -549.200 kJ/mol 13LEM/BER + -analytic -10.84426E+0 00E+0 37.87774E+2 00E+0 00E+0 + +Li(cr) +Li = e- + Li+ + log_k 51.32 + delta_h -278.47 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 25.3415E-1 00E+0 14.5455E+3 00E+0 00E+0 + +Liebigite +Ca2UO2(CO3)3:10H2O = 2 Ca+2 + UO2+2 + 3 CO3-2 + 10 H2O + log_k -32.3 #19LEE/AMA + delta_h 55.71 #kJ/mol +# Enthalpy of formation: -7044.700 kJ/mol 20GRE/GAO + -analytic -22.54003E+0 00E+0 -29.09936E+2 00E+0 00E+0 Linnaeite -Co3S4 = 3.000Co+2 - 2.000H+ + 4.000HS- - 1.000H2O + 0.500O2 - log_k -85.750 - delta_h 416.263 #kJ/mol - # Enthalpy of formation: -374.5 #kJ/mol #95ROB/HEM - -analytic -1.2824E+1 0E+0 -2.17429E+4 0E+0 0E+0 +Co3S4 = 3 Co+2 - 4 H+ - 2 e- + 4 HS- + log_k -42.76 + delta_h 136.5 #kJ/mol +# Enthalpy of formation: -374.500 kJ/mol 95ROB/HEM + -analytic -18.84623E+0 00E+0 -71.29892E+2 00E+0 00E+0 Litharge -PbO = 1.000Pb+2 - 2.000H+ + 1.000H2O - log_k 12.630 - delta_h -65.501 #kJ/mol - # Enthalpy of formation: -219.409 #kJ/mol #98CHA - -analytic 1.15473E+0 0E+0 3.42135E+3 0E+0 0E+0 +PbO = Pb+2 - 2 H+ + H2O + log_k 12.63 + delta_h -65.501 #kJ/mol +# Enthalpy of formation: -219.409 kJ/mol 98CHA + -analytic 11.54717E-1 00E+0 34.21356E+2 00E+0 00E+0 Lizardite -Mg3Si2O5(OH)4 = 3.000Mg+2 - 6.000H+ + 2.000H4(SiO4) + 1.000H2O - log_k 33.100 - delta_h -247.218 #kJ/mol - # Enthalpy of formation: -4362 #kJ/mol #04EVA - -analytic -1.02107E+1 0E+0 1.29131E+4 0E+0 0E+0 +Mg3Si2O5(OH)4 = 3 Mg+2 - 6 H+ + 2 H4(SiO4) + H2O + log_k 33.08 + delta_h -247.218 #kJ/mol +# Enthalpy of formation: -4362.000 kJ/mol 04EVA + -analytic -10.23073E+0 00E+0 12.9131E+3 00E+0 00E+0 + -Vm 107.5 Mackinawite -FeS = 1.000Fe+2 - 1.000H+ + 1.000HS- - log_k -3.600 #91DAV - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.6E+0 0E+0 0E+0 0E+0 0E+0 +FeS = Fe+2 - H+ + HS- + log_k -3.19 #20LEM/PAL + -analytic -31.9E-1 00E+0 00E+0 00E+0 00E+0 + -Vm 20.45 -Maghemite(disord) -Fe2O3 = 2.000Fe+3 - 6.000H+ + 3.000H2O - log_k 3.310 #98DIA1 in 98CHI - delta_h -149.690 #kJ/mol - # Enthalpy of formation: -805.8 #kJ/mol - -analytic -2.29145E+1 0E+0 7.81884E+3 0E+0 0E+0 - -Maghemite(ord) -Fe2O3 = 2.000Fe+3 - 6.000H+ + 3.000H2O - log_k 3.520 #98DIA1 in 98CHI - delta_h -149.690 #kJ/mol - # Enthalpy of formation: -805.8 #kJ/mol - -analytic -2.27045E+1 0E+0 7.81884E+3 0E+0 0E+0 +Maghemite +Fe2O3 = 2 Fe+3 - 6 H+ + 3 H2O + log_k 2.79 + delta_h -149.612 #kJ/mol +# Enthalpy of formation: -807.990 kJ/mol 13LEM/BER + -analytic -23.4209E+0 00E+0 78.14779E+2 00E+0 00E+0 Magnesite(nat) -MgCO3 = 1.000Mg+2 + 1.000CO3-2 - log_k -8.910 - delta_h -24.290 #kJ/mol - # Enthalpy of formation: -1117.94 #kJ/mol #99KON/KON - -analytic -1.31654E+1 0E+0 1.26875E+3 0E+0 0E+0 +MgCO3 = Mg+2 + CO3-2 + log_k -8.91 + delta_h -24.29 #kJ/mol +# Enthalpy of formation: -1117.940 kJ/mol 99KON/KON + -analytic -13.16543E+0 00E+0 12.68755E+2 00E+0 00E+0 Magnesite(syn) -Mg(CO3) = 1.000Mg+2 + 1.000CO3-2 - log_k -8.100 - delta_h -28.930 #kJ/mol - # Enthalpy of formation: -1113.3 #kJ/mol #95ROB/HEM - -analytic -1.31683E+1 0E+0 1.51112E+3 0E+0 0E+0 +Mg(CO3) = Mg+2 + CO3-2 + log_k -8.1 + delta_h -28.93 #kJ/mol +# Enthalpy of formation: -1113.300 kJ/mol 95ROB/HEM + -analytic -13.16832E+0 00E+0 15.11119E+2 00E+0 00E+0 Magnetite -Fe3O4 = 2.000Fe+3 + 1.000Fe+2 - 8.000H+ + 4.000H2O - log_k 10.410 - delta_h -215.920 #kJ/mol - # Enthalpy of formation: -1115.4 #kJ/mol #88ONE - -analytic -2.74175E+1 0E+0 1.12783E+4 0E+0 0E+0 +Fe3O4 = 2 Fe+3 + Fe+2 - 8 H+ + 4 H2O + log_k 10.34 + delta_h -217.947 #kJ/mol +# Enthalpy of formation: -1115.780 kJ/mol 13LEM/BER + -analytic -27.84268E+0 00E+0 11.38416E+3 00E+0 00E+0 + -Vm 44.52 + +Malachite +Cu2CO3(OH)2 = 2 Cu+2 - 2 H+ + CO3-2 + 2 H2O + log_k -5.18 #91BAL/NOR in 07POW/BRO + delta_h -51.649 #kJ/mol +# Enthalpy of formation: -1065.441 kJ/mol + -analytic -14.22852E+0 00E+0 26.97815E+2 00E+0 00E+0 Manganite -MnOOH = 1.000Mn+2 - 2.000H+ + 1.500H2O + 0.250O2 - log_k 3.775 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.775E+0 0E+0 0E+0 0E+0 0E+0 +MnOOH = Mn+2 - 3 H+ - e- + 2 H2O + log_k 25.27 #96FAL/REA + -analytic 25.27E+0 00E+0 00E+0 00E+0 00E+0 Margarite -CaAl4Si2O10(OH)2 = 1.000Ca+2 + 4.000Al+3 - 14.000H+ + 2.000H4(SiO4) + 4.000H2O - log_k 37.000 - delta_h -518.308 #kJ/mol - # Enthalpy of formation: -6244 #kJ/mol #95ROB/HEM - -analytic -5.38035E+1 0E+0 2.70731E+4 0E+0 0E+0 +CaAl4Si2O10(OH)2 = Ca+2 + 4 Al+3 - 14 H+ + 2 H4(SiO4) + 4 H2O + log_k 36.99 + delta_h -518.308 #kJ/mol +# Enthalpy of formation: -6244.000 kJ/mol 95ROB/HEM + -analytic -53.81366E+0 00E+0 27.07311E+3 00E+0 00E+0 + -Vm 129.63 Massicot -PbO = 1.000Pb+2 - 2.000H+ + 1.000H2O - log_k 12.740 - delta_h -66.848 #kJ/mol - # Enthalpy of formation: -218.062 #kJ/mol #98CHA - -analytic 1.02875E+0 0E+0 3.49171E+3 0E+0 0E+0 +PbO = Pb+2 - 2 H+ + H2O + log_k 12.74 + delta_h -66.848 #kJ/mol +# Enthalpy of formation: -218.062 kJ/mol 98CHA + -analytic 10.28733E-1 00E+0 34.91714E+2 00E+0 00E+0 Melanterite -FeSO4:7H2O = 1.000Fe+2 + 1.000SO4-2 + 7.000H2O - log_k -2.210 #90NOR/PLU - delta_h 20.543 #kJ/mol - # Enthalpy of formation: -3020.693 #kJ/mol - -analytic 1.38897E+0 0E+0 -1.07303E+3 0E+0 0E+0 +FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.28 + delta_h 12.067 #kJ/mol +# Enthalpy of formation: -3012.512 kJ/mol 13LEM/BER + -analytic -16.59523E-2 00E+0 -63.03033E+1 00E+0 00E+0 Mercallite -KHSO4 = 1.000K+ + 1.000H+ + 1.000SO4-2 - log_k -1.400 #84HAR/MOL - delta_h -0.590 #kJ/mol - # Enthalpy of formation: -1160.89 #kJ/mol #74NAU/RYZ - -analytic -1.50336E+0 0E+0 3.08178E+1 0E+0 0E+0 +KHSO4 = K+ + H+ + SO4-2 + log_k -1.4 #84HAR/MOL + delta_h -0.59 #kJ/mol +# Enthalpy of formation: -1160.890 kJ/mol 74NAU/RYZ + -analytic -15.03364E-1 00E+0 30.81785E+0 00E+0 00E+0 Merlinoite_K -K1.04Al1.04Si1.96O6:1.69H2O = 1.040K+ + 1.040Al+3 - 4.160H+ + 1.960H4(SiO4) - 0.150H2O - log_k 9.490 - delta_h -105.627 #kJ/mol - # Enthalpy of formation: -3537.6 #kJ/mol #09BLA - -analytic -9.01503E+0 0E+0 5.51727E+3 0E+0 0E+0 +K1.04Al1.04Si1.96O6:1.69H2O = 1.04 K+ + 1.04 Al+3 - 4.16 H+ + 1.96 H4(SiO4) - 0.15 H2O + log_k 9.47 + delta_h -105.627 #kJ/mol +# Enthalpy of formation: -3537.600 kJ/mol 09BLA + -analytic -90.35056E-1 00E+0 55.17282E+2 00E+0 00E+0 + -Vm 112.91 Merlinoite_Na -Na1.04Al1.04Si1.96O6:2.27H2O = 1.040Na+ + 1.040Al+3 - 4.160H+ + 1.960H4(SiO4) + 0.430H2O - log_k 10.300 - delta_h -115.307 #kJ/mol - # Enthalpy of formation: -3681.43 #kJ/mol #09BLA - -analytic -9.90089E+0 0E+0 6.0229E+3 0E+0 0E+0 +Na1.04Al1.04Si1.96O6:2.27H2O = 1.04 Na+ + 1.04 Al+3 - 4.16 H+ + 1.96 H4(SiO4) + 0.43 H2O + log_k 10.29 + delta_h -115.307 #kJ/mol +# Enthalpy of formation: -3681.430 kJ/mol 09BLA + -analytic -99.10919E-1 00E+0 60.22904E+2 00E+0 00E+0 + -Vm 114.04 -Mg(HPO4):3H2O(s) -Mg(HPO4):3H2O = 1.000Mg+2 - 1.000H+ + 1.000H2(PO4)- + 3.000H2O - log_k 1.410 #01WEN/MUS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.41E+0 0E+0 0E+0 0E+0 0E+0 +Metacinnabar +HgS = - H+ + HS- + Hg+2 + log_k -38.53 + delta_h 200.41 #kJ/mol +# Enthalpy of formation: -46.500 kJ/mol 95ROB/HEM + -analytic -34.19675E-1 00E+0 -10.46814E+3 00E+0 00E+0 -Mg(NO3)2(s) -Mg(NO3)2 = 1.000Mg+2 + 2.000NO3- - log_k 15.500 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.55E+1 0E+0 0E+0 0E+0 0E+0 - -Mg(NO3)2:6H2O(s) -Mg(NO3)2:6H2O = 1.000Mg+2 + 2.000NO3- + 6.000H2O - log_k 2.580 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.58E+0 0E+0 0E+0 0E+0 0E+0 - -Mg(SO4)(s) -Mg(SO4) = 1.000Mg+2 + 1.000SO4-2 - log_k 9.100 - delta_h -114.550 #kJ/mol - # Enthalpy of formation: -1261.79 #kJ/mol #98CHA - -analytic -1.09683E+1 0E+0 5.98335E+3 0E+0 0E+0 - -Mg(SO4):H2O(s) -Mg(SO4):H2O = 1.000Mg+2 + 1.000SO4-2 + 1.000H2O - log_k -0.120 #84HAR/MOL - delta_h -51.464 #kJ/mol - # Enthalpy of formation: -1610.706 #kJ/mol - -analytic -9.13609E+0 0E+0 2.68815E+3 0E+0 0E+0 - -Mg(SeO3):6H2O(s) -Mg(SeO3):6H2O = 1.000Mg+2 + 1.000SeO3-2 + 6.000H2O - log_k -5.820 #05OLI/NOL - delta_h 18.070 #kJ/mol - # Enthalpy of formation: -2707.21 #kJ/mol #05OLI/NOL - -analytic -2.65428E+0 0E+0 -9.4386E+2 0E+0 0E+0 - -Mg(SeO4):6H2O(s) -Mg(SeO4):6H2O = 1.000Mg+2 + 1.000SeO4-2 + 6.000H2O - log_k -1.133 #05OLI/NOL - delta_h -4.080 #kJ/mol - # Enthalpy of formation: -2781.4 #kJ/mol #05OLI/NOL - -analytic -1.84778E+0 0E+0 2.13113E+2 0E+0 0E+0 +Metaschoepite +UO3:2H2O = UO2+2 - 2 H+ + 3 H2O + log_k 5.35 #20GRE/GAO + -analytic 53.5E-1 00E+0 00E+0 00E+0 00E+0 Mg(cr) -Mg = 1.000Mg+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 122.770 - delta_h -746.763 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -8.05707E+0 0E+0 3.90061E+4 0E+0 0E+0 +Mg = Mg+2 + 2 e- + log_k 79.78 + delta_h -467 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -20.34888E-1 00E+0 24.39311E+3 00E+0 00E+0 -Mg-oxychlorur -Mg2Cl(OH)3:4H2O = 2.000Mg+2 - 3.000H+ + 1.000Cl- + 7.000H2O - log_k 26.030 #84HAR/MOL - delta_h -154.690 #kJ/mol - # Enthalpy of formation: -2947.2 #kJ/mol #82WAG/EVA - -analytic -1.07048E+0 0E+0 8.08001E+3 0E+0 0E+0 +Mg(HPO4):3H2O(s) +Mg(HPO4):3H2O = Mg+2 - H+ + H2(PO4)- + 3 H2O + log_k 1.41 #01WEN/MUS + -analytic 14.1E-1 00E+0 00E+0 00E+0 00E+0 + +Mg(NO3)2(s) +Mg(NO3)2 = Mg+2 + 2 NO3- + log_k 15.5 #96FAL/REA + -analytic 15.5E+0 00E+0 00E+0 00E+0 00E+0 + +Mg(NO3)2:6H2O(s) +Mg(NO3)2:6H2O = Mg+2 + 2 NO3- + 6 H2O + log_k 2.58 #96FAL/REA + -analytic 25.8E-1 00E+0 00E+0 00E+0 00E+0 + +Mg(SeO3):6H2O(s) +Mg(SeO3):6H2O = Mg+2 + SeO3-2 + 6 H2O + log_k -5.82 #05OLI/NOL + delta_h 18.07 #kJ/mol +# Enthalpy of formation: -2707.210 kJ/mol 05OLI/NOL + -analytic -26.54272E-1 00E+0 -94.38618E+1 00E+0 00E+0 + +Mg(SeO4):6H2O(s) +Mg(SeO4):6H2O = Mg+2 + SeO4-2 + 6 H2O + log_k -1.13 #05OLI/NOL + delta_h -4.08 #kJ/mol +# Enthalpy of formation: -2781.400 kJ/mol 05OLI/NOL + -analytic -18.44785E-1 00E+0 21.31132E+1 00E+0 00E+0 + +Mg(SO4)(s) +Mg(SO4) = Mg+2 + SO4-2 + log_k 9.1 + delta_h -114.55 #kJ/mol +# Enthalpy of formation: -1261.790 kJ/mol 98CHA + -analytic -10.9683E+0 00E+0 59.83363E+2 00E+0 00E+0 + +Mg(SO4):H2O(s) +Mg(SO4):H2O = Mg+2 + SO4-2 + H2O + log_k -0.12 #84HAR/MOL + delta_h -51.464 #kJ/mol +# Enthalpy of formation: -1610.705 kJ/mol + -analytic -91.36106E-1 00E+0 26.88152E+2 00E+0 00E+0 Mg3(PO4)2(cr) -Mg3(PO4)2 = 3.000Mg+2 - 4.000H+ + 2.000H2(PO4)- - log_k 15.820 #68RAC/SOP - delta_h -214.093 #kJ/mol - # Enthalpy of formation: -3792.107 #kJ/mol - -analytic -2.16874E+1 0E+0 1.11828E+4 0E+0 0E+0 +Mg3(PO4)2 = 3 Mg+2 - 4 H+ + 2 H2(PO4)- + log_k 15.82 #68RAC/SOP + delta_h -214.093 #kJ/mol +# Enthalpy of formation: -3792.106 kJ/mol + -analytic -21.68748E+0 00E+0 11.18286E+3 00E+0 00E+0 Mg3(PO4)2:22H2O(s) -Mg3(PO4)2:22H2O = 3.000Mg+2 - 4.000H+ + 2.000H2(PO4)- + 22.000H2O - log_k 16.000 #63TAY/FRA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.6E+1 0E+0 0E+0 0E+0 0E+0 +Mg3(PO4)2:22H2O = 3 Mg+2 - 4 H+ + 2 H2(PO4)- + 22 H2O + log_k 16 #63TAY/FRA + -analytic 16E+0 00E+0 00E+0 00E+0 00E+0 Mg3(PO4)2:8H2O(s) -Mg3(PO4)2:8H2O = 3.000Mg+2 - 4.000H+ + 2.000H2(PO4)- + 8.000H2O - log_k 13.900 #63TAY/FRA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.39E+1 0E+0 0E+0 0E+0 0E+0 +Mg3(PO4)2:8H2O = 3 Mg+2 - 4 H+ + 2 H2(PO4)- + 8 H2O + log_k 13.9 #63TAY/FRA + -analytic 13.9E+0 00E+0 00E+0 00E+0 00E+0 Mg5(CO3)4(OH)2:4H2O(s) -Mg5(CO3)4(OH)2:4H2O = 5.000Mg+2 - 2.000H+ + 4.000CO3-2 + 6.000H2O - log_k -10.310 - delta_h -234.900 #kJ/mol - # Enthalpy of formation: -6516 #kJ/mol #73ROB/HEM - -analytic -5.14627E+1 0E+0 1.22697E+4 0E+0 0E+0 +Mg5(CO3)4(OH)2:4H2O = 5 Mg+2 - 2 H+ + 4 CO3-2 + 6 H2O + log_k -10.31 + delta_h -234.9 #kJ/mol +# Enthalpy of formation: -6516.000 kJ/mol 73ROB/HEM + -analytic -51.46271E+0 00E+0 12.26968E+3 00E+0 00E+0 MgBr2(s) -MgBr2 = 1.000Mg+2 + 2.000Br- - log_k 27.800 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.78E+1 0E+0 0E+0 0E+0 0E+0 +MgBr2 = Mg+2 + 2 Br- + log_k 27.8 #96FAL/REA + -analytic 27.8E+0 00E+0 00E+0 00E+0 00E+0 MgBr2:6H2O(s) -MgBr2:6H2O = 1.000Mg+2 + 2.000Br- + 6.000H2O - log_k 5.220 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.22E+0 0E+0 0E+0 0E+0 0E+0 +MgBr2:6H2O = Mg+2 + 2 Br- + 6 H2O + log_k 5.22 #96FAL/REA + -analytic 52.2E-1 00E+0 00E+0 00E+0 00E+0 MgCl2(s) -MgCl2 = 1.000Mg+2 + 2.000Cl- - log_k 22.030 - delta_h -159.540 #kJ/mol - # Enthalpy of formation: -641.62 #kJ/mol #98CHA - -analytic -5.92017E+0 0E+0 8.33334E+3 0E+0 0E+0 +MgCl2 = Mg+2 + 2 Cl- + log_k 22.03 + delta_h -159.54 #kJ/mol +# Enthalpy of formation: -641.620 kJ/mol 98CHA + -analytic -59.20208E-1 00E+0 83.33355E+2 00E+0 00E+0 MgCl2:2H2O(s) -MgCl2:2H2O = 1.000Mg+2 + 2.000Cl- + 2.000H2O - log_k 12.900 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.29E+1 0E+0 0E+0 0E+0 0E+0 +MgCl2:2H2O = Mg+2 + 2 Cl- + 2 H2O + log_k 12.9 #96FAL/REA + -analytic 12.9E+0 00E+0 00E+0 00E+0 00E+0 MgCl2:4H2O(s) -MgCl2:4H2O = 1.000Mg+2 + 2.000Cl- + 4.000H2O - log_k 7.440 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.44E+0 0E+0 0E+0 0E+0 0E+0 +MgCl2:4H2O = Mg+2 + 2 Cl- + 4 H2O + log_k 7.44 #96FAL/REA + -analytic 74.4E-1 00E+0 00E+0 00E+0 00E+0 MgCl2:H2O(s) -MgCl2:H2O = 1.000Mg+2 + 2.000Cl- + 1.000H2O - log_k 16.220 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.622E+1 0E+0 0E+0 0E+0 0E+0 +MgCl2:H2O = Mg+2 + 2 Cl- + H2O + log_k 16.22 #96FAL/REA + -analytic 16.22E+0 00E+0 00E+0 00E+0 00E+0 -MgCrO4(s) -MgCrO4 = 1.000Mg+2 + 1.000CrO4-2 - log_k -86.990 - delta_h 437.600 #kJ/mol - # Enthalpy of formation: -1783.6 #kJ/mol #95ROB/HEM - -analytic -1.03259E+1 0E+0 -2.28574E+4 0E+0 0E+0 +MgCr2O4(s) +MgCr2O4 = Mg+2 - 8 H+ + 2 Cr+3 + 4 H2O + log_k 22.17 + delta_h -307.72 #kJ/mol +# Enthalpy of formation: -1783.600 kJ/mol 95ROB/HEM + -analytic -31.74023E+0 00E+0 16.07334E+3 00E+0 00E+0 MgF2(cr) -MgF2 = 1.000Mg+2 + 2.000F- - log_k -9.220 #92GRE/FUG - delta_h -13.500 #kJ/mol - # Enthalpy of formation: -1124.2 #kJ/mol - -analytic -1.15851E+1 0E+0 7.05153E+2 0E+0 0E+0 +MgF2 = Mg+2 + 2 F- + log_k -9.22 + delta_h -13.5 #kJ/mol +# Enthalpy of formation: -1124.200 kJ/mol 92GRE/FUG + -analytic -11.5851E+0 00E+0 70.51541E+1 00E+0 00E+0 MgI2(s) -MgI2 = 1.000Mg+2 + 2.000I- - log_k 35.000 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.5E+1 0E+0 0E+0 0E+0 0E+0 +MgI2 = Mg+2 + 2 I- + log_k 35 #96FAL/REA + -analytic 35E+0 00E+0 00E+0 00E+0 00E+0 MgMoO4(s) -MgMoO4 = 1.000Mg+2 + 1.000MoO4-2 - log_k -0.640 - delta_h -62.967 #kJ/mol - # Enthalpy of formation: -1401.033 #kJ/mol - -analytic -1.16713E+1 0E+0 3.28899E+3 0E+0 0E+0 +MgMoO4 = Mg+2 + MoO4-2 + log_k -0.64 + delta_h -62.966 #kJ/mol +# Enthalpy of formation: -1401.033 kJ/mol + -analytic -11.67117E+0 00E+0 32.88943E+2 00E+0 00E+0 + +Mg-oxychlorur +Mg2Cl(OH)3:4H2O = 2 Mg+2 - 3 H+ + Cl- + 7 H2O + log_k 26.03 #84HAR/MOL + delta_h -154.69 #kJ/mol +# Enthalpy of formation: -2947.200 kJ/mol 82WAG/EVA + -analytic -10.70525E-1 00E+0 80.80021E+2 00E+0 00E+0 Microcline -KAlSi3O8 = 1.000K+ + 1.000Al+3 - 4.000H+ + 3.000H4(SiO4) - 4.000H2O - log_k 0.050 - delta_h -56.463 #kJ/mol - # Enthalpy of formation: -3974.34 #kJ/mol #99ARN/STE - -analytic -9.84188E+0 0E+0 2.94926E+3 0E+0 0E+0 +KAlSi3O8 = K+ + Al+3 - 4 H+ + 3 H4(SiO4) - 4 H2O + log_k 0.05 + delta_h -56.462 #kJ/mol +# Enthalpy of formation: -3974.340 kJ/mol 99ARN/STE + -analytic -98.41718E-1 00E+0 29.49216E+2 00E+0 00E+0 + -Vm 108.74 Millerite -NiS = 1.000Ni+2 - 1.000H+ + 1.000HS- - log_k -10.130 - delta_h 22.688 #kJ/mol - # Enthalpy of formation: -94 #kJ/mol #05GAM/BUG - -analytic -6.15524E+0 0E+0 -1.18508E+3 0E+0 0E+0 +NiS = Ni+2 - H+ + HS- + log_k -10.13 + delta_h 22.688 #kJ/mol +# Enthalpy of formation: -94.000 kJ/mol 05GAM/BUG + -analytic -61.55233E-1 00E+0 -11.85077E+2 00E+0 00E+0 Minium -Pb3O4 = 3.000Pb+2 - 6.000H+ + 3.000H2O + 0.500O2 - log_k 30.540 - delta_h -142.111 #kJ/mol - # Enthalpy of formation: -718.686 #kJ/mol - -analytic 5.64326E+0 0E+0 7.42296E+3 0E+0 0E+0 +Pb3O4 = 3 Pb+2 - 8 H+ - 2 e- + 4 H2O + log_k 73.53 + delta_h -421.874 #kJ/mol +# Enthalpy of formation: -718.686 kJ/mol 98CHA + -analytic -37.91522E-2 00E+0 22.03601E+3 00E+0 00E+0 Minnesotaite -Fe3Si4O10(OH)2 = 3.000Fe+2 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 14.930 - delta_h -148.466 #kJ/mol - # Enthalpy of formation: -4822.99 #kJ/mol #83MIY/KLE - -analytic -1.10801E+1 0E+0 7.75491E+3 0E+0 0E+0 +Fe3Si4O10(OH)2 = 3 Fe+2 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 14.99 + delta_h -149.351 #kJ/mol +# Enthalpy of formation: -4822.990 kJ/mol 83MIY/KLE + -analytic -11.17517E+0 00E+0 78.01146E+2 00E+0 00E+0 + -Vm 148.5 Mirabilite -Na2SO4:10H2O = 2.000Na+ + 1.000SO4-2 + 10.000H2O - log_k -1.230 #84HAR/MOL - delta_h 79.471 #kJ/mol - # Enthalpy of formation: -4327.791 #kJ/mol - -analytic 1.26927E+1 0E+0 -4.15105E+3 0E+0 0E+0 +Na2SO4:10H2O = 2 Na+ + SO4-2 + 10 H2O + log_k -1.23 #84HAR/MOL + delta_h 79.471 #kJ/mol +# Enthalpy of formation: -4327.788 kJ/mol + -analytic 12.69272E+0 00E+0 -41.51059E+2 00E+0 00E+0 + -Vm 219.8 + +Mn(cr) +Mn = Mn+2 + 2 e- + log_k 39.99 + delta_h -220.8 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA in 05OLI/NOL + -analytic 13.075E-1 00E+0 11.53319E+3 00E+0 00E+0 Mn(H2SiO4)(s) -Mn(H2SiO4) = 1.000Mn+2 - 2.000H+ + 1.000H4(SiO4) - log_k 12.440 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.244E+1 0E+0 0E+0 0E+0 0E+0 +Mn(H2SiO4) = Mn+2 - 2 H+ + H4(SiO4) + log_k 12.44 #88CHA/NEW + -analytic 12.44E+0 00E+0 00E+0 00E+0 00E+0 Mn(HPO4)(s) -Mn(HPO4) = 1.000Mn+2 - 1.000H+ + 1.000H2(PO4)- - log_k -5.740 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.74E+0 0E+0 0E+0 0E+0 0E+0 - -Mn(SO4)(s) -Mn(SO4) = 1.000Mn+2 + 1.000SO4-2 - log_k -2.680 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.68E+0 0E+0 0E+0 0E+0 0E+0 +Mn(HPO4) = Mn+2 - H+ + H2(PO4)- + log_k -5.74 #96FAL/REA + -analytic -57.4E-1 00E+0 00E+0 00E+0 00E+0 Mn(SeO3):2H2O(cr) -Mn(SeO3):2H2O = 1.000Mn+2 + 1.000SeO3-2 + 2.000H2O - log_k -7.600 #05OLI/NOL - delta_h -18.920 #kJ/mol - # Enthalpy of formation: -1280.7 #kJ/mol #05OLI/NOL - -analytic -1.09146E+1 0E+0 9.88259E+2 0E+0 0E+0 +Mn(SeO3):2H2O = Mn+2 + SeO3-2 + 2 H2O + log_k -7.6 #05OLI/NOL + delta_h -18.92 #kJ/mol +# Enthalpy of formation: -1280.700 kJ/mol 05OLI/NOL + -analytic -10.91464E+0 00E+0 98.82604E+1 00E+0 00E+0 -#Mn(cr) -#Mn = 1.000Mn+2 + 1.000H2O - 2.000H+ - 0.500O2 - # log_k - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #82WAG/EVA in 05OLI/NOL - # -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 +Mn(SO4)(s) +Mn(SO4) = Mn+2 + SO4-2 + log_k -2.68 #96FAL/REA + -analytic -26.8E-1 00E+0 00E+0 00E+0 00E+0 Mn2(Pyrophos)(s) -Mn2(Pyrophos) = 2.000Mn+2 + 1.000Pyrophos-4 - log_k -19.500 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.95E+1 0E+0 0E+0 0E+0 0E+0 +Mn2(Pyrophos) = 2 Mn+2 + Pyrophos-4 + log_k -19.5 #88CHA/NEW + -analytic -19.5E+0 00E+0 00E+0 00E+0 00E+0 Mn3(PO4)2(s) -Mn3(PO4)2 = 3.000Mn+2 - 4.000H+ + 2.000H2(PO4)- - log_k 15.320 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.532E+1 0E+0 0E+0 0E+0 0E+0 +Mn3(PO4)2 = 3 Mn+2 - 4 H+ + 2 H2(PO4)- + log_k 15.32 #96FAL/REA + -analytic 15.32E+0 00E+0 00E+0 00E+0 00E+0 Mn3(PO4)2:3H2O(s) -Mn3(PO4)2:3H2O = 3.000Mn+2 - 4.000H+ + 2.000H2(PO4)- + 3.000H2O - log_k 2.320 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.32E+0 0E+0 0E+0 0E+0 0E+0 +Mn3(PO4)2:3H2O = 3 Mn+2 - 4 H+ + 2 H2(PO4)- + 3 H2O + log_k 2.32 #96FAL/REA + -analytic 23.2E-1 00E+0 00E+0 00E+0 00E+0 MnCl2:2H2O(s) -MnCl2:2H2O = 1.000Mn+2 + 2.000Cl- + 2.000H2O - log_k 3.980 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.98E+0 0E+0 0E+0 0E+0 0E+0 +MnCl2:2H2O = Mn+2 + 2 Cl- + 2 H2O + log_k 3.98 #96FAL/REA + -analytic 39.8E-1 00E+0 00E+0 00E+0 00E+0 MnCl2:4H2O(s) -MnCl2:4H2O = 1.000Mn+2 + 2.000Cl- + 4.000H2O - log_k 2.710 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.71E+0 0E+0 0E+0 0E+0 0E+0 +MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.71 #96FAL/REA + -analytic 27.1E-1 00E+0 00E+0 00E+0 00E+0 MnCl2:H2O(s) -MnCl2:H2O = 1.000Mn+2 + 2.000Cl- + 1.000H2O - log_k 5.530 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.53E+0 0E+0 0E+0 0E+0 0E+0 +MnCl2:H2O = Mn+2 + 2 Cl- + H2O + log_k 5.53 #96FAL/REA + -analytic 55.3E-1 00E+0 00E+0 00E+0 00E+0 MnO(s) -MnO = 1.000Mn+2 - 2.000H+ + 1.000H2O - log_k 17.900 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.79E+1 0E+0 0E+0 0E+0 0E+0 +MnO = Mn+2 - 2 H+ + H2O + log_k 17.9 #96FAL/REA + -analytic 17.9E+0 00E+0 00E+0 00E+0 00E+0 MnO2(s) -MnO2 = 1.000Mn+2 - 2.000H+ + 1.000H2O + 0.500O2 - log_k -0.990 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -9.9E-1 0E+0 0E+0 0E+0 0E+0 +MnO2 = Mn+2 - 4 H+ - 2 e- + 2 H2O + log_k 42 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 + -analytic 42E+0 00E+0 00E+0 00E+0 00E+0 MnSe(alfa) -MnSe = 1.000Mn+2 - 1.000H+ + 1.000HSe- - log_k 0.300 - delta_h -28.579 #kJ/mol - # Enthalpy of formation: -177.921 #kJ/mol - -analytic -4.70682E+0 0E+0 1.49278E+3 0E+0 0E+0 +MnSe = Mn+2 - H+ + HSe- + log_k 0.33 + delta_h -28.579 #kJ/mol +# Enthalpy of formation: -177.921 kJ/mol + -analytic -46.76826E-1 00E+0 14.92785E+2 00E+0 00E+0 MnSe2(cr) -MnSe2 = 1.000Mn+2 + 2.000HSe- - 1.000H2O + 0.500O2 - log_k -51.140 - delta_h 268.063 #kJ/mol - # Enthalpy of formation: -180.5 #kJ/mol #05OLI/NOL - -analytic -4.17745E+0 0E+0 -1.40019E+4 0E+0 0E+0 +MnSe2 = Mn+2 - 2 H+ - 2 e- + 2 HSe- + log_k -8.12 + delta_h -11.7 #kJ/mol +# Enthalpy of formation: -180.500 kJ/mol 05OLI/NOL + -analytic -10.16975E+0 00E+0 61.11336E+1 00E+0 00E+0 -Mo(s) -Mo = 2.000H+ + 1.000MoO4-2 - 1.000H2O - 1.500O2 - log_k 109.390 - delta_h -692.969 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #82WAG/EVA - -analytic -1.20128E+1 0E+0 3.61962E+4 0E+0 0E+0 +Mo(cr) +Mo = 8 H+ + 6 e- + MoO4-2 - 4 H2O + log_k -19.58 + delta_h 146.32 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA + -analytic 60.54164E-1 00E+0 -76.42826E+2 00E+0 00E+0 Mo3O8(s) -Mo3O8 = 6.000H+ + 3.000MoO4-2 - 3.000H2O - 0.500O2 - log_k -20.570 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.057E+1 0E+0 0E+0 0E+0 0E+0 - -MoO2(s) -MoO2 = 2.000H+ + 1.000MoO4-2 - 1.000H2O - 0.500O2 - log_k 13.110 - delta_h -117.246 #kJ/mol - # Enthalpy of formation: -587.857 #kJ/mol - -analytic -7.43059E+0 0E+0 6.12418E+3 0E+0 0E+0 - -MoO3(s) -MoO3 = 2.000H+ + 1.000MoO4-2 - 1.000H2O - log_k -11.980 - delta_h 34.001 #kJ/mol - # Enthalpy of formation: -745.171 #kJ/mol - -analytic -6.02329E+0 0E+0 -1.77599E+3 0E+0 0E+0 - -MoS2(s) -MoS2 = 4.000H+ + 2.000HS- + 1.000MoO4-2 - 3.000H2O - 0.500O2 - log_k -26.920 - delta_h 105.752 #kJ/mol - # Enthalpy of formation: -271.795 #kJ/mol - -analytic -8.39307E+0 0E+0 -5.5238E+3 0E+0 0E+0 - -MoS3(s) -MoS3 = 5.000H+ + 3.000HS- + 1.000MoO4-2 - 4.000H2O - log_k -68.070 - delta_h 354.849 #kJ/mol - # Enthalpy of formation: -257.429 #kJ/mol - -analytic -5.90321E+0 0E+0 -1.8535E+4 0E+0 0E+0 +Mo3O8 = 8 H+ + 2 e- + 3 MoO4-2 - 4 H2O + log_k -63.56 + -analytic -63.56E+0 00E+0 00E+0 00E+0 00E+0 Monocarboaluminate -(CaO)3Al2O3:CaCO3:10.68H2O = 4.000Ca+2 + 2.000Al+3 - 12.000H+ + 1.000CO3-2 + 16.680H2O - log_k 70.300 #95DAM/GLA - delta_h -515.924 #kJ/mol - # Enthalpy of formation: -8175.75 #kJ/mol #10BLA/BOU2 - -analytic -2.00859E+1 0E+0 2.69485E+4 0E+0 0E+0 +(CaO)3Al2O3:CaCO3:10.68H2O = 4 Ca+2 + 2 Al+3 - 12 H+ + CO3-2 + 16.68 H2O + log_k 70.3 #95DAM/GLA + delta_h -515.924 #kJ/mol +# Enthalpy of formation: -8175.750 kJ/mol 10BLA/BOU2 + -analytic -20.086E+0 00E+0 26.94859E+3 00E+0 00E+0 + -Vm 261.96 Monosulfate-Fe -Ca4Fe2(SO4)(OH)12:6H2O = 4.000Ca+2 + 2.000Fe+3 - 12.000H+ + 1.000SO4-2 + 18.000H2O - log_k 66.050 #10BLA/BOU2 - delta_h -477.312 #kJ/mol - # Enthalpy of formation: -7846.968 #kJ/mol - -analytic -1.75714E+1 0E+0 2.49317E+4 0E+0 0E+0 +Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe+3 - 12 H+ + SO4-2 + 18 H2O + log_k 66.05 #10BLA/BOU2 + delta_h -479.966 #kJ/mol +# Enthalpy of formation: -7846.419 kJ/mol + -analytic -18.03643E+0 00E+0 25.07037E+3 00E+0 00E+0 + -Vm 316.06 Monosulfoaluminate -Ca4Al2(SO4)(OH)12:6H2O = 4.000Ca+2 + 2.000Al+3 - 12.000H+ + 1.000SO4-2 + 18.000H2O - log_k 73.070 #10BLA/BOU2 - delta_h -539.400 #kJ/mol - # Enthalpy of formation: -8763.68 #kJ/mol #10BLA/BOU2 - -analytic -2.14287E+1 0E+0 2.81748E+4 0E+0 0E+0 +Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al+3 - 12 H+ + SO4-2 + 18 H2O + log_k 73.07 #10BLA/BOU2 + delta_h -539.4 #kJ/mol +# Enthalpy of formation: -8763.680 kJ/mol 10BLA/BOU2 + -analytic -21.42882E+0 00E+0 28.17482E+3 00E+0 00E+0 + -Vm 311.26 Montmorillonite-BCCa -Ca0.17Mg0.34Al1.66Si4O10(OH)2 = 0.170Ca+2 + 0.340Mg+2 + 1.660Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 4.200 - delta_h -156.000 #kJ/mol - # Enthalpy of formation: -5690.29 #kJ/mol #15BLA/VIE - -analytic -2.313E+1 0E+0 8.14844E+3 0E+0 0E+0 +Ca0.17Mg0.34Al1.66Si4O10(OH)2 = 0.17 Ca+2 + 0.34 Mg+2 + 1.66 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 4.2 + delta_h -156 #kJ/mol +# Enthalpy of formation: -5690.290 kJ/mol 15BLA/VIE + -analytic -23.13003E+0 00E+0 81.48448E+2 00E+0 00E+0 + -Vm 135.58 Montmorillonite-BCK -K0.34Mg0.34Al1.66Si4O10(OH)2 = 0.340Mg+2 + 0.340K+ + 1.660Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 2.810 - delta_h -136.198 #kJ/mol - # Enthalpy of formation: -5703.51 #kJ/mol #15BLA/VIE - -analytic -2.10508E+1 0E+0 7.11411E+3 0E+0 0E+0 +K0.34Mg0.34Al1.66Si4O10(OH)2 = 0.34 Mg+2 + 0.34 K+ + 1.66 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 2.81 + delta_h -136.198 #kJ/mol +# Enthalpy of formation: -5703.510 kJ/mol 15BLA/VIE + -analytic -21.05087E+0 00E+0 71.14117E+2 00E+0 00E+0 + -Vm 134.69 Montmorillonite-BCMg -Mg0.17Mg0.34Al1.66Si4O10(OH)2 = 0.510Mg+2 + 1.660Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 3.690 - delta_h -157.360 #kJ/mol - # Enthalpy of formation: -5676.01 #kJ/mol #15BLA/VIE - -analytic -2.38782E+1 0E+0 8.21947E+3 0E+0 0E+0 +Mg0.17Mg0.34Al1.66Si4O10(OH)2 = 0.51 Mg+2 + 1.66 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 3.69 + delta_h -157.36 #kJ/mol +# Enthalpy of formation: -5676.010 kJ/mol 15BLA/VIE + -analytic -23.87829E+0 00E+0 82.19485E+2 00E+0 00E+0 + -Vm 131.58 Montmorillonite-BCNa -Na0.34Mg0.34Al1.66Si4O10(OH)2 = 0.340Mg+2 + 0.340Na+ + 1.660Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 3.390 - delta_h -145.286 #kJ/mol - # Enthalpy of formation: -5690.41 #kJ/mol #15BLA/VIE - -analytic -2.2063E+1 0E+0 7.58881E+3 0E+0 0E+0 +Na0.34Mg0.34Al1.66Si4O10(OH)2 = 0.34 Mg+2 + 0.34 Na+ + 1.66 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 3.39 + delta_h -145.286 #kJ/mol +# Enthalpy of formation: -5690.410 kJ/mol 15BLA/VIE + -analytic -22.06301E+0 00E+0 75.88816E+2 00E+0 00E+0 + -Vm 133.96 Montmorillonite-HCCa -Ca0.3Mg0.6Al1.4Si4O10(OH)2 = 0.300Ca+2 + 0.600Mg+2 + 1.400Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 6.890 - delta_h -163.896 #kJ/mol - # Enthalpy of formation: -5734.42 #kJ/mol #15BLA/VIE - -analytic -2.18233E+1 0E+0 8.56087E+3 0E+0 0E+0 +Ca0.3Mg0.6Al1.4Si4O10(OH)2 = 0.3 Ca+2 + 0.6 Mg+2 + 1.4 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 6.89 + delta_h -163.896 #kJ/mol +# Enthalpy of formation: -5734.420 kJ/mol 15BLA/VIE + -analytic -21.82335E+0 00E+0 85.60884E+2 00E+0 00E+0 + -Vm 140.32 Montmorillonite-HCK -K0.6Mg0.6Al1.4Si4O10(OH)2 = 0.600Mg+2 + 0.600K+ + 1.400Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 4.430 - delta_h -128.960 #kJ/mol - # Enthalpy of formation: -5757.74 #kJ/mol #15BLA/VIE - -analytic -1.81628E+1 0E+0 6.73604E+3 0E+0 0E+0 +K0.6Mg0.6Al1.4Si4O10(OH)2 = 0.6 Mg+2 + 0.6 K+ + 1.4 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 4.43 + delta_h -128.96 #kJ/mol +# Enthalpy of formation: -5757.740 kJ/mol 15BLA/VIE + -analytic -18.16282E+0 00E+0 67.3605E+2 00E+0 00E+0 + -Vm 138.75 Montmorillonite-HCMg -Mg0.3Mg0.6Al1.4Si4O10(OH)2 = 0.900Mg+2 + 1.400Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 5.980 - delta_h -166.296 #kJ/mol - # Enthalpy of formation: -5709.22 #kJ/mol #15BLA/VIE - -analytic -2.31538E+1 0E+0 8.68623E+3 0E+0 0E+0 +Mg0.3Mg0.6Al1.4Si4O10(OH)2 = 0.9 Mg+2 + 1.4 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 5.98 + delta_h -166.296 #kJ/mol +# Enthalpy of formation: -5709.220 kJ/mol 15BLA/VIE + -analytic -23.15381E+0 00E+0 86.86245E+2 00E+0 00E+0 + -Vm 133.27 Montmorillonite-HCNa -Na0.6Mg0.6Al1.4Si4O10(OH)2 = 0.600Mg+2 + 0.600Na+ + 1.400Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 5.450 - delta_h -144.990 #kJ/mol - # Enthalpy of formation: -5734.63 #kJ/mol #15BLA/VIE - -analytic -1.99511E+1 0E+0 7.57334E+3 0E+0 0E+0 +Na0.6Mg0.6Al1.4Si4O10(OH)2 = 0.6 Mg+2 + 0.6 Na+ + 1.4 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 5.45 + delta_h -144.99 #kJ/mol +# Enthalpy of formation: -5734.630 kJ/mol 15BLA/VIE + -analytic -19.95116E+0 00E+0 75.73355E+2 00E+0 00E+0 + -Vm 137.47 + +MoO2(s) +MoO2 = 4 H+ + 2 e- + MoO4-2 - 2 H2O + log_k -29.88 + delta_h 162.51 #kJ/mol +# Enthalpy of formation: -587.851 kJ/mol + -analytic -14.0947E-1 00E+0 -84.88488E+2 00E+0 00E+0 + +MoO3(s) +MoO3 = 2 H+ + MoO4-2 - H2O + log_k -11.98 + delta_h 34.001 #kJ/mol +# Enthalpy of formation: -745.171 kJ/mol + -analytic -60.2328E-1 00E+0 -17.75996E+2 00E+0 00E+0 Mordenite_Ca -Ca0.515Al1.03Si4.97O12:3.1H2O = 0.515Ca+2 + 1.030Al+3 - 4.120H+ + 4.970H4(SiO4) - 4.780H2O - log_k -2.920 #09BLA - delta_h -74.768 #kJ/mol - # Enthalpy of formation: -6655.295 #kJ/mol - -analytic -1.60188E+1 0E+0 3.9054E+3 0E+0 0E+0 +Ca0.515Al1.03Si4.97O12:3.1H2O = 0.515 Ca+2 + 1.03 Al+3 - 4.12 H+ + 4.97 H4(SiO4) - 4.78 H2O + log_k -2.92 #09BLA + delta_h -74.732 #kJ/mol +# Enthalpy of formation: -6655.334 kJ/mol + -analytic -16.01248E+0 00E+0 39.03524E+2 00E+0 00E+0 + -Vm 209.8 Mordenite_Oregon -Ca0.289Na0.362Al0.94Si5.06O12:3.468H2O = 0.289Ca+2 + 0.362Na+ + 0.940Al+3 - 3.760H+ + 5.060H4(SiO4) - 4.772H2O - log_k -4.160 - delta_h -41.247 #kJ/mol - # Enthalpy of formation: -6738.44 #kJ/mol #92JOH/TAS - -analytic -1.13862E+1 0E+0 2.15448E+3 0E+0 0E+0 +Ca0.289Na0.362Al0.94Si5.06O12:3.468H2O = 0.289 Ca+2 + 0.362 Na+ + 0.94 Al+3 - 3.76 H+ + 5.06 H4(SiO4) - 4.772 H2O + log_k -4.18 + delta_h -41.247 #kJ/mol +# Enthalpy of formation: -6738.440 kJ/mol 92JOH/TAS + -analytic -11.40616E+0 00E+0 21.54481E+2 00E+0 00E+0 + -Vm 212.4 + +MoS2(s) +MoS2 = 6 H+ + 2 e- + 2 HS- + MoO4-2 - 4 H2O + log_k -69.91 + delta_h 385.522 #kJ/mol +# Enthalpy of formation: -271.804 kJ/mol + -analytic -23.69445E-1 00E+0 -20.13722E+3 00E+0 00E+0 + +MoS3(s) +MoS3 = 5 H+ + 3 HS- + MoO4-2 - 4 H2O + log_k -68.07 + delta_h 354.847 #kJ/mol +# Enthalpy of formation: -257.429 kJ/mol + -analytic -59.03474E-1 00E+0 -18.53495E+3 00E+0 00E+0 Muscovite -KAl3Si3O10(OH)2 = 1.000K+ + 3.000Al+3 - 10.000H+ + 3.000H4(SiO4) - log_k 13.040 - delta_h -276.122 #kJ/mol - # Enthalpy of formation: -5974.8 #kJ/mol #95HAS/CYG - -analytic -3.53344E+1 0E+0 1.44228E+4 0E+0 0E+0 - -Na(NO3)(s) -Na(NO3) = 1.000Na+ + 1.000NO3- - log_k 1.090 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.09E+0 0E+0 0E+0 0E+0 0E+0 - -Na(TcO4):4H2O(s) -Na(TcO4):4H2O = 1.000Na+ + 1.000TcO4- + 4.000H2O - log_k 0.790 #99RAR/RAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.9E-1 0E+0 0E+0 0E+0 0E+0 +KAl3Si3O10(OH)2 = K+ + 3 Al+3 - 10 H+ + 3 H4(SiO4) + log_k 13.02 + delta_h -276.122 #kJ/mol +# Enthalpy of formation: -5974.800 kJ/mol 95HAS/CYG + -analytic -35.3545E+0 00E+0 14.42286E+3 00E+0 00E+0 + -Vm 140.81 Na(cr) -Na = 1.000Na+ + 0.500H2O - 1.000H+ - 0.250O2 - log_k 67.385 - delta_h -380.222 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #92GRE/FUG (89COX/WAG) - -analytic 7.7315E-1 0E+0 1.98603E+4 0E+0 0E+0 +Na = Na+ + e- + log_k 45.89 + delta_h -240.34 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG (89COX/WAG) + -analytic 37.84239E-1 00E+0 12.55383E+3 00E+0 00E+0 + +Na(NO3)(s) +Na(NO3) = Na+ + NO3- + log_k 1.09 #96FAL/REA + -analytic 10.9E-1 00E+0 00E+0 00E+0 00E+0 Na2(CO3)(cr) -Na2(CO3) = 2.000Na+ + 1.000CO3-2 - log_k 1.120 - delta_h -26.710 #kJ/mol - # Enthalpy of formation: -1129.2 #kJ/mol #95ROB/HEM - -analytic -3.55938E+0 0E+0 1.39516E+3 0E+0 0E+0 +Na2(CO3) = 2 Na+ + CO3-2 + log_k 1.12 + delta_h -26.71 #kJ/mol +# Enthalpy of formation: -1129.200 kJ/mol 95ROB/HEM + -analytic -35.59391E-1 00E+0 13.9516E+2 00E+0 00E+0 Na2B4O7(cr) -Na2B4O7 = 2.000Na+ + 2.000H+ + 4.000B(OH)4- - 9.000H2O - log_k -16.060 - delta_h 2.534 #kJ/mol - # Enthalpy of formation: -3291.208 #kJ/mol - -analytic -1.56161E+1 0E+0 -1.3236E+2 0E+0 0E+0 +Na2B4O7 = 2 Na+ + 2 H+ + 4 B(OH)4- - 9 H2O + log_k -16.06 + delta_h 2.52 #kJ/mol +# Enthalpy of formation: -3291.196 kJ/mol + -analytic -15.61851E+0 00E+0 -13.16288E+1 00E+0 00E+0 Na2B4O7:10H2O(s) -Na2B4O7:10H2O = 2.000Na+ + 2.000H+ + 4.000B(OH)4- + 1.000H2O - log_k -24.580 - delta_h 141.721 #kJ/mol - # Enthalpy of formation: -6288.445 #kJ/mol - -analytic 2.48417E-1 0E+0 -7.40259E+3 0E+0 0E+0 +Na2B4O7:10H2O = 2 Na+ + 2 H+ + 4 B(OH)4- + H2O + log_k -24.58 + delta_h 141.471 #kJ/mol +# Enthalpy of formation: -6288.445 kJ/mol + -analytic 20.46553E-2 00E+0 -73.89545E+2 00E+0 00E+0 Na2CO3:7H2O(s) -Na2CO3:7H2O = 2.000Na+ + 1.000CO3-2 + 7.000H2O - log_k -0.460 #84HAR/MOL - delta_h 42.682 #kJ/mol - # Enthalpy of formation: -3199.402 #kJ/mol - -analytic 7.01755E+0 0E+0 -2.22943E+3 0E+0 0E+0 +Na2CO3:7H2O = 2 Na+ + CO3-2 + 7 H2O + log_k -0.46 #84HAR/MOL + delta_h 42.682 #kJ/mol +# Enthalpy of formation: -3199.400 kJ/mol + -analytic 70.17565E-1 00E+0 -22.29436E+2 00E+0 00E+0 Na2HPO4(cr) -Na2HPO4 = 2.000Na+ - 1.000H+ + 1.000H2(PO4)- - log_k 9.240 - delta_h -35.180 #kJ/mol - # Enthalpy of formation: -1748.1 #kJ/mol #82WAG/EVA - -analytic 3.07674E+0 0E+0 1.83758E+3 0E+0 0E+0 +Na2HPO4 = 2 Na+ - H+ + H2(PO4)- + log_k 9.24 + delta_h -35.18 #kJ/mol +# Enthalpy of formation: -1748.100 kJ/mol 82WAG/EVA + -analytic 30.76729E-1 00E+0 18.37579E+2 00E+0 00E+0 + +Na2Np2O7(cr) +Na2Np2O7 = 2 Na+ + 2 NpO2+2 - 6 H+ + 3 H2O + log_k 25.2 #20GRE/GAO + -analytic 25.2E+0 00E+0 00E+0 00E+0 00E+0 Na2O(cr) -Na2O = 2.000Na+ - 2.000H+ + 1.000H2O - log_k 67.460 - delta_h -351.710 #kJ/mol - # Enthalpy of formation: -414.8 #kJ/mol #95ROB/HEM - -analytic 5.84314E+0 0E+0 1.83711E+4 0E+0 0E+0 +Na2O = 2 Na+ - 2 H+ + H2O + log_k 67.46 + delta_h -351.71 #kJ/mol +# Enthalpy of formation: -414.800 kJ/mol 95ROB/HEM + -analytic 58.43053E-1 00E+0 18.37109E+3 00E+0 00E+0 + +Na2U2O7:H2O(cr) +Na2U2O7:H2O = 2 Na+ + 2 UO2+2 - 6 H+ + 4 H2O + log_k 24.4 #20GRE/GAO + -analytic 24.4E+0 00E+0 00E+0 00E+0 00E+0 Na2ZrSi2O7(cr) -Na2ZrSi2O7 = 2.000Na+ - 6.000H+ + 2.000H4(SiO4) + 1.000Zr+4 - 1.000H2O - log_k 3.740 - delta_h -119.738 #kJ/mol - # Enthalpy of formation: -3606 #kJ/mol #05BRO/CUR - -analytic -1.72372E+1 0E+0 6.25434E+3 0E+0 0E+0 +Na2ZrSi2O7 = 2 Na+ - 6 H+ + 2 H4(SiO4) + Zr+4 - H2O + log_k 3.74 + delta_h -119.738 #kJ/mol +# Enthalpy of formation: -3606.000 kJ/mol 05BRO/CUR + -analytic -17.2372E+0 00E+0 62.54351E+2 00E+0 00E+0 Na2ZrSi3O9:2H2O(cr) -Na2ZrSi3O9:2H2O = 2.000Na+ - 6.000H+ + 3.000H4(SiO4) + 1.000Zr+4 - 1.000H2O - log_k 15.580 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.558E+1 0E+0 0E+0 0E+0 0E+0 +Na2ZrSi3O9:2H2O = 2 Na+ - 6 H+ + 3 H4(SiO4) + Zr+4 - H2O + log_k 15.58 + -analytic 15.58E+0 00E+0 00E+0 00E+0 00E+0 Na2ZrSi4O11(cr) -Na2ZrSi4O11 = 2.000Na+ - 6.000H+ + 4.000H4(SiO4) + 1.000Zr+4 - 5.000H2O - log_k -13.560 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.356E+1 0E+0 0E+0 0E+0 0E+0 +Na2ZrSi4O11 = 2 Na+ - 6 H+ + 4 H4(SiO4) + Zr+4 - 5 H2O + log_k -13.56 + -analytic -13.56E+0 00E+0 00E+0 00E+0 00E+0 Na2ZrSi6O15:3H2O(cr) -Na2ZrSi6O15:3H2O = 2.000Na+ - 6.000H+ + 6.000H4(SiO4) + 1.000Zr+4 - 6.000H2O - log_k 16.460 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.646E+1 0E+0 0E+0 0E+0 0E+0 +Na2ZrSi6O15:3H2O = 2 Na+ - 6 H+ + 6 H4(SiO4) + Zr+4 - 6 H2O + log_k 16.46 + -analytic 16.46E+0 00E+0 00E+0 00E+0 00E+0 Na2ZrSiO5(cr) -Na2ZrSiO5 = 2.000Na+ - 6.000H+ + 1.000H4(SiO4) + 1.000Zr+4 + 1.000H2O - log_k 13.190 - delta_h -166.204 #kJ/mol - # Enthalpy of formation: -2670 #kJ/mol #05BRO/CUR - -analytic -1.59276E+1 0E+0 8.68143E+3 0E+0 0E+0 +Na2ZrSiO5 = 2 Na+ - 6 H+ + H4(SiO4) + Zr+4 + H2O + log_k 13.19 + delta_h -166.204 #kJ/mol +# Enthalpy of formation: -2670.000 kJ/mol 05BRO/CUR + -analytic -15.92769E+0 00E+0 86.8144E+2 00E+0 00E+0 + +Na3NpO2(CO3)2(cr) +Na3NpO2(CO3)2 = 3 Na+ + NpO2+ + 2 CO3-2 + log_k -14.22 #03GUI/FAN + -analytic -14.22E+0 00E+0 00E+0 00E+0 00E+0 Na3PO4(cr) -Na3PO4 = 3.000Na+ - 2.000H+ + 1.000H2(PO4)- - log_k 23.520 - delta_h -106.218 #kJ/mol - # Enthalpy of formation: -1917.402 #kJ/mol #74NAU/RYZ - -analytic 4.91143E+0 0E+0 5.54814E+3 0E+0 0E+0 +Na3PO4 = 3 Na+ - 2 H+ + H2(PO4)- + log_k 23.52 + delta_h -106.218 #kJ/mol +# Enthalpy of formation: -1917.402 kJ/mol 74NAU/RYZ + -analytic 49.11405E-1 00E+0 55.48153E+2 00E+0 00E+0 Na4Zr2Si3O12(cr) -Na4Zr2Si3O12 = 4.000Na+ - 12.000H+ + 3.000H4(SiO4) + 2.000Zr+4 - log_k 15.510 - delta_h -276.942 #kJ/mol - # Enthalpy of formation: -6285 #kJ/mol #05BRO/CUR - -analytic -3.30081E+1 0E+0 1.44657E+4 0E+0 0E+0 +Na4Zr2Si3O12 = 4 Na+ - 12 H+ + 3 H4(SiO4) + 2 Zr+4 + log_k 15.5 + delta_h -276.942 #kJ/mol +# Enthalpy of formation: -6285.000 kJ/mol 05BRO/CUR + -analytic -33.01816E+0 00E+0 14.46569E+3 00E+0 00E+0 Na6Th(CO3)5:12H2O(cr) -Na6Th(CO3)5:12H2O = 6.000Na+ + 1.000Th+4 + 5.000CO3-2 + 12.000H2O - log_k -42.200 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.22E+1 0E+0 0E+0 0E+0 0E+0 +Na6Th(CO3)5:12H2O = 6 Na+ + Th+4 + 5 CO3-2 + 12 H2O + log_k -42.2 #09RAN/FUG + -analytic -42.2E+0 00E+0 00E+0 00E+0 00E+0 + +NaAm(CO3)2:5H2O(s) +NaAm(CO3)2:5H2O = Na+ + Am+3 + 2 CO3-2 + 5 H2O + log_k -21 #03GUI/FAN + -analytic -21E+0 00E+0 00E+0 00E+0 00E+0 NaAmO2CO3(s) -NaAmO2CO3 = 1.000Na+ + 1.000AmO2+ + 1.000CO3-2 - log_k -10.900 #94GIF, 94RUN/KIM, 96RUN/NEU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.09E+1 0E+0 0E+0 0E+0 0E+0 +NaAmO2CO3 = Na+ + AmO2+ + CO3-2 + log_k -10.9 #94GIF, 94RUN/KIM, 96RUN/NEU + -analytic -10.9E+0 00E+0 00E+0 00E+0 00E+0 NaBO2(s) -NaBO2 = 1.000Na+ + 1.000B(OH)4- - 2.000H2O - log_k 3.620 - delta_h -36.790 #kJ/mol - # Enthalpy of formation: -977.006 #kJ/mol - -analytic -2.82532E+0 0E+0 1.92167E+3 0E+0 0E+0 +NaBO2 = Na+ + B(OH)4- - 2 H2O + log_k 3.62 + delta_h -36.793 #kJ/mol +# Enthalpy of formation: -977.003 kJ/mol + -analytic -28.25857E-1 00E+0 19.21832E+2 00E+0 00E+0 + +Na-Boltwoodite +Na(UO2)(SiO3OH):H2O = Na+ + UO2+2 - 3 H+ + H4(SiO4) + H2O + log_k 5.81 #20GRE/GAO + -analytic 58.1E-1 00E+0 00E+0 00E+0 00E+0 NaCm(CO3)2:5H2O(s) -NaCm(CO3)2:5H2O = 1.000Na+ + 2.000CO3-2 + 1.000Cm+3 + 5.000H2O - log_k -21.000 #estimated by correlation with Ln(III) and An(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.1E+1 0E+0 0E+0 0E+0 0E+0 +NaCm(CO3)2:5H2O = Na+ + 2 CO3-2 + Cm+3 + 5 H2O + log_k -20.94 #Estimated by correlation with An(III). + -analytic -20.94E+0 00E+0 00E+0 00E+0 00E+0 NaEu(CO3)2:5H2O(s) -NaEu(CO3)2:5H2O = 1.000Na+ + 1.000Eu+3 + 2.000CO3-2 + 5.000H2O - log_k -20.900 #05VER/VIT2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.09E+1 0E+0 0E+0 0E+0 0E+0 +NaEu(CO3)2:5H2O = Na+ + Eu+3 + 2 CO3-2 + 5 H2O + log_k -20.6 #10PHI + -analytic -20.6E+0 00E+0 00E+0 00E+0 00E+0 NaF(s) -NaF = 1.000Na+ + 1.000F- - log_k -0.480 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.8E-1 0E+0 0E+0 0E+0 0E+0 +NaF = Na+ + F- + log_k -0.48 #96FAL/REA + -analytic -48E-2 00E+0 00E+0 00E+0 00E+0 NaH2PO4(cr) -NaH2PO4 = 1.000Na+ + 1.000H2(PO4)- - log_k 2.300 - delta_h -6.140 #kJ/mol - # Enthalpy of formation: -1536.8 #kJ/mol #82WAG/EVA - -analytic 1.22432E+0 0E+0 3.20714E+2 0E+0 0E+0 - -NaHo(CO3)2:5H2O(s) -NaHo(CO3)2:5H2O = 1.000Na+ + 1.000Ho+3 + 2.000CO3-2 + 5.000H2O - log_k -20.500 #Estimated by ionic radii correlation - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.05E+1 0E+0 0E+0 0E+0 0E+0 - -NaNbO3(s) -NaNbO3 = 1.000Na+ + 1.000Nb(OH)6- - 3.000H2O - log_k -3.660 - delta_h 7.504 #kJ/mol - # Enthalpy of formation: -1316.013 #kJ/mol - -analytic -2.34536E+0 0E+0 -3.91961E+2 0E+0 0E+0 - -NaSm(CO3)2:5H2O(s) -NaSm(CO3)2:5H2O = 1.000Na+ + 1.000Sm+3 + 2.000CO3-2 + 5.000H2O - log_k -20.990 #Estimated by ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.099E+1 0E+0 0E+0 0E+0 0E+0 +NaH2PO4 = Na+ + H2(PO4)- + log_k 2.3 + delta_h -6.14 #kJ/mol +# Enthalpy of formation: -1536.800 kJ/mol 82WAG/EVA + -analytic 12.24318E-1 00E+0 32.07145E+1 00E+0 00E+0 Nahcolite -Na(HCO3) = 1.000Na+ + 1.000H+ + 1.000CO3-2 - log_k -10.740 #84HAR/MOL - delta_h 33.430 #kJ/mol - # Enthalpy of formation: -949 #kJ/mol #82VAN - -analytic -4.88332E+0 0E+0 -1.74617E+3 0E+0 0E+0 +Na(HCO3) = Na+ + H+ + CO3-2 + log_k -10.74 #84HAR/MOL + delta_h 33.43 #kJ/mol +# Enthalpy of formation: -949.000 kJ/mol 82VAN + -analytic -48.83315E-1 00E+0 -17.46171E+2 00E+0 00E+0 + +NaHo(CO3)2:5H2O(s) +NaHo(CO3)2:5H2O = Na+ + Ho+3 + 2 CO3-2 + 5 H2O + log_k -19.97 #Estimated by correlation with An(III). + -analytic -19.97E+0 00E+0 00E+0 00E+0 00E+0 + +NaNbO3(s) +NaNbO3 = Na+ + Nb(OH)6- - 3 H2O + log_k -3.66 + delta_h 7.504 #kJ/mol +# Enthalpy of formation: -1316.013 kJ/mol + -analytic -23.45356E-1 00E+0 -39.19612E+1 00E+0 00E+0 + +NaNpO2CO3:3.5H2O(cr) +NaNpO2CO3:3.5H2O = Na+ + NpO2+ + CO3-2 + 3.5 H2O + log_k -11 #03GUI/FAN + delta_h 30.997 #kJ/mol +# Enthalpy of formation: -2925.152 kJ/mol + -analytic -55.69559E-1 00E+0 -16.19086E+2 00E+0 00E+0 + +NaSm(CO3)2:5H2O(s) +NaSm(CO3)2:5H2O = Na+ + Sm+3 + 2 CO3-2 + 5 H2O + log_k -20.99 #Estimated by correlation with An(III). + -analytic -20.99E+0 00E+0 00E+0 00E+0 00E+0 + +NaTcO4:4H2O(s) +NaTcO4:4H2O = Na+ + TcO4- + 4 H2O + log_k 0.79 #99RAR/RAN + -analytic 79E-2 00E+0 00E+0 00E+0 00E+0 Natrolite -Na2(Al2Si3)O10:2H2O = 2.000Na+ + 2.000Al+3 - 8.000H+ + 3.000H4(SiO4) - log_k 19.330 - delta_h -222.462 #kJ/mol - # Enthalpy of formation: -5718.6 #kJ/mol #83JOH/FLO - -analytic -1.96436E+1 0E+0 1.162E+4 0E+0 0E+0 +Na2(Al2Si3)O10:2H2O = 2 Na+ + 2 Al+3 - 8 H+ + 3 H4(SiO4) + log_k 19.31 + delta_h -222.462 #kJ/mol +# Enthalpy of formation: -5718.600 kJ/mol 83JOH/FLO + -analytic -19.66367E+0 00E+0 11.62E+3 00E+0 00E+0 + -Vm 169.2 Natron -Na2(CO3):10H2O = 2.000Na+ + 1.000CO3-2 + 10.000H2O - log_k -0.830 #84HAR/MOL - delta_h 64.870 #kJ/mol - # Enthalpy of formation: -4079 #kJ/mol - -analytic 1.05347E+1 0E+0 -3.38839E+3 0E+0 0E+0 +Na2(CO3):10H2O = 2 Na+ + CO3-2 + 10 H2O + log_k -0.83 #84HAR/MOL + delta_h 64.87 #kJ/mol +# Enthalpy of formation: -4079.078 kJ/mol + -analytic 10.53474E+0 00E+0 -33.88396E+2 00E+0 00E+0 Nb(cr) -Nb = 1.000H+ + 1.000Nb(OH)6- - 3.500H2O - 1.250O2 - log_k 149.295 - delta_h -910.093 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #82WAG/EVA - -analytic -1.01461E+1 0E+0 4.75374E+4 0E+0 0E+0 +Nb = 6 H+ + Nb(OH)6- + 5 e- - 6 H2O + log_k 41.82 + delta_h -210.678 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA + -analytic 49.10799E-1 00E+0 11.00448E+3 00E+0 00E+0 Nb2O5(s) -Nb2O5 = 2.000H+ + 2.000Nb(OH)6- - 7.000H2O - log_k -28.380 #97PEI/NGU - delta_h 52.400 #kJ/mol #97PEI/NGU - # Enthalpy of formation: -1902.92 #kJ/mol - -analytic -1.91999E+1 0E+0 -2.73704E+3 0E+0 0E+0 +Nb2O5 = 2 H+ + 2 Nb(OH)6- - 7 H2O + log_k -28.38 #97PEI/NGU + delta_h 52.4 #kJ/mol 97PEI/NGU +# Enthalpy of formation: -1902.906 kJ/mol + -analytic -19.19991E+0 00E+0 -27.37043E+2 00E+0 00E+0 Nesquehonite -Mg(CO3):3H2O = 1.000Mg+2 + 1.000CO3-2 + 3.000H2O - log_k -5.100 - delta_h -22.420 #kJ/mol - # Enthalpy of formation: -1977.3 #kJ/mol #73ROB/HEM - -analytic -9.02781E+0 0E+0 1.17108E+3 0E+0 0E+0 +Mg(CO3):3H2O = Mg+2 + CO3-2 + 3 H2O + log_k -5.1 + delta_h -22.42 #kJ/mol +# Enthalpy of formation: -1977.300 kJ/mol 73ROB/HEM + -analytic -90.27815E-1 00E+0 11.71078E+2 00E+0 00E+0 Ni(BO2)2(s) -Ni(BO2)2 = 1.000Ni+2 + 2.000B(OH)4- - 4.000H2O - log_k -8.700 #92PEA/BER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -8.7E+0 0E+0 0E+0 0E+0 0E+0 +Ni(BO2)2 = Ni+2 + 2 B(OH)4- - 4 H2O + log_k -8.7 #92PEA/BER + -analytic -87E-1 00E+0 00E+0 00E+0 00E+0 -#Ni(CO3)(cr) -#Ni(CO3) = 1.000Ni+2 + 1.000CO3-2 - # log_k - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -713.32 #kJ/mol #05GAM/BUG - # -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 +Ni(CO3)(cr) +Ni(CO3) = Ni+2 + CO3-2 + log_k -10.99 + delta_h -16.922 #kJ/mol +# Enthalpy of formation: -713.320 kJ/mol + -analytic -13.95461E+0 00E+0 88.38976E+1 00E+0 00E+0 Ni(CO3):5.5H2O(cr) -Ni(CO3):5.5H2O = 1.000Ni+2 + 1.000CO3-2 + 5.500H2O - log_k -7.520 - delta_h 10.685 #kJ/mol - # Enthalpy of formation: -2312.992 #kJ/mol #05GAM/BUG - -analytic -5.64807E+0 0E+0 -5.58116E+2 0E+0 0E+0 +Ni(CO3):5.5H2O = Ni+2 + CO3-2 + 5.5 H2O + log_k -7.52 + delta_h 10.687 #kJ/mol +# Enthalpy of formation: -2312.992 kJ/mol + -analytic -56.47718E-1 00E+0 -55.82209E+1 00E+0 00E+0 + +Ni(cr) +Ni = Ni+2 + 2 e- + log_k 8.02 + delta_h -55.012 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 05GAM/BUG + -analytic -16.17689E-1 00E+0 28.73477E+2 00E+0 00E+0 Ni(IO3)2(beta) -Ni(IO3)2 = 1.000Ni+2 + 2.000IO3- - log_k -4.430 - delta_h -7.300 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -487.112 #kJ/mol - -analytic -5.7089E+0 0E+0 3.81305E+2 0E+0 0E+0 +Ni(IO3)2 = Ni+2 + 2 IO3- + log_k -4.43 + delta_h -7.3 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -487.112 kJ/mol + -analytic -57.08905E-1 00E+0 38.13056E+1 00E+0 00E+0 Ni(IO3)2:2H2O(cr) -Ni(IO3)2:2H2O = 1.000Ni+2 + 2.000IO3- + 2.000H2O - log_k -5.140 - delta_h 21.600 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -1087.672 #kJ/mol - -analytic -1.35585E+0 0E+0 -1.12824E+3 0E+0 0E+0 +Ni(IO3)2:2H2O = Ni+2 + 2 IO3- + 2 H2O + log_k -5.14 + delta_h 21.6 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -1087.672 kJ/mol + -analytic -13.55842E-1 00E+0 -11.28247E+2 00E+0 00E+0 Ni(OH)2(s) -Ni(OH)2 = 1.000Ni+2 - 2.000H+ + 2.000H2O - log_k 11.030 - delta_h -84.390 #kJ/mol - # Enthalpy of formation: -542.3 #kJ/mol #05GAM/BUG - -analytic -3.75447E+0 0E+0 4.40799E+3 0E+0 0E+0 - -Ni(SO4)(cr) -Ni(SO4) = 1.000Ni+2 + 1.000SO4-2 - log_k 4.750 #05GAM/BUG - delta_h -91.072 #kJ/mol - # Enthalpy of formation: -873.28 #kJ/mol #05GAM/BUG - -analytic -1.12051E+1 0E+0 4.75701E+3 0E+0 0E+0 - -Ni(SO4):6H2O(s) -Ni(SO4):6H2O = 1.000Ni+2 + 1.000SO4-2 + 6.000H2O - log_k -2.250 #05GAM/BUG - delta_h 4.485 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -2683.817 #kJ/mol - -analytic -1.46426E+0 0E+0 -2.34268E+2 0E+0 0E+0 - -Ni(SO4):7H2O(s) -Ni(SO4):7H2O = 1.000Ni+2 + 1.000SO4-2 + 7.000H2O - log_k -2.270 #05GAM/BUG - delta_h 12.167 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -2977.329 #kJ/mol - -analytic -1.38436E-1 0E+0 -6.35526E+2 0E+0 0E+0 +Ni(OH)2 = Ni+2 - 2 H+ + 2 H2O + log_k 11.03 + delta_h -84.389 #kJ/mol +# Enthalpy of formation: -542.282 kJ/mol + -analytic -37.54318E-1 00E+0 44.07944E+2 00E+0 00E+0 Ni(SeO3):2H2O(cr) -Ni(SeO3):2H2O = 1.000Ni+2 + 1.000SeO3-2 + 2.000H2O - log_k -5.800 #05OLI/NOL - delta_h -24.502 #kJ/mol - # Enthalpy of formation: -1109.33 #kJ/mol #05OLI/NOL - -analytic -1.00926E+1 0E+0 1.27983E+3 0E+0 0E+0 +Ni(SeO3):2H2O = Ni+2 + SeO3-2 + 2 H2O + log_k -5.8 #05OLI/NOL + delta_h -24.502 #kJ/mol +# Enthalpy of formation: -1109.330 kJ/mol 05OLI/NOL + -analytic -10.09257E+0 00E+0 12.79829E+2 00E+0 00E+0 Ni(SeO4):6H2O(s) -Ni(SeO4):6H2O = 1.000Ni+2 + 1.000SeO4-2 + 6.000H2O - log_k -1.381 #05OLI/NOL - delta_h -3.787 #kJ/mol - # Enthalpy of formation: -2369.705 #kJ/mol - -analytic -2.04445E+0 0E+0 1.97808E+2 0E+0 0E+0 +Ni(SeO4):6H2O = Ni+2 + SeO4-2 + 6 H2O + log_k -1.38 #05OLI/NOL + delta_h -3.791 #kJ/mol +# Enthalpy of formation: -2369.699 kJ/mol + -analytic -20.44155E-1 00E+0 19.80177E+1 00E+0 00E+0 -#Ni(SiO3)(s) -#Ni(SiO3) = 1.000Ni+2 - 2.000H+ + 1.000H4(SiO4) - 1.000H2O - # log_k - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - # -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 +Ni(SiO3)(s) +Ni(SiO3) = Ni+2 - 2 H+ + H4(SiO4) - H2O + log_k -1.78 + -analytic -17.8E-1 00E+0 00E+0 00E+0 00E+0 -Ni(s) -Ni = 1.000Ni+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 51.010 - delta_h -334.775 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #05GAM/BUG - -analytic -7.63998E+0 0E+0 1.74865E+4 0E+0 0E+0 +Ni(SO4)(cr) +Ni(SO4) = Ni+2 + SO4-2 + log_k 4.75 + delta_h -91.072 #kJ/mol +# Enthalpy of formation: -873.280 kJ/mol 05GAM/BUG + -analytic -11.20513E+0 00E+0 47.57022E+2 00E+0 00E+0 + +Ni(SO4):6H2O(s) +Ni(SO4):6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.25 + delta_h 4.485 #kJ/mol +# Enthalpy of formation: -2683.817 kJ/mol 05GAM/BUG + -analytic -14.64262E-1 00E+0 -23.42679E+1 00E+0 00E+0 + +Ni(SO4):7H2O(s) +Ni(SO4):7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.27 + delta_h 12.167 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -2977.329 kJ/mol + -analytic -13.84331E-2 00E+0 -63.55267E+1 00E+0 00E+0 Ni0.88Se(cr) -Ni0.88Se = 0.880Ni+2 - 0.760H+ + 1.000HSe- - 0.120H2O + 0.060O2 - log_k -17.919 - delta_h 69.261 #kJ/mol - # Enthalpy of formation: -69.8 #kJ/mol #05OLI/NOL - -analytic -5.78489E+0 0E+0 -3.61773E+3 0E+0 0E+0 +Ni0.88Se = 0.88 Ni+2 - H+ - 0.24 e- + HSe- + log_k -12.76 + delta_h 35.689 #kJ/mol +# Enthalpy of formation: -69.800 kJ/mol 05OLI/NOL + -analytic -65.07556E-1 00E+0 -18.64166E+2 00E+0 00E+0 Ni11As8(cr) -Ni11As8 = 11.000Ni+2 + 2.000H+ + 8.000AsO4-3 - 1.000H2O - 15.500O2 - log_k 874.760 - delta_h -6493.345 #kJ/mol - # Enthalpy of formation: -743 #kJ/mol #05GAM/BUG - -analytic -2.62824E+2 0E+0 3.39171E+5 0E+0 0E+0 +Ni11As8 = 11 Ni+2 + 64 H+ + 62 e- + 8 AsO4-3 - 32 H2O + log_k -457.93 + delta_h 2179.308 #kJ/mol +# Enthalpy of formation: -743.000 kJ/mol 05GAM/BUG + -analytic -76.13163E+0 00E+0 -11.38332E+4 00E+0 00E+0 Ni2(Pyrophos)(cr) -Ni2(Pyrophos) = 2.000Ni+2 + 1.000Pyrophos-4 - log_k -9.820 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -9.82E+0 0E+0 0E+0 0E+0 0E+0 +Ni2(Pyrophos) = 2 Ni+2 + Pyrophos-4 + log_k -9.82 + -analytic -98.2E-1 00E+0 00E+0 00E+0 00E+0 Ni3(AsO3)2(s) -Ni3(AsO3)2 = 3.000Ni+2 + 2.000AsO4-3 - 1.000O2 - log_k 34.500 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.45E+1 0E+0 0E+0 0E+0 0E+0 +Ni3(AsO3)2 = 3 Ni+2 + 4 H+ + 4 e- + 2 AsO4-3 - 2 H2O + log_k -51.48 + -analytic -51.48E+0 00E+0 00E+0 00E+0 00E+0 Ni3(AsO4)2:8H2O(s) -Ni3(AsO4)2:8H2O = 3.000Ni+2 + 2.000AsO4-3 + 8.000H2O - log_k -28.100 #05GAM/BUG - delta_h -48.956 #kJ/mol - # Enthalpy of formation: -4179 #kJ/mol #05GAM/BUG - -analytic -3.66767E+1 0E+0 2.55715E+3 0E+0 0E+0 +Ni3(AsO4)2:8H2O = 3 Ni+2 + 2 AsO4-3 + 8 H2O + log_k -28.1 #05GAM/BUG + delta_h -48.956 #kJ/mol +# Enthalpy of formation: -4179.000 kJ/mol 05GAM/BUG + -analytic -36.67672E+0 00E+0 25.5715E+2 00E+0 00E+0 Ni3(PO4)2(cr) -Ni3(PO4)2 = 3.000Ni+2 - 4.000H+ + 2.000H2(PO4)- - log_k 10.253 - delta_h -188.236 #kJ/mol - # Enthalpy of formation: -2582 #kJ/mol #89BAE/McK - -analytic -2.27245E+1 0E+0 9.83224E+3 0E+0 0E+0 +Ni3(PO4)2 = 3 Ni+2 - 4 H+ + 2 H2(PO4)- + log_k 10.25 + delta_h -188.236 #kJ/mol +# Enthalpy of formation: -2582.000 kJ/mol 89BAE/McK + -analytic -22.72753E+0 00E+0 98.32251E+2 00E+0 00E+0 -#Ni3O4(s) -#Ni3O4 = 3.000Ni+2 - 6.000H+ + 3.000H2O + 0.500O2 - # log_k - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -819.308 #kJ/mol - # -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 +Ni3O4(s) +Ni3O4 = 3 Ni+2 - 8 H+ - 2 e- + 4 H2O + log_k 65.5 + delta_h -489.045 #kJ/mol +# Enthalpy of formation: -819.308 kJ/mol + -analytic -20.17701E+0 00E+0 25.5446E+3 00E+0 00E+0 Ni5As2(cr) -Ni5As2 = 5.000Ni+2 - 4.000H+ + 2.000AsO4-3 + 2.000H2O - 5.000O2 - log_k 323.170 - delta_h -2317.670 #kJ/mol - # Enthalpy of formation: -244.66 #kJ/mol #05GAM/BUG - -analytic -8.28678E+1 0E+0 1.2106E+5 0E+0 0E+0 +Ni5As2 = 5 Ni+2 + 16 H+ + 20 e- + 2 AsO4-3 - 8 H2O + log_k -106.73 + delta_h 479.96 #kJ/mol +# Enthalpy of formation: -244.660 kJ/mol 05GAM/BUG + -analytic -22.64462E+0 00E+0 -25.07006E+3 00E+0 00E+0 NiAs(cr) -NiAs = 1.000Ni+2 + 1.000H+ + 1.000AsO4-3 - 0.500H2O - 1.750O2 - log_k 94.225 - delta_h -708.183 #kJ/mol - # Enthalpy of formation: -70.82 #kJ/mol #05GAM/BUG - -analytic -2.98431E+1 0E+0 3.69909E+4 0E+0 0E+0 +NiAs = Ni+2 + 8 H+ + 7 e- + AsO4-3 - 4 H2O + log_k -56.24 + delta_h 270.988 #kJ/mol +# Enthalpy of formation: -70.820 kJ/mol 05GAM/BUG + -analytic -87.6494E-1 00E+0 -14.15469E+3 00E+0 00E+0 NiBr2(s) -NiBr2 = 1.000Ni+2 + 2.000Br- - log_k 10.170 - delta_h -84.332 #kJ/mol - # Enthalpy of formation: -213.5 #kJ/mol #05GAM/BUG - -analytic -4.60431E+0 0E+0 4.40496E+3 0E+0 0E+0 +NiBr2 = Ni+2 + 2 Br- + log_k 10.17 + delta_h -84.332 #kJ/mol +# Enthalpy of formation: -213.500 kJ/mol 05GAM/BUG + -analytic -46.04332E-1 00E+0 44.04967E+2 00E+0 00E+0 NiCl2(s) -NiCl2 = 1.000Ni+2 + 2.000Cl- - log_k 8.670 - delta_h -84.272 #kJ/mol - # Enthalpy of formation: -304.9 #kJ/mol #05GAM/BUG - -analytic -6.0938E+0 0E+0 4.40183E+3 0E+0 0E+0 +NiCl2 = Ni+2 + 2 Cl- + log_k 8.67 + delta_h -84.272 #kJ/mol +# Enthalpy of formation: -304.900 kJ/mol 05GAM/BUG + -analytic -60.93821E-1 00E+0 44.01833E+2 00E+0 00E+0 NiCl2:2H2O(s) -NiCl2:2H2O = 1.000Ni+2 + 2.000Cl- + 2.000H2O - log_k 4.920 - delta_h -47.461 #kJ/mol - # Enthalpy of formation: -913.371 #kJ/mol - -analytic -3.3948E+0 0E+0 2.47906E+3 0E+0 0E+0 +NiCl2:2H2O = Ni+2 + 2 Cl- + 2 H2O + log_k 4.92 + delta_h -47.458 #kJ/mol +# Enthalpy of formation: -913.372 kJ/mol + -analytic -33.94285E-1 00E+0 24.78904E+2 00E+0 00E+0 NiCl2:4H2O(s) -NiCl2:4H2O = 1.000Ni+2 + 2.000Cl- + 4.000H2O - log_k 3.820 - delta_h -18.444 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -1514.048 #kJ/mol - -analytic 5.88755E-1 0E+0 9.63396E+2 0E+0 0E+0 +NiCl2:4H2O = Ni+2 + 2 Cl- + 4 H2O + log_k 3.82 + delta_h -18.444 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -1514.048 kJ/mol + -analytic 58.87499E-2 00E+0 96.33972E+1 00E+0 00E+0 NiCl2:6H2O(s) -NiCl2:6H2O = 1.000Ni+2 + 2.000Cl- + 6.000H2O - log_k 3.040 - delta_h 0.548 #kJ/mol - # Enthalpy of formation: -2104.7 #kJ/mol #05GAM/BUG - -analytic 3.13601E+0 0E+0 -2.8624E+1 0E+0 0E+0 +NiCl2:6H2O = Ni+2 + 2 Cl- + 6 H2O + log_k 3.04 + delta_h 0.548 #kJ/mol +# Enthalpy of formation: -2104.700 kJ/mol 05GAM/BUG + -analytic 31.36005E-1 00E+0 -28.62403E+0 00E+0 00E+0 NiF2(s) -NiF2 = 1.000Ni+2 + 2.000F- - log_k -0.180 - delta_h -68.412 #kJ/mol - # Enthalpy of formation: -657.3 #kJ/mol #05GAM/BUG - -analytic -1.21653E+1 0E+0 3.5734E+3 0E+0 0E+0 +NiF2 = Ni+2 + 2 F- + log_k -0.18 + delta_h -68.412 #kJ/mol +# Enthalpy of formation: -657.300 kJ/mol 05GAM/BUG + -analytic -12.16527E+0 00E+0 35.73408E+2 00E+0 00E+0 NiI2(s) -NiI2 = 1.000Ni+2 + 2.000I- - log_k 9.610 - delta_h -72.152 #kJ/mol - # Enthalpy of formation: -96.42 #kJ/mol #05GAM/BUG - -analytic -3.03047E+0 0E+0 3.76876E+3 0E+0 0E+0 +NiI2 = Ni+2 + 2 I- + log_k 9.61 + delta_h -72.152 #kJ/mol +# Enthalpy of formation: -96.420 kJ/mol 05GAM/BUG + -analytic -30.30488E-1 00E+0 37.68761E+2 00E+0 00E+0 NiSe2(cr) -NiSe2 = 1.000Ni+2 + 2.000HSe- - 1.000H2O + 0.500O2 - log_k -69.890 - delta_h 368.851 #kJ/mol - # Enthalpy of formation: -115.5 #kJ/mol #05OLI/NOL - -analytic -5.27017E+0 0E+0 -1.92664E+4 0E+0 0E+0 - -Nontronite-Ca -Ca0.17Fe1.67Al0.67Si3.66O10(OH)2 = 0.170Ca+2 + 1.670Fe+3 + 0.670Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k -2.830 - delta_h -145.927 #kJ/mol - # Enthalpy of formation: -4982.32 #kJ/mol #15BLA/VIE - -analytic -2.83953E+1 0E+0 7.62229E+3 0E+0 0E+0 - -Nontronite-K -K0.34Fe1.67Al0.67Si3.66O10(OH)2 = 0.340K+ + 1.670Fe+3 + 0.670Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k -4.000 - delta_h -127.394 #kJ/mol - # Enthalpy of formation: -4994.27 #kJ/mol #15BLA/VIE - -analytic -2.63184E+1 0E+0 6.65424E+3 0E+0 0E+0 - -Nontronite-Mg -Mg0.17Fe1.67Al0.67Si3.66O10(OH)2 = 0.170Mg+2 + 1.670Fe+3 + 0.670Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k -3.370 - delta_h -147.107 #kJ/mol - # Enthalpy of formation: -4968.22 #kJ/mol #15BLA/VIE - -analytic -2.9142E+1 0E+0 7.68392E+3 0E+0 0E+0 - -Nontronite-Na -Na0.34Fe1.67Al0.67Si3.66O10(OH)2 = 0.340Na+ + 1.670Fe+3 + 0.670Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k -3.500 - delta_h -136.012 #kJ/mol - # Enthalpy of formation: -4981.64 #kJ/mol #15BLA/VIE - -analytic -2.73282E+1 0E+0 7.10439E+3 0E+0 0E+0 +NiSe2 = Ni+2 - 2 H+ - 2 e- + 2 HSe- + log_k -26.9 + delta_h 89.088 #kJ/mol +# Enthalpy of formation: -115.500 kJ/mol 05OLI/NOL + -analytic -11.29245E+0 00E+0 -46.5339E+2 00E+0 00E+0 Nontronite_Nau-2 -Ca0.247K0.02(Si3.458Al0.542)(Fe1.688Al0.276Mg0.068)O10(OH)2 = 0.247Ca+2 + 0.068Mg+2 + 0.020K+ + 1.688Fe+3 + 0.818Al+3 + 3.458H4(SiO4) - 1.832H2O - 8.168H+ - log_k 1.350 - delta_h -187.521 #kJ/mol - # Enthalpy of formation: -5035.69 #kJ/mol #13GAI/BLA - -analytic -3.15022E+1 0E+0 9.79489E+3 0E+0 0E+0 +Ca0.247K0.02(Si3.458Al0.542)(Fe1.688Al0.276Mg0.068)O10(OH)2 = 0.247 Ca+2 + 0.068 Mg+2 + 0.02 K+ + 1.688 Fe+3 + 0.818 Al+3 - 8.168 H+ + 3.458 H4(SiO4) - 1.832 H2O + log_k 1.3 + delta_h -189.304 #kJ/mol +# Enthalpy of formation: -5035.690 kJ/mol 13GAI/BLA + -analytic -31.86464E+0 00E+0 98.88037E+2 00E+0 00E+0 + -Vm 136.38 -Np(CO3)(OH)(s) -Np(CO3)(OH) = 1.000Np+3 - 1.000H+ + 1.000CO3-2 + 1.000H2O - log_k -6.060 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.06E+0 0E+0 0E+0 0E+0 0E+0 +Nontronite-Ca +Ca0.17Fe1.67Al0.67Si3.66O10(OH)2 = 0.17 Ca+2 + 1.67 Fe+3 + 0.67 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k -2.86 + delta_h -147.69 #kJ/mol +# Enthalpy of formation: -4982.320 kJ/mol 15BLA/VIE + -analytic -28.73418E+0 00E+0 77.14386E+2 00E+0 00E+0 + -Vm 133.74 -Np(HPO4)2(s) -Np(HPO4)2 = 1.000Np+4 - 2.000H+ + 2.000H2(PO4)- - log_k -16.060 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.606E+1 0E+0 0E+0 0E+0 0E+0 +Nontronite-K +K0.34Fe1.67Al0.67Si3.66O10(OH)2 = 0.34 K+ + 1.67 Fe+3 + 0.67 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k -4.03 + delta_h -129.158 #kJ/mol +# Enthalpy of formation: -4994.270 kJ/mol 15BLA/VIE + -analytic -26.65751E+0 00E+0 67.46392E+2 00E+0 00E+0 + -Vm 132.85 -Np(OH)3(s) -Np(OH)3 = 1.000Np+3 - 3.000H+ + 3.000H2O - log_k 18.000 #80ALL/KIP - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.8E+1 0E+0 0E+0 0E+0 0E+0 +Nontronite-Mg +Mg0.17Fe1.67Al0.67Si3.66O10(OH)2 = 0.17 Mg+2 + 1.67 Fe+3 + 0.67 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k -3.41 + delta_h -148.87 #kJ/mol +# Enthalpy of formation: -4968.220 kJ/mol 15BLA/VIE + -analytic -29.4909E+0 00E+0 77.76022E+2 00E+0 00E+0 + -Vm 129.74 + +Nontronite-Na +Na0.34Fe1.67Al0.67Si3.66O10(OH)2 = 0.34 Na+ + 1.67 Fe+3 + 0.67 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k -3.53 + delta_h -137.776 #kJ/mol +# Enthalpy of formation: -4981.640 kJ/mol 15BLA/VIE + -analytic -27.66732E+0 00E+0 71.96542E+2 00E+0 00E+0 + -Vm 132.12 Np(cr) -Np = 1.000Np+3 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 154.335 - delta_h -946.829 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #01LEM/FUG - -analytic -1.1542E+1 0E+0 4.94562E+4 0E+0 0E+0 +Np = Np+3 + 3 e- + log_k 89.85 + delta_h -527.184 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 01LEM/FUG + -analytic -25.08672E-1 00E+0 27.53674E+3 00E+0 00E+0 + +Np(HPO4)2(s) +Np(HPO4)2 = Np+4 - 2 H+ + 2 H2(PO4)- + log_k -16.06 #Estimated by correlation with An(III) in function of ionic radii + -analytic -16.06E+0 00E+0 00E+0 00E+0 00E+0 + +Np(OH)3(s) +Np(OH)3 = Np+3 - 3 H+ + 3 H2O + log_k 18 #80ALL/KIP + -analytic 18E+0 00E+0 00E+0 00E+0 00E+0 Np2O5(cr) -Np2O5 = 2.000NpO2+ - 2.000H+ + 1.000H2O - log_k 3.700 - delta_h -79.492 #kJ/mol - # Enthalpy of formation: -2162.7 #kJ/mol #01LEM/FUG - -analytic -1.02264E+1 0E+0 4.15215E+3 0E+0 0E+0 +Np2O5 = 2 NpO2+ - 2 H+ + H2O + log_k 3.07 + delta_h -79.492 #kJ/mol +# Enthalpy of formation: -2162.700 kJ/mol 01LEM/FUG + -analytic -10.8564E+0 00E+0 41.52156E+2 00E+0 00E+0 -NpO2(CO3)(s) -NpO2(CO3) = 1.000NpO2+2 + 1.000CO3-2 - log_k -14.600 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.46E+1 0E+0 0E+0 0E+0 0E+0 +NpCO3OH(s) +Np(CO3)(OH) = Np+3 - H+ + CO3-2 + H2O + log_k -6.35 #Estimated using the data for AmCO3OH(s) and the trend versus r identified for AnCO3OH·0.5H2O(s)(orthorhombic). + -analytic -63.5E-1 00E+0 00E+0 00E+0 00E+0 -NpO2(CO3)2Na3(s) -NpO2(CO3)2Na3 = 3.000Na+ + 1.000NpO2+ + 2.000CO3-2 - log_k -14.220 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.422E+1 0E+0 0E+0 0E+0 0E+0 +NpO2(cr) +NpO2 = Np+4 - 4 H+ + 2 H2O + log_k -9.75 + delta_h -53.682 #kJ/mol +# Enthalpy of formation: -1074.000 kJ/mol 01LEM/FUG + -analytic -19.15468E+0 00E+0 28.04006E+2 00E+0 00E+0 -NpO2(CO3)Na:3.5H2O(s) -NpO2(CO3)Na:3.5H2O = 1.000Na+ + 1.000NpO2+ + 1.000CO3-2 + 3.500H2O - log_k -11.000 #03GUI/FAN - delta_h 30.995 #kJ/mol - # Enthalpy of formation: -2925.151 #kJ/mol - -analytic -5.56992E+0 0E+0 -1.61898E+3 0E+0 0E+0 - -NpO2(NH4)4(CO3)3(s) -NpO2(NH4)4(CO3)3 = 1.000NpO2+2 + 4.000H+ + 3.000CO3-2 + 4.000NH3 - log_k -26.810 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.681E+1 0E+0 0E+0 0E+0 0E+0 - -NpO2(s) -NpO2 = 1.000Np+4 - 4.000H+ + 2.000H2O - log_k -9.750 - delta_h -53.682 #kJ/mol - # Enthalpy of formation: -1074 #kJ/mol #01LEM/FUG - -analytic -1.91547E+1 0E+0 2.804E+3 0E+0 0E+0 +NpO2(OH)2:H2O(cr) +NpO2(OH)2:H2O = NpO2+2 - 2 H+ + 3 H2O + log_k 5.47 #20GRE/GAO + -analytic 54.7E-1 00E+0 00E+0 00E+0 00E+0 NpO2:2H2O(am) -NpO2:2H2O = 1.000Np+4 - 4.000H+ + 4.000H2O - log_k -0.700 #03GUI/FAN - delta_h -81.156 #kJ/mol - # Enthalpy of formation: -1618.186 #kJ/mol - -analytic -1.49179E+1 0E+0 4.23907E+3 0E+0 0E+0 +NpO2:2H2O = Np+4 - 4 H+ + 4 H2O + log_k -0.7 #03GUI/FAN + delta_h -81.154 #kJ/mol +# Enthalpy of formation: -1618.186 kJ/mol + -analytic -14.91757E+0 00E+0 42.38969E+2 00E+0 00E+0 -NpO2OH(am,aged) -NpO2OH = 1.000NpO2+ - 1.000H+ + 1.000H2O - log_k 4.700 #01LEM/FUG - delta_h -41.111 #kJ/mol - # Enthalpy of formation: -1222.9 #kJ/mol #01LEM/FUG - -analytic -2.50233E+0 0E+0 2.14737E+3 0E+0 0E+0 +NpO2CO3(cr) +NpO2CO3 = NpO2+2 + CO3-2 + log_k -14.83 #20GRE/GAO + -analytic -14.83E+0 00E+0 00E+0 00E+0 00E+0 -NpO2OH(am,fresh) -NpO2OH = 1.000NpO2+ - 1.000H+ + 1.000H2O - log_k 5.300 #01LEM/FUG - delta_h -41.111 #kJ/mol - # Enthalpy of formation: -1222.9 #kJ/mol #01LEM/FUG - -analytic -1.90233E+0 0E+0 2.14737E+3 0E+0 0E+0 - -NpO3:H2O(cr) -NpO3:H2O = 1.000NpO2+2 - 2.000H+ + 2.000H2O - log_k 5.470 #01LEM/FUG - delta_h -52.240 #kJ/mol - # Enthalpy of formation: -1380.153 #kJ/mol - -analytic -3.68204E+0 0E+0 2.72868E+3 0E+0 0E+0 +NpO2OH(am) +NpO2OH = NpO2+ - H+ + H2O + log_k 5.3 #01LEM/FUG + delta_h -41.111 #kJ/mol +# Enthalpy of formation: -1222.900 kJ/mol 01LEM/FUG + -analytic -19.02338E-1 00E+0 21.47377E+2 00E+0 00E+0 Okenite -CaSi2O5:2H2O = 1.000Ca+2 - 2.000H+ + 2.000H4(SiO4) - 1.000H2O - log_k 9.180 - delta_h -44.388 #kJ/mol - # Enthalpy of formation: -3135.17 #kJ/mol #10BLA/BOU1 - -analytic 1.40357E+0 0E+0 2.31854E+3 0E+0 0E+0 +CaSi2O5:2H2O = Ca+2 - 2 H+ + 2 H4(SiO4) - H2O + log_k 9.18 + delta_h -44.388 #kJ/mol +# Enthalpy of formation: -3135.170 kJ/mol 10BLA/BOU1 + -analytic 14.03556E-1 00E+0 23.18547E+2 00E+0 00E+0 + -Vm 94.77 -#Olivine -#Ni2(SiO4) = 2.000Ni+2 - 4.000H+ + 1.000H4(SiO4) - # log_k - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1396 #kJ/mol #05GAM/BUG - # -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 +Olivine +Ni2(SiO4) = 2 Ni+2 - 4 H+ + H4(SiO4) + log_k 19.68 + delta_h -175.218 #kJ/mol +# Enthalpy of formation: -1396.000 kJ/mol 05GAM/BUG + -analytic -11.01688E+0 00E+0 91.52274E+2 00E+0 00E+0 Orpiment -As2S3 = 9.000H+ + 3.000HS- + 2.000AsO4-3 - 6.000H2O - 1.000O2 - log_k -41.480 - delta_h -6.843 #kJ/mol - # Enthalpy of formation: -91.223 #kJ/mol - -analytic -4.26788E+1 0E+0 3.57434E+2 0E+0 0E+0 +As2S3 = 13 H+ + 4 e- + 3 HS- + 2 AsO4-3 - 8 H2O + log_k -127.46 + delta_h 552.68 #kJ/mol +# Enthalpy of formation: -91.223 kJ/mol + -analytic -30.63462E+0 00E+0 -28.86849E+3 00E+0 00E+0 P(cr) -P = 1.000H+ + 1.000H2(PO4)- - 1.500H2O - 1.250O2 - log_k 140.515 - delta_h -858.688 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -9.92037E+0 0E+0 4.48523E+4 0E+0 0E+0 +P = 6 H+ + 5 e- + H2(PO4)- - 4 H2O + log_k 33.04 + delta_h -159.28 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 51.35342E-1 00E+0 83.19774E+2 00E+0 00E+0 Pa(cr) -Pa = 1.000Pa+4 + 2.000H2O - 4.000H+ - 1.000O2 - log_k 184.730 - delta_h -1179.526 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #85BAR/PAR - -analytic -2.19138E+1 0E+0 6.16108E+4 0E+0 0E+0 +Pa = 4 e- + Pa+4 + log_k 98.75 + delta_h -620 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 85BAR/PAR + -analytic -98.69337E-1 00E+0 32.38486E+3 00E+0 00E+0 Pa2O5(s) -Pa2O5 = - 2.000H+ + 2.000PaO2+ + 1.000H2O - log_k -4.000 #76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4E+0 0E+0 0E+0 0E+0 0E+0 +Pa2O5 = -2 H+ + 2 PaO2+ + H2O + log_k -4 #76BAE/MES; Uncertainty to include available data. + -analytic -40E-1 00E+0 00E+0 00E+0 00E+0 PaO2(s) -PaO2 = - 4.000H+ + 1.000Pa+4 + 2.000H2O - log_k 0.600 #76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6E-1 0E+0 0E+0 0E+0 0E+0 +PaO2 = -4 H+ + Pa+4 + 2 H2O + log_k 0.6 #76BAE/MES + -analytic 60E-2 00E+0 00E+0 00E+0 00E+0 Paragonite -NaAl3Si3O10(OH)2 = 1.000Na+ + 3.000Al+3 - 10.000H+ + 3.000H4(SiO4) - log_k 16.800 - delta_h -301.622 #kJ/mol - # Enthalpy of formation: -5937.5 #kJ/mol #96ROU/HOV - -analytic -3.60418E+1 0E+0 1.57548E+4 0E+0 0E+0 +NaAl3Si3O10(OH)2 = Na+ + 3 Al+3 - 10 H+ + 3 H4(SiO4) + log_k 16.79 + delta_h -301.622 #kJ/mol +# Enthalpy of formation: -5937.500 kJ/mol 96ROU/HOV + -analytic -36.05191E+0 00E+0 15.75481E+3 00E+0 00E+0 + -Vm 132.1 Paralaurionite -PbCl(OH) = 1.000Pb+2 - 1.000H+ + 1.000Cl- + 1.000H2O - log_k 0.620 #99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.2E-1 0E+0 0E+0 0E+0 0E+0 - -Pb(H2PO4)2(cr) -Pb(H2PO4)2 = 1.000Pb+2 + 2.000H2(PO4)- - log_k -9.840 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -9.84E+0 0E+0 0E+0 0E+0 0E+0 - -Pb(HPO4)(s) -Pb(HPO4) = 1.000Pb+2 - 1.000H+ + 1.000H2(PO4)- - log_k -4.250 #74NRI - delta_h 16.436 #kJ/mol - # Enthalpy of formation: -1318.116 #kJ/mol - -analytic -1.37054E+0 0E+0 -8.58511E+2 0E+0 0E+0 - -Pb(OH)2(s) -Pb(OH)2 = 1.000Pb+2 - 2.000H+ + 2.000H2O - log_k 13.510 - delta_h -56.140 #kJ/mol - # Enthalpy of formation: -514.6 #kJ/mol #52LAT - -analytic 3.67471E+0 0E+0 2.93239E+3 0E+0 0E+0 - -Pb(SeO3)(s) -Pb(SeO3) = 1.000Pb+2 + 1.000SeO3-2 - log_k -12.500 #05OLI/NOL - delta_h 25.840 #kJ/mol - # Enthalpy of formation: -532.08 #kJ/mol #05OLI/NOL - -analytic -7.97303E+0 0E+0 -1.34972E+3 0E+0 0E+0 - -Pb(SeO4)(s) -Pb(SeO4) = 1.000Pb+2 + 1.000SeO4-2 - log_k -6.900 #05OLI/NOL - delta_h 4.720 #kJ/mol #05OLI/NOL - # Enthalpy of formation: -607.3 #kJ/mol - -analytic -6.07309E+0 0E+0 -2.46542E+2 0E+0 0E+0 +PbCl(OH) = Pb+2 - H+ + Cl- + H2O + log_k 0.62 #99LOT/OCH + -analytic 62E-2 00E+0 00E+0 00E+0 00E+0 Pb(cr) -Pb = 1.000Pb+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 47.240 - delta_h -278.843 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -1.61112E+0 0E+0 1.4565E+4 0E+0 0E+0 +Pb = Pb+2 + 2 e- + log_k 4.25 + delta_h 0.92 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 44.11177E-1 00E+0 -48.05495E+0 00E+0 00E+0 + +Pb(H2PO4)2(cr) +Pb(H2PO4)2 = Pb+2 + 2 H2(PO4)- + log_k -9.84 #74NRI + -analytic -98.4E-1 00E+0 00E+0 00E+0 00E+0 + +Pb(HPO4)(s) +Pb(HPO4) = Pb+2 - H+ + H2(PO4)- + log_k -4.25 #74NRI + delta_h 16.436 #kJ/mol +# Enthalpy of formation: -1318.115 kJ/mol + -analytic -13.70536E-1 00E+0 -85.85121E+1 00E+0 00E+0 + +Pb(OH)2(s) +Pb(OH)2 = Pb+2 - 2 H+ + 2 H2O + log_k 13.51 + delta_h -56.14 #kJ/mol +# Enthalpy of formation: -514.600 kJ/mol 52LAT; Uncertainty to cover available data. + -analytic 36.74694E-1 00E+0 29.32396E+2 00E+0 00E+0 + +Pb(Ox)(cr) +Pb(Ox) = Pb+2 + Ox-2 + log_k -11.13 #13XIO/KIR + -analytic -11.13E+0 00E+0 00E+0 00E+0 00E+0 + +Pb(SeO3)(s) +Pb(SeO3) = Pb+2 + SeO3-2 + log_k -12.5 #05OLI/NOL + delta_h 25.84 #kJ/mol +# Enthalpy of formation: -532.080 kJ/mol 05OLI/NOL + -analytic -79.73026E-1 00E+0 -13.49717E+2 00E+0 00E+0 + +Pb(SeO4)(s) +Pb(SeO4) = Pb+2 + SeO4-2 + log_k -6.9 #05OLI/NOL + delta_h 4.72 #kJ/mol 05OLI/NOL +# Enthalpy of formation: -607.300 kJ/mol + -analytic -60.73091E-1 00E+0 -24.65428E+1 00E+0 00E+0 Pb2(SiO4)(s) -Pb2(SiO4) = 2.000Pb+2 - 4.000H+ + 1.000H4(SiO4) - log_k 15.890 - delta_h -81.474 #kJ/mol - # Enthalpy of formation: -1377.88 #kJ/mol #98CHA - -analytic 1.61639E+0 0E+0 4.25568E+3 0E+0 0E+0 +Pb2(SiO4) = 2 Pb+2 - 4 H+ + H4(SiO4) + log_k 15.89 + delta_h -81.474 #kJ/mol +# Enthalpy of formation: -1377.880 kJ/mol 98CHA + -analytic 16.16368E-1 00E+0 42.55683E+2 00E+0 00E+0 Pb3(AsO4)2(s) -Pb3(AsO4)2 = 3.000Pb+2 + 2.000AsO4-3 - log_k -35.400 #74NAU/RYZ - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.54E+1 0E+0 0E+0 0E+0 0E+0 +Pb3(AsO4)2 = 3 Pb+2 + 2 AsO4-3 + log_k -35.4 #74NAU/RYZ + -analytic -35.4E+0 00E+0 00E+0 00E+0 00E+0 Pb3(PO4)2(s) -Pb3(PO4)2 = 3.000Pb+2 - 4.000H+ + 2.000H2(PO4)- - log_k -5.260 #74NRI - delta_h -3.548 #kJ/mol - # Enthalpy of formation: -2598.892 #kJ/mol - -analytic -5.88158E+0 0E+0 1.85325E+2 0E+0 0E+0 +Pb3(PO4)2 = 3 Pb+2 - 4 H+ + 2 H2(PO4)- + log_k -5.26 #74NRI + delta_h -3.548 #kJ/mol +# Enthalpy of formation: -2598.892 kJ/mol + -analytic -58.81583E-1 00E+0 18.53249E+1 00E+0 00E+0 Pb4O(PO4)2(cr) -Pb4O(PO4)2 = 4.000Pb+2 - 6.000H+ + 2.000H2(PO4)- + 1.000H2O - log_k 2.240 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.24E+0 0E+0 0E+0 0E+0 0E+0 +Pb4O(PO4)2 = 4 Pb+2 - 6 H+ + 2 H2(PO4)- + H2O + log_k 2.24 #74NRI + -analytic 22.4E-1 00E+0 00E+0 00E+0 00E+0 PbB2O4(s) -PbB2O4 = 1.000Pb+2 + 2.000B(OH)4- - 4.000H2O - log_k -10.870 #91BAL/NOR - delta_h 2.761 #kJ/mol #91BAL/NOR - # Enthalpy of formation: -1548.753 #kJ/mol - -analytic -1.03863E+1 0E+0 -1.44217E+2 0E+0 0E+0 +PbB2O4 = Pb+2 + 2 B(OH)4- - 4 H2O + log_k -10.87 #91BAL/NOR + delta_h 2.761 #kJ/mol 91BAL/NOR +# Enthalpy of formation: -1548.753 kJ/mol + -analytic -10.38629E+0 00E+0 -14.42171E+1 00E+0 00E+0 PbF2(s) -PbF2 = 1.000Pb+2 + 2.000F- - log_k -7.520 #99LOT/OCH - delta_h 6.530 #kJ/mol - # Enthalpy of formation: -676.31 #kJ/mol - -analytic -6.37599E+0 0E+0 -3.41085E+2 0E+0 0E+0 +PbF2 = Pb+2 + 2 F- + log_k -7.52 #99LOT/OCH + delta_h 6.53 #kJ/mol +# Enthalpy of formation: -676.309 kJ/mol + -analytic -63.75993E-1 00E+0 -34.10857E+1 00E+0 00E+0 PbI2(cr) -PbI2 = 1.000Pb+2 + 2.000I- - log_k -8.050 - delta_h 62.801 #kJ/mol - # Enthalpy of formation: -175.441 #kJ/mol - -analytic 2.95225E+0 0E+0 -3.28032E+3 0E+0 0E+0 +PbI2 = Pb+2 + 2 I- + log_k -8.05 + delta_h 62.816 #kJ/mol +# Enthalpy of formation: -175.456 kJ/mol + -analytic 29.54891E-1 00E+0 -32.81108E+2 00E+0 00E+0 PbMoO4(s) -PbMoO4 = 1.000Pb+2 + 1.000MoO4-2 - log_k -15.800 - delta_h 55.795 #kJ/mol - # Enthalpy of formation: -1051.875 #kJ/mol - -analytic -6.02515E+0 0E+0 -2.91437E+3 0E+0 0E+0 +PbMoO4 = Pb+2 + MoO4-2 + log_k -15.8 + delta_h 55.795 #kJ/mol +# Enthalpy of formation: -1051.875 kJ/mol + -analytic -60.25136E-1 00E+0 -29.14376E+2 00E+0 00E+0 PbSiO3(Glass) -PbSiO3 = 1.000Pb+2 - 2.000H+ + 1.000H4(SiO4) - 1.000H2O - log_k 6.600 - delta_h -36.814 #kJ/mol - # Enthalpy of formation: -1137.63 #kJ/mol #74NAU/RYZ - -analytic 1.50474E-1 0E+0 1.92293E+3 0E+0 0E+0 - -Pd(OH)2(s) -Pd(OH)2 = - 2.000H+ + 1.000Pd+2 + 2.000H2O - log_k -1.610 #70NAB/KAL - delta_h 13.223 #kJ/mol - # Enthalpy of formation: -395 #kJ/mol #82WAG/EVA - -analytic 7.06567E-1 0E+0 -6.90684E+2 0E+0 0E+0 +PbSiO3 = Pb+2 - 2 H+ + H4(SiO4) - H2O + log_k 6.6 + delta_h -36.814 #kJ/mol +# Enthalpy of formation: -1137.630 kJ/mol 74NAU/RYZ + -analytic 15.04641E-2 00E+0 19.22929E+2 00E+0 00E+0 Pd(cr) -Pd = 1.000Pd+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 9.960 #43TEM/WAT - delta_h -89.880 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - -analytic -5.78628E+0 0E+0 4.69475E+3 0E+0 0E+0 +Pd = Pd+2 + 2 e- + log_k -33.03 + delta_h 189.889 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 79ROB/HEM in 98SAS/SHO + -analytic 23.71248E-2 00E+0 -99.18593E+2 00E+0 00E+0 + +Pd(OH)2(am) +Pd(OH)2 = -2 H+ + Pd+2 + 2 H2O + log_k -3.58 #12RAI/YUI + delta_h 13.229 #kJ/mol +# Enthalpy of formation: -395.000 kJ/mol 82WAG/EVA + -analytic -12.62379E-1 00E+0 -69.09988E+1 00E+0 00E+0 PdBr2(cr) -PdBr2 = 1.000Pd+2 + 2.000Br- - log_k -13.310 #89BAE/McK - delta_h 51.263 #kJ/mol - # Enthalpy of formation: -104.2 #kJ/mol #89BAE/McK - -analytic -4.32912E+0 0E+0 -2.67765E+3 0E+0 0E+0 +PdBr2 = Pd+2 + 2 Br- + log_k -13.31 #89BAE/McK + delta_h 51.269 #kJ/mol +# Enthalpy of formation: -104.200 kJ/mol 89BAE/McK + -analytic -43.28057E-1 00E+0 -26.77966E+2 00E+0 00E+0 PdCl2(cr) -PdCl2 = 1.000Pd+2 + 2.000Cl- - log_k -9.200 - delta_h 54.423 #kJ/mol - # Enthalpy of formation: -198.7 #kJ/mol #82WAG/EVA - -analytic 3.34486E-1 0E+0 -2.84271E+3 0E+0 0E+0 +PdCl2 = Pd+2 + 2 Cl- + log_k -9.2 + delta_h 54.429 #kJ/mol +# Enthalpy of formation: -198.700 kJ/mol 82WAG/EVA + -analytic 33.55515E-2 00E+0 -28.43025E+2 00E+0 00E+0 PdI2(cr) -PdI2 = 1.000Pd+2 + 2.000I- - log_k -25.870 - delta_h 139.923 #kJ/mol - # Enthalpy of formation: -63.6 #kJ/mol #89BAE/McK - -analytic -1.35658E+0 0E+0 -7.30868E+3 0E+0 0E+0 +PdI2 = Pd+2 + 2 I- + log_k -25.87 + delta_h 139.929 #kJ/mol +# Enthalpy of formation: -63.600 kJ/mol 89BAE/McK + -analytic -13.55492E-1 00E+0 -73.09001E+2 00E+0 00E+0 PdO(s) -PdO = - 2.000H+ + 1.000Pd+2 + 1.000H2O - log_k -6.020 - delta_h -10.547 #kJ/mol - # Enthalpy of formation: -85.4 #kJ/mol #82WAG/EVA - -analytic -7.86775E+0 0E+0 5.50907E+2 0E+0 0E+0 +PdO = -2 H+ + Pd+2 + H2O + log_k -6.02 + delta_h -10.541 #kJ/mol +# Enthalpy of formation: -85.400 kJ/mol 82WAG/EVA + -analytic -78.66704E-1 00E+0 55.05948E+1 00E+0 00E+0 PdS(s) -PdS = - 1.000H+ + 1.000Pd+2 + 1.000HS- - log_k -46.860 - delta_h 244.293 #kJ/mol - # Enthalpy of formation: -70.71 #kJ/mol #74MIL - -analytic -4.06177E+0 0E+0 -1.27603E+4 0E+0 0E+0 +PdS = - H+ + Pd+2 + HS- + log_k -46.86 + delta_h 244.299 #kJ/mol +# Enthalpy of formation: -70.710 kJ/mol 74MIL + -analytic -40.60652E-1 00E+0 -12.76063E+3 00E+0 00E+0 PdSe(s) -PdSe = - 1.000H+ + 1.000Pd+2 + 1.000HSe- - log_k -49.110 - delta_h 254.463 #kJ/mol - # Enthalpy of formation: -50.28 #kJ/mol #74MIL - -analytic -4.53006E+0 0E+0 -1.32915E+4 0E+0 0E+0 +PdSe = - H+ + Pd+2 + HSe- + log_k -49.11 + delta_h 254.469 #kJ/mol +# Enthalpy of formation: -50.280 kJ/mol 74MIL + -analytic -45.28945E-1 00E+0 -13.29184E+3 00E+0 00E+0 Pentahydrite -MgSO4:5H2O = 1.000Mg+2 + 1.000SO4-2 + 5.000H2O - log_k -1.280 #80HAR/WEA - delta_h -14.187 #kJ/mol - # Enthalpy of formation: -2791.303 #kJ/mol - -analytic -3.76545E+0 0E+0 7.41038E+2 0E+0 0E+0 +MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O + log_k -1.28 #80HAR/WEA + delta_h -14.187 #kJ/mol +# Enthalpy of formation: -2791.300 kJ/mol + -analytic -37.65456E-1 00E+0 74.10386E+1 00E+0 00E+0 Periclase -MgO = 1.000Mg+2 - 2.000H+ + 1.000H2O - log_k 21.580 - delta_h -151.230 #kJ/mol - # Enthalpy of formation: -601.6 #kJ/mol #89COX/WAG - -analytic -4.91432E+0 0E+0 7.89928E+3 0E+0 0E+0 +MgO = Mg+2 - 2 H+ + H2O + log_k 21.58 + delta_h -151.23 #kJ/mol +# Enthalpy of formation: -601.600 kJ/mol 89COX/WAG + -analytic -49.14359E-1 00E+0 78.99293E+2 00E+0 00E+0 + -Vm 11.25 Phillipsite_Ca -Ca0.5AlSi3O8:3H2O = 0.500Ca+2 + 1.000Al+3 - 4.000H+ + 3.000H4(SiO4) - 1.000H2O - log_k 2.320 #09BLA - delta_h -83.630 #kJ/mol - # Enthalpy of formation: -4824.022 #kJ/mol - -analytic -1.23313E+1 0E+0 4.36829E+3 0E+0 0E+0 +Ca0.5AlSi3O8:3H2O = 0.5 Ca+2 + Al+3 - 4 H+ + 3 H4(SiO4) - H2O + log_k 2.32 #09BLA + delta_h -83.633 #kJ/mol +# Enthalpy of formation: -4824.020 kJ/mol + -analytic -12.33187E+0 00E+0 43.68456E+2 00E+0 00E+0 + -Vm 151.15 Phillipsite_K -KAlSi3O8:3H2O = 1.000K+ + 1.000Al+3 - 4.000H+ + 3.000H4(SiO4) - 1.000H2O - log_k 0.040 #09BLA - delta_h -46.433 #kJ/mol - # Enthalpy of formation: -4841.859 #kJ/mol - -analytic -8.0947E+0 0E+0 2.42536E+3 0E+0 0E+0 +KAlSi3O8:3H2O = K+ + Al+3 - 4 H+ + 3 H4(SiO4) - H2O + log_k 0.04 #09BLA + delta_h -46.436 #kJ/mol +# Enthalpy of formation: -4841.858 kJ/mol + -analytic -80.95238E-1 00E+0 24.25521E+2 00E+0 00E+0 + -Vm 148.97 Phillipsite_Na -NaAlSi3O8:3H2O = 1.000Na+ + 1.000Al+3 - 4.000H+ + 3.000H4(SiO4) - 1.000H2O - log_k 1.450 #09BLA - delta_h -64.815 #kJ/mol - # Enthalpy of formation: -4811.677 #kJ/mol - -analytic -9.90508E+0 0E+0 3.38552E+3 0E+0 0E+0 +NaAlSi3O8:3H2O = Na+ + Al+3 - 4 H+ + 3 H4(SiO4) - H2O + log_k 1.45 #09BLA + delta_h -64.833 #kJ/mol +# Enthalpy of formation: -4811.661 kJ/mol + -analytic -99.08254E-1 00E+0 33.86463E+2 00E+0 00E+0 + -Vm 149.69 Phlogopite_K -KMg3Si3AlO10(OH)2 = 3.000Mg+2 + 1.000K+ + 1.000Al+3 - 10.000H+ + 3.000H4(SiO4) - log_k 41.100 - delta_h -360.122 #kJ/mol - # Enthalpy of formation: -6215 #kJ/mol #92CIR/NAV - -analytic -2.19906E+1 0E+0 1.88105E+4 0E+0 0E+0 +KMg3Si3AlO10(OH)2 = 3 Mg+2 + K+ + Al+3 - 10 H+ + 3 H4(SiO4) + log_k 41.08 + delta_h -360.122 #kJ/mol +# Enthalpy of formation: -6215.000 kJ/mol 92CIR/NAV + -analytic -22.01067E+0 00E+0 18.81048E+3 00E+0 00E+0 + -Vm 149.65 Phlogopite_Na -NaMg3AlSi3O10(OH)2 = 3.000Mg+2 + 1.000Na+ + 1.000Al+3 - 10.000H+ + 3.000H4(SiO4) - log_k 44.200 - delta_h -391.182 #kJ/mol - # Enthalpy of formation: -6172.14 #kJ/mol #98HOL/POW - -analytic -2.4332E+1 0E+0 2.04328E+4 0E+0 0E+0 +NaMg3AlSi3O10(OH)2 = 3 Mg+2 + Na+ + Al+3 - 10 H+ + 3 H4(SiO4) + log_k 44.18 + delta_h -391.182 #kJ/mol +# Enthalpy of formation: -6172.140 kJ/mol 98HOL/POW + -analytic -24.35214E+0 00E+0 20.43286E+3 00E+0 00E+0 + -Vm 144.5 Phosgenite -Pb2(CO3)Cl2 = 2.000Pb+2 + 1.000CO3-2 + 2.000Cl- - log_k 19.900 #74NAU/RYZ - delta_h -163.291 #kJ/mol - # Enthalpy of formation: -844.259 #kJ/mol - -analytic -8.70731E+0 0E+0 8.52927E+3 0E+0 0E+0 +Pb2(CO3)Cl2 = 2 Pb+2 + CO3-2 + 2 Cl- + log_k 19.9 #74NAU/RYZ + delta_h -163.291 #kJ/mol +# Enthalpy of formation: -844.259 kJ/mol + -analytic -87.07355E-1 00E+0 85.29283E+2 00E+0 00E+0 Picromerite -K2Mg(SO4)2:6H2O = 1.000Mg+2 + 2.000K+ + 2.000SO4-2 + 6.000H2O - log_k -4.330 #84HAR/MOL - delta_h 33.487 #kJ/mol - # Enthalpy of formation: -4538.427 #kJ/mol #74NAU/RYZ - -analytic 1.53666E+0 0E+0 -1.74915E+3 0E+0 0E+0 +K2Mg(SO4)2:6H2O = Mg+2 + 2 K+ + 2 SO4-2 + 6 H2O + log_k -4.33 #84HAR/MOL + delta_h 33.487 #kJ/mol +# Enthalpy of formation: -4538.427 kJ/mol 74NAU/RYZ + -analytic 15.36671E-1 00E+0 -17.49148E+2 00E+0 00E+0 Pirssonite -Na2Ca(CO3)2:2H2O = 1.000Ca+2 + 2.000Na+ + 2.000CO3-2 + 2.000H2O - log_k -8.910 #99KON/KON - delta_h 9.580 #kJ/mol - # Enthalpy of formation: -2955.38 #kJ/mol - -analytic -7.23166E+0 0E+0 -5.00398E+2 0E+0 0E+0 +Na2Ca(CO3)2:2H2O = Ca+2 + 2 Na+ + 2 CO3-2 + 2 H2O + log_k -8.91 #99KON/KON + delta_h 9.579 #kJ/mol +# Enthalpy of formation: -2955.379 kJ/mol + -analytic -72.31831E-1 00E+0 -50.0346E+1 00E+0 00E+0 Plattnerite -PbO2 = 1.000Pb+2 - 2.000H+ + 1.000H2O + 0.500O2 - log_k 6.610 - delta_h -16.507 #kJ/mol - # Enthalpy of formation: -274.47 #kJ/mol #98CHA - -analytic 3.7181E+0 0E+0 8.62219E+2 0E+0 0E+0 +PbO2 = Pb+2 - 4 H+ - 2 e- + 2 H2O + log_k 49.6 + delta_h -296.27 #kJ/mol +# Enthalpy of formation: -274.470 kJ/mol 98CHA + -analytic -23.04276E-1 00E+0 15.47526E+3 00E+0 00E+0 Plumbogummite -PbAl3(PO4)2(OH)5:H2O = 1.000Pb+2 + 3.000Al+3 - 9.000H+ + 2.000H2(PO4)- + 6.000H2O - log_k 13.240 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.324E+1 0E+0 0E+0 0E+0 0E+0 +PbAl3(PO4)2(OH)5:H2O = Pb+2 + 3 Al+3 - 9 H+ + 2 H2(PO4)- + 6 H2O + log_k 13.24 #74NRI + -analytic 13.24E+0 00E+0 00E+0 00E+0 00E+0 Plumbonacrite -Pb10(CO3)6O(OH)6 = 10.000Pb+2 - 8.000H+ + 6.000CO3-2 + 7.000H2O - log_k -42.090 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.209E+1 0E+0 0E+0 0E+0 0E+0 +Pb10(CO3)6O(OH)6 = 10 Pb+2 - 8 H+ + 6 CO3-2 + 7 H2O + log_k -42.09 + -analytic -42.09E+0 00E+0 00E+0 00E+0 00E+0 Polydymite -Ni3S4 = 3.000Ni+2 - 2.000H+ + 4.000HS- - 1.000H2O + 0.500O2 - log_k -82.260 - delta_h 375.879 #kJ/mol - # Enthalpy of formation: -326.352 #kJ/mol #74MIL - -analytic -1.64089E+1 0E+0 -1.96335E+4 0E+0 0E+0 +Ni3S4 = 3 Ni+2 - 4 H+ - 2 e- + 4 HS- + log_k -39.27 + delta_h 96.116 #kJ/mol +# Enthalpy of formation: -326.352 kJ/mol 74MIL + -analytic -22.4312E+0 00E+0 -50.20488E+2 00E+0 00E+0 Polyhalite -K2MgCa2(SO4)4:2H2O = 2.000Ca+2 + 1.000Mg+2 + 2.000K+ + 4.000SO4-2 + 2.000H2O - log_k -13.740 #84HAR/MOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.374E+1 0E+0 0E+0 0E+0 0E+0 +K2MgCa2(SO4)4:2H2O = 2 Ca+2 + Mg+2 + 2 K+ + 4 SO4-2 + 2 H2O + log_k -13.74 #84HAR/MOL + -analytic -13.74E+0 00E+0 00E+0 00E+0 00E+0 Portlandite -Ca(OH)2 = 1.000Ca+2 - 2.000H+ + 2.000H2O - log_k 22.810 #10BLA/BOU1 - delta_h -130.078 #kJ/mol - # Enthalpy of formation: -984.582 #kJ/mol - -analytic 2.13461E-2 0E+0 6.79444E+3 0E+0 0E+0 - -Pu(CO3)(OH)(s) -Pu(CO3)(OH) = 1.000Pu+3 - 1.000H+ + 1.000CO3-2 + 1.000H2O - log_k -5.740 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.74E+0 0E+0 0E+0 0E+0 0E+0 - -Pu(HPO4)2(am,hyd) -Pu(HPO4)2 = 1.000Pu+4 - 2.000H+ + 2.000H2(PO4)- - log_k -16.030 #01LEM/FUG - delta_h -32.718 #kJ/mol - # Enthalpy of formation: -3112.377 #kJ/mol - -analytic -2.17619E+1 0E+0 1.70898E+3 0E+0 0E+0 - -Pu(OH)3(cr) -Pu(OH)3 = 1.000Pu+3 - 3.000H+ + 3.000H2O - log_k 15.800 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.58E+1 0E+0 0E+0 0E+0 0E+0 - -Pu(OH)4(am) -Pu(OH)4 = 1.000Pu+4 - 4.000H+ + 4.000H2O - log_k -0.800 #89LEM/GAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -8E-1 0E+0 0E+0 0E+0 0E+0 - -Pu(PO4)(s,hyd) -Pu(PO4) = 1.000Pu+3 - 2.000H+ + 1.000H2(PO4)- - log_k -5.040 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.04E+0 0E+0 0E+0 0E+0 0E+0 +Ca(OH)2 = Ca+2 - 2 H+ + 2 H2O + log_k 22.81 #10BLA/BOU1 + delta_h -130.107 #kJ/mol +# Enthalpy of formation: -984.552 kJ/mol + -analytic 16.23204E-3 00E+0 67.95962E+2 00E+0 00E+0 + -Vm 33.06 Pu(cr) -Pu = 1.000Pu+3 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 165.915 - delta_h -1011.435 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #01LEM/FUG - -analytic -1.12805E+1 0E+0 5.28308E+4 0E+0 0E+0 +Pu = Pu+3 + 3 e- + log_k 101.43 + delta_h -591.79 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 01LEM/FUG + -analytic -22.47158E-1 00E+0 30.91134E+3 00E+0 00E+0 + +Pu(HPO4)2(am,hyd) +Pu(HPO4)2 = Pu+4 - 2 H+ + 2 H2(PO4)- + log_k -16.03 #01LEM/FUG + delta_h -32.691 #kJ/mol +# Enthalpy of formation: -3112.403 kJ/mol + -analytic -21.75722E+0 00E+0 17.0757E+2 00E+0 00E+0 + +Pu(OH)3(am) +Pu(OH)3 = Pu+3 - 3 H+ + 3 H2O + log_k 14.58 #20GRE/GAO + -analytic 14.58E+0 00E+0 00E+0 00E+0 00E+0 + +Pu(PO4)(am) +Pu(PO4) = Pu+3 - 2 H+ + H2(PO4)- + log_k -4.88 #20GRE/GAO + -analytic -48.8E-1 00E+0 00E+0 00E+0 00E+0 Pu2O3(s) -Pu2O3 = 2.000Pu+3 - 6.000H+ + 3.000H2O - log_k 50.630 - delta_h -385.070 #kJ/mol - # Enthalpy of formation: -1656 #kJ/mol #01LEM/FUG - -analytic -1.68313E+1 0E+0 2.01136E+4 0E+0 0E+0 +Pu2O3 = 2 Pu+3 - 6 H+ + 3 H2O + log_k 50.63 + delta_h -385.07 #kJ/mol +# Enthalpy of formation: -1656.000 kJ/mol 01LEM/FUG + -analytic -16.83137E+0 00E+0 20.11361E+3 00E+0 00E+0 PuAs(s) -PuAs = 1.000AsO4-3 + 1.000PuO2+2 - 0.500H2O + 1.000H+ - 2.750O2 - log_k 192.005 - delta_h -1293.893 #kJ/mol - # Enthalpy of formation: -240 #kJ/mol #01LEM/FUG - -analytic -3.46749E+1 0E+0 6.75846E+4 0E+0 0E+0 +PuAs = PuO2+2 + 12 H+ + 11 e- + AsO4-3 - 6 H2O + log_k -44.42 + delta_h 244.804 #kJ/mol +# Enthalpy of formation: -240.000 kJ/mol 01LEM/FUG + -analytic -15.3218E-1 00E+0 -12.787E+3 00E+0 00E+0 + +PuCO3OH(s) +Pu(CO3)(OH) = Pu+3 - H+ + CO3-2 + H2O + log_k -6.27 #Estimated using the data for AmCO3OH(s) and the trend versus r identified for AnCO3OH·0.5H2O(s)(orthorhombic). + -analytic -62.7E-1 00E+0 00E+0 00E+0 00E+0 PuF4(s) -PuF4 = 1.000Pu+4 + 4.000F- - log_k -26.070 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.607E+1 0E+0 0E+0 0E+0 0E+0 +PuF4 = Pu+4 + 4 F- + log_k -26.07 #01LEM/FUG + -analytic -26.07E+0 00E+0 00E+0 00E+0 00E+0 -PuO2(CO3)(s) -PuO2(CO3) = 1.000PuO2+2 + 1.000CO3-2 - log_k -14.650 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.465E+1 0E+0 0E+0 0E+0 0E+0 +PuO2(CO3)(cr) +PuO2(CO3) = PuO2+2 + CO3-2 + log_k -14.82 #20GRE/GAO + -analytic -14.82E+0 00E+0 00E+0 00E+0 00E+0 -PuO2(OH)(s) -PuO2(OH) = 1.000PuO2+ - 1.000H+ + 1.000H2O - log_k 5.000 #01LEM/FUG - delta_h -36.164 #kJ/mol - # Enthalpy of formation: -1159.793 #kJ/mol - -analytic -1.33565E+0 0E+0 1.88897E+3 0E+0 0E+0 +PuO2(coll) +PuO2 = Pu+4 - 4 H+ + 2 H2O + log_k 0.2 #07NEC/ALT3 + -analytic 20E-2 00E+0 00E+0 00E+0 00E+0 -PuO2(OH)2:H2O(s) -PuO2(OH)2:H2O = 1.000PuO2+2 - 2.000H+ + 3.000H2O - log_k 5.500 #01LEM/FUG - delta_h -46.718 #kJ/mol - # Enthalpy of formation: -1632.808 #kJ/mol - -analytic -2.68463E+0 0E+0 2.44025E+3 0E+0 0E+0 +PuO2(cr) +PuO2 = Pu+4 - 4 H+ + 2 H2O + log_k -8.03 + delta_h -55.755 #kJ/mol +# Enthalpy of formation: -1055.800 kJ/mol 01LEM/FUG + -analytic -17.79786E+0 00E+0 29.12286E+2 00E+0 00E+0 + +PuO2(OH)2:H2O(am) +PuO2(OH)2:H2O = PuO2+2 - 2 H+ + 3 H2O + log_k 5.17 #20GRE/GAO + delta_h -44.834 #kJ/mol +# Enthalpy of formation: -1634.691 kJ/mol + -analytic -26.8458E-1 00E+0 23.41843E+2 00E+0 00E+0 PuO2(Ox):3H2O(s) -PuO2(Ox):3H2O = 1.000PuO2+2 + 1.000Ox-2 + 3.000H2O - log_k -10.000 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1E+1 0E+0 0E+0 0E+0 0E+0 - -PuO2(coll,hyd) -PuO2 = 1.000Pu+4 - 4.000H+ + 2.000H2O - log_k 0.200 #07NEC/ALT3 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2E-1 0E+0 0E+0 0E+0 0E+0 - -PuO2(s) -PuO2 = 1.000Pu+4 - 4.000H+ + 2.000H2O - log_k -8.030 - delta_h -55.755 #kJ/mol - # Enthalpy of formation: -1055.8 #kJ/mol #01LEM/FUG - -analytic -1.77978E+1 0E+0 2.91228E+3 0E+0 0E+0 +PuO2(Ox):3H2O = PuO2+2 + Ox-2 + 3 H2O + log_k -10 #05HUM/AND + -analytic -10E+0 00E+0 00E+0 00E+0 00E+0 PuO2:2H2O(am) -PuO2:2H2O = 1.000Pu+4 - 4.000H+ + 4.000H2O - log_k -2.370 #03GUI/FAN - delta_h -58.548 #kJ/mol - # Enthalpy of formation: -1624.667 #kJ/mol - -analytic -1.26272E+1 0E+0 3.05817E+3 0E+0 0E+0 +PuO2:2H2O = Pu+4 - 4 H+ + 4 H2O + log_k -2.33 #03GUI/FAN + delta_h -58.774 #kJ/mol +# Enthalpy of formation: -1624.439 kJ/mol + -analytic -12.62676E+0 00E+0 30.6998E+2 00E+0 00E+0 + +PuO2OH(am) +PuO2OH = PuO2+ - H+ + H2O + log_k 5 #01LEM/FUG + delta_h -36.164 #kJ/mol +# Enthalpy of formation: -1159.793 kJ/mol + -analytic -13.35661E-1 00E+0 18.88977E+2 00E+0 00E+0 Pyrite -FeS2 = 1.000Fe+2 + 2.000HS- - 1.000H2O + 0.500O2 - log_k -58.780 - delta_h 324.813 #kJ/mol - # Enthalpy of formation: -167.65 #kJ/mol #76RAU in 04CHI - -analytic -1.87529E+0 0E+0 -1.69661E+4 0E+0 0E+0 +FeS2 = Fe+2 - 2 H+ - 2 e- + 2 HS- + log_k -16.82 + delta_h 50.735 #kJ/mol +# Enthalpy of formation: -173.630 kJ/mol 20LEM/PAL + -analytic -79.3161E-1 00E+0 -26.50074E+2 00E+0 00E+0 + -Vm 23.94 Pyrochroite -Mn(OH)2 = 1.000Mn+2 - 2.000H+ + 2.000H2O - log_k 15.300 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.53E+1 0E+0 0E+0 0E+0 0E+0 +Mn(OH)2 = Mn+2 - 2 H+ + 2 H2O + log_k 15.3 #96FAL/REA + -analytic 15.3E+0 00E+0 00E+0 00E+0 00E+0 Pyromorphite -Pb5Cl(PO4)3 = 5.000Pb+2 - 6.000H+ + 1.000Cl- + 3.000H2(PO4)- - log_k -25.750 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.575E+1 0E+0 0E+0 0E+0 0E+0 +Pb5Cl(PO4)3 = 5 Pb+2 - 6 H+ + Cl- + 3 H2(PO4)- + log_k -25.75 #74NRI + -analytic -25.75E+0 00E+0 00E+0 00E+0 00E+0 Pyromorphite-Br -Pb5Br(PO4)3 = 5.000Pb+2 - 6.000H+ + 1.000Br- + 3.000H2(PO4)- - log_k -19.450 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.945E+1 0E+0 0E+0 0E+0 0E+0 +Pb5Br(PO4)3 = 5 Pb+2 - 6 H+ + Br- + 3 H2(PO4)- + log_k -19.45 #74NRI + -analytic -19.45E+0 00E+0 00E+0 00E+0 00E+0 Pyromorphite-F -Pb5F(PO4)3 = 5.000Pb+2 - 6.000H+ + 1.000F- + 3.000H2(PO4)- - log_k -13.100 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.31E+1 0E+0 0E+0 0E+0 0E+0 +Pb5F(PO4)3 = 5 Pb+2 - 6 H+ + F- + 3 H2(PO4)- + log_k -13.1 #74NRI + -analytic -13.1E+0 00E+0 00E+0 00E+0 00E+0 Pyromorphite-OH -Pb5(OH)(PO4)3 = 5.000Pb+2 - 7.000H+ + 3.000H2(PO4)- + 1.000H2O - log_k -4.150 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.15E+0 0E+0 0E+0 0E+0 0E+0 +Pb5(OH)(PO4)3 = 5 Pb+2 - 7 H+ + 3 H2(PO4)- + H2O + log_k -4.15 #74NRI + -analytic -41.5E-1 00E+0 00E+0 00E+0 00E+0 Pyrophyllite -Al2Si4O10(OH)2 = 2.000Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k -0.420 - delta_h -138.256 #kJ/mol - # Enthalpy of formation: -5640 #kJ/mol #95ROB/HEM - -analytic -2.46414E+1 0E+0 7.2216E+3 0E+0 0E+0 +Al2Si4O10(OH)2 = 2 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k -0.44 + delta_h -138.256 #kJ/mol +# Enthalpy of formation: -5640.000 kJ/mol 95ROB/HEM + -analytic -24.66141E+0 00E+0 72.21614E+2 00E+0 00E+0 + -Vm 128.1 Pyrrhotite -Fe0.87S = 0.870Fe+2 - 0.740H+ + 1.000HS- - 0.130H2O + 0.065O2 - log_k -11.179 - delta_h 38.819 #kJ/mol - # Enthalpy of formation: -97.5 #kJ/mol #95ROB/HEM - -analytic -4.37788E+0 0E+0 -2.02766E+3 0E+0 0E+0 +Fe0.87S = 0.87 Fe+2 - H+ - 0.26 e- + HS- + log_k -5.32 + delta_h 0.673 #kJ/mol +# Enthalpy of formation: -95.530 kJ/mol 20LEM/PAL + -analytic -52.02095E-1 00E+0 -35.15324E+0 00E+0 00E+0 + -Vm 18.2 Quartz -SiO2 = 1.000H4(SiO4) - 2.000H2O - log_k -3.740 - delta_h 21.166 #kJ/mol - # Enthalpy of formation: -910.7 #kJ/mol #82RIC/BOT - -analytic -3.18814E-2 0E+0 -1.10558E+3 0E+0 0E+0 +SiO2 = H4(SiO4) - 2 H2O + log_k -3.74 + delta_h 21.166 #kJ/mol +# Enthalpy of formation: -910.700 kJ/mol 82RIC/BOT + -analytic -31.87597E-3 00E+0 -11.05577E+2 00E+0 00E+0 + -Vm 22.69 Ra(CO3)(s) -Ra(CO3) = 1.000Ra+2 + 1.000CO3-2 - log_k -8.300 #85LAN/RIE - delta_h 13.390 #kJ/mol - # Enthalpy of formation: -1216.646 #kJ/mol - -analytic -5.95418E+0 0E+0 -6.99407E+2 0E+0 0E+0 - -Ra(NO3)2(s) -Ra(NO3)2 = 1.000Ra+2 + 2.000NO3- - log_k -2.210 - delta_h 49.980 #kJ/mol - # Enthalpy of formation: -991.706 #kJ/mol - -analytic 6.54611E+0 0E+0 -2.61063E+3 0E+0 0E+0 - -Ra(OH)2(s) -Ra(OH)2 = - 2.000H+ + 1.000Ra+2 + 2.000H2O - log_k 30.990 - delta_h -149.763 #kJ/mol - # Enthalpy of formation: -949.923 #kJ/mol - -analytic 4.75269E+0 0E+0 7.82265E+3 0E+0 0E+0 - -Ra(SO4)(s) -Ra(SO4) = 1.000Ra+2 + 1.000SO4-2 - log_k -10.260 #99SCH, 85LAN/RIE - delta_h 38.910 #kJ/mol - # Enthalpy of formation: -1476.275 #kJ/mol - -analytic -3.44327E+0 0E+0 -2.03241E+3 0E+0 0E+0 +Ra(CO3) = Ra+2 + CO3-2 + log_k -8.3 #85LAN/RIE; Uncertainty estimated by analogy with Sr(CO3)(s). + delta_h 13.64 #kJ/mol +# Enthalpy of formation: -1216.896 kJ/mol + -analytic -59.10375E-1 00E+0 -71.24668E+1 00E+0 00E+0 Ra(cr) -Ra = 1.000Ra+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 141.430 - delta_h -807.788 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #82WAG/EVA - -analytic -8.81751E-2 0E+0 4.21936E+4 0E+0 0E+0 +Ra = Ra+2 + 2 e- + log_k 98.44 + delta_h -528.025 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA + -analytic 59.33991E-1 00E+0 27.58067E+3 00E+0 00E+0 + +Ra(NO3)2(s) +Ra(NO3)2 = Ra+2 + 2 NO3- + log_k -2.21 + delta_h 49.981 #kJ/mol +# Enthalpy of formation: -991.706 kJ/mol + -analytic 65.46295E-1 00E+0 -26.10689E+2 00E+0 00E+0 + +Ra(OH)2(s) +Ra(OH)2 = -2 H+ + Ra+2 + 2 H2O + log_k 30.99 + delta_h -149.762 #kJ/mol +# Enthalpy of formation: -949.923 kJ/mol + -analytic 47.52824E-1 00E+0 78.22614E+2 00E+0 00E+0 + +Ra(SO4)(s) +Ra(SO4) = Ra+2 + SO4-2 + log_k -10.26 #99SCH, 85LAN/RIE + delta_h 39.014 #kJ/mol +# Enthalpy of formation: -1476.379 kJ/mol + -analytic -34.25041E-1 00E+0 -20.37843E+2 00E+0 00E+0 RaCl2:2H2O(s) -RaCl2:2H2O = 1.000Ra+2 + 2.000Cl- + 2.000H2O - log_k -0.730 - delta_h 32.220 #kJ/mol - # Enthalpy of formation: -1466.065 #kJ/mol - -analytic 4.91469E+0 0E+0 -1.68297E+3 0E+0 0E+0 +RaCl2:2H2O = Ra+2 + 2 Cl- + 2 H2O + log_k -0.73 + delta_h 32.221 #kJ/mol +# Enthalpy of formation: -1466.065 kJ/mol + -analytic 49.14877E-1 00E+0 -16.8302E+2 00E+0 00E+0 -Rb(s) -Rb = 1.000Rb+ + 0.500H2O - 1.000H+ - 0.250O2 - log_k 71.255 - delta_h -391.002 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #92GRE/FUG - -analytic 2.75458E+0 0E+0 2.04234E+4 0E+0 0E+0 +Rb(cr) +Rb = e- + Rb+ + log_k 49.76 + delta_h -251.12 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG + -analytic 57.65664E-1 00E+0 13.11691E+3 00E+0 00E+0 Rb2MoO4(s) -Rb2MoO4 = 1.000MoO4-2 + 2.000Rb+ - log_k 3.100 - delta_h -5.391 #kJ/mol - # Enthalpy of formation: -1493.849 #kJ/mol - -analytic 2.15554E+0 0E+0 2.81591E+2 0E+0 0E+0 +Rb2MoO4 = MoO4-2 + 2 Rb+ + log_k 3.1 + delta_h -5.315 #kJ/mol +# Enthalpy of formation: -1493.925 kJ/mol + -analytic 21.68852E-1 00E+0 27.76218E+1 00E+0 00E+0 Realgar -AsS = 4.000H+ + 1.000HS- + 1.000AsO4-3 - 2.500H2O - 0.750O2 - log_k -2.575 - delta_h -109.359 #kJ/mol - # Enthalpy of formation: -71.406 #kJ/mol - -analytic -2.17338E+1 0E+0 5.71218E+3 0E+0 0E+0 +AsS = 7 H+ + 3 e- + HS- + AsO4-3 - 4 H2O + log_k -67.06 + delta_h 310.285 #kJ/mol +# Enthalpy of formation: -71.406 kJ/mol + -analytic -12.7004E+0 00E+0 -16.20731E+3 00E+0 00E+0 Rhodochrosite -Mn(CO3) = 1.000Mn+2 + 1.000CO3-2 - log_k -11.130 #92PEA/BER - delta_h -5.899 #kJ/mol - # Enthalpy of formation: -890.081 #kJ/mol - -analytic -1.21635E+1 0E+0 3.08126E+2 0E+0 0E+0 +Mn(CO3) = Mn+2 + CO3-2 + log_k -11.13 #92PEA/BER + delta_h -5.899 #kJ/mol 92PEA/BER +# Enthalpy of formation: -890.131 kJ/mol + -analytic -12.16346E+0 00E+0 30.81262E+1 00E+0 00E+0 Rhodochrosite(syn) -Mn(CO3) = 1.000Mn+2 + 1.000CO3-2 - log_k -10.520 - delta_h -6.792 #kJ/mol - # Enthalpy of formation: -889.188 #kJ/mol #92JOH - -analytic -1.17099E+1 0E+0 3.5477E+2 0E+0 0E+0 +Mn(CO3) = Mn+2 + CO3-2 + log_k -10.49 + delta_h -6.842 #kJ/mol +# Enthalpy of formation: -889.188 kJ/mol 92JOH + -analytic -11.68867E+0 00E+0 35.73825E+1 00E+0 00E+0 Ripidolite_Cca-2 -(Mg2.964Fe1.712Fe0.215Al1.116Ca0.011)(Si2.633Al1.367)O10(OH)8 = 0.011Ca+2 + 2.964Mg+2 + 0.215Fe+3 + 1.712Fe+2 + 2.483Al+3 - 17.468H+ + 2.633H4(SiO4) + 7.468H2O - log_k 61.350 - delta_h -633.385 #kJ/mol - # Enthalpy of formation: -8240.14 #kJ/mol #13BLA/GAI2 - -analytic -4.96141E+1 0E+0 3.3084E+4 0E+0 0E+0 +(Mg2.964Fe1.712Fe0.215Al1.116Ca0.011)(Si2.633Al1.367)O10(OH)8 = 0.011 Ca+2 + 2.964 Mg+2 + 0.215 Fe+3 + 1.712 Fe+2 + 2.483 Al+3 - 17.468 H+ + 2.633 H4(SiO4) + 7.468 H2O + log_k 61.35 + delta_h -634.118 #kJ/mol +# Enthalpy of formation: -8240.140 kJ/mol 13BLA/GAI2 + -analytic -49.7427E+0 00E+0 33.12229E+3 00E+0 00E+0 + -Vm 211.83 Romarchite -SnO = 1.000Sn+2 - 2.000H+ + 1.000H2O - log_k 1.590 - delta_h -11.207 #kJ/mol - # Enthalpy of formation: -284.24 #kJ/mol #12GAM/GAJ - -analytic -3.73379E-1 0E+0 5.85382E+2 0E+0 0E+0 +SnO = Sn+2 - 2 H+ + H2O + log_k 1.59 + delta_h -11.207 #kJ/mol +# Enthalpy of formation: -284.240 kJ/mol 12GAM/GAJ + -analytic -37.33821E-2 00E+0 58.53824E+1 00E+0 00E+0 Rutherfordine -(UO2)(CO3) = 1.000UO2+2 + 1.000CO3-2 - log_k -14.760 #03GUI/FAN - delta_h -2.929 #kJ/mol - # Enthalpy of formation: -1691.301 #kJ/mol - -analytic -1.52731E+1 0E+0 1.52992E+2 0E+0 0E+0 +(UO2)(CO3) = UO2+2 + CO3-2 + log_k -14.76 #03GUI/FAN + delta_h -2.929 #kJ/mol +# Enthalpy of formation: -1691.302 kJ/mol + -analytic -15.27314E+0 00E+0 15.29923E+1 00E+0 00E+0 S(cr) -S = 1.000H+ + 1.000HS- - 1.000H2O + 0.500O2 - log_k -45.130 - delta_h 263.463 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic 1.02667E+0 0E+0 -1.37616E+4 0E+0 0E+0 +S = - H+ - 2 e- + HS- + log_k -2.14 + delta_h -16.3 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -49.95637E-1 00E+0 85.14083E+1 00E+0 00E+0 Sacchite -MnCl2 = 1.000Mn+2 + 2.000Cl- - log_k 8.770 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.77E+0 0E+0 0E+0 0E+0 0E+0 +MnCl2 = Mn+2 + 2 Cl- + log_k 8.77 #96FAL/REA + -analytic 87.7E-1 00E+0 00E+0 00E+0 00E+0 Sanidine -KAlSi3O8 = 1.000K+ + 1.000Al+3 - 4.000H+ + 3.000H4(SiO4) - 4.000H2O - log_k 0.580 - delta_h -65.073 #kJ/mol - # Enthalpy of formation: -3965.73 #kJ/mol #99ARN/STE - -analytic -1.08203E+1 0E+0 3.39899E+3 0E+0 0E+0 - -Saponite-Ca -Ca0.17Mg3Al0.34Si3.66O10(OH)2 = 0.170Ca+2 + 3.000Mg+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 29.340 - delta_h -271.305 #kJ/mol - # Enthalpy of formation: -5998.44 #kJ/mol #15BLA/VIE - -analytic -1.81905E+1 0E+0 1.41712E+4 0E+0 0E+0 - -Saponite-FeCa -Ca0.17Mg2FeAl0.34Si3.66O10(OH)2 = 0.170Ca+2 + 2.000Mg+2 + 1.000Fe+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 26.550 - delta_h -259.175 #kJ/mol - # Enthalpy of formation: -5633.57 #kJ/mol #15BLA/VIE - -analytic -1.88554E+1 0E+0 1.35376E+4 0E+0 0E+0 - -Saponite-FeK -K0.34Mg2FeAl0.34Si3.66O10(OH)2 = 2.000Mg+2 + 0.340K+ + 1.000Fe+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 25.380 - delta_h -240.632 #kJ/mol - # Enthalpy of formation: -5645.53 #kJ/mol #15BLA/VIE - -analytic -1.67769E+1 0E+0 1.25691E+4 0E+0 0E+0 - -Saponite-FeMg -Mg0.17Mg2FeAl0.34Si3.66O10(OH)2 = 2.170Mg+2 + 1.000Fe+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 26.000 - delta_h -260.345 #kJ/mol - # Enthalpy of formation: -5619.48 #kJ/mol #15BLA/VIE - -analytic -1.96104E+1 0E+0 1.35987E+4 0E+0 0E+0 - -Saponite-FeNa -Na0.34Mg2FeAl0.34Si3.66O10(OH)2 = 2.000Mg+2 + 0.340Na+ + 1.000Fe+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 25.700 - delta_h -248.260 #kJ/mol - # Enthalpy of formation: -5633.89 #kJ/mol #15BLA/VIE - -analytic -1.77932E+1 0E+0 1.29675E+4 0E+0 0E+0 - -Saponite-K -K0.34Mg3Al0.34Si3.66O10(OH)2 = 3.000Mg+2 + 0.340K+ + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 28.170 - delta_h -252.772 #kJ/mol - # Enthalpy of formation: -6010.39 #kJ/mol #15BLA/VIE - -analytic -1.61137E+1 0E+0 1.32032E+4 0E+0 0E+0 - -Saponite-Mg -Mg0.17Mg3Al0.34Si3.66O10(OH)2 = 3.170Mg+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 28.790 - delta_h -272.485 #kJ/mol - # Enthalpy of formation: -5984.34 #kJ/mol #15BLA/VIE - -analytic -1.89473E+1 0E+0 1.42329E+4 0E+0 0E+0 - -Saponite-Na -Na0.34Mg3Al0.34Si3.66O10(OH)2 = 3.000Mg+2 + 0.340Na+ + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 28.670 - delta_h -261.390 #kJ/mol - # Enthalpy of formation: -5997.76 #kJ/mol #15BLA/VIE - -analytic -1.71235E+1 0E+0 1.36533E+4 0E+0 0E+0 +KAlSi3O8 = K+ + Al+3 - 4 H+ + 3 H4(SiO4) - 4 H2O + log_k 0.58 + delta_h -65.072 #kJ/mol +# Enthalpy of formation: -3965.730 kJ/mol 99ARN/STE + -analytic -10.82013E+0 00E+0 33.98947E+2 00E+0 00E+0 Saponite_SapCa -(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.034Fe0.021)O10(OH)2 = 0.038Ca+2 + 2.949Mg+2 + 0.021K+ + 0.394Na+ + 0.034Fe+3 + 0.021Fe+2 + 0.397Al+3 - 7.724H+ + 3.569H4(SiO4) - 2.276H2O - log_k 31.470 - delta_h -285.499 #kJ/mol - # Enthalpy of formation: -5994.06 #kJ/mol #13GAI/BLA - -analytic -1.85472E+1 0E+0 1.49126E+4 0E+0 0E+0 +(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.034Fe0.021)O10(OH)2 = 0.038 Ca+2 + 2.949 Mg+2 + 0.021 K+ + 0.394 Na+ + 0.034 Fe+3 + 0.021 Fe+2 + 0.397 Al+3 - 7.724 H+ + 3.569 H4(SiO4) - 2.276 H2O + log_k 31.45 + delta_h -285.541 #kJ/mol +# Enthalpy of formation: -5994.060 kJ/mol 13GAI/BLA + -analytic -18.57464E+0 00E+0 14.91485E+3 00E+0 00E+0 + -Vm 141.66 Saponite_SapCa(4.151H2O) -(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.034Fe0.021)O10(OH)2:4.151H2O = 0.038Ca+2 + 2.949Mg+2 + 0.021K+ + 0.394Na+ + 0.034Fe+3 + 0.021Fe+2 + 0.397Al+3 - 7.724H+ + 3.569H4(SiO4) + 1.875H2O - log_k 28.300 - delta_h -255.590 #kJ/mol - # Enthalpy of formation: -7210.45 #kJ/mol #09GAI - -analytic -1.64774E+1 0E+0 1.33504E+4 0E+0 0E+0 +(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.034Fe0.021)O10(OH)2:4.151H2O = 0.038 Ca+2 + 2.949 Mg+2 + 0.021 K+ + 0.394 Na+ + 0.034 Fe+3 + 0.021 Fe+2 + 0.397 Al+3 - 7.724 H+ + 3.569 H4(SiO4) + 1.875 H2O + log_k 28.27 + delta_h -255.631 #kJ/mol +# Enthalpy of formation: -7210.450 kJ/mol 09GAI + -analytic -16.51463E+0 00E+0 13.35254E+3 00E+0 00E+0 + -Vm 216.67 + +Saponite-Ca +Ca0.17Mg3Al0.34Si3.66O10(OH)2 = 0.17 Ca+2 + 3 Mg+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 29.34 + delta_h -271.305 #kJ/mol +# Enthalpy of formation: -5998.440 kJ/mol 15BLA/VIE + -analytic -18.1906E+0 00E+0 14.17125E+3 00E+0 00E+0 + -Vm 142.57 + +Saponite-FeCa +Ca0.17Mg2FeAl0.34Si3.66O10(OH)2 = 0.17 Ca+2 + 2 Mg+2 + Fe+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 24.48 + delta_h -259.47 #kJ/mol +# Enthalpy of formation: -5633.570 kJ/mol 15BLA/VIE + -analytic -20.97719E+0 00E+0 13.55306E+3 00E+0 00E+0 + -Vm 145.15 + +Saponite-FeK +K0.34Mg2FeAl0.34Si3.66O10(OH)2 = 2 Mg+2 + 0.34 K+ + Fe+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 25.4 + delta_h -240.927 #kJ/mol +# Enthalpy of formation: -5645.530 kJ/mol 15BLA/VIE + -analytic -16.8086E+0 00E+0 12.58449E+3 00E+0 00E+0 + -Vm 144.27 + +Saponite-FeMg +Mg0.17Mg2FeAl0.34Si3.66O10(OH)2 = 2.17 Mg+2 + Fe+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 26.03 + delta_h -260.64 #kJ/mol +# Enthalpy of formation: -5619.480 kJ/mol 15BLA/VIE + -analytic -19.63217E+0 00E+0 13.61418E+3 00E+0 00E+0 + -Vm 141.16 + +Saponite-FeNa +Na0.34Mg2FeAl0.34Si3.66O10(OH)2 = 2 Mg+2 + 0.34 Na+ + Fe+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 25.73 + delta_h -248.555 #kJ/mol +# Enthalpy of formation: -5633.890 kJ/mol 15BLA/VIE + -analytic -17.81497E+0 00E+0 12.98293E+3 00E+0 00E+0 + -Vm 143.54 + +Saponite-K +K0.34Mg3Al0.34Si3.66O10(OH)2 = 3 Mg+2 + 0.34 K+ + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 28.17 + delta_h -252.772 #kJ/mol +# Enthalpy of formation: -6010.390 kJ/mol 15BLA/VIE + -analytic -16.11375E+0 00E+0 13.2032E+3 00E+0 00E+0 + -Vm 141.69 + +Saponite-Mg +Mg0.17Mg3Al0.34Si3.66O10(OH)2 = 3.17 Mg+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 28.79 + delta_h -272.485 #kJ/mol +# Enthalpy of formation: -5984.340 kJ/mol 15BLA/VIE + -analytic -18.94732E+0 00E+0 14.23288E+3 00E+0 00E+0 + -Vm 138.58 + +Saponite-Na +Na0.34Mg3Al0.34Si3.66O10(OH)2 = 3 Mg+2 + 0.34 Na+ + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 28.67 + delta_h -261.39 #kJ/mol +# Enthalpy of formation: -5997.760 kJ/mol 15BLA/VIE + -analytic -17.12356E+0 00E+0 13.65335E+3 00E+0 00E+0 + -Vm 140.96 Sb(cr) -Sb = 1.000Sb(OH)3 - 1.500H2O - 0.750O2 - log_k 52.815 - delta_h -336.045 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - -analytic -6.05738E+0 0E+0 1.75528E+4 0E+0 0E+0 +Sb = 3 H+ + 3 e- + Sb(OH)3 - 3 H2O + log_k -11.67 + delta_h 83.597 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 98KON/VAN + -analytic 29.75566E-1 00E+0 -43.66575E+2 00E+0 00E+0 Sb2O5(s) -Sb2O5 = 2.000Sb(OH)5 - 5.000H2O - log_k -7.400 #48TOU/MOU in 76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.4E+0 0E+0 0E+0 0E+0 0E+0 +Sb2O5 = 2 Sb(OH)5 - 5 H2O + log_k -7.4 #48TOU/MOU in 76BAE/MES + -analytic -74E-1 00E+0 00E+0 00E+0 00E+0 -Schoepite -UO3:2H2O = 1.000UO2+2 - 2.000H+ + 3.000H2O - log_k 5.960 #91SAN/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.96E+0 0E+0 0E+0 0E+0 0E+0 - -Schoepite(des) -UO3:0.9H2O = 1.000UO2+2 - 2.000H+ + 1.900H2O - log_k 5.000 - delta_h -55.777 #kJ/mol - # Enthalpy of formation: -1506.3 #kJ/mol #92GRE/FUG - -analytic -4.7717E+0 0E+0 2.91343E+3 0E+0 0E+0 +Schwertmannite(cr) +Fe8O8(OH)6SO4 = 8 Fe+3 - 22 H+ + SO4-2 + 14 H2O + log_k 8.72 + -analytic 87.2E-1 00E+0 00E+0 00E+0 00E+0 Scolecite -CaAl2Si3O10:3H2O = 1.000Ca+2 + 2.000Al+3 - 8.000H+ + 3.000H4(SiO4) + 1.000H2O - log_k 16.650 - delta_h -240.212 #kJ/mol - # Enthalpy of formation: -6049 #kJ/mol #83JOH/FLO - -analytic -2.54333E+1 0E+0 1.25471E+4 0E+0 0E+0 +CaAl2Si3O10:3H2O = Ca+2 + 2 Al+3 - 8 H+ + 3 H4(SiO4) + H2O + log_k 16.63 + delta_h -240.212 #kJ/mol +# Enthalpy of formation: -6049.000 kJ/mol 83JOH/FLO + -analytic -25.45334E+0 00E+0 12.54715E+3 00E+0 00E+0 + -Vm 172.3 Se(s) -Se = 1.000H+ + 1.000HSe- - 1.000H2O + 0.500O2 - log_k -50.610 - delta_h 294.063 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #92GRE/FUG - -analytic 9.07551E-1 0E+0 -1.536E+4 0E+0 0E+0 +Se = - H+ - 2 e- + HSe- + log_k -7.62 + delta_h 14.3 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG + -analytic -51.14748E-1 00E+0 -74.6941E+1 00E+0 00E+0 Se3U(cr) -Se3U = 1.000UO2+2 + 1.000H+ + 3.000HSe- - 2.000H2O - log_k -18.270 - delta_h 47.560 #kJ/mol - # Enthalpy of formation: -452 #kJ/mol #92GRE/FUG - -analytic -9.93786E+0 0E+0 -2.48423E+3 0E+0 0E+0 +Se3U = UO2+2 + H+ + 3 HSe- - 2 H2O + log_k -18.27 + delta_h 47.56 #kJ/mol +# Enthalpy of formation: -452.000 kJ/mol 92GRE/FUG + -analytic -99.37846E-1 00E+0 -24.84232E+2 00E+0 00E+0 SeO3(cr) -SeO3 = 2.000H+ + 1.000SeO4-2 - 1.000H2O - log_k 20.360 - delta_h -154.570 #kJ/mol - # Enthalpy of formation: -163.1 #kJ/mol #05OLI/NOL - -analytic -6.71946E+0 0E+0 8.07374E+3 0E+0 0E+0 +SeO3 = 2 H+ + SeO4-2 - H2O + log_k 20.36 + delta_h -154.57 #kJ/mol +# Enthalpy of formation: -163.100 kJ/mol 05OLI/NOL + -analytic -67.19502E-1 00E+0 80.73753E+2 00E+0 00E+0 SeU(cr) -SeU = 1.000U+4 - 3.000H+ + 1.000HSe- + 1.000H2O - 0.500O2 - log_k 80.330 - delta_h -584.663 #kJ/mol - # Enthalpy of formation: -272 #kJ/mol #05OLI/NOL - -analytic -2.20984E+1 0E+0 3.0539E+4 0E+0 0E+0 +SeU = U+4 - H+ + 2 e- + HSe- + log_k 37.34 + delta_h -304.9 #kJ/mol +# Enthalpy of formation: -272.000 kJ/mol 05OLI/NOL + -analytic -16.07619E+0 00E+0 15.92604E+3 00E+0 00E+0 Si(cr) -Si = 1.000H4(SiO4) - 2.000H2O - 1.000O2 - log_k 149.170 - delta_h -877.400 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -4.54366E+0 0E+0 4.58297E+4 0E+0 0E+0 - -SiO2(am) -SiO2 = 1.000H4(SiO4) - 2.000H2O - log_k -2.710 #00GUN/ARN - delta_h 13.522 #kJ/mol - # Enthalpy of formation: -903.056 #kJ/mol - -analytic -3.41051E-1 0E+0 -7.06302E+2 0E+0 0E+0 +Si = 4 H+ + 4 e- + H4(SiO4) - 4 H2O + log_k 63.19 + delta_h -317.874 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 75.00866E-1 00E+0 16.60372E+3 00E+0 00E+0 Siderite -Fe(CO3) = 1.000Fe+2 + 1.000CO3-2 - log_k -10.800 #92BRU/WER - delta_h -12.012 #kJ/mol - # Enthalpy of formation: -753.218 #kJ/mol - -analytic -1.29044E+1 0E+0 6.2743E+2 0E+0 0E+0 +Fe(CO3) = Fe+2 + CO3-2 + log_k -10.68 + delta_h -12.916 #kJ/mol +# Enthalpy of formation: -752.609 kJ/mol 13LEM/BER + -analytic -12.94279E+0 00E+0 67.46497E+1 00E+0 00E+0 + -Vm 29.38 Siderophyllite -KFe2Al3Si2O10(OH)2 = 1.000K+ + 2.000Fe+2 + 3.000Al+3 - 14.000H+ + 2.000H4(SiO4) + 4.000H2O - log_k 40.570 - delta_h -484.778 #kJ/mol - # Enthalpy of formation: -5628.27 #kJ/mol #90HOL/POW - -analytic -4.43593E+1 0E+0 2.53217E+4 0E+0 0E+0 +KFe2Al3Si2O10(OH)2 = K+ + 2 Fe+2 + 3 Al+3 - 14 H+ + 2 H4(SiO4) + 4 H2O + log_k 40.6 + delta_h -485.368 #kJ/mol +# Enthalpy of formation: -5628.270 kJ/mol 90HOL/POW + -analytic -44.43282E+0 00E+0 25.35254E+3 00E+0 00E+0 + -Vm 150.63 -Sm(OH)3(am) -Sm(OH)3 = 1.000Sm+3 - 3.000H+ + 3.000H2O - log_k 17.850 #98DIA/RAG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.785E+1 0E+0 0E+0 0E+0 0E+0 - -Sm(OH)3(s) -Sm(OH)3 = 1.000Sm+3 - 3.000H+ + 3.000H2O - log_k 16.130 #98DIA/RAG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.613E+1 0E+0 0E+0 0E+0 0E+0 +SiO2(am) +SiO2 = H4(SiO4) - 2 H2O + log_k -2.71 #00GUN/ARN + delta_h 13.522 #kJ/mol +# Enthalpy of formation: -903.057 kJ/mol + -analytic -34.10473E-2 00E+0 -70.63033E+1 00E+0 00E+0 + -Vm 29 Sm(cr) -Sm = 1.000Sm+3 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 181.105 - delta_h -1110.844 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #79ROB/HEM - -analytic -1.35061E+1 0E+0 5.80233E+4 0E+0 0E+0 +Sm = Sm+3 + 3 e- + log_k 116.62 + delta_h -691.198 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 79ROB/HEM + -analytic -44.72692E-1 00E+0 36.10379E+3 00E+0 00E+0 + +Sm(OH)3(am) +Sm(OH)3 = Sm+3 - 3 H+ + 3 H2O + log_k 17.85 #98DIA/RAG + -analytic 17.85E+0 00E+0 00E+0 00E+0 00E+0 + +Sm(OH)3(s) +Sm(OH)3 = Sm+3 - 3 H+ + 3 H2O + log_k 16.13 #98DIA/RAG + -analytic 16.13E+0 00E+0 00E+0 00E+0 00E+0 Sm2(CO3)3(s) -Sm2(CO3)3 = 2.000Sm+3 + 3.000CO3-2 - log_k -34.500 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.45E+1 0E+0 0E+0 0E+0 0E+0 +Sm2(CO3)3 = 2 Sm+3 + 3 CO3-2 + log_k -34.5 #95SPA/BRU + -analytic -34.5E+0 00E+0 00E+0 00E+0 00E+0 Sm2(SO4)3(s) -Sm2(SO4)3 = 2.000Sm+3 + 3.000SO4-2 - log_k -9.800 #95SPA/BRU - delta_h -211.318 #kJ/mol - # Enthalpy of formation: -3899.1 #kJ/mol #82WAG/EVA - -analytic -4.68213E+1 0E+0 1.10379E+4 0E+0 0E+0 +Sm2(SO4)3 = 2 Sm+3 + 3 SO4-2 + log_k -9.8 #95SPA/BRU + delta_h -211.316 #kJ/mol +# Enthalpy of formation: -3899.100 kJ/mol 82WAG/EVA + -analytic -46.82097E+0 00E+0 11.0378E+3 00E+0 00E+0 Sm2O3(s) -Sm2O3 = 2.000Sm+3 - 6.000H+ + 3.000H2O - log_k 43.110 - delta_h -355.039 #kJ/mol - # Enthalpy of formation: -1884.849 #kJ/mol - -analytic -1.90901E+1 0E+0 1.8545E+4 0E+0 0E+0 +Sm2O3 = 2 Sm+3 - 6 H+ + 3 H2O + log_k 43.11 + delta_h -355.036 #kJ/mol +# Enthalpy of formation: -1884.849 kJ/mol + -analytic -19.08964E+0 00E+0 18.54482E+3 00E+0 00E+0 SmCl3:6H2O(s) -SmCl3:6H2O = 1.000Sm+3 + 3.000Cl- + 6.000H2O - log_k 4.800 #96FAL/REA - delta_h -38.311 #kJ/mol - # Enthalpy of formation: -2869.108 #kJ/mol - -analytic -1.91179E+0 0E+0 2.00112E+3 0E+0 0E+0 +SmCl3:6H2O = Sm+3 + 3 Cl- + 6 H2O + log_k 4.8 #96FAL/REA + delta_h -38.319 #kJ/mol +# Enthalpy of formation: -2869.096 kJ/mol + -analytic -19.13201E-1 00E+0 20.01541E+2 00E+0 00E+0 -SmF3:0.5H2O(s) -SmF3:0.5H2O = 1.000Sm+3 + 3.000F- + 0.500H2O - log_k -17.500 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.75E+1 0E+0 0E+0 0E+0 0E+0 +SmCO3OH(cr) +SmOHCO3 = Sm+3 - H+ + CO3-2 + H2O + log_k -10.23 + delta_h -38.858 #kJ/mol +# Enthalpy of formation: -1613.400 kJ/mol 05ROR/FUG + -analytic -17.03763E+0 00E+0 20.29695E+2 00E+0 00E+0 -SmOHCO3(cr) -SmOHCO3 = 1.000Sm+3 - 1.000H+ + 1.000CO3-2 + 1.000H2O - log_k -10.230 - delta_h -38.859 #kJ/mol - # Enthalpy of formation: -1613.4 #kJ/mol #05ROR/FUG - -analytic -1.70378E+1 0E+0 2.02974E+3 0E+0 0E+0 +SmCO3OH:0.5H2O(s) +SmOHCO3:0.5H2O = Sm+3 - H+ + CO3-2 + 1.5 H2O + log_k -7.31 + delta_h -51.073 #kJ/mol +# Enthalpy of formation: -1744.100 kJ/mol 05ROR/FUG + -analytic -16.25761E+0 00E+0 26.67729E+2 00E+0 00E+0 -SmOHCO3:0.5H2O(cr) -SmOHCO3:0.5H2O = 1.000Sm+3 - 1.000H+ + 1.000CO3-2 + 1.500H2O - log_k -7.310 - delta_h -51.074 #kJ/mol - # Enthalpy of formation: -1744.1 #kJ/mol #05ROR/FUG - -analytic -1.62578E+1 0E+0 2.66778E+3 0E+0 0E+0 - -SmPO4:H2O(am) -SmPO4:H2O = 1.000Sm+3 - 2.000H+ + 1.000H2(PO4)- + 1.000H2O - log_k -5.000 #05CET/WOO - delta_h -26.480 #kJ/mol - # Enthalpy of formation: -2253.149 #kJ/mol #05CET/WOO - -analytic -9.63909E+0 0E+0 1.38314E+3 0E+0 0E+0 - -SmPO4:H2O(cr) -SmPO4:H2O = 1.000Sm+3 - 2.000H+ + 1.000H2(PO4)- + 1.000H2O - log_k -6.670 #97LIU/BYR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.67E+0 0E+0 0E+0 0E+0 0E+0 - -SmectiteMX80 -Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.173Fe0.035)O10(OH)2 = 0.009Ca+2 + 0.214Mg+2 + 0.024K+ + 0.409Na+ + 0.173Fe+3 + 1.860Al+3 + 3.738H4(SiO4) + 0.035Fe+2 - 2.952H2O - 7.048H+ - log_k 5.270 - delta_h -184.029 #kJ/mol - # Enthalpy of formation: -5656.37 #kJ/mol #12GAI/BLA - -analytic -2.69704E+1 0E+0 9.61249E+3 0E+0 0E+0 +Smectite MX80 +Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.173Fe0.035)O10(OH)2 = 0.009 Ca+2 + 0.214 Mg+2 + 0.024 K+ + 0.409 Na+ + 0.173 Fe+3 + 0.035 Fe+2 + 1.86 Al+3 - 7.048 H+ + 3.738 H4(SiO4) - 2.952 H2O + log_k 5.26 + delta_h -184.222 #kJ/mol +# Enthalpy of formation: -5656.370 kJ/mol 12GAI/BLA + -analytic -27.01431E+0 00E+0 96.22585E+2 00E+0 00E+0 + -Vm 134.92 Smectite_MX80(3.989H2O) -(Ca0.009Na0.409K0.024)(Si3.738Al0.262)(Al1.598Fe0.173Fe0.035Mg0.214)O10(OH)2:3.989H2O = 0.009Ca+2 + 0.214Mg+2 + 0.024K+ + 0.409Na+ + 0.173Fe+3 + 0.035Fe+2 + 1.860Al+3 - 7.048H+ + 3.738H4(SiO4) + 1.037H2O - log_k 1.780 - delta_h -157.245 #kJ/mol - # Enthalpy of formation: -6823.33 #kJ/mol #12GAI/BLA - -analytic -2.57681E+1 0E+0 8.21347E+3 0E+0 0E+0 +(Ca0.009Na0.409K0.024)(Si3.738Al0.262)(Al1.598Fe0.173Fe0.035Mg0.214)O10(OH)2:3.989H2O = 0.009 Ca+2 + 0.214 Mg+2 + 0.024 K+ + 0.409 Na+ + 0.173 Fe+3 + 0.035 Fe+2 + 1.86 Al+3 - 7.048 H+ + 3.738 H4(SiO4) + 1.037 H2O + log_k 1.75 + delta_h -157.438 #kJ/mol +# Enthalpy of formation: -6823.330 kJ/mol 12GAI/BLA + -analytic -25.83195E+0 00E+0 82.23559E+2 00E+0 00E+0 + -Vm 207 Smectite_MX80(5.189H2O) -(Ca0.009Na0.409K0.024)(Si3.738Al0.262)(Al1.598Fe0.173Fe0.035Mg0.214)O10(OH)2:5.189H2O = 0.009Ca+2 + 0.214Mg+2 + 0.024K+ + 0.409Na+ + 0.173Fe+3 + 0.035Fe+2 + 1.860Al+3 - 7.048H+ + 3.738H4(SiO4) + 2.237H2O - log_k 1.440 - delta_h -149.152 #kJ/mol - # Enthalpy of formation: -7174.42 #kJ/mol #12GAI/BLA - -analytic -2.46903E+1 0E+0 7.79074E+3 0E+0 0E+0 +(Ca0.009Na0.409K0.024)(Si3.738Al0.262)(Al1.598Fe0.173Fe0.035Mg0.214)O10(OH)2:5.189H2O = 0.009 Ca+2 + 0.214 Mg+2 + 0.024 K+ + 0.409 Na+ + 0.173 Fe+3 + 0.035 Fe+2 + 1.86 Al+3 - 7.048 H+ + 3.738 H4(SiO4) + 2.237 H2O + log_k 1.41 + delta_h -149.344 #kJ/mol +# Enthalpy of formation: -7174.420 kJ/mol 12GAI/BLA + -analytic -24.75395E+0 00E+0 78.0078E+2 00E+0 00E+0 + -Vm 228.69 + +SmF3:0.5H2O(s) +SmF3:0.5H2O = Sm+3 + 3 F- + 0.5 H2O + log_k -17.5 #95SPA/BRU + -analytic -17.5E+0 00E+0 00E+0 00E+0 00E+0 + +SmPO4:H2O(am) +SmPO4:H2O = Sm+3 - 2 H+ + H2(PO4)- + H2O + log_k -5 #05CET/WOO + delta_h -26.479 #kJ/mol +# Enthalpy of formation: -2253.149 kJ/mol 05CET/WOO + -analytic -96.38922E-1 00E+0 13.83094E+2 00E+0 00E+0 + +SmPO4:H2O(cr) +SmPO4:H2O = Sm+3 - 2 H+ + H2(PO4)- + H2O + log_k -6.67 #97LIU/BYR + -analytic -66.7E-1 00E+0 00E+0 00E+0 00E+0 + +Sn(cr,alfa) +Sn = Sn+2 + 2 e- + log_k 4.82 + delta_h -7.637 #kJ/mol +# Enthalpy of formation: -1.980 kJ/mol 12GAM/GAJ + -analytic 34.82055E-1 00E+0 39.89083E+1 00E+0 00E+0 + +Sn(cr,beta) +Sn = Sn+2 + 2 e- + log_k 4.8 + delta_h -9.617 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 31.15174E-1 00E+0 50.23309E+1 00E+0 00E+0 Sn(OH)4(s) -Sn(OH)4 = 1.000Sn+4 - 4.000H+ + 4.000H2O - log_k -1.280 #70BAR/KLI in 01SEB/POT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.28E+0 0E+0 0E+0 0E+0 0E+0 +Sn(OH)4 = Sn+4 - 4 H+ + 4 H2O + log_k -1.28 #70BAR/KLI in 01SEB/POT; Uncertainty to cover available data. + -analytic -12.8E-1 00E+0 00E+0 00E+0 00E+0 Sn(OH)Cl(s) -Sn(OH)Cl = 1.000Sn+2 - 1.000H+ + 1.000Cl- + 1.000H2O - log_k -2.420 #30RAN/MUR recalculated in 99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.42E+0 0E+0 0E+0 0E+0 0E+0 - -Sn(cr)(alfa) -Sn = 1.000Sn+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 47.810 - delta_h -287.400 #kJ/mol - # Enthalpy of formation: -1.98 #kJ/mol #12GAM/GAJ - -analytic -2.54024E+0 0E+0 1.50119E+4 0E+0 0E+0 - -Sn(cr)(beta) -Sn = 1.000Sn+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 47.790 - delta_h -289.380 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -2.90713E+0 0E+0 1.51153E+4 0E+0 0E+0 +Sn(OH)Cl = Sn+2 - H+ + Cl- + H2O + log_k -2.42 #30RAN/MUR recalculated in 99LOT/OCH + -analytic -24.2E-1 00E+0 00E+0 00E+0 00E+0 SnO2(am) -SnO2 = 1.000Sn+4 - 4.000H+ + 2.000H2O - log_k -14.770 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.477E+1 0E+0 0E+0 0E+0 0E+0 +SnO2 = Sn+4 - 4 H+ + 2 H2O + log_k -14.77 + -analytic -14.77E+0 00E+0 00E+0 00E+0 00E+0 SnSe(alfa) -SnSe = 1.000Sn+2 - 1.000H+ + 1.000HSe- - log_k -21.670 - delta_h 114.183 #kJ/mol - # Enthalpy of formation: -109.5 #kJ/mol #05OLI/NOL - -analytic -1.66603E+0 0E+0 -5.96418E+3 0E+0 0E+0 +SnSe = Sn+2 - H+ + HSe- + log_k -21.67 + delta_h 114.183 #kJ/mol +# Enthalpy of formation: -109.500 kJ/mol 05OLI/NOL + -analytic -16.65997E-1 00E+0 -59.64193E+2 00E+0 00E+0 SnSe2(s) -SnSe2 = 1.000Sn+2 + 2.000HSe- - 1.000H2O + 0.500O2 - log_k -73.780 - delta_h 413.646 #kJ/mol - # Enthalpy of formation: -114.9 #kJ/mol #05OLI/NOL - -analytic -1.31244E+0 0E+0 -2.16062E+4 0E+0 0E+0 +SnSe2 = Sn+2 - 2 H+ - 2 e- + 2 HSe- + log_k -30.79 + delta_h 133.883 #kJ/mol +# Enthalpy of formation: -114.900 kJ/mol 05OLI/NOL + -analytic -73.34705E-1 00E+0 -69.93196E+2 00E+0 00E+0 -Soddyite(synt1) -(UO2)2SiO4:2H2O = 2.000UO2+2 - 4.000H+ + 1.000H4(SiO4) + 2.000H2O - log_k 3.900 #97PER/CAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.9E+0 0E+0 0E+0 0E+0 0E+0 - -Soddyite(synt2) -(UO2)2SiO4:2H2O = 2.000UO2+2 - 4.000H+ + 1.000H4(SiO4) + 2.000H2O - log_k 6.430 #07GOR/MAZ - delta_h -25.454 #kJ/mol - # Enthalpy of formation: -4045.4 #kJ/mol #07GOR/MAZ - -analytic 1.97066E+0 0E+0 1.32955E+3 0E+0 0E+0 +Soddyite +(UO2)2SiO4:2H2O = 2 UO2+2 - 4 H+ + H4(SiO4) + 2 H2O + log_k 5.75 #20GRE/GAO + -analytic 57.5E-1 00E+0 00E+0 00E+0 00E+0 Sodium-compreignacite -Na2(UO2)6O4(OH)6:7H2O = 2.000Na+ + 6.000UO2+2 - 14.000H+ + 17.000H2O - log_k 39.400 #08GOR/FEI - delta_h -517.390 #kJ/mol - # Enthalpy of formation: -10936.4 #kJ/mol #06KUB/HEL - -analytic -5.12427E+1 0E+0 2.70251E+4 0E+0 0E+0 +Na2(UO2)6O4(OH)6:7H2O = 2 Na+ + 6 UO2+2 - 14 H+ + 17 H2O + log_k 39.4 #08GOR/FEI + delta_h -517.39 #kJ/mol +# Enthalpy of formation: -10936.400kJ/mol 06KUB/HEL + -analytic -51.24284E+0 00E+0 27.02516E+3 00E+0 00E+0 Sphaerocobaltite -CoCO3 = 1.000Co+2 + 1.000CO3-2 - log_k -11.200 #99GRA2 - delta_h -9.421 #kJ/mol - # Enthalpy of formation: -723.409 #kJ/mol - -analytic -1.28505E+1 0E+0 4.92092E+2 0E+0 0E+0 - -Sr(HPO4)(s) -Sr(HPO4) = 1.000Sr+2 - 1.000H+ + 1.000H2(PO4)- - log_k 0.280 #97MAR/SMI - delta_h -19.487 #kJ/mol - # Enthalpy of formation: -1834.012 #kJ/mol - -analytic -3.13397E+0 0E+0 1.01788E+3 0E+0 0E+0 - -Sr(NO3)2(cr) -Sr(NO3)2 = 1.000Sr+2 + 2.000NO3- - log_k 0.400 - delta_h 17.760 #kJ/mol - # Enthalpy of formation: -982.36 #kJ/mol #92GRE/FUG - -analytic 3.51141E+0 0E+0 -9.27668E+2 0E+0 0E+0 - -Sr(NO3)2:2H2O(s) -Sr(NO3)2:2H2O = 1.000Sr+2 + 2.000NO3- + 2.000H2O - log_k 0.050 #25/08/1994 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5E-2 0E+0 0E+0 0E+0 0E+0 - -Sr(NO3)2:4H2O(s) -Sr(NO3)2:4H2O = 1.000Sr+2 + 2.000NO3- + 4.000H2O - log_k -0.870 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -8.7E-1 0E+0 0E+0 0E+0 0E+0 - -Sr(OH)2(s) -Sr(OH)2 = 1.000Sr+2 - 2.000H+ + 2.000H2O - log_k 27.510 - delta_h -153.670 #kJ/mol - # Enthalpy of formation: -968.89 #kJ/mol #98CHA - -analytic 5.88211E-1 0E+0 8.02673E+3 0E+0 0E+0 - -Sr(OH)2:8H2O(s) -Sr(OH)2:8H2O = 1.000Sr+2 - 2.000H+ + 10.000H2O - log_k 24.320 #98FEL/DIX - delta_h -57.000 #kJ/mol - # Enthalpy of formation: -3352.2 #kJ/mol #82WAG/EVA - -analytic 1.4334E+1 0E+0 2.97731E+3 0E+0 0E+0 - -Sr(SeO3)(cr) -Sr(SeO3) = 1.000Sr+2 + 1.000SeO3-2 - log_k -6.300 #05OLI/NOL - delta_h -6.160 #kJ/mol - # Enthalpy of formation: -1051.9 #kJ/mol #05OLI/NOL - -analytic -7.37918E+0 0E+0 3.21759E+2 0E+0 0E+0 - -Sr(SeO4)(s) -Sr(SeO4) = 1.000Sr+2 + 1.000SeO4-2 - log_k -4.350 #Original source 59SEL/ZUB recalculated in 05OLI/NOL - delta_h -21.841 #kJ/mol - # Enthalpy of formation: -1132.559 #kJ/mol - -analytic -8.17637E+0 0E+0 1.14083E+3 0E+0 0E+0 +CoCO3 = Co+2 + CO3-2 + log_k -11.2 #99GRA2 + delta_h -9.421 #kJ/mol +# Enthalpy of formation: -723.409 kJ/mol + -analytic -12.85049E+0 00E+0 49.20931E+1 00E+0 00E+0 Sr(cr) -Sr = 1.000Sr+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 141.780 - delta_h -830.663 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - -analytic -3.7457E+0 0E+0 4.33885E+4 0E+0 0E+0 +Sr = Sr+2 + 2 e- + log_k 98.79 + delta_h -550.9 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 98CHA + -analytic 22.76463E-1 00E+0 28.77551E+3 00E+0 00E+0 + +Sr(HPO4)(s) +Sr(HPO4) = Sr+2 - H+ + H2(PO4)- + log_k 0.28 #97MAR/SMI + delta_h -19.487 #kJ/mol +# Enthalpy of formation: -1834.013 kJ/mol + -analytic -31.33976E-1 00E+0 10.17877E+2 00E+0 00E+0 + +Sr(NO3)2(cr) +Sr(NO3)2 = Sr+2 + 2 NO3- + log_k 0.4 + delta_h 17.76 #kJ/mol +# Enthalpy of formation: -982.360 kJ/mol 92GRE/FUG + -analytic 35.11418E-1 00E+0 -92.76694E+1 00E+0 00E+0 + +Sr(NO3)2:2H2O(s) +Sr(NO3)2:2H2O = Sr+2 + 2 NO3- + 2 H2O + log_k 0.05 #25/08/1994 + -analytic 50E-3 00E+0 00E+0 00E+0 00E+0 + +Sr(NO3)2:4H2O(s) +Sr(NO3)2:4H2O = Sr+2 + 2 NO3- + 4 H2O + log_k -0.87 #96FAL/REA + -analytic -87E-2 00E+0 00E+0 00E+0 00E+0 + +Sr(OH)2(s) +Sr(OH)2 = Sr+2 - 2 H+ + 2 H2O + log_k 27.51 + delta_h -153.67 #kJ/mol +# Enthalpy of formation: -968.890 kJ/mol 98CHA + -analytic 58.81716E-2 00E+0 80.26743E+2 00E+0 00E+0 + +Sr(OH)2:8H2O(s) +Sr(OH)2:8H2O = Sr+2 - 2 H+ + 10 H2O + log_k 24.32 #98FEL/DIX + delta_h -57 #kJ/mol +# Enthalpy of formation: -3352.200 kJ/mol 82WAG/EVA + -analytic 14.33403E+0 00E+0 29.77317E+2 00E+0 00E+0 + +Sr(SeO3)(cr) +Sr(SeO3) = Sr+2 + SeO3-2 + log_k -6.3 #05OLI/NOL + delta_h -6.16 #kJ/mol +# Enthalpy of formation: -1051.900 kJ/mol 05OLI/NOL + -analytic -73.79186E-1 00E+0 32.17592E+1 00E+0 00E+0 + +Sr(SeO4)(s) +Sr(SeO4) = Sr+2 + SeO4-2 + log_k -4.35 #Original source 59SEL/ZUB recalculated in 05OLI/NOL + delta_h -21.841 #kJ/mol +# Enthalpy of formation: -1132.559 kJ/mol + -analytic -81.76379E-1 00E+0 11.40835E+2 00E+0 00E+0 Sr2SiO4(s) -Sr2SiO4 = 2.000Sr+2 - 4.000H+ + 1.000H4(SiO4) - log_k 43.250 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.325E+1 0E+0 0E+0 0E+0 0E+0 +Sr2SiO4 = 2 Sr+2 - 4 H+ + H4(SiO4) + log_k 43.25 + -analytic 43.25E+0 00E+0 00E+0 00E+0 00E+0 Sr3(AsO4)2(s) -Sr3(AsO4)2 = 3.000Sr+2 + 2.000AsO4-3 - log_k -16.080 - delta_h -109.493 #kJ/mol - # Enthalpy of formation: -3319.487 #kJ/mol - -analytic -3.52623E+1 0E+0 5.71921E+3 0E+0 0E+0 +Sr3(AsO4)2 = 3 Sr+2 + 2 AsO4-3 + log_k -16.08 + delta_h -109.504 #kJ/mol +# Enthalpy of formation: -3319.478 kJ/mol + -analytic -35.26428E+0 00E+0 57.19792E+2 00E+0 00E+0 Sr3(PO4)2(s) -Sr3(PO4)2 = 3.000Sr+2 - 4.000H+ + 2.000H2(PO4)- - log_k 10.530 #06BLA/IGN - delta_h -147.900 #kJ/mol - # Enthalpy of formation: -4110 #kJ/mol #97KHA/JEM - -analytic -1.53809E+1 0E+0 7.72534E+3 0E+0 0E+0 +Sr3(PO4)2 = 3 Sr+2 - 4 H+ + 2 H2(PO4)- + log_k 10.53 #06BLA/IGN + delta_h -147.9 #kJ/mol +# Enthalpy of formation: -4110.000 kJ/mol 97KHA/JEM + -analytic -15.38097E+0 00E+0 77.25355E+2 00E+0 00E+0 Sr5(PO4)3(OH)(s) -Sr5(PO4)3(OH) = 5.000Sr+2 - 7.000H+ + 3.000H2(PO4)- + 1.000H2O - log_k 7.170 #05KIM/PAR - delta_h -261.630 #kJ/mol - # Enthalpy of formation: -6686.5 #kJ/mol #95JEM/CHE - -analytic -3.86655E+1 0E+0 1.36659E+4 0E+0 0E+0 +Sr5(PO4)3(OH) = 5 Sr+2 - 7 H+ + 3 H2(PO4)- + H2O + log_k 7.17 #05KIM/PAR + delta_h -261.63 #kJ/mol +# Enthalpy of formation: -6686.500 kJ/mol 95JEM/CHE + -analytic -38.66561E+0 00E+0 13.66589E+3 00E+0 00E+0 SrBr2(s) -SrBr2 = 1.000Sr+2 + 2.000Br- - log_k 12.500 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.25E+1 0E+0 0E+0 0E+0 0E+0 +SrBr2 = Sr+2 + 2 Br- + log_k 12.5 #96FAL/REA + -analytic 12.5E+0 00E+0 00E+0 00E+0 00E+0 SrBr2:6H2O(s) -SrBr2:6H2O = 1.000Sr+2 + 2.000Br- + 6.000H2O - log_k 2.820 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.82E+0 0E+0 0E+0 0E+0 0E+0 +SrBr2:6H2O = Sr+2 + 2 Br- + 6 H2O + log_k 2.82 #96FAL/REA + -analytic 28.2E-1 00E+0 00E+0 00E+0 00E+0 SrBr2:H2O(s) -SrBr2:H2O = 1.000Sr+2 + 2.000Br- + 1.000H2O - log_k 8.800 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.8E+0 0E+0 0E+0 0E+0 0E+0 +SrBr2:H2O = Sr+2 + 2 Br- + H2O + log_k 8.8 #96FAL/REA + -analytic 88E-1 00E+0 00E+0 00E+0 00E+0 SrCl2(s) -SrCl2 = 1.000Sr+2 + 2.000Cl- - log_k 8.120 - delta_h -56.210 #kJ/mol - # Enthalpy of formation: -828.85 #kJ/mol #98CHA - -analytic -1.72755E+0 0E+0 2.93605E+3 0E+0 0E+0 +SrCl2 = Sr+2 + 2 Cl- + log_k 8.12 + delta_h -56.21 #kJ/mol +# Enthalpy of formation: -828.850 kJ/mol 98CHA + -analytic -17.27569E-1 00E+0 29.36053E+2 00E+0 00E+0 SrCl2:2H2O(s) -SrCl2:2H2O = 1.000Sr+2 + 2.000Cl- + 2.000H2O - log_k 3.470 - delta_h -18.720 #kJ/mol - # Enthalpy of formation: -1438 #kJ/mol #82WAG/EVA - -analytic 1.90402E-1 0E+0 9.77812E+2 0E+0 0E+0 +SrCl2:2H2O = Sr+2 + 2 Cl- + 2 H2O + log_k 3.47 + delta_h -18.72 #kJ/mol +# Enthalpy of formation: -1438.000 kJ/mol 82WAG/EVA + -analytic 19.03968E-2 00E+0 97.78137E+1 00E+0 00E+0 SrCl2:6H2O(s) -SrCl2:6H2O = 1.000Sr+2 + 2.000Cl- + 6.000H2O - log_k 1.610 - delta_h 23.760 #kJ/mol - # Enthalpy of formation: -2623.8 #kJ/mol #82WAG/EVA - -analytic 5.77257E+0 0E+0 -1.24107E+3 0E+0 0E+0 +SrCl2:6H2O = Sr+2 + 2 Cl- + 6 H2O + log_k 1.61 + delta_h 23.76 #kJ/mol +# Enthalpy of formation: -2623.800 kJ/mol 82WAG/EVA + -analytic 57.72573E-1 00E+0 -12.41071E+2 00E+0 00E+0 SrCl2:H2O(s) -SrCl2:H2O = 1.000Sr+2 + 2.000Cl- + 1.000H2O - log_k 4.910 - delta_h -34.090 #kJ/mol - # Enthalpy of formation: -1136.8 #kJ/mol #82WAG/EVA - -analytic -1.0623E+0 0E+0 1.78064E+3 0E+0 0E+0 +SrCl2:H2O = Sr+2 + 2 Cl- + H2O + log_k 4.91 + delta_h -34.09 #kJ/mol +# Enthalpy of formation: -1136.800 kJ/mol 82WAG/EVA + -analytic -10.62312E-1 00E+0 17.80645E+2 00E+0 00E+0 SrCrO4(s) -SrCrO4 = 1.000Sr+2 + 1.000CrO4-2 - log_k -4.650 #97MAR/SMI - delta_h -10.125 #kJ/mol #97MAR/SMI - # Enthalpy of formation: -1419.775 #kJ/mol - -analytic -6.42382E+0 0E+0 5.28865E+2 0E+0 0E+0 +SrCrO4 = Sr+2 + CrO4-2 + log_k -4.65 #97MAR/SMI + delta_h -10.125 #kJ/mol 97MAR/SMI +# Enthalpy of formation: -1419.775 kJ/mol + -analytic -64.23824E-1 00E+0 52.88656E+1 00E+0 00E+0 SrF2(cr) -SrF2 = 1.000Sr+2 + 2.000F- - log_k -8.540 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -8.54E+0 0E+0 0E+0 0E+0 0E+0 +SrF2 = Sr+2 + 2 F- + log_k -8.54 #96FAL/REA + -analytic -85.4E-1 00E+0 00E+0 00E+0 00E+0 SrMoO4(s) -SrMoO4 = 1.000Sr+2 + 1.000MoO4-2 - log_k -6.590 #54RAO in 74OHA/KEN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.59E+0 0E+0 0E+0 0E+0 0E+0 +SrMoO4 = Sr+2 + MoO4-2 + log_k -6.59 #54RAO in 74OHA/KEN + -analytic -65.9E-1 00E+0 00E+0 00E+0 00E+0 SrO(cr) -SrO = 1.000Sr+2 - 2.000H+ + 1.000H2O - log_k 41.980 - delta_h -244.690 #kJ/mol - # Enthalpy of formation: -592.04 #kJ/mol #98CHA - -analytic -8.87785E-1 0E+0 1.2781E+4 0E+0 0E+0 +SrO = Sr+2 - 2 H+ + H2O + log_k 41.98 + delta_h -244.69 #kJ/mol +# Enthalpy of formation: -592.040 kJ/mol 98CHA + -analytic -88.78479E-2 00E+0 12.78105E+3 00E+0 00E+0 SrS(s) -SrS = 1.000Sr+2 - 1.000H+ + 1.000HS- - log_k 14.680 # - delta_h -93.570 #kJ/mol - # Enthalpy of formation: -473.63 #kJ/mol #82WAG/EVA - -analytic -1.71274E+0 0E+0 4.88749E+3 0E+0 0E+0 +SrS = Sr+2 - H+ + HS- + log_k 14.68 + delta_h -93.57 #kJ/mol +# Enthalpy of formation: -473.630 kJ/mol 82WAG/EVA + -analytic -17.1276E-1 00E+0 48.87501E+2 00E+0 00E+0 SrSiO3(s) -SrSiO3 = 1.000Sr+2 - 2.000H+ + 1.000H4(SiO4) - 1.000H2O - log_k 13.160 - delta_h -80.278 #kJ/mol - # Enthalpy of formation: -1645.986 #kJ/mol #74NAU/RYZ - -analytic -9.04081E-1 0E+0 4.19321E+3 0E+0 0E+0 +SrSiO3 = Sr+2 - 2 H+ + H4(SiO4) - H2O + log_k 13.16 + delta_h -80.278 #kJ/mol +# Enthalpy of formation: -1645.986 kJ/mol 74NAU/RYZ + -analytic -90.41019E-2 00E+0 41.93212E+2 00E+0 00E+0 SrZrSi2O7(cr) -SrZrSi2O7 = 1.000Sr+2 - 6.000H+ + 2.000H4(SiO4) + 1.000Zr+4 - 1.000H2O - log_k 5.200 - delta_h -155.158 #kJ/mol - # Enthalpy of formation: -3640.8 #kJ/mol #05BRO/CUR - -analytic -2.19825E+1 0E+0 8.10445E+3 0E+0 0E+0 +SrZrSi2O7 = Sr+2 - 6 H+ + 2 H4(SiO4) + Zr+4 - H2O + log_k 5.2 + delta_h -155.158 #kJ/mol +# Enthalpy of formation: -3640.800 kJ/mol 05BRO/CUR + -analytic -21.98251E+0 00E+0 81.04467E+2 00E+0 00E+0 Stellerite -Ca2Al4Si14O36:14H2O = 2.000Ca+2 + 4.000Al+3 - 16.000H+ + 14.000H4(SiO4) - 6.000H2O - log_k 6.990 - delta_h -325.096 #kJ/mol - # Enthalpy of formation: -21656.24 #kJ/mol #01FRI/NEU - -analytic -4.99643E+1 0E+0 1.69809E+4 0E+0 0E+0 +Ca2Al4Si14O36:14H2O = 2 Ca+2 + 4 Al+3 - 16 H+ + 14 H4(SiO4) - 6 H2O + log_k 6.92 + delta_h -325.096 #kJ/mol +# Enthalpy of formation: -21656.240kJ/mol 01FRI/NEU + -analytic -50.03437E+0 00E+0 16.98095E+3 00E+0 00E+0 + -Vm 666.5 Stibnite -Sb2S3 = 3.000H+ + 3.000HS- + 2.000Sb(OH)3 - 6.000H2O - log_k -56.030 - delta_h 269.695 #kJ/mol - # Enthalpy of formation: -151.4 #kJ/mol #95ROB/HEM - -analytic -8.78153E+0 0E+0 -1.40871E+4 0E+0 0E+0 +Sb2S3 = 3 H+ + 3 HS- + 2 Sb(OH)3 - 6 H2O + log_k -56.03 + delta_h 269.694 #kJ/mol +# Enthalpy of formation: -151.400 kJ/mol 95ROB/HEM + -analytic -87.81639E-1 00E+0 -14.0871E+3 00E+0 00E+0 Stilbite -NaCa2(Al5Si13)O36:16H2O = 2.000Ca+2 + 1.000Na+ + 5.000Al+3 - 20.000H+ + 13.000H4(SiO4) - log_k 23.050 - delta_h -434.152 #kJ/mol - # Enthalpy of formation: -22579.71 #kJ/mol #01FRI/NEU - -analytic -5.30101E+1 0E+0 2.26773E+4 0E+0 0E+0 +NaCa2(Al5Si13)O36:16H2O = 2 Ca+2 + Na+ + 5 Al+3 - 20 H+ + 13 H4(SiO4) + log_k 22.97 + delta_h -434.152 #kJ/mol +# Enthalpy of formation: -22579.710kJ/mol 01FRI/NEU + -analytic -53.09017E+0 00E+0 22.67734E+3 00E+0 00E+0 + -Vm 664.7 Stilleite -ZnSe = 1.000Zn+2 - 1.000H+ + 1.000HSe- - log_k -12.050 - delta_h 36.910 #kJ/mol - # Enthalpy of formation: -176 #kJ/mol #05OLI/NOL - -analytic -5.58366E+0 0E+0 -1.92794E+3 0E+0 0E+0 +ZnSe = Zn+2 - H+ + HSe- + log_k -12.05 + delta_h 36.91 #kJ/mol +# Enthalpy of formation: -176.000 kJ/mol 05OLI/NOL + -analytic -55.83646E-1 00E+0 -19.27944E+2 00E+0 00E+0 Stratlingite -Ca2Al2SiO3(OH)8:4H2O = 2.000Ca+2 + 2.000Al+3 - 10.000H+ + 1.000H4(SiO4) + 11.000H2O - log_k 49.660 #10BLA/BOU2 - delta_h -397.795 #kJ/mol - # Enthalpy of formation: -6370.329 #kJ/mol - -analytic -2.00306E+1 0E+0 2.07782E+4 0E+0 0E+0 +Ca2Al2SiO3(OH)8:4H2O = 2 Ca+2 + 2 Al+3 - 10 H+ + H4(SiO4) + 11 H2O + log_k 49.66 #10BLA/BOU2 + delta_h -397.949 #kJ/mol +# Enthalpy of formation: -6370.171 kJ/mol + -analytic -20.05767E+0 00E+0 20.78632E+3 00E+0 00E+0 + -Vm 215.63 Strontianite -Sr(CO3) = 1.000Sr+2 + 1.000CO3-2 - log_k -9.270 #84BUS/PLU - delta_h -0.366 #kJ/mol - # Enthalpy of formation: -1225.764 #kJ/mol - -analytic -9.33412E+0 0E+0 1.91175E+1 0E+0 0E+0 +Sr(CO3) = Sr+2 + CO3-2 + log_k -9.27 #84BUS/PLU + delta_h -0.366 #kJ/mol +# Enthalpy of formation: -1225.765 kJ/mol + -analytic -93.3412E-1 00E+0 19.11751E+0 00E+0 00E+0 Sudoite -Mg2Al4Si3O10(OH)8 = 2.000Mg+2 + 4.000Al+3 - 16.000H+ + 3.000H4(SiO4) + 6.000H2O - log_k 37.960 - delta_h -530.892 #kJ/mol - # Enthalpy of formation: -8655.27 #kJ/mol #05VID/PAR - -analytic -5.50481E+1 0E+0 2.77304E+4 0E+0 0E+0 +Mg2Al4Si3O10(OH)8 = 2 Mg+2 + 4 Al+3 - 16 H+ + 3 H4(SiO4) + 6 H2O + log_k 37.93 + delta_h -530.892 #kJ/mol +# Enthalpy of formation: -8655.270 kJ/mol 05VID/PAR + -analytic -55.07829E+0 00E+0 27.73042E+3 00E+0 00E+0 + -Vm 205.1 Sylvite -KCl = 1.000K+ + 1.000Cl- - log_k 0.870 - delta_h 17.460 #kJ/mol - # Enthalpy of formation: -436.68 #kJ/mol #98CHA - -analytic 3.92886E+0 0E+0 -9.11998E+2 0E+0 0E+0 +KCl = K+ + Cl- + log_k 0.87 + delta_h 17.46 #kJ/mol +# Enthalpy of formation: -436.680 kJ/mol 98CHA + -analytic 39.28861E-1 00E+0 -91.19993E+1 00E+0 00E+0 + -Vm 37.52 Syngenite -K2Ca(SO4)2:6H2O = 1.000Ca+2 + 2.000K+ + 2.000SO4-2 + 6.000H2O - log_k -7.450 #84HAR/MOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.45E+0 0E+0 0E+0 0E+0 0E+0 +K2Ca(SO4)2:6H2O = Ca+2 + 2 K+ + 2 SO4-2 + 6 H2O + log_k -7.45 #84HAR/MOL + -analytic -74.5E-1 00E+0 00E+0 00E+0 00E+0 Tachyhydrite -Mg2CaCl6:12H2O = 1.000Ca+2 + 2.000Mg+2 + 6.000Cl- + 12.000H2O - log_k 17.380 #84HAR/MOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.738E+1 0E+0 0E+0 0E+0 0E+0 +Mg2CaCl6:12H2O = Ca+2 + 2 Mg+2 + 6 Cl- + 12 H2O + log_k 17.38 #84HAR/MOL + -analytic 17.38E+0 00E+0 00E+0 00E+0 00E+0 Talc -Mg3Si4O10(OH)2 = 3.000Mg+2 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 24.940 - delta_h -210.356 #kJ/mol - # Enthalpy of formation: -5892.1 #kJ/mol #01KAH/MAR - -analytic -1.19127E+1 0E+0 1.09876E+4 0E+0 0E+0 +Mg3Si4O10(OH)2 = 3 Mg+2 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 24.92 + delta_h -210.356 #kJ/mol +# Enthalpy of formation: -5892.100 kJ/mol 01KAH/MAR + -analytic -11.93279E+0 00E+0 10.98766E+3 00E+0 00E+0 + -Vm 136.2 Tc(cr) -Tc = 1.000TcO(OH)2 - 1.000H2O - 1.000O2 - log_k 60.900 - delta_h -451.356 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #99RAR/RAN - -analytic -1.81741E+1 0E+0 2.35759E+4 0E+0 0E+0 +Tc = TcO(OH)2 + 4 H+ + 4 e- - 3 H2O + log_k -24.34 + delta_h 108.247 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 99RAR/RAN + -analytic -53.7594E-1 00E+0 -56.54135E+2 00E+0 00E+0 -Tc2O7(s) -Tc2O7 = 2.000H+ + 2.000TcO4- - 1.000H2O - log_k 15.310 - delta_h -46.470 #kJ/mol - # Enthalpy of formation: -1126.5 #kJ/mol #99RAR/RAN - -analytic 7.16882E+0 0E+0 2.42729E+3 0E+0 0E+0 +Tc2O7(cr) +Tc2O7 = 2 H+ + 2 TcO4- - H2O + log_k 15.31 + delta_h -46.47 #kJ/mol +# Enthalpy of formation: -1126.500 kJ/mol 99RAR/RAN + -analytic 71.68805E-1 00E+0 24.27297E+2 00E+0 00E+0 Tc2O7:H2O(s) -Tc2O7:H2O = 2.000H+ + 2.000TcO4- - log_k 14.100 - delta_h -44.654 #kJ/mol - # Enthalpy of formation: -1414.146 #kJ/mol #99RAR/RAN - -analytic 6.27697E+0 0E+0 2.33244E+3 0E+0 0E+0 +Tc2O7:H2O = 2 H+ + 2 TcO4- + log_k 14.11 + delta_h -44.654 #kJ/mol +# Enthalpy of formation: -1414.146 kJ/mol 99RAR/RAN + -analytic 62.86955E-1 00E+0 23.32441E+2 00E+0 00E+0 + +TcO2(aged) +TcO2 = TcO(OH)2 - H2O + log_k -8.72 #20GRE/GAO + -analytic -87.2E-1 00E+0 00E+0 00E+0 00E+0 TcO2(cr) -TcO2 = 1.000TcO(OH)2 - 1.000H2O - log_k -9.140 #97NGU/LAN - delta_h -5.690 #kJ/mol - # Enthalpy of formation: -457.8 #kJ/mol #99RAR/RAN - -analytic -1.01368E+1 0E+0 2.97209E+2 0E+0 0E+0 +TcO2 = TcO(OH)2 - H2O + log_k -9.15 #97NGU/LAN + delta_h -5.613 #kJ/mol +# Enthalpy of formation: -457.800 kJ/mol 20GRE/GAO + -analytic -10.13336E+0 00E+0 29.31874E+1 00E+0 00E+0 -TcO2:1.63H2O(s) -TcO2:1.63H2O = 1.000TcO(OH)2 + 0.630H2O - log_k -8.400 #99RAR/RAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -8.4E+0 0E+0 0E+0 0E+0 0E+0 - -Th(HPO4)2(s) -Th(HPO4)2 = 1.000Th+4 - 2.000H+ + 2.000H2(PO4)- - log_k -16.110 #Estimated from An(IV) correlations - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.611E+1 0E+0 0E+0 0E+0 0E+0 - -Th(SO4)2:9H2O(cr) -Th(SO4)2:9H2O = 1.000Th+4 + 2.000SO4-2 + 9.000H2O - log_k -11.250 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.125E+1 0E+0 0E+0 0E+0 0E+0 +TcO2(fresh) +TcO2 = TcO(OH)2 - H2O + log_k -7.66 #20GRE/GAO + -analytic -76.6E-1 00E+0 00E+0 00E+0 00E+0 Th(cr) -Th = 1.000Th+4 + 2.000H2O - 4.000H+ - 1.000O2 - log_k 209.450 - delta_h -1328.226 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #09RAN/FUG - -analytic -2.32449E+1 0E+0 6.9378E+4 0E+0 0E+0 +Th = Th+4 + 4 e- + log_k 123.47 + delta_h -768.7 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 09RAN/FUG + -analytic -11.20046E+0 00E+0 40.152E+3 00E+0 00E+0 -ThF4(cr) -ThF4 = 1.000Th+4 + 4.000F- - log_k -19.110 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.911E+1 0E+0 0E+0 0E+0 0E+0 +Th(HPO4)2(s) +Th(HPO4)2 = Th+4 - 2 H+ + 2 H2(PO4)- + log_k -16.11 #Estimated from An(IV) correlations + -analytic -16.11E+0 00E+0 00E+0 00E+0 00E+0 -ThO2(aged) -ThO2 = 1.000Th+4 - 4.000H+ + 2.000H2O - log_k 8.500 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.5E+0 0E+0 0E+0 0E+0 0E+0 +Th(SO4)2:9H2O(cr) +Th(SO4)2:9H2O = Th+4 + 2 SO4-2 + 9 H2O + log_k -11.25 #09RAN/FUG + -analytic -11.25E+0 00E+0 00E+0 00E+0 00E+0 -ThO2(coll) -ThO2 = 1.000Th+4 - 4.000H+ + 2.000H2O - log_k 11.100 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.11E+1 0E+0 0E+0 0E+0 0E+0 - -ThO2(cr) -ThO2 = 1.000Th+4 - 4.000H+ + 2.000H2O - log_k 1.770 - delta_h -113.960 #kJ/mol - # Enthalpy of formation: -1226.4 #kJ/mol #09RAN/FUG - -analytic -1.81949E+1 0E+0 5.95254E+3 0E+0 0E+0 - -ThO2(fresh) -ThO2 = 1.000Th+4 - 4.000H+ + 2.000H2O - log_k 9.300 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.3E+0 0E+0 0E+0 0E+0 0E+0 - -ThO2(mcr) -ThO2 = 1.000Th+4 - 4.000H+ + 2.000H2O - log_k 3.000 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3E+0 0E+0 0E+0 0E+0 0E+0 +Thenardite +Na2SO4 = 2 Na+ + SO4-2 + log_k -0.36 + delta_h -2.2 #kJ/mol +# Enthalpy of formation: -1387.820 kJ/mol 98CHA + -analytic -74.54235E-2 00E+0 11.4914E+1 00E+0 00E+0 + -Vm 53.33 Thermonatrite -Na2(CO3):H2O = 2.000Na+ + 1.000CO3-2 + 1.000H2O - log_k 0.480 #84HAR/MOL - delta_h -12.040 #kJ/mol - # Enthalpy of formation: -1429.7 #kJ/mol #82VAN - -analytic -1.62931E+0 0E+0 6.28892E+2 0E+0 0E+0 +Na2(CO3):H2O = 2 Na+ + CO3-2 + H2O + log_k 0.48 #84HAR/MOL + delta_h -12.04 #kJ/mol +# Enthalpy of formation: -1429.700 kJ/mol 82VAN + -analytic -16.29317E-1 00E+0 62.8893E+1 00E+0 00E+0 -Thernardite -Na2SO4 = 2.000Na+ + 1.000SO4-2 - log_k -0.360 - delta_h -2.200 #kJ/mol - # Enthalpy of formation: -1387.82 #kJ/mol #98CHA - -analytic -7.45423E-1 0E+0 1.14914E+2 0E+0 0E+0 +ThF4(cr) +ThF4 = Th+4 + 4 F- + log_k -30.63 + delta_h 74.611 #kJ/mol +# Enthalpy of formation: -2184.710 kJ/mol + -analytic -17.55871E+0 00E+0 -38.97204E+2 00E+0 00E+0 -Tiemannite -HgSe = 1.000Hg+2 - 1.000H+ + 1.000HSe- - log_k -45.430 - delta_h 241.521 #kJ/mol - # Enthalpy of formation: -57.011 #kJ/mol - -analytic -3.1174E+0 0E+0 -1.26155E+4 0E+0 0E+0 +ThO2(aged) +ThO2 = Th+4 - 4 H+ + 2 H2O + log_k 8.5 #09RAN/FUG + -analytic 85E-1 00E+0 00E+0 00E+0 00E+0 + +ThO2(coll) +ThO2 = Th+4 - 4 H+ + 2 H2O + log_k 11.1 #09RAN/FUG + -analytic 11.1E+0 00E+0 00E+0 00E+0 00E+0 + +ThO2(cr) +ThO2 = Th+4 - 4 H+ + 2 H2O + log_k 1.77 + delta_h -113.96 #kJ/mol +# Enthalpy of formation: -1226.400 kJ/mol 09RAN/FUG + -analytic -18.19493E+0 00E+0 59.52545E+2 00E+0 00E+0 + +ThO2(fresh) +ThO2 = Th+4 - 4 H+ + 2 H2O + log_k 9.3 #09RAN/FUG + -analytic 93E-1 00E+0 00E+0 00E+0 00E+0 + +ThO2(mcr) +ThO2 = Th+4 - 4 H+ + 2 H2O + log_k 3 #09RAN/FUG + -analytic 30E-1 00E+0 00E+0 00E+0 00E+0 Tobermorite-11A -Ca5Si6O16.5(OH):5H2O = 5.000Ca+2 - 10.000H+ + 6.000H4(SiO4) - 1.500H2O - log_k 65.580 #10BLA/BOU1 - delta_h -372.499 #kJ/mol - # Enthalpy of formation: -10680.92 #kJ/mol #00ZUE/FEH - -analytic 3.21072E-1 0E+0 1.94569E+4 0E+0 0E+0 +Ca5Si6O16.5(OH):5H2O = 5 Ca+2 - 10 H+ + 6 H4(SiO4) - 1.5 H2O + log_k 65.58 #10BLA/BOU1 + delta_h -372.499 #kJ/mol +# Enthalpy of formation: -10680.920kJ/mol 00ZUE/FEH + -analytic 32.09765E-2 00E+0 19.45698E+3 00E+0 00E+0 + -Vm 286.19 Tobermorite-14A -Ca5Si6O16.5(OH):10H2O = 5.000Ca+2 - 10.000H+ + 6.000H4(SiO4) + 3.500H2O - log_k 62.940 #10BLA/BOU1 - delta_h -307.419 #kJ/mol - # Enthalpy of formation: -12175.15 #kJ/mol #10BLA/BOU1 - -analytic 9.08258E+0 0E+0 1.60576E+4 0E+0 0E+0 +Ca5Si6O16.5(OH):10H2O = 5 Ca+2 - 10 H+ + 6 H4(SiO4) + 3.5 H2O + log_k 62.94 #10BLA/BOU1 + delta_h -307.419 #kJ/mol +# Enthalpy of formation: -12175.150kJ/mol 10BLA/BOU1 + -analytic 90.82503E-1 00E+0 16.05761E+3 00E+0 00E+0 + -Vm 351.3 Trevorite -Fe2NiO4 = 2.000Fe+3 + 1.000Ni+2 - 8.000H+ + 4.000H2O - log_k 9.400 - delta_h -214.413 #kJ/mol - # Enthalpy of formation: -1081.173 #kJ/mol - -analytic -2.81635E+1 0E+0 1.11996E+4 0E+0 0E+0 +Fe2NiO4 = 2 Fe+3 + Ni+2 - 8 H+ + 4 H2O + log_k 9.43 + delta_h -217.41 #kJ/mol +# Enthalpy of formation: -1081.032 kJ/mol + -analytic -28.6586E+0 00E+0 11.35612E+3 00E+0 00E+0 Troilite -FeS = 1.000Fe+2 - 1.000H+ + 1.000HS- - log_k -5.310 #91DAV - delta_h 2.015 #kJ/mol - # Enthalpy of formation: -108.315 #kJ/mol - -analytic -4.95699E+0 0E+0 -1.05251E+2 0E+0 0E+0 +FeS = Fe+2 - H+ + HS- + log_k -3.99 + delta_h -5.685 #kJ/mol +# Enthalpy of formation: -100.910 kJ/mol 20LEM/PAL + -analytic -49.85969E-1 00E+0 29.69482E+1 00E+0 00E+0 Trona -Na3H(CO3)2:2H2O = 3.000Na+ + 1.000H+ + 2.000CO3-2 + 2.000H2O - log_k -11.380 #84HAR/MOL - delta_h 38.960 #kJ/mol - # Enthalpy of formation: -2682.1 #kJ/mol #82VAN - -analytic -4.55451E+0 0E+0 -2.03502E+3 0E+0 0E+0 +Na3H(CO3)2:2H2O = 3 Na+ + H+ + 2 CO3-2 + 2 H2O + log_k -11.38 #84HAR/MOL + delta_h 38.96 #kJ/mol +# Enthalpy of formation: -2682.100 kJ/mol 82VAN + -analytic -45.54501E-1 00E+0 -20.35023E+2 00E+0 00E+0 Truscottite -Ca7Si12O29(OH)4:H2O = 7.000Ca+2 - 14.000H+ + 12.000H4(SiO4) - 14.000H2O - log_k 77.080 - delta_h -479.088 #kJ/mol - # Enthalpy of formation: -16854.62 #kJ/mol #10BLA/BOU1 - -analytic -6.85249E+0 0E+0 2.50245E+4 0E+0 0E+0 - -U(HPO4)2:4H2O(s) -U(HPO4)2:4H2O = 1.000U+4 - 2.000H+ + 2.000H2(PO4)- + 4.000H2O - log_k -16.070 #92GRE/FUG - delta_h -4.902 #kJ/mol - # Enthalpy of formation: -4334.819 #kJ/mol - -analytic -1.69288E+1 0E+0 2.56049E+2 0E+0 0E+0 - -U(OH)2(SO4)(cr) -U(OH)2(SO4) = 1.000U+4 - 2.000H+ + 1.000SO4-2 + 2.000H2O - log_k -3.170 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.17E+0 0E+0 0E+0 0E+0 0E+0 - -U(SO4)2(cr) -U(SO4)2 = 1.000U+4 + 2.000SO4-2 - log_k -11.680 - delta_h -100.280 #kJ/mol - # Enthalpy of formation: -2309.6 #kJ/mol #92GRE/FUG - -analytic -2.92483E+1 0E+0 5.23798E+3 0E+0 0E+0 - -U(SO4)2:4H2O(cr) -U(SO4)2:4H2O = 1.000U+4 + 2.000SO4-2 + 4.000H2O - log_k -11.720 - delta_h -70.000 #kJ/mol - # Enthalpy of formation: -3483.2 #kJ/mol #92GRE/FUG - -analytic -2.39835E+1 0E+0 3.65635E+3 0E+0 0E+0 - -U(SO4)2:8H2O(cr) -U(SO4)2:8H2O = 1.000U+4 + 2.000SO4-2 + 8.000H2O - log_k -12.770 - delta_h -33.920 #kJ/mol - # Enthalpy of formation: -4662.6 #kJ/mol #92GRE/FUG - -analytic -1.87125E+1 0E+0 1.77176E+3 0E+0 0E+0 +Ca7Si12O29(OH)4:H2O = 7 Ca+2 - 14 H+ + 12 H4(SiO4) - 14 H2O + log_k 77.08 + delta_h -479.088 #kJ/mol +# Enthalpy of formation: -16854.620kJ/mol 10BLA/BOU1 + -analytic -68.52615E-1 00E+0 25.02451E+3 00E+0 00E+0 + -Vm 478.73 U(cr) -U = 1.000U+4 + 2.000H2O - 4.000H+ - 1.000O2 - log_k 178.810 - delta_h -1150.726 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #92GRE/FUG - -analytic -2.27882E+1 0E+0 6.01065E+4 0E+0 0E+0 +U = U+4 + 4 e- + log_k 92.83 + delta_h -591.2 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG + -analytic -10.74379E+0 00E+0 30.88053E+3 00E+0 00E+0 + +U(HPO4)2:4H2O(s) +U(HPO4)2:4H2O = U+4 - 2 H+ + 2 H2(PO4)- + 4 H2O + log_k -16.07 #92GRE/FUG + delta_h -4.89 #kJ/mol +# Enthalpy of formation: -4334.828 kJ/mol + -analytic -16.92669E+0 00E+0 25.54225E+1 00E+0 00E+0 + +U(OH)2(SO4)(cr) +U(OH)2(SO4) = U+4 - 2 H+ + SO4-2 + 2 H2O + log_k -3.17 #92GRE/FUG + -analytic -31.7E-1 00E+0 00E+0 00E+0 00E+0 + +U(SO4)2(cr) +U(SO4)2 = U+4 + 2 SO4-2 + log_k -11.68 + delta_h -100.28 #kJ/mol +# Enthalpy of formation: -2309.600 kJ/mol 92GRE/FUG + -analytic -29.2483E+0 00E+0 52.37989E+2 00E+0 00E+0 + +U(SO4)2:4H2O(cr) +U(SO4)2:4H2O = U+4 + 2 SO4-2 + 4 H2O + log_k -11.71 + delta_h -70 #kJ/mol +# Enthalpy of formation: -3483.200 kJ/mol 92GRE/FUG + -analytic -23.97347E+0 00E+0 36.56355E+2 00E+0 00E+0 + +U(SO4)2:8H2O(s) +U(SO4)2:8H2O = U+4 + 2 SO4-2 + 8 H2O + log_k -12.77 + delta_h -33.92 #kJ/mol +# Enthalpy of formation: -4662.600 kJ/mol 92GRE/FUG + -analytic -18.71253E+0 00E+0 17.71765E+2 00E+0 00E+0 U2O7Ba(cr) -U2O7Ba = 1.000Ba+2 + 2.000UO2+2 - 6.000H+ + 3.000H2O - log_k 21.390 - delta_h -193.090 #kJ/mol - # Enthalpy of formation: -3237.2 #kJ/mol #92GRE/FUG - -analytic -1.24379E+1 0E+0 1.00858E+4 0E+0 0E+0 +U2O7Ba = Ba+2 + 2 UO2+2 - 6 H+ + 3 H2O + log_k 21.39 + delta_h -193.09 #kJ/mol +# Enthalpy of formation: -3237.200 kJ/mol 92GRE/FUG + -analytic -12.43792E+0 00E+0 10.08579E+3 00E+0 00E+0 U2O7Ba2(cr) -U2O7Ba2 = 2.000Ba+2 + 2.000UO2+ - 6.000H+ + 3.000H2O - log_k 35.350 - delta_h -237.344 #kJ/mol - # Enthalpy of formation: -3740 #kJ/mol #92GRE/FUG - -analytic -6.23082E+0 0E+0 1.23973E+4 0E+0 0E+0 +U2O7Ba2 = 2 Ba+2 + 2 UO2+ - 6 H+ + 3 H2O + log_k 35.35 + delta_h -237.344 #kJ/mol +# Enthalpy of formation: -3740.000 kJ/mol 92GRE/FUG + -analytic -62.30884E-1 00E+0 12.39734E+3 00E+0 00E+0 U2O7Na2(s) -U2O7Na2 = 2.000Na+ + 2.000UO2+2 - 6.000H+ + 3.000H2O - log_k 22.600 - delta_h -172.370 #kJ/mol - # Enthalpy of formation: -3203.8 #kJ/mol #92GRE/FUG - -analytic -7.59788E+0 0E+0 9.0035E+3 0E+0 0E+0 +U2O7Na2 = 2 Na+ + 2 UO2+2 - 6 H+ + 3 H2O + log_k 22.6 + delta_h -172.37 #kJ/mol +# Enthalpy of formation: -3203.800 kJ/mol 92GRE/FUG + -analytic -75.97928E-1 00E+0 90.03512E+2 00E+0 00E+0 U3As4(s) -U3As4 = 3.000UO2+2 - 3.000H2O + 6.000H+ + 4.000AsO4-3 - 9.500O2 - log_k 730.640 - delta_h -4916.797 #kJ/mol - # Enthalpy of formation: -720 #kJ/mol #03GUI/FAN - -analytic -1.30745E+2 0E+0 2.56822E+5 0E+0 0E+0 +U3As4 = 3 UO2+2 + 44 H+ + 38 e- + 4 AsO4-3 - 22 H2O + log_k -86.09 + delta_h 398.7 #kJ/mol +# Enthalpy of formation: -720.000 kJ/mol 03GUI/FAN + -analytic -16.24076E+0 00E+0 -20.82555E+3 00E+0 00E+0 UAs(s) -UAs = 1.000UO2+2 - 0.500H2O + 1.000H+ + 1.000AsO4-3 - 2.750O2 - log_k 225.935 - delta_h -1496.557 #kJ/mol - # Enthalpy of formation: -234.3 #kJ/mol #03GUI/FAN - -analytic -3.62501E+1 0E+0 7.81705E+4 0E+0 0E+0 +UAs = UO2+2 + 12 H+ + 11 e- + AsO4-3 - 6 H2O + log_k -10.48 + delta_h 42.14 #kJ/mol +# Enthalpy of formation: -234.300 kJ/mol 03GUI/FAN + -analytic -30.97389E-1 00E+0 -22.01125E+2 00E+0 00E+0 UAs2(s) -UAs2 = 1.000UO2+2 - 2.000H2O + 4.000H+ + 2.000AsO4-3 - 4.000O2 - log_k 278.200 - delta_h -1923.084 #kJ/mol - # Enthalpy of formation: -252 #kJ/mol #03GUI/FAN - -analytic -5.87094E+1 0E+0 1.0045E+5 0E+0 0E+0 +UAs2 = UO2+2 + 20 H+ + 16 e- + 2 AsO4-3 - 10 H2O + log_k -65.68 + delta_h 315.02 #kJ/mol +# Enthalpy of formation: -252.000 kJ/mol 03GUI/FAN + -analytic -10.49087E+0 00E+0 -16.45464E+3 00E+0 00E+0 UO2(CO3)3Mg2:18H2O(s) -UO2(CO3)3Mg2:18H2O = 2.000Mg+2 + 1.000UO2+2 + 3.000CO3-2 + 18.000H2O - log_k -29.010 - delta_h 40.570 #kJ/mol - # Enthalpy of formation: -9164.2 #kJ/mol #99CHE/EWI - -analytic -2.19025E+1 0E+0 -2.11912E+3 0E+0 0E+0 +UO2(CO3)3Mg2:18H2O = 2 Mg+2 + UO2+2 + 3 CO3-2 + 18 H2O + log_k -29.01 + delta_h 40.57 #kJ/mol +# Enthalpy of formation: -9164.200 kJ/mol 99CHE/EWI + -analytic -21.90244E+0 00E+0 -21.19119E+2 00E+0 00E+0 UO2(CO3)3Na4(cr) -UO2(CO3)3Na4 = 4.000Na+ + 1.000UO2+2 + 3.000CO3-2 - log_k -27.180 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.718E+1 0E+0 0E+0 0E+0 0E+0 +UO2(CO3)3Na4 = 4 Na+ + UO2+2 + 3 CO3-2 + log_k -27.18 #03GUI/FAN + -analytic -27.18E+0 00E+0 00E+0 00E+0 00E+0 UO2(HPO4):4H2O(cr) -UO2(HPO4):4H2O = 1.000UO2+2 - 1.000H+ + 1.000H2(PO4)- + 4.000H2O - log_k -4.640 #92GRE/FUG - delta_h 5.048 #kJ/mol - # Enthalpy of formation: -3469.968 #kJ/mol - -analytic -3.75563E+0 0E+0 -2.63675E+2 0E+0 0E+0 +UO2(HPO4):4H2O = UO2+2 - H+ + H2(PO4)- + 4 H2O + log_k -4.64 #92GRE/FUG + delta_h 5.048 #kJ/mol +# Enthalpy of formation: -3469.967 kJ/mol + -analytic -37.55628E-1 00E+0 -26.36754E+1 00E+0 00E+0 UO2(OH)2(beta) -UO2(OH)2 = 1.000UO2+2 - 2.000H+ + 2.000H2O - log_k 4.930 - delta_h -56.860 #kJ/mol - # Enthalpy of formation: -1533.8 #kJ/mol #92GRE/FUG - -analytic -5.03143E+0 0E+0 2.97E+3 0E+0 0E+0 +UO2(OH)2 = UO2+2 - 2 H+ + 2 H2O + log_k 4.93 + delta_h -56.86 #kJ/mol +# Enthalpy of formation: -1533.800 kJ/mol 92GRE/FUG + -analytic -50.31444E-1 00E+0 29.70005E+2 00E+0 00E+0 UO2(Ox):3H2O(s) -UO2(Ox):3H2O = 1.000UO2+2 + 1.000Ox-2 + 3.000H2O - log_k -8.930 #05HUM/AND - delta_h -5.160 #kJ/mol #05HUM/AND - # Enthalpy of formation: -2701.99 #kJ/mol - -analytic -9.83399E+0 0E+0 2.69525E+2 0E+0 0E+0 +UO2(Ox):3H2O = UO2+2 + Ox-2 + 3 H2O + log_k -8.93 #05HUM/AND + delta_h -5.16 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2701.990 kJ/mol + -analytic -98.33993E-1 00E+0 26.95256E+1 00E+0 00E+0 UO2(SO3)(cr) -UO2(SO3) = 1.000UO2+2 + 1.000SO3-2 - log_k -15.830 - delta_h 6.450 #kJ/mol - # Enthalpy of formation: -1661 #kJ/mol #92GRE/FUG - -analytic -1.47E+1 0E+0 -3.36906E+2 0E+0 0E+0 +UO2(SO3) = UO2+2 + SO3-2 + log_k -16.05 + delta_h 10.94 #kJ/mol +# Enthalpy of formation: -1661.000 kJ/mol 92GRE/FUG + -analytic -14.13339E+0 00E+0 -57.1436E+1 00E+0 00E+0 UO2(SO4)(cr) -UO2(SO4) = 1.000UO2+2 + 1.000SO4-2 - log_k 1.890 #92GRE/FUG - delta_h -83.200 #kJ/mol - # Enthalpy of formation: -1845.14 #kJ/mol #92GRE/FUG - -analytic -1.2686E+1 0E+0 4.34583E+3 0E+0 0E+0 +UO2(SO4) = UO2+2 + SO4-2 + log_k 1.89 + delta_h -83.2 #kJ/mol +# Enthalpy of formation: -1845.140 kJ/mol 92GRE/FUG + -analytic -12.68601E+0 00E+0 43.45839E+2 00E+0 00E+0 UO2(SO4):2.5H2O(cr) -UO2(SO4):2.5H2O = 1.000UO2+2 + 1.000SO4-2 + 2.500H2O - log_k -1.590 - delta_h -35.915 #kJ/mol - # Enthalpy of formation: -2607 #kJ/mol #92GRE/FUG - -analytic -7.88203E+0 0E+0 1.87597E+3 0E+0 0E+0 +UO2(SO4):2.5H2O = UO2+2 + SO4-2 + 2.5 H2O + log_k -1.59 + delta_h -35.915 #kJ/mol +# Enthalpy of formation: -2607.000 kJ/mol 92GRE/FUG + -analytic -78.82038E-1 00E+0 18.75971E+2 00E+0 00E+0 UO2(SO4):3.5H2O(cr) -UO2(SO4):3.5H2O = 1.000UO2+2 + 1.000SO4-2 + 3.500H2O - log_k -1.590 - delta_h -27.145 #kJ/mol - # Enthalpy of formation: -2901.6 #kJ/mol #92GRE/FUG - -analytic -6.34559E+0 0E+0 1.41788E+3 0E+0 0E+0 +UO2(SO4):3.5H2O = UO2+2 + SO4-2 + 3.5 H2O + log_k -1.59 + delta_h -27.145 #kJ/mol +# Enthalpy of formation: -2901.600 kJ/mol 92GRE/FUG + -analytic -63.456E-1 00E+0 14.17882E+2 00E+0 00E+0 UO2(SO4):3H2O(cr) -UO2(SO4):3H2O = 1.000UO2+2 + 1.000SO4-2 + 3.000H2O - log_k -1.500 #92GRE/FUG - delta_h -34.330 #kJ/mol - # Enthalpy of formation: -2751.5 #kJ/mol #92GRE/FUG - -analytic -7.51435E+0 0E+0 1.79318E+3 0E+0 0E+0 +UO2(SO4):3H2O = UO2+2 + SO4-2 + 3 H2O + log_k -1.5 + delta_h -34.33 #kJ/mol +# Enthalpy of formation: -2751.500 kJ/mol 92GRE/FUG + -analytic -75.14358E-1 00E+0 17.93181E+2 00E+0 00E+0 UO2.25(s) -UO2.25 = 1.000U+4 - 4.000H+ + 2.000H2O + 0.125O2 - log_k -11.748 - delta_h -36.377 #kJ/mol - # Enthalpy of formation: -1128 #kJ/mol #92GRE/FUG - -analytic -1.81205E+1 0E+0 1.90011E+3 0E+0 0E+0 +UO2.25 = U+4 - 4.5 H+ - 0.5 e- + 2.25 H2O + log_k -1 + delta_h -106.318 #kJ/mol +# Enthalpy of formation: -1128.000 kJ/mol 92GRE/FUG + -analytic -19.62611E+0 00E+0 55.53376E+2 00E+0 00E+0 UO2.34(beta) -UO2.34 = 1.000U+4 - 4.000H+ + 2.000H2O + 0.170O2 - log_k -13.987 - delta_h -22.008 #kJ/mol - # Enthalpy of formation: -1141 #kJ/mol #03GUI/FAN - -analytic -1.78422E+1 0E+0 1.14953E+3 0E+0 0E+0 +UO2.34 = U+4 - 4.68 H+ - 0.68 e- + 2.34 H2O + log_k 0.95 + delta_h -119.042 #kJ/mol +# Enthalpy of formation: -1141.000 kJ/mol 03GUI/FAN + -analytic -19.90526E+0 00E+0 62.17997E+2 00E+0 00E+0 UO2.67(s) -UO2.67 = 1.000U+4 - 4.000H+ + 2.000H2O + 0.335O2 - log_k -21.953 - delta_h 25.618 #kJ/mol - # Enthalpy of formation: -1191.6 #kJ/mol #92GRE/FUG - -analytic -1.74652E+1 0E+0 -1.33813E+3 0E+0 0E+0 +UO2.67 = U+4 - 5.34 H+ - 1.34 e- + 2.67 H2O + log_k 7 + delta_h -162.766 #kJ/mol +# Enthalpy of formation: -1191.600 kJ/mol 92GRE/FUG + -analytic -21.51538E+0 00E+0 85.0186E+2 00E+0 00E+0 UO2:2H2O(am) -UO2:2H2O = 1.000U+4 - 4.000H+ + 4.000H2O - log_k 1.500 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.5E+0 0E+0 0E+0 0E+0 0E+0 +UO2:2H2O = U+4 - 4 H+ + 4 H2O + log_k 1.5 #20GRE/GAO + -analytic 15E-1 00E+0 00E+0 00E+0 00E+0 UO3(alfa) -UO3 = 1.000UO2+2 - 2.000H+ + 1.000H2O - log_k 9.520 - delta_h -92.420 #kJ/mol - # Enthalpy of formation: -1212.41 #kJ/mol #03GUI/FAN - -analytic -6.67127E+0 0E+0 4.82743E+3 0E+0 0E+0 +UO3 = UO2+2 - 2 H+ + H2O + log_k 9.52 + delta_h -92.42 #kJ/mol +# Enthalpy of formation: -1212.410 kJ/mol 03GUI/FAN + -analytic -66.71289E-1 00E+0 48.27433E+2 00E+0 00E+0 UO3(beta) -UO3 = 1.000UO2+2 - 2.000H+ + 1.000H2O - log_k 8.300 - delta_h -84.530 #kJ/mol - # Enthalpy of formation: -1220.3 #kJ/mol #92GRE/FUG - -analytic -6.509E+0 0E+0 4.4153E+3 0E+0 0E+0 +UO3 = UO2+2 - 2 H+ + H2O + log_k 8.3 + delta_h -84.53 #kJ/mol +# Enthalpy of formation: -1220.300 kJ/mol 92GRE/FUG + -analytic -65.0902E-1 00E+0 44.15309E+2 00E+0 00E+0 + +UO3:0.9H2O(s) +UO3:0.9H2O = UO2+2 - 2 H+ + 1.9 H2O + log_k 5 + delta_h -55.777 #kJ/mol +# Enthalpy of formation: -1506.300 kJ/mol 92GRE/FUG + -analytic -47.71711E-1 00E+0 29.13436E+2 00E+0 00E+0 UO3Na(s) -UO3Na = 1.000Na+ + 1.000UO2+ - 2.000H+ + 1.000H2O - log_k 8.340 - delta_h -56.397 #kJ/mol - # Enthalpy of formation: -1494.9 #kJ/mol #92GRE/FUG - -analytic -1.54032E+0 0E+0 2.94582E+3 0E+0 0E+0 +UO3Na = Na+ + UO2+ - 2 H+ + H2O + log_k 8.34 + delta_h -56.397 #kJ/mol +# Enthalpy of formation: -1494.900 kJ/mol 92GRE/FUG + -analytic -15.4033E-1 00E+0 29.4582E+2 00E+0 00E+0 UO4Ba(s) -UO4Ba = 1.000Ba+2 + 1.000UO2+2 - 4.000H+ + 2.000H2O - log_k 17.640 - delta_h -131.660 #kJ/mol - # Enthalpy of formation: -1993.8 #kJ/mol #92GRE/FUG - -analytic -5.42581E+0 0E+0 6.87707E+3 0E+0 0E+0 +UO4Ba = Ba+2 + UO2+2 - 4 H+ + 2 H2O + log_k 17.64 + delta_h -131.66 #kJ/mol +# Enthalpy of formation: -1993.800 kJ/mol 92GRE/FUG + -analytic -54.25842E-1 00E+0 68.77081E+2 00E+0 00E+0 UO4Ca(cr) -UO4Ca = 1.000Ca+2 + 1.000UO2+2 - 4.000H+ + 2.000H2O - log_k 15.930 - delta_h -131.360 #kJ/mol - # Enthalpy of formation: -2002.3 #kJ/mol #92GRE/FUG - -analytic -7.08325E+0 0E+0 6.8614E+3 0E+0 0E+0 +UO4Ca = Ca+2 + UO2+2 - 4 H+ + 2 H2O + log_k 15.93 + delta_h -131.36 #kJ/mol +# Enthalpy of formation: -2002.300 kJ/mol 92GRE/FUG + -analytic -70.83284E-1 00E+0 68.61411E+2 00E+0 00E+0 UO4Li2(s) -UO4Li2 = 2.000Li+ + 1.000UO2+2 - 4.000H+ + 2.000H2O - log_k 27.940 - delta_h -179.400 #kJ/mol - # Enthalpy of formation: -1968.2 #kJ/mol #92GRE/FUG - -analytic -3.48948E+0 0E+0 9.3707E+3 0E+0 0E+0 +UO4Li2 = UO2+2 - 4 H+ + 2 H2O + 2 Li+ + log_k 27.94 + delta_h -179.4 #kJ/mol +# Enthalpy of formation: -1968.200 kJ/mol 92GRE/FUG + -analytic -34.89531E-1 00E+0 93.70715E+2 00E+0 00E+0 UO4Mg(cr) -UO4Mg = 1.000Mg+2 + 1.000UO2+2 - 4.000H+ + 2.000H2O - log_k 23.230 - delta_h -200.360 #kJ/mol - # Enthalpy of formation: -1857.3 #kJ/mol #92GRE/FUG - -analytic -1.18715E+1 0E+0 1.04655E+4 0E+0 0E+0 +UO4Mg = Mg+2 + UO2+2 - 4 H+ + 2 H2O + log_k 23.23 + delta_h -200.36 #kJ/mol +# Enthalpy of formation: -1857.300 kJ/mol 92GRE/FUG + -analytic -11.87157E+0 00E+0 10.46553E+3 00E+0 00E+0 UO4Na2(alfa) -UO4Na2 = 2.000Na+ + 1.000UO2+2 - 4.000H+ + 2.000H2O - log_k 30.030 - delta_h -173.640 #kJ/mol - # Enthalpy of formation: -1897.7 #kJ/mol #92GRE/FUG - -analytic -3.90378E-1 0E+0 9.06984E+3 0E+0 0E+0 +UO4Na2 = 2 Na+ + UO2+2 - 4 H+ + 2 H2O + log_k 30.03 + delta_h -173.64 #kJ/mol +# Enthalpy of formation: -1897.700 kJ/mol 92GRE/FUG + -analytic -39.04222E-2 00E+0 90.69849E+2 00E+0 00E+0 UO4Na3(cr) -UO4Na3 = 3.000Na+ + 1.000UO2+ - 4.000H+ + 2.000H2O - log_k 56.280 - delta_h -293.807 #kJ/mol - # Enthalpy of formation: -2024 #kJ/mol #92GRE/FUG - -analytic 4.8073E+0 0E+0 1.53466E+4 0E+0 0E+0 +UO4Na3 = 3 Na+ + UO2+ - 4 H+ + 2 H2O + log_k 56.28 + delta_h -293.807 #kJ/mol +# Enthalpy of formation: -2024.000 kJ/mol 92GRE/FUG + -analytic 48.07223E-1 00E+0 15.34661E+3 00E+0 00E+0 UO4Sr(alfa) -UO4Sr = 1.000Sr+2 + 1.000UO2+2 - 4.000H+ + 2.000H2O - log_k 19.160 - delta_h -151.960 #kJ/mol - # Enthalpy of formation: -1989.6 #kJ/mol #92GRE/FUG - -analytic -7.46221E+0 0E+0 7.93741E+3 0E+0 0E+0 +UO4Sr = Sr+2 + UO2+2 - 4 H+ + 2 H2O + log_k 19.16 + delta_h -151.96 #kJ/mol +# Enthalpy of formation: -1989.600 kJ/mol 92GRE/FUG + -analytic -74.62249E-1 00E+0 79.37424E+2 00E+0 00E+0 UO6Ba3(cr) -UO6Ba3 = 3.000Ba+2 + 1.000UO2+2 - 8.000H+ + 4.000H2O - log_k 92.700 - delta_h -556.320 #kJ/mol - # Enthalpy of formation: -3210.4 #kJ/mol #92GRE/FUG - -analytic -4.76294E+0 0E+0 2.90586E+4 0E+0 0E+0 - -US2(cr) -US2 = 1.000U+4 - 2.000H+ + 2.000HS- - log_k -2.430 - delta_h -103.400 #kJ/mol - # Enthalpy of formation: -520.4 #kJ/mol #92GRE/FUG - -analytic -2.05449E+1 0E+0 5.40095E+3 0E+0 0E+0 - -USe2(beta) -USe2 = 1.000U+4 - 2.000H+ + 2.000HSe- - log_k 2.820 - delta_h -135.600 #kJ/mol - # Enthalpy of formation: -427 #kJ/mol #92GRE/FUG - -analytic -2.09361E+1 0E+0 7.08287E+3 0E+0 0E+0 +UO6Ba3 = 3 Ba+2 + UO2+2 - 8 H+ + 4 H2O + log_k 92.7 + delta_h -556.32 #kJ/mol +# Enthalpy of formation: -3210.400 kJ/mol 92GRE/FUG + -analytic -47.6308E-1 00E+0 29.05862E+3 00E+0 00E+0 Uraninite -UO2 = 1.000U+4 - 4.000H+ + 2.000H2O - log_k -4.850 - delta_h -77.860 #kJ/mol - # Enthalpy of formation: -1085 #kJ/mol #92GRE/FUG - -analytic -1.84905E+1 0E+0 4.06691E+3 0E+0 0E+0 +UO2 = U+4 - 4 H+ + 2 H2O + log_k -4.85 + delta_h -77.86 #kJ/mol +# Enthalpy of formation: -1085.000 kJ/mol 92GRE/FUG + -analytic -18.49049E+0 00E+0 40.66911E+2 00E+0 00E+0 Uranophane -Ca(UO2)2(SiO3OH)2:5H2O = 1.000Ca+2 + 2.000UO2+2 - 6.000H+ + 2.000H4(SiO4) + 5.000H2O - log_k 9.420 #92NGU/SIL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.42E+0 0E+0 0E+0 0E+0 0E+0 +Ca(UO2)2(SiO3OH)2:5H2O = Ca+2 + 2 UO2+2 - 6 H+ + 2 H4(SiO4) + 5 H2O + log_k 11.52 #20GRE/GAO + -analytic 11.52E+0 00E+0 00E+0 00E+0 00E+0 + +US2(cr) +US2 = U+4 - 2 H+ + 2 HS- + log_k -2.43 + delta_h -103.4 #kJ/mol +# Enthalpy of formation: -520.400 kJ/mol 92GRE/FUG + -analytic -20.5449E+0 00E+0 54.00958E+2 00E+0 00E+0 + +USe2(beta) +USe2 = U+4 - 2 H+ + 2 HSe- + log_k 2.82 + delta_h -135.6 #kJ/mol +# Enthalpy of formation: -427.000 kJ/mol 92GRE/FUG + -analytic -20.9361E+0 00E+0 70.82881E+2 00E+0 00E+0 Vaesite -NiS2 = 1.000Ni+2 + 2.000HS- - 1.000H2O + 0.500O2 - log_k -60.960 - delta_h 320.151 #kJ/mol - # Enthalpy of formation: -128 #kJ/mol #05GAM/BUG - -analytic -4.87203E+0 0E+0 -1.67226E+4 0E+0 0E+0 +NiS2 = Ni+2 - 2 H+ - 2 e- + 2 HS- + log_k -17.97 + delta_h 40.388 #kJ/mol +# Enthalpy of formation: -128.000 kJ/mol 05GAM/BUG + -analytic -10.89433E+0 00E+0 -21.09612E+2 00E+0 00E+0 Valentinite -Sb2O3 = 2.000Sb(OH)3 - 3.000H2O - log_k -8.480 #52GAY/GAR in 76BAE/MES - delta_h 18.500 #kJ/mol - # Enthalpy of formation: -708.77 #kJ/mol #62MAH in 03ZOT/SHI - -analytic -5.23894E+0 0E+0 -9.66321E+2 0E+0 0E+0 +Sb2O3 = 2 Sb(OH)3 - 3 H2O + log_k -8.48 + delta_h 18.474 #kJ/mol +# Enthalpy of formation: -708.770 kJ/mol 62MAH in 03ZOT/SHI + -analytic -52.43494E-1 00E+0 -96.49642E+1 00E+0 00E+0 Vaterite -CaCO3 = 1.000Ca+2 + 1.000CO3-2 - log_k -7.900 - delta_h -14.930 #kJ/mol - # Enthalpy of formation: -1203.3 #kJ/mol #87GAR/PAR - -analytic -1.05156E+1 0E+0 7.79847E+2 0E+0 0E+0 - -Vermiculite-Ca -Ca0.43Mg3Si3.14Al0.86O10(OH)2 = 0.430Ca+2 + 3.000Mg+2 + 0.860Al+3 - 9.440H+ + 3.140H4(SiO4) - 0.560H2O - log_k 39.550 - delta_h -377.538 #kJ/mol - # Enthalpy of formation: -6148.06 #kJ/mol #15BLA/VIE - -analytic -2.65917E+1 0E+0 1.97202E+4 0E+0 0E+0 - -Vermiculite-K -K0.86Mg3.00Si3.14Al0.86O10(OH)2 = 3.000Mg+2 + 0.860K+ + 0.860Al+3 - 9.440H+ + 3.140H4(SiO4) - 0.560H2O - log_k 37.440 - delta_h -335.539 #kJ/mol - # Enthalpy of formation: -6173.41 #kJ/mol #15BLA/VIE - -analytic -2.13438E+1 0E+0 1.75264E+4 0E+0 0E+0 - -Vermiculite-Mg -Mg0.43Mg3Si3.14Al0.86O10(OH)2 = 3.430Mg+2 + 0.860Al+3 - 9.440H+ + 3.140H4(SiO4) - 0.560H2O - log_k 38.040 - delta_h -379.808 #kJ/mol - # Enthalpy of formation: -6113.11 #kJ/mol #15BLA/VIE - -analytic -2.84994E+1 0E+0 1.98387E+4 0E+0 0E+0 - -Vermiculite-Na -Na0.86Mg3.00Si3.14Al0.86O10(OH)2 = 3.000Mg+2 + 0.860Na+ + 0.860Al+3 - 9.440H+ + 3.140H4(SiO4) - 0.560H2O - log_k 38.390 - delta_h -355.541 #kJ/mol - # Enthalpy of formation: -6143.26 #kJ/mol #15BLA/VIE - -analytic -2.3898E+1 0E+0 1.85712E+4 0E+0 0E+0 +CaCO3 = Ca+2 + CO3-2 + log_k -7.9 + delta_h -14.93 #kJ/mol +# Enthalpy of formation: -1203.300 kJ/mol 87GAR/PAR + -analytic -10.51562E+0 00E+0 77.98482E+1 00E+0 00E+0 Vermiculite_SO -(Ca0.445)(Si2.778Al1.222)(Al0.216Fe0.226Fe0.028Mg2.475)O10(OH)2 = 0.445Ca+2 + 2.475Mg+2 + 0.226Fe+3 + 1.438Al+3 + 2.778H4(SiO4) + 0.028Fe+2 + 0.888H2O - 10.888H+ - log_k 45.910 - delta_h -463.877 #kJ/mol - # Enthalpy of formation: -6034.41 #kJ/mol #13GAI/BLA - -analytic -3.53576E+1 0E+0 2.42299E+4 0E+0 0E+0 +(Ca0.445)(Si2.778Al1.222)(Al0.216Fe0.226Fe0.028Mg2.475)O10(OH)2 = 0.445 Ca+2 + 2.475 Mg+2 + 0.226 Fe+3 + 0.028 Fe+2 + 1.438 Al+3 - 10.888 H+ + 2.778 H4(SiO4) + 0.888 H2O + log_k 45.88 + delta_h -464.124 #kJ/mol +# Enthalpy of formation: -6034.410 kJ/mol 13GAI/BLA + -analytic -35.43103E+0 00E+0 24.24288E+3 00E+0 00E+0 + -Vm 148.36 + +Vermiculite-Ca +Ca0.43Mg3Si3.14Al0.86O10(OH)2 = 0.43 Ca+2 + 3 Mg+2 + 0.86 Al+3 - 9.44 H+ + 3.14 H4(SiO4) - 0.56 H2O + log_k 39.55 + delta_h -377.538 #kJ/mol +# Enthalpy of formation: -6148.060 kJ/mol 15BLA/VIE + -analytic -26.59182E+0 00E+0 19.72018E+3 00E+0 00E+0 + -Vm 149.8 + +Vermiculite-K +K0.86Mg3Si3.14Al0.86O10(OH)2 = 3 Mg+2 + 0.86 K+ + 0.86 Al+3 - 9.44 H+ + 3.14 H4(SiO4) - 0.56 H2O + log_k 37.44 + delta_h -335.539 #kJ/mol +# Enthalpy of formation: -6173.410 kJ/mol 15BLA/VIE + -analytic -21.34391E+0 00E+0 17.52642E+3 00E+0 00E+0 + -Vm 147.56 + +Vermiculite-Mg +Mg0.43Mg3Si3.14Al0.86O10(OH)2 = 3.43 Mg+2 + 0.86 Al+3 - 9.44 H+ + 3.14 H4(SiO4) - 0.56 H2O + log_k 38.04 + delta_h -379.808 #kJ/mol +# Enthalpy of formation: -6113.110 kJ/mol 15BLA/VIE + -analytic -28.49951E+0 00E+0 19.83875E+3 00E+0 00E+0 + -Vm 139.69 + +Vermiculite-Na +Na0.86Mg3Si3.14Al0.86O10(OH)2 = 3 Mg+2 + 0.86 Na+ + 0.86 Al+3 - 9.44 H+ + 3.14 H4(SiO4) - 0.56 H2O + log_k 38.39 + delta_h -355.541 #kJ/mol +# Enthalpy of formation: -6143.260 kJ/mol 15BLA/VIE + -analytic -23.89811E+0 00E+0 18.5712E+3 00E+0 00E+0 + -Vm 145.71 Vivianite -Fe3(PO4)2:8H2O = 3.000Fe+2 - 4.000H+ + 2.000H2(PO4)- + 8.000H2O - log_k 3.120 - delta_h -9.561 #kJ/mol - # Enthalpy of formation: -5152.279 #kJ/mol - -analytic 1.44499E+0 0E+0 4.99405E+2 0E+0 0E+0 +Fe3(PO4)2:8H2O = 3 Fe+2 - 4 H+ + 2 H2(PO4)- + 8 H2O + log_k 3.12 #20LEM/PAL + -analytic 31.2E-1 00E+0 00E+0 00E+0 00E+0 Wairakite -CaAl2Si4O12:2H2O = 1.000Ca+2 + 2.000Al+3 - 8.000H+ + 4.000H4(SiO4) - 2.000H2O - log_k 14.440 - delta_h -246.216 #kJ/mol - # Enthalpy of formation: -6646.7 #kJ/mol #96KIS/NAV - -analytic -2.86951E+1 0E+0 1.28607E+4 0E+0 0E+0 +CaAl2Si4O12:2H2O = Ca+2 + 2 Al+3 - 8 H+ + 4 H4(SiO4) - 2 H2O + log_k 14.42 + delta_h -246.216 #kJ/mol +# Enthalpy of formation: -6646.700 kJ/mol 96KIS/NAV + -analytic -28.71519E+0 00E+0 12.86076E+3 00E+0 00E+0 + -Vm 193.56 Witherite -Ba(CO3) = 1.000Ba+2 + 1.000CO3-2 - log_k -8.560 #86BUS/PLU - delta_h 2.941 #kJ/mol #86BUS/PLU - # Enthalpy of formation: -1212.971 #kJ/mol - -analytic -8.04476E+0 0E+0 -1.53619E+2 0E+0 0E+0 +Ba(CO3) = Ba+2 + CO3-2 + log_k -8.56 #86BUS/PLU + delta_h 2.941 #kJ/mol 86BUS/PLU +# Enthalpy of formation: -1212.971 kJ/mol + -analytic -80.44759E-1 00E+0 -15.36191E+1 00E+0 00E+0 Xonotlite -Ca6Si6O17(OH)2 = 6.000Ca+2 - 12.000H+ + 6.000H4(SiO4) - 5.000H2O - log_k 91.340 #10BLA/BOU1 - delta_h -573.864 #kJ/mol - # Enthalpy of formation: -10022.15 #kJ/mol #56NEW - -analytic -9.19651E+0 0E+0 2.9975E+4 0E+0 0E+0 +Ca6Si6O17(OH)2 = 6 Ca+2 - 12 H+ + 6 H4(SiO4) - 5 H2O + log_k 91.34 #10BLA/BOU1 + delta_h -573.864 #kJ/mol +# Enthalpy of formation: -10022.150kJ/mol 56NEW + -analytic -91.96657E-1 00E+0 29.975E+3 00E+0 00E+0 + -Vm 256.9 Zeolite_CaP -Ca2Al4Si4O16:9H2O = 2.000Ca+2 + 4.000Al+3 - 16.000H+ + 4.000H4(SiO4) + 9.000H2O - log_k 45.150 #09BLA - delta_h -527.736 #kJ/mol - # Enthalpy of formation: -11129.11 #kJ/mol #09BLA - -analytic -4.73052E+1 0E+0 2.75655E+4 0E+0 0E+0 +Ca2Al4Si4O16:9H2O = 2 Ca+2 + 4 Al+3 - 16 H+ + 4 H4(SiO4) + 9 H2O + log_k 45.15 #09BLA + delta_h -527.736 #kJ/mol +# Enthalpy of formation: -11129.110kJ/mol 09BLA + -analytic -47.30538E+0 00E+0 27.56557E+3 00E+0 00E+0 + -Vm 305.7 + +Zn(cr) +Zn = Zn+2 + 2 e- + log_k 25.79 + delta_h -153.39 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -10.82774E-1 00E+0 80.12118E+2 00E+0 00E+0 Zn(SeO4):6H2O(s) -Zn(SeO4):6H2O = 1.000Zn+2 + 1.000SeO4-2 + 6.000H2O - log_k -1.538 #05OLI/NOL - delta_h -13.330 #kJ/mol - # Enthalpy of formation: -2458.54 #kJ/mol #05OLI/NOL - -analytic -3.87331E+0 0E+0 6.96273E+2 0E+0 0E+0 +Zn(SeO4):6H2O = Zn+2 + SeO4-2 + 6 H2O + log_k -1.54 #05OLI/NOL + delta_h -13.33 #kJ/mol +# Enthalpy of formation: -2458.540 kJ/mol 05OLI/NOL + -analytic -38.75316E-1 00E+0 69.62744E+1 00E+0 00E+0 Zn3(AsO4)2(s) -Zn3(AsO4)2 = 3.000Zn+2 + 2.000AsO4-3 - log_k -27.450 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.745E+1 0E+0 0E+0 0E+0 0E+0 +Zn3(AsO4)2 = 3 Zn+2 + 2 AsO4-3 + log_k -27.45 + -analytic -27.45E+0 00E+0 00E+0 00E+0 00E+0 ZnB2O4(s) -ZnB2O4 = 1.000Zn+2 + 2.000B(OH)4- - 4.000H2O - log_k -10.190 #91BAL/NOR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.019E+1 0E+0 0E+0 0E+0 0E+0 - -Zr(HPO4)2(alfa) -Zr(HPO4)2 = - 2.000H+ + 2.000H2(PO4)- + 1.000Zr+4 - log_k -32.270 - delta_h -47.500 #kJ/mol - # Enthalpy of formation: -3166.2 #kJ/mol #05BRO/CUR - -analytic -4.05916E+1 0E+0 2.48109E+3 0E+0 0E+0 - -Zr(HPO4)2:H2O(cr) -Zr(HPO4)2:H2O = - 2.000H+ + 2.000H2(PO4)- + 1.000Zr+4 + 1.000H2O - log_k -27.080 #05BRO/CUR - delta_h -33.430 #kJ/mol - # Enthalpy of formation: -3466.1 #kJ/mol #05BRO/CUR - -analytic -3.29367E+1 0E+0 1.74617E+3 0E+0 0E+0 - -Zr(OH)4(am,aged) -Zr(OH)4 = - 4.000H+ + 1.000Zr+4 + 4.000H2O - log_k -5.550 #Recalculated from 04EKB/KAL in 05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.55E+0 0E+0 0E+0 0E+0 0E+0 - -Zr(OH)4(am,fresh) -Zr(OH)4 = - 4.000H+ + 1.000Zr+4 + 4.000H2O - log_k -3.240 #05BRO/CUR - delta_h -89.620 #kJ/mol - # Enthalpy of formation: -1662.2 #kJ/mol #05BRO/CUR - -analytic -1.89407E+1 0E+0 4.68117E+3 0E+0 0E+0 - -Zr(SO4)2(cr) -Zr(SO4)2 = 2.000SO4-2 + 1.000Zr+4 - log_k 1.240 - delta_h -181.980 #kJ/mol - # Enthalpy of formation: -2245.2 #kJ/mol #05BRO/CUR - -analytic -3.06415E+1 0E+0 9.50546E+3 0E+0 0E+0 - -Zr(SO4)2:4H2O(s) -Zr(SO4)2:4H2O = 2.000SO4-2 + 1.000Zr+4 + 4.000H2O - log_k -7.650 - delta_h -99.600 #kJ/mol - # Enthalpy of formation: -3470.9 #kJ/mol #05BRO/CUR - -analytic -2.50991E+1 0E+0 5.20246E+3 0E+0 0E+0 +ZnB2O4 = Zn+2 + 2 B(OH)4- - 4 H2O + log_k -10.19 #91BAL/NOR + -analytic -10.19E+0 00E+0 00E+0 00E+0 00E+0 Zr(cr) -Zr = 1.000Zr+4 + 2.000H2O - 4.000H+ - 1.000O2 - log_k 178.570 - delta_h -1168.026 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #05BRO/CUR - -analytic -2.60591E+1 0E+0 6.10102E+4 0E+0 0E+0 +Zr = 4 e- + Zr+4 + log_k 92.59 + delta_h -608.5 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 05BRO/CUR + -analytic -14.01462E+0 00E+0 31.78417E+3 00E+0 00E+0 + +Zr(HPO4)2(alfa) +Zr(HPO4)2 = -2 H+ + 2 H2(PO4)- + Zr+4 + log_k -32.27 + delta_h -47.5 #kJ/mol +# Enthalpy of formation: -3166.200 kJ/mol 05BRO/CUR + -analytic -40.59164E+0 00E+0 24.81098E+2 00E+0 00E+0 + +Zr(HPO4)2:H2O(cr) +Zr(HPO4)2:H2O = -2 H+ + 2 H2(PO4)- + Zr+4 + H2O + log_k -27.08 #05BRO/CUR + delta_h -33.43 #kJ/mol +# Enthalpy of formation: -3466.100 kJ/mol 05BRO/CUR + -analytic -32.93668E+0 00E+0 17.46171E+2 00E+0 00E+0 + +Zr(OH)4(am,aged) +Zr(OH)4 = -4 H+ + Zr+4 + 4 H2O + log_k -5.55 #Recalculated from 04EKB/KAL in 05BRO/CUR + -analytic -55.5E-1 00E+0 00E+0 00E+0 00E+0 + +Zr(OH)4(am,fresh) +Zr(OH)4 = -4 H+ + Zr+4 + 4 H2O + log_k -3.24 #05BRO/CUR + delta_h -89.62 #kJ/mol +# Enthalpy of formation: -1662.200 kJ/mol 05BRO/CUR + -analytic -18.94075E+0 00E+0 46.81179E+2 00E+0 00E+0 + +Zr(SO4)2(cr) +Zr(SO4)2 = 2 SO4-2 + Zr+4 + log_k 1.24 + delta_h -181.98 #kJ/mol +# Enthalpy of formation: -2245.200 kJ/mol 05BRO/CUR + -analytic -30.64153E+0 00E+0 95.05477E+2 00E+0 00E+0 + +Zr(SO4)2:4H2O(s) +Zr(SO4)2:4H2O = 2 SO4-2 + Zr+4 + 4 H2O + log_k -7.65 + delta_h -99.6 #kJ/mol +# Enthalpy of formation: -3470.900 kJ/mol 05BRO/CUR + -analytic -25.09917E+0 00E+0 52.0247E+2 00E+0 00E+0 ZrBr4(cr) -ZrBr4 = 4.000Br- + 1.000Zr+4 - log_k 38.520 - delta_h -334.640 #kJ/mol - # Enthalpy of formation: -759.5 #kJ/mol #05BRO/CUR - -analytic -2.01063E+1 0E+0 1.74794E+4 0E+0 0E+0 +ZrBr4 = 4 Br- + Zr+4 + log_k 38.52 + delta_h -334.64 #kJ/mol +# Enthalpy of formation: -759.500 kJ/mol 05BRO/CUR + -analytic -20.10641E+0 00E+0 17.47946E+3 00E+0 00E+0 ZrCl(s) -ZrCl = 1.000Cl- + 1.000Zr+4 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 133.725 - delta_h -904.025 #kJ/mol - # Enthalpy of formation: -291.2 #kJ/mol #05BRO/CUR - -analytic -2.46531E+1 0E+0 4.72204E+4 0E+0 0E+0 +ZrCl = 3 e- + Cl- + Zr+4 + log_k 69.24 + delta_h -484.38 #kJ/mol +# Enthalpy of formation: -291.200 kJ/mol 05BRO/CUR + -analytic -15.61973E+0 00E+0 25.30093E+3 00E+0 00E+0 ZrCl2(s) -ZrCl2 = 2.000Cl- + 1.000Zr+4 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 94.640 - delta_h -679.623 #kJ/mol - # Enthalpy of formation: -542.8 #kJ/mol #05BRO/CUR - -analytic -2.44247E+1 0E+0 3.54991E+4 0E+0 0E+0 +ZrCl2 = 2 e- + 2 Cl- + Zr+4 + log_k 51.65 + delta_h -399.86 #kJ/mol +# Enthalpy of formation: -542.800 kJ/mol 05BRO/CUR + -analytic -18.40246E+0 00E+0 20.88614E+3 00E+0 00E+0 ZrCl3(s) -ZrCl3 = 3.000Cl- + 1.000Zr+4 + 0.500H2O - 1.000H+ - 0.250O2 - log_k 62.215 - delta_h -489.522 #kJ/mol - # Enthalpy of formation: -760.1 #kJ/mol #05BRO/CUR - -analytic -2.35454E+1 0E+0 2.55695E+4 0E+0 0E+0 +ZrCl3 = e- + 3 Cl- + Zr+4 + log_k 40.72 + delta_h -349.64 #kJ/mol +# Enthalpy of formation: -760.100 kJ/mol 05BRO/CUR + -analytic -20.5343E+0 00E+0 18.26297E+3 00E+0 00E+0 ZrCl4(s) -ZrCl4 = 4.000Cl- + 1.000Zr+4 - log_k 28.600 - delta_h -296.020 #kJ/mol - # Enthalpy of formation: -980.8 #kJ/mol #05BRO/CUR - -analytic -2.32604E+1 0E+0 1.54622E+4 0E+0 0E+0 +ZrCl4 = 4 Cl- + Zr+4 + log_k 28.6 + delta_h -296.02 #kJ/mol +# Enthalpy of formation: -980.800 kJ/mol 05BRO/CUR + -analytic -23.26048E+0 00E+0 15.4622E+3 00E+0 00E+0 ZrF2(s) -ZrF2 = 2.000F- + 1.000Zr+4 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 75.600 - delta_h -602.963 #kJ/mol - # Enthalpy of formation: -956 #kJ/mol #97VIS/COR - -analytic -3.00344E+1 0E+0 3.14949E+4 0E+0 0E+0 +ZrF2 = 2 e- + 2 F- + Zr+4 + log_k 32.61 + delta_h -323.2 #kJ/mol +# Enthalpy of formation: -956.000 kJ/mol 97VIS/COR + -analytic -24.01221E+0 00E+0 16.88191E+3 00E+0 00E+0 ZrF3(s) -ZrF3 = 3.000F- + 1.000Zr+4 + 0.500H2O - 1.000H+ - 0.250O2 - log_k 24.295 - delta_h -321.432 #kJ/mol - # Enthalpy of formation: -1433 #kJ/mol #97VIS/COR - -analytic -3.20173E+1 0E+0 1.67895E+4 0E+0 0E+0 +ZrF3 = e- + 3 F- + Zr+4 + log_k 2.8 + delta_h -181.55 #kJ/mol +# Enthalpy of formation: -1433.000 kJ/mol 97VIS/COR + -analytic -29.00619E+0 00E+0 94.83017E+2 00E+0 00E+0 ZrF4(beta) -ZrF4 = 4.000F- + 1.000Zr+4 - log_k -27.250 - delta_h -38.600 #kJ/mol - # Enthalpy of formation: -1911.3 #kJ/mol #05BRO/CUR - -analytic -3.40124E+1 0E+0 2.01622E+3 0E+0 0E+0 +ZrF4 = 4 F- + Zr+4 + log_k -27.25 + delta_h -38.6 #kJ/mol +# Enthalpy of formation: -1911.300 kJ/mol 05BRO/CUR + -analytic -34.01243E+0 00E+0 20.16218E+2 00E+0 00E+0 ZrI4(cr) -ZrI4 = 4.000I- + 1.000Zr+4 - log_k 44.590 - delta_h -346.720 #kJ/mol - # Enthalpy of formation: -488.9 #kJ/mol #05BRO/CUR - -analytic -1.61526E+1 0E+0 1.81104E+4 0E+0 0E+0 +ZrI4 = 4 I- + Zr+4 + log_k 44.59 + delta_h -346.72 #kJ/mol +# Enthalpy of formation: -488.900 kJ/mol 05BRO/CUR + -analytic -16.15274E+0 00E+0 18.11045E+3 00E+0 00E+0 ZrO2(cr) -ZrO2 = - 4.000H+ + 1.000Zr+4 + 2.000H2O - log_k -7.000 - delta_h -79.560 #kJ/mol - # Enthalpy of formation: -1100.6 #kJ/mol #05BRO/CUR - -analytic -2.09383E+1 0E+0 4.1557E+3 0E+0 0E+0 +ZrO2 = -4 H+ + Zr+4 + 2 H2O + log_k -7 + delta_h -79.56 #kJ/mol +# Enthalpy of formation: -1100.600 kJ/mol 05BRO/CUR + -analytic -20.93831E+0 00E+0 41.55708E+2 00E+0 00E+0 ZrSiO4(s) -ZrSiO4 = - 4.000H+ + 1.000H4(SiO4) + 1.000Zr+4 - log_k -14.360 - delta_h -35.494 #kJ/mol - # Enthalpy of formation: -2034.2 #kJ/mol #05BRO/CUR - -analytic -2.05783E+1 0E+0 1.85398E+3 0E+0 0E+0 - -illite-FeIII -K0.85Fe0.25Al2.6Si3.15O10(OH)2 = 0.850K+ + 0.250Fe+3 + 2.600Al+3 - 9.400H+ + 3.150H4(SiO4) - 0.600H2O - log_k 12.370 - delta_h -262.282 #kJ/mol - # Enthalpy of formation: -5795.39 #kJ/mol #15BLA/VIE - -analytic -3.35798E+1 0E+0 1.36999E+4 0E+0 0E+0 - - +ZrSiO4 = -4 H+ + H4(SiO4) + Zr+4 + log_k -14.36 + delta_h -35.494 #kJ/mol +# Enthalpy of formation: -2034.200 kJ/mol 05BRO/CUR + -analytic -20.57828E+0 00E+0 18.53981E+2 00E+0 00E+0 # PMATCH GASES CH4(g) -CH4 = 2.000H+ + 1.000CO3-2 + 1.000H2O - 2.000O2 - log_k 130.910 - delta_h -861.919 #kJ/mol - # Enthalpy of formation: -74.873 #kJ/mol #98CHA - -analytic -2.00915E+1 0E+0 4.50211E+4 0E+0 0E+0 - -CO(g) -CO = 2.000H+ + 1.000CO3-2 - 1.000H2O - 0.500O2 - log_k 28.350 - delta_h -272.803 #kJ/mol - # Enthalpy of formation: -110.53 #kJ/mol #89COX/WAG - -analytic -1.9443E+1 0E+0 1.42495E+4 0E+0 0E+0 - -CO2(g) -CO2 = 2.000H+ + 1.000CO3-2 - 1.000H2O - log_k -18.150 - delta_h 4.110 #kJ/mol - # Enthalpy of formation: -393.51 #kJ/mol #89COX/WAG - -analytic -1.743E+1 0E+0 -2.1468E+2 0E+0 0E+0 +CH4 = 10 H+ + 8 e- + CO3-2 - 3 H2O + log_k -41.05 + delta_h 257.133 #kJ/mol +# Enthalpy of formation: -74.873 kJ/mol 98CHA + -analytic 39.97768E-1 00E+0 -13.43099E+3 00E+0 00E+0 Cl2(g) -Cl2 = 2.000Cl- - 1.000H2O + 2.000H+ + 0.500O2 - log_k 2.990 - delta_h -54.397 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -6.53993E+0 0E+0 2.84135E+3 0E+0 0E+0 +Cl2 = -2 e- + 2 Cl- + log_k 45.98 + delta_h -334.16 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -12.56232E+0 00E+0 17.45439E+3 00E+0 00E+0 + +CO(g) +CO = 4 H+ + 2 e- + CO3-2 - 2 H2O + log_k -14.64 + delta_h 6.96 #kJ/mol +# Enthalpy of formation: -110.530 kJ/mol 89COX/WAG + -analytic -13.42066E+0 00E+0 -36.35461E+1 00E+0 00E+0 + +CO2(g) +CO2 = 2 H+ + CO3-2 - H2O + log_k -18.15 + delta_h 4.11 #kJ/mol +# Enthalpy of formation: -393.510 kJ/mol 89COX/WAG + -analytic -17.42996E+0 00E+0 -21.46803E+1 00E+0 00E+0 + +F2(g) +F2 = -2 e- + 2 F- + log_k 98.64 + delta_h -670.7 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -18.8616E+0 00E+0 35.0331E+3 00E+0 00E+0 H2(g) -H2 = 1.000H2O - 0.500O2 - log_k 42.990 - delta_h -279.763 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -6.0223E+0 0E+0 1.4613E+4 0E+0 0E+0 +H2 = 2 H+ + 2 e- + log_k 0 + delta_h 0 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 H2O(g) -H2O = 1.000H2O - log_k 1.500 - delta_h -44.004 #kJ/mol - # Enthalpy of formation: -241.826 #kJ/mol #89COX/WAG - -analytic -6.20916E+0 0E+0 2.29849E+3 0E+0 0E+0 +H2O = 2 H+ + 2 e- + 0.5 O2 + log_k -41.5 + delta_h 235.759 #kJ/mol +# Enthalpy of formation: -241.826 kJ/mol 89COX/WAG + -analytic -19.67962E-2 00E+0 -12.31455E+3 00E+0 00E+0 H2S(g) -H2S = 1.000H+ + 1.000HS- - log_k -8.000 - delta_h 4.300 #kJ/mol - # Enthalpy of formation: -20.6 #kJ/mol #89COX/WAG - -analytic -7.24667E+0 0E+0 -2.24604E+2 0E+0 0E+0 +H2S = H+ + HS- + log_k -8 + delta_h 4.3 #kJ/mol +# Enthalpy of formation: -20.600 kJ/mol 89COX/WAG + -analytic -72.46672E-1 00E+0 -22.46046E+1 00E+0 00E+0 HCl(g) -HCl = 1.000H+ + 1.000Cl- - log_k 6.290 - delta_h -74.770 #kJ/mol - # Enthalpy of formation: -92.31 #kJ/mol #89COX/WAG - -analytic -6.80912E+0 0E+0 3.9055E+3 0E+0 0E+0 +HCl = H+ + Cl- + log_k 6.29 + delta_h -74.77 #kJ/mol +# Enthalpy of formation: -92.310 kJ/mol 89COX/WAG + -analytic -68.09142E-1 00E+0 39.05509E+2 00E+0 00E+0 + +Hg(CH3)2(g) +Hg(CH3)2 = -2 H+ + 2 CH4 + Hg+2 + log_k -8.82 #18BLA/BUR + -analytic -88.2E-1 00E+0 00E+0 00E+0 00E+0 + +N2(g) +N2 = 12 H+ + 10 e- + 2 NO3- - 6 H2O + log_k -210.45 + delta_h 1301.28 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 17.52447E+0 00E+0 -67.97059E+3 00E+0 00E+0 O2(g) -O2 = 1.000O2 - log_k -2.900 - delta_h -12.134 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - -analytic -5.02578E+0 0E+0 6.33802E+2 0E+0 0E+0 +O2 = O2 + log_k -2.9 + delta_h -12.134 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -50.25786E-1 00E+0 63.3803E+1 00E+0 00E+0 SO2(g) -SO2 = 2.000H+ + 1.000SO3-2 - 1.000H2O - log_k -8.940 - delta_h -48.420 #kJ/mol - # Enthalpy of formation: -296.81 #kJ/mol #89COX/WAG - -analytic -1.74228E+1 0E+0 2.52915E+3 0E+0 0E+0 +SO2 = 2 H+ + SO3-2 - H2O + log_k -8.94 + delta_h -48.42 #kJ/mol +# Enthalpy of formation: -296.810 kJ/mol 89COX/WAG + -analytic -17.42282E+0 00E+0 25.29153E+2 00E+0 00E+0 diff --git a/database/wateq4f.dat b/database/wateq4f.dat index 8461c4bb..3e69cd86 100644 --- a/database/wateq4f.dat +++ b/database/wateq4f.dat @@ -1,1397 +1,1401 @@ -# $Id$ +# File 1 = C:\GitPrograms\phreeqc3-1\database\wateq4f.dat, 15/03/2024 15:31, 4032 lines, 106804 bytes, md5=b01313c8049bbc106fe5ce9b15afa3e2 +# Created 17 May 2024 14:30:45 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "wateq4f.dat" + +# $Id$ # Revised arsenic data from Archer and Nordstrom (2002) SOLUTION_MASTER_SPECIES -Ag Ag+ 0.0 107.868 107.868 -Al Al+3 0.0 26.9815 26.9815 -Alkalinity CO3-2 1.0 50.05 50.05 -As H3AsO4 -1.0 74.9216 74.9216 -As(+3) H3AsO3 0.0 74.9216 74.9216 -As(+5) H3AsO4 -1.0 74.9216 -B H3BO3 0.0 10.81 10.81 -Ba Ba+2 0.0 137.34 137.34 -Br Br- 0.0 79.904 79.904 -C CO3-2 2.0 61.0173 12.0111 -C(+4) CO3-2 2.0 61.0173 -C(-4) CH4 0.0 16.042 -Ca Ca+2 0.0 40.08 40.08 -Cd Cd+2 0.0 112.4 112.4 -Cl Cl- 0.0 35.453 35.453 -Cs Cs+ 0.0 132.905 132.905 -Cu Cu+2 0.0 63.546 63.546 -Cu(+1) Cu+1 0.0 63.546 -Cu(+2) Cu+2 0.0 63.546 -E e- 0.0 0.0 0.0 -F F- 0.0 18.9984 18.9984 -Fe Fe+2 0.0 55.847 55.847 -Fe(+2) Fe+2 0.0 55.847 -Fe(+3) Fe+3 -2.0 55.847 -Fulvate Fulvate-2 0.0 650. 650. -H H+ -1. 1.008 1.008 -H(0) H2 0.0 1.008 -H(1) H+ -1. 1.008 -Humate Humate-2 0.0 2000. 2000. -I I- 0.0 126.9044 126.9044 -K K+ 0.0 39.102 39.102 -Li Li+ 0.0 6.939 6.939 -Mg Mg+2 0.0 24.312 24.312 -Mn Mn+2 0.0 54.938 54.938 -Mn(2) Mn+2 0.0 54.938 -Mn(3) Mn+3 0.0 54.938 -Mn(6) MnO4-2 0.0 54.938 -Mn(7) MnO4- 0.0 54.938 -N NO3- 0.0 14.0067 14.0067 -N(-3) NH4+ 0.0 14.0067 -N(0) N2 0.0 14.0067 -N(+3) NO2- 0.0 14.0067 -N(+5) NO3- 0.0 14.0067 -Na Na+ 0.0 22.9898 22.9898 -Ni Ni+2 0.0 58.71 58.71 -O H2O 0.0 16.00 16.00 -O(-2) H2O 0.0 18.016 -O(0) O2 0.0 16.00 -P PO4-3 2.0 30.9738 30.9738 -Pb Pb+2 0.0 207.19 207.19 -Rb Rb+ 0.0 85.47 85.47 -S SO4-2 0.0 96.0616 32.064 -S(-2) H2S 0.0 32.064 -S(6) SO4-2 0.0 96.0616 -Se SeO4-2 0.0 78.96 78.96 -Se(-2) HSe- 0.0 78.96 -Se(4) SeO3-2 0.0 78.96 -Se(6) SeO4-2 0.0 78.96 -Si H4SiO4 0.0 60.0843 28.0843 -Sr Sr+2 0.0 87.62 87.62 -Zn Zn+2 0.0 65.37 65.37 -U UO2+2 0.0 238.0290 238.0290 -U(3) U+3 0.0 238.0290 238.0290 -U(4) U+4 0.0 238.0290 238.0290 -U(5) UO2+ 0.0 238.0290 238.0290 -U(6) UO2+2 0.0 238.0290 238.0290 +Ag Ag+ 0 107.868 107.868 +Al Al+3 0 26.9815 26.9815 +Alkalinity CO3-2 1 50.05 50.05 +As H3AsO4 -1 74.9216 74.9216 +As(+3) H3AsO3 0 74.9216 74.9216 +As(+5) H3AsO4 -1 74.9216 +B H3BO3 0 10.81 10.81 +Ba Ba+2 0 137.34 137.34 +Br Br- 0 79.904 79.904 +C CO3-2 2 61.0173 12.0111 +C(+4) CO3-2 2 61.0173 +C(-4) CH4 0 16.042 +Ca Ca+2 0 40.08 40.08 +Cd Cd+2 0 112.4 112.4 +Cl Cl- 0 35.453 35.453 +Cs Cs+ 0 132.905 132.905 +Cu Cu+2 0 63.546 63.546 +Cu(+1) Cu+1 0 63.546 +Cu(+2) Cu+2 0 63.546 +E e- 1 0 0 +F F- 0 18.9984 18.9984 +Fe Fe+2 0 55.847 55.847 +Fe(+2) Fe+2 0 55.847 +Fe(+3) Fe+3 -2 55.847 +Fulvate Fulvate-2 0 650 650 +H H+ -1 1.008 1.008 +H(0) H2 0 1.008 +H(1) H+ -1 1.008 +Humate Humate-2 0 2000 2000 +I I- 0 126.9044 126.9044 +K K+ 0 39.102 39.102 +Li Li+ 0 6.939 6.939 +Mg Mg+2 0 24.312 24.312 +Mn Mn+2 0 54.938 54.938 +Mn(2) Mn+2 0 54.938 +Mn(3) Mn+3 0 54.938 +Mn(6) MnO4-2 0 54.938 +Mn(7) MnO4- 0 54.938 +N NO3- 0 14.0067 14.0067 +N(-3) NH4+ 0 14.0067 +N(0) N2 0 14.0067 +N(+3) NO2- 0 14.0067 +N(+5) NO3- 0 14.0067 +Na Na+ 0 22.9898 22.9898 +Ni Ni+2 0 58.71 58.71 +O H2O 0 16 16 +O(-2) H2O 0 18.016 +O(0) O2 0 16 +P PO4-3 2 30.9738 30.9738 +Pb Pb+2 0 207.19 207.19 +Rb Rb+ 0 85.47 85.47 +S SO4-2 0 96.0616 32.064 +S(-2) H2S 0 32.064 +S(6) SO4-2 0 96.0616 +Se SeO4-2 0 78.96 78.96 +Se(-2) HSe- 0 78.96 +Se(4) SeO3-2 0 78.96 +Se(6) SeO4-2 0 78.96 +Si H4SiO4 0 60.0843 28.0843 +Sr Sr+2 0 87.62 87.62 +Zn Zn+2 0 65.37 65.37 +U UO2+2 0 238.029 238.029 +U(3) U+3 0 238.029 238.029 +U(4) U+4 0 238.029 238.029 +U(5) UO2+ 0 238.029 238.029 +U(6) UO2+2 0 238.029 238.029 SOLUTION_SPECIES #H+ primary master species H+ = H+ - log_k 0.0 - -gamma 9.0 0.0 + log_k 0 + -gamma 9 0 #e- primary master species e- = e- - log_k 0.0 + log_k 0 #H2O primary master species H2O = H2O - log_k 0.0 + log_k 0 #Ag+ primary master species Ag+ = Ag+ - log_k 0.0 + log_k 0 #Al+3 primary master species Al+3 = Al+3 - log_k 0.0 - -gamma 9.0 0.0 + log_k 0 + -gamma 9 0 #H3AsO4 primary master species H3AsO4 = H3AsO4 - log_k 0.0 + log_k 0 #H3BO3 primary master species H3BO3 = H3BO3 - log_k 0.0 + log_k 0 #Ba+2 primary master species Ba+2 = Ba+2 - log_k 0.0 - -gamma 5.0 0.0 + log_k 0 + -gamma 5 0 #Br- primary master species Br- = Br- - log_k 0.0 + log_k 0 #CO3-2 primary master species CO3-2 = CO3-2 - log_k 0.0 - -gamma 5.4 0.0 + log_k 0 + -gamma 5.4 0 #Ca+2 primary master species Ca+2 = Ca+2 - log_k 0.0 - -gamma 5.0 0.165 + log_k 0 + -gamma 5 0.165 #Cd+2 primary master species Cd+2 = Cd+2 - log_k 0.0 + log_k 0 #Cl- primary master species Cl- = Cl- - log_k 0.0 - -gamma 3.5 0.015 + log_k 0 + -gamma 3.5 0.015 #Cs+ primary master species Cs+ = Cs+ - log_k 0.0 + log_k 0 #Cu+2 primary master species Cu+2 = Cu+2 - log_k 0.0 - -gamma 6.0 0.0 + log_k 0 + -gamma 6 0 #F- primary master species F- = F- - log_k 0.0 - -gamma 3.5 0.0 + log_k 0 + -gamma 3.5 0 #Fe+2 primary master species Fe+2 = Fe+2 - log_k 0.0 - -gamma 6.0 0.0 - + log_k 0 + -gamma 6 0 + #Fulvate-2 primary master species Fulvate-2 = Fulvate-2 - log_k 0.0 + log_k 0 #Humate-2 primary master species Humate-2 = Humate-2 - log_k 0.0 + log_k 0 #I- primary master species I- = I- - log_k 0.0 + log_k 0 #K+ primary master species K+ = K+ - log_k 0.0 - -gamma 3.5 0.015 + log_k 0 + -gamma 3.5 0.015 #Li+ primary master species Li+ = Li+ - log_k 0.0 - -gamma 6.0 0.0 + log_k 0 + -gamma 6 0 #Mg+2 primary master species Mg+2 = Mg+2 - log_k 0.0 - -gamma 5.5 0.200 + log_k 0 + -gamma 5.5 0.2 #Mn+2 primary master species Mn+2 = Mn+2 - log_k 0.0 - -gamma 6.0 0.0 + log_k 0 + -gamma 6 0 #NO3- primary master species NO3- = NO3- - log_k 0.0 - -gamma 3.0 0.0 + log_k 0 + -gamma 3 0 #Na+ primary master species Na+ = Na+ - log_k 0.0 - -gamma 4.0 0.075 + log_k 0 + -gamma 4 0.075 #Ni+2 primary master species Ni+2 = Ni+2 - log_k 0.0 + log_k 0 #PO4-3 primary master species PO4-3 = PO4-3 - log_k 0.0 - -gamma 5.0 0.0 + log_k 0 + -gamma 5 0 #Pb+2 primary master species Pb+2 = Pb+2 - log_k 0.0 + log_k 0 #Rb+ primary master species Rb+ = Rb+ - log_k 0.0 + log_k 0 #SO4-2 primary master species SO4-2 = SO4-2 - log_k 0.0 - -gamma 5.0 -0.040 + log_k 0 + -gamma 5 -0.04 #SeO4-2 primary master species SeO4-2 = SeO4-2 - log_k 0.0 + log_k 0 #H4SiO4 primary master species H4SiO4 = H4SiO4 - log_k 0.0 + log_k 0 #Sr+2 primary master species Sr+2 = Sr+2 - log_k 0.0 - -gamma 5.26 0.121 + log_k 0 + -gamma 5.26 0.121 #UO2+2 primary master species UO2+2 = UO2+2 - log_k 0.0 + log_k 0 #Zn+2 primary master species Zn+2 = Zn+2 - log_k 0.0 - -gamma 6.0 0.0 + log_k 0 + -gamma 6 0 #Fe+3 secondary master species 0 - Fe+2 = Fe+3 + e- - log_k -13.020 - delta_h 9.680 kcal - -gamma 9.0 0.0 + Fe+2 = Fe+3 + e- + log_k -13.02 + delta_h 9.68 kcal + -gamma 9 0 #FeOH+2 1 - Fe+3 + H2O = FeOH+2 + H+ - log_k -2.19 + Fe+3 + H2O = FeOH+2 + H+ + log_k -2.19 delta_h 10.4 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeOH+ 2 - Fe+2 + H2O = FeOH+ + H+ - log_k -9.5 + Fe+2 + H2O = FeOH+ + H+ + log_k -9.5 delta_h 13.2 kcal - -gamma 5.0 0.0 + -gamma 5 0 #Fe(OH)3- 3 - Fe+2 + 3H2O = Fe(OH)3- + 3H+ - log_k -31.0 + Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + log_k -31 delta_h 30.3 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeSO4+ 4 - Fe+3 + SO4-2 = FeSO4+ - log_k 4.04 + Fe+3 + SO4-2 = FeSO4+ + log_k 4.04 delta_h 3.91 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeCl+2 5 - Fe+3 + Cl- = FeCl+2 - log_k 1.48 + Fe+3 + Cl- = FeCl+2 + log_k 1.48 delta_h 5.6 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeCl2+ 6 - Fe+3 + 2Cl- = FeCl2+ - log_k 2.13 + Fe+3 + 2 Cl- = FeCl2+ + log_k 2.13 #FeCl3 7 - Fe+3 + 3Cl- = FeCl3 - log_k 1.13 + Fe+3 + 3 Cl- = FeCl3 + log_k 1.13 #FeSO4 8 - Fe+2 + SO4-2 = FeSO4 - log_k 2.25 + Fe+2 + SO4-2 = FeSO4 + log_k 2.25 delta_h 3.23 kcal #H3SiO4- 13 - H4SiO4 = H3SiO4- + H+ - log_k -9.83 + H4SiO4 = H3SiO4- + H+ + log_k -9.83 delta_h 6.12 kcal - -analytical -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -gamma 4.0 0.0 + -analytical -302.3724 -0.050698 15669.69 108.18466 -1119669 + -gamma 4 0 #H2SiO4-2 14 - H4SiO4 = H2SiO4-2 + 2H+ - log_k -23.0 + H4SiO4 = H2SiO4-2 + 2 H+ + log_k -23 delta_h 17.6 kcal - -analytical -294.0184 -0.07265 11204.49 108.18466 -1119669.0 - -gamma 5.4 0.0 + -analytical -294.0184 -0.07265 11204.49 108.18466 -1119669 + -gamma 5.4 0 #HPO4-2 15 H+ + PO4-3 = HPO4-2 - log_k 12.346 + log_k 12.346 delta_h -3.53 kcal - -gamma 5.0 0.0 + -gamma 5 0 #H2PO4- 16 - 2H+ + PO4-3 = H2PO4- - log_k 19.553 + 2 H+ + PO4-3 = H2PO4- + log_k 19.553 delta_h -4.52 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #MgF+ 22 - Mg+2 + F- = MgF+ - log_k 1.82 + Mg+2 + F- = MgF+ + log_k 1.82 delta_h 3.2 kcal - -gamma 4.5 0.0 + -gamma 4.5 0 #CaSO4 23 - Ca+2 + SO4-2 = CaSO4 - log_k 2.3 + Ca+2 + SO4-2 = CaSO4 + log_k 2.3 delta_h 1.65 kcal #MgOH+ 24 - Mg+2 + H2O = MgOH+ + H+ - log_k -11.44 + Mg+2 + H2O = MgOH+ + H+ + log_k -11.44 delta_h 15.952 kcal - -gamma 6.5 0.0 + -gamma 6.5 0 #H3BO3 25 H3BO3 = H2BO3- + H+ - log_k -9.24 + log_k -9.24 delta_h 3.224 kcal # -analytical 24.3919 0.012078 -1343.9 -13.2258 - -gamma 2.5 0.0 + -gamma 2.5 0 #NH3 26 - NH4+ = NH3 + H+ - log_k -9.252 + NH4+ = NH3 + H+ + log_k -9.252 delta_h 12.48 kcal - -analytic 0.6322 -0.001225 -2835.76 - -gamma 2.5 0.0 + -analytic 0.6322 -0.001225 -2835.76 + -gamma 2.5 0 #NaHPO4- 30 Na+ + HPO4-2 = NaHPO4- - log_k 0.29 - -gamma 5.4 0.0 + log_k 0.29 + -gamma 5.4 0 #KHPO4- 32 K+ + HPO4-2 = KHPO4- - log_k 0.29 - -gamma 5.4 0.0 + log_k 0.29 + -gamma 5.4 0 #MgHPO4 33 - Mg+2 + HPO4-2 = MgHPO4 - log_k 2.87 + Mg+2 + HPO4-2 = MgHPO4 + log_k 2.87 delta_h 3.3 kcal #CaHPO4 34 - Ca+2 + HPO4-2 = CaHPO4 - log_k 2.739 + Ca+2 + HPO4-2 = CaHPO4 + log_k 2.739 delta_h 3.3 kcal #CH4 secondary master species CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O - log_k 41.071 - delta_h -61.039 kcal + log_k 41.071 + delta_h -61.039 kcal #H2CO3 35 -# HCO3- + H+ = H2CO3 +# HCO3- + H+ = H2CO3 # log_k 6.351 # delta_h -2.247 kcal # -analytical 356.3094 0.06091960 -21834.37 -126.8339 1684915.0 #CO2 could be used instead of H2CO3 CO3-2 + 2 H+ = CO2 + H2O - log_k 16.681 + log_k 16.681 delta_h -5.738 kcal - -analytical 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -analytical 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 #HCO3- 68 - H+ + CO3-2 = HCO3- - log_k 10.329 + H+ + CO3-2 = HCO3- + log_k 10.329 delta_h -3.561 kcal - -analytical 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0.0 + -analytical 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 #NaCO3- 69 - Na+ + CO3-2 = NaCO3- - log_k 1.27 + Na+ + CO3-2 = NaCO3- + log_k 1.27 delta_h 8.91 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #NaHCO3 70 - Na+ + HCO3- = NaHCO3 - log_k -0.25 + Na+ + HCO3- = NaHCO3 + log_k -0.25 #NaSO4- 71 Na+ + SO4-2 = NaSO4- - log_k 0.7 + log_k 0.7 delta_h 1.12 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #KSO4- 72 K+ + SO4-2 = KSO4- - log_k 0.85 + log_k 0.85 delta_h 2.25 kcal - -analytical 3.106 0.0 -673.6 - -gamma 5.4 0.0 + -analytical 3.106 0 -673.6 + -gamma 5.4 0 #MgCO3 73 - Mg+2 + CO3-2 = MgCO3 - log_k 2.98 + Mg+2 + CO3-2 = MgCO3 + log_k 2.98 delta_h 2.713 kcal - -analytical 0.9910 0.00667 + -analytical 0.991 0.00667 #MgHCO3+ 74 Mg+2 + HCO3- = MgHCO3+ - log_k 1.07 + log_k 1.07 delta_h 0.79 kcal - -analytical -59.215 0.0 2537.455 20.92298 0.0 - -gamma 4.0 0.0 + -analytical -59.215 0 2537.455 20.92298 0 + -gamma 4 0 #MgSO4 75 - Mg+2 + SO4-2 = MgSO4 - log_k 2.37 + Mg+2 + SO4-2 = MgSO4 + log_k 2.37 delta_h 4.55 kcal #CaOH+ 76 - Ca+2 + H2O = CaOH+ + H+ - log_k -12.78 - -gamma 6.0 0.0 + Ca+2 + H2O = CaOH+ + H+ + log_k -12.78 + -gamma 6 0 #CaHCO3+ 77 Ca+2 + HCO3- = CaHCO3+ - log_k 1.106 + log_k 1.106 delta_h 2.69 kcal - -analytical 1209.12 0.31294 -34765.05 -478.782 0.0 - -gamma 6.0 0.0 + -analytical 1209.12 0.31294 -34765.05 -478.782 0 + -gamma 6 0 #CaCO3 78 - Ca+2 + CO3-2 = CaCO3 - log_k 3.224 + Ca+2 + CO3-2 = CaCO3 + log_k 3.224 delta_h 3.545 kcal - -analytical -1228.732 -0.299444 35512.75 485.818 0.0 + -analytical -1228.732 -0.299444 35512.75 485.818 0 #SrHCO3+ 79 - Sr+2 + HCO3- = SrHCO3+ - log_k 1.18 + Sr+2 + HCO3- = SrHCO3+ + log_k 1.18 delta_h 6.05 kcal - -analytical -3.248 0.014867 0.0 0.0 0.0 - -gamma 5.4 0.0 + -analytical -3.248 0.014867 0 0 0 + -gamma 5.4 0 #AlOH+2 80 - Al+3 + H2O = AlOH+2 + H+ - log_k -5.0 + Al+3 + H2O = AlOH+2 + H+ + log_k -5 delta_h 11.49 kcal - -analytical -38.253 0.0 -656.27 14.327 0.0 - -gamma 5.4 0.0 + -analytical -38.253 0 -656.27 14.327 0 + -gamma 5.4 0 #Al(OH)2+ 81 - Al+3 + 2H2O = Al(OH)2+ + 2H+ - log_k -10.1 + Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + log_k -10.1 delta_h 26.9 kcal - -analytical 88.5 0.0 -9391.6 -27.121 0.0 - -gamma 5.4 0.0 + -analytical 88.5 0 -9391.6 -27.121 0 + -gamma 5.4 0 #Al(OH)3 336 - Al+3 + 3H2O = Al(OH)3 + 3H+ - log_k -16.9 + Al+3 + 3 H2O = Al(OH)3 + 3 H+ + log_k -16.9 delta_h 39.89 kcal - -analytical 226.374 0.0 -18247.8 -73.597 0.0 + -analytical 226.374 0 -18247.8 -73.597 0 #Al(OH)4- 82 - Al+3 + 4H2O = Al(OH)4- + 4H+ - log_k -22.7 + Al+3 + 4 H2O = Al(OH)4- + 4 H+ + log_k -22.7 delta_h 42.3 kcal - -analytical 51.578 0.0 -11168.9 -14.865 0.0 - -gamma 4.5 0.0 + -analytical 51.578 0 -11168.9 -14.865 0 + -gamma 4.5 0 #AlF+2 83 - Al+3 + F- = AlF+2 - log_k 7.0 + Al+3 + F- = AlF+2 + log_k 7 delta_h 1.06 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #AlF2+ 84 - Al+3 + 2F- = AlF2+ - log_k 12.7 + Al+3 + 2 F- = AlF2+ + log_k 12.7 delta_h 1.98 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #AlF3 85 - Al+3 + 3F- = AlF3 - log_k 16.8 + Al+3 + 3 F- = AlF3 + log_k 16.8 delta_h 2.16 kcal #AlF4- 86 - Al+3 + 4F- = AlF4- - log_k 19.4 + Al+3 + 4 F- = AlF4- + log_k 19.4 delta_h 2.2 kcal - -gamma 4.5 0.0 + -gamma 4.5 0 #AlSO4+ 87 Al+3 + SO4-2 = AlSO4+ - log_k 3.5 + log_k 3.5 delta_h 2.29 kcal - -gamma 4.5 0.0 + -gamma 4.5 0 #Al(SO4)2- 88 - Al+3 + 2SO4-2 = Al(SO4)2- - log_k 5.0 + Al+3 + 2 SO4-2 = Al(SO4)2- + log_k 5 delta_h 3.11 kcal - -gamma 4.5 0.0 + -gamma 4.5 0 #HSO4- 89 - H+ + SO4-2 = HSO4- - log_k 1.988 + H+ + SO4-2 = HSO4- + log_k 1.988 delta_h 3.85 kcal - -analytical -56.889 0.006473 2307.9 19.8858 0.0 - -gamma 4.5 0.0 + -analytical -56.889 0.006473 2307.9 19.8858 0 + -gamma 4.5 0 #H2S secondary master species 90 - SO4-2 + 10H+ + 8e- = H2S + 4H2O - log_k 40.644 + SO4-2 + 10 H+ + 8 e- = H2S + 4 H2O + log_k 40.644 delta_h -65.44 kcal #HS- 91 - H2S = HS- + H+ - log_k -6.994 + H2S = HS- + H+ + log_k -6.994 delta_h 5.3 kcal - -analytical 11.17 -0.02386 -3279.0 - -gamma 3.5 0.0 + -analytical 11.17 -0.02386 -3279 + -gamma 3.5 0 #S-2 92 - HS- = S-2 + H+ - log_k -12.918 + HS- = S-2 + H+ + log_k -12.918 delta_h 12.1 kcal - -gamma 5.0 0.0 + -gamma 5 0 #oxy 93 -# 0.5H2O = 0.25O2 + H+ + e- +# 0.5H2O = 0.25O2 + H+ + e- # log_k -20.780 # delta_h 34.157000 kcal #O2 secondary master species - 2H2O = O2 + 4H+ + 4e- - log_k -86.08 + 2 H2O = O2 + 4 H+ + 4 e- + log_k -86.08 delta_h 134.79 kcal #H2 secondary master species 2 H+ + 2 e- = H2 - log_k -3.15 + log_k -3.15 delta_h -1.759 kcal #Fe(OH)2+ 102 - Fe+3 + 2H2O = Fe(OH)2+ + 2H+ - log_k -5.67 + Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + log_k -5.67 delta_h 17.1 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #Fe(OH)3 103 - Fe+3 + 3H2O = Fe(OH)3 + 3H+ - log_k -12.56 + Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + log_k -12.56 delta_h 24.8 kcal #Fe(OH)4- 104 - Fe+3 + 4H2O = Fe(OH)4- + 4H+ - log_k -21.6 + Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + log_k -21.6 delta_h 31.9 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #Fe(OH)2 105 - Fe+2 + 2H2O = Fe(OH)2 + 2H+ - log_k -20.57 + Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + log_k -20.57 delta_h 28.565 kcal #FeH2PO4+ 120 - Fe+2 + H2PO4- = FeH2PO4+ - log_k 2.7 - -gamma 5.4 0.0 + Fe+2 + H2PO4- = FeH2PO4+ + log_k 2.7 + -gamma 5.4 0 #CaPO4- 121 Ca+2 + PO4-3 = CaPO4- - log_k 6.459 + log_k 6.459 delta_h 3.1 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #CaH2PO4+ 122 Ca+2 + H2PO4- = CaH2PO4+ - log_k 1.408 + log_k 1.408 delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #MgPO4- 123 Mg+2 + PO4-3 = MgPO4- - log_k 6.589 + log_k 6.589 delta_h 3.1 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #MgH2PO4+ 124 Mg+2 + H2PO4- = MgH2PO4+ - log_k 1.513 + log_k 1.513 delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #LiSO4- 126 Li+ + SO4-2 = LiSO4- - log_k 0.64 - -gamma 5.0 0.0 + log_k 0.64 + -gamma 5 0 #N2 secondary master species 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O - log_k 207.080 - delta_h -312.130 kcal + log_k 207.08 + delta_h -312.13 kcal #NH4 secondary master species 127 - NO3- + 10H+ + 8e- = NH4+ + 3H2O - log_k 119.077 + NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + log_k 119.077 delta_h -187.055 kcal #SrOH+ 129 - Sr+2 + H2O = SrOH+ + H+ - log_k -13.29 - -gamma 5.0 0.0 + Sr+2 + H2O = SrOH+ + H+ + log_k -13.29 + -gamma 5 0 #BaOH+ 130 - Ba+2 + H2O = BaOH+ + H+ - log_k -13.47 - -gamma 5.0 0.0 + Ba+2 + H2O = BaOH+ + H+ + log_k -13.47 + -gamma 5 0 #NH4SO4- 131 - NH4+ + SO4-2 = NH4SO4- - log_k 1.11 - -gamma 5.0 0.0 + NH4+ + SO4-2 = NH4SO4- + log_k 1.11 + -gamma 5 0 #SrCO3 135 - Sr+2 + CO3-2 = SrCO3 - log_k 2.81 + Sr+2 + CO3-2 = SrCO3 + log_k 2.81 delta_h 5.22 kcal - -analytical -1.019 0.012826 0.0 0.0 0.0 - -gamma 5.0 0.0 + -analytical -1.019 0.012826 0 0 0 + -gamma 5 0 #O2Sato 136 -# 0.5H2O = 0.25O2(aq) + H+ + e- +# 0.5H2O = 0.25O2(aq) + H+ + e- # log_k -11.385 #CO2 137 -# CO2 (g) + H2O = H2CO3 +# CO2 (g) + H2O = H2CO3 # -1.468 -4.776 108.38650 0.01985076 -6919.530 -40.45154 -669365.0 #FeHPO4 138 Fe+2 + HPO4-2 = FeHPO4 - log_k 3.6 + log_k 3.6 #FeHPO4+ 139 - Fe+3 + HPO4-2 = FeHPO4+ - log_k 5.43 + Fe+3 + HPO4-2 = FeHPO4+ + log_k 5.43 delta_h 5.76 kcal - -gamma 5.5 0.0 + -gamma 5.5 0 #FeHSO4+ 148 Fe+2 + HSO4- = FeHSO4+ - log_k 1.08 + log_k 1.08 #O2calc 151 -# 0.5H2O = 0.25O2(aq) + H+ + e- +# 0.5H2O = 0.25O2(aq) + H+ + e- # log_k -20.780 # delta_h 33.457 kcal #OH- 152 - H2O = OH- + H+ - log_k -14.0 + H2O = OH- + H+ + log_k -14 delta_h 13.362 kcal - -analytical -283.971 -0.05069842 13323.0 102.24447 -1119669.0 - -gamma 3.5 0.0 + -analytical -283.971 -0.05069842 13323 102.24447 -1119669 + -gamma 3.5 0 #FeH2PO4+2 156 Fe+3 + H2PO4- = FeH2PO4+2 - log_k 5.43 - -gamma 5.4 0.0 + log_k 5.43 + -gamma 5.4 0 #FeHSO4+2 159 - Fe+3 + HSO4- = FeHSO4+2 - log_k 2.48 + Fe+3 + HSO4- = FeHSO4+2 + log_k 2.48 #CaF+ 160 - Ca+2 + F- = CaF+ - log_k 0.94 + Ca+2 + F- = CaF+ + log_k 0.94 delta_h 4.12 kcal - -gamma 5.5 0.0 + -gamma 5.5 0 #BF(OH)3- 161 H3BO3 + F- = BF(OH)3- - log_k -0.4 + log_k -0.4 delta_h 1.85 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #BF2(OH)2- 162 - H3BO3 + H+ + 2F- = BF2(OH)2- + H2O - log_k 7.63 + H3BO3 + H+ + 2 F- = BF2(OH)2- + H2O + log_k 7.63 delta_h 1.618 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #BF3OH- 163 - H3BO3 + 2H+ + 3F- = BF3OH- + 2H2O - log_k 13.67 + H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O + log_k 13.67 delta_h -1.614 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #BF4- 164 - H3BO3 + 3H+ + 4F- = BF4- + 3H2O - log_k 20.28 + H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O + log_k 20.28 delta_h -1.846 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #FeF+2 165 - Fe+3 + F- = FeF+2 - log_k 6.2 + Fe+3 + F- = FeF+2 + log_k 6.2 delta_h 2.7 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeF2+ 166 - Fe+3 + 2F- = FeF2+ - log_k 10.8 + Fe+3 + 2 F- = FeF2+ + log_k 10.8 delta_h 4.8 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeF3 167 - Fe+3 + 3F- = FeF3 - log_k 14.0 + Fe+3 + 3 F- = FeF3 + log_k 14 delta_h 5.4 kcal #CaHSO4+ 168 - Ca+2 + HSO4- = CaHSO4+ - log_k 1.08 + Ca+2 + HSO4- = CaHSO4+ + log_k 1.08 #Mn+3 secondary master species 169 - Mn+2 = Mn+3 + e- - log_k -25.51 + Mn+2 = Mn+3 + e- + log_k -25.51 delta_h 25.8 kcal - -gamma 9.0 0.0 + -gamma 9 0 #MnCl+ 170 - Mn+2 + Cl- = MnCl+ - log_k 0.61 - -gamma 5.0 0.0 + Mn+2 + Cl- = MnCl+ + log_k 0.61 + -gamma 5 0 #MnCl2 171 - Mn+2 + 2Cl- = MnCl2 - log_k 0.25 + Mn+2 + 2 Cl- = MnCl2 + log_k 0.25 #MnCl3- 172 - Mn+2 + 3Cl- = MnCl3- - log_k -0.31 - -gamma 5.0 0.0 + Mn+2 + 3 Cl- = MnCl3- + log_k -0.31 + -gamma 5 0 #MnOH+ 173 - Mn+2 + H2O = MnOH+ + H+ - log_k -10.59 + Mn+2 + H2O = MnOH+ + H+ + log_k -10.59 delta_h 14.4 kcal - -gamma 5.0 0.0 + -gamma 5 0 #Mn(OH)3- 174 - Mn+2 + 3H2O = Mn(OH)3- + 3H+ - log_k -34.8 - -gamma 5.0 0.0 + Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + log_k -34.8 + -gamma 5 0 #MnF+ 175 - Mn+2 + F- = MnF+ - log_k 0.84 - -gamma 5.0 0.0 + Mn+2 + F- = MnF+ + log_k 0.84 + -gamma 5 0 #MnSO4 176 - Mn+2 + SO4-2 = MnSO4 - log_k 2.25 + Mn+2 + SO4-2 = MnSO4 + log_k 2.25 delta_h 3.37 kcal #Mn(NO3)2 177 - Mn+2 + 2NO3- = Mn(NO3)2 - log_k 0.6 + Mn+2 + 2 NO3- = Mn(NO3)2 + log_k 0.6 delta_h -0.396 kcal #MnHCO3+ 178 Mn+2 + HCO3- = MnHCO3+ - log_k 1.95 - -gamma 5.0 0.0 + log_k 1.95 + -gamma 5 0 #MnO4- secondary master species 179 - Mn+2 + 4H2O = MnO4- + 8H+ + 5e- - log_k -127.824 + Mn+2 + 4 H2O = MnO4- + 8 H+ + 5 e- + log_k -127.824 delta_h 176.62 kcal - -gamma 3.0 0.0 + -gamma 3 0 #MnO4-2 secondary master species 180 - Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- - log_k -118.44 + Mn+2 + 4 H2O = MnO4-2 + 8 H+ + 4 e- + log_k -118.44 delta_h 150.02 kcal - -gamma 5.0 0.0 + -gamma 5 0 #SiF6-2 201 - H4SiO4 + 4H+ + 6F- = SiF6-2 + 4H2O - log_k 30.18 + H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O + log_k 30.18 delta_h -16.26 kcal - -gamma 5.0 0.0 + -gamma 5 0 #HF 202 - H+ + F- = HF - log_k 3.18 + H+ + F- = HF + log_k 3.18 delta_h 3.18 kcal - -analytical -2.033 0.012645 429.01 0.0 0.0 + -analytical -2.033 0.012645 429.01 0 0 #HF2- 203 - H+ + 2F- = HF2- - log_k 3.76 + H+ + 2 F- = HF2- + log_k 3.76 delta_h 4.55 kcal - -gamma 3.5 0.0 + -gamma 3.5 0 #CuCl2- 206 # Cu+2 + 2Cl- + e- = CuCl2- # log_k 8.220 # delta_h 1.230 kcal - Cu+ + 2Cl- = CuCl2- - log_k 5.50 + Cu+ + 2 Cl- = CuCl2- + log_k 5.5 delta_h -0.42 kcal - -gamma 4.0 0.0 + -gamma 4 0 #CuCl3-2 207 -# Cu+2 + 3Cl- + e- = CuCl3-2 +# Cu+2 + 3Cl- + e- = CuCl3-2 # log_k 8.420 # delta_h 1.910 kcal - Cu+ + 3Cl- = CuCl3-2 - log_k 5.70 + Cu+ + 3 Cl- = CuCl3-2 + log_k 5.7 delta_h 0.26 kcal - -gamma 5.0 0.0 + -gamma 5 0 #Cu+ secondary master species 208 - Cu+2 + e- = Cu+ - log_k 2.72 + Cu+2 + e- = Cu+ + log_k 2.72 delta_h 1.65 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #CuCO3 209 - Cu+2 + CO3-2 = CuCO3 - log_k 6.73 + Cu+2 + CO3-2 = CuCO3 + log_k 6.73 #Cu(CO3)2-2 210 - Cu+2 + 2CO3-2 = Cu(CO3)2-2 - log_k 9.83 + Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + log_k 9.83 #CuCl+ 211 - Cu+2 + Cl- = CuCl+ - log_k 0.43 + Cu+2 + Cl- = CuCl+ + log_k 0.43 delta_h 8.65 kcal - -gamma 4.0 0.0 + -gamma 4 0 #CuCl2 212 - Cu+2 + 2Cl- = CuCl2 - log_k 0.16 + Cu+2 + 2 Cl- = CuCl2 + log_k 0.16 delta_h 10.56 kcal #CuCl3- 213 - Cu+2 + 3Cl- = CuCl3- - log_k -2.29 + Cu+2 + 3 Cl- = CuCl3- + log_k -2.29 delta_h 13.69 kcal - -gamma 4.0 0.0 + -gamma 4 0 #CuCl4-2 214 - Cu+2 + 4Cl- = CuCl4-2 - log_k -4.59 + Cu+2 + 4 Cl- = CuCl4-2 + log_k -4.59 delta_h 17.78 kcal - -gamma 5.0 0.0 + -gamma 5 0 #CuF+ 215 - Cu+2 + F- = CuF+ - log_k 1.26 + Cu+2 + F- = CuF+ + log_k 1.26 delta_h 1.62 kcal #CuOH+ 216 - Cu+2 + H2O = CuOH+ + H+ - log_k -8.0 - -gamma 4.0 0.0 + Cu+2 + H2O = CuOH+ + H+ + log_k -8 + -gamma 4 0 #Cu(OH)2 217 - Cu+2 + 2H2O = Cu(OH)2 + 2H+ - log_k -13.68 + Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + log_k -13.68 #Cu(OH)3- 218 - Cu+2 + 3H2O = Cu(OH)3- + 3H+ - log_k -26.9 + Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + log_k -26.9 #Cu(OH)4-2 219 - Cu+2 + 4H2O = Cu(OH)4-2 + 4H+ - log_k -39.6 + Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + log_k -39.6 #Cu2(OH)2+2 220 - 2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ - log_k -10.359 + 2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + log_k -10.359 delta_h 17.539 kcal - -analytical 2.497 0.0 -3833.0 0.0 0.0 + -analytical 2.497 0 -3833 0 0 #CuSO4 221 - Cu+2 + SO4-2 = CuSO4 - log_k 2.31 + Cu+2 + SO4-2 = CuSO4 + log_k 2.31 delta_h 1.22 kcal #Cu(HS)3- 222 - Cu+2 + 3HS- = Cu(HS)3- - log_k 25.9 + Cu+2 + 3 HS- = Cu(HS)3- + log_k 25.9 #ZnCl+ 251 - Zn+2 + Cl- = ZnCl+ - log_k 0.43 + Zn+2 + Cl- = ZnCl+ + log_k 0.43 delta_h 7.79 kcal - -gamma 4.0 0.0 + -gamma 4 0 #ZnCl2 252 - Zn+2 + 2Cl- = ZnCl2 - log_k 0.45 + Zn+2 + 2 Cl- = ZnCl2 + log_k 0.45 delta_h 8.5 kcal #ZnCl3- 253 - Zn+2 + 3Cl- = ZnCl3- - log_k 0.5 + Zn+2 + 3 Cl- = ZnCl3- + log_k 0.5 delta_h 9.56 kcal - -gamma 4.0 0.0 + -gamma 4 0 #ZnCl4-2 254 - Zn+2 + 4Cl- = ZnCl4-2 - log_k 0.2 + Zn+2 + 4 Cl- = ZnCl4-2 + log_k 0.2 delta_h 10.96 kcal - -gamma 5.0 0.0 + -gamma 5 0 #ZnF+ 255 - Zn+2 + F- = ZnF+ - log_k 1.15 + Zn+2 + F- = ZnF+ + log_k 1.15 delta_h 2.22 kcal #ZnOH+ 256 - Zn+2 + H2O = ZnOH+ + H+ - log_k -8.96 + Zn+2 + H2O = ZnOH+ + H+ + log_k -8.96 delta_h 13.4 kcal #Zn(OH)2 257 - Zn+2 + 2H2O = Zn(OH)2 + 2H+ - log_k -16.9 + Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + log_k -16.9 #Zn(OH)3- 258 - Zn+2 + 3H2O = Zn(OH)3- + 3H+ - log_k -28.4 + Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + log_k -28.4 #Zn(OH)4-2 259 - Zn+2 + 4H2O = Zn(OH)4-2 + 4H+ - log_k -41.2 + Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + log_k -41.2 #ZnOHCl 260 - Zn+2 + H2O + Cl- = ZnOHCl + H+ - log_k -7.48 + Zn+2 + H2O + Cl- = ZnOHCl + H+ + log_k -7.48 #Zn(HS)2 261 - Zn+2 + 2HS- = Zn(HS)2 - log_k 14.94 + Zn+2 + 2 HS- = Zn(HS)2 + log_k 14.94 #Zn(HS)3- 262 - Zn+2 + 3HS- = Zn(HS)3- - log_k 16.1 + Zn+2 + 3 HS- = Zn(HS)3- + log_k 16.1 #ZnSO4 263 - Zn+2 + SO4-2 = ZnSO4 - log_k 2.37 + Zn+2 + SO4-2 = ZnSO4 + log_k 2.37 delta_h 1.36 kcal #Zn(SO4)2-2 264 - Zn+2 + 2SO4-2 = Zn(SO4)2-2 - log_k 3.28 + Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + log_k 3.28 #CdCl+ 294 - Cd+2 + Cl- = CdCl+ - log_k 1.98 + Cd+2 + Cl- = CdCl+ + log_k 1.98 delta_h 0.59 kcal #CdCl2 295 - Cd+2 + 2Cl- = CdCl2 - log_k 2.6 + Cd+2 + 2 Cl- = CdCl2 + log_k 2.6 delta_h 1.24 kcal #CdCl3- 296 - Cd+2 + 3Cl- = CdCl3- - log_k 2.4 + Cd+2 + 3 Cl- = CdCl3- + log_k 2.4 delta_h 3.9 kcal #CdF+ 297 - Cd+2 + F- = CdF+ - log_k 1.1 + Cd+2 + F- = CdF+ + log_k 1.1 #CdF2 298 - Cd+2 + 2F- = CdF2 - log_k 1.5 + Cd+2 + 2 F- = CdF2 + log_k 1.5 #Cd(CO3)2-2 299 - Cd+2 + 2CO3-2 = Cd(CO3)2-2 - log_k 6.4 + Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + log_k 6.4 #CdOH+ 300 - Cd+2 + H2O = CdOH+ + H+ - log_k -10.08 + Cd+2 + H2O = CdOH+ + H+ + log_k -10.08 delta_h 13.1 kcal #Cd(OH)2 301 - Cd+2 + 2H2O = Cd(OH)2 + 2H+ - log_k -20.35 + Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + log_k -20.35 #Cd(OH)3- 302 - Cd+2 + 3H2O = Cd(OH)3- + 3H+ - log_k -33.3 + Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + log_k -33.3 #Cd(OH)4-2 303 - Cd+2 + 4H2O = Cd(OH)4-2 + 4H+ - log_k -47.35 + Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + log_k -47.35 #Cd2OH+3 304 - 2Cd+2 + H2O = Cd2OH+3 + H+ - log_k -9.39 + 2 Cd+2 + H2O = Cd2OH+3 + H+ + log_k -9.39 delta_h 10.9 kcal #CdOHCl 305 - Cd+2 + H2O + Cl- = CdOHCl + H+ - log_k -7.404 + Cd+2 + H2O + Cl- = CdOHCl + H+ + log_k -7.404 delta_h 4.355 kcal #CdNO3+ 306 Cd+2 + NO3- = CdNO3+ - log_k 0.4 + log_k 0.4 delta_h -5.2 kcal #CdSO4 307 - Cd+2 + SO4-2 = CdSO4 - log_k 2.46 + Cd+2 + SO4-2 = CdSO4 + log_k 2.46 delta_h 1.08 kcal #CdHS+ 308 - Cd+2 + HS- = CdHS+ - log_k 10.17 + Cd+2 + HS- = CdHS+ + log_k 10.17 #Cd(HS)2 309 - Cd+2 + 2HS- = Cd(HS)2 - log_k 16.53 + Cd+2 + 2 HS- = Cd(HS)2 + log_k 16.53 #Cd(HS)3- 310 - Cd+2 + 3HS- = Cd(HS)3- - log_k 18.71 + Cd+2 + 3 HS- = Cd(HS)3- + log_k 18.71 #Cd(HS)4-2 311 - Cd+2 + 4HS- = Cd(HS)4-2 - log_k 20.9 + Cd+2 + 4 HS- = Cd(HS)4-2 + log_k 20.9 #Fe(SO4)2- 333 - Fe+3 + 2SO4-2 = Fe(SO4)2- - log_k 5.38 + Fe+3 + 2 SO4-2 = Fe(SO4)2- + log_k 5.38 delta_h 4.6 kcal #Fe2(OH)2+4 334 - 2Fe+3 + 2H2O = Fe2(OH)2+4 + 2H+ - log_k -2.95 + 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + log_k -2.95 delta_h 13.5 kcal #Fe3(OH)4+5 335 - 3Fe+3 + 4H2O = Fe3(OH)4+5 + 4H+ - log_k -6.3 + 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + log_k -6.3 delta_h 14.3 kcal #PbCl+ 341 - Pb+2 + Cl- = PbCl+ - log_k 1.6 + Pb+2 + Cl- = PbCl+ + log_k 1.6 delta_h 4.38 kcal #PbCl2 342 - Pb+2 + 2Cl- = PbCl2 - log_k 1.8 + Pb+2 + 2 Cl- = PbCl2 + log_k 1.8 delta_h 1.08 kcal #PbCl3- 343 - Pb+2 + 3Cl- = PbCl3- - log_k 1.7 + Pb+2 + 3 Cl- = PbCl3- + log_k 1.7 delta_h 2.17 kcal #PbCl4-2 344 - Pb+2 + 4Cl- = PbCl4-2 - log_k 1.38 + Pb+2 + 4 Cl- = PbCl4-2 + log_k 1.38 delta_h 3.53 kcal #Pb(CO3)2-2 345 - Pb+2 + 2CO3-2 = Pb(CO3)2-2 - log_k 10.64 + Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + log_k 10.64 #PbF+ 346 - Pb+2 + F- = PbF+ - log_k 1.25 + Pb+2 + F- = PbF+ + log_k 1.25 #PbF2 347 - Pb+2 + 2F- = PbF2 - log_k 2.56 + Pb+2 + 2 F- = PbF2 + log_k 2.56 #PbF3- 348 - Pb+2 + 3F- = PbF3- - log_k 3.42 + Pb+2 + 3 F- = PbF3- + log_k 3.42 #PbF4-2 349 - Pb+2 + 4F- = PbF4-2 - log_k 3.1 + Pb+2 + 4 F- = PbF4-2 + log_k 3.1 #PbOH+ 350 - Pb+2 + H2O = PbOH+ + H+ - log_k -7.71 + Pb+2 + H2O = PbOH+ + H+ + log_k -7.71 #Pb(OH)2 351 - Pb+2 + 2H2O = Pb(OH)2 + 2H+ - log_k -17.12 + Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + log_k -17.12 #Pb(OH)3- 352 - Pb+2 + 3H2O = Pb(OH)3- + 3H+ - log_k -28.06 + Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + log_k -28.06 #Pb2OH+3 353 - 2Pb+2 + H2O = Pb2OH+3 + H+ - log_k -6.36 + 2 Pb+2 + H2O = Pb2OH+3 + H+ + log_k -6.36 #PbNO3+ 354 Pb+2 + NO3- = PbNO3+ - log_k 1.17 + log_k 1.17 #PbSO4 355 - Pb+2 + SO4-2 = PbSO4 - log_k 2.75 + Pb+2 + SO4-2 = PbSO4 + log_k 2.75 #Pb(HS)2 356 - Pb+2 + 2HS- = Pb(HS)2 - log_k 15.27 + Pb+2 + 2 HS- = Pb(HS)2 + log_k 15.27 #Pb(HS)3- 357 - Pb+2 + 3HS- = Pb(HS)3- - log_k 16.57 + Pb+2 + 3 HS- = Pb(HS)3- + log_k 16.57 #Pb3(OH)4+2 358 - 3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ - log_k -23.88 + 3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + log_k -23.88 delta_h 26.5 kcal #FeF+ 359 - Fe+2 + F- = FeF+ - log_k 1.0 + Fe+2 + F- = FeF+ + log_k 1 #AlHSO4+2 397 - Al+3 + HSO4- = AlHSO4+2 - log_k 0.46 + Al+3 + HSO4- = AlHSO4+2 + log_k 0.46 #NO2 secondary master species 400 - NO3- + 2H+ + 2e- = NO2- + H2O - log_k 28.57 + NO3- + 2 H+ + 2 e- = NO2- + H2O + log_k 28.57 delta_h -43.76 kcal #NiBr+ 403 - Ni+2 + Br- = NiBr+ - log_k 0.5 + Ni+2 + Br- = NiBr+ + log_k 0.5 #NiCl+ 404 - Ni+2 + Cl- = NiCl+ - log_k 0.4 + Ni+2 + Cl- = NiCl+ + log_k 0.4 #NiF+ 405 - Ni+2 + F- = NiF+ - log_k 1.3 + Ni+2 + F- = NiF+ + log_k 1.3 #NiOH+ 406 - Ni+2 + H2O = NiOH+ + H+ - log_k -9.86 + Ni+2 + H2O = NiOH+ + H+ + log_k -9.86 delta_h 12.42 kcal #Ni(OH)2 407 - Ni+2 + 2H2O = Ni(OH)2 + 2H+ - log_k -19.0 + Ni+2 + 2 H2O = Ni(OH)2 + 2 H+ + log_k -19 #Ni(OH)3- 408 - Ni+2 + 3H2O = Ni(OH)3- + 3H+ - log_k -30.0 + Ni+2 + 3 H2O = Ni(OH)3- + 3 H+ + log_k -30 #NiSO4 409 - Ni+2 + SO4-2 = NiSO4 - log_k 2.29 + Ni+2 + SO4-2 = NiSO4 + log_k 2.29 delta_h 1.52 kcal #AgBr 421 Ag+ + Br- = AgBr - log_k 4.24 + log_k 4.24 #AgBr2- 422 - Ag+ + 2Br- = AgBr2- - log_k 7.28 + Ag+ + 2 Br- = AgBr2- + log_k 7.28 #AgCl 423 Ag+ + Cl- = AgCl - log_k 3.27 + log_k 3.27 delta_h -2.68 kcal #AgCl2- 424 - Ag+ + 2Cl- = AgCl2- - log_k 5.27 + Ag+ + 2 Cl- = AgCl2- + log_k 5.27 delta_h -3.93 kcal #AgCl3-2 425 - Ag+ + 3Cl- = AgCl3-2 - log_k 5.29 + Ag+ + 3 Cl- = AgCl3-2 + log_k 5.29 #AgCl4-3 426 - Ag+ + 4Cl- = AgCl4-3 - log_k 5.51 + Ag+ + 4 Cl- = AgCl4-3 + log_k 5.51 #AgF 427 Ag+ + F- = AgF - log_k 0.36 + log_k 0.36 delta_h -2.83 kcal #AgHS 428 - Ag+ + HS- = AgHS - log_k 14.05 + Ag+ + HS- = AgHS + log_k 14.05 #Ag(HS)2- 429 - Ag+ + 2HS- = Ag(HS)2- - log_k 18.45 + Ag+ + 2 HS- = Ag(HS)2- + log_k 18.45 #AgI 430 Ag+ + I- = AgI - log_k 6.6 + log_k 6.6 #AgI2- 431 - Ag+ + 2I- = AgI2- - log_k 10.68 + Ag+ + 2 I- = AgI2- + log_k 10.68 #AgOH 432 - Ag+ + H2O = AgOH + H+ - log_k -12.0 + Ag+ + H2O = AgOH + H+ + log_k -12 #Ag(OH)2- 433 - Ag+ + 2H2O = Ag(OH)2- + 2H+ - log_k -24.0 + Ag+ + 2 H2O = Ag(OH)2- + 2 H+ + log_k -24 #AgSO4- 434 Ag+ + SO4-2 = AgSO4- - log_k 1.29 + log_k 1.29 delta_h 1.49 kcal #AgNO3 435 Ag+ + NO3- = AgNO3 - log_k -0.29 + log_k -0.29 #Ag(NO2)2- 436 - Ag+ + 2NO2- = Ag(NO2)2- - log_k 2.22 + Ag+ + 2 NO2- = Ag(NO2)2- + log_k 2.22 #ZnBr+ 447 - Zn+2 + Br- = ZnBr+ - log_k -0.58 + Zn+2 + Br- = ZnBr+ + log_k -0.58 #ZnBr2 448 - Zn+2 + 2Br- = ZnBr2 - log_k -0.98 + Zn+2 + 2 Br- = ZnBr2 + log_k -0.98 #ZnI+ 449 - Zn+2 + I- = ZnI+ - log_k -2.91 + Zn+2 + I- = ZnI+ + log_k -2.91 #ZnI2 450 - Zn+2 + 2I- = ZnI2 - log_k -1.69 + Zn+2 + 2 I- = ZnI2 + log_k -1.69 #CdBr+ 451 - Cd+2 + Br- = CdBr+ - log_k 2.17 + Cd+2 + Br- = CdBr+ + log_k 2.17 delta_h -0.81 kcal #CdBr2 452 - Cd+2 + 2Br- = CdBr2 - log_k 2.9 + Cd+2 + 2 Br- = CdBr2 + log_k 2.9 #CdI+ 453 - Cd+2 + I- = CdI+ - log_k 2.15 + Cd+2 + I- = CdI+ + log_k 2.15 delta_h -2.37 kcal #CdI2 454 - Cd+2 + 2I- = CdI2 - log_k 3.59 + Cd+2 + 2 I- = CdI2 + log_k 3.59 #PbBr+ 455 - Pb+2 + Br- = PbBr+ - log_k 1.77 + Pb+2 + Br- = PbBr+ + log_k 1.77 delta_h 2.88 kcal #PbBr2 456 - Pb+2 + 2Br- = PbBr2 - log_k 1.44 + Pb+2 + 2 Br- = PbBr2 + log_k 1.44 #PbI+ 457 - Pb+2 + I- = PbI+ - log_k 1.94 + Pb+2 + I- = PbI+ + log_k 1.94 #PbI2 458 - Pb+2 + 2I- = PbI2 - log_k 3.2 + Pb+2 + 2 I- = PbI2 + log_k 3.2 #PbCO3 468 - Pb+2 + CO3-2 = PbCO3 - log_k 7.24 + Pb+2 + CO3-2 = PbCO3 + log_k 7.24 #Pb(OH)4-2 469 - Pb+2 + 4H2O = Pb(OH)4-2 + 4H+ - log_k -39.7 + Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + log_k -39.7 #Pb(SO4)2-2 470 - Pb+2 + 2SO4-2 = Pb(SO4)2-2 - log_k 3.47 + Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + log_k 3.47 #AgBr3-2 473 - Ag+ + 3Br- = AgBr3-2 - log_k 8.71 + Ag+ + 3 Br- = AgBr3-2 + log_k 8.71 #AgI3-2 474 - Ag+ + 3I- = AgI3-2 - log_k 13.37 + Ag+ + 3 I- = AgI3-2 + log_k 13.37 delta_h -27.03 kcal #AgI4-3 475 - Ag+ + 4I- = AgI4-3 - log_k 14.08 + Ag+ + 4 I- = AgI4-3 + log_k 14.08 #Fe(HS)2 476 - Fe+2 + 2HS- = Fe(HS)2 - log_k 8.95 + Fe+2 + 2 HS- = Fe(HS)2 + log_k 8.95 #Fe(HS)3- 477 - Fe+2 + 3HS- = Fe(HS)3- - log_k 10.987 + Fe+2 + 3 HS- = Fe(HS)3- + log_k 10.987 #H2AsO3- 478 H3AsO3 = H2AsO3- + H+ - log_k -9.15 - delta_h 27.54 kJ + log_k -9.15 + delta_h 27.54 kJ #HAsO3-2 479 - H3AsO3 = HAsO3-2 + 2H+ - log_k -23.85 - delta_h 59.41 kJ + H3AsO3 = HAsO3-2 + 2 H+ + log_k -23.85 + delta_h 59.41 kJ #AsO3-3 480 - H3AsO3 = AsO3-3 + 3H+ - log_k -39.55 - delta_h 84.73 kJ + H3AsO3 = AsO3-3 + 3 H+ + log_k -39.55 + delta_h 84.73 kJ #H4AsO3+ 481 - H3AsO3 + H+ = H4AsO3+ - log_k -0.305 + H3AsO3 + H+ = H4AsO3+ + log_k -0.305 #H2AsO4- 482 H3AsO4 = H2AsO4- + H+ - log_k -2.3 - delta_h -7.066 kJ + log_k -2.3 + delta_h -7.066 kJ #HAsO4-2 483 - H3AsO4 = HAsO4-2 + 2H+ - log_k -9.46 - delta_h -3.846 kJ + H3AsO4 = HAsO4-2 + 2 H+ + log_k -9.46 + delta_h -3.846 kJ #AsO43- 484 - H3AsO4 = AsO4-3 + 3H+ - log_k -21.11 - delta_h 14.354 kJ + H3AsO4 = AsO4-3 + 3 H+ + log_k -21.11 + delta_h 14.354 kJ #As3 secondary master species 487 H3AsO4 + H2 = H3AsO3 + H2O - log_k 22.5 - delta_h -117.480344 kJ + log_k 22.5 + delta_h -117.480344 kJ #As3S4(HS)-2 631 - 3H3AsO3 + 6HS- + 5H+ = As3S4(HS)2- + 9H2O - log_k 72.314 - -gamma 5.0 0.0 + 3 H3AsO3 + 6 HS- + 5 H+ = As3S4(HS)2- + 9 H2O + log_k 72.314 + -gamma 5 0 #AsS(OH)(HS)- 637 - H3AsO3 + 2HS- + H+ = AsS(OH)(HS)- + 2H2O - log_k 18.038 - -gamma 5.0 0.0 + H3AsO3 + 2 HS- + H+ = AsS(OH)(HS)- + 2 H2O + log_k 18.038 + -gamma 5 0 # -# TURNING OFF CHECKING FOR EQUATION BALANCE FOR +# TURNING OFF CHECKING FOR EQUATION BALANCE FOR # POLYSULFIDES # @@ -1406,73 +1410,73 @@ SOLUTION_SPECIES # Cu+2 + 2HS- + e- = CuS4S5-3 + 2H+ # (lhs) +7S # log_k 5.382 # -no_check -# -mass_balance CuS(-2)9 +# -mass_balance CuS(-2)9 # -gamma 25.0 0.0 #As3/As5 487 -# H3AsO3 + H2O = H3AsO4 + 2H+ + 2e- +# H3AsO3 + H2O = H3AsO4 + 2H+ + 2e- # log_k -18.897 # delta_h 30.015 kcal #S2-2 502 - HS- = S2-2 + H+ # (lhs) +S - log_k -14.528 + HS- = S2-2 + H+ # (lhs) +S + log_k -14.528 delta_h 11.4 kcal -no_check - -mass_balance S(-2)2 - -gamma 6.5 0.0 + -mass_balance S(-2)2 + -gamma 6.5 0 #S3-2 503 - HS- = S3-2 + H+ # (lhs) +2S - log_k -13.282 + HS- = S3-2 + H+ # (lhs) +2S + log_k -13.282 delta_h 10.4 kcal -no_check - -mass_balance S(-2)3 - -gamma 8.0 0.0 + -mass_balance S(-2)3 + -gamma 8 0 #S4-2 504 - HS- = S4-2 + H+ # (lhs) +3S - log_k -9.829 + HS- = S4-2 + H+ # (lhs) +3S + log_k -9.829 delta_h 9.7 kcal -no_check - -mass_balance S(-2)4 - -gamma 10.0 0.0 + -mass_balance S(-2)4 + -gamma 10 0 #S5-2 505 - HS- = S5-2 + H+ # (lhs) +4S - log_k -9.595 + HS- = S5-2 + H+ # (lhs) +4S + log_k -9.595 delta_h 9.3 kcal -no_check - -mass_balance S(-2)5 - -gamma 12.0 0.0 + -mass_balance S(-2)5 + -gamma 12 0 #S6-2 506 - HS- = S6-2 + H+ # (lhs) +5S - log_k -9.881 + HS- = S6-2 + H+ # (lhs) +5S + log_k -9.881 -no_check - -mass_balance S(-2)6 - -gamma 14.0 0.0 + -mass_balance S(-2)6 + -gamma 14 0 #Ag(S4)2-3 507 - Ag+ + 2HS- = Ag(S4)2-3 + 2H+ # (lhs) +6S - log_k 0.991 + Ag+ + 2 HS- = Ag(S4)2-3 + 2 H+ # (lhs) +6S + log_k 0.991 -no_check - -mass_balance AgS(-2)8 - -gamma 22.0 0.0 + -mass_balance AgS(-2)8 + -gamma 22 0 #Ag(S4)S5-3 508 - Ag+ + 2HS- = Ag(S4)S5-3 + 2H+ # (lhs) +7S - log_k 0.68 + Ag+ + 2 HS- = Ag(S4)S5-3 + 2 H+ # (lhs) +7S + log_k 0.68 -no_check - -mass_balance AgS(-2)9 - -gamma 24.0 0.0 + -mass_balance AgS(-2)9 + -gamma 24 0 #AgHS(S4)-2 509 # (lhs) +3S - Ag+ + 2HS- = AgHS(S4)-2 + H+ - log_k 10.43 + Ag+ + 2 HS- = AgHS(S4)-2 + H+ + log_k 10.43 -no_check - -mass_balance AgHS(-2)5 - -gamma 15.0 0.0 + -mass_balance AgHS(-2)5 + -gamma 15 0 # # END OF POLYSULFIDES @@ -1480,99 +1484,99 @@ SOLUTION_SPECIES #CuHCO3+ 510 Cu+2 + HCO3- = CuHCO3+ - log_k 2.7 + log_k 2.7 #ZnHCO3+ 511 Zn+2 + HCO3- = ZnHCO3+ - log_k 2.1 + log_k 2.1 #ZnCO3 512 - Zn+2 + CO3-2 = ZnCO3 - log_k 5.3 + Zn+2 + CO3-2 = ZnCO3 + log_k 5.3 #Zn(CO3)2-2 513 - Zn+2 + 2CO3-2 = Zn(CO3)2-2 - log_k 9.63 + Zn+2 + 2 CO3-2 = Zn(CO3)2-2 + log_k 9.63 #CdHCO3 514 Cd+2 + HCO3- = CdHCO3+ - log_k 1.5 + log_k 1.5 #CdCO3 515 - Cd+2 + CO3-2 = CdCO3 - log_k 2.9 + Cd+2 + CO3-2 = CdCO3 + log_k 2.9 #Cd(SO4)2-2 516 - Cd+2 + 2SO4-2 = Cd(SO4)2-2 - log_k 3.5 + Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + log_k 3.5 #PbHCO3+ 517 Pb+2 + HCO3- = PbHCO3+ - log_k 2.9 + log_k 2.9 #NiCl2 518 - Ni+2 + 2Cl- = NiCl2 - log_k 0.96 + Ni+2 + 2 Cl- = NiCl2 + log_k 0.96 #NiHCO3+ 519 Ni+2 + HCO3- = NiHCO3+ - log_k 2.14 + log_k 2.14 #NiCO3 520 - Ni+2 + CO3-2 = NiCO3 - log_k 6.87 + Ni+2 + CO3-2 = NiCO3 + log_k 6.87 #Ni(CO3)2-2 521 - Ni+2 + 2CO3-2 = Ni(CO3)2-2 - log_k 10.11 + Ni+2 + 2 CO3-2 = Ni(CO3)2-2 + log_k 10.11 #Ni(SO4)2-2 522 - Ni+2 + 2SO4-2 = Ni(SO4)2-2 - log_k 1.02 + Ni+2 + 2 SO4-2 = Ni(SO4)2-2 + log_k 1.02 #HFulvate 523 - H+ + Fulvate-2 = HFulvate- - log_k 4.27 + H+ + Fulvate-2 = HFulvate- + log_k 4.27 #HHumate 524 - H+ + Humate-2 = HHumate- - log_k 4.27 + H+ + Humate-2 = HHumate- + log_k 4.27 #FeFulvate 525 - Fe+3 + Fulvate-2 = FeFulvate+ - log_k 9.4 + Fe+3 + Fulvate-2 = FeFulvate+ + log_k 9.4 #FeHumate 526 - Fe+3 + Humate-2 = FeHumate+ - log_k 9.4 + Fe+3 + Humate-2 = FeHumate+ + log_k 9.4 #CuFulvate 527 Cu+2 + Fulvate-2 = CuFulvate - log_k 6.2 + log_k 6.2 #CuHumate 528 Cu+2 + Humate-2 = CuHumate - log_k 6.2 + log_k 6.2 #CdFulvate 529 Cd+2 + Fulvate-2 = CdFulvate - log_k 3.5 + log_k 3.5 #CdHumate 530 Cd+2 + Humate-2 = CdHumate - log_k 3.5 + log_k 3.5 #AgFulvate 531 - Ag+ + Fulvate-2 = AgFulvate- - log_k 2.4 + Ag+ + Fulvate-2 = AgFulvate- + log_k 2.4 #AgHumate 532 - Ag+ + Humate-2 = AgHumate- - log_k 2.4 + Ag+ + Humate-2 = AgHumate- + log_k 2.4 #H2F2 537 - 2H+ + 2F- = H2F2 - log_k 6.768 + 2 H+ + 2 F- = H2F2 + log_k 6.768 #peS/H2S 538 # S + 2H+ + 2e- = H2S @@ -1580,1969 +1584,1969 @@ SOLUTION_SPECIES #NaF 540 Na+ + F- = NaF - log_k -0.24 + log_k -0.24 #FeCl+ 542 - Fe+2 + Cl- = FeCl+ - log_k 0.14 - -gamma 5.0 0.0 + Fe+2 + Cl- = FeCl+ + log_k 0.14 + -gamma 5 0 #BaSO4 543 - Ba+2 + SO4-2 = BaSO4 - log_k 2.7 + Ba+2 + SO4-2 = BaSO4 + log_k 2.7 #HSe- secondary master species 549 - SeO3-2 + 7H+ + 6e- = HSe- + 3H2O - log_k 42.514 + SeO3-2 + 7 H+ + 6 e- = HSe- + 3 H2O + log_k 42.514 #H2Se 544 - HSe- + H+ = H2Se - log_k 3.8 + HSe- + H+ = H2Se + log_k 3.8 delta_h -5.3 kcal #SeO3-2 secondary master species 548 - SeO4-2 + 2H+ + 2e- = SeO3-2 + H2O - log_k 30.256 + SeO4-2 + 2 H+ + 2 e- = SeO3-2 + H2O + log_k 30.256 #H2SeO3 545 - SeO3-2 + 2H+ = H2SeO3 - log_k 11.25 + SeO3-2 + 2 H+ = H2SeO3 + log_k 11.25 #HSeO3- 546 SeO3-2 + H+ = HSeO3- - log_k 8.5 + log_k 8.5 #HSeO4- 547 SeO4-2 + H+ = HSeO4- - log_k 1.66 + log_k 1.66 delta_h 4.91 kcal #Se4/Se6 548 -# SeO3-2 + H2O = SeO4-2 + 2H+ + 2e- +# SeO3-2 + H2O = SeO4-2 + 2H+ + 2e- # -30.256 0.0 #Se4/Se-2 549 -# SeO3-2 + 7H+ + 6e- = HSe- + 3H2O +# SeO3-2 + 7H+ + 6e- = HSe- + 3H2O # 42.514 0.0 #As3/As 557 -# H3AsO3 + 3H+ + 3e- = As + 3H2O +# H3AsO3 + 3H+ + 3e- = As + 3H2O # 12.170 0.0 #FeHCO3+ 558 Fe+2 + HCO3- = FeHCO3+ - log_k 2.0 + log_k 2 #FeCO3 559 - Fe+2 + CO3-2 = FeCO3 - log_k 4.38 + Fe+2 + CO3-2 = FeCO3 + log_k 4.38 #MnCO3 560 - Mn+2 + CO3-2 = MnCO3 - log_k 4.9 + Mn+2 + CO3-2 = MnCO3 + log_k 4.9 #BaHCO3+ 561 Ba+2 + HCO3- = BaHCO3+ - log_k 0.982 + log_k 0.982 delta_h 5.56 kcal - -analytical -3.0938 0.013669 0.0 0.0 0.0 + -analytical -3.0938 0.013669 0 0 0 #BaCO3 562 - Ba+2 + CO3-2 = BaCO3 - log_k 2.71 + Ba+2 + CO3-2 = BaCO3 + log_k 2.71 delta_h 3.55 kcal - -analytical 0.113 0.008721 0.0 0.0 0.0 + -analytical 0.113 0.008721 0 0 0 #SrSO4 563 - Sr+2 + SO4-2 = SrSO4 - log_k 2.29 + Sr+2 + SO4-2 = SrSO4 + log_k 2.29 delta_h 2.08 kcal #U+4 secondary master species 565 - UO2+2 + 4H+ + 2e- = U+4 + 2H2O - log_k 9.04 + UO2+2 + 4 H+ + 2 e- = U+4 + 2 H2O + log_k 9.04 delta_h -34.43 kcal #U+3 secondary master species 566 - U+4 + e- = U+3 - log_k -8.796 + U+4 + e- = U+3 + log_k -8.796 delta_h 24.4 kcal #UOH+3 567 - U+4 + H2O = UOH+3 + H+ - log_k -0.54 + U+4 + H2O = UOH+3 + H+ + log_k -0.54 delta_h 11.21 kcal #U(OH)2+2 568 - U+4 + 2H2O = U(OH)2+2 + 2H+ - log_k -2.27 + U+4 + 2 H2O = U(OH)2+2 + 2 H+ + log_k -2.27 delta_h 17.73 kcal #U(OH)3+ 569 - U+4 + 3H2O = U(OH)3+ + 3H+ - log_k -4.935 + U+4 + 3 H2O = U(OH)3+ + 3 H+ + log_k -4.935 delta_h 22.645 kcal #U(OH)4 570 - U+4 + 4H2O = U(OH)4 + 4H+ - log_k -8.498 + U+4 + 4 H2O = U(OH)4 + 4 H+ + log_k -8.498 delta_h 24.76 kcal #U6(OH)15+9 572 - 6U+4 + 15H2O = U6(OH)15+9 + 15H+ - log_k -17.2 + 6 U+4 + 15 H2O = U6(OH)15+9 + 15 H+ + log_k -17.2 #UF+3 578 - U+4 + F- = UF+3 - log_k 9.3 + U+4 + F- = UF+3 + log_k 9.3 delta_h -1.3 kcal #UF2+2 579 - U+4 + 2F- = UF2+2 - log_k 16.22 + U+4 + 2 F- = UF2+2 + log_k 16.22 delta_h -0.8 kcal #UF3+ 580 - U+4 + 3F- = UF3+ - log_k 21.6 + U+4 + 3 F- = UF3+ + log_k 21.6 delta_h 0.1 kcal #UF4 581 - U+4 + 4F- = UF4 - log_k 25.5 + U+4 + 4 F- = UF4 + log_k 25.5 delta_h -0.87 kcal #UF5- 582 - U+4 + 5F- = UF5- - log_k 27.01 + U+4 + 5 F- = UF5- + log_k 27.01 delta_h 4.85 kcal #UF6-2 583 - U+4 + 6F- = UF6-2 - log_k 29.1 + U+4 + 6 F- = UF6-2 + log_k 29.1 delta_h 3.3 kcal #UCl+3 586 - U+4 + Cl- = UCl+3 - log_k 1.72 + U+4 + Cl- = UCl+3 + log_k 1.72 delta_h -4.54 kcal #USO4+2 587 - U+4 + SO4-2 = USO4+2 - log_k 6.58 + U+4 + SO4-2 = USO4+2 + log_k 6.58 delta_h 1.9 kcal #U(SO4)2 588 - U+4 + 2SO4-2 = U(SO4)2 - log_k 10.5 + U+4 + 2 SO4-2 = U(SO4)2 + log_k 10.5 delta_h 7.8 kcal #U(CO3)4-4 589 - U+4 + 4CO3-2 = U(CO3)4-4 - log_k 32.9 + U+4 + 4 CO3-2 = U(CO3)4-4 + log_k 32.9 #U(CO3)5-6 590 - U+4 + 5CO3-2 = U(CO3)5-6 - log_k 34.0 - delta_h 20.0 kcal + U+4 + 5 CO3-2 = U(CO3)5-6 + log_k 34 + delta_h 20 kcal #UO2+ secondary master species 595 - UO2+2 + e- = UO2+ - log_k 1.49 + UO2+2 + e- = UO2+ + log_k 1.49 delta_h -3.3 kcal #UO2OH+ 596 - UO2+2 + H2O = UO2OH+ + H+ - log_k -5.2 + UO2+2 + H2O = UO2OH+ + H+ + log_k -5.2 delta_h 11.015 kcal #(UO2)2(OH)2+2 597 - 2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+ - log_k -5.62 + 2 UO2+2 + 2 H2O = (UO2)2(OH)2+2 + 2 H+ + log_k -5.62 delta_h 10.23 kcal #(UO2)3(OH)5+ 598 - 3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+ - log_k -15.55 + 3 UO2+2 + 5 H2O = (UO2)3(OH)5+ + 5 H+ + log_k -15.55 delta_h 25.075 kcal #UO2CO3 603 - UO2+2 + CO3-2 = UO2CO3 - log_k 9.63 + UO2+2 + CO3-2 = UO2CO3 + log_k 9.63 delta_h 1.2 kcal #UO2(CO3)2-2 604 - UO2+2 + 2CO3-2 = UO2(CO3)2-2 - log_k 17.0 + UO2+2 + 2 CO3-2 = UO2(CO3)2-2 + log_k 17 delta_h 4.42 kcal #UO2(CO3)3-4 605 - UO2+2 + 3CO3-2 = UO2(CO3)3-4 - log_k 21.63 + UO2+2 + 3 CO3-2 = UO2(CO3)3-4 + log_k 21.63 delta_h -9.13 kcal #UO2F+ 607 - UO2+2 + F- = UO2F+ - log_k 5.09 + UO2+2 + F- = UO2F+ + log_k 5.09 delta_h 0.41 kcal #UO2F2 608 - UO2+2 + 2F- = UO2F2 - log_k 8.62 + UO2+2 + 2 F- = UO2F2 + log_k 8.62 delta_h 0.5 kcal #UO2F3- 609 - UO2+2 + 3F- = UO2F3- - log_k 10.9 + UO2+2 + 3 F- = UO2F3- + log_k 10.9 delta_h 0.56 kcal #UO2F4-2 610 - UO2+2 + 4F- = UO2F4-2 - log_k 11.7 + UO2+2 + 4 F- = UO2F4-2 + log_k 11.7 delta_h 0.07 kcal #UO2Cl+ 611 - UO2+2 + Cl- = UO2Cl+ - log_k 0.17 + UO2+2 + Cl- = UO2Cl+ + log_k 0.17 delta_h 1.9 kcal #UO2SO4 612 - UO2+2 + SO4-2 = UO2SO4 - log_k 3.15 + UO2+2 + SO4-2 = UO2SO4 + log_k 3.15 delta_h 4.7 kcal #UO2(SO4)2-2 613 - UO2+2 + 2SO4-2 = UO2(SO4)2-2 - log_k 4.14 + UO2+2 + 2 SO4-2 = UO2(SO4)2-2 + log_k 4.14 delta_h 8.4 kcal #UO2HPO4 614 - UO2+2 + PO4-3 + H+ = UO2HPO4 - log_k 20.21 + UO2+2 + PO4-3 + H+ = UO2HPO4 + log_k 20.21 delta_h -2.1 kcal #UO2(HPO4)2-2 615 - UO2+2 + 2PO4-3 + 2H+ = UO2(HPO4)2-2 - log_k 43.441 + UO2+2 + 2 PO4-3 + 2 H+ = UO2(HPO4)2-2 + log_k 43.441 delta_h -11.8 kcal #UO2H2PO4+ 616 - UO2+2 + PO4-3 + 2H+ = UO2H2PO4+ - log_k 22.87 + UO2+2 + PO4-3 + 2 H+ = UO2H2PO4+ + log_k 22.87 delta_h -3.7 kcal #UO2H2PO4)2 617 - UO2+2 + 2PO4-3 + 4H+ = UO2(H2PO4)2 - log_k 44.38 + UO2+2 + 2 PO4-3 + 4 H+ = UO2(H2PO4)2 + log_k 44.38 delta_h -16.5 kcal #UO2H2PO4)3- 618 - UO2+2 + 3PO4-3 + 6H+ = UO2(H2PO4)3- - log_k 66.245 + UO2+2 + 3 PO4-3 + 6 H+ = UO2(H2PO4)3- + log_k 66.245 delta_h -28.6 kcal #UBr+3 633 - U+4 + Br- = UBr+3 - log_k 1.5 + U+4 + Br- = UBr+3 + log_k 1.5 #UI+3 634 - U+4 + I- = UI+3 - log_k 1.3 + U+4 + I- = UI+3 + log_k 1.3 #UNO3+3 635 - U+4 + NO3- = UNO3+3 - log_k 1.47 + U+4 + NO3- = UNO3+3 + log_k 1.47 #U(NO3)2+2 636 - U+4 + 2NO3- = U(NO3)2+2 - log_k 2.3 + U+4 + 2 NO3- = U(NO3)2+2 + log_k 2.3 #UO2(OH)3- 638 - UO2+2 + 3H2O = UO2(OH)3- + 3H+ - log_k -19.2 + UO2+2 + 3 H2O = UO2(OH)3- + 3 H+ + log_k -19.2 #UO2(OH)4-2 639 - UO2+2 + 4H2O = UO2(OH)4-2 + 4H+ - log_k -33.0 + UO2+2 + 4 H2O = UO2(OH)4-2 + 4 H+ + log_k -33 #(UO2)2OH+3 640 - 2UO2+2 + H2O = (UO2)2OH+3 + H+ - log_k -2.7 + 2 UO2+2 + H2O = (UO2)2OH+3 + H+ + log_k -2.7 #(UO2)3(OH)4+2 641 - 3UO2+2 + 4H2O = (UO2)3(OH)4+2 + 4H+ - log_k -11.9 + 3 UO2+2 + 4 H2O = (UO2)3(OH)4+2 + 4 H+ + log_k -11.9 #(UO2)3(OH)7- 642 - 3UO2+2 + 7H2O = (UO2)3(OH)7- + 7H+ - log_k -31.0 + 3 UO2+2 + 7 H2O = (UO2)3(OH)7- + 7 H+ + log_k -31 #(UO2)4(OH)7+ 643 - 4UO2+2 + 7H2O = (UO2)4(OH)7+ + 7H+ - log_k -21.9 + 4 UO2+2 + 7 H2O = (UO2)4(OH)7+ + 7 H+ + log_k -21.9 #UO2Cl2 644 - UO2+2 + 2Cl- = UO2Cl2 - log_k -1.1 + UO2+2 + 2 Cl- = UO2Cl2 + log_k -1.1 delta_h 3.6 kcal #UO2Br+ 645 - UO2+2 + Br- = UO2Br+ - log_k 0.22 + UO2+2 + Br- = UO2Br+ + log_k 0.22 #UO2NO3+ 646 - UO2+2 + NO3- = UO2NO3+ - log_k 0.3 + UO2+2 + NO3- = UO2NO3+ + log_k 0.3 #UO2H3PO4+2 647 - UO2+2 + PO4-3 + 3H+ = UO2H3PO4+2 - log_k 22.813 + UO2+2 + PO4-3 + 3 H+ = UO2H3PO4+2 + log_k 22.813 #(UO2)3(CO3)6-6 648 - 3UO2+2 + 6CO3-2 = (UO2)3(CO3)6-6 - log_k 54.0 + 3 UO2+2 + 6 CO3-2 = (UO2)3(CO3)6-6 + log_k 54 #UO2PO4- 649 UO2+2 + PO4-3 = UO2PO4- - log_k 13.69 + log_k 13.69 #UO2(CO3)3-5 650 -# UO2+2 + 3CO3-2 + e- = UO2(CO3)3-5 +# UO2+2 + 3CO3-2 + e- = UO2(CO3)3-5 # log_k 8.920 - UO2+ + 3CO3-2 = UO2(CO3)3-5 - log_k 7.43 + UO2+ + 3 CO3-2 = UO2(CO3)3-5 + log_k 7.43 delta_h 3.33 kcal PHASES H2O(g) H2O = H2O - log_k 1.51 - delta_h -44.03 kJ + log_k 1.51 + delta_h -44.03 kJ # Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978) -Siderite(d)(3) 9 - FeCO3 = Fe+2 + CO3-2 - log_k -10.45 +Siderite(d)(3) 9 + FeCO3 = Fe+2 + CO3-2 + log_k -10.45 -Magnesite 10 - MgCO3 = Mg+2 + CO3-2 - log_k -8.029 +Magnesite 10 + MgCO3 = Mg+2 + CO3-2 + log_k -8.029 delta_h -6.169 kcal -Dolomite(d) 11 - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -16.54 +Dolomite(d) 11 + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -16.54 delta_h -11.09 kcal -Calcite 12 - CaCO3 = Ca+2 + CO3-2 - log_k -8.48 +Calcite 12 + CaCO3 = Ca+2 + CO3-2 + log_k -8.48 delta_h -2.297 kcal - -analytical -171.9065 -0.077993 2839.319 71.595 0.0 + -analytical -171.9065 -0.077993 2839.319 71.595 0 -Anhydrite 17 - CaSO4 = Ca+2 + SO4-2 - log_k -4.36 +Anhydrite 17 + CaSO4 = Ca+2 + SO4-2 + log_k -4.36 delta_h -1.71 kcal - -analytical 197.52 0.0 -8669.8 -69.835 0.0 + -analytical 197.52 0 -8669.8 -69.835 0 -Gypsum 18 - CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O - log_k -4.58 +Gypsum 18 + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.58 delta_h -0.109 kcal - -analytical 68.2401 0.0 -3221.51 -25.0627 0.0 + -analytical 68.2401 0 -3221.51 -25.0627 0 -Brucite 19 - Mg(OH)2 + 2H+ = Mg+2 + 2H2O - log_k 16.84 +Brucite 19 + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.84 delta_h -27.1 kcal -Chrysotile 20 - Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + H2O - log_k 32.2 +Chrysotile 20 + Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O + log_k 32.2 delta_h -46.8 kcal - -analytical 13.248 0.0 10217.1 -6.1894 0.0 + -analytical 13.248 0 10217.1 -6.1894 0 -Aragonite 21 - CaCO3 = Ca+2 + CO3-2 - log_k -8.336 +Aragonite 21 + CaCO3 = Ca+2 + CO3-2 + log_k -8.336 delta_h -2.589 kcal - -analytical -171.9773 -0.077993 2903.293 71.595 0.0 + -analytical -171.9773 -0.077993 2903.293 71.595 0 -Forsterite 27 - Mg2SiO4 + 4H+ = 2Mg+2 + H4SiO4 - log_k 28.306 +Forsterite 27 + Mg2SiO4 + 4 H+ = 2 Mg+2 + H4SiO4 + log_k 28.306 delta_h -48.578 kcal -Diopside 28 - CaMgSi2O6 + 4H+ + 2H2O = Ca+2 + Mg+2 + 2H4SiO4 - log_k 19.894 +Diopside 28 + CaMgSi2O6 + 4 H+ + 2 H2O = Ca+2 + Mg+2 + 2 H4SiO4 + log_k 19.894 delta_h -32.348 kcal -Clinoenstatite 29 - MgSiO3 + 2H+ + H2O = Mg+2 + H4SiO4 - log_k 11.342 +Clinoenstatite 29 + MgSiO3 + 2 H+ + H2O = Mg+2 + H4SiO4 + log_k 11.342 delta_h -20.049 kcal -Tremolite 31 - Ca2Mg5Si8O22(OH)2+14H+ +8H2O = 2Ca+2 +5Mg+2 +8H4SiO4 - log_k 56.574 +Tremolite 31 + Ca2Mg5Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Ca+2 + 5 Mg+2 + 8 H4SiO4 + log_k 56.574 delta_h -96.853 kcal -Sepiolite 36 - Mg2Si3O7.5OH:3H2O+0.5H2O+4H+ = 2Mg+2 +3H4SiO4 - log_k 15.76 +Sepiolite 36 + Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 + log_k 15.76 delta_h -10.7 kcal -Talc 37 - Mg3Si4O10(OH)2+4H2O+6H+=3Mg+2 +4H4SiO4 - log_k 21.399 +Talc 37 + Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 + log_k 21.399 delta_h -46.352 kcal -Hydromagnesite 38 - Mg5(CO3)4(OH)2:4H2O + 2H+ = 5Mg+2 + 4CO3-2 + 6H2O - log_k -8.762 +Hydromagnesite 38 + Mg5(CO3)4(OH)2:4H2O + 2 H+ = 5 Mg+2 + 4 CO3-2 + 6 H2O + log_k -8.762 delta_h -52.244 kcal -Adularia 39 - KAlSi3O8 + 8H2O = K+ + Al(OH)4- + 3H4SiO4 - log_k -20.573 +Adularia 39 + KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 + log_k -20.573 delta_h 30.82 kcal -Albite 40 - NaAlSi3O8 + 8H2O = Na+ + Al(OH)4- + 3H4SiO4 - log_k -18.002 +Albite 40 + NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 + log_k -18.002 delta_h 25.896 kcal -Anorthite 41 - CaAl2Si2O8 + 8H2O = Ca+2 + 2Al(OH)4- + 2H4SiO4 - log_k -19.714 +Anorthite 41 + CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 + log_k -19.714 delta_h 11.58 kcal -Analcime 42 - NaAlSi2O6:H2O + 5H2O = Na+ + Al(OH)4- + 2H4SiO4 - log_k -12.701 +Analcime 42 + NaAlSi2O6:H2O + 5 H2O = Na+ + Al(OH)4- + 2 H4SiO4 + log_k -12.701 delta_h 18.206 kcal -Kmica 43 - KAl3Si3O10(OH)2+10H+=K+ +3Al+3 +3H4SiO4 - log_k 12.703 +Kmica 43 + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 + log_k 12.703 delta_h -59.376 kcal -Phlogopite 44 - KMg3AlSi3O10(OH)2 + 10H+ = K+ + 3Mg+2 + Al+3 + 3H4SiO4 - log_k 43.3 - delta_h -42.30 kcal +Phlogopite 44 + KMg3AlSi3O10(OH)2 + 10 H+ = K+ + 3 Mg+2 + Al+3 + 3 H4SiO4 + log_k 43.3 + delta_h -42.3 kcal -Illite 45 - K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ +0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ - log_k -40.267 +Illite 45 + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ + log_k -40.267 delta_h 54.684 kcal -Kaolinite 46 - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 7.435 +Kaolinite 46 + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 7.435 delta_h -35.3 kcal -Halloysite 47 - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 12.498 - delta_h -39.920 kcal +Halloysite 47 + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 12.498 + delta_h -39.92 kcal -Beidellite 48 - (NaKMg0.5)0.11Al2.33Si3.67O10(OH)2 + 12H2O = 0.11Na+ + 0.11K+ + 0.055Mg+2 + 2.33Al(OH)4- + 3.67H4SiO4 + 2H+ - log_k -45.272 +Beidellite 48 + (NaKMg0.5)0.11Al2.33Si3.67O10(OH)2 + 12 H2O = 0.11 Na+ + 0.11 K+ + 0.055 Mg+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + log_k -45.272 delta_h 60.355 kcal -Chlorite14A 49 - Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O - log_k 68.38 +Chlorite14A 49 + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + log_k 68.38 delta_h -151.494 kcal -Alunite 50 - KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O - log_k -1.4 +Alunite 50 + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + log_k -1.4 delta_h -50.25 kcal -Gibbsite 51 - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 8.11 +Gibbsite 51 + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 8.11 delta_h -22.8 kcal -Boehmite 52 - AlOOH + 3H+ = Al+3 + 2H2O - log_k 8.584 +Boehmite 52 + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 8.584 delta_h -28.181 kcal -Pyrophyllite 53 - Al2Si4O10(OH)2 + 12H2O = 2Al(OH)4- + 4H4SiO4 + 2H+ - log_k -48.314 +Pyrophyllite 53 + Al2Si4O10(OH)2 + 12 H2O = 2 Al(OH)4- + 4 H4SiO4 + 2 H+ + log_k -48.314 -Phillipsite 54 - Na0.5K0.5AlSi3O8:H2O + 7H2O = 0.5Na+ +0.5K+ + Al(OH)4- + 3H4SiO4 - log_k -19.874 +Phillipsite 54 + Na0.5K0.5AlSi3O8:H2O + 7 H2O = 0.5 Na+ + 0.5 K+ + Al(OH)4- + 3 H4SiO4 + log_k -19.874 -Nahcolite 58 +Nahcolite 58 NaHCO3 = Na+ + HCO3- - log_k -0.548 - delta_h 3.720 kcal + log_k -0.548 + delta_h 3.72 kcal -Trona 59 - NaHCO3:Na2CO3:2H2O = 2H2O + 3Na+ + CO3-2 + HCO3- - log_k -0.795 - delta_h -18.0 kcal +Trona 59 + NaHCO3:Na2CO3:2H2O = 2 H2O + 3 Na+ + CO3-2 + HCO3- + log_k -0.795 + delta_h -18 kcal -Natron 60 - Na2CO3:10H2O = 2Na+ + CO3-2 + 10H2O - log_k -1.311 +Natron 60 + Na2CO3:10H2O = 2 Na+ + CO3-2 + 10 H2O + log_k -1.311 delta_h 15.745 kcal -Thermonatrite 61 - Na2CO3:H2O = 2Na+ + CO3-2 + H2O - log_k 0.125 +Thermonatrite 61 + Na2CO3:H2O = 2 Na+ + CO3-2 + H2O + log_k 0.125 delta_h -2.802 kcal -Fluorite 62 - CaF2 = Ca+2 + 2F- - log_k -10.6 +Fluorite 62 + CaF2 = Ca+2 + 2 F- + log_k -10.6 delta_h 4.69 kcal - -analytical 66.348 0.0 -4298.2 -25.271 0.0 + -analytical 66.348 0 -4298.2 -25.271 0 -Montmorillonite-Ca 63 - Ca0.165Al2.33Si3.67O10(OH)2 + 12H2O = 0.165Ca+2 + 2.33Al(OH)4- + 3.67H4SiO4 + 2H+ - log_k -45.027 +Montmorillonite-Ca 63 + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + log_k -45.027 delta_h 58.373 kcal -Halite 64 - NaCl = Na+ + Cl- - log_k 1.582 +Halite 64 + NaCl = Na+ + Cl- + log_k 1.582 delta_h 0.918 kcal -Thenardite 65 - Na2SO4 = 2Na+ + SO4-2 - log_k -0.179 +Thenardite 65 + Na2SO4 = 2 Na+ + SO4-2 + log_k -0.179 delta_h -0.572 kcal -Mirabilite 66 - Na2SO4:10H2O = 2Na+ + SO4-2 + 10H2O - log_k -1.114 +Mirabilite 66 + Na2SO4:10H2O = 2 Na+ + SO4-2 + 10 H2O + log_k -1.114 delta_h 18.987 kcal -Mackinawite 67 - FeS + H+ = Fe+2 + HS- - log_k -4.648 +Mackinawite 67 + FeS + H+ = Fe+2 + HS- + log_k -4.648 -Siderite 94 - FeCO3 = Fe+2 + CO3-2 - log_k -10.89 +Siderite 94 + FeCO3 = Fe+2 + CO3-2 + log_k -10.89 delta_h -2.48 kcal -Hydroxyapatite 95 - Ca5(PO4)3OH + 4H+ = 5Ca+2 + 3HPO4-2 + H2O - log_k -3.421 +Hydroxyapatite 95 + Ca5(PO4)3OH + 4 H+ = 5 Ca+2 + 3 HPO4-2 + H2O + log_k -3.421 delta_h -36.155 kcal -Fluorapatite 96 - Ca5(PO4)3F + 3H+ = 5Ca+2 + 3HPO4-2 + F- - log_k -17.6 - delta_h -20.070 kcal +Fluorapatite 96 + Ca5(PO4)3F + 3 H+ = 5 Ca+2 + 3 HPO4-2 + F- + log_k -17.6 + delta_h -20.07 kcal -Chalcedony 97 - SiO2 + 2H2O = H4SiO4 - log_k -3.55 +Chalcedony 97 + SiO2 + 2 H2O = H4SiO4 + log_k -3.55 delta_h 4.72 kcal - -analytical -0.09 0.0 -1032.0 0.0 0.0 + -analytical -0.09 0 -1032 0 0 -Magadiite 98 - NaSi7O13(OH)3:3H2O + H+ + 9H2O = Na+ + 7H4SiO4 - log_k -14.3 +Magadiite 98 + NaSi7O13(OH)3:3H2O + H+ + 9 H2O = Na+ + 7 H4SiO4 + log_k -14.3 -Cristobalite 99 - SiO2 + 2H2O = H4SiO4 - log_k -3.587 +Cristobalite 99 + SiO2 + 2 H2O = H4SiO4 + log_k -3.587 delta_h 5.5 kcal -Silicagel 100 - SiO2 + 2H2O = H4SiO4 - log_k -3.018 - delta_h 4.440 kcal +Silicagel 100 + SiO2 + 2 H2O = H4SiO4 + log_k -3.018 + delta_h 4.44 kcal -Quartz 101 - SiO2 + 2H2O = H4SiO4 - log_k -3.98 +Quartz 101 + SiO2 + 2 H2O = H4SiO4 + log_k -3.98 delta_h 5.99 kcal - -analytical 0.41 0.0 -1309.0 0.0 0.0 + -analytical 0.41 0 -1309 0 0 -Vivianite 106 - Fe3(PO4)2:8H2O = 3Fe+2 + 2PO4-3 + 8H2O - log_k -36.0 +Vivianite 106 + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + log_k -36 -Magnetite 107 - Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O - log_k 3.737 - delta_h -50.460 kcal +Magnetite 107 + Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O + log_k 3.737 + delta_h -50.46 kcal -Hematite 108 - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k -4.008 +Hematite 108 + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k -4.008 delta_h -30.845 kcal -Maghemite 109 - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k 6.386 +Maghemite 109 + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 6.386 -Goethite 110 - FeOOH + 3H+ = Fe+3 + 2H2O - log_k -1.0 - delta_h -14.48 kcal +Goethite 110 + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k -1 + delta_h -14.48 kcal -Greenalite 111 - Fe3Si2O5(OH)4 + 6H+ = 3Fe+2 + 2 H4SiO4 + H2O - log_k 20.810 +Greenalite 111 + Fe3Si2O5(OH)4 + 6 H+ = 3 Fe+2 + 2 H4SiO4 + H2O + log_k 20.81 -Fe(OH)3(a) 112 - Fe(OH)3 + 3H+ = Fe+3 + 3H2O - log_k 4.891 +Fe(OH)3(a) 112 + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 4.891 -Annite 113 - KFe3AlSi3O10(OH)2 + 10H2O = K+ + 3Fe+2 + Al(OH)4- + 3H4SiO4 + 6OH- - log_k -85.645 - delta_h 62.480 kcal +Annite 113 + KFe3AlSi3O10(OH)2 + 10 H2O = K+ + 3 Fe+2 + Al(OH)4- + 3 H4SiO4 + 6 OH- + log_k -85.645 + delta_h 62.48 kcal -Pyrite 114 - FeS2 + 2H+ + 2e- = Fe+2 + 2HS- - log_k -18.479 +Pyrite 114 + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + log_k -18.479 delta_h 11.3 kcal -Montmorillonite-BelleFourche 115 - (HNaK)0.09Mg0.29Fe0.24Al1.57Si3.93O10(OH)2 + 10H2O = 0.09H+ + 0.09Na+ + 0.09K+ + 0.29Mg+2 + 0.24Fe+3 + 1.57Al(OH)4- + 3.93H4SiO4 - log_k -34.913 +Montmorillonite-BelleFourche 115 + (HNaK)0.09Mg0.29Fe0.24Al1.57Si3.93O10(OH)2 + 10 H2O = 0.09 H+ + 0.09 Na+ + 0.09 K+ + 0.29 Mg+2 + 0.24 Fe+3 + 1.57 Al(OH)4- + 3.93 H4SiO4 + log_k -34.913 -Montmorillonite-Aberdeen 116 - (HNaK)0.14Mg0.45Fe0.33Al1.47Si3.82O10(OH)2 + 9.16H2O + 0.84H+ = 0.14H+ + 0.14Na+ + 0.14K+ + 0.45Mg+2 + 0.33Fe+3 + 1.47Al(OH)4- + 3.82H4SiO4 - log_k -29.688 +Montmorillonite-Aberdeen 116 + (HNaK)0.14Mg0.45Fe0.33Al1.47Si3.82O10(OH)2 + 9.16 H2O + 0.84 H+ = 0.14 H+ + 0.14 Na+ + 0.14 K+ + 0.45 Mg+2 + 0.33 Fe+3 + 1.47 Al(OH)4- + 3.82 H4SiO4 + log_k -29.688 -Huntite 117 - CaMg3(CO3)4 = 3Mg+2 + Ca+2 + 4CO3-2 - log_k -29.968 - delta_h -25.760 kcal +Huntite 117 + CaMg3(CO3)4 = 3 Mg+2 + Ca+2 + 4 CO3-2 + log_k -29.968 + delta_h -25.76 kcal -Greigite 118 - Fe3S4 + 4H+ = 2Fe+3 + Fe+2 + 4HS- - log_k -45.035 +Greigite 118 + Fe3S4 + 4 H+ = 2 Fe+3 + Fe+2 + 4 HS- + log_k -45.035 -FeS(ppt) 119 - FeS + H+ = Fe+2 + HS- - log_k -3.915 +FeS(ppt) 119 + FeS + H+ = Fe+2 + HS- + log_k -3.915 -Chlorite7A 125 - Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 +3H4SiO4 + 6H2O - log_k 71.752 +Chlorite7A 125 + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + log_k 71.752 delta_h -155.261 kcal -Laumontite 128 - CaAl2Si4O12:4H2O + 8H2O = Ca+2 + 2Al(OH)4- + 4H4SiO4 - log_k -30.960 - delta_h 39.610 kcal +Laumontite 128 + CaAl2Si4O12:4H2O + 8 H2O = Ca+2 + 2 Al(OH)4- + 4 H4SiO4 + log_k -30.96 + delta_h 39.61 kcal -Jarosite(ss) 133 - (K0.77Na0.03H0.2)Fe3(SO4)2(OH)6 + 5.8H+ = 0.77K+ + 0.03Na+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -9.83 # WATEQ4F, Alpers and others, 1989 +Jarosite(ss) 133 + (K0.77Na0.03H0.2)Fe3(SO4)2(OH)6 + 5.8 H+ = 0.77 K+ + 0.03 Na+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -9.83 # WATEQ4F, Alpers and others, 1989 -Mn2(SO4)3 134 - Mn2(SO4)3 = 2Mn+3 + 3SO4-2 - log_k -5.711 - delta_h -39.060 kcal +Mn2(SO4)3 134 + Mn2(SO4)3 = 2 Mn+3 + 3 SO4-2 + log_k -5.711 + delta_h -39.06 kcal -Al(OH)3(a) 140 - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 10.8 +Al(OH)3(a) 140 + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 10.8 delta_h -26.5 kcal -Prehnite 141 - Ca2Al2Si3O10(OH)2 + 8H2O + 2H+ = 2Ca+2 + 2Al(OH)4- + 3H4SiO4 - log_k -11.695 - delta_h 10.390 kcal +Prehnite 141 + Ca2Al2Si3O10(OH)2 + 8 H2O + 2 H+ = 2 Ca+2 + 2 Al(OH)4- + 3 H4SiO4 + log_k -11.695 + delta_h 10.39 kcal -Strontianite 142 - SrCO3 = Sr+2 + CO3-2 - log_k -9.271 +Strontianite 142 + SrCO3 = Sr+2 + CO3-2 + log_k -9.271 delta_h -0.4 kcal - -analytical 155.0305 0.0 -7239.594 -56.58638 0.0 + -analytical 155.0305 0 -7239.594 -56.58638 0 -Celestite 143 - SrSO4 = Sr+2 + SO4-2 - log_k -6.63 +Celestite 143 + SrSO4 = Sr+2 + SO4-2 + log_k -6.63 delta_h -1.037 kcal - -analytical -14805.9622 -2.4660924 756968.533 5436.3588 -40553604. + -analytical -14805.9622 -2.4660924 756968.533 5436.3588 -40553604 -Barite 144 - BaSO4 = Ba+2 + SO4-2 - log_k -9.97 +Barite 144 + BaSO4 = Ba+2 + SO4-2 + log_k -9.97 delta_h 6.35 kcal - -analytical 136.035 0.0 -7680.41 -48.595 0.0 + -analytical 136.035 0 -7680.41 -48.595 0 -Witherite 145 - BaCO3 = Ba+2 + CO3-2 - log_k -8.562 +Witherite 145 + BaCO3 = Ba+2 + CO3-2 + log_k -8.562 delta_h 0.703 kcal - -analytical 607.642 0.121098 -20011.25 -236.4948 0.0 + -analytical 607.642 0.121098 -20011.25 -236.4948 0 -Strengite 146 - FePO4:2H2O = Fe+3 + PO4-3 + 2H2O - log_k -26.4 - delta_h -2.030 kcal +Strengite 146 + FePO4:2H2O = Fe+3 + PO4-3 + 2 H2O + log_k -26.4 + delta_h -2.03 kcal -Leonhardite 147 - Ca2Al4Si8O24:7H2O + 17H2O = 2Ca+2 + 4Al(OH)4- + 8H4SiO4 - log_k -69.756 - delta_h 90.070 kcal +Leonhardite 147 + Ca2Al4Si8O24:7H2O + 17 H2O = 2 Ca+2 + 4 Al(OH)4- + 8 H4SiO4 + log_k -69.756 + delta_h 90.07 kcal -Nesquehonite 149 - MgCO3:3H2O = Mg+2 + CO3-2 + 3H2O - log_k -5.621 +Nesquehonite 149 + MgCO3:3H2O = Mg+2 + CO3-2 + 3 H2O + log_k -5.621 delta_h -5.789 kcal -Artinite 150 - MgCO3:Mg(OH)2:3H2O + 2H+ = 2Mg+2 + CO3-2 + 5H2O - log_k 9.6 +Artinite 150 + MgCO3:Mg(OH)2:3H2O + 2 H+ = 2 Mg+2 + CO3-2 + 5 H2O + log_k 9.6 delta_h -28.742 kcal -Sepiolite(d) 153 - Mg2Si3O7.5OH:3H2O+0.5H2O+4H+=2Mg+2 +3H4SiO4 - log_k 18.66 +Sepiolite(d) 153 + Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 + log_k 18.66 -Diaspore 154 - AlOOH + 3H+ = Al+3 + 2H2O - log_k 6.879 +Diaspore 154 + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 6.879 delta_h -24.681 kcal -Wairakite 155 - CaAl2Si4O12:2H2O + 10H2O = Ca+2 + 2Al(OH)4- + 4H4SiO4 - log_k -26.708 - delta_h 26.140 kcal +Wairakite 155 + CaAl2Si4O12:2H2O + 10 H2O = Ca+2 + 2 Al(OH)4- + 4 H4SiO4 + log_k -26.708 + delta_h 26.14 kcal -Fe(OH)2.7Cl.3 181 - Fe(OH)2.7Cl0.3 + 2.7H+ = Fe+3 + 2.7H2O + 0.3 Cl- - log_k -3.040 +Fe(OH)2.7Cl.3 181 + Fe(OH)2.7Cl0.3 + 2.7 H+ = Fe+3 + 2.7 H2O + 0.3 Cl- + log_k -3.04 -MnSO4 182 - MnSO4 = Mn+2 + SO4-2 - log_k 2.669 - delta_h -15.480 kcal +MnSO4 182 + MnSO4 = Mn+2 + SO4-2 + log_k 2.669 + delta_h -15.48 kcal -Pyrolusite 183 - MnO2 + 4H+ + 2e- = Mn+2 + 2H2O - log_k 41.38 +Pyrolusite 183 + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 41.38 delta_h -65.11 kcal -Birnessite 184 - MnO2 + 4H+ + 2e- = Mn+2 + 2H2O - log_k 43.601 +Birnessite 184 + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 43.601 -Nsutite 185 - MnO2 + 4H+ + 2e- = Mn+2 + 2H2O - log_k 42.564 +Nsutite 185 + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 42.564 -Bixbyite 186 - Mn2O3 + 6H+ = 2Mn+3 + 3H2O - log_k -0.611 +Bixbyite 186 + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.611 delta_h -15.245 kcal -Hausmannite 187 - Mn3O4 + 8H+ + 2e- = 3Mn+2 + 4H2O - log_k 61.03 +Hausmannite 187 + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + log_k 61.03 delta_h -100.64 kcal -Pyrochroite 188 - Mn(OH)2 + 2H+ = Mn+2 + 2H2O - log_k 15.2 +Pyrochroite 188 + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.2 -Manganite 189 - MnOOH + 3H+ + e- = Mn+2 + 2H2O - log_k 25.340 +Manganite 189 + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + log_k 25.34 -Rhodochrosite(d) 190 - MnCO3 = Mn+2 + CO3-2 - log_k -10.390 +Rhodochrosite(d) 190 + MnCO3 = Mn+2 + CO3-2 + log_k -10.39 -MnCl2:4H2O 191 - MnCl2:4H2O = Mn+2 + 2Cl- + 4H2O - log_k 2.710 - delta_h 17.380 kcal +MnCl2:4H2O 191 + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.71 + delta_h 17.38 kcal -MnS(Green) 192 - MnS + H+ = Mn+2 + HS- - log_k 3.8 - delta_h -5.790 kcal +MnS(Green) 192 + MnS + H+ = Mn+2 + HS- + log_k 3.8 + delta_h -5.79 kcal -Mn3(PO4)2 193 - Mn3(PO4)2 = 3Mn+2 + 2PO4-3 - log_k -23.827 - delta_h 2.120 kcal +Mn3(PO4)2 193 + Mn3(PO4)2 = 3 Mn+2 + 2 PO4-3 + log_k -23.827 + delta_h 2.12 kcal -MnHPO4 194 - MnHPO4 = Mn+2 + HPO4-2 - log_k -12.947 +MnHPO4 194 + MnHPO4 = Mn+2 + HPO4-2 + log_k -12.947 -Jarosite-Na 204 - NaFe3(SO4)2(OH)6 + 6H+ = Na+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -5.280 - delta_h -36.180 kcal +Jarosite-Na 204 + NaFe3(SO4)2(OH)6 + 6 H+ = Na+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -5.28 + delta_h -36.18 kcal -Jarosite-K 205 - KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -9.21 +Jarosite-K 205 + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -9.21 delta_h -31.28 kcal -CuMetal 223 - Cu = Cu+ + e- - log_k -8.760 - delta_h 17.130 kcal +CuMetal 223 + Cu = Cu+ + e- + log_k -8.76 + delta_h 17.13 kcal -Nantokite 224 - CuCl = Cu+ + Cl- - log_k -6.760 - delta_h 9.980 kcal +Nantokite 224 + CuCl = Cu+ + Cl- + log_k -6.76 + delta_h 9.98 kcal -CuF 225 - CuF = Cu+ + F- - log_k 7.080 - delta_h -12.370 kcal +CuF 225 + CuF = Cu+ + F- + log_k 7.08 + delta_h -12.37 kcal -Cuprite 226 - Cu2O + 2H+ = 2Cu+ + H2O - log_k -1.550 +Cuprite 226 + Cu2O + 2 H+ = 2 Cu+ + H2O + log_k -1.55 delta_h 6.245 kcal -Chalcocite 227 - Cu2S + H+ = 2Cu+ + HS- - log_k -34.619 - delta_h 49.350 kcal +Chalcocite 227 + Cu2S + H+ = 2 Cu+ + HS- + log_k -34.619 + delta_h 49.35 kcal -Cu2SO4 228 - Cu2SO4 = 2Cu+ + SO4-2 - log_k -1.950 - delta_h -4.560 kcal +Cu2SO4 228 + Cu2SO4 = 2 Cu+ + SO4-2 + log_k -1.95 + delta_h -4.56 kcal -CuprousFerrite 229 - CuFeO2 + 4H+ = Cu+ + Fe+3 + 2H2O - log_k -8.920 +CuprousFerrite 229 + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -8.92 delta_h -3.8 kcal -Melanothallite 230 - CuCl2 = Cu+2 + 2Cl- - log_k 3.730 - delta_h -12.320 kcal +Melanothallite 230 + CuCl2 = Cu+2 + 2 Cl- + log_k 3.73 + delta_h -12.32 kcal -CuCO3 231 - CuCO3 = Cu+2 + CO3-2 - log_k -9.630 +CuCO3 231 + CuCO3 = Cu+2 + CO3-2 + log_k -9.63 -CuF2 232 - CuF2 = Cu+2 + 2F- - log_k -0.620 - delta_h -13.320 kcal +CuF2 232 + CuF2 = Cu+2 + 2 F- + log_k -0.62 + delta_h -13.32 kcal -CuF2:2H2O 233 - CuF2:2H2O = Cu+2 + 2F- + 2H2O - log_k -4.550 - delta_h -3.650 kcal +CuF2:2H2O 233 + CuF2:2H2O = Cu+2 + 2 F- + 2 H2O + log_k -4.55 + delta_h -3.65 kcal -Cu(OH)2 234 - Cu(OH)2 + 2H+ = Cu+2 + 2H2O - log_k 8.640 - delta_h -15.250 kcal +Cu(OH)2 234 + Cu(OH)2 + 2 H+ = Cu+2 + 2 H2O + log_k 8.64 + delta_h -15.25 kcal -Malachite 235 - Cu2(OH)2CO3 + 3H+ = 2Cu+2 + 2H2O + HCO3- - log_k 5.150 - delta_h -19.760 kcal +Malachite 235 + Cu2(OH)2CO3 + 3 H+ = 2 Cu+2 + 2 H2O + HCO3- + log_k 5.15 + delta_h -19.76 kcal -Azurite 236 - Cu3(OH)2(CO3)2 + 4H+ = 3Cu+2 + 2H2O + 2HCO3- - log_k 3.750 - delta_h -30.870 kcal +Azurite 236 + Cu3(OH)2(CO3)2 + 4 H+ = 3 Cu+2 + 2 H2O + 2 HCO3- + log_k 3.75 + delta_h -30.87 kcal -Atacamite 237 - Cu2(OH)3Cl + 3H+ = 2Cu+2 + 3H2O + Cl- - log_k 7.340 - delta_h -18.690 kcal +Atacamite 237 + Cu2(OH)3Cl + 3 H+ = 2 Cu+2 + 3 H2O + Cl- + log_k 7.34 + delta_h -18.69 kcal -Cu2(OH)3NO3 238 - Cu2(OH)3NO3 + 3H+ = 2Cu+2 + 3H2O + NO3- - log_k 9.240 - delta_h -17.350 kcal +Cu2(OH)3NO3 238 + Cu2(OH)3NO3 + 3 H+ = 2 Cu+2 + 3 H2O + NO3- + log_k 9.24 + delta_h -17.35 kcal -Antlerite 239 - Cu3(OH)4SO4 + 4H+ = 3Cu+2 + 4H2O + SO4-2 - log_k 8.290 +Antlerite 239 + Cu3(OH)4SO4 + 4 H+ = 3 Cu+2 + 4 H2O + SO4-2 + log_k 8.29 -Brochantite 240 - Cu4(OH)6SO4 + 6H+ = 4Cu+2 + 6H2O + SO4-2 - log_k 15.340 +Brochantite 240 + Cu4(OH)6SO4 + 6 H+ = 4 Cu+2 + 6 H2O + SO4-2 + log_k 15.34 -Langite 241 - Cu4(OH)6SO4:H2O + 6H+ = 4Cu+2 + 7H2O + SO4-2 - log_k 16.790 - delta_h -39.610 kcal +Langite 241 + Cu4(OH)6SO4:H2O + 6 H+ = 4 Cu+2 + 7 H2O + SO4-2 + log_k 16.79 + delta_h -39.61 kcal -Tenorite 242 - CuO + 2H+ = Cu+2 + H2O - log_k 7.620 - delta_h -15.240 kcal +Tenorite 242 + CuO + 2 H+ = Cu+2 + H2O + log_k 7.62 + delta_h -15.24 kcal -CuOCuSO4 243 - CuO:CuSO4 + 2H+ = 2Cu+2 + H2O + SO4-2 - log_k 11.530 +CuOCuSO4 243 + CuO:CuSO4 + 2 H+ = 2 Cu+2 + H2O + SO4-2 + log_k 11.53 delta_h -35.575 kcal -Cu3(PO4)2 244 - Cu3(PO4)2 = 3Cu+2 + 2PO4-3 - log_k -36.850 +Cu3(PO4)2 244 + Cu3(PO4)2 = 3 Cu+2 + 2 PO4-3 + log_k -36.85 -Cu3(PO4)2:3H2O 245 - Cu3(PO4)2:3H2O = 3Cu+2 + 2PO4-3 + 3H2O - log_k -35.120 +Cu3(PO4)2:3H2O 245 + Cu3(PO4)2:3H2O = 3 Cu+2 + 2 PO4-3 + 3 H2O + log_k -35.12 -Covellite 246 - CuS + H+ = Cu+2 + HS- - log_k -22.270 - delta_h 24.010 kcal +Covellite 246 + CuS + H+ = Cu+2 + HS- + log_k -22.27 + delta_h 24.01 kcal -CuSO4 247 - CuSO4 = Cu+2 + SO4-2 - log_k 3.010 - delta_h -18.140 kcal +CuSO4 247 + CuSO4 = Cu+2 + SO4-2 + log_k 3.01 + delta_h -18.14 kcal -Chalcanthite 248 - CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O - log_k -2.640 - delta_h 1.440 kcal +Chalcanthite 248 + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.64 + delta_h 1.44 kcal -CupricFerrite 249 - CuFe2O4 + 8H+ = Cu+2 + 2Fe+3 + 4H2O - log_k 5.880 - delta_h -38.690 kcal +CupricFerrite 249 + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 5.88 + delta_h -38.69 kcal -Chalcopyrite 250 - CuFeS2 + 2H+ = Cu+2 + Fe+2 + 2HS- - log_k -35.270 - delta_h 35.480 kcal +Chalcopyrite 250 + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -35.27 + delta_h 35.48 kcal -ZnMetal 265 - Zn = Zn+2 + 2e- - log_k 25.757 - delta_h -36.780 kcal +ZnMetal 265 + Zn = Zn+2 + 2 e- + log_k 25.757 + delta_h -36.78 kcal -Zn(BO2)2 266 - Zn(BO2)2 + 2H2O + 2H+ = Zn+2 + 2H3BO3 - log_k 8.290 +Zn(BO2)2 266 + Zn(BO2)2 + 2 H2O + 2 H+ = Zn+2 + 2 H3BO3 + log_k 8.29 -ZnCl2 267 - ZnCl2 = Zn+2 + 2Cl- - log_k 7.030 - delta_h -17.480 kcal +ZnCl2 267 + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.03 + delta_h -17.48 kcal -Smithsonite 268 - ZnCO3 = Zn+2 + CO3-2 - log_k -10.0 +Smithsonite 268 + ZnCO3 = Zn+2 + CO3-2 + log_k -10 delta_h -4.36 kcal -ZnCO3:H2O 269 - ZnCO3:H2O = Zn+2 + CO3-2 + H2O - log_k -10.260 +ZnCO3:H2O 269 + ZnCO3:H2O = Zn+2 + CO3-2 + H2O + log_k -10.26 -ZnF2 270 - ZnF2 = Zn+2 + 2F- - log_k -1.520 - delta_h -13.080 kcal +ZnF2 270 + ZnF2 = Zn+2 + 2 F- + log_k -1.52 + delta_h -13.08 kcal -Zn(OH)2-a 271 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.450 +Zn(OH)2-a 271 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.45 -Zn(OH)2-c 272 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.2 +Zn(OH)2-c 272 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.2 -Zn(OH)2-b 273 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.750 +Zn(OH)2-b 273 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.75 -Zn(OH)2-g 274 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.710 +Zn(OH)2-g 274 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.71 -Zn(OH)2-e 275 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.5 +Zn(OH)2-e 275 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.5 -Zn2(OH)3Cl 276 - Zn2(OH)3Cl + 3H+= 2Zn+2 + 3H2O + Cl- - log_k 15.2 +Zn2(OH)3Cl 276 + Zn2(OH)3Cl + 3 H+ = 2 Zn+2 + 3 H2O + Cl- + log_k 15.2 -Zn5(OH)8Cl2 277 - Zn5(OH)8Cl2 + 8H+ = 5Zn+2 + 8H2O + 2Cl- - log_k 38.5 +Zn5(OH)8Cl2 277 + Zn5(OH)8Cl2 + 8 H+ = 5 Zn+2 + 8 H2O + 2 Cl- + log_k 38.5 -Zn2(OH)2SO4 278 - Zn2(OH)2SO4 + 2H+ = 2Zn+2 + 2H2O + SO4-2 - log_k 7.5 +Zn2(OH)2SO4 278 + Zn2(OH)2SO4 + 2 H+ = 2 Zn+2 + 2 H2O + SO4-2 + log_k 7.5 -Zn4(OH)6SO4 279 - Zn4(OH)6SO4 + 6H+ = 4Zn+2 + 6H2O + SO4-2 - log_k 28.4 +Zn4(OH)6SO4 279 + Zn4(OH)6SO4 + 6 H+ = 4 Zn+2 + 6 H2O + SO4-2 + log_k 28.4 -Zn(NO3)2:6H2O 280 - Zn(NO3)2:6H2O = Zn+2 + 2NO3- + 6H2O - log_k 3.440 - delta_h 5.510 kcal +Zn(NO3)2:6H2O 280 + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.44 + delta_h 5.51 kcal -ZnO(a) 281 - ZnO + 2H+ = Zn+2 + H2O - log_k 11.310 +ZnO(a) 281 + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.31 -Zincite(c) 282 - ZnO + 2H+ = Zn+2 + H2O - log_k 11.140 - delta_h -21.860 kcal +Zincite(c) 282 + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.14 + delta_h -21.86 kcal -Zn3O(SO4)2 283 - ZnO:2ZnSO4 + 2H+ = 3Zn+2 + 2SO4-2 + H2O - log_k 19.020 - delta_h -62.0 kcal +Zn3O(SO4)2 283 + ZnO:2ZnSO4 + 2 H+ = 3 Zn+2 + 2 SO4-2 + H2O + log_k 19.02 + delta_h -62 kcal -Zn3(PO4)2:4w 284 - Zn3(PO4)2:4H2O = 3Zn+2 + 2PO4-3 + 4H2O - log_k -32.040 +Zn3(PO4)2:4w 284 + Zn3(PO4)2:4H2O = 3 Zn+2 + 2 PO4-3 + 4 H2O + log_k -32.04 -ZnS(a) 285 - ZnS + H+ = Zn+2 + HS- - log_k -9.052 - delta_h 3.670 kcal +ZnS(a) 285 + ZnS + H+ = Zn+2 + HS- + log_k -9.052 + delta_h 3.67 kcal -Sphalerite 286 - ZnS + H+ = Zn+2 + HS- - log_k -11.618 +Sphalerite 286 + ZnS + H+ = Zn+2 + HS- + log_k -11.618 delta_h 8.25 kcal -Wurtzite 287 - ZnS + H+ = Zn+2 + HS- - log_k -9.682 - delta_h 5.060 kcal +Wurtzite 287 + ZnS + H+ = Zn+2 + HS- + log_k -9.682 + delta_h 5.06 kcal -ZnSiO3 288 - ZnSiO3 + 2H+ + H2O = Zn+2 + H4SiO4 - log_k 2.930 - delta_h -18.270 kcal +ZnSiO3 288 + ZnSiO3 + 2 H+ + H2O = Zn+2 + H4SiO4 + log_k 2.93 + delta_h -18.27 kcal -Willemite 289 - Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - log_k 15.33 +Willemite 289 + Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 + log_k 15.33 delta_h -33.37 kcal -Zincosite 290 - ZnSO4 = Zn+2 + SO4-2 - log_k 3.010 +Zincosite 290 + ZnSO4 = Zn+2 + SO4-2 + log_k 3.01 delta_h -19.2 kcal -ZnSO4:H2O 291 - ZnSO4:H2O = Zn+2 + SO4-2 + H2O - log_k -0.570 - delta_h -10.640 kcal +ZnSO4:H2O 291 + ZnSO4:H2O = Zn+2 + SO4-2 + H2O + log_k -0.57 + delta_h -10.64 kcal -Bianchite 292 - ZnSO4:6H2O = Zn+2 + SO4-2 + 6H2O - log_k -1.765 - delta_h -0.160 kcal +Bianchite 292 + ZnSO4:6H2O = Zn+2 + SO4-2 + 6 H2O + log_k -1.765 + delta_h -0.16 kcal -Goslarite 293 - ZnSO4:7H2O = Zn+2 + SO4-2 + 7H2O - log_k -1.960 +Goslarite 293 + ZnSO4:7H2O = Zn+2 + SO4-2 + 7 H2O + log_k -1.96 delta_h 3.3 kcal -CdMetal 312 - Cd = Cd+2 + 2e- - log_k 13.490 - delta_h -18.0 kcal +CdMetal 312 + Cd = Cd+2 + 2 e- + log_k 13.49 + delta_h -18 kcal -Cd(gamma) 313 - Cd = Cd+2 + 2e- - log_k 13.590 - delta_h -18.140 kcal +Cd(gamma) 313 + Cd = Cd+2 + 2 e- + log_k 13.59 + delta_h -18.14 kcal -Cd(BO2)2 314 - Cd(BO2)2 + 2H2O + 2H+ = Cd+2 + 2H3BO3 - log_k 9.840 +Cd(BO2)2 314 + Cd(BO2)2 + 2 H2O + 2 H+ = Cd+2 + 2 H3BO3 + log_k 9.84 -Otavite 315 - CdCO3 = Cd+2 + CO3-2 - log_k -12.1 +Otavite 315 + CdCO3 = Cd+2 + CO3-2 + log_k -12.1 delta_h -0.019 kcal -CdCl2 316 - CdCl2 = Cd+2 + 2Cl- - log_k -0.68 +CdCl2 316 + CdCl2 = Cd+2 + 2 Cl- + log_k -0.68 delta_h -4.47 kcal -CdCl2:H2O 317 - CdCl2:H2O = Cd+2 + 2Cl- + H2O - log_k -1.71 +CdCl2:H2O 317 + CdCl2:H2O = Cd+2 + 2 Cl- + H2O + log_k -1.71 delta_h -1.82 kcal -CdCl2:2.5H2O 318 - CdCl2:2.5H2O = Cd+2 + 2Cl- + 2.5H2O - log_k -1.940 - delta_h 1.710 kcal +CdCl2:2.5H2O 318 + CdCl2:2.5H2O = Cd+2 + 2 Cl- + 2.5 H2O + log_k -1.94 + delta_h 1.71 kcal -CdF2 319 - CdF2 = Cd+2 + 2F- - log_k -2.980 - delta_h -9.720 kcal +CdF2 319 + CdF2 = Cd+2 + 2 F- + log_k -2.98 + delta_h -9.72 kcal -Cd(OH)2(a) 320 - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.730 - delta_h -20.770 kcal +Cd(OH)2(a) 320 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.73 + delta_h -20.77 kcal -Cd(OH)2 321 - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.65 +Cd(OH)2 321 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.65 -CdOHCl 322 - CdOHCl + H+ = Cd+2 + H2O + Cl- - log_k 3.520 +CdOHCl 322 + CdOHCl + H+ = Cd+2 + H2O + Cl- + log_k 3.52 delta_h -7.407 kcal -Cd3(OH)4SO4 323 - Cd3(OH)4SO4 + 4H+ = 3Cd+2 + 4H2O + SO4-2 - log_k 22.560 +Cd3(OH)4SO4 323 + Cd3(OH)4SO4 + 4 H+ = 3 Cd+2 + 4 H2O + SO4-2 + log_k 22.56 -Cd3(OH)2(SO4)2 324 - Cd3(OH)2(SO4)2 + 2H+ = 3Cd+2 + 2H2O + 2SO4-2 - log_k 6.710 +Cd3(OH)2(SO4)2 324 + Cd3(OH)2(SO4)2 + 2 H+ = 3 Cd+2 + 2 H2O + 2 SO4-2 + log_k 6.71 -Cd4(OH)6SO4 325 - Cd4(OH)6SO4 + 6H+ = 4Cd+2 + 6H2O + SO4-2 - log_k 28.4 +Cd4(OH)6SO4 325 + Cd4(OH)6SO4 + 6 H+ = 4 Cd+2 + 6 H2O + SO4-2 + log_k 28.4 -Monteponite 326 - CdO + 2H+ = Cd+2 + H2O - log_k 13.770 - delta_h -24.760 kcal +Monteponite 326 + CdO + 2 H+ = Cd+2 + H2O + log_k 13.77 + delta_h -24.76 kcal -Cd3(PO4)2 327 - Cd3(PO4)2 = 3Cd+2 + 2PO4-3 - log_k -32.6 +Cd3(PO4)2 327 + Cd3(PO4)2 = 3 Cd+2 + 2 PO4-3 + log_k -32.6 -CdSiO3 328 - CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - log_k 9.06 +CdSiO3 328 + CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 + log_k 9.06 delta_h -16.63 kcal -CdSO4 329 - CdSO4 = Cd+2 + SO4-2 - log_k -0.1 +CdSO4 329 + CdSO4 = Cd+2 + SO4-2 + log_k -0.1 delta_h -14.74 kcal -CdSO4:H2O 330 - CdSO4:H2O = Cd+2 + SO4-2 + H2O - log_k -1.657 - delta_h -7.520 kcal +CdSO4:H2O 330 + CdSO4:H2O = Cd+2 + SO4-2 + H2O + log_k -1.657 + delta_h -7.52 kcal -CdSO4:2.7H2O 331 - CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67H2O - log_k -1.873 +CdSO4:2.7H2O 331 + CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67 H2O + log_k -1.873 delta_h -4.3 kcal -Greenockite 332 - CdS + H+ = Cd+2 + HS- - log_k -15.930 - delta_h 16.360 kcal +Greenockite 332 + CdS + H+ = Cd+2 + HS- + log_k -15.93 + delta_h 16.36 kcal -JarositeH 337 - (H3O)Fe3(SO4)2(OH)6 + 5H+ = 3Fe+3 + 2SO4-2 + 7H2O - log_k -5.390 - delta_h -55.150 kcal +JarositeH 337 + (H3O)Fe3(SO4)2(OH)6 + 5 H+ = 3 Fe+3 + 2 SO4-2 + 7 H2O + log_k -5.39 + delta_h -55.15 kcal -AlumK 338 - KAl(SO4)2:12H2O = K+ + Al+3 + 2SO4-2 + 12H2O - log_k -5.170 - delta_h 7.220 kcal +AlumK 338 + KAl(SO4)2:12H2O = K+ + Al+3 + 2 SO4-2 + 12 H2O + log_k -5.17 + delta_h 7.22 kcal -Melanterite 339 - FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O - log_k -2.209 +Melanterite 339 + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.209 delta_h 4.91 kcal - -analytical 1.447 -0.004153 0.0 0.0 -214949.0 + -analytical 1.447 -0.004153 0 0 -214949 -Epsomite 340 - MgSO4:7H2O = Mg+2 + SO4-2 + 7H2O - log_k -2.140 - delta_h 2.820 kcal +Epsomite 340 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -2.14 + delta_h 2.82 kcal -PbMetal 360 - Pb = Pb+2 + 2e- - log_k 4.270 +PbMetal 360 + Pb = Pb+2 + 2 e- + log_k 4.27 delta_h 0.4 kcal -Pb(BO2)2 361 - Pb(BO2)2 + 2H2O + 2H+ = Pb+2 + 2H3BO3 - log_k 7.610 +Pb(BO2)2 361 + Pb(BO2)2 + 2 H2O + 2 H+ = Pb+2 + 2 H3BO3 + log_k 7.61 delta_h -5.8 kcal -Cotunnite 362 - PbCl2 = Pb+2 + 2Cl- - log_k -4.770 +Cotunnite 362 + PbCl2 = Pb+2 + 2 Cl- + log_k -4.77 delta_h 5.6 kcal -Matlockite 363 - PbClF = Pb+2 + Cl- + F- - log_k -9.430 - delta_h 7.950 kcal +Matlockite 363 + PbClF = Pb+2 + Cl- + F- + log_k -9.43 + delta_h 7.95 kcal -Phosgenite 364 - PbCl2:PbCO3 = 2Pb+2 + 2Cl- + CO3-2 - log_k -19.810 +Phosgenite 364 + PbCl2:PbCO3 = 2 Pb+2 + 2 Cl- + CO3-2 + log_k -19.81 -Cerussite 365 - PbCO3 = Pb+2 + CO3-2 - log_k -13.13 +Cerussite 365 + PbCO3 = Pb+2 + CO3-2 + log_k -13.13 delta_h 4.86 kcal -PbF2 366 - PbF2 = Pb+2 + 2F- - log_k -7.440 +PbF2 366 + PbF2 = Pb+2 + 2 F- + log_k -7.44 delta_h -0.7 kcal -Massicot 367 - PbO + 2H+ = Pb+2 + H2O - log_k 12.910 - delta_h -16.780 kcal +Massicot 367 + PbO + 2 H+ = Pb+2 + H2O + log_k 12.91 + delta_h -16.78 kcal -Litharge 368 - PbO + 2H+ = Pb+2 + H2O - log_k 12.720 - delta_h -16.380 kcal +Litharge 368 + PbO + 2 H+ = Pb+2 + H2O + log_k 12.72 + delta_h -16.38 kcal -PbO:0.3H2O 369 - PbO:0.33H2O + 2H+ = Pb+2 + 1.33H2O - log_k 12.980 +PbO:0.3H2O 369 + PbO:0.33H2O + 2 H+ = Pb+2 + 1.33 H2O + log_k 12.98 -Pb2OCO3 370 - PbO:PbCO3 + 2H+ = 2Pb+2 + CO3-2 + H2O - log_k -0.5 - delta_h -11.460 kcal +Pb2OCO3 370 + PbO:PbCO3 + 2 H+ = 2 Pb+2 + CO3-2 + H2O + log_k -0.5 + delta_h -11.46 kcal -Larnakite 371 - PbO:PbSO4 + 2H+ = 2Pb+2 + SO4-2 + H2O - log_k -0.280 - delta_h -6.440 kcal +Larnakite 371 + PbO:PbSO4 + 2 H+ = 2 Pb+2 + SO4-2 + H2O + log_k -0.28 + delta_h -6.44 kcal -Pb3O2SO4 372 - PbSO4:2PbO + 4H+ = 3Pb+2 + SO4-2 + 2H2O - log_k 10.4 - delta_h -20.750 kcal +Pb3O2SO4 372 + PbSO4:2PbO + 4 H+ = 3 Pb+2 + SO4-2 + 2 H2O + log_k 10.4 + delta_h -20.75 kcal -Pb4O3SO4 373 - PbSO4:3PbO + 6H+ = 4Pb+2 + SO4-2 + 3H2O - log_k 22.1 - delta_h -35.070 kcal +Pb4O3SO4 373 + PbSO4:3PbO + 6 H+ = 4 Pb+2 + SO4-2 + 3 H2O + log_k 22.1 + delta_h -35.07 kcal -PbHPO4 374 - PbHPO4 = Pb+2 + HPO4-2 - log_k -11.460 - delta_h 7.040 kcal +PbHPO4 374 + PbHPO4 = Pb+2 + HPO4-2 + log_k -11.46 + delta_h 7.04 kcal -Pb3(PO4)2 375 - Pb3(PO4)2 + 2H+ = 3Pb+2 + 2HPO4-2 - log_k -19.670 - delta_h -1.670 kcal +Pb3(PO4)2 375 + Pb3(PO4)2 + 2 H+ = 3 Pb+2 + 2 HPO4-2 + log_k -19.67 + delta_h -1.67 kcal -Clpyromorphite 376 - Pb5(PO4)3Cl = 5Pb+2 + 3PO4-3 + Cl- - log_k -84.430 +Clpyromorphite 376 + Pb5(PO4)3Cl = 5 Pb+2 + 3 PO4-3 + Cl- + log_k -84.43 -Hxypyromorphite 377 - Pb5(PO4)3OH + H+ = 5Pb+2 + 3PO4-3 + H2O - log_k -62.790 +Hxypyromorphite 377 + Pb5(PO4)3OH + H+ = 5 Pb+2 + 3 PO4-3 + H2O + log_k -62.79 -Pb3O2CO3 378 - PbCO3:2PbO + 4H+ = 3Pb+2 + CO3-2 + 2H2O - log_k 11.020 - delta_h -26.430 kcal +Pb3O2CO3 378 + PbCO3:2PbO + 4 H+ = 3 Pb+2 + CO3-2 + 2 H2O + log_k 11.02 + delta_h -26.43 kcal -Plumbogummite 379 - PbAl3(PO4)2(OH)5:H2O + 5H+ = Pb+2 + 3Al+3 + 2PO4-3 + 6H2O - log_k -32.790 +Plumbogummite 379 + PbAl3(PO4)2(OH)5:H2O + 5 H+ = Pb+2 + 3 Al+3 + 2 PO4-3 + 6 H2O + log_k -32.79 -Hinsdalite 380 - PbAl3PO4SO4(OH)6 + 6H+ = Pb+2 + 3Al+3 + PO4-3 + SO4-2 + 6H2O - log_k -2.5 +Hinsdalite 380 + PbAl3PO4SO4(OH)6 + 6 H+ = Pb+2 + 3 Al+3 + PO4-3 + SO4-2 + 6 H2O + log_k -2.5 -Tsumebite 381 - Pb2CuPO4(OH)3:3H2O + 3H+ = 2Pb+2 + Cu+2 + PO4-3 + 6H2O - log_k -9.790 +Tsumebite 381 + Pb2CuPO4(OH)3:3H2O + 3 H+ = 2 Pb+2 + Cu+2 + PO4-3 + 6 H2O + log_k -9.79 -PbSiO3 382 - PbSiO3 + H2O + 2H+ = Pb+2 + H4SiO4 - log_k 7.320 - delta_h -9.260 kcal +PbSiO3 382 + PbSiO3 + H2O + 2 H+ = Pb+2 + H4SiO4 + log_k 7.32 + delta_h -9.26 kcal -Pb2SiO4 383 - Pb2SiO4 + 4H+ = 2Pb+2 + H4SiO4 - log_k 19.760 - delta_h -26.0 kcal +Pb2SiO4 383 + Pb2SiO4 + 4 H+ = 2 Pb+2 + H4SiO4 + log_k 19.76 + delta_h -26 kcal -Anglesite 384 - PbSO4 = Pb+2 + SO4-2 - log_k -7.79 +Anglesite 384 + PbSO4 = Pb+2 + SO4-2 + log_k -7.79 delta_h 2.15 kcal -Galena 385 - PbS + H+ = Pb+2 + HS- - log_k -12.780 +Galena 385 + PbS + H+ = Pb+2 + HS- + log_k -12.78 delta_h 19.4 kcal -Plattnerite 386 - PbO2 + 4H+ + 2e- = Pb+2 + 2H2O - log_k 49.3 - delta_h -70.730 kcal +Plattnerite 386 + PbO2 + 4 H+ + 2 e- = Pb+2 + 2 H2O + log_k 49.3 + delta_h -70.73 kcal -Pb2O3 387 - Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2O - log_k 61.040 +Pb2O3 387 + Pb2O3 + 6 H+ + 2 e- = 2 Pb+2 + 3 H2O + log_k 61.04 -Minium 388 - Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2O - log_k 73.690 - delta_h -102.760 kcal +Minium 388 + Pb3O4 + 8 H+ + 2 e- = 3 Pb+2 + 4 H2O + log_k 73.69 + delta_h -102.76 kcal -Pb(OH)2 389 - Pb(OH)2 + 2H+ = Pb+2 + 2H2O - log_k 8.15 +Pb(OH)2 389 + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + log_k 8.15 delta_h -13.99 kcal -Laurionite 390 - PbOHCl + H+ = Pb+2 + Cl- + H2O - log_k 0.623 +Laurionite 390 + PbOHCl + H+ = Pb+2 + Cl- + H2O + log_k 0.623 -Pb2(OH)3Cl 391 - Pb2(OH)3Cl + 3H+ = 2Pb+2 + 3H2O + Cl- - log_k 8.793 +Pb2(OH)3Cl 391 + Pb2(OH)3Cl + 3 H+ = 2 Pb+2 + 3 H2O + Cl- + log_k 8.793 -Hydrocerussite 392 - Pb(OH)2:2PbCO3 + 2H+ = 3Pb+2 + 2CO3-2 + 2H2O - log_k -17.460 +Hydrocerussite 392 + Pb(OH)2:2PbCO3 + 2 H+ = 3 Pb+2 + 2 CO3-2 + 2 H2O + log_k -17.46 -Pb2O(OH)2 393 - PbO:Pb(OH)2 + 4H+ = 2Pb+2 + 3H2O - log_k 26.2 +Pb2O(OH)2 393 + PbO:Pb(OH)2 + 4 H+ = 2 Pb+2 + 3 H2O + log_k 26.2 -Pb4(OH)6SO4 394 - Pb4(OH)6SO4 + 6H+ = 4Pb+2 + SO4-2 + 6H2O - log_k 21.1 +Pb4(OH)6SO4 394 + Pb4(OH)6SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 6 H2O + log_k 21.1 -SiO2(a) 395 - SiO2 + 2H2O = H4SiO4 - log_k -2.71 +SiO2(a) 395 + SiO2 + 2 H2O = H4SiO4 + log_k -2.71 delta_h 3.34 kcal - -analytical -0.26 0.0 -731.0 0.0 0.0 + -analytical -0.26 0 -731 0 0 -FCO3Apatite 396 - Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48F- - log_k -114.4 - delta_h 39.390 kcal +FCO3Apatite 396 + Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316 Ca+2 + 0.36 Na+ + 0.144 Mg+2 + 4.8 PO4-3 + 1.2 CO3-2 + 2.48 F- + log_k -114.4 + delta_h 39.39 kcal -BaF2 398 - BaF2 = Ba+2 + 2F- - log_k -5.760 - delta_h 1.0 kcal +BaF2 398 + BaF2 = Ba+2 + 2 F- + log_k -5.76 + delta_h 1 kcal -SrF2 399 - SrF2 = Sr+2 + 2F- - log_k -8.540 - delta_h 1.250 kcal +SrF2 399 + SrF2 = Sr+2 + 2 F- + log_k -8.54 + delta_h 1.25 kcal -Dolomite 401 - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -17.09 +Dolomite 401 + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17.09 delta_h -9.436 kcal -Sulfur 402 - S + 2e- = S-2 - log_k -15.026 +Sulfur 402 + S + 2 e- = S-2 + log_k -15.026 delta_h 7.9 kcal -NiCO3 410 - NiCO3 = Ni+2 + CO3-2 - log_k -6.840 - delta_h -9.940 kcal +NiCO3 410 + NiCO3 = Ni+2 + CO3-2 + log_k -6.84 + delta_h -9.94 kcal -Ni(OH)2 411 - Ni(OH)2 + 2H+ = Ni+2 + 2H2O - log_k 10.8 - delta_h 30.450 kcal +Ni(OH)2 411 + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 10.8 + delta_h 30.45 kcal -Ni4(OH)6SO4 412 - Ni4(OH)6SO4 + 6H+ = 4Ni+2 + SO4-2 + 6H2O - log_k 32.0 +Ni4(OH)6SO4 412 + Ni4(OH)6SO4 + 6 H+ = 4 Ni+2 + SO4-2 + 6 H2O + log_k 32 -Bunsenite 413 - NiO + 2H+ = Ni+2 + H2O - log_k 12.450 - delta_h -23.920 kcal +Bunsenite 413 + NiO + 2 H+ = Ni+2 + H2O + log_k 12.45 + delta_h -23.92 kcal -Ni3(PO4)2 414 - Ni3(PO4)2 = 3Ni+2 + 2PO4-3 - log_k -31.3 +Ni3(PO4)2 414 + Ni3(PO4)2 = 3 Ni+2 + 2 PO4-3 + log_k -31.3 -Millerite 415 - NiS + H+ = Ni+2 + HS- - log_k -8.042 +Millerite 415 + NiS + H+ = Ni+2 + HS- + log_k -8.042 delta_h 2.5 kcal -Retgersite 416 - NiSO4:6H2O = Ni+2 + SO4-2 + 6H2O - log_k -2.040 +Retgersite 416 + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.04 delta_h 1.1 kcal -Morenosite 417 - NiSO4:7H2O = Ni+2 + SO4-2 + 7H2O - log_k -2.360 - delta_h 2.940 kcal +Morenosite 417 + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.36 + delta_h 2.94 kcal -Ni2SiO4 418 - Ni2SiO4 + 4H+ = 2Ni+2 + H4SiO4 - log_k 14.540 - delta_h -33.360 kcal +Ni2SiO4 418 + Ni2SiO4 + 4 H+ = 2 Ni+2 + H4SiO4 + log_k 14.54 + delta_h -33.36 kcal -Fe3(OH)8 419 - Fe3(OH)8 + 8H+ = 2Fe+3 + Fe+2 + 8H2O - log_k 20.222 +Fe3(OH)8 419 + Fe3(OH)8 + 8 H+ = 2 Fe+3 + Fe+2 + 8 H2O + log_k 20.222 -Dioptase 420 - CuSiO3:H2O + 2H+ = Cu+2 + H4SiO4 - log_k 6.5 - delta_h -8.960 kcal +Dioptase 420 + CuSiO3:H2O + 2 H+ = Cu+2 + H4SiO4 + log_k 6.5 + delta_h -8.96 kcal -AgMetal 437 - Ag = Ag+ + e- - log_k -13.510 +AgMetal 437 + Ag = Ag+ + e- + log_k -13.51 delta_h 25.234 kcal -Bromyrite 438 - AgBr = Ag+ + Br- - log_k -12.270 - delta_h 20.170 kcal +Bromyrite 438 + AgBr = Ag+ + Br- + log_k -12.27 + delta_h 20.17 kcal -Cerargyrite 439 - AgCl = Ag+ + Cl- - log_k -9.750 +Cerargyrite 439 + AgCl = Ag+ + Cl- + log_k -9.75 delta_h 15.652 kcal -Ag2CO3 440 - Ag2CO3 = 2Ag+ + CO3-2 - log_k -11.070 - delta_h 9.530 kcal +Ag2CO3 440 + Ag2CO3 = 2 Ag+ + CO3-2 + log_k -11.07 + delta_h 9.53 kcal -AgF:4H2O 441 - AgF:4H2O = Ag+ + F- + 4H2O - log_k 0.550 - delta_h 4.270 kcal +AgF:4H2O 441 + AgF:4H2O = Ag+ + F- + 4 H2O + log_k 0.55 + delta_h 4.27 kcal -Iodyrite 442 - AgI = Ag+ + I- - log_k -16.070 - delta_h 26.820 kcal +Iodyrite 442 + AgI = Ag+ + I- + log_k -16.07 + delta_h 26.82 kcal -Ag2O 443 - Ag2O + 2H+ = 2Ag+ + H2O - log_k 12.580 - delta_h -10.430 kcal +Ag2O 443 + Ag2O + 2 H+ = 2 Ag+ + H2O + log_k 12.58 + delta_h -10.43 kcal -Ag3PO4 444 - Ag3PO4 = 3Ag+ + PO4-3 - log_k -17.550 +Ag3PO4 444 + Ag3PO4 = 3 Ag+ + PO4-3 + log_k -17.55 -Acanthite 445 - Ag2S + H+ = 2Ag+ + HS- - log_k -36.050 +Acanthite 445 + Ag2S + H+ = 2 Ag+ + HS- + log_k -36.05 delta_h 53.3 kcal -Ag2SO4 446 - Ag2SO4 = 2Ag+ + SO4-2 - log_k -4.920 - delta_h 4.250 kcal +Ag2SO4 446 + Ag2SO4 = 2 Ag+ + SO4-2 + log_k -4.92 + delta_h 4.25 kcal -CuBr 459 - CuBr = Cu+ + Br- - log_k -8.210 - delta_h 13.080 kcal +CuBr 459 + CuBr = Cu+ + Br- + log_k -8.21 + delta_h 13.08 kcal -CuI 460 - CuI = Cu+ + I- - log_k -11.890 - delta_h 20.140 kcal +CuI 460 + CuI = Cu+ + I- + log_k -11.89 + delta_h 20.14 kcal -ZnBr2:2H2O 461 - ZnBr2:2H2O = Zn+2 + 2Br- + 2H2O - log_k 5.210 - delta_h -7.510 kcal +ZnBr2:2H2O 461 + ZnBr2:2H2O = Zn+2 + 2 Br- + 2 H2O + log_k 5.21 + delta_h -7.51 kcal -ZnI2 462 - ZnI2 = Zn+2 + 2I- - log_k 7.230 - delta_h -13.440 kcal +ZnI2 462 + ZnI2 = Zn+2 + 2 I- + log_k 7.23 + delta_h -13.44 kcal -CdBr2:4H2O 463 - CdBr2:4H2O = Cd+2 + 2Br- + 4H2O - log_k -2.420 - delta_h 7.230 kcal +CdBr2:4H2O 463 + CdBr2:4H2O = Cd+2 + 2 Br- + 4 H2O + log_k -2.42 + delta_h 7.23 kcal -CdI2 464 - CdI2 = Cd+2 + 2I- - log_k -3.610 - delta_h 4.080 kcal +CdI2 464 + CdI2 = Cd+2 + 2 I- + log_k -3.61 + delta_h 4.08 kcal -PbBr2 465 - PbBr2 = Pb+2 + 2Br- - log_k -5.180 +PbBr2 465 + PbBr2 = Pb+2 + 2 Br- + log_k -5.18 delta_h 8.1 kcal -PbBrF 466 - PbBrF = Pb+2 + Br- + F- - log_k -8.490 +PbBrF 466 + PbBrF = Pb+2 + Br- + F- + log_k -8.49 -PbI2 467 - PbI2 = Pb+2 + 2I- - log_k -8.070 - delta_h 15.160 kcal +PbI2 467 + PbI2 = Pb+2 + 2 I- + log_k -8.07 + delta_h 15.16 kcal -Jurbanite 471 - AlOHSO4 + H+ = Al+3 + SO4-2 + H2O - log_k -3.230 +Jurbanite 471 + AlOHSO4 + H+ = Al+3 + SO4-2 + H2O + log_k -3.23 -Basaluminite 472 - Al4(OH)10SO4 + 10H+ = 4Al+3 + SO4-2 + 10H2O - log_k 22.7 +Basaluminite 472 + Al4(OH)10SO4 + 10 H+ = 4 Al+3 + SO4-2 + 10 H2O + log_k 22.7 -As_native 557 - As + 3H2O = H3AsO3 + 3H+ + 3e- - log_k -12.532 - delta_h 115.131 kJ +As_native 557 + As + 3 H2O = H3AsO3 + 3 H+ + 3 e- + log_k -12.532 + delta_h 115.131 kJ -As2O5(cr) 488 - As2O5 + 3H2O = 2H3AsO4 - log_k 8.228 - delta_h -31.619 kJ +As2O5(cr) 488 + As2O5 + 3 H2O = 2 H3AsO4 + log_k 8.228 + delta_h -31.619 kJ -AlAsO4:2H2O 489 - AlAsO4:2H2O = Al+3 + AsO4-3 + 2H2O - log_k -15.837 +AlAsO4:2H2O 489 + AlAsO4:2H2O = Al+3 + AsO4-3 + 2 H2O + log_k -15.837 -Ca3(AsO4)2:4w 490 - Ca3(AsO4)2:4H2O = 3Ca+2 + 2AsO4-3 + 4H2O - log_k -18.905 +Ca3(AsO4)2:4w 490 + Ca3(AsO4)2:4H2O = 3 Ca+2 + 2 AsO4-3 + 4 H2O + log_k -18.905 -Cu3(AsO4)2:6w 491 - Cu3(AsO4)2:6H2O = 3Cu+2 + 2AsO4-3 + 6H2O - log_k -35.123 +Cu3(AsO4)2:6w 491 + Cu3(AsO4)2:6H2O = 3 Cu+2 + 2 AsO4-3 + 6 H2O + log_k -35.123 -Scorodite 492 - FeAsO4:2H2O = Fe+3 + AsO4-3 + 2H2O - log_k -20.249 +Scorodite 492 + FeAsO4:2H2O = Fe+3 + AsO4-3 + 2 H2O + log_k -20.249 -Mn3(AsO4)2:8H2O 493 - Mn3(AsO4)2:8H2O = 3Mn+2 + 2AsO4-3 + 8H2O - log_k -28.707 +Mn3(AsO4)2:8H2O 493 + Mn3(AsO4)2:8H2O = 3 Mn+2 + 2 AsO4-3 + 8 H2O + log_k -28.707 -Ni3(AsO4)2:8H2O 494 - Ni3(AsO4)2:8H2O = 3Ni+2 + 2AsO4-3 + 8H2O - log_k -25.511 +Ni3(AsO4)2:8H2O 494 + Ni3(AsO4)2:8H2O = 3 Ni+2 + 2 AsO4-3 + 8 H2O + log_k -25.511 -Pb3(AsO4)2 495 - Pb3(AsO4)2 = 3Pb+2 + 2AsO4-3 - log_k -35.403 +Pb3(AsO4)2 495 + Pb3(AsO4)2 = 3 Pb+2 + 2 AsO4-3 + log_k -35.403 -Zn3(AsO4)2:2.5w 496 - Zn3(AsO4)2:2.5H2O = 3Zn+2 + 2AsO4-3 + 2.5H2O - log_k -27.546 +Zn3(AsO4)2:2.5w 496 + Zn3(AsO4)2:2.5H2O = 3 Zn+2 + 2 AsO4-3 + 2.5 H2O + log_k -27.546 -Arsenolite 497 -# As4O6 + 6H2O = 4H3AsO3 +Arsenolite 497 +# As4O6 + 6H2O = 4H3AsO3 # log_k -2.801 # delta_h 14.330 kcal - As2O3 + 3H2O = 2H3AsO3 - log_k -1.38 - delta_h 30.041 kJ + As2O3 + 3 H2O = 2 H3AsO3 + log_k -1.38 + delta_h 30.041 kJ -Claudetite 498 -# As4O6 + 6H2O = 4H3AsO3 +Claudetite 498 +# As4O6 + 6H2O = 4H3AsO3 # log_k -3.065 # delta_h 13.290 kcal - As2O3 + 3H2O = 2H3AsO3 - log_k -1.34 - delta_h 28.443 kJ + As2O3 + 3 H2O = 2 H3AsO3 + log_k -1.34 + delta_h 28.443 kJ -AsI3 499 - AsI3 + 3H2O = H3AsO3 + 3I- + 3H+ - log_k 4.155 +AsI3 499 + AsI3 + 3 H2O = H3AsO3 + 3 I- + 3 H+ + log_k 4.155 delta_h 1.875 kcal -Orpiment 500 - As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ +Orpiment 500 + As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ # log_k -60.971 # delta_h 82.890 kcal - log_k -46.3 - delta_h 263.1 kJ + log_k -46.3 + delta_h 263.1 kJ -As2S3(am) 132 - As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ - log_k -44.9 - delta_h 244.2 kJ +As2S3(am) 132 + As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ + log_k -44.9 + delta_h 244.2 kJ -Realgar 501 - AsS + 3H2O = H3AsO3 + HS- + 2H+ + e- +Realgar 501 + AsS + 3 H2O = H3AsO3 + HS- + 2 H+ + e- # log_k -19.747 # delta_h 30.545 kcal - log_k -19.944 - delta_h 129.2625 kJ + log_k -19.944 + delta_h 129.2625 kJ -BlaubleiI 533 - Cu0.9Cu0.2S + H+ = 0.9Cu+2 + 0.2Cu+ + HS- - log_k -24.162 +BlaubleiI 533 + Cu0.9Cu0.2S + H+ = 0.9 Cu+2 + 0.2 Cu+ + HS- + log_k -24.162 -BlaubleiII 534 - Cu0.6Cu0.8S + H+ = 0.6Cu+2 + 0.8Cu+ + HS- - log_k -27.279 +BlaubleiII 534 + Cu0.6Cu0.8S + H+ = 0.6 Cu+2 + 0.8 Cu+ + HS- + log_k -27.279 -Anilite 535 - Cu0.25Cu1.5S + H+ = 0.25Cu+2 + 1.5Cu+ + HS- - log_k -31.878 +Anilite 535 + Cu0.25Cu1.5S + H+ = 0.25 Cu+2 + 1.5 Cu+ + HS- + log_k -31.878 delta_h 43.535 kcal -Djurleite 536 - Cu0.066Cu1.868S + H+ = 0.066Cu+2 + 1.868Cu+ + HS- - log_k -33.920 +Djurleite 536 + Cu0.066Cu1.868S + H+ = 0.066 Cu+2 + 1.868 Cu+ + HS- + log_k -33.92 delta_h 47.881 kcal -Portlandite 539 - Ca(OH)2 + 2H+ = Ca+2 + 2H2O - log_k 22.8 - delta_h -31.0 kcal +Portlandite 539 + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.8 + delta_h -31 kcal -Ba3(AsO4)2 541 - Ba3(AsO4)2 = 3Ba+2 + 2AsO4-3 - log_k -50.110 +Ba3(AsO4)2 541 + Ba3(AsO4)2 = 3 Ba+2 + 2 AsO4-3 + log_k -50.11 delta_h 9.5 kcal -Se(s) 550 - Se + H+ + 2e- = HSe- - log_k -17.322 +Se(s) 550 + Se + H+ + 2 e- = HSe- + log_k -17.322 #SemetalSe4 551 -# Se + 3H2O = SeO3-2 + 6H+ + 4e- +# Se + 3H2O = SeO3-2 + 6H+ + 4e- # log_k -59.836 -FeSe2 552 - FeSe2 + 2H+ + 2e- = Fe+2 + 2HSe- - log_k -18.580 +FeSe2 552 + FeSe2 + 2 H+ + 2 e- = Fe+2 + 2 HSe- + log_k -18.58 -SeO2 553 - SeO2 + H2O = SeO3-2 + 2H+ - log_k -8.380 +SeO2 553 + SeO2 + H2O = SeO3-2 + 2 H+ + log_k -8.38 -CaSeO3 554 - CaSeO3 = Ca+2 + SeO3-2 - log_k -5.6 +CaSeO3 554 + CaSeO3 = Ca+2 + SeO3-2 + log_k -5.6 -BaSeO3 555 - BaSeO3 = Ba+2 + SeO3-2 - log_k -6.390 +BaSeO3 555 + BaSeO3 = Ba+2 + SeO3-2 + log_k -6.39 -Fe2(SeO3)3 556 - Fe2(SeO3)3 = 2Fe+3 + 3SeO3-2 - log_k -35.430 +Fe2(SeO3)3 556 + Fe2(SeO3)3 = 2 Fe+3 + 3 SeO3-2 + log_k -35.43 -Rhodochrosite 564 - MnCO3 = Mn+2 + CO3-2 - log_k -11.13 +Rhodochrosite 564 + MnCO3 = Mn+2 + CO3-2 + log_k -11.13 delta_h -1.43 kcal -Na4UO2(CO3)3 571 - Na4UO2(CO3)3 = 4Na+ + UO2+2 + 3CO3-2 - log_k -16.290 +Na4UO2(CO3)3 571 + Na4UO2(CO3)3 = 4 Na+ + UO2+2 + 3 CO3-2 + log_k -16.29 -Uraninite(c) 573 - UO2 + 4H+ = U+4 + 2H2O - log_k -4.8 - delta_h -18.610 kcal +Uraninite(c) 573 + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.8 + delta_h -18.61 kcal -UO2(a) 574 - UO2 + 4H+ = U+4 + 2H2O - log_k 0.1 +UO2(a) 574 + UO2 + 4 H+ = U+4 + 2 H2O + log_k 0.1 -U4O9(c) 575 - U4O9 + 18H+ + 2e- = 4U+4 + 9H2O - log_k -3.384 +U4O9(c) 575 + U4O9 + 18 H+ + 2 e- = 4 U+4 + 9 H2O + log_k -3.384 delta_h -101.235 kcal -U3O8(c) 576 - U3O8 + 16H+ + 4e- = 3U+4 + 8H2O - log_k 20.530 - delta_h -116.0 kcal +U3O8(c) 576 + U3O8 + 16 H+ + 4 e- = 3 U+4 + 8 H2O + log_k 20.53 + delta_h -116 kcal -Coffinite 577 - USiO4 + 4H+ = U+4 + H4SiO4 - log_k -7.670 +Coffinite 577 + USiO4 + 4 H+ = U+4 + H4SiO4 + log_k -7.67 delta_h -11.6 kcal -UF4(c) 584 - UF4 = U+4 + 4F- - log_k -18.606 +UF4(c) 584 + UF4 = U+4 + 4 F- + log_k -18.606 delta_h -18.9 kcal -UF4:2.5H2O 585 - UF4:2.5H2O = U+4 + 4F- + 2.5H2O - log_k -27.570 +UF4:2.5H2O 585 + UF4:2.5H2O = U+4 + 4 F- + 2.5 H2O + log_k -27.57 delta_h -0.588 kcal -U(OH)2SO4 591 - U(OH)2SO4 + 2H+ = U+4 + SO4-2 + 2H2O - log_k -3.2 +U(OH)2SO4 591 + U(OH)2SO4 + 2 H+ = U+4 + SO4-2 + 2 H2O + log_k -3.2 -UO2HPO4:4H2O 592 - UO2HPO4:4H2O = UO2+2 + HPO4-2 + 4H2O - log_k -11.850 +UO2HPO4:4H2O 592 + UO2HPO4:4H2O = UO2+2 + HPO4-2 + 4 H2O + log_k -11.85 -U(HPO4)2:4H2O 593 - U(HPO4)2:4H2O = U+4 + 2PO4-3 + 2H+ + 4H2O - log_k -55.3 - delta_h 3.840 kcal +U(HPO4)2:4H2O 593 + U(HPO4)2:4H2O = U+4 + 2 PO4-3 + 2 H+ + 4 H2O + log_k -55.3 + delta_h 3.84 kcal -Ningyoite 594 - CaU(PO4)2:2H2O = U+4 + Ca+2 + 2PO4-3 + 2H2O - log_k -53.906 - delta_h -2.270 kcal +Ningyoite 594 + CaU(PO4)2:2H2O = U+4 + Ca+2 + 2 PO4-3 + 2 H2O + log_k -53.906 + delta_h -2.27 kcal -UO3(gamma) 599 - UO3 + 2H+ = UO2+2 + H2O - log_k 7.719 +UO3(gamma) 599 + UO3 + 2 H+ = UO2+2 + H2O + log_k 7.719 delta_h -19.315 kcal -Gummite 600 - UO3 + 2H+ = UO2+2 + H2O - log_k 10.403 +Gummite 600 + UO3 + 2 H+ = UO2+2 + H2O + log_k 10.403 delta_h -23.015 kcal -B-UO2(OH)2 601 - UO2(OH)2 + 2H+ = UO2+2 + 2H2O - log_k 5.544 - delta_h -13.730 kcal +B-UO2(OH)2 601 + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 5.544 + delta_h -13.73 kcal -Schoepite 602 - UO2(OH)2:H2O + 2H+ = UO2+2 + 3H2O - log_k 5.404 +Schoepite 602 + UO2(OH)2:H2O + 2 H+ = UO2+2 + 3 H2O + log_k 5.404 delta_h -12.045 kcal -Rutherfordine 606 - UO2CO3 = UO2+2 + CO3-2 - log_k -14.450 - delta_h -1.440 kcal +Rutherfordine 606 + UO2CO3 = UO2+2 + CO3-2 + log_k -14.45 + delta_h -1.44 kcal -(UO2)3(PO4)2:4w 619 - (UO2)3(PO4)2:4H2O = 3UO2+2 + 2PO4-3 + 4H2O - log_k -37.4 +(UO2)3(PO4)2:4w 619 + (UO2)3(PO4)2:4H2O = 3 UO2+2 + 2 PO4-3 + 4 H2O + log_k -37.4 delta_h 41.5 kcal -H-Autunite 620 - H2(UO2)2(PO4)2 = 2H+ + 2UO2+2 + 2PO4-3 - log_k -47.931 +H-Autunite 620 + H2(UO2)2(PO4)2 = 2 H+ + 2 UO2+2 + 2 PO4-3 + log_k -47.931 delta_h -3.6 kcal -Na-Autunite 621 - Na2(UO2)2(PO4)2 = 2Na+ + 2UO2+2 + 2PO4-3 - log_k -47.409 - delta_h -0.460 kcal +Na-Autunite 621 + Na2(UO2)2(PO4)2 = 2 Na+ + 2 UO2+2 + 2 PO4-3 + log_k -47.409 + delta_h -0.46 kcal -K-Autunite 622 - K2(UO2)2(PO4)2 = 2K+ + 2UO2+2 + 2PO4-3 - log_k -48.244 - delta_h 5.860 kcal +K-Autunite 622 + K2(UO2)2(PO4)2 = 2 K+ + 2 UO2+2 + 2 PO4-3 + log_k -48.244 + delta_h 5.86 kcal -Uramphite 623 - (NH4)2(UO2)2(PO4)2 = 2NH4+ + 2UO2+2 + 2PO4-3 - log_k -51.749 +Uramphite 623 + (NH4)2(UO2)2(PO4)2 = 2 NH4+ + 2 UO2+2 + 2 PO4-3 + log_k -51.749 delta_h 9.7 kcal -Saleeite 624 - Mg(UO2)2(PO4)2 = Mg+2 + 2UO2+2 + 2PO4-3 - log_k -43.646 - delta_h -20.180 kcal +Saleeite 624 + Mg(UO2)2(PO4)2 = Mg+2 + 2 UO2+2 + 2 PO4-3 + log_k -43.646 + delta_h -20.18 kcal -Autunite 625 - Ca(UO2)2(PO4)2 = Ca+2 + 2UO2+2 + 2PO4-3 - log_k -43.927 - delta_h -14.340 kcal +Autunite 625 + Ca(UO2)2(PO4)2 = Ca+2 + 2 UO2+2 + 2 PO4-3 + log_k -43.927 + delta_h -14.34 kcal -Sr-Autunite 626 - Sr(UO2)2(PO4)2 = Sr+2 + 2UO2+2 + 2PO4-3 - log_k -44.457 - delta_h -13.050 kcal +Sr-Autunite 626 + Sr(UO2)2(PO4)2 = Sr+2 + 2 UO2+2 + 2 PO4-3 + log_k -44.457 + delta_h -13.05 kcal -Uranocircite 627 - Ba(UO2)2(PO4)2 = Ba+2 + 2UO2+2 + 2PO4-3 - log_k -44.631 +Uranocircite 627 + Ba(UO2)2(PO4)2 = Ba+2 + 2 UO2+2 + 2 PO4-3 + log_k -44.631 delta_h -10.1 kcal -Bassetite 628 - Fe(UO2)2(PO4)2 = Fe+2 + 2UO2+2 + 2PO4-3 - log_k -44.485 +Bassetite 628 + Fe(UO2)2(PO4)2 = Fe+2 + 2 UO2+2 + 2 PO4-3 + log_k -44.485 delta_h -19.9 kcal -Torbernite 629 - Cu(UO2)2(PO4)2 = Cu+2 + 2UO2+2 + 2PO4-3 - log_k -45.279 +Torbernite 629 + Cu(UO2)2(PO4)2 = Cu+2 + 2 UO2+2 + 2 PO4-3 + log_k -45.279 delta_h -15.9 kcal -Przhevalskite 630 - Pb(UO2)2(PO4)2 = Pb+2 + 2UO2+2 + 2PO4-3 - log_k -44.365 - delta_h -11.0 kcal +Przhevalskite 630 + Pb(UO2)2(PO4)2 = Pb+2 + 2 UO2+2 + 2 PO4-3 + log_k -44.365 + delta_h -11 kcal -Uranophane 632 - Ca(UO2)2(SiO3OH)2 + 6H+ = Ca+2 + 2UO2+2 + 2H4SiO4 - log_k 17.489 +Uranophane 632 + Ca(UO2)2(SiO3OH)2 + 6 H+ = Ca+2 + 2 UO2+2 + 2 H4SiO4 + log_k 17.489 -CO2(g) - CO2 = CO2 - log_k -1.468 +CO2(g) + CO2 = CO2 + log_k -1.468 delta_h -4.776 kcal - -analytical 108.3865 0.01985076 -6919.53 -40.45154 669365.0 + -analytical 108.3865 0.01985076 -6919.53 -40.45154 669365 O2(g) - O2 = O2 + O2 = O2 # log_k -2.960 # delta_h -1.844 kcal # log K from llnl.dat Aug 23, 2005 - log_k -2.8983 - -analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005 + log_k -2.8983 + -analytic -7.5001e+0 7.8981e-3 0e+0 0e+0 2.0027e+5 H2(g) - H2 = H2 - log_k -3.150 + H2 = H2 + log_k -3.15 delta_h -1.759 kcal N2(g) - N2 = N2 - log_k -3.260 + N2 = N2 + log_k -3.26 delta_h -1.358 kcal H2S(g) - H2S = H2S - log_k -0.997 - delta_h -4.570 kcal + H2S = H2S + log_k -0.997 + delta_h -4.57 kcal CH4(g) - CH4 = CH4 - log_k -2.860 + CH4 = CH4 + log_k -2.86 delta_h -3.373 kcal NH3(g) - NH3 = NH3 - log_k 1.770 - delta_h -8.170 kcal + NH3 = NH3 + log_k 1.77 + delta_h -8.17 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - log_k 0.0 + log_k 0 Na+ + X- = NaX - log_k 0.0 + log_k 0 K+ + X- = KX - log_k 0.7 + log_k 0.7 Li+ + X- = LiX - log_k -0.08 + log_k -0.08 H+ + X- = HX - log_k 1.0 + log_k 1 NH4+ + X- = NH4X - log_k 0.6 + log_k 0.6 - Ca+2 + 2X- = CaX2 - log_k 0.8 + Ca+2 + 2 X- = CaX2 + log_k 0.8 - Mg+2 + 2X- = MgX2 - log_k 0.6 + Mg+2 + 2 X- = MgX2 + log_k 0.6 - Sr+2 + 2X- = SrX2 - log_k 0.91 + Sr+2 + 2 X- = SrX2 + log_k 0.91 - Ba+2 + 2X- = BaX2 - log_k 0.91 + Ba+2 + 2 X- = BaX2 + log_k 0.91 - Mn+2 + 2X- = MnX2 - log_k 0.52 + Mn+2 + 2 X- = MnX2 + log_k 0.52 - Fe+2 + 2X- = FeX2 - log_k 0.44 + Fe+2 + 2 X- = FeX2 + log_k 0.44 - Cu+2 + 2X- = CuX2 - log_k 0.6 + Cu+2 + 2 X- = CuX2 + log_k 0.6 - Zn+2 + 2X- = ZnX2 - log_k 0.8 + Zn+2 + 2 X- = ZnX2 + log_k 0.8 - Cd+2 + 2X- = CdX2 - log_k 0.8 + Cd+2 + 2 X- = CdX2 + log_k 0.8 - Pb+2 + 2X- = PbX2 - log_k 1.05 + Pb+2 + 2 X- = PbX2 + log_k 1.05 - Al+3 + 3X- = AlX3 - log_k 0.67 + Al+3 + 3 X- = AlX3 + log_k 0.67 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES -# All surface data from +# All surface data from # Dzombak and Morel, 1990 # # # Acid-base data from table 5.7 # -# strong binding site--Hfo_s, +# strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - log_k 0.0 + log_k 0 - Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.29 # = pKa1,int + Hfo_sOH + H+ = Hfo_sOH2+ + log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - log_k 0.0 + log_k 0 - Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.29 # = pKa1,int + Hfo_wOH + H+ = Hfo_wOH2+ + log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int ############################################### # CATIONS # @@ -3552,64 +3556,64 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 + log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - log_k 5.01 + log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ log_k -6.58 - Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ - log_k -17.60 + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ + log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - log_k 5.46 + log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 # table 10.5 + log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Silver Hfo_sOH + Ag+ = Hfo_sOAg + H+ - log_k -1.72 + log_k -1.72 Hfo_wOH + Ag+ = Hfo_wOAg + H+ - log_k -5.3 # table 10.5 + log_k -5.3 # table 10.5 # Nickel Hfo_sOH + Ni+2 = Hfo_sONi+ + H+ - log_k 0.37 + log_k 0.37 Hfo_wOH + Ni+2 = Hfo_wONi+ + H+ - log_k -2.5 # table 10.5 + log_k -2.5 # table 10.5 # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - log_k 0.47 + log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - log_k -2.91 + log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - log_k 0.99 + log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - log_k -1.99 + log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - log_k 2.89 + log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - log_k 0.6 # table 10.5 + log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - log_k 4.65 + log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - log_k 0.3 # table 10.5 + log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -3619,17 +3623,17 @@ SURFACE_SPECIES # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - log_k -0.4 # table 10.5 + log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - log_k -3.5 # table 10.5 + log_k -3.5 # table 10.5 # Uranyl Hfo_sOH + UO2+2 = Hfo_sOUO2+ + H+ - log_k 5.2 # table 10.5 + log_k 5.2 # table 10.5 Hfo_wOH + UO2+2 = Hfo_wOUO2+ + H+ - log_k 2.8 # table 10.5 + log_k 2.8 # table 10.5 # Iron # Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ @@ -3641,91 +3645,91 @@ SURFACE_SPECIES # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - log_k -0.95 + log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ log_k -2.98 - Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ log_k -11.55 ############################################### # ANIONS # ############################################### # -# Anions from table 10.6 +# Anions from table 10.6 # # Phosphate - Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - log_k 31.29 + Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + log_k 31.29 - Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - log_k 25.39 + Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - log_k 17.72 + log_k 17.72 # Arsenate - Hfo_wOH + AsO4-3 + 3H+ = Hfo_wH2AsO4 + H2O - log_k 29.31 + Hfo_wOH + AsO4-3 + 3 H+ = Hfo_wH2AsO4 + H2O + log_k 29.31 - Hfo_wOH + AsO4-3 + 2H+ = Hfo_wHAsO4- + H2O - log_k 23.51 + Hfo_wOH + AsO4-3 + 2 H+ = Hfo_wHAsO4- + H2O + log_k 23.51 Hfo_wOH + AsO4-3 = Hfo_wOHAsO4-3 - log_k 10.58 + log_k 10.58 # # Anions from table 10.7 # # Arsenite Hfo_wOH + H3AsO3 = Hfo_wH2AsO3 + H2O - log_k 5.41 + log_k 5.41 # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - log_k 0.62 + log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - log_k 7.78 + log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 + log_k 0.79 # Selenate Hfo_wOH + SeO4-2 + H+ = Hfo_wSeO4- + H2O - log_k 7.73 + log_k 7.73 Hfo_wOH + SeO4-2 = Hfo_wOHSeO4-2 - log_k 0.80 + log_k 0.8 # Selenite Hfo_wOH + SeO3-2 + H+ = Hfo_wSeO3- + H2O - log_k 12.69 + log_k 12.69 Hfo_wOH + SeO3-2 = Hfo_wOHSeO3-2 - log_k 5.17 + log_k 5.17 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - log_k 8.7 + log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - log_k 1.6 + log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for HFO # 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O - log_k 12.56 + log_k 12.56 - Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O - log_k 20.62 + Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O + log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research, 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 - Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 RATES ########### @@ -3743,15 +3747,15 @@ RATES Quartz -start -1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 -2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol -3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) -4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz -5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp -40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) # Integrate... 50 SAVE moles * TIME -end @@ -3796,38 +3800,38 @@ Quartz K-feldspar -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM K-Feldspar parameters -10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME 290 SAVE moles -end @@ -3871,38 +3875,38 @@ K-feldspar Albite -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Albite m^2/mol Albite -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM Albite parameters -10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("Albite")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME 290 SAVE moles -end @@ -3910,7 +3914,7 @@ Albite #Calcite ######## # Example of KINETICS data block for calcite rate, -# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257. +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 # KINETICS 1 # Calcite # -tol 1e-8 @@ -3921,16 +3925,16 @@ Albite Calcite -start -1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite -2 REM PARM(2) = exponent for M/M0 +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 -10 si_cc = SI("Calcite") -20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 -30 k1 = 10^(0.198 - 444.0 / TK ) -40 k2 = 10^(2.84 - 2177.0 /TK ) -50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317.0 / TK) -60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737.0 / TK ) -80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444 / TK ) +40 k2 = 10^(2.84 - 2177 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M 110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) 120 rate = rate * (1 - 10^(2/3*si_cc)) 130 moles = rate * 0.001 * TIME # convert from mmol to mol @@ -3955,18 +3959,18 @@ Calcite # -time 1 day in 10 Pyrite -start -1 REM Williamson and Rimstidt, 1994 -2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) -3 REM PARM(2) = exp for (M/M0) -4 REM PARM(3) = exp for O2 -5 REM PARM(4) = exp for H+ +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ -10 REM Dissolution in presence of DO -20 if (M <= 0) THEN GOTO 200 -30 if (SI("Pyrite") >= 0) THEN GOTO 200 -40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") -50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) -60 moles = 10^(log_area + log_rate) * TIME +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME 200 SAVE moles -end @@ -3983,19 +3987,19 @@ Pyrite # -time 30 year in 15 Organic_C -start -1 REM Additive Monod kinetics for SOC (sediment organic carbon) -2 REM Electron acceptors: O2, NO3, and SO4 +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 -10 if (M <= 0) THEN GOTO 200 -20 mO2 = MOL("O2") -30 mNO3 = TOT("N(5)") -40 mSO4 = TOT("S(6)") -50 k_O2 = 1.57e-9 # 1/sec -60 k_NO3 = 1.67e-11 # 1/sec -70 k_SO4 = 1.e-13 # 1/sec -80 rate = k_O2 * mO2/(2.94e-4 + mO2) -90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) -100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) 110 moles = rate * M * (M/M0) * TIME 200 SAVE moles -end @@ -4016,14 +4020,14 @@ Organic_C # -time 0.5 day in 10 Pyrolusite -start -10 if (M <= 0) THEN GOTO 200 -20 sr_pl = SR("Pyrolusite") -30 if (sr_pl > 1) THEN GOTO 100 -40 REM sr_pl <= 1, undersaturated -50 Fe_t = TOT("Fe(2)") -60 if Fe_t < 1e-8 then goto 200 -70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) -80 GOTO 200 +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 100 REM sr_pl > 1, supersaturated 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL diff --git a/examples/com/python/parallel_advect.py b/examples/com/python/parallel_advect.py index f02b7096..a1229d8b 100644 --- a/examples/com/python/parallel_advect.py +++ b/examples/com/python/parallel_advect.py @@ -45,7 +45,7 @@ class CoupledModel(object): processes) self.reaction_model.make_initial_state() init_conc = dict([(name, [value] * ncells) for name, value in - self.reaction_model.init_conc.items()]) + list(self.reaction_model.init_conc.items())]) self.advection_model = AdvectionModel(init_conc, self.reaction_model.inflow_conc) self.component_names = self.reaction_model.component_names @@ -56,7 +56,7 @@ class CoupledModel(object): def run(self): """Go over all time steps (shifts). """ - for shift in xrange(self.nshifts): + for shift in range(self.nshifts): self.advection_model.advect() self.advection_model.save_results(self.results) self.reaction_model.modify(self.advection_model.conc) @@ -155,7 +155,7 @@ class ReactionModel(object): self.initial_conditions) self.calculators = [root_calculator] self.cell_ranges = [(0, root_ncells)] - for process in xrange(self.processes - 1): + for process in range(self.processes - 1): self.calculators.append(PhreeqcCalculatorProxy(slave_ncells, self.initial_conditions)) self.cell_ranges.append((current_cell, @@ -193,7 +193,7 @@ class ReactionModel(object): self.conc[name] = [] for cell_range, calculator in zip(self.cell_ranges, self.calculators): current_conc = dict([(name, value[cell_range[0]:cell_range[1]]) for - name, value in new_conc.items()]) + name, value in list(new_conc.items())]) calculator.modify(current_conc) for calculator in self.calculators: conc = calculator.get_modified() @@ -251,7 +251,7 @@ class PhreeqcCalculator(object): code += self.make_selected_output(self.components) self.phreeqc.RunString(code) self.conc = self.get_selected_output() - all_names = self.conc.keys() + all_names = list(self.conc.keys()) self.component_names = [name for name in all_names if name not in ('cb', 'H', 'O')] code = '' @@ -270,7 +270,7 @@ class PhreeqcCalculator(object): end = self.ncells + 1 conc.update(new_conc) modify = [] - for index, cell in enumerate(xrange(1, end)): + for index, cell in enumerate(range(1, end)): modify.append("SOLUTION_MODIFY %d" % cell) modify.append("\t-cb %e" % conc['cb'][index]) modify.append("\t-total_h %s" % conc['H'][index]) @@ -375,7 +375,7 @@ class PhreeqcCalculatorProxy(object): def process_worker(ncells, initial_conditions, in_queue, out_queue): """This runs in another process. """ - print 'Started process with ID', os.getpid() + print('Started process with ID', os.getpid()) calculator = PhreeqcCalculator(ncells, initial_conditions) out_queue.put((calculator.inflow_conc, calculator.init_conc, calculator.component_names)) @@ -393,7 +393,7 @@ def plot(ncells, outflow, specie_names): """ colors = {'Ca': 'r', 'Cl': 'b', 'K': 'g', 'N': 'y', 'Na': 'm'} x = [i / float(ncells) for i in - xrange(1, len(outflow[specie_names[0]]) + 1)] + range(1, len(outflow[specie_names[0]]) + 1)] args = [] for name in specie_names: args.extend([x, outflow[name], colors[name]]) @@ -410,15 +410,9 @@ def measure_time(func, *args, **kwargs): """Convenience function to measure run times. """ import sys - if sys.platform == 'win32': - # time.clock is more accurate on Windows - timer_func = time.clock - else: - # but behaves differently on other platforms - timer_func = time.time - start = timer_func() + start = time.perf_counter() result = func(*args, **kwargs) - return result, time.clock() - start + return result, time.perf_counter() - start if __name__ == '__main__': @@ -460,12 +454,12 @@ if __name__ == '__main__': model.run() return model, model.results (model, outflow), run_time = measure_time(run) - print 'Statistics' - print '==========' - print 'number of cells: ', ncells - print 'number of shifts: ', nshifts - print 'number of processes:', processes - print 'run_time: ', run_time + print('Statistics') + print('==========') + print('number of cells: ', ncells) + print('number of shifts: ', nshifts) + print('number of processes:', processes) + print('run_time: ', run_time) plot(ncells, outflow, model.component_names) main(ncells=400, nshifts=1200, processes=2) diff --git a/gtest/CMakeLists.txt b/gtest/CMakeLists.txt index a2ef9367..565ab4a6 100644 --- a/gtest/CMakeLists.txt +++ b/gtest/CMakeLists.txt @@ -28,59 +28,29 @@ target_link_libraries(TestSelectedOutput IPhreeqc gtest gtest_main gmock) gtest_discover_tests(TestSelectedOutput) if (MSVC AND BUILD_SHARED_LIBS) - # copy dlls + # copy dlls for TestCVar add_custom_command(TARGET TestCVar PRE_BUILD - COMMAND ${CMAKE_COMMAND} -E copy $ $ - ) - add_custom_command(TARGET TestCVar PRE_BUILD - COMMAND ${CMAKE_COMMAND} -E copy $ $ - ) - add_custom_command(TARGET TestCVar PRE_BUILD - COMMAND ${CMAKE_COMMAND} -E copy $ $ + COMMAND ${CMAKE_COMMAND} -E copy_if_different $ $ ) - # copy dlls + # copy dlls for TestVar add_custom_command(TARGET TestVar PRE_BUILD - COMMAND ${CMAKE_COMMAND} -E copy $ $ - ) - add_custom_command(TARGET TestVar PRE_BUILD - COMMAND ${CMAKE_COMMAND} -E copy $ $ - ) - add_custom_command(TARGET TestVar PRE_BUILD - COMMAND ${CMAKE_COMMAND} -E copy $ $ + COMMAND ${CMAKE_COMMAND} -E copy_if_different $ $ ) - # copy dlls + # copy dlls for TestIPhreeqcLib add_custom_command(TARGET TestIPhreeqcLib PRE_BUILD - COMMAND ${CMAKE_COMMAND} -E copy $ $ - ) - add_custom_command(TARGET TestIPhreeqcLib PRE_BUILD - COMMAND ${CMAKE_COMMAND} -E copy $ $ - ) - add_custom_command(TARGET TestIPhreeqcLib PRE_BUILD - COMMAND ${CMAKE_COMMAND} -E copy $ $ + COMMAND ${CMAKE_COMMAND} -E copy_if_different $ $ ) - # copy dlls + # copy dlls for TestIPhreeqc add_custom_command(TARGET TestIPhreeqc PRE_BUILD - COMMAND ${CMAKE_COMMAND} -E copy $ $ - ) - add_custom_command(TARGET TestIPhreeqc PRE_BUILD - COMMAND ${CMAKE_COMMAND} -E copy $ $ - ) - add_custom_command(TARGET TestIPhreeqc PRE_BUILD - COMMAND ${CMAKE_COMMAND} -E copy $ $ + COMMAND ${CMAKE_COMMAND} -E copy_if_different $ $ ) - # copy dlls + # copy dlls for TestSelectedOutput add_custom_command(TARGET TestSelectedOutput PRE_BUILD - COMMAND ${CMAKE_COMMAND} -E copy $ $ - ) - add_custom_command(TARGET TestSelectedOutput PRE_BUILD - COMMAND ${CMAKE_COMMAND} -E copy $ $ - ) - add_custom_command(TARGET TestSelectedOutput PRE_BUILD - COMMAND ${CMAKE_COMMAND} -E copy $ $ + COMMAND ${CMAKE_COMMAND} -E copy_if_different $ $ ) endif() @@ -92,6 +62,12 @@ configure_file( COPYONLY ) +configure_file( + phreeqc.dat.90a6449 + phreeqc.dat.90a6449 + COPYONLY + ) + configure_file( ../database/phreeqc.dat phreeqc.dat diff --git a/gtest/Makefile.am b/gtest/Makefile.am index 96867991..4932cb8c 100644 --- a/gtest/Makefile.am +++ b/gtest/Makefile.am @@ -7,8 +7,9 @@ EXTRA_DIST =\ iso.dat\ kinn20140218\ missing_e.dat\ - multi_punch\ multi_punch_no_set\ + multi_punch\ + phreeqc.dat.90a6449\ phreeqc.dat.old\ TestCVar.cpp\ TestIPhreeqc.cpp\ diff --git a/gtest/TestIPhreeqc.cpp b/gtest/TestIPhreeqc.cpp index 448aa985..cf0faf1d 100644 --- a/gtest/TestIPhreeqc.cpp +++ b/gtest/TestIPhreeqc.cpp @@ -2608,7 +2608,7 @@ TEST(TestIPhreeqc, TestSetLogFileName) ASSERT_EQ(std::string("Number of infeasible solutions: 0"), lines[line++]); ASSERT_EQ(std::string("Number of basis changes: 0"), lines[line++]); ASSERT_EQ(std::string(""), lines[line++]); - ASSERT_EQ(std::string("Number of iterations: 6"), lines[line++]); + ASSERT_EQ(std::string("Number of iterations: 8"), lines[line++]); ASSERT_EQ(std::string(""), lines[line++]); ASSERT_EQ(std::string("------------------"), lines[line++]); ASSERT_EQ(std::string("End of simulation."), lines[line++]); @@ -2844,7 +2844,7 @@ TEST(TestIPhreeqc, TestGetLogStringLine) ASSERT_EQ(std::string("Number of infeasible solutions: 0"), std::string(obj.GetLogStringLine(line++))); ASSERT_EQ(std::string("Number of basis changes: 0"), std::string(obj.GetLogStringLine(line++))); ASSERT_EQ(std::string(""), std::string(obj.GetLogStringLine(line++))); - ASSERT_EQ(std::string("Number of iterations: 6"), std::string(obj.GetLogStringLine(line++))); + ASSERT_EQ(std::string("Number of iterations: 8"), std::string(obj.GetLogStringLine(line++))); ASSERT_EQ(std::string(""), std::string(obj.GetLogStringLine(line++))); ASSERT_EQ(std::string("------------------"), std::string(obj.GetLogStringLine(line++))); ASSERT_EQ(std::string("End of simulation."), std::string(obj.GetLogStringLine(line++))); @@ -4098,7 +4098,7 @@ TEST(TestIPhreeqc, TestMultiPunchCSelectedOutput) CVar var; IPhreeqc obj; - ASSERT_EQ(0, obj.LoadDatabase("phreeqc.dat")); + ASSERT_EQ(0, obj.LoadDatabase("phreeqc.dat.90a6449")); ASSERT_EQ(0, obj.RunFile("multi_punch")); ASSERT_EQ(6, obj.GetSelectedOutputRowCount()); diff --git a/gtest/TestIPhreeqcLib.cpp b/gtest/TestIPhreeqcLib.cpp index 60046a8a..c0129e48 100644 --- a/gtest/TestIPhreeqcLib.cpp +++ b/gtest/TestIPhreeqcLib.cpp @@ -2853,7 +2853,7 @@ TEST(TestIPhreeqcLib, TestSetLogFileName) ASSERT_EQ(std::string("Number of infeasible solutions: 0"), lines[line++]); ASSERT_EQ(std::string("Number of basis changes: 0"), lines[line++]); ASSERT_EQ(std::string(""), lines[line++]); - ASSERT_EQ(std::string("Number of iterations: 6"), lines[line++]); + ASSERT_EQ(std::string("Number of iterations: 8"), lines[line++]); ASSERT_EQ(std::string(""), lines[line++]); ASSERT_EQ(std::string("------------------"), lines[line++]); ASSERT_EQ(std::string("End of simulation."), lines[line++]); @@ -3115,7 +3115,7 @@ TEST(TestIPhreeqcLib, TestGetLogStringLine) ASSERT_EQ(std::string("Number of infeasible solutions: 0"), std::string(::GetLogStringLine(n, line++))); ASSERT_EQ(std::string("Number of basis changes: 0"), std::string(::GetLogStringLine(n, line++))); ASSERT_EQ(std::string(""), std::string(::GetLogStringLine(n, line++))); - ASSERT_EQ(std::string("Number of iterations: 6"), std::string(::GetLogStringLine(n, line++))); + ASSERT_EQ(std::string("Number of iterations: 8"), std::string(::GetLogStringLine(n, line++))); ASSERT_EQ(std::string(""), std::string(::GetLogStringLine(n, line++))); ASSERT_EQ(std::string("------------------"), std::string(::GetLogStringLine(n, line++))); ASSERT_EQ(std::string("End of simulation."), std::string(::GetLogStringLine(n, line++))); @@ -4064,7 +4064,7 @@ TEST(TestIPhreeqcLib, TestMultiPunchCSelectedOutput) int id = ::CreateIPhreeqc(); ASSERT_TRUE(id >= 0); - ASSERT_EQ(0, ::LoadDatabase(id, "phreeqc.dat")); + ASSERT_EQ(0, ::LoadDatabase(id, "phreeqc.dat.90a6449")); ASSERT_EQ(0, ::RunFile(id, "multi_punch")); ASSERT_EQ(6, ::GetSelectedOutputRowCount(id)); diff --git a/gtest/phreeqc.dat.90a6449 b/gtest/phreeqc.dat.90a6449 new file mode 100644 index 00000000..65c1656f --- /dev/null +++ b/gtest/phreeqc.dat.90a6449 @@ -0,0 +1,1935 @@ +# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. +# Details are given at the end of this file. + +SOLUTION_MASTER_SPECIES +# +#element species alk gfw_formula element_gfw +# +H H+ -1.0 H 1.008 +H(0) H2 0 H +H(1) H+ -1.0 0 +E e- 0 0.0 0 +O H2O 0 O 16.0 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2.0 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.9815 +Ba Ba+2 0 Ba 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO3-2 2.0 HCO3 12.0111 +C(+4) CO3-2 2.0 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +S(-2) HS- 1.0 S +N NO3- 0 N 14.0067 +N(+5) NO3- 0 N +N(+3) NO2- 0 N +N(0) N2 0 N +N(-3) NH4+ 0 N 14.0067 +#Amm AmmH+ 0 AmmH 17.031 +B H3BO3 0 B 10.81 +P PO4-3 2.0 P 30.9738 +F F- 0 F 18.9984 +Li Li+ 0 Li 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.37 +Cd Cd+2 0 Cd 112.4 +Pb Pb+2 0 Pb 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu +# redox-uncoupled gases +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # O2 gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas +Sg H2Sg 0.0 H2Sg 32.064 # H2S gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas + +SOLUTION_SPECIES +H+ = H+ + -gamma 9.0 0 + -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. +# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc +# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 +e- = e- +H2O = H2O +# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence +Ca+2 = Ca+2 + -gamma 5.0 0.1650 + -dw 0.793e-9 97 3.4 24.6 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M +Mg+2 = Mg+2 + -gamma 5.5 0.20 + -dw 0.705e-9 111 2.4 13.7 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 +Na+ = Na+ + -gamma 4.0 0.075 + -gamma 4.08 0.082 # halite solubility + -dw 1.33e-9 122 1.52 3.70 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 +# for calculating densities (rho) when I > 3... + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 +K+ = K+ + -gamma 3.5 0.015 + -dw 1.96e-9 395 2.5 21 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 +Fe+2 = Fe+2 + -gamma 6.0 0 + -dw 0.719e-9 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 +Mn+2 = Mn+2 + -gamma 6.0 0 + -dw 0.688e-9 + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 +Al+3 = Al+3 + -gamma 9.0 0 + -dw 0.559e-9 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. +Ba+2 = Ba+2 + -gamma 5.0 0 + -gamma 4.0 0.153 # Barite solubility + -dw 0.848e-9 100 + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 +Sr+2 = Sr+2 + -gamma 5.260 0.121 + -dw 0.794e-9 161 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 +H4SiO4 = H4SiO4 + -dw 1.10e-9 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 +Cl- = Cl- + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat + -dw 2.03e-9 194 1.6 6.9 + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute +CO3-2 = CO3-2 + -gamma 5.4 0 + -dw 0.955e-9 28.9 14.3 98.1 + -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 + -viscosity 0 0.301 4.12e-2 1.44e-3 1.41e-2 1.364 -2.00 +SO4-2 = SO4-2 + -gamma 5.0 -0.04 + -dw 1.07e-9 187 2.64 22.6 + -Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143 +NO3- = NO3- + -gamma 3.0 0 + -dw 1.9e-9 184 1.85 3.85 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 +#AmmH+ = AmmH+ +# -gamma 2.5 0 +# -dw 1.98e-9 312 0.95 4.53 +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 +H3BO3 = H3BO3 + -dw 1.1e-9 + -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt +PO4-3 = PO4-3 + -gamma 4.0 0 + -dw 0.612e-9 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 +F- = F- + -gamma 3.5 0 + -dw 1.46e-9 10 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 +Li+ = Li+ + -gamma 6.0 0 + -dw 1.03e-9 80 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 +Br- = Br- + -gamma 3.0 0 + -dw 2.01e-9 258 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 +Zn+2 = Zn+2 + -gamma 5.0 0 + -dw 0.715e-9 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 +Cd+2 = Cd+2 + -dw 0.717e-9 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 +Pb+2 = Pb+2 + -dw 0.945e-9 + -Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt +Cu+2 = Cu+2 + -gamma 6.0 0 + -dw 0.733e-9 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 +# redox-uncoupled gases +Hdg = Hdg # H2 + -dw 5.13e-9 + -Vm 6.52 0.78 0.12 # supcrt +Oxg = Oxg # O2 + -dw 2.35e-9 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt +Mtg = Mtg # CH4 + -dw 1.85e-9 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 +Ntg = Ntg # N2 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 + -Vm 7 # Pray et al., 1952, IEC 44. 1146 +H2Sg = H2Sg # H2S + -dw 2.1e-9 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 +# aqueous species +H2O = OH- + H+ + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -gamma 3.5 0 + -dw 5.27e-9 548 0.52 1e-10 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH +2 H2O = O2 + 4 H+ + 4 e- + -log_k -86.08 + -delta_h 134.79 kcal + -dw 2.35e-9 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt +2 H+ + 2 e- = H2 + -log_k -3.15 + -delta_h -1.759 kcal + -dw 5.13e-9 + -Vm 6.52 0.78 0.12 # supcrt +H+ + Cl- = HCl + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 +CO3-2 + H+ = HCO3- + -log_k 10.329 + -delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 + -dw 1.18e-9 -182 0.351 -4.94 + -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 + -viscosity 0 0.117 -2.91e-2 0 0 0 0.896 +CO3-2 + 2 H+ = CO2 + H2O + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 +2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T + -log_k -1.8 + -analytical_expression 8.68 -0.0103 -2190 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 + -Vm 14.58 1.84 4.14 -2.46 -3.20 +CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O + -log_k 41.071 + -delta_h -61.039 kcal + -dw 1.85e-9 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 +SO4-2 + H+ = HSO4- + -log_k 1.988 + -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -dw 1.33e-9 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 +HS- = S-2 + H+ + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5.0 0 + -dw 0.731e-9 +SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O + -log_k 33.65 + -delta_h -60.140 kcal + -gamma 3.5 0 + -dw 1.73e-9 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt +HS- + H+ = H2S + -log_k 6.994 + -delta_h -5.30 kcal + -analytical -11.17 0.02386 3279.0 + -dw 2.1e-9 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 +2H2S = (H2S)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -dw 2.1e-9 + -Vm 36.41 -71.95 0 0 2.58 +H2Sg = HSg- + H+ + -log_k -6.994 + -delta_h 5.30 kcal + -analytical_expression 11.17 -0.02386 -3279.0 + -gamma 3.5 0 + -dw 1.73e-9 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt +2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -dw 2.1e-9 + -Vm 36.41 -71.95 0 0 2.58 +NO3- + 2 H+ + 2 e- = NO2- + H2O + -log_k 28.570 + -delta_h -43.760 kcal + -gamma 3.0 0 + -dw 1.91e-9 + -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt +2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O + -log_k 207.08 + -delta_h -312.130 kcal + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 + -Vm 7 # Pray et al., 1952, IEC 44. 1146 +#AmmH+ = Amm + H+ +NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + -log_k 119.077 + -delta_h -187.055 kcal + -gamma 2.5 0 + -dw 1.98e-9 312 0.95 4.53 + -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + +NH4+ = NH3 + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -dw 2.28e-9 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 +#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O +# -log_k 119.077 +# -delta_h -187.055 kcal +# -gamma 2.5 0 +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +#AmmH+ + SO4-2 = AmmHSO4- +NH4+ + SO4-2 = NH4SO4- + -log_k 1.11; -delta_h 13.2 kcal + -gamma 5 -0.163 + -Vm 13.56 0 -31.15 0 0 0 11.20 0 -0.1287 1 + -dw 1.1e-9 400 1.85 200 + -viscosity 0.262 0 0 9.49e-2 3.81e-2 0.438 0.507 +H3BO3 = H2BO3- + H+ + -log_k -9.24 + -delta_h 3.224 kcal +H3BO3 + F- = BF(OH)3- + -log_k -0.4 + -delta_h 1.850 kcal +H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O + -log_k 7.63 + -delta_h 1.618 kcal +H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O + -log_k 13.67 + -delta_h -1.614 kcal +H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O + -log_k 20.28 + -delta_h -1.846 kcal +PO4-3 + H+ = HPO4-2 + -log_k 12.346 + -delta_h -3.530 kcal + -gamma 5.0 0 + -dw 0.69e-9 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 +PO4-3 + 2 H+ = H2PO4- + -log_k 19.553 + -delta_h -4.520 kcal + -gamma 5.4 0 + -dw 0.846e-9 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 +PO4-3 + 3H+ = H3PO4 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 +H+ + F- = HF + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt +H+ + 2 F- = HF2- + -log_k 3.76 + -delta_h 4.550 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt +Ca+2 + H2O = CaOH+ + H+ + -log_k -12.78 +Ca+2 + CO3-2 = CaCO3 + -log_k 3.224 + -delta_h 3.545 kcal + -analytic -1228.732 -0.299440 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt +Ca+2 + CO3-2 + H+ = CaHCO3+ + -log_k 11.435 + -delta_h -0.871 kcal + -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 + -gamma 6.0 0 + -dw 5.06e-10 + -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt +Ca+2 + SO4-2 = CaSO4 + -log_k 2.25 + -delta_h 1.325 kcal + -dw 4.71e-10 + -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt +Ca+2 + HSO4- = CaHSO4+ + -log_k 1.08 +Ca+2 + PO4-3 = CaPO4- + -log_k 6.459 + -delta_h 3.10 kcal + -gamma 5.4 0.0 +Ca+2 + HPO4-2 = CaHPO4 + -log_k 2.739 + -delta_h 3.3 kcal +Ca+2 + H2PO4- = CaH2PO4+ + -log_k 1.408 + -delta_h 3.4 kcal + -gamma 5.4 0.0 +# Ca+2 + F- = CaF+ + # -log_k 0.94 + # -delta_h 4.120 kcal + # -gamma 5.5 0.0 + # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt +Mg+2 + H2O = MgOH+ + H+ + -log_k -11.44 + -delta_h 15.952 kcal + -gamma 6.5 0 +Mg+2 + CO3-2 = MgCO3 + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.9910 0.00667 + -dw 4.21e-10 + -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt +Mg+2 + H+ + CO3-2 = MgHCO3+ + -log_k 11.399 + -delta_h -2.771 kcal + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4.0 0 + -dw 4.78e-10 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt +Mg+2 + SO4-2 = MgSO4 + -log_k 2.42; -delta_h 19.0 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -gamma 0 0.20 + -Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0 + -dw 4.45e-10 + -viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0 +SO4-2 + MgSO4 = Mg(SO4)2-2 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -gamma 7 0.047 + -Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2 + -Dw 1e-9 -2926 6.10e-2 -5.41 + -viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0 +Mg+2 + PO4-3 = MgPO4- + -log_k 6.589 + -delta_h 3.10 kcal + -gamma 5.4 0 +Mg+2 + HPO4-2 = MgHPO4 + -log_k 2.87 + -delta_h 3.3 kcal +Mg+2 + H2PO4- = MgH2PO4+ + -log_k 1.513 + -delta_h 3.4 kcal + -gamma 5.4 0 +Mg+2 + F- = MgF+ + -log_k 1.82 + -delta_h 3.20 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt +Na+ + OH- = NaOH + -log_k -10 # remove this complex +# Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC + # -log_k 1.27 + # -delta_h 8.91 kcal + # -dw 1.2e-9 -400 1e-10 1e-10 + # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 + # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 +Na+ + HCO3- = NaHCO3 + -log_k -0.18; -delta_h 27 kJ + -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 62–71. + -gamma 0 0.23 + -dw 6.73e-10 -400 1e-10 1e-10 + -Vm 9 -6 + -viscosity 0 0 0 0.1 3e-2 +Na+ + SO4-2 = NaSO4- + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -gamma 0 0 + -Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672 + -dw 1.183e-9 438 1e-10 1e-10 + -viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120 +Na+ + HPO4-2 = NaHPO4- + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 +Na+ + F- = NaF + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt +K+ + SO4-2 = KSO4- + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC + -gamma 0 8.3e-3 + -Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166 + -dw 5.11e-10 1694 -0.587 -4.43 + -viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975 +K+ + HPO4-2 = KHPO4- + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 +Fe+2 + H2O = FeOH+ + H+ + -log_k -9.5 + -delta_h 13.20 kcal + -gamma 5.0 0 +Fe+2 + 3H2O = Fe(OH)3- + 3H+ + -log_k -31.0 + -delta_h 30.3 kcal + -gamma 5.0 0 +Fe+2 + Cl- = FeCl+ + -log_k 0.14 +Fe+2 + CO3-2 = FeCO3 + -log_k 4.38 +Fe+2 + HCO3- = FeHCO3+ + -log_k 2.0 +Fe+2 + SO4-2 = FeSO4 + -log_k 2.25 + -delta_h 3.230 kcal + -Vm -13 0 123 +Fe+2 + HSO4- = FeHSO4+ + -log_k 1.08 +Fe+2 + 2HS- = Fe(HS)2 + -log_k 8.95 +Fe+2 + 3HS- = Fe(HS)3- + -log_k 10.987 +Fe+2 + HPO4-2 = FeHPO4 + -log_k 3.6 +Fe+2 + H2PO4- = FeH2PO4+ + -log_k 2.7 + -gamma 5.4 0 +Fe+2 + F- = FeF+ + -log_k 1.0 +Fe+2 = Fe+3 + e- + -log_k -13.02 + -delta_h 9.680 kcal + -gamma 9.0 0 +Fe+3 + H2O = FeOH+2 + H+ + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5.0 0 +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + -log_k -12.56 + -delta_h 24.8 kcal +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2H2O = Fe(OH)2 + 2H+ + -log_k -20.57 + -delta_h 28.565 kcal +2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + -log_k -2.95 + -delta_h 13.5 kcal +3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + -log_k -6.3 + -delta_h 14.3 kcal +Fe+3 + Cl- = FeCl+2 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5.0 0 +Fe+3 + 2 Cl- = FeCl2+ + -log_k 2.13 + -gamma 5.0 0 +Fe+3 + 3 Cl- = FeCl3 + -log_k 1.13 +Fe+3 + SO4-2 = FeSO4+ + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5.0 0 +Fe+3 + HSO4- = FeHSO4+2 + -log_k 2.48 +Fe+3 + 2 SO4-2 = Fe(SO4)2- + -log_k 5.38 + -delta_h 4.60 kcal +Fe+3 + HPO4-2 = FeHPO4+ + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5.0 0 +Fe+3 + H2PO4- = FeH2PO4+2 + -log_k 5.43 + -gamma 5.4 0 +Fe+3 + F- = FeF+2 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5.0 0 +Fe+3 + 2 F- = FeF2+ + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5.0 0 +Fe+3 + 3 F- = FeF3 + -log_k 14.0 + -delta_h 5.4 kcal +Mn+2 + H2O = MnOH+ + H+ + -log_k -10.59 + -delta_h 14.40 kcal + -gamma 5.0 0 +Mn+2 + 3H2O = Mn(OH)3- + 3H+ + -log_k -34.8 + -gamma 5.0 0 +Mn+2 + Cl- = MnCl+ + -log_k 0.61 + -gamma 5.0 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 +Mn+2 + 2 Cl- = MnCl2 + -log_k 0.25 + -Vm 1e-5 0 144 +Mn+2 + 3 Cl- = MnCl3- + -log_k -0.31 + -gamma 5.0 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 +Mn+2 + CO3-2 = MnCO3 + -log_k 4.9 +Mn+2 + HCO3- = MnHCO3+ + -log_k 1.95 + -gamma 5.0 0 +Mn+2 + SO4-2 = MnSO4 + -log_k 2.25 + -delta_h 3.370 kcal + -Vm -1.31 -1.83 62.3 -2.7 +Mn+2 + 2 NO3- = Mn(NO3)2 + -log_k 0.6 + -delta_h -0.396 kcal + -Vm 6.16 0 29.4 0 0.9 +Mn+2 + F- = MnF+ + -log_k 0.84 + -gamma 5.0 0 +Mn+2 = Mn+3 + e- + -log_k -25.51 + -delta_h 25.80 kcal + -gamma 9.0 0 +Al+3 + H2O = AlOH+2 + H+ + -log_k -5.0 + -delta_h 11.49 kcal + -analytic -38.253 0.0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. +Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + -log_k -10.1 + -delta_h 26.90 kcal + -gamma 5.4 0 + -analytic 88.50 0.0 -9391.6 -27.121 +Al+3 + 3 H2O = Al(OH)3 + 3 H+ + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0.0 -18247.8 -73.597 +Al+3 + 4 H2O = Al(OH)4- + 4 H+ + -log_k -22.7 + -delta_h 42.30 kcal + -analytic 51.578 0.0 -11168.9 -14.865 + -gamma 4.5 0 + -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 +Al+3 + SO4-2 = AlSO4+ + -log_k 3.5 + -delta_h 2.29 kcal + -gamma 4.5 0 +Al+3 + 2SO4-2 = Al(SO4)2- + -log_k 5.0 + -delta_h 3.11 kcal + -gamma 4.5 0 +Al+3 + HSO4- = AlHSO4+2 + -log_k 0.46 +Al+3 + F- = AlF+2 + -log_k 7.0 + -delta_h 1.060 kcal + -gamma 5.4 0 +Al+3 + 2 F- = AlF2+ + -log_k 12.7 + -delta_h 1.980 kcal + -gamma 5.4 0 +Al+3 + 3 F- = AlF3 + -log_k 16.8 + -delta_h 2.160 kcal +Al+3 + 4 F- = AlF4- + -log_k 19.4 + -delta_h 2.20 kcal + -gamma 4.5 0 +# Al+3 + 5 F- = AlF5-2 + # log_k 20.6 + # delta_h 1.840 kcal +# Al+3 + 6 F- = AlF6-3 + # log_k 20.6 + # delta_h -1.670 kcal +H4SiO4 = H3SiO4- + H+ + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 +H4SiO4 = H2SiO4-2 + 2 H+ + -log_k -23.0 + -delta_h 17.6 kcal + -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 + -gamma 5.4 0 +H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O + -log_k 30.18 + -delta_h -16.260 kcal + -gamma 5.0 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt +Ba+2 + H2O = BaOH+ + H+ + -log_k -13.47 + -gamma 5.0 0 +Ba+2 + CO3-2 = BaCO3 + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt +Ba+2 + HCO3- = BaHCO3+ + -log_k 0.982 + -delta_h 5.56 kcal + -analytic -3.0938 0.013669 +Ba+2 + SO4-2 = BaSO4 + -log_k 2.7 +Sr+2 + H2O = SrOH+ + H+ + -log_k -13.29 + -gamma 5.0 0 +Sr+2 + CO3-2 + H+ = SrHCO3+ + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 +Sr+2 + CO3-2 = SrCO3 + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt +Sr+2 + SO4-2 = SrSO4 + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility +Li+ + SO4-2 = LiSO4- + -log_k 0.64 + -gamma 5.0 0 +Cu+2 + e- = Cu+ + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 +Cu+ + 2Cl- = CuCl2- + -log_k 5.50 + -delta_h -0.42 kcal + -gamma 4.0 0 +Cu+ + 3Cl- = CuCl3-2 + -log_k 5.70 + -delta_h 0.26 kcal + -gamma 5.0 0.0 +Cu+2 + CO3-2 = CuCO3 + -log_k 6.73 +Cu+2 + 2CO3-2 = Cu(CO3)2-2 + -log_k 9.83 +Cu+2 + HCO3- = CuHCO3+ + -log_k 2.7 +Cu+2 + Cl- = CuCl+ + -log_k 0.43 + -delta_h 8.65 kcal + -gamma 4.0 0 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2Cl- = CuCl2 + -log_k 0.16 + -delta_h 10.56 kcal + -Vm 26.8 0 -136 +Cu+2 + 3Cl- = CuCl3- + -log_k -2.29 + -delta_h 13.69 kcal + -gamma 4.0 0 +Cu+2 + 4Cl- = CuCl4-2 + -log_k -4.59 + -delta_h 17.78 kcal + -gamma 5.0 0 +Cu+2 + F- = CuF+ + -log_k 1.26 + -delta_h 1.62 kcal +Cu+2 + H2O = CuOH+ + H+ + -log_k -8.0 + -gamma 4.0 0 +Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + -log_k -13.68 +Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + -log_k -26.9 +Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + -log_k -39.6 +2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ + -log_k -10.359 + -delta_h 17.539 kcal + -analytical 2.497 0.0 -3833.0 +Cu+2 + SO4-2 = CuSO4 + -log_k 2.31 + -delta_h 1.220 kcal + -Vm 5.21 0 -14.6 +Cu+2 + 3HS- = Cu(HS)3- + -log_k 25.9 +Zn+2 + H2O = ZnOH+ + H+ + -log_k -8.96 + -delta_h 13.4 kcal +Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + -log_k -16.9 +Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + -log_k -28.4 +Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + -log_k -41.2 +Zn+2 + Cl- = ZnCl+ + -log_k 0.43 + -delta_h 7.79 kcal + -gamma 4.0 0 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 +Zn+2 + 2 Cl- = ZnCl2 + -log_k 0.45 + -delta_h 8.5 kcal + -Vm -10.1 4.57 241 -2.97 -1e-3 +Zn+2 + 3Cl- = ZnCl3- + -log_k 0.5 + -delta_h 9.56 kcal + -gamma 4.0 0 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 +Zn+2 + 4Cl- = ZnCl4-2 + -log_k 0.2 + -delta_h 10.96 kcal + -gamma 5.0 0 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 +Zn+2 + H2O + Cl- = ZnOHCl + H+ + -log_k -7.48 +Zn+2 + 2HS- = Zn(HS)2 + -log_k 14.94 +Zn+2 + 3HS- = Zn(HS)3- + -log_k 16.1 +Zn+2 + CO3-2 = ZnCO3 + -log_k 5.3 +Zn+2 + 2CO3-2 = Zn(CO3)2-2 + -log_k 9.63 +Zn+2 + HCO3- = ZnHCO3+ + -log_k 2.1 +Zn+2 + SO4-2 = ZnSO4 + -log_k 2.37 + -delta_h 1.36 kcal + -Vm 2.51 0 18.8 +Zn+2 + 2SO4-2 = Zn(SO4)2-2 + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 +Zn+2 + Br- = ZnBr+ + -log_k -0.58 +Zn+2 + 2Br- = ZnBr2 + -log_k -0.98 +Zn+2 + F- = ZnF+ + -log_k 1.15 + -delta_h 2.22 kcal +Cd+2 + H2O = CdOH+ + H+ + -log_k -10.08 + -delta_h 13.1 kcal +Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + -log_k -20.35 +Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + -log_k -33.3 +Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + -log_k -47.35 +2Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -9.39 + -delta_h 10.9 kcal +Cd+2 + H2O + Cl- = CdOHCl + H+ + -log_k -7.404 + -delta_h 4.355 kcal +Cd+2 + NO3- = CdNO3+ + -log_k 0.4 + -delta_h -5.2 kcal + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 +Cd+2 + Cl- = CdCl+ + -log_k 1.98 + -delta_h 0.59 kcal + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 +Cd+2 + 2 Cl- = CdCl2 + -log_k 2.6 + -delta_h 1.24 kcal + -Vm 5.53 +Cd+2 + 3 Cl- = CdCl3- + -log_k 2.4 + -delta_h 3.9 kcal + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 +Cd+2 + CO3-2 = CdCO3 + -log_k 2.9 +Cd+2 + 2CO3-2 = Cd(CO3)2-2 + -log_k 6.4 +Cd+2 + HCO3- = CdHCO3+ + -log_k 1.5 +Cd+2 + SO4-2 = CdSO4 + -log_k 2.46 + -delta_h 1.08 kcal + -Vm 10.4 0 57.9 +Cd+2 + 2SO4-2 = Cd(SO4)2-2 + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 +Cd+2 + Br- = CdBr+ + -log_k 2.17 + -delta_h -0.81 kcal +Cd+2 + 2Br- = CdBr2 + -log_k 2.9 +Cd+2 + F- = CdF+ + -log_k 1.1 +Cd+2 + 2F- = CdF2 + -log_k 1.5 +Cd+2 + HS- = CdHS+ + -log_k 10.17 +Cd+2 + 2HS- = Cd(HS)2 + -log_k 16.53 +Cd+2 + 3HS- = Cd(HS)3- + -log_k 18.71 +Cd+2 + 4HS- = Cd(HS)4-2 + -log_k 20.9 +Pb+2 + H2O = PbOH+ + H+ + -log_k -7.71 +Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + -log_k -17.12 +Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + -log_k -28.06 +Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + -log_k -39.7 +2 Pb+2 + H2O = Pb2OH+3 + H+ + -log_k -6.36 +Pb+2 + Cl- = PbCl+ + -log_k 1.6 + -delta_h 4.38 kcal + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt +Pb+2 + 2 Cl- = PbCl2 + -log_k 1.8 + -delta_h 1.08 kcal + -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt +Pb+2 + 3 Cl- = PbCl3- + -log_k 1.7 + -delta_h 2.17 kcal + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt +Pb+2 + 4 Cl- = PbCl4-2 + -log_k 1.38 + -delta_h 3.53 kcal + -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt +Pb+2 + CO3-2 = PbCO3 + -log_k 7.24 +Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + -log_k 10.64 +Pb+2 + HCO3- = PbHCO3+ + -log_k 2.9 +Pb+2 + SO4-2 = PbSO4 + -log_k 2.75 +Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + -log_k 3.47 +Pb+2 + 2HS- = Pb(HS)2 + -log_k 15.27 +Pb+2 + 3HS- = Pb(HS)3- + -log_k 16.57 +3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ + -log_k -23.88 + -delta_h 26.5 kcal +Pb+2 + NO3- = PbNO3+ + -log_k 1.17 +Pb+2 + Br- = PbBr+ + -log_k 1.77 + -delta_h 2.88 kcal +Pb+2 + 2Br- = PbBr2 + -log_k 1.44 +Pb+2 + F- = PbF+ + -log_k 1.25 +Pb+2 + 2F- = PbF2 + -log_k 2.56 +Pb+2 + 3F- = PbF3- + -log_k 3.42 +Pb+2 + 4F- = PbF4-2 + -log_k 3.1 + +PHASES +Calcite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.48 + -delta_h -2.297 kcal + -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 + -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) +Aragonite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.336 + -delta_h -2.589 kcal + -analytic -171.9773 -0.077993 2903.293 71.595 + -Vm 34.04 +Dolomite + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + -log_k -17.09 + -delta_h -9.436 kcal + -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275. + -Vm 64.5 +Siderite + FeCO3 = Fe+2 + CO3-2 + -log_k -10.89 + -delta_h -2.480 kcal + -Vm 29.2 +Rhodochrosite + MnCO3 = Mn+2 + CO3-2 + -log_k -11.13 + -delta_h -1.430 kcal + -Vm 31.1 +Strontianite + SrCO3 = Sr+2 + CO3-2 + -log_k -9.271 + -delta_h -0.400 kcal + -analytic 155.0305 0.0 -7239.594 -56.58638 + -Vm 39.69 +Witherite + BaCO3 = Ba+2 + CO3-2 + -log_k -8.562 + -delta_h 0.703 kcal + -analytic 607.642 0.121098 -20011.25 -236.4948 + -Vm 46 +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + -log_k -4.58 + -delta_h -0.109 kcal + -analytic 68.2401 0.0 -3221.51 -25.0627 + -analytical_expression 93.7 5.99E-03 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 + -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) +Anhydrite + CaSO4 = Ca+2 + SO4-2 + -log_k -4.36 + -delta_h -1.710 kcal + -analytic 84.90 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323. + -Vm 46.1 # 136.14 / 2.95 +Celestite + SrSO4 = Sr+2 + SO4-2 + -log_k -6.63 + -delta_h -4.037 kcal +# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 + -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464. + -Vm 46.4 +Barite + BaSO4 = Ba+2 + SO4-2 + -log_k -9.97 + -delta_h 6.35 kcal + -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 + -Vm 52.9 +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 + -Vm 65.5 +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Vm 216 +Thenardite + Na2SO4 = 2 Na+ + SO4-2 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -Vm 52.9 +Epsomite + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 +Hexahydrite + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 +Kieserite + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 +Hydroxyapatite + Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + -log_k -3.421 + -delta_h -36.155 kcal + -Vm 128.9 +Fluorite + CaF2 = Ca+2 + 2 F- + -log_k -10.6 + -delta_h 4.69 kcal + -analytic 66.348 0.0 -4298.2 -25.271 + -Vm 15.7 +SiO2(a) + SiO2 + 2 H2O = H4SiO4 + -log_k -2.71 + -delta_h 3.340 kcal + -analytic -0.26 0.0 -731.0 +Chalcedony + SiO2 + 2 H2O = H4SiO4 + -log_k -3.55 + -delta_h 4.720 kcal + -analytic -0.09 0.0 -1032.0 + -Vm 23.1 +Quartz + SiO2 + 2 H2O = H4SiO4 + -log_k -3.98 + -delta_h 5.990 kcal + -analytic 0.41 0.0 -1309.0 + -Vm 22.67 +Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + -log_k 8.11 + -delta_h -22.800 kcal + -Vm 32.22 +Al(OH)3(a) + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + -log_k 10.8 + -delta_h -26.500 kcal +Kaolinite + Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 + -log_k 7.435 + -delta_h -35.300 kcal + -Vm 99.35 +Albite + NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 + -log_k -18.002 + -delta_h 25.896 kcal + -Vm 101.31 +Anorthite + CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 + -log_k -19.714 + -delta_h 11.580 kcal + -Vm 105.05 +K-feldspar + KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 + -log_k -20.573 + -delta_h 30.820 kcal + -Vm 108.15 +K-mica + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 + -log_k 12.703 + -delta_h -59.376 kcal +Chlorite(14A) + Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O + -log_k 68.38 + -delta_h -151.494 kcal +Ca-Montmorillonite + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + -log_k -45.027 + -delta_h 58.373 kcal + -Vm 156.16 +Talc + Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 + -log_k 21.399 + -delta_h -46.352 kcal + -Vm 68.34 +Illite + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ + -log_k -40.267 + -delta_h 54.684 kcal + -Vm 141.48 +Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 + -log_k 32.2 + -delta_h -46.800 kcal + -analytic 13.248 0.0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 +Sepiolite + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 15.760 + -delta_h -10.700 kcal + -Vm 143.765 +Sepiolite(d) + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 18.66 +Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + -log_k -4.008 + -delta_h -30.845 kcal + -Vm 30.39 +Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + -log_k -1.0 + -delta_h -14.48 kcal + -Vm 20.84 +Fe(OH)3(a) + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + -log_k 4.891 +Pyrite + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + -log_k -18.479 + -delta_h 11.300 kcal + -Vm 23.48 +FeS(ppt) + FeS + H+ = Fe+2 + HS- + -log_k -3.915 +Mackinawite + FeS + H+ = Fe+2 + HS- + -log_k -4.648 + -Vm 20.45 +Sulfur + S + 2H+ + 2e- = H2S + -log_k 4.882 + -delta_h -9.5 kcal +Vivianite + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + -log_k -36.0 +Pyrolusite # H2O added for surface calc's + MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O + -log_k 41.38 + -delta_h -65.110 kcal +Hausmannite + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + -log_k 61.03 + -delta_h -100.640 kcal +Manganite + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + -log_k 25.34 +Pyrochroite + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + -log_k 15.2 +Halite + NaCl = Cl- + Na+ + log_k 1.570 + -delta_h 1.37 + #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. + -Vm 27.1 +Sylvite + KCl = K+ + Cl- + log_k 0.900 + -delta_h 8.5 + # -analytic 3.984 0.0 -919.55 + Vm 37.5 +# Gases... +CO2(g) + CO2 = CO2 + -log_k -1.468 + -delta_h -4.776 kcal + -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 + -T_c 304.2 # critical T, K + -P_c 72.86 # critical P, atm + -Omega 0.225 # acentric factor +H2O(g) + H2O = H2O + -log_k 1.506; delta_h -44.03 kJ + -T_c 647.3; -P_c 217.60; -Omega 0.344 + -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 +O2(g) + O2 = O2 + -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 + -T_c 154.6; -P_c 49.80; -Omega 0.021 +H2(g) + H2 = H2 + -log_k -3.1050 + -delta_h -4.184 kJ + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.80; -Omega -0.225 +N2(g) + N2 = N2 + -log_k -3.1864 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + -T_c 126.2; -P_c 33.50; -Omega 0.039 +H2S(g) + H2S = H+ + HS- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.20; -Omega 0.1 +CH4(g) + CH4 = CH4 + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 +#Amm(g) +# Amm = Amm +NH3(g) + NH3 = NH3 + -log_k 1.7966 + -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 +# redox-uncoupled gases +Oxg(g) + Oxg = Oxg + -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 + -T_c 154.6 ; -P_c 49.80 ; -Omega 0.021 +Hdg(g) + Hdg = Hdg + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2 ; -P_c 12.80 ; -Omega -0.225 +Ntg(g) + Ntg = Ntg + -analytic -58.453 1.81800e-3 3199 17.909 -27460 + T_c 126.2 ; -P_c 33.50 ; -Omega 0.039 +Mtg(g) + Mtg = Mtg + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 +H2Sg(g) + H2Sg = H+ + HSg- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 +Melanterite + FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 + -log_k -2.209 + -delta_h 4.910 kcal + -analytic 1.447 -0.004153 0.0 0.0 -214949.0 +Alunite + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O + -log_k -1.4 + -delta_h -50.250 kcal +Jarosite-K + KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 + -log_k -9.21 + -delta_h -31.280 kcal +Zn(OH)2(e) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + -log_k 11.5 +Smithsonite + ZnCO3 = Zn+2 + CO3-2 + -log_k -10.0 + -delta_h -4.36 kcal +Sphalerite + ZnS + H+ = Zn+2 + HS- + -log_k -11.618 + -delta_h 8.250 kcal +Willemite 289 + Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 + -log_k 15.33 + -delta_h -33.37 kcal +Cd(OH)2 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + -log_k 13.65 +Otavite 315 + CdCO3 = Cd+2 + CO3-2 + -log_k -12.1 + -delta_h -0.019 kcal +CdSiO3 328 + CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 + -log_k 9.06 + -delta_h -16.63 kcal +CdSO4 329 + CdSO4 = Cd+2 + SO4-2 + -log_k -0.1 + -delta_h -14.74 kcal +Cerussite 365 + PbCO3 = Pb+2 + CO3-2 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 + PbSO4 = Pb+2 + SO4-2 + -log_k -7.79 + -delta_h 2.15 kcal +Pb(OH)2 389 + Pb(OH)2 + 2H+ = Pb+2 + 2H2O + -log_k 8.15 + -delta_h -13.99 kcal + +EXCHANGE_MASTER_SPECIES + X X- +EXCHANGE_SPECIES + X- = X- + -log_k 0.0 + + Na+ + X- = NaX + -log_k 0.0 + -gamma 4.08 0.082 + + K+ + X- = KX + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 + + Li+ + X- = LiX + -log_k -0.08 + -gamma 6.0 0 + -delta_h 1.4 # Merriam & Thomas, 1956 + +# !!!!! +# H+ + X- = HX +# -log_k 1.0 +# -gamma 9.0 0 + +# AmmH+ + X- = AmmHX + NH4+ + X- = NH4X + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 + + Ca+2 + 2X- = CaX2 + -log_k 0.8 + -gamma 5.0 0.165 + -delta_h 7.2 # Van Bladel & Gheyl, 1980 + + Mg+2 + 2X- = MgX2 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 + + Sr+2 + 2X- = SrX2 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 + + Ba+2 + 2X- = BaX2 + -log_k 0.91 + -gamma 4.0 0.153 + -delta_h 4.5 # Laudelout et al., 1968 + + Mn+2 + 2X- = MnX2 + -log_k 0.52 + -gamma 6.0 0 + + Fe+2 + 2X- = FeX2 + -log_k 0.44 + -gamma 6.0 0 + + Cu+2 + 2X- = CuX2 + -log_k 0.6 + -gamma 6.0 0 + + Zn+2 + 2X- = ZnX2 + -log_k 0.8 + -gamma 5.0 0 + + Cd+2 + 2X- = CdX2 + -log_k 0.8 + -gamma 0.0 0 + + Pb+2 + 2X- = PbX2 + -log_k 1.05 + -gamma 0.0 0 + + Al+3 + 3X- = AlX3 + -log_k 0.41 + -gamma 9.0 0 + + AlOH+2 + 2X- = AlOHX2 + -log_k 0.89 + -gamma 0.0 0 + +SURFACE_MASTER_SPECIES + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH +SURFACE_SPECIES +# All surface data from +# Dzombak and Morel, 1990 +# +# +# Acid-base data from table 5.7 +# +# strong binding site--Hfo_s, + + Hfo_sOH = Hfo_sOH + -log_k 0 + + Hfo_sOH + H+ = Hfo_sOH2+ + -log_k 7.29 # = pKa1,int + + Hfo_sOH = Hfo_sO- + H+ + -log_k -8.93 # = -pKa2,int + +# weak binding site--Hfo_w + + Hfo_wOH = Hfo_wOH + -log_k 0 + + Hfo_wOH + H+ = Hfo_wOH2+ + -log_k 7.29 # = pKa1,int + + Hfo_wOH = Hfo_wO- + H+ + -log_k -8.93 # = -pKa2,int +############################################### +# CATIONS # +############################################### +# +# Cations from table 10.1 or 10.5 +# +# Calcium + Hfo_sOH + Ca+2 = Hfo_sOHCa+2 + -log_k 4.97 + + Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ + -log_k -5.85 +# Strontium + Hfo_sOH + Sr+2 = Hfo_sOHSr+2 + -log_k 5.01 + + Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ + -log_k -6.58 + + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ + -log_k -17.6 +# Barium + Hfo_sOH + Ba+2 = Hfo_sOHBa+2 + -log_k 5.46 + + Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ + -log_k -7.2 # table 10.5 +# +# Cations from table 10.2 +# +# Cadmium + Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ + -log_k 0.47 + + Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ + -log_k -2.91 +# Zinc + Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ + -log_k 0.99 + + Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ + -log_k -1.99 +# Copper + Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ + -log_k 2.89 + + Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ + -log_k 0.6 # table 10.5 +# Lead + Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ + -log_k 4.65 + + Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ + -log_k 0.3 # table 10.5 +# +# Derived constants table 10.5 +# +# Magnesium + Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ + -log_k -4.6 +# Manganese + Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ + -log_k -0.4 # table 10.5 + + Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ + -log_k -3.5 # table 10.5 +# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 + Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ + -log_k -0.95 +# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M + Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ + -log_k -2.98 + + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + -log_k -11.55 +############################################### +# ANIONS # +############################################### +# +# Anions from table 10.6 +# +# Phosphate + Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O + -log_k 31.29 + + Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O + -log_k 25.39 + + Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O + -log_k 17.72 +# +# Anions from table 10.7 +# +# Borate + Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O + -log_k 0.62 +# +# Anions from table 10.8 +# +# Sulfate + Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O + -log_k 7.78 + + Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 + -log_k 0.79 +# +# Derived constants table 10.10 +# + Hfo_wOH + F- + H+ = Hfo_wF + H2O + -log_k 8.7 + + Hfo_wOH + F- = Hfo_wOHF- + -log_k 1.6 +# +# Carbonate: Van Geen et al., 1994 reoptimized for D&M model +# + Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O + -log_k 12.56 + + Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O + -log_k 20.62 +# +# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. +# + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 + +RATES + +########### +#Quartz +########### +# +####### +# Example of quartz kinetic rates block: +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 + +Quartz + -start +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 + +10 dif_temp = 1/TK - 1/298 +20 pk_w = 13.7 + 4700.4 * dif_temp +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +# Integrate... +50 SAVE moles * TIME + -end + +########### +#K-feldspar +########### +# +# Sverdrup and Warfvinge, 1995, Estimating field weathering rates +# using laboratory kinetics: Reviews in mineralogy and geochemistry, +# vol. 31, p. 485-541. +# +# As described in: +# Appelo and Postma, 2005, Geochemistry, groundwater +# and pollution, 2nd Edition: A.A. Balkema Publishers, +# p. 162-163 and 395-399. +# +# Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm) +# Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L +# GFW Kspar 0.278 kg/mol +# +# Moles of Kspar per liter pore space calculation: +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space +# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space +# +# Specific area calculation: +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere +# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar +# +# +# Example of KINETICS data block for K-feldspar rate: +# KINETICS 1 +# K-feldspar +# -m0 2.18 # 10% Kspar, 0.1 mm cubes +# -m 2.18 # Moles per L pore space +# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 + +K-feldspar + -start +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 +100 REM Generic rate follows +110 dif_temp = 1/TK - 1/281 +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +130 REM rate by H+ +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +160 REM rate by hydrolysis +170 pk_H2O = pk_H2O + e_H2O * dif_temp +180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) +190 REM rate by OH- +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +220 REM rate by CO2 +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME +290 SAVE moles + -end + + +########### +#Albite +########### +# +# Sverdrup and Warfvinge, 1995, Estimating field weathering rates +# using laboratory kinetics: Reviews in mineralogy and geochemistry, +# vol. 31, p. 485-541. +# +# As described in: +# Appelo and Postma, 2005, Geochemistry, groundwater +# and pollution, 2nd Edition: A.A. Balkema Publishers, +# p. 162-163 and 395-399. +# +# Example of KINETICS data block for Albite rate: +# KINETICS 1 +# Albite +# -m0 0.46 # 2% Albite, 0.1 mm cubes +# -m 0.46 # Moles per L pore space +# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 +# +# Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) +# Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L +# GFW Albite 0.262 kg/mol +# +# Moles of Albite per liter pore space calculation: +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space +# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space +# +# Specific area calculation: +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere +# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite + +Albite + -start +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 +100 REM Generic rate follows +110 dif_temp = 1/TK - 1/281 +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +130 REM rate by H+ +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +160 REM rate by hydrolysis +170 pk_H2O = pk_H2O + e_H2O * dif_temp +180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) +190 REM rate by OH- +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +220 REM rate by CO2 +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME +290 SAVE moles + -end + +######## +#Calcite +######## +# Example of KINETICS data block for calcite rate, +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257. +# KINETICS 1 +# Calcite +# -tol 1e-8 +# -m0 3.e-3 +# -m 3.e-3 +# -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor +# -time 1 day + +Calcite + -start +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 + +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444.0 / TK ) +40 k2 = 10^(2.84 - 2177.0 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317.0 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737.0 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) +120 rate = rate * (1 - 10^(2/3*si_cc)) +130 moles = rate * 0.001 * TIME # convert from mmol to mol +200 SAVE moles + -end + +####### +#Pyrite +####### +# +# Williamson, M.A. and Rimstidt, J.D., 1994, +# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454, +# rate equation is mol m^-2 s^-1. +# +# Example of KINETICS data block for pyrite rate: +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 0.3 0.67 .5 -0.11 +# -time 1 day in 10 +Pyrite + -start +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ + +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME +200 SAVE moles + -end + +########## +#Organic_C +########## +# +# Example of KINETICS data block for SOC (sediment organic carbon): +# KINETICS 1 +# Organic_C +# -formula C +# -tol 1e-8 +# -m 5e-3 # SOC in mol +# -time 30 year in 15 +Organic_C + -start +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 + +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +110 moles = rate * M * (M/M0) * TIME +200 SAVE moles + -end + +########### +#Pyrolusite +########### +# +# Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247. +# Rate equation given as mol L^-1 s^-1 +# +# Example of KINETICS data block for Pyrolusite +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +# -time 0.5 day in 10 +Pyrolusite + -start +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 +100 REM sr_pl > 1, supersaturated +110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME +200 SAVE moles * SOLN_VOL + -end +END +# ============================================================================================= +#(a) means amorphous. (d) means disordered, or less crystalline. +#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), +#precipitated, indicates an initial precipitate that is less crystalline. +#Zn(OH)2(e) indicates a specific crystal form, epsilon. +# ============================================================================================= +# For the reaction aA + bB = cC + dD, +# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), +# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). +# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. +# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. +# Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are +# hard-coded in calc_PR(): +# kij CH4 CO2 H2S N2 +# H2O 0.49 0.19 0.19 0.49 +# ============================================================================================= +# The molar volumes of solids are entered with +# -Vm vm cm3/mol +# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. +# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from +# Deer, Howie and Zussman, The rock-forming minerals, Longman. +# -------------------- +# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- +# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# The volume (cm3/mol) is +# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + +# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) +# + z^2 / 2 * Av * f(I^0.5) +# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 +# Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). +# 41.84 transforms cal/bar/mol into cm3/mol. +# pb is pressure in bar. +# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, +# W is fitted on measured solution densities. +# z is charge of the solute species. +# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). +# a0 is the ion-size parameter in the extended Debye-Hückel equation: +# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), +# a0 = -gamma x for cations, = 0 for anions. +# For details, consult ref. 1. +# ============================================================================================= +# The viscosity is calculated with a (modified) Jones-Dole equation: +# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) +# Parameters are for calculating the B and D terms: +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan +# z_i is absolute charge number, m_i is molality of i +# B_i = b0 + b1 exp(-b2 * tc) +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# D_i = d1 + exp(-d2 tc) +# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term. +# For details, consult ref. 4. +# +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. +# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. +# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. +# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp +# +# ============================================================================================= +# It remains the responsibility of the user to check the calculated results, for example with +# measured solubilities as a function of (P, T). diff --git a/phreeqc3-doc/Phreeqc_3_2013_manual_fromPDF.docx b/phreeqc3-doc/Phreeqc_3_2013_manual_fromPDF.docx new file mode 100644 index 0000000000000000000000000000000000000000..8a2686d4faa215cfd8f9ac18a4ea57a931a4e2ad GIT binary patch literal 5887040 zcmeFYb9AK9*DhEwJM6GyCmq|iZQHhO+g8U$$Le%!bZpzsRQK<@v%Z}T&?tIqqTb>H!&;BF2>jqk($`edNxF6nwz#*d>5H}rg} zQKP4gChI4kZEFb@U%PFG3{Uju>iT%g{f>-}lBowTUk=TRDaC|6^I0rI*UzVB?IpKU zgPYaY>$pdWk3Xqd$9rk-h!>MC96C0xP)|>NXMLB}Sz$d5ueV`6Gbt{gBWfq-u3eh* z15eLqHjQt4ZXBF%c*DDFd>_(&9V-ufF??4UOlQ2$Z!id(uTI+ht(vJLV?V!rl(X&1 zO>8u;JGNM3xMf{u4eRlagK?~$o-P!w`T4mu*(}jYZpLM;SH)fO{h6;MyYXWcb87X_ z`FWkS$@}}g0RPJjBK~5@=L5{cu+Q6_3Fa?4c2JzyH}hb({d>KZub&)GMFKUeuI4L! z^)atPeAtD|Qc9uhH%SNbKld^Ok8|BW;PZO=C;hZeN=!ap!T7G2@tOEbfBN|w9$|LPOI)h`T~RuHTPV@5H>hGB{cjzy8g zwf|=loM9^X&qO-if^3`_^`D7RzYric9051KfO$^-B;9`z1i1SC-&YSo73LJx<`gc{ z{3rfKpqfxuVGGR3oMibf{=|g?ut3=r`6AHU-wo6LNK?UK@Fs+5Y4w@EkE6dHUugfp z_@s>^^HXiZd?|?q0A2L(iwPb7*W!r0?C%~h0{Ap1KOe`x7oi`-e=SG;ynY*>tt|alA@dr;**tjr*cw4nLt|Ula z{ym+m3H)auA19__p!HBsaGn1V+Wi&s6Bm*OEQ4*F1oRAh#rFILYMz4BK0G1Z(Xx}@ zxFYIa_HpTUgN?vVMs)53J$7CdVr<;>S@F6r!O?kb%iy=23?u@5Pe!zz6L0@Slme}W z>b!$s^Ci)KHjp5A02~Uhy(I9Ti&=vl3TuBD{%1?OC(-^h@^9R1R0jyDeq8EQa7{#h zh~EZqZK0&wc<53eMiUG+W7`tMb%LNVTFXVTtyHlKn9hsaWAWTkH%i z{z}-kBK6}y4CkX#ZD}OihA3n3O?dvc$;+U!7H!#sj9?CM>?PZtNK%M{mB>A1k>3PS zYM|?x70y6><@V`(Jg!~Zq~I~29EjFZPP%g!18R$4VF*=`9O8322#`p z0i>ut!US?>Asnd2D$%y~PYoEyHz^oS_J7#3OSJ9%$NpV-%_-4-2517LbV>3b@vep$ z{~>!*qCbTE9{>(yw_Fl!&;KE~l;|J&-vxOj+P*-+BG_~fidHWNGDbcyw|}(^NVJEE zG=Vfkw3i*^p@6|C_#c9hM0>1%0(05%wlAc+tY63Ai}C(S{SOAC{}s=R-^uWo4Fy)~ zKcoL_-((*M|0QQSJKf=%BvATa*jfvW*FygTVfY_}{}}ykr_e-)Z~r14`CVoU;7gJ8 zV!^QW|0N&p&Z~vyZ?_ajzN#}G8AX7z6K{)R0^5NskT+G_p9#e__+O_?iswg>wD>nN z+6Is0$C09JWru$=_{Zd?6qpW4Jw&#$1F8d9;21NqXKNoD3V=Tlz%;5 zvQ3*9-60NaB|IRA4spgKq6iw`J1z@q7+@3ACW`w5`yq!p70X-(T!$n9(32OgjdSxHnEL?dlcz|N?KYD@a>5@0hCjR0vt*?OF{ z{~l`sXNbxn8x8){#k>}2^e1o`>`fQ@g6Q9v$X5K*o6>e5j{)i-UYXV8hY_~`o!bum z$3^yEP+I>w`Di=*Zvt8lz*IO$06aKAh^P)gh=0)o+5C@l;IJWzSqJP6rh|OUV?5p% zPY)n70ms?2S3z?eK(6vXmi~PALtWfhclLwu?6T2VTXH@QbaIe9IAK`+s@ebD_U}}x zX2bs!C;IzYgf`p&Q4fXlLlpFH?7zt&9=%4O{loV77Y)Q;#fgYiGD)5~Yk@NmAHI6f zzfdz#X@F?}8x_Kn-4KqMT(jk01H%FVpqtA!{Z*Ze_?tYxQ=thQaKJDmNPq*|)wW9+|T^!jVPPHat_UT zTFmOgUHCrC?5@_=Kp{{+w*g;Mxz+BWz7{AcI5~ZUt7g9ip7nBL_&!K1VJrELlsNh| zjp|6GAJ=e}M@upU@$5$Cw1{+Mc-es9T@ZJ-g4&M$!<3)LprZN*f$aoZ`2o_?*A}}~ zf!nSnt})qI?to4V*U$-~!8Lr7-*e@mhQo>h*DnldsEW`cqF{JznmM+2k4@$pzvGcC z@jW&Ui5bY7xDO*sBk;4>@V{i%-egbQbJ*O`Mznrb9Wvck2Peg8^nm@(#zk*i&_V1H zA3&Ke1cD6Y$j#2tn9kVF$i)VDVd3u;g<_AThF$T*{nyNMzT*ANbGTM)O%u6$OmIRN zBmfLb?-*tidN5?SufWa5cvVft#ffF64rA~z45Az2BWlLyb)J-pZ$@FwROZW4?X+HR ztzIFgd4H9x@4KbWv)=Doy_dd9p<3&cqorD_dB69mp7+bod;HthI+$Nn6=8H-!s~un zt6NL8$Mj8`fPBQ+@|%|)WsPYTA5=s?m`qsn9d?0_;}GH^_HOD?1G?U18)s zbQoHC&U&lajD1y22Ywm_K9NVKEez#No9o@<76|tHVFdsx$f6}l-h?fD-#K0HTjTC~ zy!Aen-&eifho>IV6rP7$)?17G&9O#(pR`xskypFYobV&|O<3}yM%QCy*2^?rdAOAQ z&~5Uh`2v3@9(K996b<4g1A0j@3qR|GFXLp!KJZ@qv({MOfqr1w6n`-t0zQB?9* z1N9@sgWevs19E>}oc=pK!2rH@I52x2AaaVM7h}=Do z{2m{jnKL)oelIU$OvB#qtCJOPWZHQ>=e%LQR$Y@x5BY=0*@x!gPcPW(RN#YYjrfcyxz4#o7e7NSUtQ<%^s?2x$e}q zIF`CZUe2AcMeH>$?43)ZEYSNs*TdkVRWH-gQ=T0^p+h z_+sHZ?69G`T20=#S6DV3?|PdbaRZY%OO~(Sch*<)5IrCFGaTF+7j>IAQ`KCbKz+iY zR!Gji&r)x7_`G0AZ?x`}CCpv4eI%j0M?}6<7}d(Z4`;o1XuW|Coo76cEx%`ZT;_=6 ziAr`)NW9v1%1-O*rroq}Zg^uI`Sfm1^1aeUv|gdOE!?_oK3odUd;RL=g9Th_#pixz znFx5k4Z{UY+31b>sF}(QY#w~L6o34<5ex6-6WlvTdBP>3%Qzg3)BU{6JL)ieCH&=! zRCuuPP^!e&xk$ckHYUZV)u-sk+VRfHeJSw#6KdcT&$-rXtLJeu4`RwCZ-VYtuA+F8 z#Y0wY;;T+p+SV2KFSq)s0RZ1v^8Hi;bhv&G@>}*t^|D>xM*=)(;T}Fx5dn1HX39<; zOyN}H8?pfCJGs`Ub-JI%TVBPr*0rB!XWr1~j~QR|P+fudBy)MzcP1^+OY!FocM-&^ z)u*#8M!4rHYP}rV>pu;zHx;V{zo$3lo{})HcKf-tHpqsF_DGK1Hnr-drQ4(l85Rd6eomg zRy%@^?c=N~Q7{o`cm5dM+4>$E)rW1np6PiRRPH(5dTaSj-n`)n)O7k>EdZz>7?o5`JduXH~UVehR!3A}sVG@lH^-(@^znXJktb={=N!9JdkZ1{d}Mx7;u`_MIY zvuV5y=3Om}8@&0<9on;qB+<={>(}ei9L_bu3^GO0EPRYJu9H#}q0hpx$W-{_bM%7K z6ST6oWZM2Y#8#iJqXj4D!ufPFluZ+;bgc5!^J!M_Dd~@8p)Y!vf^9wh$Dh4lL(@Wj z91~)@Q%4GhX6m>7wHA#QijprzPD zaT{18`k840jOjYI)$W9(7Sh8Z<9jXY{Ziht=(Oqe0ahZFCVM{7p@Pnl^D-HG%yJ!nD_=r30bJ_3aY~a@shv6BhWYurbt5QzjVVnJN%JTUfXH zOT7ioFW%V6d42G7{Vxiv1krDYQ-&P**3cDfC3nYfPf>6-P2*;R^N zTt`**YkgD|OqT1=bnow21Rpy4(rRKA-Nvlz-_ zFCasd09tA51BQX{!rOz50VUtr1 zYRRpr*44b`vXhYoA3ij;1N8k`hJ$QWAo4TrAfivtdqp7(cqo{o!pYxJzZzy7fqpwyXECr| zqVRB4{qab*9<%_>(^oW8UTE7d{`Kf=h6rwFu@O<(bh0Fp8}jH^9Bu~r6p&TsQfqq&c3jExh8|Q>m(+w@A#@&b;oK_c4dwviMSujWM6DN<7 zhO(89v_OdQ$r%+Bxnk7>_s>vy~eqH%$M@XFQGW)7>byt#PmZ&S~EXA zxx}SlT2|xp;!(!kV>A)4_s4}4mvfwUIPkKYk1^q}C8;laCuN-n{Y#7N9fv11CyU79mjPI-gw0B416Dcmne9kRB$NwR~0}lhCwTYvo?|&G8XIZK|kd z#E(-kTZd!ZT8X#Bd%tWa3lkJ173%;be&cAjH8jMOi`fg#JvsY=-0aNaKcGOg!|SN~>r(7g{vy_6F;hKZZ5&3>@og z4=eHPGwq2qJ`In^o^d~GteA=S=EzLz>RXE;r=nq)au5N89FP*Q4-s?&CUj6W$t?h8 zKhTx(k{s=&*Y!7C&hjcFh|e`~(;k?+$X|Kf7}*%$pfLoIOxpznz?Jorm}3*Vaty_9 zK89ygnQoI~e zh5dnv#Ul~oEYj{=(#6bd-nmzT>Ju9q;Xe*%Rw4_}Pm#CUV-0ZT(6#P4n%NnbRn4RC zUQ14`J&HIBUpxkkaFexj z)k*IQ5t3wT3{?B0wJ1W0KUa{NQ{x7u>x4LklUmXPoF^5}{8$X_Ir~n|cNUxi&u8|g(&%XyWnW6pR!tz|7tMj$DksZ2d>PDh4|{%+WG zn21~hgYPD$0Y}5q;NtprVD8u6ub>dA4O&Erm&9I`T-hXzY&8WEOX)k4Nl8EQi+iyQ z({*jObdgg9t{)f|^(F$aGTgs-fmr?g zovrYZFqp1;U~Li<7P!D@fd;mFr1xY9IiHaX`2;Ct!K4T3si`p7**ucFsprq2Z4Jlo z7`+fE_9VTz%}hYKMy6=OtLrJtm7Vi_y%;p|ay#!KqMeA^Lo+=b83vIH4>9V%U#zs? z$W4D!3dsV#iW#wLkU4$oSq1qgaZXl-bheP@&nz4d6SIZVE~CRMS?%0m7e-@b)1MRB z$T{QIRO^*a-Q9r7YEJE)G6SU=0dW!7SAt&fZP%&Ni<&R#;BCR}6iSptYGE*!`$IL~ zQIp!oO384rS?0j3rz}xxFMoQkGzI{mtohBn3H;@4zlrzEbatE7G~-98eE)G|Z}7aj zOU10JT4ft>1jPX3FChb>EONA}`A|8%dg-0MOK$y;Nkmt8YfvDm4)5<(fkv{*13I>Z zIQB)jpLbJ!@amK}?T9{ULPpa7YCNe{IQl0261l8>nC|kf1a>@fLULT#9K{8p-SlEH zx0pef)=6xflFX_yFcREo3YA!z8Fhd7w!~y0B7Zn{Q6QG5B+b2N{E~eQZ^3lRg%Ybh z8&46oP4iapOC6&d=XQKxzG7#1b7)&yW>$9g@3-HB49>O~u8UwBrnS4old+WuG%s-U z6=+?s>230DIiS=F8it+*@-9C`YLjU>?-H|5ca3DsD|sZtm^0-W^%Gqkub)oLOTvHK}B}n zj6hCboB@0Dr@P4!*)T{-f(huq$c1rC#pBp1l(SSGpRaCfVl0u2+w$Ey`%@ilNt%Sd zq@;K@KkcjAfgSS&x^1Cz(RE3Nvl}qX|EChNrv7Nf1EfIc5viJ(WCIILhM|Nk^1Z*M zqGiw@;#IxP?BdE(t)4n6QRYf9K#Y|AOqn=%^D;TfsVc}sqzQ@nM}aNZ!7;+beE9rb z(!MMFqnHp+DOpwtadm2lJrb>xsvSZuyv*;@tB@^F24&-ici1{Z?X>S{q#4d~O(ylm zFZ@`iC)*@ulxp8#WFihBhzBrJJ@Zv$afI_0ZaY$JD#RS>469aov|=~5bwE`inAwMd zX%-j`&V2E6en?KKZ7zU4AP+Xp918B6ce#9<_|6zIJg)1!lm|iHzFEaH2GOD6ctbK= zdRVUEJ+J=dVKJWWP61Xh3Aw9?JDvOssaaHJptCbGq7(lJ{-|);4UJJC3bdh|SDRRO zP!Q8_@rw`L%mGP&lTgB4M|2H#`~JbYwZD>%FerlHAxMYTq03rtPMKvl0M7B)SsmFm zdsxhp(*10QNHC zGYij+R`T^C%)!fC*5t&#^DI>7lEW4=FC%ya`bn>bH2p%G0vEG7QcL2w_b)^H8ZpRx zZTi{lul5re?e)j*aPMKqQ+M?pJpeeu7SAN*aY_k9HR(25&;1S7Q$t?Np03mowS@(h z8i8{Ggg7I9&evT(CsF--P>>V4L@A=&e%ym`zt2^S?^2FtfXEfBxspfeqrgCIb!9bq z_5my<)L2{T7c6?}{Q&T&X}ZT8K_nsbqoF@$>79y~C6YG7Cqa`7QtnI@khaUw*@fKZ zQ!>MKI=GOEEW#pM7?aCX{Uyc-n#{qdjl5*TzQy2W`=_}lXG4_L2=^u!ew!wB3hUOh zMV9t`Ueps_hOBGhNhy)U#bM%j_dDWOmc;mHA!VfLY9mpbGYyr(!V9RDPFm`1t|ab) zg>k*M>XHK<r zFQ+QjRvzfVl#pR-Q$#&-iL4!anuNN|p*x_KWsp^pI#6k*@o{KtZO(CZ3Pf0GoFU1PmZ+!NIU$vAaIrza#32i1)&g` zBEk67IlqXBUO<(Jgh&t&D)1y9IC(e1oum^a#5q{3`%(iq?GWP)6lWe{9x z4YiL_i2*JPJMq>!QhMUve9+jiz6#t(t5hZ6r4Cmmon>{)sFjNb42*8e- z!V6wPwQZdJc*Z1)UV#L3=HgNr4<?lQ)bYU~vLvI=^U_U7^FE&bjjT3?U z7mO(_(nW8jSID2jZ?H?|Xu*eB82WDhb6K^UznoQ0j;*~W4W>mKe+yk9B`_G`PN)_{ zns?}oEUS4ho_#N917UWIdyn*2M~#-nV05V2%fg4%4WIx3psRC=?ITr+{jlVZ%u$&= z)|@6k%o7<7xMADQaB5b_ZZZ{+!<-RnMdQw$Q%VDa-L)|!-B+iH^b-u>betYqArjYG zw;(rjB=~CB-m>j8b?838NT@@F1CIi&vQTwohL+io!O@K<(~^|%f060dZ~9ZYk~WRG zH)mH0*)3qX{Sul~02RTE_zn5mD2F)2-CFCTn5Z`LlWA6{8C$M_&^UPO`!4y}wx!%v zRnO-a*2)fKKrL871Odva8oCI=vSS`vw%N}y^Q~md_A;qtvzwv`vs*RS9 zz}jpn3j-pgChgAKfR| z#vl=YMZ{HXiz_9nm?E9y-i~#RLD{hpbk|G1z~3)HC*SI}Tm?I;v&78Tt0TN094z8P zG;ct|KI=fIk%}L`WZ;M6DvrjirYIEKCr~VkKE}j_v;flqhxrGML8k5U^O|8NGHq3& zIVWn&VK%wCQ;MvSQT1GCJxAe6-=71z1myl@%O05{qfWt9=>4}3&-U|R;PM~#tbqA0 zJw;a>N0@%XiE+tn6%Zz|Y2k!PR4S3mS$%iikzUzRhN0XA)VYIZ&p8stE@Cu=`L@yQ z`l8F#M_H`RwO=cF=T}X51wVM22X);#;N|pNPioFwFTIv?xY44R#UVsp>6X)2LOk6F zxIi&yPGaFdJj&Nu2X*khIsxm9H~OEd3NY<3_UbzID_sK!RecPkF}a9YCM?N63Of#8 zk*wd7txICo*|fOZe*fl&a&yu_XisK&^34<|D1R9~{OmdcC`! z=33??lEB(#9&y%5_#DHmvW;SGj$B1Xcb%3H+;zFsMV}YQujro}oF^wJUk!EGe+pSl zGG6b7U|_TweEpZkU; zb{y&rir($U=xX)%jCvdlK_|ZZwNz`(sMM(OB0+GZ?CCqw7Z7K{lMT#$W}nw~w6@Ts zHj_+5lU!td7noswbl5K{DfdTX0z5VY;PuQ>4Qe2&3hCC~wjFDY9Xf|E!8@6q|G50z zwtc=XqDgUHEfYV&D#qG#Zjh43C+a1C%lv5?!0s1n#CiuSa6bz%=jQNk3W9&i8Sxy=FZx`GIMgr3Jl3fS_i-0zFu^r$9)Yfd6oo83%klh#`fC#@*cFMRKN&Q3nHHT zad)u}e)ilCQs&3^FJ!z!$j9EVy%<{ubqMv9Y0KR)LoB?{N>m7Obe&g}B6b%?W0B|? zt?3(KiQl7P;Nmo)bTGW%8AV)D{aDmDT@;huM(II6a5W!Zy4&RYky45gSz*D}!#(qY73@TrO0#9iS;K z{#8FL#W!?OO%s7dZtj!b0#3nS6;!chVe&w;@|9yNV|rMq*cYNjvXol|8brI!wV#?8 zp}m1ht}-|pGA3=*1b=4^fgfj#V8prz&Ja01D`QU%-W5#+h2xS{_QyoKpWib&EU%=b z8^wJsdiGBlk_D*4YmDtuJ18-nTng5=X2`2T0u2-&c@~fi^l$OZSqnd|VGp-qtL@ll zfLEE>lep48ziyQ<71P=B-wr#HbB4L+_mx|g!Nr8X?#mD%C>$Xz6y|%tdq_2I46aOj zP$1PSfzjaf)ckfPzCIZWY(jz_$57h;Q$QyDsp%cz9EXB;DcL}|lCsxg46>^BU7!Zu zS(DY;+<7r-jE}xJY%%QVTBsu~dwb5sr=jBkE&4Mg}=beY3W8bX4qv0fcjdY7t!tF%m~xm z6;JL?xbk60c}29O-Nw!zRG~kIeMEgX&ikYP;aYbGC*y0FD9-wU$z=*%C-e?qkaS3s z0e~C%SGf6sQ@wDCOCmMNLMv<^+Q(fEkMJ^{MrXJ4m4XYdY*Km}go6OjpeG3xquYVH z=oJ2Rr6F-Ea}&SxfFE1hH z%-C>GO3rAj?w(%R2JG>*6#wr2`_5tS@HrPo)ix1%sVeLVTkBZ!9%60pK;v?H!Me)^srEQOUyR z3#E6>qg02B9QnLe6^Y#@KN1NZFJkNRwhx8SFq}>t>EPP@#}Yw??s< zUD&*Ck-O?_k}t=p@lzCx2^1%yac?(pF7m*yP8Fc&-?4dMzL`DM&ebe|Ed)b}sEy zRVgsZpoU8dr%h`P7I8E~b&`J0I$MocV}3}JWVVt!*DC7BQ$Zui#eKTs_lnJ|F?-m8 z!}g52RYGV@u5SO+rStkoDvE|Xe+k3kcPezurE|()vy?8H&6&07>xXZbA%4FJfx~QL zv=O7lfy0Gs(WP%W2B#8!5Um(23ODcFLr@E(T6#;VH7BT&DaAH5z&Cl;srN)aMjtuP zUe7DFqgSlI<(g3U`-_ak10PjG&*TjmNceDbRM|uimL#Ap4T=5Wsy&Uf?SabBiND%J z3Vxy~$$@QYX0-iI?Z+N_JY5c`b0O2)3#(3)$Cy(Qb{=9pYen1DPxZ2{x?f5@a~H>) zw>dTJj4}qWtNE^(^v}uLTeFc=hX!u8nUa>OG~q69SjjuX0<-PA*04_8i6?j@(M{q* zYv{@Pv{Kv9?B%+PT1WP7=#3lOR*T5@QENv(iLAEDJ^@|v+j;oYYP0M9(nw>6H#iPR zsugUwss(ea*D8w3YYRN-yI!_o1XRl-Uj?8;(M2zKL-{I%_!%7rn_U5D55tIrmgu^4 zM;!vRkYj|f1?2Ld9kXHLarBCysp|qB1Csd9E^?+_y{aU7=PqfIq6>4anQR?^ZZA1N zPlD$J_lS$9>|~rKL|@RMFNY^4Zycg{I!Oonpu<)vF17*hTH=0yI5@&)cd=-`+t6>; z%dzgI%VokjyWl1f1x5Ni*eYt-W|Gc78VDOVkJlE4QcSwf3}cdz$=7ScPe*hZQ5%d! z(*6D`9Cm>S{>N(;*WDlQF6=Yud4+JnvX}Jp^0ApT*GQEkyqR8un}#6d2m06(g%hxd zYmem6FwrNrH3rgsxSYvDVq|IUhzl`2&EWjEC6}u4dDgicdIJj7WYd$**&aGpI;5hl zs#N$U*_WihVQo2xrb(HH^K;G+>pr1TG!YszWQA{9RZQ6K0hqi?Lvg}*`)Zfp5XTpj zX&`Q9151ObR>DW7)fFDCWdb>!do;` zTD{^=a}~*W`&7G`$Y+^W@{$hI4{o3#ffLeAo*A3qE36~S*E&>xJYYh^b!q!v)v4_m zB29Es4~q^g;?oMT<{`-kdAKyp*BCzqq6~Hx3TL?5OO#h2syh{GeEf3LCbX-bUoElYD!2PU*r~+cpK50L)%3U6H%s(C&*by-|rDIHVLie zdKx3q9miYB=2%z6>YPnleLAQ#L!1Ivc2qJy7D@r7q_YiScMR(tf_k6>p1PP&v&|Cu37Vz(1lt^@ zQ31x68{?JSY`BJ6@S}wM!Qlu}ZKbGf%yv4*Tk64!B_FOqwC2rM&;>fB+nPMnDyrzI z8cs7w@v7cx+2C}fy6oY4qnUM;t)TYA;EmbmbW+}~sj8~0hsdZ}d0e6*dB zF+P|{k0arFW)V?k7M18C_+^YA1S9+eIpK04L+%}-(caK*GilrnkFv9wRV*RveXuxu z&strm5GxTb`hx@BJ?~3)J5J90GDD6JZPmNCwkaLWAV%)mZ5kAt^737W6D%?df(`~s zB>X9@`-K4`jyDuI4hd9o@%!DcTs(e$95}?!%`;v^4kX57=hF7qOG|NflPz#Rq`u0< z;43v5Sw*bdjP(XqDAEjjOuL{=-rm}}V>0g3a9d~F&!o*LU5 z84VkClWL%sSjPYL_)dstYBx*# zR?pI|vf0urAGz~olE|F!oLCN9DEB60clFT5Yn+FcDlbDx=IPs?>Bai?@WbO_6fs*n zU-%Z5MGBE+7S^i0%A6=v@TCO@i;$K(V z2_dsIosasTD&Nc&+|W7+D#}jEwTFq$bPVe$t66Yda@Bf_C+H6Q;FJk{Jf4!{y&12B zeC*#!?~RUH&cBx0FXy~1NjGZkqa1sFZCa`rteN;J(B0mK3(m8!W~sq3aukZ#_kNTq zMUNbgI%A0?Gk#S1mGsymkrL_uuM+cOX$HK`QKlS^e&x;_VQW4KKG}>wRyOGWUe7l zn_e9IAB&0B!QNOLbWLg0Qc;h*UFR)ejfb7ODt{JKyNI6HukIkGY3OP=`L1hWHBnkf z7DiDc9(eVXD~Zl}zUf<5>ZcH)dtj48_Dpvx z`tHz3FWac};g0cU0a`dJqt#GUpGfO$;BI8(;U;rd5a&q6c8tbEg>rKSH&IGnrsvP( z?Yo04Q7-SZ>y2wCe3*7vL-F|_VlIIz_d>DM{(jYvzwrlRwv$EQqxnKQt3Uu?h zPNQx8{vmJRZCMSQ=s=X}p`ozhYx{A|OVG%mlBhtKH@{$R);t%>nXc>wec52ziZ`D{L*mQ_e?)2z(Sd>s zD6n;~={R`z%-9sh+OacI3>*}Ie(cf#HndjR2*gOCo zmiQ=k@*AWC3)d!FA# zE!-f}Qij&HO+qeu*L(>xc=zq*ra!yd^?OF*WFb+^I<@DBGEPKzG$YYC=EJKit7K_5 zCmh-hhB8XXH)~0<5@Flau(ZKJ*FrCa%z6WBrKfA$Sx(O;RS z)E9fq<$!r@R_uK-(T*N;PY5c8aJS*;13gp@RHD!Nf)D>igD*(m>YT)~wHss}4u-ts ztyu@@0!%7 zg35I9^HS>b(J4WcGkj>U)Hf1+bo}mO0BI&|*{+IEXMoyR$a201NQSJ=C%QY5-_!(7eRjD`yQiil z<;oGs()1LyD$7%5O03dG-Ki3D)o`U&_jbkzz}%TZCM*ipgc2&4-InKC@A>Bbr4zw1 z#EV>6=M5E&$mEyO&`@l)7>lN=a3W#~>gJ+s9>z5hJpaa2dsAPm8=qthXh}44*vL_j zgFPcg%URUdbxIj!-;%?$j$U*qzl=wN#$eVSxD;jwY#qz-xqvl1Gl9~)jz&96E4Da} zl695=jpq+fy(6qI<2EIlTLIRNY3@t{2jt|gpqP#we632z6+`Ec$+xJG^^A$f*0;phIIl{&93?)44SfSG%}%p(Hz_*bCwofQvzl)r6`o%=7;| zDKo1xYYI;LHdi$j(3?7>`KUi8j`ZnZeMDG$M1`1V_$`dm0zR3NQ4dlkxJWg#1?;%L zAjklmT@_d0&gc*AhMgexpUOQ%{l2@jQ74tm^4Mnt1FM zC@fY<4*li=9bFwslCrb<22ZCLREx-Xqa-fQ8a$DnEdux~RAu)&RcO6|dmO>rE+sZK zek(=W^DLEz-L$kB1!d6e$ie_7n_ZVG+GehACdcxkrux+q5Yj7vmwif43;Atgb2^RR%g$q3S{vIi;Q3sj8w(C)NYsq@O zRkd#K1=`MuCO<2Xxg(O3a~^UK6a2w&xS0A7GShSo&ljDp8`et<5U_9HQ+|*_jN~^c zh?ywIuP*8{9xF0k#e_y;zy7Fe%|Kbrl2sLYlN-1`KDp)}IoRDL9|*tD4hz$cLYPZD zK!Hrx?3ULfd)*3sK{F>C)Rt(SxSXv zWu)YTCI5c5GEBy5;zk)N+)rn}M-_i%rjGPEius5_xak^0%D3`-dcx39h#nmARLfZv zIs$7_N&BACc|z0p2Fb*s@tO z1_w=ItGBxc#|knHvCqDr|f6xJdmZH)O$Cmbh3OQCZu2?SxfR$fl|OrHDW{` zCA!fCqg5jJ`_rGd1jR^>LOel-vu&Uc9NJ|Fq;m2C)h1w zI3n?35NuK(KnOCytAsG*zWYpPCx$qf&Teokf9p0N_QE14R8K#7nmK0E53;tg3nP%| z3Xn7Bj=N&HUW~G!RKGL+_|WZtQegilesms-XC4Gb0ZKd?W8&4m@IbPX3{E}_YtYAU z79M^Jw|zg>vaN%3+l72U?H+QqX${X2zRSg4EuKC@7HaPyh5e9>tgK19$hc&SA~yPF zMq)$Vv-Uu(K7>YFXj)_%^mhZ-Ci2gG{~T!~%vM%+I$Oe6bFU$c=Axc;mNT8EZsX3l z;d9D7OMqut3XKsK-^hzu9h%;eIpUtHkSnyh@R6LuBWM?6YM2-?*j#Y^b$sV0v&Tl` z(K$*d$lY=@!=kz2xAR1o8|Jz~p%*J;Ws~&8dSntid8LI{blq<($IKDhbj0nDm&NEAv=8@t83#WS=QUSO7a!LK=Bm%J2QIo^Rs4LEn!z?A&#MuaOH~O9fSP*phGmj;d z!wWKu8-2cmKA?+mszd=%ochkr%H=8Ull%9<4V6rVb2}Puw1@&Km#())2$N*US4&aV z0q!L?+sV~sLnNA|Xp$y8(_+La95P4Cp5J(m8NOk5ycW}2WaUNCSBNd!1RX^IP z6%Rl0e6iN}7RtdhD%fZqpE6We0%>v~HT10^hYHV8SGQaQs&m(o5<#sR41_Xthncku zMkdO}HL^!r6h;3ied}ZvFCahW__~9-@;s%Ys^EyN(kUA0I-PkbRO{`&Mr#p0rK0E&QGA1T`K2#by8cIRikHm!0fg;PQiKGOkxbjqlalZUC za&1Cv({1YdomG}*oost_sqGiNqNL*Qf)rmduP;Hi8UAjcJ>YrBbWlZ(*&QLN{I z_YVSeJ~@btYgwqY>N2LW3hD0X4e=^Cz$T7-)sZQ5Eb9(Rcf-B+dVbkyUYnNdU#WnT zvCG>7vKoSuG4Ej5=_57<^x@*`6}1cV1Aa}C?NB0Az>gBQ>A~hZ?Yr=ifC~JQr}vHY z4I%)AQp>Y3U0F83@-jx<%2;K7-UBSI$QLWJk?ePOE#g8kz|NayZkIXY0aRGn{2pVL zAi)ej-|cpk>K0NiQ&r_D)T*jJ@mPnVc`4iD8FGWRB0l4~=vE!SYP7tisJq~+xTKeH z>X_k*!jKS}#%}-ukPLHY=HA0U`acpOkrOhIu`>QQ05L$$zga_8-P5a!Tq{yyFn8R| z&9K1h-MIsQAM(jPndpkvJ5doMwXE6?_(cxyi^R*h+MY<($ zcp4`ybtHF^dfvmU6&BwNj@+%bF6T$inZIMeDi(Y!(Sf2fb7ANrR};D0eo>qI-3#Q7 za^ox7DRF~!cajZTk96`4+Gy2Dp@$OEOwexcAx*4SKx}koFb!smNoo6>mLj!dCrIvz z{xVYbWgT=rdF&ae`{*+Hp1As^8r+YX%25a8}T&u-1s zG+To>p7BT%;+uUuj;AiqQgoSsdxu?3K@AA>XRWfL#0w~{l&0wtq?e36glLhE))qtb z)pk4jp}5C0yFCL8dB(+PJ4U;%I1RMp`(?cBgAMzO?x*;EbqL5yLSCvgO;7_sWlGqm z0^Kw;d#D6Cz~m}QfSM(3EUI+CI-yypvGR(ilpep=#{-Kc%Sc&;q8!O}8fQWW_#uBG zlg&}{FHnE&10u|kHt%-K$)*b^ae7&%6XynYY=?x%4S{W#GaAoe#v|S?A=6MtE=;NB z&|a}F3Uu#o>jZH<%QfM$(GZ7nIBwkrjb-C5&pB5+#V6yaqL5iiHXc}|;9l`KOQ2!9 zfc7I9bymHA+jci_mDOxh zEOuzDa9Bb!LPJ@p!>~rwWu)ASdxVT8RVjO5?dRu9JM_EB6~<`BN9PHB%guc=RsaKG-?*LB5U zo;w5;!b;MX_vj46Z>}F%1^^eIB0^XRid{*h@dQ3Fi3WuNEybM{UGhaVB>3=a}<4~2mR4pwlvin&!DvD-DO7O>Q)%zXDeJm{E$r^`s!x~06??@uQz@N!K-m?P391RtfIAxCRF#f ziOT0?3F+2_o(v|*O1osPHzA6sJrPhJ!F`7ookD2su2>IEL4c>RT(=FCU^^6Ao$y>x zDd4`Uds#tOD{fsR%WTxVU-m5%QIL+U^W#P9sWs=QM~ExVNEQM_UVC-faoXJ_663P5 z@W~<*Hyqrat*8s?ix|{Mxk+!+#AiuVat}Rag%e0{2d>l@ZMQ9|Sap9vVsI7huBnV7 z;4Mr=`2gRN4HGm3!GSh=&{wLCokBuv)Aqz-735~iuRo}%m&xr>A~%&1B$NAzE<=JA zGsYRSC>hAThvGnqUOkctyB)igP?MllC$-*8zzIFs2Grn=y26HC9M}MgFPos? zx=wL>Kg_=-blhEKI7Ns!d=SEuo_T$bCz$D=T*UyvIH9wY61lLja?c;BR9=ZJl?f#` z!6QVY7mJPR2;X8F5y)+jdoBY5)}RxT+!|Bk;uNv7YXevnfX3PZVo>c~S$A0igf@OX zlOuaQm0M|lb0GpwmaHAfup8oWm$WyJ&82j2d8keGM~gnIA!cBGYF4m*HNw!us~ZKJ5yJ9^VcvHTb!VBYjw^9B zB3aomFs_XC1@rUlI(k(wa*gWSyniJIjcwbTj4a7sCWO&hhqGj4H4u;H%HEKUa5|(R z0Iver;fF?rDRsQ1Z5&kQ8QQn2@{H#SWC5Bt?uq-AyN=TwBQLj$#on153o{6#M70#5 zD>23ig{g=H;4uPp11m;+ujeh%$3}_ISaic@&COaNh-^#g9U%#wG$2SGMykijhFlqwIH%F} z-nFT|2y6&(+uqKr1jho{lC=Y}+jVMrVp*;o?xj3-YDlRrd&_bVG`q?n_gkFFVQr1G zZh%c-`P@owb&e*Fxr}A>>J_^a1FcrXHs6v4zEwt((*b8k9b#yII_m_I!LFM0+(zU< z3c^elyPtGnT}Gq8Y$#-dZ!kbrtYv)}=6pv}B6qjFQY~5?{NNJHC!>r3UV<2mKd)BG zl~{%Dsv4A`zZ?Lp8JUiiiNtPzW?TtArBo7%T!aN5qHYZFxv}4&L8L9ifF%yF?fN*ClB$FmXheaSIuJvM%TlHbmRO6$BM)4{ReYAOR%27ZDcr3$A)vz;Ap|5~5@6F(DRj!PqUcUYgX67s za*&vw?Cks_+G(a8IZN1i+p+hNF|T)@9K=h0p7Rfw5SrLJg0$m0+{!8hT~|VTNi+)~ zuaI-=YfSf=9bzBCI*w5;0mG?zH`~RHitg>O#dk!_U2zXMtIF|e7pJj4s}^)WAFB-5 zOJ#O&N#52pS)7?WlCOf=?QYb4!H0MOX8Ijmi@?0=%Rmkk3qf2C zpOj`?n;U2&K%UtNXXDx;*5qM1DTN(DSz8#3n3_9ganS9=IFEaG!8XZl2V+pqHAuF- zLsizC1$s4%W-(gDstih$$|)O$nBJH6*PtLbF}2>nIK3P8juRi$$`C3@Xk$R!p$~zj zl62Qi)2?W~+(M!>=!mF$UAAKL+?FmwLEAWeZ)f;LbY+}@PR_7H1)T{9t}eEWd;Z;>Zo0rhg<~qE(va=8tP_oUqHyL(Z+A zTJR%RBtI&u*>Nhv3Iw_Xj#|c~6nHDHQX!Y7Nm=T$P-ue!p2BXX+Yv0MI--YFhdAYs zznV`g>hdAtU|9mWYA0ekv?A4-rWF97C+DH}dtR8^mwqIa;Z#KRSTL#*;nVBavdg3C+}{Zu`)W_{g88wzn9!gV8U= zRqoo@R%qh8NbO+;JszuRYJN3vlkuA*mH|THlxciD1Qs|0C>sIGG45a?zA)Wu3Y*Kw zMN|ZVIxLFkpo@DLq4`hRm1lSAoQdqCQrAamaRJRGpL1v$bDQ%I{r>#;Vq#Qb8ZD~W z(9bC&9|D)&`aDVJXHvO(I?sgD$f^C2oJUaYLthm5ej>`(0(167Jzi_d&$ z6yjyl5*0aL=bW0uyFFK4kB6>$^i(ukqP6-~DigkK&H|1f7EuIFUd&)J4w($T+{ZzTqXQ@FPp_OH$!ES?@o) zYyC_b_4DInvZVffqz--v`+3RD{m<^FIkWapOCIE(o4oiu{VxbU5&(ZQ1u*BKp|>Mu z1r^O@1khj6^v$T=!AA<<1${nJ0I%j0z{s=*5u;cUnA9788k50{fjM4IH?zTUT%>@^FWGW zwiY<{a?GYefFnZ8>2boLDh6g9iuOfDdn>{_Fs^e3<*4(=y2(=MJiL1+QZ4K-Q z$7_A00w@d8Y7-YbQ~@&%)r01ARkTsg*sARqQ#ty_0&N@?*fc%4{NTqx-`2gFby+=*wM~56KeGg_AWt|w~hA>w!8aA*M-!kbrzs= zQ8tpiJzrE4i)h;t3T2(7iD zaxk>p?BMvUo|YA_WQ&_{%R~JQj0Z5)^?VNvsJXSV!m*?~e8T0+@wB_IMo$5WFl>|> zM>k&Ml{HXU=-LTUNla)bYd4D?Qb}H|_e!i+J>zHj=94yM=qpIS(oeaICN*v!Umlp` zk#qCI@yfx_Lc@752A*sTbRZ4$*Vf(9ziis=PMs#x54>Z|rk(BI3S5qGzW6%VwfwHY zTMTJCf36|t&ZlP7`kuhe{C4lD#?%DDBlqa^?BpZq2Le|7hy2MsJo|^InV{j9AJP{C zoXkWVKhDR@1@YsL3xPy6eM9hMHqR(ZRv&KuXtrloit5Lo9=E-moh7_IHv~UC&C~&Y zKK0x$Kl~R6dhX08Q8!iopfw5~F6+TG;#O7O=eL=aWKQS*?8rWNv}SzvYR@jLnH|R` zJ_UyGsldnI#oaZNpLzI}q6)&GdPzqAU_E(mhJT~~#**m|1pS*@{$MXPUMlytqRZE( zIKO7kzB9cxK{Z#n`+25yXcM=7e0~bb?3W*|;Zt(Wf|(C5dn&F&knEEGZJ^v-E;`uFb#@6d&9D^sDC}D|Ei6>;RR~-d zkKR0tf1zaJ>m@&AlF#?Ne$jWH|5BwO@KXuE>xO@*Qa?3AKg^_AKRmg0Fe6_IY0Xvb-j>s zyob5SAD))N{_9gM{vr%}urtie8ULKQ9%kN*XJj_hWxy}U3;Gr4 zMc)R^I`k_2tH9Qk6qi?Cz!n)PYoSZqyxlftE?)0m33)s^%2?AlX<=wuNdUo)z1RNf zdh)P1X{!U&3QDyl{q0chd1fap!N{VO*nXOLZ)%KLiA-H@PJ6Z>ZbuI(Da<{tyYR9( zBS@~%S|4KqW1FI(mkBglCyG@Zo)0@hD0iY?E&^{`PtZ`qvv0V5V)Mp|dPh%(+{U&m zBBku!wgUsv><%Wd)5-Oz%?8(u)!o>pit3$D7dkeh5a^wI{rro}n20E_Bxz>{&By`( zNRECJNBEl2`1JS$$}pY^Q|)Gg znepnAE~S`JMPMCudFK5dM8xF)?Jq=OFrOp;$vfZt86_L`Wl8N6XO1oQtNEXL;q!P5w1Iq*9Z1lNV@Pfa@A>jhIs1}`Lq z{m+xZn9k1dd72n5TKr=4Dq*T+JzaHc|2lOhU0vN|x#J_7@bb*p*@V9$=rP@WktIBi zua_{j-@mwL>a`!|vtO{-zpKm-t@OC`(=z(w783Zb2Pn^Ua#M8N+sWS`V19 zj=C5-z-v&~Y&pLJ1evu|?+-U&zm_j}*{bCZ*OnO(SYt>0T47y7B^)I63@7%7y|mpF zo2004Y8#$6@i^#db=AY;eP!yItsDuu4Q0_iZ}B}Z?FWi3I3Qov1P+N&rw`8G){0Ug~u zlun=BF|N8~n?^E*L#>AVRx}7M<#dyEhn~>Nj3h|nRHxdW3ScW$0!BvL^4J-TO~lg{QXeR3KOSD=s4^y*Q-% z!`{Y^^zO<4ZFE^4gTX#AAL_wLmV68LvilwoZD+ ziaqzVhia+7R>#1Fprddj?Eavst=w#YY4n904n$itN0oXb(qw<#?#87Jf!n4w44yAb z*TvYx8e~ht*RfXU)Q(q1wKJdq;Ivra$_R0Rt$$4gtn4skvXwouJ#p-+t$JAp*6||n zdNNEtOM>*s0p1mZm)xBth3qt>tTRe>uZM_ zCkoKHqF**?D{Scb=ynKu3NtYgO8+oN-}?o%Uas3>IHh8qgBT7^DkL4y%ILQNlH zU7zeQTOvd(Pw(>s8m%7Dp8dCWn2j*O&eoa29Gs($m$P-Q`HWH5)2AhDXEBIQo2!1W zwVQ*mSx2=FRD@x9wSPaaDGYK6*h)qSR_e;Ofj!9%}d;(Ky7JJ{D4-YweOx zK-}9`y-5 z=7d8QJhP|C(FMczUQT5tc~I9I=5858>}5@wp_e&^fMit7Z^_-kL*$W>?yH*;B@|_e zzB?&wgeB(9y0P%-Vm}iXR!7X~WkziGLRHn5F+O3mr?#y+qv99+C5qy zRiC%~ysb@0`}A#-8hSSp^3sk#Ux9|BZidHBP6@t2oEXIwMm(r2i-1mk`R zlYE-EJY%5;Li*&wPj1ruynwU`-OT`Rg6CNs%+vcHAO9Y+`@cg8e}@wO4ki2th7vvu z`hWeV<%;JOj#=n$T&`H^@wo}W1&)U1F#hj10nb++(wF8a^x2ZVG!~Pe$9d}gYQTSN zOY{-xemknaT3_n_vHH?~VSPV0zX<;Q-h}zi&f@i(81r)8+t-+P{Y)e7vDWnXqP4S^ zblWC>uKu$uFVAnOTix`=t(xiHIlePHx1X1V6*ljdkkZFH`G-SV?pvB@8O&Tz`_;9W zqY+=REN`s@^aqSp^RGPo%Zd`SqHX@N(%kI)mzBj2?!4sq+64cZ1x_REFDpygXgsg7 zPuApPCe3_8{?C8^Z~BSN)2TOu>Pe~cOXa3dQ31IfM2m z)=m6&j$!86d#Ky zrTQI$W}RRsP&W3MU{@RP7$oF}t3Ge;2@AR#?+2^nN#(RHN z>1SR3bCrHx%lZJEF!X)k^!cEeOIx-K;Sl*6G=8@+@}Im>3dISO0!irgPATZS?39|P z0PpOSV&*scZabwg9D+#-`d@!wr&Q%W){@^!hG2>y5b|r1Kie)vfGGL0Sq6o0@cV6+ z!rpF{dJ+BiW~u+2%~J1n|Np>Nsd-5LIp+3dW{SKvu)*LiI}v`H_59PKn{U18uZU)W z?|8HS%ieb_yNV=>{>r>_@8I1$+z70M5yFFb1B6EiA*{asBC*ys-P^V~(;cU^LJ>$S zNmXTKrK`;3`OWv!VgBa%FJI1mVYb|tkJ9EVMZiCmKk}BXu_ZOsMb^AD@n>lz7zY2F z{zY2J`b(drmEixzKg}wEw}%O;uL}t1olr>$rrLpo|OM5tK^@ol7F&F{*bH^ z7IbA!sh`Co+_P}@+gT;TLoh~5pLskQ1ODuKMC)p~Yh(elb(u4E9nKuiU9h0uzSPSV z2z=0GAT#;kS|F0_A_~;7r~|M@#|ql;CBy6L7#5Y&RS_Sj^QbfwkfJoaHFz|fi)d$% zVRLsqA8Z;JkO(%jD4raemtl6YIQCNRkb6b7TJ4HMc}^fhDL8k5G7+owK|zR`)5;^U zRp=47+Yk|V^Df;bBxh%O5Kr}S;35JwiD-ZWSvq<5CU)w}+{pvw4uiXzCfCydLbhG#o-^3sZjeH z3HA*j>Ef;-IQF35r6L2Ea%({;k^%~wMSJmwrKJtyj3jvldFdHHWdJ9W$)hC0@KkAB zn!@xM)nIuQwaZwODQrg}IrNKW9WN?ly|vVUgsut$AB9uGgt|Qp^Rj)6h$IQk_AoVm z5O?v#K12jVJX_%9eJcaxY=p`w9J4d3R1Zo_m@Cpw{FYThF^vLJ1;;dxlN@n_pqAMq zGcjK9IdJDMjZOhIL8>!Mg3rVGFJ+TFPx6uUv9)&5wv&AId)Xw@Qz|pd?p0=q7*$j( zd8sL0+aCo?vIOFA+mew^bX!G{y;B?nsiSn?9N8;C>m#{PXfcn$5?+4xheQp(R9itE>WS!?RgebGK!gBLxGDB-s!ezb~64g)O6Ke$1lqnHXnWD=wW`^FrtB4H%eEP`TO95Ad+X&VLAKBT|NQ)d z`0-HN*Ek^jPn;jWa9^AY-?{TcobENe55rj{(o-tE5q-V-4P<{xwV``%sVBB()Qk8X z^-6{}wj@+j%!{CWA*sOGv`w%LF9$LnW4Vt#)5nJDN=V2sAFuM_xZ1EC)W@VacD zQLkSHb>E0cecZd-UZJ+#`yr_N_UW7RfiaAHk^hr9VI+=G(A%7z=K|1n^!pJ-JiHJ1 z<2+WzKfhmv`TJEoH}99vnLnje{gP7sOGhG3X@QTnUkpAF_G!M`w; zxW3+>g8RuRD_MREc`ytm;peg8b44)(!?5oW2!{|FBEN9Mm*?;qIJVyKU1((EKNO|V z@8JGfKnzC7?Wpp5fZrYHJK*#0$55i{BD_q>@BcW2y``mmmF*y6Wu4yuO%mkyX!R*H z34M=XpFuzQ;hWGax4{tlHqRe}#~|{j@RKl%{x=_{x}oB7`&QS-=pMb@D%hN>H9f6^6V1xy=_E4VSXH*MBq1B_Ji;^@{ zg(p|ZM1D_{eMQQ=gZ)a9yxL*e}lY z|DZ$Ur@3s;Uf8v7HuW>|qFvu}Abw?9Z?MmQ{J`<^SB!1?mpLh0(%P4@EZ)BVirM|C zEeXT)#;%{FRiFq-zuDgZ)w~Mie|w4;aqdZcZO*^F zHC+?PWzhZfPW=AK8T2) z6dfpytS;?`SPJwj69L9C8v84l2>3t3<0qB&|AYUQ%#Hktxi>rDH(0*}Lc=)z4dzA( z@`C}4kgF^8-%^dwB8xwjyPxL9SGfDL(v7EVnchn`;5Xr3#_vq_EKPr}eEqwMeEi2% z>T?19++}&;`o^;SeOBTd6#t)UeDP+U{P!K1Z_wgTZ+!8WA;QmlbALn+&Htk2LVu;X zwk9M$uek_lb>g--;1?Aag~ES{dYIqW?Bjo@NB6fh%6`>S9Dap@e~ZUKtcDi6u{Hvc z)JC$u9&7);zA*o=_TPrJe^meqzg2+#9@d6Q5+#w>Y0_VhwSQj=q5qw%{UxX2FVET^ z5-vZm_FK;7PqX&wNK@FGCrwcJFC)x>b{=Z^W{=q zZY$M&&sP4*ljD9*Q7#MLNZ*{X;(aN?h(C#>_VY58tt>w68=t0d)BNQE0+*z0}9vbTXc z5apFO5{bFS=bphJb5>Sd6&gmYrZHGso=^bPt*8l+(@ql(8P@69vx;;pM0Eu$BDoG2 z8dM_7qEy7aI$5HVGN9msKI}#-ITy|g6-%KXdm>pxiT0Qpk1@Wjx-M&-dG8#WQM9)w zr{A;VtV(TkHRs(Vm!fjg{lGZ(Ae$8k@UZB3Up*XskEES(JRrA0741o!3=yvw28U*7 z99e~J?DIw5N^(*!^!6dTmxVa67^>wujp-I}$t687?DZ`0CTjRo__(eLhG&RnI;W@56(7sianR!?ChiIRJ zP$0r92gJ)<>~32nm&!yJ?>=@mcybuyS2oYc*X}(+on=D%_UuCtYS(qw(*U{d#WHH>kDdW=PJ6XORB03=V)1&mzCUL-0x1Rs}l zFnWNDE-(!yk=9rJqX}Vbh=)C6tqlA^h#=9W>xRLyLR+iH#y#Hvyn+)9u&iR~`a9Qq z73NAk$tJa_rxc;e^|cozwD9@`IgWkYpk`mEWOLZI9zg1Nq-sYZiHDTyomFRpFo8$wH??qxih&0X}nDtqdh^z&tiSMud5pg zN4(Rzgo{=>*0neLwn<%b{dBb}3b~*NFwVXP1EC6OcnL^#gTkEOrbu!xgaJ&T1R=M+6IY4t>sau>29C@4y&p}nwiEYWV|jP7 z^3%ZUageh?z-VgOq>q(O>|%7hw=KPR{RaMZg z2USfT8W|8Qt6ZF$rX8!U=oDjanZH`E}4Y0cPu}1L&s;@ zBZ9+JsD4i1B4BVb;b(CxA7V7I8Eb#FZAHBqL2NY-{urKfFE$l%tMtEL#!Qw7X-UMH z;<-xYi&1Rtdv}UgPACAeDb-Sg!u%Rdi!|`m)bcE5?J$7%W%eW+N;r(SF#{HBdz^c$ z**Fk319q}3NFB1(wuzYsiKw@7l+MJy6lW8Yt}cfZ)N zb3s;ovo*1AX58HceI`SA@uD=Gv>+Ao?Z(ok|yUr>@akzw<}8DOi-bOY+V3 z~Qn8r<~gKIhO^G8Mq`}oltd%Hdoqz4lnX}CSmgZD-} zp)JG@P}c%D8OZvs@mAT8dZ2pNW<1#%l@No9?r%G^w#O?X1MN8gLwJOa%^k!aZKEJU zm9D}RG?Q^St7Cdh+wgP+&~l;YyoFlHJ)S|m_nPdDZ6-_;`P@0rRwXQcIP|8S1` zb7=8MF5pBHJsP)dmD00J6f;JU^6Q&T5wqvDM!j$Dp$(dcNF~W`7d`F0At7?qsfB9R2EKuD)9TIih456l zdG3>f%TbAhSH-FzR#8ooi{n&qcWi9NF$v1o12nsWxK%jUju37&m!oIF4XIQjE{cB4 z&fyS{FNF5NVT%}2Q5i%lQPKcstTGR zg}>y?1Y);~U*6K~IkKkC5&2Q*r;G5Q%!#@g(M3)bL7Uojn!a@iq()cRB5ZNPF{gw^ zA36kekb;d(2zJi-p;5MLrTk&>w-JIDJno9It{O8%K4>nKaxz!6{=m}%!!Fhl8f%QbQE$%<8$H2O?N}g8B>@I zS2UdiKgTCAH%>yne%^k7T@ebbVQdIF!x1^t&{ial$Qr-vz3F8gT*)9vOdzm`abTs4 z;RHkA1!E7+43j>I#2U|OKi?nd$uNe*vy8K2r%dLuafRi!1`)3YD#l8S%;47_d370L ze285o_lijng<_qoak3px*h`Jz9IiX_YGkF+?OD-PO^P!fr$*s8q8I2U=z z*6n4$S{Y+UyX8&6-I-7>Tear6Zs2=j9i9-g4ld_w=(UgY-bK!6jwjcZ+^29~NEhXW zuxgJ^9fbZxzJ%A?v1-Gxxha?1y*omE6rzKAA*Q=7%yG0|4vhl!x&xmhAJLi+OVkoS z`WGB1TVmXAmIDRaFg>Oikaio*42Iw6_4fV-%>?5~E@=fi2<+r+uGxAA%QW%p24P)# z$rg4(C7LWE&cY%snUOh0yUXvfAWIL;qFA?xdqEKk1HvqS-bnVOVzsrS(d-j?dmtmHeUlXY~-K+|?+`3Ipm*BQ_ z;JL2OUwccgxA3;yNek|~1RJ7`n>Id=sH*fl<+S0d?_PsxR3 z%w}UV&%K*J`Hle@eYsuN7o)5%hAWC9V}9oI3*m<^X$27V$;|;7sKfRq!ju6rU}mBB z;CdD9*}uh=07H)(DNM65TZ8LJ+T(t^aYQCm6>p@QNqix_UI*lJjahIvtC&q4ks55N zONZ!1<7%F}nt`go*$Y`Hfg7MgTLeNWq!)6m15r9DB*ugMex^HZ(<$kGpWB$PQtnxS zLQ<@g@JQF{?O@iItft0C7owGyo|x{inkEdPaEK-9y+5Y_GZs8XfxSbp7z154iG7d! z`FP2uC6UhjeMh0T&I!xTvWUAXOUo20(u#;@{8>IyiFZ1NjNYJF4Kkw-=BqAK7W7gB zsckp9+#H$CUSyid1>Rznfn!i%T)k!pOF$}I#9?>`-z@UIfEJ(zb_AitJ z2&tgKEosPIQUH5;lQtThh7xsUINu_fi(Bc{a6&6rJ}4Hq;Pjb_Li(0Y7eGTNd(>=T zhn74Rr7Sw}Sk~{Mdm{DPa3u?HGdKsTXhs#VAFi{*8&CE_MaLaZDk!yr#$r!Nx;ReB zJwZY1W+TMORpYCU4^Hah{?bK1uM_$$4p;d=cx3NEAR|asT zYct4BQJAf~KPflqP!~zYkn8&Qz`l1W&9}UvBZ4G!;~}fOP0`a?A|gh$O23JnD7O)d62%bQ*6cP-F)fk4ebz1q*$% z4{cxTce_y0;L^PqS0-)vF3m|d*w0lQ02P*`IL z?3|2zFNDk7cd&lwgYLp&&>&3wP|6I?^GaOmXimU1grbEyYiFXR^ix`x7!Sz1 z9D(-baj7737O7wqGMMc)6>!GX)$C&W`Gh>u0IfZwZcZ0VPVbOWImt-_WX#v+8A`DS zu$M-p>YDkaa|gdT%^s0x5sW}sh|`yGQ=@koV->JoJnB5T0WO{4K~R98-Wvxd-5~=Y z&@rU~CKw&dFmLw_IVu3^brTTu^MH`q0b5pYCD?cN_Kdc2iaNS&VfZEhIZ^W`@7`vE zdb6O)Q+9@SSB~>eJROXIe>7$1!|TF`p^Du@pW@Qu9D)5_!!8#%@3)?5cTDHFL{SUN zgkeoaG+Yg;KJOfFY?Ox?T{)=Q9eO-cA-zN~8Wf`W48RSQq-@dy+Bt;%DXCkGxNlpJ z($OPnRYv%T?BFC?XyiPQ;R?!^ zy3ejs8630gIN#tsc7GuR@05}9qesUjz`1>t?C=1BRA+am_eFYO;RGEJUf#>`cm^Xc z+!>=pEH}})EvhF1OVP}G%1pU+cWn+hka>HMOH-LXq4`ZLd;z`WTN|>#Im{B3*>$di%2I{Jz2i4@+^e7Kn zmb>65*w$SzuCSdaGYq}NF2sR+=OGfiYvv4`7orQVSD@1*MxQ$<)@wwY&&oOCp}@|0 ztl6ztYuc-zUOOkby7f%ksdprXO}BGa-C?8*_kTv2}3S6wUFoSa6t}|E5)Sub?fBB15;O> z!eR&@X{&sODC=Q+V7@3gw1kvLAME02g=g$hpqY>((P{^|F?mp{Y+t})_(F&l zSvmWipFi9yoWr)IB9ToFnuoITwcV95LsN$q@8p#wA&?&`5E*ZldFM{f4zTxohD=NE zv`u+sN> zdVo9JABR<@*_%nc;7)k~_q(cq>V6%RakKaZSv@=M*bs3_v0Y8jNZyNe9%>MOoupvp zAtSj;w?iWK2MNU4z6DXt2e*J^KghS;Za#+Y-L`Lvvf4}@LHK<%u8Ie>F@4@iSqlZS zf;?={ptNg;s$jmN0*NOkjPF23a#Bj_+ZVzHG_+o)m}&2?3cbT4qOsNmN(lhJG{6-& zf{l+_I=}McR8cbFOSwZtVYUZI?$%JV-=qaNF&ugT8PvL&XDo}?*Or! z^BLMhTXfE*(r{GI9>hBuUvX%ETP;G=CvGToiqqWBWBXQ7Nau!b)%Ht|k0}+6Pr*@E zh&(wbxMqjT>J}cCEoACNMB+YlMim(T#g7B6QHrSXP2V6pd=TYFlUw>w9*-z(dn$H> zGPEbuiy2Q-Q=(}P_&#-`m0sQAHtp;a>XcV7&jyk6NcS^*n`@3ssnRYL|Aw|AT_OD= zn|54X-cYH&mUC!n*I-}9k?+*r{%YDGEmNoDg^+2_=6SWn9QzRmb+%_?5Y0(o?C6jp zht3M;CgHFm;R1a$7sWlDfxM%FS=1Z_x>;v(WjTg8%u6Q*FNDDn4td<~6{G|b7*x}x zznPBX-ppjDIgN4XuLut&Cna6vF6Dx>JS4cvIf1K2)ZHVKzP=_JzVl6Qlh`U2z(>(~ zc;#sySUVkO;EO{AHF8+!xh$2#Evj!rsFo=-^l2q)`bnu*&)lMi(^blcsyZoG`eAwS zn?R!VP0X% z}&I~#_9wc`Og5u59-p`yvXni**LrzV5D zxiv7T2DeSTc|nuAn?gIA-d}5opKho&&Apm225ff{64;3}p;6OP9#IOKHt}kB`|?SY zC2Q^MPQcXjQ-w9&^u0fDG(RUJXcSWIuDZ?0GUTUnz)gi<9WAJoQ)A4gd7UCYWtLhj zV2Cxe%ZSH}x>DR+!TAOK4PD(7n%7UbukP)0GZP+Msh3Uu>YC5C;=K{hy9foU3YW42 zk5vm_cu|Ma-NR(}%asb(RgRo9`c7a=At+U_D*9Z5*u@41<2R3saLQ4dzA7x{A}x1)Q#{^_R}D3@>u zF$NidiiU*=X>dcN%~uAD7BxE>cFMF&Z%(_^nt;lHUzAy7^O4DAzVFbS(trLZFN<{f zKWOu`AN-dU%Ne5LZ;a9`k6cGsjf72wd@*+#bhP*NShHOMZ|e6sxO*IFU`PcW)Dd9_ zm-1B8k13?}zXMtUM1udl-myg5!g#TpP2Uk!cQa!2+bZs;gZ##C&L7O2Ocs5N!G!eJ z#y;V);Cq90@7Y;X0gFzl^*PXE8@HMd!cpwk`{?ekgC|Drc0d(@9Lc=<4{FRX2Z(Bg z^qkYQ4m8w%2mI2AJm+`{HXdzO_V#8EM3sQ-0xcL{@w^Fp_wap?Cx4NnHcdOnx}wgp85_J8>dC9qc-KZ9UGgiLr zCl>;k)yR;&pmKXN{AxyQXj-fpC3Xvxj{?#Upl#DN?{;l-0hIk%?i%mdf%Co)pEgG zSwFuzJ`D6_rB6;0fLO`=Fam_)z2s6OdKGr!d@VmCngJ4rwtpze1->M{T& zO|M+dfSS%p9bDD9s{0Y3Px+wnZo(8K92mA`Y$KamLJDY2+awcPHB-}m*!s^8#z>)$ z+zf^NO!pR<0ec&ND@$|a{CB{Y_8A%GrQu*A)Wo|RghqnzADHim;L!#kNG!!$iy4u_ znaq^#ql%Sweq3IbnMY^!U$2h1;W6>yrEMg&u1+4kNr8~R!r;pWyV*T8;k||nOXbJg z;b@1`8=^*+9swWlB=graH)S-By}_SggY>>)g5p~Ks{mpk1l6E_w(y_puUU`%;nir z8JTeh9LK(I!}4e72EKTIAL-wpGF9lpFV?5hb-{CzW#F4Ye&yg*5^OUMk9+lb@AiPO z$5pox!U_2q8q8ORF$hwCRzl8Y%3S>>ev^Apll0mE9{1Nf6$zC;Yc?)+kSs5ZT-*2W*X1;b@_RA{O~Zb9*siXiqzCtz2=IGyovCjrh4li{>NU1jxvmOEy_-UqmQSLxmgg5_P}z)}EwqNdkr z+3UkVA7;H&|1N&d*7`JjyuKwd@m&ALME(i)lr;Knvo;Y}jFOeM@EaKpc@cfo&Y?e1 zHiF4WoVSc}_&ZRhA&pB_@REJl?Sx3>82-YK4w?(nH97F_UXFP|#Uiovud&4D1HDr3 z&SE5XcBs6cFn_sdGUG}J=Tn;E6g8vjnY)OttpjCMQmvbDmg_taiwuIqb-C_ zypQ4wgSG2=v_%n3kDhtrM(>M;qI;$1R@WLf@9(C0&hnY4Vej2-;j|(jydXvb!DyY= zh@`CQj-lRqP}QWe+aJ(<@-yxPWG@2^gb`;nt$**y>zG!(rk!91r=70Nu+|Bay~FdH z4h?H;xP7c5HpXKbvYV6nzYqa|Xj>RWY0Qh@I#5FBJn@E*6l2h?BbUgWqlMk0naY+! z7g*P*wPsEE7 z={lxGv0Cs{?7qjn98TM3Daz$Y^%$%C#%6yuNL zaAVOhN8q>Ibr>(GV+xu$^QelW`fB&?ISH-)c#_`yT3nZLXw{1pds+RR2ir|KS;&_+ z0^GFffDdQ)B=DF3pM$r44amalK=4pbfG&@VcL|tBKujQorqCng75N$sMD?2m4&wtz z2skm69p4yUvna?p+j_YVDC^9Qc?pDW$bCi9J3do5F6nNFfcU%-jWU1paONW zgKac70(u!3-(g-$le2$A-gp=v`_I4XfWUOqyud--+-EItvJJ=Z;NQWKcM04cFu3g@ zgop@`@1F=^aG)Gaf^|vi~QfI{`*i1-!w5qu9Q_l+=Qe|Pny&wZ&`z2YS9A8jdzC_Z15}`IlmL1f} zHh{O{DFRg7ogSpk218(h)+j3Y$G$+U z-Q?BTchj@{2^Ej-SoOL02-#ua>$4O@Nv6 z^-P%Lb2bG~eTiOQlk64x4LYFnyCmV>d%i~s9kozvE$FgTwtChT>g+n}rXt3>oQ^W& zmCN~keCy9iw^8`u=G0>OC~M28;^XsA@1)gVIC7qY_xi|6ck+mC%%6ZUO~xiFiM&M) ze84!0PdjqEQtvq(8(p^*F|{pWHRWT5RxsPER4~5j!(xwVycyN4Tz(+J5mWr-vyka4 zFBR(sA(o9YJ?Dk7HyYggJK)&21e@)?Vw6+UJDV_=x<74-A@ z<=zoexPg!?%C7#4b{{!{v@WlQn-9b~PU$(|@~*7oDt6aqX~qcjAXiF%ZmAHU~&<0f={#H4AD*AXN4y%|c&j=)fWp@qBY zdgUsWJAseA&4r*gtp$#h)nK<)~bVHdu__WbODK~>Rq6^ACvG`2YldwLQ-6( zM;?DCGpCVk52S9;_wqr-&=JNNJ};mq5#OakyYhBDQrvmWSb|n`h8vlHZhr6Q%(Pc4 zvwr%-?8^dKrXG?JUdwrLWKv>pksU;w)C8{%W=gcaPv?7<%+pF0Lv&`$v%8oI>h-X8 zk}u-|FR#jyo2CQEo(wQ8(5Aw(bxz+R+dP?~TT->dWR{2bz!BVPPWI=O4|Bv$q|q17 z`(iiYZ1n;>u*}?;?K&a33mfP-NlW$(qZ7Ro-Ed&MCbd#5VjL(OuyrD6BVqmU&xc+j zeQB;gXxk|nnFd0SqS#8MH?+5|0iULui1TrWumJ;HEGZLT9TiY_Jq;vGgfQ>Y{_9{g z3he=}D{gK9%Ai&9F}O+m{Xm#?gJZ=4B)ZCdM=0PGF^a6CFEi$tFC)n@aMIX}mGsuN z3(t5+$ljfTFIAo_f8ZN8EH)z{ckZd^PVMM^^2l53&(#5MpYc&395zN(br?;8u#RO5 zjqFxG%RBfWDBpL|dTk6dg}`2Ek{l07qE7vDDx*VCZ(eJFiDS7>ExdkPM}WeAZA-RIbp+ zRt~Efu5GL4K@ty0wOKy;PJgvOM7@5|DeKMCLViY)ukcv{zCD+8jx#zkpfQrxC(RT} zry{%JOC8r)S%n4EbV4Wd8t<5365oIrfANJjp_;uW=EncbKL@Z|)H(Zkr;MaVxO|d| zU6~mp`*`ut-J>Yd5rNuajvYzEyZy^~qRA@xYq827 zr?|aP&EDW83DnHrEb=~|+?XszB?EoVb%@e@Y+~olrMzkSu?St(;DWC)|Ajg|^x~;+ zKhci1(Q7lt4~1>}2o|D8#!7_h1Fy{WWg*|e*b1fbrC<&?i`7}gWwmo}m0T$;00I;q8y3qY}XL!g5}3LCD>%GRI&xp4Y^aSM|dmgqsBI` z&!+#-V=sPjjdj`PSUOSJm%jtbeb|RKorjE{=>mUKJ`_J6)aNUm=6^asaR1-b#j0G& zf%8CUKn(5>XkPy65;}Nel=r@e=m~1s??4d3FQYGy0mBSH$c>9z+bcVK#6-ftW4-Cx zOYHsPqJZtLbTaZAagkdk%%}M}b_2?FraPztczeg&C(vKsK6(!`rHrI5Il9v>T(-GFO%OZi94NdwI*ot{+9N{t+Idua3p7LhwxU zJJ!^A5ZMujc(dE9mc!5pMgN#N^pKv9%`8BoQ+G8?1eu?E|%RyC}cw{91wh~lB& zl~LV1!wP&lOiO0Q@}92DH&z6$4A_8F zpP07n(O{vGc|{oQ-b2(k=F7Fop7@J{4lUNRguRsAysnAoBS&XKhA)o1N>Tc;s=vGt z!$eimz?Q2q`oz7rJkX82ifIGGHCxvBpE17Qcl(U1;_MA{{?n>g72OJ|>B!D6K8W;3 z4;0ILRAuX!a{vQeKjYKWj$Lgzoa4D`z>O2d$1fRZL2}2A(Qo#>?!J#DpKI-ptLSw* zDl(B<^5&&|$e@~OPgWA&rG@tvi~DhO82_I3;E%yR|JHg7MdP1S_vSl21D1poB9qnG ze6or`dwW`l+~XRkMK=B`F)qzXax!tVi$Vw&U^hm0P zKCUI6H~&uk<;Qim`c(K%H4IpO{#lCcY&31!&grKHXF3Ngk#^+X7}7vd?Q=?lU^ks3 zxD0qM`)b-tvn$PB?xk=4nDJUhK0x{IojlOU3)>Vb_TwMXFw{$YmIe%l%WLT_T4Ony zc|`WX@693kRgffHPJn2$+OvdGtC#$&co4iiZKyidxkl)`YaU}J?=w^UV6 ze}qNMRWZ0pnbP}EZ$9R$L4%dIxAe0D+9J!uF+AFps3B}!uVy3_^uQjx%=<nldvk9zj zK9(LjTK*9$q95_Z%Hl6-T-=i|3-rW~2)%KZ*djA-*&%wWt_;qJz)MG*f zy*4%}vnK737V;!2>Amu-`K5qpe9vH}$ZV#@G7^cVSVJapc0I9eyEMWVnkc7Ub^P=B zVV!?hAg)ZoofUC<@Ff6lWL1v*ztxBB);Zw5f+^wt6wj{e!$fQrKsB@cQ}KLi5;)@b z{Y)EhRp*d*&ZPqAf(h$mj%IV~^~4Hq4rO`#IAmEj)ia)2<~#kuZ~xlsdsShkzb0`c ziO{rLhNPijVpP_>Br#(+74itVdE39{*rfAF#(C+-zWVi2@rA0|dw|=no0Ra`-l6j? z)+Wp+JDC!V2}x-NFR1Ol)4H2irr_!OKuY{K6P=pZ-?ePmxrU_cFFkl?^4>@Vp~~d( ztMMjMaH==MoZ{*h**i0_36`zv;#}xk^)s$g)xbsDXG=Uj+&++Ly_x)@PtUS467w4c znEB}6{SKc6YX5o7gI&)Ui$f%!grH~Hq#A6sWlGAGfT25!roQssu*6vsK0MupC#)m_-Nhl#X>p3kks$}By+ueU#F z#OSvc8%31z^SE{FybJxHgPerL`~5hc?cfWYq2MVwfG(s##vldOf2m&jlC<|mW8Ys0 zoRrD^xoBQ=x$eN2^tR)Tk9iBr(ec{0OYM^Dt=uyiloRWdla6KmYV20- z8K07?MZlY86hp7>Eor9u?@-%kg4Kk+7EZZTU2*zxvQaLE%*l(jmYTGZWiU^oRAo=M zbH$2cvV6+ENJ=;3t{5A)2iAqy944glQr7-E<@&Q+gylDn3BS5?TkVTfwHnll*50n8 zq2@gQVyPd%`-bz#Y*f90(C_PjHw+pB;&P+ocre{b@Pw2_ROlkV&(Sf_6FT;$Ztw-9 zO^k3Ox}+QWNm#1?6|Q$Y7f4y#rV`rl0ly2jsg-xLKHlBO-XfS zZassiduz~DYQO;G_S4+OEum(VLYsq`p>xp*>Gu-;j(8#aKLnw*ho9St@C?pKHoY8(M}q84K<$1N_PSpPV3{BWTRIb44}6YE$uQLEJgMIq@{muFgQQ*N1mPUXIg#5C zDTmm0r@ZA_<#a7xFJ<)6>1FM^KZm<>ot`pHu*Z7K7 z*UC`+oC%A+hS;i3U3!6b_ffoz4Te^9w9x_P6yzq7nCPynT36Ls z;GCzhgYrLfRIst3I*co_G+4G4%+-|{)(pB&+PE>}Ued>$=Mz-T46UToJq#XO~+qHj)h*FO&RuBwch+^Xx+qTd}tzxVzK5<@3;% z_L?L9N(LGpq%VDr8#jI+9Y>f?DM2egQ4NeOZ7j2+FbVjmx$1J3WWru}?A;&V7-XP1 zV!pOi`oslhJR*C4prdHs-hJ;VuP z^L+6n{0}txX%vU>_Tse~;X0l@nEH#J*w=+8FlhmYd!m0U|&`hBt41lRql9 zqj&s!87EevWfX`v1*DyP)xzPD-{m+8;mGKUAj*z33|-YK-~L1xD5`F}fi`YOo+Ir8 zpvq;zwlYun;cv{}=`kjeAoyMpo9$;x;ON$jF4&x^MooQ)<^2Rii(HZEc|LFFGpO9y z)S=`CrFqp5?#~v-z8Dkh%3!~ws_$CuUtPD4NlpdEu_#=6`?d9~=Feelg_Z8gUfpi; zrZDG-!|b4L=NsZzPTC?Qf&p~P2_JgSJrQ1o-h4m})=V>4z6YM{Q@cJvqRC~U%sq=S+cSLzJ&3g+AAaQ7Q>gMb9*escnlwI?{WC~npbEU0BqX> zM2PqINU{jtx$%!3P(7@9tnl+y6=mWx=GDB`+|2}zb3W&XnSIyjM8Nf7>lSL>KypqR z^Es3GaVQ42Kh1=X%RLU>ij6PF;;}#mvc;#xPbZ zW92!Er-qUcQ))sq@jlE@E)3qIm>nDo7R|j--A3nU6`G@+xSbw!DN9De76IAqP8*M2 zZ;8+XrW1Ya7y9BESM4vjd88XytPh!$?0Xbut8xg;;VPa$6g`yPnc2X{2%D)f23 ze()xhU;FwH!k}{knTO~!=;XAE5EsIAJY;mDc|%|F9mrHXi}`9Zbk22Tu+S+jlnO>r zE`eQ8$n2mLP939Ztz3mwCQL>Hs<{#Ofzpz00!@I zrXATcD0tDEI-;sRE{uB-RbNG_q0J^A`}lNbOou!zNrx})W`dz0c#xRcP#>fV*qYi} zZx)HBcnv%HY!}|MI|YA}16%Gj(PP~PU3HnmlVSqt^PMRLa)Vd$eI6ny*U zCif;j1gc5~6TGD-lnD*<4r%-A3B9|lUFq;(S-QM93 zNMQ3qtLUfsav6V#P;+WbAKiTr!zqTeflc@*T8261z9}!9<5;GyeK;T>Ss9?x=_?tN zdvF+UCOSqUOAT#yDD|GGL*rNaj&P!MyFZD3#*OE*OW^bsZc0}t&t5hZvh(Qc3F9So zt3)f4&xd(HE8#KZ*3<_0#nVcteEL#H+J$O{vf~;?IG)ZtwmcK;OWr@hF=t3tdwsgD z@ibrazL*9D?1LT%)kx}2CTMiT(v|k?X^eZHj;#1*XyuB=)oKE?-K*R?Ix4}p{SrYC z^Mngi2~n!rh5X`rM~dNtquj;TLdQGv!pWO3ta1`2(C6I!Imf4T2wom@2v!`^zTz8gT3gXOxbTjo5+gcbFI6PoQ2mR4mZPnIE#3~HD%kh=K_NEx zeVc&O1Ki4-N6}Q@IIQS6{Ur$8BU$KV8H+Wb2fTa8xyu7`wby+CdVgUv8{%44pPWcD z3ptVFyH#GylXze++RbRpafVLjgXpwb}ex;nJ4>7zG%e@ z@Y(DJi8u4;0$heSCr9IrRC%I6Y=uDp>=BU~Jq>mr+$kMUx_2mZ5SBPnvR9F*ShUyC zb6V)=ItzfcXRCmP&Y8@Fgw#*g;(^9 zkM#eNFDg`C(0e*-=i-zBD;@_O{s-1pd+P>+ID&ObAkyJ{aVmUlVE&*@He zs|UYOO`|$wX!z)D+Vir{(8~(=J#YQ{0YAymD{zP={W(Y%h>q!rS|m*3F9{p)0PoEtKC(;axwewfjnhdL) zkBCWM`Ru|b>{u%k`P}n3w4Ibq7mc8U*K_RrOlos=A@L&L18_^ZfVnx1;y&$0@zyL( zzB4^z9u4w91qG86oRXP1rsVa(g{A~S>^RxBeS5DvAwu8#M{F5Ij%^ybTH(y90Ql$gI$i7*{htth|KDJ*y#CGM8MI<(MGu5tS?(st6hq$x(BASrC$FAP$ zUnh_Df|E};#l3H0l7T4z<{|2MoFlAH%UP^de*6tk?AhG8t^PpdkR3C;FbV2RU(UxL zNmrw*uZf&iU6BF;+1vGs(KocwO(hZGq_<{j%^WBhR}#=9COk~eo9L6v-tQ)3-4wR+ zFgU!1g_9Yp4dgz|ZaD~78NJ&m{1mlan*zV_8q}nW4do1}SK2=ezclLqZCnnN!%_f0 z@$1lkg#Q8!|JPpoKU*GdoCeS~%5*Rl{4rKg{QkS^Kliw@%>c7CptxWwa6ZhfJ3C6C z2)og5_61IqR6JzeOYO5|3pBKeqF8CRPqh_|~hMOp+faD&p?+RCl+VcxkY+ z14%hZ&j9T374yzH{skBJ}WAPNo&@}M06 zuq#r!(ZA<^gioC4cu*htgZC8XbJoO2m>*aVNvm4J13_UI{^o!mTc^bR{@%Cd*z`#Y z$z6JKI>_+I^@Kd^zyOK_o~76Cv5pt~`L21uJtApn**mXcl1q54i5HlJj_jLxK_c4u zeDDy1f%*0sQqDM5*9(SR$w42@FP(SzeMvz=vYBqLW?^Qk4DW>X#DlI!t!4SdBQ`3F z8YlZ^%+Y38Env?d{3+xg(I#h8q0Z>?+kky{hd|6WjFvl?k=L^}BmIgwUGL*;O;T<@ z-zg88c7i3JgVF)AgEDe*Cf(zFj&DX1qIu-W_kF({lENdMKkw(TeX-#lkaPz>H0G>m z-A3RSv>%oHB?N}{zYjumd}~ap=a*~Y_z5s%SA!Br4gxELJ6R`JD@0XfB-A7egEX*# zR3SGdpOE5_kv2DyaE7obg%;9Eg2-yRpMAGiLxn=;RkcP-%_y_YbmRGc8zplQ@C_N! zp=}zrG1KKl)@klg43)52Bxg*aROicnMsxc9oGkOJCzC8kM!;Pjj=7G2l$ETC8O{e+ z%;DNLUO1jYSNl5WKiyj>n=fwhQH~JkH1tYO;yzF}LMD6nn=vJ)k{Kgkt!i@LJ7^B) zj$h&gutYrP@k?eIGAGPUb8^?bZojcVqq&F2-qM!Ld1P90cCD{fjedt{@od%=31Z8D z0}ryIiH=1>LCmQ$?G8}b>(tCpRw*j$`EyI{2sX24rYLM6f@NOVm8ob+o{HXOlr>Tg zMZyBC=OdE#J~%YtI{U=yL+3f38NP{hSvyF{Bs>p7@D4Unlew|5II_tm6?@l21vi#V z?0ivaAatiDASa0xXc;`(v}yBP1tuardpLR`=g#4JLLaFK**xuRUQiY~0Jp)mXtFQ} zA#a49q-?*MP(I}FN`R#r*x&Go1!No=(w*HboYt4UuANnQyIm|`fXVWkJ;nQ%8gJgO z3tf>Q3u{1;(PE)0JP}|L@9;kpWQS8LgQg^X^;4_Y@ zS1ecYd*AUfo(Z;O%3QCEZ3SSyYDZT0?2>rcFW!V}yZpf2a2JBj0&vvF(3h z;eRgppXS(Hto*-JK|KEr;^1^_07U1n0G|({2!CFz0NLi>=CyMK0O?1~DaiR9N|V1! z2d_-~*L^$|&Uuqa^O^ru$5wwsGG5@W$x+ZV7mNk-wph6UXTfM9zNmI|)-{BLorqzH z@NS^9INF+8{yjavW&-_Uzwbt*jyu-@V3s{=W2V!`-{v6sVBtQFsns52L69y+`~y zU#4fkbrXOXx3Q&;Q&@PANF^LZ4Bg-;eSf!huq`I31uvR7WKw<5h;(OHhcOuiC0z#1 z6jG3bDgIoxRrz>j1z^;}tQH|rrw%h#&vDBi!82$Uz34=)iW(n9CN zxA7>wecvZ~d~jJko6^gc05=m{haMWIj&CNL@X|slFPDD#zFrnefKo@tT_0eQ_g;2bk^>P>u<$Vg zRG*NNXf)OuHLWU*0fs4na$Bc8b8D&Tg6)r_e?^Moq^xXJp_#D+GcL<%Hk6n#)|+dT z#v13IQd_$@pd?UeA05rs>u_B*g;4#N;WV(v2p~Ft8|+}e^h53er#>^zlv!9%u7|HG z%r+DKVh?yzOt4Zz!ZVUH?1Os8Y)YARD<4`6Ug|271oKfx@rMB%W}uSm(0@dtXf~AVPPG+V{@SOj zRrWQ>Qd4&H*y(#r>3fZzKFGdyP}6s{G)rSFLN_R-bWLAn?=!uups=-`R?svp%6Wd5 zESn_VMDw`3b8v_)xFE+ECIV1_jxli~#*XNT=KGeok$YQ;pesiu$Z|}}(G$S4C$%U$ zzl+bf(N_=b0t}B)K=7~7yC+#=F)xo>kxu zerofW_#`fN1}tYxhXL$Gtzi~36?O1MB9D(EO1r^~`ofJvz6Q}vs{@9 zXE>C{oJ7Rv2($0HV!|iavg$X71(--axj3l{fig%=tuT<9*JI##il!T9qqzt|jC@H}|_YX*ZC; zMv7HgV^_xJ_Q%J2S(FQv<+|Ak?$)F^4QSP6A|JO-x_rKZ~WUSC10ehTs z5DLnS?4yM8N&DQ>3YqGpl#UVgJh6sXQWDHE*^oHp<+ zuNVibr2-F90}X`#GM;q;<)zXLppoA_YPU zb%fSTgbS1C*Pc}?Mx#a|iKLeTQnX?_(*K1Rflbbp@ZG)-1HVn(`P85GX zv_BX8ox1*q1K0K6QtwUwFVi!+U*~HrV}C64@T&+AFTIijy=5A=c7bF5UT}Hr|Gc2+ z&c~BR3GwZbgumM3iwa;}`pK=xm#8=bYt(_rq53f5b<97Edtnb_jzK@8!rG1y)>j6Iq9)-^tnjJ7j~0!fnSS zf5--U9J-%V^2lGbY)e7ydCObhWso7IIe*04ZB)guG>L{dA;IZ(N6h9?21TCv6hw9% zW%^-U;wt|Rx^nKsMAcI?a|4!gOe70LlZT9r@}l*a=^g}{dCtN}w?|HkrrqihF+3od zD8WNiXmYJ`sZ?gE|M1Fk!d-w0{L|17`rMMAaArs#YTAtV&b(*_B(cE{Ll}P6Fy=yy z4CvQ4KL!adp5K4EGCM41b_?EWHwRgnHo^0wEBz!^n7aL1vOg{W^0LPKn(?LLgl`Jx z{aUz>-zwYNJks7%H2_QCtm`wZ;09ch%GNTHb13j%aH%lxBb4?=^+o>I|9yY`e)*if z!o-b$4cv@(Ay=6wW1n{)f9u)`3od3ny=-&M{{4%8ng zrI5t?Gv-Au(9`Z@S?$xGWoe8lS?_4oX$q!1F#kE4jq74?1C3aa&Z0S{EITdcbmSL; ztxR*lVRT5}*l%b}kJWM=XPGY_5k4CH?M{2Joj-hKTRF^ineP_QVms#s;H5dc0ww@< z`!_HB|HIjrZMmu=+kOxaqHi8;W59qhHa%~&w(0xs>#s<1pW3@>SKU)*jm%slb7W2= zBt^`r2!%}VXyMi8$~$y!kFMl&MaONnKs2bcithY*rcW%G^{1uOR%8w7LS=Vb7qG_m z^$0XP?SUG(O-CSTt*Um@ zm3Y;wd3~d#f%y{o3%$0@MHU`UkiVi+t*}R2uOm9rr&U%qYonVJ|{LOGyA(e&LVlORZ zJtwKxXHc{UC6206jn?j+c;d~=-=Em6lyEAB^1C^!y5rpVP7_W`7$J=u@ zp6BsUQf_p@c}#rr^xI}YBi3mc`aVCCh`lfv%i(|C#Pyg59h%S^5}{{Aj|Z+h)6lnM z(6FYjA1eiNe3f3z$e+^$^&?c%sZJp{N*&W$I*;+T>LP-bfVkuJ%65zan3x8HgDlvv ziK3ZJjvP6}W{=B}VkEiPnG%(5b4ahs%4w@U-GeSotg-x&;L9vOZZ(Q&645Gcx z%2*>`a|Bw~yP-nNCxuW0bzM-h?fhrDcFz<18IY2D&sL?V6sC#N6>ZK~VMWr@!iU#k z927+X8qfUw8QcHW_xv7M{0U0^00u`;>U6U|_V~{lW5Reooo~q($Pz147+C*fQ0fOz z6|3iyaB2tDwy5(RHg6j_8nZ{QCRqvj&*|R~9nsHegNlNPtzjv>e=1-Z|u4JfWQ3T|DPjLW@1u_?WG%ZCR zDfsyK2V99&wNV74j}wKY1A19?RSMT7u6(m|)r~X$C26u^TW87KYPP$zIn!r1s>}a3sha<@eRfiJL%63G9Ra8x zz@-5i2vaV$A)n)lA3krBL{mMQT@u(j^_>zGCrDjLqe%7_;3p4bV(n?xr%_@@WFmRt zfo~adRFCm1TpYEARTkqlC@qM?80FegTEZ*jpElS8KXgW@!puF7&PGO(_=ImlyT4S? z+jtF=M<(*OZ%MSrwDBM7gblun4ef@pS_Q7-sa|GW?C_7^7?HOI2JI#j0qX1pNF%uc zc4RB+n}Ls9r%3AW&m{0?@;;KFkd;S;7id4TJunv+I(Gw`U0I{reBH1TdXc0LAXXu5%Cn@SY-ldWAq6x0k8EkYWZ&J*w}d z-bhPDN3P{(-@^YVykETxTIjLCMpl5_+a~=V!FHS=(SkPBJX)3+5~8KY3(YH4KSxF6N;k&k!jr=PsZ7ROOaI(J1eoAYx@Kc6EU zyu~UOWH!((!WASz<#0Q8*fvr@uDzOYjaH*~LQFTM!P$HV+{m`_9ps`Ap&?z`$Ywta zw+QCUsfVK5G3YoKk5^J6^f*$PvZPMxT_e`)ab~bHoIgy_z@hLx}uTAnj4HmLZ@6%ZAJRkWma{n4~-}vF>?K8vh^2DCxPaC`wq^) zPzOx|DIIG;EqF2T6qtLFU-DqE4ZuV=%CxZO9^TIY!S4{b-$(Pk!qJDijkoJ=&ojIh zJwVC|q=E!~a86egFl2oo%$LI+LZiT*;ZzykP^_#fRGYk#f;U7z8g#lD&IYMX%Iyu> zd(H0IA`@IKR``XW%HEV2%HYd!;DrZHcY`LVzBd3l!#-evvhFVQw`atU_8s<;G@6be ziq5@8d9S49+7JzXsGj~uj}GSWUv}$1_2>ui-*(H|n{nWr9zQsz(;j~NZ4mtj&Iz`q zy=)^o9fK14HT!Y4nXpo)p^@kE5IYafL*DzU*@F-AYAm6+OJAsh=~uMI+WQ#X^RgVu zs^9*4O62JB-yao`{&7@GeQ!sa!dcI(&688DTV* zf7lnz#X%^+Z`CKMB52GQ+xNCgo0W(pJclZhXWPZABH1fXdy*fA z`Px;(N!+7Z>}hwsN{Scc4K77yfd=8i(>$OqT?_s;CDS^&j9*I_E_cquIAjH`t-K&< zH(9bZ;^e>E&-a|kmrSo8Mf!{he&QwZ>~2Go?q#?b6B4Nk)X$DK;+W3iAf7YUR?lRa z9r2Ve0;n3mUp}of8<}r5HVfhdX!ACM9+U83$QYf2rXHXjtpe9bc_h-m;t5l>_7tz04te_U@S(HhgI-%~++Y>cNT(yp6Il47wo!DkQjZVhug_B4I~ z{}l5TV)ud-|p z7UmCOdU=!W;g`8eOR*wDESG(+Sx~*nNjoXWN=b)F z(N{!H>}`hZ;GfR|{A-FH!vDjV>-)LC46<+bv>Wpuz?1T~iF#9Ga@De5UIs2DgE8(9 zAY$&$^f<)9`rd1j;{}m)FRM^B81sh`g2x>Rubr?BCnTVe06{>$ zzdFT}6s~?ChUC66jPsB3w57HVNWibvN*ukL|53RQ{QjDd2}aa-PKIGN+pY#C}+ETZtjUm2B&)v%iHUa zDSEHCe%ATUx!Jwxa&(#~1Ji3ou*UdA9cmO=z{3eiinaW;dd0M$5*}9~{ZwMU-WP;w z5B!_|cHXz%kJ2?=%!VR%sdXYBZHt0WqO>%((ymMo^EDXrE(}w8N zx}RFy@>5;#GUF=50GcyxT-{c~RO`m+ncXKI17b@OUo_PYI|u&({8!7K^dZ^%yfwRq;Mz( zjgw8h3b%hmWcTQqVNgdb^6@(^xtI`Qi;zpFPMmJ{h~#JlkjAF+e)f?eUoMUcjaK`O zoC-5tQhRJBt;vw*Jju_jg=g>kc+4H;&oPQY6Lf(zhHi$~T)SnS(~liW_Vcu7wRM}wdl_Z!?&z9dG0 zm9truYSTyrp1ft_()jST`L8H+r!&{w3H;-y_v@lUk8t97{XP8NulE!4`cJiV|38;s z{5f*}11KQ)NHI|QbuC@yV^{{%HSf`_sPbsY`$d=ce_Hy&QY|R}`+1;H5z2tRDoCLq z&y674vkG`{4UQtRGcKc_8^Shxjk{d5=+^uJNAxaZ%&TOO{uonV&j< z>-V7rD7xaTy6PPEG$MOp^S-Rz5Ux0x5lJgO+~J+=hkh>d!|h9Q_myeH_2 zbo4tmh|k9Urk*|7Pd^00!2!+nL8riFDh)@Q7<+I~=WGY)hde_CDUN&Py=|ipMXz?N z&GGXnMospiE!T_lTjPHP`<3V1Nq0tfWQvXkrFVC~glFm=k8-**NDH5aSD~zk<|Ia0 zKQ+kVMv-K&RE2NKsZCCOo#lvQKW4YO%puLY2#2z)6|f#L870@VH2n#t9|`b zF@;Q&SnAl*hjEVl!zyMF7To$72a?fDw*_ypGrvHhxdsT7Ho_Hi^U>poGbIRU0c}+d ztv>t=pcokuKP_mMQ&whk$RpJ)V!YzcoX7|NPAfMo9Ayh1G|}IudacwBHKv}B@o&ee zliNg8G}jO#*75P)Di?&CP-7(6+(=%GbtK8Z7~9;pSHAmYB)=ttGw`{kNaaFb`%Qt< zF%qz+?@o};6Hp3$Cr)|^n2<~W1^o{6*#P9m?`6c&@PePV4nd|rffzl55R>^4l?j|A zXe|@HEYD=NCK=}~r5Jp$AoAs8QYgnQv2c6+j`C@7463lX?9Avg@zr$R{YN-7{@08VsbwIzm9Md=-o*(6;5ML8XtX$4zN#FtXr zv>H_#&g6UT0lp(+ab#WAO3P_6d@TA>f{$V6+5C1%MYuS;@f+H4<=! zXK1eZ_HkZM%1$0@245X1n@;NL#WwLFX)I=d5)n^VJ-a2_qB&Av6^Ocqg?Z%!0mHcAc z+;w>GlqFroh&E^_qMF@t(11o+N356WEGznun+x!9nJJ5$0?t zzI<6YndN*SZ^P`SH|A`M#`B!#QBHQh6&eu*s&-ZZJ&r(&g^1F-BKJHSu;^hTRq2Zh z*(aiMqHC#>%{{+sgxE1^0fhKIh8`uNimINSD2*mvA;a@Ci-8 z3lr&~N`MU;BzmFih*RUMt&xzUm=JOCtDCCAj2Kt+?g*a)UeRH3sOV;QH1TySAz>-)ODOHVrq^uKAHGS%a@PZ{4NyOJPEsV#W zLsxiYS$GBF$g9a5<%{qs{3;D(vhEbFb6YHs#wq zi>GhpmfaC~OxpKYR`%pzoDd-6oVDD%8IO4DqoPfvAS}H6?Qsd`l4=yb7K^~)Pbb0^ zSbM2cMt=q08aE8wu#ZgL>yUQ}QK0%-@vOeKU}{^cQ14|+I-jqw@Y8mZ z${HORSkNq8fSnQ{JtTe6Gn^2;-ft`?BI!(0T@sy(_3=!eLG9jMi|p9^*gv$kHWAw8 zO9Yz^g$b|TFggrgIc>(5d0Hh;kqGXr0!10gHfEX(9(>PM>GW#VzV?pxrGM^~SkYUyg zFj2SHOjMAAIh?b_ZaqK;6=HisSnWoX61V+wv?JN!F|BQ-mhUD;)6W>H#l~M%1n2;5 ze^T9iYX9#ik?sdjIEfu;Vg&dIKyb2Pqa?gSwhk9rHcNYUTM3?taXx$8{W(gC^f_fI zSDU1eUL~l?!MC!(TkbM?IAT(ehKmi6J;C*yKR46R{H$%#iLu!gwNA+dq>RK9 zDg9>9A)XUyx>WCxWQE{NKKriShR&g}{BWa{tWq4xt&I4b7Y|8Z<6X)mE!q3=-)^!U zfd6Kv?f*K1`i8(A%1r;P$50f7a!OacQ{k7?~RE)}}P>B^p1oo9nV|_oibM7KWo? zCLCVRp}ZAySwh4072NNk`VF-)C>c~SBM(mU0iEUO;=E7gQ2T^X#44 zlzHezRCKdNo~^^g4}weeXsai)?co4TFC^;)E~9IF3$bIyllwXRkWq z%$Mwj=}V2L_4YX_)=U9lJLe?1QB=8vDs?$=#%cS1lzrK@t2nal2k}7PJz`^w0RzT# z=8e|$egE}WELLV^<;l9|)E;B)G28`GgfwG@6d{RFX|H|6=2iH6ob_^96F^{XMkhXu zMP&JXb~>xGYPPa4QbB>y-mEg=7OZ!;=)4d=Z>`3xO167i1#DJ+vJXAWx6Zkx-uACB zk{drDQpZEmNx-IckpxZHX{ZboCGS_4Tx&ogaXtJj+0owaB@m)tQ{9BQW2$eLzs za?X;RTmkB%SB0hzOq%`M#q}qjc-LCr zeYi++73KM3NBd3FncA_u`V^>zq9CW43yhLmcrk5cNmFCX7?gh1yada?p66w5+#3iA z;=W7b#D``C60rKDI}FevtOL+?Pk`qEYPXu;J=ac8(X~=mLkQ1y&fO?S~hX zszo1@a>Qvp8)^I7N8freJ%+jaII}1qq95L?YRdmOfyXVQ$cgRvN!k@-Q5hx5s!}9{ zy!yy|s}eez!&+jt0h`xaApASOswV%6hy?^Yi0Qk;1H{0tTb_h7G^~ENYuOA~2ZPa{ zVD3e}{xcx{f6f#75%|xC3jHiG>%=2rZw&Mh;WT!RY@xQ}^e3wTqrGZBVWR?Oe`ALI z?L1HRm3=qg3vi)sd%U91k)8-A_T|USWcs6f07w57z8P2CQhWat9U?Xf0viZbH=fquDwpZ9R#tnr_gH3=7@jkrdzFQ6Hkn##UJ6b~b zdjDYici#-O_r@mtjS+rxmaNp|dR$YVP!t2sRW?T=aw)eKF*ZeRY8O|d_HfoaWg+#_ zfaT+~@At5Lzws;A(06EWw~HUsWdxlILEgB+_sLzxrRzVl=&jB>^q<0AWrKIcI@501 zGl@|ZERGQ}=;=X)Thw!-nf&yIjuz~!Z0dE-xb^hQ&dlGr%bIm%D}M8Al+|Z(ovTS< zu*jbki`~;*LCscqCHL&@E(0 zN!ncm|FQ+j18dyKJtI07jg-Q~NIk%D-msVWeK`whT$-^-+tBo(vnqTVvi?l!SlI5*?&&#Cjrd|Vs(q<% zbULZ=Dgn3fBm!JKuFs*?U{kIILNB8-pciyswgN;4Zf;(!Sb}&8QmP&eRX_A1yPJHy zl{L63pmbi=6K&+m2o0cZ0c%khxbqw*U8<#H(?gK%qoZ98aPmU*<|p_Xw&Oj&WDl9o zaz#4T(OUR5`5(iU14IkY6r(0YI|vvzbQHtWJ^-L;4j>N7pw9dmzNm?4!KPZG>xWI4 zkgN~4!E;dIURlyi_LCX8b)XL_-NR>`LaD&xK-V73hLkZ7Z;WZ1-P~63UnF#XQ0M1|gx zpJcMF7kgx|Ew<0((wwE4#&+lxdOQ|O-HU$vu<(dAyT=*Ym%?X$Zx_*N2v6Zm!|A}35s>lk^4QBqjg?*00|B_wz73*2%dw?|> za$C5@`}X?$vfZXYrwgD6%7!Y2`%rh+>*;9P$AF9y1R|h2F)zgse05K9kE&}ZEhw3M zf0nW6lBq^?7ob1}aHe0gU=7i8$A_4U`2xXXQ$6J_=Pxg@<8ktyB&|D)Ww_$u&0>NJ z(F%OGP&cvhp_X9xcV10$nGebxrMovh`XLVgUh*~XHq1v0ZqogmSMiilz`#B}%JS+t$C7}qb9 zE;`IzsB;p=p@YJgN-Z z)UdH9AFPhiRL$y_C*gdV%OvK7_3U|Qo+-3n;Rp;Q(}V9Ve|zUDjv@?->u4hRr97sD z?K`^-Zx7W7gpOd1Y~oRw%8(^FyDX7H_EHxU*BjlLm>HOo=r^9I@DGGLXf?x%YCiDe zm|`mFU5X^)(CAYTO_^4^TJ09^vxl>|gZ&2JF1+h2ylRaWv_$4)xu>9W$X<|`{i52Q zPY;n_r{^~xk6Q|a;;z4E0oXL#2u3x>ZyfnkIA6`YhR!W@9iU3>x+X062(-gfpoRN~ z(!WYAcGrZoH=A+AyR8S^J53^WHW9iXQ7R6YT8=>o1hwsFauro^jWeQ${9$Sb=)neK z^aTHqZJnRkr5)n^%pW>RpLTA^uE@G9)EEzyRaz#RaZ@FC%X3 zhO}hl!!(2_ZVb;pZ5DJydFb-fE-gZOkwHu0CE}L|tvVP63{-}FzwNb7phSm`M;aTv z(|?r8avEdN<)xE9T-837*Y`ppn+t~EeJ1?|qTNIyYc@oaxQ!W4>$PzP@!O5#BGVBY zS^=acG-`R`w)#A{Nwn^rxV}&{FipcVCS9Mj=0aYh9nwvPN*GO9{Ja_bnr8UeisObB znLG!vSL;5WP)mBH5OBLYo7owfsc<~G@FI-!u9M5|SkINH)3ghqOOiJ@i=`C5K5FrW zx`o;C7V|D|oNDaTrGV;qCXuCRU#l(|sQr7I76gLHQqFf<6+aBm_`I0a)(lN8Tsn%= z6FuZ?D~$ zdG)>;1S!Zv&k>J@{sL$ZwY0d1!~#8aTAvr=3kg`|LhYG<=%y5mY8X0DcCDt}tt6x- zn22i)v^Qd@Wsd3V@m3d%==Yo*a(BElCOle+px8RkuyaHiAq7V|AO7yAT$*;S7bJUX zcm8?*JT<=79=R0U-xkGdwo2i^IQP@-iB%_N#br6ioP8|jsooZrQ<)MD3AZlnH zAWU}Q>&ChOrV@Ptf}k6DY?owz+bKaFHY?ip1TN$oq00u_v@OCr~mSiSf_~=Wgz$CB60;Dx)BxXXW3NOJZ)Br$r$W z;#zD&%P$|oh5C7S$nZhB}pR)~{lPjF{PIQMyIVRzOVygkx@#mQ# zS;Y=%M&lNGYkfC!w1EfNh4nQ7O<4Z^5EgEFvIkxMx2K3~=gvUlxjJ`T*5|Tg5)B*f?!v$KR?zScw8(G?Iy1h0Gyov@@na3{ z69P#vK{?LmJmgg(d~;+Geu*GrR>Ai+iIpvzLBRt+r+@MA5Xb31;?RV*#~6ByMl~k% zyB=X>=qCoJt3WRtroiyK!O|N$#aKvaPwRg?>;#8@dm`|;x8spm8y`tzIB?)9d@!%G z@qabMpNjZb!%r%5$bug=(*7#q)B$^1YJ9WcXGf;M-^KisK2H~L{ZRw~sQDOEMvJAc z%eLlr=*2PJY7aNa&WI|-$Ss7aI;wLTdxoB7|NY^=H9r4w%z<&T&9@S%DoTxT<0Fwz zQ@gGl6o?#27laUV$)TBr2bwufgLBRnuI(_w;r_6S$@6Zy?S#dB>Uqz!7SvH4)eHc^ z_SVn7zS>XC@6Ed8rth0!+0ecoG;C75Y`p&FM0!S}zT_=bk{H@Y2rbo2HvJWK za|9Szsdq$yP*y`RiaCx6fHqnRc5lGrpd!*k5zmC8qq?T2-;!fQjp#Svdd^};{{jfH@1p*hS#2D+)(V-bjh)(~~8ro@C2yQJrt|p8CyCo)OJ1erp2z0Y7iwPvD5bg(iuWB85c1w|=U0BdkYz5eLuJ z8|PQNuw8H28zEj2tJ$*FJvUo-WRfSvpKo;2BD1%q$s5eq#PuTemUsH4&V6%PXy8&S zVsL}daygG*%amgH7FK4eZ}Gf-^_2Ra&ah%JZh17;!M5oEIRK>y0OKfutr?k$dcCIS zF``2(DT3!eft#B@1^(X3fj{_Xw)15jEA3^$pI3fwO=l|;6Y&A@*Vrkg$;7XHC$99w zG@G%x@leQ@?{@tHi)aS;Pfc_<6YagP2HZYRj~OxLfo}>WU%np8aNrNEEnB-RE-F8p z&ZY-f(C$LF^l7~=PS)Te=N)Hpc{KV(v*G#HjM474PL|EQH2dKduJ;! zBj#Pa2IFMZ_mJ40&=?m6GQT)yXspgkyA#jHK*5?vI&8--rhJs<) zk0}%d4c$?u-L<~Ft1W>Q1uiyhRW~T??88pEQ;*@pBT=W8=;OzY+uqa7)loIff6I*_ zDK31!R{#cJslIW=1#%gO`aqS>I8DERnCK?oP^*+_xBS4?urVeRWu4i6-s!zgI*imw zUrOT2{oQOuD-u1fKbwG8e{$UIE?E2^<8wOqz@@mww<@kqiKcg){~nouHAWJw7RUA7 z=(RM#P6(}`;P>v}vOviJ3lez^%@-Y#8gK;`JupeU=DD)p(iDuU)nM{NX#xa94$zlY}oXuC?vL}p{DMQs@>HRT}|u6%PdWA zBf)E?U4(Xn9(c&>Oe;eARpQ7dgh|z* zEtcpj;Ho&1LrC;=@b5X7l}@t>`03DN8;V;IrRAq4F@Q6G<^1DG6cco>Y3)8Hw|qf` zeyB5Z8Hv}RY-d;zZ^!`2>RWBF4!>R^CYre1!>YIXrfKUEa$~LO&+&s)48q$zeq2R_ zkLqh^@v+bF;(pIcBkQ{)yqz;8Nne2TGTik}8NhY&IFTGQV<;){jEKLpNeca&ylKV`4~*vdbf^JiND5F8&K%*&x; z01`L+8@$ysL(*NzM#m-$y|a_Y1&I{~(xdDMl*V;ufi_n*7}7pZ!8&!l7&6Z=;{hbVYV$B{K8e8URl{d>;RRGT41_WKck zbu)BRksNMfm_JB4fgUxrhJ0i{^U>p|Yz1TJpnv(HBJ$RkzRYRe?*RJ|`16g0{~2YR zbZZWvJY;gRI3FBF@Vm1)6xldBy_R*R;~%K0;}=g&DQ37*(3bf ztZ-95u&ss04+wh>>mbKi09^V_}$ zEQf)?05X*BUQ59%0A_n%iHY_t5=P8#@TuYVpuj&G`4LDRJzMynoL3@OA3p zOJdKNapY$T)8O;%SQFn7=8>pws;}Xfs-h@?X=X3Tiygv#4ZlY*ck5=*1hb$J|Ly}P zm=r_77?gk8i7-Zf>Px=4Nz{BRhOS9IZQ8I^ z%}{^U2+WE9u93fD=8wQXfOEtb;ZTV3WO**B+xMrnkkhCY}RATqI37) zLOj}KK+~m79lE4zG%<2W!db^Yu7nZoWAKq^ioO8iUb{q!>9wOiW%7 zYd5o5^Fo8fvXESIx`rp=>}UqWsR3;+Dq*9pGxPPzBRr9|jX;Z^`0*I8->JA)+gm{M zP*-o+ZakSlB8%9VIy=++bSo*(>irJ<|4EQqGBE8#GL3x8i!?)$Ak z6zI({H;i4+tBU|DrAFop#mlY8?&@={q^JB^`n4xe5XUOS7rwhIO|%Hu_YY)WdjSY#hygpl-hF83iT z*W7Nw@NOP1`3l2=&m|3X;lIt&Jzk$yc98TjPv{gOQK4w}=rT4FGHosdToECv#A52t|)xa9u{arY%n? zcH=SEB|%u%ReenSBU*?H6jA?&e*Xyk-@Y_A37f}Yz&vZ{sm<=3;;-a3u8sb^)2O@v zo)}jzD)m?V6o{i)w#ByGx}i{n9z}fe$%kT@Ju+6pIWq|x5|Mhn4~f7`gM(F&3}5Y) zi1UfP4WAzK@v@kD=kt3Of&7kd&&I*SB)J^!53nwV_g5l>eE@4Ve8GnJlJH3ipiFJc zJ%+^OHmCRHUSUJvM6(`k*hqTD^Ks7Q8{n$wjcTM1hItIi-CP+J2@X#(3%ZEtyz+$0 zJU}BMkrA_)MJL_#9_Sbdfas4mbt$f@6uFAI8E1Gqand8=-dtt80VLD_^APAdr>;ZJ zDW>1>OeZqG5Ab`nKvHtE(@R@ug<~;NR;y#M;7|HadiTQItFs22vps%%3DF+hbowQx zq7{805U@(Up6`nrfgzVdb=v9feD$(?4g$-bmCW5OcPC(V#Io8~O9qoN=PX2}l=OQ6 zF($;-%ZBE}in}SqLNXYxkK_ux!04f!==6a(8u`I+wkhj$p7eK_xnwH#GRElfYViB( zafW8~Lcm_YD6qf-ki~LJU|dDCkfHs2SUq^dSE$EPwDU)v1Z2bs)d|^*bu6!RcPXN; ztwc(P)26;K=Uh&R3c9cknwZJW&E)%zBsP0ttXL*!Z9{51az_P1>d}5i_04Cu>ZKprrw+}R z&vJRojp)apgVpKVU?V@-%eW?GX>sNA#uVJ$OWl}^khfMlZh4(n7*oVq*2jVcW9bfZDMkp8SES?b4^06@bn zWiI&C1NzS!v_-WcHIA3W%35_NriNM8=C}z||=+9D! znV?a9!3tsRwSrOuyhsX%87POSvZ_vVCo)u(OEEs*ITIm|V_H*>QCJ&N+$ymam8T(_C8NUCsYqKwj|;OcPW@7K5L5&!Iz z`lSYAq*m|y|6}h0GnPI9}S!7b^}nQ@=8xqh$&gnhFBdtk1RYV$Q5NC~ve4&{$Nxp!-g0koHxU}OUXp9FP z%fb%(!rjuGFA5td)P^tsWt0mQ*>7{XsdAMxba%Nc>qS^?&n|L7H@G#Qvxiu)H#^L% zPb0^sH~uN71zpBY7(lpHT`O{BMcl##=zYDwi#m1aMdX;5@=BssYhcq2zBP2UATASH zWY=zXoW%4BDy6Ye77n@2E<1+a`DcaRP#uQEecf~TH8xS0lx2CR*b?ZsBuyTIxpb() zJV`gsmEHQGGHGku6Ez(_nP_;Q*VBO`0#t9pMp3o!=q2gf`^)?ym5P(w-DbMb_+oob z;li9O%*i%t_;$-xfQRYS5(@TBPaA$994DMVHp=qUPo}y^>!)ouQ5GAxqN{W|wX4}8 zsR>BmwmLUecbbXYOVp4XRup>r);9!t3!!I7tWj;J7kaCXk#@+`jExG-&NRwV^%mDE z6=Uh157zBmMkRW_;x5kFh#-rndFw>4{XnBv$5a=0N$v;0CshgArk!~a$CyLu0RA&i zEuy3@y^6(~sU(FQ9J<3G`>=FYbN-ZBY{Zq}`W*IsYAp*rgO%4t7Bt{2mM(>wk zP&tFpb=}r2u}8tsfxx_dUt<1r#c8+=jdZSrOTab&a^d)7HcZIaWRf#itzWw`62mo- zhn5u2fI)LX;M%5a@Wr_@s`wYm8AtFj&zQlz@VBdNQCej z5*SEWCg|k6M&15NmaK#-fcD_l zQfMFzALBOgP7g5`CHGQJFU3-8%hlAHZ=fTQoq1K&(rG;nT&6k9P7P(Rdr@hYaM(}e zN#bd`sJA@qH{>KIrNy|l)Z}6r3k#E4*E(s6iqv#h=40Jeu>0k$04-Srm%&%=NrT1Qi!#(WJAj-4p>9 zw2+3Kp*BBEW;I}c2;9M8rBdex!TlJ%($;aucbjpx;#z?*sx?1_n>xarL$?yDU3+FZ zl|!L+1syR!<#(h8^y@<`ccka!nO-fpXxIr_pm?Ms0gU+=_GQ5H;W1_e%F48+sriR#`f=_6jJZCf13?~w#Eb3!Dgjpb$U(VOY2&3e+ zfGn+JXOa`KzN?^tvG-PfaG|D=#luWtf}L=J+ETd@#0 zZpCr|tFquwSAsQV2@zinR|N+?^x^ENOnVJ@2p1)~2GEx{Sv@nYKs6$aT>W$V3 z<@W4c^@WkDD}1-xa#?eoNWrFDN0@7Cz7uL0b#|>b zAGf377RiQmjwYWI7}e04D3Af-2IQtmD?*lz*n+ym@&!Xf+A6Q&Mvk~LhXy#lGyuYMN3#VDvF&Vl zT^~9Ex6P(<;$7k38@+3Ce$H_cgWvt3C?9K>N>>-_SgjQ{XI4x3IL$z<-KnJ47*{qa z&r`|1!U;nwAvC=(Gu}QY2R^>0^7?|{$E?{olj`nm_^ypyHccq_%o=QhVtZ|!#0kF_ zkJ*Bk+f^b>o9U@X71<-iz}!x@LglJ+J<8|Ap|dz*g&}ie@7mZnH%cGp9Jcn12MXYtGht?mdmGyke!3?=p~@!-0E=q1}M4AD)8tJfdK2=+|obX z5*~m1ullJtS(*0`x*s0Z*b2M{>hU3cDzYKrzgrj_|6L$3$~-=lUFLmw{6F`^k|G`- zin5D9T9y`J8K%jTWfy5wmENyS=$5A^oPcrW*OM0pr}7D-5g7ip4vWwZqp<9rZl{s= zYh0x7o7~FY-=sYi*UHMhp%8%&0Kc?8Jig+R=QOWQ^K6>#?@OC9MY@FDz~CJuBwJbU4#?Qh6|2jH-PJ!%Sd#(+D5ZQ zg{w;;)q4g?khW&(UvyQ-?ah@wjy7_9jnHR5 zNR)b-ryd&Y<9`~9_r+j*h~}(J6*0-cXH1;wx(k=I>Ss+55}WI zcOKesz?SFYXI)y#VNI%_;X+zH`v}gznPo?h=85)tW9FbS8X4EifI_*kgnPoMwsT8` zk?Mpn>Lk$QUCVdqS>AMvha_H{E9XqZbvP05jaME+ecde*KCfzSs~?<0hL?LDQp$$D zzlJn|mv*(AOEGzIxRbxf4}ETt=!GZSs~pXCL8;~5*4X+8-}Dv|D}5;zL-N4!Ogf80QVsY~ef5=eQDx+KU^uEc~+^9Jl z66nmu6;H>(kt$ncfg~WwqVyUGF4v3a?+b(s6ZK%&vQV z(`zY59Zu(xIxf@s2!@-;RVkZaIFha%jpdVVi?jFovUjZKwW@ z)R&avBbN-_A7=jEp%^kz*(rh>&=^*<6ei==I$pKYI+*tU;6MKuAYXSJ&&Tf^`A3xe zE`WT+_`gI3a3~G9`8@zR=R@Uy4U$;&mh@sapC4SKK4aO%#@wNsp*O!LeMADbVFgxm zz=?p5@;?QEaB%&Dvwg^)2G5_XE&>lexD3m|!#_g5{TFn{iqAnq2A=yAIuG<~uz|r} z!H6==o)8>=#tNJw@E5G0D2)DYtoXHlUwUo%-b$QPnm+-#j}K0o=57)8Am^K88h&>Z z3gd6c@`fz`$;iUFi)$S;gId3ZEFuJuMIEawX<)z=Kqp~u_16^^4I#nM`ID27%@>?;U5n%9G>lO`b=ata6sT%WbYR zf}kW&nT#*}E=B{4Uioml<7aX)XI8-~KJ}IXXB%156R~u>^)k=r2eoR(aog1>oI`#p z34XfRG1IWO749Gw)M~Q#X|vhwMZ}{NDn3nW10~#w%lwIUfqV*189nW4tz-GKCst76 zkH3Z~4>NqRBc}_PtL#Bvz(7aa{F1?=69w%i!vKbt1_TmEp8axs=C}XQo4g8HoW=01 zed{6I%_C`F2)rE}&3(}$ULC}|ZUL_#i^Ko%AZ9C%&&&a`@Yrz11ULDkpvQ;IDo-CC zW0XM{6h+^mBuT;fdoYxsDHwhiAv6OMLpqEgB%QycfA)Oq#W;>p2ui*KgaF5JAOT~* zDZ;#q2rw#vDR2V^w{iq~_nw4lJbH&=GzK1ghrt*b-EY4Ge}{kMC&@65!609fq(NzJ ze=v%qK7RE%jT*AfffSI4zKcMCaG3gd13XLIQYi$K0b~NI^|3g&8c?93q7y~Lm zWAsf7kdA|bfyxjVjlav^p%_BqbcBQIq8NO?%-4I|``j8iaB1i_Fb4)g%ypx`)y z&?Evsr@liN0;bTHWP+e58Xqb&2)^e;fP!Htc$T6FV#p5zSz#~b8}7b)j|@V_f*?2o z26E4;`20y8ums3wX4y}YE~^#UqC2nWqTeX5qn2S1D=Cymnl!=oKp&Sjtq zd3x~xgYa*pWU!zIE6>v=y?l5q|Coaq0R8Q>ePCYYAjlU(R}@CS!b>90FQ0DaIZ_ma zxl!|O7Ks9C8timB=Nw-*;#da$P3@}|;b*)o`)R6PPrS8*PtMNt*8YJwiJxIvw7VuY-kO5;xK>0nm3=Vm~j4&y@^1~zi z?)DGdYM#p0ZuvARy`&s2vxf%30T|_$3cgKZ6pZo$0FWVdkTRrF_XDIpS6vEhru#kv}B%4;p>27y4@ z_?27&Wh}r$R^f!*Lp+(rnBs3WiD%PLa+y~zq1Gar8{FDc?KU+Pw)_ylbMfH`L~Jdb6XtMQKLa)Sk0w9AgMH+d&)0Duc?I$RK)v|ire53g z(;VoNpvD4+i96^S;Qoh4`k$@e&nf3mGb-d&Muq(dqrw=J!fuRe2s%ColMv$L(ulWU z(i^8@-#FC|&uEeE$|;%^`)y7oGK-gBlBmJjq=k51sf`^w3HR1g&3U%a7Dtj6&h}YG zo7i2&S7`6cu+l722wVD#=!lkW<{s>}$>gS4iH;|aje_qqPIc*d7IO4zaXc)$gXBW9 zX0P-xk)5vYWI504auuG=w{;S`+d7GDJx)_)|dlP+_u6d6pmYT!INnGP{ym8Gub)(XW02@fwCx$6v2D*8+qP}nwr$(CZQHhO+j#T6s`u*N zA4yhL(p{RiZd4#}yyvZGF&uE{0wSI;c@>VMhvtQxqW%~abH|pKOvMcrmcHOoXw8z;s0GT-)z)jWoO8feomN{L-rSnO-yADVXLykQFykC zOs0*aA0om)DTtVKZ`!^?Wu4*Yq#{xI2m1zctW77Dcyp7onW$QdYq=qLE778*0a;yV zVwZ94A|LS{Iixo9wwnA^tE3-Csn32!sm|uC!Js2Inun^CR>%fjP6pZrE*Tgm=_os4 z4h}nO6vv^I$KvJDNt=?yGT?ZbxXh!EJ^0%{T`Dax2s)7=(BH?5!dRgdI^8(DX7h z7Mb6Cel(j2?zds1!89dNZ7@Ftn>3+d2|Nqn5&1P-1llu>H;Z*(e{ph$gxD+U*Gv#sw@xiHX z?f~=*v`w+6OmZ-Ukqpg{yQxi^j|WfP96V*`3y z8YpG3Ysh>br)DQ?pfxy|hHCd=GJP>DeH+}#G^nk>KCtVl>NDbp#k)Bfyz^SK)MTo1 zMh0|Z&u$`@F)DX0Nd9*B23|B3kNartwMtKSRK&l=S^vl8!_D&DsDBur!uuwj&sCD+q%IbIktsBoZRRCg7?wZ6pTx4FX4s9%buz~D8YTzH0 zmry7!&W#>0>q(28?6>)s5L0b=FmdKe5gbT>9(x0_F^e-6pSN>t4yp;p?j3jKVUOIC zS};&!A>5~XFxXBXV*weUj`z>9zEA!W*dWfGZ!&$^_Z%3pJJZ<^Oj9&%sv(<@!s3i4 za|!T)4i;+xI#6zosG9TzDzU0nJOWq-SD=S70teKBEHjZdVyHL8oG@bYfsCd$QIF94 zgmAOWXM(9CAztl@B_+a@13Y-@P$2YUK`r_?Ur9`9*^DDkb_IIkar^kRw`%+Ab*an{ z%%54A=8VBbSR{=%$R&G|L(R--jo>L@GVC4OuECB8H?W~$7F1p3s`9}i;|CI=L zP%3w`DnN^e22CZmtOu*>Ag1S+8Nk<^M21}JZylhxI&m!uo5`QBbAn9*o)53`*S%m} zLFkYc^A6YaFd11=qJ%I*1VTkIX?0!pG>;U=RZUt@r3o863aDvQJDjaQUVbV{1-|Fj ze05neS-CRzkD(`DNd5~HK%1dLlO7(El*^1=?+%%k9z&HEJb6}{9g&zKBJ*jTspol4D z@5vT1G(Ti^lJiVjR&;&D&j~%Vx2|_&+mZ6(i5Q$val6MDWcSLzj^{OaX{$7z!H5 z*Lvh?<;;)CaN}w9^x_YbQ++}>cp~rcHiRDUpqN2ETg5iF$9EmVZj`wJ*F7TLk#Vs*lGuOM~}jNVGhRp z#Rlg>Bs6HR)RRd&o}S_9AY&|Jm=jDE?f$F@c$2P4*A@)`YMBVRBA0dbMyif~8o_yn z1}ThJUsSQOO%5ra-BE|iJC+`LTOiLx8*zwH3$XSM_D2#l@ff61W!ja`3V-=OEkuu< zyx_fUVp#lgT+QRQ@<5#<%Dpa}l%QBTtHqICR*mNz>|2H7*7Q8HbWrfFE*r;S;#jDF zZf1j*<)zX65H2I>2R9YVz@g}zRCI$@jlqsv_?Tjm`W-kF^6b1tlcclu;nznUL4%?d^B2FwH zh;l9$?~Y`*F!%_sW&dFEH8{vy&<@E3X$h-$^5DI1gLh@0%gT&Y$JzVq7rOwho@oH^ zyvH`FUq6$xsV%7$6cUPRm35ILsBE7YSes98!r29w8Q{=tBJI3k6cSe04C?aaAEJ$Y z0+aV}errNGBfVnRD9v{>fO?>oIy7o-Z4)xW9$#Aga=}{kJ@>*zCV4Y`8w<6rHa?4A zdlR3s=^lJMTB!6C@SGR{BZ4BORO7}WO9&;v{Je`8~xFP98-^$Q~Z_X9b z-n1aLTz>|(Tc}u~iPXL!sw{DxtseOOcdI7Vn~}tf%*6kdIh9>!r7#kKh-K!BqJSSC zRsHClKz>M|0Kg%L{qg(j0^7^CuUE`KL5v5ucfEHqXctrG>(cbyv0ifI$>s5S-QxxR zIr%YxMKKZyeSYZ3{gZHNB(+OAYEy5eYiAE$^6vJ%`>rvDI0tEP=f4$rvw8PmdB5Ur z0|_o5>=|H_1N{-jun5}oma==cM~2cuAQLw1%I@>}@3h(WlD%#~dNbBY0leNHC@q|I zpEI^>7h|{~9isY+qM~e9y{i5fhGG4}^@G}9SOoP8#k16;KvYJC%*k2f*niKFTq}$H z4vpM|qw|S*?)iE8d3Sa=`I?7wWJL;W zeeUSx8aTJE9J-~nyA<@CS{!!yJcdLj4GlGgB@t8ZX;H{|n(`jEu*XYxJ-Th$qlz!e2VY|9oFiRX3=Uf}LHq6b{+;YHMN z_8Qa&k_lPA0D40bEPDs$=s<#h;{MP*f@CP_iUcjbb|g(-pzB@tf8_Un zB$(tcDM{NGcz+n+kOmk1Zp4bOEr{UF&lm14i@0B8fu9OT;{^HJ$V~GuiKD6OC^sXg zAua|^JuEcrT1aq+KYc<#`fT1F{>SWXtk?g(-UI^;`~SE5L4mt~V_^-oIX+qyEXDD8 zr^{)lkIT*lAXDswlNYV0%BLzJ{dWPE4m@e&d}_5eNPYc?eqKBz8@W{^sy%0p549@m zf-UnPudPbqnr$->g9Y=emZixWOr{48AG_?$_2c{{LW`r6FETmg4(;~ug-@O^jJ2uS zPoBIS<_~8s^a!?yp4S}ycE-7x&>c7(nrGjdg|U50`mAub2%eSXo^~1?p`AZF+k$dm zu1CMC{}QQ_fF%yzT5b|6m^=|Y;lV&G-RNN^HeUj_*)1XwJ!g!Bk`3y%Ed4D2z&@J5 zQ+@OpAwkg?t#=v+wRp6m1-Q{Fa&gdVe)iW*RMxYtcoi#tvm~J_LF~XCdjG8d_V&J_ zymuyWl%YtX6uux)@;UCf)90BQdvqSWv6!y-e!*i_UT)#sox6QwuU_Zn!bi-4rKlk@ zp59Een5sni3sWk2-eXp4GL74GmRvh_Yftqgna@hBfPWae&P1y?BwJ6t4BWY&+uVOU z)7@oTtn_R}3j5%OTGLBUeQ^8y(7M@~Q2e-LmgS^zb5{@LSi~T@w7*4}yo5X;eLgJM z-`{#)N|#i?dT-W%P%C8cEDy^iq^Gw${%kZpuej5HJG?hM^XTE)&Oh0Dvlte&bD7sem~ zj-XsS55@0{9LbqKBNf6 z!@7}L%;}GW^m-qE65P@EtDacb_}&MUzIq8rOTX6xMJ$c>+Iu8zUC&EL9s{ zf9z@eSw<5s+bic?z zxlxef2uJLz2@f+A9_Ex`I_RsLJ3C@kIp;W6Y!io{ZhAg8W$xh4OD?`nb|mA*zqaMj zQJL9s4CZj`mU^7xoZjHiw4_R{GyUE}qY2!H0ruv6|Q?6Y4jngpTnAzjxUWBP=b(pv1G?IV`cEh$;Yb8i_HB z-ZIscWx2ZTy|YuKu(vLaLW^8|WeD&;Vc!_9s#K5#hgz?qZ3uT|aeq@5r7rmp!nCp| zCT0#X(^4j|ibV}A{;j%J>g*Z0{mlpBPj`aE&Nfn{Od>bR_zltpiSeYvDTu<-#w$6wPugF-jrQ}+wE*#rp6|5j!9mQ z%vMIxE87ONE8B4J6LM_nP6yWTICBlD!~D762JlH64%yY~7pmUthnsMlb?;sq9^B-b zlD*gvV!Ve;(~&;U=6e_M5m;#-Rt0=!jW^IER_&@hZ_2r0Y>Clk)5+>gLbsGo_9*uf zxerhEi=IkOm$%){&I&E^joyD12NbUo3>uY)jPKk2^ny-bb z^v)&k`%J}7-itm2ew6R(uPX{~t@M9yzR#OeOfx%J9`>1yYt(PQes}VpDL$}U)NfYO zL!az=H3Mf@LKeH3(o&6}*(c~?o*d9OMMT*M*OkEDN4>^6QNyiaaO)~Cxkxj)m|(It zi|w|5o=CbrKyOVp)6&|Xoq({*Xt!rKEQ&7NClU`igu(0{ z_Z!m0N+Xb}k`G_8$kEkMj`lj)v3*E9LqThys!VbM%<&=ir6Kkvc{V)m?Yi#I3O?=b zaW+rv_+8Jqisy`^a1WD+|GCdj=?;M<<;N;YfO|M^iC#Z^KoTaZC2$HQSMy0`oeI>=)e9*Dl-ryXlV^1lipaH(a@*AynRiS5 z8TVeiOBs^>Tj?&KwL053mJh*cOjAKX$eK=e)H_i=dTL*;zJ%dgw}KmJ27i}WI&*RN zm+A7gn+;$sHm^n>5x-b zLSak84Y0)5^4Sd5w z64GfxPF8{3ZwJym%G#nKgBIM}MbIi4-RehSMQs|!T6ucqE&VSDZGQEr^|*ecyd%*J zzI|k7C z^^4cf^UF)!)m{N*#nC!80~>LYbkXW{Dl>W-URI%*6)lu=L>y9yHSB_;%*5Y}y~H$z^d&=K z24dloL!30=aD`V5pDgL&z}l1qXdIl~q#aMqX(RX0>!NRG*YWfr_qNoU(tVDCuql&; z0Re)2`p1yAj`FEvZ7If=A2kOP*oUKWGjilaAC~Fd1RJhT+P-3^?%X|>DZfzqcB2h zMsNgtJgsJ2lS4uOz(h&gCQ`=CokHWkQ<#>5?jn~jF81tZC|o+V+Xc&kgr8qpGjVY~ zTtYRHVW~-WNMJ2Y)G=pJd4M$KGJJB{CX}W!Rz8vFb~m@u89v^g5w8WVgfsu2e|H@5MWkyJ=hLyOL)@JjE%DH8}DB zTmi8Up32mRP&}w~w9umwH}0F{Gm0FolK5nXa5_r*)OF}mj@=`u_Q{ktPy&N#)(&L=$!(Ed?aieARy0<^jk*-Vg z5fQ|Z)l&ieUuX{b*%1Uo{@Ec6_TsLX!nH_P)4u}Yx&F2tL@usK|AGI1I&87~?Sm1x zhiFE3ru$yO)7)ovOPOI;#ZV;1=jWnlYNpu7@q#70=hYdyREzv$@XPVt?CjKlu*mJC zg~DtG(;iLzxk;O9^NwiM`>Cy=zUD<`1e2#nr+s>L_Y=M5%k#L~C$+Pcp^ghk9DRb@ z$L3eP_ye$Z7om==3nIBzZ>}eNxC=Q<{q)?aZ-VgTRC#Y@O7@`Kt@NKiuWw+d@y)-i zEtS|gfn|Q?4Gu-!nCqN8@K{{AG~G2cyvkl|c>9~bur~#X>J)H!9Cz4UuO3yzL(hYs{#*f5SqeLZ}x*!k_PWqrcMFez{oU zw7>1i(H7r|4BVMQlSk;TVqdtNU5U;8dC{WrI7kq0?*)al2g^@;s`^*a~mI6Yjx)Rd;51Pn+7hZGd?(J z`&p!sLj#X8Bv_aILdqkuEucyfheF!eu=}|fpZPNqHWtA%IwfPm#oVcB@X-c+DlEMP zMYb|z0RpR{*`XWLTe5W1J`j9X|6m$5XES8r(vI9K2PI%kn*Q5MB00Rz|;o%r;c1;t%MNcC^p5Q9*l2k~lXJmBi+)$36&Ot5YgqP-;1&^eT&Hp}IqJRI zjAm=Gv$7@p#-wkuB$Kk-tBU3lOPPk(ilJP4jJ!td?&hMcfie;%cUT?P!XxXtZfTyq z2+^0`#7QZrwL&=&6S%&&hh1lXu&|V zh#WI!pN@hx9w)J%$~9hUnqt+>J7ED58S&Bejmv+tL&=$PoheHLD{M4*#DXRe9!#;p zw}lNe`c0%e!y55SeZXni6Iu`xH?>QXLhzZ`mqjZ&%Q@YB!0v3;waOlTX)Q7cdQI80HZhoG>H;xTt4y=CGv6VP z)EF~nR-*6=;C1C2-?*_6x&OJCF6f^ubaTl)<~p?4hCg0numM+LvMqV5>zie4z7+jy z88%$Btmui1an3@#>SpWoKgT4_vvQEYCh^1bj+(#pr46x!6tAg3l6Q#gv5 zc)xP*>%>ACG-=%7$V&EZ6@;l&;eg<>6Iz_$8Y7xo*oClG41Jd%!?bXEwlLD7V$aHv z*S)V;5UXJ+jN|O1#M5$-PhXoI!N)$jMWfH;QtO}0W=YcTv|EXTxj;y=TQ)t47a{{| z^C7SUZH||N$sJtd2mVonK3?N`yn-YbHs!bmlNVVCp${UrA>YtZN#xMcU=U(6FvnIa zti_#Wl+%#jXJ7H2tu+nSSCh1if@neiagetDTS;8o87r&w;iO7^+H_W>u=?;A`c(UyAdt%)-D)7>P^cx!YkvH?2 zRCJSMUC?o6nOUYWwmGJ!QY-HU??s2Vi;wrt6!}vm&=f8W?rUm@o!7;2JupKr)oWwN z3Ik*Mlc|LQJ!#`|1<$7eV=G5bd!e?1soFuAo!H4SJvl>QG7OrHn0>IEYnc9g`K$@d z_E-RpK%zkMy%Rg`&)6_oRD|H3FgT#2mE*(LTujiRfpHg3Rem}<17NM7DgJO$qAsM| zoQ~j*%9!))+tJbHM#b@RL$;$bcHRB#_Cv`qakOF`zR}STsrTccO$4SV<0WrD@r8|! zo9JKEiMN%q5B}^P|Gb;nRYymuLb(!bsleob-qt^He;;yf;+faa=nOSSgeh7(czjD=Olfh zjo{osRw<`>|MeQ%++yf~z>+2nX9C!}L7@RfLGD23db8&$`=+l!UruqQwY{2=LJ}HC zj*8qU2pW7kE7M^cTb}iHcRou|i3F{-oIgdmt+|kglh)=*48n_%Mqmy=S?0X%>aWRu zo%yQ!n3KiKEY&ystq&NljqQ|hqsmcdGXJY_D7NhwI*K_KZy1Fq;hD$iAI`ad<*pwm z(SDXn9Mf;ZD~2-^*j$I8QH6?UMeY_!H&LG#9uLrTJSQnTgBt4JxBVPXRK(D6k#7mi zI2PqOO+=(7#M;F*I0^&!;$S{^2GE;aEw&j!l-W))M%x{TxY=D6)BwiI>eN@eNxQem zG!{rloM~xVckHYFU_oYo0^ZR z*y6f_fFIY4VGkH+!-j->bz&(P=-7rswP;04Na~tUueY?8neCt15)*_)La~Z$G0mCO zM!=1iSU)cY!YX%NQ=8Pr^R&SoO)-jEqmYL!0+(in_Ie-CVcu4ea+( zFBr@2AoJz%BIqqtr`S;fFiJp^wl)RQfPfO9o?=Mk$hTe|p=naUm#0|cq^U(RQSD-m zVS?Si2P$xbQ^;mp7$c;~+!`LD0O7#C|LEl~ir1jzci0Izvbc)kW;s&6p45O7;VeNW z`7F){XKr|b3i&X>4^pt*I`y#CD>-!;i>++9+0ytCG#08;Dgyx+ArRgLdX$wagTWo> zgsWH9iTK^_fjmRNP*dm-BS=4s1OaWVt?#ez&;8HG$49OOdst^4+2_Wf0PgCYlNlCia;*l9##h>8Q^b=Rx?7=5iB&vT$!21K7 zzyEMjaqLuP29{OS-vhny4&JW^66CM;<|>gAp2yb=RlPWz3j=j^U;rBz;?lW0Q;ef7 z0130yV=$r09Ci9HZik+@lcGzBFktiTTs`BK6;rL|*!iOxd2Ul8%Qd_33B41Zum9tx zh)yI`drT-tZjnDD#0Lz`=_9SS7!ODC=VzEwa>mHPIc}(eF1N;#OHmlAv~pO5u5C75 zfbmgUE3Q9{n`8=)Zt3y7-r0__?%vdn0X^|p!Z`hlcpOstmvE!E$U<5RbdasTP+$I% zdriE`a(0^(UI;ub6J@VM@ryL6u^*VVwoW0103PGR+Lw^_nQ}7)``w$8mO3s7f_{g` zX+A84ztTiCS+>lQP%Y#r&BBpwC*&wyIX+zjwZ4Dx2z!{f;2ffbSd7VjLIOD~1q=fr z6{B%oUr@`ckM+j9#CVT0PAda=O|NnZm^@JZ9Noz(fKE|Vw@j@>`P_BxudJnslB`Jv zfTEF)a8*4G=Z9H|@#tz-T~_*svhD02EZ_{rrurN@EXx7~FDxv}i}=&FKEB!~*@+rR z*w8FWfD${_RcSEfTjcA-JPOKszxizZV0YZ3rj*0e)~Q;BW(L7Y8%%&S>{7$$NOgJ* z&(L_;SFAik5f;6fi&!{og++4_e%96CHKg=^KZ`xk9j!(i*)Z!Dr}C$FO2H5p)1^U9 zLn1H+1ZlSwv6i-fiQAah1-d9CBD#O*JCCUuP(`U-`T|93A841eCp?8xQa*d4f%tjO@@n1A}b~R z^=#8bQ>23xjR?kN6cb-j_mv};yl90?T6EPER!S?&T0Mcx>hC;($oaVqD(3?5XR3kS z=qJe?Va@IT`p9yvtliF9mYGP-EEO#{D76LLBOXjQL@b0m;tcDLTA~QtJXVC%Ao3X@ zb2aWqnkf4*9=j?7Fdxs4QYA?#`xCtVUf6P|#R4Rhg>zG9p$?tYAl_yu4!oHAwEX~aTmBtj2qmOdq41e4{iEN=m^+y}()!t-m@4J@zsjjfy7By!u?13*I0v+b zyYzKFHc@J~xjy(1s;peP@HcfogVA6Qo6fcc<8%_s>06&^_Jk+69C2@10fR5AJ}Nhf zMfGu6bmWgvC9Q!KDpVH}(ZAofJ^{-X3*H^byjSL;XwGnt;VM`VYyf_RX*TGq*cN+r zJ-E1v>V&y4If$fqhUN!tYcsmrv-?*mPt))iW#q!xHaLb|yy^oXkC!+NlM||D>x&7# zj%rB~5LNkZP}>fC1X2^>J%SJG6Pq8J{gpI=5c$cXTw7!9S&gumjYDsbY zVLz{_rN+nA*u$yiePi53kpRHH0}yr&0?D{)ZA>vxm2x~^1u}P+0h+I#oJYCibGZ(b zZ#EMPAA|ob-}PutAS{Gg^L#90+PT4}| zu4bk?mvYn}Yd>5lcKuV(L5Vs8YT7CJ6{vDx!27wCTcQy0I%!GNrX69$)Nn|Th6zDk z6tn|Au@XOS7h~7$5e(hkp%|tVOR01`S|5vQY}h-Y9JRsR2tmTCPR*A%xzgOA$P$tY zyQZd!biiC6@X_xDrcMHvdx&re*=CG(D-qMOawvSwj4m+BP9TfHpGgInfdvrpTNxlN zIMtl(FV;ZaA`1E+ko=v2-avgco&9 z7p|>~%t#`pp3JUDOvQ0-Lm={!^sh=uGBmD#g^6}=6kWbAP5ish@UA4FS2rh0|6tkC zc*q~s`5H3PS^}iFCHk<@Gz7K32RO+_Q!h%8+)tRNEzeMq7_J(>3C~Mtnn4d~^!P z2QF6>58@vJlCkT$yPaHT;S=s2p?T0Cm*IP zOTuJ>Q}$|B38|S>DIm<(_DFn(6GlyAiszyRZ2uI>!ARi5XM*@PEP;`Sm-u$GvEwq| z3R-KK$G|;@g6Lkl;}flrWPeupu!bXE{;e+FoTLZ(bnJ4a zzASf;$rr$&+1tpZM}q`R$$9kZwo`EHe>VA~ZZW^bU+=qc+Zyi6h7VBF!-J#QUTT6( zYFowtN)Hgb3dEWzc8eT&V2Qh}zTvzy{}HYSG`0dLujFN*C)Tdl@-*~cW>dpD&#Wg@ z$Y&nZG$bhJAmXLP#bmlOc5-s~}`Y9Oj`MnU?E?*FwebMYvI@E!&}~k$%gW zVd|YPiB}{z!c-HBHC~%XKzOf{FYDnNoaF{|ezH&GI*QYf zMez;iTW7FKa77%#dy=%*utX;^t@z#rjU)HINrMCbORZME%%G+|l)>lEoCH(-O}6ev z;7qjT7GC;xjc<-J_<>}3zQ2FJFY$BpQc&@+aeF;Vv+|YkeKNOoS`564v3|wYidz!j zcA2(8=WpRUxSj0?QoVztZ|Vck(LO35EV)zHU`-goox?>Fm%sz_lH!`SwhAktxquepqG@&L2-531W8d; zqgg2>?g_gm3rM}SHczrjDB?;1$k~4@gfg*1BBjoAG7J#GU51O96jvvzZMyT6STinm zRP+Tm%sbs@Z-u|Z6@Iv~^i^Q)`*ME@5$ix(H^x#)I`1$4aAJ6)e?7b#J9>C{JEfI= ziO1|iR6t$@tQAs6hgMn7mVh+2%Y~#=K8mLP%VPnqEk_A>qaV>C5l5t7lI+R-E^mAav+WFH6R2^7S- zEQ;SG5@Q}E&q?Br|t#Z&(m`dA%uCZ17p|=kmKUiC_H1LY1rkJQ0_kK-P zi-TAlAA$MD5XaMc~vMFR``e!mF|75tlnuv);=-~HcvqWOQag_z* zv7&5=`ZrA3`_SNFn8^?7M?1rAnco}t-;Y1eI)up3bzLv%Mxfvw6_F|D~HK>`;0>I1mfdQmJ~=J$a0 z@2pA*dWKZpz!C(Vh}PJwc`j#_Op?&S*LAu5>po$EfjQzCfTBff1FCK5gMjyhjWkVC zSP(9A#qKk{vAxV{7h@TW3pHSIJvyLCAcBpgtshxus{{XuTzke7enNoTpF=J4xtRHO zU>F<`QX;s_nF4?@cbxWBaINo0nUi}2IJfbLSU|^}@B27x)+-db)Zc?_FWI(~IH`?LjVEuk$3IXl78m~4Z z-vc@xDkRJ|%=nxV{l0f=0psbA?Qd9>M#p|^Uyo#Ma}ZYdb9x|Et?s| zc^RKuE{bc@v}(i+7<81!*^^KdA8e2oknMha#dFHA*44*jm& z+etthUT3|x{S2EXBWSqqr-MAki*+Gb*PYmRRgK4+L6G}F`lZD)7Mr-5HgFQG{Tn2= zZcJAiXw&XKu&>z1kQ2bXdkVf$#hmCCpCWBcWDF343Nzi0hjDQuMY?=ORXKfgqLD+xNXX@)HrSJ5&*lJGacBOA| z66Y*1P{1?sd14_6?ar+TI(fHq4RirYU8HD3e^d;uNTXj}Qjrf8qIf zBATzG&1qbYB&jC7pF~a}ca<(fa6`7vptFmn^|8wICIUs-L4PHUniL;SH!}dotDA}co-15iGat%d{a5Nmv<5x3U0bibDh1a**?NTLF0wkkZq!Gce zA{zXs7$AqQka|FlVI&a^s1p9&Iy#$!XVU4Ijq5P*B9{L+_1#L~5)Vx-x{CnhGKZi_hSuniY+Iu>>djfjE z&AP?{q-ym{Me?Xa*5R!s)oiV9>WXywt~QVrn$y4xilKfVkKC*kIR3MSDHu26@q}9Q~uJ)FJ!8p5atK7alg2S*^r1{S-%)B_i@UQg93>N@_X@Mp^ zozcQNQzZ%U-l65I=S&`&<)CN9GZ^$#6qZ`7MsLn$ zLyFTujXV7ex7(wk-RkK)#t=*poJWU)@dywr+L&0>fDBhBd|7{Fe8p#Dw>n$B=txu` zOqZH=I5KN~KBuX z`tG_Pj9(SVzeQP~f|f#(m7hv01R|@t?-5E!j`=QyD7Ab8!-aUh<+5+#G$D1pX8n7j1?XZZ!T~kCkqrH0XP7FPIobpFpktP* z;v#K4+lnnTU8rJb&%^mr)urT#n4a!5osEovOT&8P<{E}o*4Q?JMt z8b%48-xX$Jv{JN9M3G9M+%+l-OO#trnfco2n43!3xR~4ZOmw9TQkSC560J(0#As~7 zC`N1Q~5-YKrq;>UJ;eji-8Q}lVN&aw6E>wQx)KkZ~)ee zqCE1l!-KL^T->J_#+&44SgygFM0)q9AMvWA!v%LUO^bJHq-0MM37U{p=P)=!xTKxp zCtYTJG|Cgg3!Y6;3PJIHLbr$>6(CRt_8&4*cDIjF^E}m4-)RLTv(Yq8i;w+n4lWjE zm!<^f@F(&}oK|x=k#+~mE-fh8AFbc$ZvlNZDt*|*W9bP=y8Cv&5lg{$tS55cX*;7o z&QX)Nlw#e6Y=U%woF7dB^OR}{Fp!Rv<8$QizOi`#?G+Fc+@KGR>D4^H30w7cNpfZv zK4Qmr8TmP6q~W!hE>1K-nn>PQ6}08oSb}Ijy&;(@Z;%a;8I$Un7G!nz*jST7P|2a# zQqffU{rUU2l1H>N47^ELY8NAm9_6q%6=Ne+eV|yuqL*OwSS#HY>Z!UC2lj&|A|AZm zim6#4=aLzge9;5VBFh&ZCadkhHz#U2VboXWo*|z`i8>=F8z?JTm?0?<_iP>XI~yhczIGa6Lb@j2rofLe{P;jO3zBN2)^zgW&$0yLd85C zNHZvv3Wrf;TEVdR8O!Vg(WHhYvb3!O19e7$JnKJ9WbF|ogkxiiPbx@qaSo%+L5OC| zBAwf)t*CjMlj=iB&_hYv3}ecLW3NrB?sUP}WlusD#rwL!?UP=Ga$77NPf=?sfWDu$Dyquy;9GZ@fX%jpb2Vf>*^WuznCNxlhT@A4NH}TfPNs(W%9yzPB$5sk9L$KtZK+?e^m@hJ zEg6-jui3gn&#JQ&F2X^ufIRTf;Nkeas@cXT7dDmxEn{+agruA+9=&wdrs9 zdj=mksS@(s%{?4F9io;z`7DIFYQ(VgeXY6J=%9-T?*f0XxCjVx72V`w0$p+o$nNOv zCzSz>spDX5=9kJOXkh$YPW{}#KnVNg{kQ_jsT^!=gJbK$6jbziB|Fp1_Vx1gtVv*m z-yoC&^*7x~@>pX-4JXI#}m)}+ydqmbahV(sBy>V-X{HT zow>l^ycc>pySm%k0??GYd9l`wt!XRkA6m_@@!@P%DDb+OV263Je&gzSZK|F16}ti6 zb~P>qTnKX(hHWXp1n53n2CK?{93fmw-kry2USw!ma^V)1K)*^k+6_ehFW#rHZuhtRg&Zv? zK{>1{IueY^n7~ze;d5kDw#Qu2KW`5)v@pI7r19@!2Y=nh4suAx~u&Mjo(ao1nH~s71U`D$=Eud{Bk2Jx;pcga@OCmYX zH@uQb7R%EBr)`mxDpn0}jEq=ezh&B*3m%y`R0?pTOPfTkxo~0|i=k@-y`WhgHi!CNjQ(H7o|z3YlDxTITSFkb2{z~a7?7)O|aN+d(u@ZZe+wN zk%?z(t~U7mVOWaDl<#?HlZYh1rQ%Hz)L!+Xe0u;l-z!NeO0HRfO#*{)sW=G+u6j`# zbviKj#GyEbTm682jHRA7xM)J*fQj{qJ=l3h)g3+wc0_byFZG*@A&~G_m1Kaq_i?D+ z;n@bm&Pg(GeRF=vzYj(mdN?pD$DKL(vH>=C$$*jMh?!)dDukeR^{QkkZuQ|E+a?Pk zr2e1bl3-dwVQ`EKG~gyK67#A+W6#9FP+!4{P_$diBp&BlI083r4%J88c&ru)6faq- z)-u^2i8qhcg*s13?o`QlXCTpIpm?kni8`XH@ajD=)o>o~fAcsOvTwXc#M@1V!nVD zgs(Nt^wH~QXGOo^^`I?6kC2jiZbQxwzgnR(e_rbT_8{P6#s*rJ+sDBwGz)_@<3 zMQz4y*rGb=S7rGD|C_UzFA?lpC;hG~??iJKX++-)6xyAc>;ygbE(Fu(o%}X`nLoKR zcfOV#bkol7#(kLo$Z3YEq2|VQ#$u7F_pfFhTA_SKT@O%Bz*gA))k(kO$U8Y-F5Pbk zwN0lkA-?>j{HjOxM`T_p9R#YvJfl|8SKG0sgGlgKWG?To9W6}M$caqA{QicBp!Wpm z$@`heiz-hjZmVdf%ICe4PtNLn0F5P!o8c3%)-M@D&e9+$xsfSXu%M*e8MQRO+7vWh zAr<4`e)8vfC^leP2kj!2%J*U@i`Tewg5_n-(}{q88tm!acgtON!qq(i@+6 zC%;c-uBUYpjbf0meoP*8>2cHx=Z_k1LY?RjC#%(b`b}Diu>V37^MB?pmwFTmYJTTS ztyM$4E5Abx)yR7FYZJ*$6I$DJMqPPQgd?^$ zi3q79CLPF&H|;oL)Y%2@i0Sq1-pSq4nXMM{rKe$XjeVPAdyF#BO{DTbAfq2+vAT(I z4CA0S_(;Qeg$T=?5_qIxV5dwkarF1Vhi~rKo9vxx$ZZ1!2lV_Ci3c7Z*DJlbpJ zUQ-&booQb0x}GoRtBLnBua7wJ!`4e~OQuN{p*T0~oI8h2!c@u)zV7eLcuC|Yj!I%Z z=J;0p`efz`?)~*IH|weYADp!}PYCqAdJyP?4iWxe?Y+3)u1Bv`i}AA4EYI21rtYpv z=A$L&Sus0b?CS@jAWNhGhS-glz`Ph4A9j1xt1+i4)Wr)5`dXN(*7?|jtFyfX? z@SpC|ooR`ratMq&8)4$m5#g~7)({>*sl3&FYo?I=6TRkJkX8)N3T;Ioh%LOA^({Nx zJ(q0M8|Z^cS*7snxkv4lN_$rexrNt^?OpA59cT<|+p4~IHOHUFXMcXny^L_z)}mKY zWN_&-QKl$1mC+MtT@A75-@N?$8 z=qMfORBI+NXsryrCo8k_lcb4CY)x4a7~`Aa0O$@c zgZb=XVx(*WZg0j*+fCYA^doBa7N!>|Rcro!zucqmbqo$D>&X~#Dr=)^asP1W8;Lcc zjq?U|3&m?q=4KGcN($n|5ci-(>WyUyC&#IMoZS7;`yh=Gu)u6%c`v3})%dE`k zhQ|#A$_x~j^a>|`&FhW&1w^RVolfQt?$go^SMjTf4mOk#BqQ#Y7u8hiTJ8o?%YWgWfpYe}VQhM)cYF8S!c5DPS3 z%gqHwb!FX>upANWm@8wvk~#~$Jsx$)csgIt9-L)PT2oaoGDm-PfQ3ney73ZTgMtV> zSCVx#)5i}u+4UQE$m^B))yiB-@2Mhvm0m=_=|A+aR}PBn5TPZG77_y@cC?k zFhWbR&8~B*)k=9{?Bx4wlH6?+Wqsh2NaJOVY=WRA!PTFZd)+?v%}-}JC?JiMiqusj zouBuAbC*wPDnyL6b%DKm26evWQ3|n6EAh9`!krs;<&X=T?+-nc5z$}2J^omEt)G-=6xlGik~$DG9Jfya#Bvz5jy4{bcgs}K-} zlht^=TFH+jRX#{+?9>=tLRf`@r-t!bvQ0g>Iq+mP!{Qa$PlUISh)*O#OEt}E_~5zX zt8A*_Me(}`O%b-T>)2xWZd;NR0l*HbNB2PH$v({U`qRnNEPB^!?aym9UQQO#gkR0| zf6G*q@(IB7%NgHTf?s8tdeR|o-ls|Vpx$-io42#nsh2>R&)L#l&mN|eu~vyjj$P$Z zue$J^{$)MUfhnl>ov-HJv%7p*74|VdCb=z*LrQ{Peht{9alxq#MTx`9Waj_#WL)#} z18+I`8r-o_n?Kf~xKX>Ec16Ax=WGzq#ImnOxO4;1XuZ=cng~=Q(f7HP7yL4>%M@!K2eGT6v5Y$Z!S!={iu_i&UT{OVt;sS#zD8DOLqWqPVa(3b2im;vN(aD~M zX98SqClM28NjJeM=arfLCUW{VVqDlA)l`xWcPdohg`G8k%$y5*q{W3j#RQ&4S{%w{ zdaYJZ5t8!S>gk#CD0ubOyAe#(vu>hDL(R}amM~d8n)_%6uCxnu^_DCVrIkgBShu6(E}pxgIFqL~=dU{&+hMKh0IFsxFdUM7xOm=Czf zn&>O!bmnkjgUZk|MfE@HwN!XNj-gAh|K`~O#jf?g>lx~jwQUTeJX3* zqyQ&VX^+kz=Yw}AD6G4?ohkUT@J}+2p8}kJ;m-$!tFYi1isGlTXs52D%U-zntqKs( z20=5=akmBlgxb=zJ$LD*o~y_N#5v}?aj)}HUOPKXEVrv1%QfEqt)kf}yYXYg%F;yE zot0Wy`pbr7il9Jo>*dz<7@u@P$VdVdKbwA*K*~t)zs*kX&y?9F4#_6!&Bk;|Miw-% za^AS#Wu3hyTnE{?OBj~eA8fs`Rh}gpZ$gJ!1pD#cB`G0j^+pw*AZMxexs$5UmHl0KP zkV#idz0lQ@&F5T8E~ey5burI^P3QJ;hHQE+mjcH3s0eJ2a&NhWQF-^qOU#6r)Jgra z9;BXGo@k8Jm1Buz*#FbYL!@9$y2`baB^I|-PRpt=itFw)Fo0flTDH6Iy%-@?7Hia*>1kcWK0>N=kLlGZ_@V>`>hl*04 z>ZCwn4A#TG%@;Xksj6qf^1VL)KUpY&GJ93076@af2E3HA=5x|hHhWDg3O!}pw9blx zGICd;4NVE;7B@kL+*-<6P>MqSq>e^WI3nsZ-XO)Sq5z7w_KIxFVnyM5)Ocn2I@t`!SxRDi?;Y_j`ggSC2-Q`Bd;3ViP=NoKu zCY&nX*U~}hm{jqK(w=ImUsrcsiy>8m7NLsf%)oCV;s^>L#lVu+f8|$%2C_ zSKcb4cufjwXi>bf2Cw>5-WnUcBh|8UQ5e-2ygMj#c!PJ?7`$6MskFhXPJJ~mr~w(g zLrn&+1O*D;z>Q@C&h(LL;{#E;*RbDhL>Vbt%EomIWplR9x`i@wSD~7tYKrqnOGY_L zw-{;3C~tI&ic_ENdXB?K)JH`|XW>=<{o&Kq*AG)uy(&klEm%Y$W)0kEq(SwOrfl0< zdCW&z48O)>{`wL_d|8>)Ym!(`s}(6H_Y!!_T(XL~L^`3<5* zauqn!^zbtfcIUdq4uaF7L0Ls{I&BI9#A&ordiAuzV17{!TOoYU&UY*w21#^hQ5s`> znc@p%C{GTqDo@O)%BqDuqK#T@Rb}Ai*GyHOR9972&Da*bv}&O$mqe;gyRAbj{Ysydn+Tlz?+-95Y#E(W0MSHe{%afznewN=7_u2C^l zwoXd87(rc4C0rTdjOS*U^u+_6IAX@6R`uL~|3-@PMH|HH=BnihqUHIo;yn_x+YT(a z^0j*mA5p%3<9Qe45dtxar&i(#t@IibPs(V;8CosGQ)#pkJteV1NQfUp&Y`htnS$ul z{;P-p(Z9`%wQ%%7B7QN_4$boSvCV`a3eO+HO| zw9=;jR?I6?INZ9}E2G*HM~sO)G7*E$`NfNvd<`AL3zRRpHaRgGyfXQ-MJp|-t-axtrphsie^co;gf=u43CYq0^g)^u|-wm^5e_Sa#I zsH^*%pX|FwcHCXwb)8=T`}bg+c3@xKf3*3FBY(yI-iuq`2wY~Hi5sWi`cdRB{&+Kv z+Xu(p+J{LVcY^HV!=2Cg3HvaKv-R%Rk@%QEn)x2@7@lC!sGDMYyth}xmlC+ygqQbh zHw;sRvue9JeP_@~X(IV$iq|)h9YpLomn}yq+)I1G_V=fIzh;CIzbSq8O1v?CQhWix ze$Ni0YiG$$+nIl{@12XlvA@U6=qv%Yi^TcIs5_5hpP6;zcIVlr__8TLi~r4|Dm9iR z>rhI*X8$r$9|4RZDgxW%d*Ors$R7B;`~{oMfcQ7#;a?cQ`@mj3#Cuq-7x9y>_rpt{ zOHhD)_kkmU_*+UwFF(kTr5sycWM{WMd6l}^PjrXrk>yL*I9HRgbpG$y!OTBguRZn$ zdmZ_k=$bIVPA3_UXfN;C+x~ddkEf?S{{H`FTPrCqw}<)Jh|$^ff$g@U=>YG(z>zj=#jx)tvn|5+1tpF(Odh0J14^srYFsq zA{P`51kwuBUP3zD;O-AHxfi#od)r-x+gz)aWoqa!BBb1NW_vSty|A|K)?(b>O22t{ zo(KLDLo+M%y*2+jwA`iT{AcZY?rp#yd32)($zEDAp-V7qER}m%MkeoBkuL`m$rt;j zUnQUOWY2{B+8M@_h}0LP&^3%na)TNarI?LG&N~VAA8hbZcc9wRSByeF9(ArbCf7~O zge{chKjf&BDr4P#53P*l`orPM7%Id(W7Zt30U8S2?K2f5xaOB)hY~oT=7&2(pyr3# z*mi8*AfUw7q&h@@CB!h*?(847>)E#;gw&tUv8!;MJw73rG%Ld))rdqX*l%We8 zAyYAmqMW7tN5ThiI`iDwcR4*&W5Dm`(wRaox1|6}Mvxn1$(kl86Rmbupc~X?<}+jU zbN>-}9A>oTp=vhK&}?q@ud6MOB*ym*vnVBKq*Z6QTQ6rozYR)h5Y8|<<$TWtVQ_0? z%JR3HtLuOMx<3B`aZEL)K<1r++=wVp&eO^d2vOfAG6Zto7)N(DUb#abt@1KRce#cU ztvpL^7}Lu0r3XOOIQ#3vpOOm&C>(otZAeu-`HSlb?yUNO=*?AsSVm4Tni4BNe$MG9j(D(PLvR5yLD&M#2c;P z{5t?7ls0t#yb9NloC!iT52to5d1Ta$$SgRQ3>hD7CdjCOMGrP4VuV7E2P$2eSpi9W zoGwC@^TvI@IU-uGyJ*pfhTctN1C5HFFGm1M2crT_IwK+j2D07-JLy_2IE)G+Sk+sy zR7h8ExphO~=+W1+UPLMwWW6gUy>z8!6NP;IA5uM{!C~}zoduIk+*;AJZX#R`^f^h0 zPP)6@9JuNS9BJZhM2upj>2wVuLk=*ZnYtotHu<~ofU&1}4Vm~uXIH5|({wp|Zl)>n z9?bZ@CaQh4hh|$`RM7X8;ErkE*F@5T;j2^xYUB@0C-=SeEwhp%NMcf+)q0p9_aSO?o!6cZ1NBIMgc^4S_NJaDNnQLtj5rzUM>PHFT5f%#H`%d&w)yOZI28`I^!`jTBuAyT5{+ViH`^1Yl)hf8-Q8TbEZT)0E zjlL#rqx`w^IfU|sC$v~|mtW69^c;#F_~$TfG-UaA*59XhjyGq&4Xl%eI}7|7-`iW> zf@rl4*iCc2%(5e^JCG5ct|0AhjCC8;<@?=TpYn00{U)q9sm&6ZL8rI=dO5d)XLdB~ zNO*@(H+u)XgVTu<_ZYE;=Wi`$I$J^F_pnxW^dRqVOtVLu-E|m>Es7AKb?0(KuuejE zvGzoAerOFZ#Nvn3%<7eVZdW9W&Uziy-s&Sh+Ei3vMU-mmEusZ z*P27lWm%Z4wb9ABtU^koa>H1RzexENB=%XCK6@t@kdwrPBmKzssDRyrBGstd;tzxc zoq7+59w<;hnDk%J?F{5-!kr-%AYt;HrZ}?oOv{)om+?+6qiri*R(!n{BbHcivF7W5 z?|kmeUfCYk{HC(52fO-Qnv5q?=rY@ZMQ5K+KIw+E-G$`^l8o)CfN8&Lt4@6w>23-S zcS**o1z&!y;tD1x_gPWP1adq9{~kWJZV|gd2Nw zY)I=h)V7!nddHq51Lqda=Yzadok`O%OfjJWMC>SVZUB-xB3n}xmKZ!iwK0(U4hM+} zkV2se3LXgQQJ4W5)`DUvOf953KB&8zQqMxc+8QrIMrL#@7#18tf$Fp+kbXEpbndzL zFK)ze&E!`&3*1#2%TIxxohthdbq~r@NM}rK;Cwr7V{~07_T%N7al4+yeY5T5+_Yst z=IahckmSw)T?I%<8$L3>j?6hK4H(vPOP%&W`FEDk>#RSW zlkVH!UO)8M2Ob$+y|?Tz$$R_Z%&j{o;P#xw4K3?`#IOF>+DU8PM!FQT7MoVGvG44l zBX?$d9;9Ofs+fjbfbLJaZtBvKf=r&F3W;B{G~lQ89D!ClYG?nG*={^K<0${XR2v43 zYtvt>zn8w9UrJFvO>sZ-x~DoGadcec5%s4jmXj=#wwMj7RkBDLQxhg3e)Q>PPu~UL zqU)OEe2EA`Q2Nf)La*;!n^wO$svaKo7!*UX&W+bhdq3tc#iTPNUy+o_hca~cvdY00$I z3JhvZ8N|Ngn5c>aF{J5LRV*A2PvTzI(w1Ht60Kfoa=iwkmI%&PZ_&SMQ+g^4Uij;! zVlwoBj<{wR@uDHsYSlA4xb>H|)X=I1HkWXPDfhhCc!`-t27Tqw&T-98*5XbR8VJyx zHr5`f8AzM`h3o>z`U}(b`h)oiao(o+58i6vM@8LRxMQTNRDLHw3uqM8!a5DKoYjV-cdPQ#+*Vj))qJ`kG*{1EFopvb;~=5@Q#V@PU`#iMp`mySm{a5RW{r6uN0sgr5-^E#sjn@qAA3)2hR`W z+1`Lf?`G}LD!8fJ3wb7nbX?_TU6+lHE7ft!cD5OdBh#tm4s++kM`t%L!d8NgyJ&-o ziUeS_8W%kVCFr9-&E31Zbx7DA{4VezEq76yoAJ&ZWJuyH=SSG%<-wsFM?x6q|78D* z3e-v9M0POWXIL#`dbEstUR!@yy|_i*)H}6K_~*`Bi}$Lr1BbD7H+o>7mSJQsqn93h zr|d6tkw+}qLQ5uVYcXkAT=XH;<@}ois9B7VZ0}j*wMvj2pmW9DLDUEU4y|6==RkEB z;OMx90Uk>GG>{5EmUR9~JgmY6vC+4a=ftN@rzY!fx4?7XI9UO_M;$Lr@+ws-%`3Kd9LOvPT^-Z4k9Jj$KaREJ1AuP!I`~vpY8k zGnLNh?9>nDpfM{rl|JzyQo*xVtH6J97f?^~c(04qK>Ve69ahdtdP7yQHr73e@3=ZJ zl?@zrx^3-Fl}Y?YO_9Tz7_cg_AYAG*xqIqxp&&UZR19zS;4BI(7`?on_i;VWTe}aq z6<^dNQ0wOAYqIe9PJv^~m<}ytpTz;H-94jvW-OQq;qZ_r6~J4!Ov08{kWhR@0dtpk zp8rS%4OEkhf@CiNkZ|_Ff7b3D<%PMC3#{8l0i5~E$YxO4`)unrVEWr{Rx%P)I8*1o z=P&qt(2Nv>xGdhblFo5f^swVpZ_n;F&gkGGf&cX{`K*!+JUsq zCFa$Ny}vhJVa8uO+MX~9pgi3}FDqc!W)ks>*_yN$+L>OxJ!h*oOe|z&vvk~z9k_X& zf#W735?tE7bDY_s+Sm;R73N$+fdcgzL@DO%6>HGg6I}2ZV&LOCs(_4OT$1NH@*K#< zaII;M(vJX50>P!XfKqo*8~YR)7;e7Hh+5^vqwdLpm9&avK+6A_H=X(-9FK&G=)HHsF2%B}a zQl&cOt|p`)I^LP%dDUkVC2aQ-?z&OK?Ty!%vERr2t!1^!D=0h#rm^4k+wVQe(1@+h zp%7aTWueg-GNB*b(m5x>l{0feCUsrB61T3uutU0?k=fLQmTrZe1$8+>u(JRKjm%k4 zlJo7k6k6ql>*2?*cGK`>g{}X5QCSuezn!|N@jAT~L`&A}tsq);Xbn%oOzZWw=v*TY>c?8BY!M=u}l*HQ980AlJs-*$qjqi$L> z5$`s>p!EN_7o~f6*a6*2o%S%zN6J^C(_)iNEn57LpZu#^N$`YCv=flxmzUC&WgViY z{!+=Sga~E;TeYJgIX`Tsd$Qeu%GVHmZKAUa&z?ah=%V&_<3K{!C|4jfix{;pn8OUU zFZRI9UAYn49t0+8dm*#pLP$S!eC)7L`12H8Zu9J%LaV%>)jh)u=((6AbI17VA&v_s zJCnbbmE!yqaEuqAPHD91jE?_vGePd58KbnHPVjCnbsQIf*?6BBWpkq12y1*qvy)2c zFg+q2W++K*{pi@?IskERl!OocUcjZ`>0@JN-Rc<)zSpXQMDptT=%*Bd4O%O*1Wugm`*P z{1kBF1FkOYsWe~SUteAQ*Hm)V2XmYC+p1F_$4At*KGkF-Pb8Qp#n|3UF zk0VInh~yJ16(tzN##FCGs0`}PAi_=<*Nb5O^7B{y272{qn zU7M`kWJ+^fShAn&*Kf875%H+st&{V&7US6WYD81RZcD&KCQ0Q_oT)>=&7BjGuT z(9`J<>GHN1VDmCQ;*{r%;)s(*o-+}v%H}!e*4*WHvJhQ+9~^7NHev~?hzlxKKPG($HJKyldr|oTSC$1mx$%awqu8(KXbV*ztMAe?k{XNJ2j#_rR}Q4 zjM9dxly*eTu2bnQCyOjcA^+hfqW4mgMIgGwB)GO2qC?DAOgAF6St2-yJcSVg4AlT^ z9fGW7+|FR7AvjoKTEI^ilxu`LN_tG;+{p7BI${8|_(OsM)kk4&uB?iA>&)l7_|z&b zD<---NSlZQC8+^4PKA6XUlx*}0nc7)>h^|kN<&txYZ7-!{~q_1A(w2%snS&qhfQ>M zi>y{+kKy#4Nn4_Je}t7Q_Q?Y%LSwMy7Dv->0LHfO|^|#6^rMg=aA3;)ZTs4o$6q$$? z1v;a)leQ$7wbe;bg2+X91PdDk{+;X5HL(YknB&Ic(KWGWCm1;a*=Rw^L8Y+zA{;6* zx~19|>8QA>;yf~Ner6iSclKUzPNl>Zn>Ft+? zz<0>Hr7W|0UJg0mt=@VI-T&3Yh=LeG_0CwH;8eZ!>hotC#E8Z}Oy#OGh;@y>mFg0S zvY52_Ta6-J(cv`yOXT_W`>JIsVq`~Crjl=-lqmug&Pu4mbEixtF8tEz@Qhukxd~=g zlKB;vz-{JASv-k}o0U?sgrj~oPx)7_?FWg7>$g7f3H8F(%xW3~37?Xlvp2rCzI8n}f;jdN zA{*Ez1O;jOSpw;Y6GZ2pd;h{k!u4%93*1$Dw69tyV7;gUl6xBxPCy+EAtWk5ckAU0 z7)7fI9uwjPe}H!>BEt?@=TWVYx&ug$Ulgc88v+UyO&HPb3Koz-f$Fr|GzXaTMs;Hj zQXjW(i@wV|j?&6ohH<7^**rPI{{NXzC`X3kN6ag4ow!L|rtNVYVnHDeNN(&Sl-V+I@*d!yeGW8mMi~s_~RUwnLt^MviKl%ZLIitYM?VY)| z#$c7D)mzV>eMfe0+T)!&^9ft!S*PyC>_^86O3f3|zzO2^QQ7Y4^@2SD@lDe)0~91N z^q#O9`+=e244AN9k1^mpUbkA4$qOJ`)nC`X$5urx$GgncBG{^O*sr>?3KZC?{*JfZ zc8U`Fj2Bh8)ZeLG>c{=J5R7>cbNccvVXr)A;qX)v9@ux{4;F(g=BI{ys^4pzn&*_y z<9oL_P2Jj|BO`;ISz~7_-nsHWv%KMDyXjQh2rS>m?lM#l=`7x>OV0M}Ubyrl zXyFDlME7ii z<8y$B8#He9B+@%ua3m*A#SYd?J_nKQER-RwK2grb zy*xg?utDaAiMcnH_%JS=I8I2YDA7$Ry|6=fMg?pYh;mgbaD*<5WS9mOxbMuijNBQS zGw9y^;Xsfd=?Tih* zDGP~TM1g-2Q0s$tT>^k*2a8nRz3~zw6;GW(TNUN2J1#`8?WO1%Et7Vqp~X{w9H-Rj zbCmXE!@xGwKVI1+6ecUtWcYk9YxNxPIa+f!4AZe+seHDC;N-5-bbJ`uKrrc^_8I>+ zeQ6bYz=#Wh+{@)n2+OTA*q%RDo~@kgo-9!-mri?}Cgw?8Iy5OQ!;z%3{!L^r=Qb$) z1LeSm8fGX5l8Ehy&<_xeLyxY8u1UsK%odFdxlWgW4)-N>q^ zBkCYRak7m_HMK2cBDJfXW+%!bwYnX~elZ1EOyteA__8t7b7m1}_B_g2<5yU)qc#R7 zbVOL8G)?Pg63T+Tx}9u(F}+(1tZGEQv2BqKKMFt<`Y2#9mpYVN($OwGNvavIey-5RJu z)I4fStx2%mh_d9^_w0g?FPKkUypZ$8j==UU`qj=4l)X#1{y@n$;_b;=8RC8kGJeg! zd=Nx=?c6zm=$62i%$CWBG=Ae7D-bQxf)DewKK0J`qpV*zKb+;}<4ISwyvH*DBnbek z`y1Xt@9__wL7lYgV*ehD`w5R)-G8+CejH2t$t~lZQbtFE%fcmsvd}Rw}UxmE49A8NM)y(&JCVzs5qi%{)@o~R$ z9qC;kQPYxcdy?O@B#ZZV+MQ17g34$9;|y1#0L3rzmH8*25zJqbDpzGyj`kh3Io*U0yymhT1_f^xj&i0bF-F5e}^ z;f;K+uzVkCC+ALEk(@7%sBXO$R(j%ft*I2p)oRiu!|j8zc`{s z0#ZXOej*`nDO>0Xho%Qk0(xW8TaCx(^PpI^b)3mP~PGJE}6>PmjWu&NJ?cX zK`Y2qB!MhYl#AsS((4{~oS?!C6ewt8Mielp&W!>F*SS&P2&d?-0(S}Xyx_1AGyArx zc%M<;+1iqi>67K&s?MjmKiax|w%FdSZ#P%h|9rXr@agML*H?FGy?TkP;q*7_@xh%v zqT<6K22~kO=spnoHK+Q`HNePkz6h4GW3t4kH zd%Jq;)@2ppL#Cyc`}e7yH9sIDnY#zq88~d z*${Q?Cpu%w0{|4tjVW{#Dqt_F5EVd}vWfy#tTt!`r{-Ztfux(GEtRvSh3UJ@mm?yh z%2Vktj;N=Rp&X}ltcdAYYOkhUKY#fgr;&bgR_)=+A0(6c0V@_MB7)E!A+N-s>t9$ zO&dNoS*#9V}lWJ4Ti>8NN zp-3e1A&*3bL?aRWLLZqs8HZbvD`=I-6yIwXuL&1`QbiY6g~3}2VB@4(uKqBOqM!*fWPGrJ0Wb`6mWYSDy(NY_<}uo=|M_tuLg)e%x@UllFr z?&zOpH&XTz99PT38tZxEwxpr&rOnm{>%C5BxD%5ozSrwPNVKO)qD?clLK3CPUmeQ^ zN>Bae%vnYO)J21$(>db{)#M2%P?elPYl0`J=Cn_nj&4;E+p?+D*N#1-WCv^w?(D(! z7fuwAr7aQa3jUKjC*`kn#@;6oBPVc4pDbO5M4lf7E_-ccN6y;{@xP`8-ZuX;&gJ4a zW^%c|!JVX0G|4n9GQSANI>t;LP{x&Tu1guU{qLWz(#; z+YCE^qPJl+tZb^owjq}SJP6S?{Sj%2HXituO|<9aO|*a>aYD+)dG`2xR!EvKicdV+ zK$Dj)9e~&jrAP-DzRO%Kf_aXW&Cu!bF;9LH2ag=~B>poIC4iN>p{QWyFH-%R%&kS3 zg0}FfvI&wI^>;8{i2``<{&1F5mj)`VLv8CXI|v+)=oHJc(OsNvm1m=un%Ss?*Qrlx z6|#+}h)==*%R=He@zI`rca}e08G!@J?K&bxjKU&J?cqshG90~CdHKd$%#Sl*zg26jn&iM2SW{$+U@^WLP->7jcO=VkSBj zv`S|qQv|BD^MgrSksn+hVMC;v@&noI$ws_aS-fuxV;$tITIPMJyW30?EGZybi65{L z;zupS^;5m7m;bV94OAH+-q`3+#IK4FztB$4sz&-H*904SmeMnk&ut))?@GxKC_#9v z$q>n)G_nkZH7qHgE*qjg-D69uN!u-M(#5K?)qZ<>c5kaZTjhyO4O@ME`Qg;0fuuJ= zqb5~ZP0~-!s;y2gIaW60{Q7d!L_3spfB)!v&gre~*{~LxqE0{+$=UbpE-TvnlsK=E zAbrLF>8q9tUp6gNsv^lp8b?AjlAKbKPqdTs_8S4@jO%`qd?VhTtks!CUxJKZ^DiF+ zOMHg1ZNBD7dtuC{9&wxjxCV!{EE5QP#5&;Te| z^&|5e{Q>>d^WNVyxq%zDT)_khKbQgmW+w8kdGp+xKVQ6F#-HNrpIyS1TX=EchtKG00iRo(yqeDC!j0Yc)2q|I z-G8{hyMK3zzD>O!Dg1Uo{()~VlC$4 z2IGzs@|le{_GeEi{B_{DQ!lADH+{G7IrT6s8Hd?Isi7zdF5%eK**gC^!w|QI?;NgBm(SEnYL9_BvH^9sf*Z9%FCunhMDc->YFIC_*bTuPZ29qzOD z_8P_0R!#BLP2E;a@;Hbl&q=F>Tx|~-#yev-py}1ztAPUx4ERMot`#yno`1vZ*FN z&wPO|sT-%@K_86Cfjx)r96Wy)g)bf$L==8|a3{b`NWK9M`*t%P$KH$Yrr<_``^p-6 zhddwL47x$4Y~4}?L3bzK++_?Vx0sB$vHq%MFV`0$l8}VeiV>lcNE4XGyWC#N-|q~i z{Cyiu-@byT%lO+iP*3h-3f*@H3GTKx?hFxMt|frH=a=^av&6(EX(Yd=_rSNm_!KR7 zI54ABIu6JOX=WV!9dz*urW{UJ3Ut@isk=-gJYV4Udo*RQP-B?uN2WjA)e|4ww`d7f z2EO&^|L~@(n|EFid~{J?aN2Wytr|j0uCm+kRkqrK-2y$6&5mIrcDsD^<0SnYy}~67 zB(%GEg>K$O!EzpM+~4{ljDEQV!b^q_M!#oQt1+ym?XR&vg@4Y#CujqY+!`5(PCH+l z{Q@-)v2Pd?l|y1fgXXQvUn;}NEUh#;1|HZoz=zXWw0f2SVJLUxH`oe>hxBGjPY3h%zkZUbBBJqqxq@7cyO*XQA{lJ3V;5P-n;E^z?+Jo7_RI z^Gi3KaF;OPSAXs$C%<{GC!eFa8&-2$CdxByA{yREt_nKax;v8{5})Y+@8Vq=ey4k`#u2a^i2$x=op&s6IorY51v zfom)98?e6GQb9bu>^hOz-hfIcl4>Lr{`1*n{ud4%tk}-83CWEHLSh;mhI&xF+-gir z*p0VwZjbC7&}je0n~ia9+o@fxUbTa#gL?JD$+mANfiH=)>|d`^2*{Zqo>wSV_<^6K z^m!g2XE6Ibj)>1wCq4HXNKc~m{qa_|6;AMl{V-u!|30gq9{lJ_HNolv65&K^^#HkoIC z+`;w-btc~?i|s>qHo2UUpZy?GVwVY6wH?dv=jIHv4m<6pjg0K^EWi7f>2MI3%j$}4 zb9Yv^I#^hhm)`ExH&vL>mul#_zy*DY=>G=cCl5N{3%YfEx2|Ub7Bnd!T3`#hkijl< zndinxn)9+p_R;}?aG-wCo6A%pLvb|XZ7R`8xi@&w07r?|e-J|{bZGt75L$;Vd=9k! zwxKrr#Q54C8Nb*`!f_tAzHs6u`XbqX%LIK2t{S-8><%LR~hRJm+-ScRoL z6;DOWlQ-^>Zr*!i>dTTlzi=~;p(PZXiD~wig6C;XE_6DNQ`}Plor(&TAbCv zu7uplj^*9r8u)=9r1b~6uoepOkN1WSSPRoU$c+*;jvI-0>*ctq%QT-cAx8NX4sah2oVx5SnbB zN9nI$((9hh6UAIe-LvEaR%Nw>TLrATH*^42bqj_r(p&JRU8J|5(>?3rJw|$))QVc5 z={Qy)PJ34&rg1KB39?7l(E%yft!}#2jaDz(t!{K#-5|}-Au?$+d56d>C-ea!GVhI+ zA~KyJNz*MMzb5sQe~0JmRBXGJE0e>)TizQT-jc&s@!>7?uvJX#VQO(e(LvTv4txcn zDefTL*@w0R;mq~{;f^KKu-EcJ$M)dVq|8ioZkB8}%i`IvcO10hLY-w2Q!GC`Zk7%QDs^sF=VoidY_R_2hgrx(Llg9vdi;>cP z_h12491YbfEXAAj*Y6f1P(ATLcWp!B*`aO8+eX%wUy*l3AX-Cc9YCKvMIcPGlKe`F zKvbxyhah@o(2fgcNl%KSiq9o_LB zhxekLzi~AFMt5Qhox=e?@N=}wZl2r$yN?t;>MS#S`2Srq$g}M30RGCXU7k~C1z1RyU&|DFtiMu>K zi7$OH%J}`%Lg3)nOQ_+Be&M}%;pXE6TwnHhK?ej5wwQf^?*bh)i`c*?@ON*BOMt-# zKDzLI(r5vFA_F}_KxO?Qy2AK$SS`iEMiiOKKEA;3OyE*@d{?I0X;s%pxnE03U>z#sP6x&^Yj{tW7+){T^9) zI1fEk?jQ#c8wVfUw`d6iGWgb`|HGTEZr*u80A>na!S~N~wrU8?UD<8S&KqsPZlmZq zV>iQmhbPjHlk{^0hl^(1-Mm6K@8B_=;l}-~FT&`TTQ{7NA%xNI+0|+ct9kot>`&pJ zGw=!8z$3SfA%3~q$heS z*bTN64o@$-h68C}lh2>rwr?#tI>0=RZ)?dI4f`Ygj5QnUh~YQ7y``#Ucsh@g#gi8w z$p%xBy5Us8K^6OZSq^goh%Phc(BlFRwRL-mOhLE3#K*3kvsW_jY>P*-lXiFHe zCx%t&_8>GRs}AT2jy(t)pW0GNY)$qc?!7Sa(>Fzyt~E?1hQm09Er=e^X1HS=;bwSG zhnh44^ir){)v_xwRai=GPSBy40|kXY+VuLUl+B5fx^iurhO_6{MOTL`>r=yhzGf|v z9>uec3Yl!28-2^!EqUGb-b^!8g?{K>Y6rYIq{CXw=Yp%>4NK2YA3f2y-X zeJ%u-eT;U9%wLD~N6pA;5-O-aA~60fUB%PEj*{fAj(qm((MRI+CNWr|G+GJ7UMYws|Bdi~X#FTB`Icax8|*8mR|cILr>WOc3eG8 zy;DyR(1&<8E7~6m~Xuw->w$yBf1_qEJthD1>oQuWAoPYKLjm zR8I}F{)77zd*PGkS4Ff7?FMg;fcqaB<9@fHi7aU`GdwGE`WOYktw=7n+PJ8)NMf)? zVT(jugiVt)7?J{Ye@wDwCSI6&aec;=DiyZ!v34*bd{W%vV zJ_93r?aGm=1r`3{xl=HsSs8q@&bf`|k?9Q5xpnoTG<`Wg$`# zDHqpsRO59^Y05ov0mH*G^60Tu6YT}w94KH(bDZfj)!e}ZfZ6|e$t1UmF+gYVWUy9^ zIZ55rOIWHe?4LIhPtqLY+LX)#etKJYao~sWW=X?fIH3}fKD82co8KKTI6JNo;`|PJ#r+X zIUJB!?s_SNZf(A8HBEEuv93T<#HwHz*NMQAF-)ZZQSaXL>!U>I%%i50?O0U-@#xW|m=C-ML*B z;f$&Zq)6-jC$psgi@)u)dn&F;zAxRlI9ytwQntIjdh+QArrA45Vqd-qA&sol=XJWb_ssTrU6)K4)XFRk7Fb4Qy4s zAMS)SPw!c*nYe^6;FN7ymI~^YiLwZnm)j==y%j$Td75DWId7>%P}j0hU6!lP&10I* zD*GapZql{W^-nBAC++d{Q&i`vL}jS0p2?;%22OS~d)X61+g{aQpmSVN5uIAcwPzX# z!L!yk2rRX7TupmKKr%F*E732+G2M1ncZ(?rN|KnT$|OoC{Yo2IVsr~jroFNL8#X!B zd4>|zaY>82I}?!pv@3Y}MSU(>0A~4Om(wn)v|m|<)jqVJZH=;NE7xt=aXkv%qhji3 zI&DjtF>plArI4)%wbD*N5zvo4qp9lEmUJDcqd%iI1A|ebd%1vVfkcyN9(O1e;=h(b zG#?8{qe9~%A4Vi%Txc!H9h)6dn+(Cmb&hSIy9jq_2xSk z1wJTCaoq>s*`r~7kYf)DTmWtcf!q^j{VmiXo0me_l>#A}9*z*HJzJf1HSJ_?!!AVR zYZXG&0II%J%;>o^zX8DdiXu!}$z)CDq}4LnU|nrTCrvFDs%6yDLY=iaP)RM1tZ%5T zf^RbWrcU;(zEzK5+D_QvQ1G<+aax>LNY6DZMY3*^o-SfZKeB^fy?UKk7WASwyv3rA z(*=dBXGQj_fc^Z}Kkn$ssWvl;aS_~Kp;Z-%SqVA4z?-CT1VQj%F}w`@^dx!|3&1?N z@k}!vVKNJQek)00OGLZ8R_7w)kpKv8{)3z~#CpFDT!#h<-LFNO(7 z;3-^%$9wU@(~}sbiN^1z_-GN(&+H4_3xfrtEK*tK35ww`E7P@@eRN@8X|#aEv^JqD z{UN%-)p+3EBEE}ZE`5A~$8&{C@xTJMtBct(B^RipNff{g5F)yRRXr5^wrjSioPV9b z^Nx+xR<(HG4agn&utu5K)XPWUCh2D{1e5GdKe;pSHul_SJit<2NCXALPf_q!L@7#$ z0pylO-uKFr7z%&?swxbi6V%lKvPr>Jf=pGXPD{w3-}1cba2tVTHek=^89f8(1blRQ z6l$qNDUqt^%J@ehX|zG80M(I6bsA1VEcVqE*2Be&{z}j3T7ldKtMX&|sY?AImw~Uu zjDMhK9UG?me>H_d~h z1vMMbJ%TA{tbSXAW*MhiGW14ilvONn9#pSy=<9f)RlGJ^EmTHZRPWMKNqp&$-)o^? zHw<+`3OTl2zXv9+oQg#d(m_(Rq8i;PV0dO1&0^FlIY%pa%*fz(r5Ki+&8^5-t(rhw zgxc+q6#mYuzzc=|_)sgvj6KL!S?udSvJutsT@Bw!ST*K$TxJZ5#-UC)5y$A&J1^p~ zHAaRLimHJz&zFJA&|L!y$5(Xxk8G}cq>po<5=GkRxnV{1i&dgJbDV2Eb3)0SE7uKa z3gOg(vO^&-;Sn7fnitxz*j7^89dTti7Upq+SC-um!vr;xNjcOBg=AY4bsx&y2IAF= zFLXp?L;I6Kp1}oOoAfiyMzvxABt4(^s=!74#2E%&0CF(8FGI;5kZz6>G zm7XwK72kxFYd-7TY5X9PQe-RViaoQ`u^Q?GVYD5J!lETHJwi9`$k7HpbaaLxQJF$WBb{)0K=dd| zAT%j@;@G_07BE9j&q%8(UVQ7?UZJ` zC`8XB3YO5Vm99tVPtqM}1(|awst5}Mm=qFJLJnL3HR*vtBdy?Q7Ebf8q~@Tgf2h3RE@G&x=RnOSy7TUkcESske%va+I1=*Ll>qTBtx* zv~rtxlPIJ;NA%#d7KfwO{2*C`?x6OOM>+w1ZPO@sV~FF@hpTRi(?C@PFBfhyaRb?v zKc7EsC+bv^Oe-jGUjTDYy;7wmkc22-e#?y^#-|k)*rqA+D4x7qI_G5*yfeQnw!QdS z(dDLs{fG}23>y+U0gizRrr0ei;TrnL@Bwg*f*{2Qwitz0)eUV&<5b3V1|x|yG=jWD zBo%0$Y1LB&*p!NCI)d}AM_Pd^ErZ{VOZTwm{v=khf&cG+G8jyqKxg*Irr1gq-@&h( z_>x&}FpMH#pPO^ja!mrRV{z29LeveLPz!u~cN`@$A@eY-4YdOM^(hXm6wedYop~Bi zS_)PPkndR52{&3*38XQXO{I<__7ta3fo5Q$k6y(BDNaO`PRV%03cJ!9BvqhJ z02!ESh2Q7|WpsKDe~}P|fE8lc#P{Z2$g)`^kQuEZidI<(&VT>&%We_QN)FTtdTI74 zoGH;jJGD*oX0Dn&s*enNR5xO1N^)m|K!veEuJe?pxSNe5m25&Ae8^G$7ds~~*~I#l zJzmg3wq?wAW|J-F%%+irrhVtsrp4^H<@_rcFu0YZZk%QzGdTx3-ROjhv<4JM?-asm zSx(@klhBG&pJYH~^V^pUT2-rJZv9ccBZ^O*6rdS9G)X8(&t}jCx}vofGN4I0LovUg zPolWd3V-5YMO@8uXrC+3bJQnYQd@FA2z+ISBhDF$L*M9xIB{qWuPjpx^k>b|On;dU zZcarAtWznKj)bs#fsgu~A?$vm6RO5>C=xb1?%V20(NTVoix~2LZ?vlGH>80}lvtWh ziLJY8S+EWBEJLVGuM?W6IMVc6cHc~*}f`!V%Vn$yxTCkv`X(n8Rm6)={DI6 z*(5i(d~(AXXd7;hV9sICJCL#n501|wJy~yc;%{pLrG=EN<^)`FkXLtA9$Cl*!?ub$ zs@m=5=%@H4OS8)}+PIDR=4X|H-WsO~nUcShGi=>gCB5h4$RD@*xTsKGw>kmQ9CKLi z)DUGffSZ^UxuzUWc?W%B8-*IDoE7FdjaF$e0r6|J#38E&YsY)hns%!2codv8 zrCcNjt#wo`S^=jAMtu?<);|Xt@DS<>6m&ce{IUP-|B>E?-@45=?!E) zc;x5*0RRC1|Lk4ecH6qKeibaQbK$JUvMu>HyYX6zWjAh}#I>Ehd(KT3L_!iyNP;0j zE9zArqL0(NzDb{?_#q`xKQu=pBeJt|kwhYe4?i=5nZe8;Is4=AjXVoQ!2Y> z^q2Op8}m;ZQ;$b|GJNwugST5d2V1-LMf+Hi?_pqGVsE$NgrzKbU|VNoQH$~{W{E4P zkV$u7QaD2zI9sfq$PzgKptV*Z3>UAeq}}{gaGQz&c0*{V)CZQxcEI~l z@gU6t_PP-@{cd&o_u5~f~s>6CT3#5M1ZXKVVH@8gd7CgR_qkt8Cd?)xo3IZ1dPQ#v@;Mi1!DoC;KPIC-&?A_ll;? zqrADibCVT-Q1$EzKA{LIhQB_No@L3UgU3>|2Ug8Df2|+ zKLOdL^@;A?1`*xC>7k*hN}_A!)HO?VhFljC-DK|mUOd|`h}%5*IjB<6+qaA+kb$Al zJQhg~RRA6CDm9@VW73>nh*zb(DDvi#i?Nonzh?<^8Aa-bcA868aosq8IV;**1!up6 zvs)#U&NoRY9iBc*p>*hulTh*xER>#)LF#N4>*@wIWf=ehp_(hG3ZUO5CP-p-HpzB4 zJT&4^cOGmzESH#i{3U^?ra)FL?aSunE)N1lPYZin+j^MYB+lZvTc7AOEo~6d)i79> zY|{XP_2(wK@QH}7yc1Ls-Q^|`-N|7wMHNJM2VFp!HTPO>4kOH#ws+WR_ia#{w6W?@#^Z!Nv_q^Vd|8#kVO!-c4*Qepla_W z%SSn0~cNfI8~bMZB?oSTmL8?fLj00n&E(FT!wuB&7(ZE z>$dzC8vctrzHeL>E5X2qSm{T38E%L3)+X)St%Jucz|%Z#0HKV7MHWIp{>Z%)5{+Sg zJOo8!lv%ct$__SZqux6ytg8wt%Vms9DtoCLV@V~q<=J{tZwD=UUQ_vAU9qY~Y4HVRMezZw@SM%iYNWve% zd_Vc#g`viExbB|U&IfQSYBt*#<~!PdTyb>b;rX3A(cD?Zch6>E4jf0(vdUhWRvWSqtk-nHp@(R;0%grB%Z<{6m5=2 zXp{1D4i64$9OW(vcgnx6LuxWnMB>cK^m(tBrAuNxo&wMltk>fnXVJn<=_w#NWNILi=0hCHyL#oqY*M04^Jstd=#$!x zfVvAaVszacGb%S&xiGk7gZ#l(`^pk_AobhXY1^mfW%)OIYOTHI<`StpIyq z(H2SGaMi8k%5NEAr*QgrT45Wi)o3;kbX3!uf%^a9$w8s#^*>OJB}J^hZ|#{^@&!CP zF`v3ZN)hVQ(5CsU$wNJ~A8dbAC-sM(5OVyXpUM1#0rEtU61yC#yT{FfKkR5H1W`Hv z>keI>r{rTDUi2p5k*4ZH?U6GdZnHprK{F|)3Ej@b!HGU}8c&*aT8{}VxfGGqBd4jy z`P;2_!f9Y;t{tW0&vxO*y0u-Mf=U4|5_pXKi3xAOLhjLkoYTO| z0wdr62ZOjIqIsLI${1fD{A{c@W;zN{RyE4bx)WZ|;@G+rX2-AsZIl}_;&`+kdY@Bk z=b)a5+~D#)})$4NbldvLuCDTAMzywQVCCG^X=LyYc5W5us~o zF$14(BUPhq$1w}ag%NkF_6%Gm9&BgCZyl9G!R2>hH~E9yTl>U=eA*0*_l){#Sot~m z{2&XRB>!<&h_9g%hIf)CQoW`f*T%SuXsF(9cT;_cnNQiGmrcLz%U_D;xv#nScwv+f z+wzhJIaf|Il_vsa4CkY|yxiNfCsRvUs>DEfr|Yv2E?ohwTprf(Roj`HA-`5>@U_U# zWo-Fmtk!YRIo$6>;yWDrV3!GWSMP)M+{%_t~{*uW7zCroA91 zGXm{^D6Gmrs`WxCnUaE}%JZYh6towh#s_z4;P3_%G?yqWkH)mi11>p8g~x%;1|RKK z`N~|Tf=`AC^p#DAy=q^Xot&~~Y;4Iy)htD>TWQ$j(e5elzQ-Hk030rz** z--1_ZGfhciCToR@7{n$eMZ=~Ol@i1gj4%4w_%x2bkP+nDtn5_ zw9~~9KaFJintW9=DYfq=7!glIG7&+*oN@k2T!^Hc?=W2(g$7c8u~cK|1vHbWvIejX z0tKaCP;B7r>JNuQlPrvtD3cCHX9Y(3i!0J}s7Y+MAU+9XMzD!6bp*HgU1Jm~h}R2$ zw4@tzVGB^j1W`nzZkKw>GJxpu4!V>wP+ffoJpyem4*HWTWq>9yE|I#uf=M3-)6@rf zI$W$9?6xomJsK;k8`dq@F)Tj5^Ks(#JduH_V7L(8m1%ZAphLPqiOrYaFoFWbvpDFF zHZk+UPn*@TE|WtBiZgopPAzWH6m?0L=#1K9$fGIKd}_jJKr%(4iKIM|BNFhC%d}By zXSd2_?6QF2WNIdPO2!+EincVLYD8OppwWm#Y-r;_bU%8`7*Hu0DmEw7_igM-5r2}$ zOOh5znD!ArF#WXnw%H)}14e9wK{?ihY*)|+uR{*8X|>@~xr8MA#aqgf=4h9u>^0GJ zM82}oP$d3ryMvLkC)KQcRg+00Zy=JX0BK$KUVT5{sg8ruxwW&S>Y8OL#X#!_=*!Dl zmb|&T|G$gdS^6BKPYv-E@n}T4jAW@=7oBN5P)oj(QuQ8Jq@J^k-dzb*>(^x?SiMA> zc(@v~gJTg;Sc$g0ouR=FUr|srjsxx)-=s54n4a-`h@`{1BewJY-~aNyGLSWe9ib8l z4QF`w4rla+Mg5&y(dALGWMA{R60r(83VA-_Y!;2ID1qQvSrE>^@<6|rX{O}CX{G31>--F}KyqcH z5hYex?mHBom#JM(noPxDM8=FuBoEbAqgr7Qk2>y>iuvLUleu}+O}E3i7#&7-x{nLcfr#h9ry9rr(G;l1jxdX(ydA==Gto~)w= zb;sp>5)+CU*QeH1G{*F!%ho)4%+lO9KL32O4_c<4=A*|fRh6OdY(%O#y(%J73m^ZK zW@Z>w>tpAgoe!VyuFlE!`G6*UMmk(+qr7YNxeuQeE8ks7W~!1F?djlt&EPu$9VuPb z9>?&qE@yRMefdP`HLF=p9jz5AZ=o$KCDj*MSIxTpmDMkcLD_LIrPYLH7~K)cQoRbg ziH?Y(g_@N-Q+W{%gl6w2w{+Pdij+GTTh4Gc<=9l0${s zlA=Rf!R2vVk+b8DM%)=EYKI8~2Zb);0D(D3NV?=&?V^!e$BShKhf6rwgq(p6=!3fv zI<-&eLdl}6Y8#@Vx2s7OpW42aBGV}SVz){eb9sf)yfU`GSGxDcs$0iLi=$TBfGI~r z4(dSV1m>tjRr&!5SDZ0u<6T@0%%>m^A&w&h;eBHq>LYH;PPbl8`x6@z&} za7E8jp{!?MbaQc6>ecR|u(Kso zGuLAMt1dcEdo5dDKQ;H*EZA%gt1H3Z^N^+FBO8)i5z@%M+a1sH^tkmXZ6lS-d1QuG zv6{8IPm}-tZ_`z$KGwhf4 z_09YC?<=^%3LZWdvFm6BZ`=1*pI-b5BB~%f>A+#t^;a7DYU!!f;pVyX{)Z9o$M%Pd z&X-Cce9_@n8!F^j)k+rZs5iZ*Qzr>@;v`Jlm$zHA5I6>%I^uhkA}WoZ>| zcdlP>HxEs*S*$-Nkbl(e?9FG*RKCWA44Qv?G#t9%7jav zL24nR62eU%>D!PEYvs~8;fW;HzR;_%K#}gvy{9$KH z=B}a&-0nufbs-T=D5N|suHgy~mg%vMHFM_Qf(Z~@p_qi}<7j6iOVuvy^9Sx{u&_6r zkj#&_Aq$8qT&8P@Ll_SQ7G{dxFLkMBwO3gW=jg{yhM<6CT#1&c| z(hgBsad;4o1cd}F)Pcfc)L~Ueuu6i0gB=v%M&?fBi(y1kCZ{i-$T{IPF_~3){X|`c zF}1N|`MmF#@&U{*QtwlnG%*QJRb3pHVa!6(%geIA*euW$)GcH*K`35o#-i)|B8MSg z@xW=qqRT8acl0q*szKOrhUYRpe-bn746<-Ox*Ovp92vw3So3r`H;&Pi2P2{kNuTQI z=XoD%nZ9Jw4lFZ)^RR$K z9!{DwnZ?c)&YjCtpWe6v)9Jl0kSq6o-BaYv616?gIc?@h*@z#F~{1;Ij8W_%t0|UqN;@~_A;oW^iX-ueJ88d|;e@n=_OX@Q^n_{5T0mtwxU_gt~Ir*%{iIwDYsx=t~S_IT^Hp?%1+u)Lgx&luGKtyJOxk55|&hFAPK*1C!B$FEM3e2H}3YTUm zn*hjXxTGYgc7{R&X6QZ-({XAqnQGwd%ZE>$tIM*|G5?D-Q>rpw?5&WlX4#=Hz!^`N z)NZF<0N6H%V|Z6mbMd=L7TH=Tx~9kY>OEU^q|YC8xmj}$sttZ6g(3-3`wm*Bme4x% zzT3|qznouOU)PA0*Q%d6AU82UrCKXCjb5^GT|mGRpwcCwm5JSDKjX4n17|ZhCQ$$& z>d?g9EW&TKM!~^k9102~<8TZ{A3%ycF8O)!*UqLDvH_!bK%Zu~!UA18ghFyQeF=4T z#0xZ4a8x0Z5EROYLYuwqrc&e3C-7_1I69v{+?1eqD-!c6Tb-W}l(QSA=_BTTYHW`- z@a4As+mikk(FZVx94h)77$=0n0?J4n81PWVVX!_5N(cWq1A`UaMM1?BR#6TG28%Gn zO<^RIIRz@Hh{A)0a6BW9hSthMfdONOpCI{u|8#A4yM@%LJWmy$_Dobj+^DbvoDtD8Z>*f(#g=q$|(=}oRN(!J5%r}-NZJsMMU zQx0e8FQ(n%w<+;i%KMQm)K^^J$0K3{lD=`GpU^O`y&W<8+8B}anHXOQF{vrFc!-gL zE+zL*N&U8PLycMZ{_bT+vIGBi-7CcZLTu6mYfPR=HDU zHN^h{00960>^<#r+c=W1g7UAVD*lk{*iLqnDraI}T)VTEb#nVR1(A@1Gf6N2DB1aS z4{=YpPqN)0Da*D*xdj=PLQTy~LJ>p*jRw%)tv~*C{N8>vGA$BrrOM1-_wfh(zs7gv z|Gv6EOwJ>j4cPeoh$kO*b~}eV`(?}Wy=6CP;#!FhJGmA{=#kj@$YynEKSn$Y2CFB6 zfyxtQt%!rc;{!hXh0Kf%Hi}pp%d;pPnw1U)%F0yi1%vjP+nEcx-GhWZ5yv8CRx!?^ zA=j4mwMv=gyB2=Kku!|8wjoXXDP%du)Fhf7m%bJihq+`TStV z{c6RH#a~aVf8f{m+Q|6o!_L9MQRn2-;rZmJ&!W$Z#7@0&y+53IA~TrV;Yk-i#D}XQ zfggBb72*P#ipYM|GXUYsq2RI5SE4VpfPDz9>}?L8i;>87n0_x|u=+ASJSqFi2j6}{ zoAHO8PPco6lX^ddzrQ_&zgG?Z}5xF=or^L{zs3%`hcEXLl5*Z*?#9#S9eA0qnyT0wmvm_zxuXjG%OJ;dNxmvt{^+_ka7pSja zuFlW@`9~;lBLRe{C=30&5JA=%uO7lcm!Qe5{GDm?OKSCO3)sf+P zU~ZEU=GXN?WJWotyg*4yxm^5aWsHg>$_l|IcSjw21ehHkn3qIe&TE2B*a`-W#5j6^ z>UKjx5;q)=fM7_pLmrGeVv(xMSQO6*AibzRRWu!0Fy_E>(Sji`;yLfhL|Pe+CgH-P zOKM*FB)X*L1&$)A`RU0tg;4wy#ExT`tpkL&!DdWiRs7V(q+RF*3f>n9i8J!ky;DxI zfH*u_!Oa>9+;SE-FOUIuyK9iqSm#aI*ReEFVT_3P?!Dh{(odsKf0b4PntuAYp6_Bs zI%=h#Pm%sb@EC^XIF4BZeW3I1DRrH4ef`a%4QK3Z7^es~<0-Vh%&b;%5#c5(dz|&b zySop5)bFbS)Q{&*F< z()n0Fcoas~4-(Dh;CIyogM{k7!isR74!KqX&C_7;Xet^%ST)0y4Z^M8P^2>A6uWH4 zOET7iyGteDW+3rho_;u*X9iW`p&-s~3!5Yo!2cO0GnR2%Xr3_O1ag%muv_6);IL=k z;M;`vl;&3HTPALDp=An8v3Y~7;Vs-Cg|T>XqK?1p6IK5LA8{WtX;_Z~r^!?{bA)py z{fOZZKMR@2o|Z+*98m(;TNX-;d+I3p&qAmokQDpWK^X;$O59Qbh9yC`(zw~Nk+c+3 zV1Uu3!1chcAQ^cB3~K;;Y2C&I^d$p{u4Iy5GgOJ2Xvnhx@UZJOu-QGr%{Y$}QQBE< z!%PC;6}k^CLt%~XoZ!cSM6-X7RFQ>KiPAXPfI3k>MK4ISG9xjto@=R9cANhD|NcM! zvU_zNtDD{Pe@WRz_?h!Z18QJD=Grm5JRLIcHQ|@Z>d{$N_uo3RrCh+$}wH#m_Z_q)GRKRr~xT z6dx=9rI7hNsdTS|!aqpnshotSMDNFqrPl=V(v(P2-WAv>vG}6Ok1$g^$@B{c2@D z4>!3U=|c1ZmBY-;^pK8D=X4oKobM)dV1@1VU%(&1)ir%hb1||`9ZTP94Hz& z`Z=kjD7Ocr5gIxA3Ae!@RkBntc=i3w&|4Ud7I4*>A_c+k71~9duY-tRqs@a?;vO19 zRJ_N|P{f-Ebc`nhrKKIFtTNXL!(s`dh_hQekuaA1et}PaVNOvgpvRHp3$g#WKx>N9 z%Aj-!Ly-J0?lb5OPy(_Ph?CHC(#sn*9tthWNDP360Vrshkt2zHyapwCyLw4F+;(9CVDH{!TVdIWP$Dp9@wV2-f2X#?r%N zG%nJVyn6<78w=ep5*Q;|^Ibbdvf%#+US7Yv#sWgzmfdXGc}cVIY4U~ZsRBLl-@6)z+sNVP_P2VqiAtN%IZ%0@rzWdhmKL6ts#^*qEc2M2>D*sL;QQYGRy? zxR%0VU!y!yr^71n zx4eGP{T$xIw?|F^HCfAt;jrIjDh&IF7_%#t@(f`P&oVRPO?fL$f@Qn+HXAO*)D8B$ zz>oy~lsB?bK=y?_>u6~l5@C}(KYALKO)WspEZ(yjV~(GFa3(h%Fc{z8rURyPS}k-- zPMEVec1Fu^R9a=c-kvdYIFijl%^Y9cEp7mw)LOXo4$c1h?Y_UC5+C1g3^nRbSB#qK zg4=Kor;e5-@Hm)~s9iixg~yigIG?2fsu%^8q&AGpX;urh`znV4L^79lQL>tL-&FZ< zfg4S`i74bnzG0~0(NK!UG6OAObQ>Gv}mtd{+dJDP|a4JZ2 z@978er)NEg7pA!`z39lEcjeS)dDfk?h$oQ?+l?^>I1(9F^Kq^xSfwl})3>}~sY=jE z5#wz!HW!uhqw*1&RUA?sk^6?_U*JE%US(ncossIp`Gq?siWKbVS=1&NC}NnNXZEUW zgh9xdxhojZik`wH%=%3i4>oLMwaQ+TlDc?-G%lYqG3vq(BnJBvvtw>fIwv@3!_kY2 zBI^qsE+9SN##^XwUNJ5etMrtZ-*A$>n`0T!evw6WMu##@-yF(@YxvG9z+JV|ZUVEN zMECCXwco_Q{NcsFJg!J`hrxwRNm(6!1|WP{)}Fr-K#CZg1Ff*U>W7`U1ir(xtLdUI z<9w{j z;rGKbrlE>(I6iexJ!P#*QRwZu=aMBmE+5J{qgc)A@qO5N*L90AD6D&&fci&~eun|W zD}$AC0Mq50NF~TNS2TLkt-~lvY?stf|2dZ`KEEhedxEuNXiROl#NfgJl7t(3h528! zh`;iI_yl|A+V!?fXo*+wCB2Y~7r0I+KzH#8l7e4+Utc1hrle zGZ8GK0X-bZE6QW6B^=ek_BAOtj9*+jNo?@~73>hMXd}fA6P^tUxD%=rXt*O#*8vO| zPZH$Q?&ZC%G#$0p#OXld7#gQMyS?Ac^*6>0Wtp;!kGM=+?2pXq&zB42!OM3&jR5rq zda@DV-9fFCnr{O*Zj}exY%;!7*=}7!W4+X;6A6bCyeKc)MZw*J$_wCkB4IkIe5(TG zORnQ)k*a9511triCAQw?Z?_ASk+$3Iw>27H$Qu#wBE_1bvAV^I$+gsyt=X1pz|(-6 zU8f2Rh@!e)^6zr$JpItYQoP$k=Qj=p9f@dxNq5zoX&tZdCeMPWWae8jjw&s8i+tiP zy4!=Mb@K3kO_{&yZ0c)uW7Y{P_nuD2=+g6Y#up?jww(2)GIbpt)-|H;I~e^p=Jr9o zny!-l8>R&&z8MM3pkHg!sw#8neN-x?S(V}*$BEf*Y9A!jpSjYjr3Vsf=W4$rd40t01TmgKX zwI4q<)~Wqm8wP!gw3nd15wm_V&Js9buxSLNk}+1rEA7>9SYceEAT45b186A#E#a)# z#DxD|uwv1d*`nMMs|6X*{lKkXFlesUS}Hp#Gwhji zlX?*w-GRglTsIUTnuCR3=?nrO&qEJOMUl%YcukJP*?2+vy$Qdw7Yfo@60A%+i8um! zyL(M)$!ZOLM+k{Y^8$s%8bYmF?e3yt;pE|J&#_MF$f5-ny8|H|q~iKj*NM{xeUo{@ zGBLjI1>?SRE;37byIi1CXq&uUDvMD|%m}VZH>&X(T@c$~m1_#^gr2oZlE#GeZ7{aX zI_a8GH;IiPxJx{5QH8BR;f0T!Z>T%ot#khc+))*p+vtI`zPabOTWSScs`Nk_!Io;Q z?78Xzj^#d*-ZQH~ow2h1Q@IQ>qI&*_`vH?IkY&bwG;0nq0HC zY3}CY22Q1(XfkBAn{>9jYW_7{MJR2z);!wTZmW5ysj6s(!_S5VFBoYS=UC zYWJCwYlS}OK^f%@Ls8o+r!=6Z$y1`;m`P=Z2G1>i)_~X9Fw|U^M$d5gS(?{z<};o> zh+x`pQoF5hg`}<8Z3VRZS@!$I0ynG`Q}3p!-2xtb8-|)#ntY)XU%OEhQj*y))O0?F zL(Mvt-XLG<^CFPiuN`ILuCx=w*2Ef{A^2$H8Ov} zC5KHb1fFe6Kh8ytv3!v6Y1NJ&>1ux{Nz2@jXjEBHCrs+WlLL2aXF1o%Jjde1-Oz9~~)R3XGJ zW2G`Kf1$xVjY-UUf>n2jyGyaplv~#lIz=d`E1vF?RW)e{Rs1eqwqDyYy$G>qimge` zkwXUK5?O4j^r3fex+P*W;4b^ZRdqJ3#|^9lyc9P%ut<*C8I*ZU#zWeHP^OMpmd=b! zT{^+WD&3Dj228`_H$6R@f3Y8d-~uKt)rwN|%WujF?1l9+4SZv&9-J1!H@Rwz6k})sJ33hBTh;^N}q0C0V8TQ^mipPp00!7&HMYQ@&4&Sycgi!~eT;%wAUA8@_%o^`+# zIj=W{pMac?hflpT&fVF$$~%LmvFx0>i+D2hhc@doEqPKM31t^|=I47?_!Caz^MmKD zfH-fiBz^4Bsng*SG_VoRP`O>8Miqo^REyVTS!xaTeO|?&61G;P$1=jgMzc7Tx`vbM z4;$6Ronnz0X>UuFJHG782rbcZfuX5b*{NR-!&$ng)$+6Gea_yfHTZk%0`@_}MtQg& z9x5*Gs>YDiy#5{-3kT*fLt)7Sj0ySIk-HTsYOvbf@fin3FK!TEP_XSNB9062d)^Vj zj@jkLsOk)$EMfra`YP=&q1S9sq{3h#5f z!{hHB9EB&t=e4@dQvZ~B@t`P8Wy(wQ;HBz%W&P5XVo-_8`Zm|Kb-7&khGJ0g4wEOO znLFj+`E^o>!3}9Eg@vU_3xow_Qj?jy?oj|AaRA@isxEE6p>6|KFKOF=1y!1XyOy55 zO6knyBLXaI4(qY8l-QYsz-!t;AAny7Z;C zsqUwyr#`&@cy{)WH%h0eyQ&n3Y?U~Wqj_EWD~NJKrE?V(2vs}PH%brw*;KU|;IFP< zYYPv2X>4lyrEM~`=Srp3^mtO0uABHan-9#jg3m{~QiU#St5b#Tt(wy8t1DZN7rt7I zK}a0n7iLh&SeGNC`a0Fn(4P9_Qm-aL!?VIw7Jsf3h)iti>{apIm%6mwqhjg__I9!R zO>XO|x9|n{x4>@{>gxFPIdnpw4_-WY{OIw!w`UJe9{9i3=DNneK8gRqU!Rwi9ejN8 z;Nip5<0r2lolXDr)(mx%*7(V*M^B!;IeFmU9wxT#)qZRNf>^eCQa&xtvZ-4EL*|sSr|~iT&{Ep>tOSpTx)Zn2e^oF25}K*E;SYY0<9ZQmoKay{4h2E zcAOft_Y7#BSC0Jy5xsMrtk`LBr53P`!_P1Vl}qga|Mlw={@_=Ac+gzKI?iDo!-B@~ca)L#yG z10Nr5b1`F~21!ENiM%a5Xy5Gx4R%tl#*;zmMke=auDhQ2 zAMwf=Zk#hE9#!_j_{Y2&uPd*`U+EgI2T^?|^mkd3w94g?U(%ZqVR^yVW?7RZgHihj3U_O}2C6w9Q@S$?Z3bbTJob59yvF(4Kgi z*{!vdxUw`!olbf?)voS0el}TQN;J=QOI1*dhePNMnp3+!_eRz@5y8ZY5_)PA1dV#E z(_*6be%1M(fBbi?-n-!tEqGqq@1tcm8fFWZPI8x_L3oJvUU!EsTR^w>X(-; zZ8DObgat>s4DuEvIvT|KrAhZ`78H8dG6PGpLZLuFJ;|2L0>uYVg_T33Ngy5; ztQ5JkvisSpE=@jyTN0reUt6l+nnn2jv+aAaX^SXZUZ6Q2%^47ix_sF4V%{e#yKBJ*SlAI3w`Wf9Sx}`-VdjugAA39%;u)VIM}hi zG@!F!z}{dGa=uVq!PGd+;Oz#DEw&rAe_R^#CF#K%57etH3qKILg6;oCBQ}xWw*K9e z2+mnNy@f9ytxFZdysJA*6?-a{D)z~hh1X?qq6VgFe~rp;8$F_{X#x~x@}=fFXu#9x zEQRS`mD-C5fVpXESfTsM2b#omD#G0Hya>})EzbCDLdKLjF}yL&{j=F=wF0ZYlFLH# z3y#z^p1-O4&op;7tHW_yiQ&y}U()tqq5ho9_3$o7R1DPb6J_NN0V*R14^40+iQyeA zthc|rtgkP`@Q8i{7S@lTx};)gd&ke7J=~|jvB@TI2Z#X@BdVBuB-fPM02P(A}m>ic+l=H+H?s{_QyK}vQ++=_k{XX30D&-fC93vu8 zKCrNg($&Pp$|DRUEmkIvWl5v%yFasbWoYUOZyc%ID)(j>2joN z$|UuNvI7V|1TA@B%8#h%AXzIsg~66D9t;Bb164k^(BATVaOyR!tLH=K>aK6VS(nd0 z?v?k|k9Pq0`G6jdKK%}lUA=g4d~$N?P1sg4H|Pz#l*L zzx7>Ry9_=(KJmW?bNS=&OXxEUgtwOa_Pu!U?8HyTsHy$0Q>dSs>@zeNKB{V6!b`kU z>FRmn(hC0=mdlfq*3ceCJFJHG|0`DolEdu?H{Fws91bVP&*ldE^ij)RG4EbTbya_a z(;6mx@IjBv>k_mH|0d7I6DSS8cg^JR%~%&%ppOfV1<V_CKk@b6Tz?Yq?qZbll!f%>?ctBVd^)GN8+g{1H&h|dGm~vcFwQey{gT%9 z(>bYb0dEfH*6BXQ@6SS|Qit%&k2Iz>CKi!^glFV|gV)kXe0kP)>vdi-`{aFL4n`(W zDXb_cdIUU{et4cs^-K>2o?(}Any>(A_Z6Oz+Do9nV$Y`9jF=FhSw2`$co&euqRko4 z$L#O3Vrb;lV%}E!D^|3aCzE!Up3mB-PjJJ_RjMZj$*Tjc-FuT}W0%&y$G>}GJ6naT zgxY&=O$Kk${`p_w%JLEaFtGo;I8evWo;}|8canuR9IdoiNJC2r8|6{-ToAT2!jnT9IRk>Z+hDUC?0t*Pz+xM&9tZuPItWE97HyU> zm^ubU+uuP2=}%(mmISntM5k)tnm)+wpmXe5=XB!mS!VOl#2Ut;=(0ZAfQOd#{QD_FjYn^(H@1Cl4P!0X6DVhe4Mxsl3t+ zE!QB)MaDuTMtrfbh!Nc^ELxx!uUj;)9}8=mVKotcXeE>RUzm4fx$8*T{pEDHs_XU3eP0=>))yvM!_s9chE#h2;zN*C z2o3&Qw?lAxu1|?8F zntdiVWwhFg%%zX#h8P;2Phwy{p8xdu>>saAD1eVyTkTbvT3QzN{UH|gLZR{&-G_fu zzw|!!)LDLMOP9w&L?235o4}*~YGm?c;-7uG#Kdy6&hm>k-n+B>9v|~QSBIa+F4GlC?@RQR;Vl(EMH2c;EG}MyG7xF);{~^UGnP`N zEE|@SA(2f26iokXB(wjBS7Dwn6jse8jU0`cL_@j{3pzxZ1va-x^1lhEC@FO6{tV~$ zx)3}_X6LFHvE5sNi`l}nPQz*5v`+*IKl$NI>4?ghgoe6#bd-7UZ)Wmy!3 zg4eiY(Ta+n{HpWHV5PNr!G`6L57&va*u3hi_N@gC_Tz>6%wOGw7o~0Rc*75%=b=g2 zg03^O)_!nRooTgq^6=qz;Z`2%iG~MP>{)|$V^VhHeMvGU9u7B>jV#BLv87Rjg-JDv z+?(m!!YIPRqZmaZ$5Z!F*tlc%oq1l78x!uF%rJ?k4!m-kv%Hu2u^5>^BJyEyjiXO8C&`lv~nCOj~6 zjgM5+j8C5Du(WkeGq$quXob)3ji1slQ8Ba>ZVZj4UE+CR7Nk&P9u_Iqn7bImO-K+> z3`%nK+q`H<<^f&=j+LuVBI#=vowM#||ub9BlaUbX_3c_ z;Ac?`jVMc4STtF}1;{5%HIVjXe*#`fL0ScCYC5kiFN_q3^&u`Df&}>GZH5TArRomfke;WNQHiwlu`2ID6UcN~jpb^5hD1j(xOcAfMct_e3|{n>;DKfbhL--#gY)baK9eLTx?k_j zrpR3`Jg9w}>vE!ex%a>1kf!!aL+cuoGA{K5Kyo`?G7?o^YMY`nzb7`J%W3Ji*}b_i z12N3G)Ht~{LyItA&EH)eX<~5Xqw}7fFJC8VB0Gw*SkS3TY$(#IM!Kk!xwcgusz0@H zuCu6}g$z)?B!blOkB3tl{~+AEdQ5VB^1!h0m0Ztg*^<2TL{8}>a!cI6;f&g*pg5WJfy5RTOCgJOPxhWQ z6{jKTv}y`dR=RGyT^=J+0`XoI5?6AEWu?6g$0qouMq%zSztr2lqRgJXIpnF(PtTYcOGbTh1D{rzs z%>l!L6QqG@MXDI!yabgCAR5t1!17KO)D&oaV-b}CUej6D~SI6fj%9bT2S$R1yYYJsF|9ubcIG8bBT+Z++ z>DFm&i`}0}8t?^g<1@R47^I{>S(4%hK1X*lEu4yX8J|?O$$DaVduMmx%@W)U7PVZA zla*Vaa)w#7USu}6S(B;nZNFbB%nBM!ra8}XHSMeOp}GiZM)M-PoF)}{YR_N}>3(h& zsTs^b8q@>0&t@7Qt!-uw0jVgkZ#o^h5}wI0#5rvnG3V#$?o5U$-1? zS)0%!Gv9&59doqKMDXTLO$0Nmz}6;$U`hFQV%dlHAJ5MILE$N9=l)*8ev`}GmWw!r z3#IW~wzLZ~FUoZ|w237KF|iOc(6yah61-#`a3A)qsiIsm?Vfef%iN_w_Aar`39?UY zaL`)3QZ#KU||u7Lgdy3oBqU+vLEkD z@gxx1CLsla$Pun_YYd@Z7|!9I6eKOElj#z%Sfxw~ZqBGqfRq#1_ocj?{?cF`pEoG~ z6)Vh913`FV&HF*5&`<=BGW+j~1d!F`XmR~~Qp%x~D-9^P(TI07*81>XH?e&tx5u^< zYCNT+5t}xWS(mr$2bY0;TMRHCVB}s@?*vh$p!Qrz;rwUn$-`kIIgYW)6ah}Kj0&q~ zfrV8}uk&QDQecT|id0UNN}3U7F&cltH8~%GBGtVq)z8fRwOV^#^=cpK>{ZjHdIUZ7 z4g-Lu_HleFb#?%Fb*b~JaAkea1_(`qs7DslyR;HN?h?0+U*z8Cq3wtZYT06{s5j)x zX}-~lPk`eoh=NxLzmI!TaPMe-Iu4XSlPt+e$6NeTK!Zlkx(Me7-oq%KY8GB*2DZsS zM$~$g>%3OKyL=`oY@WChn&e|g+LW8HfR$%$o2F0BgvkL&mZEeZZ$Q+IO=%QJzHta4 zHSsaIgG49LgMr|xl)GzML0839E(LX$N{QHYg&2*@fuaQ?v(_V>T=t$=$D&n-mfC+K zs-zTPdxfAyYVgh!u}B78fk?uNGJ`{%g0z~+s#Z|-)OqJuyJ3PHTqLXd`ke=Je~O|L zE25*pF8<2szh~bpeNlGGggx7S7&mPg$yX`Ro&*MIw_220PyfGT^F|X%0u3SwuBW%( zo>sh3lmvlcq8T^@8brHG3p8jOjZ$L6&Gb&nQ6R9=|9upEbLyxL0EvA^xp)e+XA4Wl z?YFA?jnS>YN*Tv=l}t}m=`+d#(@GTLku@bG&7x{oOetr)DWo1Z6)J?6cCdo_1RATc zNN{GZTzTO$XXfnr=DIMY#prO#8NnjWA-bDbSg4$db&Mt{+5M8jg4@Q$68Ft5qP>y= zY7LTyXpocwbpZw;K zqCf*uQ^VL{aBp9lncsOT#*kXV@2ik~I!6QHZ6Wi#5FOrfTfr|et#rjIKzZz60T9QF zC*je$WYV{Hn@oyT61Pew{bu^;hRV>(^Bjk5$CT?WcA7w|bX}XQ*tMG)N#~asr39`< zq~H#LM$x2%#H^7lBog=8cu=Fo{@j6H4-3(8^n|YLjI4TCQWX>K1}EBALsBR^5Wf)qvuIv=%p$c&nyN zZpJ_YkT~z|30Kw7<}|uH{_;>*kE9LwovW*%A_ZAsiv@)Oq*957xO$>eo7uYMdyOn^ z=(_5JSPtG>eAa!r65Vi z0FQA~*R~o`Tx~q@=SYcTyrR=O)v)8F;Ak2(3kuT##IRB-wHgbK=3-_oeRu`l6Qp`p z5sT>XhEXoq!K4&%E7vRDnLpO$$SC>|!mter+S$oR2n%b>nQmB6Gfh?s5fx^!-jVcG7Swk7Dr*l&c~Rv8S+}6*;*Fq`M{|zJs^dc1 zQ|FbdT@ftWhf)5`#kd6e^Qv-*^(n0#ciMOnp28fcelxv|&MfQ$XDXFD{KTgPsE>M* z8ao@zeNKJvaCn7Z)Eja0{bcc;-xTU5t82_x7J_VMG5Vwcuc z$D@&oGQA=NiQ|@M>ZS-F)*XaiR)7UZDi*>*niVOPLL8PxY&D{_o8;yZtnzeE7D!*y z0+U%_q!@DEx~GS3@$5j8tnX4=k;)vg5MKu^ZZK2h4%Ag?LG=2l=V{1rXc>Hnm1UY3 z{SYIXBiC@y>P$5&pf~-?0`}1wIed&l?e668F;fhmK5BUa7VFJ)6%i!NFwd>rISIE4 zNG;OMMGHkRNFC&PENO-MSXfx7QVxt>@RR2v9b1yAk+)I|UP9sKC|QSzWB})3HG*L{ zv?4dGum`NkOp1$Pt&vb4nY2JycpybXA->^6MR!_-QGoH#?kTvHsW)io7?s*bIfA?% zHE?xnBL@bP96m_=ugSF5EJ~UN;}0^ExpIOM0W6?5LY zYy`C}TAg}czqYypupqb4lzCk=s22=FZTPt>c3H*x^|LDS^JVK}hCy_@w6TPsbYNma zR4Rgw0Y4REf7J&)vh-DL{Tm29&Xk~F<9;etM`>@V1_ zMvAtHsAchx%7G~l(VbFY1Q_Y4WRO49FE7mG3c#h{h@smotbU68kV2%@f^^h^MAKLn z4~gt9Y0+i8FlSG&Cx$l3YfW)svPKgwAvQ(Vk=Xp<4QgbN+obhAdW(q~S|mORQQ@IN zgf0il3~cSn-omSn)`bLNP|h6^35KX;MoiG@v+mH`tLOhr+E(=8QW>XUF>;8)2z$&b zQj(i1F|0%vx{s@rY&k=*7-@$o!bn^)h@6n%s{1=h8XFI&{q%bAywhMTX&Xch# zUp)A&@7zVE%ZuY@eqW7k1;@z*WA~O@(f6AyajC-`1>cf~@ZY<4OO1JX{?nTuetCQL ze-_}6=I}{xzUkq<=p5<#rB|w8DncBH*zEgLT?~yzdLmfMi+LEq=d?1E? zGzS$KL$-s64i3P=!9ziKW8+YgCpr%aTGM>2F>;e3@0lwBvT*s-nFv=3{BqRwJp!S3 ztYEaDg!iQ2&gqlKWUZlXI39r#DJn;f8jY6$)RbaaVfRR(d0&L+LKHJYk^&YbN#4ZB zu2?`=s~p+mNqV7NOz^)?#11Hu2EyxXpyx}5fML1B{Hd}!b1aJBCkN@lPLpXI0hw0?cKmLW$SCLY!#)k@5g<=b!7NM)n zAeXE~b3-tLEH!%V4d*o29&X}>^Xcq|vp1j5-v0LUFP}gB@_C^ZN84U>wp|W5?8+-` zapWphHT}wbX-r)EH?$na>9la#Q$+5rVMoZF3 z$glrql6UZ}TjonpPfPA_Ya9czVdrgs6)giPnQm=+KlhJZz-i^71) zlqaUAUZp-lQs-@H&MMUA92qxb1(+4KS9^$It~GjA4^-lOG*)m4B5eTHFAM1|K0N{B zEdw}c6*e)|en?UvECJB|3@9Sz5>%9FF}BybvdJt*a@gdt(iwJo#%`snj&T8X=pL+} z`ejdjj1z+4s~r{LraW7|YuMe9#skT#Zl1IY8dTeCX%8Q*)19$4+D+1C5ebqO^xU-# zMaBB|l>GNbV?c1LgT-gsCGiP~so+uM(ek&A=Q-R`UOe~^GHrhQVV2YxdfNF#UxqGx zak|*N@S8n<<}V2mX4NP0JM$}YVJ*IU*R>X7Ti2ZKD_-*TvCm2Treb|n+h%U8H(%w* z!*zG7{P;;bW#QZ9JBR7uaQ0M*wJ#pLDy>fAbca_UJ)3{^$wGw6MjHiBFZtWB0Lj^I z6LGN=FN*n?)uj;6BbKl;r&LHm#_UHaxLu|F;w{GlOW$hRU6_||B}V248ZyQ3&&xHL z3}7|RDb^;xw57{E9Y{~TcUM@&_W%_8OWc)#O*N`|xd|pZtS7y-mjxhb#CcRbDzZT%rDOk zE*-A|ZQGhPzHxvPBfEtP^_8CYBa#MhzTDBEeuvBbVVuRyG`zN-8|{x*_f4NWJ@t*- zGBWn(+{~SWZ6;^SMd+!d(X*85cg&A2{?6@hf&|^!KN%MGM zpci~C;;*(Vkg#0tz~3mY?x=Wy|7EFk!A%q>IDT^{+8v`n!Rgc1VY^`gf)!q#NQ#LL zskGJd0tH8_g;k!E8W}IKuD8aAQa942t;d=7k)ZE4wf)jInOFa6jY{_(JVa5q{@%Ua zs{L3}ydLYcush1n!gQX8qAOB(k^#9G>?DOnR{!XGFdKZbc=XDi3QqM6S(VSa9>ZP5H$$mtPng*#KO{jd}an32mw&C{x}P2 zU|`c_pkT;#j%H%u5#iCV;4D0U1s5DilJMq{%wEx0W?3C;XeDm$(Pq0esVf8*h}>4g z;Id0QXh?2l9wgiD}yw9EX5*{M2q2(7y@}v z#M$HJUp8e)wCnSxZ3~x_Xc8u~kPfZN2W#VP=au1|W40zS^Gj|6rYx`{n+u9xb6uFy zqRCJY6gOW_42?#a$?w^WDTD&cOR)+R?{YpG>IS?w{%m@fBePJ&*fpu#ywON|_|AIo zxR6^Ya`mPJ2NE6#mH5g@PYm=8Xb{7OBocW0pv}P&Lli7sBppN&tKoS^8{YTeN))T! zh0v`^q0g~RRBzyAAvbES$j!owkJfow-`=XH^;>bKCy!$e$f7T`wUVt1KlRxWA)NHw z<-eW95<%g0o!{`CS_(k*v7DV@rmH`B5 zCA@~=Y1p)3x~iH?Dg>$|U z+`Ro(b-%GyuDf1LOeSP;)S54iP8IFS%fYj?WY;Xb#^kjcmaw5$G{`NHncZTGe)e_A zbec{M@R}q)5K@SKyouLv4qie!i3AC&IY^*v)wW12&Gg0U8_6rkK-aCRMEvR*5sip@s7@4@}ygHB#ru3+bORVS~eh`}2=~Ej(SjSbsOSrJFJg4|pXy<4nq4C8w{1so=zPx*E_cE8x+KGJM zwb6q%P{)owML#Eq{74*1B|wZ z$O5!jxR`SIvCK)Nh)15Gj2wT+%YNF~nuRPZVwj_x$(@B1_m31Dl`5PEMnU4yG&oXZ z01FFKOpxz_mORFSl)Xp9SW(hR%z`_ooFS5Q9xSY(H7Urox*2%ByLmfWh~`41mXT7; zM=S(?hQrA2+MtCuaPE1&V|d*}RY)m~5_w*}hGh3h#)6`BasH0h*n)j3+g*A){2g^0 zZ--}74!(;|jW50Y+Z)`UpsL^ygx7X{({m~>c|D>Bqr0omi3u2j`X8W<#Tp6xJ3- zSsor~{oj`}YYWdHQ>3-Rerm*Pz&DjTnGssbs|rXXo{Y>m?>rT>52baO`1-D(&yNt|)hj9=-d z0sX37ow?&1?~>kb4Km5OAkZG73*z=$v`Rfj??u;Z(P|NW8tbioJL22m)vUR@Opd@W zxa6T&>4yk>f{Qc1i5~)kFV-xcja>u$xW(Xg6 zRfB0xm}TK$m@AZ57F~cLyTM#1rl?zyHSzWbTe;d5=nD)S5*6IURV1QcTo*^{E@Zp{ zo2=prTNP4>N$7L66uyh5g;3q#o23`N^P1r5$2$Q0Okdqmv4&?SelnKIH58+tn(Q+) z7(S}dDgzIOPi~@+gNM93qtug4%ug7l8O=|h+w#)C`8sRxvhe24@6A;_o|>)V&~-lF zRp>a_x;yP$admZk5?4{jC*P`pOt3bsDP8e$I!tR$xs7od^<9Z+qjayg7uSK<4Bh5IF~(f zmE$-QS2>B-b|$+|E{KFgoREYD1SRV{osZZr+%MT~kkpl;1VM(S$Wv2EB$4PwqtQ1s zx~bwKPX1BvzgK7Yr#$;d@yCt+E9p{?#~spt-=pD&y;moD_3XjyXGI>PP(Q>z>~$qe znC!8=Gh#4eb85sh(KdMd&C}!4__SH{p?;5fiuc$npC?@=6Zq#wVOTz*k~B`bLaM{k zv0+}ZzjmN=K#4B$Jq^Rbp(~I+Z@1F~pt=Icok2}KqVEb;oJLG?kA|-3SO{XH-EB3+e!!f;Qtoy@M{*M- zU^OkC5KmB@dRdb37m(O<3}O|Nh^Q$BatC9=(9Z9d<~PRJLKF zFo&ocvPX&|ACjS(fdP~tg=i*PW*!n62_T;UTqO?LN>u?hi9j6^WGmtYEYi3Q5e6V> zteAw4dY-J^1`{N~X^-%)kt;=jsFDFn5fF*_@Gw;wRdCr_<&u7MzF|f2$)FP<$gFIU_{`rJnpeX@eWl?BODBTDQ4$& zsGo21m?yy)DENZOAtai>3MA9>E?q(RzXin20rZ$2-UC3uh*W<8k9vGsd%>SwBt@6> z8z=9(RMIQ|!`|uf>E}kgL( z9^^hggrH*@!3z(?1C2&DX7TwFNHKg||1!R_JrN37Aaw-)ef~Uc_g=x80tZxxhdF~h zh1ak&s2TJ9tEiH2tB@zmaf(t7rcJZY9W!}V4Jb&0bKGiz`KisAvd_hwsvPZdQ|B$r-OtX2U zVe?J^pH7Y&_^HihqOSEYuTPF9H{Eatc%i8e(Rgj6BaM7|9wgaX0JMszl8L&uuFfHw#mP;0?p7p}h7L&tG;0_dZM??BgA>GZ(?@&w|jlR0#Iw2abLljl#gBh zJddZJ4hCH&!FK-zGlI1Zgd7VEH=8=*6@cm&a`0iVu~&xWazWv5e_h_*T|RvM{^|1i z>f4_aXw=8>SQUbq2BwOVRw%q*2Y3=fV?vc;QCHzPf@Bf%2f*_13wRo>kVQ3e2lf_0 zr%E5Qh&H+Ta(j9CUl$~xMp+$JCt=h?z*s>t7H4(`mnP!O3Q}t16mQ95vBx=N)n|LI zuz&|V?(%5eSXSGeLOYw6dGN*x9Ju~o8tP-|#3aCB1+~$-EMplDe$ddkY z#v`|M5Hj8gT+OYG$wHW9Ybd#_fR5`NXA?C#WwP4}iBO_z6vR1oW}8@^ynvC{<%(j) zmn)zVrg_mY(XJZN=Y=HXk;X#AwTYMNRVgQ*o;8=IQ4nEqZVbYI@?5eaGpQ?W06k+26E`ww>>uy;1k($`MQ^2{{6(mXSL=vn%U-WHRrH4zH<{JAXHkfU0`pK}J8 zW!y%Q;j;qgE{|~am5Qa2wK(N51vQh_rdeY7t@!zQw_>&zhv+ZJYl9*FRSeyn(C*9Z z=3`7E`%N?5Fd@5}?Y1npTIUtx?I9G_3e&I?Px4k4LFREcRXW!ejePDi!X7DRMU!!Z zfWR8*$Ma+UBGhJ}ZnB)#RrO6C<}-n3l}vv;sluLeYKA8wR@2J(z}eI|CSCewCuerI zfSgUu=ZTjlPI=NSQPAa4uGO@P2)?t)nbFZ|Zmz{7-WhQQj7lRWv4hp4Jfy9VnS?{P zMV5p-QN=YVH2^0SKTN1!eHX~1@#wbCp}y9GidwN;qw7FtG0rbG=nLtS(Xm=F3cMt_ zyF^5Xd2`y9aRtm_?7|@lbNkL@ms!CxySQ!@kYZ_E`ibfRcD0S6^$+HM~c=`gEs! z2)qeaJedpi+QgIfs_+QL8rB&K8c}Cq2qa;iy1{tYG$8yjVAN;wmbIB=nDqwp0ek7g z9_z7qk4PP$lvn<1ef|j0J9ii)>VMd4G@BG9@=*G}H*$EpHqrEzpUi7bx(SMIq!i1tJ7>1A+AUwk`yaTI{h z8MP$Lo<~DVe$mS?+~_N~m{!WfSsL`v<#Pql%%ZoOn=3$Bdba^I%LtV&qJhF$kwmmr zpGrnp+~ZQj5q#+`&-^1*p2>l|-Etb)A(pX%mZZ{I0`|VUJ@M)K`e2mKi;Odr0Q&gh zCrEG6$IM`#fWS^4YvfN!yMZnwlETM*(xj8rI-*zaN`Xo_ssH)&;=vPXH)MXj8%W0f z_6&$J194KG)F*B;)vH`r^a`Ib3+AXO@448?#zZhT8ELbg^B9hE+}(F0cURlu4~4g! z4OsS$&dQl_k@JdYr7!55nCTbhr>^Cdvu1xe&cie%zi69wlKGa%9$VyoY(TQx5}T-4 zvgy4vpC>WP@EJo?M@4KTd;4i~$Z%F0ALPPFToKW1X7SA>a>z`*XR8u9WHd z_=<+$51KfDRxnqv0j)|ryE}6<4?S9eGrZPo1*^r3Y6M%s!i)?a8r`q5f@kKxT7fcm zU+oUT-DMN#2$U;eL$90^-ZGY5PR4G(>p1Hp^HRlp(v~91(t{$5gQ1eh%JYKQ!vx^A zNF}_{Np(o}J=t#@S1D#0Jq5w1d3J2alIUtD#rh5Ep?D4E5 z^k_Wd?#Mv0zf&%O0=kqjU;!^EO`D=?!6CuA%~-A(2J;wNxFbrG4mt+`9CQc{Xv#45 zm}PJUT>1noE+jM7M9zn=O$=YJvMlhZ$h~DzSW)lroYBV4XuQ*BT}#**=O&zCSF^ZFeqrZ&pHKE#gdPAh$s8rEz9Y{6xzFzSqW(R=VHsnq<~mIl%S?x&;K*?-5DD z@la3q8UT+Bl(8NN-t1xX;zRL&Fbpd*2yEhrRy>jm{46-OjB;lXT=V*4;$fuEsiI0?7l|@J&!~J;?PBPtP zp|a({srCZa(edEo{QBa@_4)nf!(ZpuKQ8Yku&9@HJeWiI!)dBl_iQ*>+YGMmzTbbp zxqLXkzWH+Q4FA_UnRlJ|-=5!JeP0IuvjY;)gkV6f#Y$}%brutjr5iBGVp@>Yt9(wo z+N0KK7TTM1lFn)7<5*T%(H^cVaE?*Bs@EP6aQq_Y)e9Sv?Cl-^Y9&YNDYST0; ztGy1(=*QjV?Zcn9=Qm#_5U3kjb$wX#ph(j}BR#Xbv!ILi0f4kRWmVI?MnLLo`>IHz z7*-Y1^@A|K6;Q^z^JAgtA{*$K?6XHK@QUx@*f-bT?;rmAf2$j@>NDH?+e( zN=AR_v7OrfSuiJjl~*5k1s3I;JG=ZF@N<{?fBfMJpjk^PJ44y*){|ZBKA(2Y5}vIx zddxgGyZlF~gJUMPvK72M80QS0Szy}=RBkQ00#{;`9+Iqxy|#^VBdJD)LSW2Z4X{iR zTD;R{)cXlw^$LBZ74p;Rt7|Y*Zvdcn4l>;nr&0DK4|`$pT&|qqw=2|4`nw`UYxshq ztt9`ucm`D%;swGVGtb@@rBjMWXEo&O{6>DJ0?T+&}DfuPS%%jAViJP^!6k}TSX@MaN+znzytCDMNVV5a`N|X$?$J3yg=gn17 zEdXOEM1yEX$W`toyBen3x0jknx#hego9P@3=)3}cbr$jtY^n+}Rh9$TZPMiNq{_Ph zyG@}{XzhhabBR=K5AQl{s?J_^Trz{pQ00{FIOl|tQU8T|=FvwZPG8LB%r9t&S*2B{7Hj6w{BUzy zL`?Nr#14p<3fg?639l;ryJqTW_*=v|d3J=uy|rchsHRk`vfq_|Q*E{7Uva{)CAy6OK zH(*KSjhWqcKqD+P4fs!H{cYwRe;x{TC3kslwPn=Ve?nVz%Sls}a=+VV*Sp$L)osb$ zW}Es>v&~BW@)P>+m2CXN!_P1J@+{(wqRbSE8lh@}HEKuCv8T)tbtt!&z{bGYd)oGs zFZuP)?d)BM2rKIF%IjBa=FlxW$ai^;zh!AuX^id1T=UPC5veG@_Oij|5D2f!I}9~# zTZ**9D9Z1VsVHKP8JIYB-HbQQ#3^d6EFI6zN>b=IaVd5n=^>3`cl^589N#Euv#`v@ zZinEUCUtHb>(IpEk>{2%&P&GYA`5W0S;ySUku1wk<3{xo(5%@lV`n0svt!22T_B|L zQZ-eb=1Ez1%iOCMjXs|??2%&S4TnVmwoI#EC>j3o`SgW>=IN-^)XYTYh>o+aAt(sRqK%-=67v!N>!$iIL4rP)A< zzueNiY?_T+8UINWTV7UX1Q!L{?E3k9-E&Hl zk=~rHqr;^|!`{^zz*u#q$op-%0%zWs#j59w!^SM;%|f?n-Hu(Ym`9z>sb#XOtswcL zABTeat~wIU8F5Bjx22eDrdzL)*yn4O*t1f(aiUS2>RQ&w`?wUdS{OJTbyXa-sC%m+ zk5gx5ts5xSeP6Hl`~6xl@TKqq7V$*ML5-z#z0|cpMU!P*>SI_fg-AZ^3w~fU&K%HRziFpk3l(rA^#yf*&@FQUleXfFs zJ5Ta1UX6O7+5AgK)4gT0(S{vo8`^dqy>O|;a1MOlFS)Zh&Ob9(SZ6!ZE;g6u3^L1| zSyN9dhF=2VoYZSUxNtL`6ya*ycf+Xrqq3vthEW!G+4hijC=RxVz|{ev4MX-uijJgF zwDA<4qu0mha!un-N;^|xu3n`cKRv4=Z@ekgPxkh7$m?8k8s@4i8)9U`Oay9hj>X?| z=W5preASqhS&!!i2G)um&nL&&sBm$Q=TUdkC{uGJpgl&gWiRnruT(axvru%g1$;mi zq1c;r*u-54Y!RRJHr4ImNkroTNkm)qsbqx3JuXFzH@FkBe-Tg_DiIUd_T&bPiy#Gb z4+)r*je{CFCn1k?v-yN6BHAQkDiD4`I3@|>7+HJNGz^Jk)Wckj$xid|PJtP44S{EZ ze4aIOAHa^vd$JY-r|=EQt6VLQCpYN{M899z3YK zy0WfWdHFJH=j5L|Pw%3u=;WVI?~)S-eDxOHg-ln zR?og?3hDP7y-3G8dej>yicsU;SdAx%)AaOeH7V?@RC~&6OyU3AvG#N;(e2XelM_E| zYfr%^sh7lCDo$Hn<;1EL1}z;Vk(0P#0MDIP;y${GtFerer1ph!gSOkkXJMq;I*3h) zn!4?3b@l1`{QTc%3J9d0j+O89RZ}ZyQyV^0aVv6r3HHfzg8S6DhayR+I&PwRPUQGH z(NX*hKI(a4Qq-0;RCR!0$JJhY3%+lL(3~*pn`R_k9Y#8FTaE{G9(A0!_qG?mnAagR z^ig|ZPX+o(`K6;$KAbpG(8#WnK*cRDZEF>~e$UfbZ!5&Vp4Gh$TV3rN@|*<*-?viF zHoP`c5&YZ3GClQF-+zaLb=iKuao9M#_;|j5v0X;N7;Yy^j#FY?d$g&ySw}K zqYsVq;?YOlabQgG&1vK4_-t>()NUKnyGi=c!K|4d!gl`_s>a3+_o1m_K47d4_pnya z4dCy_;eP((8WzC&4JS=P`ys3ve4{%+bZ>9hw8Xvd!ms^C9e;J)C{BJe)g0{aWx)AK|I1T!IjuhU0AkFtzl8(O!%;RVWq({N1grSAFAa!F|K1E?Z66%+(&quJ%q9L z;Me6b~fIN4gkQtXE9Y~p?AK^Fy;cH%y+C|K0Erb8$msW|K;Pfnz3gK|aF zaFw`7%MAz%PkC-Law6DTgcWr#KhsH0U^=Bp!8E7OQp8~TrAYlZtn%*M!U%-Cpe9A{ zREp4Nw-tqW6sxnZpVgZ)IC#SVWCHcI`3K0u>N84nn}zrgb_x-*Ope%6PhA%!W8{4C z;9!TdpR|qZ`?}sC*%u?_1ah=;=}e3u@nGf=YdL`!Ef+RM)Pb^M6rbFrE4L`c zC;@|_&}y)jKfEn}qocq7`VUR+=QTw?JIG)urz(%&`EyHqa^(KYjZ?=HBlp3H-IiSM zuKJ)A2V(Tf%Z5>D=?M*ZVPpAxdi&eyhuTOLJ5#JH2WYC8-@1~$F}07kaHh>92BGCD zDj|d~yV_~%=vsGlq=OckYm$BsKG%;r*ig|s7aAK~whxYNUA_C8|A8`3?>Fjud;7-z z(uKbd-dbA=7WnKStt9Nh^TzJ5iRSRF`PB@QB=q5J-5PMLHRsU&uivCdH5Y zG|7G#Laoq?l^q9Y?$KUu>#@DHvyuOQ;;f*_Xpyr*vw78zMhsL_TZ-l}dFvd>9=HFt zF*MnGcIv0ub22krVRWBqwbr zahgsnVb}Y*toFB-4=l;%S3}yM>)FJ$$*F3jbe3W5hJNvEJ|+B zODTFJ&x9wq)zTnwDN-_T6vc)RmSL+)a@cUlm6vsb@zPy5j3W>M9)PM7w7Ow5e6ZHd zaocrcbf$u2voYS}W-hdaC>@$+@4|l<7vqxk`InC)ly`v#)wl*wS%~v*iSR<2as|Z`Z52 z?x!$rF=AB96^mHcc_bNY9KtHZ2&O$)lr+0Ei=GGUiNaQS z)JTFL(;jA>4YAx>>2*PT7oYIXV z#7$h9Ux7t04!soFiQwGH^$obQYnY`N$zk?QI-Gb5bWePNs{BA4IkC3Xo5rTfi{z)| zSc&~XiF+sBHe$+nnS)K$bdpwg8x?J%r;Qaj#7Yp}p|=gj89O*u`S7MsCb zc7vyCud6n=Rn*_gZ8i{_Wi)xVm~}D?C#udN4_=i+)^j*s){E#O3=%}cIdRK%-*22o zuv4@BZ>vDio~e3oWUMPO*~6tW*+oLnDg=N2ssqqcJ+BY?t}4Q9oxt(>u^Xd3{n0hy zn_&XaM`M{$_sv}`CJ;H}FrXeAYrR|QV4bj<$CY(74OcNVC3L3U)11Qse2qTht zB`hH*((J1=#-Vb8;+?Tp{9=67Q5Nl-xvr;dotZmiE>jnOOV4cA(BKiO;j{9Y4Wq?~ z2#gd>AQfoPASb|TwTtAll^7?I(((fi(CV#h%ZgX4QQ4VMTdh{z{^Uy4+C>Y^6KD|0 zlP=Jnlos78&>~ti-0~Y#USlCa!Ix!~1Lr6b_Q-Sxog5}FkQ6zwiAqj<*Qg#O-z_tI z1m~6nj^qU-P~14&&<80}PfntvniRE4c9q4h%FM$pMK98Srfwv+!Nb6#K+IUQC;;pE z2u=0(?H{A5W+DE*o3FopyS@DSWrY0B;+%e*VJG~VY(1C^Zx}Ol>G;i70VDlw%@osolvNozLmj8qUb@`<{;xw<|-U7C|t zKx85YC`gF8xSCe0Nk3JAwNnL1Qjx?y(;W~*SF25a>LqTE1UM3~lFf5lovJlh0XWX`s~|N2izVg<`@Sb2?6_(YKf3jr|S!O&3?T2p9OW9U_o z{fdx{f%upUjy00ZcX(uQA5&z$DtJ4a;Yig-DDO-W=oTCW+txme40=9w=5u^GZng2o zP4*$9xA^t^<7KNMF7Tnzb8P8@5$={fhNUJxY|tW6(gPT^6JNAW~iTK^0> zV_-FYFT{-hHhro|vyg}U4AlwBF4|+P!qSE!J&ej6I7KG3u2?E88Cv8bWgp@LJ-MLcw|K z)NXSzdINSs3Z`T(BEh^Uf^$d9_{<_@bdgTqrGyDPfWFL%hoe zA+)GlXTpFQk`ok21b87340m9XBxw{gf=~rI)5;xm*Gvu(uBl5aOjMLFp!Qt07)TQa z7d!;ZMNn{I8ZcJ?VQ7tu^3>R}*qJ6-H7wzYm~@JeW@liH9oN zu(E5>cpvkM9nuNHqE)C}g1w_jH7sH@sfI^NZY?4x2CwRJQ_2N6Jet%y5qKBVh*7cv zqD#{xcogTzbHgGy#4T%LL@(v~mvjYp`H-+@WKRNNUb@A(jy$=PgzJ)LV~*X&qSp>d z;6+{zk#PAbL^4uY3PP!#HRUqd{M^%PH;(hju)Netlr7ELXHNT%G^S;}W%Z1jB%L>m zQk%NGtZTxuhh*u2YiJOwok1(&@rtKdo65FdD$Vrk3#u-)Cd}o#^=zQuNDGvXwPy6;6OTRl+W1sfFXMEQkz6$l>>ceEKHC?Xx{1 zjq|dmZd~8>oCrOI!x$(VIyMynm1i`T0ze&Dw!DyN!Ee_Wr)LYoKh4KtEY8UW0G9fJ zhn&4b$Pas!k89E?4Uh%qW9x~>*_r6MF0N`QcU(_lh2tEL6*P?gaVc7~czND+gn<+# zdSZMQxop`;ksC%xNYNw#^VTI5z#(5LqJBAQo41yQGJ8T^0|FL68%Ih3&{kMWW!`_+etAb6=%0PDFg)H_w;lWc%s1`subJ?wB9MZFPvo($}+PAC35l zrZyDg%U8l}Wq8S`+v-;*-oC;s;i@{WOtZ)RP-8x&kq^v;OXDA8uBH+v)ZxT8MolYy zV@{nZ%kn#kyD#QywVV8s)?%Dj=5YB@oL9@e#%D3ktC66Wy~=_2r&E^HLZ#$;M=YhL zxm8n&7)gs_QKH+@Sma1Cvn)z9b)H3v9KOn;CUqM@7QFiXbxV+G7-ciSt8=6%5^X&! zT4Gne0QbcLK~j^VcPqy|zSlF%clxU9JZhy~ga_cYQn7)i;Fob48Ei@M@GC2@}i0yVDjdixhRi^5R%X z*b81DkXWba@*S^Z6#0%90XI)dlywOO0tQCJ=J3d697Jqi%f)ZeE)!dq^&!ZD2O_Lk zm?WI;_Qrx1aDU8&ljpyIZf~0-VLVw)yWAn2oPb1eI>?_h?Rz-SGbE#O+t6L~NRhHh zFuI(5(j2YeWIOjaImxt@g`X|9JybU?bGBPv+NNbLU=kD~MM?m{qSSGpb$i=N(G;Sr zu+CyXiFMP6GxQt~ESj_&5X>V)aN{9&C1n8=JRNzo=;9NTUM4?@5zI7V3O!c35SqNP zfIKfKaEMV9OnD@k6H7cpk6`|q#Cgzi9TQyrk_%)GHp!zm2b=u4v0s-P8}Y6tM(!dC z<#NIO2zw2~KHEmCwYotLd4x5j%-mWiU8sRwEytt*k zFCVGNCV&FEIX;-vk()M{mxr7?8lkweI>5sCyG9lwPVN(*S7#qeclQZ!@NH_``z9?QOxkEvJ( z!&WPeP^^(6NK%bhlqfcE7NMqg9!M@5Ubg}?~x;gjh($E{tc8*qNqe@UGO9zxHVS5~EBZBVI|=u;D>- zTuEg0o$Nj$^JDBbqSgYg96ID(Mzzo@hmI;=dusbx^+KVhR=w1qqtSk9ax4S@K!L;yApR`4<0fbJ7}PF+uMbicC^B_dJ{&QSn5TJKWp(V zzQYuQmYbQJbWxbX3c_51rQ!B@hQqj~F472*<(Qvv%gA))93_|Z?58H~Kg%&#WFCOe z4GIb8%xSkXGjs%B_~9eTYQHAQPUg8UhDETLHVWc|mt-g+dmDMlam@CS>tCY%o{k)% z6d>J2W?~YOlFjNHaw{oX55W0>t4fh8_@3C>e8PO7QpAc=0hzYRiGl3Bt$T1vnuMh# zS!Iy9hj@5wVW!+@+bDMq9ug=u_?W{B4w$pjv|-5!2v5Bvbv&C(RnKcrV1-xBqiVB; zSuolUj$pZvWEziQk$QzZQgV^x1BieWMOs?kb%`dA`!O8tQqwBGH&gSP~0g8Bv8)V`9^knM~@c(z-X*NM~`-AWp%I6(JCp_UcICB1tc>&Sc{G> zV2>WILq~-`WGm3o1u&zx6*^kpR^nY^Hjx@L&Ec+4YhOPpBdN7Vi#UG8##SnQ4{UErEtYW zQPwRN8+O@5=<66q&2PFgu0qPX*gu}dc$%ii6IRF6UY*>0{q5WB<<~EjHx7A-XpHNi zfys)O+}XREtLyXAkE_z>`rZ=zeE#omm%m+pxW4@M`R?k|>CO4gBDzgd*KDZR9K%Q( z#Rlu{ycwhT``M?{FTb9DuVXh;>0ylBuctS5<$b4vmmNY&V_BCU?{dbq#(TGF<7oaa znHgqY%Q<6)7kN?V3QQp0`8nR1$#Ny{>ThPmQ&pf_-p7&nrt(oUmz~Bnby=?Az7Paa zIUVTAgZonBccc~C*qx<2OkFm^^Y{7k_t|T4qTGYhukSu%XE1^~N6Y>~>&>x&BQByh zAm^P`lW(VX2~l_0r3`b2f18w6%JIV#0|K$Lg@vR*lhL}pcQi|BuiWi_U4A*gy*#Ua zUR14_uN6}*1C66u2E*!$;q#agUAg^80|E&& z2&*B&oEh;sRa-^6gg{`FOg`D4D`{$jj7@c=np9q6f%Pq`dBQg)z8<7Ss%*5MMJg>& zP`n>e5mTRCfq*kP=VH+!=7iAv=wUcF#l z;Y4NBfGNm#UVU^sCa#W@wsQU*l$^wxbgK+2(Jv`5iPftI-G2%rl7)&x?u9L7iL|WQ zL2AlqNh5e2Bc;(}O&2)^pEZVPKq4hd;cYU~o$);0Ve{$0aX`^RSiK|WD`wFG)+jZS zO-)l#Sp6z4CcrF=QawZwf_%driy}!AWl@Su#IxM#X2+2f0Kwv4M6G8kvHu4E0RR8& zec5v3MzZLyAUf_tJFZ$3wYTTAA}EQn8KYKfw0L~(ivlEzBu;|>jYVqBlRx4-&itIe zJLIDzkD8Sjd8B_TkL>uiDGc(V6&vaQ0vNf6-abcU}J_ z>sfFs|AZsE<9L1R<>zPH{qo^c{XOh+x1@nrKJ{xq>l)@-v06VtZiCtUneYy!HgB1F1 zENCMGNXV8$=SLI=bcgiE)YpU85er<$`_9L=z0SZ7zI=FU`~LT#9eh9heEflbKXAgx z4_?1~sDDT!*RF~GcYN0m5(M}7e^*y29MA5*T|YjwzTM1#uT8-Rjhrzn`-oY|ewPD= zOxD5PNm-Niwe`D^^OUHE;ZG2LML`_KA?O@M0fQ+^C{SJ2b3B-?go5|NbtT6m0|(T$ zQLsX1SVZ`tVA>wt(oxQ3&j|?ko8Kb?#ji#KGGO|cB!kB^cY@Qgi(QB=ht=n%$Puw38k(=As7 zQ9v=U@^u)w*Db$i33XWf6<>Dk$hO+9-}xTGl$`zj(v+NkJhrY|=Xb5guTQtXHtw7E zGlG%>LFjbv z1a61*lknBl;&!3faXrSMdu9OuTs5&JIfvi}@cazEO7CkO~|m8~_CfX6#0RieSbi z46N*TozRMWtIaHNEw%#Iw}YArfh^ZsVF(|V zFuR`@BfRurB^&@AZ09OP9XA6_eP%4Na%Vs7TJJzVDYj(U;y-%;t)0vpM_@Qjo#%U* zR@WQ|T(hv4>kJ*wj`(?RTQVBh_99D2G3&(+tw{i@rJcAlLc++yVY}B7q{UuqDT{5# zAC9HJHsU6Zl^tso2kg^mV28}I!;lTzuH9!le33f?+w0GM+2>p#U)>P{INeXlFw<|% z;n}nXR8MZ-h14xr*d+>77zaK6CK z_l@5wvys(Nwu>T}e8m9HpX-Ct+?02ZH%}MM>+2<4POF%3$9wj_gY0cMcs3~f0|yHz z0ZXu3g3hlpHVPemb_7bDLIG1@9dtYyNB)rO3tXLmWl5r-_FxwWob`FcI!0jX%~NbxAXy2=PJT_vORqeYqI@ zIFcX7pl;&f14o!Y3L`s+1S0AY=dnP%g7!De^eq(+fl;!Fut)avSIBu|3;;4PiD@ z6hPRKg#raVvOc3Gl8zy}PEQ&d=pc@K$BXEA1bq5q%Mx1RT(-n{Y1sj@JjVFtK$`Df zgayqO!91dzpNRPsu^OR@=n?OZ{D`lFBdo2K(t@9vB?*v0A>)B}t*gKv%I}KoxwR>k zqUMLL49w7X*{61<1Q(8T4;Ep9M5W7I(5m8cX9;VTC0Q2?=FLRGY>+|HJOt(zBv8&R zWY9pyqP3|?2rIgSD@X{^ThQ!C1}q9}FXZY38GmHIJCUp+aGBdKfp!3f#VNwwiKAIiG;OczTMw1Et$V{^IP-ozWMa^+hy~*b@NMAjEg%d z3PkGQuDawqW$FSb#f_t!h*sj=v!)V|!(HoF|Ajqg4wns@1^ims?Mi`VyJJC@2tQFT zUI5oQhe?iz2=D|k=0SM}>axXPfa8{+GQf%hi#ULirX;B|!(~kKqGjadOji^to`!mQ zAf5KOAf!4~YUk-;2_aK;Ol~JMUGh{#Q6Mqi=5WDsxYBRs#{&uOUuEQyrgL%Nk~rF` z3tak@*xl$sv(c@sssu&Xj6u?A#*oC4rE+#ysE@cH<7mD zQdrOn4kFCLP)c+U8NecebjazX0|kyDLdN4hOGjg#KqyWues0ENlgVZIdLU0eD5Y#ndWRS-d z=T2~*9a!T89AO?vpIMLNG{0hC70^J=WE{^k*9Ar6AkHcMlQ+c}voV7pg_?qwfdgth zgaMXg5(~$c{PwGKQ1k0YuxmXCSGHIn<#doN$ls|aN=q5DENzk;WSD?*JV%GCb@;{H zcD!-nqEPu6_*vpbPVdzL#o(cu8|Z{tDsXiwKyc*~0S?9(yHs-k3FATmO4yhRUa^D^ zT%#CJqy`EUuv;4n7DyaooBDtfLXjP&BGxB7)_{#VQLqN~Gub@086(?a6FCilSV`5M zH3~jM&G<)((jmr1pTXJ&;$|8eOoQ9Bv}JE#OoWvoD`wbrsh){Rx<$+gz!8#S;3CgS&;w#zIL%@<649!Ht)T37s;ZS|dJ=E-Za zzKp+#Kbj^bebI8V=VQlmdVK8V$^k=W4p*RZrq(b7EG`qR7^%3{%Z{r|f$A zcmtenIm1HEWzII1xXLBA&>dlx^eiW`oY0c5d67)%5$A73n4NXwz=7o!^7)=hNg&J;g+=kK&C@E~6 zSY>z=sKmhNc+zbjL(BA{R2yKKUKA{#0|D7Qf$I!(8Y0xAjMTRSU&MFNDfm5?{czfj z>qK;%2@8=$fhrOri@Oj4AfX~1o^#5e1P&uyO2P_HMZ$A&?MezMN*Efm-_?Nyek^*6 ziEdOPvJH{wcT!3s+H71!ZN-Ub;NFF&CA6`u9~w0W?sY`PGtH|vc z&(2h?(~NUO5U$>sp6tB0#f-tc6*?tr&VT@3TLL@B>p89qv$Rm-SityAjUr56r^XI; zt)|8f9PLfMM<6-`HFCE5V!xV<;2P{+a7;Nhf_u9LBR4m0bk6Sz+3>C^mxiw7Q8QUYTFnaqYA9*m3H~o=kFmkY{67ri0#N$tm9MBC*&UQjqhKIcp zV))(hSmbmJp2H$FV{}P2y2B4t+lgM8ida7o?F|f`LdUbjW|r}hJJ!pT#-EC*td=VogS z7Wumo#C~o4ZVa8DMNQC(=)7w-V3o5fCibwd8lYE7?9=UC^Zx$v&X|3BsN23*OZ7wZ z>uvL{@n90+rxnVg`)}8+%cmr(+n93;SsY*?&9HI-1&D>lW*r??xyX-qSB;DE(xA!i zRBpPPY;9irl*k#UFO{6cR*l1{mXEDcC)!kOm7;&PO0taRjckwkFPRN^}pHzR^*RFla|wIHAR1F`%&Z%MKcVg#3+sCSl`hkKK$W< zY%ue4&-WwoSw8H?k^YbzIih!lW{Q*jWbY}0)q*5{a~GyjspdD`9VScjJC^y9v$~zQ zw9RO9nayOR(LyzonKZ+=bi$FS;PT9##%*4n#*I=GsLavil_}Ml=0Hz#Mr#^bm?ray zY|Asdvu7j&pv8-8htVDLx}xsuE#JK70kgl$A5QoGn2qfk9VD?_e<-mp z&noFC)|cnJ{P^_m$N!D|hFAItg5UtPf_-EzJ-O&vyMj z>AERb^?pT`Fkfi;WXGpaLf-sIbaHxalN2 zY4}8ToSs8>*1%j6xCMhYu|YwDsVpc^%n>ze$p|CkMLrV0tZ9AB_pFZ3dOfG($Y8xt zbie6ZJz=$UT`Q^KVo45Wp|EDkILG9(lGwU9ufwmb{>$wCt=Lj8*e6Bh!QBBmjIunzN%SRwPT2qPk<26?M1P0S{?Ge+IZIj z#zQEX%VH=FSIqB+EaC*3#+iQXb?pFR;Ud6lDn8vbE)BpH76{M+MR*Y4({ue7!&VL$ zno>PR*(18l>qmnyyZHjxq=-|Qi`b%ZW)){h2P}-(2m)-z4+I4UEa*#j@5X`BN zmSyV~^+{!u=5aa8aXlwX8CXKgSGlKSrC3-cq821qfsb zMnKX(dDG$e|7O;6f%P~>O~4h^41nu7pkT@33{=2AYF!(2ucTvJL@LiXGJ%dX;4K2j zCHxWrX<~|NWk>~x_NWFKFHn$>Hbz`)Nau%?p`2j|n_q$|kKkbOnH9PX%=V50Nz#p0 z!vgOK95|(70rg?rHiT>i^jxw4+PeaIPTTONF1RkYffI2e?Oig6FhvXp3) znJ^P;Ndk!qWcIs4D(zUh+Ltx1sU-^yP3l9*u!V6MCO{P?-2iwdRcn4JqjhNKk~5dE zY6d4qi;_B*!FHbt+cK;WOIaVv!1i=ukmNGh9#LU?EQ4Q=*nUP}3oT4>`niPp-N)>- z_tfG?#9*y3Ln^UvE>3T{sx+!>Hlq@rH!1N@nT{7+kUX8+QD^Y!PK&fjvLqL83Pk28 z@=#9aOX>=NnLm)NkkUWUL}a8<%Gu6*q7&6Jp6Hs3x$HX0;+tkyF$t+Xvcw1(S_i(K z%M#emu9n$&zlBv!uB6POUS+PNW=>5-rMZ%)qTt?o@0p*CK1gGb8B-2nqgW~<_g`qNulujkI+OJaRr4X5GXs+X0 zV@xeVp+*=v^F!L_VupsLyIPckIj(8NH0FR76{Vn#>_9P%`ttoIO2Hi2PGTDKrJ6^S zgEX!;#5B^fO+X5Ep@EjFK3@v;$Yv35sE4(ND2D`G=Z8!ZKz$y{p#s;&VVVkX(}r>g z!1ZKE5wK(jhFr{v8!XIVUuHXnsewVdn5da#$zn#~uGN~=plb7+F+yo6(-||-FpGCW z&|crvjODe45ag-%re}FxBMDK~GHV)>pQe;#WxSm`Bw($Uzz^h(C=0nNCH;JIA&sLJ zfm!*|!6FGs7SF8iImWMG0ly<5disWHGKx@74mEzj6as4Wid42EM-tlco*F-84+5p7 ztbh%@?Kau!A(bp%V&XKJ!C>_-sIiMfV2u-E1hWSd=55G^I<8mPXz&rx=C?Q)f?1v1 zuC0L`TApvQUXOJmQ4K-5I`SR&p>jEN{NYFx@{lPux-&Oqo$6GLx93b70>ZYP_v(n< zw(~BFTGQHjZ`{UsX)R^)hJLa@13$HeRNTi3~ZZ%f+g=l zRKNzH)CUZx?05Nf4*>s7LZG@T?xuMrUy~5xd!72qb`|jH*0M4w@CDjh_CO`?7icZ3 zdKp&SSN2o{4y`UpbAK;k?ZudidqFi`eUOg1uU1Jf=;47xAgkqMvX^qy^Mq!>4Q~^% zk0lVD|NZUuzn{L1L|c&g>E6duV@_vp>(;%QKad8P^bfSr?``V#ac-yG<5W)h)DxXN zK6AXxxv{|7(@U+Wz%>mdXctynSR@hWkSo?UeTtSPdCQudWtYxRSabyoxGawRlH|XD zuYr^Zg3|b?u~RNc_|=aP#R6U;Y7{|*#Ho=3mEEUb+>tBNBVg4Tsj)0l1bkK7#N@LO z9v4K6VfJ7$_a`-=8IG{6%WCVgBB6GpTvo;e@KjAFF3V^>ok`k?Da0a^ik2f5kY==) z>N8MeU`c{<{v6`6nwFeHP@YrS(@0`~K;~7=Cl{P)wVqSBE@1_$nY(3?OZ(Sq^9;5^ zDy~!8=Coxu@p@?RRYq~laFcPlcMWS?(MmV+?)W2zb*;#^Y%6qRr*MzGSdJI+w}czT z$+W*jX9MwrBpD#P(gKA4Q9d|Woq3$I7}Por1!~Cmk28X`b3*~-3r_|sVK7jXH3}j$ z@rNw<1X=XY=Nqpd`!U^22DaCy<4VH1jm691p}?xs5>~Pi1u&I@T_q^GjZh@11jj9O zH800f8UPU)enkbT@SekoI&cOaayrSP*~p@-3hXyjq$*WQc@Yq3lTjstl&E0YE?=`Q zS!gl)!S7IzGZF<2sNTsKuytS%_(?_Bgc#2s4#>BP?0KxOzD{WQ&n$QeoG4O&(X0psD8vHbK&KPR4yN3vx=dgFq2ygjbc3LUM_fSx8B7`SPw){qE ztaPK)lORS-L$wV<&P(2F6M7If&wUlFjEZKRW}kVcWLThQU87O0m!Q6fN~xGn@S9y- zD{9oOaC(+qy&|!mpJ?SxoHEp0quRypbIgUjPIMg`8%>UHbfg(Q1vD5lC1jVv~ z8{WtAf^4bO$n_kUr-~XsSf`Zj(oQd}9}G>#4`_~|XFZVSLVe~5o1oo>ZC+{|+ppH` zuXoMnKQ63~bB1Ua!|Lg-@y~*oWe+$NbMcet39OR{tVwH!q?N-q!hA`xw-M$g5xb2r zUnQ~I2=fx?+(wuiK{YxiJf&6W{PLwHqfn?g9Nt{F8&>(LI8q!=ZQ%g&wVGIT{CJ^> z1%{QEJfms-ec^Bg)OR?_3!-8wWdnS%z5;AeW<2;C3=CORSfM9Fkk;|>%MZGEOg!F; zQ$pUj-fHt4l@}#DDrvJgghx|RKU)zJYIjWgw*l(}?j?vSFP6kPv70KWgE2W8JNto*c1q!rqC`e)4 z4%r_ugZYb5AQi7}h@^YYNEJ6Fu5A(=QXRDyg1xx-1<=iaBYauu2J8y;|vRsUOJ@-!To9 zhOB-T_bT%WupUW2P*%w5|8x>!MRU}diORbjPj>n=OF{0^sb8k~nc;5d;OXQe#&jhLsw{0wJu_D1yu{)X0HsUew5Snad)h z*{>J)kU%|h)&ogcYV1035WuVn)EL5TRpjSi>`leHnT%+GqPg_v4YX)3HHOfVIy9+Y z>lYyja^9D<$nPWG(!i-(o9IpR=58AcS{AX}SkP@OC?VDFpgwSIp2bugOY0jub3CrV zw@d|8Wa#Pi41*&|VKS*$O|>e+LsP^r8TCm)wFU&ML{`BBn_6G@E%B&gL%@EQs5J#g zFX9Tn6=>{M6jYIGI*K;B3XAaWOodqyY_~)a28)qI&f&Q5H0xUJSBr~4=h^ATwrlY{ zF6-2Wmfy=RPaW=BEzb)5A+tJ8(20k-BJqwD#+`u(;ds;8xi(Kn5K?-TJ=WhU0rjMA z)NIJ?%9}`s5OIevVMS-z)ys1rp@PGPHpF*^A_{bLpdiH|>&1}f=5&$4D7w^qH^U5rTL+>nZfS-by4{4GiNEALHFZYV1KaZrbB$S;{>;9!Mb zP@uxN$JJSftF~}rJ@4}%SyozK5r7&BQ0!CtmEjwVA=UYmRk(mv<*025xduG9o<@DYp zFUTK=*DNmOtk4-I5<%5L8pK{VU|o4*j|P4m+MfC#?&17e9u1h6rl7*`*{RtqHCVPN zM~p*ULyKQFMJ|cQSXWOb6XGC;X}OT#zwqon8;XC53Dt*>r3B<|ny`GeNN6HuhRIJD zd7-WovQBg><}(dQ@&U8?@qNd7EMT&4+0UZ0!j})67rhTwAd@13R`*!Dv3tHBE%Ew^ zj#$Ziy{kx@{)M)~jQaP&^Yp^GZh!w!dB;SU|7jA_KI(t91u>C7;@=;i&iHH8r?wwO z{*XVdD{qcc^NzKzO%lu>9-PP`>k7p$A3pEP#puV8{5Xbo6AvFa&iqj*Qc?I1b&3e* zQjut&x$tB^IZ4!XD|Sf!=CXy*Rx3~8Nh!3MsWnms)+szJ>;%q8?3gFN_jGAT_EXE_ ze6Q%v`uT~R+H_`)=9!Evo7^V}<4hk4Z}M5j8SVN7*AAmQ=56!PAc8FLTJFi zd$N)qC_q9!Qo)ku3(-2)c0{#>0kiaZVtur^NFMoN=(OEe%kFk%MF!io1nd69@7f}X zQ$-t0JruZy$$$b&Spqs>t{tgz55TfOsDKYm3giI60R*N_mq8p|?^UQR6B(-`a()PD zqk{$29qW|wcR12unkur*aqNi$=3TPLDDeA%4eB+43x*BoXmgzq7KDf0Z4gk!0=pI@ zLP#rRzU_SptGlS(H*bZO4&}wn+BUYQWoQMrU z*B;~{08&;^>a!3&LXgagA7HU%32I2JeEnG?-FNc^7deHLaFrbWa+@-Z8;tpa91-=NxB!dSl^N+o00_%h!t?Q&lVOTM~cWlVVO(U?s3ksMN z_hisu_nQiAwA2bkbhb0&K<)ZY_RMg)h0ZmTG^EtF5tG)-iC)IMu8J3*(c5O#id~Bz z*jC6?>~q0PB$NpTez(LW#zXFwC`jhjhTecX&#z9S00* zFhFXy^oCr*t=5f22Rkxwq=tCD-7Lp@_H|7-Z9~u@h?dR>+MW4vZC-|%$TeSG!5CS! z6qRl!GiR4bHxub1Q@Q&x7hMYhi)$yM@Sc$7VnRcaPHl-)X_>|^eIN2iJJxI&njICR z7T8`m@`Gr`M)Na-B~VELAL~Dn!IGUGK_O4bcB#G_lQx~5T5P%n+^1W>E=w#nl(P!E zX;3z@#`RSf5o)1Krg@K3N!T^MKm;z5wlHMFwrlr=G_}|tvEw@Jz=?;dri*R$oFA-f zCFhSUJtCJnXH~c?_;~P>HM6}E;XK7ADi&EsxNlqfsB>affXEZ^~cBBF-=?c8EYC11!azQ693(10 z(yT)TEb=3eQ2+%jQM{<&fow4Avu4UX2yU%g6x_#Sh)~1rvFIl8m);ZQAK`t{9${_wwqHY+aB3%F3}=K6e<@%>Z&l9=nLQq zN_5?9m;JE%%-8l>*BaYOQ$9?cx5EchUi2B~=u`;O?hH1yc`jz*qFrAX^ZuS3;jN4L z<>&wDBuKRVXrMV|*6rN#0L+F;8!ce5#^w5g`ZAyt#bQ2L49Jw9pKJ|baXF=&O;i92 zx6(mTNtck`;Rh}iELhh*WQ_?bNO4G4#R6FR4g<>Zp1GW#2xJiNqhiHir8-ccXfxko zz7J&hqE?v50FD(iGKiFM*Im|)JA|R2v;piLnY&2_kFtPg!B{68vp7B7x`u8uv|04R z7#)qaXX&6y>%|sDMEG6H7J)9(ttFa3Pd`<+H4&vF$~Viec4x+|&AW&-P!};&7o@jW zrI%uzkurK0NpB&zchP>~-bM05(zr-|NVP30r8m)e$+zaoVkI}@Q;qISH%^7@n3;3i zn{W8kZ%(58r zDu*G}AR43KSEgrB&d9;o8$5oaqyC?K((5i!&REyZIX|$tJ}f`@qh#EWbF0h555j+a z`5?7Xy_4mX$x0cjMn=+{PHB8ae=i7_pdvr%U6nOcmnExovs+i{IJX>PKd?uMiv4y2 zOPQ_ob*&{Y@`u#xr%Uhjc51)R=BXz8ed*(K{&3>R)aBxfoz8mr^o34SI|pp(>fU@J ziwirWD9na$xzpq;*~f-F(%#Flp^x2lJ2v)pr{2lczr#dfv(+9Ya2~vh zJ!z25XG1B*`ny;-^W`dZvA;wrW^X^Z@04yu>7T7@^oFNOX8}?$| z`9s^w;n-?-fn~Rt>~;%Yn$cug`^y*ImH03a%Q8Y}|RCibCYd^eEHF zo$q-nM5mOyrqKzC9eh9BJPBOf2yXV~g|e*~Gs6XY5{X)_hI>>*!=2cnk~aVvu0&P6 zm?`N+Q0J;8{jrQJT@y|8SgIxFX`&a6>x;+h#zXVzx5o8j^FGbC&Q-P zpg3MGYA0OLQMdxpb8d%oljUhC?P*iTtP+cq1bG$a)F7*n1mav<`PMC9hhLc_I9Y`x zkjbSBB*C}a|6a}MFPLQ=S!fMT|F8D<($9VwqG#IK-|qg9(&mcI-M@_BB%H2%q@pqh+gT8TnW8!i-8vp z+iBB$4R@=_3(r=AXuzbmnrhRm-=Tf$RNPDrv~OKD9vbJ3`(~P5X>K;SB$2IMYtF(} zp^;*j&FkjFinJFKLhRqEUG|c>EGqq6G%_GWRvhX% zbL$km`%ANoc(T1z;d-3dInN8XRD)!ToulI_ug!VsOQxR~D-%2Qy;aDaCA@)`k6&+B zB6ZG92y&m{p`&p`@gk`s@KGfYl5zkBi=cl7PWckZP~V^^*|;IZc3Id7oYA7HNAHK= z^4+0EdLJrNql{eCY<=myuI=3NpYMmv1#NlX5BGj7-?V3@UAlC>HImHILo~9 zdVWU-5x*w2ZU+Hle{@7GQLfg9vnAAPxSM%iJi8i1qd{p9KF>>%&Ln7iGv_z+`YLYb zi%*8L=FMfARcS8fM&$gwS936DxsF}_71c{`#GD}yF-WJrMq7ppa zXA_U|4Dgv_So~41FRMS~Wkje!G;GR%xbwUe)J%f5`UBS=_T?m-=TUC{w>4w-vrIThOwrCZ(TxOcOz0Dx=kC^%KI}$GiF0Q&`^bF`4?%JA{?xF_KkV&tt zdG#_f3EJjy@oVdW#MZ!T>+cu8Hg0}dO(^vFy5<9JFRQtLS7G@6(HYoY`Bzml%RN?h zGhe5IfO)OnX3i?{N4>wSq|HmsP=n-1+DaYFWw+RR{|4eCQw_vg(ms7{+&?t$p6+j( z7p+xUiPtreZ4Cr(OV_g~`&2YCE9Q5Nor~k4Vcu@l~;oxlc25s&Gm0(Pcc~kUa8`} zuBp5mYw?nod*k%8F!Vdl+xWN==rz*9H?ZBFZf~+76mNTQ?WikC)B=ljc_%aks8XZtLJ|_V}q(da(FrlndFIVm?M{FOIh%<(W36%Dm%^ z;?hqdGdqQqZr3uB%&OW36ejk~*;vDA+TQ;stf9oY!3aei<;~t20IzR7q=9o@PV!wobr?%-fKnuy(K+ zv5(_rwcU-Nw|u31onkRNv8tE#T&jYcmnEVG(XdGskxRUm|Ftg8WzstB_oz3&B;WXsDbPhF$hD;i?v98@ESEnH# zh&UG$HRStm58rNAl&EyEu8D6OTp_?n>Encc?yw(0!NN2Ya zUzU+E#hVh6W4EPYVl&#GC_z(x5}}dA1|s)&BPcbf+e;X6SzrgZC|D!?IVWN{_!J}R45GaG-2 z%gwfx+dI0oR-^D6xuWGO{HE3`+z2|WQTR z(5vAt9C?|DY7h-Nb>TQVs?t_#MEB&iij??lXd{s8>znJR#y=jL-yZK(DVnF-#$DrU z^PzdSqKk+T3Eb1nbtLnnw+7tYgYkG}Vqu}DL%orn zC>6LFuE_GYs+sA{st$oQQ-{n_HM(Zt)^PXpy!1Uah{lG}rP0hQRFg^2)}_Jk=Ld3< z&AXqAB9JR;C(vBi^yZEAY8WYOx=tAS9jB5akVX<*S!$}G`f%yd_@>7B1Vg|3>e<8c zQ>=|tpSpHbx;X7Lu+5&wjTap^DfP;G?yGB3K48;UcLkM@coFJIdpDVvizn*Zf(S3-a660 z*k+i%LwWQ%ollPMeR4d$UzJT_Bi6a1IK;x0?@Q02$V)d>gJ@(ZD`7VC3QT1Zv~@Ue zUHsV4?CRUQ*3CnjS!q;pBU1F=X&FrBvQFvFZ8K{KR$#U?lF+v6cfM~%0>y^(nrd%G zVKrMYwt*gA$Sv81;O6ph0t6h~z(Dp9F?=os~ zi0?8>@akRTVO6nH>snM`8#|Q?com^UcC;CUvOi)OAhsE`kzSl=uo268ZigEZEalo> zKeqet$O#C(cASL~Kdy$1k39pthEovpQiIhX8aAbZc$HVeD3hRV;0ad{Kg(=t^Nihh z&Bnz;>)TD5UrBVtt97lSuxGLFuuRPv0S0jejHCb@m_1h>hB*27mz&?gQl}+z9Yh;CVw(Y1> zy0v1RuC{e3q$H=vf26pLDp+>H& z<8|D)n<_2wUWv8c(o5AENvAxSY%dkJ@m{GdKc{;uR98l2-+5-Gix?BvGaI7QWnLr_ zy;W_~vL|AR8;BPV+o`1b8t%TF7dov5(QrvkjedD(knZk|8DtV`- zaQk^P8pLrZoF6tLM!tM4%}6pUv45L;$=H|_j|%)ZMy_fcZpP8;cpE`x7`H?AN6gA^ zgt1m#9LL7X5*>k8dwKExY7h-Pb+Oq$uFes7wP#x2;`*tCJyA;84=yy+FAcfb92pw) zbKksfUOY4}pT0dl+&-?Pg45NW5t&g%_-PGpIk%!}%KJH$=N-SQcwzY!VvMBrkJ$Di zCvwX7sccI*t&Ysnt?x!gsd4Q;_|%p47~aul1uN>y6~z&M+OGIPrtHMEK-N#>=nAU| z8H;71CM2K4kaeQlEIn5|95B1ff;-k@0rNUSTq~u4Ju~lv75waQa)MU(M6YPi_oHQA z*YlqDdRGxY{R?dg81?T3AumEt)Mm~B|M$_UauSFazS@GA$RF|V52PCWb0E}iz8a_U zQ`?Usf5@K-RZ~ox)Dw=?2SqTS1@S@Q_vORqeL27VIFcX7pl;&f14o!Y3L`tsa&E=Z1vjN}gQ>Pl;X?^MNR4-1>zG?)H?aG;Ic;Wc-6h|er z&EK92hvE3xVRXklz8tK3YxmiC!0hi5wdhRhi-6N07u?%3p)QZ(QqQ6#h>gzbyA{zR zOOVmibItEj?~5Xk-Fgk^`OaQn`~V`|*MKNsjo3AyNEL(K{p-*Ft%k1jd3ScfhjP3) zrT5k5$tql;@mmdN);e(RcV8d)&}sY=Ii@;%+C3?qb;ZTG^Pk=q^VFD3HP)@rc~6T zzZV2dP?4YXuF9Gz6I#I@6v!B<|9|$bt~YHMivATI`%+O@%i5Pos09ga(24oj|v)DDbnIuc=a&m%y1Tv1+kI6Y3wVKbN6&hYskqv)a_NNr7wwWLZ=C_H?S1 zZ8Osj)yjPABCr#(V)lk_y!8FTF`Ks16Qd#RoT<|uh4kWIZ*Bs8$$J#pq_e8e)~gBj z*-t<$?K-`a(Zu*5*|e3(kD~0FJu3gAFx7xiA(z#T-W*Z5^)|Q3=Rt-4>RZ_I zk=KbL*I#Y(`cVB^SdqyZU|~g5RS)%H#V63ll1G%7_t!>1;sA}8*nz~_dtf_2BBY%s zAhAaepdd|l0%|kQ>xvM}RCB_n&(`vRNC+SM^?;L%G{XnUW^NKV4NR2+)CQa$SZx_F za9VyJFKS=h(Ldf~zFhpAJkKa}(W@Z4dMwB8`0v8f&Ui0K^2!y+vjul6P#SKlu}(nF zu7vF*d+lX$HJ^Gq_-23|JR~Zwo31-p1}eaANPT+w+3mA?{`W zN&eJ+s@2ui5EktculPr5YrkIJDkFpOL9!_uy}g1{w1>}I?@`%~uk-2nnLzEaO1=s~ zn(Z#FipLtrLtzC4?4Wf&%2QHckf=8&gHyi~sHiGWje?!^9HrM`xiqx__nA%oMEkrM-7Y6K#xHQ_S zl;nWv!)o4F$kkOtaxh9fo4mYfC?gH>L9&UP1jxgNg^vFN00960?0wyG+sd)-tDwAZ z?7b{fq<-zSttwfTwsqpziX>;9RFYDG;7CLS0$li!taasgIJr4hEAMdb_I)13PjaSb z1{8k)kc|eLAf;7_C5pgw&rDCxH$DCHU-xgLf$g~djdlOFBd&u`ynC^`^+JB~Twng) z-rh_ZD6qHMsW~6$VOf$`sH|W0xt+tb~fdICnx&r$3aqGZM4mwb9ldh8y{SJJwG`- zI=;F%J3cx+zJTvy{e=2=*eTsp^>6H`SIxhsA?FuK<6h3n?xyN#EMI*0qWjG@1k(ox z)_rUH?Z6K0(=N>6?#YLfHoPJK8jEi+{B_U#2knHB+dYR~ZnyT{ZygW+^g&$Pi5J5+ zhg*AZj@oKK%~T97;s;NpoxZd?o;Z^fZ$f*}n;a>EIPJDtcyXF7NNA}jnqN6ivKM31 zT86@eVC~E#Y<=r{>NPofgHS{wyb~`DEHWbnUA3bqa9lff1OG|%Hx#zBh|X@;a&rCd zljvvM6JbB-KKORub)H0zyLN0>-O=4Tc2w>&Phvu&B)pdNs_yI7()x-=Rnb5=u877c zH%IXk{Ls$=kedcM(->(t2P5f54B_yjaBq5X%GlP{8^hV~iEPxiwY9g8Ms3@5Ky3O&(iwYsrlsQ;#}Q2+e!^TpYh^UFzr<$?PkdbJXy z9XMCd1^0m;SaI)O>>Hg>g$8|;C%mTO$Nq{=?XZ)a@V@Z;=^YQX&Qm4)r}Qm$laE5Nnpm1v#+`jzFsWJSp0r9 zMQA0A#ln-j?UUGN>|YZRB$b23dfvqbUh-soM5+hIwewd<8xj*zHp3_fBVle%5L;5V@6C%0{*Hyy! z5WRQTdvIt@>&UTL2L2(8O(nNB>peuYo1QgaTF)bsGct)JzoCy<&)O$%kpB0N@Bim7 zPkVIGhsuM27mOPynxtdgR$kbrZp2XKJjQJS)Lp?q)FmF{w(ES1J3Bx9yc|cTE$|n5 z4ryMsJ#XLh)jA(Fo)wjaCkWa!+w&Tkw%jc!)&313U;U5qFE z@}?Az5G(eC-^z;))QuRblL&EFjhG^4o-0#c(JD+ZrCYH;cbKEHlGTF@QB z5`}a{gT9|EuC1k`&LVMbEjzq8Tw6=Oo$7IIJ-b;wuC1pNq4EtC-HpWn+}b2|sS4o2 zkB$c~WNx8(nOr2*3bxRX!tTmWr6^@;^K5B&Jia|{>yS3+jBYc9SQoJ!0WV=@%?AX3K^`&&^#xvhnSVX@+#Bke&(aaZ=ZE^AiBQELZW7Q4A zU*0!nW;4DqgE1;QV@UAiBt?RwVldME0wK(4Xj<^nu#58YJ_pamw~6)Q6~w95%;p>m zM*E;vLx!%%(F(K>Yx9k2JxeRR54sPRvgtgnprgl!+)t{{!_c)ovxX*gWIGcY7j|{A zLBM%k)#rt+U8RL)ofo$Em9jGdzbzfjeeH%({7E&lGrWcxJqbt*|MC3z_)kaHy&YLy z5xF-K;X)b{;kkX+w_{;NL0?$GwI#uW<${PZ*$7|0`3-?BqtU57%LR(`gW@JALrW_Kd1 zZ$DTaVM#!)*z77k<6*lP`v$u-bQEiWb3TYT_Rd~?L02wqe~uQ+mFUELHJ74!1LAqM#RvAgh)Xp6E-tD#fE zn?;&wu^A+1X{OfpFjaKPYvkRQYGLLzvKhF}ghn?8@=SdYAN=_K&uNc?;)xFepI)A#46U;k)&F~&$U+lgj;Z8wWx$zrn- z&w?e&M-~Z6)MEyev^P}%O<7QKn(koPd3-c3d3;7Wr0GQOkp&4a$2`#V^|%xpBiGsi zPVN2;YqS-3Nr`-XA1K$h=&kj#^$OO+L)v1x43$Hjh=uoH+5T`ySE?Y4+q@BAu?EP;PMN(DF^+&@L@!(uTcUuV_vJ5hfM`ZJl@(E>1Gk0 z%PXBSAD)|z#CRO6nJ_I9PJ9M}!Mv5B$*va&a(_f8WwjFtt|gt4}((Tz(62{zDA8t3PO# zOl0|W5X8d|H%V+hq&OYINsL77>68J@w8MHr(x15#v)Cldvw*gaMoXtqQJsaf+j^8n zkoGjL_UtG=2T=}1_sqT#??YkVs+OdJ8A|?ZtCK)jh7KPA=nC+8bg^g!0YMy+0~J4_ z9#AkE){=Z^s3EP;h8h9@z$M!DGgoEK3f7G{u;PXY+o1KIfnbz!2S8sQUgg)4Yv4r1 zd%GI>r|~Z%kls8sylAmNG~i*3&LgRz)69Wb1f>{f&mqwY1sD%7H_MD$K6%^VqJ=b@ zG7cfhRE0j6(I6U|(1SIBixxU+jVkmAQZ&!-V$;qddKY9KS{Bhcjzv~z;oN>RD|2Qi zMNad@8GiXZM!uP4*PN&2Y6m*|+0?!VczzNH6if^7J(CYFxVgH;Fau1?PZVMUWBV#| zH^?E-ur5cSn#MUJV61?4lFmWos-#X6toU#nfM5h}5f4ZJ9JR z4*(dA3w~o#sPf_YVk=k7yq<5V7;OSR-`0`8Wi8=H##_!3au{_;dwFPfw zocKxpBty1Q0W&0$*qB$EzYNZLLUTHrnMbQydPWE_^wL#S4ih*|5{53y^^VppN<`zzg#>V zq$^c6YNfy+i6RaRuFi4;FleP9%?h+t0*=KSJ$2-CyUHj4e@zdx4ePMmRnNcIX;Pu(Zk6J)ZxoqsUT8D&DG7J3&Z(dyWq?K@0CXvk$jqU0z24$cHkB8M_T z(@wT_9P}B_(U^{rhERecra=2)Y7#DTIM+fFsW^zaLT|PA-3?b%bbKK91U3OFvc@iE zS#yN~s|ao976tZ5^O}oR^Ep#fub5L{G|>uIliPv+(7CAd%3izS@;VPMFIdJ{O9 z%)nJBR6{-v;4)gDC0OY^@#H7hkaN%MT)q4?TIBNWX}ZPUM8{K>1jYw!ckb?%)5@9xsDj zF>`GSb6;N7YbNW4tZD5c`l8NRt>E{M=_q zE>T3|gSUmUM-(y;A03zri8Y)**%CSO`$&1LUMY{&&uDK&njbGxU6W|}0bfkX5Hq8e9WBfXU4D2~9Lvi& zS*%Wcg-$KR7!<(isUM1N@QsaH6w70MgN+<2=Ms(7jqo9LGNV4h;}n{D&O0kFYU8mY z$S1*c#fM#VBvK{ZRY>%rhkhsUFq5~>r<+MVOG}4hmK}*8wkADkARz}eSI00`0GjY? ze9T2oLu$5BL>b&jq<#}2Cc!X?7T*WfAvTn_|dywog&YTt@|MHx~gc4DPs);wF$i_^YMA%%81sKVm_2h3=@ zJF4ang_PW}iD%(UeV#b%o>haS1a?QWCg6s$|KktnEji5jHuI2Pa&9PEz*4BtjM`BT>6# z%&Q1^Zv%DWA(1O_c}$`Q2Oc(JxC0N#;}dDtr{>-qKqW7n?xK?vaA$oAsqAOvxpkNwR@bj7;AbKscXo?z6g0Ya zoTobN*zSObZQs5XktM#xP?!5I`(afsJk3t44G0_NWUniLLZZ6yc%aUMd zrSpm^BkQlNt)sucmOpkr|6N<5|GKq( z@%P3U)6F7-F_>Fd*=$iat;hdCVIxL7Hu zGoyq5_{t>e?5JGSPZ3r3boeshPcZ8vx zsTIQDq9)-GSXUt%zCthR*T-_ofP02GCk;-QPfB29TY!utZh-fPZ;wSoLHTGu7B>^! zX%>N-HVNF!Q%5})v6QN#F7AXsT0~uW!lh-+XFskSiSr-NsM4VhB)ABo?7t*Rk3M4exwzUi4ZeqBB6XN0HUMQeiQv#r`Z>gFz%9drTbT~K4&ZdE(KcUr|MLRw0u1hp+0r*UJdWAZW zJAHdoVTEbS)*O4knW@hBydC`6_5cwUOg+3YEdVV-a^4(PRFrSNY2_Rna!iuZ)LEX5 zAToU~v3K8GTq#c4&g!#~g3K74Q^wabT!@XIkknctBez~wX3(2_%1Xyw1x%#nBs&kfaOB7p+_*W(GI9?A7$ez9 z(x8wi@val7HD$+^QlJq)7x*iLX1I|F>rjB^;^pou1z1$UH1!bFpnSQ|#E%!Rt&bN4 z1coDF+Se7u2~3kn018iIu2o_9;z1=0XU@a&z|h{Y z{{8=sloOwAg+hnBYahn!fmV+$kW)Z~5SN}FTFmL_&$j>L`~QutkHPh|Jmo+$kveMW zOL<@Z&-NZ-WF9i2u`1KW@_knhoDHi!AOM>6^BN<)yC$Z;@iz=9ZPbqNpYt5Rk_qdCLbWtGWeH` z9^h;?2~D$JHQ2iM9+hZ>M9TQGvJECuDrxZ5cX6%=eATX3XAsN4O4@S6<4W@FuXXEs z!9Riomz$786&Zg`qJ>SmNFw&~_J1`c!B-77ieCnxo}olF3M5hQ)Y)iB1jvWSN*sQk zcZ6(exEo{|EnM(Ci4;D1jR<5>S(-_taHB{f1v`#BM+TwGM-#c{5Pb@vSm&+mB6>F< zWtu60iv+Vl|=SEalNV@;TmyCW`=#dm>=polt;&}twAm~bP)3NWusT;Lu2 zVaBr+cb9QZuoa3af%-`FaL|ZE3bm&b*SNkEMphJFjTEEimCnT4+j!gsujbmGpn*ym z8@&u}a1Hy{0ow#)&@ZiGw2KK8B9YP_hHR;7aoUEKl^U}gNtECk8+9v0EM$zk6r!bZ z#l>T+g#Ls)zvBAZbzEeC9JS!}*cZ(r-$C#atkQQdwmXsenf3;J{@~?75WRb`v$b!$ z|3{usfdRuucDLH8du7_%nhvJ(=Hk!()+u_!JTNyzfhy5{} zW9-BPBc`7iouq77X9<);!qn`hso$lqe?p&eALW#~zE$K8} z%0$1kqd+ll;}J!LYipmhwq|G0DU$n{qg5)$&U6->{bA;rWn{roA0~3(RFdchGAmZ8 z7N@3ecOs}gM`eMh^yqw!9)q*B)Z>h|CvAD9%8&5P za`ucmn7wd1N-ZhldO4ghYb30A9|(VJ2o8}h$`_dA(-ZMv12O=Na$cFPMJ+7*!E?d)C_?@SBX zf<_<4ub0UvdiriXHF?=nuMZ1Y$smON6%NDX-F%q?Rhik{rE@wy=glH~@xEewF<+b_ z4mPwlQ+p2%BIL}?ls4olEix}Z_dS6#ywP>zOrDC=$TIlBxvO(9`F zt}sfJgCE?vky5tVyi)3jI8PJRZ`<`>bR}Hi7`PJC`E#2^d+^bsZIT81Y@x{!cGt9< zPTyISEqMyiyR42_$f{9UnQUxS`al3I3-Y_p{uG`x!Rhiqo zka9izers=Uw81TtS$z2Y_O8xm-qcK}Ur^@E4}6v#WyfjlY^Exr;0h-d6v(DEOd^q; zH^NM3YkS*R{2p^hIRY}I>c6I|rhy6jG1;Cc+|@ zm&uO3%5Laqowd-!5<#xLz(k2yFVl_~Vy_z3>9wW!Lza7_IXU=@q)K=y(@2(bRpu;3 zO6pyLtRF}shCAVrNXZAxH7^@UTyzJG6kCnq99^X}-;C$0U;BKLS|)UpL{PSopmMd* z$RUINNVG=szp>H8g)mb{Wk0*%G-Hra3`nRFb}H%aNFYdK?3HE_oIP1CoGp`ccf1~g zI)GN1aqkQ^`-xO+!S$@k)cS6&aE=_hKfeESn)CyZP9qvDC-5PLJ%%c1p`LpY=}gQZ z3%|dUcD#8Rx`PYdx`|WI_E8m!pP>4#n;>Pk z_?W;pt7&ZhRKmTRiq5xDXBm<&8+uuh`i2rt5+#YR+%5()kf`C%0ErYFc={s7h3Jte zB9GQ2aU344QDrho-NPv;^3ulGc}c|9b!FSXCL+kr7r79TG{;glddLV%3a#vC(^z@e zFWP6PTxa|JMmIZMZVsK-h~~3f7(i9cUmc*E-B`|hU|>LWZQ#bgi7>Z!2aT~mHw)}j zJK%z_iuS3J7O8`ypr2cHQWe3(0V`VGqaWXY|BoNv|HVcRD!WQp$(Y%xD?GQ4%%iq4 znQS}a#`S$1GN4h!8Qn>wFzIAycd?FMl5F(qn^&2XYR~lt313#_YuB5&23aJvLys?s z`cO&oDJ=Z<1Ft%16Q;zHt)vWAqmhV7Fpb&r zNVHJb^dw4bT>=HfblJnY!nA%}%Td&oWO49y#S|lEEJ@i`QT~Lqysm1)=Ax!?0fHK_ zE&>*R5EHXwK`e4B(z7r;Mp$L zV#2uR&_pE)k`U(&O;eV9MP%;m&_!NxaDs8-IC7dpBPVn_%nQI8gh9s>eJc`iGH6(* zz6F{_Rf@A*72Befs`7dSKi43X6Yf1&q38#9zzYD=$O5k*s8Fj8X4drX*(|zg07ufA z+%)Vfr&gRNY->lcI(_dj8dKN_;-3DSnXB+50B_R!w|3;X?z3f_SnUqUS-IlR+4MbSs3Vfa5L_Aign5H%vA1 z#~Q^2aBJ=>=tchqt8KueF>-B0j|OyDNGD6 z`b2sFRN1I82BhN3jgd&H#2C1sWm2+x#;8T4IepeQTCeqHOW+F#Hm~fgdH%NEzi!kH!N)- z$KuUIor`QcU%LfW8;0ZAN-s=DZEv0(#pe*VEtmG0eIwq7!oF24A>j*YO9)U$H4-W8 zMouDzyBVeJswE6yG=e?kPDi5V2bkM)zCD%HsRWlniO)Hh=Js5|8J|S(+7(_G6_HO9 z{DiRx9OlSR>J{z)Nh9UPC_@cxYhe?^U@GzK0*T=rWJz)ugqFVIRrv!gz2X{U&o+y& z6GT8Q4?B${R-H2#tE~a%FjCDQ-YfzPP`6`=fMI78G0b`IG=>vj_QZN^TIi$qrv6l##xur9TS z|4nH3t$PK!hJK(p zHS<*x&H<%3FAowa%(;?82zjm~(Lx=INR&{=O4|5oLG&;uW)eYTixXYU{RwT_P&Ojk zyp=HRkqGva2xDto5us$9G4My=qE+Uil9W&pbqBjLGsdX##WzO`*yIBjAx$Bb{p@|u zjcK(RRFjRd7Mev^6Hw*yu;z$|Q>kmZ?JdQGp z--}_C2+{dK>P9yzD%MmfJ-8S9PvpHA%~uyyevZ$nh(syDT}<$WiI6DCRWEUI%r=Uc z0~3i*I7{nPEAe@%Wf8=1`zK@g3uiO|P3mKTsa8T9LOwAx`Sw(5#&nm__8uuSeOqO2 zQ0W+AaU(*LHBxk~t{Vy`_8zRx!`Qp8Es2$!9=w+MtZn&8Uq0zrcTg;E?559>yUzB1 zwi=sq=Ya;GU5Ic3qmnWeL9efaB-HOlP*+PnZNY8@KS%x#dsoBKI0CK-IaAQ!_A(kR zT+|6QDH1B=ghY%pC6cbc_uw*SOzGxC(J`i^;T&Ps9K}%g4$3LwlIvEJ^<$)ggAGsk zH*t}@EBh2f%po$-1hD8cIS<{59+y59E1<=UbJ3h4>5$IgefPR^1qXl31$v1&ksLeoP9aJ0C_-$ zzZ|3A9AN;}bj4$x{Vae#tK$XEt*V_lET*Xxxiu`eDPhR~yo|DnYZeag)*EH_sA71} zj}MP7PrrPwW^^kZ#f+*Tg`?8m)8T#V>x&lrq@W^!^a#zcHZQNV0%U%fwjp?@$J6Xvj#UjT;9pTJ$!xBWk~tvjg1l(B@xrD^QEnK1g>se z1^XV{tfBTJKCncCoTV)H)jR!c3_^*1uV7}27}2{_h3sIB_lxLxB5}YndXBQ(*WN#& z*lw@PgjE2m!w-KxuF$Z&RADZsIo9Tagwqd(q@=Z}eBmpo=-C;S%x5uxyd@;mnxB^; zRKS zdPCZJ=jh*u5#7!yB1_e*srK&LHOBKRJFV*#!wL8C*8<AjoDQIz!ic8JNT#lRHmY|X%r zjq)jZf&;{H?}B1Tg`S~m&@wPpN{2A;mEa;A7&tXlMm%X(!+&9(vQOK z%GpqpkOfKGy7Xx=fJ_JRBDTX=KIQ_SYCwIvFB>@*-2~dbIx-~)u8vI#+vq9|uIwxM zqTjVcO)0ZA)nDD(iosPmhIgHp&R!w7oQAlp$_v5{NN8e^qbL{Ooigt#Fb6e ziz{SiKn9M|qFnV7skA~EX8IV|;>r_0FF*HEJH@E{APf?Pvc)j)gYn;EU`K+H*mV-m z#`wZ7p0Df{!DQ6Pwt5_#!abJ{1vXw=;!cDQk9GZ^b_104yU%`8ORY-kCBnW+18Q4+ z*LV9#--<*Ge;5`ERF+v0{cMRSg7`vB5GoFuZ&d0qVLLrbcmgUpTY*Y2s><0!u^kIV zz)!!{DN7-pSXvQBZ(zr-;g8W{yZ0g#7E}-sUC3cv7RlT4b-5h?q`pTZzU1TQs8?kE$bsU4aD5GNcXk)?VLsr8+=Y8 z<_m$!=0T%26buYSQi2&=Y!of`5UgFcp~Sh*k~*drIvcrE!LbqS1^1w@Q5i}Y6ZX(( z8J*5X4~jn7E^dXd%wVb#S{5#U1}zzvfZY+*LB=BMRMk94P}yT>HQh^`ps4+06ci|0 z$VN<|U^Z%(y#(c_OPn=6kz|~)GC79$5;4-0vZ|!O)-hZ%IvS}c3LF=miH^A8XoSu< zo~Xc25-quXBWTTM5y&C+2ewYBBQ|QjNcl3%NuG_KISsJU!yOoDsi?3AMiMpLfsrO7 zKE@yRSsv>mk2vs8q6Kl}9XsM9_|gwh$d07_|ADL3OY0flJX6I2c!h%GM0J9K2qap@ z*lXRpo@bfUx3XyuZTWGK+R6ta)WI#j?WyWwjj=YHMLriFDt0e<9EF*F6_Ie_GjO4q zBm`gfgxwY4xwsagx-XFZc^Jso#hvh9SfO&+3s1ZIYLM^WUI#%u&*R2tG4JuN?%L=Z z3KPlh-CTfc%l*3-t#*4`*XoeJ@9d{>G=rNz+R&Le7|6eGZH|WD?Cz^iogj{bzWlbO zgLAY?$*%sOJ1j>*d6X#r-o1F!Rx@#v#OmXa)aRssDH)buMc@nh?nT>pJUW2~?m0%v z_S&g8iXLk%3+c~XnSiOT(huiRCQ`SeebbXs*P88p(+9I&a(#``C6)Fi$1xO2iA*_$ z=DUBYTjB8)J;U4SacM(E?{neH`4inU`$oK%r*H4&dq@}9I5Kj}E4oPx7RCx5sQoWS58?Jq=K$1a( za}2_xukx5XICM1qsYavYnIC3!I^Hjqf`SUGY2^3_YvtFcYU7a)Y`;;Q8F2Z{9zOBO zet?kl^s8(4o9GU|JQAKK!6bYFXf#D@*pPykd0)fajkN`2<<6LPdb4$`u_kygp9g?! z6(|KPGyJ5!JPN#|?~i;x_6I-s_+Flj3=4kn=k(K%hvBgOcj$KE*Bkj$wxKz1ZSEK} zIQHlL-Mx_}(l_I*^FoF|?m{89EP>RG7>>e^!i=CAksZwlP)wh2^uOsRGw+J!jCpn5 z2cZOkk@^q}(sm;$t)74vqTi%Us9*F#R;{Q=0v$TGX+}by6w1C29e89#eKM;mYowr! z#d+N;_crUI9eybC#BXT`IO2Pso&{&G{LaMsZ;iR}rR#rg zZEBj!(y94WK(m@;3Dyu!WGGxUeFd_p*2%iaBFy}()C7?{;GRxY~%InE#~~ay1mSX zjO*IlC=Ml$MK^uV^1E8SoLNA7eY%=fXvWxz=j!eB39}C3Tlu8cvYU@J^`3+bztn|` ziVD!LPiJx0BrCjB*Jn1-!<|+TZ;X*{(hMAV8M$;LhVq1gW51PN=$A2YC|31@na4*k zOD+5OxDVElXG27;oaN4VrXgb1jKkcn)Qqo=!QgaJK(3ZngUWXYXEJz8_e^>ov? zfM%YwA;4tm&Pw3th&*X;r@;^v$PNsUX$ITmY>l%q2wgwE0z^;VKC`usB3ZY!SR7`! zZrjSnAn~2vA}6_)ps+BUdVR2OaVYmv`&n4^V@Ij+f~p?~dCV`HUNCTnAO3uNGzGVs z1vT0$;b;}GN{#hnu}r;D9_vdKs>}1k&lhK3&M%*ZYI10vk~LzH%{#Y+InvhW#I#N* zjrn9)Pe7J)1YFzx`s>rp2}WkylBRHJv*@6|*xJ8y9`tK-rCx|}baA&OLY$*7XMdTT zSsJ=2qE=h`Z{Z}pS@z-P!||u%%j4&1DxRj+=F;cs>mSdaXQ|p=E&w-Hg^!Etpl(6< z<}#)6{OjkdqvKDXE~*vDSsbCk#hRR6SLyynU$HkP1%u+to0kMlH)04+`0{S=rioM* z;mb>_1i3_C-Zw^+*2S0iZN8l4&Uh(b-o+NgoNvb8C`7Mke19S{hxleYW*R56Axup8 z9Qh9ll=H}BjAdvi%)4oL_Uuolghy29-lZkitY-d(YgG1SZ+Kf=<+)LQ(>wGdo<&=d z7|htIPuQ7e(XGMeNf;Umcv$a|nWGG6#RIgAP%**)rTK^{r?>SMp&#FWfBWP6zn zXM932@FXV`v-{c$(BcSp)W3rua#dDw!-Pp-H9rnw9E|6cls7h{JDv3&8b*X;(h#o7 z$Uwn>#Ct}7dE?``w-g_?^%kBZ`{K*uC{ON68KN_}EoG0+_9BO8Vg_g5Ivlh=va?fS zC=c4T8niFtfTKw=@2VW1=vE5E*& z$D;iAe9_JovN9HB^~OpG+3IA6_!^1IZ+2^W*;rUowNy82nH{MsuBB8~-PL+VvwEU0 zd`zW{)ty$T8C1E4=Q2?H%$~Zw<0Vff?W>>kMd&(DLWURML-d@WZfU*r+`b!Ej~!|` zqmg(TyG-@TmgxH^Pq9{_ElqyZj)x`$*Z5B8!=?3 z>^uuh$*FvBR?>}ct?WE6mtyA`&!0Rd+POkj%Fa`V0yJxy1@yA|lm@lT{~3yI@U7~e z*0j2W9Y5y)U88PRUxT2Q-CU5_uAW6So<;&iZFH_}gjl70?O@8Pudp(D5|b(aEPUsQ zT$lKc7cAhmub%m0Dqp3woKtyzl3Qs{(s~*j&2`{;!Tka*hn@%^d`kDYs}u8eRcw z-citBgvzXEX_WK^>xpDqc_M{i7I!gO(}aWzLaw!hbmMzW1--1LW|D`m^_fjPXmxLV zxyM#oi*m0_Ey}HZwP7n_=7|b%YaQw(Jm;^G0`_yhoaN4VDco9z#F=Y)3;ij$A*Q8R zo!tTEYkfM3-yR|X>naYyN;inSHUI)FHtc!v(35go<^P%D{0O!obUVCN9ZQ0gNyVX&vF`lbD$jr;-NsdZV8@p*YF3T2nNG@XfPoGpO zm8wdmlH}c<+Soq%=irt6B+bvcNK{4!uV@x=e!Owb`z#|L*nnJ$K27Yq*`NA_8yX*P z>>R?KZTGqUOk2el>56<77zdYYCcNM!;aQCJA2PMmlw=bdOy`7hD zcF#t)-m(tOV+BuM@4h@bZEl#-9mtg$#;mCOHEqT0lSb@Hn)b?+Zn2J#x*dm2C_Cnf z{=2zj8emp8W0N z!`b!4>DANiNh@x%MwtS49(?$*_f#u}Z>rqqhdWDkpT809;k7QhEc6P;`Hn_1k0xB> zFPeLKSR^lDS8xy5$8^JzBgu~+FBZ}~Y!@I@L-NTs{KlcuI#}+@E zqh;TUb;}1Sb~%T5F_X@6JCaHaX9cK`WM6YGYZv_ z@Ks}{l^k}sxj#UKtcI{!b;3=uAu6PqJmT~xm#-_A)2}%bIZ91jeyyrYEOhASQ`ACj z`#a5$+$m$^?VTJZBc>p_ABY{`gvPNL5S~PFp216^LlO!mz5YXg$=muBtpRn-%g%eI zXJo_k*>jRgal_lJ4flscD-VRGDNEqafUBN)JyTLQHzVJ_{k54r`~K~3QzBe-;p$gY z9d=8h(vv;0U8g>RD)xBl5JW^w?yel2@WPDL&`li)ikv*js0{n-5X&f&-ZXoA&n z(gQ`_XSE%FQvlJ7Ulv+*4`Uu*^>@vWoADZx{&<~9Z#kcS{mJ^F=s&|$c}nAmD^@R% z9xSCX@$q(@e1}z+$CK~PJ+tbwaQA>ZxvpKVU!c07PVCGZ3JqrT>L)SG^P#E{)dqYo z6e^U}trbv`%*e9WFHxn7Nl1$kT~-@j z(fD~}ixpbQ;R%gLUyw@js}rHCIQEh$RjZdNr>4SPZ7kR5`YM*_27t0e48LLPQVsfB_3*5I+0{=|n6*V;kCH^)uj!^Gpng@; z@0qT6Cu54V^gtjTX}ix3nU22DZvmw@g?y%;XTyG-8tbNwEPD3 zaZFhD3RW=6IHy+23C-mcJcSg-h%R72Wt-?`_Jk2Vh9`~a$$&wPGMuu~s!z@@LT;Fwm$i7Q+RG5Ni zr$VKnb%P#{>b4Co7LA9S2Fw)L;V2)J z7h?6hT1CZ~LKWyyN7UX6h2OZLJl5qFwez8<$^9*=8jJ zH4S@(y`m(Y7m_w)LqYZFe^D+u&-i&*4>G1@I8uf}!fBri*oVMT3u}Ji?1lRW=PC}k z8Nmw*?{oKypRe*TE)fsE`^S@6;wX=)Vj1a+7-c1S?SN>}m}*4;rH^_6;@lEmP>`hP zhPU%-H_cKYbs3;n1;fh}uuQnl!$=oDs7Ul%+&WVOwhv|D{@|SAwVN>@B~gJReo)M= z!vw>_P3OMSQfn#!Mdc{KxtRK3q&I>w=mn}5y`XU39xteb>A5_k60_3nhlpfRFD$%H z=EtI_02WU@EZj^0Ic9%E61JIQvd>X&0MEwZ)=t(>UkHZwQ(aih6dsO>;TX|H26Uvr zEOmJ$k-!aXFQ_8?Clp?>loF1VwK-)Mie*=CFxu9-aLF9rFE6}n%(U&bsN4>g^hWhK zYRl-l@P>;O4F%_7S_6)0iU`x<8~FF@Xff(tBGgNpzHno}sai7^>au!8R>98oDm!(}WINgL^`^+D~^47ZhX z5yQgd3IVypNI%aML3uj;A{0UaX;p4ZiLHPUNRg2Gl~kDh6v0qiObr-ILczIt3IP{( zh1Amxi4it_4Vy#Gcmbm2jMu6Ve)?UPj>9<-Ji{$mr^6#&{S@cK_FM@tf!7He#6!1# ztUcNt<|YuLC9T=hMcZw&gphU5I*oI5OzDx+y*UHgo&)y_e5w-O)Vdn6F zdg0;B6)&hcT=HIcxFvfpD4YcIf^uvb3hq(3KNK9w?DA_EY+(=9X(&IT9|g5yuIkSy zTc|KECanen(95TM5zM)ZjI!{O#P|h!zhOqgt)s*K_}gG;gp%48Nvo|;4? zVe7n32v8K@wI_G7|9 zSsAP1I() z=3w?&f&3{BDjqSXravbpxungnEFq{hsVvB0&y>F~?McSIMh%TJRXz|3DkK~fm%SZ#{Fw%_tXvnQvvHNjf zx8gsD$*gFy9oj^UcS!*C;|tSpNWEw~z~ySZrK2}~r$dpe(IYrUpgnqc%HsGvHCRBr zdsw4_Ome|#kD)0OWdSUlNl=WRoim%d5poh<3aG8gYX}(#M_16zg zWA!ND708hLgW~>}a(C~IDO-qZmVC!tHyE-u4~r8hMsGy+|KiFqk7;*Rr@0p^M>*t_ zT;3?Z2JiSMjo6hm?M)l&HWjEzV%a9Ea_Y*X!0H#i1@@CmL|flaC8Ko4 zo&q6&?Ws5GIdq!)Mym`rc3w1I%+nY3Fa+LL6>M*Vt_q7Uwc_jq?@Yg{FaX%wV&aKa_ZT zp}NKltWe>3o^^oY^^GGS!CH07NZ)YX@>KMVBQTEEaQOVd`o_pr>KoHL#1W_Ldb;L)mVx7mT#7zT>S z=BUTAU_oJh|Mu58`~L0kP;J|U#)&*w#!Nj9Sfb#3=L{435%qNpoeUvqTKsw=HvD&wgo- zwwN;Wr7i)c!HmRu&I)&UJ@N>h`Jig2>ODjInwffrIa)n%#MhJ}7OL;hUfZ3r2)VC9 zgxn%>#cr6yorCCwr^jrcD&)b`zB^N9nK>7WNh{|)brNnrPM!snBe<+5UQj(2r{UTa za08X@uyEV=c%rQ_{T3<{)!LBKOuNC*+z~-$TUjF%YW2GpN!{#JuE0H27kTnQ5gRc_ z{b#L_WT}v-ym|pDRp@-HRV%G!u2_ZQ0UfRwks_LMMPvRaYI5|*#W6FnQ106R6>5pN z-B_(E{ec{G0jh*DpaSqW^xA4s2$}9O1ZM|I^)@>XMRDFJlT#C>XhQ3M%RFm}O*>#;}In?U6i9!3&hMNh}8XuZU*MIFF3B9`$I_WhN6N zydsPbipH>L62}@UBYirA%uOkr3$7GvKWo4u&V|X%-Qi4{vml_n;vfnA^~ir^4uha+ z8V?Da3rS#Q9o$r;%eD1fyk~Mb*~JEP%+b&tpfJ(Q?HXs{Yrm}+_x+-G{qvv?Fk_MW z1n!wK5IpQL+Gg^Sb(l1{AO8bd>vz0yWMkdBxiXg{s1JGnT31*<%3!tRc%$hW7Ks@A%5DI>9K}vqT3cQyey8%p zayNa){zSX%jTQ-COi9Kir5gcH5R&I-V%qyq zS>D>3!yNMi4Vb^!N_m`H!7FU#wVRBB0otP@%=8qDsyI{G4+|#oU|?ECu@q!Z$g>EH zvJ$kJNGr#ars4Q9&&=8&0?#XtEYjWQg=HOiq0n%d@Q%D>NsL)M^UM1?m#FlDWVaDZ z19hAGq%~QCK9a_4CthgK>jeCE=wMglBWsW|IJb0+F5u)cQOjx|fJpu971`W*W`cyrUNg=r z;~LW{mD!^g56Nbr-h4hS>E)D9KoK+EzGu&gCgEoD8KFc|yT=k2kZl8@DamqkZY?A& zP4a$AH&k>;)T2^2P^$$*iScOdF?!?)|C%$P0Wel^EDl1RR@Z!MN@RgvJxxFy43)p_74Ag1vlTsq*6BA|;)wLGBsPLe8*&Haxo+o*cF=jqsx`;g7 zdC0I77^-Cfd+dfvUM!ztn&$;-{jtH|P=~$wL23Ia;87YZX6D4_aFj%y`0NEm(^QI7 z!j_R>m{y`Rg5h0gy+2&|J#Jr%pH8h!uP;oY+U5ng`R`y*|3Mw_;x`6xOLBfg+l9^q zWXF*4=-S?o+uA(ie|ShDn7zv|GDNylS|<7d83ZKb4NEv`r>|G@oZ>^yg(Oj|t$j6oPQc4Y zGh(=CN=+dfASfw0C@5wHCFYt^lUfY7XWFvcG^UA5ZX-H29@@P4E9r>=?4~X-5zY3B zpu?%oUQmg^@Q+`s?6OxVIMmF#E(zAKc86b{I^05*7Z&WC2!(|XfeOcmUT1{Ap&5@t zH7k{(D``LbbtUQOE2u(2nQUpHz#tw0m7~tDX$fklnHSce$5EbE&peR&J+f(j0!Fyw z)*SqHme3X|8>$~#pQ6qSUzd$6pnHbvv2c5VoGu*<5A755-Ea{Q3h6}lq+^U+9`b_w zLr-ks1{-X1vG$;l71DIe<@XoZC!lJ zIdPTjNE6jKj$=79XV2DFijp9UYl_hDVn_39Ut?cypJZ_%b)_gaLAD`_^CKRK6dFJ` z`fGGI8uq7y54D4%%YPode01;J%YVLn^e?-<>H1{Azw_l2@$ZB`oft3G#>a{2nw`O? zgVXwH`*XWlKM>#gt4zB26`oNmz-F*4zP0YUKJhF#9GNdkHWqGI=;uAn_l0tJ{>e& z%e3ViJ=wzFQOmXS#i8>dMt?UBwV^cBX8r8qx&|MrZ8>b9^;1q=e7Fy6_JtYvRK99C z1O9{z8JWg8=f_9adK|G&wQ7xj8d|RB--u>T8sUWfcR!-rqy8wIim+dyDEv7h&XOEN z|H!xIJrvD+sIQ2U@oQ|0ml)ZJOFZH}lY>hmu0{XS9}z546PG@^<`|3I-Ix1T>-#kp zIm<(%b$lqPgK0j+B#VswZ_sc+i-z&3r0I%uQwN2U*;b)rJ+#j+t1 zsWh%0nlKKiLm=R($S%BbnZDUGJv4e8tg&b@ef0)8W;v4pvY3_Gb%;gmp%nXE1OyFM zTwc}zsuiakh%w_BL z^AhEw1=3j?1=-l}N#MNJ^wY zJ0#Wl6UKxzE{4<{o4&{Y3dOEFN_b-_4B^BWxk^ zaY!Po3uJTP{3PeV`Fzr%Jb>zH6dlhRDnCBn6e^E6HBTK_ViF&@d}E2P8{Xzq2J=dZ z6ph3N0Wy-JcNrX6*j)q~%-G$7$KVk=7i2Ie5xWNu8)GhwOp#{94thQ_Wx=6hWaXl9 z_l6*69QxXTryk(;E_=2DVn0QK!=c6-tOc_P5s0 zug&g5>;7l=u65mMb(i{gl&~8H&+vQL*iVJkUhvp88+5&1Aj9vzG`kuNRc;H58R~uW zL7$PH92Yp!?zfvC51ntfny%uL>IK5sbsO|)fvdRtx87r#c-%L9dHL4SrGKTsVC<9rI zBrG>ajenpN-JKa0FjGKyj5AN+Ujd;3NII10O-3*;uNt*T(V!6|zxpH7c?6A6NmkHD z=mqYOy}7KzCxJ^0!CLQd>1Rhtpv~d=^+3Bi18QjWW<6fRhbjAzG^4j1Dwp={G8V>^ z^s_Y}jE?1x7V~vJ8kOq1B+r7ig6@-%OUPgS!$Evn(?*NZT<#Wwb=P`k9U8iHY{jb>aeoIlCWz0|oQO@vj3yq=0gZ>9($eALMx$3*`8wGe-ewG^FoT(}Cr0y9 zCsrtAKBez%ed*^%@n-tFe*oBZp~S5kC_Pg_GB)Um=6JkGM=bmz?*$J_gjHG(FbhzL znLG&tixwyetpK^%29KAhh9a4Oa*q`S3YO@shF0S-bu388Rf%5wyDk~fUrEBT+K08O zBs{K-Wyq)P(+ISL6c%gR4)q8q;ToYw1Jb9##0DjtER|&`rd!;U)@!2BKqhU6SSt`E zg}^kB(`O%9=2$-4s)AGi0^7VP+kcLc?BVph13@rCk1UYe2!U^K!vSHIb{%pN_y#}n zfiO+Fu?-^D7&?-0Z|sVJdz9p^Jy&wqt{2^#cX6u|)+2rYjyp+K3Gs&`Vh)IVPlm)L z{B%7V&ve3mK9Ix@4ELkO`s;QE=VD%22OhgT^!)PapjxXnL=OIl{r|~%lzl&W{AzM? zKAo`d>oQG0Oxiy^7oU36_vx5Dt=7b6=^;LqA7qzUKZU!PQh)a0G4R6=f>58@ymDa3 z+Ot};50V3x42k}3WDHMhcs)P*nK*5@>?p6z2D0cDw@uH#C(eK$@Vzr1$(2jYC-GbV zvQNho>JZ0=pte#ahDsgc#Zq69aA!B5d#5Th0ntp@c)H#CNkF0ZkTK{ zu>{qcRU&vRiYl0BXUA{M9%Y*->P{hMs}jk|3DPnA4H|B2Im~X&$7)q8fl z_2LkV(&tbXWwK z$*Pj@!i{7#dO#~#jabBUG=faI@@#7~dJQy6l^=)QLo{kF=hpc9My=e#IF##Vd z&pPq2O|%jz>c^fn_AfbFVs)Z=aSoGfC2Ey(q-uy8q}sFmeKhy5=*<=}YY~ek;-0e` zsyDRh1mUR?sm@$kW08Cq5w_Vxq89&drQ3NB=rbT*-?e%SdwNsjH=>spSl;XKN6!7iMuK!KgSU5-sZ<2Dz)R|+Ixfj+ju9-o<*k*#EanvgKvXTUk+P}ymDf+h@Biu!4+N8GD7;63eAhne}lF*ZGMw4xs$``@&QbmhFThQ?Hu zgkTLs-v*Awdc0asB0ZbpX)Yw$Zc^ngF>HQBgj+2DSuUV1bZ%z}j8r-LhsHNi>2B^g z7@LsQtW?-F0AZREsev^V(RfJ0lM+FXfKL7>(E=p}Dp88G3dG1-4e#j9w@3+M(Sz06 zQY}S|EGKA8GsmzKr)tX$jboAYZ{R0dH>4?mL@xeaX?Ae$Vv;?uP51ES#;qC1q2Q}m zjV_gn)rdiFO~Jd!K#dgN0H6`8R6#B#HCzPU zeWa>MVWm?QM~1kfp|?t^QG*pfQ6iP`UP)EX!H!3&-Q@wwhuE3L2D-#jaa{v%u~g(2 ztk8p+B8DBUR|7M&MIHaHL-;*2rps%Va{m-Fzo#=-l)-P;Sks z8S}z4Q7xYNH*2+Ps2f(TVa-W@TaSAW`*y&~u~?2_4hB}_LGwpcB!P&tE*r|QvIZ^b zgIp|W#ztt<$0SR7)dBiDU>*fk?uLH0{OKmGO383&u|YdN>$$w7fe$Nwg2ilj;dBVb zSUl~8lQABxXVCE@wVDfV;D8poYTYfokpYbbC0fx1E@%WrIE%uLgeey1c$=JKFFaeo z%0FrZ*>3#NH7AgY-f9&4u)84@FUEtAQYwNGp$OX8-slPdyDpTdK`)9{qXu*VDbbo4 zRS=4ZzINrUH!O`+iCTsmSa-*vCM)}*k%OtNo$=4$dR$SRpf47z?5^78J9q?!wiG>G zcsk1qCb3LoyB?1W-lp3URg>YO9q_2ZPO)s!_2L*~)0rB5?lzIP%`6>04AYi3xk(`Ag@;fPk(M4HM0vcV6=P=Jy zo7n72?%MHu)Af15-dWXQPh``1+(Q&y!Wq@|o!uow9eZk+tD=&aW7W72!_MXQg7B7& zRfcD~CRb%eMAtIOdEsmpVs3dJwfPybrA#|-u|V;m@u!?{i|5|WCt8+SzLrAIhQpn7 zM*J-b8+t3;n$oYg5JeG-EBeeYUG;-7|Bt6h_7@JXv91UF!J+Y$iK|GRw8^jKBuUY` zS!)0#q*U#|Aum{@qDjD_ClXXW;bevw-D(9t@F-ys8U_wD5nG8KC?cvviCHmXWGhKD z1ya0^C}I(Wxd4?&fjodplmcGph(R8O*q}SIti?@)t_3=JO zBb4xK0Yd$4R75_%v_g9u;$rdb?zedp|L)x8dB<%=VMWgD@rVbZ89xu3nzkX-mnnj@ zoIisB8OS3O%MT(>&5Y66CIG^VYE9|3vqfICzW?albgu3@KfeAcxO_9Q^ruU^Z93lox3G%p#Gp-SD1WUu2DEM z<^7bYnJDRPZT2u>;^LdYVCXkka*n1*;YAT()J?Os4} zu?8AB@>gKlR?oEp5KY8e-V`$*!!XJKPc%h14~-go&fs3um=N_ReAjfmAukSMIX;!e zLIQDpXXLh%P9&b(Kl!p$Ok+8qCS6FJzQ?bg6^Qi`R^2kE zJlwqGk6LLXdB0Q5%>@n2XNyC{a#sl0DtE($9m8EQX(@ZZIR4i5tF04eA)oPsJDqF;>(}4yHB|KL z^Rp~4wo`qU#nAHUvihYwsk)rvD35;goS0XyUw5|`z0t7G+be|vI$bEF0&l{G%tF%M zRmWw)*D@y@XahaH$(d2}bV~w@8aMdPU9bb)!~%nSu{| z`yp5`GwQ{U_@Kfct2M+Y>Ob3w=PIBoKap6j>n3SXru}5H-G${RR#e~3v4!IP7RQy( zm_l1#hcR*el+U0-r-u%M;;vs|-sWTyXe5IYLf)JhCOXbF=F|%L&^eR1;CKm?|5_q< zlw<;Mhj5<0P~iQn@&Sao%Lm5z*rLB;0(y4%C!CO;{ih*Zn8N!eJ)U!C8++UlrU`qY zaUq=Jp;PpiIeX*Aobo_G^k``PB7@n(Yhv49O+kyBH*2(J4GAaSrpKIJOKowolyWD& z81!+qC4Hp)aMeBK9$Dc(*{Ij*R}d-RN{T1L7#h!*JW#6G`W8=PBdjBVMpCBLSsb} z)u=~XmDwA8`ET?o6bCVq7AH9D4(8(LBic(P3%Pt>6C#mQH?jE3^=njQU4#`3@{26#e|18 zD@p!G{@#t%80!kBxk2H`M#9dl?9gkc0{R89NEyq2S5$MsJ9L<8PDCB}!aEo3jYkW{KS>I|bYLFxla( z+CkZ=$wNqcCp!h3gfQ9R7L-mVU46EpNR*xWak6J`o9rxIwVl80L`99F??p%dIH0fTY_muq0qfh4DY~y|f0~rjrk{k&x(` z!4^f_vKVaJ6kM@as-;tKwT1J#DZL~+ZCC|k%ULfhfV!CishPk)hY)!N_UZ}-vL413{$hcF4#DUQyww#96nP5=gKV)qmF(MX5~V{7 zZqK#`E*)DdxBV0d2Ra1G_H1tuS5mPMIM5-GwP$;S1m42oAY0_1$i0CUk%PU0gKKjz zMsyWv5jfZ@IJk~0qE-kTXc0KrD>z8vEf@|yYZo}U)*^7QSFWOK)9&NJ!DlTZ2XDt& z1kZUY4h}wR5jl7}<zL!r>rG*AnEi#Wz!rMyaL zs&xKXPT?*Pp0o&Myq%=i6e{ex(#XQyOaP@tFatmBbw2ZKRh2vV3er(M7LDfGM$c})C~xpKo`I)$AHjb5Ct?5Hu?q#d=hp_INcwKua`YY%Y%> zptIS*N;G2Z)gq9vUmJy7aY3_l2&_kCAmKG}0S_3;c)}|H16sCGwG1ijHZW)xQmB?C zq_7pnt>xn#S!NtAD@f(a;WUR@Z?W*8EFYy4Z^3v_)2w_Hlc@4U!fW9{CI5S zkEvssSlCz|$wHU)%7?tgDn+UX-WI$(2)5IBT-WX(Sgj1(s!3FW^XyE`v1qh`{cbJ2rv0a756qPGDV&2<%?DWACVM zdWeOg>gCBkbfxh-79f@}oMTp5JT7;@Z zxAz8`=m2k{B4%?3`Mbl=beqNO$O26bEn*pP-tKVyktE*2(LlRcMx%^npre8BvW5`> zp$uhUD~+y;1qfv*Lnq$C0U=8$qkb&3OhJH9hBD9rA+U!*7LAb!4azu1uKZ2o>+WKq z!Jfu3it=2gL4({KS0T|g$5l8*Nsg;Vp2(CfrXm(;LCB;iIe|!@NpU4w3;8`_|9^7c z2tj1>_|@d(d^%y@*N??3F2{E^2j}9GTqEo$N1mBjoXQWfOW^_;QtHn>JO+OFK@eh# zhjTbwPiGRuj-mn2B||c413QWh{9Vz(^no?KY4MybSeEtESqfRA&Yg`jq&Q*>bJ?$+ zxU@U{5mzWbdz3znP4}rGF6a64~j*}9K69nF(rjXsz=NxvYf6}=oA`bIv}>e zE@#OXI56r!G>8%@um(}H-ylj@)l$SF<*=qq-v4kc-;+a&eO0)ja`$|OMb9+JMx3Ai)u7Ik*HpZ2}mz% zYH7R5vQ`T#>xbQ6b(c3?%e2FJlTFOr%e7eVd*WD&P2JoyR2h3dI-7xAbgWd&BW@Yc>U$@8)e1jgzYVeO~!=JJy%(wyUbwND!iU!(-SWV z8=b$wzns72a+j*y)A%Eo29G20!b(??{lgc+1D%I|xclwq2lo%Ju7P!*FtB9^3dFz5 z2tX#~M6y56N%`5myKgl=zv|pv4ou%PdN%Dp9U2{niIij7_Vm5M{*^*JmrO2O?5k(u z`dqsBcH1^>%b&)zyaCOtQ5FY+eW^wZW`L>Da)NOWw9Qc?2l9EUkzyhOvd?#BVBE6A zBPIa>jULEAm$|Q5No5EJsg12-Iek0e)+`#y(R8qWMP88vG4-UpfM7ZIvq*XtnmUPp zw{P10z&1Gqa;KZL$s`bR=W(o=c4$0|0`EN!XwLz5ZnRlmBCn;94zwcFe>jL1mj z;Dm&x71kr)^M)@TF12)&WRT~5+Gfs*XoGPowuUehT&5~SnIct@SF~<|&-p*!lB76B zv*~REo!s_~4({@*IxB)UEV-?a1W% zBt(hK>1Py9V|k*Fk~U+TO3JXtbJ~pY1Mw>1keWQ3vQ@(PFy$M`F^BU4wRHE}P3QB^ z$nBoXs)-l#_hMfTk@XW%R53x006MKgF+`Yw~XfCi<*m{8v5G)`o zfh5?rKWvi(Dzmb(va<5|$Jx91@{jzl&+?z-AI|LEvm3nMJ3QXozx?C={Fn4{=B6y} ziLX-igM4rK<*DoW;bT6++y03d!Z@h&+a!?hvG;q^m?bQJW_y>835Ws1`M|2AS&{$U^iRS_m^0kB(ZT;(vbl;p+BJ*YvbI zAfesaNqe;W)78D=yx%GDj?Y_Uy!%f--F*Lr|NYCu&8OQf?A@kFSQj}r1l_bqR`}$& z%@zLT?&H;m`kO<6GL87!KtTOA$to9sR4WXZ(dzlm|DK8;rp~N?{BG*T?#=N1-s#cl z$LoWWk9+dll>L^9Z_o4}u~7UF9^Q!+IPRZ)cXU1f>U%bFvmh0}TpgWVd^nWrI91T6 z_vuT(a@@X)hA$6%XpQrHDg!o(VkTICf8fi*|9f0{(@YrIC8i4~OCxHsUZ3 z`xg=s|8Xon9Y~Uk87lCa0)D*EBA~RjTdnjGq^umC9bopt@@oHhb9?=8^P#>_tJ-A+ zq99m!jTO!0Z$ai9T}ZBKg3fo>S0BXbQB7wqJ9@28TSK}|5*DVu8w4+q0|^C_1ET^3 zx-z36@oNzks7Vws$SoTsmgp$R0ybeV`vGcZe)v1&4GSA3ZZCrrMJyGa`LQhitL;sW z8#6~)x7qNGBOa4G#EC}E(m`H)!yOLU(0RqhcFZQxGaJ5si23{7pDI4~jPhs%lxTBQCiy<~VEIvtO-9+Lly;zPP$}jcHPhm6* z6<(1Tng67I=QDHzKlRl#xkPn@7?+>Jd%Q=wICPn|oJx*1HLJCur$ z*5^+9r{dGdkCXH#In2p%xrX-H;?aZf8Td1O@4dz09I`2$3X|@)0LSm<#gV(eWh;RN_v^V1?Oa0CRw% z4g_oI}l4>kPh173#Y3uTubYX#%9wm zaxSI6Nd0GZ*Q_{SK7QQniYkhw%bW)FIZn)QiyU{Tsjp`ce~iQ~p1pGu&-dT&UBz6& zXws=67H;12<;mCLT48{rHwGfif5*q?<>tTHyT5rk+(DF%S9gkL2H@F^JWhikn)$F` zY@E8lJSk-%08z*IkR@L159nwL)EjW-A2$U>G9xvIX$A@kML~;&!y*Q|;;{Pxbfu!? z6BI12(mclQq(=tu8fJz^Qu1X=M@m@qI|>x-?xx#iQjl;BJdUzQ2$x6=&K4+yk|;pQ zlzINh_o(1$Lm?G7AXB1X4T8vf>QO=aIZ7bMTN8^0*>gDV2W3^FKm~r1f(-H~Xdr_; zj)cK<><(D!doILSgM!If1Z3nz0TVfUbmZi)$hco$I>=USB+N?yXjn~I*s%UU25%hA zL@*O5aR7CNqf>%_nU{o$B(*OQ2XF#AN^!uZEKdE9-xJ9orV$|}hYaK!z}-0b#ttG* zP&!tD-8=FqI?LH9QxGVp2zk?Ke{#mefeRIhXhKow9J~|7Ms=?KBJwvj8w& zd40b;yP-$M<7?KCeUrUgWM4LE+h5G3(x$y`p60J}<>|AacM-T`KIU=_^^T2L%tB8X z)rB$U{T`Pi;hqyqUrBs3%-toUC`#)*E(5eTKR#5`U4BD5B&Lt|!qqSnK8nL*m7K)? ze{!B1;HQs2yJ9kFH09qP9jt`yp36^s>S;9LzxI_?Uzzw%)dw|UP6cV{E5zxpVijb6%&lPRRHJW64Lx>;A+T2I=e!`@=7(NOLG< zc!|7P((wqeitx_xV}5b)WUM+F*l89|qeMjBhrvtF(Pkuv51sKZIRTud8;uO)&k|8t zKsrK~eiO9@qKTivssRX-)~*{wOH7tJAbmR~OZlN-ux!LCDMFvO7ny!|aHf&2##B^! zXgwPu5AQW)LrCsZ=?Yih|K(biXHpX^eOww|i`flw+8bVwE}-HIQfV(uZP3Q|l3xlr z7fZirUS5_!wOvAMmybCS>Whf0t#VyXGChNebclSawV3p~tr+<+$qz>|xu-_$lZP=s z4YbnZ2xY{PN`g2e$<&KuF<%{VUO5k?evM7m*CL0Qt0rH_qH0Z4FnzeYy1oDW>F%M(Ax)Kv zRox71cL>z1f&vEh*yEtV+!V-}!P`LDf&w1xIAE~YQQUGtV@FZY+~H8xUH~2JIFQrv zO9D*CKmyDqEhzXM1v1HCnUuISgm=xc1+`EZ=x8}tOH?US_M10$!$+o65v7&rieduh zs&3L-8FJsGk9<#ISkfkk5`E-2PhK(EoFq0yn~;peDYfrt^OC0HwQ~6Y)(sKkvm1eO zMurgUyv1rAM|xc~`c0arn(n($f_=IEY?{!AD2s)&;g-!7)0%DUHL=(!%REpysHt^@ zFnk&Kt9tAL1M2P9Xh#mz1P|UdIlVTzht*|@vaN2OJKQ`iyJR%EO;UG|=znuO#nuon zPoqS*K`wHeYyRl^&N|WY*Ql-aZBw<)`j>s&UfVpfE4Bb;?--DNE7hsy_h&23iNLE? z1B=U(`r-jsKdvqDpjq>qc<8oxINV9`pd58A$OnC>b${6a@}cRvjo;LVuSh-|?WBB2 z{R#V$q-@%Ph{#PRow-f*n`DWdk$^At`#YZD>YcVF0W~9ilYrf3wBwzWfVxok7a<9o z7lKFCh7N+otCqx<{ey#p`f{S_TEXAs#8)IIPIgjGOk+PxzqDm;(P6?J(v{vGHOUtJ zPB3S~_9R>dnQu~1()(+bf~TF8f`z%%aMftxI1v>kul8o@NI|14=&xaJ!`iRJ2K4s@LcwH0rrGG%sUWuR9HFZ zJG^sSJmHTzcLh3eg~*pMaX5+8p%d(kgOiZMiGQdV#Y>r_Rn(sO%a?@ z1{ESWPqid2eL*H*6kpif`)qT9a2`&$v^b@@`SJo>|27TWaJ_1QaT#zK+UU4R6>Pkb z0TFSNXSjUjbp~5Lcg}Jy(0H3S<$}vr*0bucFa`jwDF`h{&~jnjPWaw-lCbA|sMM3y zMV56SR)j>6IMs8mLr_$*AgH!Ct|B{KvsQSS9$doZ@3P}9Fr*(fEpQhh6tr7NeisT- z#Mg_AH=tRK7+ApKO(+Qk>}iNwu#jq6ofd}(a5Yy&RuWv@@%yIpz3Bw<1%C50{9G%| zCPmF}K~V!xF~5&Asim3FGsd--o}ulikS6Owl|`^zX=+2?)yx52Gud3eerM^kc9Rzg zbluHsChBGUYf%FjzpY|Z-LPNAJSh3qT9;TA3mvI&Hq z2nh+S@PnEcs74YBQU)uL^o{e2posOax~JAAEp6X)d^KJ419*HL>r3y-@ujO}3%r+( zuk=y_2G9s+PXrZEYJ7c*9CO*PzpS#7_%|z98+kFtP^=xWf>kDK>oEvOS#Aca;r1<= zgK;-BU6X;{4z_vKcES*b0tGwS^MYwspujda)Wkry9n`!kH+{47f>01OuZn!iMrS1w z*dZiDO$?+r@5=77(VKBgW@WcT%yGkrYpVJt>*l`c6l=P2NXbc6u8tRK4#L#AYL&!N zBWXi_GNB2t1W&Krfr(g4*@AMqc|1$|u6a=4@m6C*fDKr-Lf@u-SyERMW&^HJFTqA& zTxnmBUZhH-*n$!Y1n8QNg9Z!bK?Nu!QIJ9V%HaY;=|C|TR!18JOn3^&R&D0PfT3mv zE6a}pB?SzuGCyvofhzM;M%tpL74l<%4A|IzgaxG{=Ozys7>^(pZo`o4zHGkzdn*I% zn^b|Oi`IOzr#H2-D0@1t3def(l2zYP_RPZNrlUHI9MGmz=Ygrlq16ENy>HXw>j3&n z>6`%@p`NSGrxtxsPi2qNc_-A1L%Ae{UZ~SYuE0KUl=)AI$fA3{mzT_HqD|^KuEqj3 zwe9dA54otuwCQy05(!iye-6~`YOyo7Ea+*feCWAV~IrT7Q0<~d; z%??BHS{;0CUzDcUIn_*q4^PEUXdDlL5R#cU9 z=pV=$5Ta!eA8k`#+a>m|zh?>#IoZ5cyx@oz95+cK&zBt(Wv3!>mCZZ&J@aS8JxMh0 zD|T8JH4%K6c8m+$A&bO&;%k-qkdRRnxOuBfDuAyFUmII19?JG2jkH$$@#gmW;pW4A zaUVC;SrO$50;VA1BI`uXX!4p094zAz1&YgIh}5Su$|4Td-*qNM`Lhc*r6XF|McO$i zPY#(FT-xF_={Yx}D&?;d&&64`@z(C}dmfk3!#AQudno&~b4p|^SsZP$G@okoE`Cl} zz|m#Hw^5c(v(y>M&U*lg_(32V-5MrW@L+5hW~uBlWI_G|4OyP!UvxWr!(hcaB=;|q zK@`X%;3`ZOUle5f|NYnh0;U6)jaj`;FW)#b&W|92CqDAE)LW&ATk%>6J}B7~GxLMi7mTsX$6$4s(&0rCg1Q==E5-ze9VZ6HuR4&gw&WXZ#n)zv|Apx0)X3$^Gyp~F;C7gFCC3h? zlv1Ntu|u|v9#FTSMh~QDP$QSYY9&xh7FZT0HFj>N`7X%@%G?RjmZ*`mQ8I~_xqPrC zKb4b(sUJ9gs^S>*Y1ng?lHg3B2UW9CNgT#igkq0G=&dC(b#kLjN>I~e__cwBsnQ=U z)+RE#)VjPp2x5Q|(wc5b0F6Soxyt|ovJ7EzVD_sTrjs?tJBfw}Leb}v~Q=yRE!s$nFtRewYHW7^^TMwlE6JP|oX%gTg{92E3 z=Y(eYh$7ajY*1l4;(Gm*#eOt&qLB&+6Hk|iHfudY+yxGt#Cer4FA9gRS2y~;Nx9i_ z2Op8`V_~QjsHps=!@kHSTT^vr@BZfHNDQKMY*v4k`Djz{zf@lGTNZ#JC`~JF*;MeHI_t|xL*B96V#Wz-B0SCW|@WJ!+-8qA*2 zeEc>th0}K0ARjS`!2JAtW-(dN8fBSsr5q4da^Mnel!C&;Q4A8RUcOY|U_N&gDB^Ux z@*lh>NRT>ezA(=tPO9)rd@QoHJU8%im)9HTJ2&w?XOxA?H1kGfcBynI>92C!m^psv z=nb`UF;?I8RsimsuEYdQ?RNe&3LdOvt(6&-i|O(g$8O@V(THQ{L}Bpa`0eM@ZboFlm^ckmaVSWWY7{%JGZh!Q zC`%x>Yx@r2{hW^|v>6$;GTiW zWjOYSWwN3`0TYl>u%6x6cL$*C92`KdXs2-$1hBf3ILWnYlHE6{DouA6EKx@`XdCj| zeEuNqy@m#ArFqJvCqh*oRM1$LN<<@PtPXU1BC|wns{@&*dw=~C*BY+B|MKaVhtIz} z6nV6%vO(0V2vka_(X&%y2obbv#M=gz)p7-Ov865!32&f8PR~~QN%(+i*BGvqb`tgY z$YNkf5bu^-Gp?3ZY$=KtvU^o5uDIgsprPb-so6n%QEqowGO>z>yiENBihRU1TY@nZ z3YH&wK?d|^pa8;*?kG_F0gnOahEH@B;$)d&?d>eMW^Rkr8Y+4dcKe%+ec}M=!m_qv z*V9Q)(hJ1*i7@La1_tT>Cl@IFf0=h5?yhd{KYzMwNY8J8mwQD_HlBe_E6A7`Me$tuni*? zFMXFctE$Pq>8NbFk8%So+H#MZz*`NvJbUO-x%67YD-Q~xMnQsAz{O2U8p>exxlpnd zer({jE8Xb}GXbKA2vuMZ%6x}UUKAww$xEk7qbAnnlNU8H=*ioB7tMA5Fr<#=#g;pz zAKO=^(V@5fi`;hK_CZZqtRC0P30~e3H#cBF8VXj0d9GPtu%JF%iW>0v#6g3epST1h zI_}6|}3|k!{T^GKk(71svy&VANcd#&20@IaC+G*KD1fM6MEH77w9=q zZuS}ldghc|4rUU>QQs~vNip2X%JJ97YxG4tEWCOxU}5L7YaWj>$D963dZ0dw&F_N( zkNSkSW*jJ(UQK*&Mw_h3fI+oglu01+yzcLfSPu zH7(M5WB_5wk~mn<`#FyLM-Fi1P`4DrS=0u&Nd_V%-5nhTX~+V9;uF^5DWvzc2uVH% zVGp{3X*m0yJ0N3vx4hC}8w7+^klc~&CGuzeFr(XEWWCxc`_Lzu=P?xzF7B$Yl0rRP zGiX%W`V|$Rm|v&Ka{ob=bQC0@LLl=?ZDGL`0@T!C0t+=WkibGg%A-A~hzQCeN6n0| zv<6V?MlM)435Wv4ueK8aEKI=({Yuf$HF;Y~S6BsJWTqF3sS15;B0|Np4R0HmvWZ}@ z4bxp+@qLpGUpN@-ZTR{ZIeKw&m6rK3D|^Dc^s{hf6oE?+kM|;#V)lNoe|UJTN~6g- zYq{Ni`uMXeUQVOw`@QpX`GmIhpQ=wBQW{P8OZ`LnS@{J{)rT>2hb-nFPi5t{Q52=( zS>Q**n;9D9b!ca!TX_WZDWOZa*Y|0+Fx(PWDnn{^jmRWESjSAX_ zHxjmm6tILW1UMaoiqPW&_RS~H94~N7WLpBjPF}*a4;-i&SuzX!>WNz~kXS{5N|-pk zU#8P?dzNx5CSyaFVUwm)n>wS|tBDA)a z%LSBF(K|b>7d0~5UIhVZ&Nhw+m;5I5P9YTp+CXklHDn&LJrWUPEc8rURS#A`TNjS# zMjE-A%p@9SK?X=B7vWEB*Vm8{Y(OpjNXBJpE&cddD*B)(E!a+Llv}_IQBrSPB#5g% zdWr0?CzG9>Sf!IWBJ9K&@N1Gv>k+Sr07Kn$K&FluH!hsL)^b10BkEgav*HGhwMD){ zM=-ZAP;MV-xkYvl?OJ=fo2Uch&pLuN+y%6KoHJPdM^{)I6w1*Nq+uB;9YNYEwWTWr zx5$y{3fZkHBz6P&au_N*$OH&FqL0WiGE=`rofwH(uCCjmRHxLi;q5l)@hg%b>TZBt ztAZJK-*mOSYSlILgX-WX5nSGUbI+FgVeM8aztz);KSrUrO}%py&-dT&iHgICbIWGV zT{Lk+_3R*rxZ;x*GuMMa2P_p7E4*tm^;+Ou1Eh)Ho0(L7_G@Q`fO6ayTW&kQYA~7C z<_5SmkB>?XCgn_9w8U<0GW4la z*e{jgkqlfqb_ojtz#`F5u-G#LX3;fYd0^;2`-wl`=g;7!%JZ-UxXv-K(q^IGTX|^T zbilUX#I~eJ?c7VZG~vz4uE1YCx3XRa)wts|z0Y=`rgs*4Lnd|(A_DF|dy_LcxGz1O>il!eEvU4+PbZPi5x zT2GLGMnFRY0g=eiMI$4 zqD$%O?| zDo=n6?r=m&TInm0C0tiv^qhzM*jR=Rkav6#N7Tg>UWa)lN#Qe>PbQ84>kbmx*L&i= zh{xs?@i=B`0_(-yoGV9`Ln{&`A0xNTihA{nlTZC$lnycp;rfMs9B2g|ytaU^?tm&e z1S9-gV5r1L92@bWl@|21<$59$$SagtpTt2V_+Pyo4VmS#7yyfew7?aQI*w#V1VYo$o?H4{46E zFX+)?xLW~|HZK@+>*Qph1wF3B-EF6@pJ(TyYd0=B&By}s>e)!Wjlz8uut88In4n%@ z1QUb(yC_%|o?8?=n2Lk~wb2aS1~8j~7ASx~ww-bm_byw~|_E%<{dJQXkKzSKL!Gab&*qJ+uMdTfhFQF9= zC<`87W>)^J8#6~0CvdFm15^u5+xh@kO}CXVIdV!aQbh~@)@=K2*r846T|jL6)u!uK zZ2L1e7XGJh)CDkM`qx(#o5=k7L!6mdrQzgv%Q=D$f;Nz|_Nshz15oqt8biMRb!EJL zlVHR3+QRGEQb|UYVn@{uFm2+ZTZV-$Ka^zL-Ox|e|7A@YF{fzc=&>ArRZ84Prrb6Q zgQDjKUT#tB0Tvu}uHS@IkdkOZrqFtB!a&himiG>#PLIZ83s5Zn(i97pi$-F@OAZPyuvj&Y^XnDEliv4ebja<#>2j9zL-yLzQ@#Y z?-N?u==!*6Q9w1bTsfkG=YisTaVDbY$R~5pKeCX;E~WK1aN|cZ4UgU!3)0C^(6o%B z0tX7*M~D*rO7V)7n#~8|@n$Ey!M>O}N$SRFHnoo1Fy0l*q1ucO8lK-U0TABK%2@=G zxof;ILp*#wVk3|(^%ImG>OYq=Ji-MYX>Dk*)Y(hq>m2|tVAegsVi)x9Yf0xJBE-| zWh@HBta_4A5X`DJ76oQ9tD$2!dE#=#hCRR-1k#GQ3VJ0zA>-#81NHkUj$vomsezl7 zy{Gv#EUG1!A)wUPRnz^}7TC>C{bQ-3m7n{IS%Ct+G;Ix$AyVH0ua0hALl(>fQVuj3 z$&h2B^Z+~!j}Sx95l9`3W)aypUh(RMqEt)`SOE5OI+IeqnugD85Mxbf4y@ZIvqe2z{3Kt^7L?u1Y3Oa8>E zUaRsqWH39Kyz*w7ss9ZI+qjHcAW57$f;{m4?xLqA97dFXnv=_2`yeedwmHGYBH@Nm|xjQQTr0h^Y3V^UOGz zqfi8}yUv6&fa68{N0vh5B*ru()A({585vAaYY!Z#{`X{{v=Q`~y&d|=RIDujZ_Hfz z9T^sB?1srSim6P*@P5rGU}U}v;q2xQ0Nvd68T!_d0TKfZWhHSf8UL zow&{`etev~20%qvX`vHDffC0Dn?N}e2Qs9B1T#_Dff~PX>C9D;C!tq`-Z+Yv6w{Ln zncz0|lQfE7gon6@gwP6PI)Nw*s1P~ee?ERJDxME_SGV_{Kixg7z~5g&05o*TKEY60 z=p|IED%GDJ4YVavE-%JhO{;jPX}J&t(F}5Cp`eX8Fe+H0{Q?!N-TFRnNI`!MD2j7FJyg$uhRi$@%T#q&Mq!%`xq z!=L2SrMRv=v6orIS4G^_l58~cJztP)e1g^6I9fNB*1FH7aCTPT6GA_ANyk?8XTN)sT!s%u?vJJ-0_9S(ivtnC(F z{N(pol7P}czCL~`A8|=HEE{{{TMJc5>Z$oCqGL%kS4 z8v}}?OoT~nuPpEGc`_)eWpP818eZ&ppXMVDa9(!5=KRTi$?58DN)$y>EEd_4y%}JV zNFuwctE;Q4>uNl`e>Ck6dk63K8W(?RJiYgByo*0Qy$_5ZGyA(!!Re%1u<~7L7HkKx|7``Wb>#Ltm*TddA8+z=L4C}XzF?&_U?zS`+a75-%sAX+vDF)EkAI* z=MQ_$y(AXH2K+g4ZP$x1IpY6){+vMOV$kng-QHaH2P^O!F$7RUS2llz-gox=6yLphrQF|)6dkifiRJV z3x$IsOV2U*_AGRLsscgr_?HVQb|_6^hEoEXj=!<`rt z{)jPRw(T2la@NsGYyt5``YOFOIINjFW;Poe{A@K&j5#NQ@dz-PFM--N5Xk3W0ZIlx zuJ|jD{DolZx#7c9%t&F0!ONdolOO}JM)7gd*;0}zV;A_w$=gHY&as*A8{heY1=h&$ zm?>!Ps~HNS>?8Ke31z=Hm~)Z@iT#+{*2uzW03>*0HnAKFD2sr2s_m#G%`LEIn6r`u z%fhG{BuE}t6Ekq|G;Rskv7faqBueL@?euUqWS%x6YTFA^oFD1}*Rg%~6-wtZ*Lk@< z{0gN?bne*ChCgQ`YhrN~f~#DHIewJdjxjRrQD~du6y7&r{|nth?if%;#Hqf@VvRga zvbkMN^0cfb=~)lc00t1KZq_T)7h=F^m$SNX(b>3|2XMsQ`vIG0G0>Pf0W78mx+EMO za7Y-|Bt@}GYKOU(z}6Yu11h-${?@zd4tkfjNyaI62Q0m{7s~!yp<)WfDB1&oVKdVY zIMYiNU)}^Fz53ATrO`7s%04{Jm2S^Cn$2CGf7dhu*Elua@Pm_o;afwlkj}Vj$ItKaSeP_S+ZdX` zXnL@CH?G5`9JvNR3sX+=#e)k$Xh;cVfD#wD0S5#twJ_Ex^&n|TOsB@^dz>6xDQKM- z&mP8Dmrnc*x?%cD|M$OnN-4%j`1Ww+`$pbPptaqbfB;0f2{bb-%unzCK8mmyy1`U_ zr^pxA@PRt=TSdK(7(snbQhX&LF}HORJe;5=ff~6WDzMf~5=fK~eJON|ybIcRWFC6# zU_QmE4D}h!_?DoaECeM_Lj{ zKlCOh$`bj~W{8U>B7wr&B}m|eX31}3n9XrUA|)z_i8Qyl2THuQmBU$FNT84w7ZNPE zk^CefV(R$bc=Z`|>#DZhQ@U>(=vGlw}4`{F()@FD#@2>YlA_5{rT%o#mn;6GXX zYHV9GD-btYag%-WtRP?xT)*KvHw@-s0HG*MUWkk1yF!+g*BW`(MYwI1zb>j@#OO)B z+jt2~yU#&5&<(gElE4LshueSfpPoMKHCwH=beiygpPWZG#QDQF6J8G7`G>vpbMb__ zSDwmG98%!U_)E=}_$;rWr}D#;nPcYhkEbFsYT~*9e0(P_wGUw+J}Ouvmvf(-FQ3&} zD{@!K8Az%}e`iu3Xj3Kik(c!&Ar(?Nsu21oTeUTS&okn(GcbE>G&QuEBHU83MEkg@ z)@;>Yuyphx z%?*Hw1<|@=rIJ&ax#Q3dGn`e2MrQ2)zM&W|PI?Su=sV7c zQgOK~>5p)-n3DjfVNy^+S__DpUcesoO)Zwkp$p`j6J3zx_D%SIYlQa+dFWAKDcgrG za9a1jE>P&}2kjU~UOz}mv#E%-~I~3f~*a` zRSeFqp)d8=C@_l|zlSE*6(M;Wz8~glyUE#PTm2x|ze=m$axX6|dy!!>ZoE4?RhHLC z1b{7A5VN%s7YMk^C*o_6^)yVnhY2(h&codC5X)EqIox3)UatVV+}+eZA!V)S&-b?b zwR<_}e!9QD8{FL0md!3=(={$5(wZQGlr^F!1j!cotSElC#0uTm4H-&})xEe;<_rQw z-P;3ldUhB+2?@9pV@2_u<-%ff~p(Sb?eM-;dh71EZGswE|FW* z$W!bf7;uYGZYL$;++;js6zA5Cf`3!&V#6ZDKbVJH!Pr*Bt$Rb(oC6<7Fm!)q1Kyj1KcF#!f2I!ez< zu~3ntw2EcgN>br87Fr#N?MZ>3>sB6A`m@U_Uoz4&t7btw01E0L$n#W2q_uN`(h|&4 zS9DtWb9NzvmeFZBsBa2WOJC$=@ET&RX#voSAUSOihp5RB>MN;N*24P)59EjUVK5{` zfb<+~pnk?NR|M>p$1&p!RuyFEXv|W;#mA8{6p-7ER{yNDrbU9A{;W9uMBuM1f}}!a zee0ykg_-(S#k*Y#~{3k0IO}XX(MW3LMC=`BL)-KPPd@&s%f_<-Gr<0s( zB?y{C3XCdJ^)h1XlILI}&wvCTwJjQuj^Z_$$|g!01*)@V?4#s1y7=b$n0-h{T`!7} zu2Mrq@xcj54G38d)K(Q`)piRpTxO95gcf(2-9jr~tq(B{AzQU5X0veDq``2jM7J3nupSc&Uh&%=nT{MMRy-z zR*DLl`7)0~*4p=tqlJciVoc3PWSZ1kFFSYg~Os!hV?gEDuBt!qB8H8^6gV%VVB5|@=K*r5C8yWZE{$A0hb+x^X# z&TY3qUxlArQ0Ep5IF3*0J1EN4TlQ3ePs`eiX>VnmRwU=t$o2RmbJrPLKYgYzrjVcH znnPXSzFObeljZ9y2&xNGiPF5Z`keZ!tKv%Y(t=>4&}8YK~ly-UEGMPeM5^l)3%*MALYUz z!Fr>!dmuWViypTJM_g=xbQAIVE7eM|^k{)bWd7^exQUzGrmfjYJP6YV(FXGEW-;`K@abVtAhfZOBF@hiF*ZS`T`$Wj9oSpQ(2d*FIweO*&jn`R%Ct4#rjE0U@4z#+0FS}`FprDviX$0S%N znN0I{x{eP~=DOgipfeX=_fHQ?k|tLs0g(bQ{aN3dsVp3Pw~p4CY{y%Hv+1|qRd>+4 zED&Rc92vDFu>x^(&waGU;FmOp3>pecN2w+JnGmFI&Dg=C>4}h{NV>>!L6!prX~v;x zt89zpq_TZfA4xu{0$rZ79Zx^IJb%2bnEIuWEI-9=L)_Bv5FNBMlr^{^mB9Y$(qiZS}^M z&qbb(Q+sJ3aXpPmprD(Z$MrtTnb>Y>!ea(l+BNA_nuuk7vo3HQZC6ZWi(e8fy-uwt z-cuL6BVB;>S-ofOBfdLSSz!9)2GZX{g4NW<@1~>8ZBRPSh6Gi&I~R3Q)ApJ51E)fg zphZQbjV2TZF~?&z-ZzwG-&h)tpa6)dGzr#YetDik#mJe-zvBM`GVJ%zvaO+Kg|lUD z+sJj&ZOs`tLXi-6qVV};S(v10ypb1tLlQ?sw5SU2-gg|@0B+@aE z_S%_iGeHkX)=>Euf+j08hsrRraJeMoZ0`EPlqp_??^1F)w7Hzt(?N84yC87|0gj}p zi}le34AsezM8!p!0By_0c|DwuL3Zc@i8Q#-Qq^!*1lr~kR|I2-E4fTMXN&i9Ed@MexcTG^IAMJ4-y-Mc;m`4?tF2$-3Y_=+) zbC>?}R=qf5nYy!(PX;Oj|8xY?cvIX=@B#`K9e zU~>GK1w5I}<_gG0jw7?M3zJwTt$w3fK3UH?f*O*l?7MqE?KqH@{AnF)yS zDwQ$_f2orBmdGOmY{X+}#Q~y4&FHebWZxPqZDfN7213=|$QuY_HWI;Bxx-a(ED(zv z=g+oG+2a>UL|Pfi4MZ$lSn@@Zj#kGqf3}FqmM@WZ#OUVy*`ni}Uli$xL6iBj#e`A5 zEUMAEqvg-GV867@bW5Kou2L$!%1_Qr(FJ~Lo@~2WqYe;F_Wq{dy}iBbS0an6nYE~0 zRr9O|-ETMDerK>t6Q@;R%bz%^CR^PTJ*jbpZ@XW+mxJ!7`|G>G&E3ujE@E-*4Rgkp z+txH^T8E^Kb1v93NzY`7#m6^HwrDwWO>=!$;|3n|J6E?i*ZrN@x~J_L+4%0Z+rO_} z#ljW?Jw2)MD3VjYySn^R#gs9IX;{ZvlO(fEZW|}^pOrCr2}Z$fW=ux5?#-A2PPID; zBF9p$KR_^-^aosazFyva?F_p2f9ZU^>)y(VroSenSJI6joFrLq2#am<4MDMV$Ae(y z^q+Fv6$*v;J}>O*T5~KU2~u1r0LO2S6HgR@)I_RuFl?tO`9?{YQm433J})Y0f#lxT z8X1Bv%1eTUEw@VoCaQ32TQ!Y+>Xro^bU{Ql!XQEVX!@u$5fZS}Sp^rNBZK{Qp@FQd zO6wMhN@1sMcFcw#K?+}Gm>0I)I0abxvo~M*-R_?+4Y4Vqvdn{L&U{Fkf&LqoKex?i z!}49O_VeFYvNKG7(T`6x0ZzcpcVV?F>yOd9y&hcObniP~!R5DtL?h?QS9E+jk+GNK z)=6cBJtErlJA>YJMYLJx%cf5Cga%AC#MTC{C-x4iZUPCO2L-b*=Nb*1>FJvqvL+v$ zjM|`~lrI`6k(BouC#Fw?%q$02w}Ti;uUCNJO3M7?#Vzxq`FDOq<9S3xjg)3dM;9br zjdD1o-$Ukxs9Lrpcn_vNSSV>lg2Y856d6K*BQ$~uF8nzgWwZxLx@~I20u>c(Txm zD6EVCOw&^)9H>U6dB}n%#`H}OxAADO)S-8%4Ir}8?F+L7X@iE^<}^?tvfL{P*xa*b zrf1n0?Oc|qx_=0^$Ng%`d6i*swB8)+%)S!8CWBuy@xF9J z&tjf&#h#YfKV?P%FSkT|sW%Rq7aa{zbvbObdF%wAsa;0SXRK_3NAIhgo=|FZPfsyL z+K$ejd-6yeEJYw1Q}jjiq;{Ic ziL=SIx!d~2hdLRjR?JDVbmL|F9slo;|GxsHks~%gZMh`xD^|eiwiN{O$7Yp^$cd^p zxGmw-s#4O*qj-ChvGU?N&|Gz<6ZJQP>%p77PkXC3A>s_Q?u-AjgI_8=EVR=9s8Ygf zMSbw4d-YIDsk2E0T zWpC}#YueiF*SED-BP(7KYrXKT{iXV?tyfn)9#_A$b>V(e{YKV>dgb<0txWTBuf$3d zYACTO_O5ZvUhW>?_c8;D;u`B5)yTV|RoydYNrXjwoTScAk8?gq%^v6WPmgo4;S)36 z98q<_5RwOZt%lNa?RT*DKgm042 zMsBoZl1mhll?thJAyH?n<0o3FS+Y^}M3&pdl*McwAFWjIZAMQ1lqHWd_eMGuS&MQ# z4i$8LokelkN+eMDdY~k56I3SdOCcgMLxKcL%R9rb7*V5}BrA4nmguMhWrOETJ`l9}BG&=ly6~ZqFVL&=19E_?$Qo+P?+Aae){ecDw zirTaBp)Pp1@-DQCM-Ic+0Z-MZ)&&k#7m;|a(svJL=tOst1bK2pTic4E3fPmT#rPPZ z8OUPk;+kb-)LtJx8=((y!O$XYEN}k($3G!&@!x;^>+PysXyl!>RrhCEKTiwj-NRhf z0`OlyHY?P->rlf==MCyWE}!1;TAmL^y`8|b@}#~`^%e*zVlrLV^S~yWsmTFhR*1Mh zVfBa5+GEfQF`>wH{31$zHKn)q!vmHL1E`a(v;b5#^FQ?^>I>-(Y z@aTzpsS+zT;>Gn`6uq=p(Q4$$C|bpuLQc9gIkaPjt2zuWdFbUP_oga;6(d)`a23vm z%*(x3q}y4xgKjySP>qJRQrbnpX8cGkzI&^#%9Or)Vb|h}NwT?W%<*ch8+qd?KOwz?LIRE7dIY11PN+!9O$x)7V28y+s9|Xp=`J z3ZQGmZgH*LVG5$mBD#@N)>VAZ0*yGj-k5oZJIsYR6QXYN6_RpW#_`{O{1ak@x4g!i z4-obPM)Eh*SnK0bS7 z&Yt0k7*ww}ZXPM?S=RGoIh&PNl&UG)&ldopl;EuA(?BR4fBtX_(|_VBU#lf`zA31T zp#P}{zL`LRz@2~CJ3n913gxGv8wBo*ztogD&{Bgul^^7+`NvZc3M?`Fu=lPdR`?+d z#K#4!t8g~pDD$6$-HI=t;@y#JLrkk;(KDF_(1?~u@>ukDCa=+|+eUHL}AouFSvKFy(|3Qj4R3Le_~V!Llus#HRtnwV)$`THdWN zO><~4pQa4g4)n!v2_GZW2Mxz2NmFMzwJ$b6F(oe}>WL;}P>nBiau0#XQBx0%Q$sbI z*STaAGNwQ4u^{xI2RU>yNr`+qG;SA?(12D8u}&UfnKC_Qn2)Aqn?rt%2UE`tAEvQ! zEQc#n92~@5!Lx8)NGE;*$^4!TXHsd)?%7bFTLYNPBvQR4QY%0G^UWj(E)dZp-Kq;nE``BD9hNPA5*G3!d0SjeZ72^K zlqEdx620RAB)Mt8I*`k!H@t=qAgMSvNTpE&MmPr0ff4TVq5&aPKS_cvTofN{FpdryEwtqw!|Tco zc5TP)o($lM-W1pCRs&MFd!Yt|JobBN^2`Dz$7VrcYy+R%?ptxH*mrjBWJWbafWxiL34H^XQ_I zSB|GCtUJl#I_h$k{)TV`CErl)$&{KqlB?5yQgBc^3J%s)37t#+?H1x`o-4vA^ee2y z)2+G^Pu&i|_PMx5Do=4smT{R_o*#f+BkNk3A%4K3SX|Z&;?6tl{i%;K^Hizb)Ez) zs`;P`-tbu$BvHXa7ckrzS4@IrZ8IqZ(|>eyO?b63NDkCwWM3r1@3U&JW#9pYNA?X7 z-mjSZ13d z?M>pb-M28M8I$IoH8VZSeg?CW1yzhhN~-0%fjftiYNkC3ZBdlmH%y=Nkw5aRq2#2& z)a7$#j?WnkBD!u&@B1|5Um0&&M@OxFqm^j9mrsc{-$27KFh)?{2y$TshJ0aEHK2Lu z&0U`fJf4_s%M@9JL|MPoa)Jy^A0r#-g&1;DyyLj>B{&@ChN-3xL~lv55w(%)1g3>j zb2Zej;5QV^;jIB9PNKkca5eZepoNM*(SQ$Dq11p0eZU1DzLYFvQzIxT(X}m`@7f_c+?O;% zoHv68Yk6v$wvXBiv_;gI`wX@NZNPByq?$uc8$_wGVZagMOEqRk2onqFjN0I7rsNwF znj`pcQRNLt5TB;j2;<$SK|_iY5-j$6h$?_agQhLyU1zcecwkL&?5y{=tQ9H;>U!F? zUHY@;%;f;$x6hSGO~{+)E8)l|CYH3X!*w(PBR5OB)t0p~v$Ld!4fwM_u5|DAdT@Qy zz3+Uz`O;an=rnS2$BT|%0YQ-&%3!bLnU@RU(BG2@-RlSb{ES zP`AQDnSDs$A{QG19>GppLir#;!^LOQKnX2J7c`w6Y_zey8wR+JjHHQ8EIZK~u|{CH zYc*|NC7eb?&QAr!*Hae;Ba{h<1PT?FNP-mNOb0JRoTNXSXsm>+*>o)9a;ng&xGuHc zPdueQPx>_WQD~pGHWd>pjP~7aw}1a@zjO0N7w+w9alh&Jt_B3$(S@93VVLUhzq`6D zKzroaWmWLQBqrH$ZnTcS)O^u)WD(q){#kE3QgU9gD2`ct(^7$jS75PrU3BL@ zLgSx|5!WIExH#t5oGoBdqn%3(dbl!NBk!D{b+V(M zpeqRjxtLbnwX0%%Ow`^;>SJoS^fyHIMDh()4l_-I%Tey4<6JI(pMjqoBk(lD&a0yr zq1;v7rUc8Ht2$DZ${npKM&-&~oxZhF@~fm1t^_1Rh`{DTwZ(Q#o!&YUwUKVUda142 zhu2GOq8+ak4GJ3kv=CY3;MYxLqSdh!4KU`(*Tc?48)W;*iO;ex5+%@@K$}g||-cB{HtD-yIXIirWdUv|QRZc(C%CTZZ#B#f) zUt7f)Bd@KO*Ej#Ics%t{adSxCaD^iw>kToXNDo-nAQ6fG%Al+U_x&`Lj;u@s+*$$HOg&k2+XvG(#KZjG-}(FlYa}5+w9dXUvwp||DVF*o_FMGN z15lCt&|~RO9t3R04@WZy^Yo`2vLy%hUE3NTL}^H?(}}*tH7-<}L6=3^MYT)Oj2vIc z2_I^QF^nzvsvfjkXo^7g9ma1VM-Vvb_QoRfSTti7`k`stn93@;F~paq)r}#ls+?xz z(g(w)o-|vcP&>iql0&}kpYM8KdmsC~yKnbk3C9=?u@lFI<28?E%d&c={kO|6ovUA0 zYr$@FvKyN)5+?g==T@%muFSTzu^}m8w!ihRx`W>3&hYW^5!K(4GudywzwOLC--+8( zJ@f2$JC}pr_0_ISwk=zz)H~Vxn|}B9_O8D(`?lSLXvn%}J?MVB>GnH=iYAV+?5lMC z3N(a#I?6UG_0aM5`fKmgJ^%9#s9A{^+(i<;tMR~$h^L=++V4lW4xUw^m%Fql?K*eI zUH^0EvbbQ`1gb9PFS>xp;(OZhlgS%fkspOoOr&Qv@@&xC?bs!7U$;if39S@Fh9(4P zqL(8vGJjA+gp`GZw?~k`p$x5reky#q+_9)lp=)OPdd28z-IK2@v@6SuTWcWGNIN`m zr#@jJW9Y}Ryzh7Zn!XmA@Ir1KdT{U>1-@N>>V01Inx-vzrHuZ@XZ1_MTuy%{9pX8h zUVz6t^Eq?IR?bWc4Dtj2dL4XGWV$P_H`4d>Tg1AOcnGP`(Pc++#6s1S8+kestxXxTBa~2;UhvPD=J0U2$NAMDtI>i4PlB&zM+CI(jrn4gT;S}LN?@j;}dsZ zBf}SGcUl%VJ&8mGC@J(e1l+7#g;HZEqqzn{Tm7ZzGPM6{h|oM?ybrjLj7P}upL>F( zAa+mAUOqDZVJ@EdYCgLmu(14TV*Oy_#gCWFw!fJI7F=!CU@Zm`kvCaC!?LZ61ztov}i}asLv1THvrC+pnHAhJQZr zzxfyv^V4@KL~P~TlPEiD&DFX#WoY0RR8&UE6ZoI1>F8m7X)QF1CEB zv8xx`V& zhc8C`K$a2j&1#F*;n~b^jqBlgz1!)2?zNh&I{(%uFFyPBSpH-6xSlz@JFhpJhppp} zo!;`RPh@1wEuTHP>>Qt7wd=fgN#x#twFrInyJ4NzAB?_5ZYjmFYs@B$pT(IsGX|zT zrmytL$Z;vF?GskFW!mibL*54V$KBkbUl?=W5d}?q$exf9CEXHV{W%CI4T$X%SA6RV zR{Db6U%@NwLn#pcoQYJtCq6=DmMrpuzwm;|RWU_f{eJuJ94hNH+a0jZ+SSzAaXX}* zT#8X>fV>PQhCL=BEo9MdOLitj<+Yco#mmvg&0OLU_dBUy)D)ytoVHZuv@jPTa+Kb` zTVbZN_3o2HW?o>On+=Ejom)QPwde2L%kHe~+fp{}XUFzE`i|iZOp}r@r^Kt>kVWmz znHqLn*A7XK{SabvW81hcqRRvkiAtmn+%Lo&PyC?aoi^`CoLHcxSes zCayjFifUkNcu%v5;pMfOf<-vQ@dD%dWz&szzFL!>^Gp_=R)w@8MUVF^%wxYk5cES41)CvAiWJ zdt%7Mo4fFAvXfLIS^!X6Q{1mz(G5JP?v)3SD)hmAh}Ya$sjUk=$uA))ku)`Ww76N? zL#o)$u~m?&UDY6nZb&uO1gY9M|NS0P1sc-{sj9k-B|PU9rydBf^2u~YT*HrIt8D7Z zgHS3LZ7BkwsGwm;?rKw63Yt~$rZfGG{Sa@tv0Y)kCnfnKL?x1>Mo(6|a^a9&g;6d6{ zDu7}?`c{&lxM<58vR{ZXq(TYI)cRnhxK^}77VkUG^VD#k?|s8%AkCyaiA_3ZwlSq8 zo`N?{Bu0rZ!Fx=!gtX1U-#u;t0t$(bf+ou8=+>7i+eg zVL+yzx%BC84S~c~5Mi~9V=vWRgB9a>*oN(=SE50(>Fj#W+#Qf7dp_+G7tC{sB960< z>ZS~d=bOS}%Jw|DYxe~msEkaxdv{XJ=ZOSGp~XO_8O+lOz!5!85GwO8Ox1a`g;Me- zU?ZBB)H8WqIPMTYjt_*qbXe7X{`jw= zmUJ|bvKR)>Mn8Z2??cUTYmQB7&ZtJmNUhbZ1r7G-7lvOO7Rr{bCwrD0W6^Z_tLGHmcE1J053oBS%?!Yr5NRJ@59 z&ZDn*3)LsLR=jZ;jz@bZEqt1(;8g}|m3B@ExLqF#YFN@%-_5d@dB4mC7%PD#3LJ1; ziPVZlsFDK}E-gCGYaN$zM`FRSG)V@msp5@QxfSQRP}Mh!_Vg=h=)^;iyo?_iXvNVENB7cYQ*CKROA*0<-ZqgNeX*X6N;j6aGf9#u9(^9p87R zEU#FkZ;SO$@>rHPT?xuZ1IJ=1 z%CaA_eMX{B2^EPh6#Pu=O66{?Ok32ph0HT?TJAZSsVR=&)pxtq4D810`daDQs0F^1 zTHvLa(!N6RsavBDCP9vmTx`@#oBzp|RE^s8D9z=PYQmP}V~u8f8Pijd?MLiflH<<5 z_)s%wlb6mUfH4iWQRJJymp&^1#h}-gk0lY5;uVj~n?|*qb!u%=hBz5el!PNu7d2SQ zEs7K~IRILyVF_7z*$~|`=bx)tz^AJV?hbO^O zMY++BXRbuI?aAFE@g;ajAX-B1Y>C^=7pZLZku0TB<62hw4F#^@&aKo8?wkQE)a-Ke zwB)|X9e(9**DoHK9-i=yvpnyDuS!Oy>-lWIUrJyowO2gA(p5rxd11yu7Ge6zz*nvv zMtJy@%9q0vAx+2DG*4vZ%TT9g>St)^fHtG*5Yfm7#R7G(qzhqZWhhAbg}9k@$Z7bU zfcfG+rIPuwAu9hhAxN zMva~~K-(z4TT7a-3}Bt36-6sgZhZl1OdxM2hM+7`tcx1glZK9Z|8k+kY)9XuMqa4h zfhRxbBp3fKi&g1p7H9hd?rFK)ppm!&OqGHMI| z0lM~<;ezENXuJHL@io5f;EJm{p%Bkd;-Ip|GJ9hal-{-}WY`e4Dn8J5qj>((5~BK9 zB*W5`AVM)iZDx5}fJUn(R^Yxxgk9pp+tx-5<}St20w%QJh~-(kBZ8s%*6#TE3%qvE za{^CZkw9GENa2%(ww?u??QjhP;%Xc**hvT|Qe$GX85%ZRP!xfd4n+%U=?XAB+Q^Bl zX9&4$C@9H}12?SVsEy6ratk<9DTk#8gn& z6oV20C}54E1R0blLOB+^D0;yC@E~F z*ir>WN}m@zr+*tMNKj~|Vx~;&_I17!cj218PwYnM%>&i`lX7n!OyBav(MPT=Pkg&d zbOV#56kmehIuR`)j}wU7*A%I2^^q(kRnU7erZW(vL>vK>P~%z@Y34e8i%bEVtjfLn zZ*!Zhj*>1oE~b-*8x}f5uem%zFtm*ym_CBa%7fqPgU`uZRSiCEsAA@XZyXcl8 zkN$&wLj2?E%jL~)@3sFO zbGKAEqWkUgUi7>7DZBP@8sbLC?jP4Ty@%_ocRFG_&9oIDLUiA*|0qIg@y%S@GrO7fB$$_h)pS`)#3`ia$Eh-`*z#AyL{ND zhKsYf%4zuh?_aM!J<-oc*8D=OU?FWjEpfUGT3cpg4Z4wOJV!nH|(?j=De) z*^NNa7ZCujL@O`aj5`)Tf3*3y8+Y_33pRtIp{U!5;L&E>RaS-%$*#+{j*_(cmNR(P z)v)&&zXn~Ui@Vs5r$WBJtFl;!?;D=B>=9VDHLi1ja$<_VR%iWuiRHP1k;BLiRMsDN z)riKBslLO`19p<&4tH8a;LfQ;C-EiXjypeHkIC#xSxuKxqOtn=s!JS9H7$@%Z^M?sAV)DWCWfaoO~z$=88&6psS) zyQ0g~38wclvkbABJG&}2oUdM5s!zA*eDxSF!IE!z6d-6WK};2~IKE)Zk=xM2Eef2u zLdgTqVGf_pUb~Vz;L_h(a|A18^CGHAgDHHs8$ zgrYrROtImSP$EIl(Hd2gqAq$M^ne>-usaZtN5{Rxu0f&7Gp!6j4&iO4J<)W@faNiL zV8`%51gh^WPgDbE2IyQF6fNNNf}-WJ&0*$uZS+8qVjLxX*AXuV+y4Oo0RR8&UF&k< zI2L{t7r#3RcS!FfRY1rzwMkDVN$*b8)>cYj0p1v!u|+5BuYHJp!hMp}%>*0YP){)LRI{MB<;_WNC{^jEBt8@K}_ve9rxJxiGteN)q^(Qc|Dreow1$&U)M%w$r zqz}QX%F=-@bbi9hwMHHZwur8E!+{fIJL|C9We~I-S(Jb!jnde)%@u;O=q&-7%c5n0 zg|u-kRxXl7Yb-LVPIgKWE!G1qUeAo5&^q_Efd4MZ&87BMYkpk<2aNQqO1sg%9oE{7 z3jG$rcSOGJ@PGK*ua0Zzk5`pywOQ-*8^g_4H*gA8CL(uwjn3tuUZJhC9xR{G+Js*J zzCobl?lws;w>v+EQ`^CVu2-vk0Q~i_ZNDyn^ZJB@0anOnj~Z0GCY)k2 z_1Yz+ZOrE63M(YOni`Ia?r1ZuWcxAUMmlEe-KC4NlpftttgRBxMtz3E2VJgqLC7{DK z7Aq4V!?s+_fivLfCUjlRo@#Vm(sYK%G~1!@0$BPPffr}MnXL%e2yHo{7q~6MG6*fw zKA}!@a|~R9eK4%?wRI5(EeXO`-f^Mb3A!QNp$PLesDro>&hQ;9mO^GfzrhN&xZ~O^ z9eZrTg@AWMn6N+ZrcEv9W&lNcH(iO|&9=+ZX@|KaqHu(|yjksrIEZYhvzF%Qir|uy zi<01y6P&5#A+TB=N>JFS z5XN@ZyrG}*@c&y~7Kh zKYDwG$Mve0luGVtzf`=-T`p=={CKz7rGA*#$0%ou%91%-H^aN(^N_U^{xA*t2R$?H zeucil)G+u4b-u%WxtLpg@`c>;6g-o~+ws*H8`7Jq!CqCd#W}{iU!AY{0fn_SOyw^ zL_@98JE*n>3i{X5`-g0$CkHg4P^psi9y$7 z;ghdx7jc0xQ6_y68+L;_NF@#XkHNRz_g{DX;k^yEL+e`08SJmUCnj4}MqBSBB?fYg z_OGMw!{^aJ89i=PX)vms!QPMlP-dK$H11K(I3I_-!Sm?1@2U*8Su4>ddxL#>cpN@G z{diPn-Zoi%bjhQB9^O9;AA8RQ4Lp!ByNHVol8|3HvB6D@oiQRLq@6ex(sTAiypUL6 zu^b^i{dPCHdBJ~w5K$FkV}&xBg`vH87G9RP8hgx>&O07bm*@zIc#%90Qm$ZI%`)f4 zkH_2IAid2>BDL>OMV3n8qPrKMksJ>RE&IQSv-!8VY<}(yS6(?mV&aNo=KWQFa0 zi)~V*6ik)|(w_b|XfaLTjT)=64bPPF&V}9LD#Nuyyo@$iNwwebTZAmud2i6w+VEq`;-gJ! zX2_)pwy)^Tfo-l9*4BOB7nc34k5_Nr1mPd zRps>@zHb|yE}z)`CcN0UzloMtXSPKek>zt&8+VmC3f;3t_>i1$kc)t_wA=D3TsKcl z*kA98D-IcRn7sINp|gwFx$-RfGZ>rj0aKhgU^$PPW2_>I79iAVdHz=A0(=J(J~_AT zek)gch|#Np8d zjbXXl1;mYE^yK9n5^>-|g&#W)^6g0|h8?U{Lk)i9E8#DGtxRbaHXD+%p_e$A5;Nz6 zvz^B(N)2bH2UPHywHX$FSJ{3T4X;K(Z}1E z>`4+sGXUAH3W4xUbHH1{3x_HVpDM>s4OO7Z&Pfe9p$h#kn)Gc)hmK1x?4?KEGAK}{ z?Qfn)(zATIf!%q#D@cz^12Wk@zKWenE5{8%HL#XE4rJ2$R)xY1Q2_Dt>0 z32wwoN{Ntm7D=grF`Cjah6<5xF+m+`RBr}c7L&~&`YdQjiJ*K2$>$8*hzq73C+>X) zTaqNKM8rOWggbl+79!xBkdl0`r<_o>?QoqIVkm{0$~{Eqgqn&&O)7-a4;VGIq@kvw zPxm>YrqD)HEY7cZ$jF$4<*}0_p9M5U6?dvGcQzsmO#*hnG_LtkCIDQvh_suqU;%8ej4DjH7@wAa$s5{S%O4LeB!E@)hA9BarfE z(c`q=2rcUfv?5q|^X(U0HyxmoH_o4?!I}pnD;!gS&Dh)v@=~+iG$; zfIwZ8s9tg^!yP!@}8p$DcX&44T@xL@>HLRkb< zr$4!vb;U09w9&q5C;ER{r@*yMLw~`4SMsv>eI=s(;tN7~2e_R=z0t~|L}DNVdf+p< za9#QA^#J`S=a)6YNlH9Ex39$hi_`JBDI}#td_Tj{q2aE`o)6F+OGD2G|I-C(ouJ!S zA||iY3A+9TDt>Mp+hPAn+M>j9R#}W@SqSV9k6SMCn3qA8V_sUF@+va>QH2CjRdl-? zj-7Ha;6w?W|*@X+|7Y3eK@cxKx7q^>)pZN8v!=M!6G@jv&8&qeNJII~@{a z>Zi-E-yCZ2dB4fuM*95vjS|)T8I*p{ESC05(l<&(w^hoor#X~<0!=gQw+kb9tVCQo z!z4JqlmCHfW|&x6TodJf?IC3n{NR74Tb8GDjGGjK()DqVe6a7(*o6E9NYHm0ywWv2sp%{GH^$0O{xMGSm0(}yeDc^>SaZ}LU&m2 zyu!8K`(jAD;?an_#mAI5owjv-_`WoO1%%47ZpuAOrf=)(XWVp@ggP{S9jTOoZRg<% z88NV;gQ9-B$SlpK<9rDcGmi;gj}|zfAi)?W+CuT_4?Ze!Gk!C?8$J)yD`C0C=1EFe zYw?Nb6LG5@uoFSfBn&tWE8E#cgsu%g=8RX59Lj*M(cJHXmq_XruHS4&mqiXMz!5T0 z2MEZbH8$$xmy-)&ixY%DKnx*=0wAaL$qiKGl`xkAzeX33&-tmZJH#T}eUybAw} zzld4fhefC5KKl2ufO9k!i_we{Fq!}xJ0$?L*r=fhdMu-J9P-2kb>N>X!!*W@v0A(= z=fH(=kR}E~72I>KDPi*o+9|>@ZlXSgPmZDm9M{tS z{`23F4lQI%4WVVZmMpbmryb_6F##xkpn*>ED222>qB#&*mQ%#pitXQ))|^qT5$G%r zC`juoa9y|bgV7jag;=*_DkR-VNmSq!+* z-dx1R`0KT5o<$&zMZYacEE1UJ`ilVX_k~3=>h3>sku7R{{O4Z;I9vv1itC(ZBasO% zyL*Dmq5STt%)I$}Ifs_Q9TW&{kqy z1XK}$0BeRDyQ;LBUa4>hh9dEXZO+7m5%?eK5Z~d)1eBg8xw5G^y0)jXC|Rq;SjffC zMUAo8uZks-dlp*D4~~zrs4alVf|-kykZYQYl1K(97a-nvJs>Y5dwEsqvQlX8NBG#) z*ha`+knLA>w!pJ0S9URnK!+G%wcB(r^VG&JEWW&~)1l8+h+cA97*&y?B`(j-W>*j! z0pqau8OiB$1$?`20Rr>num60I@3GEHqKF?sf3yBR<; zNX7$$0W1=2OuiFM5*57zD`WxXsKvLzt?l2|x#wD$QjW5V>0aOf+xX7Ww+rsvIH}3& zGx$Cs(WE#w@>V1;Q+kC=xtr#aE5y0beXz1ojfv?IS)`U<_WG8bE3bI13eAvYB`BC_ z%Qd(Z^JRBz{|5j7|Nrb=+j84TlKmBgo@OH~i=^(Fu_9!dwiRu=HIlsB8yg)8kc1?x zNrD4_mNZZO5%W0vbNwY-H&6hGTUHhlAjN)YnIuqIm04Apbuue+=k#wok0<`6fBLt_ zlhAsaj8B4@J#^k}&3q?t{GZO&sl^`&<%9e&`Ru731kPkIw(p%F>jBj!Z_Sa5a6Eo|vyLU3PefwhcZtGz8;A6krKi(4GhR##Szdcm{v2RcOz#Uz^+v;@ox`*#~ z`-`tWICu7Z9P(ezb`Ouwdt0J)*^SwC_&j!^PQLd>&o``T-qrXB2F{)5vypfA_IR^n zcgjBO9xOgw&ByEudmei7O?Nutzc_b{YWHZDclyM4?;qI5gKjiwR1e}j8>CpY?L1{m z^nVH%pKfIMU{CKe=URCB`(FVP+{4VlsTV@#JBn8LV25=0+kYmLnMXxw(CV`BS1y1Tnv2|Td*;Q7x?D{Q6v&bRHylc6{E{HXsO z_TR^kX}#J1?fmoEw@>{9`JEX37{A`8AIjIPXN_uBp(25Lb+02>%CsA6>)qBq`<$y; z-4qkYOc1x;-L21cW9Cj5p8omAzrL`?Ebq>m&L;!Mx8&1rts6EA5?@&p``H>emTd*B zFKpQEG<5FS&rF!Me8w6%cWg)_Yw&E@)98UW>}R>JvwyMC#eaEp!v}93@-MPG$fx9# z^HEGw*027PRQ8sh>3nQtGZ;}(96%HXijqAg0GU8$za!<{QBi^^3KS{1R_LbUbPajP zcPuJez+*6O6_asL;~0#hcL7<--AH+9kkZz1u@_A*!N77Rv+$W|wei?;lwR6?(MwVt zx*P%sEI!}3`plHjPLb8}-mulOY?*WgaFMh<4iAL1(hU4(#JgU?@Z*Ls1HLKf-tGyYbBcXNJC{9S%PAEtiNa}i-Yo32uLC>*QVvfYnW;#M z=YqFX~CDLlBsZA_(;0qG&OOQ;`yKC8GvJ@ldqZHJBwo zOrgu*ElNH3Wn1QHL6Pr9HoJx*6t_`)X+dt8YoJ7 zQ5v|xfhJ@+b`Ca0bj$@5MPQW1sxVT;eE`VmEx6)9lEZyWAW1n(PCuPp-(G$`yRHym zQjyD$FqDtYTK`?F@xOm8CsGR_W)}tuF!a-1^K;a;S z8!3tuJRAgPBTd(khrnxw+n?ub|hgub@cy`mO@G6X;C@JzoKiA`nQ#5mPKDqvt#JFtn#39Xo;69*!8u z+{2O5u=j8T^*jd{nz{Q#b_XG@gTkE#aUsYxaWnJaBpV>$BRRgst>xEq z?~Dtwirn>~EmRPh4zh)eS_1)FxQi;@c+U54s<9O>X``fK%88035JN-WS)pSj7(qkP z(*w{DBy;zn?EZo9vz(m_1f5~#Nehv)-OiCI;2z)a{C6QvUNJ+1bP^ z>NeJ$$7V$p5@J5)Kc7WHtWL(1`)h74J#xQuPbG5V1_!qu)B|5_&VtaJz1uoEO2C2g z)4&TuZ^CW*p7<>7j|2HZj+%Wu5K~O{@ZHvNPYCdS9*U0(THofA8`fp^QxMudYi3We zf=#`Ee=FC`VK1^?q=@7civH$KC5~R2oJue&uGfiDqL%lR_o+d9GiGfbE;51@S)09X zN35b%3%3O9`ErqIZu+pGNE|89EnOTbjeF|Iv5`@Nr!l}vjczio^9+HfGQbZ|0g+@h z#d9G44vyYe&>0a$EBo0vthtIfEjwfzf@ZlDRd=!iWf~^Xq>jYW5}bN`J(;!+A>gdy z6g4;-IRVOBN%eOv5ZY!F()V5tkr10%q&P5w&=v`Qg3CnQ{gKUYKUn1RCGbnAY{pP=DSg31z?RPx3 z42M1vX!D`1~682FC4A=?X4T=atrRmBx7morro1W0Ok5 z5V=h%4I|VxsWdQz0(X;2W0mA(K9xp-&Q6i)ZMH~MMygbyS(h~_vr-Unn@m@sD<3`Z z3{!|YcG3XdDnXHiU2#Hj6cz!38y3j2iEj95QG%Upa2$lkfFS4Nl#CRRjVM~cFc8v& zps2d>AhQNVNhcjBLS{Klrtd7J!$o$AlwiZPQlh*`Oa9PhHK>MXI5-7&O@J(f9vqy4 z8kbEMuaEI0B5MF@y9ISgw)P$b;?`qMi)m$%y;bhy?@aPaQT@RhOS{i&4`(`tgfpq+ z9Y#AhC~Gq2hz;4k==gT16VX&h--#oddL7fn3$hl8*8K(%(bPZ;Q?(gU)K(&l$yx*p zNyqF$UB&2B58o_aOi?NvvZbz>T)yc=uQ^(rZy!IeeqRA5<44)}Ad5N&0#KWp=Y@yz z+U7TYdV}gWP)i*^M=I<#Vqqw7lW^u*CveIO1>mUoZPtXEz{UJe=O!bmRFp zR>P$)IwBl=$+(XW!cnsd?j1d6bVxkO`mk#f~;rqL1; z(u>!>;;Agv9zOF+X%ERU^r{`x3Lzlq7bwnvpg*u+1cDBM3_XJWz#Q@f9fAixP%O9U zMrwr}0>)Yp^a$vSq}UtVC9~`n7q<$tTF!Z=nY^tqPepc%Ab%~c&QOJ72l*ygVX=c& zl?gCV3!oGmY}8P9w*&Fu*AZSYC~NX`JMhNt=(a+^DAiV~ z*P=ngy(ahFH(V%VUokNe{IXkgV&$>`N>M*6h^+FWCsDl|AF|qwE=6F*4jeJTc+P%k zy)|U9=PJoC3#ZhAQ=Ej8V6zyaLnf>=P%Sgrz z0hkF;QHvEZyEbqA%cfhn5KX!3#hM~CVSwIx>h1xzdiw6QnR(J*(Bck)g8HeWb9GX| zP#-|nFcl0r3qeb`j?+-#3emCWsXGZw1w%X!vm4V6*gBHo*0rQax&HOb#fMw=|L;6L z>pIb|ow^gG^g7KJ$LaFmFTLvJYg|tfcQXm1yKvXorc{(PN(JIZMnwo-N)jnCvT4}r z$$`*4I%Oo$!}GyaBvB;AbD*$E6uIjJ+GgpYV5p1cTJbEnOZ1Rk8bt{fgMuOjiY`G> zf*J5AQt*fn+*F*dArFD^87NwtR2U}cfl8tnNV;J-?F4QKCIUT@zMzRhbdF2spn2Y4|kYf`vB^xXG#aFg79Z@SzL)O{bnmR|=lQ6M_# zEGTV6H%NdWafx=dkb1iX^g$6Ys**>NzFR+v3atnQvwjGMQxHSQs!S>PknxsRa2QWL@cA z$8@#0jpr%H^JJ!g^mSx^Yzj!5A+;$WjVHG$AdRF2G~ZVw*+Q!eNF$PSYpa&ni@HWo zE?7#%WacI!v+KTLt`g?%%N%%Nrr+E;;<$ zZ1oTf{2NP7VnM**s5gkt*E@Sg^Qj zSkS9xNMdvY1K$n6kpr0qI8r)s`$)M#qVRE~^kV8)XIg5-yW?&L0;AV)#DKg+(SjEl z)udMlKJM?K0_J0#IlcaV_3`YyLatH}_SkS)mJRj@#2%C8OZEVu*QVFIh#HDiYm2C@ zPWi7*6*VKYpjFgR#GttlaLbvFiNtl(Rz7+ZRjM%+Jt{TVw&}3ZZvEw(WJSVF*l4VK z-Q5*{4TsKnTr}rZ6X{i0LuaW$!>;LaP2`~AL042G&;$*0C9fX=iaLzy#C9T2+92c( zMGIEM5tkyI=bE&qAsHXFPB$oupu-JLZd8PVnKLBiA-E<4idt(U2T-F@hS(d+oeszI z5pUP|$J`ye1K*ubwr3A^knp0sv7DzN->w}$`SraWSmJ5+?;lJFgznH$>pUW8s#lf_z>;TkZ1H##L%;~?2)i#iyOh5Fds6H>MLS}{)lY~+ z3^aTK*)!6xqW~jqcxs(4KKib-S1_QSphKWsEEFBmNZCTdrFi5drJI7HMp8iL27VH#Z zMYUI7%Ljm7SM{~-%2Zzyu6pw7Yu%0vmq^U_$L2zC>WCXD48hrhgy7WCyJCimEvNkL zR6olLAS}fj6i&^CYoG0@DVmtL`v=jOs>HJ7?%IF;@vk#F&vT@q0Q6A)XYx=F&{+d{ zqnb==!g`?MU~2;*DoP6;dy1<^hE>rAkyTo*q3bPf@tN61tZNy2-QH1ZtBWp1U5BD*wv|SM}>`Mzaqi|mtIj_h`#8Hu0%9)e^SMjAXDh{o0ksfD--}O zxh;C82*6^|d;g=yPZ*CUb})3^cUxz^YmXIsV#BO7vl`A$D(rNK=UA1nQI>!ASk!vH zbNwLX_FkUrI6S=}y9b(M2z=;&>E9%;|1G~@wkP4~$PPiiKoqgT*c<*JqsFwb_egg! zTgRSRnTy%5D?GRvsd0q|MG$6VV+XegXe6TvyDzsgcj=ucdoml-(Oc6@83X6uor){S z-klXbxPiqnEH*(!ystA0MP5#!Ki?<=+Iqn-7qDiJJ?4A!`v+@ZMn{P^VgbB>_+8WK zGG7>mvnt{i77T?_nj4DEY{vq!Z)J$JCYY4nK97>Hrd}D$Uf6PV;Jv7kH`dUe^Wkws zd?^e)?@nRp<=!YPUNY3hR$;cKIQ1FsUFi(eH9x6Y>50n$Km|(O$vcnRo-OX6h9}oR z?+P=i9LoEEwNxHG|Ml{}6Mfk!C^uS0C&ip{K-;Y7U_pr_qU&~qa;`^qAHILRtV?#A z%?mxj$a@Eh@oM+Js=!RL-i>WgP|ap_WOWkaMI!E8c4Ky7YpEVrNLdiLllfT4>20Fn zouV_H>D<3WC~`S&oXzv^!CYn+bwg1y!wZvTGuT;2oU02Y!&O&k#{72sn9m^Y!5-*7~ zXYBYEdsAHDl>tq*1QHzf5D$E^{CR5nR9H!R>xLb_vcCrH)vdw%QJet6{kZb%K(rr4 zY+{oYg9l;ZC`xQ;-pwK4G>RI?oq(d`I}^5z&{2asW>5ryDOXXn%2FU1p84UU14^rm zB4>|&N+_C&pa)4Qf?I38Jq>1_A6iVS4kLa1hMNXM_7DE9HDRlSSqr1N&&djn`G#L7 zW+n~Ou|nxq+jJ#6d${rkn2i}zO--@o2oem=YIU#}?> zcTp+mOPKiE`RB85pDJXfH_SS<*VoLtLsaR|;?aIOyO#5AJ*QpoP+ps=g?GPPeCyv_ zoUiGM-R%fVvmVxcz4*-p*RqGXR4%D_oX5hPsb`#5{j>9GwR#Otk*LUAy>nzwr1-6w zcej^U{p;)RSM*yH6%$4Dcg;+^>3_ZKU!C2oF(0Kjq#izA|N7xKim0g_g;S&7f zFV0uKme;E{@uq@LqkEQxaHvp(65Hf>f*f4tqx(XtOE72(>rB2PY?Y-~6b70FkE-Kc z#!vfdreyu3(BSxruN>>Ov>#-_D*2K$ofZQ&=k`@xhU&aY=o6QPLN_u41dB?1HrkW+ zcExO~bfwP?EQNAg@o0#E2Vji2w?&3B3_X68Buqw^CxRf@qqeokb8p?bV@KX|(7N`8 zyIl^7fWy(^>?pv8uwEGGN_$`BG%Rf$T)$;Vj9U9>GLzXh^xHg zRaq7%cOH#vc~d7HBv}$8DNg)Tk8#a^o1nN;1g4lylnD)&jDk{&pul|&pDu%SDMT*$ zih%gjugJ{y*+`wjtFnHI5-CWz^}%U8P`SB*rk+4B^=Rd^xLiYL>6%3048!HS#Nv?0 zQCO>d*(45$OSQMWbkYD~QNPcuv3)G7CgKs!v; z`D1`^9h}tQ;pAC3vqqCy^(_jQ?6kQpN|>?I_1KeUFwFJ1zsOnJYD2>6t18qtp!4VUYHF4KPPtAX-+IB#>?Ei!ogVmQEv{$|7D3#D6y(}^7Qz^XFp$v zwa;Uv89mvHC%)Lv-khI|i9pV=!^NnhCx-I>(I+)=_?WZgrJl=Fm-VL5zOe^m=aNyp_wAXA z7+ltUGHy?)zQqTr`h??Iz9@CyqUy5z@+Bs5=MJ%lG(5Yu}FZK;?%H~M09V{YhOgmM{8fq$c?qMBq-c9j0Oay ztfgcueeKrLK9#j3@&K&cZkOO~qLg~({+G*84J%|9cju$A30|KSvYVL6#VeyNR>;1_ z>MOEB#6QE~d(R&^zC^9PSww#73ir2YfAK`wG{fD%Szflwf{eIy&ez(@SA{Ey|B+m& zYDwgso@FD7#gvu=E>^u2@+U_%bwVOCs6ncy{y9)VPCpq?22cej)FL-87J zi_MdClU188q&Cl<>C{q9**tkCcG-wx@siCG3Cz6BBeIaS>)5g}da@?sb;L6 zBPy$B4~IZECz1Nh9^~bN>_#ideBwT72wlhGsrRaCeKOy~*u?vs^vG44Ewly?&I!{V zgD3B(E*nuSCIopzM#t5{XZ_jrtX7nespKDL<2!%c97`3}hpU zB%yyzh+?(y;@4_@ttzrlZGLrAIq9lNM9codf#B=tU~Ad{yXD$Cn5XiiSDOMlmRS34 zI5cjG6^NGvd@AT0#7Hckbn9g#w$JbMYOTbBJfKB3qDWF&iS6^NY^=m=Nwv=#(o!oi zl`yrMM6|5LHeB1-Sc$x~g_RgOlbPe&A)TS9Hu~3QD4Nxzxf0Pac-AqAP=d4NX*KvC z$w)tQ)XSEMURt5ZjcML8IcU-avav;qWz(da0%(0uCl4YEi8|P156Wk#h9VcGjaOq* zZ!n&+zP&PxN4&8yd4ML5UjCy+rfc&iPy4(M+$!7{K+BS9pLd{4QVoGIsmd1BB%);w zwGZa5CX)37V*+pNj&9li=X8-%2e>;M>un9|SQMsn{k#T?;!rQKP>mo;>k*GgL!CAGYp}LDQGHAo+Tzu@=Zhv$kL@rmohPP2|?y&8Rk! zTM|xFknxHCkx%)Vyj&KAUQ(m_ZoD0?TtNOSwYLsev{V2&ev_&~Sxq21_SPW|!rokY ztJY{W_=XU;Ic&r2hjv|gD-deacHzbcmp_r);Jw*g#uK8*LsMiUie%a@JXjPYH*XiV z&N-1r6E=pSl2q$*Kb1$nuXaE?)l+w$Og*h$j+-{r4j4M)ac(uo{|5j7|Nrbg z+j85ulE1=o?ZZq}Y+15=%WPET*viB;iR1C5X0}eHT$DsxJdsEZNyYI#?MLhv?w2e8 zk`hUQkQxoPC`a?)i6j!;Xfzs)zIOie`EAtih`-lC{QtkK=eN)AcACwj!yWd|=w;%( z+Zp_@cN+Znr@$TDPHd0;^4%W2+iCHy8}s)k)^oG{c47zi<>1}U(ZSJ&ZtLWHM|>MO zKO+9^aq=G@J_y~x&AXlb{dV*C{Xuv3)rIqDPe&2|xmq83S{O{Sc+sVAeFO3;y@t@@B84lu=T|uhyK^P4?tzALO_{(MErO2rU zJj{*9@k~}L{$Ko5AYF%rWjt+_EMq)K0y6mMxKG1qhSJe#$|30!a(+8H75tE6w`F{l zpjjWjYR^8D@KwNR!yZhQ?%(|sSl{s?Cosru;uSS>d}4T(^GE4QowQECEA?UHRw|YN z$4!Gva=3g+nn!OnR^*@^3pB`*oN@we;*uP+5;`VC>nVvUUzy|`xPVs4XZfHjEV?}! zX)LaPAWKu4fsW@21fz9@D{8R4Ea@^2Pt@dgXwre z1`Bp$L6H!4V?lsgk=Z)Wfg44Rx0f5Ep*r+W33TAZCYL+dPueKIyF&B%GT|m>do+4^ z10dxJp7ts>yiIqQ+6H>|iRcqC`XYqI$T0Re>YyAY5U zK?2n}6s+f=Lv?(EH6R?U*Qf!N=r(G2C`IxEAun=~0x=e#CN`di5ZgCuVtwCZvU*Gf z4s=z+5K;cDKXC#(;xNLOFmlEgoBnrhb@IJ%&q_`{%MF*QIvJ#d%D;^Pd~)pUHv zP-Z`cJP7FBPHJ84`y(E~lCbV^jD90sqL_u!|Ch27F4!9zmDAc!L%o(`dQtuLR-$9> z$6EDV@~q3Zlf*BPT@+go-%b_&5-vT}DDK*miQ}oP<;fUpCgs0=QM{;j8S>Zef~ks8 zbp1+ev@6ugz4pN#g@*6lzkbb)*HDSIYO^Ai-n&oW_wH76UpzOEt)d_FgQ$YL@E>B>7&CF|`B7N?Dd$%B+kl z42^S4GmteTfY>>9rEIv|X_6g7p%y^A8r5bpF4L~sJmUbYT=A@>W$IMaS$3z$5>x92 zkxRm=R6L|P#~P4ICS0o1Gu@nNm1i`_MIAPTlJZ7@fqXl7niqF$q-HYyxZw%2edG4+ z2xM+Y0gQ$=#N3XAMaDQl6%z*wrlg=?0ToOXtRC5Fr5X&ObUu&VD|G+SI|DiqyRkIyN)myed`xWFsD8H;mf0KF3pb*u6~dJ{eh zu{dL~q_k58ncGm1M9mhE+{A_2cvO%Gquu%S1rm$-8a5>zhuUE{9Xo?PDtLPFwH2(X z96gA=poA-;PTm!xo*8bxuUT~CX;^+~2AEvVOjjzJlWt~Kkrh%XI_lS)ikYBD=6^ka zxa+GxE)l#ccfIq^)E&9Kz@3gCCPO<^Ufkt^TqN-s#$4NTJaWV6!GC-RZ11Ts7v&DY z)o)rUlI28_tlT_2%5M?a=8!MQDpj~Z>#hMn(@$JUhy)ya4J%e9Nh5H~Vdk((qHf?w zXP9wUFyqF}fN6=&xHqzkGG`N*9cGfN3Be(@y_%rR4J^frL_>8Zl~s#nAPgoCS~{Ud z;@gxI#`HP8yU)5bCl!i{7gtDAQ@jm2wiV-i{S83jDl|M5a-I*0386+0=yIY*ug=69 zzD$OWS7QW0rX}htrRVgWFth_m93MIVL7Y?6$PMBEu&EnDDnSrqDIbhGY24YJ%6bg^ zv2ffZwZe+9*hX^#c9?%-U~I2H^n+|=+7`d?z8x}Z_`wUmy%f=lkD|Um@`Du5efHmn z4@*hW>Hc|t`RVfg&E@^)hwG1Lx82(uYK;tTkfqxzj#92URa<1Znh+!LoL=6v!swCw z5f}1LE?s6KT~f0*9rr*^Nffl0#CcY%5ZoPM(WEudkqX+_h8&nEP@td_Tyi)SppcD3 zm#po2k@G~yh*T~j!u1k+%NjV3?9drly%)>&tc0p>EZd4TaP}{D{$zi7cB7#`jl>sh zc#q>FKo-PZLv`}vD$1i%r?g{xGl^4+$1YQ8^evRg3<537A~xMB)iUWap?Y+gNw!A^ z3#0~ZP6AY{D-bfI_bSQA^>#8~q^VsXEeHil{%m4v=TVCaL<;vP`B3@GRT+bZmNTA2 zFYHtujjRQK*6v)2$LF#uik8eGEy1n<)BQ~rkJ5Hx^Qdz`2X)baHYA`Up%l4W;zyqw z5#aH7RS=UrjAPC1WKNR`F|rU3`EKBAvGV%qr{4=Zwcb+d<@6xWV330anG(EozZiw5 zr_WQK{D^H2JowQ`_+)XpB_l3W2rlzrH&jB)bfXMtnNQ6a0FFyiVXK)I@?TBD$rlt7 z7ORqxAlEjE*@1p)6fB@jM8YDQ7T6t(f<~7%pyQ~;tr=BqMoky$rZD8(!%78_J93F& z$)DABA|J$M5j361nK^X2f1iImyZXJG1K*H2ia~zh_4eFpi=MD#b-WN>VV-&#+w`o& z!D-zwrpSF|jqMjv-Ng!B?hoRA0{NiaonWyQx8paBdLpcDqOV(einJNo0I`eX)M>Kw z17;ORfdU!DH|5-bo5XRf=)FQ30`1|rdgri9FRKEwn z!>P1X6HD$fbSp;2hP7r6q*FxPF)62)TxF?1iswL~$|!K3Pk?t-juCYXYGWhJuX+1^HZY zz!=TRV1X;XY(r0Fpy1Xv96Zh5%LtgI0z!@;sIr+-#DIc0aBUNK6o)8@3V@i#yJ(7) zZFt2tyrNX7XoXj7O0m*c9bQ4Xvy*_0%GXUD0dg!t91vv$3OFtVRQ`T;8`luXq18~8 z5Lhl_Uo_dT{yYpa`E0ss2Hzy1*lRkaZAVAq{~MKE<=UN~;43 z7G2d3xXl3tZoLscD;zkP7Y(l|=r)TYavX|8#j8Bx>B$b`%w!{RPVcL)FW*cY30ckN z_$bjp^E|LF$5AB}pcUvHZ$LNrZ;XVI+lLpGuY#D=exvuMi^>D93Wvf4gt;t$@(<(- zxp4hng(sE{lJh`Wh0az904s3peq?(QksL?K>VoKn^p;(T<``nHP_cN~5cnmRlkMwo zmN4JT1}=F;un13iif!Y(;qc6w%p)l>_E+(ksgj$m<9II_$d>x!@~V4xdA>qfO^CJY zz3F=6KyigOZSXYYm8F$Z(^T+j@jYYZHc>hq=)#SH1TGVaf(9?Qi2?^Jx4Ch2q=E)3 zw@G*L#$B7J0EI5F+$Qdp3of^b6I5i7$kwZZB-cL>8Z0ixO2__9m*}vye-|Ou+Ww6T zCh=Y&4YwJtSV(oYf8zt~4BNkP4yas?Y+_W|6-Scmdu9yBrW-ZP39vzi<0@>kD)deu zhT|#>vAtzOc6P_Ev`Sch00KIa+l<#-KpkN-*3301S?LX`b%_E93_M1`Qg14wpfaZe z6-c1IgMtOpcW{IR>pLiLdMO5o`*W#SkmCo*Feno&@ZN{I)YNHYs0)iYgF)YYA{|l= zUeD8VurH!kO?X;9U;dqg+(0{7OjmBFcCysHBptqP#|AYrAp@mRodG#FGDz^^9oSW) zW5(CaA@Bko_z4E!3LZF^;yIA}69?}z=z>s1-uLPLE?8#lVy638NHl@^+r_G=9ic++bOYMEq~_PhkXtoK+ zWiaBg^N$zMYwmAA z0&>b{4}8RM8o(>qzKTrbH8+SjlTIa_Q3a8yBywg%sb<$uNtNmg#y2&3C^k+u!2466t|C{Ayv;dRfD;YKVd?Ohg2k?hGm?OpTmg1!8g%f{aGg*lE={rbZH28d-$<)OLlb zv4a<2HnqG;k5xN%$skHHE9RW~upX{&y0^FYH-M_lic$B9qm*l$YwpBSqY^d7>dtJ4 zp9Nem1qBUWcLoIxR(EFO=tu<(R(EDY{4J13cod+}1=gKGdKaN}XK;dw3=-LTnXfyO zgVRu*!`sFPM2!*NZ%ku^_nX!jA?=ZuNo-qG#hA{EFn{A5?ONt<#HA;_waR}3#w4Ne z0L3JsAi-jiP@q7%G78eRDAY#La2u0^gd~4P%=3q8 zEM@uqndHmBSy}k0cUF_SRGMbT-E{}MY0ehs8_q1ZQXfiA(V>76-@7hff$Yr>_ta^=RF3!8|=j-mx*&WEs35T~= z9K2kuS#y654j!!W#Oae;cPA9m*4??ebfki|b$4O_h3?kfxk>A_MtA4A=`!U6uB}wj zC~;<$-OVvYw*Z`gs!|3@2{mKB$_#)_2}K|TObJC5Z2_l*qUL3Tyb>r-GV>G_Y(1AQ zvP>c!X+c^7j*w8liRrTX5-FWr_Ui06p^lMmwjh3!D!e+qWkYs$Lx1EB9@yWhR$;wl zfj8S@vgWGP(){4VBbg49SqtDQZj*!MuuwUyg6y35%QlbE8QNj!jC&&+cG*UO+$IL^ z<%Vde#0f$9+V<=s1ilr`Ck{J@;o=xkim;k<5IzMVSfR|L9#XTPxO&jJ><72GRSyiW zvS@heG;r3b*SLPHby^|S0qYGUb!;u$JiI~n4{-+9U^8muqt^s=P?~y8aMsISuM5FJ z!lWKZ%VA_<094SR!{XuzPDB7+HM!BZUp`%4Jg~p_Jbd6bhgYNW%;@tqm&VuhQE*g# zmcCNBD9=2Axo>TwU2~hBC#?UeTOUJ z358aSGpHcKVB3SQ^wy%`)!X*qTY&Vl_TVcq210u9DK|XGJB(UEpidVAOaAQIvH(v- zuDyvKe5rLl2fiWg!6&D|9zfq+gH^gXuky2eJqnu>aV#=-^_bs#IRO}u2Ck&U=~5CU|`&1!4zX>h0&NFN7MtrV=omu}V7M&#(A+P>+S&~OleHZ)uc((?Uf zc5-^oe$vi;ak{21FpwgLo0mqFJQO_5l6MH0<#IxfA;fqm_+D;%kz@GvH|0sYM8kqw z=@0=ut6~HcG>ByL)iDC+ELV#VI2(chC(yNmAO}#pt6s&t1j$e!ST?=vgP(EJ>37Jh z7B8Kqct6?F!CT+yA*FN+9k#K_9LuJ8dw=uc>>OGBF+1R1aj5c3A+EvBX4iUD@Ky1> zZCS`Fp>4}TnxrEYv~5{P44}~6mWAA;^)g=;(z=yc%NnY~+H{Y$If0fQ!9Q0wymMTS zIl^vu7p5EaKud-$C}^S+vG`V^OQlnq?_VtoE-s8!C#VMD@7cDQBW;m}0<~>3hX=I{ zs=-na?utQy0|nI}+*z6PVEMSZZte@yO}T&vVmpZfksXN~@7(G4ieq}HKqW5cOm-d> zN%e{>Q;Iu6*E3owER_e)Ft7{LZEO}ddn=z{ncirQ;ttR9^sm{Bezv^J!wrZJ>pP>7 zYBMK8$e7JwHi*Z&(k8eXIPfa(0S(KRtD_nX*IBX`BjFlI2*p-|wnbt*Zw-2EA z3gcDM?O@4$SYyPmdGVrT6w~cJpm)+-At0SQX{+L5!}5)6xB@YB{j+m`S1-mSAgziO z=*C2W5UAWO1wtBCaY^V@Gko9$m}$7FZX0gP->aboFAhybtN>g?+JKtA6f-dz*@b0Q ztVHu;pv{p2FHpn|0YdT-c`s<$piw7!nK+iH4rT|LvR~K^(hZdgYP#LUoF=nc5;-4Y ztVSLmG3uk9{>yMX8Nrnn1^5hZJyt{+T(JHmPF zN}Naqf1NdRq$QGr$$^OxJ7D_bTX!H@g>%@RJ$5n) z!p$@aO#X_P!NMyEBIy@haZ08zN`Fe~j;S`;g4TcK7o$j&%YZA`ip_j!9tdB>4E^AP zFV5+=cG!2_cROc+YmXB8WagPJn{sBR%feMriZ;%7O7x@lfha2f=mufLHTE(MsYDEL zV=q?nT-<-YE)&RhWLv$F-~YyyD*rjOY^(2&CnG1~qBQIWt`LFzS~l0XBA@G9&w(37 zj>kXQ)}t%z&f>BbNG*I(=hVmFT>|@=3RJRc0B|UU zs}C|XqCkP-YEY2a=Bd5}MgnW#22MX3kwuh&JTa)5U4OjkcKWc*@F0%~O$XZ=xZ_<<>Kj0gO@3GGK_+5^e5J0nMLOj}2WI3+OTtY8m!ES!51oE?0rOyIW=zZeGzb_> zD|E-xkI)4pt_l{d%ZIIzRO#qs>h^?&6cH*_zJMmKea zMBD@Hj>pcxwIgTr!uY`HI|Cl52BX=j@I;xQ*+utL_ipua!c|Z$L!dX-^U&=N#anA497oh-{2@h*4ht+$~~%;P%lz2y!)p!FD)yb1FL;S_D*4WgPD$nuGTBp94* zy^5PR4`_G4Oxjm*pd-yI4Dr?co!5nSP6a6T9b*7*vo2Zc{WXMo^GSfDh}Pk(OHlY4$eJP~Grx-HEmh z4_0n?aACT&M0E`haIG2e4G&gfo~+TQeUfT`c@qy@Rlo)?5&GXp?l%V%MT(57@x90f z*?W*-A&JgV@+%#kT`y)MV6`_COwf^woE{G}7&{L@USt^mir()m1vNo`LJxP(7CBum7O`acdr!r5yVRE3yk1{tJT8~qa z)A-$CCt%`ck%quG6lZOB-OYt`&RUL0uKJd7cZ>Ntf80a62+%Kr*^0`f)3fMe=g9;)@N}(Wu^XK!UIaZnKR-vYj^Z!;s(2$T*Q~W>Z*vHEJ&d zjWf6c{7f|k-R)7(`0d>fOKpmkz$7aN3DX>LM@&f}|4QTs-5~~Je9Wxm&k8kxgAk{V zNa&io&8_UYzGwaNN1VJ|9A6pye0a*sKN*RBzPmZQy1o8#bC-kPpbmiMr;9bTc~u;d z@aD(Ga5(9B=piR2&tDHk8lA>{2WLwRBWFVAdIIW2NZ$-7(!oHQDOcLbAd;3Ln5V!H zfy`{k%mAHTzJnef1LvQq8iE3calodb3#+@miCO3{FOhK$lMkRM ze%7}=?sS>*NXp0;65X-V$b8|8Nwm4pV#k2U6=P@kiR9P2 zSqb%iTb7H5ov(-@{UwY7z7FgN<44!8>1=rMhqwl}6uZ6LkPVf;soLJ%OKU*xi_oT` zODXk9Dhor3IGu$mkAhLlUJ)A4!YhjEkHYXM|0%7S7_Zii!?ZEb?L`!pMD3{JhzoTn zlbSZGm!j7tT>Z_l1Jg= z%QwkFx!(%2KDDRGJ)}<^AV}>yKx*-P^h|&p{k5x?UnZ z+?@SYcWycmaUryX`uqIj+12lL-)N_Y{Fud%W(69+SfpZJI2NtutC{fcXSeaLsLO0m z;|TJKXIrQBZ5?BUqGHB>TwZnWF3$l6L&eJ*Yi-p|woa>iuwNlRf4=;?HuF5KaA9w{ zXXkg9U#{vh+2(%IC$-Yq)`^YVO{{vm%7m|Py0^FYH?=v8*g6w%^=#VpT5yzuYsH!0 zbw6KsZwh!B0&;d&FHWlP94OFJ%)D02bWouRdvkyFaNhm&sWv)J64YPKY;V7Oy1aN` zfA9H%*JjSm{Z@rbT$psNSo^fvd5am>XO-I(ssZV2>$JRw?JD>3{mqB7^GeSsUV#O+ z!g2qvN+)b;fjfJ}QOaEyT#s8*X8zKN{9LK~T`n-!nYy3)4wqxfJwTPacMI9}Qs3*5 zSgP3f+P%7n=O%wr2V9KiRd3 zY{}PTHm-6q_S&^GnQW3d=TvP?r6>xLu%So|N%^u*`4RKD`{(jY4jKR@O5#P$mReLY zc}OCO#Mb~CK;O`vIFBR$WjuC0@oH}ziC9GUV(-%V>*2%8NI{B7{W4NdyFpJspxU4KNvw#GfjX30&Q-4`;d$53yc|0t_enMC`{9E^$O1`U zJadHW4fXevC~zL6?>k-LDE1u50FFBKRWekNxr1WIvAfEsUcddZoM#-{Z*?>{VPF3j zD4buF>hCeUHFh4_CojitEUZ%?}p*$ksE#fkhoEz9+Zlv_SrFD2kuC{@hN?x-F{(O&41-2@0E^b=GiOP zYS?BNg+E#H?a*I8x}&j=IUUdHFQI}KI}0sds>Rjy#b|zImrnc@Y2xiKg%kfe>^*%{ zO&3l4nVme_f#@a-)T(@V>BgRvulBAY>H2m;GCfWCq_ktNH_Fjf9n<`*7)P^@FZ!y{ z^RsjhwJq8?`-l>;&Uud*&GRIlUD)AZGpl%dtyCb-ITF$&M(H=SUIhrGQ<6OC`&^w8 z=slGLm+qF&5PlfiJ~Q&~E)FODwijcoN2y6kjT9`VYyT8m8; zA8T*cd|t=GOWwfYERsYV9$xPTom2)+8uk`6+PcG z6wJM%WtWGS{V+^cg0O;F(err_R$vXcP9HIVydU0aq!13T`7lt4S z$FKG-F7y+T91PWvotaPFFiFCZdI@AlCq2>6%m>qJ_3=z|o1yU4-iwZ&mBA#@AE#Jv zC!>#wWc5=FqUx)?Q%k4fMUZ_g%by!5^)Q_x!x!nlh5Yg3R^_?QQ7WHQQwjuZT;;G_ zla<3xF4CQ*RM|M4X%5%_`1S6myVvjUe*O8=yW6V|*B?x)`7fU3svLHOO)^faq^RX@zm^tvjt&i_#@8xMH0nWH50U{nS|B#L+>*eSYwqP zl6NJ+c&ccOA^K`faG~M6D|~RMZh|zv2Rl$4YAGOLc6=ZZe5XkcSL<;t`|;KODgM zzI3D?{E)_PgzB%z(ffiHWc)-#fokO*f80^zB)+~^6> zQ)28LUwkHX9pkH^1xwaj3bY>L)&gGyo(_N@F9x=*%@!RSq+Z-?XpC&4HY+x)0b^Xb z-F*4*(oLQX5tK(ZFwPKcy`kj)q|aP16IsK;+*5~TPLVc;qtE(KXTvddNgi9bR}CMa z_UA77sG980fQ>hhd&S{lm#DGiP@6MzpmBnetb7YRX~DQI!Y|Z2wIkfF%SCkHc6kuZ~$t#ZR2tpjwzX+t_TljO(&< zuASy9x-M;K#_75BsTYj!n{X0ICF{Qx4_Qu{t@$kTt@twV9ym=)*tnvlWj-ea=i!Mz zDzhhHNxvYRHLF5q7l+;j%fk+8w7xte1j9UjM&<+ec8QmMtn!sMoBV2zXtU`rHL^FG z^hyt4v&ktgW}r4r>-?=x-WXnok3gt4_R)Z?dhON85#`ZG1Qx!dNc6O9< zcJXd^0!B89Hr+mMmxo1fa&vUr-kPP5zsYVlmWkN+4xF_f=g`jIulx`4_?L?{E?iy# zXK}^t676X$*rzb?pR5eqYyMHBgkr^x4I{HstZd*&{_SZTm->xsEa+Wc593)FWp+uF z297miBFDF%Ze*Ebw;9seY4erA+c#y-)<%%nMk%ZyzpPWps}kgnk5^DAt*A#(D5v&j zxQ?o+Fpj}=pkPdFL#V+oXbwhu-KwW`YL!58>7wQR?$G=k#VyxgBX;idR!VtaND5*; zsulIiP!-dA;*QCD;AJRonSjwAQus zO7Ruk^Ww}yQ*UNwb}P@&>&LP0LiplBJXYxpK~%#Q9pgtfexiVbDUR`VXR*pMQTr&3 z;z%b4wTlxrX^uU(jJ#5x@gi|{`K^^WyN8vKi1G^OZ;6{Ayo}_3mb@n`I~+_#-SRw$ zB`^Pmm`}Txt#?@Pr_lTek5ga3*ws}niONS+QO zZ8ey{U-XIO`u-E<>f+V~uX?@BC+gXnsJdzpQSW|ze_egHZG)i5 zaf369+;Sj`fmAwkCbL1yxpE>!oq+t$rWv*j8zUEUCz1r^`Y~H7pe|cNl!2Q2fC~(D z&!2?Em)$7;S;+ZbwmB}Y)6w(Xp-C<=$1rKc9)^M|4NuV+R6M)x^&DW70763AqOF;^ zyNpSe?3u!a2Xzz%>d?Wgl|^&*&ap4b1VBos?28zL0aSh|6VSER@y&(DZIBeIup0&q z3wiODhK0%mMZ?02hr~HU?Rqq}9Nec5apky3 zcyL&$-viYmA7{dIsMK;aJgYxDGIrYYsE1{mIxW9ESyQ*}ra8y!sj0jJWScg#gSL1= zRrqwY#+@425OYB~yp^6l5&?$2iKQ1%881m#X(2Agbe_CT_ zmNcy-z-lhWoT!`T1WZ)Ni`AH_67t%ZfC(E7vsU7&;|HpEyRJ`t6SP8n6`EAbdTet} z3+GrVtyX?Vx5GbGNxAs=r*u;GNuA6j2i%dR0w&LiU#2JUF;N+vDDQeRcgV7L4=@o{ z++$DMsZ7?4Ml6TgE5BRW%U-Ev&%VFqE^d7d)g1=7vVH^BTqH#mOuSN)->Nsjo$RKi1U^ok(W6P6K(S*}E~RI(=`XZi zTAAwL;~?{NhuE#rRfj7imx$Pm*VjkUG1tO*IU0P+gn~Nvtw2QRx9W z6Qz>!1*2TnG$_two8BafaAu*MNo}hhxR>FCFXwEgXgl9{Vshf|P7c^;613RBaK*1_ zSQU1J^@70($p(fBRU&5y_I;=x)KgoR^dL$#O_U$xzLDQLh!&IBR3Tb;?Yom3oPF`= ziE-j60nzc4z;H0X{tnB8*>#uFoN-H~gj!lUxKTxS*HBsaSVw?v@7iSND9z?vP3dM6 zZdWQeX!WLjajbQsbp+cIEUENFjElq+T1mAV@}nCK1m=(+5LmNv0|^mZxPb(QyRbuo z!Uw>l2gCDrCK_;tkpxp!r2veW(aGP1)||arYsN}Aa;wSp|!gUYGMVLj;yN-hBVXA zcoHiX)8Oh=G-DNviEL@>A}-ZLbVlxz6NK84<0gr#Jvp*(ib!iWFL-}uHxR8`BXbc^ zLgnRn((g-8iXdq@nV{37*3mqF9+s)Bv|>H0#He-Z=%vPRVfE4zYkOKxPK?clpKRhb z_&UN*%HCEg@tdI-fl(2$IJS@(qNpRSUqeQ@G~40is`j=Bt^b4l8hS6S!FE8bPXVtFikNH+48Io|`(n zg3L}~syeh9Oyp~HHWEhSdPZqMXOw8{X3b6ANa<`*qZf&diEJ>1s4L6cxyVrOe$ple z@*BCIl$K3FU)1EIF~6}e0*h5z;v$A%BV(-6#wa7ZIg1if%em{5CN-ayj70{5b-)g= z*1pQv5pXqK^h&e3t+;#&L%vHHGc5zf$C)9DDcR`@LVRKZM)D%zdI`o`%1&XOJSvRj z#Yrf=p$tbNiSW5R7zxGs1-El+j$*Uk$bfF{&g4c$xQtMoYn_`rv6fT*<%0@>;NQlz z>9olt_M@;YzuLCx%Wn*XL$;>xXCv+1oGcP&Yk7O^etj%J8QW89Mb*-t zHWJu@CO;oTXE!Lr!8Qm1c8)IwGLa)U5sqiWoTf%ZlgVH7AmC2;0FdgV9@ z2a!8!*#f^FSUOcBrb>XD=x63^8IH~??{uHmrqZYM)*GA4XO6C%j(A&r5K(gF%R!L- z5Kp=$!{cJ>$2F&3Yp&75GPxM!)a~WR zu*po;e-R1#YzSJMw7Ef~cxVZ!g9^wgJO)gP3|!~{DfL^blw$yC>H5$&iD(_f2PTsH z$JDnSXZ4K{f{hs^9}3E$3f-r3X}OydMYq6IjZQY-H`V1YF$Ka4feHjp2XRm9NM z{GjumuHMh8eDdRgrk(tmF0YZ%p2c>Z7C?u9?BO&2tjRd71z!kor!12x2 z7+>~+gqNv$fl^vYpx7*j6s$Jttfeh98%)PFjL0lqoKk6X9gs?vRLa>X4p8IxKULo^C#H&`5AgPEP%8I-muv zU?AN*ksbc(Kvs%kwu$JN&0S69j^%L!%s#z)H&4)~?WOay-vQKC2 zvf2i$gm|d1sSa$Du^%2ZZy2i+-0~34$bD2Y|7amUvvq#}$iTJNK|D8bQbT>qxl171 zGlIiN>B3PaITF%1jAPkFmAxe4p)MnnkkYwh>lsQ%AVERpIMk^@LaVG;y;d}+gd3vl zh$M3qY#l?@S~IzXH%x@ovD7J*|0^nXghYq-h&^*qc0YZWvNppGrHAn_kiek2Ar}^o zRY_24qn;oGjA(O)vqX@vhA!$1B4J@-VQCXKQc3~J`$B`O6M{xU#73Zzz>tBy#7fBc z`T=#Zu(nL%cI9HYV|VIFFGYPIkV!#WCfJAz?GBTjZ~b8&l~QhrwW#(0qwg2iMH0VH z@HwArGb~2OBO(1;L~L05F6t@(ZQ*fs3h9d^VYOX+CV|>4I23GSSR>ziT`25#6qr> z&3a|)ncL^?rWO=$pN$L3soOPNhIMnKi}6z!_@zPe=$6YPl`F}G2%&UO(8R5iwy$6Q z_+<>c3pl)<&9)I@F8Q_Pf6Ax&8F($$MqoXkDYsYBL#cY)4#`F*{fQvDC2DrwpNe(8 zW%BUq4I^bS-xv z(^5e0VVN)vAtv>Oar=vIeX;kI(syNFV&Nt4;Ks}%CGg`=xIGcQ7kv?lzyrN5c^a$s z#k~mjoam)gy@~F6?T#J)qUY^>;<;CBD#v~pCM!YMOtwYO=Rw$#tmDB4=>CJ!KRO+w zfDG0DPp2`Ydcw>V0x`Sp6LvihQe2S zFFJaL2a`m9oMOG5j6N!o)lYHaMyi=pI}~2%$MCIT((_JgNjFnucr5+5kk_u(%xl|=QN{i zSL!cYOcfGtqO5C03YXe_h#j@IbU6N8{u4?EGNELjs$#ry&yZ9<+V1r3+Zq-JCiBhr z;HJoLc3rt~^IJDA@T?=cMY1~Oqr6-2X{~n=Ef+aiGqH*4&GSWp>{;8@KzWzJj^Xqa#CgWp{vf^Tev1uM=3xxAk6jUT&GVYQ}r6 z=FJnIbmX>7n(w0g=YGkH)rZu_Xwr5Jos&{y~DEo z?Z-9mZ`dpd8j0%la#qcP01FbilnZ#_>z6<7dT`ylFO|5gBZntyBPa{%gX;cVIt5?GiLQ-lNpQR{h?B^bK@zu|w@N6qF^{1GnUlIcWT|!f zFd$mrNc2~8Ng34B*+fZL-pY=TZWmn;p0>)XXu_FI83?j7jxj}Y3{%6VO|9zc19J;> zW!Bpdh;|59;a8;$5+F2dtgyFSIM}LTY_1QKhHV9?*hB_;kQeVcHp^y_Q|m_Y=IJW1 z8frUdUb9Lp$9RZIx1hiuwf3$RU?DHGld$+w{92#5D^vG8PH zdRE2nhLfP@Mo(aINH2^%b0#qm0rr3rTDz-|Hg6BX5GrTZ5bYe*Eg9E#T3jcsn4`Aj z;tEQ$i{bRnfN2fYhf-(l0_MzkM5VKAu)!&-{b8m+OKa|-!!pYr80z8$0aj2=}!wCteP@|f{SLgQJ~Ql(7eh8 zh-~Y*Y>gwZ*vx^jqqQMkb#r#KTj9cClm=i=*X#7UL3*1F6Ljk)}*8ug+Ha9h0F{s?ng_ZG;hO238!>! zAPLX*5)!?b_nkyHVUR$QB{%k@e6@EKN!Pc-lj&wUYo#57spB`^qO7$i7n)i6GKv$p zrBW2jjXa`A4&Z-HVpIkM3RZ}^m_zE8Da6NxhLQ@25i00VY+8Ikz=edownf5fqa3WH z`C?mKd^~6cDXxy8?1RM0-E4j0tLl!n4U*7m*#?OfOK|0~NMQT8FaipcA7bn+WK)9@ zyx<0xTG};|Hq`}2*(7ODn2~zKk!YM(Ew4rNZYU&&&?WIAaQ#P_;`fz zkTJGsuu5y241{E7QbH}cfZX&>y6{5vU;DHbj-}j22W!Hb2-y06gtYTnr+FnRwM~5RK zZDjhf`P>JqSj^ZwuP8;E<_8U9m~S>$C|@Lw-N3luFv34=#&Fux?s&;LLmP&u%nmfh z2-uLY`pixQ`=IOKlCX4wLN2hjyHMb9gIITLY{(ckBp%(-*hiJEAmMpK*Y`v(44#~Y z6pN;?t4!eg($cOnzpCr3x8WZD1rM_9L5*O;E<_U1CV=tz{CJy`YTJwnq}F22lvHcmq6 z4P`hINhH18Hw$Q43W-7Sy^hqW*OOK0`79}K2O^PPvpO{8P?U(oKv<2G8VppS5^pfj zGm~eUMOQCG#p*Lqlo1x2MHtTQ$3PHHv0xx5lOYt*OapTaa&Xf$2)|i$p-iotr>8)0 zaql5TOY5bcTGUuOijFyE!S1bXE#=SD}uy{B@|20S}8aStR}0~)r_L6y#-KM zA#OQ$nA|S;grzXWwO}9w27W_&X$aXfz*wvmZ44gi{>#@d|5<$?^NTJ(BmZS17{v4M9c(s8_JtRDP`6eZAb+1{=AoiP;vKysXDXji8n_ZQpD7vLX)znlXQV$_~py9UyLCoj03iov939FeTx0fOK7{3ToP-druL%;#mMG@bo+YDb=rbwRmdb|q;L3=J2Sj=hq6$$}V% z(NyhgX2(cp57ul#0`pLTAtWfId{4rvQFEQvH;nE^V`S7`RannU|k7o@^Ps zABF7z13bP`2WC_L2Is|!!jWNj{7YN0XhaZ6$4I<{8pLP z^TkSGuLV=FWJg5>$9{)3ZE6JCeuq_UMo>cvmq3rJyp@Xzt>oY+OsxQ(QL;g5&7!N@ zuwrRxHG<~VCc+*593`bN<3mpcjPiIq<^_dfj$W;=K&UljI=14W~rsaN_rzRGx5LXM79y=T2Kk&b}WG z9EdKvhl(NU%iF)e-_O-=2M~4b_H>Ea+c*9*XB>t1vIiQ0y>_f`3{3l*Q6obB0>B-)_B7az>;(_IRi`N{p8eSbk@5ym` z4SwFx3tV0@8H=0MYAjK-Mp53zR2!`YRmUGk>YHM0zHtn=kosyLW9t^?7$yOAkr^vU zoQPt2Qnvyja2NJTXeiSGjW4h{^+{+bwVH&acc1gcM)vN60^*?^S`|0lW z`@3I%{$x~1OvjC*9eVa`G2mH;F6&W95-}PlFevFb>2&wDtB8r)nYec3GGn>X6)R<^ zSu~-<3I=+DuwesaWG{(|WBDGh0x5ly@;X{q<+zx3+iDg;s1z0~OxUo?Lzi%#H|=6- z({_9&^<-6gCb8&G8g^2nL|K+o8k@@N8$5!#hpUj4-|n=^dU=)fS@n7Kyh$~f)d)a( zwgu_I-x0%Y4sffe@4H&YcD1&kQz$u|g?sylWwvz)McQWg)HLdzU|e@r$sw3OJs;J0 znp~pbhZ2t-R96;GEEA<PXeLSOx+o=*Kz)1;2N*&xxkJp+Vpwy1`! z{$_rskZPRi#Y~%W_G7W6nUy*;+sE2RvJQvl_5Z!Oy?Xn%>qQP;c4;P;2QBByWa*sF z$t+2y+PNYD|51oNVgBFH$Y~N3x)uuUz9w6YYPuE?c&qKm1$cVNBfv@g3&<@gkMCA=%0k^K3c$kd1B(P~lPPWRHZa+aO12ix$ zAjk&&e97E}t4Khf$TU=)(MXiWrfj(~YEc`w=wuQH-~-ooq`WEIq(-t7!84M^lt`}d z1paUzxK=qzuWBG5Nug}}NS%Y!KZ!a|NKlN7X?$tP6JOu3HF!yAwQBIv1{BJpv5h8M z?qj?$h6IK(#*mPdjDe9%NmyE#I?(bA0+M8?MyAB81y!m-o}6fXY8~Fr4_E)Qx}sRx z>YAmA&*JGJjCw7uNkx?@Wn>?kOGP|zLDdsgXnsY^)=3*jRA??)ibmZg+!bD|B|YyN zOLDr^BLO$u89Bv?-4P?Za3P_hRB7D7*C}HVWn>Pvjv>vS#3g3To-HoGE2PzvkMT)| z8qUB;WPA~DVc9!!TyQAg0xcA+!9obl&|gOgAt8=jObW8aar}P(00960>^<9Z+eWg# zGNmWGN~U;`D9O84m7>TSRT9Oqls!&TDHlkNB%FW%1AvybPp;p8;SE5wP-~wcXsOQSgK1 zB;bE6xf`;;o-Z9Mv^_UqlLr>w@ie%*hXwZ?+x=YtvE1pM=fB!{Kk>ZZ=a&Ebcre-# zpWoR*==l$?b_P3X3@3Z?=hSmNKgO~z{=I%JF)g3K$xm138wl+sFlrbUV6#xm|2u!U z_xxE8w9*I1$1Sh)_1n|St2aNqy?$!zZMiepQXjUw(x+el^Ze}k;)lzpw$f9}nXcH0 zwG6$v_+5PHJV039axt?)u6WU6>GKzhJ1gMK3IaZ#IM%KB6}X}M`=}jFZr#=CKO5pl z^|mKG5sSfGkMWxuJ`LGy>C0^rYbBN_x%|B}mJ9j%g53}HUoI@)x|qG%8IQ)V&qsr= zcGRaK{}{?o5A{E}WPV`J-b$?Z2Zvvc&Q~9O&2Oxw6DGb={H!()@%b zRx2lQ{4`JE;b_ptY8^gN+8VXOw~n6ZYVEf|TgOlIB<{Duw+8(uN?h#-T!Ve`9PrSR3ZCF3dr_&K{v$EXw z{fK4~Ij%2e=51nf%Z39SK_tiORo?!goX|EchKI?WHexDo%5GS$6^oSDF;)^0Z=&agJ78dI%)$(GzA_ zZ@)!Wc=glU*QaOnoNz#5Si{GW8m0>mA#H5&nsNhIMGj`qX$(E%-r}RN4HIrL5W6uY zCyPS|xpgnSjK$nq#tb%TSSY3IfKS6Wa?jGkt3htB}tr-{eJRTp(KW{uQlz$!% z)r4=Cq54z962v8K9GWB!S60_(2J4%|xV}>D-JaoQ*spFtlsL6+K+G{`?;ph!Vzer% z4U0^Ku_h6XmH)W9f-)9G4L z&2k;LN00|`T(RaB4H^>Vj?;T;#N8yOH5#jMZTZLBr6WF&nF)EMu5Qm8+YiF;)QblZ zV_Oq{Dd$h_{`DOwkTMQ~M~EwB7{Oy^36Ppuq17#nCXP4#y;~@Cjgo*-xC9u59^h?t z0kllk{6_GQj;#?WqMraEYwj)GuwyuZ6gvWhrrvzv1-8uU>K0<&P1km=WB9Bx7XR8e z13vj9@{iLy%f01((90bhnx7O|*Xm6~rgez(XE|i>>YaHUOb}V%K*25|9ITj-$N*Zo zvRZgjgBc)+2*eO^uwWHAP@p2o3S@mno_z=?gyB-0i+hL^i<{QH^$@%ygZ6CjoD3HK zxNz*L9Xbzi_e))vlLs1Gn_EH1eJW^*&z{$4-E6;Akr6cdC)qUiP`$d-^@;TGuB9qLX<@5U@6_mxH z;AuR~ae4=+V6)_$V+Ydv?@zC;&)>ekdUJku0f;rL3J5|7`OiX2G7ZM4P=(w@s=PYk zNskF$%iQIBBIFM#(8RPOI6e=U(45$WGj-wY#(()yvH}Y|MQ+k|nNN~#D2KFIRJTfq zHr9r8lc{I5E5)W_An|a&3o;JvX+++Z8}`x@E%v^hQh1NGFLuod)_!j7aD_XTkJM4h zxP7&sGXE8o372`LI49*OmHd+YN(s)ZjfEFlLUCN6XAA`k>ho&8f>cJFImslI6%#nF zgc;1e99ok={~tdfNm>ppBt{uibF5pq`gXVBQ~%Q$2u{x z6`wZrdSv24&#ZTw^`JV4W51Uv!c=@Iw_C1rJC|}aMvfp0-6y$n`h|KV-t;AlF(=i9 znMwX1Ogeu|zrXF=G0iMvzn7^jSA0xybyquiOd~JcU+1*Fb2{zXInAJWX}#B349``F8R;->o=tpTRfSoB#KZI?xA=^hupF@oFX&k@di_SckGwWx> z)z{WMj0nG&i`VC#Z#$0X+F_HNIL>-%G;6IC3As+@NoVrc8UUBRgOoByJ$2Kh`@O;V zAX4>)7#XrVhwak(rSsF!=5f9db&wJE8PM&*+tMKy|jkAtQ z$?V#a`~KFN&+{Xb8)KHF*JJ1}H;;sgO^tAsBC!teRd1OZ4saDFk@040`78gG+~!14 zo27g&cPjBZ`BlslqeVaexNt02HJCC`Qbt-tbYLtR65%XXwV<|_WW8$Mlz%o5N!BA= z9ZGYx#*C5;yZ#WjTYB%Qdy*I(!f=)hN3N9dR&n|2LAJb>zZ%|?0e|MVqj;^Fpns#- z#R~I--{CVJOnrL+ZDuG8YlDVJWGJvp6j$_2~k zE0^w?#jYEz;!GHd6VT!HgY7Q$+5w{^TR{)bdR4q-Z)40o6aQ_xZX>kQK~${^Qch<$ z=qH^t!+uobODLma?2_6#>Dd3`i$6U1{OQkA=;5ii+u=zRQ}hAM?CQcR7kHY4CgcqJ zR%myif_Es0HSUeNplakh#b(4>@M;x*K+O=A3xon?hh!vDGY=01lZv0@KkKVR6z@i- zrvz+nJuu4&JeePIE4YsBBRG+4trr_VUTehF0E znzxi@L$?5%imQ*>gw&bY*4QGD+SY;-Qerw$(&G>6Yfy2Y^rAvtPAKdmAf=9}TtCIY) zx#v6wkbBc*Sn^3)l5*szIjodSqbQzbT{G)-_);{2;S<&fwu5eMjbJN4djVl-?@9t&2=36ZO-$5YZGT=gf!u7j}Zb;-ZOex}|01(Pu$QoiwlE0OdOaR-4A_(~a4kF-;Zl9m&^IJKv{eh$c*DxI|q98n&`$o!WE*!cjJy-FXfmv zU5g7E>{#V=Y?%0ul&dYKjD3|UTsIfPn&1KuVmSn8SpwV_9KSiZL%NKP?sYGfO> z3_xBj9N9x$pExosFlmR}pUax^(q~rGEw;x%#tFQLR;>s|@hwVKkpO6LzyN~Vd{N+H zn=iJ-4`}UkAQu$1%}fQx)rA-7l~l94@<4JA3f2@Bg^RP#LBtT$ zez}~(f_;&8M>gX(wye`gH9LQ{FRcLT7^qW?`UU z5wd@uJF?U*6*xKx(qiDq5>)LSQ0OiWR1G^W3SMl@guKF=-9R9WWpG%5V_7suc@k&tk}6 zhjr8~wh@PQlcB#gcOm~-=@(&TH8DwQ=q_1w@B>k=$)ZtSTo zsF+2u5{i8leEFv}Bs{1(+_`Mo-`JWo@YB@8?f{g5t-wG}{JKcOk)S}v$ym@Zu{g*F-s7|#LB_Crl)O8x6~7(tK_-3D?IeVI@M zXbgI=ZF4?|1Wk-w{$NU~j?#5y0<0I6yOkmYvt@&I&Sd}d=u4r{Gb`)v*p|1$ycLb7 zJ8pHG))u86i~Dao54%VewI-GSih>Hzi^0qEoAk$_urnI?TU(PxEF%R=(qr0UCl7Qv zmMJDxuBC!39W{pUZ49?(ux2Ww;TFpb50bqEYgszSgK_;r!+41W$;;$${DtbPrG9J8=fDQLiw0NHCz`AGRi?WNx_T=;7!K%G?{YV6W zd@c_p^eij!{2Evg236bNo^dy{Z){kN78J;UJA4|_P4WJY%itR_cy+?R|Vt=qh zNcJ}l;MC)B_%7Wx0+T^7u=1Z(>47pF-;)ts{EwyO$lt9$mfTwgEZzl{Tpe~VTZkrtNcECJk-eW@0X0FG?NaCy{M-gAX5SVyV+fom1 zj1fSrJ*A5iirct|ZEUI>dnUF&YF!-G_f&>+t4~XAbcuRC^KMx*Q^}l!Vhg;y2O)B< z2Z=DH_BF=s33~t>skb-b7TEGWm!BQ%(P?G>Q!vUkr?eulXJUd<+-y(w{f1kzuY0U) zWEkXNUr#5~yvFgJ=l%eiN{Xr%$u z3!kaOFF37X-)bOT0j9~H)6A@E%&v&Y8dlRkM_vOHkqBZ-z zT#?7rnteFv$9njtqzw-xL3VWjl@O;(D@Q?6Mr|r!pbC(LH82piq$nCv48uW1vQU(G zhq)ZIJk&lpM8VlDz`08LKyvh4J_tjw z*a8MIph{ch_M8jDq4sqp<+S~yl$aK0{al5XABxB9nKYxS;vh1+D47r$yCw2pQ6V_# zS7J>e{@`4p62mC`O6OqdCBO7w8g%ncr%VUUlR zSyG!B00wZpl=&naKHE4-U6f;&O?;>`ht?W@BTua=PiQ^H~u=Dx4*sCAxvUj`e z=Uw&aFFjq;m<4y<(wV7n%Sdlyp6fh_A5)c%4w)FL6hD;wQNY571&BNddne!)u|`}p zt_g)K&qxLh*r^29VaW?Yc3Rxb;5}UbB1r>DfTg-oUDrFNl^i^_(Dr&FG2=B7Fbt~i|^{bR}bYb88nRsjezR%t<*$txK z8|{i8!|3gP??BcA-em&vg3HJN?mYCEjG5CR3@LFdA#BOqkhp3O|G04MsU1q&Y_Oc( z$@mCc4k4b&)-#Su1+52CkrkFR_he~*?#t5t4n+4y+16c8mQtpI25XRnx|G%hRj5GT z+aZ~HXSrk)LZ=@SS~UXCSt{m2H#bnM7fL(6vp#Tfs6m0hXyaG@H?DMDoq~uJr#)Mt zV85yag=E?)*?wO49XIl**8Y#1TY^q-c@|#Wd%A&7L^~1gj5vyRTKaUq1LJ+8o*PqEC5hk3& z+sxwN!R+WbP_Rn?mkq5fYh>VHHz^8Kw#5b+Xqb#w4^*4AfD_0NR{q7U`JfM~>fd}? z|GjF=0>B}Y>o({E-o~dygiG-D3tD;1l zgII=7{)kywy9vp-o(1UX3C5^I5|~_!0u{m%?Xj?^K!If{I$JYpUQe{lbU;i+Tax-qa|ISHn|y-@bg1k95m6~Z8061D$jjbGE%Lvkgy0+7bM zlhUgk=q^vk@NZoJBf$vjdMCgM9=Ak*6wH!JfKZ(nC<3&=kx~RWJ^LBdCY=BynB#^3 zp?+^>FMfWKJgr-xSYDd`h#kV@PGgFzZh(Xsg?!Xrww3)ECrJZ zJ$rg*dvhN8AV>d~cu|~z5(x+pnlA&82b2IMSUws7LZHwc3WOYPb#2%3M^wx{UsuV0 zL4{4Kyp;LUu~adstbMJ=zFztg85QpHVil+p*z%<)XfzpPnT*QW)$u^`b@_}k1jy*l zGi&wyY&VJp(r?fBf=5-X1PnP859J@aSWdEcV``#iYus3c-85p2dw2HD>E%Dp-(S5s zKf9=6i%YkJYma=wlM9y&lr@`0n@k3gPKkuutZ>j^S0^fJ4;QV1nk6h+rQR%`V6+M@ zhrZ9|)`RA*k{`4CJ0U@`sTFX=la(E0&6zh?xl(DFP$H8odXt&$nL;hU-fF1jP!--l zR7Gev)DmU9|Ah(=NMA=mg2!2+z;(5l8wwOS$db;3gqs%?Al+Dz3S5;2%IWI>M~X1@ z3Il6q2Z85&07+3eA^~|lP@u#EQ+r{DzzW8==}o7eFEt}7fU;E-^TiZpCWm-9kZPZ- zV>M%+KmFTqQVPJlpE}mV=THBUeWNzDPAPPxTbd?w{(#!v@Gz>P+klw&?ZxH!^~G63 z!d=~+81#2#M=e-s7}VZ_B7||EU>*U&n-~WR7_y5426r6dSW#!UtdTlC^}=Iuu;G!f zIC!9-RtzZpN~K_k#IsG)QLV^S+!9lgF4$Z}SjGzjD*st6D=2~D$p{Axi{Daaka3bq zxQe)owC}78J;~^`0Fgj$zqqu+vrFrj=Th+M_e`}Hae+;d{Yd~>H6&e|q1JeA+Mptl zal`p3AG)-dbg9X5TUN-Fqeh}$Bxq#a9eILh1S`*-vFWIYydo=qh^(3sJ4AL%+!%n< zgNlXI@-r2Btld zsvSl9jDD%>Gm@^Lu9WAf zhnwJ(K{&BzvdZy|EyTQlJA4|ooEIeIuW0B6shEUX^}McZfvSEM@K8&*`6mok<^xy2 z3fvG92~RHy8NlS?lK};m^L;d?1aJpd95_hB;e|r2H#0i1nh&>*ic(L+?FWjc$C+5@ zb^z9zmTtF&BvEgxac)cUttMvA`Om5@zCn*&;5&p?5*MW3N8ORq{^KusRH)O`7R3=cK+=q~0cp=9X1+#=nW)yHSvm0j3u`xeAi+M0cB2O}VDM438;!P9@BaQM<`kRp zYPsi3YjT^tgyWXQ@u8Ci7{$SxiwW8b$L2E@+H>7JVcklS#XTPNpb*}Mx~PeB1M75g zMaDqWsSVylmPe+W8Hh|!-3Vgx?~zRo^em!4 z-N?R+Pcze^jN^O4?I+-56O1v(5Md{L+SJVN>@9nGm z(dK=n`xVEV4(`Z@YAOWm$cHHBs5|n}0IPZnr%G2DX<44@?b$U3`>HJC3iSqC8XrjG z1C<>_$Pj`4KYlu zrEBw&-zUjv&0dnESMg;@eA1O{AmWmdvQ&<*-w8mz|FTKc5e3z&f=r%{h>H;`h|5H`MCShqn*GYYL7gy5EnsWJS*nU z=vBxHd#1La+rTg##dk93^*2!5Gf8a+Pe*E7DQwXgX&Fs@2-_#Qa{7gOWZkq-hS1WQ zVgo0GN!QM32E}(KZL|{@_ET+mjb~I=DQWVImY>7;xD=klLBHgQ@n9HR@`_LDSer)> zM^y|fBOeq3!wptg>+lv2*T!*RqB80G+=|M%}wg%DKmjn0;6{=9kMjUc^*NymyBAHf;>)-VEEY zn8e!acF$l1p)zIX-7_(J>7?8SvoC&PJQ`KF4!&^J;;~!@`<=ZG;Bq-iD$j>nL3pbk zxQV|AN!1*g^iiEp9k*)8EDaJF#r{%bkcdPw8}Xr1Qwv@>R?g+jD;kl!ND$3EbG|x` z*`EDS zmB0i&$hKGWSHpWc;MDMTd3{5}%fD@VAKP1(8IQUxmN0qK;;<_j@M;B2M-{Sl5GNb- zHb&hu@w2mr`B{=l9meLLN(&>=gtHG^-raNGBw0tZ3eXh9{pt{rQ9IKyp?P5qG2|dwTxiPv8bagFZQ(|^Ly4zV@DciwuZDVPTDzT|Z)TEq*0I?u?G=j}B zVGODD)yi&^FKS#>wo1by!!XZHwwQAI?bJETyA!K1xAzO~zn8+&29Q0&g*nC*OhU_s zu}7kUY$${QVCxfgQP3Wpn zWCf>dv)7g})+={|$*--7kzIPA6v}Og=e6&S91n=`NHkqlA^%9oqX4N+H#iz8C;4WB z)rOpnjgf?T|s6t~;k3peWjwY?fU z$v!)bp5Wy66xi~VeuMvFFSW6&VaO)GJnFP&Bt|lSutY!G(3368Y*!W9)3z!mqw<-> zZtV};WpMy|vi(?({h%T}EXR2;7I2%C%{H=;H95H^@WIGstzu;^d_j%Xi@Kt#Db%PO zY&$#j+b;9`$Gjf3Y2)O#-o}f2CT$K^R}5?ZQ^mj9Q1s-SBZQKRmUb%_2mdK`>?&rJ zx_PAHqfz@K!H(Cpe<{! za-Xb8-Hqos-hB=2qAtK1(okJc>$X!=5G@zdcoPLmJTT=lgMn^t07xj)v@9}fuKU&K z#GZZr^zV}N$VTDCa^B}p|DggYxLXwO8r8A2Z(R=*r=%``c1?>>O;)q9z36I{sAumK z(?#5IGrKW|jsm$VA{es0K&L_s%KgyS>D;y40aA0Mj`jg{5Nm^OYWq4~%Vq}veAu#fQ8a-&R zLhTI(WIv5@MclG^s-^4jWi^Z&r{nHSMz7E#>iZ7wnwEq>~cxQ{dM zGrx6yV18i$kd(Dhlv1Ezxx4$`Qx-Smf&`G6$V^yA|1mhQ=s(U;_Q!uD>0kOUyXF0J z!~WPkq^L$m8XWYIcDS=w+DUpZdXF7xsB7#ce7MuIu#K%g-Z_%OT6B(((E@-h#GNOQX4C~F}HiJ@yjiNW%es6|*&JlBOw^lgP`sZCZrrbS_7m)yQ0RxRWi6FYa88+(52ldS9wWi$1|^ z0yVdv^@;XD`jpcN&z8~>Sr(;?q@$4}W68ojj2zsO98+rHHhD!N@*yGJbPdOr%(i5b zYfHjIrHhOXw(K90+Lm;J9eEKMl1aW8Ka^BkV*O-5Rt~;-95itFKmkV%7c6AkSeG@_ z!PCOJNtm@E(t8?+#@X?;$=QLAI5zNwLCXk(WZ^egB`*mBcyo4FtKC+G!E;Pupmg*q zaD)qkq##XkHRPzK0fEUiwgvWD3p?1-Vd^|5ab$^9Ok%UxDrG8NCh4tU9h4>}Z>dS& zr5zC7l-DiNK-Dz59`~?CR(_o<$es#7R%^0OBS-1(Sr{qo-HGnBy>;8CpCO@8)zxq; z|2aX8eAoTJjp1#OH>CfxUGf0gQWZT#u&$3Sr>vu?v^*V5qDzd7Z2X<*C1zi35yn#XsjmKms6ZW}5wV|CC$h~J z`7I&BbYF*&RD;~rT*}G+qUw$#4XAk~g-V)pG*oSf-jfri_HaR>>x-t!7GaJkkklX& z1q-Isae=aXSW(+5hS=wME`Yx9ih}n|G{CedK%n8q1UKgD%*QSkCjLkmq`(FNz>CR;CW^vuNSIi9-dcz%`9vlP>Ckm5){yPI!v9=ldVK?JKPob)lb zohWdDcMuX?!?&Meij$Qo=jx>6mHO@I!$6d#9x|UQYQ4C&L*1m5LtP0;1|CQgKCQ$Q z$Yj)BaP@Qdg43n7_JS!YYNt!C(xrWR)mAOrp}WC{JNaC&y+6HIOr6$ahBH5MN9|)n zl1Gf))J08HVw*Zhy=~xWAoYsFME=!iXq_vu<-HD;6?r`p&cyUG>^CTwTT%bD0M%6Ra?6+QM3}PmZLX zOP$1BWMk@iekB}mRD}r`i(!(=Hft}q@k7EY-9-ls7e0+%6d=k6VX(q)(@qeD0!VH9 z8a?RCE&v>t-98=>q5!s3o2(6e(DpbNKyflcUQpDY>X2#47RFDQ8;}c>HyaDp~OT~6V6u7c6V)~r7Oj8wvsR&5ZMpB!oe`LX?HqDf_fMjh-r}1?d zDU*<>+iiC3r;S=zH~XZmZ*9=<-sck&X1PN~HW$1B%;m@h3$na%0Rk#0e6WD32p6#N zx(4yG6gg*pVe$c6Ww<~Q^+yya+-_q<7&MSqj4z-Z66(bT$#!L8!HMG`4JQ%>OQ6jE zWoJd-FCnnY{788Tq&|uaLKm#5@;SVTQYH!(eEUpbmI4nXU|yTJD0eP}5thoy1*#eUKJnM93X%}Lg)3Bd(GG`e73IF#$^W*+l3b}c>C|zb?d9C0+3rLWDv{8tlV4~*H!d= z)|Zt6j?nEU0h= z0mv89-UoTS_<%WG)9rvnMPPj>K3MCOcHx5w3k3Nxtc1oL@hYsv5x#P+?6&=JlBQ`LK#3R~;A-~n}dK473Ks$7tOQPX_Du6Xoz zuAmbI6qU#Y%Am>J!dNPc>pkQ+2pC<=#Yh<|$b~I;T=WT!gVJ44T~)qAW0={>O7YTH z4OTkB>(9xm5nfv1ymg(JYBd>EP2%`-t4U`ZK{neA~!USnLemlmM#>Oc@;o>?cDE-mKZ)p2l*7Pdk=)|Ul&S~8Am zPt~*X)oCqM7Q(6UiUrS=5%C0qnt5J96322C$F-0aE@$CwGa^iSyuy@Fh11m?^{_>{ z?3Hv0GL)`q9q#;=P4iVp)@wG)x|gUnj%kfZcQZ+uWyRn?F*VZ)WF|%aJ2{ydJx4cZ zCQi^>~Lq$vl(423k?X;Q9m>NApw z_6+-o7mB%3c7LCUq>Q_Sz++Qk9HGlNZn1APG%{VMZd9?Rv1ddPGzZsxV%Vad$G#rv zJr6IhSBt4kE=z|YeSljk>sJ4Eo>J617~>@k8I(~V`@Mr;bMI`7?ukW*RS$Kr_c3|n zy4|+1bCk~(GNpW;uy*opaOpKO)#$@qqZaB|sMnosIhWfnlp-5`U|$f)qW&*sNXLCH zn{+$cbmo}Zz4f_Bc?sOfecaTilN*C+M zPMAGxkY{wu1v%u>>Lh(})3szKl`154q#B-hM+4&pG11g9EyV3w>ReO0s#vCNww;7x z>PfRrR#u!Gm{yCllTNW;Jbp9bf2n7u?N+oAlF=?MMuy&6z z$s=<7j`xAhexZY5+tTS@0(3@Z5fy?62}pi?+_P-w6q~w4e;n>uL@XErsDEKQ-mAeY zJ}w@3`pX&0LpmGKzvF3Reo7^yta==`+jMr7O_#=HcDBCm z!e_}@jf4g1EN+Bq8|hSt)^B!#n9Oi>!10wFvQE$? zlT3&H+;)Iu7CegopzGa1>JKVOdx)Mt$5y~UbfQ74#vXf`%VZMS-uNC-kPfo>L^e-u z4b+y?Jt&c1UAE*Lq*LVg`yN?p@bF+So8Ql5@}*Fq6;s^_{he9gk0mUQiK3lXypLhzK|0rO^9^tb3PHVqwA6!}R!d|er9MHvT z`Yn2ZAN8UvXe4<2(FA4rAN@U#^Q^O}?nyhf(;iZz{&45MW*=87x8+KwTrZRV>bKQQ z=Ur_iJLKZJRw4g3>HWvlRbMvlH1fap!o#`FuIQXvvGHOUp&67R8IcKzlP;M zN~srR(5^rJye|}Q%N?!oe4c8gs^-~g<+V9HzxZ`J%r{TF{g?c8<}}r~d%QB=lf`|* zEe(|6>&fNmRj2Ug-o9NF?#isel%0Prs8+u3l(ggY&q3w5KDfU8d4ASA(|T5+blz^A zy^Mwp-BKIv=l9+FhVgjwTr9iot2%0(7cOf*FNdXa?>K25vj(rVre#{)r;K(|Q#D<= z&fK-GoR?~TczjaoRo&+3xl+l?YC*ou*(393wo`h%O^wJ3bMfBEpSP+{+WEyxUwPaw zWm$ub`|G!-f$^R{wmQa{^Rqd;wr|_D^Ln#*tRFY-t7teV-n|+7#r@(hTfe(3;mm`6 zgDY1#_wBjgbRLT@ef6bNx=M~%gFo#jtX#aM-gY043;I4`|8X)oxGc|iRymh!oF&t= zvwq&v&bpxYpRzwS`RuZPVf@rsgYwz+>+9vo+u*%?*>!i1`_DIb?Wa>T7^*K#b@wH8 z+V7p&$Iq&Mi5^qWqfFb%T;^^nmxd+Z%gNhPPD{3v-Agt7cIRREP|w)cPT~G%r?vY_ zJ?^yI7yJ12L_2B7{fCrk=4x`a`+hpiwM(aWEjg1vyR@IXZ(4P5n%At0x00;>dL2Gq zt8dS&!A#~^ZCWVv`h4l8wX}14oJ}R=8$CN1JYS`T>HUtJ%a>cX`TEcwejt{Wu{fHmmkaN+=;$>yN}Xnf49?>Jj2aR&RdY;D@j~%mlb$06(Ppo_{X*3IiQiC;k ze{$ZvA6(W_`)@DxC%x!C>FG25>gB;XK2B9$?~g0z=IP_5wVS_F@6(U3c=z(*qESVI z+UrH(ByJ-*-OABsOS7@=4B z%f09O55v3KTl@G)z3Zf(J+XNy*thrf)>-4N-B9+8%Y5s0w?<^F)jfAd>C^~WMRaSl zUN0KgH+KFhWos?7S5bE>H_z64GNn(5u}$IZqDh zP%o30j|b$}>D@>fm0sm+%T@G;44aW_qniPpk;|jgVoKe=&D_4q>aeR@Z|>F4lwPSS zuXiWP_1V>pCx@tTnQrR($dU)8yxq7?_OrdxZfpO#=v0ie+IhNnO~&zkwbN?m(%QL^ zldlTx`);Lss+w2Nmqz-gdR&&}lj42aWewWSulCzz^Zmv^)yAm%diQ$S&gHv5Pk))% zxP8628C?vEZrS)XI={IewdK*nD3>j#M{f_esv)1%PO|2E&bYpLe>(AcS?TsNPwB>P z<~o_(eY@P(F3{T*F}+{kZXQe7_It6T)rQB$?jTt;-gkSq_Q{RYEZv@7K6dL51-Ev8 zo3@-=xpMo{w7tmzb<*;&dVAL>^lwJpUCPff^Ka`;d4&}*_%G-b|G$cSn<=@i(+9V8 zQo6@a6-`N}Tzs0g$*fW-tEut{>9%s2wpQ+zk6%jlcJh&4u!*H?&o=1&cQGIjPfDX- zkHhziQJ(z`ZSXAR-kt0Bl%jg)lHB?bo9PBS^+0^IOTAQ+Gnb38tnI$tom^mgQN67N z4bp{a`oAKD7$%d1ua(BF5i)g~>I`48GVRB5Fu z3{^>0gBa07hyKC-kJ%Uh7&8!KX3R?RQ98xE1(K&44t@U!ZPvFEyjGaqKn;rzYl2?Q zJD_H~y6Xql@ny(SF9E0ukkDLPzMa%HDuwc;i2{q-^FezS21zv(3j-t9IRQdIamjzr zGU?GfBC|Gy);~b6;=0X`coPOsXq5or$-M&e+t~uFjU*Xq)G-5r`*qToz?;xq;QU?a z1Oy;g(z4Km7-%*H7ckB2{05y6$^{LU2h9hIL+KNk8OE1!&5k;RMbhv941ZT1g}xmi zFg6r2v(qRQzSU6=VizJBTtG_{de#XM6B?g@Y(-TMcN!yIHZ>OHP&Vw38_Pf+{l7o| z&zf9FB~q!VgNOsSdeDNWxJR2{ENVs!+5dO-F7!eR*6G4<`G>9Ie4)jPLaV5Yf*1ZS ztyD$}Xxomev$HAbF}{{6dnciqZ7D73x~U~!I|J#PPG&xpTw$q)>5-LWuvti#2INEQ zyHrK=7_4!jap@U5q-m2LS{XT-XNa7W2QS%!?S288;aHqkMGQ183%~~?y8`fWK_;jO z27&Zf0SGCmhnQr;QfmcZ28zb~i*#LNGL(M`^18`TE0EZ@zNjDnCjZ_y>(>#)^1``V zArEUkP#lWjs&W8~))yd|ET(_U2FsQ$1YUIhcHy*TQbf-@rH6`c6;|ObPM)+L);ROM zsjaalD9P9vVC)^s9^~TsX}Pm`BbYqWF+H<)<_M5vRD?7Qvi-bJ?sPHO_E;Xvo!RhS zT_(rcT9$-eEEOi=v$Gj*htDqxbGVZ)GT9mn!mMdmHC;<3TKyFs_)Ph*zNSo+fG5*p zx3oEL*;&*mm5QjGYao=FF~CmEhy)HFXKVA1wiso{FK>9;sjID!(EIhNjNBmm`sA&a zx%~C%T$1+p^$A>I)9lL=84fKiJxiA}$_NhvGGx&FUY3Wy-deUl@814o`I`43C!@3_ zYH@E=TVk4Hcx2P8y2Nhs@_PpNGlyp;*p7)aUPg%<( zve|~3O%#gP>D0IDv+o&cS4wB3v&^-0DAA|nC3-)%M;_4kq_bQ@z0Q#<^49JY+Q}$o zhPuAvRA!bbESc1PP)#;?bqkG4xDvT6&XeD)T~`%ZVk_rziF`H_=a^c-q!DaB{;O=; zZsfTyU?Pj3L8H2q(x{ExRhyrowDc*Y&IV=9kHNXrnWHKf^$Q058i)v%?!!2#_9_K! zm6tR+diQIL+{iH-tBv(JQE2WtEsJ*%JaS79I$qcQY zw#wlNM`a_TBbJ$jfUaGyBs&*C*x@ojb;RrwoJP8ZH2{al6 z-~(MZ1fV4Bc)(Q=>LUx1TPgq}pn@gk>V*Q#BOLZQ&LzXFw06nrR_2O*q4j>xkvd z#Pj-9ty!2GXRr&AQez{?-In=%{et`sR}BJ}Jz428);jkjq;X9Gj-e zupTLK2FFh4iF}hlgnDF=o9#xO9TgF8OrTKwBg;5! zH|nP*cDh9UigI9Wx!fBuwL|^rUzQ6e)@$f_sLE)i=SvZwA1eV-5Ud%)2O7^myltj<_Hp+ebjo0j~wCY%r@WNscZ=n+7PDHzG96`wBT z|Ky|0=}b}knm{PiU6%LRF$ivKVM59YzP>(-Q%rr+VVhF&_G6^)YxF6buK(h_8Yg{u z-yGTIUX4@P{|ZvP7pMHrom0A8qLNWd>B;8?4zS()kH~>ij*U->{ldrr{-rr!7G=yD z3-N51%)7uiD$q_e6Q4_W)=x-lV6H48`!tyBZ;`MVJ};Ep4&g15WaKDaX&mxJOUTHy zqP(qAoy)@FW{fcKV2VS8$A;-J-V&zMHS zG+8%A2FNQwI46 zqjS9|V8N1-0086~VQfVcMV&aok9Nh!Ecnq*omJ+3Q|7@s5dQ-&DK92X!m z2INFy0r=o{8!He6fActnx7czm`cYWBY$mlaJ61PX7!$KXyLfAf@6cS{WPwa7px^&I z7~2g8Sq^zoZP7hRrm-7H#}lJJ?QK*p`h@LL&3)qUTn0C4Y{x2qvG9?PzR&L35b3=w zJEEBuz>zhqPmlM=j*t5cV%VNyHs|jbPi-O>!mF4z#krk*%Sq^zKo^e5zFeX3g16Sh zh{}>A$ygx)9Z7st8KNLz@U*}ME_A?0!`py`U(C~KBuWKa!M0D&MMBK$Sk4i|O&y%X z9xJ7^YBVpUb74W-NNItd^T$i+bYb#PN~2qgYrI6$y3Z<_aMGHKyH__r>3(6E+jA94 zOWPs8J|LI{x`CmxUs_h?Yi)DzD6_(>xPa2Rwi2^VEmjNp4qNu0u-1Lth=FxOIWYS* zd#BT&QIrG1xlAVK@sb9R?t9T;^o2`AKX%OC;m$sbg9~EH3f`4$I*zH+vuM1CGf$H& zco$t_eqhpJg#w$r+otKz%Tk8X({UYk>BAyjMI-uri70xBn#q6yk8Q!hr7H>f=8nw)MZ;3j zrtSMPSDFdrd^GGw7cb3Q+U!PBL})vF4+)$G@B^r>ZjRXM_099P(CHmTy%{=>YZtZV z>YnZmQ<_d~lGOXlo2?-MggI7HF2N>J^}VwH^2r{g|34`LWDrG;Ydy%DV)^F^ga^AaAX7T19Hw>D!H zy(rvZ&bPRdz9V~9T`l|gSf!J@aPTyn)U3Q|IuIR!are4)Z8cjKnwFr&IH3uK8gr> z2|RBT<7EA4xfM;X#r@4!jFML}_oGV&^0*;Cr#>RcMLC_YpUW~6eT5T-n_W=g2-kie zJUE97TnjmnLuzmULv((lo&B3nm?ybHF~bY+DJ@MnT*m<;;!ci3l_gTb_{yB| zD);Hk#)1r33|O3FhpSXR#eT7~<70$Pb~RURJ!&3Ah|yo5Jmf)~>BZF#bN=eVF-*CJ<0c0m|FXef88MAG2HZqL@fB~J zFE9DDWf;ye@oBo`Y2+9cnF%IpjQUF9KVx)5V^rR@F*-j2IEt`~!VoY>`Qq~bSx5yB zQl4@$@r_bt+eYb}5&55Z*iaq(Uta}Jz=-8b1>tt7q=R)L(xt-EH|P8#Gx-nGpM)mk z=l#5hFu%#dT}#@QH`pioYH3&0hCK}#%mKD~XYggaaC;w8(-BN@dLQ_5H=?}{enS2j zZ;Bk$xv!JDsKg&5kP zDyUy&gAM4#<&bUPKbsIm*_E)}SCjM?L^imX2<$Mf-6sSpA#miP`At6??|oA> zKPm{_Z%P11S4aA5pc~$#A5Q=#VFhK?k5QOvnvN~{G<0_0i^JwtPKzuA78Jvn-p{g+ zrh^!%P>{A4g)mO=H6Ce-M|dW2SrkU(9R2&x|Gt9781bM73^L*a1uLS@1!|o`3Ag~# zI3rLpAD3421OmlH*b@>53zmSy2Wtg4WxN1k=O1u^qLFFBfWf1t_}~HUH$Grsi<=Kz zb6`sJykT*tMZlage6ZG;l(~a-#jz4*>~q5EBUMAPhC!ZIE|A~S-~W-6c%ad^V`0E# z+!1*64n1g77%%rHE*IW68-u9h0tVeb;{ujeK!ze`;;J~|cR?x; zuO}3uiSxlyOkGyJ=sU@5OGxXH#lY3Er799x7s$Y%>KIE^rOBuhw|bguOW$_C|B!Um zpg;G>PfP}`CVe|3KWX6+L;7|=ezvfp>g0aUR1HV^mLRuigC81^^zHZegj6@A4mPlb zG@4&a4;K!_Ih?+U9Zs6lOF2ZHX;ND1qCS>TDE$jqI=2xIw*WbkLsv!0QInZRSj-U2*_=Rnj8Wc#g?e; zLW!=I+lA5e`AVOT4$|x`TTEb9(&iCbpqtSuC}FMA+Dko5%M&?2B-wQ&x7WiKQx4f0 zAh9neluiX1l8n8YEvi9Y91*3`X7yAOQvi}tp-_A!6ITh8%zKp~VbM;0Im(&%rVrkO zA}Ti-V7G~)2g~vGg6X~rwqfykGh->@>wo|G-zQ`?b~Vs0*Cr^9!V(xiAR0Yb__%QN zmdf*|W4MlMSTv6QIQx`Z`m5p?RbC=kzJjkki*K?$FFAX%z3Hsg)$!PFCPhtk|8U7i z4(Rg~jou1@m9cl_EX{uK{2FlLIZ?NbV3@KI2MI-=+2Y`QDcf#h|3Zk6rym_+aEI8)(2waj*U zoUgKpGTUWMle$Q2?^&2wwygFi;itdr;VE5~^zG?~^n|>s)B|N-S3j_+7303 z2bStM*pNUo5MQPyhQ%#&%xxk|;|feb1zQ86EAeu{TfrKRlbPRyXxsvi#ulR-|HaPw z_CbBVPU=;U+O$dv)HpdOMsbG@z;lea<__VFwCP9)F;C&FZdO7ng92{(>>mI07f>*%=yX~xcyQf<%NZoF${KvZ7nx1V zmrQHhrlQUlVT}gKH4?_2Pf?Nrnq1f8=3i}c<&dcr`RY%>vji-*|KdJ(=mWu}R$b)5 z!rsBZcesr$de|O$%ORa`xP$xH*pV!@A7s^A>8xKPdC~hV580_t{0%1WFyR$I_**iI z-VX!e*L&Wo2yhm}IoLuHR=tq%+yR&So)%RXbIyG|p z!BiZ%`$~&h&u^vrhYf^(GI2EX#LO9Sj9Wyda(|mQm^8tDL=N3@)#h&RGw>0TccSi}RcN#1A44vnnDYK?CL3 zWBnc0NdH0BP5xb(r3Qzu#sLhD&pm5tg9gVYk6KEnyrH;sjDARTwDT~_VssIwar)hhI^lSTzNmzhs1o-bDkYPOeFl1(4s{_=yRA`XU4TO`6$?h^w(3#bG=uL49$7+(n@?&3;8)hQqSC7!Cmq_cZU^$cV*pw*Ez|BufXS$mY2x10Hf zyflFi_YrwqXCg)2;U4vVCczMm-?%^{)1@-(J!-2%+!{ZuVoke53>Ni5&A}Qs#N1Mg z9@B1{YKwv;G9M6~O4ry&%$s#*Qf!$=3{76KhgDN^bz|cB)D6QttB|?gN5L>3f~zqO zW44`IYK#8tkiVo25A#CF-<6xXn=krnb)`L%WJEr)!yN0q-hrlRIqpXo2?8ROwMmS9l=Z znL0A&I31yZEM@4vmxME;9MCnd(L>||ms!Xra1)EK!`kXF^WH|lf zaoP%{ah^qs_Ts%p{BE1o4N8I99lvf+*=%g`YJKL}biouiQz&%76vq_Hzp0*3;R_-D zyiP0np%kJNg)|bTDa0N8EUHWL#UQJ9tv-oh{u89i`10|!hVvo%K4KBSr5e>d^kU10-jYVTR(0^GL8Q6 zxV5S}w8-G~8u3{_rw#=}V*~0?+(%ihHH}Xc#mp3DWd9#uiQiM34Gr8xPkoLKlo6)` zZFc`?b6t`y%xnzEkz5V$8vh%(!$dPXzr(grmaatWEbW^;17dSsL_J?Zhs|u2$`$)$ zE3^YXfB)8K2h~MpuGfgqdV$W8>NdE8|8bT8J8iSYzBcGA5xlFCmPIKFRX#`YXF5x! z^@LAymWVC~v$9h!^|D#SDW<#=GV+k`T}!>i2z7Rq)18-C8U&@ ztV$680rv>^2=^~MJOX##_kSY6ofG}FqraZ;{htqidrtg4%>;MBpIC|*vgLrH zqL8$%ncxs7?oS534lZ!MXT{GsF$0ISOwR@PaIT+6EYtX{O&^OI*uL%O%g1eB+H!&yKdG4_ECZCyp-l&OOX0vw zkW5c_3Ppm1Zlh36oU6KLs zBKC$V$v>|WoWFa8MsoQA^a9CL0zJ)VR0&qdmyVReUzO^4)$E@+QP8~|y{sVJQvO=K zLPf7~?NA_}QAK!u-_+CUHt09>H9Gka=z#n=&;f(L3LP9&`3~rS{%F0YaDt3~ql3Ms zm`|svAA=5Zseyxi7yon``LW>OtHK!u_Zm<18g#&ZQXQp^4v25BQ3;MG?lue*z-LrR z4lll;N?y=Y0AMTTU!j#k0ZXhD_{68QWu?8BP7g(6msJA4;`^Mlf_p0WOQV;V$e!sF zKzM+rZx0BW+ajfJ)DR-0@;h8~T~oJ3On-!?_JDA2`qJvLn2;7CWS|m1qe}9{V?dZt zC)Z+iv#&?Ozg3%=t)WMcfy&s9UYU&3~$EJs`Kiq7^@9Ef66@9pAijO-TTY8O7UW3GL zo2dAh$l+8UFB9KuaMx{92%k`T@GBOZbGD98QPw4>9~0T@AjN6z%I6Db|Dq_Xaw#L? z<7(>1pe!OSkX88*GXS4&T3h5cn&iGhNw0xfmA6ip{=6>zHHfHkTcG|IM?{sMF;se0 zdhjb2n{&2~PepVIa>qpWI!H0@RQV8@%)jS#U!bWEkUlcpCpEb8S^*PJbup|3vGpm1@IZO7l#-KmT64FwC9iNKm5{!?D>~)ah$_w^GY}D~PLiYkqU7GIxxSIMw5jrU~l=b<-+rM^% z?jx_f=x`sobg9HPJKQX-CEDz5^Bo@(s~pKZ<%JjQTW^-~i!Z!jf5v!uLV3ckSdh-y zTAvDyKrfBoVj_F3q!`3xKi~c-zbd@GlsoZpHT8pnnCZdm&$^AuFB8Nh(9atB|9OL$ z1bSQS|JM#;66kGV`ClN2NuZaYeoSPqgY<%!1o~MwC5c++uL-ya^ismXM^{?v@k}`- zz(t^+Z!+NhcaljI(A@9U_8|kBg_O&da4VU#iPZQxy5i&4213dB9;SQ{@ zk8GTO1jdb?KC(CQhYOX+x*T|1{AoYdzGh91-jM@MMrCX3oXL5bWuCDi7nJe7x!#l| zh9f}wk}^t>E-to6($To+jYYAaJKy#$RP3#z;YVPqu!p@jIPT~0Yz93BP}dv79^JiZ zY-V4p0?U6ZxjQ)C$x(s_2x?UN+yhFWjK>xW8h2{4q>Ii7& z(1WlZH$?AyQwji5K&`(6%MlZ_v&b&Ju2p&8K@k(MI+*EKvGUa80pUBc5;^ZUU-LSz z8~Ua9o!2d4^)0QMb*!{FSwLS&+Qv;nOsKF^Kbwdb=Ok%|H?h)8+xJpan3)!*WIg#N z39b^G!y9V$!U}wc0RFhgBiG!|TTfoT(8Zi0BJHYUg*ABOhz_Di65+cp#ph#&Z##{K zCBbU%QMl{!hL4f1YYE!Z(ZN|d>6Q3g^S@pZN8*HJW1QP2@otA?QM@c3mFEigQK-{V z`4hwj%MwS~3-NgHq}#kyr*G;!&r1It`6a`QH?fkog36gnYQWL8B|($iZ)w$Ulp-dU zWYEG>@}&2YOpBf2yQu*!J~f@CIAoGFCp`(K+&H|{22DU=naDw8EI9*Dq_xlK8CO%x zZyC_pGu(rF$Q+b8IfwI%%55OOJv%RaDAC^_xN|cY2YwbanE3Z&i-=rv?QgyI_>BABhhjf4+I^4U z-_=Q~Bxv_}M3=m9{IekO>FnlN3MrKJnNt2>HJ?Y}*uHsRD|_?ho%F4DRXx*5uZ2CI zRmJ%ZdV3?g_UwQC`~R%p8{PzsAnn}RWcWMnmq;e-KtE>SecVybKAl22ua%HXg2mD< z9De*7?vK^}{?C8X-#)PHx;6w@oUVue_`yPa-k5&9#hNCm-g_wFMZV(at=w1rl~wz1 zH?h5;!Tj5g?hse&l{n;;zQ&(_Ix)8Xezg@PC-;KJm7M4^-8ebHfBSYs54i@U-*+$k zm*f^?9s=1Xi_$IxvP*Fq8jKA9YJYyo6X#M9_R@fG=%_(lg?AUmF3~XQrsjWIjI#(X zg7B?m1Gtomc3nQFc{7P(PKlu6E%i+Z{BC0fU|edvk`1VCb9-vQ8}#)wTk36jGHYM5{3Jp8+xYFH(n(O@Z4483#hZ8~Y^k5$E2U{u zPbWGu8u;I^bxqJb9nNa#oTqK1jAvyya3)KRWD4izN9txYaU#Y5Ed#UCc+QnFvZhP_ z$helM`9^|TMS;QBR_bpZZua-Im}yD6`AwXBH_;sQO}x0&YL(2C+{Eg>{iY^GGc|>! zD#pY~GdJ;@U14Nft`<$Z?m0c3>%qz|;{Ejk^CY`*+*HfXwJhE@t7i5B_ar-K+*r+P z>indZSphCGweFB4+xsR)$$(e1GVFD%_K)0-yKbtkB_CZ!u7$4NcZY*Zp{xB;$Rb>F z_<{x5rQE?L9Oqe{Zd-U=uQ$QVC>bU#W;lP6Yx9o0s4(ODyyrkqXeLg3crDk2!>+e* z@|hHuIVJNAH!d$pOOR>y0E|ydeqNw~VW8|-Nd|SFt?j47?*heWn(h(BCt(5PnuB`l zSBoZbLarouJ?9K3_@gRuqT~$jBMHHNTLK9ns4p2OS}^X^MJ%^Z4Z3vyKG1OV$bNCU zY+2rmSVZpe^8II6#M3=MD#{Qd?|8F{{hUy=HsaxiHU~xES@xe_N~NRa5Ahjqd7fo} zhcG_{HQc!&T5S=R@Xs%0Jkp@zd(r7Vua0kwK#{>uE?mP8dBi^nmJXLC z?;B$AewA^oqPPtmzAv_=_kGdobMtgKdO()Xm-Kx%W_fl-@hJwwG4wD+dW^y7tFCS% zIUcEN%Kdl`U=3GrG&|z`*eE2~jq$dqWHOI=6RV^y^Co7PkSJ_^n+y}pH{KXT)^#gL zGzD=JKTl0InR*kmgi``H@Y+A}D@_R`16nT&JG~*$`dN+GZ9`unJrSm7Q%v8G98G{3 zpQ-VTRvo3rEz$C-H?U);B%cg2PAw~P4Q{>fyIh`yTjisb$S32G^9fu4kDct7^;kMT zH~^W<$ltVgO)?vQ6RTI)_?!6Q$)ZT7Js=UU#9Ot$mJyxK5$iq)aGobFoja`SgA z^lAC{xO~#zzh(A_4JL+xJC5xMas?emfz0<^CtKdz|D#z?G+vZ&B$mgf^LWhytU-L= zQDeNa!Xe?fF6~9wxsSh^{j0(m#x={cCvj5PcU&-jrLc^|htk*D|NY;>O1d^Kyb$&I zA!X*SMKnKBK|iB#`41)B#2xxO^fnvmFF8tGu*|;%OOj;`xEk{~ev4eQ?YF&-^45_* zo{Ki8PP7MEH1f~9bm=)%*=DD%EYtl0_bFV)cq0&~D7x?oFItfv0Zb_li}mpJh_)&|A~uce1wO=MZ9YynWlWLu#Co z<{;drup}u6w+YZoQ-T^GlWYk6_EQdrAj`YER_NrSHfLv*6jxV6V4s$mOb-@BanZCy__vYcOD-7Hq~=6ZT`{Nc=qkx3|bq zywEA(1J@J3PhZ0~3=Q7WBQs5!?!$%HVq9VK|Ni^`dU=(JD7bW$;46f1qQokHm#mxS@NU%4B?K{0faL- zPojZw0kAl_NUIiH|2lx<44~UTzXY}t$v||t0F)aX+WSytM$}wy1TkQAMBN{??vJ2| zzhqpv?~>Gm0s&`-otJ7-3`U7Ukth=ce323_si4Y?B}Cy~7!#Dl=oy_0E#Iq~H1K@U zZya0$)ZIvq&e?Hn*an)8%N4hPB8n5yY%2Ug61Aua>@OE#jqJPoa%Hv=m+*jR?faHl zyDu*5K&WhUiWEN#?&!+0D|z4Zg#uATOF*=buO3cgGDk!wPlz5~7kxtcD~9KZ9Nb^= zBIQZ+2x#GOTqA6ur702+-U~2dTmnOb*zkaRWEr6GN_?jtRT#E&ppfV<|4{h=l%)fl zaeO9P0vLqAb)pyw`cC}f!&b_QOEZxTA2Dy)GfunxEZwlMB4s?+{T3nghgupiv0y-EP9odd0NUjU0N0N#ZtK0<&G*;jss)0R>dMe}x z4kH1@6+HeOo=11YH*aOffZu@aNwei(Gq}-515yggg6Q z;Na*LA_q@-z5{y{q-Jh7*h@SRupQT{N|up<2cW#56j9UUHZ6Bwp2IEs0>wp$4#7Xz zY}~uRjoO=gB+T+bm~f2ATiXo06!qfhKB(M`x1}st%)|Ao^?Om{dv)C&*ux`l%WoqW z48HH()>HQntUS%U^_uD9ca}tnI{SFaSA4(VJ~>>!?zfZS{8~xE`TWbpP-rn+7^wjUWAA?N0ICDP+>`!*?cxso1GcuW99-cZwUj>$ z&QUb;YxFBY6uzN(`~IS5*>_*d-^$=hpoyM(hvDA{aH2-Y=nf;k<>1}Bub|~g+qC^Op}&HvYdfHBPXBs9B6kt8$p{v3Uaq!- zcIzRD)-nIV>V)3Sc|+drDAr0X4wif_TiS%PCgu&he7!+!r@bEU`t^21aLnkQ+eGr&ENA;& zsco(L-hdGMr7hZ@?Pjw{Y17#$-R*$xP2~D=&r3t0xWE>|c443v2yRx0 z2(B2sKA6lzS{etWJJ<5cPHM3mE8i97_-xIGraM~hFms9c`AyR?w#Gb*m8SBbP7g*Z zV@=hB#$>&osz!f z7W5XY2kj;{vS-KwA2f!<%;~PX3Qu;uh~OgYSR$S0{jk(-vnZF-c$eW8OW)QIueYj_ zB!eJ9n|!J~l0b$v1XI9Cqfddqt%xA}ah7Z7e677{nee;2TD94Aup`^5pJg`l-awvJ zxnQd;M_P7?RyTIdW#*dE=BDU8#AOF>6FsVJI()1Y9_g0}9gz{WtzqjyV^YW6u2&d0 z6fwKd7)6#_C27U#?2z9~P|G4JJgx4kTS6{Z2O^K>Yi)O~u5~(yn@wJKTI({eEmqrU zS6k0{KSXWx*=TQh(=InAV+=7{MCZeu=}lQkL5Ih=_=79&gO^zSiT_DzfrSLReSFh~(sK zVH3~?ImcCg+EZ#XO{h8nIIRajDP$L3U(_1A7CsJnbg-F+d4ivY!bJ3Z9LQQ8WCMA} zlp=z;rL{$ueauitysyq#b&bvaAlqMvt0|{r)sV04%3(+Eh6ZPOn?j}D8>=I$q~d+w z$vKk&>rx|iU0(W<84+}M%FwVqx?or$l3SO$6O&!Zoi$7FqQjz7WY+$M7ZkwPuD z(dKGpyyhF6G#KXU7DhFNCDYY=g>f}MoxAoxP^lm=5YruuxZIqzcwudXj?*Yc1Pz z^I=XVU9DzyEty!WRVKvB%5V}9^xC`DjNykxv@x-ad1YuIo5oNy!g0kYhSec8sBeP; z-yc;g#T>0qwYf4~^%$G&pekaO>3khWJH>{r)uv%Ya8RV?I}K?Pi%Chvn#GQ@o%A=p zDxxH+bv$c=ZX7~ULTlEf$Zpj)njHgg2~vBq?&C@}?Di45ly{`owpNP>j__bZy6X@b z&q-OJ8ckl?`fS0|b4FpPicG1}>$GU3TbSW%Lzw0Hma#(k9Nud66r_m;O|8zL!+NvP z*y<5MzPITtXPQwDyDgF!lFXns5ZaVYgnSldJgw9!afLN&Of<4WZ#*Gyd5!!^Zns84 znKm)XpYP0d*VS^l5*`u6=;bJDd+t*1t%J_M$;lJnR+iHevt4Xlq-afcBYNWbnu^gy zlM)=Gm-F%2xZTFZ!N#_{6;T~k=Gm%5$L6aQF52@>qhX*~uTvPerye`%W4p1Y?#7LY zs^-a=xJB4@8=2;7C?O)NJ}w8KbN3L045_K0nh$a~BT7%g_&#NT8!zy7DXRLLf2WB{MM4#bnv30F=K=Gl|m6{ zc49lL@p5HNDxHO;qTMA*k*s1x1X*fZ?eO;85lOTqQMjKIL}n!q*5rId(Tz~0sL5n9 zqb;|y+DbK*7>voF5*P$N8_cD3#Wq&daM4`X!}c;FI33KzhN9A1)3U%Q-^}*8*3z#` zO*<53RJ}qBgQ-@=mgb0I*qwlP{9@2!OGs~7z}<0u?pf`=Wfi(hW8ub5%JX^+Z9@`_ zM>Qp^*|6Kq60YFOd<|dly@dgM5ETeD4AZ=JHLTf&K`HYpRSXNWCN5U%!ItW@vcpvqk<4@T69<{kjqMW!{eN@<}`;E2BB!?%Scu% zDYP}AXSp(h6eTS7DWjR8@{0*VR%*r00Aok~a1t3KsxcVnE6%E+C_2?5gZ`K#=Oje& zfHXO4^bJ}p!LtSlj1zNj9IAs*2+J!zC;Eah!6Rf}348tVhUrr@TO?Y@d|*=3;%1?( zrwx2D7-DRDz>~9W$HlsaUQI91-m90D_t+GG8proKWU9t5yI*0JATkqe^$s zQ};Rwf#}q7Q1-cS)633*w^;5}-}FXK43-#Q z_B=@rkY25f76zDA>Y>>=J81T804DrxV#bK}Buvk(@ z+6c14jfh|kK}t=NuonYy-WMgbURSYpz2GVSMwgIMqppf81^1M(Lk(23HkajrIdy8| z@gy(onvG$X_U1!Nm&XPd4}4Z_Sx_sgVC+__Wnn6X!n&TdxM{x0ddpqC+{P(lK6e_; ziZ&{YDZ$g19i-S}dW_ex3lxw%o44{zcajs>h#pvUy<9`xJiMpQAu{jll@RmKI^DH-%0 zR|re67r6pF zA<0RJ?`2r;Q-V&<8@UK-te^;bPl&Ut`hAJ3%jFL0_qj~`P&*Q*6kDf2y4`!l-v3ydDQDrZYk zl;|N0eJ)Cbf62sCw*Ruf=oRx<0!J_k6orTnL7*r${160!(cwQfnyc}eu6f~Ibf`-Y zv7U(X-61k}HBQ6ugv_^!uxj;j-15mQjk^~1cW4x+iBW$Pr^&)NO`E9KM_h5ms5Gf{ zs3JM^h}^WRSA-DwWV_=N^)6%ec4frGwwv;%yJ9Uz>oH<5n{bL&$8!*fOe^J zJtjDrO`WAAR?PYu%~>>FTrX?O(6F~T%s0_M8}(ajf*%sD>VR>?!faP3qYclL`$My< zGIevgb3IiAxP-I($RD@4I*R!!R<382R&}zaLws2shGhveCBvyL?H18PO@L(QXH9-Y?;6;IZ!X)jd}}9+HXFHI^JjyIpwg=~I!#gOkMk;(U4%_Mx2x?uwp9p9 zn2_J~?SfJ0l}Bxv%Jsb7l%<8;r0-GX4l%|Z8?SXqg6On&L|8gl=u5FIx+V<4C>5S` zA_EawoH)EP*oZjrjI+5fRWUGd0p79HhzVBevyCbjYKwkL1*+j8^i22pwf%HTI*k#JP9}})Zd&a2nWc}^*r2z<%tEPK=@sn_?rdxAH7^%- zMbn}iSV=_UNYbX0=YnyzGO-H-S{{WE*8yM8kY_#GdBbt|oVZPj@8e}(tWJE9Esv!c zr3)Au2^}bmA~lqJuJNDs!?ghX$nMQ~7-O8X1nc6qL2Mu;G8a90-)xRQ6pX^1L$U0G zO8^6NhHMGofFWY~k6nTW9YM5$>CsNgI5fhZ=0S5G&A{wk$FUE2Jo|Rei{zeo5gf&@ zxRHbNfI<6v=Mly3U+g^o*nEwrFQUm2m^l2~o&0tuzp^`Ff_zU611Q$#+)1U};evV` zQK_`h7GeoO-^g->3X5{v{y-f!DBmD@y)ls^@O;q5R=G7-L^f)rxe;q?} zd11Tb`t8LS?FOY`Zd+d!v!%Q`YSHmX*6x~t={CeVE;e`Egb53Vy0sU0XEB|j1Tu1a zIZdu+H`{EshctG)r7LUMF3VnxSd>L?R%z4MJ8J zJX^!VECEkgh~MGJ>+$EvSSK5KQCykc@=*_=B8wCax}I8ps`SE<*ZCH3#+?WcBd;gp zm@yo!fe#pD1$5++%1T5(CiDfqOHhY-DKa$hjuoZ7$&rVF1{t~u&2%N0m++71zbGx? zcMilm=0My_{;~fKFf>Yz%fudXyUz!VeSDN$5Yvm&4PZXPLlOc!dzx_hl4RM#%O6gY zWuIh8e|_{hs^WF}#r@Vg&(ps`^!%nhmx><0HuZX*@3mzqF}GJx<@o*iJ;e*z%;(=G zcOj?x+Pi69(GAYE((5XGgO?az+gK^dDv47Syz{1TNtUj@OW95|@q%rt3}9R}Th~rr zd5T=iWQR-e-e*q z`Xmn>`-Z_QFUdncprqev=)cp@f2W~;&NOsNR^=(4{%q@inC{!tn_ zYFtZ0Z<(9LipFyzL&G$?6<2vW9ujlM>aTU1-E0e+QGPxU7KOF4TyUky6eYq!VOB#* zLZ`Y|Hl+f#%2BO(MG1|mI2}*1a>%vjC2`$aui_+cY(95zI>dBw$Z!Rpa9cyB&}uf& zvhG%9GRL}$_14B2jPukswytHXvxXs;2fCFnqU%5lx;%psi_Ow2$N3`ixVj7V#)#hW zwAC$>bx!Y>x=I$KW|-a@Ol$S&P|;0K?CL#Z@&DPo*5y>OCHyMZ{F*6e!c7#WYIc<< zDv03ycIwnFKoFFhT$Nw*4(B}1`FGxAp5%aN_Kq+HS?r8Gj60OeFv|{beG$muf<-Od8`ZVi zI-JT&tOFoBky-n;IApfxlhSR*lC!2#atGd^^%_Fmf_Vdx8g zj<98*#hzj4)PCKT_if2J!O#aIL~gq%Tjz(se%PG&{zO;U1lJB~bw4_(QGVb~8%tB^ zGLhw>gr2!(dx9DaiD6?%6RqKtq-qEmdHn^&4EhS#@US%iiVC*n7d%daho;RR2c)32 ziSA_$BX{LNRa^0^W!Lt@0f#P-b<44*fxn@2DrAfvSLYzNK3FgDF4)=h7F~28FAYW( zoxLqH!6OWP?GxlKOkn7ZZ!q-3aAo;DrQB`lEeq&lbJ)>k0~MG~J%*vP&Hk)B^gMb( zHo-d8rRaSEcUyIQW4H;&+hwO!pD=a8R06Ko0L38-R0wciZec7wCB{KOHWUN&#L%XJ zx{9KL*)ga6-g12C%qJ@hfTjr`&jdqTs8LY3bDEPX4nZ|$XAv?}X;^mm1HrPj>3{$@$kBr>+UhI*oK1|w9@Kl>Zj00MtO`-2EjKJ`gqq5r zW|F%gz)Z%gAe*)>+hVgSa`J((`=>XCFT>DDS(>7YzXA-s*)mC(oa}LY#n>7#mO3Mg z*GP1vOhIFSXhCI1tB6Di(e$+-v8&Aqmu_fYg=@N2T}`abc&Bw1!{*4tR7V)D;s+IF zp|O$UonZmZkDV=R$o=k;?(WKb*#hRukpeKQh)B-)K&M(h_lqq?g;vadG<7G zy)!3Q^$rn=K##XaDi?}lr6RRa!>US5j1LEKjz_D!ZkURyGuF6DkR;dNRA8*K+4zat zNCG-z2);>&v(8}GYV?V!Y^{x;ap(%6xQODGh<}zV`!?DKWCZWP9@KUL-eV$q!L}~8 zry4q3LJhW;ylW=}K=wlsWcy>u)nR?oP)Ui7yx#=neBE-#4SpQf_L5MWMtM(hh(#GqPw<(2|$?;WSek=QAqX{2XUk>WuQ5uktkMCDWaa#S1^abL7JGY(ijjL z%f)!q8Xe(UufWh*c^{pr6CiX382X4j!qDe>gROZrb+P*fL#O5=I23BSInWVf%L8$9iIz9sU^+s4NZep$>P*}!@7f{U_-N-eRo0WO0#AlEs>ph;N0FyT_iFxQ&Th*bSDfZ%SiiJx)tsNfM!-F!WE{;3sbIV{n7Q5@n`u z!wmv5k5P%pWTzt6IvB+Qglj3FY7MOx;ZPHjkB;`NzcfgAA4$VPeOqqB?Z5^6itM5w z;=1j5*9hHNuT>pK7H}FQ`NH{}(<%%h`?|P}EcXm-5;o$f|Y@ z^VY#xd-xC&xJfAQ7WSkngw!5zF&(G6lePdrYF(uV9iY~d%N0Ly?2=@3#|K#*$`m~4 z{e5tQS2f^@W6y&dd=Y|P$p%4>-^E?=Ak|L@`ll=TbR{3_N{E^+hf*-8zX^h_KDv?< z1U+yoAhcjj=&)A1!J1KP6A9m};l~g^!7OfS~4QBqb)&LKXhqT%d*fWQNy<$|mjjlP+wG}mQ zO%0I3#lf&#b7rQaL|Z-yr9EdVG?{2Q8)JIfGQkev?1Z*5p3F%UXgRGa1aQ6+%Fz)} zHpbi-1vt{LigRmRX(O^Z9(L=V-<$Y2SWEVDS?bY!x=gpQjTR>|Z>?sEzrHin`Ky^O z228%*T+P(+mH=CexqPflBD)2 zi6hAKgJPs~s^OWQbDFeFJxq?jzuv(FPCn*tU}AXjVDaxy+7-7li9Q|s7R}=DHh~cx zA4oW_#qD;#J#gmy@%IQ)JsW_S$nl#@ZBgoXwx1cBjbNu5j?{J|cj-@XVSC*#uBvBh zf|cM0Z#78SI-wjr&8?(vYT}fO;<;Z_mf6hF@FHXLt$d_R!R6H~lI5Do8yei@6E9oG z#ayx#xdpPfT)gz3ndqHb>OB-ikIJHuxhT0xrv80-4cD;De&RukYs{U^bmXX4yvYLR679Rrfm!rEf7_fpc74iFO?r-C z@6+|ENF9s}lPVTPEH1+_)~-^N*8ixR8o(4K-9I8~SvGVoVwRL8!pSv@ni`$@{+Xr8 zTs~9fIG%n{==+Z3G6mhaC$B~erP!cs*FovH*GthRENxZIT-&@}3ix=N{Pgo{ zDYaJ@wSHZHuKzI~$(xrTk%^!!l|<8sYm_2C%ey7Mv{rq|D7lgz%?BUXgqC8i;zyk5 z!>bdL?uTFRy?2>LOnO{?Kk6+vWxU|wZy@%5o0AyfF7kCx%-LMD%uGrf_em2Ey! z-||wKR_<7yTa0+QNS$*Inbs~B#Y}0be58up0XHOX@)0~`Z?eQ~xn}cb|CDb3Uw^xl z|25K8p5A8v-$1O8Nqm)_kk!e@)y791iq7$+I2P2UD8O+ZN}Lr>0Iz9>RM#%Ng{w8M z>wFf@OgjV3FTY%E5FH)WGK>*(czu+AK0Nt3kQO~R?;JgUQ_pjRTs=j%Pg^KgPyMK$ z$GndsW^0T4Y{x#ktf?sp2kDp2fBz$HrL>;w*WV4Fq`2#iQ?K)!W@XZz`{Vb2_s?4+ zZHTLu{ZA$33%2wbqtInCJi9GDnamq#-Eay{y9mw5uwFn z6+TtfPYLf|zRN^^^n6~>c*DJS=XXaBPlg539L>FNFMaN4VC3Xe{^Fh{iFOM&!f7{O z{(W3cnv}&k{<~TKqM7@&{vT=m-^JG#V*T$89KL4#(eD!RklwlI^^Iz9f9rb!9u%hd*?><)b9c;uMGX9jS=7w+*X^H}KR!#Axp3w( z@OFw8i`yBVkrmBZ^z>y)>le*jwuq$Y)x9CRUNno2>Pk+@6h+TcrB&(2x@Ae4`Ev=v z@e2RbLusr?rNnRja`sy#-CRjpNp(t|BgtOc5huGCk*i3?k0-@Z*Se{$c&&7v$%txn ze3NY5Ilav_-H4&b-$vh?_L?_Tv83~HSwQJWN0Kh*MmboL9TC`mUucW|aLN4Z4*hgH zaS#L#%3)=j@h!!wFmdX74NGTH6E#|6W_1@aloDUyzpGFPT8XC3KP%FlUckX z@#&vqU``n;Rpi}FbuY=K-8ZfNO}_9}Qq31de}P&qh}!wYSrolM)l$v%J!xfv-{o4f z$XREBFXp0E9DGsaHPO?eZB~?Md=@p#N9p6x@ejo;-wPu?E9Rx19zlRKzY^Dcejp$; zzOd!SJk%o~^c38@3J874F&*IxDf4~Z$L9hFW=innp!AZ+FZ<&6lexHJEyFCVyi_$T zuee&);tC=&neC$MA#>5Y0a5o?DJ{Lh1LmTaDb@8?nZ%QR6h*Gs5>~C0tvvlQw8$n} zHZXNAS~p!RkdNd!zxPlW#f!M^{Yaf2xmVZ#<%+Yj6;tHXBEywzX_X0Wor_>(*Nno5 zW%B7cN!@T)L@t82K?L&A%vQjWS5FF~6?Y5#f0#oc?N}V2FyHgqsg$$sHR#>n=c1|8 zYQ@(}C2N`GN+=|rw0kZ~TDIb>gx`|*Pbzud#BYqUDT?23D)v}Ra6dufhWGarUM$a-_*yoh@TbW;Z6x~4m zh8un0yYhI1DWwp<;S$eytjjBXQYAw3-_`PL9WU!0zx?*(>C|m-?{@DlFF2?F&kV+j zoox7Ik1Gc&3c}-`SaEZ72(F#qDxM#HzLy{{wuk2%B#$}tH?)wy2`woc&DilW^2pG5 z`l$!^tLtz=69a zG6PAF1a}hLWwJ8t0EvxQNuJ)=`vjeI(@D}rSD6mF=}+bd<`)zJkjzXbla)whp}OWh zwsj>|cMlH_cMlH_2PbHzk_#ULPXBU;5qHSfe+eJM(}hX}UO>V}XXwBi-d75qdGR%P zCH^PAt9|d~!*^bO_H1rv=#Q?=3DTE4+mT$!38cHPx$k0!uRLqfJyy6NB01m-kS8YD zmaBQ1WnNx)59cf8O9tRK&^Qgt^jz>R=L(wk<&NDOyrtiP3o2#0PZzE+`874KQ2+bi z{`>pecuz!Z`##vz+`K0uknd;_e%Ye?Bv^`>VEIQ|{?V2njD^I01eQd~=ar7duiK3) zI`S1!|NgK4>$AxE2=>4Jw;R~M`##4X&oAHnp(5~x{ka60Ts7aY-2e91|B^sPBN0tS z%2kLrDMTOM5AGd)4)LP~%XKC3vxdYKH{pN3pN~JzNjUpZIC)9o@5#mH2Dmq9(>_R? zn+0)(uX~!UYtjda6tf`G(~OVOmkAR;M%#5@o+{;}t*?Q1B-8tVUc1E&+2I5@x?Vs9 z|Jv}joeMGY(dHbE5x?9OiDH8$iOOAc)suD}yjnW`ppI}{O&ou@Ls1edRSEihsV>PJ zkg8{QBIuVy>zWA~juSY15uS{F9bAxhfW){Z-({gI3Et4TLQ2%yy)B(y6o8)7OyBa| zqn1%v2sDIt7$?z4|L7R%@=!~~K&oTf-@u@D!@E#sR zk~mRvz-h4zPi4#U;AsVqxTg4Cbb3T2SUOa|rVoL^`$vH&#jt=RaQa*mJr%xjd?BWs z#0s!;PA{A&Ki@BwV)qV-kwgbE!{RPK{e83RsZ?E05v58Ef8O=L#c_{+PyGV<244nR zAF{u2@;gqCzLu5<{gbqCzGubl)=crKm&l_vSqovs~l6W?AAMAI5N zmLhj~|D(pr3@l0247h&0-gxEe??beyxh69I(%_&m+GI(Mj z%dP~xp(0TsFbweO`PI{D4CV#U*(;z9r#PIgUP8Xdh%!nPZ$X|#uKeXgp(|EO zVBiU$H5ge!i?QT@XJi=+7CL@Xj~Wc+8gxkXFaOl|5YW=MOesDSEdi(`4R8+wu3^sP z3?QbA0T_{k7vhJ6e$a$1(1eBq9)KdlJw|OhUg?6)bfJMT-AC@ro$7h^BZ9bsDjA&n zVA+xh?#Y&8a2_~y6yzvxhK}GUT0{&^Gh@NMjVvvSXQ1kw$K`xS`v53g6FlF6k^+t% z?K4^6C^a-Q7-|A+GduyT_)h1Xo`UZ{{=EXh>zdurbRD)F9_O4#$>8C@10x9|0aU^D zI4`p4ni*L#?$Pxe$rDs~D1&#$K(Zk4XE!25Pq5*c8>t%ZaVI+l{Aks~oN`sfh+A3gD`r=Oq4Vis$YNC%#k-!-@8 zwYD^bM@k3U*#vB>0i6s+Ty(LfTACo`#?T!C{?V7a&{iUY@`IIYg(&_284m23;fP{NpK3Tl z+kFh(NZ#BR%q*UmIRVu0)-DGxMWZ-+4t8$N+f^+{=IMGeqj*z@lD6#$Jv{Pu{0`b8 z`1fqIUeBa}j<3;hD)*T)sd%mvPdc%9N_3p~+~ddK+-J{m(gpRSj(Hx4xQt826H$2O zIXfek9~ljfcuU;F>AnN)tP5twV7%sZ#*A&bcRFxR2mJYpr`N2=(7@g`EegyUWi9IA zC%DIxNKzyH66wefc|B*}C30gLz(L?SVH0&AP%~fuB>*s>)q+BC%};>CDvwkzi%#vlAzCBZx3g{C-eIVrp%V^d(t0JE*{Z8ptRj{x~7>?X(rFz3ejLJp9g4gY zL2rDyo6>H*S{+eUg<>f1V@9=|Vn}#Rp((1`tAR@sczurc1Ku3#;D346(!_vAo?^ ztc_Y4uX!S04)%)<=CK2wX;*ji;gENIrWXO6)^*SAAccIMv;Be8vo<4dOp2rO4jnBH zi^Z%Q^bg8lH?9q5GP52JL$%5&l(Suoq+V-UY!vss;#e(`+@cr(+|+SqJX?r0X&O@Q zQY$D2soMyw!a!K!i!Hx5-O2iZnQO!^1RclN8OuCYp37sVHlC<;8<}g<^+5NRn|37v zNa|C;?Ai2T-9wvnnPBBZPxTIkk~}_y%SMS^mRD#@ex6ZBBzO5nNaMPryI)a2f>UHN)B*L~3 zOaUkDQ5F2#jR3-%3!<&_tzOVI;ore#(`#(Q1JzUgd_7nW$MT}dg*$CM(ei7w8Q3ki zzSN8!H%FIyTz2ptIjr_fhmSjjM@AJ=M`T3pY1nq$o-w#P@QTy6BIZ|GU6JK(S=u!8 z2FnLC)UrsLuc?RTj+86SvB=|vR?l6kTfG*>VpGta?zX~ftIcjc(6&n)UuqMF!#B&G zkLj2WP~r&OvI}d(ZB+3I+8C9_s5yxM_URe1E?N~?8XX)9 z(*|=2BO6A3ROT?QoUaBxA|hgs$J@(-uMK&%iEKQR6t>MNA~}RD1YzyO=eWtQM@q@| zIvod|G9l;`Y5=dVTJ1v@pYC~d94z+*lArH|ndtdA;I%x?hw`qDMgWPmGeFm)gP~4% zUtKoTEw=Q-{AeX^=A4cid%kt3?ECs)Z*Z0u6lrEq+$?2t(>pX)T$yv##egji7yUXe z#uTy)+9wxNY~|!7N6F7;Esd)58XOtUxso+8^@2}0`BJeN8U?`O2}=tUD|4#?CZY$6 zHum#&p)?yE+GQ>R*g1>@-Cf!Zqi%1vS)rm7~d4J-H2H`tA5L| zC!2$*PE@_`&zjxN)MUm2S#?p*IPlG)z|D!CEo_T>zhK9LZEWSTJT^S!P^!56N+JTY z8jKZrJuIW6Uck;Jr!?3UoNZ7q@CCG{R;u)t9j*r@e9c&Snkw=|(JU;Lc{u_o9MsMX z85T%mr~*;i<1VOA=Y8Bue!hNX77)>2yx$-2x^mF0N2C@&rwH*Q6lil8m9oD=0Qs)>>sSH;G!5GaO<@&~C2Yag4WqYWFPAg#allDyUsU}@7 ziQ!sikV3N?v|IRmz3jVI36B8Qs(dFu+Z2L!J(xD_h3bf%V!e*8)n1>h^Bh)b7g;?t zW;K$sfEPCPs9t`(q{hC#sat(_xK_pzL+sdceHQ_wD^^$G+pfH;R$D|>tC^(hsIt>u z;la?_iBd;f6$J6HX3Cg*(B$q)SjwGpWnVlT$mw!97AeYOs9LQltRjFoQ93Y%lD&7= z8dYm(6gnbX%{rH7Hpsk+?(&UtU!0W>osg>eCb}&X9X3B|?Dr@-9J!*fGlQkbPEa#M zk4^SDCST0&MPV{!D+IRME(fGYcVv+q7WnPb9n1}!YHjK+uN#3QcZETdo0AyINC$D! z6;=awLQcDfoiK_!WnH)Ja&gnQ?eVx1hFG4Odji!gj%)rP=&VbFc423)3*rv*Tf;)D z-wMIN9wG=8R!3~uqiayX#y>Td!&+sg`(>8`4|b^@Fr6cCuet$tA>ik;4L7F)ZjPxd ze7ftJRewe5qsd0-11F~gq12~3Gj2qB

b`TA>293dOD1jT>QHX)G$z)UZq;VI8r$ zxVeFpQF_QW^aIpDI|$4jRdv=KG~qpW7dLrKH>PuDUeW879*xn$j;Ij6I4Ws{`LenR z2BTU-wKhFbQ|Q&W-K%-F3{*NxZA?||7_+_5>?@4OHwv^uM*soIi>645gVBLeXr3N1 za&xzAHc`6TZ*x=6YbCfgfOkPMK=>jj{P!1d8MoXBESM*BVn%k}`?#7jo&(zxFuw9_r)pmgkmihja+8c{e zovM*uS3HW%w%lUJ+lD=N>#8tdOMWSk4RNlhT8(B~SViWY{wna)xivDhO-G$Jr322F zh6lGK*_EcM*cxw?f>w{&kK?gCXN7*^3lwxVqwuKqU~9O(%C^rWA@va zhnq%Mb~lJhm$#ephIA{si_8psC-ryTu&(S}zA19PmLFjKSvWbqWnYg0j!b&jo6t*?9%)LA(n!B6BBdG8Z;i{d=6og0I!blGVB%ud+#OoT z^3YgrTh&l#EGAQ|KQHOR!E6?LD{K$}T!d4q&5Y>oQeG03JVNxlth?Tz{o#nE*(QGw zxvpg^TuUwF1>WAR4Bnswzh0sxiSU3mbo8<^FAEc%Zg5mP z>?%uTRJSBK9x3dO*QO(FQ<~QXLz!=>E)TlI;)ZJuG^5B#`a+&N6)K=usY=(j{1Ezr z6h-Te$%geuMy+;oXCi>l9LUWf$XjIev;tomMtUdmX~uzw7xt^g(wCZ;J7FqSw%n&0 z%p_2PiYhG`!bkPEmpRoxbhx=?@4L&I*X226iPZ!=Ul(<66BJ5Vp(m+3psZbUvBAy8 zsEav(hsG|UNw|v*)*03-L!-K6&Aps&kYfR{=-$`>@b}&}R_pu?$ZlfIz092|3%5 zlLNn+w1aW8vW})-HP9jR-9ZJN!MVMVrWb@N?y84+ac)kh){bWgORC1x3YH>6w%K3p zs#cq239Q5pnYIN6Jkmpu18%esq}(w{do>o9BT+&bM#Xwe(Np|DmymLsQN@jdd&<EvD03hRs~OA_mR@DKCF9vyI4hrtwzBr)CV&{Xn<#@jTTTPYDL9R z7H1ey3f3V`Q1mmt(zWi0njX#Ql7e$ssz!sUUfc8(3kvlF@|=!L=j-2FQ{4z4->7z} z5#vDve{0(H3ToX2*Q>H%%v@n#_Tk?MpnzQicztT|5};K(NybScB7l)toT#L%^Yehp zV7B6e$UUirb#Q6=3TTySJa=2-v3%*fT&4KB;&}0EQSn$llijQkJeZA&8k{BV&OP_M z)3(}j5I9j!sX!T1&CyGkCxDgO=%}W!N;D!~PQk*6;gHwW(K31wP~HR{7VMPp=+1qK zfZf69lB;sI6h)Dq!qnHINaed6%#!(X_fN-*Ua4>+umqz-Q3&}IB#L6kPeCFWJ^mxm zT#eUs&D%dlhr09>3yL5=o+5WQ<2ZGml=*H6HjSCaLQma@Jyr-eN*Tz20lnL*te9x8~5?Se`$*fcCh8`i~eG2;}C z!HEdq+7g8M+Vq>zdJ!ibP{wXV-e292HPA zAj#0yiPne`&_T7r!~kcDxwDo;+GMsUVb$=`cHLU<4SPpmU{(=olTmj|@+|494n@~i zX0JJ$1bn?RV$FeCXH4Lr?0v1en2(0>gxn#=Sa~fgW-Dkrq&e7_PQw5*frILBW3M%r ziO$BB56Hf071(^MM5vpszgNYzLyXG?uCLLG8yq!!ESJ~Re8WMz4IhCg4XEKM7fRy` z#US8^VK{d{XM|01=qV+<8dJC^O#Eq&V^GXju?mw{y3N_Hw#U~^c3+V&Q!<>^+U}A= z)U1=NI{)k>e7;*O2C1{6v5dk1n~ zK8@|SVqJB=)!VirhW8@{@usUXrjfqpGI5jXF4@h81-0Sq?4sN0%sN9x@!NJNE?dpE zzw1u83BMlBN}kJ)WD0Lpkie;Pb*{qpeZ5)&0?N0yHKvAFoLJ#1xKQ@64aHiF>n@tT z9k8KcjjsrzrE(@F9!hL?)n|8OYS0;Pt#RL;7P0EIP_OpnsVn%)AZXEBdco&Y9vxX?SV#t%)aL=2ip~?*Xy&%tI69wA;FwD2QtL~KU)PvqM zsFYjHJl_u@fKr{DbSrhI`ojHqt!(jp3*YCV4zD$!vb|;@kDYQulU%isRjyLo@lj`0 zBW-lHkY|9=uUdX(Ca+t_>%IRPASFDR$yfGf8qKdMXc5C20guXI1V086nF0+O0H|bh z&Lhm{$WP`p3MkFTY)2nkgeY}BbB~ZKARCV$XAhCx25va13L9^cRC-B z=n;1i!(G8NN_4+(54mxNKnP`BBYb{0G$g#(MAwctE|A!|Dz#aPsTJeseP0jle9fG< zu-<5>RUN*%pD1guFz#QK&V^_Hu=s;sv(K)~vU*{V_-F6fQy7wg+D zBXs--;Kp(4^KehBSK)?bEw5>j{XWm5i&?)g(D$z5PlLkVI}ickmGQo>`OJZwW5ucA zkc5^;M$}{*mJqTamf|V%pp_TGV6c*yrZ7xtN?s`G&oCtyS|8qguPM1M0j~ijG$j?~ zxhcuP3>28JB0~l5SWz;Z99bBskfE8-Ojm;W3cpAHMd=Fv$c^}cxe;g1Keyi@hDJ$q zx!6MPj#+}SjgOKJVt7#+0?bo*N=|@huhTHEWpKv3<1cq=y<^MztxY^vx7;7Iu|I$- z`A(e=h(pv{fBT;|fL``?yca$dotM10f5m2)Tc2>#(074;!nVuP)|&6qpHI{JH}}zg z_9*?^|G6?s-`Gl1{bVI)v(PC%QCGFZJ#^MDN#`Zma$x>Uxp3Mw1BOmH+LiS77Mi2# zgj=DWbSFt3b?4KL8s75MBU7I1MDMF-C6I~~JB_`s7VmMInH4s;buIu?l&tW9&dUmw zr{3IO`I)GsouG22k{LeNmIO_5AF{&7WG0WEswLUony%Nt^c$+(1RJLD^hE@csqCk1 zqE{+I{Ezn&e%eWS17ITFW!Fm?4&#iK;q_+)OM+V-G~lWJo{=2gDyQ&M1m=}zk_?q) zYC>k%;Kl`0@zg|R7gAt6zH(6x>>YK-E{V9TtMO;;PA)S{f@Q+IZZEs0Wr!*>Oo|pr zW)f^Es^I|hAQ`sgaB!bfq7j$|>GfwhFw?j}!Eq4YP{iM>{&!`fSh`g2pAeromy1Y_ z><6llbV8EIhe(IZ^bKB0GRaAY&XRww)IXJVadVcOJI#cgoMz^tvMEH10p;Y7o05b`_mXiSK*ZZrbfV{8&DFKX##Oq-G^TUhl$gOY-+-m)qMQh#; zw?H!BGdIbp|Ip}9OX5TzxTn%M$7guU+8CU(VLi_Az@u>O7RMr-@t(_Xrzf!DF|>32 zl_*+t`AX@i_f8k+C~|bd@#d{#>BL*Z?v+Bl%sLS zS;lk8f0qz7eo6>2jv1186bpP7GxWL==N_Ma9yY|Ws3y@VYDmCp2#>PnxL!AcRERC+ zlbjxV8QyhsSPnV{c+TMVIbO;+k}YwbB<46bXG(AvJLl|ko|O|N89WaQFF-x|LUlS) zT;a<7Jr`=8nuCA=T%gnh2@aDR%IH!QqeX`As?|4a4aA!ju3MFWKNV53h-4~Mpc~c9 za3v2(ro#7ukYp-+gX~066M=V=EG(1?-)XpKh0jy3P7cA11QevGD(HQUbzhSCK*|PZ zCOcUVLjzc_M6-|281%WnBwDbFt8rw~cd1a(I}X+_$_gD!_sa?w4{JXqiI=3p7CAy$ zA;Xd|G4ks_iV662Sv3mhGV3fXvqojfKk>K!fUU9;`9P^qIg%_nk||_{P~~*_{sW#+ zy1sKVYo94eqLi7WB%9=oFG_AZr} zBr^-CP$i6grNecyK3O5;bT>(UXewNxrt3MC3$n|K$_i039i2WCFTIY=Zsj%=V}Xv& z3RSX5(65phm^>1c3SGiTP%2!BBSERKC5;57LWc2KVM;dVPlXESGwUoYI}?*3|D@mk zNPsJqhW`(#3&nT=J~MPc7xJ8&S@UEqJ3S8<`9CtzNS878(V0d%tQlte^=}!^%dE!J z4!&nujqgj0&cA{E)<(b2ZRaA3X5PPn{7Z)2xp>G7Sug%{V0NSNJXg(bd>CAk&}BMY ze0H3SlL!)hyD=5M=<7Baaxyzq5ht}od1XH!v-tQGPwDDAZ;(~7@uy^tj8 zki|Is)5-XsO}GlJqM{;#Q3&+m1sLSUu7#+E$j>W$g2M{8=fWpN@;!x5 z@OZDoaR);Mi$2QyjvWkCydfT@cs|?Pb=t~x+R`BHU~jnbo`z?i`L>*#VS$F7KF}Qj zfiaJB+Gvx5@!jDpRLlLvm0nG@)x9k_z`Sgpm)b4gT{iP_ zDgF4V(l87k)V=6f@ROyQ>pA-e$wzFTM>zYN&7t^%EnbyE@9Rrlf;^+-dko2O0^C*y z+Sc~X>(K-6D_;0Lhocw{c*MjTl}`%|?(gvQ68qcU0Nf4u^Sps$(ZEY%f6bVG)Yzt~ z6Y?Z>2{2|?R^an10={xF;V64}zc@kH>?c;$Ly0Hn@<;EGeJ=-VQI)O)eUKs%@4YmA zz|Les70{8I0gEvt0F%Ky3vOHfbFoU5Jjt=*naVFOS{bOZL;;QrxD={dqJ+{6NJ{4B zWvkLbv_!(0U+=p*4ow&Pb>j51_9V)Cvy7S-%gWN!xAMO z^eiuVz;Ne6RWi>#m_UlKRCNlHB{8K!C2+dn>#$NxW+)RnY3Yy|mY!%0H6=G+2vria zsX}bY_Sd9qV*Ej(?9e4n7f3nuOxKgR>;^-!x_YTl9m@_Ute%q&=Oo$sV9LG&1~*Gt z@zi96RZ}99avvxhoi0P`S&``M3h^cz66uO6CstB}e7#?0Sut1kO*CgY~P_z}7h@*|a2G zzj01>g~Y*ZIaZemF#b|Yy4lq-b1hBJEWaSbx-)@7uue%Mz-KVDWRs8# zYj>u~UHHJPE@iI7c~X~zovEyOvIteG=6!G?k_u5^1gNpK>U6|OMR{?2qNGP}uQmYtO}`jkQb#nt-i$gNB=n921MGs(#3-)DXQ zHifv^FEbaD)qP77nmfM2Uoih(;SA$e^Z>r_*#ZyCOujJ`G+9gbiJ^316J58$KkGnG z85}+DR!M*|mBu`!`De$@KdDcW4%KmUxRz{rJYDM&E$^foaf!qu-BQE{mafvRwfuxx zPKI6QyIQis32Aj@Zca_;Q38yqRy*qwznAV?|L^|_8!1WpM!Jt^96!|jkX0*L&Cqnt zNfu5?)kK)jlvV4JifG#9@oZ2XU%A|gr0b^sAl}RexL(^cRd=2?6D5(K^lg9Tw!+4L z`z?{j_l|7-KlVW$nQ>v@*|FSDul_L zj$fwhKH@N@Lij<4F(pHjWss#pmMjx56{-)^NJ}X!$Cat%U&$e%8hBH~d zUm8@`pM{f~8x&l4de>o`+`sSmX%D#xKvs{xCViT2yx1oXEb=)eKiV&T(u28Y`swn^ ztuK%ww}Q1WKKhxT__VzjC3uMsKOyBa|_(fY`;iix9%N>T} zQB|Br6&x4J=P$@BJq`l)EE|A*wnMmBj?Q??^DN`b9Uh;?LEvJ%>sXaIQF6d(F)DW> zTb2h;D|o~c#fQ5aWsmh6S8RxXCle?<3FA;^7Oi`w1tZ@S^*|*>oIOZw;1lvK=b`Ixoka zHpR-C2mMsnGNPh<$5J4i9@RE_ctHVj%fEo0#INmN@On>8fM`n&=lPD56D3G*IYPHll_e9GA9f)q%71YyHb*HR4QyqHp!$yl5CMl z|J+-;z2J^zWX0Np>XtG*#y8%!^*0T{@%*F$nwg7Aj^zZ-jRU|ph`VrXu0y`(MDZJ7 z@wd%e^N@2q<7FiJ`qNepz>5frNItugU}C}LOrST#>mFKy9!^&b<Dyyk%_+&e;%gMM+h2J*R*s0!LlASAX#qTrYPfvaLR5m-8D#ldA z;2PYO7}Jy7oa^D?FC2B)@c4-rQufBvkYmZ#7^2s20!*%2Z&CN;r2J$eV*$QJ>b+@w z6I4mqd>_gMy-{vMhD`lH{$z&KB~Q7`kT~cf|B1;<)#slR#u-hMa`FzLpHWxqas@?+n zTMmeKF5a;k1w-PG;+$(e->f&2l%MCEOt|WL3eWt7edkwnDzBJ%oR;2b-p%joaQ_TE z?LTa!h`{E4vsLG<&+EK{k?;8a&PUmnd-;K$r%&-*qI`RX0LAjhtx&fl4(2SM#_X%v z1E4m(bvZ$ZTYrRk8bqweIUaZncKq=}DKH%OY?xuCBfP7x#QBh~UOD=trwepM$_d9? zx8lsmWB+~Rn~W)H2E76CRiy*lv49iu|JnPxB)M&6&8;x}B*nPvum63*ifGHSt+=+N zk#u|};)KJ&s%Cf5Vv%K%rB3el);vhe+{zqpEhH&7E&=xHt| z#*Te6*g?3@+4u3Z`|N{ve;38OK48dA*TmBmow9zpUgAdo4035PDT*vIg zWorQ#hwI{06oIxrTo(sBTwQrH2FMxS+lkx7ECZJ^)ylFA%%)akV6?|FfV(qfm(U== zxS5&R(>Dgbnr#VQQ_Jm6lB?CK1@QyT-Ip|u{3O~ljyk}iaI>_AI@P}~_Khn){g)Tp zXA0buB*yOC)cgJ9raxyD1v@r5BA)Nm-!{EeE*8AMZ6>lwYR)sI^7O9=!>IO(;!fvO zt9b82CvmZHjqOUZ)ee0$Z2ngG3vR zx9PD6Vj1RcCifpzWnyq+UcyKWZTL=4g<2SP?0)^}>fQSnZ>?T$;cEd6J(MzAaHuQ7 ztDn1zU>lw4@F=Zq)$El#n7Y&@p3;&4s7-U&`KMnI>-MJ>vFLqsjHgw*2W{RxzO%f0 zXbhnfwS{O5p^h>LJ&@0J6**+FIu4;bn+~}5{r%lwI%kMDLN(oZ$<8&=sI!Ehg1gA3 z;nymCMrLZX0T^i1-NoQLu96EdFFTTPhxk%LS)y zic5Yw7TuRTt%?LyB&R23k+gW&JEcLc^+mZr1zxDwAEmQoNe^up#&3(9Zl=+ePN~6>bj^N>BgDN9UDuT%e^}wYX_0P&N{ul+Dl`&<$ z%1O<35qRiA?n4|BG(EMrmA6||9W(}p)=L1j-7lVSk(~?-W%@c^WoBAt#G~raa?D>G zt-Uy90~YDZ7uP0$n8N*HXzw(^R%7lNUoL8^Wnc&ojnBXoVCx~??{@?+1F;-augco` zC>#=&fC}2l(JdN3TyN5m^HM^+FJfOJ>f{Ebi0nuUAd;>Cl9XUP0Epl^nUZj}>r&z; zGEPaKu}`0U3B9d8*z8=PfvHm=L`4J#&eI~Vv2st#ael5S`%vC^;qB2|?eR5zHuu8> zbsVz-X3Ry84-+~`T~zU160s*QUcbX&J&}mr`2ibVGGBf04bF9RF!k#5av%P_;`WnB z#Sn_ds6Xajdgq~P9FoZ8yD=9%MtJg76u7Y?Ju3LnDxMA!OSNrov*vbFVhn}-PAmC| z+YP3)YYP;{8Er80GD(aAgW44ir|Q=&BtwkY$h~AM_=O!sS~XI2MC0q+!|9K$lSutc zqSa$_B@xs=3+L)EO7pX|IG{TIwU?d6;eZ{ucMho79GE3LvFE>ei8!RI)0{lFsqYtV z2yJHXtl;7TV1HfI;T)ny96N{e#%K-A`CLClBj@S>m`65EmmG)}aKuGEl#PJ-4n6N0 zX8Xnw_f^i?jZ?qi)JdT1M#*iHD8EkP$KLhdK*De%EfZ60jP#5D`S+JUzWnCx%fJ65 zM|{VipV@LsJ@;CcRD>}Tmr>QyCfUHNC=rqNr=}y>%oFeTO*X!`!pEfh=9SAw3ulMX zkb8gM_<=uF=|dgPNi?%9>Lz=Vk6<1k)IBvdML@O z5ic35n0Y2eNWFM%f{wCF>q!`eV&d5-N&#adhpQ_{A_WH?HeyKc3yD@gr#y`&(pN#E z1xi%^%RDpYa4u02Be-%F2Q$8Sj~a>G72lFaMa|OIV77CML)wCG-m>Gjup=-8Nj|*X zUP&0QSlB4Zpj>zi>&BzHvoW-2K1%EXiqtct3xPz-`{XB>_-7h5#+#KeO8FL>EZ&DS zBWNQTvXSDvqe?cIvZll#+}jH(5-sIz=A)++KS~=DCr;eXT>D98;C}S3)oqI(g6}|h z4dAMxlq>S!Id+3P_a0pDVd`ebUs>PWT|re*aLZ>K^|I`n$8?JnjRY0i*@!Wgr56t{ zjw8Cj=BTppcj5I-SKRk%TWO%Ebd_vD>JVtzt(yVa=?Wq;3KfkJe8K%er2$#3 z2R3h2)7clMNPc1JZ&vb_I%lQGp}Gi^rpd_p$I=T0H|1cG7q8zzqZ=r4Bl1Bk)QjFm zR5Z+0#*m{`SWOd<51g~~Z{ZRq8<4Dj^JtSg(~0Azt0-A#-$V6l5n7|>D;r&Tzg3#K zhp0c9Q~@1eTDGVLxF!sUWk{%-)93P;6f25V)FeL*A1Fx_ zqGC#DIrkXZpvC>I*Kzd8Utw?5Nkma57>N?@7*0F!#~U`O$Jt#3QXL1XXvmLB?Tk&T zn^vfq3=VacYt?qJC%%GlIXg|bVWMz!4L3}|T&BXWfXcPOH zsr$;iQ(Z^Fr1owOW*s2g4ARryw$7w9lEjNJse_ZREOzfqY*BY#-Q{0QPi^5@qu2uR zHg{Ve>E4gbzEAP===3w30gDQKQDQT|Fap=ZX58a|r4WUe1g-fi;>l zoIk2j@e?IoB>ib#9tWUBl@+!30ym{8*XEX8m_my>OF2|beL1qPDU~KMQ5Ei+UvsBd z_ti_QcG7?KmYxvN!P`epXQ#QjYFgk*w*RUI(xEKv+2hhCE^Y0i?niux(d^Nq>1Z-R zoEB{tF6yPDN>7}e9_Oxtp>2>y6*ahuIzAK?)nRF=o5cgs6Wo%r2p1C2L4hf;-?;)KsjDHCQ{H`U zRaETLsY}p2gDi{MCF}DaPM+MF@=bTaWo;lQn3YPaSjDhXD~^-1i#)dHaj6OdJ6Wpp z{a>oDXZyEQYg}eabuu}go^@ZZ!y;9}Yj43W_I| zt+Vb+l~#F=e`}p?6Lw8Ym3}AjxKxcx^?L7@>Z?6msqvtiM>ih;P= zD(MfKhCb9*%zZ7?R@k6TuL$(6>MIvYP;?=&#pVonk$I2sQ1U5BEh-5vZ z<@Zo!`9h6$gD4XMS%sb$Dv)(Lkv`OiDM4Lb5N;;$&fOmJWnj-3MOtM}?G09$1356W z*d^jqwX);E{HNhPzqOy?W;OSW_%DW+f7$UgYRypcXyF^Z_L4>HuaQc;L&N0(9-B0k z?d%uL!R}0*4@*ky^h^nSy*_!X3_*wLitTe+oT${tc7d?VT#v*%M(*$h=D9hn~38vvXZP z!$8#4FYJQFnQFEW(r17E@$XlNStQ|@$lTSBD0mSHy>`pUCN-!sahsh3ae!SEib(V` z3MnK64M|EQoEWZB4uznPDaf&S|N)d(blgW zgcxJBliN)Dhiuds3uYiyF^N`YXrRD6>1JTnpwN;xM`G4&5`7aWXjwwX(r0%7n#43` zm|-kDYhA10_Eh_FV_J_59VX4Oi<@B*tv<#riJ%{*-fgxqan+OA6CuVy29ihxUcyHV zaNU?>XJ1uvj=`7SMNV#YLH)kOgCjnG*3Iu7*IC}L0nZP>{{RIK)42z&@i$;eR$ zdO-J^j!MMFCf9*&&=cf^u5yudb6yAEGhP$Vr3Tp5 zWw8neV)GOmQ874}GmkgCW;(j4w{^m3ZnP(s#hGm^3#66G#GUH%Q|5T6TG|j|9A_j-OBZ$8qXEcr5fV$0 zi&z?^D5H~BYf7n?zp?cWXLb?+nlZ<;gAhgivw#{u-^}NM_fU%_pV>k+n(W{wO4;P+ zz#Av@WD#2%An%n8t6`u*WKG;N+xRe=y}e=U7T@M`XgSnJ4OT0jhu+K@0$kA;?$g`G z;A9egx@2T-lX%yoJs!N=*@42DA7T*OmrlD~Y+O6sGmi?U+D%aKkmo!^=ZRsiy*X`{ zq#lj_QeN$2(-vnN*hsU*-eR_X0)!5dPiK3hK> z&O1V)<*wI(kGhhh>5om!r#>dIs^~xr1E6Lgoys8AM z;@DihZ(X!jsiCad!cG#ng*`d z$#^-@Xk_7w7T@N*Lzyk@TW`;uSF!qd_xix%Aa}1Hv4U=HZjf77>^5Nc&h?xIQ@9U+ z7*m1X*X@F->fkciV0s~!KCfY{jHY!ZnRKEX5uVl*)%K<1hfd(9UYv{^;L*SK+(7&u zxOa{WH*?;2;qB4eXzqsz3e1X>h4SL{J1$cA;HSQnHVNvkjF!fO30o#PNpjCWMk6t1 zC=oOMu?9Yg+$st@RNyVWuEPLHo1`H?ojORAJa@6=qJ=vEkVpwgm=Ko@$%l$TUHFZA zStUnz;{5155nEfu4L&wmHnw4kA9`=h$=x%5DfdysSUgTEK$e-Cw>A0fs9Sk9)eysY z>Yb+Tlti7m?hAs3;!HR7b;++dmubty_4k{Syfi)hri}4Ld+0Z%^}f^M)h?#KB>Bvk z&p32!#6zv2MLTXx+i>xw$_E+^+R4RPg~xyIue=26JUDNol^e=u=Q+(%RRHLFT?=<; zusE>&YM*MktWKi+!gq+l5sJXHr}Svss`ltNU6=y7ohGTa(oAO;D`QrpX!6tA>61Mf zM|Te6+_eoF&w>?EMmv^;eR?@}Yu2&)XOCRF1!bB0cgqgl|NgJ%&Xa5JHugN{xfdk< zCV48|y9Pch1EHr4r1kr?{&_cuV0Qg9ud{=Ab~>8CMmZ`qIyMhR;Dvv#q%ZF}jDhyZ(raBBtsI-Sf>w z49@0Uw9+Li(uzc@X_*f}Yqd$(VEIs`RY<)OH?Z zd}_7|Y$Hu0tpd|E67Ve>RXz2?^@cAQG~}Wr@E_gOo#XT~ttu5)wK@H>VkV78w>GK2 z@dE^)`Z*1$x?VLr@fPVDSg+N$#WT0>z;eIK|W&c5!bgrx$trtt)Zm2 zctYJWoXJn~C{3eP_R@4FKFgJHCO<4a_u9*p%$cYe{?$zsrSS1`Ci-)`NySG+D^o0R z@1v&Re3oBY$R0ebGUM>k06(ck*JqPFm$02v+qi8=eU{%Vb-rYpUK|s01`fl$FU~-Q zwp#A8Uh>9Dw~wh+%gZ!yLl{JS=R;1ryiag44aYj<8^+Hz4vUKzfR~_9OGwmkKt%K? zn@(5kN~<}!y1`g$y{_B!O{x4b4DoEUq*85;FMtbTXOno>P8w~Y#yoM~qizSCmG-Vx z6kU^X5`H2sgSuZBmD(E{tQlbo?k>o0CQ-Y9L-~4ssC}1a(v&^uXFSc0g-r^Mk;1We zdZE1K`d5UVRC`6az4I?#2s0_C(fE@hq-Nz+gsW>!w}h%KPHUlh)9w>aLusQL+84sk z-f~_I8oP?K^`IuA(8XLnj2*KL8HBaV#ScZp`}|C2XZOo#=_fzwvr_~ilC^?#C6dxM zQLaQ%uVQcQLA6CLdVJPV=q<8c!;Ob`UMhm9fFcql>HlS$vH)|C;{$0VQNo=FNaMFP zYA~WtJXi^{3sv-jG@9Z8)WPu}&>~Q9!kd_OuyU^qXKEPdZ~Hhv@Ly9+$fFO%H$phoJIPDo3IXRRLC8hH464|sU<^Z4z1{T#8OPTc`u z{((sYEvJetL5DF>>@&^WVuVM|^e<-3*^f_o)AH=&GH54-58bs9h_f{;x#&JYUICGa zoj%2^3;TI1Kes&lxGp+$iZ?(_#!#@CFt^zuFXSSI3fHF_OY_QVFc!jK8}YYXgg(pF z$eJS_CaKGZi27tQnq15#=UnuDbpFji>Z2E@SAl;U=ERcC+KZD#?61WYPJ!yPqjC() zmO^G(4@`k;)#{%WNU=`Fw4;D?K6t@LKNR1m_8w(vWyz}DqJLgFv#_s+uiff}aWd2oA!derp`n5|JvKuvQ z-tQY(Csn{QZ4!an^x~7dS_d-2$e9Px;)634GAH6W;Weu8-MOjv`^n8HqtJA4P}xmP zrY`<+iH5lvp_~IGT499QZ0Jz3Yz~4Fjc&xkJQEjDuj2L?tvJIC_OjPkmCuI{)4 zsaA%IRioO-d?Uz+!M2Uy=UQm`XU&Ec-9t~h3Nu~JSS19fmC59Idd5ZYe{d0+jAox< zpUy9y@(@$6RMQLI-LK|RAguMPFnRc*vRwY(|Ng&RV}dKwOd>VrBJ^Z-d4Zrs_p$B& zG-rBhb}>0;l72=FoOSGki&kcojksvN+}9lDLvdWPX5Yr1yFdk&lBjVaPq87OB~h>e z&khqk{jX>r0Rbrt}Z z;WUwJ!Ua=D14&LzrV(y^e_Nv1Toe=jZ$`mnP_ju2BC(rY^hUrd49=8?Z*)t zsh22(I}$0BX-gv&_#Zr6HVlaz*aaA3glbOcWEj$(mTXpRv{0UJ8Y#{p#N&Gr>BZ_Q z#=#Bf!6azm!$QdkVK{r5mZ#`5rkCQbcWJaxI2|=m8x$!BOyCgNG0cZCjJVdD>9NO?Q}3l18iW?!JMzq zCNpE48;usTH~%v|6C*J;SnnRGTdBl|aIb&cBoJ<%-%&x?!XjpC0>RSRLB$XJdF*di z5Ao64OQpM|A4qK2G)jwz7f+Jxc~vtP?_Qvdrv7WiS%PtCllVaS5_35Jp6deT+oNrG zYj5G-_9=-Ek2FBs z7BMz~i2|7C4#7lE(Y1PJviy?55}i%NryD;`Qb3GoD&2!C@kqkX#py;nz`$GtaR`ol z#SodV&JG0S8$bfNXyM^EXa$@0zCIL*9%@%3QTmq`Mee#nOJYic-fLe|ctFtz>J#82j2pR8% zG))T6N|ww96U zlW1n=L^fXnpD#vS9di-OZ>ZUn{leX#fils!bDq<^;2t(Dt74;BPK zM|qzXo`(U@YN=E_Dt$dR`LDo%wD-jsMUk9ZrA1-JHoXExe(J9%MsyVz4Rsq8AvL%P ziwYrMq?RXbgHCFv2L^QB=mvH%UpF9oBH%T z+Qfc#oO|Wn73b|?Js0P?$#a8ogVn)6npcXZ;Vpg^K~MOASl3NjQ-s7PTa(i$*SFR?mI*?57q-jMd=I6 z`(NtL6ZJP|8#X+6Ig?1Z7M)(IPUMejj8|1?ny_JRb>hErHfANr3m6pD5NbvmnuFoC zy|t=AFpwNzd#W-aB4o_{p3*ku=9XQU!d{K4xv%skKP(ygazyEho~kQOsAYNz33 z@%T|Y5w%kR;`~5VREMFQonmyxMr<$P8c-*;vJu67{DY@PTZ+tOe)qq9Vj=&{KPef3?&+pRJ*Qnq zip_zpW!}5ceR3CS8A?lW8}%>0{B4obT8OZ` z(z?W%hdp+|no%ehvKVy3M1jO%C+fRHn<%;Cor~LXOEc2JTs?8i_G-5Y5sMu;BbP85 z2RI|gGc}A>rlf=Y`}~KKC%5GU=&rMJs^4o&vjQ8%0nW>xa&sO|K*x}~Jet^@( zm8&U%Kk~Vb``T60xmh-%h%$O6FKHfr203_iO{$sN2OlzSrgpTmU9;_M``|6^GbQX> z+bhPc?P?!9#(ieR?%vixc|j4}=1GA+@;h~3svYd6t2R4>-I^A7ssy<>j)1i#d#c*h zC;kZ#tXkrqYES=)a5C3k5xeulE5(FB#klULdc=2f+xS;@>F3pH}jx7Mj*P0~c z)m_oN!PIbp>8$MdsKyHr^6IW^`%FvD=n2h_hA~g5I-`exnG}#I>aEJ03I?&t9LRy0 z#qT@hv#C~gJedD9yr&9I8r}{!tGO5VB>l^dr?H1c(qXjljb3}nBKFrvE#9Hw@&J!b zn#%TFf@ag5DA6t{vC}h(68oGMA_@?#ee&%xhePq;=I(=ce;36V_$qD=vnB92yFIx> zB2@HdPoPtbN|eSXl{xH1Uz^!Fn+OOJc~lHgPAuw`M>p#I1n~S26Hlzi z5+taSc(e)zDDYew6g;*-9j#ITA1Th#FG!TLDP18}7oV2AIccW0e)UbDs#Fm=CTi&6 zDl-!13^R;{XRT`$T$LyLa${PL4IL)Uv5T8w60Ll{VI$~=sdt-gOk9QC_C$zrCD2Kv zpaugQF{t&xBs=@6lED%awYu)2t<{w+VJGpx*o9JH^Lxj2miKFbPzKy&NLPY&khK~D zAA(Xca+GNcg*2w460xz#h;9l^<}sqr)NQcNB>`;9Hcd0w;=2)+@oVuj3JsqGD4Lno zD_qeDk_>UyP?EzvM**KRTA8GA#33MCICEE86bI)*ixMXpv6gKIJJ#1L9D3^uwt5jV zm#ckO*C8r!fz3Z+L>}T`&OF}mn(3IL-qs1DxzS#DL07{DdJg2Z5zlq=+Q4v@hQ4u_ z)IVa2dU>5~7*NC!sF7e&c39srP;_u4pkk6G=`z)XT!*5DY98^>Xilyy2DzBH!aU< zhzcCAAJ|#d# z&)_F+<~E6UJ=$aba{n@_>emoVwl5vh%HbYYl>;g7%xrn3 zk4@W~?QGck_BNX+mW>W?bDTDGK|WU+8hZ}!L1MEF>=`k+IhgCPE_ogowx@&z4=7n~xtK{HgQB9z)qkRY$J7M;Fx!6hc7+vhV?m1Mo$3q!H>A^w|B&mCB zSKP{fg$bk~QM+6EsDiO1V(xk!_^1#F5;?RS*VCE3i2N1m2#aZcGB1llXVoQ z&cY2An?NMNCL`zJF!UwD$)l$%7YBydjIr)Svn@kE;%&Bau?@qfgE3`o1A5f==Tot_ z%I*1Ny4|adc#B}@K5Wm^6A9lgz^K7S-R{ua@#td-w`V!FD@nu4+1CFaA4J4xPWRga z7#YNGzl_ZF2oPiBj7 zGG;Z3CYPC=KG~CTbmtI`yl;kuvFwuHQqxzsjLMqPtN!WXNqe+|$Rt0@t1s>_YPM@A zlp~1LumAq9=VhfdV6S@mXL=7Jn{d?X^bSU=p~YHsZ*5w~roF~?Ik&F+$)3eOaRZ{A z>^lCb-E-BJJ<>NOX$W2cnc1YF^}OzAT-~_E;AjAV8ID`@96p2QYnc>dlcE_GE}Uf4 zZu>QFRXJ5lx8EY68?`kQ8rKlE_Nw8>26e;dbR$v1BtagE%T1suhF+MCxF}+>E$QAw zE@FUk#6>Gz;;;7l(rQ}fL(p1n5;l7s1r|W+mADH+<)D+u%`y2r{f2OPzxLw54?kq> zxZz?M#f2Ib$H$`JZ6=~=6yHOxU6l#g^X|S{L_rkij7+lszWc7al@@G+0*}uGGWWX@ zPvZhp;#0F#Fl-g!*18cU*F5ko8&y5^!}SKUA_$qBSQJ*8{_-5aXP)EqGl?cwMr^~g zVkR+%?3&cy_yGb|>ziQGQR2)ZX&~p()?Hj~lWRnft35+K8SZDu%%$A$3MqISGZ}=)Y zU*CXIpH8mVF!q8QM8I%%s3fz2&qo1#Un*6&b!-xhY$!H~ckQInHVwxUfWqo#)LBJ= zmq1MiP@JL!#8#_i&xl8hG3pORBFX|cHW^5?+C}yHaSuY)YV{=EB7FmApDH2I-0eH? zfPx;1R8Z0+jHLW)|SwX%?^7@__Z!GG-)RsU00F49nBGOv0lSMsY&c6JLt zOerDx4GnsjTtZUvzGdBF3CVAEgI9|@?upbsrMXU|rmH9EJ*)>czsPG=l38)WMF>~3 zh(rqI_#{z^y|o9`0J!L(Om;$uC}7zwGLz1Y*(MDIqD#+QU=tBHVDm089v-*GDn=m1 ze%zO$GMrIZUSwa*qmO~6MXE;_1l=ibcp;4(W6$n9ltMX}ez_s4rXdMDw3qfGP8$*k zg+>ioAd*BY*~}B~_f0mMDBVmW>OrL?HfqR{ii|PX7PRDujU3K}Nu!0&Kp?I-@aM5n zL*45T^)eSF{j+7ysPGmS3hLJU&v!n6B6;GK4U}oyB*35q=9UiFYcG2NnoPZ8bSTlb ztsC36ovhflZQHi9V%xTD+qP}nE512iX7U4QcVRNwsOrH_h8jmfnC!lM$y&uqpde%s7>GG& z9c~EY{z1JjGuha})m1CyFARl`B~BC?dzu%o^Z|$7O)kDlAHFuOv;>$z@Bs^bcba16 z)&USc0juScBMgg5FLk$2u6B~_!Au0ebnf2hZ<>ryh;dKpnCS9rxnY;+ak2(b?HG*- z9f8o0P>gKp;62+k7bux*uw7n=(S;a^U~%Ag?G@tlekuCZn1V;L>AHJ8v1WW2AO+7v zuHK5y@a3^Hf3`&L^ofIw50erYC_wsPD3me5 zB+sx1@<|N}2-9RT&YTEdf>~1`!pSkd?D*v7lq1FJYxN8{IGf>Qahu(Y=(o+j>i7A| zO%hS2r9F}?Ks3y5bmpbC@q%uMgB;4JuL>P_I(8Uv-_WCjMU+2V{S>e0J=C4Ta4QV+S{HO6a z1yvg(-_W^}gMc83VYj`4ISE4_#nOyKElJM^cr-1ecc?IQH)-5T4)#|2t9AAw-{r4S z!0fAcYYuD{A2=X*Ls=)Kw=UYP7o(mv~&wmjxR7s!vI-ILN`=)M#D zRk-zSvlJtXQOt-nLW#_< zNT29Rapu#7;3lQ43>J>o!>*wxnf@oM19}8>Boz6K^9}XS5MfbG*(J?XcgW)Onz8zN zjaIBwOm6lO@9${su0H0t_8U6h_DYw%FDP-N-kCu2`+c?Gu?k<6HJxT=4@9(uyND@` znjXjUDHfggF2eI3!Lqx>7R~Z3m1Vjhg!mZ+dT$8Lq9}F-Dej@)kM1EPj+-7~lj4gp zx4%)dJIW>NJ%}~>dv%Vlv^QTYD?^ruo`+k-CB@jw&UAlOt8h|Fs}3SvaFqe7LgrF` zI3z0GW;auQ!EH~+WN%u|$*`q57tDdp&C9FW?O#;-0<^KK4-~mrS-wGz8n{jhNdvqv z>R#^+dQ0w27X~G_oU&ey(7f-xW0xd9w4@7c4CUAr6>r`pl4lEDT<|>MWW?sz2iD^A zmH%QvRMc!8us;3DzL(-Elt{=b`!L@sP7(&%9W9Y`ni?JC6Fonbn!KS6=4M`<<}#H` zz3Z+@3q>q6OWW3WA>S?R3UiM2zC2e5TCq3B%H?@qyX@qo0Y-rhzP6o?CTb?TpF`v2 z&X4@)c&&lJyKph^!y%XYGR&JP5rs!@FzyNcITA63rc1ez>qNd!&0O2{A)(P!PXG>!Y9 z;AU-7i6|>h9vc~V+4+$AWt6i&ynhXMp!78+Q7+|lrORO|Cju~2v`%5Nvi}v0tGbE2 zTU93~XL^H^y;ts7&7FiE|4%cL{;y_?h)@+Sttn%+d=VU8LUCDpa$iV8Tci@2%kMD6 zc65NEPH=EIfDU3}TqQ=!jqilt`O-ltymVo543p~c$=W7z8?!$VSR1@FLd4*qYUW_2 zJlyhiSfU?PcVFpH6(ID3C15LgW)}}# zH)Z!pxn;8k`J#WeZH$I&HcoT)_mG8@)(0$=AckqfmJXzjOO&1r6u`9@XR0v%YShp1 z?@!qg(NcmzkVAsEHufvc+2yKf?9v1NW)@Bm#V(`D8Mq`8P-RY!!ZAT)n@DEDP5z6O zN%Md^m_R|Nt_Ba~EV94=$shS4fw59MJWJ6hVtGA{N~{Zn1Xb+W7+OI3i^~iokRX2I zFd+XP^fq=ex`IqZq}DLG!(!|S6=@kYMLB9z`;S>e1pwu<)( z^P0kdTY=@29J_{A<9OU>=!bDPtl6Hwg-hEeM{_ow&Z(%*Tgua`@OyZRAXh5S`m#xm zVf=KWnRM;p|0-6$%AJ*SLZ`y+goB*T88Z=25IL{C0vYmy_6m4;x-t5!;(R+Cvgg=3 zSzX)w8-xa7PGSfOR(zG=1NpuRdoT9uyQm?a0$9S4=801cQiTZlifjsh3gmQ<>8>MW zfvG=8(>~A|%J0&t=`cog-Mq2b`ojq&b|=r zsr;3!DS-c8p{Mx=$N+2h>%EBhRxHYsZ646*IQphzkMzunY`O&ne4|+EhV( zKJ4y&K;oZq*b${>OPZZ=${=k*KI^mu+01j@;-X8#<8~vk(6n^rT!uc`kUgb`W0VD; zi(W&@0;D2vcO_zUUth4>Z64H7BM);;-i+WiOvGw9!H!;85K|fFO)3k>nSmJietQFB zW(>)`GCLz7)CD+4BN+GYufcbi?}EC;Wg8oExGDYy5=d@ZK%2A%)+y4RB1>meKoEBO zHp2|trhf8AgNd9#ArF^)=^FrU%#I|WnobdxFfn(E_j>p>zWOy{SYOS*-$s2M$BXef z?aMExaw2f_e^{qzjwIzL*Nn$EM}9Mfw+9IuZKL_NoU!|+UA;eehHR?Cd5lQm;7(3# zWLzog@;Bye)_(aVpZjQOnvWE){*K8ZMwbgb|w(pz(4 z>^9r%IUN11X$+B@#i}+qizrgU$*6d3Hxc?9yU-jIfWXs2y$~Q`qZSH;`q-wUk=2Sn znPJfPmy)#qm*dh{OjT@#+Sf1Qobh#$9VN4w_1m$9JKog;2Y1_Ag&gT;$eZlzGu-^6 zqE{OD=QSjOQVBh8M)vi%-U#P<5ju;d>H4(GC0|*l=&zEL--Xp)AuHbnzCl^H39i|JBdQ4WfuR+Gwycz8-K%Zt2909pb7$$kG!370|=~ z70@RyTATE(>e;uUTtaUh=1Ykt7%L62PF3Xu1h)45rKy zAPyeWD3S{qrx&T%`WFmw;`v(?%8#*?N?NyInP)}*EK9W#rAv)gnUZxP=2Ui2?%e zgs@4i>;O^l^P|ri(cjBssU$@TTO)u*EC$!L!I>*@KC<0^sbGeOCT(nOx$fF=<`sBpI(j}Rm?)+3o;?Rp=aE>i(KZci`88_%c0D7!@ z*{OnJZ_$m|kNPUWy#YcL>2$9%M}&*d8Sfr{Pp^L~wXJ4;TehDp$J)-#`C5i2vGlQ?g;N5@B7301!zd zfz&svoneoC0_Tv7qrINV2^~GqFF_OSRJ7P?*7Qav+=Xnx%YPMvC_3obn0Btsh@sbZ4~}TQ{}veT$2}LTbZuo38!>y z%^0g-C)4e9|K^NMz((s_4P-9{4Z5p18LpM-pTURUGp8n zk<1DsVh6p*cKw8u1I}+hyx!vTCkL^qY`eXmo*qma0lrE6ea`0G>!ntv!8t|G);^={ zIK1|>b?Z~<>{;-&)gSGHn1kV+aBIqnE<(;d1VdggB+h@sUc1&q%p!b#^PXd~ga5^U z+5CB1s;5OKeAM|Kg>P|p{}Z}pij40ET3fxlKG=OKC!o!RpR+vEe4G2%%lB*F_a?~$ zUFxGBi>W{8bGNj%`kwPh_%!R_2VT&uerz2+tH~~9X4Zb%EfH7K>D1O1at-h&z$v70 z2Uc(scK35HOUw4UcewitLH&xH{Lh*4g<(mz>l>yx_>3;in0`N;HVQ=#>bU+rst}l! zlMX@+LT*gb3;UiEF)-U>_i>_jLcb6~gGngNPVVWH4K<4&PihYCLk^gge5vRby3}_VvA>%H-Ns{cbT0bCO|;MwW%@FHRrxp zoRoA+98cXpH2j&A%ixsBwIt|DAc0XA!BJgx>djc*Wno}S1c_o|pWk4|njv@U%O19W z!M)~sa=Sh39K3JzSWz8xN3Db(m=Shz%RfPL=ioC>m2uBt-HUFch0|)c>r=XP14DF< zPfrQ^1thtL_v8Fs6yN_kbnob{T+YH(hVV@i?;;T>7yXXx-Pn9j`L>?)miUH$50Vi{)r6jgs0R zCs*vt@zACC=DwXQ->nvUD-9Sn+3kxs88Nfph;`Fu4h$Q(HzO?eVo~yRLFT1V?_%5a zSPa$TZ6dl3fi@ah1r_Vqt^&q zac9Y76GT1c?-s?OHQZ7Rd@?U%4bxGekQacO875`$4$c_I4+#P)g?s3HcW?;=glH0a zn3(~CMtbV!Noc8S>PZMiB2PCYV`l^w>~~eDN-EE`l?qJyvtCtq*0zvB2|F!Vg#zR* zn1f2jX0WF{)Uq@^7#=n?ZOa}qwJPWlKFa}2>W3O^9*m}Wpi9?2mFL8++=q)N2^76xQOw4N^; zTl~e((%Sw7?C73XV$!MHsHjP^JhZ2X2A9Pd25=XG;Z88gWohbb)*}XLHAVKqxy!Qz z!oEft4TP#!qI@^>M*>W$O)ZyT77sUcfbbmZTwLFK5Vn&H)jVf?z)PYbCKAz@xqtu8Dvs4ZwYa&&tVNk&KhoaBLK91mfQ1A~3h<6LdV zjTqXt+{RJAKnSDoE#W9SW3rf=tlnpeRY;N};TAGNf@5TojFlBTF-|}!ah6Wxx*!Q? za{ck%3JCQ^1k;|_Ye!QxR?MP$+yGWqxQtn06tJ_fA;7G`B@Y}*%&FXvUu0!cy!EdP z*aDyikwe~DTgyX0A0{1t1vivF1Y&bsBuI$~!6_(HD8X#J-!6eSH)9wPk;G2FF+wpj z0(;SDF$$4i6mw#4)4oHXKMKJGL~LjKr;^Nl6o-;n`SODn_S=wC#8}-6j&041mC5k4aKChPJ@v}rtN}uimAhId& z7@imhz^%XpI+U_8LS6uv7G7I8;Ik7-ojT90JYbNfihSQ08t>GFpY}h3LSU$sq-h-V zqv_FN&-iMXI+_N$Qt&CQNFY#D_qcpg<48Odl+b`CxU&~D@stX_NJjNo;Fs2Bdlw2J zvR)S;>a35QcUet>g+hyKP;wr`Q-#RxJuT`*d?PKuFseZ(Og=4e7296jzddgco2#2> z3uNRydU7cn)>5grKg=B+-QU+v(B%o@9B?%IP+AYZazVZGnzbcF6jJSo#4;=oJfc`d zQ8c+Yp>wis1d} zm*L{uHR$2EA?ZVxg6y=k0op>UV|a<$?{kTs)o(NsOJcP7kt}$CP=rb(aDB({6E*v> z9;KcQg8`ECg!-9a6kR_Mvn_2M01{<-QegamF_eU?!)i!(O@#yI2>0LFo2Wryi+{qz zupkQ>D&a*mY2~g{Do(c>9Ep=5<73Rb&t9pOI-RRzJI6q4{-(Dmpi_(fyj;H@ zK6lox?(&LYy-)iyl)Z;xj3~!ZM^{p<2rj^IZc1}6g!`+pMEYwe)UwHsoH*-7e=6?d zgfa3tvVQ%EjP2v`6zl|uk-7#rM1n)_LpKJo<=>Xi0~k?vr^TxcsSb1=IV;^XXKrq| zEErE57GNvp;`*nH)hWLU753^?NDXlQx-5r&16dR8{-9jt;d2%jn0{@k)gvRyc}A|S zbp?EVGSkUzwf1;tz-4iPy1Q_z(CWMbrP7g=tD(Xx(4wPy94V7~oc6a&Lw7O#Iss^N zuPS2Ro#G80GrE>f&*$^y@6&E!{R4igqSnYrRoBN`?HJC@6!nB`hEWP$g-gP3?QQb# zSMh_bU2AGNFbyS{?K89k+HnBwNd6B1i$B)%48Hv{os1D6T3nWI{Ze%`%}=7UeAGeZ z*$O}#au_g}{N5Q^OUQ72fxdr2xxUts2DEbjv&Oi}g{54e}z+e?n zVgG{wIABcN7ZbfmSbk8et~;_`B|u;u(~p5a-+e)l&GAqK^%O8nSNZ(iPoHYWix~?F z_MFM(M0p39A5Fqz@Kwr!5>9&$xnFx>6~PUxd1tZ>?dBqc18t6b*4L8<0a(JLDt8gl zAAkP3NtPS@zh$Jfg;GN5qo_=Wo6k&{R#t!16r zZA{e!PwCkgTkb_p8O)mzmE5H2P;sK){Fr|cJT8?}Y?+n67Z+|59j5GQl{H(h}BDX>v_M3j-NW^z~GO_^vp{mDuHz| z=JEtOAhx}Hs)SG??~(m z$^Zmy1`AFf`OBQERYk0;Zg^``TX9Ujl?YgwPJ17AR}rV~^Vfl(Og7KB$(t#i)Gufg ztUSa3Zc3;6iEpy>D)715I)GIK{XWPY*n>R_m^auu6ptd3th|V@S|{z#ppXly*y09H z1{TjIv_9Y-Mci9WSC(~a>R@dDe*F7GcV3ld-$tW>u`lR_Q#Sh#&|@zwUQM?zb>v(F z2Mv`kQ%A!g&N%`0GjEF&pV4BX(k2^-+1n6DOS=Wu??9`g>KdjMUP2=U zX{O@$dU}Y{eTb)k0WW*VO+C zA|2D~Iw^lk6<2qaNB99V)QGKc(Hun67%=@{(JZHxFIP~EG-=v_NzkM(J48urs&N7! z8=aiEOD~Yrm>0V1krJHhqEZVT-4>yTxXxX<60_FcU1BPF7u-8; zTN3}8{tZdu-=eR^i3>?*iGMd1NU-2*Im^i#Krq?W-`#*JgBU6R5bVXQSL@ZdWjKvJ zf0z+SIV^_aESWG}tz35jTaE-o8S0l~z=H*{tAdqa;73kvZP)*@64oJ%2oAj|;xp?T zEu;@gS5`tAw{P|ldl+{^(^iAFjm70sx3^hB`8KO;qQFD#IGJ+*Ze6)|SbMfSE*>P? z_W{2@Jph#ctJ|!itEGWzN9WLqDu^>NIG2vA} zZP(Rpm;S1gIwzQXIAOO$^Q&rL+ENFhQWq1c$USk4wv!f-O`IC|bW=7gKL%Oh)K|(^ zsJsH5Olc22*Z0-X7BD57I0c$#i0Z&H^4?AF2|CdNNbbGsDP!s2h&V@ z!0k-s?mTW2ClUrkq6x{8YhB@2&HXoc@edr8cwGcNg}k=vxqN@Xa-yJrgbAO*vEdZa z+pI%%n|3M{Pe0wI*nG9;;i>^TdXF-ma~0xLZcMG>{Q`xH^;$I-Nm)5(-=J>e{GZ|p zccfV&RLYX=Wkl3V()#pn7skkK#?%MXe4a>6%-|CD#8bWGbCn zO@ydkS@B*nVAp}4Sb5{E2#C!}wAnXnkD4pwfxK!yG2I%cKO~Y%6{`LsWheY@(;eRx zGbf;8b%?3D$@&tmevyTTR!-P%AyNrOk0xN`a?YY3yXyWu!(};0ClRhRfTx-~u-t3{ z0A){b5R?W@^aj5}hw}ZP;ESSKdpab`pi?KC#8bfm^!@T|@$B*Xc=T3JEVW_tBf7)h zaaTrpL~0DVV?{0gjrCE|;j*&rLUBiKIG!dmuXbpKp~jIC23n&-nGfoMb_fuK>R>GU zJvd@}sDx6ikDs>Z0Rs0ejdMcyE>VS47kmSCvW~C`2#hUfe-H4G#J(@jABo*ONSnz% z{1AZFW)yU}ao8UiG<%O9lv-4L^f>}%X$_A2k&U;JoM4-{tgE zzlP=SoD8|h$!Glz2%#1z!C6fdAnz4&4^tkI8cvqJ>m@`y^pY7K=uGRP!8hrg{0_SO z2gBCTQofwn*gr>q{vnaQ_dIG87Oqj)^=x%&0tt9f#}h9pM*V{Y0^k)=Eh2grfcj?S zR}(`&)0>sZfE!+1MleBG7z%yK6{5h?M$|@u>*RPXc$72cSq8ABQ+fJsd})Y!Ug?if z5zWWNs2jyx{|)+m{d+021vO~!DdA@^KomtzT*`J^fmWi^o%fg+r#>doc9Ptim5}Fz zk$$YjdYCqDd4@mEwd+>lB&AcDN01itR=MfY6kQQx z$a=0@&FBjo=;B-kOKNH*gVZ`Iyfm;lz6h#A?W8t9Z$?~+MafQ=>BQOCsA`D?f-}nX zl}$M<1{3@67T6^?-zu9S!-%GSEd~yLhMSuq*_7N?;Sv4GbA2ILPheVzd}?@i$xjCZnpBU#O^Mo4l?w5rRct4-ZkN#PV`DQpwQ1Vhc+1Wx?2g zKdzhBG7-BM07C-k~IhujD3bz z&a=*F3R8Tu;(9>Y7zT*bb)m06tU!3yL3*1Kld&T%!b|}k60bFp5YS{@`J2lMDR|xe z6s-;gnZ7(XYI3D|(N=vWsfDX^q@Op4OV*zxwXm0r^$JUvShNeIT2!z%b8PNM?=RIq zgVi3TI{T$`8BJ_66fu3=?GO@Z?)@wn^>*@#Oqn*shhOPs@%Xs+#0(ckf04B~N@}Tg zxtHzqNpWc~bI}*U?SyRzIhjQvQ;G#_Pu=TzG5p6qWo7_OO_gMbJ|fhP0n%WfO(xDx zo3$u{j}G5(vsnff1^FVzdESZ_c|i2W}8NFQ;c0a5;3RqskewS zOh9h+id!_QTfr347T)b0?pv6v6XHYR`On6ST#T{9k2Q$C7Yp&7KbkxQEwxUv| zu_}2NYde$GX0kJMw7YGajPTM`GeOIaa>h~pAY9okLsxj;Z;sW8I3oja|2p>)tXW$}88C z>)K%?2X7{AO;Fb*ulW^QR}=dR2;YwuV+iN<{?nq!nphxQp!pjX1vVd8bJQp9$Vg0m zj_6@CeD0^JEG?9m;Mpr-q=EG8DPv^n)wriIPbsge&p^DOR7sfdb9HzDOB278@KHgL z*d*appSq(7p|@k*2*V=9<5Qy|)k(<@tXhr+3WWh59SB5m`N z3PxI3a!4ltAhS@f0C0@BLI~^zOBE9c1S;(((x2eQgvs16fDGPBLo9rKX;hng;RgunRl+)&aQwb={V`4nW3lvH3Cx?#$5wuly4c z7%k+Wy35~Rrlo#3|J;%#c0K#B1Fk9$28yVP?0g4dK~D${cw*q|-xss&^|?mMVvAgf|3Q!pQNh&slL8NXM!M`+ zjjXZq-(e25eO>;r!w|~c&@`R+n22I%-r(K*^9sSn`;-LK5Ks%tsdfPJWuBv%ny<=E z*p1=cV8J)HlM~>tn?l)mlPqO#APHv1i-z8DEOnT;v}aLK5mK9^JQ(5n$9&jTqYfGu z{LZ#@YdKM#A-m`@@rd zGTd%h{G0-L00aL-&iaP^1GXdEng!5dWj#?k@Pv&8{Uwja75u#+?It3)(1mC_#@a+q zZ?P4|T0WaUBwL;$hBDS%?Lng;IE9E7u-EhWf^1PX2ZS5Uxnt4=v; z(s|s{-W8$RT#j+s-;x6j4FH8P5?fGUso<=iA}m-0G$PI~2_?wl7(@PTHey`TMeti_ zT;x-Yb_g{7o3KZ{T)0E*ql$UE2AKAFO<@^--9%-t1Prt)PB=`uvx+D2l24P^cDL?o}b zHj0bNz@#3cP2G^ye9bPaoQ5iQ1u04EY|=D);4$3$Dc^Ui=@f)7eTD+5uaGfx40H|m z?+_(DeHWs2v3zyglfZ+=S>I25kDL6uiqew;D0lK2bPnpu>rxMNJSLg8{9q1vKRx6n zI)U2ZHB8H;AdHOAI7A{y<*jlHa|BDluW`&eqoYw?x zpY2NhM51F0P(_ro`ao)^B@8UDO9%&Mhdaaq@K;DABC{egd18wL4-#QIcSSgYM0>o`65e&7}bNwQs5D7r3<)2Yzs~Dpm#F7N2K4(B|&BBc2*!Le>BYfo|G=>p{peV4qTR`)1a`bG(f92u77jpV1><=Zi z6#)ZYUPJ(a&-=ZUjPqVSl`14iSh$`7H0Bp(b)%XDWZh8ptP?-*;`rW8V3y>H0YzvuQ(8w|nPaCrr zl*b<-i7E{SoR!0@ybog9nQUh@3S8F&vIdH^!Iuoa1RH2>ZSCum8eI$q3vnM=94PPaMzksII<2;kfF7(A67+-#LOz z)t-Z}nN6P;v3yms_gPpNg#_7QgDXc5E5vfNnnz2q<1Jp+3~@tZkaLp1c|sPPev{WNnI`gizjX~1dD@MOpaJQ0MrjBc0T^b6Rli;OIilYx*=X# zDG^Lke|+cBa0gK_f_ZypPV&P|Bww%EO06S=RH0h;DP{f2h;N&q9tH)sfhKV*Xru1I0XP6}g7-UzW@R!d!7nBR-xK;Z_ zv9RcC;AwlwGjychXg^W{C?>Ofci~riUXrjV7#&|DTNgnO8D*gP6&Lo2T=g56MM{iw zUWpRrN*@}v;3D@He<*g@04zu)Tst3I;1SL~sFWQtJ%vjv-xU+JP-viqqB0!#e4a3l zs~SIa&-Ju|jd~O;c+!HpXeZ#L5C;-5`Vcn%_8vvlV{Ub|swSms--J16p&tUJ>rFsK zn$FFNil5y!dzI>NRhR=4#CYU7%-+K#^N^WJBgu~j`5Lonm)k(Qi54`kLA{$wLiXJ% z&09kKh%0+~@A^!Cqb}`r?u=u1ke~DFB*P;c0qb3(4`QZuNBWW6Gg{_HXM<(G_gtb^ zkL=X1q0ZUS{`TS$l=d6dI-X!L7Fe}nu@%GXgXz=VH9U2M+KX+oM(ggFoLs;}I8U$2 zYT-&az&YU!ocJQ2hvo`E=@S}YqOT~>k8E8OaLmsPPlBojbG9K=4$LHPvg)JpDk`dh zGGwzJ3{}BB!KplFdur9-!{4S}md<*=HRrGz6_N5b8S$i3cXW1stawoju}1Pq zRF(!t6582`2#NQa)%o>JaKQHSdPn1^7WV&x9#UXWi72wo+Dl8*i)B%jB3GL^&B zQzj>0C}w=@lK=GBNj=;7FYmC9t3JQ=4@S1IX`;{_3^Dj{R!~xJS=u7)vTQe*BRQGg zCw2hk`Y2*GQk`3|l)}jYcIL<^;^V8v*uFgyTAhWbBzGQeH#}0^)F|B$reSuUKfE!< zR=2&$20$6mPUe#JYP6`IC=auWTnQUr#Ih_H2oy#e7atTBqj~!qwNhWi)|t`1E{!o= z*tUx|>YAVoGvJz_4F`(xxAfR~8%QKg0^(|zvm9W|=>%l^Sr=20N*@PJZ)qYout_z& z&k}DvH33wM95a*J9QPeSz2w==yq|x|-sS@Ivf*H=M7w9hcbh*>c9OoBT-PUoP5ay@ zx`$~ffN9xKV$x5tV?n%X^wB*QEpZSm- z!=y;Fz+7bpGuIGxF%JM8$h)Gp?}dWW_O_n)*yG3IwzREFjwK;Zr3r!o1PJ4*l}<)^ zDhaGYL7~?Vhl8p5G#hG6z!=HiFy^emg;4M zTSrNu2@U+`N5cXoS}3(JE2sD|QRdIA4)@)UbQ-DzU&=MFI`#*wo{=PYB&=T?Zo?)D z3jqXo^egRiwEz^U6LZW;& zgo;2hgx*QQo@%C_sXaz? zC_+d~(W~LEhKBV^?Nf=D&8yKBlzfa}OZfb1Nth+GlAQ^z{DC4R{j%e|b0T_7A@hKn z-oBvc>10K;;z5=Hb(}{*bIXQL{3&{tBaDrm0SJRzkwUSC-or);OB2qeJoDp<ijXyglSTOeMY~vT;!L^_OD8I zI4BBSJFm5S9iKxtIcVy@9cDAz&>imb_SGr$_v~pL&c--+vUzJd~9lhZh^3P+qnOZ2+hRa^?PK0%0ICT)z z%9`%lO;CI?7)C82q#K2N-4^eb0qP$Fs}nH|G(~4WF9_*=IsE~As1*#7*L;4C8{>Mg ziA!-m<2=6%G)E6^*Z8YA0nieWLVba1iZ)z;=7ObqNd6WSoIfJRcUmLlr>+~^%Yld&nNOR~ag5Z5zH?*e!%EMf_b+y$20{gEDn$!=xIeUkpi3~#NR7|+ zO0qlP z7TwIl&X-5NU}B}U)Ir`O*v@NPU3=}_b1pjAZ>UHRkv6`Yk`aBnjv|f=OBiwTCzfzsEkzt*1Mql+DbWO|)K~aVd{) z3k4*S2yIQyt3Wv5tYb@B2VboyJS&NeS@dT(@7}KY zt&6un)i8=}^GC3(+h@54S~Z7*-70H0;HHUyvd#*S`2d7j!j>{yI#-sfkXk%oQ1!qq z27p$wCsbri7xTJ-VEaVfJrnBo_1~vS#uQXP4q!kt2mB9*ln<}2*Ij&VO3|qz&aS(* ze7276FnLTKqRGg|%kX2%z5#o|+ca=}{0h+LlyI<&nw&SR2&W=0dPUL6Cz|&hWdTCrrS44x>wiQ~qj;M{C7_ zf5wH4?*s&7` zI2T=)eVD~Xq7Tv(1vonz(2>cR*Qr<{#K^0e?A4Cce9K~ps9YVC$;qY|<2y9X4r?Y* zHjHeNCo*hf2&+ zd2--qWv8uzqqj*Q0yU?x6U#lS=^HYyh#gsO7qa=JzqYA8ZN#DJBjX87G4cz@KR~WX zmCWH=EGiI8oM0@3%zGe(H1p4J;Tf;Vu@s+-rB=F8AeBq@Y)x8s97aim`uK4ZW&XY> z%A1FCmO!o|vm~ z&0}BYOmw6ybuB`cE_Vi6=ds1tAgZt@bw%=*mG`&Hy_POj(@fs0y0O1CqaDb>y+~e? znk`lLHcqAL*J%9O%*~dx4`HI`Q%cSgulb+l37wI}z4mL0GY$hK<^7dxAd*5HEZL~~ zN<1yudBHvObMS!ypx?ocl{p?wXo(2++eA<~ENBWS{ z+Rtr0lwczvi|Eptu(j;Ex)On|5uKn-ZK;=L46;NuuEPGxr@^M#c*enX4_6gSawlt62E;~Z%2DbOLvHK= zgKkqloQ(!kvvf^y|E5Fx)7GgeONVW%-C8Fd#xIW&Ap)+Kt(#M7QW??2Gn+PWj7fzG zBrB~d_#I?@Qb@WvW~Lc3IyF??>J1TbZ8qB_#az_o1bfQ1b7(!oEiEsRoh>(W&V9Xu zXkDdHv-~>6INUb1y6z{l&Un+deC5sdItAZVJM*r=<+z!e(FxsEifL2D=RlVl2aK%i z{}AK!Jxi3Du?k4~ zj^!m0aRj1!P-&maZu1I|B(h~l!h4ugf zO&_7a2S?LPlC&@a%}}mzyvB3n>ovU*9v+aLzJE(#f=!U~C9tceMx{#s`OLZ|8UQh@ zqHM)v#j`MxGBokKXr|=x%4=} z|1!%MYTX8JsOWYq1(78b|CNhcu3@*k01CjUedck?yT@bsuH|kK|C}5!U16*=l?0WuE|8p#O8dmFJ!JGH zk^J}VXv|cEv{wC*bxOA@Xe|kX`VD65^)vb&9>fwmU8RAjWYd%PCFd+sX}qkYCs{rI zZQ6$d3<+x*#Vcl}Owu4&E%?8|5NviGu@LefM-q^gD8Gj^MgJvg!vQpc6)Q_vf%X<` zh#PcLq=YPk7dhZiQRB5>@OiK@R{^ul)y7;DyLo|yiosdJdark zLkTm7?xE&RJasu2a>1!I0?9Pyjy&lMS4h6gel?tkE!armAJ6)&tI^B>EF_^aW0IN;A# zpfZhlM#H!*rk>u6{B_>R_s5iC4jNJ`&pnzIg2Rqc@#E41qfZzIt^_hFdLAd$QAS?C zuh(+P?fXCEH*QMTIec905sE2sIIkz2XZc zJ6Z%rX#0o=955sya99LUeB%q<%`RO9zUKaD+4MhqrsDyFN%jauVmJ1Q*1#JWH8T;9 z3E*DpZg?~?igXs^CcIJWDtBJIuY~5zSNB z2hcl|raEXWJ|uE%5?_4cBJUa@in|ol^BNJNLV+&pTy!=jnBIHVjyC|1ob?hqljS{lC`I z>>fH>nXK*)^9P~EEI%)?D{lh4PUp{MS)MjS-49a4Y9d#A;D?RQaI~ud=&C~^Lk4J~ z+qcmhBQx#v9pa6m6-|E-3Z(Z+)BF_VNExb;f=nhakD?@R_8X)$;in137p7Ubw{eC z(qTsqoU8SGRJ8}tG-XCq=k$aKKgfW zu>XAYTnJ)+&8~_^NY?e9Ola|SXTC~a;!p=FB~2mYgvb`)m22cZ~D7n96~%kB0S$O zBc?B+Ozf1GkErvsvXuXdutr6wJjgoE(~ZPOBpdsX)p)WB^F6;5?C}~ke74$YV5XGj zQBi-}-tD$}K5i#qTM+`aJ~y}2vapZ)#5rkPSkj4T8JL#W@5d)zT*oy z*bVdbLHB|Zs7xbIql0qCH11d@D` zL%YyI>qO(e!hD;7i57NlnP?>C<^B9%g#6F>W8*!Jw6%=%;_9^$Y6mx0OWax zT;Lh^m@w|V{x!k+mND+31pTkQY#2A59Cc?rV?J7p8!x#-m6~p%Mk0(G(1f3Z6==h^ zd>9DEojpas8=*r$SW<>x%GVUQr+yAE$f+&4l%Y-SfT$^}VPrDNG&pm>cRuy1QgXrS zQn#Xdoy6>Hlu>>og(Q!vrLN!MzB*?cYu&+CtAs7wem-?-6!N662ilJ>^*fSu>Q>jG zm*D?ggLv!HKK&cBt{O~d5`L@e(r2)s?~DI|oe|Rzsz32%(~f+s6{Xl5^&Px;Y@qLu z4@!RUrUz>`(v=b;$#!qE8Z%~TfL9|!WdF_mMih^)*ak$Pvg{nQNA5qg7RT42;*YR6 zok8X5k^tB9BrB?sZntvQTI~G0VyzW&7}e7v`??h9Y z-WJwwd3U3EvjR_+?P+QKB>hf*IpnOVP-SdIO*(2TFMfZsAEo3d^w9nL-Rg*89RV4^qw4IerVcYW#4kf>})KTb9*{ zUZ~M74tr}E@W`Ixm54u-WiWFAFr2RuKk(Cx79HFdQdWeB$!2_Pk3kBxHx!m>L?mbt^iP0m)XL`7 zy~T(R>pbz*m3FudA-w@Y0O1ufG5@5%HvF}bqt;&?JE}Z2?CJi}8~c{y2KfwkKX53S znDX*fmEIxsi4WqNIpRxXjSloGrZ(HPQ1dCsgDCc9lU3V67N~}`7++=Hb{_vy5I=_2 ze}VU{5cKzSu39x4jasbKlUEEDlBCvnEi|bMY<+OzJ(Xtm<1ak+pWZxj=x^9ohXK)mI? z>H5@Xrw^Sg4dPcwrMnk=5R;}eJaL*$QE8sJNokMDGi;Zon{7Z#<5FgiD69cTlDc71 zs)`gnZcH(<>-&iY#OEE53bh-^_40qw&q>4|Dprp)1{tpuD+yUv%rpk6)&ZP>^G&~+ zMnm_AhOOT8&_^9e)9kqiVy%C?XD$&YcJAAk@9hy z{MHOTKBpg9tWBt&OS<8a9-_y^vIgCI#5N~C_e4NEx!XK1@c?1n3UmN;w8#tU-E^N_ z-23TH*iP>!-PFL|iDy!?OaHh5E?XkQJsta+4u)0|&eZ!klXeGQKpgT6&p7F(o&%By zX!rGeirxD6naG)^z7xFbT6#gG@-=BLp1*HEo;m(^dq>6P(_o0M@9X~lV)gYh#2FfS zU!;U>eUb%6%Q}0l#`qZHcT1%kw?deq&Spz*qt)AE0@I~2koOV@ihGlLg0XS#gdpsN z=>;hU>eBF2SWOePjfK9G0!-5{V~TfBQ+oo0(1w=SSZZooV(yN?AdrxF5HYb+5t|yg zTNMalV)GOY7T(lFci8)e&*S;tuvetg72?EGjgRuEux0V^f z$08-8;(c{9KB1Y=FEs^`;cJ6ysVQDa##wpMc9<*wViLw4qwQs)uiHb;6euVW0#yAX zX;PfB9Trk}J&EHOHaNNDe-DD7IONM}s^W7X@p`{pJ~!L?T!p95U8<`ya5Q_|Av4u4 z@2#}w4nw0-SWFw_Ksq1x@FUpp))9?#;AK*-3#U+BO!{{I*)cwxVlBtH_F2;NVo@`x zO_#EXCfb#$nd1bu2d%W4Chs@zhXL88?M5f3w6%{HiGzrTLWFM~PS{X70B+X#m$&c> zpm#A@2?Iks6Vsy3-xt63ixR?rLP-9Z$EZ)99)`QZ4MPS= zD4#DOiu#B87dnig)n6Edjs{*7Sw<*w4pW?eR`nmhAxt+Zf9L1k6dDf}He)d|q@=O` zURtCmYbv*OZ?G%_I4R_qz#aZ><+A=M0tCsPTrz$zu!KX z;;|5J

p6%%99(E5A)OP3`xG?lx!8l;1@Uz;304usjX74?x#k#$HgMRVmW^BHlCW za(Emt7#?6pu=EvBoe+EeR9W8bvBQ!QN@&rENwIlq6Vsd+Fmp<1)L<#lYy`Usl3T!8 z%Vh{}x$-llu{k(Qbb`b+<*esTNzbA7=!_p~!?#14T(69H?C@~{nWmEU*yE^0Ere(Io+IjpQr45L@Aa%CnGHDm2-&n+hEL$yFW~6Fv zDu$cAsfs3MH!8sRJ?_9o)v?4{%z%4FT!25IwKPi|8WA+z$Vk~(GuV!oTnvp(65$$+ z#uc!&1M?*X%x=JklHUHDQ!BlLkE~c3>UUW8`anTO5OWe*{;+U(y5h)M75YZn8=%r$ z631goq)}n%$^M5GYEtS`A;K8NadBzMvjwT{!MnX_(12(X#0FHCNX)lu@tzEwRT~Q zLNUD(zFoM;SC-cmPc5&WO|jWCU3bK@0}{W>v$u$H-}kct$){mcL;UP&&bOMvD72#r z5`x{n7r4O$?)ulhPAn#3plGMM?L6rrW&%jdFA@$N-jNfqi&^o#oFF;LKEV*q`$_mV z`#j0sm;vyN9no|-13(_DB4BN4kqzi2Hj#;yx_?hpI#q|ImM9t{a=uv$u9v(GaF+`B7OrQ*>KA`<6Bw7#2yh%L-K8*p|UXI60wOxi6^-$8)8=4=UrU1z2Wpk+xcgc zyBq;wz)Y2my?d~W!=UULo`x}5E<;&*>pPF`HZCz1O@oWVvRdQQ-SsU$SQE0^jKs(Ab_UCFqlmwxl#jybP z1NB^33Bll!8s7+_#cLcjeaWF{Tah;D-X4%q2QTL@TL=KUj1n0?!RPqD>mYG$LnA`l zVVl_^8I3i{8YhD~iunym^wxijw>5c#ll{K)oo%)dYUuo=ahssjMnN&nKmezZa02kr z!5lVpf);_!h6zBH9zxgI!t zGVLx|Vgd{jzrvOoTX$7vwSN7&O>q6Gv_2nSfRN4A6!^M2KRewkSB(gjE<3Ew_oK_Npu|)h}D0;61 z*K=Q39&qJnqWNV@@{S)Tk$%x1CY;Yt8^5FoHJi>A$u10@0jIA}5&Zo?Oy}E5d%5Y( zZi+LfA3`N8ffQm;P@7JEoNJ{(T#=7h#!7r?;cQzNB&xp3ZRe#*=-1+s^gE^6@qJ7b zb7AaeGWhh)IYu7EWmqD5e_ht5mlZVHOaj&~0?PfPqOQKL*}aO(6aZ!q=-tY9EHY2w z)aD+D$W$OIftr50Ufc|+Ct!Y-7JwFm0w-&*ilA7{iA;x)w;pS+NVcDD1pet<1qs)>=McQY@l^<`K4Ml;ow_gc1P~jAvywozadZ8~sIDTrF`6eLac@UdTHa zcG;hrMe2T%QtS=MhRLh(#e&TZN{+_(c?QJXY(q>o4D_Y-Vh+P$bfkm-jn0wk&EL+_ z)+T$XrG8Cea*6Qy&JjS2&Sa2LN1(nEE9Rz_=?4-#kAW-5IF_q+uV6O}up1KJxFWRi zgT3Srp-IdvB$Hk2C6Cc^&)}52UJ&3&TdX&IGkU`R*&Uhnv{ds($^hfw?VKL_B5aaK z1*JGWT~Ei9<@e&Gn(7D3nUk%F1uoddYUG_tE79_AgsXQUIgK^V-WHIxz{m95SPWTBACI??|PqV=YXMryMI%3KA_{wlg^C53@*bH7qMS zT?{j5xQzOEGg?=dpPi`f}0U?uD)>=UW z-o-@@X6C;bF%yMBo<9ODE>X$aNp%>Xt>@}Cgm8xs&FSi${RG7og;7>*?<^PBf{6NgfFAns`1|eo0|?mveZWSJo%ey>IOIo#J(r2Y3Hd*CEL~ zsR-S%e^bY8{3oHU&i29#**$K>^5)@?7syl!iKlM^H?(!%Ci}^0CH)DV|C`g|Oh#;P zb-vy_^<#2;0{!_{+SCQ}MkC~7RQgud_RtHr)bNY0T9!oAUiZW8?-;!#w_<}BpG$? zt9d)cUr%*|hNmtQK}!Q?r)s14Y|qbx)^*hr4fL@87Z@SPi7*pXhR3n~SHpSMSFd8z z#go2a&1?K39mFm++V!}~fGES3Yn8J}Sv&FKL`mEjMey_ToOgSittaim!qXv&L!Arf zlHTnMS^?urKYwO!)5wWkyg~o8E^KP2jln%?Tpm&=7 zmxi+QOQBSnIYSeKChtdUU&}3ca2XWavDP*b4Ga?UIFNroH@(G>-Pt6IJ6=D1(Iz^9 zIlSi_@k~~9ZwY#SC9IR30=BIL?c`TfNg`K7&k z&;Yw3CE-Jty zy{)FZ;zcq-u7;svpIs>i286;L{*jw$4rD4I$}f-NsKF#hv|y?-s@NLhXgq zv|9(ID-Yc+D7{z<)4bX7roBx1vh?o3-x?JeT9OQmsx&bfvSw1>GSR{&$|&G4*paT9&Mk%_Sm!%ExH2Y={D}*Tz>~AY>UaQ3hnrp!}?gG zz_L|hQP=xEBNQaiuG`T{5tpdxG3$4EZ3{g^(%s6T(3rdC0|8F!X!6yOr&`-c*@*1; zJE3tP$QQP_>^aljk>E4D4r=qfOMB`ak|1m=E4#!CUP>Kr)r!SQwcWGK@uDjKc7A6a zNa2QzMt#xZfh6{9N;8X+?Kz{(VsjBLFdpfNE-VE;r|Jx1w`vDN+{rM&xo-@R#5Lat*G-qB83$kN9h}I3uERDyC5Jg!WHt72hvXExN~mhO zqkC9hKT4}CWs9pU#pk(EdQYk#B{m`k@Qc zWA$aCJUJ^uG}?!fD*I?q=F8zqHC>gDixI{J<@ciK);#y3*ikoYz{VtC=y?2{D6jR{ zu&{7>K}6S}utllILxN3I(8m8DSm+eF1-9 z7uSQ2vZ)h|cA5x!Oh+e!-V7(A-ua=l_K(c^kNg_J) z|M8KXcdpTimaevUQbd@CuV_QF8ySD)qM${X3VK_9)kh>@k^6P{LiA@*bCL}fL_6uF zGY*S#t)lq`jYrDpEiue39fLD6hx{E<_~VmaX&jaK-6HtoLODG6pyI0b^$c1!aaWrI z#{p*fu!uGvEfy>$#udZ8MDoVr2fx_nX~T#v*qtH-=ilG#ZI%bSQGFB0$!twbhr<(- zE{g<9u-L`?QJl*;!Kv4y8rX|`ie0^3Wzqcb5028Se;*dk1U{JJT%R&kDyG7zn5)&j zfzVKKrl%dLu75ix7);^HaiNSII|tNK92(xAHmfvZG9k4tLo(`OaCwhwY`;qt)K*U6d!6>#nC)PAUs0H3l4Gh@6@Oy3PP zRL3HL$z;fo3h*Tc0t@hMI6^^Im;n}7GF*WqnKCgE2&jiQPj-8#O6H7mDYur24Hy-j zxtk8CE8%FRX@v?tIDd1r8un^!+AWhuD{uZ@dqk4vic!L7hd^YDbM3NBs{QiM*#c3P zk2WM*z=U7&CS>N)gb&mp`Hc-x$r?1fYAsw~Fnw6?cMepCTsXuJ?j;9FL$9Eh)SO~D z?L0l2yaxVyhQArM9e@m4_psc!6}6~AT-`xP!K!KfuB3LIf0;X=x9xI!wq(|B)>5WSOs=&^2}qQlWLTRU(iEi0 z9m{rBuFd-JDT;lqYZGX1?g%TbXJ1fg>p&~Rj8;>nQPSsd&8-*97eOO>QzhnGWEDMrP7oAIU*7Gm$B3w0E=_K)28$Th<>D+wdty|Lr*);3e z%IuJu@wi6EIfrjKuF~?eDll}44Q1vzwG=Q*T@XPMuvAu|x+01rGB&ysjTr@@U{wp` ziq3thI(2KSmY9c}^akZHrBp;MB~|B>+IE3v#4}*y13uLbwFvFgddfS7lgEQXTyQR!5MIjD}9!()uq+hHy%pN{$Pz(NlqXl zNcczvn7@HWQhTi*?}vc%UtH=&VOOSf$(bV0-|-VGbOiGJ<_``y9-Rm&d`wTtpiG1N zi@1I~RAiq!F`;G+P$CV{rPLiY7!5+A8vua|H0ObDBF6KEo@`W8Vf+HFuq8Ycp)H|` zr0`P#@vp8DM<3ooSEh_oN&IanjE_2}mg4{)+am|Y1yHCj*sYw3TN9gP?X@$&^GiYz z^}j3>dQY^X&$H!RBiLMr8&7ZC&8qO!^)*XjV&zh66y{guq0ZDjw54JS;%c?un~_!i zBWxT*sdx~x!IHE=pQUM_wdEFMciV8RHJOpxf)tmK%v(p}`1hf-EMMFKK!HK=Tj+QK zh{721Rq7Le)aBE9mZUj{+}>;w1RSOHXIn0mwk|7}Nv{$sMWMEGE)9$XjK++dNUE1Z zyLJgUE;VR=QYLvyTwU%&6faaq1{H_6r4T-AoJkU=<{Gy6kYPluzGlfF7cH@o3gS>Y zC{%pfmKL=T=wN*8K^{zzO<*e>!EUMD0WMnF+EPo8-6~S3*2cT{E#J}ip0V?J&rxZ%8}zne zMtoREWCAf9js$!j1JeVBXK*}-xm>H;Fc^eC86m@OHko^Pc@r*b_ObaATouI4p{RR)T$r^jsc(vSs~RiQBx;a;-uI^iFU z1EQ)@H?$%iktqV5u`?%PEw^_cI#2R+v3~KcR-w0|`jg_#Ea74|w8dR$5~ahwk?|8K3{K40y=!UvQ`-r({1TX6{8)1Ha&; zmqO;Rg9$Q~-5L&QvkIYYqj|7sTYd1oHQ{s%^GwfBFKXW=y>4f%mH~&2+O;hZErY@x ztV;hz0|-9}!^@f64kJg^^oiF3<~+$i)+akWfr(5*4Jr?BORP5Bs-5dZgN!yE-U4O& zL!SS72@#UDv_P%oM*717AD<$)baS+V&D|8)__gz6dxm`2Un4mw#Oy{gWSDF28FYu) z$qEV^g!+UeC5f5Y!N{t3Z|7PA<`viE6kBeBfoX{|7KF}_(Bw=U?d+Oizs_6*BmJqkB6$eX(khnX&^+0iq4$4YOY7m|KtXkOx^ z$3)jFZvDSS#7G1#uP=7mZ~v66+V`eycVYf?G%RUq9dr(vU2`(0s0XTCP1t; zq>rd;paX;hFE0>n9%uPXX|sHB`pzMJ6L+Tf+A78<2#OA;X&QUUe<29Z zBTA6<4oBsu&fCJt2U#Oc;fp#(jgJ)$9S>;@lPM=(KXZZKS{p}~vy?`)`=3BX$~L4C zAFMFE{Gsg<>a={2y0OwMEiRH0%DmK9#96lZ(G`Gek=8C061`Ea@L6WeBmj4huvqyD zuyBgm3}}`?GPbrw={|IWhq|noD$YnReWYe`Ep3p@t?1h2Uv@^r?O3)B{lQJpn?I{q zYxt#wFN6)&41tAoTHEl3LmG(tqhzDAVaJ`2{mBjXRNFI9orO= z^>d`cA12)%>2<^kdwe6Uglb6JG*_Nh-XIY!<@}=zX?mGRN%an5{Fm~ihMvcX4|K4O zFO07YJ7X>I(`r1N0bzOWG;`sPQ>&5&S{&zfZ-I~oYN(!ILyZc8@FF;;LlN>;CVmko zA_q_mc|?iVv6h{?hBIvkk8~saWUk0EUBZn!fzctdRiB+OV zrLD1gtB(2%CO)ELm&oK+3~+k`eCHYii0c)sc7-uf)UpAr^+v0$CQNk8HO8xdwV`juu2 zZxQPMiHo7y3l|LNww#Cp7IH#HrTP2?rr`jX7A~=|EvDd9qcmoX8T^lW~{nRI{c9K5c~Y@Cw82k2-fA15!8d` z_sru&Lt%wM>u^mzw;^#oa4EndA8@fk$BM~)37tJgmik3&x3h(7~bj4ll#+g zro%HrG%NH?!PO|~_~A3R%)l;gWTrasyYBIE*f~0$kGF9=ylNlsZm?~-o%N;-Fhx}J zygI60l{lOkJB@yz0Hb;j3C`7DXI2e&%X*Xzzc=X%W+F5UV$j%Zv`}o^c4-VpnDqCZ z_Ms|l2Cj6dV9s0 zgBb*tIO(mfd~T0Qh`nJkKYw&#Ksyg}fG1^Sm5`FnnJLK*7(+x}V_qgO7uHpIzIn?h zFhl15upGeG{ljC0h+;K~kGYLxk_no{k!@*N;RpN!^y2P$86D=`^%)9A*yim0V?w3W zrzF-#RJ3kXT$j|L?;BMOt17-K$pv%Fl;FAmwR@nt$&Piu7Dh~82UFC z>VH70ry#s4gbrM4zI&p@J@Cecz$Bor9VqTCXe(1-9#eaf(BgJ3@{Bunn|c%y6jM#y zlf=sf2`t8gd0L@4W|fbF-D&pTM|#C!>;G=GtgGP$^I&^Ic1S!j$V*{M(h8wWOBr_f zZpVI@y0mZ$JY36@g@8@Wfr|`CwC9J~AQiaZ>0x(fOtvO!E7Wrp0bskB68lLDChm#$ zK?zKV2y2??%N_n&o-{ge{8rF3je)L=9fkkB8hzL>^OsdVFaw0nnQgP>7;!H4Cck#t;5Dt>$C%M3}3#r5;|MDzcE;neUoAMeyu#PIMR zlR+s7c0V+-2sGiJq1i8HxCG*i@swbqM|CXG>BkVPT^V6w-mLDwG5-gIzx^K&UWlI% z^L{UH!@Kxr27Bte^5DUJJVRtH4!reP{!by_Je(wJ{^e%=E}uJQW1QNg-FgnpmR`?@ zG-7kv-65lbXgbTDe`i0&wk1~ZGyDk=H_M|56Cyv3D1|qvE6{O`jD$(d!vL8+#Zpb~ z?%pk=+>5xPTYeyN{5VqG3KL|6<5k5HJQnej&fg|Dnk!H^L-(9xNOPGyTTnBp11!3! z!KMmz)`$(rk6i1A)@FG{!%b2LtW?3R#Z3p_;CUXA#h*h(U(B6ZH$QgDI3pd2jCV zx*ocs0#lNFPQa$@=r9@iH!423JPE#d(*myxfJ+s2%M?=C`xPDW2TlydN)tnLQ9$iX zIuk>104$WLXOaG^O<^4U^R&DS z6az$;LxKbuCv*8pU#moT@}OdA6PW^gbm0Wn^p&!di;0;(yAlPoC%?i2o`wP=%_ETq z9;rZc+C~uO@}pzl(N(A8{#I3mqPR#L)cX?gXU%Ioo9@eV+bI5mt_2XfNm*VJv}U=>T24fLc7*|Zxx_LRWK9dcA*DZaRr5n+(P9bOR?_R zL1g;SjE|R?OK*dzTYHdq!o`Wb7tu{MzJE61n7|NVjW|sIKIWPygHSEZ-iqjG+ZT!f zX>HVFY)#DH1${kG87epWa^eRH@6@_~mjtLr?jz>)r~g;*VR@%#)bH?#u51(V(}kE6 zlVcA`11Ss-4Q1!2u>lb7#}dSF0#w4=Ie8La{T{eUo+LQ}>UtTTU>0b*7(D+`S)C0g zh}BFXECmgw=%QYXR+$ikplrT$B0jZ1`M zr%1t4GitgJ^oK2|Wk%lS47H0&^=jq*kCKmo4I>R>1fznfDWsk*r8{RAB<0$XeM!W^ zC@}4c;T<7jp-Xl0eD3&Hu=yNu>{6b0zVK@D$>QjuBNUkbYHd zt10o5h!N0bPr?18QjqFVlQg=TZ1n2+Wz^YKcNw8jSoUJ4JAxUk4rzI9aGWS?PyanOy_zLtb+5i<|+7wEm*!Cq+F&;W2C*Q zPGd!6`Ar+trz}itT(>p@BjD}v12j|Hq!ek0?+{k-?M|oE_oA%f#p(8b=>XR!-b{x+ z|87BrtGs$5(8AQb@N_PwIRj1X#n0IVaDXb2h5J*)k@Sx)LD+V5i z;HHz;A;yRSqjO9luR7;wThVee2Tf49i>(`?t8}>Q@l4#U{uE2d;vBs!>Aup-gf8@~ zuDCPI@C9oT0xri@0^8jH%b}Mo29(Q4T0s+g^4J8@=g^qzyT_>SAob9_^?3|b*%Swh=fHw~d!s$y(@Q6{6=adibmI+u;o7pkNW z`?(%8`wOuOPtidgn}S!D=%xKqf>2Ccca5>J#r@E*iPj@=wQ>jt+5v$aPP79LZf>9? zmkU`^3JD*=Ty6a#n8!rE*7o=wQiSz^M4ZIgu}C;bvRwT^ZKxk;Vz0)MKn0iYS{cWRB@_T{RWBun@Wqxa zq=RXME2%3RR=9sK*&2Wae0L#qb}JhTfft%e&e|J-D@po#Up>K^gffX?c5*Qdq{i#b=veakTW9V5(pjJ8t|I$C6bN z!YQ?6U;H5i@I;7nPdu?UZ84C3JEBF9f9y>jitpyL$|-=uFXUNTlmK_nA+huijhbvgJcd0lDpYe0vZ+HDDFmnO#_G@ zQ|$pg3b9fMs78;FgP?m!1*R5#ACW#-$tIbXz95}GW@_WzW6y*8Jv zhC~TXWtZbCc|k&!__pkQ#MYBuORbw}$}F3*<3dS~QAyGh$)i;<`uBefY5N@##%#n` z(k#azFAXUFiE$G;-xwM(`=q!sFoj;32J(j>fkrvmpT3blM}tXMwQoE~i-J}9o8=Sj zOC53zQK|hcemtK?D$KVolB&u?pK<&Yip#CENh>n3%2#+arrY1^JvuljnkIcq${ayR z(aXy0=*;rFM{v#UmDbI#)LRznV>#oQ4{5jFEt0u>EzzWXvc_~~cw%o8KI_oiE1vJf z-M$;@;9FFgS>%d%{qUShnjLkt68$K;n71)CI3$aQAJR}~hM@T8M_pmzAef!P{P7C~ zTLrl^@SjDaKxR0D(c;1-hk9ukqe)|OszoNRwL`ITA9c_Y<=8=NZ0LAV(&1SlNk!h+ zZK&E2(+GZJe>pX1pi-kuqK}D6W6pG14&giur)`|C$`E!EXpW14hQ)#K8TADl4g2O| z{9=!Z;&NcpZg9RWyLJH%{4ki2_FQ^R?IH5E@7qs@6ZYEF6UTmMTyq!wMboa}Py%E- zu|&#ag{zF)${h!+tl~ir)kYtJu*H;(WMr^(4~AMn;5KWvfi&+L!&;R*fqWQyyIxpz zYmYF}u=?z-eGjK}(7l&X8oOC$v?NIOU^c|BYT43)z*NGVW^e&KOTp|vKwO=)H_AiS zkcQ=>zb4|K`sJTdr^1ctfy_{+jz1i@u}~ZjpOIs6yYi9utu}qIcZ9KObkPOdwe{v@q9udy+1&kn zX@#4x-bQQng6w`D#arWS;htA!l%%bet{-GUTNJu(q}wticc=0yl99I(U>sX*#&0{zLJ~+XF1U| zE$u)_c#WzH*{PXlBHvC( z*rAbso15l0st;v$SWjCv=ASRD!|;XJLLor|3t=(a%i}I_W02>AXc~HY>_ZA46~UFX z%fY%4EwokGA!lhFy$X~f7dh=s>9WAY>HtqYkGcy|8bCnb4zDXukkrB@Pe)Vl%W}82 zi_Bu>k7Pbp!?JjkV8zEuj<}TEO!_9~pJ^r1uBiLVf`$wErOru^<|N8+M&&gUX3|A= zkah&1hy&1|_9a4UqY4{|v&FRCf91ZcBG?Lax9)c0pMtGs37o7auxrOiMbFMcN3>s;RYKT9(ze zYui3+tqWkDxCF_bZj4Hx3^dnemMM2fe;T3oXL%|RZtjG?OD|zL#NpGoCcij43Ds8d|N=7|U@mv2jQAhBzj?JtB0O!w1-4gV6@Mm`tU_h8%13 zCf*FJv!u3ppHuYyY?_(uXn5**g@4AX4Ki+7C)0mue{;NogKH3k&C_mr9Q^ zEblNpH&uVlpzxi)u&Hx5nX({8b@TBoN9sSRAYBP$h)gA=71R8(P@~BMLVe28obvLsG zWtK_Q+Ji6BN9_`M%A_^6>vSR{zhiMtK=Nt<_i$SsBX2yJV^bZ2@DR&K%s7;iO3H&D z5Hyc0)JhITRA@S^kT?#?MiJ<~%#Th11atNpC!v)aV32)EhKLpTq^7rKZLS9zmk5h= zyesYB)}=de>h*`pE5&WaYmb<|!9gaVe^4hrhg2W`8Qmxv8IzdSD?olASATVkop|BS zRCUbR#f8rY2v~fd6hx1S)vYl#z>?rn`7DaKr(~g{(TF9-;$Eb{HXhQ9h5X#e-&FxK z;hv`Zi82n768@8fh_yV%N9if;d2j0VPe!|+k4pwoRUv3VmT8n8)`k{^rcIND54y;_ z{{>hH>2xGcl4BbBkw5bWUqqHAVj?!ScBPulSOsa+5Ewh4Z2-O#A@fn zs0}MlF>N`Ff0RNeAavUL-M$DrfHmiW0jNMSjM0NTwb}#ztV;KeOC3iJ_olYdxV8zE zr6vKyIf}ImdRZ?th_;s)l|X~xsC_4!>R>IU0`2m9LpoM@hIJ~lFQg7jdc_DCy+-5! zM2U6U`>wS7)*W{p)KQih8@=(XhHOdjL)J7ZPb-^zQ}pK9O`%krcl{d*gwZ}}soA{4 z^c|g7>aio!t&}6nyvz7W&$1Hb3o7URDsGtVo7H#@>v%%~3@~x+RRj!MY`M~=Qc}yL zAGxY&f_^Y9v6B$^gGLi-+DYO|lR;8w3i$xT4tDI2kIX9_cz{^$+NUuKf^8Yf-gU;kW~czLcdPmD^l59 z?q5cpaobXTzYH3Z0yf9+upESfYm4W*@iyH@VY%56`2ohS=ZB&cdKB>2a;6Er4}pnk zc7FG4g!1M#v3F_`RkwX3 z=FDUW8CTmiia7^FE_L@)ws^a&#-8nOTh(~e@H=nvSxMW+kA~}u)^HbZwI&->B5+s4 zju^~Td&Sh$Iu}Modj^Bs0{Xf*MAv?7CY0^WU9ODvt*rAEX>+xYW8vy-(oLe@>?NuF zgQ^|?T|s%V0pt}uEv-(F1Z`0 zN~>=-s}_}rtFbj~FkVxRA^7U%{o2P8wX>iJMVenIshf^lVgq5PP6h)byf$HE3|E%{cH# zS#6k>chKl>#*E3v=r>ixM{S{pq z2}>N^y^@NtvxA>QJhlfZY#~P3G+o`x)BpN2F3=i%UC zM-qiylvPz#X{xF+sJj{?`oH&F_CWy6_o)~{1tblIU+3ggi&%lH8zZ*0d^CQ)w#8ia zW8v*T2tMyCm;Weof85g$JO-;E7!BMrZegto=m$Qzo*NIp0Ms~hE7Y>l1?)yF{vQC1 zKytseAZslbu0Rezzuda^*dCg0=sbuoplCki_Nhu%BVE^5k5p@+-!T|2n2FnC13VC; z`x?MESa)|#!(*^S24|=9)Ui>)*-{1xDn?7|hx*)7qI64%Lt1A>&Xy8&w-#H+2H!Sf zrAy@gzI6H;VUB^_%=rYZ<#nk7IBHMCgUzoGi=)Z;6oNUa=gJZV znR2J|0ojC2_Xv}6*93OOEV*6$_6nXQQlzG{uc7By{#p~(T(+h44=;6uvM(hC+TwXYLZ~lS#|+d$Bl zeibgzvThJ`MiL`-q;sG4ANxE9UyBBVoG6`%3%CWIBd847NGh4?*8Xm}sAQxHIK|E)&CCU?j+Rb#zPthte%1NVwIbO-iYr^dD{1&1%wGD!tcX0+;^m z7a?|hsGk)+7>=My7#NNfK+R3l&C_G0YI-WUmoa;&9-*VGTJQhU^1VcEbT21`I?Cvl2Pt{~=R2>vpzw(P-J)lP{ zNrj5e5w46?3$+o8U|Hj_J+wIsQlT1kksvYFwj?y^CBdDVp`TlDw^nF(HmW->1y=gA z!mLsguo;h%c2x(%H1-|yy0-pRED!GN?fX@EIw=ssVqWZ-I@Nj^~W4r z29scRlts?;ee(gGoz^T)mSbV7cgl)K4KJe=Fqw?yIo;&ldo`(qoWes*Gdns@v{{6N zb;Y`X#Vo~CO|dLKGQO7>U?FvP2m)>gZH+KSSEE*vjgE;K3_!IhAa9jJfHt_ARXj<||1MkYer5gMs- zJpCPeaWo?)k%qg9_Xsp|T zTEN*{ORhE$7qs`dGFB8&$R<)GSlBiLBw)J#GZ#47W}0tq=u3Ci=jAxw9nP69S6?&( z;CG0)a4lQetLU5bDavl;(Zj-Il9i>UiWOGt zd^KVKyw^_xzuYt=`LJAM~ir-d}(IOTJ~_1G%D?UWqSU zIn3%02%3{JJ#alaNT4*u5a4Jj5R#%?lZzG(Q~T?&EZo-KOExm1lr0GqQrVJV%_b(Q z?*b{|x~+*+gac1Fkq+3>?NHYN=zPI+Xq;bjcE$O7yIsVx%8RHKzoqjCl~tv>^ici8 zXf4u1-*khqxx~i>x)2Yx8(`a}&J6 zNJ?K_qLNP5qUXJI%#=P&w0nqx&bp)UN9}LH(~%3Oyjhk7c(a*zA#y*mS1Vu@EFyTFv5;`YFFWT6wK>l35xDWM$flvm9ZtZS5 z#?%TY-bk8OiIf9CIcLF3U6l8&Kjyahl*z!Zpe*z&*L}#qY+FX)ZSkUS2_rz=q&NSV zTi!e{#9Kqb1M01yV|;NlMo%9`xZnb!V?Y-`odFgI!w|Zg8F2l!&k;& z9s*hqU@Ri|ze_sy5#}r#EMT~)pyd!|&IUDFdYlbJgL#9|sP#;b4Pau|V4y~FqnfTu z-Fl6H(%Y5|UR*q&0$Q}(7Sz6{tsNhm2to$-02iVl0Yur(Bv9$k>QICc-g(BBP^?p- z_FqP^imkaTBtxEV9hAXG#p^RvYX(}{rrm%hWwcGcd!Y`Ds{!dI%0%OYfapVBjJ~ARG^t#VIcE+JzbJh?oH(t&321 zP8iU_1$h{5qiTPmT}V|Z%)x+FwRk53V#rD#3>cYVXiaArLx}+?l*K`)@>dogq1l;A zVWRe3yEIGsh>`CGZ>9~7P5>o^6TxC*j64(__0$Uu*VvPm{k%E_7oxe^_U}pn{^Tl~H~5UdyKbuU^*H3LQA=x-*aPiv+$vNYXpWRDhOdbZKiMH!hxoi6UHJL=Kg zmT~}Np3!p3`0`UMl=`Ek<;gG~>iB>JZ@`yPVY(RAN6eYN59cTsh-7B+F+Dy!Moba~ z2b_%=?(y)4FnnT1aqYzWd@F; zB3%RhB}^yq3=^`PZODd>CG~U?gY4uPF?BalMVedq0`y?T7__V?bx>_PcK874NY;0A z=0({_P+di3o=25C;tA(#sZ*+ChpxkMXNGX*8W_Thi}IZG@vS-xuBA{%-hpuZ?Ducy zy-!=W>dG=4at`EcBRdFvTbK}0`IwpS-TLPA?;Qh31L<}~nCcjUH2@a^xHdDsFU9v6&Ci!D7k*SVUEYb|6*G;T(sn|)ccoPJIX`l0veTRPKxse0ix=FK9;3J-kPFK zOJADeg2yPgygDW9*v@c5-=44xy$g}FcPJrCW$+6Rf!#`e86f?NvISuZs&6EaN4F{0oFB$h=b|77t z#F`EyV5p>M5+oEek{}_o$VjkMejG+tk-%}XKDJ;q30PF55v5^h$JEX@(}CJX4;?O$ zCkv2V5cx71%pjOg`Hl%uwKPbOhTisf(`Q>TNUP?8g%Zg$?%=940vBTZ0j^cnW0{%h zazUzK?UUfi(yKNqhDehhC^bp}mHuqptq(1Ks=fM1J1pACtv(mX2WRK<0mbOx@~?I^ zNL(~gDW!k?`TzTRQB_lfbi!ONO8$P7C4Uvbs44A7eR1WlKmQXzU77y3$y~U`a=??> z%yPU}M)&ym7?Bt$J8wU-5P`fygbfj-bHa(^s9Qb;bP|vCt1yDlvxgJgn_8g{<%y?r zLFj>{Dl$Tu;)(CgZzrn@`NNlF^w!E|=8~j)C|9!%lJtK+JwLhprT_K%s(*S>7jaT7 zZQ_Z|Y#t`}XA+xw!NHzDg>p#H_EQ^RHv$S7@gQB`+~*7IBTJZ*rWNTew#ngY{*vZq zLQ`J0i3zp7ZQTzi*vf3ADf(80epy7>#m6eRNDFZv#O$@7jc6ead8{W?zr1P-hMlqz zPR-wQP!mIiCyssVM#u&8K``{~nY4joD8B8bVv~V67$%qI@3J43IwF#{%2!d1tdsPW z${M`jYV#_!*HSm|C&~=@B+<3$c4386TO0_X6b=JI;be}IXoM;krD^otv>iCcZ5O3* zXITsg&D*xyxQn#p}H6` zpmc#@ZWg`UF5#U%qP`!VVaYH1fk=Z{$77@W{4?JZI(!-!t3B8AZ}#sMMX1W$>_1F^ z+)2IAo<8GOt8;Bf9fC}3Q=;4X7$4Mu@lgqk-@be$`5{*Kd!^D76y{O~snCXQU>WLU z1<*TJV(GZaFitme&DB`Un zREK1wsfo(YCqYGBE~9}0!Q)u>9X5a`vzc5&q@?4k3R+9p83T`4OAYVlKceFTMoMb) zf(;(FMF$C(ZU}9BbG$OkOJD)-Y=a3bvb92#z@mCE)Kvuc?K_MfA(h_JCpZ}EfCR7NB^naUD60;$ zZ%F`g1|@B7LY1&Fi@u!31rFKfi3H0V4(C1_gP;^7k%pLUMytam{V6VJjxAI%=1BEX zESP>}kQ^W?A71cA?Q@>ZL&!ToOr2^sGUp|=H?M^_E$Luvvm5?G@yUX^*v5(^ps2E` z)Z9ZhPQzis3KowmJoS*O?2(6-AShaO@DS_WG^Zu2v8PWEet~8 z8wSenGsCFDflO$N1iorxku!l6g_w>)M2He?HtfJ~E%9Vv`VVm8qtfS$t?tYC-46ss zNvo(z&Tv7)c_$=Lvvan}^HJdpHh_Fo#H#`lIK6MVz$x*7fX3-l(ligsbS8ls+2gV0 zGcw88_oiI17~78E6Piij*2)aYkm^?NrEKXG=`%y<)(j3?YTQNPAgDjIdNEPCj~(OV z%BTsAowx-lh8u>yytD|3=d!wD{(Z-eaRH@@rq-ffQSizL=EDi})|$=5D5}#IT%^Rc zjHHPdZ)DHeSampYJl{t3xhBpoBJ~s8j7ye8K%_;dQ3tprP^j};5~N^iqE3-Wz_uJ= zRC56n%G~9G)y)CqzxP1$-u+|-L)(7y;`(7a@En=kcH#!hFOuNj{_lVMcLuE89AGK; zjAlX#r`|N$PUiFFlZR%b{=o(5Z*WX0ZPf7Zn4S;Bh#D89frqL?LY$Qy+NL8FzVLtH zG&a&FQkz58y8(@EUm1322;m5skqN(fF0{X6`nSS$jxr|U>nF5XvM6f(kq8xN^DQyL zPTuJ?lsu?@daZwvqpvbX;hA(GOuH+{t6c>ohr7N0r}*ja&5LfYw=c(-h<_g(siSIm z;G+pIhu-YXizC?yBdW=u`eOVfSUB{i;-zj+;UG`H57mc>WsWRgd_0r~=wr_d;p1^n zPW^Ts%8we>&~t!OH1%KiqSJCU14ZHJZziRoTWy_`M)vAB?rNlqF@>5K{22`qzsPLt zq8x@^_c*rT`+JGWE%xNrzjr%%+j3Qk5tCH;(l@ssr({cBLRbL6s83p&H0J(4tp?!$ zOqwKN6CyIkkx~3210E^+2Q#3QW_CVvN5q(mmcVr)u`lE}14MPVW?fLnr$Pk0aTb)7Yh zs2_`=`lP^dpBR6%j1Io+7+=`-2|RtJiUJJ*mHyc_Sz+$Z&*J%rq?xusSV4tgWv>)Z0OBx)-2q@$2hJvF8BSZ=X^{bLB@)lx3> z`qPImHy58SR~e`UHB^^nEMCbhfP(sLfLI~?ZN2&#S#jwv#Zu*>`nPfy>w|wPP8XNI z_CH_uzkd95*8gyE`Adc*idFRpJ$)7JL1i99a{>;%o7lri3UiOF!1e{wTf*vlWq7kx zEt^FE=yT^hsJam;X&N>ZfKF}}A@r) z2nsviT|En~cWJfd*4OjcR~UL|tS==(!+Y7#S6J>4>g{&nc|lq^yP*$EMY|niv+G`*uu7QghLAchzGqf zhxW{d#PN=yU9~hL4J@q%1h5Eig;VQFBUbk2+)uLWPM#A9*$Qt$IBTIr^e6F^FDJ@XH{v zesT4tpm=V>K0Nv>3_``dTIxaiLP~ddZ6Rfa&-8_qnPMep5T}9W;%bDb zi3Dh*%lQp0M7+@Xz~J2AUWwzJZ+RmSrq>ol081%dt26~dDL|O6S*4(qZ55?pEYgnR zM1b5rIsZj2-HO^MrY34&pyc1K&fewOP8cw&EG}0u7kphzgr4@5h1Y!LCN1}MJ12eC z*rZ#$((mB%m1~FA&p+ORpPt?PfP4GY{Gb2IOd8D2b1d&nX&%cZQ||m>qS0STje(>8XzC1{-wb&* zOeUm+4>K#C!6JUXkY4H?xTul@>XFgCxp?A(`QXhVilu%U+xOOJ@#CrGI3G<33q0L5 zSc`#VW=z)4uy%>D0IcUhT8W(WZnwWosQK){O*i=HnDI~Y$5YRlPui7#C5{GAY$ z8U@$;HTtx`VL`TEe0v1{ycK`N7z*?5fhr@t@^x?TIJ(psdo%P?Icl9D&oUTN4Wcpf z&n-}|6-+BJX@&oz7n?>UWf?FL6UI_mA=7oGyZ*@sB znNg#1X?Ar)LtP!L`aVoxiHiKBcU2mt-jTL$QCgUcd|wHOx4t=>WNqNri%Xhf;ni)+ zqU5lHV@<2#jXqe}?%hQ4bhO>eh}ZaVMM5HNHItF3{p{mdzUlH|jTjEU+kz&ugB_>gBJ*}_ArE%{_g9eE6F zkJXX;i_?_N>PVc((evM^$WcWBP$CBk2jq#I8yosDUs`v@XK!k{Yb=y#bXZR8qz}2m ztojT!25Ges$lLB7Vs~JGE;^S*-^+cHJ#9eZG<(-%@^8Z`7stQvTfo1E5*&(u_YR`d z_6_rI4sT#88IS z;xwp`vvF%`QKsiv8$D~IA6*+|Rm@U@WND)at0uG&t*%>5+9=kW?2&1s&8VGR{j$A* zZNjJ1Xw~s*(rL0U-jma52Tw=PKkGC;otBkUtOm)_X-#@q%@$B7sncR*6rO$*ac{pN zKCTi)yw2wCdUa9VcdVXu(b7nIIs*Dx7v-6&XE)iqRjLR1Tv=U|b!4pu*@P~lC0sp6 z`)Z5!)vuyTMEkC{4%j@SHsl9ANBf?&(X%#+c4XFRuo@&w8#Nj2%gVOolo5|O+V|+S z(I#SpJvI&4itM51*x<7UeAa+!N1kMzK&wHrG+=}N*hy9{C8vz|v0{V0hS<1DXz)Cn zxocHLCv8abc@7OetD?H5DsNTSsTs1)an&H3&loFwg+VxS^S*{u+Lm%x$BCUoyR*W}0PnvDq`NKIu z>lriF#POo!$00S-vUQyHL`@A65P% zm04(oFR5iux<_)ZnFOp*>m+rS&E^^u^<&1g3My<4q$!okMR8WWK~;>W+cSj-c{9e| zhx(O4_Ku6Awmr37dz#z5FnuHjva$7WM3T%m-P=44OCN`hUopYPV{6FNhp#M7Y)u`@ zA{5LlRHFBeoNuiKtj_)j5=aQhj7v(57CxyzL~u-pTVHglb z^kTx7Nu?W5LVcUJD!@KeZV=NOrjL^Gg7R5p`yo?zd9+Zp#LlEdRWIImWIHOZQV6-J+vAi?(Mf`w}u9@Q?Z1PbjMk)R=a){$r^ z+go!%LwPDBNK=#LbW%?NAAb}ctb9dC?g7(|Qa`_gFX@{k&n5sb_(w11N zCN3(Yydx4M)fn5hMqr;KfJSAetL;PtAXV)vS3E~87Om|wrh7JH$61;M zG@n|&Jkh7rQ6PBW8Ke>L*>Ui38aY~MFFJQ?MD+{4!zl%7e}fjwGKNSs!uA{M!W=BQGkPtP#vld6U!V~KE$}> zWy`VW$(Ad}s?EvmJd__btfA*XGJ;;N*NemhH3LQA=x-*aX*Wx$85X_WWQIlDgfE4D zvsVWT6GUQ>$k&V1+}tJyD)mUSL~oHml?XB7)Cr-Oe$1xl0*G@RNT5)fi#RDZP*H4@ z3m#5+kw9UU7rl!_T-?AztMTW8SJzP@9QN_;`i#kk{ygJo2opjlaRAOeAb~214b{4` z>__XIDr9E)V%tplRLGqjPUKn7!WS~6v!@PmEqRJycw=}Zune8p2M4*Kw>TIQD&7{B zmO3s9zS6>C*)KX)kQd&q3-UTLnPl9B9w|tD=A_2pCTr?*cWn?@a zB34lTBzSig>Kud=IhU%JZP~)S=F+u78n98&X5$OSvs0{|CWTL8dKwdcrP8vc>qY`4 zeiu$QTUZoz=uM@evKkNo7d_o7b7lH3c$<=j$(=WMFd~`;4JSD{lR-$Z0&~g-4ClV9 zM%q8OhLe;eP$SE? zzoR^TBJ=wmN>tLeHckzY*zs17(Pf)iVDa%jqu^hh^T=w zKJ~Q>OxBV}WP|pVNc>J-c0jXjoeQ%Ac4HN@E9D1tRR@T|ste)UGcz;|L14=tPUH<3 zkb1_|`R9KB|DD3Y$E6j{%y9Di2V?8XnNO$smYpXAmLI$_y2r;|`QQDYjVsgtHkk{M z@`=-l={q4VAV!mGz1`iTWbNrDp`i}SXrRpRrtLt18a9aG#P{a6m_v0cJg&LvR|YF0 zV%zcDudd?tg4b$aU7VP0VD4hl8=Cv_+5_sKlm_%2%F!T!ng?R6c5`+Hh*!q)Hs#0~ z3nelFbr5NWEiEC^u5V5rW|l7$);BRN(;ZHr>ettS=Y5+B1+lNHicRbw^!x`%g-ho% zSuHH03seky|9(}iUw``W<>unkWdi(841Vz(F_<5yQbu)R{`LB*e|phhYhc&Z4AceY znrHC2e{x2cfPjSJpM7cC)G~*YU;D*~BS)oMy(2Km297uU7Q8furfUp@<>=dCXt{7r z+k_00sTmr+WsbloFa{6C*}LCAyfS1WT&B5Vj0DYmdoagc0wBh1?OdHwFR+EJ+F=6; zgl7YWI;ii`F5Jw06fn}f1e5bIq}WM(0cqIFY`{#EM?$=E!#1n_{gCmzZfxVcEaI&; zTwM6kY%<34vw6U%%}_T3YSLwF5Fv5ZcE1Z(Oy{nOp*x93cXDE8@0xA2(_qZ3I7*gI z#yU#(#9i+~7uhf!$GZy_K3HP0WR|k96n$$b3`59m7PjKjATn-*#cYhlFLU35oMy3a z#&btzD<{UuKtd4P8;ke6(3@F-%9u{P2R}!MP0T8xSB9`v=l

lFskWFC6(duT}?BPwNBZmzhdwPQo`j-|B3d~O#j$K$GWy3n z2x0fJQ4^QJK?0SK>TKMC$;ao*bf9hT>CE$SK^mesVWVRDvoSN}qqHT!3lqA_T!x-O zS1C0oz7`gYb+2fYJg+nzFH%h=SbGk zcG&7lMP36JJjQxHdcSdj!`o($sQQ@81*uXbp9JxOZEoghB((!up)O<)nlZ{qD=@`& zCr##E!{u+b;#tzFSvu!32Cg-J>=52|XY){hEvyTfY#?n6;d0;l=2RXFCU?+Io_&zj zy}McaU>U+&)K(&t#W6~yy+I&iQJ>FHh4bQZ4ld40hEt+-^@c+;fcQze0T8}@Fvg}0 z0WAP9pPB;)6_}>&x}iCT@(8F@TUwHk<7^K-S4mA=w4VfbYKDS8P`)e;Ao9A!Bgwdf z{9D&D`KD(5F~_%)p@BSMgESGM4tE2H1Wr6Kv_TfJK?M2B36D{baqc-NUo*A;iN5De z0vdSEcRuD!fA-Yrraqp5!P;ekJ6sw?qH7~=0%b9Zo!PVuGgRD=1tHu;@*j~zf}4Er zJ4z67kO?IkkDEuRO7(6Aw1Q9{f46M?a9Z?7WGJN@J1ryA7gsnP;T$p`oCnlZEe7Pk zxkVP4pmzf)#0s0z+&X4wz$kr0<+~Jl8gP^*c8W1Ezgx0v-oUcNm-ek|kA*;XL+3$! z1r@E~2+oxOuaOEvK|CZeNXNLj^9%@cO|1~BGs4+nrR#JAnlTyyQH}xM%-A@uno6cY zRDnS@aEy|LcjaK?vjJPk05*t9)-Y?&!HN#pp3c68o@4o@yV5aX{k>WZAoLB^20C^P zEjRG|uhUsNf*mIG!nYTp!PR!SQhg;7JY;Gf2^RL|EOBCNG(^X5X&jPXhc|qSmXIVg z&~ZT$G^84(at`XWkhYo&JC=`>s2n5`EamNSK||%TkRV}lFQ~f=TjiU^`xvi=MnbkZ ztz~7-d{1cDsm}IPZQLWht4{56{m%rHoxJ1=NMvZVbyapo#gEmx>K&w+Y_fG##Gu8P zLaB`A5^~N3>ZL(>n%W46GkcXSAlU7?m@H5z(*db!eHk@&B@ zBB3o`>B}si2u9{ll9r3z+rKyAtPCM6=g!;zGwJ%NX+R62rom|`-02fiNOEcsz=0WwvT)|f+y%ntSQTa8-kKS1wJlkXg zr)-0^Xk?!k+m=wAkH=Sv(8=;|q#wKH-{>ur{)((Dxb}(`QfYpVZhxHiQ)IrYrT%PT zFRl>cCwbB%&VSlwMYu#K8)d`SN!OxIm*`!qT%ueF*gY)L{xJKBO0EC<>G{d!Fa7c* zF>6+FdPg;@MD}PEIP+(Fb$)Wa0m9Yg@a7ZlkW@CdfN-BLE^pZBR;;IMpxgcdsc3Ef zY_Izt`lmPjv#+1N++2NmsuZLZEH0p6=@P~*-Lz$K!x{8E3rnjcoMGk^tT(3QaE0+Z ztAl479;Y>1RE13NgPk&+ZPa4LoH79djeAbom&vX5lIj~B%k@*f(Z%(rn@?B$Yc*E- zX4_*M*g>_dWu zO79^pmaf-{xzk32r^}XdQ4)1Ijx;k}NEb6R5ZfjSHc&{rpHuqNNEns2;hUUL-XYYw zl?^9iJuPH+1b1YAw?}i+fvkRiDqMfpoZ3TG)Y%2g+St08c*2W^3x}@kw6JJ<`^xC; z?)Kz=_g~5q&X`%%-}x~$M6~`&y}00aJP82 zhMo(jDV@ZxJ9%d?&9;^(x~bMX&}VBEju+*@%-Z4K%9XR^EAq%^?G=3$E$!qlJCXBP z&q)&=e}Rn_>BO0844I+p_FOL8(JGcx&osNo`ixkkUvQ{-7f+5z6o83%G@5HTaP%Kd zmx1$}A+saoVR-m3v*IU>;^zy=QsROAeR%+`9vR)6izhyq58fPjSp77%@2%0|$5YF3 zKAI91Y@Rh(i-BayMb^)-Y>BY|tl;@*(!1UMvOxQ150X9P;i(z_B!4{hocYv^{hs*3 z_0Hc3lS8B6dcQ`W7C0=(_KRS_Z zO5C2={i(t-NjZXDr)KZ}*Sb!cI)hy5r7wYgC(Sg-Ux=I>sKQ-y^jaoHuc$W=&(|~4 zjbQ3+`~9Qk-!AATEFCZh%Pe5CH~H}ks4^?lvXwGSm>YX)1;(XyXMFairkl2y34%+- zA}L)~i)H1ZszK7V*j{g;H|y78v>R{rY&vyKq;S!GY%SL8jlTvKO8KSojaDhNE}KH5 zUE^b2vRa6*>U`!?|C~vE$$y5!cb-48{6K#2X3>+bEge+}ckx8gYSQj5mbpR@QSTH~ z((>*?zE%tx8vw zaOYcYugZMCI8} zC|;;moTyar6XYxH@)NpzenKnGS1M?|D1yYbk}jae-g-CWjA|2Y;-QH^{yX8$=BU2fIN#G(gW zHfH}h7QM1u`kfy#7Ttf2MVDLavx*)^6_fcn8r{Myp8j)0`iIEk>DS#!h)X{{XYmxE zTz3}F`zq0SUA|rdi?}tFcdK|#t-tT^d~;l{R4c;ssFiB5?=)odomzkYA!~y@J5L4d zP{nzAPdgge+%9JKo^JTOr}wSD1Cg;PPdAz8ed{kkWGu;ZHc$CAeu^h83EJjV8q)-Y zKk7SOcr2Ar%^q(QmiXJ(S5_1H;9#YRQhL2Ux$)QP^&P44(qDlig7sH43TbuxG*74f zq-zNlZm~H3_wQ$p=|cYuH)SJatWdMnW(up}bsKB(^}g=de?nO9D)F;G9I!*n%mVk! zSScEn&kkC8*BW@xv%<@Ebf>xZ&Bo@7t1{{hmssS3L%qmLM`GZGQX;3XXq-ng$xw#G zeASK#OoA=UO#+4QK|umHMm2q5BqFJi0kU>0XYljQkC8i2C2@puEj;m^Z8Lc2k(*Se&g z5=8akdpshfiR_8SWXNWaEtD2H@Ba1Yzb?%wzAq*xdt+MivSVkuZN{#6+iiY%H!i&% zIRT4g6^oRr)0$yNFr4J}y4yH@6BFMfmXmyU_*Sp26)?=$r4Ke0R`Rl?tT#3+_q*+T zE{G!2F>J^(vw~1|hc&c_GCbdqqQH>*&6v)E&=^?8$QldFdL&+2MRD>lvwUH8LuVz^ z9Zozyc1(G&D-HgM9fY3$AWZfbtFszNLJd7f0M^sn75{txUQ=*|vL$?!>rWrP++2LR z{QB|a`lkQ+>-AOt^kV(UXn}XpVwM2eSsgsvEvh>+dWmi17Nzx{TZ>KQ+k-Fz^<3HQ z(een@N_A&``FT!i`Kk^fQ*^sAM z=%(=i z!_Sw8pU=0%uPJ*?;nySeKmO}UocM#=Pg}dY``x2o_AVzsU9d+t3sQJ;ws&-V-rEwR zO9aMu>07`wdcQ=2w|hRcLVGfsK6{K}PK)mGfqdkL1O9Ws9{I4{gF`W^my_Q;Jy1VN zhiaw@P@Y)*IU0QMlPHbGtcbqp>0f{T`)a_#)PM9@j96xYYQ06}yqK^70+v|ly0FsO z^=}c5NOHH%v&r zk*5#HHnYTEepsn7ine#dYKsX^{1$B(x#gt%fF@!Ejm*b#zj?TSw1Fd9-c=a$pR)&v zalgVgY1GL>bWa1|O)O~&CD$+Hl_ zJ8jI6#x<+PFde!WMcOucL)U0NS}}Hg#@3npq-_9W^stTLTCXnZrfwTK{2kafhA5$K z8M)%Y6iv~0WiuVH=7Uz0FFe{y#qxTh?PE6WaYHx{-^MKFSDEj895?iaQT%D^p&v!x zM{fN6U{_qChJKPp@f*LxY|W$97g%^v5XBmiUH-q%pA~v|D%{vpS}E`bgb$vpMJl9H!*X>5fsi~P1M@?wr{g!)#G5s^EW1Zl+FB#W_E9}>t%ymhiJ zs2Zn9T~JC&%x=IIr}mXSxq&TUOT&(u1m?!*Yf@cMTw5Rc0VXg?+^cJY^Q>*MZ9X-R zZ|ZlL$r;`UtJ&pU!G4}A3usW)a~|A{>AB)MkD@F zw4VG zJL-uqcJvZSUeW)S@(kSPo8%dsa@5<^iurO(!HCeF8ux`S3dc>UWs8{V4X-}dPK`TQ z68;+SQ14hE1Cd5Kw+C>L7_;~j!2%1Ps5}n+!==z2HH^|nisezK%r$4e*(;)P5y0ZJ zI(F%PR9jS`AAgR*6!w6dc)tH>>n!%&K+z{R&r0ldu##JXvZNgySF)tZ^Ftjq`+LHW z_UOk+3Rc94DQ(K7CfRh$To1yT`7JE)vH-N|kdx9+hmMjwiNmk-aOL8}AF+Yce{3i<7IRv@n&ulr$^ zV2lM8P{RA3+r`Hn418ek^}-6JP20f7meI8;LgUyEJ%5ZcE!g1hdVa-rk;3~7+rUief5A|35b4W;stKo!5M!>;_$ap%8lGcY+f339w~ zRX{kNb5qyp2a)%^5=Z2^MvcU6QBSC@lWM zqyLIe45|wcr2~>6;Z#5pD9KGIYaNY2vQZyZEQdBb%%MhOj@b3SGgP=12_90%B*Cho zVhRsoU3mZK?w$YB*5oYGQRh+afqv11OM3{a23LtxJVp#JdPu9 z5dj4!?xb;)_-W!msiMqGo~p9*+CnS{^qLB$C9DI%y%jA4yDmS7f_ z6rGFLAZYRGc(G2J9!{*&K-mI>J3~pJuwtDAYV&4Yw=%P5lK;Ya}u~2#l;p-59bu59TN5?r8PbTM4G~dF^!TSWeFe3 z7BGE3umx{&4Y9>35D%X?(W9e{eB$1bH*E5Y$MkY0??K{~nS0Rmjm`|59g`Ir?9HpR zLW@Iub?FUYnl>ymh>)eLdUbbmfAj6~u8f@~eszAWOuX3d^Tie+owFGfIZLv9s$A;) zUVA04y_eEI=D>&;-XvYC1m@PDJ^9Z#4bEQPHVsrd#Dx#huEIRK22;G?>T~9uh2UMhyvAjf@)F z_QuIt>TYvfRfEnE1>1DtTb(ZmMltwXo4C?Q*TvPvnDisaS@07*3S=utQ;HXb&n%YF zdlOq)jzgWtI2wtkVn1qt69oK_4+4ej#G^?mi*Vu{={PqK4hSE~xIcJr@_`G^|AlV= z!S7*7VZN6Tsv732W~4C_mLc})dJrce5QMA@5lQgoL{JYyn~OTmX9!xTk*!CvVIogX znkP)ggIa?Jbto~#SZUCZM;Qs$B$C-0M4T0jI5~6@9SI&3#c3ayIY+H4Oz4f~s5P3L zwrWM2<~zhH+BW_Do3blI=EhQnSpx~O(%!P!Bjrz-yNNRQ3rZ;?nIG*)Bn8YSH?mic zi7wmLNQrFxxIv_>7l%v>jnT2$)*vGN88mT&k5?f9EPi(q#Uiu$r=$#| zX5-i=iE0I56GpvsuQ|Q+`s~-si-*hq`F4AGcULW34+)|H+D}71a;AvH=T~z7QQqIh zcPeK`9HNi~g4{!*T++{PqdA&WR^md%vZl8}dh@EFEWa zoeFkL*&-mPn(XT_o%Yfc5MxK7wd%#wNW&eV!)7$xIU`}(NW-1k1fl(py3DJw3ya!Y?c3THTpTO`yrPKj#fI`AnP7UD+Rex-cb;!>1fQvy6r|jS7Lmg_1eHK)6g%iFyo~vx z&cNs-Rb$v#=pxZ(Mjy9pzBwbXi)Of|8KtIaG zPt>+7Qn!?zSoBCShvI`Q=UaUeeUE-xWUAvwI!^v0QsenDQZTl0J>vU*WLd#Podjcv<8S4aScgn=j z5c8C;YX^&%MnwhiHKpFP*_*^XU23qbUkH-%oC5&jidy2&N(%#Tto+ner8 zkC5$4C-V2QKX*5#;d|Fg!*^X%z<7@lwXEc&WLCY9(=7f-aOA>GM%?YnJ`v?f7d}ze zyP_LTsf8NAmp)SGS$?0l6}nNrx~uIZzu%fgxx3Ov^40D*Jt=FNs z$g&VZB^+qzoC3O&gj?S$4n%(M#O#s9vHTpeVFM^D{9fk?OaG?x=m)IhoH@U^35=A5 zvdEq;^6iHx2~4|+<@dz-nL)j%JW9>WTh;LqDizoOr-|3P{H0ily0OUB{NN?nNG`Dk zEsii@x+GXN?7?+Gd0C9Cg-I*Phwl?dn;sO+OhnYMEs&^E9JKmwvWJniiDC8{36kt* zVhbAX9!Lab50V?arO?FP62#(n*(>~i=-(kClH5W;4@v^#7-S+XssF}b%jM4?<@aiH zkxIxQQmPUzD_%Ma##YW3x7b#Yq#~J!x`!ZNwT>Ws0H= zZJv8w?;0)32K9<|z`)}u0ol@3$9>rw2fah>aMFV<9w5R&F5O(<6IFjy zZz$9|kQE85t{Q2}&TmksOJL&MV6HwK$@`#K<9@h!xcTy7=S%NqJ22&duLH)#`}Aw{ z^dP*2GgBe#-ZszL1`6ZXI{@>O>a81VE}VjrHSb|Po210T7FbWdUzGS07GDiXc1)6I z#aW|Anp(ztjF2Vsmy!b|9*RFH%ql%FWFO4kit>+i@JVi^mM+BQ>o{-=-0a51_)*g~ zyKSaz9!X_nf;S+C)##Tg?2b{XT@VwB!cFR|YF74CQd&|Kxgq8LBr>XUm{eCKhHC{< zrgj%Ec%FloP^ro~kSrCbY*7*_VPfNjW5E`C=>;UbV&&@(|O&hFYBlT>dy19^&{p%Bcx zhGx!T2mIxGGlZybQZ1xm!|Is{J)EV=g~r9251N;Z=qVI(SF$X37DC4+JJ~Ux!1p; z&LVYa%{-Bf9x1SL$2bNgt*NvY7Z`}d{*u-vS1Z?yNY6U^cXN7>qxJ&nSgM=3O{66@ zb(;oGwcD}=51*JzgJ+SHXf2gi^oJhNKBrU`hINRlgNtDu>XK3XNnusXgYr@=I_$9M zkuq+ZR&BvTe;v(B6XPArZYh^+!k@R%?ei(7t#KHu1Js`ov z6=WfS`o=Y}Va6wjsZ>gW$TiYko51$pb!CI;oBweF5*CF42Bf$B)Y0f zcDBHwYGBrFdOwz!Ic|A!ci1}t55cWANirEd?i#R zUC~m`9A24umybM%_y=y7PQHLb0}JlM_wc%OIj*2RyteDL-)~nhouw9@TqS`-D{J#w z*U)`Z5Ht2%q;UpjQ`0-V&{YuFD7f+%Wh{DL>4(`IHZnqQpMwt%6Oxt|-MG9)*& zngQ}-Z-$O7Xjj(w15_|onkZim{mFl3qNHhBV$Lsv0^J?BA}18Q;%e!R8?$Ly?t!Sc zI$&AKVm})>+ZXRd$sB_B0efX8doZ;?B{+T6BzoA1V*hPJ~Te&dYHdEG4Xk zA9_(dj^c%au{$QuTGPE5ru%ED!_3%?MRrTMh1LKp^uSe@asq$aVti|DIkE7m##e)` z?owCw{y-u-^NI4r$_^|QKqwb++51Hxl#6(+ddiHSuCviSN0~oLz|9S9iyQ1W)1$S+ zp!b{6XZdnW+pWOYygzyWqv%VcIHP;4y$!S8V?RVGg0k6F-4lp$;SuP(*@Pr!`t#Smr%+n+ z!K~1KhEaxSyvbt!+1??CY@tRy=4MWRWoDX@5wb|T)IXhM7-hl0;jHEcrA9VKQOtp< zNRKUKt!cAZF)CoTLrj|#p!R!~SPLk$7j}n}S+oehDEt8H{_Ll3wqTCqXpnj983?)= zxuaN@8VQ&@DQrO#2a+vd7B^ZwBM~WCsl%g=e==T;dk`_lxAwCt6Djtz*q+!a{1%7KT8XJPnq+TGj zi2j@7rwI!lok7IE2qXUU<0C7+@085}bc>um;|%;Hjs3p7%jfDS$*5?51QuTYX!c0k zG5LLIeX*#1Uwk3RdB1P&Ao&Jh+y771yO_w6#IJi46ZElHX1{j<41XXoy>Uv<*Jd*@~7 zdqZ&MXAnv4ht9|i-*m*Bt~Vl-#!2)v*#6$bCrnu0xvq>c^mJ(@(R@^$eHt)`8OcU` zybcB=p&3Pb`l}!MBmZAM%7IM-iDXX_EOd1r8aR|Oiv|jRjibRs-{YuEf-9I$i=D#B z99sQZc|%31T_k{`T05LtN75Rs4CVKu!IDx61CF!@a&pre%o^RQi07C+P{_4wAvbXI zJh#Mj+c@h2j{Y2g#GU#Fks`)H_YEJcqL;)?dFG85vMp!;X% zM_dR1m9hP8fNN z1J+kdLKhY4ppRBt$Yr>`Al7LYt}$}ByGa|^sS24! z=8HN5qgkf7%4REkSR~-g=xe`rXJ*(PlW6#5wK7lZ0n26BxkXj2hCU{O%omg^F}<=+ zgf74Ei4tQ)O4pormw%+Ti{gV@CMvQZn2X>cF|li&IhDLb=wlZv3UuR7Rqj;%2|?+c_YDl2cp8HRf=mJ@%HTg>Sk@|tu92XmZ~^|TT@84S+chl z8Ln&B<*fm%Ge3CwVfwjYDY4|(d@)zkU8_2@P1Ks*1F);CHLF#V<(OLOjXPHmwpg_j zGE=H{vq!6(X7NV?(FJ`_q$ibqB6wio6Lka?>4|d+Y5tKx@l-hEw+HTIsV-~ESNBJ4 zxx2TTmb^ z?5!Bm!bXCH%7Ud;XA0du%0EJymnatCqujP6c&L~#A|FaGpe=Z!$rdUkj5NE@*1Yfq z&}j^UiBF`lKDPR~y#s^>31vK|fGU1h784`c{~%4MgBYNzZ!0xsQ5C1NHN!`Qm9H62 zb>ihLpoPzaw1E{a)~_By_RY2V8QKcVvryR!rPbQt9;EUs19aL&$yTM9s`yO$4XhVh zE^6OfShpI<6BZa;=+h{div^@azSf%Iv~EXJ@rWsO$1WOG-9d4u87XlACwMm|_XAzT zmj(`-%1_H{L6+X#oK?dY%%#DrRSTB}@>Wx$OXmYhG))tbH087o{@^G?!3<*+LJM7r7+K2hO6 zMIO>}m#cKTPu2pTDnY71xCzCpjU2YxPPbj11EbJy((T)HXWSWo?S$)!@jj2T*ylU` zn!QZ1e?g{hEFIJo-~)bR0~;+LdydcA$o?QraQCFi>9r9KUzI6}cC>l!bwfOC77gd( zH&OrU7hvzez~d-^z$3kf%HBBGm;K6NdTOu&8KoGLuscb+u+2T!fZd_qM#xX9OW0?* zaa?_VlQCS7c(>aZ?;gJNZnlGWYliB=0-jz}->mKC&i>r2Kjdb0H(Eu zt+d?c73@}h^ZvP81%#FC*8XP5)|)RM)_$uZ1Z&gT`aieo-(ahHn;}>?VXGpfDlL1O zUOz^Mo0{yOJrS(GV9Zq4_~K6rtIHg!qAx{8&T`XePg~G(i?oziE?>uiThJ@sxEQny zajL2CV|xiAv^;3DrSM1_!WT0)CUXIVvBtq=wm-*cA6wX@it0_8ztpVkS+|Se0vdEbshcm9o71s{^#?(&gYtV8<3ZPzul96*xN(Tr=#1W zTC>@0?S1N;&t9F8u^Czc|K+5!cW~OSiQXdw{HZyN@Eee^>ye{cyTws_KBUfwy|u`g zwcP7BqnH02#*_@)U=qEPq)_qT{~CYL?#`3SiHg39{*usFe9cGW3mce)aY;0tAs!9v zL4=H=N8`n|L^DR@)FVFeo=EN3P{B~3*E-xVa_aHs&4#8m3@tMt5A1`G_z&aI83xpK z*7usgf4@BZ6OhFEP?JS{H*lwmyrEh%-Dc@)rqyrrrhF|Q)jIud{BRpu?1dQy?(&*y z?RO3YJo-3ckKJyMKTS;Mk@bC4>vh*JIoM*$J>YrxCUYRK) zR(SwDlga%mBRDX9GO99yAg#FpDFZR1w4=8TOJwNUQ`e{5KB}}V1Z_{WW9LuFkXBlm zq<6;5F96ONEW+u8Ni@H{&}l>Ei)j_?i<#a9uNH|B{N#>a?^)Lp@fkfc-=>^}1wTxu zxzf|ZNr~Xhj}v#KEU)`i(Uilh(a+Bo`Fs(1VZl8Jc_G2%J_?j#F3SKH!t8d#1 zM;BGG(}Q*R<K)85tomed`N7G*oh!`>XTIVfl;bJ&zpTkA<9Qtwgj_s=~M+=7^yd z>oxgJ>|(hKOfO)cQUBjA9rof0BSeTyfm(_LG3m_rixF4 z+D-8^rk)@0gV5P|(03-4Q+z+65IYp5LB5gKXV=rFu%K=^3@qVd(?yuR8PjQB1Q6E? zZv5=2MQq}LT#ovz3*0Dr#0+%O1~TK3Y%dHaZOm_iHs~nIoDqGZqtLW8(U$%#V^hy& z%7|GUbZ7`yk3+Z;-MOE*Op_4DcOAoITIYrt7n6{^`e-m!(-ePqKh%vA$B4aHhA=5V zs;tt)MmQa*+w?9tI~XG}X3A}31gKwBE#k+oZR)t5#FOy0 zifQW5;0q3)e;+!a>5W%gaJ1+8~WRQ=E_Tk#_V!Wk6j| z8#s`P#etGctPLJatf4>w9quSt;KLgfG?;%GH;B(5vhZ%gMLrRl{o~At13(tum%M<5@P^Qd zf@XSg!GvqNH0h0ztHS$E9n&FAy8}D+|+LQ4&tG*va$SyRI zfj(o`4KjfcVte)XX&_|G%=Gb&N9jH@!Q5_(gy+Kv`~Tj4oJBl+{A%(cU^eAZZGV40 z)}$Xj4cs7bZPut2MWRGuDgEdnqMAMS_eETa!0@Pc&=wQ;7zW~T2J0%c?-|PMC!fbd zu}+&Zn3%~@9@8V)dM^sdZNzgF@lgElN?zhXHy5YW?!@tY>oMh{r7Q4gKANbzABT%Y z?UKP%r*7y`;u%-ud0rUAG%bpfHH|Y!#3WKW%g^OM9jYYq?$MT5cf%%;30FRd@p!cOhVPp}uo}eZNyXtEmn-s!hS4 ztl-au$|J3Mpt-#Re}8d)wYA9q<@)}5tC(iJ3x%0Oi!!vKQaqzHQ1edhhkspv{CjKv`XB#3`=R!6NyjQz=h^!fFB;MA zwy(~M_tjbP)p@~J=LKYS@R+vY7> z(bdSe)+p>3s&@8tGV#0Le}*|ejtg%R${lngO{1#TVz1~b=UeNyPf9T43~ALUzWJnz z^Q#{688~`bz$p26vlZh0Xea+m`ky4S6_j(e*(y@4C=e&_yeKIvx9n6Q6@$2Z<*;SN zpt!>1+A4;@@h$NgqM)=yeI-V4pk$$E3aUJZ0}0GHM!^!P9NM7GQbx2v6wa_Qg;i5P zmTq~2j3S#160-gBj%`?P&L3`1?k}$wqu`etreK6Bn+Q!_*ILdC2Mv~wjDt1xr~}JJ z-lp|oxM462LA9??OgW~o@(s9Rug(aRb&7)qlr|_>JUkqza#8Sp|Lwn*;3}**khdZY z^Y`EWSJws-RyVqU!ZAhb3$4XYP(uyY7r4sVj`gZ(X7gl1;o$uenod9iUPUc%4WX_K zo~k@}HE7@yYix{M_M79f*W)o61|kWW{1Q@&4n$(pi28v?2T_)@JDwF~iz>8HTa=bg z=4dxmyE$B8TdYrkdo-Y1J5g*{ZtYqJ;&#DI#bCA7sSJH>pfnVkFERCX4i|0N?Kqn# z$F2`&sX*$Zp&-TAK~`8EM?6($rk+k_}Flmr-PlQraJN*tdmz3_zs1nsX-kOJb_ zye=vLUJG>@2`@{+la;jr45$sO*ouO7scR(XbiiB($GcLxJgi;zE6j5g^{}dTh%;ec zUn>M{giydhcW`$4(WT7=m)xq9DR*B_gRahZEgg8JFntNK~@h@L&Ca*mZ+f2wN=cW!(Mz_2KU3 z{Pgnt?xXQMp~DHU)e-WlVXPP1bYA0{=yB&!b&uI)P0Zrwg+mP@_S>dqy&7Dh8bkI& zXfxXC##ic4oBqn_lr`5=(N8B;mSeR|xyj~ih4}74+TC8Ao z05u>)9hj?K14`T<50U*EP_kz{UoE`yT!vaMMq$-f9B8joxhd0t(45Yw7GgQdoM{o5 z+sscnMZh1U9w@@Il6AJGp8M#Twhz&7_*m+-XlW}?oE0IT1i<($eCfW3Th^k6b-Cb2 zFC(I3(^4wqvd}A5gzDh_($Oi?fs}#3QvFIg3VFhuPa0ST8Y`dyrDtkEZl2SC(TEH^ z0^5RXz>2((p$IFe7FyiRqUrLKtSD)_g(NFNvwHaR{;K*yj}27_NV!)4&)*|GPt2@l zXq-ZlnjobL*-yV%T4;@>i=}1#*z_jCQeSE!^S071oK{>@Edj}?fnS5Aps_h^{LU155(#V-8NK816R2mtqo&~a=msd zw^I0`VONm#CXib)#boMndJ|E0f2oPI8PZHNg<&TFN#3|6(CZB~So>0k0<1S&334>Q z#$y^aF4B4{x*jvqNYj5DpcZYp4+wI=0^bQ$faF(>cUxSmqIbY!v+?B1&BaM&hFh}n zrWGyhFr_G@)h^~1*N}R7`Pswy-)?Tt@9r+IuS#W;db0D?vJ_Whcv(rTk($ry ztA{FeX-^Rs^Ym~}wlWiw?_sd(z%6-T>@x zrmz<%U$Gqt94VW+-HiE)>Duj{sVYNm01Uo!HN=Tqs-|AiMI87VxKZ-x_|^Ev5DEBo zx-yj37fGpnsBOaJAivViGX`cbob1k`ZTT0`!xPyJJk#-~E?ZX%ClJP0Gnf#YJ+apY zdErR-qJQ3@2;ODeE1q{F9#YVli+z2j!32CKZztk~B9ahpnH^nFh|OHL0Lv?KRYVgW zMLF})#yrL^*k)V>%0R(D7oqyvh8C20 zf`Meau*?$-EYBT;zBYD&?eTC0xJ)0IKZ)Z+qHT>!J*bUCVs)zv;KY1lCKeqLSfvkC zuGf?4y;4{e9uz!b*wnRw`{V}t60jnBL0_I8VM@q`RVF|t)xr+Zam0BZ%pyWTgJrl2 z$GxUO#H9pEs}~l%hJy)IbtqUNC|D3l*L3Q+Q?@6EEjScRzDLmp%nt{gUp&^AD8po% z?9r5|m0~&iVzbHK%t~&u?<~SLxkD1|U3tQ5w6lu4sxJU*sGJt%R&ib%ZZ~sAMXd*M z!-W(WPJsM9)o&)e7)yRL>5)!vBFZ)`HIZeC)0}3B-sXRbiyKEX3JZIYDt=Am)(>e0m3qM=f+Mb{?{%z-cejmLv4N#1zs`uwE)Kw3Vl zzF^Se1opVI6f-;4%XyXbegp(C$)F^H+}-hc6O-9CaT;-T|7NVZz@4V+rwoBIyKL5Y z@mvf=5_lPOsZjq+?%G8Php2wD5@re3ii*Nkz4^8Y{7g>#H$I2Wdb8Pzv_NNT1jqV7 z)#KgNGGA2?83|g}2UH%n$nK(%*H9_uqO(RdDQ3AclA2e%tf;CjQZnpqL@=b;pK7|h zZ_2tTKt{la&_-!ZjiM>T2r|)BBm-thd`;|km7)-r9$ls=T>V9_*_EPj)ffF{Px?z& zez6yY%Blsf$iu*Fg}U81slJ->+339~Va1p`Q5zs1=!#f19pvtzB4jk{{k_W5k-=cD z_bN}t`bCm%BkeZptyXC}C?RS3TO(;Qu=H-=s!B6$-|p#PftrTOWGK4u2<#*jzX^&d z=S0c|@WwG)qgXm^gR^$27IhdkDDqUWfYbYYvTmNFQ_~uP9Q3$q2ry38DVDeq%BqHhfgW*3II`aas+kHVcd`=oc!jLltzyp#gtU0zmOUiRLU zyxb-SXqL&@0taXYGMaV3iA>Rz!K$$-HBjd${bmOgQihU~NvUY`E4t?^#Vc9L8cFWR z(nWuZ*(&=5xwoRA&EcVO?LC?f9X_09UxB!KQX32p!7Z|Gw7NymLmT$ETdi>6#9p&Ww*hY ze9_1IW>TkI$l-i@Qwpj8A@Rp{zH!-9BnK88`&V?eOkH-alm_p@u-d|~|1J!%!f<<{ zjIsnmZ$KLEXP1V!O0#fjs4JXf8)e=90RRC1|LlF+avM3a;IAP3aKet2C{lO3*NTwU za@f(+?q1tF`!L~ffJIQOQC-+|k*s;@INvaj=lsQfQUAdH!Xi;9ikBjaSy@bywmPD1 zldM7}fJ7qiDehn0$>8;~{gY=07ytAARr)Vszd1aHZw~HXCBG-|OD4XB!K-vEJ@xw8 zI8mue?$omj0gq(GgYa1KNAXJXHjc7X4=7X5_g_D|iu1%*iTI%IYoT47y&{dQ@${pc za`;m-{Qax@@{8U{cM}ut*G_xCh2dxCzHjI5f|_P(oUV0Z5}s(CNP69Fi&V0IzHNu# zu-*BcZQJ~gzK8kEAyLmsF9z~q2BQ9R48M%Ueed|ySSIrQKr^kQ)3?`WXWeJ!+f04S z;M+6%pZ@k$lKO*>ub*|h$Gx*RN7s|DepW-72O0cwd35&j>hPHveR332`*(?9poST| zJdV@X&-7R?EyCrak5lZcVVvl-JF-jdM+5yWyszhZXn87?GGICE5N#3K-~34NZZh*p zI)Az@n+`v>wTJbK4cFz@fq&-@NJLdTJ;J4lXG-&Tsgo)7wvs8?Sw1nPEn!M8pO{k9 z;qgo<$)g+f^)}Bkxg$)eSHFK3r>pa%!z~q*fEVeLu4iZ1rupzO5A+u@&*Ey91qk{# zBmL>Ldt{){Ph|TXton2TTNAzRt973;?=Ie%`?vo5RD1G%Pkf{~(*wvl65QvFedsI9XB^$y#VqBdhAS%Dq2Fg#vnGFQmgI2ov9 zM_AA*GSkWG9O!r}Wv0_77UTxW&4P}eSkQV|&{jKO)@(~UX_*I&KV=VrDv^7qhaXLBzM)@j|p?>3Q`NZLw9ku!unAhSfcJ<0H zt__bXVJ!X0zGav9`r9~=k<9!!a?s4e)zKrLvg+GtX6IMm_tTd5y-N8$D%NfKCOJEu zy-9Ev1>qjRYZDDN$bnwh#l+{4vkTWMa`i0um-ip8Kfk~FR6odu*YY2Z_x##vMtRtG zN}R5jzifCH8{Ba#tQLOIfl9r^A0wII3IoqB@PUhk0kc{!3+q*}u-;LZ!o${h4z1+Q zb`E`)(8O{Y9LQxO%yrPzMA#I&TlH|SHQy~>KYaq8cDEsR1L<@FwT50lh`rm+45R}W z$2=!-O#6!&-SV}%rAU>R{hm||4?m8ya-forYN!$wd7v|74`V$+b*G|dA~C{u@_x`e zvnu(r=LZFfGp|^$%`lF$RY06uj=t>q3J~W;pw~-r^9iPZuP=tf!(-z-8i9NC{Me2; zzWG(c5@hlC^|SNy8TV50sUK%q9O{>Ph4ZPnXHJU`#jN$mQ`kL=;p=BF56!mSVq1sl#McN0HKV@PIv#sn@JN)Tao9C)jbwDAM}Gb6q$H<*dL<5; zY(~?|G0S8?w43Hh%f;U8;;%pdeTm>#J);mezV9VB^=Gm6_Tt*n1LHpBnouhS37qz=2Pz}UVB1_8DjlN4TXJrjXn0G%> z7DEze2vmxJMdbO?buKn^DsgO>kt^-W{hHm!!U}vsGa`{HFfn9mAo>qNiqXS(q#|+e zXQMdJ1e|9*S_I$?gtQ~9K|%Pb=yhg*9JovuZ#HVWsEGgRos{waO|1_#{vu<7_|5z* z1H}H41YR!=Llt4P*)mw6DVJb_RV;TOWr8p!e4b-T0)^Mq3E)=ToMr0#f$NxGt>1rn zZ0+DPhq+r=>8lR&WJYc`I!tTv%(obw!R@f=VWKmv;lEYn>cbY`=BXcmVI8X>S(0)F zUdV8E2F}y*^JeY$$KdH8TJX&f?OE^}Q9uiEXA9Ei{65-0%q9L|$&bs<5&=D|<&Ojk z22tovVjcq6y@n70qZL7I1kFplLTjW zB<_~b&)oTOj*-Sl!dU8ud0-Nx*g&E*L82L#jZ%^vrInGUg;dHYplZ~fR$(E9Ske-r zVrOUvY^;I+B`TA^`2)?bd`|`eCK`!$%3?N1_)LPPprT6gR1+y126@UxHPz4h(RZM? zG+li^8t0jKuD*F{oQa_x+S4N9i_Sb&%Z=h->t3(RsG^GBN)Drqxr*u?4~RWl0X=6y zn0e$jlgPUdk%3wQs~@E5ytj;Qy=N=%op&_5XUl=AQ_S2ZMC&P_8e8r>K3Xcbz7>3L zxv6wgycE7hbG}L*MfoM5MR}Mr2gK-F=^Hkux{vbA?G47`e9f%>&q= zVK#e0ONDj2TuUb4AP}JJpai5;$TZDEH4qtu;~PxOAn{O0F&=4&K|m;x(ErlEtEe=b z3oTnooOE?$($w0Ju6}=a`DuM-VN$#h(kx7Zg*FS5py8Z(yAt13e|5DDj&BiB5r8CE zhEX7Z(F_EfafT5WETpo$J5YEJ5fhsO`b7A_% zK5ez|!1MK8tuIjc`MP*kz{OFNSP-%w-(eJWlh?mFNeYT_ljW!ix#{9ve6Q|QvL|d1 z?qrpV2>B?^^fxI8;}9mV1(;Ajm&l-yThcutqX&_y41^gKC6pt9iEVXTTumz7jeO+gU|SO~gY2>VUP%JYXlicip! zcxutgMoFCCjJ69Y%#F@~PL0)J0~n!vSPb|K;=CUyR1g;-AH%-l(4VJqYii%%pmUT| zUKTW2`-%~5CGDghu7Kxic9819%Id~z+}-D3o@UA{TotFoEn}^0>3}ODR6XLM_o9Qb z%#`VA!NZ;lnf@xUE&IZN*TT{2P%ri??-IAYb$*QHEH=CN(wX`Gz$FW}-L48J3s1Fx zS*J~LiZ4yCq2r!fvd@40`R}Wd3c=kD%84Npz4w)7Kw}`3gTZonxg*}g^WOZ3ekwq{ z-4lK$AVxwDq-ST6S>bUx_A~vozWpAM z7c$0&0VA#|I;-NdW%7YHlF5zQ@5?|&-nQw^UL5v)ba{6M&VW)68Sp9XH=XT5>-puD z?OPG`=MGG*CBDtaVTf`O^R*b1g`)xc3cNv6KW0C6mxVfnU-efT;ojk|4!F zMmrm%0rcqNf`*bvNRSd0#&?V}1EmpFKavD(;yxcHacFFR=|h^Su#93b^>t@Va}S-F zkq%ro+qTn$aZ#VmN~Xo5Q}T#hqcr#@j|)$TP@* z5z1P-etfD&oJ7@CjjXphiEk2I9c5Yzg6Eu#O!OEzA2b}3p~3oe`S)u!V920$8Zewy zfL0w?1|C$gz-WAo#ZI=rU(okakczaAw;76n%Ivqk8*2`2}g zcS^(*nIEdud<()s3Xe>#yYgZ)O7i1Fq7R)Aw>E2aNAW4sFYMG?l1SwiBeFQetT zK&Ek!!;1eTq=?i_G2`XoLJ&=aKy5W4X9;RjlpQ~Wkp#q&h&fFO%jjlmPBY}QC+rk|r z;VL(iK$WMLZ6ODKs*l?puKy!xioH&k4VEU8?~zL0s#zIw7S^3gvdh4~iArc`-Y*)O z%uAz(7>r3?S!5|^60B~g+wHMIn@{hRYt92=sm@I@5UpUs}cku!~&FJ0Vc zP2^0$*pFCCzBLfQNFXPIFxPrwWg?PDAcy)5_3D zKgdR(DB}|W(y|qs56+kiSwC>y0N@~QvnPG3yzF-!+?CvtY`BlQpSv-FI?A#OrD816B#ixFpWpSuq>K&TT#jSB#d>AP?P>KF{YMkK1 zIL_eX%R@7tn;a5yG)e_54>E9y)znLWc37@rF@s{+%DE}_7YUxe_hB3*J03pRVV*NHQ zNJ-_K^aX_X+U=>OM)46i6T1A-N+id{M3ps(j4_3hyx?fh#>G-`}3u z_GnB=BdjzsP&bJjnBplAa2NSm65pt3-&T(TIB{|#Bi|FD1XFfLSdjrLQuR9BJ(25| z0*JACu36cE{vT6z7i{M1?T=Hmxt$d}&Q7g8-maOuaRp4Ecy4AJ+Utn3j$)nx$Ai1a!2^zk4%Y$$Emj_l3DDr%giX1 z;d`<$BB%byCHg!w;)hZO*Rgo@z3)s16XzmsQ$NCHSB4pe^UR=K4^P|vJ#70nvq~F~ zgBC6sQN#-{jL6|~W4N)ynd{kQ2(&V~GyHHf+?${|J@G@wV96N+?`Z(o!>H}I`}7Ako# zSbCxc(#Jt9iG!O#;o>QvYA7Bi!PDOcb4q4yXEpSaR;UpFoT%nI zJ@de&_WZnlV?{;DmmfR=@C0M5SceG!NT$YEq3I-a-Qacz24w5)6*ax-muRUQLDebo zu_KD!y$fI;p~~i4vK_d146u$}Gp)>~Mx9i)G`@fJPp`zHA7>-GRx4Omnh|XKk!ek+ zv3)F-(3JhdSa>cS!?lTF?bfsl45$B*Kt*}j$2C%aXJ=p1Gg(vb{?B9&QgOhVD)gB|g{Xe0(J1uxkdl=`E%_cKfxDN;#Y9Az}?tM*;= zDb`YXNm9{Xq6n6*_49hKY`*QV16)Y_ARy zFdw8Y{ZxkX+z~;3f16hQtW1(6ZR{9-!xp%tOCcBeCVRoLp-HY``K`jYO1tcj9Oz7IL0|LhJWlMl`@U^lEPLu1GS=u{rnfKpr z)`hregP%-u!)`_H^pn#aC@hjW6L{V z;p-R7{$ZRupUWpqG#2Q3H`cmlB8~=mqD*z87bbQ~Kt1-Er=WGA`6AH^QbZ)lzNv@B z7s)s9heIt_E}7<9K=xI3uT;baFS|#zUL?U%soqp%bCjJ4#pDcUwdaH{EciQJN7k_5 zNACd!B;iubF2WqA@Dn)~7pUrIO})HKUuQ+=@8pI8IUH_}nF|GCFyWTe?8x^_{4N4g zqHiw`f(Ieg_s;Z9jp?C`j|f+r%M6Cb6oYLcJ;~A;5reVqgE9+L0#nOFQC29;yTu zUPve!B_Te$de%jBb{R`MEg)zhqOZ4A-zpk%e>O1Tz$LnY+_O2+tq41^lG}-ax@rv{ zm{kGNu8yrzqyZq#-mW+!oHFKm0CGVZfR-NO6i=Gt19O3sAnD)rK|zUlq(&%3egoI+ zrWjoC(BXoLFSJD?7B&a5t9L{4Hinz&{*_EU-+%q=(?i&g1EaED>I-M`#hhmP|Nis; zE`il`0IR5?LbZ-m`Su?V!+HHTcH=oTFW5GFf>&hVvy4|_#V zDJxAJb}JL2VA2If^LsSCP{4~!E0t>{|LRIR7$@Xi{SY42OBD1|p7v2QkPK*oMB$ywQGXJQJP_ys{R- zPr^3|-;i`1DK*e<8sl3cqjVf6+04To@#X<7HsNQ@kY5#_i92n((0Ui&D=lMTNSFaDoM)*SLeBIyupEK>+c3Rtg(<%O zaP{%}*Xs|TFaP%SqoBgtX!FC69WiwqRq%l^O`HS@uTqe} zp~SmgSwsE6osVlNObc>hW*}U!aJlBYLLCjPax`j;{i4Dt7#|~b|7dtD!t|%O^ps7q zuvJ=1lmH8nFqRu(EGiK250(yrXBRzEPeHT=f&>j~fgk}p;sl1YK#*Xa;w%s(Sc485 zD0~DL4IZveGmY+1y`^ZdQobFV3b4Y!Y$r%zYJlZZcy{5!Y<`&iC1YUXu$E);g^L?4 z!%W{rU!Bnq^KUd-)OJa1u4UYT%e#EK_E04ol(gU=Hs6->M};cEk}s~=3SRg9%tvej zG1{OpmWJYR8uBU;2c6Z40=9qWLJrJxlaK?5nrN{G>#_(ClagApbi{_yQrU2-76}$I z^o0ZqR|S+WsjU5Lr6_q)jT+{jAgsX>%tAj}k_o+O%tmousdQ}`uR%4{ZW^rzB{#cV z3v$RBA)#C|G)VnE7}iW&727&u?2|M|s5o!pq`{wOa^T}aQ)wHA z;|U~K*mz13Fk_WRRo|vjNp%SFT40&V4qCaJ38>x^rlPGF=26k^Y)?q7jmCL4&TXKy ziKm7(a>WUn>C#nv*O>u$;8MsTfM~r|nj>dM+4h!Avk0=~nw?{E&CDIvGIAj2yHPY5 z2VV#Noj-7`q#bAuWxlS=E7+`-O~iRtpcdIq=gag=rfb7|nVP*{vU`vy1I2A76)A-r z4wYvLxI9)y=|32M?8iL1QTxB-Stdmq2U_^)i1+k5HB*=`W5ubs(N{K7LLk*ug}Og% zz-I4fjwYTAfv6UUy0|vVZZK|=BiXu8B)1;(UcIuhWa6ik ziSs3}waVw#vjtB?$3t|uyY*q!?Zxz#e1&m!Rw$x(#&y!D+v^ozhwi4 zRkumNu$Xg8|NKO@da`G~$~a8zfsqoDJTzNj}Z{r3T$$L*OlxU{_G7m<=R5e*pso zV@(@eyb1}{P%<`e@FPF-(aA2vn*o*dN~KF^M!?C}Oxpv##YFm2$c)X{0{NyFmr0}; zkVLB$A1KoU1J{a%1hAnGhXfNRtb}0P-dH}Uhc(tbS zQT1D1;_FLDW3nguc?LyRL-`;kJ%^yanGA&K)MNtx$___?if*z|S>eEnJ#)RG%I-)r z?FeHLDwP#|mrB?_xhCIIFwKA5WIu^s+3hHY(zAdI6eC(b13kTkhKgxE9QvML-CIyI z&ETPE)da(*`jvE8gb_`xbWxNS7CId(Kt%rx)q3Hrsjy3f%q)XCa7BV$ZZr}MGHc0o zlZ(BcZO+u7%-*iFX0koK*k*>4ZfVVL@PR@kc*y&J1WS&`C|kgebko8qT4d_543)3N zRW?fE{ALvA7<<6Zuo6GC*T$aE>@q^YC5f7-j%XxE4QygGcu12N2^h{IMgo-v@jVwT z=(CBr-e{!AMj9M7cFWzGoa+u3$p4-CC<7mj@Yyy^-`Yt$PJEoDf#62Aue9maCN02! z1Q{kCk^-yx*+Tu2K^p6SXcg>HmwMEiDitxSXBR3rB$|N+UTCZ!_nEFBh?!Ls7&rPZ zVhD;PvMN?+(>DW7SOYl&N{!6u^jPFtys&p4&suF8J>jgP9H(w_;cnaBp)CIl2%&w( z3^*Y@%N+Ei#cfm?0s~GXyh-hcWCqnEP6?7rBrQE!j+qK62WNKFQKFVTBf_59l_YoH`TviSVRG#J#T4XZExL|S>4g@xq z^DSi`LyWZKRDDlil(=0XMwKLSQnU=Uoi>GyE*B>18+@mePM&@$x}6^UP`3J%w(R{> zJg4{&C!q1p#m*hLT%K=8F3%OZ(J%L8{$SncuUcN|^>w5Fd9wvk&~ES^5XIy6SG&RO z8SSrfVy6q@ER`~h%`As7h&+OvCz0euz(HYP3t~8=8q1>Xt`>Rqx6l-KB(ues2x~us zN>4?=$gK6QU=wL3vpf~B9AyXulwe8VF%ygdVGya8C>8AicB+VriSn?|*nR>RUq=)5 znuQONVWN#?B#79|6`BwseU!zNI5U*G+J0H($B?g@mnyKK)qpHxnb_7^@)7J`fBsir z4*vS{zxgJ|*cgV7Xtjn}{WU8?uYOhwr_=Y>qo2v#Z)2Gjch7{*g-nH}i{F0HWYG~* zJxvhDwHlN9yBgEp0z{hi$v*Fj`k`eF!UfsKC`uK=jrrCtL-IC`G7v{)>iPcbXP=G8 z@j=~-k8voY;@N%)amK_4Gq;0a2b?FV1=C|8GdVW10p2Tsbv4vzXJWO6x%Es8(|+S^ z%S2m2n7xW}pJ%7Dl=;Kd^n8h_>A8*qnZOv`DDEea!SMCACWFBa#DKC3+2^FGIxWkN z_fXE8jcno}!_4fJ!#uMihM93wG0Kay#$}&_Wbz%|n4cmLUtzcxGs7J?ZmvtP+icF% zbl5wj8kJZTAC%*l0e#W<6Pk0V+^$WN?(EB2f_YIq_x0$-oXb zmjqj+N_WJixPw5Un)uu#!VBuLdYne+-{JUt`~*up|h;_&qShAXN< zI{R-?lcd2icQs!J1zaFPd9yVDWnY=s&RS68TgbAR$EpQAp13Vs1h-@XTCf@HP9vRh z5^J7Qop@NN>4+U6)ekx8a6!7{0%Qa>E?_8ejb2n>UMz6=z~I?d zaRB>;MDZmOFk}QN5f)Q%2z}x*j7f$B3d>1|w1F%HNrHwI*+>!=zpWkxq5)!(zA-dmB~@=yhv!KBUHXV2~?#TsWI>)RB9^C z!1`^h22k&Y3m`bGxL}!7AueFpBwrFRqy$2Q^mDn$#|oV2ix2w-QJd>50ou$i#%eeW)I=GxdH=8#=SbiNDC zf4HJ~ZJi#+>z@;+Rc%Q-M&>zgJes|F8R{Wjyp=)P?m@hG@nvSb0~cF^iu{`lX(!iD zfG96f8`8e)l399!AussfpC-|CTCdWAdQ!#(8Xv*8ao~Ge397Q@+fEpvedOxzzx{k| ze?;tck7S~Leih@iK^iz@Rx=6KJ53OwOwtj`4^9Hvd-?KoHdSPu&~UD~R%-L3e4UJC z@@cRdbgv}AV_it~hjmhR*g#t5&qtl8xYE|cqN)cN!kvv#eSCVvcX3srfENC3Kk|Zn zpawrxT~zuReV+~5t#N?H6sZ|jo@Sh8xcu73=!77zY)*JOE9!(bk)22hfb#`Gn<)sS zm~&iI9s$&nDK8b;i*z4*f& z=p}5>N_B`2V6%#AEu{MJO%X+yBnJTq3aHBFbiTVLX{>HSbd$~Wc! zD(b+{FqlUuNvW;nN`-P=8q!PM;nwpN>lZU#LX_|-4#np>S)`OEAms~+haQ*_O zAjIgE7c36J<)R5jv^`n7yW`a8g>H9;+d2&sD4v^Mj~1OC_0>c0EY0ck=wX~5=Jl4b zvm%ts>Cu;iucmrhC|!w|)xy|1aBggR&k}!5u5%svOf4@p1sU66^=8_$H6S|m{l)Dsxo-MTI)nvNt{pWh7f-?V5lzbG-U$Wzl#J6 zsH1~{MiNJnxu83vlQk<((1y~2a;DI<7DgSAPeJ0O63blK;Ni=%Gg_L+EV8(;rjtAk)6w=MyuijadEv`;w#+c;5(y&2qb47G=@5t4>Xx?eMXl|J- zgDC;ZmTZZaoq0uPKFPVAYnQ9g=#mi^nh}&{CdAo-wrZ_5miwW)#a)7xaVNUPU0$x; zuTjM(yM^)jk%WJkG>*d^Xg*=$)xOphO|S#aq0F7=P~Uu_KBI%91;zR@a_Z-|+l?sd z=f}~GVtp+{>gRX7qx^DbH}*MXLE&7hhrO1x}4jql5o4}50!ky zja`mP7iC8eW%e&xeQqyn;YLs2afuwqL9-^&PaMW#XS#H3GlIx6O&j1bKFXKIjbQa) z^G^7Vn5rmqg7QH$fIcOkwK}VMuZ4RrOTn=rDb%?;YEEKvX%*udx!R~}q?G(;OnxV) z<&1Ex^%ngmEmY=jClg~4wHC_rw^K5I5w#Wy=M$XiPSh&x8*HnFv_-6I5h@J|Mf&6i ztb#>~dO(RXgj)@-_>iWR<0{IMCWeyvX(1{o`JDu+sVvS%jP#>f$5skSx-&Dvf$Jjv znZ;PQc-zi9*fyLv#4WG)j&>k%sE|V;9>&E4?Lbwe-ZILK^M)3u;5-vR>Z}HAGxQ1u zZ1a+hD>&>{7KW&$zUrgY8a23vXll-WvN_G5*C3OC8%4aueY@>p+}PEgvdte6RCGT( ze%P)P-1wmyRq*ewyxned=O9mfoV}Ahd;leWa-&y0804FHMK)DDEDW$29jGqXBbVm<)^7>hG-rqp> zCPCxMURW|>HMJvX4+?B-E)c%gEtjM=5dKZu{R~{(e)=dJpU<6yejMM1GP(Vf$t2T{ z`5K#}BPh1=Dw3g|)z|Wg!!t9zWv>|A7hW;s`1s1TL8XMT^e6k4rGo2kG8_jO35;|I z1`<{Jfds1`#9n3l5VkY7(4ue7tLUU+TKRhNc{{SI)RMdJGVx_#iEL_)E1l2H)Rwi< zSdnB@XF`Od46q9e;?e23NyAyX8dtGavs41I!1Rtka)N0pS@C6{lN#H6%}9#`Nq3eb zkaxB@!J>Xn=ytg($Z0}`QGR*<;rjFYt54K1H@pw7oS5yVprYi~&Z6&1X4!7cq58hd zD!AR)*A#o$ZsZG_2rz!pldr^;3_O3X@4|uWa&5c1rR#FdWIwfkmk+@82?LMgRA077 zCss^e_QcWYaoIzm9IQeXDaNP}wXq8fD`#J5wmWTK$OHkmEo#0vl7x$TY9LwOpJ)`T zFUdvA6J;5yVJu4MF6#qUf@r=X^LQ>;KhHXfv>f#dF&oO~TX^8r5;cmE@>ndzyb#W>&w+>tJS%37)lSAt~H2_pk2D zFM8z_$UEU$-m?xl&d%Kh73WytIZ3nSMhn$JR6yWl~SAEqTkX~Tw8ELS_P^471N?&;T78*rOG)u zH`?@1_AR^W*Wbp0jL^yC^e&q9iZjB;x7p%yy`s3>($hil@vW~IUE#+&E`s`N+k`-L z3IHe^c_+u`28EV#0SLlt12wAMuuG?RuKL`xj2+OF8^;wKaCVSQucj+Ft-dN)eISzK zAS5LJyebSre<~2qYuPTGYw))Z7Y=w$mX~0^kL z5@ENS1o4q3h795(O${5w*8=ycS*i=nwZV}zUPb>~c1v)V5=P~WZ$`G=cR8Bv>wMQ4 z`Zl@<;{efN@=e>B;_J&?c)BE>E(zXCqV4Ror%Pfb^iD9B#QKV&J1>d4NPy~#VvWj# z1KGe&U77CHH_c{LG-oarJEHi@7Z^yWGL@`;17Gbl6{B#4e-oRJ1+{X59;EmnA z77ez$*BSZ3!FpG?dz+Q>+RWXX#hEi-^2pr=-0>>Lox^Q> zrxi?ghQP2NCcMyvEj6{mkh7b8;JTvLo7BFF_$KguWL7A{2a_%^n%|`9g=)s%+98%1 zJeKgTqR(dylC4Ty$d1M&Sjd*pBv|(&-y5+lBBmV*2~ycnlx@#$_36xfj|*I)qz8Wb z6jSP(xT0K;Qsu?bV6Ilm8sXvk1rrYdj%9H+VJA&2ln(+`I*?R$e&FBv15{CR(n4xx zf?-@FSQrxmX${fUn0BHXd3NE+z{`tL>ueSBZ~Qw{SxOSHzAJveMM(CQ%93K8nipE0 zGLA#j=iHy0GsQO1bk3T=MHy72W;>()wsw@Dz^Z;Wj)Di_N1`t?Z?s#vTt!t))N<)!FY!1t2rr%_p#$ z+`oR-J3Krt>;~X2IxoZZ$2Y%9csYy5ub-V4HNC8z;k5YFkFzWe^-I0OB2&QFBu)%Zmd@im-csc37G%iWw9uT>iaurD-+KsF@yz zMW)9}m~s}7S;Q1PF*q|*@4QGevfF=rX6h?0W_bM5D{;`IF`8bE+0!;JUo5lb8k0}S zQyr&w{_-IC^pGkP309pEyG>Z3GYNDa6roZhvYp{sDmWy=AP<{AFkYvOLsozi3osZ2qrL7}V(P(TN2I8bd zHd3fw-!$z`Ut}oj?M~SS+HsYw0gonb{vELw=qvnAB^jT^m(Sj7ogG}@*$G$^`qH)A=d9FHUdGlr=q%5RHBu+8B5xpcq3Ea6T>{R4o)Gp_8I5dIL`zy zxm3tRf$^^N6HeRSitjoz01sU1ciXiTA6KYUvCHNFGfMPPcd45ExY(%ZM373Czf-KY zV`uH_Rr~84wb{kxMwHmf@vlGstA3(Q*U1h0zY%ALJDN<>pYK5vUhMg1#1YxOk9!Fl z+%W8i=erM0<)%qw$3||NMA_H4*RElp1}j&@%lho+r0zoGJJT*K(Gexw2%@Yzjgdn( z`nqbncI~1B+B=?jb`Wl!!VfqVO>Ca2S!S4N@xcK`50uqE84waXQI0D07sT)CbLPgc3!=HqHT~kXc;3gA&CB_M;UISr_ z0nj{kPaMJ@plE5uL=2$IY8e#K5%1!Ab*GXA@BY&cuVIG=F(|mj{=(*Zai}-f=*C)8 zZWB_dvQa$fi1!PPbDuVL4IAq_JMR{#qX!+zAXTlR2{bneE}w9WNjSY`4Vo1g$^_xv z{E+DJQ!z~9P;^BW7YxPxYr<8`C&OBv=xsOX?IKHZmu6uH*sw&md4=4C-Q*l?F^*5# zElGE@Tycw$L?)B*Tl}_phmrALn;<}Q`))CgS}th#CZ;htH(%;*Gtq9^pyfgigv0Gd z?`db7AqT?#7NZAhh(_^I5t$k1z-6J^a1V*1O9Nn7yk6P+p|IA?_kJkaI4^s}1b;8Q zVoQHi^n@rwyQ_Y(Z@G4Sp~2*bc-|Z7+=fkeZ?HRL(QmPP!&Tee8!#Q(SFSEG6ZL;& zXlLjrX$GZ_mX(*tF5bi$ro2Fp&IG1cA0BGn)qoaAQyq2Q?!29rlcSerXPa71rq{5v zjm#g`#-@>0ml_$3MWHbpj)f7pY2ajns_99BmE+PfX~0mj3=LEm4;048L4)Qe3AjsA zzmKXtNCP@CHFeexayOYy)0OpPBuu(+UkNxMAV3b(5E{m(W931H_CUxm&OsW8heFTW z_eOpksx0w6@whSKtwzh1i766~AAf|jRynv+`qLeXXh>OLsH_nhsLAB^2fki5eL8US zq_LVZXPa%hGZC$9P;s_28myuJ4R=|Ppv@jCHo_^-C)+$x5h@KqeK#^AX{G&CGhAF~ zT8~uE0~Odx1Er}JrE`&h*&7YTqIuRK4ly7F5s`m$KtRg5`#s(H&ag_$InTdr2@-rXJk&aqmIybF+xYE232EEm`a75lIm=A?T124 z%=`NIf>>t>z7X@KNJPNiiDFXvZ7EE}_c<>vIC1rlk6vL<1%dGiFBXkPEM?(5#;p_~ z=!tsi+qITKs#h6h%c0(ti=KH;Ja+CZs&|(n{NvuDG)vMAk>k8Fq-&3D;bBEhZ}N#& zB%@6Dk=C`K^tmttm~Zr{fdjFpH%HnZ?_}}-n0T=o>fQ47gQ+R;4G->5Hc@X@9KmmM zd-z9gJnS9BT+b+TeIIc_Y7z@V0{DFHYo`Kp(whEq`Sahe*XkrLL#G?FGp-FVT=NAR zeW8L=+acvi)kCz`l{r=m>&ol53+B;p8vb5FDK1vWT z=E?#B+b=52JWpQ;sqgL^u-@JK*~t9n*vvM>$XoSrA14DVV1PiV%q<1TXt~3*(KBC` z5q^)ceMW5T%q{3kH!#8(t%Nozc$^06PWqLG0x0B-3WO%^DFPCSssH}&z(G~TIxtgd!qO9<>`yU&@i<;PO_K&_2LzzPHs39se zjzpGG9POu>Kg3u+N#ehzNI%jVD%S)DdTuHKyA;agN;~UThfXmCrfJgm!x$Xi!2=uT z#5O;mv1!zmySwy)07yE7NTWH4X^teH5}NvS^l}@)n8wqWk6t;`Ya!x8%NA+{rz&L_Do@AR9Y1URNOQP zR4P$tm;t7NRNgJ zL!{M!Gx?`Js@o_HA}*MT6qb_ zd>jlHyH49Rt+lZM!_^_6fU16W(lnvS4v|G48A!o^dKJ(e#^hQ|2_0f6eXXiyvA9)g zEL4)jNh+YK3p^T4C0t~2pb{B*%Ek*$58|gH(RYODVPk>@rAR{=1dyR(FfibuMjyPn z7y(g?=vccsLA!ePv(k5+m<&jp0DJk(4|7aCd>W0QJNa?e%%M>~G?3?rkK!Sy8JxE+bd8_y)2HGzhus8xW{4Vye0vcb56cQwJ z<94{9y=R*jk`-@2fTw`OIblc(8O12}NaBt$G=ImnBjvoWNxFimAcKHLHWP6X2(~0P zon3JO<13YxD7a&870Pc#g7~D_?WW*wUjc<_Y5;0f46RZ(x2}n`az5#F)!-O)I<((n zcXT>l&i0*ZkoNlHqmbCtR0e4i1G5Zb<=`YFSPgX&5=`)ivuz;CTS(hBWYY^0Fm%%k z5;R;aFGWbOuPlfyg?YHHcE%E+g*5j@LJMtgZJY<{9^^EF(Ch@?uk50dkWqF)IZH{P z@)T^FMS>ZZ0&ct#6qO1`z zy;n%I2JLDmy?81uY7BetNsEe+M@p*u|H0LCC&e+WW`s)XKs!OA${tBnRwXVq3aN!{ zn)b7Si&&x%6e(o8?mMw*-?x|sQuHAT$X4+VwkPCA9w1ixLe0qB~{W$&faQ)#iM6u)mPMX%jXq7L9 zt1L9r)s-J-{+e04zUfL-Rg7`%CmwzpD=Oh^!&?JphJ}%MC~FiD`@{>J1q|2BZI~;2 zI%sLdjKsn3+I-Gx;|32gYJb~LruDhm(>6rMm$oDRXjn6cr9?tyl_t?_U@D~R1V3Rk zdJ;K&9?4c_Q<`|iz4$os^hwFZ+dH_o>ha=@=Od)$ zxKnCfyy5&Vn%Py$kJsm|mB72d{#xTW-3;Dn7G<3Mj&|pWtl&)>m@O|O9B#iN=eomK z~9UeSM_fZjeVzdKd4kZl4NJ|kyBJ{t1|0ngsK5VCiDTxt`_f`luKD3+O6(iLZ ztB8~Tl_fN;7aV2b;311(@Oz;9xVSr0QbtCU4UI$zn_GjJuG4k3rG6}n9!~!wkwO~? zNz_mVLRvXGsM#%xn7m<0E9Zw-OGxAzSV(AfG^NRgznOyt6G4u&!e+MR8J2JRE=pM@ z(VY8^fpYVpVT>d~`Omrrw_w}CH5u`$Fu1tc63S4O(sz#(-+~&Hip{*3qe3W0iiXg+ z@@ZF8f8Lg*=GQ08LZdtzrU`!9vz2BoB?e!CF=ZXhF)O1ejp~y;QYgP6+MvMMSsJxa zpfSZZiD4eFROF6N!=)LgMRVHgjqS44xTn#v$O1joC{k&p_I-&x!Klq5(KJ z!J!IjiD~Z4Fn;~v+A%a!FeEn8P);mRep zKgMOW%mFO1rB+FMcXkNUJ(KUEPH?o?F$+P7W(G!Yccg*kZe(51D^)2j)r$(1qJ}bY zk)U`&4+>~@RZ%|B^QyRt8Uwv*d!V#iY}9RN2f{PqUMToEtzNmmspIOouDJ`O!YfY7 zFco}pdQ=ud!LJ7Yu|yrWfg;O%nlf6cXfIFo6h8@$-RUOM(oIkr3R=w8xaO(_LiL2b zwMS`U>UcDOHdRj;LYvaJ?R=AL6j?X8EmNV0Fq^GNHBF4NVuu@(4&24$L4dB`eVx{f zEUXv|7Ikc55Qf&Pbu#<-@&we|^ijme% zRnUB}*y#H46)C#De83NP*PrfhKi@sHvM!F(trY9Ouw%BV*dz4c%7M80%)5oDO!tJ* zTi(Nq&jBMwqjP?I5B@)%gnIL4`B8(HJ$v)(50eRdLIj;$@NZAH=h^GvC3VEZSePn) z!N076gQFhs|Kfsy%EGoi_mOFqa#7UnQiJ?c5_*MAQzfBG*l0KzeHxrJA@A#CbP1Pwn4S&1vO|u}lYI( zdA{_5yJ8+!!PDLF6wyjNc{O~8lfCC?mb8-p2O=AT@RONO@ivvlUBDXD(NgO<3*oGKfcvX^P|RS zfju)rD{6>cyA=HlY)iBSWCNKG2Ysqew^q_S8+yxZt6KaU`|)i6v1=>#d*Tn4{r*jG zG7w#`?62Xss1MP!{q7iZ`0q0K4BFs5zqk?$GV#~(rLgNK{(7#SG9gX<`6?>+5F_G& znLjIc8L^!fMM>~RMCYCNx|nP(F&E*jPV~f#{~LZ2A_Ak!2UlGIPmNXabAlgr8m)n5h6j~bGZ{?kak~kmwH@cu9kbOiu3y@U8=n?40Y3P1 zb#buBe#ILRL}lV2&9AT>Ws^}03Ji9 zq)b?*-9ogZksXjYpErG4wucSAXR^Terca~wYsXv37<<#FJ$$cVwa#((yqKx*!5^y& zt3`GN-iV+n5ms-y%_Vn$RRXNu48bBlOjtda2CGA`yuVghh1!0PuJJEfusQ?_e;=?~ z2L(@$iMLVUQNre}KWd%d!a!_GyqGHVlrX!C;@Z_SX)B8~sr> z6834yA2DAwp)fAW`)b7QgaUH#G2zNbnZ){}uIz}cte zoa6`;7Q>RXO}34qMQ3;3h@dJHMT_n{WeCCnILmpn3wG~*uyP^|D|g7gy{GVKfV-?K z>qNObw)9;;QL06UcixDgDiaI)^o~AYVL5MxVEP^=7G6oi!XcQrUpE%6?YW*z^Hz`D zO^|SR{Kj`435!nSyb(cFA`+@Y@L@h&H0JZBPrEnn&O>^-0a;0JCh8D8vtR8^BZI*gI4-?Iq;=Z@}s%m^c92c}-3a69(af=Y-FjURHauyXmbiw7{lpJ0rPO z6UIDQd%9|ZsDF_E3eWbQdL>+nIn@-x8l-tYh1+Nex58mWyqUgiOwD519dlSzzzmx8 zSo~7RjH;Rhsl?9hm0_KX+BUr=HrNaL23w_CC@BMJxiAQMDQOg6{-W`2jj9AZ8MSSn z&5D_N9+ky~8oAMVgYT{RHFAN+K#r@NXCq#PJzFw28n@9v2+9Q~e=h4VsakVtPz|M| zm#BiRvO9;X5>*X??e-2|s95&=1#9TQ-G;qG)-00UJyyWzc);BKya9DaGtKWuh+c}) zI9;G&NnhVh-+cMK**NpNbF45$K>Y>Tum1x80RR8&J?(PaIFhfz@~@;S)|YMBS%I$G~9rG{Q_qLjQD#kA6Pq2FxUq0YrVv$!9LVJ=cH4x0g{&=O3?*Mx)d5`S&O9^RIp&3peq({N?84{JVFPBLzLB zV*QCf`y`|Bdp3W*6QCufPio{eT#6rk8VVLn&QByz`Qc;Yi!aD$*VE6^a4vr$3xQ{R zG8*ZzYAi**%t~A+u(OJr{QCFb{(0m3?5Xl+4d#VZHICzHiPzOLSvh_D+FQBdQa}UX zE6*(mA72qHRDt`M21$U0E=+ zjO8b-s$CtOof>pbsf)MY$4ce=nZ=aTM>NfhhMX+%bS0k#Vt9Y(xc2D4IN(`^iT22d1IBTkSl|}N zk>~ne;;UZ<&VRaoLSknb5mzj2hl``bnT$q`8xbdD+)3g@s-adIJy|S>Cy$N629%-c zD3*urZgqOCI}}gT^QqRL3nyf~b|L9cpWEPuK^OT^oaO*V?m_`IkvF;AGjUpXG-<~k z3m-|eB%w#{IrD`y7XNDoSt9;?2gK{eQneY(V`?6fai?4$SieQZ^nB8vV%oSYtM}Lr z)`%7vU1M~PDa?Rb&Y2!tecqd=FExsA`skho>nAOFXR##u)TI-%bNz7 z9~Os9o`0C13ZFd2UH^~?lmhagCm7_X#+KjJz@+`E zwMu{waNNS}@yYDAGv=U~Qs z?r|F;TgM|od_eAmd0wTc3=Fkh-$?zFM;4mL6<=yj>S9you^TrLK< zvu?ZUctw}1d-2($u^f9h%CG5M>?A5w;m9dTgQ3aE_nnoKPyeEzm-j@YSFdqUG4c4% zQ3WOP#}#qsB>G4eBvN*Y81VC2z$cF+JaVE-Dn=81n2#^C#Hf3Io{nbY6%{^tx?C{E zTcOb6zV7)d6j}zam!IVDpXAn`q>jy%`2U%7a_R^E>`E4Jw!S*LxG1_lr|G8|xthYOqwiE0lEqIdSxNy-fAg3xWr<$B z=aVe_pUzRb$g+QH7u!wGiw%|rF&SmTqnXn0cklZyc)r`EWK6~*l@Xjx|5&BnHtwTr zykaqksf`4d2l1ddJyuLi{r!xwhro>H-&4XZAAPkDKq}gB_rXZ^in>ZdN1ma{mY@-C5x=tD( zK9yON=z!PZL2nXRS_S$Rfuzl#%NNl8MW5Kf^?gvH*g;suY+>a=s|H%>R_n@GS7;<- z!@B^p(~Rg}|MUa>EYn^gee{&E}7+$i6-{=7AVqY>{?vc)Q1h7)Vb2yPcb8+Mc$w(c~8HCp)SC z0E!9L@4x-?t__INF^V4dU%>J@#>nJlX=+JcL{IL5oNAr6l<#m*jo>RW(^l?oL+PXb~q>pRg zeXqpL8duVB_muHn5ZpOsyhEC}T)T)zet6LxJtzo-)s zYk29=h=uJ{oXjGYaCy7I^T)5zCb4*}BE4D~tJ`h9ym9e`L~P*PtzgN07W7mZ9q z{nkqJEMhnwpCQe|D~M;y0#nUNww2DfW^qhs{-%mGG}#8Xd$A34{k#*E^3+&APgw)) z^!+YjMU}$Xbp=pJUay7Oh+4{E9kFHPqE!sRtF7j-U`>6Hv15f#UhBZZkv`ww-%eK7jY>5%1%M$$tX?j?o^A-?3%3J zu!Z_;Z-o8tQK1BBZ%OJFm^~}ULD5f@8h(*e_UsIt8$WwFcCAibsRM90pG)@VDbZ8`bunHjv6wMAz8px`ik$}Zv z0VfPrf#Oo%q$roxbHdB%82hK|?$9_@4N)mDHTEW36vDAubD9Z#ExpppqPe;>+E;#Z zk$K(RvHc|*k0*8hF7|IZ+_UQ8RzEI_cLprxPPX-8M`rh{uWWWqOaom8wA8R+XtK-X zJ>ebaR%uJ}kaMeckqu-b?-Y_-wTr~BSrf?X<8 z<*6443lf&;Vi!4H3nL6xO~wje;9{wsI?oJCTY@UpR*~wY`s+2?SV31o?NAx-y7h`l zX`Xmn0nMK#cil3iJelKdh7LC)x}tK?FvV2nwBhkEYr-(VLRtMR;38uq-uy&`5YT)R zv4B^c+STlA3Lq6>n9qGkd}lvB8w>Y0I;c!m;hi=XSqlxi5lAr%1b~Ck*$wX3Mj#5a z8)I9VI`knz;1pW!QCotvJ#k>GJP;y^u6^pcz)o2Rw1G8$1e!n^(Koovt08LRxVkZq zawWT=}Z=-I+TeF#@FakL({Rn`(B%A&AP*O|6!NOIfJ2ViXbiytJ%tqcdW$-^0|E-Oss*prSB1+csv3rLA!5GSeLQ9 zsRi|?|8#6PzMn{=m8Q|6G=0Ci8?5fpp6X(N+1N&ng6>K)xSiy=w_8aa07G1%eRps~ z2_Gw8Xt(6{Mm@87iJS7XyVW`pGw`I4^y${o5Xm5 zvxv;uXEbcsDHLvm$4Mcly#Gu6xo>Rma!`#?`e=S~V%Pk{IxejcWt9=~JBTeSBV?=hB_VlZi)7=^ z7oa8_uo2oNIM;1C$nLhnG#uN{#7c zyGgFSKDQ;VGvQNiRJLWfZ8wAa{kQ+wz%(=oi{14fN=3kUn%B0j5doPj)t;D_+9>LW z4Y5$3&CMola-0R>V4A~w0XlfFxYgGKI^NF9%}s6~+{Gj))uUSZ;>NrEsN zbN&Q4kJn0t0Y~$#gbyf<*9ubt@f=xUg6X#w0@YkZtJg89Y+W>Dkhp;rrY@c!k+zvZdt7l9BDPkkc?>Nvt&)key|) zvL@+AYa=U6Bry5Ao*ij!iBGC3>tE@dujCv0g_QEs)3NGZs9(q^&wrnuUSwvrM56u! zGTruH;(AMw$ZWHW{(N&(`vmGv9y`GaIk<5Z62yB&XbOoH2SEyn6()#2f^dC55r_L= z1HjO<)$J-){yPiif;diD3=yGf0DbaxXRUuv`>qdGA<(zQ`T5kQF;tHUsJlqKFp)R? z3htlJsk@ZH-22#bjasgTRiYaEO8?(p8D4DeA$AuT3!zmzZm`D)&&}(ZxXwAix2_Kg z%(eje`qvG3Lz8styUGSo4!=Z$WN0XlNtjYX#%YkMYej+P&0AYmAgdb?5WZq_N0v*G zK;+MP+5Um^A$(*H=_@pLTwffWA@qh$n(x+aK?+4&(FZ|?m(pp6O0ye{lPYTh6e_kt z=Y}9l!)}olG0rQKjaAk4~Z|-~&kdQmCRE^coG;lcq z<)m0;Z6LN+;*7)CY9(Qq*nc4h`!DedU)b?d9GiOKpbZYKOBM3K1PEX|R;#Itx!B-H zW2=6ahE|@QnE8p^Rh!+zh9+&e@A_IVG-ev_Y2JiHD!iqjd!52-)g{_wDflD?_cH6* za59kxO%6sTucv~MW+XKwB-@ZT0=)PH?0IB_z3*iM3brE?2P=|{Oq{ZbL6##n_rReT zRB?64b1U202*url>$ZqQ%F4tC&BZQe7cz-jEgc*%iST@2WD08(Qe)@USvLw7(gEBn znQmU|bl?C=$92H8=}hf)5X~j$%uDRpc#IidY;pb5@OInKkO>ChN~da7zQ$Jh_TAQnacZEymN5qBQ5ESIhhD>)YaAS} z9h|VD=ki`EiB$}v5Rb@%7doCHq+6v#uH%oqE}Fz-{??lMdJ$M4-?W*^hlSl;G_(c} zvb}Vt@Q~f@K6nttE-wrmj{GG9-z(G2T%af3ROs` z*xn!yvHh)~k_=SBy5aHO#|`s}+vnkx$E-v=e9%^_7<3KLioey*64`!=%(K2aQZcfx z-&}vv*V-&@94CR;&=6x_W4%_h7gEl-X2sXg{Hp^iI9(|}UF@8@)}5U1+B?>-xkpK3X%pd#{hA1Q;_Yv+%Y!2(D~%HV$M zk9JEL?BH^!IVjrhXO%_xA@uxY4zgXR-Pe^Yd@pDNmNB(LxQ=MZ(S`>r!D+|IbbhhW zH607RA`|w%tSD5`kZ*@bWwUN9Ty!q$tu3f*9KK%ru-Z^om{|x)iL=7>v?3u6u3AxO zrPSC>G1`=h0YaQtcB4X?P^go$8>-dwnndDkeh_fn&|9(S>gayP*hAn(4`(Xb>QYDr z&Z1{|395S4c+3~ZpeAG_{@mV{m6uPye7wDR_kIKWuz(%}xbJhs<&azVR=8$9^Bx9R z*g#%8%e9KP+nI8aU}3`>S4_AA%8Tm%xTte`@@q&bXe%x}%6J>zT0-0*NSdmCr5yb< z*&EenuALo_gr3}{!oorux!6KUv~WTB*H-ArXOG0O7$U6PsJ%Idr|uxybF#cL7A_@a zu#lk%nd)b~l^ZRIx(k^#fzsu8-=@W{)$gz3*Xog{74=r?d&Q%M%!gKK9m^WNtlZcM zne1gBJ`zE~+!6c8(F^>oYHR?RKxV%W$#xJV>k8n4=DgsLKtafyq<2B(uq5PoNI%cOe5>nxptJ^Z| z3p1Ve-GO7%+4&#Dos0dMd6)CunmaqwAB?v_$~O(}XdtHlC-UTcWPz(n2MU0>p;MFq za^xBa6ku7hY~8-e{G^6y?Lc`8#HOfUKSOKj_1MkuAmPaU_Iv2TQ$JPB&bB=D#qy&w z##fq0edR?%DuM7%0#+t{W2fo z-jeIEFX>%ClIxmtjJiodGl|;Bq|(LHCA}D#qqb>vR&RI7$wR;X3$ESLGjU&QPTroI z30ai!>oF(KAO>odLLo)3VCbevZE1bKWEKgVR*WT<-c(;GA+zVgw-Ae8lXoAmIq@s4 zw{oYhhV^e%N)LAF#tIcMes5Wg5E{U@Lx(uBn1Jq@*-aU!go*{KnjPIwu7Dj6AbC4> zn0y%{!y8w?5?Ix;ucbU_H^-4BH)jmw@U#`BcdWY37%3fbESxi^HFOO8!=vbyB$qvXJ>VaDI+Hpfja>Iq)VpJ_k zD2JsV+qId3^$4^YA1p1!4i)DlSi=%itPp~ZKf7jUXiSWm{|MsXSJK1{CK9b!D0Rz# zexaaHh}GcKq(u-%jNL}VLgdpJO;DvZ#hfI32-#B@zj0hgqL=57Do>l8L2uFmDN*D; zJ5rFUf+(`eNhR1C64G5JaD>lJ$ik2;WpNM6pQR^Oe35nvRbO}lCy!iZYiiH-3ytzq zR>0JGBpzpx1Ugqg2y}EV&KCVco_!>3ZZ~=vk$NFNhc+-~2e$aX&|lU>F3XoYU=j-vv4dZc#@3$AuiHc%zPU^8&Fnk|GqHv5TswpTgKq(}MP)!Z(8h(- z0VX8UYS$BcyAfOCqBM5EgLS#PNL$%e_qiL(QYp^f8{PHY*>!h~?)Kc(v=~9k!%3zH zl4^PSGW{p#s!QxQmn-`J00030|LlF+a@)$X*sq|Js+3)}#QRNaTUFFuw(gQ;$)|R? z0B}e`0s$HqQq&va$32uRs4$mwK}963J{zf6Mf@ogMhs+WA}X&n5e# zWW49zH%EHz=+oUf7VRgj6K6*=8k#CQ#Fm^kks3sCTP@9KNt)3#t&Z$yrXlq;U6&L> zpQ*arAPxF~wKiR+>pC&W0V2>@f13{F)5d0DV;*cHFl}l&`2zv0m>gI*ZFicoZj%}9 zQ^jLsdc+Le*%@+xD1al3CJH3*vnW`GiCG|App-b?Oches(hP?*wnV`@X$qSzqEX3a zi2)ZOWS_5jg){Le1Dt=%T_Q7_}ifJAWS+4)otH{Lq#9x#D(L zw&at>r;T!e%cH+dw^RC5Cr$chE}Lg-x4-?U2Fpk>owoNZSnV&tPhR6- z@Gu^)#VC2AS_2_YDIdpBHdL&{_J|iWap={ymyDb*)?!fHWV*?Zj@ck_+joq76iCm1 zc^C7dHgl}E@q2*Z!IF8##O#xcn1FCH)%C+PD1-^cpP#0b1nHf4d=y>SLQ z32@sr8-rWgwU6_(Ff3J}Ti94XZ4}DI;LEkE(+9HanA5^CpUV~)E?TP%U$ZcT?Y3;d zQQ^}@shIWY5h4{QH;q~AID!%Ak@&JZ9c z806U?cF50+zMK(UpW3{(U= zMycD*&PQQ1kcC0gWvhjee4OLzn64p?l}yYzk#jL7GFxy`Q!!EIHqLd~7RM*&r0aUOa#8`nlp$J z478r@CP1tWSj2Tl50E}X5a6cKG!Ts1p_4UUhSAVDoP?( z62?F|E|)Y?HR1!-buARX@&RkhC@VZ4G|D!==*WQeg#n}M)v%kyvQgGiK9D#W%1uj@ z7~zU(`&GpV(MgBk48L6PG~-uf#_+cGfNqB!siPUL7qsaa*&!$sq_@Om&v2LY_ed{f zQ?n(yAsY_ek+-B<`Xe)HnJygSB;BNV!&`{qO==Lxa5s)){JaQJjTv(m5P*?ulcuY0 ztrk+K2s;7z2(zlq&Dd^-SQq>=!H=)s2y zCX^#q09L47lpmj%=$$dFk~rz6dfCh&-WDKF5{+u{JP_XFyM`Bi6s3JpZKDZC^jb}N z9oKs}mj~`nU&nypB5;~Rc+NmlNXs>-$`RUYI3^9rrh291m|kqK*^=N|$Sf`!C49GS z5%N>rqVFQ$Zb^Os7K|bWnlcYLo7kvm*^z8Vwj8&cG#WXAny-Oa7<6!9#zDAOIPYMh zjiY0-5Yfh^+){(@@&KMI_O4LLhsEB7g)sviJS2TO%?e7L$uSU@njWi6uFb>9c=GVx z*Vp8xFuYlBYjU%?NadPb3Dmv?Uz00O zYoDuqO-}T+u3Q!qG`0xre7QFJo*eD2JG-ASF)fgu%eW>t`!ZL$V_aX88|e~rO%6`I zOS~pmW_R4MM|IXN#cOg=%Q%7$5VzzoCvzkglXv96YGxB=w~GNfNrA|lS>ZsvI3Tr6 zI$&Rvf>yq6is^+_1nHTmW)s7^K^exSCh{4FuP;@N| zte8PuBt;SvOu?nO%c%GszVo9uY*FA)_XznQp`4RkpwPA>E@)so+7boqHZ&Z?*%5m@ z$K9yof`{!^BIj1P zZiF*pL?~D&69Fin%hZ_HzO5*bYv0z$`F19@G5X2cx3$=TuYFr-!&>{cQh>MiZA~;! zSG0z=UHi7yzO7kZq~qHvE#9~F=2Ack_ig3gjBhJGKUs`;6iCixxVA)(5uZaKW#rzf zYYR@w%gg{-<2|Y8v+S_X<=To^#m=Y`3o%7}iMf)TdiWrEPB~%VnyAIfnLqM16(Il2 zs=5{!D3gUcL~{8@Nrvmyp5cQz^O@J*zv~Vsuizt{B4ViGk`~yG>CA-t;5`DW1HF-v`pOD5Ke)~ z&xZaltoKR!%slYfM0GB$5J0TE)(xC~`}F*n&lkPOMpjKAaME^LXEMC(nB7ks)hcV@ z9~aBsH^p=uvqN9X<-OoacC;*eU)n@&5Q}~-v-$*0({$i#EzgGDavk>7hozdjEqP<3 zBdFwq)2BBAkHW#%3+6H(Q_t&hA72x~molxzag4)`5_(!fyYqAJdD)&?}2D=xLESxnabuVHO5? ziH;ErpeJCZ#8qv%VB+dObAdvYS>}Q?LolZc%#b^%z{hk_caL;1GpRBvLXfM*C@w&d zk8yDUf_z0$U~T4eDd-Z=0etCA>? zNDCSlERj?t2D&=20JMhXinmq^uXlB0wGeuh#H)oD+ZMP6hEggP zKces+*)@#teUA3Uf!r)==YjXi3&nh7eaf2&lg@NjrsH?tQu->6$KOZdDu&8ox8nU8`TLij{ zD}T&)sn@ecVRjwPo8jUX0NzT^DNRsrG+wjlYl&a56&faF-jJcfhV<8;|HbSPtErp) zzyAEMTTcbe_n+u%NwoJE$(RDb%VZ;On zDE}2@yn~%D=NG#-Guo#;p|XRCRN;c9=%)IFQ6ssa$pROJty-EQZdoXV%7-mc(D3)9 zxxk_Jv-Hn?&Xj|$l&-1W}PFfc8)M=e5Z+`tJ%tm?H9l16X1>tx?Tj%D;0DNcVw4Lj|6D< z;8O3~LmOq9S_IA@ofBc6=sMksP(8`@-xWa}7YMd8^iC3bwIawPgEChHYm_HuRVa-% zL9GblC|lO5;EcD2EFWn&Ibe(oeyxtxP}XK#Zb?j)@FDy$$F3ho=|o3m&rX{*pQOB# zdnvC4B8i)D;pip2tS1^xQ5T3GE+vU@@}U$0@ssOq{adSyV}hCiBH0g}Vr3yH z&fZxP9UR4z6IbPAIizeR+oXkWFe|+~`-yQ@8O4>}n8Q1pJI7FxzN4}ZB}F!2TA~?p zF5zU)kwG)&?Reperp!Fak7mfIrI2BkT|DMhj1TH?p;st&05Q7&K|SsX0eL7FhQps~wd<9pd6!66GKaZZ|M2m_|d zu8p%V@=Y7c%D@H6FpY%8y!fPLw~M>M%PCG!fyP{*CTwh(xUC(uvNyQ32Z2q6piJdN z!uZ^KX(VwDY{rzo1`-R?mpY~nm+dsdvO++zV~d`-G}#%ZZV07o_#Cjz5AX8tC7BAk z&ImvYu7;V-rbH~uv=}G^2TbXrwia}b5d!7pd^9g&P(%!ySU~_C|`>ucs z=Tz>hRKN8zn5-6VtCsY^uZFr}R6=PWqEZ+juW|}ld$^;K0EFHZFxR&PAf%i2ift?? z0U!V$+KtKzmLfX&{Uktmk3-u^SkK^8ciNI+N)~CD&ywOco9qsncd?C`aU^#B3GSsA7dYHWl?#-}s?*rS z#Qgk^%oRNHR=ViWEyO0G2<^Y3OpHBo&VJ6NqtNC4eoN52gG~wNI_3iAOG-f#i%rYI zH#XOH!J{c`Y`9<}E>J|*I+{VZ5tIp@Z*<}a*&r$;Re%l!mI&_1&sxXDECoKXqEiJz z#wCU00%$v=D-4$QBCgC_(=vt4nm~SRh^^+_gS%v?T#j7e1m-}tiE5$_sG)#Cu|phR2IV@0(&ej@h9vD2U)n@&5Q~2G3PLqa(}AzGJR5q;b=X%QmTKw{C*;piB_Bk}cq8yA9Q=)>G|*vr zu}}FdyBRhYrlr;KczP2z!{b@3vM@M*_Vd}m(mC$&^hJl4gkEzbyKTDR3rcT*wVkvh?+qC3hs5az>}?*pdywHnJ|MW=DZ@O%T)M3#wsOC<%~;TRSTDWXDyk$RnpP zaNr?kR6uz-dFwHu#uqrk6RHwJUpY$QGkyaWD4Fk>J%PE_SL3;Aa$<3gnm^wR;)(!jh z!GzZH&;R(p!_m&g=>(J&ow}~IjDSYA+ok6b)zZ4`@HGlyvla>T@ z^JfMnprP7^_|eUeQhUPR@{dgm?kc>rG&S!afnVI3YuHmM`G49%hQEwv!fKq3Yt zoMp*&p;NYBTVMoYpV%`5XH3Vb@w^;hK3*?A6L+32FZJYKnE&7pD2Y1wk00RK;*DG; zd!}n?lmpI5e{?#6F~zU3iI?Y?;+u=pueT=`=Ra;P5B5$D#*+cZ5)f=j%d?#Lxqp^L z*-;W6=PwXqaOM=HP@NZn{D(AA=dZnuz&yK^&5_MFi~grKi#g@@RLMT6%&?gq0{}}D zehQUCkPlas9CBpE_WuSAK=we#UDN)wkuQ{j(F9GWMVFudYb--=J{#OfUWr{nH(NjA z4xRIJi>&zH(`S=ZnQ&5r->Gel>zlDWSYPU1m}g!L+|8*;Kf=6Mq))uExQ5#y7FhWu zdaiDp4XI&L_1G{SI4Q7mp?4D++L{!IX3(ZKaX<$i_1uoQ4&HgWf+T!g1)sGWms5ue zlxyR1A#nj?r#NtizenAYo-cws0%k5RY5aqGFS02rs5!Py7M_BUw4afGsFUchPQ=l#4#95UIm!TySRv( z00OO~4bxS0+~VT9r7tk23A><++poFc^;m$XFmO$r-jn`S8HjiO0fERf-g&z`6fy8F z`LVRIm8&aE+NpnJSrL@{aIa$`_$ouw*?o={PPmthhyp(keV&|cV4{EVp(d+ zs$*Jkn$2amvVTbL3K-oW0?Lqsu()~C!kkayDWe(jlqrhRnwVWJDQlxv5f>!94WLfxyZG|x_@>UujELo2T;S|QhC<6f> zq#4Fd$u715)+u0^D7TZSw%rtWs2RyuvcNZz1$R#t(NVv)qoFz^+kHIGUn zE(ny%o0UK%;WBk2_ZU7{$Re!*y%PerPA>L9DIZ*rL^1}Fg5vmskAhg`gKJ#xsu*Kr zP%j|?s0i82VMO7gvN+M4z!E9Wh{Crfa2GvO*O7z!_j6eGYVRe}&<8BSUDuoeME2N@ zC2J6R#S{?;VQ&m$+r89%O|3V~tW4X}esbCO(rY*e1smBRZ3Xv~O^Fyb=spJNk6%sj znsrT^cGe@%H_B<7Oi>%r$q-Y=vFx!7nZAUfivNt(DGwMWTDTw$Pbi`QqB3{!ag8WI zo~RH74P~F@f|SdGXGQ)s^$_V}!rL;_ati@v#f5Hy87hkGMYt z2hVb+i%L2vB-go@UtxZ3*jwr~(6WC!&>ujW#qai)bZs=39TtTgzmS1T)X2ds&dw7V z^i5G24gFU}CkPsSIltH)zoa_dewlk1mucI@ZC`w5bVC#*f);71B!fY~OQvYG2VG+6 zn(+jZ#ZcR(HL@F2D{vEjyRF%DM;$<>w@D;aQ>S~aj{@CovxkS1ayOqH1DP3tIcINg z(CiRT)|!{m5KY!;?51w~<)<#4MpAobUt5!1MeiuEQKXuc^7l$L$ye=|KhD<* z3SU9sIW^?DiZ3(KQ`S6F23IUIJ?+CIQ?;1zpkGh+#X!t_&QQ(9}Mp) z71&p1!(U-6G4%>lNy1g*n4kPh)L}mb%3l(pFs1s&(r4~PUg4{m%*&+}pIZK?Qq+el z%c&U2Q6#dQW86Q-RcB0bg{N#L$L7H?; zh=S%P91{huV>Srpwm9E0B*~>}E{M1reO&H$fn_#M<-UbXGROx{>k+F%w@vAsxjsVW zq_d+-r?O&NG8{vOiSrnPdCB}ob7EUw8aK$L4gM6@BAX4;B?go$kb3Oer=LuF3|1y? z-{s3?&z*53*mqN|)VxoW0ogqMw|`ZiP%AZk2X|bneHAhO z%?2u=GMD5_B-YKTPf!|N8h4&bh$erpp z5JRt;2At&~w>+aTRPFN18iJJE8hbSpXBptDy~Z7gl@D?e$9kY3Y45ZvXu_#8_KH^? zZR!=@*%RgmVu*zPRQ4T^{siD-uDB{)AypNQYtZv9plMYlmc#gJ=J7hSautUE5d9h6 zEZPNlyjj;n4>Nl;;L%{Lj-va2e7Y$5H;MVm8S6QNE*Z6M(VtHkOMx@p8@<=0@hlHp zoXP{JlM(y`MJpS_ANPo^pUDgs7|Et!4Lf31v#6h8+Q#|v3B<3`1(dY$;_TgSvFHzQxEHXLElLiPR)zWGc7 z;|rS`zg_4`;;WW1OIF`P`SME&v1Q5KcGP+rmYsw|(hT&gEtfpYYDh3*DUhGOe0g19 zW4hk!CJ-l$f~_Q?6A((^r=4FsEw-}9d_*lUCv!km7WnX1sLFUYhR@lG#WMP0i-jzV z(JRbNF{IhlelpL*#LPezlhJnejN&x|e?VdS!3^F>CoE>MwHp?M5 zmK8}qCw=MK?8rtKKaNoq{&?h^Q<-AHpjc(9Fs#hI0A-5r&Ph7LBtKHod$uqcR^RX* zKB@sQxX@0lu?haA)Pcp`q6wR-S(SToxsorSqFNLR!`c|pwS92&AG(?FO|*ZQiks+s z?Cui%q6~69^c}pUhZ0ZmMV`grkuPmQIB){KXD3uF-}A-#FGECmELsTcY^m_*9P?7n zCY={%BEZfI-z9?O%}Xh`_9|*#SOSFDiGe>}<9QW{sPnqli4S=~k$@;}e_m5pB&vMD z`U~KOXzlOKSY@h0C^Q|7?T3D5HH)}d7{EDWdImBk8{bPJVdCUV(($?aueE!d+=?8_H?-5T$#LacM5~{^l zSHYW>NN*FY#1|Hz#77z5yiR<`06z`|{4J?7H-~?G)0>|e>yaQwzD%fgT0*mrWs9@!4XAS#k+JmqngNv%=7A?^>+iKU>Ly%*`d%y53JGQgswu{HsY z&xv@y$JzuK%yW4)On`+_ekDwRh4O?qI98af!o9B*GyztAQxl*vnGMuq9(aHif)+WH=L|0eiPH>?z?)qI89>tufE5Y@Z^H;5|2{2nMB(cmU(IM*Mug1Mu6JWMj zPScNAPm-l=ktV>pc<0owZvw2Zg6m^#0vw+c@qUj)Di~9dhfOF#!?pjGZGhF)umNU^ zl@+)T9D+xzG+Bk)UMpw=to^2mQ7qOAc6nd&vPkUSO~Mwl=|ap1>t4q`CO?#3?9(b8uUndXPZU<>>yC%P)9X zb4uJ?zM4(q6HBC^@cG32Us&(S<)6@mwvpsZq)G7Ik9&jUgFhbK=H2q6tYls%{v-(8 z@^@G6e$LwW7d2JloglxX3|(;ChM@r;9``?{C{VKS^kaOCY%GRQ> zdm@9rX*E_DL%N36vzrh*WT|t}=&`!zTPuvgleX3nMljl# za0-s!?T<%J^f`dYYI}vzGn*@n98QrH&2}R)2qRyFA4HAy3@5~n?JO%yy^AiGLSl)xP14 zX6zOJ%-%FjXD$%Fhaswc7zp3X({0_r@WCIL_q}Ot`nd!r2fx9Y3?y*O?x&4vbOh zsiqE26MvaihK@RKjyxs{{zftzUqB(RBPc%%Yn_d0+KC224wN36W9P-Jw*rO>K#LU? z!9eC049vBYU$$YvAJqh;IZOk(W;;L3=8woNBX&v`n|FLB^S#PJDim2!%$fFsd@jpg znzSE;PdtznMJ@jycILkwX@t>aa*RQev4gYo|NhsWIAA!B0Us=!Qq2i#KD91Ym{_%( z4_e(A2!my~9fgQv6x89L3siX9QQ;t|vLPu%YH3uz`6wx_BlX5idauSj-wxQ2l))?= zdj#E`&8d3O@z~8gT1<96US(!h=Q5SG^8*O)WfKxxMoezUwH+X6KrAYOBrrye+D^w; zQ6_E!i@M5_o=#Hpb>)jv%MQi50ng#~CNap<8+x4#uXj6b7soko;ykKoP4#*Z&Z zxncpW!{G5yS4}uO&o9?r{V518;@}x)2jki20>r#SqJW|HNiImp;0P{Q;8H`tVxlkc zxIE7t0vxmTCLbC`sB=+qpC|*edHiqxsy-223{d}-$s<>NM%$DJKGerV@sK!fMf&Wx zU^$_j8qvqA(_8amYNq|*BR&C){wg;@N1TRgyim0}V&j`-1Ruu_f!*KdvFwjw80tC4 zVHml;V{GkdU)P#eglfKjPP|pI_-3t&usD8r2i^Inas{o}5%U^kd`u*UQ7RsnZjw}C;22)SEZ`Leu7TrBpj@Dk8#tdDoyY>pH9S;E z2j>|<*r1ZpF$MEWn9v^SF~r=Qi4)Fgr+u7P0RQHeGE{Z*U&~S!R^2>;ITxG#@-0}( z!j1H6OIbR=)|N8vaiJ|`0yp@jSjsreEB-5!itp}>wkZ#MZ7E9wR(RV{16bNNF=e4P zF`Ty;(f4M=7Pm?^vB-URYwU3*PM1kL%f__6GM7hsAqK7TTQ+DZXoJ>bGjWSCXoZe? z$k%IwR+__$m<9a4zBXu0!&)1((izmRV$fQAo}sltD+E1Mt?pmQpcPT8JAygW&XgqF zpaof!q{IfTDPsBmL`?Ub_v_&lHMXmBZ^EGSo6c(tuSB6u2BRX_ol7&qUx-Z#3Afqs zff7&0M7Lv;0^_*qnha#bii=!uI~cq;^ol6Feyk{BAfm$Y!q_7shW2+s%s`J*f>ixT zD*oUnVkC!P!iW~1j%j&Tm-ve30#q(8s|%f8tl?!p?bJm}F}y?!e8}Ew+sgtZ6hiG2 zMU1sQW&|Y5B9Ig$N<|hJslNmjnSZ5(it~{kk@lGVv};(+E0;ysVT(FQqK78Xs2l;Rg4YT8Mfl8EelM5nBS9vRBB+t;qo-A~+K!`Zy z`K{1VRvoRUIRgoHg{G!z#Bjjoy>}6VL62BYUDsMhfP?KSwrXizwi%9~vJ+Z0*x7j} z|9mgWU}SH)h6;vDmc(KtE(wx9(8ro8*^WhwmeU@KQbLf2BP)mh%H%Gp(k(Q6VBvkE zf|KHR=oA2Ks^N2jF_a+*fRBGl0mpbv2Vv3MUwpQ)$~?!3MOgG==oz|>Qa($>p*N$F z`UG~fPY{WXjWIaJ=En-RRW8sf8iVK|9?|7c^ysZ1dazPcKMBb{C&mrnc&yh56}AdSt}GH~{P5ZzT3nwfej$ zhgSnZR7KUvT>-ZrEJma)BJK1-WZE3-Vnu`+;jQXa6A==T@uScP@6g(B%K{S4)$b;%bP(*F?D9>tsD01gNbqd^FRFe znM;Q5HX1uk2gIK$Z{;P79_=^wq#wHG3%Kg>^99`jPfU=MFsceLqyGlR4JB*#p7Ipf@B5mfO*t|zXv^ooQPcufBpHN5oF*WZqm)}&;Nm-;Q^Y4TsCuz zJmHwExB++vnNb=X#|c%`Qkn_spMU<(g~HzhJqIY%!j`h3Z4NX;{jnGP`VFa z8be->?XZ3#zbK9!W!edj#z%Qfd4Z10-)llf>Er9ateECgN4B1Bpfn?GrZu3vCJW~_ z@~6O8JTe)xWarK~<#|MuJzr`fUREo| zb6VZfWMA$oSnf(Ytw-FzMqT`sa#(@`sv4r)Zd_KvQ@PJ-q$1#P-8?$gdc^9O;;!bO z%U&p{umQ@7X~~XhVM^t3O`-hLC3Mde1+HT@Q1>gjfW6z7dqhX2i{zuF5n7{S5um=A zbX=(TW-f5KS}p%x6foCD-RR&qolo`{63L(;cDl4v>4c~hwUIkxxtgb+&I$=DmI_S! z^tIevvFPUqh*jF7ob*6}k!{CsZJ3vqX*NgNb=2*;PCGSZhwRZ!mqK6<_u8hW66u<1 zzZ#vSPaFMiiw(MA$$dIn`mwt$8*1CMq=sfYw@gQePrJiUr^8P`(+$biI$fPyf(?y+ zvxrWmcaIzs-yBe`6l>*Tk!tJ;X;aGVn<{8$5?uKr4fc*M4@}oNG4_ZKBi@i?T{rs| zbl1`4E_=}L(y8_E@}|6!%@^5B!VjdOu{rl2AHs;b+e5shX9i^u91Xg|lZPRSh6Uc$rQfK1@zNYiR{#9Pb-lwRXn+EZ| zHB6PB^FSTVmFQaW6x$=qbh{Ef@EWP-y(1WarXE6c7BHB+&4%PZIi+)Hg9I?_ZTZti z+i|+vnT)NrNk_J~%q}tLZ*&oLWQTsWS{a|+I(jCb&6YDAS@X>|@xXXNjC8dRX`@_A zo9e2gsg`M*O=n9rI~fzM-H=S*v>LRZT$X+6TBZs?Oh$`Qip^_lyWaxgL_e?*bZ^)~ z1$gu$Bak=1@!#P)YvDD1Zdx7qOTkWXtqg1s!vpfR+P(;ROKl&-zLyDrGSr5sbTxIm zJ0v*$lz`;)Ex0YT;q_+pE;Tjinv!71cGZCGPC9h?N$?=^+6vwQG^e^ybgg@+={gJ& zK1_yYs<+BbZ&ag$Rl z7JVWYE7`KAn7+Q;wQT2zm>mf|P+Tbnj4kEfsqNzuH1Uz~z_X9^e_$DVyKggIv&RTo z3kV4(7sY&*;1OHFtQ}0OAn@ z&sqB44?CBIIkn-8PX&U%y>82jZR)N={s3KVJNpN4)TRt~CzQ_-yC$TP67VvPn6HJa2CnN>wTq3;91fwz&!O zu?Z>^9SZUK&xZWKn92VoKzfr7U3;O^E$f?sqOr{s7fChg=45Lxpq{d|`q5velpL+* zGh9diwDI-8-rwE5s_(YyCw2PY$<^L-t3&d8t%G`f_iT?ox`pT8vgbX;xYp_a&AVg0 z|NZ{FacZ<3<@3#T|7&IctUfsU_y6v>{zoONRj*1{maL!Wuj-mpcsRN^8Pv1K+U}Ra zzO1S8Nm0KjI5$f7yk$PME7y-o;X}1Ixc`!KZZ4FQ&%4jxE-w|^Jvn0?e%;p{`%9+u z;e*_DFUXnsbmd$Z8&}om?A86t{rz3FcmC44c)s4dylb93USIaxyK<{;{k*>-XUAX5 zhvmUp`MO;$%J*f~;nRNp-K|IYQ2!t!=72XP#^O5Kb3)D-#)(NjK_>y z>V2^~&z*-4x$3v(^~v7#ZF|3)`KEn+ywKf;r_VLkVNw688fV>um&dd0(LuFv(|kE= zJ1?b5^ZKR#a9Fu{sD6K}EBP-^=T-et{=WB|JL#W&$=!DEGvD*qpKpry*2T|@mQufP zScl&~SY~6dq_~6X+1X)ME@+CqFMoe@yIRJ%d^)Pv_cNLPS$%r)>cz~>aVFQIUp`;$ z(tl4`hw$Tl;j^wBpY=`+_ZqyUi;G;fkX#dpr`X1YqbnEnIP0_wTJ%78< zem>;$58ACI=bs+V+?<|suJ#MrjB?p2^!pFz+2>rfr4&o`#ufdkTYAjchr9XP?BP}A zI&0jr4$lwn3Xf&8)+ARimYLHozSVQZ!_J4Rs+^OnA9j0grjco!Df!P2C0Dyt+DDlu z$0({lkG^JzRp_d{{$4<5Z^+Xt<>~wP?t{^%Ur$$fs(!MJq$`k z<=a5LYd9DAZ2hV!XTCObk0sXO@%O>O)!Bh|^)1`o`=bB+DjziM!*Z{3eNS%k&3n6f zSupMlrG9<7`!figkF=G5YrDO^c{?{qE>#w|8*abDy5>?VA2MuRoc`hpl!`Z8ioU4*K7|HZ$LE z^urH_op1Lo<(sv8dT{8T+!r5-p;XKd-Yn;y4h!dZUmo}Oix;_FswMW13QDJ3Iyrhd zbZ*F(a`xccQRYlnz0RGp4sR~9FNRZb z?s_i|_a_$>wW9XTgXW9-{PptK&_7?~8v1Ru*1f;Yk;+r=s#e!-AC7ZRjZ^3G?o!^} zYYf!WV(H?rs(xl29u!*H%a>y1;xS8(cGcX#IxXBdx6MrN$t^XWuFelmm8<*1FW)a) zO8M)d^;oK8^yi}wds^Y-`|*u-|KaZcv-d4at}4xXud?Fz^vIrgWWR}Dz^`CH-D~wleWBH@wf+B#9eb(OEoD_@ zWo2e%<(I`c@Fs>ecHa`j<{K?H6QeI#`-uedp&U8Fb|isoVOfyoj`n$aHyD?J3zadv z4TmPUMpjbhZq)&fNBj^l^O-DZSYKCLf(vozMChEMds`)$FOx~_$A!;bLvDIowVf+@ zv1$oUso{a29+$Dx!w)kpvc+wdt$nnFhNxatUKlDTnQ?}grJ%}YTMoT&s||giA8ZI+ zUj-`eQMC`hpIGc!+Z5P(CeG-&CC!c;Y}9&Ml|jr)U8OiO{VBnfB-!f?7?PtzveblT zUAGU-lIaxbnUgKkEOoN}TuYE^{y3aePDNx(bCN7{BC$;_T29&A8KRLtqm)Sr3d42W zd{Wkp4Qn)7nrh#BG`Xl>7<5BGXPeUemfDTQ38<01lIf8uur4gOwZ-(D;?22K|Ae!R z);W^HnNT8j^QYVhS#37qecLoOBd{0Lbkq`@gW`NBACmaUC&^+CnJKG{*Xl|$7f~Q+ zI4(0&X5A0UYHNoSHXOsw(v{akF1KQRRFtSRWKiKy=D5JL1c!sQVb1(Qr~)OOO@t+G zj+frZUK)FNZ}fqj9Jm|t)Qg~=s{-1jq*URc%2Acay@wbk(;` zv6F81*nDEeez1?~el3eEaVL98@}>|m2c6+0M7v9Qly=(Mw;)4^SYt8)GttLg$&EMU&Zu^Jz({fm z^irJJ^G>Y9x~4E17>*odM7qPNX+_{vm!0W;RXh91S=%gDJ5N|r)u0fwS~zP%n*)av zGG(2pf_Y>}mU}fJiV8WYoU%cNi0}JSNz@a(gk3yO_nE$*m8jJ_p4W0bX`F}(%cFE< zD_X?i`y50RW(^SjVHWH~b+knlZ5rgVkni#7QJ|B(6^#aJUew|sZVY6~l%-URoo!1{ zFyIPbLTnk(5*PPIb8xSR>Jlqv#mq|0lQ~=GA)dv%Y%%9HcFx8uI5iczbm=HcF!zM* z_gQGBkbxB~L8w*SG=9w>5% zyUQh4Yity8)wN7(liDPa=SfiujA5~SEZ&2a$E(Yb=|WokcHf*A9BeOehF z8;g>a%~BcjJiGukf9r(X6FST2K<6B{hR4H6a<(CeN40 zF(r)A(?rJla}LJen`bLkGYUqdbQVX% z-eSI^Wjwc`!(uUj#)4r0;eyWjtPfYac(Q{L`yg+lUg2irp!QWIf;i9eey{@E2|9CB7bJhdbenshkyw4W8?W<=J?rWg>uJ+;hm)Z0@VygE$u%nyhAQNOmj zVM}nu&g4m&FY$%XtZ;z!Kv3%t%X;+ulpvnbyl#@hJx@~vMgbvHFyL;D$qIwIPV% z$~vqjlX-ZO;*duKXe0PDLSLqR?MPIt&Q<4KfTHVavc$(#9AKNo-o|EMl>+dz7;QHG zVH@jXHPN`LZ%T0QFpvfc*pK4TVBpMm!B#@&t8(TaLd|d)UTF!A`lIqUaXB;19**Sz&xV~@N*aLwO~$0M=0 zCrY>U+NUN80xGm^-H@Snw@+z!^z@+`0BAs$zma^!J-OIpn%uPncSx~menV>w9|q5e z8_gFUXq4~DxoWeO+t41rB0WSy$8`-z+*yu!rliKrd7 zV?h+kmWxwgWme^UX03g`54Qw^*crmmZyARN@R0YL^^gD38F> zpK9VBv32CINlBJoM$&LLEo_F+^hnt-d=#7xRqj)BQ&Yi~V2VtjLEx>UQ87-DNZCdy zw;Q9!(OY$zazH1CTfrjoMawz4O8{$E2!BDRV7mD0nItmgIQNf5obT?c2>ZFn*I?W5pP#4Z3L9#jB8)fC7Yzdkn zsMz^T;&#~9p*G$eS)5V}>u+i7xF3eXY@LazYfKFfqAN2RZRUbKrB7pMW($EdN5zvf zEeekq6nDtQ#FW~#~2&S|D) z6d@xYtaLLR>%PbF*{v1!~z?Tg~99s;o&zA)@P&O-M3uiJO!Pcnn zt@g>-$4YY1$4cHfyFwHBaK!o)-c#-UTAxX&$f*Ij1O$iO^k8NYyEA4Y_rO^Y&9+-U zDPuVwS0gdwFvAr`^j2B&$7wV zqDDS)KKj6@Ujaz-hHH!|+p_k@^T-6fs7)?fU&TfR!O54=S z_Jj~>6maHeje>7aTJDU+W2^D-EbWrr=s&X?eX#!?!!hWi-wj6_rGK~K_}AjM^Fc*> z4ANv$|1u@NOvyjADG6r8s(6lQ>?4!hL;va;NCnWe$Kq%zF6I_IPp(A^IFx z^@+3CL=0e+sS4h0Guh6rLN1ylgF+}++1utaz zUUz@j+YtWO(t1CXv0MIw0sGme*;@f~p66)ecT3~Zy&dO)T$rlsZD9s+Kxc3B0PMFkW}iB3Cu_PquZq)vzG212W?Z1a!CiO0F7`bt^Hyzt-SJ%{{n0 zp+nK~@7nJJZN8ys-d+~nyoOhr`Kr2<{+m>vuoJr@`hmv2q>j)tPCYJX*?Y~zeYUsW zy=FDk_$lWByi}|PZjLnG0Z_WHW_6w9y$Vx$cd3r2^9J9Qr+q3kmkW7)e>zCUU55NS zTIee9FLwT1YUkSJ^#Q6cR>gVR^QU0ipHPwX9i6&(W#?-ny1=w&1$O?||LCGtUYgc_K-XU?{sMDfE7H~lGW!)Z%RkWNa^rTtvGkL>{k{^TUl)J)xXpg%c=TQ~ zsGofo3R30kPXm(Idp}xi-l!#O|LOv3oBAT@kzY-}~u^T?~4H*u`3Z z=UT*W|0g1L;RlG_>rky-5W86a8DbYZyYXLw*nK8Iw?piHwSn&=ZN;`!k-Cua! z>+!ne4hU)XU3gs+Qu`-T>jh}i8;q)!;0oN>fqFg0u z-R;vj)A2lL3DVYvC|Ak|_IPiHnx~*=Q-m8(1>+6+npEg!ArdO-K)@VuLI>F_25WjX z<|e6wPqxOK<~EvZFGsZigjf?qC8;v85nldQD z2hw`si-K-ig6WSkQwVu+O>KAp9*}V50h+(ZOkxY0aw?y`v^gxZ$G_F=aaF4S_W5jmDMac%(u=ODh3Yq0btcrfB4vU+=Kl!2t#%QBh`V zhdmSYB#pC1WLXN+BM-Z!vJ;EB1A`{RrX(p~>T-g}+jKyQeQl?qY_wzZ@&q3gO2E?6 zvX}C)H-?mAC0pkd(Va0~cyk}rk`<(3JEhMEQ@i9U8j~x{>wBBs@B|GHGNEwJNCV+v z7REV8^(1(N#arC+hC5m?rv|-M&w}l3*>uj6Ik-pzF^_>@XgLYurS7okQMfpu%a`%G ztC7X>ZjJ;$mZn zSwsmwt_y>`uwmI%=p9sy+VcS)n0=|wn&Yj??0H_&j{ZdG+vyqO$M4Hks3D5jD<^F3 zB~?U%=qZZe8Hyk(J%CY91>mE1+Bh0J^V2zv;>rR~$&z$unK}iDgENv;0qrSgXz0-t zmvbnybMU|eCg36Xx_6SLHD7E7h2NW4>U3sIlASI3yyjbEqH-hgTSX1f*gTZ|B_6@p7ojN66l1<^CG*qBBHUhOBg^Ey!fH zKFkA1!qpij;M@WiOxG(18aox1CmN!Cjz4hwo^+CqgOymUpqZ5}C$Wj=a29E)P$h1y9Bi?NXHG!J`KFhXJYWQ0xNEar%59j->tbxj!T9{mdO4BV0Sh!~|OIr>W zeOakZGd7=|-8rIWt8&V18u1vsHz8SyUGE04D~@MEh*-A27qr~op;_NLxidf?E6$pk zE$1_!mryZmSxl{QYK5O1HQ{UmR%mn}w)TdiL(mKs!LiT!92s*wPp&z6Y7jZ4DfF~f zn+uj6(|p1q)AeSuJw#jZC~=S(L&w3CJ*wVW+Yp|?)AjNV=En>jx`iv8L2tS-QzimR zFZl8E>}_(Cg96jO`2m!p&S=;R`K3}Y;Diz+wc4Gdah#SA0bWgpkh}=2kW*&{om#Xj zXS)Op<5jTSW?+O7F>bZQ9m^`J-gb&x?~ zDT<*DyUzt-G@Eny7AT~A%mR+=kMxM-TY`X5rh8V6B|jugt9HzD1RIOkYCa?&L^O*; ziJ(du_Ct-BWaEh`4>Zrp;7xL{tJ-2OC>IDunX3-m{G3d!E(d)G=rN1Jt-YmT0^nKF z(|8}DrociCYOlnI`$`mxJAGhL#vlQ<)3{7_G>S;$(NJFp>uRT?6qiPWmLQBV$RjxD z6)@YD;62v%GhntY!F#OjXTWUF3ib|b`x!9Xvu|^Uwfzj3?RTs9`1v@@wk3FvwSD@$ z8)i$}n8E8U%(f+XkF|Y9unWv~H0f{X(Rt}Ll+k7jQS<2O(-mfW&%+nA$Kz+TUcU*m zZ3#Y@xwm1q^x;*QZA}PU}j%pJ^q(UhL=V6p{PpRzFF#k1p(! zIWQ2`JL06s&T7%w(+6FmQlD37EovuRK0PrrV#2J zlPqyv7LEd);OOCS9><~poU9qRF=oTLKCu^DhUh!^`h=f*m?k<_);kdy0iC1DX~TVq z%G`7Trj?JRYjmiYV$`cjAkj}s){BtT^tUC&sd)k-Q-M7p?E;-L)u~kcQQ^CQLgl^1IkPeyGOIyw=LiaA+RdnwKVw~}}`w~y-1Jz_gB z5VHx2Kmp~Bb&{vCb0}R7%LJfz{j%D&P+Pf$+Jb|0ye!t`tQHIqO$LX}tby7}gr-d( zdIv^Hg~kUU;Zk3hVJB&!w&$XV`U>923)`M-F?~EXOvZ7C!?3U*PIs9eVV2&0J^*_s z0)`zF^Bhhx4v5tQQ+Yaaall=dfw4h71Y6G zdY%$(y+Y%vJmZ)6^*qn`SqA+7{rCU&ejdJXo9Eljd@fHfWK`ev>{B6E?-#?@pcG#+ zvF{mgrwsDuCdWS)>iFV4fo~(B>Ur*R4c8UO(ibQ`yIc1uRQT0-Xl}^*RDAy5*G07L zg`;=V^Y%rw7}6A}`u>Gy7t!`H_#r{~&Y$@HcL;~?u_7P3sFp>4>Z*e9JMD1+%>QIv zWq)H_yK;XU{qO(jY;Sed;RP41`Os@0{1=`>zC`ht0wg)=(~67wWnIK_nIxoey%OQcTV26 z<*%q<`|=ERK^K1>Hv5A*_%c}hb$VS;=`U{j-frjXv?_FkN$#pvuWRe0di9!CUs9|W zYffZ;TgBPU*zpl5Y}HZq`_>k#0A#m4DW^oqU?>_0dz3&ooB4@tw^h0=?I~ z&Bm|%6$kwM>Y7bEKhcZ7D=_h{h+HSt)1Ga8bj=(R*YQ2yxkA3b&RMvsCD(eg=w5H@ zii$(EPq5G3dfD8nxpvarLnl3V)$pP&7UOdwbq@%9pj6lGwr5wZzHWB^s-|j3snaUI zPOD_88?Cd=?>7~jrxc&Xe5PHFuiUsHJP6y97pJ%9T`^!`~s=aVym-fM0E`N?j;8`IPDYIP~c6M=V`hK?Qa7c8yz26?RaCkZP@vY`gUVk9=zBNIm=C$6q zAKY)>Pxubsth$ePu{5_!u;gAIKBPmeE{B;{wbU_~c2!$R>_;~nm>=D$rEamF>zeu@ z*0*Z1S)ae(sxhw1T~Ajov70f_FWj5S;=$kLO*zdjw{v}(NOr!^;G=Dx)%LAg>vGrB zH8*|SRFnL$aF71pd(BDt>U#!X@jQMVb+%K$HO>A!KM}c0mwV&~o;~01V)!)A<~=t* zJeBO{sX3kO-RIwx^{hjFbJt}O*Q&OYQ~3Gmug`kctR5>3JKQ683x3&dR=SgMV+IIvMU8Ok6jUbOQ!`%muzd$GSSoH<-Mq$D%)-M@{MX4HV@B z&F<15Z<4F}Lfc=S!ur!u=P%{ZcF%0>z2>le-6i(#$v^wS{`Z|qyz%Mo2H~^v3^uik zpVqF;wh`;L;>KV9@`oMA+ntqeQK+phvhfdDoHn<*vYr@nWx_9f@{XqWN z4SVOW+Ct+M-aqlz6@~eAE`0ZebI*yo zyAQtb>|7Yak$czuL+8TWb){pjJ{Ly52V^^)3;&oZ1a423JwH8UVoL@+GwI1P@48pL zDv8;0GQaS%E+Mij7IA}>a+~`%eYex;=T$@ObY^kY;BJhNaIDns6eGK;wUr+qYiH$F z&2=(l*A1+*9lK6QZZ@zk9@SMV>^{xwRs*};itY+1xvH^yK*_Dzv#rDJ#6FIie4-!O zMEG3CeA~vd2Pu>P4L?azlHJoE@SE2 zy+!->z|?$uqD^|Q`5B*G)GV{?!`58}QG#qb=m@Spz68;pK5D_tk$w`;1Qb*r3vMfS)G zqvfXEhx;^x|I3E^`G;Hgg&3d8%(Jta*Fs1y)INNvs_|2g)-xs2QIQV=HfLP^#1_> z0RR8&JzH+$NRn3}{MC(d>1A88-BSkKZh6Ysa#fA(njT=WFj7=X;+kZt_^|B#8thzQ z&oJ2iUo7@Kdx5^f=8Fa|Pf7vINJ2zJ6&&Ym%aCXoYZ;N+=iw_S4O?cPD4Sf17 z@=eQne{lcmOo)9zZ!9ide{-V}q~HGbUu}X~oiB-R1r~9m+ou@}{{D{w3{s80J36V> ztO4dsy2U{n(Rb`0l(p|hNBIc%`TcnNH>GWtwt*({T8WVrSoS~FS$5nO!~B0+vx>ur zV|WMEYgKS72{e-pC7?)^cpcibQSd^BF)`UTHWXa}(;y!AA;w&ha74F)IdLw0c& z+Vlo~L1rMjP|8vto52?^2NmAU*CmcVG^tT;xgiOC(eiSB&l+7(%YHC8?s4;+{{Q6k zSh9UNzeTL!fGlaVyld8cLHjg3|^R( zFrxK2C$_&a7!0`9V{#@N%W(dTlP8z+mOEWj^)%9-lIZ{sE0UCmh|nS5&$y<8N~$OG zT{G_DHiR?YY8va`{{Ei@c$a;?75PGSmTvW32CKG0FWWH4A1ONAz;V3b{zQ6c18@i~ z{s16?0-z$xAm01F<`I}97Jw0W*03p3e@y+JEDtwijj`u38-!lrZy~aOwWh&>eIY*( zm=BImk7FMk4S0w#_QGjj-0BJ_{68Rr=CXBVJLvTz>x1@S$osP~MNk-!tTrA9%0&F= z4->k1o0*zYz)9s&V5E=c&{w9l;2P4{SfBNaddk0-}QAVzc21TfBgDz^ZC=`{g?68&GP8#>^F5k}$yL`+0;MHEc;UB1HOa(QvM%IHc?hcAx$j>8A-v`JG z=!@2rxruzO!bJ{_$-+@jj^X@I*aAxS6NyN4W6ZtG2*%b&k;5s-JbppW(uT}@{ChRF zr&`Pe$d?|O*w{&0HieA8YB;QuWc<%$`uaed-p2T$T*8zcNC$&1JqyVg7aLtsPa`=g z?AR|2OLROGF&fG!PRVfG2z1rK3$vx#ut!U$h>MROKYe_>{PWlG=dbsVx1WC*e|-FM zd3Sj`ei+{+)n#tW8v0PC9swk7!$&DXk1K8feo`svb4efxHoAEm`XJ*}H*Z0a58aG~ zx$bRnwmdk zWQ@U-#h3hqujFJtkz+H@NR$I3?~z=mk+N`yp}sV4x_Oa}3+NMmT@i0u*?v6hu{D|B zq5XKq7pPj7=P3S=>6o-Hi;T{6XCEvF`^G1{GVX|jcxC}@F9H~4HYEt4>}OZPVY^FQ zCXTgz@fx(LfKFw#eb!@3x{W68eb2SybUoUsx*7B$9bAqnThrF1KjLbFWd~H43;DV)`tQTFN0y4+J0-iik z8{SGA6^XV^IRunkqy!6n3o$hlb%FDV9kOgxzoQG{t@T3N(#ARjNik3YHPI#`Oe-45 zCN4fSEY~oJGqGGGl8UWhVW8=hrx+vK@G#4?p!_{Fs0B6+J%$9DK4X5D-3vVA`b$FX z#3+@3i-U1#+hV=j6n6|VGpIF2TlA@2!Qdief&z2#E`kwnzz7y7FqR&fh9>p#q*NRD zTWHzV#Ir(&p>EnCvzKX`Q}Pmjn3TqDk!{rUJ|Ey3X|&%2ZtRbEf^o(kPZ{0GPq>Yh z{v<*n&ls2C&%8&{OOY}KUpQ5$p#ZjxGz8hQ7F40wscn5x^)>oE$ykYglg@_PmV&y@ z2Ac7x#6ZS?VtR^-$(4FJgZ&KpF1 zD5Y%`-RPerBA0D+CMmhxa!ADjYBaZFrWEaz+;4Fzwc5bwEBJ+Q^w(zYn`OXB(H55d zCjPKd)U{H*cyG@B;a<+^i%}=hd{>$R!Nit7^2Le$tHD<&cqC8kj@^X*=;IqcMbj6K zk9lNSyfS@3>o-24R}wPgRXmzmFL=6sc!h2I7I9c?n$N&mH^f7V+a9y7B-&zNsj(aN zztG2hgW>(Z|r&EhD$#DOoc(B;F7;YS8E*BWc!n6P1%3v^!F;- z{Wm<5arVUBvm?1?UE%KOab&W_U<53xp0&!dM%}iA1<{Da-TQzgtvT%mBFfJoMsJwn zZ*(Okgmo^DG4j1!E3@g{j7cl=0ZnZDg+iQrXt_v_jLmW`W3?!}aI)U|SXg+0zZC_! z7;n&3!< zN-}+vw7uJ7h+3NP&KMFcEVejsDwHa^IH|!UriGzgYC7k+buLN$cAQ}of1r6Vb&>@c z5^Q2W;=PLVV1HYtf@nknP0xd;QK+khd9d9Cy=ubIk8S%OoN(CRC&B`z_0`hrcE>dB zGvP$jOvs7x7CEvfQ{k`%n`%sjeYFIH)yZ=Xqmi~sxEe_R5HsgOS$ zT!@O@&)U-a%V*FOG__r7*th1?Fvr^VoYW{sS{Kxe*fv>Np#3IF8p_eSyM>K-2M5># zZQoJqpi~jMdI*}J8!(GYgzuuCBy_h(0dLE>dNT^R#HQt1_%nZuY+dqa632m6WK}fV z3hNp*D(iyW6Oba-XiljgG*ZSHrajq-m4GqUboxZqag>g+6#K=j3)$h;V5CKNS+YJP z($YqmuktuVl=5HRNZuIMj;=8JiZbQ()le(Pw$#kgPTD-xQrw4`C$_C7+U^!88(v+f zZDmssLs{bvQ!_0Nl{VB)%MnIuvi!mi;{Y3$8r3T#@}N69TtQfNO+I)f4~@uy$^_`H zg-R9PJ|A{KW_yfW4Qsk-?BJ6i*y0|vn`v3at2LsGg{nuC^?8B1^96F}w6$%us3c9& zPOva_j9hC${*kkaX*tL?#Ox&MUs%53(2iU3)CgYgkR7Yw5F7J?8W@=i1KXInw5+5C zdniwqfE7McijqYt9dy395=3AiUkR2Jac%Hmhuyy!GWsFp2$#NsHUsK;wQjKysE>wl z+euMCn99)x%?k9v0tedFz(wl6qYa{{xUimg=uCoM*%?H052HX#Fs{+>^pY5Li>B^& zv+v6j-elfjjfA({17rF{XUvFhWj>MEHL&2IC(Xwx-3*~>#=VjiYzi*yh^mTIr@#YM(1Y- zrV*9Y6M5FRM2&37@{(G&AeM(l+pUqw3$#kth@k^omsWy!C~UM(Qk__*7RPz4SfhtYIig~%^^0A zeq{j)8Ae5W_jG|sJM~QBvZCK!wove%(Gj*qO*eMn97^pN^5n&RmPF7#{dUNgH!GDW zpRJZkx5x%oJIq{t$&L4;WMi1@VXxCq9#&IKGbNM3A$Ip^z5;+#vbuhtmP41$v_EzL z5S0SBH8Q2@f-)D#n`?t+ITK_fI+f@G2+x|T3kkSkSqWB+{mS}Qp49eE)L8~nf(Tj$ zdNW&4pb0&VtT$=fHq^@Ue|qhpTQoDPol%nA7VKj)_~PY!%^of=nquz`&#;H7?xb&t z18wj#b`K1XZ-(}6ru{QHUvGPVDlkZVBC~{Mganm9$js7h@8^M#$xh4pJ+qM5;obvz zrp;*5%l8MTr~D1M_jf3+CL{=m!;XsMHQ%E1iNuBIHN7126V3#N z?+-*I@q8Wz{BjNJQ|LTUl<6a%?N4V|Nn_C@HcO(H5;7V@n~VjIgkVI!TLomdN2CmT zQCOiI({@jfE;TY^SzTxA8bXC-g9N){yTbGAQMTs3wl;hNd6@0da`|>_R`Z8!wrTUt zTfz?7e8RSO#Wr6x`Oa@Sm%XwMC%2r(+mRd2Q(Maq zqkZEHh>vCUB42Don_ABn%O+#r^4x;ZiJ>E!*`hdQUV!nLzUD(`PBp0PnOrx*p6 z*w+^C7^B=~M>|06Ds7$7wREAe*e*5OU^yU4uvQ3S*C>HP`U)d&#!W{T%!h@pTIVuM z0P`c1`lj)SkVu8V%uO=xfW{ zz;3WW_R<2eP^p9Pf}nLFc^JGiM5$-6jao`mLsSPz<9P8Q)ko?&S;*88`WQ=0Q;SusKsX6(QBKkE-Y_W+@kK6!O{xZ zJ3J9jc=c=3l)cT|-Fzt_uKgOv8X}z$1?$ZNt~OAVCJrd&O9>imtzHQfyez2_I3dUS zC|SdxRFe}}wu%xg76=2Uou~~seT;L^^t&Q?Q;GywCPZYQ)P?o~$Rt-4Mc@BX8#G`# zo)RpVtc^Eelu(mlZarg{*&)m_V8?4%$YzDzkSC20S>TOY5!mk-_m*SPXZEY802jA# z=>Ov;PTa29*fHF!d`2E$3=jbFas7$67x_oj5)CYwb=OIJ&@Hk$cYDO_DX$6*vpV~1 zLA9Yuzp_F%y`~-VS#>@{4f()ayo-Vbag*=RSS>7b!FV+d`BKrh5R=e1@VC&it%+xa z&Y`j1!B3l=l9%|yPFm^~uS@LF9zW4OAlF9}+)JzVD_sZ74(y~9{)G>)o z*kUNBc#r{8`5{Zv&k=o@T7IlMY*C57#05H@ z_Q^*CmGX6d z-~kO?&{h`6SXWB+a0$fbQ_ELlr;=(*=F*si3N7NIM#V(@NS8?JOO1=%o*%W9`+=G& ziooO|yDor0Wuhh}rWtB0#e*CIn$XpF7I6(j1RVI8#!^FAYd)((crxZGy(l`~W7(_I9{Bk$GzyEqSu1*X%u-zAvf#VEY zt#1nH5;@`C$!_H2VSM{#e0TZqT~snS1M?sD1Z!9zRf~YLt**KS{N~fu-S~F=>EW_~ z9LqB*x)V3-{-b70@&DeDc_6>>dTwlT7OZ2Vw`A|vM+8%g`=N1n3diY>S~ z1{TXm_G1acGQXIZViSnw=!C2;FK5ZWLDcfYB@TJkzT#x(R;qde`BIqSJP zoNdnNB--f~O@qvL+Ff;y%C$L;Sc&5Hrt1$Fv6RNh&XDg!Gub^Wi$Y&zbzF`{d{%Sm z1Q~a@1%tPJ!X1yyC$fM{bYskC{s_j_M|{C)EgJBX85GJ5ZD}#Rwe4c*k%^5{S?`71 zW#-WCq_BUM40okZkG=FP#LtQqwnWs`N^;8rF}lpmxa~L^=Gu1*R)>^tkDcw!qQRuq@%aLPz_Jvs7&tIw(-r0#Q%T z%GPiyJNcOtIR?q23vy|_rKg#;I_ajin+Hrvc4+vV@`{8EL-u(grtKbj3NXM$0mO_o zEo&?0f5KOYGM{X>vQMQ!nDCclnp<>z`$C+9FRD zhoUZ3*$vQ?07z}qt^f@Cd~vEB0r-0Vo&P)J|NjF30RR8&ecNu^%Cg|E5FX$l3oF+B zVtJhyaBL@W;@D2?tgP&f4TGXu5@U)~NXoMFv<@(zuwM=^^DrMU!2H0x%%`j$IKMF6 z&8Ea_lf@=mvbQ&|S1gI_s;;iCs;;ifa^F7q_a*z!CH=?wsVw*JRO8i7tFu!-`1kti z7xzFlN942XeH(jou4=kD@n7FBAh^hHl>C zaa2>ATK21*o1tah&Q$xh*KF_L@29%sTK2=Mo#svyuOY=kvkc4j5ozH6y?K*~-oclv zlMpWT05VW8QR*~GqD~x#C@4BEf1)$}9Z@ZkRu_gF_=S${0ncP)2WjplS)}Oj zbdbpvd2xw3snzNi?Tc z-@}sWJHK)t4CE8{wKaOU#zRNBe2B)Djgf9O`V8r8OkWFOdf4s{j#}xMzQdHqxV1e@ zb#t^@n$DijA?!t8xLmoa?c&FDj7@v5MWCAM4A1KP@Z-tx&B-5^pHHr?PA|@{yg`%S zqXNo%ZzZnO~PSPvh@~>Yxp;Pd2OZ|yWIO!+0k%QYNw*aFMgIhjEll&s!XrnAT zV2X;(#C~I$F4=afqv`sqokLq!4MxMjlyh4MnShpSbjK0|QMBREjum!%xN>;f=4@=7)DI?WYm7!s2w+jAt;h>S?T8ip8`ovTS z=Q`vwx+jXu(Jj+aFtHW%W1$=R(AF0-MZ;gZDj_wtE0nRVYA$|GCI5lyqGC$ZJs4w{ zmhFUJmcXcDq>?g)iS7UTq~! z*5-)wlG+nkKX_INW=Fg^K?G}cdSwyp^y=dJ;_~F?@Qjdds|iQ!wYhEG=_7>y)lHYk z4r?5?%oJuak%tLct%W;ZxXM^JP))gx(>Xe+Ox$Cqh=P;xjZ(J!o9Ac`puNj(pe zSmxF6h=Q9I4AwAABONZCJ(**~o~`o^DCFEx`H|cA7p?Ts$~n+sKNUEQcN34u>?oJ~ z3f?X#>RKm_k#rw!w*gCS6bF^GzpY91=@37!fXAa79`w|BNhmEqwPO{0lAmO|$ zG{MGxiPP&bHeC8&G`m&Y3gl&zq&?23Msb&4hnS@DJ!8HE=rTPau)BnIQI&g!YNjd~ zCWw5q)cwF*)zSS>@pjMBZD-cxMm6SB^`_ZAx;eUNy-}hHZDQ}2vk#Hd64;4>kyN4#s@X@oBD<8Jl>>%hdRw)L zPs^g|J`y^}ETBFfxqh3iC12K1$rn;|$)#|&W zi}o&6s#v*(Ak}$VmE5gAa;-{r&|2XQRsj=ng~wD}f2Hp{6^HIsjp6td4O*Wbd@e23 z2BZhG;GEje+7%D3jz%|zH3>U<3V^DFB5`L#T)>pcBQfeE9SJtiC|;mp5YJ`^L$ck; z_le?_7|D-Myprkh4hzqcvPwy*Zkwo#o7|%E>v4(75Xa^9Wr)$dFVzWEs#q72m&Et5 z!RxdZb0`;mCueVfSYAkXs;ihAD(@?K0P`- z%R2!$q*`dWI`1SPmI$5aB+yCl55$gkBosM)PGkn&b2(R*UHEPKXvby+mKg`<>MSh6 zxoaqvY%LnrMoxP11@89zNhPdYB=9^wUG^XM;IBXbnf7DKI!1lNpcrSEMJ@yiW?q+| zRg%O=a1qw|lmPKjcJ_Q;_R5kUUZ%T0y<{%Tk{?iFO0-e9aaS^s%hu7mIisSI)oF#& zn1l0S=G$}2p~<9S8IaC-WVo;^ABxkUd9CRDhYBqx5^1Y^)AFY}bJa$^a7)F|5 zgix8r2t8>Wnw-Te(IO{B?NsBz)io7T;X?@G+PaqovB2#{VRA~F)8+~W$$|#DaTGcM z)6y(xRFee{RtQN5l%wA(nuW$=UDFW>wjh-u)cM@dy^>YLW1F%g>pUr5c4@Dy@W<}n zfSt2bW5;`YZEC!bIi$uv(vW#3{+oSTdnG%PyxnH8JN^o-HDM@`olq>U0zk?(ni$Vj ze{dqpM}vyJ^Cn2~wKZ00y>;o~EBYl#)5h{tHHXOYeJ znZ)8&5A~{henw+tBU2+bnfov&0Pc{vqu4aq%|0D92Q1z#?fH>6ozN?+V5CI&~(;cM8v><{m1{xkH1$S zp&0sH2^PfYRc^sV^Nc0we1q+g>BD?VHa1i7t-&BY#le?u`O?GsY=Z^#m`|1n+YRYn zr&0s&xW&x$Nf;$|^fHO3-C~DqW?}Gj2+w^RWBp`Jl>-cDkNgVZJ%8znvvbuH&T{ew zpS{j_Hpk|xj@06XBckMsXWZfcao!&$@*gN~&l@5-H@1vfBUeY;a(sGKvT>r%7%Mbu zQZk?>PaBu8Vf^!4aZ+b1z{Iup&IC}_sMOn=mtk_A#qum~*sEIz)9|9#dFI7tY9hg` z2JhrTrs2V$|H(EG_?HP~vb}q-oFY)vWeK`svpXH=DHPMfE}G4et-1>sjm4&CN}Jv- zGVb(9*iDsFJB5^}E`d|CB=&)UoG>%hc_K@!s#P9WO}bd(dSZw)@+YZTq?ql(S~yG- zfczUA??%h}DBR%1T;Rc|UzV*Uab@67=*L1ezUm`)O5R{Ec$l}FU0Udhz2IZM{+(RP zt$%Mb@6qb_PSeY#uX{+)KOk@+MTLSu6N47FkACw_$DPft$1OAVOR^0_wooz_N z1eNx`8U>;XKv`g!(+CDoL8g?QOBDc3;(lxWAh z?#M_UEQTne7x)=%;F*STg!#Au>%M0%cPu0 ztbf^ff?1tq4b(z|)_F&rvWpaElKAOdrLeUu77N-HtDz`b9kSI3U9NL6l~6X&Lo*aI z*kipeBU@tO`oRI)TToPFbJaNFFFxJir7)In14L zh=C=eHM291Wo!yCr&fYD4`WzNl5FgVBY&ImgM~cF#txqbwS}RQ7SY>`ChTM_9XLg;fjv)ddDZL;! zBwIl?1-JPIgC5_v7r*4e3I?!ctdfwwCK=IkP`cSBoOV?%yKvsjiqFdsL!~dyKk^lE z-&R@_&e;=m32{g1=<4C9Ee>HLD&0lH;N@ zp;1?zr!*xrJm{^mkBi@tQiLkJBh6O1X*baMIqI?8lIEM~^95-R?3g!9-|lPDA;cN` ze5n#f?{3@gA7K{szu@XV#ki5>6!Ea!G=9m01p*>yMkw7{BpFm_@v=_1oL6h1_v$=5 zs@i@8nN91PejO6_dUCUQ8mty;HqX{R@s$BJ!(y+n*ubPF^sGio!cPOgRwjoLW0f+_ zEjMym!(9fkg5sjF$9rsn81^MLrtgZCa~3OWmbXxc7jQn-ZO0`625CJlBv!6xuLP-0 znM(LLDu5ICXek7Xo(E+Clh?;AS z09$PrV$%98#-n>YC>Z%Zp|7b%!;74&1F8~V`J7c)h}v~X2?l&dMHuA)0$ z0V~&1R#qr=SKzadey5KXSkHT4QQ|11Z&C^Ut7uCRp!fb-oag}}ke;t7Gm zM#PL%PLl=CMsv%C9kOVQOi_4C-JMEXwjxD2gdi5PwS+*ztSF(iBNgfl^92W7x$TbJ zgNR_{&n@S{F6x`AbEGZ3+1_9^-Aa0MQko6_+!Q(?)s#cSP&|K@cTyxr znP|OUuSxJ6*<^X~FH1d*Kp}t@ZHz+R53@v_r-wJw^d}G&zEZ=j!RkXPcV)>8fQ=O1 zIXa@blgC&U{m9h0!6UDOPqK@-;@=vC)*JtfPqw3lhDiBlv^4FQ7K~S#0w_iP3mvCQU!B&A$uGhLEv#rZuTUkPPalV{5@Juu!fM02 zfmYgmQoEr7f?`WD8CI?QNuB1ej@lFJIx6ZjX))djclz_m7rsLVS=>TbSQE>V*S?KP zLk--vpeQ_fEzZ1ii?n&cJ3kZ!Rp`c82x74tV^MFsEJoSjjg7RPiNI(LL0B4+cCjJR z=yze+Y(lUW&St~$qI)+c-|9T2UUoxip@4*ZHzA2ipUr+4p+)g3{6Zp8e)xgJWRsCJ z<67rdPAFAiNFyJ)+>|vd3yT7292l@XYO-LSnzA6t3~yMf4^J`LplF!5n6x6X-m-ut z#Xhj82KMUcrGoB|spw;Rxt$t-p^?%xXcXQ^b)F(8inQXoJS1oW7(Cdd8RUWBK_w}M zVZ9nDx%Fh`-V>p@GojF6hH#F9pVT1a#w{?hqVr%IHoWP!3&pQGRz%xOLwBlzjW&ts70INR zh#oj1NH+bpyP9_q*NH^*)~CX4t|q^L^$Ugnyu3g4^OYM4Y3qK7b7M4+oe%b1C??Y0tIR>CFq=9$P1l;pJN4h z5df;#{rmJ`j%-6WZ}B*)sZA|ASOBq2eP>hMaV`6Sboq`V;VA~qGO!`S5W%)% zM!kG@cy$u4KUWVx2aQ`QnR6~&%-pQ=3q+IXEMUcgRK+53L2hFqP(*pjg5{|?0JLHWgj`YH>dCs zB7LSFDTxK(daNRK78;F0j8#H0{w z;m#M*_n-MGg}H4F4KxEB0>s)YikhZ9R`!QYpv1m@J+X#`xo*Vc zjNEK^H=XMh%e)W|tuN=o6n11}eIzAEpHiVH)c$YFo6*Zg59-*IjUOo2lZB0LYkF7TmhS~WbCs04;Q^~l+A|)VhE(u(lAV8dx!}p$?6^$5>X`9`B&KV3Aw7ch*sNr zDr~VAFw3b2E@op#+Es^Np}xK7D{Xc%NV2^dn3QL-jI-lShm8#a=XglHU4aY;cR6Qu8NaY zdDcT&*i{^+4Oj4mqeTnAsznD+7iVI%KI3valOg`KZch7RW!J=SPJQDb8`HAu$|M?T zzCWC6kCEh1W?XqPlBw#%hpC2(Sz-|{X!sR6r`RiOUnN;+EEPKGCnm3weqw&z;I=3n z^PQqB(pOU~!B&*-`ix=~*k5HQ3gw&F=JF=4v6fPp{Y`5cu>w4S&PyzLLZywiUMkuY z&1j`58+qk;UeY#N93>o$g#M89Yzlrf@mmR8(_(by$Q&V4L!|i^40JM#59v4T3L^cI zC#plU`Yn@`BO(aRFhy)k15&0&(Nt3zvSbtT4$U8-MT%Z3L)F!$yK7RpwrV=0we3rV zq@0kJXb#$)StDc+R={-C7OcD(ZC#~~Mzr+zOJ$bQL)yR^>&`M3GvxS~u>LI`GM1r_ z97e_|QZ!qKM*9gEa7Ay}g+NLy+fE*Ep61jFl;|luD-G`}8+7w61W#@snQhJR79t_M zMU-GdxwP8glen9-LTKlfJyQ)sW}!}b1xTgmIMAM>re-WgSo^W`%~hdB62VN>ASv&) zQml@r&#jR@#%hs$gUyWSFuFNkxMYlE@R8W)I?u+eHdQw>!o>3<6AZoAlTR`91RFcW zMEuO*SE$z`_6kEJ=?KG#Gx0sF9(CctBz{P*489dAy92$#F5eyRHRTEndC<(y%Vh`2 z0|TNX^%crI35o@!^F8s=x)4#kkF15QBU?E~%Qg1tZm;!T4z6?NpgbQRIZASPD0}QA z+0F$CXJnxXHug)LUXM8>mi`ybZmiRtj0rO~iO@cWOBd?@*=!z!uTuoJl+f0xa-)dL zcL4HDwai^mLIfumWXzNK_F?WU!krPgoLp_VZq%Jq!IFJ zJz{@W6;(`&9bNeI?ryDY;O!Y`FN31;h{bVjk5{s{S8H_|VgI`zllYr*i(Id@#?zkQ zZoAcL*1BabqaQ!GX%91Z+NG{)HoR81*66kRA*gkpZWYUDD%;nWdFE+1{V8+KJb}i? zh0Z+PJwN_5-%9xlKnM-i(ZSWDwrj6MS6d;rBQM68FV5P(^P27Ef>HvyL5%wCTG*-t zq7ZGh(0S9SOs!x7Xr=cE`7uinH{u7clLQa=ts5vNj zeZx!Ed2Ax6+o|>Piy*O__RZanGwuH@oVHsy?L7-8LE&`yl!Q}fP}>V%mvDuXSV4$N zgj28Kmu27xC-I=xXW=A@M2@XBcuKEUE_AB$3XaLabX7cPErx zU)ISdmjHbDmAy|zwAvrDBH4CQbApIkS zAkpRi4FFBx@QrB*vF(KBMW2(_4jE=}mG8fZ>2K9AtR))NLSxitB;$P(s zt-$btW-@VvtfU0lFjFDBPy#}r3fa};lRV;rbP`A!71$NCDRd@$RR?oXs;h>&{q9^*alZDuOL1-!S7B<@q9-g(Ox{{Tl8Z=1EgxoHL1P77VC;H zZWY1;3I?m85vj-jpy1a{S0C%hcJNcQKPl-uM24fx>5b*Mmaa{8YlcXx5Jj`lc&uaN z)pTi}o7K~P!TwmEA`kEoDa~4=7Mg3F=T#9ah8K^QTCYx~tAyLk&TBUJ8I6%mn<3%( zJk0Uy=nk1XicKTf?9)-p%Q;Pde&it=dWABK-@q;h2Qz}BiF8-s@@>?o6+rco|-{B0D)j+qXUw|ZhrN$&QOO+^)Au~%^s$-UR@ zZZZG;zyEVo+hW>X%*o*b+QY31B4!KIT@h&tZc!(FdU$qEcXGR2S03lZzYBpCV3>bw zdP8vMwP}@`W5u)I2HV*O5QlJ%;c_q+e9(+-3?J|xwa|EVjv+lLyRsPcjLxQ$WMmV( zy+MQYh=!sTIra#&`Aoqgxyd&%$EKsns zk;Gdbp`|Kx_b398i6~j%Ks|=Vw|I2Km;z`(T>gWyi;U$J^HKL_no1+cdryRjz)^r( z9#`CfI6gOHjAhsKOE!0^AZ4~c1exwsHRjwSsk|8I#0}4%0MD*098$e7br&p{_(T39 zG+do0Rm!d#mLyfY3ou9scB|Q-&#^l-HpEmlCwS~vJ6-=Cu8>G7V_WgwF6!Wwec0S? z2d^(IwircFhM8>S3dHxbOJ!*&f({|F=?6Nu$fg|7`z#y1V&3N}u*{bAyJEtA``znw zeouFLyWF6}g2r4nSP`a4Cc{5oDwh3dX;GBHAWqP-%SghUpj}o{vbYbFXVOr!@dR%3 z2$gjL888ByxsWv?1aC|In?iGf`8UOac|k`5p;>LYe^Y2~aQ~*z{6PNA@(UovWIN2i zS#9ah>?KbjXVjRQgF4>3^CTb9R@2C5qJ(rF7g<;4KvF%~dkF9Z%`L5n7O zYu0Rr%u%$$Sd~C!=6Xx#6^YWMfICAbV+x%j7o^SuOIQ6}HUIkaKV9XWH6E|BXh|CE z2)W3fk^1oDF&E9SGE&_I)-5A6CrnK;Ej`VX2qgt03_>^bp{*}wiiVY!tC}ukcL;gI zPE9Wj&y>9&lBM zE8wJnZv0|wOG58_Ux+M-@*;X*1vsRoa@J%~`V>NGK`x@T7s2YPC_IS~IqMxOhnL)g zTxXba$*JDTYoapuDi~7l>m5A%q!`!~0bi^tm(cW86XK5(VkFou5dy`$@UnP_IQwP6 z^6wO+ts10vf)J$D4apN^$YQ3HAUO+|QbG{n*N~ z3>*gR267t+8#;O9$f32)JC2pz|9Qq6BYf|=d6^2EJ59SB1#7S;dhr?{G9Wm zSWXDgYs?!8RIzDOUh<6)Ie9ykP0}iSUpYvc{Wf^%55Vodg;x(gXt^aZKnYgWw;<+L zlFDRVg1q-ckSN=D50s4)ya>iqy5r#82|d$}PdncI&@=7$wBy|sRYAK7D|bt$os4^< zr^IXFo1pyk`s>esUg`G$qR9?hxq}8}SFx%*1ie%SP^UiGG=yEBY-U>&tVt=6it09V zA>^=#g>q#kj@ZQ-|#HR!=UUp`3qm zu|tL587$hzHygF^xtqJU4u$qsc8fV4+h-Ds+k|eb+P9U_qHXZHGRGWSi{2_0j4Og@ z#f#ty1*3A3#SUCk7mLw|rq>m-uw&;unn}aoQ_Thk4#!Roj*-8o)?-QdU&nTHg zBu*`Re>`P2*wsKdFefy7|I#qrOi0UiM;%h^DL5Q zb$O2DoS25!yw0;P#M%KD%}Rio4FjJ>PzwQ66-&VX;T|lf2;>_QfmYf^Zwke+!HQG} zfx1P;oepbMQ@%GVrbLedNh$d^oLE=u90zUArsAHX$zJj&t68S2n+t2&PU@v%>xBGqKK=fbmF%SM89I(v_0Iz>< zH+;=Vkf48nj`d}?N6vCzw)z9#AWip8t`fn>oo0k{lC#2^tv#m2zH2LfL8O|B_pQHu zN^n=ExxV6iF zUVo?6yYhGLJ1o0%U*#>K$r|V2h~f?O#Ec-XOoS|Ol%EujpJc&Iug6&dwB%1Zbs|O5x!Yv3O@l&hB|0pYAZL-4VvQt%f-0E}AU@E1my)SQ8-&?}K#@A=q}(V( zTnGVNBI3=0>?NT)$B}-gk3a`qq1g=~Wnv!-k6@MJ=&rPxf#O#s(ook4YPkAvRMQ>j!6MT$S z{N@;CjJhBs*UcqgSzFU4zyZLtRsd6I`c9>R*&_Y*L+PvTU{! z7K<^?<%8|FYlHj?FV?-O;>9Dpqr9N&CTm73?jS592`J&vUjPzF2pG8konUJmNq`zs z;G_u8*nx<4pxTzP^=7j!d3W_x!z_xQ!IY`P^{8uoUXt_aNp;PY)s28 z!UKsu>a_A*cM~Qc%eV!N9)&6s!umW4fdaL86oMqfPLNiLb0lFhfVl|8_CjqdF=!*C zdA60TrGoW|6x+AtTqBJKL9Oh>=EVW@%8`&T0w&N1D zyE^x;rd>q2XG;A%8zou3(`y#lN-FO@!_TP*aHHRQC3TZ1&{AcQ0==G10X$rOBWU$mT7( zKnu{p9#>vKi}$i@i&r!jQx+%^0$;!s6^r_3?4`gu)(e14ewNG~fPkQpS9aZ+BqNV= z^jlABTkNw~=D!sCEK#;a7M^dMU9u4%mKj?ZX{u3mXJOXlqnBNmaMOm5YyyG|AKB!C z7(SKYmLwU03|Z&N%Cc*4B*{u9exAM6EA$4Bz*~JWLla(MVK#&WN@lAXl|;DN+-tCu zEdT1z1+U`4Sk>H!J<8p?V&y!x!Tp`eWB(e*fgEgG?(`^w{c9Zt%C3BpQ^8e!7$_|A zvQ3C8By@soi!3|;C~#PCt4LJp*;ACD*m($!^chJ^vP@D>A-sjQi<0m|i);)*hn7m# zIRYa`z57OZ$?F`c`C6=ck7yY0o}W3E8O8g$>?#mpMBgEGgi-TJ$(|Wn*6mESZ?9a{ zcJZV7h}0OOVLGNd!}#C$Pqf=iHTYkgP!-|7;OPf%b~NDGMP)s89^5UfwV5GYfJb-L zyzS^EGOaVU76wEr3K@s;67VEzOqg?6Y-Xx9l?98IxsnC!#R%-$5mICYS~C>`#a@Z# z;KCc5iWzm%4ls>c0~GKn1Ppex6+AEb@>>?fwVF`2LDL8&khtnC=nO3c3_qZu5i&Ih za|l7S?m*_gc=khX6FBgE$#aICr^L7iw9SP;{jQpS{rR5|H6#S?oi&!0p+nkG02?j~ z%?%>7M#ym0n|H|rL8O#e4wEGd(ukx>&qyG;#JXk0^3Mbd9?p>o6~#}o=Al@{xgQJN z(1*6ZfK*x%0;yT1%$cnx!K=Nb-pkk)*u2NKGqB_b;*zM<;S3acb4kh-E)V=Qgmb&*NlBvzE8SYtYb`eT8tg`;RwG^0s$ z&Kzkva$e#mHDf^nHWZ%Vinh)2JAJKVXPVK<#mP-;-Gf@_>pIUPE>>``j9^`5m6hJh zm6guCGJ~1kH6Yk&K-*K$X1saSN!LEUp2L|xKDfipm)&QT{hG>fCeQas;Im6O!(a8H#eXthpsdh7YqO?X=m)qk37YZwaQlrjW0^$F%c1_T?MWpq+4+x=$y>zB$7y=@9K|s+{CC(&6*<<|AzU0rn>l}J*hKZn;G?1qtUC+RGmpUJ}^-bfuW97S5+3a z9vf<=YqsTBW4ESRv${1Ni?zPoBp3RW*NdP24xnPGK)=_W#|E)t1fxZ|5I76@E~8!tUGjV(I4Fi-u2+Gh8cXS z-)Z#v;YYm(>K>5Q9~5vsJT=24IQ06>KE;6EBD~QJgMP3l!z061sKjj0|FQ8ykIikz zJyxBm_ZRvoIN&?LC%kbY9lPFPEAkDx&9xv|Hp9kjcXiPbRYUK zukXLA_FN%m3sa4Jd2>$) zf8#V8EiCRGautciACqSL>d^B)|29+YiEi!^?YG}*bZV`+>wo83^L_exsgK<0es{0d z?&42Vs!R53P5k%IU93dV{l2ePe!J5heW)9{`>;>{G%y6m+9m6@OL5ru7H|D6QC)aq z$U~u#@B_gk>3iy&O8muh-LaqiIqzcH=|8dhRgJ*(lONdiwZ=ZtLgA-K0~2zooid33 z^LhxvW53<)l7Du+B_v))EI}+Rz#RQ2@d?t+{F2HOyn>VQ{Rp$rtDP?=&hhKlpAKJ7 z4o?s9|4u(0wI)CHtNH|gxHx%@|9efo|Jpde8=9XD{QvRq?~LW&{x~0uV26UxBqs3_}ifIU0aS%zrO#{>wh|&7`<;F8dr@Y>)qSex7YU{&i?lHzI*+4 zdiTA1(R$ms`uz3W`dRPqnTx?vyT5(&@$LDf_ha$t$64?5Asw*cbieggYr7JR5OY>*<*q)g0-1pb_7tW{g z$%oVH{_*Vi>dTROzwCehVea+!`hRm~pFa*z>-X6udVStm{P=cv?SAclztg`@2Iut$ zI^cWf52T&_X#Du~>v3^%*`?db-_r}}1`8((Mn?C!ferQ|E3>L#^bX+bo<75 zb2YsCy?xQk}`te3h{5 zO{VeZMe|Trm1bx_h*3fU33ieYnvjG>kXG4UPtu#VDr@UqTkrar@)cS_5I2Y*1|o>K zfBqd@vm2n{xF7f9$KAg(xZ6&;6eI&(5uXBqJZ9&xi-qLc6w5dSou-$S4v2L9mPlxz zMzp9rYp>d?kq-42XyypI&9%KWK#Yi+wapmb8u^ZXuAL7Ad65!_G?ucv>RQ)g>+w_F}!K0JXJa6`5Zci^vui26Z4fotqY?YRXdf zpnjNX(MX=;dt$RL)8D3v0SH+g@wXE4J=DczLKoA8xJ)}|>Sxd`j9N_jOYPNPbTh{1^i#853m&c<3 zl*?I?#(V_MdV*N`Fx}p-6k!9J_;54?$85{Wi-sWB=ez`U$3e_c>}ssW7P#OO9D_z` z472LoEcC50OwDbU2?4t)hV!)!O~&kUJf54CWKU=8h%Yb!>lh8eBJm_rk^8V$_CZ7q65!fnP!9ny>ybgIBAw$Ph4Ot1}W zSx9H(@sgHKt^H`~!KmiTCcT3s3^pW0Ty;mSaX0L-nLXL-m5!!|^nA3)=PWyIht$$; zBUVD8yG9?%DxFfBE*FS>+MbK*mRMnsGcypZT_*gt%%`e|k0dle3YZgTUW+60aE(m- zetR%6_w9l+mQt52UASSnWyx}%-zJ_@%miOxWO1@C_gK`=tR)56)|f-XH8-IUa5ThQ zW2gsmxq!%|zN@5PXtz5%N|bgZw%h4&2ZEhWt&ci(ha*POx~nPJ7_awqU$8W!nX=VtaW z!1aVobz`~Qx~P-Eo(cE5BUPiubm`O9RO%`FUcAstOr1cTDJM4sl^hcXuI<_!gqmY! zq4K&O$Q`WYK+7{i)YBLV3i$1!07akSs} zI-vYrr`03Z>pkKs1T%zI0T)9n4mFpmzF4=QXolq=K?*?IS~$p3ZWTE_EL*lX+KlEy zUve>KmNbH`=>7S0VNJT|CfX^yl#H}xH{jcCdBdDFJWCJ7&aBf}bm+RFX||JwBgD&* zdfKo%;!%CE^-C8%&ra-JYSsR&jB6gM2zQwBDA=89 z3Yr}*A1?gquHL@<+n@a3HqB<|w`$X{uC^aF)UmD?#c}AFyCXL810*n%@clp4i|)fN zON--h7kc%MtloWtz+umR*R0|8M}(r@4;&Zi4I*?{w%6T-qB!k8ee#YmpD0*() zeWwt>XTC6x(9_Ss*>|V1$tQ#1yf%#~<3C>Q-WLcy?bz$BV@GMZrj#!>6+NlpTTB;^ zY((ePxkU*tS>HaH-Ai)xpKl-0w@wlLbVMVUQq-O7WKZXvH{`y3gI~at+?MCAhc7nC z#}WcRbt-#>$KA`WWVKE@y=YXD2G&P5ShT!pqQ_b)1I6K_mM!|!J-g9q*AYSKZJl%(n zVt0QZgYVtpY8DP(uJMbbYxaI!)CL3|xH~y3J~{~anWzo$(4eQBM&v0h?<`{DvR2>O zX8dAm?nl{8E>jV%@iujmpU$R#)>8j3zujnRIn$W0+O{7){kqBe4Yuhg0Yona1zeo0 z8xrp-?8>N#L+DlGbbn{qT40&Avu}MdHZ|i=_MgAv(Cw=4r}Y8fb;)%o*(o&ng_0k& z*?oA@yISJU1oQ*ACJ^;QX|gI|zoMv*IhMav(qs90OElaS`^4vbf8J2cRXkSmb7Lm| zdWFx`Gh_AEOupn4d^;8&ucls>%#RL&Fxl4A&X5m;G^mGxDYI<_~duoDu@le0Kt>YM=BSiZA6EKXQK-3elpKW??*n}TIwIKAS zT{(IW&vd_wd{-5VF8N6?y~n?;X+C;(wt4UOGAdISeCs7_Dz_V^JP zhwx8|AHkl+k2HaN-|-{AK7Qm}Mf0YTyid>%gnfj^M@2oi{VC4!`yTfQSm-WNgA4Cn6%lJ5wT?+B82N05O1 zfLOmPf&{H}x#W)~BUKDXlZIgEk0VI12|ibP9Z>3E zn3xco8J&%Q4G-(x_7EqtUL)9XH4-;;Hm4M0V9E;*C-of004zWg6y&I(g$$UIgOfl=)_oDES}~ zm=p^g77^2aZ#2{l1;Dd`7SD|c#)M*}jq>qWY$u#OM@n~lAjol%YuS8H7mxucFEmT* z4A>o*QX6%y^~VvyZGE6z&+~EZn=cN>$eMs?9a}@aYC+cP3ed!pb7V@g?WUJqUs`S9 z64-aZ)o5T0AjIAv*6o36T|H%Iuwl8qc)lBVQ@+e; zZd{IWa=wLKvrp^(f;bS&fk~g40F*uwJ$T@n5+5vc2OnpNYcJ#OVjFu_!on!fwRCC9 zWUIEJ?B~61G^>_;JnyzUy;9;hH=3aPCdNfoC`C1<(aP8iVu>O0ViacM>ClnMiDLn? zYD#c@V^ij!g>XzlS(9qKuYt*?-=0j?5XnyLZrLSyQ5c>gNSOX$OL%ml2>#HOMRU#U zxTv2+ODeL1)i~I-1`B!!5NRH^BtoBtM0j2QpkIq1A-aP-(-AA} zMB{skBj|oLi%*nB4&~*l>#>3rx^r8Ge0*goKCsyWDU6UI5(ox9+L!IM3Kee8m`#@@ zfdBzrN?ykrYse}Z3p-+sBDvUWVy!H!r?@;S?#dMg_4QzhsC@-CopHHW!s*BmT?FRx zP~2|z1Gqh{ify6vVv`3@^?2SvR`_65E&>LZ+$JQYKk~h?DC}(#9ks@kOMtUt1~!bq7$RL-fOwPd8;M z6%8yE6i~q_YH;&Xl}@1)PeW811uFn{n_SdaW_6qj{WL@+udhFxjP&04d4elx+3xK} zb)?9mp30a5Cug6m=I*J&eOk*#4lBxpH(WBSTJAdix;BUCo3js<)`c}hr}+v(i>12A zOb$${cI{G4CD@~2iyfjS(DS;@%m4Ook0VK%ZOI>n1P5NuzFdf|G=ugAD;(dJ~+41MB{3+XqvKZP9%hnKF1Wo8x8= zOk&2;ww?K!hZHfgRaPq!J*D#vNwnQ&lPp`|pxCMd%bj!u%9ltihjCO}l>}gDF})Fu zF4dbTt05$=tfW=Cy=kg=Gnp7^`()Qo=4L0wV_upY>!z0#G#_tCL61A5L|E|9v{zvG z7Ob>vU)`*FwgM_s+Tay0_PZ(9*HXAQo_pCG2N^U=S%z89gkd+HPgoQ?5M<)HA}%~~ z9JIQcosGpV-E|fV$ilW!%6g!|C?&Q`Bh}A0vKDoHKxn~7IEiTW<~c;ya8myqPHLBl zGflM7=pIg5WPydPNY=1OikS3svy{%XB*65fnY+n*W?cw zOLk8p6?eNJvvHrByHut4IZm|PIXjrUjIOopc~R|qT9Px+!=b0T$}Z_9d@o?Q)^dcK z0}!{vxrBO6Rs@rmdjmVrdD7uE-B$BuS4v=T74($p-h{`cG#FE1H!YGi2PF<|3|C}A zTa$r>`YoSd^(L&~v&KLJ=1uMk7s#@XqOZd4D3_Ab5$EiJ9Q5U z(!L}CgPB4+!clqB!4{lH1-(hR=6a$-IxUZH(4Tp}SnmDqtW_;kh5|HlWn;A-BfY2} zg<3zdgOuAL;$}jLSU!}oDF%bIx<>jD`BXC<2tLRRA@poif)87G?>;HSrLDWnw<$Rp z?HFFqrQx1g($j3%_3=iqH46yDPT!tb8NTdT!#0kYf0Atn^*cwtPYYEJKD4YpW5 z>H;PuaaOopv;@&FtzlUy11A;p1lR2M4SMnI?g~3_jjjsBj141`v9f8 zbWepfg3>@AH-eTfiogSCsfHtJ^yLU#)S%HN#G(Oc9-$}cUfipN zKnlewJ`ZV!{>$-V3IWgyAk`5UYT%PPrvBh7e2!faNP|tCV^`Qcc7+|jACW5%{ejgF zpTMiX!YBb^B=(J7U4veIgH+!j)i+3Wz0cE*261&$Z@g%hsmDis^AbokOSlP8cEnr~ z_6(}$V-B7s&OFMjzQPa0`GH_OloJYfCh**4d#>P)vtT`fb-9~#)4ehy$go($aPE>T zI5c5)Cv{Mo-c|pVk}cPo%^vF8qvx_h4EM%Dm{18aY@Y5w`wy|79N=e zEh`_7c#6@-W5F84Jyq*=pk(Rx+7bcETa4c-sbx5}sbfN$!u(cm+je+91l9{vq`Edc z>j6xYy0b56KIaVQGoTG^xY)s+J&;b^vaoqpg{HZ?H`?XWVbMgGL!=_nXr*bZ{)W&@ z*Ly24pJr3QHW)RNyaPecaOFYPig&xoX4cBkrPeP@7cQmA80rqt4LZ(7e%OKl3SAZn zBkQzGLQVqA^69!mX7edbPKf?KDR+L8@wIJFW(>;DskO6{A!@ZynQkz3cRfDhFr)2> z>lQi$VKu;Elo21G4!b%%=TEl~S{sfU813N4^1y@R()OAy1aa14M2ha>h2F9WXkiY= zLkY=vh6UYfOgh`1+oa*mhLp^6^T1m{P-{Z2WH>T%x}C3=<9u08_z?hQDN^iIRPJ;L$PQjo?|V2Mtb zP``sOcQcf0snjH1NpcoWixFYZyR<4reVh@a6=!BqgB(swRG|DGT$uB+-JUBsYW9+- z71@Zr_6otl4TvyzvaPL`?U7JM6g&&9%{Y~@V#QI6)8_%kiRsC_=+Fm(>|i})7M6yn z7}=>fCvu{<7ta*!i(W(z9f(eN$oc0=FQSJIL=8dlV_rl?CpAITsHcP@1ho5@7tu)u zYwsg6ha>^)mJVCwQ+%z-eD#g5{hsi(OA_!4;I%sH_H$;9W0W;|NJaWH%G%s(#`$^D z50anVB=PJym0HW!$GUx^Vh`2rIVwh8M8)t=K*ez6;J)<`6oVR^tU<-#ALs*zF8l}a z1QbJ%?*PGXQ0yBN>wJS^pX#}lrb?1GpjhW+P;5iyP|*?BXbZp*3Q=2oMMLMBp+z95 zEsw__$=Vhd4U6M=V286f>*njVwE{hVL;7uvE@6hitHm~G!XAaQa1DwL3PMS1P;6ow z&`>YXbx_*atl3C!x^f717%CO|mNdq)Y9iKMo!xIph5;z=0E%(SC~l!sX9g;s*&5A< zH7Ld#3NXmo9Cy;mMs&k=)@-D+sEjcvWN~^xk3ETKwJB^cHo7nvxd6P13rXCk{Q7(0H|oL1jMxU_hV0-LLSiztAyizce$0Vq~x*G_alH@5Q#k6>c^bIYt)4Nxthw zfxPN&h_G}<;8D}v`c*kmW+{P8GU$qN3b+*2m z6o8LCj!$ zixS?;`hHP5@=%aBb}yUnSsqE3kRN2M+m1K7CD5j!tT+c~K(YP_6hqX(1kP=!<_usGfT3XhxF?UD%B2Y}}72Q;0|X1WN9z2|_YlNLV_{J;TC=bGw7 z@Ph|5F@0OJ#M%w-NbsjG-q}Z}4F+#JpsD`W7LN{p^^ea6#J;ySzY52CCIf#{`%<0VF3Iw$Li zq<==`E{n@s;NdrqCD??28_Nk^Hg4@hb_yz1DY zTdyx(O@c{)uO`84o~UK=*(8`p8fQ5!@ly{xGtl3%dini(hXarDR^G;VMIUcGGF~w? zN4HEj03j&xueUc|fglXMn8x6V?TUoq`|O1nK^_(5O^jFdxPD~3B2F)T8?Syp#;c1W z@C&S0^#<%Sw|EeCf8N1!TfCRoM3+_N`&Xvt=bkmwQ+?(CQ%e^8$dXm-j|-M8;u9=c z81e&udIy%#ej6IP`7E`Zi>J8?wF)S)XdivdF-Y{MxhgHSg|w zLsolM8?tn?05o#GFtlw7YRkdBAq(4GG-Tn?LqpaY4$Y$>>)g9rFHmD06y;OzZps_( z*DAi(8J&gZS}b{T zCCP%OXc?0XdlHPbxk@sfR*@p696-yFmKr~vTVrYB4?7as z3_W1xdg*9Oq-x9A49vKdTE$HDS3%%=hCCX8<**oq<{~Y1vA1ytJI;f=08hJAxNRlt z&MH$wcQ-Q~0%{Ua?#9!$mG?VI#CLk|q94=AsEjSSLtr-B&rP|5V`aN7tyFx8T?p!b zU`S}<@$p^;!Uqpo>rFxZEGy@dP%!DtH6nJTMXt_9Qpom;X=BylEW`*@M^|`Q24PDGy zV`0hji!NQtr8w?!>!Wu!nk0z?umGL*K`Q1GR3Io+{3CgHhr$wOw+B1d)GwR`e69FP#m1v58NItiPkMcNt^Z3cc5at`^xiqg&A~LE($&|J)UOwxqxtz`I^nH0 z?W;wg{gMIW)^o~h1`L!u*;%f#PQb@&uSi|ZYV*Y5KmA}xI-ovAxXJt@w0kpA`Rnzf z^17w-MMd*Qa@7wrPCGShb-IycTQg3K*x4Rt^f!;wcj&aYo3{@q>%QC?=jS`WD9iQg z<(AgfSDWCEV+9Senpl1RfjzYPRUad`QEE7|!GI4hG&P4whBbvxfuiN39-#}kbF8*$CzqCRKyLILec`2KP}w|^Qt *Z0K&; zq<>5m;slPbZN93wtCh%U4*z^5@}ZKh>#+|Nb)6FVP*J}>CGr7wo>3y#JG=h#D3QCl z7Ti@^i91EpHeXh-mZq_099DDd>Tej|{aH)>yHA#-XR25U*o}()>&0F6Gv)qvSFs!> z+j{AJXJoo#+!t4w{z5&kaQb~%<;Skgue6nu+-Y~K zs*V-OFxZ$$a<|TcrYFPoT~*P{Fjse}=~oPBX;!gT*ITPOiz^PB-u`i?IH`Tb5WHL) z;j(mHe)yHG|akGbpes-eyIj0=j_)O}4H`(W2Fkk%R-~Y$8 z8sSBP@7u9FThe3T^bH0X;d)c%b%kAASL>Ho)z=%lU+3^yyVmEYB>eaP^LG8u+;~`D z7^HQq)ctA@Y;@Uct3jANpBg@6kiOZj`vpCA&G7z2FNbI9{+{vuLSZ*)&sXaNKVEA6 z?H_;tkFRWk>owe!h22)gJ*v!6%C6`8dg1#TdAKm_{{FwN7%Y#LwRpWSs>%GJH~j+_)ney%O@lV$eJ{;S6|_sf-i z4&r^L6W`R_Zx|Qd&tJM?_p8;z=KW1F43XzD{Liy=ea{qn)yfrq_kQu+Q|O1*XJ6uA z4;{Jx5(oR+Arg=B-oM=O;AiYvUaB7S0|Ai_Nyj_WAbxQ9GWM|pdLFD`-{2p(T};)@HS$U|Sh`~ewQyV zQ&azXJLYLM@BnLupy$`KH^Q1vGI?s4bG7h$PLTwnI84B`s6NP$1l%M;Qr)i?G9-0t zhHjW4sj57L{p%-WNP-Xys69B|o+1e%Dh`2Tf*c4x@pFp|N#H3%(lI~LU45x}>^no! zdom>5GB47let(b_$;eJQkA9{?syJPpzG?R9o3Rg0U+d&awXkds!jc|@B|Zp?-V|OR z2VOmV`g*s!uSb2!4|7uv4>!|C^=?1By9pjX1rZnuLT8UQ57e2PszUC+913oqv$hH9 zI$$u2A8L?<8)wyZHk-qb*wX1ue0NZ_buJ#@ME~ruIy)4jC3f@N;nsaMj-B)~W7Lf@ z9MxsYdqs=4$Fx=Tj5Q8VvhyT+RrBocFE>&pco@ncNRu1sp_;gm8>yZWpUs1Gp702G zd~^qSIG&?PcmzQY&$ImjK1g?TnpwWH9bJ*_$OtP1mN;d-Y&i_(-wyiZI}6fx7NqYi zNbksk1o_pnjonq(x)xiHkNW1NEJ$+}%%Q5SbFsZx?Rv9O797ZEt}LCXO9ztO8;mR}78Eot3)o-wt++3_MrWyT zDz7a1u{|);NuhPw0&K>z4ogy*t%uvrTva+NiC+!3aj-7*#eTia^IN~+~7*~EMV&U%6<`!Mb9k~kocoJ_qg=38rVjW+3QFwd2gWarDIYgv=c0NjZQ ztE^V|q`$$UVI=g&fImQ00-a(*!w03Vx!)rJzmM|57BJniZ7!hNQ*zHY*=NE+iGbx` z#m&H;Xf67yr7Rl2LYgEfzw<_UIGwfNPHtF9pgA)G(K0$AZF<$V!F-YHK4>nqjfSb} z-e^)&Eul%DngG<27d>#`nhqcIa|a#!1ZA7*q;!G_6;5&|TrDt4YT7_*31;nj@)5eINvbZe}iir$CA-`eF{770=@3wAWV1US~g!pnDwTeXTSlSW7w@i zSQ0be43-wiRS;Y*ny}Jz-QlFl6SIY8(%{Nj^Tn`&iQ1*>6=-Ysm7>t4$^N>~A2!-F zS6el6@~Sb6!`Bop%8s<@=qCYRQ_$d^v?(oLle5r6dM`qu{Nf@be;Z57*Az53d9C6o z9f)?O8gI$*JG+LjDQGYtZ6Zds@ZmSUCO?JwLp@>KtDJYdus>@^+C{M2nqFBjc*7c6<{37MNC+CxWS_;5yshO6LrR7rg~s@WA$?&;Ul>wS45?&M?Qyk|2t#rir!=Qp z)Ua((t*}8uUA1c!+p-mRJlnAJpx)GBB-?HFCf3-d@%I=K2CnF>Y`Qi-mO~7Qoi#ho zw#iJb+>+>pa0Q-kmqCggk37w(_LWt^$>y4s#gN2U$KtU8RWwwpjtefkS`9^1Gwb%C z>$uzk*r23qJ5;k*Gf=L~lhY8PA>o#`V$iY3abyV`nVrf)tO!W9H?CV7!_x`LY%f`^ zIaSs;T(2!l`SN@Yz>R6PED-%^XKkqjr~<~c9wIbi(FCg?=2o|zoWdI8a))zJcG7hg zbH|+VCR?NjHmc^#EU(pO`5J4=C`OJTWP&$IG}mfo5w55YfGIc*xxPECMFX7b)GLr1 zA&u#Rgyf25s9Q!KuPJ@dDRAg(%UW|V=CWYjdA01ph8QjdwYL_v?!;RdmL3T`v^oL8 z+`Y}s?0#2l7F3>VR~z;6knIBmU9ZZo`fIDE%;@4Pkwt1_yEcP`_LOK2A&VJ7trd`m z?Vi2mS2W!<2D6zF!e*G4**7*_r6Ys&UUdtJtj?E;7;F~$*j66!FxO_LB3~*|&9y*g zOM0IjZB}ZHRHtQPTO=?-D0>q&9Cm3cXmAeJXKhZB0jkbwkSG%)aN|yhVRuwfdj!6v z%Z`#?P^C>zo)z<(tdpyOYX)s^bvV~XO4G&=E-`|RaWoZ5s7}|fwV64wTlKj;D70XW zqk#(50;rM!(-mYbH;Ki1EUk0>tl^;9GQFDkihrtjZ3tI*Njy2_bSpqHE*G!u^>Y=f zxT)uXDX!p3V^}IRoqV&and4BgORc80DapiG(=A8rcNdV=wI=KQszeF-$)tnflNxWm z)(L`e^)6Mz!CAFvY8$aH(ee`3aR?w?*>mzez7;gsr>cyksRL~-)wXj7He?(h&l=NZ zqk~%t3p6HORBNIpz#2JW3v@ZyhS?H`5TylI$yrrY95*_hwgxQCu)%DVv?O?K+r5R| zF>QIGn;enb=CN%)zj06%&qG;=9|5F3D9}7GX&1YKtKbv|gRJ81DdHTPLGp5nlu<5d z5Uwy}o8yb4dKsP8srE8Qsinb;#aB3icH?n=KR1TNZ>u5nxGv(i#gI-B3<*w!A;CEG0-cAD(EJPXuJGCs zhU9N8Ul>v{3@NncFAV7mL;Avyl43|jOjju};W;FxDMH5>Qe}@J0W3XeHD^ACG}<0v zNEkC7utX8;7BQ@C<66JGqyVh}k88PRzOc%RA)vCE8Dvc`%Q(`<=j#S+<|ivn1DUC~ zHK{sVlKX_fb>P*a1ePm#hH^-d?+j?Sv?6?fYA~w9OR7K)N+1!c4Fo_sfDPHUIFjU! zqcRErY*$*#W>=)iR2`Jhh_fcFwLV17tf559QSB z=2TW1#F#-yus7mmzDQPG&?#xd0sl&yNPRH}z{!B2C*&M#H)&*oL*+3xfd~-E5gY^6 zXT23tDpYgfDo^KKaRG0EbrBRPQXnBj(U2wCU+S{7gp^jBm9wi?Eyvp4#F7L@bF0as zgzBV{U1D;p)^xdUofzN-U22BtLJ?z4FPhQ|Yq=rY-0QgW>Z-+B7g4%)qnjVj$W_~N zhs*w;Cze}`MEA-7>nbgQvS52_ui2GIkBsKLn+uN(b+`5YhAv8Om7`n(Hm6*7l$Tar zt6>Y8v8werqgiy8{Q?4kvvyCJ=%U{5tOq(}0qd@TxC-u0*KJ5$8exMP=nm&Ze>fX1 zL}S*-lT?8rD~5#jn_UZ`%MD~$z;uO09G5A{`TBTTbfJpVur>^+!1S`W#ru*%^lDqu z4H~o>xZ5L}WC_<)tV=<#-gC2^vdo*L#E(i?XCcs22sd%2*+*7O1Xd^gjayK19s9yL zq-K*4gk}IZT|9?`*IJ=>Dl}GAdiGjJ?9!NrLNLHnLsO(%0wGwPoBOv>@wzNd4O5lB_n4E%?g*bdnmpfn&TCR0h8&f-*&c>o@5V4#k!6cCzU}j zYqr;{I9+kn#-hVjZoiIO=(VQ`jud7+PmCiu z-!qO*Ix@~&;I+#Yw^zaUtL#hQ4D-c_6D&l<2+d_1-U#b059mm)8WY)ASwX!Y%K| z{}6*nP2`oJLGWfyHPVXzJBAgXAriWQK_r-;*i|@@2Qt5WH1OmkrIE2os?GI^0)8Kz ze5BX$i5~9hb&#O$S8Tq6So`bO7P4E+`&DRuBer@MIzixdp%aAfCN#;~K2z)z!|R@N zTR)!a=SZSmV0$ypCT!QB`_=<`hE3>-u5V24blE^7o_**oj5T1^NEI!Q?^we?t z~zzWeZ3-XN3V0UAhHWgl6Zw%d*cLQ%iUw9BlmNS&yNvGr7IYFSrOpJg;L24 z=a3sQa=va|w)V(ykn4Ci3x%D6JcHppfI;{$jEP*LA6fqi47$1O_QD|^sBW}!CoM-7 zkM#QnTkFRrKS~5#$5nZ$nZrmTQXg(z^e4ue|6~M<0S(|z9WE0rLNF4L2<{#@B1lB> z_xy{;{E8S5&CiI3;-C9F21L>`!g+XKmSCu>W z4WtlKbo;h*#AUuGdpy5mA0)`g2ln!(sVtOee~GG<5%J`Ytb6l6pHJjZKg*FG;n79I zU@**%qpUe}f`3^vzjTaaV+L{PY$<{t5FsYlp~EHKGw{dH&u@{S9}$>e!$-)^mGqRzIe}zvGvOb6Dg$(sI+)1-l#~MwsD6@As3%kO3Bdbqt9D@cW?i zL=1`Trz=?$ck6O9@kq8o?A@yg82yk)oc7hb(!n1*vGd*a3tz`Dt%n}CIdC(lj|-ji z0LjISS^7Q2gaoDEAJx^#ir9DT?_K@rmq+#4d)#y`EJIuhKVfO@e+`w4(Pb)E!s~Gg zUq5i+Qk5!?R~0>_ok_O6eAE`@eBY>&CO*>tXL!L;SDqDQj7i4--J9HutEhsK5qLc_ zmNK5YdV92(QT5>O8t?jFo%6OGJZtDL2aV^V0+(CY1B(~9?4$pKBocTFT@NFZnqkFQ zhJ8w#%t~W)lmhJbQaNuTRl%4q3_YF`O4VyTb4}INLg8)cFolZl?c=fVJG#770}HPL zNO8P*s{ZWd{9%j6$8xW!x^noLq(4eMVg*epHpJZ{?_b9S(|TH}IM$J3uFnW{@+{56 zgo+ywr62z#h5G)_fBf6QMeL>@F^<=Kv$uHA22WV(7y?j*Lgi_RqgZU9q}6_v?#K-)sfcOMWG} zmP9@GYiwWiz~zezm)%3Y&!Z$!GR6Yg9=*(SLz8}=SYdkg#B#=pa2_pOg0$n|mZByb z+i6jLOD9WY78@IXnYNwqcI zT0|M~eH8uX*Yf}K)2P#ZCOgWAKgVPz_CrzB3rBYfj*qS!$pO5e$s{?gF281e&3pqh zzo*lh*BBof6EaD+?liQj&o7q%#W>n z{vNgo;h3aHGKz7+W-!(Jr#LS@()Hy1-J9q*seQWs;=LM3*H?n~*y%b<_#*ppClEf1 zR>n(F)Agn5Kj8$<)wL7v?R>iaTvgK^*4g-R;}X@$M6w=f&lAgtI#~SWjj!(TC-=tw znUjTQ<=@PA!mDg$?Glp)f+3z)4^q*a(T5eRkAGPmI zj!Q%P^(Eu4k2hQXd8#|F&6&K(&gh1du_VEmdvh#G;%^ygEl3N;KkX&(w&b4$^EQUS z>Vm^H8Sj}Gw*S%ezZ<$1$2A5wCX%_1YbA1w=aMJZw*LTmd~<#-i6*g*<~=|lRbNS# z{bcJlH$=(vL-NaWiB(<2I)U|&)q5^^93|Gv=?6&U?*wtMlLv_8U%&Ffx+j|{QJSc_ z_l@V0D%iQ7Y^H3*SZYtUu{_(>8wSizCDZ8^cagdH5-0lnke%?FZS3zHyrmGnIfc>Z z-1~>+B>{dNucgNO|Ic_|_QF+#*JbZ{SM`a}{ZAH}mkvAobVHr*qzlsq|IfT0_>Rod z3we*yqR2!745^`Rkw{dBWui#es|VfZP9+fUT7KWa$+u-6$@6ki`S7iYkPq`=LgGbF zmG&oV-W2OCABJ}Kp${|O{X3dnoBNsXI=tn0UsFZ@Ms2VPVNJTXwSnPXd#4`>67Hi% zb_6c_52}GE`##S8X*Z_*O0IdooL~&AN_AbtFU0hyzQ%qj#u%LijMg`GK*t>Shuo5p z3Z9O0_xOr@%y)8o+RdHlAK%^=EtTKBtAB6Xd)<#5*#ih@&l>010hNuV<-2lPa{n5Z zd-etFUq=330WLNg^*+}J$s&~Na@!xY?;ghjQwOHW;GVJ%-@UTg|N*L}T7R+)Z~1lS*YecQ=%KYRP-y!ABUuoo)P5>|Z9}$~XBi z#*5VLTa%)uzgzpW=yv+7Du(dTEp;2+5m7%HN`)SpPfLhg z#gDo}_uMK|CXgFz{6i=Hb7}k)`zTRqedEm-`{=F7vM&)LLeND5R21Lm)yI^HHw-R6 zb*8q%ejc2ueGuXb@_jhn{(ipYtEm=mmwsu6{AUz8bZyV~7}UuGC3-kfC9{$_qUipB z7Z?Bms8A@N7zSVOp&rQ?AW{u>1V*`M=|^lzCrX3D=<3ZhR>z2_wW;qV~ZwM&}Z z_x(Qr00960?0s2sy9L2!bRe5P$%1(^t)$ z;eF2h^jFW{%oXM+?*em$i3k7`7Z89Wz#y5W*VdIH350uic=#3`?&)v;ksckI*XFnX z7#-T*&J|7Oa)aRm;<<&9xp7}556NHm3{$pbb13h9I}lPlmk8z#(+T1sR}=q{ z&E5TZl{?HJ%FGRp{%hc;4Q?dl4h_*1PupMj3faO@qui+Mk#B8zY~yc>?*GuYho+^p zZ@=#Gd`>7b*wC%7dznnhBcS)_2Z2>IQ}jqtz>nh(w*wV@A&*7L9bVDe_$M^t*S(xG5|pHv zRPGD$*MnwDEi#nAN8%_7Zd!(!Uz}7%Oi-%faRQi?mR{L)(`%M6`@4(!-Bs=&lPLO& zLVK;~f8AZmyR4ru^>>)>*UmT*42E?+7HKT*zR zi!ND~wQo!A=q6f^Y~EA9KDt;O*t!E_Q59nXDBT|VB=DKdX=W~$q$Z2SiH-{Vb?tK` z+jb*Mt7$~&2yG4+1I8Id@{d@G4*OB1VYgU`oMCAG`e?q z(9zdDA(P4R7~dZHJ73BX>m5IEA>x5;-9W?6geeLo@~NfUw%$h=IUgN)SI9Uc$zoeJ z(Z@mwf9&YGjX#z%gjC&uO+LDSBwfXGcjZDc<9QFx)ILOC;L02&yfQ&9;j-w@IDxvT z3%V%OgJyPw3A#RK_XMpJnv2I(?lUc2f9;Fr>zyr{HhNS+fO9;FZ)sv5P57txMAl;$ z|5pmWuL$$6G>F3VV66PfjnTO~w=p(UQ4?)N*8*h5l50vpQ>mm-Z+F3Z3tU_r7}y-! zmR+-F1=m(gMN~hu1c+-h33KhNQB^FsJm=yatinFHdTtft8%B!^;1V%WyC(=eKFEAw zft*WkxVF7MsoXX0qVJCET18*j?hp#DMLWxTLYDXT`z%-4-_GR8NH^Pnr76Z=2>TmC z5dex}&Fyb?53(DmK($3%WCg3G>e6cp0BzB!1wp&iS&1*WST2}oLimtswG_=5 z*vuA8V+D!fPJRW8!vvJ3pGKM)@f$vYncwm0AoYXKW|LGu5mn5hd82IByb1T(lQnMy zh{Ey39`3h_zxA7TO9t zmdNh@$Nu)Ozy4XlSpwRiFPn-4-2?HkT#e8=VCfwIBr5$)mirF?G>Q~4L_>&eM>Q|< zoCSd9om#|#1~a(mv+P3kx2UT6NN%U*#z+SVE*yXQRN-#qjF}40KveiTkPBDgb;YuD zbr2Fh^j8bvXG}>c@(3{%Qx>JASp@D0%>A2H=6Iiw%&2UEAnc(6aK;*I> z73M=Q(bja4#sZZ@_9g#10m1@5bg+mTO)&#^%8rUk-%#bgjE}^+?0{Ojts4-*O$SdB zRcWA-BNFQiGpMj210AgP-(km(M2qXnnrw=y@-DYITjz)&^o3J2PHeXoj1Bo#n{eXW zK-LEqXBo1j$krDQ(MM^cpW0kkoPM3+nmUJwhuMFiSUu+{h+#=_j)v?w4H6il0)-|G zGMK4={nnN{NR=_0oC0D(hMPJTsNTeoO=JqZqH#n`>gnd}p>dYvQ1=ke>gEKQ1bd4} zw20Xt>8fsei16rtM@Nemlm98y6gp_!gvksHr&GZq=O00rgcF6 zghYU(il$;uzHkUt=bk;nmXkz{YsuWeLZe`1v`4k)ae91Moq|+dzRV z8Wpq=nwbeUt@nmjH#e;knh84ayBGBN(E_P!TdQYV2%Jl zyFbNj?V2z%j0%?2lluyCAz6{Lqnmx?tumV*Fpxq83ur!5!E${NF6_u_2`bguPJduQ zVxw3Ifx>46T3cW2e6 zP6RWEKwE*1Lu_4SMy^j#@!czz47+LPj=%ud@Y8LCYxw&Mn1-J<$HsI~*0`)5G=sC~8x|i8Zy?9ROF#?d zZ~x6o&u~HS{_C%Qo=!y~U~8@84sQ^iFehvsi5Ky=(IR%_b>>@rexvxlyBMA5>r| z80ODS6E$#Nn^w6IRy_P|u=V;466uOCTmB7x^VxF85Z*}yObrdA9GYSjj zTze(RB8yOT+286}2fpE95qz(){Zk&}@hl{6f(&wh)wf2x{p3yXbY@OeqHpG;%Ov}4 z<`|cGaD_1p&%4ayB=(A07mfXOFYi@{3fVXQLLeDN4tgJ%aln(cbp+OfFhpMuwi-d$ z5ie`(fTzNnIpA3oZ{dS&nyj!4N7mT&kO0P+DGE&T zVUAwAz1{l-lz7YV;>94wQ>>XJ9Ih`;ruQLS*(!6k z(*L+sLGpo|tBZQayJw-OO3PFReNNIf%NA$Shg>)_M^1G944oC|Pm^R&ihJm=7Mzf^ z9CPo{oxM<*=znqxk+XD=my~q1c^@yy5iCni5cxJ_J{Wc92_FJ3NU#WgWXO8L2VBc3 zNQ8X=9~5#DLRaT|Qz=D>x(z|YARqV=RyS%b)?N^bFds8KAuVacZkw@-#vhx;GR9qd z)+oa6=QC$Q2y#j7-{4FB0x9zo_mY3`bT2Cxjrz~V)AeoR?(X#Ja(xv5Si3pUssU?Z zG`K?cDZrc#Qp$8K9@ZVsPAGt#R0JbLeaE>-nlQ(#IacE?0y|j`zroEAyLjy*g zo2;>mbBUKBdPC^34{HRs+aw3B?iz2)1RzO$?BnKMu(L5?5p3orFf@YAoGU>Q><#Rh zC{f$F(bKC{x&Kv#-*Epcmla&hlk0y~;gjxv6>VZ5&n4sZ>LXPraDp6i zU9w&Um-)iFjj@R9r9zm3X&F5FI(W>W1$FjKn22&8i(^xS2?#o%l4yu6qz`O`AyB&q z$~32|btZ#~;?qqGY@X0D%)nG&)sR`16s0Sa>Xmy2_lu;;1&@*F7JG)IwluE2F;n!J z6D?eOP%@R4+~!&nuG!O(u$MJU$2AJu+%>W-dIR(o_gjYN`7a#$Z|?ULcZ7Aq7hFNZ z!lY9=6Q48t8OskaO{$I*o`K1%1qSR61{EmSexL&7F$*hrLlIe03|9@b@90{jumaRq zNC9wW6lBKsT@h3{m#S%|ua#hbW4G~0F(XNVY9T6^G3wP*!5fLp_W4Xz{J96xL7o|1 zQ`u#g^J7M#-dA9=c34C9lGAnFza_gMIIi7Bd$Lz}y8emOJ=vW|NhC}++~3aQm&mSr zu7tVRTm8(6mc*doA(dby{U}%g1NW++n;IyBO$7?ttAYv`C^v;p>w@$v6{t8>7O4Q< zvE@Zj?17Fwyj*T(+z&eZrQFg0NS+dj2g&U$z-nf3T0?wFN9vtM#Umd(jf;{05P#v= zfr4)WI)KwAA}MAdSr+Ekk=dtcu)^I`06)Th?B)p16^RRqWo>?9x-w)GW}vztr=KpE z-xon*k_r}#ggY}WO@|zq(ZTA8Lv{x}EH^WAy=K|a13D^jipD9n#o@G-Ke+3Y+eYK2 z#)-Bq_YL&5t#ch5lECLe_z~}3r>a;sJ{=;dKNdGq>>fF4!hh%kn>;gZxaG_!#o;U# z$h_!|$~0!6>|Ttr2XTSP@GK3=$$^gD>3|`d?s#HYgFd|V9o@+>yY(AbF>cexo)^1K z04%;m2P`9k`Y_UE4uLw+(ZQPX|MoIJWwsLdHXmJT4QOf%iz`wZcED@7bjC5rN!yuZ zp=pO2EVwwKm704j9dwRV*yuSD&N+>Bjx?JB>YO&>Svn{L(Roo)e|zl78epB0PexwC zi1c#pOkj311H8~GC_|+^0EKaqFBiImSG=Sy1_X}E>JSlXWsW*o&%2NBr$nF^Ly{EivG82X=@n*CpLO?X+% z*fbpKumexJ&4ydSqW>ty^ahN3{vfIo|KxA~@kvkG8NK3Pw9@bDv-O2MxBzRNRgY$f z#jeH?RdNmRdM9008Sr)|eHtvg93{k?T}=T+Hs}Dd0tAd=(q*SYgdtU;7t1`@I2HV; zAi`{_-C)DG&Mys6|7RUv*DbS5ionchCr%QHcG9L5mlgb-dkqxfwW>^qMe2082lZZm zc30B{Oc$$)(Aiy|RPGvgkU3(lz!7ncZ>pkscy*y^QJHr9SY;CSM#;u0HeIU$=Av5f5%CVDGo7iRW;L)xKM_*$bDTIM71HF1GUDuNBkqkNuq5{{K z?Vbp4@f8;wEbE;Ll&T=X4S_~i-9ofM?c(XKn6R^yfps+48I{?E?V&+vUOA|@-k5T}E3yKolQ25VFD?oadSTagM@lJN3U z^+|U;-&X`uF=FYJ{QN7kRVm%VvOYg~RY_gS!)pmrln9B+4u+|>RC(bTE07y-4UNs! zwkUcubzV-ga3yAzEiYV&*&f6GsD8mk$YErAN%K{njC7NcC9tC9o#5SE0=rb;cVJCR zS#tk_a;Aw3q;KQ=a_Vm&s*7OXh$f!!4r6BM<6PBDNaKo zCaYc{a&YMtay;Z8zi~UM`Tax!Dbv-sl~vJZbxctFJJpSbb_y;txD!Y+ zv{Pfj=3b-FrHQ#AtGV8Zywh=KXX^E{@5vjDoeqbfHY&9y zA|89%xmNgkX_w1|#W^WxcUO6cu8zatERts(ouC~Yf~GW+c=FRpu@73(ZDWO~$N~Gi zCbbm7r%6JXB}u`l_jl`K)O9SL%cy?(G)ex2kDpp3<7y3#6?2jfc_?51&HA()B}`vv zpB66)6pATHOJWnj@X%QmMI$1{iK1PfHh(m3o$2{MOstNjkel1c*Z&pVk!JaofGn%k z&4h)8Ot0CWT(fI-Tg3Mb9706i*CcqkIljw#!An;tBo}BSA=Yhg{_FS?u3XAFr}dF? zs1%EHW2!SZ;5hUxPRPM!ft_4p&Z)enNC%3p9Vi--T29I(hl$mf(P!uWA&%T%EB3o= za^l-S)&~~X*W0o>uONc;4PAjoU|tw~6}DN1TCs7KUr2h^&?d_iwn&U7%T&-{bxWy0 zVWwv{FO3-};H?TOSl+oEGl2Mf5CV*7$#}rrSCoYvZxDf(YWr8v20DFIv>5dismBZ& z!<`x9-WVNI!7h${ZqI-e0%8?F;L#QQHT5nsNtnUAKDoWYDnG>xVqLaHMcvjaT`b%8 zB-2LT|7UP>`OoUxK16hU0A}!rufcA1G2*4Wuxge*FeOlkkPaTOgd^PrbfBX|Ct{ch z5dUXG3hpe}vHoLx7`Gu71*u%rk~xwyh|B9-tAlkAv0KdB_KI(Aq#N!CpX*AT@Lt_OscfyU$p$+ zsy(`tc(Ro5yqcFc+d;kTv5E6?k`dCR8?G-S?{18_n5T0*GCF*bJQB2!lnI<<4JkGS zNu*18^fA>@glvvko(LT@=%5V8V*~gtd~81!4+IHkda4QXhe=K^sYDVG5-w9Lpc3H} z6nbQmbb}e6eM3$HoU?>XjvNw%o+UU3m);qtP;$?rXtvo7Z!lNyZqEi2lH6b=SB8$f zF9gqQflqjCGd@UQGY1Uc#}v^5-JN(MV<(7fn**8j#`>iYVZjpWgRAFOF}^Fc$N=75(Ihoo>_`I(ICD(E86FaER0y)>#2?}0Bh*SGpOyOR7 zvc&wyZvijjoRi?!n~MuJxYB@A z>yg{mSAr!=q7X+te3-y&g7~J|P_ZH1QmEiby4>j~l7beJ8A%NjU&@0RJyhU8iH%f{ zV1^?VD1BhVY;QWQ1o;$Hpe#vLzq_``x+M=pXzEI=gX|h$DXG{WBGv z=jh6iBoR}evS-9g{-JiL{~iA@XDoE1V}A@HaC9@wZ<$@QmF~!j(SJuaa)m=g9*~y8 zA-ownxz*AX**I-Q5^W^mh<5bXjE4Wajy2}>7w6kPLmaEmNPfOwP2MP2`1V7AX-=)Igm$ch&XsMhYbvRyFW-{x;`Z$ z_uK>NAVZ9tU#wW~s5S*L)0aPZ5ehNfSey55h!Pk>0g*|dz?k;3|;FM`DEg*O3F|^k=-a>p_u10Jgy|%l6z>5bzQ>O-8q~hD7VQw zsyIO&&8b$CRh9gPj7xoVHIz+NG{_et1FfHfm$R-#K9kGis3QJBZYyMA-LLa_M#kY3 zFK$erOz?j(rH$!n%E=VnBNJCRHpH&%yo{c>>U1pG{#MB61fH}jBqBF}phLf)_}*$wAGl}s1& zE?N%q-`2;}M+lQkU6Y+pZC$!HIehIxC?PI&E^uIGZs}tVf8{(TT@H`&3>4`I7emDy zCLWSGx!;_l#k8t4^cjl*=>l6rDqv{JeuYv?z$9r~h;KAPRM%Wr)(o#FXH zx-TlEw+5bk5HMO0GegyJHQ0fvEDhCHBvZHaj-8V9ep<(I204ur?$9^_PyRAYU6L&e zjege?4Toi{!;ytW5c&hn;0|q5&K_6wu~X4qM1p}3$(iKz8RrFy{3RZaJ7ypMi-0aL zt%$i`H4CIa-Zf0iK9==9hyVDxXCl5J@WtV|Wjl|0kGQBf(D7gPxHTr?75zIE8_Pl! z?Xp^9eRumENs0T+%}L6cGp!YR-MLic$v}Tu>8rz*H2M5USkEXgKKcfKGfOH$PM3)2 zuNKk_xG=kkrI__L5KS2gyHm}Pl(zSW>HX1~eq*aOoor*ga++R2N}{8X)%zIN{Xn=b zJ;&CwpPfDBh)#m=RMMxX`hchgq@&fAD3P`Rh9aTa3=b{L-DH{lWG@yQv$BHI5nb_@ zKgYNb_fHEkDq2H(VxZOgH}^|B!y^r7VFijrqbuhQ#g?V316%$BtG`4356o2uqN;Q? zq7eV+izd>82jthhkWcY>WBR478;3a|Rl;A5l(yYFETjbdp+{8Ep}?cR-w%-Lk;jJz z*?dXJ<#_&&p<*d5MOEy{A^B64|L9x#0bZ;Fg5IICVjtgPm51mcJ81AeKVVe+z9%PI zzP~uN_1&L5avUI1EANP@MD>F*D;_xTl+7VlUh_{O1!^nO%0axJKZd|$|6_RIP@k+g zZVP}Hw%ZxweDtq-_YJFFt=?3s-O6bN{qOXqmg&ALcj+$raMh@y|2FaWkNoAZrQNFN z|2q#S>gdPQW&2#~*{$z)w>S62`bD*R^zZ*RuKZEvU!+mz^zr+Bp?Fj2s)gq>{*JHd zC&$&-=J@RV$MHDdJnju&@>iK-{_ghiQh!euOWL43lE$w`7sr>~!rS2H?YwYXAp`PO z{<)x-`Jr7_>%#X@wSGFfy7+!}Vw|XkSty@%+9xlQ@m=3k?mEx!`}cR+QO^c`_fhBwtZ>8)biu{QQ4>snv>^hHQ!PS zt(%-R(Z6TA<;NR-f)vjAdpCd9u05$|=PyI)u~g2I0q^dw-kwI-!B}taJSRQ}(;sI=L90 zYu{BeVC&@S_4VTDZS-Eb=neMk!{_VU&eO3t8Y?eNW&edg9vUZB{aNW>h>!g9B-1f7 z7rE=|g=V(yTj`r}PEB{xy$eNnyLB*pIL%mBcH#bex4r*Esdqb_^OF2}q#oV1h7Y{1 z=NheA@BMh3>y(dg+pSFgJrg+P1&CA9^_NAbgJMzuD zsSAp;%8wNxchuj%DT#tu+OG}=>2|t((aL;(&JUF9R_{3dYHK;^?f5<|n^{8|j%usu zOa?r?sgIv(ou_`KQK{4#b-X|Dk3UYnzn^FBCoTSV_&mwyT8|U!-Z~m&5Uqzd>F4W_ zQaI0^*4nkq#Z}|!37Lk@fX}_*P4VX9{_*+k@=^SLc4nTumkXEo-^cw-rd&C{z1Qw@ z*}?UrUB2q{Dkn<$wk}@XPVVp3UN?7~sTb|z^zePWe|2oGGM*azPWzwJsw?E2U@8v^rXg7JJYI2lb1&RWxrWXXSJbv z+wKfo{mT*Jr|WdOGOFI(jV>BTmCA9Yf;V@iS2=%krhM}-B;V9AA6Bq%sJ=?t#qh^* zIom=TzO7&$9ACVY?7`@za&y~hpQcYQ1hu8t`#HH{XpNgU+juZUy+;OodTJWu#--AD zF4tSNdU-!@3<}rhZzndNf6e4hGR4#LvYpGlzSLT^e)UvsUmc5G6=@LrwNe_L+&;Vs zFKWG3&zjC&{xP_`ee0durqO))aa(>ndhMKk=Z#u}KYNm{3TE{!JGn1Qy|G;E%5Qe< zrv(ODtA+?H=Fx!H)FAVr%C0@|V!Ec&rF!M4dS1CXwJQ-cBN-6?G5^16>n2kkw2vPK?W6L&{8UvX zfgi}nf`z0@wW9Eqxz(+|lutY9$LWA7SzT*s*z*zk{-`|p@i=}zpXABEz5`w#N#D!z zbLD0#zAn)Bx#a=7Xm-c96KPUbFZ$(1D|4|LOT>ei{iaj?;KBL-mAV(+ps%fLdm!~6 zGQ?UybgkYzlV=bC8k-xX{_dW-PX6u#u{0 z$iqff^%wGg#QFI2bYglsQ>vnu1fGNyILBlhyKxjetm{HJqY$S8dmSIH2L7}hsPYRD zwid7q2~ICuHQ+w(0B~+{KBwuLHR<#UTHeNLNyeH{~4VN^Asg{65CaYhy`{+Aoi9|qJLRn;y?<3%d*Z`Z;FR2 zKeiY{P=Tq<#t^x+TqYd= zCcLTC;3)hPV^~OjaMFE>KF|#hg3fn>Ug(6q@zCfBg3&d@p-wt1ke*Gz`?ryj4nJ?) z22T!pd1~PrE{-&ZhNee~s^V5;UPxMQ|3Qs+XY~avDjY4@#(ma>6hC`MEdX0z9ThL_GMxW=j92)3jXWl{EAYh09_Zv8pcaRd$By1u(DaZ0q*7i7)bd@kq+Zo=q@K-(Gc95NW#l5oF(RDi# z2JNBezK*O>&&BSe&9s>Y(kPTA1RR zJ&uClDx?8~@3FN+ zkf5c42Q2wU1xvzr0u{~T*nw1K(P9Qn2id7qpu!Bggx76gs0;m5)(6i2*-PXQ2HIQ; z7%XM>0U3SqbS;Jz7>*HyU7{7xj%oSLqGc%dyKJV~f#mWZi#`)A6uTJmk-<{7bx@H` z1{i7jmT|jlRBjhiq6RUH7$5|d>kLqGr2m$&H|%Z>6Jb8sG7?Fmwsk_lQu-tzV5_k5 z9}$U$AlnPM&$z5G_K2f{E-fY>)7wP}wzlX%Yuv7@w}nGsf8y&V7nW!@%W%HYHrVmh z>L3f`cq-{m)WGl+X;uJ@UXkaf(JS&PM)YcjGqRlItAL>vMGKXiHN-hyjDW468=H;} ztO&|7w!thwG#9pI1=NcUvx0}S^H{-ZF$>ywadk)|3kracZ5yEbdm3c|aRvVr( z5yy-t&2ZboQ=+NhtuS`kv}N&sex_GTOxJmx*{l9I|H*+G>19p3|U(CB~>i;CT*R+U$o;q+{s87NqA zj7}Q6{xw5@%s{b|i`OT&jmAxl6}%PRjfNY5b`(`c-c1L)S(c3cYsxY=qjSG-SSV1t zUI%?VADr6^!O-HIO^Yvox136Y`DB8UoW#sDOdOAiF}r z58IX%#J>0nGA5~jX%MAA1*xrc+}Z@pmQDjeqPXV3lpkmBZ9;NR=qL#}k*AX(u#ghf zs)?k9DYLD{TI@5M7*n~=u{9fG8-$cWTu`o5G%IM;E&v6msk%=X$ccnyNm0!VjICKVTrM2IY-lP_&p{C`Kb zJn8kWbRcSowsQ}Mo*AehEku{nWr5D5KC^?DAt8yvD(jG3>QvdKAUjcE&`~1YqQUJx z+6l%o{OEv=6uZX^7?EM@RxoZiLu!KRAcKhxUQZkuJ%4e1}?6op#mCofip?Vm=4QMgrxadOn>(uCdG`bIH8sqFsRi;$E7jFH|3>4 zu=u8==w?Kl+s^<3o2KqSY>`6+6lg9|!2;eQqk`3!MGcJxto}y@5|-yi1q!$&s9;@_ zI#uizPH)R^QmQ0j*<&Y_NVVuAnB}jJSI?VP;6q^6D zEm;x=D=x9Gz{01B6DyVOzOw$BeDvEV6uTHT`50j3RU6$dtUyT=4DgXvxeqk#Sa6iw zQ8d_90Q$WciWM~A#sH?1!zF;q~g1g9DxVNQ$d=q4v>oU65P)k95|ajODb=WsG4zQ}{yWQJVS zX+=TSaT7w#`S~4_4!Wsb-)tcQXW3&FA|Tx_mZ}Q4Evx)rAveC4UU6Gi`BfVrEad+a zIS!xF9)7WzD)$d~ubB!K^jb4TirgyMuvB9q6P>{^-)^qPg5YtNi+V_rh0$zpnz>nf zyTO~Q-BR6uT$;4hM~-wuBLzB~?r9&D575u2gn7{exg06T;Wk(si_<60#fd(^yT$pb zqm1SD^v9a4suv=Gg}3Pvtm#0cI_IjN@v_a0g~6iT%&D}^b2XXcj z`LU*}gT6NN``j0reo_^+wu^$MKX{*}I84cQY$|R1XBYj8#&9q% zg@SWmb@6K<=lgU;-Y1tUF+u&9!F|qm>mIFDH#NnUDqkarT~jnjl~}(G?DPdB^+7V( zY026Z9oOB$v>rQr)S;C~c`0|!e!b=vB;I0n;Bvz`M-C7Q22dR{ERgD1JmVdqdVB&e zrV@PP=Ue7QBQM$cQ2OHO>=akKT`}EyO+MzTKgsbE5&VSf)8>!HZ4BZU-6oz3>IVzN zI|CWyE<{&+4liW0JEambL$F~OWx24Kxjy>=zFbbHQ@`p)D@=^0(nns(r99$p^}eXh z(tqBla0yOiIiYk^#j&ano-@b_#ZmBl(Bu_I7H`T;Z!v+O?d>rlhJSUCMJ`u(Zbd8pm zHIv8hA0DX71MfAgPCmX`T)R1<5s6Nw7g2rWR%uvgkX7o#i)pMueXO@JM#OD4(;nk* zqCVDJ6E#_~C#XI$%+v>6xzSDVwWB^t(*R%``d*6raR`h9FHi!nx9sWq2%IT;LEAV4 zuBr2SI3j^@91Kd}^`2I&k-!iRUNUp|6kjalV-oHL(wM|ac9F(HZsGXzLkjSva&De}Axl7YW9lHA$_n|C z9OPv!LR>zoi?iPN90R)C+YnZbwcJ@R^C7~XS|)FR`-=Z@o-%!juuQ{M_KP!!3zA_V zkG!#60S^NE7x%<++ZR7wP4)ymu`DZ3EVq4;(lEZ>{y?5z-;L14i($NxH>yIj6-0`gQrZPkc&g(7+y=BF4J;zG=?0CfC9M5%80Fq zrS1fI<9Iart%#Y%An&T#pQSqcP-Qaf!rPT=*{*h2uyGx)9@TQW!CDIhTo3u_{&s zf-dN|F%nZA-{w+a8aO~$n?h-*itAMU1XdE}H^qFV5nxJuhRS*6qFQHlcvSjK zlnfwf4F9M6nJ5`R&=?L&`7=>6*)3oG|LlENlHFf%EWpelA%W?L5t5b%g__izsv;qjFy zc^sja7%a?JrsQ#iUSO~=*Lg;NQG?}}B9DN?RM|CH@cS7o;adBLFYG?Dr@;pfFE&F8rAY{;Py&n5R1d{#*oK#li6F zMMu|NVzOM9k@;n^>>>2466SG)USzU-Rl+=u&`V5~>%5phlgR=;MEw||*z4S5`?_Zz z4bg78ZOwtx@tXd~=+l<(XtD#wA3Y}?811&c`2@sA&9k@qPXuXSwQZ8^HVq^={vmni z5qNuLeP!P_OQgH?eVcXw%BkFpvw)qkxTv=ZTdhPhG8QA_;5$L%;o=KCP!Yh(o@EC{MYKAKEoU;i5-rcO44~@KNDM^*ljveB3zF;v zmtnc9?}}x4;F3YZ@vFWUUdC;WEFBCe<_`+ptpB1B>Fg zZzDS(UylsyzFx=eVeLy6wPtH zrUiN%&JW?^Rrq7t(tX4H@cY&c)5>##DaBndt?uUPtq*T#%Q>0^zN*1z03+%-aOZ`i z*}6+Gv69@nix7CI`*&|6*dZ7wPKLLmUThja*NMpqW2j*^B16(iUrOMy~dZG9f~EF zB+uZNzX0ipHiz9NuRqiwNzwawue>LSZv44<44@2vw=EZNNwiS{^gMp_CKO>dP%m=h z?`)fn{|P!6KlmBM{d}cxr!ak-&fp_@);UOweOg`=%B0^`Ket~6JY9tZ{B487&%6wH zioyno(0+?`z-8w-T(S;$ij?9D@cS*4fNwb4h%Rt-80p}NGg$lE@Y1Rs7pw<a!0lBnckB4TMKURDZbQbm zK=n_oYPqL4vMLeUZ=q_jN2yxwDT)|ef?s5_;6DSwd$s}hw_5&RE;{_>0*%T&Ma6;( zaD1JKoqv>x%{|^1dJ_}-5|TWjjg7!367axB^sIA`8vDe&sLTufhV9!c{--O$8jay+ zSNzZ5mQ05BTPXg^j)=cR@jqR4*E8{ZHyitqXgmpGk9w8PCB(aAMe(y&B6zfo&i(AA z2<~B{r!T1~k5c#B*~2}b-|&~P(VwCeK_ax@LRDXOg4QLf`Z@>VkHhah;^O&-S?y0z zH1z_kUuU&nhTuzdZu;>a)!Ufu7tkb$*}i9Fr)$_PPoa+gxx(rPfpwTfPt?W*AJN0k zL2B+Z!!dI&0us0Uz|ea7DIBA}TxdQ06u#1jht@AUb>xDzMEWU;yFOEB{e)ya3}TOZ zkBiNxk3~h#qu!U@zlYH4oV&lM-G9v9i-5#rd0=cl{S>~;UoJMEeu{bs50A}XR*3x) zUHufgRX#4zu}_iQ`S57{Wg8AI(z%cK(*8BW^*ehM;(yM!+Yb~PIdN`0 z_=ui!4iaLIj{GrGEdmlZ`bd-g`TV56gvtJVj?zb%?3WcHzF--^KSk#0U)p5f^I!_P zJr>+c2zbGYg8$hI#Xj0<=YRG>vG=gr`HQx&-!WRxKZPrDYf<+rsB8W@AL5Td`z_S< zWo0-oQP)qAFM0`nlVsHIF>qE+J<3AokHrd~9m5#CDM50P3*@4Mr7zO2Pq=5DA~py) z*Fry!CIq?hOP@iLn}^o-0iGxY3O=HzoP&her{hKY)!z|)dzJrm9?idA>FrBY{?oZM z&#bGPMCI?{7h!~l>HMciJiP?Le;J+s6gj3BU^tP^-}6(nYWOWvzs{r2MN5Xq`(AIq zWH^(giIxm|Bt>2cf;mLf^H&Xf6OnjD$U|F(GoBf?jYy#nmr{Z~T2#``OokiMHXj{X!f z)P`PvW|p=tn1ZKSW|B#|i3x4Um%P&KW%K?B-S6w2{H$Cj9n&uE`L3gkbu>Yb>G5HR z8#XyPuv=$vZiTqXxDagIZ_v3d58l=sJt8WOJPio9w>Uh_0CB+m1jGxN>_qoYmR^2D z=VE*x61Jy%UN5wVndbSkZQu2;)=5>+VYb~|N$UKU#jrqRCo+pQM z>%A9yT(;Gv#V>ZcNans#($Bbsi5)E4h6}vSL%Y^~Yh{R*9-@mi-S-=ln>7tqwlO9VA&KrIUTecm`vf#^w`oy@=H^m`C1?;{`hTSyWzMcM_2@d3clLk z1#>jEoEJ%Ry*40I_>Ft}R(|^i(E8hps~NT~*MS={xN>A&@U*!c1={}j4JRoAMhS4< zwJ47R4Dr_J4{(46SewdH_>LYP3Q{n^nH}M8g05SO+FW*Y!47XM?0~vazapwrFp3jk zQh^_2Nejsy-wtDb_V>4by)464RvVVHfzMO}o~-;^ce4)QW?N9@=;h#vnxeR}_a}}c zG>rj|@zFM|y2EPTf z#SpyU(ovz9;S3!@VVHyrK?^g(!01mkc5M?MK=HxC{>68+Jy3==axB+Uyw{OsK$fBe zQw9P{y#NjZhu>_+8p*C3KyQr&JK`Dl`@#hhD)TPwJ3x-PGe0o!0&!O`BU$NfzBrpN;@cfhPg~(U29z@` z*7qz$3#s=GH@*nj4%*`DkJr(piiBs_;Wt?iy=jC{Ib;K|D+;4&ND^%njAs7b1?(M? z`H=Jla^s`0c(DS!f}8)g4A>I>Hy43PFwQWz_D}Im4}}9|-~t632*+5`eHTR6(tS_< z9jMRm@b7@Dz6rXfnxR7d-4GmAGrxtuVmS565cb>6V43nAAz$&}&O(#C@plA&MS_cQ zsDr*EaPWQoEzmvk^7}W8pb?Cw>EGv?tBIPfd8_Z?S6%+yaIJ5ER^P(jeUAwCei!Jx z01a}~3;4hfpeKj!hl{6!zeEeE_@@mvz6F@p)&Wlm`a5EdJn(I!ZN3BTwf$6}K|O7B z6v*c1cMt&Uzt6u#$PWn))_{Pns1vdCAG}5TL)>@DnT+}jL z@NXO3@4?l%Xg2lWf2Et(7sGy4Dw|_ZEVi1B4#ihEF8j~_v}Av0;K^vA6ne!DNi|qi zCkG|C1*ffij+?fZrSdShB-*+0d_vUF9NcR5s@58!XwzpFqvbSP$yHTy<~L?#vdM-3 zVV4+?nnTPzM(2^@g5wK|TBTUZ+j-q~NT#Gn`N?Y8G90a?4A!Ym%k0$$6zeP1f*_U1 zN~Ty@GOW!*79Rqv>21ey#(h-JW;ERx)zGF?^(JXz$!8fm?YCD0jw3{k6dSm^vWl3> z^cwIgP&nnaN|dB@UoVv>^HGmxun=IYQ=9b{=9=Ig)y#Xv_Oj+SluW76rg(#Ib<)Ce zK{aP4P0`fQHJTMhM!QB`=Bl_q8_e5YkDAQ2iON)=RS2-?_T^D|2G3GGo;2tH{X7IM zD(pV7SR88QAp{Vs*Z{;TgZq7~sEhf^ylfWr5TKZ^O{bOYY_Vo5V?V{u2lb}X&k2jA zHfd|A37nhTd6yq(Mn&ksgB7YcXa%ox71I$rBGh1T9a5liMMGxIsE6GG>ef86Q&gqY zP~%laDbw;at7lu{ybD_vo)OdIb#93(Os*-3D3PzYgYisHFLH$LlxK{n4X4XqO`8ou zfG9f9+Kzxu2NfUD5wF2xFeKIuY_S+r;Uz+=B2KVUBlyWCCXk!u&^DZHP)*ouS2JB~ zLRyR>H`b1YXc3irEP`i^RD%`}flhIAACe%cBBI3s;cInqoP(yGiH~Nv4kSC6J(@4l z$M75iECl!^hebzUfMXsCJeVKg$6>y>E~A~52sh`06@iPrmD_RA8oXv3bFJ>x5G~aq zM@*-n363|G)FIak0jlM8nWeNE)@f(*eyW0!&H0+qL{A<2TEShftp%j4AsNdMsZ2&L zBblm2P=f!DDB7Bh{+@(Gdv;D@x;|5uE z(V8upNufOJ29vU9xCqr|XN4-3Z?Sz%k#U_wW*I5R;8h_6*p)g|wNXMdqwJtCrzpBQ z>!5gfZt{KGz^c>fQWaLxvegrFu1~FIR7dQ~OlwKfNTmVMe42!)MNyJ1j)0@N?3Y-m z%QWVbQGrY29-mjU>v=zyRZ(}Sn~Wt3Hq2yt<=&#U9C%fx&ZuiinRK94tuRHfNXQVpecxG7SOxti>t))l@G*eWtHZiFuJ!T0+bA;AzScnlrRpt0<7r z=zChZRnMcH07_4TJL*zl=YH2+(|tKjpv0ow4gro>NFVo_MYfI08AnT1$`fs^E^sYV zbd^biASDPJ$`0w3WeBhn6yS}`a%FbW=&)&%#w=A@$`mtDl`1!7YHT6f zUroj^vJ3$#!@jdFt7W}Ek;mQPB3;)jrPMf`<14lz)y7Dl8aK68DlaXklFTiIS#QV` z`aIR*C#B46inOui7$)nf>T(?6kXcDiq3oINtPlA<18Hh~*k!sxr#WABb2dtNL~7B{ zaBiI%)F<5`*0Io%juzKNnP+D$sn}V~d^Sa>RwV>j4^YrrrV(}AnGcKkGPFQTd4S70 z1hEUQ(OP8EV@=@fhGf1D@Xqhv@73-%)i5DBCD_>g8E;>|3bUt%gDLV$a%wR@Dc)tE`^t9xwwp-C;)71Jw#AK zdjc37?^Xu5+V@f&^EiL(<+mMAa{Q0?=YRhFKMGO+MpLvz5yIUK2+6{%a$tl!Ea0Cc z79Y!Xn=kb`EED6}hD zJX3S+WrLmMyIUU_a59<-_-51ZQ7|br)3(UFpL6&^)N_)c!c6q|g-y@je#bF%Lx0dn_$5*B_P!hCK9dqC8fJR# zL~mmP?Z}Cw`9-_ZGto?}Yu@^Ci&$ai%K_UysyV}wWc^W%{mqq=Q0=O=>Vf(&9!NGb zNdnqcO@&#P?!P{!xg!wwcNj4={V%Uu5TH}C=GMDI53D+(4P}vak5M2;;b66ty=0LO zvLD7mr@&Y+1Itnk4EK%D-Js=H$&}kUhWYWG+x5NdcQINQeh%U(I{Vq`^_lv*U1<8y z+q?G5ehwnCDe3bD^^{F@sy9jG-p_=u?HUbV`1%ZA2a9BU;p-^AwohRB!q;c`!oTp9 z1Yd_cO58%_zkKQnIsxK8|NbBB%SV^ei!Er*>lQTV)I#>YRX9G~$^2o73o^XUSmFYU z`elDj3kDhWV3!8>pG!xANJ*y34K}zxW~>MG_)j|4!-cAT&aocUpFinX59+?3bgbJ4 zj=haF&>Lw>1}W*9Y1OP`8XXCvrb%29SGFY^w(JO=pJ?apb!|$rEt`^T zjuJI_75Nf{*RN|TA@#0mE3u3Gy5`q!yF%!kvrP)e=j#&vnD0?{>+SKmDx! z-ueK9U6wh1*2sGWn2?@ZL;9$bH^bPTmb+TJeqstAPM+J1JtUgPf1EEd-YU6W(9o#? z9H^Xi=q$g(bkBn6ap%BER4FlL1N6*;fFkjF4kMhC!$KLdMx;4msujwigXS>~&#gn{zYfgZwO^ET4+e`P{`sCJLgZx^QzbKZ6) z91Gxsk;R+>{`q{7@+|UUPd}Zp;pb#R(?OQFsGa9FRDUFrA0mye!O>sOZH8SDze`S) z11z!Yw!4vKaRYbY=S$dciTqS(TpRJW>*_?_7xDTIL?HGCccvTXp0e$FPQI-fbr0L@ zsAumwC)_Rkg=b8c6K~&Kh$OK2z8#yG*UOMw<)I>bc`|q2Zn7B5$?`z%(ZN__o#{Ug`>T%7VG>u$0epCr;TcpAz6F+pzp`|MBM=mQnolhGm2# zKmLxzg7E!)lsLWN8IKk<(1jbGv$w9g|JmtqD1*n|&0|l1T1WAaj-MaLym|NkIQ#rK z6sIpPgS}zr4NkY`_tO`>#t<04L(yx1_X9<*88D)o6}?7Dgk~skbl3EZp*9^Q@@|xMa^i}fuc}iX%WPu-0@%q;FY<6`%8XYtJSuwcN zg7I8$?Y0jqQdr>5FIvu;-YI7dWW#}S*2wM4S)(xdif&i4rd~-<-#V&hO}--FVpGi; z4IkdFXN^(hS3T>mde&d{tiS46-?N@I@2Q2fWHdmPSWvU|L_KSrnS*-P3an@~WSp{L z!{Iw(M`8;`rdr5^0H^dIrPk(yNvH2tFv*`{1hv*FpP*UM=|OjlS69-!N+OC=X%7vq4Oh%go+}h` zLPZo-?bQ_Rc6wwLp_=ThP*id%H}5#KM)|YGy0h}fsaaIdx{E?iM`X)d(Q42wN}^Nw zkzQXo?GCAka<9!5`4XXvCC%?i!+BqDs=alC=u$;g76i5L*7*|GB*?L2N5!36gDK;i zDRo}06gYn1RqJZW$@hgU8`iUiY*|=#nM^0FXDwF4de)4n@B?hgP6eU9sb?)SZ}qHE zdpVs{v0{a>2LfJO_)@v<(8Gq2E>k6JN!66$)K1eWfilo8Qy%ndCAd69Kz1vU>2icZ?ClpS@=(&RW(oGWdXBG(Yq zlKSS*U{1~TG!X)Hg^UWSDu1je9PwatE}_I~*dO?E4sqKBsN8ldi%h1EwdyOr+L^es zY6WJvyw>G<>1?wQ4VfRfzS-A=W&z6=`l3kJN0kzy)hI8=45_j=%zMj)l*K0Fc4fHC z6zuA3I2l`6Gu3w%%UOmeW)*6Tj#UGSs+PMIWG=2tQqGihR)Z**RsF({nQ=Y1&{)lM z2k~Llg+^+?obUkYace5ywC!e}GDpm$RI_G1*w?DEQ13-kZ@t2LHiQjJo+{1q6MOEF z&LmYFNVy)N$zxCMmS>Pb3H3pyP%CtxT%JODO=Km_oRKkD^yh=(G_T2((L9YurIRaJ zHWMuRGsRwd*&AdlE;NM}(CU(!)(7iZgTG5_T1Nmsi1V$#vuj$vOREUr2a&Z6Fi}lw z0JFIrYrWDR$R6g&cHFp|^KVAvFC;UFDoY zF!bxNwJ+z?mvf5!a!%dTIhCIE(rfoD=hXXQYfIi1=hd7!980K0HtfO2!`2pTiI`NE z!g5Kk@OFUoNg1&bwhx&8Krd7RW-ZJ!3DW2rAUeQTPBW-XVP4^%SFo=>!XFIH~VGZ zMI5hdI74eRW2RKST5UidoKyXG=aeBeFk_lwZMT;*7g=Otdzw1zx#Sw^%2R12w|m*qpr7YV&R+6`wg4H;HEcpDorFrODg`_bN9TIv(;RX$ z8v_&mQ|A=Jwdu-&FZAcF`YON5Oh!F+mX%sw)n1rfx?x5`)*JP_SI-MV0cjh?!hx2= zTD7a*Tu@AE*%Q$Qrj4_~;K%Jzd0c3;N-(BRtZW|Ym)8wDqZMbBKmw0dgN}|ebJNp# zc`=i6SjtFGQxwWhYu1o+xIS75W{582J-DW=X|2*0uqjh(u1T|P+eLG2j(DZuw}xU% z=*($L8cjlg^?84gH-~u}<*Am`TSI-@!Db#alsz)AE**NtcNnQhD~(2TG$5eie3A{g z*fIoj*<2Sno^@K~vS*eSZaoB8YN)7P@(^xT9*>2Qn}!Uip-lM?$mduMX0t4tW7!bd zW40{twPHC1E^r_NxC;1s#5tAq_(15v!yW;{&B6VT;$6&F4+5O&s!J6^4v7w|V*_A(IFhYDAB=8agdOfBmumV|if|I!-fw^X-hi_O{j*Q8GuFcgD@5Ny2p?Gw?;i3P zh~WQuKF{9YtP4*y{Cqvh#KXI;oaj{uPN<7_U&n5?$M9V3yIUOKpj~@}@V7qQagXrP zX0Okej+-J!j~6!Q8l3Uk_5p<=j`V4pC;#vHM84m#da(+}&pStt-Zl?@iOpsRLE#uq z(_860AcyDrbRKZX%z<qIZz6Q zZ<)`7?&tGF3(l{6o@dJEImiM(AfM;niW6bNLq^ZrV1AD6bG`E<(lOx9FPi6*-p%tt z59aw`x6kvzF={u@=Ns`#zvcPhuOHKV;15YY8~yW@%A&A zU8V6ti$YPpnxYw8bWqx?;~L+Tt#LJ9B4(x5V$tEnF#=DN^%9cjUX7;~YKZ*o(dY?SDB9?O|MuQ9Qp z7@#9Kvw73vP<*VGxx7+$76u`RY7LdDDSt3RTdiDkQo_2~flIE1x!}}$OoKqEytRfI zK0syJshfPe!nC5P*VY}^Rp|0+KFX=1v_5X+=8Li^qoopuv{p`?Y0y%@2A0*YT73=G z6kKuYIw=<%r6aU$UK_{*F3Zu)e3VYoMvHTV(`?i5S2ogUcTssfg=>mL4AfLQOUdgs zB?KBUnAtM6TFq;{4DKRpshjOBdk7{sXKffA6#BKEIt>BRPP3$72yPc!6bad#ie4qC zAwk%=DW!>oN7QU7ZbW9~#3ImYs5S*Xrn=CYHboetBhX2g`v%_LtODsHCWvn|NT<1i{A zrK(|%I?8O$sofz9VQHaK>YBMx2v9XxZM7`P)$C$gsCenVNi-m}ka+Xin{bG}zW-gi z`3y+$4ZtflpKVL34ZtfmpK;KHbQ&PNECzUN^I0L$<};|#c*o(r^LxI`nje+-6FGg8 zI(N^4v8jZ4W#DAjPkziFeMWP4uIPH0DLxK2QMS!>r#YWdOzyb<^m13};@2)Shfz_5 zzW9Z`GI1ysWg5o6@0FQDNCYHV9eA>ljGxnur&EEL`` zt??*6d{`_$fBiQSA@8uo77*)zPd*DqbTgkkh9MY(gN)0Y`{dEUIAK6`$a8G6#rB=@ zQU2SPQ~qm{?f&ZZ-hs}qO}0PI`JUNzzGDZS@Aw@mz>)AP1N`eBz3&L~N+;Q8i_#?i z<%9q7!GHPSzkKlb^ucq)gc`NZ^TF@#vo(-$t2^`6Vy{qYM7vm>WBY7V>7382Z5diu znN+=s$&LJ|-7N6af}`V}kRDfHDNVUO$YfAj>U&7B5d!SYvTb(JZm;ahSQaHF)hn!* zuHae)d0bhkgJPClFLeDBjCp7pL$FESe8&G)EWsq5Bm}B4?61jW*c^_#^ z2F*s()AADxn(GZw^;2F)Fdar{wR%OX*sqp{quz>|7X`5`&rqROnoE^6uXO6=@-k>v zlC2sM4Y}i&SW2TUYTZby9k|Skcv>J}wArXRJ!uHd^5(4DZf4Vj$J4z+8)`EHNbciV zj%nJpDbwbbYNnH4vPvUzNDqwEtkNy48MIlSwetRYS}?UW0rduDRZFcsQZAXsu-ur} zO+(U+xh-+DtFM)L8MY-|>HEu!t+dN(vqcCYKyA3}8A7VY6YZ5$?TvcqV76u|>&d$9 z75yC9ol(8os6~5&y1&d8b8V;AW$HB*&ZtX;CEPAfrTVorffnKN#s{A-vGlaGa2Ax! zv%VYj4EW%=MafmnDpBGfXvIhfAu~{;bKD1CDn?c1@Ekt|chZYbeDJha3+8*HsYnH= zP(fO?Wq|5TDc#S_(r)lM%;iFWT*oz~am}IIlZ-f?r%WT0T@h2lH>n*Yn-<+2gvRa?2osrqJn&QG~BW}btDc|Xg#Zq77djy7Axj|1YlP$I| zXxVsmiK&#>au{?v?cw<<;tqx4l5&h8Vf9&x)>@^iw=Ahpb383pQz5{d*~GA7%2lhd ziMWtKk_h80Qiw3L=!K_LJA;X6pnWWzURy<{6ge<&7#RwW`kni zh?EqaF0860ip!46#(G>M3yHs`XO?w0dwajzpQvLgp}`Qt|S1Ln)$P=i(J@-v zF)50S19LGp#T}V*@@U`GlSlJB@GfTJnQC z&o~Q?+b%b9k}2* z_)h!M@cj^Yq-DNB;Lj8SKgckmT7`q z)MT`twXS2iZZ5`!r6N_YCDQX?o@6SE4J!$He=wIa+Ge9HvEBv~sRSELB*Yw%C@6F~ zTd6iv@xIV51#ux51lg!(xD_8Hrz;9ujzTJah zGr3vAn3T=2MucnJEK{J;AQyE{49N^JOLS9gs9^Q5(QS59{j?yZI4#j**%v=#nX1WQv(*SUy0em664f@_X`^*HpsWq9418+ zYNaK(X{Q-gmob`}4yC1;i#k{@l{!pQ%9**SwYr&$n${MpqM3`j{az?7yLrz=O;p-U zg_&q$u|C2hjGa?(uRql9t6kg1u5Iqxwr%a&w)LxR?%K9(+qT`F{@(n zl9^1B$s}3dwLU1ZF`k0I8hvQ7O~^s;EfOQnhX||7rKQZHL+_pH3)qh9U#VFM7zQov zwIfwmS#=3C?JXT;!=E(&O85+FT1ny0M$*ie-z}EL00OA=(t?k(o&t#8Qe(|yUh+jt zZe#FOij#a8A{rOjsh9vH>}$o_4OK=$hYx>gn5rDkkjIM)tlH7!u+LAJ;w&0#7xbgc zR}3eYAiG8lch=DQf7`=v$kFu%zYafMP;jeFf>YwrKzh3SDJ40ZO~!zg!PrPkII752 zNF91G=*A4i?=~Xh3fpnd9cU4oVE^qZr6l8%P?oYdudAPzmKk$zOjU5^nTrl0zh7kO zrU+XwZq5D8k|rLWr5iU%lQE{%jh`hGv2Rg;;jQH)q~47Y9kZg$EwqsQi6)c|S0$XE z3oq55shuzYJx*VKs*p|e&d8LNlS~y1OcYd-4d{i$cs^B{TiYsU9`dHb7Zo;5wr zBmM-{-1Ho3s{qJZ<#*T+CD_pvVlPhB_Ysc~Ov_2fp5&>!2vnwFM}8548(zQK#INLb$0EAEEC3s=>#1z9X|w;d^seCI^a-(MJ&W+rCX%{030_2m8n`l!VXb ztTWH;aO!a#bME{RUO24{TkNwDBy*B*4$Y)G>{A5AKol-qb##Sy z2p=8?l>|0C(eUI)SDU+uIFe;?J0M81B7RWKhoIS$xrAL4zlp&u%AiF(CI;wqrGLxR>=7Qalf+{7NR91va)ssB@n*W)7l zq*lFhfq>mc0I-+_uQe^+QHId=*=#;QRB47nCwCrzR6T7*{93H>$Z| zT1QKwh}Lp+{~9xZYwEysVVYGJ2b8>zPUa^`K1p24WY>V@Q znqiAe#w?KVNGsP^p@C0;n3PN|4;~1j`gPx$*KkTNr1-o1F~lVO)Nmo=ACrgdfHXt& z{|v^zliL2Ip9y#^!7Wjm+MhLQIz;h)NG-Q|Jz*r^Ir^E0F#L9{X!YtDBO8pMP!YiD zj-c1W3Ohf*KT?c<=SkzITrKgxa((HaLC+ffX_pc*DFzV88=i?s_CCxqu;r^UhHVTf zAkE`RqBaiyZF;`8QaU-DW;h)Eno_QA-yXCa%&Rj)#K9A;KBiwy31(n19H?^WgWs6N zRpa7E;(&)q=$(pHMA-uspyI{#mVztANyJSB`wV^ z)l@(Y;`)};qp+(+a;?)Jx!GR3u);m3uI4eo+hAQ`v*E)|7AM;P9rT@j z78@%cB=ju9l5*ejf<=O=pgVdgWRY>}pNwK^b>iX-IHt%_T?(^NVICsm5SI3^C1YoN zG`F&$8|2sI$qv?g%jWE~yF3|=Nto!NVqEK>65~)aa4RjEB_mQxbc{pEC6G^*$ccb( zksA{}g;+c8k;w)dwbJ3&#gtDia14!Fi?uX#JKG$hPMr zb`%4eR+Pm%k6&%W2KPfagXq6CRFqQo?f+>vNAMRCt?@(g|uafAUaeJPPE~8KxpX*BhsD2@*@`a{pD>T*}e;jA)zkSFj>Pr zCNFU29TgcM;fYFvlRcJ_nQtURgI^XczcH>Gs?lv~aa*5Y#^RNfI42}Of<@to(#*Hd_8s7XkefitwJ0q;h1PO}Y#-imKBOzcd%pnm7>8LqDyR ziSro@57C@tVy$?Wbnbs;T%~k0w8e@>jYnzXH1B?TVc{cL8**TtKu39Wpl;Wuf}*Pv z&wz_z{?)aSCgOOC8yzf(oH}vc#}_=kdKK30D@M`xPo8YmoqaLYHNi^9O5_mUe|iu# z535``Mts92n`d($r2G1xjxqgh4Bpd<~~6?a+>v1H9K+AYYBfo zx9P&owU?zq-f_6K$LQPbf7gfX#f|KZlc2BPzubn7Td;Y;%TKTwpva#%)Dnm=XR#He zY^yO|rNew52ZEK3yGht+g;Ih=DQ4{O-a#!E7j|iswGE&|mP&b5eZE;#{F_0qMLj_bFF8;JQaB`{go`NeK)QI1gRciF9igt4d4VI z^IEt&AfUpjDG-p6NyQP6HD6sg5Rjp1->+>pC1s_yDrI3Z^k={K`G*|X@H|~;AU1v4 zOS17S+-g^e1-f$5cS;4|uAf?LKLaq$3N4__#`0)cdjJOR%plF~Sg`}=&J+iw&pR=N zJF;Qog}HKJ=IppL{>$lFEALfzMj@_S>lu7@< z+VKHLTp({*m)!d$_9~UQ(3Np5be`-Cc9$o7m~bWbyo@<;I^m# zEcFbOd%uhNa-ShNGIq>AycGsdS9hmx=0_P4Y|;f!Per&CkaB6RGy|!88r;u=fxHTG z+BmXa8vE2}eBA1(wKOq!1MA3^@c$-tZ+uMml0j>7cJq=^Md(DhuD~V-r2Y=@l8EP+ zHK5@K8#3s{5HH;6!7wizxK&nm_pb5~t)rG5lu*lb;x2$Rf%Z<03k;bgRPcoO<1T`z zuK}{t#>d~cgTEn*?qm6+z~;}kjfY9_THN!3n*tajioG>IEt-wHUFMhpe1fEMzOCd?|}7<^kbVOL>HNU+z*>o>fV*HbSz%YXgIao?a6F1YA6F6 zS!V>j6Y6+J*v<;a09~Ysxug;Q19QaBp%vUU+89%4g3<1x1r!Q_*G@UnAL!HjN_=%N zwSA4avAP@xFOU<oN-4c{*?q z5Cf|IS!s*^hSgVcs7N-fh7YH>oKdz)k6TIjmRmfr4)z-BayRANR}{qmbsQ(a9~rKn zPgy9{68COk`F698+kf%dZ`*Xn+?QM*4kh9@5WJVUzuf1lOpJDUS#_G9?YOK0WCdn< zZPgzOls--p<*NF8oFWLa_Q)vtxDFFyG6}K_&5+u3R>p_U>H}YV?@v%cLj5^63S6f^ zAOO9gCEB}g^eW71=fxWQrxHd=7p%x(hx|dq7dE~d`1XQ?J!3YIoC3rU`zQRyuuLal z(bx-5VWQAX7hutt#v4$`jPKVTTHd?gT(O)+!Fs^Y$64U8WzWs>-^af1fOflIct}EN zOA|5!JLqYE32ydr@IUk!NSe?~yitvnh8<~SEExmBkOH@Z&DhX-tzsJ0h34W564 z_ba&e(zz#7!{n6@qNwl?_H4hzQ5ea`p(|l8)T;Jd@lfSE=aCtt2W5~edCyc{qDP)s z^f3aRUDmWw7%z>RTuEgThT;;hL$XFzu)AkaBV*_vH`WeaOiuiTlexD#k1ndeWcK7RayMcVv3t<{4# zNq)2O3wG9vTTZ8E=8sy8UQg^puHUW->6IM(^Ok6kr;nN>_gmFMsjClEzf@M|a9A#c zh8wwhGq-9^*+#w|_MM_0{k94x_r-EZP{OinrO2^JZl~UlP4g@T!~aQ7qPqjKp}W9m zHEULW(5-m(9egb#rqeU$a0@hZ$H4-`Bl$SKM`&l_^~3%-=gfGAz{uvTT#5d(?DmWC z2))z&$qJlqBhqt4ODC!Lj@k1ro2%3xOs#F+ah1neG*Ds(H3X;Tfid?1gujUoVQnZg zs(u(<;h|u`Rr!PB@pymn#|^Jwfsei1C$SBp@TW+Q%i$-RB@(78Gz%W`GBq#qXBxq} zHUy|re&-ai2kVfetN%>zs&t(-QP#7b_Nmbq3{q?7{n>&D_cHJw{F)iWX{;V&UhkpL zmygr}{3MCkqEmY@-PE zc2!c=vETy<$M{71T>VBd9jagQkE?;zXD+IIR(?gn$j3oLd0 zuJ?;R2;twgA6aQv zt_wPY&6aeZSF_y4sy4vs3vd{R?r9rCMPMzKVGQSi~{jMQUhnj~$&yQC}RLp=@m2XY$BZ z$=^oXSUz91KZ%4|h||~J@tsjs(EiA)rTn~4TwRT!Fm`U=@v05yUZHgFk5~);GcJ6- zj`NNT5n$pq+K@n*mjrHaH0YETK|4a8yWFEB*tpzKB+B@CiN=r`j@_WwMaaz6r%T2U zq>%)=7)mnt?%t3fCMD8#J;2as`_)~8S>=4w_zE*iqpf|BysdWXWE)R z2b*(|&m+I0bLz=ChHA~@p|Wv>Uqke#FO%eHla7;sqSC#@923lNmzJA{&8%ACM|^_0 z>w?W;%ZCFF-J>k06K?QESJi+x}$dt4L4AJ*zQPmff9{9gB;z|uNPrwAGysJz-1#4i(_^u)X-261-DE-Tmu zF3&^`Qt&E%mExa7Vc!jpXkm+u@qkoOK6yy*aol0|M_qnV&>CTmPvJSenp+2s<{@^g zqM75d*it?Mk0#k@MT|z@xDDV>51KiKVOiRd+RUA;|25;An=C_uGtt|BSr*K8l#UWI zxw~WEQQ-AhM)t5g*!bGnsbzcWd2(8iOY{=$I2_vadgp;|zOELZf?$20XB}q9J%8ez zXN{_vv~~?_-Ok-HZJfyS*ETCV1gv?JSbP`yC`Km)k*8~T?Q+4$+-seuVW>0^AZP9? zyifPi1fiDnbZfl~=myw&a;bWIWdLm77b@Of*bu~DUz&b4AKtFXDPu4bm}^hM659?_ zTT$ww`@Pxkj{uT8X1>~hoHogdKhaBEy{FpNPC8~xr1wsz zX`3_7{CeR_)s6N|x|yevBYoci2SWScv2xOoVNZ=esnN)w%?>g5z@pbBJL#xsU}t}^ zl2`$F1|=S25D*m<7k1?^ES~b2!+>~tPIg>?G)Ii+MTquZ_Rs|(ldBZC9ZS0WRl_u~ zWJ}aWn3sRY8U^)7?8oWt^`W4@jN=?H)oK8@q_oOEy~GPC)!dN2fB^(1t4!8W~% z2u0`vuCD&+i6!#d&)^+P%;@ZZ{sPMX&}a6IYk9q5dDssa0-CC{)h^cqaE@@3$zBcB z_cmWw{9Fy-nE*w!a3gKGk_KTrVRxEDgozOWAlBPan&7dW&lJ6ABv-5u%n^R=y^WNAejz2)TITNit&)=L0wp^Pj7+~~y^TCu?g}(n5LGBHH z{~Z_5-Xuostkgn}Jetwx9Y-NZM8`WmBJfi|p`COCBYY=%x9hn&YHBU9p3v@m;AX1a zuAwEb?I9a)1?e@Swo|Q;VejzNk8dLYcX9r5tfc0V8Xg%_=WvismWEL2K74ykH`JdH zA;^X}_Y$xU8i3Sr7~-c-V#yH8!O}zs8W0yIa9MH`yaU1>*QQvcP^I46R&9wDW;z!sQ#y4X5I6_vAyTzXgjzUX5P>Fq*4`Vz;liGsv2p$3VN`eSv#}y8l<}*n4#}q7TltFWFcv`?fdY;ORU3dvbfoTI+f=nX6x>ysS1yks4yZV~L znNy-?Q!Y=OxH0j;U#(%M3B6FGQD>%eZ(@VJ<2SfT=5L9(k8sbyL@*;MB1YC_;nZAy zj1OoGk8iDXT<&PjG$`{$X=}Q;?!`gdliEX8C>NNT8s_>fw7sFM3x;%G@@OHIObSvJ z1rN_{99LbARmA(C<-t^eR&VliEV_qdzK%aN{0C#e>$!L}b$YA!L|kgkhjU zg7!s5Tl|56-7Bm)aj%U`%ghO>6reG_U~U?!$s+wxDX*o@Iy|f)%V#O97Y3QIjD%vp zUjkQ>ChWI;aKUk9^tRs7)YFug{$yozZJ!lxw`VB(bIHASne$kA6|9_F7vZ|0NG?4>i?khy6IwRQ}jjpTiC?R(~oN?+v_U zFzO6-*mS78uc+=0F^TSR1V%?EgchAl4aiGeu%bZ(8y}ZB%`K>({fj7mc*wysiK5&Y zk{w8nSYuryvb$eYR^iGAzt}zV%hBX2=%it-5yqm2g)bZ8hC3<$2O>I2QZ6Gyq#@nq zJM6*FtanRap3Mc`4VN#bIS$HdHv@dJzgt>%N~wSa(G#i1$B){u3hWa%?{r??UTyVm z7za`PkW>S54*c@jWtUmiHpCrCy5R!tTTzi*lA;f&OAe>*s@Dl_rru_xyGdW1LvM8R zsPs%PDL1Ll36y&hF^O=b7T!QH!XDQ#HLOf}y9#deBoQ z9M(S|gJxe&$~KPK5^G;)FJ3c%@aX*BN>^Umvv7Iwt{mQS1#@&1#~!chaTPs^6~_zA z7>op8SjRPOU&N@ud5;v~XFP!B{b)|gOMdCL0E4#z^5$U`z1C|YI3uySSjJv4h#s_W zpXs@7#`f813k%%>x(Cbd6H@TgzE&c!= zIzy;;rC;*%_JV%m7J|)RgxNSk$fb74$yiFb)T5EId@spj`C=fUwf5r^{X(2bqyMN~ zx7O{sa(jZNz~%bT(r z<(uXZbzxgbwZy)KilVS@2IsXk00U#77#IER8Qt*XID^*KI?9hxwaQW|ww8F8z*Hy~jwJ74Z|%eR)I6Qe;^%a4?oGp0Y#J0zDB9Jx2QI zqOKmB^uAOuCv9@P9#?610^B~@hB;o6-bpnEWz~cwTLb-mb@_pXR!$|v`_g&7|FMiq zwaBu%6KbhE!L$_b=%`aL8Q7N2G3!_T(p! zM+Et*g_W*WbAf_pEM^|=+>&JSS^Xqa7aLpVMzLJCixKTBE4#K+I#MzdPQ_AW{gOjn z-oB-8{8D|RiURdBa&?*}2XBnpIipV_teRy7eUg;o9<>2}p$29xxQ~E`zF|TsO z5qX(BMhz2Ad@VlPh}1xZ;bTo4QDgqpLj9-BjZDO|XQ#F>F6p7MiaLv(2o!11ihhD- zu!mLI9GW;+*790l8m?BcxyIzAx_}2xWx9yP5*rT5Xp^#%yTiiNG*sHmxIOf6&|In} z-TE&t5#cw%u%kAUeK{qMFpE(NjsAo~yI(mA(Ba^$#;8r?$?Ro<;!70loWB!sA;yui zcZhpW3}c*YZFC9itv%?Hf&`#(P7~zKlFN+pC1w6Znp|XNPJ%NZawO<>H+W z{J2O1Y)>!9#FmypbTt~5oy5(n8rwwCZ{gH*#YsEG#RdF}#c3CDWs5}qXy8jvf)_mc z(BU7XUJ>dc5ubC9Dx>45B0qfT)0s3(ifR~k!jUB-m+Su~ItmjO$eUl4Y)p%I4tAjo z>;AjY-_7@s)RqfTn~`6Xzzw(6o&T1L?6Nb>co&n`BD) zQ>x{74?}U&Fpc~SL!n<=R{u-Cp*ZSHx9LwjG|h#s8rI5 z6Q$r^oy5xlfeAbDx{0c*=vlb8AW3p1Et0LtUh8(LtGS89RMy3P(harh1iNt(?FvzH z|8keAMG7v2dx)bI?Kd$GoRc(0<|iW}%I=367EefnRnuhTq#7lC3Fo{j3}rf1i${|} zoUALK7k2DgujGxISSXC6Y3tU`>6nBgDULib^=wWRt28AO9*Kxu3dS1d5JWw#AEP5C zh)1KFPT7Y|1M?)`SkbZ6IGwSk{@-E_?X-Oc8sy{nS=?rtWzMR}LBE(mWNjnWW{;Ic zp`8Mn7Y8qk4oQ`zEY?5B|E@ZiZDNngGSyQoAN4zMql^0f5^;p>xD}2zBP(k7{*7@n z*(^2rE%TR0n-)$bEV@t8PNqt8MR1~1v3JR?6D!$V;Bf!m(2J!4yBtD8&W_o==x%hc zZk0H|k`K)iV>sHUMtz!GGJnffT?>eG4#!(Ev{*&=9|F3EwoFH@!QWR&28(EOI!3Z)-Nq%%+CJk- zRg06$@c8mwCDpJ-4MFPvY+nFW&!RMZy(O%C@x%qR>BsWuDM=!>@U`@M)eK92jQsGj zY)ZC*R;Oh6y;BvdR`L%A(c`KWv~7&gO`LN*Wr~E0jtt9*c8MmsrhJFco@2v^nW!Yv zF$sbD|b&-MG5qSXQRw~@kn5ZpB4JY1LWa9l3m&FLHrcK5+BUtK=kE)MwP_QdyuW2o;)>uu~k zoytBD2)hn6@VK_NbrwbL>g8##XPyq7pEKSRE@q#6uZlQ{ zLFO0TMzIb~jjMwvy0bYdDb{l<|KCV8GnLO{zOQ*vwQ097VDyWw7fDl?_V$8yHHNIa zBZD?0+~XlFz^cg6Cf$_>5D}a$%FJ&XRatS7FfAvT@avV#a;2j+D3BDxo%E<%m&k{- zTG#f6gVMb}fNtV|7u8^wc8vPV$gG|7BUi)*-piPRJ zM})?Oj{grs>%7}na6-B;o=t)xj9d^3=kpo85%MNHTjin^iaBhcsHlxX}H zjpfWIl`#2G3)ox(0gE4}40A(bZR`qi4eW&ne4SpC#sO_Gyh;xD%~A6jra?W-MOBGcKz}x!r4T|NLXLX+m~l>PM%+r7jas&+&E*K zz~dDe22oE7)=#*Sg++x;g-xTd(kMyhSG_EbZ*mI0{7WC+%DgHw`d)@*9mG<1zR5=9 zyf>9;M3!TI38{)mVU58FU4O2eM&hM){a~~#n`KtHCQKq;wew!42PT@Q#Gp;VPxe9N zg)T4+yZ<0?X3-Zh|KjTb9Kg9-ji!@|n`4#=QflxU#m(p|o(eLZMv2=rn~avtldCZ4 zMt&?4ep~xQdk2ZPF0iKgSf0)`5>e2CRVi;EvDA`(ue6F`X1uBQ=*e@lb;ED(_pep)7y_l(g)Hnsxw?9%GU~pXz2xT@&O77)hn!~*&=v8u@4hGNp#934&0%-OY%2eZ z&vNt@51KgSYmLdq(*#S?hnQXYYl*3Zp(ZIjR8?58q>Q1u!}vDfl^=q+(P!mrgz+&S z(1N`f_-2fRkixwqAg%hocy6K6zs!!ZP5B3;vbj+Ttxj4!-lsW%!*E6>cy}N~> z{SJ!MJ`klX=UW^pxlmXoJKD7T>#dy}Pr027`MTdXpARR$j7{V;x<)u|#ykXq4BfWR z6nZD&bCr9I?xu^eQv;GKUG3wrnh|;YfSx%?xV=_i<}J+g+tk;hDB%>Zw}C9RXiCY@-Q2-q)aX4MnA>0B^_k>nvPUZ1!oSdezB=FX`OZ$Kv!e(8-c7x(kbv zw%jvTu)6?3N8{9~GEf=$^Ru?ZoYvi|CS?>Yp~#8xby=PA>%!bj@PJ`}7X9c;M1A5OMEGN~xKq)9m|TVhBIo;t+H+@t==O)G(-L zOcQ6%+TW+rJS+8x1E_)5R~WGD$LZV)a5dfgFecrFXPbsj!`ug|BYf`5O5bxS7 zm+~f-FTVg@6vyK8R~uKyIt@rVz4f@m@E}B0qOwRO4&h%bh~3T9p#f{o|0#igj{?#)7Qzttny6m z@#4dof(K0s3*_c%_w4gn{C#9GD#pbsYYR|4k>T=ranL1yzIcUSw&$kY;=LRZY`8mk zv8kJQ@L+VUS*2|XaXsDdd0u+MrL6m>XnY_Dh?~`SZ0^VC{ znQ3d5v_*qb*^M_VOAUAiE zl;q2C+2Ep=s9CbfOFw1{*J!_t%S-0Wqh+hwP9U~#)$Zi9ZdvR&jB(`ntWy~i<4|V* zrE5t=Z@XVYefaq^BPBUWoyJbJK-mSb(DCh_4%&h*UKJbGlqrG_PGlSx|aCnY{t ztOjgUr|-u5#daABSM=wAwB-(6%W-yskZeVYl$^0rtAb`vB~&Ft`(`Fw63y@>5oYhV zOdN{k$t#7u$+^0@_gNu9HYRTijxvu)W?(l5CFbk3%W$r;l<~y`Y+Ztv;gtP(!2Lsi zVOj?subji`(foiH1E4CN;4ou%v(Y(A(IulblKgP@BTvPL31=)$1SlEMV8i)nzoCqX z!E{+*dQNj&_ovGXd((Ib1EEga3(K@&_gswnKBU3s?gtQ>eRyzR6653R?!`>O64GjA zs7}qD?hSHtA>HoY%~=+4H$C5c4=^2iLDZW*->=`aVb{aYQsG+bKYyJydf)Z_@G;wf zTNg8nri<^Z&k!xOj5@zuGGgEK{ktfM0Jh_q*Zm$Vlj6&}vF-GDRTI0`nXs@s(&9VP zoFOOooHW0tA#0sY8CbF;^c{IbNuX@i$S zRY$R@3K+_F)A8|Y!zP)wd7mbjbR4Ky=#1k#<E?(%Fm$EIf@GkW=y*sN6P{Gq(E zs6WfX~?)@ymH^u#|SltLH7d!vh7v*mA#&;=v(5P+6Xr(%yOOn29^pXHR0z}#_ zD)>5CFOGrUS1@D2^U975BTQGPtQ{PBxURgp**>|#I5>n2QpQm%jYW^SyF1;>)A6O0 zzl>XUex&8`v3U%CFr#Bw&L>~{AEu%Q!w~_ z6*EVV(Jxh**WvueUKDwJp0ah{f6gHV^wn{pZhLG-kWipq@6FBagLB-FX+g%+I(KvE zY-f11U}*5LX6*`~!bo9Xo!DP=ueDbm>)>-*i$2qmtjfy71*A7_#L{)@6n)n}-@hKG zrH$d0M2$gdrfjOBU0%|=wqH*Z0Qzxf4WfG8n2bn$-&mX-#<}0Y7%6Z=v6ehGsp9`HC{-y ze^TJPzLh>N9c*Cpso4$%HmCD?;ORM~qk-HUy?yS!9Y|MiXOAVEtxgZDc(n{Ux@U(?|r^XDP@ zg8aeN(*^%hR;68?5thon%f0ZI52%Ra6`H+ZI0kP?Ny9;a$A}HBDK{7?wt|hTr)v>t zfM-1RWXd1@aCAR=r&}TS&;#gXCW1Nt#xESWpzfA5^1hT)6<(^q|eGW+v@(h z_w}0LF#SF@MoW$qvV065L2>}e1Gbk~&;+_dJlIb9W6?8K(;GaA*E6=7kwcVm-AXzL_5=q${kQk6)Gh5~(r`R9AU{_p14T9&-@y_qx_%}BVKu;|!NVIx(y+PJ0Sor~1 z!mSe;0p%lqR!#bs7|%^+_K;1E0R$F==O+7epez2x0$=CdU$)A^b6Zzzbn)-AXrm!E z6|%VQ8N~Ldor@OhQa@L7z8)+$D85Bi6GiJMda$<6^klf@L{bpj2IdTppF}=i@ zI^_m`UIy#is||x(;!H$YGy9Rf+{mvfwECy0hd&s<6}&xi3NetNGvfq>XyfHrV1k`# zU&WoRcx8x24W-y-#4>Mj@EV*q`v{~gm{79(MR?c3VpRvYGe|f?|dy1i?#D{hTS4 z@|wWt)EP_jJJaN}7*CbwwsO%;jE0n*z|F_Iohi!APeQ6>X|Rwh^&Nxw=|EA6(X-qV zmPh!vjLQZ(4!wVPWm5>v|ar`Xt(@5D8pplR~N~t zaYzf6o{*O;1;JRA*|FlsJzGw2)#Q2_=fbkd;96pm|LN4t%)LvD4A3FG`LWFN0C?Qh#Z7IECuf(sSgeDNBd(03d3Es+$u`>7X=W^=# z`T32d*DuWT3JNF&BQ86i+qX!1A^j1q2~r{{QWTr6Jp`qYM2H(%7;R$HN8_6QJ|+8p zJcO8q(-CQiq}E_&U;X_v1{Esw?^-@k=G|sIljREonymHhwO^yCcU_#B%2X0%I-T0F z+TmB1;kk6;bWWEEQ|oUI#n_}0gFPa=s+3EQC@+p8pvxBa8{&#Zpg_(rgJOTn%x+2) zG*#V?bh!|Rl;SVPWZpqf$40^YAEW4cjoeJ$F z4%$VkyN2|+{<`-4aK$22Y1jniyA*h>X?6gWgt{*j&|ngg>`(k%+5}j_QD9oJc~Et z49M`55zjdwahUn=Z6ily>-Y`zud>PUye*7|3ooE@@=9d)Hqorijca}s=2*P8t-~%H zonE?(CVeCJl&~ZTN=0tj2~2d!4Q}dFqoL<}ETuu`5)8+cNlEgWJk&x#lfE8ps0ZZZW9TPo#P2z4y&SP1fZ z7Lc*_JP6VjI&&sV9mpD8Dv7|nyF?bm$S-&V>DER*P{Lia%)NyhF2~0nqhAj!D8-1~ zS5g+7%FJ)-=vrZHe||Ap)0iDw9~M`2KML<(P9ej=@DvkT)>$AI7gc8Za>^OsHJu-M zDUjP`VT{PJtEZv|F(7OynV3BGAqP}cz?ITYVx z6S9X}*ge*UwQt=EhH8P__bnhrr5X;Fx*PcdU~k{t1l7s z92>#}wVmZ}_XU;0s!NiUAiD#WN7$D^VtyP36f$+}5Nmm!3+k}+#%Y*+DEeh|^K0fj zrdiQpYxM+PcI}NlM7^;948d&Dwryo(nKV6ChUNzd?YKeVa?H9)22M0j_0T&+R5JYx zv24p=O--O6n#Q0RWC=3m4@r{13Kll68bNF_W!j?6WH^m_{^%qPP6!RFTO^c+9(jL} zD$KO!H2biB=1hxjSPpUoeYk2dm&~hnSPpt3ash};GGq-u2C7Ke1hEY}@5<)SGzerL zMxiFtbvkc8zR(6168teG`DfgwuBnP7$J0WT7hOpUpUq|mkiQ>2 zjK@w94?J~gIi%6HphKCPYR6Dh#qTt4M^sWDZwFsRKIe@yB2uX0aOko#IN}^xR3If@ zKze-^(N8>(V7%1jD`R!WlOK{7mY<3hE=fC499T8V0 zX%pr}ZqR_H&DxqjJW#!s_DijTFt)ZwSey=l;q2HbqtJ^FU!kXUk-X^@FtP`Rx=Mv~ zA;%`XV^M@t-Uaprac<@$wDQS?HBUEOonw8#|Gd)OrMMpdBik805a69&Dn8X!?Hc4`LFOSQI^mcBn`Xi_-?gj#8PWv=PAz3ny}eZj5z*%=+vdL^t@U9Enzf$h211BCf*HLNS zcw2nNbJB*|-WeC-(E5ptEG=iKz#dO z1zANyE_>6%&;YawM>U_NZKy=*n=@n%kJ#6x$g`Z9Iu8>aPK%7nVch7mU^NPrQ?$3U zwYT0+@#YM?1+G_?BHpPFZf5(aUHI_Xy;(4z)4oRk9K_WQ^K~k#ZmFR^z@>#Qro5TH z-=bQt{{b^W>388iDDpGgyt=)0T3;gM{I0eHx+vcz4kbHHpqMET8ENTFDUSy|Cl(U$ z%nZpPLTdpXmsr1sAx|f4(ku*uJibBV$km!w?E!P1Tdf&QUkPf=*RS9`QajmDl z7cBCNNv=nyK=wZhK}b%GkUQj9B{^8a-~83GJJ=4#Zp;m1=3Wiz<5_PJjy}9*Um?>< z^j=l2#bmtE7`g_;qoWk-`4_oTj>_V(i7>p(I3*TJ2CG1nj-qbKBi1JG)$SdhM#hZG zRSn#ZG7PCn|9;wp)J(5;w`EZ6qNg&W_ZshFY~?F#lHM&Qp_E4?HcEy;8y^v)BTeLe zTJ2&yBPUN;tSc;l#Gx`NqTSOAG2zC>Du?o{hV?R7%~zOFsz5zQwqS}hnMJg zF#d>XI6#`fB6@K8hnxqcc$>r5m{hy*_EAe!eikflw>wzxcaDO1tJC2#WR>9`Jo`J% z6+BCNv0Jjz)){w)$R>f~GyFrH^x0SLllMNjm_RL7vRPv0LF{;*94=?x#h8Nj!wlk6 z%bBieGUeis=ia(Xzj`pumN}=HV9F~?(x+)AyU)-7!$;u;{h(MYu5HQSns zNrc?s<~2z8``oL}1Poz1n)S)C3MTxrrnm0%9l!neGNjQk;`{P{(WJl*H@kWq@sCWWP*&VLca(Q^ShZz=e%|EVBZ!c{*7jXl38S|86} zB#?rONE1lbL^I0cdi)XYw5ch=;%OQ5lOyT6@+`x*vKt}gSgqMNIR-TTFl zpK1GOi`qj3b@W27C^i!4nS3nAyXZ0x3@lek*;ddgcj7IJp7~7-oxDRKJbA+9v1!^W z!S07q6o{^9$r4C^cu>()^~aB@&5~wO=M>q#wy0<}EJF}6(KOJK_loX8-^lUCXyX*ujEvK;I3&efTz?TTp2il=2mzw_j(${;%h^-#m2e}unW z_8Ew%L|Tmkkn#L~|29o+fRyxAHbDj|#i;~a*p$Uq1{gX@uUF7z?oLthtL?OMuQQmk zWyM$1_5WMX~j5VGdrYjM$sb-HQ(eBrfNf4@yS$9h7 ziHiIsjYQ@-H%6JwZ>%s=XRr1Gq^IiPF${EzkzCXA$UEtH@5amS1;;!_r%TUl8e1+ z`!%SDN_q&>$>*7?h+~zPCu=Wcp^p*vHlXwE5t>H+r(-c+)^V2{HW_`gp6Y=BKxm4z*t| zZ8g7i{|{5|6eLR11&fYt+qP$qZQHhO+qP}nw!O!;ZJqu7=f;f_(GMLR)elu`bysFa z)>>GtC>`y;c9(+(qN-=8x&jA^M~&cpQP7vDT>1Rg)!ZsHzDAdWV5so1SZql9Uv~S0 zXdRSm;vg?U?e)e(8ERJ2-jF4Y?x6WcNFoZ~CFz|duN@@@QVHVlU%tH7>(s9N0c+|U zssbrQYWBS<^*7Ox!VLI><>ORqNbI245$(L$X1j9%D$NDf=@0ad@P$mPEOxAb5XGj% z2_*i|{8ua0Y5)QMt^1SFR6;rDZfK<1p7K}V2VEqab8gKdbD-94k)!s|=k8=u3EmaG z!pOw`o%)o+4C1ivkS8d@{}v1uJ7Vy`rr4dM$Pj%ouG07TZ*m3B(%z4oavhj${)|k| zD2ot+*YyP|`+u{>85%wwM@_M7sp9%KelD)k_4x1UzwzTguTe;S1&CUa!!li?EIbHq z*P8cGSpSP-uN5g0>hb2;9aMIt9u8mSM~YTcnWQ%HN7i*wxt5N{3);YnI*Kr|>H$`N zTo2Wg;~nLHkyJTL={Tl>++?_M6dj@4!BY_#uc1^TbxnBPt)fh#)C5M_S@A8{r$%bC z+>?|({A^h5)dd8A8XlcwoYsoaUQMrgaWPZAI=EL@>D}UFQZdBJ`1Li=RZ>g&OaHVB z__t*%*;;z&%R#Mig+MJo^x{CYmckqR+T~Q4)z{&@yi&u~C!^9KX5LSTXETj7Bnw$9 z#wwlf1&VDAv}T`j&5|T?u#NHPI66|Np0DyEMN6sFQhMlTSH24_x|QPI(o;P~=VmX9 zVzpf7LvvgAW0C|Pr^V_h@V((#x1+_l()QLnCepXXSxUKsqi)knkG)9GN}=nu&~7f7m?EHb)Ooq5ZM2v)PIjsM7aM@t*(vS7gcI?uo_m5uoV7& zZ>f=(mD+wCXz^>uS-ARlL1!g?r}M%ynAm;!B1G-bjQ-A-sj95&CO|+9i%u{eXvb+A ze5jgqF;lr#1e8}=+xFyKFv=i#4>=lZq>xJ4elLQn`t?)SXvJBK622ImdM?{W)*Q08 z8ko5OMxXU z$N#cS1VQC_vW8umr*tCFPBUG)loH?)*kUc64EG>+-Ns$yzrV$0wyzBOBb?M~tsZuQ zl{PaygckVU6Xhe|j|K<*j+PKhVcyo?%|G?T3-j~T-P&uSM@k^t+G{CrP$WGbfxiX2 z8Zs+RwL>*Pe5oU7SV_d~QBBz`tCLSGrctx}Ht8}tewPuWn>nOd>P^()^VXs2{F!S) z`o8}$W!GJYSGDo_6Fthc$@%v}S#bw@_n#vgM|`-%64sfzkM_DqEDMaAL3Vh!hLDMC zJ#G%=1+646kc}vz3KB?pZ@5A8vrLmhaA76IWPC0YAw(6gRBhocH{(k<>N)dS5*<3} zO@?vL`!rB5v%3I_XfG-c*cs2=_yjHHWH&faJ{;bo8C=2xIc_? zXOHeRTUSD zo4f$n3L63qIv3reE$%AI>;~!P{73N-T9IsetcYYoEV}7`YLD3OT-(8N&P(G<3GfW5 z{ai=Lzn0;(I&Bs>nN21-*|c{?`CJn?XtCQIwb+bh1|=guR37C2x`G6$mySwMUn|>t z^6VC(Om`cGp>K5B)&vj!J<^@)DyW}{_C1BG^1H$G?G( zQzwyI6Nu;jUS6h^x-Cdkw7AGb?8z#_KPz7t<7Q*9f%3abE|*%xR6jZ-ubmRO#Y>3x zWol^h_cygB7hF`aKHqpy$yaC!9wMf~nC;628gxYnU-6bxdh{WcT+N|#Zb(J5DG~G~ zM2kqb>N=jy+)iHT<=$)5E%LdMC-OVUoZ`p3G5F(aIS1CTpYg@#_tsrbgM0k#eKCmI zzlGt^(GUy|Wk zjm=0a`x8pV`JZsb=jy2JbRa-~6Xq^Z+ZxCtyyy3O*jI&-VhvST2~`Z4oc}tZ!W~$d zp1OtPEYt5*MOh45Wpx%Lt0tZTBBj^5PLslyE$qyWzn!-V3m}<>Mc{Y#IVhopk?wdY z$09vq%*2wCTCE|e1;}9tbMLQm&eZk6e~eP3o>EF?+_uLLKP_>xBd>!LHP!(&bMesF|w2AbCx*|C3Jl!Bmf{oDa{UGS3NVWwoD_xt+aF{y8CCxhC734jzQt@OakN<#THf9h)bapthET{C48{e7J;El2jc<(+ zl<^Gg%satA0)6%zo@pQ%M?y~FC7h?Dzr6@FTTW+)%mKo>+{5!hCw-v$ma#efc4N3m zSema6bM%bgFu!Z0FPohh@DC?gksrwDhKyZ$I?-3BG@W+x-O!?J3Mft8&PF{(TWBNF z0opwjrIJ*VY#Jy+v5<|y{g0H6L^S#e(Vq`3_V-h)aEAOi)L?{yJ8&dt!@-aN82*87 z(rY9NDPWZlQDBS)ARqt4>UfFrxDJ^T-m@x#S;i4}0Rh(1fPrpTJcx#_})%x(w=(Scnpa0kc)?UuT zlCzE6q8AUQGg&x$iu#{I?kIlzbaoHG!4sSc=wOmBkVH4+Gb}<=HpsJs5aKp_KRled zY+hXw?-Bn~y+H;2kHS3v4x3ylvk9M2pf%nAMxWEkq;(fuA|`px3`pcJ95CR{3Rrh2 zeg@bXHcR>WsDiU8qhVvCJuc(+5;T;goTL2^IA`&!!<|uODsd(w?@`nYkqH?=p6Y8G z*?&y@`3R)v1|Qn;(RV_W#xd|EgnY~UsiP|KJEDo+a{sF6cH;kKDNF2;*S)X70v&Zx z9RXVeb_;+R5(Y<|hnd*guQu{gTH5tNyj5>EQl!9f-VR~f1}XG1dW}s&Bi$mkt-ZkpGvcmF;t0K$&ZS{f7D&GNq5xsL&O$u?rc?lz~|IF#H z)ezCw!ptu!v{It6V-k7(GAxeSK(owRq1HU5>0;VJ3U6%O8FK#85Imi_8>tV zMcobW5aF-4KKqJo#)-ODvL8AcLsV=1o4homxkULMn%wzliQN^*VVy|l=fExZ$1>T) zRyHaL1QTjEEU_ri%dV-PAO5)ghcb9yvJ=alK>p@=NwCJ|J%oP>$z1;RMbErf&cra$ z8EJMl3Y2N~=sa_!Ij2%YVJv4h^ay*-3QKxSn!KJE8mYTHe9-x}4Q(Dqv5D^h z$r0U}+=uZfU5jGz$*(50yYSw!Iod-g8q7BDWIJ!jP+5grT6K`uyv& z$y09}y9JNvJCPj*LaW`^D2Qf>8O~op@#0!7bslJzmwu+<(26C%B(((4|1G%o*-uvj zxuFsaEI}g?8h?y5$PITH%#ngX=K-@G6b}jfjJVH_(7g!}R|A->3YmfDPDZNyZx`B_ zKxS{pvzu0nk-PN^+(AQA<+w52r>TCwA)-S)-wY-GcU3KQOFHaBMWGf_qU-7so^(1# znKiEvn8d7&!r!E=^&y-+4%0rfNozFLIy4*MAp)*;48^WOa1fn0Z{q-b=L}^~J-GHc z5gw$`_QZW>W$5-lDg9>$3)7V>u@D0~SUoxqtEFi*2KJdoUM;V=MEg;fOe$~#Lwh$r zOmtpBIa`~DfU+2SE+EclzWTc4SUP5%W2qludf=yAn4+w)7gs=HGW(h#d9Ev3f6R50 z%GSowJcuTBWaM@qI>f!+5MH3R3s`3x&H#d>^sKREVMv?Y59O{O*X9)IeDfAL5znUU zKdw`Xay|~htwu^Y{~@$hD+Y(#W!OJ*A?E3jv{?`BQS}}$q_A!Ty8k>RO4(x`l3vR< z3(bgM*P^6%&hJJCCVS06y-3H8%+~}hb&8ffreqIRVg!}_vz-yRlEW1e|0g7GFxzQt zC|g*~@#$6$jZNaQn@_nWTj?5I#zL zY);u9YxhwD!E+gFq1Dquzv+0w8ALH330LP(+s_SiZjRn2y3C9bTy7xBcuG2OV8DUc zE!6@sCID_Ll4TRLB|{<`($FhU z&DGVZ2olg?i)kEf7GzlH&s$R?Gr6~>K;lwFHR2swK=Id`)?2%EJ7#INi3$L085ApU z-6RKglj(uB&lEKtZk#BrjFvB~$g`eW-fIajI|p1{RTx;-s_!)QSE z(VL)JaH+#-HB~A_8fKW9yeyb8v{A!f?TY`qXfPx2-F#c`?HRpu-kY2fSkxN z6##uES!aSLZy5`goFmi>v4!n%Q}J~L7X=<(CNmps>Shhc&iaCCK`Q~Yu97)mG=4UH zF^|hOV(=fa)m_0G(t4N}hS)w%el-S%U>v2~2e=D^eL-c}XnK4bZIz~!@dGVRQhN7D z8!t|RTrcu^X?W(<5!#G(uOvcfh}2oRlHFa9}qGQw=bboNt4QnAR7 zT>Evn4sHF2VUwB&RQ&<#&NYpMGs6ZZfCbvox%U_d>#+B#6@-7>_g;D2{S-VKYsHur z%D3pm6LR+K&wVlRH`0=R1mI~M38wM?F&hMj9%e2G6dPM#1B-}lG5}h~w6;RR!ZjNN z<1rZymfmm8-z0Gvhu&n@U8rB);ADdbRE-*1$T1lL)m^nd%eSCsvnEiP35CjiE4;td zf4fpUnd#L(F1J1e!?Yrd&bX?$6JSOFs^Ktp3bf#j!RFOD42?Wx6MKk9u)dTCmxjIo zLn9aCaFM-o6gpE$$-Rr(K3r0{jNYcl`Bw$Uc@%n*XXEQtLh;SgqR;xTW5uJ#rk>^Z zPWDX2+tlC#4y-p|E$ydCTOu5>4pc6f`>DI>zCW;zUm%>Kr$4eWVH(~MM8M|F!OjsX z;WLB*LYueQrV`7DqVRK?;YI4s>&!(5J?KtSXN^=k@vN@>W+zDV^}Z0Qft^?TOTe`_ z7YA;`V!}(wVxXCk!<_bQ=W7shyA;RR3QB$mi`a!{Csk!QdVU~OmwU)=C`d!QJF=LF zdIHh(KN-M_$vUNYu)f_V4U(jNDr>Bsb=t>+A9%bQa+vUxA_<(yz5SN{pZ6$TP)QBE zIMt-Gc4P}2VcM%Mz-@d_x`3CXe0D>jgw1iZZ;kQowiD->kF8gr56K!* zGxSX`eVsDEyRURPu9z&u0bK(@sLC}%LE!3sg9Ea1!%#3}>V&BPXx*y80N7K`n*D&2 zqkzJCrJlVvIDl@esjw0qRB?AgjR0EP(65cT2QhLh|A3J1wb~li?$D4YOsiQw1}<{1 zoetF`^fr4fGr3p-0L8kcqKC^Z1d^=Lq7&c~HZpH1g0_4y!K=Sh%&q4Eh7v$v$b!4- zTdmLVaOFRYB)?5^`k?E((!(9)r6Dh1<%Kzlnj&)kbMt56RK@%1fG7V zWGwEDrx$+Law4V+sc4J==I}E45?2RrGL-E1{FEB)O4Y{;d-Exb(c|Vl^sz}KgidTb zGd$8Vj&MpaNXJC-94K9Zlz5dPo3e%}+A9)DUFXI3C%}u+L0blJW81zM4v_x<{rEkI zJ$PR{n|2Jb)IJ5Z^&AzbcZ8yGD$PwoqCOa13#6$fY_D9IlcS3>g^+sNZaW5c_QQ*G`vcY10*4pd=tnqzdTe0vMafSC`AsDC zmo@j;;{pOUhwJMALhNTrW0G~TX0zhy+Ko>5tFh$O?+PXA2$Jh4r7RDDGIeL@Uzwy! z7VgwG5q>l+CZrheTxFy-mtyw$F~!VjH8cH$I5s*GxKe&{5ZJDG*ALPKMETY~|2$7+ z-KH=7mbFU~j%XI7lGIkQRzOul1Bi1dXp!_UW=_=jRj#E&x^ejjclrb0ig&aq8|5KA zJ?iN#=l@8K4cJsL3?8$IRXJEyliB4qSgcv&J~Tp(u@D5!nb{y}eqkOYesyskEGiAv zB-zg%201dPxtq=?=$M^NTLI{q_1TpUlB;BR4INIm2V((ry&L0xkd2Ns7Mv=Ytfwi6 z25`Mycs;i`&b~9VVJTas zi9aka#WtkA5mdd}z8o}g%Aclx+ECk?h7;OWrM0!GZLRiiJvg>FlWBjlbL!f+g|+5X z)Ogfud86z>vBT!sgd-@t7CozDc+Wy9zX&r0rEH5jtRQC~8zfK0@8nk2n=oW6Z*DGr zE;@gzynTJNd$ZE`=7e?Zqc6AlGz&?A&&U9n0d_w(Ms{1ktVuc;;i>f-G^)5YVtdyw z%HAmYTX99;MqHu<4cL>5|Gfj9ll{i)h47p)F+*%N`R1RM6d0T%9*X@7W)-sM#z6DO zs(6Qjzaf6CGX2)LzPZ>O6d@oGOST7nNK;!Bog#K1z94u;l~_F55DQ>VvsA_6K>fa% zN}}}>pSIA{5D}3$228Y21f`8CNCh$w9pX;iC*B?q-jg2?2o40a>y1b|Ge1QKM;s`{ z?>?Q#JVyPEr9;SBaK_d@$nHZLl;rL@+u$J|n-!T#odW}z>dkg87|ypvL0`Jt)x6h> zp1XN67{)lHX@a{QCt9b9?X<=7pA|$45$CJ7q$M`}4F4`ZLlv5$dWJ;t&XM82nA=Vb z_@+75i@ud0lE}8xf6KI7 zZ9aTYtb9yzu=gUgn&ehf6Hc1s;>of(u9n?=ucKQ>fvT0i?G-e_jGY`Wf|L4HUK0(U zzM37T1t81AtwB{`R8z$f4D~W7O`&*xD}b=;@x^~W%6IDkX!jsbeH3}z0>mXI>dOh9 z)r6nj_m&J^AZ`ag6B+U!Gaij{-cFcwLLzEr4u#VCgAWJ8-^?-;0JB{g{QL9_;Is0- z{9bBpJ8XzG`k*G&BvMGDl7*!tG*n`3a@uD%95h^Ws*<6A1R$-D_K@_A^Qx9TLb)eB z3cLGz2MfUgKn3~%c3I{DOm?hOnHaX2&oa(;>j-Uv#i0Hf@N@Y09T9YmR8Z>0Y7Joz2ZU``k1r&d(@r6}A2jfLw`Rn|+nilh&avZg%(6G`U3oz8)F(fq+3mZbSM1^Z~ zlpnYvBx5D`ZV-!!Hm^}z!5VV86Z9Z+On^iQRz4l^LYfvZBKTjHcnoi)xJzDc9Li zW)4hCqI=sNlfBO=78`v}=xEPeTdCa`QNe0j+r)fWXD9|OK>Znp;nK%UtWq9eeTq7b zRM4cM7DJ(4GaER`RNifZz)D?w95}+)ML&ii5{-Nr42WFUcmQIu z%JBcOFUm!Hd=M1B2e_rQrx25gRz!n9O-y(&^AK1&t=DanwnxPUoSYC1DN zU3!ubEND!ls4l@6g@U(Y7SJoyiECzfJeS&Ed4aJ9%x=%JUn)HShX|NkA4~)odKY<& z)>w~(+LFr7tS#CbSKzx)-^}`BX5FqY8Pcy7{VQO_F{IBAdW1(`mAVJz)CW7;HKOKQgE-z`$XqMe(q64BhB$f^QQ z@G6oLwE+B@Ko9eg3*iGg@)vwld#&WXYZCamBs})k-Tx3x-S^3_eq_bz}*@Y=-o@lvUndI`o}Y^B%`M%^S6_lk*epce!&3yUsQb-d8z) z<$I|9!DmY}K1$I!`&b&YJEk8Xui!GiH;YE|QeL|TlNs+zN9N}5hdv=&5H#>rj5DyP z)bim}KJ2_Swb~ZA!=Q!7nm4aq^;jOazfK_wA5PxNvNaXhoYZm|w(AX;q5-E{?gN7{ zs<}ocfq}{ctFpkf7>qO)bN3FaK8MLk!C<@8G5q=`NaO!%JqBGuDOFqEq&Kv;oyhgU zY9%a_JC#slCNEVvZLr!XrP7l(E85wJX@HBpaV+W6Pcs2onGr>EQ3Y-viN z-uwROh-4SnDDkTks*pl`m_7#ONVPIaCJ~>#md8cyel7wCGaXbwm``pc@XNU;c6ly2 zRVY%0sm&d1ZY*OXb(%n9|Ee#ATE=-p+d|q07eD*RMTWMlxap}-I?D7cKs9| z9|pA2KW&B<=kXln-%WV9AS#5}LescMLRUPLYDMty@&ht)L_w^?-`Qql^;uZ`3)4f= zjGc^2LulC4ipOanoZG;bZ1oLhE6esiL9rsJ9Fj7iApFOds#sy|VdOm0xv zh1r&kQV6`a!rCQ4H~dggQ%%5>1Gr9| zZwF@tkoa3O6?FhbmbwMFh^r*cfTP4D{cE6Z6$lqV(FM3QsOqtESf@-sN4Z5aWOTcT zi}mk5!Bi!u5E=P83~e<9lX{(egmF``Q;!NNf`Ul_)7g33+yv-*9o`4Qp5cl7kuYYU!o@0<=O8QuWeHS2|+9egBiteS$ z)VnWq8~#YDgbN0T6se#6^-lt!?L~eOoRjBvSVOv>;JN5%DQSD*RjcU)a05!&6?nG8 z&Mtx|6brhC`F8jaKm;5X6Z>+j`;588w+s9b57y&ZrEzI>et(Es>330L4^H?MEiCD= zX5I^}a+!6J8^Qz!l8PxMg{U_^YCzb7=6e819}HXrg4s{7g``Bcmf5|fsDUJRhtT{p2yra7eZB4!_UTQm%mrhZ35 z9-1gXxOMc4K9YYrG%K4FxAV+c5xa3Dm^`7t&0BBjn1hWt;?I7)G4XW&DtSj7ejQq> zai3>jj}3(-0%_X9B+GCJgFuskU`Y}=_vPqBQDGjJMw6h#)>URR=+f%vxM#pU$T$h- zF6L~x`FGy^t0DW^qPpdzu{eX5TiK-zGB=wr2N#6Y%-P|6DW}+Mfr6t5TGd5bZ~}7? ze?31Vf+fmS0!hbSgFgN~#PW}nZr^8VDKdfxZYqNRw`ORL1mz6w7OLsIS`3R5SdUq- zMzwtaSgIwh(Yo?zxn_fUwJU`fIg~|zGj61B3cc^=*yd{5{jcxO(@Wbc>_;)no8v2d zvl*vNvOl^f%NlYt9P(BeAOR19F}8@Oe*V3h^n15VF}Q9T0?N5SJvn4tszseluKt7% zhmjssT(yCm+yEE}w#RpiYfnb(noub3cEp zJo@~#7M3j^iPRe-y30J8b*I%#;e%x6v@!UKsYY?BE=Emvm8Y0nmN27IqR_<8>IUpz zL*y#HFD=s7Auu_;$OEGEO(*(5A~Bjk5Z~`G3ITk^c&!XAYr@W^40Nej{BH<^H0D`Q z8z(f%ciq`f#bKC7Z0U*p2`JO#MYTxuMg=0EIYjc-=2A+a(kG1jAJx8!3X@?jLM;hV&%!~?^kz|^)r3UeRSJXH>TXn|Mu#jW*K|_SpLmLnZnl@H1IJ=hqOe{^* znW9isZYS{+KCUikvmLHYirkD`P}NQ`xBLrI`YWQOcf#Jd#x0?MzY{@pQ>bz9yt|=q z`Zja(&hfeEPOCf`{JO2IylZZ+#>Z%9L_KW>yz|$ZO>YE3uJSFJB9ja&$s)*&MjFY9 zbDBSPhEmq4u9L_F!ysE|3L&ukXsj%6LqwtAe(Fc9jBi5`|2B?I!KK5u9SS{zam~tZ z52~vYpQy^uWj$fd)KM-*f@0)>GujxGSulnjH&79<3?`u(%-vApYU4t`Fih)`Z{+$_I`t2*Q#{JN<`4k8C1fk6CiD1Y$qDWj9Ip~|w2;X;m|xw3R) z1COJ~$;mGwmLVDcb%;qW)E79PkY9noBQEwc`+&L8lDk=slN|NQtqu=rF{<^!r z{*)7eth8Py6&scPToY&1Wv^ zh7fFlT->UdyZ~fY=T+BA*%MMqav8ct7pq`foo(ZR@GeH$>8!eDmTtJeM7!)6&vBbavv@>MD3LuFF zu|tiaY5!B+GXPQ#~O0`LBE-$m{DP6vwOvXhnwI76b*1Up0Oc2X9J z1aOS|W0A0b1(<}Uk$hJyB1#>$Rgr?7AC{`GzG(Pqktx|1P&WNBuQ;AZCJ{yB7>_qn zND}T|wMYPH7`;7zQo4l%IpfF^a+bo^HN{+mQ<%c7bWCyk2c7!4HSHuL)u7#YPzA9k z|C~hbNKFj=62M7r<#Pk^K1gV6=S?5FpY!S+-Afj=VfSL}+=J(HoTp|k-r6m;YinsM zp8w_?Q3UxD(aH%g8;vrgde1b|{Z~PG#)7is#7FJ5r z7|{uc?>q~>AH1g|?B76zVVaaF$^tOW2apDa=$$N&)^IRM2MoFHOz*M>p_ zX7Y+d@T?#>r@D!C9XgpR=i*RMVM2 zX*U5Ug_UAE;an34BUi4-)Od7SlaoerbhJC32!wUC2$WQXLBb%jWvdYXWL`-WoPNIf z9QGe>jB_!WjKFOoAZ`O%T@Z}Hr9jQQ6LXjVZoBBh_gHk;A>9+d(NO5pWg7314YxU- zJ!zWTMoJ;~n?w*b!-@kL%tWblyGg`M2GX|A>Da0P8(zRr{XC@~6YdfzK^l&Je4@dL zjO+p>dcI&^yX79;UYb5)s+-i4)`Y6MLv@u4N?elALeGCr+5z3a#|<&@+^ux&Qm;vL zFbq2Msn5hu-HATN^%89>8z%L~p~6gS<;k^HPr{K8c0^=UNQ&5u1te^RX`<4yOZn$I zfps6~qZ8x1Tb*vdKaX{4M;kEBxaX01s#uOsuEz;(zWq3VeFA~J7TcSTR-sETw*$!v%|gkMGXFET5lG-SBT1AFFws2_2}1ZiVWb zcW>TU28^zcHhn(c9==Dyc6og-E`Xu%>yCrAS#u#?Yud8dvYh8CcaSBPm-U+I zT*x=@aU1`8JHM%#zf3S5s{YS6W7UGMDU3vRMt9N6m}Q750=($uZmv4vBr}3BT@v4$ zGipSVRv5*c|Kq*sq|FDTn)bXxcf45uT^keh!F<807mWSaHZ>`?3QL9)XQ$3mIV6M3 zhtV+)6(u}U?&CGjPp4hMxVaQ>tF?FjqT#vQ`SZ(NN-KG+$s98Y0VkKg=tX*wt@o%9hy=%Sw< zY;cwTFNArA8IpLQE=2)_wnS!A?L(F^OZ;kgxUT4m^ph3W__RO+LHy>%tvYVk6}vE# zoPs=QKuhpRKRv8Qqx=8yi^)_~9A(HMut^!q!Bd*=iki9yZX6ubSC-YsDIx1iHkjT>c}PM`08V4M!2}?;riH<8FNT1?NJT>I@(o*m zGcg)vIXP@pBGbS~`TOMvs%pR-q1w;Y^JEPBSL9xT_od&q%H8q<(q8d0;(g2)%6(tS zST1Tc+pk)VbSft!&0O164A&5JO$RpBG%3FP(-g-vN!R4TGaA%(1VRpx*CC&R^^)GR zH(!ZaqQ7~p$8k}Hp~wL@!JJAx0x=n6xaCC$lCZkzvrwWaPp&~ETv0K$n7Sz<^L(ZH z6UgcU?W>lESs`-hiZ~jpOZ!b!LQ)9XD1Vrq3tk#c#o;W>Y}b1mnm6|vAHZJ^aHedd z*?a~IE+(Uoh?+;cvrHU?eH@;kB zC8`dJc=?!0r9OUIYo`i!hI$Q20ZU0Knb>Hnii!jyeoI}xXqIHv(*S&h;vqQPIj{Sp zgUth~^eX!aDZcJcApx4-Z@*tXS?l5@lOKDvg{cm=Ycpi%RVg=APHMY~7x~=59SIJ= zBeaxen0I!a81I}8z3UOj8#JPoIp;C_97~pTlOgwy|4A1Z6 zyxWilz-!@~r$)B@;;)aiTFnb!0E_uf>&}kQ1Zs~RdVs}_aYQjOY@EE-$wkT-*36{E!+$NF_Hk`ibO0G|!Jtmm z@(J>qT7g6jD+?IVpDXO8Tv6j0f1hsAMcNh@^0NVS%5c@&vjk)+Tx(gHjv`8_n}Tv} z239(Qa!s&>xz5&8eSSlmjtcUc_p)e4zr#pDZh^}ug)(`juL);#s_6|&aD#d+i!-!3 zel@++!PyMZrof9r7yLkWlI`(;{McTzDF$o^V4tHtui4ZMYHtKGxoIu(l!?~$h>{9} ztV)L^6!W~?D=lp|uQFx^JF?6-Cq<|0#Q~NuQkmEll>{n}YMB(if;i#inxo8wDD&Ku^ad-qQge^uX zxg=lyP0Kuqfnla*H4&N?#K9-jsL**rCSY8AY!^d~wdy_-@BAF7#V!MI`hw#vJ+J1W zGe)1rGsjD(jI@4CWxvHBjg)uR81rl2(}+IW zc3r(e;%AvsHl{km*fE(59E!pAC-L~psW4uLd)KQ_CSnFQMB)hW>s;x!RfU&;1R&Ra z9;cd#+Tr8lWo60I~ZSWS_R~2#rZQOllQf#2Q5yN0pta+Oh%Q zoDf0;twe+-QTL29fDiVyBs{Q1l}7WmadMI3AxTS`&%en}M#2R1SMjN~7cd!R zCkV6TDWy0T7N+S;+Pj^8pa05AF?L9Q-R_u zEfJEfz4+1zRM1M#;%UZhaUCL)pVhH6{0*T=6i$#y@Gf8}sMi{0XG$|+p(0)F=sm^a zXM6}c5v-{Z06LLO5$5(}-#f3x$0_?#?s1eyA!H%Rgr6S*#Yh&f^cdP1+~{PY8U5RQ z?G4%x;*#(v{KP}DSQJrvTA>rW{_YgPt@Id`SqzvoW)>ec_AOtBWXq+fXd0&_>i<-H z1$#@InvICyT4bO678=LGGabG8sJ8nwjJUYOJC=11@{EMm|3}9c=1B-`BA=+MTEl=s zyO%0*Q0yq3?v;2r9BnDHr2$Ba7(B=Ty%)jx{Rb*qI{q)HD1d4-ez-@;i)*4vFb10- zAOF#Mrwo_P$^)v}!N#Zf)gzXr%*!|O!fpL4_OyS?d%rIcXuA@7UAt+$D=;e9;|F0v zA)w!g!m^m7MwEVygWMuz=2>#$jZitk4L6kp265DEL;|gz*?|f5Lp-D3S_L*ulzc)v zqwRz?P&) zF2Jkw#t}S1cd$62x{~Wgwomka%tB#}tT(9ZU`+qj8<6d+SL6|}m*X}; z-1Fn0tghgKi}AGWF)Yb>yF9s@Fz6>b$4veQ?Il!zro57@;%IX57bm%O(YBY#xb=Pk zd#>thN_oY@i?V$XtKXl9nr*ng=5Ad6@Ht2>hOwZxWuM1zCLQ|vOcK1S1eAh~w!3(4 zNscWF0d+<+N{rr65!gtpJA{;rx&Bl>%;fp0O!5U=|CS=u2kyxXp{DoF`v%GL4Yt>Fme5^ ze4yAKSKFz6>JS$qWo`s7(^a~t?Ig@K`T4kb=F0VkS}kE87p9no&zCvhD_Yg){k{f! zSeV+ElF#fVU^I?o!lK3Y>0)B?~X?;nAOo-6Q^?9a$;gsBbFyMgW=ir z9n*JyoS57H>7EPWg-v?#!EApExMWlz={{IW%!J0LX%r_30K;4Sg{i?1qTXrLiy3G< zIDBFRD1Au%peP^66kK;~M-XKQi zzc1Pg@Aec8)g3&q*B|L!tBc(gDjpDWuC@B!;gTmukf`gyA*0Zg0s4tSO@|uHeH{9> zfBwHpsh5tM?TdR=^a*BLhiBQ3~!1CEinfLhXL9 zIey*rsOj%|27w4Dq7FoY0S1$=m!nDV18rHbwqr!yfHix5X{23qe7;sUe&v4WVBhP< zDoe9~O&UM*vAncyC0l9&UyI##6-tSNxItf9N73p7o&j24Qp(A4zH=|i7yVse%eSQh zMfJ|Xu-E!Jc=|4cjb6K0IQtulgqBjl=75M**h>P8fK`qGK|g%*ITk%nGGlGUgHB)q zSk(KI$({6nH4^6?k7XFmC4fm&PK)wZLMu4{ctqGySAxx@X~7ckw@DU&AvqNYJ1xoY z06w@z<)Tw0DmuATX`j2>+EnV6!2pag<|E z(_;DcTwuX>E!41Th91x?wuijDPp4t_l%4@zOmUZ4$gYVdy7J*^mm3tJ+bqw>K6ES8 zzVX{?1L(?YfqT$hn!;}Vd4V)vb{d`r5WXu_?ZI6?J59LIi!(G^#K98{g)1H>Sf0G{ zqw}vR*v;C;#_-`6`lEGD-9Tfafokxu@K_X+3Tj~|NPEB$;GbRe*CQ0t%)Z= zEd$n#1D5m8)#n)iqM(ig*K!#7soo#eM_~+@i#kf9EgR(p=C6`j2Pc5UX_ygliNcZ% zN$K+P8B84FSbRpivrhw1ziAk=k|S&}B+)61)p=HObFmAtU(|y^QH^y0l!9u_Y_96N zH!wS2ZZitI?cfWno){A9BZRMNL4_c(<=;L6DJ#7PM-}oL1QP``eKmuUxAADv)2H^Qr3WjHJYz>?{IFhYt7f zi&64f#HBC7pi!K0n-P*hYwEBUJ;6$`Fr+Rsh6#Z;5G0Mg$aeA5tkj8MBR+-D7&5f$ zm^?z*LymnE>iT<`6ljtCM0iyEO$4Mc0XJ2_`*$F_wZ)lQsIX5zq1QB@Etzv}=`$zE z!_C2jDQFeE{$K+`8w92TcU49VN4K;+yP*$$CRlE-YJyxA*mBKh8hAN)jPqzo1c6!R zDi((Sv zoncjOgpB+fIU64#dJJZuizxhI@9VO~!Pl)NLu~fzW9<5>QCh%FD38sW=qtvb{``UpQqhVbNi( zQ4!Z4yC`s^6j~XBmfx>sY59g}PQ``;c#H&%3BHklJ0nQ8$-D{puaR^XVYd?+mvDG% z0_d#<9gX$yP=7M0jM+NpUf@xtPTTI-4<%aL`w51oy?zC;#-3>H3<}gBuvOv31C4KK zOlM5SqHxDVU?^)N3z1|}|F(V}ltdItH-mep2-J({W3|HM$eDR?Lc7*ti}8+sjKz4G2z3k81{IU1DibtI<@!R4k`Zy*rtvR;~x4j5k`!JGq6whd)o3O zli}2-%BMNxoS^$pdu|HGx=}yM3JEZ|TQ+kr2CyHgelRJ061@nRqRkLsYJ_w+xc+oH zNhVBW18Afa)=+jq@u57Ha~vqG?|v5&ZR>Lb4&sWE#>!cgv7;%uKTI)(4=9uTWS&X= zk>@xdHKWM1WQHw`Z$3JQX=Mg|aG}<)r5!?&6Ut-cd2Hty?3$Wrr@YXY2ug<9S=VUc_>Fpq}P%x`}&x z<20F2YdspTITlWg&e)@=1c;=!$Ajm2rqK3P!k(E0L*Lm#)?o%fQd-Asx%Qi*DkiMo zthUWuaa!6J9WyC<=54xLEC*)Ddj2ucm}R9S;1D7inKOzP1i7$RdFEkd=;Er(Q(7fb z@xvW$<1_YlH0J}8ptD#5fb4H`iXPvu3y93!rt_ymCgVz0{gQD=Z zODd8Tayvl@BO_QQoMCmunHy2z=3oD)wNawVH#=b(ohYFJx&H&4Kx4nNB)Zpdm^}D=szkL0GTlrDu;ndzaejg{U=r(WF~)+)(_637F;20`WBN4=U*2JZ?m(U= zS00zpS5nzG>59ZD+v(x>H9`7ug(95&H#-WAl!+mg7eBLTEMb>Nv^9iXc3q(0x(yEK zDcxC2iM2wKqpi;6Xrp&X>&wHr(tT#573K|2;#&qpnj75xK({7)TcvWj>LmrD@3p3v zy^0^WRPoCW9Pe#4n}M8H?^hQ(4jiGEN}g}dbJW$nA47obNDKX}d-<^tI{0U+Ou9aB z9rBaH(x720Uf)m;8fAa8((8doVgECh(zs!flxB?4FZu|!QC{>% zQ#b5V^BE>TC*mtQ9eNGoWX&8|rrRgeR&WBoJlZZ+dL^M5b1jq=0Pv zT-!wpdluJ^Yz&!JvGU2swC0sA<5;%!WFt4WV9(W9gs^N3^DJ2K7MaR)w1jL78J+Wz z(Ti>j_SfyLx7!SQibeN;0__x%)~ZYBn2jNsfy9|+VoA7 zJ4dw~^q7tit$IEUQyqZ?Bc{@z7H9M;WZ4{gg<|JlI3}q0Fk){}#OVkedvVJQELZ1e zuqZQeku8vr>l$Db)M1I-(0)=MOPz#x%{yS7K-0l~Bh}V)eQ&F6>8e2oWTB@%pCoqd zAX7FEc5IQCOU3zY4c2DpFs%SMn8n$@2eS!eIyQ@6_$>|)ekk^6sfFiPb98n)5F9;T z&k$R?S0)1_&Z@4gB8{tKk-{n&-g@kjxC(BRutPs-6`Z1SUOfP@5K}TQ^Kne>XjMQ* zOGVK=U5|y5ds-tq6r4RRZ$eK=*f(!aE1ST*O%dE%-GDJ|7FQMYOw-faCiIk)3g+!; zYZH3f5Wu}<;j&j^HS7#DceAzTLg$D;{bXd~ULm3=^a`O!v^#+A(L~*%E(tpRx4=*xru9N&{dt*k`uR&l z22TMV$*1GZ26fEP4v6#=oCxOSC~v^yz{EK99yxl0f&!9S+hyR+5}js3y|Er8l2BX> zR$1N9GS0Fc+-&+b6ZBG(bRJN%W?z}o6-4!P^ES(ckx*3BM#fP$QA#bD3hco+YXAv~ zx5!v*r1my#S`xZN}8AW=*~DrjHEjiDJF9xUtC(5=EZ*&~h&f*wvml z;-9V#8RiQ+l%3_q=(I0UC9bBD<7l5cZM#1K8EiWS&eD7N6=CClS#m7 zC$_SfOqZfNiA%jFIq;RSWoCU!(+-yri8r43vhca1*h@>bDWk1(f=}jhHl>9vzioVE&hm2|k z1heIGuSp#`gs!CnOSuA*_-+M9d_@zBV~>|B3B0osnPukUh@4_azL>O^&Wd`S4#UL1 zP^$5tB#>$_!&D48`xspVqEne1wQJK)A4kl*_~kLQ@d9`*_x(pBbOV*|9L%3vw&xE_ zVg?xsrz>&HhJ|)iU%qf-7*aHcs-fviOQb|T=1aoLFCXVzi06Tu%TLYC(ULjD(@7^& zijw{|wuIBq8qpbkt7c89?xiax&l+lU=Rx`(sJ5<&v>kX>1nYtf`5yLzq1o$Fhs+q< zjs=p6T653vOfAF9jm3OVBXreE5Ei77Ct=nLy{lxLqP z!9?42TgytHOBHUH#f?RMa~1llLVPOJg)78Y!l$%hBQ)P8;jf#zqpzqWnC~8t22Dqy zIxtv*Vck|2b)a(7zP;Qoy;1g*cH#5yiZ=RZxo{BxQ%JIPL}&Plv2_+r9kNx*X6n>R zPiyJ~>raRnW|0#hbMMX~MF@MA-)t=YLhT&^hj}xg4yI#h3U*=0?Ll&YR=yeMvT#}S z#r{$`CBANWQ6jRsVe5Zu8d5HI=i6I!!)q%zn+r+mg|C{x8tSE0@%QY*>V-q2R7+() zIQ}U#ipW_Y)tj_b%x04~Ul(fkOQrg@&yfC1k6XivQd$?vz?h z<(*QkR(Fa@LFs%@7|d4DwW36rtzOLdquC0ksz&3AU!zbmlAZfi(frA=3--jKUZ_}^P$~#RCuiO)NfGaBRNii>%8jYRJwTcT*K={sw^ookqkH|L1qdX5aSkrYKkrLmUcLDC|^ykkzAdRV zL^4j=cqvg@3U9pznkpo@uKCJ1=O;9<)@nRyuz8b%Wfq#7Z&8Xhtv5KYt|1e3(WbRj zx(g+{RLn(N)^d^GSj;y!i*zxpza?DqDp-dWajj63d}UCld{z513RxoHUqhC}v0@lx zxNurgFk7k?NGkF9f+UU9&>5Q8DH4CF&cfd|it=HQp*kYl&YOQmr85?i#IookO1Q-G zLQK!A5YCc4_e(q}e+vyg<^T&_m92M7_nITTSzgo>g5bXNTl=uHy><3>>&@HyviIZg zx{QBS=&kZKLz-lh@9>+fq(qJ?+&)t&!IK^tDJ8^K3TVg_6D9CYXw;G1N-NNO0G6}4 zRc=Njm~^sCzL6K33za$QDI~-4XcUsPhv*Z=#AuJXE1f%T{7H0;QWBk;w&Facd{42> zT}N-U`(m>e(TkXiR_9WY7fN=i3?p`(xVc1^iutzCIGfkh!gK-#XLS}Tzme(>Z{`sc zCDAFnqY=bdZ!o6mg+kcab7H7{2Uz$pb#A79Jt=D?YnPv#wWFnU&W_4*x(5BA&vuP3 zsGSL#447q|**IX?q1)$#ZP5cIZ&rDa^rq_ki3@cGU3^BZcdM^YL2rKZ5E#a#N?>8u z55bx@L@dU*+qf%%wlG)-@d?O;1jW)Zd8w~kwsQ+Hw!~Of7k`nPhtP0G=ED8J1rwef zsAi9%V8YM-uQ?8LvYlFb4}Tq?Pt=Bod8vXw^dTs7eeZoavoNiXj+rz1KMiL6u?eHfE0mZoA}pd^V32uw$KtaMoEF8W}I4C%f;jl;quxX+bR zm|*SAN?*~H(PiC-ZXHG{%>(^$)W2tvKX+rRB|3pId%}ybwt@vrQ&N}R z+G>f;XOYI%8*Og2M8~U3W9p3Tt;ksaRg_=D-Xb$(QwYC_23JdTl$vu9K2-LE z7h%-}L-kTpcMYp9502rr*m|?Ax;*%W*JA37th$OUt1b^dZ{r6Z ze|Rrjk)snH+&B-3*9gUA$ttT9NiZA%<}+9%yRBiBwe#TFtuF4RzmOf!w&?7p>cJ_7k_wfr&Wb<-Y2h-XjPcywo!Xy{p*{q3OCln z&Z7#K%2%bMu1Hn5N$z#gs*odD3#r1p^X)A!MQ^E2T{2LPS{7c7a~7@0)k7w&$OVZ} zD{{eN)QbG2M^eZDks9?N&K2o35~oo~S{4B&T%+b84n7z*^g=Xh?)F+_Xw;>eW9g_X zQlsW>qa`KPD_&~m64^;&!iu_ULRB1#dgB80u2kG9wHTmrgylK=LH}Wf-CAArTqrn6 z{YooeX~gkw7uTnyqVOQcgSEEPGhD46Y+eS%^U$pao0nW6K({Ux21`d>fx7izQ*$fC z=~lm;%ylalAj$n=Q9>M5%jcnwzg=8zZ{ce7dF&tuASNwa^~iur_y^i5@Tu5!_C_;R zv3b}VeTfd?gFNhwN_Pm?o?6A`VQ+LDs>i8VQoT@)_+(SCeBS3$@t;)5O7qetRTmZr zD5k~btTt1`B;pg#!x7ZM2(ki~&OTgguQS8+rh{DUbuL=Z zFC@L`AQyX`OoSH_J@nK{I~SXs>ySMIh@&yjS+sdff9p597cqglv=DK7>vx5Hy1{?)fMXbn1@> zcRv&_`?Fm35+a7^d#zceVqiSDR51x0INsZ8HW$y+se8Y=&~f01q>p+D6`pwaet5k` zKfTivJq(dyS0JjDVMWs<~E-CXag!d!W zy1&Dth#tdiSFK`q+ODaN5H0@ppQtoRQeDg|HLvvj@+*{%{)JlYz1{UFu zycQVGn5R?N7R#(a^TQKbT*KB(K(Cl&CCEUI(mQHKBx8Qt?i}BxpB>q5Z>^dgrACDO zD%B!aBMXE{?r$1Ga>e-R(wtS!kY$o^fw~8?3ABRtV20q>veGw&h&|OwIvH3ftgZpI z`yE-(u2_;pxFA6^Ueb6&=76b|G(ObLu^T+)Da!#fWkJfdIP{NOS_526iy`|LyYYfE zzL2EbMHe1@#4lNYFWZiKqS1o8;5`?hg*e-hA|uUqEIqaDm`rc{8eYS#ZXg$^!lZ5E zJR!Owz*jn|QNkp-2VjZ;*i5Ty(Lp)UG6u^QvY%0@&wqIP88Jsqmx|=Mp=u6LYkONY z--EVd{^Gudg;7QmDht7s$%J|uMAw>7PlIaA%n3G=)WENw|GRCB5xcr0VCh;?D^IN5 zv>_4zn!|3QOT^K3ECfEs2s%TR**uqsp56ndqxW_8s2r&@%(DZLG2KTtdXEB&C3a0V zmL^n4TegDM&WdUnZ~}TefyN3+#);^_)v$3=q5CCy_MOX~nB|=K&J$2f+FYk^vzyOk zlQcbZW*gs|#`BIjmeHyvgSzwebPUiuOdtA(m_O&f&S5buID9V7KHiaJQE*(q z*3ee#g6aY^IwqR|#04;MMIjUti?5ao5Q){41#E2L%%xzF@GSXbCJWMJsB1%6z$DHv z)`0a5nOzn@3%eC-SdsA9_5k?=hvMiXpxAC#$5Gs5jU<0!ceF(Vih1V<#EiRf;4UR~mAd1+Ghw(%H2R7$NH{ z{S?VI?ITOu)=&TN&OAwH>0-)8v8X}@Ux}t4{o}d*6x1)>f8IbqU3CB+UsSNaNEx}d zqjZ7dH@~BFh6@j|C?vmh{(7<$2~L38ak1Q#1yna>L82~Lq#>Zy1J(`$+~o~hCb%6Y z`-Q8EHu&!1m}FV-m`oVHo~<(*xP}eSN?E-_GS5=S5F0ECo4M-+v9Al4(V58yjE!0N z`o(VWa`x?k$-Th`OeTk5>slJH1uI?}%z^&Eln~7ajcJL#Ib1?U%~TCTUiW&Sk1RhX zGldJ@gKFtGOH&#^T=s=nf=tncTvgu~RUQ|tuC!jU_!hYUC9Vgu0Ql?YzY;)omsT$; za(?mSLh+-oEH9#xLn?5m{{6cw0#0PkE;fP81qwCcN(07b*Kyd%YcbTqOM?5&lr6F; zoI^a|%5yf=8AEjVfU%_paCXd6O}h`QWFM+nm_3&J&%V)@qxZVbvQN#sK9;6pAqjwZs$!mnaGHD);o#3_HVO;Row(Yn; zF*-8W+w>XE#=tUk^By&%n%WRr3#CxX4X?@$l55bK?QNB|ma*s-@LvrY(DE@UqJJkR zOUUehIKMjXoF9e?In3cRwH(oXu4o#@tZBY+C3)`Bps9wQBf6yMBYyL^HyYs<9ryNFinR+J zTKzI0{a#FlMddkWSgekDW2;w~Z7J5(F=)8%7*`BhxkyU1g>#t06Cs+zF`WZrvP?hv zXZ`#Ou4ooyGDY8D%F5tE0jUfnhA3HpgMCG%L4NEp|6EZ@Yyky4kXU2>dB;x{C@<<# z9;e8H#G1>%#fI{_#k4-*0pxE?DQwvcn-QwOxRJsa7O~zw%JP8L|KLJAuoEgazGE+~GEO#U#3(_9G?d^};K3 z^~GLlyGD)|3DwP}3-jn#$RUrRS15K-^|Y4?cQ4-Z3!Nu$O2{{aRY%l08!=GBVP)+4Mw9&0Y)zJIs%EZzg2bhWmMv904R5`?@Vw)*$H&b9;xi^L4Bj>wgS+StJgz~ z>85gXc6)sM@sNZ%Gl)R06FynJyj;N6+wA89$zs`XL2_*-qlOC>bFdi~G&ZxBn?vvs zw`@E9Tp*bi>=J`lxjJ=^grp;HV*4HfX{RnTS@m39^V5K3!IQ`&QqRd|nr1xRihg$P z!y;a3VB6T4rG#r{>?pnkLEYEnIrQ>Sp>s-^H|1xm>!xP7REJ}8fRrXz&}%q|psU(I z>FWmAQI2sdezW9d+fk8~qZ-fzo;9H(qYh3?#RjN>zT&4^*$RGco^=11HIEG^o90Gg zbHap*zhJ}IxHhIL#wmJGY-D}UfhgD(w=v$hRSM0<&Da2&j1Ex9AKC+ZC(vdg$;1?W z4$>pPtTZDN&(zA*X;dOkoI2t=k%{}nsiH3`+`XC$p_@|aOKv3-aB1JISmk&J~*GpDC3!hu6P$}#c1^shbL|qTSThqd2U%NXz&$20Vej`GKp7-seiJIb;!(1 zS$~LCVw6m zK-QRBJ^{>Dqlnx1z}s$fb&bPzeC77Lf-G0EASNqk^ceY0AKg(d$=jslK6FhSA2f!x z?x2;lG8qDIXV8X*OB&XosR7gRA{_#4sV3gJ)6jPtuxzo_1#hQ3Qr6!xsS}?=cvFO2 zqy&$ROY_GB_rZHKIw+9Dd4+-kX&wHk$UholxX2VKgX1t|J1f@4E1HU6K#t&OcJymW zbDkOZ^?XXv<4CsDLgPpiAfv{S#(k#hz#<8bfUQ~jc!hH?ffiz@z>Ig|;)4NQ{<4&* z&|S3^mOlcowsG@E<>Umb{Lz?tfj0_g8pf04Wyl|6tg6kOKa3M??fjujjp&WSS(voQ z5Z|!Pa@+142aEnNHT7h2V?{-vypVetSSam<6dT$JG+szrSl}hZ(?yhdVODCN1j^9_ zpcF)StgsQV$8ksfPeP5ZK|d&Uy2clU!~>G(A!jxQi{W7C_Bkuvo2v6C zF4P%xu_5f;>g!X`o8LSHhHAwcqJt>6pAkqSJ06 z4sRq8ZtCJMa`O-^NJr+v{lEnio*k%WkD_40&;GAD4s)`dT6zzE9iUIthKG5nT%{I& z;BvEG^S$W{Z#p=GfMdU18*!@v@C)`21ciL@CNd!ziQ4kwwTg71?8S?&`#$c#BP!$9~T z5raH+ch^NCbVOdb-x0+@JSj?;(3>OP-=!HvX8UuQQMg>uX3i+@+GAZM?0y8+(@ryX zEU6fxC`uT*X+TOLVToSY9=POl6oX#!4fP zg8TCv!f4glW?RoPyRprS&`6RFDe^4VVxUlA*br>~^$T-v+4m&`O_nF<^qR9cKLiJEw0C1zH&f>(BB zkXjLW6UwfMmr0&vPK=9wK6)rQKK1$Z(@Y9Je?BJEs!WXM(^IBMtj*x7s3n!NN->@NNUTfil&9I5N698S{TUW(JjeCty$jj@hCeL0v zLDhRO()Q*nV6-v*JtfC`6e)PIQvCJvzv|K!WcZC&$KYl;26L%F955nPdfmjjJVYvpOHosM8Gc{!rhG0(RfAq-p_j2fyDte}v*fd%<(JXV3>-yIH%pn7-u``MCjhm; zXTirsqkB7H=97CTrzKB)vf2lxw@%4dSb=9=hN3rATEj4Ya~V&WE#>LS71Y`xOiD9+tPBjk2f_R|0U}J0x56001f3t zwS|& zSH}8d75E%z77hx*2VkiN&t5MheV!tuii18_A@KwyGg9X%)~FoRK}%PMsRZ}SA`h1z z{dv!;68QD=zbdbs6GI*inn*BnrMEn909Aod8}1KF38|!nfB51-|6Cs6W=J^`8*vxQMGj7uliL4NZQXvR|r7 zb6n)2=)~gS)^K5tRE`Ub51s{kTQ$1)e(I6V*dwtfJ3W_>sn-%(PuETVu-6ySS?n8o z5gm2V3ooLhIzI8^L40aUE=3aSiHVy#tk0<`T0%EF=aC zFT~k8! zMA1zJnm~bl1x;P$K(%#E!Tuz%e%iRQK3*dfw~(Kf5Rd?)PcZmt@%@DZ%_JWFcoJ7E zHv@-1_(s`~u((^`xR%Kwi&w#3;`8tczuBt`4)RFe zBi=CTyaqMJo6h{+@#jsTzRY03O$*x5xt#FNTjt z{(SuF=f8JeX%s`F_UqJ&p$ul7SGI|h&5r5-eDL-w`@~QPd!}C5Cx$qxF;Qm{ms=ag zJKa~KFpf0T(fdlD82aeu>#T|sIsiU0$QiX`E9Q@HW z@Jo@N>A1r~5abk|X?lmW?qL@6Odr7Btb>|f?xydPE_oY4v2<)(x@s&FqfE%-69f0z z|BUTrwzbIOdg=MvD|ND)u*%n7F5#i@Be}~(vhC2^*|WFI#H8%Tdb50GB92g4H-q%t`gu=Q} zt^1*CC9ZKdRfM$1V_-lQQt~lltJQk5qY$O$RfF<05K>1ZoLgB6S}G)IeZC@sc++gFd2o?D7lTE=V9W@?swW{Zd)(3dRc+XNoQ&!R@4trIgSz{<&Xc+zID*Xq*z zX!v8y4vc-Bv^+OU{^-u}-%CH8L>F-k4|0tLgf5P;Pp^nkT^jc;nKC5e2QjrfB8#iI zaap9nJ?j|ONO@7Nky&2p+|5Q^Xe=xg>4hlpes#8a2mbqi{U6pYgxWYu&qn0kFb9`b z7hTcYax^0*c95y@R3T#)HL*n(@Qje&Wy&*a4Rs7Z z;XbW1{dxF|AP{E#5TCCxBhxm0c%7c#Xq!nhvYgS3Oac18fBxS!iInKt{Qi_Z`hV%C zU0j)Ffzz%+&z>LSefU^bRNTYFy#!bi5jN-mL6u zqRR#|n*XAPctkf{=-PDBGP!dSoH=FhC$}%hbWvj@!Gm%Y_UfQt*tKkY(RK{ zF|RG=y!e}%BzyL@CS#j)wP&dl)DQG^ysMhp5L$Ta(CH8k z#@`O+-!A6gFeSGXTgUs5H&_FpUluS_M}Gib3Lv6Dy-_PR8x=&9E*PRtA3+TfX-hGn zb`N^w9YdW#*Eu&2fq`}2mZBO4oLoNu%TUMU!eopF)Wgdg=ti+zt>b-Od;|1!GSc+& z0q)UwcaE1bB~WJm#2L>O@7WyP6AMqtu{r?W%jk*ge%}VpezlBdLjzk^i&y=hUNeD4 zKZhFiQ?-^_t{1DtMk}e|&*TlnY&gMFo8og@N|>WG)R$(pTJxkZdZOP)6Xe)?&LF+T zyo^SJ{OvyWe1Z_Uf+p~O^`M4ipx(nf&}e>`>IktYX6`PWD)^H3n0EDWiaVfdCl-1H zGnl$dxEVl(Ysb#H6vIOE+y!PbUgq}n@h3`}$nO^=c4pr6*DK-q0%6w1Y7 zy)aUBs?d{x@q$=r>PU4|#kKTMQzKoopbh)Zjs`~s*zcnWQ$+xiuHM~J? z4(^8P*y9*`cVc6agub92+@V>jIMV|-#q5j0+G9c_uaom}FIK3v$2_o)8}#l!=Szd6(H6w3nqITspX8H?ta z_{#r}a?}%?rOLdlzb81sRMn`=4X-I8Lqu4Os9-B`wl==9NFPE&N;&kci?jnaD=aLy zY@~rLfaKe`=?O>2|6=)Hy7McJaR|xO#lvO7Hc}LQoebGyyYvU)v_gQD7k_*6$di@? z;kj@x%vAu<1}8|)c2(`3jDxPB-aPEun4`(qMu}T2Di-B~0uf>H#lNRGRrYVYRBYgW z5<~qz=tZZD%{v<_Q6vqiXxl|A1RR(G{=h15xA+HUrFW{K4@{yI{}`#(KsVo!yOm05 zr#_xvLzdNUwXsvHp-U5N;Oth=w;|CuyY-zqzW(DK(lubZ`>s-J78{Lf^^XVL*1Ni) zJF{K#)c}8tZ1@fj)jNXRt~XwfSFw&mQ~(|l#fTdilc?)NlSkh1tUr3oC&oKOX#EFb zDb;wSOUwiBeC@J}wN>ybTtr*fVjJ;qKQ@7h{>Q^RkM?A|vDu1;bEup_3!S-?-%vkHfgYE*S^+utM=fujHA-~ z$-&Y2?x--Ard~LMd{?)nK`%u3;et$V_ zwZ}&Vctje!HaZrxhJTiglVjZ&Y1if3-j(z1ur@t9X^juv&g|>KL9MITyC19e48E@n zT3e^e+;F5BV3YF7()XN3|TtoI-BU|rzre^%Zb-LuPw3-i4}8tk53 z-``)Je4qSiUk=^3M-N|bZu@_ps*|byt)svFRy=(epV>!W_0gsJrTBGL?px){>dnEW zX>~t!3m;omqtGu5FZI&*TMxs}=VklasegJu=)L_*KN|G=7fo<~Vw~J{A3hf$tR8m{ zhd)lI)qd;rw%0A!&Mxh*!|%r7tDvhgHP{O(qOxHad^`F7=+{mV+Xb7CJ~HMCCv zH2-?2m=E7t{mMPkw3EAb?eIelTznb8&ehpRw{c?Cs{fz8FH2Hg$+nzISk_NI((DZ(=kTm*0%bLxoIp;Y;yut z?cMh6+n2U4hvI5`9r~HTM#Jqcx)om5$Gv%TW5iVwsXA>-S@2a)YXj(I!MEop8|njN&ov zq1;N9Dj4;a3wb3W4x%q;L~e`GARKF?zo-_b_;B2Giz3hTt$d`+gAg|0A~8WKwI=6# zYI!U*Fwu8r)3zFu&COVdrG+C`%9}=+2vf(ehz#k@1}Z70)n{h-ygDlNx(3^1GJ$i( zRAg^6*c8W;0lKIyD51NSn?eT;yHK5Hgds(@%dNg+LPp?ANPW|Dhk=f1m@%RBfNb*( zTTEnnT`C2+KuH^-i?~=Kha#!i^NCwuxQ;WI#juWG6=5<^+CwDvti@_hR4VA)rJ{1r z^Jig!!_&aMJ>J=muYY-=ft)y5};(l{gobbJ6v+b}l zkF@>7<@j!D%DX}}6BxBzS*{_X<0OHC(}X1pkw_Jwn6X-h!@3=KFdnqZ>zc$(lv;a* z@-7~fp%@7{6Lu`P)MgijW~tX+j*(2@P%dvuG$El{YpF>qzSWt?-3iopsx2L52(sGK zW>LvZyTGJHtJkTDx+vHkyb8@4e9K|9`P9%YOePo-%>>REtk+;>1<4qjaa2$&)Hjw& z(BYa?eTp=&HYA|@&|Irjz|sv(AZ@-sSamuwUsKAZ84<7RgRUXtTuIKyvdzt-irFj| zre%C&6rr-}8=x&Ah%T~auE}<55qrg~_-q_@7x{-%x+t^MD#N8#W(NA0vsDDnIwtK| zjx}Mn%(4}h1=83VTeO&(0gb?g&6aio!+n|QrI~7$Q%KvD>q=Rgv;j-3kfvjcG-%9S8~&bs`OA}G+BQHB4B%J>UWOzXe*q3G@MVB| zYP#uiI`yZ2WdE|Y#`nVJmW9o8Q>M=#aE2T_! zl=YcV7Q12Lf$6XS$|_xevdYWSrUalYq`KZ1rl@iL$Q+7;p)#GYi%ej*5)f=l3nqvj z3Od=EGZ-z5+Sq)} z@Vs%`8=I(U;6@}_%+bASD;J2?V}vt(*IBN8q$>_leKvhI<{WNolyx7k&QMik5(fD(|ZdMMy1-gGn&pbfppMo7#M>4^*%*H z{-9;I32H(Req~OX3K0>_XjpX`1$17gCj8tIsZNh+Hpg;fAjQ)@+Q6Ygxx@Ns9q02B zwpxtM7W(Dx7+;p4X(4P*r&hSZi}Un}j*6X@WoWzpqMKHiy{jvKXpdyV=bTQS9uhT$4To$3x(D?XCNnbWtsJd4D^cpw|5H})l^ z#Fu0_#HPGBq$QlwGJ&CDHAPJ!E5r~N)JaEWo${t)dD1G`GzNm`ZQ3(ppw2NLqlwaH zuIm20L(CPMia3A1hzgdxyDNEh31D9ZIp=RLEb4-Zw~8ve@>WPZlsHAC^5=K z01-Yneu-~(*#XN+ET1)YiH*D#K92z&RGa~jsFXp9N1?1U)8$c|Y~PCS1ZJju@52M! zhci@X7^-U;fJC8+92K}{sdfT0bG0uJ=bzO_OdGtySf@)_w1^o)VAJO+&!6Gcy^l~U zp3up(T?dssQ7V`%ZooIF+kI)n&xW$Tmp0!})*+OI5EM=kG`@#q0r=|UNEXneBS=;m zROo(47R|r}dKPc`lOS2lA(EBvtNKQ=zLBg$bARu!*Dq=AzeBR#THJjki#dv9p`U4*CYNzJaW7AnO~*`b;2;gVBO5Isibp8OYLobWtC+XT$Cbkj4A-w9`St zl}uG#qp}`R1vjWr{UJ~60a=BD>-E&CS?In7vVw#pdjiJLdK`6LfUM@Cngdzl9*{+r zmxn+WV{>rQFpHBFJgv1mMys#Mc15s?R1P4>_HY=XUfPu%J{t<2`jV%J1R*EU zW>Oct3hk-`+gSzeCA|m{8QH{x&}cjUq6$sb(bUj+XF^W%@E=zZB@d#Ta?IvHmQ?1Z zW8oRd8lnrmGeaU+Z90SEM(GK(fVc@Gw8n9x-Gtfx8z8HB49KEeGitr!=#qdku9bR- zM7`1^>E$ri)mA;31P-|%eKVpKv^B8&5Fc_xgU=Ov-EJ))V?3J=o6BGsiR;0}_Q$a^ zmzAhq-6-o$90;u*9Z6$!U9MMLN3zJV6T^d`XC!twTv1Fz<;1WE=l0MM7Q&!N)P^&0 z3W+2~<718+Yfe&ad8>{D%@czmD0?s-Qz&7nXU2LlH(#Nz>i|u74J2HQ%c?G`>v{)Q z22K-cR{L7r>$-I|kGva;b|Ti7p`}T(AKb%RL#L$PKzyd zmdI*A@e>Fo^=WtH%^MNtF_pxl>v;+JaIE3uMx-$2q)%4SVrh{~*nl6SEr})wxf)x; zvPHrDVr03*x)IfIZMYK1d0;C`-Y;=Bwl?b;*&cei+PJakP6@Y;R-u_TYC>Zo78brW z(Ic_}u~7%MiI~`6BF&qQ-hzr%i1b<9?ug@pRa_+9L4(9bNzGQcMkcV=ZL~~Q?+vti zcRpof9;2wPF>k(V{KKH6rd;gQn+0%z0~^4Bn4%Lv7F&*rsnLTcBLW^HJwmMvH{<>e z%{fHLIs!a{7!a_;4|0Ls^y?NXd-aLI@2}0fQf(gORw7S_fL<@`d-~U z9L$RTNM?F)3+>_uI2EEla!>zJxhX-~40?16@8XB@OBX)il-!5a4;;-Dr|YT*<##-- z>}ppKXq=$>1&^KM&e$!Xp38p)d%`W;ms@e~$mZh>_v33d+d0;tU(;;o2@c+x-ao%$ z@3X(0ZH{N2f=}+D+l={#cz=wgtAeUL%$lD)74WV(MY`kbfgCL#*P4I5og({VQ&l>c za_;I!4eCEK?&_b9%B|);DyMS?J=`@T|AG3r<+A@RN!_Pgl=4HFhU+jLdQTTlnfv^i z#xPg<2j?2$;?wV$an2GG9_7q>)Wq`xoNDk(JI#wzlWp5MnYG~s&&M(Rb&uxyjYP%s z=8hc9`;i=g!_&b_9Ki69e$C$l|F2yNjNUfc?uSxFCbN4WyR~f$$8?wB6Ik;-=ldUk zUt9M5z*}V}M`$;jghIXBN(_;P0?>(X@ z1ik;>Bf!;gBw~XCFUap0u|dHMLX!V^|A-9)K^Xe1;Ddk-oJPs*+j;_~?;5ayz`KBr zZMeh}_$g2J9kB79fQ@^GX&mkNS793Jau`Yst zOk09XTa-L^Uyi_YyRT2lb3ta$gWq;E><8}1=$>g$^lA1SM9dm*q)AgCzSx92aJ4nq4{9(uN^l}+2uE`q7T+rd*dWr7%y z=K=C6*_-I3J4M!j=qGVCk^_GmA_aVlwzo432a!^FT5#iQ#pIv_OCShe&SP?3&jCkb za!~S2{LNmV4TitvKB9lpFU&{T_id03ez0APrbzlb%I1bB8`Vo^r_kI0KNJ}1A6p~+ z9e(p2e)AoE^N#SFhE6118Ssb{v;7b!!*7P=a*VFouHhG82od7Lb|52e+RLFia|X3)XU0!zaNR+My?GQ2 zdwzN5>*mCf_`cQ0M-snu)RB$Nbs`fuG0`=$X~-+1w3g>pw?A!-SIeT|proi+D`?Q2 zE#p*CuJ;6%>6Lk{*%64=FlgB`Kd?4tU0*3BK@G*eT9*t5ElR1Lo3Bz-T_s%8v8LFjFwrGp6LbfC%p54i;&@cj zG0LfxpbZ(YJ=Uqx<#9T$P&sB*nKC$mY!6L}GkMab0xa+4-lju$rHxgn50rU%SQx>s z@A_D;z@P}y5o_a8yiO}Xazbl}awDxl(HhZFtKu*S2dgrHZ;KkF|_3>S&bGt_?F6>*`RYHfUz>d5%&7E27{3;$&;7ANe{e z_zg!G1pZ-zmEsTZUw|VtL;bL`rR|UGryoDS!t@9Duk<`L zO7(0n`28>GSXJi-5mFgIAP0e$cyjGww;-!o}97XrHtKA3u1p6b8fS=f1!B3RL zaRi6I2>3~nDDg?)CvpgW=4ZfsgP&gj{5;n2zXbfu3vvPcq);5+gZ570o`)$v9Vo;R zWQ$GSkn{#z@#=(^p~C0JxiRrYX!CXAi{(AtN8e!OF9a)#3`LM2ta=};L_P#oqA>jv zJqK1&ueJmpK`T*${6;I^iB#BTaqX8=}>=g`Uk-LPF_ z28BXmGEGcc*HNVH7VC0nD(9Wj*z~Lo?u9Ed-o`a@prPnD>Tc@{Lz*@k>LY6O+eV!|~Bjn0f4RToSlp3P9* zRyPf{GV1!pc}bka?N&LMV4^;$OJi?2Lc6x-Y20KwawZ9hP3ntbzQL%fG_aQM*kr%y zCv{O~Ib(!JhLQ~I@l+`+xT;|+Xs^*jd)#0WHW!H-tQJsR4&8Mys*p-N>v3^dE%%X} z9=$9Ou;27;%dcqikmyBS7?T?1btxet)*cU4u52b1(;=nEbDf3Llcwc4Dj*K8P!MVn z2}IO|l^0{WPvziZlMW}Q=tnK2YB7*hBjs4^ELV;C2ChlVYD-$08ZKI^!pdw-A~A_d z8*vSZZN5uL<2k*?jFHhBboI7X$OK}+V#YZmc*MaGwurpSVm%MYQmZ}g4?qNX)UmHLnH(d;&*QYap}XhA1@~&Cz6%kCal_W?hx8Ei|IibJH~$&DW5^ zy3{lRv#{!K`VD$Cwy;9G8CW{b*)Zxv1z{#I?CLcMuiD`l>BfoL8daHoGSRgu8LZ;o2rf#CPK8M9nn78Z zAQVZrYYbYDs2hXo+aZ_Qf^gGUBB&t>$?XiEo{oF$QwKK3sXS2P}mBe3XE%v^^>xjR$RX(kQd!L315ZbfEUt57M>|YUR z>)nkP6cVhDegr@4Evgt~%f=se{wH5xy&#Psg`GdLg&TkTmZ6Wk-?HTS#g|4M-$vn* zSL~1c4P0F*@5C9q+mq? z-Nxu**KsIMNr zA-?>4-49B2sqP0dh>w@;a;a|Fboqf;{Hx3JkH7u>*z@nm>qEzo=LI{oPzUAx=YRe8 z4fVxN7`_i|sW{uRhdCW=K=}=PZV*gu50Aer_?=_sP;`Ds@oU+&Picu8gyx5-e@-jx z&Sbva4D1=k1}}w_lDY`C#=Qe3?6cYQ+dM% zZSs_6UC!oybv)&q0YPWC>7IV>YIp0vsXi>iU(x^AD+F}Ttp*3Ozu&Fi-pQoDE$?Lq z_+qoPE8lWf+XM-^PPSDT$ET=6Q2#!2I zdy$pw4wxtD>?(i7k(MaG%$;-+%_ZrwrUyV5v#J@M7lBJA-;Ot3M%m>yqjY@*;$W$TYuB$!Q=BoW?awP1U}ytdc7ipzIf#N zkim9kKDGA4vcYwE?T6#LZK*G9cA{04OlLE?(p0gQ&Ni~+YTxDx9N`>$!+8xjXU0A> zId0YEt<67RR!Aqu|9yiw$1-bkh1|O>N>6R_e!J5AqjA0718T0%B>zH@>vkCvZxDizb2jhwcI$fVXkAvYZQ(@Wh zsjpm(^h#eWWqSl7O!6q5?162`iF|_EKCmnK%YB5&MC=5oLyL)`0u_?WlkDcy>#MGqdj5;ur5c@~aO1i0i>bcn!D85d(CEZF>~Kiuo{}EywZfN9CnDXL34N ziywNK*-(4ki@zOxkre%LuJzuP&ryIqT_ZcDZJTKeK8$qIe;jGpW7$GgJ)IgI{Wkuo zw?N=0Hsy!1N+&eW)o!9g`%r$RwCjM5e|qQ5Qs*W}=Z|?RCx4awhC?a+eP)J{7p#BJ z4uyFx;sFuwv#3v1v&R|MY;%i~YPGICEKB!^lS5O@2(hA>{$!Xz7(Jz~EGWy9ta!2h z^QpA*ZP`urDxA!EKFlp1Q2>%F26PPk*uUmMO@a-=#Ty344w1xfb;fvFYlS|>)FjqeLgaC z=5F)(NF;07Or4sU7y{c(l6zj@AL32CaCb1OkIHR3h#r;QO?K)-Ii)J{sH|=y4g646 zni*zs|F=zoAIkD3#@dg0F6-d@+U35g_^=jypnhZtT=il3Jx)1t&5v*LIzCpl)q1Kw zOh=5sbDlwlDm58hHWbK3fy8+x?!t+-tWBfw%iY_x-AEv5&)D z?}<@7gNzB6CYPhYSpFLGtmG5J{HD-}6Y$$XCH8|y&vxg%&v3pN5lrmflAlUJ6Zq+u z!aI#d;BA1}Ui|O7!hf%RL-w{i4zOATzM(TuypP=l&YjcIfBfz52>cUa&gAy-SH-V0 z{O8}!y%Ik28tk=@OLX3^(%$0@_rS7dg3Go6|(zIvb?c7327^07nO4&A7WRsEB_ z+s=@%SDx(C`FGn)*5JDb4&H6kOnyuN^v;*p$i1olZ+&?UeA$lxgXoqP`tti&iQEP_SW7be)e46?_MUI7b`D* zX`S}H=zKm0zwDhE`$|dgM}_sZ2(4bGH(-}v8{;E{R#fUZ<(R_%*!~!yFnWgMYRfE@ z6ENB4)Xf}@eWHFE{Rsnlt5@V#zahvo`4x)1rs_wKoC|A@|0?w#zuEe4;lKK(x%#HL z`lh+MndXWg36`{S0Le68D}wO>ZXTn#8ieI#WnJpVL!%+Ai_4ZFq1vP~M39QOD39_^ zSv1fAGi@b2LJekesl_ZPD4w=;6d7(7*n*Qr6Fe653SwZM9w_5dAH!!RX@Ref@#dfw z7>oU`6OQTTW)QpGH7WDuO{>0&l9;Y8C@Q_vz}D?1&ho8xShHA~-Q+C)b)tqz)0rf0 zu*ra2_m+Xsg$MnyMl@NHuM_&lq86%AD)Xa&p<|^!91QH9glWhaX~yXS)7OeCp;w=x zt-KB8sySDC173{_EmE72vhU#4IwbVk4ZJe3qY6Z!^@ZRdtRl1Md?MGAcB-9JMI5@& zNE3|Zc;e!9oVR2*SDS`XD5;*Xp44cgJ+)g+DOq;7PO&oW_EZ6ujm8|>tj9qZkH;}x zIX%|-oEcnA7E>&v7P^k-sZYg{mx>@hrp^S|C-*i!vWzi%yTOv~tcT zr4}m=va(UTkhD7*qi{}HYMFx>PgQDqi*DDERU_OmQk^Ss8=5TZb9F=#RZT7@2-Gf_ z^)5A;l;n;z%8diSmsSu~?`tzgGHf$upumFaU33x1e09~dkfx5M3;#M=?1@6Dkq~rY zF=%suXx{6Rp$+lf=1ed3{b@e*cnLNo(;hWY7V#vAHHi&0Mv63GU56mL$R43$IyEys z6Cmw>IHij+ORX|oYGr1ik2zaK;2qogA&Y&{Vrm97dKPE{CU!PF5ZeT25tNzrWVG5e z*F^UBsKB~ZXj_#DAfn3ka0+ zl>q_0o@=kO80J@jfhPi%PrZ2p<=KUey(v$U+Mg#S&C^xAAR}#ebvbwfaJFqKfw?@l z@#U=|eJDIC?a-r@`i#6D8~F9Oh}cxCY(3JopO4D$IU+wD91rWfhXo`)Fsd`#u<)qN zvV9Sc%Iu+0+K(G*z*0Xdua`Y5kIM13?QD%*kcpv;b^O=tc$sV{8S0hAMW*{lOj z=y}N(`sijIiFKxeb`pIW93=nYf{tY=Z*`216FRdcjz?4r=WbC@5AIU+KJ^?^{ zoXCXd?_BpfEX!o~Ln$lW?twi2YYLG{c+-s{=*Bb3dqLEpcJG2R-l5&Mm!8~Ltq&Ic zeRQG6yD`(UgKpeL>K^OHZB*7(6?okQMLkpl)4#CW=1g1Mrxk84_gN?ChT?vrzP&E) zCHLm*HLxFe(?CAA`uTcgKJRLM!8X1Wu>bWG`MTYCU$3d>=_DPQ>N)rL>lONvYxwm_ ze0Im-*DLPjt-*g{Bll2OtH+9^{`*D!s@6U(6$Dkhvt8a+<6x_a0>W5-?g@v^EqU(E z-+E&l^42B2qT(-c>U#tdpmMvvSqmuk_RqFO6npfPg=}Xb-+5rt%R(!?UCZ2HaDFC} z1x4pcw3YmvqM3yQKi@LUm99PC1Tn%bIm-*I*ADV}7L+aEPTdCmwI>T?oBHXyO2bGg zdnhAf=y@PQJzG1ZXV?fu7g3Jp9C@kkzF8i8;J4t&RhMuA|B?WnZ42RD~>5c{_(fJ<6qCv z-ll3FBVzt_sB`>!1ckcNG#;o8?>Sj)&Ch$<##6*MxsVgKk=k*-y~j3QQmoG< zLcUJ1=xn#|r`oVbDb_Xi2)>swy41H@9sHN;+pl6Y&RK_Yv&y@w`v_*8o2%MJw4`+)tD{hFB3?BAkG)1R0B9?E-Du+P74HNj~V;qUvd{T=H1B}b{U z{_|Axc3?oumqoF9n`pkSr;|Jgg69Ry(*j=zpxz~DzbdGlbR zH(!8wFeC^UF!Al>V+SD&9BW6n^(<2U*~Z%6+Ol};I0MYv%LO7+Tp)sOrE6+znF~k_ zJHiE~m&qbR!96vS+xm>$PItn>OAfa8oiwiu!D0fErJpr8m!&Bci_4On$S7Qv6=GwFB}9tdY>)ezv+boY>e&%0!?%Bz0m?9-g<$$;8Pr6rG5y@V$TdPtY+R>iOTY zVzTxo!n#raTd%&G{cm-@bZ^WrrBDpaeyQ37B6^PQhyUFm7igu7)|Qj$QN0A>krhea zpTB#(2>^tWd?^*xAG{En)a?nX-@I6^s=e3jRSKVqZPO{v{c<}89lN1k2q`PGZ*L;Z z8qLF&b!QqB#33X=2zf9TLQ?1-;%EqYOrLT?8JB-o#9U+3Q)Q8AOKF zvtPc1Zp?Zq$o#)c@!!~yf8?_vA0>?3>D~LIet$GL`|;%Z$a)@(zF*p*eKUQ3G(H*s zeEriar zIqjyOZ8^o*`7sEmER5j8B#7f+kqjMiig*m(iT?HeXe9n2Dc^^GJAoI3FeCV1g2QGs z@k!#aESl_xlF1g*N`Cbdo7pQbhF`8u&MrO-1!a~B$bJ0cu>|)Ad*ZQA9O7eWFXve% zPuMI7`8>{tFt+FV{NKZom=%1uTY3Bodld)rMc1FgFKiYA8O2=NSw$c(Y8a}-3MtS_ z?6BW2m)26bIUk?ymE8QaZ*p@wt|d1of{G!m-S!$8UnIi&fP6ME8=dw)bqmv~KwBB~K@B!*mc}+Fz!7 zIak+z6OwDc1!fjQ4Ee6J6W4ASJcjn7mjZoU;M;{i6AxZ0bXEOKa#g8c#OM;Uw5#gJ zVEXdFht5tjaZ(LV^`6SB(6zlRF@}OX2{B;K$=|YBo`6%YJBM85EH|FGld)I}XKFs+8#-Od$ zgfWPAXl{0%8^y0|9n4>rEaY3rZ?IAN&K$0){y7PP-xhZG+xSe}V9oiogYX45pDY&Q zax1|BF1UXFIcr^T0n|*RWPo-_Ssz)kiyaQSH=FG?HPG=EW48qA-OlAnTnf_UDTXV{ zHdrL0FS_Q?c^$s=toxW7S$2rhEdz>fsS@;dp>2#wV<5419|;(86C%NK7fVmj61Nl4 zVEP96W{{L6>T{1oB{``zf`zwNNZ?FJ$>G>51X9*Vwmo~r2)bR`E1k%b2z=TTdnM(n z>WV{Wb@l{ z_JT!V{Dd&i^w$<#OIZvYS#CTRE+%JghqeQ*r9Z#?@gIMF`FAgiY`NDC{ARoJ+MRak zw&M!R`gC`5`(Qc2qKNz8m*OM4zH-tje{W>D5pZj^@&v!8Y_fWM1jL0SdfQuJ-Nc;7 z{+hjUU_C=PFlK!c%#A{l%+&lTk$~gQLh}t{rxiH+1pO>6@Vl;6ma)ihN z!%B?B&u+_}l|7Ce>#Q6wSKGXS-B7dAc8R!@e*)t&3rNhB8<7c1oPh7-{wi2S^2O!j zJzU3%lpU3nGKbsTb7}6t1HafXa2zaEN`=ZQ7@vzzG8^Ol(NKPr=F@m6M`HGrag%;L zJ{Q(h5XA8DVkl_xxQfL`1&Eu+a9^y1<4k7094Awgq)+~qvH+~M-CcqY`^oKoHKxGI zL%PTwN|q|-k4};UU)mau*zYUmJ1C7L(hZyH2yKo*yP#a3({5o`g!;D&a~2jKDmnp% z*6t)|&Aie?4q`wx+q<+bjT5=RH7<=wq6@2B1$S2u*Y_#d$3^afI>WZTZ%^6G^Nsy*bfpcTLdyK1qMmRX_Y9V z``8X4tJ~!`jZTGi27bS7Rdu24vf@`R3SSXM!RD1~VLv1=N`JbLKPetvf41R{4IvXE z#6#AA!JKGQND@^p7+iH;MR%9l0Kn6NV>Gfm_~J299-n-ZNzzOiwd zch_z>ya_r@X^_p*sFa8DK|m(-7gsqorm)kD*pd|MvHp#{JO>Q|A6mv-nkNnL&s#xt z2HqFyyZC^N-6PHSPyD6!9?;r9K%^OZFWeW*3pY$d02L7Tq4f4zZ1=@6^ZkH!>FJ}6d0U#DHFW|l!+VE>G~iI zqkUO@UWD?U>rl+f=t+Ef&2gDiY!lw%Nwy@I2pZogT&b zzpF6;oh?2O8T;L-LKcq|T+UN4D<1dRj@j>{8KA3OeVQ5bSM7-%u}r4lvCgjrPSD+X zY6lm>V+R<@*9+aQV_{3>+^$NlieC{HdF~Ze{ItLwJI?rhw|`P6G)3h*hK=Sq>qh5p zvtD_$5T06aWxq;K?N!SXz3p*5OT?sNHEsl2drCMZ-HTT2TR;8%`oqJ`ueVu|C_fss zv|;5+d~|WZ8dj!V5NP+8o7?M$n-BFbn%g2>q9|Ln*L21^$_8!=JN=rt5SMHO#^Q~d zhr6rW`%k~#rNcn9495fMWd|=;VL!I4n=2(j8%T!>mOGabamC?s11Rlm?L1zNRu`Kd zFP9hu)tGi$iCLLv$|_1{f+P~6HOxe+lC-k!uCK&)BgZO!Tx6Hzj54KGieC{Ip}AMo z7E@%bWvs&OpETB=!eM*0G|rK_Oh{3G!IxE~HzSazs$5kE#u%+UQ`30QZjzpgH@64A zQ(4OVw%`P2O}xPQP31X>v?UQ4#w<4sA!<8vA>S-1pB!0`XJN&m?ME{f%2G%(m%nH) zf)(%~n2}BfOeSt)T#E+IE2wxY1CcJ;`p!GR2N?lt03)0a&j3R9?<*FpFmi1GsT#eN zc7WA%1<9`ah10~2o%we)s>tsEwSHhkNN9M5H-Bvo;4*|E}SqOEvw;8%w=-Wb2^JNeN@ONm$ zsbZuW@`e{-1or*!Tg3fTX{_hu3su{@%gLlgSM2oFhJCFu^Q=iO+Kq4~9gj#9Dx;WR zO?5Y7`;B`POx=~vZG=X@{jLQX^qo1kSlwx>3dtz_^|z_}jXStJ^u@LI8-G-v@7<$b z$B&|pHoX*-V`bNl!xERY;w&yZ$!;z@_|G@O-rx_6WV%AO+3dvotNjwJ zz~+}f&D_syy8iJ4^Sobd0Sj!F9IW*~;^w#PXP8QAEC9>T2niYbgX>LB<6QuE&f*To z-u@(h{J_bx@V9C#{K&()oE`s=}|GHh!MeX%Y{u!U&dUe}|t*giRkB0#3sHTZHA#N>(M zp2a|+BJQf^3hi!Motk#~3a>j*^SPd8+EKI5wxi7UR9|6%jSOfQD(3yKlYn)gEOMx1 zU*c6A7PhS_vYMbe%qDNQOSK^Aui+U88J1_=R_y7FXJ_ftBaI`~5p9#`1(#_h5ILZKQTCQ_E!7>o;J@@InR!W-JZZ zD({!JpMYEMl{!w*3OQ7HweXyh0d++|DkYX=Mc=n|L|lq-DLTU+N#L+>);XdHX+m2P z=ZW*Q151Jyz244x8>AMTfUQ|@Z`FQiI~>1zPVLBmm>4r4XyL`XV@bOfM2(Q`4+Tz< zntW+uM9{*LcgL4@t%w?Y>G%5mqKm9buE5zF%N1G(_Ny=$THO%3jdeb7dJgc~yxR`A zuhgJzG#2~UOtCEVr~%2^YpG}%t}!HL|2 zCnrgnV^iy7(8!D2z_=C%;IFEy#*usxc$o%HDWgI{i0>@l@ zv|1L$uN0RbS5e(XanqV;>ty{&UR-}(dbW>l*&!^DEuQW+{P>jSIHralpDAi9%v+2; zK5g6mnp*dLxip(De9XB@&wCZ+uNkp{eChUST`(|yk7=B`r$MoC)?OFr>Ja^J&3n~_ z*ZkFDqHk`kdHH`3T&%X9sIHki* z*X1~x=&%mgq1qFStwU5n*iKf1202_o0MppvTRfOnvNKf8iLcz<#txaqwyT zry5dAR*yxZ;)qUQvj7L})3*>jvIzhID|Ck(5-en|2O6wrRO=BEEWCM0sRL&@46ho*K1sO zVSu^DRq-0eko!jSUY&+icBCVH)4RfE2NXT75SM~RRf()IcAzd$c0)(-rmZ}!395Pf zTeM%mAoXcM0wHwK(tBE3UJu(l6Xx{M>Yci1Wwy&Z9dSL==uW56Elx2ngeJ5=#}r!; z#cu^6#_6J2c_rg>Bll)z*$5!bW_QUC7vl2bov4_*41>qeUO+8fa8|Ljpu)|RsF_=} zdt}9ST{)=1>gR`Ml%s=a4MTSfl659fMl21;KT`lPB|_(Uwi8ik=heZ0DFt1@)K zJOR9JL;(d)sY;)@su(=r!O5oSE@6!@1o_5?3N0U4pzZH#_9@9SIh`^gq$k#6=Af6)pt(nX*O9@~uJB zCZZt___6K!=4_ndJ8l-6;~f;hFa~WA;BJ;lz@P@B^$qx(t%3cmh{do}scGvQ*rlw& z@ zkDs)w2gsn>g)_Sv)nJB3bT>4uu?OrEx~iF~Za*$Yx05TT42)gnn1Pzb>^tpx!rLy@ zlGoFe42JB1E*cS)Vrv6Pmxo&Ph++F{2efx0r*MBB?eC;_v4Q-mmgK^_W zGn_;nJ?PB#qT+jqYBVpunaTzC?K?}I)wVla4=he)aGA+#i!HH2=oD$E8?;w&Hyd48 z0Xpnvf#(I!5yqx6PQiHI@J0Ly)g^yg9Q|39Lj2K;$%6NALOk0M_B+&V)*{(VkkKLxQfNc zHLTm!;(?>ge~O@bm<-_(zwuKH6r@tpdbTc;EO{h_Ecsh1Y_u|v)FNAOQj|znW7=(T z#LB=qv?E~v0<#efRp2$5s!}2)3MUT4iAq!{u)TGY^B?3@H**3G2h2gZwvMcR?-VXX zQ%(f!2=Uwvrxp~pg!g_BE!E-sS+EM@x$wY??}aa5J){6QVUMmKsm|?y3`DtQp@;zm zYJu;)i07m$A%$YJWR5#?+0?XyVOvFa=uT+1t&}{g%GtmLiDokbe70v7hpWO3GQO0d zhg(PX$l{x6a-av_Ph>Sdi#D9O(L2m$$GxV|8lBym0&8>-YYMEEuo|3q znu0QZpN`B2KbS==GE}+ta&2uVgMaU;WE{AGhfPg7Wt{bVqf&tTBGj2YwxH4M27 zxZsG}5BS>WW}q;3gt6oonpdz_ay1M4q_Um1MbE;E1f5HmNNXzTFq(?EyJU*5cL)ni z-q%ROY_as$LqcPqf*2KqPE&&7q+|*j%E}>l%NiLuR4W*@b&)2A3gkB^_M}N=kM#(+ zL^IA{pl7DzN|&&>cI+7g_F&NL#_C6+m55c4vE z0Iu4z=xNXt6e_EfR1QpBq+`;lNb_2_p68kci7IA8BcEEB`d+txz{R zBv|r}%oG{9jx{y02Ad>dY9%A)D!AeIm9j?9X7-iAsAywRp(KF!*2c0fK8YX@p=BG^ zEa{%P1u99)+HSiARBj$p1b6(kF-JY}CrljY|&QKjL z*>;mrTr1s7tYdKlT-d*}4RA+t|15dsOhi=XUQv;|MU8RG+v%PqX`NCG@U=*i(A8!N z5?6|Zc1VY8Ju|>cM$GpCPFoIINv3t7q%OIEY>T``y~RerW0U>eVtW#)zsUn&vcka2 zAc9cr3$-B1o;VqwC7M4OY(p;9oxEm_wTy&UkMxCI_>Vn)}9570a9;~&-+`(kFr=hz&-aj^MV}3Q& zUB>MBx-h8pcR>NR}I`#pgq z5~^pZie`jecxzlc*&NB#$enJX{@T9dILx>Nj&(M($xcg+Y-VBAt{)klTvQs(XY1rb zX*9FXe3{5`vsSbC6308Brh1{7(6?ru=@`1WfnL)GP>-Pus zmv7tsl-gLng==#i86w2>b*{vmTV@waQCmL}DdJ*jYaPt{r>(YWA#On1#GZa7UkNf% zEy*0TL4&nM+c6VH2gZO(6%7|jX{kEasA%D1-`&l@u%FK|*#${=c(tW>0u$Wqg7MuH8dU{B&NBvl zNkI^Z4FLes?R`2r7bvt;XjE5+2pJNR+<2I)%!Vp4(FJyD+tJ`y!(UyzcNwQ9tuLQ! zbKVeiy83SgACUs`b?eR zj0qa5g{^7icG1GNiyp!qwXikK4t&(VaXJ!P*pgu5>-C#v;EuZB?nV@9x6n1Q4btjl z=C{G^z3puLM)xjMHy81?aUnd&&Le1KyP$1%daSaOh)y9OB+hhmBOO&Hl~mEXLe=Z$ zmQ)5(jb<)+$Dy7(t@ejGqm`zmr}wDYG*1a`tf*SJm&xK%u7zZaP6U@pxycb92^D2c zg4Q63kpvH2nuHWXj>>u=%}Zq}^-RHgn46oMS)QR1ZAg$B$UX@kbdoX!3srW21PNQT zhJI6-9Wi%dp0O&9b$e*rMbiuRNnM8XW>Tp0Q=NmT-ZC+F0La3qYgYB@GjX@2Q80PV zTh!m4u)a15xC0ObrWH`YY%3&4_R+BZp%$_pxSrG;@$9|}9MjYtlrrUbGL2?-Xm3keAp zt_jJ3l;tp8oqJykX4A^h$b#9aACGlrEUkhSsnwshliyzTz-yz=-PvyIwjlc4opoEd zrTsp4!-0&UPA0cr4eOqBh~-D})!|k;36$)?XABx{*QPo=F}pSiRv%S-pH>qWwP~Ak z@gLOn7HZR`K{B_Li#F{J!M$d!DEf+;5)ou;C!9tk?BuF@IPh{8%6TD7>g^fg`$vn;kCc#2Fu1K(O zHt>N6d;=SpCLEf6pQ0_OXvPWQ?R8p=_EJEOb$$U_8BDTYV4#90Qg@oC<0QBtef0lY z?c7{BYZ9cd)y~@h^|jhLeNtbmo$p_@^D|n3Vsh!_v-)21Zp*@@i}! z1X8y1wMW!=#jgnGd+rsr3m4TS(Nr=~fH1Omc^kx;T0~j~&yR#F zM(0A>L|g%wM`gifCFOl% zxJxZ3@EvYKgwnNROx|&~FF~bY>MQO35_K)x1^F9h^tVs`y4m{eCn1{5O$bESjA>3jbrXhz}-bm-wEHK}?SIsGi*wy9Hg(f#Emlzs1vnPLlzD7w!M-SB7&9a4(;H;t z_BPTR{&I7B{c!VPA2S*tG!#RX6B$I%2378^9c?bTNU8>SD`vhgx&Alp-zOT_zbdAXuS9reL9moR!v|Y06d54uz#^cEH)p z9#W%bUAGL+;L}NK7$pe!sh6dkX~z}Ya?3MlfIHqq+83&e1$d}rM>?&$X@!JG`;qyK zn|*k<-|kUw;@aLl))B7s<=&v()ET#X)SX}<1BRM-(sz%(J&X0t+4dA~NOQ#a{q_X! zVi^72>AQxep{QE$PE-w0r2;H{xF~x5>&lsP`-$;`JM%4Zxza0axAUfs6&d!6Xt|a} zOrmfY)?^Js0PT7;h+`;oZub~Ntg<$ZA66-w$L|bLfBJA4xnqk6g7U8q46v!+pMm}8yCy6slt*dh##z1gZb=TNrntPgutO--Fq`ESthl`(`ykwu&hdQWsH!XxZeEN8Gzw1~B*I%w; z%k@Pd4EWO~s&0Y$O8zb!Z8O(nq8wd5(+eMsMvB6 zC@@(tdYc5y#V9u#BxAf<1`#&ylLQZC_mLpUh#5}fOs7|dk zF`S#5n!&{k511n&D)5-dE@O);dWm9&%9$X6d!BPEfg1#}#3;8g)<#0QCQ{G3E&f3^ z(Q|CR6Xt4UL*b>F?Lx)!7>Y3^${xP|^UELX$zBF<69jGh>`gT$ZvF}736uP&A;c34 z<15d7^b=A6|ADE%fYe?e0vHd**b+@%%)$3IS1N&ZKcV! zfTH}XGR_lAFf;D{MM;-TGIznP#e6hq&Ad;pegFCC?)v`zZ+F*(DR5Z0S%?mutI$beiZ6_xl!19!h#@;w0+rADjG>U$VZ z<$!Qg1i(-eBf)BLqNf2wR@5a@5_907fx^|)rNP481Jhuk4go~bXi~m_HaT;0kGU0~ zKq}eelC7lTmA3UJvH?7e#Mln-M24aQSxB&opN*dbi=X(G5EHk877uG{e^Y~&TTb>@ zYg0?cjkWno`(qUd<3SYBEYW1MvJ{;7(%?m?xqCH(7xQrtqmB&iUz3Avqc6_eDh{u= zDJHgb5$&4USQLlB#egfVa3ErcJbjU14GaM)eio8hV7Ar}9LS>UmAzo^HoY)E2G3AD z=AGq!ZHiez%XXV#id`o0mIX6w<3IzQ1%5MliZ4I-QLqpaf~2cUaIa($c_M+S;Pv79 z^`T;Zmd53wwa~Pp%?2VH!LN*$m7U}Z0Eyuq?;(`SXT!w2lrxYNPX3ls8tAaQRxQJR(tocS(^C?rxUN2VOhrqX1W({%QJWq> zG2f;~lp!s9WnB1*%3djI-=k^zqX4OusZ#t9+X1~wY<9%#T_;pto_K6gzn9QC5NLM- zIu={xdID{>5`rn1N*~xx0yrBN2l?Ylrjlyws`5YxaC_vMGw0VO`2bhA=zMbyT@oaQ zR%*lunF4jy#q_kc?^$11D;nFkhSfVtK|C(JJ4d;4x|ryoD(IocMANB+`#Mpv@6#qa zZhNB5^o@R^m9gG6CVF-V938d5(Lw(JW_mt?#7F8(Tjyy9!h1dz%@c_;y*LD(%5w;9 zro%mvUIhquQ`mv{TvWQOYF`~?yINfi(?N=bv@V%xZmeE*sPZ!lOlXIPvEx)JJJkoadBEWwfyb3TEj zSZsYUyxOT4o}~-Gw&@f2v1PF>IQMV(Qc@IQBhXzs#Rz!CkP(x@FJSU9hly`RrsZNZT`qS;|2wB(^Fj zvK9_Ffi4u^CZUuK=u-owUVU--sbwSija`fbRSx4~{AYuDAzMvs3&*n4tXRbIG@IKG z)G8=?PYOl$6r9uoE`CMqaJg5+)qU~lxcp3go&mJ|lNxY)wYQ*T%J#@o#$N!1c6ba< z$WW~B2*==ywtKhFbV`u(dlT1?5Eb%GFBydLc zrD^?D{DVQQ=Ag>j&|ukK6hJgEs5hu6BGct$+;Fm1W#*j2JP+zMgtq_4Af6b$h%C9j zEPMLI?RfWzeHZfwqGiAhz*H5JZ!++;hs@K~+U{Nb^!Mw0MA>oiE$Fu*YI-x3smsa1 z4VfoqwKA)V*76A-?yhd{KmB_5P-|Lg#c-@M^13abTound95z1Dh{DhLV}^236&)DV zPl`zRz}%93;{O2v0RR8&J=t>VN|L{#a7Rqs8@@I|?7n?YgxG9sgIR6kj*c6W5FlGf zSQ49`?mtXF&b-gO%{R=a^bgE0OjSw3EJBc!5cu@*iDQG7%B8ZhGPAO>1WEpOHZ){Y zHpcSVcjm8=$(8jT|2Dq=)%j(8?+BLQb;qcZKju)76s^ZhuEv7;?d&3T7O@|+Z(GcC zppu7nfhDTC^acQy+#lG67NhJ+li#CDZ=>Hse0|7FqVcPtU7)hokPI`wa7EE|ueva!PaQeN%~Bh^~CLt3|i4;$7@m0jGjdS})|O=AQX z5f|mIZXklAQNoTn>PAu5EE7E-n3AG=JL3&SQ0*tg1sX9$?%$1+#i=OcW2sDzTcpeq zMAP}}lBddD3%@+n&2MKM7meDeZh9gXOLG2C#M3N!0(YMS&VyT?!(2Fi!aKW+Yig~ zxp#9|X73RxKC-{P?Ulii-U<>v0I3LMuYx3xsIIWd!$Z-Z$a;a#HA@ebKdSXYqtU7t z0swakl>5=VtaQI(zxq+v>>F~R1M}o4l&3>gkreBPCen}v$x?Lfhb9t(Fh}UuC4;9E zCQ7GrH$xJzY6^shq~$I8<&r&lG92^9j|?usUM7A7LJ};y(jyT+b2JgKIl63U-^fA- z;qQvky3LqM*tb^ALYpY3O;Ok127>X{umrwNIJ^wRdVSNb*oRI z;C{qGs+a)5aEy}BkhA)bNh565y~(qQZgftVe`t7|F#lk^8#eENixLMx53ZNV^2X&- zn-M?doH?kQvvob;Gaml!ES4lu?`^?xF3K)P#|g51LF=KmznvxGPOyAk>tjZ&D|I}# zE^=_Q-C=$I=b!(m>ZW2TV~FI^_(r?fL4kq;X$(40kl{rK$w1N(UXSTr2q<>}i9$Fa zQ}~)!4T5Lsp@BlCtJ2d13)F9P#PvbO5FIc#=oy++cI2+2DcBRZ3=Jk98l?M|QjJugOc@7` zEIBj*5h3<29T&p_)SnIeAbXc0_ZZnliq+Rge(6zx5{Kt9bYDXah9;BvIrB0sa8BGa zG=_$zMxx6sjQGWi`J={*IghLuzjZ!LiVbIxd8^azmPJw$_I)6?1r^XIRHIkY2LoAy z2pg3piYyffEQ+NKm))Wak#8!1Fk6EP6n+30)jQBK(L#%4DGM;hvmq?ldky5(>?8ji z5lq7R*bXoU$w`X~ZNbqu?KKSKw&&!iis`2&yuHQapz6B_6FQ<^Bh(*%SCcGjN#Ajs zJMvntlNT54h^NGWZZ| z{6(+^zlKE}(8#0oK2?aVOhp%H!HSA1VK`J3Pz;0$9B8$jj)j6H^)GhVZ4|tc^PC$O zTKp~vsx(r`hJ+PoKjJqV=8roY#^=dQ`(`$Atear4I89pL%X)}e0~lveQUnz=*eW+2 zERfcq12r;1I)e@vEJcS3lsQ8BFuWcUIvtX~0*b=Wft(uz%ZlfaARjKzVHvbVD;XHw#l?FjPZZefn1~5X0>*l0_1Kjz@vjGpbtp#FY z2}kHR7Kll(Ztt&`fB9MQoIW%#mVJr_UbFby=-FoMZAF+2tb*BBD@VgQ+- ze9-lJJtkETHTE+{?6}Bn7g5~K)&}gIR=PIFb*+3xG_yuK6rL=A3<5)HSqpPz3Un`~}4v&X$x5s)8+C>=?tik2d z`w_npN>_-Kdc%xs-=53}^_+%Ie}qy&>MF3D6{-=l#|Wh&?#qu*x{A8%p(j(8tg7Mh zHon=Hg^q00<*sbVnuN!(H5($z<*}@tF$Rh78KurVwPVxs9UFtCSDeYXtLxTIARKdK z)AL>+96NK^YhW8@f^-RL1~1HC^|4+_yHTWJuPk5|So-kWSvpOga6(T>`?(!s(xsi6Ub)v63pUoJc!G|lje zs$YY}4mU5u0_Xi~voFt6sTsktQ>=-T0FevDo50@~H;?;M2{7V}L3$kLa}Us!r57W9 z))HMU3lGD8&fKj=kgtz$Qr2}K7BpQ&0cs0+d3Apw{JP|5??g$^d#pdVMUxKPZ0>q0 z!nGhj9(Y?unRg?T^)-dHtg-0owrcND>IW<7tm*9mj6P1Vo}lt=cV!Xuc0!-*bJZE2 zcD*Qkg=Cu(XUQhO=de-E>CQzrE45c{he%Wm2?Zb}FdAs?vpe_f~J@%X<#{|i9grgqoKI|$DJjk*U9Q#I;0E_Y$BpLVB^97u;bV=!3WI&shK4EX1t z{~kcQAxRgAv8hAgns5$~+0IyidfwRT=?&UIq?Jl>y6f?~D9-=(L1OFsJLlCy&|kOD z{MEasep_z@W_Gv>ru$eOeknF9VD`6dKmh@m1`DQE_(^pMWX~6^ton_pRaQp>*f#8w zM)W%Xm9TRd74W)yz{qXScH1v1xxK1eu#8;xUj6yFJ@qVD+@j!=fDnKjkTF)a5*2~GKmHqu9?O*Aal z?h|R}?61^;c5Q?k!}py&#UXd}O@1E<>XXv3`uGj!1siiNk;I7~?h7vF^ZV&o%+2}4 zK*$GB_@1t&2z3r)YO$1BdY)whNGwUt%`K0}x~5kRUGFZ)(?Gi7Rn#~5^tl`o7+JH( z#av%kB$=tBzEIFe`*t=NnuM;7Axsd`=;QE8(4@X@FdfCTnnYsor|kUG{rnSV+Zkix zUF~ue2YAspL&jy1#`2BqWW*#>i71=Gd;CPXk0{LR5=ped+jZm)c}Epy`p7D2IayW7 zJwa9V$-`JSRAFdmnR)w!I)6b-NDcrjA~W#$U%aBhd+ z%+W0xcnA!Io@~F2o_OeXO&PgFiBybBVJm#`s{7S$W~tG~wMGr0X9&aoYReZY3~iw?uO=o|LFfab zpn(P|V@dc*V%6$w!@zA~{!A|uml#>A?AQNJ@f;v>HJ$CO1sf0$^tMw7L@ zZ2A}HqQ$YuqBF74gT%m@oUR1X)YXwC|Bg+TEB1G+2rdM?iGmn0zYheXr)U@CE^6R1 zIh*bP_F_+<=#{kT9TgFL;uh$Yf2vJ#WOj}=o9 z6;-ijSLCBA|2{DF3*2271i>r2&pxkWQw4ECwh>`HZeVP@t`p$0VKEAN|Px>5N`?za+-6`H3{q3w( zF!R}LjnDS@5|4gLwH(*`P#TdQ`tnf7qTfw?{fVuNMXj!)|J}zMb@K9D>D+65OT2B= zYpqnioXr;h?JraQ_YC_gO}eG0+g37F<9lkdeaAM~oPKkieQQqd?q9B_iRN{G{F->+ zuGvQYsiJ>GQfY0JnMl*OV)?q#OTLe4@At_%Pa0&+L_4V%iLsSY^U>Q$HeZ@NlyC2D zhBxZaNM`Q3otxL$v@tN0Mz{TO-fC!1)pm*>bt@&IbC)a^Zp+gQKg>t;JZbPjZ5q1K zf9BL;K~V?N16S`&Bhxg}+_L0aNJ?+N2ZB8G|TDNdlYNqmoe4~{Urju0tT}!9ZsTXrl zFK1-#aZr`BmH6nrJ#Jc0sn@ac+RIcTGt%I#`7BHK@9g{eQ$9IJBlhPbkx7|f?<_tZ zY1~AjxU+6+xU=r@_2<~FD&CaG_u8#W8We9H-rmZ^_sIue?vKv%<94;)eZCeZQ{}a( zoWHWyY1)w`!MvVV)ybBAB`6W=e4vD71HO~@hH-Xbjl)k+fIy>s@T7dyjfaY zdcST(WFt0|#*^G8K9dGZwd@0*7aj(+0?+44c|1Pw&6k_ok9)2)6WRK>Jxj#JrjHj8FK zj1OAr8~wcc@u9tbAZJC671#!!$d#t@$EaQ#2-p1%m+#KbQ&Lr&Cf`Vd`dvNu9@9(1 zVL_`!Zl~uF2sx2(fNKxsNJO-VyxJ; zgx+<1+{uszt(T8#G}Gd_Lc1WgmH4?{3P3F>X@z+A7$Fk?VVOCy-t&hfJU_Phw zAFZ+0en;dLKkkYNOCP6i-apda=kwd=;<`cegFJO4o;&QQo@}yg zn}2r1=It$Q^zQiQ$MjIEkH%uX{9H~|UuL(%SSgmX+EJ<4sY~2jG1XSs{A=o=o~b_c z*urbQJ2A}1L@IMD74J>Mv^!-`HDaxsL`m&8d#T2Cw$pyj=AS#tq*T_g-(RY4vu@@* zm0)9Hip%sRpRt~^hu+P--il4|r8hj_tDiE6`i)D>UY^?{`8sMgOOb5TEKdrB=D1Ov z<*nAM^z>>zDlMhdindD4H>E@xtYjzghjD>3>+j>*`HYLp>FF&R5FedtnTy?}xZCTF z)D^Ga+V!{lHs9~G;$l*HOjq8|jXKAl-&JnkJEdBqYvpYPYZ>pEyT_+~to`_2eaPfL zxYF%;>-P4#aM#Y6iA*J#ee90d!4N5r*!A>LdFV>g2WK>9vsfvUF1i|oTp-$cm6yoybL9_XmM)w{#>-)GJI_m@86``k#XY{Y5Ds5 zb4z1~$x5N0D2()h-Y-5iNP{nFUU_TlEZ=##n`NuLM`(~tXEg8cPtun^}fdh!KRWUH@U8C{RBH`qheUDs#QETfhO znS#ibH)DBQkVgGxcTRE+>p~t+P|H7QB*0FiZ(^)7k_L|)u@(?tv$ZyP1~IU}S20rg zh&`6=cfXM@XG~X7RU8QFVgu9ANl>VJh7DP4&tNlE(M%b;jK7h8XT-Mu>7M>{Pya>S z)A>L^Z$()Wzhi7Gf9ixRal4M+XSYH;LF_7i`iJ=2dQ5nwGs50_4cy>G1IznaQ3fZ2 zIO)lolJIe3u4s5r@K&rgDs2GRjd#Op}|@_yb1u5Vv&EtvzrS3F{Lgu&<&YcJ`2V!zsm^d zMn~={n!U|#1zvxKgi=+sH$0`2DRrTQEtj&_z!lTd4ZPNJwo0@}G^eDiy5SOz!==UI zs-C_pRSL~guCW9@vH*V@@oQTTeKC(^$bxean7f5Lcfj1Y#G2=9w69Ep_A>7W$(O(J zC`nfclD~g63*~B|&No+Uqk8gs7bxqTpgPJ=(S{=n(!*3%1WcJyfx-^})4{0VfpWXP z2opDG?D=tLjxu()KKo#`Uc3wNa2R#IE|)Gxe6o(Rc=|ZrreXVpa*QB;+ZWOBO3%CK zY$_#B_M5Mjl6N-Hc$JcOZutrJntN8!SIfcpa_6{}-J@yed?5$@086`P4_DfK|B6bS zJ-03#A&S0{3X!<7@d4|+d+V^Bjm!0;Bo1j@`ceWgH}_>rsP?EovAbKS`xA?>g3wE8 zAMQqP7#5>@h)0OI<$~t->ap?L!&nR*$8ACUqa)~B=q?oO>|wCeDBIz{3cq$B9@7y< z8)zHRG4MNO^q^I7!$#1%F;|88HtJh0pgjR2GZUzG(AwO)ZV|y z=o+bn>eI3B1&`00x7Sg7S z1KS<3y^ubQ0Bm@fEPgVQpyAakY=1NOEDA;;-G{mXb@2LlIK3r$V9NmI;;awbLt-FX zeZ7Nab0K*Ippw>#b%79pRja1UXmW;OXaK>XJt}A;6SWl@w4)p?L4~mrURRhZ)`OsA zHadVErAv;}0i9$)nLh^${Zp7i@H0B7CG>&5-M0h%xMb`uVY7F(0eBVht8{1X=|Y6K`Ka)gnoKX zuXZK@ba(^V%RV~=tRL3qLf%N(JCWyrX) zoB|7#P{`-L8D9HBlkjn-;T?{+M|RkLpf-$i>>r*j`)8^An+Zm6G2Ql3-c0!aH~G zdnv3wM$)TmmLZs+txJ>)1%)W+%jgFXqM+1&@Q@P~!1d&N?9($KXWJX#dJ;dF(HmMu z{xjYpAgs3kueC_@xp?{;UO9s>kSvJKmsOGVDRerX+b(>1%)4dp792IqY*LRAzxCCi zOV0qe46%D`yRnOOyXTn4NDJ%RZZOq0N)D4inw&0F7#^g~Se9^M#S1iZXy#BiARc2- zyY0gQ`OC^>UyYO?G8}|L;`5J%op+Z13Yonr4gmsA-t@-}t;|XR!~}ym0%;K^KS}hq zC&F7*rCZ|!FFeqI^M3XhG)@G@z#bN!)LesxwtKdptGL+20D$nXzcGRaK@c|SA|9x+ zX)<^<7^guk>0`zfsA&w9u98{oy zD+N@rprwzffPo_16pJkfQ}(CeJkpI9h_a_z?i%f}Yi3_q@Fd@TA?>kmVqZ{1m2TiI zNWoHJ5uSp@Q%pEi1vV6^IQt8HgBA^IAw%QQHd zLI~Lv5E^axP%u>y4RE?P6;werK?}Qdx#5yDGD6I53p0B*yc9ub4h5Zn?BT-E0fcQJ zpx==dyju_eQUNR~(R70MvuKXPrb7S|{pHf-h+ixphtH2!{)=-Bt?kvkFiNLU#f`vR ztK#PD9rdc>=G<~R2VU8k-Va`F(W9ofE~@fM^gZdpeURHHEEOj2v=c^7-fx}= z5kqIv0ALu@;P7?SlXjg|A4h%Xf)LyBT`8m+@vF=TZ~St#@y)XqAMkvz!SZ6Ew&qZJ+OWXyKt; z_1j*{ZG7_tT@2Xr*eVLXt_93}NZUSww*wK4+D^l9J&4?KPf`JR z5V=r}QgK)Be0>5kDs7*@>&O6`SkG58q?gy+3CF(meueB8SbfFrY;O-_rL~1ynayuy z9EH0$NML$pae(h~lEUVmKJKwFiRCDHfZj$f=u=@p#Q~GVih~yiWOmxE((J=(c2R95 zfJgM{-~rQg>3~7=bm^dl*lWOmJRLAtO#=$s(%tM39%b?XSz-dNOBx!?&d5+;yYT6T zz`iB4>A=DZu2F#tRb~FbDhwBo#kp?t3bK~Ym_u1ox-*ivxiDbtjlv|;1z9%s-k|xO z7hA};<#|FgH;=Tfk8CActbn}81uJg9_ z3yyV1h@WGU!G`m?tKeAn-mhSjbo~{_hxhUmd~OlvY0h1Et`Sw$B%p$$N)U(Yx8T=w z>;TlFI(#gcTad#Qgo(oQ|eD*^pWB*kx=#n&ft2jBVY6S?5hn3oKmRG288;@u2Pz}hJgHo8W>pNdIb zvOfYH+z&!WY?Y3PpA{P3ZjnV|=BaL}UDmMdl#VsO&+*{AU%_s}`YR41UjCrZE!PLI z`CC9LS!)LxOk5Gn!V6)wOir>jb~_fr09W|DvM2&Q0tbO)H9 zhJw%)#D$dB$lHji}+z}Jq;bUvxe7Y(^ zmStOBWLuWE>gcGTC`h7Bku(=Aemeg!_p$qZ=54-VKIQzt{K5brDQlr9CP6}S-Ky?; zEQtg%kw_#m6N${Ba%AeFgudePMhw5|wXz2bscN%6ZdyZV8iNcxXd$$_-WraRX(WsLKtQrEvpg+Pbdrn=!H5 zl`UCQMTH+R(NIT*XxaG1LvB!SRDQhK5iMzOU?5QZE^N7-#ZFx@d@v?zg>Su6SBMsh#f8UoAAT$gd^$ zAO7{oFy(IR+g>`I&y6lE5k=!%vIfJJeQ%zug|z3~CIZvCW}y8NCE&C4fg zCSG=*tmWlntvhYwuGjH$#pOpAbK_J~EfYT%O-Yu&?Ntp~R9qgL8=}Yhfdk9Lyhtsv zW4eF6(J82Bk;b}al4V(;^RWJnT(0a%I7O-+tQp~WxBXX zhxoNDnYJTC?ho*{O3nqmhKe=KHe_T7O*D4r;lsl(OQp;*T^HFca(9FUujIh3U~}Jo zVj&PDd_6G@Fntu~@LZ|McX(uJ1rM@Suh!a)o954U{ra}vsG-$qCq|(-)mRsUQ_GyHz_bQ_8s`2(;tMzDAk5Lj9Xi z9df0Kt2+4^YXOfc&Lfw^^@*;CDz&ZyW^u(p@eJ1J(j!)zC%09brxdKMv)DZOm>GK6 zJjoSlUz^O6OfEfdpX7>V%ESXv?c?6Q?G^HiB!Jl?4CaPEW5&GEMYa~WV7F0hLzR8E z!zJ8ZvB8b7{}Iqm-Z*5{9(Irs5%hoVGQ+XarHf3-ko8UCK8QHNJ>G`|(G*-4pg??c z0(F`RnZt!%Q$eDwkhEyal3ig=w4n*st5;=PskkV+f{93ml&A!wDg;M<3e>uJAh(%m ziLJ1)16?!eQOpci*Ae;IafXVpg|RcC^~dJczc%?66|}EOK6kSVz*AN?H|ICcOOUb~ zA$5R%p_7cK?*?oiztE$NT8NZu$$JrS}$q4KF-+%q1 z{prF8fVVtj)F&E^6RhuAj~Aq#Y?wiAwq;;UC%z#(Ua=02EQuiT6C<#Y@>Dw0lI)l};hi!~9eq<7NEbi2^ z6(vm}9zK`7N?A|zIdk+W1p^s`cy+huwalhHDYqHZ>UQ@VpWUWV^b}p6-KMj&ZX>Ah zEFo-b_PkX^d?xGgM)mh!|Fr?h%_AZm{Wn0sWf;s7fy z9c+=r46L)JOX@*dq50uL52+yC;CQ>bLD6+oI@*D&3(iitUnQ?238`4Q^U)bd+!Qwl zPBcN!Brrf*CQs4Cv}~Z(Vf?a5_D75pQsDiY-}cP}DbnuEM8^)~x)7U|2a+=!L_N7f zgNeP+MJhavbe|_v3nG~e!27#)ASW>oWCKp)VCT(FxjkZWZ4k00bGScq zU*z3Ww$Ck|Qp9J6pA+CKi(=(aGn8lAuaoiW8R|;ZZD!fA?7xcy!SXy%5rDBvkj#n* z`4(Py#C^#w;Qo%{GW=kw4~TP;l8aEJ?9pWPzRv6hlS{~j7?DWfZ5_H~sm~KHDtoAU z?}nP_1IJYh;7$JyqVZ)=Xv7j6Coo`39JxxQeE{a{PQI`-Us*T@^j|>F%VDJV(_u$b zs5q~x=I0N-yi;(6<1!j62ITku_t*ad3~yb(tHVo#W`ItMZfFEkr$Gxd3~_^`I|JuH zCM*%!QmGe)0Du4WKV#^Z6L*0KTS@}gb+fffSb%&^h6fT^w1qWW38+&h!MRRs_zBMc z9e~8f_MtB&LC{~lL=i0BedXI~CosLkX&+7P2ns1&0<&iQ#jABdB^bNWzH?Ioxiibk zt3fMjnbgY`b`<3;AZ+qa2r4cwatqp)L5Bt_p}btej#xOi4)9}Vov+MpY}F>6k>~E55{EYahTd&ad6K)Y62~+CW+0NoZiLQ}8=_Dw6*8GD$?DcY13ab^O(LO= z0=Yqaiw%NUm~O<4^UU8Gw1$X zAtTa{W_Sq`3T5i88GU9SoX^lbHOOkz#XfQx<2P=4JriM5t(?x~GdWD!`Cq-SPB#mk zKCX0Xh>YBW;4Y2T!0NO~?@Qxnf~Ykfy|j!LrAZ^!S}#53kL- z^QJ-vOxP1o2>oy8bMRw~OH)&k^R25%SOSs&WfC(jILQ|Xzjm~V;Du4^M^bZiM#dmZ zrv`q7@R)c+N9F!OOL(x3cbfn^EXsayf3O zq_XLBF*Our_uL>D7%Pamu1?5>UfYmYx*E!op_y9GI+V0wO6&FTnn{f{ql^2=r0FN! z&?IDks5?w!9*s>RW$*_)f_uDB1#5DwO$Y}Qu%=Fl_@B^A01?KhZX$OnCPcR`O0C1yfC1e!%-%G zm?K|54zSXICPxRkLOET?l=FX%WK-_Qifm1f=tl+pIW)BcGGPZ4#Up3dK7S?33Z?~e zP)YkdAn5r0PPKO5Cyoa1KJrL%fXOX?V8#-aPwK3B;lNW9j)>Z^_!hYmC`)TQ@g9G6 zK}i4S=)jo)I_t#rAd}ngO-Sa7Z+j1Q^W^yWu6o?BHmdkvQI1&3^IS zzI(qawyLzlv{`s5%0^*iRg{y=#rXK7F}}IJxIEX-72POSE_>bc*XiVbXvp`ymyi92 zd-dt|rBt$EMC_yt|yhMev;BoXoojS+t7@`b5=R6%gRu?$+o&p>$O&xoSatl zn%$nh93K}tacV~u3ve&OHZ+)aP`qITy|^E%H`GTNO~$)a8J^rf)WpfS)OuITrE=+qIc!~5Q1)?ni;kOl`~79qww_9_ zBl)#oX{M&M!wd5nNmuXb_x-1n;;@X#f09a#udAz*Rn4dF&r=yPSr>O?vaZPQ&$$bw zbACO#QZE$RVdwnj?d|&Xef&|q9@zUQqnF!O@A*s|PvqCOy#Ja$8|mlf$%{O^7N62D z(`?VkUgvL*uT`V-&`I4@@=B_g8eGen_m+d{K_^z3yZ$UJAB++Zmjt-YhjQy`Md#kdf1+ z(YUsb&a^|kGS0>8YiW2_uU2b~6S6+Y!yo4tA6MCjX(!zpy-W-F&ePOs+UOYSugX;Y0ac z+rRzzP+vc=xq@=_^nJBZYfR9G-MSl!XM=9`q&M9!Nw=Lz@r`z$*}*LAs%G`U$iy}ax`KDA2PGiGIko)`9k0R~xxKz(&S~Xo&-=})! zuHDU|ftG&iJr-X2`?ZS_Dj7vldU1$E|Xvwtsb;txm*tt5`ehKlYkt!&%FztKz#=E7V%Z zES(Q~H*YV4v-2BEt5@`oli_XWX}|Jnn&YSUcBk<$K^K#E^;Neno~N(UNos6QD;-J9 z_tIJyz0wYQNViaB+8Z^lx)+(wZOO))pIE+8#F5c{5l6*h^WOUCeUt{LFQ$51?C+mG ztCjn~#icYp6s z`0jpOuU*|$AF9=tYK;)NR@bfBoM5^>oH;Myj;kjhA?_+9yGfNN7?wl zd+3*9FzXe6F$J2?PninV00|~ZN;p?4#$21BP-ygop=Kaqsm=^t-~u*}g)ZvJD(VWI z=`ywhZ2TLFtiBOGr+hY-kT+X$PN}dVtQo`wxwlNk4yBo-DVpJtjd&4GPnW0SveB%! z8@2o8H86v}iFAK}Fwa#;p4nJ1_i~Mfz#Mc{jwR!;^&NIUI~u4!3g)Qi67hUq3> z#nurNVVVPnj23wCaKqc=anp|Xs({(~ zTvi36n=TnZ4havYE&Xiq0y|h>euyVyL$E0BWL*CVn>#P ze`jxKNOambB`TXIeU!WapD4bu??>&XSMqNLYqJFu5GJB%+xT!cjkR5ce$sV{%$cqRI;t zD5V|~BrMncA8<>tM>53o8ZGE*G!rB&Z9rx$+pr)y5fda;13-$lw0G|?GNc+1yI?y^ zoYpQhSdLpJP(x%5G>B|rf`+&9xnq9-RHjVypyN2UocECq8<{{tO)w^4wu!sq1#BBd z7MKtQiG8+7SBT1}K$77y!RyLBS{Q~~kulpx$6;FaW7&e_zu)>!HurL@lz=cebT?(P zLqUgTOpq3Hss{sNr}Xl4$KthN8b9&-0Z72K6sUUQxUmapcW3qd z@&aWblAT8exk#8~CDayRJ8!`@d7qyT9l{_97p9TV~E zUcNX$9TQ(-XM#BLB#*x9U+Niv^&81 zt!nC;Va>-q2>-e?4S`a)K#7@59B%dGu^!uP1Am_Tw?72A7sR=);*fOU>&6-wkR=m> z6J*m%O#zS{w3i52Mn&>pLC4X&v4d>Nym2#tz7XE{fwnB($nD0$*jyDyjX1s#RSE-I z4MLuJG~P_ozdLq7IGfQpYe8CQBdt+ z2kkQN!6OeiA}1k5*=3;z_f`I07%q0EJap~#9oDP-JDa;dY?zDpH)ZF+T#`lYpU^t@ z?+u&mHn~B=VN5)*$EK41To9VXD(SE(fD?Q6HH&HLM%R(k=XRLtJK`TO3aLYpFY49D#$DyAlA zl4KjEAX;k#6r(tzl831S=2+Ybfl6rmAi~2EY%%v>~^94Zvc8GvaDU7-!D*0KHTjDj$6`ZlnrEwM%U3& zdZJ_nI^+B?cXPLJ)7r)Rx?PdXiAMJ1cf zJISf>=R(U~9sbJu8NGa=8mve^Z%#HVV?HpBOo+DUUhHRP&xlouM#~i^M zp|ppGCz(XQk{mPwc%>wVn@rfh2@L>VX+kead^VXc)e-QBMs&Lp!TRpjDT9h6HUYHM z<4VyGEJr#D8UpHu)V9i?#pKF{oW#t}^MU21Vp4(Qu#|tit7*7NjiEdrGlql}g7J(c zmkM{s1|)!lxAKbhnr%;eAnnv0Mh->WDL7*2yKV4cz(C(su}q3T1^KQbd94-;wxt5R zRiXV<{M{_uSdM{{RoPf6AT%{Md;h;@!%t#_-Vc{MU$18n^y&b8R<0=Ju6pg?gp{{iZQ_~}e#&~lBX|DYscs=fv_PAiXHzk(>`i*St7wJS<4=iw zyFE56E$YKD>hY(f63_1F@xR6u&FvI~`X?+z#zjl|HS3VYb++*p3w^~!!{1tI49DMo zdv!1wA_UmNfgCP(zJ3cOe$zO0gN>XJ=>3Oz_{)wP-`~fd$vA%f?K=5Sw_Cm&;N(B$ zQoq|(X3X}5WPRu5x&Yp;W`bncDmPH@9AZrH=B|YC0tqWN!vu=kA~$s; z$vv4L^P30~eZ&L`6avTuiQXGM5YB^@sKcy}L@~ zm`Kzt2OI_-9-e>4DrC%}fgBu2)n2WS$i)Id#99#veZy~I1&k2gLsO8np{|*6*^Bpm*Iu;-rMh!tpKOQ8I2K9hu# z)0dOhMO4MeOz~vg55r8m$V>dPP>02c8q_AIWYuAj@{|EUAM8SEBUW?yK{(}#4vCq6 zkMz=lU$3Opz2IwGt?5Zq5ly3l)w=;z+_1)G39>0*CC`*QSZTwWoud~|9Sx6oWeLWX zj8#2PQKVmpdPh5>=7~TqemKhB8`knHS^Cs<|0IpbjSJEY58OtxY`YusWD}9JkvucM zD@ggbNgf!~b?$*sY+NnZ%`3Ci*FTery5?P)g^Fd_Q3-XpJhJspWa2K~-d%^Rb6ghb zgoN(%E5{d02N4TRGL(Z>nz#oPerFeMRJqS1FBHTjJNya+g&L7}I69F*d>5YW*plS4 z9?E1gF59{2$9XElb`>o+NXuOrYw@mWwjm=!Xrl2a_Tvz-T=P@CvD2WVcyg>0z($+< z_T$_@kZ@jR8esY;&fz7I+aoMf_^s&Ru}3(3WxMpZx*9C8W4eDmJjv1^jj?(~Hk7ib zL3*$H>^iPkXIffccu^&BS3UvO|DIu6YwLR!$r4~$I{`=^Y|20xZG9F!9cpJJVNl)2 zuOSGRkq8mqyLw?}z3fZ&8u6lz<0BVo(8WwJ;@&)?KT*NRBnA@~dRq{23(UhH&|(o^ z8!;>dC7uO$zhWg6!>=B;+t_ih9yh`*aP{O|@$q~0B(!?OU0XiRhB1$0DLjM6eJek# zYP|l9d_MnMdHz+D=iJUJ&r4(3tk?!-Lr>1!rGELJ#GxJo_$25VsGXac51B$-SCNxm z1t5vcFEN9!VD(ZZz)vHc__dXz#ijGZ#U{Qv+`OBAen*Z=>D}fZxr=FjGB+CI^@*;C zDvi(xJ41DPgJ*jOcjcs#q}9`LCs$ZS-krXA=E|g<1v5T+l{^}BG;6Rh%3uNZ$(Re1 zAALVw<{MXKiB-@9p%-|<#sfK*-tg@Td_GpEc^vuQ;hS+}(G}neJX!G08diDIpV{Wu z+Il*KA+qOWivWp0cE2!rQA)u^g%qJoUsO==+lfrzU>Bqq!U(w%5g0DR1j{D?D?w;Y zaGBSrkTi0QCL3c| z-$9N4{_7u&E>bOW#TtC0oTHqDnH9Wu0f?%}yS(8BiMnmlff6+EMsDNE+A@BiEHb>2 z>wv8yj>s9ddbq>1yU~eLT~w4Q>ASZ>~bHr03zX!<0=oZzU*4U^e4q!Jj1wbP_m- zY9IGKOA#3UG-5exNhF)pt0fS9g)E~H!QPA?iAc6&{AlY{?lg0&@`1!M6T!gXdMxFgs)e7fM>k|Yws3&oYvb2n8%(H%Fh&Ae z|NYlL+92-^?{h1lLx}sa8pOoqjU3P@=8YcQjOL9YEC`7=b`gT8W5%wtQ94D8MNLAK z2B9fO35nx9-!OkQZ|p!WZtjv$!_%wUAWsbUtwjAS(n8cwh%wEU95+#8dfkx8c$_!F z5(sEU^NuhJOrNtO(l}It8h??T1jd`S+YPAtE8>aFJa~r+j1`I;8E>mHL>~?lE40vE zDoD)4ovC^!?jCPg6pSJB(U{IX^TE9V;4xh^nlHB?3NJFw>aHB}A!g8qFxTVS$n#XtMi6(Bb{}D%cg6aW_tn+Pz0rY` zOINW8*b5o-Bi`yJT-wBp+-7Pf63`uUq;w(y-C?*WLbs5pZl0;ceO9mUb#kz(wj2c< zsH3%E^k&k|Ks(}B$$8R2eOcwHbAp`bUxkXFHOhGnF2YsWsGzu63BaQZCRjiPmkHKD z32`aDc=vGFqsI45UhA zyS1h|rUe=ybx$y8>PDl{&3c6c*1g|#uv%#1Mke$$%?bs=RY=yo?+3zF&h`F1(PGAU z%g<)>P7y}3{g=IqS$h9kBqXpj{o7u-Oy6)LDvHiGOfO3tlDcbI`rXkWiq02j)c9+W z_`O{WzwK4Bbf)^YMZeBqHSJ*=ql_O>^`2-aE~1jAkX(>1!;-HIvoRzWUdw(KSNi8ACX4{<^QhMbE}GzZO1$m z+N(9Y=Mh@krTzP)1YswB zC<49rfVX^MzUurR!m((|lF+kN$^C&8SJ!Myw=G&I9d~UYQjFY%bSStQ5-Hd2{C2p2 zYAQ$}i#vJ!=lsr;E}zODrJ`4f+HJM12o2sB9Rka1@Ia1;_+S(d!W6J@yYXAhF(Vu< zKw}fWzoRtR(F`A@L2K4;)AjFHwIG)U=42r}9)4j&57O|g=SaKlE(d9_Wqjahpl%Qz zv5sqpV>Fn~qxib8K`|OkMBJ7S`;gB7gSLaY9wWtQ(E37Kh|!=DA|VaGZXa)v|YkFjfX2`@{ zH3q)Hkd1}mz&Br9PVBliy80EA>6Ip~GuQi}PK|00#@a_N z`az7aau(IpEEGPCV}`A|3~O|J*^T0Hu{TaN)glr9qAAJpx4o(%i;7F0xnX*<7C5lD z^VfzO7%*8S^`Cg&lpKw~@5zQ~kwC3kp`1@9b*C7n_OKUwnWsH@srAtOS*u@N-EU~K ziVKsA5h(lFJQqav^8yCa=ePx^Fb0ia9b`xr07P|U^J^h%pmBr7F;c~_x!(Ha$0OWt z;sVcJ*j&2i(l(srl!0_dHfHn=UIZX9nF9HMF-=UcItW1+l085XBqEu>0V^jk!Galu zGz>l}C{yH@S;EUiDnSJo6I5`?Bc`eQSKxU#6EJ6J|8~d=9!z;=0ySq|^8yJ|OPD}G z^aM6Ca^yx=APX{N#u#-HPN`4aCY{9&qGo_*8Z*$6V=L_kwB*?8OF~pWCP?VrmT@1Ix?`;{f7GyRcW9Zb6&`z}31_KG znxYvVB5C~Z^mGZC?+^F&1<0v6(4bD^<{bZU4}LVxy9H-rpz(e6F)<>4Ek7K$70S`6 z!_j1i*FcF138u@$k{5NJEI!18}r6igjSZOQQ^wpxKg>MJNUddf8~!+l|`dF-6KximoB~A0W(g6?*Cu2j;DM zwbpLjG&y0Ora@TTkJ z$1v%FohwE%e~K@RWxTLENa$)RqHCSFY3Xu5Tpqysv(vb1`vFs?!2{E?PU1Q5BsK5k zom)9c4H21ceQ(fs23<2vxdSSo?qxfRwsmT*c%Ne7El@EmDm3hZ%pxx=M8UnsLG!Ql z4XE#m2{^1cG7BWzltJfdY%|L_NRf!2jUCJt)mZ1sh?1>=jrmlPBM1VGDO6P(A;Z9< zTsBzeTL67vXgCIp-y2&XrPUaE&d+5 zv+-OWUNl>5dmBqSE;erc+#L_OQM&>0y|%i9kaWQL+?}#>}=Qf(Xf~E>DHAW-HvTQ-UlHZn=6G?`;BOHkhDsI6M6X zVm6po1uSMG0UCdim<^u#DEqxxen|j8W^n@XlhLi>FOmen)r=wP8*3Da$`KYXQ1A?C ztT_PaJ#Jp`$iXuwSpM&J$lY}3&=Pe8a=PQ3q+0l~s0dmwXjQ}VWcnjO!(jk0f~LmF z8lr2a6OQ9ijYbuX=Te+H^&>XYaVSpKiV-LLN1Vt*d+3G)32SWAo*U%jh4wh{1;~je zS_zO!1%()p6Z&MbA3K2q*(?nP`3xMOc7;Q}<;Vg0qhBpRk9Rj_NKVq}wH`j9HP{Un z)EV4D59}`n-Hb7&DtNfzqpael-R4xqap<*dQC;C^2Z;09RR#=;Tm(OT@>9$d@)mN6 zV-JG!A(tzKxlJb2L7xbIOF%*-Fn1#Wm#1O65)&;oPPvYP>0LJYmev8#`OIWDvXaMi5kdEVE)kB#j-2^=NaR zON5lagY5;pQ3R&0;f|lEYS_R5E#d8GcPuyHcoX$AnGb}n+$GOWV+XR>l0a@VOMV?? z!oM?`*9Ji5uxI3l3w@@7ywk^9JtEJ~65K?s8&ah1?uglLU{-ZJ932n;vc)vR+%XK} zhF{NQ0%poXT_G3KxmAAVmcTgTp2h?bbpMA5l7Vz&;jw`V9mEn9!tIn6wAr&QInk0J zDlZeTc_aCd7tn?!h>EF^RAnT@UF{;0Jc(p}vq|2@G06}oszT#-U?B7^2}7-mcNBq0 z2Pf)4=p#)UprMS>7iO$LvNbLW##GSOS!3EdSF4A8l4#?G=yy(QBFVZX{{Lm*6h!}? zC=KIpdzoz3sbfCCp9`d>Ic=@?uSL?>()4e8|I-P+d7i|D=a_d)Fief>tbgnuCitM z#I=c?@#XC7ytpU{lDMHr9g>ReeVYHU`wQonEN+y=JDVUuP*xu7SR&B?x`F=C-RO3H zp@TE+Z%5Ccy)*LDIr|&`;hlMoZn-Pl@#4OAe$Zd;N}m|kTzmffOER}au?N}L zp7ydd=|kwt!OB4{a#9E`?I|*45nJdkfYhl7DP7i>TqKQG_DmL~2{KIxtAvPI>*W|Z zXbPZrB0{e%Yhd2OvDfp39CG{>BiO*172mawfKK&=)}aOAs|cz1XT1f|CJVGQCc3FP zNS}DR<+<9-b~JBcyZB2Y>YDB#&DDRQsiwP{F-4YV%6Ui=W8on5=S0JM^V&ooFrZTJg8%2xwFp5qZK1AUvg83w^%pWMAsnv-{g`j}Ozj?a5E~Q2QO(!P5`f zUFd1Y$ER35k6+0VLwkGibJ_`qjAVO8?jCQRhNExa?g4%LD}=zOENcXt+lUm32z~og z3cZ|X>_fsL=}ZhU>X))4R1Y~ziL8fI;zkdn*G~h7$HX1&RE}w26AAUSO1bT5)6gZT8dIlYJgeZ+6 zYe(V{Rc!j!-f9goHxfFG2#3@;zQ{|Jyik__4@K9|Keislbx zQG?-7AyP0LT8dFd7QMoDF41k$qH1)_47S=B&51jTs@-i6e54asO&GYF{1DPd%)g$)^MUkF0FRHKuoDadq2+i{sJeqf0c?*QQ6l zIX@np4m$_5bvD4&z4wZ-0U!QXq)+i|bi-Ny^h!VW72XB^gAwhDPb2Xw>J{B^YV@K5 zJ!b-5)tsVswsP#TiIzceO_PRBOGp~{H;K}4VNYKlaMMZB(5JyAn*lgiHt`B$)#FYK zamPHG678Ig{z}uP-Ilf_4PA(PKo(!m(NWrza&wb(E zopoA)o*bpX+|0HP!%Zdcew})^bzjwGZ_~#T(MSQvK|2z`48&G>2!&meB_US&8z=Aaehg|^#QL=%SWTxJtZ?z`KiG7kfa^}=$6aSJkicGna0+-tIb_(cwl+YvUp;W6&s!0;i-Ya2-K=(N$^oQKs zQ*4GnJ{Jic+KQ%Bt7D*$O9}l^Y=88l4T{&nbj?AD z5327_e2c4v?xK%L{<%NbhG~o)W4-)D9|VwRHjH8;D#}$cnt0h6(@zCLf0{Q`*!?!K zSzS9b{A3N&DUIaJHck5(w3NDQOAU70@wv?C$B2^K;lp+m*s zoP>^n4o@=h6ZGnYj5)GA2)Hu6d6y+G zowv?2k6nj_jb(c5m=l?M?0Vf3?mbQz@zBPb2;L@c&@-R2%%H$+=_uSB5f|b@Op(0o zwnL)HvX!LLgv-Cs2wVE+QU}Pr@Nx&pbQmb;uo#7gjCRX@`b6!gX$R$^W9O<#8Bva> z*3rls)>`A#JTu~R9#5T!o#y*5DqF*yK*L9ADuC?lm8yUNjlXzP0q8}aa9tPH0rbQD zrk^Z5)ouEdayR{2wu0dDGUNiifNX_jUlEUi^8Qv>5E}P8J^woP zJJ=;_!BVNahsCHqSiH%vRn_{MmGqHkmBfO8X?wU8N4a6cX{1aPS!a zN^DA{UW)&O_c87(e*b!#ZDFoN{12m-m8o0N@*Jtms5!YsWp|2>%T9)|tv?6-p#CJ; zlc7pdKnI2;p{&dLdArw2(_i7v`3tek&Sh`N8QLd)v#p}5>7qei%WOl*#WI}~y(75M8h)O;Kpv6fmVb9RW`S?-ScOGWUj8njfL++# zAR$ulONatO4y~2alt}~zPYBRTXfZx`;xN#{QQCG;c7CAvB~O+*u#$U4u zZf_}_2YHjh;}Go}cdmZa^7uc>QrLqE6n6GlbK5Q(KTKHzWs_0yf+0VW= zmGbtX!jpfyf@Zmtj=n+L1s0m+?^}4S7j;CRA?u;Q>(RuDpBXQBi^xM zJp!cRIu=XAC3mZW#r0sxjrK!vmmZU=v zE1)Bd9=qKLO6ws;kX*`}OPo+p4izy{uwuuMf8M+yr*-t9C}JC)q+_MUC-dtmiaT||!Gy#BYY zEnZio1RO!r_S(~EjuNa0$xvwr-NOKZqqKv(SiWaT_rYT;wDr=8y0HY=kym&};v$oh zi?4LJr7%sjB7VOc+Y4ESQrRGu%vv~HiCb!U@5>BV63gu@Ck1lg)<~yC|B9wSeiPDd zLD-%U!t6rP5On&BZh`u2hL4_-65)DhwgpNzA~ZBz`l}>b@y{BbHnowf zS+=K`R^WsIyD0;^GP2#;lKKrwVr?z=`ue@;@C7K69C^Jo8txN-p zFj3K(?$M(J!a&EKX`$4gTj@Jpdg@r{MDjI6v4pnCjEWZl-oSNpbKC6W<`X}1XnUXE zd>fwGWPDgpi3}h3(yUPeV3AjrCL?6zIa7EPNbKB@NGq0>Ir#OaSocS=y=W6;nl5z* z8`dv;5JUl{9cq_E@c@?EJWU2ZZc>Wz?zn!Mu{XwV@^EZrJ|<()crI$anpmZS|2Xblz*6<_;}xwv5yg#ii1 zo$`bTt2TmcC&0wUEEP{tsst;;%PAJ6_F-)i<1B=pZ;OP{OGooGpuZHvdiQwqG#q{V zmcQ&~YSU%Q6wDGY#M-rsroTZ>izTeyaFY>(@4|jY7^emOFGp$6S1c84)aLuv#Y{w- zTGWyioxDRcScAANaZ_ z^pLpa9oQNvaE}1uU!PQkyVmy6N3pH}1EeJM2o~8Sp+jIqC81B~Wn~%@1D2FtM#o^c zLuB-54Xey0p+~R~HyIMXDRQ7%$Bd?$Uqgqwmr5nBE!VE6jgdx9*&0@w8qy~VjhwfLPhbl$ zlDIcdGpOGaKTpAk_TkN8Aj0MXMN3P#Tbk9YVl^KnbPQIsR6>WCPe`#oZ5&j4smj%{ z!j)Cu^Q3`J88Vm%F63H$r{Y_DW9e^)(zPEZZp;(hznoGij61#^7PcKv`3x&c=4W^C z^DEmTvC-Qa^-#N>X*NqsLmvbTVB3d{bu!b&hNbBh4+-WN7mIW?9i&gCMW0ePJm^A2 zQ)2sUQ&J7eqSbH3qCh3pwIw(0P2{2Jp)7h2z*}k!nMMn8IaQ1j0@+K&)-z;OLLvEN zua`C|i4n-fd=o-6!9fF}lPOD^C7>P$@zeX7oc1wXcr&EoYzP$;MKLSMVMywL)JwGii7W?7u{O110?Ol#2?8L5<@J2}Y)eSx= zx?r|rR%I>HqQO!^L}hO24!gbpASa})^ck#9ybv*ByOc$1OE{&?W&FpW&{v@jz~F!Y zsjXdQtAS$IErmu5&(kbKZUM6F3XuZAaIsZMubBX-3GHt%$G_-u2w&6ykQNGxJYU*t z3$%+1kpqRi3xy5;G%SR*udIRjf#}j^@x76xBeuk{;Y05xi_NDAxjZjID*oBv^)@m0vp)Sr()r?Tp zw@ZSGbqttIs#v5*m8abtW32uLhKz{cVn=8hU6Ue1z{#?J_pl=s;cX^>7A4cRo&x#P$Z7ZQ*t7Q!T4uC0Mm%nV;4{8 z{BM5oAq^`V;)yY=U-nNlC4QN;i&zo{8q5($QxJ63gi z9if4C%N}U41)n}pTHal7po1oGw99IH3JtW~Y6447${1JmFpeX=>=)6EA^=0S_VifZa$1GB%- z$AWdQqq*VVSe#H^@ojBX7%H1go`@45cs64&P>sfnvZ?Krpn2NIqDIk_;g0?>{Ca-# zdw!#6!{)A&g>FUW?(dJ+->xt2t{=ZY{rGx*Kg#bvZP+XhL_N?c!~OmIp3UBlPM%<7 zQ~Gf8$2w)tUHn*K7YoE=6;cKZ4^yamv|=gk(??r0$$iyhW@+Op8uRV9>&qwn^AYRw zl$9(%;zk|mIjwN5@HxCuWw1Sp=&Ks+s2SEY{?aNnx#k1#33`ExNWN#wzZMj(>%UclecliV=&NjN-ovl|$VAiY|@d4p2NaCqnd_w`iCX-#n}n`ZnHwHjYEv}B7=TnBckK0iL6xF0 zCCYPVkP75jPo{Kv8!aVL4PnOQ;025#9Q*k#?dbM1_j0%YE$r57D4zu4MWni|_Pj7ihWQ10rB6LOhUX!R9O&u!JP3HHmEkZz`Y6pfQ*D9a z?2AdE0>SZiK(J2cFj}YxXWHH)2=C2R4y$Bk6Na_9I%R$(E{6P0~*?E2X83a4SIeX)^m=) zyKNE3Y&6Y5M(|OJcxAU8l0O~+D;!=^+5lUh%N!oxcjOL_3q{;YPak_8?}j%v`7i#~ z*!)k8dK0PhkCmo;v%}-Buc?3&cOzRqyn5w}zIo!C{)+Y6=Bt_Uf~K1y#E* zBoSJhhNyi%>1#5SKwE??)&~A$wAv&35_JpQ*`&ABwV-eRMZX+UJI2=cfe$SE>jj3s zybG57hyT~651VQG-7%)*zjOQ>x50W&E>F?X1U^0SFVO}*JwEoM(}GQ~i1ct1eeNR* zd^%`z&rsmgc54v#agXWq$iplqosG^Plt=t)(Ty^)&-Rky_E{r*vYfAoGnYwj-;YP% zJTYNE{lB%au5x32zNwAoScDOO zMP8=Upr){1CA(Ht!_8`M0T$rq=8uHXxG+Y3FqX(A2wA(cm%0_l%D{w^Uu>qG z*fB<@C@H{)HNx2z#xW-wTv$4e>51Kr6I+3tO|%bt=n~~k*%$n(;7vVfr6UWi^u*$K zW%8gpfRbZXzyV4Qt+&AI{%Pf)iQ$F=neuYHJg6cTJuFiYq@$CWZiWhm=3`G0SVI5n zO)jWs#HD}OEB{H$pmtnJck@IRW5t54qo^f1>;4Q53DkJ|D9nezq>*22w(>%Yq=PPN zgipOpXi;ska z8*lWa;SDkS=Wcj7@|Yo9Pxoq$m!PRqn!&5R@`osYF;lrR%Ae*ZR7&})U}N1Y|9IZ0 zU{h67`S+zM|2o5%-@Sc-r^6}4>+&!~lHXW85!ho22&O2zz*t?FBI%6C8sSqf5mOB6 zG|=ubMLKWlG?l82DF(7I#h?ix#k-0rriSb3)}&@T#h^Kn%X>@#z!bE2!!BToq@yQm zgipOpOre4ib{{Jl&l?qtu4=|go=C$KO^7Al)qA3zv8)?UG$&knk0&5_qU^jtHQ|Yq zLg^{0#1kr{rvQZvy;pEir}ec#;g_eIh;aA?-#oR_CNl5FBswPX{gb((bdaTfqa)oFfh zP~1gZS~^U+*c!-@-2)#UTCR|zd+Sh{;Jmyq4}a7dd96(R#m<9~9Z7z1u3GYo(|z&_ zb@9hO`9&h+kd|umbf5jAK9r%GKXp88!+R~n?eaiIlA~KaA=u-Jz!O=F-H`+s=c*;Z zINvA0P!?C5?-O7o;tFXgHP81MFzUkC)ab3HTM>UI9?jIIDfBsFm@eVoQv7{ z)xj33CBitb(+a%D7U{fcPWEBx*g{&y&hsXOL8}nu`K;rmScoa*ssHALMeo&r;E628 z?nvH>3)S*goU34w-A84{^F{?jsiIMt(voYQHz90!S4|6(g^sn!(^xm_PqBH?oEYgn zwg^0t#n>ImM{%KAK8lMvt+M;rOaP?%)T^_(tAx1i%00?4=6h?fV*-t?}q%Pq; z-wvMr586Gxcc&21UX~_p2oG@OAQw5m(7~COMm43!!)EpNL-#j8hxyW}wZmx(zQB$i z8h^fJ-fK~?4cgCD@a^OTJniEX_URkqq2Gus@(^d**@AO+Q-Cw=Ru7JMRB-L&+iBa~ zL5WPrp#}~a;UbBv|PSJvAFxFnWP9u$V&D((%t;QIHIpTJ23gqm2G*%;-b3~!@wkrC33YJ z^sL?4OWlf0uJ4!$a47GDmUbo>HqMFT9}xHkQcUzyWc(_)=cKL~1>oxy`f%JVz>Ry{ zQLxAG-EgQE*bEB*{bA$$cN^5tv1N6rKL?w>&kL}r2A~d>BNpYGHI8}S@!Gn>iAsjq_J_2n>nXcC^`${R81&aTKfA-72IM)Sh9ne;wGN) zt0<=K(^8i()~n!ME5iD6Bb#$9$FD)4nsa~bg8|-Uoms6!IMVJ07h~l*Yp92gJo$Js zXcMCWj3+91;)?NvADLvWlHqL;mb6;~I8RjYycFX}nNdACbjsJ^?Qu|9<>U(BPDU29 zRB*o(0)4Xgv@omETg($!m$D$qFZPrZ%ZMl+ldKP{5l%9E?mMNbniBIxELPwOock{8 z^pI=>i!PJAj=gt!?z>c>zyXX?HJ$sUl_9yT(|aPqlHEJ^p+DD#X^b6Xy?k0Nbhps? zuY1}ecDXEtO(9{HXw>Ob5fP2*JS;=qoERP;0_{_qcconKL`oMgZPQ+Y`sjz3Jo_KW zajE235%+i*n8*o_Ca@C7FZOs&{4!FlZpozz_rCUsC7w6UDVZT1qe!b;a#^Qi=e?s6 zmlQ_RNpaREJWyj&J1S8jBV6q`=5KOIPsH3W$vA^sT^{P;Zj&dHq&_k$j(vr;lC!+kcEOgEYUgU9xv~{i*UF zEy`YnRCYc0EplwmH(3Koepe@=pQjr+7DIGC18af&Vo&CU4N2xM)(9sn6E-w1;oN)0 z5GpvJK#ZyhP)Ms9GHPfg?cFmU{KP}{jLDOO@PKv8s~f$@cXwr>mv*<6j9!$<`Q?viJx4<7zD^CFgSSKd{EYvfF$HZ$nmSEri?M*U~FQWL-Omby@l`lxqBCTMehyl zEvzKl2?1kh$p|vTRLu+qS>0;2TCMI@_kWC!te^jZ{<$Lm*#lY8jE*oq8p-;Py#q15 z7bD-l`Cmy%{7vlr4M&*tb@HD2V{c%owrY*ky`KVZ;Di6!$;3y@h(RY^_!Qu@{dg#Y`b_yeEvsud7K0Yqz+;1Iq;^1#H-k&|U6A!pmRkcpnc}FfA_pp0!p}7D0Pxq+l7{SP8 zQ1?g9>i|)vHIeR4(bYDBmJuVIgw*m$ka9;9bC5`g zB6t!oxxdCFBqWb=9+{ecl8f30fJl16d(gST z!$*rolssB>(dSgw?{m;OmoW((bAUFqENS8G&1v_kX*!PCM=yzzOKZZ7Y4^b$HF`{w ztj+EoEFu3ixH=jem0T^(xKPJ# zJ1j$IS8eF{@J_crVO2$QiALl}hH250%=#dHn3^@c=; zzgtpiR^e>CjDD+3(Q;iaT29qI8v?^Ql{a!u7qZBCW7kt($EMZVVhqu`+08B`b}iYF zw-~*qZYsS)0D{Y9f3yf*m|ILexz*CJ9w_TO4y2}`wav@dLI<2JMsMZ_vQ@|hcjk08 zTfpkpp>R2H*N*=BeFYtKMP(^UTq8kixdumpmuW?X8YSZ$etIt!rqM?o&N8pjXFX?O z=+RLNB?=ya+iq0~0FREmC4;ynN5>Ep589d@MnbO#4!DN%27YY`s$K{DPz7_>Pi!$; zebKHr&S|MxG~tX7|!|m?|=RGNlP^xt*xn$!;bHg zr498C#m;sK()^K4M`TXw)&P z^P8lY^tQt}L-m49@?*G>DZx`mH~@J?Z+GXcZ&In7qG#vlcch1?AD;h`x8e?_;tC!k z$X2&PcmKH#9AP`x3LX9fkSOa7bzZKLQ+druZ1j}Z%#YCskTdvX16Zyh2O%c*pG9Ml zzDLdsWf(^=>{MXIlL;17Z(`c*w_llIq9uian|j)U)RZ;CJAnvoCL+RgYbH>@^9d6H z)rn?1Hbi&&DpXWV192k1RW{aih!c(lR&d*rY+L9LZAU-^K|5(* za7@7*sFv(tbnI8#QTzC}5jH-VhJ7e_o3^0YD`;sm!O=VfPBR+@y_0OmNVqx-ay;tQ{agAW1 zM-#p12kECs2=#m{Beh>;`SK>Gr7KIrVaJ~Sjdwz%kO=-3b%3_0!O#(~{w0hxrz;>b zSh8RY`>LfWvM#(s5Wa~LlzZuT6}wFotq%|Ip#?Y4Q9F=E$T&K}nY_Tk!$fHzC3pdX z%TZcL$-fSHfjS9X#Or|MhtP53c#f_@1)T+u=z<4n(E_9h)TJI9KC)OHe5s5VNRT%) zQXYwg=>t(;&z|4&-RsK!mOpcQG2Ha(-4F_Ai zRDwH;>KbTp@1I>$ks{7|3G<*!Inyh|wuVWA6|LrxwmMc5|r= z-;v`MuID<$c|ikd32d=?Zj2l+a3D+dSBbBjiJAa_WmqbFgJW?F2rpP9)Pxr>z9A*S zZQVGNzXh!g5sK}_BKy1G#qZ37^#r&66zl^t?$ zX%28dVakTr#fB-liTG{axnbdlw}_GZs`1;4YOh2m>WJsTH94e6g7ImSgHuyw+cQ_p zrMJNVJ*z|7%lICdWQ<^ShrNtW>~;J)IG+v2H6w%Wi1Efwdrv^L%{0_C8+KQhI~k2F zMh>eW+dR9;fB);h#L!5d4I>CL=4|G++ak;1=MFYZ$BkeAT29CIGCd*W-NP+rVY;L_ zo8e_TeSgQy0lF3C*w~zX3<}*phXT_vDwvA+Y(+WE!5xMhT$Ug9%Jfnu7$Mhpwbm^J zjMH~vO1Z>lJ)(yQ?rty07B<(qmRkgP6{GO_B=;<;pSp>K9qiZ&hp{@E#UxIAz;rQJ z5yDK`uRUNGWivOIXmOxaCA{y-*{@*G{fz=7^Rut^(GBmxsC z;vED4`yCb~Hx3PMyYq`K?;;YvsK{0xbS1xNc3v;s`9-JEOMZb;7Pi*+ZoDt=hXcl; z289hcM|oEb+c`(4x&$~!Nv4S}m)z=8w6^PTT`lGC?4Ge?8BZm#0?ZJTqOp=(i4>wS z>^D`5lR^hvsZ5Yy$#K{UyR=5C;%FoFprzRZ6)lqyH+9^xWWyeq7B|DjbhZ~>Y!lqp z4Lf}ql1le39}8xigfIrpi11D-;bWOW@~qPv}75n0=gGN^*ByvYn>ghpsBOR0}<(Nv_DYX*&2ZCy}9dh7Ni3 zU@4}KlbLvPpOO3>*ByaNVgLVylxC|VKTm0(<`E~yu$3^4xp(`# z;G2a?i1iJb-@1f5ZP;$%8oVIEoHk4zeW=rh{r3097iDnU-7T|~x^UJ+mFzfr|{@l-%7t{f;44}=LHg$2%HHLEEg{eDEjm&OkjcORoGyG zq&O2ORaPLGT%uY5hrD0{lSH%4ny#B;+?~=zdkf-GaJ^_+(6)mFbO$1!nZUuqz?nb| zZIC&E2^L6PGC}h0Q9zO&GrM7qy0IrXu^068VG1(+I|qk&RHv4xqK`Vd-$ zi3#Ap|MkDMUkIx4?|=QDzc~S2U;uI{EvOR(YqhGNn0>$g!FPe+iGRX)3VvIAXthx{ z0Zs8QpPF`L`(V(O?V!f!H`2B#J4#ou(E1_1qi>p_=))Es_RKg!GhQbXM7yWWcs)e` z$Ury0)Sva+i(kd#T5W|K*XaC1MnkaoMm|z4TXo0iekR|O5DdV?yc5ce-EjLrCzJQ6 z4f3P=gnr}{xG^20F-x7r=RSPGTdy@Mz?emjZsc2kF-2z0qPxQETiiGsj_B-0^EFSl z$*8gx?3R=A08GXe3@A3_c(p=*E8LidcN)$@6dgj0;W!3o&BpN5RMH}#X=uKXY~=E0 z12$Fe6-qY0{?~e09-h;AEi-JX6NwqzW(2h_Am-aFIZ8G?yq%n18+Nd$&rNMZhue(fN5*sjmc;bTT?%}O zTz#-;Qu6xNiPK<8a<5ak&AB(>ajo3*>=|2(98ACDpEeg3aJx%g`ZX7^A508Dk+%^1 zO8G}=lUK53&7`*geU1eTr|3F1>QL#uC0fJ`q!n!CkmKaW90ZXEmO?xPIQQfq94^mW z%BR0VxV#tB0cLjI#N0*9b6}XS8Zn>$!z1QH7BOAWyvUTAa|NLiEkN+)ayD>7SR^PL zFkl2W6D*+jg$WkrC4?_SOK3QIRKz^w2GkRw+~C1n0t}!Q$XP182h)&)+eVQ9%G3i_ z-2#Z9zR7kJJcE$S#K7!S|G;xd!Dw(OT$qkZ(zA452VK>`A*7c2GSqMpRL2zLk*T!= zSx`))t!s+omWsvgd+O`hv|6*+g$L@oHR+=W)V;Z^-8N1xFFt{f1;^!x6&`rjmWn?e@14dr@RKVnY$~$vnz4CFDrSKtarY| zRXg3RFR{eowvp#!+U4FtFJ!)eGqI)Fj%+A!BN=aEZo-+!dyKpETT@*^oQYUqZPuAM zC-uZc9O4fQTZeT1z$`sC@GNS{v7jCO$(pTfCoK096RdCIUjR@X9gj?-dN@!_(`so3 z>;ep1Nk?wwPdO4&QFTb_nHBkC)DlzsBd5>N}!Vy7A_Nd0IOJaqOu}q)jAQ++5s%V8HMW0}2(VFyy zM1=LW!iUgiNgnYD-D$sVScfyhnzzXj6#K&)Ie4;x%~T1eFL}e0m>|`2Gq*yQEx%w& z@@7kTJQYXe;K>GfV+aqk3r8qa)ms}G7&L0g85o}~*L(){G`6jbZQ-p=W+AaHo6*V-9IX%Ehj^z{ z+{LxbAh(XBc3(8EMZ#9MO~$p*cXgNsiCH1Vm=4~HF@1{1A=kcpXlrvc#hwa#d0$^sfjpQe1;Q(& z%{y%cvrWFRhKBGB!E>90kYQ%K3m(XUS8wVU0UJzguO6JHTEbYi1zolsp{2Iba9V$X zg0rLqlfL2oLVBN_>7`19jkcjH92heTh;-Mv!5Y;VJ0d0TMmW|_-fut+I_ENe*)az{ z_OjV&$79-kYMPE?_R&isahH1PO4@zss&Y%U&|?}`WI1Y^rh^}I5*d1D=#WPbmSXCN zWBjSgNWMnnj=-g`|NlZtV>(1hX_#gw#r^2u<(NiYupOv_&a0S`822M9mPg=0#1LBz zTVFr`ATot$(?-Pk>`DbxHb7aF*kJk78T|7B4aFmiapE=0uz)d!;VtNKHUjPExU0=1 zNs5I@j|~?_rwI2&;)S#e4fhS+!rc?=FWXTEAtc5x%@dkmnk6Pko?Zb?FiZ;%76{7m zLIaa}OcOuNmfo+cwYjB|0B1Mhm>`Y`)Q5sWv-d=wRqWFl2A^?=aArSqyh||%GG5G+ zFCehD>Ra+J;UJeIsF7&oPp2+UgStEx0`}>eSJKITI3gy2z#q@wTnM z?rjpEMd^0#?XO$O^!9I9^m2_p9~S3Mm=_0J^l~dh6T@EJcm?RtaRDvE+$-gQ&g8tY zqo{eweS$&$HtyKLtoOXp+ts{`4nbJWOY%B*Dc|N*^KvKVXP9HF#XPX&<%V{l!)?ZK zSMoAymi%2yUh<~ouH+@#0oB-IhMa)3jrKw%S zOP_^EEX=onL$KEDTktUc6u2IDv0lo47^P@LJm|>m)f3JFBrnCw>=>som!q*gXSBVTD}hCwk+Ce z9Ye$`GaOA$!B)JPYsukz)98V0=)94`K5oiaVF6ma2L?JsaYqhx>{^GrK6E`%AJll$ z5gMGued%xip3vqLnzh>$K6A!4Zwj!utW9iLz_2XdDDI-NqGrflRMrOM&Mqoz7QH>tev#=^!IbWlss*C7!F;#)e`M0xnFGOZ-n_(1rTrnTk~JZC1=8hAAlT6Hf%7v|6a)$ZT1X%t6&oae^udO^n1%>CvqqzMOm#qKBW0qm3?c1`=^1?g)~B9hA-huoXVcki zWwg27iTIKh?oP`nLwR_QOqHGKmly@6(F5&ab8iD?R$TjGiY1-X&QVA@+&KzY!0Ed% zP``?!kRZBq6f&Y3hUCss7!@UVjzTtzh_S`U?Hq-Fh&bH&`q)t1`TCZ-Y6-b$)f;a!!;WzP`;c{Ci%|<-KfJdTheu$6deOdHg=Q1bF-s*ueFr zldOxmKpPz%^ps5GaJw%{&qF}|%|*hkD={JE?LH=2z!H`-fm%U^&%zUZ_M!r)8H%O$ zRRiKrVHzRGIm`wLo3Qkw0U)+>^;d$U-$+KpoBrsZQ2M}NxY+5M<~oG&&`E-yZTk4?b`^&B;! zA##mD@-ApQwAGfN8N^92YD3mBXby9?o{P*!qD7w>j$vL+%3K_>sj$^0pwgk;u>b!2)W*kjvrb z4^SPI2+*5VfEM|7fvPfhO9|V#jKWgF2oa>6FoE&{uDHR2DJLAwKy0uW>NheQf*?gc z82J*EYSrHWq7y&u#nKTZf1)>@yqD&C7ZxEAjesEsLxa}fGeE`fg8Lw}hX6(6_oC4R z)3qv*_$BUxM|k)FHM9nz!1W9>9W2^7gK_=`TipP?2d+yPf{T|HBt9XYyPuj^wKNGXZ>w zcu*|L0##tyQry5D_SJ+#AXn0Y{8m(TTN~Pt5RloMhwD2Ub2I>ND8n<;5b%5d#0bH0Ki_y& zO}x#7qu8dp0LWYU1EnC~U)nVwm%(O7cEOIfKX# zz-~ije`LKUqm55OxNQfn>NA=KTDozQlT+G3d4z6F{820rdmC{mBG!0JGvS!Rl$c z*|Fq4H-KXq9l0SPwQS&E*G<_#!A`?Wuo$kJvcL^)i+v*`H586coz4suX<{howZG}S zP$x)6X|gUL5};1}Uj(x)3@pO_Fa*Qyp&owvIu^FamDV4C60}XNEd-V>u20;Iro7tT z719A{jGM77p)r2d!9}K2yYh}Z>DLn3C+mQLZz{5nLM4niuy6hKkntTWEKykk`%*ZS z`yUk8m)&M5u@2<6EU<4KLtHKgIR*CdW-h9eFK;A4UK`%X!Q=XPV+hYz%@a9ziffM8 zF=oZ)h$%F#kNX-1C4BQ#2+lIT%_*>NC*)a$Jnt)~)A_FeX!4HW2I*0}k%Pze?E+as z81i?mg1Xh0MtCC!kL%-p?abI>H-#K5nHX>Ec0ossv->*-9r0f(+fT@4l6X5PxeGdCJ2Mztj2z5L%sX&!7j*PT zEaKqKXv)VfnJ7xy?SgS4AOoLZoMdAC!8ioJ1;IE=MuSmzTdX?vZBNgY{sQT_NcNNE zU2J%>+f_H^FacjR-UizwH<_7>-atBQ62-%u7lC*QuC`|BqH7p9$NAYust7MwCb*;k zEu>{qF;ZZlP#HEz@Y)-+py-2G$VNyD7FcDKX^5~Yt4yHyRap(GpSs3rg9qv`frHl< zqJy+RfVb&QTa+VSaEhEtNCr4aF2#XJPY5E*Pi@oWI~WJg>asJ~bRUa%P{@HQwNcF@ z^R8<|=a~(v$-dmLI!#&nEVz`sO_9=;4$^`FFVuc1QsS^>S*T&s3J1K z0;z~hkf16ezYU8C5@mHeT5urUmkkp93NbCH4eGv-%rR^nxmmHcP=)$E<=O(ZsV%sw zmSzjniA{u)w&3~8nRPj6l3N3$%LVsACKmz}jo*r?+=mtm{nX!5u*Y`Zi&p=wivK(#2#PwvX zMe=VQ-9~Jqhn$qLj9Y&O+&S6z=lUKqU%>aMbY-if{%Xp)Y$)3wCbDxvf@K7qb%jbA zl{f2z#Ob%U{w78;fiDmSr1+*1k5R7huwH0`EgDKTgAF&l})6opxSkXy+_p_0qVI1dFXNGWoj^Mb)NZGVd=Qq;hyv#oK!%w{q8Zex+U0u22eE(T znfTWGWr}ZYBx5yR zW*@yIO61vP_O$!ZMax9B&|{hu9cr7VgCBDe8Bb^EkVg-eV(OUkp6tj-KF7Nw_+a`_ z^05`0o+lqL#4}DzODka-b(z>8A%y1xatf5hIBB=-H}L69B;4<;ZAk^?5ERQi%Q&q= zduuKoBBwG=yp`yk9f27`P^=7ZG`(?XIYQqRj4!dMxbt%%K9k zr?Y%A;>BI8mktNx?zUKU@Y`M-BKrl3Lkv_)L6Y#7YFVL&Z?CHvqsDd5lJfJ`RqM;@L%8XG^o41~x8}PlfkS zwf9e$hI@jo^#{6oW!mJ)Qn4>@q*hfg5GI{TiDEXM-4mK>7g3^QD#Ws?n@Ue@k#}_Y z6`kWwjH0URqo)_-)n`PAv% zT&I@YvE)H_wr4SwOeK?H9p8~R5C^0A6O;+wJ~O%0o}i$yB;tuw!XJ>@Zlm+?vD;85 z!^Lcjri1+3{22NeVRB&_s{7P3l`BioT6nY0?Fok5N1R*1$ZCp!zjB)?7bEY>vW1#p z4wH|_n7nUlXfkaqTMYY1{;}6}oWW5nW-DE_FWZOaKsC^BXw~#(2R&Myn8$B@JtoED z=~!RZh;IlFJ`5Nuh^ekhvLg#aOPlMeuPK&kn{DS%G5ayI-9{@WHa4vm>PL)|PXo(T zRNF?q-*n}H%QE)S*v8TbeLy3)Aw3$Y=^wvY5AYzuK!7y82(2K@eJk`op6goxWyve(sZE@WCy?Je-yBv z%SEL7jtBm+Z;sT4Nt!u$2x+ur$S6c9o5}gOezek!>DKOmKQ;9m1U5{FS&8UJ3mbmG zhqMhsK+#Pbua%ff0eVWTMue5dkMPX6ZnBlev})U^hc3p6*OG8-96LwD36M->r1{pt zI8U`rNN!oWg>9$N05uN4B07?Y88Mk!nIxZDFC|G_lESC_^C(wt9EimnNxTn4Y{Whb zCfn4tR$0?^@?dqEMcopJmJ=s`ysoF35uxeIN&Km4wqCI>-ok2u{W6p-6=@GAhO2rw z{s+td(0u>K(TgV87sxL(caAwY5~V{ig}xeVEvI{Qn8lyFM8P|f5{EhT^mc$$J9Tn&kVs|YNavIO9%;7L z)O5{xJt7}<1jRNF@Z22`JdWH6{P-5Dl-TI$q7e`H0pk+%J&C9Y{Kbu~@P6{geSqkv zy&<(&)~84i+~B}h=8mv(__-BQP#sNK*opu1M;DmS{vI9R{|?+~#DO7bTQ`wXVQX)y zCr7?}G6YRyr#)#QKKikDdu*2qh3kBwlRwF$KPT5ksq?1Y#5(BV^0{jN2#or?=_Mb-tsgAJ5`9 z@uFF+6nc%xS?#GZNi{0n(R1ojs>E;V_ZQ|{ER!{cxv?_omCq{|o%GA_`lXhx=Shcg zJN1~>tklTK=_T=WTqvE4FV9cUs)MRNu+q7+cB}gQI=Sgv+D-fMZU6ShxW9VLa7dsxtN-i%DF*t*m!*`6jDts z-MmiPujXl@le@o;zamYq_SQ+AwTch=S?zhG+-GwM(&5eR<;%m^cuSS6j!|_^8 zx_x|h(#VwhrJLKLJQ-)|FGe<#%{OvICQdW|QmhQEJEoa)W$`KV@`>ZHSF z^|IGHFTaf6^5@;*erfc0Rc}93xIl7CRX7adM?7med z$#$+%Z#AV<_1u2!zUakqC8b-nmt0eO>P_x1wUC7oF=;A|7jA z^%LXq<3)TTW;@MfD&M+BKMhjPF}qxl8u9XVrXDvM7sq#r=d_t?tJiOqDQfO4-{-|- zxxas%l|?zbUlGri5ua6#IQ_1H2t9^GTj-=Q8ZTo3I9!nOI53$#J>gD3z zs0?1jd;NxVDBj(@ygbJn&y@>HD&;#$yEbZNs}<#G=*X6p9^bv4XVnKq*{`aT*8P66 z|6J9Jsj{J-n&nFESk_)%Z71E^ujnG_a9_H=>^0=xTc`7IaXXrH?)9wGe#^?O>Ph$f zUOO&Lo{MIsaj&TtjcU33eEeFxzPK#j-QHYvE7xM}@~L>IH1c;9sYp6(oE}$3WhJYf zUyLiy_2Sdr$?2RgN|{fS^7(nh52iN+&&~cixEIWZH7Oa^((r|E7|;loE2a z(oj##`$W2ykp|}JxzwE?3@%H@YW@20`a1PcQ&ReQ<1zL+PRZ%B{;61tUtLbL(}ySf zwElK36^eb*VN$)lJ=xF8llIlqKy9V#SLL*J^7x!9)L!xr>D#w{yjneOzo`}T^m;T_ zljq94dhr&kUcO$x#9Gy1t7s<_^CeqNx@$S1$;EoiaANI_-5%ys{Y-Wed%hgkV(tAz zuK28!Udq?QyUS*w+g7jIvCGcwLr>JR+UT*kUpu~gH1n-V=IY@sdv;Aaoaja;f3L>& zv#rx(Thg>_zj^x5ujKlTtXe!ht(>c)YI47OT2b?{tfkcpXGy)9c*<9u$9}ERd3tzi zD*g1RcPBU9EueAtARo8va-w|INu?qfG1g{P8WB zn+#r@eX*3#OX_{qDODbl&O@#BdLecPq(eJr#ZHe+t#~h=m7W?;>i%&iAJ?;m=KUmB ze$G6-O8ZSSadIO%YPG4}-!{}jYj}2c>$KC&T2_ARCSIho;zN7vt>yexES4V^u5ZTY z$K`y!lFwran(yZGZ>_s{vyC5$*T?8zEPM++#W){5RdR_Y5~wW=ukp$GbJn>;^3xrjEca+XOb?$1%?L_(_`IdSx zrA|(JD`lj&;`y+gw<{9qP-(s-YDz7W8|trx8#FHiv+^`Cy8ZE`{gS(E^g5PP8p#*A z)aX&u>)Lhv_~hYn@_cfCXI?%(-j@5RUO#hsl^Q49eYtftxR-nT)w@cv(!bHgvvESa z(8TyfwboMFmtz0=t$0yMSSkB5c4gbOtI=7#X*6=#mrngH8|!xy_H|EfCkxrj5$Uk4 zpHyF!rfUr7rVWRPj6&}ycW;< zw09>3Pe4sBU7ptV@dPCC1QgEk$N4{Hr-U|@_|ttV{vg&i>c!#?W3k7x=hQLYH_QU+tVFoz z)1M*ctobcs;<63ydA8Hih4@f+FyG}*F*c<+EK3&N>D^B2qn4C z*VNIe1|LH#lh}USd-!NWj?icyHOFQTo1xIzYAnWyrBZOUHZ+s8;_q~#O^p*I!-rZ?ZS1t+Gsw$q*b%3yj81u;_9mVFfzo<@XUM_8^dm0)Lt$M zTA^aSD9>l=Afcu9A6leCeWF*SK|XyVzTMW&Z%2*GD{G>*uCnpReyt#vlLfs|Jbk;p z?CU+P<2*kVPLBIs**-DM&gq%cJx2%llaAb%yJC-Yh?t`@Qcnxj6S-j)j$eB5!S&$z zE<3u9KV+3!>Me0md3(%e#q79a^lP0bXVM(D+h-&5s%#YNR{g$Sk3YvRvYq5T>9BmG zTT<=+vv;*kiDOOsucY>qQ!~no3OG;gRH34S@>HZJT^9%1^ z^5mQ(kU-u#oiyNjSKYg-!nyjq_vya6`{wu4t$y+I#<){7`L*%-T07BR9&S%+Cw2Yc zeA=H})N1+L?=Sbi?+%a8?vEzj=b`x2yw;v~FMoV5KU`Ms&cu?{<*{^>Gk$a%mxp!b z{-^fzdcHe2DVl?&pX?2umAmi1hj*tx%iU?O@_cbVEZlUTkL2-j`?xDz4Qt0Q<6f?G zE4Ets$sTX;x_DF8^2JuS^41z&SAXq3-Ai|8hi8NQ^{74QPP)Cx>+{jk_t)Rz_m|#t zS()A`&8M6EP5t$%S19UlXMY*Jzb+n5D|KrOm1_R2`nrE}eP&3KxcB|!N3JX$_m18Q z)$7WS%Y19xss7b$oS*Ig)qT6F9CilN!(J{wo^-^0N%?$xRM|CO`jew_p<^xV>%&@Q zI>?RR3Z1uVB{wWz{N6jSRHbsRm{V^%y@%?Llj(5xuZzR|{exVkbSPfGT^{eBNR#iC zVpY4DOv=xtCqq$hbI;boR*tUqgWSR1v~e~xPSno%UoYChk@S3caD7%)o(wtax~KUOFoFyCv3t6vpEz1}-1 z?x|X1JidSE7{5AK2aVp(Mvfa}d4suJ<+yrscwU|S^q4G5zn@-u{9`VY<>}3|Jw147 z?LL_+;I7DTz1sA;dHcC`ad>oUNjPnN?iC*{#)tB5_d@+~F__-I)vsF8_iC=JUFHvu z&Wxi*u{=7@Ns@8iYF@R@t||vD?X>kIPtAR*U7XhM_G|Ua=UeM=P<{=5KJ|?IVx{x5 z*}J~!pNx+imlb{Q@=m(%-`xHv>(l$+leToxs@?v$m`(=0gZpxQcz;uv?rZHycVC~3 zcAL+`VTCvN>*DG3b$D`Bzx%y=p$_Cb^8jgHKmW|@hj-K5{r!Vcujk7R=9b#a$q(bt z7jKHxKfe3?a@)J_=PrNeE8Xjh+~?!HhmJLdV)g3bzFI0?yqI_7Ywi4Ex6wVSzZ~qg zyVYUU*!x{=*Ulc!j?e4*{&nSa|EK37dk<#w-_=5`b;f>7(QNL!20i~feofVEUfFe- z&CMTNW^?wF>jT_u&OhNYo6kP;VK(RgYB8WC_I@EcVkLffNs`7B_ONW8 z;J|rY7qMk!^JIpmtFWW&RxURs zkLi#`1A^l0Nn2`qDU(-NZnW5~LIloa6c!sT*}E-+p)J|@qoRjaga{ne>e>zMej1Yc z4{e~lOG67uFcNmD)R!^Nr$=^msuuWAu?l4MY${WD+#Ab`R;;N)n;3(noXklEeVSm#Tpr5ZiEtL{aDNl&|I;{{DU%QZ`e1#;k_pjeq002aTF zl47~5(NOizUb+A{esd*-17+<-bjhLi9TsbQ5K<5TkFR4pCX5kESp-DGNV+ z^rGB0RKr}D(QPb9n}sqHZ8|V@*FpH5Pgl;!A1QiVzV&6@+k?>U%Q-A-*z-!W$UWc!vq@ngL8~~Vf!Y^Y0xGhu89k7P9)&fL z`&28%|FbRgiqT}lkj!V7%3od!h9?&JFM*ymk@8tL2Sm!~hlC5%yqf$6JL*~BZX@J! zgDCmzR$if2Fw+CTp1^oYft#Dih9s%pw@A@TrscUM3A$OhZgLL0c2E>9(6xg?vIie@ z2c!W=1!p!PfnxV@aJnHH65(LJwb`Dd>z+*6JCLUj*RPS*5eZib8%8QH7|Rs}HR;Li zp1^Nv!K-2lOlJ}1dc%&;nV1^-)WgUPnBoxq0_&>E4itT-fc& zSSTyJJ<&88t0M30Ds@6oyzJ~PW*rlX;-?*<+A$dQdXUiS0+?&_I$rK+)9?0+nF zhdo0lUwNWEr%NpL_sPjZx4t#5&TpIbtINlWYNJ`Zd2C$Qj_S3BN1B{VoTy$dz3M|d zQs8|2R60_-Kl)z1JgueIk!52+_@tCl>r3PI=A?QA?+OqHw0&g7yrMa8K~xqc3D&&W zI$fRS#Yoaf0<)jdBFT%DQ&AF+J>-x?At@?Zr|k2P3J&z-`IxOmDE%#GD(0DB3?1SYT8eBM4H639~kN7V6_Iixo(J26a{K;S2_#FElH@ii=|JO zl@auKrz2aSkRV(Y)Y%T?s-Uo7hJJj^ersVpC1o4pG=0dLK_Mmal%f_X@w;;jwk4zB z;I?GkU@rJARL$$Q*ztTV7j}PDKNPP&>G{^h!UpiIZQ7X}YUuVq1y`dg>O-j=F73PH zTpzAj{Y;c-fqyO`=Q?~*Cg)w_G%zUd8ikgKcl{1^SrpLP@~%-x(I;T4a4;nu1;yDo zRA64Z4_O!AHxt^Su?HR9{xU%kKurTl)dT-|1Cgr3Z!ZY3`e?Nd%H$r(WTqzjXj?YV z%?8h=H8Vn~*17q=?T%>&6HLg-M!J(v>{ z=x|mgAb}1A)&vbFr8a}=)f*Hj!dqYLOXPK^n}^=D<^#l=>o%BOV8W^&6!$EzjQQXD6({%LuzMl0FB|Ic z&p#>^{t4TQQ?h<)sfM8r%r6y+{AcUpEm=SGB=Jeo%pXh4+xoSmss{V_AMS(Zq93d%+2rnY)ujj;3Yz>#JHnC3_WRg}ELx{Q`I?Tq+Y^Xv<3QOu`*Z`YSu z@4t(ZvFjbB$tHpFXoq<0c>C4Rup1CHNpKjYt?A;H4ks!Wn7cJy_9!uJv}CEkY0ySP zj@Q_YIMmblqX0{_g<>5gND&H#3SVz!{>n*{7@I01Hthkon6hN^n;<=EQYeUB5r+gf z!6D}i1Vu>N#B~eKv0eYOW;SDXLOqG`Qk@Icb0N!yzHlKsS8XzWT`BDXEn$Nb{IknLy;L6{-YSc1CaH55U&10%G_VVpK&C{FVgk9S5`x5@ zyY&(WXw3Z=P8eLrKFD4uveXoD1%kTFDVDa{{aD$dN0D_;LOd)4OB={cAdm{zR&MY2O6ar`R|6j+`G=duM|%s8yAmKdI1K2@|r9#DaN+p=OM z#R6#)o3l6)C?z;R!f_-$M&9ZANZ|57;Q`fA92iK`#2p`SVj&JML3Of(Pyx#B2UmcK zEAWo|{0`Fv2KC|RcMbT5pC6C(;pb1KTOWRY_IO@;IlJ8a+Xn{+JM8}+lw6plBm2Ty z1v_GTjlKPx{2AIJU^ZijSKNho`?HYFxd*&k^P8rCe z+tHK(E^KrQ3$k)^e>So%AVpIXU}53hytvsUggs1QF22em7iz%tc}NC=<=3|!A>5VD z4V{+3()_RC$b6w#5H5S@R^gMKI9?p6BgL4prrF20`NvtwOli>Si(QGQ9p5T`5(aAD zY{t+;Mej%&D+LNNq$Ui@+?M|K4j16Nu#t^Z4$~vq(6@1r|G*sZuqE*ApB>>+H6%W) zrgGjRe15|;Iuw+~c7z5~vj|NKxKeFnRi^70=z)Ps;NDi1PG4?=RB@d7Nj5;HP}~B6 z*(Xt0FVb|PY6NQ}+?-QPFJt)6+xmI^@TPuy@p%2c+Q`t(fZHsfssJb~|If1b6+nVz zqR~`QmFWPGP>W~8*=R2_uj87~%bZNn#%J%#vi8}AR4k2rkfn-7mYxw#W5d<76%EJ@ zkGyX|ZY&fQ$cshn#G+F)2{jfJRPyW?xJ?brj)4M$Wye540SVP8EI5g2AryO}vNB~O z+xZ#x@b?wKUs&5l@YS+RmF z3Jqq8MnOSM(I~L_Swn?rA8Eqhs>WG~JWxw0?MtNaemoA&-e?S}+ z4{k2(qRGA>Am@?$+!g${&hVzDCc4Nufa$b&yyOZQNFNJp2-H`5La6&HQ}oS#gODrM z3HuhsunPZnTC3-ul`o$#>0nIq6)k}1Z!ZYS4F?fB2GH*q&Ba)2@J2&7HM}`Unt>Hp z1mzV;amj@3+|z^%5DfJvK#(*kAe2$zv?LH598C2_vJ-*2Hx4b4@{ObeN8gpH;{8oH zdBF4%C@gS#2^1P-dI|d#Mu%s=_Q(J!&lA_{6@W=c!a{j)*11H{ruf}9q(l*_k1!Gz zW$|#t>j+w+2-U3wC5mt*!XcX)HHfgShN}jaq(l({G3HkCFJzPpd;HUx^0LPlXiUpq57i#b2HwG2d?4%__gz*+oP*55ap$ibVy?Bf%6&mPWwjo34|56_5YoPW& zQDhVi6eQDHW4;74Sgz2pETNv?=fZTJla=Z`oPLb-_aW%N9!)o1u`#wn=SOzZdSHNs z72vbVZ{& zMD33Tij}V3X=c8uZ2pdqI%u`bE@Tm;KBI!xVdpdsiY4r)0%IRw)Ov`wW^;PSRVgYk zkPQQc1hZkFpj;c03KEvAdsBAxn4NZHXmo3la0uy^z5i$V9k&x^3|N$5iO78pi$8N7 zyb1acS0Z>U7h+&z3uWI*ATkEQU{P(Wxblb!L~$k%$lRht_e5NYWTo97J((X_FR{pu z&A0+3dd`x}-^av7ZMpRl$a)H{+3FV8Y#D(}r`gNn-=f-LPi*t;?$>g_cUn_nq)U$3 zIz*&a90`099R?_e@{H23x84YHGi4-WfA#xPce2;g{}8aK;^im!L5L6_zBBXv~YXteH?SmlcIXa8EMH zassU;u2WM1Vy# zuHO-ry+r;kI(m>lb1_Jn3ab?6Jg%LV6IWb+@i(po$OJ3q{^Hv*hz4n?p#Ivdzli@p zyB|ky1_d(4TN42`3|K%kKJQR=lNL3m3p~~=2lY}lK<5Ms40tA?uzJ&B52nbX;9!x_ zC@4*O9myJqeukVjkot{+6341c*D*-25DLlvvu#!B^yM}qgBd-3XT3<%iK;DGltbBh zMQ*1}g`M}KepzeQk7DrijBh)O9||@=F$2)*3{ckaB(gsxBiB2JdoZuwe>u3w_V(Qy zXf%pXzXz=FB^44vdszCiUrxU8CJ=n%xIzWSAgoR#7RIn%61hVz0PUpU6^W9JEDuy% zfuJu@0+C?+Kmvg_e$pst6Z7ZmdW{vxtnsfrE!S;?)@{4_x9C=I{2I41HZS?gKw+^z zEDYDzS?%~469Tf+Q1#kC;X5cK*xaL_G!bMsKw&8&h#HP8t_MKE7`utg{pTeYO3vL$->xnrpl1aUFZFyMClWz;N>=nK~sE=>cdb#8v(kfJ+gT97K9! zAMyX2PMAdr9(Ih&VIv#ar?3eRJhqI4Y1~gY)n;~a$GBi}*xiJSBS`2cDCwq3y(tv@yr$r*kEcDN)i_0=Yo;bBeiJFL8irX4lQ(K`=u6 zNMQ#HKT_69wnSm$1aiSL;SvZ04Pwe(B>xtJqIPYsGRyfT3VcPffAST{(t<(LxOyOR zVT#2*O0oE;WEs1XWx15{NM}~blFPKpN|yW&p4a4T)}Px>Gv@5}+&%K{&ep>DV4m;( z+YUm$j#NE?%xhGFOd#~5Lw=KXH=!l_!ce9P?nSuJPxjNMu7MCB&f zucF?T$5Ef)8qVPeYYA3by4kAET(v{iz=23v0Y6|nsejo zyng&>{`0n3zq*X?;z}?yF{IgvzkXN-{1uwS=6Wqta%buI!%Sj)c`;cmHFeKUi<~G( z0GNH>`^ZHl;s+cZxWa=_vOTgECX5-114~GeCoSZN!UBg_6PASCoMn>OG=*H9F+42k zA`%u*rQ8L5IbdGtMiyFd6j`w(o~5c9cpoui*PLN3w5E10d+G%VBoE@i;JmDl-R5o* zsbIIlG-#JFiB;uLfYcWgj1Gp}@L;Yo3J%Cs-n3hg9XdS71b~PLE@OUXf3s*7SUhhn z6&N2$DlnrbLe>b1xZD%RkU>Nhv}s8oLo5mlegz_H^-v+LK1gR{sxP572JqTLZFo2f z8U+VpK_gExvJ={)@w@9_F%P&hofT&ExWetSRbeHt78hr*{ji#{{ct`!GaGZkW=Oh? zfaQ|c#Jpl+ELT`UTLesN4DpH;2r)LAM+ukCI+a3+v9hij>M&G;uv;OJH<}S^iyPg> zT1dJ^jkDjv6Kd1(Mvzd1#vDX?Yuug#mS@JHF<0(Lkzt1z zDr6hxd0YQ<7dDo4HiLpRae(j>3yE*x?ny_B$gzer`%1HZgGvs683F^E`~`6dLUB^$5#nBCY4Y? zm=B3sx&$sY=f# zO-Shq2VUGuZ=YP4ws^8qqZ@l>2>7U4YXH3VID`in<#`5sfKh0a0TRH}V#t6}5mE&M z08&7$zZ>~s1woSm62^9tk}hV!QuMt&-c+0QtJQko{6EVAA_N|(Ah2@Ryp#hQ z>qAkO+rm&&yP7!A-J=N^$r8(EmdZdLRnL!Z&#TSa<6ZUqcGb?z`KamU;_H}0=Uw%X z&4-a=At=J^qWK%qJWdsJXK3nR77}6Y%rT=6%>p6Jk8U4)IXF1jVgFwo&_LafXU+SF zh~VK~ging%0VE(t{ueep+{}0K+BvN2f)8+Qz`U)9ZXQZ^DndOm)u&4}NFab0wBbBiv z1B^U9Qyxv))H-zif`^>oOcG%aKxlS4fj`Iv_D~kyeU>%i1y6ZY(I3R`HV4`J%{E5Y zFY+VtU9QD{g%8I6v+N$TOmDN34QtJO|2DW}H7zQ|mA)x$m$V;Il1Xhfxj2aK*)Si4 z{sRN5RS@G@31aS}vb_MA`-BG?3Tlm+`>1{;VD8ghccjdHRJX{=@~$~^e>1joK#OSR zKF>e;!Q7A3Rx&2;C)RORP2jJrxb`RBL|!UbbDylxL1GsUq8>|tEWyfDs37=5X;F~K znh$^j4&f?F!lqA(1WoC>A>D$yH&9@+r|16w5b+jDs_xB>3NXb!DPjvkN=#+ysPKT6 zJlrV8B!fYH0Uoqm*cF?770keU^WRkkv$8Q&Fe_&b+Nx+!S#V0i z#M{kp01Zl3#*(H>k1VH&xtY7st*v-e|K1AuVl*GAsfFI&bZn$BAy*!f=syh6(Ldi# z#6GAdLX0Lq{o`pb7k0vBTY)k1EZ*nDDd&O=EEDZM9*c!MujXQ3amBoKi^Y0avJDB| z%mJ&xd}UoTvaK$dzcR-|XZgzQ_ISc0)?TXj+p@qy(RUkqSWVsKXbwOCJ#n~bsb$?kHt6AzQK~} zp}I!tj<>cZ8Ju$jkc}lFU5OoOWMGMoPMkG>lsL+6z2A}s;=rJaZ;zC|q=T4dc-!)l zI$}<0H*5{DFQnaZkV_c{#q&0>qK;&UFhU;+3V3R#zj_umHsW;zEjow-gBKk{!P!q9 zx@8O6lj)c}A{#KYQRuT`QLZI_C#XaoCUtLIfpkOEjL{IZjtIm`mNqs8$^4InCHd^v zD!3s;akscb2U7R&^28jlZQmNuar+cS`HRs+e3NBlQy{`1#cl!e3MoXQ%ZeUXA}~vl zLMYfRM<7rF&LhckqNAR(4N1l6h;;6kK zt`&3Bt}y*ofg>d{iANa0jc-w&pvXyP&LGGft6JDpE>fCKf_xzXt$$)w;yRGU!gN>w zz!yOavF*Dp^C5Qr{}E)6jGe$y_y*AjQ6-D*Zd1X5jH}41&r!N-s&EN3E)*WDfDQ^u zQ6bMc6qLQmcBt?`)s}ICD491OD02e>4tOTIKA!s0S#6I4PuT3b4AON`NOpB1DmaiY z2ZQAQSu6XTB7FhOe?Ut>)rKYG()H26JeS-dilCk6KctWtKbSuA4|BZ(TK7E%VFCs# zGYgi4T$oOdE7Xpq4DLFSQqhdTYzsZxfj%~Y$^8V_t2kC*`-@J@O@rAu&5y~ZH2YRb zXGWuUMdj?3xTh}QD;DE)=_@wD%lSo(i{fAe{b?3(F@x%eZCyh$OmxSsNFnX-(DVl zU)+0ZmDqGgs9StDS>db2gieF~wlKZPWcwnR8i8Q0=K+gI;K56w>OtgD2(NoUVV<-) zwq`;Bsb~ZeahB#fPTiWxG#J5>6%mL8%Q8gaxE@OV{@VE|q&Kl`kUOm-#gdhFf5g=0 zHIobIB}C+sjw?}n{Z6R$JIC8SQ41yMtwJbZTE2g!4}2}PC;t}ty}T1(al29^!N1Ug zdDP9`N(@v~SgmqxI)4t?0U7K;r1OFeF{>~LqHjvg|NiIyj2?{Em3%~*5fyZ|V4!$^ z$-op)VH?yCD(2Hu1SM$1z|Be&5cf}z-rCF?E^W8f!BExtd;5z(-TRT&F+b^%feM?I zivai5iHuH!*cJ6{{>X9n7XXf+<9Q0zKoVP^It)D{P+-8aKPW8SkcL!PFor(jLWbpH zL-na88tvY;CV^v}Hf{@0@ok|RE(!{`)o_z0fpV;1Cd>b`TjIO`RBIZh%C;8t>Fwc2 zY4;vk5B!sh`U8G)>ymm;?id1-!O=RC3DIHHO-X6{>QRA$uuy3hM>kY8!>!h`x=+fY z6rqOq^z81{E~p);RT1 z9ykk<%BDv7Znq9Us`vOj^EeqGol(Z7$jM|jPC`;T?UF>Kr^l@o85TT_JH+Qn=OLK! zY*zu8z=;gw-+1TZewotCD(Uid6~Jzb3iEZ1bSqfP8en-W z^{0Y9(ue-vml&szSI%ZcZ|*2#>)k%gLX*2Kc08EZ$>^G^j5p+IUz5;0XBqfd0oNF$ z&uBCTDg$xAU^k)+ z!~uKXtnh^fexDVsDRq_J@_UT|Uq>jrCVzudfzj5jp+e$^9N7@UvW4NRn=Ksl_L&~> zg=InLvTmY=S5n&Q$hzEjs4$zo5r{^RMS5fUIn{gWs1LDRY{+SlB$YCijLL_~DPUiuYv5g()bjt#)o%gMk_AIEl;FQ1*8Dmtt6un=mT^s=_fBhYSsB z_d$WdjAtk)pxp?sJQoJpsDfN5C?xAZ74=og;eaC*Ho5B}Ur!wR=%OgwJONU5H z2FU}XMTL+J4phx>9R36k1{5AJ%nUV6lx`>q3n8zh zFe(`!aQoqGe_$mFiRad$$WV2)FF$QNse|Y`%d*xe=J3LlHVmf!XIaF7&5xVqWmtVC z;E*wi-PHPL6Rx^4Ml;r+%o0o6$%XsoU~G@hi18BzJH4FqtyBni zb3+%j27^o7=ri>uMO@_KCfnGA~s|M;M z3&i_>00030|LlF)j^oOX;IA0fz~El^RB5v$D^FJe^1ko;OF^qGTb5)=UZ3uuKcV{< zW&`GVX1=F?;QqoWLbB7lt(2|Is*_o$Oj`>XK{7}NgTeUz#V{pHG8fX9ACZ4WmM``X z@Z0?Huih{FhsfDnMApr7cg-67V;P*FXv4_zWx=W6zkJ2MAnt?iZ9B4>s_-G{`)zzf z&XTOKkp1lnBK{t@Utx1EKvzUbvlUs9%)kE;R*&qF6tQ)iQzPI}Yi>$^c;BbG8XjR4 zEdpBNP$w*m#>nBs9}!LyA!fJF3tgR0rLdZy%iB&zU~2#i1WA?Yz;n*Q&H7O+pvfEeA9p z&_3OG$x#jtb>eXVRaG?SGeO0+UmA1OxxmeB-F;DU_~YD>WCtmZF|Z}da0I@gDEKBT zre&8P7&3->?C@H2jVCRKY=K9!V(GSS+%cddoT}EOHw7lcBDn0+s53E$cid`ivR)~H-|I# zWN9Z|8aH)C@u(f6wIP`f(h+ z;lcDYcUBCZfosGq{OG_yxOhp@!ou|`*`Z+!t#8ga^?~YbX6x#B$4RKrA2Hzb&FYoD z+zqBxt)+i9*jB#!AeC`SMsG?gN-oHf`x_8HI!jt6S&Y6 z2&Y<#FsQjpoV3I6;|<|=1PKV1j@Jg3jUd>X|A9QEKhUguFnDB^iA+t}U_rY8o? zZhPrZilv<*X5K#DE)3z5u82V<&p&)Q1|jqYdJi9~Nwy!SKMWH2F)ksr$BVLmGVN-6 ze0f+QG-$gR^3`1o`B;sED>EOfN&e;;Av6dY-jCHJUo)2Y^V{>WY}n#qNTMMOcX7WFjnNUN}88A@nn4 z4=98VsIZXvb8!Np0@F8l<`x#lU7RBo0uyYC8eXo)=NfNu21kY#Vd+p4kda z)8x%3Kt_7&(>zrK=&;m9qHi?^V!y5o6z#Z3)gF>LDj z&b(u!c~zPouD@L6F5u()Ng+mViR!*>W^~QAfaAv9oIHI=;89^ED|FOdHVxKM`q3SIn^C#ZQE0$}bu|9yj=oLTUhk;u z?FQ>8^DA&P_JA>pp^xtAGX^OMXCnc7iv0@0doy+Lo}ND3ls-dxDKL!>+Ee0J;OSev zquXQa2Nt_cfIG+O5t)!{GeodM@cnY7uo&dhX*QJGArIzNp2Xd4jRB?a;hx;vVv*N- zNtOU=ZE51E%4a{U zdbXv9TIPK46m0rF4W7azfJ?8yl+WW=Xh@awK~*?{&foGH?+HOe0to+Ha&y%QghhvtnbkdEcGYG4xbSYoSK9hELH0Ro!@*x=Cwp@Ij zhc|-gR>;T zt^qn9BZA3tIqo)kx;IQk%xedR1xEz51Jo1E--Yw0!J#Z?f0U$em3hmyiQP8g4>PGv9LicK%5iZ#+reIoc0-_zLXM$tzxp$+?ss zPZ6EF1(S2n-|}{N?ho#_C#E@6xPR~mtELxtkFG}(ukFV{g8<1oY_QG8Z%uvmHT63# z40v*a2eB+N=h`_3hn)3iB!2R&8k>psszel*)T+-*hik}9^QL}$cbx~3eP1!Ti`K%%v zJpFE8s?QDG)2AQZWxqv%10nNU)-M<~Ut45@p#sCs53)depZ(S74%9E76@deF3rHf* zSz(Ppx4c|P$h=pSqv38T_BZkTNj5&GXMqR-YxahQEyQ8zQ+xyAGEBws>U@=94unr| zTqVZ=2@RjmLkxq7h`;*kK~?v+gFDDIuQI$+F=r=e_`zDorAZ5%t)5I;j`krOz5;_* zC$D%7IX7duQeej0KH<^Ve-)VkH5h&SGa;0pJau}mO4vJ>tMNA@TkeN$&h8G__SNQ9 z?~g|pUhPI;>;}$y?6q+)O>%DMp-6$?j@x_p5pl)so+xo^eGX*Uy(KFvN!;B`N~&7s zATBW5I>EIA1gBq@ZUeR*zyfF;ncsFA#nP{{wuTN`3uk`Z{x^6t2@ccL_U<2C(DYn_ z(?qWcn%>!d+qGdwwydd$;N#Hw>%eeZPHndt9bAo3UZmpSDz+QFhnG>z8}A2~8EiWq z_i)=FGI1)7r_y|BGms0!>yw$2JRZ1$v@0*PdqQx3Z@+nx13G<bql(BzEKr9rm0lgA5NzD5e9l{4jbUp&~#v*pcL*y0i-FhM`G2iFwSNr)H(8P4b> zNWm*q2SVkS>d)PW`~<3dao}xi?GEyugyGPaHxL(&O~2F)wk7o4sOz4)xT6@bC&$*~ zkmR1lxkdQ%@z0x-XNXg6;_AYt!D(A`oe-;Z|WXi1=|#R%e)8Y)ydk- z9f@4$ZN5ivsKz0s@3a|-OY2cCkP9{=zV+muU^AY(@AE#M;ZW&rnFd!fes`l0EQ9Yo z$o>GUfrVx@f~D=fA9){SHcsYgUnRp*)T7$^&$Auyqb($KQ5nV&Z^OMHZA z-e1r%e}r&e_?DRq%`|_6fZm5O&02V-`MDMAK23A5(r~|Lf|*p z;AF7fNbg7BU&IC{KU^^LUcLMb8;stz!QhXZyL6VE&yAwpP6)hbixlZ56&+{y9c@)Q ze8tU5I)3Hy7AChY^!Z!c1)D3pIa!TKuMCybxRb+QBRzo>yogoe;n3E=Z?5p6%HbHp%6!^#n(W+y$?*=*_ybGj zBpty}oDD=@YCZ_@e9jWWrky=HUq9lb zP*0M5d2E=cav$2jH>hI(>!1JizdZryKmO+xpvMJ5lxH;HfBTh}K*R@KI)!_(0Cr73 z`RM5#nEv^X|8;;1x#nd&HzVlwVTLCG(o1VzekaI*YGz!Iy58b|zrcy_ierJ$!GdF9 zA^V#p`C(ZgTv=xt;ZH(>vCUWc)LhT9n<@?iNfg;_*oDiqOqLzhPIO4 zvU$jDWpBQ1=#~PjUmmEb%fkbJL*FQge$?0d@b)?MIy^)DIrMslR(UUa9j3y6%GWJ= z9p-m^((4wzVje^M%fxhiwPwrrd(%3WP^12VI1H>hQ*Xme+t?~N^AD_K|8v2gcm;8Pv6IRFOkd+Y&= zR?atRHs{o?BHAPHhWCQoavCG{U)Z*Mcb}lC?Z#Mu1b* zdoGfC?=jy9BVKZQ7VsG_`CaK1M!W>R{F~4#jCjfKBwt~~OMWMM z9Y#RzrK9INEpOCH%qzR{#``!+W}nU+T7*2wHI!Nln5`i z`mm%Fd9v^S;wDkQC-?=MtggT#mcL+408t2a-(+YTUUE9>QziPJa z#^LBcURSGK(G=%X0RwC|uz!5NUonvZGLElx;52dJD2{TK?~ktXb1J161)+Ij@LGoJ zYGpGFJ3MjYiXhyR4RTmX?kbzUV!@|Q$3p2l;pYM8{`%U$avWCMW(n+i@Xvqy?>ViyZH>Km`+bxxdQa~W$ZMy-pAX%P@fmR+dzFOssH@Pzx!!IaF^_%B-ti? zJQk>@UV^dyUZ{bZx{XCVRK$I~{AgA3f9~)71%d`pBtDHn@WJo|qy6Z@Y7a8naW6+; zujAVeg6??21b*FPvsEobk^C6e?V);u-p;6k0KJe7cfm@XYEM6bwo6bywdWotf7d=v$7Vu(-nJGrJ{AKuk8wX-tu zCOjW|ruv>l4n-XWq0z4wHzNY<;quRwGa_*uw|mgk;sNo%+dk}9Ux6yzD--ij$J$@` zg%92U7sN^D?u_F+Q?~_|}aOU-X>T9c!kWI8IWPkZV(zN0$kHZSU2%TgXuNQmFw)J4 zs91Ij3O4wZ*nKMPJ^}80iCD_iP^B86o%79G3XSK#z=Xt6s-voV%=wLIGgn)x495@&XKN+Sj zfSht|*c@?&D>2r~(gJGE`QY@R>5S5dy-MgSAie;tWk4dio!mX+zF@&m+{;Qfr{J%H z^hjnoAO)920C|1aFfBVP>C*`K@coPF$OXjDElQT{KDvFxYl@2F$;d)=7NFfI@yZ_xCFs@pJ4c=*S zWT)$)+Rr!&mFI*Bq_-kCy;;0iKy)Dw&*@d56ZREBM0dytF8*Ah&d*N^LutzCCk*xe zi+9n+L8RFN37L-C^OV?&V?=dzZcBdxGx&o32}I^Arz%4Y8pc1ToHb72YGn-}UEMmk?c(6+o_IDB^V)v+ql>g6jz#!-Tb#s6F=mclElVy|D| zM^*ZBYUy7AufD?8y|@f}y$Y^NCZAG{UWPAG+1fcq#i?1&6A;W>+3ivvdSDcR`d-* z$F(`L6jqZ=Ia?W0vw3}1q8cm&h+1TyQcQATGinMeEEB2xvRW<_b4E@zOo}PWVs5-% zHK(T1l>3`#yQy_+eVU!il{_aFsdBndUNNkZLi7{_SXEo5ZjO4mnn^3_RH)(&v0{&t z2&#bi${mc|RA8)pazu-UH8dP{9X zrp%$1vkR?N)vC+sV!lPErm1E-$*q=jW2VLFI6bhYjWQ$QooP)1`n87K%W}(=GHxl+F`8W%IV;syre&^+_Sd*<;^kN^QPxbp z%_DUtrXn&jDl6Em;kK}o$E~VOwF^TrI#5zWSuVw;Nk+{y`9%lS^;nuujyBmcx5nIb*sv(4*}wMUul^fKIxa|n2Oo;6oDdqZAvVc{R+Cm z;zK@0vSQu2WsqaU$|Ud>nyJ$bRBKhz9b!!Bj4ahRrj98tm%A($%S@y7IEQiZXksx( zL_{p}c%e_ul^Q?FA`@GS3A1b)kxar67R%%%IzxaCv4zH37)yZ>#{ra z3XL{ZX|qeSwd_w!*~BQO+s8NMgj`>WY(FzxHfAe(T&&G{{Z6815ZWk{j18ypVmiYl z%~c7f%#_{BQ#ne9084X|>b2TQag<49*ClDuvnaJXPx2Jepo9!pc7)38Hs&*K)yF27 zG($SYO2=+nJ&`hI8EIM0n;BxPCnclmwy@d3sREghIH8fut~jp7cDmI$T5K5o4PS~j z;@H@v@ZEM z6;a1SOB@OiU=rP=3hQC5khF^NY__*7naNmwNtdInkTi4TMrsZbB(~^DQg0#0QkTbi z0)+s{Rz)F};L-#P_}Z%sHWngIt_QvTT*_irE6*fau?m~c_ZEc(mD>zPF$=XCR=e9Z z#u=(S&NLywTCEwgGUef*D>Vq7kI^fvCK>B^DatStoS9Z*!%fR12_u^%l{7o72sDZ% z&6t^?7ab)LN3$(7#tu7jv6_PbTfGdUN{jNGop+=PmFZ|~A=+M=R65@;uT=)6avgb| z$rj47DsSegcxsBFlMS_;ckoFr-8RJ1Ow*JRx-Lf{K#>^=;#xBMrMVWL^$=+mN7j?t zpu@B&-IUQ;rDbn;N6C*e%aj&hBGuWZI%-*+lGVyO+)W6Rb!#+MW65+D0$jG)W+4_I za>E`$ts0Ywut0LFIs#~kAn_ENNtD=n-e&Kxj1VCBaQKtp>o_wPvz@t^VcJqJp$ZrZ z8RKv^!73=5Vc9Ip0%+`rO^unnjC6MZRo2lmtaSpmv~;d#nDwB$+LYEL{CgH)VwEeb zrUSOVQ(tB0dh8V7(CJ;)QEY2QEl-&=kC!jEGS^becuC%MISF(j3k=lZPuvk;59ov^ z#JMo-;Luxe=$fea;WG{a(`*eiD&>x4KvC!CJN)t`A}gv2Vg)krE=?WA4dgGtiv|7+ z@KF`bnLRsB^&jvboLGF$V$RKCb|iD&!B7|vh`9dX%8P#hsNVFzg#srGU`FvejR4)&mTTEMZ`(!@v$iw@;!}B#X&IOfw3uqp<)cE2K0p3R18#s`53V&>NGaxMsYu5 zQ=hS^Q?35Il)BH@)H}zffL=X}O;KlKQ}p9wQ&>FyjSdoYho#n%Et2EPid(JX>sZSn z`nZG{3gh&3UMSPGG(p6Wo=BGERXIJZ))l*#Bxl9;rjC}TOD@{2(JMwax#kc8G}1*a zF;u2%TTI2L^d@d~sBs=Aha)PxnI(pkbgGigEC$A^$WM5=FBYQv(L>v0(tw+5<)7!tSY zFzI%wyR5GGN`pP1ZVs`Pxaw0~ zxkav5`E(C&EXKHiYzECVY2m~S?=bmTZ#s$gDvX3-7C)zmJeH>huqYJ5O z5L13FBbw%nzYUIN1))}C^2;8fEQjg#yi#sacybdpF@8uS6DXEV#mM@y&QR`HPPBR* zTC0vzc1z(zkz>2PNjZuR6)IgG)S8tQ#?cLN-l!HVdd-*|Oj z8WowUHS-YQW`*J-hG-P+QM4^V?8rn5wgh`vqLPOcKRxW2oV}|MI zQc~+0M4?*C=-Fhaz(&i$A{leTAmtp(8R#^h)g^Q^@?ulX-zhegDrVIp{@~bDd9qZh zi(fo8_1BxlgdLkY-|YQl!qe?3=s`!0;9Y)?x2FC->z-Ly7~S^Vgzdar5#u2n*aaKh~tF}#Ydkle3IM>!jD(e2feIP`tm8myS^PK zOdkr5{~>%`5br;I8fp^H@3AUsB4xP#X40rA*zh}A=JYM437;xn;n%RRNXZFx%GkfBX z&+Lg2^l@g-SMpnYm)aBiwx8L9?&bAt?ayag&u3cCXIjr^TF*1ndJ?SBYL@Ox>&eX1 zn{<8AtYNwJMxHYGq^Nf~l~Gq^m5iG-Gt9JNY*{o1YoePQ*T#dCh-{d#SYStUC2ui| zzL6I-IZGjnLMmDqP7>>MM~U_9Mt#avM*?2zt)sM1!|>cxwaQF$?2eR)X`wQj zAqQACUrHFdkm>b{M9Y|th81B!r8d3VqCcB*+03R`AZ>jS&&@V*S({gSnXF0;^OIaR z-KfiKiE(MjC_JZc+M85w(8g!^8C|Qdxl*l)S`G!0Ol?3jl}x!gRhR`$a)ee%3SEw# zQ>NMPbqJ|3YoTbL?Nz%&ccjG4Mo}g@G2Lj=v*@5*Rx2bmAW0)Tp_8J7#peS%H!Vi- zNr4z7C*u}f?J&9O0!`6- z;->WwQ7JC976Or*5Rz1EaiyHlE)4LvQ0$L;>AEt(v~E@!c4bDgW^6Q@GA2}Qtfmqv z!gR;7S`m9AAx4Xi?r+hHdU6>XX}FcCFGsD?tg}eaEzV@{^r|#xrW9Hw$`nIq2MnpP z^xCxa=B(Fo3`9~-igCAvCd<%yvb&VI(rhGe5Rr^`YKtOP>x>&&#He!`KgD}=B3T-y z7vv~fsc2$zJec(|Im%r2Gu?WPSx(1Eb+Cc}wR~Zix2&c%ZU}{Bs#I6WXuB5MR{*Cu zEhR2hEtI0*OAP3M1V~A_l-856Q;yO@2VD~FVGUBqb~e2xP!6klbD2(->TH{3`)m?C zn@qFS8ahH4knfUgy8!FXN0_{I@UsBd_tiU}tDFT`FSb#Igc34x0Xo1^uqOvUbI`j} z6?VRrax6MSE3sXd3!pWrlUAlS0NFX2bm*E%xQ%cKSZCwl-CE4ug6qEg{po2vpHrLn zO80RCzkUO}cfr_}zYMr|avUqa6qCLK-IL3>o)?P!?)pixNk97VKp!#Gw}(rYf9=|G z1nrjP^IkZq4TsZif}wZ+q_!MJVdT~KDSEr?_NLl$>0n1Z20ka5*=6!Lou`gg=q|XsrUNmdYz}K44+$T-zxwgI}X6d&j#R`CzO4o&~FTgvF}IVG3Hww zT)VsU8%9u{arn>{#zZj&%P7?2STJ=slU#u4) zz@pKK4y#qnS`ExGsje(zjtrtJD?Mxyjy{R;c?8DcXY`_w!V8PjI6S|O3bIzAMYo1m zJ5wCBm*q4XpQZA>DIqVgSw-Npy>z-($HjU%tqceH+NLwrVyn|_&^p$$^9h|*8LnQ8 zH+dq%i`*#NScvXO5j(vePgxBsZ{_h(YDLM!sy&O97G@`FM3L@fqAFanvuUn7iZZZ- zv!&nYv5}Pw$rT$=`mIJK;*;1oT~Sc9%9>VXV6->Q<#gI(RC1>ECY_dDV#!Q7j-zrk zg*lE`3rRP;(r>9!GOyS4lv@<6DXl7%_FzUjK2EXKOJf~PA5?Oh+HB`#Q2NdCO275x z1#igMxY6WzvQJ>q=t5zL4%x-hO*LMY3R!nIY)2{7W=NwKU5dpyZ_ipvd!u%1#3os( zOwnn~G&(sfw?>B&&9*0;G*A`>hEk(Rw-n3T%Dh%HTEm$*5m0>z0j37gp$zK2m6N$% zy<{f!a*4LqEQuxan_hgHLd=@XO(~?h!FU*!L=bkFs5c!(9)y951vhLS%ce%)N)l|e zWPx%>Oa!gG7-SiOcLuzuz(8tw9Ji~^c&|5PF^}ZSShKp~NHkqc_Oi32<@_CF-8yKA zwxx-qsu^#M)BI==)u!ppnw*extumi?2y0y?DaPVP!`x70#ah4G?JhG&s<9|8rD1I{ zYztaLZ}3aAg;@~bEIK#aBfi+t>D;-^ z$M0Y7{&GSkRljU4+V|(po5_RoWAZTmb6^)QP9`Vg>$L?)JEDF3cshMyHL7$CJ~tZI z^Nr=T5|x=*yStL);ec!6Joe|3RbV$q1Lsd~u&A@bRc}zv8gM18!U5MrR(wDfeh@6w zyL;)}Ui`Be%S#KQW?0OB`kDRYEn`8kKc8Ax8~Bpa_4zhzLKqX&jIVddT%n*Top!Ot?9w}X8pr*)v zv0Noq)qf&aomEp|pmd>3^cagAE%NW;UV=u5AbKu0H@hS3mp7G*dZ8>UjLH|@{aaJA z-TwgHp)pvt3oH*%{sb;tKxhLSj|-qR0wXj>gnof8@T^xbz=(N?EyUu6kRU++L-}m@ zj&}~+AsSKLKTNlSo)$I2oY8$XG< zeHo9W%Fx=_M{)5dT?Q7pJYHVL%?>DFL_F}Od~tF9wgA}B5&@7@rBqF3@9p?LlMa$S$077Lhz;gP?L!ZN zH&>(p9w@hftAOBlpyA9W*aMaFJ1{4fPt9d25gaFQ3-3UsRIa>T5o3s6kd0?lH1rqi z{hFQIM+Nz(Q6fpz$PH7K6I0-tR7JwT6f`_C1*t>7Lt>7OR4$kTb&D|7hznET)O5d= z>VLFcI+l`MV{mF(pgt~!q~XEekR2QCtB&l|^IusyHpUcMe5VyVIe zm5O}Qf~02eXn~4+*{0wzscH(Ak{R-=ESTla0+mys_G+oPNOg($JMJ*KTFDiZ2)vmB z$K!jZfSJ=Nfrm`#l%gv808g&H0N6!|=qf#Su*?F6Gq79$!KaU% z>+8>#fCTRUfaS9U2igP?!Un~FDNMlJwzO#irO9H32sIn0bZTL);97jX$|{6t8_V-C zVU=nBNzx@WkOtVs%v;N8!%Bv3ZW8qQ@Tt}NcHM~qFRnq~cU*nCGhGO{p~M5zDFP+2 z+6tTn!?Ss81*(uF#O5PL-f66g`5+~66G8G65j!(vXMFIZMk?b&Bq3yX;q~IlE_LCm z&&mW5h-ZBg$#a7C*RPPJE+}kqeHTS?#8ghojNrbF9EG$Ly~j#)BMmkA4YUnnL2-S= z`c8@XL^`p&-w%mZ-IpqYPXyx0tIWgCNqiHFxuG>%xt_YKQaa#%$67g#`y6ydo>i`x z%5a>b1*^k8GA(5oDj6iE$){+;m_|?C)n^bnUmEk5bX3{-hoHDzma%U8dd5WpX1+_H z3}Y8(#lH9_@&$`B1*P|Pi?-(F)<|r^(L5N|(Z3t9&-)=2nH9N*smL#HO4)tF^vv$U zaZh!TBn=A+W_=Qg%YrF7tghbFX;8K=);U$EMg>z*?@tHJ_qOJ zNK~gLCgvrzFO#$FSq}0*8_hunJCI+ALkEl?#)|z`J4N$kz7q}`4%j>JqvCmf4~p!7 z#O~tzM(+`ijLbP%>YG}6TRqHS%T91Bm&2sC<7T+s=fs z!eTlAfro8t_?};U#43!S=OL$W!!as=YdDyM-`U^ccLy$*E8NAdHAK(`bIYFqe~wwI z#|*nX*#on?@RlE;y8v$B^bui6AFF0z6_VvzK3ziq9UQnmz%j;LPG|%W!)4i-dExml z3GCH|185I~dG{cNCv^)y*MX3y03n1NX7D2X3d6Fi#sMRKGTpYkMTWFJkHM4wr0yQ>6 zwVN2UCdjU+wXHs}0>{|&nAA50O!3|W9a!0IBM}g)Gj?<8Qmc3XV?dn0zzd>Eb$hX4 z0%PPNRus=9GVm6xV%N6@RELhCOaHYkx`JyO2|(M!Q9xS6uFh1=~ZX#@rZOSI$&*TQ7MHNxomDh@!8U%R$Us~>8Glf_Xw=sil9(emkR8Dk3jWo z%d?}GI3O0arQ2vOHkndbb?@QW>a$Y^DE%SfC7t0nzGuC4P}Wg8^oGol_?cL?N3_UR z20eN}N*pZ!CuSMyQ8T`Eqs)z5Lr7Xvzl2@Vgx#mppN?m?4a(5{Z;os8zAA*&&$Bq; zA)WJKMUxMYu|hhcBC$4+y&@sjd**!5q0v?$r9r7I4KANf!<{UK#FCzRj`qw9=K!wv7gd2s$v=z4c6c#>E}~Y zo$8XHN6Nw+kek06tD_89&iU<~sK)Y=GFVgo0V%uk`h~ur)K)pHzZ$ruMdld!s{K?voj4I?lK2y( zzA3BWe6B^516*vg3jjr;4p?msrRP3p@7S~w`NUw^@yNmZVXl`r?VE+}d)!76=61VwGHe{E#gR9jY;`rzxp`m|`+lG9Ao zF3r}}DCG=xTUT*{bmlnQm(iFrA=tW%p%lDqOR;8d>ek(T%&`MmGAIhla|p87M4UqD zIl)na4U=N)hP8QuxBsqxIZX$Y`jEz)=MG}1#8oj=ljUTgYH=LstTx>3HET!%mF%Dx z8sA1S!h+=;2xh~W4RWzBe(-Bvyr5W^$Z5p3Fy1DkKJe<^6x8nDu+m)=1sbAPMJ4Y| zQ8wPRQ0e6~a>nGC+#YSu(+4yGUKNtMPlXU`)96$g=USzQ_2RtaW3~@42JS~gz#4ni zkYj@HO+z@gt)XCj<_xVQ*%zubc%gRZG3TiUj)-1WletsX#GEO7SgNrQB7Z=5KAM( zooeKJG02v7&LMh6H#CKvfWnzt_Y7++t&?}E^~>U#Gn9f;FQ^Ztcn36=Qm8;maqa|E z%2z;RTa!c40H=C(y<1IbEEvGI6{)LZRym}Qt?C0GcD?Bb%eY@f$7ZlL5l0Do&|~9m zxjgg$Z#3$PZ4qZg~7&aKagC!I{_# zb|~-Qlv;ctg_(xHdzBKlud>)Zd ztDs)cm=C4+K_J-8x!liH%0;6uXD9`GVO$(Y;KRP=Wb+)X>|j3HQ*duPNp-)PX=f-n z0_9GmciP20Qn2f~A-4;*HB!>+G@!3aHh)z#Q&JUHcCnnhO#lm!GHU+n3!kKY6u2CoXag_xJ0{8D^-%E7r->0!M%@7$8xWc1-f@6hsl)%z_( z*8HSKGTSS~uO79*@E3~lm9Pp1UawlYggIjI#N zh!MZPg)M8y==iq$X~hk(qfzR`rT6V>6eCWm^g@nfce%kLEOdKkg!9^s4^#^^c9)&m zG3i%?LuaXqvHl%b75K0p)elzazCMmk{A?l)-w?Cb@%vl;@rMFtJXkpC&jHLB8Wv*4 zZy_AUhW1+$3`wP9eq-)jKqvS|tD0-TVrC=o0kbDN0?yBgW5J@8>yn|`p2 z`&D#omS+=jbPysuB<|1c{)fUt;$Ans3LPHeVZlS1auW@{}S)R_--2&?FU4iERQn?i@=y=LTxjt+et zqT~l1lJ}bJ{u{1fl9#HftD3}ziVw+qb?1KrKBS^_SdnG&US0a3cYDmlZ-)jyJY$A>hLfjaW z4Cd;+LPz=|jui0&3-9#+i_l@AuhYl;z(VR?kCpiSU}1^X2Udy0TD48x?b#J!!$LQ0 z`)EAq3yu5Hu@8(%-CR)MOdVeqW1e$}(~F;MQXdGDy6!0^--9r>>h|otHo?d7<6huc zcD=Tn6WG30DeL}vpw+G&na=B+s*c92K5Ce(4sfkx$wbjWo39Exw%+(>{RA0vcB4Q1 z3c%0%ufVYS=PPO08P+_G-g3l0Y2dy#_4GoMS%n3=g&b(|N0bpP1^QI0J$0S~rrGu~|BF#-)@%6`A@D0w;SDs17*p_joSZ0SbA za<1xL&bSI&LebOlVh`@$tpj3xnTjZ;cVNMdnm;j zw6|4tuN%qz#8?z_lPI!QZM}EByS!H0+wx)aJq2oH8 zssX6xYegMLeCDtJ{qO&YM>N%tOlc-W>?b1@x{(Ifw9uN{TNWlFsU%thz>p9dcKd74(L7heBTy!>lMe>D5|P? z77NGkeC+u{ES$iVHfR7C3xl&xjAdwjrvSur9w@P(3QSe|`4o$70YCc}r<$fZwqC;E zxik()r0pMesjZ(hOvA7x{Q1Pd&A49&QxpE&@G4KoO-p3!mH~nh0BbsEn^$GvN_U!A zbQ8X@b!4}p_2<#H6fBo5Xm|kMEJ{2r>2()TpPUtZofE)7(5X2Aj-hLl@D=r&zt;HO zgMAAyCj^+l6b2Sz^fFilpM(Yg9QQW zIFA-?8oQe1^oagKhzpS>szv0yA z5sG`6OrNf34}JU6s|EJ^FBWwY4!1KJ?O?`6eD|acP=x({?iLxj@syyQ6Bfc3?sSsO z*-icMMB^GUIF~7nds#q!;rV^y((5t~^$AC(hX%Ei4d`%hxVlCi?@!3ha8GqReZ}Qf zYglhtGW_TZqGb)dK-g;(HAo@9*;;vu!-ZXUUT}QavcVqr-HJVg8%~N1O~lI+4(-d}Oy~a_4rw1Et$Qo|y_6tC+ zH88rl2t$|EyPX-UhZp!Au`$R0(;yV_%gUKDy?9|5sKX`wbhu#VD>S=x_*o6Cf>cGAUJ4s7 z_-iMXI<+6+mhi6i4ljV^nGt|SBiKviOIq|PaP~!JXw^JO=$ZCW1)3JEomB*g+em-u zh1v&3^CN>byt-}#o@NoCLVTg1AH0W#7;v?hZy|kj&vTY~Z5tTZHgVnkT(61#{H3h> zn~PvqNKZK8oPxNs?9Fp^HyFuVOeq*IZR#nYACTFJW_9Um^b~gt6CZ_^JP?eNubD`| zd0mLj!&6fXRIKlr9K3|a(aRE`dom#)p(QM4ho3cvk`V!;U}QWs%*c?P2@y^ZK5@FF zMA%(|!=)zZ7D5uv;p{j8#W=jEn8EL>DNcK1lL4V0DQ2^R(O z3wSfwfmrz&_yRHXH16F?EqWdGE)cHTp}3c)CLb9?ZG3uctE_J!yM0OITser z9<5GB7q?GQJ4j+j*hhHrl&pVVc=5XDTAy|>ZPo`~$-xAA!g*cCe?&15jPVmt3^8#y zP*Sug=|*T7*nXf>Acmd*Xdq6Wchm99NKq9Sy!5>9j9-SFq_Db|)i1#l*+XRJHBuVP zkc4GH4nMmNo<^EO!QKr9^hL1hCj6M+VF{t-_fjNP_rTM2WO>=TjJOTRm)?xjqle(j zM$PAs$MCr?<1vggf>Q2}#}^9t1ehKk5#*u)pFp!$ZvmeW=j6e7c@6jkW9HRc8?YL^ z1$=^eY{E;32|o9#eS|Z#llBM?~g|7WEO4`Sx1;Jt8uf-cEMk9-N5Ce4Y}=sit$Z%NM&a|8t@= zw{yxG| zM+VB5t;>iT0=e!<^;Zl_ZC0W09;D$chC3I4JOWpj9RMGJtHaD5fvXF!3O{h=HqU?b zvNL!+0#_I2_y}D6-hr#{J;lH+aOEFVJ%U-+W%USVU4qr`5zM;u2Iu=W;%Y-k8X6?E2gpSK;Jpns3Vu4dA2km-n^NkKNGsfXaxrFTpB zz6Z^|5%G*PK>IwaJwv3?JgWumq3HEGBwwS7r9n8pVQe z6LmrOAt-`A@ZxI^R6x*M#)9eXD4akXy&Z)Us6L$;nwRxJf%tjCivc(tp}2>u9Ao*i zMFVlOmLcq;Pi`FGo{y0GEcwN-)fZdorJ2|+hY&%QAX!rcPaDNvLqaePoklOG34C{L z?rdy$vo$&LS-zWY%04{lAxbwjJcZQ5uRZS$^f1koSG*Lug#IvA=wkZ9WuZ&y4a^1sbmb9U_D2VDOKkDt*cINO`ZapG+t@ zAr{M<(o8a!|M03HiV`nb1$ONLXAgpi3+#;sI|}8Tlf;kW+>-@yJ!<@>4(aAEa1eJi z*ohG#9>g8J^p4ltlIE8stW8G&BUXp%3HKnm&M9RWE zQdh^UVn55RId1uX)-|x*-OeJoYgPBAr9b+TVd@eGeg5b6bRT6oLlifldU=C&uXBP2&I2RLM0ce4kZ~ zuQwvOa#f!y_-?d$*L#Av4U(5W0^q6E;+tGsH-};r9)7pUuElYfUJEz;0>M@g z=Z$R-rG8?%oa;NbRc7_U^h92W%lj{G@9n5D>=P)zWSM`nl&AG@!fSacSKId$&h@;K z3zZH+oe&$CCnxST&Ne=yf4h1gTwXlmKp2;|11Nmwco+9d4cnwRBf||#=zSZz5QW33 z+ZFCGvH$mflP~sedUP;{*J1K7jbh|R*i*U=$OIk<@@yvzjJV;W@7Yq{21|GpY|{M& zEC~yicb?tyD-fucJ!+2zu7V_|1i-=`lT!j^0C-JK3B*iT9KQZYS-Ef_A1Nz=IUS+6 zH>tMm=gSre#La+)aL#~_j1}mL1^hlw5r)s47zja0_bsg3@Z&ds1riDod;H${D`D5B zxBQiBNOxXMhLXP$cIEpxg*HU#rXKTGLa#kf`75EDDbM*UVN2*UeanCUBZvtmD8H{kh^l-GjJYh2tHUp(h!c;`6CS>teSqLA%s%R zk2Hh}RrOWV5H5W#&4Gb1cp3tOK@wil5VrdPsDk~`lG}Ob0CWj44I%6(vA;BgYe;!o z52suv4uu_A!ww^Qaz1@e%ER#()Sb6x?-B5@CG_MS3tKpxiM?Q6qTnG5c$nCm69bQ4 zB?g}ToK3rtKOG5oJLl1UTT=}Q?nu2grXL^A068>}On*hLBh~gvPly}zxbzV%pH0+b zM2Y|hKpfb_{6w<^g|naV)Y`Thme1}Awg83i3yJ{;aSuH=?6qc~w1P4e+zb27_Rp7B z_8O^ku6D$eQ#NerJjPeT7SB{~xR3Cx%ui+3yy2r+4io!gf+C+C9h?p8bSF=nYP(m` z7w`5tX3uL;0!n8Uc^raM`+8>;ITLgeZozqS&;*%pfPppxNxFW1K0yKh@R1l^3w(qIF4jVWjFx}=%A z)ZMVR=b~C*?u+TX(^8+5?Mis+qZQS^T~_yznNDfqTO@tIAEt?S6X0f_ir)hOKY!2W?$ixE&r&pK_CV z&ln?aF!$0Y<9!PJ8J4nT-VHm!i)UFLPyqY6Gxc`3o}mXb7Buw-`jke6(?qs4=VYmb zY_Hv*`%S_W*SX>0G2nE3=bUOdkEs9A%(WAK@8M853f;24e7VlFlyuIM*zxQh?zo_T zoZF@R1Ehe*2>IXq%r8rjv=|z*4MqsBd?B8@Gb$isHN2B>>=jd?u?zE5A)mV``eg@F z%fl<1zbzPjvOD~&lc0R!{M^ePm{c6JCr+=kZg zJ>`c!wD-R2TISsoeNID{fOsvS3&LM-_^!fk(b_Ffpd*F-dj|Y+vmw8c&Z;kcHjqa^PdToL+b}x^-Fm;P+41Sa^xI7yX6Le{yKl2|>63=eG%csR zdFP~vD{56&Rq@MnWBxTRTP<5*O(Cf&rl6ScVsfZTyb!4ilc{7?^3SKaW=W-O3NPFGL6ZId&Y+lZUd!6wQYI}q%bttTp?Xb9#n0*#SW zl(wq&>(%v7o6Hu`_8w849q6n!+@p+PBu%;zZo@aM7HR1(!du0lh$xO(W#O&D#7L5| z(`&3pL{Z?)wEdtAiwl~ir4IO)`z-q0lBBFEg8i$n@>M+|_3g$9&q@9H1cpaWT}0OH zReR;jvn(iq#AkrX1TBnxg=KQC6fI>MpbIO;EBo_lXqwt9f*AZz7_-KUstJm9&*}wZ z*0g@=1H@@>V;R9wlt#v^1lN&(!n-jG%Hj*D6gc;Es!MyM#uBfqhANsbygEiyu&hu( z=BnPe=wK-Prs*n}+FR5cLsqk!jPW`*fOWCHSS4s!-85n@66yl9U%=MTU?tgw+&p8y zV8Cze>q6AW;L~Ed(`Z@H3XV4cy6q`Hv zW-hn|w4K)H#%%1{ORJY9Gne+enk;8HpKIF(EF^eY1GXg^TYC`JPkvfh+x?0WV7t=8 z8)B`;j8D6|HL@PItGgqNea6~xDyJ}v%X=*6{Jw+?+vkDXqaL{ORjW|*j=rsLoCS-) zHuX9%xW;74>VjpL^NMZM&Gi?3{e|0HG3BHREe>d8iW;AqswlyR_DR?I0Xqn?)dRo& zw!6P=<)OfvK?&ImU2qi3SmOi7^6-3QP2#Q6%w7%95n+owG)w>s_tmULRI6ga#eWvy z1m%AWxKt}*E;Xy!{F`&p#8KQD-oWg^vf_?Oezh7O@GJ>`gVySLRaR9KKq&3G2rYj+L+U3k`0qepsWVuz3AJP%#v> zhMvD?lHn}6eT83T;qS4b{s7AQ0mXZ@HTHQGjLud)2(}pLfg3=UL)T$Y;@}Ul0Ry0*gBr^a0Z;SZf4En*(#eApGqNBC=K&E?dXah~Exol$8T)Y+EvkR)3 z9nLvJW#;^1lqqG)19~#8O^S3q4hfrzAPt)5#ArBm%i<5RJmXZvq-DP1Tnn7Ecg)D$FGk(;`z z54*UWNlWsWui*85+5AXSi&TculGEn0mq<{YL~}LLSgHkLz;tTp(i$6!s{!@aPj=V2d#25k+Y_uwq?p#?>DSe>i%tCWfF=}G^E#Hi$#;Hat$u8#6`b3FEW6^hGTrV*K z-X2$lM46mUdb6h4iGIwaj{#FgmXKh<=n8ysf=-@0DS8~Usy~Gw^HO|YS#c6+q9Aj*(yXWyWJr+9RYs#yW-?#JOT+1NYSydP#cr0JFQkvA^!$NlXIjok z^`vo$?V!CSF6wxRtR_l|&b2tC#*i{1BEyn|P3pFU?L2N&OuAJV^q=3Q)Ib!AF=3RE zGYxLmMpczebIIWjEy}fW>ch(^h+FG=uuOt$_=x~$W%yvl5HV^PH6mWo;+61kf7Bw z(Al#zlIQ7oJef{`{sC^j=L)ML-db{Keb!r2B-dFQEhAe&SMl1cQC*}cZdT4>TCd*1 zy0x^PF6ZAM!M3cE@v^YUlCxe9=lH@5i!R1dHm?tc#c5^nj;vzD(40j_7QCX%34R!7 zr|%zSt!c^jJWEo<72>lNy47HgH}AIFnH&A0IEfj9W+KBV9Llt-r6oIj?xvXMDYl%~ zyJgL4p{!0+`m#Vw7impw76)OEadEbXCsNCPuLZNmsB{rCP2~S+cKX^4~zw9rndT4jJFqCNcsp&Mkf``)b=N{}E@8O;X=hI}i zvdRrA^;#LFkir0=m~K>?R*6|OIgiH?B$kS262_<#ZJNhz+9cJn=Rxv#kS$R5e_pPHI?eOFMZZ9zL@CxvzBO5#B-vCQk!c2f ztLLSxUKufJ?|qgkrV5atPREubOheRKvHHvm^2JHEmK|W`N4hk5XNO!r$(4|NDoq&K z>S|PbUZ5O{wwEMPZ7+4XW(#c z6m^WR(l-W+}&Mgo;NP=DwA8K9aQ%HXVmBsqJAp+(1?8`aG1Gz z;1DA>`%(E#GNv(jMpk&+M_h6{&Hw%H|A{-~&hPf&FONU7px-Q}=xGC}@GEhwsmhI4 zq3e|5n`L7aFZ)}BE#0h3g3L99vK5R;o^yUVB4JoiFynu(Zv$=Fe)00(Zs(lpQwj341v040PZE~5itzx zJ#>vcJ#s%!&u)m1JiS}W(>v4xz9CKT(rdUr?cmMEc zHfxJ-)n#g0>dbNzcGNP=@>T~*7F3?BZ>*4rL)iNIQ>R;?c6U~ zql9P>e3nnqwuC~XoQ)SdEfm2s+36@MEzoi~C(Di6d^-9N zauV}Qf20@nUZ0o{awgI0w6Si15-Fsgv1U;DPLbA1*@cp-#cXS%r`}>naXy$TEn!T* zj|+2QwQ4q|3H+U_PoKNlW=kwKGR$cBmKbW|Ig;ykM_johBJU&2q+(Nkq-a&M(i>}# zphy;%)o6Z@B9UmK)axWynboP> zO6}BQA4+qqmfm8=0ZZoug2Q6yC8!&Sk)(vh z$=haEf!6-RJ(t2N*Jf*{uo#xTL^sdm)VBwt?J^*4;SP`lvII* z%dT>QaWky2%x@HXp$G=QLhJ=>QhOlwk^m*TgV+m3p-k*%VlUKw>}5^<5qo*WUUsG^ zm)^5_^zsP3Tr>2Ns4eOD zzOT@WFiYE^mmK%D6?%y~p_j&X=tcSxdcj0O6?CqP$~uvE8MGgs;|KFjn{bZ*#fO@^64p{-FwI$LX+lg?mJ(PT9n6{L@D ze$X!qMM!W=>-1avOXy{|EQ%QdhF*|nd?)lG*Y%9BBu2e;=%rjNEKy}hGPM<9uaYm6 zM^k+EJWw*NdOE#i-@5VSM=|r3nd75(Im)QdEHy&Y-D0O!8S3TobB>cqe6QQ6&r&##Fz-@NHL4uN zEv3Pv_{Qs5avC$IQf$^vTU{O#620b76(B*j{UHmSjLem~^-8pI6^papk2`BWD!3uPBtXGlol0{?B?NXx|Q^sYC|k~ur{LNR!i3J#rIK+iXwz2%$7#Kk3diKke zSK1_#TekFhOi!mMwWMprFg|%k`4SEZ&Z0!2pVfJ}Hi_lZ`HxDz9-9n1Xuh`8&}v{`yD5^5&aeQO(qPA<{z4sOx7KNH-WEj zk31wYXn+^zVEn~N6tEmx->JXWG0PL>CmMHbBq#pZ%2*SW#;*=(^&kzpH+PC+en%f&+HtuS3I^=PYy30Py%CnjT6 zq!Yt7KaIVWyOXqFhkfLfGB)iq2}4!jKxITe(G2tW_bw-uQV^YUfuBUaw9Xx#?<@SELm^E2eYv zy2#=EYPZ?^|LlFqa^hT<;HxP9Res@2Gf#i@ml1%$#x^zv&zlSZ!pPQSNr3U{t9pWt zs9sjBx);^EeujRO?*;l5`ra!EGYG-a5f|*li%esrd(NHCJX93Dp^Xdo_G2ereS0($ z?Np(l*;(x&QG2~>l+5>9t2J;Ac0X|^-R3)5YtXxE<%ji5<1K9%$7-t8>?HE$?b&NX z)!!2F)5OC#|6FRfuJetu9={o7d&TzP{`CIsEPr}#pA)$>%?3O=xQ#tlDy39E-MXuG z9#SVIt@J!T*42}Px~5$Y4+`grgT!+?Mg1bn?s@s>*m`yxQ`C1c?Y3~vUvt<^X2y^A z4+H5qVO`f^rE9A`I;ypYWK~Yar+e@*1 zW)F{2>P0P^Y{XIrF}0Q(q>sDr&6d?1X~x-8Rka%T;)C4lTd8c}Zd5I) z)2Sp+Mc3mRKUb2XI~D=?aPXh z8D!p4*ZH!nO7+|RbD?mfOD(Nr#IE|Ohg#*>I(fe+pLXB0+gioB%hruz#BciPN?99O zgQM7SrZwxgTuj;V<%$#H;C*m@O6{v;VbDFk9dxUO8|l8JbP{p4F=S^;MLAxq7K_Kl zA|0*RFCIM?YQ5MU{h$g_aih&L>)3$hD}qgtxp8NH@&uxFR+! zLl&@7Y>?-QNA%QB*6`0wyUzA%%{E&(R2}Robe<||R8?v1Yo!`M1k;}~H@kHZ`pj+YNi>T5GeF9%ZA`{PLDR(o&5*w5Y>v3Ex7oe_Iy z#6~-Y9-SN|pA~9^+dCtEOJ{^}d(}ytTpsi<&ExBrhql=2_0u=UvU+@-KIx8)%h>5j z|Fmm#D)Cs+NemhfW3{KJvwWk~8kx`Kbh?wSOU1Y9DE6l0jkj1TBMp-Io-|v*t6rHg z1fLXoqo;Q#2ZjFS!w~G7FHwKaS1+BrUZ_dwUX7NPdpu3)wsM+M`{m9{snor^FF8F; z)$I5p@hmIjc6(gVudgpJ%!5K>n9COuFH)-A)ZeAc%IU*-@#gJ1ooV%}gX4EeOFa}D z7o`{DtWZm*M*4e-a3Q7320VXmD5i4#IvyX#&uik<`?y)I=FhG=Qnr1q42^0scU3(u zoLnUI$MmzDysxFk$JT}Y{#Nhbs9A*wM*Wxc#X(MMItgl*#>gHGv*+V}?>%;#i7EA7 z>-OUIE?%{>SLV2P9kaBDO0|)`Y9DE-%uRn>%O<2ueQegHS~s3Q?N_U<>ZAEksyg{( zc7Bk4EmiNt(Q$s<&|)R)W=Pldi#Q`{^-e>)yp7fw;hsVIAI6W(Do zL$-G3jV7#vHE-+&unyL|(F1j`=6(RZX4SikqyJ!A@2$O*q=wxJNPq39vpvxLwHZsB zW?{S9Upt6WeAfQjA(;F2du&JTBLv2|=UhQ^#`=-Td$-c(0In{Pw@t;Fy}W59jR}57 z;Y2G0j|f{A4+RqB?L$s(hrN9$Kq9v(sW87Y3Kn0#^Az=&8ek2Ln+B>DX(X_Rg*9kf z9aA4`4GERoNrvf1>1+eEdyTq+K$c9+cO3(1U=U__2n+|5pmCdVwl zm}BNhfBPJ>UCJ@@KLgye%#LWHTcmW>7TcElzsCqD<)kkgl)6wWxI^Q-CqF2&8^2jt zPKrHFvqWL>r>ygQ$tQjj<^o&(p4fIjM}fn>PTxGEn9YsL`{u@FHqhfLonPp2m1Tc% zQsa`z!yHYBbJODz@!2j{xk4enFV(ltj@xI)?X%-HT&k}=FqEdsvg2yO*>QGakQ^6p zhDPkB8$aq?yg%P1)Z07l*f8xorRAjP+@xL)o{E*L^qYEl+B|v~^z3f7bXk8*q~ggO zfh{$1>0TlyT^)DrV)MKw-<`j8ZXXM}nLT^&*}ZoobI>!ZcapP)#%1iKSk0zlXL2)@ z%nnko?gd63zSTL9P5We2k0bVphF-dhBM;&O355 zevy{5Y`|AFS1F%Y&MS}2W8)%~Q{tBgXT9fR@$~NCI9<Zjw|m)m0fSnZFBFXRXs-HX$*_}II< zSFNs8Qj+nPqnC&G=XO7qzPL?|vW@gj_eJdKmCES$p?O?N7aKQDRk(4}dMl~#sx}xI z7cbAnJoS)^^;ErJ z+}p3Y`*J&>l(M&j_CedOq~%&C_g>7O^%_~FJia-&Y&_O#57o14^ZfYYX4EnrdN{U@ zUK>iXES9eF`AYeYX5C%&Ue2c$e=$AmTs*owJwKoy(v$|2Xm;0eME>}{P8Xm zzfUwXo#Wg0`>M*=deOGuz6nDC5k}kp6v|ythv-di`D zw~?+)t>K>=&XC*dWS?Cpmxqz-Q|ZRWO=h((Oh<+W{=$e_PIbyTmaN$ywODA97{8S+x%e>nDeW$ z#2LRBjk53)uuqi6AwYpgPPkz{tA@sVk=!{11xJBmzc&$(9|Gr5UjoHVE`(}CfHvxK zFR(@sX+rd#3%}+vB#d@f4hpQN->zT{47u19v_nL1>AjK84B$ZefSA+hn1b!5v0L&8wykn z+^C}Ils{OV`ImC1=guXv*s_fnh~|S%gNXKqvyi>acP?4TJnT!3dW}LeAhUMeUGsf8 z`fLT18oDqckco+A+HNn;BA_Bk0so87KP?54KHv_wyJ;y1YgX8_ z6ck8M@H}#I@ZfnAK*+g50Rp9^pdbNlBq&%R3>$b;?k3Yxg3g0K>)YQfe}JI06cnT| zX(_n7YzbmpA4-S9g)YGL0$Q(Qll9yJSbktVH(1TKyi=IXziL||;Z#>cmu+*mgcfUa zHVjf=t&rKO9OhK_oKN?4f+9W+<`QYdo8Rm)-uL|rgoiK;>`U!NvS+_tsa>B+RUl<( z$#8gOI2J@0X~Ehp62`o1Sow66abJXdvoqUM#yw>WT>dDmN3kHvh--zqUiCiL1-i>c za5oVb6og(P@lODDoA4pGR}J~|hbmhgH`nghlW43Sj04)cSRiyYPC>Q-e`2zU1NqfT zj}~~gLiQnSQ&maR*|}~x{%(itv<)GdPk8Zr)5LAxIbq*9VP+xLzYn-pBC9QJ0jK=; z?wpWFvz93C3yYl-av6`NhU%P9z_r9c6FQbk1+Kr$p7Us(GsJu~<~h);ttrJ*~SOQ#Z?Vi)(g7HIfS`?w$b6NGVy4-Zf;ypGInh+T8k%Yv1tai!6 zv1_jy^5+lBkTtz4DxrcsHi7f+66_Ir?RGUVW6O=l(xLjrvgbm2C|6yby?Zi3fP42O z9?)*PCy`U*cJ#e#&kG*RH;DoT^G%{a4Y;+~TJr2RU7*vPV;Q|$-~U;Ry6ExmDp8XP!7BGb zLg9`8+;v%uy2_*zN1w!RWa6yYvkj>v`f5_7~6>{#ZA8{8Ak5xEfR2hXGD($5`6 zaV2Hn_UQvD&AhP-5zN33JO9DFGbz}TYDlJN4@^n;_97`mS^Gl}$%nxJcR+~0hVzaQ zNIQZ^r0b!ZXyqp4;R$juuZA0eWCrm8Z?|}{TW@QVHuUI}xzA9669sR#Bm7WP;}+q^ zFTRgsz+DJ=2Q@WD{0@1|?$cKwD{i^aa@rMu!jtjU_M?c&co}}88LtX^#-@ZaNXH6h zTE)KnEUJ4ecdTv*h^Ko=GW34l7U~Q4xqa;;aYJNaivKY*A?0l&8rE$ z8dF@+$h8d9i$pn>oi!{+)}t{<8`*V7Tly0?+C*in+oo>Fosh1!uaqZ979-?d16Z%u zRwvqXxQde~`V;hZpEX>ki$^>F4yvc+!kmH|u|^E*U;mvWtpCn&4cG4rT8z4E?ILT* zv%x?v&jghyD7e7Nv>!)($+e>scNci->1Ziv&^V6MQ=qOz!86YYdQX@bG=!ue+5*wd zg%5~=W8DPB6aad>udWSIl6ec=6BpDDFW{7OY=^P@aNF%JlKzA7^D@r!{z#{R_A>?_uYfmk ze#S_|A&94Ovo)eu8max#byD#a?dPZG%2k=&`x+yIw9~#u6d;griL$tJ^fi7EYXC%4 zjt1D<_%T;%CuJAX@2%V{XoSF}wKXYKb3C^9dB~Q}>6>QPm zvgtAa?@SO$WL&Q=+?XtQR@xnnX%ikyaZfg^$_E49s0)7ttdpumMO;Gt6d z!NxdbUNALQ@&Xou>7xKLo)2*cVStVL62y`w?3K0F0F{Ou#7l)1(yP_ z{&Qx$SP;{Xx&Sbc>1Ta{0hmX|nb9;)-<9$nQ5Q4yS(S`W$>jMEi7lrc^Uk|TWFXNH zo3JCcR}J~|$912m^j4s)!X0G}-%Yp(R!2dMf+XPZmZKmu!zL1rH?i5F6OPwd(QnS;b<=BiJP@OwU*QD}E?BqnzYzA_>o^Zv4iyy^fahdV}`w$8{32++77oU51=St>-hJBhsU!;#b6;5K z)1J)aJm*BHKJBHbD*^iO+&HVy;Y7Tpo#Gw9h&S#uBWwxH+0i*HLv)AzOK#E{J%YBqN&BG1@aTbp7C9s5 zKiCcx)39B39qIhg;ca$5iU@LS@s=CG?|{0M5Q;e<31Zc&}|J8 z9z|j55YiIh6NQ??h6ZVLSp~`@x^Ahac&^V^Qa|#IgP2hGD`5C^WDk69_GE8Y$zIg;)BH#q^GEJp$4m{SqEG+%3OEeZ8Qr#W!(& z36y97@k`)JOzxszVmA&DkJSkVy-_ ziN0)cdKcg(EnE>*yd~eq+_hao;VX9T3B{(@cTXsGoKWCu7-Op~Cz9Txtd0ab_C4QE!$PiNm8rpzr zxF9}_f~bm+vaUE-ZGPKEcmz2|{5G!5ZxvPUS3t7)okvi)H5@2PY4}Yn0g@6?ppyJR zr9hxi)z4s_1stsOAvaLK00!jA;5IEFUqQj*$X86skVISR3L=PdpaSDGsYBE~(F83h zu45ZW<3oXR7&SL=q5`RroZwiC5;w0&?NENl62_^Kp`qMB$z2IlMjHnWtX*KCG40|I z0uk8&P5T`dl-qiSyXGj6>cFxE5Qjw+TL`1Lp}>vg;IywOVL|l`6tJKOlt=-=#BvlU zkW`N96Ipg+D1fGzPjeKZWD*MuY}CRXNy{3j5Q>HCm2)A0a@&+a2~{|lKw^ml22|v5R<759 zqz^#i9nMkT7cJ?K8@TJf%x`Xt53q4(RqXay9?J=ja0X!>1{hLR>c$@E`EC)gR1DeGN}4rR-#bSTs`LDh*W+#&SR0(m_U zRnoz{2L%gw(@?Nr)Wf28M%s080!7Afzy~Vva6n0w-|T_O%Ne-##_{sxt&30x6!*aaAzp6q zwa<~>l@wmi@->n2A8{lp$`VP_HO9!6@FI;zy4e-J6%9jDbb%a5p`ly0Dt;G|@p$ID zQ0|KcHS;9m--XJXs2Ykyem~6oaX2$}EGRo-%WX}k%FKkym2j)ftdT3h;thn{-+%pk zA}biCJ|vV-5EZh1nrO>If-+GksDX>cTu?NrNlbd9(S}0Ll*sRzWIl}@bDF0+eiz!Z zCYoc{zBY*|5-zDFPS+%6GV7C#7wE(+!Rj*;Tw4-kt)mROQkVR~Ksj((*&xSaM{rP> zQEq17Yw~FL>hIwWJJ5lKf&?@1p+LEJh8MW5Xa^QAh!R#?(K|1^fQ6`?9{O~MFA}$- z*fVvA4;KaN*jFf{iW0Z!eoGVzi9fg<8hBTP@N3I?7317ik+4x-p#J{rKM2<&TuSOt ze);!b|2gwqEJ(`0^-=ZdJwKV)O4;G-^l)-FDqR2i60R{THov#v1$wPSv>bISMo7MH z+S#3z6>!pd?<&m-nY7xJ468MT3c3EK=s{(SqXg!@GGA2UY{j!t&-h3FFr9~xS8T2Y zzxesCuIMV)(<8mnXJFOkkn71WBc~iBY=^1PN;GSKNcEsQ7%8OkWyFx8sNsUzrQeZ& zWzv~{;kLk<&XJ-(gPm}+gc~Fl7Rn78Os0>9=dd6!08~UlOsI(m1&YP6@d8GR{cvmf zz>?n_g3k>m$EGAOz7TzT5I9>vO_v2`@>*MsHC_{g zaMW;n)gK#@N!05XGLEQq`now)9W9lj9lrnBmn~a2$3$HH$2<~kcJn%fX;H%qLnKaq zs?~Y9wsBHyRa!H^V^h#U<3@dYU~T{uET|g*2Mip)i2^6vLRaqfB$K-5bk&Jqw+V|9 z%`W*xmpgq~S0&pV3q+z4CX$ZlZX?^!rqSzvuxNJrC(nmUzY^HeeHUD}A^G0a2Ty$= zk^Rn`f`-k$5)x_Qo2ZO++tdxYBN)1@*?)X@oOu!*)ff3C6Sar{u|`AE`D4A@mPYT> z7QMR()^Q%>-ldi`ii%@NP5Rc4wSU$$=C`Gl&jH7cW3nj*yLS`U)*i5+G7A3f2_&;05x7 zN%4X>-2~&V4^r@PDYU!*wMDzr|6xjE2b!;ox_+GMlM@nVikfBUCdgQb;&C4(On8BW zrG}xdgJe=NEp@q-UI*r3qCiP1nV(1_gn5BATR)$OBQy(zts0P9Pl zElemK)jJ`}mnlTHeAmt5MXPbyyx!`X{j_A2TqpnU*!lWHkS$?gk@IKkf~%D{y80@W zn7%-RlU69!?S8BP6O;y~@Hsee)>-Jn{mAKc2&!Y`X z`cF~ZohPREH>g|Hb%-4Mz!3q5WDWG>F0IAXlVQQnEYd$>ES*ad*sbh|9Kv7D!3;TF z2ut76B&m=(lJv7foh(7mMcew7=TLZp`dxS ztbD&+GLlzz-jW1+qzhA=={u`+_AU8`Q-bTGp$fGx(-42#F-X&Ije#lsVELKCM>{yD zN|qwhDjJNw&N-bfaTRFtK69o_&N2;&QN%VaY$*Kw*MB7b z{_8*4?U;KEaM5`dyhjDYxzpwbk1TJJEbr{G-z31=u5KF&6w%{!Riy_Sv~|e7Ah5av zpQZ^(m=|H%{n0pEx;%nEhDk>Z zhuV~ALEqi5Da9GkHAA)NoE(7ex`eYLp-MFJuM153VFO_CEAW7VMAb~9@xjTD5 z?IJ5IgQP(eEN!5+C6f$y$O~eT7a*tl4ycj}>QF)j3Jfs+XZ1k0jLUjIoDYjF6$0K~ zC|<`BM5o6~%vbCGnOJ`{CN*2(VDRhqZH?5FKURd7u3lYG5yDTox<9|otfK!jzH3X} zq5>J6#+S;PV7*8qias+h0>u+56KtzIZKO3c!pSGNVgdsVn$V1^l%S796Jmux*3p3L z>L`Fo0H7=e5YaTa)mf3b)qsFx^P>PwrMmC}3CpO#Z5X%mAnXCn=64ji-DF_c4hoj0 zbDI`OV?#l*#wsoK1?t_0BOYyiU<(iuf|7hx9n_}=$E8hh*^y6D^(TIq;YK{#p!!0n z!y#*yEs5OZ9G=9ABL(TpJsae*`r@J~>PRLJc}=aRaoaL}6#(5nB0oa3gh0WSoC=tn zh~$zH=MAX~3m*&8&uKrMt?B1Dk3k5FB1)|r0xgOtU=S{!KtOU|*;^z3NkbbCVZF#u zJ`9uD*SKkep!8*KjV4fl!WjxsAYq0A6evPAC9O+_0|3OCtrS%UxhGN3Ks7#5kZ8;+ zFIXWY5EQ&`Kus3~%+qusGz-ZDg{eC(kjuvcK;wt;bTUu#aN>sr+Jy6P=Ji;RyhE$R zZL!36ob_KuxF=Exrvu{Z4$eiQpF!fcP~O(fw?c3Mu~M(RfQ6_ii-HFXYxo>H#yWEU z@Ty{Ro1SG!YFiPXAk+~R;LryZBSnVxfQmTdwvUyev|-uWD2O0G0uBGEA0Z3Y9SJw9z9cwm6HF{d$>E{t7fSS*>Q}~1+yb&6ocIs24u%62TyHteguWMi~J&uN4nWPh69zHCG-iQ0~kom{%hTx$~yAG3^^w z8vrD5hJ*BFM0?aiyJij$pTy<3x5C;4BPeeH7p-tWVFm)!MurvnQ9zj_z-={qx}xYb zn~obqB1M8ql%RmIuwW`HiQS>Z)J3Q6!lbR+RM#*_XYQkovc?l4l#n&>s=N9y@i`Z} zM`ByHNajSiBEcz>W$0+4DoqpNg4>P6{}m<#Exf|y>W^0{jOThVmVV`SJ92lz?amI^ zd3+S%{D=!dgodfN6=|+Ra^S|({oJ1PmSvP>G6A!y(_(sr*IFG}{_`J2Qx+9>L#Afx zos++-yI^o#s^L;H8mN?X2TalksTJ~BiM;f)+s+X3i#)SuhhX*;}jZf3&{W9YJy zEnpa^bmh`4!Y@GSTCNiX%r+69K_V8Qd9AH;@!m05zmce}W8iM(bK!RjyqZ6g>u+L+ z(GTYbUn+YXQM1h!g(^?bTqz_SQJWMWvEM^ynV`=i7LfFEy(ts6=wZoi0cKtyR!XJ)J;-xBK#&Rb_bIrU=8n} zp+LQYT>W{oyaQ=o4W2IC;2PE9xwm4&YljQI3!d#J!||e8okbLaX2d*{zt%A~@7N(& z7dMz_$mNJ49aO>d-L%VUGbhwf0*LD1!pAVK( zNw=#p-E6gFSD|pVg1{OE{wf2L#T=EvGXgqe`9IF8FE3~quCD0+3L|O@uP}|wU-OuA zUrc|s+)a^lmtgv~tWCidGz)Jj*1zz$s*`BV!rcLP0#RxfTP@eI(Oxk>uL-LaTqTlq z*6}*;So3Z7<~rLm4`ZhAfn%18cHVZ;vs89pw?)}66H|?!fh$&Y`!1-W#XyWi*1C_pK%k1OSOy`I zGjumm!Gjs_1RcON@mX$-l(g*gWFYAb6 zOaCYuhN&Aw*|ul;jrPSMO`;_a5uCe1&*7|+)68|rs(@R(9&NVH)XIR>q)+hQnl>n= z>apwCzYyff;})ov^9f9|@pl{ zgSZQ0o=EOSI;Sz`#VAdl=s5p+pWNd|SI%$O-RFGoC@vv!6>GSrJi0+3KAED?Uv^U+ zuMxAyCNq5=8zyh8E!Vqef&OddL<% zV53|n1=^_1=3{PPqZ~fZNP@d(iL@&SY;e=oh)sZC)OB6a)s$+gRUi4j~U$HXG!>-kv3<>T)NulTsLafp})8Z~^<<*eO4W*cG+5 zD-kDnNyL??lM#4r+QddME1-svjNzAxh8Km|py*_}3NC1Md;6C3EIzylU@~(U53yHa zBog+k-6`p2S28X3K{vc7HJRBq8QjSet9Ci+(AmXB_ZF~BrHq;57o}9O%vRzI;x7Gy zRIxcLTLl*ax|b?8BUSu=00030|Li^6Zrezfze0FlWFXPqm!vlV((V`?pgRfT4CY}l z7*G-|aV(JxN!jr}@et$eT`*rkw^VM(8wY^@( z{Fis5vsV|xqqqNk_d56-ia%HJ{nBBN-rCDIM_=v9()r9F&O zIM;sYyg3@2^0Ak$$NoJ$9V8#Vte5Ny=es?P<(sZI<3Bmq47PYGbmt5H@9|JR@Xu)i zcaHaor#*kWhjZ8d80U?9+wLE5W5McN6Q<71Rew0oM581+sD zJ?a4H&=Z7C6s<$Y1W9M3lPx6Oy`G2e>?*Lm4a_RId$*^!8@}q(lGC7XfT_`VB-U1f zsgeBp_D?6AJK~@5^jANeIbkF|_(Afd=Pox`-8@l-<6luYR=+&L@%EM{+jkLV4_^ui zsZHa5@}O71(G&b`f}Z*`ipxGZ)?#}i z<)l4H9^;7M!v}uEa5y>>{Ep9DJ=%;CVuEM`6rXj|x=3cg;x}zR!Mu0!Pg?~ocDk^c z%3^ThTA>+Tax^~$&8Wz1mV>CRC)A8CM|;P*pQ&baIo?wt+d|D~Or;rJax@<_BdBJy zV_(Z9->`$Pr3xW+PYh7i4wZtV^C_qlMHaIhL~Z?+N+HNw085aQiz*Y9V*k9%&sC+^ zSD$hVRf-cbl>+A^ex^a3(3$z)O)ylWR&jCADynh7Po0-3ROtt-fc@cd?^CCLY=HlE zs4BSdMO##rLBGg^m4m3Qr&Lw;&vE@cRh2=X-dX)*Rh3gBRb|k}d2OGms_Tfe1P2wo|GCCJG|m5E}}3fHe-1_yVA9#gIG^@1>!qgXVKvkGd(xlN{5 zv?58|0B0v>=d?JvuuV`>qZ*;u_1_)5_f8TItL2B>O>7J>84w?~U8vN7c#YU>Hz z6NCNp%05#qVz94n*!F1=6DloYuzv~FO=uAn=;*3*Y7&vJQI8nVr&RB-0)|-icy-!M zVK*~i@tb9}FB+J3I&PNxI{2Vk-&afV8r$3;bRs9bb&lRzy2ZhF>*~|kfEHSzs0l^* zDJW`1HoF`|Z9S!;);>q~K~c-c)RX9j(m2klC~8wOMQwkZq136URR|qjfzmOnG`!ih z-bbJJ{(SVlL05NJo|D=)P*PA!TLzTS4z2HL^r{&Q&3e@|sP(n4R}DNT<=H8Kt%yh% zA+2dVRZ;q8WJ+KA68@{^4xyAj&E|jXoTSw;Jvu80HN51kK-(WXqaACJ!za-{r)vHa zwH7(<>dwnSjm%Jk0V%XXjU3{Fk?m0<%^LeOmn$}GMH~v0Bk@di$6+fP`+zXjR_CEZ zrAH2NF^{K`D^`Jy4C}7z)YDo~1{PCo)g!LS^oad!=2NF0QN_f)FhNO;S_FMX#}kPeR$!8+gQglK@1MJ; z!gl?B@o8j04ZQv|OAKYFzV6OLCj5!3M9B#rZ$8KqY_DTKbymYm-;241W=B)kWgy&@ z6ImafJL`+Tvc0_HTW$9S=b{G=U(o%fBInb6zXa!A~$O*O|;ml4aFxX-4u>91C|&}{KfUWcQeb;-^;YeS8(2VsDE5)-oGF3ZYNlgiREcQAK4PR^qpE^F#Vag(?a1CY zG1Er4n9dHBw6U-;YC?1c>-qD2=*AlQpYE3(!{qc()0OmNm*OT`K_rIV}qgH~YWZsfIguPSPmR;`mgF^}FPY!AT?4ESl;57vMxHBZ6#hffKIWWvwJrFu~8i{aQ>&{EvJ) z%stjyR531c2*^RyROl|%9SAeARfg-qSSi3%>mqi0YpjrUSR3zaSG$T92^D&3 zuQAcc1mRS8@!Qv8D&&9Ub73w`Y?D-xt40o@fNrIzHCGla)UExBsXbTIq;)+7_ccXr z&?hrZT30MrIYn)US5v*bv)P$2K#`FV(Yh+Rstm9lmP22c!d;9h6U(7>wQ&`RX*5Ko zf7GP#se0>O>r*##gX2=CQG<(cwzGmMwdF}(YwAp;_L={Y-^G(<;YKwZTl(FxXKYgv z6>DpYh66=3k11(w7u$QGg*_*;3h2{?(t|e`P}# zVdy-~)w0L*UFh1PZ-dkX@(*PG!cOXrm!#CuzGO-bu;VRbKz|6z&5L?X@Qm84pIj5- zf}aEZ6t6!0@t3b3K7A}71T1;#-OIme-g8Tr>8)3jjD}ks^xpwkEZ4RRwxz=Q;EMgs ziKd|&Y%w|P8Zukb)3KJi1AKWZqOx*RT<7Fek^6(XKJjCvAsBI@Cqzvyr0%2u!W_FyuTXP4~gR|qw(x2XRQ)BjYJh|BbewiN2 z`8DU$!WGR<8#uqJad3(LEy*V43*#P4$-%P^n`9^H>axPLI?_jZl z5WoHT<6rLp_)2Op3{F7&Ht-`ic5fjhf`V7B7}W`l=_Br(8C?!U{GcGhxD5(aaXN!@x3(ZHwcrA4njuRWSH}>0g#fcMFhE#o&J@5PX)?eM!q$HpiIP@O~K6> zkAzSf3Ybd<3C6BapqMOP(ZEu#WJT`kW$w1dZ(mSt!QH|MiI_~$9+W&=^MY*;Vz<=4 zTpb-Xv0M;#QJ@U;HY7`mojH>vM6}Y5;|uayprqN-i6F3$Jm1#Q#g3?wkPXAQ(!R*o z_|CVKx@R#)WJL})!eeJL zHUm{K;#N*X;=uw4o4Q*;<&e=?4k4YLDsGonHg}a+KpmwRKoSd#L(&=;ld>V-#?C4z zAAn%0#=&#G0*7gA>x>ntrH8t+`zz8zB3MdKPd+K2(W!ftNvRLs%$)+={?sAyB6RC# zNlp166PS7nMK-hpG3KbZ4-}mtKY@!@W0xCz-4^3EQH7WH5YNSK((VxK6tXz+@=g|4 zfs@v>#+IbnXL4?OIwhgm!m_eNZ(b2Deo8428()Q5QKcmKNdhxB1wOr})w1f#Oq7>8 zbI@SU6+r4TGwWGYC3y4k@U zJLDS(^6Ze$4(Qq;*9xJ&9r6t{bM7>H>{WOYTxd#NV2!2*0fRhFZY1@uhX!#AU^)-Co5KGpr|P80F4(RM4UDhqA!{J>RdCexhnfWu!!J3j`rnrXIyT4}!b8N985 z2)pySsA2%w?J(QcfG=9k=<#lHZkHnJTmgW~zcV{WCBmpyNbr;?Q%G$bf{b#=EYMQX$TTds4`+U#2VxhL!DXA zncKh`bQ~}D)2)T|pim4A)S-p2C=18VrVLwd3~AAV(s!ls? z_8LF}gJ3)oLp(AFg!_;$dYc7i)sA9+iLp_DYJLRbyC_H?eHH~N_NgF&dMlwI*|UGH zqZnlA?8zS5(}nAR1SASvsl&3~17a_2Zwj)mQ1CuL#0jF62AI1&dSP$*N)$L#Zhnvv zA*^XEQVzVZ+}K*#_m=0!*2J+ktF_oPEZe)ce5Qwmma}wtw}JGL?&&0cv)9R%nk_2d z8)3E>dFEvz5Q@CEngSKL-QgCL%#txZEO#!*=*IyA$ygjH10gF8mnl4ukVP&HEM;-< zOn4;{VwHeRt>}Y>RGh3sS$cQDYxVP-DfIY#azrG zBA)g4zbm9IxU56E(m|pQ!xYdvrQ@3!#^{+$=H(hrGK5sdwS{poPmoC|%B5M2HJ^(qm=8t&IgKIuO zk9xjhQm`E#t}UK3YYlnVRqmZoSsyPfM#z@x0cr)m^PkVy&RJK2=0rvyqX^y07RVcn`&ug zF09>gL=>dZu_NE(x6S@Sg)*1yIKnOp!DT79p>y`S83%@l*Bq4QE&> zx~w;?5EsG*uz_chRK*GAqyJT73h5M-wkm>+szTDkDr%(TeU z|8O;GCP|`L%?ISSMUoq+2m*H~L1qPcWg+5RRuym1EYZ3zDIphbh*%1~m=;(9(N+;h zmmTzUMI6%6L#mgzz64@_q+4rCAP&N9a9a0;Lx&OwEhJb8MBSGF5S2jix#V{l&1)$H zZ0~_8Yy;;0pK9sP-39pM)blV0{vfIqQ=`_gCa>Y7VV;!n);S2af39 zq)Hf7z#^$pd=x3|S{HWcSkb~?FK29^$mdO<){!%_T+fo$vKo)qPFUCO_nc}8*(*v_ zLr$Ej%?7ZpL+9I?iK*qi#f`-Tcv7E}=1)DHnuog!M*Sj2&my2ycZ-~9{5i}4B!-(` z@if#srne1;vRUMU{rhBdfqO9j)8;S7e(>h#{5+-k$xn=x#r}%DG#HA{QcFCQ9~O>1 zb3*n}^*T>PYNt$1Quug6V;*>*1i!TUHp}+EIuO<7E0hvbbC? zzr>m8G9b4rY965E!TnHi%V@k-U^x`tAT(f;20DcrWoL2Smuv?i(IMQ)u$R;IlCdu; zfOIw_sICMB>MJbfwI^OFV4xQREC1QV;7l403znHQ92Vc+E!^pX8<^6BbsT27a(i^< zFbinKn*@oLKyDO=?qn_OQvX_fmyBYse6|KRjx4qchugwY%!PT^dQ>a~aRI%|joFo7 zw)}XEVtoT}6SBD3V0UVofCE+1#B<6J9?F17HI*%!EMcZW5Abou>_mzsuTUPp0JQ+j z3=Px(95_LpWYC1J3M*;FH7Cjc8YFdaGk8Y^3978_)iDLhZX771HrTifDoBAB4pe*x z>R*nnr{uz#4sk*$;L3yTZFGmo;Sx7yD#zrWDIq_9{JZz_$A7xkN8b|TMizIW=QjT9 z=>+#~TStq;16c0DiG1#n;NBM0z-$GCo6W3KktwVbDnLzS)#O8hWhIcKO}399s}Ke0mRGV<0c&l$brdAf&95j(#OIVKsoJq#oGH9@dS}wdjmno#D zn`Q;_?W6W^+@*r_l?+??&#ohf>#CYLWGE+pn3vMyR&Y#wM<#Aexr;`6+Jwxr0;g-S z9kAYiw^z)Nvu1W|Ta%?fz2W}6DDlZf{_>XT&i?oN>@}o4op!wA-t&*N(`EEq2a7ciix?QhaeLKevY2?P|RPn|xby#p@lM20WQ#Ore>-5*a6YG0BTVUiQI zD$#({Qly@`>WJ6dXMH| z3IV1UKd3P(h?v|p!hf0AOtm@Y!N;c@Qm2AM$Y&CCJxNYOX*NEJvOm3z6rL2i96!2+ zk?JfeazeI^oeL^RgbM8?U9}1sA#ZgJ=;>SlyS?FTC>jE98TrZj^D_H0TeaOGQhG{` zyVdug`P)T!qV@JdTUO~HS`lbR1f0VP(>sM!Iy5mksoLtMxb|EvhgBmG%(cAIp{fr| z(?+hDIp#=?lKOw3e>$weq~dKYsrB&+!YZGnBvFxJ!Q?+AAyam$Ga@JasdVw&=j}9=$2a0v7mF3<@{}Ud{i__omao3B9QK*bicc`& zvtId2C$d)debPR5cea;G6ArxX>l@2nx=!vW4)0Ftdp zSktK!#Qaj+Tue3s6PEvgT;F68I=8Mk-k?lwLI*Vt7GvTd5rKr}(5)<9`0I#KIz)-U zL1gSP2x7(^AvZ)H(3cA<|5?GpeeVU&hYx}k-)hO@`8EiVHAy`&VNbk};&Q{OlDH#( zAWs~!R|=LdMV6I_ZC63O$}OaRO#W#r-VANse2oBjV2*kRaj+aiYmN8HbeMj zlZ2BqyyTN`h9GYi_4WZBVAOjD^_fv`pP8F&H(@8vXvzoJHL*aH<0d9ozK@13%@X7Q zmR(^uL$_xcs|5;BYe0?OqHMZh5m zE(6omHKwQNGyHj47S% z08j@S!KH3;oeCzH=5=ig3iWy`PAjhhTrag1PC667Y1BP)XX31^S>V31_`h{DFP0Ob*t&|ps4${ zzlZ7SuUo_gD9ev_*)2%byw*5z|8xkQPsexo_Ah`0^9RfQ_hJ8Y}C*^kqjmX=&` zw>IIEkayde+R(6lIly;I%T9$`t$B}&Xuvz&Dc_o0azClT zb;uwUot#F1fdWN1PzEOv1@9K##ux=pwlRi)!$rfA2FYX#gtfayfx26`pcXGUHX@$u zl7Zt6Z0mex&776*Mci4a`u445XF=QIEP($@9bt8ChRF1Fle{>K-vlJfN!Ba=@W;-H ztnB#M8PQc+7*HAR*wa!OtbaW&ZZswX6$FqlGqQw)ZU;YtXcz^GvIxgOaH8OG6^;&R zu;wo0%nB!1Xqgo+HKYQT|LoKc*}ntd6E{VPKzHn{qNL>H+6^Nf^*3v{y|%6$OsfQMQZ ztV<8hp9Q*d59ggu?gVS;rF*Ew5#L=U%OT40v`R;p!{mdw<@fFJk_-`&Ipvia;zchO zZNQT5Cg~^a34h>Nc2$X(Dh#=Q^nADXj~WU3k*Jq65%iT1Wanc?y_D4zG&#!!<3DaD zVcFJn;jGw)CGXS5N77zE4}t#ng~hK_LSr~kbgNo1k|qNtTON{u0|u>7 zupZ7d8AxFDEDl(O+KF1>Nk%{hj*z(55#bq$LD#6`D8To4K`t3Q&bd?#sq4kQXb1YJ zB`NO~v$3SWC9-|CLUF!o+O(~L2{Jo9xo4UZs zmB}r6FY=qPau<`oaCK=`=8b)b8d{gUDeUsbW@Si^)DhmC=-i9j9?vYJH|7r>@J`3yrrntx=aY1SzRYMB3!3*c z{x-fY1}!dRO)MUUWblK&qS7Mh8 z;5#x%P`X5U6?a3IWZ*jU9@G1eAr2#;`p1-?2TMaXy4fiHc}hND>8Lx3;Jq+SAps3m z6fBUvih=|;S5e@Ael|p21U#^nmm?sRX0pfCCzOD0}jxxUsq^qGO0#^-D;G~-o0uFUOAIvtw zVbs7jLIJ#l6`tb~Wj3@z1~Tz1)2$KYZbE@lo^nEXiASCcq}J1K*+CHc-`y3P5;F`> z`rZE6n)jSr*e8(4ur#gI-r?85yURH6xtO5-F{PC|ZkKW`(b8GH% zSMi!8T*p2p{}gz6C<)(I0yMMCpF=V-FFNlQ9I4;9&XJ!H%Pbz>lV$6VH(_(sg3x6% z&A1^Fm=lL%aih^hY6yE8^I#Z{bf`-X`L&Mx#n_MSrDd=DHQyH5OE(#ehch>xh>qv; zTd~;p3%1Zr1tPIl%u8t@wfH!riOi1a49ON1-;r6>4dW5^ZMCZa1)lG{6#Mp4sSIk5Bd#)WEsD3xxpil2 zrZi+UC%)%i@_g6&z)``T+T7a=I4;}ee=7MAdTTBs|EucMW>g7qRVM_i&LF6d47vFO z5?>^f(svEs!IbzmE!{~7v!)3q#;gNx-m)oyk`kWhd6JTEpNpjr2dNEH(t0_fA`i!v zup;hV5a+-&hsuA})~!6(=~VK3t&=X8M`@e*YK>t)S~fJ#3j>QOlCY*>7+?`QsX~{f z0tlsGTsz_irQsJUn6MJrJ=#lnUqB4Fl&=;56ct4Tk~v+(5(NoV&xnF#rlccL7DKLI zB&>c%Ez88sh*+C?r5=%A|2#C2u1t@_22lb@QAPoRvUL=&@=JH>q#%$RwjKhqV2#94 zKw;q{9IRV-cUjzqg1gJ2z`?ExK!LJ7GEfFe6b@-7ZToR*4IQOg$7pV9Se|1Y9bV=ifSE=+4v~4@rV=;P4Pt z@+tL#xaL9K86Eo%-C-=7y_Evp)5QV#Ma_r)(**se&-uXn(SMrn$UgO-9uE3RwO=Y4 z3>0c8zlZ4HL@*G!dih}1_ z!bYZcbgeIJBGry;w}nAdWJ5MpEg{`?guxVi-nwL8ih|XV#cdSbGIbRIEQbN+^fXo1 zoP;QNCoKS^?D~-WSCrWXmLEd;!iI;eJEC?DTg;XYLe{9EwJci{D9eN#Kolq+k9`rf zY`QpfGA&`FQZ#A2^Chw+rQWeb{>tV^vfPelOa6i;q)(TYt4VH0b|szs=SV%v zadgEX*DQ(RcuAJpwkEseC5|d2z3Y=wz-Y=S2B;&OqF|}wK!G?`6r?pc))H!DkTaD| zVL;hh*XonzgiR$#qCtVOAdCU>fC<}*>kwqz4q1bCp+=|+Lm-2Wu69HLQ)NdW!q=pp zZ4oNer6kES9n0v;PqyWg=GUD(8eRaYCj^lH)n zN3QPMj^4cex|2%f(#3;peSE2=wPeq5>77cpSgvMvSnGTUy@op?WYHhsfz=${k*4V| zr$?`7gxr!brgOAaLpRCyY+?N4)-%Wj*>f%aqHZ?n9j!%xX3{D4oUOMz^k*tXe-YZ( zCQX0c$>)M&;CE=kzSoIgF8X}PK}(~>i}{Y2ayPUe?zg}H`Zr7x$MlZuUyE=o zrfbVCktT&f1>tZUC>RpQ!Gh~GaPWYNL>w>>Uxov<24jZYBoJL<8li1iN12$;px_CE zv=$G8gDATm$6OMj7}}7@bd*ZA^}c3GJ-G)|B*C z+{!Df!1Ps_;bSCQR#G%VS7&voZif)cKyf5JniOL6L$)tdvrpjxd|K!UCV4x-naRz~a9I>Zkw%pttL~OZf0W?O= zq2plNoa{oGc2{?G86^FnSk1PlISxcwh6AT~ASn_B3n(Gu?0~u{aM9LQZV0q>ew?*i zL%V^Jlws3|0!7-;V3s=^Jjaz?anPV@A{4Nu-fC&$R<31RU17i?PFqwXK8=zX?MO&I z`$F{!sYEI<(^4{yRjO{7Rhmr76g#xQ@1#>1|7tLoufa6(8^J8nzVjz$WyJlKCygI*|>+wrF;gf39DG(CB7n2ZU;CuUPu z3A+Swjzsa)yh9+*TBMZH?OBcvlu=M1VIm67{v>QraQOrUPTUj<9#|hN4B?D;Kv@WR zwuLR4>1sB}7K+=ACe!Evz@a1|N;MLqfSoMmbvFvGDZ3Dp9?l!U7B(!;0qsVd>c%u6 zRvr{Akckorsjt}}cRv)kuGQ4YIfMA{qTqdUwC$T(AC)D%9a zaYFul8*y^izY_ENGFqmkqUy)?C@$edT99+^`D;&m06i46s=Wf_Jw5a^8!i<857nv2_y zf`bDhxeUJ_dws6v*<<<_iDDf;-qn!^XGTb9ll-EKO5Ke>PfvZ)0<=%$LxMf%s&*(z8t#_cz?Ax%V_*8z zo)x}_sX8969Y=Yctfw7Efdp|)f?aBG0~3~nLGZwQTqX(}Lz%)NLOfGpwHISnM4yY(VaKkDJ+?w2tQ04|jy+9Gm0&}d0WNi?z!k=A3-sFj&HlSEO zx%^(gZPfp~xT@99PcDyUx{(akD2ESX!BgPxXEGi-J1|(#?zR9E^9})cS4{YsQZkjz?F7IX6?=2wIC97m&r?%0Zoju|gOU zW7ZS%YY>ftGh4^OG~Q?d3opc##s{C#AuQtE4Mvyxoe{RV(kV!IsZX#(hnEg$X6xlm zfHx_;v+ITwF1qBz9tNryf6Kr;25BvA{%ZMX=z^`b!fOZJeIO4ifqs$8PSR$f!IXnI ze3(JrV-PI!;e16Fz=vam)5|zPxC~&Y;*-$-07MLtI z{8^fZMbgcl=SnkKmuRvs>PVY)YM$+E4jLazWxVq6su0I-^W^iS-#9{|;+?elIQMRvb-ruc?4H4~R9_ zZcyfJK$xFQCdY+T$_SMLFN9wELZ&afR`2Uhsl=Y}Jr@f6mtwiD)g>>bxsc2GqJl5+ zYI0K}l5nBGqB~la<$jebJ@M=M>1+y+OEHR7WSr{-jE`h0qBSugjE3P#MgqA=T$w2o014$Q z2UD2gvQPVDL=?PF&uw9K!Jc))YTI&m&UiEwD3h{<3+b(%jCxG)s#v9Psmzf9_pF)Md z!fbd8ulTC3;6j}dw*W@uEmjUFeoM^z(|n_ecmawn+TFL?6lI^m@_TO|TBb`mE!k0Z z{p(J})@8$=o~dE3w29uPkP%Ep$63+Y%0(^Rc3i5Xj?&mc!%eqfHOgnHfp)V&T#f77 zdZjkMaW`rrS{La9?L8>U33aJL0Rz!Z6eLg}B@WWWcS{t=uI6?uh=K(LO<=8D=D?wY zQp}*>iDts5f(M;1(x9VJl@mGaO!wp~u&Iv8wgyf@s>^DJe)auY97!H4pQNdlSgCYL zm3y+HGgYd?65$7PDTT|X5n3hQJXeO%T10&s$>vIm<_>77g_wz&CYX`!2iO;)>7oj| zxyRovv4BMSmfyDIM26bip(Z}YYzBe8e4dx{58=y7H?3tixl)zY$YlCf+6Sg^-R@TV z#&yFp=gyH#%awF;uxwYRRhJu+x?I#ROZxk-|E%7tZ*rtk=)X(}4Qs94icsOw=BUFP znMHyhNM8*;iNSbeo-F}8n&<-blM%^&r7{-0AJ(TBc+2FB?eQ5XNU)kdxXh*gLW+Vn z*)O6X!qjglQ0tcBz{RgX^s~6VA_@@W4}Q_)tnV}_vEZyPn>uC@b1dxexdUC?J{3xU z#v~rHiBNLWA*>b-3YIpMyFDYepuuJVPO7m&K%xSBXI&J8fdy8E!i7m&u=HoR!Z?-- zixNdaI}{fI4va~}9dhl{ZsxPFp}}0-P@rH;J95Q1ZWf2W6it;qSTH?KJ*e5XvW$=gOrZ(`>4WSnAT(*>s9t77C^#dwwtT9ykE(aDT->#i0EhI?0)Q;Gbi>Q(kL`TYB@{|Y;vaPdwcHb@6z&RVdj%dn_%O?(?f zK^$mQIur$M?wls$#O*gO0t%P5XWSSI>Dheafq7(B($1$6so5ko@sp3z`LvT!n+}2| zP+edS6{3JKI_~r=vnj0LABeajYsWz_APQ7RHXu?DZURAw9cyL)@?9u!Rk?Z<1FNsu zZpF~sW&q9c6i2o79>Y*mK)+?f+fRrZ$gwrhNNnJ&}OM084=xmhdeIL_h~X)Dw8t`F13@|i!{&;LvmdD zS0Pfn!zFY2^pwjg=eK4LYch@vdfU2j>sTFT_@G>ty|k`7W`#`VT%>$pzVTHj*tK8c zkjea@Su_IExsbk4OwGW%7LC@Yc_K#K*;!V2(7psOJrzWSt;Y+1l0=|DvGfGOpuvo< zC{Ui`(Ub|o;E^q&*}4jaiSqL&Xb9$ifPw}~c8>!EQwN}61xH>Oz%?xAD0rX*%o_>F zh5-C1h>}o(KCq4*3LZFt)(1h%Q4E_y@Mkk2ov=!LJK;2PLt*yRy{O zTP?!C(PBR{$#awu;niq=H^EKtgmF=`##6^e+|+C`9Lm$kuB6J2#u?4fd_WGN8{CG} zv#qA5(wc>VwNX%HU;t3KP-RQl z-UXdV6r@XG(fI<;<1dM1U^^WJD&Vn&onmnmh~eIZpmBvidmy`NXV2DTm50CkX(oBB zy5U%?1OyY`q9xbGT#i$`D`RN;I;}m;7`e0*Ea>dOlQB$NQpkS%mFIEs zjQ_GJ&}sEja4M0#F3{l zl>#Led6=gxrH^IKPd)tQ%Ac6E!rD4>&Tvn5Z#%Fmoj?iVCs` zQIHhs$sh_?;4mS~DTQbK76naU5UV41#lg~PyezBj004Nu)x$H;{j~2RAB{Im~$KTmQ$IzUG6X19f-k0McO@Uqk&}$5;&$X-}D|`+xU%> zeT0d{K#2~=XPTl$B^wY625L}#F$6K2bb>P>){8ATpB8wLTbxmRHV`ox!;h@&p@o!P zZOdzK-!&t4X3Ht2YlYA3V(%7eMQ1WA&-l`|67x+(6E|EjXEfDbx$1NUR|y%$Y_7pk zvJl_}_K>Yi)GJJ;T6l%cNI2Wba7FknpLO-u|CU>D0EeZBCeBMaN}po@aFndSZub&9Ouj^x9dh64WI6ywH=G&8U+;|@lSV5dmErRNL@qx zaN*jA4>ox@cBr;9d5y~V4e7GBI6aGfh#S%>CdLo70rIJBZh)ZP@kOO^SHJzUab2&T z)HiaL!iW9^Hg@jNx#h9Hw?X5|S+6|k)e2m%KW1ndZ={Moe%u>V+J7{JmY5%QG*5@C z!iDlpS~`$_n4=OdLp$D4DG;WX_jJ2SRDGc~(7VLSuWWO1VKjoQ@$rVg%~;e0QI^d^ z)GI6v{lY8E$17aK^=0$0TXSOe^etbUo<8s^GhquN?1}_GdcARJ%Fq(6KTrO6HYm{^ zyiF<(khD9Sydzs?otu_@v%bK;Jig`I9ig+5uh5{0{-~yYD#;(UuTQf4vw$Z>a|fDc zN`6IYiSB$FpVE}%7f+)VA$zt?Ht&dCBj}F2NPfl9t-0Nb^WT;ofiV-Ttd!==QrCER zxLPSN!x#?MT1CrnAjxKNZC!zShvI<3l9r-Ci7cxFJ_)#7CH_$WNzNZ;E}=0?ohB`+!YFxWrAwr;D*&~ zvIHcMgNE?ofzBfeRM%?iEnVe7DZ<7F;zdxP*1%avc%mS|a29e;deJRSm!n(6yU-4Dk;jb|J-25wCkq~ZNnKSTA-|`JP{shBATu}OD zag0|)iwl;cMfNOqhiy911u*2K5Ckakx0e`-2Gf@38MRZeM}x7tis66w^P(6J5;HwB z(~LXnY17sla{GjBDQcVMqvww_hw}J|b9rQWbPw}eEq$mp$2Y5*VO+=z7BvDbz#2Ei ztU^(@>9WnVMZuCi9}GH`uCtezG3nN#y=4X|dHNT-S+xwWYfjytxnNqy2ZRp$T`;Zh z!LM;2#?y9W>rMK#O+HB*yyu0of9htg=8L`!bmnTdl=m^r%;i!c>}n=m4r`-4F0(e( zBbS<17dPqR9*+vE;*IztwU3#0WW2rjSSZBc36=j1e);=}PDR)<`p<uU)jzY`uIZaHGyZ9v*ez*UQq7(@!^=H+ z;!Ldn?Stzq7ojh;NN+a73*V;6F}F}(1F zH!DlWBwbZd2Gb737~*b{%A8Es(`yec7!a^m8RL=ZAgP`5+Ka4}t* zIgV+zC;eqCj0+_GrerfKwcVh$ZLHMWkg~KajF#bo&emBHS5_SVGkA>7GHt$RIh5(m zj**4`=w?=NEE#NM83RQ@+&Ui5tm0gI(eKHM|9b;l>3DaIokYbV=tkOfke{ftoen}! zH?k{MV1@SLHpLpaB9U5Sg_(#8U1FTi{~IoGF;LG5T4J&$snQy&LNyG~MZtOhzu}_f z{E2)gi$Xv6lXmFTEzEp1N(|(U_+Ujc!rQG1{+kir7$aQWZv4P6#0V>*7~$%6tz5q_ zBfP@NI{uXUJhP5-Eec|V7gEk_hZU~k%vrw*E4+%zRv7PEeGk@--@NPGqTnnW?^FLe zzaTTSM?d(q*`Z@xoT4b1i#Ou0fj}m+iqo0@W-`SwnNb$!_q$SW#AK?%m`w4eihq!{ zb=I0V*WLzL%$3ZXIf#01l~IXeT0g37=2vD~#T#edBh$LVnviq1#+t0dvVK@IhiG+c zHj_vdq8EjJ@F(risau%&T9gFG8}Y%4g z+W1u1wz~C~=7nn?)jabH^TIXp_L<+j@RB9jZrIMRpuVj|NpQRoe+?Fx)^VK4#+laI zdk7|&Jx1gDvA>ztnU$iG^s!dzjhI$V6w_K0Z~NE+)4JL!ZkB0XgbPtL-!4EUP$w+1mRHOj&VFHp;TXO*gA8$vPY>&dBjk;8^QXau#pI zUjvaG>$}jnk5euK1V7fDe<<_%E$|Yitb^)*VJ7xn1eL6_CZZi@t8yxl|3psTXY#qm>a4-fvOGK=a&bg^ zBji(wRE%1je()#l(5YLT`6$_rH{yd`NaqvuYx8V!{oMr}%*!^v6}$dQy}M9^r7QJD zym4C;Z(J8|71_LEcg0l{&Kv()^jU zjc-8C{MW;C^0E@X3psgx#v}BVGS415|BAmnVYzzek^)cNDhCL@pStxCLsppmiB=3ucOfB=98rWrM|li)e9y zXQTZ6?1@jtk)KVQPD4mco^ifh2wAbhGowHho?o0k&1B+^Y_>_;gqsZt+WVu{H_I)B zuL@7nOvSn?mlJpmem#vk8a&s z-o9m{CVG|9k1=n@`ByH7{Y9Fdo#jo<9_i9@%@Q1KEbp|xhE^*mY(CQ(Jwx=lP#m&d z+xAix*4H7ez`@2%`ywU{n}<~z3bX;})mqj;iZ9|e__Fu^{_Ecr6VL#HnP0U_%jbN) z3AXy%?G$jH1xyo2FcL6B^6zc5@oglaM=i@RtbwTdcB}SE5mcLT<<0%RriWbCO!b{1 zB*&FqNSE+5a%q=D6;oWbKZI!_D5*o*auPG`B;$Ci?fR%K<*jm49#E^wZlx>}_Q9j&9)>0qf5pq(W^Fj+R^++2{bYy&uo&fDtW?@KK=dI zfByXYum67j!fu(CWO`kN-2Q|8{*;;TP1shU+6mG}Iude(4a*^YA-#28JbFp7W%XHe z2`op`Bra~YKl7fDp2_A&Qmw9{bAt@!)McYbWMZ$Y*}5vJ9kO%Oap%cSo4(XDJkszk z>3&x?>DN8-RU?26>C;#8RkaL|js}5ui9EXh8B)I+1*=KK=&o#t0@t&2QG5rP$Aq|f zgq0OW75$u?J7E*~=jU0Ryv5O-K#my-Qd=`MTQ-Dk5rKu!g);b@b%zwVMgj92(v&D* zl-i1dm1dOB(YrlkTd55N#g&I1h7UA2h?K6Dx z|NiUWhrZpBvJ0X6+5JYii+Mw;PDE~xdU8rS5whvRwY7wF(xR*gWb3TIbHYa*-oUgr zAqsz3nj@K(ON4jRmFbp~`dm3EF?}4}g;QFmFP!JHYyzWanQSIz=Sb2W(nilF0<%5x z?*V282{rx9{S;~eun(AKLA%N)3jwUxX`&MgdHY14x zKYT~)Yvzt*v#<#Jq?ySx0WbRbChzRbD}Inc%d*^+K=_eoQO}2gU~5PwrQM)TI|IUJ zW&8-94)v*{Oqc(_g-oZwwR&H7N~IaMIsQwrT-WN7m(m#?0mRt00{_8BO@0hCsqee4+r6Elk*D!V-%D z2aX7+tcFb(zi0BGY^oj0o(Y6y zZYCYwaV>j9Y2y5}DFI_*Q3i=YN|Aquhdx4l99!%b-)@eIrF>+TK>}$}$?0IvP3cX;{H7u($s|T39A8mS@9`r{ zU1;ly7q}5owcxz6RC`HCcjWq{<%QSe7f-W12)lv$@(9#O8{EB{14>d=dq2N!fAqHjJ;rO{cI3VsQ%>{;ZF00ex8X zxek-tl5u2lyLp0^k;U>#! z#3H99%1KcR8(B$5^2oUatiD5=>sn;)=!@L%39}W1sfSnX5Zn;;-lC@dsgu;_HlkUq z^5(rdd~a(v6_x$II`-~R0mZxTt4G?4r?YMT&W>I*QHp3mK=2z#oiCt2EPt-nOuVa= z3vaQm(=0V{?XKhqv}&e>h}V}VQdru90C*@=vO^@Bo+z>^UnGSvM$9xW>8{r0L0etV z^<={sN!m~~JV);X@{=5HH;dv@mX+llfwHXBHn=8}8j~}EF{ahPV?J1uF>e}(*)zE( z{QVNR(vzhMiEhL5O7ys5M-&T#F|qaKu_;(?oP*&0Jzz=*db4 zMnp%fI0t@Forob3j9-sttN@n@n??{(M1k@nZA5_sThCF@ z;MQ{#I9U82ZXRJSbSPMgHerP3lt2NK)bnUQ8IFj)uy`YcojliiRF#{nPN94C# zOn9}7jU1hOaLr8Fsw7Q12hwf?@;H@2!KwkW>tuywshh_KKv+f z*T=W@`b||7IG}4B3Kn5CJY^sS=hjWY&+s6QdSpA2W=4^&1Og8L0C={K#*b_ z1qos_K>?yHrm*Sj$PhLfxA%EOx3H~YnFd6x!@vrEHlTWxQb*BGpBhIH$a$JbDES=x zZH8w|O~#gjG1gsLu*DP=X#_LAp+HeaOc*dw#&8@cou*id2#weZz%>XT4j@f;D-4)n zfzqdKK5X)A$+MdtaIB(v0TjwBJ(Wl$gaHFu|4^{Bq1^2m8Yt13K>vOmEJh)jFbM%E za8KeW5Nsw5)#i zTy8HTedV8DBtpc|ojHpkVp3y`oEa!Z3j8Q<;3SIz2NacY8Yx)1RSYQ85;m$eD9i8N z7&SPU{SyTX6sU}X1WzG?8`$>u;%}Nfp@1x8)3pL?Qy`-AqA`JXkXnya*S1VrcGIt+ zvQ0`!SSi0ogG4PH%yzG65+k68)aK?(O`M4sOBn%M5os4Yo?U|39tSyzgBf2;L6Tmr z>ck#w0e*9hV@wmtAkOzI+C07Ky1hWVdk!AUO-{Ral$&7ST9}YdOsQ)*E-L`zSJjvZ zXAV`6#|)236iWv)mRBw+jl247AhtxzDRX_C)knPw+q=;}_>8Ln8EEm*YZG(EvcOB2;jA8^yUwk@kQ^;}oouNY((n6j%?Ez>1P zgk7w5EM3*4TOQ!#eBBxJ95&phEf2^z$=9B*7Ll5|N{jkYL?0-kt!p!CVR(_M+6I;m{rZ7x}Y6` zS`2G&)z@r8?(rG#kwxYG;)`8OWpXTVf!@#v!koICr6cO?kNYJJ8I)0QBzj|o)bY5x zhc-QJJ-My%m&p@Xt(K#?--`K6DW4}ZJAE`^fs90@s;O)~C<;LyX|>2{uJZ?}!e~dL`RYwJ|I20v`mfv zYFa8mVl;9iQy^!A$AHk2s8~aZUgD3bm;EC;0$n|{$s=@w$@^?f{*`mGmJX#Wrn4`9 z-RZb)Z$FuIsQa(%B&?ohl6%zAQ+CNuyPfp6Th~aEBU?yzW!>c4JRTSp#8gu?suA;S zeW9tYuG*GkwcLbib(2<$&?PN7uf>-ExxnNtS3-ZwhVUZv%JlrOIrL|ad{YQ5ql|$~F&8hhP7vIQ$+4pw ze6fQs%J_2jG?h430Joh{j-O92^ov ztH>(TLHBf(jHbWu&@Ii@HVofVTrrIxB#TTez4+&lYN`Kp(y3B`jFT0a`5*tHn@N#Z z9ZK>EKJ<~>zN|Qw;knu$ltk{Q{-9fFPo@qejA;JRmF>1}?y2~&Wi4ytVVI*fiog(rs`T4p>sEsz<-^=EUw(_l{nFNL}_7^VT5$x4s`6gP%Vxo9AZ7RZbhXH}}Qb#lgYh z|NEa|<&SdeNgcFK9!~EI#hXgoC_J8}8mX#ve01=9H#|H4c{I%59d-Io`K!!Ps&V^p zX}uH3+&n8>)K4#lt_SngH5yV2vpL0-`d%1zE0S*O`{`QautB1Go=wVgj}R(}|0 z=TCk0p;XSY1{?QRFFyw6YrbZ;&13iUZg}O~wCZOkcg0$_*0`_A!$I-(#Vi#|#h*_1 z_M)t1zIU&+gUg)v^4Py~ABs^{^A-4dDpS~5Afs4Om4 zC6{a*C)0GXPH*U9ozv?-vZsb}e9=EQPYu?fa(wmtd~x_Pc&%J?yxm&=@%py)<47J1 z^`|?1_bGMM?;Sg}N4?n6`4SByY+&BiTxJF7))vE$`v?lZ3ykVce zlokEw^YGzHe|cmLW-^cZoh@gcA1}PLk#=ut*;G=w?q&yr$IH|(U1}@2e5H9qZuRm{ zN$2n&bC){2Dc+{cyUY6b>{G!ix3rsA+e+(vl^-hU++lb3rX;83((XauOE#0u3ng>< znD_K+rE`>gcFmmna&({6>}*f%52{h~%o-$Ge;%K{o@eey zO6s=%ILhaghmmt{99`E(^_$j{mQSV*a{c0&>v}KUOwKK&es)yW;PvVC-Er#RXW{fz zIXb$vn#q2jaMqd2Rh>bBzT=319Ohd<3s)v)d6Ae-FP zu3w9H{VUesMcr(TI)#$b@7$gglS=k{DAx+d57k}0tz^GHA6%UckDt$LUjDXve$#ll zd-6^%22b*R`LNQgo!?%1`TEiB_e$X`_k%U47kaXObEqGUPOPVU-7FVWJv+QDJr-}z zo=S52?q%4&IzBucA}y4)#Q zKhyX1gVW1ywKu3d7G4Pox$1SlH9p3kIeXG~@7$7hW*&Dg@0#cO zOZH{gvd-G0Rxz!fpSFG~=27`*bk;o|TIwiea^!H5%GmvC>AIHhT-loTKp4heSsgq* zHND%6qI8sUzMDQCr8=#jC--ex{^?u~)9L)t>vuDm{(0HdT6gB@Y2mJT*F9wozO+j9 z{Nv^G?QL$icyRIfFzl#mLp{1Y(e%fb^{O=wlEvr#kMcva-)dh}D%Z(mWpHrQ7+lm3 zE0v>4g&yuor&4kGkc;h>Mz2%{WFJ;2ayWQa&5QoeqjFXu2fnG(Jvh90Dji;t^L}%C zRX$1HH0@`lb9WZbFTR4VlWz2PGV{&n&%l3X4hoL6p6+)4}<4;o~s zeCA)ZL{R)eOYMGl)KSS}pXs2%{|^8F|NrcL*>bDOvf!@}z7aR}32#e)(ByrVBQ#pF zCCeH-cHCG2s3c(_zlFCEeMxt}_sKcJtw|K$9@{e`Y7K-P#Tfe>EH>%`d> zP?eRHnU$H9Swl0I@8_yH_^;Z`foAvVW0Wi9a)nayU;ky6`wPBrppPs63S1$V%MV4R zK6&ljOj_63x0*6Ag>t@@YgWx%zPSvv);Z@YiGD6;12ppR{rv{e`)Y9k^g5dmlpDD# zB{|_~)@)B7uB}24aIW})e#M(j2cQl4jOt0U47xwgdS{ej>gv$?ef9Urr3q%Hpw1{s zF@X8wjQ$h<4}O|nnloWmP!$s>CVJGUDZ^cAyv|o)?NlO7vqhRY!*3B3^fqn(gKsZ& zL+Z95M4DsL`9x{)st9`gSVnEpxkNf!U~yyGy^j7E8ZSypAC{FR1^hT;85UJU53R8b zUw|1enrCrTR=2BszycFq{&B`+(TBMGCB6V^{b#)aT;+nHEnvH#Kr&n<(35Gsv*6nhp%0Pr%t#X8@>`j;z9y*2v%yYG3C^R8Q4MW0|L> zKy5dj=X)}wABF&itAX;3{~ z9Z@6RFep={Myd>q7*&S#pfHa#8T?5}J*vx_JO&19=#cpoY6LR{kD#)3z3y3tWn4at;LWih-w z47iIRCFoDe9027DioP*W$8whv00mVulAIJ9qXTWBABVz7L79u%2=hpgfBxft+%*#a z{KtQwApyCJ2a&)V02w?GqdJK3l1WYBIH45PL{$|a0>j|-IRY?-MNvH$EQQ1R4~Jfm zU3cfvfjIVi(_oR*&_FjFW~_l8%%PHkhI|O2T88n**-t@Lha+Aea@i!Z^8={tRDBM0 z!rAsdimD7rVWUOEf93LCopsf2)E+w3#@z}+@g1n7mW`XWucyFVk09GYdEn6Z0(bv$R;4=-UaM;SjHbBHp6s!oF4Y1H_ky74IJ2C8mC$50@d34~8S zGF2EhdSt3FZ0t~Y@Sp$q4-%&_bR3EN?a;9!nu&%leS=7kU6D5;ji02DU>CZVMaJB) z(d$}S>`0?%Cqs-_l(Fm#0NF4J8^H;$OS~WhB2^eRl7G0=3o0r=+?NP13-I7UyVd?1 z&d#ffJVz*u~SqMS0!xhkPeMS7{5-$M~6I)GJYya zHuxCG9Vsnx8dMJr{hbEeL(?KBLDp4Jql74s!3g@9#Moj$A&z{a@KM-mNeAy^Nw-$; z5}?VXLdH|mr4g^sql_Y))4=&nlrc0kAWCF2gwSz>bJ{4Q2Pd;6=!GAqA@hPlN02O* z9yWH!1&=a*(N4OHyevYejA&J1)FbL)>z6$~_{s6}5HUP8ihI57(_=^$1`FQ?lOXrS z)_!~&yuHBs(gY|Jkf5s6QPkdb|B|qmRg3Kr^<2ACYW-~AmkQNVJ4lTGT*vSWZL>L` zv%kaUm$1esPCjkfOA^N$oHsXor^;p4=Z0_l3x;l?p|#Dq3>+l$YIoj&plwPlbc6t) z)`Oi+VJ(3WM73QJMf=8s+?l?LXa(?Hh?+xFyNn}tZIjncSX6=yC$kCEfWnW!vS2bv ztB>2Oa9gX`#?X0DQo2iR?EHjrw57tlDp^~O-9%(<9O+q>L`_!(8H`r# zg)4UvO;0F>_M&LJ1A19iOatj3LzJW+XE|NsWt$;OJ@q8Ei1WueP{BbSYeegGg+vMq z+UMyC{Mb}2#3d|2GU!3LEKB3YkaG#2X#CWZbi=G+FiB_Q_#UP6IZ(W+D6+&0V~>K+ zH0Th_r>aggZ?;EcpeR}fC0IwqhIwiVllhRxAg&vBq(PI=si#C4JNxvDD5JR5Foh(9 zu8wUgo!#Tu9^}$8D>%dt^WCqAqU=Gj)RkQ6z4L&B$d&$8$;BOoT-jfhT$$8S1|#>2 z(ko+mkb%=H`E}{#6*3wg69=qaWXcEVfWqKJ#we(r`d=@i9ux&_ z4Hr>s9u#)&{AKn{Ecfwun;Jt1VF1y*M?_r*kAd{t zsNxi|gk?F){1l2Uv5v;^m0bNUDr>utobVLA@ zgj5Rk`?9C1CVI@WxWoOii68B@Aor0ivPCV;;@5Gf2cO#AmA**OPG?_{8MKhzk7+Jo zgSpiOw0-quW6EV532}A)Fd~*Gw?33CnA@viK5saHwiVf41?z_ODi-&*JBDi>=<+8Q zPt$RImPQSkz9G>ryV;&Useq>JIl&Pez`{}Gc~{4Xa!y5eN61&JP@)H6wZ*@WfjTBpv%Z?Mcj3gsYOkt< zM#yd#-*P}4ZSXIfVYN8oN%o-mb2CURmOt;wy2T@`=Ax@cd}(QWT!+;)bHI}r0e=IV z=vap^ebDe+P(LkgFT2<;MPbo_h8>-q(;bT@uZZAJY6Pd6lBkX}Re=Vd>Po%d*g)!a z=P*_b=p|UWKA`B5I6xbu7uSN|`hb%8IndD|JjPh>L6k_+fW?!{nHSM2XUTKD^N^8Q&vcHxTQ66{0(^W*P7<~$2NDJdX z59bT3Yv@9xu-ZBxt#xQq=m@sZx@G(Lq3J3zI{FgFk=jL87$000nj#_dtpd?mjz=IV z+Ss&i30tWUcXI)dWk20YAlBJ3M4TZ?S?ldK@;3J2HQTG;H2+2wJHxt}v_Wm`{A4#| z^MZT}5>6Ez%6dYJAHq_kO~1fZ?8+xiLoxKx79uf7ERVGi$sQRy@h+%iU4pZLJ23sk ze(GVp(lV>}0(D!8fD&0QVzeLjnw&YBBgoY&zB))>2H3rnt^KCX3nqDtyHmW1$+j`> zPK|@}&`i*mEE7&WcP~uvN;O}D=$J#szp^Jlo(Xa|1h6fa0QEv6alw9B?9aa}=9RCD z`j0P#xd*SUf(F4#3voB49rXDFCNCKFUk68|i&14wHK3YiGq$2$DuJVaiz3OyV$GWa zZHv0MHM=ig>I-{O$2io77zx|gaorx{&zkIp%nSB2F;G-eop{378&mn426UD5@z$^Udq zeSa}+a*>E7Q>%L+qrf2Y=)=`;ePy7lRt)+i9Jg7oSB-gWZRbn39bJ>1KyNMgiSwbQ z0@Fz=Ba>Hnd2UK#0Lo@vFRV{LjvJYv)3Hn@?N7<9_W%d|!|DMYqZ4eB&2X!3m)|~w z%7u$0lVoD)V0#cM7cLT+SeEr`twLwQ4zs-6vt%lfW)d+1r#|Ro1ES;9e+LNmG#L%2 zKKTnd^%s49G;+)0eledu8RKZ0jvRju=m|8u>pgK*i~bJPIHp>3S9;%(j6F?8L+Pb{ zC8ZaDz9Xk#clzt7StiD0fG;wxH_Gf^bFg{L-EM6d^hrEH#5i`BNU&LFI`JI^K@FTD z3X+aO6lBL}3`2V@xAEw9VT`9n0-(q;LYY`6kLO+#i1~YP9-t!LYHl zGX?#1$j_d+-CWF!vqhx(NrdK*|)kR%RqPA z$b6umd2}~_MMp6)I!Id>?kZ0j&ai`Yc*CXr1&Us>ESLGRJ%BE4p!ve^$)8GbK^p0h zdyqh$EV!Uk6jqW9e@Ru?2K9q#R4%A~a`C$DkdiS(9`so8bc8wG(b9m_&k2 z#Dbjla3`LRGBmW;9LELf?}aQ`0F^*$zd@qD5j18PCYwrS*O(r6Gn+x5%^aO|Hs2}d zJxxYrosA!(>ws^sCfZ&N`zv`hUul0a8I=2}7obo1EJptTx@E-TT!Qa`34>d{3h+p^Qr$!~vh~M|Q zPo6NZ6u)OqCy@2xx2%VQ`F;_-s*p^E{T-1S_CAWRCdv*u5$Ws-hY8oOm`i8<1lE=S z9epE3Ad}ZX5Z>x!Pp8pE3_qb({3;PW4|J?S9nZ_!fd5(i8SsqD13lx=*ZM>L zTja#@kkPec>4+)F_8+^XAU{#~Hg&v;(VS~wc?~}NT*Z2Hij*~8s&5tP&iF-%8b4RZ z=)wf+Q%{Z6RH}(bfVGUfaLxGwR9;EYz&34jlr}ObJ)Q7bCY+bU8eF zl=VPT$fF8W@5%h^hK zwT?)P4KZC@h4UN}SB0=)W~v+gOkaC1;Hb@+ADq;GlzyAGkSfY@EtE5K%rC2MKN zg0TY~!O{ZmWxO+!NkAydZ;n*kWJjwZZz>a=eMfa$eZiB%+Yp+TO*z z+}6v_Tg616KzGCzZ3`JPr{WOpx$a6>qaG98jZqxhLPW->pigxUi&5$0Gs??SskJ$m zH$JgRyf%JaaUzA#)_7&noEQEDebnyJ`DZ!uNqW_h7hFlbonLkxa`#}%nlNvS!^)d< zgdO+T&!cgOaTcuyGL{Zo+2)Ze$aa!)CFs-aPBdsTVYt&++5h=%o>7LqgIqvSj z8Yr9)NV?#D|)}vP)X#@-uyP{g^h*!4Bwny?E;-C3j?f(VIhyGY})3^3< zgG7m4Q+Er9&4dj{>WD#~pqFMIq|z6DG*apNc69%)j?{72;T@4v(eR$wwe@e_7!{=V zblmkJ$6#Ot;y#-T4?G&M1MGhy=p=nu911q>N#JBO)7vI5|J)DX{ockb7MI<7#cAK&{Mg{0oB%%-!Cu88TeF_f)%q?WI z9jF&aMONgWVJ4{(LEmB#7Vl4xrE<@Q>}Ja$9*e)!#BbrT?3&72Kx`(2m`+MWFR<;= z@yF==rp`;yhc1Q1vrDHO7uuo|i3G_ZoQg;e^3*H1@GhdS z#lYVz2gyZYbH^bZ3O1_eLG6(&yz{{1Ofr_uCbwPvvzN^W_$i#f99cB|lobN6oN4Yb zeTAUtk3~s+Yp*wnc1Wf(!5lBs$weXkf^$IMna(|&ibAsFAWlUjLdYKCxg^t;TG`{d zET$H24D^>)IRyiM)l8?TvOm3KJIVF?LEDVdi(`y}*YAdFxCmWBIM|gRnDW~N*=PUBf%VRTL%|~ zZ5^xL(zoH-&Z%8%VIt3|uN+dv$N!LWDhg=|GERNr*eN=RiI71_f7yvInETsFy@Yj| zQxGYGWE4^chlqWoHpQSnRw;ce-8RV{wOt*_?_C|cr6W=)_d2YQ{0M6ZQ@g@g77&|TA*Sk*UoWljo4Tc#E?<&U5lPjZdY3Vt zcz?xI#+S_C1!(C~QP>o5`W%!8W?e8`EXihevkU#P%6c`Jhb5wpXE0M=HofuN8O$%6 z-iS!>hC8*v{HjMx{d$Y;74@e$0OF|)vA<->7fey1KNdN?+RI(Datnyfn-K4HOGP5@ zv3#oSciv+Mry`N}ID}IXv6snH+sjDgK!_OltJ=$vDubT_FY}6c$mk8yW=0~`e}GVg zK6!2bL6Xk#5^?&QOFjqvvEJGD@@{3`u2l@)n78TheD-2LGxpFOegUF+zs)Z}9|wT% z0=)%#KnHLTEQA?MfO1CZmlEubUhSflrnt3T<-1mQR;t(;)1IoDUYbbR=3!U)Els5C zM3dHUqwb@mG;7mpfaU}l&W5S=>pUWXscJvYG8tULN$grrf@+%T2v%aOM4ctwDeJ-N zHGITz4jaQCXIXs1++}}k;>Sf>cjHk9q6|M7Ca7i3wo=xSEDAq@9scQ*NV0ZLaeEb%Guo_Tn>Ob~39C-0jh&zDhW4t;Wj$7! zY0!}Irlcxc^w|!IANS^jeX_)Gcq#f$S<2}WFWXcim8GDg!7B-FM_2jqgotJn?xGO( zjdAp<2OU0gHoXsU9vZcWPPK9OvwdGGR7-8|1Le3I8}=$)*0yvju2+I~?8mZvnOC=9 zK2`ND0h92(euuHdyn-kaH06W)=9M`h85h2q>hk95u@y&bOORD@7$a!S2?QO~+MOC! zzf{Pt&}1V_hVeRy9Qxvxq-bL^G=?c*wG`q=9ulj=0LaJK2C<6yi^{M|dE170MX zyBs%h?8PNR;{*q25_rAA))do*$A)mRLJwTRu?(yJn>U`W(|ED`@E|3*mHfwSkj!iJ z*B1Xi2I|-#Y0udseNcOb21E%MvCul$A+o0a+UkNH6mt@D>aRVUn4z^d8XF}3mcPb? z@c2gNarqqFk{%)v!S;C?HfGtWR zUY}DV-Y|gR)HJ}$=DJ(&1J>UM5GOfa-; z%@o?WCv*S9-ZSbxjMlNk)k7cZs{>_g?GsaxCyrZ&X?T(mmcRe|zYDPlqu0=oL&nSU z{Ld3(xnG%H_|c}(?;h;kuiLqc)kBrMckRFUYSxFq{M)IC>e{bUn_LeZ-(Q>9d%bd% zB64sZgo_;Lo?%Q5@ZVx9@ZxTc^se1|5PDQ2=^1<-_va=6Yn>ji^damYXGv?}AL_J) z(K0cSbF?BJ2h5r9dOlxcVI7OD?i}{#YeddyNSGaqI)q-Mua<~hKnAbCIkYM0(1q12 zvYC~yrpTg`zM68PfU8>VXbtWd3hqPkq^jb01ClTy;;Sv9e2A}>=olSVQz4E>J2Xzv z91i>(EE+fhA6DlMNUQp4&-QUbYHoX3$#C`d*V^Ck0-=6DB8dA=~T{(gP8p8kuwdF?@;QS*uJ=iYCO;CfoeIkCa% zW;kB^myzS3#W?0&B#wJRO^`dF?e49I&D}hDJjW`LyZpX3PLn(8hqiQpd+kF-5jw@b zdPd~R`sx!|3NOUHQ6X+H@I}BwQh2`lMjpTS)jx?O$mXkKWVx#&O?;LhUJY;JBUN5y zY~0P59QW$+{l;YJc+kUEoNx)eXyvdKCp#mu*bLbnrEn>V*8w$@Wc5vj$QhIdbP63? z7o#5V=Mg`r1VD+rtm+al{={WJpR8JcQmVcLgn-ljb`)tu(Mq4&_7G7*YptQkByPgj z*#rg@p!dV;8j|tQ8Y5EB{+dz%=!UpQ_K&bf+ONnn-Y~`^(EVF@4JzSD2rmdam{?ma z4SSQP0hVkGFN#1j(K(?pYKsN33_OJnnUh4xr0_0qY1f=$7jCd!3ntpj$;+}Yr{jPO zjdgb6VKnrL7JNM>v#}u{MK+8=Ku8CoIvN25YROo{P$N7{Aq0#fD(OV=i*SUB{1B7h zaqx`|GT$T&8byt1gidz|7(MdJKmYOHiQMH7u&SuNh^c|?5Yd4a_!x<8kkOeQ(4{ef zK9UrG&#N%O2s+igIfmX(7ih>*q0^{8kH?T?NzkS7h!UYkW%7y{qpIjS11sB$y&Few zqv^RgmTl(?`BM-ybb+9^NlhhlfI(W05pg8N-`V3{GBuekk@tP4Rxm3oVNnOHaw~jv zNlervHvw>|80o_<)~;&uAl3mRC+q`xb-_dVotu)lA4&-LdN}`XZ*5IA@H}OK=tin^ zRag-?#urZH%TIqL+O6KE@J%}s+9keecQEa^kZE_C1AdM}JGUh27n8fSmOQMB*-z3P zKo6mGYNfHbn`amFo!^_D9fNO4AkBkW7p&~egW2Aq-Q!(^M?JSnER$O}P+B~>EkOz4 z%4&QZ$rM%4>q(*n(CrmCw5d=ILOh%X%ur>+Im6CncHxFSDVlJmBCCCW+Qx0CDKSDZ zYH2mBKQHx@xIaIM8zioN@%!mI4G9~YC?RvV^%R zBe$iQTjdal=7!*ebd}CAMuZ!J)&eVqZ1RF(|8)>W zb81u>x+y4)kg|KSR05|Q7DZBttaEmq1MQO-i@*?$4cHkDCW8_F%y57iFPc^}%k%m~ zc5wmsx(F~U$K@fCStXWPLXk?x%9-p>O%w~m5y zU&(sE>{yT+YO8?)*RkdAYU#~8*gt!*U+ni1%K)NzuWvyGH`s5Zic?sPWv#T}0RB!c zLa$oC&ZEkvszGVMfnX+Hv~dhj_|U3qc*dsgu#LYpzkwT$Z$W8OrEBbL@%<`x=* z?kZ@jRah2JGS}T!#TygIjk8EL#{omTwBxckU>Sz@D}gdW-wEnsr(|0=2Xk!zl!aMJ zu&i@;5Fn2)$gkv!`sZ1Rx`|kHa%|P;WzZT)=-W^^qgs1mwDS+Z~3vLl7VM7z6E24yY5w9JkB4y zaMvwD?Ge*ep2yw%i=gia^>%IrncJ|K7L$4iBxjoWx(#DG07Nk-AB_bz%zdeDvK@fF zT2ex#>pm)74S_t7){gvf9bx`1_4F_sb{R#klU+1;oPLU`VoJ(b9UHddBAN)hOoOe( zQvPSb$`}H}9ktns=ELv_U+erNbGU$d1h#ui-??Pg zF@*>T{DWxj9rP_!`(lhtl6DZ@9Y9>n&{1}Dv08fj0%@D244biO^ErtZ0ood9y>*68 z071oF0je#V+V?8Fy)c4_32yEHb;WH5)PO>7{w}=mplo)F%t5m8E2*d@#bou6NLl#1 zR$!BJga?SxD?XMhrXd`qx~zokrHQna_gNpKJJLeib&gvSiSTNb{o8PYP0S@pcG?~z zFNbucJBk;5el&8+uiGHjkUh;ZiXsr^;G**X{*MS9y8VzMfiwSAmc2!mxI4TJx4sA~ zP~&cj@w5jDGs$ggGnsOFM7Ae@XkhP!fOeQET}k9kq9tlR4hZv#89HBQBAN4xr7dp+ z@caj#_F{;HY=lnoAYR;eWXcgmJVHRoRHKCt(bbP3;Dfz#veU^z5br9cMHG2EK0eza+M?#Vg>WBl(ONWRrGDJa_y&Cd^Cx->1N%AmMH8mAiSS13+6kU8 zPS)FP1%zH!(N^o}C2xq5^y92O9|@|AXQDa9_w?fLU&QD=i z;7{$6SHyv;Q(eh0J9t)%e&rXxYKvcpU}uyejWikDqv#TR(g8a1X#y(1-YcIa;Ndy3A|%#Z-fQv+%O`nTB({ zEQ(X151=byhT5-_h)3Gx0xxQYTbVnPacvQwsVvYf>u8#<@qJ)bh9w%ko&n6O6vt-R z1d6XLzjYohFe^YGH-PGVU+1;KI%Fo3NOD;>z>l~F6jwM{C~<~;wQL&FLxi1SxO9fK zl0~pguLnf4WR;Y0f058ae&GKKpM9S~RPIy-SWjJ5yw@oS5|2gaA}G*}_;FSpK{`F`v4=TMDO3m1Zv%uNOIlfyWz=)@o6;}ANI>Hb4kR`Op^AnHU2deAB?T)S z{?agYV2T6uvj^+8pkyK7OCNAUpRm!Bfi(?(IqT^o^jGcm)&?GrB-urbz1xh>eWZJpKv)k4r3ZdimKBGfSCZ6}ZrSD<%ldNdBvfZQ58W z@ZnN;Js`|%Okl}YysR0<Vzb3H?Aum?Sv&>DNn zbxO_9TKl7;kAcyJu4iaXhIt154RrMkqD3ygnq#tQF1*VGLcAzpY{0o{NUiNrJ*a~F zia|09?b6JD{`>#*-si;THJv^d5bdJtW;}ia>(y1?aTlAEMW*nyYv-YH-nVuh9mL|r zc%^rmu9d(EBFK{I+P_L}4=a2vCEizga{&g?(og>axbEk#CVN)P9^?gXdcb?g9zev- zC7Bf?K;;ktWlqM& zv74X(MG+__epwi(k_f04I>8+>;m6rj>*G!wE$qi6(@8iBL7}J5s2>XT`H%Xc<;Yv2 zereR9;G%v>I?ZM1zaJs$$FXVGXyTTjA40{BmSo^$&>9lK1pN|DT0?S^w)QWleWYsO58MN-Z3n^n z=qDzS)xp*8=oy!=3VVx~ZIc21QXDk4)Dj0J*LsUc8%Aw`N{Hc1Zatid)uG>TW+J3; zCc|b}n*lpQnsmx?>VgbuPBr6lYG8RYR*0E&h>7AKf;ywnD?EyEImBGboaI%7rt_XG zT?spkhOVxT~nSv8nbX z%;8VC_5+qwtY5H>JSZN&a9yw$Q-%(Lz>7o7K&WP}{yu>)kkvv$vCU6F!{gJgQ7R-T zdi8Tg!+$>whDJLt3=~C#3d1(Pmv9mWr$Hw83(3VL{TGt93tpD`3YL_=M!epalneYd z$*?g_Tf8$>?UIQx@Wm8uH@LLF4zN>n$#Ahm5E9E>kuzoiezYhJ!^oRCZG)KH=dEtesE0A~>YX^&q>i+*p`g{=5-_E0j4 z`Ft~%@8_yH_^;Y5%=#n17W$=JE?+OeR~_{JiN2c%N=t_S?>$!J>Fe`dx26nC;ilc1 zKBSBF-2D1q|7Di@D@{w8X0oaC@*UgENoL~Zx>23y=!%rTO%!=a<+zZZ;gwT=Nk6lK%6jVI5~d2QSPb#>S@TU@u9nbFPX zkLTyd%;fH)-X7 z4SD=ByvbsKoctgvb*=RAR;RB^nMAwyQ6HEe$#k#vF?}hg+b@~dx17M<4(~GZ8~<9E zG1Y1Pmg#8E@mIEW)8?M_#(SeL^Kx9gU5PV&_;AzA!~fPWK=koBaU%}GGJJi%WYxuNUJJW5(lxR}Ubngeo2=B0m%+PSm|9|! zl=a$sR*+tYv!{mi{=%{^Qb*_6;Y)qY$c))6Cg`|uKT1reFL(5e$@B#-nd>&;CoTCF zH_CaoLzkQB7OiwJz`N38;w`0Sd!YHDtBllm$}wDdbl%MH44*mAPsZ_XyjvI8o0sHR zx)%o5@u8`3;`{YO9Owy6oJm>f4M^Gs@Ze|OCYeQjLm3|h4@Q!ks(VD!;$RQPdHYa~Ss z@H&<58+Wazhkmy9lzA#^Erye6R{XdYYU8^GTQ9$Sqz50ybN{?Tw*{_7Pa5&+`Mi5K z@7$y-m|5o0E!@ext0FZt`@E)%kN(<9V7BrH8VS)iqkn zeAJ%qy0TiE4Rd$Hdh$Fw9}7<@lP^8rzSHlSIj{h}7uoVde9|?>=K_0ff==_kJIviD zb!PN2O>$Dl>}c)yz4%CXYZExx?DeZdDW83*v=gt%PC|Jrz9{8$qdc1QF+fGEw0bx6 zP~ygU@sTgqN?`JIpD;h3#aZVC^mAPmNQ06w=w_=$W>CrA&$Dlh!lN)}?^{xDt|Vqv zUdsyN^!3)F;aDrz2Ku0zD!n&5^^zvM-1nvHk8v(Hs?4XYR_jH6ryon@o9AXx0qsZa zqn{t-&J$uaF~2`=N$F`TIeeju!fgWs%=Y_F^NIY}c>Sn$=MofVhM&Ja^nlTu=asyk ze9{KbrIs-tJvVZEA$xny_pf_xGtYfo7sd}2_H~{})apE!1eRcPb3m7;w{oh-_4~zi zf0plvPvxnSVxNG1)0o}#ImU?3>FH$fQs*X*LQN@gm5Iqey&IWyS8Q|DYc==q&@2ut zE~k0|czc#cxAR6V$F+0CR&gL!^BOl7&R;6euyTfBuJ7)OO|hD~=jD$)=zNsUn@_1^ zx>VGM4KrQTrN((Ybvv_$UMF8kRL(p4a~V`#`zhuzF?k)U&5D%hB@?vDWFAvfP0(NZ zpxKy7&rhIrZqAy5rpujXKHgxA(R7$B-w!6w7KV>AdQ@+`53`NlQ;MmU^iJ`C%L97a ze^yKH(`iPnjk(0z^{A)KD^FZEK5VkRDIDDQ@px{UZ?>oPQUNJh_|H+WgIqop&x&d- z2MZRU*2qC+0sk|EwqYVXJr4P&(u99v2CwYHtfu70ubkZM48=R><=i4b#Rs|CDp!{P z!he-%A8D2x|JoiJxW!kgO?OMV`%ErAEymRvs|*olIeFSH%O6M!%@8o7nU~u}<9g~~ z_-@{`O67;A>T_9s%c|F-(#y=uq&tan)#O3h`fxrPGx_3eSsT4ov-gke{OLVW(X?^%>8@gS2h7uZ{PFotGqWx8wo)kF zJTk3OZT4JiV}OF*?cP+_YWglmcUtAL0krwJqYiryv*LC2b#U9_YaO=r$_$6OT)mK~ zbRXaEn*H3k#%6o36T1EZ%)xD1H;lM~0iMseYQC0g7Dgq$Y1Zl1W9i}Tsq}JFeVE=n zLOU$<%ek6#KAEI)Oiu4~`?F4cFl{_?gU8&>9s5vHZfMqgNd15IzHP}>C28+fI<{|S zLbDbEaa`j)5r9BKX9=Ah4hJAk5(30ga5WM03jYKA;R}bu;R|0meBmqmP5c7?E0_YQ zyVb3xTP=03z4x?s?9~WFR#sJ3W>!|!mkYd54(lDUlsn5x%k5!fzuTUmTXz>a-Gt~g zpa`#Q_cE6>WhXT8j$;{cNWnqdk~4MO-H$nopNvORCbKc@;Dv7!$yJ$&l_s2I!*42i zwV^`SdY%++1|4(VO&24*(LgOOv3seKxp5(pRD;2|fk8d05yy?RHKjW&8AXI#cn-vv zWN3ahn;Mw5YFddBwZ?+W3srrL(nMqL&l>}jSg+;!Lbejo#Rfb&3pI$FFOk(2W$88^ zcw=N!w|O)tsP@;@%wWUF%3jt{UGOpm6+=C;wU;{Bgwn?Cso2?9`y)cr2rAPW$xt+< zu|`0UghTU&;fDOsLYo)=TBcu2(vHRUquj z1W%FC2#;3if>?^AQm+rDxHd+IQ%2%;;*@Vq3ym$>fi;M2mJ>O6HJ^?$&td}i#=(?! zrkzb&?@+A3cDgB9u^Yl-*=}pNj3ao1=09|RPdLccNbaVLqMYCg!II^C5vmQ?9}5&Cku91R#*v}n zO>8v9cSP8lZoTekGnVY#XxJHzqO>9|nNBYn)|NfggCce3H5Uu17|Sx%nM#Z|np9T1 zWWO`bVT-YQp@~_YdI}M1Y>03qsq;N|*^04=;&nPrV=sBz7j_@rvHr`V{e!Mt``9 zS;>MTWN@!wAK3<;rZcUbt80U9JKMU4lSOBMSrzEB!Ymwp^5wV{ zjT+QCpHZ<`k`r9c_Nf6n!|%o%H?JA1J(Je)nLU{}ds(PCDieq_8jFqIa?dy|QLMp) zI1pM6Pg_tIf>LDLgdnnQqi#WPv|0>TYE=*nxGUg+9!8c5kuAYkZFD5iCmu60?B+t# zM)u5WP9{@KN!u;4&jt(8v9!rnqBdPkF*u{}54Y)Nv&Ls?qU?l>LLuf zSa_{AXO8g+qXgEv2NBt*ss}w6XP`lo#~iHQpVkyU``LtV>P40724%oi5fOxy8m(ib zMstsBF2{C;^n|7tG?cJ6et>7^0xt+P_M_%4t20hG%%kU{x zMq`HuH3d@%7!0SgsyJ`!oFHg$X1FL`)3c%1j6tV}2N&(v{71ilkdbdlu9}C29%9eu zLPO*)cg3pszdPIvK%n)-Xi*;f0de7D>?aQhKg51ONcgXj>6@}?nL+X+zqHhc7*9_5 z$1xmN8lS1ls3vy^P&HvvNIqR6+|6W|R`d8wv#`G)K2rhlnJy{_V~N<*jm#74F$66J zXl>TFI3#O;Ns(62j#l!9z{A5l?%!#kcisITJrRMJfWsTD4Vqcm#XYOo(w9Z}I| zEfSi<0>|~jnl+NE6vMQq)gG z&}8Pb;hJwBZ41k^t0#?u=1i-#H?EdKNyEX!N|UG=n_ZX~ ztF>1fky|A5ODR7(c>jd}pHuU^SMBg21itV<&C`A^#3zaYNeA)F%Q_=&po2gs5T@X8 zj*Y`fR}!jlXuyxB_B87!2A ziw1KRY6dYG=LBa~wJ(R$F2BV$3S($WHUQ@OqF&aqCajH5`Sn&Etu6VwOIRH<)XUYBTP4({7L4o6}{$ z4%$|d&0P3shI0Da-1o!Pq|kfXwn|L)Okb$@zRYylfY>ZLQ@>|qZVnWgbczfH#)OGY ztidep+EPp`F%=TLvqM@mp{CPCLt8S_wmstuIgII=q3)a2sV=4UjlbmAVrw_pXm-3{ z=1HwZpffufSv}LV*ZXFBu&87nx3;533FlHC6cZ3KHX~<@%0-n2qkdoK_Z84SnW3-K zXD!)zh4J)r=oCgCB2>6)Ov4pVP1HGKDR4D!?5v|0+N{#A3;hYf;?sE@IsDe@@NXOiFlpvDA`3lDd;~o1tu^6 zK*`>DKY;en7ZG!75SRf_^Z9bi!DO7;j>k)F=d1_y%zETo%U?7fN239P^!G+1kJZ1~ zX#6$$R;*RzD^G9&-YW~82&A%pDSW=8TEZ%*)G+B+lRNtF+z<#IG}I>QYo zp=5L2g+j5@kTo~3rqvo0@y<{+FdH*`Yo;SL-k7^llMT>DCd4^GlMC(oN@-L6+$IxW zXks)RI9MwdDQw18wPxDt26B*$-AwawGtTFz(Qwpbt*YlH=)$jfP0wui=HUt}{Bg6> zj$D=4H^K&DExViTWZN;q9;@#Wst1eeYO8vSW=)5>15y?sO@YeL}RyQ@jx@ zBY_rr=$I-NB4nge)qRU(ZOTTC#xU6fnY(Y-=SsR48JQ@D`Ime~3#K2%=R`^8A3mtd z2v%Lru<9HhVM=3~&c*Yy128d|MMHl^1N$S%ReF=_?;t zggP(<1;P4rf=y7nbK;RT0nZfXqfXOZI>^T`n5BWwuLqNI2ey}h%_tgB^q!ONbklN6 z0~9kb7pCp2U^BvB^8fO^2wxi?K5*m1eak<#<1t*#cf{QlmU4gC0$AAkd`Ce+FW+MT zHX%IhJOJOGZ?Qbt$6B6j@@dVk*vxww2JUTkLcg#-_i@iKWta#T!REc?l;kO(MUUmlR8l2r1a6ArY5&cpmkDqiR z={Zi=6>9L(^JZ6J8ee#v^a|+v2Y{=eD@c#fwLVLfE;x2mE5I;*k|T$21FOHDhV~CuVdk?dd>L~7Rb^%V71(PVeA@Ut|63`zlkRjg zQti7(IV->430hf4$!}q!04{q`FWuQrkj+!wFu2Rymy8SFRWq%e*>`}pb-1S(lBcVy z<1_H+t}aF3^5_uUWu(BV>AS$WQzT0Xt!&Da|L|yU?jEW9Q|wx(%$d6`U)k$^e2Itl zg+yI+!L3t{J#@hX+B7KR2q_MK8Y;`N`sD-u*%8!Rp2vT!tfww;X;0lcdCNNvxMSEc z$nkQ@fjo)baUNZJ;}P0}L?8R;#>d^`Bf0w&5BEKAHm%%CO8b*IH_wXxw}1SXx7YDo?TzVTuRkzfBr<$M zjh_02r8o`GN;xkAw=U(YE?;%|;8M^7Ci-nlxo)|mh%LN@rwgMRx7CSfO8@)6mX!YL z`!A;3dACV?*0fJvzg*vzuu}d0c20`Amy#>XV}6xqDCT^12prl6O|v zzq=&g#2dIV-rMpwW#fg0*BpQYRG!oEy;5~69uG0Dcd~ei+ITmM=6i+hGnfN$!3!dO zADthwEaLELll@b#+#?vA(?7iMY~`M;kw+izeJl5$ogfp%$(N&5M`_86e{BW7RznT} zjDw*3juSXgDA>Yq^8^l{bI(AzQJ}+a2IYp}Bvqxze}8)@w{LKbAkk9FuVrvJ;6&XB z%ng5vs&yp(mBHcXXK*;*IoCp-VZVtC4j%z`c6A1a7q#VY2PP9JR|Fgn`2gh#vc;ZJ zuFP$fD?yP}9Q^?0ilGQ~X>yzo#K|O{;$$8(?|k88e&J+(oY5ek8jU=zb*<6BKMyCf zcFu5sv_nV3aUGWAIm7WHPA2snC$k7i{?TwUZ@u053n%jrjFU;9;$#x%j#rwV4p^Hw{5XD#T{EB3kBt-rZE~7E~a7#SYWj*+Q74W0IPW zh(LGhIJ)kNQgtJeUCOUCVE~l5lKe5h3o-%Rr1aPv^|lt=u;e~2itSDtSqOt=0fZ!p zOT&km21l>Pld6OXV%CJU$s|Rj`9uo3o`aYv?=B*BQ;X4BZN3+~p+WJB<)(wLhn(ES z2YV+I{(#@+1joyc$no&L@6&n}zSl+mnvc?>4-;t48Cc z3ma=oMm3!)kmj^a3lpZSIA(m6qB+~x(oIE1T&uPvE9=n&op7lIYaO*$?=IF`f@o>3=zI?at2O}xHDFq+zq;6J}akd+xqPCcF^-zs*y))OQ{G#ZT{s0e=c-7UWv(>WJ<-47oUDZ0P zscmEOZqaQhyIMTh@PTVJ0#BM8sd5}O{uB2Ip7I4w<2y2*3&Le zc@gW@c2Lx>qfspqf)oursS7P8Fw}=6yFNz7DHA_JB8i7Nu4VpVxk5P%TH_kQbnCgf z%zn&+hXsyDu$+zDg-E&bjJKC#E>s$rZBCi~D6X~}dJcQl6DI~Y0a}}VIBTx5G&tVP z^jITy!LOKYt23$&bAU{GP|+hv&22L~XN1`t99Aa)vO<4PH>T|vmBAywYH>Ni;dCUJ zGBTZ4jqzlZHZ@2IVHgf~{90bM1+m65i$%S|Z#bS^224LCXZmnh*+&a~SYJ`0jPU}; ztqnb8jGQ3e8K`tBG}eYCbeH0gV;76bVi&d(SRwohOsuqVtS23NK1ky}WYwCzN<>0Y zr82E`Oxh#`d5%}BEZtiaf(>ak%8REQ)50xjEi~Em5i1 zF0KW$T{@k&-Fde&Sn*!8V21p3+FcK;e7#>7sdVg)X_p8^d?q3@DJ3R~xfwEE-Nb3N zzOM}TEC(n)7MKtxsf)-6{uxSfzU1w|6s38QATC?!9EqGQ=&{)j) zS(+wYlrnmZ2g8&$*AjBV8bU<3x|#XxXqj5k=dJcea5b{S$WCYx^J=di%QJU}>wH92 z<5`Pow~9{5j8;GOiLu$GC2vVjr*pAN^~cJ3w+g8=p~>!I>T3hDFVK^g&*Sqk&gpd> z553(~9Bd%6&nlkfS1hf78|kr{ZQ>D2F*8D;zBvoD=b~fl~ND zBOFv5s$#z*ByHL;jkbhDUa(ub7#_+oIjDE2%(Yl!woh4&kua{uWH%j8-~vT=o+x%} zPfGPQopd9C+)noR8bQ@2lPDWxiV1sK7%}w7a-~_64cHkR$Q{4SjH6u~b@t?VH0H@5 zt6d8&;70m`#1Dyp*sE((i>LI6(O1oRZKu=?WI46^ZPZILTfmt9+?-9fGl1(c!M78P z8ZsQiZCmD&?TFO?!FGii?P=sdZ;`cXpAtIrU?k@-4oqt_!8mWz(se6WQzv*4RJazh z0h@a+0AnJDipVrnPVgDr5SI*wlc+vqSe`&T&|+jWTdKynohCQt92ehhgurQ`TST(O znSt~WG4p!8Xg;9|A6wPah+Lty{oI?`BLh>~RhS)cCha%2{?37WO2tJ&iKC^j+iIdG3oYF>X3~y! zt$xrSY?h7+ov57s*hyXWczH_8q=QOV*|2)4oVDw?(vdi z&hA<|UWtm%0FL<*T)qSYm=io=0V=3C7y?`zhT$o6t_+p9V!1Hi?#_}P-qhuZ-tTh8 zdZr8|cCra5wYpANi5a%EbO4c*YaD=iAl9w4XOsDiYt93f6;@-m?=3nWHjf}y6y{5z z=PmelJXtLFNV8U5!n-}p^Xj~tWHTP!n{m6=9Byr+Wxc3!O&AIDmXEcBie>wD+Z^l~ zRwx?sf=mYEo~||;?L;($O~s<;o#i6cDrua?#8^^wE#2=`sXt7uRgIao3pt!JBebid z+G4fh0+VgdJ(TPP0QIm0wx!cxm&BqCgqj1s_yM-%Xhu&z7s9sm2UP>2fEi{B^fXY) z8Q2!$t*|ZO0&2mMpM7Nu!3Gd4^#X?F@dtl^ZFxMExaac31vz>j$0|R#Ag7;ECXxrD zu(fPhMhCHi#cXADMJ$%LtCw*t&uWj84>JQVyZ|(F-)RR94?TAlLiY5th&M+^>Hro+ zS=}wg$w)URUKpwS2A_aw7Q_{n8wp;g z5sx`H+Cvq&W5b{&=!z_U+!J8SXS3Vb=t<&nECHjt`bF*{`}4#~#3=_CUeynivWq zKOlLig4JP<$qC}?Z7`l`BDbu|{eytMge#3ynn+RspvNp-hWO^=4H6jj6|_} zIUgZRu8}&=2<9J#d?T*(c?mdU)RhNZ>1Qa-M{|&Q1TmWfZ&G?r|B*R33z(U&7+e6D zNu9MI$QNMdmnr!&B|q7er2C4S?uYc{fSHU2)k$Zp;+w?)-i+ql%wpQvOiPXGXj;d| zdo`7}d=-YGARMa3e%rF5ZFjZ{Pz0T*YHtzG*OOtJ%?XChv81%;x(gZP7H!7#)LNsM zJ{fe^b!ly(vl+XsE#Wi_;d)DKbJ}9j#*Mm^SsV?{=B{ga-)VM`F`gV&+S;9DLI`rQ*qG>BTT4`fxvt=VUgR`d(dw z) zI5AVpt&`^DqCx0dIB{I4_e{K5$m>c;BefxQQO$HU>tQvk=}pwL5~ybYh^hFCJE zD&PX#MC^()k}sg6d_+Oj?`5Oy-3@gCD&RNxdYw{s81MTftQhA-%1X`z@*D|Dr!`n~zeEr<;MJG+)K<+<$1djme?Y3=}C;J@F>hn7DIdazJDD4NLPrbmSZ~3UO zXRTFsQvPgV=u4PjuNQVb4BK1!zZ{?73BA{`H9kdVFT<4njW9i<$K3D&lD`rCaKt$M z_6Xzj_g9M}mh1NuvQU}LXFh(qg`Kha+0A!Nw=Pqow>Iw|;SImLD)Mb*Co}JZ%Z=pk zr%67qM{jPPephzrH`1c7+M(Z>!TJ4J7WNY?%fY=ou`Jbs`+MdO1OFoXQq~k5)Bfpx zSqXdiDNs{6bBC6?DRc6x!t`wwzyAIwa9S=I;I);hX`!FV{p(adkKfBj?@KzSbo|zD zJbo`s!h`{&j3dN9$nyI3Bus{6>lrl=uRg9toEhUl&fXxEMc`wVHJz!Ms+S{4242={ z095249gj03e7_r)JoWD+Pc8B+n0B6BVVgCWsW@BLvEMQ0c%MAIO|WlT;4!7dCl-0p zod10#8HuZUnOJTzI>mzPufO~!*>N^o$=hK0TGkK4^aIBO7z6oecq)Q9(pn}{2S&hN zDxQBjfX5@cCl30f@zddZ&%i~bZ`{zACAj&m_vxXedx5ntSva_=$jcn{Y1bNCg*k&=vavg1igZJ?IKt6av3X`!}|6DU!JvnKe-K+IWhc) zN2-X!B>nbFARiLEC=B7pL@(YErZ}bZ$|6QF`!0L`+%UdzU9atypUva@RzW|T%WQ1@ zhPk_JHuu@w9WsGlz~N!<{HJj!{gy=!!G6Qc{h$BAUb4sYL)d###v6jvWghYy$;H>Z z((mUV^1q)Dgi2fv8blp#nIhxDxJmKgnJAs)l>+=9|Groc5Tw6lJ<3^%zcTtB+8w0* z_*j>fDp^}SviNqDbm5}uM{K<;V~@CG(exvjlV4RY-=<{>^6>sAaQeC%FTrKj=e>)V zAHpeeIj29VO>4g!PSM{>@6Rq~wAhyYF^oQKl4m&{-?0Pyr97Z-$kbe#EbUcZPg@o$ zvt+kE{`=gL!N)kui76vavprq3OX$r>$zK;j^Bv0aBeoR1fz#iOvNV5N%JNA`hr>># z6#yAp-Z*~1YUYP};7{56r%s@UB1iyUK%u|B=6rbJSpq#ACyqx<-<3d*2GoDvf;v(w zTJ}9F>hIijb>6K#x9jTu43}SQpbDJ3<0cI?-%6Fov@}z>i-1yA@BXCRYSry*YUgaq zzjdrX-#OZyvdG<|<6Ax|j$3H&{^YA5YgPW}PRd%ct0t=V zmphok(LaB`qy0N|?^;sU?Dw0*j!9N8%9fgYRTnF;@-0n;^p|XDdc$U>UN$sO1CLP2 zMy5A!VR~nM4@`kUnsv@aXQQtw@WNg7SCv(ahfgc+qP;6ucH6~a>}$$10?k;hCnpH^US$yDyPIt?oGbnqKH zt`Ajt)qVMjA{Sk7U83%{9nm>Vte)-D&+ncp$rr*A$ErM$+>-f|r)sLFUbb5ketlkc z+nDp^M)^Zd8JBQ)nH~RZ?wTdoO6$Cud{;R?vx`1k#H$xM4WG@Obcq}F z5zM_C^6I~p5G{1+Gwio#{67!*UhKwVhj92i3cJXyxCEi>DfrwUx>qj3>3dJ%|MvI) ze!&=d2_W&N;!q}#$H@4*+Sxu;rBIpU1RS(mI!=Kk`-i_r4uPvwxQK;UXe6$o+Te~0 zvXjFUaTN9A%g?gc2164WlPAFZ52B!#)oCQ5|Zf!48G*5ykQZrY=>0Ac?pm7D=&Z4@V|=g zGnIBQaZl>`yg8rFn@ceapOtd(oj8aengukutF z#K%mPV+&uz)_Y3-`@fcy{_6WLf_pz<<#Cap>w#Ut^Bf!HXWU9&{rN%h%c~n0 z|3sD5Os_ODS=LU!$G%m)(``CXS>)y8(nAzs5(H#6dqbFnIyT=U#eA$4s6cV|ansn& zz;hh!r1mRM0=s&$OZTwZ=5A&B!8l(#1Xs-cRpy84p>)ct6lBe#;-m#>_2?N1qRSPKDU+yHZ$*3Qxo+Y{Y zjo8hay5Otm0-}nbIj|pipsvik4-U8Mpjq7?_k7*$^HP%IlBIjE>6`cL@*Y?W%`?;- zf6>=8Uk(0-!Brf_LBfc~caL8SGABf*&xm@G?n$okl=3&EiW3MhR4-DV=C5QTrrN=s zvIjvioFcLYQNW%jlpvA9oz8xvX{r)%#V@VA!a&fn4$1$OA1V)$^7I^AExxTBW#HwB z_VSfrTiUAkIa|r&D@reFfEt(z4|cu*k&%AnbvoSXWS!}QL2COyq+fqAg24R&LB3+B zTgm_KxT>8!(;ROr1=&|mhYs?#wIHNg#i6Za9s+gcg}0P#l;@`4^{gKvJWYNQ`~&D(;%j;1{s zc@mK15;2AzUUoe{XsFKi4qRlsW*p?5Cq*6qz{~L`2WE=m^ULi2{1=aU`tkQd%nEIi z>%e>Ecg~PJ*Oq6qQ)M?h|RnT`7Om)O;F4gayqH9re?d*uqu)*0o>-&VQS zY6wc;AD~=ev_@X4T0u(CgG}ZLL2sy9;p6CSfXrui;Ko0pYTcTO=lG5md{>+;ZqOb)C`3M%E`84LIZX&;cig1GzUGRs6J} zZ(%rM*Z&dwxxD!&jafT3=6yrV2#mIyQ7Q~1YBg!!nUvn$zIC17)>2kdMCR+gD#!7glhaJ=x27xMj`z+#=; z(16~x9Xbpg&CGlFf$rf;E~&YG$#vwryq9@OvfM^!vt7jhM0(y9Isu9Jb&jT)E=c)Xo*29(j^at47`(_%oF@jy zKw|J7GNjF*wrKQ)gswJCrd_K`rXmTb)vpDj?DlkLV-TaYT&s{#GH=6y*q4PCv!4wH zvL6cFoZzHx1%4aCDiz5M`)b$O41*E68j}0!aGuWRQ!?tMdVfD+2UAU0j|Q>9NILE9 z=0mmHoZvj3bn%gaqtYDD32y3$Fq+O+tU8Hle_>*Js&@Fu!TQPqneXJp_Q&fKw%1UI zMQv}p-!3XJInzc0I~p5x7n+%qb>9jXn--N5M6HQpcU>-BcdHGKtchCMHG&i)v{4!_ zctTu|%QY<{?M;ug*3y#Q!$RC`!((?2Es;@6MCV?A*VkpbALIm=74QGE_a!@yD@kC# zQs@DU8ECq>lVU%-2XK)@Y9}dby9~IBl(>nDNa-~8e1iYL2gAM_h7Z2^Py7S^1#?lY zTB=l1Rrk!a9$ptkk&&5^k+EfDgs(H0nr!R6UK3OhTa8#{zDxoeh=;4z>7v&Z3P>CP z6}80M!t?scQ>5*vTyN9$iob)^s@GhnJE~_THFh%_isrPXq?x@O*|jCu+5}w0&TO}* zOu*R|Hbc0F4(Xm3s@0^ZfIy-SU;A%3PPK1 zO{go7Qm@gQ1keG!r^4+Sme@npY5}X*L$!5F28<91v`xy~v00-xHiRFYG!OztsPkgZ54CGfLu;u$r98ar4!Y@ZN5)tQl1gB_8afQ+X`U zfuW9SUCGN9hRgJ2rMqn5%>XjOWmZoHSkkfb^(m(o$MZ{AnP|I-uP?yuDBI9Vr#9&? zOMsRz_mp{NQ*$Me79ltA?ZkD3%*8;@o3@(zY}O@U4lz7d8qYG*@jDy`PXke+`{JUh z+RgfOvvX=IQg%v!(sskC41zKIfTYl|Ek}c80}Vd-g-F2I zw2f5f7N8KvbTsdHbvl3BNGLA^x=fB+XtBa+hXb08UPh85g~#nxwU%Yhje@4tg5-8z z?h8gZm~d^cNskyzUkQ`e7>t^j=m%>`CoCzXdyPKNrMNXU1OV*`hBSqcc2kZk0gm9shVF%uCk+@R88({3+~{#ksOOuS2qIB`I;`OWKeGcL+st#t3aBNd zy@htZuFgb}rbvomY(@(v*={cav^t2j#7t;18Kv+VyQJb_V`LH(J{vMXD_L7}XGYP~ zj@a~4PsUazubLX!Wc|ig+zxqN7r`!&O_+)fN5gm%EvJL^4jP5XbedoeGwBU?3NP0P zyszzQoiJ%n)Y&2t2AMr=nG;}w=6r(80-qv19G1|nw(wGP>Xrc4=xWp&B&(gF!EUqL znk2|F^H(E0>%@a$$4+``wq%D;ZL~JvO|2aci)!~zm@eg472)qo!1DslA&xO=EPA=v zZSvE|A^ zw`4l4*(&D5yeHJKP60SW23W7S-_{z|TubvlM#YOngPO}BYeo5WXIm{jS)|8JyP3^} zOriT$vuB!93C9E(vB32t5C^h9*4tno(*_-T79(~}v6QG!nP8l%k`Sl~yC4*ScUF}c z4MeyhfZ>J@Ti~>K5uHuiBgFxmn;tV+5p8yk?6$5XtvBvw4WQ{bsv#TG%K!k_EDWCM zNaJlyUOBE@$rOrbNp=hM5+^Yxg3`OXAO4=a$}uHmj1divscrJ*NOzeUC)9AI$$TNshWm3 zvlywPgwwUIZuDVI^{}ia;51FIJ3fwj9jvvU2PHtp7I2Yk`tEwpuL5C84;q9$!g8=7e zfsM@ z0uT}q$uJf}6V6rK2as83CRN{kY9q|c5(B%H^AL-`hG8zBe{Mj^IV z<+Oa^N?@iArdK%Z*GM}WTd>ZJ!0rU3 zL`s^uSWLuS32b+DV-l!MaXl1S1P4r3yl^EiR(dw0Oms|%^g?ZcQO34g#6SA`vy$4RyQFS+d>|Y<5$SlC43F0pKRKSQ><+^sLOyIvryj zFkOW)xJ`d!D;BJ3Rs!aVZ;h;&Llo(j6*wC^9_J#Slh9_^Ws-K2<~wK7lcG9xb0EAd*;voG+Xtc52L^4xcT>+KU+ZkgI0CI(A2DR5_ zLKr5bU`t0fH}Ny`mg|@jH0(CO5fNG@xOi=4gw!$I8 zi~O`5VQs$Vc#+q!hwGM;NR~RQZ-=A)!f3TRTgl>AHHVsZ=d+zz+oijd7%9fW++~@e z41}GdBlKi1q{g&}_7-{*TpWv0IY>;|J*xeR0CuSWgUjvPlFRa#b zF;p_;<)<05x$yzcCm1+|L`-XqcT=e(_JedO(No?v^JbOQ6 ziOPG}Jb+1!a*{lwlIRCLt^npO^i{OA?iU;*C+Hjqdw>FZTD(vJ7dJYLZRgWjVzi*> z>7?y@xSzR>@3J9YK@|#r!|EkeYL@2rTH;pQl4iLWwxrW@$%YE|O5hbgd_cHdm|?|h z`O>57MNh|zN>wW#{8BiMB1;L3(n0j-fj;ISLciQqhc^DSzZnzQ8J|(<0V=%1_YR=a zE&S*JDjdVVZS2TaZO4wc-^)wKc=Yp>kiXwM<<9zOSQRzZE>WP7mkVxk-bcf2g&kP> zXsUHv`ew9>WgBucST+67 z9cdO~eMwtP+I2uq`9`CkAdaYlBu#h5;5O|q8MkTRNOQ?b zONT{;+>YF!Xc{;OCr}zVph><0IG#?zrJ*-Gehnf%0~6~dx7@lxhCqo2ruInau2EG& zBP*mD%-rj>#-okOl7i$7ESC3{yJ(x(^mHN&D`PuEMX0_s7aq51hp0DLd12FSW7*CM z6*1-}Cem32<__4ld`zlw1Y)h$$=1@BAtKgY*ja*Pv?+*wxM!wRN*~JDW(anh2~d1# z76eTd3OKzd+StL*~Qa3q+vTDz+HSuj(R4I4CCRX$!NQ=5YuEImEkaexdDZu z{oW4U*6+FVNk7)i-B|N1U%ynpWHrO$pJUub&3^ z&9F0m)gAGkMa%T(FG1u%uFkZbjXQL=F$$xyp@&)OyJ#vjD#gffz}yV0O+Z>Th23+7l z&}#3^oGN38Mhu=z;ob_C)~YzupfrX1T}9?{5?pVY6pAyXw{%fVB0a>IyJG^`D!oM@ ztE{<{*@m(h0<~5}homzLrEX6)BcQ==sp)7>q!oQ03Lv<~!P{D4&N9tPWR~o){2YkP zlN_Z zO|o_wxG#=H#^)E-a+wx!lU9^a z0R&OCYfZFz1f_Jub8{YsW>7b6Q$SZ#>qrJk1P$xp5S>dRwIrJKSmsAk;B;|++u_Y* zHbadZ^^-+b;V@oL4oVM3c4099K%J$Ia{S|r<);>Va&Yf9S%9 ztW1uTis;2MgYShNEflt3{z)m8>T3A~i&pTd-z#x)R|J|AVJT+8}>pGTNXBM|g}u zD83y=Ti!fSGb$(Rg99}&1iyWtW?8}GFi?{!Gh*H>P!q*5m>@nR3Lb+%xJYYyL8K-G z!5DlWDFqX`rgy_oP4qC#t2`?5D_HYPu%=Wj^m1yS2hTkZiYvnep9X9`JX5`JQMBA~ zBKQH}a<|Tud?p7=P-a{q!22_=hZ$F@!$VM2@%!lEp(p2rPM>W&E>h0FQwWF4Q#b9i zf?R&c^75=4N0Oo)3}Ev*)YEUDJnH=Z{yazM&lY$1G0}#V!GA2;un>079Ra1|;J^`p zU+4&ULkuE<<5gJUlOV*eMbu&CM5q(r@FyXN;LG?!ltj_DI~6VnR4n@OS^(qoU#irf zr(+u*(ekF?$LCKK$;@r-B#`@`A3+p2zu1Ywz>A$N0fjLzD0lc?jhhsTxJjCBR(?Ei zsih`AY0EevPzwj2bwCMZe6B^WMp>sjZ)Mo1Wo?$&0B(VjIO+R4fT(*3nQGap*=zL| z_&O2RU0kfp8Zg3UxE*4fm~>dEozg6y4tnhl7jRAx;$+9vx#c#K+|ZWH*{&u_-efo< zsKo5^ir&F{jdm|1selFiYGY~Oj6y%Orm)j&*p90WU{UYKO9so>CK)ivXgi~6Oto=U zK%=eSMi%5m0Jpht@9q{@M`xx^r@P!}lR8;>Wh8m9o~GUoW5b2V#qCixhy=6I;YS4P zvXaawSxSg&uTIp7dE|;c(tyYA(4hNhvYu^5@q}1z?B#;&1J(9nJDM6=cMYy<6Bc)i zeWka@Nf!5?Zs3&wuZfd<86sKr@QOIemm!iRz-!_pUxr9lvwTII^Ql)MQ5SqE9IPui1Y1x>tG5XTcos(crS~5xyHJNx<<^fqe}Qf;9Ap_-r{LO?M%hG#JHfarj)onKo@I@>Exw~kVTbTl5BsYcys0g`rYtrZnbMh3%(C0;G*fsLtcjXz_P}k2={A=< zmy#>jWaAlWAZe4s8cs4JT*jmLMVIAq%dD1OALlz0hS;^lVI)tK-Ky<1Af&chh%LJA zsVM0Thmzs;oIvmIw0#Zfwjps=5BBo7FB*g=}1I_t`Pra2f(4V0I-iVn2_>t`*@?vHT}ZXql}3^bf; zL8D!NW5-BDd$UX?D5E{vM)ZhbLtUE;Qr9Gnc+G6HhBfy4oDVm+tiPzpW=kYYFb;ES z%_kVoW|_qBV@;}AOU@e(1u{~CXs9d&)7Jq*lml+KPTGX*Xk9&}dsaVA1DhNPYqC+V zWC}hbISm`68??L5Oajoc`nYFyAWwGdEoisev}*&SW-c1?E<@@wU?a9UIoK+jbgoYr z)*1?#B)H?KA67$dFZk_hqEaoJA5m%=)dnzAx3sexPO;xZSDP|^(t5h#bkz5D*@n|| zE`ATNWaZC3%v(2{o^z^ufF-+n4iJ6Za2mBYVvAg!*%o67hixH?has;Dfm3>*pM8c! z*ywA!SUF&d-4$1WAUxvmqkWIR?8#sDd!_E8yz4?1;uS;l?BzkB2CfoQI*%6PP~E3&`d3S){SCZ6R#{h`)Px_tYX-8lXemPUp1;6gBS7s>jqY&*76qTlM+8~@QT6hU%8>K zdM?5Ei+&>qeu4vlAIN?GnaJ;Jk%s8A+IuL4{%Odxz0Vrkg@v)N7}W`o2P>wGfz*xX zlnb15ZWJk!KhkY=#$)lTwrw>9><{%XRb2A8|LBqMPB7K`@jWaF)=;;`SMLA(Z*65b zmn@E}cy-|&yihg2!D>8igWpH%pA&4Cd*bh*-r5!ap58yl@>$X@DE4E^Hk123if891 z?y+)6y*H^0c&^(qPPkZLzW=STGJ zZ28W!Sbj%^nRD>Iy?xm=Z!FYbov4574JZ^Ri?cWPFC1(@<-NIAGvBoVMHe0Tfg4bG z+0wo?D_$IYd)o%olev1RW%XQJ7+s`5U$p%1(qD#gH3fwjzU35L8hEicEe^GxXSU;; zhEhnwkJZRt*t2J8=rTH~SHy6fQXr_Jjvq`a*B!^dnpB=wSUY8mziA}54(@%)cM9Wp z|K%W#Y^mLMyqxSKI@^APS4DIjhHtzfCgoFNPp*hDxqZ;cje|po1LOD>#Y$hu@B0Ab zSEu~iwi;$rLUWd`{PuxxqD+)$S^Y7I{jKm%}hrIhXUa1#zfgD7$ zqR_Xp9JVe(CK68o~Pr&^d5cU!*wpVIy+E@I|h`r?0(J81u z;~Fnz_FE7D-T>++A>f~fsxCt6zx!hS2m*McH2%S=(-m>CH<0opo&kLd`&=-=TcLg$+j^CH)uY(B$?P2ky$=BR#dBWgIqzUS zA853k5Ng-4o>NeN0%h?88s5x-FNuoz!7AhDi?^!`LcGdC`i42U%pg1k_h+1i5Amd6 zZ4fQCc zeVpp{M)vp-s@wnl`+vUR{p&YC-nu(8xfI4f%ihcn$E@%Qj3>{YOb&J9-TQz1&$nah zgv|T6o#=BB)o(w@Ko{H1ADZ3g%pUUn2!BOiAB(<*akzxPf8ikdx(*ZfocMjw*9G*? zj6Xn;hY+aK@dtaE^EA8wfzjv3UVf%RA%{!;&?x!Ge>=0jUwi!)%$-z6$jv{lF*e>JLfRbL)~gfB)~#8Y`ApIhJF5 zrbwXqv1jFwBV40Mdw*M|@#cV~+pf$LWIXy1GVWYT#uZEdXez$YAh^BOb)aIwaQ&l} z+d*3wt+wmZHNJnf-C9Kdpw)J%9K6CnI`M4nVr%MUu7@{>xML7*FZixm1_y(Bxe7kC zsno8vD&$pX{i@ElxoU}LQ+Q*;GS^2*v>%Db8)yLlLZRy7Yt7qe}k^L+_o_f#> zFE>hm6o)>c|GrMwv>$pOHPxq9z=7NJ|NY~Cy`2O;I_u0i61eqrr~hjHm-1ZVo*ljJ zf5FhQ7V7;A2mTibs`|G79oh5mNB<2>ob}&8BzE2D`5&BK2YPZ+1i`Cmdgb&yRLuY5 zT%*Xn_VoPpd}E)kWT`zuehg?B8kbZM%0o_~}HifxJV1{a{zjK|YZ;VpKhW zP&>LS9*UBS5>8&1sqUOiyJ<@~U0jmX^+u_qp3d+)ycF-9;m*k!{v;F>DN@~hIV$nL zBr&ZFXJcQKB>4J_n=i@f;_cTP6d`%3IZ>gl>~+eQ-OJt&<_Ia?-u3<39_tNPW1+g= zVnKdl9?Pqmdc{<^Xc zy-?a;6yAB0(vIIBqkA+rb7Rdqs>olK2J0GE>gCzjuWGHxh5lJ>6}GivUzDBvHc>lI z0Q^C{^6a}L$MF(zmzCkTZW=$2KHr@`_L@c=+dY~>Bp-R+#%J{+a{S;TX?0a=sby=I zWCFXYv5QohE8-^KDTJ>YoAOBk5#(%Ow0~DX(&`F8!pX zW3EWT@u{U_j%K(2!1mrNjIP4xeJ=CQYVXgHamfT;)7J543!~x1sOFTqRs#aFHVIyJbhQA8w1#f|q^Pe8(?#P0AjF`KQ@@spuaUHGlN|*m%y* zfhWCr4L1ki{_^c5tkVY1t#dX%cJ5U(=Fmh*f90U8riCe*{eiic$-NbMU}=_j_k^~0 zjJ=X|@L|PYW^P`^Tr}S>Ob58UcLc5+ ztI2(WUaw1A`zWH64Tc0x73XK7L3D`b%m#j4J>A+1tgMD?4|L8(fz``J%Hc&R#U<+LC2>#hvmr z3xriAWr{ApDVrt=ovw5KiPcen@{h=Ad8Ru*Hjm?;6TRr) z;VQiD{PF%k;s>|#Yb?LU@@p(_ZUx;7+}pNtLM`75@mJeAC{cHo*Z&~I?K5?J2I3&_ z{g^wK!1bt$OvCFc(!8P02=Su6(J4Fbp0hk(18;L??%(nJVd(qjljmIRJLSYi=qa(mr?fAO7`l^X#FiG8`#ik+W245O8B$e%GyLyH^LlTJC{f>QGdDgRX; z2cPDB>HD5hebaqy7~a`>vEh)z^%OU!)xsyQ`q^D^t9nf9Z(79|Y^_<8Z7XO@`Cg7{ zf2W&IXH=|aFZ!6&p;5z_Bnq|03^vw?pFaNDLp`pb2*Kh&sDb95O7zA;^RqVYp z;(TM*Ht_@$tHjD(650o#Tw4qM$T#C}n(qRB;lek7)DQI>4g{80LFj8n6y?w*O9?8X ziN2>%!Eo}6d<0UyQ19Z5_Ooh_PRUtBiKJ?f56@IDMCFz8Ju^eM_?tKSf^3z749?I1 z@c42NMsdsV-MixA_b*{i7-a{PO*e|GNADlm_oZsSxQa71E17Bj_knX9^3Z&tvEZ#s z(_Ai^&hy2eB*Vf>U(p*651iOjx+ulL%QP|9`=x%ubGF5ur_@?f^q!9ME7jMx#a3=u z$dYKCD4~&y9Nw$sReXOD-e0H>cVdU}OIBJe9?z$e*f;HR0X@Rqe<@c!@Qk%Q{a*34 zN`RFeevr4ogH$dBbTb!ys-l&9?SZZ3quG3q3Jz1Qv||#mVBJso^_`#NvAFrStl0bi zTLgh*z9cKB@1OQJ<09|LT~zGF=7g{pHs2LB@|`3$ek)Xy@8EC6!v3l__QETbmET+? zT-e^%@>c{QzG1<`z1R=Ff31Im^E+vAPVzfi|5h)4w@N+WJA{5iim$t`xe8!p-@hUl zL82%E|F*FsTeTfK-hMAH9pg7Q^1l|-^|kEa_iD}_?-r^@jtQgc2zca&qBqCxmpko8 zf2nre_dneudshV3I*+(H@xa%6q5r*5BA!2$D>AXIodk0K^CO4?@xN`pR`@UH zya*R4rgmXwdQMxve~}vzOVa{HFDRbMKfJ)ei=8b2i~P%=LFfODiu)6=zfnEW$^SRU zoRiL{eZA{hvD%hIK_=K9O*j9;pEBw<5?pGj$xqrcP6*V(!Dk&%0vVrc(W_C`>CRgj zHfmX$B{qOtpd?QE{th7OUP7i?wrciT{RO^Ggmo7esS+RlO=C5oDo!F_IX9`;Jrq>myuM!0zO*;95|!U53MQe zG#j?#Y6Do*`|*;&GPX$uOfuTeXc|*(Tour0>$i~wIT65ZF7~^-1=i7-snh8$H`=65 zA|*gc9;~OSx5L)M3H-Fl9G768&7bvRiR3P>CP6_eE#iplC0_oqnP zQMulx>$RN{pvnzat6p>c|JnPpB*l?s(XC*0&5m^&ohgZ#D(f;6^E?kpUOQH%2@q%i zO$=XW5BIL(+55O_xJx-3cw2aikjP{Zf*?Sd)m_=vStN*X4-XFycMl&{Te?0q!#Qiz z>Wp8C%xW#pdSZA+7Oh1|&y7U6&J4-XCNkC{^;j!YS2VWI676(MBF4nDE>g>mgW;eY z(VIr1UzzaXS1~skk83GmUXTi1)*6ti8q2fU>9)9zjnl;r&qm^Frcx6&7N_~P{m~*mBlJQh z(jyD)WQSCGjr<@wOQ`9w(B5h)B|57-q^Vdz4!2Vb#iYU+%OrS$ud|WLC~k@^c3LFn zh7#kJ#Xccu(FJF%vghaw2Q0TUn^|ugk=uEi&X#jve}E5POO0)}o5?WVsnE%}HfguC@noK&{r(GfA--9nA72v$2+mo>gRxg&598 zVzaU^OO0E}WON;t;~RQwsbc0ewTTNgan>>lFTG)s(!xZuwUsHW2?wm_mGP!sOtF^K zDJKcmDkZ4Wyg6gS(`lmAnP-~Sb+O;7h2x!UdDUIM%*;x5HDky`F_S2EMV8-GYWlK6 zHpmGaFtJ=F^4(UxHt)2Hi{dh!;B%I!#MZJnu%>3NsTHSju5C!2X)W3usSVkBO;*cw zYtY~3#`A1p9%p*7w4gTQ4j<0t)i~Kpx3^2RoXw7mLT-{-OSaTry>|74y?3ovf0M}8 z3bS%)mFmkxDZEM;*0kDN7o{cBsyFhqxSG^+iA>m86lFeJtGPzBQcthj%%Zt6`Ch3L zue9ZQZBdP`W9C?xFY5hqQPzw^_$6AD6E@Pr^w=60lEtwkSGM+}5>LnU$uK@mqL`&-d3w^|k|dSY zVp=0MoNY2Gve+YI^khI(vn4nn|58Xxf>pN}WFRz_g@Hns!~K<($d^a;jg%%6rNP*g zij`KhctkhU8UKLX2T1L59SG&vJp!HJ7El57)@F7dbljZnuB`~#(F%E~5(QviJ zOE1)*l^;fW6RH|*5G}db@6pZiHp4Xv3g4ZLmM^cRx)iHt7d3Lia{0{2aJC*d31`J# zx6xnIluG3JO}6?%Y`DI)0u&_(dX;H+SNUwMP4{VfL}vk!vw7N3>#?~7sGpnCZJN%n zT;TxMbbW;i|Ht9A4I$eWaHYVYrp6`WDiW| zw&0aZ!#;c){_!O=79|NdcE&)#)Kuu?8GiwaEYN3wnkp)~08GF?;D2ABZvV^N{AF%l zV*-9cbMuX{?Qc;e^sj{+t$ppf6v4Qz9p{V!EjwWPz1w@>uT!7x)ywQr@%hr_i!+@w z{_%Tv6i4xo?|9+tO#WgOhhRr?cbimcqsO5POncDQT&0!1mm1f^?t-5ml(uRt||j;hNCL1P;Id59YOS%^AB zM)c&i{7!ft(C;ErC$T2(HupQTRIgEyvcH{D1P@*k@#hg9;!h(y#Gglah`zmqe7^Ya zfBkpElm!iVfUoE2hb)L6n)ch~QEs3=f)7~-KMZZv;S&VgJQ$Nd@@L{^Ly+c98)X+&y*WdquwQj3_y=u2- zcB%3GKX){6s!X1ixBV<6*&&Ls0dPWNcV#zGz+w1mZEZ$C(Y5fVX0PQxk?KNWL9;(! z2povQkT$;u2Nto$7{;+{pcbLTo7hby5T5Ro-Lf~p4Mkz`s0`#a5Zs@aiLfMqQyd5Z z+({CYS79N-?@-5ULV1nfIqv3<`IZ|wr=kGdohJ^+;O8??l_y=?A}w0b)f3+A*6We{ zi}@P;WW?^C;s#)MHsmPM=bN|bV16SW(cw&mh`>!H8BN-{+dZ(&gjSdCA?RJ>$wu7; zAK|wMq=Us3n4ll=AGE5MbB;fJdwiZ%^~+NI@FO{Bub2-izc~Nz#QBeQxPBTf;uCGK z>#6r3t~~;Bg`f6V%OU)Xx_h^mNA%RjVW<|mrxxJi28L0vv4*DOV{qpl9-~R8X6_s2{)#-9fb-k|F?_U;nthC;uI0UTCm-}uUr`tN z&d9MB^|+@x$mG%doTBa^0nqY_cpLOs!AH>bGNSCyf+&ZM=*KKQ|Fclkw*^Yzh#o<@ z!i)R;@Ej)mjurZ2ExXh~<7sflU18Zp;d4_)nb@Pj=H4y=JPscq`}RrWCoW-_?=HJb zw1f~SQv?-YRROO-*vd{JhHV6Q>Riatv*0t}eP(G2s;N7l3wr1`7ieHsU4$e_6sH6h zFm@9Zq<57)D2TgaA3?!GikJ=1ME+%kct9%o0J@udH2mSyB!dFPpadV`d7@M$I3rv) zG(njdD2)t%k_|vU2L#Fc+1{BWcz5jjAa~^Q^&Ve5$36O+CLr)3hT~L?hbn;zPk&cy zIQTB%r-Nm%bg*l>YMoWAes$1tmLU6Z?+WEKXxeXN1_^Rrb-lSG&HuT;_@}4SLpsvL z&)gJ#{*E-cJ9C3iN16qw$Qw_)IXmYb0Hsyj`J8W1<5rmsvH=ZNC6Ci3I>Wk7aeMH7 zFwI`T!3GNcUU_(Y-}*dzq6eP%UQTz~rBI0dXD>JNKHio0Zzx{A^Zfm(e>9)nfHwd_ zVhIG+!w-vpNHelyERVO}V;SL$Hw!~6ydcxS7Z4mSL0>JbrUFVE>Bu9(MuHUIsPsW< zsdzcw<-Ut|LqF*NvAf}xIcOA-T|z-4h~$e18aYuJi;8G`X8Q4>WP;=P+Xv%#`L^e> z26bY2UVvI_O-6g>Nif5iWQnjtM{W30Ot<^k-aTx4&4WIoMm&UC_&w z<|2^<9MJv3Nu{||BDzzuZmT4R*Yq9xif|W!az!4#%MPEv(@s1AS{U5B(+&uX_2{${ z2Q#``ryVMtB4bfd-t+#Qc4AZ{4q~vc@3a%467e+XrvTfm#L_lt-8tQ()lTBH)sE94 z@mH&z&(vz?3=@1nubq1*KVNbjQjuLc!PzI$N!PMH>sut_JIBa*-=YiUj8b(?`!oOV zKo!GBV?nc2eSrMGfBj!S#ps?cX>X6msXli~2*vLP?;;`3n%ma~6rEypg*F=~K3CjD zT)^kEFx=7P@9MO?Hy;vEO9b!yO&dAIjvF~8JR3Qs?%&9XipQVR$DN!g>X~|LM+{ibcoSTt`U|V=HYo zMjgg}I1>$Pr5twSj>{@v_I}mgp~4v^^g*&BObsbf-7rjj64gt& zuApdSuGM#%L(L=IB-09KIO(;}&Se%0ovzgDqvcDl+m`j0RBhY0l=ddUWDDDRWo@ji zRB4$^n)WBrO`{ge_D9SpQ_RFVN*@l`+jOjTCc9FUIz?2drhe#%$ZQR`Z;xZ1en( zOd0vOG7HD0N^!=`^hh)(rMcI}D;FU%@$xpG+p@V?IHJpHQ!vM^j69r1)76-$yutyM zN_7<0(`{=$8^)WZSxqgjr(C|kM=JDuGhr4|xYr?~iluaT!eSGRgLXpoe1WEmGz~U5 zJ#|{%l%}ylkr;z_vY@XR4FrT|-<?`veVco zFP0nG_-nI1kLYW&-ZpK%5@Msl%P1))8u6_dro>LPRE%_tQr4_c8M?aQUnA2Oy`T{6 zB9UnpbBlSRHIs4~IAAWSjUgkS6dFOOtNS5P$a*u zg>!O(Y>w-Rbh7xGj=j*yjo7W$Wtl1uV~%i0mwPQb$(9IizKoQpPI_1kN8@HIA!T1p zBc4xJM!du>iDC4$Ri?{ktP?J_qSSC|OY5Q{*hj0;X?L_zksP^g)GFmU%@y+LMQ&rN zY^PA{yl$F$A>KU@wi#L^>HP(uYfP?LsfEEGF+lrF{d_Mcx?tpN!AHIht+tmw|7*l*2fd$1gw z$-$2aW_K#ays;EY6KCtOX+SHw04Pkd!6GjTn!sA%P-GMhP#H1ihCUvudo&$r}L!%`|c<2rB zU3hGQ6s?5^>W0{>J8b#mAx{d5?BcBs#vpvcI&vVci7GZ?WuSBP6Wh5 zJT%lWZQSz~& zEl}=!B%(L~g4QdLEa;$-yQ%NcE|LDDw2IRs;J6>qg+xqW?XLZ{^WXa-W_ngzhyZ_wk#d) zuuq&fzKr7+{_xZ3kuF}3H_e0X4aA}wA5?!Bd5r_7OY6ruB*(;vWf7{zwAHQ(#5fT)_>R0E{)c3I3&qKhZMOaqvTX`jLw>KmJTEA~)hOs8 znc0L`AtWlCs(}(VA;t*7pk(}0Y@9eejiy=`@a{}bgmP;&H$Sb+^jD~!l5GiTGjEDe#?EnNej9qXN zsT_gNGH+K}Pm`N_(uq*J*xCpf>}SuW$pB)w{l)u}f?3EL6#t32o*c3~YF>S|?tdaC z?=1zje{{5y_#WtkQ$FYMK5Qk2HzMteHHV?aI=tV;E@lvkw@5*2g3x0)za2ry>Az?E z5K0DSLnl5z->U%}vRZS3HOPHLAeq1aTe`{uabtcF26H^hA|Q3O?ItJGdio7lIKFKX zbT3K5FYyYxKjzFXHh6z^;wPRz-0PTR4lT3@f{UdTh^8ZHAqv+H-@0`F_1L-@>$P zD6vuGRa{<Bwg@m@e7H?EA*^W#cgYtd0~!V8whKeB=k*YePY;1P2m>J za$!Gs27fGH5ii77G4~OuxsiW~XHu z?J3dTc@Zg*nP`4a#9^mVAPD-`ZoH`a)u3^8(5xyMDYXLzT!bshXMDYn2YQF}Z1A7C z-h4L!c$*tza3iq_2}|vaw5-X|vpvO8O-MYr(8EEVtM6A9nn);=KI3i~3=0l;Z!(5$ zM&`fZdiZr^(`q1O*Uss6XU8{SU@C$rw2@_-QuGrcZRBFbYxV>r*ZG+FKSUKNT+A;5 zAUl)##&e!feDEhGwcxgm#3t`dsx|(VG$O7>p7cifw<*z{;ElI@;6VJ1e}MQ;I$215 zA2fE)JM1>yCGbKJVK%_uTBIg^@n!BqKI#dj>^z#z(ayNgI`Aios-wuQt9PKyz5j)( zIPi1(z*?8-72sms1Rj*_Kqq1{yqR3~1V`0%r{gb+PsKn25{H#b#ga<}iJtHF-bkGCcI~sl-O_4Eb@sYNJxE&obx(ntGv^5 z>6|7G9IE<=A;)3tl)>5YpjJ`5P1ODC$pULD&vD61>&ZhvA6o+jR}QZt=Gtg*#t#dZasv_sU@}3oMiDT z1~j$^>5bkl+$(Tsjy-xXdDO%f{^%Ly^GOClb>)nic#Z^>W`{BLd8<=1aP~QqHtkTb z3Ypp_5eRoI1`Njh2cYocZ7bnZrYhyeeR5j-1&GBMkxjLbpc*Fld5fS2d~O*_UAg1! z;SM`j!|GbEeO;!sgX;H7bWCT=B$W9zZ-c@zjk9%K6~T2txP=3i@V6*9o%Fo!P*6$4 zTE*2L&RK%sqmt%NMB!(2wx1Bi9<|w@=Pay`lp7w{!|(ueuq4^v2301n~s#(-zOWkDECc z9)u+YUN^39EUB+wy=crk3eXP7J^`=|l4XZl1PC>fWj{vY&R_mF;riur5DK$j+ta*) zn^=npR-a%3yel#sxnhc|U2Zr4M^q!xUI@&DPiT?VdAq^U7V}MoVs5kZKCfXy>U$14 ztf7h|0*hEg1OBgFbA+~ao7)Z?I#vSVj=n-piOFIYYuK$3jy5YtO(2K!hFEA6rLU13 zf|3TybZ~S|ebv=gYaC2o))O{#%EAIj2)K&6z=PC2G}Pjt=S6!54w3cN9@(%Q=8Ylt zHeIvhlZJ7?6vM1SkCY3A%++l(r^pS-xcF;c+sieEqbDF8EWGW_@{e0yep~+NnNj|r z6AvJt64tw%s9G3L&D?O&&8Hu4C}gC_@c56!ts1CzCGQ8WF~Jspj2GyFM*kyA+6_yU zOy`)$p9tf=gS6?d$<%r1_x$W=;+FszKz@TlC;{)yYJ5K)DUho}@452=V%-jsXK9Q; zc`%H8jaq>kKYiA{I=a}rs6Dj^A6PPm|KIKmG}rFYZchA7X^BV;xfSxDA=^u)B_~M^ zwhtT0j%`i+mKOvWAt5jrbP!rh1V^KY|tykaJNVM+CcE8}rG~^(#vx;JZ$9-32`- zVi`W>g@F>?NB3JGmKnPKC)m-^zBlN=LIzG=mVyqh^|LRZn?~{d`IRAL?>A7J7l3Ja-d4q}78L*O@}3fll+Tcc2MW&D z4H5e#)F(&|wD!Sd@LpW+n~kG^VSa!mvUl>>*U?&N7dz(M%pzDD>u0T35nywxmrjlpCn9EF9^PdD~p+M<%f^T`n%eYRx+EgDm_wF z0UH*73n~b>>7^;EnAS)L$A((E!K%6*hjnHYglv--j9mauKGd^q!w*;R#)1WBE&({# zG9c7;@NznNNhJ2!T#!FP`dqpm>3MJ&XZHO`IGV8iZ6>%l zhu!#g4y2uy)y?RjD3keO%Za&_{C5aOs~zulR;MF#@n5O3lUCl4TzDl_LzLD(c;Pqy z7zvE-U(fm9d$PY0+g-}0W(EWQl00)co-M9b_~@^XO2+v7Z6WD0 znXQj&xicReziPD~9Q4xWsV2S}S}9izbhir?%{0uZJ(nfJ-M z|5hi_+Zt#;WDl_&kRUdVgiGx=y13E07t=%y}KlJiI41i zIm{}4BEJZso8EV(ucF};B$o^aH0h~UW59L?-`jhpZ*S!4IB0;!=ffYu>mB0&Uea*z z;g>h1JR#pBkatJQ>+}RVbqLzYxsNz(FrPPZI+%-r8~Y{W+vLa2TRbs4t4eM_Nye04 zDVfL|>ZbElWi$~bgf9zEOART}l2hlxS%AM5ohzq;zKJ?J;m6Tmcu2&%V*AJbFk0U< zFCR4@AMmkPvfnZH!pPc{2tNy8QB0yTl+f3r$m5=*(&Qut!qto|7P%^1o(E9-Md0}U z62|P6R;g*#gi^OGIx@-{ax!zI=6kvd^q0%7x6bNZQsTy}nr62_{V|SN+ifX^;xTm& zo?$CU6XqTr-LIXBZfl*jkKy)0pf4-1=ER%^tp%3xqn(Dn3F{)tzb449zPq{v@{AB5 z@N(fQnNZ@iWD_LHl%t^1WMAWW0}UFq;9ujpeDI-}^XgCj1{Ho<@*;aM*IY{M#%Te( z6oVhYt8MEbKc{l~G@dDwi|+z9#5zGxm!GAfK{dyzwDsz!xl(+6M&5!E444d7 zP2?bcHUtye(}8sz^T8uuZs=LJDPbycK^VS2i`RXD_gK{BIC3RC657i-=LTp@rfZ9u zTYmgfaQ-l_0L;1Wox&V(2e66&+NhktDw-_0G%gCPpy!1W`E8lJ^N{Xm%@*Ro5pqKZ zQ@}Tui;xTdK2%@PEeeoGrX|4Zr3`Z7D7L>e)N$V|FZC_EFfKQF!c*1u0N|6Q<;{MI zv109}HwT>og6bp)o?br=79?CCD8!%SJ5g;aK=@GLI!ldkkc*D!#1^w7@0FnG;Wig! zPC?ac7)V6Ri1xy<_V z|Aw5)CNiRzh(NwKmU?8!*Il3$#oXx33g?rB)e19reI z@aB~8WF-?2f!OtL1{b#;P$*Oo@C2z6Mi%ocNPv~b>b!mr3I2~ z7g4B~DwFk?tJ0&hyd3mudeB$z^qs7y_opS3F5Sc7-DF5rqO5^*W-xh3}t|zkB@Df`0{57yz#icfI zIVRu?d{6ZK7}0p_XWLt0D& zttRi{HKG(}Mmbw+kaBiBQ5tWTF{(AwwDy_O5_^H${w{Bg%B^>~>`Kz&rET`-S5Cd! z*JLivwVSid7ix`7s>T%PisJS!6ThXAliRpz4npK~;3) zW}cZcV^lexT)~>lXN$wdCZcVkiiQo;cJ-QUx8E|�{mLYAV#oxQTRZClB669UBWz z6<9M`CF&NR%BJczPAe#bERB|Q(%$x@6K>{`@$5+r=oO>dS)IiVe(9EfOpuw#%iNN* z-ErX{k0JrA$X^qoh<(u=_=B)ADV@ZnnAf?w;((49idRu2g0k z!|lJ9)2-Bf^XekxoVbEP#feE8{xBuImD?*Ln>D*AB^&BEyS8Anjj^R=*EeuZw_PQm z-(eMDFel+_SyJ%)Ua&cYoYxYTO9*>bSD~8MIwF!AhH-AsGo~a*o6#g6K=I9sQx$ho zv29o+X5vW2Y@>aK7K)+gv`OQWu;46|yHqt$q-M_hb7spA`3(7b+oHO@Li`0U<6b>a zj&Bly(^H2r^-p@+3UOdgh zH3OD=n<;DPVO9b)@G!fRuK6`p1)8wE%nET)l1@LVe{L3JA}|C5PVbuVQhc`&QOE>@ZjI|CMk^DmO>G@IBYej5xYRdPU_85Jd-Awn7flEt%?Pt;^$ z+)rER1jq+{V}n4`O{1dv6rG9yL|Iy-8#J!j+My_z{)<~H;&B_L)M=s&>nSud)J=QJ*7{qi6ctY1WUDq;aaQL42qnPzl1|d9 zx{L5{6b5b0Dv6r3X>GdTLX9kU54Bkg%TCEfLzhJr9R!}3WQDe}-8@>)Oo+ckEGMa* zPuj8)T0Vmh#JdA-e(BV#d0+YTI&Ukub0eznYBl8)-d9#lI_Pp16I@F9cfLtc4qbKN zB=n?{d@MD#=vIHtYg3V>R@zud&~t3omB`ZUFfw!pPgMtH>~y{3=Ju>hIuA{*uGc8J zKvw2NjYZ&(PAwJf*cLnFe(NHX8lv1U=ijhI)rQ_3Zqm$XlDgt~p2&1bBr zs7Q`nc=cE={jm#Xu%1~-QHN$1A38xZLTM$VTh`uej-Ocu7+M~doXc3S5cFZgrvPjz z!qk1O*)hm^X`;Uvmvs+|war+GMoUV$?VeE_`vK*OmJA%`J|gl4nQHuLHB=+q%62uU zJ>X*&Hg=r~izM8z(D{GhTkvyqmka){_;1U8VAkW{4M*+aKyEn)9n23jaCHcNaH^vRF!6)vG;L^8GncU({5k`yQd7K zW~)4eU7Cx<>%#x0V(~;C5gh!dVo}2k0M7nT#gb1=-D+k>vl7t%Q#gM&`B$jH5g=(5 z5J6moNOX7_WwUAnBJL&!X@P1f3uJS!Jp>ex*IC-V6+(eEgM#XqQxSBT-9G1@*B!z9Bo5^rG4zi`rY-kKbmR$&z{KxAR%#*c9cWW57M35iB zNHDk5V|vu3|2EsBUlR5ARUjAFZ?d7_Bdwy(Bp{w=a|xN)kq`>vJ7{#uEFtdc216n- zo4p`qFh{I`!U}3noc=n~6F(s?AD;Fs@QxM-HI{}#{PR8{Js|Z2BZoI6PKZ4VpN+lE z@jKk}AXbcoq3N(P?Olfvf6wVa8I9NK?{Ba%ZzeYs%XRy3im4(aA^It++CLzE3q%wJ zQ@~wS&A9jRrF;@V1b?k6;R|`x{Xq1x328P2i(77-Pcv zExWwKAzi%|%|-fxcq5V6-nNCF>(@JPlzX?&cj}X`HQe>TIACuYr%&Jy$A5reoOU+` zT7Qd-Nc+v&J42ao%9BrpaAOAF!p^_0^)kuVgB#C07=?~x<(}kCgw+=`R0;qJ*Np~H z93&;%J5u@$~1R%i%5x&R88&#q=zMG1;eA&nZRK& zmE&RXNlDERU{RgLx$#ZbB#2dkkbw3nR_h}`4UbWbxp3^M$73Lw>aDfq_dOVCVl4HI zlpKv|dV~gGXm8+fVX-59V6Dv|!?#=%Q*6t{18pJ>X9k1KsFOJ{4AG#LkFgY)Z*Sct zJh<1_#I>rH#!oi2{@{kfW4AWW!|U*E>pfh;Fa)A=_TRg}q6jadq#8Mn04rSA#$PgU zKkIHWo#^JUKbE~-qxs#|hYJA+F#)a4L0L4^twpf;SKrU5Z`)mwgG8f9{^}@zG*Wvh z8fyv>290KK+mDVfcTOHx!8fKqzFw<_tb_ijqGaT``Ofl&4?aN;k(Fg}!Oi45NeIB}_W3IPz zk2|x7)U~%?U_^7tA54@M;R(fN%%#gGh6{9cv)xeJ?c&FIhzAKy0%h zxhNSeEvHXGY0JXa`+kWB6#{&WgG8BsGi@S5K%AxXNYVzf&JLQ1I0qWeC@}_K^kNZa z1U}HTM-5aZ?)EGFM;nlVhJ>$-phBj;G{vL*Whc&ruV=&r)QFwvCUHZgm^@v+yY+&1 z%o9oFy}l*I6JK}#Dlaztu(#?66W-;+sSba!r@>lGBoro@g>3U{`PJCW{kEr-Vt4bl z2tHuF1Nw$-^wbb2=8p)2tn9f3${oSf8oJZ3`bd;L%H&8v$Sv#Ztfh0>{5!dzG zC)*>=15aeuylB=uJK@GK)HVI67!=tx60CmP87Q>r*aG1%FGv{~u_nCXJ%GTpLL-Mi2wPUcQP*>c;yXhEiKrcjWUd31a#y$n^!IJ?M2FkH0- zp%t~v6yL5|>5t~WYVX~qGsS@2xl^XRVf_7t)A#wz=;r#i{>RtMuIA(^q=pyFujdou zNNY?2X@D17nCs2xJ2|4+fQPZXjrC4L#7XZcZau{H5+@U~i=cS3;f5g}q&AQC9(0iJ zASNL82gCSjGU?dgnv~<4IR9H(#3ix0z-!IdeML0k;aSA}Z*6|w$!tOnrB`BO8)!?? zBt(ldmLFP($=79vGGw6jUBikqRvO)yTGRoH-z#H&Dg7u~N$X@Dz@K8T53<6yFw)cl zo8jP1B5u>)6wFuY`@`vS!XUkp?rIcTQeW!WXbPE(N82|5vr9@T=Y(OWno*$eyS)EJ zPOh(G-5vXltLaapP!`1Oz)p>8D z)`{DR%(88H`=Ru5RppR%-A97Svy1By!@hP)_ihlb%*GV;9d_7-8rP2%oBz5L>UYLy z&65Pa#kOspz_p<3l4L~8%V6d=(?gH{cLi{}`^VHxKmlxww(eaF4LMjJvqG+zDeg@w zl6y1w+J=>>^Huf7@Si^oAA32Tdo2?_y1aM3zY~I#1pr=niC-^YXEKFi3jmD6E3CnUNPFNaT#cr34V)4&?}x<_}Nox=Bj?+dINyIRTl zNx#MmCYK@t#}pb0@l2*}|J+Atm`pjRtdFX#I^d@x54%K0bPXyWBfA2pCr|jea%f6} z5i#PHd_R5Hr;;r%<0>Ffyzvy2(-Vj= zfL-LaY*WiTx#E|veH&lQ2)v~b`z6;U@sGnw7ARhec5y6F#F{`7&RPf-yn5_IAE5~M zs&Lhx{5nZ_N9YlM3zY=<7JmEue@8ZTR$LkfNU6~Gn9^NCkza%|Sj8LJA#fbTw3(kP z8Ofc(XF3jhVx}BOBv)`#Teu0N(*^P~K1*!UF=!PM1w)vWODC|KpLC8a^igCmR zT(qmXa??OudDytZ`t=w}a#5!I$aXovfHN)#E2sv9y?JvbY2BNb1-xlcWgBV^1Z6$y zFcyhN1hvu!R%fm_J~!K)<9vX9Yn@A|)tplP>IE{Gn&sG>Gu&};M?MC<(vBKe`6&ol z({~eu0yNu>9a4F9>(<0gI-1nfV_u&WGJJ&9Ee%%~f)z9q%TV&(S5KxNWr9Mb&^Owt z%W6@MZ9<73zFhEa>B?1CpxE~>*TjisdS^O=9GTkS@>A=9gPVo4bBvxbL-Y^6cEMylY z(m!LAoAEI`cW5o#u@U17I&Vy|8=o!3V!UPjlU;Qyd0r`+tj%xwDe(){whPpyyq&#;+1oVudWOd^ z#gXItpVx{i5LvO9GE_QF>tcnAc!;1RKxnXR(~=eJZ-XgX6O~Wo#D{=f3PpKtPbrp< zv*Y$!+_aga?cN;Yh#d@Q_csVo(I(u8R1R;7U@p!xnqcvjuCh#Ps-s8U=zqZ9X3f;$ z4XHO|u)yKX5n`4TFS1_681X1km_mJ#n~}RGIgVgDzWMCDEQ0nsYk0tiZRl*>Ez zgZIZyJ1svp>l25A!!SbnOV_5(!~H16WzAE!ghx|bF<6k|Z9zXkI&V`4c4srA=V=n) zZ3J7R?)zy2`?Vq5cUdz`{=5K?)@yDPeranX27At{G<6VjyqyHRn>lyHO$ zQ>1z}bxZ?b5Z6-khMt{Qk!^>d6*ZQ3(IWqHa&m-#3YBx^uQ+wKSx!OFk=xO=K4c2! z#5k6Yus2D@0_w$*L_D!PGJ#KOwP^r=F zeOIXjLF*#0O}#8;xcLUX=+2hsT*OLC}=B4SqwH*-iFq;q+}xTAPL(l-TF_s6bUop8pY9Z7qpuSnj6Fy3nsII!AT>h)eAwc zlY2GoQ<4ahR@)qVKJCtnQ_dd;fg`CTt_&|`NsL#!N@7M0f56{lbV90B&VWy$o|sFx zfCSou4Soe=QS+zQn7BCBlt+%&g9TpEfl-|Xz(Q*M;#k|3BiaS%&N+NuF+x1a@smA8 z6L&P{0l>jYT?)E46=9`=Cd$Nn6LX+*nry zBo!ijv@>(u(-qA{xQfSeJsu7#q`qA1hUwXt@~>4tCHkH_^Ekk}tVokjXQ7D>djgxB z`Ev7MId^!^N7@2`XY)ewYSZ@YANBclPCs4zeRVUc27GhS$09a$q)$s#s-L!@vdV!w zy=qE(ij~hKn1*V|{H979*RtY7^cYaCH%jv^OPBQR4B4Rk1I!>b4a?`4u6{Qg@Zn%K zd@B-#whK$&-%|g@d$pI}rBPl!aQ9N-*THv)lpio9#kd$(;qyk3v(+Vx`uy5GJn9hu zH^kIU;7y(A#MVtvY(K8inIDvjxY87-_S7^A1Dn?BPW)my6A*9@Q@J|4=Rg+v;dfS< zkLhatU=zi&gwhE}GYII>48MMN|Agpzu&qVBTsVrNKF3kI^!4eU=&!uv5;b{vjMaxX}UixmpTna`yhwPt?Ua zD{y7tOhxLEzCGE7t(BIeCn)GhtuyP&8@ZnWc?`k#WoHg}OV9MqLOFd~@f3f&ICT%n zRU4EKkR378Pp>{T;_9H$Iyw&;b55g=FoTs;?T+#<_ZMyHye8Srjyj9)1{7+Z-k;FG zwEKyv!4~)mOnz=uc4X7%*QKdoxHtk$#;hngsxp@j`F{Odaip-L0v>j-D#7;tctvEod$w78x%ZG! zaT3Q>5~rxJsQ?HXBq(Lxxv>MHFNsJp*0-Pa{g**ATejU@nA60TYgJKI^?K>=>F>{7 zr5vxjf`KR!#0j-CSRKDg4ZGtZ((%BWMrm{}4xWP3p1RF^vo&f^R6rZk2bO+)Ub?GC zEoJhn;*rwcUf=FUNuuAwJZ-(5exbSn& z7{0#Ek|67!Y4MQ(k!aUtCi>fWczR5$>%3$wji+0+Mpyg#Ryk^ut#4Wniw}Y1C8&Ng z{Jws14sykX?Q!S1&4zNKbk`ZsKCIWr00{63EC zj+yuPb3I|5Guh_A!>bg}fxW=ysC=Vgvbx%*`bS#%Q7~rWhBUJ+8>HQQfx*Ss3sfEn zN;-%|^?b6Ptg(8|bIq129{uQUd_c_-;|O|-EFuJ&cy(GQv9IB7^)2L0Bm)W+DU$14 z=G*RiGQevItTrnETVVMU^rXo4XgAj2U~>Cf@RKoGrgWVlLRZP|z_oUp>3Xt?v{Ri- zpCGWSa;Oe>ORc3AFTsq@)Beu5ey{_ixC7>lu-#n$J{}DdgLjRf9_QtjbX!TlaD(^;1 zAo~@x=3`&)EN*i?p|>~bI`O5Oy+ zJ%IjF;f*3-VLu^GW0=52%(dv1#P?@Efik|A_6tgB=fOHb>`LO3=ey*dBs5_3zD~Y{ zK%r|x<7~8UA;F-Opif%B-~3F%8wWcJc@~%f`|@caLC6K@+KLDt-UF^|hkbW6GX&Z90fAD$__-6Wh@3-EF#>CaJkV zmOZ^8|5+~d@!%_7`+Y*?Y&2ejgLV~*4s(G7iaAj?C*n9*kjW)dUOcbU#v{=%*#3Q? z8*M!q0b8zQptPQ-h#uKZQr8;p5_^V9%xR*untFtDca@j6^|^h8kh^k4v~Uc9$SNePwIq?JVr~xi z)+^8fBS(01ZFSv1KIUwikVB8MS$H%)ly8_twLbT8XlTju9qCoSrdst zbt3lct;f)Of!!}gQVh1gG0!<~jWs0t$Rwo4jdFTf?BiSvM!2&$=jhNR?!J^?YYuR% zQtL8J&)S;S{CN0K&aLsK-;oQNvoU7T7pyspGq$|tS2-qg`Lx-cqztr1fnZyLv3aK5 zV&pW&lh)6P4iCL>_H=wg7@$5}^n?ZEi$%v|9}o@kT?m3mcgT7y_06fK32HV$apH>6 zYmRxQBVdUc{;24N5%vkoQgpYXB0zdZxZdbGn=u!l1L6{x*21I6d`%piOC8tgxz5`H z%KrvTprp-?ZU=d)E6sn(j1i;nMOxt6fAQa#)5{ik8+o(tPKntZZiaV-2(`PGKdX8F zv*+kLH1%$BMjxfs?Y}(a=<{2@BG|Dv@l@Vu0?u=ORzD$fwp|~D5$e_r^bt5*&n>H^ zlMlPH=;PxTWR*&Ho}lJDu1BB)1wZV=ueI9eRTk}SrnHFK3Rq(LD7Ecv7BO}?)WBHkrG1Bc36 zvoaRa<7B$q)c=^RZeddFOFZ(nB85ThgX2a*nCTPcQ}PX0@0P^LE8;q$NPG_!>e#9E z<(Wh%OLm`3Xlc&2A{VF`32x;2Ofq-|Pb#e2pDWp4h0q$qY?s0_`5N!?Q^X*j8iatF zUyml}^_Q8Kjodse7e&Uo$Z^4^6rbRw4I+~3JZPvd$R`H4UxZ8Fj0**luOJu?NT5*I z&dDJJNZ)~leW9(&yECX?M^NvUpn-kitScy!U+R%M2T>sSG;r>MFfCmg*_h>*>Q*y( z@}-jsS~BXHprW&p1m5Z?mP2&xip(Zm3p&o%wslu2Dca@y2Y!?%Q%DCcC+?_D6+cBv zUN6CzOev@iQKLaJkKl{7&o~c~D~~ZR1|=U#$+ER9I9M2X+2HHdnI_cBMQVHpR!G~_ znW>GlxXy+l)F$f4o;rK%z=#$H@OI;$?uOHgZBQZG>=jLuv1g6qxh=;KbSbBXutJ{I zWMh{}xKDHV<bbQ*bdAY}Acb!>xxA)mMYUj)UmQyL-YeFa1tK`~Sy_tn}Dm38ib5EKz9W6(?T0UwpVP6B{zIr0qGXTYtzWFA@+RKE13kxORJp~7b z_2)$3`wN_BH+mCdqDM?%)(*5t0%IDyPY!SyeB5AA+8Qg3rH80X(12$7hMVzgbJQy9 z-<2laA-%Hv$ck56J-Q4QK)7+TZ`8;+mENLEp1GSM44JR=$paUBTNTaI&*qoj#VWuR zaF;w2Ja1BQlOg@pnmg>XE2)S7-sk6d(>ZZ|)3=2%<Jt3%zXJYnQ&i(x`G^K4H&pI!@CDdw~Gv zHvk)Jx_@AF!pUWj?cPexcYC4FQ6d}bFPZSy*whn7{wyFXdmlTg>CMPLpB>5SadS@6 z$kC_TT|D6FJ6dB$rC`JyH2`lDdV#X9I?(_;?6!L2%eeOKvh&*T$@_~Zg&GiHjws$@ zA2pq_!+DftLHG;1ZuZDb)kun z{yz0gu;Nna;4Dbjh{)cDOAfd{feV~^In4l0yd4ITd_<8pR2=hoR0BG!Q~hq<-e)_@(F$i-_*p~hE0Q}}l1uC%hBwu*s92JN& zu8FH2;seweI2s8UQyUMRlPZf`H(Bj@$V@F4mb*>n+HT6cyS2oXxG@b%bP0y6#^o92 z=rSq3L-F4r!)S+F`tsYwEVD-(yFX&av&4iYydVoh_fTUEv<$~FR`r6f9a3DLkm{(@ znGkg5zkT@EA}PeC!_auGsRpr2xLo87&vRPD+kAS~-MR6hYi|ySq2sz3hzZF+l{22f z7)8B$YsqMW&dluy?)AE%G?yg4$hSk-kODirn~AIO)?jtwIgpbr%`O1wReLMe6xIl= zYDil9?NPWhrKO#hw5tu#QIGVC1mUtKVw{GPZmcfiDIyu8B2X&F=zB&VL2Cqo*INmu z1=-Ud6CevwzQI!*c$TC!sp+(>QlK>h+E0}qQ##6VYRhzTEpX;(=INlG+t4zhz{^00~9 z;(p5|yrW3s(QVMI(X+a@+2cGV4cEFc*-GCb%?X)GyYhj7cIGeG(cxMt6qT#gMLao` z6yP0sr>FUXAR0)<^YNfSTC-2IO`Z7LyQq4AG>tND) zVn1+m(KY}H1gh=~$b}kf7m)L@;e3r_nT6M9b_WwXXsTVk{eoYrGwx{7t)=(KY)Qw0IDkjqrrGd{>!h!e7487 z;EG+O9@qQ)+P;Z5`6PG~Zd~HW-kt?BgbKOnABSbn5=-cKUMX z?WnLbY7?H@ZQh*|H`w+WvR@>SHhbx({N|7M)=_90aMbnEptWw0R^fFww{XvY@?$D; zH*=VqKe01DdJ`LZu8Bk6MS93L`}2MLqvo;fyKM#wEzDA>jbttn`&n(~1zGd^ldVho zw8;E8;1~mrDWy91wTS^C)_-p1hemB>zZf%M?d~PyYj1XX0Q&Y9bLIG znBUW~(y7K7wzmBDqhF2^bAAtYRaoy7%}ScEgAXCVhfSX%cRYeA_MyFe^r;S)+2pB+ zHp0-e05{tL?AxEt`gtSlz9i3om)kd3({ERqHtm;MgO3fvOuXpPLQiD_Z{9cl2&1k* z{4!`-c^!kB!7PzK>{WWmYiq4zfSp}C5!02kkF|q!kHfA(Zx1yRtZtX|amM9rv!ZSX zfj?RhZ5bg!p@KXlPy*B6*}6ldSAEXQminIqo>Ez#y5XN-qMHCcExy&wj6QX5lpz4( zK0_Z{-{y4Rc5UGt$7SlW&f7;;hx74)jr)GU=jatl01-^@d*P1u_r9-hcgD%OFB?Aj zak6mHO|{~L&j=xmfSu_{ZNtF`5W(X`m(WMp^7|-l&tCdC|_z671?Z6NR5-58yFO7wTH36M_!L_52Qs`b3D3n=j~h|n>2|t-70K7kWI;Kp@JzBoVw^x2NMCXpfQLH;E`OcwYObuOF-d~g1=_iQWfse5a7 z88q~D3)*9J#+>B0iJpg}09tHzB~FhVA=;$plv^Vo#`$AA~5%pDy z_yogHLPo{7OT3}KEbYzsUgxDS`LUa?Q4oUji4n5Dxi@?#1t{^~rHlM&!rmE`BdplI zvoRx3txHY^%El6B-pm5{WeWV?{JwwoqW1STjj8Cz1MfAaadkaqSk|j<_=XK}v!9nz zAt5>q>p=Aot}4+_K~TIT2!5S{445{Yb;Gy^@w2TRxlMd88t$KjA;teP!BGB4D9C_4 z?4TA+nB1*{=yvbb>SIhMjtE>V$+*yX^#r2{5bo}^(dc^5%{6hzr;BNl{~mWB3Hp$d z@K>g8b6RVmFLN#tqkc*7yHY0RP^YuP3BQlMJV|8RDI$nuyY+a~>Sce&^UAA}8-R*R zmm2iXxA(KY&7oRc57x85(J;Jn`8hIz|2b;+-5K`*VAUdU#EO_}p1;13u}D_b) zC{4AP&3$<=-gRsPT>l{R;;52|=CL$gCPoJ7MKO^AQdh<%Mw2>^4$nCFW-Q+A$_k9w zE55^Z!O&s6o$Zb$Y|#msB!@_oly#s+wgyOfR-Kj#P@$zPOMQpI>nr>EPsKqM zO485XxaEZD*o+ff@$BeG2pZGOUULdmW(-Y7{P~c2vJ+LNr_^3^kim5+MOBAF1W>*5 z;kC(-daiG_^;p}H64XZqJ=!9FiRY_b2 z|7fR}oe|k_T~!E(Y?-0Gh!(t3zX_ZuC=xM)Nq+uIx+?}pmVCn?(}s$PUBKEo{Xb!_eO3SkQL#Lnqy#x94rN8)9l#XZ;R z!5EpQf6~;XELILl4~yUG!Q`E~HXfay+}JvLRf7q;kvOI{X1t|YBM|2$Zie8j?6k?D zRDD`4hoC}=r02o^60H20$mGgJBsY5w-SATWdN6G-99}|fSKAcFxE^aO8=#zSD4lYJ zQONORx-uD6dvBNGU+#+);U*LDgvXU5jFg1tF%AL`I)CMHZ-Y2`S`L5r6|`$#x}sBq&ZfRx#-D#l zWfd~?V5ySRx!VX&Xk#THMkXc0=cPdr7q$%xGCkWI6%?BkZo~M009HV$znT7;_w9Dt zSQe!(YLU`q%-(Dvb@53pggUdftU-IBVIo3XGEI!0E_Oh(*8^m%1rq&b+Es_IlF}Q; zB;u2THEBkt1Q}iBNxyBnmu;T{eM(AKWof0zY^=zTIfo~^u2+xds3VM5T0cAFbaFz> z#NkDbe?~C-X(dLkS!iWGS_KD=b87@HSb9j(K*9j)F6^xina55t;+%c1g?2fyK&U&T zV9-oXEeyoA$Z`{zpK=bv@lBYW>?pwL+FZ)ZCU5N}rqiFNEw#hC+gYa(I0iHmtOf5* zgtaDvINNDU5xl5(itKhxv+Blb(42eCwax((el9d+r#ERel9|u4!L~axp&j3YJ-Z!G z@J2Y7N41m)>)CY=0pc1kv;kct4L)oXg5BY_HqFCne^2Ff-hgY-4PLCp<7+ zom1x#>Z+yg%O0w`FG{UecVE<1*PEOdIIqxq+d#k%7>xOyk$K{mG6M|kwTHFWwAcQY zCh{cH*tK`vnq6uNy)Ft|gG?jm>*ZAsFApR%&v&|oMJ3PEgA~!q?&#rsXjHPf&Z5hj zrOdii?HJRgBH_*XL;xKCTE`~1QPn>j6%3H3tWd&_Psavru8^(CVmNSA}ZRLH&P7YFhy*l0w zIvtLr(&U2L;E=}_L@~2<-0<6Imne8f@u!wRa^!-#L^p6 zVuH^W>qWsW)#b&s)KO^)nNba0${}o}=Wo67v}iP|)OaUyb6O-EE-93Y{gFIW9e%}( z<_updvAOlCjtKcoWvR4U7AESAbi0SGmg)XdB*trvA@GcpPkIgJCK--3C+d)J=p;gC z){UI9Tv`px;fHCF*HX)Nbt|a)WG&1Wf>NktQAyrrdy~r zNA;a$k69>$GTCaUpDI|3swAn|dS(qvjQMy5euKF}rcigXmIHA#fPKU6@eE3xt*}im zcw*`b+5q<~{=&B1>#y=`Hdms_Ix_C)SuKq*gQ3+ht6d*uK{rgPMk)k9;yAf9Ay|Ur z%{C%3T(3-a2r*4)we)aJHKuiGhzlKZ(Jx5aPMwwZJ@*zNm)cH-o1I)qXF0pEE)+(DJl$k>d1|Ql`^JW^ z5Qdm_x*2laEj1^;8qFHjZkNF5Zo5)7iWwDYAjl5a$_T>Lbkdx3rek(0qLqq_H7b-N zxhqvfm}*6yE+pKM`c}3h>*eum*75Dbp;hkp2Pt7!t9DyCXWTW^SzqJQi^fcl3$mc? z7K=GG6t}{%k~Fwss#bL7yGpu&XUXx{s@4ihkLqUy2iTEbg9zQuxARWZq_Rl6Tud3M zd}}}mMeyBzu`F%#a$3gFE?%ij#npU`6KC^!4%BgEYcOnEFB&h|l|$ox zgXai6S0PrG%DA<%yjEo>jY{nMR*IuHS%@l=fjut)s|qg4 za&N-zkygHf1Hv%T*U|(Ho^fZ^h@+Y*%l|`HDW@*;`l1j)rX8hgGu3 z4#v!9l3rd_EmChSbgQUUQ$V^}T*oO7XGCpb&UVPQWTd*uGEK;frMs1qQrVZ;D>gP8)LLxnRI|?e)+Ci?J?|ZAYTHfsF&qYjql}lRcyf5 z=8aLRz7u+@)hu0hM?Mgq)Gk+>wW-ARQ*t&r+17AkSKc|rI<;mnA+=*oN~7B8USpOe z+D>~|%n7>z>txeSvX5IPUT$Sbvf0>?+as*ftr%BM?X$Jz22N|!6A+%nxdyY;f!dL& z`VAHxy@6%{{705ZD^Y@mgor!x4H8jFGLD<`_&?LH~4lP-&+TY@1W6Y#E__TYHwofj5zD>249P%4D`R zV~T;$Ud@#ZSlRX7oIrcQzx|?|{Dp+}8m?G-NPA|^07`VP!7I>Svqz!5%t0Zyw4qeb z3-FQG;3W!Iru-G!>m~{p(29+Wzq&{q+yBF`E8bAoBX(?jEn7LM_!GLNxfGd(RQIout~Wnmvilf zQ0%etw7wj!N><${q=il=iP)lH`?mYmqK2+LEz3=3xN|D#Vl!@T$bP9sn5$*o5O|f( zrtDr(rq$$3Ox6XwToX)sJ0T_=O7Am#b}VHiLT)2FKlDIoi=s^|N-KP(6ec;Vx@XdB z9vBqTc(ROdlO%jogo6Fl`MOXk_dKw3&m+sFa~s~tej^Fbmp3ILpf%E&S!vlf+yu<^)y-2`* z-+VC~8iTjEU!KJYndwRvCk;pRx-3qVPEiajv-I*}I4KNlh;V6~;1^gbwNInMX<+HS zFprbI%mMQgioa)aeoMu0ZZN^GkV{v5v91WX;cR;MnE}0nF>G%3#!$sxsso z`n9SIL;E#m4uJ&pqNWUi;oob@e6K0ioW@Oyf>X8N7w=GVDre zZ}KL;!U}q)uEkBN@}uEQ4u3VS)1=HoKV(iI-gvZ>iss-l8Tf{ z`iJp#mNpQw!mauRNhqo6xY(2Qyoht93^tt&%bGnEJD7{w`9;6J<2wl1z(yq1W;$-I zSx=TVwqaKkDJiwptRJ?m;9O-ssP_=AUvleiz1+cDEpAd}mE^WbiFKXkTCCPXMT?q_ zuw8{5$u?o7&E>L2iYC?C*3{l+Qd*21f5;VgIw-Z~^9(g&RvO)^v+g8?2)o6ux0<*m zdf?E*mcTL2xb1FA6>Vp=2I+Q7Li@&MmPy&e42_IhxfEVS{ZLP@(J0r7%z|56Yue0b zl0sclEPGAn*qSYlMyZ;Nj8dXYr4bR4Dz{TGN^@VpmNWaBGF~(_u%=84?02@)N>`9d z3+n2<2I#bI#1Vmncfw2QQb9BX2%QGYP^_Wo3zb! zXja!u6Y-E`}*XvWPv_Pm*(NDZ4rc{6Fs7r976`GF!j0Vo&0vl= zv3Yd~x5w((_^VE$?^gX*;hF2(-YU%`>CV4&T{8Gf(l`~g32>_$RLeuQ{9T;dzr z`~gDGYV)Ti^c`UFwRW%CYaczbJB1`)xjRGE$oQ>@oX~Y#B2nXF(?x(`6haeaMED%g(C?yezR5*5wL<-oOMtlQ{Zw{}2*O3)#nt*1Lo!~4nF>`eRGLa1{ zkAPWEfY*uugJPmCIdV)YIS3*0{hVB&>R&V%YC+!49wR}{#;fxS!#EoR=9Ry^4|b0p z@gUFLjfx&(jw9fXhuyo8NQK_J5ehN;&PEv3A055@eT}XlnEdM&QG6x3V&s`ft0>5v zCB?>}x~uV`71!88xv0OD1>0B03$yd0*IR$T^X?UYxZ-qN7G=4>Mtm=7*nh*jssa#)7LMBS*- z@Q$?}t~7V!Wc;H3!}-bhoyFUSQ{HpVg~{-F{}+}uKc{YKF^@#>MhIma-k@_ik`J4n z5Dg!yB;9NH1>5t2KRTh;@Uo3wKpW9)f*Uh_dFJ)!{~UK84tX%{;eic)rTPg~r#%ZS zbo8tC>>vO4Z!t?P6f$zx?r^uKoVDm-W8MTT{(%#bL#@j}220d%1lj3~^lJ)5yc2+vgh~ zlBB(IC?DP?*$*QoljMC9i#YomtgEbX(MJ1m&VVt^kK_zI?FsL@oWY>`qsj1d8kK=A zw(rGG3uFA;h$3Ay8n;_>c~tV}|NA(bK!$jw`SMum(lHE=?l%cC7j&ZDXrJ+07l|$!evw`X=79I%p};*A?c(VDc+TxTb(fcaXVDxOJ~^!Y12=~E z9lsULp*-bz_?XyB*^^)p75F*z^)~Kv!JuE~4!}XFFsIfgc{`uwRBorpbL0D-J-y$D z&M#}lkwfgz81MT;PXmpMnCji4iHq6{Fo0o&NR+-fntCo#`ZiO+pM?&Uk^9_;fJR@H zwG`a*5P3{7X2{;iW5Uq%Ax3aJkLj^s&bvIO7-Ko144U;}X41D#r!OtHKmV5yJVJb2 zFzABRK796WOs9Q+CcWrY&3*6P_ul>Xdv|cfUep|hMM%&O${havEz<9Yhsgcm;FHZ= zKO4N2zx@a(T#zk$J?ip6tIyhjPmp>z>4|wBg)CIo)1l8#u5hHF^mXQX%(D4EXPrU< ztW_e~&6%iP>{lxkB7{A5Z;QYV{$)73()r~Rh6vh^pB9prvlOs!5Af~(W#4WoQ-1vy`ON5NK`BcFVNC|wP!%t@len3Xx1Kka}Yjxf1e%Qv2i@6_9RU)Eg zT1T}_vGg$y8%pNmc}pWGH1ay+TpOf<=7U~VfUvzMNHsAmFzpgdv z{DKAfK~LDf*DV~JxM9Wt16&lqM24|bBLNthp={Jhq~O@X82yomg*z^bL`nop=2(Uv z7roH%OcAJ^$k3Ap0#i_)#`?M5E%C-IoSXR{INjtMg9fF?{x&5LP))bk*>>Za+E4qf zV>_Iq2ysz$btMeqX(U>q;Kp7c6@H9Mz+V3@gvXqUfa{$tM9VZ?3z!uga6Dd=qIJ^Q zJ1J(c8eayMJUoonc6nQ{6w|Y7PTRS<-EPgrCkY9>k9dVF(6HADUll4h2>{T~vmHNUuw3_}vNOUZ zc%Wh}38{r37AfWF6QC9st#IB%BvK1eT`77feHSB~XEaix1}2ho+#7N-rjFbYGWTOG z@B0wxVB=HmTV3Nw>74Kjwi~Lv&Fh!49eOFFNg~eCLM>(_#tDZbABj|aP`}r|D;S!` zPx}hoF__-x7?kIYew67AxF;Od09Ai|9e;dFw9B1Bfz2fZP8D2WY>W1N!<(}c+_6l6 zS0&&mz{Ny3HjJiy_cA3mdCA3we!dpfFo49rkx?m5Y^37VH_k6p(G>Nms0%T2qaYa8 zREY~o8i@U%GLbK(l(o32DsE$&$@pYeTXA;rISrq%G@TA*g2Y(L=C|UW>;rspkvlhL zIMo0RLzQep{mOYN7lv69@G@2c=A3ws@HYx-;vpyL@K^dY(Y9RMPJF^q6#vnCz&Qz7 zk!0}kK{%dEVM1wEhm5yK=&{7xx7=-y`G!Z^E^n6@9>(~NB! zf)aXH$K6e!1;6F)g|paW?_S$7fD&{R(e~|V&-ezmLe~*F?Z?EYcg@Pc#F8l>u*>TJ-2(n(U-*m-x-Xvp%*wz$rP1WG0NVC%IRXQn@W05K<>sF4L71{~zQ}x*)`#x(voQtU4tO`F=*SNrauN4Fz%LS{pP~V1{~8Vp zMjUiQSp5?UujTpGc79pQiV*5tD+)0s)R|9YCce&>r~Jn~&VA8P&mVy=xye$0)958M zNuNSC<9@M#qu{^W zCKqV8SFj}vOMiUlyc(nW{m#Ld$LgFwJ~^GSZxcuMbe==O!_v`@s4k-4`@Iqg1h z?*%Y^!-Ri;PRvf#wJHk_RML8&nfqrD@Au=4(%i2o*bs2<3&l>LsYB54DaGzhOPsi5bm}0YZz7_5nTi3ag9p$t zI(>oa^BR-j)tmIg%9h^}QtyMUPr-rRYWz@h=vfhXOH15u_G2Kk?m}ao)4KS1giw0m z{NIWoTuBtWT!6<5nUc{kDWiuJjy@kexqhhZ6^?nD<~(co-B!M_3}EaIOfP!bjtn?< z`0JnkTlj78K%HCVRh@r^_+S6{KLW@<(c-h)<*Av|gL1d7Z^IiQ=hu$R`QKRDhhwY}shuLt73m8(B@5;majUHskW>S5)`AcCfO)@ zT$J{p262&#@dCYOs-gy=t)~fon;0lM#JNti4cke4Dq5nL=<7g9TaaU8JHN_kwj)|o zPWvg*6v2MARG^4~3SV1_ux(tFY zR=_X6dN%am-4gGA@*b1Ql!4e@3U5;`2&DD8a~Nax@COXsODT?j+<+hlbx>G;F_Mmi zI?z+waS;rAS2_x2g*$?1U)fX27miLb>44m?Vr#8i`WKE5ebMY#-{3i(dG+ zTEsO=*qrLv2}MtEOII{p+l!k*hyN$&k(r9>`;c``Rd~^I{_USVtf2IdKP7;S{px0V z_j;kug!noiFI^9RDQOVU2OD@fuOhu zhC7FdD7G%*)<{r}!K}t9`QQFkScqZZhN2B}f0H?cNQ-{wFF5JU+dy}JeQ|N zq(Q}~Uxm=<3$b!xq-hMrg)y4Wkp}gwZi`|)2MhKH_x#9Tx!x;ta?6x_U(x(gAX)GZ zX2*f1|8Tq?{#b&jZ?z{JnR60~o!FnQ`f-@g5~pe0z2&$)?ZL$TBtS4pu4pHw;tWQH zeYybz`9~P&^ZtDQmcr8$wxNlMPr9*A7`$z$UZPhFz5I*shw9wcVEsVO4L@5i@Vd+z)aCao>ffIjVoc5Gt9OUjCiSUAf)5-E)fb7B#R6d#+k06N96EKzX0ynPsR zPXPW_goN!_qAocyFkLo+X!@TYlTG2_5j=B-{QxwkhNkG8?x@=Yr!F{EN$hdoCSv4$W3QJAFZ@!&<2?;VRf8BDa%>Ihmso_Xd*WgLQW(@k5*PdO;I=8mqeT@(V zBRMN|n4zi}p|ofuN38h-#(2aTy2()grcySl{y|aJ>DT`CC!HJX0r&#(} zzvc#n%AsmDbHKI>x_BP$%DHZ|EyI|dd`}a;WK_RCgO~#YSrK^BN z`NI!uQ}RYRwYW7H9(ZYf;dDU;N`I=@PS1ljfUmO0SM}p7IEgVg1c;6R(AWju;k@t_&a75;pW4{s`kIMFds9+xL`SP*5MGImzn4Bc~ zKL+1u&1SX;9D@`|rP4H*+S8|pw|+BcjSemvwK&P*O!t~3o@^xsVlp=~7~ zraum^PwSipc(-I3u9<)j{4WX3RS6D25sEOr1sRO{;tgs4qz=~7hC5!jzi@x}VUO}} z3$mzj_M2gfI`|Ci8jW*&$p1aNX(|G|1`5%DN$InBFtMm4PMXTYoG8~)E}GI5!7^-P z=DZ1ph8VLM*f7Z2u%@6L4E0`_mLb6UwYucZl((+Zm$d|?5qRN^!0dV(719GQy$SLM zc>Xzj?|sAn@@8gf@Lxdo9oKS@4FY(8`y$A#E58!tLg4R^15vMQ$F7))@Wnh%IC%BM zl!ITvXv+_NYx=6K2#2P@6dc(uePFwa2DV=UK0v;H3;qUn^P&k}Rm>uAap550>xA`1 z)OaXSELfcaI17U90PzRakD`0xmHPs{8%L1g%Nh7>2kaSt4vrsqgub>7-`U|7hlCMu zZ<0wG^|6PJlgxcFE!!!HhL(UYKwm)*JhtRkb$j2J!&mm5@yUBH!GDlt>@REE<2Cza zA_*Al_9qg$F}$%!z(?K=_Pz%fHsNft2JGhHdC0K^F;LjCeI*ZHIU9cCsd@14QDa@| zb|B#M*sEb@zUuZphzxlT4{fi^KjZt;`trAD=jC&hQioTtVH)xQ;PXyjA?#?*5I(jh_7QWFT@T zWKZAw65iM2Ue}Li2XZt{JUgWbEC8Mpyz(tjjQsNNR-g^2mEgi(GX&rk_^P)O2AEFx z=pQyH`1=PN!%(oMHgx!bK-jC-FC09qa2@ey=+1vZe})|OnS*7yJqQ11jk6?0|LlEA z64V==GLH`(!~B9#Zv=Rei*UNU z*_4chOn2rykz`ieQ4MptExuCCZiekPZ@ZO-*I+-dI(7|7C6k=#w#0_9V4V&*Wtk1i zj&`HbfLS$nQft%6wFk4xywhIGSx(AW%MmL!%6+OxZ5vcarbuo?c?~Y|c%?HKO><&@ zow3JCO4^C_;>t+1gfTu^@>|{R&3BkSN8Hq^W@#I3oWz*ntW(K#dUD=GhDv|lQr+>Q zn)Vtb)xMxN%))NoKuZON=+1Tx+1aJ&S!cH%7wPVpnandhURyL7bt2KK!x2$c`Ep}b*Wtgd#iCJMu6LP+>?ZT8al11cmALgrnfH|B z94)QPvYj6*T7w&+<1Ie3@CMn=Hgt>k7llXIG^rvpL~bb9vQr&YaJ%JD{i-xgPL#Yf zo7EX{QB;dvel+pUMWziNuZ~l$(&pt7vT$@#SeE*TXc4BcTIUY) z><{^Jvhyi@)H31QiUbxV(}K?@d4g!Sg;AGr#q^MM zMp?0B5}l-2@^?yMSxVKouG?5yG&8fLdA2gsa;fo{?p3J5garN{g|sxqrqr?4G*Eez zDd;6-Hl1_xDJ$WcACAJO^E!whnsR;9dQFSax z&9por4Yunwm|x6x3%cD~q>7u7(Xd4-O(HXVMsI4v{Gu>-a%jIsENZJ%LA2YvksL9T zHMe40i(1If*l3VC|Ep3f@(pS>?zQXEaze3i5_H^+>r(!O<{E;DT)2@ps^Xt^m9 z+Cd8lApuwC%qz@m%*EV}*<8)M$-F?n!e}8fGa`t{Ac>5s?vpCB%3$+<^WWWn|NV0Z zFnm%;0&J`;d7l$-Pmo!S2fB_`(xlQyTQe%WG0t(|I-1HTw{jp#!nLH{Em@S#8$%1* z(Ka;#>9uT2f@P0LcO=!L!_=(DvyPxiF+MA435-rfKX(^8z^vUB+zcO|uSpx9EpTsQ zyOuxR6HWKesBT%RN7LJe?@uFZYfu2jyCrBFYJKS;b)?nYFuTgNFSI6yslV(7spLzicCY!(xw-M(HDw`qx z5t6(~Z0`@+2Bs$|r`w4N;9df=XSq;TxI4yX(e^M6ILUP;xIGgfRf6F`IUVU8!D+f1 z=86O4jDAogFF%^R>8X@3C5Z(#C{YJ+g?*Jz9tm1HZ?|{%hzg^vmX0>0FT#Ol6s~z+ z{~`dO#2zKl1WroJ@RF&9)vMH(bRH8pC3o0XLer3>@v7GTHELfoq}T|T3&D9RAST#- zW^GDAZF)k_NgBXeYKu+V_a&E)Y`1RuxL2B&1W(&~!A1M#?=h(9DzoHcskBX|BdAej zJ)C-hl3FHwO4odxCXs4ak&;B>A)1w{JOU#K#`$z(DJO5bvr%#g(s3u?PvSUfDREx(ySUtnq!h7(!UU2&r?)s7(2m=l=|tQ;p{;%TTT2Q{3I zBiPxoyMV(0ref&}k&`(|M7h-~KAmj~jRneQOZP;F^%`5b^x ziNiWS4e{-Agay4C&G1N{Hmt4k3iRDVr+i%dGXfjAR8g83+M3bIPza3IuZVpxl@oz2!eyxI-| z;Yh}H4$5cO6x7ff$PpeQ3NADoW+g*OzGQOGJdywl$_&HzJ0&lLoP_Fw1Q1>-rMB;x z0RjvllO+(j>G7yxp1DWGdoMgYC6la;9pqFpUfC3zd(2MS&X06W8!>41j9pq&gi>OqdB>D~%Mg=+<(lS)OK~&>svssU^|Pu(`SwDeB2R zQJWRw9Xf(;x`aDxo>Ym&Y zewYB0sZ;H34%;I0(s9M;IMTLxH6za*!SNEYH@t)FInV~S$Uc{a^UTvuql}AP8If$2 z-sq`Z9L55Z6_(r_q9|1>(X2Uhs57BBaEG8Q{XhZE$Btm7l+w=i1wWXwbvfSyuz-TF z2aV~=6Vbh9I9@Pb*gtmrM+Sz%2I%&Y)b6HQx` z3u`#8b;~}&0s`95?g$NszBxTLC!Me`_?=`zQd-%ZfQYJSN_(s$D2an4+h^l=z8fV6 zEm~RRX}*v{e>57Ov`E|x655>D);SoQ>vK&k96t=s$D{Aelyl-Cj4?hf85Ny|XfJIn z&*RIO70d!9<+5hJ(!UHHgLE_7jh)?beMC=2tW8+smZ|w#Y)`8lmp?qc8hv<%CD$A} z8XE-zO-RMu(ei9+?Svl{t!_4<((3LnyJj{ABY?8n7kb+OTR$b(KScZCc+47t7P|(firk)46*8TE+Xg%WZl3OZR8ufAQ*c^#1bTf_v2?!>!O@ z)f{x%7kVp0UiZidC*=%w9+_U_b{?5Q>yeqFqPTE~4HvO=EHeb%2uQ@3CA@p8R`6Cn zpyG_n=VuDYpkqZ<&7meQ;yLHl=CV1ei7?U;T<7ixDZKen1#`^}4T%KwTI6~8fF$Y) zq!?zr1W&cRX49dMBf~YPtrHGaFfgl7wB9C2qkmm+#!zBUaA_LF+V}WO+<{2W!o+SZ ztWW9oh(L!7tmB0;*`X^9-A4t@vvxKeEf>{_qZBQhMVy$e&->FMW=unwgT3X4st~yj z!c3^70?lTdtQe*ec05Ogqn3gZAmhz8I0L6qj%fpdK%&j=aEiQjfv98(Cu@+}S1qg0 zfnK=NHPdX8DgQ_S4GVBGJOJ&BVavvJYkD&mb|pJO?!xDJ-O6yf9-;FxBw(iRp@}UH z`qU9Y=nz4aI0z@B<&izX>ydV%d?@qNLRfDn=p4*ARP#$ao~tK0V~az@=yS`pwrFXx zfKb+Cf9Nt2aJD)ur^6KAxJ(q7sC6zJ9Nw__v60T>WmrxMUtj0}#GZ^yh|KY7!JZ{( zxf-vhCN?>{i>eAJ;b8X0Za5btdF+LXjz!GCK8<1IES$^X1g}ZR#m>qWPw_dmmoBIdUQPUti{>ju11!}pjeHL?m^^)RkdG=!`dlX z`ivy|lE#u`(8T1Jcf?vG=?viCNfJW;r_rJx2!h@8mp48K^NZ; zv&nib5gLJ=0cK2CJ~^7q(9|mhUCL5`0S3;Q>iupse!!!WJY&i_KevWn!=OEHJ{REd zK!8sJw0$w`m1Hj?AD&0*=S68UY)nc;Ea}G!=1}Z$)$I_blSq?i1iObJnP)o!x=QdW z2V7B*F59XLH=9=Wh(cD47VzQ+1^J)^8atq7k@hbt?C5``1mafocL^}QDqWAY0=SIJ zR={_cEEi?*SZjQJjdo3MK+p6B48m_w93+f=Rvev&{>_TxuhlR89YuEo($=2%sY-sT zlK;%Agqx1mtg>m^-A{4|&*3Pa|kq9&uK&T8YhxSA})jiYK~1=kS$%Eca%S zr%n|FDLSiBGC+KS*qfSsfM~NYTp8W+w31Mm)w9i7apS`PSsdv|jLQ97nvLf5t~TkT zk8MLc82Ik0Dy>*uu%bSdJ?mIXsh&HCXsHF7EXuR()z~^rz@#I%umWT_L!E&`=qk4Z zGiJM6jS^2sGTX%95o8PJ32-3hK5}wld}8ei)J7)iATzB3wnDKok0x*gSLo%Uj>F7! zd!BFE>3Y~69sq#k=&REHy3qLg`ASeTD+Q(w-e`I7hLrA`OyWY|i|2vsjDJP)3w871 z@N!~4Vcox12~KNgUK4FE=}raE-7(`iL8d)2e&q-G>;h?~fKl3$U-Q&7M^D`54-V?- z(|_w#$)`44qzx_!S^;0=UFcfSX_!_Zw`wBJ_I?{+@L#+Cy7+>h!3=i>Gkl)iuXS_{ zfn5~ar(O#lFL8Ul9`B+AdU{>lKpR-_C7Pgp^*k{0S~TkQVLVHkKtCGAV-j~2mU$ty z!kemW{KsoW@7_4D^D89Y*w?p|nt5FOuIGXmB6?d~?+-0O_DTrv_r&Vf|3t;dE`i)_ z$+3QfHi@|+0vEtu2=SbH%YpY!Y^L$#fd3vagn zdvi7Er%QpnP*(Zbdi?U}xnZ#%(vE$*gE0dl9aLYewE48>&kh}fo43zh zJMxW3A?Ai&y>t|MY6AZDe;yZK{>E5eTH-q_%iHGQ@oD`nB%pUtRo5r?C27#oxheVV zv!b!j=zU0^>*%(c0T*U?*KYsQx;vgWbRqbMX#Dr(-)DmO!|xk> z0K8`SweH;?=|G0aZY5zw{IC{uA#0qu}mH8zJ&F+`WARxF7D0|ABD#7HZ$a z-AT9?-yZ^ZN1nsodlmH026t~2!p|Gx-Ue#l`A-jbr@w}~cZ%#vblPi?Xm5eLqsXt| z6S(^?a1U{RGu|C0$)9-lpLqA5c=vxyygP>-0Rqq8f_L}I8N$&@-~f6+aAY5FR&G{% zu@LjZ(j!rIma|ZpiTJ{pY9?G_GIbyc6gtwA(T<5wWK?3CGe(}LSwexkm?zLx4bFD+ zGkVvFoz%`C$AK}O=M6SP~#7QEJmF0HwaG=Sxu z46&Ro^Lwhu?GTU?JMRe2*psZE&NP@TC3G21ki=L_M$Q?;6{skL`Dr~|X=j4A7>dsAwayFb$#XZX2<uWaxt$oxLw0tdqq)HRMldBL!>7t*J;t+RxHL7|l@I;|Gq*=2O#6u59LS`>;kdD+ zvnft1W(;8fFz|_Jyre)nD#KJv76Tpu>A68K5MXkW(c#LTfzy%XZ>RI4cV0sg&TO_; zA48wIZb;Q5Ad0(mpi$z49QR=bWMU`fV-X1qKy zg%;>Onu6#88&oI`XLF2`%}aptLu_&nPw$?HrcVPE6!s}MK-J-CmD0F(L`BnT)8o7I>Z{MC!#v+lwSHN87OmdVGg- zuQ?!}z}cn?;!SF8n4DXQb8Lz26(-U4vr+q5s!A$9)HN}MlKrq4ZTKGIe=G-i1nJ~< zj3`T+5y{%K^6fg#3ezHTk@q(cx3vr!W5+(RGC@7d^RZ|p5J;<2Vy_V#zfCfm1GBPM zQh6iQawDJTTPq$Q+wpXS=$_`<{)C$bA`ny~Ahc>;4Ocq2SeDRXd2GX4s~r-OK#2~Q z1fwt2B{ff|o)445Qdag6fPr}Ck~PU`5-T$WRZa|uG8`j{(ikW5fF3eSNC`|f-YvBa zNeO!@l$q^uk0>*!@}q>`NgY9TCVEF?1laY~-bR~Q1mg&N2KNbhu>ED8ZpLEH)jZ9) z^ALj@@iLz2S~0W;c0MNu5N4G7P-V4op2xlTl7^##Tdj73d4vuXuEu7IO%WLsVQup5 zQmjYwTIF&VFev^U>Z-b=!^jzD%sPe3WxS{9VO&5<$?)M*53P>(W;{KW+j@Q+#k;Y1 zGPKit?aIdZxRPktYI_u?^pUgUy>U`xsr1-fG#97@q$DMRlZEK7F=TNp-9GkxqKLFF zZ1GV-=wvmUn>z{-8!j#96ATc`ExH*;Bv)IUfFcWfZZRpeU(M>nL_;Wd9l9v!tX-cx zx!NWF2k5V;5n1zu4^&#C5h*jLL}kr_ZZSS>y+Jh?ctd$Bh4mp^6&|q}co;f3rDtPx zUY9{Z815+z#v71F`y>P=&9yjoGhcE!JW%+3e5~k@F~(aHgl#mB*P6FTf`+AO)f!P1 zK?xD+@b$q+9Vtly69EbmNCu;P)z4u&8jkdiIR<-~=EI6Noz1q$Y_bA^0{67tat9e( zT@($6Kvo!qX$&8UGcE-7bSR3UFow&*gliVt^v061S%`Kqt5{7)scHr9;QbI^6|>2S ztO9JA3>N$ZXGv3o(Q@V@>b8>$*HPyk!3O{mHDoOSU_hV0sO;jeuR_lsq0aT{f;yi7 zmYOjJaga7!t~Zuee7?nZ8?nqKG=-f^Ga^_{wZ`x)DpLpGrmJ&`K(|ma-yZpxb539p zORmb!CS!bS7tC@Xl%PJUvt-i|T-#8hXLQ00suQpyXj48&b2xJc(2nOb3mc~~Ng&g$ z=^2W$^1-<&h>Ogs@#z$UhT?oCE>9qtW@CQWnCsiPbOmtaEC>=-n65*QundUDV76y$zFLRu){^K{q{pXN zqL)W*rtIkD#vm()BO~{b#C{Y5{{&xqk=QNBwwKrsrm?+{Ds@DyyG3C8p!!Ip7-v7N zdEP`K@5r1v+{ko2KdwY1_nA_o(H=6Pjb!`C}!oC*Lyjx%&? ztDdEJJ}8P&qek&EJXDDfkdhdAn-DHTyiauG(05Rw0Tq$pH z2AB&&EXTOn5^;ykclDtVp16pLAW(xv(etZy4I?yv6;$_#vGZrHa{H^Gx)%suH`*T)%)fx@zT${}>pdVs9%a9wr`5(|T5F&&^4eMH z65l+2tl?7wp(FUnO1O#z(NT?B zX*5!vk?j+Tu*$a+G_(``fD&nXK57h_Hdz7D{+9lX61j#t?>xR&{4>aRqt4N7uGLTp*c-d3T#bJX|dD7@braGRS>T zAmLMS*2~h`AwdvNMWH#>4HWpSg~1}0P<#oM##Dm%#uV#ic4KcHhH5>p2Gb!s^Hq7_ z7@9lcgz-W;!trpwvJoU10Tix_ykH&2yO>KW=)|ecgIE<>B|H_5D+Qx+aWs><8$gnGBS#6Pf%t^!d-&f>&Y- z{y6mc(*g7WqE`R_Psi1klesN^_**3Jk9U1@=Wl|4T*6J?zx&r&=y{0l)!NMO5d{6x zd_9j%ehRVp?eG8Xf4+SVUjV;-yP5Z$(<@Qfm!7>V*6;0X_`{;x?-}pY@b*^3bhNI8 zgtw8xKQvXs%OTe%hM!G+4%FDp~Fy;S{djTRYto_&s+j4HeSf?`{uRHlLO}Alon{~e(9`}8#T>i%S ztCRnW@PGfeySb@E>K!Vw{Hvh>DDit7GdyV3-@8u==nioO59Sn_pavR?1q+}%Jvspx~VuV_ulr|e`+%cYis>J zeE*r11c4Cxu!i4fCbf(3o~w16D!qWzpP5IGv(LO~Aj5Ya$T#}*&%~EsabrKiTR5nN zB>Z4Qo4R6eUF_`7t8p=2zlpVtnuRHvv)!ioV(;Yo+rRw2%JWU?6dRc8c3Twh%e-ij zQC+{jW{1_oyyfizbuG1bRKwv@4!<0VFK@qM_fIDBdb_UjEO?RRjEeS7fj{n`x_KP0Ke8@jz}0ndN^qdWeBC+OSVe=Ysxt3==6 z+vyzLUpIEMFY7W@-_h2GtbKfo;rM6SXE!Dy{FC(BjhrId;&$pO=`xk_2^UHrT%T;@({<2gkdO3D~30i5EExNMt z%HJA8&HKg8Kkh2Si~CE3TT&w4)nFaPZuC)&eUy~?9_RF3&D~~S-qqAi>9y}`X?O4& z(fCo#-EQsP$BQ2}kGCCC??3#np6Ft2HqjU2O#WS)^Q_1}cD_CT>AQC6W>?rG zKB}=gE~95RNUygCz42b^hQ<9QNwVbk&`HzRX8HQMLU$aBnhoUnjrA17esPn>@UAv* z3MRR$t;^C1-4AQ6O`Mm7W%TQZwYd1ex%{3Y z7V$Oa_bI(scxlZp&1(nSFEjswN30&m#;*)I-$MElWm>`#<`1^X=Uvo)+ zHd=nYfj^&J(f#0F-ljf2dJZ49$_-t7=DGdBUA!s8@1s}uj;O$o+$lE)5`JLkzBBgl z1ADl-#UA_U&fTV+f5hf}qh@LAt-Z#Fe>SD^CtmZLjK3e!xtqoAZMR5mh}#ba#*ml5 zfcLk$eunQQKjzl{JBEIn$MR3o>CW}}>)UtBdlzQ@4(_jih8kZMA2+_6AeeWxb<+X-EP>mwQSwmX@Bls(SnS$5M6&|R%{-}|V>K8`hRiN3f` zBHw&{cHeRxipFU1fBmTTj1QGrH%b5dL`P@&-4by44{0KN*nHmPXuDgp^&;|9_mfXf z;eYy~%s)B%zdZUO@Y>1lzKXQpPCxX@f$f^_;8oYaZO4DIKjU9_06LN~0Pmgr z>Be(4{J0MA7mv+#xbdq)dG7>8j{p)N+8qQx_w=ps=&$$S)i|ve&^1pZ1b=%iYUwq? zFLkjc_DwVA9^B9y+W-5%|BtteEaaKP^Bt;fzYYX?t?xGge%?E~(zSimVKpvUG?8Ag zyqrbza)E$?k9qor)qa7|-+~zWfB*j9zp)@+PxH;tYWOKI?tU-$Gmz2n2W^?>E&csJ z{@2_2?7l=X&-tu$R{P7p4?S!-r~UD^t!PeS$U}to!&jdwU+8T>8RBv7iEm$9eLdrM zRe0Zb1OCAk-icjIQ@7@Qyw&5Zz11pC#U3F7d9lS&qAfeOz|?aXIa-xcJv)-amh*|G`alwy*NQ zA5dreKJ4gQa$&c4$Lm`Bimtpa8o#Mu)LYf-a}tXy3aWkQ&rx{$$CTUdi*K~+e@!a4 z0_AHda;+!_c4JYFHx%K9u}hKduZnQvzY?EIa6{;?(4!LE@Y5394gcbAukmq1t?srf z->TvL_>=ya{Bn8kFEjI|`rnVg)u`4oc3&j&@bMQC?X=%q(}ab?bF2YvC5;*X?V2W% zrYddeaE9qihIG)&}Beobt)f$_@BT!QfIX?pg znH{LwJ#L26ksRW?gR-08YF`)t++!9V7g$wN2?t3v!-@55DvgD$kZcQ_8V8=RJ{`5R zh_%2v4|FXv<`zL80$FstF+Sy`>5-zh9FTJz!CA5>@**ds)*lgl-W9l0U3 zWe;r%M#Q7ZiD zJa+^|g-apVAkwy&A}ez3{%AkEQYw6}CsYNVX(a%Icm_p-EtqEeVwB^GIu*xCU)gp; zTR|`OS}gg^oW z0)Zsfr)!^=`w`cVcKF>6hyTL=aDQNa!744?4H7~{2~GD5yz~r6m6cgpnUz_&usJ@T zuWiOJFWV!-Q#cXMB=~eR1sb+4q*Y6sTX>w3S8Z%e?ddokDH(hytZ-IJPP)rEUaZAQ znFyW*9Y#6H#_J>5?iQUi8&PvzhD6N>nG?SLh?VCAzG-n38KUtuQ!| z)<{{9v)HUzVVaCF!?~>BLoyMcM`oF-faA4Qg=r4#d?(UN|;Md{rJ6@EMnD34^?`Q+9kM)nsLP9OsGt1WP8{bT!tXXOrZS zFj}?6na!|O;;S1Xm5fq^lpOH&R;-&UOZBP9m3#S)tPaR%BC@m8`>7yHGmGGPY;tc)eG`4-R> z!{X_LV_zL-&3K^|PI6c$nGKigY`84b=6gwTMBr9;HG6}(^o%KtvF_`DB9JnA+p5z~ zd8d7!HG6m-jPACM1J;I}{czIw-iLPPOI?^0*%WkAuyYn##gwF7#XKrklIyZ%6~U4hKbL0}Z5 zu0S8&Eyj=peFwJ~U^WN0SQcR9pIZ!Pm^g`B{wg2cVqasL4t5>b<`;|7Bu!X8kr)w) z`so*o+Wlfi0>#5G_L2Nz&OGoF{9=Ar>AH3aK^f%$FF!!XtXK#8C51zLH)&kGyD1&? zdon-niY`_wJP+;o{^QU8aM5vB-)D#B|Igp_>+;lb)XQ%}&c{RX#|U&fTa{M>i^c2RCZO@RPptqJE8jqk&`9@S|$KQ}6t!)Hm?csUMZ3BM(37 z!;kv#qdxqo_w=JCrZc5I_T)!Z$QtmYZiSb9dNte<86umCtXWw~bW*vwu~V95B|fQb z`?GdWsI;n^c`U;8NsKMXlWAFrWh&aXzY}-=ZkTa7!}Up`hiCHR?zCRXtS5Z`P>YGVlA0|pYw4BL z&E%-bYEl_-wc_}tH0d&tISF)qAR`(bV-52SvtBJ~!efbBSWyV~)Qo>B=c;cmI>}4{k z5RJ9GT=1F^I%>7L{A@m|Ovj>-jui50Y`a~pR)>0JNJpqOPG$2WjcMl;!HZP9BahRW zrpPF>RH2uyHx0I7qp5l^&X;OEnd{+$#c&?)MZ?8aZmuC7Cr9#2t;DnH%doK|X2rv@ zK+cyqU+qY8ctobK(U$Ec1T2e*MZ?`h&zJQN?*ON#qL0etc2H zsMt8VpkH{3E1&e}OhR(F|nL-%f$#kYNs5Dg!XUm=OW|}LGcO$CXpd!n(JZNp@ zRHVn&*N16oRqf_BrF^e&j1lH4AE_d(P8fVCDws&G8LV6<7i(I`2}HOl5jCp1%`2Hq zFHsvG({Wm^(AnC)z1i1@-egybshS93g;b+)G#s;&Zc^B`#Yn3{N&KXCIMjMrYSh-7 z#Q!3G)KspvZ-jmJqiQ?|*ze7c`pSc+pAYRveVEJ-llfsX-^pYS+U;&zTU*79e{vz+ z+1nI)M!3h~u<-c><`@o31>G*g12i*F3^*Z+0`cE`2k<%M@1b9ny` zALfuwmmeGzEJr!7FS-cvz;OH3eX(~~Cws^9AAkNQ1Qv#D^)j$u6tly!HF5fC`+Nwx z{;$g{f~22YAu88I;>+({JQ|(P!9&@&r^uI+NnrYs#D416vvvG#6#O>dtEo3vsq$Ml zG9nlwo6dZ}*2pN%#4L?)TO%XCJ1fKG+(s>-b9JILpj7Zhx2&{nPnlz9b+&Lz_PjS8 zL9-zqs^%?vFO>5<#_Pvxn;iAf3)V>Bb(4I~2Q4#|_6Cr*9$I|^C0we008?iHsj*C8 zZFO$1HH8Ees)jWZB=|lA{%=fZy8#Vls3IMog-xN$B_Tmu!L`LhG!qiAr-dY9 z_4Z64GNhw8=fg@Czs~>BZM` zZ?3uUuo7aIp|`50A*1LNKwD5nUQxb;Kxsv*D~nm)KcrD;&L2Qb=Q%Lfdf8C|6f?TH zUiN#ky7tb)Tq<9mug`PndI^mHc67+#vXIfq{T=^ zo)|h3kA{jJ7Yxql?r@i4J2rnMoTtgJg8}4ByywtN(kz{jwy>eCB&zy9Kuo?ixW>9) zoVTU={r~{zE1Xk3$8NF2r+k#>+ny~3S>zHY%G^|CRu*&O#pELPo z%k<~=(0;W{ftjk?pI*#VgTAMR=~Mh0MMPZI?_3)o)om-50@_I0K_(zbP^TrdvjSuf zNOUjgxhOwPGqOMHFbTbH#H|R!ox_koLAGr}f@KA(28Y~DeV5Q+K9#HYXbH^7#ZS$qP8Q+bWW@=|00!3IiL5+zT4s7fBgCHE)v37 zW!g>!9!h_nk70)NpoIxtpO}YGIk(73e~a$AK!Pf-OX>#{*8y*{U{KfNY@U(pb%o*Q zd40{p-YH34DCvxH?)7Ek+K~G3FaLFqJ!b0TTUQny;srvwQPTOC;)Q6Z;k%fda=2e- zNHg#rH&ozNZ9qiKs76ow65wR=+qE_Gxl}fd)*TQ&6@q4PYk^%-9W2g7FIjxOK=uXx zv_%TyFwA|fq2VQuZAcHTAwNPyUetR;9_@EG#H*043N);l~@O3l=1Ba6Kf^U@at$7r}7AactG4c^@DIY8>(_k=J#SGzI|}tSBB# z=Q0;EV^%?k5Ez0NwIhivDXKQm2-Ga(<&gFw`}Vvcp`Sy$sRjZ>J?K!iUsOqhI|W{B zE;N!rS;D;@8wQ4EL!z_`ae^_tHnJus7J{lxR!|S21YQLR4kGUOresasxlY3d$iTd5p^mL+mp5?TunVHqD!Kzk#dsAg) zReKB+;iPdr3f8C%{T2aFnimbuujq5Py<%n~T3=-JsaP;B{$$-~7>tqGv)}{`!H53) z#BDx$jW;zFzc`gJu1k*ADioPFiNU$sFCh!8dAayr<$7XfznfFuFPGSZX#wZi zK#D#z^H72Tci}wcnv7z9)n^I>*O7jsKxwj1(yg6`7L8~gO(&su5ARmnC!?D0iYVJ`k1kAo|=#^I3@nK~@tKlx9YO=^E;{^%J-|M=w0>wl7{>-B~`?5 zs$BO3JD-qRQ|B;LleF*YcX5m}HiEGrfCUg5f>x>^7KL4gShI3H2z3&ctBndmR~D@P z2gw!`lB10&Droq}*Nq)f|+zBewRXb8pp>~#l3DiKt zOwpcTIc3Vj<;5c*xRRxb%r4HX(|clB0306}evrY8=+)WJq=~EkvA^jzvEiarkwB?3 zyHr*Z+?@^L;>r?KX9YC;;KHX-5OaR^RaJZf9pQ|@^PA$(<9(%_0%CeU5n_-dqc8f9 z*Ho-gSHs9qbf?()B%QEykwoVv@D(2aH0cQ72o@MHHn4OskY}MCCE+A45TZd;gPl^I(u2K5P>$=>kqIqZgJrAJOJ5)OpN1hxwh;eyu(R8D&i8 z=*4EDBxNnhygM!KHHC{+NAAD_|8V!!H^k(}SbaB2 zc+m5|7eO=$D2!OuwJDBI6!B2H=|hmj-4FJAv4`=DnHo&+a?Lpd$MXZR{-p^ei;DqI}Jh?%>%dxaMbTCjK(AwCT6WCFWG1?Va6-4f7o zyGcsj$gJN99QQ7e&=QpIB#`1Jhdw0I2a!nBLn7TeJpBG$<$oPn6#HgN?zt?B{H{UZ zk1R5E$U_!=5Lpy?$f8?^zd;s#mUEGp+TgY{)ytv?tv1HJMA5@gy8<#`Q51cMqFaZD zH`HXFllGrP8hJpc_Jn`IYEMYCyg{Io-fPsy{4S&OIFJ2`LXdt4!CQximl~jz^{v-+ z-Vh5^2rd?qh|MQE?=lIkdcZ>_>16-qWm4=RlWrXzeiL*2QV~?QOtQ~rC_?zG{4Nsm zkVn6wJc>W$(XGS7%cC8uy5>84Bx&U3I`5nJ>pZ>6#RrSorDLYs>e3UD2x;XmK73!7 z7{%Q4A4jAyte-N?L!8ZTB*6qlQl(GhdiNm1sEAt~Ulcy{4-G5V#Z44P&t&mO#KUiu z;&@lY6EB@~tV@PgLEy7+p#<3&M{Fp?du%pbgDr(!WP z_2Hr^U?ztG6duumA4&4La^1}-hEDiJO!4q=Z@9|(KQ_w|FRQGu{4}oDUqtT1AF%%) z00960>|I-O+e(t%3PN9UgvF;G9PsVWpG0xT4el|T}(bw9355~$3otVh<#*Ppugzb#My#Qta9_YZ$t+JXIc z_G0gNc>MbHa5UT#-$u^2h<|$`|6||&7KHBX^NYP+@34RJa(J=+>Xmb4ujUc|yb00q!{&&JaUvS-(ukt~cO;phw>&NLk*Kobqr^f#o8Q`V*K^TJup#|<<%H9~T}H0&rMlDA=~;&;Jxl%~T94USUPcdd zCt>oXKYRGXn$GrVt?I--z(-o>YDwpL2a~^IC?<3HM-I(o{&)7`J>!^nB6?Ud()KFy z<5tn$E&pzjtf1KN!pTv*n{(QCYHhxci;rVY~+TKjE;Q4<` zKCO9J58IyucgFvD&Hl1BV$P3-Qp-(!+aDgwjX3l5K>77xFjRbfd@@#id(xA;Qu^6} z>f2FYo_DElhe~RrvAQDzvDo6FNJbzElIfpX5nBst%m-DqpyEd4$Odm5ITM6r2g77O zub-I4|4%;2`OAl1HErZ`$`#JvsPZP2Ug2Nt$=vzGC|(El@+NPciT}M=TOHDDijym?osAju$yWYR7=xatzM8t-DRU$A~f4$Vn^)sGyG9 zCaCyodL);YnMibs_&|5<%HFEvQm#}B%uX1I5a^iBs1jwT%K$!I_{3=Ax<2a5b@#Zk z#V-{u?Bcm#C?|euLFF`RtDK~A);=+DEdnYf{ze<6bRzep_DP9rbx8z zn#DALi|J)MH5rAJD%Uyd64R)!zEJAKbly@i^(44li9kvKD~s#y?e)EZQ24bIDwJ34 z6iNa-Q!NrZG+88L`1M)d@}G_zqowoa{NvE{N;Ck=>NQGMMPMdaR)fR!hgepRn4=t^ zEaLgaT{t1fJFURRLJR_rU(p1^`(HL&;vPNLCrPdk269OH9pv zp9~xuSM5GTwTCnV9D@kH)J*CO$ndr?&Z4J6a#<*>XnoKffr%gc^udu=yO!19jF ztf3}Y-dXF6H#@=d-an+|fjudz1@i8l`Fz*xWx>qi{12y9qJ=N>4#c<-Ns=%C_N)n^ zJ)7&Qe9Xw3r&=|3`-zHqA^{R)J~;XlUk8JA#9TFL5@l z=7U@%0@ZTI(*QJli8DR@+~a8g8oq3rkqEHkHvu&~>5-v^FPmm2DlMuf*l^8UOJT#K z{5j75#NWwejLNxNudSyj`D6yQL8sJ?2Oy`b^_pScIQEQnF4>y4x+>J*$3-*o{o92d z++Id@z%f{t^Vt{c*0UGv`LD?n>s*iOS9q_sUy*QA^2LQ%^$CsKpOT~=nn@}4_RSf1 z@ohP`JsXtr^d-*Df}M5!p_Ee2v^xu2doD)_I?1X|HMXgupB$$%&~xTC*F>C+v+M?) zews^e3uo3(g{>gztrjs`^fr4v5a3z^b8@_k0G(~lFF(Hf>zB75KYYFX^!eiKRrz&N zuid0*oeYu_D3$tW*h|dko6{>g{fqN(?*}u0j8YkdVG@Z>8H)f?2;oPk(G6r-ph(T^ z$flw-nfue*4uDz`PGCgsgHP2jpUI1CZcqx$4j}UoB`w!mu5=mMs}-0>MTu}F--5Tp z3QkYe(X`RxDZdh?SA17@{8ViWRva-sc?C^l`$yvvH&b`F>dzJkQM3A^t$;(poK$}_ zEFMJ8Vp-fmhSxe&H90p_>p|ZI-UBDFqg7_F)vlAOP2Gxh5+mF(zB4=)W{G^SFsZ4H zhQc10fIYD{$c^n?v$omY`%r3kk85ngj?UB)gDo!n1kt_w^F)>M>2vTp29{C*Q7 z=P1=v&A`SEU1`Vm{Q##Zo2x-;hMrlBBR05vIN4+l9xS#ih)-xXi%&S&PG$yfIlR`q zO5#ZcSRz}MWNK#6g{)s{=9r)(hOqdSU+(H)vU;NeN;zPp5i)_Ptug1M zK&1|IF6A^hN#0k+8K=j#oEKt7$XmF+cHJ8AT!N%-#aGj*QtPIk&i&pgKdY;bpxBt-M!v!I2d+ilU zE_9~Rr$Es>|B=H+PVm{eastPjay1}!+IH?7Z_f&ZOJneMHaL+2&3k?pvzU5CTA#0c zKPp3FB;}U(yn@6?Zt2VGOWyrB&@zr$xMBZ38YR}b<@I};4?*NFU+j%Wn<~q3{AuDx zk-uOs^#`$$P@E6P@rStA?Bg-_Oq3kH*c%Uo*sfQR__(I^VYT?eSY|(k+{=`Sq$h`O z>d*NxE2sU*I)_RuqsL=LJA>-24pr#S7WbtLr{`6tyep-T_IvRPSTBGbyEqi@9~JM@ z5Eq9!n41*tm%N?O1P@K_B~`L(?B$^Bg?2quomo(^9*#uh4amh|(C>-3mu;tpg4w2C zI+chYEa8-6g8=RmDjn;K9>Oow;?)$B_D$C*wP43TqqlPRUzF!o?xv-G1E1An__v690>Hj?GH z4hJV4r~4pt+b)OGu!GNfGu^r6-je zTEc-N*2UNAcgNZ=tnX~ERdZeiKNa7@o^vNE6jujJ?c&kAiL{?1#sXsNIV}u zqX4Rq)1za-bzyfn@9`6xoi8?Z;bs%Rz<-i0K#W|}RuDT{q($8<_TV-yY7WymdiA{3 zVt>ofkc$E&bG}6QPs-(8bs`(Z@;;JGHyQS(cJLlHB(Z_^WP4NmeumRJbVD`bUBb?p z;a|H9>MdVhn4P3T99+FrxVTCP7a4MACTF8~7E@BoH|fo>MpCeVHe|1;D49f+nbLxX zh?!Da8N_>;(juJf29a2%q|C#rj47JNNSP9JJt|5t$OAix*pl$9@|)~tzcqI-kV21|f~<)Z2*X4r8S|WLo6DJs z-rR>c37|;%5QPIp38o&RNZC^+Ef*9g+>$}Od6)(Mwc}CI1IFW`Xu)xHT-P9KKuJLG zq|-|eS66ow;F1fMbyeNo?$;=`CZX0ZhHM|U0ojK8V>Jue26%B-ot>Hv*-q*)#(D6{ zB(YO3CN9tt;y1^>V*|F?Q~ga`Kg|&TDYvLELYE@eC+RpjC&W zL^x%jF#{-KjV-H^D!;g^Wq@FUdi$&chs&9tz}%52Vs!IU{j6bhMe)3gPCKcuyE+_a zw{@ZPKKf;mm~waK*Z@Xkqckvpp(gXx_wG2v#3vDeCbiKG)yF5J8?xwAlZ|ezQK9C} zGzwrwH&ow#0;Ag@$mmvosi;H` zJ5Bx7at^QwR$aV`-X_>n+62{WolmxMvom7?TszB(7p!=ct;k>JL1O=$+VkmZZby!_ z6uFz+(BirDwz4I84{B9yYYrgXUcEPv*$uH$XtL;t!8SDV%qBQ0#qhCuevhPqbw4fLlGY)U<~nXB0&&p zsa`rI0HOoP?o*<@61mIZjRN735-mdVoK;=ZhXfN7&n2ZH`aB@ABqo-%#3DdYv;8KA z4+WAb|0l4y&%il?G}Y$ul0yxb^8s?@K=o?{ivK0db%N>@2tY%1DuH~tlWuy0sj+)! zRD_@?HSH2ZQKR#ZS}R0U1Se$PSkb+oKuiFVC@;Dg$pTQL^M=5sXY#0o1_vW?shJ$E zTty9?{y3RYb?L|Ve|LX;|D!|Iu@7YWhj@-GYnQFh@mpob*ag?WXZKyIuE9Ny=#EcB z$K)#$<&`75wZrtjt+&&%>gq0txKfD5iLe{y?L=K{`WWKvR0nf%8tTB6mFGsfwV|HL zbue4(?KJh7;^swxxV{v(M8|W6QVDctd)T$>7gva~0RRuq=_z-TBJv&(h8^K(m7Vp~ zQWZnqAtMJ&xX{)CC8GvSuz-tHrjy+Ym|&qbs~nga07FatY*9VT*jf+l#?TpttHdD?v)G?7WnD;VfVRO*7?OYq@r={1;WIrv%JKVc3a2)G8@K?*wQbU({ z8=Im%%MKjw4#;7Q=a~og`_HVU6IgRMV*lUg_|&@}-~V{_+}a<+zudZW|2nW2>opZW zb$cDg&#}3=KTJQWnP=Jk8s$lGZ$}{27IhBEUf=UxryprY1|%ZnEEv6C5Lk{r&Sl6gO+tDGkH<~Jf9R?riq@X((-bano!F+ z*5AdR!R{L3^K;8#pP3HC^`D#z3@_WU@aIlwE$oNHkMg-?Groj_W#C-7-}tZYeC}HN zi)Z4eg*y!(Ryt>AW2sunA^gP> zgq*Y>LC8!L{Ly)B$wmm+H8w!2I-y+-yDe!p7@BLp^73GT6-E zV!S(K1S!h^6z?k4(tAq59}`Qi#1zX7Me8Yde8mGAE0Sa#1m=!ME;wLr3uG34NZ0|6 z6ezm|jubdD8%GY7-=aPBJm48Fs*me8RoQVp-zPgAG~HIS2EjjZgFvW|5^h733kaI* zqdhkW;3#H`@1hrox&gUaXitTFPpnt+ZT7%Q9jwgOrR96`2ku&y=f|>kR_UZ#=<06h zRo4`L9RKw#oC`p4$rj&g%1BlRUzwFFPl8j3k)piqw?sc%(mRtgRf3*mkRoV5tAn}X zp*#Q&Vi|-F(CwY2O@U$_)h14PRe$Z>!7z5Q5WwZ(;Tpx%0hincz{yG6a@ZH?gRk5m zj5vI+g)Y|vVPZHa4#6scQfb~64xvzyQ%CKAV(6)vOY{uL`9RI%?REEEdJQ&gMe-%4{II#oAy3XFrnmmYrB@X}ar(&$w_0ZXS)EwnQ(V!Y5uQ+zQLvNBqf*|{) z`tUDPW8@w%i*{u!2f}O>o64)Mm<^5pQO%ZNFHy8gq%F#WUxl^cJq(*g#W~WItS8MJ z1cJX%-6G2@Viee~M8H7M;8s&h@w!Hwz|%tT#*LArqX)7$H`P`kRFw(1J!s@+tc zvbxA)*wL#yW`HrrVsq8DXdodCdt*qI&p)KZ>eZ4YZwvK_#(m*Pjh~(r`Cx~pu5#xl<~7Q-87aLzhx3BP<0+URMd? zNs6LJH-^L&qwc^J#c&0xcttTPVsvHan82I>gu~)0rSafzQ14JCBz|mksEEBSR2C~G z2XzoZZI2+^0E*NK=#Yh*jdPH_7`3E5I!bp=04msuBDe5o4qIm+j|~jH{m_B*&CJW} z=3(gstXH?J9ow7U_`!?4uM^+DUD(0xU?6l&wvR=A@W9i1W|^4!b3aH}=&}D^zs{=T zaaOg%6y5Fy;gU^OJh(uo2GsrqhQTo8)Xz$-K73ZKF-SHG;RINO!BvkbqzHrVLIbf- z?6wN}NGwHEghZU<%&Z7Hhg{S{$nJz6a(>L2-Z(X%%(?+H15|Lw1!-_7da$qr6sf$4 zQwJ?zT749)iE~Y7k>Z*4sc4Z^@dd`KpuFh4)nWoNRU+}6xJ(S$TqLV-P6i*TpOwf9 zua+bKd2kn_BL@Puu=sAnF5b3C%F7fl;UE*;1pey!2Bi8P^~AxhQGL0Z0nk>n)A#i9 zz5H}>{`TTB#bj5bCl?avWSh!YZK|%{OQ70ha<3wTKeOu2 z9k<%3mjK7WTLDR%W`6}ct@(kN_GZn;$C#Lf=MeotCU3s>L@1UI%rtrH%) zWLBRg_kx{Mk;{cN7#rL>+2R;s;8{~UnD8nCGiT{|qI9XS2RK#&m~dnTSiZhiJ zPh}^;us9W6#ucrrQ&DzXqI@I>p;VN^Sb&wOC>vfBn%S>*(x@QSVV0d-M-HJe0rMc> z3@fDurdpa%Hx^`+94OcqMGBUofYcyHXr-byQ&nQ8>X1?V0Jc7cN)>6C zq3WCZSy}!_!^9-B^K&4h{Nrk>90-AMxlu8mSNF5$5mURE;(6!HA1r%A%UB-;me`^< zYX+JqVR4BULr`dQ(B6Ld+r{V0i?8oLzPfn#_QRi3Y;;vRSDAx~Fm zl4_0G%O3=oQ8NcKWmYBMI`>k2f8o1pNt&6FqAp(tbcL&Bp=M~5aL5isWPB>SQ@MY1odE|R^?jZmsHCv-2KAM5F{8)FI&#o!8SjrZ5eP7HuO-)`PupImJdkZw#6*Y%u#v^Jj1rjJ~7XX;-Q#)93EV9Y` zK@)jV^9Kv7pyv)8i9yYxQSb&elN%|dcFpFbsL8V1qo#!xbn<}p(y(_WYKdsxMh@-o zt(rgu)wiH*73N2|YOSFV0sd@b?PH6aD5RfYG;;3Se zK47r6#Kck#yhq1LkBGC~C7#U&TNE&=1eJ=yAVkEJlw1gqtsm7jk*dveL77`o9R#Lp zLv;?AMGZkKr$w>YHd>Uq)&RT3F^T_g?w0V_vz*u$4dSk6y1oUeQwMe)Dv>{CBW@A&9t9WRd#S?300J1<$zv{qzehIh&d8!leW8j2X zFGE0}kbt8YD0~Jo0U{FKm1WBZT?Poo31kHL6{q%Ng0P0oa1e4qzz@IZHf)IcKfeFZ zNuyZGQCqlC$6u+H3~*!sN>9CcSl&1uY~RFRx+coqTg~B)S(`cGG;oEJQU&~>^leyd zPW3}kVE4~fiK%la-us~HT*z_1iX5fzYoP{Q{nY3Jjv&xw7l$wWbLHOgyI*9%lAIIz zKHz9wxdCh$pr}D>C!>hDk+UEp22zS~q=4oD9I?^QID)_hX6AgOO*eZu=00har0z}% zx24E;t4k`|q7|>m>{=(eGcro>aD1FbAD`)D^nQH*w}uu#(^pgd@%;~8e{sbV`$WDK zE}f}+^{`IpW5o@I+@&_Ky=%wvueN^_RUDb_Azybzk|2%{^I_oWfNq_Kdq0>Z*?}_r zwR1Nx73gDXq>gpzF5I~t@cQ1i6;EVKPB055_`-V>6EtAX;& zN=gLcQ;j0%%x}vGuBYi8nHkOXuKZxZ)0in&Mm+;+gR^WJcaLnLvDxngAX^fO-1-C| zBB*|L^Yr57Ycglw(}~6xwLH<(zw&eLZ1Zqq+5zlrD+I>45+lpW$VqD1vwzs4%p+53 zxPXKc4Od=l?_q6|mQ1ln;wm(owQB>{f_zGk9^ZH5E0OTQ!Ol+zT0ZvH&krxFdyZ z5aD6a7;+{d&8Yr;1i>{ZQn1_=C{n=CeV7xKR`Ep@e=JM1IB ze@uO*qI&-i00960?0w5}<2bVDuQ0s0VMml@J#0ztIpqjRvPh926Cjh6?OwD?5{XP?0*OREz;KTJjDz6!VTDu?%cW$eLsAJZ{me(tz9P!=GNSfZOe<@r4`;=fAs?Q zzs??ih_B%P(baz?|ND*qS+8sdUVr@IyY0U}I=whL6Ay}?W9!eQ&mVH%AFU#H?MC0- zqbneF#K?*OHP!;Pcv`uU?*-r3ICkJH!sz|c-7E~hE$!&r`Q^nC z`+niA<1l)9e>6DCA~8FI|2v@{MhPN)_TQ&Z8Dy?*fBoyvvWV#ukUc{=M9+V{7jE-qMS?lEB3IW*Myi!qo(-nLK)+ zw@^VNo0gy@6*OQa6)d_#gFiV<{6KTV8wx7PAE0*O&iGtJX#nn|qP# z#QqZ%ysaIB3Lx%YZv+Z<92G3Ojjge(r$&cbK(_cjjNCVaL?#ryIg=pXy+v7>Z3(NL>i=p7p*VfE^fUnuLfIa0b?8tVQfa|4(V*g*kSS#ysaQ?%JJ@a|~ z{%AZJfBH1~_~Q}(Hg^Av;oFJ)4{T-8+M9m?Q`Pxk^5f{^_NyEB-ro4}&M$oQ?A!t8 z_eZ1gIlKrTzHEHM8( zy?XfBhL_`T_5Nr&HG776G5&Fr{E8 z^T=$xf~R3K=os*oBjPP1D)a`UA6mvvO>lV4S-4BjvHkKvGU)P=bkN@c!sR2)q2n4y4ZGPN6}nfXM&(*T1jX z)$=LdzWmN&7b$V(u&G(D&CZ;4=x^YT+Os~fui#RbSis(Ka~OA)u^Y4H{$t}Yda+~D zibJJ4&6>i$;E4>jhv~@C+kC=fW6i*6l4Ey7$OI#|5z;1R=AshDBPwvXD~b^)xg&a1 z@NVU%q=FZ0mNPfPDBDKh!iWk|#3ZguH!sZX@{kyYvzQtRk$ZN8U~XYX;80E%6G-{b z+VZd!H$6BqrQJZK(7|c7gN0lS2&jLt=0ZKP#H#?0UpUw7O#jCQZo=#;`efZl;nEs_ zV{QLyz}2@Sw!7l34k3qQzuB?1u;CW#1^^2Kb z9fqxm7ISy|+n0~mHwgZ6Unq*s=Ukbth0fRi^Rb*h$Wb-*F0iaXXabM}mL7ZcyBBWQ zD)*KfpF4(oSzL>6A)i{kg^V=rAi}(o7*7U?fqnPR5ntW7YbWwnvG<)!#(M#q(~{F4 z0n*43hjV%ufkHVwjOa)lPlP%v%{;VZ%K{sqU<3^gc`8`A+mR6{sj|?3D>y9Yi4@Bh zDe+a0iW3*fqw55Zq9ywXZZ65QGtGo+%83nIQEX7U%y5u0rwYa9 z-iy{TY_$@DYF1WMP^@>}++Rq81eV?@in+B9xI;x36y_K;gXDzEmG8!wBgYKjvo)Fw zWE|3gLLJ_NtYoVO>!qYsn2{P8_L4v#;Y9P@r3(i)sDt9)78hfV zYpr9O=_4X=ed9PxZ-g1Z$td34dgIs&8}{9vO8HJ$5y8i|wa9VfTfwa6>`^fS0O?s@ z7^VVB=xhKr>(m1}L29HKQuXlCAT@^ZA#i9Kt4hwn@U zi)n8PxG*ULc~uo5QNDoc{#6|-QhdZZsl5Kmy#l2}(bi=sMQ4V(H4-4?nY@fyJoOa4 zc-4ys=ZYXe=sUN5b_*wb&}#EY<&OwPjmj@Hm%4b=-8uz_&K10L?#L2tB-%$ z;7><@GYVNkI@8ReBVq55)$byVf?NGWwL0jkJ8p#`)zk+4)4_mhb||rEw!zT)f!V6Z z7_;bNosA%kdzWOB!jyF}i*pXBASEFT2zZxtg4e*>FJGBuG;*ahhKFlKA_*k_OE<}D z1PXPo89~AYCK!RzIoONzDth z8V7*c65ZbFF_#-7kdxk^M+NKSaus7ZY6J|F6Jgu)#u z+gJouyJ9zDW5>d+_fIzpt+ewREJRChy#_?TbE{>~`g{-dys%kkM$^NmXBmNW?0}Jr z3L5GHVz^4S{6>H@Jj>|BJzbHv9-l~VOdI2 zPN2?wVTc5)b49DFh1ORm^ef&XsT@#ajVZAE<~}`!5js$-W(;8|sPQz-olXQ56!G;zMiP?rEIT!jy;tN;LXnf=-c!$7>evX?U{4cm69-N@V{PKKXpj zFEiTiPx39v>MyQu<1T3g0pIe}Mks|)^QOgRC}p6WK%Gh<+#niXwuyk;o0wD@RhndW zvR}QWyS9FDAFVIp(hlUbw_|3~=Lae-q9N^*a_A=ZAF^{K*l3(H4;~9?Oy{tsDiSC&^6Qy#J z5B7TPE@!^|z;h#^!D{Noya#y>!OYzTh`8?@pXf!Fg$H@8+pe$0R3(>|EMU*24bI z{=u{wkC8b!U`55c)bYRn?2M@@fE_zKq3OD8cL@H}ZQn&W$NlipjU4FV?z?bXf+Baa z@hO91Z31?`T02bJ15F}wnNGrPw!D_XGcs&Y`@8M=_RM#Gux@VtY8}tL`+KI$oX*1y z`_l65CpS8Ie&zV)pW$+5f8!JRnT?*i6XUCQ*5LB8fAY@yaC7?e-)=vDu#P`0paq6? z!>;_1Hxt^z&wpc+zWp4#)(2h{^-mrRc7ouYQKY|yOg4gd{FCP{+4RXW$Z+u!Mxg$O zEqQV0=l*muJ1Z=6hi4v&!GaE?C>5Hz)z?%+z1qt*F>Q5 zpM@g;fxw>4Bsm%oW0(iOmtvKy7|d=bK#Mv_tQ4W0`#oY90!I^7-|}WSM}Ux2@w$Z+ zS2VlEI8;q=f;~60eLKMEtFKZt@tX!lhoU=IIz}m!(oV6$J4Ya19@Suoe54=~DsND* z%p^8)1W>bEX~?U9+dj%Vb3j`1ODv(1*lDomrV&s*ozDzpN1G8EPD&JArYmzoSEqw; z4=mky5t5ORu9VP^Ve~Eh?mFDa`geC7Ls_}w!R2&x0-n^_6L;F)gh5~jP^K*kZD-N5 zm{8rCTi=NaY`a1t89buDkycm>1ikJ@oyZ`O z{8w`O_?^qR!Muv>vk(_qc>KBUsqJPW9(2?PbYkDvl@?_<7%~!K86e zYO+kk%k{c8-v0Q(_5Gi1 z4h!_#Jy_d;xWZfXGfX8l7Jy}U(1Zy6!N=z&;a@^X`r*2^z59v(_<>jV*!ey6MG*e< zqaDm83PJck$)_z2TeAIk&!$fyd+K)*K{ z74r%HhzFxwYVI?m$VDawkx;X02ezmdLaun58$F8OSf-mqlwNb@0vtkgf@oXaf zvt(+cO{O=R)t6|EBO^hynpjd&FJJijsh*XWBI_jNS$&D95PxvDU8RgD;k7$FU+lv@Pa%InY zmxR95uZ9iGB1_C9RRQDPG_QR&)g33(9Gl2(bTcYtYtW{p8^?rJ>~b?5K4@rHgEp<# zI6hoV(xG#W?}mOa-SVp<7c}&#L7OIP{gdO>nc)U)+OVtgDY3lCL$~{uH~1sm^0_px z+w@sAthM-w^K()D5D?!BeBDN}a|~q|EY~@<9Mp(|JqIJ-F6&-$9ITY{3Xs%suo)wi z+5BEzAZ+LOIegKp^`p!`ebJLFFM)9Qa}-HmAYHA2p#&<1^1_1*WiX(i;;6Gk#H+oh zyt>@oCh(MHJ$B79%&M zGWe1rH+f?kw9?pMs>-I7M6I*?#Z9fhh*Yjuk{RCA%4Ix19~25KY| zUYo6L*ru5pd61vWaK4vhUKYh)QQ-T9amO$=;(9!I=V0`6iK}8Dso1P~* zB^T5IajG4y@0?8O>w;-oha*|5+Du8)e8$Lk@H^%-#hogHRyaastmEB&r-*9o*U&Xb zT`+QM?Z-M(<|^=J=&D$r9Z(c5SC2T=;INJ+J2JDHci(t5NP@jm9Ir-D4efJeX77Fx z^n^d+J4Hs%sP1gHsu?|iR!P22LOPvN_0x>);Vngnzvj}U=wwot4d*9ochJsnRyxbZ zQgm9GuWF|0d+8x^Q#HE}H+N-?a}R%#<^2*5e~xuma_`&(MI)&fJ;mKLE5lQy7|QEN zvr54^YqV^$raW%=FWr!4J23+@>2f&%c2WHA&;`lcF*Nt@o4xaN2tfyNyd3w^#^DaKdob=@q|0l-&V}D{WofhFT{Xzk zv>asG+csypP)8idQQo9pJuvsB-orsiy*TQc)Z3?IZ&H1))*S^{!+sq1FSpSn#rsjJ zfd>1L`~p_z{^4#Ljk`qsn^-;X@d4Ui*!{tVnZ|bDxOH4E(_}lBOZPGPVsOz)@vvOg zL`|4}@6te7A-ZN)n#UwBMy^0c)*YftWY(%dWqA{krbtu}k&{EQyj0j&s<;_Vs1@uz z=Kc%`x*Jx&tAR592(RC31}GJX!@7gz&Bfux#jt`nltG(?FjrEUrHCg5%o7p> zhVPFqMXcY$CgvZvuzuMrzcQ5BPwUu@*f7IHFLpv7m?#C_WSbT(c=RmOl}pU5WK&su zXxi4ff2Ivb6Y*2Em6<)Qlrw8K%?4@3?GK7gLb4n?Z?sutK6hTeqq;J=$;gNJ2>1G|BW5DaV9kAknoRO+llQUmcgwi z=kLz2W|!mAxz`l9x=V*jVX6kzo_WxjJd* zZC1eD3DezK2(PSpmBt<5yxH7|=9or)3CQHKR^y1)EuafM;B;8h(luaBcMa%5r#BpD zw)X%TjP`a906uo1Kb+P{^(rp{UFaL9bwt&96R5zTey^|B1f<5hK(paV_`AR%^s?Z~ z39HFpjGHs&pLfBSKiG}0DrRF!0jYDt>8t4lMD0W=Tn?^)s6}dBH>g@B#WXHI7oDh2 zi(lvDcb`l_E7dZ;=z^(SXPHyi;2!j;E|lCJc8KDYE4Qojdn6wv>(~;GzpQZ`79Rlp)~S?}j0O_gOhW$=IqLK*lrPC2@f| zTTa6az*8&^QCWL^R)C96I2G`$BKHUm-EGzcD*_x?vLbTV zhlU;Dq6_wN-tZ16+e#BrQz=hoKO>PJ4E4ECGn?90~ePE>KK3)XOQPR&Xg zQ=U~P$H?$JNzPS_jnA%7A*w16**bC`eEX@(_?349XdT6pV*ah;C;EVSVbEnH<3$v1 z9y(3O(i%WC7~(Gox((nUVTJt*rB=K|cVI$Gpjz^GOFj4_$W~El9~T*C#UPRg*)YD# zZN^mcM14wo=bV3UN_zpPI^j`7ajGR(OWR8OxO0w1l90YxDQ9-mbW<$K9VmO&HBrU1 zM%9iSza%*sfuksM)38!fr5>OnG`?_$YG@?mm)@_mi2$W>kv&%oBDq4CYB27E+f}5v zOL&;HQ-*mLu49txXp0Uwz@*^7LCgavQ0+Q?UT7rocBj%Ra*xYI{4}=5b{73 zFw@5QSP1hCn}#_;qKK@Wy~Dn zuT+&OvPg+RBv&X^nM2L?dey4T;U$8#V|f{RZL2c$j_n*(Cf#pnG!o5(0CiQrAvAZl zb+AbF5Kq;hibx0P_q1Z3bWYv6Yka?kQ+HBy^%H|gu4FTuCS2p^z!JXYa#82hZMN97 z#$EIUWH^mG;W^q3hOa6&Uu=fcxDzfS{5mJsQ~s!);WX)lGe={YQxkQfRWhSSD4*uL=8ad{Ve&X zAmYK~(Tx#{NBG+ak;CTEQRAnPM@Nk!Hjj=PzwdVB!6xrAj`$q4Mli%5N`yITlb7hw zO=t;JOa5-D2Y&?FqTD&|k!V_EM;C)g9uVfJO*-Meealg+z^P97gbyJ{t@Ufup=J}l z<*4mq`a%4Ibi!GDJ0d3zU+R>^eN^rT0JydX0Em z73lfi(u?ornY#KNL$cpfN>vi{@H-o=c5oPVTwPC2H9!uhRz8InO1*>YtVJMLUv@T7RFY-pe8<(;Uf= z`w;qm=*?}^4Tu`aPi_=>i>G@|T^#=Q)4Jei*I^pDqur-!tbEx8H@yx^$lb6%-G_IN8eGxo&3oB}gk&AAjL)U+Kqb6} zy>pVnDP>%qaM^}qGQB^zrX%cJiZCj1IPU9I#L(%`d)b8)X&s&n2X*qK!p0l)`Z}@1 zqhZb&wQn;^z$tmv1^<{HuOxl-c%@*c1NeH8!G#73=!d6%j2KV;TmhYcrR~OCn#5rlD&yug2kebm7m;FC_&0+Wgdn2G@Vz+SR9?vf`i&ZV-H{|eV0_Fj=9 zJo(}ym+uLT!k?1knXk>OkAL#aJ8T3+5)Yn;OvBuJhuRKgDtid9Vui^zp zMjL_p<~}`!(VPk#TNN*mh;uu(X<(^D#?FXWGe2~`^-?38siZ`+{=RZ4v6KEW;+^hG zjah@KxY)>e#`ANoh%fBmfsOtC=;9nHVnE36Qn2^{jIaLluYX?~a0j)vR*>cFeaEcj zr1ppwyz+y;PH60e^d8t9N8JglPKY?MU<3+ZCfW#`y z*=Gpr5u+2C!NRMShCIVbJtJ6a7YsD9OSej9sE$i!gd~Hscv>w`>Z}{&EX_CNc@od0EZ1lP_IC3^~o)0q{p`rGu z!wmNKca3ox)FqP!m^h6lkeihaX;#apiMSW-FoGPHjB-oVoq&_KC3GBiqXHLQ$$HD* zJhd$V)e!7J{T$3a2kD@qj+#QAiuCApIphp~6jEcT<=CS}5@kc8MsDujGwFo6Oq1^s zjNOD9Ih6Z}eBlKhMlLymybZ=DM2#h~kRZAI>n?8jgK;OSm6SiUb^{8mNr>pJi;(Y6}F>QqHK>^ zgZx`Lqe`teX9>iVu@+`72f+@Q6~55?6G!`6i-Vs3vy&pMU*dBZUZQ#b=U@Mi z3M7+mV6wLcCzc&CVfPR)aX#;*9zIhYJ9QTVf1X|GS+aJW__rtr5FhU07W6@=F))<5 zFaaqbcvco}5Hu@o5&uakzw%B}0*mF6vx}4-2Nnxe@y~=E>Lh zVHm^5%ORio!zSh*B`hcOK{t?0nQS|uix~(CCw~hmZB`h>G$VPqtxR5yY2Ag!^K|6r z1tLlylqwq+VjRcHxS81xsP(sD4Cq{s~u^B56XyrQW z&g9%NMbW-nxzXK2WG@c|d%#s09p4SPXJ)=t7PFSGcVe?Tp?lAkl2;Ofhehi5TGS3p z9_Uty^ivJ>pMU-P7klYi;k{*V%}cxE_EH0%snqGZTfk(mSi{LSDn{MJ090uHZ3zKj zHsXmK`e)W(g*c+J(_CXn#-6WXj0!jHNCRXp0PEGq*mtXxlytFZCV;!M)`$02!oR^{RuK#j)w6<3(-)ld96p#2LE_bR4a?iw& zc-&9xb7e7$u$seU9&^oCQVp91#zIYng47YNo)Y32->=&j=J!XESpB;x#R!sbTda zvkHv?6&0~J8Y5sU)IHUVUH{nN(%g-p1$GcF-PnyVTAdL@O71wCKAPlI(rJV7U(qp$a#Vpvpu+8!lznO5+ zUiIBrcUyz~9XA|p19#pZoy!QCk{}JXA?pm%(DiAlgreH0d@ILOjga9YwbvPD+F|ri zc4BJeq$3BT7*eB%(j}>p!|W{f!Hwc;-+S2hu~~1}4i&XTvLmNkH&w^z40EF>zw6ga zu4A-XOU_Wxf;&t>+!cfxJ2-1jdL2ek9{C-{&|6#Me&6b%U`aFfOr?#PH5<}3`$_M= zNW!V?{fCJND7&P{8sK=iO&;mEn)I{1#@uDO>s@aNAr%UP#md9?y_eXL!m)j4<6|3o z8G$5Z8oG>zQ6W*#zR`YHU0`GxK*#(f!&t)(szHIqjY$_4l|daVws)Sdb;cF<*i{S$ zlGFfasspv|CU?*H;S7qMwpa8J3`r_Oc3AbS(1*Eh-LuQs^%2O)Zj<%mmM5&#C}ULS zy8FZJ?{F|+?(Ois7}%L|RxpMAeJ?&*v&gaZcO>Jg5e(Pvp3=KKSM>Hc7*8o zXb0Jxyluq8z{kXSbp&fU66*@4yRDx7Wj=@(DzX!5<_8ym+CoJAPDKf0TR;kTt7eY?06rLetq97a!2h9irX z*vL-khf#t^pZ)jgQ~6f@`sMnU+uwfu@-@4cwL0n_Z^kz0gJn&;^8z0!r!HiEdQf;aYNwg|F70Xc%aC7t z!u48LsURmSRQJHPD}CELY4l`o8&vK@Baxq~{f)MvlVgaKK-BnkJL;IX5bQGbx{MsU zQeY$OEk9PuFH-rZ3O%zm4i)MhgKUCLO+)0FM@_x565TCR4{vhl^l?Is+}mmLf)$w+ z(^WfP;9^_qt;0ATLdl#CV+g5~y$<8|wbMaS&LZ?W&E8J$4y-kkd~cvLG03CJLIiTu z@p!h6Nk?o+G1fsb!S)+n_blmSgs2S#sF@!2iCeqYS$OviV7lvwtQXt0 z6@-kuf#YxH?!0FunacjtJ2N|svFkJ+;To{&98#yc&SkTPY>klO_jgtp9V$7@T>ZcI zQZJsV!Yw|v8|lmeVIwj4bK6J^D4CrTiSdV%ATbN$g(Oiy@Wn3iv_p)9C#!T_<}OKO zz>o>3f@zoafGCH7 zh4;Xb$}0*P1CiVq0+?jzbnkroNhxykm7Ia&@YFISO&qH#kvSh(n@F+*5nY12-)T!m{MUQY#*uGBms9p$P; zfHSIEUM94A(ZrwD4&Qzz{u=)H;bDO_Owxvo7_$Ac13KFWW zgL|mv^5~&j{8GnrAR8W2qql~dF}TDuY7{?uY+Iu(Ej1$uN}d``!&?gV=E1qx+M(!8 z7zB2JCS|8fs8J&qxDLA>+EKkV3~H8<9S+FLA8f07ah1dUbLD%E7bm*Msn9)kZYCC2 zW}I*n#BMaReLHZ3+a#md^sKM!J8xT>z%0J1x=cb7z%;g|bZcv1WHTkn1grdUPlNEz zo%_0L+m2joxrsLryTulYlod`bf~ zhCAV%9mW!u*w6%aH40rhR0e7CWCtEv+F_pK%LWo67lde=D&?mBZhO8x^Sdl~kgX)B z(PPIogKk?NZccyx+wJEMTZPT6cH5~lzgx1g9X+)2=Xg?Ipm;ujlw_+_p*D_AR{FaY zFB(QC8>`ot_~Z}Zx6(I9%3t{C+09jIfh?T~SdxB=axmfW9&X{q$M;8r;qY8I+@Lew zG;y}A9)7mrKF?lw{$&i12mdrq~Ao*L!3LsRStiXnf^J{P=OfLvMw5d3Y zk+4iBNT#<$wvDXPlg%BbUp0K)24};Yo39RVTr!fmr!cM8i~t?;1pkw?=xz|+i>=f> z=qn&$Drlch5hxqEUFjB?`;U$76S6|ZiyBE-Fk*6|ZCPpu59>GzmziyLraJ5(|EXbz z?NnYtcF(%WIPHX0YmP7j@mz`?3MCO4L`Z!}y1)bxHeujU)0@kO^0)KWqk7QXOPq3j z!b)s0Ty6>h4Y+WF!E_`#xMc$5@)t3XGDUXPJ@+jRu0~M04g_6zcy9m=5sl7v&C)}< z;GT`{WDxPCvvffv7Bi}4l5Bt;5y1RsZ(Y~ofm7DNVnWvv_QND7Z60oBeiEBj!CzU5 zn#wy_@Jd1_2$;*UYwp(hKv)w?F-;Bv465Z;!5y%0*5t2@G8^CSAga>}W2yr?RI`d` zVmedlq1ir}175K&nJ-L0Jhw}c8ud`>a@J#v9@ zb16hLz4BnVfhLnN)}#jMg@#mtj0J=0P&eIC>`W!9K)r7>g@>E$weBQ|hhUIf_5>!q zFW&Y~jgk$S=@w&cTe9%@t=+fzfe&A157nM^!xR8FVq@q8`WR*DLk~)P%W_?4^cNl~ za9X;$5yYj93EJdoj=G>0Hmc91(Gme&m~RCtfV*3?M+NjNF7Dr~J`Fa6#|YXY)9?69 zb+%kLt_F|6zbTK8bCKCuetbw5baG(G`1TUz117qEo~TZIm#uUMv(5+P(O-d&DoQ|& zA2K?q5&S@7P-9sonn#Y3MVP#65-OvMn%%rrmOJlt8AmCfI!#BMnXeJ_>bO>B-+s(< z3D5E!!m8_K{%wn#OYgh9gp}9w*4H<#zD-xnCMN4Uw`KU-`mT)JMVFELbf%0lsj_Tv zz2*xhKBS)b@jbggp!PO3hAUhyayM$Y^PV}D2wJn6sfC_0gw=_BW5v+(!8JAy;}Cbp z)?Bh?G49Xg&;*ZhoBi0TEjsa@>4!0wpZSIwEVo8~cwVC_o@8W^f#AXRs5SycXhZIw zV$@tCP%GcY$MER_>uPY05h&__61L=*kmSz}8=?sIf)V#3V@uS-yw`IDPdz$f_T^sc zf^r;in;1sjZ-cFyl)2C6GukQ2#S>15` z>EUEwre}lnitbK;`@YOq-L#P5dDQKDCz$X&Nw`{(o0SczU2}}OZ1?}F$`6#ArmNJA z&Nm`cPZV|Vw^N^d?#`avJKqf+;srjWvk9Eb7eG0-`Rs3ES2kz5^1Y=O-_7T$;=lP^ zX=0ugxB~cUQtJ1Ubk+9En{CT0BR+oj)(*tL;yWDC1prq_7rc*bUTqb@r+SO^x7*)v zFx^IHAtHT6sMb!gV@o^IxA<&NXCjJfjS$Ey-hfJdQD{30QBHd1TAQ^yhsu5FI*_{s zAH)0IYSajhZ;cWf3slxy=#hcL)nhY*wNn)n1JgWFeQzCAXz+l!vYC)YXQ`ubGs`x_ zg=sXvDv=&n@Pwlm1~piWUx zBY+UYpU#6n6?yQoPWtg&+%Zm|NBuT+uB^UhYJDiHjN~JGvdzS+H_u&O84#Etv)pfT z4k)bN>`Ozy>n%`d zq{tJNU}>X3A=TVa>W^8GItcY7D}|y_pU{ksm@Q@m>EP-U7L1t9_`F)C*T$JjcDLN) z)7)%$KH_cG^vs54?i~Zoso)?|V8V|fbib_nQPg)YnrZB`v+m47!Ilaz0)^^tX#|OB z0T@%#fmnA$iYwW?=*%G7O>d#}(t&CBc`{fUz8oWXcwdeYxX&oAW#g{e7M~^vVYA|m z$P7{q<$*bv{c!^fB!eav3K=-u3Q5#UEl|&Woylf*ABC8h&VyN#`OkV`;5pVhj`$Kv zT=nbF-|$|zya(g%X_o3Mohsq!t)D{x=GN?qKe>v+`NoOiMa4WbI&(gzQW_Q!(p$kk=ReJG+m1!8>c%?@uu1y1E-* z_|9d7(;rR(l>Z{vQiW@ue(adRg3VtW#c^RGZUuF4H+XI%UeY?^>EyQwq@+F|?vyta zsHhwPBVfWU#(gD(^Rw(FG|xp|ElhwuGLeq%k*x_V|5+ytVjIdKL8a#1BS^LvwgU)7 z znHlds-m~OM!^>@&&YF`CIqQCJsw8*5_}a@<(T{31sP(u*n+hoEMy&3R!A_{Zd1|$Q*pe-5j|Y+lxDuH)#BZ13CUzrPsmZEnQB}9CijT5PM=e}i zJgwY_X~f^yICkJH!sz|c-7E~hE$!&r#ii)i;;rK_dV=DXStNu|aYCQTPl-sM{rBk; zAX8z2U%y=ca{Jq_U%sZ$I@`g^5F)`^POfd))qJM96`A$l)V&pHdA`!MO<`67q?|q? zx+b6ar(96o-C&N+ING=;$_SfENA_0XK!CP+C03!ZY{eL8EbI^Ogt4bznJZMElz1lU zQxz>ByP6Lq2%*zaBSzpzqedbZ{Upn$98-e+tvNb#Uu4xjZ;G}m za!{vbPcaoa+NrK^3M~rm9I*bn(H*Gk<-@g1Rm0*OU)eROe1Mkch>ErAR2Kdx+ecj# zDh!z^y>Oy#NCSG=4E8Q)NbA2Uc~8#@2l^Z{}LAz$9w5}^&&!d_dVbC(5D&f@v23Uo6k zUOvQh(GU!-sPxbR;HsolFhnPPm#jTc?U_oKsk_NBQkT)zWD2SY)vnd-yu81v%}T4_ z;+c$sqrq)M2CV&(F{Rag)LbQuLpK7o!N#E*K|?DbX5i!%fDRt2{*D{x_8EbfEPjzxC0Iu>ZGE$AF8?qv3o{ST61!~5i7W(yamJZ(?jSxeUr05=ipl{p8}ZonQI0K%HuJ_ru;lxgfe4eRAIkk()Bnx%*iag8@(Q^w~2<}|RnxoSFI)XVeZ?GF!=fePXQUyjq1sH-rLx>hNvQCcr9M@{)_9~^)979Z8zJ*$6v1RKkd;-CH zk~=)aC6%n7QtXS7zw-8bjuZqpZKIlIPnHc2@qB8qwYL!i5l}%Q4E<@N^6Xy_(CYVf z>M0zCD@QJPx&>qtrBUm20x$wc8`TAZhzb^}$fOx0DOSngQAJJWKWpzE7u!<=Dn-FB z{7Z-hay-yFQ?6G85aFdw(iWjl77R4o_}_MlZ0Xh9zbYt$geiVs;4&+i%_*6b-Q47;!ZN6(D#x#g47ZR*0abqnvEpU0UT}AEMj`Xo!Kmbd}(; zfGYTPlo?DQu5?DtN8kO&#`C>dU_?f&8WToJ_X`T zb*g?iaN7*3gKE}Jk{k<(2)cM+{EEdrN3Co#mu7N%K{+NNW=fjY}(gSoD-QdNeCboL|Cs4}Eph)ZNjinl5Der0GV_hlMX zw7V{*4Dkv9+LV@jx!{>o2vE`#K!u+tk%)`&PbRf#37(Zk{K&Ha zaSciIUwFs$iUg%t`KHn_A7_zI+d3m#BXxLxASuQ|V1-TlgJ-nZ&NN{8!44*LC7awz zX}fJLUZ^!bMaFgjV?dn0a%1n%Nb&^g%}L7|%h$vqiNA?Fxsx^(%;|^(6f0TLPE(5L zkBWto6TAu^psXiV#j+2+_dM2P9x}NDZRC`(Z@4vz1m#$+>FF557~-h$7u-M@JtB>M zNLbDJkChFj-q$T#hdeVXv%&hzo7?cWK*Nb(NKifI`&JVr82KP+i8+_SJic@y6EqSr zRUu(dqH$>7rNB6&Vzn@bY+(cP`*$L4{~mlq$GJ=mCLX_8;1qVT4N`Wy~U; zK|?8_NSZvn4vGYaH)NsVq2&D}q?YCLMXQesNI^oxo_AF1>WPYT6nja+LU9O0@^@Gt z#T<~}kUo2JxH)iX~QZH;22&<9Td9|F~;t(Q>ZE z>#Qc1C23hd1({B=WvjohEt^PF_inaqU^Y8{bpHP9pGOORTtE!8P@cG)whC3BG%T$3 z5Dg4#JwzKZl=Tn^Y6qaF>lz$!#j8h2)i>N5UMRTQ+iK@7{N*64=QkRH_ zw49)!p-d+z)EIs8(minE_1B&i3g-kcP0zIO!_Eto5ioscMFoofFdPbaeyAhIKb6f> z%6Xw=xJo;5In`5QChu%cq&QeMllMerzHgmg?jG!Jp6y;9-k$7K&$rH}Dw2M^+}*V8 zp`{1vmbRwNjC*BhU}^#fc?=-Ud_C9CfZuDxJb`o48u(h&q`TQM9ctLV{u!c=V8w z8i$f+DHLaspuh@C4b}^XwWuFE{iuJOSh7|YqB6<4n(KSiF;`kSCThf zQ*W7k2QQT%E%!#7u>fu>Inne^7>L^li|?(zCfmkau%3$z=VS|H566EO_H^Twdm3p! zn2CK)o~`K?bkIjiRGuy8g>_^!{Du6y)Z`0hTAVN-^vxF7j*f+A!iw}!eziz!^~AVT zodj$CmkY#Nvf`gp3sy16*)@?=VK%%VJd^@D2BE6aMsK7Q78$;Zgk>-{(A7m*@WVEQ z4>#3yrtUyQb9JFwl!d!d$W*J2ck@R^{ZO6#A&TUwY|tPvfGeYGh*0VIl(s9~7Pf{u z)J21{v?dO@TJ{V4;yuRg;0v*B>ijyB%4V{#n!_^8hNF(@iU=LuQOjd+!}kcW*u(D) zbLDvFbACmi(JQ2rc6-=w-!}5S@IpZD=#u4|*wM9wF!;Ct_)W=pB!odW9}=kK`OjxU zbU$C#4Bfp+yzSQt1|F#jU%7VAcPb|AcS13L|Mkx$?1+`O_DP&~JQ2OcFeO!a30q}_ zwFCYhZR}DMRo5?K zOMl}UqE0)iD~E~&DpZ=UP`S4>drxkzIz#x^>Z_LyBvO&7n$E<7VC6)1_<1M2HCpTT76n$ot->rf#$ zI{b}2VB^*<1+|196)EYC=x=4M>)~9sNLY*L=S{j%A%$R%wWKhH{{_-bp+u1+#L%?@ zzHF(QZVQT>H9Gwc78GgzA4XFJdZc%Zz?GQ@!Bxn?mWS12m9ioS^pfc$pU=fP9(2B0 zoky=D28kA9gV#zGmb&am(awmOuIeH-(875n0QF5TsM=P?jiLOI)0=O2R!>ZiNwUn% zFCON$s-~>?44e;6a@nylq}*l9A@7x^+st}t+8&}Qx3C4LKWNg^?I!802nH+&!Vupt zaTH!wZkEk#ymRf6I~+b+d;aTrEK_o!F1s~b)5~lky+S_hcQouR;PY`mYX~&Y)OVs= zr-ooocSZk`b|G%dGITKS6^5`bgM3Lw;4weYVMzkRU|*Xu7>)wbI=b(#@tFznXTkm! zF8sMEyuow}3Lf@s%di5?&}}2M#RsvSZOdx6dEsleJ~BNG?A91RFT)Fb1>_6bT;2x` zO%7yvx=`mSX|+r@;4CIzV-b)950YiZRgpXFqN+uMc`F8!UPHo4g^f@02Axr7uA8Vp zoxc#$($t{%LRxa8FbI*^ZE5MYhK3#bR$o~IaRfwz>h+X$Omay zjPk%`Cmv(%iEeR>jjGL$ur5F0)_6zqvzvHW>oSY;GiM-;;{^8Y)1c>zmbE;6z^lzK zdy(-CBu)t~UlhnqA)F zIy1z3V4q^P1B#$!f`AUC-nSHJJPGgW0mg zxJHkKX;5!tTrF)VP)6}$-rI=J*gNCeHazeh?{NlCe$3xEZnu4t&!5VAv0N(go}GLe z-^ya93cY$#sHb;4z1N*Bxsc1{GwVqOUx_a`Y4PFH4Bm`lrVM#qj1foyrDHn0&~Eds zZ%e)=_ACtumyd<`fAg{71743K=9==Z#f%eAgM}=gEqoGoTi-ryLscz9gGcf;WKS46D3npF)p!&s3u9ACfLVEHI+ns!KqM_->-{!qD(d7BBJ%S=$oqf-+nGf?K zE!#W35PguI?q!jfs$to-xbZs8n(b+lT@?SKq9lE&9I==zAISmQGJY3+a9NdaLv2g^ z_*kRpM$mG4YO+k;%b6;dW3lCoH;?pqixIm`gD>Pw-4N!JJzuvXr0{9n#6Le40VMXdzXpHSC=rJMcCd8Wp8wm0uD zhWiIUw}-`x?QZ|Bc%0kLoS$7Ev0v%+vKv+g#_+yzxP8<1OQp4}U4)^`WThkN@wy&b#fl`8w~*3R8%cgBn6eR8v24ckY%dTYOQ zxV3jUtWjOkL?SOdEFm5yRl{2j&YnjYaIo5wc@besPt;##pq^pv)Hss&C`NE zVte^c<@z);;=9$suTF8lRr_J@AKdkg>vAP83Ov6&e)utPe--Oq$K46`E{4bcX?tsb z_hP;7)Xy(#`f#v*_TZM+%j-XV=j^az=B}I*bMvSWKHT&#g6s9WzIE5B9HmF1z&-zm zX&gLc9#*gGC8x~0zn)GH4y#WGt6E5(@1(OZSbL{1SO@U@M}E(4?i}_H+&xerc@QLgRf4htunhpyMW zY^F~u1v}kNcMq-X!x^vGs5x3e4qhtP4-i-QOIBSvwn?*7KQk z^Tf#y1~*5UVYb|97K+u@DgUWgyi5Cy&D=$%ak_q%aW9UxuJU&!R%x53zdV+;2h(I3uMQhwj`wx{G<|b2uu2E{n|g2@ z9v&b5IOSZWERb3K(?;F*{O+K6pSe1^+WzIPXWD!B*GGPDkUu!pn}>U8Z+LRC-3-@v zF1&_ueEq9x_p_eu*6#1vwRgnKvwm1MPDFu0anx;;ZqB#a;9>RhzT2;atL=5;XLEn& zI;dXVH+uP0O1K%2DtGS2naiRL)AMRZT1Ginvv~En_aP~W*z)~-NoOSKh z`$4|59|qO^`?Jz2ufgg?^V-Y#cDiYn&cf@T2Y2?coNr`}R&M906@+Iyjltkf4^EB_ zPt)a^wN=V>MS*walD)%Df2<$h=_i?9*86c@y*vr8y0ub0bV{~$mpwhowu{Y5u6*S0 zKjf<6UMH_#*V>i#b=x)i751Z1vhLca2Srg}HRGH$4>oUp?Ky+N#gXGRGC%ySbK~x6 zr;#a*tnItpMdf6-)GufE^n2&$-LJN{zq937?%DZH&`4jN)jaE@u$MNY)y6(QIO}a$ z$9wGhxLq9_mqM#kEDVg+-sr58?(dzR2j$~UlXZVqj}8lY=T~k2{y4n5s#^!Un`!UI zYTLVTypzkSw_TQGb8z-^_rYmzo_lsCIN8>_M^5I)-hOY@*b4K%G6$v2z2Vi_zJ6c5 za`(KFdvnaH&8+djMxEU1!!UcnGIwEV(65-sa)CYHJv=)ZG&W6lx7ux1+|l5q7_N4Y zy-eXKs9oBd!}Jcjx^R!3e)pl+-QK^y3^yt?Xy>cyj5zpL!F)7NlgS7CJhC&eBN`13|(^z(Z7>tIwAe-{_HRV&)} z{!h5|2dDf|;c0@ zz|GSe@gncQt?J1k6a{?^|GtSAK51||`S!^XN18A8moI|j@}gV$XULBgZGHd|o=W^^ zXLDv8xMzjrul`)4Zzd~8$qRYi<`X|*iZu)`M0&09gOkTG@@)aYdAY-{VZ zhA1LdmAql4@GiRP6So!%n|5UB_FL6( zeu=T|$Gn1NY#dZRA(Da2-+%pUr_KKU>)*-{R}zrI7z1SBwqy$?#(QUei4ejrRF|5r zZF(Ng)r)Sc_)N#lO$rr!A6hMxB|bG}A13E^31B^~KhWfsaYK-qD@oZ;u*pqH zU=g>0ac!XiqEZRdnihD>?O@<&IVCL@%*rr$xIa0TlrpRajzOSJGj+6q zj%!AWTZIgPLyM7x34udGDyH)J1gu%FjPsGxWVZ0que$!@gXtQ4|Ih#Zf9JzxGYMdr z5FZ6)WcGW7(jhMdB1nO*bv)f!0|WZd*0q5!iiHpb<%-tPIFApt(i-MhNSf9(HG}cN z_JzLzsCmIx)`G+|Ez_0(Vqv_gyAy<)tO%a?`Eb^)Y`#s{Gd=tEUl(Tb@G zZbfF?hBT+rwNi6+7cx_u-e-BTi~}P-#%A(NU5kRkYT`}tIUHy|%hPQfv`<@shdw3< z_2#=ojz|bH6b1i;O3Mp=>JiP|q|q9r6p_1~ob8<0M3ewBQ$q4xWymluOD7)O<;IpI@Fesgz3=0TcZe4@8+2Z+I@<#9ks$w^SMW&T$J9b*}C4BJXe9MM&nkpOqnptUPG z1N7@+p&3h+8B7$~T9KNC+*heHOcfN85J^}s4J7)iFfdIQG4ZHA zEGS7K4GZV#M8Z<&nFIVeBnnYyF5N_lTR#ka2qsxwFD{Yhl!ON!;p+S@(3-Z7GTqt? zg8%-Rvkj+TCP9U63k(nW_N9&{|NiS=w}1cjZ*_nweOMU8M2XU7ulNf6_0<{8K*UjA zT4?#GmF44DsVQ{D77|xwXsS)rQp(_Pr&MCo@Eik8w}}%$eH?peP_`=rLxuz(VF?*F z291=$%?W*VmdQAaG}=BRgE=U}Q)p1Gayzr!UKj}N69!V@R3j}{D9WcG*`|)0W~7Z8 zm0FhurOc*Jq3Iivg(EG9__z&f`6}v0)X%Ga!JQbkdsb#Y!$SUE@&$bT|X9^JS>$N_3BW&!(ozOD8cdVB_+}j7tV@ z)(xDEHk}AJA0>BwhQgq+@(ndZE@gQNr%zIto_DXDJj~#g01B&!SG_2#T&=!#czM2y z$yK7fj*+@-dX4$b>bQ*hP~|j13h$NAktITWE36*mV#2GD6jqSAzxC+;)>FfjVbiSN zyAPMJyihqo@Pgd`o+8f{)?sGQ1)25Aj%7N2;7RwsE8W%3;6cl}yZ@qPE0xk$?M&~w z5YtQuxHVx!=6}&3C;ewB%p5xmLV?0+NL$%vCJ5WaCvY8j*5_G~_x+3=ztOEu90}yjV8_P zZnk`VkdjA|3WR_HEsi0uvp8v^s z12=S+6C{|Y5V{nrh#~~Ae`$?ce1wbuMg0nDh0=&AsE?}L4HMM-f?6%Bp;3@Gdt$Et zUL(1~24kGYgRwm;x_Y+pQ%8CX&y+Qb8vie)om-A&>z+O0?AzNiZ{r;Gi32kAX*x-u zmVXz4+N;aZ=C9;qhTM`i!Bg>rEniX>A2&{VE7^o$`)yMo%`a%t+VQq&j23|Y$7Go1 ze~hi#Il;C zVqed%8Y&$+sS`FaCoU2aUuYn7Idd`05^aE$4)4tF5pNXFeDTUn#*6$&aInp(!h+pY z71lF4#Th74e!oZF0D(vf7!Q1$Dy*1YL^0bRVbX&%{}wCF|437NsW|_%Nr$oAAtB)e z(jRKna1l&C2LA+c@S(J4wYsmmbm2@bNzD_7oRliGi*ATY0zu>u0*pqNI<0+m6B|x2 zx-A7F!nYOGsdOv3C;a9MERW`MoP@eyQ&f z`OsaHg+5BHM?%$6=MfSV%FvibAt-i*)_;B7vh}9A)GXMrd>>@UVtu`;Zd^$Kda_Y0 z7ECMvO)`dvl?$I!+HU);i-5VR&h%!mu;mlAX>(-p`UbFH$F=m6avA8&m%$MUC(IrDAK1X zrAAbiwvS@!EL(;OL`cHJIcUGWv2Mf@@Lhc>5nrsD<~%4k=Ruf1A6}9_a{jIb8f-@> z8=51*ALtHv=fF!1bLDvFbACnt4BX#LWxD(X;z2?r-YDHQy3G6b>9)z(y`y{g*_=o< z)8(85^G1+(X0}JZ&@c=J4GEW>L!oSdhK0=eMgx=UfHF8-MAVNnWcUdBuP|yU zWq7+NZ-2VbefBVnH(8>!*E7W{F3LXP@x68nN*T(<;!F_3o5bVF#EF%vk*g~$d=&1g585jP?=OFgXqL177dbxkr;-Q zvfe;Ocp_mfvAvP-unA&RCU+n;Ow3MYEmJr*mq=|w!t+dseT_=_OzTTrIx>}MB}iBf zZ12j@a6zL;P><{i>YPoB=O5xyQxd5}hp_NZHE`KX<_l+R5-LLEHWEsHD+h|tDXkuQ z(0NTgFuH5JsfJKf3G)Y`v65l=1wH>aySj*7)j%g{bal65et~`w@_x`aCpo2(TmL&aGAUlMR zGEQ>U$2*9*_QAx^3fqQ~43eNYqvfazr=xJtaMn;XMV2zPfwa6-7yktr@Sc`r4JQtN zg`?9NBxkYB;U7u=D6bQR9I31G|=~-_uFvEJczzOZ1Bvqijyx zOLLf#yy=>H%j7&%sZP3BSRo&VwZ>KYYKIGKNBax%Azcsa#>*&6^(u&A5WqgM{{AIh?t8+#|>OWk`Lo- zi88e(x!DBzJ<1)C)U3A0l1_=QilxxWjBg1JQYS?7)KfNKDn0c^eqcH&Rd5$7ot5B( z6WS;pH`NUh0acij`$y^AD1u~qn%Erc10Q9ib!asaOm{u zv@jxJj1~B%-To{NcW_)Ym>cL(7%={3yKNa3CuZ#-)ZM^}!=gelaSkjibhKUZ z!nWj3Y#11CptfKV8gA<#s9mE^n$ra=pD8M3uyh+0X`TN3Wo)C zv16y3aBS~Dl+T0ZvMeZ!b* zG=eE&NRwuZjapV{7Us&30+Y`j&N(OpMEV4iutd0E3#W6VId(9w2OE$&Lcys@Nmw$1 zs>;?Wlfwny4O>T@dq`j&Gw%Jbe_}TVU4^S8I9H;q5>z_Kkg$$>I$yU!U#oGloJqI$ zSRw6@@q_z?>3J6LFy{j+_+@%FuuCh|UeC0d3|#_Tk^e=@WwM#ikT4p^PiuK2tp(|< zf)Q{$xzxIL-$@?;x23VZ=|Obc9`nEuQM`~zWlPyFa3wukySm*55rl3Srte!2QyEMi zYe_Z$W3$Gnmt>#<-g)3cBcII13HiP@zwwX=F;2lY?G?*wm|uV6Ty)>l9m$sR&N7G6 zPj~9YbP}6beOERyH>uRi39llY8_8J`Oy$DB0pL;ssh3r(~#m= zAsw-4=1=ZRe=sv0dZc8^N^UKBFTb828EO=G;9_!5*UUy zNI)3cAOWG+H=2e;H3_N$L#^?&c+jq@HVIQp1G7!i#tWC-kA%g~*a#?s5qb0pBCY&5 zZ0GnSo}0yAlx}`O^@UY#Vu84Win0Z8uE60ffP_Q^b2K5LrIj{I71%dbK-oengPFY~ zFx2^TZWdP=6gaCwFi?mKs|?f+Jk#wc>`+iO#@V&hY!gD|=(fh(MBDTq zSqT5VkrQ;gRcN|N`n4s)CrY}kJ4rvie z!os`Wk>GIK0WA$QG8&fRwUTD#inB8MFziWWI4Z&`DFk(Wuq#!!)ggIy64tx&>>{Ge z+w<%yrvus>o<^H8-aiJ97JWrw@nocqt+I&~Tp`wgVjE#6J z+dFM4)V6}aLfPehl)!+oKn9~2BmoY(mbz%cx?zA5u)?9k?Oik~K^^F6b|-U@g70YQ zA+5oq9!{!2vjsq9k|#Gz6_z?X8{AY-9AxMao4)AdDP#hz<*{-*9~qB7I{mri0QYVXQU zOvcZDp&9bL*g~MJ;RQo^^EeG@tZoUPL5SpLSe(+L3`pQO4}$@w?&d?N+iS9qTVhDG z72OWHEbQ>l1I^(5+mvG#4anSq#xsb`mr&Ij=O}LL^@By!!!RE4o~>wmrYX!cLjMbFBFHp0vunayu7P<2hTb-?q2sclP(s+O!#4 zI*Dnozc14+7`%vUFA7vV*FKL=ucS&Ja{eTiG`ktl@=2!SlAKOky)%ib733eE3X?lkr5+Jl#bkK46BwQPxD}mi--bhN`gY=*dx-vP&285LvEt<-K9CRnXG}L>^4%A-9EF~ z!N;$=oX&r@t=qm-Z|PuIWblOol2kwH#3DcFNC{}`BShV4<~!>xC*o>O z=v!m$V~+)>2jP8f*W2+LqLP(w5Z>$zA) zBwHZ6IR3k^tHEgRHM<(AzbuQLV@y>O;c4R5h+kgR6kxPpvnkKi>AxJQK%m;!JV(tT z2YJ$wlQj2ua!NcbWitg4m6Wnh#_gY88(ntdG1i`V&oMTtHt$%MZ=f}f!WVtggR%?{%M)oG%yhnWTcR#21{7LC0VW;lN$V z<%^#*1FU2Vm7ENY1@E-me2Q$zH*L{gpk_WE;{VOZwhwq!j+kr8yB0I}%3$%%%V&AH zuI_LGhLy0%h8jGQuNg=EZD@jJG(7$akeI$98WlY`fY9`?)w=$M{_RsY2zndov~P4x zNB2{#XS)11$dsZ7{MPHFBZ716bS{%Ar5)XJC7~ySQ6VOZs_TKSg`V}KD9189=CgK? zGMJNQkhRxLgOzj|LZOSRp2q~6<#x{bfnU;$zcKJ(QQ{Z81?PO8YQb=m4W&J^&X*C< zNwSgScjO1YxY9R#_YU^qNjzWs+# z_e{RZ@49k}2;vJbzG#l01a^&y7IRy)WBQWZ4$`l~iBJ>K0u^GDC0emYAWK=b~P=a)M0A0din^+E?cj zt|hs?u+oWjw&u zdO-MnbC>M(TX@;Srdlo@tj`Y+8^7<7py>OHD>QmPZRzm4w!j&D5Rw7`n-#_*8RxXoir8DDnISu}m zTiNhPvAI>lWq3B-RKQ*-m>2I zVKpt(iuG}P?zHCBcsq>-WUbgRu9&ffolSYx&Zu7I#7exDf2yrg=~*sl)IGuu}?#;9@G>HhwJdj4A-K~ zOiefW9v^I_qH1sylxs?8-gYtUm%~=Wj`yC%V&Fx|jYp$uQkoXjLWf`US;L6t`K-Jt zuA-wg#xfq<g#)>wIg`A61&`oKqWdn)Nd8heD<9yfAPV zWnK>VV&mE}8%p$KE?-N{6T!u}E`>w=%{*ef$XX$~XiCMvpOVSu7nVUz&_ofzhb%)Q4>jJe-LH%yPEYo-~J@qPW%y zgR$JxpNE~7RhFHxwHzy``EX*~=U-YmgSRC#V87Xn^~TFqc$LX;z0SNTN1FlO92evD zen5-X;#M~<%Z*6CShj?h#$-@QO&3FUEf!wt^+qdbm2w?PH`!dXXP^P6;ZB09r_v41 zQp!(bwiig}i^WF2D$mNBK{cSp=Fi>ni)cTkW5rrD932I6eITJ$1NoRWX$6+~aju#z zFPr6391W;Qoq91{9rV~>xKMPa31!9B>m^m~w3g0vB9*LIAU?^j+QMM&%x#CCs9mwz zj*dcNADkx(fu9Oxum_9srt0oxp*ERtR%_a{^loi5=p`5V*ho%3&8o$XAY0*JPOZ(G z8aw8>ba?v0JuT~iI}^ojUk~=h=E!+|(PK~1&VBj<9xjHPaWT93R zi}mzaG58r9Xg>uL)5Y_Pv{;Oy_49i@^MnQ*C)reF3BQ`c4c~m_!S+H7$JQ^;LkBR8 z)h!3BU8}at=bs}Tz=ZYQ#F{@f+0Ibz_FM9xQy#Nuz-o2IPBm4jx8tR7F_MdH8rHBh z4Yebq#)jv*387bLhm%5ODC_x_G7V1##ld(mib;!H#%MJ)*%TXWxey7+G8#}z1*MnV z%#J+uDvQP{S4k-OQN`$s*?evO(g`H&%)A+?Oz24R(*_DrtZ zmltwwwiJ_Sz=W9&B!tvpDaF#O;UXr@lL1Am%j-pXWtgLWhtm^ISdV0~)p4O28wcur zT@)rS^XDg>GdD(q3qEJrVgD&tXrcj!+3Zt{wOZ=1S`fz3^(N2_W=2y)%V02>OBXWL zbgOKq-*Gdd0pTBq|1x|loN~ls-w_L`p7fkig%FDt2CQr*t+44rI$cbs;b>_&otvb} zqu^jSpqd7!Oxijbwz>r07gFn&!D>@o$IyR$2do(m5C&e-t?ltOu7U5Prvr|`?27HR zuuiEpEtTiPwewi!wcMr~8SSQ=g=b+JUQmbsl7NA|L8p8~bOfy*M$!VHYo;|s&j14E z(@ls}E{Fz%6b1i&M;|^hBSlrADP;uZOVdDRmC+|C$3l4qN~wx&Nl@$hivABNUB5KE zUm6~chPPuT@KT6HW+cXylvkeN3=Zq5PVOj3nS$EZtBM6bomwWzSLT?$M;37CUHb1n zvpi!#{y4sOO~#@4dB4s@lQIA1b~vU)Fq#UvAJGT2fcDrpHhNE6wv-pQ!05KGmbTF$kl;=(Gnrl-L zU{0-PFMe|l5L+sj*g+)xHu~c*_zk1)K#Zsp=;gfPV^9PMhUYH0lLPqOxvDW1Itr;e z@ZNVChr@1q!){XK4!jFIeVM)|fu@BEi$ipkojQE*-#?I0#0$Aaj|I13!1o%LpFZukafdQemP|C$sy~{ z13$na`{5FHbk_s=r&E{g0k|JyYtDMXQDhZQveAmmhsuoQjLdkTPuZtN zGHiwd_9~?eD*;)KrP3Nqlr%CL~inyZ2?_T}(wD&|r> z*Iyawr+U$F`nlI_$;KoYnIuCojvo)gHXG1}w$|ws`;$tfUl>~P4YvplI9rp$^Ki~e zv7sCwW!WqQC!JcVlX5Yfnik84)5&RclCLW)+en*M{bknMbe5X-oa)v>6Ej|(4eYU? zXc8Z91~c(_ptK5(#rBI4Sk_vZf}HP_SkK2%UT|7bsfCj4Cah*mCEi)FmNVI?>t4BO zL4Rc`pefTQT`Uaj;Goio&G>a<^lYa_g+ySsZe%O!X2~Vj`JU-6id36t>Roxvv5p25p2Pikd=)CJ&DA39h|x@St@Zhqyvb<2 z#awI07pbKYDgzl)cq#SAjpxByA9V`r06SJg#a?G_)swx-q8-^dXh5s0J6)B}h|{2| z1l72?307KRZO+M&_8>Cr#TPFcH~})*oKjkBa>?kV7BAFRJ!jPjJ&%`_>13i-qs4k7 zUCOvV-%dL(mn%yZRh-z1v>{0 zJ@#b~W1mCqm{9C*o;zq^z{=*c)mFNfP7l*rw37LBqshv_6m;Ze-K_`xj9KKBKKQqQ z-|rvqe5vj`U^T%mD=%YsCAe&p27~3$Ob-4zaCWChm_L?N>1oP|$=#HnAU3%ZEOToJ z%+H4o=vv6QNB{!1(nrul%I|;V3|~J$iR<6bpr6dy<u7_{<0+gvLt?J=EJNssb=0~Nwf-1ev@x4I?YgN zy%}k2h~p~teqA20X{F%Wn8t-}G+h(Tmvv-N(nrPhAQ8~b;-=Hi3HgkeXy)pHkrSx* zmw`zl`7D)l)AFRhsm0XF(5MtbLvc|qrINvCCE%{IQE6xA5u-etyfT&yrJg8MDq?@oP8h4_dbw_-Wx+NI($gfN*aNkdGlEV44d~4DW+HB6 ztTI~;%b8WmQHN^7$@1|?JI*~&>6Aqd^43^I*aE< zrnCuV+=%mvqODp%;aM#S+*rtJTI*#r=KBpTUdegfsR4<38p;#zeW}kx%J~IN+rJl|QGcmb6 zcI|X>Kn^~ot%{IKJh!T5)~HnzRwtba<=O62QtJlIh!D`?qediDMTV6#mc(4Pfd(`) zrfW$YzhOyC78+wV-IAT8HX4rV^=4^Mopj`$)}9sTH9fy>x+nHHDHLXAde(?SOX46R zZZJ(2`hRn=5I&7NeQmi6t>?gvz6w6I)AWI-2S}iFP@XGo@T4-);BRnXTl4tYmfE z?2*!Ju}Kcf{ZcMI8|7X`e6XL8IM>%s7H(Ox(HgC7$ z$-%f>*1K{cUzl$uZc5L%m{uflvYKf_w$sZGoY87zjG*1^AH|XwZ%5b5TU!!q<+xR} zUoDB1pVE@}OKJS2G=8AcNZa)4PtcQS{H{M3!bNtHz58P?Godg)Qd0-;+oa+Ws8zdcM5=9NYEfgE*i+uxd4CZmefvmi0{R8i<3*#oyJJ zFq%XJ+pBr+&i^3M&;Jxy%91I4NaftO6Gcx>u4^mjayZ4I6$@1vJ}gQMF04J_QaVHcy}ZktYe!#e#Q|kb#o4 znPhUdL$58)=gLvX#>=pX)~rj9lDj?;v;bnYT_e5Oc3m&vD~u@3Bwe%^w_~Ts%@vYn)7 zePd*xO(3Y=H@ikEhi?E(zA}#GpdL&Baqk&Fx^)+_NEqIy{(1DB1iPGfq`>2WxIb0JAEG)pU-Gk~BAjcZ||w zO>|uU_2+-~?_~xAVI1v<3>U@1TGOBAkehKPJtBG%hO`o3<4tg%ad3Eh4Zh`UD3ZXN zSkf&Z*1#Klzw6g)gD}7k0{DW5ue+^Oq2yq|FQPF92-Sjgq%{XGS#`5N#H#C=ag#fn z?)%NSkW`4TT)6{YL~2rX*o$N<`4QGM0Wz1PlBQ_?8+t ztXrO-grN5dmHvwUXrY#n{zSkiqew<=_AwNK1;PH&cE2q<^!7gcm`uWIZRdbp>*Dbb zWwF19*bBgJreHoq&Z#&wpq~T&S#Wqoz*yM`$;xVyEt!X503QeqS!QSf!#Zb)Ao&Vp zQ08JTaS}}AO2cfqEfSUkUaT9Y&X!@%zlp`Gq39zjkomK&?3u0b z{R{Iu6MFoaXLg2XQ|C_ZuZ&?bk;f>LllZm7sFFUmW$W?a>EIXQiSmd(q-Vm0M#;-}E*Z5hR}4a$RzJ z-V~7TXgs~8!rEE{9C&8Llgxq~&Vru24P>E%*MpZtASl^l$o>#9?XoU7kVmC`SB@;2BMBO#*%e054=!cyc(7ZO+ShxiBjJF1xZV z+Ub1${;&V*R$#7C_x}Fp|NgPy|Iej`yf(qd@A$qk16;ywtSlt`j`72Z)d_tBa#!ap zT-qxq{D)4M1O7WnjQ#7+fAbBj^`}J~&HO4zDVzZJ8{|t~ySx7OUoh|_$lJ!X?Y(awhc8k2 zLz1M9ND_XZ#qnlR#kDMXW{_V=Z`ys|&WrL+NhN!agLtHZJ= zKMvN32KZroaYFu6f$;=)thSBOa|!%!1G=ri^;yHp({Y0{DGG!r?-mC^kFY;brSiQt zFV7OE!*K`}EB}Fc*HILF=jqg;^F{Udg{$QD0>TrAFms(~Mh+7>jjpH$I^h7;Sf?W!soXkBPlD~!ex-W7T7i8x#VcS`398b)4wFkd|PBk)1= zt+z8y`n4ZuCR>6XZnm3OH1w?)^;Sj0V@d5Ds^29)&efVQPPr@cB4B6Yf=|x7@|$Cv z9GTuudUI^b;@W9+*2P*=RAAv&+uVwr$FzMrocoAp;f6#5`JG%)4*Xd6%|V5qo!E(8 z;pcUKyw6T|=Bzpu+wl|sKSDdXgdvvvOdB~oiJLlhS5+jSjpgU5q%IU4ONpnABVKaE zM_~8%R>r@;P6U8oTlrqG16LrH>Ps6x%QjK$z~dd`*u_jcqKzMr7%;H=2s0-C<{@)! zlrn8v#;{Dnl#yF1{^{@cw9@`VJ{Y>X{zEVv-ImNhP;HVcX<(ao$v=hhFoXABE? zras!}%}ir#a+eCg{BRTnLtjYdSkeV7Gt#fK`VhUXP;t*V-uGdHod-`FL;t~Cxe@39 zs-h{d-X@YqFF@e0LmCbLhbXEy#h!gk-J{I!KW3cyyw${%i`vf*A~7tHcT^oScqwWo zcH^iSyy)%7E-M`)qy|M)jug|ftLVj;8zl*+>Ehr~0xE2RENP0ssYvmf$!iOJ09WEn zGHpdd#m5AdTQjC1OfAN%T)QnT4jz;Q#gbG{!xNR!$g!Z>Cau5#iUzB4yGmWN)XwKy zSu}!Xh?44+(%n7A@atVgTu1~BkWfLr0d(;5-p~jVb`hFg)!FNh9mui!ob-TD{3G`^ zlON+kR>~P`+C(w-Q)#_4Oe_WaI(YIL@B!fLDHzCY&iwnQKX}8KYMeQZrBFL=S+Q)x zT>t(lg!a=ZnFT{N%q=D?_*W<#Z~ksOUGFp-?ZZg0;2r{dvp+l~K9bG@Odly>;snJk z4R@c?t0%uZCa6KANX*xQ;nYA{61)#>aKcjqi5VF}v;6?syr3EL^RD;Hmwl7w*6g`o zoYc)p@mk+VoFKbqQdqSVT)NeT%5*I-@6|78e%*$Wgvx}Sy*_<^Bn9GiK^G5 z+ZbgX8I}!hV1W@02mXqRQGI1JAa@BeQI%f1x}?eD1f8;UGcblYHb$+1nKe|tClBhzuf@cW}-OqeJI8BU27 zED?wnx?`vRO{xn>I73W6CkN6S_5kNeR=jWOm+H6>v2xRj^ z9Yz(bmX1UK>7695-UwAi42Z7(Hk(dywjW{75nX}2VTh41sHY1X)bU+;LxlWG}gw1WYHmt4lsXZw-Gfi5_Lf0ZhC zmjDiY%O$|`+K1V#p!YVWkRm^@IvjR*LD*eVZ}Fp%txMz}w7`E4z9;DB&5isZncCU# zk2CKmI^%h=kKelNcMjdm@7!rrd);!Q{zs>o&zAF@ofII0MTL)JU^JoI)L zCXoF7&uA|Q;}9jJDLhg-y6x|tuZbEwP6gD#(iMonS&|LIU~u5klqiViw&NLUvqQW| z4H}kLk_^;qt1)^C5j8p2|6aJdECU(SVpIzzJ!$YPJOn`rw9dK$?V$3iBEz(^Q~|Rk0-o@R_X$ zDxlNn(#Y6KbRuVSJZDK?9+`nGdEfa`5eBzI`>-eTv97?l1&lnDoVWlwlqdUHa5B`~ z?5Z-Q1`DV88xbJgFg2{)IwELp@E0{`t_PYHIEtQpT7cXd>9n9-Sw!VpaF}Hih+th2 zgnkt`YBA^+X7cVq-XF*Qo{?|8$FKz0+balHCuWe$+W%Qp`Rfwy$0(c_pYe!Ep;o?v z3S$$|)$>mR2#H;QGrXp#|MKqCT&1hhwL;P8YOGFVrYq9TI0X8@-L6R%$B&vTl% z*CCb?Mg$Psi2C!;aw!`sMM~lsI*CBRpgnr?qPNo&o8EG5ONtucyi~TOc~R^ll-M|x z$#51dxZ>z;Lx^lCT`%VUfL57Dri^N<=&*_k(AwD#4(RlsSI|0)wd5seNVwejCT>RYMW6!g?v7 zwT%wHFRU=#I5d_IOLd_^qOA$@zR;2-Zh>P8q=1qp*_?W3htoAyDhg=bTi}&~WqbWm z(H~p+%x_@)Muk6*%Z+|X>?`dMKT8?zu_;0SA4O(4Q$3R2if$y+py!aLmjH_y%}%&2 zC_26cgBzn#@zfyV_IW1@X2Ug>5kcGKW>SMla|hs+ZX>&jq#3OHAc@R1bs7mmkTGQ@ zB1qeoI@D%{vk{0OZTkaZz$2@8X#f_1Mn9a5M+A{pk_@f{NJvJ^OjNQuy*PR$5hVN) zIYit~amB6?*$G+X8i}231K`x-A%X;jS4yz_pM9(F*)awu3iiIw17n;UbXt51vosEi z64WAoFFw+WgC?8%LJCVarGO6#hP^M8D73nH&F?qADdO*+%(56x#y=ecQ-be8Shnri zw_tF&Tt31QE(VhNEZbZ^N={H(0VcG9o-^T5wzWf?A6wN4zsYCVElr78)#(f|;VVptF{QbqfG?3V+iQvq zz3Lh_l^E`|H>aV)Z$%g?ufaFB4NstE=k+`BT^WDiuf>r#zp zC~RN+0A316?b94%oH&IG2dm071yX_Q0I;!!b^KC53rkF=fY0vSxid0hDTg$6-s_2s zF${%`hZV*~0Ux}Tqks_pK~Cei++EIhc8+7lpnN<=XG{R7#J1nCXI_w2K%0P>g-|L} z72Z@F?I<=9g-fEe2Po@&-u)F~QQ650bKu{D^2NHI{;!1GR7k~Q@~$3^3Rp6{Y6#OW zk3{Q?7r9R%uJ5`7mI7i}2khOIFQS0ZcB9-ER+yQf6zcKl#=S-Np-}Jp!U;Rwn@U`! zbZ^z?_7%a$`$7$?z66zvMYm1P!b-uQfEG5R)2JbMSLpbUcx00D8~5sz3- z03ukFqWrH>p2+64Q;TRp{ET1enQ(@*AYsK`5JB>k6I$S)4nzwUQnhFS^X;|p5rD8l zoc@7XgDfzICTsX6P<{w&;Ap!5M}R-8RV_YFp08Q$1hjCL(ZUOjcN6A1cki~0VKsAUK*F`PJYEI3VA7K_oPto%yRX^It`W-fEp|hvGSNJ2T_`$0`{s%0sf$`p@Ll!=JpS%jnGwD7cp1XJ z;t;r(y6}|&91O!*Jyae%M8us64+iEU)neSaff*#iTfy9&flJ}-f6r1ncVkN9*+^2`P4zaS5I%ilj>|4lZ>e_d0yd7| zJ-ctei6#+Sc?%v&ZHw$4T5G)hzEw{c&fYhdJu-D;3B+H`Sh#`i+dVik4Q*eD#W*3r zW*ltexIASRo-s%=g#N$1J$foTgT2pLmLVwc_}YsH^U76TGJwFulD!l2`^y{80!r;{ zf!?W$;#R?mz-@=V2_5Sf-+k|kGnDv>ERfKsIOcq(dk^z5RNem;`Fgk*7oZwky)AG>%NrtiGu6Q|-2OBR zhu^7`3?6oyDN;58ax!k25i*!~^@PYkQR7MfXC)QLwx*}wcwM%3K1IRMctv;91uYpx zzw?qONp1BmHz;0}xCPAKV|>Tk`6fB=yrim+mqdc&NfSnq(+D4R1;G14YEK%yFU0Px zc;IR3{-IwsWzw*9#q7emz1R!46lKFsXD7`_K z!k=*UTruFjaJsh+&-Zpt-rbJF*H}ItDgP1O-jjaA;yOD*M2;0xvN_C%aWa5-ov|po zG0CO{G!g$F@QqePc;M+UWUw?tlyI^VNjcR5x)9byO3~#=2up;)F*aTwB%-}BGmV8J z;_Z7fx9SxxV?v_hmC3zD7z5Vi$l^{YawlG}C?O%Y-gm}}14I5h*iBiGVCExYA?S+d z=8j}I7PBv8Gk_{Eo}Lj*#fGLL7?utPQS^mm*$Q+d9UsQQOPC{~S?7az^D`2U|C`WQNDSSL<31;gh=8YHr3@3Wj$kVbz<99N zn50^ebGB|($U&UoKZF;w2W^mmDR+4kuB+0GyU+m-&s0TF4yug7$B~oQCC`IPp1mB4 zM+W8!z-KJL!26g2CI@ebZey|QDov0DqEXDMp_gn$Q+2@ibr1ogWjlIJRi>DNN-qGD zR{JO@54xqzX>}Td@}Q#IhC|6H^bdN5c)jN7t=d2O;lI5dF+dU}NaCK#WZ9TFr!o;F zpzMi`Ac>E(0AgApt_S74awH2L37v1ecvFP-g-SXk*t>Lb7-}2vNa0K+nw)0fwbmix zTdc#42$IAJIB|MJusl_n7C2OXklvbM8I*}2?OjNWtFFN$Hxot>Z4C{YWXpyKb-RpV zPK|{mpqQ6|WC5u_Wj=>e$;g*o7z_u)?q^6FgbulVeb55{gGizA1H7)o-xXo1OP0la zHqdMSt>647<>nd89NSe(FAxp?G==f5+h}Ega)`Y!I!>qUha|=X8SM)U9g>&@XDWL- z_LgRc3b#jKL<{h!A~2S1O8OXnv>1S%VY;D65~EA@F8CNJ^-)FPB&%a`mGG9|Cc<{I@Mx1v_giniX2H;HSR{b61V#D%Q)jL5hKec;q;>1{i#;Mia(FLa zH_(|y@X3Wf>FoXe?|=JulEwY&&wsn{`a9b!Zmt``XMRZjSnlU~A6GB@u8>T(aN%Y0 z1v^-mfBkd#PopP}a4GpaUwxFP|4l@ZYnE zH+^e40c`y@@}-qd0t?E7PD7wIi3@B%htEz68d{_rggQelu74;KY~8oTR{q5!#%-r_v{B@ag>+Y)kUu`|)WuU&!Q> zncruMsYnW}n)4m~smi~PP5l^h>loqp9kcA?Teuy<`&o=f(&Gn+i`VzaDDwOT8%X3Q zn;yr2*2=pM0|7rsv*m$fdn5V|H#X-}@TMGQF>D#c{`q4FNcZ1o$C&(x<CTT4d{QuzoLY@D7 zZ1iumktJQVTX)@jwO%ft{rkTyO1~GAFTMHT^5LqR%iooTYVPSe*-lpUi}UhpXK{V= z^L&x*oR4NN+1vDavfX-U=Ey-n}lZgQ;>8Zc>QpK^+komoY- zn!1{otC#cJ`qlNtKt$9l-W%#@d5v5{D!0k6zQxp(uHd^>um z=Eem;{%RsIub14+DrFMwi$n@C>*@|N>jr-RczUHu7xmeVcBP^LrHk9w*ZSGp{Jm5k zO^>Rxr)F#LcrMNt%1cK%dP$zoCKqP)Ng3D0hvd^TJuuSsOtW0q45=$6?ur>TF-VN+ zO6skJF}%M_o3~c3do}DI{Zy*M!QiGKzn-aQZE1F&)b&hFs*K*x7nwovyw#V|*^9dQ zG%|-;Z}KjLIbALPfEuS)2~nUX-Z95ch%EmLTZjr=kupVa*-+w zrA)TezXLx_vM&kqteoy7&+hWAq}FNF?oVHGdT}7%y&HN;!CZbQr7~yZqq~Bb5(`J= z*)-8l^y^ak>M1)_n$qYz@oH(A-rIRMAseTY-fUjkMrSnOX+AdS7^Z3 z`qR}3rjBYQxtgt1l09RrPdWg% zqd~=(+&7!=xuV?e;iY%g>gF2V(%k6G#aB(1Qn|##Q~JGrHn^MjOHXIRdFyRqy<9in z9-r>ZkCRhvbXLg>$Gt|qB2Vr!N`Crw_ugGjM@MgHz_1&?#S4ud}LjtxO;KKWC4k(Rg^j%iia&(y}NHAI)aFY71CB4n zX7?<6sg63sL?>77KRuSqkNxqyR_i{^ZeNyNEir8uJ8DiY9^EBNrDh^gnwRg|^Lp*9 zR5~w};NmWgO4a*IG@z2~4B$7FJ0OQ8s2s|#J*__bd0sq~z=H29PzD$Em*iPsgYwT=CsP;>%H`MMdG#{YnZLAhX*A$MPBn~|=8K_r zl%K7lIB!3`)^q7$C4Et!G+T{PO3IH~)7EWunp?_7DO+q^*Nx8D-aO^5AMX>5qeA+!baR`zJ34JNwtP)Se{&|WBpn`Yrnsg&)cnKqA)nCIuvcWq$EoY z2Hc3%+pC)+_#p#nU#`PHv2s9vt^apsRe{n={(Q(LA5*Pt@BIG#v5go5I9sdS+?Bee z(o?B|I9V&*Hj|@7@dO`A>0zMJ}iO3s%R#T z|E6$uZWZQ@WuvRyv>Jugl&>H*RTq}kB?N{CZO!`W?DFU1(^NiBnSicmWsC$M;9aQz z-)&}UYc%}h5A@-SFi=z#IvWPizBF{?co=+vb}Y1Kpp~j<;Peg5>Tl@((6Qv#87S^E z(2CsPom3LJA_QzpE{O95j!F&}cocNpfaj5qLkRrj_HKp7eT(zg<$d-{$_z2EuSYxR zGM~k*9RmKJfB!EZ;2YzelB*@30qJk%yu}HZC8D__!4kH`mkZOB<6M;%I3$sOZT#Rl z557Ese$T>3=Cl2%YayQ^@Ifioc|r)ABP)8W0%5$?xr99J=rG*_hq*Cvr3K$5r8cj2 zfBZoqAMDXCTcp8-74=#qW5j_zdl&-q~Es98V=+eM!EexQ6is%a3JF1hr-wVZw@39eil@g$$|d0ian#$0VpX&E zecfym5^Th}w3TaFyW51|Bc-2y@iu43;VuHmsHS0Tpp}I3dp(5X6oEny(`EZu<9RxDLE&EIg+W)D0ip~iTyW;LwF@G381u-_)I5jbKPz$kqMSmWD^ zKfXLmy8b#Ajn^!g0{DKUm;eTh(EGAU3kl5`80R`XYM^Pu@Tar0P0Ox*d(-V)-Zq}w z&06KM)^?zgSi>WT0ys~Vf}z2=4;&N#u0V-PV}OH_B(Jj!X9rJoc=w}-s__5*CqI;{ z+ff$#FW$dRO;~o;(gjt4Y6`EKb_YNsC9b8xO1D)-&y(n4u8>nrPYvu^W` zKmX%@QLk8cdJes!B93)7XMHeYAug==T@%N3A)H3~(RaYe*G6$(o@9b=!s+o0=J`>0 zN}g^BLU0Yb~VyJZq=S1W!h-YyJca&nLSWs|Bu9&nL><;euNZ&>~oRg-UgE?IHbx9iG zX6UT2ZAh0IKFoWu0>!;pIc9S@aH{{(mtCjXEILh-7hIQJ`O}QOG^1U1Rbtj9ls!1| z9yO2PZ5Eyq+x-=LWJRQ`@n{x9n2WB6CIgpyE=q^xrViSnzmlys9d)ftrkP>q23Hvm z+(W<0Z;6}VP8>rd{8UPHzbd8RxIYis)(6Fy+a+a+NaecQ`mEQO0DHs8LraAvY6bei zCl)G@$M>ou5H-5h#Q`CMx-}gKq^RzPIp8xj!Ox#rkT~=&wHrkp7FLcHRfmPzS{1|t zTYhwv={O+N(+yZ=;-7#22lXDld+fGcJdN#=>RYT4uCd6L=R{4LLBG`OaHi_Nf2GEdUO(lM%(y8|rS1w2-ZF0hGg6D?JvB>=t zOb%6Dw-m4m$_vG$f*o#~jYV-XfudZ3Y`v?DDHSlLiA8JB#|D$?;K!A3Ot2zscuer9 zH#{b2lpEfs;o7SG5;usy#6LdqKj8+BvLzDJ4nV1lnP9;UK$REnXySyQgBtpscN-D7 z)$8nbAkTkA2@7wMrKya&ShWHrhN~YNr*g#=dEH7|iQSt(1PN~}3vUOWW^|WaWOQxwQGG5U8>8L^n~X>u-XLlCn|vLZIGP&!aBK5EI4G()b&C2pK12LY`Fd zrXZNHBPkMsfZ2Mgj8gRg#uDt2Jj4?q(?v~5!Smo{=gcV>><;uu&tifWHP(~upgEZsx=7_YVsqv2a~f%AZs6z+4lT|cwq4Sb>frua z76PCnI8o9RCT0R>S~@>{LV18>2*`!f!E08sVes1l#=tTahca^KP{3rmwT^VkW`Iau zkv1%aV_j31&!i;Hb3iOSeA$f@Ls0{0f)8YaX00%W%J71uBM%=hXcmpR#}?Zm)A-@p zNC+g88v*$(e6rS#Df3R)l#SLiWRdD1#|V!fHKWzsW1JpzR8v6vgz@?`ezs2(uur2X z8L23XRQGM4CljHk(<(1U0pS-k&o!Y#9P{K^G(Gt%fyx8cUp#?|-^%`r$_ET66L~^0cCSHF!*u2y>6rR z;~NflqggXQv?Q|#(G~?6{=zw>=#Ejq+SMsU2|pDMs}$}r!zHsyYYCs@g433Kb6mDr zErIcJ0cASlT=I0T9tKd`h|%jmkAdmwS-+bj9XOT~q)`lPa~f)NZF@MDNn`@WxlH1! z>jf`>I7&oap6~)lcgwm1EuiVoa^H`>@QqkEvxxV-EM)e67Fd^K1(?rU>SArd!z)s8 ztvw5{$j8FK(8t19G|gjd)=>=4V334GSYE(^pmV~+Sr4S+3TaTsN%M!qHjs6qwj{Zt z$95YTSZ5ihad^w$+N4d~G3aAF3i(+F{UHE22L%8hDHD_UoJa>8>~65hjXW22A_l_3 z6lYY?%1oMvGFIl-4&@1MtuoDlT8>Pbnkq;;8jo_P8wrGXmUp7MrSP4Cu-(IH)sM!*lIPc6_cj1iP$zGZqwuEuNu=;0b!ce zKr}6?<2V})HC~Y5ahw~&sB$Qord4TnxlvG|3e94JMdP7mf;6QHSz zOhrv5V5Tz0UVf@X5+;yT=OIQ=+-k(xb-TDtjV?uoO-3j)WZ33K7XZ!#3vJL_&`_wN z`eYu<~5T+c0w#=UQ72i2k1o9(ymciM(W(22$$H#(&YK3 z$57KPd|inHuf6GrD)OQ7eCQc*EDNG301J8!{=s$+E;{Vk@JA}m>qO-@)(a4MPd+Z0yjBibAJldX}VPlxp4kxQY*lW~Yg zx4mEK@P2kBGUX+4A5*WO(`;NMYIPgWmDVoHnF?hX)N?f8Pfbu427?X`nvz4m%wF<0Y zeSm!NINSPD1vih4gDjm^snKrUwmN$yi*2Q1QCnA&9|E>2;ogJwRJCm)CWuI910fy> z=13V>Cz~_deh7z3U{5_8eET!d^eI?pL!MfOZ@}ka;~yMmOpX7}CC3fYT~&Nbqs;`-@|L8M zf5;n>`XC^y7#Xp!iP^eE4Sv2v+7~>K$)MmU{78QxuAaCNmoP}r{%N2r%VKdo?Bk?q`2`tZ*o_!o?UG0zprp5^$qkS3Y#j&IXR+bnc`owiLv$JeLn zBryjaU#C(z+ZbBI$%5w?_Xh3S-_bG1Yk$XskhvNcGT{xPbvnO-Xg|@z|7(9D5(SCj z#Ypm;r@>L$slm~KA(Bly;&XFJ*#;Fp+o8i|8v9N@4x92q>=Aoq-7G=Ev%1E`zkhTP zgcU1fgNQlC%Y2!4DdqgmW8%+q|@R5CV0>7(7j`Y~$FCL3G~Ow;-fe%m*yUAqDfx8uVk@ zZVS@vj%nP@L6Mg|nAvSs*6vucAA`{3W)Py{NuQB1@mho-7?V6nCVAO}nYeGTS?v#e zS?zVnF*^8mo<7sIff{!{1 zXEOF>5HHT0$zN|TemngtI=l3RV@)J;>kz!vkrvH{4^Hx>tv7?nJM?Ul-=>PHNQN>U zKcgxw5x5n}x;q3Pb|h}a>YWRDWO0UfIJg4;!A}~Vq;pX|yX{zl2O(fxceQq0-VTh$ zL-5l&L}Am?|7A3~rD)rY|DiLDyU{4|vKq4o;pUFOlD$}seU4Tm;^k-L40o%sq;j?z zvj^eRjX*IqA>@21CjMCFY&6#2zj#*KR#_U1(xuY=aFpWm|502yXq&AxamNnZ3 z)--V|q;UB*D6`9zJVWjpykCJoQGT4j%`CS}L>36-h(|5=SqUxv1e6votphq@JKa(;rjf9Nhxh6SM^KU-yDS^|}ren#!VwBIz|Lu^a zjEydR+3XogV0(K%;s|Y07K7wx3Lgamgw%;+)P$cti~BZbQ=g^tXsZnNjwCmZb^eP8 z&S{r=%Rb3)6R3?aZGYs5X%Z`P!BQKXyF|v=z&6Q%{!%K-3j^!yD+&$PfcNPYu2#k2^TS zgXB0%b{8a%-%i7cLP4j}2txu* z-_b3q_JpL4$G*iS*m1itCSlpW@un)Ue;`YfR`3pl)CXW8&?9Y)=-Y4|fbzyB^5+z7 z>h`w#N1Lk6*nyCGtgEv5`{$!IY<{Uw>AwRZIP7@2XL3t;NP67SVcUG3YKrAYdGGNL zWs&Y%W+GExluTWnQnhvtG3tq9xP+f&zuRPrz{0UP!VNF0AL5M%T_*=L>euHQ$ybEj zTTC3^M8oG&0~!Bqy8hh^<%L6Cu*3wzh304&vF`0!#jTU9qK8 zb_rE7rx1l7z>qdfM-(ocI~jy-z;%j-wEjY&8NWaisQ34M|LK_ zgvTgBbE4oKdHj{ytmV#7XayfI1?i3;ys?9O&2J|Mj3C+a4;Vwm6mrR=aEOY<$=HOC zHJ00L4Tf!QKavK5GbV%6K&bqHDCX3QbjVDqizc@g(^LipgRlbYKv$JMFJN?TJ|<9W zElYWUwj7o8&qSl`t5u2F%}*fvanzM`Fs#v6tV6@ENp0vF}P6crXPhdQm= zUVA>)8HZeBKP>1VaSV{~+fd`Kp!0zrokQ`U{S_w^3`rfn>B&6IBmsdQ`Mxq3OieoL`aq(QqcQYA=uUTpIuMFmBkF7J{UaU0Z+;-;_O-3T z4L6U^-$ajpf-3U#K!{Es?XZgk$q0z+no1Mrbs$(%#>?))Sd{RP^td07fkmf0R~=&~ z{0zsq>qLGaz00Ga9}NyVEzdHhhkSvx|AYcRJ-7$Ljh0|*QWXt$(iXMeNH^B&C>CK+ zs_!Gkv~*($3ukYlg%@&9S9QZiBnkdII}2XQomQ#QZr-*!n`?Q65-qR|5|LHOjeTo= z^AieA@<#KL+SeX4a=~n!Ly%})u%*kkZ5y|2+pb%-ZQHzM+qP}nwr#)qqq`&CpeH#y zlXG^&$+hy^xom3eMxshb=H15LZiFJ&5vLKm4hg|)W^rwvQND!y34bPp3wzkGolj`+jbL$UB=&-4poAgBgxXmbay1T&|oSfMCT!(gxGzj~3ly=Zu5NnZ%`k{^e`bX*1*^V=IV_pMxxcEsv zU6!_GLoo~~z zEFk+$4gQL5!Vr85%;k`@oQNvAD2nSDmTGPO=6h4Y3!mDDw4bzLB_sBfyih~9u27S# zj#R{_&B&1)2SV@*#me6^sHPd2+aw!aqzzCdh?tU(U}R(*?b8X$X<&>SqLXX;^A={< zRR}qU4kWIFc6rnjT0XL56$mC8S<)@2r9?u-_&gYIpUj&8iO^$9 zf95B`HmitIVoM`Cx~OgKRld4U79_^ULP;&WO8jS7Jr<|^*b@q=S`EVis&47Q=UrzK?UAT3_ z=3%xHs(HlmSXjVRuCfO4ZUX)2c4VrIyfv1}`Q39T&o38;x5Du$F;6RnKhQy;cm->1 z!ttq366w7LfFI9w{K3CM`&ySO`hY1*`xxJQen!R3hWviA&@2To1CTKF?MnT&YC+lX z4m2;(QEtyr+(8?S>D3zAnIAbSsJ|QZaaK5mSJFh3Ud)}W9A8ce-#s4QemtU-KxLQ- znL22zBV;Ukei> z8BrVTb8wbarFa@b7oW%rvVi-q48Q6Fi|GS!56*##D)05Wv=8#%7R?6^Tdt(*-l^G& z!S_2V`jd8nhJ@P4Cr;m8p(~qRt{`@l+-NQ#T@2!@$Qls(zs)1uO+p8h3*{pAz zS}_jSO)MKnAu~^ZpdP+$c!B7WGPdS;e<7zV&PPvn*q=&-J zq}51Pfq9sgE?~F5ZFQ{T9$KERvX_aPoETu=;an5XO8vA<1HnYklZU9&{!iOWp4>Mh zY9=tTYTj?W8JKgUT)`aL0)cAq+uIj7Y<@b&uo4EJNo=hkS7kE|DQ7G<7` z_o=)NYgU;A{=z^*O1P-Nd zpsI4!hf0&n`ab&nt1S)4)>lM(Wsrwi2-q{JP}IYR4zz1y&cA>eLXj84SL_FiWf}-& z986~#3WdcIt5y&#s|7s3pok1)ew&J-a*CwgY%RgwjSsJWqJ)O4HNl)!#nFS|EpB$j zJP|9u=)=&p;m=#^wXGY-HR|BsQ~%=+8Cl^mb{sxC8(mjgK4BXG>Jt4_YN#%p5QG)T zC+{uuS^+{m4U1CS)~ByOfGI$-x4>@ZQTd|Z#gJGI-Ob2LlzgR+V$IYvi$N}EYOM}| zz%$!vwq)Uong<^f6G9}jCoc$p`Ap>2%K?nS?9Div!)W)q@|odx9t#x`C4NBJp?9_a zFE2R{Sa87gr2e%X@xBT^Xs+J&R0%+g6{d*%6uJoB=T*~tWdz9$uUj2_Is9El95r$* z+U6XRFC&n)D~5w=gYI`0v?!W_NVniR5a!&yuVFN5V|;4-VzY>^`4f(UOypGvzhnZH zSJcSI9+cD?jiOt(VXL`sf}YPF{o1;K!J|5?+DZMsDDS6fG5P?1+0wzmtGdcr0Sx~1 zaQ1s2HWmXkwu{iT`8aF=diYOYq3)R8`q@#KPuhlVVSPtw3#O`c=W;6_i+b#R#}uSP zIbdy9#-Z*9U~BnqFY;EYB9AR zD=8CAUz5M^-zMgQ(`P$Cu9vl$MqUCM+br`~p9$2q>K~5@R63=@aY@s7e~e3Dp=zf6 z*%_28tX)s_O+m?boXEZ!;}=4`v#L>s^A>a%sHv&C?LNm#+XK=}_wgE#H+@3Mf!fSr$ghKdu#~n<1C@@HF2JeO@70V_&FrMi#ZvG#F^ca32JJ}~#IOcy!#%F# zEs4MV$W>1w`!<+tQiNXo|;^VoTDRWwh5OR**wWb3~%Btiqzww=Ugdow>LVv zUg-i<0_$MiEq%l(3Yu*fTai-k$q_@o!sxo=`ACeq8eIT}?AiSdPlIyEc5HPUl#{!Y zD9#OG?cXRepm?oW(Sj3PE_}pS*g+Ea&b^_@q|+&UoN|-zJT~9&W_o@K1XlE7C}sW2 zXIU27;)gX&(~-Q*Fp$}aG&W7ZL0*H|DJdFiJ)RddDSZr?xlY!&-F!l zNbb69x>CjczykpM{DQ_C4jZGtpt17lSWL4UvWP@>JkesaSLNxmG3`rQG|yZffQ0-Y z2FNOandaA_Z|Xxm;z{RC_Y~V?$t(CXdb3R~1Of$7JU`N6DgHVUq_T;zv5F2A{ngRL z?!NB9k9XovkfY_Ho2%8^eZ^5W{%=nEI{MGL&KFLdEwdW0Q4anjFjr$>&2t|pa;)%q z-%{9Iu<6ugrS7?(vAZFa{5Q9Q*NnrKXZx6ffTo)v7lfG4Ee85DRxECllQM#~uQ|AK zuc)ecvqd$oNTxz*uLv(<;ic(_%ju@Os*!1TVxTB}@Nh7w+gsr$PDDQP^i@2wz35cG z#i^U&H~)b6k#Jm=h+jOPIU4U=qdo`}dS6iNiUpc#PD)&06hK}${v<&OJFH~1QIQED zsnbOWZ6>H97A3;F1xGcD(^bk;|AoejdjY~Yo-$}p?_4nc6dhCQB-1vsx`aI4`eXfhVVZ>Q(eyee=AT?QKhh8fds1J=WwA5exF z;vgc3Mk)E+>?eXxKOj)P3HjaJ5)`OZJyE7>fGlSU`DQkUuUWDK(Gg<9VLr4VCmgWl z(@5O-waOX6j7glIrMpo*XR){i3tcZEXgUX)o9yUMOf~`9Ju-vuAdPD;3;Q`k@aeGV zVzd)N!lXj^eb$+GHAh#(dQ(0g-#(KV@^9`#-}THP?dQwPAC7x%-s6UpnIv&+#|zJ4 z-;9qK^g7e36Iz!7(&~Rzk+WmXfe&P4PVUQwUQ&#EQ2PkS&1}tG;(%I{CtCXvJqByo zWViSlc<4tsG%3qk+0X`)U-F!jnwL$?X{&(vk>VFKmyeF3=g z6!O&c$U$cc2*J~$qT;boij?@Qvi=`;U-&J2-9N|<4Ee~A1{ z;s5+Pgq#O*C*WDKJ)ZXub4%wHE6;D*8`Cpg|6)Cff zgUUhbfu7WbO6hy+v;G{s)5{&6@HwJ+Ky^oaxE)UtCJl-I zSV(&x8wA5f7ryzTC>p?65zYPUWBo|qX8F+Y`++7yr~hUoxP_b_?MB~-5dLgIiN!ej z*kS(0wvRQiPPr{bA$L?Jo!ygxG2y+J%)6wr3t&LfUyggY=}C2!uHfw&@oT+@TVEq+ z!-}D+?NqL9lD5A_(+#T%qlltv!)W_Hg65y(=EloJ{>c>Juq1?&L8-;x`60|a{qJ-D z)M4MOC=!&Qt?3jP##7vu8QkW!aDNE&6N=)l&Grk#Or@4{1qe%n#n%jb>8oqXtUO(qaH zoSA`_l{-TAcVs(S#4VK*;*0pi^ex*+$Vpn}kjG!Fd>irq2|P$?KT-CYQ(H+N!a%aESd@Ex*PBo%3iAUb-xPC;w?nN8hzxhB<#R>P#DSc9FG; zT0tG*CI(i>pq7SlCO1X+t?24=hvM^1_ zs(k=wHxZ~Mq(God2Hxz`Suggdgdoam&;7F)hKLqK^D-ib%$}b}X`kvlo(I`w+4^t|Y+2l1sgNxjD?f$~G&x1X~rCYArZh|_t@nYU8JoMt4S=+L`6O!E?0tt9~UW>C7| zz+h#CaRDI(n$l)<5nwHDo@UJ;=M9^x1+>|3 z!oDxCDAEL~{W*WWLC}qhtE>)gMb_4q?dF6G{U{OE83&~=$z~D;=IHFLE0e|Y9)mS0tBv(7&|!J zGqr+12p@6R9U@f6r zd62KW(jOjnQ+BA9^_lyh^@9c8+=~I;W(Xt-E5Q!JNLQEqw$VR)&cN-kdkj#LCYcDa zJY9FRx4pXG6VDE(aG0XIHYJ0Fq+uyB< zeA=#qmmOaLt94)a6r4mym{?^51fyCz2 zh+0B}&z#<9S+0G4`n|Y}c7?%r&h;;G$uM=th%zzx-(7DsN;FMxEvY)an9_LbSdGJr zT`!Y570uvsNA16=!C@mNM6#S&bhiN<+oRg0jbD>AiD;hm``cPC-@)T}60#Cq)fRTp zH?metb>RmQNJoarn3Aa4VfldeF0oYdybmM!eJL)yi!{`Sce)?04w}S?dA`I-t$)aDFnF!4~0o22e2tSKzLas&PGN>^B+W6q=WLRy5L8R3|3Z zfji#$9MJ=XZphqR9RWYT;kATzb#_nx1!rkP53aM=&AT!zNu}W}D0dPsAX{a09uAVV z&4q6>{uE(@gDJ_XHAz6Zx{JB^)D}#$7`D!o|H0-XXimUzyAJiz4D8Of*hc=EHrL{( z!J`qfkmM-dZ1Sfe#F5N1i=(;-`yC`zNhHvMlpqDQ%r`EalOR}U2;?)O zbPau8edp_xDb^wT+Yqd}&riOC@W5+V|WtdUlu4JGI=o5k~&UpkL?+N7$` zAc&LS8m01JnvlMF8>i|&U$6Jd8N326@eVTlrp6;NNZkpGt)+z7k6F23$ELiE6EqaB zhHnC_`O~~L4XB=3L>#N_99JKWg&6}UEav{$z=Vf^w+$9m8XO4hUmJ2@10upXgiDS6 z2@Q1Os>A)cDR3(n;!7tZE0DvKhkzjJC!Rv(+W;4`bP2R6RKUCMF zSt1~|ukhp+&nooz*W-6lN0&_!x z+6}yj@TEP=nY@kyvzJeX_9iB_OI5|q5xlrrb0o4;>=fHdHy3f#7c5BaB`o{N^D)53k)rK$*qp6m10KpEMymjRJ%TXvhe= zxxzz(+UMv*obUkSpE>}Rq9Fn3EUp?6Fj%+u1LV|O!-Zhz8W!t-X?y1+nq(grb_0bKgDMY`kv2^L%$`tFkvK z(rj;1BaX+fC=W}yVxM9FN6+{Pm=3=$_;j1FI(c{}gS$zgd9N`hu0qcUkN;SIKfYe# z-5kP2s}}4H_2l&uVI03`BQLSnXh&`WQFnh?*FJjy-tnMdR0BBnfp67E?*V^rOGd4* zQqFgjwQ7lvp}AEEtenMDIcbew3Ir`5>cyAEOC)`&#qoyUmI^U2D}t**BOQ(n@&lRM zmpU|Qkrn`fHbg^QeB~!oZOEt{Y(CpATtTn!2aqa&L$-?kxyz!1!YNfDw&>!F<0-jU z6X(wxEn$fpY1ZT*wmEgpQjJ*rZMs9L)uX0%IHD6knokaPp=SE)r+3SYf#Wl})5wdJ z1{?nMJ+j2D>UUkIAa11nrfv72% zZ|3$i3e7`}qs5{~hj7J`+ynFraTM~;pO(-43_s-s^9wnBktb`({l^U}?*JGfN5?}Y zZjXYA+KFUe)cO`5ZZ^|A;xxi|Iw^=d(rB7|+AA(1RO<>03hQIG*L!xIq9mXW5QEC_)*-m57<^!+)=02d~WRQ|-_J8%s<5KN;tTsSUjM9`RFLaPg4omsL%jfl%!E;){q%TzP#Pw(H$^u*g zRlEOBRE1L1llK$n{D?Y)()fE?Myez^JWZqq?Mu3;rFC&dAjBdmdXaV{+OTr%F7B=T zuHQBV3Qa8=6ew(RYzPo2G~6({!r%^d!Q&26{JOCKV)`uUB`-=Rk_$c*9zzzw5FtSc zzJ+R*DtP{EfeEO}sY0(uoFOJCWby0)nK4zN4kbyPgI@rMGMs!ZEB&cvIQRw`ZSD4b zm9wS)7cocw``598mNAb?D_H$w>452;y(0t1gX z%}ZcFTl+p)AVj4|*e}Ul$N=RPhroZunMxZ8ECOm~{x?pVABCoMQq%z)eccEeZ2nUr zcXx@BakoC_Xe2z0KjMf3nep84`QU?3`1CsV=Etheb+gemh)aMEsXonlCIlX_D{nvq z z2DZcMb|0^LF|DBetV;c0X%IglP}=17G68|i*XrA!gkZkFR6tNj7y2Mz5wu8{PISS( ze=mZ{y?!rpt>I-KC1|LfIeiwGbbdIcc7(2&s3iT@8v6nMFlhEJeJIDe>m{Ur-Q8bN zs?eE!JT1JNk~}3oZ91MQpgtMuiA)ENeMkh)XxQ8l8fE$@TV3i!s9vBTN&ynPFNr$S z^lWLiv((~b5QKQ*)j5RTnrEJ^Y`|3;0qTA`7=4_!ATl$4N2?j@YAbhAEL=nb$P0SG zXk41?R{|MK+(>k%`wdQ*$IiPmU;^z z4q?O;{>zxa>|DBAat_Car)i`aTcc%I+tBTU!zjSnDV~84yi-359=Y+M9+UgHEt09`KL5;(XPJ#@u5uNp`=URAy?y+xPAI{OM}x=kxXK{P_5N z;A8zfL(z4cD&Ai@Yzrv6SB=rd;%%~h*3GM<=pg}*G`I$*yevQHoqtc+iorz|WZIT^ zFvhoQ^+|M1ZFmAt+AZpm4=v^b2H2F*ka!20cp_4rv(a}6_icDPY>-WDw^~VS%j@;2 zWkyR{MJL*`B(mQ=K>k%ciMBMfAAd(@`x0N<*d#*MM0^OUNrn(;f7-|OiMnyD77yPp zAFIG<>nAdtg2H3E)ZT7)dOvw{OO+ubjQO~uzl}c<)HzD|# zCS4O1P)&OUk~WnKWQ0CI1h<_Dw4e-iGrkUDvR+VT(&Y-1&yC;5esMD-d18oGMWi}_ zxz!DAeQe1(!)V?9O5b*?yZLrL-uixmc3yM0I(t=!W&RJv=$72p1$Hs@pAFpKb3>6S zasy+bD`P$s_D+VTvl@fIF%$YabD?g5?BdUJZ_2!Pj4u>}WkIAP)GUQNy40p!y3#qf zA%X$DD_IuwDx$OjoU1mm9w1R0A2!EI=^40%wtHFg4==)$pJK?S3Zx|6SM)q!H6YxY z>p}ZN_2P85YGVl1mlicH92hdfpWg)-xOu71KXB`-fPYN~V$w!H^|~mK|o{+Vv!Y&O-c{4p-Y3ujgAm0yL*-p7^0#t3^3{Ia-=1vy83&B`gsXX zcoOoWI}Tk7tWfcu%yTvAI+fYlmrgKzZ5}G^AbJy&Pfg>np$&I3Q(U{Q>W27OE){jB zIUIb&(s)g9U91^;&3Z_Z;?TOeH%Fl_z?v1MGz~Q*bhi>7Wt6=br+!Bsz!n5rM)>+2r;||?wEGJIm`Nay+K>=Cq)`WN` z`}SakyHv)+7P@rj=Tf)B*Zvbit-8hz92Fw zRU6EjAf^EKR}L!yiVzA>Z4_dJ6@*nEH!$1z&R2ZV#6^WpzX~BeW$(jWkUmotwR|vNEp`du|=eW!onJ<-g zGvthPjTmZ*N32ZOH3x9FT$19bSh0Lo)m$F$6b%ZzQVI<6P`l3`h_hP0b{VH7)VLfw z&yOA#U1zkIrk3l38dpOFK|YO>$C&Vb2c2#&94M-}_iaqiDj*$QYhYe5TnJi93}iw&X8x}qRSK2udTE%XR>_G9Kk1>9kiuUSj1s~Y zib3cI9??Fi%TXW?EPE+2R_0dJ7$ER=*}l3FAcJ82KrGz)>3L{*GIT0(p3HaXl&BMd z;3men-#??Tus?HzGDBWePOTQ&h;aBh?tI8My2gkh>LnrXB^cT7g?(P|P_Gk^^9vp55k+tkTg+at49DJ=XuXh#hR@M=W z7ue*#V6RVi|72oTPWCLdFQT1FW>-rJ{DLN$_`a_0PgP+0{I>89Hn6QVKG%?!v(ZBy z*{Zw7-Xj=iyd9?R9M3YeG?)GqnTFt`baciJZ&#a_bCQ}rq3_41^l4&PrGDv8G(N(H z1Pu3!5aHdvb<)eA!U;`xWf=IzW(|`2(b?&f8a{w^q3nJD&QLOJQ{;kYvNJ7+VNJ9N zrA`Fh_x?r;^vv7sbL|3W^}YBhp0z==#(~V6-LdR~< zB?{k)4$G-lq+Hb}`TJH3oqod0;FyHiL}@3vteh&|&1VB*&4jYYx=LFKVzRJC9QF&K zSjX0qD5wGMj1UZJy}s4#eoe6v_34^oABU^`Iw$K^P@o#VV-e^`_r|#@RTp(D9CWzA04b`YYQM1s_$Ccyk|*<}OdxLeB00Y0eu?n~_SL<~Bn9Uey${ zf6p1Qy0KpbJ8Hc;2E6V6&Zk@RUD2Q0Rt#k=>TDR+>xSUJhe9~otrXTQD#%H_zfSH+ z**UFNysoBmx3?)nP4RoDt}m~`1?dWaFmz?U z`jGHuKOKJFpv8Zd>PLI2NsH4Tk4YvdGRqsq{7ezQPy;4YwH7i6@ldowewEG!35%6( ziA=ye(#k9;MTb;>i`kaveb`1IlI{q?XGT#T$e;h;q zki3Sp{7U$|OS+*m*cuQ8oII+Kn2@asAZg4e9r?E2ixl zY}qRCe;y#|zJ5~X6*<31V8*?S$11?j3AOAks01d9%y>YOTO{yM?ECwdK48Bv;g#3= zX;A!&@4HY#Y?9M*=+QB4Lu!y_*_6izZ7Q7CA6%S!n@&kmXEnXYhCprX{l#4-6!q9!Z_DkY{i zvS>ZpV6H@ord+l#SM%TdpGY9jVHEU49y35^(g%aK)$x=$^>Z1((z{iwknDN$r}}-P zX8a7&$3%~U^oxyxEgvR8m{y8n*j1^7oz`68JXCDF$A2w1>EVNX=Ui9)6GkzjTVpS> zPs?MlyPOe@Vk_Bk*q%?Lck$zfs1MU!t2Yx?s#7t*d84*6FK0R9@8s_&XD$bhBw{Vq z%y53rVjm8+G4v_*6(7`!lNDVozC<2`lNCM8S8P-v1tW^dqn71d4r_P*x-^!Xdt6YdxcXG@_R90<$HvQ zN<)&T=#q79ihD8mx>UB&eOKkvFiU%GtHz2OW z>oCl_eTX>vST$)Nvp-p>j--g(<_AKF=?WgQZ8#xD%s#9~ii}db!1Qyq@ zQ#Vw4Y5Jdl@&no$XMaIS7@{zsG5FhHmt-8N&n|Ndi&VnkcZh` z_bx6|wO^k(_d1(TXytPP0&QI6=>T%bflyeqO8|aS?4OFPKP#VHwPgy;-4#KYu=M3TDi?&S6&?T2f+W@a3Gk@Q z&kdf=S|JJqul)|&p&c?gsuZ&C~P9v=ZO(^+qb+2?6uVG3uxrOg0y2Sc-`~;pi)pVgO0Ex{9Hi+#A;n{y_dufB6+{^X(K6OY zq$HJK@m@oKi@awXs%KINH@*O`2!=Q}!#@S5V60niuAHm)j0A-;dk_kkbk$yAZ}ZV| z_8e?U0GL=BDBR{>mfLsZuCR*(L9*!KOyFtbH);nKAQ&%aNg8Y2 zRdWuM4S&jG=2Eeba{?|_4l>f5%IYpbv|EWa?Ne57mBOT6D9ax;-=CGOvo$vuRle-=RS<^u@Z>dQ|YO$pZz* ztEEHhKS#mW2G`&^G-lS~zD|azbhDjQ4Rhbt%}JQK$<(&~q{2zwQ9$!JN-Jd04`0%HKN0W5=eN(1Z~# z_iDX>;&xy(BFdmpvozqrl$A|L?{1kQ^~Ov77y~Xf4E}*151WMNq}PrXrFD-7v$Q3K z2fCowAQ>DAUI;L0EWzo}OVqu8RT4ck%nqkFV-!o~tB9FtY|BDm{s9V?!!v7omjkm= zMBMc^MLLcTfOgT;i5WOJBcH!a8o!^VAdm&ggAB9v(iAt={!ai`hCP^p*K_4VfU_>d z*`SBCayg=Yi{%~e2Fz#G>JSzqh*XTGeXZcxG}&u&t$OK%GMyKPOLy#Q}{ZMh4VLtmS<8+m`+avwCu~~}h@&d@hA;RS+ zC#z!6EO}xOp>nL%VhtoAI#tK99!65ov!dmU)YkC#oKf~d#NKXra>Gfq0FSBT5V`TI zVh04ahhU&WtP=85nFN{YheCT2@|#toc2B;-$&)kK8lLX)HOJul73%zqG9VPRg7O@k zKv8~s3LqGOhNTo{Adrnjz2G>}BK=}hf)t*@N9R*dlW5`n@2!f4snx!;C>Xy>zkWQ< zW7AMqtqwi=p{ISN8Ra$#-Bq_Xul&WS#gs%9z{_~XZ4K9tORs=jpM(uaVI;o;r@_@F z&kaIV6XJoj(dCK3od|5?iptTt3cwQJ5-<6qaV{B3be6+!+Q0u9&gwx$5FPYOAOd-< zZgHNk8MiC4X2{xftxe$&4q!GghT3Q@3mG(my<>HNU;va&Zfz)0;2uzeS!q>dK7aO2V}EdQvcEA zUe+VG#&J~)v6TAL60za9GSSW9)xMS0y~k~l(fCu|@iuIBvX8!AaB3LG*okv^E!x?7 zSa|XDKAuNo5GH$Ib@{f%CDn=Z_V5t6p!62x!VkY#l7}zyEzKYz_tsd{#wd?p+|1Gp zJeQ_{66M2j_a*MdeK7{PLre6gFo5+|y^7({CaWwc!js@AF><&M1^qE;t|!({17f%w>q?jsLooLp=kz zP?|yfu63Q^|u(E}ALxW(R|<%}}rckLLsKGwoX~?15d{h=y%U z{^Ct?2wd`y;Z5eCu%o~%RM+JuQofRVE+o@eDc8NAX+^}vDM%?Nk`B@}n#i~a27KNx zHX{4D%g;d@d=kXCp9h1gx|acWphN-rg!oW1>TDQkDLQ4(M40Guz%|nZ@aym>IE{_7 z@KVk`Lv_0hR7t6D8g!z0$)pD4FQ1<(H)W+Z{V5)$(^7nQD=%RlQYE8eB+JboPof~~ z93WUrP|>=46VL_iv7yzcfg?zUh>V^ZAS#QMsca0mr}kUGLqyl*_l5+8%zO?D0F(3- z7ND}H)I~#SoQHzKDE%#p;gZy)xT@9jP%)`SS)@!ewOyvecL6Xc6y+$OXVdvy-e(xI zPeS$0INw1sHzWSOrk+eVi$5+iKUSo8HW`aW<$wPQmD|05QGShnn?yf0K!To?8jd25 zyQtX?lciJ###H_&*{$tKq6ysoQAbT^0espA;bby115vtwFauHihPXA?MBr^jLIRBL zWnqP|v(Ws#c;`n-0Iv*8!Vg(Yu4*^d=zPIOBSxv3k}gs-OzKD_Qm-Lwk$xB|!2$$i zPnyK6NX;m`QTP=JF`|tYm=Fn~^1NdDsr(8He^qw7@usxb!mT^}TfxwLI@YbhpLH@3 zRKGV_LCurdtq~)f>jcG;95^&UU02(JDmbk@74+JanTfUNYG?n&*B_-s$y)gb0N5`z z4$R_nsDe;21sKE?A%Kq=Jv zvhPl7R`0C2N3B+YPXBW1EE?v{GI#!E8>cI>)FMrG@0WJqpj5r-z z&&+@;_s^AM#cG}i7$OR8_=Y2mM{Fcz(?{E{zPr}iq$=!dsKpjNTM6eB09Aq&R3&3$ zR$ec(5w=}(5O84#VQd$19?>Z%k04kU#K0GYK^=-16Ldm*SN7(_rT1x=UJ&wGREbZW zO&v^8=x|;45d7r?d@Jw|lAu(wvB@WaXyL$*=L4BF;pXS_+0;=*#m4^`er|1hb$U2^ zJ16iLcZI-0Oq0>di-_k!5nfj!Lg`1s;II#%g2F0a0E1GdgMIJA?JExT1sd%e$YHDY z6ZLEF1F-=>VXP7nb*K*s)C0AH0;`hn_W>=V^CKZTspjzmT63XPmcVLbHquczV4%+;wAXv zUpxcW&-o#Uwq5;Gy@EJY@(?ff4vD%@nVUCFrdFhV&Copq^7zz4YX+E=XG`wYd?-zO z3I!0Sz=n0g_fJnap)cd_TV((Bs^K~7@46m}I5 zbVjJPg;n=H!81Fnompi>lG5JdL!tgBMV=WSuOBY`AWv`r2xsLvUUU1 z6`_r$uGi7qiG;(Afoo65ajOX08a!dMI~mPcPZ>A?x7!QYb;LgGzK-fi?knlRY{&l< zZu0`|7Z%wL>lG#jkGU?+O6x|22(>BtPd>Vqjz>I2Rm;IJO?C_wWJze6ZnIs$<+=No zcUD3!WhN#7q|<`9V{>>YIq>seD>9?aw=5_^AsY8pmG%woa*En}@a5P5Yc1&*rm||(3_eQV_-Ze6>KoDS)^>M5eyKNc%OA60ttbA5^7kv z;jkvlQfE-$23#wkD5%{iyd(JHCIYDJp-?;{$>q1N9F?~bA2l)LfZ&$sERiQdbn)aLxD&;u?*KS;yp%gy}8x+fl$!crt#ymE` zrd-O#_#)V+7)25AdT5JLn-gqMmO|OImk1h{+FxZp8&ds}_N1i6COC(I*Q@J|nL0(~ z{T~mh;jn{^u4DAVGpvbY>w)U{NOsS}h?Lj=!g;@7au*%?R9!iPPxI9k6XQg7*}eKA z#RssGQjH>m_LV1~|B3*OKs2LNqt$g2?xJ_22qjY@C zSyZ-~^RNPvO+6JD@+K#{EV~4i-h^HQG4Il#8LKmO1tABD#epCz%nQ4faCJ*GYImgd+-_3>0$jUT6QRRe9*q-UEQ#r2H6Ar8+ZklpeHmTaiSDSOW z=1PHSO0|(?ao{yLq2w;iUt}^2#+}%zwRk5uQ+&hdz(5FFbgf3*_i32=4IPhs9W(1G z;aFVeNN!i%CV)3#y$q%m8j<%?%pIL5Ao>@PeBz2u0DPS8H*>}>i#RmCkV%&djJ2h= z1wbXoCfAuv;#4ty@t|;h*jw4*)%A6QuU^+cg_Zbp9r?2U=7ND-Izr?)O1~Pffa>6k zTuq+mj$5*k;C(8e7y=g@*1aQrrkz zXDwn`8fq8AEwKXKBGrzJYP(!N{Jx_~`9$8v9yq~}l<=0b{D?gM$eDaU|Hzqn=hDHd zbs#i`zzlR6ZLG9yb_aCB*(O*GP(~aQg=Yjb{g^;8jo$Q_h&<+nH*KSYz$6U;|9qOw zYx;Z+eb9^WgMLo#yj(yo?mWG-=&9tG3nok6mNxf%x}3BrYq?{&!=0FsFfuXW&o6loi;K+D^37k&6~>Q5$m2O;7WNuy`#v?`7nm~;;+L%lC@ z+`!TlOuPfRHRq7t(C#uR%r&@`YE)}WoRNx>?dtjE-XiMd^0j_9fff~^IjV6i0b&U$#_Pm5xHN|-{Tl_eZF*D@!iF7O z5~lS)gaP{AgjxPjSk!&a>e4j1%uKGqK1FkJ+rYNb8f*IAWJaYS9$oM$xLkL=NhhMe zq+9+VD=u7D6OzC>A)t0)d1nX}-Eibr?$kP_@c#h-0RR8&UE6ZoI1>F8mi8sHHIXIi;>(O(l{n5ORg=p) zuGvQyL_roO6rll0%bKTr#60f)T)t#+qbyPs#U?0-Qsf8QyrBVfqj9>?Xk5_G^y=5y zMQA-uyo+Fp9DLcBQXF9Vh#ObduP5x;75^<>lfUFA^eyqjz?xm4z;WHn#x;qki>dVy z&l)H46IJ#V8I><*CTivS5A2OcA!v3d;7K_?uPg&hjr84H^3u8 zSs%4e)gzZRV0Pi*5i7QPCT{X-%Q6Rqe4QZr^-G9o$X;`K^<^D>G-1Wu$8Yq`JF>j& zPtGzwQB{a<+=!~gG}b;klaH2pnHCQ_&B2?esfT9Q@ym*+L(E{Eo)aSd&@%9ZrO^js^YF};9qgW<>PdHQw&}6HfJ3l zh&kgrEer7wSYIMscjQ&Cb+O~hacRh};@$hZ-)=USkTs|(uB(y_Fr_PpOeWY5iw|bI zVv%1Ruy(7zs#4p%esVOx#=*9Dsnn~nLE#2~LD4f@IW~FMxOQLhd`9T7#x-Q(f8=h- z+6_^d2aI=Jy@5xZugw})@Y9rII^=otp8>Vp;c^C; zV2jOyK@=@g0h&N)X?37U{e&O}hCyZ(>_7$bn~9Q7@@DPsj_lc*d3Ti8(HP!rL%ciN zsGK>ENpI)4kV_pChs#E%&&6F_+(sU|fufMC3a8x`!{UOv4`VK?XXpHCjC?k0JX|(< z-BzWb(h>;5VpF>n&$$+x4B3Srx_*Q$;#(+SxBR)qs~+$xA3Hb*5S=&0iUPYwu|+W& zTF8eO`I@u9BQ{3NoN8tQYz%yZ0P(({11KccA|@8mj0vGBLU4DTJ|Z?Yz#zS75<2SP zd}EdwRN}RWZ3U-hlfvd^uDYsSt^RZUX#|N0R2eB?n4Ma>ZaLeF{~2{S)TsxgyYs6k78vW(LBOXWh#^mxhRVJvXei55v%ctACQ zBKqB|W!nOyj30Br$L&k+-@B zV5>r6Ogu~}F*XH8AjA> zD71JSkhOqd)|3P;N19DQuWBI{u?@`>F<{V>9_ll<#Ky$JrP!SBWHxp~V~rEK2{^vn(ZM{u!J8&BZt(kOi$5#v|2d08T0hCODo?F=YnfSFTokXH4kQT%b0w zj@=+6bj}8EBV7rHc!b7PXtAHSZ_`@0ouGKKM6zIEm79Q+L=TWCsV(&Ex!7V_qGvac z)GOOA+~XU|YNm@?Kcie%JXZ$T2|x25NPjIlmjNkEZ}A9I>^pqk30WI28~73X4T}m) zLf;SVc)#_!_lL3uiBA*+8xax~BB3DGy7#k4D2O$E_`)+L%^3e}yDN6^j(PUUGr4z{ zzwiO^E(po=vT-K&hpQdGYPa}+gdv%*kJ`4lma}YMUdUFn%f65{S;Nc5xh=Tz5QXA$ zLF;2Qxnoskj{*)88654X6jDqWIqpz0e`?2DizSbwV8nmd3dozCf+>~gvrtWW1-5Pk z#1lj=s26*@B|^Wuef9Cn=TEnH3h`yWFSd@aAo^6AfaE7U&sO>qe)vG*lVzl@WFqU4 zGHkLQsexEZ#jPOuMPC$GPkQHFXhZpy>NVAb3ZZ;k@0 zZVUpgdVBv$Z1~lp2V6$eBL>|Dr$@~o*MPQ$=ALO#)(1U@tqe0Vw~d+j_~p=@U_THU z&5hB0(S8H*GioxBB0rcCP!xCDT*fFpQUURz5N0&$5u7pkq~^#u+zsvygP(b>N{fNp z&>BW!t(7lxPATE3EpfmXV$txCK~tA!z+|ru-GCWDT&{m+|BptI{8v6wmzL|Zf*A09 z@R1){e-V)!bNC0V8oN|9+Hb6pM`l(q4?;X?TDJ_zAx{*<%u1XXK-P=So1d1-caYE5 zgePQ(Jv_7qbBo<)eUl{Fv_7zj*>%Wd$}ZX6=K?Y(i|~ps4Fs(AL-)}gMvN|#aR<|7 z$^?%_uH*7m616hTwI=(WjehBKJIh*$Qd>G8I=W*f=yJt<9(M6HRCYx8DJV(+QMO zdZH)cL%yC+5lu%uQExqA?~9&@&80j&QGtqpYo}oBj&k=G)=4`RkqCfxs`~t`Qrao; zM(^2r&Q(raDT&}h9t5r~a$^)_%yb;1*t7F3s9mcvt8+;6f9Ou|eGuYlT}N3S5YysA zy0bQe3&UpLJkQ^H0PVAzEpZgG)jgyE#lzI@hc1;-aCIG3@P;w?UTF-Oz)6F z;}e+1l+`(FDQ|9Fr>x!~jj#cU{2`+Adx!W#kus;Y5HW8&dC`*=Q&K(G*^OD0(?Z6c zAms72LInGVB!V9HAHwlIie2}gZ8q()sW(w~u6OwJOhsPxnXFq@kKc=_o2PJ)SVSd#ctVReenWE-@em#PXyiWO;o{*n_Ph^B(Bjko z3av#!0uQWv%$t%Zi<2dU2Y`t_Xti&i&xgMyytV?0pyey^@S1qh#9w-zxZ#s`uaQ4g zRq)C0@ztUZi*EZDb%*@l2lkhhA#2``lVv3Cp4n=SN!;yp(6`j4kg|uXpmPPY3M7|>S!E%rujo6hcq`@gJQmo+8;<-P zUnz;?otY&F>b*=5z1{S7cWB_@&y3;&Mbohwh%3H%nWscT;=UmL42kg*azgo`#KZ~) z$8N(voR}8hmWinv8?rJmx^N6)~j1;OjTfaNYnc!{dGl9&-=| zW$|`1aP0?+3rv5lW~T&0?0#2xB2yLy$Gu;s$dAb_LPhf!rI%J~XN>B0l7VUlIF+Lw z`5*Zn&Fr^T!(yE?To$5;8Z<2I?QW32G75~!PUe#FCYF>jGwiAZ z^G)%Dr`N2GCj~}gtJ&LEL&MgKZ{D;`6OLcgJbqqlP+gN=`M7f@IN<9Z)-9PJKa0V| zdapvOK;)PHp?a17k=;o%+qlw2oia-UozpEM_&O{NoaU*!bhylq3gGLoGyr1Mj_`YG z<5Mw)l)~?ISQ;q7k;8-UuJ48}gYSGhNeSk+&*h;C8>YZGHAJpV)M446giKTm=nKd} zyVWX%=)0{|L|>9s+dY_KpD-Ygfk=1irry(Y)gMyt@mLXP?``*3ii1GPWqjS8&i0V9 zIK5)$j)BFw8%LzPmQl5Ebwe1nBcz<#N?eQ~WstIP(Ci^c4i70$sq2ULt7%t?@xDT! zEV!|UBB2SC^M>QgOMBAii^SgKL0z(cec9 zp9kVajcNtr>)`IrUEMo^c*&?bxVu4&+7XCPr7tPQkWwJN4({#}963}FKce{02>VX* z*nndEuM)`D!Q)**EX)VW?;0u}{oOiH`RMP~fyzgJ_eQ8(H-C4x_OabZs4N*(`_S&1 zK;={(vSJJ=1C_hAkL>P*k^E9X-@*)qSm?a_{J&E(VoTN!5!nqzqK< z9X-@=R11g71xDd8nj{l{7h`&b__%j;O&8-oXH|3LrcOgI$gk>Pa_{I-)_}>qqeoc- zCijjW|a1?I_A*V5J1Rn^s1oBw69VVzr>_#b;DE2=S&CL3c}`}Ah5`KC<2{uO*vYmjfs z(-)l0>iP!x?0DbO|BmQ?9fdyN|JQ$9xy2(*KE0{etMxbdPv>cbKE3HZ%KosygCl8D zZETEWOFrs-def@6_V-)O?KkvW2R%CE+qVBdGLB`dy~|H;DwRgHy4pWNb|}5Mf3o_;BfJ z_zT%}Oz%b2=#gJgAA_#fd^Y+#>oR#t_~$+6{b%l-(Dcw3+0(N&H#tcLt;G-8bM?`W zzJ(rKWGGK5roY-*r>vWs{>jF`QhQe;*_c93A{9F?Qz~jrpV7h61Ia_0g<457QH@F~ ztBKm>nkfGl&WV~%4RfA+o>}{*;n?^Y*;Z5)gHUy3OQ&ceU7EUVM9oq%u6F8_YLN0H zOnK!V;a=NYZ6NOL|JArh{_)smMbfyyqSpEn7I}mCb6_1Jbue@S!t3=w%}k$&p0id5 zEb*;s5fpm^px73D%MA>2-`t=LX(5$opF(o1P4x5zZS zaxbNw+#-B>wUb$Pa+_dOC_A}R1jP;sfc#bMuEx`eQf6yk}@7x5Y=29l2}!{|1kdDJH{@OdC^*; zf3$#xbpokzEO%bbhDKces!W6`@*TLCRS`>i!vj|R4T?2lCymHv=Pb1OV(Kf?V2!%q z!;ea-o?@m_I3R7lIQ`0Iq>5!ys79!iD$NvAlESN@%zuf|k48uABB_=bM}*`b?>Q@y zZwqXv`!dv1s&#VolnQ^KfF5PVnH7Y;s;gA^6NQDDT9L0*6Xq)w{zzfTl!Tq7RBjT> zA5zIm)Z`~*g&dg3k>=;P;hRB|;EQTA-sqGbb&U>$i5^+VM%Ea;*_0TtvoP3`iB^{G znD|4B{N1r7LMq%J!`9cl>k=9<1AivIOkTx+w_^i6e349VWU-tc$#(cnZTFFWQ4 z8_3?4>D&6A-?Y&+9mmx1OVygkK)UK%-iINQd&t5c>E(uvzG*t-W2Z*x8MqGp=)+P> zjd0gD7}}mMQ4S~wGj$33_|7ikq-xvjJze9Wm&sGDI&vavtMjwV z>*Px$-^g;T4zBsSU{3y;EnohgLsNL?qJ}}Vu+1)?<$OrOWE!tdH+jycI-ilp790*S z!H)D0vVgci-J_?8Y4rf$sNJ6y9F~jUkcmCnkwwAkYNm2u5;b3^rYJ~Q10Z3tA#%cG zOPCz0#>kz&T9@a98KTH4v^vbdSP6}|U>p-icz(r~S$lrgN0-m|J@4zj`OmZ~Ri;5h zNbsJU<3)CMrH_m-yE2r5CLTH8RoXrgxMDbDQ?kbY(o5ol2K(HvSvG1rsnFxSXfwZitZR`LCL)_QXF-R)_STvLRcq{ zMZu1K*0E&69+{RS*{bepG)h^L&PL>4S<{|A#O=zl*w7^oLCLfLF!81k&FTLN7-RXi z@<(az`!Z`g&NrPZZaZH0&n)@EQN(na{RY!uh*q1t!gu6iEW zM!V_>&Z{D5U@nJz(?ydUR*@wl&{tnR$*G-ny4=%EH`K`I0tI%~xuAi}A}&a=>o!}u zgmJK^_WQ0KPS3~@Aa?vzvnPy`APe)QEHX|{ng{l(JZW$J<>*Q;QP&VxnxXX}zI491 z?g@P9=iQQClS;f>PH!lAiHV8!&al%Rvvux^i;QtDGQOx>u%14Mfe4nSm|H+b_ zEOCxxjvtC*q3F#mmNDqqp0S!06-%BiN!YHCMy`dlC&~AS#)!p-FqVr1r`f?d409$A zGg<^|)!@csdIV!p1MUC(42z#gQEpvQghWPIlHw#P4wDog!BLH*XbFvdBo}ZQa;PIh z2f$Km1@H)4B|NWt7R|?^&3nO^Os&9Tp;Syg5jj8yx>gbH*^g0O0QCG#Qy6-2>|ZhWWZO0sm3U+YMslJ$!vdp6LjOgc;dB3B9V zi3*G#=_uY;Ix!QC+yHOFMV{X7(~6Pn#toU^&H(G}Qh}L2lOS67S)eH}X#*+6CvPn+X>kd% zF}f=~Q=_@?M{KHb{4{gK52BI!AjKym7j=4gf+>)!XTDms#k@hx6eb#LA_Z<)%nj)V zt~-e=gGC9yu3%@EgVforOySoYpV2u&de!`-)AQ6CbjH*knT@` zg)U~o!6zGBu;LCzvxKF~5I>U(R9DbN0{<0aM9zwnXJka9262P<^+p&oT{T=Mk~yo! zY-qZXo9?Rd>P1WKs?mBv@@m-yG?KU=$%ZgU-L8ek>SD3}JoyL-?(;!{CwQeNiri|l zh21VB8(GK($`RVNsB4q{D3gj zTep_i-UR@TOCALlZUk0U=YmDc;6rXo@Rg+0Af64M{vfR(u_q-dvZnYYGVBl1wrs14 z)OQWV|3b#DpXoXy*YR)N$`&G*ZT+P)m$L1BSDFJ@W_iDSov*lqth7^KD(5$4F$qTA z=91aNKCg7;c6;hr?fF-p84?l#7(L`P-9K6~qF=(|Vsb+c=x2%KIC5z(8BoLWcVi_6!seCXun-O}rcCbIa73|^qBXZ%i-p=`h(H(R_)$uDy*RyzCV*=e z>bX?e7ER6yhR_gctod63Mj$&?06y~AR3S#X0F(?gkb!xx`C}D5A~sz}=X%Rit)=DO zrW6n*&A%e)@{?pLifc(&6B=G6k?CGbYM7X&q{-F*Nfsg+d`v2h(8ti@NK+NnA>|%u zwto-5Bo7SPaA>0iNmm~UMSWRuOw0Z_Gn707Ly=wEGZN;IFSATAzV4a4CYayyW5L8) zG^w1;uOJo4b1&T4JVmZ98xVM01@sh4b;wzuFn}P{#RUlz{^x=;R!w@Zy(9`C{5+Mf zbmVFaHSkoR?(lW81-3Z$S`c5NJ~l_Og2qpIU8>O-8E+(uwvV-rdbN&!H+tFgJr9GK zSLzl23Ypi|I2J^`;va@Cdp-(;pKw>GM$MzasjFXOl<`kC>FA5~bluNU%A$#LXSF?c zYZcmPED@$z_sm_y#+RAdO|jkbCn8v!OS0So3PMYnkrM~JX}(x^j6b5zLazb2X`aV@ zm2TXSn`?c|oc!pi7P;cZ+`|2_LRkAreZpA!mWx^}q7#|jxiF)|<2?8hPhVG7?gbE6 z=-YESay|qp!L{^h9PS4R@&TwwF!p@zX_=+=v+i&mq4ry|rH+%uqpQRkAn=%_j$5g9D`b>9CFh}P^%tn;CoZ4 zl$Sjx{>b2hBGX*SjTadR2jrGwhxi|P7vf6cl+@|965lCl)Jd98#!d;>UM_lRrjIEs zLx*>HBzLNzxMBC~ZS@@=cKdnE;IsylL{zvmU8Uq?mS#8kjUndxLD(N9GkMpj7`aSG z52r@To|RZTzpZi3@HSo%E0|&yIJgl-`-cFATr9=QZvm!2I}q@fhq<>R0b|lroz>(0 ztU^}IbAMsNDd=X)kOV3XK4=1!0w44bh>KSgaf2wOg5dnN4z2@Hl(n&&;{nA>ls*^} z3W9Z-Z0};A9u0%$A=*rfmBkK+q;eCp$uL7!)r>)$ZtQ4$pE&)Qlyq{IBg)H(`h(lS zW6E)E3^9MCkJf?W9wcQc=eP&OkDZ0XE_P1{@SaP`0bnjpF8YUoUK5gwlLvC~0=U*S zU85&kPd~^_G?nIM#}6m~_4vLBebus=-T9(#sN{%j2$H`bSTtyIsCpiA5tAUH$droq z^u8Y;rJ~WG2(7k@08FY`L#4`|$mNuifn-2#fl*905i3Tr5Ap;>V+Xr2p4Jdf%{!uw z3(P$^x~Ne>uv^#&iiI8tB$f({U%Cu~Jg|)4oVrRnB9{g6IgwdX>?;A&A*`;hDAk-9 zhh@CT=hksB6%;>R5my(jt5*riSc0p?@b)*iwU}k_$&J$u!KP*ra3Ryo`4k&jR{c&kp&|KmQ$o zKrVWOsEj-a`(MdtFPlO|v*1~xlbWLc08qqL9pe)KP;eVujF@M(PgTMrmr&5(!Hs^N6HYcovMYTnY0kAj;ILCj#3fDHHcBp2MKgG#4QSGJR&}zrt9GKFN{W^>?Gk1LC~U~eXE;V`F=2Y zSCVE9QsUyKGbmspqKS(Og3gYy+(lf1c9Nv8Spd~&97}Uwmsva3PVP~XnF`B(ZHnhT z2|db+zn#r)O09ask9ql&rtpUd)&9$T0})RC^Kbu`F)Oc5I1ga}C%l=>_PfLkoJA`m z=R5(Vu+Pq1t-D;SHKK;z6ubBZ$}`W*T78A8a+gUZJHq{Zlxi?dQ$wGrM}uH=fb_f^ zlg(sNK)rR(c8L_tv_Y50k_`HfKmUFT2uO-+M#UvpXNHmt!4f;FUCNKrT)IEaw& zS`Mg3?;uGC7(+)b3g-dA-lCukaEL_|@JX~LA?bWI5%+Neti#qKO~jlpI>8byppqbx}dT4F);?!wlvaB{+25_~PS5_pLWv1fXE zgp7bl%o9g7T+_9E4Gr=F89rdm`^fDA8ZH@({O->$aR%`x^x(?ct=e;jV-qeyct z8pBd@t(1BHhmclc2;}dhlx9?sH$fov!Pj9S*_G*;Bj{=)nR%2bOvMp`VF#V|K>-}$ zH?C7$gcRMN;aNi`N3xm+lCK9bJcI!bVt6`hEn(Hl(;+$ft1nrH)$nmu$XzS5bannc zW*W3YXJFFD#T-0U-E8{Nvh*`UsP z$yzg`?6E}=d?ClzTUj?yVY#o4+_n9Gg9nHT^Q>^s@E$&mhNM>;l_w%H>w&8pyd3s1 z+M%4vW$`|SIlE8=W+85tadJB(4p;TlZiFba=O8mdcLW@$>kqVDm*5{4rCOGj{9Esx3m3kwn4My*B- z;BwjsZq`-n7~34()LLFIQ6hK?ds<|($)Jr`+dH)4JzQLpEwSJk#pOoKJiAnxzwCp| ztV^LmWBYWW_;*LDA#V_PcLaFRhvRPL!u6aSA??VnGKAdQ=Yj^0`+0Q&(!xs<#N(ro zp5_36@mri3gb)_asjJ~O+wc&=bbo{c12G(Qp`J^aK$lJUq^PIbBV@tKHuFJLOw{kI zii!+JdaE;_MqJ+_s77AkiauY9#;a_nKWdCDt^zx0TykEL(LrN98o|=s*Jaj5nqT1$ zKUUh9Zk5a^Ky}(GK9IsCXB~tZ?}=H)ECdP`&%NUA`?3$dwqMZ65&%cvY!!y%>KiXI zkb@Q26wNwlflbleBQ+w6->#gqBG3yUF!s7hfyraxw({D%@x15AttbJA6TPzG{gp+_ z#tUww3`?j%~=5{!5yAqO}Id)Dx{RV5XjE)&Z-5 zzgl`Lw)9q0npl{nC%mXF#L`=haJ^c3D^lFAmfkW+DzhxT{43W~TYfrBfg6B{7S)-??o17`?t`jum~0G4H>GA*O%gXTP1;l!iLEX|%VqEVAbRug$AQXlZu#^FCd zXLyCtT7U>)Qn^jpwTt7(6bmLrM-((r*?%rbNLGYVMf?f?EUt4&SgS8CvZnoD*Mj5M zF}Q1GTG);y8}`VwASN9bKwH&ajh2RlEIs~$;gMVY%!r$B^>?MY_scB(m|sz#kzk(A|NX>Qz>1GtUL;*#2Y2?$}}U-c9rC%?MS(5`ZDv}SHpZ(K^*^WuvNAR z*|ri4m!NkPe9(BIgO3SlLA{lAB_OEDIa69SVL1k>jR`J(makXuG2Gdf5WT31!`XAh zaUmU!SY~UqxMN%Pn7%|_C+3($>?DcoXVRAOBpI&WMHcyyF}I0oJ@~jS+1cHZ64U)1Ktj1J6pla^vo0Fn#Rz(O*fO;O++tk}fC61E~dH6@BLSUK0PQJE1&*ybx?`&t=~zcSu-)+JM6k(^p3kjQvUS6l)V9C4~u zEA+Ww_Pr7#0jbjk3^Z?oOZe$*4oC$JE=Z~|av>_03z!Z!0Jz}wWJeYSYodZqqWQ!F zWRh}$vSl5d?2{H2b;Ul4qD(b@!|B?4l=a_qfps-gxrc;1xS%!uty-!G6GdB6NjL{T z=%5~{$lj3XVz5c1A0twd{2fxlk5(nUG&fF}wHxylHBMAfmzoBlQ=E!-ZZ&1dijxp? z>7c?uuMJ5;%p+B<8#mpBbIL``qfc`#xrjL;3YNKP-HHhLD6=$9 z)-}9=_J7+aZB89ETLF1V(j4PgM#^l*D&KDVj20x+#0M01xWd&E1(^28M;9>fkq;Ow zT+IiIGxL#e3e%)M@<3cNy~kx1%Qrt|VR@Fm5_ZFOLP&bPSWfzG$MAOU^K@F{toE+rQ%pe4@*Ys-KLA{Qud z;wTq1P;7(0`x0CsFf|kx=`PcE$#$*het#hvpLdcjKS^CA1^M~X5&v}!4{ZPzsxA3B zlEz^O1s<785lqA=Br%MvadX-2vD&dlAqn?DV2Kv-A6VaQek`(0b zN#LY9zKj7-QXL;GP*xouD8lQKFlgYsI?iAxII*tErC?y0buUUrgaHE?WPG5Y8AqH7 z1fFul7Xb&RMDS5JQ6o9&Y>GQafhD)_!2%{D@d2Y-BqSS&cUjPl*H7S)h!{y;%8S(a zw@Rr>GCvqeBIF5uE={BYN)zF0=al5EqwdGQm}w%}9d!T`MEp8h!a|4ZkOYy{lsa5f zOv^%w^CRY@!yici&ddm6oGZb8{n~O_;=+g#38WDeZ_Z-^QsYjtPc*_s86L zWtMi!x~Ca52%9P?oi@Nr7Iq~|5VUkx7HNc+l1vN9xBOIbQO&L}F21dbg2ZfR8Un;+ z|5VEiNI8|V;NlD{r-#qOrESMWK|@AQ*dhhqn&6u-SS?r{Skcc04fCXFC3(9fT@SIX z?yGCkSxu1*N!3S|IYyFh_K-$!LVb)p>E@-F`m_gI-!gT{6AcMHVok2Mfq$mw#{EjbsBmwI~JB{)E?(kf74OJ=rjYu9v!-gm)b1o?sS=Kb5>&%VzC zxp+oWL!PCNq0UeTvZ@O0KMj_9qT50J6A6SbN zkRnTlzmI~PCeb*;EN|i1VKZ|L-Wypsp4iMUvK$gq6%u`4NsJU~6erORDYg&M`Wd)= zh`vQ&fU75nSFo@)Vxo}*ZBe3;)8!s26&OEIc~0SL1F6mslwr4;n;A|TQ(wHIc>(QF zV@_U*!O4|(m||N>G=FZzQ_aG#(3?q$@+ShZBf%`lC8O08Ye=OI1+SCn!Bkt4ZQIpJ z{w*Nj8^ey2lg)RTjXeio&io<82cKhf`%2glca+a~6%yLs%D-@pe{ncEBZ(26UU4y- zb-^mK1Ibm&1G#vaTQr()$aHAN>BT(77!#>t2G6OK6F#7)ugh&}_(&k7)nNh27*6%|N-xDzM@v&6mg@iRPU#5UBo%=&A5y6aWnA5LsggUfSV< zxH2ntvy*%5ra=euLpROo2af7h{%Lm16cVz%Cz4KhrBr83gtc#y%>2oQY%8kz>CM%X z-ZeFf*p^{Ge-S%9|NPs3rj*EP1@Pho6x&(r0A$d+T`zDc7A~f>S%%k75y&rCr4Z4x z8C)JIGLGr0*ye&}H&&x$8F+pnic5Q=~jF&1F?)eqb6B5%|FLZa>(o&d1W=Vhdme5W&v5 zSbxV)4*=(jz?KDzHwABdRINZ#MOKp#yM|53fgz{J4#`n@uq|GS?vJHK4>L1HQTv<z+T7};9FJK&917k>nvmnGS0Th7Mg6^ zrlQKQTjqQqfrW~NQDnrR{35Pc`Q&C)tBzjW$q6LB8m83n4 zuQc;jP&i#N4TBZ~@Ja}|Bgrx2jM*77cuiNnNeC8^uvz!2D+vR4EpRhg4KIa3``z^s zs30|;)gfL?#BtFQN0@87)*4=x8aYy353U-H1}8Fk*)d0--mI_FC;Yfr%lp(d9mmx1OVt|v?8VSp-iINQ zd&t5cTQm&UH%*6p?9?df1J|J+eOP!aAwgSzw%WBI%;r(xaX9#QDW^%L&@4F(3pds( zK|D4dQ_>W3g@I9UShPxn;(7WTb(+Q)kUCwohvo#0kp;<95g5v4VfZR!T;Oe4;v^aN8jck zmuEnO2F+H2qMv>4F=c-UBE_0!PHah$HO0lo77ZEqC3;)AN6O2Sj3QZ^DJw9tOa<9C zDITyj8X?V;WV~Bc4n%&{8!RuJg{$agwW(@NysAK z%QpxM8T_P%Yj=aRnBi*82x*$b<-ZGRn!}nBTG}c+vEX^-2_?rYXsWlMGtV3@Tihmi zOUkxmS?ZZ(<;td7uCL{UXOJs)c}j3vjp%g(Iu#IJDjMqO3arm07MP33=yyRj1{hhrnX&b<#~O6k~tp3CJ;JacY0%RpVLM0dp6Ho09P0 z^(yvsh-V{wPcJZTG-ILIy-~uIADOYqMyJUWT4rN%b#{DneROs@hftXjab^v+3W;U1 zuIY82%$IdPuFfy_w&qi|L~u~Jm$nKQlD#s#+CDi=@7CA7#B&-4XT|#F`IH899YlDU z9oH^&;TTx5sc7u{6W*0q7-8BCpoW3M(StX(63##fa#=-A@;v!wlbhpNxcK#nm2i2kDdca&~;oMU#+gUTMUa|FWP+X$GI7Sbqn?0m`kgyaa2yQ|L z50%`=7IAD8l8dCic_Y0w4ed#iM4Nv4e>AvtAzuV~zd&nZ&npbffdNRFx_$#&4F1lr%LwH$ruy^EWp1% zqnnc-=Z9NYdslO)mD9P=(QH{rlwy-z_qzAwL-x0w!>!YU%a_jo$ zvM?guSkF;gU7Z~t?fwYDow-Uj$>fF5-E8DZ_s!-0)=qXoKv6cTS9v3h_VTk-qWf2O zlZj3s-zn?dr7fRNX>L65T{s5%e|-0f3}K*FQn#Zd4B9ogxd|VZ&?IXvV5w?}aX|!Lpyi_u z0Env$71(a&zsMIJaiRLiqH$YhsbQjUS6F1CL4C^z?`u&Hr|DP5XVyZNV+Ia)4DOp1 zz_gMR^VLmjtu@;cEp_z}{As4Ba#S^uC3|y%0_}8j-jA!_9-fo%g+-WIjYx;Ct_rHx z!38nJSt1v_E^;Oa831q#cYAYF^jw626+IU;SPl~xDAfVE%^Y`d(#3hW!~Kfsh7{9wW&i{*qS}*&v77t{r&i@n`a}=p;CSU-G7E zOVtn0m8%umMx-c7xT?lb9wQn;uw@<1mm|T`@2JQwNw-^J}z`2_Q=aZvv5YF3<t|!g}Dag2^V^i!Ldd2Qb)K3KuAdmBIz6 z=YozIxL}P;i}ap>6yV|$4%AaYVKlDVC`7l2qD)+cHpN0DJ_F>o99}j z0tS-&fBgCPbHQ5-=op&|67c#ur&T4oj4I>~1s@w9$s;!C5QEQ>6Sl($vl;uAObZr^ zf(JS>OQfP&GU9@55{|@{S=Pxmmvs_R!~d^Un15%r zCz0#E-5V7enMy?XuFt%U6OcI-=@b!fuJdScb2r|^#^j)Qa<=?eV8(P5rTjMbl41Ex zZ|2h2&3I`f6#sNpkGoXsJdNt=4g=@OSQ-qhd?gB_~Op6Hf*BtBgdWv7Cadg!WUkN2x=InMsQJwm07k1F(I<_ zVq$s0baRLu5xl5i^G`Kg)3rTTz+51P161=qa{E7qO9msq`?EkiA^eG6(!W)E&XBy} zzu;lssCcPz{tE%-)8AX`_25i|0HJ??ysG`xdR2i5ndrcoiM z-pc}Br+O5a1zf9m%6OUu{Gt!rRQPF|zv~M;Z6j%II4xvt28+JkTr zWh0_39B~sjvP@_Z$gmcK1#dtRR4&qhjWzf*Ng|&$Tlxe>E@eYhjD5+F3s($6R!5n& zS1>P`tQK>inoTR&Yu*+AUdXcYCXK${&G!xUTt7a}@L(6V~DtFbY6+gExkol}a zuhGkmhOYe8O;j6w2vilGe&V9eC{ER$t$|Imd`S3(XjorP zp4D7QN>C6ijeI_vp9w|>udt#XaKH&!UfD9W`T_NZE)+8^(+;|jtF&-Uuo})X-n{<3 zn4SVLGVi&3o7J( zb@-N9+KR7PO2o0+l!|!$6bRu`O8#0^z;;E}M`s>lrP&({^V~Ac{>*c_vazLMCKTPZlCsh+}k!{DwNMcC%iqk!!eJG{mIunhHJb(@fW^T~03xitnz>-J9 z@W|`+=6aJg?pOK(mK!{MlJZEdoZxrfND65P-N6gb3mf7`=+Vla_n=0pC31;pgZ{Vs zO!)*Oa%vjL`_wZPyv9|`x;h!xkafI*h@f`OM~QspJ*J$F4+sIOvQJWIiGax)lqCO~ zV?38O*{}?IL;mz;=s2T|a@kgfNSE!BIYI{h4I5Cp?BI{qpzMpAu9a(*N~=sxPCYSa z1LFlTGt{o^$dYTR3q$FuVwtwtcS?$>mrZhFgUS=r>fv#!75bN-^Mgmf8pC!yzC^6~3{l?LDOsWuw3>fB?>zI9&%E9xv{s$_*<+%ki``KHao(`r6Pq&QnbYr1= z%s$rMU0I=B3)K68T({Nj-VG;eOO*YoHoy^w)a3QEE3w(=V~H zve7EF@D~$OGzb4(A-@jkPPS2Pma63AuQj}hp~sE2db7RWz-#d1Shdxzs;SP?2K`e* zA9dSYBeS(e@!RmG?D<==d16K&506U34+NK}@2L?L`HN>z`9B5xSi`(le_^STwP)5W zd0;Krwl>H%IR6x>%C9O*2MK-73zC@~^dEazv_8GL*|T@Iw=cG~ z2U|y5_POuW9W20UtM0@ zw0BRoxA*_`UmmwUb}B!WN&o2f^G&OLu{F?IcV8-3l^yf&VEg|1@yqe|gU9Ce!EpSu zc~(29TwUItn!n2Jb;IpUl*jx1lY`Si>%qNvIBs2T(E%%V^RA^@&9T$bcB`K!+q*}T zvy;zX4o8RD$ZB=I^m~UtpB}GtOTFsf{d#|MW!#?MwYS{<>5<&~(mL7ueDc`Y8tsle@6Ip#-wx!-qx$n&egCs^FdiM+yLYO7BHvc-o@#xocG5WCJ~6EBO}Bi} zX=vqsd3d5$A1*x%zaG`>GpBX)dC+_RUELk@`^W3(eqYW;rwOtZ1q-5LHmcx?1L z2baBWt$BE2-whwMoykE{vyLA+UG@9@RjyBE9LIF zUY|_vPAiYq^+C7M-0EH6pGM7}WqW_Sc3s)OXkS*0>(jlj^`9-X(?=J-EVHV5vwXW% zZS3psFV^L%y#9WB?3R1w-buIi`L5}z=iT8!`Q9-a%EQ4;8Cms_GM?-#<1-!b=wi3L ze|Y+!4feLScJ_A3`XE1kKm7dbxOVf@tz3@po|=vB?UQ|D*Ul=xwl2o%`Qz@WJ3c+o zhT7BD2Y2xK_UOySS8u?b%KG4JeE0L_n|*S9>fW~-ox5K>XRkN8*st}}pY3w9Z#}&? z%9FwFp!@ma_NS(3`^R^8Uk-kmUwdELo$~wgu6jKfeW3$>F)kkl2ir2bzPNAy>Yp2} z`eE(!;A>}hyRtpF-Q7O04r(Xn`%!OrvyTjf_HK^Vo$kcE_*VHc-W#_c%(JTU)9gPC zZ|Q)&Z`JP4yY1fP>CSaZayC9sB$DlfC;BOaE#=d})5K>Yd($UG1Lk zYTs<*dvo+~*cmjw-yENxU+i?`ohv%vp5avbmHp=EaqpUJn?cMHOUi2^e>jO{QJlx4gzrOyu zF3UFu?y-A(c=gmeKl}FiLVf>q+Cazkmi*dB-_JF@BR{-<`u6=> zwQXO1`G$?8y&IPfcx&p)*O5NnHQ(P{KhzCvWPFjoS^B-)bw2O^I=rYn9HHC)&)%0U zDUNIj{tA|D){|*egb+JfmT4x|2!ddbfQYthX_62i5R#C@7EiZtf5Oa5e?ZS-^D+-@ zGxI#3(m!y2VcaD_un0*m7an9)W?5yj$Kd-c3mZPWm zLz1UBnc*{~Tsb9HEDUKz=#*ccl8sn&)bEv7?dQa+&ZNpr;%%0d@)X$Q#XPwbsK?rQ zJ}+jZc-P{TB>aS#LS}Ei(_eczh^IEM{g;JMq4n-PRqN`Ht5T_-=rlLQ`qM<8*X#ZG z{B=DaY5Brv)*g?ZYZfo3rnBcoeJ$2wajKXo&c*dzE;=0h= zQW%bUd5dhyPq|6yp;uV* zC>PgYU7sq}kHEl8@eRJBTCMjrG+%s*3`I$TZiykZEj7h-Q4Bvp8y4C!&_Weua8L&( z^>5~X<{9SKf$75!OuPL7Pth^c&k?Z<&$aE>f#cdI5o;9lYyuB2?0S-;EVmVPd@y$@N$w*#1QYT(2X<@rBR}!I_PHG&w*ImBeUqa2P5{ zx%vIWZtZ4(1G4?^7C(5#w{AGBOO5eH9Sbu2M1?+cI+NSVyzRrM7dg9%maZ4gIeX2} z1@w0H;9BiTdhebJ#`kaj2{464?kL^=`fGBcJlU?9kdjfwH#eV&dew|d;in%1&J4m9ma8e75{6e-dJc7-S@BaL;NSGWLG zG#!WME?RIRPYjw_P45d~sR3=jeS$)_6Y(ZZkl%Gx;Kd=q4Mi;;hACaD|L=blT)+hp zFE@@}0zf5hWf8*!M2sEGF2NCf!Rfpvss<8O;>VgFb0PYH53{1!QHNxY31evZGZPNb zJOFFLz>pJp#KLA+0Fe)8B=-{wmaa(R0Etbp{FdN*)hc`6~?9_w*p8ZExCy-_Dl@(-Ji6 z(?dabIbWyW`zD85b zzz}@g+s;(0okmZcxHL{c1UnNuSlTD|(T6TNOU1%Z{-haCh2xB;v}49o`~n$IvGi^H zFySdMkpsp^DK$Wl^6@X2ZKTAs)>R z)k*fANme#bWhK?Gwmb1kVXUXi{muex%5s&SCar|0j;O|1B|qxP(^xg1jo0X?zRrm+ z)e7#f<)P7Q|E#|Gar_EvQEQT1L$UX|&IYKWuPo}PZAo|;X59v2_V6ZS5tKh2_Y zbQN7T$BllfJY`=KkIfPzuEd9KI!{>{RCh*q@>*dRok6BEqSu4+;LM^mYu!da zMm1hL)p>lH$PXTJS^Y7tHaNDF0Y*l9os%A-n$%|>S})B}KmL%VqIV4@6|W{OY14hI zXC8{#X=kOa1}eoY^x88Utu$eY(@lzQHzH7S?LuJpZ}o5xa_VJZv*nVT6i z`E1L=Fk2JgCxsTELk0>5$K;a7Nvzy7`CZ7}Q}@IBPJR8dm`|UcRkcw{-gis$d(9j$ zpG>LAOut>3^Rf6d7i|h$sjG3ctfr~w_($^=4Up&{Cr5oRDd+ znK3)5rnC30hvB4Xaf+&Kq7QO=K~<;oW`h>1Z(^x6Pd?|0mB!+=GtLa|RK3YeN;4zV ze47FRvP!d^*IY_w5}R_b^IET}9cnYCH;++Er{qS$U@FKjO`}Y|EOWzIHaeGSDV>-P zVr3)#)X?IuMlw2j870?=>>Jf6y*1SCBi$TLW*w%IA4nUCdw3qdwq$d_N~V^nccS&t zq@82R(_U7q=A*6s#sA3@o(?2cNC{8OuvA_a5+l!qCny`QG~wyjIq%mw&*7X$EKw`S z{Q9*r%aRr-JV=!;5meAq%^G@u|+=MLL6pqjwkEu6Nm) zLp$MI&J>)OO=<8i?{o=|B|YBHlXbm0_~Wu^oTC=-4+ni{JEh5M=!?+bX?7gScs4VI zniv-ZX~cv+hnR*dOz1<8sW?ZZ=s^`epjlyl*CR|E50&B?x!O+}fP76TE*cVIcZf^nc#CI zSr8;$T%c6)`e_!@%n&BCjy};pnLXvESn>MaJJ?jeGAYb;4ZBenqQR23Ye0n8i3JFF z0Uq4H+>&A~v;;q_TO}~Wf*3Fq_dy7W%ve6sQ>Sg9TjMjs;@>{G@?h8nX+z+_z;&x; zEQ+fPqs<)R{V^6N(6JaPPzFi|Vl1&mrwGnUoCzo%cPwBMtBuGRR>l}9WCCv)$!QvP zz7T-TLk8TL5l=+8bGkX@CR_1h-~PyUV*vMAGMU+b;KY5FPR6%-Fqr!+>>|KunlK*Q z)fxTvDUmY41}^1xwgiDY&11SEfBW|{u-tSaOg3U*Lf3X) z`T`tct+GGI5N^_>mdDL;hJrEdtmrU2rQed82}25yA~iC$THP+t z?&@JWcd-vqxAlz6KG>IT$RP*~6|OcbNt@r?%wq1yT=5I^`;9UFC$k>Zk05oLd;s_h z!bXQ(t^0JN>GWQCr9}GZj{L0oX8vw#YSU(^VkoM?*sxE6ZQ=%^latWr(^wZ@ddS%~ zby__a{{-fZ@t&CYNiepAnH%A|Jp3Pj{V&}>w!$UmioY+%SYD!eh4)^doQFuS<5uMz zO1A65(Uyx>yw6DX8R6w~9xQ$vLv~HMufeYDJ~^GpR~Z>SZKD~(=avbfvw(KzmH#i5Y6E;P{<4rvUL6b@kT`m_y>`tgE)f$3h$Dzrqu>_-9__9svK&(4 zA8{OE9IU3C^m4v3EYZrfT>?AKYsl|6fjkHwAQi89qd$nF#~W49BvGD%ajY7f-#-1| z6lFSNwP`YC)>0dbx}j*WDaa@1t>qO-(YA=dMg--uCwkvIrCO=bEfs$>p1RGa?g3uZ z9%85CzksqOQr%bAx{-yH_}NN+)xSho!wksW9oe@Ln!95jZ2Pr6 zOhxR~iHN%SBYt6hwL}t@7z~f>Ho^lIr1S}9i(m=;oDdWi_yI4FnVqX%vodIcsVd>|ULY`uIfQ{^_sA6DU{XA9SEqHBmNx@PZ_{$xVA80w{aO&Pjlqy$84oR9!u5 z*MunCe`Hi`=Dq}~N0593M#zg9CuoN>Ou5O#u&cA9R{XG6??7OttWP1{r;-rzAPVaS zk3_(z@kz3JhAv0~j~o#h6q=Wa40UQ~h9%a#Q0+?0R8Ac*5OSbn;JJxNM?So?QDP&lvHx(SPP!0 zVt3EjE<$L=|DJCdVbL$r5(8>xcVtaf?S`hyvq;nXm{WwmL&Q~2($$Pd^74GxK`!9z z@Gc#2H~#3#;mUTtt{7K+vu}*iVkv(GZycaE-l$_FL+UaemE73ts)NHcVZIQx>kcbH zi*hH89lKPJYRO;69X}i46?rI$yb)Q6#@M{CoC=$jq79DWxccW4Y1pjcLQxmZ_I=&I zx87}}+v8Er8|9boJK|!6drst6y=`lc@EU}i?h$&0LknqdOz|qNWBVwP4}UbIi1*!3 zCd?s%1zZGj^B;GH2KYSztx#z=2!^y{P|7ALxoA4MYqNk<=LlRN7<3U1C zCkP4(*)xR&4f>oAV4d{Ayrer8Zy9-hfpToe113u-!OM6%hUAUFrFxwlb$AH5P-kXK zvRh)4L(50PgXN()!=?OT1aaT6`mDQXpi6*5>!g4M3hDX?3zBW!Bc0kY&X`a-lA0Qt zn#Ka9FL+)+jqt>R2#xR0$Cb=32oI$aG!`HYu_`kbFr;KRJU+W>xroKlMCD?{iWC-6f#EbmIql4DWCUQpMa(Am2mqYNaYpgXk6|D!ERfYs!k@ILM_@_E2<-ZTvY*bo2{sO{qM4SlQX)1ZMc_nr0lH%hKzQ6H z!bYsi0@L9M&S>WB0X}A4hl!)UpTcnfi*obvgx&q^o%?nkC&+&ejvDjREzh3u8bZ{q zU+gdKF^Btz&!cZVwkpu5s6kmihP?H^bzwIRJKZ`uXIISH-@J^~8SHrV(00&e1rWok zNf)*SEB?XQah^nE$7T-U1(_i8Zraiw>2;;S(BSsBG9h?HsgC(vA!|w6YU+WvT6K zFKuN93W~Kczl4bt)YkB0I0YCSVNot&fCXNZtsxTbYWN8JL?84r8}}E4ox7mLkB+z{ z0Iz_aFH+*}2xITqwBt}}%1vsA-Iwg}{BS3*(0jiXetsqTk>BLF_a&?VqDSh&D$-VF ztl6C#47r7QaIFXDek$~R4d|sczu&kS69I7c0n$yHgfl7staOZsX;3-b2KXZaAogM&BO%h;q}qmv7ycveQ|w_&$bo3Jab38Oq!& zWPbd|FLQGVSI$Ms+d(X)tLnHv&av4R{n{3MF(=8YyxLlXyXLmb@t!QSlF zJ((E|tD6nl%^RPHeH9adhHQibCpha?0X_j^POPVd!Hs3aJ2^B-CM$Rujs7Z1pBqo}! zBY+U9uDd)+&LeKKjGP8O^9ayR(0z1}3->F*&DUZh0VJB>_T8~j6cE<$8Ey!)cY%U0 z&gdaKj)Ea&!0jgmieQBoV@0fP4Z5X`w_h5uMcgH4k^+d-o)T{rNdZDGe~AUnPMjqL zZZAI<0VH1K74vrltIF($NqFVg?!h>pHj9w{nu&$o0q}iocD_6NM)X(q>kd6S{WE00 zns-xwl zV@OFOh!(<2n)pytj!CbchMc8L8bieBbJFM`-476_KIHUi(#vYq z$YuJ4ljs+*6Y$`L+({0cQ3pnh4qg(QrpC&;s%XT{DY`gYNGzh^ ziv#hDk4`}_@0^E#a??udK!D2*4MBs3sfJ=-o=0G7b9$XJB9{3dQMAa3!F(I(!ni~@ z6VXhHov{X5$PQLXO_o>%RHQgPEJ&h^cJ#-qkBfHn$L!sL)XEsIH3zx$!7ABX4yO z^xP;wL2hd>2rNI27~)K@!sl%@Wq*rwr{;;TsnQW}2HMm=NO;n6UU{#}ll?)?oz+k- zKf-RU`%WC5r&!nS#%LXkvsRm8=N`s1ZS^hw&?d&27+z~&a!rggv9KH5T)K&IoHqS7 zyX~jpQU|;p3+|i>CIQc&an6o29Wixw_NPB(le{4NS$tSQqQ`;)yLQ*oPttObVE;=@ z*U|;7ysf_}^6m&auDW$_Q|5y0$tB!a6NEW`J2+<}-5z{Qxv9g;Hw|;TbfaU|4adP0 zS08ulMm%jIi*oCB!R8NMw{CxwtciUWqJQQHyJgrZa|F2*0~VqA5VV5f*_>P^Ejt`IDV)#=ZWKoR)3r{ zdV$KnlSUG~VmxUKuX~dN)uktmWPnokH$gdBa@PlE_TB1pn37Emax6}o+&PM zv(%2;Rvd{GyeN1SpCVoine)fLk_>i`u>7b&thO+k2_5qO1>xCZfD||pg+|iYD*RYf zoF`M`I~6Cj2;_2PXjm3dN?iz;gaAydwF{Y7hdq69O}} zk=^?P8fPQGqH;um)uN%P2E=6eL9Sa_=+82x+%!wr-8>Qdzn@VY=BM^LTx<7tYa?8? z^Ji@V?`aHvbm#X>EbNAhsP@p#1VVO|1#^xCGkHU3;c!x{{Hz1cw81*IRCF0JOeDP* zCR}LeXMYiJh!@^iu*fx2In4h-DRYn00t6U)q?$(UtUZ#9fN1aG0YfqPXgtp?V$2NQ z8Y1?E#e+t!)0-_O_l(qSa+clHPDAmy&b|(Rl19@KUZ=4fYs7Z!3QZub=B(^JkX_ zy+qhL3Mr;5Pa2nOwkzjR*e-F7v-S~avO_LR8fB@<4815^- zSl!Flg^#WvrAZRNh-Y;H>5vkF?DfKluxB2LM{GL3GR%~PM9A~*7bR6w1`Gbmh<(P& zC_$wJFxu)26b>YT7GmD+>Gf%WZ>JnuN*oPTSb;2;p_Lp(XU@vIzSmx?%uj09QGSo4f$20ljida~$#iw$so z&^NTjId#bz){Xx{y*>B=<#yh`e0MsB){W+o-TZXBm!Www_re&EX~%VBbaM#qr#rHK zq^`^3KhF$FOmKULf0ZuAi(u!y{BFHq?Wd0r_2EujA&<8~~XM7Bb5dA@a zZ1>*0BA^4s2d)cF_oDHZxxWyP>=A%#K2 zP^?%Plk&kgn)&vii6|`A59YLhO-7B#N;D4r$dsGm6Lv2t)GDt|cFke1_WmNnsaT)7 zZA0+b4wBAP4Dy5FfCfv{l`6`_=EfrR62yb0FF4(-#z4?d9N?-IGgNPv1x3yuxR4DI zX&dp%|HD&|Ft{Z)J*0yHraN2!0v#j+@Dh{hViZxL=`#U+`sOS~fM zhQ^9O6~P2Ov$Z>*r3gPZb8$FUVrAZJ={|!$GUHq#pPxlp8ENbw!U7}tkcNIK_V8sNifE-2a63OZ5mc&c{~=&d?5xc*wsz=A>%<^isXX$F~rK5Io~*z zsq?-~*dN2~xQudjgtd;JSz>|jCsCpooYrwbALZt$fj*hwo*MfbbM)hxc)DM7fj63( z10Zv_Q3raYR^L9+@p#fIS_EFFvfG}r>gbV$4;za5?Nc^u{$kt3$a=>qhM~;BLv-AH zZ#jC>)|;`w4g?LnO~X#pUx$ifz_+=$IrY)PFyGp+ctwK6a_tSs#J8RyYX;T|Z~r~J z(s&)MPgfevCl-%wY04YZu-glx1}Xa?o`cIbNEGkepG-JsW{JBxRHTZLSjC4(!4hR% zkaZC@8~AdI02IsF(L)n#;oS4>4G{cR55Jg(zTP>4FepC0&WsfqK=y9L5MxZaOIJPKpN0>Gr?dxk2RtA669| z8VRwjrM&&AgKElIhJ>k{_HLOhS-ztxxTxJ+8^$ z*~~aaGHn$Gi1pnEd;0-ba8JeA16lWcD!hI)o73;_TmzsKO>$zExB!0xOo2ae?z57{z6@7TU{=AQ5Zh|Xp3H7Ht<%Qkn%|Qv7Eqd*(jGOcF z*h+K3?8*3ORZ_hK2m0XaBlgPJ*{T76q3afB*51een|}rlyCc&H11G&K4~q#hHerWm zU~ncYZd3pgFw0_QHVQgeP8jU+pZ%|M2&r>{gc6X*fBo+s1iAlfx6@^CmT(NcGrs>P z7htEV=A?AeDIB-c=Nat%42#UsaXZ#52sCnp@wb1!R{HfLrvCoV|8@Y3auZZxH{o(Q zWJ$Ir9&gmKAj410V^=1(^$4Awy0*gZ$Om{%*ab>D^_FO1Y}1)j(n(R`zyI}rT#8bT z&+)({b+qcwo64TpM-lkO-Yl;%(b>rpOZoyL<6r)d|EXi8-us;-ytxmHl6+9Dmn!u! z2#-93ABTpUiVAxX+*tRR{Oyc}4@;{4*+JOT9uWxM;$197D8_JTfR}-JpT_^c5HHz)Pmtz;b zzrdHIE&SglBT!&td*%+ZO;(zkq73&|X2ySIBp^#=)({F{U4dXVKP-$DkryIupr}N^ zxZgglRNb81Kx1K0I(VsmWo3SBb#^nlraFbM^1D~H-7C0upCYbB9VZlqB&sqjZdrr&fy#~q z>tXPV#&D<$;GmhwX3{Bm+}!_k`_>xfV9@82K{XZ}MMXrU6BRr-9X`iMJ9r^ zO8|C^$m|RdDWqpkSx4YU*3bC*vI1uy@?{PD1X39L)tr<4NeyhK4%LFJe`UXY8XJcC zm7;WhEX-K_R#62Rdl1m zk=GPm85*~|GNTljARKM~xheUvxcc9H(y|YGY?v zdB%Xi^ScKa^w9dSG#LD3f91{HvG)YL;()G!=O+ycMI9V9Gy%xYd)X4a#`cA_eZlQM zF{FZGN(D#=vcdo@G!#u@cpuk(V-hiSz$N?dEf%#Tv5D|baZo$;VrrT)kl`H5Pt6?` zc`%#hR~<5oNi|NQ97>^m(GyX?y21~CtO1qBe&{qE2kO-F^8SPUp%IS(&7wn<3?!{B zHot-chndj$JJhdVW4}Wpy$e-A$b|LRn?x#;P0;D=?@Lh^IZ+ag%~$iKB>X`dv14HobNB*c;`F&`COCd$opbH4wySXiR$6=mG{s8q3v=cNH(S;96{^C+ zUjcP&i2T_>wqL&w0ayL^<&CxY=7z%qI^5UMa6JHo_3hJBNiXK}Ehax=?iujszEy~i z-oy?y0&g0nJovi{KkvorOHOV};Q!(CowR!G*9SFuY;e_1yY-YQKIZe~fBc6v^Ls8f z;a9`^UiB%RX)z-y{qhj�tt?B|q)1A8N0ab*ft#FDI!+yb|lQdv)cF%4Fq5ZpE*s z<;O~Wl%6kI^IE#im;=W2)Js~_QcEKz73u0KU%X#69;**`>Yb!&>D)yH*?QHzvPGzV-*T}{!({kT*viPDU3#M^_qF)5_h z#d1z9EV`SQd_KjAX|9#jH%c`z%Jo{Y4NzaTw^8b0Q0Pk!waJq2WpfF0z|K=+-e1XY zsiHQL?~H19-OyXZ(!+f>Q=An$PX%_p%CzTl78o+G`mFt!6XMUarjV~E7xR~8*XU&? zOK~#F)v1j+U{&u6d~F_^M|;KeEDM&uNKvat=5(`|B-Od2Xt-I`7Tl~F{Jfv2O5EM! zvL;t0b3pE{F`Yh^=c_m7alD8YmoLrsuwP+UYjM&Qqmx)=sov?u7jgE;_F^xa_)v>K zCY$+3S>v8Ks+CJh)Q}oKiuAl~VfcI>*BeIqsX7`&U&Z2RIILxbX;~_FxaD(9QIaLD zFn+77lfzu4J>cT0yGQ+HJeLZqN=njd^BgC>PS?GLIDat*jK^QZuExfvFOLgaqK#HD z5u>=~EU{X>)MINpJK~ZlX3zp(si_I2m-F#%tlY}9V{*4%dQMEzN^U5$-ZX_4tzGUh zbh12)wz4eEW~2G#f*MeRM=oA{NiD=CH?B}qLr(JZ$`d7M36)>23g_0@9PqxCe;ZGu zgBep|m_n%t`2&9WdRKj`#h*4@ti62Mq>@~3qd)1DM(mAgEjvx4NsCb~MaR`n{9!gv zjh;7!sX1V|!x+Q+q82aFrA)E(#;MI{vsYin#fRj52b`OV^=LMi5wi?CGO3C+=<@J)Q-!ZJpJ>SJup)sb77+;$`)!ts(&1{pFSJ9>3Sw7Tj zu{-fac*&RZ*|z*>4p@v=mvmlK<=JAR(yi`uTo_Mdjo~2mGKv<;86l%3S)c@qWw6Q7 zXiqK{_#T_-JwNyLXG2JoI#SMP?$2{NTE6w{sfomq;gh7FlW6S4UZ?GJ$0BJQTidp4boz-Kh%rF&(fy~W}nfo_O zI7sZ>5PniKxmv8-vb3 zoz3`ZK0mNHrJsL{r#E$aB1#*M+vL z6x~it_3m>|Dsge6tBB1a)r{w#x-Fg(?~+f^AtSZ^^^w z72B!bOL>|Zsl|Awy~*iKQ92N`c}9#e2OCghi;Ze63g0B*+UFnPOKX?SSNng;MiB_T z*lRBp>(lKNUwMA(cg&3eJ6kH$TFeu}yf6iGCreDD85>i%7x?DM8n6Xku1v6O1F29HURepGTqun7HNNYrz>9*8 zQnUd7rZ|MS-BZ5tm*p&mkv2tebFn}n=AB`|`aDxm+IZmAsd52yOeqc#n#Yv#{U+`V z$BiZe!Ep@XLQAs5;&!k{#3YM~)QSX8h?$NiVv7j-(<1=GVk@*&!~x~}TV3E4dGO_T zA6MP)Q7|W$?*yaJw=3g%1na+f=O` zr#b6YXS^ugUCJPZlbnd8)3A}FbOZOLwF63B21FDCW`VO6I8%t8A=4H)-GQ8MNT2tizwQf&l`Wi4a`SXB_up|a47v71~zCg&43pQ^0D#(1u>=Q!w>x*-%-@Wg607Ll4| zkicoiqMYwZV1#6#lRyai^#l#EWeowmMES}P8fwC|?H#Z{|37=*wxl|;EcPqJIuZ6v zFspS3X^m$^NJ!l8cW^jX=n4WM2}y{{)3G1@e7?XDe(>9Q@E4pd*!i7WhZ=6x#~Qq!;l5Jh~t<)5)NBDd6@v$ z{*||Tq#NZ?xonqo1ods>&SaFi+O%^E%g#fKQ6|C_s7((;x33KKxUQ6~I4+fh5+`=u zr+*Y7a82c>WcW}R&OQv=nH5@=eS=3J+n-Wh?|Tqx@=|{@^~&6Cr+7QSEh0jry-nlgpL3&JlIcEAkQ|PHy3Uw<(X-(l0bjnNx3% zycD0L$ZCDzz#haW#If8xfS_0v)9+7DI7FbHgaO?b(FO_%Z>JOkq%g8Cuatv=#ESP! z-5BBR`;U{DaX(tu6@5T~Z}d_5&<;HK&LPZ5dO-z=TY8dTdwo&-FoqXWdOWv2e@ZeE z%(z>pBx3>Ro~9&Y{SC#QHl)FD!`q;XYMc{bB}X}c~T=JcNl*A++iq| zeaalC4nvS9^d)r|f<1wYv$@0243YWD9rl$w>??QJSMIQT<_@Dr6K$Lga)*_obB8%A zKX;hYQ`F*i3&EML)| zU{<@yG*j3unaP}E>xH~KHa8t%saB;zhB9c0;{?s5txee#`xLU|#svy)AU?q5%E6G< zY}9VG9kn@gv;BHkn5@!HkJqyl-{}m>MtNATj>W+?>y~+;D=$&LQE{c(j#YZKyp|!> zWl1&)MBfM4TUF@nlr*xtR&LURtE_ClSHfoYN+)})a&uWCMXLgNt zy#X(9!5ml`r01Irw>WI+$gI58E9iW=yC?{sy zZK<_ZkQ`lYj+j+r-Gi91OW_nfa>@pkXIm9_vVnzQE^BpZI2DO{qfpnnS+`efSb6U|o~;!ZQl`Alc;bLEbs7?LIycu{XU=9}+3E(P><-}ODpMcY zO)QtO`;@yA6+|Gmk^pzo)e%`K_Omq<8m`L~3Eq)41sa$Qv)fy?v|_!?)pJu^uE7g~ zR_D8bZRqyAWma2ru9mB=o%D)lNpHT>5Ja+co~hEUl0#pxDn1K`!$kmVK$O4mVT2Y+ zt)xPKCFQA}JY+Nxfe*>EPLqz0j-^<(&N7a>-hj*`0w~bdKmXW=K?0J z#6=(VH3hFi)z4nBKI}HOvL}cZj_cMK* z0eVdsPt;M*t6LD29VFt!b|lc`mih|_Kd$o{4elN!U)|%seHx~@g7`QNr36&Jl@pPO z_7=lCN2~2$x#sllyWMk!@>97i!+GEXT$Z^T%h346+X?be;PJG0`%Bt@DES&$oBej0@u_|nTQxra z=Gn@P7t?aGmWCDX1$X|Yep>XcpOy;s(-L>^(-N7$EBne(`<;5qKKp4g^a*|Cr_DSO z;OS#mErR1;uG%kG?U$?e%T;?wezdOmTS3vrPAE8tNOsLb|tir zAO&HWF9d_Kte`z&Qd{ScY;VeQHENlK+(}(Vk^XLpEt%0^jJr*_K!M^(y3pb}7(TTr zJwH(R3aUETZb%ZMqB~o+;RCF3y0V>SNWq=9OIb+3s+%#JDGqXJbs}K>In$_Yit{SF zBHFoXtF!FRR^{4y#`mZ^EwR;hO(wWPx=&{+_|ONaW|o9*a4$`Bg+ilWotmYcu*-BvWLL&(tARZcSwt7Dr))~-n764uuZzEZ6=U~M9m3uLpOC6Pj1Rn2OZcl*;$yPr3`nY&m* z@>qcK)UZ-oFgVgE^MP=f&PBez$O@u+Saojzh~G z(V=m4jYE#d(5!B`*lb%Np>(m<-q|c1)I6#wL#$UMO4_PB#djIT9u1lNP*Pi^no(Ge zoAa$g5m^l$3J^-n#E7}h2K9P$HQNuoZU&g}%@-a#E~(QkK}^@KtvRmic049@dNXn0 zsREteqSQlreZ5S#e1Lp+x|SMcXEf`}Q)=q0DQec$8F42yYbaXEF7Ui07OVW+VDLgK z&+<#GgU~v@%#(u|nG>~4cRr%$d8N__`cN2Z*&aC+(T>xXSskAly^d(jdvMW)2y>ft z=Hd*KDveH#%c8bcDv}u!N0%K0VOETlsTgKUSa#+%RjdXDfRqvBWQH_K>%7uuG0Vy- z3%6?yR?Eyz&1bvw4U0)obCnybgTBtSAJUO$T4d8+y%YQPJttoTc0cQL`N){p}yc3Nge=v zCC-mNIpEu56mikF#VrXOp|*&G0(_QM0l-%x>lh%Od-nEs%Wk_s&CXNFP67M*0N?W9 z(WhBs&x8^NVzPG#fYg_mC-qtB6!c*lv z9YKJiWWfF6;$G(Y^8x^l(FWr5-K4pJ%swQ|C450R<@JdN``P7wDk5I`DV7!%rLGJ- zr7*^TydUKgf6#^ZK>qx`@CHQv6&3rm2l9s8z_)f=a-#^1C3HTfFBM+1Bjwe_y6xjz z7e(6@>DM1f-9A5&` zw--|y6-6A8O6uV~8b5~eW9Yo1^yRf9Z{BPh6xEz|(UW-#z z@zH%}o3g0Nai)e3;(-+Ywokp+Xo@1K*f^%L!o)agW=g*d_b%H zDs0+n^OX7xY6zOVU*l(iGWi`s<>f_TS& zlQleEX^2Fq;_0l(aK$POlL(V*gzCD^&sD4qL^2{``5u#@npi+EJZ>Q4)rm-i3kb8v zwahUlvL_9#Sd}9FVfylca>YMD5o@!Qbl@I@>gx69&X%W`%0F@lpS-5G!=F851;1^# zC0w?{@g{HVUmw*<^DeF2zjE^cs{b9MOZOFVUaSP~ZQUZ1WCpzzGyrEgBJ-E|@`NPGXh z?F3~L;%+-pIEaEhL}L;7J{~JXNPwQ$&-|dz;%vFP*6KZx8?x>sD4FD`)DJE*`?ksX zbHPX6?(pCL`Cm%0H2&n|y%B;xoiig6FY*aFm@TdvB0tnkG!~|z$FvnBLi;RpA2b4S zmFYyNUZQhi6$DMzyjZ-PVC>HDvT}Z^#bV|}o$xo|sz6UTR$X4(3n!{8>p;B#R`L`T zLE&40`E>Lw6t(bz_4J-6T_RS~uM$DQ5ae$>1TjyXWcOZ`5MH{3d<^v3<5jm;R1mO(3ZKNkMb)hh*?)SfdiV|$B)U399xi$yZ(rl2 zP$Knj|C;-KFGn0B73AJX?VbMq25dc5#go0tYZBiq5NCFL()z4m1wN`c!Zp#sllZ{` z$?(OiTbc;fz6S06@!hkk?Q4ddu17z0}p+yBqK?ebyh;s;e;i|Sx4eiT06?)&s8Z2Q>|1Ks0%jfoltKL*i- zo%AzG%?^F}2HN+fv_UZ};TSm7`+@lfg6s-$cURb(-PK_qe8KK&@AnBkn|_8-_8YFl zoBM=2fjLF7WZ8EUv4-wRmDf>Odq<5w|Nr#AMhxmjPQ7Oe&P~P??-ArlZm=sf6z|HC z{kL_;&vTe^LH=*q57yf^Xl17svZSsSsoz$*>S(fU|NfLJd0$mt)3zW3^JSi^b2>yK zdvDycfQgXBI~9=(SIjdGH?X|Mng@}4oZI$9_kq10)#ke(j2U;A2v@AQyF{3PJa`;3 zUVj*_c>BI&&GO@>A16uUS&kCMy2YAciEv$ErAmbFCE6f}?eak{_aAQ?9!YivWV*f$*}V?e{#9tx&ElhI$8Sq} zvt6nmTjk=>4wT4P^bf@W>3V_t z)oirmM4Mcpou7<)6nwCB{nA6DNS#Ay+OwAJDe(OMP==@33$mw8JC-WDuU)Cn?JaQK zxQ%^h9ew+F1l@0k?fiBR?3_MsySG2Hbdh~6z9l1(A@*-;$#}KzyPS={M*SnL2K!*Q zqX0P~b6|iNW`JLsx(K)79vrPP`Zigl#ud90KY8P|`23c~iLyzAO^`JsPNl{~$b2{R zqmW$_K9mTdx8R$xEXs+n#h1g0(8ZF&i7>^H!wC@GRSp9c_On=Tv$3qVXXBV-*m7x0 zoT~D#(1~}2_)fGllsBz+=5oF27<-~Ne$**;GfIIwGv#mNOo&5eXtK1JXYCUS56f8i+jYnCUO1O9 z;iJZI9e)gwcDfA+%;v0lU1egxKkfU(%W@|dHx zM=gJQ0zIUn{7EuPJqA1dk@B-dewtQCyqSFNs6nosAfRI(_wk!y`8Rpduly@$^6xJ; zKaNFE7|zC0+>?c5tR8o|c)>qTK0YwiWU5X;28(zGl()sx?!MtqgwT{N zQ`RLFm~9@`%2>-zGEA|oLy1rcvLwZ`dnFqC>@y0`25tDe&1w%yLvw z`(#rt)`^Tqi0)5C&Y2BVaAGkGuJaR|W8{JT+fQO;t_}w=pN<}fqQa>_TE_bp;tkSA z#moE%0$TyPeNHLFPaYYW`Eh-=k^^Xd@Z8a8+^%NENxtJdm!&|_A0JGe@E*vY-&Nh? zLyh0cR{Zk7r~BtS_h_qIGaQo}dv z7gKgF*Zs8=MaCt+OHMe5InT^ zj1vF4CxGk<>qO`0e|=}@UPFmg`kkNuE%lqnEx^kMo`)b2s(6}lB2;2fkm*tAc-uBa^^wCC zGyPp6T*qacjuBlERB=YWpF#dxtg3d2+8IBE;Xlj}#!rTI-6_k+v_y!XV&*1kiMU~q zMCb@TbS5d$u@?Y}S`dL*>ds!CSF0ZBrZmRbq44K^)648mpExaE};EC#|L*pwI4|rO?CXkYzdGZA4-el zX8Ok5?C^rU|9hYhaH!A3`&u>L1f0q`xZ}0W)9VoIApQ?8pH7KAUxcN8dKs-V8gDqW z>qgTu4CU2x3-Jf7d8(G~Ez&u|Q@V7=znPmFswk)0@^YnmQthvAYt#0dELr^8Bh&k8 z?j>1D@&s4cui^u~G0)$s&)-0geoNWv!qns@Xuo&m7sBJMdpuZx>6e-%NG0#I@x??#Nso#c?*;!GWm%dyzD*EP!w->^bYnQBN-CM$tb{m{|%3y!Fe`u0}35sl-CpyEGIaH?&C(i zNBk1@T<{=RM!uy0Q+vbV|0}#SeeF?FH*`6;k_@qFd0M>3y1*Z=d)vdmzJX1QU~E$0 zR`8fucMG5es+b2mNWfwI55GZSjPUbwt;N&zIZL@c+)iHY#3t`Ed0DD2>eb88u|Q8@Ph4s z<9}=vYXSaxNZ&9m54hkw3qUXLnwISpWMh#6U;g@Ld3@pH=iRF91dkpb*^?4r2j85H zu<<3H_xD+BoJw17ma)jK3x|enm|u&;o16v+m!I)KzggQtwgB%QKnRvGaOZVL`-8C` z0`Hq(NLx^)%>pveUaojc_C#e#59F+K_+lNt2+wyMEob;b0F1kC&@0DKRDbMW;O;Mc zo`sGk#p~-}Mh1e{C-`}tfSy+qe__dcB3s}^UlBD`(QA$S!v=H1XOb|<4TR2XNs}_X zt_3%LZGaN|%SI41SjW*1Me?xo}pZ>jYQZ2bvV(;x7kfG5B6 zAdcQ&U;p&9@rkN`_kTq)*{6*8e9tk=9|-n@65g$~Dml|1#8cM$KJ}Nc9|-c41wZY+ zdn=c``SBeivLuqh&_7+(Rs~g4o$U|*t0w=su#N9vw7&cF{RoEaFF`%M{ZEJf`0n+!y7Rb-*Iv5j%md#KYt;|1_8mV3P9uOL)n|YletrP~ z`u$J$d(i#iU}PuC1|$sr>sybrS%zuR%!Dq{-lx>cp_853fhOKXgJZmZyWsu+ zuDgQX*1Z3feo8eciMxxv4gUtzM|IRW}dGV>XXcJ)mm0FZQ2J2+r%iN zT7>IR8jFuh_e zlUXu5wioRhC8PaCQ)cS;YB_Sd&LBH;)!BrqLt7tU*&fPbbqO!i12(fDz3yirXkDXE z2aCp`P7y-DV3k{7u&Utx5G!j!vF29wvgQL6ijDcamS3)SbZxpyv+k(bR)z(By-{af zH9dn1u35C%k-Dhy19-GW6$`E5O{S(>LQjBN6s|!EG_9$~vK>&^FQInB$@Iz-DLq!% ziK0|Vd7jtu9l`CxhJkZJZn`UMaD^(gB>^RhHG4E&YPofR(5&i`64dd0Gia#Gkq;0> zM{3vN(fO#hLNvr_u^0>q%>}kzkLvISAtwS(&{E6$$s}fwooCQ4oNr~@u->h6eQcI7 zC`E4VECW%4Q6A6;o?oO}B#-c9nsHZ<1W7dkEsuzm+7zY*Xzu8^xGeM_*}_cGUFXjA zvk$P;Vx}z|X=@XXrgIz%<_Gw3TrBUZXm2aPZFjUKaAB~ud(Nr>@937&Q`F*i3&Gj$ zbfp!$d4bNAcsKya%N#qbNvmq1(p(G+0@WbLD|Asst75+j38UJM*zKkZSJ;Y>TB!#2AfZD}QEnLS9sHW{*qR{}m%O_(>B$v~gO@Mq$plJ(JwzvA)qZ##oE$`vBekHofc#bX6@IEwY128F`K| zZIZ{429{ZCbF$m&toXs!Ff~l(5p=of+ive6)VKEU3h(#%c^ zJ!!LK))hX_XlcgjWdy@0_N}r2EsMI*@3!+f!ePllsS9QKj3h zZeFHxkPlF;qUL5ks}IXH${g`{W3rN}%_V8Cy9`U|0#5duwe4V}^fR0W_zkSA%FShH=?2RLn(8GBixvyfP}a(2zKCOeuSSh&kV zi|)>F$+VVnm%BO^HP3Uy4W2c9fY=(`nuE#SeBr;gE1|@8JRGg$0%CVd5Yx45YmV!> zo#vKxdNXm!VVyRU+b%l>SKhX{!UPw6fVwoTTQ$Mrs*aO(F}uMRIkrzN9dgWXO4?JI`>F*|6Fvc87h+2iO;Z6m9m?R;$_^*&0Ew z%C%B!ogeSAg2N2b=0K>|`gRr_S*_hp*O$&%Uo?o~aIUs%8K=&)hRjSi2{<1J*eQjz zON*_?9{2`JLry!3x?QP8=5(vd;wn}rT{PF9wK|Z>;(ZZX&TDqlpOY4~#dm46VX+o~8>l4WQ9enw?Q41sZ@0jphyj?PHkUr@HnePoCP2 z2b*1WOZb070T%M?tX~+=EkJqg01!U~IPqFnXm7i{_^{t`S%U?EY?TTm$i@A;z^VXwmJAYbcE4_c5+v6hXnU zjB7ZK6MM@FMdCNLts$qjwP50Y+15UjZ7qxgKESjF7K8h&8i6AYA>M?ayz<1II3OciPf!4uryXkWK4WVb^K1B3D*6C|ge}t8~4;PS3LBP%g3a(oEQncYJT%>NPD- z^0d8$mReOaLm%M8ELAMom@c@H%+?k~N*V}Ao3U)1ZloQ4GAc7P)usiM@AWbnL&e$) zm#2j`lOy<6h3p7eUhp0(v|TAMYdGUsGn+9Oy9AfeDZ9xijZLL4<}qYBgEx}3?R499 zqC%MM%4Wl%4P>~~GAg=6**OLGS+6TgRvwyp4By!WGi7esa1+iGW28{3GNx(ghocJC zH5b!Ky{qh+RELz*C2ttRx-nEyRlyajnIRP%QF?rL!}Uh;h{-c#YY6)QS+wjf)qJO^ z^yl5oe37+@TpPF3)^@{?+z_R7*3<7dWu7I(swrc`IwQ(M85-6%3n$}Nk&)VKPOWuG zmFqshHbV^Le%2XoC(-~W9gb+ua6&5-X7Wrdz%x&$*SsNxCyGFKCL?*QHcbM~Oy_(R z%GXt=+0?p|r8E~|V;#uD9@T>8;vnB(sj87jrXrV@&?-IJPIyyIcL`{hb@jH?bcIYF z7`mDeM6a1vXIXP!A)&OA`Nf8x26rM zkWno4h<>R%nUMXl~YQ zo$pRuXG~8jCMk|P%XDrhTS%5>3Tk;-&vrAj3A3)-K0tM~vW5kvpl5Ur-e%Cryk?B^ zCX-J$TAlWSXHB?K+mRDn5HN#kw2^F~KX%$WtIJfkT%VW6DC!Mg#*>f%+e}GhDq*dP zqftHAnYk3SoMB}dT~6_?tl5(0$&-aJZkBT8205q{n%Jf=#Vcc8C+8g8aYt2RWTKn? zydne!K(&SKh*7CoZ$VaBoTwT^3i;}hpglDQRe82iuBO2S4*H$})|^mlnD@y$tS9u~ z@qmDbNShD~{oSzR4~#dmT&~)pdo(@r14~xUw|gFaTyX!j zco&NGP=Jdy)`7|sup|TqK-vSw`Yk#7tU&8dMOZkMP+HqH9P+uzWk3ykLM6Ke$il3& zUccsS}kc#>4^y|nTt zT^uBNy$aa_PMk#+5qO_jLe89BM;$Nhuiw6N>r96K$b?==Lqy|$xM%k|8r$;#mP$k z=#$3jL|m4fwhK=NoD!a6q7twtJsS{f*}Q`Kry_BNc?jh4Is;cq>7#@{IDX{ zu_|{Y!?aw<#_C}WvrSo4hGVtyk@Gumni@Bvr*?KuczRT*wSXd!v9@` z%?(}(y!99sCy14k?X=s)~D+m2)= z*wc1IljQv%iw+3eIDziNm~_BT z6}bJuB8~djflizWE~fjFx|s~f{_;aH3#O zNCJxjd=dglAvl7#Yj$h6GSWXueL2*zsHX0mDn>(992tU0T% zbfty~-MpQ5HiI5X8CwOz+!>`{hKzCR4o&1r8+o^Cw-$V1DxvIfn-*ogo|QU2z+S#G z?RQ}gCe>MKxPW8@SvJKkU#%2ach)lsxpu25whNM~=T}R!B#|R)G3VgP$R5BImm5%< zewAM`@DNdafK^%9NmP$Uxe+IfW;oTz_q6gVCuFd8X1qei<*HF2b+Kn?BYY+ld8W%v=EZidu;qD$?hhI(xY9O9|DU~Y*=<}| z68sh7tXy!}ddv2`QwC&PF3WcLDVJR}7#Ng9S+prq=EJhQI=$-;n9Ts)i&-=<%K>IP ztNDQLe>gwTzc3j|QcsFfFr<)Ow+?V`SrVBM85tQF8PB)d({-cpY*wGXSKZT6;c$OD zn{KWjWWH}-R8!?G{qbu3;kbNsTfVw%ma2Zx=F^T|Q?1rb^)2`Frucm9ZCzZZ)zgcU zwAg{iUw1CPZ*8A_{dV1cNWC0BJKqoAuI{$lg}dHX^XHbG|$`uYShjLWAmm}e5Cr6capAUCrQsy8WEh-ta+`H(4R4(^Px)W-ZJ4bTB$9B8wHp*(}t@`u3Th!{6liKNBs+el#4jbl=gY$yZxh-#3 zvNx5|x1FnEO*IbIPg>0_qgJ{!uAeg6!ExoNS1X;p_~L8*xpV0?f80GguZ5#G@AguE zeA<8hdQq=;3kTWEi&?TxFJ3z*ZvMP!RyrNC`s^L&z8~jrw;ry=N;I}R*X!=SovyxR zI>#p$`#0Zz^d4S)X;XTxR?=?iA@{X@tsR=(R5y2WG!l6b}cKqI~4PeaNQWYl>BN>b-4PZKs}z8gNung#$`) zH9BB^zaLRsJ$||Ry7L%=rB#2-KSF+bFyJ6bedNCjD4q}*rYq=r^VNSy3|u;RgTGRj zmjfCuI~?-&J!hq%k?wBYvf&bos)L###5yJGRX~GSw=^&_=wkjD7mu_!CxaQhLdqGR z%$lXs{BsJR!N_xVt@veVo}yy5^a>YiN#xaxzn3#-3CY1CKfLQ*rwm`~}O6kISY5 z7x1(rI@0MEOnmmnMIPca1EXW9m3@a&uo%o}sq!ualAL!Vmu7e&#)V?+LO?b0MY?@s z-MT=?5bwHB0(8@}JjY)OoXa=H;hXh8lKs7=CkB&xa0 zyZc#bTgDm_uun=#SzB=QTeNh{&D7BR&eoqkD>Bsiy`iOiSvW?!;L%5&K?|JtG-cA( zP}(`^Hruhrg0_|kOfDlEG)!&`4bm!^GD!YdHd7v0rilv9UjV0I60a!Wf>#jsmEpz0 zrTWpx!kV=AZ!y4<2k?&BETe`Ur&;p6FBEZ8@0Q&N>xB$Nr?KbnywYL1vymNVI3$5W z8VgHuUSEw+AJI3OjL9XE|%ZUQhTkpRP#Yo z#3mFdtYuQ|PkvX}`LUTRuXtex32K(QBWEe*Xp1@4R0BfF6rtv{m9#Zj4 z<>qH4n@(>9JwL@YxUNBnci`$$hFnmNqKb=J(0$NvB^vbW8^rJxk zM3Tt$`RPrya(;GyeNo=8l&?pyOGS0xO9ohGxhLByQ+D6PRPepWN%+i{*Sp(kiF@O7 zeY2tBGwbO{&O{H_E0zJFY~g+3^Z)*LT!EDF*9jS9^CBdq(fgv1iZWF&Ae1EBfdMVo zdT01d$q$SlW?98aCeW**hgiHbY67XX6Li^`*$9m(xT!c_0#vMDq%Q&A|Fc-!2@mt> z{XaA5p`N%q)5EhyeGs9CDJ19Mem6(B);RHlT+(TS$Q=;dtU2aI)Gc8)B6LQbW3n=P zL64O|F>jk6aK=LIPB>dk6Yuvj+kYr#2Cp>}GY7F13!U+V5p4oRe2eaYYTfV)5W(`B zBGgRxvEM>O9} zaUs5!I-7m6?*tC`Sf2pK8y7?h#f(QkV{%~_*0_Uqg18d_*&DINY{%gQtCa)}daH&j zF^AWA0^02BR)SHJip2z=7FjBId8{2#E1B74IfhU$!GR2o(02kB#$*uu=Rf@~1X0Ft z*qKrrYCIbrIvo9ui~I3KB2yP!_A{p#045<>uCk4@io;8DKD3hHg)iH7@ICRhb3x4Xpfo|Vi%Ftl3}*cj#

_QweA zkCz81bHaw?x)PfQSS+T&?Hs-^nFpBN3CWc#m2bt}CNgq%VZPkh(LOC-&R@%Lt^6S% zPEw5h<&Q$p`Fwa=P1*Ld4f-S7$@b#ZvFPnfDr=3352LH7;}bqq4JUHO?(V0*{`~J1 zj809*t~Q39J7qa=Ru=+Z3F|nJASS8pLYpGS2ta~VSB<)7h$~Oy?+B2j{iS0#m~Ofm z=iuh_{q>uLKOhT7KWkbp#x5`!QQ6-YF{8{G*S9$`L@G`%pfw|)>IKq@fK?0pH2NV$ zVD4H(5l@V6j{A;fPc5J0?uyf}ic4Q1HN1&KW+?!1X+R`Ui3Ac2q|B^ExoSw@R5nOq z8q+)F6ULS=L|9O1gN=wUVAh#+(-<0jOsY>lyJ!RhInPEATrwvGRP?iH()m58Oom=2 z%K5##KIr{3S{gnUdv&J-q0bJ$i#X5k4ZWS%frdWzC%acKz_ApAU;;&f8%5NS!HrxZ zWrQ0^wEDu0U`;cu*x=Ju6R@S%FlTH7ZB{VbJ z%H{LmMt&E~%yN^>%zXFe?`CGdo0*Ll`Ik<_<%Tr;Ze}JOv+uN-S!ukPnGhcl&CGTd z-^?su*x4*j^fD`AdYPqniobiA{qAM<}W%hJ+Y&DYhGPCxa%-v<#E}vCS zc=mct=IOJTCpEmr{4MN&(zy?uI0XLJqewqc(zw>l~nKN z<5{OFa9e-b7faTB$z`_PpX$EfhwI_lE$Ux?Ty^r_dd(NN_o~$@ji2rPt6bW?IohjK zj-D%3wRhb!Z@=H%7Qbb-t`1Hr$9JdKr91sj%iD$Lo6GFCtrz#%r{T}_)bnMnbfzC$ zm)qCo!MdjB_I_@w`ONuUF>O4htIg|k_4eAiyl%W1x7mF5d8gRY3#qH}Wh#BJU)-tZ z%i7CLY1<$03u)AI@~X~2ivz+ zHC5gDk<#w+N5?ytos06$j~|P2z=O=e`qk@?oBUb2^>BB4*uBi;emHxNCwtHB)53+By71N; zXX*8wmmhbswbPVdW@pDQnjG+_J6|ue%bWFs%f0=>tzK=twVnN;ot~X`Z};|E&p%$Z z$I9!?<7-|Hc=xq*(%w3G>wPWMQWu(c{FXV-b(*;sy`9xx&BOMsYMx%7JKtZ+mAv~i z+cv%OW6Cya4;TAd{kHK{PglE-^+NWzcIPv8{_f;F_tMgxg18a6mtDPZw_mx)-Smov z+O79`&pGF6uh)AhWY4y}uXSz5JS(+_QVo(VU{5ddOT{pK3Y1w{`WpuN}T@A9ag6>o=8p@BH8{`+A(NR?;Wg zH}9lWaV{_Re?0hm`DeL({m_26-15Gi^-fPN#ZI%Dzfv!=5lOYEUS{d`PNDswdzt;d z=B&1t*%T7Qx>*K&hwf)L1X`r0CCgpZB2kAWb}Z3dnfNipp*NY+{SIyM>{#}V@%Td5 z3&s+cQZW#Q*j9XFZ*~bi_hPA3kR*vkb+Jo1&2zE}jvEIu6GmjHNGitXQ&{vFkL>2< zm)DC3TJYyJnmmAtOPMn)C6i8XrbkygmR_`8anw#snZD98Gts25+&*nbn%WS!ji3Vw zJbo?bYge^h@hBKXi#sv|#dojtt34Off%J=hMOIXtcqJ&{5q?pYOcTPG`cs&mf?$^2 zGt1RRxhV9;5d2nk&c&+LHn7z~w3%6#lKL z+m3rGhY6yb#>GjrK!9TBYU4$#gH0Gr)o_T3KcND;>2!qBsnpeuDvjq*rQT{P7e`m+ z^5uR|1>F`8HU^!}R8rx!l zb&y?qNx=LRy-hZFr<(cTw)nUN*H(xI3$Ibp;NcuhA4opJkpTVj5C93v7gm(eKlqHN21z$hA|sUejb z5-iYZpyRLS;7jQzCnvrZcv4s|nqk$Em3$ZtG9*ygolS#=>Of2bh1Kdwz+eYpfH7LN zh}S;o^UZqmLz&4xj+w=f#sM~PjAl5_8c(eItf9Z?4IJl_gvc+-`N#_s(V8hPzME{& zDkkTODdkrc>N6;iSE|&Y8pLNsReXmqL<%(_LE2VBGqeU+t(1ZS z*D1xn=g2@NNF;%22HkT_8PNoabwdeMUIlOuu*BfywDhJs1+mop<3y9$CsXv`V$Ow6 zpwMcHEGnk}3&UJtB97h<&JxdM3rf#c)_R(1k6Knzaq)4`dti0(vk}!)AR5l6T10Bh z7$Z*zxp^9HMh(#&4oaSIPfuU{xREC_b|ywfY`frk{k{}hi0JXUQtu-wVW9}gV%WSaC3maEN0)}(n(!_o-qInuL;*2~4w-P53#eP?js&L212+vACdxHVqzl!7Fo{XNI0%D63AvW3=1gJUGyl2d+g%xtlqy z*Nm)$>t*zNPb~@$<~@Zdq3}WWRP?hl$a3lIFi{I=75w1alaj7e1{JVD)3;EUCK@aU z!+tbS$m%U5Sf1(XDEB9kh-g7g1DIxmgo~gcfs&puHfSihO9O><#gl+xltG$AT=P0z zol{gn4RsA=#is$h)p21cBw$U$d)U4 zv5>2EPy&s#q82oo;DQDO?bk0+q=5*vQy4c2NnbwDZN1(yG*r7b?rpNbUBU%+HJgzO z76jx(><}4&qlRTd8=Fe0DgIW#lsoyT7-B#q1+f3DJn5$9>UG7|{LYk)d<+gMD1NU% zCmchs*}5tr4O-v&Av0~u@FRmdp7^!XQXS17zz+jzht>4uGw_}ET8HLxqfC*Cv-E>a zf03252CFjDeD4VIL5GS7KypcX(EPz)TEX$IZhDsI_%C)IuEFKs{qjd9oAn#)wV;}9 zP`3^q_@=_ZuGNt(ExP>%eB1Jq-}vCmA6fsS??EWadb@vXX=+2W#mAy-_t&&67e4M} zB~2bYSAGlt)hz>pSpqKG@~aT0!m0VB5C5II1OR7s#mlnku%6>=Ou@ynLbnjwDU^rC zPec6{LlH6R0#Y4EYu60*LE|eV;COaZJjn)c6?1%GO!Jqrk#YGfLvL&(xz>NURYV$_ zNT+acTC&Yep315j8yh(Rkrdv8%i8%^x%hl6DU>0v(*Qk5Q3ncHU#kk$D6us+M@C4+ z9d6LiZ*_;8AFz<*bPH6QY+8OA4tdB$MIuij^`T`CX|(+^lKw?pH=BkB-TnHJ>21$( zl^WFBl*KGQE0%c9?&^*vU+CD@gRQpx)|g6HT>pgHs%W+?ptKh(tY31p*bA@7v%4%cBG7(g2CShWQc)F4V{mEVO_~Uto$ei zTAC@pftkUt2x>qx1myHLl}d2gXa)$Zt&|?0VF{JNf+A)gxAuO*hH1G29v|ZD7$6g} zj$}lwTOA!${DB58zBTwlK|zULHeg6Y2?gca#y3i&5i?!; zxmyU3e39q0@)TTv5}1cM^Yr=ZDzGgV=^EHljphcDhNMU$aR+h5Db3cGNbREZbXqw8 zT=XnsSmXktBDtVho@;0_a~A=TcD*t+t-;kw8Mn7-kYIDO0mI((S<}#IGeeomND6^! z+qif~A}gXINJ*g9a2;=HMLdKY#xw%`IIY^yqL|oZ%*44SNx+b<$zNA8vf4mN;tDbj z*~o}8f)d4WgR?Of?tI~tRU{(%y@kY65Icb@tMG9=lDI@D#wdPj)i3NhLkp@$22_%O zB}oOOg@z-OD%k?wiOmXmd4#d3Ws(B(G+FsyJ%>*)uT{^hrPKRrK{G*H=1Hc%zQvG|JTaz;syhJ6Mhp$$v(ix{f)x)7aiP%E)trC#?dN7gJ<2}sRW z`oUZ2=DbPTSTQ4%X0QZiLEhIsm()!jk;w+!N+@;%e1S3ZNZL#iusDwk+mUR zO9@`|OK3ir77%NQAhn*DP~Fy42UZ3i3V(dj-JT?$Dkkk0stl;-Tc_bw_@s6O;EoNc zxr*8bqWiNC00R(6`&RTeAn4aim9fy#v#@nXz9CDfsz%TCBYuO5n?b}cMDp4%s?7Y= z46*R0>kR6GnqIr6$@uF4ZAX#Wf}^`G6&F~2u-d@t0$X4;s!SebyZ-g(zcf4*RYs8l zPAH!caNPUr&wu3tDQjS$WGzkO<$@$5=-JjyMO_+5uq;%Z3gfxB2*&4vr$SRFwjNSR zv};IOl17?5o|2QN*{*Qh(+!S$o*fHQ(97y))KsXfK*!bx>A`t>vSItQ^dM5hhfM0Udb}+7Oq1 zRQf#wVv!B(R*sdt$-FO=P~H*-Nr2pP3>YuI^3G0zbfMZ$Ezd@!5Rd@ku1F+MrA|j2!c3}@yPMhB*+DhgCP72C z4kp3E-OA|VqBbV6s#m46>x=WN>Wp_LaiOJ2t1d=8A(2>C6JcXj%Vb*61QF`AiD4`i zBuH(mrgL4WW5U;#04)01DecqTT@Tm2h87UR*0aFYV>-dXB4MQkQ56J|-6=th0y&Ebs>Kb*QnRj3p`_mNq}uK1OU*R2zPj z1j-vs>4hy})JOFke57_~&D;$jjZ z)G&EWV(^O`eVkx3BMlv)##}%S(KsME+{5*o_^JElk4!e3_Y-Nw--T^I@!&I~Wk_M}v z&&yDs?%y8kAxQB049~v5A?sGVrkk=HFGdKEP77Rs6k{=7BCIY-Go#h4MV%5PP!NWW zYY0OECl3O22kei+kG?~d4V+&xov*<+E_yoI)ME3Db7^^)Euwh-x60iJIXxBf%Id0v1ua_iRG42;tH&o;ui2^bDSx72EU@#GTgFC$m zoloaQsBWm@?pa4!SQ*d~be846*jkRxix}=?B?PF?ix5U|GAtZ2b&CO`1bHqDShcl= z?qS?|3^*Y}6&WykXUv@}I+y`5WQQvTj8Jlt0iQ5_dh>muRWaWeKF9{Q914o+pehW~ zL(FTbc@T>pccX6#jsgH0v*JN>an}m$!wOi8`!C750ia{brqx4+;E9H7!w8SnI*Z0E zgmLfNm7~%7qGUdOhOz+Rb_rUPjXa%-vonIFZ$-A}N!wueAIu(Igpy>dwDQUy#?83$ z%OO@3uL9ZSkeLw)63(&Dj|i^sOZfW;mhBISsr5&YB-m1aA0s+DQ5F&{Dq3^98YF>*t)B6n>lY^BpL(i{!gW-ilDnilchj(2gB3 znvbzwO=`ovju_LAR|%h;Al;Pl(2Ja%6e$F&K3>KRBR-GlN+P55I6GjZL@Y`EMhohTppNTf(uY+3W9X^ z1P2$n&@akePSOAZ`f*Jz!G)HlbzrQkBtq6z1L8|@NhLJpt?8otA|zmrS95K(F2pk? z_J{nV0ZT@l8(?=8&|Q1gaj&1lmsbB#U2tsoKc1Z3SY5@ z1P)!XhqiD>SLO2MJ{LI8!B~z-u%e%ZtR@5k6P9A}wa4U&nHMFl@-p+{!&dVmcqQ6A zKN$o#$6*>h6rE;sqFA@IW>c^0@u|SkgE24~DkYk35S@unQ%4;Fgp`Zrus#DqK^u$r zg;YyJ-AfoSN^mn{z{-yqd1qCY+5Fne*>emCVO0bMl!87(?+dB-SA=%Z@@Qm~RGeo4 zdm&)5qoP{z(SWI_EIksa79*@0E-;V=%tO{gqH!WB>z?M^3%x{qlVjXwNxT4y?Ki6CkL=rO~irPqvHgRd6J((SXQ*WR~^N*{S(M^qvVe5p7M z10pY0r(xt1lt~#4UC7B1=IG}4%@UNdntroK6S8f6YRc$@uyxi(zr&-Z^cyuRp~#R; z7TcZ}r=}@kcTE||Aha6IR-Uw8cS`rnDICFBLx8!20Ih;R#DZ|aPST*8mgw&|UK?e( zrp*uMxTV!+2z!%q0YqN=NU;1~s%%rs@G*#Oc@IpLii20?O6ZHr<7=rX2|+sck$N}@ zR!~!qZEBdJ0VGJ`TF(&36kBL0zat|j7g1>F`uy~!S~))(0iTMhHstPNY_3a~b-`De z7CGzt>x-*$>0r^5r*-f|l{;GkbLFKHy$~{&zL#gycAileD!S1cC`~eiy^`~h}k`$*Q)`}T+yjsAVgHP9tlcKx61S~U)UgYTQ`B`jF z()xcqh8_6HX4N^583d!6Eh9%U4mV^E7H;(VO!$s*Ok#`S#t|R7!-yRCuHP|w=(dC0 z2x?~IUGpBQ*$g*!R>yA(wfT;5tYBh=*~K5eQw%qXkQw`Xhb&aF3UZK#l<&IL4r>TF z()kBUWXK#FemfJXO^1%Yu&ar5^o`-RO!H#=TFh^7OiH?m2IR}MD$Y0Ax$TU}=R6s< zuuLo8jA<{@?#Cr0z$U0f8S7GUMv~Hp3qu%nh*$aC#02R02JR^4OHmkevYOmN6vn&# zqte;ec@&t1*f9J$cneXxZmteX`&@`;wiXu1_O*2F>*h?T=eHL}^Yhcn!F^~en&WQq zPK-b!b6A+k2feA|o((b^oX@@$RQlchbk-h-lR)#Gt>>PIQ^keeYer9jQlqwIK!r$K zgSvKLkR9tJ-ERycM+xMc92T=a*)6}^=mOT~q;giSR`wTkaZR{JLpHWe<;-$51!DRY z8!inF+&_ZI^pKj~X#bVAXSjOD(E2uUv8)ky4)N{el|y_fG;~F3&hUU`3@Lh}&xr{? z`O6)wFM{8I6&xK9RZY$E9KkM-Vuej*U(nPA z7YB6Cir;ZT=~eMpSa~&YiG&*vvjn*vX-{3m5?qx_`zW6W-!cqYy~SPqLDkJzNg3D( ze$#O}9p^YrP?Erpcw8j;?yKc*7v-x`_2w#ShG=DXrOPqQ!7;O$xIhq`N$A@%2^Q}5 zOacYxEgLXg>O2XQ)6wcej`2+mXS^lBlBXxG3O8+TT3hUH)%9$gSB?Y}*UFc3?MP`T zQaNGd6t;SZ*z|0#2NrXf%x7P>A7mAT#@)~>@>%Kh zV}3_Mx+3GeBBHzo9+z>43x?~Gv)FK84Fsq)M*TV}6!KGTU?|;$#yQeyH)WvEmDhLd zIW4{EVuUs6CU%1gyC#LSa5b44663?0enYOt{VdZ+a3YVPL$Z(HYIxI2M@^Y|)7G9n z&8){MJ<+o#Eqhl-1^kd;8G2jCm}{tILwJ@|a8TRwP>Fhc8Wu4#_TrJCA@wxse&d^$fA0UC4WKN2 zEpwOHK&p&O_nRvh$d#K)l~IIEX}GgIkijccl#1jR(htN_;&<29Q9a@4oTa1cZV}I5 zRJhfLIquO{9U3^e>-?HaX5k7u&~!Ago$`gTU^~9ktca*uLo`_0i^i$OH}n_X(QD!g zjPuAYyvqKre=xPJhG%$@e1!C)(o7O28z|1Wy7H^q?%<>yr;(8cOgcYNia!aQ_}w!Y zB_1*@nKy`)1TDk2Xjwi`IX+N0FBc6~fp1p0Qc zR&Bak5Ig|!1`pyx$Feo$1?t~w%38sXDR4e1Er^?d*aZlV9;6P}Wue?noyHLL>(&jv}+sb1WymNSR*NI?pK!z)a2mH}I);%J6ehy5%ch4`g0Q4l_`u>#x3D8nxk+6|+< z0+)Wa3`49Z_UYS^L4x&B^c)&6TyzZy7H^3-T*wOv z6fWe2WEaiz%?jx*A;CgL*U)AKkqd0luzfB_z=B8&Hh2*6!3GQ)Su!$8DlS?9l3PDm zw1RwRjz)(izsigzUWSU~rlK}p#F?hQXd4aP>1bjyFVS@mePfO+QPb)<&@Dg~9jUjp zw)`L+_G_|&h_6GU8`mdggyG(?2$&@1LpjZ9=>+|D09+8YXHPfunyq_nbWcp04{E4U z0ULS!%07(L4eATojB|wYMEv|3U6kmPjOqb7)>gx&BaZqaWcC#GVj6fDrf)!QD7D^r zDS9ZO)otl@c?$Fd20~D4((vr~7hE5c7gaY@$ol}<<#;tmT9AiDA6T#5mKaSHUz!i% zQQHFxHb_Yw9<4(;{E@~D!OK2gx>+|oSuu8K__3+R$Ai&&Ru3&DzC-oABV(8(`dMI? z7%l}wX2R=7c}(HXk&X~Pb3p0epa+Yobq5Dp&GO8KY6m?|`X}OGtv8i(Q!pK2t;W$Cp5I2(u)6mR-3~_U z4|P8+sKed;B>SlK@e!IK45ADMkr;~Ow5!^(x@%3XKgqu-n1zE(!D&+|3DtL?jUYIa zRH@Ijgsz;VE)i|RM}9wL3{b;Bx0|2%RP9pSHrmi`Or|V|1yNMc4hPEM{C1bk5m2c( zy%CH+E3{iB(i@{R#WM?vjT=488BFTTjdLQAK+RP_eUSj`mey?Qb-1Up(bLe(2e*Zh zKqPP|V;qf`;ILvNV_!0e`zFppMe9?Ka`TWtIj;I(s;H{6BzSL@$+y${%|F>Tf`906 zLF=Dwp|b@X1aqHjPS74noP}_2RX~lXK?~I20=78vb0&K&nmv6Dcw6@2$3O7uK$Q2r8C?}dPr~cGhY`nt7$6f1loYYz#JtbKmB5A zCYWyqVN#aNhy{a=fTQSBWa|V8{3!uO2;umFN>%H8tp=Ll`Vi8Mt1b~XB7j(KiEqiw zU$$^MGC_v~>*DCDT)y1r%Vu%-s=^PO$rSAwWPPPKt1r{Tck;|?W| zT;t{jXLIC@RGeiAY;CKvEbUNDOOSY?B(Kta8&;4Xh+_wFfJ6_v(H7Lv?+>EaE&3f? z9@OrJv^W`RPqXh2qS@o~P=Iuhpcb+S7_A&dRV1D=lh%anw2p1nH3xG-ga*uHC!om% z32F$b_5(`hkN~dz_2<7dZB6^@&wu^I1rwQvPlDAIJY-`G1RsP^WUUw50t=^J=K|WW zJY38P37V7{T)@`K2d8XoVrxy!w)r+WN;@M#Lf!sob3$FnNT3cZ(?l7@DA1yxmCb78 zx1SU#(!iG!92H8xNPvu4)lJ{YBezfRu+>zYt|n8^l)CsqX$u9!Rt;xUDML>jnJxwZ zgvP5mkUbQP8TP;M8`#8MAU7G^Z!k=!<;FB3^=V^fm7E6{Gb(w z&|QVzX1%}+jL!iXl$vU&rodQt6bLhRRb(|^lKp7yyKY(!w#o(&7X?oO^{u`qXvtO% zBD0gvU^(gAEtO{w1VuW<7%iK$QPMJf>gJJ zTr*u89azcdc_n&7xgZ_t^{2o7{2z{Ds9i_)bb|lcZE^QE)wW(&I+hE!Yt?}C*tQ>< zP*WXora<|XzTv|3<0i&#rA@Y@W z#n9joK0BapKY}JLO+BNQj4l7g!J4Pcb|vzD zV8{py3=f+bPZZjX3=SC?b&Rk4?Ds^#5F9uMLB1#}Aj$Z6AvNO0OV7V)GcwdL5tzji zcYS`G{RHsX;TDVA)ohlHdAo{bc=q`jCW80@!z>iJ*+h)<1aZnD={|f1vIw(XmbhYQ zNV{)I2VL~~CcyphKmIvZ$D97DS_?kU!eU}llUS_njGBW}ahgnNrJk8=QMy?|*NhCw zp2s!g&v-PUwJWqiw%m=6anMIkDLqY>XX_2cn6KfuD%9FzyIPLiNw|RauRdG=`7Y3b zT@wM0u&;;q@6Z5vEr2%Vwc}LVGT5>(A1#kB8M%XU3z0wx8fu@|s2FzzSSX-hQc6GY z^(CxZCY%YbvbMdM%jA_~SWOm>%Iw2tpy$` zS8I#iuezSCDQhPvY?gDon}T+dIYPw|-R&uBo~gTr<~X?N&A#(2dwMXFz!?`2eVB^7 zLF}#c22p_Y%HRT#PbZA+l8=PKW(q}t2L2NP#fI1V5L}nQ35S9<4YdcgoC7JdQ_OD{ zgp~Onv&Ju)?UoGvp})M22c>K3w%(BwpJUJOYR^js0Ch42760R(!@2r#EV82Y!1liO z{ga=x*WVN3X3UA8AgwmWzb?!c+M5o!D!GF_+D+U$~a_-~Z41peu_USiLB8 zcT)>OY+-IZcb6>|5^Hh&B{-W&VxX@1G;N8mL~*DSaxv&og<`HL4sHcplSKATBos%F z+ZGeSJ+aa*^5sPc!BpH$b$_Kd)%=L7YrdOmzv9s7)$_NfW-;(kr6XxJedJL|0+!i~ z)C`sZYSz^VV|bW$CEDbg3@%Ze1S-gyfB9+&a)9q4h|tGMG#Dsq{8Rx(nb)Z+n-K5F4o0NwoO!nRx2G6P?{ z2lU&K7(j)+p~hUrbO0gzqAcNuFZjSGF&N{BiC{7>hMi)Dh`1mJ=uMk5K*3Ay34CW8 ze^~KNFzVD$z>l_KGclbbYK=}QxTf3sW>?b;*mEOCDSi{F)1cP zx#(Bkoh28ywkgRe(Nv#sR_q?5S8i%b$ufl4|7Y(@mlRi)G+(9cv{_q^ajUd%dFNa+ zEeL_w#14PjBq1SzHY6b-e%-PDGk?eW8OChp$2`D1#k@nmK)=E$B*@B4ATvp*tUBky zu~VtlBf`VO!{d{?2X@Y9{O!UnH`ez}`3f$YC6F=3O`HFqKw9A?HGga~pQia}H3Em(K^cuDL3SI3Y$-Kyx`r~Qp_tyCG zSjhX_^3(0r|NEIOyF^_fx8H~8kR9OMx*ZVu(GjtG^y;-L{0jnK5E3hXIxtP`5rFf+ zG5F#Qne!udgC7q`c@s{rxv9j)MmXioiD~HTvcU zhL_(fcVWp-!v(bGnCn0&43iMZd{(ml^}?<#;t451jnyxk(Eb3az}7(|PfjgAdI%n? zl^?xba-WRgqH~j<}hIBVP`pVlj8uaKD6xJKZ^dTn%?5w!fr?yPJl8DATYCyw*-A zPVC1jPU_{@JdnF9&Y!P1Pj}9>iu30!=>Hgs^QCE6V2ht*8ou{~#h=P##7}EJ;>T(} z`sLs%RsLP`{R*1zbm!bP-`!+6#;F;z+=paz*!{4*D2it*uRvv)& zg!5mTN9D*7D=^oh{Tac(T_;3@+sN#FU+5C4Yxmaue%FFyss+jqL|&Q`s(ro z(6_OLu9D*`bI81&DfXsi-8!$`SM*Fb-nyK#St>t=b7v&w?I6KV(W9S~hVddjdX>KU z#3WU&ui4IJNvf_K?XQ&dk)d&N1fH(>898}JDVOQ+8@KS>;D0U0?k&stw9KQ?dZT`t zX_$+?5nq&_|EjiKwiUp2Y&3NLvMgy=vGLPdc820n^hDx2@r#KOdToIOzSP}vd6)A) z&KK~F`%Q}4mcU&hdJ_FzdV{CgHe-rI>)I}@3SJruGd3yCSFQ2hNu7NKl+xH8; z{LENyRA+3@V+*{of1#{7Ndu?F#}^JYf4q;wk2xekA;rN(i$~z{@Dp_%y#ECEp6`|) z*>?1*!T2w)eWtu=NuRb?-|auZ+yJw@iglOnCwkRHa2eEgtw?;@eEONq0+{bb>))$7 z>=RQWN49G_YUo_@CFd$u<|_2Fin`1!xdO5HZrgpD-THaP-K#0SUV=2g$c|;71kzkK zPOlQM|M%a&eO8CpKS{LSsm_juG4z^c2yDQg=XAH1uS3hei`lbWe4qh`zh@f)4D?$z zB4H`Q7TGY(*d372&$=#W!Ji84&V$ zyTM;&P3?@(zXWN%{wv8f5M&u0e>_Vbg)m?*+5fly{I~!4N~KQD$@|h?!#gid<#(=TN^{{h`-18hc}n_Pr6MoOIdT6&S#t~}pT2PPIguigQ(xA(;G7Mr*p$+t_$f+L{fju&Fi>BN<0^)mh z_xlTy0Lp$xwtKit5&mMX**Eb5fbr>ca5E3pXGCx1c>0X!tu~{0UegOUouFIra1Nd>)NS|7JH_=8v#3w8@^mjeC}?suL09<*7WAP z#l9*i*EvmIz6l6J>_y=0wyVTDHm63P?oEvWSHdU4r*2~ZSoVl=KHksd)ZWUoRBw@! z&MB5C;|nR=bM!cQo~u8wPCk=+YHaYiddcnP;v#SPwr+gsDLv#e%N`Q1Of7>no7=Cx6FL zGk+7;J>GDDy#Dq@bsRtKBu40{L2==9S}MS?6KSa!(4yesv0g9I{^Yj~gGPF+t{4J~ zDNq+i`Eve5$221&{#!mF6DSRWxu0G=oR(ys5gi>74b>vq&r8Y_N>TuJJWF>}ykI;@ zuZ0otW1b=sJ!IE^e|oJnuSeVWjPmSBvMoTj%;&UEcJ&2ZDj)lYO1I_Odgw>K8GqA# z7xGOrA1_eqhx42c0vAU?=<7xl<<$F@8k7PPJ){xPV);Sdf_^bb)m$?atSOuJ{k-qf~haig;5EiEpmbeg>un-olEId$S@ZRC@ z3-G!w>H*dxWi`M(*H4UrUpy6q29&w94sC#*KHzvyAAHhM==;4>&lE|y%318(gO8~(OY z||i7Z2JevJW5hl zJ_~MmKAX=(rd{0pUZedvB!ii?1jkwcOwSYw{3* z$`$ka6P3>8622d zb=5GRGrxjq^#Q@DZzK`Khl}~5`GNRGUv=SoV-&m z>-V<~&HkFR&)(%Tyy`sR!089R9_FP7FwZ@IDxYg(0QsFEa=87S1Q4^oCSSpyuVpU+ zL?TyGey$-SduNo|;xBtmk$2+4+|F|;`u(?IH4->ZVYvlcXY*fO;nBs;?n8_Gq*LYc ze+S_D7;Yz;*K_j!&5`7!vq^j2^sHEG^n1#X5?UN5{_{U=*}pRIQcunLxG^Ltg zrlcJbNz6C`(nvX>o_1OdSqda42uVgZ=h8CU_TA9#o6}uo*!RZWDaCHgc3qvzWUJa} zZ5cKYAYUj5cAP=zht>pj#H#JMdI#;z+wqbowt~n6{AQ3%IgZe5Qd96K^BdTL87pv> z&sxphf{^F@#F3lJL?6=(RuJqDJL^g6?Fb=Ucv9RLY&(%+R^|GD5?rA_&jRlT{>sK06}SsJ?<

DFEj?8*|Z zC4m$PQ`>E+V|bdOW{9@%F4yuxZKy#CgFBE3SuGn`_sSZM>S)x7$zfwLugq*=VVX_a zSc#6<*OC$J`*>C3tzB)4n@p`Y*HA)gMN@0-@M(>3!seRM?AdBN?%3;TK@df!_8?Tz z)wH!i93)l*42HC>i>2wb4Q~;8q2UBOSMpl{v4kR#LkF;^P(9ciw5ua*N&1XwD7(-{ z?6Q}~EP{(}MWIzhr7K*rf#%S>rJ;=}v9Y_FRfATshwJOw5Hdn6(36xu$LE4zT@kFN ztPSf*eyusJg7E=v&ZNe!i4HRj?j_TVz_oD}jauRc&3TM zwQEZ3PEB2ev<(dv1SgYPZ4y|0Rp8e+Z-`J$+tGT5j3`G{7AQHY6TPb6CT3}D7$~%B zR@<{RqAdhD&GLDXQ}MAE&SNj=wdMuE*_g@Mz3YyUl@x|bC#cG+7&C?X9I8U%*a^B! zZ=^10I30T0lH4@cBo)ztyG{d>oD!t%9IA>B;lHK~Gt80yV~KP0g9w z3cHP_G8>7*t0Rur z3W!dc_N2jx#M@)O*{N)nwmNC_m>JQ?S6-x9bvpfBFg2UbwArr+Tf(cu$cRw7Oj{YI z%jE*{OM+W@DEAtO?e>!4#`afot=b7RMTe)(ys_=^lexgFSc;FRg}7>t8$Al?@f|&$ zaKkaa@TIgL5wRZbf_kkWI89bE+?neAde|9uR#A71wAwCLXIc{k=`Toj-q^8K!i0MB zh!RJ(D>fQ}x~Qpm*CxBtirq*ZbEqkUiDwoBRSq5cOp<8fXxZC}ZapDtv1_C#+Ypdp zmzg8H;aR&-6$fYa` zLA1b%T$4?eAH7ZjpDLQK8`mrl8mv~%@hkm2m@&^uy8q(HdZExL28>r zLUt{oCe;ITj`kIe$ymheB=NQsn^s;2HFjGasY8(Cq25zhFq&&0xYJ;p88#v+?R;+A zCF4!9rZbTU%`lPYv0^O!h3t)>c(+Rwwx^~`dOuR2btKqBYBVOZWzS$1%ca(+Z?j0k z`ElRi*wTcw{?`GR0mVW0JErwdyUGX*C@(6c<~+2_9mTz@(_ zX;S+iZOo!)_JkmQ^U|t{S{ak0uTU!3+UiWY3XhENC{Xt z?5+6{nkwvjumJdO^@FoxDC!h=_{*bM6b{or0L22nvnNn2?xrXf3d0DDfSA-jHHw8C zqgdtcDR&g>j$&PiVi7+D#VSj^rl_3NNm7|S7uKnO2UEaW;Ai=e&{SD{!ih2BxD zJBoEjvF<3=&p@&Gxj8}jkD^$O(ywr;NM=@-PQpn_CUeUZ zNqcE31EL^UrQKfG>`VvQ+*)KEH$+k`s`hneE{SxdZ<9-Oz(`F-ACC4YR-iT!lf&WN zid22tPbzj@p7sLRgiF9A^<=TWB70gLlPA4lCUU$qO#F`8>USd2x4Ik45;a`snUv3@ zu_RW_k(Sp7NM zSrM#kB+vpz8Qb3uWOv0meIXu-TSl_7#e|=9?XDkqd%z@SDH-lz=$u(^SLtF`ozP1( zji*|@W|3>DVr0wi4kwT{zYwMbf?_%1))}_nhhiy1sN`Xb%|r@b(iUyiCmh%8 zBQ7!@!XDRYR@HIWri7W1%h)OydJ}p>ZyVHdX0D(vmL-^7!9+{f6hqY)lm2i~5X^*; zF{g3A(?lW6Wmv0jb*2@1E}OQ?c9V5w9afbjnMsC~EvvKCW+PE{t);~Jfx>k9TTRH= zoj2ZjWGOZ^X*FNYmF3RbZVbp(8ci2Q1+PG{b{UL#wAqk@rMVO&WQ$%!duw)8vt5Dm{+dWbMve*yZYgr|N6M zq-%)sr$e#43BoA$jZv(V^7rg_YZQxkfnpH_ibdQ}tgBEgh5?>tH%GBRIMN9eOSmbD zg%C7Bp+CYG>njZ-3~>>Rg`g;2xak2zBR?R^Q0W^XS?B@D0?y)^zx@I(m5<$#tdAgB zU*aw2gKjH|y%nZ)MhHHv{a|7@FGmSh7y8HV0 zdxg4o5hIVwxRmr^3*5ITU(Tm9X+F-0#E-}VgPxO%w+s8#+k1m?`FynfupIR#3OgMc zbbd?w)2!Wx7yMG3JqkoWofRHjc{&jllhuBTy4|OMU(7A_(Ygg@*;8BW7|=&B(9R+z z=%4l%V-!YT0r~g1dI>)}_QETIL7rp(DE^Ipf&G6azhRHyKSO@Qzr+71`VD!B{*wf9 zNB=KD|L-XO9p%5H{FkHrm2Ibixd7eaTLKs#;N~fmf9Nm?nz4#WKtl@WaE;iiqj@~j z)%6BZXN`g&GEf6F)fcr|9Zsn#Rb3{gxtJp>*P&c!%?k{)#UVpNOl-wbRjkhvyiC&L ze&)2`Hcvz~%vn}wvstOE%FhOJj}OvmJqU)90yQe8DQ?=jRzuo?0CTIMz{!4X+zKm1 z&mJPfuapq09n9+Qu zJyKh_P=({(X02|g$Og32tYt#UFc}DK8KoJZmQMsQXdAJYA>_84R=weDXuXcZEam2>ou>cSnaT)O5L$p*)opt?B`$WdTAfu(N_-G8+Z|opwPAXv zO_v*OF+x&3UiTN$V#W^J>u}y2@}})iwt6^i5zV0|rxq($V7-QxHEhDcOr|2IzosQ= zCn*b;n6ROr^qAew!8D%`H|o$>lI!ikl&-8KE~+*< z9x1CVFM74ImsusQy0+R)IiC}-YAxY+IJ7lo=~)LHW5luF!dD3n6tV>{;%d5A4&eUF z-`Ob>eEd-AF?&Xnmjs`v^JhPv&aZQ(?v5foqrq2^NJmZ){I0D^f=^V|bAmYkC_;lq z(yKAcS8AEoG;~-H#1(MK2es@T5$)E6Gjf^pbyzDO$_cZ=4jk=yI4myjadLowmvHw> z=o{EGz)H2f$N=EZUyA>JD@^-4kaP!14(}>An9?=`rGGxq&@1S zqg*!s@%Mj!XD7YhZ%=9JU*5_-{^aSiRA1KpD7(t5yQ#c<8@nPI{j1{nzI2)DTZErB z>;v2LepJ&f&twc0Pe}8z8C7Jix%CEeZ<$dvK_A+7Y(^bY(ZFXdr)N38_ql}*GV?tJ z*|S~+&EG4H*Cg!B6i~!vJni1sErZiic8>Uw<#SyUq)Xax+3)?8K+Yt5dRd3-O}ayC z&-FVX^lFmw^Y2}z)n2c{zaYqedH-;{^{zdajIB5M@(-PR7okXyr||H?QSMy^DL4Lw zKA3x#xo)4M%QZ2E!si#Xduc(7CcnM!4h5e}2l??$D~_zR%ahOjAmj7Hv-rF9%3;Hf zqcV^(PVm*L1IM#>s+(JH@$`z!Is0L1Wr1aQk5Y&-kG9=8Da2o zB#Xa(crOD~)y*9vK?k33j1)nOZW!LnP!#>D|KbN7BM}0nN$NGiug3QhXt_iCjl3eU zi_#M1?- z@5ar_csEVrN!=x)roC#!D?gzpqh)12iPIgo30KleDiib7#p#ONV$Ld?M`XP|ligHs ze79Lw1Ke{Ic(FCqE=idoVgv zYW6A;^Oa4cq$Ay9XPs=Ym{W!_%NSW$mu@gvikaddv`{`<5&PI)c}2I=BDS|*Tjis# z3RrbnREVvYoZN5ZfHglBsPC zcz>w0C)2GUk4JvTt4~D_Ukt)I*4?ek8mhgmrVgicAaNcsXf~VciQvT@Nmv*pMJ@@f zlg)D*3h6czWZu^5;m)KsT|}8vi_L6}bO#kpt8Munku1uQl9Ehi=<8(1z-Vs;DQR zbrYP%3njk3Fe}YSc zE`b=|E{KulYdNpM?|ghOSPI?adv66}(Kv?Q9>x*@ihm4aiN)@)w}Y`z6eAGwPY+|^ z$1qm;!RroV-C?XdjCF^xesokDgNXu9p)X-9{5lwmB8uR%kHc6nPTygyJB)RQvFS*z=P+Y#Wc>!ne>n@?dVwKB@c%(~AkWoYa#t=%SUWqqRRlSr=(k?r0> zT80C&hIfTcm5`X(riH*Ty-C{L4P43RJ!GttbpkbaSRbvc9StuCa&#x@u47?0Bq%du z=T>!6x3k_-0pxwykvr(vvYZwc-rk;SYu-n2|2nv(<5AnvrNE*Hj#$r&IBKCL&LsR?xZEu5P5ywgD4&?7R z)~}PK?xYC(gcNmP@ZHiW_N6~7iWZLQr?y(Y!g2MTPSkHlC;c!d>e3S#T=~aL&jhsk z^Ylzbs{W(&Ovn#N&qRW47@i_taJm0NiFi@p(5ILeQEo>1JUdffkvr&h&(3rQx9;H9 zj|8{4nq3ta4p^Y^)z`B#MaZU>Rh7gs*PTq*w8wE%3$hV{)CRIRE<0r{qeF(RraVFo zt$ww|tSK{Dv<(y)QEP0?u~W56;Un% zO=bx*W>i%mT;MY!4q!bQ*6C8P`*(E_chH4PkFz&#k%+snamNH^# zYS6o8YNeOrh>+^DNxmqIq#4F^vL$C01I~rO;2b)-`te{fa3e4<8mz&w7~D2kSH{Wi zivW&W*PQJ{lB{Z2!6U@=JVfv{T^14jabDrqFn8DBoL7(5J}>3N3=^$ry_ zG6@>ij9J`@04(MFO-Ohe2eg7yVf48_0`!tQv}~{=1dE{Ldlc}B8`LNay>+NU2Gp_- zH5M@tX!TJ*OftGU-Ofn>HpHs)NHdlUc*YiQ;P!s%T2dJtK#<~g`<_tlaOOOp+76`8 zpm(>H_;PMZqc;0y&eq>|V{s+AZS|Xpywzz49Fg_+^*A(9TYe?+{h6qSC6Etq8nw07 zJcY2N?WFZMELrM86eOrMvtV-FhfH!Cbre_1ufmvLjlxrs6)&qpF)Tf?|E!>BTLU;)-y&_z+`(82-s7`2 zw+{0*a^Z{k8<7OjFZ&jLb6A9b`JbP26h8d^JNorqvY!PkppM;k$;SEgH&rnh9p*J} z@3YSA;EOBVu4Rs5obF#u;Jie5Jw9Xx(6Pe8Qd)^fm0+rvUUe@8%XAu%JNx@%R7cqDgkG zUVhun|3~irRX6Q{i0!*+86`T-Bph-rQe?~`>W{zuchAjk+sJ*fMq3;3n1S6OE}Q@7 z9KH)A;^=2j{BQr3EFH2X!((ygblr4>Y$R{OF%Gs1kC76z2cxvr?ypKd~_uU65JNh`vfx8C)hZt@`K?dJ{MAi4cuZ5-h_R```w$fV~{9J~m z`L>6Rz2=Z6!s;hd{NMaHns`|616Zo7HTk=nXJb)Hbo_t6vwwP~IQJ9*4Bf#MzZDUp zDn(%${d5}v4^uz?55x!v^jCn-;E4P*UL9N(#v@KPs7bt(ZDkPn<{}2ZIaqFkJ39OY zCm<*fz~$(J<3XP=sAI3B*IU`1ped-x%#|#-7!1M@0qN!w=ZIsEv0|c&V*zGHX(57Fa%|;^mV?=$t+&yyKwTrm6YaY!q6UxC7GYi z4x!20s9IBD34?o;4*o#5ct6rWl-JVw;9G6ESiov)qnZW@ju{%%&OP%lUZFuV_;X?2 zP9wchXjcPhaSY%YTpkq6_Uvi>zMft-(eSSbXk4~FSf5;0{^uceGPg6Jax#_zhJJ~A zc*c6n7$x-XI~~N%yYDljB;cTSlm@GK0g?ca5zs*rz(a=(NJ0V(C@_!&JjRkl98f9+ z4w8Vgah!2$I83Zh%8K=A+*qF&2~Vs~NUTrl0a%~sK|A7i8d70C`^5VEM3gmIoJ?oq z%q`X@Wdo7mAM2B$zTp7M-~#!8{YLsh`aGRmPt1cS(B~5i;faOt5m*RmNo43s4q(f9 z0exn(+t`t-4W~n?ijSiUVqR)VN&a=2t<++ZhTh=3RFmXcJkP%s1eu;4=U9Iz#QV!t znQKVt9ob_s`4Eo}<6?(OtjB$!ku2o<4>%QG2a@Ba9lA^KQDAVYT7Zj&i(<#;87xKN*E03w2 z*=E)dUsB{cJzNxDuo>IMI%ATZGTr83h;dbg)*DpcN?Ecv7pnPey2l*$yGBBK?PT|j z)KYvIcPi!Dq%x*9@fLN6_0*vhAG8j$Ms3r2nQy5Hk!|dHZ@GMnRMIIE=(9{|2lDG| za-jN$LK^^mF2`YyMMcHdgrgqrN> z4Q@v%b+fA-l-;_?Zrbq%lg%Ad(P{aR!s^j<4DVyf-WWd?b40R{I<^n_(P27TFk*3f z9EtH|l%e^<%YL_}30!Zm$dSwAv`#5Xk4e;u?e;vSipwLG-K-iJa+yq0?Kd{}x{YPV zgG$#!m!xo;;}8rTw_=+Yy`G7udC8@vD`5{ zpVoF7*Qks1i`XQ3azkYD+?3l4l9P2MzG+648H-h-l5n%A66vhmSuGu-wY3?>#?@lDOmrvc(d~Qa~*R;U#Vhp3ReSu%S$x)1;hJ#*wS)CKRLt^_PZB}YF z+nyJPM3*FMDy26#D;HzzPTY*>qBO%Q%~iUnF3P1BHM5_o4Y5{glxjUbk5vw1%!#Mw zbe8hS3gSdiaQ>16lTOAJcC!&2J^yY%AM_tOc}weV{c5B z`^9W!R4=Y$^-A?c>PqEFmSDL7u~|iz17e2fu&wY?>Th4>oeIr%R++(SpGmTO32&5N zV$(u--0G~vjox5um8Qi~VmRVPb-CG}@3umxpf00^fu*p6CE*-IlD z=0gXse)2j#s~u}n%{b_H&7AQ`tzj;G1b-R~|3yid!wzy1&ZQ|eGc`jD*@qKQB#?Fq_6IBycrkZZ|DaJ7N%MSyYtMSvX0 zPk&?vyfRWn>ZL-Z82NXz$mM*| z{|0>J{e#yHI7m}PFnw#oFSgnCy4QUgJP2TCv$xwEs17iJE(XV;6{}T2KYx967>}WR z-(ey}c>pYZE-4vgUPh_xLF za1g@07ZN0K3SKzF)SU}c-K*i^xam_*gp({mlr`VxYI;5e@Fon(AO!NJH6-vT=uN96 zNX)npcJkxEH?3GXcYtp?AU?qp{XBGFKLPkA$A)LrX699Ed{~S{`E2H>c)~0Eg|o)R z&CAS@l$o)1qg@W_5`gXU)=*edCj0n{MfvUsiTMD7dR$1%hj6Hnm~k}TB`7Ft8z)c& zA43g{o64dWfpJrz4kKWoV|$!KXItwzQBV+m4(Aa9K$G8Y287jjJ(p0JeCW_n=uk^O zCh8tYKEG`T2U-QasW7+08;$YJ2jGdzxqDI<$B{e{QH(_jnq{XN zgH`s)(}2g!xa|G*=QLx%83?DV!jq@rzN@0;=za1uJb4;)Ll!>cOziZO;g}cU^I}Ng z>@^w`y6N)Hnz&~v?Hz{eCHu5^r3l6d7OxZ?`};HEl|Jk~^;6=NazPWvSlnNK#swz{ z^r({qu(u^i1?j$kh7s-KzVN&*MD9uti4&}z32J`9k{&`+u~Qh)Gd;w1<%5RywX8hh z42}8zfGu)goMO@}v>aDR}Ug3F9`^0vGM1?4iLjP+qR zP{&T$#7$usgp5peAMK)BK4S=%T}7b~LP*6yHW?644W~2>&ql-S|HJr#V6+tG&BEMy z4^Yy_4A&+u1OJ%ezjgRK?W1fQT;l;qT`Dg=t1HS~ z8w3v~2jH^bcewq*#}%EF+{eBL{8~PB9u4Hg2U38u%6cg0pWL~M$FH0#{DkT9{uWHe zPY2|E-W3{1gde_4{35&5Cv;81^eN5tAQMJX>X?^DTHC%{7A{^K;4VW*4l~g#u7UB_0Mg1#RbzR{TKHWU8T!kza+n zilNC;`FVK4LNu1cl_*9Q3f!t8ML>7Fb`uRv8ss^LBnxiYkVIwDrJr=czCiA3Bw=Yq zmZ31!(8Pth&-Bmz@(-cOQ)DPiHMD~*OeGN%8Guo(bOc1GlN8Nzg{Uh7X*d*D+8{%d z7^1BVQ&-kIs4E=0U5kiBMU6;uL>qa;Fmd`3AJJQmND%mVNi=*sKhaoP z4?z2^^*8U@c;b|X`S}s!9O1$&6{&C_0M<0*dx}3SjljP$IgJnTDcG~8*P!`9FWA+( z{O$jRIV)}tl%Z*&|I+&;8uX+epciMe5cK}vJ&|F|RSg<@&uaQl*~(Yt$}tlCDebcp z4wEsKB_2RH3{=C0aF_)n3XE_#POuEc(*O7X!r>T0l5w|&Eri23&Bo}MNj;k&S#zre zLpjWxD2KtrL0{QNz^{ytJt>Fpp&X8^_elk;nl3gd@?m=&xS$^fw6cH}*Ce0?#KL+9 zZkT5c=G+?=-1WY{*A2h+-?QPcT1;)9rHMxqG7+TnIe1|$-EHHoPhd$-t3$gwmL?iD zz61Ep%U zO(o3rR$O{A2Yi#MLK^H3@Q-#>!p#|LPzlF|{D4j~TZtbe*BfauuBe=pt>_Jo(hZU; zCMK0VzdzFJ;~Z=B1+4#;RWp53Z6>r^8HQmAa?rpMHE~y&D%ILy)0SpxA(QUKN(A1I zMyvFmnRSbX9!iTCuOvrpdAfUf#X4DnZFh-dIXkTF23$8g+SQl)^`ux`cDk)(XAzgj z*%UdN3zc$8T(n4u-7IUz=3z6AF7*bN^dj0K39i#@)W*sLtFA~Q(O-?)#5xw8E9?2& zTdp-J##`C0N*(wu-dWD(60s!GDjUPo+Ef-+S#0u_Vc#Z352q_NR*hv7Jv>(^B^Qd2 z?R1Or#$rAmRfH{-K6a|x?sCrOvd7{}LRGd*eo14h94*JQIho>;<$OC+uMN2pt2a1h zr9Q75o5ysu*CdvO1+C2yU#fNz-BC1^q{ZVT!SmheAj8uee!blkUlZ%jo*s4v1FT5D zjt`Z$=)A#6_#vh@n3>EswP|`SA0{&jZyob5^Takw4JE$5DDULXdiX-jTh;RR*stYV zlhPrdBc`(iky2vKU3AC|Hyw4dYl;#>?DYnB=^9hZPsi<6kz;8!gO8iJ9((9o8|b$ zaj|T5cI|#FS}o*vwO+M8I#ilWAtoBEwQ6VG;K?INC7R^CIc%$$St9+qR=D-}SZu@^ z-9bA_Hv7}Yh~B93a`!rHzD=r&Vq(~@H4?d4bHT^!eml`C`pj zloZFm^?J+HGTBtgU41$gwpe~&!@yi(7?b8Mcyql@MuWB1@{{b>2zE2bwKjt++Y~#= znSjUih0#_v$w@IT%W*l51Fdmm&91P8A=W-OIO70?u4-wvw9|f{)%2&mKb8&&{lB&i zCg&>m`q~4m!G`%7m9^g+OuAPM0>a*0{U99JS$WQ8`b62Km#u;nYYfjrP61oUfdlIL zhtU++Y;@X>4*+#Aabo&S*1Gy5(m-~G)bt2L8e@=%rXy{XrmnR?qU(kqBe3T?R`$L}7^5@2TVF_3Aa)zZ(N5Xv-$w4zqKyt(y z%VHL$C2mlGoC?z}tCflKk$6>dX1~vOV{s*Vc{P{2Nb_EP_v1ZS43Cv;>J~i9zK4>1 zKBU8kRXqz*lvk24o`YO~Aup_zm1BD3*T_H|YSXJtrnDYMqyZ?|8A{^HZB9-`$+h3V zf|(i&W>DRiBUAAJ9@uZcHP&|ZO4Ea>HhV_I;J0_C_yi7;cm6V#RBfo>Ra{rU+aCL3 zQh$3bH5-N3%I|O0OsbH1yET~Ses~S#YlN3AqqywSz34qYa`OVyy|hz0v!Q0^3NJ_X z`WE2?L0e93kIxQYBia^^2>eXgfHy^XfKdPi}kL_lG-1pfW1$k6yl?fa^xuzhi+?7rR3r*mK>Xoftvz{)*%KUZND19SHh z?%lEl3LK=4GqKZCgpA;}b=E3py9g|=?} z5a-YcI*2gv7)TO#V==UO)Jzo&76FnhxH^3#QD$T^v=x)qFtL_}Mh)P*QWVrVv` z<09zR>9R@v@y9CR&?W6`S5M9~C`;(`s)+7oEXJCPx)i=?EyDOW9x>osmlb%wOL7RL z*iWn-@_}}d&@K^|CsV{+?#Rtm4s-KP9!*E<;&ePqkc}lk@0W2issVv^JrztQ& zVJ6t&G2AS3eE;lK+8lLP-rU7Dbp8(5Ko7Y~!e<4U37LW2TitAv+jKxA37$Y0T$+RL z+nw0a)`9%-H#fdbC^3H3;A|Q$I$=xOU_YPwxqO$L2T!wQ6Ip2>U=qV@2814t4N!0X z^ADyszD>uEt~Ztp$pG}m`+!JgQr_Rc>8Y9H8K`A+>mvp+i;w7=OC^bW$Kf%WoU$ho z59K@h{wWgwDF2CnDKw@xWL$C<;G&`ae0n17mKk zb{f-Aw zv|9oXS_|)>`XVkL>%zk2FC&fR-7bbDaS@&qEo}Nw97#yR<{})|NO*VD=heqe+{xSH z)rfXC71c<<2@ei#VHh4^JaCWjN<8M0aO$^ZIKvCvwJiWe5rOmeuA1+u#_!2tnxCi4 zbqCKug)ukx4h;*+M+Swn)8?8%0hcAg7^x8Uc@j8oc!VFDD3L(2G9-!m=OE0Pg_8yTW{!k7V~y@w;BWr; z`@eUQ?)P=u(kwi-nbYewG!PZ$cF2N)k;f9E5JqW}>D>_L_>=<~mii`h=?{+DM>J*z^GDin!yu^#6Jd4l|nF7f{M8{Y@tet<8&fsvSbjn zc8@Rz6a-TWYh_B&uW(PMluyN!VygllK$H^nb>;SAh_gEWjTcC;@B4`B;bX8k!k;qW zH-Az>6z-M~g|#I_i3d-Jf|Idt@oPR5g196^(f)G5hZ4JGLm^q3da|KB*-)NrC{H$& zN3x+LU+NguodceNRK}eRMa^z9$4qVeR>kv&&?4W-gJa9z4{ zoGsO=NR_8-oT;`e@#!H&7T#!rNLQi^OZHa;BUec&UF#HT?bS@cv&F7b%pSXgVKL7{ zhw*j7ptYzq=h?<6R%@g-)$yjWPHa{cQ8`rF%}ljM3~J?!H0mjbHJyDeHd^gEt>B$? zA*pcM;h<#2mkBMcUT3w5f^EingY9((9}`N3P8Cy?X`P8;DSq~{N%g6Co$77y-b?gooBGF6t_ZML1))VxQH@&?C4uhCU7wRD(lDz#j?QBz*G zyX;bK4DuYm=;L`}DT?D(B_@>S&GfNfuQJt^%&^sRXIrei#FG1RRV_%PC^w-DJ)|>n zye=)~?ag7q)@m(698Y8I;Xr3Y$c{O1cVi>ne*4}pI%oP(wQJv}y_Uf_-e)G;mk(>&0dE3je@xHd<2NKZ1 zeR;xUUyc3F7Pgtn^d(2C9ihE!E*7sDve3vZ3&xO>WMVHk+AZP5S}KXhXOm^Nvx}ADLPAP%c&>p{wNYo7%O(4IgPm5iwV9-& zwMkoK=}f1SDUM^@GMCeA=V8rNsC>N}t<7HsI{|y$;|a}XE_!l&EKG*QN@jY{4DW0^ zNh_%ylhYfd3p72&Uw2WeK@lB_U5gm5^m`R1k*@LaUX$AP=0t-?Nu^1qx*tc`)^t#m zdrPc4D`$$YsY-@9)W;p6&vr+8gSpJ)n68QIk+Ms-dz}Ne8@AGbVdgyfnN+F9H94-! zrS!?paBHPZPPc$gBs~TkBN?5M#(@pR@wl|5S-H02rv`OXe)W@LG!vg33iFmK92mec zq6)ZOgV&bo)Szyzt{Ws%XZ2~kZ0k98;@r#B>Lu6g#Yg8Mzq9dN{Zs){l&wx`^V-ZA zAJQ7;(ns(otX6xU!$&irJTEz)f$`*aAZEFsTY1O{Cg*B6?yVZZj({td;CtSONZ;{p z4!z5?S&VZVn6(0_yEJOAkWNh-ih9|$TQ=H5I_$7;-fcoPdU~pUz|=Z~)2&l`oyy=b zwGOR*zNs}smyeiQ+^D?_T5XLt6vQ6)ZF}r{hFw}ldWX8jUGaEz3RsqFS@X@;2?U53 zhlRDKMp=#ix2yIrw-+o>2>4K!gw~Pxy|SqB1g$@A-forv{1i*Aba17z!9FH}N&j3K zJI0A}GuhrmT97cg_Z9B^STMQhj?@RiN)PMeB*f%22IAfnn%y{y~Oi8Lo8hUVg-J*>?D>5=SF?SR)+v}oC^T^(r#LiWkR>}vviLc`)D2A>T>S!)C_ObiG-*%{ z1>%y0CP@%yv+#xmR|ELN?66QLaVE+mC|a4#F2KGg=ad9OA1u2Et(B}9-GLr z=F%QCW)QQ5CKVn`8FBeS9Gkl4M=~FxD+25?T!lND{ZiG8Zf#IP^nvSs2x6q_D#+wi~_0#|P0sWs4{RI2ZUWQV10-M2!Y$ehc*E>;^BkP?K z(GMuwcFnHbpqSVTgQ7KpgSxkGW8$<|Afl+C(&e#bOP37AdWN=-swF&bpsQca$L_8- zpxc)k%d^bRV;P*qg0BHCF7F1eH68bUEP_yd^D9tKo1T;M$3OiS|2x;=6&QU?p54S_ zv6%mUn$!LP{fvHs$+T5PpHuR^b!WqFTgQgB7IQOI$)F#6&OP=vPN%hU9L|%J!&s!$ z!_N~_v#$6o7`vw!xMP6x)^NAC{R!*_Nth7xyK|!nE7A@6uD3W@4w+$=5nYp3xUPB7 zOnqMTCJYlly+xls3bU85G{;Qov+Qrz>S*u02Zz~@JMaqFq@>;RI4*=p!5dKFIW;#Sn6!^?@B;PgAP2_F~OPp$QbT8 zfV@o?G-bmhiWF}BCTlOfy)H|prM|tdyd0y8Ec?Dtcelj+E97C*Xo z@XzvL_Yjg6*-F2L-o3u(M)}q2vDIwirn5fkO@f_Fs7JqtR9U+16az09qK82hRl3$Y zkgR^gxEGSxeavsKrDmh>TDj^F=2BeX))>rz@-g12chozu1H}l2|BOe9ePh=+(7S1EV5R9n9Bz6djor|vy99dCUNKdbpGZec8yzN+1=A@_gdsz z1;2mQ6>G6l1{-00Vx`fO0?a?#-BU2PaKgv(J~Ef&G(O8&j1bHP?V~YA*TpNY*9{of z4clvmc8hRZz#BV-#Nq{);~pYm7@{ain98CW8W|c?p4^Wzi{7RrNNKP*(n!L-%%Se- zNV570)Kv#b7W~BzNn8j;%cdmwTf}|H->!Ft1Q{5O$y>9Y#eDw(|x9t&#p%DntD2 zAl_O0OvH5G(MRz!9K8pUlHF0pf+P>RiY3G?ge1zSunJ2WbRpLdV)M+3ehIE<49Wir zjgB!yWz>o2!x9!A4}FL;crI}WOW*~o^v}0&FmJjU#$!xyo3O-f#TBG^L=xwka1o@SIWKQ`7yt~kNK=(xO~)JUMi7?75JS4$Vj<3y z&?0F#%d(+G#-W_=AIc8Dg|*e}KdV??{7&(;w>7_7Ymxzj4aMpgaDx!*0;SM=;XeH$ zqhH2PU(o;QQa2rzR`(v-z`n^}BigN<{^c)MpTyjP6ljFJzDhyQMH!$7@?00{UJ6Q4 z`cj=&$~y(!Hg;xxP;^li=N4=pFMX7{EnH-wB+Od|bw|FurH!?ZQmE@Dj4GP@Hj`Vs zX2#KF=dS%9SA9l<*!Rxmchlf!IiRryk7vbXOzQ|)59qZCw7Zg@0#u)q%-1aoeQbRPGc--P99IylYkiqm}hTtFvY6uU}7|Tw29P5Uo z8v2-QH^%Hx=Edg%q902?OerwqzZ5tfG#7y7>@x~4J@|eqO+od#as*OZxr=YqfLy?6Tfh z?fk)T`}DcW9q_;3l)U@NPbTB1r}3-&68j@UFLm|`E?n**Uza<}#VX*!W2aB6*5|u3 zSly=wsatu|SU_9OWQGezEk$G}u? zafjyVbvH&qj_up?SL4|juvPp>gLdfGZ;=ptwsY$lL>%~X0Dt`Lzd{edPo207p*eu1 z1kwb5_^i8c0@v(|e+X|Goi0W1dlk&m;UB=mk4vX+{Y>{`S-uA)Y;yFC^ zLFM%!N#a(*SQ7vBum34DiN=`^T^)O`I39{L13`1{Le;+wG(*XQEXGF@CJi*xAPprr z6mtZT=2w7&bJ4)}U-eAX-)#--ZPNO~J9oD=^m@j;{Iqw$>Brd~G@XJ3&_ zu0^*u@nD60ad_oE zLg+B^f+DMHUS5Mg2%6c~v(~jM5uo?uR|oT+4zA8xlXye{40=0B6~DqvlXtlDV?z`J z3Cw{YzC-Ejaf`u1k$}xthCf}n0>VJ>8~abiaR`_~}Vyggkpw}>hlQG$0c-6c%=OeQjxAZP%1xS%!>JKcS}dm1zf zI%N3W_=n5rI%%XyojQNs41l55Wux6X14y^O6A^A$^58*{?v-?AIvnZOt^54H{b<+O4UWuqdO55?;e;OmL#~VGtwMN@?sO3Y7C`WNIM_Y zG(%PQAj#^7wp{PlI*_sbe*gdg|NrcL*>2;yvgoe}*}z3Nx)aY+`g8z~i8IG>MqHpF z%e1XTmK+Tp^0e+hoR&9*tzP=k-LtrhklqD9LJ97#$8p<@erxelKRfXg@ZE zabKY?q2HTfi2y)37C=KyvHFM)S-%(|2v?_38O^%a3Jbpz5RPHo66Q|xk_b^-ZjzK zBzJSpfB5d9ZpiJ%@4a|Doye6^)#WG$Nk|)Jfu24?y(bjF~gIjZ=AQ!ii)}AzR z(@rl;5pSW6relJW@ib{xkyU(=$|l{5hNa*eqGf9Km$KR>Pf!O#P3O}N!461=>i9uC zo&a=Pl7;j8K7fWuH;angopOO;4Uld~x;&sAF+Wr(@8%B}h95-7^+}^zy(#koHE4&eeh7pX@ZOloFKc?CHR09YmVul4 zf=nw)rX}*5`hCq(xy^mh9LX|?Ptim=FJQ9z1^G}yit>{euu)HzAWARxHX?mLstEny1)0<#L5bL+E7y(h0dYb-w?@vq9Ui+f{nvEBT`rDHYQ`09HxxHnw zBu&wD7kAuY@mg&efAnUFl;%W!0d{N-_(qZhOpbt;UP43%OKuDltLp+*!sVgd#&TRR z21t^TAz-HKA;5#Ua#dnra$EPcS4|{=IiQ>9;h6 zDhNf@nB7?FHrhUw$E!=!vhnrk|NWo;>%&Bzc21}1b+nMi>gR!ZtD17Lv4cx|T^V9avZ~B&_1dh+LB1j=2;B zoIb?(x}E9c&Sfe@m$iqqm-gU{fT~^Vn%0>cmA-UXR50l(UYW{xh9K3XH_JUumXOfE z`mc;d2(5d9A@>Igy4DPOr6ar= z;tkdbvIjAp&1KTbI97>-7V2S|Dw;%;c0tjkSJbB8V3kC(%(_~}yH5H{R1|G=H6+T) zfZiAlaF^S7*+Y@T>Qt@lJV0%kj)il(LMR#>PVo}P6w1WqgTZvlpG?uM>4e1wVi(yT z<2SB49Rrz1iEJ*NNThMs&fj$}?PeAlypm<>#u4Yiof@Ira3r_ z#SE#3`l4~54UmeTVdn0OCcf0WF^ApyN-Pih`xfD^2xf zN!JXmV;)FaKc;m$c*4X+c(01vNyO=|fv!o&ASTG$o;a{M#yA`qL}=h2n1Wk8O9gXW z(#G}%Rm9Vrc9Kox^d0*HgZ>f^#~r;-{$ij@JS!3|SkD5n*|!7TFprVe7s!v_dphO| z3SS(a8>aoL`-+2#4W0Zl$E`6D2ITKlYOIPuJjp7_OvGXkzMgMSG1yPIE5lkHz+NKA zo%z0^{ps`~{?)=t8(A53BE^h13oE!-*ws~AQkw1$-Tl#;-Z7Q3M&~gZI#nxLrq+?^ z@XgwFE-2f@7WjJp+MZOl=%ffwC4FqV9?+$shJ|iRl&INbAWN8<;h{m;n~t-W>?Lwz zURVek?nrX;&zM+U{uqfw3bU#?8DOdMFXyJ2jN=v5Ai6CUjgFu@6kCR-SSI>Kmb=6F zFTz&)B5@AV1@Kp2)Vs2}PoE}IiG%!LdJiiOhuMRC2HzRUZL@cnwl8{g0Xj^i4^rgv zeIKtqXneSz%H(qCbT<8KC>wH1R%CN>NPjBmSKrX~$!P6U{0{9Qo82XA9_|Qa;}Q3G zK#=jePc<6PC$@IuJaYSEANRHVj=4%yW?i%9g?)FmIV7vs;#-T;-xvs{OBjjf=ku@fT^-sXv_FWpg*hu9AH^ zi{Hk}+R1V0wK+aJe?A^(n#aB2OXezh9KUTmTx##JTwb*bBWe6vyEwk=X5XxvxASbH zNE?hBnWwC*XNG1$sU%KErAmEtb#Z!jGB{BNdbV)ZX`j4I#m0DF+`qEXh(Y`ca%9(McRv476=H#hV z%CzKc>n3eXw9{0#@Ng5K;3en$y_-2}mmih0^OvFYkT0ZYgSU5AZ;vDOJyX%U>WO*U z9A6nXo$6V=nXB|Gw|8Z6JjylR)O;?Vdp7!wivmjC_peduGHty*4V&ge?qw*ybPJcU z32pGyctq0qTm0?ELnYhKR=VqvD=eaf(+K_4H>L+a{n=PsW|miBWly`xoLv{ArTx=*f%p zb?HLYTX(J4O(CtsID#+8}9JMFfAJj<1Cr*oc1uQjE1+Zx`-H7#9j zm3!~U<8-HR+-SFwnUf3SsrROoN5>gOKYuH<o*dpX8=4CSRW}tb~#< zZz`#HtaaT_jYdzG@o^&GZKX5C_6>eC$h^diS}EC#*KTr+xZ1p|-ltx&TA_n(-gPY@ z+oSwYOr&f5A2)e1A?AOShE}W{YhSdIr%xG6zHar7W3Q%~mfnuOuF?jG471xtN45IW_Wu&u4G!n z%j4AZlUQUbwZSd?&y?N_p%OYwvUeDh5>nRe2zzgU@u{CNNHdiCSt{{6Nrj;eR(+1jIA|B-#GnUBTnd3Hz} zREF1?$L3wp?A1!glk=X#3No6LRg zbb`dQUhL`W_`V!_*Ggzmvf1YLF`2Dpib#|i<>QGcc8d28S62M2F?f1^IRBw!-qhyn zebYQIW@_bpGT!-7N!;hJo3Uz6erf#Zo>osDs*RgYv00!Ez82(`sP*oe@2Tgz?Axi8 zyS|Bw=hs(pJOfXU3)lC#{N?e*ZGUi?k_%?)GI5GU?f7Bxcw14I@Qa@g|2s-#Z0CWZ&nKZ=DT*C z|Dj}KZ||46d};k$FSlre<4WN@H6piO$%Mb2@nB=vPG%<0k53jlP8iL4q0~%Y7OVBg z;ps4Y^8VaQ8|mTAUDbT<8!c@jHR`m%JSvU5w~8?_(z2CIjZ^Oy%Bm-mq5hs~wzBQq zZRP6fM18rvIC-ge&q|5&mxsHvPS;2c3aEJA>t>%HD(TG4=%$dh=WRFf92Q_jDfd#&pLMRY zSk&D8NL(dOwDDQ}rFnY%aMw-V*o#zGtEH9Oo37Y>JV(X;WODTwtE2}V(wDJVzEZ4} z&Wks7vlw7yqz#fEi~p5cH_3w4KEAiwwZa{GEGbeVP6q~$Y^f;6i?w3$xL72u6??_X zOQGJ0Jxm)^idf1Njg@B4NBDlNFnN9$zn@Ps^si@w)#qZTefC_unToFqd_TR~U>8$& z+?Ys{f^yL>R9nf5^;n(`tJkUP&XnXbk%dLFKrQ~4#|-Q=`r1mhEvbK>q}l@R*V4@s zeFt}7wRlaCs>Eo6q(||8zv;!E(2*5|SQI)$ztlBqUFhr)J(lP*L`#)byvN3B^-uag zy8ZZPuM>8!GwoLVRU%F;3xcgPjvY%1Y1i3A*saiQ1=)AZHXGz>)l{|K(7MrDTU@~1 zs|i1=tn3%k>h~eQ!IeyGv<`<02?H6NJwIPWH0#*sN7F_#jwLlx)V(<}z)=78VAC~L z+f>9;*u*<3=dX(%*%XqG2gDMZ&m>)6nEUFA(LG5`)|=vZbJVlr!GlwOvX^9NQJXs5 zc}pbv+%c~O=zQACtDV0b27I(n{sW9^W{taLwP6UW1jZK1`%csIZ3K`k0nxMlqzsa1 z4Y<(IBAB!esq6T2ql{eto!APj@tO?5h%JC5lV3&FX<#Im5@L#=0yY4|tJThp-A;hw@_;c&IHCI1*|LiCAU>#!rlV)AYsd z-S)`xes@k4AqPKjKMQ27z*;QU2FU3U@`5?i<~4(!sP{EhmV`dSYc|#lECcHV-wd>( z`T8D=$rtP$7~8>^u}GrkgyiB8@fhG-%ulSifDq5x+Z8s%t2W|`Ozn;K(f37J74zF) z5!62LC`pp+@21-=3U>2$i*AiOvTm5?^uvt3KPGhANI3mKR8_)&^J+33PMa^0+9M$< zZ9&rTAJwF4qbhWDu}vgCWoL<;AVvBN)?n(#3#Uc|pkW^%XM1co@B^Ql$*bpck zClf3aqK`9Eb-)W)ljEk%Kv*n7wopuz+47thG?1Fd#)v(U+hmrxL86%@xb0GS$h5VU;o9e8x;{GrkP;D^kgPbWRu7X z7D$z3OY^U_kwW)32V0(Lvn&dl1JA${Nh^z!VLqsHAUUTuaRUe z*#bH1aA@a#n#JU}hw!{Vp;0L-pE&1_+#6MjiVI`yBR2`4%}P!j4}f!{&jYz~dTgL; zEd}*gf{WGH`+=fyG{-x#D^hMpRN zhx_?=V#2ZK0c8521v^vKp#t*c==Z#!( zFhB}q+sB>vK!$nV*gfDq>ZcyxZ^?K(_Z?hJfg^^7HNZlKNVE=L{CvJ82eBbWJ|`0n*V&eboG0UrAWWKmK=&o$AYt`S|IK3uT8W}U zZnkC6seMkbw^MPt-E%h(DjMxAW3!xnY?T-%%lc?EI_OQ>x<<0CdzTH@5Yjup8^&n$?pe3 zab|gT|VE;Pqg0&t;yY(cf` z);wr6GDWxRL0hWkl2{Cx~vcU-)+`R;4>T{5@H%f`@mXZ6c!vtIt9Gd309h=Zoz6h#b)$aS{4|u3(skRSv{5ZarUOJlY&x;2P<;f%{%KY(uB(k=^R5wz0F8w3 z^cGdU+v5G_AvCka5x%XSW1Y5I`EzyGyuSN1Q`m{S+Y-%J=k>}T{O=v%?MRljNNBc0 zWVc2$rFNUdLPLWX(}ZmxIB4Rq&Gas17K{1qy0=|J+h^Ckk&wSv3GEtN32lzX!dld2 zV?2$8j+-S!X#D<(w;vezd$I|Op&6N;C&6_O@Y@P6d%7giq; zF!mgon<(qW%F;GuIaln_-Rd@S{oqDj-2*_@r_HQr)hg?wB`nnRM_PPtfgquD>rByN6msc;n{$J4%xARG6qPJ zJCL9{Hh5?}P-ICq6@DP0M_L&>lw_t^!>+KfK-P|ydZO9|WyoLxC>jRpw-m7pO60`` zvkOW%&jxGIBRR^1fu*B;`Wph7?I>}$o@IiG*;sDxyJ?obG^rXW*)m(Nf>T4Wr8S*( zCpVBBlhMMKNhVM&ejNzaG`?txUAEy8O{ur9BT=H&1?EzA08rSG+CvcKo(Yg4_nl5W z-~-b6q_x<<%6@$H?Nuzoc@o_oh9xv+t9~SMV^O&3&jjujZ^2C&PeqXG&sa)IHFb>? zaOVZl6*-VakgYh;((P@=4b0&Pj}q{0d9_m*5^#V`9!vv3Egs*03e&}gn9cggB$;VI zgTv^@o*x{r*E(p+;875kyJw$#hSgvcx}VYsrogqOe)3_Hz|GiB^Xo?S_7>tX=h*2c z>SH8Clda#G9MfL>87k0V``t!7n@(lb(36=h%xJ!|AVEdj?i<0>NP=gwMInb*@a?sV z_Q5jJ>pcr><))c~vYo!!>;c(s**38*Wc<8 z6u^!Ui{30*kz2ZK_5V;`hu?lSEbZIK&Jhw9M~e7$iK;D4WM84jma5V3IF>82^Hjlf z!XxZ+R-3~k=nm5j7hd zmJ2D`<-!T|`g<%FpOo0HXxPidS0Nb;Ek$Rp5O05&aB|G+zNsprr#s=$jXsR-zC7NV ztXj!BxqiXlUIt@#!FLvGrtQxTZ+xOU9T*vb@lK=**@x`wHqN{4tYc14_h+NkHDi7e zfD5{vIpA>&LAGPC4;yOfg6&2z?!>w^ItY!-*U)jVUdVE^l zoS8Ymd2pYvf3CzOf}nfTq+0zJ7K`Cf@@`V|ZEj=Vue#qE@%he%PM9+&+lck>!x3~6 zk9VmQ*l94{*uir&@W!wMI<@-G=+0vY3>M{$9*rD5Sok>Rx8k!Up$cMfppnIn!69HC z=!C6GPE)bi2alpz{kOfQ{`;^0yaLs*@Wb@V}gZW7|NPufD(7GC2&9;%)4OwOIUEU2s~j>P<|jLkZ|)&NJ!rAPETwD zuvqcD%nrvNEHo4Ilakxbe!NjihB9R=9GikjNwSvB_t-isHkFZ=kR(G)sSN4pi>hau z%5A^{*(=yGr-BTRY@j9sZm_;&2ip0kWO#AgumIs!eYU)_vZC;U1szS8E+o-F9i$^wBI`VnyTA9)5UG3f zMUow}(7N~AHnIz!I58@Aaf$#SoFho<-uD3EhO2$5avOv0rPXgvXc=LHgz{h=C*uU= zL{N$&Pb<5BTyRbBQXF|&S^EP6wH6ge@9-*GC1@qQYN__c;wMx=UH-%#O7F0%r5r)? zj~wSGNCI7A?h9O#H&3fHd|)hA$|ceMI?7lqwxm8>N@gVOtZt61NvEh4DL~1L5?QbS z%al7OL#@tXvT9P{9u}bJZy%15Hn^#S&i%09S`Zr!6JesFXd~PjH+Z}Ng-D9e1dp4k zh&Z`6xkjR#WuRRx6Qn@Cl_&v%Qqwa*lC(az0pmy2T=WAkki?=cXeuJ^sXkT>1g#_B zZK2T796=@^)s#&c8Ha+X&XNJmm8=lNx$+=O4;Bk*%s&JWXy?odOChKX6ceNnbuQQ_ z`+(krl?~aEfddxQVS+_x$pJTTb(P7hrqoCF{Gb=mHa$bc1@m|z8oSd0{)F)^^DU6hyGgxBm@uvKYihK@2f z1R8t&Odz8$0sID2&|y>0D(SeHb#LJ$zubhYZg`$xWO~EF2ZvT#3@V_?11ro zUs#&3)%Jv#7}-G4r5^;3=a?}K8MT0UKa)WQezp#F^n89jEP@!71s3S6HWO8Ff76!? z;b9uBnF{Zh$thBhVaj>4zzbJ7m`M*?y6wB|Or+?^g($Y2)yMKl@$z^vpF_-R?`a-= zhiLdr(-dZiWddb;D`4H9i_8>qT)h2reNtS?r{UfI-ei5BFUmgWSc!zsl93e~tlr$! z&+DZ|{qDjhI6&=8!g1?8M?mvcKC&rudv#u~{Bey~f$4A(bcH1#la7vnyGE^8W?;Er z!kmY4oe1q~c#7g>33H{ZyG%_!u2C1X5;Gih#ptNqK=nmgHASLk9Pk2J*L5^Rx*@kf zMdz4ch6zhz>{p0)he?|P*1X=4;B~Rx=BWBk{SUk#g5ooF=9maI}bpO`j?QpW}g=D=f2&><-nOc`ed$Zy18mS`qewsy=7oFww= zMvmMFcZ#sVL*o!zLpG35hw_fhfVs7Bu7Obbnb}Bog2xWH^>I<<#ysBdN?N}q+llwd zmNNM0csCayk^06qoIwzL5}4cRe+8OkcN#KkEd=0^(;9a4nDFnv{`)i01(*STsb>CX znQo-WeKM4Yo@}wh7O5>@BpP#Zv{SnP{se#RS_hoIs$o48jYa%6`YFgAK~wP;b8)vs zFBWHB0DUe}S0xW-Mh5aGZP|Hu&LS~|Ja2!eM|bE44lE}$bA~xY`DY9LSGhrQ4jFhJ z4l$1)VP8ymEJmyIf;txz&kH0lmX57cA?qg-q`uhZ1`D*6VS?mJ2Q1RK5eLtC9~M-I z7+FTn2kDMG(~b7>av(H&B$^ZemQ8b0HBej`>pol4btIXf*z}#*{)S$BShvApRv*?4 z94wTZG3BS$wqOT%cgJKRf=^{VD9B{U6ej>H4#NfuIC4y|!ki6ZjhUGXTM`D- zM7ZvLXoZMQ=YUnX ztRQ?waW10wpH2(bY2chP+egZ~#recPUX5e*dK#||03OkK4$wxB1td%fWq}0DTEhYg zI%rHMGl1S!7Emx}D+?q;9Kt-UOl;pVVTX2^fN|?W#O+`r>;Nqj2d>Y013-akzPWy+ zt&{8@`IV+SrAW@X6z>B>dI4MA!rJcXJdgQpG0Pvj#k5m!hmSW)+67TJ$D4U~Hr`Rf zSjrA>izJxv?($E$dVU@tzIuCnwdUQKXMeq8-_Eop`PfYkga;xAK7aqN>4jf@Q<31Y zvCsDXbfavnSz_m!%55r zz#ZdEjDGc%aF@SHlB_630c+5BY9iIOq4M)g$^86oT)j1>_{z_tfnShNn^eBw22vZs zl=yJKb~E{3w0#W{?@Prox5)u@&^Cn4JC9^&rl)XG2s^iAcu>yZU4yXN+`EwvH_S}+ zk7(KP@$QMBDzvOe7?2-*kpf$@C318uJ0MooY`uHlJ3PxoalpKBSQqQO7<5gBfS`gp z9VD3oIVDG8caef@%(Twj?tmmjUNo%5{Okf1CcD7)>X?113Sd$cRlZ0Eeq@!eyo2;+ zOlwS-vf7H^iLlf8<$|+wlVFn9rkc!K!-W;1z0f9`jis6GVgfxH6c;7vi}FF06Xqr7kIsE2S=}Q*PZSR6knz zgu0|=pUjuQbSlewJ)%0uw8yLV;Wq%sF$m^0Ev~rM2D;W#P(OG*PMW9V;}pBBQ`*!a zAi{E-2~ykgBlW-)CQrnZOI+>@8cd~NTHd)9MW0&==6N*CX>GRDY!DTL36cdXm(H~6 z@yoUB9P{M`&Qpf@!wVM&;;TJn^R%$CkMJFXvUvfK^sJs>i*OQ&$7OYUB?)G=T9vp9&fjL zjV+M6rxtW5aodEl6-C=XD6~u(Cz{#fjW^N^i$D%REIG9WA(*jn+y;V!mXg~{FT@5! z=H~~+xo#xn?-dA}AaFi15Z1K=ZN`+W-CMWExh?=d)0?e3*><$M+iK&_aie&BVw33o z0g2sMHM~(P>bg(pq+j`jS}(l~a!X-D^N-et2PGVP;rtvAY*Ah@xXn5vxF}#Ny~1pA zbGpVMAxe|m$E1-1nd6oc$JuVy099m~J$@l5TqAt!lODWa(E}yCfPLDaA-1xBpz=a2 zkR%lk`i#VhkgOu^sl{+CVwc(dg5xF* z1_%!wEU5?+M9_-8E8R$C$N?{QtiV=Jwod$l5`Um*CQpgauQD*ao+1-CdYrB#8lb}3 zw&5o9*y&mqFEt>om<{4pi#!J>#AE{sOOC<@3Yv9?r{-@P07Em2Cc{oOvw;Jq4Q7G` z%NxuVO56t43ub}_vx~41#*Z_Ie!vY{N7q1=iCJxC`o5Fh6UHV?U^}vc_$>n7?_OAn zDGwAR*fuYrFHT5eAGc&C$)KaDNWg#knvUiQZ5l#rB3K4NukW_uLrNfScM5-g?qO`*Hk88n8~@pf-Q1vIpm>>91}Fy zBF8T|KAWEby2!D~67>sqp<&_8#+$`cc!ct6FivZJ5`?bBq&dhKGNl><3S+i3hd|c` zV`gPgFM8{L~`-u$8d4?4lI7sBZTtE1Q2SyV@zRA zjd#4jfwU~PVWV3 z`J@%3fk4(=2;N-xnT*wfXjylV%E4I12PT}N*aFHt3hT@_xx{rx`)y>3lIH@zv%XAq z4GvoY23AwpMw%Z3^OFRjd`6u2jI6>yM`HUIH+UM)f?oEd=UMuVr);%{P5@0jnxG*p zK*NMpn_~i|TPjgjz}YAGj2sgvs9HJ6KtB$HmEQTJ zwb;PA)EKKDMLyPF*Tf0+z3j{u9O`?C!j=m4y|7J3u3 zKUjD_=9kW;9C13A8HKZ4NN&!S;0avpZ=3`!$vC}Y%BQ?A2tLWaLezNjZ4fSD{jh^4 zjp2=+MuxHOFmOB9D5eIXH~P49(IdqG)%~fr`x7K-XT7WEwG--e}2Pw4ucO zGU`S&Zh|OD$S}}Ka$%-va3M~FME<8hne>2ZLH7o*Aw(-I-m)R6nkk4wQC5gQPmoo+ zVzr4Uny9yhwrrTX+_K1#EkWzhhj`CqjfEk?n>YKWBl~{}_&tHxaHB-Ag^?mi{29w-*LlCyuKkSMu-hA=$RPUzR}Ar9YyeiFoqA|osC67nC9 zIc!h;Nsu0ax7wcuarhzRh_PRLD^X75jE!Jm~+X!1|*q81L0UXL8f=yYy%ERro4V8obG zjsoq(Y>7aDM&Ib`@velo9VLSEGGWn=D+`ja%hF6ykFqXEE#g^fiY>$W>yk&D!{pR#S~C$CKa7&RZD^Dmksx!+pU6N?!k}Y3lrK0=rM&fJwxB{^9G2#6JF|X)OC`-@8wqL{7n~rcUz^5?>M$5^PGq zdSGJ9xdt~%K3wh006XD*QXCV1!?Z{^(6>RDujm(+#7E3$i$Im=&$UIs(A)zsYqtnF zT0U^LML=Uwa&}nDdjxuuwO>gWI!#11Oi^zN92*5^5doG{N6B3g6SVyeVj=?Z02fZ; zST_Ecvgx1X?X!xfy|SoCveozVCW86SwY7bo1=2Ur@C(q_mlZ{(gatDSCgYyCWW4glB6id_PHu_0I@n(Wbz;ju!*f#{AEZZ4=17eX32`&(y?N)yF^5+b8yAI zEPlH>`R*6N_sI#k)f5`xYb>s%F=tURTZ;3?`Jkmd;C4rNbs%!noD3EOEq+|5vKGIP zu$LM8mG)SizHu&2G>iDI?MEGXjM~$OWuzzfG~%8>)6v64kbYf~wuSS5q9O-FA#cJNenge{mZ& z=Gj8dre@)8-u2us+)Whh#c}y|)?HN>Zl{v;g#Pl~bczDBadS~Jb^LTy9az;S@@upS zyAg*}{RBBfW2-MYSAUtlA=&@BR}MpwzVI4H=RHsLhNuGDQ*W9iF8&%rq{knYXRE7^ z%$-S2W|qz*uNZiyeqa0Mi{!#0W=Xul+pKLP1GDOcumh~va_m`8JKblXY(9VuRBG1- z%2pP0R2D}xA_1&S=|!zB*mzLE038rQ|1Qp)tRw7ZGlxD{7^aqQKYI_B^UePU00960 z?0xNy+eWhJt272UfPJqmjWpkr;{oj0lNfLu!}gx*U{5e;Q7wrvMJgmUGs>^L!#O{9 zUoKB_yP8dnD3MJTi)=~GEU@uNBD<=(tE;N3>tn_p*B`UH%UkZfICy@1(7pQ4yUXa0 z^qao=rh9i8ehA^0`06=)ij(i)o8&*quY=_6S$5EV`JnvXjcy``dm=Ns{O?TtH+Ix> z`oH=u=l{t8?_M1APJ0&z^3QlN6E6;i_gs&jJ~(4{z2nOn5Bb~Si-Xgn)9dT={>g#* zHWv3We0!$<2jhg1JN)?K;PCLcclPS&&GM_)V#McO48OcQI=lG3f1pO!Kt9C_Poxxn z<^xZBkPycqpG`FV%V`;iQ4mU04`FD}_2r-aljHQm$GIoJ5ck}PlNVio2tSFD1bwC_ zGdtl0GYiv~JlDt~-QU16)mWgT{tyWiUh6B>J1k$S z!#b;Ue59rqwM_8F{%<4Xf*2lZf7`qz89 zKz}#8URzK5zLAmrQjQ>Zq@0w{h!kTZX;syRpl?n<((+u^afcjK{N6rO}(2z*Lw$GN$R4h+a3k(T2Du9VBu`e3)J^H$)8IGi`Cc#Hfq$sii4Ma6r(bJrt} zinm~;cJ9_>M-}hcmKE>u&fRAGZ58j#3*sB8eL*sWO7Y&@Zdvsn@7ztwR#a~lPxF28 zO2I$LQ&kmjk*^^cM1!=ccy}Sk=6ix9Jp?)$YZ%)$ZP=RkWsdD+t@? z10Fk*IxE+pYTVZ=0-|cHpaVN%I?61Laho3NxZu0=i{453`L@|mveCvBv01S6%7r~W zo@@(O+bRbiZE>`iDsu9eDpJfKJ7sa4Jf@0Nvp9N(TQ)gP_Ai5E7fg;Q=3!iC<(e}& zPH2}S`WNELt=4Q=UpPLGgUk|z*MT2L@);gEt}8*fQxUQE;*Na`rrh6{b|o~|S1?bf z!9N49aH5KCitA3)rf|q$Dt{49{2@=v!jBWdha&taMj{lx1M{6QgSZv`0Shl(iDLM6 zc+}H;SoHibK{4}+j%*(VL0k!hRvJam=Yi0>ZZ`e||(+~W_VG814 zCRNC}dLqsJN zCCc(AwKKu~)pc*2zyp@k#@E?$sggBX=c@t^qTMi*ZM9dyaPe6VU9`#iM_C(veII=v z%tKd%u#<{+OaW!>dgQZ|#e5Lyf71tG&0*kK5J@`w=c%MkAAOh%Eo9DNGv^AKjB+?S zRVpQAIOWg2oN#|E2ZK@0HRsfu(X1A!_%i5f`W4@5Waj-u?Xf=F2Y)&PO7BY|Y2#pFcl2_?{m;{XfTtox^i+^sGTro}XJM^K0T@^A|v)6Ra9m^HdPdR{_f?IgCGCz!P93U|e2^6&Z|Y)jZzEiRoE=i3Z6+pyEi#BJz|v!Wcm|&SeFR zZKk`|qZ!P_Ln}M9)}VUv*NCZdw?QE#A8Lgu6#lUKCT=?0{Q=+9<$9v;0ZIFBk9S^A z({Fj}87MqlD@RQvP=}e=rBCk;1C{^y^ycHu4ChNz7yB_7>)n z5HVjMtlG`-_)+ko#6M+$4VlyL>xi}-q4OXt20`$3%EPapAPi1E26205J&0esgk+2t z2RG>xr+uwZ@?TM8t-o@lrGNUx8-+>=qwuG*ON6J0()t6Xu%$N8M@qi*c~a2DW8}qQvu3NvUxV$DA|P%Yl2dL1nsuI_^q@> zG}*r<9b^N!QUP4ec+D5KvK z97v$%^5^F&P14?Uj#LMNz|U^g7D4J=ivXuAk-FeeW(5I~NtLaPc-6~Jbk`&k+pSt! zE)!L0>St~WG+$p4ivI`l zf~Hg9W4M*mspkynRJXC=c60BO%mB=j<9>&=X-zK=vxY!i0r1)jUg%d9M&w?k=mxFfi)oQ1)yD@83!W|c{#wcG(DqYjgLApMPp zf<*#mHx@%SSTMET@_UK86NGZrXTe&;w0Rp4m*i=+Y#)u_PYOol>}`M_zC7tjx4n!RSgW7z7G+hR@euMdM4og#ht9cSX#Xk|;Ec6&vXStzP$Rl}|sgSoPP&dV|9mXj!Lm3M9w!+|JyEH^u}Xp02CQ1*=A&SZI} zQgW@s-ump#J)h3xG{Kz+Q&$YE$DTw&=#8QbAl5tl>(Bq`A3inZrLJ$`jTj!3y!h+S ze_j9e=fADNdobNlz8VtDIIsr_=g1(z8o6PFa*eOvv%&On_=yH_sTH&X~GY6Y2q_ zsNw)=rcU@!3EQtX4CM zs?^Di@;vX9XRyo#SUN%yy$~!57;hq*Wj+`#8*H76S9S(;zDW&O`!zBBJ(!p^-mL0N zt~+p@X*|jR>zV|%%@Tu~!n}8`sjMEw1QG%xSk`>ehGp0=7)V!csm~h$kQ7B#e8Me& zM%WP8@JJG2I4h3?>I>%FL5eB*1p|ph6YhXR0#(ORP2xh#sgyQ}_af@p0ah?#+81Fd z_g1{BnPIvnY2R)e!?HZS-m(5^&C91R`Za0m30=9p5(X*E+)fGEsjM*I>cmzvR4ZZG zpva(44vdMa5M5#HO%mw=iOA)`WCd4Rq>Y_sie+zP&Nd*LE(n^TsW~1;6NkC8Xu8}P zA*$l|7*eiEFD;bu3b-Vf7Dv5{bkkS8r7$c=a!|MxVf@l_$IBxDIGR)x+xk@Jo->mR zj}l1ht4O+=oQ1A$@hVhO7TnnaW-(|(Ma4G=S%^fsfb~E?}JAfyvraYvyrEY(bVT(n3}U~l9+XzEZ4G#8YScl$>}HbWQOdT zv>mOa-)3Qj2No+;VaC2)JJs>3iLO?sv@&eC5*F!xe{c}yo>`3e(uzfqOKx1~)aoWk zX}6S2mXypn^YA1s#!`)ntR(S+4`C3Dk{K#^^X_sO@;f94P024Xd4Kx@+)ldAHC$K1RPjr7U#Y)&C!dZ$ zk@(Rie{nF0 z^%}^Whi;9bX08*@L#ZVHQ~q^1TcRcZB9G?ZesCS289vCVXnZ--aRCa<_y*8{=gzKO z&x5&wzgc)GrUNn5O%#Dc)$KD_3sRZFnEWz|LlHX@_;V!R{V4er24DF>0eTo4K1FJq z^2_^CIE8b*xtZ>Kb=Y%yAiJ;`gQczSd3uyJ0s+Ia!iO%aEuk}wah|W7aQ`Usm^YWaVy@EH? zWx`3`k^)aAaU5Ss-kux7e#=MC^WhnR(p_FC64&x`iR9@ERWf<`rPY*uw^3S6mz2z_ zpQh2NNRnxqlx(XvQ*F&r15|;m{^p3%y62mttE4W_*fpSB59;^&vEBdmLWPx z6xF{>7Q-;OmkZ6Jz?&zrw64#@?{n942hUju4?*xNOE@AHoeb7pgN?2FP;Jq{(yv(4 zG@U@8CH=RMrlv~-u3G={{FK3X%X#=|$U*UlH6kz!=o!muuOp|!8yZD!P&VY%bLEdt zE_urbvM`^u!zVXMFtYuY>#`l|+R~Xz;Un#B$lV991elepAJMpe7mvKfMF%v}YL?g{ ztZa)k3k+Evi2@5%NsJimioM~dv4*uN#NABOI3t+ZqAD0!BMO(IMF5rmY*Nq4sOC$^ ztrci_)@~uZT7j0m<#nwljSx!+v~MahWaM5o1Ep5H8@*!!VRFVe@2>kqynxrN{814Wi4>7sansip62(xz?fcVc=K2IU*_Ge>4?4Ex}U25F7EIRermuZIeZ@< ztslNISE=T+AfYx4$!$~TDwPIsStrgKNSqgp1`8J0MWw6K;303dNU%^fX=tEOMQLcD zY%)iUsx-uTv<3;AWK4th7ISS(1LcXxo~VkYa$zG}2SQq4Ml7cG;%HE1?@6FMH;Tm& zB}FWXVG5|J8%0PBV_BiuHxKrNDThFqJbKs*Pa2?94UINzYs%(BY`8auXzR%o3f_;( z&SRyZA1rnZ5^lu&AZF1_IAF>TpQ#cI(#{@B&SubSjq%}c^C(u|C&R}9<1B=7&AJG( z8_hhvh!~eoFH0fM0@ttK#iB_Xk;qFZ?`^pUatpKSYVx-dV7v7dJONnYAd?XNTML^B{Rr*cc*hxX@W+<$sy*} z4wOjGwms8;&>lN64Xk-??4QYDV@!GMI&gxs1=PhjOzF+ds|tga#~a>RN1fLKP?XMVCPHgvfJdEI zOXtz*?B`S-{#%t3K5M#gGtOk_AExeua!hH3kIBYOj%lNtedTWGl%(tq*tB=*M6+59 zU-@P&9zB>XaHz5cq{DC-OEpTCRM4gZdX2(@`kEMh^=%rB1heDOXlw)M791tzT(K!; zyC&62tI<#Q8)!AU)>|zlYE_RSZPtn#vyRLk){n2$a64EaK1r8syXoO zxL`=KSr3K)M=}#o1__CuV~aWzBywUKO41UbRoraA zVO+&~ClVR4xtcCWowtE>o^)md9VR)n4%kQSzMm3I!x%DVB+f9 zKu+s51B%aG-;G`F-7Jf`mk+n)StS-<_#7IqZ4HM*i!|a(*foq??P}rI+>6lH;^rZr zR?oIS-*WZwlVx&4KOa#V;^^?HeO@urI z+A9TVEM(CnBxknUB#3^hGruGS=o8R_$*piMm#b&iZtH$D0r3IX_L( ztT$Xfwp9{7YYf}e9OREqt&8+LH+iJOiqL8zA&vsZ0!baV1ruGz?e3TB6H#GF6-=%;f*%f->8_-ww>+iTeYVUX!g?P1Gex) z77DSAp6aTJ^3d95MPuv8Z6k-fCAE#6YG&}=4kL)VrECMaLD`VW@v0_y7zJs2>hTKF z`o>2bUboZ!h2o}!vur}}+C?&2^OE8OYN}CMrY=e)l0f+=Pag>sUX#*7w|rZWEaq_M zbl+(a8tQaLV?*I0UFppyQvG zOD|mq+W-UEjTn!j`ETseqCuxP8HitL>?-A!#b zqi9q?IE#k#=^jMUIDzjAC%%c?X$5mMUvmE);%M3kRWTmIFe+{k zj9n42Cr;o6Vf2hei|HWnr6)G567VZ}zauAB+!g zp&D%9vlS`%5JGngWyC53($#=m=qsp8id))VpvItiMpd&|7euL%Bg?KFqg$!we6%_j z1F*M;7= z{Lzz8HIz#e=a781c?{#B&_^^eWOBur;Le2c;m}QF%Zjl7j+M*JRpds+&Pa`jiTT%5 zAfbDMDi5#eML<-MRCOUjrx;t*4c*ZQb*V*ycIU>J76~L+z>BtEJ@9$Q7D&{^CkYb% z;**{LTvb+Ob!Vegz{^!^ioK}*n>OL(9cV|Ob5^;Kuk zFAVApG1q5H?<#^jY)fl=yG4u0)$#hPBfdo(R~_d&Je7LW?=Xh=?vw3E|3+1)^+`m# zAFNMeL&n!mv!`w3aJd+ku`4(OH-6=n4=0z~8l{AMZ#ApA>a=UC1`Q_6ah%pprh%I) z^-KLCns^;ROAgp_W=lR+(n3ZIVtLA*Yrit6jgiW{;#G@YOYG@Qg*? z8iiD{ubKrWt#t_MadBPMXsVsZ_9hcmrj!P1U~kp%#S3WgQ0`{pg5lZ;+O1ze1BdLC zNE9Mrgz?|dpdnMTh|D;GI}r>xT311&IJVf_mjntWgGrDgf#O6GEL5338Yt-dD@VgM zXCzp=Acidp5L`pjy^;A}tU*FI?j)|4=LL5bZGr)+TPM-{uqf^=@;x$cnP}|HLsTUF zqusp;O55EX_R{lMD*sglc{tRlB#D?0*id-x)Kw3@RYl`xK@_TJXy!q5;10j#_a8_eHR$->B|L~kAI_w`afG~1zlPJ`PNn2@c z+$mqkaU_Z(Nagr0$>Yd80|=+mgyrw@qFIx)#cE2H86pX#PcpOew38XLYjU{Iy4-HI zx_{t@QZGs*ocKeS14s=w{sfMtyB7z&e*ZWr%K#3V^E4=FHvWmj%W*J!aga26Tedt& zJ`E%<1yi^`>Z{L*zveXg0L&#q`SBEDO)p155W~ldz9M}*kJU#FOR`7A651pMXZ_T{ zlTeV%aQbiIOw)SfZq78$wbegV;TM%K-EyNrvGB^RB)?tUfIT9=>9BWVjH*~kYPFqE zVhb8ldlQXTRKXe&uvDF^1NJuQrXAaM*-{smH#gR#J|E zwqiE1Us55SwS~T8Q&$>;aw=A2e0uS#UUULqD(-m(%WRGDKU%QQ=lo$aF)t{5P}$5nwkCIcR8F%oItLL)eF2`QEjm{E_@uxd_}c)N zv_L8%)@i*APi{2WavuNs^MBuS$jDQ-&&uBlmbwm}Nsb9|0It=glNgREvoIKke9EFY zm_-bVqQDtKgrVe>sfZ#z#_Ud746n8R2^L#WAaCbs6KE~^*=Ao+Ya~cx7jy2brH}KU z1uNz*2)`=p#SMiM2jK$lexZ0M{1}0`!@)%=Rvu6eQ*HPpzbR8lSvD(15Q4OgV@qm4 zWya{53|F|5YdKw|uk#63t(1N8r52#rhw_bF=e|@(yT)F& zX~Z|_YlpqiklN|+^K11UKNpZZw>|e(|G}eG*S&Rotm23^D`5TRq*x4sc%o;iN_t7WuqhI{Eanm z1MYkshu}c926Bhfa_q`1TJBpYc*oj2uGMevnrsxfzuK?Z=8T2X>-ThphvrR^l@~Tw zh+x+u?+OSN?;+S#rCp$##?^%7O}|s0^bp?E+|wk^`6XM{l2w{F|$Qife_pPu|Q70itK{}1;bS> zpe2v;Tb%f#rH-QZ1vLfN8Z4aMO@oEof_pQCU}akZR>j!^G|*k%MG&ND-z z43*nNp-aCqSTnV1Mv>So-c33Y;1nATR*jgI{W*f89r-k9sM;|R z5!>Sq&vhUj(;AED?$SDf-yh1qf*^wN;p@Nt{MRSBu*{wEF(iU^I-S4%{I?F(?_@^o znnDCltR!bLY8XILcDI@4;-;LHE#xRATw)v;uW}npQc8kr8^*5XBsg^ZMjI=jZ5RWd zv6)*;Mvz5rsnPVrB6c;xM{MT=)`~c3F*neJYGog&X%u{tn8nq=hP>G3mO962i|EzN z;jxHey|f?O^N94b+Mh)zdz|!Z$Dr9p15u-LLhWVS*dh0_ZS>FwL)!?dqtACc&3`B} zvkmM9WkX(#N=#`z!q%q}WoO#Pu7;gy8^v07W*bQEq@8KI2ou)MeAG=D^mbi0Qn^r1e|kz0KF%I5L!np&C(8gJ7T_YtSGL~kG?ZOmG)Oi%mr%;y|k?2;k!)tE6vNSdG+h(5@dS-rQMDDvXT4=3J1HpZX zN$@+}a)KYZCOEWPW2H60%l-1J6Ijm+PYZ!Yxzw8voxd*Pw>sW%I(o1_R?(~H>88av z*t_np5$8z0g7<9#!@wdf+BkIW-BhdgWY(Zz9ex%QO-P{XcnOIBt%0%`>S8xa1MgX* ztr<%H5JX76{=uF=$`2SIfpr;fxokQ{WA)q@Cx3uIOZp&UPJN}Q7alWdK6edgk#U@=(+m~S#hM$g2Wt1;OMafwcfQwS#Zh%3X48HkF}6Upb9B(0~jiQ!eSyBsg9Rw2W<i*Ek9%{t)K8t)3Zw0%>=r)SM1_m4Bar(@cqu+4v_8 zFUP^`#liXcsw?d@`7{XPIGDK@h{oi@u^~Jdf2! z4a*6J8Uxmo^<>HjGE>m`$vxasqr1UiT8jOB|-f3E2~ilGZv zI(*WLbor1ypCk`0R%nug%q4}p>L|2Xi=E^n4??NItxclM+CKSTTlB$#G_eLO+5J(+ z8o*Cm5HJ=~-bZua0ps2tb=aJ33b6cVr2uFAmb)Gwc+l@B4CdpBaJ|Et87`_3egr+}M55PY5T@aySWa(0j}2jK$D*mY7>kW)(N zq5R+V^}4wMDlS3l?E_L7EV?Ublo9@n#X#~#Kl&0nR3ajcjmNm(ARyH+_9hj z5X}dX6S^~XdRv9wYl9?HsEs{N+S3*3@5VMX%+Eg&p;WCPH^`fY3X(!8PwcpDQeeRK z#ZKT^SD}>6G=9Wvt5W+sw|^U=il~bg(?MVge0$sy>yYYhiPEV?51EhquQjy)GnU$dpDv|`n4XVYigov zI@iK+b$iz(XL+}caHdTNs(k&CH&5!a<9*qgZcW}0>w=SEnf?sRc7?%SzfX)cJhfGbc5*>=?y2{5?QS$8VTH;0+BL%cWqw~ zkd!%97m!WXKsd69kmMM1T#60tW)yQ*Nn0)ipfmuf7N8-IF|bHP%>p++w4n`PICXAq zu}FZNx%|}@FjRB{2@+1=64K6#cor^4vU6Y{zrAW5uu+x_b^&NJtsQTRN;##Vn!~wNbJu#>krRr(a z)ll^$*CR^RTl1!p0HIYq37SQJw8a!bjBkhp2&?Kzz)-4wKbRe<>Itwain~06pledL z5R1FT#K812sx&X~C7i_D2~WkQGG%-M`GwOS)~nzSGbK5@x`Skzuvf83urTo^wltK- z@UFB%l9b*gvkERElBPKdF}c+06Kocy_%rITcfwd87dr*qOU%qjL8DBBX^Lx355)X` z6vJoihfoL~Q=m-WsacC~dL^fDm+|{KlpAfQG5m>-g&*@>M)4QbJOYEE?W)bMJnnqO zAgJ8k77_e@!FPKfhr!)WBlymp?({as-2~gl?uU?L`uo{N?+G}EFy}JM2o|V#9tq|~ zY$n2~8^>b!w8Ngf91h*2R!L&aKoK*hn|(q8-%qX+22n7IS?B$m&#ce57X@s}7vLtF zN1*g0u~8@OAvr9(bfqyHz8xO*&JNZ|C^y1cBj$M?@UuvI!-X{3jg^$>U!=V ziYNkSg zu0@dWPbc$o*Q9crZdiV| zAVUUGv8PSLDRQ-C++%h&Q$BIVS;{9Fyl0<&pUZzxrTs~14zFE44SZZL0TRH^p(`2D zvq<9iZs^#A_vL$eI*IJT`{2zjLi-f+&_1`kMtXT@P=9>QqlrCm|78~()Npwp_<}u= zhN9<5oha_P6H9d|PyEtMRsMjtBPCuFYaE;fP-6bUuv`(vsCav#EyfZfDXDy~%nDYf z?=_O0%$Qx1!ryX_qb3wSB77I2+$-j{u8fwS%~}AYMB^*qxoRIuJypjkAGlk#F_bjTUs#l(Em|Ros zlSTm@S^|{+?32iyx*iW9YTSUxniY0s+EA4&Hj|&>g);xw?kTz^lep5$E`&QHESH5?#vo(Xj>&XRY>BWJ^6*7>Tp;Y|{iUkNVc87-u&VoqiZl zq& zyA4qGs)<;fzg_PQPlA`<^}R)a@1;rc4Km4OF`Eb<0ga%BY#t3m@%!90Hy>|y$?O&1 zx((dz9;2X2pFi?kCuVnUoP+{@6^pwd+~{1nirBhhd-MKvK84vm-8GpD?f02H(e)}G zty{Bo+y54=Ta_kf9&{*T?qqM?jU2n(4l?~iWt}1o+#~QSEDhY_+^8Rdftxdh`aiX8 zT$=@X;uQD+U3FYYYC(yy%BEdTiQ=Htx|A76g> zvE-$uDOcs9R28X?wb@37DbgY^ky4um?M~Xcfh|@7r^J-IzCCes>qf3kVS{XW)_h1J z_dGTY=8<5dx$nR(Nou%)hr+;bELoW4OY3gMuIWJ6bgRUNXP^lE?!YB~`50TC%YQyGyjWgD@N;Oa0iPdkWZPMVvx!%gw?BTh<+f{wdF@n=l5YX;O`!&Rs^TtGzNVK@%^0Jg2{{=$CJJ}p zA?at-H7CtX#W{dzIb9g^7r{v z3_G^q;R{pPOWA7vXdjy`7JLY}!=RCMdM-{+nV@C4ja|QHA&Cdv`9%LJnQ3K~1N5)-2 z9d-KL6{L{|*!cc-}{NH33U-|gd!qqw^b4Ov^XmYjInmaN)Z+DFN{BdFIX4!C`! zYj`ns1$CSmwIfLT!i^{RI=5DYlo}T)q`IcFUwaK++jM{!mk)KCX`>06UOIw}p1=6z zDTG^e&e%py__4sHt=Ps8RsY5|ay4#fEMfxW zG0mU!78r(X1Ir2wS(Cs(5$Nzz*)Us{voRl5z}eiVEtam%11@eG2mQyzYW?n<$I)CIsjmD%R= zsU+Yged6>;FHG($NyV9sSM)tu`o$Y{Do9}z{gl+6(M*!$n4@nFX`*6n#Eqi&SH0@| zN9*cC=Rd8TH0t4X;KxwthewXkU+%1$;UfRtU%)!nYR==SAAMIj=OIfluO`kA@i!ES{B=E6_#*CCviVA)W~B4ikG% zgteHVY_J|d{#so!taPG5TRGrZn@rpdKdo|F{@3_=YD8wWw=aT0%w69aID3*BLRwI< zR5ZF!b$EzNh74t(LDRKKToFd9a(B|Qn|qz5>*GNts0Zee7|lJEdY*0R z!AlG`t{xaXI~=M)NoijV028Gn;kE;*JF>PBI=0|pPeZgW=*uZbKveZ?YI7#4j3o(_ z0OO3~y4H{YqKq&SB)M}$=sFx@vXcM?;ZTH_JwSr?sSaC`HUdsyl89T@wz35fS#pxP zz1gx%qLkZVFdru+#uFLu=DwB>0%B?9CumX%!+LI{T8{ebpeGAyKuGoQRg%DcXA*>~ zp&e&Qiy`@P5H6tG%{u+c7)YrfWFUYh|Zp{MbG`+!sii|z^41c2 zA{}StI9DDF!xs6^$~}ji0@Y=eHU;MumJLzD{?&FH&z|BN-mFEM9IH>8ktP)if@4cd zl3b|T46_B!38qt=PO#@7CP5knP$LUv6OrJdF8r(A5*Dc*TO`f6iw?uB3k!7(LxLpk z;gJYwn2RPHfu$>aQ;{ls4unvSron2R0=Slt@vQ&q-54=_}Q!%sG2|9 z0%ot|qP6)`-rbHZXgCXz=18{57*me1Ye=B%6zGSxft3YJMPs&UBs8X&?tTdh`iVV9J1*?%lX9Q6YNP9Rcqn@@zt`UyDi$R?rCOW zvu)(1ZDY5!fJAQcklbz^!~#;#LN|9I!Gd%W?!+Q=qu6!uMT_df#f74hKp|tBNU(HJ zfHio?m;e$iby;r>8Zsb522Uh%KJ}>BEy6v95w)Ah{Udk5?cs;kBhAkRD3==*aF&l? z$J$gNtuGR+8rzQqFHBNKEV7j~P?9o^GrUOPB6n<$Hha4h>jb62!r2V8^%4-{fr}d? z5@&B7RbWHJf{>{T;q2RdAs$NwJ@0Q5EQ`QoE?i+hrCJLRaMv zrTd^1?O@f!jHzc-nl6Jtsi8_v(O(3kWf>Q^=ZmC36TVzb_#twqb8zEB^UUEqgh}Kq zoZ}kKs;b;|S?ojIBKLIx)+kM17gVi+@^yjXlDbHs>=C6;WT=E+n#9BQBqp7baH+l| z!d!?&4d=7n)l@V_5jLerzWlD;vZ?`8p!>`!Dx;$Egvb-me#v&EUy1|^XJe8;g-Q8* zYw+x;lKf|-MIsHSRoi5+V0wqQYEKnxrlKmz1rR!{N%L>>AD znR}_;)OMdX?baQDU6TR-vf&Dk4}4QCIV&#?&d*n^`qSjoKu%RKl`r)Yn?E@KoF*S8f)7O~Kb}Ig{^ckLV)%H` zSEP^UvHGZCIe`adC-ti78lT;if@Fr%e+y^&Rl_rFIx3}`_@NAK#(=4W@Anq*ec+mh zMttgiz8O+pTRf$%9X4@PWF?0mdPIaF|`P676_r{y#Sx*6jxjbNMQ?Wt1wPu&Yz>z`#YUdt7T2@kp_wAIA1yf%P zMdZkruHErG6s-SDm+FXCQp!{T4%qw5@m%MtoD4m-^ZxdSkk2Nra~;ZYVZQj~c;%aS zf%7#2iR?$0{Kdf}j%SzMZsbhFlt-OlCVcsuWXLIx<;QT`)ssE-y8Xk$)9#eJezF>7 zU{nw*L%oKAt5VR{7;5G^v7AIXn*8f>wnR(*MIOz+{op!4GklO!(axHtg99j-_6^7b z&z)UMZ3ztrYib~vF(9Z5O%eabtuAMf7b zp5Y!PPjXlQltc*xwOn!~x%rUTvPk@}3t)G#SnMjGdE4+QRSVYt=JqNX!_WBY%DYvQ z`_4>mAJ&R

*f3Pm(nIUc_S$ev!SEeNdzB-@HmqZ}LY>cXS8TukxRIVquCbe%A9- z%LXMmW+Gz^0|7*0%XN27)Ez!;FYM{dXVq@JJ$3idX#D<@V-*=c6N-*h(Ks1gk#pK5 zn6pzo!5y|?b?ZxJxS`Skir-X{NZji*N#1HTihAVP)4VHR?@F3?!%|x=cTv;*Xs|FS;&E`Fx`elRcHArJ6%IKY*0{ zXBkOn;0oCCDk%pisxFGz2<(}SRne9Q-#YB0-D`Du;`T}RC>H$MY?#PEAKINZk&FXW zGA0^cB2>u{mH&+m6cOWf`91h&%jtqXp1w z2NU0&6QmF&hU@2}$p(pw&LKfn`v#lE!e(qhO-; z#gV#opbt*J_Waa?lko^#B3CBHvr}lU>r&_79@?NfS8;_}ogegOy4|JD`-j@|l?Nm4 z&kVGpGQae1gr~z`pQfEo=kurEpX!Ufz`Q_xk;PzbrSeHt*1}hH14VWR7e4Y};yftV zg9Z@;Pf8vPL8V++e2KEpgHY&^0A4a?IcFQUFZsC%KsVU@+HM_Y?6ab z7*6Hak5jq%9^x!t66h7k#llxzm&yk9x8-p{d;Oj|cY5zf*Yfq!Q>V&M?PWd_Pq?)` zwP+2nVONJQHcTtZtxJM>AAn1V4GvjGok$w41|AJ<5Z?-1ky2W;0_5^zWF|TmiX>GB z{_w+f5>KNMA4fT30(Ic*brOtpY1U5Rv93#lz(#9>n?9u)D4V{cS;5?*Ho1_SIt2eo zd-F??O(!)q$*%ZoCye|=8Iv?eBO6WHcfjaF#U19-<_28p#i@M~-a|jkL=vg`DB&GO zq?2H$_LM(uKwSVwr9^qu@yxIG=RoAB2ed0o=>c8%+xVQ-UXEK@qShtaf$Lw`-?TsUq65P?HBJxeFqLQ_?s&E z<4F}OTZ7NzSn>;Ew9E*SJt9!cHx~}T> zGHT1)hePKNHYfhhsOhV~U3(kSt-l~{%fp18d* zqaT<~BTQyCKxDAfmsMa#8%RBZi=`#OArG|4a}pCzLR@TYNRW|6YK~BR%LWPN+YHvr z1Mo!@`pLBz!BMF)_`*29tgEl}!XNbn19LKw=A@r4N8NW_dVaG>t@o7SMN;&KR!{d@ zivGfnPuC16uxd9Ku}`E>xr%{4z)Kh;vaOSMmiTf>D=uW!*IGNvx6xzpB6sCaxyh7!mbY@tjx#%G?leE;bEo}F zQi=hi#f_ruZ4#6eyv6C>CK$4mB8`VC4v!74#%6-%loS&YVMF3*4CQ0y$M-@Ca=t}? z+?tWFKx%pML?pV(+ebh3d=I1xlQFkdX`|Ed14c(xBlIa5APWqA?M7ZJLCoLSIp*9mMT9s<15yiw(*C zEcgjWS{r!A-qUH4{K-W4NjeWa37RYkejB9k)ZttySG*|BR7%R?sCQjfQM=XfUg&I2 zN}^hKfjUt=^w99aTB}EyPAj!~l#N;TiVAvJc|{r9_VPYzvDv>;Q)tF#e1b&M-V-S^ zjwx8!T#N*;k``BLYcCZFan5C0bux01%2|ad{dPsYtDMGs?mH=?Rg+jV{?|6>TSofD0O%Bw#7}(-qE4EcEwpdO+cXjC_b8z znAi9ySZ;HnvN+*tHwTjt(z7`xb9LLc_2Y!ZuP73MJy*CNnmi+IdC7ydAW+!`$W0}i|)%Hrgt7FNv}^+B;`0h z$lY3v!i%eXG-khxvRN?z3P}dN4Z>V~Kl8nFZ&FlrU5BOltmz_Otyr4N=A(L_$}V7w zX`(6aH*GH(%b0o5FLlCfyIpke?aJ!U9TTqA-@vNJ%N*tH$%4#%(6Fsi=fRmD4uk2q zQH`#%(QK2-bLQ2*2lS1DFbt$#A2(`a>)54jqI2R57rF-n83vh19^3;OmwRDUzl-*N z6ac#}+h?=Yv-XemH-*{&{S%aRlM@bPniuddD+zucPU9pPIZHU<$BPi`f~TPk@yylt zmP9Wr4Xub(uFkh5GTZEbiG5pG*OM1TqPi}D*mNzGbvJ|1!IeXWnVeL)lKd-`d+5Lz z6QmvCz^O!lLugs*)=7WVec}Fn@(QVPrPj5S4MOw7JUj^h;;A%U>ZB{Xn-mViB~_{Dbqu{#=X?I*C-vo798Sm4!uN$gMDdI7{Agsl5XC>|pJsiSvF&?l zg21nkMO3z7cqGMyCa3V{{UfvN3x7T6&2oAzw3j8GO@ysVz_QG5x)IaQi_dkW;Q57Y@=Wvw94dm3u3&1yM-4LQMq%M7kVy&b*4Cd$a^&VpbvS)tv@t2 z?xIjWEXrh@u&uE?zw^^zSQIyUc`E)o1_h=Oc1+sMc;3R8vX1uItRvcOla0yCmW`uJOgYZ{(iNNK;R@!ep$lF; zefZ$TS4+m0o^mCVrs<13T-spo#H?;Z`@qQ?`{Xh2;MwdNHG89L2nw+jk6n-y@I(L2 zoaNXC^Le}RBGq>%bDGTS_KT1z)5OX}NE2&fe?=XzuDoItvF(DS>7(r{GZKdB&u=H8 z4>gi-384rnX3Lr++%tSmI~J$jGklV>)U2?j6HdZ4!{<$(Ev4 ze4Da9+qh=o>Ynog9!KZgf*oF4>-t<>vD_>-|L%A%s3bI+jtA~Ua*mgOMT}!BY{9G9 zHMoUubR^PY5@7QwuF-Ij!CjYFYx;QBBG!&Ag3XoAu5u0mL93Fj)z!%@>riPtax;jl zb2ZYPG4}3*xce9<=mPMJJ*<(LZfi%En|H{RAFXr`FOXI8kWQh^u1hMn8;r3|K0cJh z23l4HGU&xcCY0L@*(p?FMzB2h_173g$o`ZDP>B|Sm!HGe!mGBGnnaUEMQ|;*k*Kt8 zBt)FRAVE##*N>G0hmW0CK@@(h?zCv8Pay_9yiJu2{F<42W74;0-!txp#`rL^d3q8&oy9R(=}O3PXQudkRB; zAi^RI&Lz@r7->8C-1k+{C1V#I9@VYPyD+G0PXuKZy__ecoh0#1Af>aX`R+-wjIbI` zW|EDteM03cCqcfA!r%kj z#56ghy*i%Vx|rBx&LptDD^JL-ijy_$s%FJkGz_OBHuC(43rVi*1aoVG1cp0#+9lP- zg*6G|j8UzjA_I11yfBw)X{-1);M1BvO{`wWl17vRHoW_~YJ0oTn_T81Q0g>q-yxN? zA7jdQ$X%G7cdqanR5wq5Esl5BwM(Ym;aiPWoKL69t*_0Al!{??kyyYL#Puck2h;^7 z6PWy7{(cC@3F__1^$$M0oW+wrKR7ul6i3saBvKZSBZHy?4!1Lo@Q(9^QYfm1-M$#BwdKvmXnY)(HOIxMi|P= zOM=1~fFvkn@m~tmjh_T?y@Lx6Zv>LcmEkS~?8um*GOJLHKsGFtqxXx@Sb-A$5aY(% z5q-kAtnvejml&BrDt?Tw`9^|6x(P{GST`XFta!<)MWBbNU>hy0tDFP|b}>fOlfe4D z&!2wV?>)j;i6p?!pZ@YkN4FXwW) zESy27UKXpsn_pCyy!o?mRxO{OyeN4=ZtUepKe=0ewS%CGq}PzaTJ+r?7upbY)Ifq7 z@L3_?Y(Q<0NN~<<_KhN?(?Kf!ImJb@(h!3&oTLYF#5N@v?fpp-yHnveJ5NlA&k%jf zp0>{b8Hzz8RR9O)r>HeZ0*nMBb+~;g2`Uj2A=iTa zOsN$_&Xs`Oe9+M5fjSsS;+ZY#rbD0Pg;Y18P=iN;LrxSLX@2H|sXGv!aqT|p6rSw5 zj)$7gVmGHPKLRr8WeV}KJsl-Hqj)*?d{!+)eGdfa=L%fh-Pm(y8AXoH4XTz{FL8&42m^Uo-;O9_kE`xc_ET z&ZU&M0k*9d;8?vuG$(8lLxtK74_--&%RUhZQCD&2#cp*SGUL3g76Z3NYx-)vrBs2N znVZ>=>)cUJ=d*n)wVCc#tucFF+b|bu?_6hY-1XPUW^1GO4;FHkBO}CTG2sWgmb!f% z*%P^mk*9{+vvbV+r&GIml9C{QK9rzS|60sn^uUqrji+e_F4(+zeapU{Tb&lgnQ$eB z$xelAWQx2fO+&;TmUABVEax4^*(}Hm0W>D!&geLUM`@ui$P*qCm|o|o3wkub%MFMU zTtGPK6zggl4bgET#HqRF`Q!fq00960>^<9Z+eWg#g5p!Mu|@GN`K(o?*z(3zw(KLx zmAFowazP*{VhsWe0P3<&{)e-VyFceIIdcO=0)qh>Js1*RrBX^r0@Ih7>F(+7>Ato7 zm!0RmUZ;EV*Y4em=wo#9*Si;qb-(am#7o<8Uv`#}8@ti1+c~l5BME!T8Oaqc?O`$hV1mpU`h7;vb4=6noPPipQ`w`E_u%{_3?mvsZpXe>ojY zj$ic|9ZQZO<&qcNkY}&mSr`$9v9Sn()VW1Jn_kfF&J!$ba(;7a_DlxO|nCch}*{E1B_7d>4#&ur(skgg2z zqQ|fS4;-u(*F-od1_lrLw~Nz{zkT@wh3tuYPX~;>Ft9j^^)Nj7{_UUVt3}P1OTey| z8GBvG_ZkeV$^8?uwjt<=1#1jFd!Kp7Hq<^N7$8(3@sS3W>6|unY=8MtNq^Lrd;h8iPgV5DcI{UnG5D@O41~iGh~N@Cv${Q#3xR; zSP;Ey3|=y~6Jx+)H;D~W<{E?bhcQTGjFmaM!kIBpAc2m8G_@0Rz?LC7CK-bURN5_> zFlR-6H3rS#nl~w;oVguk)P0lSPK`lgJIo3L06>Is1zYzhK+t860_H&!GYZnwoe?t* zV&R~`T|XFG7{-<$F-!mNvngOp+l!u=0(LidBgmTXn-jkSQwAam5Y#?I0RssQ6ePIN zK!F1Z4HP7C&NKxMcCABk{kNpAWXi=&Jk>^n`ET z50N^1nW-Z2=5j_!ys^|9xxvB>-=myuH9QVu%rvR-X#yh9<$$A(u0K0*A%bdxA}%yV z8pIAo7}ymRukiH)_A!kWH5-`e4Ue8eGX(=T7Ml5tLUuzO#X4d$PeB$8dQU+X41#rn zEaO%LS(r#ngDgXyzmXA;l*$eHmm0dCYnV5vGafvif;4(Twhf9jU^E45%$p($;@B{H zR7N>AKwf3s5ziDLU>pSn3mQg20fTAfc1#x3nT!GkI!hXqOSmN%c?&x-<{0{H+4o*- zg)^3M$)h*cd!p#QrB59zY(itpu>*^h z_@F798%FoR7B*d#twODmAHoqM)uQYK@y?4OQs>B+hCq1^!T_>qaKTiFBt;Rm2tk1Z z6jeKN&_S#{lO8%0FH;YlG1?#wI%9q_h}@-4t)?AkYhT%u<1909V~(@SC(juG$tTa* zljm$pDpDcUw)Es4GCldSjynxyq{7{4C~!bS1O*G|PD9cKv3F3QAnr62AZo`MqY89b zLP3H^augt-I}HU3>P|yh+%Q$$j>&?$({PJDFa^n+T#`QXk1ma*86tP*tKtxfIIE?4JlCKx(SS~ z_e~bS(~pe^@qL@O{S)Fe5VmJ1Q7^%sp#(~IH-M0Q#C04~Hga;JIl6g@@+XO3*yvfB zOMOOp{||ZHb&`*f1ULh6b4k5vcP~4=ewvR(J@QAXM`?NU-li`n;qqnY=!iWbyijBQ zi9kxi1$n90XP>#pYRo^(U3=3<8k|Ep&1!(z+*!}MrVj_IqNM!|(=b}JAwIFx1JiM{m{1z$sYih@5y!PU-? zrzkjrnaT)WV{{5zUG2iS1|kJ9n3lu7#fSr^$uU`7&|q?>1)r+ z-F_kS6*bUr~%04!`*7Q4LxII*_IOqGv9L(>&{Dff#R>yN9Du14|iddD|EYwZdTo$ zoxhf&vc1#0Dih&Nqb9;{u016TPVKLpiO|ow2+|V1mx&z_KECiMPJMbC@kL-S+|44t zgJV9b{1rw)_LbBPm40!?ERPgM;ZN)${+hW|x)~}`R4^jXBHUaF{i+jwd`Qi!-FdXe zV$uZW(VH+xsF%);9nX8&IgLEq7Zb5TV!A$*gwZ6nT{^%la26iRXBO_y;ed@W^P)JR zXRi{=H@hTq2iaf4WDZ$U2+>y+rH}7ETz&Zi6bdzf6|l&u0gOZ`9!RY#b7+0uH?;P3 z{w_faJuA^0Kx>`M42t_3;1@9NZvZ1$+}{8~s~8saH;`%rvf@o3#B(F|3n}@C;>xUS zTypM%YzAD3DA3Uv1qzt{fPw|}<)DDo@a3T3)vygTzym3L6g-$V*FYLbP2=`J9sP@4 zoVVW8*v2y`Pk`ZN6f7qU94~gQ_#sH_`)8ILFI|TmQ~d{v9Q`(m88E5-%(|O<&OBQW zfq8^%D<)WxM9KDf36@^7`M@q^j6JLc$OP4|d`j2{-) zp-=vY_VuG)(slKq*iC4btnWEqLewi$no?6fIpOzzt&qhwtLN(+AL{PI2h8Y1x`}DP z#H!#XPELNGyMeW$28TtncP*h08Pn5KL~4lesmPlmF>Ru`uH(cTTZ$9UGxmKLP2DK1 z4Yl#wl=i(`u&I4~jEu!?Bl;ChM)v1_|f=C2?dUP#O z7s1Dm%n+0M4snYW<3|A2}xNe21j zS{74tWzLQFmFGN}5ntk!&H14ZeY!lm_`)Pv$xE7LskugHD_HOlM^#`7k_#4VC~#7N zrG{58yr}MMf5cMZaGmXQ$zrn3_RSk-NQDkZ!P6*^8UIyiWpNpCu3ex z9k=?lYyNt9xN1r#I?h|#HGdP79&3;&eeIebk)jI@r0Zwu@nKCPqk_QcSFk;*3a^9g zP{qOv*K7xUeJpi1mb+DTcc&;06r|`Bxb_EZW93}?Y!4T`!VXrsSA^h}xcmpj7aIp6 z>>#H4!u6%aiIWppR2t#;t+>@w?=T=nfUCWaUYsH%BM8tLBfu4bt5jqrZxm!p%#;_G zQ3}KHu4AsO4TMF2gV=PKFp{jH%6^gwZ56 z`qkWA+|_7w8{D@81?$=m9cgWoCV>5zk#f*I2i(GdUW`RSGqwhy_dHR+M53Cp#Q`h% zi6qT~-AP1MNg`V;dJex0gM#_z$_^4Q@eG#!Ggjh?C0nkNBBn4DvgS?&Huo~%<;j~8%4LVESB5!d2wCk#+9gJz`&cD1F>vn^RpnD5BnQ`Pj0Rs{{#O%P0bs1&hJtHQ|k_ zx+r8jT1|VgcdmFl=q~4$*w?Z6Z;B}08}#L67!#}qqZIG-QOW)n+vsU;8DD(x9dOda zZMou+Z90W!x6t#L8YI=X&u*`|@{7W#eS+E#o1Ehv*flP_k+9(I(l2@=eEBv2L77ZK z95EPk5{~-C*?XP1r@l-hxI1BR>t?oKn|QB0lkOkt1rmRgqUCbiA=6a}#AYuJZVSXR zTVpsLrTkOa8p5glBtsk644Is)ecue5sORnIeaF6n7oc+)PQBFvvBWk;W9AtfRh4Q6 zMp{F?NWe6||M2do&bj?d=jXq)mxzA<;CMUF6N^5+=_3IBmT^80Gk+vHJlvLiU6szn z-MPkRDyK1SavA_}j-QP-{1)=xMv3ST54P`WwF&w5vYjec9(Qf8+#eoVOWTWL>!l^E&sQG? z&pSU`zwpoRZ^-A)&s)H{D*M4?X%mV4fHWV5y|gJ1jFprn;)Qzi(DG$8(rP|TT5UcU z#lG{A?%vj-|I;G$yI*hae%5OIn4JNw#*b0dx#VxT=ouec7iaG+meOWLuIlUY{h;+_-wBT?6RW?lSozBN`?WpC)dS*;~!Km>Q6QU=r@_akMX z|0AUgU`UZet-wJ*gYx4Z?lv(tiL`etaj}~~@*5$Zvr9ol zl8xP6RpvUHK(4mTtdpsz`*Jok)k-47dZTehiej|6Yqj4W>zE#GEBe z;{e+`zN=F3xRMW*s;`VBUV?qIBGYq}DJxQ$zMn;|K`XN65nFCBRj@&Unf|zf8GB%U zO0G7DKgr4WZ~uH7Og+a=K$myhA{`4UZ$!V$_LGCC`_IrS04QKJx;-0c4*!Amz_a~r zw7M#pp}TfXRk@JWXr5+`RvO>QGP8+$lxm{rYr$%9?MBK12x5@EK(}m<$#HGMT#!Sm zrc-(SgX(*v*#ZYu^eWvquvU?*OVW$E9o&%7s4rXA;%9@GvPCJXN60xQ{xHRSY7t7j z^m(5EUD-DqZ6GaL#bn*zF&+NEy4va$3D~TdsQno-+L>i(Fe=j+&EpSYhCnAB;x4JhFWKQZ8Z-4^~qeUm6)W_^=IUdILjo`;Dsud+c0HZc?CZeR);DCGtP zDRTc@d1@c0-YGLya@D>KJyT>A7`T=b1~cDtXgSw}pNvGHz0A1Sz~kiX{I#6I?LFO9 z83Ve@^g+wON{rZw8N4(BG@p(u`k+W(;r$hIuPEx$XYzqJeoFf@s1{Bx(nCdH^>#RY zTn)JW&E4&rtmX7b7_jvMYl$GPlJ>d%x!H&zT>yV~Qn=S)GT&afs?Cc?+Qd1eY~K&> zK;9^m-ez=ha&v@16c!E?EB9>-8r1B?K@)bb!3Ak<-WK*(bJOP7zO(Y#^$>H+H0eoa zw?d6Ui(TJ!fDu3xK=M0LaIs~BW)GEO43y0%Snv)UIC!9w5)M?f3Ia0PfiZv=e5n|N z2aBtsK$TfUdZB?;9ST~#qzM#AVA2E%7PV3mkShcSZ|X%vLi-QK0KzPX)<|aFKgJk1 z+NZ`CFng8_$TkVhwVk=OVTT=9@5xcx@&a5m1c2-v`LlbQ2~ad`+nF!fkRz^37NE)9rxA^ zI#$Gdw$a<^peH=KMbA$;0h_PzHn?f;+;R|o;esxDUIs$ApkdvBdt?4cQ|*A4H|MLx z6~USO#4ftL?DWUNU$3K8a35D*5bNLWAEt%V%Q4kmn5cFk#HtAse7e&@h=bHD*z`+3 zy50^H5+`e5AX;`LC%=;u0sy-}M86r#6gc5gF$E5EO2*fQD^edd0tzUy9Xl|^;cLjj z0R_nor~-#L|8PqOaz;V)dq_^=RlIbAsX5YUfZG%-*r^%ceJHyHpRdSEU&{Q{4eUX0 z>IR87^FU`^3`F^};@FybLus)O#$^^eXIBNgU0U|1@c2@7SUgu~Z4HZ8DPeb~AnX~B zn317_JzPJ0I)C-sUh{}LLSk=0PEZkTa17XeY6X~()0unkxJz-bjd3EqD<^+p?XG3V zIHVOo)KBp@>iHcBKL|wM3z;P zN#EK0Nt}_y+`#)Tvs&Qw7Hz?Zx%?htP!p>m6U$ak{BFzhjm2qL5TG-~M|XKX6=9nv zpUGI38P5E3X4cAXO6I_1q0$gBm!FCto8|f#VlnV?E{cCHSgfH4lL{;~ym~nfN+V~& z3O^&gw&N{`UHSbjRe5(k^Qb0tsDaQ-`&bQ>)>}eqN=MAWh@`Z?A9E@I!E&7%*e6Gm zn#(7TT{g^_ZKx^bbpfThu@16B6`KjT+N)^$C)M-i_KfZta>W*UicXPD&GM3SHnq4U zD1U|djB~Gu<~TB2J7d&u{*-2g^QpdYePEdkyyLUf3>O9%zzoOLU_)oxr*{eX%R0?) z-G!ngruO5!l-@FK(i2n+pDqHJZ%8!~MBVU&P~~_U)WU$zXEThuIK4W%G|xEU2WXaY z!x6hf)C}V;&)%KAx;lIP<-@0|kDpq+_NpQWOa(VG!$|jOfv!>Wp@yHe29$&B;Ke!s zR|qYy+)CGiGE)PV<8Z{28k$OR(2~Z0tMq|29!6;xrxek_jtf7qsj7bmZ!}>e>w%&g$n@8jO&(Bv<$Q&!Gg&UACxenr|&X2c@3ax*$(uW$aOu*(GwLIzyT&AHo* zIyHCDK)@8RAJah!%8bV?43^_-3L5l&2-X=3y$Ok%G+3QDByF&}d+2Mx&qXr0DVTq* z>>%+H4^&9V+-(%>6>fQe+d2&%L-&JCp%E>fq9%sf!o8)>AM&nP^4j!HTMYI6fF!fPM%cGg}{F4^5y@t~E{ z_{{USH98juy32SxwOCbygzp0sfyyp`4K#0UfIP7%Wcyi7d$ALzcsts_0#Rojf6 z+rQ|PEvZ?yKLozN`DHtK;fJH}qwPhgwYvW#Ufc&?yugY0S%yiOAF97NtWntjcU=!x zwXM&czmKZRy|*3lEW&I|*+J9I zQNK8QuM>CtH6Z}*P8i&}%9e8b&3mO&YX49#IHqh;v|Mi2tm>*ndgu~}Pe z{N#n*1@6mL;HZjL?Kk$3YnPP`-fsdPV{R?qzLWHtO?|5%gj0n zt+r zFO~U~6rYNpinqZvwKePe%JeC9m?i>E7t#bdzM8n&UCw<~1WvqN!&cKeCnx{Y1deda zsluTDd$2WLS0%4-)nuw3*{PfY^_!$+X2_?x9o&%7)}RVe>t2M>FUo)a#vJxLILzpw-y0Zb#u1_Fl; z4I&6D@ogGAn!KjEeX?u(N_5ulw}!$$ePHW_(04rR>+TXO>rJE;M{9%^N+hFQBb^=!&_2%Aan6;4dCV;`M12Y^%Rqut? zutotBHLMTJz$+NB&@;G=R#zo6bQiml$puN0ZsVcx(i;_7X6`2T7_1i8ZlpYq?Ng|< zY>%}dQo1hMU44)2xZ2T(HTJ;ysfOzdK?QCo*`iFlhD$jn{xHRSY7t7j^m(5EUD-G8 zMtyYFiF~n&6YJWw(&2fR`1L~&t&S9b8GtLBnQ9Iws{fR~}5m0w7imj0I)gRV%RIsKT@X zIuo+4X-{55(_Ta6Rp2agZSfjvzQD`c^|btKlWUKd<>D5{v)mDXYC9MW8qg@~p@8lt zr~()-86FXt<2Bx5auHT{{Med&~Pwl4EJ7vat z{@J&oXNs%>3)gbOVCH)cZ6lcQ!;QFfS7uyn;Bj(x{#s7q_MYyli~(HrwS29JN9L7k zcx5kb-s}3pow<=4IMljGh(Z3cGv&ZLR>Z1mL~o~qzA)r?KkWP~?yVbaJuj@%qUU8G zgbfDk@ZB5pM{2bA?hTIExlY~VdwFxdT3ivN$xkerNKB=%Xosky|MyULy(U<#mq{j$ zEHBZ*_>?QrBG!cb71nz@_lm$nR=Pz|@FmT4R|t@dUEtesazSh}>Ja~E-?+a0%+0R`e*X26nvEWCMTJ!zz zE@rx9Mc$!ZX?c5ETllDig-L%{*k4`Cv3+Odv$V$8qD~jq$#~ty)*_$@KliigFAfsO zIz)l0e}xHGVZ;MuVcQ(j5fLkFY z1(CD@gSrQ>$zt$87Yd@ek}dLQsq#wPz?za%sFU~)sy6GEJ)_|u*LLQcYK^BGY->L+ zrs{FF@~s(-2@oKZ459026p6x^x-mWbTC2b#Uy|p@_cncDVT;TL#|~&>!_p_#Jb5rh z^1wRveJh-?QP$BrGTw}s0Xq&-Z9(oD2=X*f8z}6i9yY(E5ru)1lb?7j53qykfonl< zP%~#?@%Ki!YAW6cx$=SIDM;4iK&7F5QvgB9Q3y!lmCRudQ>YO|Hq<&n0TapBAiA9uoRVg-yBjzGeh)q5<6@=&I*}Jn> zS7)!keE4+r@zd277F~scstN$lC|X<5VpS?FvO0*RNDWzT1RhwwXN*o_E>>UVa(JcQ zAz`n&0TsQV1UB5Y6Hxvp?u4|8m(;6jjyM{-F$T&5Jt z`Cpa?Ioh5i(MrDkmK>0zbQUSoiWxxfd zsB*z#4Fygru$q9UwEZSMrb2Lu1mi7;U3nq_bfRHS``TqM?oO_OQUz+J9@ktx<=gnAUqSj;6bXQrmG z-POa)ryuc-D!WCjbJe80T4=z})Wm4()2I7v-F=oH|1&=6#DCy_MI<9l7@v%Q{QW3_|EpGy z=mT8^qNMa^kG`d>+b^>_sSLRjAD?K~8hK*;xNTLMf3BOgdYjxf*hBj7V5&k*mXs&* zB7NKXXagv*)y7qFUlqp5%!vv#Q0sm_%B6GF>Tx!6MDH4KVvxIe>py(=MAM~ilVF@l z=1bS0aG>>p3v4A@L8vAd#6LuxF*B7+B|tUfS?PtChS2CDk8*h8F*N}AHfk+ zjs)#Q!d=vA-E=C)20`t&2%z!zqhuL!8eZ695Vr zVqDq-_~#VplK7{lV2o7_;(r;^YroCW;bGtYnZ1$A9XoxJT=z-d8rs>7iqc)^pWUOJ z{Z~1P`Z9MdF?Y2}*n62?WuO~Ps9-99-D}W?ry2xLv>D?E9-1XibJg@)jxMb5uP_

>Ri~&sZR4g_G3dY^((sU^ zEm39RpjDA#5J>@aQIftN6*URS7R9c}_4E?@t^^1{Dm(#Vhbq=u6j7o}=ta|%@eN=a zh`lON9%OZ{QX#kd7affGqX!ov|iid9FB6 z?J995vzs%5@k2zzp{c~aMg}l>e4PJhWYD^jZfH`+G+;L}m}AKpL=th)C)z7iW zz*#aMD*^$_QPm_;Uj|Cw#P*p$#DJh10Fx9Xsun4NVq$H9?Kc4{r}ZsDJtkmlZt*)j zXTs1F2l%5WC}4gUutFc2*d7!h(KZoEw)MRZ1r&%3l8)a1U3~zd5gAMo%5rpEfz@BM zED;@*$TAx1(T!x34AAXL(F)HfO$iYx3_T!62J=;>MmLE{bi!FiNR853vg|XYVAa;c z8c@|xUjxG-fiP2oG2ss2g=GgXfCLe*bvjV!!X92Ex4T+_o(3eI~!QbOPnRp?D zhfFYa{DPziy4lg;vx%o{Z5M31OICjRD`bJ}=jd34>IPA(WVeTCW+2Fr?402x*FeJB z)#_dk5s`wycc!>2Q%hwN4B6{s(bu)^>a4fk_{P_mk1U-2?uCSXK_r706)ZAEQNij& zhE-SU(QV|&Q0r-E7!|AtX}=E@EO5N2iwH%xFHqK&QdHo)nrQxr(NsjLBw|rPtP^n` z6)>ofql~DaS&Hkw|NhTk|NZy>(v=}z3kqb5OX<^Abk{ zn#?BXM#g*$R=1){$kZgPbL()--di}tTRKi4$XQJU(Ht4JWWr%C-*0(kvfmz&t^)Kh z{Xw8t+-vN1Wtfx9i%KXX_{XqO$ExN z7M>h2>0d#jm)>hGk;MBY3)%5u9ty%-oH@gHHi{ZPAM$O+AF( zjBrh{90sPyq+3s>&dzq&t{T#GV qR{mG=z?IC%X;u#JbaHL0K@&$=(8%6~SDN#Z4w#DKL6rtj%U}1KR z3@_B%!^wJA6$dmL=`b{7U|+^b_PX0{Fgvj>qJQXD{F zkr_S12^5LzCZT8oXnq>2b;-f42K$&tFrCvAXlgx^2aGSt#yBy92?FF1Jrx!{bxh2` z%T{u*YDP0L*S!@Xn5icIdNX+|4UX-Pw zM265n6gLZF!Ng#N@c?Rc*)gTVJv*9TRTYjrlg^W41Sg*9P@-_bIn83b(sIE)>zVzl zH&#!*$Lg-TO=GFfn#Jq$sQR7>w(lgpQ2FCoC=NmL#J$E#DeL1B%{*8u5VbKw}KC z4Q0tAhe24i@RD@LaMMl_x#!9M%NI1Sp#Z*sdGz1&1#7PRB7=B+yDXx@gyqp~&ljw- zN_2RA(!B*7Yz8cR6PvDX91w9GDeWhu!hLsLtq8n@E%+jXb2Nq{Y(Pf_(3{(|FHl3g z(!oNPxb%AqjMy20K{3Q?Q^e~YOnE?6Wl6LgaX*oj4PIUtnD5|M;rhJTYU4kc?*^tu zP6zNR0%1KtTvtpGMUxuBYwigdgxGX~fm8UjU9 zO_@fxy{_22P|+-aJ_45X18D^@C zysad6hQW2L38NzrYb7a=umvGO_9@f3gwTb34MP27>7%%l?Lkb6Ak%BSqWP{#u~9Ce zE(5-lPAJdXV+np-q#vR=Q0(7d2g1r&<1u4VisdNso3ZFPMdxEBXOY^ko5MElF@8iN zw7wsu@>Y(VK=K(?12#)vNn>Vu=GHm7r?T7ip|xKI+xodVWf^KUE^phlM%_U)_~_DF zq2kol4c6+O{Q_O|;z!c8h@u&(LiY7ua9SheXI(h0fhd_S@OCQeoGFMysx^KzE5(vu z+H`8)DPxUis0M<0y;ZAMK2aL}>^@>BN1W?Ij|AN-8L5lFajP~s z5ovAAL`!-bjm+c^8Jhhal*kNWYZc57cIjN8_-$wQRysk`VK}3Gyo|M@2qmYvp>MG8 zCqkWuZ_hJYsM21e$45$wu&_%7iJf&|zz=r+;9~B8CK^Ebl!U3o^4TbnHRQv!g4AC* zj-9nd9f>tiLCRfbhd|}%ekUE-b0x^#qg7%t1zwPxDCY`*Fb|1a? z?vtkXW#`JeDehz~1zj&|50;(j-QSDZX#1_N0d?@lsY;3uxF0s;HnH1pGbCBq@AXZf zN{ox7buN_H%EBP-q{RG{r}LbMbR*}qe0Ek=kwcZ236z17TRH9Yq4TEUz~y3CJVVnZ z<&*R|$f>Y*;(0#@>W@mj>|PLTvv^}FLu~2yJ$tP3s_VIU?UG}0I2u@-ND585;xI#R zNY7=aOAk%H>6ync4PQzD;FYP-SU*zB7**yYS&}lf(Sa*(^$z!*=a*!3;pu6 zG>D)-Bx5mOJtDaR`RY*zipW#_%P8n*1SFXx3ySg8ubRTyIPujT@9U=sI^{L7P88x> z@|HI#3Tw&Jrd;?PTHhjFD6DOktZrxmR?r11$psC8F3D3;;+Uj_HgN-_Zj1tn(G0X{ zOgM!iz_$g`=92Y{dZesO7pjnCl2e3v9d9f59Gn2JiLYox?q=iVb!vQpB4ZI1Eaw6Y zVL%)LFXoajP@ar^U!@~9DZT6qwVo#n-4|{{$!j@eUzl|zT}QG>SUoBXy(QK3SCd79 zqNGX&O{4iaveG6IRtuU7YELBNx9E)2BXx@Bl@UmB0+vYAQb-Fbr)AYQS*>g0sTe_U z*@Xo+Nqg51$7i;a)FJ83XNA}dBxumkBsd~fVqSNuo=u<_cwSgmP(yfKywZvcrd45P zzG1bZkG~4KDGrG8UOxpxBm-#Ic+`8==B}%4#)obtI!yIf45r?F>U!gxx{3d>lAdYA=F!9w5|q7 z5>fn9wHR5zO2%m8&K}WUr}JNz^IrtXBSDvlk$H`DdZj_KZ$ECV*Y~jSQy9G-^r-$})WhNKVtn2y-|f`R?!ts(7qfzt|k)6RB*1 z#ORX;5DU|V+i5bc>dCxc!h}MZl7GplsV6ET1z(VIKJRW-Bf0Zb(1+|}{6?eK)1mPr znM-8yc@iAAcz1TmnptY}?oFc_piVh&S}vq=Ig+r&F9z-J$b7~DtcDfyF{EG353+}jL?5Ouh@@qXWB?DD&13>GmzcwBJo-iNM^!x z0gt!>hM3N3Lp&k^z0rlbh?}a?6rw`L-RT9Y|H*O98I#K7{!oPgCri`v7k>E@& z@KA&_sk7DzEHdtIKzC$GtxB>?MvVLxv=cb&5RNCAFVmPLMQVx=Wi2UG(t#7*z=~NM zke@yLZ4*;8X?)=U1@ziBxzeeO11FQ7HY9&hueZYTfbftb1I1rIS2f)@gJ>v_AGo); z4|LkW=u)?OGkeAA4(kB@iT_XESfG)`Yet|76*fM*QK57;`+!lEKhh#SBQkEYk=iy5 zIAJvt+WUu@rG@qnv3CkmdBG}*7zmeGIUV)v=tSA1UEB-Y-Z|&pQLJd?yZuAUc^B3T zQkFX90Vz09kw%soKo@{;R;vo1to55N)QESvH~

u~g|2=(9i$C1Xq7h&!3h{>mV| zUy8uNPWCe{8kUmeeSPGwI>=aLE@aL-OQ8SS z6))}s{$$6{8`b*)<~0t~7ci?TxGs3BROgGWJ%--;g5}ZE*&i^vF!fZaZZmMso*ArU zgM(*AXJ)Lw=bvF;kz!q4Wls^_VIZCf7V+z5t-f3_d@bT`+76n~JXS#tW3aO%{w=`4 zzO9#BP}w#HTl8e3`jjBiNk&um7OLt`sWDErY@@=@)6&gf?207I5?wDw1yS|18R^H1 ze*L>L)~s4gD9SqeN@KXF<0)~mXHMOyCrCOnkP3Bj#6^6(M^e`WvM}F~7tv5f3M8jQ z8kC6x`T&9v2@AvDGbjA{D%=CEYeEb?eC@;9aN8em%lyrDG2V$$@Uuj5fnlk5S-QO} zwkv<`ikG*Q)>7x?C`jqERXvn5%h>|rbM*E=eAGd0rV8gA3>KQ+%0r1h$7n8 zcH1A1E8QqWqnG7V1pV1$krhF=HdwOoM&55T%V1l9H;kygs&gi5Juc`X=n)_Rdmb9_ zVfeadT&;tYZ^<-Y-HK{O;K2#j z%Oc>v!&rG8W-czT$JpV^r1dS5+y?6!CFf}Kh<>0oc#3O!Sd08%txww;SYBgZj z)K{!$?x#5`>He~RsdMq6xySKrya)~!wXY4&qVB41!n3R>lXc-)vw(CronS1sNKS2% z<-uX@H;m5nMQACOgCz84+znMtO`+wa;&Irj1HIaT`uu2zbLB%I* zHU^%1{od9Hhh3g0aPd-Co`Ze|7rPQ-hh3XN80Bz8taTr!a zh>L-6nI6UH$krcgggWvsfySE9C04b;(B156-iP_HooP~+{OseuxDD3xR3UAN^dU0yS<;wjR)P}AuJQfKYz zm|A5>KG0tQN!nYo*~AD zfoUh^;btuQ>fJ={)>yf=LgwtAT-qm_vAb&lYBje`jM_sXf|Oa{EuZSm8Jlqkmf%Ln zZmbR0L$sti_h_%*p<$|oaw2_gy;z|lPuLT&Lh@hipjgS!86BTIiZf8enFVUQCTl7a zRR#+6&#vjP0g{OD|WkqGsl~Xv^>ZF-Ru||5RJgGrI2{T zc8FV8?AlWxaMr2=9Yyn!Ka~5B=z(VM0D$@^pF-%-h>f@Cxx?A*m)e8yOvY77kV`gdV>yev^yHJ z7b@frd&{j|VCQNk8rn2Ge@u zO{TT5Ot5hCOK%{z_QwKi(%NY6RKDDZYPYuC%V=o~H=O&@l;KNc$`{xFVG# zLPy$KCv8h+kUy*umljsR&S{G^V)bbCWFqg!YxW&UMKkknedmSNa@tKd9Pj&j#naYm z6Xp0&tDc^^Vd5||EAewz(M|8q0 zmNQVbVCPoA8nICep{^3_!V-Arqa9WYtdxziUG>S^L^p)ybMOuc z*J{yI&=xkY=*r*_FkKH3)AIIQ{^qhOP!(+FL%|x^h6=WGYK~M~9n?l$>Ad;Z_H-~S zZ4kXsiB17?;q#SnyjQ>k5k>^oa5WJ}B&nKnH5E$(Yz5Gj)j^~11j zB*lRJ;8y`$y5}h<@HyquoWaEFB{SLXPN*>m-k)o0T)JM*(F}?a>p2%NV@ojOzDz}$ zVUw?|u%J_9f0&Bz5mc%1;j=d5AX{4A#8N!w!vAtVEyWVjF&04+kA?S6>>Y&Rop5aD zQ^OkBf<8FrAr)p+MdOvb6cAR;eD)CLgCnQ?P_lrc4O@m_~OU~ z%#fCXE+8vgz&5g_;I2B^?tpSH(*lY?6VLlQaoY$OJ_szk_ya}9OIydPm^+5A_XR$w zIZOCDW-p`2ANICeBg)P%i#1|_j&y;)t9ceV-SBmBf>5cK?McdZayL?YTsXGwr`oG1 z-N26;xm?p4gTR&h_VDzs2CSm9K`H?|4;I$QHk1GlX$|+t0p7*Rr_#9mD=IC(h5O%r z?rc^LB!y7$8=G7%eF#Y&1fndN`$3SdF#v%dK5&Vs6u3RgXVx|qn`A0pn+KmUhf931 z{yYeg6v8@#OFUWjyAY)BF0HEcscyhwYzcDQ*Q%;$=k3KBu>h~EstWV!>0zv@>;i$- zBJ{Df=E?4E7F(6QWgs{HK_h$Kv8CdTR*&3y1ZOEHx>-Gv{;)jZ$&6K=hGUv;!h?w` z4nf!RnRyrJl6Vl9&Q8k?0@>iBra8@zeGq7xN>>W)#QTF;w~eeGIJ0u9QiI>-;xlgd zFwhhaMEZ92=ycgh$>_oB7A_G52eJ!&5LoIWkbx#3O;|9Igt24{1fU?iiqnL0?Ml!M zU_kubhzUhil_d-WDe_b>kT5efbb%-+VE{%@=s>8fX>g^fCA{MP_6F@@dsrhDwoz7P zE$(VPh24#_uH0XL#93P$WJ}AN><|`th!NeWC~AQZ2b1^n()qTLHZKqwPF-Vb;6Dn4 z&Y8$ALWMQ5UPYx7bi63A;8he41s)a)?Imei@dd7i6CfIE*m`$$RQ0maXntrZi;05O zQanV9ZbZ(z5a128J`6s_n@=~ZaPr1+xtI?jZyc9+_B9AXD9OR=MzOLtjJjv3fMYr-DXpdu2jY3Xj(y(2+8 zkuXMDt(#6;MnexFW8Eik1eK-tEiSWre;o*mUe$h!pfe^mqqSxn;NRIo#^Eq1I^`wIg0}aX2g%ze}N;}6c7}|I&$OY>lHUd&~l>4SZFXy1@=CF-> zj34O+&~PKEyoH*GWI~P>`{d_NYi!6FDb4=c5|6(?&$q<0Z2z31?zD}YUS*D%<&&n% zbI_wGTdO=9b}MQUkXN~Bj`NZkGeg*78vMuNwT^6=ige@|A-rw^;Kwy;VUeW~n~fz? zlD=^XrpP2qE%vA~c8?jmFSJF#BJ?yvI+3g}%8@kP zXd*(Vl*GW|6@6GjvN=>1o-f@{(D^A)x>gqybT_-2_hCM4XPVR{Kl}JEZiDqaoi147 zZRvI{o20i{6SFT}uXs191Cz?R41=RxUNf)aDbg@Y>huDsvvze%tuiDZ=r1Hu)+@Ks zA;S!a2&>ZnSWArWH~pT9{drgDmBm%-Mv8|p-lX^awG7Mt(g#7GAh4yUr0qd8i&b_;~eY1B)-M@s^>`24Q z$(ZZ083$oo1%WK^6bkn)#3*(GgFw4#<$+wDT&9>PU(?rY_A!V674}3(@lbMT10glD z1s}y3C=s(N)Pj~=Vbft{qRK!4gcR*5k?KwQzFQ@2=l#tZS+Ars%v#vGlJ-WwJVZ&) zmtVV@=+tR%yV3L@ngiNi4tLwZX_qh{5WHaQgzNVMn%8CFy5IBKZXD3WE@yZNY+|{r z9@1)8u7jT1ts!bN?k>*npO!$!oi@*SC_0slD3o(6)Txq6@DS86h=h&x_;_d(-7Q`qa)xk~Lz1edFHcGCRTAb@V%&dTN(1Axcio?0jVp z2O2tSv~Ev>)@i#~!(%0M$Rlf;MdsIJLq2>b#qYNBPE|>PY+0l?`gplrz zOLT(|jpcG(A4dAZjptJ_hn-+6tDoAr@Ulj%?nG)t@lZ5s&yA?ycOkb{W^gBLC?3K- zK5VF6RztztPzR%Jw}+_rJ(3U5E0=qeJ9gt>-}N&e4{u@NFM4Tb z78b&eoDJ4`UwzQtdw@BR13t#a7(gY$(bJs0IYTi0kjFM- z<10JuezTS7FQe^#^OUb6ko_JS5h)@zkrjXS+oBpHVsz-AV@o}a`#a>=B=14Eha5cQ z7l`VRBiQ|ycd5NrZ?yx<=;vhqEmso`7>i~4-=y&se#~z{W-X57N_Si&Z|e9TVDCUT zN{+b6-YgHn`+Ms2(GI@W6_-Ai;s8&u7(y03E}cJSnTrns+2E^x^Xaz~Jg0JrX9xBr zMUjH9K+C0EIuPOwr=t6|qq;*i$aW|dgA}-;;W!mTxN8|dM+mzk4iX1}rF0mwJ%lve zyX0uxL#EP=Edh@E+k&&pQotIq;6}Oy$3yn9UEYH8PF0tc`t~Yqgk!CRRc>RG9VH$z z=0vrlw4IDOH2flZ655L;9G@j$XFF(tm(cuJ(}atrPdyN`7s})hd)K9HQ?ko}!5Xmu zM{3*H<&a&A(1&dkgl*F}`=}yjagZ%7Z(`Pzb~S6#4jh!#fnjPu=0+*Vs1G#B7z_gy z&vxPUtdT8<=MoR)TMte=Clen6IurrDs~K5#KtP`YUvWQcNr%gYSTgY4bIz2IT_`4N zWE)C|eDR@#B2_}|X6@>*l+a(1X`x+B8?p=jbec2_e1mLjsluHw9SPmx*LRrcaq)6icX<`7K7EUf|JW~D>=!-`)gQ^)+rUR~A7e?<^_#e~IIK?zeL zeHNm{CLEEIfi`v! z4?+B!6e-<-Lx+$oAdZzsNcE5p%;w_~-MzB;-0oZrF10 zMqA*A6m1*v(ys{(Q&SFOWuUfsB?^^i$j#W2OydZ?uEbp&dGP){;) z-#FcPs?OlZ`DmbBFQkWV8bh!UggRod2&c0%{8(Yif7py>@;82s?) zwm++ICo~Tw9tz(!4+GOZ+CGYyaQSqtn-D;{g!~5r?8LlkB&)8k5^g(0!-0E;^63kq z90aFIiUIpj3!F{4bo`J4KY8Lf9;qJYNFD~g^bbSS9f(BVr&Yt2+20r(1jUfuf}j!Q zQqU=(x1w!M=nOL(mP}+z={;0D7!lC^YJ? zw_{5P#{C^@Z<78s)O-}>kMyr>Qmtk@H@PA}Tm*Jq7t34ByBBy$7Z*SSH@$bSey|ku z5O7pJxXfMBT~8+`J9Job4Z8c2m%xS7Vn{U}xwPEJQt(R@F8A*!w8L*7SK2|?hlvs*jV+5rDBa>(U&2>)`i zT|8v`!|{%=%V5eH*@oWau3E=#>rEGj*3HV5JxSS4?nY|!kO~KcF}V)2SPVQZvlR4&IpMOT1)D)f?@B>}u}!9oPeD!N4^=g~6K&R1wL@ z5O^pimm5C8J9Kl2W*EmCT+;6R93yCKw|AK5v_G&v0?Azh#(<#g!rWq2dJr_Mn;jiK zn|sBw-q&5kyCk**H|}e_Rk2Hc$r`c1M!Mdz`uTD68X-}&Z<}>{s{kJE?>vjup@vKY6K$aCz%HVnHL?YDP_Zir!n?TGVRg`M)~*gLQ%O`Q zGb+29c4r5)Ut5!gfuHwtsr<$R$vBK4D+=u(Fb%_?Ih6Q7KF|D>z#|0?Bsh@E=?tcv zJU2^@jT4#$Z=OY5Vz6QtHN_gSKt{U8vC9s*7NL(dP5}0P>#V-T6;AX5Gr9%Nu11{h zf@6WySAr&;tyKkx)}-LL_<(-2>GVp2B)WG5 znViG?pUY=6=>!?84jkZtDI*bMbtK40e1cv2jSQy9G-^r-$^_#h0mw2MH%3sCfl6k=07W`Qv;c=hW^U{Qy%usWvB0 zsAx=J)hUQm`a74MVZ;&zRM?v`#h1`Mo)7wO=N0!c?nxafkX>~V<~c#agO@Jkjsyh^ zF(IF6$W#S#gS{lyM`xt}l33O73xvSH3B|~|bBX6tCyPKuKLOv528N-Y#N)a+fJ30i zkO~$2471P>82D1_$1QRj%5jWPEqKr!5;h%JX7=p{s$u)h0 zy*%k@L-H4cU7=b)$iRUHz==3$toceDR2;vH&w$dd&AXyX;)yyRaQth7A;(`CrUs8# zYs%|eO;IKm^3KkLR zG*&Po4b~$&5|U!D(a;SI8sdQb?BQ>lm}l4+%pXuduWgen-P`133yIkvC({`wzF$99 zHQhLaXef{$xUaYelq|vMQn>d&TMu15bbA|63D9i7mcF&5PHJm6*V!T465V<8v)Q z6+#t@+71w(s7A!|_2Yj=xDCSoMA^Pd-25q~{!-!ih)&w8fDjPwAG!5slEDA{(UXZ3 zzN-`6ibvj(V<(`aW6^5Be-44xmy~ZrHJ%*D(plA*-7=7Rl8dGBjj_}<2KZ@)JRMLy zg0INM%Qvh*;N;|6I-Ad@GnvFchdTO3B-%Hkk8pP(YkJ)SjW$H)24No7r5CEu2~T{r z*a0Kc?@hXREWaP!R`l}e=}qypU#u1Jf3=&^q(6kIQom9xo?eyktv0#;D^VYHl%|aT z-@7}P$G`9E-AiR)bS_%W@om0*Rh*vv?f*@R|I8<(!cF!@19CleQZtWTdK%=LkDc_F!f1N`GikIMo!Z6elI%w87i5Z0JAZ z*)Ly!YBt~%db%;1neI(tlDN5lxxc?FjOs7_#-v%gzU$QK$BD|4?ko*Vs6v0=~#e}BFKKaJbo!&4a_g)(ZhAKcYg-P6X~%neR)irjns3!{2&dlz^}x^ zG}Y5mSDEY6D@E(DN$JFIjx%z+7av?n$>-+9T`i?IjNI)-zx(C4RPOhBmj(D#m8-4J z=q`a!rqU@5Ud|?&-tk$p+eu~5uk?q(vs@Z8vdPNY<@0ez`u#Nd)sUVaQmF^2t%20j z!w=npzS<*WPSYdD(Z^y)=BJHCxy{yLMD8x(IR z9(woLL;%o0FTegG-LB?46U?BewOW6oUBhbU=3?Bb=!M+R=5S>G?sk9nX@h#_XCI2i z$7J>CVpQoS(!VFGIxg~Hv>N^$o zVxsC?-al!@j!7FllkU#WM&t5jxp{wz>W$ko9X1+r@&5Kyy%0}xzcRmm>*eQ{JMgR0 zF3bJ;NGV)i==Ic9PQE|WekD`6Rtel5C%!0U*2BhSr`NwW)#FiVe40zY;JJnM8#$Lu z*VBgfXtp!Q*K(_mCRf9oo9smbHlCi#<4SE*oK7a1Y-De0^~U*^_%M4*8@w+!ALPD1 zO5DF3tI7CTs##3j{x(sgboHg>SqxSrz z-#+eqDW)#*C3sFf0_{A0+y9k{5B2k2uEhlG@#!;|>bc9?#KZ4?_esi6jlx56sthjr zw`Sp~f?CRz4nd|nKFc-+#bLX6CG`vaerh1ai|YTe_hrkeBin+%qVPQr-t8(ggQ*i; z5g-*5;aKt==B!1PofQs+*S_(?M%&X@OSz;s!VI@MxhHSE=giqMbW&+DO=$}mPJ`1pgQOF3!&+^%c)QZd)L z&u4ix{1RJ*QWJKjOd_RhxwqoSPpf%Vd0wCaJ3^f?@i`lH-TLSeocT-ouL8yPmdG85i{l~GJc767ZoY1 zzr=-RXTsKil7E1s@7@UyqteJfw+w#%X>OrmmL$Ul#j^fFCXZo(7h84Y-! zndGueq}8kNvKa0@&~lO1v)%mSIg+L66iXK)OqMP^mqoRuWfn|uf($(;uJ9qf~Jc7AH?iq%W(Hc(wNa$S8(@jW3Gv$l!j$ z^NEtaOg`N|*Rsur?Bk+UP`Jk=Pt)UW`K?gZ3*B1l9q8zMMw}$2S~=c$m`f$LTP!~J z<#4ALGE~6bQz6Sg$n>Oe(|ah(?@~7vlhXycSM3ejHQ+TXk(&+^>J1||+T&!(@^xd< zn_=wcU3i!ZrCfh5mz%@poguNg-ec{4T3=<#xnew(f6@1-bg$S>_ujSV?3*|WKa3|8WsrJ*3iTEbH8fyr8j@H=NZr%IO+Ugdo+^u4 zIMfUaT{#WjXH((F)?+bTnDDI@!1wqm8F|vf@oI87Ocl~Cpx^G>?}G(f$v!h^!1r`7 zsXk`pSZ(sa-KU0;=zF9Q8)l>T*-3RaiI-$R+GdhjanFxn5@GNr4|3sh`3}g%SPv-s za=AOoX6SfHxIqIBSIME2o(x`;#>>q-S&D}<&2cUoi-w|lk4{RRc{9N%W45AoqvB0? zKDnFR0TvIJGI1@mh|>A;eN?}R3J>}Br6IoP<*+ll&(N7tL`nCefC#f^rSz=c0j3GH zS87kY$#7K~!1dg%j5V~Q^FpCBY3ogqroU><4^yPv%+4R8H}xpmdMvb48fb?i)!CX2 zqKV~8?^)-H5w%lJWZQSOOrhMFjb`aF_gs$YVX?wIOU6zS3YBhmQBbqPQdCstqC5~| z<-S%6OQG3a6qtjnTyAyGY4>UUebiHi_1trFwY+aG%3YhnV3u0>0StwEYvAmqWB?_5Xx7=giBbDg;GFjyGa-y#$O7E5C(_)zH zS4v&>MSH&)w1gsWSYJ6-%e}QC8naaDH*qy`mrL<_LCPz44SiUfa>IG5QA*#W#PT9B zydOm?$qe1$ilJO76d#R}iE1`B7h%b zyjh_E=c{?D!*HYFYO&y$dUGWVV%evMfH^@@v)uMqzA8abbKg*q1!Cn>h@b(#N|Ifa%RILD2wLF!Z2~ znJI@t44=WET_FbWu5ozqU*?-yDzPW(U_=y**vvYjU_@vBJ>ylr&kMY^`~&@0;66hK zXuLnvcb!qVAA$q9etg)kq#*LjT}aCP!GY4UxeBA;K*_LOVQ}CE1_!F~a=F8#Cb==4 z;cMAcrme+ePjw;BE@%Ddw5G?)^_<*Tr9)C=F-y9Vs!(=*Kg_cD*(Y`6AV&loXz8nwUlvwLdj0$hzv^s;V4vc4G7n>IJ1{)WYaHXJ! z;EMue;|$yh9>HRe!;XXeFtLmQ={S!0F0L`UydnQ}Oyk0a^w&8Sj*T+qwt zTd}=Na}kLXmD1a^5^sd1T)fR`FMOl51ooJs&$8XdGy6P^Ydtzt(&l$_!)6e|^}haC zEr`hpn;j2(@#mGoB%>2Lxd77n;c=u@6t3Ip4kPsPNh*zd5B(0kx{o~eAKt3HL}kTx zX0u_sr1x5Az)_=gUwasgn%%@Wd-Jkl~$-E=XVh{v1(3}VzQC$KwaL@8czk9 zT|G9nY`PZjMwMx_RL{iYwdyLqG%Z7GC7DgGMrC~gc5SAH1dOF&(kh2q%&2Urr$W9n zq(h0Ep1&WqDmCW4A~UU~TqtylwV|37*mPtNtIbt0(&-JA@RTlv*%$q}T8-R9wQ)Jd zNUP~nwJ@KQGluKEn$D;7$HBY-+?V@h_O6+Gd9Jsg3%St4yjSXQiRp+L+^}!4UZ>o8 zZqGZBLN?!h7_@b9HR4yv5u@MBvBBbv?KTY+|5B@jZ!+n*7#3P#Y5CBOK9#cUgHjh2 zxxRcKCYSW`hMCu+QRO))grYY>F_})hYqgNjRwA)zx?62MWTK(+U})^+{$uMdmw%b3 zZ(g`eXA&PxzIb@w<#+U^6kXoL;fsQyBau)+BhLaacmgq{)}$JSKm)W?H%!(9BNcpT{<@gF_+`!g}Z`PA-$ad1v$GIRBR^`T)12BAWL38$)@mX zc@pooneH&s2xfpfaRshmb$`+rZY7d?ebUz5nZm8-E-1IP96uCpEm&2TFa|NFbk%XS zD)hAzpulm(;Ke;=D(CZCoe?D@`L13qM&#e)Ln0egTv)O6y}l0i<3lgCp)$^iZ>_}> z{9`8Qoecaks@wwD7A%E5Yo2(1|m|Wi%Oud58 zX;Ax9VuFv$NN9ow;%T(9ZN1YMDyaV3$45hc!3{n>ghk;1{oyM})o*is41_qs>SJTm zeHjZ*E6bBL(BTN`X#U5LS5&PfLuN#L#C&~)KBQ5NxG$e?ydlY@EF%rfB}nq)`qjr8 zKG0TF_yPRy2>b;`OO1eqfGde?!58TfdNpo-vdg$|xlG@s&JU`T7gSx^OHG(Du*vmPN38 znTVj@mT4MvyOwFHH*CwC9$~l~H8975hp9%XmCrY6stqgPiJWvy^zi$1+g|E-Q)qh` z_N}#}fIh0h&Cl?CKchP{d<8R|b7Oo%BO`%^p4u&)k>;Q-L^_ku1Us@Jo)7dD4P83_ zniphp+wS@Td-qzs|q``M3NSNt57oYOmt=F z!0iDqWnidNj^#P^c4O+0Jv-jf{-rzZc(hdG!JYO?(7)6msyU2ZzB<6>%~T$&S;~^Q zJB{9-i0jdYo}REyg$V=TaKJu2$5HQ(;NrJWzjwSNLG8hEn7k}uw`GWg7B;y8A8}w5 zU%)%XUwDT|I48Uy1DTBdO62)~J>GhoGaA!MkK z0J6f+^_Wv^1;UTS4~c2vd(iXGUw^NyrhoqW&!!O*?6fb48gN5k;RIUD5<$G1LI@Xb z#=!Dcfawa8s*TRE8`+g;UA(Hv$`VX*g&C?o`i-(3)?mPlheF|JWJ9l~Tgi0thU>GL zK^po3m&;4`_9oxG7Sz(gJ>EVblG2Bb=x?`aZYPprb%Vzk#GKdFQ!uYyvGZ=)8J(|G zUTbx0wz4GfNpTFTyYGY(*b66N@XnA8fwhx?hzzScQ@WqX^bcF+m7^5hZ$qJ*g?5Z6 zw8%dCeUhovX=Q5dM!nV97HlWmNC&NG3)w{0bHSfEg)1FyFHa@VmDn?~R3`VBr#t0( z?W`+o$ff;%_PxI}r5Ep~E! zEf%=EuM+n9gbvj!Jtbg*?(hZy6Gs9jRe8Vmkx9+Ao3Q}R90lwfoyOhfyEyl zBJ;MQFQA0V%pW%ub=B69x_1DTB_R+*m*m$1vx;YBaVks4l`8TsWr2w_)SakcOQe2XHZj4|j(zi6k(8K~~KkFjdYUU5NbMngkYsvN;mZLtINvsQ^DdELRZ-bZk#RzQI2bpA z>oNPo8Qu8~rV4f1Wu?PY)_OLYLMsr4mt3jQA;MwADf0QZHaFp@fz740`_z)fL{2NvQorxE2oFYqfA zA&0~VNEKv$px#nt4UPnl_9!0mi1fCeV9sk}YV+vi3pas>zg@I*IDG0HyWkJ3I<{8) zy3U56LANc93yu^Fq5k3EG6-<&ZD2}cCN379@fdRKB#K-%W`+ubgt2=FI)}Aw13|#i zbq_b^IO(^68(XIzm(4c+{PlNfD7)H%)N3+Xawg;?Zfgaw@Db8i12FRU{ zfS{|=$74GT`kn!D&TlSz3^O>g9*@M3#|)n@LBIe<1lY|U(_gkucP<+>ZkE*Z7HW2{ z1s;+)xE?ps$ZT*6jOOn-oLO;-Oo<#L!LtEIqqgiu7_ygS?K9@j4Q@B!2-(Z1v8s%3 z3}V9IW`((kM_ciDJE5jk%)e$cl}zpXNt#pV%2pk|2&c0r3eAlfW#o_B#C=9!B>e67 ze3IiHTqZsnl#Vsf@=}8Em%duJ8`FpESv6KwYK=k6*8}xVwT$`r=-T{==6`13P8`g7l zfB6yCwTa^kVDT4@4EXl|SVexJ=?Ztdv7nGG>oICoIMEoyT+g=k7)M7RXfpE&jMk$^ zi}HK8e`T)pnz807OX{9vHd=N0aFe=5@oq=WM(VT}`e}4OaWX`DuD|4dFa5v&%T72u zm+gOA0s&D98(7-h9RX%OF#~tE$Z573U>u2|-~jbfn8#if(96aROpu@1D`<1s`|2zy zKOVyo_pYP6aW1B}cx;jSF=U~CU6h^X@kf%&^bSr~WcW7W z`ZD)X@^)i2A$wl&DGd%B^@^h&t-S8#GZo+!&#alslDwz5#ZeLpRt9eIC+*MU7Nd1| zM|ldo2(*SYat}csOSx7BdFrBz<1zMeGa=n$s8OdJ%LDHw*jW|`n#qFh=3PYs`RC_U z@YzsgPWdgAvR;!Dp_HJCtwB_Cn4^b0o}qH3*Q_;9SyK0;ND2v6UxP@>C+W`< zN%7c0&F1cK6f;4B!G-ZokYHem8dnnx&T$vX25y1`gC7tSBpCdRqcbEJcx{_WBUMvm zvcd$vN6v$cAVhHLA}=~ba7tZ{gy9XN$;>A(h6t>B@9YF92oYdls9d@ItxUO7Ap(z9 zT{-FMYTq#$?;|F!YED$DAhNi@CAB@<1E$CirZVr7+nhm%&65Eo@+K$#j_|nX>CfKG zKds0MJoU9ZJNCjhMAl?-LR=6j{v}=P+ln|lDl)Kw>QTvPoUl197?0-FKQp<NyLl4kIgLf>(tuM` zR#v!Qx9;J|W7i^Fbwxdfn<1~LE=nJ-U8qq;It)L$haj)rTVtevc`R@#kOKQO-RCVo67c);5_=caAwG5(p4dDc$jugm5hh0}D!Ma|{8Di1?h5m8c0 zfFmoz*;Ze&%f<~lWH$naf4GMvk3}~A`Ri{MwG;p6umAkEMi*tg<)U8mT0F=_iR3ZV zeChf8?*K{GyH4dtA_F&FfFuhfxqjH=G5i=pIzW#FdIlW$p0@mrVr5;B#lA{SIfYW+ zbw=SRRA24i6xfGTl}D;?Dr-Py0cZC&>QNSe@PZ%C8SohTSY%X`35ed=nFshAH5uJ* zfEwC&>&dEzJpjnH#824sWu5n#{3zgf%%vwQ0zlAB3Lio3A8A^^--egSD~fdP_iDFY zrhNgdDd+LuC?@j`wQbYdJFp@f#}_=zNOp4JyhBl-Epfw1WQ7}hCraMoTU&XG-T_kq zUMZ()wr&!5XOr3s3VH`ld$n%8!@Xhb)&h}W+Nsd#9Vi{J6o`Z~>IV_Dd&a52NSyk| zzKORAu-t)vCr*a$?9#}oxcZH{D$3l|uY+eU6kzd}6KDP}%9xhA=H7o%jD|uYD^8Jr zM+kt?60n-n*0M$W1Fr2}gSoUZuW`Gs?pnlP%scOAjlq0e9!D4F4~@aV<(PMGlL_;7 z^&7jMxi4$xd?!i#&;P=) zsU0WKq0ks?cTpfgk$h1A?Y*4fJ#dhQyeNqFS?}J1W^XlI&w;ahmSc>w6V!M#P~(9b zcN3aGjR$JnWpFM}jqeNF1Zw=e;GCq!9diBAW|jt&%8R_fDAW)@^Chc|f}ee4*W7Nb zFJ!AEVGI^4JG#5Bfn7A2`2@a-gfSS72`Uo0**Yg*ul&oJr!1*^N`<}{K1Fmm^W*u_^^{ySRrOk5z($IcW^5aY|6-!U{z$-(>V! zt#{Qu)OhR)?B{)$U~gHV$W}YK%jO>7Lj4~p=rXZK@<;*iSZ%AI;E*M5?A)w45;GnX z##2QGuBa#i5Ile*fssZ!GvaPH)*7-GVM-Y95)@&A7qx;26SfG`0qJDi@`V~}&`gk+!-+|~)rZu$C(W(1bkwo^eI)DG|)fp&02JD>(XxJ49^*D-w3-rXO! zji+Nq^~cpW{JolqY%}hcn~X3RF7SPY*Tvs2jERpoCm2=b#J+$#dSTTc(-_2@+*M1J zga+UKvs7Pm`AR2q275IV*sHe4?Y6y2q(;PVubv|g|FaIj4JDaXW1LX+L_&(+UiC}m z4I;Pa1>36!8KypAW?P-FyaTAh!6ZL_lph)BioFwTUkhV0D<|rTVlR!3Fj$ZG>sa8+ z>F_{PmTotu57~QALV=HcBg%9mwovkC*ti_ z^x8A}e>)F=?Ye8`6r?E314tHi2aVMZe>K1wwqj5G{S$hXs2kNjB$-NE)Ac>@>z}sq4 z?;Sw#AHEaGx3aC05FR3@Kg5s-tUq4>s_K1}Rrsl<-gd?uHPj^*o(NFfyUqwI6`}Yc z#ZWWo$Wg$_p`Zgm8OAZH%N2$XNb>F{ZmCDq)SQBC^2{&s5;YR!J|mzvm=Q=5Tj_NOc0X-uvsVt-7zpF+hwC1(yTVDX%=CBK5 zBHu{%=;L!IF%*87^cC^&WnQ6 zflYd{FhVy=Z#R|`vS$rjl?*cmF;}x?4JQo44^3u1fzcYas;RmYpuif&V-3GHteMJ^ zyeC<~#1$h+|92P};Jyp%{#QS5TaE;!kdJ2dyFlg%v{Rx`eNK|z$qsx@0# z68NMj3TcIM4<)ci4ig#dngh*3nkY5ICvH%Q^iQrUAyF2v+dYKdKGb~TV^8tJNhC!9 z>vEfUDwhf={y?r@+Bgsir(=O!BB8x@&J`navpP{*gh;|RIBE1dZb%PsDq3=%msDB$ zb-OWnXotTF|MUg;wVe)wRj&^)_W=%r`3V}`SlcHsKRW;>IM#rw9IG{UdE4;Ap)3P) zro|08g_Bt5qZpnNH{+x$O8J8a;3(xmEM|5dw0eGEfb;b$anl)@j@oc-bLfDY$NgjQ z|HR$r162mDPm`zM{bcm(S#a_Wz3R)FCX3)x=)*!xAb-bvbj&dWP62?y7sdkr_fnl5(0ior*!#wgHfN|~F2l?BLTChw;{(l8AC8GNz+Ysm@r>ZN|?giY5m zD-V_(F!VOdubsvi3T7}v1hRS0&0-T}6rK^b_s9p#=u6uGn>zsfF?Ud3FuiPqd4mx? z5BR~yW#pW~IEz7z4KEx$QDK&{4&ye)M=0?0@gdC#0$>gJ3KIO=Tpt4=X0iI%*t=iG zg44?KWDRsUk~cVqS5&PfLq0_;#(aH+KBS>XCw=*R;|)nJWf^H;ERx zfGw$_7xHvHt_rwS;NTb36_^G6$JlKMWncr!aI2ypVidLSmO$jYDX_f|`$o@EU>|jK@-uwjFEpPSzJhr?ura=& zMbIWhPg%rkp|qneM50)gb6<-OcO=SJk#bnJrKyJA*!5H_*pi%bUNQ2cegBOO^NXp# zNT^D`H76n^hn_!Bqb95_lo^BU)~KmZ9e!4gdKCXANVq)x;rLus?f+uF6BPbGTjBq+ zML~kX|JLIB8!Eh1_}^Kp1x+D z9XLfH63&?umG%jxDE{1y_COuXV088@Ir)}qJX`;AC?I?$je z=!telI3-y#njYvXH=s1x=ydSWH38m60_HHKavCKMsV|ax-5p_1X9R6bq00W-RsE@t ziucsI8a&nJIOsByj1KCLE)Ekp^kUPlb0oA> zeCM@MZ(T>i*uu^~5!tFj=h=vSIq~6!tjMYZ6_I^Xh%G2da5gAeP7r(n==GRW@L$j; zvo53qG$j&HpgjFSQD`LlVwd_vx3IGGwkuWgQu)`38%;z4>PSB|GHV(6iGS%*rdG^D zhYdHlL>AEIB}xQtAOBHcni}xKp{@dQ-)_tsvKI)ks;6QMVy@=oo)M=6LWnD)dijBn z!qfE?&CvDOX)Pm8iG)~HXC|J?p2(Eb70Dkp-~3WG7Dmc(14?QQG@$qV5%`%St?CQ1 z`lPvwU&N7P6@X8+#Z9?!yRo2l5T~yGL6z}4>v=T zS))nTpuxXo?PGwJ$XY)C>vCv%yl)o|--hqFn6+566i_F*byfvq&nBP_>wyB@I=CLQ z2TF{1akZPlx-gN4m$vzA3@E4o6u_!0jKq%N1-I9}EKfv6nIsL+$2?5lS%Rq$`j1{~ zAN@wR=hlmcH|Pq5pINlq&bMBX_}%8xkA=Iuq%#Pq0i!WgUy#`e%)}aSL%^{p{iVcjqJ$i5IsL6^Bx;lw450waCrlDx2aCfsr^EB?q1^Gi20CvIR8 zs_F3GuCc1UXAEM_yj`WusB(-ZGoQd1IJZ|CI0&5YVIU)L{)~IGkQ+EJ;E$UV2`u)w z`N{Gxl6EhGO+qE&3%#NR!_&BVib#VHe+oU3U|RSDmkKTn(Gw#QodgseL-+zx4SRtK zLT!9_oaBp5>X!f|c6*yhC}-&C(-)vR5LhA7tMJir=2Vb1zx1y5$vKH%)XP-iMMm*Q zF%9ghlt|8H7W_xzP+>c7==n>{r*)1IEXxEx+bYfEzz+D{L+3Pn1xIK{F6n${WsX+& zLcP0=K7TMeBBII6CorBrSapKi2~cqU@RP(iH;)8!KBm5y2)CQb$7AWP*x6hD|8*IugVtl%@_iSwsSg z-S;LF%$Xx`Y$8n;2jbXd($twiHleUO6UinMSp1>vK*^jHP?ck4Y2ZLO+b24eL_M>6 z#;-x{X~{aeO_>6Xk|ndpfyp7@Sz`?A=y%`{+g#G6MxCvS`x}FpOL4QOMAE8T`c8m? zsPj*9@PMduxm~}$`tQhH{eP~o*Ts&U@AULUM6|ARzg|nRx{J|w;@YSj9({-FIjsN* z_+*@sRCl(Rr`G0?*f~e;r48)p5^pP(btHB?CYG=51vM`lIoyH~r-H4%K9?!3rAfO{;kV;%9A6ydSuxPjw2aKmK=XMA8!FNtNo3rXbVGLqUxpg)dO*?rzh`3&@7k}FG zkZCkB)=Xtd-jj}ath$#IPhRrtP|>moRi?`Kd4bokUn}-Whq#|N%o)I(>iGLU5lPQE zqjA_Pbr4BX#?B#!cfe$IMd2juu;MDtig%Yn>FdBwC6j+8?1fiOhEwB2V1zRo!2RvU zqC)npW2^e8#vtaJwyfh=*vZT_;`%^czI9x#U0>0qXx+UuD62+=#1ol(8@VbA_$!|I z#4;wcfV?lDoPe#T*{V=L7_7(3VTEH@jgholYbgx>7*8Ll;8RwmXpBM3sohlYDdOsM z`$56K=JJ(J#$`31vg!vwJgI%E=80?*6R7z>&3h8owLbU7F4e~P!+k^oim2+7=5hnw z=Jgma@vlFQ9~_ESd&$pY8G+RWm^UTeZcHDt=W1EqxitncXLr@rBCaUo#k*P+;A55O zdhB=He0@OHmV17kRmEN6`HFnMt|E^jVcg7|b=Bf8Me#3=_y#R~Te>o`0 z&j*=^CFgC=1g<%=#9aYDyjva-B61H6Tb!mVlF@)x)x~x5Sj0Q<1#0ysac~k|q8Lh* z1%3d3>!{Z(1HgsPf9VLf9%A#!O)Y*35MD4&J3jFwhrFWtBY%xiM!M*L4@o4jygyQ; z@w<>@QqyMPTYq?uk6StUlipi|d9fcoTiiUWL0Bsr0d?-xj& z@ng;%BH9BpjUyJcI}+s+^OwwHK#7ud4cLa%j8S+P`~dE|q%ph%mkwQbNf-N^^4a>Ury3x_q4o9ebS2^GYY&;rBIBbFw1XbW8jQ{Y8=CkKS^g& zjub?qtGEvD<1aV^yv!;1uTT8 zKo0}BR|*HcN>x@g3hgGUzjVPcguX2@C~i0A3fapEw5qOY3}UXp&35D|t0oLP0dghZ z1zs4s=<7KTueD4ypS!-Q$fH+An2wp(+-tq`dx$DU>(|0B_ipZZwxTcj$xaTW=bWQO z^^b7Qd~+VYE>7c<3RC!P9Dfw|BQw~=h(2LkZUHA!d0FxWxDI(;geIB!f}{?FMsQs_ z+uK7g7DdLJ(>?U|U=EqpulZi1m2bDp^%~}Wc|Wbp6Y_%5E~uRC@y=IYklD%YHec9q z>F=y6X&Zx>^Sar^FlE&_W+y;F#SJ_zeWR3V=ix0sf#o&MH5dNQvo-sDT6}{@Cq77( zy(l=jcbymbzQXIGFW_ZmN%c)RcL$1Z_#-ewBsHgFM)k)@co3-w^eHKkiWo9j&lssd z-okmq6J!dBAUuINJYiK3-WbH3*Uj+6omJnvod5;l2|VG6b|X)h^KBorK)Ca4YmJ~B zDLINLC`WoKoMe`ecP=7AXhl+IA|ie%N9vQ_7G##p33^*xDhKhWExhE&I#5ve z&Z^IVF^D;{o4qaWtojP>1SoK2ak#QoKe(`-?U@p|ummYvf4H!sEHFaQ#qU%wgT@PI z1k)i;he%+9E`AqC)WFkm#M7}VLT?OW&g`nEW7Su1CqRLx^Alf1%w_Fktg1CfS^6BhF8c6$kSLONEZwv0i{Ib99uSoNpf2~ZHy`H7)8pdh4!fupMBHXVUw|E?Fm+RAn0ckrhkckiYEakU;32!=}t^uXqkxb*;$ zzQzzX`gEXRwod{*gqFlJJBs-N+Ndv}Wc(50@k@?JpBwR#6K!RE(z4Po1yzXLq#_T# z*yo+Nct<4rj+iO-i%Wzih-$hb`6GlEx!pXFzf_v?zB$}ff~?8QA?WTIC7Jr7d?+B8 zDHyRmDpDFpWiiiL0JdGPlyk4(cejJTQO&-I@rFRHYAqUrm~*<>&oph-j%6o6K?u~o zTtFev==nmRY2xb19v%XP>w#MXyowP*|9ylG0-{cDrXV2d6qrFk^zxt#0-_g1PEPVi zi(2~<_x}R`0RR8&edlf?O_12D5VB$HciPo32Ysgn$YGS2lPDR+VnUM~auO#n;eMQb zuVDlJZ*rjmHC!=HhN8&v~3(8l2Aw-3EySTCa2tUuOIw5%c< zI&6^9IYD^1X$lh1ePuB5)fI`6xAyqk=!2u1UxG78BAk){f5-}=V9cC`mq@zy81<(o z2&)0Z)MVWgL=D{eJwa2U>j^O7+^ac0`x42xg5&Z@Btd1x3)EcQ;|B%ngUZMELkD1a z6#bbBG*OU;sB@X?E84@&A68L@5~B^n@$e12-xqX4(PpsUn}Y_<;=i0CD%t`9Km3=? zZYN)(QY@tZz`w0#p;B&q8a(x3^p5k*Uw6xWsrawKSs&JG2p&xr_&S0p9Ehbt8Hlhz z_+Di+rocbkL_^VRHkpW8cMUK#(A}8*52Mpq^r_{6(CZtEF@^kodr)t0aMs_&)iZo` z@^BN32O@|}21Lfg4L@ZTKeJy{SB(e}cGZYh0%YAvgDzu=26~bV#S(N74_~!AX&5sR zEXLksSP@iVk3Ef1`^$2~g07;$p@u`KZAd=&Js9>cF6yQTZ!o5zSU(hG9z6kF*mWR? zk>U)U5mD`C_HJ_Tx$k$WQv7j~rz@dfPR~e@?VaEJwVs{VGFB|&$MU}yVi36q#XIQ`dCX3i=vR?XeET0R9_AZ=W!hWA@w}>ru7s$=zuh^U4Xc1sbkE>#` zaXocVVRA9%ATO7S56Wkr6K{tBc1?8(-?1@nBqYfDq`LfJna0Gvs*fyX`U@4w47-D3H6%}rHw@jojYjgC$im0Jg>xCo= zryagtu%F=8tefT{R58F#`wO3-$_zXpb_oG4liiUg_ z5W#VL#VUrONbo6IuOm$0<&OQTH758l6h}L$?z@U&plkfFXBzg!LUa&s*^CggR{zuj zNfz-JpKHmD<`yT({dswqQutXDHoeU0i-lnbPi;&WgJqLtjqD^fff1KQ;|*r~qn!Xo zOHudM!|MRHgVjs1>NQJWbSP|pRII|p=IQ7|JF-&M6s5bVO^LftijYt;V*na91Y`r> zr2C2hrKb)?rT{0ShntDo!wBLvW&)vyUsVVmg4)MJCDz2;jJ~Dbz7^lTA^bxmsgOjL zCbUQw^9Lh-bjAxk0K9-{XWz!YLiHYE9S+IIP2qz`Bp8WCZhYJfy%n(p2ENkmLfObz zFCu+&<3m)1l8*nf3(->Vd4+@X3=;nkI>;qM3Aj4-+5+ufems*dqQ6`C0(C?2@ z5+h(GL2c>m*e*Uam4+J4XKKQirX+#W6kX{Wcbp`+A}? z_gufS;zwLRv*~BlqDwrmw}DJl{eGfjaC9`>Hx`M!vxr3ybPF>Heh>ZHzS56{=xt~a z2vaw5K*8UcaZxw$uY3IB8`EEWG!^`sfj~eng+uXoK&X%Ji1NpGKY&ZUKU?)q)Nf&O?Q0*q-RtG$-Z@dx zfprVP{q_apg8GbYT@eL7D~KY#(0VK_YQ8rU*4|QBV$htKtExu@rFYMbLL!=cvbz!J9IG;|R8BO(}uaKUQcgjkm&!_;uuwV-W%iFu? zfvhA=L+J|m;roc}3(Vx0_p$U+pQeY8*Vf!*&F)xLyiNMln`*#XBFl&(%W!z9pb8vB z=@_zo7{6VM>bfkQt$`N>@e;)}% z?h+Bz_`8pzMfZ2;yQC|>R7Dri=F4BO6JZW@7bE`CfXEoa7{IB3(LTR52AUyoAKyXX zK`~U|B&Q2=U`xc$Xb6p~*PWtuz{5=|qo-4;S~As37LxE^p+*OLbD=@?;6){qf`6On z{LcYS^4U6<>4HNHfeK=OPR;gG?7%(l#<2`R>Y>JX#Gx5%w_~p;wr&9Up5AGWSY(Xn%C1Wf>dIj{V%g%R|}TH)l^B=*cMCG5@C_*QvH$; z7}c#2whKYMVnkbyJ^uDpNcXzkVjK*!Vz$AK+kQm}XIQ#F&rQSKM6S-W!AQQOzw}2U zJ;_BxtvE`s!s~GQToFbuxWQoXMQCbFaQIR(17g6ar9*y-txBQEP6onR>9!VU0!;iiH8v@p;!AAs z@g-skRkoj_hK3yGM!6ORw2;b;C-gcz;|3wJHGf;rb3J&kTFN5%Ko4K@kMm-%HDmqt z@yjd{W}j!nb}pa==gAs1h`n^D>F9W%8e)uotw_&)W-7FBgPK8?y6xBD?MvseVg`rP zibRF{QZQex(l3vGYDRZ?;Wi3DsNM<0`HCJc(}8e7y{*cxy+K)gd~6t_+W7V*G`9FK zTrbP>p3$Uxfn2sbeXVq&iSC#(M;eHjN;1bkNwrozJ%}6O=W#U;BBCt4K9!6 zR-b4s*_5@{m)F_z6K+r*J%%cp@lwpbzNQ0xCiNt7N}|fvIJr~mMA}b4qS}#mQ#K{K z6%5~M{XwVG7Uqf9PJx*=f(&?m>C63eRt+e)!F1an?Xya|qa_o@C_(c~Aj4(Tk&pI&c|b>IY`zGIxzuq`Q^5geo^v4OHu~&{;+vlNX)Xg z6|N*kpKtkjmmhQk6T07DyWIAcK zCARqrZcrb~(Q=G0MM{-+iOr}(KHT6ElgE6Or^4w;U@{sN%-T3xojq!^@ME_-dSM0? zp)h$h>%~g0&`N5ZVIYv?%CiV=FvCqk;d!b3BtJ#?P;^kJ6!i4CTS! zP|-tLA~i`SDJq^$W?@H@S}U1+NzzC*=}eL-_-7`spsP%>X3KIK{vesF&$wA)$cA{6 zliES7%`&rU?RiYsQgk*J?%ei+t*0^HE@v}3t4}lasDJnrXcebriOoMg3VfO$25^Hy z_x4r_#73{3K{}U+#U4d}MeV=v1{0lWG!5!BUErd+R_xc~`FR9{hRN_CI-459$rEeV zds5SXt3LLXAXVz%2KkQB6;f%sILu_#E?+K;I>pAks61*f{j?E#HF~d!=dwXVaf)Sf zkx}I(D71spBy6N=FT<)f92bj}q_o)lSjP>vW96{_)^A3rjsYI~6lKDB$kZZCyJyt$ zJ%*~rr-N!Qm1m1dzWCS)3}Y=?FAON@w$d3iiXnfFtM^*7#%(Ks8|+qJiXSG-R8sIK z;iQ;LCXqHu_LD`(iI2rwbP=v)lF3vFef|0`Ygl?2DhdDVbHv{X)FWK3J?}KoWIC-i zCKjHHWex$6)=Z0e=?1M z_}ZX}p!+)IuO8(x?_suEY7qW|##3_9Xno8FBeU1eiwSZ89pW{cvPJ?CSWCuH17)mx z;J=3l+{g{GOLb&E+xF-Ca&DCc8hf)q7slf~!{Vbp;BU(&#fIX-AdQCp9t*miFz6nC z6#=$A(L&%CZtC7z4g5X+g>3m>mSv3miC^u{D6&A|YHYI&nr6dYwirW@7h2nG(EO}6 z_d^>rIm=^=#QZ|Mc3aaJu@o*8noMk%?$b%3oQfqIMmY3b5i{Iu%m&r687@@PN_C!~ zC7*~c_Xl_^2{G`)ndO{&+Y1VVw{Kc$Ep^GdM>7)+-r@Cq?9|LXnX#mZa;+$)a$K6EU>{v!^ubO`>Kk>aT{On=Ixr1N|eK`pr!`%m1H5@}HAfO6I-PMJtfZxvI~QC8`& zliRXHQQ^v~*l0h7sP1bnlUKM`^96zND*0czSyg6qrPyiJo-Ey8DS~K3ET-aJUaKTK z{ba0|n+^)93D;K<@TitbJT&ZLAwDf-TEkl5c3Nw<>70M`TD#TaLNA|?o-6rLman~9 zleqX4Z3U%FC(JPQ@T~FLD3k)zaO>$gpmxN^c(vB-@wtQ~de!CvrS#Z#NcSrr^fc6+{uoI3I3Uk>Q3&VQ9(_Kt0mM z$_D$`7)?_q$`JYEkUz#&LBIcT67bu;5ft0A9$~ME<>JSF6y#`m_pYF;uWtH}(ZDrv z5tPu$&A8u&*vG+Pjx7N}D|og;K+ulkuX}%0K+ulRoGc)SFBZ|j1Ts9n!~@k{*_4`a z#PE@BFdA$m2nmRvIT9;$I-}j!cpwf3+WZoIyV!WJ(;r3&P8KK)p%~G9SI~5$XoZ`@ zIE1_lld(&z7Qh=&4-TnqZVme$gdqPZ6^qP-A}MQ zkmEN_>;?8-=d8BFXNQf+fiG*y99jx|YJa0(Ii1mOg<$z@G<}gBH-v-5GajBh;lyJ~ zb`aA6YHw%e-NMS*qcLwBRVSM9ftN?QhDqfSFuUHp)PjSI4=n7Y;Ee#&Tr zCJI`Yhbkgl*~lhp3O)azcHk9&3taITt&XiQ7XE=X?qJO7+5Q1kUpCvmy%7n;7iWJ^ zH~TBG&@xqtB-WtMewC*ty!cT3XZWRS>cC#J-sOn2%TZA&n=K56?f{kd=Ijkx>lMx@s@3-p25TwwxyL=xYyt((lZ-;I>b< zV-d@Qu$ox>a@X^1$#oe~tVZk+EuU|TV)GL9xOijD`8G7<6?ElNiUy@s#}|saXcukG z5CImjIpm2Cl7>-cuTwsRus=10uWY7Y1t|%szuxv1dLi{oHB+ZE<>sGEy}Bs6;N4%#yODJv zxh}_n)rj5ol2sac^BNvvmExgVFRs-87n@k_a?QtlvXS|dt<+1cV)DmL8rpA?V1NS) zS*$Q6w~>5Z`pUDBJc7N)yV!haJeKPu5VBqDJ5mci=_h6VG^}x8XNdgI!cj-^xAnZl zuII>)-jIOGf{-+7>nk6i`FNtbmgNpSUSD{=r@P(E^uS6?l7= zN=`8yh;?r0!0}+j*$Q-QM|7ev~w zS9Z$2c}hKECNeVb5lEfSV^1hWc^;?K@d#NxW%R?_Ch!QXZm68I0s0*s@FZjN;ymzV zvnJ@?In>PsflWIhk)(mW(L(ZwX7S8|oQFS<_2rBn-xgfO@ra;j`1fp%v(u>ZOPYn@ ziv0Vq@mBJ#?iX1cE=L13X0~)T)B!}FW9#IOVw7=BjLxwiax1vb+cHFg>A3ruNGMTu z3Wjr`jOy9sb?e;Z2}ma{?6V;fP!}vVA_Wyy^YR3s&M!5H1QRfv;{r-1pyIw6WG@$1 z=L2Cxg6Wkx*R5R_L;~y5rVCPGbsEmAadbX7SNDkbn%tcvnsNMriPh`>vmGAUsN@`9 z{}TzO<1-WBo@c`pE& zQ<9-bj;m85A$6XhMDnd0ZXGfKb;qqkro}6JLPWiyM)AVX6Oh_I9mls+63M>akkZvX zqO&!)u7!^WT|oxCkDZ;s^WpklVBe%KaDAVk`xp_5Eej0fk43=Q`seOb_tbGImDW`~ zvl_7nwUkmR5p^*Kc?zY8xMoyxrwB>0()`nTaeB@;Tkf2Vnq4t|+|bNYBK7YI?LRmT z<@tQxdn=^hVgH>!4nn&p081TLXV--UU_0i+`Bb?!5VH+1f@d5oh1r|GeE;AJBp``= zxImTf!Iu(E@YAQyBvx@e)=1>J{RdA#Nedb$I)B=kNLVfA{i6$W$5&RkuW!%6L_!(; z>6`sxrqKL;@CAPQ(3JdVg6gEgYyYQ?DfjZVIbG!Yny+mS4ruAX@iP-1@$oqYW*-WR z2DuHDr)6ZWk7`=}VHIU4G1@R1#1(@2f^I0<4EBLJeebce_^)M;*rP>7Gqc$pIHZxO z|H;*p)%@~=@HTK)hI9!`#WRLCwh^$R!VNtEsiAlROv{bv4T^dt?4by-fvb=n1SXN& zJJI1S<8M!Z+6S8RD`_Gjr5(2zhy;^dd)rYkr5;uE20cBZSv+DabUXp&7$tr4gm|J- zMV0~RxE4J}xxuaQW<3F=^GcLRFx^n1WYW`dB}yciE+|nV;dFd+36W5`qC|;=)P-ZC zM8fHkp@93j&PC^e(+bdgL%%SZH)zUwW#Z-VPMYhCbSRueZW(eX9&w$J&Ph^HF%0K7 zj1VcN8W0&n7z3a4!KQ0&=d%Lp__B@AY`9awD-|2RRpQ@GfXdF#MMTz;LYptWK~YYT zWxzRaCtdTepA$~Y_Pz6lur`24WYs&>FM!Tzf{JRPc>~~U{fol^b?OxTbszl7AzgyH z8-m$H(L7>%<0P)i=cw7~5asiy`s0SK1b_7YTFNK$iMyQDLdmNZI*QJl2nr_* z-SkL+@&{u`jweAPa>KVr%IJ9GuvCw6-2YGJfks7A75Q2%=vxuh8zp6`K<@pjE36>v z&O61=N7wxg#9XrRrg z5@FvZNF?B9=skN~f?%TB&76RyoSGr!S zg&zhbkwGq91)R|JiaH&8COaUQazOQlQyT5g?+R1E{~AN}Dgob{v%tqOB4?sQ{fg}9 zrhR%{1rw_gdt|2!UeedPf)-KjW{&0bT|5V^GX3RbkXvp85=y#VH|_7vKZF*IbQ(-D zZ5ki~&Vc&Bo!$Gy)Q;S)jek3RV1QnCc*tsGwc-oJ!)|K6bv1rTpBgWrqHe4C<5;fU zUUPct=49}FN=$4=q!4fulmF3u0FEY>-Nh2g&Xz-C2a*N9Da`xZ(|32DHPs>PyMM3$ z=~SBzY2uDmA5`@+WS;^eSZg(yF>u^RNu;GacEg`V=0V)=bNJ~52GQy{*ds?~hy=4I zDlFr8DR?rM--ZIUkViZ!ea0gv+q|Jr1s=$TEAcQQ!DSskrs0hv#YE0UIvANi=C1bO zcLLM-q_||l>3A6)BEdvS8J*sRP63LI!gpL47kNecsWEo&eJTx(lVn$OP5-Dn2BF$pZsuk{gwLNQ74K#susQ zjXFjvcwgW7oG3*4idg_;rvW9iNV1`5&g&Q=Y3j!EnMj&uI)z5Fagr6Zn_yh-e#*14 z{~7mF5)8BJ4wB=Wzl8a-+WK6A#Q`{poIWMS@u)wMa5}$=CK60jciz4s5>V%N3OWVm z<~nwGhxZxF*wM)%-6|%VnLq7hv6X3j8a#DuF}s6?bhM7%xpH9 z7dW4)DLsvmbf2O4u>Z!#_{PXRcjs&Nf%Vnrf)z_-p;hOtSR%oE+XdncqI!dO8QB|f zIv>afuDx>_S~4qnH=R#3N~EY_8_5%pLfcq}R=eY2TOxrq zWkYcM5Gk1|bqutLCK!hEacYlPgk&FCoL3I4$wSAFlBIsK#GrDq~3gt|*Ks)S@ zJ$yiC;C`Ml7#}Mt-0&x&r6(lbl|=)Qk+{X8!4trCoj;pOB%CgYDUon$jPu!Ei3Ai( zQAaw;eeDT&8RySd6RBqayl*ltoSg8;t`8!K>Xq47(Rknued-a$o%99H8{5vIhX${G*_lvwxf)1ay2a_HN4_sgLlisEB)xHtP12XpA7 z-A~sX`i@nP*`YE+EmbeCXR5W-Jt*^Zf;8&xo_U%G>TV#T3jt*^cSIOL&3&R5bQvWT$rWgNEGo;r&guq((e zlshF7SY8lKRQmbO6VNvM&e!N5lZU+lrVB+d%{AQ2(P{_$ZA!QU&ofR+Rc zfN_bHkDT#u|MEYNV2$@qcVU`^k8azboEMOdnQO=v3)>}@xt<4zN=iq$>KBZHqP9slh51+!|L|u z;x#lGqvj!Ka9{!d+nyr()vuHNhq)fr{fktDTR@kAi zyaXvHsN!*@ME4x6omqYV(Vko8kHGU$C#SFY-HP9E;4U6M*+4zX!OSt6aJCH7Q<&tW zvybv?L=VTiK8`YU388{-R0hd5FgkyKWUJ?3^ zP}NOLUZo#z?o~7a{B?h_!7h%Sd^0qEMC!g~|6U%JFTMTSzx=P$p&)c-2kXv6!S1?` zX!`Z**9oVRHBA0>RHsuE%Y8GfeSH*rZWV@q`_KR5WO!f1Nwy8jRR{TJ+5Eq!n^^Jk zX*-lI%BE9u`j_PWr=LHrE9O(8l9H6qD`xn2eK>%=Ie#Gcqi;XB(~(R{6Y z1E@(2$8)6-d2Z18oy4cGd-n!YSFEFSM;GqA2%-)J(VYa>=ZFt%h4#4k6k$BPH^P65 zf&sLYlzZ!%-tDB8OsBk_rPdPnAWJ4h8gai*cDIru zI-mc5NCoc^J4OQxhwKh&FYRWN(=Ln4Aaj1{+oX?qLUZ#r3|Tg7BE^QWCGwla-n;-50sW^MZ?K~8qqV7M?{?pBBk zx^s|kdtEk3s}Z~F<jhY8LH=l;6>J$c&Q`nef>Snuzs?KA5R zt67cMoiAzoc+|zSk!cdrS9~LFzXNME3O{aWM&two-2Ankxz>{TAjNh#H6?9u+CCq)_K%Ht^w22jp!V9ne#|HYL~*E!#RikcOGNM z1f=#H&Gr;2mw+&}&*(?3680U^Ikp3B8RP1d9XlYesPu>;X28G4aQ06nI{A{m#LiN- zX-uaq_4Lb1Y4vkb54V(v05$rI;}eosPAC&eP;27##$@Dpex;M-SPcZQVRptGtC@28(}1ZDBX(shm%vSM z{br!UJ%%?@ZCmEHC*}#x)HL9H&aU&3b^m3g{$5&aTmpyPi#BohE>oS-JteyeNcB9{Y>Y6%k z>AWt-meq*e^GTP^Bqa9p*wVRDEdOa&itG7mErkzSI2iY-~n&I+-?U?%M^O=oaY+MAAduW?V2P*ve$u8tj(?FWMa`#kABD78(@H5f#AvKu?F;bl?T z!AAX@Zo(oJy7TVjMjx!WmVn14Td|*fAmBR?+bLp0u^v7ha7J~Niyi|%Q{NZ`a;_oB zref+=%WAKI8lAu0~HLs4x8vXi(( zOMu~lX8)|KCYzs>0+?#*?SFdCpCewlYg*Focjj(CsEl1c6MC}nccwNHnpq++xBuV#WL1T zBb%Mv9}w~Z75h&bAKHIiteNu$vk{JWgupuBD_$J*~1P=J>NUcFV^Kdg! zdl*5y#!Mje@T&^JLs0v8K{uM1#nHFa+qdG|H-vwPBo&g#I{RmlF6IwL{3y(U9spjz zw6kv~P;crz#5x?3kDI~=kw`ESjokRS8G0*Xp%cE+?LrC3STBmWCq&g7pCxweLcr8} zUg6*jA;3;TiRg__W+X_ioTiwn58bd{;>zP3(jWqt)!+*VNz6UgDfXSB!VPt#h-Lkr zdAR8thI&s?I@bphqu(hikl`~Z4-#X*ORY!QD3e4g==Vn{i4pKrPHpMz*e*Uam1Yda zXKKQirmPBHO4qpK6p2#0T}X6lqG&v9C*a55pt;TgU5Bk>OkuM0?k7DYjPMJFKy6^g zME$|97(o_*pP!>^{D$@Nw5v(z6L#yHVp`2?S}}<3>xusV+4~aS#&KoczhdM*T+BJ{ zX)Tt#^t`@+<=vJSdAA=923l=dtF?K#xWN37d;Z+~l1Eaq6Q|>(6DMBM3NX`@L>I}A zRYkH`Eb`yPdHabUiSyEPKf`uKqKfS+va;Q8D;G7#h1K1&NamhJ!VZD25R;&M@Ym6k zduogJRRfLiU9TcrD9s0~>!DxIq+N=i?^5F0+$9|#0g(4~#QPrNeFyQr5SDK99{k-d znOHrj$ULeC{AgH#+_z9R4>kd2qEgxWhF}l#=;p(`51NbJe|suV8qbB>-N&*$EcR8I zAD1rbmMe#^V7vDTgavkpwrlCCR91BzJvcL=pgReqGU3VH$kFg18+PCMFeQL-0!~2y zyL`WMmp<>vcL}{_x}j3qC7fMC*uU}gf`wEUYLx@@>3YOFb^<0re*)fVS-m-L%P7N+ zEnr*rdEp1s%KM(BsOaN;jiLv{$v;Hy8^5a2&u0w=*+7Y@E)$WbM4 z{*5N+uQ}TG{+J_&iEm$F+HkGkcQ(M^K_TiEj9t9`yCXvvh#>CL zleFs4ftS;ZM192+YpZs%-l*DD-FDKsh9XrLn|04{)SfcgCI>xp)R|=RzS64kQX}0g z)tl>F-Y#NR5fN zs+s?>v+@+yt6~J~tU3ofi-qsUsk$yyn*nRqbwp68wl%F;Uaq$J=G;#fgGr~Wj4S+V ztuFd%a)DO@yXqDvs?p>}_+&#W4%wtSOw)9Pfq-#2O2-sz-c*TYH>}~XM!Ib;J*dy5 ztGL7i&rQCnS3 z5J8fhsC|bgwMo+_bi(6`DI60zMryU1wD2{Noe313mpJgrrWcr7X2?EX<}zK}?6*q8 z)FN%=6q(yP7NLf{JjxSP*+_C(p5U`dCh#!{lbQlqpU}SA5#|+4^Gr%yRtA{tq--%* z6^`MI2m;BdkX>^tao}C2S%&ffKTfOlElUnI0^SWK8=4YE8*Nx30uo>yaM(myGx(Us zjb3KLOOxe%JZUnBV0S3bs^jTs+R=&{K57ko7Ee*ho+Eax8CP`_Hg9JsO|8;7N*<4` zR?Bsy0y&x4NoCug_q!T9H5_Nwp=lox?4-8FwyMv2%PO<1)v!iZ4hSDp#>#{ordk$P z7aJ9Bux9<7x9SFgFs1eWf?t-BRMRQ4nv>6GsF6{ZhJ1)&x}c}+OotX&p&`4)UQJu* z)ef1fOxM|}+#2gsHYpPWnx1NYyFE6jb+C}vflMlPk1h@xWTw06m)hCd#A_phUTxCu zO!#zZm|j%{KH$ue*R3*Kvfr$ax#^G?SVKO|EVqUjEInl5yqZA-c_z2o)HBUCUBIfHN-rk}Z5vCk91WXs)KDTz-LhM1X}OMBTNZ7q?wcm> z7$QqZ>{jj5Lo3jG?A%=z`~VSbxu%iMCCO>8rYx*Yz1r>AY|pF$WxvL7r9IiSUDe)X z2Ax&WbtZ1I&8j6*sz{CgY}->u*_t;gxMH7Ov`5M0QB?~^45WzeLM12JwE8UH_$!S7L@2RZAyn&iRYC-dl18XXGHDQ* z<#fC#R&tq4UB}z@d?I;#dgBxda<@>ZiD}ni=iO{|OUo%OPc71$wWqBbg5RAPeLQK` z=T@i>vF2DBdy2{w3#?Wu+lthxEyrwc%UX43GB0|WsW+SEMlG+9o(q{$gJ#>SpppJSN6RtLUA^TV0PRcAcb$*vcj8B-P5 zyu{YWgq9f;+}Z*&lI`)L$ENU#*qsf+L8_M=#&op83hrh5>%3cu+6!>&R<71*rirIwTlb^df4Y_rd2i2l zj|hUlVh4`iA<=Fik@RLdp7?TwZ~?AmCaehnkjrNwfz||$Kj82CcSPt8&P`o7g^uQ+ z_e;8`W}%t=EOa-4{KgB&FI@g3oR^}>;%-u!PW=(6t}3Xy>TSNEq%NcRCtM8tj!1nA zR|J0qzr*?b@8Rqi8Wn$>gQnpu6s*XepNAF&N)gx$YLDuQ#b$tVekHLpB6zRMR{$muNK3#E>g=*9l$!%vfazJOSDpbdtWk@Eh;h66GgC-CO!k-hl zT5`r#hU>zHTvU3SoJ^Rq;ZzqkOLcIwNcCiIs&=}YmRWH8fEjcq;>4!BF&OE+Rd$64 zj)0C8{9&_fq&1P5D`RT1b@()?71HZvMQ;Gb#yaw#KTwFmW@J|9aD7znC_xnwZy4E0nK0~0~f?i z$K+j$t+&BQi3plyPZHDSES;%mObZOaLwzx!wE+g!Sh>M2-iursq?;#ns5dHfRA^{CU-|vjbp7cfk^5qLOJ~{gryTn?)ODL+Y zqwsFu?*yF}H8@~6mL`L7L_vcMva|7yW34O=+T@^3CK`hN>;J9@JhG4ImZ*iFkmV#a z^CMddG`8GZSm4u-ruvt+UCXCMsD63Z?wS3MH*a;ku$}k1EjuFGi+g(4j)133_PaEf z*|sacca-TLx8~5!-0oP${^7aPH<>JqE44!n+E)P-s^fZWv{{QbVBfOA7w)IOd0Xpw za&U{gXUihUp6FD&r4m<2^mc&^(GK@cYF=C5<1P0ey(Au20+B_>)$L!GHN63bNbQ(GmCc@Lz(LUlkboR@<{9mQDt@GxO zXPutyfYX8x{y6x&W<+`1gwNt3V)~F2{Qh9j0Z%CC`Uoyg!<{7bgRtHtO`wa3q93I2 zRK%eB9CRv+F7d{~VqQOlofd@fb)F}$7pvXr+9zE~BA+MlPsHnjJ_=DmxP}6EKS+Yl zH6-j1*s!Axj%lJCEWfdQc)U0Kq^N6I+J7v_x(+x7K0#jip{zY2#74(HLm@n%1&g&T z7-2cwwIoU*Q^7&IYeDu!+{ZtBLLUoAnLPM@@WQmJ3~x$N6-;Zmd)n7w4_n1iC77In ze+zr&%i@s(-NEY&O`tEs-6ncu7{;8H83n}|^lJ!o<{ez)gWivlE z>g08XyuS}n=>8g)Fui}A&Fj3SVy-Ih9%D1U$mX(5y1>_s;8rSGxH7l)-nzt(OY z)EYbUZ8leV{~lPh-Xu?@@z756!A$k~Wm3PJZ}mFuZvPox!=5u4T|@9q;tgTR-m*fu zj+O1hNzm8F-F8CEyYjKKogtB^_(#?lB9+^j9N%J&L3NEf{;4WmMbNwbfyQ6LZZc^8 zS;_Z)yYpnj23#iJz4t_$Kn!z{k>&Mp+{rrHbbMm~z$Yw8FR}bJ1OPl>c^cWYenz3f z`hF}{s9UaQyuGIO^ zxv`-<97xY5@%LZ<``?8x|Bpx&{ssO|75?=<|J??OZ2MpTL;n5O zzY~#YCU{*>fEhwUbuG`bRWT9pj>^NT10sbs`P=LtUlUDV_f$|wB3j>ppLw7>*Rxb{ zu3CodIpCN3;M%++1NzX$?8#C>*d#>DFn9ol>djR%Avgd>_m2c`UIf1*eaX9??5M7G zKDN8Wy`3kp-EaRq+>eN{xyR<5>-rmm=B&$)OZX(6g3Z|{kT(VpTG^k|EOcY|@a8GO z(?7T3iRLO_W9B&m&{>!EH-^o*_myu9o^x&w-k91s^S*M-IG+U?uwsvfEU-S0Q96Q> z8q3x(Xm(DzC*2$LsUdp0F2W|^`i23U1ubEZtXiTa!|?Vhyd}U=P>x7U6CNrazClWV z_j$&<3B_`dX)QFf$^k))Tl7&*tq)HL(5MZc+>g80DHUp^17GgM`5l^1yK(3v`aX7OzGoBPa1-GI3#!Zm z-MLe(s+r)IzHIsKmxR0)=e#+CTO0r@*LM`4z!NTv)rHhA?51s(fZc{Dhpd$e7 zHXCDrjsSE{m%v*yjK|0v)5{0Tn;51eFh$M`mnqzgyXBZ%JMnmVRI+z2H!(s-5IX6q z>CY`#p^H|`IY;36!F6r#FP8Z2pZ|c%)rX7Ea6Jl2;LXi$NgFOmpIG)D*!>f#o4B{* zLf^S}HBIgo%|DnYpIohBr`QA;{8(`EkVu5=Bby-kfuS836cFXA%tF6JXoudPz2ENK zKixm!t*GxF+JU@;&-Yv5IJYH~!B4xz;c_g0EwOT5uw%YA4_#tde6gV)6F=_9YXYvI zsVDg-yiqG$pqZySsoYLW-@ikzl5bD*vc8?}JUzg`?X>m%V_9BhGk+DQicK>-=`ueFpy7W`E%&!M!W2Y^tk6o4$5{Zg_w4~02x6Po!q8#tIq<-(4lHw)x zON`YUbj!c(7n1KDDe-bKc;B#`j+{Zxx12uhUaE^a7QKeu6F1^Y)Oy~F$h90nmJ(KI zosF0!G{m~HXaRtDXXb}l=a#Qa2|<3CH32PFr%2dKO?$-hmxxk&0{W(PMh65``t4wI z)?=?X#y634{qCyg^q;#m;R32B2ImMkznwQ8+Kr*3o^(;oCl{-abm_TmXnYgi4<~{- z=0Cok52PC#*Yh#^96`pBC2Jk?&9ONTyh=Pq=Lk9me@4%&8+4ayU_d2a>Dd)^gkkJJX>}Q)$?TO>p>l{)9m=iZm*SK~! zvWos9t=%2!cHY0eSLs9fA^s58+ES#gei26gfa_tevRh{-oesL4{zOC0DUptEr>XDn zV0e|B`vDGySJ|D8%!^R*ex6Q!{i5o@Ma5qaipNe{upbL16%vU`e|(mW`q0B{xf@-{ zk!WEb#W>1Fefl0U0J}IM^PXaLuugyXISp|!UuE@WVY2*paJ7G?fcHo9VjjXTqX`{4 z{?7-Z`EJr5O z*#IiO90nx&xcdI2sq0VI{y<;LpQwcTp*IJe)xdHx7^j-cJ{KCNn%F)S8c$aVSw+4k z3Q&@-N%yIt`9=c709DJ}8E#_XiiPVK8t|fv>lCo7npHRszX2kDbx5_KcwLze;uGSW zcX-j0odg07UB@0;mO*u)R+4#fet55n2&&1ekpX%i$o7)5+P|2r0~D~cGNBk-JcfAPk!fy>tzoLC*ddYAt#Ny5PQ0xCIp1x_Ld}S&`d2bS?>fOLmt?@ z5+3h!j%1I(hg~Q3MvmMecsBO$pEJtz6^<*|#?OQD;2Labq*L zlP(YY+yJ5bOfQ3 z;`)4U=CSp&TJmlTopa82u5rwIRK=f&Hw4}FLSxR~fBpO0LDjI6A`TJ9?y3)oMCCt< zI7ATHkG$(Is^~>+AwReF|4Dv$wtHd!?f%{O<55806qKWU5}+yVXi?tS`pQ-UwhflM|xg%>^BCDBrB>ZpYdSDjp1|7a|7`i?c>Q=D7Q z_q#s@%hC+q(NZb24?S01&vG`PjJtPkm4N;)TDs-z+JS?=a`|PnJJo!zbQmuWd(fOS zSM;Vw%ctui@gAQLbW7B((4FdnzQs>hNOhqv8k&^-{nx)^2eboOJ#avKymyEk_xATY zK3Z5~r@3oEcdA#rYf&EoEJh8jhJGyH@ucsSz*Ln@iZAIh|5@x4D4l0G6wl|my-(Jz) zAl$Ty_Xgi_ZxG(`8{Y-phN5tf*fA z=z-=?qIkyUK44Pd?)>zD*#|atxVlj(nizm(&e+X-P zD0tXurqE*e_Eo0PbnYWfq4^^%^ z19(wt^h3zLs_9$48&bAsJxFu~NRrWR<{YHyYXutN+ z2KW*EL1m+pt1koc0E*WujR$m0tK(Rf@*GV={Fc{2cbU8=7XTsI^w7(~+)}~3p(`(a z6%0Dx?^gB<0VFy63bY<1ZO}Z}YIq;D*GDW4Q_Mca?o$wd0Fn*5D2${Vc3lQ1X&m}9 zzz?#dqP~k>Gq5!K8$caiU@We|2bw17G<}y4H!v3+iVeu3C_q9=VMZO51bg)^5sIC# z6EORmWQjmSsGyKkE_;V2L*MTzj^*14_#(_Cwt@;AI#jXjfD8~M{u>%hqBpE1YAzg= zP4^rB{ci4g_BRZ3#kp+o0E0k$zwTGdmQC;t$b-Rq;L(|35oCsrkvN{l3@~wSRgcRzQ*|*gU z3L{9M7T7(+n6NyML;!^iJp2xyQI0V4T5$~cFDN##Mt!x3`ih7Be!SE9Z{ocD#E-;z z>A9a_yCPA=_7z##?zfeTn&ZOi?pY*v&mv)mz*mS#P(JwU=*c~`Mf<9OM)uV>OO#m{#sac%CB4v+xI`#R!%5AnW(cwY!hw|Ni#ZkJ4~9#mu=)dPMstU&Ht zD4PeH05egk?0rM9hk11KVcrML#qPg7l_!no&}8apwui;OD)ZygMcs1c@D*(LK7p{n z4$*ckU6snJuA>KMCKPlhfm9|8XpQekKgfpNcRoxBV4Q$c5Wp_q@7$%&JMvvZubFPB zly(Vcmk{=EJiTBc)rDH+0DZb1@s6Ezk@>5EnJi6zdJIt@&+!a+0VU_ETRD=5 zFXZ|FvC9&q*6Y9M#H^>y53{(Ek|5)e$$l(idrPN0CK{~_bXL@?lz6B&|Ah;N|opQC~5| z+N#~GH>!43x1DsZp-9!mX5BL!wWmzB$wAK?btaj-ue55s)JQi=_2xR4w~LrnL$b}&rADovDH_Gzpun$JneNieX0n;7Yjm4A znH(A&nQ2k}auW2tQDzaSi&?IPZ4kk_JC;Rui7%6*V%o?8_=^~}YUY3JtUQJFsu%$~ ztIomBV&VI7s;&#wX26_J3S#cjPbD1t~_FJW4YLT{bip*^ti%`Q} z9_0zDY$UlXPw?3!6Zn{fNlk&QPiSB52=fZ2c_t+;D+5e+QnnbZ3de9p1OeEUbgA2y z;JZ$<4CMoUoL1{wmKR3KDwJ3C*Ng`q{;YE{+-0}~M(Y3*uN>qvzHHYs{;$`b5R zZJ}CNX1&(iEG_qxB|TCz9X;*pQ@WmAW`~=4 zc|{WSK`6@x+23YHn9#IKoo-erEi4n)?f#x|(V>{p&>bn&@_IGZ zy49XeH7QHS3XRb!sFVt;O&bwxY~@~ZL?;*4s4;G*#neWvb!tJ*RNBR{>uG9lI?Wn| zp33*rR#lX8GDX)i_+pywr!qW~YNWQ4GHs3ft!W1ltaziQ!a40?AS??#wmB!$Wx=Fn zyhgMa{IuC$&plfQ+KXuovddAhP)e0;#ZJ21njQ#6t?y--)*?lkStgWaVcK2|tX6-8 z8}p30&@?V6^d+6NTEWKi25G&WT%~l{nO5EITAOFr*2)C>SKm;I!H_OXbG~hFWV+ni z<`BWuOdptSGnfb5l+jC@CSwZIMsZB6i`C(Xlg)89jWJ!z=#92iJ>wG#Tr(zCb~9l& zMJmr!QWHMOI@(tESag) zd+9*8M+G7;Gfo!UR+`CtNpf8VcXegd_qfJN?IeNfm0Pty;il^f)339LAPv+_Zsz`f z_P%X7ZDm{ZS5(rnGe$ei5{c7M~{1t0ar4gZ_Zk`-C3u7aofCaHh(qSXmQ(}rm0<4 zo}Md6fQ_5C&1PqY9<2UHm_v|?anibI-kzJy2$Ih;ApTdo4j;CL(&UFB&FdEaTl5{! zm%IB6Sb?)^JxS{2^WVL1&v&Pd$6zeIwAZxB&O0Fb@3PWy2R&_+`%rKXWF$*o;JV(Q zl9%AX&Er?}uj1|f+aMp1UTPrq+15Yb%sD>|^w8Bn9p&*au@AL=%LM-*Iw@8Z9fh=3 z{>QUy$bDIn&G}#Wp9;XbCo%-S;GzB^*1$iWzaU-y3(<^`LvdCAtRW2)T4Uil=yAU? z>|Y$BWjnuLuY;b=Z(j>g2W`&J@QNH3)3VH^+n7&mZDQJ}(ie@Tf_rWqok-a#zs0 z(&*t^J%2wt?{u!LvU1liG+M3iKMM2N)nj{d0&3-x$K&p!a$LEs7S!iTWj0mHXSYqM zaNTO0lL3GHe9#}kprfAuDU`K#>G01ZRAML7mvYfk3p2TQd-12z?^cYl-t4shRxeL~ z^q%|2joYqzJw85HA772RCAWS)+};%MfO_SwSbrQs{qy;oUQw@~RQ+V~t@`ph*2O#X z>|t2`{xluF=I5tcwfpJpusnYHW6j5dN4 zc-%bE3l}F=9(_2ug%sO_$A9^7m0oXV4?5h8*=gm*937Tg1jC=zo^^jIo)?PNxY#)V zG`cwb@zS1`9#6Y-$dFVp(a#>I7nPfWdR*xO^Kbd)Zhob|XV+zO~QK8^_(&pI)u>-8^gD ziKq9IZ|cv+@Z=Ugc)WQ%?%$l>HLkyXe^rMMN`H3!q!0`{-v$q6ai(9Nm7af2evO8m z78)1=iK&Yw=f&GF28ckvugkG_E)DdJpTJW|57pUF0ZZAnN^z1OU0M6GCcX! zzkaal4Rbo^!DIYbZ?;af-W{_Hw@cU7J}Jl`4*hsYpn{y_2! z57=H6YD4sJ(F*IIUHJ~!QESFb`UO86OXw>+;PL8!XJ~eQ68nf9=2#QTqYKv+?Kqr&#I9JhC$PbgT?xgalZ;)hhUIWn&fc(^`yupl zVWEPG06NQ7#@AGbvTm3cBvM-;;gT59y<%-~v#DcR;lrW$b{9pvMMbzdyX$mr+d|ib zhh_q(vKm(bE=Apot6}$LMA);dsHUyaWZkWwpB=r;&iqa+RYJPBXZ+BEg{}gpe6XAX zgezw!jlgYR=bW1-PnX){EUC9qoEi@E* zz94qsCjc!>;!Bh_Uq=q{};@KUO4u zxOA$V`Pdmx@Q+RFeZ?*(fESG%xHmBgAD`pX4qvD=ur&3Q8^CW|h;z+C1tG|zq5J{{ z?!z`v6i6}X6QYF`SnfcWjDjAcL+BX`fz>qBt(e3tiycB#NNV3{h)O&_74;Z`&olV#B63&)4;0$w}Z^_+`|(9HpT8 zwPX+*qvaCC1)PC{AUbaZ)a5`Z`|PXK(sX!Q4g5iyI^&|;2nFB+_6liY;iTauvkirX z7_w(5{K+PIznKO#YE9;3ZFjv7Ohj4PD7G5a$>g=V`IC{$h#VqUqbspWB-JAFUJCKD zh?f+bbb-Nb+jvot-)Y_$3Z3`9`D)PGaIYz{Z!o$uYqM{76Sy?{2BUkziM2HQ2BX1i zgL6*5;289>17?4^-j+$yCR0rXaQHnX1uW6N)o9?->?>%5oUDyh(8%B-?OTl|!iDx4 zV$jm?uAs3C{WMYWXOD&?ylDdani1;}^4#dhH6l*kIT%Ptfx44Eb!^+HiHb7VSjJ zZCRXj6_>4N%X=}8ami>y%Wb14o*wCKV?@w^gS?1uPs=Q>QAV3u?ltPYTC`(AEo^aI zcZt{9_aKvJa~KB|x+R0yh%7mbOQbj;24=sJpu;!|MUy@L&0vqQ=Pn$%5*wK;LN_06 zsyz(#kV`Zlp=fgVclY4Kr8rW7A)DaC$6)#j-04`J?4XXb8Q*E-$$b)6MbHyamjZvQzrk)_DoZJ7qd(((bad#o5*$XMI?g!aW$Kq2Y8-Iv%v-0X*HYj z+ikcMG#j>x^?S{R`cxnF+QAeRxVLe1nKD|*y)KiAF4F^(DbPjJ(pgMJUlOvbS7b{t zFy*ahY?}1KpbZp5wi3;XDhCzkAcJf`6qJ*$gtQk0>*%WYotG#`x){%16zoO8yA%cA zf$}UbUBY3M1VNQ6$RPfbpju4P-C1TUC$yIY)OPPt@BFgEOBS$|w8==aZn+xX;4Bl8 z0sbIq7PUDaN~lOMArz720{Qk#c1Ts~aeL=E8_Uu->6vcgHsIQsrsAy6(+QBJTL7 z%-_X~4Ul+d!#m+inUpr@+Mfx3^u;j2R1lSsrpx9SUl_!<^sNcd5p@g5_JIc*-_M@_ zbF2+Mqicf(kTi9WY{($!mMs~?#++-&AgB(o?}YY_qID-Bg8#91-8=Yj0uD+ax#h%_ z*{;iPP4Ga7mlPXs|6>BfB%qm0u9kJ6mx%Ik1MHb$b)YdXqE>MH7HD5QHE?Ng6Nv3u z8lcd2s(ELm!?7^dCh{YKmY!p8C)d&KmYz; zui~5PLT#A<<9UsC%Z`}IS8Lv~)tQI}N7C7{Q^iwb-ZHwuESbfnO}RY#a^G7;IrRRm zCs`qJlAH&vJe%h<=vF5g#D>kY1Z6p>D5md(_MX!OC<`i)&5PeW6YVm0Ydlt>UBQ;t zo8EC+zSg!TxMt%s3FHU|c1Y%(lpUL~KrY@?+RMX$brF26kCqiQ? z{^C2|Y-Vce8cPqgEh1y4f;HQ-p?xrtRTZN7E_U^uBx|NXyqVli-BRBN*}jkT_;({* zP)qWi+0lMHxL;&dHf2%yjV+0!S0jS)Di45a%0n6GIS=$alV1ee{Iq_NMlDUhNKoxJ z-wEygBFXqgF0U^-2OruZzm&4fm7Uo)3~>n}ALUx86n~-q*iKUY=eI_v_$z#g z+13F5fwM&5%hDMB7T~wRA4|rnw@G?O<0pbV>5Ga8)$zrj8^VDhP9R)EXo-d_2}4Vj z@P+C2S@Z6+^Sjl&XkN8DA9KQ$W&(V{dg(!_1^kQK48x-z(^t`3%1E3q|LtisZZQ=}Vz;mDg z^c&;#>j&&WwaFZNNhM9ubTlLMpM%5OX!sMs!Oulp396OuyH@*1z&bt^ArkQ8^5Daj z_$j$4zy_%&3&o5Zi#^_>2N-CmM~KJC;?Y%1V2GCP2v6LL_-j=Rjgf)S(0nKLFiqD)LBm9vBu%sg`tkYA&Nz-pq>Rp=!$U674?1yDLYD zr3=<>6HWK};=Xr&ef7J0(`lb~y8AnkK`W&Law}&~N=WN2 z5L14!nL?t=+lvia0?2ceegvTA9T zK}MdAx@gcD9I|A)4ae}`)jGLSj$XJF(ZHrQwcTBAN-6$CJY^7j@{#z4Y9%rf5C;Hx z#?XhMrkUtNqlA}iWSRJ*4Mx%wL@hRr9TLxE-kBKLFXwOI4zV?ZS=}M8C#|Io<~=yH zXG@mpys68gLf+^v>`)~1*}9!<9Q~l?KwE-7TY=b(qt90PbmQm;6%5`I^x0};Y#e>I z@(&wFKd5HPmY~mek!a)Svt5wcH2V0O%od~17JJ?}`fS0^jib-jtaRh(CvDPjMt{5Y z{pxn>`_=8%_p95j?^m~5->+`BzF+03@B8L@r8Tj13&D9O_9!{uO8~Xyj5ev|>C8g? zjw?SyKEU3Xs`~K4ditiSEey@>DD_2nDvoG^P$3B8Rbv|4W85(9Z|u zid|2JIEf>?Z&!K@dVfG>?D>h^9fr>1U91yVw!hQ6h*D^U_+Ibn=*pV(hx&tcQUog0V zOu3~4@d^LXJaVQL{V4PFoUCdQjqv>4B`snx`c(F;N)$q@v3XhO^or%cTDcY}p}A5= z*1U7lO9gU%W!*3@@Gw=k%JQP#VIG~Uf(aE0)JM+^N{)e`15~Y30E8+8rzb4FWFqPS z$0`xS9l*CmQy72=d}5*|qryZpOlKHLoQi!}kxd!k+bcI`cb(2{J16wuLyVnJtUFN1 z$dEeaXE-jZ`-R7NMs-plW+h=Fs+On-eapmeTGIjQQY*}4b4;2Ag4qg0=hx+&aH3f{ ze#e3LStvIAm3AVlvSG>+WaR^(2&g={Ls5vA zx5F@_Nkjis@l{TqGFI-Ax$5NC|hVEA_X1e zFTxqfN=~rlf>0{BLL3SxT%p<&RiIghfc`0eK_sm~U4E#GSQ8+fcKg7b0ifDfRS_&S zioD!JD<7skrF+3}ouY`eo@!EJ^sWCL1b%@s!97t59F}j5LW-OLac;zpsn46kD zho(BF|3xf_RpYS)ksWw)vdnYtyPdn=r+3Ypv*i=(Vn8*v&jK)bxz@B&OK7caP>5={ z0SnD8PZktvCIN*4H+b+l+Z}MSECeKuyw-s=dOxNC8 z?@MG$x{2u2c8XA}BI>8^;@c$-@&P{WL+nuWxWIoG|MTzv{@ukjq>zI8yZxrD5-|QF z;p!(V-tk};_@V9U^?PK`XOTWvyyL4n(RycDz#u-C&M(-K$5@Th5-~Bkc=%Diz=|W^woRetXzFqw zSC2wAoA}4VE&*&b!go+{DImTX|Jcq$*OiDxic6lN-#IVQhz%weRfNl}%K+It!c^Kk zo2QT0oD4vtEAewZvn`+F8Ow2l*yBeV3&9XxTQ}Bb+@{Czl!2EiPnSB!h!Xa9@d8G* zV@!}#KtqRY;VV)Jp3W?1A`d7~RoSAkCRrxv|1Q)L!~ycSni`h#jxIoAA_LOLROrvc zlsI`wHJgrg0RBk1f#@r0%%hy}&n|dI4BJT=K*5>5XrS}}yI#<6>@Y#c#aFJAI% zVaR6iDufjbNpuzL5D_nMbRwJy)cRH=iGs7G&+d_Lz`K@#jaE^e3z~}m3HR1`6Fr77 z(=25mOvESuCWORoX)hZQjWWrNL($4bd)rb~fI^I-KF|HjGgLmzJHd80jMY1V?{>v< zPDFA?00G5ZRn+GZFS(!sfbZ53RrCB3tfPgZO`aE zjcl??=eA`d`5CCZfQ9yBN(NGRhD#lXfkHA|BILH<#GsIQL{4F0zo!)eTW`vA-Y)?M z8pON^pvO<0#mQd0fFZX5H(31m-lA4X0h7UlU>+^#U))HAMq^`|9LjB^nHCeU&2w9< zp1&tV zV@r%X$C0z6%MG+ri)|f|y{Q-EYLl~F8&7c3sZ%TV!EB^`c}NQdv8_m&!o<`c|> zXR@O0s|Pt=+e&8vq;bum(n#!@gVPrvt*zZ2XG~wwq$h6BNL-lTJxDrU#C{J_Gq7i$ z0_K+7(RCbY+}MrXa#A#fXX551>4WxluK@}O3}upGfJ+BBm$Z!eq_2@nnK)UTxTN7{ zbV2UzeP>Wv70~5X6^C>T;h)`u+Q-kr)j<{i|4aEJ2^m};6h8jTJNJB8M24;09dkqm z7a*aG$l%vvq>FNMpG^71ZfVk#m>~7J&B>y>&9*I$uD6tAb;Jv%4hGr_FJLi3lWY+T zexXT@Wa8TAR8+!dSGtMsydXk;E=yF(6{8u;Z7Ip6bZ(vw|95T8Ap{3xB&-FAxku2F zI(m(s6P!{@wih4jA;J`(`);O&?zFpCGZtzeT_1cYeas_WMIcZl&B8w=H3B3}hgeKC zb$|!4Z*&-%f(j^UFY^&l^W^e|^E+~hLq?bSU1+F)o2)4Ay?W<9zNhFDQrvh^hmLxl zQ^j4`T$sE7O_!=>qzLMq#*Sc5GhI3-YXvHLKj9hA0KZ7Rs&NZvx}1_*b{@w(N4wA^ zFK{@kj~6g1Lx7`umQf+0i{x`;mrR>QXY?}7iZjh~HErIs9nbT8m}4dBLi}$NTI()} zRs7elI4@qb8EtW1yXhQjabEl(g@$yv=xvfNueY6X+*(ex;6=Yxi6HAzAVn#4|4a2a z^I`c?ecdh`;CHFs?kKr{FU@_9>Q!Uxl_(H(?>X;oaI$uE5s1BMMg_WF3<$ z%oZv=yKHZXPefh7fPv6T{j)O z&_74;FC4>NBU^Lzd|fP+Y$o9Sx+^ zbl;H3|D8`ZIpCT2Y`4_XbZFWd_=7fe#x)=jD**k#c>VeT8)NpV$190*>_~Q<)2N1c zIpY2vP2dd`{K-CSek;Y+?QUJ>4mRpzP8hdolZYiL~pPw5ad11Eup z7|d}yUb$wt%PPEu3msMwnH}51tz*h7Qoq@&7eWJ5eF6lYhgkFEo-HK|L8W1tccbX!v{JD$s}*&0^&fIA(JqH(k5J*`<*I=Z znP22}$%9=~>{R{?K zvu-Lr{n7gsPEjPATA`}j5^;{uIkq{@+nXa9Xh0x9W5(zh& zDH=TOge-)Bc1S9aIxOLP{GFFn$U?9s#@=qR@2K2puEQAuM_SVS=tJ}*+6ME0EkSOE|g;J72 zB36JQODz8fh@icAC;-jzG)GL{w)M^a=Wz(BLNPLft*_asHK zq9Rt<;gBUuYaOla!wzgz6&7ER6glA!s@U&CQO{MRxyBZ0ns$!y2Bt}GB6j6# zPEg?opqoua9;wa)!|EH7E>AI=UBoJca|O$*IJ(F_w3Vo2ilB>hmwQVH&t?_BvT#gvEo`~r}k7DI!7krS}qyAiwy3uqUrKd591UiLMFmmF?M*1Q>_(V z5+M^|E&9FP=46LPxmr#%*`X2SAtZzN3x!I_sRNdRP{5scHceJIwbLf6hT95(P!)I) zCEJtXaeCA$*pr*A(*vssDG-}aeB1*H5!e?WIt$pdEQG5TI00m5YxZn=oCi(iNmNj~ z_j%$D1m}kTu6qz7B!gtfg>cr+q6;D9B2FOpkE1X)G7%iz9T!3brQ(gj#M$E*ien=v znI^M)yrTi|Vx^d?)su{CG=e;UWDpzhiaLqq5C-OumoKr!QYW(zA0=oSWhahN21f!Kf_{Mn#DYB(6vX0HskRE5XtxknhJ* zB!iN%c=C`P@;pWfeje1krCB5HZX6Xd6WI#%yIa}btGA`YVkueIW03!t3}VCOsw-w8 z#u-yrMEDRZrEDM7txy~j_Csc&^yZE#j#n}&Ru2Y>9j^enb2?<-A##G3a8o|4Z{*V_Vs*TM!S1~JYo%%G?#-PM1o-{?J zHrkqEH4T6ECN;%RK6K{4XU!~R8SHArdNR>e*_!NqjGU)=b;b!58oiB|!>^f%E7QB9 zw?%LXT^)E$b1t-hROY2CHZzfn@XmC_LXst4oAGXBJ7}e#D>gH6Bb&ZA%oeA--|HgM zMtF&#EaV%++2AcMgjSncu5WW+*Ec;GpL~jIWUAu7wEs4;vpZmI?!a$5(Co)CLrG6lM5S~`=Er9%v3!CCrJE?oq! z{r~>2Ut8!jL~?6iLYg;&Hs8(#C)wQEx?0j?lWVoDwMt9XL~lW~VudJc3HEE|*mk_N zuSd;Bt|4@J44|M&qe#f+if4q(_DNPWxXY8oldtR=KG~Wrlqx&4t@MIbkPWE_0$UN$M z?XDCdY0p5{k z=A4v9coCuO8sTMp6=W#uhIxU9sk+G-UK6|r7kWT27jQzfAnJfD=};!?3zvF2oj|P@ z?uu*(Lm5uwAcPwFQ8u5z@}~e9+Ri2duYb%5Jp|LiP!d&y&YOuXP};uOixc~J(;2@^ zup~`IwYlH{kTsRc)?k|=m0ijNDz0J51eDG)WdcQMN-@Er7vb#G>Hj1i%`zIuvNYy4 zb(!A@ak(%*nx(Pu7*8U<(=na)`H=@?X+Y$+W7-f2=bX?2k_Z(dBB`Me7bc=%V2S=& zP&E^Mp+UJ#zMx}GY-_LMV7xG~3=?T=5E1+t%Iyi%D}@=!UV&-` zUXrrBfXXV>F=K)SH(m60{YnuS*6DJ*p!KMTmQB`IF1rUUSyR*JUq2K-EKjSSNB_rpAkNfKF38Er()5nH*BAG_ z^XseMm(6akbN9P@(`lb~x*lxu3+TiJM6-_m?_xinaDdjzW-^BBvT?mie#(G>KKnwl zk&~mKIvwi({E>14(WJo|c|R1mPh_L1HW|BILiRYq?wTmqMp(%qS=~+Z=wnVeA7V;` zGZeAcMh8<(N0{pXuC4qG&{F&8TmFXuYGDI;I0QOWhy=$8M{yFJZon)Omd0pgf+y1m zb2dmcjFSnH3M60{qE6%DU;;>`#xg-7mN3o4nB*%R;WL2}r_e&0>XgCGy?W^njtCH5 z&}4N736eG~gGm8Hv4k82FeWB~A_=@;(PcI=fueGxu?cBSMbS5t#?EnWBXJ=6<(khF zpzNO@<#=I$qtS4-=IunWSd4tpXhKYDOdBBQxS>p-M9H+MTwhGkC}k=WEP9#BMj*5@ zmF)!3uxO@vVL|twfB!c(CPS#?OV+oK2^v*=l?9UjyEqiM7)-EpNKi;*Ij5mk$`yoB zexfO#1!$K~G?e!sPo~No%Q!zL&*Eg3WQ9LI;`$Va&jRMa7@RZ)6Il`!*IGx85cI&c z>`B@LoDJU`WH=9Ftj$!%`9*v?2s_bj5iN-7KyY()oNN*BBEltIQu6X)sW)uZ)a)mC z^yP(En^0o_$-F@>nq@%f;TVVmpx*)PA(2on54ryZo`L#7(EpMlvikX;T(R$o4mHh; z^1f4rE$DsQHRAb+U2keS>Z0pNxV`OZ^pjNv206m@*R%f2)vX$rb- zWmDUs+i``gH=zgTZy;Ty+rVvIO4cE|py^N$Zd1NCC96`$uQ`|9+?#!i30R6~n0G*h ziwp)g;s~^KAU@%d%%dxf$|t}inTE0|DhdtrW&&r9MQ$1eNBJH%oXiAN8&W`G%FMhz zD14+5IZV?U$cCXQ&s51TZ0qm0wy9IK{jP7(~AirFid$u z=RW0k-k2bHE4rl!XgUq;$do9oK9zTo1(g50Nc7;`a1XO~lgh=xqlKe?7SzubK@=2i zBtT6BQM7#~R}IDhK014RxG@@_I!<|dQ9^iM^8qRMY%f`;TWH(*pj4>nN9fTRKDDA@7D2r*Ru z#V>DJQ>hegR$%<-F|HcSNSOSNw<9ES+#sINU2|cpg+NXMzk?vtXjE*VM)RpbcTa-t zY69}?S#(#l*^FJ9lngdSAD;nk^Wtd4i;6^dmnJ!%0XHpt3!EZMaR@3SjR_KGa+ztC zLc>j%=JqV=p;aRjof$vF@Ey1W1;bK?DDZ{pMbN=SgeKNd_ARIcMgEd1lMi#mC*7Ll zZR)PG-Hs`Ez3F&K+!a|a;?{(Ap|ZGWXb$96$DHn>umt=C3ZonnhrTLKz=FYDt78Z0 z+fOeiS5Db4hR+y$}LeGt?@DFeF~lV_z(I34{^%co}N``-sbUuI!^7dGgyw zr(z`yF(Ew8*JQ?ptU@yLr^Xni*Cm56L*5t_!l7nP_7>PSm6E|Z)dRgwFE}bvNC38$ zKC2;mx=^frv?I*CJg@oG*EO#IrI}Un`w#zdX0t@+_GwDLH zL*n+R3do&?vIKD08ikzQPxxV5Q>=-)@Z9r-s-3k&bzq~QYCoJ$E)MRpo$B%c{c{BW z!Z8TuHM=AzdDnR*auxhIz1d17M}JyV1s~()x3Kn$zT}^Uu19W#U6fhi<|dGI1jv;n z`}8boP)qIp-cE;`kFlgTEwYxNw-L+eo%b#}A#BN)(S;64&-%jf>#XI{zT$%;hQ-{M zFU)cT+ zsBLg^L-FM9`ZB}&eRX|z-0jif$a@K!SH~H~?z(r@x$`D-Yyd%eQF2gh95%eE3VAj; z5~oik%9Kt|j__~0W{Q2>as>W$UPD3!4L{Wk$Risy#~tFl>S^IpDA-(e4dtP&B5yE~ z0lvf#kMza9{dpZ4D-9P{(U?xX>MSEE26gb+94Yc|spdn9q@#;Ni=_$?;e2Q@3K5*8 zOo(>WA`FLwyV2^>Z<;{^|y8V^b z*?FvF6|#4J{mjA%A{9RzJ<&yLn?*r%K{v%VM|5m=8n<65j35M2hvbwQU<51@ZsFSw zij-}R6qC;0*g^YbZRasQ!WgCX=dTaGgkeIjW|R`OzhedGQl)SH!MU}nX1Q8&@+Y#P zYPLhGPw=7cO0kqnQtBVa3Mr&XipTsz3hPO+R>>AAUWRtT;zNqXQlprwCrOK$b4wm) z&n;PMl(J=jUuA$R77K^9dZH@mapwGz#~JiX@)gnKreZiHeBV4VmK%*+lHQ=>%sD2H zGw7JioVIw90moz^S12UuBR|fZWAd24V{+>x^rgx`i4GYp(NQQ;PNA)t^F>PeCd|nGZM(MCvN>pHUGUxW~WHB4HXy=^-l573YrpKT+%GHKH zLEE)<%T+t4{ZVp$kBTq=oiCYR9aPgM^9WcJa-~MfSVT|}!&_-^S_)M1J<0Q)IoEn8 z6Rve%;S+M2>vj9M2E9?K@wB`nh>okIvogw=U=#(fYL+|}5mq8xspW&i)mbG;Hj%lo zM<)|u4=mTjf@yj{U^K3jhbC)YmHXF-LkteV5B`?uJne%D*N`c#Y+l0$C zHkz%CVCB_TbE_sZQLT%Ud1l_SA>V>iBT^jgW8 zcRllLf-7s`+;$;*;oNtrA4fprOFdUDCs>Q8joXT5iyE_cy)|>xH~@+%{vI>XBl=;f zk~^%0#?+TEOT{@$@4I`FL~ku3#v_om7;U?-voYGeB@q|5YKC#6vm~$ApNZ%&IGYmx9{>RV|LlF|a^twO@2jYMs&4I;X3R{9-ZN7rD(4)(Y%z+In8cv; z={(52FL$2g0w5(@wj5~L9L@agtsOCTH-PTO4`{HF$GMx-hM@0!W$RbvA2*rk@8;)! zZ|;1zXr=d!l!=R z5FDEg2}QNx?T#?JIWOP6Fuz+l5WipuY4y%TF(&yGW;~``M*mfPI&zZ$>-k{ z#OVA3#Q087w*;Lz5d@YoYU4;lLJd0GdQTglzdCiyeW~MXdLS!?FZ`=rppfuIGIPsh z@t24^k}N9a3$#;P(?G9*=5}1gQ{1(3^D`BL2mN~Kmy%$7qzM$R&IIy_n?R_~E-WI@ zcLu5Z=58S!-jNi`SKLdq{DlVnFHezdOBUSSuU5tvgfs;Y)IbaYxr7Du97WO$mjih5cczo@5ushQJs485Teww!bf*1&%dv z%w)si6nvm5Kz_dMfa?^F9*Kq}Y!;n~w(r{}xJ!`eJcI^pcoND41cfK6ZTrWQdEiGU zh>>I)UMj3DAadqd@UX;TOCEloZ9C$F+wK%O@wU7h0Md~b9@|w^0FVYkM+1zgsoaun z`LIZWC+Yf+o1Ci)#$yEr5{ruE?d$py=<@PZ{rB3Sn5aCVg8SZ!rjm*L?Y`~n)0%HtHy z-amYJ=B*+#`uIhm)6w z9vtx>I_J#Z($p!&KiA8}&|_HPpElq2K0T&?2R;6^>i98p&J=MAdi9rxT<0v%2hTYZ zP_?ei2H+dNV$wNOXpZ@;nVqlM<*(W0tMx0xzu1qQT_!$tb;0}mO7hDKlJP6?W{h8- zOZb{Gz6ROi%@`*=wRr6_#@F1k*K85j9DDkjGJdCQzuXvNcR_EN&W8U20&f8$pSrf} zePHAo7nfbxK>u3iow!?)_{gP>#HX(FdY?KbztHPHb>4}-rN8E#^2EDVAAPP3B)|M9 zq48l%Jp8&g{5t5Av}}LQC@krk16tRPh1joo<<6&6UVK#is6MfaTrm0EqJfY|#4}MB zOkTDI}o=oQQ19#{$~xi#wBFapzb2(5p%L1Q0Dv ze55{JUksQ`J_h`sifC#2mONcm^Ri@rCZeUTF9=5^AB6i_2LWHW=5-MHHuXJD-TlX{ zgoy7)fjWX(J)sG8`T}2aeGydZDk7-pqy1xtO4HOAz&j%bf#2fn=^WFA`gncOOzP|V z>R0vPWAGh*oBicqrTuzzcYPrw>QDW;`cIm!jIy34CL07IvEW_O0>*)NNy`Ql?=Mh) zf0L)5EWIowfylhlDkt=yMO@&Ct}l8>T}AZp3md)(8?v`t<|Ds>qOLEJM}2*g_o^Oz z&^J)GboM0@{~6fu`l2z^uS)m+g$>^>Thj1``oe~nV?*krvEhf#(_CL1?jYzFHoSgp zND{Xc_mS9;zP^|k$`Jg84HLkI-?O)wINHL$HyHp{5-GJ?yQ@AB9+f}D-s`J^!0r>MrOjU3`%}xIF&elxt3MmF*N%P!zAjK=J1cy z?duC8(bpG7x;EYZpqT<9d&|a3rT2!3)!%Zm;9Zd<=C}jUdyD`+z}v2@xJaGCt*{QX z0CGT$zdcYNh63O5_CIdm!1GY0XuliDHf$Fb3H}`|>PYQ1`$|4Yb>GC%Rz2Z{VfS10 z+;2toAtv+&h)`@5UezG@^Zb5q^yf~ozqV%>iFO`|DiqLqu0kI=DiZA~aM*>7M&C|^ z`(-r{8RqENA69ZS7Z8{+j2Jnw_qhfCrygf>iiD*+syR`#ooXDPBCA78kag2>AgHI*C414u_~Gj z_r(3EiiVZ+=GyUp-lq6nN|5DH;Xol$KG3s=`URBgk&Z$){_R;M-{^(`l|0l$IR!8+ zA|QhYBLj(1o#<6Juz>#CP|gFp7+wPH!uDQ=1ZvC_EXDGTI6Ko_#L~AD;}px=Uc|}( z`kfT7SXk{MPKu$JKsUTNi1*SKiv`y%Vg`*pDPEzoNs61N*?|!UKwVb0#99nE$XK}W z%TGOK^^PIYMf_l2dYcrpL1OiI{@D;c06cKS44S>MQUFgY2*&D`uUHX~g)rGL0APlw zVXYvTji9dWrvwDJ4aJ8j10r+hfV>ZcV-)l8AR^pF6+xBLhQZK0;xjXb&#e;%Y!a9; zByhMWF6NA32t4D?7@lw0s-FUb6-$v6&lB9;gOP}ka$Mbn*TU^{k2vw69>5{yFCCtI z*3jaqx}g}zdkq+Y@Hp-QO_#ry8?Q)05X%)_#4bLvzldF|Ih%_(#Q{+lF>)2z-hLM( z=rCjOyhtS@2pk6iU)F4Kh7p$;TXG6wcyX}QCA`i*d){#$_hdikx)njvQa~QXl9ZI^ z3!pE)?|cECqP2mlZToL}K3Z$>-1Bl+ zxRY0+*t#?C!{|C(-#|v;d<`5k*$@!I2buybk8eBRI(vd6*(^E>7d?QxM0huZoYA9U znZZpei!42q@y88^wiURW2R=GIa%%e098_0$m28N3m!TW?zXCH!e7AjkaPUAc5PxCa@ci)6!y}O>A$NG>Z^bS22JrXjHlBJ4qIM$=DMKAuv62;;eQLl5f*)nQa~;7A01ANKk# zbY0#m5L^X#xT+PpNB?l(9uCCg72n9)$aZ0KS#}Np2~|f;c274tL8^wG=<>t!(2zoZ zi3C2nckI{+p#Go)Jgq252nRa41WL2M^Pozjwms)?p|5!8AW}A{Sa|W@EySSzdISM; z9EM=yzoLsiiG#-UVD||8VdUKI1ktmNz*qi(o!=e)4^*Y^0tA<+JNyUWz`1UHM|UYU zbDLqD<3#{L?g-+RhL<+F>}z-QZ5AABsN1u z-vhN0jQhHI=7H~rKIRVgS*K4yjIK-15;@$yCjl$|pY`{!{!yDlhzFZ?u5RIA?#Ior z=oNUro8#xXY7YEWyLocH*ZbHUoV1HP_;&!WkMY)8w0Z{kUmaD9&1}+=8!p=o9X7}20N|eeLQbh%KUP$tv6=nEi))<>jl#$%Xq&x zZrOV*leGeFBW;(ZX1O(IS3!5xV0$@45cilVtGmqF=ZpeT+wg_zrroU7D^A65T$Zb= za%HjG_DxsstJ8gY*tf==X(kt_t*Ri`*=DiU+;TamfY}8^ux$)n+tntdQ7Y<&DYeO- z-0~NBW?Lw6PCgjyraaGxIxBW*Z)ex2IXCX&JJ8QG_H(8#=O;$Ju~{e02#S^Va@j1cHv3#t3(|%4w9`{3Wnr_`7Xv-Lz{_i=;uWU4*%Ze3bVsT#*`zys z({jb3h;=#Iz*J0Y>cpxSN;s;LUfXAfwYi+0>4mwfHnPgHWR&{idW73HT@>@$zPzPX zuH2JFlBqPkskSomn=)g#jTI;Av*mW&)>l(RkR+%2z!k{lv>6Zv;dcuZj)@(U+H9sR zd`o2KBF*IFF1Y0|3(PC=uV{n<8;J8Ye2 z%Y9vxceR$c;_(u`Mg&X7m?+LW#n!UdEjy*Qg)^nKZqZv)AFZ`jq3xE_wAA&Dp4On+ zQ@dsQvkY5pTBG5hpe{R&+77ogmIIAh3)QBzOp|VUZk2|;VsR(bC%OEhQL2|Vk|`n-ep&AW(X(QN`71y~~%h;?!DJI7G19sg(=4io5E|8GSM8 z%iAey28&%^t4=5V-g>c>Fm9$#ZLc-r#!QJHjz?*k*m1yKsf7qG z_I*F=(%DYA$@()!tm!L@*ta{aGE6tyRac^J%i@4>lG_HT#I*5X)AXDX76-M#*fO)A3f5q`p*cRTX`z+IvOLV;Ous;l}b>odebC zU|4R$cl(=Wv6Rb|b2(_-IW5;BW{9AW?w~9AE_gTxodds=tmb-F<|q*uysSeV+%^|@ zsWZoOT}{bCwA(T(`o6y{3HoN+nqs}>bk(B~!E8g{40pUSV=A)0UaTiWjVAjZ=wq47 z&?9@=lN~L`X0md#@5}hC)&pi(q-QxPQ&uL0wm9k!(sqC6;d6SY34Ni(7UqFm4on9T zw9^9J*_uVFuT1tBH5p@sQt?*l)nW?toNen3iOQzwo>o_9ShliRZLy)<)!P1m+{$Jx zH*TdZVVLXD);#P2s`G+dE0OsXU+&j(vl-KAV0?Dif%S@E*+Q_?(XCPFlCH;HoM%J`yybm&tig$Tl|MdWqZ3 z#@l^k$DrS{1na}8z^A9V?$LcU!FBp6!8s^hxwn&coY6G7qDVHMmlEh8RKH`9?{)C> zFFS7@h%QA+4kU9#BD4VNmG4f`GoS*CxegSnfFXjgM#0|?baDe1r5SJ@L4^R*wb7h{ zdINzh#4`}4>J}JS16=(L{fEXJUjv*t1Ds=3f_DfUO(CR0oVbnVOd!>0*LW4WkM$Jk9$WeX?j6DwXA4@jzTsvW0fzl)B< z%A0Uep`tipV%h=2k+(?|ZWv=bL+XO>XQEe*9~vB-`5WAOj3gA%_s;L&@_E7a1P$sU zR$or{w{*I1tg9!QguN71{M?jquPz8=(Q>|63j*nIsX-LTC6C{qzbOWJZIMP6=27|Z zNF!{kGm*v;EYXKW8c7l~7zg|2505lvs8xF8_Hvw&`rtSt7bniBK8Q0m?&FNs^KnM! zah$OtY*=rtwI;j9!#Lw)SqS5dy*P2kNsKt-x|};7XWXhowb3teORdj4j=8}qlgUzS zja6*6BnXCUOH0e?`0Z&FBU9EubkVJGq|4ZlHH}K z?~F1>jaxI^;BOmpXo8;)7@+D0(ytTS1Fi&?TnN|LI`)s52h za&~Fh=2|^Fo!_e!VmeoOe#w=&Dlyp1w=9VWrWK;)7@bAK7|fMkR@n3_%OOk73*%DN zQG0|=h#9jNbkmjD#^%O6ktz3Pes@xE6>d>)+RM?5+VY$LJmek`)UnZ4%~b2M!421y zftuk)6{)YYp0TZPwW(x?E6k*(Vlh{?r0PT)FxaR%R;-;vRh3rJH49iNk55P2VxS;` zh30NxHvLgv6Wp3K&n~g7$TUtI?b9GzLnyRs4OIIyjIZ%9M)q8svE&zk)5B+D2A>c; zMk_}zN zOK-?rT(x2-{_nDaAZE&~i+G_g^FN*0?`^hEYvH0ivA^ik{}&oLiE_VP+Bc>sh%>H9 z(DE-*jVR$kQYDKwV*A5aMO{|BWLHH+InV%3LP@g#qCy!cZ&SJFa%SiNff*ZN=N%DN zly(@dT|nuIt+TA28@I}UpYHEct^zX+*;eYWVVX|;NP&OyAkQBzD9L_9LRjZxnh!R(wYqd4ZHZAm_nqqdV>dkd;L zDTWEo-bjKg+HgWHF@}c`M`D%fCYQcHH0Pw){h_lFaTdYtk4yl;}NU*f)$?OXsUm2mOn&i-T(q8=SvS6_a9Q zDVwBNIhx?big;Ya4NYFbJ(LsU7%N_I5vTb5%0=vA?l1B_UN4TcDGG%~KVll<{C?>l zHTiHsJnJ3FV=rpeftH-YBGXS!U5z+Hfy3^S@8T6JbNprg%uCMTW9?sd5hpNWlmfWw z6cF?T|F8oI=(=?Yj*P8v02*F3ZCL>}IuAjN1a}BX!S9e^Yywu#H#Fk5!97e?-%j&6yQE%&A(m5F7{S5mwBr=n-yJ% z|H6;eK<|?jOVpt%LcGliFKfIwQHINn_c6sMn~A_&$KV0)_Jj!bQn&um31_b3%VGa# z3C@muLx2Z<_KDVj9CwxjI0<#z-_S-chh2EkR&!z2?`R)56h?rXi7E1Jss+mN4Su_O z*cj1EDHZ^3mJbsl$7r_8Hvf!cP8V@eU4qficWk?KS#AOS#qR$#vyR0pUPRy` zR-s`e)o1}sIDVbVcu_3^pZ$!MCTM*B`#=A;m#n$RTzhm8FKFxk`#=BhHYt8!_-VzN zsr^m-=J{vuw`%>CQnqlbVaV^WQUGUREz$i3MZVgq}O>a&#H|76TzBOGr?X0kDvDy(E%WGC|-DW!-`|s-I5J84YZjj>H3eG zoU04Q!|H)$h-x!x%s$-O1H1vh?2iNvlY^WL{1KDGg(8yR@IuJ{EkcA%_^|m0uS^HL zLh7ke6Bl$q@x>>ImmFzQ!k=$RWTH=6GE$dwEg2;sds7J>Rzmx=X}=fhA<5=@DD%rp zD&h!yd0x3U39M`dxSrE($A!?GQI zQQ<`+`iUw-G{z~k>V4UA+vSFzE9XVo9R@p)5HsQ2w0la@VW1gI^dPnqvO zGkNkU^9d}$Q8OGZ=iWTXLt8#VBM*Jcb5BE`QH4nM1;6yz`9yNOK=K`Pk1xmv=Qr+R z$QOn3K32YS4)|rUmF<&ANA!U>$}k0V8$I_{LxLNF#Wp1BXu6+ZNPOakbh71h_OtBa zRq*v#86uQ-wFVK5CqC66qHg^agSfRHRqTaE5nYXC6cl^x`#!-a3cs*-i8_>Uo6FbY z988qq;=|1crqhc#{eA5{%BL83d;@YcS5a2dtt@<`5uq5_bs16VA|rZjgz`3sMm+fX z_XU%RO8=&D%z4WSTkm{Lz+9!*1yrD_ z1q=P=tj=dME)$0vrx}+CG}U{OsF(mZIFo50Qdj?apNKj5JT>c z;KTP0hbcI15(xsYnf6*4*yyhRsAjQ;cMa>|Q;*wvjLbOPH7m-#9HvVq@XRd-QzSBT~_#}$Kw;JoEzs6!B&x%xZ-v|RBQcOAy_t4Yu#qM9yuxJD@Ik;ifUV`O{oR3 zS6Z{-lHZg`BEQn?Y`I%pmFdAU7}c%gd^-Db0k^pnr+h_SK9`|SL$L;Km=_<+Lh<&3eGOZ zOWy5HN_rzmugCq8q^Zudma&+n*&DZa)t)Z)Guf)Tr7$h+8~VOIpP4#Smv&@MS*=QX zm|nM8UaEqJOI6CVDZ0Pv&oct+ZCXK{)~)f-D6z##raZ;hZO6<}&bq5}%%rWD&c<}s zO2gTZ6$U4Z1;!g@5y39uahs*uQi=7lCOEB%feF~a#@c&nHtNvb))FXrTi?!zF21k| zQl&*THGA!7e7)@lhTbukHD)tvGZG#qUY%I`43Q~Uw_~b4ENN=LOmy4othrd@m}JoP z*>W(aI<9Ha<)JXFt$Vwg3lU4 zp|5Cy#<{z_siZx!J6BeuQUQY?VJA%GDc-Lrs~nxr`&?r(7i(?Y>1LO?THne{5W(3( zZKfx!w5qZF^kU<#3Duc%i`BF;nn>A3e{Tp*!=5Bv7NlaSMVJp zPUvm3*|P@hqOcicoWXMHWlYg*r#TKAn#MZK%KN1q?rAx!_3#l_a^|yYyWZMnd-b$p zcs`LWtT0CiFldI)Wn!*WHg(yzQKsADHl8nKV(t#tg)W~jW#|Sr?OD9Zk;|c9o(}p( zsneVABaL6<=?$KjsJ0et!X(OlHO<*uIin2n*)6qJndZ9Yk5}`~qOTN${+{Q1TXswp zjA^AqDQmgP&b!M#Nm`zjGrLt!PX}(L&~bYh8}17_?RjpkKa`q_UU$oB#@JSNHCxu0 zg|BD3Y+Bwfj7;7K;Av-2jS*|<-41D13ZB6)dg(ye1s#&f?XtkV2Z&(CZ%?L^X4Y+D zYLJ~|h~3nflFZuihx=7g8(=xC(8vI>cBQ65aeA5Pxm}*EsXJHcl<@3ab{h5ENM<^# za7*5`I_KY$f%(Z_$q)PG_hw)|mwfq=uj z!{o~kk|+c4l#7vpxrO?k+(ItM{BFKhq;x6q*IXe$qd7mr(cP;cL} z8>jnO}bhg2$^L; z%jfhKpUL%oni{u_qO@C!q|*xMYP(=}_8evr+cmdtFG~P*cM9@mG7{!`l?;L2!j{UE zD|fa%-0n;BaV?7tH`QXX6;MV`#5ta?kMP~5waA+#g{4Z1LVsZt=q`g>Ynt9T236_i zB)rXY)sWz5GIke=T(qhyoU-#|X0-rV)^xTM5m@*}A9NclTI|!F=H`m|nbj5f0okbEfNgc$_GrclL+KqI(ndfq6Hw)q{oDED`qLRgCFRu)c! z?%-B|?koOG@AP&pEAIwte%P5xQ-}5^d931ZvKvHjY~XD%7&S{KyOelMozT<0E3o7; z&u&*`qduDZ4ObZshANTYjjf6{sf&aBzDA71`l2~u8hdH5UaMRsn1tAN-l^1Db$Q+$ zG8&(r?dl}8uk8I&gWY5aiP?7@)?_=}psDgy$M1|wd1*iD`aIX7hotL}m3EG%Tg^Sa z%O0%!S@=#6nWDTwR*ifE+B^H4C+HQqRzKSc2^Jf81M6aqQe#_fv(|8I)~Q~%#}{jT z(_eS#SyNiJ3Z5wY(h{@QRJAjpl~!7$#+pco&Ca6NZ0Xdptgl94qc~2fzTs3&7N_M> zzYaQ@X-&WuMy|2;newaz$b`AV9d7Dxg|ODuQ)w)m^q#^MNygz z(|q4uyYo147UyPOO3=q;>eE>uzIQM^lw?rSwEQ=#(_hJ^PL+U78~K<`#k3~P`)9zW z@NA!j`IYJ+Giv+&`!nvXdidro9XSy_#3cObsL3lw#Hl+f(?&iX5t-6j{JIiXH=?y~ zA?0moZAw1gkEpcwPF#s>i&zx2_O7%x4)h<;S|t9q>}f3oy`#0Mz`UTf1+9H?5%_mn zo6blDtu1KnkD|38gOebQRE}tE93l%^ThQ8q*8Ut?OV>Ge+AC;nL2KX8T9|J!t+2Zu zu4F}6E5S;ZU5s>ywsaWFyS9aymTk<2QD-n6xFLfwGkHi7-Zb)!RRfX6_5?J2C0N*q z)?h?rIy2p|E6^lXSGrMaAHce$p4$=AXrmAGs#66VtTdV|N2T39boK>z8deuWgqKD^ zS=sjSu-%rCprkCS65VA;WlhwCG2B{?dlTMlx3Q(X?f2Fx{+&ZMD)sd?=YXzfiG78e zAmpaq7+Z@nTP<4^aEM}xPOWCjPBd48#>~ScaRBNa9`3N1+rdC{q`S~;)=94+8I;Vi zR;gJF(`5m&Yfuy(bONfw+R+-}q!L%}!6kJ-fjmLFU7YP~<+3f;P#d$ONH8Ic?3GrL ziEFzwnM{HGrm<1>%a)lp=Gwdn$jkkHb5y~Bol^GkIAdDS+Je@;zMj+FXVcortb#6n z7_Eg1T3gWCg4X7k*3wH!^*5XNvVKKt8>ID0YdP7f=s-148xd$@8a@G}!94KjMr+LT z{uIU9dUILFqCo{|Myzh4?d}FLY^GiPLkBAaqL&0539VQL7n!057)Ma%@SUZe! zdURc?*Ox}nP_3$884jRQ*s2<2qheO&yzQ z3LqnTLKki8%*q&&F0It(^EN+Fh-GgWf%*Z+lqpmQU5E_^G`s^+aaBW65v?pHgf+u8&XYJb!v0XVAHq2n4h3 z-22PojtYgPa=?5o$3#lLZLeRl?asE>@4xLnT8-VKqtB=U_(3u5Yr6T=&gOC5eBDm^ z2dRI{r?MQ`Ieel1%}o6pFOfb_|He|pWA!gwMj;XbzpMU*;5Y|$TK*!y40e?RxMQwYoMY`v;=Piy_lxZL2D-)?Pkq4UQ zY$rl_gbc`3!_liZjNaCk71yps<4Id5O-sO`Wer_z+P=tDM2d6m&B#W(%Fdgk)9E@A zxk1patR`S{;w_uAYSR=&dbz774dP9O+XTX--Etw1QbA_lYvrX1fsWE}V1-_7$l=iK z&A26_+UpRYg%SyXmd~i+PHm~K*&o$QAk}B2pr5+U3})b2mEBToi^uEBx!Zv|4p;S; zVPgn6P0<`zR+~BRm;K>*hO1yLFro4s168>+X}A=@?z7PxNN76c7~WB5<#;T03yE#R{FxHO_h<&L8p<* zR!E>^NSoq0I1a&5e&C&u5}05$zZj`w^$h*cBQ0NQ(Kj%BuOuv z4NeLiXG|kKX>e}MR{|z@7SC)68e?3bMrcC2*Fqy~tuI5c!7L4DyY{_)08e>^Y>bhm zYf|gTlolYnolROjfuZSnSW2S}+=X_4x3wJ9oC^WaDnkRj#j3c%BYme$g8`&0r7Z!J zjd@K+)=@ zPAeo`wYmVcl>@`^1geVbBVH%edZ)E(lJZ2YkWhQeDdbMrIYW|2YBg=}(NV3Y0aQo2 zwK>bw(UQ9`gl(yZn@z+5qrMdn!&B;CeHf0^>(swUZRts`>R+#Fdf~#Wc}t^eEW)&x zBdjcLNxVLo5*sXvu+iu0Uuq#Www0m2gXM8|Tvs+$zd!RFsDS`!a0nW3e?Dn+>f+K> zOY5!Qn1AxPwUr0=lk9+v8nnxA%LfQ4^-+%^*^T<<_jxsrAAN z<42|4VWb>QOnfcSF{{3H9|5mxa z-UZH7{|Xw>OdDi4IqLdAl^FY`(c~4;Xa>!8x3~9XK-o`EZ0HP{)j^pL;MM*Ymirru zsLq64eLFO&nkotdWfd;hV`r|W_nJ(pm9K5lzQvYE8B@nj%~D`yY*!Rx8*r{EPUkl4 zVWkEDfRA=+{c5k(Xri+xw?*U<>ITRX# zZx5*2kX0|P*Yqaz9$t@D|LzzC6o@;je-DYL|1tG%`IH1JZR8Pr>XbS$J1SGuYf3Ck z9+3PE`!Xrmbh~;|_r83eKTh@07w`4a*pD{y`$+!7XQjrUToUn!i`0-=KH#!^N|<|I z#QRA^{{Fhqg2-n^v^fPaj5G5cz`0|0p7l zP&CRQG;>Vkv4Y4KM7|*MKdBzq5NvB+LF5Y}|Axq`>w?G^M7|*Me>jo14H{nlFd~l^ zM7|*M1(DA&k*~;G6p+s(@|9O2-;kq;g|nF0$Cp^BRwV_Omg9!GT-p_jg|}5)hB`al zW}sPVRVr6BmQ@w4q?&qrElX36DEAkWLCsx{Ye|D6g@JaOLi+>&Z8t#!!)g%k4V&vO zfhja9u6HD#>_rLsq;z{3c7zmc;T>tULQv6l%V+7y>gW7ungb}IU zAU=W9;_ur}*Gc+6IpuKsFrI+De{?qtU3-5NI{fB@(BSEt)TRUCv0OKNc{5&xhd0R= zjod|iEe>F_{DLIYUz~RFS1^mX?!i-EVZDlLY~_8^hd%lp=v_pmK1Fs158nSdP)~hv zz@Eu9O#Anh748o=5=s_#D4G87BQBbp($==_Dh93TA#1uZjhBP8xmfJGJbo8<`49Pj_`+ej_P(R3uF=RTiuHrT$XNXWThJF)Gf3;PM!ChlJ( zT`1%E&IhyVlRgX6D-FKW(A|^1k_18M%YI<-=!#epsg>W?iBlv!+k zF1VTFfeW2)+jD8d_45ZW%fY)@EA987lw1?PaX}CJfV-KYAPdpWTqATFY@pE!?`b)ng|9b37Gph z_!&Mxe|p3DeIhLi!B01x^>c?5$onIOuU!#G^W}=%r==tA6KElrgr107`eN?Vl4SnU zk}#P*i!e8?$Y&iD&v8Ytj1#wAg61wSN#-ywdEY5IEg|u_C$utl#xtg9ge0GCnGGUy zmzX4Tn3&AnYLUr0F?oh7f=?iL%N#kGyTl}U|HR}UH$!vI6`uI)M(_OSQ=>2_HER9* zK}LF$t7*Y?qk+m@#+1xO#`IlaM!^>yb1sI1G`(Utoa2Y*Y~!EcTkf2w+$Bt@{3T3t z7nkWp#*TQ-&WS`Yhtkq6MDB$zJU>+{bu;r z_|qT#?gt!ZicgxnZKCbQ(E)ra-!ME>atH6I`@_52)l&HW6!KhR;lCUu$u;r6l2D@? zwd32fuk7O7QL##XZzDK;#)VtaV+xGll>+}E>&af}c*FD%Bf#6wSr;Ug5#kAi$-G)} zWgN;K5v}Bph+Y_nj-w1p+*7B2#Q5crc_3B24qPgR zcVa{q!#j6$x{?u{{(k@f0RR8&eRpr$N*3=|3H*SEU1(!=k<5KrfK{SIN~Ea%&w{;( zO>8Qk{;|kToVdq!baN%Z7R&I=nK^alH$&~dlv?ohYO3jhC2OhXq*~%$0ssAfyDzz> zXQ%H^yS7+h+4)s#yv1Lk9*=&oy_d@1!l!{yUXUG{cLWn@2vQEv<)$R6P85_OI^08*bXmKT&-6 zQB6OcKg9+73@*lS2YzQZu&3DoufgBn7cfFxgD`oQlUm-b))?(qTR5%Aq?u<};3Fxvk& zXN#)nuBrpYy0wDmhs64NW$v|`$4&*4`#2&W;OO24wU=1S)`}pn?@$O%GH}EG$qW)T zKLpkd@AujF_jZOgO?y(Z&$F^;$W$GRv#Bs1{ZExSM&Q)9lr3|1vZa5kY=6~c5{}=Y#(H^#!~=t+TJ-?d1;l#}55PQ#f5c zBU4~M+!UTlV-URiXa;hd<$RQH3}WYho7buQd&d4>Q$+?mJ5}T_Uio);<<1%NcFz6Q zhsQ7A?p@;98^zj>?z!2&#{GZ)DJJpJg8l9N_VUQpzuTX{uLUmnHGvBu-!E`6&?Sd@ zN(DY5hk6DZpNVS>A>L9O(X-P=3@vy|6R1`6tVR+Hb{R>$TloK*jwG-%=Iv!8iF2N{`z<30?DGpa{OEN3ViV7= zmSD~fD`qZO@o&jZ z&Up&<(S<<2nYTX&mH24h>Lp%(h(Vk)O!wgian7FPxAXS$5twy%v<>`Pyg$1IG0bH_ z%#$i`E+eq+HHzGg#lNPF?Afh}VLpCM%s+GhhCtU4av6ZJuR_<~(*)R$N7v7C0QPif zz6`+5fw#*5>{kY0FOlri-tn?3>>PNzjKE&W+i!PsKh)9WeUG#JrlUjlRg0_MH5s`q zu6j}h&Si8+Uc=B^!gK7|t#e{Oex1`lb##bcqnFVk!=BxO3HIX`OnlVn@DIv{Kbp5c zXF=UZ_gtlQ;}_-Y=M00rOXvMi$49SOW6y4p5PMl9^rQ-$OHPbkt|InQHRS@=j?f_#y9>Q+*xp|XR-MG_4k#F2QV^~pcrN5%(j|dcg zX{y|P4@G>VoaLio9{6Rs@<(^wOLFCp?z(?fdiQU*-huKm^*d)I?_K2k@{}2V)0~-m z)w+&%b!HxXTL+o>YUk$(cVR-D~hASnZ#gGjnGL>~S9t z?A^(k5$t1gX5^(g^SdbG-!x~&UY0X|G<#>CGb7Ee?Q@p!hwz5IZIXL-@HBUUr=JY0 zXS12P%5qWYE!FW=P%+%(BJZS*e~Z2K--H)t+G|GMlK&$zVidiG z?=I7MoU^}EMqGdC!Gj9;t7D94qheh^(&{eAbC?jf!wuFaaR^;)?8S8=2ILxX5iq=yecf&_hLevg%QOBe9mhJ5=^Y$iV z1wo|{^;s?EpX$0L)Tqcqw_B(19j&_BINsbe8ibnp$}hH;X89zpwX;zy?fbLlCKCrm z7=3sD&V?xM(^_PnScu~J&Dkvvx82rDJ+nS^s_%+M%Q=bRO={bgy(#kS`2Q+o__^`F z;qAVTeJuWeJTm;V5wt#{@y;;VG~vm}4ilF(W@pG7Ge$nYr0@Q5tIS@WQC8|$_39m( zwN9Tb`{WmzqR(|gufpb^J0^aW6FQ6S<#&JbsS6X24T`Hl%0F{Z41w2R_bq?^gMZik z<*!o5^TQ!A?9nNjkJrYx8Rvr6#Bbm2`%a_W7Z||1LZ7cO0RH#xE zvogc(HHp9F-ctTu!Mj(fqi{{?N?uU3Zqg$^d@v&eBU}_$=N& zI=MkEnc=TzhR9oIhHpAa^R62#U*(C;VuR%+GkgvkFm#QOZ<-mt>ki9TspI+Wu>3*|r=?y5dRp`HQR*!BDV0;-PNpn)c1Q^Sdw+fUSJVBM z%XF4%kr#Qn^_F5ixA}b*{FCSR??~=f72@}e;XazT%eyjP$=q4LJoZH|Q$A;N_~?Z~ z=k}J-=e$wrhy7Q;uSKnM!-81w{9ZGPcH2l+bAHbd>*Mp6bJ;nAT%#oTmfCo3P!QX! zQ@v>8M-2EO;=22y_l!PccJyyJ=4ZikgM(P`H@|4~ZO8o2h_T#=eM^BpG->$z1p3yy zuU@kq0Q!DEK)VC!+kSv=TUSo4f8L&%d)1+p-UB`HYx{!UVPnMIet2MC1a@+LFX^0n z_Y>VUl}G4Av7E-S{TR*A_(BD_l}1`_F%=;z%A1Rf8+(TJX<}^)ukyiPuXc&kbeWlI zyQ(Lu!=!3m-RMuIm*vx@N9rT`_DH-vswGnOQBny_iwrkTTVdiLj6t>MtZ!JR*GThp znXGF|zEmQvSo&n_zg{5(1lIF##-S=i60J+9O4zn#^)u*)iuUBox z+P5QB<;}PYlT{N9Vb>)-K#Vu)bi>yb%0a9g#iGAU>68AFKXrRcxAs@ z#doAwE!RF3srM79&@<9Fi|zc{h(jQ@?Mm{%E>6vg4g@wwNg5kgmQ~c7o@!*{eAzj* zjaCOu3lg=_&bq$pu<4+-fp_oM=S_*W@ZL_t`n#(3)4mbcq5col*DB#ZD0%IR;g0Wl z#&Eeuo&s(vY}mSGW0z!Kc3IPytY-FBLEvu+(u$+L)Tl^Pu73J-mOa)U1jU>D?*1l0 zFy8vWZ%-RVmiMf9KjJw+L6V z{Cbsb3oW&-J_SOQHI2=04$_+g{q{;8FmcUB!)9IObidHj8%L*;MgtqgYzzyyW4Yg-w{D~LzKtutb;`i4>u$U_uLXgw z8Ji}^c}69GvZ7JDx;lP-bHxxvVGxH^VyxBvn=||rSG`wX`rp3p|NmtW2v@_stPYn| zNbtzGP zF-KSbr}gy(I4bpM5>$WoydUh=%aJKYZmtj1i88}kiKhAg`+xS-UnJ-oJ6l)`W?fvN zoS?fJf-1aa7lg(bo|vQDXRtlXlL=Ey4=b9+bg!!`Xm*GPh(j(E z@K6N=@#tVflUW8s(Jze!K_U%7bvE8EchM1JQzz=@gXw;pDKWtC$JAAT@ z2%NyzSvZkM3!aCvMUT*8yDF#o0{2VLcgPWNXb29nrDcd)aNAk1-H@odp9O%OMExu* z3I)_Y0M)`8D7CP}`uY+X1bSa8#b^*T1oi%Svyu4i?np^)(P7J#Jh7KOZMXOQsn_wr zUYYbWcIAbVwg6WL*iK;ym1!wT^_dPRBpLuV;7T5}owOXz1vne$-Pyn~J8O@1Y+EF( z4Il8TUe3WdMme2vkG(x=lf8)mYe1C0sl!-b%2w_+V0Jw$NX0Fwd+W`9G4{5rh9C^D zylJYzo0U{R0hB8&0s^`mBD>vc1nwci(NT;tmFiZ4`9Q|g@D$_~d;&((5jRKtZcN&i za!g~$Yo)xPAe0X~3ZX$7(V@!%FacB2;lTpz$TASW80enR*ED>xnmyc=Z0X_ z*<2#&Q^TpQ2`FFNM}2eM9~?z^cF@5|xjJB|zBp{=Qc%E0N+~CHEbkct!o++pq)%1dUZ+cl8`(KY$iUf6@%#UfM~Mp;iry+l?) zKb%eml?7?uy1#IIo=%SJbbc%Z#XH0l)DY~6@B&o5@c`=i!gTBuI<+t%E8nOX3$VK- zA|rxv$c&8|@o;cN6~HZlDXEEpt5WPJ*w4ryqsZAz9}OFVD^ut|LX1tKwNfga5|bU=$3O%fVcCpm2r5uU?l$(w zhRV%gkw}~QQ3LcC9q-A*Rt8;N5DaQ7_oIN{8^YAbA_w++@+Q(oiIf0l9vzQdY#%UZ zS2hGo0P*LNs*XY~-X1!>q&d3P)q8+TK;mI`6nwg{tx{Hoah6OipHmk@Nb_xSw%OWF zh7mv_j7DQYw6NwibIZxLj*9kbvZ95HH!FS?5^ zNvASe2E>#LBWgLx`x6!&484etr<})-`i4lC(jaQpW|~Ps79bBfJ=_5)KTZ;n4E7OscY0 zk_QQwY)#e-@`m81#PG=hfTfZ~{iAIkAZx0TbIM*gL=W^MrZRjmFM7k>*zS-vzJ@4Q z2=Yu`k7;H%U-7zuj2HUC2ljMBaCg8K>Ly0lJDwIYLL`1_L-M5p=FRl$PM~(1zO$i_C{c%XHrmq;}tRx+3J%GqQ-E zKb2y@WYG{bd-KBN$(gmJ0|NpJs|RJ3C#ES6q$+RQqo_uTF2(w!U;~T#B%rwJfA$mE zhM>5sZt~<|z1Sbc1J-=sOOR4GRSJ5jPkpD-9twScVD0)_wF#t<MmYo7A)(Wc^ionWuY!mmj_~hk@0kq4j{^ zb3^t^J1Y3A{9NbspW6(%ex1&Jsc189dps3ob=1~HyzWq8_H-)RKPX4AN=2zdzv&zt z^a!P+q*@@Mf-u$a4eK(LH==P$%~51A4mjgb>TohDP+`o*@{t50XkU`$c*9qTx6GQm z<-0d5mLKQ?+uYRdZw7^{Y}7!bg0Cve=TK!S-5k~BS>gNNP7XF}fUBD~M4e!!v% z21X@{?veoME0h6_X;Nqj&X`-|0a-qmzLoh`r5aHWZ8d?rgG#YQBln)2k{^+J!6$TbI zGTbEg5jgZ>Ozre>#NBL*gKPRJG9f}Z@If*wYv(8ft?Q+Bw4&}L?v85nDJb%-+vSxT z1ElRrb2H;W)Eb-_@KN3^(n=V+9xCS!4%01%OKe)qBuxOJqH<$G#}Rw;J#(m{vU(sb zD6+z|?RX;IQMd1b5;G+#16Ki?6%hTtLq$9gfB_^`V%XxCn% zt7EEl;SJN>Z+pRT?&M->&89OOVh)R_?=FY>lsOKdxjyuzB_%$O6j{RfKi`^Xo8Q4)tx?xu)r;<%0axO1;#yHNEoF+%;3{DfcKc-N0 zBpuNMabx8VrSELn?~CBRJ{i@$PRaGZHlv)BCS3Wf<*IQp6M>{XLTH=J3)9jm30IbS zq9!IhzYThzv0%i$U*!#SdF<$GJ}H*qW|{+0=8NO~J{$yPC@r=UK1XNcYkELF+p6vOE960+$&)o}JN6nIQkLQz20;JA5DJEFK%Et0Q zBv8;B&KFy&=Tu`W+8U>X4S1)#%#?;n#7X#3b{Wa9#u1N2pZguh&F9wjwx2cxJv;i` zqx?S*Y(M?yMxQZZ80EC4L?O+Sw`z0uL+@^*&x3)Y3d$@c8r1=dw)AfT#ix1}>FZVa zpP-#{`j2(>$@YT4sv?A4hlMoWSi8pCf4#bfNCd{hunjNGtxxsj&?$J_%oCOEM3|PQ z@h;xflV`0=Z&FA(FqL5wwC zd=JD(*R{Pj#EAR|F}BMkFA(DeVr&%z{TX6x*DqZl#tX#w=Rk}&&mkyW?+*PQVni+w z;{{^8K#YG9#OMf^G=Ck$I9!g!_1_g@O#VoSaa==;{a=9?*Yd=rMPAFNWye$IB|0-Y z_B6(T4W3$uK|}Bm+3VhnEY=5*$M+oAAA#orF(R$nAi`Q)i;FCa&7m4}ICn9?MYNxV zI>4az$Xp4NrS53i;>hcj#jN9Gyqt6W;V9fh=)r;^b2FKcr6cmAZ9@>~>{bkyZcKFP z5et%|yA%uWy3__Rx+SC1{mlUz+k0;%_;M5s`!fVlqt$u^ZV<^NalDg^hBgUe(cJ7b z1f!uJrCV`Il`~@|`k=>GZa=Y8v_J1m5)-IFnhV5uff&Di8iLP;7#Ygn?B{VthXdt=&rJmcf^r!lTA5>#v+X`ifp@gWFcue z2ZkZi7U>^1A?#z=6z#Ags8Si1D~c768_-XPM39Pv&ply;+NP_c+5?(gGW^oA!Q<-WxIn1sSeUb7IAME$Pv=%w|YpX z=0XxS5z#loKGnml+VNLP+Uh6AhzfNl?8BWteCX7EoZ)K+%QfBGer{dw&F4Xna&Ks( zHImuujg`=iR}z0B*nDV${>dt!`w0H51@{xAjH-3?#)zbH-6Ijb8r_**J>b|^T`=pl zWvU>tV;ZQkqcrr}=Kj+mM(8!KLqUmmM5LgPe;vv_h!ouX7}k@J)Sdm0-Cx@N_}D(j zy%r|H-M8R8j%}Ve`LGu>K-Zr?Q>OU>4nO*hokjgFp&~qE4z=i<`!7o@!_$6v71M8E z@#P?XW@)>M@$~u*S>V^)=0oorXo=kKHs2Mjg*m0QqcP+g%_Z#xVpYUy9_n!|jK`eC$Us|Ay`b%s(qI|32wI z1I@qhv6sU6-Jjw7_9sz)8P5NnyWfiEpBVWCK)<2@)=jw}`hRCcpF?>H1BvMJ~S;_%4l$@_NWEZ z5FBx|N^<)tBn;F6TWmzjF2~?#ou^~Rg_J(J=8n;LITA2)*#Wg+PIk#7ed+g?zqQ2LK;ncDn2Wy=Ywo>PTPAp){slZY)osa6vFxFHo&P zkW5mSCRd3==#1h?jJV|`!=+lBauSlD8MyMbhTv*6@V9g}p+`9bsO#AbEOv;yc7+~1 zg@?m9S;gdvwR}{|3n*j|v0ST3h$OzRxVc86orqppI;lHI-r@r+NzZ+N9UpSSvSxuc z@9L2mY?p(MNm2@E?mT@Z`(oGbO=h?tR+KSCOXZuY>a>)4j(b}1HF zkrcy}slFetB4QuLQXESrun%>MDkdu|c ztNzxrWNA_^UG13LlP;hx(h_~pZY%!?g9z`#N;B78`^RsS<@ezxQ-P#aVnlJmvUEz) z?HN5CnW+O+I)p(D=!exnQ8W`X*>da9WX+^#g#wWH#KS>J9^wAcwuYFs>yAu8S!6^H z+{_p+^$&Tm)OKULAT6|VpT5BRWew;{)LIY7`GPL&+0-T(v?1v03zc(FtQWc--XG^m z6@zv-yOVVurH=&aGsFHO&*;G+Kq4KJHyb<8dP@xK(Q+5nwkV))SaClZ4?(L9qlvjU zj)&|>c5qyV(hVl;^P_$2y1^`AqmJ9*mP?Xx`JqP2I5*n*lB0A)n^#Fu!oqz3QNzMJ zf`es=wSD;KAo@Z?iFT)L6*t=INRd>H$Rmuv6Xv(eJ(z(Z9j->s;{` z&PU!1%x_0b7c_r=LG%CdX#UneSkK%r42-tfw++Jxj~x02r64>A&NwaTakKeO=!mis zS$!;b79l39RZd|ej z(%_U%Ev(nWy7Ezyru||+GrQ472!(h;I&OO4h6$%8K)4=p@{*ewrCy}sYSnHS?t%xc z7Z4MDlVP(k_QX1LBg0G^K+}%zK=XKHEC~xS($O*?Nq^xWWV{ShqdS69vMAOb#pD(T z03*8%T|EWyK}GGXJHlimWKBQ)AsdF7tvtX#a>H;t;q*^~^B;Nza7*NVT^*Z{$8N4x4nb${c^U zgkKJM8(Lr#_3UUIW!HB|*NXlN?&UQ%-uREOcl$%U7ufp(d*7%C@iXk*M(7LdeSy9IDA*h0SQz1JF@6tw;}_Wb z0()Oz?>`9kreiZW(9K5nr(kamDtkVslyiG)<1`_HnWOM-;AyE6b4lBWJugfwe{JEY zz0FN{zq0zaN$4U~1`6BRSn~{kE%tas(s8LH+GrhQe3`C7bZ@c3!XB!Fa+zdD^w_cR z7L|c4qodN2m@3e)7~z;5jnHx&bxAGILM7cI63-5#RfMk!6q*U*22{mEIcM0;Zt4bx z$m~F&pp=8BwAcZ-5aEeu`RJ0-a(aEBq16_zJRPhehl#Pbd2ZY5gG+b5pt>mJ>R!Ji z0LLY{Ar_FzWmS!75G%*MqsA@lJ)2|%IdHeb)xha>eLLwTTgKFN!8vU7$w24D`K&UX z3=2hcn`CoXfW>k>NfvnQPiKBU#L!N}uR1z!I}O1o-}&Zf=9i*<$U)QEN+Av>f*S}Hd_}TMApWQ<^F*1 z6HShoUf|f{Rw%NVP8}|y3eX1>??7&q`Efdjw-}Z$DY!HxQJro}E#j;Rycwy*(O~w` zYQl`2)rg<<(Yz-dv2yBePo{VDtfMs;6VP(rnZx;LzI0*;H#C^n6?s(|@QPb6V+A96 zTw;%wJhpPiGc)02pa414j}Qx>S+|$K1`&&toTt`A?U$piJo3dc2$Dq>!b2f!2r6b@wP%YyHIKV-FJiJp+@;wSX?D^c$BZxzQ_AM8M07DyB7>_4Oyejs`bSBR?(s=j(+565WN0nvUzjEVz+V|<5 z!MhXh+z8>3!3YVNZ-6k8Fv17{aew>+p`Mwx(`vOnyNMmU2O&~PQJIxhD{Cdm!ll!< z0Yy4)d?>a0y1idxaBqqYM8cwj-kSENy@QY(R2b`5NE8*`)8(DON)U&q|K0NCEestIY^W3e34}10p1hy#_=dFa(K`{}i z?GswwOS!l&@N})kNdB}xu@T&7>-JyZX{-Is{=~;%Z}J=V{)WB3VeiijdxHylwLZ4Z z`X|_%qvW5P*tron0%H4k3^0xZXY*tR@eA65vv@oAC|p>D)u=W#Fj=pFqTWdkQjr9r z5iqwT6IFqhM|gD52K0jUyJ8+T9{G_7sL+Nc8>?F?%u*f!!((lmTb@?8QB>{9Dx68N zd7MHt%g=_Eu7sn_rp6ER!$3mTb!5-9rLpeViohOM`*|*m_6t0qSLxORjXc$hWVCUe zB&Uf@FEyLrOGsk6q__hxWJorGLi8%#DPB*1p zi~?cUxmR!Pn;*BEc)>}p7@mHi{x{#d3gqvipJ#*o*`_6MQR6dSc7|}ezR~mwoWPpM z4Qv|0a{Q)c*w}8G;UE9iMptbZ*W44BReZ>$h;f48bgc=k;-gYHY0$!TEosg}i3IRX zhQaMb0vKwaX#cODdfkCEn@cwf2;xt5`7{ojH_?ogVGEyk-%(sQbMpT|peFYGe=Y9z z>$98FPRuQ##vP$;NA9}S9l22R1Qhv{VB>VhZy6DA(~uYf{xKt>#WZiyA-Y_Mn@4X~ zJ>)oYy0hQYBB;A*5jVLL-)Rw_DJ|l`F7W5HhzD=GFfF3J{Z3j0a_(1GrbXP+?jzG8 zZWMWWT0|=WM)B{oi1$y6=mv<>D0ppJ1WpndgVFfyw1`vs!4qi__ZOx^GxavnKigQ~ zU+|Apenj_4yJ8K&&3U(G4H3xwREqka&3NgQ|N19_5jYML@UM02cKB_ybvnu50~byK z$G=*W`n808>fPU26yI4C-&qtdBo7#e)0z7$@&GwMv{@9c3CvuAC6Uch>xWaG3+BGI zns*w?{6MGH0a`Q`WfJ-JNRGNJiZqPb-maHQD1{PD|8y;Km9OJGSa>F!H4gH)w1?(6 z7lXWNjK>`j9j-Y(sAC%DtJs7l!kSELn4Cv7AkQ%;*)@08{_MyK0}@V?u~7-A%!Opi zYg<4vpekX?OlBmH%i>*GawmZsinF5SQSiV>pJ(2BJ`Bl{f`U~~9|0ZW`6&1Ra_mmz^-WNXIZFgO_{lbj2( zS#Ibh-77;y+#0o(W@TnLRjTF4iVOGZ(wLT{GAw)W5TUzW;Dj&WxGy?$AhM*28sKCK zA{>#D2b~<^jIU812ZM${folQM(c@-y*n)E!UN0j~CnjI*2ko>~Bj z2k{2f%iTyREnNw8Ma9G|fcES?7^D0&LLl|H&Dd1!4Sak&9MH5$D$9h+S5lo#eyD`gTD=v1kM6U5Hkf7P72U9Et?Z^@zB)fIBLSktsR(c`f zI*V04CUJG3R`^L^)x)@09D^!4%v2j5Qhq`hHVMx&B~|A9et>5%2B9Fa=FwxYD`<6^ zt4(hf{E0!sgQQek*__G7bclE8_5OxDU`TZ20Yj{iEhfK99xy952}x!X(W=1BB8APV zZ3}s7V$s32;$mBmwjKJGm4c_ps>?cwD8{j)^?}ACGoA%Q$vrB1gseq5x4Gn#w=zdGVF0`OCG=tO;$nFz?j=!pj))2O7W~W z3BuiG>Xo%FhNpYTJeP>dX-m$QbYaF{`X8 z(-R76AtKM&(9pUfc_-9?zynyG{mz2Cw=y%;iLa znGysGJ#lw9sD}v#Em0{@hPf3TeSmd)Q4d^N|J8< zI6=k;I!cuF09!01&B+GEgd8T8>}=MI1IS8A1GZbC~Kx?((o3YFZCemlJiz(H<4~opHP>)T+6} zI(Dc;InE29j^~-#w38MS{90NX5=!l071(0cV(0HB%E;;U=C)_7EWMg;!pVp;d8k=LQ#t4Ip9w{oE@Hj6mmNv@t?_lpu;Y&-Joiz_rQ?~Q<&2r>i+UCX3ASCI1WrSMnOXzW$OCp@&Wq!2SQe{w zpUP?%1z1eovdplyStx;*BjW(Dyci9Pg_ePciMku#S{QJt>|kY#&pKP)k^~(~de4A; zw?VcE-R0> zBtJZYeXa463_&nsbPOH19bB4IGvHNYM)NuC zs4w+q$EJs?@puzZb5k|k!xA5i@byBVAavBYZ6$&#MSz3ZZdRKMgLMUQ9yw@YaU@Y; z^P}x_%#|fz)BwB6YTT76i&j;n2aoj>>ak27RDEW8;9P%8QAX@A(ULf5nK?3c0#@0ncL%OzT|f9b{*V7zQxAT^L*f+EqY3P@kx&$z$|8{5jB>b;NO zZd&K_SI}e}2WA^XehN*T+YNH1)xD&^`kPWF!|z{U{ZCehkmSkg{%BL5z-aoxuIZ}L zb)B`n5&nUKxbsgCY%%3$jvmOl363`(KsS5#-)#f%S?%ZR{Lc=Yep2Y&M!3@E9;*P| z33=G&;Eo6Rjco3^>fG;Sb8l!^&*%e;d8I)?KS2CsQ1F*BsI%IyZBVxx;Yx#gtcXV^ z@;M7}Q(V>1kJh zzYXf?KEOLy8Wi$_fS}f(+HAkCV^C+cU)!K=H^P+$^^(doZ);HRUytQ;8PqdY)Bb08 zr9m~Z6Gnc?kgrwywGHZ3L%x^L>b+5er;zV!8Pr+rPi;`= zPd|}Cy+2>r*E6W-3WK_|7dLShfwaa)eJSHRtNq%>ce@d;Gro3{?=|Q}@)vmh7=;k0F$#Tt_e9SD?uVMx3)IFxTx~8nY=VuIZVurE-k>W` z{eD^=H@W}O>RmpiQsBS5*JQyz5x0LXm-u%FGN0iR^}q0IT_XI0g1=z0%~|aWjOyJN zijhwTWg>rfDDxS8K;K+xP{a>}gj<8czLY_o)qZV*y4?s@8q`am%r{NJM!p1;`Rm1f zQNjUL` zDoM?7M_x@I*!J#k`oM4cz;F7%m(d5Zf#oT<-SS3VN*@SFbGYO(8eG^y|4jTYbF@uy zXE=J+bJ`l@lG0>L%JfEep$uheMvpIm!C}3O| zYoe5{+r(oH-v?5dPo#mW1tS77UA2Nz4n35kbTXzV{c#+Yc8F^8dcQ+An`1EiZ1Fqa~D&Kyc=wTfrkal$Xd zV-7HCZw-J>I#}lQa=45gBNKXH-{AGk=(^1TV$)TyUG;$=glMCh@m6H*Xb76`GQ8eN zh2BS&m0(a%rYV$+GjkQEYEWhb$f!$7VM;&=>wYotqmE5xxEFiFEoPwyaxz*BQ1C!3 zdg};-$3igeanlvOU8>XBxJs05#M+`nhA6q?HqJT@Dez$VDdQ~psk2Zzz8jtbdTYJh z*sF2H%ge>g&u7~$JY51kH5xdKFyYXgAh1w2eZ5AhUbGWn z%*amyt3|bl$N(%t4|N9423&ZKEJsKc4tqI_Zr4M`6eoCYR=Ty0JwtQ`A~fUs=%N@@ z6^%`f!BE`zbmjESlR!dRVlGLjO{?e;>;_b|r#L=arwW!#gRKecsj*)4)wVY%b|WA0^GC^XA~}kmV=TAk`=~o zUK<)w79xEZtY|4gZDGL%OQASY#gy4=YQ@aqZ5H*n(<&o@1HsCwzIDs4?9#EuX8LZl z+`}7>P54pnuK4N1qH1x`=mD**T9n|x!3j~AHNkh{Of7oKaM z%PwW8@A?!H6eDoWl95PNXt-?L^F9Md2}e(RtjdlE+|w#-JV4w4Op3Y23}i1Bu~}kC z8+f*x&ag@sMjiX9V_E>&vrqg<*H8zx$C)PSb*KY>6WATkrVdn$L!a1Jcc}yK3%rCn zP?DV>7M=ElZWZZ2QV64Nd*}110~bv*x5po-1JNs~1KXJK4X6XViPkrDVEIiQ_;;rc zWXrWA%*wXG|41E3(Iz?Q1oG0f&Xj8V~!3T zDdXIM&2-rFA?14kFBycMR+t?-`>`-Q zqNBmo1V>B+)Db@Ra#tqclysB*yr+xniH*Rn(!3(j-0w-d7cIpjq~=`}(B7y=L0%l9 z$H=Z@Z7b31Ka4()(+A#jzt_?So(29If^Lpy(+8?N=&hz=d(zSeo&|QJ#qY<3^nt{q z^nu-4)py0D*F`%B6nz7{b{Frs5&n&Ld^Wt} zUKe;C-f{1?OYsi;KHkwK+P((f@l(5x#yeU?uERS>kod+szBJweVlc*{JbfGQz^=kO z5RiPTVp5BEJY6vfB@p~IAP?#r^7w{4z9Em7K_2}A1lRNnArIX`M?oxkRtz%Tnjsx; zMo}0J=K(WZNe;MoOUlP4yL*s_Sy=o1Xg3@)^ZCXAW!l#zf4VTusPa|9Mi$iSByc83 z>sb{}=W)mto#g8fZW}~ZnVnA!-$l^ik6q^G$@CDEGh!3Ofb33id8@ll{^os@f;jrM?=AE z(C=1bqMCpRK`Q6Sa3*i|J2~;}L$wms9KhJ)qL#LeXIaSVk=ujl)R_wAY{;9wmpbdY zdYos6=`_ZuDC3LnrEIej>8+YMI&J54kJ4p2RlRDZ7S?bn;&o#saJ4Zavrkv3^` zL>-?55O2aehe>#}GC2d?B-pTVkt~OfwLU84k;+qQyodx`M!~8p&I2rDPhvI`q+BFr zP0rM1-yy`TKh23fIXH6emJQM(;*T`rswStRULoAL?K?Vr{w3GVBAdeVk_~^9Y+#fs(@;J`Y7V;1XbW~(g z?bUNspRSqZR1bJ{vY?I4hMHRHbinF_K#Z)eV~Y?`Vq<63v$j!>EP_EH)x`%RW2yC5VN|GMXr&HTf=EmSS(0~zHnBkGHh-yJ}4))N8A(UoQ8=7jq%to^! zNu;IRLl;TqvIp!qXFc281Y*Q)+6vqQDXvV5fq(F>nD*Fk3L{ zg?=h!rRhhG8EO4nZ&y)4AE4T09%k0QUFNiCcz;E!XfOUgELx)cpuiC&i`qhJPMK*7 zDzM#p(LI5O_UZ1s{)e@^+Xvh3cUNF@G(lAV;l<9TU3t3Gq-j8{Po5S?ckLL|9RL0U z?15hodr)r!dr;pMlTHG^VUNEz?9orrF}r#~(XRkIZ3)@citjQmEHn6j7=;WY8i+mR}uWfwq9 z#~eDXsxp(Rp|zQKWQf8O-%l0TfRO2`*Sv0Klr8!B)CmY-Hp(I?Rtj^s^_z~DttgJ4 zp9Cgr%~*J<&8yOO<5~K0jQNtS=$O9?_9U_z@>|M6fY1djizrMHalzx5%&k!G8D{Dx z_{45zQ3l{cK$k%h7}gP<0DTfXqWx%e0tEg;Dkd?7cU07OteDg-SN-QyOk$nPPB;4t zizc17LA~3ir`Y{y@`WW+Kh%zW=`+VO82{MoHyRTff49?$KJRb`+`pS-YiN@u-Zi6C(!K^ zYx&nf2kh|wUZCNbMeE%(gfCzXdH3dvnJ3wXKDgitav`>@yJK+%YzR?itMA;t-R(`M% z{^d0e_Gx zy}3u;(PIRRFMUV19VH#Ft7#+p+~w{qo}ByQx$#pzj`H@A%*@_w{{4@Bx-o;hy%jp$ zbJv;OJma}LHh<22*$U3X$f<$5G2|CPPIFm0Io9@_c29k4m^po8bjp+ddCA?B&id!Y zHhH>v>FrtjD)0T)PeG?{@Yv%={0{F8J*@7PIdXKx4!c1IN?RqgwKu> zTHPLM*r(!z&qqy&;pA!bY&Cy$(Xn$K9sLt{dg?z04G4js1NT>t4~({pT`~dtGsoyF zhX5GI?!KLGip!$^ zKhp$$Ag1@;${o!nW_!MV81%RGKF?sD27gfGtF9)WKmA0$=l%I5e|IG4`IpWlk1kY(HjIop#Pll$a^byVLbBg`u(-LQ(@#u^{{i$@HPDF2Td)X zH?0Ffr`P=NmR#UENBOp?FE4PE*!!ox+?uAL=vz(Grg3ft7xanu261gOwJu5weeZeN zUtt^o7x|t~5G`F2+kJe&0r&@uy+Of&*IbOk-Zs7HB`)iu(u+PQw!74ky|6lAJo>-bu~;kbY_eZ0&fTSiMU!{IK(M z=8H`E-bvfbr+hH><8^0yZ(GarB~Iu4YkA&sIxzTFPKOH|J5M+EMUm2bua;Y8aA9Kh zyQd90$tCl>kDozZ5-GjYwv;EdC4NxI8&pfZU5>gno-3Tz+g3|`iPQQLDM`1|k@2ev zHa_vLRVQudniq7SE<5lY`?!;)aeB$tj(67(0>S_D7h~rC{NH}`zyA%i|LmRq`Fy3% zWRu@X2@iXuAK+{5rocX3J{0!(@}VHA+XK;Re#<3&ROUk7&H*=ZbOA2;Uh%{yw5sRm z@TxZT>GFKA56<&};J3;KzH|Ziy#eM+m=fM;+*Za7r`t#q|-j#2Ae_MOUeqcBP5=3k7ubF3uza)JGCEw8A z@%K+3`Sm_tR{Z@9YK>ZV{eWL%+YVR0?yj8V#;%@bmZk+nA ze)7qxpFGqBo>Beeq1!I4enQ@_e$q{yudaUbyLKO1{p76371d7~31G|Y^0>54Tgt)5u$&=OIsXtYFM`0Mfy7WogyT41He3w4?E`9RCYVT`uZs>OV*~O(# zMu*9$Z}TF*<@;N`qcj%9$rywt446!a0Rs~wpxE(grf{5^XapnGQ5u5wfk1I%(6{M4 z*OJ&&=^Z`v4;(fMbQi<`%dd`L_m-ipV2qQ{&=r3$7Zapcl>7NAUv9;@ztWR_)2#!P zig&rlDkabF9Gy#6o@+AFTnv}yP%%nIOcs4JF1x}a)!ZY+F}|Jelve7z=7sqL` zi7|7S)pC!)H<3OMjEWOe#sXa?36DrzXd#7(!aBszaIc!f{jn!vv!2MVyajnI<<8q^ zo-4alzFRr590jD~oQl1pAtwfr)gRbiHIAaaP_DVjc3*7axmSfcTZ&^K%xkCiBicdv zsiUZ3*KJ?|uqA)l);;lEU4S%au^iVC43IuHTzM03p{5~13bSN6h-R2pqI)AzXn9zg zfUnmWC2S*MUM}*@qV6c(7ib8A#&HP<1TP`N24@FF&^QkQf&`pnA*Vi?Jh+9e37aaO zrsA>E_fl7fP@$UU!z)FU}i4a|t}0`!~`a>Uuf1_ye5aP`R8 zW2Q|-5*p)6y`RS*-`|ss70&xRIxQQ|t@rda%n7;k*at3{SM`7zwslX8t+WPgy^=)C zDUUtmxE3722#=!}%0OcqRD&cnwV{))%5ixF@&Tkw>+M>|oYhRtqm#fIq%|oeQ%ItK zAshF_wGaJ&_P(?^RiNAYuiUzy&QsQ5Xy&KtzEv`bBhJ$|P;f$U#NpS!G?<)|oJ2{K zq%ry>F+it*?!CJAUVH6q;lPs_g^}$2=&+^s>aHS(bx+2}^(@28_IhF4UvWoj)8~pl zNpe)ZlksxVOIeh*MKEd?^`*Gu_c_6Gye-LVOT1ugaaf6{isNr;^XHar5E$A>Fg&WX zeNqz_X9KtF_j3Ye21ar?3F}srr-Zr+ZKRcv@tQT=b=Y7RP51LO*=%eaQ1o}>GIc|*9_TFZO)4qT7{P{Gphx^uIH_5L1#&SI6(=#8|Oqa*7=7(~sO!E2@Hu&xm<4sljw~_BfgW+!yFaA@GfqYXY|4r-u zMuW8UJbao3zn&AO@Apz%I>W`33WwtW_A;z#@UlVpDSNOc%v)nJc&@EnbW+f8RzAYt zNLb$IsgeJEujC2;=7KeT$rHFJd2Md&2N%9vd8vzlhK;#mNN3nYdWRvvE>#9u5ok(UmNu@wtJ+=jeWxX~XwU$Mx zxNd-%oNKGqTlDjl%};oAYi>VXB^Zw$N6^ z9|uEt8-BTUp{u#&Hsry+w=zjSBClj$9Yx;E9*#K4Khci*ax~ znFW+Yy^L{$!GX`mIJmPF-eHvEe1&(4Bf%}g9FGd`k1)q0%<;)Eht$_7JwK?$2y;|6 z+uT&C*#_RSIhpT{dwE5j?CWaVYZY5jA?#_rv8;}_zQ7h(vpZaOs#9*dBDzxEWoJ4k zvzyV;U2prn1MW{3t(myX0a99yJw8`cmN~jP+qMgM(-pQ_DQwUcORKrE?30Q&6QtVO zZ*K&A)mS$h$J}<4J*chhZc-}j&3eJmbM~ZID)NfhIc5P+YIA+=b@IByh+5IiMpdCb za&X9vGTItOI>c42t4>PWjGt?$gR#Bn6*!lf&FdZgkgre72FK^^J%x`m8)tIVNB#MP z$q{`nTWPn8`&QWCyi}`hI)*-Lf|f}X+J)M1GqifSu4>hft72m!WaZ(sY;@hAS0+Ju z{QuDYCsk8W?N*2qoZz{_(7X3=3-79WVWWg z>o*po`LL;G`H9mB#yhc6R~fZbbqQ7<^i9 zndxrjllEdHOqV^a-5v0y#xdACl~xqL(T8%s=ryyx2ei?c&yDNtEKykQgB~@k&T1}! zdD!44qs%)Esw5P1Ey5X&^T9l69I_g-74{izXXkVn=g?N;`mbYvRZva?$jOcuo`n{?nZ|>70l?eT-EwY zX0cl<8FseMm9~t_9Nmp=lcmLq+PZ5YUya;4Qg_%M*0!xmUL5zgRkqS?4puY0yS1oc zwbeaiA4Ro2lc>;pFbmzx&mM%gyavrYE;iPctdckV(KfT2>T<;#mxi94Gh5z*EqcXG zOIwml8`JFYC6cqL zQI4)v4QaY@8w0&vl@2AqtOsj;Q4u^p7g=m$q>jmn?e%)|vCKA!#h{Y2YbBDYI)I;5 z#F1XD9l$CZv`}HlvNxHuMaM5``_0yzW<*8#y?r4Y^!fWr*BjSZuXwR6(JJ6Iy9G(z;Ps4_?&6j@3Na zbaf)`&ehm`do}U;b9yNstg$Okg}jY-;1>s0J`cSBia>S0tuGpkKBc%db_+9mK#%wE z>ud)D2{1tOR)a9K7S-5w%5y<6LHYe&W|elQRO_?46|<*Ldg^eu+;u%*Ig9a%#LHc($L`h1T&dA?v6$C7n+{&ekZfow0 zhTsbWoAQGNjnLd#l`TKYkEneYKf0w=Lkb%Njbo(=?1s{pRuFa01=vAG1BVQ>-;(-P zfc=H}{aAoqGz4jHhBHJAEmFAW`p2FJtJIhQ_P0mCzYS&we**09#=-+|*hyi9cmbl+ zQ$w#p9XvtYPi6PIHT3rIFEMk55Givw2%d~%y-diyG9&3T>X6B1Bz?U)_1JxIPpNgq`_j~%~ zd(LM4QgG!;OY|9q$3%0XVTcJeOGL4!iTbXx5l_5dl=W|0b#r6%@j+Di^_%(+UirnG z74Eq(;cqmcX^f4M6Ti711O_;kz2&_6jEG^f^XltG3@^?r@FZRHsd@FKp#SkPrT_X3 z{)6kk2n6OC2{4*q&k9a|)kNbcO1R}j`;72jvP27p8>Ecuf722EsA$^Go5P>7KAR_KuhL!Vm>$a+)dXV%-+ z>-2Po6qTHrjfgFtFgQ#+TQ-Ju?~vVlrR7nj+HH4HUe~HTuMUs+fyyqlzOvj`#&$-j zGA2%EIug@s?Ua3=54r?u3>8WcC+A6DP zT&_p>`eH737jA7LsKmHAuZxw2#dn)yzIs^TgmKJoq738ll3~aBjDd4zz9BSv`PH1r zQ0@J2&K#FjVr=G%#Av9=leSiethe%>tOIr+g^vOqV(y329j>cAAaWq0pPQmX=1eCW0V2?w%E@ z<+A435$mm?8yueBxogVRcILV@wF-SgZ!Fr3xpTYi6=c1cRl(~v?EXrz)|{yN?HVtR zE#4{7)tT04d6tn?3ML+L%GP6lj>|K=x)TZmhHX=>VWb>_5$ek|QBpa&g!k&MI2XXoG@6R3cnfwp%Wu3AQJH~xqcaATdE*2D_R7~< z0-Kwg7R^)C+HcP~$99d|`vQCxD0r(-hMXgtw8d8ZVw;$CDvPB z5DmT%HK^vBe$B^aezX)=!|bTue4B5NOJYmewQY?)K&rHUG-nlH02Q~@nrDp}ml-c+ zu5Y;NxV`9h+UBmBUqlTm`moa`cOK9LK`stPu3~pO>Uu7=hliQ8vqV=fZ!D6oGj>@$ z6tbY)@w{pyGcnqP)tcp~!3gZj3I_yZ6oD+4-z;+MUZTY2fl^w2Yc2AmjG59a-H(3zbYMSU`-t`Ru3-j$Un= z7l#+n=WXKwKmVBD52Mek32sd4j9RLBifM$_Ffn>^_fm^wHmvW`SPfL^h@)Z;hT#^X;v&tozA39 zRK#&3KW=sn!##|v+<@u|{jkASE zvRbji=9V*02fAC9SIbSlPr8M=H4?Y`S!Kno`lBh^Bb2p8ax;eL{Ymua&5_E3!zt0f zNLY05jYR+cx?FVm{QMwRdex@0FOEG;&(V6F8%_(>vDj!0Otb3rHeTa6+71qjO=KMW z>J$WHzdjMREzcC2uM+*Ye-ix*QKG+Ow2G=R9<8ilr@HH`x6P)<2<}?-qn9#W@2QMA z?;pj%M$8C}inywd4*jZc7JC|d3}y-N`s;zllB>dEN>1uMf%YgbU(|NKRiDkc!&p4j z%1*KBL{fosf!HxT&Sbhyp7r%LuCmS)6y1@~9v*8>Nhi0?)^8pNk}fk$lc>#Pn;hw4 zlh!B3OwCX2$w4<9UJY(PY;Y(t+u5dbXzD@*m-BO&lTx3%pwy<)ulT+IN@xBj2j_vKFVUv&{{+;0rs& zp32V3ch#LJg_6c1zV)pAe7`MZ`W$|ou>`-w?e1u(nr!5NGK#Ydy=31Ec`VO|JUk$& zZs>5%7Gi}wcC8f*dE_{{LEF80bqHW{+5Nc=>})m95~V;1qLqnn<3QK#-S$3s&#;tVGgUsv)LsD8zpk8;A?t-w z27aM$tuU!qi7_rfH;>dhr!eWqRhYC&IFWPn!B?pXg9>uwFZ!p!?H`57zfJ$!y?i|e z;qZIiVDJeRQQ3>Kl?v1~=0gYR3}R6Bk8I_8VGsKHutyTf{?UHx5%$>;nM z{P?hkkM(lcqxvW8QEvLZ-qUWfj6HmPhk(g*jTUd;l!Hu zsz9JX-4@nm%l269K&j*QtkPWdYev=X`sN|a3pO1s`21D3+nFhYJ(U#{n$5b^0QNtr zZ~U(bzEa;fZ14$!{`$n$H|DfSez1mc7U>)RS**PLd{E!mdtcu;a#`I^(!V?jdN?t+ z5YOO&nAxzWOq4H62lng_bPkcU?e)SMOl~Vo0Mk~`N?R0>OIsvK;WRqmI|ER{g~Ub* zM5PDe-N#KBK4ob=K4cW4JbUBqTiTt|UlFo9GIDkY5T|mb?^_j`J5^_Y?+lKnPUGjjGk8h}!NDqH@N3ZhU_?26GAzFziJ~@T=ee`kxSk0~NhxD0gX*Neko!IABSV zJ%0vAT{?qjsrLcn!csPIfQYex)3x7M%prIoz&L`jeiOt?1(~xwdxG+BG|D8#(wuen z=0E;4FFb@BSfq&MbhZ;8xu+Ngj=>lfas$8F&i-aFj;HSK=@J+q83dm02kt7yLjoB4 z@>Sv2AtLw$BEofg)U5;%k%MI52O_?82G23C5fMGu(=u1gId~z52|NW+@1>m6*^VKA zdMri&_V%cE_93LwF7sH#i2rW8%wqr~EfM$~s7HdN_1I$E6@d{ipDlhJOnpY!I9ZrN zPuTb}Ofdv?0b*jn)LWju2xp#75x_q?Hw1AC=vPb=cww-7XGkkU5M=x*i~vvx7*8Ys zRA(Q;*O+t?<7oQ(yYU+uzocqQz4c(hz!DpnUlf?pf1!7ph60hUH zf2-EsRI@h5azOe;BcN6bFu)|>n7ZkH{4@H_$qsJx^qs$PKaSc$C&sAPB%Qj}6HQ`( z;^ChBteX(Ir4El#jBxu2pY$5z>vxR+6JBBT?e8ki%83e=3Q7A0zGY9&A+Qhw9LC>t zA@&)G^klK>>m||=!KyTD%3}=CiUHB;im3uGWHFKr!RoA?Mh>hv48Umb2Taco1uF^z zp;pWHgB3|5QTl>l5x{Oz!04AgApAOXk&r_d1S#W>ozMq{Xn6$D<=Xfpz(|TsAH0wl zMNm8G>{a*|zY1Jn9XZ6n<&m|J?wybn`q{4C2~ikFa_PetfH53+;LGLaXpE*% z*a^`XBitoZlSSaJ1WdSPfodMPgaZDNQ1I?f=-(7O1hMJ@ec@G$aU=$=ajU=!DU1YR zgehIX$6`zp%+LEv%nJY~aX60yd<;guirC-7(NYgfoBE4LY$OqZvrAQ24hPH zzk)5#e{LSgx`urXFC;MlLWbbkq)QaBDFH5f;z>nck4+pVkVz{$#=)jw*PD2%)Ym^< zfDs^R&tr^%`-^y~t$|+$bP{qvhhE;*1L)o!icdfXP-AR>05L+wM%qLrS)P0V-R0(Z zj7369S-?o{{VB*Uc*2IdFSz>(u zBqxJqRRYQGx0KcuK1IAwQvFc)u~kMc3reL!2qSZSP8UnVWmC%PVF8RL6G%QznqmGe z%x)3|>IT4A@*bC9ED|eRlEq#nLF3m!m4qBr{n(NvX-Gegg;fpx+9WRlV^|`M1xrY% zF8l%0^FzUk!q9M91599kNIk3=FPX!bn_>%cY;{5Yso3%mf&U9#9wP96nVyFT{HN|J z4!S%<;1j&78;ihakz>URKel4YL%jCgd2$vW9^$pnHtHc>`>DH%iE0n=+CPuu*5b8U z)Fp|GN4dA=v>SXE9 zU=nyXjZbIX5R<4hV$yf9KK~3LXW|CWm<(yW;g|Z>3I1U1jlpSq^sNk0$zGs;>66D9ifeXD=D|@iIvSbb)2U<27+R~~AQg(n|JU}s4g4;E@bQecoAB%DzYRQR{XfzD z2Y1Om-%4~3(Yty2`R?0zFWcj@Z{sD(ir(}p~-ug4@AUi0+EUf<(s-~~TUBi3|IYmo2(M+*>RyYZrCgTwg{4TBSC z8t#H$u2I4>O2)z4!bMMX$e!%2;qyVsa-86$!*B3a{`0?{8w!WPdxxVb^H*E&-+JEc z>81%%2`{oItM#Vt!4Vh^9^>zC;X%oBwsZHd<1hZ;dYWjs!&4Vrul@Axxew2eEw`Es z;jg3MXV6B}^Kc>eeD2dJu@{-2B7`Tp$V>$x{NH&KnU2uh0V2HXiz~e^XOcS!qg4#h zWH1(rnVsv%XFLWk*IREv;0NXeauV*@2b27-GtyWc#5p_SV{Na(d2^x05OUiq3S(G4 z>FNHlrx~Xc-?5nhNCcXo64X61$pL`?Ifdl0S5Z9tI;4`2L#iK3Bu@iU#h7?yS8}d# z1%B|FFtad)g6kYc@V6&W+@;{Uz@gv_6)^G@&-xyo?pG)r#^SKwb_0eShdnDJ2W#LK zk+1tyTz9Td+ohpmRQePSNrFxvD8&pR5l9GK37GKExq9x#Z5a@Inrw1S)+3?hMAjyx0#|m^9VyASpzYpkO)H^wof3x% z?Uy>JxLzqVSSdUv+$Ehn*!CdsctOySTk6b;$Pvm#898_X5AW+cNb>N$#x^n!@9V?+ z8olLv^u9{S5!A&WOHfat_x1V`O*BT+sl*XdAnq1NC={w0g*d_^kRf%K-d71ZLb>!~ z3FT=FyIob20$xaBv;buiQWtjPU?Oe&KBp_}hD1gx47)v2Qj;?LG;)TY`l*ILg#_?h z6wV_tz`&f;l$riuUCbt6`Vn#22uKvB22d5@;XC@wU41>0Ajbfg9t`mGY$0w@Vu%%> zg6Me@ilFa^OF%&s2^@jun?6MM%g&33>?^4=8yLN^Vgw z6kr?!m2J+udXYmCfDz2?mH!j>cgHf|EXJ@%@c&ti<&%CQkGRIELHs%-K`ysKl959a z^b%7k1QJszj3aNKUO>EDtX(&{W#ky&QYsnW6u7ri6!Ev*S4=c`VX#hu(iN}A_1WGb zQTY!fkad3kA*6Cuz+nsu^u6C4Mhgfm{_fIqD)N@N;@3|#OI(?P) zXpB#wsL}a{kV+ikF*5PWt#NP!YBby>Cy`4U9lsuyXyjmtdcab;xFpxRfdQ zF@}D?QY=_vX%sk)JjN$39rS>uQ-k<*u!I~{UVc#J(*sMoc7yUwG#^U8ops(J2TB0r z*#znUA|WmdAcF^mj!*&eCtc|1JAmX4%Qwl$apmP7%awoB0gO9cA9VmfYhYs8??)ZL zR~`AlTmG>?f*kW+elYLT10*+KOOnAxA4YFd1|%G;-hH<~BA~G&;W6?K9fx?0&gE}M@8HkAR%rMmRGpPX!{*z0xQTRxhRh!3F+CAJZh82?Q^<{Bs^-9|NUC- zF}qQrku&_%Pc{50+(dvVkL23gXaJ+w6snQ}43PJ#Oh;iX8p1{l#xnP(Ob0L`@o>%8 zg9&oUAIc;7BRyaeD$`xd+NCifa!9311(z)5R{T37Qo2D^3aZHWd5fp0QenlWHjtiE@UR7|! zuQTh&(Yh7+N3Sx-%hu@s6~BKR!cFGwtE9e~=+_Nx6*;P@f*#d0#)?HCFL`4~^3sZh zdgF`~u2_oKXH^qnCCl@OhMaGP#b{WB?bfsX{&)UKA8~W8k?Igy*FmCWl<4;#4qR(UkQXl6ZLMqKB6}(>* z^7JT7NIbUxP{choh+l_EG;)|kA%{s{=@y7F0?MQBpW_Uqbs+8*K#uRHqR039Mz_F= zGkAvlX0JdDKq-%IKmglmKOD z6k=6?z+RP}z^{WUxyQn)hJJ1069@IJAXufVSOJew2`IYVp%WXD z1d*V=W5iEMp^fp98H|7VQt<1r1v!Oj6+wF8BRcwliBcYEl1^P;pN*ta>5Zo71VW_u z=#6HPAeK=W&)wrz2%wNH7J$`FeRdLZV3kVpaZ($hH2UlUsJddFzzaEyBB1=wc}@a? z`yeI(Nm3Mu88^12bg&XZA!~~cHXsP-h9km&hIKGrRiD7G0~h2d(5j3axPYI?zlnt- zx^{z7I}EIlkUAU*77Mq>k^5ta&`@qR;k$}sIGMn1-epBmy!&O+?>QwPu z0wvg!_RxO)I)TU7#QnW-R$&50k@x6#W|5%akPIf=6sqXYKvjY&EDAwApeo%I99ME~ zkVndf6r8kad=W`h=es zC}MVmPCRsdpD~WFN0Lub^}(}2O8`ma2a?1`l0O5;nYh6-CIuL?3cu91PVfh7ZwyZE zsc%Ld$)T>-)nus@f)0rhd;*LzL_mk*Q3zoK9TC|3%a}_M=)fPQ1J8fctY61=KOG5M ze|;C1E#Jk5wYCPE>RXT*{=-oNUKrpR3E(Cw_bV*u#c|9h{@S3ML_WB-A126b-8nLExT7rZRI9h)g+l?1B8ywDuUP z75D9*8-S=Nf e{!(D~O!su#b|YFk8Zpx#kX98{nOT{?%(Q>G{^ASUktNk09-3e~ zou{+sHarho-Zh8ta2)&%Xhba!^|ooWyZ>Idb|Yh>D+|-saQvO(bj!B*vi95cWP}Kkv`TLDF9l zKuMa*N$MehZpK^=i-^ZIT`(8{V4W&(TX-7^qY|hgetZxv#lZy(pn!UW4WUs$&p$-T z38DnGS_fJ3CPMu6mx#S;j7wjF=sb&SYq-{vBbBwNj}Ngnu;6icvvE@ zC-u>$A(1TxFz5H}0~FGN0tN#}Xf=SvsKgs``3*8ep(m}qUS3H`BPT`>Oe~I;l2rYE zX8whO%0*%vNT4{;SyiqtfiDwXE9ikQAE}U@C+G`E_C>IkYm_6!dL{3ui7{l=AmsI!XLFO=$LLroygSjEE-ws5|#Q++6mC*x_ zCt8rpT@G#%9(;e*Voot#$aGVoo+ELI>ePcq0!Uz~TcY2%uT%kiHj_W;5 z=rH76g2EE_ZCu>u4QS*f7=@e!yQIzg6hql}1_2{Ajq!8>l_Srpo*{>L1n40iA4cj= ztvw|+oc^$IZp}yyf@UY6h239;KL(?aNMFfdOycP)uVSR85D2292<%le@OYvMIe=yu z!2d@=*dE~g)0gZ6oSz_*d4ThOdoA|}&IicBmjQb4tbbPdm^pas;JU;+3b8>J8@h@2S z^xYqV7hE83$w^Uf7)2+Yp5{7PVGvL(0Ki`5%Ew~~D+)P$G!x|!PKu0 z^X?}msB(65*^wUu7|GwD85m#;!#>QwACsdnmPNx1%m@!N@bgY5YZIG1>D`}USfB2aeOt69KM=H4`2O|NpDZZ z_+@h7gOAcTzwnqx>6J+K;D1GzQUR_=)Ar}}y|FMA)cj8`>&mgG)M$jS5?x^V> z!Tl2h5|C8)=l|d_RzSfD$76irA-4A^sZMAHO<=+~D_POVg-_53hEF`aOP^SH6+1r6 zj>Loz5`H|77jm)+V1PNl$0+e+W|!xt0>&Xx%1Xf4#7kM-j>m{TFNB*;BPUzXi(Uek z$$E2h*15C__dIb+GBB6`LOF69_Ot2{lvvJ;7Iox1Vk^p1?m2$Wsam?3= z4WXF(1Bl<{riA%YU=9^Bt?yVSo&?=G~TwH&~uz0^;TVGV(AO zjfB0J!2%w2ccV*SAaNu33C#dJ#+@@8EQ1^pp2;95t-v`l9^IkASOy=;rB_5RQ~rq% zn466CO(5%e;xSs+i1ihaux674#?ncHbFLxiSU%}qUEG?@B8Ssw5UkLFR#ngTcN&4J zo+QRo37`vKvgMeQ8@Y`B>>mppzBwJP{aum&X5!iw4y)w#ygu4GB;aEdd;a_?#|Pm; z+6f>qjzXe141w|NBQE|cy}G=bL?b6js6SPbpcR60sw9c)1BFG@L-g2f`9LX*CaLoa z5){(c0~%u}Byh+yMx)>`yvrCA7CGQB`v49j!TC>^itSWfwjZo1f-q9Sf5!;DY}u1* zHfgs1B@S^yZ!W|(X%^#9$VvDQ&0`#Qe~v+b5g_SoEteMu$f1APKO6mflD(8cz+MV4 zo+Hoi#yTfLi$xCq%c6(>{UddqQ&yP*;zvk@OXSvazX6P->7-Zo=SK5PJPYQ2V-k1e zp4bqUz02HhcW5k4BPT`>1p1<;Be6*MlxZq~LeOW`k-mfrOfn}4d#AX-JFJ8l=t$qw z3iUU2ZfIcqG9Uni5mvXQd69wUb$;){9hL#%Fo8@u+uXIOI^m z+#|j44GFqH&c#>~@IewIqM9eS1`-C$`SaAHQanpY+}wO>Lr@5>y-REtMkLs zAs#0Ga3!Svx)&ew)ei^DGjzZ9mbeXnaNL9s2C|R@aQhV;PaqrNqpcXcp`yZveP;n7 znjpO8knxn|!!ynCePp4k=Z2aksz3$^-;st*WGgh+>>PtAlk?x|dd?z9sTrPy7b`xgC z{Y||I?%ttyb z#eAg0vfKxE@PhEZ4*Rr%BPJFyUU1-OA1SmHb75P1sOM5)LZ-MDcM@a6WY5QKya-xK z0Fgi*4HOI%AW*6WBot2)6B4g(`>?nl2;%W9C0_}{p!sJxnS>z9TwD>YWFE z9;vuL`T0-1=~s46{;K5)>|vMvGqJyJ*n!p>efuSjZ#y;DaYnz~H`jlNRzTENeIp&{ zjKMF2U#2IHsT6pE&Nfq3QXpP=3K9>G`Pq zd;~}QuWz0?Uj!ou1!8dK8kXvtYa^N&!JJ?@hT$ma!O@IKFf18I4|Ofe(Pu`aXj!5D zSg@gb7hY2>%h@Pv!?jenPY8x@5xn@QUD1T#h+s1f#}!^MhGsY;4qub7M~ffN?fSM2 ze`WWyFIYh7ZThBT%g@ctxp2>+hpJ%ocyNz08hJ*rz=L7^_5A5HBJqM?=M_OXgQNNM ziYCbbLV!TZcL{gGCxW>iyt{Au7HSVX&A~qFK~GqLk9b0G%V-qrXR^_aR@hZI;e%HZ z{;&P)_9kda)v=A}Z0H1w?VA~l8%+n3+E(Ym49>gGYVi$z5#6L$*Lm1}Q_s1<4RCI$ zKf)dzz9|Q<(Sx$s_I{}U{x$La#Sa|!^ocQ7JK_w#Xm<@tHT36Irv+4IAv$HS*1b@FtiZ|$c;H&_yIF<9YZ@WaL6 zhKoUqetn_(@VTeMZ=0VDf#1!Ywb63ItNyEz#ecnO*}vWeDbO_Y;@;>EJo=gEgYc*E zmz}e0*a}u)pp;dAc#dTbbEaj5C+=8FTkf||CJ^E0K>x*Ui(rGBQN2lY-!M3OZbkT_ zpI#0;(wyNAT5?>-W4+}{b&Y@(7wm|S`%ee%(}DK*4%iMlYt8=l@7?D_M(@Ph4#fxH}<;l-aVI-G=)Fr1s=>cU?v-(Sxo-Vq6hPy#;7 zGW=QMg~Bfvh!suMXQAvj_231p0~(OuLABzibfHByEs-GD_rjU~lOuj}g3*It{qGiz z|NnX<0Rpk+K`kO+^#{KFBiIQBV#GK8J6GMYY5xP2fFH!uneQxqkYM5ecViCy$q$kf zFd;abgyQlC#xTLj{+~cj8rvWLPz=WiBtido?m7R!7xfPmyFp8hXR5zl2=$B~a5*^v zzw*p|xbX~T_J3fq59h~tv>gT``0roste26bx+smsf*5=X^)wjo%_cq$PL!+^{NIA# zcZup+vl~|MZ`6^k&7fBumhFkJ6`PHEo6A%rDfj>X-&XvuKuq<`sL(C8S*|XQEw*1G znnc=>^U|!fEtLoPEz`B3Sd7|0qR-HZ0@%BpC=-XMYlCO^0<*L3cvkfsMNO(-2 zHC<-y3s#0KZlp|Mqg09|c_CX1mlaB*p*-Dfn{(G}j{5slyJ>f8eNJ4Bss(jeVk_BV zWh;n_4DMt?f{N909e2_LRxWE=b6o+AVb!0enQbN~EYhpit}jW9X0lqH_I6H@8VlVz zu?qx9c|T@K!*tIom8WaH%L`OUu-R6Yy^XzRGVa)x{bFmYc=b`XRA_OTd8XM;tJ@9N zSlT?ta|3VQs0aq=%xi{JrB}=Ty5)Dd>Dru*g(|)a2^PJcp_iA$GS$tnb3PdU432Lq z;_oj@r17SVlkjB~>+ofj;rBhNXlZg~UABu>NKliN*{qUVZuVkjvPxyv{aRzx%d4BM zIc=G#DUn|Y&HM}m+7Cyo!6_Z>xq84@vz*Bs-T^tWn z12Z!ojmo?+%UQXmw(by)Lua-0WS`&CBO%`yYJia|UVpN*(wjVEx#gvxnSY7d>sMB!Mf&v&Mc`U(PHi^*DzPQ`u|_lEupV4mFjL&iNuWjK>Rf}cTh(lb znzD{CGU|KRA@zE~rcLtr%(rQMnQ!BUOD**E zCjH(xhXjL_p;Jn}rjLW~ij^E(AMoNpF7C^qz0-)sy1!#+t-G6bD%J|@#rnE2a%$T& zPjZE!(WrP5(bMx{HyskJW+h$7Zd+ub*eqsNv$D}!D{S2ZR6Z?Rh2bPSQuJbZNP&o1-y-duDRwU#ZcxpGL*mdftDvh0)D<^2rWu~*AD!Yj>QI_s>;w-5OMVFV#u*md!g}UJt*A2e3)G~%Cq&1@5>?r*#K^C}1 zrzUT>vb^E7N(G;X1k;+k%(fT@_dT;r=BDPV)#Ut94rq4O8L6@-+D&OT7`2>TiJat> zd8)Rp6}e%dmesXkEf?^J#(uWacMCsa4(r+;1arU9Tv@AiYe&%BG~Mh9*=m~NiOiT_(~dHcngx#W zTIOQ3?bWv-!Fj){4a!~5Tl=M^mC8-JMXE?=^?4bW=}}ea7aBcnta{yjRU6v$z*#E2 zPFAi}SMxkg8^IQ4R&Kc?NmsRYND%jD`)sjQ;5IHvZ&M|CCf0^iLM)~P!pPF;8Z+4e zoH6@_Y0b7u@|dF9>;AS+cz9(>`cxX(ADx9s<)qlrf`ewj9go^6jNN~bV}j^FWQqF ziPsAaWA1SNhV69RdcnzxcvYUOh1G1LFZ4wtlXYrJNU(wvqZ-ajzc5WnGzl>W2O7Q+ zQJjcnHKP>EDR@HHv!W~ekqt)AclNy|WT@MEbCXS%>*9+y ztJH`IF7)9^8@|~ze5o%8MxQmj_^U|N>5NqLu^$SQmLnpxTG>C;0sPZ%F7b zsK$Cw+dinPKX+$uDXiQPg%#?i6n)T4L!I$SFD0q}u1(L>%z)$VeuRgX@l*K>DgKD| z5dU5O19t%bMEW%J^!~1jQpA74joxu}G^5cYt<1pzD6~ITN9A38PXy|yxRb+y;Rutj zr|Pb1Rp>&YrE;^(BrTd%i4&VXO?4G3tMAqtSX5VZLCH9^y@1=~b}g)xSc^Mou=nGgQarQOmk{w z=sH8#Ynt9HEK076I-y8HAtKo6b=|2k%-V$|K{;u_EvJD#J6~)ma%B@6vsEuIX{||n z6IaZp2X-ajX|1)4P;c7GBvY`bdvCWgrCzsQBSL~M-5~ktC{RV$MVGdfneFE0MP|F7 zxN5_fyCbSJTa5PjF7GhSl+00+*>bg;45u#D;OD@a5`wpeldOj0(Jb9a!PKr~U##q$ zOO$gf9G>Lh$`-xgpEL?Msi*IF$Wc8V>}#8@8@!B7p04?04oFc8drWK9uBZiqTun%! zkQ$fsoo#vtrupVhFi6{&yYh5VrfY{XG>v!!btM*uj%($Qx?#zqdF+qks?9aUtU8 zxk76#4f%ip|2j%J5%d3@H zjnPNdX|A!a7HeyER9y)~N}dSix;pCYeRaVvhCRGjwir>$yOC~I9_>dXzg?Pml_FjQ z#Rid4M&oQaQKLEfJNpGG8SGLtJjp@!n|+)8MxS@N3e+p=1z&ve;v`i_Z?$lxNNwqf zV7LK$@sXg6e6=#jw+OzR2~PyW>G1NS2fdSKx?Nch@&cs=B5i0sNuYKWj41F&L4?#(1 z_j17S`8T{A)S0~;6w5Fmte1m=uY+Pq1}5S^zpsNKUimr>Sc8YJ12JF6TT|c!U&mXI zebU##kiYpln8<4z+t=}H>#pkSI5Z@NuOpy96V$`kaofI*43U)>nBwvmUk7B7F?=0> z=P-WZzvuDb8BBm)j`v+2JR^YEE)O`tA1;rF%j4nl_?pWjQ)jcCoL>Ke%L6YM4NlZ^ za&DRvr_E?PBg>5nK{nFFvcVP8fGgwcSsSD56BetEr_;PNOXv!Gk9u+m&D&$Nc^iDakk=9YRk-+-PpN(tvIg@)|ElA zvGsXjopaN9J-0VIReDH=1bKrTZFc}=K$^dWZgpp6`aNRew`B`tDvYoWUSV_I&-QbB zmho}PD$UaaN@*eSp2~5%%4}-1`=zEtEb6@LMP8m2kQE!R z?Rh5CW=NY^x1G^8*O!;vO3g9@;LjE$Yjo{egH%e&JUcG4RcTWiNwZ#OTohHl+u66* zvnAsi`;g$AO1IqNz)D$CiB(sdnS!s112MznIz1}WwP`I=+V>?=1!{R~3OQ0<6mz47 zM}s~+nvXeqz-(62u2NxT5OtYhB`4cRb=dI;CnZA6EH~^%qzx6%=-V>A8MHKd$3r3D zrF(4}q({SDf10E8EzfXZU1M#6F=b5UNE=1wo@j=1qiSx^>>Rc9l+cvV}i zo$?WT5!QnL2D2T%)3k!<4_4`>yfg=5 zq3CEDF=qTaWdOFx_#r`~x0YvH#%4SZrdo@ZRZWK+Nt9tT z{qZOxwda+7Lv_u`gzSJ3W2g&R%#6CF$jq2wd*f`aR3tj-9FZP0Q|>mc;`^-Mp708{ zR_2~G?eI&pvQcC}3={{9SHZ5SSR2-S3x=Lot)%>u%v3prtvY2^#(=)fC*9i%Z z`E4_$36e0b95p)mPKBPW;VZ~YelARF_^M>T<5oqQ)z}K3z#ldxxhw%UVGi=5xJjnkA}W zqG(!WV=gVZPT+nS=w!&yJMQIG#4R3vfi=NGp@Lp>N&c#+im^A zuGBLd!R}{Abrxe+0j&&Pr&BY?j9BDrDVV$gv zYr0h{*rum7`<2|Jpc|!;T`g(6!L?iIR8MIDYevo)ib`9`ep8$7b$roU4i_#d7n=6g z#xr;dL|~83RMazuv@cFJ(yF(~9Cfx=*OOoxufmfzob4~!?iZ9G&WH&!s_QufrB*bodqYi@!xs{^@Lg*Ds!d?hZd(ztA-TKTm$~U)&v$sp_`e z9misQnyMe@KTwjvuTKnRB0mm|x=4{y(;k|-;k_UlFIXuI97ilz3Bg?Y^hf!@DB`0# z=#O*55I^Ie-;Ig=ViZ;Q-5KMizA$-f6V)@0t%u75`!x$O+5jK4obe}C^~WuGhjSFf z+HExSYpwjB(svMgHWP1O=|3^Y@e_G~PFM%=1;q(*x~e}vXGkmml|1wmo1~QB(Mv>6 z@lVnC@8(t@s1IZSBM9Lgu=hu0KuF~UljnpBr#=wv$!_SHe$q_+lmPkjE*}CDP)I*; z-cB)CtPBESi)ajdf@d>_RwbRB;`2kBR-4Mpl+JKf#9)w#rfdHigG4W1J0*OWeC8_* z^2%H=7y`#mo(rDDwvfn@_lc!?LZ>*4kIlAtjQT_tdz9JM>xwRL8pmK;i6#gC8rwoI zJNR9)t+Z(RZS2otbHUDHCP9!xm8(bF^9|5^V5Q^5D}OE=S1*7=#07V3k2*NtjoLYxwYVT(wN{zMJ0 zE3v{85CG}(Dq>$r_nR;SynMRf4;kQxHZ)ow!#iN#kYH~a$8zRKn8*ShB>v*1G5$0A zsKWpyy?T#vK$63Vqt)TA)8wyMz$)YKX@&axoP0<43UV)DzJnfe?*!ZZ$Mr5q5-r6m zXFx5U`mQFee4S*sB9qpZPQo_CHZ%qN@iWZkpl6`RYz~v-oSfz>=&xisO;}Fp{x}VC zTfDqu_!A^_AQmIg;4^Vr0Ur#uQN&$XlyZim$me7;U&2sP;fhF#%^--Ox<^Y=ez)*e z^Msf8HGFzuQn35#6obVo%@wwY#+dtok^TTOP+ri5>mmjpL=Th|7UxEc4|0*Y=>0pM z3`+0cfgB%{@6w=7lNfb>wd-gaqhn*dD2zm37d*kFE}zx1g&x35xKDr=a+a+?lHMZ+ zBrzuGs`1y*ZizUZI*iL_*xz+*ZYQz7vnqh-LAwO>pk4RL|5WQ9<0-*CLMjMMI0OGX z>b5|F|D7-tRW)tBpa>U43uUYwtyabOF$64b&pO5*_f+76519?V&qvN4 zOP#nDc6sjs$zoh=B#D55yWq8@oI!nWD)ip~Lf2l#7{CP=gX^LPT@!B-x^{c&T}8FW zDjNGp5YJP1rd0+wjEfsa0GK<;q*Jla3tkhy1YS#)(I5z3yGPJQ#jsSUKi;F^o)j?Z zC@TIYl`lYIOq^bYO#*kKeB}&?VdKv0!W7ZNu!#s_*zVDVS(T}KgmCZ}k3dR`vu~|q zhfR?mWIB7r29bqu1k?5fLAV}b@W1!)5)qNN`5(Jdc_e)pT zQ2qJQvKOD8-xm?Wi;4MyARY?gcjVc7DDi-NLh|fqkDe=_i5+l%e4?OaEnxXwM=t@sZz$DE;4CvC6D z*a*>&s&-sQCHVXcuGrAGcg`>&@jaYWMC2;0>pkG=6Q~PF*5aEEx>CoB#ilvDQ=~hEfw%_re*leRE!@ESanQZ=T zJNDH5lFzfcn(A1U6Ggwirpw4mzAnmHY;QlmI1+#TtIs|kiFbWpdhpRWc)jJ+e_$Yf z+o*p9C(G3`&;74qrp_BWnWEjysy%iBnnK^@ARFe9UA=dZ83B3OpUEv;_q z^;9e-*EDzVl^a#HzVv=BG4D$9yV5-R(|8n;knTwxu?U} ze6`}uB+jWxubh6;v*`qdPs-*DQ!R>o7=WpY?|V+YepHscI5EoRAC-0>&+tmrz3Li z#MNxavg(cX>+7(ti#GsJIiZ(Y)z5k1Wz)GyF;c6ZcFO>G8oD$AU=YNC)QYl)D87EN z@4dtaP@Gj;ubMLY3@VMBGOu#K{@KY>Aou-A_&}GJ?t}w@OQ|Sx$E&IdeHp1mJi(hT zn5X1aSb9(#7X_WKHx-uwdUWvP^Yi{v<59Wy%XI#nF8iuq#5T#uzcczemEVecB!71f)rTDnus&3&gL$a@ue2xLCAD9KW9{`S*e^|c-$D6s^J zU+5GBKb{qN*Se`6O;vBad?{P4T-D3B1NUvo3g4ETK6_g%r^zr+gJhWl^)d&_Wd_)f zs~1*1fA4Ma)$Dwp8ZsYC^VZYz+9;?Sf%&+RkF>hrMLClLix5}zdKSVY(6(*Y36)My*I70cr_QN!JY)W z%a5T|cuR%1GMjt;uI_vy%jwB4`q6UoeT$xU7A0JCbD3ShN7MJi{fF&%SmDK_zcbFj zI}^TGbKXi4+j8Q?u|>`#fOf)|?cMA%KQPH4hB9kz(#To!-&@32`80a-q5taV@&B(1 z0^uoGsb&{BxrWHC!#5B}{7hj*{Y$t6KyQA==AE?4e=6q3zoR_+X}U@@PEN*3ek#4h zs-xDM=BibGT&wlUI&wa&Gxu+rB>7~8s%V@;j#*#-gHv5{saryPNv936V(P$>1 zxAe4aH5LxW=m-SU&VJ2I|MmH}3GP}uJ0#Pee-e`JdfvHm7S^_SJZJ{NDGbB^-~ZFo zzfj=K>HMuJ8aScRL4sc-@CdTGuwi1om*nfF$Mj9u-mpEq0gnfBmyZBJW)0OjeatJH zU4Y*k?Jna7dI1D0?1D!n*49+QL1M>n+itIjl28aqQR0;3yTWbgk7*el{mZyAj+v=m z2)gliTg#PjWi2W_MHd{9a|_@;(aXFH&v3%8qa=0q@WI{HHx}zTo+{WzA1(}o*%5AQ zXf@;_5>TcF4wGAu#{iRD_MAxat#wS2LKeWIvA>_YY{a-S$b?$d`+cSPYiX+!T*@5{ z*6KUraL-7BB(7C@P$&;RrK-p5(B^(=_1YwEZFCE$9WX3_Vs-W$`3~M!CWoiwH2fR@ zbPD~suxJ!G3IH?G=X;nBj=7OwU+Zis=qx<*{! z`!eape8L~?_5|iRy0+PH-1MkVZ4RytV}ep$!h6DY8!Rd1J7q`LxHtFF{jvbU@Fmhq z3yv>J10_(caR><5YKnB-We4^U8Q3UByV`WBz-~arGq4Ww8gT$KeYZX#H$10&PaDe| ziXKunX$a-hl}1{SMXs2(0bIaUY*@TtO{Ci428innb?zGj@Jgg`+K&CwI4^+H%#edM z4LQMdOjP)Je#|GYf;h^sG1%aty$l#?n?rn3k_H}Wtv&d;+Os4CY>zf7C;2w8bCA^* zKqimmEKMadVWsQV0}H>WLhKOlK|<5;J4Y(Pb!_D{wpzO=AymA+C#S<0b;zJUBBHR67Oz|7ocu*o((b-m`sO}X=z zw5tJDT~Pq&m;9w3FVZFVPR?cp(kK2{ogQj)gL(MI2?H%iJA8AG^F6%J6t2A2+bfib z2QOfnKHil?c@1v(1zcAiM8p_)(T#H}fT+!pq#f`iJa`LWE`c6;QPXxnhIMVEw*jdA z0`{|OrAQgMO$TOoQT3#k!d%#I(EYVkLbAOkjI^)oWKc{{#JbZSbHH!`JZB>T5u0sq zB9gI-ig@@D!zRP zY6zt}pqm z{ymAfyuDu}&vv_g-%)i*Dd%j1?@(~a7eL^=3$|=@K>G8&A4x;K&>kUFv|bYhDRyiB z#wBH&@g2kZsd!{7{5Y$I;t zq$hasX6r%KjF!_FmM2gdxEwMjrQq18Hy8bw@ao~roI<7rR~^VY$Uba3_~8Ql6_xic zG3f)@Bdw1qtyr7)K)oG3&N_|^bLeps;gXA>B3|om@j#1@Fq~Bxood@ES~aD>spSE{ zg9Y$%s7mo@ILhsyO=cl6b8irHH^gprL~8iT?QaRe)>H5_B#3;%vq)3nRN$(FxgA!G zH8d)W(E~Y|_htbk>izk0R>)ET{DwRe&~QmEFxD2eG2Yjq4$uH66H~JWUhxnr+CYa= zV{p+QN>AlMGH?r7qE9ZS-j54l>j%sS29u#9ke-ac}9ooX~S-=Qo=-qic?Xvo0`Dt$H#OHv`+`G?B{`0N;RQDFO`vh=4r_7%F0eWa% z7#ptVOXF>zY8qFbd9-92K#eA6fZgJIrtQ~X7m(L;U|P-b^HTu&{(kGZ5R`Zqg1!wN z-&po^SJ2enFLhqLLC{~GV$(TZd>fcT$S-YFMRt@#_3&mXCf*W)&Nl=Z;6S#I6F9*S}{>f16g55U&=?NC%0v=N*_QF;&_Di2OmWu=u? zqM+NYZV@pTvUId#2>Mu~h`CSJ&d}O$v1`!np3Bvd0y3y?sdgXpQ`D_;Zg)OeL9~S* zf!-~5Hc08J{Q=C6PGE{8V07E{de8N%oo(+RlCv;zzfG}hTJ#9iWMCKRntVs?BU*(ey=JeOvN`Fk z%~9Gh+lSmXyN%V*M9kULRB!<-(E~)@{3#4=#S+c-aaQuFi1lMwT8CONeME{2e*}h2 zjvZG5frRnB8AA6~A_p>slN(4??W|-f06a9bVoW@obw_p!pqYSsyE!R*ipLHU`e*bqmKF}j zEZ*NYiF68Tx%3R(@F8|EGa)=nw$6?sbh4$Ja>nG*(c9Ligy#H+Z39&hcaj@u1{N}_ z>mb3%D2z2P;~fb(*r*kFimQ~a_za@fs>!p?c+zTy+Mxzq7O=3VQFNz_=s>=mtSaM)7*k=#81*NX0kXI!{+C%@m|_tKbdlrKTRZlwf2P~=$< z%XLxOEaGPCaz%+9>a-QN(K_SKrgFZZm!Zh((8@|vlo8Ax9x+8K9a~TctaUxW zo>(UoJcUyBbf-uLy2axE`ub;xLSQUSAO2-I^=e)sdh#A`SBu)mf|ym7d6&oY z;@P}D^W>5K|NrYC@M*0i$({IdYFR~jEX^C@;n*! z=RQ8fekuL=&!b@e7z_Rt#&DgvA2Ehsry!Si|Ndy2^DC{({cmX8V~P52e}1Kk(q>-9 z%d?+90{%|*|079Y2>z$4|Ce%Zf1mpQATIVp3i8Krv5)8DKAlnz@qJ+={`z#d7cTaP zaIv%Cp5bDbY4sOyvFN85AdaIzocWlG zMPIns7cTaNi~Uz|v76p;lRw185|ZmNO2vR@XG5Fp0=Qc<4z=!eXe%B?u8CzoYxlSo z!^nmelC2xA{kj1-3Er(dzh0OZGGRMdfc2uK+mW~kQcy=k;`;_ze4Lg zrr4lrPc;RU$4Wnro2I4*-k`fk7JK_3TKkP3NwP$)8FQpzc&(-TG&i^V1Y-orrmY1q zhn!&(tOO9hnK4spXFigfRcju3C-jSpNMu-?9?bo)Jw*1AAh&*x0O6`mqH!Nw(+K0i zD?#s0C#g3cOLVGcSQY4Okt#>f^G!h_c=C z4wKR79Yh;91D>wI9EIjNvm}EC);FXIw0XtNhovSXX^m>??D9aIp*}J#n#as~v{RXIw1w zEEii)%1tl*jdQdgQU>aHT#Nda=t>CfSCSCZs(S-zaYaGi8f8^19AKc2F58=$C9Du2 z$g#cj7eoOR7a<1f=$(MFK=x7lpr18fIQqufr6a>NOSKG zT&11-Vh858sg~9A%$hzX))8FEWm3Q6V%wRE4OZMu9XVU|^zy3HK&$O*zN^Ua0a%^% zXyBI^5I<@Ik$3jET0)?SFHe>f2} ztMD^K6g6M%BO(eW(8;EN-%3P5@VsF8WhM&$l!kAR}LPWg~QGbw#GA>(m>&(Z#Jt@$Xzd0#zdvX4 zHYlD%&8=PUvN`kKVJxL%MA4jkQ>=4lj?5YC@~cCZ*>22(v}irK=wJauk+qD~@#9%> z?Nm`+;O~5>jYX^22?@}6V+HI-=Xz36Z5K~UzQ4)uh$wyVZ^cCyMdF5}1J-Qf?@0!Yk_x%eSv8bYp^cV1w5+W zok3Z)rsQ*Ai+ixp$e0$78R0L0*PE}b&byT#;>XpkD_h7ea_Ux8`=-J2W0IY{Cn5^l zk&2CcIVn(i7zeV+b#p*uO2!Q(j5K0J#xbjo)EJU&uu@2++y#PRU-Q3m9s{`82`}dhTbU%5u`#-^rb|S?xQ~ z)o+&rg~*X|rbc1RM2G^6CT$tq8^M5lFk7MvogpU9@e9X}h7aOtiq%{7ys%K6@xhAJ zCo85K*gkJ$Ygv!!<`vU-OM}m@=O{OjmphQwLT|+a@cPag1d{KXcusbf~!)enoeoAAX+x|V`*?8XiRXuGvECv( zSn_cm)m$Hx)>@G(K-Izb-I3wYhCC7Q#vAg13wc>POsZV<{*#pH57@uY7uTMRB0k?3 zTZ5?wRpxF^jmuMpcV-d?0^c$*pEF$CjoSKvIqxJhL9?ubf4nV#@+@+m8m?wP$^*81 zJ_{%wf?E)F^KLw=6Fo0rJ_k5IgYe)l6D6hAHmrQPmCxwjXMl5I2(;%((P>;6ZRXmh zQJRS;btdw-!%UM++i#Fi#P^Xbe<7j%*OO3p;=14d&V)eKBE<(F zujnmf0~|R;9C&m!OXF~6k1(6Hqpr0AJaD)U?MHhjx08c~+}!1E3bzL?o-L2bF)AGE zl!WJX&;{!S&@r#jV5e+J0;lOVYE6=XC6UeKnlAe!Z#}T@blX~y1z-nGzYYjSGz=m1 zMM%O+mgVe}Dba>??Tz{r*HT$*++379Gx}hz4c*e2xZ1ISZc;pUbh+NUUDQD$O#%>1 zByse8-@+LVUWuE4pYag_aeB2WNC0@mWG!&Dq(0gqE2bC2j%n1a?_5iar7aV#VLO1?BkU;1+AvS} zHmXx^7fYey?lk4%%7dgB<`#KKS?c563V@2!rrvU9(3HyAbG4_Ws2$VZc`4C5EYi#tHL8`b=U5+;r8kHR z;3)Xm<^p9TW^wKiTinKF;+5-}&WJ!MyylYQ*x@^od*o)T#&o!pWaT@RRFyX&IpScUlpC&DV|%h*0&Thr`4>t=Qe1maN}%j#5vv*G2BUp zLGcc6#ydQP&G?uW;0`w7NA@F-P4g7Vubw;#=?X{&GKH)=z1oTBu8@^AF9?P0>`#FM zxHtu}r|oUaC#`zjGc0|zdFo{DQ{TAx6#HP1ZddcT4$$l79^ME}sx>IpyOA3On@0~6 zN!(bOIM$VS7!stkF*T0-y4nbsvDpbYR!WoctT=g+j6|dhAnr8X{(zhl0BJ}cDr0Qh z*Q2lFVPX_)whFzqaHiOBEm@pOD7*X32(*>l@*Wjt)m;hD!x3DY4L~SQGv$er`%=nH zohxYE&Wtq|ewuRg;WkGW55@l7DL2o1y$`pCl-b{#a`U`pe+F>YwWmikbg?~bsM}W( zgFe%}&jFWn)l3EbMjp=uOmpL00)zQUfVX)(U*g%9DDQ=5f8p6*c=mrP&km}0G5l_x zy)dpnl4q~B7`BE^#Z~Mspd&LLRgCeZ92lmr5C$7W8fMKrSJ{<*KY*sO-XIQV_R5-o z9qaL~0*;Wy!X&y)!=`biF|Xw8rHjAcO(ibbfF`DP*;$N(qIpkx!{$J|cn& zmQY62AXAA`@CrO`*!&d?oo=+HulRo<&t7wQG^sZI!n6OWJUjQ#`xQuTUfzF6_?$=L z(*GSq)N^0^Mj{G_ zJ|m*0LyMApFA?=&>;6_E>Zu{$PDK4T00030|LlEfZsW+(;8g?%R!$!LVjFx^M(vd%Wm*KDw3y&u=QW`SoA0X72dq zu2e0S@8GRx8@k-k4Flb{Tah>1Tqqa-H2THxpH*{Q&#wudhU>}T>ai8z&(ZN7JZI#7 z{TI9vZ8;jbxuYvMU+%m^Ah^n1&S+a6YTEJ1qs*$-&Dn zcfNA+2liAG90gSnLeN>79(c{xCGZ?vHUz^E1!)hu|KR8n7=RGKumdM|q?iZ6 zk~G_G%U~4wI#X-#^}C!7?wY6uQvw~g0rlXc-%pVKzk3u(m+o?&9~sJ*yQ41q+5=Ut z-d7#}H%-yEn*VTLEP@-;vp+kwr~A5XeFjMMvu*i;@!3@j!Pi6OLDB^Gd96@!eO0~@F*ZLgS_@Dpd#Qs(#chXU9FFW&6dCYE& z(z;7dN#1TXx&7?a?QNQ;;;gBKyW)^;lGDj@V4sO{#R{rN>9lY3n}coX5R4DK(u73- zNw2sr>25Lft459L9JyNiIP7=2EvIETZmHT;<<>4bO-)yys_S!pKDCykb(sy+L0gc! zrGCBBKUG<$M%Xn3aA?e2+tpUI(WvW&DGlj~Jn(mX@lvxq+eC&g*j5V0TUe7;mlu_ccH%9RtH3c0Cv2UBJ~dBA-}AZ%nBfX zjUbMF_Vr+~3^8pH6dbJ17!FnsK3^3&hS=(dJ*#6NfMRR7-}f7b2YX^frHj9SaJ5)t|vp+3| z`eBU#()3!NxdOdk_XEnH{Bf;765_}#9FOY(d7>&?ktwqB7!*0h9pN=NdPX+J#VeW$x^yEqK=HH{kk!g_~CA+@t4_NKV3aRAj_uv|sd%fIhS1aH86y z6JMdqZCO0kJ&s&SO?Js6fP*?GRqLl2)$U9?wP4>MppGKStuw)? z=T7?EgzekrNiv!7^6cyxT|b7C{>mG3fkt*T=g`^JI?80iAI?n#u+&-hPu@uDb#2OF z*JJ~XTG_Qvq_J#U^pX!w)y>A9@A`+v+C2IMKg!DlskoiBe_nUjwzBY=d6Hc;rrrWi zn}Djh8)LU&3B#ngMKo`Smbm9AYPt7H=Y2bzvW0cjTvRD zb;zHHp?PM*j%Fc%Lf2{KySt*u1eHl|)nUk>yvoZ~k?uE*S-w8oaJ%(rHt$D=;m)c_ zt#)O#C-#H7M@$B;FVDD;SJsW0vKqD#z($qG%hQuCZTeATuwKnIf4*iddzZr8-Lu&nJN*w{&^JxfM;(o@QlNZ1v(>{xd@+7^4{@Jw1;jv55J za%J5dcF&#aOj~!VWGCt`<@4xlsY;$W%%&?s9&So=6#?wl52Zs%lkM)f#_uGR6auTb zYRh527?u<}gv*d1DmAvj_1NQh&a!KkhY$HW+o;?1Mb(CPHFg}Y<=PS4HYbr3Rrg{+ z4kU9yBWYHTM&o%{8*_Z4%=C!$#Ny0qp+5JU>)F(3j3z5?p>ZLZKa#vu7;3?h#v(w? zSM8HrZm#sosThVuDeU;m!*;ZrDm7tx=D5kJv@Fz&b!${mLb+Yqj`vfVwmge9$8Ar~ z2X3o2awkM-ivX@Cp4*wurT%U*K2vUOs6+SS{(%x;QNxPSuLW zBid}$Du-5c=dUS4QvGORFwH_k!lNt?SL;>3;`RwOsI1CVv^LgsF?9U-`B2wp1WVL< zWzejs(N_vpy-7{naa*j1QK+b+`o2%Br_+6X6^O+>0@y1s*Mf;-b&>^4vB|Pf8nGJN z6KcawFAr~+ah+wkKD>PWYxr0$10g|fmPK+!O^Q-;ab8U!Gd+!`$2#8|v(H9#I3hKo zx`sD%II27x(5oK;2>yn!@LC*-t-(!zbj#>&T5WL4&j9CVYp4^i0S2&luUY=>R=%8j zXxhC12+R6Va$}&AP^OE~X0;BKCglOTHaOf8K)^9ufdB?b_JH4)F9^sT)Jr|6KF9he z(sF?YO5M~z%a0o9MR|M>M6f9ceC0Rab{-1MZ&)=&`r<_~r3$}=x~Ge}q5IJTx-=A| zg2Mg4X9V#9Zwh`3KSP!NGggov0L<5FXo37h(Pg9}zoUxQL`D^RWk`Vb{M)K%D;l3k zpo+3l3lXMFf~ArlyMobY+U=Q8-q$pq)dyUeo%&2+IW+206pFMn2$=S;W{=KQ!lF)L zH5~36KDs7jY3Nb&n>-9lUFeV~d<+$#GjE;jH zZ#I-tp|Pt?cSemF7fCB*n4@D9T4Poshg`Ld0WMZccc;j8t9>8~HcyuiJD|&&&Z$5J z7J1ZXr9BJzaS|1nQ>zDQtJZ7FWo>VAGd1!$TA^$TYr#^D z-h!g-2|GFNiVbcm)Q1ja(rYhoH(gyA6-tvs4*_gT2Xo(ZIf0ppQ@b?X@JHX!j;q>0 zm^US76wrB>X-*Z-CI)oADThIMR4av@yt!GO$jDi_a#b0xCkM8G=OH5!^nntOL#_;Z zZZO<%R^g6UVt?HB+3#Q;@OQ;}FF#Hk)73z3E&{nxohvKOkSOxPf?tca7YiT;2v@=L zU+V}~N23~TmZx(sDx$wP0oEDQ8|_-~rocY75bpe*|F~oOw&DUvz>T3i1ivGYHa!Vk z)XEq>8w-jYv?P7GGd~%z;pvldms54aP=JU~pdhx|I6JyRV~m()5P)x73H9X zD3%@C_*FP6=E8YQ^JDCQ0 z4eBVa;wf&Z+aO!IO0T%N+~UCFA8(p>FbFJTu;)1RR!ZrN?VZTod929h8$GA$=ejAXHlt8Cg~y?4_KhcIvTn7aRXv=9>8#dCgr5qMF_UbU<(~VUta}FC{RUJ70IvT zilBehA`O-W9M-!WSXvYf9X%pk<%Meeifn^Lg=_>&iN4EOf~h>Yt1#no9;87STM!y9 zr~s+;=s81AdO(fyAfvRr2e50`eBXH>2v5=!Q}FI>N3lQ|m>H(vgIjk?#I!RFf+ool zVG6p1$KritX;EB(f*!zJ;OehHnY!fKo~`=#l5G;Us)Ercj(`mTI24Jl9M_f<5Aria zDKtK@ixFO+9yn7pLm@tJi3o%{_`Dq6qZ+vKNp+DM7odf{VDiZeEWioy_UH=_k~X~Y zlBCt&dyTlDL=Agv$fNHRUV!F4PLaaX6uDTG3V4#BdhqS|4*Q7T=uv?wSKjFqG6P+= z?zxZq;tU3~l`mHU^oHXepRCKJ3swVM2L@UMK3W7WS^*-){^&)=m(X>7X$X8~+Mxm+ z??UXFzoIO0U5efFmss!2idA|2J~rv%ASmo=f8o zIPi&1Fe$TAqt)0o*xeKx=vu8wpQI){d6<+tJZ<%eaNlsfVZA;&jLUqRmYAsMw_LM0 zGNzLjD~j{(p}9M5*r_dQ!)bADRflRocmW1j4}$g7vF1~KMot!5DFEwASS-b5`$XBx z`C;2+#~YxKcY2fK*_%u@t-aPY*DZRhH%|Lg?KC+C?R9m!t}UJTnF$6B9Ub?9?%&6N)Jvb)E| zc41OI98bp`7wuH7>vU_rdpNT+toED07bm{lgQ zYHQWnN#oF@XD4iVo}UXm2gtk3kB!5gR902DI^0#t*12mFe8by1N8XMqRXg9?^L=$t zS#67}c{EnqB|0xr5vA3JeDT~h$zcTn%#Va{eQNg1;#Bi`r7?ZrqHadO+EcgwrV?0_^Ley(%@a0d7u~Qj>k7S%G~$BOba1kR zZ6p>~jc{0#7lFoBS6;r!$?d91j!S2|UdubRZM$0_eTDP(<*8AN#;nm*{VH~x4l3uO zR4C?KPOmiL17eXkcl6NM$_x2?^n1g_VIPEQL^{>}rn4c(WKTVfhqamA-3s+adl#Cg zVb>rUL{q@dXTGL(1j96|rR6-_+P%D59J0H8q%uUUNQ5lkC8SzIFRaClO*A@ncO%co zQiT?6ai^8VRcY)G{mSOl@n?Cw^k(eX=ip7??1cjI0T<*vdh2%REY8;Hr_G(A^Mn2ri zt74BTRJeEe<9xcEtY~D$MsCv4qxJrln`G9ma?{Fyt+!X6Z=>|iEi+FTQN^T$1DhXon1R#l*Bh;tBTB=? zRwCpQ5RnItpY%jQi6nl*>QS#$@}z#=ZxIJhLjaqRXLKgVXway&=;lJu%577lTjr4N zooa5e(5wUbC9bPGqZceKTJ5leu$D%VEeS(vw_Kd^g-&y|6{W>_fW>H0)}(XfovZos zNex#WeX$eGyh+W5_Ovmo)GGZjJOJT3Kb2LwEiRfqt9etRTP;>9)A6~gb-Lq;QVh*; zhybdPs3U^FF22{^Yv1lO`w%(#HR!#rzwohNeo(W(Lh6=!anm<*Tk2i^@F??eYP@hP zQa1tK6Fcu~lc4R*KjggEMCiOtt=cY}ZF?r@Lb{s%y?iJ9$s4vOJqa)m~M`s(h_c zr!{#zu=J6%2;0tdE>72;aXK!!fhn{q!HA}KyJ+sU!ZISrmb#J&&JIr{AlR* zE-bGyH)};e-!o0aTy|~%pWsGe&+a9gojmGmO=6{{FXTAC}+{6{~kAh7Q0pNe#D-m=N<#aFSxH_Pg zoU_2F-{)q4EWYl82?2^!+c4}SC=(+@FSrumbokG||BF+$x@Ex|Tg~YfQ0N6ChtzpU zVM#EgnA+Zd{{7#da-sqN<&I#309m$zpn*1mN$EiVXn-6=((wRYy$;&o<~&6>0;cTZ z=1Df-43_WWa;U_Ag3q8C8Z_0nbEa(waKG>gq1x(z*W>~?lQ5n@#QnHU8PvP!V@GWB zvRwiFxX%Io{Qcg3LO86z6ahNWGtd^r1Ft;Q26P3*iVIEVMs%wYZv<$R(hRr)_DDun z$b361OqZd~3ZJM*Lf|P`p`)@wwBKfhDN#^c0B%5$zbZ_KWn_g+_Yz=2UgeKs5A#zdhZvwoHT+%)R zjaPa@!FZ0)6oBfh3Dy?03Mk&F!bR_ZH^L!M>;R~Gn&1IVAMCtymJPIIxMeh=9MTOg zZy|9CK?_i+@_;TFfF9oG24K?z>InX;in8v3zJ@^evQN=gfha*O$F=1^0&Ng-hP};! zO$<_+Uf~bs7O)wY!i(QdUPom_W7)evoLfr9pYSF0_!v`k#$tJL1>xvR7<{L*_bFm!Osi6g^+C zB;`{M?3+Anc>|hj7%PZKN&S=qDh8GmLmaWQOh+ zupyXbN>YAEgRMq}Ge$8K$w&6~%utGgff!)LL{i$14CvTJV@ z>k~F}pl7koK@&nHCm6;nTSDx*GHqEg?wEGyGbbxeqPuGw0nVj^eZ~!n z2|I^=u_VKoBJnt}6ikKd$>xz6O2A4difo@ULnzq+(E6c^^=~wD*WHmo$)vf;?fHy!gxXtqm*>;sXO=?t$)Z1brwp#b6gtgy8+VvX@D*UA&D z^!Xcgzuktf3-cKa;yvB8_EU7zSRJL&>21l>(P9w=XC5DR(gllX`}k;@m%1nHtEm8` zD!Yh-MEm(vsBn~9lI?sdbhpFte<-H+(>vl^pC6FkF&*~iv-WWC`*c+2+x6+o)$%&i z!~dE@Jf#zc@y;XxK9pzmQGD?RD68%zTOg@=_T*#8s&kj~m9oN@C?f5zvJJu$5^jQ9 z@1VRS{akQj)6nty$jk3D%;w){#xFP*O80VS#kJx79i=c?2&v#BYXO7;V`X8??^C!4 zjDVG21XFmw{+0t$N^y@mv@^XjKRj6xa)Ouph5YsYS*wWmM0k8`>rXN-6&_{yN9{{- z(&o3rWgEH$GqOJ2$`!*|VUYef>kQ!2rPxN~y?Trzz`+Qb0HG@w9uA2{RvQOK)w(+1 z8wqB7svx_BCfDrNaVk_uYtIUq0A@ynEp5=un;F{dA~7*{$gE>mw#!60kg2eWnPEbS z773803ME7aUrQ0PT;(|>nZGm*xaR+d25bT}{ zQ;JX=G8TB24WwWIgkWHP7L}W96KJ(?_%4Dn$w;RQ^-acFQ>H*jMj$8SuBi|v&r(iF z%y^J9LzpmfHywMm6Ghc!K2uU{ViTEN(xFPI8>S58zvye3p@e$jeP-BL!%MO`PrU-N z8#*XBGDBtx(jM&kj=HbperYJvUlU+X<oJLyh4NG^3!;>!wCGMSTZnI%nv{wtkBV`X-r&xa&;s`FG58gx?Og5iN# z;fjsGiI#P$p@aLs=`WvYu*Gc0$46Y9(}hZN|4Rp(Qm|WwyUgh?rClGaIBCLP314G7nAGgkr5MJ-zVH2(;KCFhMV=fk3Pxjikf!{ytJn^38 zyphUs{_P_m-?4{(=p4sahcY5Z%Q5K*i*fSF2ToYTNh|U3is?mGNubrgzxQ z8{mJKR)3Rhc>ZCsJ-Yi#6~yXp5~gwqKTbjz|0^7dXCv`L2$8~``Tb3YQ|7PJS~$0V z;w1YJu9v93qP6*a-|{Zgf&kIXeuHCSu?~1EpD)0lr-{W|l!3>Gma-8!t`{?Ds zfABzpN3r|TxD7@3B^&~lxhCiVSmVeiF2t3fCHrVU3iTv0HmNLK+sN?}8ADTHOJ+() zi3(=m>dB(-$Pc=!&CfBOUv4mY5`+yq(?#E87-SBGNa zBi)q~cwL8?Eb-~wu^#Z+HAB3oYQYoke_}r6bwcHj*0gwNN^$%E#knOI*$gvc(xEyg zF;u2Pg$@+SEJp=L<7b5}36n{8OpYS#6FH~So%i+rHus0(a+0Yf>H3xMp!1X`@nqJm zgz5W#6(;oor)9eQwxrw9bi5;xl9vkAFSZMV;Nm?g4zHGFm?=N?73VXKg@>vFW-~CB zO;ex^KhEpdZ-b3p0GAUPpdCVq?Rt7(#%E8V@VzU)1dhso>2ioe?_ank9K-feLVsKR zgkt^Upu#Kt=Ti=k8f>!xv>>d`80Z9U>#5JMF_-RN+Up@b$xwX7h+@Slh6M;J>5dN5 zVZGnr2XS;maACl^u3n+LIa6RZa%_M}-U!&|8%?;+u`&v+7eHIAt?}r7fuZxz2n31z zi(`B6qmNO}RD1#2b`0g$XO7FYLXYfh3J8g=#Miz(9!xLIyqee z^ACNFXsbZ`Bo4d9$Mx$M0Qdt{7qE#)$W&2U%a6=g{0>55nmrD?kaJql%36*+uGfnY zJf@4e|M!3SPdPC_9}Vy@i+((9HvXm?dRIdJRzNx1)Ddq?AVX3)tzjTtlATbxsEy3N zQxwxSvz}$BJ|#L7?k{o#0h1M?47IZir$l_}^xtn@BryZ0LbTr!z03?k83w;*$8nM1 z(i0svnwH~c7ytL6lP>-`+ym<&VWuAsfvRFwxDtKwD;1`|OQyS}LN?3rsHH@P<#Y!v zB{vWKbEeEqbP4Ufsc^-6xCH1v#h+6ihp?d}v|7AL{!h7DCuwNTPZa`6&kwItt7K zR*dM^`y?$yA=vnXfAEXLHvA$VC__lm_luF?&(BGM1^3-}Lr=oy+~pB$^XYYG zy_^|%{#9i3#gc)|R-nFX2U`u`PBL)|g&#I?zjv}GgqwcKp!0$8H}m35YWPHi0~DLq zo~&)yT9kx>%#S<2YEox;bbi&W-XGN`>})=%|5SQjlg?0lY#6?_HO1e)R9)MQjZVW{PtKQXF{)t4gUuw@)sO<>rGcsy=~M57~@Uxh@+C*R!)iAI6F&qw;rM!Y_Ba0X4a z@9^tyfO^f)Qyhw)y!90Qo>)uV_Kzj?+#W~7HD8S*N}0Poj&WMTcXi;J2JLTrQtBNl z{FweHZZTw|Kc>McG7u9r_}ycg{(Jx%_Wye9%+c-D_h>Pi@h z|9x`cczsaavyf=mx65DDdC`df#KaJdWe(+fA$&XVE)vd{ffyAiYmJ*W+b)BX!+nvW668`^k7Y{IM+bzPz6>m;|_{JaS z6Gw`|2w>d0f`bm-y|oB%0wMBf)8u2gBzBCWZ<^y5uQjOR^G`}Vt&YbO!WVkeHEVgR zHe?yI_N@0@JAU!*3*LiMq~3*@ocF!gz;9>ey=vmCvo8POCertxKhHiC%^&N^nYC0_ z9GLu=?C|=`>6s`8;}0R>3mlhZ*mv6e6w&hxE`h`pd?Ljx4ORbM{s}W?6Z6l^ zk}^}N{79+m9*4J2T?0|_H-ERULEVMqUB`#1;^}QnX8Y<(4ad;)2IZqA?JxIG>iYvf z6s67m1$fB(LN6(YALZKlJ~_N@-u(NQ!wqC{NCqH=b7e{V0v9-SQBf2=O4adgq9|N9 z6bP^)pp)!|VW$>?58Fp`Q;-NJc(wdWysjF(u z?UAXQI60rL#`;84Hj6=iFE{7z;`+k(#`VuNugA=e4vWI)^R3H<;WGEl-chN}uQDS! zz#MgSma$Wqi&tJ=Qu*%=ArSt_2*L55RVQD~=el|R??$iN>~$~MwRaay7XIzg zp(Djl2*-W0aPt!G@)s(lM))sZeZ52POyRz}5Vdgo5cM}p>PI<4&+1tLy|;+35NCdQ zn5~PMtuM^4{k_?w&M{gC3fsT(;$R)fP4kA^FR-oOaMh{d7dm3k;+!+}@!q1~0($!> z_)UTny-vRUccINT4+6?>L}DX|H=E`hGt0R(Z^y6By_a~-yS!WHDC|iw_$#h+7tq_s z;Ga7oS=x>z8NLoIZQta1+pH*`%3JC%E1~LLN#%dS!+HRpM;*X=>qYOUttP)Yo1epa zH{tO3A$vc#vd;*>KgkxOy=rz|(0=nIrvA1rpDWQx3KO1owAN;O|EtrrHcn-7-qjaQ zRJ%iPgw_c=I_7=j@t)!>&d{6#2@(irKJluVfJ{>pc8CP z-}>>2Zeq=1$=$gIM`+nqA)nK&rnf8GX8sVyk>914mbUDeve(~!H4p8j|dK0PKW_{|wT zYIWVsxl`1MrykeSpHHwZ%c88BzOnFM&(-ct8aulrs^8A$n?k-YACA+$UUDvsU3Ia^ zNp>9j-u;DFbPqSFa{q?eY2sskjuDPqY%u(S1ZtxB=AeKx1@Nk?D^3%@?_FMj6R)HG zM+)HaUHUTyPA=J}Cjs!+?bF*M@E7dU1D%H*vtQxX!I!u-{*Jzz!{aAQ-P|SB;i|ja zPE&{P-QIRRb-<5Nhg;|SOVr_*GlXux8h5AITv5JGkpj4bIfz ztL_mzO^3fZ`QOdmlp|#23npHDlOyj;`M5t!5xYI6co9+fLf_@<{3ZMD{vZLe*0Mc z#kKR1x%e#J9+`_{MYum0BR;+Jwz~QGuI*%DG30#DuI)3Sx8vuLzg^~H0lz=!1;4)p zgg2GLe`)4oA>J-@XQFs}*yA)2I?zjxG{x_F_5Nb>`0Zo!pV>S-o7q^kkKQ1%#G$0C zm$izIG{wg;anXdU0)BsR1%7+D;`dXTN1EcRYR&xtMfh(36g_eh@9Ee3i_hcV8=t@4 zy4*)j;+yT7c;qDhit-cp7w9McDS`gueWt4=AQp)G3knne@}Te|0rACz`~D)$#P=@p zzrCbhCjl{We}P-#_JP~q*=$`q0WtjHBdPE~9lO7nHF5ix^=Z0spr0NYgm1nk_IJ!6 zOx$01ocL`sggr6l=%Ll^~7(R`Rb7q^F(G(h*t$y$cahZAKtKK^!HPi zM^4O(?2UTl#5|F?e|t_$^8WCZIF0_p*c~AemsN>JPR#Szd*s9fI(&a{ANgIWtR6Wr z56?p$IWaH6-6JRFWu)3C+42szCQq-{6{B@JHAUVo)eQi z3Ghv-eXTzIM<)%v0n8zQ8%2qI&U)%;cEaEo~n(hpEEf`0GD^z$w*M`{Dy8Wyf?p zSS9$`3EPg^XQFp|xbnG&H)mtUD8h@gF`o}|y@)_wC^IMg^YJ0h)OC@N&raOM<4nJs z1|{fNNcJ`8>(p`aZ?-2K$H}#m(`KtN8ER+qUN&;@7yEjG@daz}qN$G%{Ka z>h}H@mloG!jLR8yhM1QIoQh-g@T}sbW2WY(m81g)-UB|?4A2p6S%*&e-;(3ZEYX{h zbnMgWh95ZI3b_40-ZCM@y%{_2TSlM*F9>ga(@!?~?$~%y`(yl=vzqxh%X(H(t_dbZ z{~iINjF5tmmzf#?JyoWVQL6PuNfi4CqNj04?MP*a}@BilhNI{=q3+|>2KV{e{b-pl6 zL-LG;l?shOPbFULA1P@Or2K`nnINc2@)T6cRplTRIH{di_$$Rq&QgsF+$%O8G|P)g z+#k=>AYYJA%YiisV5lYK>Y}gydfN^zB)&In@zI)6(9pLCTO1#>z+qBD9T!YHuPjd$2K&NepED=T>;*6l%~5Gr@ob{663$zA5w*7yYx*?hE5w;`U+0 ztAde_T;Jkm*Lo_^hPY-+(KDQdpK@a-2-a7G{-kPZKh?-JMO%dI{d!x#$3EqGtM@lg zV(M>&=~GwH2Of75w%FT(;?4k-SG~5XsUAG>3%r$pu;kA@GpM!bNRQ zn&SlUK7Ke^1e=?!%j2h#wg4<=b{J+-sGNmQ|NIfr%Pi-(HXx@_PYNFt~l{HBTa(!8V0KFj#9-t1}Q+$dc`^`61;6nP) zcG~`v_~#Ej2;3(G@nv1LME{rLsy28A=5&@AfLm{ZY?|CM5im!i5lb}eq_++ic5V?b zNb$hOPAxp+1X8Xc!>Kl)2Ckmm9b4e)Y-;whX~?k7@CG!+HG6hj1S}9X{=4!e({KgD zG-0#BYhVObOH#LXkO6WF=EgxhR)QfF(iETkz*E5}2ro78+cuD5Nc_cvxS(g+@Xn9b zT6~H$&w_s)O-n_wpszN9E<(LIs5Hp)&s{JW7gWbe!3)4G;34jNaar{@+-zUju#+$l zUxI(}8!rUq<$WThiJge;%g%g!VeGr~j)&*5ZyPhgvb)g_uASMf`#8MRBhHSu+uxR@ zHj835rqdG~=v)CG#g`4BF{}rCpm>C0ZGU%v(EdJK?yY;%fl(FkG8FGj77jg6iGaU~ zQN~2KU*uz+w?9ZYJdI81lfmKxM{uiYzur1>`zsaq#M??`H>>IPRce!Y^TbLWTrl}% z%K+Wf_#m+)?x~CZF0=`wm;2o26IgvS0l3E2*$cJYClj?ZDt(RZ%onQk;R)mKS!Wn0 z|JO-(f(!iX`ugDEwGWm4ZR#8zS|#**YIF?o9g3U&p4E1iZ;n3wSIGCjQK!GOV)^$J za!<6u+#jdls(}mzmm>UnRVZ?3?)gyy08rdXao0o9y@S<$Tg_L?PGJ?ce?P3sdHc4H ztIGQ+HnW|3Ubm7T?U(;rCEv#iUe5T*-Bk0FI=tohqp2k zy-|dC649(SJ3gj>|?}hy*-op?FQoGc;DZV@w$_D9l6PhvacgI8@az! zftPL2QB74oC7^Kg{(H%_vk2V9p&d>~@O)ag9nJFLjT`sJuli}W_WR)ZePM6cY5s-3 zR&(T#xj!#&#kphJ#!??Mq$OFWw$+7o+y0F!pKOK%e>ROFnS)e}md5a90}`|V=k9plCcCP~^O0B001UOf2hHCeZ*xrB>@_7{w!tbKSFmBH`&D(1;Ax5dlm%{u(Vf; z0th@q5%BnTh;P!&##4U3B7mVF2nxG8UKD`gnPgo6PHhr4yj~iR-2%u3&sn%B_(k&4 zzY5*A4B2yhM+<(*j)gdy26`WX>(u}q42`c`&yiK%2h`)1iu-5s6i%R?f{VBYZf65n zPvB+TKuHB(KZp168_COGLAUqzzW5~TjXgh-_57iq?GW*pu^l6!>pz8lTpj<_8UyB8 zM3N4HU&TTazXyN4xjTs06J&D2_y?7W1@$F&pdO1Y82^mXgSJ(+SE9bXk|TS22~mBh z2WG4UL97H`tN~I|x+@0ociYQU_{<3W&T^J&*NLA7Z(0_4`P8&uz6B|uuqrR!P2PZu z3P3Tti@0dyb>&POazTR;GG@VdOhehOu<*T!lrz0l;%7YP>v;1TT)4oCzMj0NfU6xB zaYt`E2VP0Q>x1jvKzIK6!=EoiPyLYsj+P(SHrQTx+Y4#;O<)37172>6>_!98b2ker z;D}UrI=bk>bt~`IRV44i2e!k4u~IYQhtC{sZek&fWi!^Ulh$19YLk`bAOT#`2w?+bthIK_SK(3^Jnm(^KKn)1~?Z&k}k4)>8EXLw@-V ztRB!22QHsA*6K!F|A2bwJWaF+?hE+yM=$U59M@vG30q>pr_{>fleN)7Cg7%#=fMA6 z`27H_FD1Kef`3}SXollqU8&l7AeB4qRxiWXI8ONA|0`nu!=O_+)JlVLkIuB%iAj$t zXa~(X#R50$MwRNg5K-NNzMN7GynuGvgSxXuGFf}UgmN?!YK8iQo-bPSD&1ydf~Zf8 zXv3qH0b}x5Ipp|K*r=5&MYm|W9?euVr8r$h9m_L1+Gw5bb?iZNlwlWIy(B6Xx|T23 zB8GK&#NlIt4YTVxo<77)A#a$L+`!vPJ(%XGh!+?)x9F}$97jn8EwxC0<&=pDGiaeJ zFe+5n6RM)*hGwNYUCM(jL&O9-y~cbP+G~pUCU!9>ccX^i((;v3H^WFw>sf z*-SPw_N{h}QSrXjRJl62n2(m-V33(Ejp>A`BdeHT*&nKMb&k%{1D>|Bp!sS>+b&tSbC|NR&;fSX)-@vKbSUijCQ6Fs{z#vjxv)T)UUkk$#&{MD8peDS6U6b6 z(e*@pHmWT!6AM~Afg)1VBEoP~MSd0{`bSo=jVm8e!7l?u=H3=_|sD;s#^a3&qY*L;VdWh-~uDlF$AGLE# zu+-wr$ZAdG7Wl4Q6QF*;hvQ;-UB!DV32iS&D~gl`t69HhF7P$mTDCQ(8RfEArlP1^ z&F9czr@#(!F~NGC>oEDKi*K&{OmwVOB**!+-5AzOlrl`C;@WPN zwE@+P&;ehvy44Ql_1qegS<{+SjS1R(P19?Z5X{CVBAArs4QZrcj~8aAE)Dva=Wu$y z(d=T@Ae-|GW=AcXZrjs2X5>z?Qm$pxa@Dy|lXW(T3AQZ;t?6XLMNO|XR3@%gQWZQ) zmoP*~=Lh<@skdPgD|gyx1fwCTBU26KnQ^t(7biB?ueKP|V3{5|nu;;OQN28!bAFqv z2RWoO?)A_`Na$m|RKUA8#7Gk& zKx2YD!}X^K-&h4%RqdH#pO$RJoDa)sg<)H$5*pH|Ijz!Kq20^08r?;47TGg&5lxnj za(!+Yh&3x=Kn}~jM3;5Ei)H#qG4Bd^Wl+~6v@GgbFDet&EJ7961J<%j3str3EZbkm z<0TatJUT+>4IXQCR;b>I+Ul}39cos+P8%I(4Gbp4Z1%p&Mb8Q1Rrn zS02>+rKMuG(#p75Qw`BA$`(WCa(Z^=ts1jQT6WY9SEIVwn4s$~7wrnSuJh@f#}jp9 zIT9CGy;(Ose!ez!v7>tRg`(CQsNR+QA-i<(;$-6Rqxqa&=P`2Gw1P^0?mEkIOt4xf zXA&_`2xctyqMo|)ag6guU8RIf+XObzIc34yE1=PtIZ`a=xfK&QF2&#zyr_F(l9w2wGS2vfWT z?`qIKHe-U%dfQ$qIJFuNM+>!p`P~x3b+UCfUm7kaOGYoq1&Qc&%AMNEGAk9;u)svI zsfk&Pha?@zto_sGw>xjJirBuUGz>NoO)m%$rfA zC|GN2S~q(xZ>RNiemG=ux=<0BW+q>sPivD_x~d5srdp${$i&#n!dRo_;gU+)Fl1Q- z$?~kgRoPZ4V87r+y#H`g3uhKFL8Z`NC<4<{hny*6Xxt&7M>*C&Szv7oEDNczI?GR) zl73cl*s}ud%C$!E%b)@CY_kTg z_%>)}`1vy?@B{j!K6ITozUT8)YoGU-*?FH^$MH#&;_XN3e}GOu5#)aow>0(@w@xWW z{AX$SMslRuQ+#QvvHJ<<0zYGlPsxPfKg*xco&T9Q$8fXCdlwXE{z$?L2i;I!BEh(p zfsI+}eeQ-9SFJS)+)#E^j2k9{8rfF5<%wpEES0)qX2$C|)~ItCwiA%Vpke0a)l$OU z`hqMqc&E8$5F3k@%(5{PfXChBm2e0~F{6Yh1H;sj3xuaMqc-YvIZ8M= zJTspHKh|<10$bQ4dgxN4AI55$MwCL9ai=N4xt_{i2+7oGfmZPJ2!L0NrLDf@x-JXW! zRs*}J4=YkPw=QFSsWPn%sp?wpE|(fpTnrPxcG4`C>lJ0v>QOqE9U-Q0p#p1YOLQfMG5>PRX3tOU^tLq9Rgkc5$&x1^#g6c0~`v zqd*^x5PscU6|4>;4M?YmNmS?+imm=CSBeStaJjOccH}OzRJl^CxnjrFi0uv^hD=rq2e~%ZdV^O1UAg0(t^URNDgS%k4Z`Fwdi31 zwW^%lDHe@jM7f$W9j%8YX3$5gT{)v@B<0qJY=&A48`Hk15t@XxqP)XPSsg(VuW^Y= zyvVPFHD!`qqigW3LnF_A!?FGB%x>~YhMzBwJbQ%y4Z-A7{OZV4!|2>Zf|OVy{^d?= zUVpf7H}ZTqNPq#EXR9)};K_vkc92NH2-2TFtUt_6!08Y52h2id!reC-91}ceriQV# z|MSN$j3IE!vXZeSew2cdq0Pv#4H7MrIGE^pPUy^F%nXKQHlxvB{|zy86C!~r0g^{? z@FWSz$KezhZ+Q-~z`OTh^_O604ErR1;wb)?5vr5YFn=|b`bh}Y_hw;!gQ|SAN^C!N za%fE%r%nvpHtb2<0NdVs^ZR|M`h}OsoxEK8EpyjcyLgDX&7SZ(=5V`P{kwbkO&MQE z1^#OD{wvZ@&`&onasIty%?m+Y)4ZIQY5Ot&IQA0ly$tI8dSMpqwe8;zTjHY(>(?{1 z57_%^us7TTxd-;9U}-miz2U=Guy=wzK49+$?7b5a>>cc#N!GhQVDAU){aeA_D9+|H zS(JJOdna+d2kiZTy&tgmZvuPsitQojNw7Ck>8M=(0egQt?9I={>lJB}Vc*VML^sk_ zt21G5qu$^fMyoYg@_0qB4mxFYUejtrJrV45t1-?XrS)PwtvAAq>JBETJ?qztw%?yC zYuXn^c+bFaWlf2C4zCM z+tDnkmsSeHuI^=&cHsAvdZKzgrOdQPve22%4YgToFNeCg4zxCnbOzp%{7`Qnu=fM@ z{tEa|$JHg${+(cNIQx3Q-VfOO0ejyq?4850F|R~Wn@@thfp=-FM*V@<6Wjf8u*|Iu zn{28@A759yqov!kFwI`9ON}V9%C=T31^w|Vh}^6=oKAbQQn+zL8^wl232UC#CTqJ? z3|YmTP~!>Otl41ZY-a`qZcdb%gu;UnBHt>dqZTIQioN-`m9AtBqnNS8M$sK&*rb+> z)?JaRvuL^$L<4!g?wJ`dcAKH&SH|_0Vh5<;)MdM&4lCYrNDOJBpkSn}1-%H9yq3mD zQ?!^DCsiaZB$}e)KH9B}%19Y6w^4R6+z4qRpZQ$1#R8)}Vso$ob9oj|7x7gZ+VGsf zg7(eF&6|97W_SDf(4y=e);N*LMN+IKTx^vR&-*38_`_wncUpn%A1B{R!G40Q3~I;C zWV^N;7Z^eUGdsnAlZ^;8L9dX!0|tmN7sKaiI7wkQ)&1AQ-tVHe zCPcnN;jfzo{CWzHkwpBXZ5CUK+N`sf%G<(aV5n8^47>0Qxo+P(3t>%$oi8J-z5x?s zG@T7tv5B82vJvNqrYMHQfka8F4qAqHV1d^Pxsz`&sY zUkG|Uf499&$h;!je?t@saw1l5=wcL(GTB3f`|&Scz|lC4W+?*w6pn^~(iV$Ofaq=2 z;gqxP*lKe35|hT?V$zA>d0^7_g-P!ffzL7Ny+1n^lP2C{(n;2_b1~^x+lK~&44CZ~b&gq?!-W?9aLB(ulWWr{~N$jvtQhJfq z9XM8RInk>UrfSUjDYooO6u*7Ip=rfq# zYA|)W(l1$lMHchrxd-}K7N%*nZm?>1oP_#NVbILxi)$hpQ%2kEmdgshTxA+-3vC45 zbiO-g@mkYejm!=@wRw5kXzHV>TOg;lIG(Ciu_u#NB0rbHOcWE$1`A|5>-luQQV3_X zP-n&dD2vSSW_C(t%vpQVZFmDDo$DEWci37Lv4$}yp%p@33#6yE%HynxbXR;t^_Zl} z%h{rtZkDyW5M^_e;1CnFUbN?Cr=OJ=tU%{ktg((p7&^o0DDSD+wuJTSEIC}3S1XQc zhi0W{=-f(8(=owJX+&w+OmmGkJ9a@c8Qf*^g0FZDYTh-cBHr=(?pW27>1y0lN>z4< zX85p`j(2Xa@)+qaEw@?juM4!5RGG+iz4ExPm`s@#7h$ilUX;r$pG9O+tCG!Wldr5t z946vYb!{-b((H69i|M!=U?EcHaJWaC?vBW{+f5cKGzq@|#E%+^LK?|8+iZHuc@u3y zmC?o;wI>`_U*K4_#y5-OUfK=)Qkpg+p_+DWYCTJ*k$JZ>M3e?a^|Y8^B|oRVv_ZD= zv!YNS(~hY$SLq(DmI)0F`WjTj9hw@pUd6NRAwiQ03h#iRP@Cld{Q5#q@ZprsiyYpJ?x6Kb=;X#7y> zIw+d1i_v5_X-_((#Zc+5B$e|JL<;$uQ>0iY6XD%SOQ!~riq)s4ZI+jGf{Dv*WnS(S z{o1qV<5XqX(4zZ-=sh>6JO;t2?;GY&jtaq3o82@Y#u{D)o9{TInp% z*{Cuxw7^Dc(=;`oje~T77~mbv4u*Li%$kszH1<%X+X-mdqa&}uxnK^SID6GOwpa+& zFs!99a9UBQe8|!$%-S=W02_xrV9a*5)JRk1JK6dOy54ht2cbp1$6g;^|od$Q5`cf3{*ppxG*ppxF z*wgG~gKqgaQOFg|lA`CehFl&IQ*12v)*ZMc26*|n)fakFEO zt9n*#KEm?z8IxoGKYL%=q^P!~{Z~5r)9sh{6!UZ=x+4Ts1VvC8HQX}e(WHSGPYwVu4x3IJS<(g`a>hQ2h}aceq~7W2V)f8`TN=yYN) z%2sADG1+v&8!9*C$Ga%vI#Hu3ke-`cM-HWK3Yo1b)Y;D(xlAi)q4yHNW7k_6w^MaC zSZdS7rT|$PC_u>XGiokQMJosT?E#&(msUK@4g*g3R4jCHI3K~P4fVB-;ufxlbq&cI zRpn5O=oaVB29}ZN6|;h>)N~?C$*MG1WTn^7HVBVHC??^#+H`GIV29q!eaVN*xu9o* zxmH=Aonk}M!C@Iwq&aVGhO=-hhAHoLv99A+yZug931S`rM~J+h_wb!I#2qMXPGS<0 zgvoAC&`?p8qHI2}0%yH5dAR`b{!XoWv%O_8BzZH;@@zab>4=-o)TPHmYDCj)oNNhN z9t`-{KOTe+EfSP=0}~t$1Jud7xn8A%y$RY?;SeZwCGeJrPmb1eVy92(DKeJ5Wr(qC zLHCWo7KTu!Q1g~BPDuMOpgHjefFS{XNR08>W>v!es&r@Rl-CT0>W{1a-l@MrsbVOH z3qd$m>~R}QV^m&=vbIJc0Z<)29(6FfZ~7~Y*MKqZf{)HUp1>WrVy12$7y1Mpco zFEiM&Q6tDLU{3f(53?<8Jeo+Et4h?=wOlgF@<~ zZ%7y-@)+}3$m7@1&V?Y4r)NbcLms0g$^gc5$m8jNXF(oM*I>Q;UO3G<7xI{&2zlV2 zg*>QhRPP=4Ti=k!_8ao}r$Zi0j#PGQbI|JdAP>;D@}JdvcFDL@$amYQ0!uLjixL)0 zm?gn$Ocfwo(zG2|99O(qmYYqxUjcx;{|8(9sM3xm6sg6GD+#SsZ0f}GeE_NEd|Wa> z(&M)+xCp00po4g~Tk!#|FS?0MO_Q}Z4m*6e>!;J+GUTiY6gpbhS0>0-;7P=CHzT&$ zc!-3CAOmd+QK31{cY7sG_sS#cZm4P~xR4{0qf>voL2X0M{g{w!NiM7PVyX4Y6eUQ8 z>82b7Zc-F&a)j6d(@Bs4g%D%bKE}Q2d89JjFXQ#$$qSz6u?arY^XR3L>*S#dTYK<4 zFWB^!f2!xPr5xD|4prGTRPmaVXz{;1&#O*?tE=~lgZ|c)e)Z$QN&F6Z9FD90EXd=n zx}Wj+B~?x5!#n7qnJyl@@S}l0S-A8X2X`~b@yBmkxKw}RwuMW@KB_tXefU^?Y*r7S z)z}q+G)K~}e*%NZ1K)goZO6erTMc!re?lSb$g%ya{^{^m^Ww+KBF|ra?buuFH7g&iwRKc*mW%=(!H zuSezm+ZDXNMr!+YYxQ%~!}nA0iebly;~!M;N&J2#0!m^A7_9-DDvqHka~50XMlWXfP80wd@KW` zHNoc7)rT@bz@Co0p8-Hdhbg^|7n4(wN9E+k&IT{$b!mL9`2(zUy z;{V4KTfUrgcbAp>NUZlPH3C5T>UfSBeX1Elki0pfy?w-TmBH5I3+ zr{!G$YH6Kut~JYM4RgnW*LVRl+U`*BI%i;5pXWq1e^&6y>M}uBki>Rjt=iH=IzLH z(*+H!?Qq3<)6T>*h7HeNhXw(6yp0@lu%0+;Af)_zX;7L+~?iM0YAlS?m zS&JVLg|!>oZW?I3C-AV^d8y#Fsa*V3@G6ZH#Enn3!bXSzB zdU>q5Y&A2>5D@voPO&O|t>D$0wN`-~;Qe0(uQQUGc86jm(35Z~(2%ej=x!xf ziSPX^cr}UN3SO5)=%%8=u`|bqtaXALJ+~a-CE=xIt%k2??($>k-2S6 z+IBn5h~>OjqmK(a9 zu$dz7SRI+=NozLQ9dz+VU3&1p8^6exu!|;Y+EI!9~8HMN^+KJ_r;5fW-EB7OSKj)FW*$8 znED)rJd_L8Y_W&{lW`WARi>M<EDXH_XYigWg{rBO#&x9xr1MjD9i{%+r0TAu7>E=|;OQ26(~U z0l-oc$Kx`9K<+oE(WhmC9q*S>D+YXRNo_29?ajvoA;pm@^6 z;FKFzBM~~nD~4bz0bBtlYetL7c<^VoAnvml)*2@Ggm970SYwgDN)!)er%fDxx@?q{ zlsNNwulvVmS-~5SfU?n%r{0M8j+O}e+AE5oirdHsW7Nnn8)iSamRG)fz}S_7!`!yf z!SiT5s0Bqt@{2r`-WjrbN!5S#6oOG6l4p=R=7>!nW^nhxi4Mr|c*nQ{|5 z;?~Fm)shTf=ytP0SlB@K{SaTm9MS@@362r$QD!qVuS~rmY7d;**ZA2;GG8GSjv)KlX*JfPl$$Vmd2 zty&sZMTK(0S8-s5JQ-JV8}&YUwQ5_f^sf_*K^2eWfYmTKp(jh{DisgJ!Y+~NPI4&24j<~D*G89Wkzmq>RN{#MOCh&tLL)JS$i!wY(h`t_=;lajXOP#$FBlrt#p0 zd4=`-Y|w|dnZ4Vc3r|Y+{_y|zZ!0sY9(UA^$Z807nUbV1Zwn|bU+*sj9r{attM>Er zwF6;*7ZXIbJh5_?slJO}P@-J`<`)mACW_TXSfnhnVQbd2cFQ3*n3h@HU3`wba7ybT4lT{z)LjzmW&D4d zXyum&lSvhH#>;^svpXUG?%ycf+NIn+T8V*IzZdVyfxac^cziwR6^KfgHCsj_k$U!z|CZOf-gt8p^pkd0qRg{?XzI z4y`3?>bMm9Ik$)WC5SRK)ADI{(Z;(|B}w`Gpv_xpdbei#g>_m7q~qB!*S<4c;maa@ z0*?mUcV)sZRN0AM+|(HAZ20wkc}wD1*7$n$B}z*~KBE@y`3GOTDb$qL_|<)*y>hhr z2lMjhdc=&V6taEH#`iHk5jZ0Dk(i4+uguukTC_9&DLDGUzP-={dBJ_>)Ua|pMz?dn9UPgP7MznQZq)>A;$hXW9Awh#56xQCVL`>iYe*rk&w!c8eqGzJ^J7m#k@CqRtNaiiJ!U zF#lSF?YUU6s-}|zl?%HFPhFJ@OU0zP_KR~Nfr2|WUXLfWjDC&102?cOZYsW#LzO=2x7ZZ2V)^-j2SqO9vk+M`%oqi)-g z?C)|3v&vI*SBXJ5!2*L%EOy%j4=O75IQFYkD4S0KoTxWhN(a1D2<@5^fxEmkmQFkZ zEFRj04{d{GvY6N)?J0BSBRPsy1SeH-C(Fz|%_uvb!C@_2C$pz+MR%s?IhnFAy1xAw zbD;^@H5P?7xtEV+gNdzw6DwLOSiMZEz+T-<>>5xms#VU;v)=18EC0ao|J>+SDStlo zR3G~OKv(@hV|{zJPp;xN$#wvn&(!OZ8u9S+hDCy@yQaPhZSmZl0UzPYPM6qZ;V3U+ z4w6Yvi}|#o2s|x<_52X3&X9IGlM_3;y7Mop9)V&fLh2u)hwEygOmmlXIipUne`&># zz2N@CZXM6&`dI}01{^?$(tC7E&JvOIg z$R*2`fuphu%9i0H@v?*^-GrBWU=~1ko>_Pndu&Fq&J?;Ub%H3WXidP|Hy89-rk=X3 zXXcTZ2U$#hi3B2j%F4g+KLs2z@9YJ_GNe=rf5 znx-CF|2+hU=(d+{mUr<0}+F1sFRK{P6o!^F|t(fo|3(+vh70@y@xqf&SqQKsPGiVFeJ) zs{BPwYD0;DoISla${P$+A4?gI8kx_ZcRFQ#4i^l=+bqjDhq@jORMQ8cv~-_iG?7CDHs1Z~rYmUq9jFS~!%oVqRzxaHIcG4&Lh?a;m6-8dYbd6ywH?O~PwqC|e@vn~zS9HvwTu4lgVswxJG%}aK zWCsNf7|3!wJFnar^|0!`3%fejO8j7)=E$kut!Gdejnf~ys=s49)H;tyUahR*pWT3 z9ZJ4LE;6&sKcuH0Wl2pf=J5SWHr|`NWv2(#l4fC6&!pjK#xtMgl;AJh(5OoDx8(`8 zBLpW!olLc!=ppT&*wsuf7LQDTWuCzUfmmGESPH4A;hOqbtXSjWQ&cD18BXK;WHqT1 zo*wJ}T&$;A2nxEX1F$qBL_mmZ!3{>I%xl{IsV0mUF`}@Hj|iaYY7X(z!`o12oERVM z-$M;(bh2X4BA7E^$l$P#J1$TsvjOVZTJ(>Nt3N8l_Aq6_LuR>X# z9Ftf9@>d(|EK1iMX8OdTZ8a4BmF{Tgkw*dJI`#hj_Ava#-N5HU*(>K|PLg%Dlu4}N>U1^j2?qw}1sH6yS5_Z0O&|4A)$lbQw5 zU(6Mrb$T%ahvHv6nuF^cPR%LAX7e&{3=FXc>L%k&CXjs|{*aCQHO6Aj};Ev?xzM_ zvhNM^6k?z3gF|!-YlSkKs(xp&$`6JN<2~FG74qfFl>u1rl%+sQr9d*09=_k zJ1_HC;)}a?D@Q)Zo1ltQRsq2ftkx&?XOzeR4&=8bwl?xMo{qeZP*A3gWlpU&F~I;L z&~5#UAl@WbDMr4a%ZobR!n-^OSpw{B=CW{aSf+>r?u3V>B!fg()0h#nSjUb?=9BF& z=M(I=$?HhgBJKwFn;2UK*vc0#`_|{H?;=Y1KVF#d#O$jxI6VrvIK;(%8PY9OyXW@7 zY~L&Cu-$Poas*T_YJ01B&bkR zzB3-ZlrK@J!L{trt2*k)h%x&1+eKR%w(3%4_Yeh-3|l5b`@J~LXGCq5HwXR~HFHC` zeX#koA)ehl3Y-}(=X8kzb>=<6Jh`xMsa6lp{#K>#EC9a5dLt}xfIt7n4?N?3N1R^t z;(UB9vtHJJg>ZkL)q$rrhG+lauL_d$$3Ue#3J5>TuNlA!OGcyNM?Q9x)b?A&%w~0{ zi4sSfU&8!_>-A^ylO%(l8jRRebLCJjWrfI)(+jU!!FCBOnB`lopAKUweYaUZ%iA}p zhZmcol0vM@CTa$6)a2U8ZQ)G6k?1O(!&UuiRJ{xo2WX7!Ey~m@h7P`Nv;)qsGqD7` zXwl0ym72Q_DbYYeVUrg&qpp6a$QXtLl8OK+=_tZME+Gy83wkscr#F$D1*kXCKe$c6 z07j0E@=|fuTspX#!-ezQ{m3>H*g}8)eF~Zh;NGVA+$-n`itnoVQvVtbCl+qGw)Ik( zd8vH#W$P)SsKqGg8W}pwttxpJ`x&oPk)3}TA%Pxvw0G_vXN{a6A--QHl>_l!&)7X8 zs2L!Ot!TvI0Md#JxgVS7%*U4H^=^pX1g-e_`OQDo)hfDUpQ^7B@O$!KhF&MWnil=5 ztg~{xiJM6c#LRL4TdAf(j+TK_LaDBgEGCTcp;AazN9;&kiAPZLd!Nb zff<1ef>Bhjd^1N&J%-8a&hxT^O(&M^kej1)h%4OLJbNO2mcM&SN5`^DAK`7>}mI*YnEhLA8)zvp6$vii?|;&>~*5G00|cJ z%D?cMTzd{e|J@#p)zZ@uO7rGw=Q`6`foy~H3_Oez4dF9QxUKD|`Tm{Oc{5Cy01Im1 z4X%4G?~Y~@3(k}8_=INZA@Cae=z;Kf^|Xx}(}~>S1_u|0H4%F-I}A{fH%EwY_r&Ubt7*2xc1PetJ5z?qi?8W0R?2)K z_@&QHYtSrbclphi-}YW?bDT?$&i+mg)7=Z?er(9w>nR5Hx-pHj}2jNi3R|{lE1B*T_ zwLkKDP}gtdXd`HDW+RB1d^^_$`MJYMcb(+dV3Tw`=t{Jg?z2OB6?cmS#`I35R2m_6 zBS_wvH1J}!AnuW~kqkomH|l>$cR$A6f4=m!MR?gEy6PHR7yATZ=wMHJ$s-gg@Vtq# z9J`>SSBg-H1!go~mP>_NfYVU0_JFs!Gmp<5(VUrv{!r0BgCyfhKQ7MXfI-gIVPHs| z*0H&$u;veTF_9!e$|Nz6=mmS(fqW&*k6ffYC+*Nz2WY$Cq$9jY;&R48{0V z9oVL(u%7PQs-)IP7P5-voK1sGZTiu{>l()!1AaP1Gh~Iq!eSKEC^}Hq*qVfq{u6oe z;iQ1koP*03?9eQzbCV{AX=heT#)eqKKKV}mXHI1ftq8G9 zrFu@t_?p+Fqwkl0P1)JvAlMg4YG9kP!c$2b_9pX5&#O+$l4g$Dcmp4#L8UM`B8E7y z$09NOE;$;)E|b#MD?rmz(EvJ)sWW<>?c(_z#&A?PiQ{zHx?flOckToF4home~{jpX>s)@!WF0dsmRC<^uovg6zkk>rX~10)Xy+cfAOtliWy zI*c?9y;dotNbMmo;b&!22(anYW);0bmy#MOh1w`lM><8dk)L<;R)Ymhzcp9FxhA~f z&IA;-84n$SOWd$JsUFZ!3>U%~-z0Es^-m~ktT%p)o;&<(%A*7x93+-0TcnOAv02nl z1cV2IQ7%%`W>gybfhyOr+1tu6M%+wvNe0gp7DaHqyCZX&qpYFW4vE~Dz+X=)=XAT% z{2tl(tEp8C*1pxu+99npRK0nb$Ye?dY}!Bxcdo6l#j2^1*cN8jq;|qW z(^6_GiGOf5e!AO2RIuvl;Gj#x7tV0mpiIh_Ok~37G;|}`HxPyQWO}Kdd6}~6@ok^M z1%p4%l1%K;JiClE>u0H>)a<&*V$CJVEBA`WQ1xfNF zn88s1jboR>29)7Bc)a@!R$Sqbjv0|Mr~mzspnij{K(lmyK)LXJ0{__AD41;S54R1a z-MNAX17b}WZc4|qreMi4M7(#?wH$X;TeZ_4A)#y^6({W1yYUQmyh2;jsZq@dp|FaC zR8OX6$gsB}U}h@jkBo~RMj{cncNL*k)t5iO;lr$Os?Ga1 zcd+C`cQvjY!>X@`XWXG-o2Ic5Vdk7hbTB@$$rgaOmoK!;;{C^%z9IOr!m&xQQQkGI z&jmK|Yx!5}#n1K=A!22>GMV~f0MY#Y=Tvo5p` zj`@Bdo8Fz|6&=#GPm_%cuBV5C zg{RVEt>9B(oj;H58PjZp?=WXJrf+^XbsjDvr=Ueu><47qUlIBKWwn6r6nwjH6W;wU zhBv~M3)&xd7kdWoBec`d4DH3=^^w<`80!~YZf34^kFa%R50N_yRZkhWBV9jB-NEUN zAtTbc?ql$UeL`I6PFt+x&F(#$$MSKLooO7zAPRU{ieba=H{w-i*659FUHYsnsLKQS74`vu1)ActNN% z^TMp4uI?^#Sw`*Ii_ubikT-3qpR8EgI#bB`pZg62fBDc@paQfeOCUVjeKL}6y4MTk zM0%s3$U8k)1ImzjR^^;VPNOWNIViRPCR0hU_t1)3!rVr5MPLie-&^{@1Z>?Snzl4z zyqLe8!c7Wb5Q+#zj3kCYYsUnW-)idEEnS+b0U^ph1*3Va!#O+1`W|)QJ7b*SCWS@* zQhyiy__@)egN+!R%##(KF+}k;P?jKOT=vj>>eK*sx4wqkIo9-mrj_g1O8_;mb1;Hf z_q5`+q%Xy)6C?+KRI6Z6Z%)p2((l(MZ}#k7JXKOTWkouC9yNM6VmcmsQZBn2l0dR$ zof#UGF#46C!rnXr+{y(%9ZD=e{^~V*R^AA56?n3hS)=}BX>1%VYdHkAUwVESc90mB zV5NDu^dg2qnS-jJq1;yxr^CI-NIbL!Lr5Y@3~01%KZ9ax`8hz*C>(z=hX9_Q%r@XA zKGZ=J=Qf0^9nk%9dIReN=zo1@9W%$9pLOluRJxpP%}FN{U#4md5P+BnAn_lMP#MK0 z8Q-611G5L~896vPPp}k?D={;M&aam&nYrMlb*!u^T>eNVoe~<^HF51VG8wxlLQq%I zt%-$l8{Yiv_%c7{R_uv~a@l5QA0LCBHaouG@9V5Fj+*&rJ?TL4xFeZY9@xBF)D>*aDo&N~CzQbG@}FUV6~ zVIh>OdQkjL)|5Ga$k24IZkVrD?tUm_O7>ojo*pJ|BGR7SUFc5$^G}q}l@v1% z`3tIKI=+Uy?hp1DUOr*tB)>Vq6mDW(#Rg*_nsdxSd2CSa7|*NK!W>_KqRv-ZfLM6J zjteqg9pE8=d7pBru280Q=3JRuURkHj_VGt_8Ko4v4Ad-j<1fiUr0!o%E*3cqa7ZKP z`GRq-66BD8!n z(vql|y>#h8!{cjn25{H$#YWkFD+IEL;P9-bRr^xy1|R@!#`~I_f6(bFW*UWS-SKPW z+Jlmh3QyX-?u}9l3m&J@q8lGF@_ow2LK}G>j&K5UxiOTMi0;9CjL;gW(C_j$^JI0% z0Haq737aq1`{BL%hGW-w2WflwteXF@eDX~}+kq+yOE!&*iFd9vd`0lqmtxw|=KgV9 z60Hl3|2r$+~K^f9?!DcbE!!Ux#=yziXT zygUwe-&MP|G)T#E?R4^!pFWdxPbB)B{4ndaeCfjZ)7g6_qFL+pbV%=S(tfhFFGO>} zjrV^yge7ux6Nws&l2^6zWs zq0QlGR81czSM3hgV(b?gM%RJ)#hC=rRbdA*yP6OP4i(J z@;`c0QFvcmeSGCMA?GL8;`LFVxj12ioF?82O+V^|N9^m6(qxUye@Eb-YWowMbEIWh z8~2V?2n{i#+1C6);FlIwzJSIx{SIk3Kj3%uMic?_KUvMfPj51B*6U={Rwe)}MlD@X z4hPW$EWa$wS8B%2c}W>qc&Od@%tp_l`_TNDUPxiv%dZz= zgMWY78ZRe~@wb{*emE3qS*uHG2Q}av??G~3%ijgnup^ugZ=0A}bB4ooGzDgF7e>K- z34Y#2E>?vj>hh=&6CoSrnVa8}Dc2vm8{{2^)-^=($I+iH_02 zZScAH-=Z)A1$P({>9v82*(xf}j0?4~U_7=-Kf8J!Cf)vQwszL%RI|3Qm5NH#zd0#t z{zyV-2w~}ELkQ^JCV89`uP|MyVaJ#43LBYSi@VOB8SeO=hIdgU!_j zRY(r>hll$x>YC&33M>h-*bV-?4#c9RO$TGphqSTs?153`R@6_RTJh1r8i#<;*N}Bu z&d_dh7K)jSl|U`JMJVN6D*s^S=z_{46zj3j`0qA^A!R^KEX=lvDzFu{*3grJ1(hQ7 z>?9HY&emEkaJ0H=iJE56S|ZC$SMQxbBE+uSCHHxwh0bg{6+1piD1G^%=Q@aofVxcu zOLLV0<9ya@D%DN;(SODz`=|VBD$7MVvf}egD@N}8r3=hSDkFK^L3aKIkV@_zjLwiU z3VeH)S$XU^?~FF_;Ynw7$Ogk>fqch*$s;85vHGtz28NQz#;o_!RdemqILkztqEO7O zb>rKBt>a;GN$0Xc!psbCqZXs0930aNEI@z~*UUl}jWdEBEqV8Pzt~MCrEOhx!?og%EG^pofURW-PtPQHe{EDzl+Kxd$frr_gG8u$&w7nma- z%f)fWPebwS6HkL*u30__PqFEs2z*ytSYvQOT+nc`cu0)yhHAiVf3BZ@HIV60Lkz7j z;I`B}uD3*Ec-)~MM?A_|JyM38z1&?jA36O$%$SNcsb~^uly```)t$m;I}e`l=$sxH zj!*OI8pLR=SYn_!&nFgL*K~hAZfzMq4_7kZYvu!KeEbH4w{gk8*UyC0&%B8)TzzHu z3Nn2TdBog-^Sjb$p}Nic_1J1-lhd;|)Qxw(ogc8#{Chm2dp<|+r8#|x8f~lheDz~^ z4cDp?6OOu@yj`IK$b{%dAD>G?W^0fcv@hEcMeTA<%)K@@!1sJ;?R&Oj1g>ebAO%%< z$wCs~GrDN?V}5WQEL0nPTqXDZERXe2t{1TeiTJWz{o2cAiF{$qm_J$t4{K*#of^wM zikb!GskzDVw)KqGv=Md zkmAp0`oaqPN=@_}|G+99*3Q~~k3erAzQa-X@WAQdAa~=qe$PkV`r?R#=%6Ba{M>f| z0`~n(`^|QI?@;35fqXal@p)Gd3i6#={s_DNV7@v6e%rp($9wP0zOxUU)w0rkq7HtW zaChsEcD)ld1s$%u?I-C47j%fVg&|GkejIg@loKimz$$wjZ;=ZDK zg`@5$#LI3jbsfB7Z!NvY_ip>??$)m2-l~%Ee?@;syv<~KeI2u|T=vQBc!W(hbkG)2OT(*F|t`u4Ma6SUpF!3oiDSaG&5 zosV8~s{a$94|R5!W~~}QAeuXiVvn^!RbtpzJ1Z1HG`4H3a6M zfpaLLBc3G=N)D>KEBtZx`VG`Ree;oXSm3y#y%g(KT{X{^`pc#+{DV7kwezscHu9eH zYpYuI&lonqVToy|$2W`2Wf|wPx?~xeHjAVGM>8}q02n_Ogfs8okNpWW&og2kq@lB5 zA4QXIWchqs6MG!aAx%a&|5f|;ZSZrp1`c)vwxR?omMgBCB6w=%$5_wbj0(0ZBth7O zExr7&r}o2HK0{Dk+?xl%@OrxgBmJKZ?dKAV_v))3;IHm!0G^$X_w2LkT=ucY5?u~h zx7NeFRZrn_qMpi!d=B^8Yfof;p0rV5P*99$BeIoT@7#$VB|;G5kn(L)3g%l8p5>ZK z(R4IMPMmp(L}ERX>_vJn0_Si)ZP+HJv1?Y+=L=`a3x zA6<0SXC9mw)Z9j@+q*fu_f{oZK+#=M;}N7@xAd3rz4_jQaZveMVKmea{o0))`(4dW zTo6GLM_86o8?ck52Jc?*x7Y|`bsam8>*ymKzfJzg{6bugQdx}pC6}%ZMz8Iyn8Tcn zOunf5{N^D+0#7mYo0mU;m@gJE7SE}htQ9%Ltls}DFKY}{?`puqLxJGEmsdW$*S`7w zENIs`eeUgoM_)4rBEmJZN73xg-F~t0zQ@eL!t;D}xn2XF&V|BXXZglTt-QEBaR+dN z%)|3w0P#oky-kzGMpc5xzGCe_`OdVomn!G4YEqEngelw7S4}($Re*CWXI>M0H$gLa z+>$f^cimEUU{-iMw<;N%2HW~*mDFw%RxIh&_&)l4MKV#My3~HdosMx|oUNFv%-c{> zg0vW+`xKe@nKrlxDJ$3slxzX49Ph#z8R`#fJx_VrXE3k&94nhz!Orwd|;@cDE0CyOxYQ9=}0)@BL)x+l(!i|o;0ror}sEE zUI?uTpNkNl&Z~#FGmoSyny<+@^#jtg-s1*(qnd6b!o8N`1|9$1)~MW{G=LpZgw(v& zjMk?c7=gu@+E5eFl1T1rj)aP=jGUr=MxR7G8CMdwIJCY>a`vbyq#QQ3A^J1lt$y;4 zF+0*T0J<%^|6E$yY9WkBY(FVa$ekoih2=JmIx98`1A0qXj6%EmsLH^l96lXSu{`B7A}T)Z@$JbvXsN) z95ZlfoKY4vR>yXU+x1iAO~}CT6wLtG{8}FKos5LV!4aodKx@QmnAzX5F4&;wyKez| z7%PC$M@|>@x-P2tv42ISV9=3M+K!6>HD~JZG>ekDFsYzz?HFk_;zSs6syLQXaug*Zmrwvg*QJ0_nX8@I!q|doML;kwqyw#DB%~=%`P5{Krc_SK->;EMztEF9 z9h#C?1KLnlUqP~69o4}|yh=gxbdOX0!J-Fs8coAJwTz3Y`w>vFSQKW00jw^Y<8NG6! zqZeJ@X7(MAE@aZ>SOx@vw-SvcF}AaZj5N9ZKzc@;DLkxBvQ>Gdy7eghZ(lbH1J|OTOdFT-oJ48}`Rt4?!xPL`t5h*1;fRi3B@I|FNhn1YW z^I4SF6)UM2*bJhn$i8z(!uVoKHJepEg$rsjmq3 z*&w*GvyTp2GuUvtGqWzL0jG_5YQV!pSfA1kXmR^m0_$=53`g zSN>{0gecc$W>6qmxNnwYXnlPNuH0rtIQA?AJ<`i6lJ!qht zc}a8G7WkoPfvgE@6yi(%dJBWli>o+>0)?MCrA4`n<|I;SUz+RICk03Wx=4p zC1M)^au>q`h{arEcr<;6y{qQun^f)dj65BI`D@8mWm;=C6w`niJXvwMg_$h4G=Nje zn6TyWp~W;ur^N+0`sHOJWXxFe8aH4|UddJ(WfY;Bf)3%`BIyq{7vHYUkz!Uktc&bi zEc&}Br7G24ChIrDTBJ0%Yje;UVW8aMS&rT%GqLM*MBG|nph1FteU~r86M~IHF{3ucc z9n^pnB2zs?PF4Y_d%q|!kn%}Qt`hrlG@_yqu$&!b3R-k5u+j_Hk1-6sg`kelYcQ*- zhSGK}V$%b%cN)*`Ag&=6i$w4P?<)+gbGEIiG3^nf@x+v2!r$-J=pd4w#+4t4s~p`e zs5yW+63&6nrk=ey=C`EI9^;rr(R;|F=&>I&E3lM${rzDA4Olyd5Y;(Fx7X1goC z*i6AyE?$6mm4H zMV-oIS6#{~{D|ZoMdKJ8wp#^Ylt7xS)`Eg$+glI(!B02}7ws)6{r3$n#~0ABFRcGdta!j`XH=-q zCyHOHzaq>d@b2Qy_#cD!(vKe0_&1<`_t|C7XmrBEE?;E#g*W(Af(M0rxxfAS$5!8P zuJUxNvh&eOUPv08A3S#q-%wibS^X|caMFx_@EBt5TVjQJ?EVz;(nb8J+%o|Gz#%-0 z^q$Y~r-@3wFG5Fky`-n`=^!54COpvk)4kY2as|>Uel7Wc_DA_d(8Xe9s0O{E==;zi zUXu5F*?QGNJW%$3-UQJZ;`QJC5#SL?oBN**!f8L*2*(-t?W;f35RCB3x9KWb3m_nR zaE^!6n6_uu86j=cv~ULpN7~J?28WlEpUn0E(dNQ(>EQnWeF<)($)IKQ3CWzfk?AT1 zf`!@?ai%J8-C_7C|;UFgqtl73?Cj@Lt zcm3!j{}P>D%x*tHFwS&|rcJ0VEdvfpnSycCV52CST#Ue#YHqX^XS&7fxF6buB^cA# ziY2tv@I}ss+hvqYjXRPoz?uM@3K`Q&mzPe3UoPUGE&*n+cJS-9#-nhnO5JG;i*-t# zFy|i(`O)PPZg6=;(K(I~C3r`GcX_uOt8iv=U2{7ukN}kF4gq0;c#wy9?hAoK2yV)A zN>2*d1z`Q99IQD5dxWuvYftHY1K01EE*|b|cKp+72HY=YFb6txZb(iZ=88Q9#z@6C z3k55cTSzq=yEk&XXTByScmxUW@4>FL>qP(9Lk&yZ$&-8bn6WEllg zH%5;zV37^Xr6YIS>4*z{K>;4gtORDJEAT>*6|FI*DMMY)^T*@fVnK%nY1_ z)&ZF*l#vCo>(R&002(tgx*uMjs_pHQo_Cfp)STCeDu6ha7ho%y>QFZXnEn{I`@1tE z=zLdkaOQj&`=#bt_&zi7Cs+T|+CwneL*Fm8F&1L06Gpf3u+IyupW{rLcj3z$^j7}g zU*zv5hh%x$sBRp7H2qu%n~bG0dv4KR*tiK*y3u9&F)&J@S2B+Vj`g%-1KapgPXmR;oJbeo@mr|>j9%i%}S zN$h|I-@zHa5_7M!_-qgUArLOZ1?;8afY^7{TvDB;^Kdi% zsKXiXT6={Ajy^I=TyI}IL1I>LKKgM&+$}a$~BHJrqEPftxV+P2<#OJ0N5r-W)2k#aDcGDy!!dAy^Epc+nf9 zh`FSHp)W-GNs?!$68RY~`9kR^pkz&NWivA-g|_ z8rK2Z?&wezIjS{LiUBkT3!v3$2;E;jyH!{niIVuFj2bU>b15^e!RowMB^P#e?eO?cMTzy=rU{9ouCD4|yBb<}JeUmWK5r z*6T*1(}hgqmFVS?sZxJ1l>7`k2hs+qKmAKTy6yW)^^7KuKE33ZohyVXl@)SdcV!HV z^e?IutIbJv#R5_1aa=56$hg}`d5PDLa(E+r`@8Hy{=ympnO&ijKaT;Kx)}Dw0!xN+ zMH4;g%F2!`yTG_%v{}+blJ=mEUQkJ;b`13Ct9_j&wrw&Ahs<4^BAb0|+h*;N1BuRF zT$|->SaZ^lET1{<#v@vc86rxFK0vwIs%(K=WqKlMrN13ubt(vmkMy8vzhbIsl_#wM zQVjQ1o5w+>m~nEzRL0C)zq{Y`j96#j!fedg96u*dY<-Tu&I;YuX;@}qUQlCDe6`yb8PIl zAf)Dtm#r?VZa9n^_?9RZLK8R4tfBNo^AqrVJ{}J-U6Z88=z^sZRK+vThG?SA#7aY+ zMa+f%TT>G!*r?ZsrLdqa2^56l*D+CSz_MY`a5Rf@QR>yH>g8gfHG0^}rDTYylUk{a zQ$*ndk|+eO#y;Q=Jz7&sxhrKulX#>ssq!SkEMt>zQdF>NVpq3%u~yMJrbR|YYRr#i zLBJ6N<}VXXgYmqYvKx>Q);uFebutRDb?rzg!NL@Zc|4BSwC3THT-H@e|EJL`mBM*T zs}NZjNCI66)<%c+ZWKtNh}td4B#f&I;u9u&(7(x?6v{?23|Ixc6gMQ7P;dBS6Rmo$ zp`xD^k;oqWEzSH(`v&0b7n-NEJ#&}b+fb~ zRPZzt-PGAc9~ByO?Nl3~9KrS_k*$VG@Qk~V=LZXEGV=YibIIAoK6A9KgnX788KP4OkNly}T`A$B4;h!E=tVdYb zAUF@&%D|)udzp~QqCn0|0@eab;>A?+$(Yb;FwL4c zMX2xgG!s)^Foi1*5$!nud8Wo)wx6ZCP2MgncV{lLZ2B-5B@&h{WYjqdmxRb^2(P_D zUgNii(@CcQ7P*if0sFncoZPpFEUyM|ydEE#A)xFS%3LJ;NVL zdbmI$50EMN%*?w-Crw$hkaK94JOhsrv))|3A)roI)er2Mm+Q&#o;BvAd87t59t4!G zmlu)v8D)4-);KvAV}2Xh%o&XPHlxL{fhA4)#^|PVKb; zHZG8$BI8!30XNx$#n&Yfctrc*+hr4l`1Dr9vKr}|YH>vq&&|+v8&<{+ttB|SgB;id zB1nnxLG0R^=YSOlDua*?8*sSKOQG-|7GI&>ptZ^Zt@F}#9PL&=`nn9tzt9s)Om@{)dP`dSK{p_S?o(RYZK)}YC)T!cj z!w_CMLYDmuOw+F2$QbvK9e~{e`7p^Tb;@HUdx=ZPWN=w`M--n;Ki!Xl<^4ZS$Q9)xJEdMK#M1TSl0)~VKb*sSr98ZY za_y0Gup$luLw>sal%v39bS!sg}WZw zXVTVB1s9VxWY|`O0F6J#quc#8_)OP<``*-yi^PV(D&*EVo3hGjpl&QZ!e%wCC`_7m zYgk$_$e~U8N&+a==*%#G@8nv#q*pp+!d>ZT@qUuR>ByvK(<%N}cMpR?y=P}mALiRn zklMOhVKFnv?Wt0)<#Y~F1`siVsmUbBl13QbX9W~uo8;sK$5|R@iY%>3iA4gs5vWdg z4oPBW=_!S36<&{ZSo8fKAt17rst;A0P1z5vX`5qn(M{|=qC7IZzyVgiIB_`)=IK~o z0+k+Z?Ly`kpNSYV$suE)^frfT(p)J4XlutKfhf~=Vbscc(M%OBI4X+WNP@7v0(PKC zA5%BQBSmXu;8FgXY77qm5(&`2H6%3|b*)lCz*%Z}ftLNn@sg3c2txSc-bT9R@*q5L zuK`Y=r6`69jYn2teDMrFL%_(CGqc6TSV5eEaM~lx(SdK2doo`E9A^b{(H#&h;z6)c zGYx4wF{Z$dxRE@*f<7x^QU577t5e1D0P}DowYD3&{@LP-2R~soTRtAZrVt!3$$pXW zzyCf_DU!ByvSFJg3mO&B!Q;A6Z9)W-6%AKTUWe<|BUcKm^%O@Da+e~z4zj_yP-jB9 z1{n|KALB;u)8oJe9j)@fTkvA7Vww)_9*c76chU~0rBFfJ>{%)J7G4B!Sf~4MW6dVIyCK$e8@7bh<(34*!d!rfsDz3Uz znjHo^s2iizY{#P~=SsiE7(o!9$K*K2^R#uj?RMN5|L zvW9c)kd&;k$JvLJpR~Y&6VN+6!3tlyK&$Ox1dE689YPM&Au#}v1n70bI5jG@Ttw3U z3xhy>zv$LE52#U2jom;VRR?)2#jQ`)cx@?>%pL(b2u&Qc^O=#YkCjO|Lo*RwB_0Ta z!*qf!Dh4-gS!ZD)IS)AYqC+zACWrLa1ofiY6Mt<$UAgh}Q0l^lHzhRHReeDS)ZidP8 zV2|HwPpoS?^mV(gcAME^H`+Tw6-sfl&;k?NWYDJZkM3rIEC3ZC^+JlrycV3o6WBd$ z+njRjG(1fbk=#c=?J%>4zBe)pzrKMzMrYUq>tK&?A#a9d2nEE@CFYDSSB-8DCgeO? z>eYyf)*Cu-EoI|NsN0(Lf=m%KGvZNb)r%K)J> z5zRmiLCq?r;c8Et`F2GWr$BfInp$5V3kAs;SCWy);#m`l`tJC|?DI##9vnt-%kf9T z9{rZpp9On7M*Y#g0x$7;9`OTo#n&;HIOrwRKl~lLjI$5*J^yIt()pvFnsi|!QPdqa z()pAA%{ONNj`P$nuF#>US#NJk0F1ILgzF2A|A!jULtP8{K^`!o_vFuV5A|nxKO-tn zD}&4P&0*cvb2t39!+#MByV%r2N8kk2lc*j%f<%cYj-V*$tZCi#xd`+r#NO*Q^T}E1 z;qN+be@*^v$j`SH{9=*K%^UE|8Go1qN%Lz6&L7>>MrO1tuI9!0eqYT8q#OOi{O>Eo zd)i<=ge9*1*UL`#Y>{tsp8uA!sEnNS^9311*;f#Q_tVn3B?kDq+55|NLE=8X_s^5F zH$*)#d!sOMiH;vS0z;oV0!NW2jvy(l&rSJDS@Ev8Iv*Y1Tyy7Me$Bww z&2%rRsfr*!7gRS#yx~mOedCMGbf>BA=aKgw@s=}PcYPjMr@|e9{`!`C?>@1Khiy@9 z-r21@YZ`i$LwO@Z{ho&2{iM1tK5q`WEgE(?(@$KJ!#`*WzgFza)b)vC(?2L2_pi}{ zXRM_m2);ESc+XtcJ-KOj{Jpcq>*@yI?GAg5%YE{)6~0$?+0u7J={^j7XXWpwe&Fx@ z%qDC5no`q|FoaPE{FD~ zefkik&Sl_w8BeiAmx|K-Yh9J+mp^}PQfQDtFooOE-T4UR%+UJzQ4qEM>gR_YZR?~G-K*|K-}$Yd1D%!R zp^tmF@XJ`;&*ph@bJ7qjoWB%A`=XrYoqnEG%lY-y`9to^;`-(DTW@5!#5&pPB0`qi zH?Mxm@bj{X`)JkuxjsFg#^@!7Aq+a}Uw`n;G0%?AUsBl_#hw|T_rl$GX&(#FKfbi{ zT|@YZ*PNsC2R-yHtd_K(Y0-L1WcOF8Jy=ntqINt_;!j(e9#d0GSF z?@~AthoIX;%I=N+pl>4Omm*T$rvlF)Qr`Eq>xh&%1piK??A|&n$!m#}ze@M1M9PaG zuOL#MMnEv)n@IUb6DbLV!*Tw!Q2&KUd3KR+SvV5^fpqU&h?FGyMCnL~hLKnEC_DZB z=23q0D8G4>FXK_N`-bN57xnHoOkLlk!ftemc9ZndyPHVI{?Sn>Lcq&xRT^51R_IdB z71PmiUm_+k3S@-m1INMKE|nr&tw#iGs3AE>nRu|WovpmHz)3^*-E{HobkV}5xE(B_ zt-cD06?&kE)nL)eE#%B*8=d3y<#Zx$H3Nz_=5%oH_n>nhXvUe!F#K;Cndc<@vtU;4@lr%ILev-Be zIxQI5vfRn&Jm6v_hp?RE(`>2NdTQJ40fODc^=w#D3u><fLYvy3AaAS?jf{|*6z8UxdAr=%6P^TM^9B1h)*nu;jl%|cJS9orunbR8C zyv7|1sFt`1=?Nbk*D7mbYD6Tg90w7lIw>`9wVvroSO{j=t}@E1e5+0E85bdRtH@cM zk`hk_EVRV%nafn+?6~y(xomC;V>*Z2;iOU}JfGpv%2V=59IL&zp$kA=JFF0-elCHu zPBSb~s1U14o4P^A1~3+_4Y-&y(1fD5Iw7eClibXOB*Qm#t+6mppJcC9!aer>kb&$W z-CC=`A>OXX%47^1nSub`g2N0&T8&lI&vvs_@Q_ElSTBC=A2)gbHS^tP)Vxu_gP z+YJaT9#mxPFSguqkD5#D5T|81S4M;FK59@UY;zJRZEMa@r~|NcD~aTJz$gVyGR_Va zN(Bi9)PZ#rwK0*AdX?(~4dbYBUGG?4N!n}$XvU6SGICOJhk?KuRcjYpJzcg^H1XHH z=|LcfQ|;?Hl-;Ah%WuS?{AB9v_mnMmS!+ZwyhG98KeL6jHO za)J3KsLrrU^DKyX*9D(c=3Z$Iat6_j_g0;(L_; zw*mWy^xUGwawLSP){VrR`))Ho)#mntZGILlez3kU(=a@vbUaKR>&L&TFZ>ICvfrut zE*tr#PzM2ZaPnJ29RzeQ)Iq>+4Rw$Niooa>0Xt6d!MjwA#JfUwx517+SK%A%_-bIs zJu2`Vu;ZSuT?=-gcfpQ6LFM&e$1l=-F4)lv@*1#%!V&1ZOV%F_c8~*_Ls9-V*nzwb z?4XI?t496?chFDOjf61hK3L;QyyK+e-+0G2-tmohys&O$$ZV_1>y{i>*Ns$CUryJm z5l3yb?u+zn87ay)zLSTJC6`I)u2K*^4AR2_GwC6}llk@#?p4b7&4^6dU+|86JerCl zf@qDYwFTXf0L}v*xlJ4IHe?=l_>QWGrT z4I3QK1M(sYbL?rAj3CpLShv&pa7zPqL`p|F4;-mr(gP2KkO@$Z zAv*`9pj1&gx*ct(zFr>{C~l4614T^Duuup+-0_F~AoHptm;@7J9E~}gUZ7xeNDiq? zhzo3MIjzV#w6>@R?qN98VwCWkmDWQ%SrJkx4z|bH(f4YmnmQ9~5SvSy%8hzIsg${~ z-c(SqpB3o_oyqAGjab@db#*`jUVW$Pv96vq5$W$6x&`&L=z#tnyQQtp65 zn3Ti$!jTqea{6V!t-T9H?7ApG*B9d(L*2LKtxzJ%X&2&4%ZOUjz<1&%P9^=EAGVH zYC0(%`wnaFR)f%E<U^n&j4AAeY`~w7DjBKT%UyR?=oIzfHe2!9_b>Ws0Z1xUZm!Zno0g%V1#U} z2I8D-#VI^m#yfn}CbhbrZ^uQpI3y!$z2W(B0%NKs^o>i72{#Laq7-lknL|vSOn%Wqrlj-o5$!rv7j-J_*$cmlpf3U^yM`p zyT@%8{K}e<-OO{3Pk(;R$o%9Mj?}pg;<;wz1CzwHH6y);Yex1PR{uFQBaLqII?ZF< zo6n>~!tcV`yq?VK<(r#X_}0KZC+y7s>7V-JpUYM18f;z5Rl=yBRI2yjDzP8VReGwJ z0QR#K&4YyiI%?zP+#W4x^A`o`dG+gH3hTQsy^QPh0!0&2e{(XfM@v?I41ax`r%o3{ zehEo_tKs=dv%9?eKEnDSqqUd)>2J1BNo@6kzJEK2<_x_R&!Z3=U??imZ ze$NH#i^_cGf_<@Eu=`Zt8M$EheeK#@F#K*V*hK?hn+x`JD-oDV0~D5UAd8fyVIB zpDe9}ZA1j-c41D5y08;5GpXz$Xl8UJDLrl(D*KJFTf#z~(A>JH?UDxfMqwI9u_~Fv zz+#$68Mf|p=%`{4jg%23u(KnBAcDS8H~CCfQ=FAXF4JRfIqV(8H6Rs4JWJTUJ|9F% z1=KTR;Dy0?TA%T0ujyaU4cyWJq#o(CL@N#GQa zC!j`q&|MSG7fwD(GY zmRwaRJ00q1@52l2o&AOOelYzIQb)E>=(%0&YsJ7AOVH zmBuZs*mIBhcmvq2d#vY{o9miQYHU6?>SZaY1;MiQ1MP$N=K+iMZu?+;*1~t%2Nz?v z*2I-C;ZWM**AT(wvye4p5--eX8?=7g^XSzzg&thp`qI@d+cX zLWmgxH0%o)r{UoN0o!OH$6A(h(i%mLY|$>zF*;t+BnfOMqkx9UY-#uTjX4)@_dCU8 zB5P$SF&+&tT3H5rOtJw3UV$Cb`Vj4X4HL8V3hMz>{W-LEtM1wd4@gV_7t@U0&`9Ds zrr-+sme?h7nJdsFK{m!LL?#>KG6e+tTC!+D+_*kQq3Fr>lG)ML$+ni*YPe+O9p;I1 zK3#})L)Rv^)wKgRL*gQ1V)IZ?U`6s1&4_~wXRtZqmXRonEfTHy-9RaW<-nY}^ii6h zRy>tS z^a0x}PVRYIK*~;FO@P;Ug(TMc0Ur<1Acc1IOy`D^buQu7&Xps?N=yqs7^2c=vHFe+ zQh;|(0(qExcz-nU`{M$4Ur9dXV_FWtS@$CC(xc8te=tNCE2?THh&P?RN^;-@bM5ru2pSd98!Nm9v(6e?E}SnnMxE zW6avwjiPiiE24qzjF`|#ZOor+Rv@7+6T~sAGNJ2Gkn0dn>oDC^ep)Fbat3(2Hq-|4 zx{rMLNj8eG(v#zA4&4!#DwdA-scrC+<7(JKoV(rvJt}z8>CjM+KgT zcij2fwRi`47w_nC+PA+lY$yHekH#~;moXHIKEfxV4)5U;{JP>A}S z`~ExP@hI~hqfwH03&?~1hCIF@k8jB1WsnCiM~;$t`t^{)8)Gbc?<>CxCMFm zL9IfQWm$~{&Cv-?20YAYYbi_NdR9QlVc(RdwUl6NtPUn3vTu;3w*rqrBSFoxBfTmO+?L^TnHl9;9Gh4vS<5{%Y@Fo~n>ncnF!eqa2JylXrp$7s z593YG=N;_Es2U~{cB>}kk|B%15Rb`PITq{rc#cm;Y~n}7Xx~VtShx!vYx2aMxMyZJKaJ>v6r;j%Bj+lhw>7oZSlc=cYec@wz-a zaHKJcm1ZTv2G&H&D#m;}*TVETECpoafuiJ#hi13wF%;D>_9RFVX&ymFn<#2)8ft2& z8m`1326$U2#|CDG!dep-{9Xg3b%T2cnGI(Yl2?Or%cMq51Fg#THw6z?NnO+$z6!Q` zRa?&&J26Kx3m*;UiMN~ZhccCEJMw`QKcqL*lu&lb>adj7@+dnPbq?tK@(|(})AY7n z1H?gXrCb^#nk-gYL5%2jL)ry~&OCmRDJq=9zH3Fqf|iLTAvx)t;9)_jOVcb)@q&}K0c+#97b97@6~OsP zAu(*C81T`in<_%oF`!*4FhCB2B}Z^PS_gg<5)2P7=!WC!z0|6Uj9QHM8EQ~$oJvT{ zcpj;s<;=~=5GJq?P15$_^j8&B)`)-lUqN`TQ!sj&y` z_B5Hr3whQ99!%2tNA2fc$9=m7rVO%1F<}JRt=ARM#40~=!{G!PhLe$H(F1QV8!7Ol zpvTEXDcqtglJkJUyq1y{&+tkO$OAAdfJ`vtNuAl2t{h~2$yM15F808Lpta+Hrx>wp z3w&v1Ov+RBf!?{yT&agaDfV?2d3U}R)beOgH~~^u2C&P+HA;s5en_cg#x7L0-Hj~Y zQ-=*iB}o(yw}mpNa!>T(HEiPmIv8ou!W-m$#p!kf#(35`^9CSkNd+TovjxZ!r}dMj zvqxZ|#r6`la>UPaC0&w`k;z!p#<>B(%<#wVFQmK7Hv>Hgd62J%Jm~j< zJm_!M`+2}`$m8z~dGOR}hF-Kf^Q=n05jE@w>?-{>H6i6wpCV@ZK!TJuT+;YYArZ;nJ!$#MN zH_&7=G~w-7^crX+4n62-)C4jhCTq~G-J=8+O-QI)N{c7Fy7%!-or+rkF2^A!0C0e< z`ap$r?HMGa1jRRIoHJf`Js+ES5I{l>K<9Y5!S6HA9rt_P%)>e~*ScpbVb5NvPdfT_ z!1IHB_RMof3+^9~>6q+KO%kWe(s1XB!9X{aF*lRMZMcJi$p0MHJMS0XKH6SMe813} zK8(zi2cIq6^}OJ7Sn#%te7*y4z7|`NN533f5htiihv0{fAfdl{xL!vd#>k$_|D@L5 zPqTVVU$)Zo^$))Y@!tHx7tk&L|I1ALEgAXb4~QUMAx8H_E_C*5|B7pKp|yUt*KwV+ z+sJ-Pr_=d_Yn@KVT6{;RgMT@vLr~PuCe4>aZ}|-Zz1Ys%`;9BK6u&fv|3qH$qyFJH zX)pTz!CvkeRt7^qNDP0ai(yuARh0hf3en(8$LkNfTV;NQbRQiR?)_EXezttqD^Hh8 zlt%78sy4R<24ClK~?0UVE{GQMmg^BlCa`S#xJW)gLlWpi9>yv*(udwo)@=D)31NVsl z{h(T63NJ~>dS_Sq@d;VCTq*Q!sGFIWPI`qlyh}#TBl0mo7UgxvEL#=1r#%FDpLlEQxZ@g*s^%9kY&rMW%$K~g>&gY|Tn^Ujos`Dp! zp6>+PFYI}~UOJBO@##3XJP+}Ht2KYK_4iI$?Y}g(zVg>!SiEcU`~I+?=gYbt1po22 zUgzs&2z5oeKGW+U?-uU}sqdBh$h#`&`Dot4eH^XFCH(NbY=3vn7SUw`QqAK)JldHP3md!KKa^f&l=rGo|^pQ-ZK4Y{hh`rp{#)o+7;UxUYg zpg4`Q6B;9IsEf=RqvNq&)LLqD6)zj3o6>i1?t{hrHrv!SooZ0L>(Jg?c%ov&TnY>2+w zY^dMFe2Zp7Kc)NZW<#AIuWL30VbpiCp+CCW5XNyV12NR?W<%7gnhha8y7objv>JM} z(-1`w*jscOLcco=eRmrA?lknWPD9M1t|Hp&I%{9qX$S^oLnW7M)rg}uTKC<_w~Q3! z8{f%8$CAq=biEWr4}&DLHFB^?n{CLXNp-A)?` zVA;@pC3bu}U9_+{+71>`ZmmLMh3+U~mAW&zh4a~Lr*oXXG$szN=}nxNQ(Q_zCt66e zbv$76BR{o|m8?@nF4^Y+MFlaS`5McF861`dgBL>w9U$m*pN}YaGWIktJ`im)Jk{4aY?+N8F!>t9Ko zSM};vafA0Qx9$foc*9@}#s|XfhO2I-D^BYcjD^&spkwEZl;^oD61MCBkr7g@iRA%V9|7 z%WhH>f}n6{KS1{@e>g0Qn6n~LOoIwQH|mV!M<=gZCMRkL_bs>=hP z^mt_wg1G9eCPO4`0eVh_^j4vRj4+$aaNpu)J#LkxE&3v^ z64f-EYxBv@CHJy~_yT*_u7~r>Wli`$I5@e9d$^(8fSDRRy6;C}5J(s5xrq^Z`c+|3(F7(sEOCs2@>;3pyTkj(Z4X24Hth*Fi#EPV7P>_Kk zrcD5RhtmwW96O9Nk=Qc$M7gJ-G0--Q& z0W#=uMtBjf7~G6rn)bf8H$Y^FaXt}dhz{{3O#=YQ(M?u>QoEOKU<={qw#)M(-X%e9 zv*SFK$bN8|X!C;87?vkc1z1i)CZOPhZRrDh5XJcMAZ3vPjt_7!Gk5SfnB9ngO;U(+ z3Ks&~MM(rn3*%s(4UMP@k;&y1BOOskSaAMQC`zi(*;t#LSQFl-A-&g6DGB5RH=fM) zn@Vm0mS=1}J1EN-_O{%SSF+8D*QYjh78f-h(AqwW670J;Aqw+a`98W+jk3^md_o;d zr4rNN&#(a(+l@2rl5wZ#ZnL8hzfiz6M}{JGLW5<^p5qi$jsr&TaT87<@U3>jMl!PT z!DC@+tUTUEA~rwTk_XQZ`W!pW1f^Rku4Myc&uMdw+ztNYG&@gf6A!POtO|^+!BoB$ zjC{>gb9ce`4g}sNj((gwo7+>;1~8j~Pv0gxxd*Vjl(Memsng1=&dLdE|2_$j@p`xd zotomIZ1VVY>46>tY(zjuKK>}61~xo;9!qKL`jO~11*SoSZWD4pPIYl^sPieBtjCqn znxxw`0J`qyq)8FZE$U%zuA7|M&t)2FwY}G68baPD(@?$9`p7g?ePkN?r)L^s!=9QR zt7cfgpJ|A(ZZi$>l3p+yfFrkcBg6IMC7eq^9BWf%bVPRKN~Yw|B!yRs6A%_quv>Fd z4;NDZGeZj*_|tf!X3J9WqK=3a6dsv-3QAAx8oX?egK-H*w#$6z-7o{9ZpE zx%3d$8qplE5fVCVW)T9L0%ibkhmUcr8o%jo9XG?m|O$ZT=^B)}NhC&RSi^PJQC^i@&0e~C@+o+6KW2zaLLIn6cM zhO%}IM=ktXPTUBJ``Ly-l>D=@4PCvrgKS+uZ|?1A+)7V)JE*tzc2E$8Ls#VQxJyF+ zw*C$XeBkf6iShQ~@3=mH$0HKB%-`|ou^;qzK+q$9$IVIUxA1q|VfVZJ9StI{^LLO< zI@1q-#~Q?`T-$EBqY@NcNGJJsyph;{}%og28X$@}NFk9v?1`50}T! zxjfkEsyuo>)l|Z zI`R_PLuW?}Vwu{?X>1rnloYhVQ9#f2<}aS;AyyDwYS%rZB*Eyoga*e0#ctEWfOM-GtV>(541qdBXgLT4(`Alyefcuz0}t z(*qM~3*J+5yfA07v)ja|Ld3)gp<{71I9B7`rZ<>iHh}g_7F*8CLA4@{(TbqQ1~jZ@ zExul|!!eZ=B&xJblD4JXEMw5hyS6d2SfrETHmKL!!mybz3 z#}2>m<$RBGb+Jo63-Z>49EfM6T4CNa)@6AO7bikJM~-8Kq!gT3u~fZk1!<0`3aGk_ zi)k^D17@gZsZWjrRK`w*iaFq}v&Mu301<*Do5*m^?=~}Gtf`yTXkUPU<730sLEj>i zBnVM{Zq5_YnV;n4etvXCaOP1I>xUIiO-7^8x8WAxRJ90TT#=!JS&hqM$YA5`$tD(l z$gZhc7tpYI3c%djf(~hkSLtCwMqDHf#j#w%+dm%LvwD zDBv6lo;nW&V2}3_>rE$>eyq;qTwKzs&84)S5iu#3gUz1vv4T~$vq8@VqcvBort7op z&2;CCAYp-nIhRKSvwYYZ zoN4(Ymq$5I8kdJaph}TS=k3`NB68Oc#vdd6aHXbeWqG0-@O5S{5Oq!ba|@ zXYa!vS@_8$t_B`wV~{amNpB!%NepH75ZJqgPLf-IW)jC%O+zka4N%C!3QGP&oEAjK zU~?LVP=-q!NY{2_E}R#~qqH3N(8ckz;c~1rxvgV)z8G?zGoHw@6rC)ag@B>RgxPXz z)S5vx+oOTVSS`SbvntTuiZp$4k^}W>Lw)(U$q9EeA4(bR00DSnNy?`n~(ygeaG;mSez;=y{3RZFg)E}Uky+{Xn0a5 z;0~Y~I}tl?X7|?S^w6SJTxxhan9eW?rMk%K4OwxW4e1fU{Hx*VTh{+HmJeyLA-{(J z>#J6x=H*Yfvgzjd(8wVAt2OHxw@0&gd#&4pdLOq(z2Ew9dsH88kAJ+|W3|w- zW7QPC@Ago{4`@F-xtZH=s61{7qe_+SIUTz^ieWc0mW=2iBW#+ zMUkb~nv%CIj3i-GNyP+7+UYI8V_B%YS|KNr+_9=V9j`2N<_KePa2Ap!IhC{6b?53L zsTJ3)!YK2Bm~U2wgs+DVryTQS>2VaiPPS)4Y5}UTidR8S2ap0s!FJ0{mku8eQ%lBl zHzRsNxky3^K>%U9pbCaivuZLTRNQck;j!L91`C`a$2z(O_T4F*MUe7_5Pu`Ku{fjB@9PZEh#_5vg zXr*zTaA*hr);E6NH8ket1m6K%#jti2NT3eDyB*Fdn?)lH^gwTQZrS z2}6lstweY)CUbpRVZTP?ey#;Vk~d#vKG%XEZ$pzk%Z5nsc{cQ8--zFQYV|f;=>qB3 zCLwcBEaid|Ifq%eP`Bxec6KHyZE5bwZM?ufE>^2s2Kbm9hD%y*Mb7kpVU#` zRv28Mn5p86(b+Cwzfd1VAonu}5|?uokzM2QAK1HC7glo|^9RM2~)P5dKIWO!OZ{(0cn`UBZKFJaGJP zH@dZi!?EArt2c}qOms(jRQsiCDU_t@cH7X{Nqr zU)DT`_HmeK1k;N=`RW8yjWz*)2&V6YgZl__4Xm@l;|c_1vv+@QQ^p08O!V9E{BI^l ze&&q!JIj&lJEQ%JU*ECaE7NP#tI%uUKKTwG3_|zaPOqfy>pPs-gzNjzYi?Uyw_c;ZUavtB zs@7{B5cP|QU4>qQVsEe4ygUfMNS%PtK8e0&THg{8?IElHQcOf9ePz@?POjT9p38BY;nOxUSsTGJ9=+l4mIL zMa<9}{qHwwB|nAs?^mWiLlD`Apda`u@fwi69NUY|xi>>VUBO4sf6rhgFxV&F@|!;B zrw#_buXOnn4+au{qA7p&3VOa-6Ccv$*Gd-zevt|N6Qm1r4d)E6WiL(ip|||r2)e!_ zdC;GDB=65VPWSRw;{m)&qCdaZp!y+PekIzUAsFcsFMkO1w-+uj+6U3UUldEQk3jEj z2mj@#^q}iIr3ZbS()$hx%>IR6ftmIX2uA{4-zh!lk36OKUY|z%#;yG&%AAT`n>zQ$ z#y0^8?Bg@?OPK1_#5eg{TAvZ<3d{`<`nKUs;Ga5@_%-&^ZHu=QbAMzc(cc!{P1KPVJR^T+m^2cBZ;@as(c*!QiBZq%n72## zF1cjGOq;`q-&Z(q62g6#9p5hQS4+<(I>l>`?_qtgi5UN<1x-Tx@Own3_&Wwof~ogb zqc2f7i9SO7{nYti5uM@!G*GbrAUOi?I-|+Y90>n`eCt0W(5~=6`0o>F_gawD3-auT zk|qCg3HA|T=_A6@_rZNcSbERV{aZ#@f`8`FIZD2(1pD=e&L3}UnzYEDeo!j3Q5|mW zJya*<%P)K9_RWqPW^U5``W>2SCbetvEwzNvB#ENUH|+xF3+>lHLo0LHs0JTq?T_p( z@*MZm)IH{2&42&XzMKB zk4m+06W?kqX7%vJ^~860-4Xqi!~-TQBf>Siddb7CR9402&VfHWb{^(*u|g27^?yTY46- z(LPbrdOdfaoVp7zOriu*cf_fCf>UJ26Y3_Ljq7BCuA$#{wITR=D%$_;uiY+dOvX{@ zcBOSxFSbu!J#JVNnIW`-nu3KS%HvPX4_zZ?TnG*Rp2H_~gNC-OFKv%*eo^XaOdGi# zreCc8{(N8Sl88SC$O@*m~4R?N(+1d20v~ItY+s4XR z-?Tl5XYCqo-dEqY1Jrf!etlDJTXc=9O%gPJ>(@RYSgWCe=Sjf&;_TEX9&&brmmULd zU)dsdhe#QxU&^%YPTHV*MSG5GCb$lAq_w2Q&+-X2?7^W5$2r`FQj zA=3O7M1`wIZEf~oWPxvM{qWmX4FnX$?zQb&0NrcuZrWD^_dDl@4Hh_sHB#34l19F_ z<~`qU3(3}I{p3?C6TtSmfq$=AoTM3NrMs@(y1u)^qMhj5$!YHFXnksY8cD-r(_?NW zZq16Nu;b&|?M-rfW8eLf`E1lOn%h_Em1!mMr{=aE?0RCy(QIeMZrk8?&YGUzwQVZG zh_2=3#%n9TVsukziLj;3c69;wmhZRaj(2pzp_PDlvJAMBc&+f`Yq4Tm&Y_k4o>Nai zQNw8XU87cfl`bI6;s{LDibX^DUpeBZs2;uMr~j*(@&CURYB&06qeaxL{)TUVske}| z7|GoK1Xi;3!q1Ho@CCdrWl{VEg5&HzrMJ#@Um$|&Q*~+Aipwv3466(0&$XO%t1q7s zjHs6jT0fjdpPPyL+=$&8Q}+()ql#9~_|hz=sODFxcWxAwhO+;SQ%x7Pn`&K;;D7&` z4^oa{G@9Ac5?x=C#=_gPHv_hHK^-vl|9bPg362Xpoci^@jUoEwYB63b;V!e~*;Jbo z+=yZL|NWne{tpH2opK|Y@*F2Ldh6rMAvgosNEDcZUJaF%P+_{TEB2TQ3*c;Oj-xX` zkYP@hPIcf%!gz}xbM2_$Q@RBRrq~kq60FE5pM&I*;iOU>$wM&~{W!s?;btxFPt`0) zyxC@X?#*YRIav~Pz8Oo_dWeq(@~EQdm;)lN1*rOZ5+%C@?DGT94;&SquE*J)#VU@c zVm8-LONPO054SZmJw-CIrA!Sx)dEC0Z?WN;UHC&~UpOX7AuYh!Ts4#bGcSoNs1$1=jYB}do&-o)F2`U6ky{(Z=(Sc?#n>K5c?Q-& zUL&SpsE-E*vd1H8<7($5g1l~)O&UV^pr?@*WRX3l$bmJm9@((G#By(9?*!nGg{X5B z=75_Zu~U@nbK~3slr&CGda>?k^>6ZsZ`Masxf12G0?$u2I4zbZ47JVE!5H~De5SQx zx``$gOG1F0PYK%LMSjoI`&kQ+7RBiZgr+QboDwn%`wCDTWI3%$AD@YHP27i^xkgDR zT-b&zIm~)DJEAj{IgE!pRl*g+bV0dC^iGu0(c!V$4+CR1#6*pU#hBP6=NK}w} ze&QhZRLHkPm4a1CohC{mG6Q)xO`P6fg4zHAz#g>>2kM#8e1eR(BJO$12HH z^p;C?&SA1YHJpqwS1>`Zr;Au&bByJn?HHfz41H~bw4=LexL5a17{r`4#L%87F99)G zZ^IPSTY%YkzTb>FG6M}a%8~da>;F`Qwa7SRwu~d~v)tmThj%Uz) zXkq(}V$M@kLFl7h5>*Qj&2nIWn5VX{3grRkA=)yQByfNya(1I8Lzq;Lx`heb66CT9}k<`@)W#XQn@z;6{iW6I%%IV_BAOk1RBoae>ii0$2T3vg=hWFt*a z#jNL3ys*JUJcM@CZA4T~Ev?-KWZYZ>l3) z>@Yl|0uv3UJpu4V+bb2tq-!@GJXNDL?W%F(?|VD(5$ zEhcyfLg+*{-GkTy^kO9+_9CN^4V>>TU<$3X;k9Mc17QEUrpCpdzQSQ-@V1$!RF_%Iq~bMa`)+2}Cl zQajDkLkketxT<^x$Dc()~6V96eEOr=ta@V~9R!c=>qvJbc9C9`n? zBXv$>-u{K20{Ap{e*z#{_l`L@;iy>YaxoRC{qtBproYDkn`@K~?tlsuV%LIu?KQHb zs>gLMbd74jGL#EjjH-}XZDn`O1z+~HhL+7-e{$*zIdyXLdbs# zFZFEC_p;NM_SSd5DxNLGFWvs(KgH)p`~TeO(#?6N$7(17{=41ey{w9IHoCDDqM2i9 z{(V(cJZWdJRz>Mk$2JJiBekBESpEo=B;6to+>WKaF+WsXnmJojCV_b=4F=;J@uxOOG0e~a zPvv;e2E2p>_TK_p^f;<&GM*&wbE zC=bEX(>3LY+A}oWCG>z@g(Jbx3!9^~S*Y$fDcqmaQ|>VfQ=5P-zyzH_$c!)P=;3P!YtS1u4?r_XcyY)Unrepy7dyqq^{Znp9!)6+O)le}Q&lclqa(QLs2Vpfu6 z$2NRWwR2;{2l&BZcAEvdJSP?oA6UFP3jWa8W=i7D_4x*3Pi83Y7DHQS&oX4#!~JN1 zDQ8D7iVY>^i%z%QPDFV;TyM2Gwqts$(-20^;yL3Lyd)t9J8Ll>;1fz8Z5U*dO-!D3 z&W4sT)EJ$^NnDF(8b!yWGkPL#SNU_|i31kE20S%|amyN80BJy$zxMEyWSUCA+S*E; zlEO=R!4ep!N)j@)M@Pd>p_zZshS9>D;IqY!MB-Im1gkN8$Pc$~0eP`(p+h8KSRtb9ul{ z(mB7{YIrTB!YV)Ew42Kj;l^;9wg7jYXKQ&RBo&_z&;IZb1)wR)&WPXXD{l)BHlA(c zF?QxqI6)nxmqfsx+UOLPt;MtIyBPxaG=C6rHrW9L084=qrbOsb0dKs)idDoLLVZs9 zz&#N@^&08J^506I`>glo`Z4LlSQJ~??Mh+h%q_rsBB;HXi>1#!O1K4hCoR5S&R6O4 zte_atbjc#k9nitQ5fq;qqtk!?3jXci*r@*P{`G0&`F>-9-!yU|i4JagW3=x>6ar&G z(8-s!>QiG(x{)5YcBP^-omoi|mC>Owvo)5S8;R83wdR%1ZP6NB8jH+VGfY!@?523i zA9nQ~4hq8HckpmDUr;~c;o#ob!-3!!2II{Mm}~HJAUK5K*t_^S(1(7G&RzWB=eROI z$5SM5fuG~4$9~k$fj#zf+)&_a{T$z7_gnoOH;BB#&rw4_LFB{F@kjePu$o4(!2rJR z=RjZO=YUC~PsZ7E-VPG$Q;mn?1$PGmldpDnGz9+P?)Y$be7HM)&fP(myPdRlwm;+U zkY-9XNEvY92(;PR{>KBxp$3%>N%BnQ@`JJ|3KiE(6(lqbKXT+~yE+$2aBy;Bd0NQY zlFqVu5?LI3n6h3DLW<9BV60YDIvyr(IVBDd&ILB5_fB8e){ zH>D6Z*}S4wt7yI-9r64ka4akm8}3ZIMao^3tNEJ zFcy2mJ!YdhIaL-i3g*P3w+=CQB=~x7ps$$ya-z>ir=z+LIY%5&LDcip+13}~UImX# zP{K+>#T;iBnVMqZq0|G)T@|O zi;O}Dc{Fh~c}2Sa&)$_KDUKxVt6(!P)kYOsSk+_QW)l0puP1mGzKCN`!lOM7Vo|dwfo`cB%MiWu5&GO7YS@*ihEW zBqA0>iR?|pN@Wq=DaD{cM`l7X$>$m|gWolWf;#Es#6pg0XV^$@UD)loXk#N6bJCRC zi9sGU7|-{k<3zj$q|#i_W0~14nRG@Mv}$zKl4m^K)H=(7IA(NeQ=iWlT&-c$xKyN) zlvbSDYD>xBaGqH9%0p8?4es?yMVD9ISi8Jj@2M3+h|!F1c#*>6C7*v;ZWit@!o#jOs5l4IxR(uw7RPFHbQtA?B;WuO{Xx+ zrn{?%+7~*)BG^+_jSU;N)z^9xlp|bf2b{b5RA80%dX=av>%_Ly$&XWJe81G#J~b|? zvvO+67}?gUqLxgyD^cw-<~CB}$6aPd)wFHD zvm+*xNn|=p^vCPYAlE9;Rc)?iIuSB!G?M$qqEjwV+rnlb4kmggqSvk9YNlT+x7P|$ zANNy7ij!j{l07*bE%B*pp%jE4BJgmOE2Ggk{&_oq$`~nNEXYAOO7^Hmbd>Gvdrjv! z=ln#gS|g_f(}y40aCDPbPPEqW;jvj9<|-E(Ea&^pTrUqkCR@M)uqo7u^9D`WyK~il znalTc5Kh1M4T2xwM6s6-JAqs?oW)5RhCLFno0U1VLEz`N->lQDYhjP5$FK+V8=nyN zu=ZO&!yen8VUPdyut&1AXl7em_~B;QgW;q^-s&<6dl33~Gp!~xUXkLmIvg}I>C~>E zGO=X1K~(f+)a;S-ra>@~{AL=8L1m7 z2T_B&6yG!TPJB`@_}QwU7AJH!$MuWD?6lL)^aYI^a!hX5Rj5U<)><3w)qs?k@m3X7 zjS?AZ9WK`wGmXfFW7bMBD2*GWB#w&88?M@tlJz6ge;!1*s5qRTcPf}0)@jBRvK>>% zFm18N$s>w%)bF`jyD<4L=yaCN!IXduvm11``_e9oeqU@bZwmQA4YtIhPz8IKHm5(_ zCV$y^0V3e)&=!K94Vz+1Bk-S8#A=_ljl@yN!#b||zCs>ucYT_?VQM_IWbn^-US+b+ zxQ9o(a<7K5sAkm+ES?L8K(IdAo%EIKWHzK!7Pm*s)AXmX59=t_` z{`P_QrXHBQwJEQQZtKCH%YMzg2Oi)TWp#qFs&8|2MRVlY+V{ceV_g1T{6eGX=F|Br ze)T9vjEYxxtOM_c;*NW|yrF#PmDWe#$e#?#@Op6M;e>Ou|0*a08NOiyq6~xHfW3FM z0jQM|C7-b3eK)5zoC+VJ(AmXwCuoxKY^8qB{rHbvK4d8T0?;ZS+^I+?>IGv6aTE#B z7&<#@bM#ky~C+)#0>_KH+16Z~i`3#j6_J+Xys+-Xm zMZKEJs=kKK!dM=6s2*6d>xb)`~a@y8`G-MHeN8bZYfc|3%6lHFVR9S_0aNln0owSBNxoAWGVSWA3h8MP-Z}SQ- z@x^z=*)-*`sXbX^-J>}Zac@WG_wexvaO`v_?sZoQlrK&^;B$7B_Y^I@?d!o`*XzcG zpPOiRt5O+FAxhSQ4#y53+!i!VL7p8zaGFF~09ENKp=P27@AG&$8^5=vVgQzcgB<+z z=RZ*@T7cJeQ5nkoMEvW|e+4vg1g{+g4DhOcND>X$DVG5raKS683CpRe zdkI_91A;gPJO~(r?3B)UVA>eJ4|h+eGzDf(149Cfrdby>e*4=WLsgwCyf&v$p}SwF zl5VIPyq1qPWPS@M{Ql4w%+vPuMIkuTTo7o3Wjsy_$OVas; zUzEUX@{1H&G``JM-WW~4X<*S{CSH4@svF|cHTUm39XfRX%11d$rwQjzq+~9j-)kvf z|1{}FGNwTN>q`g-VyHmX+j(t)FQ{nu4UA|&kgm*lFy+^xfJCmSy5W3##LFWncldW5c-}l}XAMj;u;$WIGT<}$iO_7VMN-5vF{d;?FoJ#w8kZ!NvE!s2z^v%p6NxaaORs{6u11y)}f9KI7AjGRC(D^ zewUTxWg~RG6=*!JU9dWq50arRxsL-Jy$3e*Ibfj{v=SWKOZpb-iem+F4!K0Zn64FG z{=5B0gC=Pg7$#`pekK25p(x4HWPxnn39@KB5{f~z&?96~Ivk1}utg)G_z|)wMTX9x zMPmsnc0Z;Q1_mkQ#RZ%6!V@dLZa;Fw@ePPt+Ji~O%SYgvWZb=&4d| zn_3RnR94Zn&Y(eVyBk)@8Wt*2b}?l;``l0}NVBNCRfv|6?X6oGJzW{~(h9SdhVjIB zI8DrJ5vAD>CsL)CjI4^?&4vUWAj`9Lcppoc1JQzGoljy$PD=F~%ZRb-kA)aD9+rgx z%{9of*6wlnd~Q{4@w?`3(QPhsORXZ3lk6mw+b>ydTO%U#EVW7tSte4kU@$vECp+tN zMkAH%O1aUvw~5P|$;Jm{I2M`i2Zj6~Th@ejN7`$(6|*v!9>w;0x;U$~$Qr?JOg)&W zuo_jYR4s(F>26DG)4=_+rEYMKM$TU10bUR-pzN_Y^yN-@5iE%j1$tAbyZCwIMQP%Kt^OH+%H`%FVz zDkG5>mNivL48&JPsIfEbt_6v+Dnww$j{fUY>FNznY>kpMa*m`$)&l|6H~KG?8B`& z6B`%i>tQ_B)96uL;wshfY}y=^f?y4>ls48@+Ogp7+R^8S)OpISb3yPi$`Q230f*WYAl zBfOoVxuO3<7Z&<5&_R_JU`q`=>aXY@+HL&Y+Td($4x$9#p-6Oi5U_m2t$kPmTYUq- zb9NEfuy_6*oboGER86cCOHcGrdX;a~@M5Z-NT~}ME5hlC7zOr#z7ZRWBi{6J(EObK z3a|S(MX+Koo}#z@22{bC_KlVxjx-VI5S)Y}kMj{Lh~$YB8DdcNF@LDdaS#PP>Ja~Q zcX6OjFZ~?a ztHQiGJ+RcI1rLo0o#TLoTpX_Jd!1nF3j6=vKwJM6G|KQ0lxL5~*gkp?=FEkaS0{{P? zCNWaJ2CSS0NmN8&1ed^-favLxB7#}?i{)_$;E81H0$+eP&M<)q_?k-(VHA;tky@vZ zx(QmfWb@unf*CFs`eoA{Ap`u4UqCZFDqJc-j~Lby3R&&3P9>F~e`M4lX; zNCbU4zYTZ{d_PnTtKR9^4MD6en>Twd%cgF?D=xl~gjX7TB<5qsLz`e`qt!sEEq24x< z-~}Bh6s)TXUNz?N<{N|VcXF{)6PF_9l}>LeS~761;dxYFOVhW#&sdUu+QQmjk={9^ z;+7uXc>ROBjODp}$in{tH|`XUGV>HiijpJ_Esw_BH;qDlCEf8%Ka$vx*YuEI#9ICx zioNZ-{h|n-gAJ;03mP6Uz&qvOH%=EFxT}X~V%j=Sw8SmgZApp<^Qirz3A3pEq6KzZ z3a?3f|3(ih%;|{|Cqwiizo_A2J2(rB(@dCi{4eW93m7{|nUqBfQ$cxM})sL}7x zNuEfm#%sP!Ml3%Ip%Xqz3GeL7Q>SqE9bSlCeiv>=U|ih_TfjK*yDz%}h{YHb;&uTL zy8}ARfEbkl>MS4gHeeXxb{2lEoEKomV-o9IfZslwzHm?Z&_6AsLcBR3Jbffdzx|EX zBwjui0qlhJsw35=0oE1x2E0`kPaux1i>W7aM?{=Iq!96>(F3*t|cs-Y$uKLJdQTR>RlZ;mO=i8QgM;O2kILfj&GcZ zU@+{U06&{y*Zhjt6R^8Ud&LRij%@gPGs4|hemx26A`F&)49ic{@Fy%w%I(AT*P9ux z=v}WjF~ltoQA1vy=W}9b2sktsI%%13a~Hi;EVQ4X)-CdwK+4vGJ39TAkb82(3;X8$ zM!mN%qrop*8bi4oKnVEg>Xijg@RpJR9_Nwk0U`3OUcU#(AIc?!Qge7TmbRjBcnG0u z$~>Y49pN)thlWt9$F;|BxK7%FWPxwwbeg2nZ+OuS6>^KRO!(tZ=wVWoO=WTP{NxV{ zHOB#!ZL_dYJI<#A4+pVjHA#T~oq*q<4O>PeX`zZ+FFWttTjL;dt=OE^h)w%_jRV?= z-`%Wn0GYcaTKmmQ3jm?<`&)?Md>I_B1;X6tLo(6X9l_)MmILK(iv+VefD1HxE8i-m zT{P20E9lxJzV>tDFXND%V!zqL4o>^cAYMG%Z|>|6IF29SyFJ5fbbi9Tn^u03)smmPhJpr)TbQt^1IvY9@oUR3a?fppRy*dRR#af*F>{gYPa&$ z3dV%6@L!%h>+Y!pdV0pZJRuI8S6MhlSGukfdJ_Y}eCLHL7<)qBR zFB>YXWfP;1t4+od=#y0u076JuPpxsaUxihlMGcnwu#zaps%pT`42{GyF%9(5rZ!S# zm^xt_?D(N8Rv+GGfi*@~M&om{L2Osu7XE$NASXC>@B8Q>8zjP@go&ToAQt&6*&t!k z$tHUs8zlPVY!JxYCDFPl|LAv`4MJHkg^!v7x5Fo#NS>Y5?b}|Pd1dCX!ah%74*yh) zIu)p;N70(GmmGTS-u3l^O zQ++>MdNlXSX)#}FugqQRmv4f&6c+*>tfSvUe5e#IVPSUoElvFEr#>=w;W)yb!T$mP z0RR8&J=t#R%9g)kP*#u4zw{iyCzT*!)l0{S--4DTspgE<(}J<5R4!XoX0N`r@(Fl2D2B&bw(b} zdYWK>wQk{W75_GP>yOo1gZ*f_&}&|uQB;&pWFv($VnRpLDyy-T-ql$=lAtIm7PGDz zU}~VN3H#^F>cj@Em4PrA8Vl5-4sMGUy!G4p_6VC!uFhyGLd79~v@ug5XL?iCdCqRB zZbK=$1EsALS(oyl&zhov?qni~RF1*;t2U69F%yA*5|ULVUMc94d4ds;C%$41N5kFNo`d=q?*{G8_U3rVMup@js^gpIf?=Z*m~K9614#uMYnU4N6=FOEImF2Iz(50`9%dehx?t*OVV1;} zBAT2a3dZb55Z{TMq=Z}BKuz<}*ln)%xJ!4e|8uQB(%%xC3f~f({Lm#h;TT+dbi?K@7g?Qp?z`UjyIVgw`9 zMXM3u7(LcBlppkt ztdpS;xYi-*PbU|{r;}|&zno5{y;uP8fF}b!U!Km6DyzrE(BQosqy)`BLoxn3%duyF zhZ#v;5fv{-7D3~86=Lygf}WS54H`XtCUJ`RGqwlAi0*}PeW%FB^q0oz(5NBsk z8zXwaLDa=jh430|gaY`KkH|aZBN9KUd@zB_$8s1%K?c?Yu)j1-5ne!MyC11>8PCF9 z-h+Td0@k4aI;wU%@wwaGUgia}-)Ig-&X{A$S@_(}@lWk`_I^$hO|5%TeGX{&d{*(` zeO5;qy8|}KaAj@&DK#_o@)3tH5x%3)#HT(Abz8H4+>SqP#~-(&3w}Rt#~-)j$(XkR zBY3xCB7AP8#20icdAEu;y-hxcIedPH#E;)$DG)z?2Mib5?hz?pG=wE z!uOLYv&4<@R6h3eWy+vGoQNLVI!#XN63QyQSsQk}IYAs}5JO`~)_jTJyqK-?Wz|BC zVw}?&Qd5u&8f%@tpy@^xcN1G|4_4=paa|Q&y_~h-k$&H}8rK$mK|%9WH1K_phES_( zaAaO#Kdj6Tk!JqGDaxzFYOnDWQnu-#pc{%dgKGg6h*c!8E_YBs`n*`&6lnu#R2MpS zbg^Ul_?nOhU`xL_nObn@-H7{=fxp0%l~hmFg?z#DSoRoebzg%bY>WVyt_LN*ZT2+_@kD!RATh}{)xh0Mg$8?opN+m8v$ zEVj2cc-Il3nSI9A!6Q;=bSl+Kwpr=a{?yBvR-tv!*tiJxrn12iOz)gy9@X~yK)DM) zgE#QUVD-Wq+b-1Vg=VI`>5$#QY~AyD?t8iI?KLXz1LeLhFh^50yM0wV*9X_WkId@6 z_fzoqffYw>JE6Ji<_NCMaTMKLZ&vQwYp}`fOW$uV zH2XjFK?JPgd4ZmCn=2N@0btT+MSZJ|Fs?5H;*oLP_NJzM!O{U#)}H3FKXC8aM*9P) z^u2&O!Gu2ECftRPgRLp-aD5*y569O3VZre=ySF%aKfrcdW;!bY>wG}KrVq4*G{qbY zJ)afC>3uSF@FKAp#_cv(hj!{|XnL%{5}c^;uR1m+SI73IvD)94K>_o&#QHoD z7c|dq@Am=={Fpj0SB?G1w$16D=0_&@FIn-jt@AbgM5y0A?X*6*Z#ztel7Bbqkqjl{ z`tP75pr?4Ul0J*)6`5T@!SZ(C=!=8&FDlUG+0#j#FJRsd$o+YdO$|z-Ml4rO9a^0# zV2w8imBd6ahR{T{Unh=CQGDFGOt>X*!tLc6B+|_y-Ibvoj71vt>rPAH&`;Nhuss@o z-&xlIIW?rluix^iOKp7>7--c;lD2Rg0Yrtcr1AmK#rUWJ_v1Cw?{{25*g42B1$51E(3*1^ypFbfW){ugWvI|Um z#J#)&GC=9`IaEPG+N}P1Qlcc{uPY)(Q3N_l`-RU^6BGgYNal}w;RQ`7|S8*n3J zL6|y@03&p`bGB?3Xk}Q7AvA=M={tr-hO)GK*T9o**6nGFob0o1Q4ZE|&RYXtU(iM) zC|IZgI#~})c}<1_9~gC>;v)QQkO9w{+nvWJ;Uapkd|+IZgM##B4SrsmK@ICAZPypL zAsd+Bvq1sUB~}!J6Z$dS&3igG^eOmkV3RCJ-Lbu`Aa8BG1ODcL?4rP9daV=E%@)~J z11=a_#5xt*C_h3m+s%y}+q!q*j;dI@>jit>tVb8A#KeR zGp^kT+8FMbuRsqEuJM?!gZ`jKX*=$5J9qmXU_4QI?tz^?)Wo3^-&I_O_gH-~`j0j&x8Km#(5l$TvW!s_vi(9!}#LaX#5 z37biMMKQKL0>(gIYi}1B+0}j<2)pL4I%uJhK!q(ByN<&UevTy_rKt{TEF#HJRCFD` zxOb70j%!HS)hCIGeW}V_hkREJ#>0l(+e);y-Xx=VhAsu!Q%MY2scVYT z-p(|KzMGOpa8Hy?X%{fw`rh5tx=M|FO7?LWPm7oMvBuFBGFZ6)U!-s5VRP-0o zLM|EXI3(aG2t3eN4pz|F%;G@BhQQyAOQ^z$z!x>xJK`ss#x+muD^(mK2bHR zbfpSB@@c`|;HR{@Kns5I-J3kF3p}D3eSxev<;Xf95J1HIH}E-8P>X^nBDSH=P(=cX z1CEx2DvO7D$iR!JAmfS6Ld~QBgCC-gefVq>N-^qu>GX4@w8^s)4nF5ze>MP zOtGNPY(Zzyym6g0HYFSrGcGXdR?^?0M);btvqG(^V_h6JxTJgsA zqD!Y@_Ja7rJH){ic)d!dR#apIt(L6L3s3=MG=UX2Ew5b*j}su!LJKf#jAmy7@8Qzc z{9Fqmz@0i53K(za0SlwU(Bk&2ZBD3xi*2~S_YLFmBn8)f(HOftDt*T)Z@g6^QrNzG zBN4Xkx_2}9YApJ?H%8H69A8XzElIlH73Pa#u z^`n`(AzHWoqEm^;-)<#)KB@VHPNBb`E?g;$#?73Xp_glLNH-sVzxQ1E^=8l!+fBcZ z2@c7K7U%Cyns&WT>@b?%8;#{D7@VQ8yTNvOL?bv?a)0gn?P66{CSVM-UnrkX5Jgi* z#qpp(yp4l9eZFM>;CxBDIP7X(T&2#UATViB#lK#Ls*Z9NFvp`1ndksX;pF?B*x zL{=lL*h=g-bpROfj|zBHrqECZ04L=NI$;NW5-2_rw_WXEiOwaFkrnie%lzF`621bX zu;msMFi-hDz98*NTRjCVPqF#__&4;F^5d`6l(!IeUv#Zj`V0zYZ#yf!#ew_6z*~t0 z%M|zogXuXR!56fHJbgzNRs(pd>)=nh$iXSi0EJ|cr56;yz5v9a25oy=xW+F$XK%mYILKl?@N?^3=)>>6P)(R9OD{M;vJ~t}g#QZKb z@y6jB>0$=s@P&^v?IUXjtSh3s-W_`wqWkRiGGKcUHHWEgF+dm-JL02Yy#nG-vU#tFa>Xo`2gdd)K@wB5Rg+vAFdm0DIpXw4;+PtJ?cY zhi~T$&Xj$_8GGNijeIAL*cJ`<=c)$KbeY*a47%A@GD# z^BJvCtU*ZZj8J&q)R37zS5Rf>399=Hmmn4=G82+8bxt99R^t>Iy=7#eDW=@R4K~0c zU}K?&Pha6m*GKhDRu?WpWH}(h+bXh=GK(7B_-n!Iku5Yh{2$rcuV6dq$o6ux(QZ3v z*ITL&vxBxIA1;JwuW|FPJjFLjhjx6w#|%O{E$|%~g!qe-K8U|;Bo7`VK@eBLJ)L=4 zg_5}OHf`CItd@c}78jDZxK}}TD8A-sg~bCVjRLtRdh5S5$A;iPSdvr zaoo<}Sj#v;45rC@I5_WH5xGtsWeWW7B8>MR;h#1a&pfLj6%z_qKFS9tuQJXBF1Ws$*WM0Tc_Mn%p6QN;IH zQB)@PW2ih>G$YP-q*$Vj(v}p<2%<<$FYww(B7?V_oa^!e-J*tOmkL>EJq%mi_xn09 zuH#HJMaQXsP{P;ps`J(AX06kQH=R1tywNkm#2F^#*6{;=VkK8JlBAKsMoDkUXf$SJ zl6c7zoj^qH;3{Q(Tg@7cIJt#rbI2)E0$sA2eXG<@xK-2?UFjQ_ydsfGzYix2IZ?D8 z?1!fCCsk8;pzE;r){s>#iP6&&9qCN?0aDO{^OrEDS!HT1sVvkhm`N6qi#FB+UJ@U- zNx-|49+$w;Cu7P@v9^SN7fNH>BEaOCW7jL$T$}00qCT3nHbeV}x6dpbn{c5$*WbXi zU3+d?kZ(gU-n_?Wqs)S}D55K?{J}i5IR`&+N^gb?2MsAMePps4fcmW>TguUJK4{Jd zZgIsBa|)iiXt-o018tGMfQM|^ul)r}+P>seOIu=um&vJ%B>=AmMW|;vmdEB9%0RyU zXPnlNMB}mDrf!j{Sk(`N0vU@g{+S}v@Q+T@ktC!O+e81dFB%L5AJx$+54EAK+R|{n z#cuWAXhls^zmX_iu%a-K@f!OZTBmSny});)Ddv)jsf&xyP)gH@%Ot!q5qicj9f6;Q zc*RM_FXO1?`~t2uV4A*heXgo^$i3%X!AC(`(%2!2bta)E~G0wb5U#%p;Mt#ObG zz(RuBaswfHbqabun{8yWgG?m@e=3a}Gnfl4asa>F7qako z8(n{-?#7(l6yg8=Ls^_WKi&1J^3dRJTFpi$k*{U5#sB!%H1j(}z3`KM23A7G>x@O!|_Y(o+(kS=Hs0*Clg88OilRdYq3_k8^lLuV^obd zGq^)ak9FgM78@HWF;Cx2viZv7zIJn4R?DKQ#Z$NaUioDUZbootFGq?LUWsCiP!;|}k|wx(#qCq^t51X1GenP%_Kc*(`4`C>}VneACOn~iZo zoNGk&nQ{{uq#hg83@$O%`5<=N%RPy=)t522=xHL)V|i^LmyMhD^j>fD z3%8YaA}{4zog6!zB$^{RnMfv{b*WiP0p>xfgX~?@9CgQS<1z6v7G4IaJ936QywRTk zUma1S^T&K#N<#MMNpe!lydA7elx&qr8V%M>0}WOcU4M$)h+MfguF5we?vN|rzrNOr zqscr|8=B|&akt*=Kb6?YRCs9%=Py)gtd{kBSCDG#Bh{TTeT}I_>)D#DaUG6qq@p6( zCx)g*W=ip3T;exMX3THtcSd1)H$r%KHp$HdAt zy*nI`3OaFbty8LbnmDsog8q{ zSfUl~lH0{+++n4WCFR!iTpScKnOr81<_Eg@T)vrC zna+%(n&a*)7UdpidPgtaQ}aw?+^SFWF>ZW!FU@lFQ>T}C)Ek9?hC6&L$-@jiFLMGM zg_t;%$o9Cz8LDueE18vfSss_?fH_Z&RWe!0L`$G+Rt5H`L?Br^&u)G%u!?BnVG}$5$;e*sOOz1lX>d28$)GSFH^Ci*^;C5aMT-%YV}5uh9W;P z#O?qphI{=^8b2h8`C`PBo`++lTomK6NhJl8Y^;Mj>`1rugpgDc^G0sap{jWw=jHCheNm>tW4AgG&gVuF+{)5(wb8E+;|4p6DOG7^YD~&Z8s{%PlAMRQ1))?m_!@EkHsgsd&Ql2E3XsI^` z%|vtZqKS>HG%AXaMmkx{A@Eyt9CpiQ2O+4Fn>82Xbn^=?G)+#B+v`O|Cvarm5{ zmH1nwVGQT_mq_~&=t)73l$23q5Ht0hT;d-`QMuQZhdnbNX$Wn8q$Y$R6~BvVuXEht z{HaLl10hkJsr_>kqBg1}#WMZS>J-PbW_j9sk;l-cD%PUBmM@d>PLsKf7h8z}BiFNo z)-z{xo6VMVx;Ztbvq-m8}5kC_I|NOAidT6d+%-jV^8j8Cb~FVY^H|iJ0l| z@Ctu8LvM)|(dj`S8J3!YPZIiP$bdz*3^Gpz8E&VcJ^c&+!+VXNjg6O$&4QKi8JfZ; z2ZUuKPVJKt)T_N?uzJCJ2(-yq?kv!^w?|RV+4L$QzK+ZgIXUNaeT};J0NLhkaE0x` z|8Oj7S3C&EruS{qMF{A14afaD!)m==)JwwC=N(elSEqj+GMzVY!7aCIM8Ve)V%1ws zfP)Bqo8lG%Lcfpt-4n<3bz~Ri!+9%$^LYo=QJO8^Ufd|`M-VjzB!&-wyAH* zoL?}PzTs|8T_@zmJ36Og`^NZV-tSY}(&ZXh(k)&G1*&|Rc%4Pa((ZU2I%y|OtOxAa zp;C*09jCtgF{TLOzunETxDS!fzj=|u7vA58lGfwz@AoUm43@-+?d&-(yH!b3{IrO!opZNt{3Hl8tZ> z?mJQz_UJa0#Nd}}yCH9|^TUq54#sf*fM287$@0!Z$-Xs3$PxK8{ZBrbbT@6$w?{U4u=!nHtHjWNJ`$9M4BP0TMA>yY|Nk5JDAk zBHJaLXN%wC4C<7&ODGBcNj>?3v?{WA^yt8lx_6FECI%5Y<-07G`aOpAn-~yI@$_R8 z8_rB!^xiIyZy*nTX#XDo0RR8&UFmY-$di8+g*SGiCwdG>;`D5H1eb4ofbWfsf9NPc zwvc2=T>dlwwFmD{1&1dENf4w9!wST*M{fKQyHq zf~062m&75zmMAmosrWVU>%cI91`?#bN}@ z>i2-m*g7KuMgtvH=_sNKQghXTe+^WU!3^2#ks+AEnf&V@&lfV8OsRB$ui9W_qpJny zAG~^GT8iBKb&$zq*+PY{PcGF!Tj;Acx>M#0r7CxTODEMeTJ~54ZeuFCJidcPFLGN1 zZQX<%Wb+Qk6-|bhRnUgTvY81FoI)K&+;xEupBH7x;-Z6z4q{6)`Zf(UE(|rujo4^G z08lk76dTL2HS5R1q6@_2vED+4a>N`Lvfp+oa@ecM@zl{23FFRus87qWl&#d68SI zZNl>B+JxCGDi+ES{^0YIAI-iBF9>~GUp5)DMIKj0>2%>Q4vy{~_MjgZqJllkaod7@{r3Ls@~qN4yKnsK=Cs_Zx3<#( zLIFL+oM|5Xi*r=MLb9lOTsT8QQ^&Cp6Jn!e33lJaQ_I*$!Y&L(u~8ce@fn*PWdP#i zBjxll6fGb~RHj7uuAPdFTm?u%--=IjDO3~jodLh5$JZ{PK|31A@oE1!M>e6S_qF(V zNjKLDtwk7OUCG3Bw2&8*&7?9+PgnnBhFt|dp;!!n#+PO*f~t-gL1X%wsvu{m%vgQH zfY+ezgKt1rQeb>C8uxdRKdlwMyYFJPl^^2%I;(|&e#bClCD zyEnX_eFNj6Zpx`Yu$e)_nrybXHUDS%;d6Q8vVrj)il8>P&Ax<8x-N=Z>m5_*A#=+T z2E^c+*A`PFOVWFWZV@k1+thoGRiz2)(knJF7{Qvps`Yy!Fc}sZfPD)YkbpR*W(+kE zKvM7>LfE3q>lh zJrIhjB&d?p*<-^do%1aeDLVOuA~n^TaZwcF>*8>j@xEcGz@~F1g_Y;3q41x-{|74~ z@b^f##lvD9Woa<^uE(VC)`v04g_Rr=bqxp{tCTu`M1)+MySTEv+fxDTaVrs3E|)gG(pWXbv_(s zi0UJJa|kPo>Tkoz_^cBh-afveQT8kuZ7UQW)!fq@>8LwlV_po39u|kyobx+CQRc! zP%BAJ@0qora*l1|aAanaf-A}eyJ=Rnta=)$jJvbD%Xt^p!n{ zDNO`cSQ%MB@mgWA7*n3xA^hPGcYmb_N#&f$+R(kgx{QlYF$ah?McjWKrufx*c}G#m z4vdy}C94CYC2R3^U|SF^=hJ-*^=4GOp<57~rM&Anavz=F%ACQs*TQZ^ucz*|zm3yi zpch2v_ZI3CB2E?*(Wc5> zwQ1jE{xBUE?P2{EJeeWxEK}929T&;b3Z!1+wHfYYBs3HpOF6t9f5Kg1uejLfRsK)uzkYFiX%C6MDYN^w@csN<71iX69o zqmLrT9jKs+BF9}h$|!Q&)vKfq4{Jeo^u=9Ks!f2ARF2;CwSeHU4F>#TBN+Kcy3rNf* zEfyZN>vRLnTufzi+jJIH66eXU#P7-9Caip9Cj-q=Y?@q;&K|PQwhP%*hU2#hy2N?x zEAe~mlVud{>k^Dg;+*A`_?_izhhjd*x%)4ZF%(yQ^Vr5S6lYm3wN0&9O`M~@8o#4| zJrwiVWI?gvyC)ch~8vP!^P)=kuQ}}+ng;|1Gx~R+zMVzpbL@DlJq$=yf7bM!&dMtI^PoI}sKGlL5n39jXq1tj~%tIwgET_DK7Y=Sm0fhHj+ zIvs*k?|?CJ8XfaY=8KLRYU{e~^$HjOZSHxTRC@LEUL+hfV{}@mIVfudhXxn;y^BJ3 zMKaK!2O0uulC2x?I?v%poZQy=BK{@nwypQzU6$M>7|)X*q}h-c=m)9buY(eYCD!TN z_~(SwRlj!!YYcB$C>0Uxa~Y>;lCGj$B#uj{FyTC5`Lv@DNUZ?Rwoh@Kg2&As;Yx0{ zvvZ`f6O?!-Rza*PYnFe)t=SH^aWRWYr*NJUpvmY!fE%F$Dkc!#hzbmtOlu|4RU_<- zR@hcDo(&ovEZY`E<6N^jhPKVNDp>w3&vtowYU6KFp!`}JHRzK>6eRyvk_8krKUb35 z#HarG`+uTo(c;l{zpJn)Me8q|hLH9fyu!tgmMtH;++a8>w}7(nqU2TUhci;l#8R3+ z1_ia#{lxqTo+peWmc)0SFhbrlPZ*owGdOz&d6+g)Sanqpi4@|{4mvv|mGfe)-}Err zGhqUG&5DIZui0`h3Xoi^l#4qCq59~+xV&v8KF4p@+qNqF9l&i%}8NwRa}k~@+p0ERUCa! z`sfBAX#L11U|%^`V7I#$ytXPZ_jzEft%{^a2ga>{DE7UDwN-(vPn6xN$aB(U=Od)= zjfCGD2|v$3s-_MP8w$-i*l{zkkoorn*REsgeNDz2p^}^wng4ty(pw)qLtShg)?!1&VJ(i^Jr_H`o%ph{LUq&6J6_B1z93 z!1&uBKi3xe#U_1otKA}b5tCZ{5tFT`)z}?iIPRP<*~RZk-@1OHb$~^(&(#k^-wv=C z9bj?0H*2ZG!@6_YkwA4OQ{0T~DI=TiaEQ2hiOvU3aP^#%ixVtjy0d!{;--^zRqsK* zrsj%GhZ|~>7bmRmN}SMdDDzKYzXl3?40wy%ZC6iTP_rI?P;=K-Fn!VFR;GR7k5wja&EdvYDhm3&^2|OnkzCLZXioutgyZ- zu|hvp@+F*L+e|TioV>theb2WD?XMH;IC-xB<1gU)|8_g`{;p+ zZpy&KDvhL_a?7?LH&lS$u|9qspxU_%#hdOWUDZw0B=m36ktU_B>sIjxI;H}4@&%CO zT+@63(|j0PQR7>3exQ%l>D!K@_0g|OVp77eApFeolOMkM7dRGqvq+kbOZ;YTqQO1b zs_8eTuD546*OQLQstrsHP6koh7ogerVzsL)5@4DD&J|&o|8+1lEZj8N6o#0=N0WLnBTQwC{vuWz$Y8-I!<|m5du*a)a)!_W{8UnMZj~H}`JSJTY zPEZ3B>DYviAb<%+xJk~HODIbVjVGFQB>Xz)+O~0&PFqqJ^aLxV8$g5iV0Y*VHvDOJ z(hl5uYMRSr^68$SXawH=#KMx8DXJ#e0@F8@rJ{O@Wa^gQwo{VcOY7}6>@eve)Y-5c zHiN$zrY->sDgRbiFbHC-qoIZJ3c)Y11ufW18GBUGM+m-%tYu&(kw#9QAum|?n{YI0 zn?3Xii7sGPKp~GSK zh_=KPo+$V9WC*~c!7AmpEU15TF4|lMPFgH9XhLo1sJ0_GM?_XF_zMkrN14A6lnw<|>1cQm{HrIJ9Ys6D zce6P*mCYHGi?(hYWwYecP?7EK5f8t0@sM+rPvz0|k3%@vfYH$*4{M$)l(@eJilvB( zs@UTr{8a^i^(_4m$?6c-?uZC%dKC?FkPU#;BI9ub)x_&M&f(>Ghggu#EteaIkkiTs z#FU^;8MESnLw9&NLc`VkQ*g+%6=`K5?(Jz2i0gk14hi$Iz){jwB-c)RBtu~RI=HV} zwMyl-Ts>7G3EBR9E+TwYu zd3#@|H7b?k|M<62`L9yuRT{R>9?$Rdh1+sR%|BmcTA8YTdQy428(mz!oQ!gJC*8qo z?wUKvw3?4s`bWA@)cU2NGFapZ>X}Nb{rvIszNJ0hJQvFS_SKmnU*sG0^Tw!DHfm|Th6}t_ z?@Zn7K5^=CT~T||HP@7{?AK~;R68yi)&AZ1xl+lAN?yFpT4Vj3@01>IGh;Z$Tz+(N z7jpGUy|{cGNRP!5j|*(wU%x*MwU1oQ>}aR<`Q7N+x^34l&h84eUafUs6-L8C^Iae3Fev5>4iLO8K=c;(x7+h-SDlSkwy?%RZ9KR1g%8hRSXKnC&(`-MT z2*Z)`dZ+w+&72I3Q>*r@^cuor=6TGuO|Fr>sWdcGycg5ArL3B6r@IY>eQ%N)KAdsZ zwVl5|@5n!2lv=0VzAS>bWA(Tt4jwYPo~?`3?#Ia}+b*3nWs%FBHmv9FyILKd$t+*WsYwP&5U+;Re#`L^LnWbZa++&Rfv=y%WU?z_w%+WutM=?WzbK{X}KYC=g+ym zawB$6(r>nwmEKS8)4=2nX)vs=;xjJr?6%T;I!|AyoqD-kE!R;0KsR4b&p$4?`>~j5 z4xY!ktoS&#?yZyS%t!fl(7GAba^m3Xx;Iwx?|S~x=vMB}1zccRzN}UX$~FJ+T0ecg zdA;gu?FKL29b5IQ!sC6hq>tM?KX@&*`8PP!4qN41^&$r@A3OTp)#+`&aBSwX>A~sM z*fMZ|7Z=*?`|U|p08h=g%a8WpG|!&)u3p9W>ZyL$&`+w(+eY!_v7~6n#=CJ=Dn6T! zZ{G^bWfrJ#&5R{!;5+&!y5am~T&NJ@XawCXwQnt$h>t|}7uzyjXp zA6TwmFu?2mtMN9h49Yt z%x0SG^SJn05nE!KtLmBi;m>wi>_44rqek((WPfyeT9!!p`XT*NuUAe7&*x^Adelx{ib0BlM@ypY5ADpn( z-C4SFXElbkGjY(mgb=K2(&ObBFwEzS)_Sg=kDK*}VOAmvw)kSce>_|Z;)Ok^@t}I2 z=W_Qy(>Ehf7(MfF%x*m2oM_Kx<^IgL62;D)ex;?K%;%x5H0w8yujjej;jnnZoj(zM zC}*F}O|jJKzR0ygxpjKqP_DYKg_DaHX>8Xr`FiQ)=WYK|&PeI&W~HFr+2+erO_N^l z&YObLmrtHMgVKoz6>>o&HT-#MU0sjU@2C39!2T(|{xqIzPml7&lPPLu^XFrgFPx9c zO*P#)9cH*TD;&QWMWH>ueI5x`_x|nmxRUlqZl(w2G;mNYK*@h9t5;IfulQD7FfuJR^njls*^`Jj1HdiAL##-9s4 zw?K@)xqml^qEqNei5KAjBr8ZKjv!y}Psl^C;BxH)ef!zLB@!MUFl|Luk=LM&3`$eS z9)$J*GF*`fgUnJzgVSheNB@cc!*h)92@TDJX2MGN4x7Oq1BRG}BgaF6N_A!mq!c`N zK$DBQDnYe4iGJ2bFGoSp)4B>RA%P1BE zgKh$u5#Tq+SI%hto(N2aOEI{_D$`R&u)NunG|Z35)9fD%3j9yXp1H;S0YSwGjHK!o zq+yLM8}!g6LVb>>^Dnk-6ANLG_0Msbr2=;F% zDzt#152qhM{*%#ko3RWaDQyMFDW6Jv1^|Or;;u`xd;*8GsY!L=6xf8l9VKQay$4Q` zMO}Y`Q`k2?gB43xL9iVY7twqrM9g&@KyWL9=F-QdSLmcd)+2Iy&V@NIK`b`Xqd(Z*@`G;w1<$h*fe%o?+S);5H*Kw_grr{zK%Kr&fXn~JMxbQV;wrukY>*(^RBWE&RL zQUaj#_DrZyLZvsMLdjGTplL%haD{3dUFQhZuz;B%0=JCDXbVM2jIB+UFrcz}LlL7o zl^|TRVjg>lOCm06d@3$Vbi+X~Qad-H4$4eN?UO}N#Q#MsZshtBG^Veq3ffRDyB;p& z5p#fS5w{ea3=H6n$!vrXJV6Id&>8Ow1En~9g+iY0`pQ79{Sm;v4@FP|RGKUtEuA{K zc~DYTzZVxNssSz(B{r3z(P5!zozcwu!tswvTZSSPdv_iJDnlz2t-`{_iU>*3Wu6K} zYVioN2uUfLWdk9$mQi_DLQz`G8T~bokx5Z)k=_*@HML@Tx(Y1x1$o98pn@J+&kQY^ zX_Sunp=grYml5^uST^+z(4bKyGx}%@zy84t^}Z@IBD9(Ms;w9*v}_o0%s^f7CpM*M zsBx=G<56jdDk>4S58Z?nnwCfkv!?G0vJ79fVRhjvCb6}8f`y*;35sV`U^Gi-)=oA=VD{rrp3=8jqCUv$EZ9!Hp?N|O>Dy!@ck`?%zw*le3Rjae1S z9UNdXN>+adr01L4e}RyDu4)V_G88Gg!7~*5D4`LmSplFCiXKNZ8wCM< zPz{^Y#c?$+wl2LeutdnmVHd;(dpe^h6saH+vv7E%nwN!Y8=dtXg4Bk5S{i`Tes<8R zw0`l}L2M51{B+~2lOMiuR6!$MQ&X5Y3_XoWbkP!efPocbL>(`U zv$1vScq6CYMG@fGktZ5fh?5x3WD^PlHKn1Oq^ucdCbagEjXh(ILl95um10iyA#!v6 z$;f>ZRmkd#7I^O?E8YZd-4vTNi2^^NEJj;+qfWmRlolJC9c(K-s?cC4Vm+NoSB0cS zl@l%8oZ1vLt4$UE3FrLNV6i$D11uZUGR#zX!MvQ7T zQ7}rrfzJZkTI(D5+#uv>qf{V1?bvv^ONdq3o7a}j&%K}aiO+6a@le{q$NY(87@4{b z9e?1&W@9r99;ulQG=L_aLcws~NYSs=i_?i4iWX%G;ZU@y zu|b{+h2d;Snq?=U+C;Uka#wm*+~Fn4G|Ic9cVm>9(G}>HWQSY3qo`_JEt|2kQgP9& zjLD{AR3I|#Fn1YfNrRrK3LVGB`{(cfU3lHsm}9wh6R?eqxiy)W({bB&>_311A6Yc9 z#3>UPDl7z>$cvR+J*fz{$KJVvOJ79C+L?j{Bpc=BS|Wr63!#Vc|CgNVG;~Kax5c-=`f^@NIPf`WTZUPNT3CK6FM^xa1`wc&5|HheBeU#c7 zBFkEjbt5_fx-o6TkblKbBU4vC*e)S&5o1g)i5PRoTg1+?qKz6b%YznBVGr_MDDK0E zIOR86YZI?T^RpKyDji~X7fqf0gA@s5GFW?%4o#)QC*`J~wiFm&*ddhm8zoj98@0Vr zf}Lc@L7AsFa{6V9_#J0xv!>n#+F*#2KFrH3-1_|M8{h%E>_ ziX`w`YI`}F7UR8T$!u{4XaM___fFQ5V2V1*1GRrLpC+67YwyHf*}E1yIm`AA=5Ero z{lj>5?^=wr=vYM-#U;G?IsT7gu)x`8sEQWyW4monpY;d>GP)^?nRSl*WO0ddQ3B! zt@mG6^hHI!e!1rtZFqEsX_8y*te@Y%&h5Xe>x(wp-60Xx=>0A4WHowzE6QFp`P*cP zrqTOqvfxEm-xkZhSS(5QIB4oP#WeiWBZO$Xvo1H0YHfXM>c#Xx6LF)r*GDVFRIk`P}q3e(%!Xtx=kypiFbk}j*qY0!{Li$RETO0n%s6P znyg5Xtt?J*FOO&lOSG&d6YQf#kIG#6woQ}OrF(i`vsYw<58v_xuj`0R+6nfjMQEHR zSkjo7X7At9C6tD3?;5RG`zL5fOi~QR#@jk0nt>%)t!bbWp#w3&a*uQdmgGJj=?rZD zwge@(Z_6Oc30Q&~9@PZw+aym`kH!m0^}Lm zb&1Q0`Pcve8~NzZs-guyQ^4CPeI8o zRoomwRrMi|-IGP5k@Nbcw!f`OcGdr$t3%o^&28;qyE*FV4!+_x%!$6b;iz%$CuW1F zIv);OMD>xux$AL0d6MXUnp_v&KEwHS;RD$cJAFhR36m!-g|Xg8S-HurwlV_p$XuT9bls(%x0Kk-X;0LS%Iv9l?Mbonh>O?IlF=@0I&NgXC^J24d*eeJ+cSO%#%i}L^D=FD9#<(#7e79M6D^|WxA zh;Z>TIyb=Mvb$?&qoQ+emizhY<#F{$1KoDnrYFW1y9k>>rQ@+BZ8 z^*|KeCnWOM{pFw%Gt>ihQbjjqU|RTxZn))Iu>Yt4yv|hWBy=a15<7Q1mMhauOw!rn))}JnRG=8b zgd$cGb}U67y4#xQglqh=pK`-aRO0Z7K5IIW1BTD(MCj@1e(o{-Tqjy&J?x-pxl*$1TgNi+6RmL?K%^_?u7d_J(NU~~795q( z0e~KAot&TPJ{PTKN0>sQWoFyJ|No!%o#ZbFc}AQ&N7!_KqjZ z6whw6etP!%CQ`~I6@osQD3P-_DjmUwhRfYx#zd++b3^ zGms1yk^3}A@|<((;O+pf<{b4B1aTg|g$2OHiJ4W4TQ|eZ9*q6FsS0wtsS3CPW`r|5 zalF$Nw>Ca`8ZRN$#RdUGsyM@@1eanA%OQrj=AsG&3NdWp5!#u4k%S<5fPRt9?A-c? z;5J#bi=5)cTM|O)0r2LY1O1gOGW0YtK zxE+}0F*z!jvYgYUH@6MvP~_>-^~dT)s{lL}qt1~+5G@DMjEUKm#IoVyou397t`u&S zP*jjvR&h&+DWtekur(sd*)_$63%!0GZ19XK+{7d{X!&61a1K9P!0qz7uO*sXDw7EW z+ep2|bg&H++?;Rk)z}=NVqJxZ-lo7Nc)%xQXF6 zPjo}fu6G*823cpW^zAWDmSGicb;YM?l5EB?rS?fpY+&rOsZxm#qA8;F)>2^-+i$yw z$*g}`qW#5WK352U$pr0M<&uyGB8b7oV`+RoBgJ{l(OI4+oj%ESC$ zC*CA1%m^ahZ~vz^zBcev@u_Sv5WGD6pX=b2g!K&p;Pu7*l=(pN_wrM&lYbJ{8w61= zIqct>s27K;Uj+eNipvH;0R1*p?kjG`?K@d12$vbF^$^g*67J%zr68GhCDfE418 zjMbBsgaCLEkDhzu$*KlXPyswy;R3~_o9$S2FcRg8bE|q5k$Tx^*DG_n;0CV!Zf6li=Puz+*pNSj# zAWxc}GFW!>tg@a-Ar9FkM-R@+iHW%=^2Aiaj%COuBIvnaKBRgORg|bRBe0?I?VgHP z%Vi5urGJYPIXk*{`P=gq#`DFO0wH&O2DmtpyQ5pPzny9x&`Q=}oY_Q#qrd%iOW+DN z;wI{dk8HR-;a}br_=%F)(eVAZm(g3J#Oh`IMA+`=(uD7{ZYxcwVvxXevd*8)(ygfY ze*gdg|NrcL+j8T$*50e2IyZL3mUXo3nT)G!w|m-^K5e^a?^NyD)di8T#Fz&SNm=$> zP2SEFX~Kl*aBvgr?a6?*(d%QfK%xuej7(Fy<2=dk`e&kY0m z7zc)BQDDm<0s2JN=*DxfE0F()+BINrABoqG;@0#3WU7oi!|FX8mLsiy3eOJVTgZQF z1ar`r1%(c?|3ia+@ZZ9j&885o2jicXbk?rTU)~&#rv3h4eDQ|;8j{Blew~VcFjqbh z1yI9yFufRE#Xm{V$%SV=eWg_wQOICA-jK-XB>qxHB4bWgzBOOaZ^J$trOZ@^XG@Yk!W1cZx7IH6{1x@g`wpF2Lx@lQ8YY2>xE@3km=FKt`{PM z3Q^c{=?}K&SRs@~82JPnA$G$wZ#ZJ2P=U~M`Mg387g;ibZ+|$>6=ZISO^i@#=QviG z6Z)L?Q-()G?XCrP=X;JWtZ*SCoGC$ht8lrJSx0Jv=*jTDNiC?w6Wu7gZ=yC(-T-J3o8gc|A|ubn`|Qtx@P^T34QwS-Mg$VLmsiSw9BTbppr(p zQuX$ZQm-E+hNyPCm8byw+H?;sRx6dl+j2IBN?u^G7>kei2 zhIlh=-eKj+%{%#HJ9|PPy`pnu1&GRtR18;%S?}_5Nwr%Q4hCB_Znbk*o$jWLlI!8f2}yV8 zaMFpe$q7G5&f<|sBEhaIjJ`(V5;29MI5$z#z9M6u_8HZpuKw##|6hNjG1fKms zU$$H+g>RsyJ$v>F=2?c7t4;g|>z=HwfE;K;WFxH&ZP1%)n?0Z$Z5{LOv_T18tqm_; zd{WCmNu-f9GOG3OLf=SAo4VET0)m;WrjMI2My?Ibk}<}pFFLSnYMZ@+Dzh3~*8X`^ zCi8+Q`;6AT(IDy4JZ{dVxxf!H?2w6>wbzslZLyzp;mxVkB&TjE!BOeU)rEya#|xGV z;#-C;NCW#bDc^(=nrV5DmZ^<2_YOzB@rkyf^c>1wr1+s4Wy;9?S-r7Ukyxo)bj~LG zG8?qol5@4qm(=F0G+)7LN&EnZDi3RM_L-q0_Ll7pd&BX5 z4}J2eMol-g(5H&%9jz0TXoqf5KDGn2CO*|@ZQEN@5W1ytlgdR8fwYP)k#Hi@hoAsE z)+2Nfa5l07dy+K1nE9hbsol3`O!tH)FcSb_mK#wu?NdfaJSyAx-)Y?Vv)gyxhK=V~ zUmOO|g9Mh6nCQwdDJ3KzR9zz&uLoV7lhUS@kmNj{YW4`hNOW~gu&SOeJdJ(`pSj{` zb-MaydlFDvR%>~+@4GawABzUIZeEuXO_Y!hsbtZYk?xekuOuyl%9NU|amzrF8SJAH zIb{No@Xu$Um`+sf6ERt)#hn!uJU0UBL0b5<0+beDxoamaw^{}h|L7+z!CfSD=kgue zBNsdLSKEF%i0ZWd;O_;wVh@Di*e3D}W99$MtFnTFSYVEGsl=M}C&qO!tYE?5S!^2ZsfUE?HYpY#puwbfJm9{cL~Y{TsEMrh zY42n*ic7{=qG+PoJ@i%#PyVQgL9=*7oi}5&PbGGb4;2XCY(==?p^2X&`Th^jrA>Dq zEZ=h-`izbwc_1LCd#gD_=xt^hhG=WjP{3jzxWA0gyp4@}i3O*mI!OsyYD$_lcda|x zX;((IR)S0~2VJQ8^j>o%!|Iiw^ci2|1adW!r1G&YEXMCNQsF(_xI)X&MvM9wNyJih z;ekzuF_4}vM7jz1OeB#J9F-86CF=?WmLsnQ(l}zwmC;v4AhUfxo;t9kThDuR``UhWfN} zzS0)cM^rHKX(gjRQ;Aq$CY%!$Bt0EQu0THIoFt;pLehX()%FyO_q3;!P@*HTG12a0d8FdW&tS8 zSA5n;7ob#{88sxC`BFl%d>>YIV3nU~Z4@&~^`Hw+GNwvx=5ztMWKLyqsZetDNt2WP zmGBIY+}&A*MYPdLepwO5n0cf0l=`zrP=T{_D^Gh{j`cLKcfa z1e*?s%R3(}GTB}ahP(0_RPOcF-+sIPaD8!e{oBWHU*4bJUfniBdkss!g8C#_gOcLM ziCiC=E+p9_a7tj{Ytz;-Nda4JzO;qt$t!(I9n+AINFZU;)YmPk01=G_BefCyeYL}9 z&?H=bS)NEC^bihNinp!Q9XPT7#ZhEb3=m19cn&$(6`4UAaT5Rp{(avP*qMn#jApiH z+=I}xg3J_jl%o&`NU3K~L0N=gdUwdDqt7KRNMNyC`rf1E(C_vW8ukzGJey^c*&qg9^Ee;^aw{BxhYD>toftNT{g>ANDI?`>}5*r$Vts& zI2*`GjRxs_l}8c|tNrL&h5+4pD<26FFZc=V4fdr3-N`9GNYQ|x`}O+khxD~7xm}X1 zR%ZR=mra`Bm^l*;51E7~q!ku8<_nGW94I=2Y`BKKGU=N#VB7)CuOeXd#htA(b22{N zMPrrcUO{AGGXwtKJ76{|F*z<+dMN!bdNki>qbtz-J`^5G|X zb)jk77xK&UOv(^O1gY1810jEi@Bsv@od+Lrr!n`%@?0-_V@cU!yzA1S>axZ8-=A09 zOG$RLJ6x>rnJ+KTGkR2}Bmu*H#-m~UK~@RkW0O{LW;iq!hcyB`6|>vgxtVk+XO+H` zPc3jlSIk5md!-Vd^xd-Rhc9=v|7_T+zJfq$X>tYStdcRa=C*|uSHw)?MUP>+ zQgs0=<#$o1`-3Zn)xN8jQ$ z#KZQhZ<+AtoPN?ec*_U<5#LsM;iyaq8p1ZYY*QO#M#!T!UWvf=-xD!btnb74#^1Pv z!T*oGi5cdN%NtrzGIs%ha@C#|!9;~G6mjn3<)UaA@H9!xQ8Mhuc}KVI{}bI$Bmz#k zuA;S&W+X+WfkABB|1Hd2JyK(RMYjp_N}h%F zU2122A)W=|Gb#oGGE~3x0@~q|X{6ajMUyt7(}`GN^;oDpA*@_0EHzXXzl&$$`>tk) zjDcm%aOOuJnxw^|%YL4b7TdjeP=ywYON=I`k=>+yY83{rGBR1dZ<$mpv|-#UJy)}% z5%A)FDtljg2^Z`aBnVj)UfP+gwychevI_G`3YOIo>-~I2p0joT`Zshs_dV_e`V5-8GFCml&Ol^qHe7kjdrV zxb*ym9)nb`)b&)S4P{;aJlva096Ff@ckep-LBFr-uzG8&4EHEw|5IcQ-Lq65cfwN5 z0*5v$pEBewt^C`);|{F+L9a;#a$3u}+bStezjNzu1qa@zy{7qF+k{<7{_3AJN!hiG z#qCn|cWx}MKm?!mCY>O~(N_8c6;kY;xp=DITwITYN@gkd@NoIuYY9ZGVt8rN_Qqzd zW8~F6Bk+$q8gmPyO<39s&l{Bwz?#B+u5yK{lzk3$zseX%fJ>r+&E3ZDi zZF26qXHuN%Hz_vGxMWX_>E>MWhsJcDmKe`^hllU55lY?vqWd6^REizlLpV$e)!k~G za#7muUrVa%@VgL)hCH;LcOy-_HW&)m|+RanG9Ut>Ayg`Cw?>sMz zzsy&m_`-lFIYT}oLE+Q5*Sx!%Ip1C$6Z+M*9 zbrZTK6-(I*)YgZA?bmn{@B%+*8$*_pOX|8zB{+$UI%+^t*HsqEY(L#@cx|@9P;az@*8cL#0}wUY^f}5N_&W= zA>x-M^mKuJm0{{iNSiC>c&7LoRskh^DPc14l`s^O??85Tv(X&`sP-Ue!lsl^{C{-_6zDp@--|gx1o2LbE3{>@&HBg>150Lv5S=Ky2a=NQN$M zCycLa6;~X>L@%C9-qC$-j(+ zsSN4xz1$-@cgG0EGEBvz2x<*Mw~ByDJNH`J-lb> zPV?p#Vc$uGZYe=UdaEIuqgV}91}O@GkVD#WZSSsY&#GSAThfopret;5qC#s2TSq-} zt`|O&Q4y6WK#pT5LDkUf6}y&y({u}1`DJ}}>MGHJwa$1BMfyB&2=89+~NI6YH2?|!c1eTIDM$*NqcAKy+ zAkcMnVM!SUv&JVmvXC?i>a%sKZ7WHyF&d!zc`sG)sLUAG?y93;P7I7hEW3xzD7pp=x>%*t#;}4Z34zs-SDbK8TKB@ABLoN??{k^{LHj zIt=k08P25yCbh(skYpIY5|Av5R05k}o30pbR9JrbYO`dh&q~0|+ETmq3!!;-1s~;M zZm_g+ZsKbZSs%ONTv|p}Rf5aC*Q-Umy)SeRT&(Ec%-u0`S@^*L8l0XU@AIAN%ln(F ztG`_$$1{lyxK!|5In3{ZLzK9MkyWrw5*fXodv;jaO$FH(0_1v8NsoJy-~oFcux15> zw`0l7102KkLNp`9MGwS>cqx;iIQU6Cp_{Jn(<*!D{0_pc0J>la@s=DUB@J3#Y{xM? zXXypj#?k}!ixtF>2RK|o*pJCAJ#_e&(23AP2DS|=BnQZ(@`S_wg67Simb4qRNdY2{ zP?ne+mN~PiM8HGCOv0RCM3~+{gak>)k1p^;dvW6i`v8{~Is3i-M7$E08zRhxfxo}T zAa+2shKXjmqmoZoPpq-DZ3a}@L)R{v6PM5>!@GeUZ{>!Yj!+ERW=2O0J^40zz`jMh zI3osL(HZ7%zyz|%bAj$Cjr!myG*-2)qF_Pvg0htlM~hHj7pp)f3PuS`j%g@C$uf-> zLK(W5Ml1Qr-U(MxX;vaZY$XQJlc;UjJbT6bO%M& zgKZc?R zJhNjm>m?nj)H6!B_8LF2sCF<`A^dy((qOUai2S~?Y-{FQD+g?5bk-rJo{w)7RnHAi z8=D_?F*kP61qD&rbi_>@Vnk^L&Af0yE21^A8fi0Ki_MA*cTw`?%W)SaDA#jk*t8Os zoR3NgiW?;#q|91s<48#a)^?g7wg@O^wormvYD3Z&E+Z%8DM7_tM;G8iDi%|bedt2s zJ}qs8=)OWiq)ajNt(k1_>~eUYWNk@T-cm(Wxrjcr5chBP8$CLa)yzj(r|lp8`}xe9rAlGe;2 z?@Y`S{C6Itn^^yZ1H-a@d2>$Jn4M%BQD0%?xef6aMvJ}yvwPBKuyl2kjFpjrL_b`y z7DO*_{3?yuO8<7oaygf^GJRRW<4e;-~7QzugS*Oi=4=xNXBTkCQ_tk&YMVa zcWk8&B*!2+ky39Ubk1M0)jqeuH`8c^h!>eQmz!EUILKt@6;3jZR=);70xg>~^lY47 z=|?4d#c9)b(`3bn;W*9)-oWlazc0?+ATu6P>G2z=7{>OW_wzE*TLvXFoo!qy(NL$O zP~@M#yPjX#EzNd?>ph;W(~;M|rRmnv_1he%RUh|Mx%sSNkIjhYG&CwG^JK+Nl6-$GE2gb>x-JY5UF`X?)W7?><&oDp*_q~4xKERL`Tv!IKPnUci|)## z2(@g8auIPuq2ZSfO=+K@bI~Uo0e(Rh{SYHEv;TpZ)sNY$xRr2Y$E1(1nF_K7{eyKo zdo9__{(zq#bS`>yXFU=#et1c2`y*yppvG)r#T7A2V$oxmuT)(C>v<4H$2#2~Tx~-C zZagqz!dG_vQT&ZPyoBtjZsK|B2iJRlfn8HH!S((geT&-=58JO)?t?$)^pn=XTRu9T ziagt?pNIXSxb8On^Dwg4W=fBvaMT1&)!XUVRY0=0(@iFE7o!sSx6`o>=1@WMa=Or4 zM)d}k+|6`aZ?-$te{<>f5+CsKj7$NA7u_W-0fS>fHvip-z`)Hy{Hokymf;zL)B%); zXH?~w^uZ0$iF80+)iz!k(j=z+V;>iGR z(u>?c;}Q4tV0TVyrflVT39^LpqWp}~f=CI$4|Y?0V}n zEqQ?(+3AE$$4ev|$k^HMr*G}3%7t20P~`}x-3wh?Bb?EI1sp~;+Y_NqN;wl=E>D6F zUeeE$u|FA4zVl?d33NI&jJdPW_Qeiz}jduu{P%SQX6H;SG9JIF2H=PgHWmBF?t zPA>FO7Fc=(v>m&ZX^=Q-P&69=Di_kFI6xKJlf84g>fVzh0q?WRjx$C#mk5bg_@ToJo%a1GW`Kmgkc#3V7LqL2VMqlR0;hK+`7-HIcw%5}h1- zanm~(je3LP>4gto($AfPZMm<=f5a;huvt^?X>@$71-b8BEgG>Qxi5LJ^@rS-q_<{) zcZoI6E%#N3w$&>4RcMch`mePI$jg4`U5GDa#}|Lde%fTe^DYGPNliNE(bMURwI=S^ z_)FHbyj*wQg&3|H)B8iN+e~4R*_Kx#V7KgfDlYn6L{${Bual^L$aOKrec~yUQZ&~r zcxDwmhi_hCeE#`qZ?gX{jk2$f@%bV9HY)peAv&nWK6%V~D&*k7KoH)Guz>AW5YGn3 zz0*1bP)82#LWst9CI=t)^~u3q2%7lL;r^g~t1aQ!YsGbyVI$0Bv= zi%=D|^Al~a+{VIscTImMB4oZRMPWRh=u;Fr5exHODGEEL7e07NKX(qcrtqT3=fNux zuvtZ65GA;8K~cCU3dz+;R6i7jnBvaGJp(DCYZm>*i@}GZA98RB%>wB6EeBt8A-d~_ z$vi^?gK=-`F4dMK;fog+FBF9hCkOyyh+hr?w5ABvkd!Z8T;$M;JVB;7xWu+$DTR*Y60I;UX%%;O_BFuaieK&Z zdb%sGZBq&*>3jOBZV@#^#7+c?)mXX5$&^;7FG)nKKmmtMQ(XnI^t4x&wy2os>WHOX z2<53obnLwUYdy{OJXAM2uEpwVNW)!-AF4rh$I};UH|`!q!3Qr`RoE`_HtDLen{K3_=Q$!y9?oHHI^>lwO*^R zJvi+(mvU?u1#}@ar3M9@M0fnY%=sOSYOU}ZLS`3YPioBXA*aJNLh=t|fIGVW^3X@1d#v?8xmn*8-?87PG?m;f9r?NpCc%L(dhG@#>`KF2upqqURs>=7tG+*gI`3PWc%Lx(jhVH3<5L zDZ4>pg%AFlxPmp8QrgWfv+KIq!4x7x1d)t5JKIGh!y%)kDEzNKi1ObhXM1x{4uuOG zBJ2}nk~>DuE92$#5pJ0RCKeR_4@Y3Tl?mh}avV>|)?=e{cvI2y|5VLmBAz&5Z-&e$2 z1!%dz0XabHg=H*|fmZ<~61+RkIoG(FAQK7kH#`eHT}ZPsBYLAq-lJt&f0UjnZ4?i? z+Ms~Q%k#!OA9XOM*?sDuYjkB0vn)`)Q9R0$2%WS1hZIFuJIo44tsAG+9VeF?#rx-{ z5~QUUSd48)P}^7AMBB<{yWPXT@8@G_qn^^M(Hcd9W7N8^tTa&^F)^kRSj2{X!Qc z6&^z0n#t0N!VDJF7&+DAO*(VG-%;6C(r#>X`BpOKT5Lku4L=YZ6l^8{A6(TUB&vN=LU3=m_94C1Vj}R6pMZASN;Z_N9203u8Hz%5}&s8o;Cx!#sVx; z-)5e7?_mFa+Gl&>f`WPe6P26Th$QEX*|MTh0ejZFciCAB!J>o)Tj$th1napl*x?>$dB%&r_Q8hZ46qc3 z*@}QAwSb`jQo@eRwx+aWv&Enbtll1~1c_y25hbJ=Qk@dsu%`=2PTf#~@?85#7uFhU zgOW1oDIw7UbobGwvB3^&6DiwhBOGK`kV~^fS$3Osvvi_wrPVMLs^I09<)T;+Qb{0^ z!>AxY#R2X`5>lXPJy_-n+d^^^#pz}l5YRP3IVo$hQ%a~TW!--M@Eb^3-#(t-e!aT+ zcKhY(^7`sF)tV#CLRWrS5HF+#iK|164pQaODd@w`%$G+VF|eEia4>S&pHe7BE?FaD z69?1IUus?z7*PDfByTq~MWWnJ7t|ibl5v8n_N$EjWPQ6i`FFN_yZ<>KNv2C0`BQY$dwu>C?DsUy zR({!QFilzkGFZq{(s&xn+Hsr|c03TIY@1u^2(xK_Vs@#_k3fWxH9M{oiz>+@6{Bdy z;hGRvyiZ?<-Uq8PZIHKQqyq-88I-d?qyyOvOs~SOi$gr4?auA57$Pe}Ulgck7Daue zr{bv0WucZCLp))%XJ@*KTOuGv_yy#@EEYUm5Ns0vhTMT=+yFNSkA?-U{|)kgvS@q# zYjboe(zPw;x3D1Ba8^gehc4*flasMnugm#I3}B(Rq`!~)NjJ#x3H!!lYUxur?gQ=S zVWdJuU=0!hwRfHu#$V>EP<)A`T8PdRL^_R~_q@A&MxxKcnQ1qB#CzHoI!{p`YCLOE zAZ3&cJn1+Z^D}!<>tVFGT5%g<9}cF$jGXkDW#7dPt>ubqFyAJB{rPX-u6;1r(1yaiBRWvBFbgW#=6Qp9 zOg4XH7#U-YLH zHV-8*iq#(+Ao!SQ3!tZH1D#+aZNsVY*b(hl`q+1iSdM4!|Ey~a<-FXA=Z+x0>OmXc z()X60-&rA8sc$Wci3QD7+Jf~Rqthu4O6|XDaJeL*&s|!JN6hjN!2xcsh(>;`q zs7O(@5|V>0cD6`LLsde|cOoJH5{$^;D@8$q(~#dq2mS11@SFIqSMuIi$o<( zvfALp%8+u&D$VM(tBq1klaYvw7Ni6?-<4DE`IwB_Szf_`brGeMjH*ihhPAXHbQX># zS>U5LJjjp}td>;t;+X@9nO+@7Wm|Q-NpyE6wHd|xvxJ`{yIG?uUX%QR{z93FIKyNG zaoU@;6)v(ZuGlxO^rJGeDqf>$F4w@!EWK0Mp!!WRfqV5vQ1 zNr4a!0^-bUJSW*1l~|?qqIgP&XE59~Je5i0>TkbYf4IK5x&H0rw=eI{Z<~ruZfYEo zG?ZpVZH&4=yO41}C?T1g|7nZiD-|poMRGhDNlpn$UuY+H`)Zr5NEg%w7-^!q@Z^l= zid_T!SQlEPhJzB%3iDGah5HMSpX5?>a<8GvK0Alr@AVN~QQLK-;E&3rv!+wv=SX0E z5o4GW4i}GOVQfw`)X)jB!Q=*YF)42=s7r+C&0n&{?o8Tlyruz>mtdfTBy&s%-(PL7LI}-QDMnAv5K$g1$wc ztn)m!ZR`*?9z^OhTLw;kV-GJqd*!%^=cylD z@BIZ8utXDF@9)vKxDD~J{pwpL{5hwev<}|#L4U;K!Fl1ROx62Z-WFX~z$+2hnfqFX z!$|DfabF8>T;9-%lDP|@3%9DoCq2O66z5^yN^B^)pNLdW*)gNFkY*%BrGY_wz5e>) zs)Pw;InB0PVXIDgPFL2z-KPk0cMFXzob(P4&rNB6lg1W$EKpe5?60wfn}i)*o@q%N zpV->8HBa6Sp?d&pSQ2zMQO@|#O6xKhTNfT|H##y2^-|RyF^LF%sdKa1+oF3bcqIZl zyHm%mkv4YfxBBmf*+DTd#JogR`pWgbloP;KI_#F0K>8kw(zZ`;YUlS2sV!CI?cdfA>W%TgzlyohJwdjoBlX5s)9>98n|?=#Y2yIJZxPlvlX-dRYT zWy_RUp%uePv!qy*1>hM;Q7vUeCj^)su>s{&Fchf~THSst*eEhGjv}EIo&A1BLQ^|= z-v-Yco=o-eyb2N+kF#!>>s8o)`^_@FqHw!sq{ViF^liWWcRlSS#wjPa&Jg40;oiJ7J4gexSfL$dcgofv?NP7fu5NkK z?w+moO24hPDxWPbF*+GVu`%6{3w9o$c^*dGiAE?cneG`(uk;&C>k)FvB<0>HR6g}l zbl|JYe<2aJO3c|l!8!lN7OMc8$MO3+6T@_Og zkL{kGjopn3h=L?+@u4Ou+v;C)h>h4kyQkTk%t*r*Hp!`g9dqxBlBdKV418Q|s(%LVfya@aCx3Id3*wHzO}Cu8gnbcgl>^%^~9vtfwMPrTsGQR}jG5kHywMEl}=%@duA&Uy9|XT9?^ zPjtJjUc^DwW$q5(TYT!x(PdZl!IuLMevevdH`UL?H>WXcqUwKSd^8T@UUe>`85=!e$$z7Fzrv$WU}Kt{W)Ek2sADVN8@H8} z*p?jA`u^tg&Gp00Pv5`&@^JghLzQw=pX$l+Eb8G#`uq)FjrYD8CQ#8dP^t1H^fq(Yt@ zTQmgxp7<PfM>O5#=8DIn*>v*O3gm2 zpJsRV)wr_XrrhRzpHH3dlQ9igkY7X3T4pS5M*k->pNE+cV?m)?rh7Q@SU9eEA1!KI zdR-LZmcbrge`_C)UTvL+`qpt&xphS2RWs|@HEta%H-x|3-`suw`R?8AM;#?o2GH0v zxOt||Bs-)s(nbBr_O{9#(T9ur%>mT*y+jCOMh75l4P0Q{JKXA`0Mi}(Ssw%#_psU+ zKxtfkF@SL?FZ=o}bWk6o+<*FBeGvDqekR)dlBXdPZH=iPeh+!52MyM%Mz!YZ%h|WuRYtU%<|`x2*tfQheG^sH24}+U z=Wh?+|NgI)>T1OnSSOY;-MPhCS+Cydm^ssZJJxdhrl&=4hht5mqNR_-CYWsLjt}1LIS3HxJL^FbxsNxUm$p`65V10mZnED-PyhJXvR$p zxUM=2*Ya%7uW|pjF53kfIZC&`&=GS(nrQU29AK&4p0RdwyL-kq2UyMzfMst1%l(|o zt#dzTV&kGl2M-?irEl#zOV;Kt`~JiS;kd?~+O60+xo_EQ>*8IY zk>`-33b%;1o3+~_+HP)ni|F~~rm&uzuipdyyUy_xb)K}Q&GAK@SE_Vl+dq0Hek-wU ztI)pWuCV=rSOJ5F54`vM0rSP#zn_q z^^98+?=ozu`7O^cQbzD8orQXHH?`pdIt{%t23A{B-`;%vX{`p~OW$6_$5y$mmFk;0 zKCYdv0kgu}G@ZsT@w7bV-?1U{nQNgql)g!lN5sG4&`bZ*pmV8a+0gUCw4bm?<|dw3 zd$3nMpGHD0sZB=rI2@b?Z6)SW@5ef2D1lfdT~ni+0gT`(^%B2CRnE@j7Hi7OQf(Q4;8!5I^xLA zg(xCpbO@(lmhn(8>41YwY0VA$Q#9=Um`V89+!16c9!D!+5gTUMaAqOM`o^aoXsSA1q7MS>qT6pjXd_zOR;feINJYY63dBAKo zXpm3%yjI>v*oLA5Ve(j69Ryd3p7%Th@L-DC@jw6ZKi}H_{Kx<5oE=$;;uE)ZV*gUK z`Z@tiDN5q-FLNx^N{p2om?=U&vuVg5jY-V%*l@@#4(8evNpEP1QY-sfyh;_sHKzAp z>B22B8>DqGQ@drRNMt|A+{7l{kTe@z3CDtvO#=J`aYzh35Vc8wG9aM<8qG%Y1pjHa z2SIUus;eDhw51GmF4Si4N zUWd{X0YL*IB!VfXKEeXLNflt<)Em&kEu>IiWM zCP`i)u7Kb{rZyO{X%LFvpAcXL`M>`rE%_ocDsSMWg&o0ed?Ui)5Sofdz?2ffN! zN+Zl6lnfZtY;@-zlK4V3n!pl`#a?Bmc+YyW(5!+K@BPi^o9l<0pT2+l<>B_1heR(< z4HprmKZ{F0I?U;{MQLjl%vo^}c1`%=Gnw=XJ@SNS#0#woy^z|Vgsue&DDQbfBpEs7 z6P5Ie?tmiVMkRbgUd}GoJLejrjyJ_sJ^U24mq43tFl4@f$rEul{RtVVlW9+gCC{b9 zKm0!8XYM@Zt5=#=o#qa746HPt2|{{H%`H64 zC0c53%c|NT_k-}WXr>$Q*2%H>ESH=yX&az%CaP$UbjA8UC>a<6{<};F>)4KS!PhL? zk;7_)SZ+=hZiC6P8K$i0fCm$s&QjT;ImRI$O@Y(B^m*4HzmA!UrLr=Ef}wEW4REGJ zh6u|)1#*wfK`;Y9i1vpB4z(l8BWzcCx)5d#8a*6X(%8h+yMeN1KJX&4WEwNIi- zDL{;=i=RbXhsg0#MD@DYXmwsS$h#oIK-jPZL5U8WW}*D5FGYA^S%l9RjByz zKdp$leJ@lSClz!34<5#afT076^EXHDd`|6o{^PjhqY=2i#|>`q3*3-*(GvI{tAQ5a zw;&RIa3gvZ{Xo*s(+L@e&#A&&u?I9mnbtIwqHQG#lk~gaZZ@jye6dVfx*&1S>9Qcz z{>(H%3dZFez&sD`na!*)GuNNN2$S-g@3jh3tLb!!45v7LGA4@km(@(Sf!>W6Hs`C$G2XVYdUZij|Hx+c%d@tfmo-}ve7ib7s{cm5qs+4E_ zxy{vTQ^u&GRBeTNT91KcMk~81s~o!_cT@?p3h;JxNSQf+-5k@pS`>{@DdblRL*X8j zZwKu8x*aIHIjXtiNcK((Z@qx;rMr@~hWm#v0H1Sy&ejl-5yz;(xBRhbnof#E2?q)8;@2bJbEFs^`LGjG3@jI)5>e#@g!n}PL-d8rN zFyU0AfgKS1jtMO5#JSxZ(STJ6;Ok`P-Mt&qK0-nX;Hw!{jV$0HAlaROq$1#6D^XPi z-0L%_bUJ|Mi;`LxX^yKCWUc-bLH2(nh@NKEJz#}HmFL`Rp0lXNRh;)Yxad{zL7wRk zFN!aH`&S~)s28Oa@=W`eY76-KlPI`&!p?|cFW%(Pw?EUFH^nk7`PGm=vqAjjHM8w6 zRM5hrjU`%fL!ydf)z>JmL|aJK^Kfg87<99B^Rmt7&ch@3MF9z&eZMbKm$XK8I*o~a9)l1((vQ$KE9&J8*mYu-ym+C?rEfnP=xqbF8eDuP!O zEGrQ9|9(Q9VFF~rm zEVk^W~Zh=`MsO%ZVcYU6_cfBsc4BA7ir$b$D}* zI^V2{FZOwpzkF28qoidp)(vs9H=X8$z1)#?rCu%3ZP zUVyrep}6Fx%g=IWuIxKMm#y_WewI6^MWSauMRsHMrVnN}*kD z(Row29A6|`{nU;ujYBML>4s1pS$-jiMN&+aDOPVRi!>oelQJu}cvelI@iOJ|2O3?K zGOH}kNL3_(b~Ktx2Zm2Ek!B94_)W-6ezv(DOvIjNFOEr;4?0M41iREu^emqV!?L6r zse8Fa$t|e6jDYGE@hla6F01j}(tWqrAaNqs4|Ecyql_%JD$!-ADg(T7RNlv`NZ znu+bSl~JpSiOsQiaJzg`dQO!|%gk(1W$Lg5S3qU3%y!3A=I68%=yN)Nl?bf$xC z>|)^3j_T%LA{X(^u4&S>yc?&GBCV}^F{w!9Rui|VNaqzR(k3EcrAX`J&m0lOb)}K< z%ARFLz{jKH`TIHjZH`helPX__)#U>I_EMx0l=@$&y&$z-XwKu2*HnP4R;ry!4tL6} zXV)h=yb7zzMwE;elfyk>-UP8oim5WqksLNv651)Za#)R#=;f;rOqQUWt5l|rUtG6{ z6D9XGj6-^p>G|1Jl+Y+N8_fdNAxGZTm?l+yuDdBs!Y!r;O{&obyiU2r;w@;BO5e+( zr&2X?+tRCLV7{bRcxhPy#j4RB!cHCbOBZu?bylSeoq3&57&Cf`*QXWG(>m>{?3CMr zyfq65bZcqdmIJh9O$E0J|8ET;uv&yD`0~ zL&-!T*BEVy+6DBU#|~}5V>TPzA|XSL48Jk;t;5FlLcwQCMRc`P-`eTv*<}Get8b*56+arlE;MB@9m zu+S|cas7SqA`!P!690oN0JN%F09dC0=C{RHW#sED^4cZp+ZP4&DK$~QPNB+eINzE@ z+2w@#7Bs3^Y>BeS5e8>S!pttHSuT;c3KbF*I3MGz4wWed@W~-9oG&fBPW*MK_b3wZ9@4iJ+njbI ztC9d;DxLi%^%XY zXj)9AZ|kteeMsLf%KyA^StQ+7Bz;?l)#yX|cEkGAXH; zr?UF%H5w)EoI9j%x9^n-%Dh1Ow!5o!1c&r(6>)W;O+f|Hx80p9Uf9$0ZM)H_tXg=T z%y+I{;gG(qFn!zI(dvRj`nGyB)67V+;ER0FPt}Yi#psj?A8)nNLzTZ<)d(d|7> z-{w)Y>dp&UC-Pb>M;8$JzU6NVX6*Izw?apDO5%Tz{OyII{B5@u%h83be4RyJyZr4% zkxlDG^0(bOoJvr@q8#$Knh|%;RQYYU7Ig$gP|2Ry-wGw!$@S=6%HQTm*&9pXig0=t z*CY2mfqP!$Zp{J-+}_SDNFNfoMH0B(Lg}^w3EbYQeMGfYs6zs`fJR+3n#E!+{RD1r zS2xq|TLQPB%nKxN#rc3c>6Mmmq1x>PZmZX56~yAL?NjtbRiJ70}F;Pp$Mg17V5u^QmHT2x5_Pr>c66YxxXb zrP$lmee?U4s_kyN&QtgLbeTRV40U6w~TdcuK?;RcGfaG1Q8R6v-~CPEpOtaZR5|#o5(* zj=jsGw|k9?st%RdqCV|hvB;h#=s}$}cD%T6W(&XTAlDkeiruam9i|i{;$57lVv7vR}Us&R(R{D5XCRYjDlj`u_5!B zYoVgZnZO>Idqn&z4juPD4LX-<#ceXWM?xYtRk|_8)Y8S7%3DrGUnmj_y$PyCb3Oyr zyAbc>e8RccmdYhms3+gZ4ynmB^t>>BGn$6#jUWUQ4dt%p-nq=1o<_rc(HAMW6(ZW~ zYW;g}FnfTem*-2nd9E0`LXY41oZ5?O8jn$9Ld-Sfdbhsk4Ko{kx*GWO2__5tIe{+Y z#3utDgbzXr_}BaRug~#c$SB~@1b9hZYwY&s;DX8OW3h@gxdQfpG85|= zZ0T9&LL@w_8J4m&yO#<=!&Ac{i1kK3YYSp10nkwKZ$HwC$<@FE^GZ-{yB)A&E_FaV zJ~?#6i1=W@0td~`y5My-&0F7bwBGV^)JPKZTq3;rM!L^kqRIEFW>ee3Jv z&uBck^}&a>k!SQum{ax1XV3Z(kY~qsgDd*xXdH%9+{ark zd?mgCR%}kL5dkEJtY4zuxB27)w{2t^{tcFqIeiuxM^JGq2x$min)uum6P{iLq0d5V zjDHT{w|Ahy*!bKRg3wFb_%0B0nqEB*eFtB?;gCEFC7&rJr#NRaC(P-~&nJEm{>%Wq z;2+Ri=!1|vef%7#-b9b6?#K>^KjDAz#GIPUzn3~HZG^BOvFVt1nJX-B)g?2_Fs2=4 zs22>cicJg}-u@bs8@`oln*bcTtuJ64g~u|8;!KU)=fr0L^B-a6ky4$=7-FwciJ-bt8s~EEu z*|bzAwOK958kje%W=KomeS1SvZe{PrrQBpi1FMk^g5TdeVMRD*?}WuGvVk>{72UfL z^%?!a{Jk3%;&oP$t*8pBY>caKpLjS<5IfC6?p0SiFC%wZwiG2GF;ZB+#E-Zh$wiBA zUGw>sEEc!O4{m!9I634A;zXZ>9(jToYD~Q6*@(G>2ZRm=Y(Th6hWr`+2tqaq8st`h z3=y(M;p>10foDHf<)B+Kce01xtfea6Y5^7@_U03gS%P2>1y>ogs*}t{vq>;@_D@&= zM!UiOjVtu_+HUOM;GV|J-M>*eUeR1$oktapsY^Od;s7@0j%Tv~Q|sTVAp~!jAHK8s z$c?@Trv1S3`9x&X=R1-t`mSPZD|i@VG5~Agm=PK5G{`me`<@Fh%zNeoc0xQro!q4% zN^a;^ zRfYa_np}&i-hB`lVsjcgUN9LmpIZb#b_hQtNHm!GtdSsjngz(qokFl&vzb*8m;%=2 z7wfnYjU7i4y{;V5W_QA`8j%b*I^tx;wE@SOtT>J~I>dF;^C1Jk{;>^#)&NB9GZ~ki zsKPFSaTx!d1t*Eht`i8@us1%lAvSwt_Kbi92EW<2;k)^KY=buzY<&J{wc_JSf9YEhyy=xN0iKsN{w8r9`udiJP)qSTG>MDet_LT~%=O>%k%oh#)!-r<` z!-vJ#Lk%Kh#;#~2WhzHP)|<-doWYHR%bZbF;c3Hkk!g#IxMRYW9Az_brzaQ}Q@3PA=s_n-Q>H&w> zRDe`VQZptmMe8rGVJ7KV`f}usooQfskHAjUE1FrkRxM>P#W4GrzZi&blIDY6Zm|?C zG+YkY3y8w>68oj74sbI+gasM|OF>D^Y^_mPS88C#3m=bX6Xt{A`2o$#LoO1bwJ5EF z=p^*~*_)%*(PG~c5h)%Hv>Z%_csx(W@K!WYDVOv2w!L)JeaxXbF6!9mV&ck_OQ$1B z88hV47aYtn-rJAw?r-kbk2z1f6~nL}Z1&{&gIA`ehMt!wMGE`_f6Uy9S1GwQrG1ss zy7T(n7$5ZzOes<+h<$_901}^HnA3c7Y&1B@3}&7J>X_5{0D%w*Ar2)I-vj6BkS=bp z#6a}+`>zPHx;7F1KDyM7pG2_T=je!33W!d<_U9W@=Uq1C(K>8g^U)?n465g zPMrtnF?=QV%z*%!s-IPyKPU14+gmmer%mdu8nh+ORqQ_Nh-*5QR}G@U$5TJHAbs%t~OvAXhET!DY7tIVWGK*RF0T(JjUo{7Gzh=N1vIK+7q1xR|dysZe(C! z`6C|y3^7O&{2aQfrDg6-Qq@|R*d6)Bb;FbF0*EE5rNFITO4=YVOIb@y@tGpl_onWE z`dqJ2veX1{jj6|8N^HRK=yEM*Y7j-51CiwhB@3MNkYpK(#{qX#NtG#*y?0uRgM~;L zS`Z+)67A_-esv;p9SH|TK&!FL_eBqgsPT808;Z5~IdPHR`;%G^8%KyK9y!QVT}bCl zCO>FEDER>aZHT+ce9vM*kYvks-PzJ0pJbj(1m}cKU>MXIpAgq0KV0w0W`mJ2lj99V zSEvIHHx$Q)#2U#1;xZ$cHp90wEGi#ju0oK) z@lJdW;*`}Uua&dMJz#UtH)a!j;K6TS_~c>5is!PqZeVAF>2Sy`4s%6zc#&Az7@a9d z05lBwj;e;)moebCm^cKa{ygm$<-=WQggqmN1Jwh}0pM6;eU;j;q5BDI(4RqzC}}EA zoO>Pc-*J20e?p(dr}oJ6c{p}X)OmFw{lNkt4g$fG)seR(=56RxH{eoa&@kqZ9AKR# z?26h1hOLT0bB9S`fQAt~2`HBEY_4EPR`iR9VbIjaO<0l^c9=kDDhcvf)7rEu* zdn_>^?`&uWBi2=jNwJ?vZ5uELMiHU_24u{9)=(+qYr>t04LX2(B0ypf2p;8t$0e*eix;r11C!sg<#FC)>fiY^rA`nS~GSl#Z6E&O&D8>+_7FcNGVzc zil$4^i)sZ;(bEgNOOaA*P^QSWF3+2PGDYlH&u0G2mwha8*>SZ&sgvRC>9x|Yi z!At6)k$CnrtNv!Qm-nvU)*lyhZM*>I+H);738#q5PKb)qNDmVjViQJ?fL{0x5YUr1 zwE@Ih*3>6Fk!5*eKEOE}q$F-Epz3T~i2)JR$sCnvj|A`@LD;)szKQ5y4S<>gCP%x% z9001~n24oQB0dRB2Jms}m@I=CYw2^z6>?YaXrEHVU!T^OV3vqx~Byl>EO zbFrQ_6Yh09cf=CrIYi<@CYY2%6|Q`aGlOXPM0i;jyQLQB;>?RUVsYM$$5##^4v3d& zPVh@S*A}xaiIo?c#1nE6l?{SMVnC-^*bIx4H+|1k$~i`DS;-wsCif|vt4`t(2dgZd z#G|Un(@x?Mh&ZV}83&{GlX~>_Va+DOHBBw6YOzy^3iiI;N@_^Sz85=4C|!<1^OoeO zHaeuqQSF(?HGp{@d~zp6crf3@G|PEu9P(TKAf{a19rB_oyV&6pp|VzoGf`#z7_8#G zYWloUgRn?!adCI?9_iC87lNjDd#CmlxM*BnBpnSG#}>Vc!S`+TqL|UQee)dko4Tl6mO zL(I0HeLlcHNAL=5$ey2fJ5e%f?vW6yvX-@FS=laDD4T3Vk@i0_#VRrMb~`$GDt^L} z|3>eWfJNWZ7^@ykReu!u=CWG?XxswDkxwVle#50nFn^V2Gv03|GhASmEH!)P5m+|~ z!1V4E$~q_h;nTzCn+&s*YUnbX)Hi)u{ktzxCaVC5u}=2hHD13KM?TiLlUl1~raPxw zF~5=iEznTDDy!QsOYe7VK;U|`|Wa9a}W^>hb!m^PSW;0H5Z^CS1g59jyG-Cbk zzkUAY;nTOT8d|Z5J3g|ym@IA1>|0l9>{IkXD`K3n-roLlx7M5dKL7v#|Nrb=3v=5z zlKv|y@7+~$GnV+!)3ZsHB+IccPVBMdnc3Ujb5Rmyb3=(*l8T-A^#_2YEb2iLAPF{Q zOx48V3v8kvX!O@;EFLS*XWupR!^vs=r1tTz&u7k`!5KxuXKK%9_N|StxRsZ=dFCv& ziT>eaY3q(|f7eewR`4yZcO$;d`^S3(-)t;i-=W05Hzr{&gqbAMZ{Z zwP8EP^zOrnB-Q0sPaT|8p5^-4QnR(I>4%f1+L9!t-S^JA`iqOtw*3E2yhi-j+LyZV z_~fq1st0tf@0fW121mc6Tc1&D4Yi5dKXZR9QKw8_wBRxS#^pYWdIu=l`$68RbA6_* zOc!72s;y36A>=Rpmkiw>rXJ8f(#EEKi{AKXYs)9E!(DCc_W3sONG*jVn+feiWl5P zaZ|1uesszU6_Od%14722@0*#{`xloSEk~fO-%ORsv2gg;lSgv-O zskj=!zOMQ1=JLH7;$E~&sIfA^;HX4U_!9+fxj0b~v_bB-OPY?0SM+R&`vAD(y5>*E zq7S^;T6n+FPxCI7n^1$bbVC;&T3`)b4G6Ox8-MS5x>Hx1t$_4>)18#V9laA{T8|Ik z*knHOd?x`J?W$DoWGRhpaMFn74%XaTZ2=R;scyR3!&3@z#1Eb-O10HdqFUJ^t;4|} zCz$kqn`ma1I?x5D1D!WEMf|K;rm@I)jtDNM-r*lp=Qc-FhK6#}z%#{qrpjKNXUyAc zZvyT&s+l71j-#0=a__jUxdW`8qv2}&L@8U^X#5iHfs^{sxDj?Pf5tNR+fIb0md=*| z2T^uFK$K$Ao`j4>wI#JPl*TR-N~sWK%1Ijeqm&Gj_E*-S$%ak@65oyw?p7u`p}%Mo z*K7VLCirTjs!B9|Wtk@U_|MopB$3^8D64;ELn3K}CzeN!K5=jNX*<67q-#^%zSC#A ztuH262|QKQzw3*WihX9F&#|wjb%`{J2z(sk7d_)F5Ip9f-%sdwqwS49_=YbUewk}6 z(Ro!Ow-D2fdaF&2#+K_^b97Z!$gwB*P4B=X2vLa-W|rly4<1*pe?VR|u}r7pbrqtw zwf<`Fb6@qtW9I?J9RloG85cGsJ!|@7gqrq+aLv@QKC^5@w6B~#pX>{3;o?uyoQYw4 zIO*DkW^T)`OrF`c0l_!=GK&8A(mghPLrZ$lW39GwE#It-%`0Mh&<*uE7UHlWCU;zG zKdcqD?B1oB@uE-H7yG(tB7Wl|%*CB|ts5c|aOkq9T^nuT*IL%M;G-pZ;E97_JMNu@ zg^$RMws}M@_APTYUu;|tomg0xJ#8`dNmy9F1xITd*4_5WHm3OJBl?Tl@F;J$8)RnU z-5cDJcqC=YBS<=u65954Y{W>~<)25es|212AZAXH$S1^)k^EzZr`ZlVb7P{#4muQ~ zl`GE2BwGA&K2G7s&s|d;8tRQK;Q%Df1hW|{7jGw3MJ_xUIV$7=x#u89AZZdVc+*Ci zM*}&ECfNE)+fju_d91ofkc9L(Omi)rZ<1@)2a|6CBI{!-oLO&+aOOTgL8*3HVP7Go zIOdvw!6c6S6ENOt5>lg6Ra>p7R<=kx&LpI6uGuO~I#6)7N&x|dnQl(egLamD%@sLh z;wyjTkY5-8M*+f6TeMh+r7Ewq(Rl3KGcJxMkA^pGpt*W1X=P#oQfc%7^nyIvz{#6q z?AAMY2Tppq)(2qn=0IfLh&-?)WJuL^tC6KN=33i;MH+kjYa6`5xC!MmA5UeaT5pON zOE1@|5ls40Y}E+f)m?^z>p_1sIDfdgAKl)MvScl|Y>OWMY>PNksB{!!>kgSh?h&_) zGk9i(8D2oR)gqr!UVmwJPkU8I&(w5*L+pC+)@j3&Z*Afl-woH$ofLA3AKaS7q*avy z!#Kb}aRnksv(a7%4S#Z*{Y1vSi+2oBhk{V~CV_6M4Fmfg3}i z@4a%Qkb=4dqMQTV*aHV6_W%|W24~asf3FPF7~95b&L*3}90_v-(Hw!xe&`jO{g7$I zC4qZ0_zw3p|A^iyATA}u8=>`yRh-JUnYV1lq z-M$SGjI(uZ5{WVvthtZ$GZnw9a#e{0jU zKyY|kAK+H0WmLcPf`nEjqE}hxzo@SizbhU7G8`q{r+7|xwl%fj` z$vH20cj6pHck-m!?t^Q%(QALUrI&ZkoK zZ!{cAA5|Jx=7tb`4dduh<485bUr2X)yz?hz|K%q9&66y+wSvCZKAY`zkHOLLAeyu4 zT9@zW#)g8me*gN|rtWqG-q#DZK6G{awQNW0<>-6%_HO<(UuFj%Y4L3IGoRAT6qmWX zVJe!8ex%Fx97_D*ri;s4LQrEzJDe@g^9_ybxNy2MyD4VSwokxXc_FrUFJK}AUE8Ny zXWH_^$$Mg0wdD+x#yV$KdCS{jyN0|-HovO1;w=<#?QirU!IXZm8O_XnRBJ;eP&c2n zttkb#8ENXMfz?g@n|acjYCReW)WV!1P;1VRcL079haE=I8k@$i;6Tihn0F9lTa_9& zt2~E#0Qkbigd-Rv%Lk%r?bV^|VpQH52gEf!M)if+z^24?I4njP#&-zMMi!9Z8O{E@ z)3`vOc2qp?1e|XbBpKrmg4CT6DWk6FmZHS(D{5?rojMqBfNreM3!Gh|#g=kmc(Zny z$uGEGoDi084af?Lw%+g%M`%|dI0fu~D-S9tn+O)jg{(U<Xrl5r{K|7_98}Y?QHCa1V_V)iqtr%$X#@h!bL+QWNH4$rwGIuEOW%`g zgDw`<28GZD%D)4~PH>aAg1QGBa76C0bJGB$u*<26v=0#eHxnydpp0b)xfsY_vR5F? zKQU+#NyXSJ=~k4bn}Dgx=?T%X@Z0y}58`c5J->1&l+5_7W(krH^CiZxI*_0ka;&0t zPHs|}vdKbRR%WW-Od05JA^Ac>Mo=I@5QyA!-~cp&hpMI*i}6TFAi?(|EUbkh$w5Ku z7*(PBD!%E0HtvQz3KGr4lpMA|>EOSL@Lx0Q)NFRA0?d>b`ql9`84%79e)2FYRPj+B{S8c7?cn%w2MM6|KJ+`aSl}OMbR@ zv6rrxg1_OsTWBVGc7M%$Dqa5-jD9(?G|{lhQ+wgR%YA?D?1S&2#SebDkF}0P<(AC< zUl3#EKM>;zcv&;=UM6tE(C9qSb%jjKXxyoiqm9Z#jR){#`^bx}qrATI_s0CgZcYI* z9$$@)L%aL(+=5q7IA1ENe6<9ZB?UuYrf(RjWy_h z!j3IgeMqw+^rgPR>;ewt{ujHs#@~}0OB}Y++pJzcprb7C>jjI0^)uJc zv1{1d`cPB1{^Sm|wmD^cOD#AE$zizhsb6!qcC?+DN%!IO%}|d`h6LdSvfk}j=R7DR z1gGr+GcdC0#*+42>t;4iI_xHM5_aAGnns!yk;eKyMEinxo#X!-bX+$8_VhfS!JA2* zz*6Kl3%Y*gTI&sqz5;(JZ0eBSSb^3~K|_6^oM41}WLhJ}{?#cTCTTFN)U6;H8V?!S z4kaNfoI7Y!j21CB_N5(?2p!p`)U|W;R zntA8=nuZp{@olPpcdh{FhAg^}j5CJh*W69tZ(A%CDbw7)I=@DZb78isn7ct!Z^J~b z-E0dQA&+%LkcUB}#B&g$y;EA!3Pl-q^;<1KeQ=}?T0_oYvu-GN5LjC$-p55`Izijo zX+3uSQ58<`FYa>nh zO;erVjqq{uNlJsU=M_!bqBQFhS(XJm+Ds_WVD>VxF!r!tx|n_xI|z6x7yM1b+IWCp z@Hk0%VYnlP|M~CF{Wc!@;?ip~LVTnys$q464~E#tv&et8hN<$>{#oqV;7|^V@KP zMs;d^z;%N6)SjeeS}>%|Bm@ucUmEWyiu8VR{(mrmuF0qhS%y66s2+!X<4U0h2V8Zr z>pk~?W3b>fU`xt1y;BLRfy8%1mzJ!FcNyL0rG0+X+8?THT*W55vaPt`Ghkw3P_+p2 z-PN>m>;I)b>CT1ri@fi?j$K|(?&Zj@3C&Qqyz z|JdHrMZ!<}wMsWg1pakim%GWFrO5k6w5U$9`2Y)EV0$5c+bTa6-${jX zaCcni!X{Qu!QR4^5Se*p#J82X$rB+-9(ag&NM^J4d9WV0H%mxq#=ok4?q&Qc&`7vH za-Glz*ZL0-oFHhK2oF+!P5Ze+b68j(^H};-o|6D`DNtW&YQ6i>$IzU*)#|J)Z=tLX zOKIrhzvrY-fj8I3{8TgvwbmA z8-80$leG0umy9@e5|mCm2(92fiLov2Epl#O5-CvJOEw1?pEv#*Nx<>toWDonNivlt z6>C!YN43GQclJc8ehPXDf6{<*iPog=pkc87qGJd!sSOsr^{WI%x3aV2ucu(=M}ges zezoum?_~x0aj;n|xuZ1xhaaIaiCI*>>(4&j3&kNnuZ`;W?mk1-!r)xL!r&aW8zKy_ zY8sePi|!bV5!}i!iMWZPA(<*ygOJRv1kKl?9sM>ZdZUyO3pMiqSZq?`?qKthG1 z{5>xKoNilqL4m&kuY+ClpIN9+k@S{~LdsSKmXAlhjQtIXCgMuxK9R#GDC#dJR`@U> zPS5%7Izl++i6}rqzTC#TSDC2p3;O^(5l;-NmGbO0`9wyOss8P6J?4*^pMUz-B0-y5 z^iJ0G12e1EDwbhO{m$~No!92QGV-=ax-x6nn#@U>@xfu-K*#C*G1B0#b+V*W<&JAH zy;V)0u;<^^f@ilUzu4e*w<|UvsZFQTzA$o&nim}^rfIMdFFm}xkJtZiC5tAR%3WU> z@}p$^g1=sfxLCdBML1XLwbsTOJ4|K|sq?;1f;cJl@mQ@7qAV|i8~d8({tqoX;OH5k z(RyFyBqR(Ar}Lz2l27}gIsS&`*+2q6BE;11yuk${MSzI+UnQ$`WYM+Kg2!1~L+7z( zcott%;|&wF#9YyS8E-9pJ1zEr-ngqEd-46YwUabpgp6#FalSHu&$6WgJPn7iUMPNm z42@fYqo&6z9eF*JV8YS3j3B3%Ii?^7Tmm=?^3^(8*n{64A`_>`LNOW>AQ4Acjn2r$ z^LEXgBRFRU_`U`o!9;%uD~c)Ar#uUqYS{ieqWOK$*L~eLNCJJr6|@qGR~4-*#YXl| zD`3U184__a+%x~D2t~5_ktk9#A<}y^CVkup<%E5>%PUTs{Wv;d&OX|AS3YL5tJ1P^ zY-D~}%VcJsdofVDphjhL+8^A=j(Kxqi6mtxe!jW&Wp|-c>Py@;%hL@YyH&SJ;>oG@ zx3z9;PfSl-r)qpZ>(P=W;5&qV&{>yd-9Vu~r=T&Q1qM+1wJU7b1>5acW|lG*l0kk# z!Rr8BP3h?w?Yfrr9kk1)=n^}_y46IJb`1xVjl6khPWdNxs=H+`qAY*p5A<{*Hd2nx z4dRF>%T?wSgzJ;qchFSMj)&D5voZPmqiWV>)$p2J|HZ&1SO$CLa!X`bF1Hq>oh0k# zaN6h8?VfyjSnl6G66U@j(~Dq%H+M}^{(MzI`MX@HCNjVW2|ia`i@-(JjvO!0DIM$Y zv+eZE;i0Ys$+x>D(OPYaQfyZLq)g1wwW0~S4TK6YSw92>C)D8N(HEqPQ&De<>}^sx z4*(^D?HdnS^_7~4xKH*}-Em!%d7%1P zbwa`$G~IHOl2w(p_tjgG_EVQs;|=M$s!k&^4(XSi<4}{sd$In z=rwDOnsIW~a1?M@?I*yodObY=izMD7leCNi_L_)W0L7#d$k6~}>p(FL{Y#`giW2r` z4`Y}?3Uy8%y@eOfFU1#0HdD(;1{l$-6b30ZsItXzI(C@mxL=s&g-WAl8Qi{-VGOW{ z-gct|IZ(Wq0 zhs*V6#j&9ec%<^EA`^SgCL=@9ENYXc&V0wm&+sgDlLQl!2e~rqaCZBZXuiZyxemI5 z*A++s_QOMxm@NwRP6@rF04EVe)eJ}qBFgdN-;z6I9l4gAi5I?7V`pIn6+hC26;)aL z;OQvK$>ZvlCbph<=E{D@6wq85fCkCK+G2@NkY(b6B#$m~ElJa<7(0Z@OYa`wDq*49 z?sYI%MLG)hG=y=}A;L{W*Dv5bh_TFbSK+mAS7nXthoJ(+4j;~glj5vQD3Ye$wI~z$ zbCeeROd$VKIj{#1e@MG&w?cQ1?7Ju4{W-ATg~(0rzB}4R0qq*yQ;WqF7r+_J3d~il z^($Zi?8Mc(52s}mhUICT68lxJJBO7JRF@Fg-U%;OaBJ&RYN2Cj2dT;#n+=Zsqx#d} z`4eqt+^1Dnq%_Lg0$Z6iGV>py#%4c4cm6cIeK0k!qkeBbk>mk~NhOM2|7cb)Jb9)SH+l#gyuKi5n==W_1|pv?Qf%hUw*39; zvDTNySkPjm;M>p+@EmE|Z>I8H*oxEA0YujL+L-aYJ}>FXo%vY0Zngk%RJP;J$*1Dp zlS~0*ieni9xPEGkSYN_I0hud{;v zzsqpc2+|Qv@#5G`f%WdS@f~z&Ue<0l-=rfvfurUQHpv;p-c&b}66SgX5|5~G2Mr55 z3irL)TRd7i+uu0H;>vdra{s!*5S>4=_U1DlYA**U2#9xpydG~Vpfk9UZ`SAitm>A8 z3zp38QO>Nxbc^XG9`Co2tCCpvuu=c?m^Ym4Nbg8bq!~gxujtIMVt!=1I$9Oedi|O! z<=acNyho#B)h~A8I~+WsRjYF2pWKGF7%y0 zyi>aX&yuh+(|4S<{M?2oF(S`rA?p`n3VH}*ek18|c`PhFCn0)MC zt!~O&pdu^<@$&VJj``F|Wl4e<(z-|6vAZW@d@ARO=p!e@f`@RT6(hZyW5VPQ=+=Ag z&kk$LQDmOeT2(Hw1;8icgVcjQLq`Im(#ci_daE(gSgqlQ;r|7TnsWaWEG8zPUSR*2 zXV^vOo<58{`_X^%U1&-WnF0O}Wv3xQL%Ghd!{FexFRKLIc zziA+;0%<|dby30>QN5cPd_CRaB3ls&2oEx4t=6Pvnl?`n=~A}|;`!h|;xUVyfxBtsjAd~J&H>-)O4R6Q7Z9pdbneAhYZ z8Uu}5f*MCslR)c(Vj1Q9?MxSlt5q<=ix1o0ul`>CaTuj$6YTiddDfVc18+@oGN^C= zP=Yb49ZWJsWITMIiyn{@Waee1a-A{gYUQjY_5BjjR6YmIJQjC4b9f)i2O}p2z1`=EZ&ttwi zltpbNmla`D-7DGr`plI3G(RE1Yfljtr_qmc7-)gR&cXSe=<;1NaWw#WphDc9r2 znW;h7`Qs0U105F0RNp0hXi(^;z5_C=|r+s z?U_^z-}N;{{}A}Y8VGpM;oWqyWqQ=v0fVQHVsRbWYai(VN-+6m-f!&AjtsoQiidTP zu9Ujz^F;sX_rx^3)M$m@0NOlHpY6x@0g*N+dHJ|%LL4+wM{JOznGe$@SGL=pBO$uG zYR_t&BfLkW$MAFomnJYiqKcWdKOXk93hdvT1-)}-gg*XZ36W^FJ}j&+1+}G)yZ`w& zpCS3UQj03vp?kOpGe$o@ojO6`h$|<*_zPQggx?+5S>VY?kX*IjXH?09z)P*G&-AFu z3-Z@n*_Z!hX4kinN86zClkv&j;k>qge|T7GFf-0}(GYlsa+vKujBhIRtvSKgDj!s? z|D8$3JD5IV+V4e`#_hiUj@4GFDnz?Hx2kW~^H*mNp1Xck-<@nr*E!hVAn5`G!f&b2 zP(WT|iu&p6bvJIP^`O&s+7t_tIazTPb8^{j{^^yxX8-_GU@WzMD98LJf0gy#QiDe( z_jaIFvZ%?q{~PYTN(%VB$cT{rqMhz`xNB7%qp-c@ts^%TJ_=A}cgd6X8qjBi9|8)b zx2y}mq>b$bT5<~I)1Mq(%m=P;8o8Pp(Iy zcU7;^zVPe)*k~h_35js|kWC^KQ{ol6;u!gS`o%%B9)vSLPN|;^)W!uVN%b_jDR_NL*r4|#eL;fw=d5C64fyZE7GtA13 z1(lruV(I3B6D~K_{$1iZ$5z~|buC_J;d0Ho*XRiMt0RCd)u&G@qGN~d=|@Svkv`Ec z(hS1rN=8lakwWD7jB-h2jCCJ$HFAPk_jPZaH1FThgITg^U|UJLGb_mL8Vq$3xuQUB(GNGknIf(Kmjykb!fs0Gghhx0a0J>uU zw{XR4MA$@x+n&hfIgvHCeSDG{wPMq_a%7X1%cFTqLH?==n!Z(WH(MK%n7$>vlM5-l zOC9$p6um>yj_R8m9WfTQwY{&OChu8zBR-Z@!HfSTS@#DJ{G7O9<{6^Z2E|g)>(3HL zO7Sd-if`!MUXl$7hef+_XV)0E7D5{hA{uZrkKd0{U-Q*14IDYxR>oZ;d@o9h$X$$D0{# z9CZ?JtyGtlN!kYg$>#h4xelDwaD{E5qbY^kAkrH{YpJ=_#K+QY!s`#ta-9zWw%~zr zJgXrH@K_CQOUnwHJ-Vggz%j1b-aieK_p5^iDz4MRbG)^a!RHTQ5Oc7>am9z&cl)yG zn6KFjkd(9aBrAHQtn2Td$J(Gts*`>OT zo^v=<*lB0h2}MDdI5F zf9ob!S-^kC&M%vc3A*@vj#9H3RF|GeG*X9oDEBii5R|qDb1@%WN+xq3C^ZYmM}1gv z>DS~y%_9U~ox^#@ILJL6Te?XNV<8@XvQTgnqkGBQVKHM*3_Mh2MxI1_IDMzeoZlod zh?LH_`agB47$KEKg%DA>aIUNd$6LdmW}@l3-DB916WW>N-f*j2nwHy=?zQIHk|RrQ z%!^Y;a8%dH3K*qaqR2&F-UUtWDmwB@YaNe3Nv!^sZ_Q?I;&Dh0r~%hEw7FNil#!AB zfBc(nlWn_0n4j4PZY6OTRX={6BEM~#c}VxMdCuPSS2YSBr{}8c*2_e7F#HKh>MYk? zneKj+ST5q+OQ>kF?|HW}(V*kKis^$kjiye#Q*>Vv|23T(8yg|L_!VBpPgv=(AwD`a@#-6+k{ zhu4`L+VuhPl1R5&atb=Kc}qHpPX;9i4=CFKy8e_1xq%%k5{#*F4=@~NZZv(%HvE#4 z>&jDRBGD!Fl8|}#7L5}>ha>i?T^k-Du=E#A8(GOq7k44z83~D6Int9apo4g_MvBxF zT*Ek=R+_mu#5t66bo>XROU^aq2|!|l^5z?!F5_iwHvm+N{6-93k}+iyj-l-aIjEJ$ zh-c5K*dm(-1Gv*Yp+*y{@g^+yt0py-JsxYFm-hHLKbZvt2}|<5=~n ziwMW`B?Z&yk+c2-AC}##YSettBB>bNUk$`4c_ulm-emA+)xjp^`+?1 z^B&jD9?RKC9-S8Pou>}CRvwF%yJHXLZGpgHH~VS_UNft5w5%hh`2%tz>2P(5L`CzmB*=$Y zjv!ZTqg+~d1i~4mpd}IN4MQaHJTeKwD8Jo=iP;Xe!=rZGQ?a)%`bFRix7+)Ji3l7W z_&%y=3Dhm!b*8V!W)ORyp@_Rlmx^~O+$P=g^9#x+fU&h^mR5bBf$2`;E7fv979u?+ z@NbdV4`H@>s8M+&o%PUqq+D6p#lIX=HOYdGyB5u&w{v776I)sGFDOE!^_j0 z>xz6cP3&suvPM?(Xhry1CJasz`;G@MFv z_2)J6^_0Er=o5O2{_DJ`>}3?rb@Mk&mE8KuD87Y&siySzsiw3qW^&JJwJz89t)S}} zo6Joqp}*UmlS^A3gj0Zy2)TXi8NwT9Hx@^YK!`D$np7s8VzC*Y)lO^ z6P6ns={;Ch2R@w_-o9xgGt> z%FYLryDNE=h~f$bSx6N%({G2AM66?3S?eJDQ=kysRx~*4sNqi#hxi2^&||8eqm|g+ zJe#0pUz{nb*{qq<+!$g)`Tkl`A7PeO1WOtp7FW!Im)B~*X|XeHR>hnyn65a=$MzeV#1-l}cc0_dZq9%TR`+<(z88rkF&cGZeRaXqsedtbFy`{N0@6VX(qm8kjvJA74o>xHd`OM(lD3LA&FG z?zV=L-3u5f)hK17GWJEyB}zN=f@dqf9rSiwy4dRL-8tey7IS+uRIBC8=WCmX*@oZS z?T=FQ^1AX)iaTUX?#2KDCP9A^TrD*f(+d3!nmUIq_N6t%Hh?YNH z0p<}GVjacg;ehbz%_H+wf}V>V8m-lT&f9gbR0)_2Sk*isdk{2y&cm1E?!m%f3X_B=ITSXq;{d1R{YFE0PrNs>S^3 zZeu%!KvEOa&UfN|8-NV%u^MQn12#A58s4a4fK;%CsnKdjfeL#NEiSlvfel!N)ytWY(av->2jFvJ<$2 z_}f^rUhbQ6=T&T9z5EtT&{Bc21s9|qgF>rxKt8Ns)7}R-)N94QIuELq zv1-yJVaT3Nfd^DTpxq{N@eYB{8Bv5kCZ<-{e!Rih?7te{v@MN!jym2_5V_AD5CKmX#U^#Ycrzc7Ikf&!>* znQOxCe;-E^{3={E;&&p>ERSMco*ko9)8hDSjt7mDAm&V`YQ9wm>IvQ_MTxkTlt0E! zCt8T|FLxt>imHFlb>Y*FWq-(BqaoFxM6OD9JKYcKcJp)hIGNq2FZ_o1|WF~J^X0F0rnl^8~a( zbg2uB-A-9^1y2Qm_}{)iLj&lj%&R>$vKoZ{84}Dmpc)tS1TUym+Ol{v4As%3v}BOL z1Zi8Qr1kT$LS=pr#*F%Qby@XTt?OUBB3$47*@1&;C@!M(T^)bTQ`jo6BfQ?$%9j0q zJZ<1Log;8uTrd9h6mP5B%c7k(z_ZiHTaC5(>FCFy7&VtEuS=`EJpGFs9JN3fwgDBA zQ1Epz!LB(|CM`1b@wk}+F2odO4JlE@imQMvPeh~8Ah;70CS34?&ZW|*?4yzQ6DUXx z!7A4P?g5ijI(@2SSG3~jZ_EdiL=HJXDH^L8ZlqC3QorBg$1I+^jIRwE7z|UBQ$^0L zmd2jC>|KXRP)2y=%*(M3lK1xQQ(l_n9Ee*L;{Q*3i9Bb=w;z;tX6#ip)7Xf~a z;|S&go-E0Xb}#XiEjb8x;7dANW`t^e{9-M7LrYSHzJO)HjbUkb?}Bo1@dMnAZhYCKr2kMd?DIoE23_q>bXb=RiEe$_EQ_Ms7J^?R^nWLR%u>Y% z7DA;|E?fVNuDWDVoNQ5N4c^m( z;W~tIuD>9MCYp3TP5NTXT5m3B@3%)a?Af1JUAJ9g#rsEsChMj5;C_!kD^-6(O;68| z8!Yio=@yAM@n&qmXWZ*vFWX$#dMt{3>wK=M;e9g)HHtafF`eZ4h`oGV&n;i?4`zmb zWq&%G^L}6B>lH7Dle>KI^|$L?YaQ#kcZPqzjY~ZzM?F-J-d~(Of4AB;d0+CTO?G=F z1u1T~eJs4Qy1#mUc4zBi<;%%!e=oKu@JjTzZ+C0@EPZ8nvgs(|9QOs-2A0qp?s@rF z4Ny0g7jyPqym!fY&hDbZ4uP*%bRXdz!5vGA#{Etuk@6#yh!=5o1R6RK=ZubudceVD zs$kqln{!B@Dw6sSJv;;$Z|#- zN|ROhBHlm18n4q)iGQ{7mxw@qG|^V4OIcgc$4ok1-Pep&3R!B&8<1SETFYe1U}ehq zsR*tXRw3`p(Vj0JNXh!U8F`iwri~9VlqT$_da)~&;G0(TKO!_wyR-th?j;M^RN}1*O0E^nVHD0mezFi`!o$v4A zqxuk>*l?oQ^EswUBDlHOSR?s4=FJESG>+J#@RwR|Q7{vM@3}_dza8Rto*ilb_CdT? z#}Agk@>-E<*E-tsC~G_G(x)mSDqqXilp7~3P|g3;P5f?iElz8QEA+%eRkzeY(Njz^ zx5&Cc%1cP!pKzFf)G&%kAzwZWhIejDm-E{JV92Q$Q(Lv#z2bHEOwxv=rRRKeo&=Ke15%r7a5q zO@c-!;dm6QIc?|&mp6?NRyl{adZs^ZG`duv8$rtH4~kmaBBn)UH1-fEc2uoqF&^5Q zQ@bX8<*-r}$7w_BTbw0KT4|6Gi|>AkwmPFF^HtQLJumWX9~nnY{D&~!Ff3Ce>qBnS zNuza+suH53wrms3rHC74lB9Ovd9??XT6D#oMtp`#q6HO;IO}iL-Zsh7hq+K)cd7*s zX|EZLv09r3ZmsG^6(+9cV9BAP{sD$mtr~0lu}RFfbYzI34h8_1VM4l=v_QCXoi^(l zb^B2{Q+c#wyWR*rw)z0`S)Arzm};Etnm?JzqlZ5$n+j*x+C>5xx75JRS=gYWs+Y|E zDfbfLxS>@^2@`Qr#DTo;L%~usoVjjkvU{afLXzVSRoI>SXFZjtN#!^O9}6zN;fwBy}h#}Fm_yb4C5^@MFdrRmY!%m@sLM=7Q}%%f0x zbCOv?`T_PWL)7{cY7jxpVJV~?S-Nb<`E7XD1;zGUnZjUj4)czBvd7}3tSYZ3aXId> zEUOtvu!xm`tr43>2O@EJ!?*_Q;%X3|DK^t0wOVS8lu(YH;zw!oip9|^!6;NU%99P| zVDzb(e)U6*cuje}aA+``9HFLthgA*6pbjgxg|N`&=zSRi)pxBOicy9}Zlv^*vC5q3 z=OwQdOTF^GeKow<&0>if4I4GoqMR1-1}ubOet4&oR#c@H;ga(P3r^Elj#8;aT8&8Y z;G0-8t7a0BCgZByMx-3*_r@LbEsyAS5ZJ)g@QE;;%J=-=#wQ$AK8m? zMUPrN+;{KA3Dx0_o^%D$hO}(6i9?trRb~p^?uxX;K5GpFqi+98^V%V@5M8g&(CKz2EtQx3AYso1-;pC3`3PQ5=y1 zx57AuAMB3&DVqkdd9iVg@2@34SgfA{uDUvx~_ zX&bPoJSt~u5{JXKkSW?5^Nh+Otd_6$x84cg!P7PS?Rp`&>#Zt9-c_akb__;!IMa<2 zTIKZ2)om_nRS9}PB8UI()Ro##ZQp~-WP6e2a9|`b+;JX-b-x&Nw+l;`$cG{tiX~>T zbO3A+`E0cEWL;(&)EK|q=2BpD_Dr(=B_lSrZP#|IeoAVJ{)jFrY<=TvLuG%{@>~*G zf3w#O^w>>X$UQ5Ib5$SY=4Uwrn!`6$1SOZ9?ZP_AMrZOvpO*7=VJG0Uy&U2kfya@) z019p+95)V}?Fw!~Di7D8d7PEU$tHovEuz-}=9c+}cWi4?GH7Wby%O_z`e_J^Fx z?BV985qg-I^51XJj3|P(6V!o8>za0hTjY6gBjD#Xw+rw%61K~&gvM$coIwhYvnU%U zAH_{r!N6wH_jm$KW$-jU7#o4&>6Hy^`1f2v57%FOwaz_ur6c0R(sBAwo;%(8o=dM~!ob6pskOmiq*3SJ_(DbFR;;itu-Z&?ETOovNMv!a19>K!tUy1y~+Khvl=Q|b} z5c7J7jHUUg-E<#7{9YG{G>o`fx9PSvP|G{xSR84}C&W;7y&2$=70NNln%Te_)KvP4 zE8wy@n&d@%@VICBZNtS4xA@>bTKoy89EG0{w9}q?li6!8s3O*O(AE#MT_@$&GmyXU z*n1jBV7GXjYkUkETJ5P`T-4&v<8p{{d`V8*B*<_*M&|kXnORKMKQRUSqQSzoL@e*P zGK_;$aiDSF^zdyB`_F^(y`H8=K<%;s3=(+!&Ey`uxao7>IkXOigdXRlvR)b}9u|=WUhW z$?L|a;hHSBNbDoPLwD-OB&_F^^ju?h7h!*g{FTY08gux2PCd7oP@6noij}dC_ZZ^g zd>nkVb!#9?ZC?awd#wD{?ZKmX(EBq*ztEzfYF`~+-`b@X+u!xJ`YMiTx^KHu&aY?U zRei%c^+jq9WW&SWW$5crCfO>hgNOLst*aQ#rd`hD{lj^=(SbnAJF664RaS`#GJy~; z5Jlr3?7CCLrkV(NJRNf9-9H3|ZwOZh}cil3JE{_akP?+ z1!V-Yryh+aG2%6z@uT0l>9-epD3U>Fq{mtv@A$~wp@Z*qYi+dAPqo}WU&b|e6-vvu zFWU=e;1LLXF1O+rpm%MQsafH}^g7(&RPelOP3~|{E}2LH@x{E_75~7Fww-T7SX=S! zZ$luc6^4&#@%$gqi5HL-K)9cK2x5A?^o1 zuZL>n-*=G`^p3s|rl8#D#1y}Y-`p@dPTkh$Q3M4e^kymh#PM>JnM=|X%igL;kzbn$ z-p1gFcnT}UoRXQnTD?><>o$i5-j;zU#KFaPx*7cJbVBIycoCCI6MAuhxuv@2rLM$| z4-c>wZGOLQuf@x$XmCWxDmb#S(mql~C{~lwdrZh-!s9?a{N#2xyP-U)?v+MZSq*2{ zpM)UUCC+)U5$6O-t#(D>e)4;D=e-(+=(`S@CqP)@wZaa^d9jpj@lJeP&+Y~R0t{`( z_fNAoxU*5{4Hx=kj&^Q_PVk|3t-wsa)DHAYY)U{7p7p|e+E4ATWJRlY_PyoPibrKWrH-3^xl!$*%E%-So=~Zi|Tw?m4}iCw-*NIIr>91f-+%bRkD*n{{l|2 z$hns4Db4iG|8?YB;OC*f7Yzc{)#9Q7u~=8EauBGC!`z#Lt4d-8vf_WkgTj1^IN^sd zIFOZme7_FLhQKR5pSu$j?FiHOBH!i(PN>bhh)Ca3jXLN{5D`WAgCnf~v;jxX^;0m$at;ydzD&j929_7rXl@5nJdBVhmABmGa$ z+#{gjQ+!__l%7t~{zhwlB2yNF|%dh$@alL8d z6Xel*EqqOA$3t+?#nLI(Det{-{ojY=cZ{Gt<~-PZQ?n6d@E`DyLkNKR7(B9M9wn|B zeIapf3h%B(uI=fi7m~;5_29w$2A=cp$UBeYe0crSgM9 zzW5^F8i#+{2m6M=-{juv{|$bgYr%J?N4N#r-eiQO=oIUC3DfGz*fIh^jNcir@~rRo z2;GMcroYlz5@@`zd`!8tgSi#%Dt=zMT%Df8Wy^n#3BnH(`2v5yJM0g5$$6G<=1s6+ zd%&x2#{XJDMx8SF>Jy|Z-dW+ld7MUeZvVA1`}x~AtI=BY%{K!cI_kGDM(=&VX4Km$ z`dIQ{Ylfc@{?*5Kyk9%!gt!j`hnKva)&Br?K#9K~i2mmZyE{^F?89XX_@)%x{Z7~+ zH}D}<&OFez#~G7JlzfT$NiySugJU1|i2jp<^8j_$&gq@b@39Yi6#tnV^%gXcudIES z6MyWZ9{+z5e?Eyn_F+%|KTjw>9#xOZ6x)v~8m z?$|hX3-LtW@r)f82(I@JBjNmPTlpa2xJNw<{yby1fzw&rpqQ`4^5y&kUJ>>m7 z`Ms}KIsQWUiAnUq?{N>y;y;hr`K0%_hh_1f88rPdaNNU^_|FWQ{>U)yQ7Qaq2F(lL zgunPXi0^}G;~qDg{_}|4wJ4)~q09%n$2}~A|J^cZ#*Zr;zPNW;2i3BtRsNXma0~H7 z?j5m1z(m3}z&Z%CL+l>>`px4VMbmN2@up;3`@|Y?l~D-O8j}^)y3*r?5nQ_&K=;}zYwW`h}U^0w7nsf|AkO+Dd4NPnK z`^QA+E2xb5FMA+N6t@&jfSwScc#zuZ5p6zIjU%blAoLZ`j+< z?-byY|8EuWzv|j}rVEZ{8W$LoQ^G#lr`W4QXgSt5gL`5rwqnhdAOD1IRGkxTw-gmv zi$AW}j`_zmSr1eK2Ff3(=E=?PS ztv{~K_9uHN0d9JffBECuTvGZ#+4DbdY>&-9(4aY%VA!AMh6j4qmNf~i^8PrL%bIPQ z`V1QMzy36>AC@~YZ4H{d5Htay?T`pwo&@A{8dR?>Ip(v04-~au8qI@)j zma`$p458IdXku!x!aVpk6*7(YZ5ym6iluAD2sR1rQ~dt%uV|X1v0#lD0x@9&&2~&{ z_4^0@$a| zXt0tkv#%H-P`AHB`S0D>iRlQotrxnB!c=_F&&_#&S(z^pWMh> zpVR|$6XH3+>!w!lga`aFfI1M%(w^UX><%vKh7>}`d4;__DMCdzjN8XOBc2>eoBlax z0KF-0u_&y7O=WY|wSbumaei>rUkautC=y3<+R^t~;9$zy@6x9Us63T^B?h zzy@6x$Q!^0T^CFmzy@6xTo}LxU6&FpfDO7|(BPdK6s*048#L&iI}CSe&~>{B!D|pY zar~_sbkFtB{-ze?h2Gz#sh^v$;#gDNP-K3oi&D|4)qB$-WbtT1r#_(_n`4cTU zdl+nzK>Fy+^Q(IX(eM28a*1O64c?QAq1^NGx3FIIWFZ-EBoqIZn~h4d@p0>Yny~A} z-9(WzRlCfF`5O?PL}wseWLB=S&=(rat7PeB{}NeOsm)aHCJJ<6NRS+Dt{wRvfG1?C zA$Z>o*S;HP@K*>%xx8g>|3*Kt1!rcVXeu}03KRx>vQS?WMO$-}zd|Fy1fvAK&Ho&0 zlHit<|EVgv3>snmjXuM&93Wl~31f2x-8ao}>ogE-&;r|5#-c9t6?FHzP_GLmh8CKx zheY6WS=vD?9}AEHUE!FhRxp14ls(nX(U`J~@;_rQwxS=_-H~V`)lsaFB1nUfBEB2vHr_TX!_+CpH3mSxMNKsWqa!_vx02QzC@>>L2Gb02L zsR3w)3}x}`RPb3A93dp?rZfs^cF0l$IRuJ#dkKyzXusYL6>yV11Cx~@D`1(TIRo^S zCM)0<>JiJN?4H($oLZFKItSaU4ff6$GjN6bX5pnQfl+m5^xc)$ZhXa?Ac~#HIM^8X zj(t@f`wi@ipTJlExGM6$=FB;LaLFs|-DL6^v6ZJPe37eu@5)`~UhJLk_gTA>27`3- zzWOy7r`ubpWlNvt$lhCd&;(tez5ST}8&vO|jQ!C0y;>ui`SM-|#|_)(rUU$FV~ucg z#a^@dgriIis%F_v0Tn}2n{cwX77)fho^ev`An5$*5FQZQ&BpPGqJV2*E-qQ5T_x?+ z)xDR*lgHw3Dhc=+(j^PftArtk=3c^-=?pBdL<_9H?j;g>V)v4@S)koZo_4q41|d06 zVw-6`LG|47SFrEjn8KaSozQ=F_nVX@yj9Tc5cY!o7jE-hpjh^*3EjAx zBrl`U=~LY|6^Z89%N#K`dfu#q=ZH?3`5_W!=zOD2CWLAqe|?}icKp!e+j16hT8)xlKX(hdK? z!R!P%i~quXQ1oNNf!m{sVZ$TYkW$;3^3Vq9cFvOo1CkY{=m=l|Ex&~FTY_UpdgRnT z!gaycUlO%)aGT(;8jkQh0_a?{@>XQn-IHx1041a$#%l#SRx-z18VlU_pT$6v1|iv0 z?2utPAyblOmP-Xd3tRia$#?_Sa_B4MwRd*jRfeJ`1pO?Fp_^0(=8l}O~I z2p73uSIPU&W~1W2_mUX!k#}80p|!ibF+!RHmMc2=_4|}(1WI{Eg(ivx_fxzuzA;>A zZo|pk@Ug>@bUPJ@oLY2#?&G3vw&*;t%zWdqyo7kLu-UT3y?8nKKz)11Ui38;T_@8I0dZxAUKZ7U-SL(Cjdwwol}k9W>!f+RT6fgi{bV6y zem7}%gviXWQRc_H3A7aGW8Bf2T(lQ(TSP`qxktB7ukqTH4_zQzk(>%7@!t!AUk(%j z_$f7*5mzxJ=x=$Co^pl%2wA^0P+u!6QvH=YpQP=seYemUj@TqiMfi^nEJS@g+$OcwYSC){U7As;a6 zesG%&`T_+kq6+^0!MV9w`!ff9+=?pA#tl$o@D&(67AS#Qvz*u6o8j>q%X%;i;O<~D%!*~2std6rzdZPmCU7x6Fg1XL z8r{$3g|T?t>9=PSWlbqE_7@p>E5d&VX*4~ zaM8cw?;kYAxQX2+zhqMagAD?jhMB_*u-N+jBW;Hk{v;h+I;Pzxq?1VSheyhR=4HgNZQ_!-^d-n>+;F?>TRnt(IogVGq2OZJ0IN+ABG0jq(9u!jCn?rsiSa)SCDjNe2jGbh|Z3{TTY6db(0W_xjkvwy=y4Oxj}TFY$paTu)ex#)%k@5N$H~C~L+uY3x4D-O z7y^s|l-&+S(&8A#xkHys^<{aPf0vPW< z{B%E+c|hvNV+jw$UupGkoeKQ>SpD=N=J`>O z9NkBr3j=LLt$vZzgchKOc31g*mb%3zPB5GFih=Hz|8K08AY-CG06<{k#QHyQ5=hs z$mG89kQp4tlz+KJzI8UnZ)A~^4+&y!AH?1^>g6EDqcjUymX*8Y&?KO~B`RMjhrw`jc-#ZdrK z=%7GTOcD%-p#mbcv3E0*0hUykJ{7o}i2I0$71 zCn)aSIxi?*#jT@nzmYxOJ^36k3`e#+cVvf1fBPBTFPNiz_pZ5OIhyqL9@s)K zm`u}>ZEdZ1{Q6&rSckRit4o*(?)Q&o(oV!;RX*0|vpo3AR^!Y5SRvy5B+ti+ad4>t zueY(%Tr_Gr_+M>h^hK{zk_*Pb5p(t0qRAwR{3`uF{=X&vH-l+xm9AQXULvZz=8)ZV zIlJPqj26q22?10yOX+3Osf&|R-y98?+E66J?0nV9<4(OSW^=J+yHXMDS+Y@$V+$|%kAiAZEo?Y;3N0RF$b=MgtXCO18*h)Z|p9y0%PQE4O)^N{z!+R=@=|9GlM~azrkQM6OHE zw2C-LM@Ei8Nz-&QqFCfanlIv;es-I@*VzfJSgj80e3j?R-4?i1hSz(U+`2$CS0YxM zcULqew%5|Qp@y1ulkVQGuO?w44e>eVH0#jao6;5gRdP-i-;_@k-0JlKQkZ zq{BE_&*62Y>&R&eD};;Lc)evLsLpzwSQ+xXWRs=NWQ+=|8Gk55XWL-1W za=z56sc}{pW~osgZ}Ewa*y^RS)@+fPGz#RZNU^Q*G?|@_8fB-e)@QS@A(!WlzUma# zJzSsm^td}xSeqxQD3kBVDlxM(&Xo0Zvt=yj86{!NVyP-QDvYS;n3-w=AwQ@3!Z=N1 z6SLW~tWKg@X!gKRBB+ubo5tOd5_RZiI%|45Al_Lv>6z`Qq}XBCk&doT?QS@hbzChgOSPu2)0&v(stL0+Nb}M_Ypj|J z2J5puB}cLnYb_GRMW;k_vP~NLx@zU--C0A4X34R#5ZFpmtd^_uhC7y9*}Sn%b(hv! zt*beuG?-eIHaSX_;!RvF;+Ck>Qm>ySqj-af6l?1=PKy0@Kb)891-+&KyCe&Q$&WIF znQOkfQooc+u8mP{O{#n;Y*zY4En1g*)tqFp&yOXGaB3osn~Cu#KCCggq)!*N zGZhPyN^v>tG0kRzUUpG|IKEa`W=b&W71LQU#WFUVT3Fq#bA4viW<`85Dfhcp%gz*P zQFBsY>gkr<7E9f%F}3SFpK$=tbFDfn_b^nTb}u!Eq&ThCjD=UV{4|^HFYAp&)>ev3t<u3&-N|r**Bex{CyTN5vLF^! z3n#T68=aCpv(Pm=Zj&=qX4z5os2C>k@p`Y2D0L)MpxM{rxnhD#43&Q0 zO6p8zTE^vhZZ+2F`kXC{^cJfXCoOhas*dV?tt-b`)mSc>=G8K$RjvN0Sf8ZBvni8y zhhB$X&CGP8B=_1OE!j` z6 ztIJG`iYI`@n(>B|6eGFlq930vMZ7jsV?{|&jkLWSv14lCwB0!+Ml(aA+M1B*u3VV` z!^KA$Y1z;s6}v?gbCo4K<+xF?q6txl?SvOmm21z(QHG1k6E?hdaF*YnQ+N|j8|V*s zU#U1>m)HsLzAE_|xYT@|Q*gbP)&~Vbce-s^FV^XWI977aB%MiAO#u}chciEq=jzEC z7@2&01V3ukEDx{8h2k(>g;&zuk&~%`n(!5tk3{3#gf7DCIVm~lNefU%yXw}E=b0qm z1Kl>TK><8pZ`NY1j3zM!oav_Ul+%cW+nrK*#MH5gxSIFl)s`+z8r8xgPmS;?SMN62 zR40~NneNcbYi78hRofOW%{3z$8%N`DCBwFo4r>Yq*4LAQlZ%^`nw%`8;#!3m)s(7k zn|fMaanrS$S(hwsw$79r`UDk-5#0_wDor?g#3_VWVoJt(EVjn$>e|6nY#mXmV|6@j zs79_qtI3iwZ_T^KM7GxJ^u=y^vWiZ#`8Lk=9H)f})HSTpt<4IvIMFCz38!VJM|qN9 zQeaX~x9K@0c4u<})0u`~4|=Q7WECeVgHrf(VX0}Iu|66!2nDZ}ic8mgVe6G(*DCoU zJFn3rmD0LobSkNtNTe|&x}@G%tsOPJ6ZWkZec)AB*O#-6|9X(GQ|PWGE3i=hzV?a*kjBSk~+8!easF z&g?k|3OJ2uj-r{}q3jvI75&zCuLPj3B)YnCb!l8hwH{G{8|*Ecm6}@uq0TyferWp- z#uE_Z3k$NwBHF_-h2>Os9Gwcy`4~h^H#nsqy$&%)!-?Bj1Qf|!zfUOW>dldND@I)wYtlq;LCo-YB3S%O>Owg1t|FQlqX8wZ zC39^sB5r)e_M4Hr_z9Mjes_rwxs@gSg8p_ixGWbp(q0+~0huc4F(&Apn&ykHAhAkF zGmjeWhmSvZa9&ZYX}18tLgpi&Gq_FS;c&TscdP#i+8z#GtF_Osf!e%_sYGk}2r;Un z-}`%;qs=23FbbOMqH_mt22H+rF62qpkuTJ<8q#eH(!ny?sq;TUq=@0x^Gk5G&)kfv+gtv{Ac?6#4=y{QeW{{GKn; zch^?&rvW(h6tU*X2_-1zpgq`$yR>beM*g;#k5yp- zZvV^y#V-?T<<}8>S`CTU4o+FQ@U$<#)XNNdJ8SC%a*g#;ZX(j4;qri_8y3pcWuJnA ztmG(w7Y-1(_$TIa<(-i40l&&Zaj)?NN-*+vv48(y34j8`0?GT=ZUh{JsHtCJp@uOq*O0my3V%gkV{^(?E z`$GOsxWm-0U8&W(xi!Mk)4EN|wU63*$?ezRv@@uG6TVUFruy+=RPnk1%Z5cbUHjr> zsLqmGel68NP7UfIEbKEv36n3JoCAy6AOP+jcuQc&^s`e5DM;SOJaSV9rS{P({KBg7h_L$T4 z6IA@y)iPkvB=RV=j&v>7tj3ldRY|jStlCkwWgMownDK+v*Zb3VNZD(I9k7Uz^&mE; z{eE@ib31+pOEA#7oNKi`-9%XCh>n^tRZ1}Aj&Sj>L9^$f1-b{_dOWez zJZnPsn)nSFyL-!*daNL98PJCWzJG#oBXOzwO=)!0(yTVC6#qgzobO_kMR}D3R##h4 zQB_?;Q#V4w9I$PrU$S@K?KcJ9Yu|$^c$yKq{M-fwGlSSpL`<{pdK?ZFMvnrQVLG}f zNAaf2UD%F32Z4~}<|EbWLnwDe1-@l2RTmU?RA~7Xs}cXXjl2!570=(CU^nXy!9-|u zCK#OgYx;rJoaaj(d&kb@j;oW$3oA=y0|}Mk+_?HcRhkj@PNAQuP5(J|crU`L8$g3k zplnnWGr|uO=Fxs__FGkurF(~#EPBB=Zw8IA^+Ai~st&q3xS=g#x{1##?=&$u|6MZ5 zV*2X_=#E$FFE&XJx}&?NW*)jEEn|ObqH(LZd#AFxb4Z?>*Es@f$UUv15xP7a)0v|| z|IX{g`V$-(XghLq6wF3;9lKIf%)}nF8sCYHk-1#UV3f^?jB+XEsHdw@l56%#Su8h! z^}XxA72Wfe1nd0Ynq{4%+N70Na+{j5CSjUVJ0$EWdwr~~z(q&vC1|!lX{6IPKfME& z! z`rEr!hbp1mm+YT&=(j0-(s0Q1pGw@hM)<8+lo)vsj}|7xO2TfGdH-M=eZF&HIhyNn z!pIMm>6q220g*B>*XxC+3(E8NeL zPnJ2d^ENf43IzdelX6^^r2^8|qz8a{mfPeRS&o6Z4^{lDMvNvV<)3{GoBIMeiafCD z+H-x4TJsfi`}IP;!B;m6P}I}x)fQ4OUNhnzj_@XA8Cu_YS@CYe8p)RH={3KNpWAd$ z$_HbeQf+&-Rt0W=(%|dlx5}Pffv*X$HNZIo#{*i`vtxA3;_Lg7CpI+Jl^S%F(Sz=8 zVBPS44v|3j`(UeysMS5Pt@NJBm3aKRy9@_?r%$O6D64YbPL0@h@1L1bDrBBGj)T&i%a&}D%X9Y-im zsIaGX%i46mibj;blh?Ts`$OUoLfmC+ZY$_k#BnqMX=XdPy@YYv$MN1>`Lr~-)?Lu- zTJg2RwLMDD0eFmVA*vXRt*AKZu~`E+{u3n8b6Mt8lE3#Qre7hD`qu(${{He^a;26B zE}QTs1O?*S*Jk+F`bFh3)I_w{x6%xtxDAEQd`ngV{vx3FzsjmBW2V*-F*;LpP>)?I zmSj1zK8_v}4+Cv;5#!_f@GfT)=~;^;<4qxp4agC~1$X%2VtM%G@=3Fs!S5{oMh|$T z1!WABdcMDm__%YTl^|*L_f6~*;Kgl_8-=!~<(`J`E6P@Nuxk)9<;L?GU-^~C4hyQL z<7Yd)EQ%C#vBSG^GQGZEX*S31@g#ff^VtZJ#$v> zen&5MpB`JHh*HJrm|y9#d1w)@^(;9l8rmd7DiCe9rQ1q%eNqPqPD;{@BNb&AlcaFf zf!x(5kdMB9>pni*PCeB-=*x@U7c%`z&OQIOjaAO7 zr%N90~p%~|z@i4eav$Cy$rJ~FW zb`)5Gv{What^;Gey{_Z*hqTz}BeR2J_{N;YD8Gjy2ggXl=9AVk(>&y18@B&|7lmg4 zZNZEni8>{BSL!Wl>S?2X;4oJ&wc(nAg8BWq#Fyhv8~OCRA35y1IDFM-0E0?*NkShJ z)Jp3cT0^x29UW9NiRQl-Ib?nbW6b&_Hr{?3JS0gt{M$6W8kia%eBM<+rN3 zZy00+26>w2S#q>bJ@M__isMyGJJ6q2ngXffCWTjoMik(bVfj0TbfY9l$b7;X1eh#i zvgJI%-&y{O`nGp`05eg1#~n#w@+T*FxOwpCEVF;(di9eDot3^p}W(p44WQ{0><#U_tvSl}6J?UA5T$rED#I z$~eeN&(D)BoQco*vozqE;L+@#;B#U3<1p_eQqLGu9#>V?+k7=?YMgbtrki8y;zu9= zJ&fRowl3#u?9!M)DVEjsM(C2hNGaGL2N^z-G;1yHkzWi*E+HaX=y!MSe0lF{=9t4Lc1+p7q z)iv4&Jw1s;;k(7MoToJCwyQ6+!Afp79iCmB5(If%;)}X#4cu#>e}XiAK}#JULKqJ- zwgS}JpSSn;U9>OAGq0>;FYKvSe*9E%l<9k{hbUFA@B1Luy_d(E$5N5FaLfAP92a9i zzCL61qWp773b?$u?5b3r{$}*ojS_tqgam5hlP?uHswZG)ySBgaZ`hUrzQ znn_sBkcSBTmwJ6X8=Kx|?mRmQI35&mC>;*KsV_#%fS=0BCzi?NvC@VXALX zK%gko%INK3g27SYGFsyADbHT8Qc!>z>^mrOh|iu!0KH6&Qn4U)9x4$X#RC!GCRRWD z1ls#9u~@r-+aIWTS~xXB%f`md{O$b8qcgdpbd9{u;0)( z3T_B9Mwe{fDd`zH8BK*zEPXG3z3UHumuUpIqN<~Rg2)O0yRJeTymO$BO`c5K8vfAR zuthgeLEI=vMmi4OK$G`G=r9!S^037!KFx6dQS_FO?j$hbb_vDT(bPswK)zTQgrC*E^iltX? zR#rWUERNT6g`c>DD?w`-`ps1H((GfGx9B8`+7+2`vX#pMzERm8(&@62fdnny1XrX1 z{=dDQVZyVmIK+~3DS55+m&GVscCuMQ=HYeD9P`u_Y5eEuzd;KBN&fP~LS zVKF=bq7qb*H?_fp+Z3pyX}UhjqyB57&1(b(rXpLqdSP4!f4&`g4W`f-;i=zTd{&9D zIvOTmgV2$b>k4ki-I?ZG%3CyxniPwOO@zwYgDw+vhk0m`e2-wifZT-b2!ZxhokL#;30L6O@8WITxh0 zwRCkkV*vBiz+;mOVU9BSco>o!{Ab(T!r{QPNJ~0Ke#2Za(k!5Ke16X8|UfsE11pkzn-| z+k&(Bum3Mw{pgy+m^;VQh}zIwawvM|Pg!pJrn>m2IwW#`UaO>kt5}gdl>$ms473LR ze(aiS$f{D-lZ@-AH-By;_Pcg}0c0=yCP&I4zNrf>Oao<(U5SP&wEJF>X5s8uB28(= z!gRa3dgDW!@4XSl`!m?8+hf*Y{DK~oNEt8h&j_LC_a0%t9~V|b+rX+**Ut#kT^|N( zuvE&U14pk^4wVMo!ZjpST9Nv#lu+fn?ZCqQ1oIkh-US_uglsK33zVPWT9+a5$@cW9{_2fyhkOAH)Oy~cq3Ip+r$SEAW_znAT1TcaZ zwPV+vLu>Su&9bn)n*wBu{bUdbTt|_7Vy+~_vTLs}wQ~T#^yhAy&~M#m?u`z1;brOv^?6fBk`YU}=*6_mRC1@%BDfS$uUQECG0hKnhtlurN;*MchomCqvOC zWt3|VMF0}tt(*8LG_=Pzh-|+C-Y4Ho`)W$0uY~65)&$>j0?}#nja9t@63Jqj5dN25bF!18GrjV4*oQZz_vAQI_4WZ0bQuD)gm;y`$*c?!Geyf1M9%{TRZ>j$EF71K1hUhWlKSEX%8)I)&8mrPVS!3cTFNPoN#`bAP(V21kj_W%E z;$J7P_j!3^(o4AdZ*2DBF<6X1PLiMm+93gApWznN zHgiiy;zoLY1&fmZZihshh)U$1MwflMOE4@FOu|0*u=%7*xLeh)nt?^*A~r~#DoA3Q z!dBL2Xna*kWEPIDV>}qR2lpK@cjB9!J-y`Vctch}1GK(kAOTeyUhcE6pWyFh>uv}J zi4y<@i91|w!(LHk9M|Ubbff7ApOPdJ{zM72qX|P|U*QU~&x1Q9p8|+av%hWVAUF`r zyZir3e@rL`69~Y( zoXVBt#7N$&jQpToE%FHlo4im_(?X1d>lpdU$-gNM$XZLPpEMkyAy-^ zytj1ygxKBd6U+Iubh@f7RjeLRP(`XJc&06@@ zRE-u~fCt!mjJC{si35qFo|550pG&d!lJc z;7{=j@|5Gbl>Xv${?pbEq<0{Xc=aTI@FB}s0$$Ue|_L)97iDZPs%MFbX3CcJJ4PQl0& zU{C}J538{i-*CK706n`BNWE9mw!c*slTRqvP9#vgM2;3n0OkALdC;K6uw~J8zlW8y z@WRGN)`p2?dV6mVYP}~?e9?zfyDP(%_g&Y0{#!^A_!Sa2THv;9{~aYSXwa~^;5A?$ zkjxVDWM0-CdgkOT=yM0#vQ8N$#NYCQ*PV)`&jaM*%4x3OcR0Jn%(7}ZvjQ8wyz1{# zko5se?K-D(-<9&YJa2-5VsTb5@Da4*AvVmW%xNkKwz2dm6;7clh0Wcs%BU_1nOl?_hq5VXp%4*X4>_4h3T zOx^5`YR@2vS04>!zB?}1``82SNU)2lDGb*g@~zitNUY!xY3VJB7&LgUs1kyxQG^oR z+p%`y^#jgt?GyLC%x!em9@c*;v>^RW_eQ#^%0ua9TX+Q-9)Jr<(<)fzC78w==oS>V4UcMIK06B8!GAmZ905)lZ0S=3TM0G?? zoF{r@UoCX{5cBvV6Cn)urzP51S*)Wj0M+>?h~GE~=x>Vu0`Lu}tUIqGeKpk@iUX+W z+QkxmSUwTeDlc#XN_Z>L1B@_mepB}bVlR`UAo!>_LHuorsiep=^8?7|1>8p`hWA|A zAJBnfVSV?KLgDxhgmpOW1warIVbY5AiK63UDkl5%5T>p;(=oNZEt&%reW~JqW$HUGFob=5Y#bAyJ&`l8Zs?A_qdO%kjahUr5E> z6KVcteKxPBWd-<*o3JQAT)pjzwym|$o}ukQ;N_ZoAv@l4=?$+7IDt_oXqLc~d|pM{ zBTNqd%;7i#@iEgQF$)<9GoYGE0GPUhJHXi}|FLiu3(x967``ADxGme_?zTgV7q_cF ze20J0Rof8A$n#Dn2qbt~c1IBR-9mJRV3p;4l4(NcIs%CFPzMOdJUIx^%%`4sSm<4H zNuUBYJ#?L`0qDOMhR?l%qSpZ6M4}rRcU;Gpq!;DWj7E^q3{6u9*LMz0!_N5|ZxyhD zoA_uw11=B51oL#Zq6FpN*oJ(C9zBzq+{q3oGHRR@v@TSu0HP7b6)dkV|Ko1#S)TxV_ZP z;lVS8CCKTVAB8lGPFrdGS!MRyyE&^3uBFgCs1!wc`YBv=VHNw#eSuq<-I!vVBxX(~ zLPuxil2$ro(X5Zqsw~X=VrU=lxIKLqWrU!nJDL~A({uQ?&>c4smOnfrQQIbJ+Ll0M zafGu~B)&`5*ibR?-Fk%L^qS|FBi>-L)H7$gx@Z4CpdH_wGJ3WhdCHK8W9zxn&Z+P# zey7S1D3a@skwIMB47Kh!u;X~hlIM=2Q@`y7ddaWOz5joXp83=d8&68*QA@oB(K^ll zMs@s+%|uH+wHCML#b4Yd)q!TN>KqR>=Oj87+lkSOUF776kt7DH7rBDk$>YoYWav6j zMI}1v`V3NraetW<8ro#lH9KmT?a&88E{J(6T6$JP+d%0Vb=o-G*Y+bObKD;vA|V(5 zD^*n`(*|GYN%&G-w5&>20ky504OWp2>j-^%}~FE@$Na2#D^HmC6?T{#G&MKK~_MgmS)TIv&<>bzb5z~K(J9f z5P6EaV1kl4&`TJr|Ek|tzcb*iIVj~N6aW@NeGq8QL2d=06yQ(Q!Mz5@BG;6!2~Wu< zLP0=qp=^zJj3JZDic&R@*qEP;)*>7c&ej{idbx?W)^Rp#e zZ5Bb3og%bPNs!zvUy8x0Zx0nXoUUN)Ia`s&!|v0;tcJYZN8!%r!noZ4X?fC-&FKCqJ;!yDr!pu($N-D;GNh&MZXd(3+!MkIIdmdD$HEGM5 zswGzG;A)vQ$p4`F#KlX-BQNhOB;QyyI=BnX%F>o`pOfY?ndosnX&E(!xH4{^*^bTB z2%-Ar2NU>UZIsOl-@|<))#Rwu)bhE@x6{_Zy5H#$g<<;)kFB8fvL>s5{3I#Hwb{A) z3y6QOiEZB20G|`$^r!>U0SdwFa30iwU1zP@$=>`%OAgN3z607YXeI0VEQ>f_PL|B* z+1JaGs==yUb6=UKO}~^OhPja8yoP=_^J|cB%%U`4UsI0ASttIy%8!ByB3tSe-GK{_ z8w{GsqYV<}DVe_2cfD>7M5uM=BV=?-mYc@pVKl&V!(cCy-3kNA#=?iQO8OPU^5XMi zu$`rHgZ~-fOMkHxh7+j&y48b3@$p#)R1u}?yUe%0KzHRG+tc-5=S!Y4s$+js|2$Zh5(i!UM%!+ufsNpP%cxq z;S`um!ps4pO^v>lYg@~K*XvXbl#P%^TtW*p%Z?Lgf@>?mczddIs}_>M{(9Z>kSvyS zi;Yr(ednzXB-kFD&kcIvL%Qe!+D0f%0%VcXwd}yTpD84kzL*~{7uToA;is24D4_xX zxqzv|+heO87_K1r(2;(0nYku;RfChZ=D*L0$4F2V%1+{k0g^y{BU$#t_ey-d5D>%o z`SInK!WaaIWreOpHU?xLjJA>Z7#S&{HDn*jfgv5L>PRF!JHF6F>M2GIG)?!d?0RWcVR*@?|cY`LW_f<;jS;Bz&O#SY%CiDRCaw5*fi{c_$2k$47`! z*UvZ2%V(% z0zCV{gAWn#u*H~YuP2HKMBd@QWL9-M2VY_H^G!EX)ECs6-=Bmd#48fbk?#?+JJubE zpUTp)pWoOCFL8XS9#?r^b4bWosg4Fvt6%tWKg87gvFC|uAKuRl`k7gQsq9OnJ^Ke1 z>Ac-R1&r>T@Fe=n0MQYD3Ga#Zi+$CRg85Y-NsL)B`}S|pGR|iD(5B-f&eQQtg%GLi zfxc~D|A&1O)W8&g_Qa_8*EoT=BwHFsN7^A`sjFf1yR(7#9SK&0it#1zC=v@G1}3j= z6Fr}McbETBy-w=UoXQHLHf9o)h&lcU_xdVyLmu{Z-GH}HjNVyJ$c}nz?XS_XXU=Z4}$+cU=n2C5wExoftIg! z{)$4=3=dolPz7%vUbmoUx&`NM-Cg_!dP@}Wx^F{laj#HsYFU?cQq|$M(D&nd@TEE@ zWoPXv2ndlGlNRCw(=^&1k2kVbpBTKUW+&~%v!f+D0)lD~6RNlAEf|&U-*=cNP7_I9 z^#liJHC;v3XO~JMANvg$a=l`d8IJb{JUg2`UW=XzF>QtGZ8Yv0E^(iWv~x1)BwqdW zMPh-kA`rvBPn(ub98oo?NsVoK63P03dH2(>b~|0hTPs3did}0xfwxci%5aSQ(71V>zKmHEQ|D&b?*9YUFea5t zL|!#`l>B0Vz^M^CY#?77e%D4P1dM&JI&uYh{E2b_hVcV;*j`ZV3;)3&U@$m*5l!c~ zPj#+PscoXnG6zsqV7M=X;O~J~C6T)4gM#>YYZUCvH=j=_st#0o=q&vHHQBBkup+|% zqB~O-;>>4HaPZX>#MhELP~arPB?t`KD6&*D0LLf{9HsY*A_wA)1v6hP5y&Yx1OPuk zz`tBj+GYAr<5I{XP7RdU2;zr_5BY&pIYmgkY-M9bwZrF zmWY5a6ihPV&JM;@QXh&4!=#`}K>**?%qs{!gX#Hl=LoZ0%rj)rm7mkWpSQ;7zl%C0 zi@YWEYfXA_=R`ixZNm!o=DQ2lW_<))9Ich}Kq5L*-t-%9Yz7>OVzmP3cPv`^=SIThzG1Wd^;>mhsDys67P8i<=W|8u)_CvC{y zV3Uen@>A}cyfe7vBI*AKPz8$RJlOw039^i7ft2)jU#ls!4?Ux zV4hIH<~!Uu&W4fyI|`8lJCOnLJj`+T_c_W=V?tP~|2~cyldSibg_-dA)FEOxmw5m7 zm+;3N@*I*>JmaVx$3EL|Ew#4qa>>5s9P?EW4P)F%gXZ0X)GlOHRGjeTnDADgllNCg z=*D;&Mq{V3drlFm9;it)(`#4jPsG0MBQ2-);@3itqwlpK0@8~~lp=|W-U8^Fu?wH~ z<-+?!7dE8Ux+|j2JcuxQJ+D9+&63aL{kHa}hm+L$_U|hH|A}t#n*ne?``Tq?qwi>I8XMcv z+hd17=UsHt0R~!Vi}TB3Kc)cHzPJgk-0PM|zhcYZZCdQhccBw!fgj}P;Vb4_4hQO2HtSN&<)$FmFlUOb^flxA)N0Ly#FOBjz`&bs0uG1*EI?; z!Y4zBF#9`~aA{i0#CwzaB+j6zuW3ek|5S4bBb?GYDnO6nBi*Q6B?{cy$FpIbjQt2t zI?cUBNy_}P%HxZo{BV+pEQal0pZaW#s*6bWfz}?BjSp+h`!Y#G!o@H=qK5PpVehc+ zA3JoHk?+VKaxHC@EBdraj^-v(+15c6i6D^DKLiz%1|IaJP0BJq*K0C~MKi0JOFwhN ztEGnY`TbO$ngdOO^%dPl%;$w*%_L#N8`AZ?5mA|gV;^kl8i}7Y06A#-)Gj^IhwzSr zq%!TTxy?E#jMs1V5*vDeGrZ&^DIjO){ z-`ZQ0b4P=pJCyWgPa^bm3zmCAYyWI=DI3UKwq}bRWprLkZh)O52!P{829|_dc(*#e zQJ#peWO?~axfveQq0!cnMTy+LnJ$&WkSORn=aWX&ViM2VQxHS_zOC^o?|AQ&nX6vLgo;P7MacC)?Zn-BDd$b zeb9f$9MAscW!Ls;C^|PBokQB6d9;)6KC+*pp_z-#MtcSg^hL~=)hNK{>=^G;Hs zD~wf3VwQbHV7HIIku*%3x(+Z>J%@$})*~+;CV_ysLr{Db#F0_7RrA0LyTG(fak(d7 zaPCB}AR!8#4|wQcXyD2dI~&I9N+<#CLFY#*Pe%|ES?1|xd?X#QlXhN~a>}LrdZL8a zO;_krJh6ixJEs5*cx>|*U0ws+Z28>1C*X(EKtu}DfP%LKdSI+KhtkJP9i&BOCL9%Pdm%8&jf9UUv=WLYvde-tUFNYLv**{Cg zzf)Juxesn;mxJL`A1fTbc zfI$6?+nIlPqzgzd10ZNL=$FsITFAZRE`Wy4m}e^(p$<*9%hxS zmFt$)(+^`WGX4v~4$>{IK?M=Fa29dTLY)*uPTi84z+M*Y3~+2K2L%T}6SGQMT8@@D zLR0KLN5r!63;2qOXNF9C8jX9hB1!=|P7wqxU&PtoNkA^oRk|@~^{AF+G?VRc2gy}4 z!Nk^L_LbcX5RSP>-l9`e5UhK;?s05rHaN74i?tLW8qCA#WOhf=9C5H=>lVvEmUh0Z zURq#KP|8(*p;-_>N-s5Db!#}!M9j6-wSOhk>qQ^0D&MofYvyg95c0 z#C8NV!0PQnWE|e06o(|@M`~lp29VFdJsJOYd_D5%=;;-~MY?MuO*En^O`&=j_$l9t z#D@Z4M)5tdz|gM2B6A$4DhtE!uocPk`CS-4tXz=u%4N?nsZS;TJFEc%7j|`@u2M=? zes{fThgC{dc99O-d>9k#;d|B`DP+FtYWkjhk{~%_ddb$D(JlXdj2LcxVR0z_L>qt= zcZ?;PswkuSA~P2v=-U)BiIMHifKya$ze#_6RnqQ_UixUwC!Xd_HY_Q)jgu9E>_b3= zj^yi82=Y)JhNUd7cu_;H4MhfmV1(z9?QsG*K>Ehx|-i<*V>*>x=I?T&;ExO_h&fyFY!clITruW;R+9n^pI%$t_AisS0ge z$2AtY)k0YZH^Vd4xE6>Lyc6YJ)3A3-5aSk}$D16v<~b+Tjzu)UL=P$Rx53+R9NrXT zDT;rHzK7mRST1}XgKAfQZIb3J%O6yXjY1+VoJyg4ni^5 zmDQ&pnW{OL&f;zuTEUqU@~(p1^Nx%T;wp}e1J}Rr<^yHgd!CkqFmz4k$EmfOa1n1W z^1V~}S#02`GyMcutov1s@ixOdH!*~ZO))oKT>19`k65MyqnZz?EZK!s%fk$c#4CPd zN7}R`VHihiZHhA>_+SI^IEkp}ul@ z;R}gMj2mEo%3q6-L$QcjAB_z9L=^A*vIo6qVx81R4~p!!CaV3Kx!hfa=Zgnl;K+w|ok+9`|f@O6iZQgpO^i^-9Fq(puFzPPnk zBVt)MQeD{)X5tc8ZYTU7Q{S=dD$@k{KrDnu zEb$<`H#?m0R`{nM&d2>{W}yh3&{5IQRau$U)vc)WH zuV*hO`w%kRbD9|~W%-~4Qjdiv=D@Sag`xyLa1ML%Sa*EP zxXG0kX@C)rFgpfb9{{B@qqM}VeKTghsLXh|i{S4y zo>pJI+0{mZXSISzJ$0SfzD^(>{k4ZyN)V4|aGT1G2U8n}%u%Z;P{B{&X8Tj-$TU1h zMub71ToB7WtDipA_#5(-zY0yV*eUV@Z4XW~DpOjH}4sDWcG_`vEZeKdQ|K-{jF^&*`c`BX1gs^54HF*P#}CyNCa1IkANJ)ad;DO) za+>_$*9?1UP0o#tF|u5gDH zJY-ZdG(B$}X-&X?_NCm!6y`OAX#)Ozv=!5r|BkQ#zvPKd(Dtd=Y!TZx^}9*=;BNA6 zU_PefY$My`SS10KjtGV&8KNpaI#ND1N3t$uqnh)&2lLk4L)*b#f&H3QAFmwZD_(%k6T?y|8b5P*JR(%Wf(<6FDUI#-iw=}WOfzYT}3B)^_W z$@;grl0Wu@89B;qQ{l16bTf_1x03GOXm1{;-mDoyWtR6j-PBzj;!QxVaYKn$y;0nt zK5O**V8EjShSORkAayRWCEO#?iTLSN;Y64h0h zUqVKSbt!C;SwnOVL3$0NZbE8>|BL0l3zP4DM{3k8d8pE#su19pj@3EVL&Ao^8%$4R zv#~1rc6#2)$Q8{8Ulu{qodNI17vISaB>1C=|4!h++4hqZ;a{azJUa0>ya(z|My&nFmLV2O%<-OjdKhHTgcT%>~t_{QYH zMJyAEcGVe|Fl^XVkLXj!(ss(^r19O3|LhUB!X#9qZ97X?1WS8IKzRA=Leg##2V8E8 z47n5hmL6Y`Eq=c^)pi!o0tm#Jcvw@s?jX>QBHJ0JqbL}9i!(#m2g1X5ycB}!hj{bM za`uzY70~47BiefsFPWA_H0-%y@&Pqq)K2i0v^TXI%a{UwNVZGJ zU9%**p*r=Vh*+8DK`0enM=ok;gWQgexU8`7ev;^Yuf)RcRFUGyv5B= z+1_7&Sz387TF)nHPf#F@nGTBc$_H)GT^qt#p0q(?R+Y2RlO_k7#Pg^JUxbn~Vay#ahUD@f|*f4|6b+kIb6uyQce3*NpOx zcV9eo91W$p_ATZnD_Q4tvA89*?*^b#oHz&4)>p^P#`@ge#7D}7IoQABzcYd$Wr37h z*rF*+S$L>j_B37{LI}X-zB0i5Az%zwQ|9xEJzn1yzC0M~3-oIvD&Bw#Xz%fOWEmbm z2I~Ww>rDE<7JzMG_obN3{kYg!nZOH+1Y)5`6H)7CFMPSgzOAI^KVlr9j~BIO9$8%^ zFMXseJtRNvF-+bTBJwqW!Y{o~vE!8W4V@`_Q6+%co}`gF{gIV!Y!1U<4H&;(S(`wX zHgle@-N4@6z^QHKjKBWvpz(shVXQLqFUx{z@wjfs`qoDBYJ2t9i+B%%dYv~NGy|(l z`Ym*;_c`wbex>HT2ghkgF7SQw&iL$4(cS&TUsK*$(%B)^Ta9|cJzCNp25buK4i(_! zBVCm*&+?!G6*9W zE!+jlcMO-saXh-2{C2HlLP-o&{JmsYT;6Qmu5VrV$?~B;#k8IA_w*||NHvxDfaH|P z(f_?XmDW&jamndmJUHrtnfDvc`Rz&&k&^Mxs?>>N0|{Z`^6`U*mDe6LQ-xz-(esWz zmuCvt67feeu_Tbxy{8jy~_}|qmRXeKU*GXNu$d+6^^%$JlY^P)5)P?0Z?*WRbPTCgrlsQx&22=i&~n zqRH`luULk5_J5Rw)r0Eue?Mp5=>865IU~9s9YU-p@y}&U4q#c4WW1+sb^iou=nk1` zN&kC5dmWZWYr1LZ=#uS-DwSbnLdyT9fv!xmOt?_LZ`CrRw1xlo#mAr+^T#`sE$SF# z8N3yjbn1A@?FAlc#f5M*Zyj%XaJm|{THMv-0Z@AZ5Svichf11+3{8t5_HHNn&mgjb z0~#psfw>W?PGRh*fXgI(q(E4CYL4R&JG0}lUVhIK%NF3Qj78a z*naWEaigJriCT0)2WezK@f5kMDIg~XQ@YfhggyYU`86JH5$yQujBT5$vHS5w*kC{s z?`dd6SN8PW&gXdeEJqFtJS>S_MA3XBwHPBlZ2JliYKQhvwb=wZO z;=%&gXw&MGPix0o;xiAm@tKN*My4xhnrF3N9@2O>7({H?lY4T{yK3={ZLe*WIMy8M zjOeh7pkMQwbP|VpzjE_@WW`Un$}<756mAe#a+6Ye)r0$)6LdOR*K~e_j>OKL`!I?- z4c({V>y5N=UB(e;ZeJ9v;FR@=Er8=E^m>_fwbYmB(}y|vMle)dhhXj}9?8$s0;W<* z1GY^ZBIoq3lN!VG5*}slH`h?zYAMTq@b$6&Qo?@*g~HsskJ0CC<>{5&4vy`@4%(_> zM41_z8?fW`j@5pSFA51aDDW^LRAD<}P~_v_3yxL+%mx*!UeAugmAgd_i0&6UCtF7Y zFI5GU>niM)&0?oN@(;LAlV{#~teqQO6=ay~Z2ptEb^a~kPJZ)+{hr5xfF8FwXl-^Y zKUT|zp>8%3^hCdl3$g7Y0tN z8g`k>ILjLV6>Q#SV*0oDRsaEz{KYAehT1J6aiivKV);UKkv0Ts@;eT2Nysm*a$|g^ zGS_%qiHlT1GqBxIe>ib7f4eHvZ1%64g%{w9ZjDQ6);4uVdxD`O@{;==k}mq*^29NSpF|uwg`taHJUrJAh;oU@mq%Wa*_0?=87GIw*mCRH7Q} z+cpq(@5m*+-puM$f8y| zen$KMK3hT#&q^468f&A{_<%ND0`>4P4S~W@$LfRkd+m@rv+}M}aUzY`dlAZ;1^>2G zCn4s~7NJtb1iguKj{D3Jp0$9bHlp1&|2*M8UbBUj7acd@36{9MV%og5)&EEL%39}s zd2dD(RdV&OVgC^xW-PU*O-Q1qD+!0%th z)MYrQ{q|y{ysrP&bvdGEP9u_L-KXYka(NcYD<6k?I*YN;L0Z9B195)tQ~P z6BU$G@^kT}jn-qQA-QbVO6|&U6?ikf2tXvFDX3hpJ!PjQ)`rL$3v3+NW`Y@L6hLM??$pVRdi zl(wIkv|Zr8G;h&#-0wH-)kU18Id=KQtv2PgKxNf1z-Mu=Wu`BI{Tm$LE`4b?QNa~f z4$}FRA@;+*q(k#16sd9(FxcL7V_Va*an00Zgi8~S_kHuw>y_8(iQf))dO_yrIX%)* zX(Djh9xaA0LZhXz_uCo7`I-_SA88F`^78wDW+Z8 zmFV@j!<*Dfh@7IY&bPjLE|ka+^IMkSYK~}utzwsMUlb1NB8(sNXhC`6z3 z&E2{ENdaD^kRzhQDuy^b1W?(JzK+hAIw-4d@3Bmm!vvZkgHeuVNnGD3Qs3HOBW6t= z|2X&;$?P}OYx%!E2d*bDzE)HPx`BG*-_#fhn*ENY2H{7huenpu+l4sN-$>xS<)uH- zawm}N6$r@Z|Nce-EW0A)S+E9r<8<6A;eB>8rM`tl1*PBpmzQtdauobWYM5%U80Uu6 zpDZ)B=vN*8SxoSf4oIt2BadMJwAJL_$;p6CH?j#p83k3KQsqFLR7E^?=-wlcRsZ6i z8)pb5x_+A0Kx?-TE4`sWF%)mTe3mG-78Bf)!Zz@EhS#q_wie?5swT5dqAdf)TK`K1 z(^F-0mdxFCr>Gc0&gGkYECNf4$kb zJT2^4cWaxq?cD7Fa>i3T-q(n}~MDv()j{rE0b8bTHEP0!r($yn2s^A^_v? z6eRcP7bt#@IK2&{1om#zfS|(OgDX2ZS+EZM*tkF3HNv^_3rFnM5-uU>#pe zJW)UDW=&7;9G|M>H-{9fRi+5os${lrg@i3h23L+AZZZA((}9plUP-ki`JFze;X*0m z3)b?bj>{J6vrWxzustfkmhYhT|9-U-OZCJOhUr6`^yP_q>ZvevVei2L?2s?wI_v1lB{NPsye)J=&r& zol*P+Z4g4vzAP|{(eUOxh6pm*5`W+HyBk3Ddhig)$xVBs;iy+?gJQtVsl;{{Su{Uk z-TWy(Q}5`I7pYzDC>^cgB~gBb4$EdKH%{Ely1v*sNap*$-%okd@;5H69lRfeGzn(V zNc=1pg*$@7*g6TH2E=d!sD)fRjq!4VUCgg(-=GZi!m?^5Fe4K)6q=7cj!kHk$Gi5# zy?s}%m?Ej!l$ablhyu-cN3dDYPOSecewm`fycCe>HeBg{$d>=F=*LjFDL;N#v9&)J z{o!=q(|R9Lkwl0sSjCZ0WXe+y zoeSHLYqKeCY4iA?#KDZk#4EJSoW;$go7PhqnW+@7@;~xze-|vuDtxUXx6szG0TEQL zFs2~9>f_%oBtk$6%|>5|zhS&;Ulj2PwDfYMZmqed{cpSC^O>2g9jx_ z*QRJGaLss%Y@+2nI;EUwC%Spb4JV_y0g_>VagE`#7j9~Iiv1!^SVl)0pE*L0`_k!` zS_L?{pTsQ1)ZIx9 zjY}=z71!t6kUhxlE}4Ez{ALv1!seeEVa(!btYx%{Zk!>=&l&k(2s&^LCGaq0h#ug* z{DC@<+|9b&tG84F5(qZf9Lx*{HLvw5+08TB#;*}JwWen`+%l4w+~gE$VH5t=3J+Yx zjQ9k7k^qw#V=o-c`>cvvRRYjLbjpj4S*i-Ty4L$u$qp@F1poLJ)IY694O*srIW=px z02NG|@K!xadv@efQC~*iKMev@`Al)*dQS+?1`{>UX4bHwjNZxUP5gQbJN)2SANIAu zEEoLN&tSC1Xj%i2`(-jaNR3t30;ZzVuE3$rmAj0(r2izbT}eJYY^7c`F}ZGHLpbi_ zLqC zFI#e+DSE3DeAknmgJnmEC!=}_LCNPjH-YHjo#J~&S_ZDZ1A?37p>#j!FhW7hB0hxU z{c@qH*jeuH$N7o5&P6hjx&G;{4+RCwSvF6}6d(qu_$x$Is$$^x9WhW=Koz;PIHbMu z5pEIy`{ABRLS$lf^(zP|)4KRDxs)68P(9oCSylDFcz%+UDwdi48?p7A^sWH9dI_pU z$zY((77!0@%(n_E`;IvIB{KLNp^;eL*7;NXon4vqM|;s;hsk7@Pg{awC24P?CGo~$<@FaeSJ=E& z-o5-@N7C)<lPF^!klfXDYcPjBH7&3>ujO0Ky<06 zE%ky&7nb=SS&F4mKq7v6AV@mn5403hF)fG+la}-j*tchH8NW)oecoULP-KyN1#t)w zZ%fDFra4roPI+Iw24uhHg0x(mhYl>%rHt*#)gD=DAPCIJjkc?Huo{e@rG>;!E7Re# zClW&*oIfh`J8*P7bA%as14@(r0~J3^85;Kg&D0b9${y6rMn-m@%UL@@B{}3#(0z$>xV<}#JzvvwR zQx(k2CopFyb0RzorvGXUYTjK;L_A8z@w;E$MntEQmB(fSr8-LLezw5OI<<8>C^_=d zlWK6H;a2sJYct&4TM^@|ZQ2+G#L*Fx1s+My3MmRH^&9<-5Vr&w*qzH=rY+B7qwvMo zV`*E#pS(RsYmg_#xYBY{Tkdg5_};8{WGScp8VIwhA58^=Tey1o&krRRY!jM;@8nZP#4ntY~ zYk2*4L6_ac9GdVK2eLQ&ED$&A&4wKu5y}rbcc_Lai;?`-G77=mG9vilxn^6bITy?R zMZL-Pd!~MD9qAkGd59o!SvnNzCzvjxFqr#yGrhcmMR62PsDzEMYzF2vnW%if~?W8^g)B@ua!`E;#VzFe;fvKbENl ztFPg+yMkV?^mq}JJ0 z|Gxf->-Vf%q-7Ba$qEJZVp^iUbVu{0rY?sXirU(lLoOn?x!{dj2H_bd;_gNE%sfY1 zCKaK}yRX%3ergo%5Sf%8y0sH-01M{rqi1L!_RA0742C2gyzIsW<aJ>I&jlXOo4ff|TH`%%wYU6dkN!>kqSCN4U z?!yS(V1!;_QxY4I3lqD5WUqPRzy1k{mqdj9*ijwJ5^&u9dZSwvB&Xcae)7P`sAji< zZINZboLes%j+(>gx%a9J&y!4Xk4t|Tt-rDEj-mGk?jOF#vLsN^x!!*e5EsZ=guw@b zme9aZs6^Fia1HH zGiW*7+#)iJ760FI)%O%E=2`ZR5e4S|qAWG$j|jIVuFb;n8Z3rGvL_k3G)(!)5A{C! z!(bm4R7>lZ`F@nTxwA*g#vJD&+yq;TnLL1v);BC9AVSlEMpdsDLA>WLGPm2dh1!?5 z^+>h-x)aB&zwg#*5Ren^fnXdv7USi8y(fkMba#?WX-IxP?AB|BEMknpG=(5=uqLpkuM zWr+uM=*TN%`m?kttz;G8yWPJz2mbs~phY%VhwVA2rZJn)7Y=}&Sh{tm9?;%JkjTBJ zvK+4ebd6>4F1^WvaWq+f@niRmYX2u6Xf<$CUz>HjEBlf`HPl+DU-r;vz~I;p7> zy}aBvE}Dq&@;V|OV-?N&qGpt&n0(0sE9Sp43l?LK8)nK89~S>*e3hlmCO#G4`7&%B zXwSpUQ_Ha;V_OPi`%{h3DXw|6ztBOju0rqGGvB3?X#ZrzskZ~H@r^k=6vfN}OA*!D zQUaf0N4K)wX<%t%66LE7s;G~R_+V+i;q7afw5oxb#rjoC=qF$P7A1|wp|ifJjl<1m zT&y!{oqL$PloT^#RR48Z<_K~A27lr(fSNr`SbMv-lhx!#`ro*WblSgOfLG479N=MQ z^K`kKRX}YhJKPk=vz4h%s{Cq#>NEX!UF^OVC%abMdD~;!<<$YT%FJ#v&VSS0;ck8-P)S)X6v%4 zpkb_jdn*{r_1Hx1i?$B6dHp^M-V2(W-8}YkpFBZlOL%;Y$^9#em!%8~XlapdL)DQG z8K0x}8OLYksU_b(7*+o_+mdOT?OW67+slJI+W|#1@9fbd7g?p^|5fQ(-J|YQpKJi#0`bJBc)?RaY1L& zho9LVU+%;IJK}r31vifPUuk+l5q5V{)gQy`3Gd#$!}?l0G~pSe)3h zWj*j@;<*uy(&@L7$YgYdn?I=Xw}1J6Z6csy%jWwg#*yn4hnOF_^Lck+x5|bn{Z(83 zT2Jh&ELGNvN?Kb_B{4!Q5Y#=lQXi1I_fL&}lNZ4@zxYhV4SlDMUw26T=WkP%dX%xz zA5S?B`o9sbqgL}x&0p}p|G z>m0DRd%Y;9<^Bk2*L)dRSy|dyCk7sk7rOo?b)CwyJdTo~P9z@GSgg^>wuV@=6a7C! zQK8Q$=Z9G!_>sL8Z$8Zf=$`g71< zNn+sWUuZq%kjNvw0+nVeQJ+Spv+9rLf0U~k>`ZO>U`&4pd&X9_6o(_|&a*fgSHguf zke@yzT5k!=%KFj<5eDH z8uW#(!@qAxm@dy-CI#M%=oS7W@LBL)X_VYR>Xju@Y|s|Az?Lo^C;p}+*fhW0Z&ADy zvN}~7szUFC*O!qV2D{G0Ci_JE>8aP7sbV;5NF-2nx(pZH8V2tx*vAtH@){^nGx)qf z_r&^dwBux`ZL_mdV@#WW0j5k5qbuGGTod-YtiIm^PZ6rf%}Y_Ud>_Fa=0ZC)T|ATj znU{gjM3cnsM>uWawoL(7ZkqFmI^6UIWjv;anI;Y&D=i@*FVK`fn4DeMZK;%WGN~+X zJTBIMA+c6`H1?a)!pM(`95?E1qHQ9*O^l~S<5Z-f8%K3$Mqr|AeTRn?$I z)ZY93MAGv+EBP|nhGGt&f5%_h`LN1cL&4X8FKueZw-AW#8nJ)h%`VAbMb+nSby7GV zS^t64CnU=Z6F%QLF{mOQ5$&%!PejZO)8TLGekcHNFP3-X_&ayc04UCQuR|1tKn1xe zI{)<^zE(iIjG;|LpLI5IEcik5+L+}QGfHGVIeNHfk^Yrgn)X<=v;ML;dZc(dq_Nj* z{8`NWE2_d-EgnB9;a zf*1xAdoYKPr+kX-PR@A=xDPsn6K=q8aer!hTHbR$SeQXvWW1K#WB42C6u~*spAB8+ z=8C-U5O3#Uq!Xy4fv8kh zI_+A+VvFD_1eg3aqOv&Q3t=GIXDVsF(qP9t!G+P|v7FE{lcATpaRPXRO1&$tG~E0L z7Aigt*DH6^Si&I9=HoUi?tj&}uZrg!x9P0K(r#!P9wjx@2bD-yT2M8c0_jnMqGXV~ zvY$3gI45t5J_04mbnoll=? zt4M7KzJG8SGkZscvFg1WsMfZmXq|>N$kG4jX?3B_zh2nrYJXGj)+`kU^ z;QB1QfJXSd;^&*e;{_k$Lm~QTpD?f*vOmy!*m81;6rxC}@{p=sKC zcvMJ~Kf?K*8H}{3Xc++t?bgydgu$bnG&lJ}JFs$qmd3D{NFKlA`+f8A*H-(tn<;~i zT_Ph#z3RR6AyLQb-!64C*l~=8Px$%c*P8~pV`{lX$&Va6zL(jAki;%+&NkxgE$n_q z7}U-0fid6^Y7$FC&MUHFj-S?_lA>b|!|u~JiFV+1)NR*Mt*qC}kITu|cNMlc*rDtt zmpjZ+b$9u6yBDFhpKexD3X3b))$6c0T4a6<7OU8%eOAGgT2=s?1f~)qL0|I)Y^8r5 zwEDNPCNtlN<}rjG#W%0%7ByNk@nt;k4S~z$14*rOyZMV{7<<8|7<(2E$6ZRWv4dgz zrS~hDmC{#^n&u_yr&alZb*mE#*zODut8S_4!O(BI@3(d#lkGkB(@)+WS~NZP+Skbr zds=E}{crb&yrmYW8%|nJy=1ssy!*Zkm+XgxJ_~L8!@lfmzSJP=9|*`e?FaILUx|PY zm{l<@UBhaLdmcz>Qe}Re*Xu!^+0nWLfb4i|{%LJm%37+E9qNhAyU|1|Q72$X$Bq}D z&lJUPl_S2Yb!RGBTZW;fuojY2lav+dmNC6ZXO1%Z)KTtu*#nmkkFOZxDBVD4&hh}6 zoyJ@jG1q$Vdsz_rZw!NJG-rZ% z#tp1}hP&gHA4G{g3(uFo&Lie#ULh$^`uua!m{b3}$|;VX#h5X>?m0xg$IV-a9*Hu( zeZzC2BSdgf$+@VOs0%)@Od&4J3y}Rfk63;NZ#2%BL*}<>TIu}2NHRad`+6`JrEqRg z-|rM$1GCZ%$tO}kq*ofpkCp)Tt~DhLg(WY7>G!X6-#Mon;6S(>V)R49Q6b zds5*>pa^9Ozo!N+@9s$wRh_oBwKTe)mF~X7X;QG%gPKktzkVH`kEWnUPn-#>x+6*g z{`0dZn?w52p3Vtlz8$5JK7U(~k5;OH%Z<%T$6e&pVBKTO&(S8Fp(#01{|3pXZ{A07 zfuecW`?#q9iaw6FP;nOwu4P7{2Mx=av57nw1yO2B=t33={yO^z`vb6Jd`}J{yFC;9 zAfO@pwoeOd!IgzsLq}x=zn&Tdj-uW zqYtf|0Rw9d4m0A>Cr>JvY^sC!(Ria*=&UE5U$gb~I4S)&=|LxLHxz@&#R9|9b?up9 zm#zc7u)%4V?CVsyyLGwZMTc+2NiLg>H0Gk!qP5Z5UD~$)u`lcF60Ym0dnF9}=-UMe z4r}K%s-N3%x@xPT6%-)G*0`($9o0PK4`FEPu zVwku=+c;*khMU<-kv+Vao2x0B)Je8Le9n{?sG(jAW}i_?7J%C>Sikh`jEmaaXpXK4 zMhV^M_+bh}%tAIggL6fd2;mKX7qCSkpC#7W*GoAajMoQwWITZ&rU$*N917>?pmv?9 zV0hnJb$#u{@NfhAS4?v}oAI^xto7kL;=j)6)D>o4U&YxX7-D%}k@QKXJ5%udHtD7r zP-kEoAQrgmCWu;U7T$=+&XLRhI5y#L@tlTDRjW7 zll@46e2R^A)#k0D^=}0@6Yz!ru-Ns>?7`oGIRH$NA?^dO8jX|jS=BrI+yY5M;-Amy zw7-f+yGW@Ife?U$9d!^dWZ*T^CHhctQ3Vi+9p8PMlj&puYGrF=396n%RP!rN)Ri`0Aa}7(+)u6eIqht$*q3G5Ar= z#D!DOQ-(Wgybxqs32@sn&S$LK`TNABjgQz zbFe4?1MFM98sI?t3xoeI$XP+@O5DjIFQ^Bp(tPgw0V!ezK0AbW#{l;1aP%B{J|PE0 z;d$ee=481Pd-y73c?GZBk%b{zM!y3hUXr%uUINSSiiUsts2^6*V0E4*ymS$~$F-IML!3mv$3%P8zoITv(@vYkl>@LOseII_ z{J4|(h4yg`Hh%~$GC28Y;r30$g3FsHcZ`=*emujVg~ryQi-m4E48afg>y279(A*Pa zVB7s7f;vMhe;K};@CyAj*taL;f zdU&HjaQJU~otu3Z?DM(})-Pv28f?>=|_hFXkl zFaJ+k^PMm`X^9DTf5C!>z!yCl25?S(%a0In@(23CC{_dr+?R@aE>qtWg4>j5d5H@2 z0Mn$6kL3L`oigU<5*hz+W$=yP1^3p6A5KUy+trq#Y1Cnzr`L$1#s?sdt4&ne z6ReHi-S?Bk%APuKa{Ej>zSuXqe4|nfRh-jH=<Ow%5F(6{7fi}@UVc=6dxUPjqRc)3co@S3KC@>ZrpmLQgXZu zZoZ*+**SYIOD!(2RT zmJ4L@kb@tL?&cyPGt8A>oRcQ^iZ?wZN!7R_0On;Z7hvfnCft{wkm@ka^jWySI|JAM zL)LX{IjAhj4`Ly_S>h4G2@gA*@ZO5AA9U&a-prXruhbG%R90j}nyT}20x&?j@Ph>Q zPxf&5TS+PT$VyQdb&ARaBB>ddjmW?wlc@bcYG@=W-{=HL!_un${R*w~;)!cVD9!~< z`WG7?d6elYfTa|9=K?mloBnwka{0UY0+T(dFXbM@{H_(HE$}BS>h`8X&8ovID?Uf- z_0M8(!fyZi&aQ=IhF_msd#ixe|7^PkRzducg4a^0ulM)so#_#+@kKF&r|-rgvn5vh z4>HRt#~X%peMed*RDr1TSWu*bw`_jhdRYeXAs8P9K|Zg=Ldr#@X{v5vkFLj<>-O&T zxs1KgjfB*=s>n+nJ&19~tM+|S+4L+Dc(1o8Ansl*QT z3Xe-f=x8I<=A~8E33JWFJ^2RfYAi54EK6wIx)^)dDP%&vX67DYSv}kwDH;9{UHml# zR1~z6O&{M?8mf@+D(Q)c`nT7Z(vtZ=#*#;C6@-Yi!DCH$ZLz<#T}>kAp*P{2uWb$T zCY;EP@{q^{HFMA$J_4r%5mRd~uOL#bRgv|@|Fa%HK{PNr92}YS{Mg&ni+bWQerPSX zcoh669KQsM&RO4H3JsopG}h0HY)i!j$9=^Pm&>)ookw3hav>23OOm_zt*G|X&gZ=F z`5m<=3fpm;4T-d(07w`#rQLIQqUvWUVIk^2-o-_#i)0RYB75fkh8#5t7h##jMHVhD zGxUAiU;H~h+`lb(yMRhK@&99AvS7ga+3YNlTU`8hzXUk|tz+=z2H8jKVu!?7MKdV7 zNYh)nOdR$yqyb1@w@yJd?JWA9Ln7|UbfJt|)v*p8K~DKDI}by^Q;d#gUjIr>`nxhX zVOCIo_hkCjyz1JUNJ!Ol<@R85Z#}4+EW~5?)qekXdWT^BL($59f}f&d_MNX1`*Xtf z@Zvxr6*Q*_XmX-Idb}neY_oPU+3t{OL-J(Ev30IEFmz4bEA`qoKOr+^{{$u?@p<6t zjx9i_f4TxszDZ{Sy6iJJVZI+IY=K?isp+D;Z}_U^Bu$xE?}Qg}*gLreZEMToKCxj; zL*XtnTR?kYx*w5=I-WCsv(LvCCV}x`J~6aQk~I(8Aug!9+1J<#3LKSKB`I(y9bi%; z`sH8pFCF9kqpaEj1F>y0r)x946hr_6(GOPEJZ)K;0$>n`%x8uuaucF?bY6Fgl z?FGfz8)Hm& zh&Fh9uKwbXZmsppoI|S|^O4}P(ih!tvJ}DUN~Run4x?^dgWX)g-Qoq$mhU4W-|ABI z;!L>OCZ+C=b5H;HVo|>4&Eu|FSLuKspKISk<9$2Hp-aO6CDr;lP~e>-4W@l^%S{!l z9VRoSPz;h*HdV-cUCcP=EG$4wo?etol1&tg((fw7{6&Ev57+Ex61JtY2R4rHQz@CP4Bv-$CHu)pJn z(*i?KF3o7DIl`j?AL6A3T#y<+Ac^ziyKB7jfj_rWZ`l^GjyN;to=?Pis9Kx#5)40E zU(60P@b9f>dTUW8mJj!YA!b{p#ZkJY;^^)0Kwbjdl%>U>4$G4L1wa)92pL>szU0B-WJ*n_zyh2H-qEJoZkHFf17QSr-{uRy&_&*5 zfhqT%h7w2ia3jhV1Rw?PUKDc+0ncqR^}7zDdCE*T6sj{Md;6u9RT7ZY>D45d#oqCJ zahs_6%d^O5u0tPN4Kl@YcDGZ!oTc!ut*OBYE`VF0CRE8D$yJ#n-^4#Q=!pad2m*l8 zY$MfakeA{~4^-5t(yYNj3ZLdO0GC*`lAZvu>~kl%fEqy5{R`*6`23((1$|r|^EG~d z2?xdq11i_Dvi=y%c!4U~agc3H6`9zeDOLx{I~cA?71RqNco&6=$-#O1Fjx_V+K-8& zfRVa@?x{_sd%t{**_ZgDV*I+Tfe(^~U6E*Qq)?bW+ob}rPsae-?}*fYevnY;JS4NT zB|Ri^4y|w1WM(g&!#P>dzC7Z)T*=e))JnF(r0Vsi3=W@9XRAE~TBVq)_- zomyA3G!x!>c~~H|GUW|qT7VZQwFWxvod*WnqT67+ln-G0T39aBL#IY$u3>=je)%Ul z^_!No>z5?Rp}s=xOx)~?O1d%_`jYPt8h&JTY|}<;dv)C}4@!JRGXgybygx4Z532Xr z%f5P0-i4Ef$BAU8e~GcZ;Evnd$Gyrb25HAYsW6%+pG50P4J%i!$ibJa_*w>xZP)`_ z)1+mA>cTdBY9OI=hE9Gd{<)MfaBntXneZd?4k4G1bb}x7EwHU9v?fo6rzPv>>gv6J$~yu zH~QFF+NvxPliU#<>|APV!u9kGbJlOhC8S+{zP;IGH^-xA`-2jKttG`lM zcC4IbOoV$;-rGhZjoYcLb%=%gcH$R#Hh$nFDT)&MQG3qLAx`Ej+2%ujCw|9m#8~gY zuVU=Kg_9gTc1P#RB$b4vQ$W{#&zhDKMZPv~Xtp6UkWUJHC$c`kJy6p$owA<`i7 zi)2vO0a#mi#LA30^oX|PyTmAq5&NaQ7$uc*^a#?*eVMMDqSW@F-GP@cc4ei{mI!%8 zm)8SzH|b@cBk3qmuO#m@o}f zD0=O|g#QVewy<JOCjYn zfP`Z4Gyj58Bzg!d1s6)H@9GvzCNHU-?o!jq8w3rQa58*)oDf7Viva@U5Swr>WA8bU#u8as_YjN zyAAsVq?vf^%|idK9scDpf9WF;3iZJ9kCWqS;_Wut0Q^JSD4V?)%k>a%F+24Qz~Z8+ z8cO1ibcb&E`UTL!#-z=pQHgL@e%WRGP`ZPufz{h^Ao4Dsf%JNQ)}Xz!@5|>uHs%5n z#E6Svb;d39#<)AMzt~sWEjTPWdCBo69^$8eDfQ2_;Xf?c+KVI{_NDudG~mf2{B%Kl z@z)jemG6sSdD*%+PZarz2t0H4kBXRmGXWgn9-k&H=I?5w@;q6aoo3JelZE@oe+td` zMPv~>`*j7F_#C8kidMRGC(@)HCnjA%fwPuF3ut{}F`kB!4vj zG+8S#rTzE>eK7;qpusuxQzWH~__@BrJE*KjBqIvrH?E z6&7ksS)%+f7=5;DpocCKpx$iTAlmxSxcn}1I3lPxORHBZW=-eD=~01|l3==) zadRf`mnP& zATH5mjxNunUt1^Y;p0=HcQk~4Q;{dU$nHWE-4n(M=GwO}^l3n>^7cN5>V1ji;zzmi z!VA9_X)YKEMnNDmb!WeEW2T_Lfj$1<&koAFy05rMwl7Mj?&x6^#%9OxJk77X3#_kV z*n|*?&3KB%;MJJg?=nr^urD{8<(GA^`@rGT`6E_E{)}$n!!BEG#si#Ry4hvd`r}>v zej~EjNkdCR^d6S?_s(lvqOdQ!y->D}_1FY1!L%rYry1{Bs*DXRSp6=aR$iSF=bD>p z=)rBKx4)Clcm@mVm^~)$jt{bSl&DNEEE&wI>!*F8qSp|}?u6Mq`#?lHFjzaV!`x=G zsXmGJt37Lco8yo>g)Hngm&9a!hkB%|{vV?s6hbYomtVesYmv=#SnK3BtGUhqVY8{n z-5Rz6P$0U`&WvM*dpjV;JK8)`GW@KB$y)7#HfX4DkQM8c2zfzDx${2YKVh%bpHxQ! z_*EHQ~Of)znas*!RVlEhaMhVCS&qgRRr1Uo_H&_5X zL^|_|#zOrvwX<~2asBS(0=6oP-3L@FVfYK{IXqn{RqF#!WxdpLz7!Xb!cH-HXGs{~ z&|X}Q!ZGeYMJU1BUFHR>ME%ywV9NaN+pxIkSmx`O%zap>g$U2e0qHmE$|`W#jszZT zCzHd_W(4&nVP^W-9u-+e;BBS0g~kH7ce1shQk}_J+i9q!hon**9`D0PyV)0UB>ii5q{)ydd@1J-{TVHH3dv&T@fSOIz1RZa zj@hR?;3j41+>e@3)tsWkI^X+iiYzB1z{W85RDuy(_E4 z=BAji?|5XNI0r3M{b5T#UU}rptS&bpZH*@LYtOORy2dT5#SBHT~ z@wwYP4=K~4nnzZ}o$UY=en>MQ*DEF%_n~l(-0H{y=GkR6u<%^ZW<&&x&5I{MrC^Rr zkVr_Y%4>{m--}YXpTVmSIckAt#)GR&JXmc=YqDVx(s_fRbB*s4U4-hr7iobqIKl@o zXjIsTcYMb^$x&p5N@Nn_juJc5roCUXp1iWs9(Ek}+Yg`)tP(%iNBNbTW|fPtGg}rW zOLGhJJYdV8hWMsUP@?M;u@CiZL_x{Kn-a(RH(Fm{Z^)=dbM&g`Bw>f@!-DR8`Z zncvayq^pkd(sdyqahA-aks#?K*6jv6owHT6VaSEsjh2o8zP}Dx6bKoXP*>n-ML|** zVu{zKT;p;VviK1^l8}imQ3?0i+pFph23V0U#@Dn2uDevngW~UC+7pLF)S=HD@!*#e zXDj}u*r>q{qWTBUuGQhvRRUt4UlZFp$nyEo#F-8R7Kj6MdyImfZ`dAI(+#kaYa2LA ziQUeJCEm#SgV+_R29$iL6nGGwQ(bj(%t zdr=Z^{JNbVqlE=Db`ZY<<8y7r{}m?CGgD6w)6_E}kwJ6}!Me}9>i6!LVNoxjph~!2 zg1<<6e$20k%}MTD6YD&2CWgf5&C{3c$=b%ed<~DC!^eKCDs_mz*mm$P*nS7xlC;$T`a^Vuu6? z#d>r^OE~fBrG^*I!~5+G-+iO;oT2;sqTzC!l}F+~_9C(#@d35q!a?rV)8Ez{W;HGg zcASg$#~74B^cX;JhG$d3FNGomQ78@W)+vFX9x}5KaV7d0ckva~(1B90Z8Cd+1^=YE zc`!y;>Aiq*kg%~ej3+ooCle*JvUBs>SE=q`tB-%@+YsoChGepMugAw=hLRR4mOVFm zjg!PqITHtnn`?^A5Fy3Rqd_QMkdG_|0MO7sKmHS36iDNihef@8Am}C6Z}Tz z4|kz(R8_gnN1w9g*+#f%WIKo_?Qy=$$X|mWl80(SGuxhoH4_8AKJ;*9+1P!DqINs_ zgRTic=983<;CM+|cz8G0vnNda#%Fjkj`RFqb+ELoz|~i?g?INn(`kuMP@T?Ih=5*| zZmk!|2E#e-vkjBgBKN;3rmCb9#AOUP7}00i`9$_4>EH$M7%UOvgm2r{0||zN?#8q2 z%x37nMWNK3;E%e+RgzcQ5uTkvuo(2c~lN$r>kML3EL*t zJ6>@wFUe~GO)mrvUOW2cMw@YBJM4QonV+N`s^!_t+^!HWtUZh$li2b=n%4|w21q-p z%e~+;;kq96v3CF-^~8MIwATR>00S8BKZ9GoKuwkaw+Z@^_?N_{4Kbk}bJaMG&9)9_gkpT@u#9 zOYOqSHzKTOYfsQZYAxQGs3u7HvA$|KQcC!+owqb4bEl+l_zq%7peUxrMVul1ECVt# z+=@)LYES&koL-G5)sqKaJ`d_#4sMfwY;sEMUIq42{>quI>ESq%ID~L_RaF~0D`|cV zId_%rBtAK51lMpq`bh(1|C$mKanIDp@HHNR4yTkMvwc#U>$PmZusP|6_$^o;ZocLn zx9JckI3F*OeN~Es@MAn;S*;iy-dO2$#_;sc4D)(ey=M>$7y2jnV(WO>6+B#0vo%?v zWBDO;eByPR&GW6igec8z(v#OJ!CQUFFU|L1K>mdwGKg8R;g<){+Ry`Tz`8xW4kJn! z86F4v7GAt!JsskFe;(bvD6{HgXhTd7H~l^^KlywSK>bJGNfRoZzB%ZQ{RHh*+K_iyF4fIsWxx?5iz%CX1FQl%iYn z?RA-&G79+p5%Gg?Ch~x;hY+2UdZLLYe$t>{(mDCCAoM;kEba^@F8R+Hy&zk$I)7N*j0?b>dMA# z20={P1F5 zVjdKB;yu8wFHuw-(qv^~(eeQHp=hS~VjGcoCyjeayMK$z6pznAoW(<#%)Crda4nm# zJD-9$9*mxo0nK#Q&y~pa~Ud>xdP6PQ-%Ss38f$n))0v_am3f|HDq zGk-N8>7?De`}H)_4sm5c6QQ~OiD+@J&^}9Vd;P&`uYjIuGewToZ_U$u*W*`rfok`T ztcKs+uN-t%5f|ft{ zvL|egL9o(l&b?&Rv0-uS1GtNm>zGC^|KzW9KoiX9e~Y9hga8vBq!Nyn8M{cC<>{Le zfBH@_C3LySu$|T=a}kOd7~|3cqanrGzqWTf^#8A`Z0XdANtBIes`#|6LC=@yE~tCt z9;lY%D>mNx_4(yZL6O$-ov$L=aJ-viS3V)j-u^n`!E2UGRo^PD@sWU})$7B5r3)%oAs_fVw0rP>HMq3&QkV{$ zA%*siL)cl+$?ixrU@$@JhGLd_cX~a?dOpK;LjR7lzUbNNk4B-uz>}@FrA^5a?;~7Z z^Y1IDq%dgK*$$m-dxq;=8=E%u4r$T6EUc==MLA9Lo-CWZ@E0YvMDARoLlI_w68Dum zE~)N(b-sF`{kt6c$}7=2hbxIyx-WsL;1u9dZ277-SSe&I>aVPUuG{^%13~}c(yVK? zMdVvmhq1#-eVAITcb=%&XMB`9!9lA~39x<{#cW7Vm@q{4|{e+?|5i&OftpzOEkgCDKB<|xg!_N(!+sLdt;<#h@$5KM0fAahuh*-&E5 z?v8Le&&%KwxX;-TuN9_)zS+7WrWVH_v?%QUlMc+#7_erXJt6!LdtcVF!7RQNV3h&0C{WOnT9*tx%& zH@M#d1y@pSzQQktlkVjO$Jd>*2(JtI6H{cj07uWd0MUg~9-m&SuwT#u+^g2jzIf-|9wjK<_Lfc-h zO070(ZQUKnMN;MEABsNaV0nEjUcvJX&)m5Pm$?0PgC@#V4vF|WJD)JxrsJ0fW2=Wl zsku4poJ3Jdm}7>@JO<{)N;tKYXn*M6x}QBDHcXWnVmJ2=@;U(b(Da$UQhoC~d_~gT z=gefS9{XT&N?S+e?Wu^9LQN!hR~oz#$IJ8_P+_gXHx^xeBAEbP8Q{^jV>cWQQq*Vj z=e3U~>Y*|rZ)z!x5jBN$3ZX2bN?U}yvC{GNkm{`G>?UlENcO!+-Zhmx7|EJv%mXC@ zN5D9eEY2HrG&0Udelk<+wjNpxLadVrF@T!WI7t+t((PHBat5x`tLj-=R~0Rs)M~D? zH9`C@hW5PWqgLb5Q(=l>J4=dA9knrj12yh`GVCq)N=JP8zhP7nJPAEeY! z(87q}{7{^TjL|9G!rXm)JL9Y^bCC~J-MqlaQB(4)2qHX0^y-iR0*gw=Y=j}r_+qh0 z?AnAjVJp+7-B9f?4hhhHus!2q9qLCaa0(S6i1Xp3tmBLx?C&?C(gpw~ys?R%&xBK? z-6>oqyC;qaXV%AN`A3?2Dc0E)5kb)-rP7$u0fE+N{KA(PW|u{tk81z&D)anh(o(& z!>ReCg6CP5ua6jC%zSP@=}oHs_1QE6iYsFnO4=-Cj;i+=k?LBEppe;aaJ-e-PT;!G zX)Rfh75 zcC?~#infSC>M0Q>LXpEM>_`~fwNsQMH+D3m$FzkH|0rsRpz3HoVC8*%ry3igXD#vda0>*(VcZS_@Ff{b z%T+jlH#%Fw@p2%QMp$pQaRX^>6mB;_hF{XVGVQTLEDgynceKSkRcf&7sptoIrtj^b z-s~5VfCO|z5*P8=4MpT?$LR^&Mo{hg=<}AhVr!mI!Q%vt+UE84T$PyE4>ei_VZD#p z3G`ZK`mRq!E`g&|+Neh5ikLg3g?LTJHPu7OK@NUuwQ6L?rC*hL@oD$+jFzr6o+F8! z<(8m&8Nl}p-uFZA06ItW2jdY^T*8*O^dPm%6P9D_156Z|PACr&PdP+T9|K0o_w_YH z**I$jnA4FG8%@$herfS}W1gGj^MqWTT{g1Tz^+@T4UI6~!Y%S0t@s|B2j(<}u+7_L zdMPYdN}6j2sgc!*4$WLk!oxa8Ar;hQegc@CZV8g+P;;24wG9BAJ4pF72<#vYUMT8Q z2Y`a)QwMhxq=Xr~<1<+6ah{g9&&X>INKagrz`C8mP?^E?_&4XYnD2|(fq*yEI(X_YTk+xP!3WaoF$=x(q4x_cS21Y#|K8IBZab>-AXWE}igN zB%)Mk^Z*k^VD5)t4{_~l3^-$)$H@H5y-76hyr-&jZ-$W`=h)jiRQMdV4e#KE5R)jG z0OS0FV;uYWxeJJ4-eLUS^*TCGr+=3NFg(S5O2wXj4Epn(l;K8b3tgG$ccX;Vn%6{DctnuK09R8qqA3lz*Ksqq^f5He1**70b9sn%FaOHh;Pd ze;E{t5ZSb%d-iTM`dy9VrFGdBRjB4AlUhQPZcxIB?ccY{!OpdytQd?|YqlaUKs zGFvY(DhS)Zw0bHEp8I;76+y|a0KP7uz4RKHPlXC;O;8aIRZEZ|pF-DMI-=sb?645J z(XLS8*@%zW~)6g5fcVhk$KZKBJDp-Ve2`E0Lm0*cjQER?Ce`e8EJ z?K#G0Uy>M~q?NkY*iGxPyYJRheH53ivl?rayf|KMBOZnqL=?_4!WPsM`^;I!EaoYi} zxIWZqmy0EkZ)(vDQVi26SDhUvG>ss)>&(^`EfpS~Whfd~)4ob28WR?}1Wi&)m|a`1 zXcp;E%tADX(s$e&n;tHsPTT$Z@q}wFeLHr0c})SwOBe6cDdX+00zN^|dvr{cK1vWd z-gPyb?-X}Ef^FRp9e&_*m>CWk0b@13TY-gn;hIAJ>4#3?;un%tmu0qd!09EKOo&Tu zNVZT@bUD8HpvDoWwr~fqv|1_2wF%5k+~H?dz%$S?JW?EN3?sAC4{LT)-PfRdT}1AR zCgoREBOY+%UJSmS5{0ZiCZX_^X9x1y_G7dO-T1n^Qcy1G8~aiMF5T)WPU!xWx2__D z(x>D5Y70IOjs=u0cgADyUqT@3@~c?7kLn1Vo^$9AzAJNB!{7b>=8oT&t87`dms8QB1*==O z5zzGrxQK!~XUB;udEXCh@?0izdEO}OMICph88{4yoZvKpkW-fCh zydtJyl03UZ@+aC~6n`j{>||f9BpiZwX-qW-LGUPuAUZtph;Aef81D*Pl?6>GvJnfm z;yOW@z0-D#o4N2YB!WOy-tZtzQ4h)HQ!fvEH`yi8Q$22ANEsvpe(TA?K})a)t4@bD zUxz(~(gnKL-(af%1NF2=L$zZ(rYj-jMb{oTn-%NRu_qvO9lft@yJ?dURC>58Si1-J z&bmo+wWmN(&){rt;J&@Q0wYov1V9i62aw7Ryrw~V^GnA~67poQpqg{|8+PhPG$DA^ z#k*pKY|w!(aZJqyrCq-T6Y7chG3t!o;W_l!hV)RTD?5gMzjz6%9m zH>XZ?hs^dJr|G=OVy0xHx}gMf>I zXp(|;OyUmMEB(gs=Gs1n?-AB=O!)zA2Nx%mQG4G^!b+g2pDWOR9(1cu<$6!t*j2PW zRFm!yv}1~6n@NV)JC7qIxz;FN4tiOh)y~9%&RdY`04p6-5oo4x*mzLdNoe*+)}v%y zZ=aOurD(kIbo>$z#VXRI5acATYh~3I8RqUT?B>bo*v8Y;A9b#a6Ig8~f&;l`qiv42 z@P=&L6R4#eZYJu{dXrgWPY#j&nm~Ki-Mejdv?uV)sXnl=Ei2J>N2fz(%BwTl*W>J%W*x*%ew;PL2SrcEk*V_+NzX@Re5IPFr5 zxS_;BK6$&_@N>>ITI&F-e1}$_C1x^FZejM5x`FrJ?e1_y$nRTWbZB#RguQDkdWRen zdYEGviLptj0W}S`t{Fi#0?sZ*+yUm}wu1Zo+)H|Of&4O4WL!(7-Q!5PzJy6_p$3^H z#|i`T9b?Xmc+j)P#$bZYU{ACeLv-!B`De%48@dPDU9`C86Zdvlal4ipSJ978IDGtr5?JmQw~%( zeH3prDF^LX@GjWzAh4$3O-~^QI0!2BLSvA)jV?HW6x@Sge$aRg70(tQBL%umb2U`A zFUY&ktGV(WvgruP<2pYXM<>fzdk6tIo>N#GClqknRaMi0xk;--c{5oERSOQ~!9 z8{uED@74;U4Z54{H%X={0O?thE9yqtW@`+PS?Ft5tU63Wv@d61NdiK&x&3@W8!!VS zGx6k6S+IfLF&8|0rmffdB0-i*que_}LkhXybO&hko&!+R>M*FJJ0KZBdXhk}0-p*B zF3yC56u^c$sJgTv$Bgd>UCj_?kl8=^n3EKUU%?@_8yfE;nk zUJU4)J`ta(=O)FrJM5_h+iI9iSrIk}xALjzUFYfBG)qi?YaZqJkfni$!a#HbVWl?i zHDssr^Kzky$<4(LzE9(2Hf&1Fb6wW$O*sUx_#WDMWVO=|39r1;$}p*Ka(Yq(n2HmzTL;1>tNp z6H(lK_YA2#aIML+h`wm6kC~x5?yt?_d;jKe1^w)@J;fe;Zq#7DlHg9cXieb<9;_&c zRkkvM=@O=3sX-j5ud_XMPSI@VKQ3~3SpDKrJqR}5kZFoBz_tcOxJ0b-<} z)fN?3sK7m$flJ`Mr&EC2{oA~WWm4;aqeo+PaD%+c1DqvD@_?^{?b?)+*X>)a9^FWj z!H$cx7Pk=c%Me!sG-UHU9-(JP*J?GJKv}X6 z@K$QQ81JsT1SCL!;K9_%wg<^uxziY!^r60yXEPj7UU2%j8z@ylEd{#?B+(h&;S@;$ z8pTr|1YqKIV zXxR>APxk2{*j!?_iq9oi8AD-eHz8s~P8R zAr2o#%9xg|88@8suJXfN?t*yGzt0Olk0oPdpS|aM{Mle12MuJX&)Pex@3ViQ&v+Qt zavA417CP&_fW&@zGmk8xM3A~~Sxk0vUOE+WNR!^Hg`g9maq=WzeZ__Uh7Xtp5P}}% zgk90;bZiO2#qg{bv2*o?sk#A2fb+VA}qk&>C zu%i{oYCJ#5UqgRRex-h9Y&isQEb5`~N@t&+czwvHQtA1tZ-z$h8#K45aJD$NYHeLx zT+tG^zvhU|X!|*96^he30o2H;^~jJw?q&@~JTSR$5xdNAdXdPL+57h^DI0~@;(#>; z1KdZpq7vDpUd5}ea`esJ2k@POJ;ff}9t5egmnkE%3bQ;c<`BW$C$%|&>2gn-`{m4t z$B`?K4>LEmXrt4pvWMflyjQdkBKIk|z=Lw+LnwXsGCeY)TXyDQq=|?M(p_(Z*f5Vg zFOm$qz*oLtuO3_rmscq(sXJb&SM{>E54#8Tz)L}J>C(I`ML0XV7{TP@l}pxAbO=WP z_EF5=xrms2fUxEuUM^9b(exz_hS)INa=$m_6}!RNEw^dY?~%t!Z^EJWL(MeL;L!S? z>2C@mYr}WrAo}4uyC-E?KD--K*4u};AX2 zEN7;CEo}He=qbL~)4|29#AV9}hQ1Qq5(bvZA?8;lhA-%A3Ob*SlKGUFvy}af!E@1; z2PX9sk1Ts{Y*RKq5L9%`Ll-;K1t&L#;Usczl10k{gj9!R6XU{xX{Iyaqh2a zeGcz`NXSpIo{;m_W2Ym>kH^nbp0jwJrmkDwg?@{^dqrat*W{KJnn3x?!JoCmKysD7kP z|6|NP+r!Y5)0j8)k0$+b`%{{f@z4hSPd|onD-WA(GvuG2e-6U0Ba=Tb2UcZ2V;F%# zf6k7GmyJK8Btl_-p7S9O^D-Z|pTAbiX6{AuZf_D^5dejd6h=#$SwywWue#^5hM z9cjX|ze;pI#L`e9KS^}8KI#2cQXEK~!`dj1|J0Vs#dp>CD{ZCiu|p((XSTEJ5eeng z197N;3_d8P_f|6qU5m$4%IV; zEp3TP4<>>%mcD+IdDrQSBo^vx2cZpzkX<1aTh*>8Jk`*WKOahmg(fy+JtJ^_eZL%V z5c2fHthJ24)(2_crkr)1hkkPJ9y4I7NME%y%RN?W@46Q&8DICT4~$WAQuOw2(;eI{ z4Q>JwiDvI^I&iY+QG=?GvViDe{ses;JX?a8h5aoqi#?frsp z7qrK_tdh{Xq7GLRL2A~!Cv&sdQX;v;{90EN06K!0`GN?`DMm^ZX`k_Jer|e&Mvr$C zVw?(oPgV){EP@Ogh@__AbN%JpNl*V2IOW0oioPI#glxbEtT^!l$HG_gp385r=HHAc zzY7IyKyz#ORZ7^esPsMY?Ek&66#JV}0sk(x{KgA@-yjole@lP=hWQ>zU|r5*?hLbV z=w}UheAz!A_X|ey4|sfn?T`NF4|4R^7=!3f5FYdK6XO4VkO2SbAHi>&`ZZuZlXVQ6 z^?)q&cOeV?4P+q@^6y|ynWW>-FhY^!pU0;C`OrG(Hx3~ObN>Z~Xd3=cgV3MnKaIyt z{wb)Vtm%I~to{K@f56iJ&#=TqMBK9fNm$bV6_)M?EcM^86!@Shz_AgS+*Qa5UCOBa zNj%qN4=WY!fC-KtNw!vUo!(Uy_mOdJVlP~mHer|dSv83ba=Q=?mxhN2LK616ZEO5q zZs1VxsUBJta_dmv+NWvdZstu$z2??sTwn`rYG0lP53jtWAVsht-*2N)N0Z2cS#amfM=4D=6Q zf5%VD&*K`dTvLxpJ$^RZ9}A5Ae85m}JYGRW4UK>?nD~Q7{J|rbKX}C7C2yaMaE1Rad7Gt#gc}Y8TZkfB2aoVN z&XV~{qVw3!fAa_tg28%pZ_+FBCol91r4Ko1f~CH2?xLhG;#qs_^4U0v=Cb?gd|esf zdYJ~v*SOD&o==-jbLz_}~!_&CaaRuebw);tc)dv!&-hSE5C7y$Tkn&IqLz4d`L z4R)WYW02;dY>5pdu~8RldEHDmOtS}(TH%^Q)qn(n?SX__D(?#ka*eG4V}$}dr<$S< z=BFRd@%1*pJU)>(*??G${NE&Rf8z!JPw|KkJ@}vG5eS0*x9|uA`fueC@RzxN`vM2ibY*sU_3;N!I@g zvgdC!&e@0fFmsg%BnbwV-SK7mLTde5e=4q<7tAsP~*x>TwTa=>c(!a3xWlM@H+hV^$Y)3fu4!TPNk`TS)bOiG}&%B(F zgaCmiG$7#V+Wv(5;2*FZe)faI@BWkf1O5ePrhtMfph!fitLs*sIJ?o5D_7>qTw|^^ z^ZI}|NX8_p(O$ZgrpvNnB)M6e8<3+e*(b&`YF*35-5TqM1}T;D%B;uNSvOCsLZVbP ztNn~5=koIvw=Ao6LXoXuV~~lC4XF`}68xg(DsItX#q)1Dc6YC*XioiUPGEYjO%OvWo|{imB}aXh98fJ* z%J;T|_MT_H790AjrrnPtUuX}C4XDBNk?gSho4|*A|E2HQubpj>$ZmDZ9)gPuiZDhE zW?nZ~fY_ZQ59kQp`9L#}yE|wN8>szfAL#pW_uQA2;DYL&S40u8R{6m^o;%Cqxx2go zEKBXw_ZUl(J0?$o`TEk|zqtGtmk;g-sOq{tx=VjgO`spZlDXw5H)UwRA2$ZT z;RjP;$c@JHNu3johB}-!6M$@%*_u(^sEPilmTSa{jx=f2EvxEB&>60`Ty|W(CC(f+ z=eEsSSz*Lkb4ac%&9=6LR_s|7h9$O1!j0Aj6WgqHMNeO4V~zF{22*yct#UHjs8)PB zj1Q@PHKpki5RB$bN+Mt=&u8%iyrP2h4Sr1hJw<-$@0axV%!7G*{48&e-({Mo6D;NP zc7}{I`%p6~e&pi+QsBQ>`xk4!kF}@fq_a-nrNAE|&jdlG%_XN8)11*x)fmXe38$K~ zYAbRVd6r(3{m3)k>#zE;tkyACg|x#Ilzrq`*3~mTsXVp^I-jDmpk*P?%L}H+^OgFr zFPfV}18K46#cb*!ovs-4|Q`V(Smk-V;fgw(d8~ z8y%UmN9|UxHpup}Mmk@rX0~*6WD=#}YUF4RwImv{TigfMS)w7PWA$BNowq0^eeJzs zdh{S|G28igl|2fqE63E~wqUQSJU-R2Vw9}cz zC(44#yF@?6rTxIVxj!j{Q!KY;iH=)}mRe+{F7Al*GZ^MyQ^ENLKd50IGTtxNewMYT z9?RNU@*Hc2ckgk!lVr@-*b{MvdUm>h@%As?{>9rLz}o>b70ZJIj;pd0DI%SXZ);RB zzoDd2dz7rrsyQJ(<;OaoF!CBZ5k@sDk>H(~U2hZsTtK7065Ca!lyEC~CMMT&g4b7I zsczTLx|I>7@@lz^t!b&*P*PSrMR%q%Vza0xv<$S$J2Y$7?6s3F=k08w)oe}Di>zgG z3}Z)^T~SFl25v2Hl&(5?gQ*po92w`7XrU5yrfwz63NAY_ zJz~QR$=;;j<{K-`a9T=Z))TYEyvC=AsI-pyWHViLxvi1VnOVN+QqU-VpH&|IopR2A zR(WWUKgWu1w#o}~rOolMhrU%F8syJ4h-sCFasd2$f2%z6#oI6O_Vj~!J9U<~Q+M%p zj-hRR z4AF>ZYNKt1tI@r|d==%(vlds-CR$!=lU$#%s%O-r6DyHr znvG4$wANf_+HNs@J`oo)xrS3Px2;JlQO>ptc9&{3XXEsuyILwm!-;Y!OW{h?SlH(L zd~ft<)OHA^DCJg_`KCQ;7u`HVmU9__T$Yu1T%-D4qfntmfgwzaqPL5UJlXVly|?M+ zSM504YGsXdoSzYdfEvtm)U=U`r#RB%lX@izIqKz%YUekO{of15iJ4LD4Dp}i#L2>~ z8P$@4JC0>wOG%_|Cl6$E`j_&G7xR;)n$Tkp{yf0mD<~d;@!Lj}JSg^^%u_?X=!i{R8jW96A=)o0Pf}a??e} z;>Pe;+_1}AjXGFZ#x^dofOHp40Y=qjYF)C}X^yB0w^Z_#hMrAGlXhLSlDmNU*?PHb zN_;Cmci8m0mP^2Z`FV4gO{_A#fx}4rk}j;be4mYuw?v##m7%S#OS0$~>cHd*8F^Jq zmTS*Zb+N=UHEFP!Jd5=AXsi2a?DDUv;CzE0)GiO%@0ad=R(DU{&DlMQ{NeLS)sPmj z+0~D!Ww?F=rXs;FHR(rAP*qWo7XDRIb!1By9QnERBgp6Gk7U@yyUm{{PYer+XfUhn zVLG8Cay*@a>lpq}D*6~c0fGnkhEMPa9+WfS*z!Ax>Jd{e8pc8stVP=qEC;*{MJ1kw zCqI7Zf(H8Z&;1*5Kzyjt{f#W@;n782K}y@8hlGV-UUNR}Z%O85(GJ`oe*=>h6J4M4qng>r9p z`TU5#9OwrOjo^GblxX%bD8<7?X|L$)q46)lQ)rBjF*P1Pc&A3)-(~EsVPww?4|MJG z;pGTGq5X8L*MxiZchPY5v0!aJ-K;4<{IP6Vf-BvA40i0t!R}8W0c+-?sPY3%8<+g+ z)8QllS<8|IM2e3=&bK6fkbOjOW)E6m9|nZYQP0-{AZ9gAK z3o<634ka*epAM%7OD!J=vquUoA4})?bU3N9^DxWw2SRHs+sagbqlc{sv&4CG74h)60BJ0~0D`MVFccwY~??QH9x`Bt(~c!!CU zW`gBBo!TaeYd-a4AfNi~32NQ%g4u>~bo&mbfangx{a(__!QamBRIInK-s1>y+5dYH zr__Vv1Tb-Wjv$C74j0!V2U+Q?IFGHzLf^q>jZT3nl$uKaLBD= zKZOOZc#Xe46p}Mjt}(rb!t!M68ZUYUms9^!rWM^iCwxm77 zRYL;?HmlHJg-9ZTX1Myb5S)iXyQ+2kwnMlJEmT%=Wbe)dQl8*MOv@O%l58WHPZQRP z=4ugJa9j&%l@UNv^7;@C<_OkQcKmw5PbZ*=Yr;qRmkJ*|jFH5bK44G$@I@wuKAI?& z?Nm@REOS;mIX@?DS(PPd!3B2!N;VqJBfn6DOH%*#FaOFV8QVQrw$^^&F}Lj|CB!v>F$^CWfU+Iq3M^Cdw`7JCJv=u zP*A|s9Gk)o+<`$c$iW6?vWw*WMFaCwup_?pAd>tRNqviCz9Cb8?kUm%3-e%Pjrc~% z!;1A~%5M>Grbsh1h$6Uwh7c|2SH6UA=q13AB}kuG!fzrFeptLK5U3p)VSqz%hWCQ= z6leDCs9jwE9F0!dU0DDk+5&G_2G5%M%?sgb+mEIq96citBzbMB0;YBt2q0XI)>Bx} zk~jiau+<26wXlGtaCE3Zkf!G`plR3tBJ%_~ ztSPEssT-V?5QzUl83Sh$0|CP_GzEfmTI&2A0l}%eFtTBF;WYc~I|8~IW&0A6e~2#t zS%!txVLg5?e+P1Qc$D)-fYd{Q?RT%x_7yM8eI-O{xgp;Cu~Z^p=_i3;VM{52pdp?J zTZ2r|UwSV&Vh(Y{BU22ESSpv~B7eSU^tz3KLRO}S7+MjdVFp%Q4 z5W&ZSvQ1f1CL87Ina7tPgJ~DDtH+2R3hN+md{Dwfr`GQUgwMKlt92wEwBPAtFP`JtGYnLe)d6qi-@ihfmYPWR<;bN2TOne4i2hk zJ9k6?DzGN1!c=~WRFsA6DKEX|#5F%v=D~qK&tvzd_X!?%Z9wthB_Q~4CJSTPYRMBI z@B-YyTYfSyc_r(AL@bmG!YYoLeO425+J^B^9uPxlnnA9t8O*iD`)(`vLREmk9K(e7 z$zyL9$D=FJa2!JePbuFQ<~znX|HAJO=q2)t8HRJXn7S~~7G5AgKl_rQDZm2uXyyo%7O?K~5s|$a;jcD}={9Lfgv&K|0#L!U73)$*@3Sy0ikpf_pv& zER-zgURWorB`gGeYi?L5X0M(Ed?;c`8=g+Uld%KgCWJO;aDP;=g4TlVTPOr7f)$$- zXe3Wf5bubYW~dP?XHqcb;V#}5kWxYe#U-z0b$To;yl{msK|<#gmgpY{+L1-fHvpk1WuSdqg8Fpw331JUko&a;1mAuV%zzNNCI0wD%Gx(( zCYS+TfjP`@PGSYL!kVUKV3J<2@Bpke6$sQ=c4P}sHJ+vv&>In2Sk)cw>|pVPc<$^# zutN05g%@#$CM-0(o;?DgfmC$Kk~P4f1r;w0F5nghLjdvCc;E;pbT9zRzY|Ez!VNeI zCa)eW*P%hwjPQ(Edw*DHr#_#3Q-D#*jRyf1fYY42NKU58IVxI zG!ovSJpL{QP&_>~5U7Q2cp(xA- zKZOPi9xMwB*!g$&N6ulud=5V$L8#~MouA*13ltrfF0urD3S+C_K|S(`jA4vG4&}R2lHt026|RCZut{g2>Is z;{&MpxA*o&`oP%<1DPa?I0P5$81+3Q9th&qB>E49^otHOJ%Z{3h*}s_f7`(;jOhw! zFb)lpYD@)7ab}t#g$5Jxhaj6WkhZ&ZkmFV_z72pSN0{G^|Lggi{$ z@F$QWm2m{R?Ei}RrG<{d=l2CO@%GjS3C2&iiN$~Ug0BJuc~PD!I&?I{;{k^gH^*TX z*wM%+TkXB$eYIrROGv1Q+x;^e7Nn!m3=1S?JboZpceyqKnM$xpG7x?_EU`8asDk0i zE7`(PaDuG?ESp-eMF7iuhXqVEq&I6IJQN_7G!Y2Wn-v2d3JoWIEFdLXhC2;y&&q`b z$Wv4`q8koiw2^&Smpp!sT|9&Wm3o#csZj4^A3L3t892zCQ|Ad9*@w$S@$FiCR z&WQbB8o<SJ=fpGl;q#RN30HMtrKw&1iJb)OkKxnHHZDtz z&>Q#bq(<(zn!xR1BkYNPnkPoySWVz(PSH_>`hLI`;B7~dA~0O#JcYm@r(Cp$kxE-7aCUB=gEUW!*lQk z(`kGb0h!8yLH$Yn-~URHSGoXGwg`nCA^_Kf}-0flf10%tc#Y6Oe~1~`AicttdFAUM{Ud5X17==rdq{r^`DJGvYl<8 zbcDDN=7%xUsG#hHx=0*Sv-`^e z1s%Q?L0J}wn1^9d&Y*s}#pp)EGK|U5dz$nkxhtYArwt&&=?=P?o*4=t`>S}Yq*EL03;0a;7b4vHcqhs6$#q0 zXh7$CgyhKtEc2}YqKeRkbPT2g{a1WO-2*+T8M^FWjSUHG$8gJISwNk-paHssOH?%0 z5qQggO{%T(5CcWZ0gYaU6ej#YIPLCKz+~Exlj-&k;U9m@9LM}Y5VkavHNk!|Oj!rd zU?vv90hiX4*wLG&5;RG2geEAuzk03%3ku?>sf^$V5umlbYD!b!sR?7^JV}N|7%;7c zOn8Ph2JKKJ`h`4Bs8&~dCYV0S*grfQZb#q;z@QD5X~bEljJ0oZ6u@qP2FXYA@Q(k1 zjeZF~))PyE{{o;dh*p49aG3;%=Wk7*tL9}xi@+a%l>xdy@P$>ycKlcOuk5~P{gs|)@3hU!IHraSJeIO(b@m7_CLhK9Y;+YXzjx3(v2jL znkEXGvgdYp7l_n|6IwpL_7{@BU!o2lws+#d1Q0*Sft^+qBxJ5O6$xOo`e8$oMss^^ z!-adr@dgnwz`(+r|6D_(`9E!nVu66^i&g(&chjLs8ZZhd3xNG_x4HcQY!WJ0^52l} z{UHB_r1V{YP6xyZ|JDR+s_5U*Q;Lf{(X4s6352a5RO~4RZ+Xhtnf+j%;O`k?J3lBA z{N8>C>_%Sy_#R{93`4Wr-z&vd{KE4;&`(wVTeFStaIU_i-u>_=?D;Nab6^-`zZc}0 z2e2pS?js5C>=R!a+&$Wl#&dKb;G+qLk}RCp>0~_yg!PX-AuN;Q+IX|k9Ef5m2+o^F*kF$EX(Yzq9h1Mm0A z+Dg=0D)|4TS5Uptpf;}PGe<17Tg`4fQ%$9E|M5SplYb}3x#UfX{Zf~UHGqyyW*WH9Ctrxj!zBc8SZgW}TT1nI(X|qF4 zvDlT9P%~7?OJ#~)y;>?4%z|oKT%tS~7v`IFTeFn*WVnrX+j_q-j3?bmttgDkTs2#& zt`kW!Ll_yAW|&H`qQZ$y#@-mE*fh~^ zk{iHeD%&Yr9;XLtxiVi#eLfLG4Ys@W<-pUoY{r`E1*g#=rm1Kx^fuP`Im6~v}D)9awR#L@6byd+zDr!(H)EA3tZs~24)tMX3tcH!&WRMrU zwKDH0(K(r4nFTvDRJ5wlCx;t)V$oHmk*eyJ*cFLpf>DVHF{>)nvgP-%SETK_!*xs3 zadf0)rjtp9mlruT*A`bj(lD5;n4WF(Yi5$jx5gsP7OM7ewp7zzo>i^NG9fCX#kyZt zmP6DaO%IihCD4mu)umL*X=Y+1AvUy_=M8J*n&PJ-!zRZ~@W^E6gq= WvL9w@AHH z%l2Y(&PYt;=GHPO#h>MVl45dNw8;yUz(-RnmlzY{sz{fHtgAG{S)N!pIwLLfT|%~E zrnK_Xm&O@22nM?{lrt-JnoTCt#SB~@@ZqRX+E(c9MkHIS;f7_z{>JXw`8v5xHdpP2 z)1Z{7$Ws0OY?SNtWUsu=v{8d;Gudz0DJq^GDhYk2$I@a#=0`5Al$l~12-cZelut0C zwdS=3qhwmLF{>5I?6TbUylzIEQRI9Q+Y)lasrwBs49+Pmlf#t5I_c)5HXpAjt!~Gg z2A9t*E7L_bP4#Q`s5EX{rLIC!+Dd2^TB!xYHOqXb5XXqnIfx-WyS4}N6x_M>6UCr+}NT=f;=OJ^&C}*&&`x< zmVC0=#Av#~=h%UpY1T7s&qxiJ+odwBrHaKV6^(d8<{P#3;rz+i{LCrK(zG#}dzzR(ss4 z@f&`+paBlEhFI<|q{*mVu*O2X)y|aoOqA{E6EE%+^4msI5ND{ttYkDcqhfkh<8`S( z&!lR9T%IJSX{*7K(N>9wF>Y@xuU3;q?(#ZM*A_}tLJh{?VoxsMVsAXtUu!j{+0AG$ zbmcr{cZx)+W7Lw_qPQwq@yuwk;puMQqtm4dxt=Dp(X8Dl%=`xFwAQq(Mp0B9UgqUa z!IdW!BEc`{gjQ#!+m6M?%z7%C9p=C!ZOvtG;C02AY;`k?QPmBvm0f~|4J}&XP=jSh z9!V`}$%|gYl9O%TRQqJH>y6Y3XD;d%A(dVYQ}UvOQfnfe=RQ*k6os^yp&E?28}pjG^VMe!A~U>G6`lQpG=~` zo+T?nre3N<;RVwK>pxY6KhYm*@NfnHa!v+pc;u+hk^`#6O8MS)(1shsy4m)!=}I%% zO(uuQG<-LmP1YOaj7SXOMK{^pHJJ8JnuLEV`0#jZ7Ynts4W{YBG|mnog(yjH*I))= za`NXw>|SqQ=X*IH6<2zVfmi-ohP}zW>Ls}2ou^4KuDO)o2{3@oBoDuB*jadEH-`WC z2m0|xWTL1lG$2f%WN8`5m@xSRO0ZCtf%2)M1C1I8)Zftmkh1Zm+2Ck4hoJ=DP$aS) zM0^=>y)%};R(C3c-wIM9pqBBhTEMH<)~FN9_K~UU5<177Z=H1hbsII4DM2hdiIo@pgy(#B4E{$J9 zl_F~569|2$%#*mL1wC3%e=Ed;jr05IejVa*P@H&l++?rmqrJirDJyycuF6;vDC*WKfJlN3HfY{65y*46T=)-O)U+co3GD0O!{m$CdW+V!j|F9WJ`W)-*|K5XF4*;np+3R*N*w#0p~p0->LI>pMU#LFaUDIl&y##-5-%;9VX-hOU=J4gAHK( z*WVbk@gi8~I+}it_B+tLfaUS*!mLT~Sb_5mmPHX%R0Hpg+)fXi2JS)+!H8e!z*$c8 zCbSEnepku{qjw(8-{Fkh1;WM;{0MZQJ-lSxA?EtPP9+yCCqQWFQg(??!vcp=rogQ& zEP!Cw!dZL)N=e%=t$E%!?m zw7b%lBb{!ipV8EXwB@&GY?u{t?yGWpHEAgwf2)YIh;X?fX=%Aw%XW(C8&Z|t((-HU z16atMpYVJ!#z+T(CBlp&VFANpqk$l~c4&}E#YsKKgeo3f-#uo&BK zL-lyMWrI-%)~*={6uu-9tkCXrg^H)JP{iXwfj|K!qewHw&}7HjM8Zo=jz=(oK;1zw zLBNHb?GuaL1k!CnoHLk@3FayZYY<`bD6q=I8cD2m76{UF;{T9ri|y0OZY{}y*)FzdA3>TXG6%uY*s&E@BJ5E53swk&id#hR4N6xfFye}x2Bo-v&jSKi ztS_$(Dc+}vx!BG3eQ9)&@#fbV&-_rqQ|lOgK;+cYg|`{+13T~AjFC)y{u!QL706s( z#4*eVtFDff^E?nz_$(n1X0YUYSg7GqXdtvq3veN@(S?PYZ74X(O(0mi>RRE^$kh;( zhoT1fJB;WF3$bTyDl7!C>O==z*r5?W6pO+_3ro2PgcbROb3`b31i@Rw^iw+>Wa66G z60BO&8Cmk4Y7ehUH|&qc|B^Zk=;A#@#9&1@ZaN{s>_+ZwIdD%*SB@=9u83DpXkT*U zN~3p>`;{I7ed{B4Zzf=LZ+AxOp`E+;l+u6tUsoEv5S8>&QTQpo*~W_z*q1eVv+3{# z;y?d44Ep+o^Y!0v?#W=8DpFVOI@!}Uk?;g1Ae&`P3=&Y}T zz#p`XkNa~ibnbjQg~uFDc|8?8s&0ISC%rncel4-wt*yRl^jem*w?Dr2^@}d~xia2v z^xxCI_Y~v8JKc8v{M`-R#5?}>9;^3S?<$WSy$c7~Zs^FbJS%!b_t3e~U%nc!i3Qrj zPZ}hyX=|cjVKR@eg&B*pPyCBonBQamt($6L#^Ma~RSWa0 z7Uowi%&%IQ?^z2oRdu@?S%anAZm)&8&amQ&%4+JUSLlu_eJ`ox9l!QlUY{kYZ9!B@ z%A8f#8qrzh2dhrb&eq~mSC;wFDyFaI+i}cp#lTtt>#^quR(ooQnL;Z=S0sP01cC|vs;G1IFX{c^zoLKd(ZL2A|%urt2oH8t>lG|2Gqy?#)=LW?@ZDjQqd2%|c z*2(%R+e&P#%xaM33TziO$Z;mO+=$7FQXIDVb}YjuN^U#GY*nqZnwy21p{-TPbJW(L z;@Yl7Yb5Uz)XLW4{3MlDq=q|A|&w4^-aIofPm z8w@CwUFw6ySad2$HkamUQd*@ng(#TBwALC~6OZ>Ym2}Z)7!}rEdh({GDMhMH#%MKV zDV(w<$L@T)ofWeUy0z-8B_clBWEsg7X=0hrGQ(|RvZR+l(&JVJU0n7WIcr;Nwq2jF zO=`e#(dyhBugA5h+@4A1Ho<%It>}z0DRSP6_2r=z7n_5zQfbv2Haj3WF4JnybJ2{u z9_TBQ^$K;b?#Vu3ucwLTWTEtP^-Oe8P1a^ou{Y)l$?0ZZRTt4tiHPZLuQgr~B3(n} z0SO}MrJ8N8nmsAUm^S?qs!NTK;hi+B$(V$jLuw)E)zv7Uh>2jqj}=tVusY{+b$`7l zimPmGQOdKTt>lDqme$i!wv-;{dp;fVGRcq4<-AuH0Og4t7&ujjDnlS42NJ^1$)0a(D<#VU z>mW;xeoV+!-eE8HX7_3KP4Xn)^vuXevLvfLWoe_kS9}Mf-5j?OmOpTzowEbn(Xd-u6Bb^n=@9Zr*&p`1JUpJ-U1RvvG0ud&n9? z{(kem_4WS-hO_g|_y4l%Prv;B_r&5)HiHb@%huxvnnAwlLm$Xf-Uo8B7iOp6x;#6+ z=zKa4It5%j8j!N`#J`gR!s3tbjlmzj@q7@{pN*^mlbk9Vkg}`ffUT1;`P{xAUB5m2 zt6-L2@4gO4(2A80_|lIx@$U+FVYqNntl_+SVQw^=s`bL0 z2(3x_QVWfJVtpgabd$(8_GR1kmMCAOAQX^R=!_TCEYU!s)hMjcc>wh$*-p9w>~5Euv7sSqL!k{KL{nJr0wO!po9XEd8tVRH~|j=GAB_8F?ys?$pvDFIjRs- zk$$o&rGSLC6j>BS2o|;!kXRa+74#9X6y{b7p=I@;itfFIVxHpuP$0=TO}{4B-k^xh zF&dUiK3g>1jtnOs^N9eydeI#(TRKNp(Qb`XgG*OwYc{C7&qcA;9+wkJhy;rAYJ#K3 zhbL8_FtIj5rA?GA9u?ePVIp{`Uv*Y+xSS6mP=@ZP0@cMZaUn>aY3N`%K)@3cwNV+- zLXdv`_|H}6`f{uB>gSLDssf4L?$Ry(UPEsM>WxuvkziM(Gf;eBhK0m4$Z1iexx8=8y@& zI^0nONpW!)RHc#18>TrZ-abQnseA*%fd&>G?H>h`08wlz%-4gQRwUVvH*1adv`z~p z;bOoxYKN_DZEDlDQjqfyChOd@459$>CKG(s2ShqbJYO#|3CeB@k248UA1KZs$ULQE zgJ49cN#oy^LhGL@NGip(|NUDPBxMDVaMn{HK#d*DbtUA$QAT}rRe+lN2eraV5K@<~ zj!V5<4*J`v?d~0_T0*jbb#+Wo9b-b2S`k~o$A@}RhHV;_kY7g`34+*#fF)G-A1Lqw zYd7N89DH#=+71ojkm1=m|8R1BdU^WcwsZ02`m}R$d;amm+&n$vWmD3`6L^Is zgtD2p5T7&j&^Ofub?OEta!rV#I;OIy8(_7n&;s_N3Kq(^FNl@yDKn|Aq_56YC3LDR zeywo*$O9wG4V8JQsdxs5d0X>c8l_2vj=;?h00@q3F46J+E=2evQlDqU~z@j@k?_6(vC8qw*hpjrYj5% zWZp9gL(KQ49)#p$)NYBbIaRF4Q{?~c*w;hPeeiUmm)Yb{j}-`?`j>otWWo-yGCH*5 zcfgxBkqJ7ihJ+73AK}af{3r) zYkEBNuAPLyd|rV`c7!%s)jFC#ARM!RB}$bu0@pS@C`y6=C=`5)(5jDK2ibP*;0R?X z6BEQ#0kU=PL6LJiZ@FXkiYc$jrb2}gAL`NrA3VaA)umaIMRZib!niwy0B!Mr0A-7a zQ;x6mNHva;Fu3r6*QFb zRtQpbMX7>ExW2M2b1;&M7~N-otrj%n0NN zT>5)I%M?b1zHTf=fyXTn0C5Xg0@yqE$sB>Xk}_^UEeEj23)tt$lfBU6ZzGm3T_X)m zg4~Ly3M3JlG1s;bEQ83~*?%EBK{nWaRyGyT6I8)M+5?0sh*GaIic()2fzuvR-66c(YiyaJ;E!o7Hnf8xOQB zxA1r|)7@B4Tym|F%l3o$L|t^OC2RcK*j~WW@nP6v->OUA8;0J{^_78BmjH>3P7_;1 zh4D^RO(7NXbz+Oii0u}0>#G8%&W+YH!IITgXW~Z{teK5K3Iibao6w)EC;*~F=tBUZ z1_gMOjvy8|0p(}gOeV|Ka{@F}QGmjm>OOR+Myu>NUESR(3!Zp;sti{4v*1=b{rmaN z?G4SJ2z{1VGSD4s2o57tqrq5~Lj%+-V_SQ$-L7tHaP;&CYW^_Es}CWIU84i=05-Ca zTC{tSk>gp@xp$6wv}hD08wuLo@erRgavIEUI%q`OMdwCH`r=!?b-8U7RbHM6#^lcJ zmupLj**a=I8rtMrx{M=eT?}G6Vu+tV{&V^B$A6;@i*_Jxk>U|rBi*xTY*xWirF#Qg z*)(5^2+q(QFn>ifHx3Katb6d zmO7J-X9ncVk1!XZ2ou1Tl@o%6j5iZ1D%aQ5ts%0Emk@mb12cOyRp8E0o--j((cP?u zLPRd&7{sIVGufk0qS>ebp6qtrQX$n;0bL@U6dmam!gSC~j9xFYyn;bhz2%kLTKC2U zpD;C^XmnR!cOJ-CpwrVArj~#&vAC&aEUJz%Wtd62*cI3Q5mP79;q2!+d;UUKH!@(h zA>@A7eIFvYaOO#&k|SJECE8J>gdiXbglq6uQuedK>Q+4tP zB#c@qxLGKNyy$k-w2!zXK{1PzDnRTotAf@?6_*zRrQQ;t3L3Jrm=G+auSCpViD4ar z_6^HN1;q>5q;Mh6%Mv)mYOnRw@eWjg#L}!{s4iwMbRfW46*P6H8Rh2?Qit7<={C8bzZ6jcCGp)Jc&2h-QpC7P(UlmtgxNLQ6$l~i?E zfH)~`S<>>5q^K~}Rb4`!P{fcQc3IwPx<1z&7xE3x^DM~mk-Cx)X2??}_1df#`ESmI z{5SkBbo4YPQ++g(E*J8;X#`ggqL>CwQF|VaJwssCw4BflefHw;;pRK}+tY7hS54-}erpK>FdsB{YutHE@Sy*qB48eLz2vIRx(Dx4$*nN9HUfrJ$7wi19M+k|*4{u7Px6LEP&{Z-B5?@MPDS5RAki16bUx7w z41SqOOcr3cof4BfWvIymE8ja;F#G0i5l2=u_w0S7L^83Dl$~YoBjw>G5s0tB8ybr~ zoFV}htcAiIjL*C90z4<1qTrJhqm+MZ+9+efXkb_4$IOHf^sVo7aUL=P@PVRi=a4r`m)2YMW*hI z%R1jJ&JafsN`z$4wfPUeAYJ>jMs;ecFM|3VR}aab&ne}S2U>?TgPlFn`=*bdxX_>7 z5cC7~r+e$0*&F}y#I$XqmBT06%{2{cJP=ho^ZpF`l^6@a5>+EYdZ%&96n99kzjnby zKs8=H{)ztagh&SiC-(Qm7moYxnA~c73Xc0n^l3bY@v^=3tRDROKz@=j*vuQv7C!=s zuMgVeuA{Lx1F%(0Qqd$4LWXJ<5wbz}jJ$UyUqQMet!Cs48b4vM|D#WQ-|3Vy_SHCc zy`Jg$^n*K$#`Ot>+9tfc+Q%@mW=$O0MkCfjfZM62nO+)urB8Y{b>5koX6B2bcsO8_P_1G%_RPo5 z5)QO^}eN|2rjJKR8iq41GGA9xMprM}WE%wOa zDe@|#&`N?NDYvK3mc3e_)d%)!*=>(6vxQzQI6{U#7mFt3Htno}qhlt|<2F7zQM zL%Vhdx-&sUiEx*4q?$eCG)X@R2`IF=Q$6O1qZy!%Wu%#1zB`MinF8XtDbCcLi6*&P zT>w^GvOps`y{E!VxbiElTDVTFTs#x1+<#OpR8a=G<=xSl+yJG}os@SffbJG_R$d)U z(fkq2W67M*x|n>K*UXO%!l9<+%W;95S>#JPRrX-!oesVF7Ja8vv*LW^Ky91_uHd$x z1`K^5j#@iEfBb7tngBVCDCXN;dwxW*1cKfJ>^n^rxWxhT0N{Xhj>h~LcC5sRbL0@U48pkDQF_$W4Qds8O4Pky% zu?z|euP(e6*9U8x?5~H-c4M9vK(mr^-kPb~6pVZdt|YEowyAIU(uOZBCGn2Cajysc zN~hgQ%1YB3!L5?{q}%l^`KHcFQg2~RpOv?u_<9h6RXbH&zAj`&p_u~Ja{G!ELD-m4 z)R<8kZE8n3P-RCslwF8nV@Db9<-F`D)x0t1WJjrFl+=9ml}e&2Utg)D3^YGGN+r>q zlO1JEl(R}6)VU~UmE6!r-L)a8T)K8v$$gctoz0Bqd{m{p1UohepOH#c=};`^eG?(8 zMpbI=fU4BoRi-LcA-8%}V`Mij=T()yHmcI>Xs(&dd7V_HN^Y%uRjHC&x>1!@6WdjC zWEG$}R>Lqg%a#}2Znz#?Y2$NVQZ(_ZtKJ2XqLzSM7qg<|Rq9}aaKI|#_7CBWjl;R} zR+K$zMN#K)u0k22jl+5Qb(M|7c{Nd$Z$+sjnj0(1%Hq1QqO2IEzrP+>Mp4tQ)nQ93 z?`_U2bi)SWGg9hp&Z|J0iO@z*k^&5`C+$*i^R7B?b0x}jZS@U5vw~5$aO;k4#`>TlVoNOp-60u)N2E0C% zr`F8gDPK2R+^*sU;<>oEJ9#C2*dQFX(okSN&sBGE7w$J~Dj#P4B!1M`*-@rtEo)`5 zHEj}E&3hnflGIbrhI7!3N|;LJ&3QEh*dRH)d7h@TPF|(Ls-NCv=FQ65By=iK%49Wp z^Qj}9SFMSWq>^YJ>%L{I4yJfzWazo%7!UF}6Z~M$mc8xra=q9f*|*(6lUg7sF#K%? ze~&dv@47+Y4x*ubYmU9rJ9%}iGS_P3gOUOaPvwn08pzw&YfHO>7f5rJ$gz#n+#bbn z`t?p9^WfZ*PkVHio__tyh#-?S(G>Lf!$E=0`VO7b$>nhQQ+xBG5`yWUt0@=&!sD3l|*ws@duSeRlaInNi^r@)2wEr z>Gil#Sy0q^Y-!Nf9odLhGSI>ZJ#P-NGnK@Z2>SBfO_juS1akgb9Mp9Y^Mk&rSx(RV zCL7!RMPX}A#o3zYf=W+tsw~S}3qn0kZo7Gak-LsLiE(g3Z!QURT5c`oK$x$FqMDZRFWSJ-9Yz!D@?{itSYva>#POw z_6SGn$yfR-iEDQ~IB);C=eZB2bo#C8Ib9DSNq2f05tOt@h|t`7&9`jJunh8@RU%;q zespaZEi-Z^uUI*13&G{@mW@z9o> ztuk~+>zbNp2A*Y(%%0YL)^z7tqcM*f5B$@5<~^B0PqUo#*7l!=rbp)Y2s`Q+eF$0l z(skX(f$lx-?n4F3U;CCHxZX3tjV?=^8oCr08tN1+5QICOouzmEx^sJalit}e@M&0X zqo&<%(k+lN?Yo=P>o0GwJ6G>i&Alae?pN36A8rNa4yP40|2=6W!{&eY;biu;uW9Fw z7Ldsh4#RYA*U`4xC$F}(o*w9$?wJ})l${%}yjJ^oAcsY8_nc=FY=lt*c9j-H(PhS- zyfJB*>5MBlHO@Q@j3$)K3M?z8dye3u3#P~cE)^glGgY8~6{v!x7p9g-rVxurYRV8( z1;`Hvgsl{5KvKaK8by|s;-`fY%EhZ(G@neE+0TCNo1Urrn|prp*+@|!l9CrX+5l7t zu-p4uFZ5tnV9g$h4iOM>Aj;?kVTvekI(?GJQRZ-am86524_9(6UB@Omu49;*9?<16 zi4aAW&D4#4VkyU~m^>wQssZQdy7TQYFiqEuWq;1B>5@eG`ZuCozVmf}O<5{{LUj;ydJsQ#4O`v;F#L4PGNf>ItbM%3kqDBfN z`r?$%AbNqpFEa^dl8x{BH1ph)p(eLHs<=2its-XMY$YkA+(7>i00960>^*63+tpI{gB;1_kPKeleJPn1?XNXtxSnAL*Ba(-HEuXxip5tO=59o<69#S=d?|_04D)O8_zP(2m&lOa zdQP&z|1NyvCYA*K;EJAD0tPQjrEr|)`8)J9P*(wbn%e%L@$C7A(*AJ=N)ai6%IzOz zRZR@d0KVa=6qh0I5cCNBBXyFhIUcAmVg@j>k*RH}8u*Y-Q_;h>HV&-9w&>fKBt7Fv zuaj&4)ohpQ-S;sa!ux4rc|{xHMm_&4+6adIrO5RSD>OwoiMtNjHkZo9vT2a>t{v*n3o z4#1a7KrEy`Si1nL7zR!R7Q8MYvlA4cIpVR1vJ&?ts^S{Vt@f`pW2Gwlml@SGYa+r0 zP1hH=_JBNNqMv*Xo9h4;MC&-SU8Qj%hd$B_&kx!TfPrW=#iw`ZWd`(L%YO3y;DPNF z1<_WvB-l=Wcekfu&$fbRDDZLu{sI^girbgmzqF!6FVW&dxMALMZjfLu&q8oJw7qojs*G?WtCJp%tU#N-#083Inkomms307F?h;Vk zK}(?jrN>$?0U>qAR--$`0bMNt!(|K*$wU-gD|k-mCg6jpkX&CBAo+%z2U9>5ikA3* zDztr41+C~q-D~>~;*UE$2;2t@^JQJNME~A#RU5nmJ;xFQaO+L5t)N*ZM&dY&S)yS_ z0)8IZr6`_&%8G%Q2tDHkD9eyN$9J^gUUn?Z(KOIiu%+WE01knpD=-(9Ro@5D5vNeA zP9ByMsL;R#s)5@O2mxw`81rOiDdsHGSywW@i{sm~C$*TyZ;Is&c53=4k@{z3P z&V7dMP$I(ige+bEVdkP4h_Lvhh(rwnA0Z(@<>1%bJO5mbC_04<%@dU($W%1m zJ$^2Seo#;ybS*Bbet^E7D7!0B-(ATodw1!9E&)4(i8@1oI)jHggA`$R#Q=V{yG$$} z34zZnXQ6f-^fq|LS?uXs(|%eCLLlkGvQY^vLbJa>sIkM!nKqSk$A`1ikw(t*%xxlK(ioPC|Q^3`p3e?cM#(`H7u=hag!a?E3oj(snPX!}! z$&QBcV0Yo|E~NdFzywAHyxgJet_Gs#Cg3GtHfY$o)6qp&MFnVefeW;z0XL1D0RHd7=L5XHknFYz{%QT9xf~DcO4Zf_soZI|dZ}zp5c2=|A1nS3 z4xh?Ptu!e2*i?(3nCz&6ckql;EC{pis!|;nR!p~`FQ!a`Ea08?pzdt2RN4-?rM#Nu zYlZrRorkS?m2L9~Anr3G*6^4`z?oU1ycDvfWusQE6y2ifdMsDbl;U)~>R6u9(MFqO zuVW9IqZA)%^^&Mm*jlb!TXDRb#hfex*f6`Exv&!ZgvYlQ=TrE@Wxt&g>Q)Az1*Ep5zTTNA{)8Txy=mvw-bYV;=R>M&O2yiuYL`s}P%1WNvs!+> z-0(F$OlB9OW?LH;#O2DEc8%l|FD%@mpB))iO&s8(HK}=Ijcy7x+mm_{*5YUr(=fee z5c76KVZTKBjezZyCrWZ`WG9+dO{=rKneRx8KJGYlPRi(;!iv_oLR*nYrdabw`rOPc z3ykSi=bU7WXRATOn2!)Zk{lUbPb6ofT1c2g(8^LcCN(W;xg6E;6_K7uG{Y+`@XBST zn4cHOE}n0t+PK}V=lax?bvR9JZ9IoCqE;U81f92%t+Ysp>7=j-F$Gg<5?LNGq0yA| z0yYb5TAmkrnCelkyjW&V@fiUG%w~%DtSGm@vvMsD`v-hEE|xb{vbUD-_F}YVXlbyX z^=oEGZur)stvStACQYO&iYnB60Uyc*evm-`>p4N@a;q*;DtF4+a8}h8iw4^oH1Jfb z#m=+o+GM<0RIQmDrbg>wxi#X0pyxSaHZyByj1VWPW=10!O`Akw?A#^EJm>$rjxjY}^@b7|TVwHuPIUsN-ebotLNCvf6HE=9>Zn z$d(7SmEY9s6^C&75uOLFmhzkxZVpN|Imm=7Zaj8+)7m^gvX%jsX(km6SH1Em*o-P8 zNA3HCB+mEq9lsxmO-N+Du{j;{m}wD0f8EPVwlot6VleaB&8)QO@YHBs=yQbMYH)Qn zGib8h2CrudM1Qm58krT=ur~antlJ2nSaFNV%9N4lFx{>W%QPOQhDpU{$XdbdCUf1f zFda3!z1n)-nA%ynn8Pe1J*($@tX(&$T6sz7i(1BAWbGURXpk7z(8X1ln~gJ}U!Aw` z`HD%EeT^$_W(#4;8}fj|(lv%(cU666OmU|_FJ$U0F~S6K&C~%NQe6%eYk&Z5iW(D2 zma=L44Qk$Z>SZ=RFOrLDW1M0)Y2){J=~0JQ{;@$oz@V*<&0bpT*+;%Ez?VvGYc;qw)j+yN;a3tF1=hDKE-ol zV0CbDv1+&3b-#~S8+9vLq#c#ORln*I(`iGmI~W3}F2zi4VJglrm2Po4fvsgiKAD{@ zTB&A7<%>O%Z7x=m5$)A%qLH82RLd@{##9Y!C|oL)bn9h}!x`Icr=4hk_2%9@PflFE zR;jPB_MFvBStrvQ3v*fH-1wMnP70<=!5e-A$HyiD_}FjT3x#CXm2MC~7 z?)2o`wA}(SVUmtwxQ?v5_QI(3Qpq}_o7KibsoT>^V-OOWR;X6HSv~A$r)@G2fv}TI zW0TINjIijI5Wu0M)zcE6#F87U$R#DcvgQ_Jb5Lb@qpRhxY!Ra;6PBqpD9(_>$zbBI z%O!Wt%(FSI+iupZ)}rN=czd9+2w-lCVSv{>hNZK7Ua0b|Qoz5#l6d(OBm}TUa-mY_ zhf1F7sYAh(2^=*FXjOqXa2|}f1)hh{c%9Eqxsrwr;El=W!2kXM$bBnUm*8cdTaO2; zO?AznzsCX2e1AzI` z45jdIXqtE46wOMsCRJ0AnWf(Arf6~9+Tg$x<<~{Tm=tcLTgjFunl-vq>WZmZR?qN8 zT}bhrfTjiwGbgVX66w}My41)z%?*dy#A?AU8ne9P8O^M+9QMVDQ6eKlZ|cYe%2S%F zHtuxf$)KFZddpHSR}U$(E#aIXRQmXOS)XRCyvkDfX|^*pvviBW?FCIQU6U%dco}a9 zTqy$B9}c{!s^sj_9H*QNnVL_5Eo-?eiU@6dX>?oFIW2W)U-$T2W^C6A{q91_a;=Wt z(6c3by7AYcAq)qtCLRqNbel*|HDHD=${uYuX115N%FJq`dty5%4m7GVbF~e&E;vjl zSxiy-Y#y$4W$IDwv_+azobwk;z~m+tjph7OXmysg+<{oJ0jc%n zbs9>qFO!?*a^Qi+SQhAJFiDX@MB$L>hP|3t!ii8PxKeUbE%aBJH90MG)|^V%s^t}@ zZk2B0c9!m_!PscF*L6GNg$tqA9LXb>4u%=57%bCE1aM&D4Jqu`@)kRj1zj7`qm3uB zwR2cgOqZf6=c{xzxxz99YTE4=@_9Vq1q45rskV5a4Muzhmd)h&!J_34QfM6S^DXdb`5a*M z)8Nae6EUe+KMIg>J&%ylxQ-M>_5{Eptlcru04&H0sOEf@=WBd``mc=O10Atd5((&X z`f+D{Gq)b9Z|Yq_GfWfu-!-TcJZGjZw;ua@f}=>rvLfArUL~L_X{$MQUZq9kI1@e3 zSvoW5WP^U3tu{he$hi{5EReee`ePoQF!1hWjN(|B_49`}Qc&MsJ-k644{uOc4sTEt zLy%z1UZg<7B|R2z6^4pg&UU#Ii6DY zQ-d5^LM{k$00=b2eU>1HzxLtHuQ*5SI0v3elUY2II*4Xh)r@`l?Vfo<}=6`)Efk)KRnp zua5(-G0}-uk#6CP-5AzOEVob`!Wtw8dSFOXb0udtZl_(Jb9GBAXd6n2W`tvRCFC-r zA*s*%X$jA0UX#We7ORLek@UU!uxJ%pt@X^413Et{S7*!i%xybDo*TInCIo-*lGt?C zYl(=w%(dZsI!op!wVWxkRMYnQEk3Mzetj`BRz|u~mK#lH!uPEjO%u9gP-zXb7O66A z&H-RGoQDHF+bjqb-HpVifUnqWwbyG&nYza%bE4(BRb^rfb5p5Y9XaCMG_u^Z&Zt7a zz77`kb&BlG#{oN{@sc!Hs7-e{Xj;qR(2lwuBQRWlLuJ%;fbm$R6I7Vm2Gc;@utu0J zQ3`KJqw1o>HdCc}-N~2j{Hjs5YVNu=8-`VNoTVj&?p8B%E$VuVoADP5${S>=ovPLI zQ+d6_5dlO<294T$(pIHOM*T~Hyk5xy1dzOxa6vl6(Zls zq%lrmrA_F1jm9LUx~jfzlt{7J9L;;4CHVOg*)vFzTk-5#9dS8x&}3>U9IrH&9j(N6 zrp!`ztCU?S&JaL?AjtBvqBz*BJ#G+g-|G&@3c&_;j#`wRu4zjmp-QsBj=B2S-4GLB z(7Jw8D7QdQ90-=+t<+&t>`;e$ay`B8U?xo9{cX|hzBNg{n|2@>n=LY zbvEct<$1ZD!S$-q&-e0n#+eP~oeH^;)UuhMMxzbwDdi@SGWD7~CS^Rm8Eai})aS85 zQtpq1W+~uj8B&p~wMiEi80Yahx>XmaBDrxJLZxU*`BaZ=SVJ)ah>2}IzxIT(GPdUx zzTwE>j4Sl(!h)(PgYLMIvei)`JMI%zs!^;kqS{LvX4&<+NwH$yDHCt&)KY-Q;qS0j$+qwR*EX6gQ+}4q6*QtrY{K zl+$@xEi$5;$utl^t)zEnxn77-Tnjlqn-~`PMqhe#0;fjL7O)AjI`jhNkZbSpci`PQ zX=)q|sT|jUFWp6%wD7_sOB@Awbd)~=kOs9AX0lydjJxGUyTDCPQ+X(Z{L`r0!LLR` z=UfD|z)=!V;EJ(xz4Z!FApn@qZr~M(;xb$6PDVY*3!@&;Zv23#M>Oa974=yCihBIr zqaGQh-`(gd$kx}Q9wkl?)8zdk7ku$h+J zWM)*fu;H{tv*W;)lX!)~gVv;_0I?CPn?-GHD#RE}0Xa);6eq*RY8th2tHlxo-&A>S zh1VQ=8g{!Q+0-4sqEhFZ z@$45f^5LA0d_-=mOClds0(p#Y7x*}}3j}T$>-nk&ADsI1SYm;*5aVy4JG#g1Jk=-{ z$^pn|HyGOa6a9%wzIB&U{yn>tqLu3(wM%JB=nZ!%1;Cuy{@oRW{xS&Og>fs2q>w-Q zbO{=dJl3a6FdVl{{&1>9is1J9&9(%++&)E+TRhPQsokb1di(ToQxtj=J$%=msCNiw zcb`h_oY0>JAWGZ&*JweT6wDe+oj1bjN7W zhqPQakO?pf9CsjtdrdxWAQSML4`fewO_BtYMsRogCZlleHTO-vqw!I?MeUjDy|C%2 z&)4*D>A|n2KWzHnLd!8#|Ej$nCN}+KO;3M1^MxiN(*shzE&Acs!x=f?9}Xnoyj*Q_ zWBqKqyI@EXFl{a|Dd2|$fy2$vZzPP~Cg@%69uN$Id~J4|sW)*?<8)g6j^l70(p%}? z8oED`Zt9+4X)-3=Q3{tEQh6>n$~%OVy{A$vr6%!bLWW&7#=@cNlZ~45o)9GF$2Yi6hGQ|C|JW{A{MaV+JZZreR+}bKR$CiiTqg^L7I1 zt@i$j%|_mnIE(0xqj*09-3*grV$vOD8UMNpjJYQ`2EV!j<367PgVVEL3haz1WPT~I zUkVJuxt0PW?{Q~)2*?)sZ57zHQ>Fjg zDX?rD1$Jw(f777)jK-}q>eK40Thn(ovu%83`ln^c;`>N>GD%}N7LB>=+iCk0x&jB| zCZs!#m+|M*P2baa`pA6cyexci9S17SQrDlPy(eAn2kW@or_23fIxhE1$NkcAd*W`R zcYHqB`#HHjkt4Nt#2>f~)Gd_bj#~nf;=`U5Pk44i*p`PfI2-!iFxQ7J*Bb9%RRKV19_lo#Y45&|O5tQT6%x)^QRHvpc0@ zSM*UhwmIox`r)TJ=^qbJ_?enEA4k)E$XeyEr6uAj)>}vZ-?lLHnKIb6>rYh%DV9P? zEER+9&#;Vz!&7L2Nq#B1nR`0TB7VnFzF&M93w6&h6#F*i3;#sN;2cvynaft-zC7{g zJ%c@Xqsjrypz;DIe5tD02CmmQFXjYJ0m8ioGkd9{Dus}_ORSF!Kfs4XXk*#iI(ZM2HTLZi$ z$VjK6wW(}$6IFX_XhZ}8r3$y2E*~agfNuAw>Y>#I6oXejJk}n}gNdzy2}~4th|*S+ zQ+v)wERSSn_xGffoLV~mHYs_{P}a@Ib#Pp~H{6za+<*S)w;fk?3qb-S7j)gQ@)Po)dwb4m%Q{;~}4a zZXgD5>VKvlCqP`4nQy0-Je+c1PdF4GTCC>g;|y{a9A6szsjggLaH&cho8lsb@y5D~ zP(3l3ZiN!=le!rvw;S?qCM$t+D@>j$o;|Mmt4gG+i~eop1F8C(Nyyp5=dXk56(xmc zVV^`vp%BpfSQ$e}(FfmS@s-q-W#G3c*Y>SMjyk(9{;KN4yH(dcUKZMbhMgc1D3LYP zGzmvbfYA%40}fR`0ba)IEZ4H=5|I6g^&3%- zM`>3P7-qko=Fn@@y}``#tdP<0e1Nk;CZWo{LDV|AYA(~wW&djQy3Jnq%@TJO!IkG} zFuUD{Gkl9nf(I?cKz32Zd@xNgG$WSxcnww~aFDU|tYg5OcxnQWp_+z;9L!4Mw=-lwZSpD)zQd~^ z4kt9x^wr<*6F_0d(ywfkFXkHhwb#kD|7!N?nc@Kf*!5H^3jMuTR%5Exi*UtNtrsDa zMbPEr=+%p`1IoXaYPO!M2-EKbFU3l>(y)CLz-YUvq4pxU33hZkXr>EXKw7o1() z3RkSC;bmTrX9yH@_h3wywgQ6T53nPd( z(f%TAbe%x-eIvAPg)rVKhc6Nv)7OgUOk$Y?UxkVBmM(pjE)7Qen=vpNJ=V9vce}B} zH%vn|P| zmmjF^t#IjL96RSCRFZl-Io!H5V>xm!LKwqi`R8}oz(?60{26Dq^*(~ndNaw?YawY^ znKyYeE2Vm_Tgr3}&|}y0W$t$K-(ncPOzxpC^I3HK<_()7VJg21*BYRWqi5>z=C-?l zpKqs@Jj_;hPV{a;I2e?4XBlU-y-332+1JsLVN}K^AB8U5-lyENx07C$ z3Z!wnlnuIk?-O|_ecuvd;-~=?{25x-dMjrC`se>v{wn_KpZ^DAxQeO)kyR3K@kjzL z4@kJ4voI7D!QRb|6Ua>oF;>ou3A+LgkA=hy>cc z6-J;u)YYw!#d0xSgei_iep!oc`_`@S#arcb5vt?6)PTsuF+5SCk@r#%cZwj)lDJ%w}iN;;Z5*`lRB^GYEky9YT$!R~_y z|67Q7>12J)SM>_0mr_Aou+TR?`6P3HRpQ^b+U|HuBKdjIk|5P>azO9d>D?z}@Y@&geL~`2*;DcfDL!jJf5!fI zHF>@~F-Ht7bz;XtEO4NB=UC{Cg<;3-zi6@?0zZZk(3zpEvq4{i1f={Sh9=Ah% zExOsv&R4u!{SdilXTZ`A3^}0~{?74*T<`nDX!i%0v2$~kQ-?+a(ylaD*(Pd?KNSJ@ zI&b^W+9FmO;VS@!jQq#H{`tTE9sKK`{};POkE41fPuqFXRdbYHspg>74EdE5aTnD5 zBhFR3Qq9l#uKzu29Ej4#)cGTFa9=>q8`AE|Iv6E^b?+T|IM0rxmz~4>GQV!T6c{_- z%InJP(OG$*#&!efu8!MO!r;%ADUvxzpe(p(Z9|kb_tDb?UYF1azl6g(s`c~S`;u7| z*I>4^f2A2KRoTDHsHRyH5iY1DUf|jTLdz;ny@t(o01KjZ92ovbmBxu&lx7#k!`lu_ z>WiFb;?q0yGK2P7K6!uez;=p)Xe(P1Y^T4w+taXTTfs9FcsT)o0gQ<9=!AlO;a!=x z9-ojob!ch?WQ+Ux@d@NEH1iQh1Z7U0jsCU{@DXPmkT|t7iC>;^uw73>>*d_CF`iNKj`7GXCQWDZkIMi2_t~9-uN($&^qcs^KuU^q$7s;c$%)1eBqv)j zizU;i&QUxo(;s^5Rp!)j$)8H5ZzYA_*?SzvNtBKLGYH~$;+|y4=&Zc!O5&;0&VHgK zo;vsR?w5PYp+6cUH%(#FM&bQZ)H_q>}~G$xrSsZhseeD|WWd~ado1gxkWT78MWjDMv%kyJ`LUY) zOL#hevUJkv)F<*3p>q^JLOMU6&ocWZe3m~|I@8dP`HAdKFe~CBKjxLC^Yi&JvtPoG z`IGHV8c%3o-O^JAs+mv8emaroP4 z@pt()KUO+_`8L0rbbizfDEBVkCbM5R`X1?o1q8=aR1dYYnNhuiYw1l&cC>3I6t?zK8aj;D50NqPyMo`vs!Uch}#lJA67zH(q~$f1<_YN2TI2 zcjflYNvSwoH@~gIo0i8PZ_KEIC#rJF8T=7dd2F|RQV1L^=>PCqeyj)Yds^n)7%<=;NgSexKlBrgeliPTLa1)lRF+)w8cRYIF{u1IYBA z^?)-Rdah$G*+3ij)ac8OCENDso8gO>Sne`h@e&GO)@E^Y$X$l*ab&$2N;pQ}3>i=n zH^g`a29kgP zkc|NvLz?H|$Rxn&o|&HRp1z{N8_nobG-$D+p7pHTMOw&0c$I+Op%yb)d4uq&@_56P zq&OhC+v%WHCETOWF{g>A$;u zVO(S{d?gGRW#;tzc4PU*a@gme1Vdy7IB}m5mzzWJK_Db8Gmowt%s)KM0{J0S{n#x~ zZdPx8;}g>r+Y$av-Ij74Ycvmwcdv}Sj< z<(MzbG%1h}*0pyv~i_xhYZ90Y3jpCR5vd=>6kwe}DK){DT{2!Fd=Edn9Y= z`2tGvNW3>$yrOVhDx^sjg)@o`htB6EdWlG$PoEO4nPLJNM3*v1!a2&a@`0+npCcE_yXSv~$E8TGgTv`^Tsxljg9pA&$ z7NtIP=E{RrD7djXp_?9fD~b>n3KOPCD1jQ0DH&Qev_HKPOi%+LB}lSw6xzN)Op!{E zChj=7m*Iw!qxl2gNlA?slfOoz&?iv4WVNGCwPM*phBa_R+tNQ~l)nr;YXB%EVYFN-N9V|$QyETHv;3$&20pS`d?aBq$ILN_% zm7v0CUkMbaeMsPg5;U}ZLtMe(Y&ZnjEYt|n^(JUj!&^k(1!=zY)Ae+CQ% zI=W|)5jV`#3}#C=n5txu>D0DZ&n1^b7La@nimi_27!jR~NJ9o>a#Vh!fO|e-nueLf4T~oUg}wJ}CKPX1X(f z9+J-nph(g&0y?`e6@tZ$8GJ+7#N~)`(ZYUH^oPOg)EZH2SS|}OY%+8`!a_~xqD@WD zny`hFBaUp>r$aC=wQaHmT*AyC_6vDs8*KRjM~C}^7f8IP>l*NVnjObW-pe!Ki~d3t;K?d!wM#mU|IT?CQ37HK+T60n3Ecl5oMat_|Ov+5aczE5d| zTIe(o+Zr6TZ8D!nwQt^6mce`YM7|Jwv5fIbtn7RJxEa zx8T$&A>TY&>JnCREYHBDSDR@tBewm@a&4(D%7XR-p;Qava4nDNrG%cP$x^;~vVy_x zFOokTI?TO{pj7zDmv+Iz!W4uv&`5l5`wz$%HCexM|mlwdn zP|R<5BHlPzeg(%qM2sp1pkhG+Mm($O2JEhk1r4->Z8f3^uZLKhcDaq@0kh>R&1%j9 zu>gV;a3x5B(F33RD97sznB@XPMH{ z%E{9?AehoR^YSaDThc=7)!gE>hK-CZD^u8*&sP+GW9F?TuRha#7a0|y3tYJQ%e2O) z5z=A?vWlTGBKC-ic;SeT4VCSP?iE&3;`7O!a6re&QY-)S@@9)*fb`gmvAGmy0AL6k z5)kBiPsFiCSl}jvl_+Nrg@Nl8&%}A6Loq>?q#p3HB_rYuUFW?)FU6kw zWYT{DhBWLOn>u+(g z_K>nmOr^Rild^=>LuhpzTBz8G)BrBmc^eIL?Ed60u=xLZ#>BE|N2+<;Fc4-bNH?W1 zG!4gP1@6MycRte(*^rAI0*?*G5(8K%Jl1=~n3!XW7qQ}inNCUUiR%Ypk_3e~w)_|l z%f=`F)ep=G%VdzL9&(~QWyWMpNC2C$=vP9a#D14)C+ao|>p2m|6h3@Cxw}8VeYm?h zA6yodwea@js|C=5xNp8#((HAYg`bOD_mUTUL+Vt)ltsmQW?UAafg=GKvJ^W2K*We^ zwK)41h^D9niVnf5zDFL`v$O=YCXefsu}_u#xysl}vW!%+mxVV)ZTZ!e??qwx^!F1$ zv}E1OYKr9_wfKI-%H>a=u4a>aiZOlUv(lZy>=g1n+;*( zTBY>q`UNKF&aZSzg*LSRTL)6}2~j5~VsZy~liQz|RK0b~cYnr$=%6ul%b{mp=;LU~ zNJ&DZL~!EpVL<~aYXuwxENHN9b4sA(b*zR3FT6yCS7ZQOCEL;j)b~KmG&>s2@bU!E zRuIv+{aY8!WdBARr#FT*T7vs}O zi#>S<;lXMFUr;4q3EJ3lf6|kMwoB!DSMhd98VK;#twe`CaNU&nYK|M161@GZ?VvZ9 zGOYqC`CT%ZxQ;~k1)wXA z#xgsg$8|`N$eyV~CIdfc*19PO{DzD5_AbA#q_|A+;MZQ*~_&~^&3;wMx` zP>Ui!bFWL^Fxo1@^aHgpK9Dk=uO@YwrBj!Xf!9dQ9Jy#3A^}>rM4n%d1&o(HfCtv9 zb&n(V3>00X)))`uLQn!Vg_x(5Ano^R4Up|nZC(&Aqc*P&a9*2|`5%}Q%Em~5Sl3{` z)x`q!fB!oGMLH@0gI|i3ND@XQid_bQS2-nU@+ybMMRV%U{UP!y2mh)M*ntVQHbQ_S~AeR=V^Ok;v82zVr!{$ub-6p)nMwfSo}iN z<&)p5tq^s*Q~}B-KSXn`aJyMUnME@#9}=6cSXY(sT+1jDB6*XWse zpgQl0G7W7FshY=bAp9yK)tX34*{M4{m`#m|>C8mc88V%k#PeBKVaMRt+Jlj8jlPFJ zn7H(2!;~3YTx&)%FLB*i0W;Amm}M8Re!gspYmry$S*8GXuP)LQuvpf4|Fs7954?@y z<6p|<_CC2ROM+^_{>ZXE?wzojJIg!5CLvx8)#E#s-%o$R>JjwYJa*6_6Ek*e;y}VL z&N&9*4+Q*mkPwRS5^)^gv%6FVb*&hxQ1XLg-#Uy^h$8O!99zlz$W1J7_EARCChenq zwAKWc*Wl907Qh*+P|Wi-iu?z4zb(ia~D~XA%yLbae zdf<*8=)4A2c0raeEcIBdUV&rYtt*PR(#h!Z;)i;jj8B!G3^g?dzN2dvEmqm$v>t6$ zZE?536o1?;4#?1#f5X?n=?y|tc_A5rt9fy;xLsX9N{nEy9AsBZxyZm})I}6$ zM$8H4^eg0SajHe_SBfM-(%Ab$OAZ3v}BgK2B9`vwNAg}^RmVr=ldvDojfjb}O-@2C^`tcmGDSm7Ph7gi5R5?$&y5@@G_dMIJ{eYWaF1(ckXpn2S}aR1R*N`p_ItHPx9mGAzAdY%otwIe@1|a9 z`JD&%r5?qO$bl>ADCRI_Jdw#HGj$e6G_-2nMx*T5jXYfaWI00Kj)N zxvG-Nj%w$UZQ{FRD~+$aXzxEoL*f*7R6DmOuX0x1j+Uqr>K$%Ux!neS!H+Mf;!((z zmRIUg(86aKyWn?Qy9<8O?Wfl36{guZ!B8)G z3BPED-;~O;@h|5s?X0rRP0l6C*to>b0NLb#lGwRU)S%6kTGA;qmI5S&dG zty1*os%cLDOQrp^7_AaEzV7?wy=jv`=PqRRN;DAQ1%?c(q~T(4_l`%=~C`ca`k7n7$=UO-4$S&_`$<4qUU@k;}otv z=-b05d_haV;M!5HDdj2izutt@)xBI3%2%_0ttpjNu6@Ofa@F+LdXMrH{nvUzdAkB= z%^G^OfBfz5i~|3G-Hu*xZ%`oer1y50H zSEVygfwf4GT@`msB{x&SUO^~RDFr_rm`a)>RSZ%EQ%MVOz+ozdMvANv2zP#UR^)c3 zxhSjK&a~KpP1w$ief!h;2fHJ=?@Rave)Q(uT3*?Td2;Im06A=lc9ye08}=f)k2)g< z?!$+@%@e{Ldhe@VL%3!zxM*GPQ}y6ot>+Gtlum4x4MB%iK8tZ^91U zX+e;~_E@(e$YF;gbaY<1zRoMx%uMTt^TvXSF0*NP#rt{)qB``AZFO}%6s>MU=hf>r zKe%;Vbt(mBS&>Iaf>Xl*457W)vY#1waf^j+lSA$CpQ-Wg20YT&^cz}d}ZB_ zIEK2!I2GAyx2v6Zu)DnppseN>-E2q%40?bL4<&lIkP1Iq?5-h-GJdKm z06A>V9B*!4!P3QGtYHuP)90(9=Y_ZbvF ziQ+F<$5^~bbKEQPglOl&@8Y}gu}%p2Y5C%SXsy5OU4!#M(Qy zSuKavWZ-By8ZY3)vTbYP(z6ofcV!Xce@39xmALAmcF`z@)n@0mIvq(rg>%)tFYePm z1szzi)}dt)N=|xaBe476jw9qnjsz3epFW#(pm#VtAt$1H;vxgtY3#KGZFD&c2-ksa zi^}|%IH;>JYVAU`4yz5-Dqa2cM+9^~#12>Z`M}TwAc$>uf;a@Q7q4lyHO7vWj|QNJ z9TosY52K#u8c}1m`xF_luEvkG3uHX3HeXyjevGZCyh8agHdi_5#^NURLN6ZGsTp=v z;|AAs3k}>p)GkW)aBHJv4@R!zn4{of(F+g4S6Z5Q$sP;tB6_G@ywPE`@kXt_lBo*5 zqpZE17p>c-xTV@fq#RZok)pVzS;9bP>3aD|W8^-c-0km)yy!hh$#3jy*+1FApEX{_ zrg;FOLG0zbzc|0rnF_D(A(1kgT)L^26dACtCN8v#k~yq4N~Sz<(SjUR?D+f1*N5w` z0Q|7i7d~o?+wET*@ z#*k`r5Wn#by$E`&o8rTZH4dINMiL^&uyNCRcm3DN(6t|Y>#sU{kSpKb7>spn+C^R` zdfElQ^(qd2D^1pRAhH%aPysG$u`%Qq9-SH9-Q~hWR(bQA3_M4!o!QfVlUOqL+MU{D z^j+u86;gM%yKBQ(!{zgrf#>>B?_*s}=xP_p*sC^>u{@#Mg$P~ja2fqCxSJt#dF|+( z(B0N+?ky}cYbSDb+glw(u6D7iy=r4s%M-bWJCVEfBA1sX-$~qUmALmNv3DYOCvw$9 zZmw|YHkSw-n0%u^ky~xJba^7Tw_T=X?L{v35;Bo1+AqLlF7`q~WiIwQ>MV0l?HMQu zeJ67jHg{_+%enGHN|m`Aogb31ck!^^Y+}HUAQg5U4lHhxK03eYyf^_4DPLVvc%R}f@n}_ggS3cLdzV5E_IX@oS zMb-DJjjGqH@_AccmtMjznju3$J14Rf`iEMrcH^yX4j!jxO=|Bh&7$xU)qU-vW&71e z%W7Dnx|Ew%4&Gg4iPFAy0b~7&E8lhcWzpTAPU+5nb7X}{6X z!?^LI7i;fp=g#kMZ{yotvGyVm+!brzWMKx^bPFxk-q$WZrN6!1WOMO5Z1wK7rM&`b z9ze7_eDt~+V+U07ens>u*Fm)lLF#XB2-2>BMiL1gX&1qBw9)nM;5%A)1C66x!7*j# zyc}(7HKknxjl9Tx-ZjuDNJHK=&`_YlT?38oQLeD3QpLr#Rsz~J&``i{*FYmLcE5ZB zjU(-1kdC&s@(QSd26`MF3!wwxr*k?Ce#(hO*w? zmMozrDHVKW!?H@zwXLhkU+rSwj<&T53#h3E_7&p?s9w_Ug0a92s=54fSBwnY8ns5h z)rgi3$i@)cN~ZJb-T#Zm$knUH4NN%4&03LBJxAI_F&=Gevvg4Bj9t5`Hxlft=4HIU zTz_sh_UZB5Rq@_Z6UJBaWI6%a6&2m&{f)t>qNwOmu29+*zin|~@{Iz8E`BKOVk21F z+K+opZqnu-Zf7?A!u&}_fp}NLJ{#y|K)?bT`w{{c(AWt6a6vs7bg%V|y?hYPjg8yj zl{h++9#|~v>^Z_-JRyH|-d=F#m(FKbms*|C3aIr2jf?#m+U)H_oklGbT|VKX$0xB` zV_CT;zBvkRlJrIPkX5@hy<79q^h{^O)F`RU3H0_1?}J5WG$mhf5l@;EZq}c zSnT=qlQy$4sq$11DszEdRZMtf5!?$KU>5&Xl-` zX&Kgl4rMtrGpT(*vN$?X%V~P6%S7!nr|$Umo(>(ye=e%npyZJYU|Co%b6LbNbKNJp zr)-|#U%nnfg`Mr|P)k_0rx=z#zT^_~g^5eP0uf6Wf8z^zb!W_UCLTSq z64vvF1JkytqQX8gsrv@jd?2p6q&;R^7a5Czb=~jbq#Mn1p~qOBAKbc3YvKwIS^mTy z4pjoCk+=wCX9z`WULH@GQ7yd1u>uC4MU zE%izaB4OvXRSM*imNvs!d6JfLxZYtmm=q3es+qpT<%&Y z<;QNrY4lTOmIAu6Pgw5+)D z=%Wx)SYz+bug;3xyR=B!3imE8-AA{*%h;qpt$$uS)pyFdo7dC;uo-M0N&5o;Ic)FY znK^PNQ`fgNUqp~XgN_`ySU-AaZCUw{ zV;%4Mm&kZ^H6EN6Jtzi|AaQwcT3*8j@!)TF=YUPePNVfH+t5MR%t8A_CeWOuMVW{} zDxv+f@Zufq7exEKA=QrdPt&}TVvtH`zv#G~3TXfH$=$=v#R=#H>{@#)aN`Y&HO3FD zaAPC*RDDC#7>sqiPS2#!!nUWm9N(ofw^Mw__p;CFsH;?48NQ_l{ObIWa9$L*RzG** zDZV=~AVXjN4PWB{FKqm&>wny9cY0i`Fx2I{)sn+%#+m+WGL)YSK;-S6Uy&a5b6=j~ zyDt;ykrCRQ99#V!CpcZmQIz2-nHtw{$2MYZa};S&KX>dYzB_i~XpxuI+d5j*&$n}m z@7vilTI8kmwvH6_GjX5do47ZP6h$qxVzFtK z;$*Ja+&j?E+tOV`ItIbh9Cr-Zki<1WW$I z@7(MI3BJVkhS2L506T1N<={G6NvfbR>%5w@Tn zgu6}+aSXNZ)NpsXXhgW{)qum3vDfa@CZq4WP7Ry9yD=E+gh5%}C{~!Tt|oQ$3;P)0 zhkf8kT~Oyi?9RXXUvW1>>dMx&JE^;!7u{QPypy?Gbjz(o=IR&THmEkdtvs0v>Pfhh zxp53PLgva==R1+Rog(+%B%rodJDIE7=4v2w&-4rJ9pH!d;>cW3o57uRIgTM%=3*nr zWUfd&*$Lh4wJy)htrEIA_Z!3}JRw~n+lw91ozG>j^B(I`9;+J}udb$4>6gxOR&6@V zu4_SLGxUr5Kf{mv&qoRwo3z>abgR3b0tigMB!shSlMpn^r^D78WIo-8TCH|N2lHnh zD5+T!FaOdkL~3A>M@GMx_Op$SY0n|Ei_XP5(=T-LY+FMocez+d7p7e<)-ra#d@k0R zet~Ld+Zw0_%EiJqx&&_UFa_YZv+6EzySrV)g=>uFZyIkeUqTt=w_C#8ODJPDG{zFL zf|}eL*}{g7xyZYtexu@vv#(vF>9dQEd9%mV7CC(K2Dr>w9pwrsKCYEVF*LU#%=IQoUJP_ zqw@x1FCe5D8}_<^RjJ*^E^vcKB4T6s`aphKkeG*GZhK=euw#JEa|Iy^MUn%PZxpB{ zpYMVY6^=*2L5SzMf)Km>sN|&&_QI*_jZM#IABJuaxRY>fpDu@OvfucB{kX@l3lAK- z?|tBkAe$2VZ%%CU(N>WjethF%hnb%9k>5b&hufJ=zaX=~Es!ABprG@svy~LY{tWHZ zbu2fG@6;W?-qWGuD>yVCUC(4>#feHRXr~ohQ1d4l$)85feUk;95+13w?OB zJU{rt$LY>Z1Iw!%9A7#{@N62sIdbV}zBQTIgf)MDZ@AtQajcOsAwghz#+be_nYzB| z8!uMyY!G8ayrD~f?i!92cgJ?D^1R3!_{DMVx| z0rQCSLN<*Hb~CKJ%bKnd12d?)@+09-Yw;|^)To#4+F?saqQ=HY_o}UcvFR!m6;Ok59 zK_jQBlX+L=yZQP;CFi>u);64A0pgv557=wKAZI10u*TU+px(B-E)m#^m3UBtW3=;2 zqu**~dX5?I7G!maiV^XJGk$G*|5H4PF>{%p98{c2<-gHV}mF#(*e zLp9^b$L?rzJg?sygJ^G%(m+v2MNcZRiw%Qxg*7EYRjjLmr+xt)#u4RxwoU!mLcwVG0 z+!ynQ=|OC4O7Q6Pu|UD3krF7VG-|2<-04yF|o|_mm08t_hPHgLG&iVY= z&>wl$lwWn1Af}2YtQ8|M167HjGG(peij{${5`I4f@`sk||eIstn31^yJvCf%^Kmf}mgTk{x zuUHS?2mIUb-|c$>c)zq5@-njruAUE4PtWavA9v5elgdxZe31K58R~_f#2*KgQ`p%6 z`5A`cK@=rn3oNsBvwiyWdtmk0dTx5g{)#6bczR_IeyZ&3I*4sO3$Op^Amn<~VebI^ z{LJys9V9b}(j@nLY_(r_gFN(IuL!RL4}1dB%p^ALxX3zs^JiW@5eN92w(>{^HG)5- zdZzQ%uOCL(7={UE^r34l>`T$Mj-P)(>r1cp!Qj-V?TDmL&J8G45%AH(EgDRc&(p8+W}xv z6mA<^vU`}%+U%wJHBG+XMRZlMebbb+%b-vvq;QNSpmVd3x*u$Uvg+rd}D@$+6^4(^j58r&!7+u)Af9^BDBcXIqJFIF8GqEE6~rhAIMzh+q9Ex+o;z5wHo z7L2^m{tYJl=jr_uMszFTle^NBFf8+SZqL4Dw3Cl>m-nH%$z9%K0pAwk?oyqerdgt! z-c6djkH^IM?#zAFWgz3ep7^rMFuEb~Ck7%%N&nu?DT(<6KlHv=|M)1KvNvTdccHp% z7~X~I(*=x2VZAMZxeHa7z}!-l+&AzCMrjxz(t|)A<%8O@pWLEyEA};`*|_<+f?s|NB4xHv$O+Xwc)q z1Rj9V(k>6ZOX?TcqW_x7fBY7l?OIm|46vsgd8K>seJ9m{wA!gEfHf&y?}u^zU77q6 z-mFdG6RR|Bt6ep;&!rx=Eg*;Qtj)M~R`p`39|!9nKqL^(`ma$6_7y0fkN~+%R8mN9cH)D1jgk1RQ)o(LAZCVyy`^+XwTZw znv_LnpoU(U-Y>5X)zm}td2zNgpO)n~DF$hn6oqa5FS?ElKHp=vw95H?3OVhwr8!e_!@{TgG%BTi-BEeIG*Lm)&+0+xb5qhVy$yrSC$p zVFQnQTfKD`zDHVIq@QjoKJLS2>Y0(mdhs~^^3*o{2kP#owfVn~nY2|wANp<)Ww#0I zTT!N8%WVEqOqOi|#|wPm$46mgvm|;HE)@P+I`)^MYOByk;ks#3>aNw!ZwSiwaTeEl zX5F-Kd>6jk{K$P{y007_hVG?6c@)CTj`W)%z+Kq-*`G&YGm|(k^qVHS?@RG-T7Q`j1lVM5b>alMQBE8-AGqBp!@MR*cF9Cnw9Nz8FewhmS zY}x~$(qk83bU-M0TRRV;)j%)ao6;+im#yjp{hi(8pOXxTd@~!Ee=-@^()ltt2Jd^) zFG=wG?%*BtBj|Z5vfaP_rYe8ltNi>d^y4>^l&=ZO=Kwx_f(iQC$}II`w_QE&WqZ5y ziood0oYAM7r*2y@7(XsN+%*gH_Wg!O;e7Olhg-t>U5q_YZ;zJY4amAd^{vS4i=P*_ zuy&vI-&PbnaP!h#Y#Fxe$1wo+D1IE7IHEbvSthP%#z5jhh`dk0r?dw~%uNB{)ALaB9 z9p$fEMQ_+Q+I4#~#@`#&pDX4^ENH)2!1pxn-(D7opX<~YoIuVNDAix>^w~Urz|M`A zsfvFNy!NH5pZj(Gme~K+DmY1Wx zqqg{4?C^m@>@HOOK}6k21-Hx{|6SPo0cqG>^xn2C`Cl9Oz6ZUxukPQ6F1vko|1N}m z$@VC0H?QvBx75*Y)BpG=Y*hF#D|w(R`=4(AH`V5UpYZzrnR@O1{yfsdu$yJn|9Je} z*J-+I>&q8U6fDzr7s&gk1`d9Dev$tB&V9cellb{Qi+_9^@crD?@2^ZGapA{hH^q8Q zV(Sgz{bcn$nyeK>FQKX>7}c?-^c=xz!u$OGp#?_=wmUx2=IG~D)b)I+!9 z+=tD79AoYJ+{2K)H4M407zj&Z5$ca8>p74CmrZ~UfH1g#$VCkF|3TO?nO_WKhD4|WHXe7XO7D7v@* zf7Drp6SULEXQvgW?z)WjfMW0{FF^SMgpGFo^)EWfu+{hv+*13j)lat664*0?&qFn1 zllD#O`bp1C-~aUkm4O=W?Pz{s^ivNIC)+GZoHzX<^N9+9bldmaK!Q-%anUu>Ug87O z5Ze<@fhYL&L!G)EPgbVafM9T$K2IhOEI%*yo$A`F>Fd?%^{N%whxRD(G_d z{mkv&N`Nr|!lY?wU|apAeoe}Pk7+v$+nMSCsC1Hg1G1V>Z_N&< zBL#}<$$C*JN_5+H+6T7fcN%?eCR&Elr&qEDmk!JI#nRHJmre5XS8Cgrpn!AKUAzA> z=&^B}+%A4Yh%w+`1SI>m_2sq)^9j(yAAn}Mo9U_dIb;kO6Y$sI9=b08n`#efW(t`o3YuaBH?eAKhQ$cjjwA%Q}he{?1BF;Imr4K#V3I z1~I6fe*M5@38?PchQ5=zuDF&1-()k;p*1l5spILnWd)R(w_zsEpY&fpctw#uK~Qdb zpfJlnCaE2RXYE-bdI4@T7kW0gD1=ZL9zkvS)|>g)k=={p4XBx3=z}uz{{SlT%`C|i zr}zkJA}DbjFkqlM$t(Z|fxD}2wU2F*xWNEIT)W_4enh4aPseJtrn_Q;O$*pYZAb zC3tE4ymB8{K-s_}fAW@0%lr!|En%%J{y?V@`YG#&VJpk_8pKgMGFso&hEl8*Cx}-? zmt6UA7XWk+!7{rrz4p=p-xa~&>;?V$phNUK?Dj5y-wGxOj=ygRz~i-^wN)oJMoE0s zPe1(*AMw0LO)ne7w$kpK;~Zx!AXMxY;2aOZXT%M&qy zyW8d$kh|EIrRNcOG>4^7E4y+I|5X`VGj;^zfILeBr6f zKY)dU5R?0j{p_%R?mTtNv+G7$V@()PIuJQrFaVb@H_hAMm9>j3`I=^8Z_!7KyuiC-b37i%YTdY-i%4$|4u2B2wKvsWDmx!{wlJ4R?C2_tL~n%a z$596`n4!FQI9jwV*Ho_hgxlCFwn~VNsiMcTagFo+sX^isR1(!Pi!PBmL`cOEd0O0i zvlLQ%`Lqd3HCRkKfOsgIv5+#&Nq{+q#3ZK?yrLn-j@Z;HJC;;ZJ5dI@4Ax|L(lz>m z@U^f+_URGQP;nvQ$82-nxCXT;I)K_RODvi&$}1@dEUaU`kW)M^h z)E|{c;gB?k5EtAmc2n?o)d6fD9P zhbNe;(s@2p{YcOiSiPc7h6?z0D#V%5E5(3z6Fh_*$P;|zEG`Z_ns17cyl}0d=FeQm zS&??YhOA^%2RKP^#-P21yWq}*6DM z2C7gZAyVvS7z`QP2&-##4POw_HE@EmcHmJ;oS>YYqI;O#jYT-#cL3MS0XvP7iDU1Y zEJ6H@LLoRC4R@rD=;Ux(m5>Elf`KknqV%_h$3a06Ho8Abw+CA?24v5}1xcp6XwtG9bJJoP0>mrnD~?OBknjFk943R85(~hB=|W zl6!DN)7u!^)vg0r+n+{-(swyel1t$@^ zEnQ7X2i}j?Lm=;L>D3TI`X=>>lckb&Xm>wg+-KX8Ju+GVA|$81I9U1j!H_{F`w-coo>A|g)AgSl)wcYw6{L+B5gaZ_fhY}?b>Ee4T`x4D516_ z1&!!QN(gQH!el(ntO1RA+i%QJnw-tN8~~swNfxJvxo?i=2m!`F+bhL^Fl3HdvAPQk ziXGOGJEzp(Qu3(FN6DOuMao?75*+92fY2CClwfp73p9UqcZ@UV#2}W~WEWoI-eZ?5 zIuh}%#V5&$lR1H7ro7_H%nmS~ZYz6}kFX_0-w1Dd}9MxQ)_S zs8_JEg9Y;Ph-V@ZW4#QoC%g>zr*dVj6Dp5Zr(BY^N~~`q-#(RE$~qW{l#;f94vm64 ziW5yn((rg9FvYT+WPbIAAskLl`>c5OHY%D7bA2RYvqiB}8<{@9SLGPNWnr@6erRqq zY*;c7e#GT#NGo%G)6UrtL!pF39wyf+Fv~+ZXX^E-1Bk&aF`aXp#nc>U$eEaMdzYdLYu)S6U9FGHN;u)a{iy?+*S{h$f{5+Jd%Yr*J`LzSMJP$EP*RgnY z2(HG#sYVG|rgPsv56jIqKS`un*XPLu&)2bI2him-qhXsC0vICEO35nh#2y?7&5+5k zkIVjKM#^k;+3qL4wplt6o>kCH#)V;7I@2Z`OGpf*5JwQEX&0lajxuYia3FH~R3gX} zufVA4QejCvry}g`vJcJ+ak=mn4)>Pq;_8z*v7!*8@n#2|7jS!Q!fHaY&LM+!ezM*s zL9=h>V`?uz!HnK(@(I1B$}`JWP7C|p%%yarSVY?1xm+cT$nuqT(G`T&fubTdD5a&S z2gN3@oJ(w^K~nGPdW1F_e92Ce`FR*bSfAUl`j9ZQST&YB#S<)9j?SXXA7X#xUd7FB z7MgjAN>l>$PN7E}=JS<2TN~+qG{kbuu`vC7kXABzSVesZu*x+(S|mhP=^4K`9!^P| z6>??)Vi??5Nug~A5`#15d3Y(2N~&tc2O(jEEoJ$-(Us$Z_2d{oQ)gQ400z}`$w&c> z3L+z~iIbEvLhLOI*_9}i-kl}jnwZ3+h(eG>o+l)8Wyvw&ayWaf8|6Z48wFV?D|(|% zJAhiM=D^9qQ*ldkjZ=nO8?|K|qT`n6DGv*!W}2i3`EToW`tSayXgLCuN8t zWNeSPseQ22wD*TLJX#ku=&&iqafU&Yn(~z~C)!$)0e{7c6zzuM4&v}=rSNA(ZUPMk zZP?u8nA4O(Dv{ z@c1*MF&37Wa~YZx+I#}zi?rC=As;A1JmjHfvS}uJZHsgOT_VI#UkJ9f?xB3PD1yBY zYr>))5j%sj_ERrJ5h9riD>gJ$nwf-duNcBYHa}$aIUKEXCZIe|%9MaUdmh2rmA19@v5Pv|jy$Zft9)59 zVzIMVF@r|_sL!$O2Fv}$X>nd%jz!G4IN@rw=CcjqX|@ykjhvOPC#PCGqa`m=R8RzD z)14^PzMg2oVY!pJggeRya{nClGIg){M{|jiIHNKkWbUuDC+wBoQW*zpW)jPh;PI5d zq%~jmjqozlFUdw`uOcTTM{L9Jw9d!7Gh?J3z|jV_sp>ihd0II!eRiDEv&JQtr7`yC z-C8U4sopH=x?ogtN>fvIN%8bi3`Q=uOels9x7Qrb4yK+(;|}1as;raF>p<#}CI;3f zApDuMA~k2zAP{s#Ez`2?D+}TEY6T1wI+v#<8An@qQk@M6sUS2ep^?m7GO`26#Ybm* zm@gexW+*>ksgMZ-U(NzM;idCI9v?Sos_^mD$qsv0Twx(`(4dGCCB2p{P=#tShm28j zeUcU(KqU6(kjQa4Vzaw7TFmCcez-qpHoT8T|1v|C(j+kV=yttK$>_X_7R%D~&dG8e zZ7c$|6XO^juIzPj3DoB>YMQYev)gi%D8?!t6{|f|vQjej3} z($JTR_U&9b%;{!vMkLwRjw~O|PY~S!90q69#*WYmQ3nqjCATLM$QGNfqX6hl#A%w3s$N`{GgjxCWI^R95pEv`(N z*(%8FEo^(&=H$!QsWXCx7qU0(i7DDY#Jb?mK0V27bvV%%a>tQGC#HHA9c zL1J2uavy__*TXf;nr2R`fwZKBgcF)WX3!kk0VG2(%JmB&5ip7GPg|p=$_b?z`X~&v zF(f-eI5`F(u~7uY%9$%f@1ZMyfa~LOv^2ILi@;Y(EE8+dne`#SU2{hU1=$Qao$v@t(Pa;>bFtc0a_+I4l9V4tlPbk*gt&PS_=4CN-7$0c@3bP<(ue@>QT~Zt8 zrY7=b@4oP(q=*O9AdcB;Vk|*a-4f}x$xA#0K14wG2|;@2G4Y<_ z46_WI?CP>#n`YQYRa}PSez9uFZ3t` z2`c0Jyf2EoKBmZdCS1UfImK*MMdm>Cru~>#qQt9@25!yH)0rd%>1+!YEqROsN3KYiIewszwN3e+~ z8>zt#b$#$P#P^rQF|Na^U|F@XHsNv-t}Pf*mY%2X3;VRrDXow-+6&jd!%CjFI-IxF zTI;<{m?rRg>Mz+H9R{3Rkdw1i`RXa#^Nk>tVYEQSm<<}v*ib3GIBmJ;dd?zc>uab{ zs|omxrPTEfXx$GzSr0abax%6N5y&eQUX2t1NB85&naP=berS^Y;yhon;Ylhkb?xqB z$y_YX7e{ducDT38Az@nRJ8y&m{m*Pn4Yh>ru?ue50c7dGPo-JOq%4x) zvwgDOm_sHeyp)qDa}m49BFa>Kv^%a&;nG@$;bb0WyorkDY&c(1IJ}*^nzokVMXwaB z@h55(+wgc=C|)q(#_Bdd91ZO-W|kJT(+Uw|66&O+!wgcI(K*&VY#WS7V`F*a>t0F4 zXn)$zqv&~JoPm)`opF&e=K@O;ck#woBi`L-TDVT(6C*6b?3D6>cba68b%e>-_wJTDsWGCiJ>3Ff}ECMV{$Or?8rH1zWyAZdgbr3VvVU(I=i^Ad!z<;K!% z-8KBZrSi_HksAH_Fc{yqeF62O4>hS-$&@5EejAI~4ox&FQM_V#XAE8(*E+HL(#Bs} zy)fbBMYRaDnK8n%a2y1_)jqX2i$SB*Mxfiy(1mWgok1n zTfo>FnP}0`#dIxFx>7BzmnL7hEx$bTkrlQ_4xTk`+WZ#~irs7j0LKjDTSf=}s-CP? z=I>|Sn=;uk48t-$*mQVGMoSE_4{9hv3vy*meylXKu5Fe@;W0k&CBjxqEeDop=R6$q z48mwc_bWFAuDtDKWnz)@3av3l{X(Xy5IkWp{Yi7{TV@zyRENjVU{m$SC5?XpL7{Yi z7(WXExpX3l*MNRChKNzuL0S5fS1`11U%10yy5_h2aj?3N&ML776%mI(qRLzR z=xArTUgaA1C;kh#M#%7yF|X`)cwz(CRnQKQ>#y}Aq{*8t>s6C-AenWzX)&GJf-kzY z#cgBh*{%xX4A6NcE?pZmKew#r!elXu8^O!^b^UaJZC9pd#+N7`g>xP`>qtRa7Qut! zJ5=r>AF5ZZ2CF6)U%pMBZB$1bA$S$Fe*q8XDBXONf~Mhqq#IfEW`$T@4M`r5LtSh$ z%X?RpxLExag^~Ke`Tbj-f2n7^q?yk46%_GTtF7uYh6{Y?N&#rbmA7#?^{KNJ`3}~A zk;2?vT;3h2NvsJ7Zu;we)!KTnE95mw+{AIUWBL&^0?)OUDB@3xKthMzVJ|t*JUd^4 zSB>1hk@e{v0>fw@ravcjQmmO?DHui6khYa*CFCjH_Pm&aDh&YGD*V+Hm&ZwU+-sfp zS}qtEn_3?`1NHJfR7JsT05g&@nk6&dWnCajs*RN^!|~AfgH=0n&2gSL+3?b0rK?Na zbISzz8>3$V?SdT4oC_b4C?7kbzP#2re>>Z?Y@7>4JjflP5TLqts~OM6 z3(2Y1?04U%MQ}9y`Mcx$0#Vz|<)!$wm~J(#bFH4Fno30MN6Dmi?Zgz$K_ookUeFaN zAJ6Am9;Y~!e?@{L1-vBo1Dj-kP#T2|2 z@Oqkcub{F^Vrb_&Y+l^r*a8$l;DDT*7)*?lJt@1XR$x%vMg)FC2|Ayy;%)lTwv{_s zILhABy1V1zAd5&9ewE_@5vTSyAsR^Etz6 zVpv5x$$rr4zZZ~BII_A&kZEC84SUc7KE{;R4jqm14 znN7K#fpwU(Vz(Mt7@G#VSxE`ToIG&9U2-i)v_wvBG#b5HI-s*3juCjdOc%OcOd|ZX z@C!trJye;>(}3fD0n@4FIxh*+*^z%kd#pVscy`oz2%Z7GFrlEKk*$H&&W8G#htL2s zB`Do%)4QQZuj^2#V)XZGqW}NGKI!szLIY=<644*rfva|6;ODw%s>tg%rf3}jr6r9%tCyyaRwi|?P)Hq;V4oRSb zww6TP5zt82#6ie5Hw;XYHGEUfCU+YO(Mb|tuuC3K+u29>%8o$%mNsidf|ZDXv42*f zlkS;&zz7tLTjGM>WsL1Nn={=;x_Uqn7E$!iGe*B^r2F#|<>OTZbRs9Q+nXnN--{aV+r* z?tPGhXTK*w#hXw=iG(z+N3_TNCMdf9u5CN_sN%!B>?#J?@AE5zpR>yEA3d+Do*HC+ z-<5wZIXYo&mUwG#X&jn`82$E#wqPCcfAw{z(m=?qk|ttA9RvTG8l$a96zEw(;3Oo1 z@(N-Cdal9iR=@OkOCcJyGmx|e0Kk;5EOHEQ@~Y}SDR<0gt;PJCd%e#3@ecliDJY1X zn_s&U3BuA*1;#_@PvEXr5Wed5t(fn~SWY+xTM;ZTb&GxgRVEJ}!u5^Dn!X!BS+ow? zvV9EIYm8<2bbRui&SS3Yx*9+W^&6A11)}W7lyCU+-_SA@fyqP{lG7{rxEJZLBnnVhMs~h6B%g&O{N34rKiD z-u_;C2HKTw;O15g&d8%}UOV`Ks~G?W&d4^K;X#mgy)WllTjAv9Z$g)#VmK-`{0s!q z&zole^EWy?FeOYMBI8N^De4Yr{3l>k%)YfVd(w$~uilCDK zW{!afMYp$+{OW9>HWW47O4hPZ+2|VQa<54g~*Tvoq^+xT^={NXV0$GYO&s5_rh#|d}HQHkNQh3|oQnizgliQJKZfv?&2vhrG< zH_*)N$jlq_Y6^-~$uF$CwIy^NvEp`Y_eR!JUS3d(RR3KPQ&!#lMegQ$tek9|&B2^d-3E`a-^tDto$DQjCTBI{t7x9`KHeLQ% zOE|;bbSW%*JLWtYS=j2n-DWj+w3@DBnwpJ!87?V2ccpX?nAb7%3F?=(R(P31y5u0x z#|mZJdnHf1@4aK1_e) z(TQnD8r$lvJYk9g@#C=-S&k8Dx_Sk|NH_YQ(0PqZBIoAII9}Q^BAZEIO3LU!SuEPe7Cs(+gKXGBcW zyhPqp?zANkOk(!Ighh9y&&UzbhCe~@!&@F@m6}`=*)u( zqG-$4ukg-z^K*0U^YlKea)!xve8Uet#j*Q2#XjNUNlV&Kn*Gi+9*Ni2?f}*2Cwwh5 zwJ8-qt*_du8(vyi|9h?9tA$niQC|y>EV_^2jG|(E`%1VM>TYtkP+Uwt9$Q%W7ZCb<#YKhNu(g$@M4Bmx5ymqWrK?+t z7DL6k0Ho-Bcs&7HIbuU2xCF66h^4-=>%e7lsq@?Fv~hi`*?HNY4!~hb83qLy0s4JP z8?aK==?`SR8N@YhPVu6Xbmn#XAP@rCRnnQx7uF^v1G9xzuVckI%Jir&o${QDG%LcX zw@&a+yvJ?kebJeCb?~NL8(?(Vd;_Wq8WCC)>y@el;2sX~;Y59zgJn9f1ZyOcd;<2Y zZs>Yxbr-Uhntk)$YOMN1qSw_ILZgt&$xTtb8J>{lR;KFUi%Y#MS-&;c*D&2(V7arp zt{d;?EsHxr;e2XvKcS~0FJW=4cdya!v;rrN-;0axXp>Dh-xS$EIj2i~Me0}G7>!|$ z?0yX~_hp48rmp8w8t}qsBLN8*|2TX|uPg^cqubLB)QUG{76^e+L5T_^zm+uiy;wDh zrs}Z6IG#h=&6pZttN9ir%(IpNs16Dkd*zpr5hVi#L2xG+-HC)038M4{F0d!rBlN=e zP?Wx~bw9^OZHfR%2Jjku@9A%yf%cAw>48_{JU&kx2*+` z#FV?Vx2K~FA64cPk7EFon*)bQ6xRCDI|&jHaUTSq8NKFGU^bJ%L4uTk;=6x(1c=1l zbt}@Be}i~tNYdz~KDbHoc^kqhQ1AgKvE{gI{2<9>(B>g903|%8{^cBov&8p6JV$kZ)K_Lx8JBNl-{-jey}S@k4rx zVE>A7WVaXYS_m6NTPNlkC%E zQ4iYaWvLYi49cY$St2sG@x+G#<%V)Bt^DT~-Z+kw2f8S;&&=n%BmpuZLXg6F*;I}b zR1`l2H6Ev*`~ipad&?iAGM0 zui7Kw0P;>4QodHWfWn@-z+Pm#e z_?hcnN3w1yp@8=vg4>dT6D%00iv4KKP+F2CC75<8a?D}~#DdMAZp|0b7YSObhYHav z-PsvjI%@;bXUjB%)7b+B%N4DC!Xvb4-E4}w4N#$Q;|Dec6i(-G{rgVZhq8mSk>Y1WrqqQX<(U zWAJtFtmA0R%XRX;O7xl0R`H{$eVV#a@P^eZ9hV`{+%K$!w{v%8Np|I$Nt!4E$4*6z zt?Iz4<5$$w1U-}aNp?N@L$HA}+F!Oc!(d+Mhom}?RH>pj?FHR>u5TiE)Wz8~i=ZDN zleEitcapCy&Lh^V(+qM4<2KrXr~RVD0hv-w6uvdIo{IBXl3$RQ5n9B~OkX6ee#b{% z#1`dOY`d10`1MV^7W@~R5NFw;0nB9+p;hI5wEngt<{&T%JOw#2m91 zpichV#(+3U>FdYrpZkGinhETD#3X8uN6nU0ahF0-Xpo|8I=kw{7oynMr7EHq*LK03!PGbdbxw=G09HV$ zziu=wP}{2I{`UR}DBv^RJ?K)AbO8}SY8Yu@peTw7p6HU`btqwG1PP^QstlvR4$xz> zZCN!Fbh7Ac^vj}M^nK(ho7=P;4h$d$Xv7X30Yvca0CF%^6_=1U0RrIVWZ4KJw_1vB z+)dS{VD2-#X7JFX6k_Im%P0q5&})3okOaYrr0LZ$F*0qh=|<-I!eNXAK$AOiUGA=; zT+%J1>V#CF?Qc_@VI`CMI5cH$R|nFO8#;83JWEjE9beWY1P(G_^`NZ>legeUEq;N( zTm#wJf)rE&Ix^7WFWnX#yy!Lg9ptxINB8x~MVbZ#M_`!r;S}&TW!r7PxE)}#P5z3c zFt%aR-y8yEDNLIHo&C~_21fr~4+K@R)6_@m3tJ=SlKb|E={REzUlT z@f&#panKSCKb3m??7R~d@V2^Tu6;i9(LnB^{N{uLj{a!Kt6RTP_&N7a7&XWQcln=P9nI&MwKxnyl7^mo)7c zH>~Pygs4SAg5y{ICjANcx;g%9S<`pUZBflEylc?LBxPF{=twN61o6z520uIi~q>e9b;r z|2!2!*qBk+)M0aEU>tX7_r-c_obd`KJC|*+<(T%n;(a>kNXeUP=D7dgjefuY$S0Kb_$f@uNujBj>_1XPVy>{@~%GrT+C| z${~QJGEIN){i7YU@ulhOx)5|tE$c36oW>lqIe1S>)EI7qgD}7;Ca-II`ZhUNNr4!X z-7Ys1t`C?4EI`HuG2u5%`T|CbQQV{W_`-XmQO$I?Avyd?V^$|KqWp6JkanX{Q%3Gn z*n77jnyAhU^_qWp0?>i|H$=Gc_M3&oj&)nw*}Qu7pi6HgxoZS~6Kx8D%l80o-=?zV zPX{P_G34hz7f|HZUF3%ZqOYVw6iWzbcv}iRpuuY!ybbucf(+mZjX1o5UPc2$NJa|B z@~$_=Hul_`(N6gG(F=b>`?B!f$1yoeNZvC_TkHXCfi^9OUB0=2D_zb6T%=sTZ*;F> zzoU8|jOiOEDd~;kqG6Qa*e=X zSmFEV6`=V7x86ixIxmPdU>pJ2NwSdL#bc)xtBm@~kTKVKw5 zN^OX>CX6-XDE;?~`|u%O2*NnP8hL{#u_7A!Re0n|B1I&B(R0h1PE%}Pxx;CK?&7WX zj009Y^vHFrV<-ML2{GpBl)^SG##%~jTO6S(#6dmbl`yUGQEq%WqLYvO)M5QQtM<3C zgt9VDMo0<~%t!zOTeTvam%V)Tc4%YWp=dQN8 ztX;0ZZV7MXd%JXLAwCO@xgsm8Wbs-ht8Wz$hnn;qBwKY~H=wquASph-*5z{IbpSI}PKrTBdc0w;n|ItjQTek@Y)MFE0^aB9}Je>ReV-=;O z&NIDy>%NR7r%SrlhSYXutgcKt_+G2l;CjwlsyX4BobuC~nA;l&Rt;KU@U>=7Q7Bq} zbzQ9QsbjU9r2l4k0`EB~WY!SJ_uDoUM0QKb&bgky3>$J@SME9jw@tdM_om#p*|zC2 z2t@m%^$MbYhbq8U?Y;Du=7Aa}#Y8ABQ)eop=7wLixXB#qRXn;>Klc*xW?5qY^%8u1 zD50c)FF=12F=#)eol1$0pl&3(dQ5v=v+Xt7Si$}mr|QhSMwsI Tg->al?VezF1* z$Q-o8p1c{xY;Kz{BdqZ~bM^I~!4LNR{+MWl>YslJMmH0#v(5WF3+2L19R{h>%*o&7 z1CNnJ7>fN;XI+TwfQw3L&=*qJx~26F?Wd&1ZbhK{yn$L0YzkgKLMpYt(7VZq7<%&^O zZf=WqQ#O`63{g8Qk=qR6r2zMzsBMOz1x(d*u_1DYF>23EZS3Lcttf*bY@4-RWD9fw zV~e2;S!e4ue1FsOA&u;XA}6_Aj@GK*7*b*9e!p?qpbiN(bOlwQcNf+ioAm@(+|t5( ztM;wcR%sk5*jisLp6Q`9VgaZrda$&Yd?~G3pP4t@tQ%Adb9L}UnH0oF{`FwA5#K@J z@5#Y7>1|-VAy#@FGvc)s(^&y*wii~OFpLqR$mSEDl6cRnF5stRk~U&ojL65b;nk6f z5v1Uov_d-n=w)RE!OgR*8LjFxyPBJSy=G_DuVIj8r{>2`>-4{RH`Oh<0loJOvI_~a zq{ZvyI=3;-&b-e2#hL!70C&-e{htcZFy1+_FcxIg`%e2vkQ7c9zcvrmtrj#oAIA#N zTUfXqbp4&vaRxxBUa{ULE}5sACvCjbbb ztZsm#yr_9e%xf1JgaMG4a&5X;eZcKXryke8-x3cf*h@F;g{uI7)GapN+QRzvV_!DU zEtexV(tKt&Ot5ojo3FQc9e=F&^{)O>6p*3muMXZ^4x5vYA&6Ee-!X!)T$jQ~DobT( zt4R3{jhXeh9t=R@E|$aV(-9lGVW^;PUF_eZYaD`Yky5)#qhO5pr=T1PE^y)4ZR6*? zzf*ICIHP6i=a!e=3dc_lR>ExoMy5bPaE$#KXm!xW3P8xspo8{To+c@gYC;nWUam#m z)AN|z$W%9j1JoDn!%mVa9|Y2n1A9n2Wf-UXmWdMz10iJJ_ntV-rp78w_S9BRz*30B z<7PZ!WJP#=#+T%46QmCIVF6P=Pjt(c$xRW)>d|`CkpC1kDJAM1gn)irN`7+<8%YAu zySRgucWIESv?GSSM&EoIY!&iNjn;w{n*B~wZ^i(i;g*i-PgmwUnZ<%4;HptuLWOXF ziLn3yqt<{fUWgTPs7z=(JOBW(W{Km7R)30Tu=!A{s_4ihd4lZ*dl7m*K#ztmC+1gF z&Y51;kX3yT7@h8j?Q-=bSV>FO^^nM9m~6TCqZUxQeP18rt^i2_MfAos5TqAGJ!Ad~ z8sUt@bd21T{ToyW6)dVk(@U#+=rjzSczF}v-o!pz++sqH7js~QvUL@G-5$lG2C^pI z<`UtskdN>Y4SE>M@Ezoc>dkkdc-7-whh?|9*)W12@;qhVl&ck1FDqXU zqu7->)x=w>T)Gp{pR>_J;}yqzwE;x!OIs0W*ecz()36?ef5QO9NVH@keqwfBQU1hr zwZ+Z!x|-kXH<}Go<8sRk1DE31lQNB8cDcORcQ8aM9kOmre?M=jQaYg%Y9a&oJplj( zo4y@7T_2;WLV@#1m}Ojf@n6vEWtvG~lV8al9#8385#eeIn#8(?JCVs>t+p7LO!3TI z93M*1mizNe`Fa`E6zE*1UX4F*NFfO3f+OafmuJ8?UQe#i93q5cMW0i&>>Um|AOQv! zY{f7Ixxu({do^al;l=}pf3?h-nxozD@9VD%w({u5b?EqR5+*?1jOrgHbtcADwC0PD zwcj=%R#J&Ih7h-^jwH~x0z&zOwtqIAaLh^BDgdIZxQX#GBzZ!qGuLA-ZbZcZF$7MY~<~#+wNF;?r2m|)~9NZ8088|3VHb+uKXaTOl9Vz_|gBw?WVb8w+Zg_Q# zf%nQU8or~g^pL0q9QW zR5@71y)A#?`MSQt_$BA@opbr|`wV{Q_n%2Q;->Bs^=KcUKLSG#s+7CzXb*syw{Jq& z*8^w$-YhHRKNMybE#W`M9oK!(K-7Tr_a!KA+GBMVE4p(kiS-C^BJeEAz$BY6tdXu! zaE)K7Bkof{)}OBV+WqG{g-cQq)yUEZKXM({>aax-@ZMcSsG{V37r!3MX3NtVJLBRMOO8?6z&Cjz#1Gwh!X`Q zBPH=ory&1kWYfXMClyU^4EReCfP^3}#E~~g(Z0tY>8FV>{X7JuNsQ4fOS(j*X(3^v zs7iUg{SXP|o~DD@>YwM!f+xzA@(S00ctv&a1uwJ^Jn?Yvb%c&mtME1#i%%@MLv7TO zzJ+(;iJ2rUbVz2oO{8CF<4k@`#c$`G=VkR9exo!`PH&*EN|>bPX&MSIjvi?EkWT=; z$v@8-hVv=hH-Bq2tNmS`s%hF1t>XuPW>M0b8{O-dTmK8PWvb3%Kfu$y8#T*+`bJ4L z@V~9S)I{}dnV?b`3RKJvF;|;TB#X4fB z20^3e0TD`5sRNkYup7&jGf7d0T25!P_)sY^j%;Q#K0LSM)XZm zNe4QZ6JF$V1XQ}hCo4RgB_-O^(!dodGsUP~ETp&hq*5Kc49T(sFK?A;na1QC!*J(vh%Yw>0_jRHWcW&N2ID>38#5K9;LGBlLNW#U znzUeuZ;(p_>O;1-c$frDHME7>!HN3`^Nznvl`bG+C-NfFl?yVih&4#_wG&la*bPa0 zOT{ryv|$5*@>n?|68Bip$Q7V-`pC#wcb2Rms|aiZWI(rC+ng;(%UfGEJb`X2XFEUx zjW;ztn%?A1ipCya4kZ&|5Na=@Z$=AC2*mm}Om;dNOQSb{dNx4Q(a7e1I3&37{vG#iEw)fJJG_R zlV<>vOh_UjqZ)Cq(Fm+7$uCqpU<M!rA&atAf=9VH_h6s%@n4?zmPWn5RbtY>S+s z8;3VG=!kvNg|mr{{qp{Pu#ZESLZ|WfbeSPHn==391S1N~DecGk}VnfG9Qy`g}kMi|CoR`ouY!WMlwFd=N8Vkwosa|Ngc|ych^cW2KxI`S9_bZ!~lF%rEPNmAQrN9>IGTF*V z#;d=)kUKtXeqP*?0@ApjCj?Akw7z6){^9*gyn*bG9|93Kys6b%9dt3r8fNrpe=B&* zB7q=hX<4H=9>5g+z1>AuBZZYIfMb=Uj-<9~t6&QVSYsCo&iyCdhaYoLiwx2Lh+Gmi zCzmP|67zTqS@v9pkBPkL9MkOP;m+Q1U5IiG9=OR2+ zn6yru4&sIk!%IG4Jg4Zk+sWFcR{x!W?iDy0M&uh>HNuPrQL>T?B2{Y>mdf51-Au6fAe9ipu!V%=LNbRry=)10>%@?I$D$k`a>+L@m9 zLFA&rHD?d{s}&)kva3ZwbepYaF6^i5J~Zu=m4{*?oxWvwl_6~^TiGT&pF#_{O;eI5 z5FkEo!2^HE0M)}rQoR12+5rURD0eF?f1~9~YQNXna~6HktPz_s74w`Ee&2bkx1dKR z(}kFJAY&tX3;cY{l2^2ugFEyi6UNU0O}IFDnv@AnsEz~b@32b0y7{?0cvNQ!5}6r{ zOp<8U^G6A!HC}1mxbl!I$Pp^21FTVGEjicU3je{BP+^x#@N5}zQJvNBH!KLt0kQJsejK8@eFFI_BFA4yO1RCmI&71m*OK;G_a;?*^tm8=f z?8C`KkWJc7HCX{%(xPR#xt8X>`%aq8q=EEe2DJwCJsAGux>;}|x2DaY(; z7?{D_VNUkPm$Afvr|Y-sbnz?xJ0|m$BitSNGnUv;RV5u;Rcmx{F2C#CJS&S)V))IO z`C(q&Y_r_p=a`L1;Qn-2f11!+yc99Gd_d^Vs1j?H;YRb`8y!Cm%RS( zY&0RhOI`w8V(zRW_SyHde0q+y>^%=c@|BOFVy<+{LV4l9VU#aaq||oVzFl1K+D_HM znGA0b30_al5`tcR!b(A?E^_PzjL;Jr5$3gWVM6StmKjCY;vUv%=QK4sDB30(q0^#P zW0-zzw{GP=+1OpWgg%QBV!pM=A6aqd_U$mW!#F|=9ct}FoIC8MPuE1AM8BN>NTDT5Y^5Pyk<2Ur z>=n%r9Nw^V%mWjtP-zHapl-YTl4g2>W?N%7&+w!$B|OcJ#O&NX;?kBm zg~%Jog(sQjs*CAYZo#u#rf&Xad#p1f*o?&ZdWA2hShCN(&X@`epL1%eYC8|U)w0v&P$QW;}U4u?SRK= zFb-uwOcf^|39qAOay&;a-Z>DZ$>k1FwGL7a|IA6}8b_}DDT~Wapz5b0hzxDeZ0m?s z>+p!6T`9DZ`22Q)Ykzi|FeEg#)5jcc!ZpnkCc4Rp{H89j2H0$IPrQOp)eo{1S>gjy zJ9yeRIu@C##*!|5)~Ow4Lb&Xon;=(5y6&x6)CBsR&aY`#iuW~O>>(zA=EV^E^d!br6d|}~k&xNkEZjA^&&*32JLMNuc$GqofV=DAn{3HgYfD>UCt=M@gBz8_JXs+lJE^Y;-~M00g4!-q1$?i_{Bp4ph7>C}DFc@ohLn?>qLFy&Um*q|dy#@&cTNBje-OA8f)^ zwaS+$JrxC;?A6INdZ|Nyg?+LZ9ZYdgx-lkdem0=Q&jCp$9yfb#T+e7qaRA${yL)yjjHENwC*Ial`>)@PG$K z87uyr-D?Vfc~toeM&?4uJDwgEt~G{NESO7^T;q3?8|G_xjwcH))3|mU^sP)VSM1Ve zMhYKO>XQEq0)81&raVal{ki(4b#0sCwQY&5{l4*4tgHOcaGaRzaPsH9AFluj6$R2} zS(k(!I>&d_EQfzo+4D?{Mu`U+*R)8sFrn+1!GyB{=}vi$K4kT|_cTR|AE>tBDc;1_ zB{!xN@W!E%#t@vx7{SZ#55i^c#j_8?NyCXD0(9`|k(+JEC7pkm`&XbjfDU%3t~>rr zva(teAdRXrBJBID$Rxbzp|<9^t6g|9=?? ziSjrmghU;Pgp0p>VCc?YJDGZ=b2B1}`=suzpYptzOUQRRECp0r()-ts_jmcjBs4<3 z8xXe9C2HS1y_b9Z3{X4B;GGmX{602Heu4wL|9#tSP@CjCbo#YeSkwOo!Tj_s{_v?x3f?T_>fNZU>f`WQc8C#H`>nyx z9Z%ywV{$n7Yd9N8#mH}9PX(jB~`DBmzGqdw5SY(1baQW~vq@RxQT@hKw$Sh@5IpWU0uK=(k{ z{Da!Ug|-p~)_5&ubkzU5i!~<98J%l28;CAjkwG;F664U&b=~dp<%@Cf!my2h&QTYO zw+wOJM!FLqlFG(Mii~oR?tmkN|HsvJY&Q!m=?7v#PD^qQ0ugs)ga{HDo_^4e@7y_a zypydqoxV_2-MBPzg!ri9uRc%-aRJ!NAX$~pQfmcANv+)}q_@9+IJbBTu2KygISntI zKYs5O`TBiz4f<0gA@tZGG{uhyO6LSvyLBQbJd%p~+4`%VH}evNT~qw!m-8{+X?P~P zam3~jS53KWuP3C@)X-aYNU40%0koy|Y&pf(i#tB#?=upO*Bv=ZCRln)+h6AJSAWQT zs!@qko5#0&5?A)x`Xv8ZYqMEX$$x8{+0>F;Z}NkyGPrkKa}D}b&ZRFJeJ4kf&orS7 zF7ea9!y4pebXRRtm4Or4}PSdg3E*(g{1Tz=0g{HCiZY zKXn?J@sNCN-SjJy0=5yNB;nRJRGIkNafWl~rOq@ZXM$i*7#}g%iTQ)>01Y@#AR0wP zYP1M<3};#*?(>*qcvd&;x1Z&MUAqvJ?sd2;9pBW*CLOw*SpJp~uvlJ3Z_g&f2V>-9 ziKg%)aKzx4VVH^$TH)cl0s;Gkg+9lO+Ev)>_265ewppb z6qTo4PVY_eeQLqvGs$yy-^fVLS>oU~#)*)HGk|p=Z9CtEGqKiNeTDBWACt=1-I8YMIUIicarR*?NyZ% z|9;&?@~fuIMZ+X{7QYfQeC3i9T%upopViUM(05*ANS$LHq7ZE+C~Dc@ZM6tI;@|xR z?7A~rkD_d;j`}-@THC%WOVLgsa>muw!%+H)I<+HQ^n(wC!a_Lo;m;^K9{JFtt@AY> z1^n4B=ZwSwFRxfkALMB>>EG>w-}6+5Y6-e0gM7mjX~MA);@S4F)B6xJ@|uk4GupII zT4@7Q|GFzVJ1bFY@cKMnO3l>Cx!KnQ-s>-4@=GT6-$7LD741K47q(rX#e5BI z=W=x5{AuRrK|ka4TwkBi?!*TOa>fV#<6GwWj-BY5{>P&*tv@dR*I>kH40kyaDxe>b zhVg$?*Rj2prA$TUj$*rg%xs(^1ZRHI6lpoXMlG{CY71d1R?CZ}ika-5lt0#j4t1DQ z`W+x)7#RlHJhI=t{J++l2uN9~7Xi7?F|#B7!+nmyux@@1uMC3winzA*zXtz35c6iH z*7nlxC)q+BW3}=Ne(~)B*jqMOm!GP`aF5{UD2dc#k_ztMK>br2xL3rF_5@S)3vGl)^p=OjP!}jL8_y`x}GrcUSJi%)G^e3ozlxY`)Zkjap(A)S7 z?K>5pe}BNS)raCO?_o?7{p1i&k4Q7FuZ7hUzk;BhdI&m8R#Z9EO0+Ek)R`tWO2Srg zF?N^!f{aCi>${9VpD-EhCH2T_!;tq@a&SclSb%=VEt(teCG$@35+UZ>aL*VReFlv% zxY^Hq*yLBW`S=|_#4AAeDuf)BDZ}jO6Y0aMG3?N$z-sM-`yT$a>7lHMVLPY#(HdE1*Uv)X?Z>JjQ%aLK?pVa7CeaLM zz=Gc(04_6<-2~p=20srUa}G?BR%s5^x!mPx}IVjBHt7aERQt;sA1#4y-Ch-m>3eP`>KGIKOiW z{6h;XEoTb_om{&Y4P#l2Lc??&*5GTno=8hp3Mq(Cl~VaYT!fL z)46Qf5YR{np46K7F`2O!_-mZ_5RKSm>pFabU7v-Nf78rZ55iqQkwgn~<6wLF7s&&zXnNrrMkaphq57bT4$* z5@h9|qFx$*uXy=LRW}dq05)U)%G2Ns(X&xxd}`jeB;J9?hNqfTAO zycGHe&tG290>`41#^vRh<^0Ik`f}D+N4OLKDk7Z2;CXC9-|X}qX$Ne)2L(F>J`1qE zW{uDv=iC|p{F-KXQS+|rOr4;wiFl6vd<`^BhZ!9fJxHr)Debt9EWb+P3Ah#PuE~mC zR9bntfE$ImUdf?&_vbJ9j4dW(1d1v{B4Nmk|3_JkWybl`Tu1)|a+n16*ez>L=`va2yM75V zDErVKB?qtdWbl)qM=zzC1%)xd^@gvA+d{tDsD&YNl`QcV9)6c0zn=gKjB7sxq&TFy zvUjf7ml&hGTE#@jZ~7_-`ZDXGA-o@;YV^!oxz{0U@D0g}1wQ6=nSk+&oV?C4wj_+d z3=0lRaO4&=oC6z0{@^2LS7@klAcV!%8hBIqD?$$23vR#6%xPxKNAC>s#Kl!gI&#RI zu8iE)wCfcsVuo$64NsYOBh>c0eB5O zdbYh(5nEa<>Np$mQZ=R#yR7svEXw~E9T5Af;0Lrn;bi9U==!oX$nKC+_+11AQmC#x z@(d~tD{Q2cJn>6uX7;I&{xZaPb&jrFucrEX)YA+7| zdnXro;joz$Jwgtrv+79eEb)RY0uOLm_&i~u$K}Cq{Tq4{a2|wbPU7{ER#+Pa*@k9c0rJ2=cPI?mGYJIM_@>k02c0VN9fF= z*^q7RHOhSCs4YZaWulF0i9YG?ZT(i5DdNEY=83 zBjURyo$*}8g7s1+#66J_n9oBadjH>kzQvNj?m_3sy^_(8Y{%4u0qJg?^Fo*!E$y?E zF%KIwi4Y%BH%Frx;UC$1sgdR5t71S7_@vgjwKLeApA%CCqcxhS zr;pV;oY!Oxc!r(PKmccZcz~B?UOgy%zs#xFF=fe^n|spfFO?}3w&E`h-uKZb%@ZE) zWOVgXV=jpWh}IMaAVp_UKdt9&gki*tu;(ilAYI^{A=~Y#S|j11j8E>yLnGfEYexK~ zlZ*_=_8Rji-uxh9`l4MAA(6}gB`M-M;ILvyX8HPB)^FNi6({J7y^^OGRP0LvX!#8e zn@U_Gx2NA6qc1|+@+uF~>XfKtsEp7{hqHeB=Orqc>8Jq|E2XkE+*{!DmM~$@qYEG~ zv>4!y!Coq#Ig!u;YBX9};eiV32qZ_OXP(M4>WNw3e@oQ8K3R2tqvux?wnL}`%Nw}7 zXkZesx?l*SEca=+JXfizH#`ym67(T9phFIUGe%1#J>p<`#X2f*p8ICRu9JiF^)~^O zJGMA)hm*AA^^9Kjt6Ofd1cV$4e8GVb{Iy1r@1(U_#TcI%lC&_u^S9TIj{7(fQ)jB= zHkWw^dl2!IfpecKGG6cnlP>RZ8}J9?lILgm(2kDwOrerq+EnRp2IZXjYNfzH*pYyx^|S2;)4PKN`(&^UD}BEfm`&`uJ6J zvc49pRc2svoJ$bm5nBA7XnHWU?Wk$shDnmw!p=AW_Wbj>#+%#ewmIkM&(Z7Yvi9%X zC05J(eH+S*3A=tuWeCz!&|J;cy%sm^#ijew0j)s%0&v}f#lImpGH28CfVwznTq zMACC6@gO)ype|7v-oQ78QQ-h7nyv(f9Y1|1Y_5Ov&RebITtHiVAl>(~-Xq zm_qp%Nfw7smdf1A6|KHF4$08VvanAk;_t0zygf(z+NqTU;DIzO;YH|xe8(y#^>!@Q z&=M@C0LM{RUHjj*WPcw%lNGMf?_<|e}lYk#zU*SvHHh9;wsqgvzKq8@8xJ((e4dB{#P+@ zie#8i3Jhv6d<1YWQ65g{bgz8)QKrRbwj%??<07HMg^q;RDjytFu&1+w1llUtV zHbE^?YeIvEGoc5xt}E&vVjzN7H|iO?`*!I$To2XLaTa2N`u31Wwl04SzrFhaVDK*0 ziB%o>WA?*kdFZ+eU(!Hw6@-FfUDJvxZVE0ZO2AYi6vkq_R)zD>EB-^p7pqGNz2LXTw%jwAL+oFx!)(RTe2Jq`coc3j+NKo_4DRj#P#mun7@xw?IaCij> zlFhd(GtSSDC|F>*xk>68qJ)L}(C7lhW=!{U8fh)WwJWV7+EqC~1t$P7IGNaGr#mPZ zrO-}sJOK=VXCC;+sjEi|?;^DPSu^)NpCiwSxR83vhksg~kF_-Dvf~N7ddZgYPwlSt z(bl<^67zev0U|F&jlP5xM64d%%>JVgdLz5LEK8#7z5`8p`g-&91Xp#Od{`N>it z7*Q@9!733?GqJ60(H(AP9_lw-ynU8K6!V6|z*|xDxWDr$V&X*)H>E#FB|obl`nm?w z-m*^Vi@YnR%?1w9e?WrcIO4a~KANaqcul5#Ml$TRJNuR$!t}V)!4qBNY;Kp=N~UAf zI}{=3@@I=JmMjarC)AG=FDsWi+cya+*eCIL<|BxEVP2dErFfB7yd7uriEsD8d?-)o z%=N#$?ZO3RTY)*#E)ycQw7CJ=7K}pyC{MgNbh`ErcV_y-ZF%>bs>4~*@Eci(rB$47 zX0w0kV2rAr7aNHjU^Qm$Oa^B^MS2yCAj=w74vKAXX`i$}DjWs^zAj_183BSqeoK>tM z%3}}b*Z9Kte%@?d&)y`}Vwb<&G^yF;2=fYl=~HZa1{4l+h7w)>CNOSmc8#2U1{Xp? zqqQM;K4}%bLOuL2==OjL;F%R~7Vq+NI<2^R#zc0U4Q&j#HvUp|goS>?oH{zb`l}cp zLBxg0foGOajm=G6UgDqfUgm;^=V{oP%VE_Z$Z!0Mh!a)N86K21jSz+S?oT(v98mrj z5e@YBT}3bnhAA*CxR55qx0i=;Oo@D@1w5e{jCVL}zQgl(?^nu?+E6tUW!Z6!(Jjqf z+z~9uHn0(62gfOq z%lQNc?LNKRF$SiR^VT`Dxt33h0P5DR>faj;>fN_1Ohi{!09@wHG7-xAIC&oA_i=WI z9T)}@5QzW=mpdFH9eD{lBI`~wzMZv+v6$F*e#7aXo4tv?T2DrN^#*DH=CHi%OtF3u zj*B?oY52>+Fmo#q8IPBSRJCQ3!qVOe%^=R<%tDiT8NPs0F?APia3BI9JE+a3i1+1l z8;2h09Bx!96`S$}o`nf_W%ZNb?EZbKhh6x?1^c_7e}wdbBYm^2-@zV9v8aQsxx@G&Fc&FtphKy*3JCR4=EU7 zEV&oO(i-Wy~#IX_!l|q><1F7=ZA> z!^-<)(B^U+K=)&grC)~8StxgrJgU7)oUPx9n^zlRU&IR{%?VO)#+W%set;IFvtm7~ zoiQ)WtZ|h9ZD~ffO#<SgNhwwD#Wr3zaMWDi~OBr zPWR!gbB|*ufNKdyk#;ZdL@!RzoQlUeT$*n>C$rY`j=!%C_|BviC#$T}QeHs?YRjbz zOnK|mnnLL9Y!q8&4v{OnIiU%iB+L@!V8?E^*!lC!Pf;?KBN_g8Yv5k*@pG~gsx8VF2 z?yQJ_Iee;kCEV;6wy^DETmg~H1G9g+{wzEiI@Z%UkmvK4RKyW-D#6?!;{G(<;=AV6 z`EYK4ZB(>LDB2B=M}eM6QP$uPcy(_3L>G#w%d_ceTR4(;X+RC?roFdx>n=c-c8@di z@#^%XyejvIh&wtbt|Umt@c81+yqJs9bh_u`!1|x|v#j?e9W=?{q~yI>lBD%gf9U}3 zQC|qtR<%Vk;K($Zi5Q7--jO9&1?8n>|rU}TX^B%XJ~?W7P3{hTX0;iKxp z;d?8Srm%`dIb<}>6QEU)cdMZ}t)x(wS=WXRgd$0h%IFhVhDlo9eeGOMus!BGD)Ldc zFSODjfzr!|>p@a~cV1rj$Sd&pa{{^!nrGA`cO^QxUVT|$i4=C23@uNL9a9T_w+?6r z576s|uQjAm2P6sr&Cw3*13#Bp+Je4qjZMPUq34^FsjhGY(TVYMta_QM&Tm+2Us~_A zXWd6?DA5<+)Wto^=%;5YKUJdT2&QK>LKDVK!r(sbA;-)ObTo&seSJ}tC+18Wb{<%H zHYo(ixIN1ts97|G7~?7Ce+K{!!WL-t;61O_hBH`;;z+q&Qis=&N3yMeW1*UM$W`i^Mk71lj3 zxUCbT#fl7e`BiUs4%U{0^YZoPj*v@KOdE)IU7Tk3dxv^DV=0`)Gedm6EQx64oZs;9 z2A~@aQPYXUA}&^B2aL8 z8qr6*bL44lgj=6-j(q8aKY;vz2AGMpQl{=s>LNSxQTppMtKXajc)tlcG1v3Ud%ufZ z-=Uv1%XjYG@CovsT|M97{JnDT*R{XV@&zZBVF4#Wc_(kNF8>6|m>@70mMjz)Bs$t_ znS!SxGFYxPD*Eev)iSH+dYZqV3#V`3x#;Kp^)!W}cmmc$Oy7IaKKxOAp16<|W9mw9 z$y;d9b<(;I_$v7}*$}^a^83FFZm9N|J_dSdEJbxQ*TYR=r-W5=Uw`km^z>;ja|<%1 z>VOO~vA$M2{#pnxbn75JpIutXX z*c;F80`e64UCP~6yuGgJwB05nE=ZHk=(C5y=XrC!irA!X@OZHhp_ zCP05cB+OSPQ8#@sUf7aot;J=E6So7AhL?mx9f>~nS_G`#6i1O(0>?wOiM4)uxCZ|eg?llx@uf%c>U6eNB6_kWK8$IrC z!1J>(j=T^me0$dn^-gIf`I`tDEAfgg7%?&uX4Z+D)n;|P%4kAFP%RIiU&Wa1@0XH| zwJsK~kn8}=I=S^JD8s|1yb}kY_J!m7{SyZY%{39iS%LJ!nhr;+Hb_CiZr}=5#(VCU zwIo1hbNI$k+GZ)c60^_dw%++%b}K+d#DJD60;&jqQ>Mc(j6=g<``CzMGI!ebW(gl7 z&<(5PRDi?b!BOp~za=XoelY2jAA3giR*n{<)Gs%VoU;v6bkW5RiKm8#8wm_~3guZ* zqf-r!6J9{!`XCVWf^aB=%I=oCpn*%qTBqyAhzN>r%f9^4SDAwaC_u?uGWqo!eAu0> z*(zt31pDp#@6b+(7lW!1eCqmaXNS%f0y3ACJwem&O^S$n*yuq3KS030@@fvnc!HSw z@)2(J#hU--v2jAOBNgpIZnmdVkEed zPt67Xg7gE?&4jbP0mpvLk7(3JHJvYRYoHw%WVDCH{U7w?MJQC~ymGsq?wE7DQfxkPx6IF05S+HNB2{!6_G3-S~{ zbEd#dH6R9y@dxRRfq8XSJ=T^d(^b9kRU;nFu8HRjE$LitxQmc5@Ku9=~A3EygOW zKv+U1!rNZrB{%wKVnYO0(VWCBHd;6tM=H;U5JAbWv z;`!n#O;%T`V3(w~mR&VkotgE9HgC+{rvrx{{j&lzF=Hb@+P*Nf$Q?YuuZ~MhVu7F< zN-3I){I#k8t)oNc+^<#JknqG_G3h4b_K{{9BVN0he4_&?Fj8W~Rk{b=Bho>;E^Tj^6v!Nrq^PazwlzAMVM3Foam&ON0{zH(k8^-iiR z59hpRyt$-FcWifGKXNGAxi6fqTQ$6W!kx$#iOUzm5jKvYR(8`*zIXN) zWE0f*d0%!0H1`}(^6^NGzX_3*bo^7~ScF@C!+7zfBNKAK3jhq`rO*-T*jvwOps>iF z_zL5o9I)l(A;f}wJ+OpFjga$mTqwe8L9dkOK@P`xR2f{ z0lDHg+7w~OR-XdEMz#B*s|#GH*YpO_qhfp}5OAKRw5UvEv0EsI5=IMz3&#IAGyQkM z3*=%2%eCL5ZItlbq;t{5GN(Lb zJE2@)LjQ$L?f2ao0IR!ImVi)coS2v8j}_Nzw|%R;e7iyVy2}E41!yn>MYxyTJ&Fyn@!K=Ni}^zBUG*t~;1JO0 z2z-8+h$2zQ_zua1qbF+d?i+gK`zK!x8Nc5C*ZxJq zc{=jec_+Wedbs^;WV07`H$3(&KJPx9ue1$8y!1Y$hCB>So}c944b8XgU+>GWO{)A- z9Hap1j*XHJN*q9BKK|m@*X+35z5(reTd84^rouDtZ>gZ1n8|P>3hy0>EDgUkp=br* z*I8;=IKeIVsS7xH$qSxrxU)cII#v4mO+Nx9Xtogt1AL4cxp584F+s zjsQa!GJyL}95C)}tKY8fP)aiKrv$0nL>lq+z3p-t6=qO zj3fLVS|Wg2P8ANX2DEPaVL?oEo2#ad%+Qn4I!nlfy0d}dx+m{@EH8(rpEzlrWF;ej zH0VSKM&)nHG(05v1^v$$d_-xQwZR=1_1Cl$$;% z`MrBdo{EhVFdFbVW^-xdYp&d={NCZKY4Rlv->X(T(W+i9Ns_~2WsHwK=`>|rmGuEC zs{pKkW1PjraEjyseqm*v=zd}(x+=b#y@2oUZ*v3dAqC@T!cV#aPlcaz<)-i9(YU} ziVT*If$OQLkn%9fx*}-t_?(Yvp=M6FL8Z_o(1UoyM+Y}j#TTq+z;ImQFPC)~1q+0A zWX{`8uMPEqHZ?2KK`b_{dkGqFlI_0FnWaztQ9b2?iZi)rwaTf(O~VRwd_bU?FyW^* zcN}>-h3(1y-r`z$uYfF56~3QOyr&?ukoQA= zcN)-uEM_tVC%AC+pEcL_xs2?^}o9DnK=ch0-H&1v|b{?i4=N6YOgLxFkyBr4a>r}Q0UZ*y&5>4##LC3g5) z3%;OVGDA*u6spB3|9@=z+Oy((ninCUmRs82z0bcJV$Hz5!YR!Djdqaam8i^H!laY! zxGiiZfUPNy2}TotZ37NP5S?%JW{Inu_)UbrkSY!(8S;#pxj5gJ!4h^}BC-9}q|DEH z@BN7=Q5;rs%RnvL=LIb_lO1v+!68dip3_7niG2k|Dg(1937Y$r0^!6|nps4e_}2tU zE95urOn*&(&)cDSAy58`Si;Ct(Nli(s(V@J5}9-19%+|zx>DIi)_|H z2U?akN}3g~X5x=v^T5K+W&_wPah}`{`n^`3Pp!q`Hy0>vJ=s@k_$sw|BKl^{Q1+lB zJ6?n04>!9Bg^Q_NmV#pW_p=5ZOK$4&*)&AHCUpvIPED&mwOU$cp_JcbOKYER@M0=> zIalrCo22BOpbx;WEzOX!tBWt{QBj|-U#5Js{1vWVf~92nou=}Qk_)2VTm*~;U%$w* z(Ykvtrw^Av354$RS*L*P^u3zEDG#z<=Q=MVDA;ZMIeIOllh5TX;Z0Wda0%NB+8FV+ zl5Iqss%rg(;y<ibj|y)$2!6Q zYZvA6%mwemBt9PK(y2fkDi3EBWhvHE-lo zzx5iW0(|A5x1_(JZpOcFf*LvF><&};y z?C{=6ec`+*U4PIXH`S(bpS7D{d<7RCiDm{j2f%x``|4K_mQ5i(F}@g2=6os+z7Aj( zDo~*2Y>hT3Px~*eps!&re~lo5k3@_}Y&Qu!x^t;H=y9TvHQY^HUjTKBE|jUmE;ksNyAk(uG4B>1ls-oM*U>;IZ@ zqioBRyi)>7qi&QU=I4Yw>ikfK56QGzCU)Gr+kEst173t!`!Ugc1Z~EMU4w8qS8&Nm z>q6{B|e$s zAd|(=>l!H?`m?tj>n%_yu2`l=Q04<#(@jzu6%7X!UpG5a=cqKhNxwJrf)U-_I14T& zyKg0|-MYHjRNxbdLGaQ2pL{uOs?8IU^m(|Vz(7nA?wS?!-a66wB-bV_$Xd0QFP|4F zDdK+Rd*=~lMTglN;fy1XHud4s4!r>L@X$} z%7GBANi+TQh|or2o83siTwH9r0r;^T&7hP(UcFzDdT)?X8h}->79-Y;gcK{^^n}qu zVO5~9@u~bwYc4yQ8#fnW$aOL;Jz&)?M2iVWdP=O)(q|*i}0@}1C&h(rkxV;q-ink^gS1HB;^W#nk^}Vj6KQM=t^^4;JG9| znYB!cN+Y7iU1cl^`(p+m?4K`jko-e zt+7B}_A)MM(N|@8Xjk;c-LU4@Y&3@De}>144d~yZ|LFt5j5DI&i6lfGHET^dbw@?d znTxZ;Nq?VWoB(ZcC}RbnLvD~WnqT`QI_y;eas(AER^%jQ{H)nZx!n1E{1bJiH*u?^ zRvb(al9g3R&I z<=~GAm|n7{X#f3m7h@>w zH;~ZFTGjC-nF$GnNlN|u3u)&SZ-C+FIgQ5|QLdn62PM3CAcLhIebOTGaiZt?0uF1T z64dp>2fpJQQw`?I=Cea{CJ%8GhxXeEN>H7zpME8~>IdGM=a*ffi*WIq>^E=bUNS8l zW1EMt*9ZC#4^QFW^t)t&#*)mGeKJk*iuI=mg5FS%2rZthIH127V1a5~HAmovChRvcKs*fN}nPa(dMY200b7 za%g>Y>ngM~al^FZf<2nQYxoY&AWy#sXFgOU(1%hIzj^E|9;I-{ zKbi^Hu`?p2l$3ChciwU4-3Q-#r!(&E3#7ViE|^P~U{wYS^B z#b{GEE|^{6vQDs564$_J9!W*^Zg_5CYD$*;O$5C&qX0wWtcj2)C><}Qot5}-?n(MGCYM zk%Y=EA-bD$ybwDW9a|01q-nfDmxeF3@FL$xn|F~bqCqti+a2axU4M@L-|$!F*~vH1yc$nlLQq1Hq9Yje~D;aLu4G$ zQRN!cGwYo5-;TADH8bNk{q3owr1!xQeqAYDQ%6lwq72F&rR10|@3(;ZgiME>i}tw` zk=9jq*)XBO@gC7!rtL0g)zoM^|9t<2>wA2YSWgu96W z9eR(uNtVI_#){wB_O?I0Pgv5`ZCma?2*C2KB`0rR??tbWp2o~^y}fJ~q8(CEm=S=3 zzw~=?>NR?u=5$BL5;xi6sHY2D1pHon8dP zSQ6@$JoYBPZ_+?XId{8QXH(NK$M-k5e>^W7S=+8-BIN*(=5#-^!72crPxhSo*@(Q% z30SktagBJWsP^v6Epv^Y6&Kf$zrd2H~V~R84=I=>nD8N3n1yp zQiOpjtera(|Fhh3-#_Uf={j5hGK1z|MDLuGJ~+%RpRn2k%}5*F&d&#Dxg~Bn+8S5? zHhWo~3|vPmcDJ=hd^tI3kDr+69f#fr7$7(P(RzQZVrO;5W@g+G3c3;Xo$Ye@lIH2i zu%A1-yLI_{@MHN3b zCt}}}l{UVTci8=d{8#7DGyBCp_=ac*GcQukURm!oYWX-4#*_%6Q(xX9S=xf#@BQ{^ zI8bMBb1@pguaz)Nm2YtuE=4jz{tWwRA&IT7uWn=%J!F!r^<;a^adt1xhSaA^2bcl0 zy6cOw1I$rG*iYZw@WvVsRxQP3caE;a?$WX7Z)<4qN}qc^0ORtj_p}GepHFG3!U#IeLrb$4WWK zN_v-FiMGg|mbz#g;ru_Z*||ryq=Rj$7q~1QGtE}0pcOjAGgBFO6VTN!sVil75x#Fk zDn1^6Jo0>YI1g-*ejEcSTdNuINpWU_Q6O*ayi;6*hUX9H zUr6${THai1$$v2%wa#YJ$Bqh+D|G2M8^HP4M>7ZqWk0DtUC0KLmVSoj@jnDlFt zfUPbmz^$KgfivY+E`tRJ5gK#Cj}qsR!51SH@ZmM509367Q^K|lsIc~GY~iDPu1rE* z2*1M6!*n;@Vt@p9_|RT-3iXlh#GgnZP(b`GE)eV`4!8Fluya4TekfTi_*m|vRNc@} zCOlS=K$RS_#MF{2X0klj`vHW@VGlx@60_-fsq&2voV|WY45WCCT+*#iA}$`^E;^78 zbv4SHXLZy#;xcb-f?sVzR0iykwN{#Ao(qqqAkJo&!N7rgVV!A+*gpn4w?WNaI-y$6 z@CNy-1+qer_S6mt?cLzp)=j_y$z65v>(sL_ySJ;f0!oJGEO8j)ib@>?72 z$h?=UCz{^6XJnz5RAs%&77zIzK^Z6NnjMchH&7RU>?fYzUp95YTp;>D2NzAWWus;` zq<=z7^9v5NB;Uk4a!GuM3=7SSnkI#%j|TNXz~UvOoCldbhAvD}I=pxepqWkp${`8w zlw1i^sLj+?>oW-IU-)_iYM~y}{lqKM9O=X!Yvdx>zLCVrl7JLBWKc%Yan${oo5>@s zA61YBa4rytHXq)EPXiL&1zj9i;^PD2>z=^QA?6=ym3K&1>y zG_>y1JGMby3x~U=V1%E@WfAu9kVuCLo0R7uw_IviE6g%RB zF&}k6DWWcrdjDVm8&$U~IXf@C&Ck+1?0&b%PbQE4g=V+A+3-|`xf#)qemnF?JpRfO zZbsl^f|RM0Cjy!4qKDecN1P`t^~a^-=^#_r&s&$OlQZ?itEb7p640r2XnxVTslW@yrG3CbQq) zPt*i4$)?D&hc80;>!DL>m=&uU#G~-^4!-Bt2f7yGw~K795)aw0NG{@3a}&HHvD1>K zWmP$G%S=^^I#0NCj)r_bq&NRIDtUwt>KJdE2c;jWNR8VwRE-I}DQ)MAGS+d&cOPyFK(Dv{PH$0_-K36V8$Zg zOJUsqmW|H7FSRUz(G)%AS9FM%TD^qyyE1w{wDXyZx#NP8X>s$l~+f zbWKAiDXuKE+1>D09#RFiG8F@hw}|X;pEonww_NCcH3mP&-W|o> z%4|&xZbVUHq?FbiJe>7Ri{GAYr(NK}9@{F6@m=^S`n++9QBt0m z$BuC@?2|a-NX(7Zjb#~<6Go9Jk-NHT!Xx|?U6ec?uq!xeq^}~A*vY&1>Not!ko5g4 zkGaqc6oqJSu+=IMU2V_q>O8AXGp0B25a=9Et3I=OZqwhhBN-&GK{j5s$bkVI+{8Rw zKJ&~YZSrR}|E+L;_LSVAHJ)lyLBzC)c&q#4Kav zJXZ6(4s~Y%71|MzMjF-C8-fQ5N)pbN+ZSX2wt>0!aij50yng?MFZ$6l_GZ88`+|=5 zey97naZMpM=O*ed;d05%tJj~QVJ|i;C?8BiqnhbrW5c*7Z@fD?#JZwl^ZpmUjOPyN z?DPjd&L~q`64TUYU&!0n;nPb_sULcUR-?81U>?MIe2uFD8{;tm@NnxqYR_m6oMexG z?2Ew6Pa3YUX_ngS$eV6JBa^h~2bHTAJj*_#4Dar1=`a(nGFX()poZ`~ea1JMCr*m@ zdH*KmY5RAoEFK)3&ADY%v6R8LW1`rdMUDpOhKsZpviXL6C#sgnK?%jhjqkS;_l0;K672 z6?J5t-iZDC>BA+EzGata(Ko&~Lk5q(Z}2{GCfGi%Yq7swe*w=)EboyK=`uudwmEYMnduNnf+u5SaBhn|d=lpaHyf za^2_Yz|1CVmlbEA(&F9bZJqY-1;q$W z!||vW#oD(zGTOp_2c?a>aOSMRvM>M!V+-6ndo<45Q3qnacy(e&+|=bFP_I}4SpE4F zm9Q7Y13X^HlhGbbBfefHVB~)*;Om~*Oa;U2pU-j$6O>G*MZsPs03y0K!k+$}zoQ_% z29-gWh>F&TQ;om~E!H-Gx^tH9UIKf1|B|{G$Y}fwIIh0}p;%36hd*e_PoW22SA~c( z*IaPZrxlu1Y%mvf0 zkbk2aVx{tX^YoqWiu0H02$=Az%XVUxeHX5lVkA+v zpD%Yu)$pF=Nf~9H0YjQjW>fRgn8s|uqdvso48Gj~9ytwx@(^3Y4R47m)6f2~*OFi<2?M@fzwtWm>!T6#n z!WxV8c3X;KLeggjR{IbN~Ng%o478$zazRtT1d;SgbN0)ce zk4(eHq$-Ja$um1xdrFVc(pZ!euY;~4EH!y1iEze6>Ri}7xiM$-I*Nib+LGsjvmAA72N%54y(50> zDdb}!aqS$LZj}|kW)*u3EnQ{o*RI|6NADWxduU?R36$}%qqn6wc4ypr{{k@})>*WV zDWZA{1)AS_N;M#J5xh|dXFPCuf~wyR<2DQ(oh3}Vh2Isj%R4;Ta52j5^0qv~OD(Q` zmTY}HBg3msfiN(YO#CvOrBu1C%q4rem0pbk_g#UY5%b82Y9A_BFn2*g(Pk48L3%=Dt9|SB4{d z=x$t6P+?%{nXHu1KxO;-O_^SexS8w6x^<&`m>s`Pu>h?kojsdV>sLGXZx-PyWy3GemD!Ozdgq{+`EFz^Ir>&r=v#Z61Ec>7$cF58WlgU{)^qgXvPDBg)U>e4l5H<?z+FK#c|K1n$jcdixa+i2(jz1O8s!+r zIJ)MhS!=W8pYQ*EW&_T4NZ^LABETNWCuD9F{d2x7HBrJBq;GcaN2yTtoho8&k>nVV#zjxQqGwROsEFSORQcI;))M(CtGmjjves8kfVJ>~2;{^Hm<-Z+x z=*S2@g6fVfKgDXR0Oj?(zaWnJ*00Za`R>T@CURungvDv#c#}uUw|65b2`Ob>gV##h zos^{o`t|VR4F%Fstzs9Vor)xB1&gO1Yw_O$%yuX3M?<~xaAw+59=EP+;P`CP^#utd zL2p5q@pqy6=Xw`&0^4I#x;jQ`*R(~_UCp`G-xZV*C{Lp5y~jQ9zCp!XQvuaucNHVV z7-EqSqG6-Q#=K$T5B)$lhw~-3{zE+gc!vMao`l~Y7s-78wc}g8e}wmLa0DQ`?J0RN`lQ7AXzBODcIL!O#s-gk~(SKdlp2BRJIIk1GPzb@a^<{tW$T#_K?MQX=)3bO_FzUIUZ zZ5*+zPn_^15L~F1&=gJ8PPFJ~#7u(=Y1$ z*P!3e=?)d2Z~?0FW+$Ocr%%X;cBz$>@2Hrya-=+;e(wL)=%s_iUUP9;VfR^fb!eK;h26o*F1t4H1D-?B8L<*W%;O`Tn9@ZYw}R3s zAiMNL-YY?Dv51$l*=N5oY#&Cqyt^{M!eB|aHU+-LmaimA=^K*};Z|&dt%TtltM7m)#vRG?+ezTaAv`84+qxB`Q=eKBi z$AbuVX;9E?f(+-99T7Tzq;t>fH&aa+OUIuD8-5=e=vfqrcgkG)ngd&>yz>k`C##cd zW%{_SZCabKZqnN+nb+M^bgawcGWSVa5dz-0*_j8IroTPioBT_rjk3bhyS4%Zn9{3> z;(9_rOqRwlUJWFJKshXXVUY{iYud(kzyMxn4v0q>c?$( zHa-yRNOtRjmHG>d4CyhOtrd6YeV5=%T*h0daQs;c6HUTizAk0LK3{&iZ&pap~{^E1{P%%AgU2R)TjCr~rIN!ctLekv0Y-6LkCgKnAnI-fCR%^)L>;cK>wrZDz;o@w(tWnz-@?I z2(B|UKyZhrzx1DTd(QEStL)#2b1{Z7N_I2(SBL-$* zzgSjizm>vlM*Kb5W%G+HL$s*%A@_bPa5Xg2grku4asq4C(dEtzwnXF_3$yUVp`iw{ z!lb83`8$~xN9}a{#b7J*FCB*XS=~?McRSC(q3JvGS?n>~N$-~pd;({NEQA;-DB{0c z)w5-|do)!is{RFys$nN?NBG{aldHYO*d%r%US4Ap+HZ|sw!JL^d+D9GjqDbkcKnFE zU`7A-q-}Ks^O8%;+cJ~nQLtG-GQ7ci3&DS_5Fxm;23UY0c*7tVj52uG*#d7K+mUcw zE6M9l>^xI6eD4DAQ8;J~Q(*FX%&UuJ!fcaJw~t`t_ri~)CR_h_3w&gSaXwHcJo5vr z+Y1I1Of_%&k}7}xVyk8ZtvX)XWyl~-Ia41p9?mUIp(*pVpts?@)L*>~0yHWo`rP8f zTKA~_IBEt7ia`2hf?!hs7(JdKx#KGc;w5@-7fEg%cx;)Y`dfEeN=BQ~rPY6`?8kcQ z=qCCw6M>u)zqIGO$=NtG*>2FO>4l{^7!5a+>ypt9$PX09V~98pLcwpdg~KmRSObh zP|*6wu|w|Ck|`?WqBG}%(XW4A?{6aq`_+LBElq#~)yP#5z>onNn-ly%p2^ zu>P2k%0@2lZ^-izb(cC}p-0@>@B*hD{O|nbZ1=7nn;@!1Xt$d#nLRfH1z!gSJ6~OI z3z9|&423qH!swo`^Hq@^fyw#S&ISBD=rsOWyZn*U)4!eMw^ssL<9(6=-DYmEc@!cd zG_xo-nXPk$VW;WB8bC~|e;Cn-TB9>vQ!~wTBsjF*dr6|AZH=xT{ffkgRe*V z`C?N*tq`<62kw*41@g6gVad+z5D%RaWSs(?x9KChwvzLf^ocP`ly2EbmT=bM<9%FY zG2G6tc`e_U0(8XIMG)nZsiSF&{bh}WY??Lgr9^doV!}~hv!ivB*-Z3)6F2a6MDIIl z6HG`RDPqYiaeeoowCs+a%d+>Lxf;uuj&$jm4<_81BkpIb?hRXM8k@!~IUjtBF_ zap&}Qr`Y}Y6|qfP?J{J{@6gL?Q=Bg(eElg0mr7IQ&4StV#^T8N+Y!&E5$ZZ{4R$Jg*9BDi>=k<0F^;6O&%^>*)PJWw9ZTgQ|M1`etgH8JgwfN zU4n1s)ZVm(Sv_6;?HxkY4*Pou@<*U^m^oT#HAE@?-ZaN`;d$t_;J20;kL~N|a{-W9 z0vb|+n_q&>2Ck+q0t5{p57sQjKD!{e+$bYxyl2l8P3@K6lm(8G*E%TW4##HoFQ{up z0>iQm$*z(KS`TIsCP=(N3V)uH@d9zB06~wYsnK973qI3NU$E+EmB>5bZ~vqGb+w+` zyIGGP>wOIDE^OPfuYcOdLW3&A0? zRh2HI3~6PI!Ce222W5o6&|Z)Uwr~n|;X3a4pRHvMQEdLy1aC1l|Mv@HJqwa^W8(Zz z1TeSZDB2cP{Br#L5B}$usaT!Z>J-)9uFB7UafA=|QoHCl{zVS{Vm1cH|37}nzJJjm zfq7Y`@>k6EXp}3`=<4SJlK;XdjD^)?U2*t-=J4R3k?$QY(#`rOgbwa^x9mq5#eymf z;kN$MFP8pXd_2C$Fv(X*J&>R3ARc!V#VUen$hjT`F98 zRP71l&pgY8BXGCF0l{_y0i*zEa05ti14CHSt(yMDZQhDW^!51I!l0O$pxBUJ z#sx?3UiKR@_Rk9sNM&rG3T;9Bh18?X+Vn{1m9*UJ3|w=16C>*f6Z?--xK>;LCfx<@ z@(mUhcZDM%oVMS&q_P0+wNl|yA!H_O^GpKJ@*$_kLP(CgwfjrFN*pE$;#*u%_p6;F z!ls$Dy)~=*^0|9dxXw9jXU#nGqT^PiVF<;#f9!^!Ngd}%z{!ou$=C?0=DS~)6y zL*5p${Wv8+)5Wl9pY4NHlHL`C`SjnIf!Vm1Vp`zCmeocbnR_II&+vm%!HaYXfauB2 zX5*vaO<@QPgggFIUq=jnJM07vnRCyFOg9q%OC1^=s7mC3_Ew_)Ch#i`4KZ)k*^0BAxacQNwXIB7yhL zvCxJ?y5fH~yoAe;31r9jc~s0cV)xn*`p^eM%}`!e@sFf1Wt20mifCYy0Zqd{JS zU}Pj{EN%&p%=BoZ3OJPjp<-;D*2H^LD+HokVWliTW(h)h^kwh=4!AE*w6FKay%Bb~ zIC49zA1gELQFGC|DD6i9ROf3a-mkWZGe9ML_daT;dcOMp+JSc70ks6d3j~bn7iQV_ zdq_wUM^KVbQLw%b2<&&){hrA)&Wb_ecr{)Msq1kRz5uNS^6lcm0}>aJC-KV%9lit+ z$0)MjLy5Y*#gEl28`SW#FF!kP-+`j>&Me#io(bP=QJ?Vrk2I zxWzGy^~9Z`gr9!_$>eIAE+IvzYqD|e(8_*X|{0<;j>Sjv{1m>vPfI% zX9C%3x0xu|+4^M02Gd~rgo(uYdliiFI~nN6*$8hyc)|8V~RkLrLSNe+8YW!-wokJm_+00cRADvjSLHxc}^BEoxhi?*~fZ_=E@23R7IxG$K8PnJ4qp1HP?y}qq zlz)N0x-WwS>6HYJGovZ2%o_9RUQAY8yYe_X7aWYH$z--K2V7ki(#=tC{7T-Vn%&e+ zKPVVp*xsUX+#Z#476D|Eii_<5x~ISU-)Rp5B?!P^3C?Aic_#p@ zAclazA%c{HKI{K;cfKm{ct3!USWS&$y_5|R0fq6^=;554Lj~bqX-8Xs(bT1r8ArH^ z8ktvzI=O!9312C-qdGb5BSWu-y80mbL^#Ux>}>x)Xf`NfBq(@q4gD>L`=t9tMZ8a@ z16`uEmpJF^w=Q?G2lw6t-?mxq(d+TiLjxWv-2`RCf}~+C8-RlV+GQX`%YFICIdI>B zfuer^OZPbd`h}{=Kp9)T*Y>ZwGRD@|A&TFl`YpVI7-QHqgKk`8^H(+$B*N|$CVU^r z6}j8^j^dD71@*&2+d@eRl~i#Wg$yqv8wP2vOwQ)H7Z8<^*r(MHoLle&XW~3JM(Dx( zKcU2`_9Lz5ulo74?29?9UpL&}TmSuV0+U{M-tCD0s4BXBKJ;HEOR}%*qSrXE$H<|_ zG!XmPRklpR``Tv>`+zj*Z#zSV`O&E3Rl;AR3p4(`rhGZ(zbsGJDCeJ8WY|u9*^tG6 z2mgnHpFJu5iyv|!s|4X+f|2}FpT@~ZKY-N^>`z$!JGkC{X!N9uh|TRdL`m8v2@kJ@ znh`{^j`)djtd_MQUtkU5$R+=3?zyR4P7zEf`PZLfErZ4lTW2(VBE*dF*QXdGYTam- zJRn~?wrtN5(^_Kn;3N3fq6F=RqXc?_usl7`itj~=WIZnZ8n0#qTSq)j_j~H!Zi?0voWF>@A;3-hRyKjCw z z6HV$3qso7^#Dmj_w7FlgGS?&U!9^&fF~eAx3z;vEfEa|B)An|GTaAV#Va9D+@F-;XiC zeC(o&nfKp7oF?)Z-|;i3DK_y_QP=^Uv(*%y_K5v-cRL8FfyD`IcTD6}?r3S@;coW~m z7NMm7Wh*F6y_1;deEHSF5Z5g=Rf(6I2gXjmF1c5_{`I{GeLMPOz6w{cVJ%uxZLAJ+tpPJdyxI_zU-5`k8?6=W-8QA z*hBi1L9(B!u90Il+O`iYq~(=gS%StInyg5&BRbw=Z#oH)6@#igjqmV>mR^lAU1d_y z)5#TFK>_6=7?8UZ&Rp{@)&YQDhL-_mr z_(5^qCv_+K@dkmnm%H?NzcEG&yzlgGs_-$<+Sod<-UdIfr)(J0U1E+@;sU_0w#PgB z0oW1Jp*qTLs>6t{zwdeJZpFK#S`^rDD$Bs#BpR9Qj`vOp%rq0Vjr=q=LgM%H2b)ox ze(07N<*~}a`z=TW(z2U7$kv8q_8ln>k0PDB83A#jFix1_qG86`3pa5rm?oYXeqk1e zq@laHY$qZwvsdVs^S0d2r`$3I%qX`?<@w8f?%b~qRd?TEDDZ(g8c7s3%ra&z^GwqB zC<^3E{FWXKJE79QKvEbzgTf65$?l2oFeOLhtR{Fze8caK*A(aZCh!(7?7(CcAXgUDKpVz~`DJ9tHK*C?I$a;ip#jf7;D}A^-fIP5{n)T3%O=JAaQ)}ZaaZJ~L%7O6@Cj(B;CDRL46S-d0XHxBKpbxj=s@Acdo!rTfM!DG>s|(@veB~mKwBOAlo;`Efr*fty zt+dt6E+(=`*5Gyw|5gOQ5F*uQmyZ%5D%_`%S@Gd=Qqiw6O&)cHu}9(72suZTQxYyD z8#|@sD8W+YJ?*ZT35EM(c$beEn*^r2vSTlXn1-Z%0jZWJY(>3sTls}dAHjdDLc9tB zTW@M-S?q4W15+n#(X*|6Vu!-;Wda|%aMBw`_(Ou=8k7x?8Ri1SA2MW`DG3Z2^s6E$ z0pS!;5c&?w4*2f+5pyrO_pPJ-!YnX&rs)GeOy%RYQMrCJCSU2VqcODw^WIs@!=!mY z($!3m|5%Su-ISKYFSoBbbV6XOKdH|KK!dt|?gpj}*<^6dIgrD|fh7xObzN;%aXuY=1* zrMq5l0_hQ?&%S1yC@st$}gD4 z=0VARpH&p8#k2$t#HeBZ!9>$V&BAhO&`0YWQ0m>|M|WDBO?gr1_*C;kx(=mGKmurF1R!uFYt61f`UbN7J z#O6MUP+J-{+3aH|XrQKoVJ1m`0m+#=i{TyIkP2wf5TeagRi*v-ND<&7I& z@WkO+C}u8&%8L)?AR24Nyj;?i@!1gIAn3yWde6Lku9?kUM%?-zw)t?oqu~qraKFss z%*E@@#Y>^A71YI@10{#a;u`v)fI3G%%3G8QG9^0p3nu)+EN`IWj?eA&@^uW*%M*6U z(xBqZ(w`K;s9_6kz4(y9x7`{xc&KMl(=!82Nv3a@p!ZpQxyQw3d6}td=T@^5y^@bc z`pM^QYG7#)?|Ad7{O40FM)ws)m`5bz0iB?E`nYXF!%$PwwTQ8HI3CRg2q`O1@x1r*@@KbW0!7?aH3Kw5H%&qW<1Ejr|;2SQ%tcSfs zgdaXR2_{my{S&m!J|y4GhodJ9BfTTx>}t>E2u=(TyVa)t?TmNYBRXRHtV_o9iUbn0 zXN#0=%mAre;uKJO<~mtn*#aaQi_3i~Ka>c!mL~*NDR6VZ71<&s@2-u0MWMvyR^2!D zGYGz4iIl*fj(zhE-|5o#&a%`PS>-#|E6@~g4#^XGSukNd_NxJKJ3y>$yiTIjD18O1Fb$`4U-5pNI?KXMAv-yr_3~LTyZ>b#`4wlz3kfZ8$~%H@ZQ#XN?6#GZ z-2*RY#mQ$dpY?!3RNnXNC){Ethy^%}7tp0URl`C&pFZ;k{ox_q5BfP$Wx2i98K#LV z$pG*0j`V?2B`PDsF#4Rn8D0}@pE_gxPC;A=BK<8RZDJ z)2Ybrxx3g!GzF8PHCAo( za}KG3Mfril?CgU0ET5wZ>#j?Kpc43)JIP)|)hO0Cpr}(%kkSe<=%b6HbcYNu-TZe0 z*Nx{(S$^BdyCo!__~}DV!U)}48+kw#1ZeFlyK_f=i{`k;Gnp2t;N-PFzGk@LT@Xa* zAekI#o$)NwKcJQ5G2w|&Z6;l&k7dk zmaDoF{U8Q18HQjoCKv+-X5?UUhOdA0<-8vC>YxQy)efbSB(VyPQ)<1AcKTEl9H^rt zU{@@Yo35Mi+ZWrGq@EF!zXU#?7}-I@D%y)nWf1ahE4*y4Q!-w&bP9?=@-k>r!M5jw zyPB!qrlfC>Qm021VqVHe9NEf}8Di^W3nrmcH!* zi9>pWLoeUv1cPNiWwBy;OpMd;y&YTI> z=SFM=pqB$XJySGm0!ssaLs~bT`2ilv5c`F$(DkFG2(`eLX?avnwd7Cb=~O1d*6fPv zDoG#Qlee|?-gqT{%8t0?+69H=-hOvdBE$W(6i9LiBzyP#XfRL2_{c%R|00oISNn&Y z7ZU3fkJE!A#V`gvu*h)_qZZdo$@J@JgRk@=e|D)e4QqsW;Yl22MuRl074DN1mdTG2m$r@u|ik zeH?TpQ#<9aeFQ$saU_NM6s- zK#*+_`-*APk-qT#5p?!wYYk-;FBI*?ee%wM`MC;Qy!hD~MpnD4#G1;{Vao_?_|Wa3 zcWLaine$oH64Fexf3e)eR&#$MWqbC^%5KrKJ9Og$FVm}3{fiVj{#)|j$NPWD6u)G3 zq;@M-k~2Od9)un27Dpo$Br(sU6>RGb4k2wx2DAt^^mWQeR>sb z^}BbjsU<}T+~;9uz9=@|PoC|#&^-bQvgpS-_|B*#6xkfuS|%Jw@EyUB-&}u{z;DiP zzISx;Ygq4!qkBWNUE6_UoZkquTK(bh!2myrGv0g5y0j7&t{N@t{W`%|FBU-_J|u34 z2y1rIqn?E1XHD0<@q;rqc?k|-NyO^pT zY#*(t?5U_ot3+-8tOg5|5Pg|OSG+fNxtl^6(+jiDK>f~RdY1JUl@~$Z_)fuvQ{|MZ z=EDY6tub`EP6#(_MQ{x^EG>0eK|XpW`LUn3;lg3E-d-=ZD|Zi91J_Hh4T+g5c#NGO zDqe!UoRY9f>-hy27eMw<6^!^aRrb7!VfTF;2O^h9863>^U6V??n@<|$WX*1W`a;?* zAId80{NnmnD+?pq6PcfnRXZB%3m41?ABLqrN``rFO;vAISo*3Pm@7z)0CA2x4&h)| zGLC5?Bby&ioat{mAweMl^3{qkfXUH$A6=mEa|pj3;uDArQ`NyWJ-m`kIx{G6jG?IR z)$YHWhV(0hMrk>4YJW|accs`D4qNF2CoZ?0%-0=*anmJP+(&**dG1@y_{iEa!@6<# zczj>`=ka?#xSY8+yo{I8WE5_~=Dr#@ltKXw9Tv`5KJOgL^MR-BoS^5{TL5%#7(SIg z%QEhgREwmea7jgpv6`aVLBYMZLJ$}N=A5;l!vGow6Y<9OOlcYdSqfy>-Khs`E_jeq zeFVu1x|Cyt{*osxC1+#5SE13ndxbacE6eN#(&ulYCuzK+?U(?-YC4@i6mxn>27r1K{YbVLSc7vWNl<6&)16ChMgbNC z+2I0m{!K24)a|^Wi(xKKh=X6Yt}pV3W3Ozi(5Xr&2=_8DsrS0x>c9sF0-6?_>&e=N zCU;80e02FjS1{V%Xvb_tq9wnlblUoLq8cXZjf-U^OKhqcN~7nvqMyR;?n#khF6^?p zcxPk+4^WouVHN{~q^DH~R;+1ekJC{=N`PLy{T!l%!YIma-M+!z`Chv9wreLG=KJS9 zo~z*nL>IK&v5H9NQX?jW4z9z*zZT$n9I}Dc6`gY3!2Z3^i6P;v$?q$uRL_LaJbh~UWU~KL?3i2Svh{?y(umt=PS5z1aOcy)~!rm zequ#j&#Z+dnbSkLQ&aYOqk%LD+3;)?z4AIt zEEIK1PFiVpl56ypDLC$YK#BpIU-nz~lGP{hp&hT>bpeLIJ<0rK$>kUN2yOQ{U03fM z?-nDSQxEDOcS7Yl9~-@e_`d5BkXq$F*yL0ge{iO6%OJt%kOWTQa7#TbkR2zq^>>|n3LyFf5SnQ|P3$B^PvCkJ*gN|}s$&LiCC|30 z=VTHlcR;B@0Uf;Azm;Xvi-FLQ+1=eo!7ZR)Bz@&$$$tYnS5@`B6#QWjzP~x5iAE#t zP9V+<&l@pwGFy>{NtAT2h*-`VLaRVvB*|-~+kh9>Umn)i8PJiO!vI@|%0XQ{Y_Nv> zI!y0=C6Dk^1Kp6EKFNk8AX-NF)aELy0RSD-wOP#+< zD#V&I_LI|wmloDSK}|z$#&YOWsqg5lta?efWjNFBR9cnW@ltGKr6M$|n`-WB#^z0< z+T~!IU@N}JEE=MzR+vxIc6VmcTR%0zfIQOp9n{3(`WR4q`g~`a*=(W#9uX;oj6rve zMK4W#Irsktoc41S`mXPv=dW)k_yO$)Nn63-c7MM)xeSEu%k_RC>Rf$!>5;YG#nKdCQNK3Xy$D7?A^;*tlg7;yWu*JLGCAh zZy|$|;Ly#{XE3n+GL6B137}!<$~u(mJzM=lMvC`NdUa|)?m=}WC+nZqu$G26-8O&>q6T^Lp1 z@}0?pf4A4Ec=5>6=k*bk;afh`Z7~2e4NZMbApL@wXLcaWR((Q& z5h}GS!lwhc$_v*T&iKlc<9>|KnL#B~6bNMh+`B*IFGrS+i!i1fO)THcr+y;4HB-s! zyMIwWo(IIKd?h&db`jkz;OO}=ZMmu!O7IC({el@SU^W$f-I?OMd>7^~pZF0=!=fvh z>_H~<0cS=J8$1cA%jM_N(zL|!t1;R*5|`BX9Pm@HvABAez<=}EYaH|Xer1l3_Nr{D zRD(DOiIy3<{s~{Pg#uvaYXS~4lRQcAI9P)I=%6%Z#zmbxM0zh6CzeS`#yAp|*ZrH9 zyJgi-+ZwE?3Bimlqg3e*k!Dk4UL4G%DXEHHFyk;n<1md<@TGEbJ#5=X^ccRVn-vb2<5Ds16G60X*U1oGXu^H#E1*nttXgvB zz1hxXU=%Qq# zVwtfO=l-b?ZTLn?=k)QzI-)Si%B`w>KV7SR0eQ{B-F@_EoynE@$ptHoGJGa%0X<=X zp2o6`l4KzRMIVdr`}z{n*A)#$!Set{cl~vRB(|u39^_&`zUZ3F`X^FFBiMLg+ZnJNrDF#TCT6N<1v}+~`dcj8>5rs~)PW z776i*R6@o6kgUwY;POUxPXV508(({CXW!2tvrQDD-?jQce`uP3bms5+A%}(;K-!an z4R17#XbHgeohAm;nG?3QXP*!@odrIrkJfxgk<<3hJo$~zsG0wYGsrMrbaQjc z_x!l-iok1Uwa6qgGVoxXzT#?V=he+t&{Z)eN$q3DVEEyqyrgvaMm;~Q5*dgkZgyA{ z1@`l*yUR2}$;~9v%Y6uEX<*NBTqn8#6plckQlOX$d=~{XheC~XL9OY@p)R5j$-f|y zn%?e8cb7G0%{ij8ZFQUh>}s%6u8yo__1~Y4fxFSB*#>; z^U?#$_w6t{apLf0El6f!O!V{&nBo~ey~Prgc(?`8*oPB zXC~tnX6S0?i*{iWLk92;02v#gr%WnnvvkdXZ0#GC`m2{0IRqn~B*6iRb@za)B&^H} zg0S_P&5PdJoxq`Gb1zj*KF715#tS~x)$~T`%1bEL`$^VegdhVoTGwZhStPkfKhIms zyNh4}paMJE?9xgJP`X@SM+Ja6c?JWKGzp0*1d-XLcLL6La8}FxhqKx;Ud_;p@y1%8r46xOG_{wWL-|0qV8XTIqav&|?rZL;03UOG7_qXefI5 zbonz6w)Q!P{A?hYrTy`Gqeb)z^Ekz}q>Q9dn zN7XvnVVN1G9*JH{bQ;}U zt!q`k0$uN{%!3dvCO&ql2_f!Fur^m0q# z<`iDWYYhoA3-#*ZV&;mbar`jgXUDYd@BC(02r{Re45Sb-mJNr-mW+m}2RnkZ%yYx$ z3vAaPv}xMimSC?a&&HX_dYu1-Aw5EHK$sTC7|+Tj&ogG&C~L7jr)WQUNiWo&uhb=^ zV{fT`Md{aPkVv~C*9qLGt(L1No!gfwE^(4Ba1Cz?Mwyv+A*=sFkw>Azwq&QR$EFbG zlb7@6=>12f3H8jtm7MyyWz35^*nPdhVF{kJv?<1Fj^lvgB&~GZ3HlVJbV)ihufQ+} znjWUPRv`|dFT*$;1mG9o7?InfkM<@ZZUJ?CAqBN@i@$}$?$QdGCjUqAt44c7{i-bNq|?}^Q#iX6u_0R;JF zCRn-Gq>4yRr~WbZ78tL00%B3~j#Dg{`>3ckp{JByO26W^IPER%g*C6X%Oc}bG{C54 z{CFgxIX}b_ciX!#K8@n5h*S~BZ7CgojuKcES=m9*`G@^sx1?#_nzpG_vLZy53=`pY z5Qm*Q{8r%xkf#)UkZ&O&J$_FLUkqG@i8G&cv{4K8gPvq-m7hoxVcO%E+{2ipl(9t1 zfBw$-%{myT{cR3>w{;#n9FAqrIQbz3Hr{n?WKG)IO$XBQN-;5`@O0k!5 zUC4fLDYtnA>r>H(-Sf~*BK?cEBu-D(MnT)i4*xTNsX|RgA)r5KD9-}qP4g$}v z+n$Gt_QNqSyzDyKM_jLmN)ZM_f zd~$WNnMu`m(!ku?$;I9^zjHI&FFm08L+@Ayd9iVbZAH|Sf`u&Z4iOXuqzpCdyXN5J z!uHTw(8frYpTAepXhgssG(N|k^wL)=;E(cTCKl~#>G@pgaS+p)6eSWreZN8zIDQH+ zxCGsJ+lnr!R;VLv7!WAgDPIW4(ie?NLo(A-BcyElwd?n5A{skO-bwpQ$Vz2 z=`-n@k}_%sjt22qM8lb1I% zrEa`H3o|#*^QvmuKyH|PUZTs!*ahaV=UpWxa+)rMgrXoqh*2rK{5MpTsJ=oavwCQ1 zJ3fVHjSoCusG5mSFI3CGxzrG1k9p3Q_yIv1on6FyKcN}_oi(t_uX#R;KrzuLc^c1z zxr9M=sm52PI**>_@_8e_YCvF z!G`WI#<&T5+GIlEgNRDZxzeq^dT4Q7QAXoWqg$_~cv=Q?bbF9aVQfT3#wHn}a`M>E z7Ks9q-UtIe#!L1=Wb_5#5vnqCIoCG3XzT{qJT_M|Frm%7-crtd6&fB=1SzkPetJ=< z=wgV*k~gm@s{Bm5OWNR<)sp8NUOTeTg#U#68+AAd{&hRQdTe)Hbn>zyeW!8pr-b!O zP)jIUXY_`zF&nSqlMXemB7m}RP3Q&86#tfwUu&%56cQSV5I-)c zXdLU@a;AFN;~j@aCDhaM9XM2~@tS2*xKh(>A=-E0Saht9h?OxuSi@M+? zq^2<)Z|#c_80pX7N(1RK-EoLQ-q}`bHuin7W*MZQQIgI4<&u_UzT`vovXuYPbRAo& z>q_*4JaA4!aKy$rd*+;T_SZl6<-E1J2Mx3kqO^llB@Ls-(P@~|-@hJzv`uYJivl{` z$`&;i5S&N~D06-*OVQeWXFiCV#xYT;kXkc zRRn#eMA0SK^q_}iLmnF}Ae_X-y+r9RMY47}eRma%9TTm7;$MjWG_I=+i#l z5&!&>aqNo=3~tb~ggVN<32chM>q}W5R?UyF0{?5Cf3Mp8Pv~ z`bPQ(z%+n3Lx`HeHFE*C%hg8}{k2Bgy^n~i+T8@Hbt{BK5E+wfZ$G9n)Vmc)(|95L zebci2w?P9?6bXKORG-ZoGr7HNv;6}hjnK8~+yj!g0pA@I*G&_>_o(vs-D1G0Vi?y` zcp%0J^A412>WonT*;{|~%iyt_f^3KJOZl`Y%%koF)g@aPG|hrEtXWHtS*8SEd#}XL!6aEfqmv5&uY*OjeZIaZS`>Pc z?Iid}b{g$_;;7L)qp}>tp;XUuFHsk{NLr@O%FeepOKbj<%rIA{;9860vT4CVW+HV$r*bcD_=gT-)HU zho=lF=!S$GYio_IG>q+q=u;cgi?LA=<0gf0c5oax$?(T1`vxEI+e4RVxD=nHO91Kj zyx;ZSHcOle1^y<=R_#g9ONxZ!T=i|aLi`bQRGp)ktF_){*AuM~^>>~_Dzb9_fY#sn z+F%9rz7Rnxh2r{&g81o+@`p{-kCA%T@|u`Qjr11G$F+Q=Tv$!)q{2P|1X?{90*sQ7X7DwI^+_xo`bvtm+Wp&C5h%?(OGC!hBr zI5g@GPkXR?4qH&O=GfQA#Pz&9e=AEzJvH|w2(8xZ(phF4@`g$LC6bo+mkNVc`H-j< zc{lY)fZq_@Ji8_?g2L1~yaN+{XVwNeR<%X{7J|MR9}Puf&s{@1s>W6(uA~fF7U7U3 z3ILbF8g<}CuHVI$tSrumskTZ7dg#$=!D$5^HXWlSplj-1PJ5Sn!{p7QWx-At_Xz8_ zj?ENs09;Nm!k}c78@jE=_Y~wXB9l!-eUmu8I@b+Fn+kFY9t%`$)W3Z_9ZJ5_<2k5P z^_cJDbg6+xDE)(t#g|A%efw6qUMw9~y;WP}hooOlOo>!~SS`o<3J!;DFC`f=}N3&E-%b;Uvg;;Ib?BQebdFbmg%KndK;ku&t!)wuD=Z zpQWVy_W_{GnRn1zSwDXzA;}t&C<>;DI8*5lV8aAzdw)Hyajj2?+3EqWnX?qVfYUkj zCL%ISV==zu_uO{Ipz@DsY5sER`5vX!k}2;hZ8(>Ab>mmo6ui!<5W8b6QiBINBQ3(W zMyT{rd+NzDXxQj_fpt&ZLXFowR(#5o+Uy!&Y8b`U7*$Skvle`EO@81|Cp|iJtxUa< zU^1nPAtmY&t=2^4_S8SjA)K<%%k0L5?__&aKinh_6SoaF-L9N#eG__L%C|QC_>t7S zwcv$3QX%Aapu2(Gw%X$Gb~n`5Jk@95s1--$B2{Dtd_Vh8p=Agm`AwIJmG!#DUAi{z z2!w`yy!>7hHsjHV^;&zn8!Q1NSz`ujLXde;imDf`DPS_h&g{RNpDq3kK*I>3h^isQ zF=%H=Ju*^SiA(=&(9quiCGAJ0hTUoLSX>WDU`CW2Q6b+TkI}H>WAxPR;i97V=OYA0 z?on>)r`BF42xefGlj(NJ?f6f9m0ovL6kfH(h=|1tizkfEzwS*|%In(~>hX|8*z*m5 zDX$0bU8a-BaXP($oA{gUAd@%BbWxxl{&(7{O+jUMt1R-lBD@{U8L-LXkS4Xf!eN^a zX^mgIhd~75=DRlaK4_dupxEL=C8CB%h$L(-O0rze{sbo$gI818=n^*$Ld=qlC1?CQpJ>KT#Y05*pWmxkIyLx2s3a zuM9g8jVr1EKPtu=1dELP>ShLUWy7^qAw9rXimQ%GU0ay^decmMUzuvTZRY7;DMY_Z zIl(4zl#BDH>n9Ne;%fe2v;U3m{T%SexP>kSP2Y}5QJ;X4PmCsW^%Y7ru1$BUZftR_ z@(j0Md7btpP_7ToZdf{@E&1n*RZx-Xhqj;6*jB;fcGh?G*|zl)FZrizuhs3+5kV6& zWO@UtW4xhany8gumTAN8eC<-NdZmh+s%o2Bo>BNiApj;2jc-q>&T&1{I zb~lYtd+cEz7wxxNO$FMnX~>l%7-ZvcfMWs?2lDXM`?#!l?+42hjv_ zLitXTFDg4t4>l90mJ?Qyn%a;!LPq~6>0OOMgftkb_L4ATRV zb)6bB;kCi9MHnk?UA5zJesHEcY{xoFIWzDQjPtyDNtPbrWoqmDc6zVMxA$lMw^Vii zmmFbHgPW%Comy{aHtc3qgIZnzzK~z#%4&Rzl(tqo#?sO6&l-hFrCv`HwFWIY5y|04 zSk0gMLfzQUh2|i}R6D!u9MM@C?cv1E2e-{Nd_gblm9)CIW@w|NNK$4ckf|WQ$}&Se z3bGmM^p?i^>ojuq9j)^bPyUE;62?yK!zm&<_w-QW-v?<;2K1kg_- zGN24x(44j2vVlllGop-DqAefs4lfLHYkY?9%XpB9;fRBXu;9135We%kqhx`d7G_9b z(?l@k2`>*?T}y=R%t*omzr~Qx)F^?FIJ+bD5l8Us`-~cIjmXcjn$y5XbAN&pLWvEr zZJLr~Gxk1s4-0-7j~RrEteOcgv)H_#bLKCDy?iBYVyW~N|ML~RtM@+H!z<6c4HScn z?SEOOUxs$;+q$V)!UGU)aygKv%egrY{=TC!m1q}qW$g|Kj^L`&s2cN8b)#T10P5^$|bo>KfLmTnE*<7A;`&FLLXlY zEfoj^BCU2&2%W}q`mM(5|A%aFDQdl|Jr>j1dt9omypl8$6E*u(2FRVVonD6b`R;2~ z)?ZvHCqct4msFfaE%2OSU%9u%OSC6H_2m&uVvT9y0(77w-(36j5Nl?M)*A)v1h?M7 za{f%>)d6I;x+BAc><&RAa}auMj!qHd(^^>pBZ{CPtJ-YNsip|T9@S2 zzDuVuV5^#=$Bo&3d<1eDl~}%xeQR~t_L)GaxO);mvAs+OP5-wxi^(qH7)=)*p@Qm@En1G6KZ+QWD!>O~qu(%Wn%wg#%8O zF(X3brZ-rHp5NO}v4%H?uZNf&1n5f_{ev)9K%hs58Q&;&KnB#7Ne0FYl>9Zirjjjj+>ksUZ_$ zW!RjjFeb47qTTS4vL zs>tW#ab4`deZnuu97nU;Fy%NQ1C|F{%M42CSkDyKFzSN}c?QK^1|tr>Zx37c?*T$& z2P%U;aG&A*>BI0r6r=u17IN8Qverk#?>BSA$b{C6O#ZcBDMbRKL_ z;esk5`lnpKMsXn=y>c%}ed3LJleJ_l1gm;Z`BPt!ahA^6yz-lvMufldv+Ol<84}ja zqcFNLBTf@G;%I^WoG!COP3~2&F%RLX<9PeZr{>^&1`*@!=jf-1goasx;xg;zw&2&{IGX>Cds3rwxvpG1bpxKQpio&C&uk5854YZ_c`;E zB69IgoT!+>PT|wa^n)~Tq2gL)gFBsr&>zia23~5Sp^4;Wc#kGyy1Wa7t@IKYzLXq% z9@nT#o@{2{twb?-h-I_pZ!4uxt1%ZNgz-g<_@HPY4~y zrA-5DOD?CxC{=0qKLv}^p&~$Grd*_C*`s);ALQtWEb9pxwZArVtE3ryk8xy&3+swW zHXj7HbPNSJAnH0#t&zS#Jd+K7`PjVVZJx^{RC>Ma8V!I8yu6F(@F=Sg?n6u&+@)!S z^Be&#i|Leptof&5y`3nYlNic>mu>n{unHc*FeK^%Y*TN6>8^b9UC5KXph$j|qK271PJ_3`Re+A#&p4i1dDq!W2i)JMiI` z{dQE>gX0H!fy-BsXp8>nfsZ?zDDjj!SE?F zEsU+eRzoJl2m5jIFyuaM!5~JH5@koXrd3pQ(UX+&>QL;Bqu%*Qe?8Mgd8IWE{H=;y zP0M!!DViZ?9q{5OW78N+>+r5KyNv6|wCNd<%fzO4hX(dSU!r)g^Qyu1trQ3O*xtKb zo7ZFbe&2Fr*RiIaQYl6+ZnIU!jXSSlV{@7?lfSf*KFYIbU@5^5Z0YKc0qHhIFlHSt zk38!jEP|1$J}P1O@iOm<_PuD*?C=g9M4W*Yf*}XeX+zYQ;x;WQ1BSCOjsy2s%k3zN zOTL*t21j=GJx#8dYLugFB4GbkmbxAT=9spmX&%xm>YczERYsOCE67dUMm*R^5%W`w zqU5lYn^nU!uwU%Kg}S-l3JoN8QTsVnW$16F>?|WSwJdcQKvN{!$NKy(J1~RzW%8R@ z&U#q@E1yik>s_IQvnb^D{x&USdQ~)dool~UC^n|m^?tlOJLBp`qZNJEE>+CsoXkSM zLx?Wmy|c5L2<))8!j5jVdhDAch)`A)Rp7(wfQ$-?WFCxvz+y9hej5Ajjlo20Rq!&- zcO|QTw~!2W=SQVlH_I@bwlWF)n0%=EO*~4}YCf70houx^a;gsThG8U@88Hb~KTgRI z7axR|mQfLO)#*;C=ym+d6|6PFZul- zX^HOtcFp(}4*0{tJY;$-LNNDvth@6!R(}tY zV%&U}Wz+4F|F0vj?;Ch=QedqAt`uDHZ5ou804I@ad6dLoR&1K2J%=53Qo^;2B`ax3 zt(EyoSPi0HanWWQDXnwtK!`X9MH;b;k9og!o39a`M}`X^Ikc--!;z8&HTs3I70sN8 z&c3Q~$XkI0UgN(67N%o#R7uqD&@szW;;L6@X}Qms+pvR^ZrQh1KG z-+T6Ayi!kfxWNy+$A1_7bds{fNG`%M4q%>Ty#ftow@ZAvAYybY;r{Tj70&kpl*##+ ze0UtRG;=zVG)m~PoaUw#X&&t!Bx`<~>~)Ld0#F)rw$Z3Vz+^j-cd#=Z97ptx{=!DZ zqJfx#D}D2poDUX}?p93|9s+FDH#w(sGh-hMh#1s5AIL+kfc3t*qNZXIS0cdo=Ek>L z^Er?HTmYg=!#>)TEftjc>7D7eLf+&Q4!{#<**{PmY*NRMM_85Xz1D++3-j6sO0iqv?zL=QompQwi#F#PD9|jg{(Lr;H+UiF zSB>(7V*4tl59sLKF)1JCn?CU;IAlv_|BA{TKT?x;tdSss;u$YJBPHPL-i?%X9}nV0 z?e*XxOiL5N2nnjWR@d$bHi72u)7P6I5NnHRa`SBLhuF>rCp(D_jbsdSc_3eHKSEEl z63kAu%)q{e3(Sg0`2JHw!af;Q!eAj%7)eAlVOMfmTaIp`i*bcBn#AX!Z4v zZu-tM8=J-19kPF(|CM#d+|W$eCRQMm0LCXS$;A+vU2wz@)HiJ4lEv^;=Qwv9Ix}5#7TG*^JE_l`-(iTBhSoUYS1)8=haF-3ExoP4U(v|ypqLU^ zaJlg*wnHuS#oGLHrwjWO)Baps??XMYY$n=t|NKj8AQyrUrtxJFixz?KWF3w33Ht_! zGB8^C5mswB8T0pw93BmtJWb5*SrpKbs$Yv~NAbDc1wL4fJzdhm#-oKKO_ohwSH0M9 z-)-JXo}ppQXa>FQ2fd3*h8=`XVb_%+x()gqUbE6G%oEJ#xR6&rf%K^5TMhs!4xat%ms4spdp7g~<)iFkMvLaMrZVm5;RooPSnA_B_1+rhPCc@Cn^ zW4lbp&jpDmdDGOa&BtNyt*{A|q$p~BELa-9(GZA6X%2nz}&D4s5*kU9MMu0|7yr?*UJ-hQN~p`QX`HJBWfz=ZIXP7vtY*c)QjH4Ro^acZ=hvRD?%P{`sh(mQP|HwbulLo~8O$>$K>7W5gVo;wZ9i)!8gBfc=pNGZ z(sqZNu2z)+`W zFD=wT%eh*=LFi0akMd3}{~q#4sTuI4Ia6rjmAUe@zZCBeH+oZj3qAEi1?wEu2p>+U znR)52pkQ%2#-4JZ{r5_$U)vvT1HmZSjH$l$a}CuZA1^f962f>~CECXT!Lw3C06sqcZZ7DhFkm43en z0YDWNc=~$H*RC6Wy;Beoav$u=h}5nB$>t`+HlNL$>4*f}k+rDKL=obxh?X9X;CeF2Q)U%CGMRRCF!bmzaaYPjtfo?wWL| zS4%~;5S%qTkWQ^0=jU6Uj|7=+K)$*?{6OF5l=`KZ0BmfF7A;9R;3JIPV*54v=ZFdH zF3|)Y&P0yq*yzqp-JNHV1e>VOtwgWNMp`?7Z>;qmMc;hV*PHqTZiseuP6(~P=5Q0> z6xob1S5}bq=LQO)es9`$8a6&^<$}3seW#nf94lTK8`*Z-XrC zv|eU`4a}JwHo}Q&jJxSn0A|(ZX|>xT5H)!%KIy_W`oEV%{jmK=7}wd3t`Yf7fI)O> z+X63<;UVn-3FR%lAhS}eLBcGk9U&$LX-fSkMu)fXCflly&R1ld7p5vqHxUw{f&AKj z8N%#dPC64*MUn0KB!@T;#>26|`&DzYC6QnPh!}vQ-ed@;t>ef=!rc-W9B!xe7@H1J zWgwk{BprLyzDDcq4=c=e439nx76$G3`-&qCHD^ozU>&4QKJ{v1CbU8@+X9B#tPd#C z4m25Xf0A&C0NK>V$hWNZ>AM+<*UNTOXAXLgMGQGHIE$RM1OdieNRcYS5gv+w*T?DRnO+U)+hqJGGC zKZjkyD36m<(R^wjpvS;5k5>KbB=&jR$&D8F*jsfDP=gMzaeG5}h?M?|Y?14uEyN~C ztR`{+`gapgL-g}mSqb9(06}@ zly8@2dQ+A9CWcaaXmOgJ;a`k5{f(`RIwZ2P^pDgr?~J#)%+9wgWb=WN8T3=SFD{ec zv-{7#3T6_&Qyh+{y2G<|Msiv9gis+xl*9h5zQ$8BOrB|fY5jH~BT4!M4MRO--~!E2o?YA0jt}6J6d*N#khK&x2k`)`t$>ZZ&1w+WEU zE&FJMbxJE^?BSfC=fKM`5W4tQ41U$K5N*lZj5L3&&Q$t(RR8zjf#^X=eZ~$48J&5# zUNWaH^qE>_jpp>2MpW9~Px@-!TN+ds8d_ORlR3v_u8#BgjRFP#G6mD(#y)i3^67z< zVlhxfM`Ku+FoMMJjpDLeU-l^hj5N{ZuHL1JUoJleo=t?s0=W>zdi@fZih!W-&) zEe_|^tO#-o3an!_G&CtPls*WB_1`~lpXe{FxS;3s$Klm16PqiDGU_TaRhX5*pQG~~ z&PxQRHF$^JHXj_UCg;#hQxwd~8j-K&v+iuJ%a+0D`jVYdO#Zuuj6GLd>G0$y6dBKU z!udk8U^`+_<529I+06|n6@Sla6NSi$uEraht1M8vN;57Ftv8o`gAeL`l?RuDpOxm) zcKD+7cYw1EcQ+bYR8ALBpmuKs)1|^VPQNVC9yvPvy_Sah{xA&Hp`{ zlV3y;oe~-r{p%HhZFf-(1R#{3eENmVKnf4w**VGkXTS&mP;ddam7wDz&~!p;gp(og zKQ~YnTPpm!fPj5vfc`@#5FCZ;o97P2FjddpL6;$$L|IYWpX3?rZTc2Zy#Ck`J4?R_>d+_W?5MM4ph^UHw3o? zuJ`jVc9q$*m19rtgalV9?Pbt%~dV;f1CNRj@A7Wk* zOGmC|MydXS@jr1}mR_Vfip!)8Bc-z|0)x1pHQL;2L|tvWUClpekSKB|bYO zd(QnUqKcy9!QRvG3jFi{pKkzZ!yY^>aNADk#~TJ8%3tU8&kqOTX z^mTOp9cx0hVxTeEHSN~6e-NqsCvfUZ#hZ&X?wnv}$e1nMjn*G-5l2&)d#}B`lWAU|zH6WJcG;`FFr0#U-=>T0RPWo~{{!ia*crSy-wsX>`QnBx7&!u&)Ce z+od>HipcFNID~b<+6TAHr7qS6N(7GyRk^16bGe_Yl5qQ!G>HkM_d}boLXHlY0KaWrT#W zTW7@cH6$wiHbcdla6cY+n@$?CI+|*}+ENmQ;%UO@w(8{Xd`$fH`0|+bx)qH`r)V5S z|2`cMma^(;(Kjo*w*$*n82;_x+zFQnA$TaJw}wMI*>-3V`Fa6&82hr@n)?AO&Z{pc zoS1~W>afF}O8Z~llFvt*WN?#gmwb&C{6_hyDl7Ab*iVQ2*WF=Z$W$xdCqM_fO4NNRRyYLbu!JnP7#f$*+yp1ilxF0lLOkc0^>tyZ@ z+ZZMf%%-4OB6!0Gsq~An5TAaU{#)^McotT1{N9IrvJcZKQKwRt3ad2_i2#>>zNw|6 z%r`{DN_-G6KXL_B=c-1vQ{nF8{%e2ym!2q75Js)0VGze!o|6)b2+J7zuf($aDX}2= z42O}orC`@-tR6U=BX_Gfuw#FW;rq#l$s30|lD%j|@=c{riMJR&-8$)inqY}9AjC~wC1A=1#{|mFXwl1XSyq;uHIejC)JSfwAEA>~Rbh$dP zal7w=%dd3-f-l_8cMK1Hd-Hnjnw>!uY|D@~6vYqi>?{bZ4y^fyiX_5QaJ&W74RY^* ziC%PlnQJNWIEx)dpyS5N{F}|O-Ei^}f>qa#+RmZ1o?-lkET5X$TYnt8niV7X#cx&;h!Tv<#Hw) zn+O;|%ZR1<#QDC1&{#z;J*UgqfXv;xdqU5mB2F0|praXT#QF6z+9!Vq>*WpKt_| zU2>E~DuR=CjS={rX*AqReZug#KoL1|Ziy-frWVii9arC&MY#vMwE7>mR($C(aa5_{BlqbUv) z5x(z5p#EJ`%gFrlt;hu5;3Wvh*HHZVjPeJ~abj%P@%t_-pzKkz7}a`T4TUrt{-9e1 z()h*5Mb&0~@o)0DWB>1f8KN{|pM3D~HZlnK+aj7HAM8DcLfX@bP|6T<+CFZF@kEoA zWY1P7{PSy#I=d3suWb8gU&-T#?8O^cchkTYSJBm$2lYh19|tZB+Ugv zC7RvFRZpp#G#egSGeCr`=~`oeN3G&tNh!7o`lGVC7TBB4cUUO8E+=xwF zkk5rI7OwcFICu5{xj561fy38>QX$ETv27P+0GU8PR39DW!`GoIeXKAKzsylIwfA}1 zqf)=#R;b9Hmp<(e1|yp;`4z)EXSP?DB9{3+!?wo`5~z+Lj}N@0c#*RWm$KAfr<=G? zG^N+nKU@sTv~2)wXO8YR(Gz+SepGR=r$Q#~^^n)nN6wXr(*S~)ZQAZStm)tAz5`c-4vu4t1W@(0#&oNn#n4VAbT^c! zr4{*RI?|?6I%hVe!V!hm&&aHwG@4(dxg_x|b%gzT#G^)~IL^bmr+k0wJ^;ZBbl)sC z#v6i5J&oe$ytH4}vAt(jKq(WWrvReL`OD8yeA(c$v=6?G_^_{6fDIvV%kB4<(mzU4 z2l-TLJ%soNFic}!Nc&trH;QUgix#$F0q^wpyG)xhoPZFM&X!52noC7L3V) zj-v90)=yjhfKynG=KMbvV;nw&r*I?mt}|O5xEIj7W6hDrq!jGf9(zi$VA-J-InI`;QfAhG=rc>^);6wBLm1|>nJ!c+XV-UeHF6 zdDxY{F}8fa1Z=W?(oPHXtR;kS=R0~vtpFXdx&g)l#a|ALC|6Df`$*$MyBJ@2+gu)`FBy=3D1 zcHyX^^QomED9cWW{-wqWIf?tX2rSDAbG6f?2lBXl_mnPyv11+vOY}iMcJM@I{WtLE zEdUb`A-CiubO6Ya#Rlsah#dQjipt4_Kf=N`$d$waFoTRSQ`}nHzn4=*VEh-krn9vgA*yLbnV|B?hkPzW#F(DioFqwK?n+7=n z;`v6T}7;#9Dg0_GEqDk+&SuIDZrfx_a})m}>R{aDfF- zzPjF2OHNrp>|nTuLk3~+vsVP|qBxDAm0@_(s+(U$WJG1Z)dgZr)g`PhCFG)Lok%bc z#QxbCE`)Qw9eW_nx-TQli><5T%<a1U@t*b+?##k!SECtegLoS!21^a*;LF7Fv&*qIY@***7HfJz7OKw~ z@PaeRxcM@}*3Gy8{1}^W$o^^1p_I4oIKx0SDl46uZ|1$`v+&dl8o=w=9U%_LoG1me z;+1bO%?qmm)|9`6P)n>rno#a@dNb?1Ry9_ilc3!A0(>mSwSZG#+7AejC|7G*_33Le zs|;Bm4pgXQgqtZ^U+fi24HuGhe#Jy*OD`&FkJ$jYZS7s#v27$4P{ z<@TCmg!A^@k~rpo8i6|P;1PBpD!@(dkt@kl6@v6*4{4fij&-bh(j>UZt8cg6;*ReRESYW1qByTdj~!gUb$ z%UJ!((y_xE9$>9ur&qwSMVN>`3CTAU?XH{WZ$mh5S+^uj;-5ge++!%%n#+}tddq!O zjd2+?XqG1Jcc*|f0ukb(ut_l~7wpb2Camyhl+!E1UgS+kDHu0~kcZ9IU(nXz7<`tQ zHE9PIyT}2g>Gzk%?@zy$%I!*2OQK=>Y#IoOzZ;@DNcW#&tHvBfz>m<{c};m4;w zIF!cJgDI5|NO`zEAG6oK5TLmREWm^gxd_?6r0)>TP=ldqbmVr(0^esLncA-QIw{Ag z((BP$8(FAkxz|dADvqEyBg*J*bQvv8V4Fh-!H68Cvpy2X#ICa zP{Z*jGQamX+b}@OdE<*jKX^8N?guOq6s3!JBYVq(K+mbhvAsi@)gs%n2SxF~H@_Hf znfoM5wmcl046|<1BM&R>GXFp{&dwZe8>2VNh*%OVL*Zh6K!Y)M5_)3nJageM!qz(s z=G@NWZ`I(kndpJf{G?gn)};W0wLmF|0%=m5>^x6KK|;H-XC6X|R>xfTi&2bJw58b? z!brAo)cbtiLivFcOSMH3vaMM4?@SESn?8tnx_1~xa*oPSoy^Dh!wb#po*JEkc0D0p@35Men3#0_p>u()B)E0(yv6o4X?d>QvRv#EJAaPJ zstfZq0|p9LamgoByp3CU{gOBt8W-3BI;A`Q^0jj1@RfK*dF1H^{ep6oAx`>guB&N> z!}VmBQ95DVjoZ;!>}N(G9)%a#I!r5~U=zNlKv?d#AkbAPF_PDoieWv#~oUEG>_M-lW zL6~m~&XQ3l>cb1Ss1xJ70s8e3IA*N4qrjiN6+*(Qys8!Au~#t&A#|bq*>cgly`$vSXsL7*fL>u_HvKrmca8FkrV7f)H0SUYe$_Lh?}JebeOO@Ys6R zEm_z&2o5SNA=SCG(k^ebL+`wSQ@S)rkELxXgv8WgU+|=$(HG8fG-KfF*P@XPn`NX>! z;q~0c>p--_0f^v1n~9|Tgl$^qmA~Fs6#WWwcXXm{a#Wh)Ri5gy=Oi!qhEq2NL%d(C z=^IT6UwgAz20{t33Wy^rU+_ak7SdAB;dsr+7X=eWdZ40>ucRjXIotULP zhqFOrzM8GVR9TwvC4N#8VLW{t;TOfI#ru6a&9Uex^&IJQb{%($6IO6e9l=HXcNG>q z``X#1R~CofOL3i7VtyCg^ncpnF}p)IQw_eft{TDM1U_FsiZ@gIMNcwq?8FdGr|9qD z{*A<{xM^*tyry52^<%nGC*)!wBB8)|* z{ylN|lVPpU0utpG4|)7XZA!G+O#W_--bL)dUC|VSD0&ddd#Ad<>MJ5EH8MH<-*f@C z(b>i{qG|A~X318Y9OA<5R_b(PPvE(*P7Np*R{KSqeq4Y$lG)kai1Ht2sEKa?)^_dP_WWQBHovm?!6OfyL{^R;MxHr1U-}!ubI0f*zqNT~aBjS?7<5 zP2SpLEJ0I=`-wt+H%Gs0g}g$vKU1G|-d{W&f`@(OGve?WhDX;}A8m-z`q*ZgiE0(`3fmqG^kHJzrRU8fW1JV(GFBP2F)r z{9z^SpHf|ba_TopOfD>RYIJgR;ns_Agb)cuvxfUhv3TREuu4m^*uO>b;9>B~6|#q0 z7*%zrj*+gQ13w>EcQrqQjR>~78Hr*}O$ zhj*&KNgM&TwJhJ!!WToRyd=`B+hd)sp%rh8XGZG%4rXY@UIbMwkpV!fe802yGR2jF zN(1-k45lZ|LRPPJDyHOpKNvE#(h!VHX=H1}D2kb{Uy2F%oAe!z9B(jasl$W@&#PYm zU)4wvq}^}#RrvkA!{p=3ze@OH)PBAQSz5O?NqMi}AY^eRL*66vZ6Iu)a8A-Q5xlq|FM5}ymiMoGdHT>^<`mT)S4xCL1~U-rvKI>#`G z^Z!F^nyGFdj;2J@kOn(0*cw{mtJbr^twCP7blsQ7E3YLCHSpOA?G&Rqm8oSsm<3Np zo9~jWG!F@=@^rbmBSrlM#hqQVG79b|+rD5ha9Wh%=NXyobrbseO-H-|Lec+-Zh?k) zszQHJypMO&C|>eD+~P9Q<9c5B(O1ODBn}XcYB(q~Y!Kp&rnrhVooQsqs*2{Sj{udi ztGS#)bD#%H4X5Yv7L|PPeze9>vGDOx0qtqO$DRnvW)(xUO2!1c#ZNP9hMFiy;lhbw z3*t$woiE3%O{`!9GW%^p*-yw&^)Z9XYwgpQ_hH?}Q$M@&X+D&fqb)jOlIg`GCAzjWKvcth^LAl6^0#*wCdv9CX5Rz-Kk$^l3iMiL?hh?*lmqNN@7->UEHS21Dr>N->$!V zaGnM)m3S>uwQk@S{=1(&U8d%X#@L`Fuc@#Ji7=fKZ`yhAm|*<*FaQn8|2N7`XH&2b z#Br)1e~Jh6iMfDB65e6y^%Ksxkqy*CV13#dn|4HpO46l@Z#&xeFa0#0^~QA0;r%Cx z(Yw>+dL7|595c^A6uzj*AEBv#S^8hD#)auvWfayp{LVd7xVgT6k<*us499_7 z8KfJzN0p!?(ZIP5JT^SuQvANMS`U%i_BS~b&R)mzU*?6#Uv6=s!eD5OJjlt{hAtEm zSopaxksM>2H^n`|Av9Hof05#uHcpc&5Y*QYWl^tR4+RdW{|K+d&+-Rf^dz8df@dXi za8lI?U{}|$aM9r{&PxjPvK9BRa_urGyQXK_80VT$Af9n>n?dlk!b?2dxc8=w3O+Pz zfReW36f5CtFk=Q$8X?y_51A**n}OMzPITpb47EL<>$8)qe5JW1gJu5_4EPizBo)nM z@m}Me4P}JVc_Uo{2CJK)2H~IU5n&3zekPMK6@;C9emU+5vG&vD;$vwzkCjLR^-SAh z?<>X{2!RlMF_tko4-u?Cm~lF_Ku}E=*$VMlZA+oGH!aKYMQ|rqZ#43u{D*zTEp^R= z>L-W~X>yU|#Vr<&-=)Z};oSV)hr3$lVmt(X8!a(o!v^`DQa;nu8qvx#gpO$E)B*mI`9LiR{%I;4zoR+E{U>M35t(MlA+|nG66u#I?5>-{i(U{( zS`b$0Rj>J13rMZz*XGnD{U8hm>5$x;>va-ymbk+>mQDtXq=yDf{(Ujd3`CAgmB8`cgW9PE9DdN_M!uFtG;b%{I1a- zXR>k#UHWN5Ch|bEXfWLF@e~SmbyicLS@lXi^~IE{@q&rU@py`+7=*a-CAVIC znz4&y`yT-AU6e@amO$b9{JO(;0X|wDEy2?3kL%r_sh~Z>MyDt?i9BxXx)gLryc!Ai zf(rU1Ghk&6{IJ|xMg4#+_*;y7dlCUcgm**R#q9>oF^_nR1OZR+C;xbWZ-xT++W78IF^w!sPAafeVU+`J#38sHrQ%#2m{$#wu+MR2oG6)JjaQeaVkA@k%%XKCVv zXrn6VFbZF6TPy;D@cH3We99OMNd5*8niey5`)jDY8~RJVut0JAX_O}Mo=xS6KWHsE z)nClWJ9z0p(B6khNBBu%XgZn<$s2}3Y7$0nd`!~E!6bgD!>>~XReXrf#jyPmRPDz< z**QVJOa$&TwxOkPKdB!bH@5)DMN>#;C$QiIykPBY@Jc)W$UNe-t`-g1g}_}D0+IW% zZ%?7r!TLR6RIquI1-A1|{iK&pmuLbb*41X$CUSrg^$UZ2>mp-Nd-Egbg}Km4=*vB! z(7Ne%tzJJOJgU1g6Vj8Aq)pr8RDu}<`I)IN&Y5u4M_Z;@t33Rmw0fdx^ zUgYQ?uBqj@qA;azl@cPBE({yb&I`noSysjIzYohf^)cNtV`LMVgwEA9WXjJ zZ-%V}7CM>RHfw08p5Q;mDwJJatt_Q+b|5(+>dZld#lSmVonr0U%sJ)769^x(KdVfWt_mV#iUeKWb8I)!% zlf%|DSc-U7QC*=nJ5QOP&k-nB0ZVsd;XMuGZ_~VAb_ooZkx5u}dB8gQbG63z2mROJ zSJ<=h64>*HTd%X!th0#?3>jhu^u64e6Pg*ixIgF}9?wpITuyJOAjKW(oa1)0nJ?43 zTkj0Z`9!_FcKg@)Y88A$A*}hBA5~R6V?Vwrt<%JGdmBxmqYR%{j5` zE3VuUJzh#?hi2xJpO8TfXDeP z5x)B68X28fUxP@CP|NSpNpVDe<{?KYK0Xe|5))25k~+C|&A*7vIT6pgojYhQSEu=+y zvnBgZ+9v$R_g0N?d*Xx8@Am>+#rOA4vjG!ph>yo?6%N8?ZBX(ea;P6Qdbr>Se5Zc8 z&FdH&$-31KM0a{ z)ip#F3hhjD3C#I!WkA9d$I9h{M4oNjdM~J{2!?O^VQD~_+JkYbaOOKeQA1w{QLq(_ zLpNjGC#Iap+BV9KGZG6}!znP`w;+0rAECmW)*AS}Lc^;Yw*9SU;>Sk-!i}B+tQz^C zCf5T?)5cEsDXsa>f<{VI17S>C#{bg);UO~y+p3$1&V~QkidA8rk0O%OKXxrBSq-|- z5@B#sr;%a8%;U;NuDD0+4C5wZg!KHeDd@#kPv{R_;8aM-4+Qt>TtV- zMXaA9Vm+l}iaHb=VAj?n{6Mp*!pq4lIJ%cF?zQ~8iE;qwRbIPe2k`f4@o6Uj8=(qP z_g8oJ4KNKmsqi%d`K5avt%Jy1O$uBG`4N(zQ>GONh#$Af_7Qvb1?VmYhPFhRb;(64 zOq!+S4m(2^cT|o2%384BX(u(J*Xb04uwVBy(!eu#^Awc`b~p?V-P?xl3X+E`RkEld zU=5+BveX!T$k1>OlQF7Uhl9vL4!LgljjI{99J69h}WR$xCFnSY2zmCSwUvzvd%9n=$3}(`RrI6I<9ILH+{V$bmBRuH zf5Z)Cx?~~?swMFaFgitUEYW!4Tiu!`1PCO$0`KdRECzCA@qplx6xzvIqaeEU><(HV zV%%Hx=JE+nW$l>jhY&*;muFlc$Ge~JAkE%r#HPb525K>Xjl-%>{J{Me_&95VKcdB+=yEB>d%L?tHRp_ z`DqOJm&@S=jR*dE(=ZSE85i;;G4|_g(UM&U`f8%vs63{7c$oaGCU&dRNR+TfVlsaB zZ|JG(Efc;eRb+fK{oMhaV>CB6wfCa_-JE2N&gG1Viz(|wlnV@fH?d@35(OOTz!6~8 z1~SQ8iLzE@-#ki6YF8bf4ve;|*qyUMP}sMZtLe`9ITZpp$g8_|$NMpj#Tz@eDZYb4#I5ESxq{zuk%EIkYC zX!wFyfXOV$n4C=7k#n%gT>Zhnzd18iv$cT&)Ga-4OKP^{o#car*aky@TIV=DNS`$o zaJOPL)ike-QPVwLxX0uJk*il2hU8H~o`2{s;1^T)b~rM_uotX*$ARWU1gj-}e!q3M z>94h$gY1eWlIs=sS*%O zv0<#Xm<$&rIvO2$ql>>FEwXcaXWm!8HC>QhZ2fF5O|X!`#^yZ=-Nb15S0OIS3;Rhk z&1(<0wPPAgZhfIa8;S-X3M2;Wr)6|b%;V8WRTz%EOX$1@EFS>p6>fVdCXK_ag*Quq z*VCT*-4B-Lt^7FDLy#d{cB2WE&c%!!zKxC>uY@Zf74t_!##J&oxs)&!nEU@WW z9%oPLJsqPZ+OaBp{Nl0owe*xXXwD>kyCTC^*1H3QmMZ`A9C7$BNw3u7Fug4hmMCtTQYbAmUM6GNh z9pr;%awsYYJz(tbE_qk#Nr0x|!N3@uK6X`Obsx)z=W~cxghp)Mxc~om!B|mN_gXGV zp?k;`(sy_VjBff62Wdc@_=I-G8XgV(XtY>_nUYshX5#QH zK>!e!7T5%(pDt9f`!|uVe}?ErxsY>Vt2dw5TcX&3j_DU#F4JpmpD;rZ6p0D!zRFeN zo2tdimpl zFFl@RRGPOyTc2E@zX!4snA4kaHGCJIeBNUFj~t>|UtD;xGg@T>_s~02l(*tqGY@h~ zVmCq6qlp;9=ybW#X`^xGHMXQ8%*1;!B-kp|TV)}ep;Eun-y-WEV|>4*50}{)9}|E~ z(2K>=c*{IF`n){Jy~B~x)zh)NaZEu z*T-&mvM(JP+9hMM{akcBLv%-~%XDP%?KteCydBOV;5;)0S8RE_u@`OBfqmOhxUq{< z5%HPY`7cO4y6DE<1exC_x+UuE{j0u+xT2aK>0zy<2suS)J5#kA)WM2Yz|JQuo!7iX zTjULPAQD5fA)*;bKLP&kBq_Y8GKFQnVZ;L(d19?&*lNKwRhaIjSRyWWJfSt|^?x|*wJM_~ux^fhMRa#0_>M*Dkc*Sco8wfOYA?ufn5RWY2 ze4KZ*VuSiIl0ZS!8sr#U?>(Y%eYbc7A~^l(U}s{uS@-djE&~*(iNrzhy-BNC(~$SI zpvKT$N2Ra$LI=v{Wyc%X$0G8C|HyAJyP$nA328F5$(LP~lxKd-rHHsj^J|C@=FtvU3l^u30ETTAWn&@^9lLiNIs z9kDGg@*;|H4_@aG@iD3*s7u(Nd+d;&!(*ebKGc$tj!z3n%u5j^={*<}2j)McyawxB z6NEp4hqky|@Gr%-Nz*l3Z3LPhIM?e$%)M>rYt7xz+Kb*aTQ&bTHyWD+o3Pl=W3R3A zIfTK3>*(sE&yuJ_SBSlWZXW)?VJym7sGMruxYeqsPRhW?7fy7|hAEFN$Ljf``X30U zVt@Pl{<1%*M=>2KIbhnSJ9KqxX80pj0jgR}5X-wjx4Kq$Ve|hg`jYaz%(fI0Cfp!^ z{aKlHQn%1+6vT|Gy6?h{I@NP;J%FzA+)gP1zK*#Xm8r?OfZd%QH;P>`6*w<1lXIVB z&X4{XDo^QuXo%k<>e1I~MtOEWd(DQ(BWt5 z!~M9-Y0cB;otIMbcIcF`&n^8q2jc9xn^%bTVZW4ZeZr}_km*y`KV7{|cHRiJ1XXqY z-Q}eX>bHu5hTdNnm5uedyjq;K0N)mD7m9z$R%>sEH*HEtQCLqcs|?LKACM#&kU1=Y z1+9QVWPuxJ{z~Cw!=efooYDIOg&h>jT%++^Z6Rb{#O!Zj9Qi20NClOllr)2K@0Ywf zDT~IlqVMl8aLTF^X^Vba@BFG%TJIqbfPxH1Xs>Db03Yv26Q-q4^X!jp&~X7ZSy4m4 z5SbBYjDe%O9pDSzm!7E5|W{dXn>}?=pDN#f`5o-&*n6Mfz`}CV^eFOYp{wXQ{ zt#w(>joP(CrzurCe+;%NjD7K? zEru@PXP58^5AyPF5hEt5EfF)I$p)ui90%)1x@37mK4mddImb*1P0llQ3;P>Fa`zEj zs_Q7*vgP!R*PG{>B1GRnaU1C01vTcZz2+S0CTs0W^TGEmUPXcEvCV`0RhnfN;+D#Z z_{Dnnn4C{`GJoD($S=hLIZbA7PI*2a2`c_7#x-ww)vn2bR5mwBjr3tuWuNIl2f;TZmi7@oOWA}452Q5$EL^rWu>FvVpz=(a0IkGclO!xEb^Gb%Z?>$w zqH4igE{OHmn&REC$Q8C>Drt4wWR&5Zu9e@?K^F^5Giv=e7Ztz|hGEC{ZAuWS+;^7q zr=-MHxi0b+-A!)ET=_sY!TAmcFUOYeh8hJY4!{m9D(n>P1K6?I2?NUN5zU0fapM!3 zy~$Du5OM#7QSOyHTWVo^q}zQZt|$Td50$@3OQT!4a-hd&vs-vT4+iw*Jf)vdsI(KI zx{@X~_x0|<14H|u!0WG!A17Hw2=HNs%S-RxXAX@~j|`Gc!OaD7x5LP*MXTEWqo{q7 zM@|2@feMR79B)XhjOsjVrOScBBKrv+Z|HFd>-7ux+$X2i?!lwo`xuLb@!a?^QnZ&> zgSy(fpGskQ)rzV&p5#nP(=nSNw-TH5k1B(~_;awF-Z@-i!up%Ug&3NQ5+g3SEgmD( z#P_@C-!n7v0C`2$w12!11I4A$+&*mO*B)(Gzfk6t)S45%2>g``IA|lVJhq0(l|EsyzC=fBzjN08G&1YR z`Kdb4dg$5vx0r@_z8I*r{Icr}3X@E|pf$KDw|TtAo7~L?;5mXcsHw6ZDmNWY@5pXu zvoy`n0t)9FVb^XJo7_(P^2-6%=u=#`p5d_ujVIu<)wLcnRHVYN5<8O8DGp5UPivShS;hAjjdBidzGA&L$ z8Uwm6g$5!3&M1a;?l_j%YsO43=*0~slSu40j_*i;SVA#dwzFztW7LF2q$V{?n+ zCwPl5(4@d|*o?d&pffeH8?njY^F)BGvPOb~XsgH_?WE=9+Sbe*=xX_8yA~5MvO`x0>n>vK`$d$ci=_bpXW;x$qA3 zEV{#2{)CcSs4>l~|6)qzcr(0$7)0GS6Al}NtWaoacd&P4^9rV5sBmCwcnU8a0>did zO){gQW~9d7L(yBDm(6(Etxe^>ws+p_)fgadOBPhIQ8rbj(zm4JT4`c%g3UXX>}suz zbP9-H$y`uKhL%2N%NUuNBS<*G>qI=l&^G=q_+TdeJFe_<-cVZydo`?eFVjG-*8MkE zmET9!JDVZ*XRl~;;OfS=?u)Z!roY6RX~lbFhG`o9n#%W!Gx`?t1ZpKGw(~Xhih4Zf1RX(kHzAt#JBIFg>GuuPB(yp0_K*S@)Zi(Ld3&`AZOs!U=a` zeKJAL%A^ax!S#&QB#u@BxoN?Y%(QYw z=>3fDupA+XKP7_86N;#){3l9-$aqpKtlZWzxn@8*7!`P(TkPZ8-|Sy;^w*3abw zdeKjSbAy2m@m5!#A^qg!@Q+xx#M8?XB5YQN(C&brdw81(_YY?gUWxe`o0WtLbtz0y z;)?PJQgoT?pI(*}aKqB(Kqsy_io$-86)eC;azod$Bh@M0{_NL+=siT%TGbjp6AJF) zG&D8&labzFXV-kIhrj)8zB?+{PkLDp$>p^T)GE7O4ew$DjqHhPS zPODtOV1=up`%Z5vmM19G!uKshj9&>l|IT~*fw%U~4H@xW!XHEf)G-M_C2R}3^%e+nO_Bct~rRGw{<)Gtx!f1DU#Z}y9_W62YYd|>d@j3mb;JgXgs9UeIL;#7!*0Cp zmhyO|{*O@xBuKx%*@kOem^p);-Q=7-D3{nPmuoDW`OQsK+&E$HVz751I^LT zTaw~+eD*8{A^q|=wr+6=YTXrExfomA!366+4i&$VnO4A2w_371(BiMOgSilWF%H** zvSru14Y+4T5STE*acgSJT6})!2f`zvUo!+tgz6JqjS?~R2TBIXCzfV74jK-bl)G={T5yY4eP|MOl*daXHSa=DTC*G)`_MDtyh+a_{9s@wLD zA}JQ&eZ-l@r?{IV%sYG-@R~b6ol@(kfHuR2tYuP@CRhj%ectfaau5YmE40yrY+VOb z(o$s87o|vZi7FnwE$^Y0qf+FUxM!T;P;kFTM%fysKKro0>FPlLDI(}J#qpzbvf_T; zIOWLnxBC9sPQ|+6hH(oW>P2=&=^`EYB)_7(B=vN;e&kU0Yz71U>|^I&{h+rLiE?b1Y#och5Abb=ZVo!(PbGy`d zzMB5|bFg1kDdMG=gr0{ESZAKc{jKKM@9xGJfjOh`GYLJZ?c zT+CuuZLiF`(AvQ&R-B#F_P24<(zg#IC>P?;kv)y!7WDVaeZM@Kc{)!pA)DK5HaYr` zp)FXigd9?&3kAEa^->!KRMyx@Z)k^_>qlQJq`>Q7w5KT@?~n%2#|7};p)fSFxih?N zptm33>zIJmfZ_BhY@%;MW=c39RmJCH%B3zZRs8|~YL>+JQgcKqd69Gqg@B))EkuPi z;_IZ&X$GOYPt;AOn%W_E_iH(~Q8*4fgA|(gmFh@)hGS2YbX7Z@u{uH|`nZ{e%P?M4_Momr zu)IL8I*({5v~EpV#vTaq&>sXSB0RVL9yw{$53U$NFlR^DWi^>$(cAv$#OfGzx?)R) z9YvEj*9&QHH1y_mVp2bP#nzf%?((|YK{YC0?wIt~8dh}ZsI1eDY^@PNQ^X`P!TaFU zdY*`TVXlH}`&9~0G_|S+n5|XdZ~;q~_Z0N!a|45>4akP%^5hrjeW5dTZd_ge4%zv* zz6$j7g~zC}Hy$Rx70#W_JM|su+*+$h%}Xg&F5lTp%{Rn&+FVK=qZ}No{KL6ij9+nK z6qoyWW!qC3&^L*a3pzwzXJ2)ikz!t5MmK4?L~UUH$-sL?g5|?}2uRx|W-=?oW3=E! z`8B*0lho-TGX*{R3*g_ZmqBbIo0;9D zJx`#|(}4SfziQ%z6cVk|GHq{XBSr}L;XboV;Zd$4E;+vKF{*;~__;3$=tul0;v+CR z<<`mxA=XbB_g+rry`gsIpKqxl%uimhquMb01_YpsHZ!EJGg`Ua^t{CfW$_u1h4+f zd4Rc`^GavlVV>kv0idjfq6I;QCC9JmwnP%Ftjt>S%cZga(8TRftowVQe_GohVDy2z zu%$jZtVpfaepX{)4kwLnG?J+)yCo46>i`Jh$<4fAZ<%hmA}&q$m2N{^VEhI^`k`AF z_SB+HhQhwwqPS^$G9Rms%kvJfR6V_ed4z-ag%EE~P>bvimZOpsFTG<>C3L&D(G8q+ zDvmFsMqfry8O09)Rzy*(jFQA2MQH{_kPW)4tc^*vN}ehJ+b?Nm**&6Uqtb5pgJOKP z0%hvMMs;d3%b_!5bxTHjEK0Xm21`jidtAxrh(VozMU`5w)T@guQPmeNy>>eS=XMz! zwMsi@I>4*7Fu4_C*OtK~3x#%Z*y?#o$6&keaRO_pS{|?{PE()c9CuO*++eMCgc|0C z##EB3!$uv}UE&+kpGXv)c@hZsO(2TDFTW1!Hhm1-Q>tBTDU#zII^t(mQ?Ar5FA7eBESZV9;i0Mbz`7g#lCWE8VGD)+hY55r>4{w z?f}6tY^I~20blkf<2K)f5%=WmZE<&CS!6mGEIR{i;#8}>>V#!ES?KS* zqBz~FLs&kl>Jnp7YmA&afFS_zzz6Hq#%{+-eCJe6WgoH8Gv^X*Y|_ubxNEFC-xIT3N?6Gg$P;b@IWGll4ih>Hv=ht+23_lgti z$PA>`%56JyZ?bJ-`-!dxVO^RDv~_B_t;&ql z-DEIkYbGkRi3X-GnWkV88`fe8ax|g(=Akt_mWSM^BiVwwImxHKumhl89&saQAFt(p zSd`6%ad0e_1XA-l9d>qH@29O2sb&KP>!y&E7GCCP9;@9?YW4C{0cp^FnP!LJ(`}MPRAaJmOT;;brRu)S?#zz zqC>7nQq}qj>^wG3^*saC53vkgwC6C(5xZO+*ZN_%E~D@Uw@Nr@4L1A9sZ;jRk=l`m zRhjVDt4dgI3!3P4PyH>btjc7CJ-GdW*A^#Ia@`5T(8`FN>YgBW87+K}+$U8NPGn46ge#q@Hrg7>9f;?Hb$H7P+?%Tt5oTfEJdIE_8g;$$~ zy;ZS2N01d2O8b?~v(xUbqLzyUIU_5J?$$Z#s?6@2lpyZ*b!52OqK)o=CCfOn=yZH3 zHhgdtV>$Ljbq8IeXW3ze*|huJqDHC9BeL;nQn0p1mi1@LS#MvW<~~_Bn@0+r47f>a zfzHXAeB89{#eO=A5$y7~V|R97&sK*n?7JJFP?$xW+h=Lp3TS z>Iu?>2~MGpher-4RAA`tRi9d_homM(`Q%o{4N8`g+6hM&Kn3V4-@p-08l5y8JpiSt zPfsW^IaT;lf4Qw{=%F$syT-c0H;VJ(L^~Zvf;p^@I+9kZJ9pJ zj-iYQQxrg4uPfuBy2IT{$#LtV)ja72W0-VhhR7%u?uacLZgx9-MG#b(qNn36vM0(X zbRWA+x7D6?npsss1`2$>Ig-+DBDQ7{A`9M(Sq;n7c-;*<%R`ZxjHivGVQ8q_n3Ncl zY%@6M!h9VdroqZI6(a|f-uu`}rpMA~cEV4kHjPRsVwZ3fFRK)_lo%Xi%hLsp8ZA}c z`jp9Qm4039Pl{tnuJyYulW7ZsG9HM@g z!g@*O$X#vT6>V&0Em48jiaUMDHfg`T>~|I&#IKy{qm9Lf`x@3%{8F$St;>}%YE$J2 zO5qwB%Wy`KKtbsfSrUztPmXse(xfDV#aXg1qpcm-%_(5E?G=)&oYu6AN<4!Og_CN~ zmGCg8Oq$n-9={b9d>km8X_K)sbcuOu=^-PvU-G+qcBbzttwnV)T}t+rUdaal)Tbk| zIA`f1GL~FZsf$2(Ob^|j7XH-XMPf6-;{A~D+7)UO?wFH8?RjF;=1{Ck5lC|6x!&Y|i&+|He%j^SKTWy>6}O@OW3Zt85%IUctMS_;SUDfJ^!agg1hU)zPpC8}y_ zF&KCD@^-(HS+?Itw_ea+NflbbyEbkJE@fJT=!{uwc4*FehN_PY+iG-0hnHg0OlS`$ zheO8@C#_}CEHW~NQq2R#&q`&MF~`R4pb>hvIMwW8zqm8VHI0%L9zB*Z4n;+zgrZd$ zWsAOyloPYUL6No0HCFhEv^kV6?quYIqEyL1%fMFlo5;{d%Ow;kN(j}GPWY~ikQLkL zX`Z`jErBK5XPAnGZ#qWo`)ZHnKDtmec42HuN=K?|QscVII^SatJ#4vRm%T|Hn=VF2 zW;pC0yTp7TAd501lgB=(sB{anh2Cf;V#hGfkZcmD5G*B17F&%9*!?CQd5KK-p2P*a zm9;r8irpsJ>W?Z+jT$l2?b1JmeH5>s(9+33jmq#uBb5N9=3u*vcWexmk%>_X0Qy}4 zgP~GHX<7$@0@#&CQ37fBD2a;*IdvI^T#VVdyOY=>Q%7{9CU*1#b#Ra#VFL1dI^vUlxSv<%wb^_n>L#`7IEYDstwnN(mA^jD9k8{qxIClLGA@Or zPf!TGz+;TfY)}LZH|lUfE?nG-LhjWj(DD1JH`eR*dDCgsYU65c3-6%g&uI$okqaFuse5cHsYOrn2y~SWkF6$?X zwZ{QpuVKZuNR-FHWKP=ypVzUzaopqBRvIA1PPZS9#CZD}Plj~^^Q}X`x%Adwb?{b6 zFxkacKom{q$IY_L&(zJt?RJ+gHI~~hzH=Ss;P>fuZHdf`9mi6FM~uoyoa$CY=myxC zifXZKA*5TTfr<*y8}GyLs4SXHZ+}wIsWn)r^-)9EtiADu zYoQG!w&>An6NnWoprAIM27_j+T5ZEZZQw_#*2@l6ZM5JED~j~&p_#E4jDf$xyBg07 z{LQTEPuldZZzyp_5MKuavOJ#rZlk6;ouJv_{W|K5))F)-F~_lXrHxZ7xg$JhqS zA4X#@{VcJe&l?jB{4XyUE!eDvA{0K~s`abmj$3`Wg5p>JI%Uuz9Mo=PJi=Oh4}TgC zc)unK`oa-H%8Py%FE$u&U+nzUHpd;fB4H_y(bEP^nD7)$mHSiVu9sEl>yCe-20_a< z>$O(R4VYuKHazD&f6{1GXq_A7my12OZ2H`?sBB8}W8bKGo219F4DV6sjB9>>SmMwP zXp=21E;imgNY6ALpHI0@;gL)(Zc`6_m_1eku{`+>K^!92wx%S^x&EPr$f9eYkDH zxBiYA`1H?z__vP2SyDk2|Nhj`xvf+vlh~(%dFxp4t?x$+{CszcSc&{pa6?P_`_unP z-gL?Grvj(Be}8JJThEpXd-Ofs;1!-Ou4`nWc4VC-z-~l9QX`ph<9)LrsnBV zVaquMOW_=;AbPfHYzv}vubEE;#|64da9Nh zJR$RaGK!teqg4yve|BLq;rN7+jX^a`$^&95HAcoZrwxcsXU38HhElJp!x~wgx&Q@_ zw5AaHe90PmL}%16*%OT##iLLAqkYS?Rki`kzH?i(lQ<1_rqIT1kv&c@b1H0?T?(BC zon~|B;o5}9=vu9}z`|g-tLrVPg12^!=}v19<1%LW1QA#o&Wx)9HmcD{k?_T8Y40Sl zX><-4Zq`fWVaM!3-8$k$&%gq8Htrt?eo8osU2WDk#-P2J`Fw*OPmPh%=oq_`6MAZG zwH&jt>bHqWk=n^ygYmmIVT|^M-O{_|<4Li(iOVcyytlXH6B@S7@)Ti6T-hJIP!V@F zKB4rIw!>)0hZ`cBpze$6s%2ySmWRR@EvT-l4xH={H?`7<4VE?-jG#@h?v^Yi#Z^}2 znKvJB9jxdnMY@A*`|ZWC9+r0PX-G>&L(*+#XY~mdGaAHHayKeF35Q1A_WatMT?=cA za94GdaRVwoR=L!$5f5-fORww&V2Z4W^~vTcrG33}JhZjmV(a#8X+E3F#d^3j7-iMt zXZ2IJxZr!c!K&Op2{Yf9X~tW{Ci#|Sy2GBh9nZ^34cUaf5`JP%ZmVAjsG?9ljjf7a zVd>dGuHmf9E?afsv>3ZJdPvMmwpC(ARe~4}PDDs0Dc{uwiUxz~(+OTTgNYB*d8^f7 z^zR++dJMTHO?t=y`yj@&eQbp&XuZ`xE$j|JG<$wB-nS`k?puPm8}P~+--pXC>D#_B zA1OylCRaMm;FUdp6vu5aLHX99-Z_+Nv7dzBf=BQYV(;tPt{oohSkNY|$rj9OWT_9W zfT|jvRXmyDv^gjC?bV=6A6Cl)!)ODHuFmR3iK#T2{avRN!>8t0=+fnq)S?zssdU`5 zl~aixwN1|oecY+4jDgw)?=KNWL1=ezz`fH>p4D_}*Z1&!OKbZh6dBO8GwQ}pgFUK+ z6PVMtgL1l)XRWGY)dzEP=qq3fd(n#sO2OFg!=GeOz)#C<@TD@gS(dR?aZ(oAi_>cQ zyrNk8V`oW5si+I6D541Tg9hUt8Gd*MZhZs(9$swlFlh1!Ts+kV%$R}&LoPPRK<+M0 z3m}3POhSj>tpfDpMr(H*wGWidJ#C{x9RoMof_)1WjNK6lyaYF3S9Rew|4VfV`pHul&mYR(}6he*ac}FHnAs4rZF_aa{em^6Stn zM|I-{TZ5Uub!kPKcYSZy8u#ed;-Ga*R@RLv%(0}DjdFt@ z3N+1iG{urfi*;a3$8q+&%8ZO&NX+FfDIJZ$m{n``uv6{^Q@XtDA?KeB$svIjbX_HQysU)R@;gT2%(deC%bTZFfnrL8$Q5i5l-Z z#R+!R&MhHKDMX;1RBu65bl=2%tXfjqxiyZiANgpN)S_J}37S6ssljZhm)N;aXTjwL ztHKXE7Z`RAZMu0oeg^3JppL`85NI=36Lz0hfcS4wfI$(vh3WvbBPgbQ1d0aqEqP{Z z1C#{*3T`b`aKRtCaNFWEjpu}Y{Hm(Cl5KFVR5uM*GT<}8tqqz@{$b-^E%2#R2yQt? zP}RRbRc)2iAdLX%Sx$gm3~qf+`}@o9;i=8~F0BVb~Y=fmH~K#I42ITn7lS zf|D3lZni!}@4C{_h3}Hd4|w<1c2sfl_a_V^iewFM-o4e3WX^+1{O*&e^_aRfg*x)w zx0)%2GthM0@t?7F<^gv2{QJ3%x3G`e@#07AcmRk_jgQ)K*q;yC@ehi}E7%9c;}z_K;_(WWCm#P{bMlgG z+Q8l}k-vbYY)HL|lXSiGdX|du2dW{0H(`_%yj3n?uj4a#GjqOn17E(xoUdT-$zlMk zozCBkrI>0iyeAtXBP;L8s>sO7d$Kb!vhtoRkBqFmCtD;VEAPoV$;irkvR5*)@}4Z1 zjI6vTnSO%DiKZHm4+75a=*7f? znMs`InsL7$cowN>72Mh|_Y{1qj1h0eK9H$t?sd-IPhHM-!NV$Gl!EC}!L7mRpike= zPmp-zZ~XC?7vdhhtXurm&IPw_;izkoxL|IsEjg0yOP~Hp61S+E0(|yfI@Dz* zAYypRL?XLOOq|7;2`mg56-`<7M&|6Wg@6 zoS_P@Z23_DBMA(p-UxmHV>;)$lKsk2d&hjK#vjL0z=4svc^kH<_ruobnIiphV+9bE z3m*LA2J5Vx|F{7&#_{QlQ)|Ji~mUrHc=Fh6?t_3T2nk}qeM z8vvPaGZzx$;9aQ0KaV91>_l(FRAN=X2c}$wGyb@dDq?TbCU_y)ZdFsacXoo~S(5Dt zwrWLQllxS^k#8f&Czi->+|ga#bSy;zH2%PuZ=2p$F+KN>V~sP!KWj7zYp&TDw6cM_s==4VQe^YS~riJZfVkY>VNdOG&us3n8;CL)NYRHm)-#k8V%eV>>6lkUZP zWwh*n-5UI9kdV3yuKoQ9uSCJ1pGDdTDhhnbs_nS_=!@le`}?tK6Nz*l%Hg4)AImc` z>t8o?05oaWyk~Dp%K7PZeN%EUVs&v={X&|$DN362H8+Wxwv{J)SJCL(PRqOq$(|wP zDZ;A`&^M(7;F6LTEkTiVRk-Sif1+_Rfc2l*dT&ch(f~BHO~(aW$+gJj8&fqTdmH8_ zP^TbD(8I$^Vu23}t|Ap=TapTKKMJ;_MLVgZsMhU+CeUk2I$PfEQzh+kyp#MsGY)kt z{IX>_z&5~e>MV!zvrm*#6OK?E1gos(aN6PkQxmh7}Wo|lCn2QYJ=m8UL$0-Uk)I3x*uI-=GVh zOU0MF$V%CcPh>us9VI`%%IrJmS60sJ<)O(Jz<5L9r`yL*mqz=tg1`K*>O_jZt@6Bc z*7TpdsBUUszW!{9{j?{iSM)?sID0D<3{U4JyYSgFU`;*8`2uqe;pf2OfdIv^Btey& zuZ312`C<#q5|IlF0)QwkXSjvWbmc2Sl?(NRoB#RG^P`pttKF%bR`|RCAHe)a$K&JZ zmhpjYPgFYiTU+YY70gU@evM7lXIY7e|JoTi0oysnuxu0T<*#+}}j7*uaivlXDq zDI~f8D!mve1*)sWz=+eqKQLv7i&0LpRtwRz2D-YyOF$RzfY2oI<^e7A8r=T9g^>_(B;>*}lVw%$1xhtA3$cU00D5;P;QMigo5IMDAd2AuL=g+out|l+ z$<%pnA3>!7;0plHB28mo3b2ecd@^e9emfBEDiY_11zmz5E3P1I6qHc3O%KqQz&sEN z=1~=;!e>S{0geStL~p}qfTFu8wC=t7TF}(JRM0siESR8AHu!G%Eou(70dN$r!g&&r zi_Z*Mw&})XFG}T^SscT+sDVHNJVTuuwf>;-At6CFx3z6lc1zXot?ct4;LbO4g6#)3X&E4RG_OfAMlgo zo)MvsyolwxL8Z!$$Yd1M8{Y==X{VmXfC>uFwTioO&%v3pf*=C9;Mo#?PmiLdy%h!hyk~lg7 zle#ZNUkYIHK(B(R0;5mmJr`QMJ}@nzp?u~67_XMb8Q^I(ZbLLZ9_T=g3*nQ{sR2}A zwtC8>*$In$h~T)P!xb>5GBb(RxDsO@&TNq9pJyMDY;5yY6DR~ z%6UypUXs#G%}lg7%hJ?TPQFa!QUS+oTP0_tNw&&H3p!c8MUIygB%_3k*OE+@RDQc< zHMc1#{q!Kfo03a~@-k7{s(yY8`)VPNw_VezY>iB$BA@QKo)Ws*R^g@ zGzfy5$SWSDGyq%^-bfy5DFA>Rgd0K8Z=~bH>5JYY`4b|kWd0f03z7q)2wl&R3Z?Sb zLJ2FDzT7;f{=EAlTOrWQ?hBavo5g(*m;Zc;`(h}maZDpl5=w$JFck=>SR2N}0L(nc z%wV=pqzu2tDJBBId$uZj@RKMPNP=R7U^W7z+#SNq4UX%clP0?)6D@`FbFN zl%*HD9*Uv@}l&^i}KJF^SRmRf4M0zW+3^J{k4!_=g7&Uf(5#TIx)`CHH}DT#^-_V z{5q;Edrs2Y1JdX+-XPX?%M)-{X*~Xi84OFx@-%T7>>3Sq6_fXAfKwC553>_|~Iz ztRyWOKydvo+xby8HOxr9%WVgJ0(d|6;+>yM!O2~d1Ew z@@b-DPB~7=bkT!6_sC47QW|e>ykVi&;MiN=a`=OppMtDcmEIL&;t#6tCZ$#5dblsB z)|=EKeeU^7B$8WG(iZrQ!D7||zjOqeAD8&GwnI;!fgXd899Wzc2)mT9_7>%TOWAIX z%!<^>sEBVWq+W_;n24Le&wJlPT%OogHz`(RrmBH#e8My@a_RI#CQ>OOZMLGEIf^if zWv7bRWGl{@DjJoER60eJjZ~1v6Pt|`*aUN%966RYg*Av$!LMv(b|L!8t*CF>WXt?2 z`euX7cjZNMnYBV%ge#ZiMhI?M~ss~hRC zMYhb>^nT(GlKh$yQfK2TH~FRa5oaQo+C`jAj8SQ!yr`u*aQQLv*w2>}Kp)R`@DEcr9A)Ws&6R9*jWf;4cs){6r48}FZWhwPH))Y^*L6J!6@jo_&qc_jY{q*LO zA7^ZXTh0&^)4q4vT{*5>rKpZ;+99ABb?LtJ_=wtr`{FR{-hFXb?h2UBC#`C|`F&8G z&YF|&Q?^;}G^dY6{Op0;SKoy2XuO|ZKmWS4?CXLgqx7m@E6Cp^!3Y<>fdpULw{*du zWR?8l@g*Wp)h`|2HyPKP-#xCE_V4Rme(cjiukE{y--^)To(%WmRNl*Cbo=CU-pgOP zKVRBJUb!2;lul}VQ-~1w-O0pwtnO7?Ry7G$a)OW#*3v$^zTvH{V&Q-P_1}za{_ns3 zZ{hQ$a?8$_Br!QKqngQZFylgGk-s0d0nK&p!H3Y_4#A!oRfUG1M$bWm{+{ps>kryr zlZsVQ-KjWNHoljQGYXz@IqweOb4P&1uAq6&K~I5X3y|LjJpmj5i#&oRUklNlGcnQc z0U(=V5q_Ne`x5?~Jo!t9d^7V0^X%U7@MTJC1?4G8|b21GWjetux zHteQmtud`4P)=YdM#VOG7YQ!thzO0?il|ZoH&olet^q zpjw0qTsJl88_#JR45ObT?#Z1OU}>p-Qm#?r1mzrNf6#Drhr;(D(wvd5_!@%;pth5c z<(HUt934+83MHqU&N2BXh#)#|%ZW=&9(|EYPqAu>k1f-8uLt0r#_1o{`{l z!TpDuBzg_`LO}Z)eba9NdF2QD0SW&=mRH5L2c2rGuf81!ATU{3jO!A_Ys=`*r z3NoookZgC;rA~9pRzoI@+Q?QLC$-kdMD7(%``406t2Htaiw~^lMJ@fg_)O%eH0m&u zX9yNf%a5;=7&qf)1s=$YSbCJ3h1}(5LAxHT`4PFUVU-T(nTA$kocJ!Q0Ch-5OH&2a zg*P!kHv#u=00I}mlX!<}Se_dJkiz47UsokW;*o8AMM5u-jT=?yE^tRw=y0V|(SIIIqH z3zK*rVaSNc`Hg1OgYy?+`Y-9k)1s6!h%B#+^iP_4Iu$ZFhtv1IL_VA$8T%feb|t=Sjpf#6+L;x`SB@oC#h5xerh7F^%}3P7{q_i7parN zAKgt~Z*Nu~9^KAnUt@HyG`N-SwQ2}uNzgt{hbz}sdfTPH%O2Wx`fqx!=kwHB^y(k4 z|Asz1n$H#w$=c_+KP2;$&v9}?Oi1RxWxuU#SasVkkJFp7Zkk!@8SOD?R0e@dswBXiI~ z;cR)w`^WhEAGAq;<<$_SyX+(NA)IFuF(Uu>PY``jep>4+lE8hk)XH{a^qq+T;){C2#4v0 zg4%E>E~>E)X~WiGm!YK{AE0k&<(}=j>f9GIv%VoU)$?**J9?MzXsx4#* zxZJiC!g|NaPZMdtjp&&CqUCxvHU6N2PpykvmZ{bvZiQCpii9pLeNP{B<<@;}Qry}~ z&&z4sW%419dsybd5BbXueDBZ`8uUHdRxxfwgXcsi8=0UF_@&dff9r!j3IGfjrkkyUZypUp?pt~m5;QU$(t1q!;WOO`Lj zneoQYH?PN*cR!r^l!)C$nOFS@o!n2Xp3p{F`x4#{-Ihp^1!w&{Z`nP9f@=n zw7q!Thz@5#OPSH{EFjJEhCLWH^V}6a&pnaYrfoIjMs#4CmW!hg+r6L;+Cudc+Km5? z`a!*aJWrB15eY=v#<4yi((*#&0Z|&Pnm5uu_J_wJhm*E{rf)cDxe}W&oOQ2Yqrqf+ zIvUnFg`$%o1cF$)fWwmseWjzZs`?No_fU0xX}-$LcVajMWxQpCg}dY%yc-iRdC{3^>Ly zfX6s0T|>0M;&9KeJ@!%4jOd6&aQtAPo*&ezmf9cmkH-DutI=e9HW`Z?T5yb8pqFuz z_`=+f1zE%eu|xOU@nz!NUX@OA>;gG(tYDy*6_g0M6cj8+Z~?*GT|6rs``Zz6;Ap`> zFDvon)YQW|_ z&1Vb7W7t%i=XV5~_!m1$L^37PwPcJl-vv0&L;d_!KD< zmU(c>3xtDit9Wop2tD;l2x=IkLzV@*>Qh9S7VJh_inHTXJ736xS3CV*C#Qqc&*!I; zuUBU$pDqe#Uc$1LDU3m0+i^osbl?G(%hQ9G%hQmDDKA!ekeOyCm#do1g}i|Py5m@! zm=xOz_h?h7QyUcM-$RLQ=@-9DU$220 zCJAHJ!O^iT``yo4(Q8$3*}iC1x{V}>zcmX_lew}X9jATaSr-WV!{cos&{ZtjH4y0F z$_09Q%LU}chJYnDsD4u_r}9d&ui#5Nq8D7{K~Hbxfjso~AftEK|27V!Uo$CDYF!UBkx0aQocrJ zsbs_Zm01eGQJSH8N)yxq;=Rf&h2ZGPaFgYd*?o&VnWYdM-4<@GF7XD-EQvhSA>yJ0 z@p-_KAg7lSG%`y?yYB?cEJa+LpiIa`n|$ON`+!Q3S&G0hY|*wB%`wR=sophZlUY)o zJ7i>*_-xCI8JUK ztvWAfzh?hrzU1&Cxh=<%MNy)ZjHjlOwnYG;KwiHQAOHd&03ycA%sO@Fz=UU&xdUD3 ze1ny9<1Yt`Q*zFJI_G~0e%$e2?ssEx`VClTl}4>{AjXI%~t7`r`ij>C52m zs`Jo$h?|LmMfN0^Zokc@iv?h0ifz48V&s03z^#=Qx8B#AKZW4XpL70`nBtds-JugZ zE*jmRRcf_X{ph0Es~C%V>vRqra6LM!95#h$d6A z#I+S5yBuMPpTVcU(xHp9%5m$YP3J!)uXDPJ(F+J(^9Rm1VRRCK(Z&UduP)&jcotz# zI?bb#ZiAyg_klc+R|^KXKZ2nJ?&DyW+md>xe(C*jjaZ=kK#!1zU+=p>ebrY^|CpFFx_HHj_wD}*7cG4E( zJZszFe_JBkaQQ)P!=a3A(0x+6d%Eq)_=TzQThpa#(%Y$(PI~(vRC7H4Mvh!4a#yWG|ILWI`u-gLfdCRx}6{`(C5_E$&#I|(y_DoaoCw;bN*MB+&nBD zH`yESm79sVrn;%KwNhX32wD>O=`d5U> zJE^SrA1>4`f4ItYA6%3!YSbw`8vL}L6F2n-YqpgEw;M~h&>#7OZ5FcW(&{ISj{L*D zXVEX<3ouFPWMyr>==XSqBzy5!J8pu4V@xu>o$lJHI^37QE(t4-wr+d&YiP028#k6( z$j5)eXJ22$_D!&rVlFhv-6o~Q9!?<`LFXQhp#yD`?PXu12=pq3bBgGSoa<3b7@EcD z7-O>O75EL>q4D+j@tZ*S=Y;v>fh~vXxq5>cIQs7?^Wu&J9OjcRfGvsOIsLv_<3k*# zNhwc``KKW!1kdQxdV_!VeN^#5ESu7TeGmwqRZbe5V-t_?k4sRu-t3WLOdq)fICPSx z&{~UA6I(9(T8Q@1lJbJ&KeUYysR-eTieM%ap0`^0hwu#H7&{cPV}B{36t6&bDJ4!H z+k`C!xF$kpm5zge#Yxq%-R0-4nl$k=6uY%u$n8hW&X$}yN);&SC57cRj;eVsF1Ssj zVQs6cy0+&Y$!1;aD+)XV%_|zCtfa6cETTH#LotZjzS%r49u>5v=U!ZZ(uDa;_gh;W5&ABTnsG6&%vT=^`7u;kmHhj%seUX1cB90{9zYc z-ppQk9{R$@R~Nt@`6$@kHNv1#E0mpWQ~}_ zhn@BiEs)zp+PG76RE{#)W=M02e!C@vN6XI!jT#RGq&XV|dm*fAHY$+#1JpzBrq_M! zT@JoJJ>ETqYv{yA<3#m&A|(J(shwB>NE#DMCje0?&HMx)6zDj~E6TpV#r4@}E3-cM z%L^ZTIj*{E6)}oJ7nMgTQ0StPuJ2yxm{`P}Ac~N>1Q#fXPH)Qk; ze)*;SYX8*88H)rIxfNgR_ z;eNR4tpN1obsrCIg*yQqsOh}&rI)%zrI-Bjxq8h%mi)sE-r-O3(uCjzxk3@jSYzEs zCn+CMH*%FPSdMzSHQ^k_l^_*OzGq}%x*KLCCg1`P=*YA{(=LL-EiEw#eTR8Z0!7{K z7P5<`Uka0qEDOPZdWb%UHgPkx&gIL)cRy?%p4(y91jWY(W3YS~Ff=6))a_Td*DiRL z3%lb|VvV2t_m-?$f%B=8o?}^v4E4(_~uNS^?bQKRHJAEJYs##SbsuwGX??64!~I&d9(GB}g`bQAs^f^8 z$jPfULo+hzR?sTttMN2i3zv+CcT>VrD|BWxj%~ZYut;=EywDQ|b4VlfPy;?`? zroWdN#V=oPK2_L7hstM})Iu?MF0VqA0aA@=R?XIQe6a}n&vFKj0vFP{S|6v3PFsE6H zNclqBz4vmNxp4bYzDR0Me%-sx^1-z#50s;567wXGpg>u9}yd_l}!n=kskUH|tC zD!L@FOTx-lmixAR5ucv^h)=p*n6=BUJKP!D?5begcD+CNRw!S*t*1ZUw!7oLg68gy zyDmqefYR@Zx9fM5Ej4%jjyCJX@+DXLMcwY$ z_5R38U+#K;tW$5-`$G-IUGEQN40pXh@;R#H*!!bjzRYz0U1z4Z+TmUA4@Crby+0IU zHAUmL219@EkAC^;Ec(S>A>8%;D1YydaB`+}=!I+fyOf+xNH597Fl^+lV9tPqgv_eqv-!1ROjqk ze<-53YyFX51S!+jA4j#)l@}e=iftadYyA;oM(GmVM>YKk?#wOBdvE=b;a#+&TB?*{ zn;%QliWnPkft?X__;t)7CIrudxm`*T3$l0I?`IVzZ2?i4!*gn43p;E{?7yYFE@#^& zz5272KbUMG8;b4ef4KK7`UUU^&QRxNbb*}x8d{Nb%s0<)fk&^8bn0~q4&fL(jD~fV zdhrR`JZ8@MMuLVcOM}zhuVQUA`AcKuxa5XU(_X60RU$|1>c=TGOgx)o7ZHSQ15iMi zOrc}23r)Zz&_OOirfc9aeP{sJg|ndrCXjvMdd`?m=o-L*#t4one2OO`Q-e;it}v!_ z=Qwn6&lFu?n^PwJgCWMxGvGY8TYQ5|DKPB3(*4G1x+)$+P6)nh0_w7z)9*JF$dXj2Jrt1Q|DbA}D^ z$1{=xW9GTU7``F3PYItRRpZ*`uOfTy5o3%j3Jq9RXgXdoPe)KOppRZTN0E5VvzaVR z;Aqd7JD6Y_5XxpMz_Y5+v8aU5FVHt=z4A3km74U`-um6#?~)vC5CR)=b#p@Te`Vs15Kqs!7@DOXXvy%j~4P=z~QkrP(#WJI-53l(ziU7pnctXb?3rN~sSeP!68B?xrx z;TSs5Hkq#{0_N}=v@3>liYT(q^{CbI`+&?R4=ldRBJ2%6pgg7jZXXLrjSct$7%+n8 z^!p|+76|;i!(;wQgx%@Wx`>PlSMX4L5D57(_c6v~`C;M_{{shPVvBmyflwSRgUw>O zf*rx{NVY_kye4Cdvd3I!Y1n{+hlxDq)-iv_r)XoDiU|A1?f?95Y&qgL=#Y+uCU$_T z>&>C#nhu(CY*)74x%{7~O}lYt*!nCY+GB%tFxj-}7JEh`%f)SM!W4xzM^Jbu2KOAQ z#$VYfE(V!l5_;_O1r9tL5jTQ1BWTk>B4oR&oj7Ia@(epJvLr*2jg11MDDuhurw1Y; z02EJP;~Av8_On6#5f=ESM_a0CMtcUbT|&1yTLTZGR}Gfh*cdDiCn^@$U%r0?=R+9* zX29j4_+XA1YfXTFWqg`akbA~qt!Cs)qw|A_kY9!uVV&EyB2}x_PK?QCv3idgDIP_j z|5#b5L9G*Uz=+2gfVF1~y>OBE7A9fadVQOVz(WEUT_tumuZ2mwyT=Ze?qrb`mYnCN z1ZwW!k!Nn?M;_p$!UIbD(nv#J&UJy4@_m&c(H$+bztm)2CP||NX~b0ejOq?;OOp~s zC8>Ak&_rWo>ROse)#`#K7ZZCgDp>yPtO9QH*g0lFd}`S@IWi&NNBA+oeho4PVJ~;g zkE#Cqe`Y!TH7sK5GLD)&pdM3~k)R@juxcWs@#YUby)DTg=fVjKEtj38SC`7q%GLGB zq7P;HUJ%=MC_7me^+=q__^>2-3+mLlc*J57)YoVEJR?Y^Z79kap)o&~6T`&xaBi~~ z_(&=^-;r$^pJYU%b;1kcGAY^ldh_&n{q=UcfFzlDL;OcY8`QZA-Y{78jxG%}v^E-F zs@|VnsVgl?SS+S!?XTn#-q$jOr~jjR39yTtzlP#gD)-Q*O(2nNd5@%P0UPNR6s4NRM~| zSyi$wc#<_*??t(BZ;(g*bVV#Sk6i{Om(J>*oaSn?vi+9!m0dwig|VEmjO zay*wh>I54TXhZJG1LN-MzSsMu8?M}Dsl~a)W354nwoMNp20Qlf`x-LaQZ1w1(FSSm zLT`lkdFEB>PPY=&-+%kRK6)8k{q*~9|JDXnE|snX%0C`zgC|@2sR{J?ce_(F-3nzcK(Z{4@l8nIhsrneb^; z%P+bp4dK({)eDkoOInN^ioliX{zc6PlB$(fyXEpjICO!O3J^+fi^VkN@3sc`fxC7KvpiY7V z>)YySPqwd>9JZe$=m(S6W0GFlXK90uhY#gRhX8CKW_3f zl7P{O6@ycwj=w>E8ILg!%&=z@o?N{JU#|pRd2-tq0OrR5>b9{qAuHY+FUR8pm#!VM zO=qL>BIh&qw`jyIKt5bJ=$%|x0B@7#u}-T?i;+q&0?|E_8^MdCSb%{Rz@1bSGs)|qTDg(mk3rP zOk5yrshw4CWENrQ{ql5ubA54t{q$v!Z?r+_mc3-KL9Gn~+u?uK1x?N$QUc`y;)&u9 zT@YDKk|}jtQwf}j9Xe!=rRvkvxF=IC`CjB?1YP7v#fO!^&9ADuK*?k-)V3OAhLII! zEiF8^t`Lqy7ah^-XMVM3P$TZSyozgNuyX#uM>{jxVY(c|8Q!R_(rFFvTjR>^Sw-2; zC6$~$=AOwZa7~2HDqZY32s*|sT=-T&sykTf=@$PF00960?0v~@KM8IF8<1t9*{gy$wRO=nL`-r`%*=|MhIVA%q0jXZVG z%z>u`|3Ccn#IhBse|o^O*>s_jsV^SYkj%TP1HY6rg;JF}Agz1AU%M+H*|0Dj(yZTO zMVIhn70LM1Y%%LSj5^kUoZm!TtP}IpD1Eu9;aW0=6(^4QKX7KG6POw4-)m;nd)KXY ztI}^>U;eskmIw7goa4u3{y;9`V&)=;7i|A;&_CcC_}DaT+}UE0^Sc|oy2*G&;O!Gt z(eZUAn+tCGu8JS}St})k%l%Hvec0w?j*_$84;E#~1sd^0!layX48lEP2dxwk^*JONkNi$C$aGoR6~5SlY)kocT%7bFOHLfWrnGbSRpAi zLq$Rw@28(V|DG5Zx`|C=2T6+IhLJInEpZ&F;Wb3_`%OS9+?&P}O^}t?uqLN<#)jpH z$uUuK(~zI=Sf2_iI%bCBu!zSx)LcX@?y5XQA88Pc1XASnq(BLY(Q$-yWbs(!Bn5D) zI5b+1#4Fy-nu&3v#;a;lz$(10h)Dr6En{TyT2kPY#HQF2nokXjhV9?SisQM7EbOE` zfmYQ;tOiaGehG&0r192MK34>HY^>OhVa-nu(g*9E5Quse4b`xMjZ+xeTIvB++cA@y*J(&i{PcITtc%G^CD5XP+y1U&FwPh;vZ5k;>vujV0; z^fdZapaGAmO##&dkfms!sCtG7BF2{xj7N5x;ThYpFm=Dv^nm~O?PK{JlaY5A5u2sF zqT7V1SIvIC-m5bH48{;Kw)jWKaz$bgFxZJ>z`J71=67Z~R`8W#GuRVnggI%V(d{3p zhG8-j-co4jip?Avw6?d6$ye{T{~h|oGcqO{^x8wzLXK-unKZwL`KzPp5k#tzf+vo7 zix(Ya9VZ2`<^t0v162lO zNItEin^dlPBw)aaNx`D@zTO8b)Z|T!nKOpWgsCIbuoV)#@Vl~^*q45r$$z+`bKe%x8wlIzXoN?7f}mSw^RHtj zST1CE2LGAkzEANFjK%HIJ@P8q#uMgQ?E5b&i za|O26Iw1IQjCcuIeIz3b=^_{~4mR9Q4A-4-q9akIT9^;>EhqrJenT($UjICH$-1fPz zuvn`0Nba#j@OLL`KvL%CnWBY7Ch40^QO=`bKyELqbj<4`+%otQCuf(Of-*cM6%-1c{|@f`s^iEtg$Ht;T2gJusA z*l(X_)ujt0S{Nku6R>nTlDxx=FXR ztmK#{(MTr|6N!Nnu(+plu_L0VI8-SS5joOzL_;%?^JhlIr-*-|0TyZ7#HVlyNwb5= z&KTH_BDxq0HU(^jCS&pX2z@6y_*I#H$J*9*0t175iXkZyWDPo=(LrVys{U&As-yJ0+vK5qzG>RkimFJhNkGegP84W1z01@U)B0CQ$Zq+Jr#ym)h*4^&^OVE z7|jL5(~xRjM1dwNs!F#~l$>P|1rl&LqFS_x0u4{4q(H%pO$rvBk&>V$h-wZ6VlF9| zzBC2jCMl4*t060V+hVNnX!UEt>NUD{UGhOeixLI6P5&LQG?EGna=>PjPYiO9LM=%I zIeevnH3g~zM@e@-;S5Pnp-&qJ^DHGI0J}UV_u8=K2mY9IX80DHF z!eSf)yWNpQzESx(Hj-O<6{#xu4O=C~w2O@`m4|gyObZhar`NAwn7LdL7Wm)?gdO>% z#|6O1JX!RMnGq=SVCmFc#MqjP?lvq~lQsDf@;=6IbY<+2x19t=Gy* zn>QP6TKvf3&GCA}Tq#>D=1O5L-;hr*t3e=0oB@W#G^~t@bGXh0_#jzEqEq+YQwg@f z$#^u#zrri#Q{0n|p(F23GQ=y3fmQBY0nZto*D$M{L1z__fk)nJVrSw%Y*_deU@-oK z;N(APL*)XP`nr9>pB{`I$2>`;Y;lY<-aa-=q~qW4fD3unpNc#^z$mkYzk!Qn3F9x07bcm1!9wvTfY@V9c8y z$Ji%R8w3)*z!(h3EakCqAf)k7TlxiVZ2z5^Y-#WpgIeQM9)^DBxTjt}6~{lxgS5b* zLEdrz0Xz!}rR*yfspVHxefiZTTvM;VZF?urmPii9&exWp(!9G4TT~4jCP&J{d2vDL zkXog*ZK#UWz;-^lu|`5wwIE>X1%$myg{hU-2oreY4p#zJB#;4Pft0hKUEV@i7`Ajz zk~+bK6nz$G3_%r+e(;LTT-09+RD!VkJp#@a|$$d9i* z@^1)3r&ean^1U}*J)ulA&q9Z!7Mg}Aody=?0xyz`Yf}+1Atxs`bdD(LSE-&(*UI@y z4J%KONXue~F)-EO;jbAG_LrSzIV}8b(8^fC`qJ`*7s$dj`k`SPLeY;vwVq@-(+M6p zhIztexMO%URU~J8l4Fm#9KIV9b#-zK*DpsT3GU=5gEdz=U&{ZOD7GRfs^ZK~$fb%w z*v1hI+!5)-i8p$$PeDCm%#haycFPaYmu=6939$7SFLTKMDM0!N6Hj@8ZG-9({@Y(T z3N+IRD7w|RV1-x_cQz9I{MrOC*^kK){5kT*5VD@Ih%#WWqVj?QY4M#%3Os}(c?R`# zP7ki@cCAwBl`EritBn6^^{U+HMH!?<_@-O0;D3kk{Fd!Z1ii1~|K*#eI(@k7NNs)W z2(o9x#8J( z@|f##XY8PV+c92Jg`)13rsC|Wae3Am<)7W&b35NJlLlEkcb`|R+{7uVweq{Nyv6`FJ8YQ#p4(IokN={JnLN9C2jq}W?blYR+SZlRkM!5^A zdZ%8rA1C5%v6LYV4z9b;cT@c(SF=WX(>Wi`x^_>lU$lmWnpPWJSNYkr(0|s8g<|2s z*7}zv#NB9DsM5*0&-as|b6a?vD37C3Cp9Mxp4)dwY(KNlhqtx7R>b75rBc(&^5$Tb zv#CKdm4?AO@4;ZT;rU(WTosy^leT`Yk_Lrl_vz`f@jQJgUyj|w+T{MKFW;T<)0y%( zR1P26vx(WXYxjzF$=|Z~b56Fn%j{L7H4;z{Pp=r zI($%SBUx@2(NjZh41~!IYZ%$OP#wRV&9ZXotS<>%u6b$SkDt}*^em@Z?dOu9JUq>A zyUO!DX^`XYm7&FRPxqH@T1`8>T82#tS6XH|z3;HIba5nPb7iTAe=>8ADZ5eOhHRr( z=(GB;Q@_bP=8ck!dM}odR=iQZEvK^$?XXwm(|qx;GI3KeU`6wX<<+il4Pdb(kOU<3scOrOjQ>1-3uApXai|?cBb( zY`7ez^`w`&znUufHk;?uw_K-tdDp|{rPrXLOnSANZQ0|g@WkG9Zo2KK0xO^2Xy>*$ z&Ajw@;qv^@nmx(G=ae%xCAHkWeJQJV#TQMlK0O+@R>yLOa_6Zid!ziQ*4pe;?Nr7$ zMYB_ttvdUU{A$8jsSXa`ecCKX)E#=VWtd5#L zzkinMg$FZtJ+7t7-S*HLoRJ3Gk6aUt`^avmt45HZ0RZ0o86VNuJD}AJsl1&)RNTCveWB4|0o)%L%Y?w?~gf|B@Onb z+Vex}NxPNLjVD(#o-WSnT~p|Z?7b?T&-ztCs#W>SG<)+hYCOH%-epE?E1MbR538fj zxYEB;2E8^{atn_+Z!W7=Yow1+tD{~Tl31*(cQ2-J+s&3AuC5BHc3Cl6s+2LV>`Tp& zvz^Z1`C)WD>ON;5@;$NeGPTMb=}NukdxCsJ8obUs>3Jn12@`kJ9J;N`%H8ZtR=fA@ z`uW&;Zq}S}Rk}0N)`ir+80v?ava5GH9l3UOqi7e-lY7>;pAOH8vQf^G2IZRuH_qf< zQq{cp@E}}1>CUq@lUn*9f03?WCYhGcgxc85cCJvb#GT2QEh)T zhk2#_cqn=*U=Svd_qoAO-9kxx$X1H%S^wsleN?Zi?WQWIQsct7YuiKYJkHKI z zD2np9+~#ZD^Y$U!WP4bWRW9Lj^S_2u!=jsgxXrP5>3&W;yLq`A@d$_qS_wc{djbEqD0|p$H(*w>;MM+zyUn=NYE*E01aUY<7J@Vu zL-)eHjA23WoY3vB=M&{l3U4BGoVO z4@fk0iMQs=J;Tow`#a;UP1&y-KSm-c_mj4WglmoF0 zZ3Xf%(^~BciLeGAL!yz5AU*|s`$me1%yGtDBr9eNbohN;<2S*qh}XFm{hz+_DsiBT53OS zoS%RBEAjp`nqnEsJRxK}zjUS4g zhUYQ~_8lh%Gr{y%Y*|1+Gr{cFRv&`R(oxh-rpY zB>@MCz8dH|hceV=%VlG;*#_7B2KKF2pr^LmZGUF2Hslujt2D_?(BzWrlO*NeYGVUh zq-^a3?L$0fBJAQyus91{rQfI)?P|has`%#4XPLJdD}*spu*}q z13S?fG&5C2R2*y{yt43;-N1MP0#f9#ouKhgxGhrgcVWW>b_Lm!;LMLH@QYMok;+wx z1c^=s{9O-oI}MXND8n!*jgd&uzJ&lzvc*5PIDqx#5 z2Zk4gTmN$UL1p5S#`=Ag+pPnvjC3O(u0c~zLdatFU~->A-RPTUTs zF4>UesM4_9CkPbc$x*GUCC+;`a;2{2HX%cTBl#C;mLzEyuETieE6m{=Ns&oec8B4Eba951AYB}L2&*ZCCX83q|9GX} zsjz5DIZ`xbf6e=l_{m;EzN;wyMumGnSVCE@KI3I^M=e)RZq|y`$5N2K^5Idi%+mQs zTzU}_3yXqfJi7Ws%M|>>2>jusIKV#b?OFFf4G6M20jZCz-;`1-P+-PfHOqtgfa&m^ z?y6BAIu_NK=TKOMmAGgbicl>msPj~ zS%rxCkCD05QuZrxl`rK(xN5s~Rqxco46Jvf1uYJ`?dxHy+lkcv`t0!!zM)3+!?1jN zsdElE>tpSOblw*)F|(yWj51=|Vav(Y{NhM^F^0NhA30mo1nSS7$$!>+@xs_H*&^!@>e zFGW>j^y?zVQOx>+V7dV5S0DUBQ)iWhB66*NN?;f~j(t1NMmyL!veOW(@WsWcp}0mn zRPtYAey%y35t;SNY3W#Pkj+^3Cup%Z$ODQX0+cWOdyed(XY4x6H-|o5hpqGX{$Bi~ zP&Ltx_}ag|5yo24hdp!!1bpJ)LlJ{ebk}fguSvSqj*z7e&by7Y(xJQ15d7}5ju%Qh zLC-F)-a_e7_`?4n=yi!KKlmR6yC?I380#-6>i_(x%&GwYEwQ7wh|&~lE84RB z8|F!FarWfzJ5RQ(RekswEo&w|756V@fk(^j`P%}2-=O|&f&Xr5H}1T!zb)|J)B;cc zZGtBd@1}Ef=KeFH=l)E2-#!6y zc4nM2C2XnP;RW0O8@vFRL&GMVh?y&R>ubP%{;QkLXqqGMtj@E1ur{@WDaw|@tNZ8E z=GmYheb{G?E9F1nuuoXM*mBrs2}UZm!#+!xfwQ1l^U0M;nPREvo%hIP zaj*P+C9xd!Sxg5llo2Y8QmP9&}&u}Z60n|Zs%>WBWTQox@R?U!2 zm$F4R^t9&0R0AgDN2vyGT?%l2tA>Ah)$p~LBC2XAeV%IAHgUhCYS`&)?C`&rz3uYx zinIO3hL>941^+(IUR73m73x4n+eQ`3=H_M87S8^{9bWPGLQ#pfRpLvbl4J(`2cr@# zLHc zD$&-WzZ5D-)(iPqRLHu}AA(A>RU$f6HkW)d;n{<6AsKf;h~)*ULZ0kz8T0xG;|B4$ zm@t~Y)#(#LoAZ)2AUpw&X#LSe>uZjscP3CM)acm^R5+H7W5v&3b&QN(aMs_z;VlQZ zrC|Pp#bkWx1(O!10fJcZdgMQ-6D|ur@VF`(YeCOyO986)QS7sMAq>0FgRLlV^3QDe z3MfGYF{Xivi>YJ4iiAY}JhZ|O3;0bZl^?YJ<7U>rVzR&MaD|@8_?u2FZ<*xJ!|RV6 zELh0;16j~pnTrRpFC+%ZO5>k5TydF#UkN9FE%?tv3>LS4Q>@nDZ*1b)!kMs$zXB~4 z7QOhmI&VQ3CcoH_atdqm!A;mcPzZaFhwmSEK-&K}Is@@gQD1g-QX3!ACd{T+Am4C! z)yu*V4P8XKWAR@3eEiP0@?Yzl58mCG>9%8oOk{08IOwPl`yATA)sR^7t@3GjW|Nv# ziHR!BPy!CjL_ec`yOJF=o>pwKM$o9OaG7K!`MQGUx*1| zZvAmcna!AV)fe)9d@Fq!L>H0RPOO1O@)cyL-r~$MJJOMxYSe5_wbHa;HAPG z<0SLlU-4PwTBZHzMm4@G2Qvb8!QY)&#$D2T70V{#C5)FpJj(%qY|-0DwD@p)>J2$) z%S*kfdq;BqD*f{x|Lxa>q9aEUe|2YyMC^uNhWx9h*tVf!wj$8BCFTU_UQ2`(4b`xM z{x%vc+i0w_jt@D6Rd+P9$*5kun|fMoCk{zv+sI4uaomP}5ObkJ9|-Q#`x8k(+35vi z{61X{T>|@JeGR5sm~H#Ty4*n4p4GUwcQ~kN{-GUig|D)GG4kFjPMA;d1$w)~Y*1u0uZ1XvLfnP;DbE6eM!hA^Oo8aVeM_F%BB_w; z*L&i;@IvYj?*Cg)}82Dtkiw1eAx^~YFnrZ<|w4>nnr6nUKyP;iPkqv#CJhz3{- z4pQd~W+r6uDl_Hh@Y_|hU$6J7j4)?hvPM+lZQLr^*sUQLJb#60jk(8j?2}-GpI~sw zZs;YApD7U3#)|D2)*MK+J|Dc%UzrswyKN5l%frnQr3>KiZI)sJJ3l2TGax{L4R6tI z7satxOUNzojyOIFj#($`r;f#MUu)aZ6Vt#pmB_223#Bgr1|05AJq}!fFlij)aM9}2 zhpp-t8j1!i&I4UHiS>iM(~T|iD}H4q)>{4AAEC7#xee4a?bb&(;Ty7 z-^J{Bbm2Mrvv6ydFV~jkt)5O*X9y@#dok^FV=F%3#@))!Fv#Y3zU@5M~C@{4=S&F;w89TTy z!312Av+$~-D~>|m1bF<2$NFzdz;8@h{H|ybn*u)MfjVoDby0OCWG|9j7~4dmf*+vQ zw|-#ii?CM?9erPZenfKd@iY9fA{_-y;0L5ej<=e9#M?F=85OGU1mA9_3V{S)j(FQ^ zdKuU;Q)a|562o$o<8&hS1V!Toh36oYItulpj4Y0<`3YZ4#Q) z5ic-4ITlg0WO>BG4S{K3YrLvrLk0^^up_WrZ5;(>zGL8DAR+dcX?Yp3izo1@Za9pM zjT2i|kn|mX_ktGz3zF1sFp|iZI}qH}^W{E5fCmc)1)D?a9Gf^ctb#1;zgHA6h{bou zE5K4=k*&DTI;4zjaf@))dt+N^^3i5&YkKl12Hg-0XYBLLO1vuwZBa1adYL*pVG;P0 zNdctSWWmDZyTB2PI5FhHlZ#>nMW@7~VYPP$bFAR@Z7f~~_QrEEwgVG+8di)1N=Oi? zz=ur=B8Yy&r7`y-v50118yxGOJqyaQ!lW`#qfTuGg1rKs2gejZqgf&TVn|}}c-2nM z^`)EUQDOPBFENOIv?(!o?=c!8GRvNVCow~#R(R384L{VE7(B|z4B2h}ZdxW7anhkm zIrd4CV-(wVHR74Ua*U!c$4S34g6m*k3p-2}JjQK-R|k(?#XEdvp}@f-4wQ|+A6kq0b`NeIIAUPgR_ggvz|6T zK@+5}yzgh)?RtM32tNal?%=9)&RZbdes)zl&5`^4hgX$2GDd61SDB-Zs|~$Vwuonq z2O#6;^NKMXZIzAtU}QS~x&V2+0b`Nf`Fq`K&ZD7E?!`EVIn&{b-d^%a9IJW3>BPS- z%Y$LP|7&nnueRdK*@#>0;{l+Nj7i2=Bfe{e#FHvKX6jTtAM7OvYDc(RQ$|8Z1kZ8Cj7Tz@eML@LQ5NebLIC@u9@a%4;_U`cAtBn1q^N(vNx z6z}iw`8p)mPA+in7_S*;Br@PxL_4TWPB8OVa%H9wMv>s~zo465pkunU=^*{KxXvNB zyXy({AhXNd!EIx@S;s3sr^1}yXa{vfb$&B`;mXz0OMw?3y7Q8F${U*t{rJVU&4qr* zz$eure-rb~f{7@YJd%k>m)jEsQYb@4-&?+`GXhn}F$#iRI{bv~*ij)D%(A3Vq)YdV z0%@d7ke=Y+eH-AWk|QLf@D3bT)4~dA#0YUmiyOQ8(xn3X*U3r?sW6$H$NGB-(*Qo7%_W1>64{^a_*;d~CuQ%KoVsKxzNYSN!~frCu!bH3W-h zyy(+nB?g;at$(nO467^wI}J7&W8-{HNef}CwcQFk5BS^)Wz!njtWmKMq+3@4p+g(( zfF}B(O=p7jkzH?OGF)NL8>P}-{#fkv3}ug8CcHexV6F*zQMZe;^4 zj9I89;J3Q_^EV$K8-myt*%~bItn(tV)s}nz|NiTLhID`L_ivsYyLz;7Aj2ks!;0_F zH~0Aj|37b@>$$j3Fr%1s@1I}O_btqBtg`xk1?7@yCY~izasLbni=xlAu@JiOBR$#=8U{7W4o3-|;lMMW<|}5@DtCzqUccy7Rb{4(Z4G#@y{YHGUpZ zEG$N;|Ar0Ww*yK?3WuhTGnwdwNr%}cYyI_7fFkkYdauH^DS0wylXo_~kqyD!ZHBb_ z9`|Nd^oLUEC@6pT4mj^4=w=tz_ksMpdS4S;knsJaQ0h|=)MOdoWw8D!(AAf-0pZ)4H zlt(wmBaWy@4B?MZp7$3v5)lu(yu4lG0}X|SKzD!lW=DFn81F_GzH!{@N_yzLidOD) zzpnq5|AE)*Vu8HjzaMmZ z@pC4fCoZ4=d$2sZ_&r}-$a3fdxuA0EqZI_CTkhSbxiTEPCt{l~m4X%VP1UvV0P~Ba zY0zYA8Pq#x@!BG@Kf|VDl-T}^?HcQ6ST55WHRJ~_FGd1ISw$eyJ{v_(3@z{AE}LRi zF@^%IVXUyCcQ?$K{q9)E*RdK@6b@G|5rc|yHbi33B&)8#_QZ+eB)1WaD#PWsAtO03 zbv9R%!VU8|g-}^H7n77J`&_c*WD1Rwmh)ZbFC|nW3?uDqh&J)yEYzg%BFALX39v}W zQOU1Jn8|y~zQ+h|M~fS-`NjdtsW7J^?$X=)9EW_N6s%Y8ifFyrn=f%eUg&mV^=^0m zEjbyX5$yNpWNhsZeTqovm?v43Y9BvvX)h;jD?cpU#3JdO??~nkC68xd-&&)T&u^NV;#fAH(s;!W#)kuo3Sz0L z8We4JEoGxAO%W}_He}~mG_;f<%Xr45pfWXXC(V*8va8azaqELIZ+a|apG<9#QuqR6 zFu>E4ab^``2K)-AzY48^VU1M4vxL`L6q+Y)@E!#OmhQ`3f z>4Am$g23k|ZQJo)4PNoP;z5TiXC};ue8YbiVq=@!!ECGbjux@-Ra?1{w zJ?o5~PJ$=Pv?BEMsfe!xtUVyQY=IcFpIzQUSlYF8PgFX=g%w-~izkj+HOM@Mq0^1B z>lm^^hVQjq|Aw$#YK5s9UL=(eOhv@lOipZIZ!*r? zgfGaAWnsY>n6U8h*9>YU{Ib(&SS|5Z-2Tmf=x{8Dl?EtTEE|16w4GCQCqbCSW80jV z6Wg|J+qP{xnPg(yw*8MMwrwYy-92Z|KJLrDba$QVs<%3IyX$_x>mJlhwm2fjFR+6u8jos~TB zKd0ZK4)|6Uh$WG+JOsZ-tL;HC8-*1QY~TbwY<|PA;SQwz;KqUW^Roph`!aSqK+c8Z zpwaJZi#xzp8R6t@t66WBDps$FnW$#^s$HsdD#SERz}fv{*B$hYKX9+z!i@aT6ZM^L zpLO=ITSL%rB&3pFJr&k8YaTpfO8`&_w^aeI+k+ zs;Z*uC#bSYre4eBWmJPqyJ9N&fkW5=8?27J)m4^&N7;$)_c)AtVV2JlUP~MO z_N6F&YE*+#jIBsas2a?3@}`&tFh=%W1A*_s!t9-~C&yt&qzM+VjjL7iab`!1*+Y*O zgY>26v_-_~s1f&HMW$-GtjyWH>By`Iiaq+U`6^QIGs$w;a;u@NhZ5UHTmrdbLw-#% z3@C$f4~(`uQkM2>Gb1Sw7ymFqGjuQax)Z25Y9vy;DkV?^HS8^agmjY@h0L_2q!^%v z&@~H{aal9z4yL**<^{cOD!${)RUMp`;&($zetgUr8F?jY8TLhOg#tNM;zt$HrBwuJ zmL%j%q)0(gVhY(m1Es{Ki&Gk5;}!xr6G-_d@JG!;>@q;-f%JyE(_G9@Wr;X;R*pgfnC zi{60g8aQB~XZ!;OvsWA`qSIGP36sBR(>NK$(e|ZB)*naY-+n8bQn;zT6Zm zXr-0U1i`bGc8jtMxM7Noj;#nucQD#69cNN0oG- zlfoC?=@6|geB3wXFgGl5tRROBO|n$Ug-i3g)wYnd-RM%(2wP9B&f2Qow9GCjUv^5%WZXVrLwj|YnC~sw& zqT!|F2YSZ}>*CuN>TtvBn`W|Ep+ zx`SQO9V(4Sb!Ir+Zx<58n?H=fLYX|w6hI6m#gc&s##84i7kufFKR6ZRVmH4d{wyo0 zl4|F?qSfSGmP)YYRb%Wl%T0y=!L8(dOsC(g6Q;QnCE>Y*?pCo&xI{w<4VeyqO!s*w zn~l+?zg5f4zMs~s5@RW(XC~8);13%`mOc=_bt!ln1dFg5#n)(yaM*f(Wj#HG``CrgHb&mGXsFCASSVWv<0)7*jV zi!f}IX=a_#IjeDR?urvN1JkT&Oa3p0_nHECPvY#zD)U`2v<9JV50&6I;B&Z+IR0v# zjJQfmUe-^lPQ?}CrCbi_fo92KntBya_Sh0f&dy5!GczAv;TOz}TnF$=Lf8Ni>)ztT z16eLyqrt#E%0a)UX$GOSK@U4bvx%ctRbus-koC}fdB4LA3)1|mpk-3)E5lH^;b}20 zw0ra}TXLDRSUE52z=TSEM`}^3EUb?I8onruOk=LBY>7?&J*Ctdb1D)}cUlWlSowue z{M0)(KCp}oL9v2nPVdk|re@QNUd5dSZ++~mQ<)1(nAOP8l#DdS@EJ=F(xMURDvj!u zxHOqv$p}gD5=a!$if1<4pfoHn%bKAvM^tIS{u-&c%y?Y`VEC$$E+!Xu^G2G44PSm> zP*iFH4))QM2pL<=$jNlIU4BI`%7q>iRr>k9)F@7WY!=GEZr(3HU8tGfwS=CtSz_v% z`!RNAwqz2%LwJFgE0&8}`i~YFQJw4sn}dmyu>ZK z0OMT2}g z&_`uS@J{PIg>QlH{MgYIy5kMqnGWrK`!S>jDli*g$15yFLKX9O17Sg2n6`b7O|!mA z-QP=L_{a<1SJds-6&nH#p=tXEV!3yO*BqXbFM6EMU8))*uM^6Qs0hAwe~XAlF5 zdI$Pf^sm1Vg&wPp?uTs+^uR>#zy+ulQ1*}xA8ggL2o6l?V@xwV78Dsjg8{QLBpR#g4m0KmKw*C4-{^xDf{{esEDLWf6wvt&tG#L#<4{S(* z4GORTR%s)JTN97rlJ(D!OYN?@q=7~+0;L)!2v}H8L%a^2?iv(wEb(un4AFl z#+`TqFa zmgDl<&+Yw&G?r>xe=yV>)y;Q0OY&r0t#_%tpND(xp-Xvv|LF(E`c3h%OV+2#VJD=X z6EBjaKE@#nSsSxUWmKz>#lfnoV<_Y_*ytF1H-3bvJZg%izFO>vJ%ZkFk2RvJOHy^# zM2Ah@b*R@x%*Lah@>>PQ*dv2|OEWkBaEkdCHk3y3gf5ZxDUROmVAaN1b-}G*3EMKl zRxuJV4CsuZ!*etE1?w^22PoCJ0R`eSjko?b;@Z|0$HJ4i0Z#zN909Q5l}*sHJfX+n zyy(sQ(lk)h;J+nj^A3}&Ae=h5e_SkNiC#Tf^e4wHlwM1_rvXrUz#aUH53)Imm!AZL zP+hg4ETFa}1GfLvyyK`79M_S&L;`sPU0JZ}aN!hgD0hAv8THn@46aHJ2w_+l2hY6& zQ#3)cIN4+}v?vA?EYxURXwV0(i{Ndk>vc5s|8A{$jw7P*?f;8fdH%I7mndYszp62$H524J)Lc|4w5SLBlj=??bbUbE#`6DPmq&T}(wj%ERRSyYacMR1gS z_v{aUA4N{Z-oh3?zIpF))De~1Wk4+|{IUz#Nc3xyK{Qy1Dfuv^bj!`zC5_7WcvH~z z(Sd!`hwQbleG(_=?e+c2*+7#TsyCg~UBzf^4rRNa{AGR59r&k`EvxFnha;zdViQQJ zIAWvv342wY`?rUV2r&|QMw7N}@4#&4Bd%!*yWyuq$`MGfA5=1x3RVa#-57Va_!SEDrIzv~)3#(c5XNm}kH3~m*Z0f@c4<;!f0$`a*sk%n`2 zj`!=c32XzA^`1Cay^YZ?O6#e|E?|lF@>*17ybQ4Of7)1eF=?0Xpnueh?%j@Z+51HKT?kZ}nxIQzN zGi=t>^b70ymE2W%<@`mBRNcR)UbH1zm9%P=e&~^~0HH0uL6EWn9-{MlR>Af!1B-zl z66~Vg*PndQ6&%s;u$g^l^0N+(WBKQv3H8+ZIZ{poNdg~?1-A>>T}>H-8XJ!x({ZC# z)X5Zcz=cqGYr}-c(ugvCcNb!z*OaNjw_H(AfmXO7c8QDgE5M3M{lNrIRj#p-Xc7%6q-Q@CsWu4(5hxY6(E4+v9 zoAs`xEw+v$a;I&-uWuNm@N)@Mcvp9>&sEY<_Yx`>A)KP29Zxezp1m+LW2!$M-_eMf z4rZ{TW+5AvznQt>FKf%g+l+@_G~*Vn8;Gf$UpP(gJF_kzQD)ThFNNMg)0GF@{Yu-O z{YvRiyTakFiyN2ACdr=c})StzF7 zmd~r4*Y=Yd``t&5+nz^`XGzv)8n$(r37N0DKd)So)Y=E+rRmN|yaB2z8teeg(qwUpT{hixzMSoo+vejH+DL#5!gkyedp!no>=tL)rPtGQ9$cAUt(!5n=G zb=wDT`I;mm>Uu6p-;p`hB4fR2B_q_i5)2!_S~FN-E6+t%57pTL?dWd6s;* zKg9oz6t;829g`i}%pc2+C%m%j_QJnw+;-rg*9H67w&Xy3h5DIvh1UKZy|~4{ejrli zyGhY1Qn-mh2)oB{f%v@6*3J-}c;|4SDtg#D#)q%T0O7@7Lc+ z`d?A^;S2s>Q3v8r>O1mtUV(PHEc!b0{%p?&6b2XpdGlY5T@?1# zp1pg1tBirmFu0%|*|Z-%Kr7a3c2{paLVs%IRo_1pxN3yYtmV4qk6MdZOYt(c@A8qa z)EK@w1y1N8$2w(hIA^yLFsGTt-)FxC{R=?BDPqi9vf2+k-e!g5{Y_v$69csmWk)l% zR?1yG!|=npNGD%sqXo8?qaB7nH?fS3F|c*ScaK3>_n?)hq?B)& znsWcn1ZN+jhby(q8+%`$?7ac*hLrEA+46WBzmem3^35I#3AG9T<;_KkiB(4{^a=j8 zkEGx;{%Fgy77S(T-E7=DD-{B`va&1;(-aHxVs;W=DjFSJJW+7+oeSBHy%4zOIU9 z$JEgM7Pt3vTD;x(;@a5nAK34Td8LSX(s5+RvXx(_FnMdVmGx;O+_!p;%jr7KS1tQb zZErH&9+KmrWU0m7vgQ7M_T@1sn_lhlc9}sE+AlWL`zaT zbAB%5vM_EK*Js&cE^sJ1=KcinuK5!|pUS6XpR+lVTYe9d7V%#K=Rhhhpi7T%5<7Ym zP+gT5tP`wy|C8(6aSyt@VE-b))*o-TIg4)kCT5>!=WjoZ88{40HiR+8yYE=Rc95*H ztz20Ytt)d@!qYQ1> zXxGs@^1`g-fzCFxt$s<8?NHoq^5K5K{%INiK|Bp^qf~+tpZqoiad7y7gRWEib!sp9cb$}VV5qcsHxqvYm_O?GcryNUyfg($;(*}qxB=y4^&N!5`5<`(Uu=nG!-!Ajj z76Wu`>271FEGu%$7aiu$J-d%5pgU?bTlKAP+<`@Pm9N2uK`{aTQhB0YiSbo57X>Am z?|#HG;I8|==0qG1UwmkCMR#r6LDPYI=|M1rFMI(QpCQ$71DMosHc92N{htm{-37wH zh$EzdH5$__tl&IkR4%sBof*D{?6?o$U3JhOuIWX9h(}sf-5Nzz+G2Q0hWSS#tumj=W)wqVq&_Yl_PI&n~yst3;`Y0nGtHuB+0m_55V~+Qax=J_^D8OjkXr> z&n33@+TbZjs2e>pKjMa55?_0i*q%=>dMnbvd5#dVbWtpr*cbm)TdYNem*k725MhwAPz-NK6-E>}sQ#35FSAQ?X z3s^8;9tWEUCj|(C)fL+R^*2L=urvwB?*eT5f-G2Vo2*7P* z)lUqyl4(VK?|t^eD$tc;Cb&t<))vmJWCuIe?>dGCYkhB^4gRGh=Q}{1mOo8ay34Vt z<3%wy26D8`va1X1J-J>oIuGX)PA-rKb2|@PN&S=JTDwvpGI8`=ar;S&op$M;A{%Vc z*|D+e-g4V+CKJ7B+}BX@mBE{(iJ7kM?LFzNl*q2>H?iO&ccQ^l9=78Z6iccCE-!p( z12u;OfY{B1X>-VN)Vi_Lb=k8A`vXTPrwt4D2eTnTp1;oYJO4BU&%Cu=9FKRJ)!BoM z>qw(loL7)IWDl`@Z_RHZQ7(*?NH{o?cuMKwM01Yg;H$utS5CWV@hChPg!`qrK*fRG zYV`~6TKfN`r}n3lHtd8*rZ9jw^_C@-D{5bXj%Nsd_}p+cUl7w}@|U_&(E0l#8wc(c zRIbG_|8kg;6G+rn+ON(xh6@+0>~`14iR+XK-#+GE?o*~`PlXrk+7Pm5PK664^1qpk zP<^_S$d-jNXLiq2dlU}}r)SHC2TlLy8?xcV4*WwlT*kE#{iJ^}8^`ePYzPh!x$mxY zz5?irSaL93K=uCRyZ`x7N6Y} z*Ww0_s@GZ=@VIDy0)bt(4b!fHS`|G0zy~;MrHsCRBQ)6nCGu5iA5755WR@l2sFva z>Ip~$UmqMJ4nlUX^#XSCpljvzsMcx+O~$Z`-@*BAPheCV0lmJ983)tQ+!q7ZLlUgT z0VX%F=rW-KwgbA6?gFYYg@u@foB}q6fQUhc0v``3uwY_5n*}Mr$N81uaucN+_URn} zyiXbEZ6%PQkwjC^1;&{?B^bbnK8=M4rn?8S<}-)6XaMByA^~H!Ovl9azx39eau|hh zk@o8JM~Ytj%%`4NV&wtgV!)5?h$gNPuTbsweK=Dd~ehdus28)RxB(gMGce_o}Pz{@nZ%lB_DbeFAnl>PWx`&sPsdHQ#6c z#E7>O|MHX%-bS(?)5}WUcq}p7a9jHD8ZWgFs zR#lDGuPzemYV}t5K(N+?&+FP6J2T8ld+#2_Sm#2c?j+x&BHyYYaAaR{q|aa8+)uoN zj;*n`g-#yJid`i;CZ362VrDcAtv(iTHvwHyeobdT#OV9bfjoSDR%qWeN2#?XzbJ-} z`@5M9U~f^-+e?)-HI~%=(o_FhLPG#Ss1QKl5g>T7=kJ;_)C8#LQ0z;(<2WyH>gXQ4S)JE$#qmalx0~VdzS0^rNg)lYZ)3~YZ<5v=2AxPKS}j_@oG& z(rQ5Q?e>WrWxPA>{NCMt55_iq;}{)Nu_Bv%mt)o-6LN+?>-yPP?Zt47!PFc{jwQL4 zz-H^4+|*xs`mx+Ed?JsHj9d1+Y9e5iK^>MNJ(w5Ksb#2+VK9~26AP}F@}Q~Xb&0=p zbpCoBb>TGp?AOjl!#UH_U|nSahr}o7BQ5UtaE&CoyLSrILY4#?h}p;rG=p##?vDf@ zH09Ygw;+h{C^45ZUg&84{hzM`k@=ckcFUI%luiBMy^AG5aeptXs)iU%_dAa15vg$L z7GbdhTjld#%rq_rpO=*4nSFI^`)*6(f2)|6G1lBX7MJIFg~C~n9@!1uAP{!oGR@Lh z#h85>|gN^~%qjW}DYzy@qoJgx6Pij>YjXk2F5F2}5Eagff!FB_4_fG-FE2 z?T6A@cOeumxo`sp=CKhn4|hSw7Jb+Gkv0Sb@w9nrwI`20+j1Z8PK{{cJ#fH9hLK04 zMSyuRDp%bYFYg5iv2KIAe*XXYDagF3;0lU?1%tLrAqS|ig2Y@|_<<0>xj=%P?RIA% zDn#BCGLVEHe&>jre|OsN&F>1_2v~*(fkwfQ=LOWP^n;%X6&VyN&~fujDtYFa>_1p= z_|%htJc9TtN%X$1ABhAg?m;9$a7eo!;8{#>5$d*;6{-#PS=YHjYlL-U)|-~>3&Nr` zWdgZj^Y`K6f$Bk*tyT0s3Gx!2Y!0&;ADeSwq8el2P#AL2cEMS@VLzN}QgW5JPNUOt zSa%PE9uB&3YG~M8(`9eZAjjrh-h(m}(4LAy|4uD}odn<0dh{9 zU@T4FEC^Gyq#tmXWXyS%gt26u@Dj@8gh6SPh8N!iGT4<1{3}_;sJ& zSkka=2|NDh$?rStZeJCBxXa<|b}ITP;hG8!QO-XB3bRh3u%nWfFmp!=o}rKM;vS(W z){G9Jr@!u6)yEiS4cZ4nPn{ehCmYSWduuxwt}6kx0VFw_j6Kx*Hqd+%WzY@yY`aA1 z9-&rjK*XN=$d3R1qzEjL*?U?+^8QoqLPoI_=85Lk8D6G@TV@;F3<)Eu)ZnK4$$yd? z^-Wo|p@CCY2-3^9Ha@C(q1=QDZoip_X%}KoQt5w?v*sCOyAxCqqhFbJkLLUvX*and zfT!JnfKI^SKF)-VQS1hm`@3OR3Cy2o8Lo{uu~Mx{Z&P<1#R9dfIb}F|Kc%wAQ`Wf+ z*#kuT-K^SqORc%1#&Yk^GujmeZ6ODxa)2pOAVjcT38VooIarokHgui`8=C^CXHF(C zQ~yf+J{iJIl3|N~|3k`+w$*2K*B8Y5HJyQkL*9Aa=Z+Mn$w*2`P>$yPiY_Te{D?91 ziMd%Qu!XbOJ^)+iWCz3J0T(+}m8PQZjK~YZB$}-fn23bAu7UMrn-NRwPtDSe(i|8b z>x;k+8B5R1C7#XP%W+msAD*FRUvFLV==oq(C~G?>zS{UNX5aoVMvp@Bs4#=CAEXkL zf zvS=W4<5M(~6`hG81KtV!``QC`UQtDPkngayjxM4^-gQCbKl~`_7gxw72DLwsJGAet zHC)q!7!o=NVL<{2#(o8CobD3_4DcL=s{0i8=XM5J`?+9-4xqpm5`wlgWjoj#K#b&V zi|-+W_E9nl`3f-#eR9J`_xocT1s!{;t=@C249u&*bKw5}S0`m=U;RVhkD3DsrpOyk?V#b~FJ3^Yb zY64&^fcl%GT+SHSH{%2ow2fv|lJ9Wmg(4w=FI64Zk3Clq|i_-W{A5<_AoZ zVo0&HH)<{PZzZg5`f|h*Ds1xL$lJHS<+1)ri3UtCcGIL=cpoufyU)N{u6{{GH@>ex zYPg19_e6NH;mP$9d$r{z5sE#=b>j2bf9kY1DW8ZPHF{Ht0>d8Q%em|g*DPdN zogg2(c0YP2?f1*}7;?d|N$gO#+N`yLHqt|=If>bhZ$kBM$EEJJY@tcQ0M_$jcEBxg-YwKklkgUTZY{2X(qamO_)darVolvE=d5+j->rMBD) zHX+!$k(Bh$6OvrNG=j-Nsufw%K`4VtLi>54v&r3m?R$fpUmag+t zJ{b0Liy}P8{){PRWK;_BQo0hVB+EtYwtqHX9H`;n$EoWDfTTwn`%)?L$9>sRl~MBE znZXz<0iD63;t^_rgu4c*I1Y6aH($Z5yO;u?oUC$^L4bFh{CU@Z3ZS@NlJzt`CCCKt`#WdrPLKOZW;xNF=HVTaMUQAmTPEy=v0Mf zBV5IN{@=u=Zv`51P=(pq*7Xae2_>QpHePj8vm{1L+XtG|T4h+>{UUO+cZ! zOj+*M^F`r6N-FYJ=WwiNsx(UE(_-X!#Q!=_{!V)>0kUNtR)5Yqad+l8xJYAkqO8K5 zVm+9PS}IpdZx~9*MDyzxS(O^Z+oh8evz@jj7)X=bZ8*i%Z>(BQJXas9<%8D}^qhEBX@sWw7-Vl-P2Mol7?siE(J! zj!_dT*Qn!AmCDe~zY>{b1#wkiLM=8OWqV#4pGt&UxkS;TL@ZHbpK*>Z$q$*tL92ZN8!E7?6 z%mmieTt2rd(UokuC|^l)9YjJs98Q^hZg1kTI4EswpjL>Fr)p>hoR5nILE7Y5&Z=H& z7LYO$pSg09qq)`(HjQGJQ#>fOs}yLK{R1kWPmz%{R;|Y{ZkY2c2tQMKX`ucDdjB}j$*%wLT&Y0OEtl-2E8ypAj#E~25>kIWQYa1F{cFBh{` z8$Yt(l3#FeS^&j?QUFspKLzPZwgciT%6E{6H zq>LI?bKSCzz2o#8Xn|~YaZ|wMBM$hq%R#1u}od zQnY_|p4jud^XY|y4Oxv*=F+Aevt*-!MeU#0AChXZK-U&2;KL<_s!kqnHf}s9<3Hh# ztz_a)Zxk|Om?RD;KQI=g<8w8?R9H=LdF>(MOErJ^^Z)7-W4&g69sR%h#GXKrsnfW4 zs(^Zh!7hdAp9uR*%k*$4fZ5-Ix&TGJWiG;^okm_8A+Kqn)D&*h?!-HQE z?U3)gngiFm#VWqj1ogBU4-Y1e9bRfko@lN&8mq!;It=pVW5X) z3oo<6YnIzdQPa;bn>bGYw9|h7LHr=+LA3fN)YP%q3CMG8CGC65W zxtEZSn^*~t(~hl1En$k&TCz+===BIm=9sxBBEzN{dDBXN-?p;euTUnVM0=71(ozd= zqOO1&7D^RD3gH) z`gH&kW6V+(Djpc!HRXa;QWu1X1p)lv&-abJD;vMiN&Vu_MpIdN+D5hLy1E;+%C%6= zA=5HwLRJE@UG0JebDqj51cJFF=LT8l2a_^h+z6MPbGrsOVzsz&A~O6ElX{ z`6J~AS?7w70Mb24=h3|@`>tB6Ju#(kXIg`QtXv(^bbSZX6lR$VY^#3fomVUqv`|@* z2S8)j0_{MM`jQ4>NZuaM*C@T05q{VwVpCR8MeE_6`eoE&j1Bw!{M_p;AJ^u_VT`Zr zqV3YdyQ2^A-XT+}AugjxZvF@J!j&npYr^-(SHPVJ&4V5N1K2&6 zMjN>Uh*%D}+@_$eHx<*os!~XYBU!@KiB!m}h4v-hwxO#)dPi4vZrC1CgdCJV1XEWX zoPCIOk{c1rX9b3DH3*YO4V=Do7nH^$=rZulKZjT#*N4o3;GeVt5Oz=U&BX2XtHa#3 z_`^?F71%b?%ff`wG*;z(gJE?qZ$=dyDm1&J2d zdBkj=yD!H{gwy<3fyd&+e!A?S8s0GA*;l43f93W!ko=fLk&nl9AF8%BH3%fcN|T6o z6VL6g_XUdGv3CS{K1Mg>68%481e;vaU{dHAySZ(VBNwRbGfi-#fJ^xeAvH|C z`<)v0B&@LaD_R}AeN<(8GmSM0yDbMmn zk#St@Q?uFCvb`EdP2qnJz$bZg?>!F0J2Do73sA}S01BmX3Y-Av7CGzo1jQ zkZDLZ=J&MOudlQzB{5@T3^AuIPEy|UJC1o8*;`1g;@t<;{UF7~gs_zE-%~Y`ny;we zX`B9T!tbBLe4{$*`l-)(E}@GMm7FjFKCu>=byIy~R3DTX?ncmP>q_VaynRZaTf+&m z4QW`GwTdWVY7QHWxWk%(-}(kE%{_!!t8~>JZb~(HmfZ2uKye^5`GjKd4g9Lv^%V$Y zGMk4rqCbS+P~CpZutT9#D6Vw$6R{q_=TNyoq6BwL4G~Naf-!o|AqL+ddQ3{`3m=!@T4^RyF$z|x@#fKg-bL9LfZs< z?ktL#q2BeERU-o7TPx%o>SK7uV^P3}7J6WTdyjiL3 zOk#c2UQ9MU){A%OLHoSqy^*{LuKzAa6GrXIn@)$ULIRq+u=t@*%MXtQk0B$CN}@ zSS$6ccDsBJ)Dc)P&y$KTaQ;YoaO*4$~{BPD{pXxv9Z&HK`D3VMFONCe!sP*@q- z2VS&Diq%4rdnmW}H_L>$stO-r0S|uoo$9r6RcE;o<7#;nkWc{(UIL^syBi6;Fbl!Q z2IYv%IVAaiG{vw!*>TpldmHT40<~d+jO-lgV#R5_<+& zq7I#e&MLiVQXg_^*a61gpRpj)W!0CD%Wp_w2M%I3iO z-8=ia`71Vx=$?7lKCC*UF8JTfbzY+)s&i;I^HuZx{b2$mtEoUw7fR$`Oe>m|v78nz;XROH6@`m0@x1-Z4oJcYVN6hvUl! z0JzzF09o)-6a!wjBOvKt*zw#XU#k%@e2qfyCLdIWqfmQYyid9E{R5#iFvGCfC}M=N zKElF`5A+GZU~b0Whu(B~?O1;z)403^h>jgACZ%vXI_@b>m z3t>>B{zf4mM+(ey9UAo}x(HYLSp+clU}8d$Y3&TZA}!j4G|>_jGAnjD@?(CAMTH>P zw$t~$eFI4pw+5y$+LY2Qdkq6&Tcas(olfpo#!Oo8Z8_HQef@4Ji;aWp3H&@#{OI;%~_7Iw)xL|Sle7GY* zxqJG(94*Y1ft?7Ry9`DOHm^1ypCCE24IBaLP}oo^0-m0Q%sY7yC3u}xU7hK(yMRC8 z<;rrzk=-`7U0*!Z4nYgAH7LJDvQrt_=Mx#I+;JOnu)1)gLl}P(8?JStTrW2(Y!E=J z5|&+u+O2ROwvhZxl_hC#d5!{LB!Ickl6c#(v;7~-VR(_|McsGFK+l>Q$+4>>~+6#Q@x?A;h zCce}salpfI?hC`53Bt&w&%F=r`FtfCD|?`7Yuxs+en8A{9IrUbh1|ui;|q%8A32*4 z(xGaBx@?|wd!kz_1Y3THZL|w!?B(G|?IxzYHbO#cKDZ1uorUl?a34HayQ#l+G3yFa-Ad)k6k=?NGpW#Et>| zpqhwr7!ZK~z;cY|8F=bAzSIbj5=)~(c0+L?zcI7GZXjVfr5!Jrs)|G92QL7KVVhBaux)QeXK6I zV+XYB_Mc|PK*n~qR19u}?oX2}@1z1#SE!S_0+WY|&*Mov)vi92P{#N9T4-wemBF$7 z7~FnqjV%kQ8VjVW4zKp*8l33lIGfk4h1JE6ToLyea0$I18pz~E+5`Vy3j>89SxHxg z26#n)`nkzTGEDpig812JK&YWxwtOB*9IW|MV%i=U(;j2#7a@$Rq4)%!Kp}0shk-x1 z)-OrL9L+RdnIo`si?_S7gMpH@{jF3}(wTqii_pm=p82R_g4hHuq*A-`6QmU6--@5< z^CYgMD}6*RQ{f^<_KV)4s91HY5w+lc<>&Dcx)GNlJ10-jFm&$gol=Esl8bO*qy62W zotu56h{rhArH?a>v1_6o%y^}F8c46C=r=O#V1BU#IY{6&TqP=vmq7G4eeOMb*RPw* zt0m8iqW^fJPyk?4zU_c2Dj>B7twT!y-$T2g!GQREUIrEb%}Klwjo2H^5oXU6eJX<5 z1J@66gMaH%5)l|Bqy?bPZEx6JOjGpl^e+ZpNSgPdw&m=t3yT_)F^1Ve6-)=m0~%;X znDq6uNDxtTbFaZpXFHde#(Gx|+b_uGjR9Car>T8wkZB18;5Z=AQ+$$;?q?9ab-VLL z>+%<^kgJYU6mX56nu{9m$TWUj9uVLp=K<2v13`0hDltR1q!9R2UpKnq80f>mWjq^p zKyRN23O79P0$oVACMI#KH^REdzsmgRlZo@&jO<%Y7~Vj$GE%rPOAMimDQZ zFSuiBiu*ga^b%bt25dmsM}*a)bBPKDfhvt6;pw~b9u6{?Q}9q9JHSE@aJYJ_5~OwV z=b6R*{;{hxEn*Ais4@f?Gb5GC$lhNYO*W;ZI1Ip(5YBTTwgNT-Uas60(^si^oPMAH z`5S(({eV)0THmmzV#Fj_@BD|b&_C_VaHHQWN^XVAI9c1^jhtHJM$t!o3!(dc!zddhv_mApRdI_#4=; zyk!kQ8VWweR4GAMuyvr$#0sEp>@X2?ZUiqj=&`K^lTP76x4xwB7ItmR-IdqLYvH=gs0H{jo>$wjt)me# z7Y|M95v?TX7n4`pnC~e+4!g6d+)TkkAic)mxLNpoWo|!?EzCpAFdjF?>$|#{&%rU; zYMe?!F<={~6E>)iiTL`z-gWZZ?v!9^e4Q?$W8NRI;OuTtJ8^n9N(xnXbr)Wp8?%mY(z`M6KH51L#(eW~4HL zsmYzLG*crL5*Y(w&xN-m-AJp%Xv6tWlOG}Y=PXfLnF=wV;!H6Yn_vU134ohN6a?4I1ponxdg!W;jueg6*w8a1W>VnV-5 zPJv@k7~rm#Ic62n8!Cr!Sd5T&1kSq%%;@3hQNNdrTA4k}03C+gEp?wOCPzROpEC#q z&Oz}NWZ-tfrZ`xy%rzpZJm?e1p?;U{5gPyU-&I+T?|lY@Hxi~^ zQ7dFX&UPRO!xNWrr`% znk=Wl#HPD-?ruA?HA4`?Y=4c03``jXDnN!V>S40BBVknpG1Ly~AR$56-hM8a5vm5m@hVQQrEoFExw7QzHX4`xyVs{z%86v1Mk z!AuS-_y86$UAo|V$AC$SaOayCn_0VbR|tPMWZ_Z3B0YXh9Kq$Co#}Ff0;Q|4`ZE~b z5N9)mSHR3ZNOKiLM}&Ep&@{3PZ4c)nRbHUr5z3M)Nun-`iU#a5SjGiB7R9fyhLN;^ z2fqNd7NE2rV}bS!bBs}nr~vN9!fiZ=BnftkZ|sj8n`>P`dto~ycX=~p;xei~zuE`7 zb?lFx^^@_Pa192&qEK1J*p_)h%;8~uZxVJ3CZGgpi8 zti>6yhzR5>R)8MU%j@Jz00rR95JDybX&ZpiLfbhXV|3)!{oFs551 zgntm34Eg8dz0ie|#1T-v0P)Oi_tF8d*tMna=I1ZpX!}qS1!dm8eJB}ZG>6$f6s)_S ze)~|6Fmn@C=VK3cCU(bVpVqHMHv>*q{Ezoe+GAh%u9y3H2+cKz)k76sCL$h190pZ{ zaGNpi)&tKZ^=Wkj(nQa^r zgGitPY2<3b{;wlG`u27vq9ZN9SF1*y4z)kyuMhP<|M6d$M>0i(=m44p@51&D1>ku~ zoThJt)9Z*};kyFxRcpSyd~FGp#Pu^t6IIyZ2UrusShYOSQdy{qJ-o2%7b-aycKy<@L*~=IStmOX!K2+gF7I1g zw4hpNvXbb34BlwXX0`~HW->{D|Nahl3qIf7UHV{-fDX@qTF{0z=?cZvPv8M2r zVH-2&kvBBVfZ+=fTN#!B;1D?aWm*OdG63j3nKgZmv7c5p6h7bw=s^!m(wMW(8f!m6 zjs@ZZ5y|i5{vH2=FuP_ialpHG%swNBznnF8~4*cSPWd!YF3koiK>9UpxliZy4cRl?-~w^lYdf2LX^9&Ayt8?~0-(j92;?ls@+hwo?sWhD zckjuD9F4~IlDLJU;!r-s3_w_T^T!%yUjDEN0-o6CtB!vQZaO4Rf>i<3^nZDd4psI|pxlX906ukVafb5EH|nI^VD0IT*`Scou4RLgB{_M4LP&O2G!0sbc-8sSSLfN*bI{!3bE|^EgV)zyX7PYRY{0X zmAo{Y)zjjls1|#iH^dEtDsVY@TUt}IOsOkyBwcRU6M3oTRwY`s>dOqLOc(1>OIc13 zK$4s&eTyX*lZH#Egwx3&oR50CHr`>lj`DnzgZY2 z=1C(n6FXbWAQXR;M+`v~wRk7Z5^Or2^;}HAga$`eC$y`yIk|)_9G&8qr2!^d36u9$ zxtHjS09HC#W0@@^RjI%*xk4V!5BP9eu5Rn(V8h{EZ?d5&ZnUuncBzGLnU2?Muk$qL zHCx(7NiL1#$dt2#DvJOzLOqvFDXqkCUMSDo^QNoM8VRmnvya z0xYwu9z*A9v{)ZWM!#9^xT&H=QPPSY<-b)i(D_Jo|j>Idn$R%4tDKnkrd2Cav zEE3*CtYnLFVW8uA%;&>4tCf@n!Q&XIW-TS9ta00&Z#QzKFeba+e9dFqX|F)rt;CWX zH?urBB*cW17!stLGR65|ZZ1{@k9Vpy1duM3hID2uD?-i82&+wFyU6I8wqW~qmDrZ& zuASHH4S{#*$tFGTaybz&D1is!xqcc950{H)|DjL z#u9N%tE612By77qySviOhE&w-_L!Y0GuckiLYpbn2W)X9;ryK9`2tyGeRtG#Cv%muhW~FQ=x?6x}99qWzNk`7t-8S3*#i< z$8NhVY6xIkq}zSF?&gyAIF2R6S+Q5%I2_Tk3kiPO-(Xrw&kg&@5fcRNP!I>h%lo$pPTW0EP zzE!Qq;RV$J^FP~wKhYn5ln?(DojeeD_;f_$W1>s*rQvqmgMwk*>8%R6dWRV>%!J9o zcXI`%)y8EkGl3TarV{|nt&Tv#KOTH|DB8Jl^CCdDCUslp1agSXtO9^})RUt>F6`a8 z_`2N6LRFUufr3|6zssOC`LkAnJFCk)3FunP`i%et>@aEgZQCxu8vzZ!eM3JU;1PBz zbREo~R%sc?jWBzF+AGv$pl+(@z?KHe^cVCWGBkc$HDRopJt@IA1diMWF<(bq2W}Dw zH82-^D9C_-7RIw#0k6*8P?ubNpV@;&B~x@Nok*sSTv)_STv*U&c)^90f<3yK3oAk4 zbRw1h87{08o~9r}g>YdJBn9K8(1SscDPSPp(1}HzJF)zj&~GQ!r*dLly;}5R za_`n6DRdEdwg~*duk|%SrxIy`Ab&fyemk~)JGOp1wtl8#i}$-q)=AMlc5RtR`8t7TI6bd zmXzgGX}hdSi$cCxEP7LO-Qi4rjuV>0cDPH62;kB(y9JUN z7bYu}auO*s$?-*ft6K$iruSOhx+&LaldCD(SfGbPrNZ;$ ztugL3#?8c{)NYG;%jhfgg4z;X&!U>8T6#>ixUAfot+x^|VuTH~LICGo(AsLruJL)H zG6A!~7+9%AExXvv8^C(+8(3=V;cFp*aby$O`WVKnvYp8OCj|*FADr0GVXk&De%_OZ!a%{zwvO-|Jf>@3x zQrS!vSZV3wpWO?2Zg4<<&M+V3nW6?C=8^g}_KpVag<*Y5Zt2fR`Ak11 z5-^MFjmeX{oZ)w1yKTy6n4`MROKwI__`F#<>erxP(A`=Wt{TX_Y4^Nm{S!CxdFy=W zJp(sxmwK)xZ?|4 zp+X)b=m_-vr|1K}-DD;KH=yi3*tPrlIh{lxg69Vt%lzjQnMMtI={bS#D@Vabq937l zpZ)yfQFavyjyISETH%>sdyAg=*>mWVDV+KVIrLBnUI;*DV25rNfJ`Qnc#^uB>i+H= zdWxcna1ls4MbJMh07;(*Aa_anzXOn;Cjfbo1wJ7DcBu`%Z_ z9PrM+X~Z#o8gZmAMI7M@e(Q)MO;V54X~dBr9;toEk$QxWFGU=8OVICt~CWIypeJCN$-IFl6QMpsO&ww&3H zw?|EnRBBYEmm+92ckbHl@tFq9HfSHF{a=tyY6PCnxavEV0GJw$nlYa|(I8+_nfWZHMN$V>KMsVaaorZg&Z+z+S97gv#J9HCp3@kl)KplmF(2g{c@t@ zjhxQhz?>`sXtCDP>Ka*+lBIgKJZoE&Msu9hB86t$HF&buD|P3!#IQKAlbfW+T3$EP zrHNG8*y5QyAZ6WZ>-l~z)AOSqeP9{b?R0(P@g<4RsdA^}t?If+)@oUzx3SupPFmPn ztYM6s##mV^GiqkF)y=Gunhk1wlfhT%Rj!t! z4h0LmF)$P;m`W{P+KMWUUw`)VKE5k~DNwrp1uHJwva!Sg`JC@RK{%X>0qmNZ7Ht>rzj&qrtbxBH@avfd1cCAi zcORT(8e~#_G9dQeOo3Y`rG`_f(|ZH*+e0FCQorx=ppFeaj zYzN02g+Ph&z21xRIVCg%#$V<5v^yRk7@RtEFLVcoF5QbcL!AX52~)UXi-gJ!c?4Zl zWavPwFz%*E2zN)c-HR)?qIJhpEy2ojFJz&3KbmyhX+w8Ict3G`sM|f>3u)!Pf_XQ` z?}aZ!+53nK+}$RduVMaw_O5NYaomXh%9gh(C1)b*E=!xrR>@lJjH`T$C2!^-RVrH2 zc$AezuP(74^AY*Nd`SrKVo@YPHUTu7H1}aWwq@`T=xzYrr@QeE31}wk5l^YH9^`aa zM4Q2-*Txa+k*-4X%OK#PN=^z`&jTs9?AZ?Ot=!gH2CM^}+>vX!`;PUjG-n052SNfW zQcqehjLiyi36^>qWD}K~Ks3*Vb+HGYd*mKxePFu>g|~BZ8?|>Ftf$SF=G$_Pr_rG= zX2HM$ur>a@n6oC(%%8YkydJlcc6Y)b8fU%%YN9ZNKB}4*YTz#|PFURhYTb5Nq{i6J zmdn4L3^tZN9?lhe2m7P0|9H%r2U>r@l1F-N9?r1y&wOD@{t)*EBaXoR1N-?&K-iw* zgJt`95)-_P87e3k5{^kY`exrRAd=YA33cc?vedMYb#!P}A?w(2t8YMriQ%}6;XDXt zL7`GZ5XTTF0DvV9`5?fih<8M9g5%qP12Ah<=;Mb47^IClU<>$FF>3%8iT1Zf6}@ys zl_2(R?pOZyk1OYkGaHYqfBe8>_T0GG^w9SZxAp5wZckWwfHun(cN^-y8Qv$Zc#gUE zt8dG<#oYTPOFX|e__NsV7I>C75D%S4{hBS8Z!Gp$%iy^$U2lwR!oza2-QAmvqQIl} z#^HDTmqSi{J@~!v2W#`og|VJH5Z2~z?spyrZ`wX@mUH&cC+q9bB|cb^;gZb`KC)vG z)S$EkgssUigbABHi1X-;o&N8>defs`d!Lxu|98K07MNoTn^@Z}|SGb7nU+V3A_EQh|y}rsYu6FosOVp>C$(USDu0{g8bZmTrxdMSP z;l@t{a1?8&LpKmagqHcOR>x`LWr!eCIL?AanDjz~-&`^0?;u1&cn)PNl_@}X^b9AP zLkQY+*PZ#st?@0M{e;&ju(kvK@uYhXIA8JL7Tde04v@3;`Sd zh1JSy^?I%w&;6)Ma{=E7R_4?6_jFQfJUZVifKlzAHP6E`n^Q|;RPJ+j(x|$~B=s}K zAT)R{xvWw7H`y(#>K=?_4j8N+eR;r0hpjwdSlEV!+5<*Z#KRsW3*A>8hA$5ohkvW| zfDvq`ASaEjR3Q5g)_8Ft*!9EQN zcFCiMB#4WJmS9RPc;uX+t&ipm9U7Il)A6R#r~>39{#5ky+v)KET2fTVc~@Kb-qqLx zP~GJZMt!2)@6tLVRT(2x$k4_)BZXhs)k8^QV(TjPhMZ@zMbI;uQ@s)1vT^h#GMH8X z)gk9bZQ;97V^!zeRt$maoHvQ74l6V=U7PEu3;d zC9G~3IOANiz$MrMpP$WD?f0iwm1395v8q+P1qcIn-d(kRR&O-B9RNg(yIX=2N<*dJzfI2D*v^<|i_S_I zXrNEG$$1^yMfExkeuHG=Yq22$cxlTo7HsS9kRx&OQc8K%hpdAt9dabjPJvRzlPKqp zDp!-7r>v7LGg8}T*sJ@4hKmYq@0yr9P}NUtM>nYaNxY3z3(mUUSpPxF z!D3Gzs9HHTI5vHdyCF6{XwL|2@dN1w_T-VMr~tnx8uR&4_3xV8zDq7F(8;!lN4`%{ z*t;%Np*_5B1QjgV){vvSm&9_U}u+H z6rfvJW;AjC$#P8?T&M1rdNDc-s!jrnvE40R{2nPuWhEEm>3*^t4ISIULZ^H#X5S&< z9}MwKkm|eJ?Bk`AeX)Dogs#7wQ`Gs*!TLj1H+E&Vi`nijOt<*^TVn41;fxhRSntjK z)*kugY0L(FW!-<6&9?sioyCk`KvLVv!WPfW* zV7FGK-oKRxYt{9ETSGjqk-6FGu#?!BM=V(+4AFI>bDMS0TG zs_6R?c}@2mxQFW2w84675#DQwO~+up6*u8K6!XNxsA{7ZIdo9vY+r~s?K_eUMQm_O4E6d^82Li%t!g18uhdP{pY`WUdh)V zk3C>$@1~*A{fIqEE|?TNM);4Baa{qOqr7k`>_7F68rr%7Hte_d9m4r1%C3N3SHMQS zU6*JJ*o}(O*n>FFPJ4~A!G%q&=pGdn-%X|fa`z~SzJOYbQCP-s`m$NBAvga92D?es z-3lPGQ9&M|$R_nRr4!kx*sDH~&C-APFdp4cRXY*SqXH%wE^AbPvzW_T-Lj70Dwj0M zt)AVIo<{`=ah9~%bFyKTZxKhiqhevuLJJc`koLk7g&CuRbRogURvAynm6OBrq$iNv zYiziXrX(2L#3XzOHo*foQ}^W5KfN_M0~i&CvIoh;07eC0^KJl}5Ce!#N`NFyXbJl( zv(DJ)Al4ZhTjpdA0k+AP(G6jEpKm9(0C*Tz*(9trr6oFejG5T>5Jlz4`}WX+=qh$j z-PP0PI|G~=TgWlDcDyf1DqB=|-X0_qWsBml&T$NSm1*HS884srD}!JfW&&5odjI^m*!-04)p_y< zpMt*tP!XZ9k1wyMH~#wuQyd8!mnv?m*T&(;O>qoX7h4b0@H}k(OIET+4Z7 zqr#my6L^a6zux!;WcrfcwDHslVx|qB91~~STIZecTze-W#chxJubKPjcAp46_O1u9 zcj(1apau^e;K`Nw1i^>xsT(h!o`oG{P$m#=m|m8s=D2|!SiHLZ4B|rRVaW;rRtCdK z<;2>}t^E_i)|u*=$a7F&8;*c2~Eh*z`gSGVGtK)a?7uRC#SWF_fN`rA$LM8-4o$L#OHOq zQJWsqqesc?;Zri{T4PX3O=*pj9_VlxSlL)(W-3Z+oG)ukkG9*(9c@>mH3ns{l>CV! zvwOYVLU{kFcZ&w9akmTcAkO3U<#^a&Hofw8I^I+oRS4L4!}fMMylowA7fe+otQtL{ zZV#WROV_G_QiV#ZmXTF!7T>Bhb7j@&QC)ixtcOprN8?yQIJg(kpJ{Or6#wp(Tj2Pvn@u_ZR-kHFexEn zSm8SrdEQ#FgjyM>Ss!ER^G{ENv5p3$9CGA=yRRQ9e z7@rpUtpFddahkS{C^lF~8BuI(DXWNL%Om7WMT82jtA^+x71yQ3SByW*`GiUvO)sCf z)9LbDREC^xlLzz~qCm5r8lU+78$FyyG5ryM5gk8$7{*Oyu%4a}WZN-=ukH^TF7X=;He}nwo>JhphYip8W4|!>+pH17 zcfFahnk|*KYrmk!cD*Pn+ZEO$p>%uu@kv&e#fF=?*H-b4hYk|5zhPqo?r+%e;QJeq zxPf!4Q@g{_W9(iOm9YzJ;epRgBb|Z{VWwdp4suud_ktcB^`fYBR9LGBe67c+=}=Iu z&sAmI3wm_Ri=xskVJ!*Dxz>s}MdBH)?n7GMWePTNME|cqq?9x$Hj`0tBcmBrJr%{?#4#1^P$7LU;5NboBG| z3*1-el@n%^G7*;X-s}^{1=2^3D_5>5SNdPK6ltsY?ca-oo#;IJ_V0t8_}j3CzQ*Js zdPM$^*S)S&_kvbou=C{jU$?%f=-2T0g*}-muQ2TR_-F3dt#0J@+~~>O`c_D)V{u{M z{;d`NCD1%A=jIKSKh}8gt`91wYuvp3v+J|>Zr)TKdTJft6kVDq5dL=Y-?&cxA-D)i zhXD_ezutnGB2$T@6$-7-{DlB{xxJdNF9jGmhGzb#S-tu#7ty;eIO zHA-Wx8X@ZBFZ*^2(81R&S<)l}D%gpiyD%n=p~HShk==PsvKKUIZjZ>LJ-6xf{TRI| zsiwWF;P!WEC0FsY@3O{UJ2l@uhZxy#+l*21-LMD!kQIxyoI<^z z0dEls#>28nIVnVkrivgk(txZ@(f~KjJ2leZZ$VvvDwUiU=GQ#hcJ=G((^d({APl_N z-J0a185h;=`Yo#RW>KY3ojk=@msnIHlFZ+CQC-DR7{s2l`gKL0uG6~O+pMb;!jp}x z>#7s_iU9SRYrL}ZRuDdY8p>1%+xYpt+a}HqrX}cT<2vgvYX~Uzaq1n z&V%1ijLXA}noc;#a=uE{6t?Vj6GV39jUbXj1hTaPK}2L>=FK%k1d-f1nviCdck4u0 z+S2ASB#Xh8h_=Rw>JWiv;6>W{@gj9?dC_8ou4%?vaVt9ux8fmWjz(NoPBJtC{qSD` zD=Tk7<|Oppo6S z<1B@e<3js{q|Ybk2#wp&lFX+8lukGXhEkfH`PbfXn~DdIkr#8 zXpwjDmZ;Gp@4*u@TI4=@!bXd{$4|&;k@xTgVZ6>m7rb}l-rc0KegVh3n}Fjq8c;F^ z9E&QIGA=2{r7622{z)F+(kkWqz4eRA+}%WFrjdY>IVy9rY_ctzrDBK_Y;Ag@WwW<_ zF+_8`@~;!;dja%KwsA+%m&?8n58R~9&LL8# zr{~t=^LacSy==Qq!;LQ8rW?6I9dSCsZ`~(1*eXOj9&{%8U?DDZc}-3;=DGzeOWzBI!y9(`%` zWBLVGR1f`LfeaP2*BtelboZ4DlIdJ9af?FF_$F?4zj&Rvn%fK`XqZKtJI=^8i!J~< zLs2yhV$>O@SNFWHz%)F^$AeJ{dZX{D9G<%vXx-FGz&l&Q;u0)+k?fRdfoJHRVsF1? z=a^qAhrW&X>M-c`lMFHf{hIC(lk{`$QPW!$6|Tt?0T1|F^#}HyPWNv%N3yj2|NiU$ zc$+R^A!NL=U6g7d=)03v@?z2+l`SY~R=AkdY06>a`5KCzZvSZiLWMd_yz|N&yA~;C zB#g-TH*5q@KiR){JcvvM|IqQN`BeSGJ3bLboPHdVV&U~6-bMkS*+|!$)DAJ?*m(~7 zNZ%x{n%>ZDj9%`#z7O&V`i8dRnYu;=VTonYYczEeWua=r@PTz&k}E`f@uFUQ86sf` z%Q?>YH~exp^!uG)?ES=pAUr5LL4!6S2!F6|qc)6&Z9noF=wl21g)&IXWl5Dr%I7PF zTftux5JU>0buX{rqsGk}+9U;kQP3dYVt5k;U$qx2_-qvsITy?Fii8$4hqh0`T}I1o zh1z~{6w^lApU=jVo1KU5;UDla%0;nbq>u%SlHY-_ z45M5WU;1{8aydRFK8Y)~iBCr?WF&<}fm!cJ3X6g**NqesCh6v?a`|ijvUD!wuc7j4 zZd|dFsvYIiMDaziTF1~LpFb(&UDm*&5YD$-1LLxsO(GxPU}1bg_EMN^kofWP6d zkr#x&l^PWp2JC^XQ%mZ53lYO#S8pRlEb{r2Lf&QBED9+4@XMy&cB1%K?8Rd2I`5_P z>OcIlPn!`7#(X!lHA<3>7-hTHgajTzjAuI>G$JKZpFgLsNSi`h21MG-Kh5L$V@8{MMt#JN5Ca2s8( z?g%a4yv_K-U#OXD+`uooK;!bxuCmVA6W_gU(+UJGQl!nrY`kufL!K1!F1&8lacmo2 zC(_DiQC^p~PQKQ>PTCgXD0$EAKc3qy6$J9O+%Eqhki4vtVGy|W_*c*C^nC|uKO$U3 zc@wrWRS8G3m^kXM(k@?RzFQI6! zyd{%fzq7`z6Uj%NciTP*Mx4EKb44yI$YUQ{;sD<&6Yy8oFGiyBzA+MS#{iSlmI=!@ zt6dj|Re{FkomF0pJ8y0acx{^q$!+ero@kz6lE5`djy#o(qL^)WSiex9%KL@_z2RvH zk)@h@3Xq}5r6YN}kwqAA-ff#B9gE!6_9o30=PJ`1Fe2~e*-CZ&!jY=)8;UH&}%LnN~CeOfuJuXQ8Q;pJb0HE!TKOQy;?&us6xQw#lHJ?}*%;Nl-A zB23l6QMZmucN1 zov+1~K8mm9olQaV`dRVhk7C8+o}$Dl*C|6Eum>AA*>wAa+yS{~5LjzZkC2lr@1YaQ zc(m?5vb+axtrvx;k8E8onqRSxOkO`ni~La>E$=NDt)HJj{>S+VHa;?L+FzvsS6<3L zK%#!%iuV5o{(+5;>?5s#rJNXVy9PeWU9kyMwDFPAxm-WTgq*))V&fy5ZAR`sGI{+h z@ABXE8dzDHn!03K$lK;2TMSyY`HQWeu;93~RVTYC7 zg8}hf^qbzx*Da)>vN1(w{GEE}hY{)$`fs%IN2R6lf&9HVuXBu!@e@Wzzg+fxc;NKo zaD}_hikx-mpPIjD9F@0qsg%RU^EDJbJ%Tm28AfOfu`o>sR5dV>%p1^g9;{gy79l$R zx}}@QPqowZqF#KAi_ysjG#Vzhz0Mi=_}iffU&EYZIX)48i`ycZ0Wwt;z=-En*Xu=fSsxA&&F3^9JSA7F7Zs*pw{MI$L!{k_5 zuB+_R)Z;b?8WHRT4^X@l)Z0i{_*DzThmI3H7}(;y)Ao9C7(Ih{vNhc{#Pz9=!P9xX%L+hI%4bf@GQi2liOK(D8iV!ye8;*evu&`sIG7 zP$Zth^xKH5~^2^WTsb z^Ip)vue@L??r0^|O__6xNdmyzh6ODW0EkIQ!}h6hlTdu@Iz5VBY!y=Qf&ZPh6SSZ> zDn_7Qk|r!gIm=1&$!d(YG8qrln9E;jf}TLxtEOZzX(^NDgr%kJylT7N5YgY3i1Mne z*LCY&(-Y6UvuuTN+Yu3|GS>C>3xrnH41GTwh;7iBD)a(SQ#;uFU2tk3surNP1#G87 zf3X3rP;(1daBv%iIK%)V(-x4hS#X-M8x>rq-Y!J&7yn`|9l%Js-5pZF$mm`O`kk5^ zP1@dzN!$6Nz+=AcoW8-OPmd?hmfdsf@j2oY({-VjZP#hI(WTpTBR8lc5rKLeN&Q=e zXvc#lM~4l~pwX4hFpTH@#C>vu2|V@NFT&5Og61miwyuy14mm*;>ho)(vp5#>Gj&@h z4(d`IcHy~7L=P&67#99UJfrYdrlW&p7K3~t-KK6)(!j4Ui5g;xuayo7Fkyp3wr0s$meLjyk=% z=Y8F}!kM@6IF^Fm>jP57tMe4QoBV=>7Zg77>F!{!*SQ{O51FagN$xeN8WL5v^n zwnGo7=hA)bd%z>UZVkFU-0eo>ApQd%yL6{6G+<-C#p7z|T4ZPf;8yymuHfcC;V+UpBwpK=@cH@@=>oaHdsb$uVda}YZ` zdxD+YL8J+T)P>0bj2gQr6w5$F_*V?dlWn>{!FrWvxOSqcp8_*3?k6f;rikC{T5JASHU*-&lMOe**X{sj;o z%wM4n-B4}AGWD%O9mz|ktkHvYfN3^ixl{-e$ue67MA&0;BVz1tIJ5Fyq?79KGBYO^fjao%Ya2>x0I*(E8I9@;qJ-M>1Rg4w2hpgQF$eSsu z62k5~StkXg~ zEQdoP**d^B@F0;+jxgj0J^abp88)L1`WGslqFM)$K>`gFUw_<s)uT`Gur@^e0R1~+9P@atvR7UdxU($JO^cn>Ut^Iea(WL}j8Rwy z*~8r-NG8j&;bf*O#?PmOHxisXCcS<8&;R(}bA_jcQI;#O|NqXB#n6*+O2E`YX#_si zU|&R1QH0oZ@3HShE^zb1fNTXZ`w+1Ywb7H<-wiRFLWCKFrG6YXJxrXh<7mt&sd(Pzg4p6XFD!&Gkm%vB zA<`9p^<>$A&51~2|Dq3L1!ey0A@KotKV{@QK(I)xcK<>Yy(9gF7R?vO_gVoK7ybf; zxa9?3@LSbTw++2JdI<8_j;w6k@MPdM;`WXzZ!7418}G3@vbv4Fy?lY))gA79QFRl# zU|D}Xc|EV@`Ck0IgFpK2U!7j~1x?o%+`t_&XRlAut_~yNl7>igUZBRzdyeJCxo?OJ zNnf!6`2vIOy#QG`{_EH*0DNKl=?>bTCs80H#9n=2A?)>Q5oqB5dip}fAI~|Gf6>&o znnR?hf8DyN^!Cc-i&D8&IxN9|hZnm_>&3e&w&2TIr3`j z|MRqQ9JJ%w(beU}jk$MHE?58UU&GR0w)DF`Xdd1k-5BOYspT7Y-=!;QH$2!cKU@#L zAK&i}_3Qoi({KGu*_W;^Z%@OQqG<(vdr%)fR8RI#TgGGm;_=wHEa3vBo_=R|k^U6h z{+@g^DDNE(&Q6ZLA9N4=Ze-Zsn~j6t&%>)u4$@Q}L@6&+pXFl*`6x{Cig)?p5vXZvXoEu3Xk@o>9Bdde7mJ z+Olsiq-WStk6&8)_r~r||NHUpr~0jBtGK|co3qECgWyHqi(0`!d~`iL>s>S}-w&_N zz0Tg%&8{;Xn3s=%Wm@KauXA}~yULHwxm!Nf`j2-{*YU0S`^o#=vQLZ8xWJ>{Pq%*j zC_R3@-7`8C4F6uSI5;WIPF6`PUL6!=G+9R%XtIvc^PlRGUpqK?Iu4F}Twv|s?BU_0 z`Z#zgowWO(_nz*~FPlI2ox#xieeHezE$u&b4|;odUgyNQmF}LEW~7{G=jD?is@>Fz z7q;dXo5l8tCqG`27XCO?dS|h5bJS{lzW4T8&E~P?K2-hcRqg4A6oy)*w%dN$A8Ji| z|FTh2^n;V$UHj4B9qj9Vbo^-7y!(gY?V0y@hYM7cJMTJjl!v>MzU<5K#hxk^Yv&zx zFt|IFhO*VFX?m$~0k69H?_#f7R<5P$g?T9j*Qb>q>Te^oo9@L+6v`f%<=c|1RXd+A zEJt>%&*i6nu~BTC)Rdz;z3-jZ+WWJmul0acp(W7pwQf_{Zw`1PB>&8a=rK>#M`(5L}ZfQSnnx9WA zFY>W`h6}vyKM#w8r|+-Nwxj7h?>VtD!;9aM9v;V#0y5{%bNBLB}H}A`d3Dd_Z{y!g0V|9$h+eHh%ubzILB%wp)y(;HR$WaTAeL zv1sj;s^#O-;NqrKx-0FXhr1O*hp^T7_YK4pN=Ky&AlU(Y+P{3RKidyAwb8G4ekhnT zSDw!YH^$yYd3WD@c0Lc3`;({Bj^8QYf4{wt_KlOELfF^&L92edA6%S7XNOT7Tdvf& zRv&B6KVNjc`1GRQ4i4(|gCkqhZjQ_K%iZtS`<;8;DPISFZ zSh`x$o_{}nm*e9wD8_qTTwvwiGHMm$peNrBipKSGziAtfcJcVm_J7J(jwcs?96dJs zrdzYBm7k@v=F6UCL?=e|Y*yH}Uz7C7Qoq`)zjHCdnry(>S|gOjKG>!YX3ef#&~ zR_=a(R(_B@MMZR1dO)o_pDFbGVsBLFzOB|^BWievHx6N3Z}tfY3NG!vpiguRZ}4OM zWeXWzePlCfA^|fBvHhgEg#=k7&mb|?3wkb6ul~gU!`jtGmD{Lt^HjMJ(ZH`{3EPDV zL?RwiOBgDb>PVy%tTiFE>Q$FQ-)2pXlO6xY90Xrb$mP7TS>WR!2W7|lCgkLp=VC~% zj}hfk)j6H8ABcFTGDXG+CCkawuTd;*UR@i7?B+IeC@NThPBK)sp!u`s?k3Fss2o2` z@(yNVA+&a;HM8flxk_dl^`HOozjAIAnd$LXsnelR(5nCW#;r;mlmGVL*Kwl$&qSk& zNzSxIiGrZ`JVK{6>Np$srdg~<Qq}`@sqGUDf2dv$r z_o^{sx~LNTK`4S@QHH9Vm>gYWbS6y`-PpEmKe27wwr$%sH@0otwz09DO*UWN@6Vm- z?wYFVsy=7VOwZh+ua&stVTPW-iq{!Ilp1bfN;3N*po_OdW&3z;r*Jv0npZU zW+5%OIYmdI^y%1bWR=tJgXSf;e^%w43Oy*rp9gSygiT z>B_()Mt6>`ZuN-VTlSP0&Rzdoox-i`}^ z3d=CBoWk?!*`^krARAsXJQ0ric?!Jua>YJPQctBT>&jKvHG*(WT~R?Q7G1jcz9CrGQi#|d>)nd>1}hdm0QpTy4s3dior^?9 z)xOWm#}x%E1pPZlFR(O5prd0Rp-k&8UTTsx&mRVF5Kja@!U~8x*OC}{nJF;;v1sFu~LdL2E=&QSv7V)Y;MD(Z`uSGj)-uM z-gv*r{G&d29gG@!%HkuQ2-&ELGD}a~rG+Q0uW`C@W(=6=S+P$zNOQzEgo(?02OgzR zy}mg44c?A_&I9g+X*h~;jf@inIKAcuw7Eik(fAy96k&&&vS)3LDrX`8UR;TJm5lSh(mZVByNvrsDqgpI}4x0S}AH=hA3D>+s4qkAEMQPWvc z8k4Ijrbgmy2x}^1{nA~ajX!B5Tw{sF2c$+D+7B?#8yshU)LLX%>`I~6Hf-ym*Srg0 za8&KYvd2X&As;Gh&f)fmVfKRVQMEvS*0fW0{UNuWe*I1`<3IEpy8J>VD#$1S2}zV0;@xXF>&d zRoDfMVEVVp`nmVal5DmGcnanbL)ASzF3L=l@@s$Ot^$l@LmF2_uL!6fzdYGr#)k3Y zZj$b;7w`O7(h+OnZG5uH;hhvkfHMY+n#_ua&Dmt_@(y}te`sBx{Z4K-5(v$pP(W&OqlC>mQ^=Wci_O6M3}dXix7 zzCG<8Hfjei*_KOW9+Oo;a8LD zXbANoqDcCCPn2acJWe9H=^+pa&=ra!SOL^p!yDUc7$s@;mm*9#f8c5Ul1FcNLW*TBB)2v$Dx)!9Z z?xyFc>Y46Jl%xQ_O33st|31AF39PB}g3L-(W#OhoalfieyC_f9wuL(N`kJeg)*2p8 zMY~Js`O@4}<=9YndepKu7*z%bpYP0wD2a$-N9&(5nGCrjFhrLmQ8G3~8Hzqf<5hU* zFb}{xUxeY&&aZb2$@VnLq2t(j>bm1+KM=AHW;JzuNp*r=PtX=>1K5CvAp9+CH#@^4 zPa3%=ok!EE#)I_)Uwxstkd-iM!(q8}Egep)RMi`4_yvGRn#)cQxw zFs>I48pPbn-5*+bZtzccltg;dXdSueH%BF&~4I9Sajy0}O(y2;uekDCoXV^od zbaGUe8aUOdR9Xiw(yUTJ0&+?v88g?UQi{h`v-CnlxVhk$7U_c&Y+o8Tv87~Z98q28sTvkL#XRPU zftl4tF-b|Ddq`)_HS*UDs}OyMkk=QlnNte-8Q-1zh`~OQ-HLswc^bdgFE?!gZiYqt z-y4$UM*TV3a*9})^J6;kTxLgtX5P5VL??R(IzV@Pdyv<&2_`d8!bDrph0BegsX6Iy z#sbT1N4zJ3tA*(+(^O}TrQ2c4#MJH>Eml+o1sabtK@+^RG~2pqcUCD4_@(j-P9~hB z89U%s+^|nu00Gj%nc%VTZ^pgEL8k3BtkxUfAM|s@ja%X08cv; zJrS^3xgKA(Q}<^#vXk_ptsKWkv6;+X6E6|UNt%KLOTl=?iWvH=(mnKTmYVa@plr&j zw8CWDKP|zH!14|_a1(h}L@s4>^vQlb#@J#V1ALseFBN>S>*6jntXk-Ndgx4g=tz3# ztV-@{kqfu$V?x=gad|F-6t7&vw})#7p|4yW+2*(h5KR)RU=Q%R5pb$8eEU|>$#{>! zz>^OQmgsiB)SN2wZjTrgt6DF`!MgeL%R!T1`Z&OZ)9r3Kd)NjJ)QimaGx7T(yhYV% zin!{++vJu@+5(GsUsz1q(&luaT6z!-&;|6Gv%94~q`AQ7f!| zUWILj5woLqU`Mf-Qz7H%w^J!8%WSZ*Ma}$3iX^VmiXsmYGl*U^7Fv%RbQO%liPi=Y zUu#B@vL8D=O6;)Ri&&yZ{&{m~9>-3T2|vo_8crv?35R=;p^-q8iV7k4ZtvT?;#*+`CF_TzSZ!w-<;aY2`eRQ5yZj)CI7}Qjq7xSE%9q+`ab} zn+nF+OU51pPQl8RVDA6!e+! z@f=3D7DZ^z%N&(qZk9vHUmVp#G~PlyuDSQ4CL4=l9HHFQe%!IY5uT-$I0N6=6kN#H4cPI!2nz_#{w&!{=mpB8fi#g0Xb6qaL~`Z`Ous*at-LPh2#%=3 z!=oR2R$>H-4K6nh++io>oQ*6Q;D}#uWmOy;AzmiKZqv(lPKdDH%CacP#9050y7}vV zsII9MV=Cev;!Np*3+rJfkbniNl@OYOmh zCaH8D)Qrc#;IlZ`Voxeh5X_Bma@w=MQi|0JzrKK~IM_p4Cb{2sCZB4PV?L^|sNX9l z439CZzUozH$UO3ftriJ^tJTp}8pDl?V-q0mt2v{$72qewHkW(u=ofogOk zxgZM?TGB$8EGHJmW-ArVk>F*NtS45gaMD75^?Al!zHKCcQjrCclgh=25+IE?6bzmj z8w&-osYEG0L~RMJnn?(|z;qyJO?_giu`gxFTUw!1IvNb_Won59wm>*j;y?hChK+*) z&vLb7Bf~NOat0fMi4B!TrD96MahHrygA-#7UD&Xk6$3tyTS6%#T7@iuPv{MZixK%Y!B#QMHp0z> zupN&ffhiQMlPDEb1%iu@mE_V=MIG()oUiAsXKGk*g`co6K(dipT*#^h#L`P5h^d4J#f^#5h@kSWA_5G|_Xu zbA$tcfW0|63c96@ypUzXj6W5;N;YadGC!P=9MeiVn#eidNy{8J9lUBXnh3VAUYiob zhW1}?STSQ9ZN#Wpl}U3Y;NMIzo63LsTEk|GVTvlgXp!KML1m8yLRVc=G$S!=&%s?& zf3ir$fMgqpFQi+=V{u0Mlk;ZF!p~>S*z1r;3vGZUGA}&~<#%0Y#JOCA{HiOib7RMQT3JkLRC1?hQ~sNyi;L58 zF3iIRKP$n;#%}$XFo!x2)doLm_(}JF5fesX_6BG%W5u5c25X3pg@D*fpdU2^S=ijk ziv`0Aizh(XuE&r#=L=dI@}zN~BrR0_ms4yus#R$s7DpA*BHPUW7AROuU>pF zkTHb>09*1Ydj5{+``0YE4|dDp)*h9ga;n)O`vjHV&717;o*6zH7*k^fik(DeBhuK| z#;yq-s5MtgN4P^=)*^ljXpbI!STZPm9LZ@ibEL39`xBy^>Z*lAx@nRzOLRk;)lxk` zb77)kFw|gvSX>N9w?*kQC5^YyS-XPVMOIDoDc@$P$`B(+pHBR|Ak26)?CEWQ$rc@} zerecUp;m%fpqmhD6T_JVap3%4g(Nnod`^9X2CbgV(h@n?h=QUdC2#w*fOIrYb&!|P z(5h1K6fB+^Bm4S1%VhRa@RR{#hT?QWz*SOuBrVhV+Pq4#ZcW24*iIIy*7*LkV)8aD z6{T#crt=2%(gJCf{o`NRSwbZ|sB)=1*rg?vD$R$#K(Y%TWV}L9AMzG|=r;QSHft;j zG^|3CNw&kJoC8rrmfc87X{CY0{V=O!aJDLtIoM++K>F;SLlp+HSd=JKz-6OMnuJ$M zl}A9?S5BQz9OP4B*AXc>@U1_^osM$w$3mi%J%jUXz|yGfaZ&D^n#J#f1j~&R0Tqdo zt@P5AL;!}(l=EhXVeE~tn!>H1pB2KK&AmF_%A$bMvA|~I@Uzt zM-rr33@IK5Op=Vlv7@mGQ%+KNmJNZ_G%b4Ww~o@g$;59blIb#^1?>lCht1%1kw}*s zEr||5tl36$uR>%r&@ZVDL$sN&Rh=s`*V7stcYt{OfVNlg$?gjB9a&F%|sOieW6dy z0#*SjB@{&yM0dD|F0%V4!ZFVs#W(11s4E{vQ?D_hRYHGf(hlEKf(>=AOfd*#ul!Bn zI!Qj{ifSRbKdhe#%l=E~U>GbDwhcB?7hb?8A<}^mHTUChIWq%R?IgOZo#M9+09OQe z)$LG3I&6qk5rX64r}md8l!FEVY#eFua)iEa!Ko?B63YrpyAf3p$i`i;iKr-0&vL#Q z>qV7h7*3QZFZi-%GAz5H;6f{ky)0l`4b`e5+>GeaiWrw1U(=aUN6jWlnF9#k`_~C* zzrdmfHKQ)6IU>isX>q@ym4$JHH!+qSCYS0=xj!)$d?D@1Lq+h zm&}gjK0ziNKt%8Fh6KG!ambz#Nr!3{)J7rNSS~Dz@k32GEbLNH?gk8LilXB^2$2uS z$3tz@I`->{5_97}2$K!~QMhFeS0NIC+H9(~9s5!Aiiw$AbV~b#Sc{`~{f2TCq5+*h z&3wooc^LRXLNu$2Y!Wc|Ac_r}_Wk)^m1gIZ$x53n=bdsZwDj#jjcB$pvAE2Z4m0^| zaP;j^O~cqj565H!s^mA11BUL!;KER%gJu16^Y7yV4+DaWB(@N{HD%Yb{X-^Fw>}Q* zwi?C?%eDaA+`IgzS%~nNlxb>K35p>>@#3jq1b7tzaWOF@KPrcWAgZ3n0au?>>aZe- zI+k|R`4c7xcmlRe!_kH_QS`Y(n_6qv37xgD$RnTVvz_g2@qU8@=9s7bokjwpHey>S zFW$WxjsX~qcl5Eikp+ng(m{L}KCw;p$tVICk3$7%DrZp(c(jfA`e)!GSrY;|v8^;Y z?ZTkW{E~JNfv>U+2!r~iK|Pr*Ghq07c4kxmdKbx3K1S8WB^&%!P@mK=W)1Wnc>|`8 zl?+*VIP!wAnQopmas@QhNhVGq8WTxzF(_d9c%MWv?IDa7A`h?nG}@_r2}KVtmmJva ze9?C%@$w>C>-r-`533mRvsy;{ZKCEz;HF`l+4ICZ0BramF3362=lJ}S7dd1k%!Gr2 zJ(-kYqZLV?1z;O^B`>X3!jd!G1WpY{mSXTgFK|ZAcp_vGkC(6~m`e&;-kqa>$~4lS zLkT2+a$xcOE?+j3?EGL{@z-S93^EO+OPQ3wR;x@2xe2orGusqk(lB@-AFHGQ%{GOT zj2C7igD4xKhKd#eN*o$P;f<9mh{pnvy&^V;qy(;fnw&M!xj+!ew6y%E$Y1{eUDi=J ziFbk>(Cw+53@A>i2!_1ZBuNIAK~#5S`Y$*kDqBe|Y!`^s+UBQWB|sK#T4yu}9StoQ zHP=}>VD~I$S3{~c1&JlWFsC&HqUOv0rMG!Qm2~2vE@dTS27^4>cPh({nN+|=2ss;3 ze{+4fH&V2}&YpCq%)5&DQA$%)SC>tBZnsN5$T^pAaA=6vfge$S{6X)DJ&<1Un8I*Z z`UzRYkM@}1F%g|b))&#Zhuolx&i^T1T;MkUoWP#VUltnz<*iZg-}oQDSUsa+1dIc< z*B7I6&6x3Ps0+MU!5_LNx=o*EP`}K>ru_6@SHb${WcP%E#>W`S&(Pf>Zvyu4`o~z0KM!B>N|Amn$8IlcMx5l14NsK;< zF?~t)4wH?aVx4y6lNQ*8s^rra*e9p>EyecAqrQ)^e1k*wlP#X$(8J|R7ud%s_$tKq z_NU*Dv3nBZx-;s3n-sCvreM@wQEZ*X9-i2CE@)rO!k9lM+drj=J`JvYk|Oz%6r9t% z#co$poSbQU>dDV8v^mY@6&Kkj82K9F`36s4!d#zepHbYN;iQ=AM~L&=9cVw>a56n4tK8 zf0IP|&`9kC^H&P#1@Th~;X@z09gvTj|B**6xDEJ$c(5<;yJX@g);Ac@v!S{-{Lf-Y zUx@zz-!#t?hI#NUTxmJUtZ}4=EgGXURnDRe10x)`VW+RdV&6# zy!rI#e}wKo{+QZ(guA0KJpGA*{^_MUrcc48&yUSLpC8Bi-hZ@~z5nfJ*!#K*HGg;w zy!8g&3*z6v_Q!Z@V7;e%OMbljQSoqRCe+K`q2K=NzrcOrdo%n9d0zSb2!TD}z0p8y z{kR0(`d4nbZJz;G-#&n!s`o~8Z!f6tj^_*iZffn)hv@d5cRk(v^oLs658>rx_8sFR zaxeJHkL-O==^py6IL8Cbr&0D3{pOg3ZYtQyynuTFrR@m;`Pt`1_jIe*4 z8szwJ9l2l6J6~jlbr z`nvBO-y2VA8L_GTw#?yQ#diJ*@=sETGdkg+ESz3_gr?}R+ z^p*MHU;hz$f`6$acWB<+_igQ*>kK2j-q-!F?#REUq|ZI+^Ri^!UKaT?J^9$q zVJ{v`BBHZoWP9z`nYiz5`bC2F$Xk5m1OL0xl{mMbx6!A?hJE9-FQ4eUJ)Hb^N%Am* z>%$Ghrz)2uL(#wThxc^3e^Z%nRjx^&1<9jMtaaGm4%|=aT<_s_I;w4g?~b2s&B?u{ zr2ag@ViVds$NCl&QANXau4n%WU7<_zRM+{Bw{I@kA_!jnm%8=4?#DR3(*@7O>~;8d zzV+2jG17Lft-r!)V(7A*97o2kg&@21I{&#nt@gDQ9gqD!Ih#vogKEw;Gx*_Q?KmZ3 zunxv`1DAJkN(F?cG4vAe&yb^OJsnM((`0jRy^ zeZD`uJ;U@hx9Kw4T~bW+eI<5~+Wiw~esp@P4JNQ#A7codv*!2fMt`z7)ZLViZ(gf= zAUIf3R(rj*cJJxJYnQDjSbNW=S5voLBvXCo`FE$~|4441F7{1N=V3$tsY>@Yq;c%- zI5obKUJu7G1i<;ebHC2G6%*|HT#6l(eZS%VHmcn@JsP9^{EIcxH`1)w$71_x4(cCj zIRuF;me=i#`Y*BT)$~O4-rH(rr&SR1CA#I6z;w$l?X+*Km3MlhC+WM26Gq&z`sEHmv(35Budm3@O`5+JpB+(W`*IOx z>U8ki6Hh&o;NRbGUA_mqJn!1yJ7Y}u>3^}&u~fh3Gr|MPX7`^y;$N|vI!GdLkbGNQ z?yl$kW7zAy__Z*5Q(v2RTyX9Q(2vd6w0VkpVZL+1PjAf6=GaUAPRt~if4;jN&xLwN zCOwq>)x;e54mo;$G*DmRSN0dO7q69^AK^Df{Gj-FVTDho)bj%p`xc?oKmDBqfE@dM zE9wFn_|;)i_1g~QK{=s$$BE(K2zb6Or+u4@clOibS$?XA;t{ZG_iu@8dWRls&=gtp zK)*2TZjtPt`t8_Qy0$U`6IVa$ckWftM`Xn8>sh{h7|#-quFGaYlEaKx0b{2*Kh1h z{w0MA{kcO$0MtXj2&ZEb5uTR%pjj$bQ8h<45;{CniqP9be!}H_IX%FSY=PM~i$c>Pn!Dl{ODKQk zgv8F8he9*+ox0lB=T{DL*yGJ*BXKX`(A^>Gthbi6PpqxM<>{w{y&zNI#CH{Q?tl@G zQ!&xgC*`*C<_zrwiW1FlVVpgCDHR}<5+e*{?$_s3-lN*QqZtW&1}^6>DsaNcMn>_4 zhrcTgOc6r7$2Za!c+$Z*fm-ULXcbF6$pfChzlkfl?u)5)$OndkeAB)4x7G zAFTQc>_8}}k}HG*1Y<07o}3#F|9ftK#KAVxYdR$i^DY14#XNvBoy;g6;}^e{Gep|w z_MpXOb8uq`vIxY0b5GfT6++J3eg}v5JGUe_)dJmokPNh46y342lROM1CJ~$@AtoWV83^d{uRHu3^hXw3-j8XqWHUf12h=<6Uv81=$ zM+ViA=5_GoHp+2#NfwGizr|I42Uxb*MG*(CF*&?Wf;7V7lBYt2^HeZ5lW_7Ed=x}? z$pIc{o+a8Me>EIf)`U-9oNFH+hKuAIo%~ z3hLSj1Ps)ytHz}18DQqAp>pXkt6;vX<{r4u$`KSSY8g#GrQn(8-MAS#f}i#23j!1c z_uD!g_e_}~B@imWhLUh%R<12f0)|oAb|H~h9y%7j>cMfU08t#p#f`Av4e=5)156m- z`V+R0%0havwY_i$@)uhW2HC#Qh>_%o+j&xt>XQKm0tQFRYph%9_ScY67vyBJdf}Fe zc@@k+vTlxcWIbLd$lNT)ohZi<5SrQ_YGr{PXCR@kv|o-L0IG z62Y1~qvf@@rUdAe_4F}g`RnbnVwsXi==sRrfCB)Kgx;GHEM*3fSrPY1 ziR8wa5zNTx&H$h-xH^V(-g{cj%1Cr&!V*!N9*SGwx{{=y&+u}GfnZcBhJq@a!(8X1 z4qJ|d3VGr{8a3l|Gh`W!S!FT#B3nLagT(yes$9lyA7->Rag4qkMD2cA3@Uq>1L?s^ zp3YEnw4ZG#dF{~5h0^7fSZ4V4rLc|)N_jpsR9o=yl#L(cypiZm26LhR3+;l@xlanl zb=4^Z_mVSPcCVD|PuENHS(v1w_-)}yW{MiN>V(pj;{~?C#cyY{9rR=pb<)$JZj={| z`^hwElw3Vk)UL-WFmaGBeq*s)w7C@V1YS}_br3_O8KXWjd=Y83$T zzJX}f$;5+fFeKb@Kc$93UwpU&W(99>RA7hMO%!Tkm~o^cm7mXAE{Gm;gTSpKUg{DO2LfwgYgWyRSxt}5I5w!ef6rns8>?}JpUT;!v*fT| zXuB^HdVCt}^hUAb%fY#_`$dLzS*v!^8TF617kjbxKOWE6tA#UR z1mSz9b{%&Vs%258qae=-c8rcDjc&V$!@=|cGMlW~hg>Xz4nnv>_{x)AR&)Pz@lRrQ zBzZ2wMbeho zQoR)YW?W-LZ3ROdvjLe*W*OArKwSU&zO>n{K?`K5pS}qNYFlnrR44~#E`JRc#HV%JbGE~ zffmiQhH54Prs8n{CjuHF6clOAABsl9SQXIc`%b~iF{0w7Gn932Wc@QGT#h-FcGaS)C3#Iui^)pl2i;ef4x(7x%@pd*K|;_qMK-yBqSkADS0qGtlRi<`M-rZj>G0 zG$KCpCdq*Lt*x7b)=(8p!zMw@->EB@AwGjFoB>fgO;uar+&WT!bT#E3*wvCYed)Wr zn#HY;Qte0*M&_=SWw}eQL$r#kOHC+=9msEcRB40CVyHq8Olb;*#7WY7e8iF1q^3jQ z7_|?=jYBW9o5Ge^%WT|a3CFYduF{9b+lZ}6#*eQis4!l;N*Q;;)M3qDG$eL&Y+IWE z2j>c?VNk``1@lshj4W_hl1K3|6jx%>F)C#t*MmJV>`M31?wf2~&RmoXc&RROR1q3q zCmP6Y*>H6#(NsJU>cK6((#lW(V-@nUBOur9rJKo0o&E#7*3Ay)#-U?4z6Iv=hL;7=#Gp;LKa_aGg+QW& zo*4{}+u#to&z{Xo)*L%04+VUBHi=EKgj8-1P!uS#n43MyWq%ztc&@~Z10adcg$oyG zE&*K;ew)XQnw0K=+VK20G_7Tg4I~|yQV&`yJ(WyjdJA%9+ipJYlJXMGBOkiLd~veAKDeZ{xwKRUQ6pKLB#~-dPGj!h<}E=aJ6n_AE7RRl{`*az4GuFdp!02_r4%V?;VjMOk6174w5|ctB#H?!Ywn9R z01Mj?Y6+tax{%F~=sL4pPcxh~zO#lMcmiNd9C2n8@oCe=AKFxFK1rkvOtGV_0y@sP$eBX(DsqjK zwMHW*j6Y>jmZRy@6*tl7-e@f}Eh2k~cYK|1u$2)Yd{=ou)>%HpsaMTDcv8ii*Iuk3>1!GWMUffOCG%RwrRlL|&_MYOTOVh!Zuqa1(8vzi&@r_YYJM@7?fX)A^0FHN z1mF;qYBX@?nS=7HkTcPQcvtn`h)xz*IK0+|>hLF(xQF==(;4uT1Bw=_)gxW~R=f#n z*qI{+f~P($NvV`K?jy}R0fwOp;p@bgKefY&5@#%ptaVf;N7|GG`zB!CI{7daopoIm zS~*(X0|~PQp+{twp-<)Mv|LWuigcuPTzo@a+i7IK(v-h==PCqKy|s%&<S>xQ(efgS6G{Ju4|!IyDp^zwptm%KxeSoQI7axWx3zkt3N)Dpi3{q6aX&5m`aL~^ zJYP18tC7Z>C%M>B~@m7_=f1=IO3UpGAXw7VHWfmd2{v1xiHsb zYOi*Oelj!45afuHi(gB^fLk2M)(b>43l-~a_uvefC>uhmbTWB&_ofziZ_&!glPv`dSziM?h_;)FEL~- z^NytLOHYB&LcQ!%1`Z~y^5|=kxV06_A^rDDQZaS;x@|R{>Ie`U3gQ;AHVGq|`9)nC z3YWlVT?1+w1%J`7WHQdg(PXoI&wDeRj}NY;d}9KT!}>rd^c~DNp0dnb(_CbC_9Dt< zXTmP4WHsmRna%eG|Msk;<>wO(wQ5t#b2l4@4yQ~!*zFW1L~_UTzy?AF=2)W>gMK+@ zQj0Z~hTUX~aea@Tz8hn4Iwnppj-0aQ`^>3!Rd}>sb|c3Yx;oVu$re50O|2_q|Gvud znqgAi9tLbbDb$HcO=-T-MQ{>cZZ#cg0aHc^{#F^9(rFQ2*W;L4%1pO92aZ}y$5v|x zY@W3O>G&$@NfI*@;SwqELlyla;T|y5Qdam#qWeyc-#%KI_+7+ulY{T@9Y!zI>7QBx z9F1leDAt2W(g3KEd|jQZx7-ct>iqo0l-T*oF~C^+2lvFzo!GEtadWuSA0)}d46D{0 zhKymogArM;Ltx!hl$JtrJA0L$a&|oT&HBL3LB|ib>KmAH9zdh{fSbi;7HeiBEUNdt zVZ%9JZ&-jP8LGHaRT%XjNS@q)onb+`Bf%HeosVjItzKDEvc`>q8jk+%+@->~xQu>D z5)T=H`|8mpDQtqnKQjCMs1ERyohb^E%)V)4(4LN{-Y*ZYk7or(>B&dRtr zjU-dhMLH5v>@fejPq1Z`xCMAixB}#m!Bp$LT^puf2g4{l9L651T#>AVJ__~E<}0=| zx%adX+%tzc&B}dTg~};n1DHhoIZ#~yoePEq{lMVLpNQ5j$5R(?BHX_Iva@A%L1t?M0L-YSb|Za<~W~Gu9Hgc!9rAQXKN8e z5^fy*F?a3O;O5vQ50lOr8uC~*vuQ`PKZF=2!qG?*tt68MRzNwIc3w8zr$ZaPhev=l zdSKvS-dzM9C|s-Ab)bV;QZ~hD)ZUOw(O5n9p^msq*lojrn=~uC39hxSXz!i286*#l zY%f+P2=PU-R>+I5Zd>a{AOqtDIr1Ia-l8lU6SGx%2&W^4Sz%|kx1#pgYN$aLS#uJ) z0~Y;LQnfvPvCMR~DiFm75YkaOlQ0L(DWmSGR`pCsOTm^=GU&U!)Ql?rBU8igr&XO@USQ zb01z%xfV^_k``W5b+G4J8?}fx?9SO=z6$N{HXy?E{DV;%50*(0i;30`!|c^xt(j4+ zC;fl&x7Kj!X<<`Pd-!mzRINW9XgtbLc{7HvDVq(UjtLdZSCAexvwC5cr+b;?G)0MD z2q&!R65NiEsqo@QIYYplq=>LuE>rqGDZI^Bk15lR|JDIk>!y3IfX%82)=AxfgaSN_ zAsTLjec23G9xu1tJg1u-uYWFw|a*fI;Bx*8gw zL(PoedX&z2i9rW>j^hUM;`e+d{*ICU?B}QS>0EE zXswb`SMSOf0DZ-(t8hDj6Z=aRQd{_(P;nD&%IBbC87{P5wjOYF?zWwhwHd(UV`N+c zYyHD`W>d1fQ=wQ<04?~cdd-*I%%}Vw+*w436}HjB+HnmwYq}6=w4IOA_DAcQ_+Pl7 zDcG}{R2z-dd!T$f+R0|TU*Qvm3|4Gz2HghVqD*;1LMKBL5TU574y!Ms7<^%j^a;=g zoAV|x&dw|!{R;{B$}2i6q;%c9LTLVQk51u$BLY-ijtE& zci7t83$EI!V-=>>*j$mNO+4LJXP#&F~)DE&#YB4j@Bjx&m zK~)0L(Ve{5b%Pg&A-c_6c@c>q_HpXx*M1h{af;>3!<=^d=DaF{hqeXoJk*S7sAroq zY{O0+gFw;nHuh+nBoruDHa!8r_yev!kLT}}2l!ueyDm{7Lhw?xd&aHG2H1DxO2HBM zp4mp@@~^UFWKSwXdH$noC}Hs%y7+~DEt@XCGbP-$OlxMd4p!#fh3Jw8qux0X4Y3n0 zV$DJuaHiS%@QmC2_e!+j;OtAl7rJXR@LjW4R(Etmm*#OUyP^ZOxEP9JtK52QluxU8 zeQcFDkd?d=Ym=e5cf`Ymw_Si{w z??9diUZBcYCS}#43mz2>ScJPBwl$3;VX@9A1ktM%W~fox>#15P&RP*L(sIPqm$Wdq z&ryQ_18V86*SUbfL^tz-`P*AAESSi~MTM!?eHr9gZNN*h5ZXCkOGtY zj!R!oTmk6qSW~w-u4qPweON{ZvQ7BNMaz@*x^BHl3@dWHu`uNpYC2wF#Qk+iEMUIY zzBP37d7<4j0`SJQ>7fkMCUh0FhzeLCy}uR@Y@44l;J{V03@GrCLS=BN)1^Ha-|_(W zxz*TBgku8Nx^Fx?GBy9X5fe-7FEWSyHM9B!XF-M<6JnTE@hr?!A%@i)+{xV%qind4 zFwe#H5H6pHb_afnXKNvQ5%#V)*dVmZGj5(y_spj5MeO_(EypuDn2T%~9%*(bm&bAQ z!BT$=TtV}9(Bi~Zr&0aQ%$Y&YeTS%M_s)`b9z?}ES5-_7<$0ls*4Iq z`}#(gfH%IB{b1M0acJAH-Sq7gsKO!T9ZqT-HS>B*qaoK`f7w~om`e|y^K^!?%LrN< z;Mx%56e}0j?G!r7JJW*tNe<~y-B(Y}%<_~N+~cLt7m+Yv{bycKV1m!NujWAA@8wuq zVDe~)6joJ=F>e`EqP5W#*`9e&~ z;z|iGGIyk*2m*13cl~2=DdC?*bQBsY*99R95C%BIDf^Z1n0aK-WhLjIIwU7M2PQ(R zqQY>VV8^?Ocb#DI97dBRx}z=x3zJ`fW<0 z4nqi?IgF6#MmDWJ{iN|=$k@9+-f?mRk{M%|{~je_@BNl>JRJZjwW#N7Yi$d?r)0#p zGE+P)JHlJ^p1W{c39k-xEm=dKk9c|{IRSy(cpa0zwvs>Jxngok1PnvEV@!qpv4-ZK zd7qm`7N9k4-Wtx$084`Cvqih$kyrgmY`B`s6y+$)2dk!n{@bYsZ)}Ulxn7hvXRz1G zNYR-vbdv{@Z4M1Ng64gA(ujqDXYyypNKWw^zxsQs+nY@4AsY`8oe5{05~^-kz|hWI z)Pk8|@fDk3ISX+>m~7_Z<)E=!)y+)V!h^-K876dT_+!WW%P~iMniY~^SqP5m zs_Vlf0A*ZSMYcoyt{n@;qW1-CCUa8&%G z-mh5PRvrap#7vFw*r0ys*8OHIsFP={gs0`efZ-ml{cc`)yiAe5H9%^?D|7X|k* zJL+c}Tc#6T9Q369L=PG~6)C}R_QS}xf{4jJoq;xZ5cc((oe3qJo-!5BM%tI2g3b26 z2Opl`8gFKX`}nDv1(&uPzg?Kt97>{o#g_gM;v=L|^<9kOnZSkdeiAi+3y2ZNYb=gF zm2wDbnUs}!)mQrqQgR7p89pR}tX z<9K4bk!T{!^Nn^pW#x1&h>QhMorc`5Gam`$^5j6`q@}f*rhhh=GdN6?=s5djV7qI* zITo_aRNo+*=@)qM&In0_)NSSJZRAK%`c`Vxvo=~P6c-ZK3TV{kFB)9C5AmzUF$mOA zn!XMEnp(#>l<-Gk^~3!9ecZc8AY(wdjH-J@#ijhZZaRq=R{92v;O@uK=~_4QY9 z<@+)!l}fY`h=>ozGy?Fwv_9s^cph4sjlUp&`EWky+P_W$P3GMnA2bMhDNgy?WA5MH z4*3Fj{s)#oX}_(%&x~t?5Bv0=Kfd^x|My#! z{(jdH{!Nq)qd&>fPcZb~b3WujUgqQaUmrh~hi3dkbN*razm5`t|DONPA%*`C+W*&X z^cTAEcV*^(9&fw(pJn4*fF*%Kysufj|5!FIti}croJy~Uiid!5(g2L!FI7wwEuSd3 zjHPppA?VwPq0Y7B!*vdjR+}*K$~F2%f&2PrrsivLZu(s3qQ$lSG#8O?i^L|ppnasj zOsKhqsUwl#eGz$Ho6yn>Ac|pR8(J6b$yVq1gr1+=?OAe|fkX9-VM|-0f>#vZ5u$qv&$Vh_C_L5Bl3Rw-VZjX>vYzHyuU0R%H3uAJ-0Ew_iS=_E z)+uLP$Iy=jPLG)|`Aqg@`7HHVeJ$$#TuJzA%X;4&1t&q}qD?k%y)^g@5C}9Yx@pa# zXOEiX9&tV)YM9>+QwNXb1HCZDZBhAO%o-&vcfmFHJFLp(qm)lCka2;2@@N5-KhiVSH#iN(& z=I)}{ewvxP{sj@kt@lqz!Jb~-rIhV-RQmXC z-4mEyom$9TIk4DGg6%+lsxGc+e4f^|v`k$nLw`$A_yiMT+rB=`eT}t(i$cj%=(rI)}YDo^6x46cDcsX0We1NV2E| zC>W|q1qnRhg(mc-N8t5B7qGVP*IVnTTGR3L0cVdq-RsMY0THHoIYSzp_qg63ngz;> zGY9dxO&=7%-jPBV&BtxAV20!Ga&)^^TbggD#-F4Hjo@c^|7OtB6bPW7O9hoLsMXrg zxnYpZXbvQ=)k&BrXPF%mtWS|NwPSJ02dd5D2?4JHJb_g3gaqDC6%aTds>T>0AxpbI zz=7b!m34obq{sZ^S;e4#u?j!{0a<~!D`(H|RRI4nyvOkuQvG!NU61lNh&yf?<5TP_ z_&5RP!z&$W&Yv6nI2e-o?x}!3Gx+^1_}m~J?pMbYVXe;Ig+hZ`Dx>^e9Iyv5%l&eE zXXnJiqVJyoVQ9)eg8~w0C&cq67aB}|2I1-v3Qv{0f{!>* zw$jhr(08BDyUHxhvD+KQp1KCrg+ywCG-{SXZd~c;Hk_#`kd=FDH`jk9jzv(Paj0t;Sm-2Y>2MT|_p9TNU{J}rv&*?|}LGTm)N&NH0pD+G=@#kN~A3BZ{k$Am_ z^*5#8()~+8Jm!NrwELZq6T|4BZ0@PD=G&IK5K{lt0l;}NC*iWkH>($M#KY8G2Z*{Y z^ZoWP$TP_mKEJxF@R|fXOq1P#BV1Z>R5rm`(1PmsZ>r) zE-T5@`q-35t`iKv_UNAEkI>)|8RA0)~M@%E`&^( zLNcu26eFP9-{Pm3xaUVk8(?}kW0V?*2DxPT%%D<+F;xQnytBpk8z9=8?NfRB`0$>i z%zOXhIKKDp=aCB#9P%6-a$yq>FZSl%e)8_j z`<4WP_NhUkzO7gCz1zZt?_Yfw{Ma}ASLgT5H_JLce~Hh-zVDF!m;V+-iioyP1V25Q+igZf8~ zdZ6zyiZ&aluaOZz7{faU_qQ=ne-ZyS213z*qJ9wrsqYv_d5C@++R3%kCf+Cv5qKGJ z$?{O=8Gu4oxjZB>aNo^>&kg>2 z#6ZNS{2_m+KR^hW`r^+Qf4=zhJ4z6kQ&YRYoj+;62T@_?baH>@@5XZ9LzB8Cyb`dW z>lPGe_zCLK)WpoIlFGSKoo>MGrb{m6V}a+N<>0Ore%?4BFrr!17dk3a+)E);tvP?L zZw|ubs0dqrLuTif!0H9BnMMYSovX9G(qt#BdX6XEU)Q4$K$ga^O1+tPu>NXGotz_% zz=U#tDWkjY5%amxDqyS<5b#@Vl-iVNJ+#lJ8HzvlfGnaCY3XPD0RT1YDu0OpFQ%=6 zO!+^K1mU|`@bAnY@>Bj$KjIG#BluVR^TnSp{`{Wt&k~tPx%`?O98YO~(ID^&qyR6F zRfMNyo};3>KTOk3c@Dn2r1d}^@Hj}FBaI18gz)o$0UEX8an#>U<#{6`|CMTI>`Pq~&3p%y>!wg>xhpNJodZOTAsf^DGUvWch(mAZI4E;)xyRIeS?4AhdII+FsI#Ybp`x38l7h z4A!@42EE>Sq;&0OF1Xd;lRv6q+Ps^dPLlH;t9%UAZ)DH=_=R`>-?HaBgCEDQk9|I! z0iW>aA7c;o7H$7z==Wm}^%;8z=vQj5G4gxrK-3p?zNkZgQRkl-^(5CI1^(Aj&!fBk z^P--O=dkp$E@83w#AIfpyS0i%zlh<{j$v%%OP19q_98a#=37$D*fnIpp=AP~pqbv$ zh`!{Z$$DH-R*7waE#T7hlxI4e;og{JeW2V9xoobp%_yZo6I9%>1X2ljLEV!+#wRe! zsBg-*?H9^7YN7ssQO|d?;B$ljoT#TfT<^b%Jn#1oe?lJkR|~Jd*z?7nFZTQn>`{;= z0+#oH|B8sm$Fy%E0R?i&3~<=QbZkmB^7>-)X>~VJvQlminp>mUSwl|@{v)AC>MXS6 zdRkWjcBRUlHt{Fa&C?WLooygPezoaijHqy(!u9vI2(+A=g@- zMw$_4=?)1E*q-InlslZ#i(DAfQ}nbN`n4QQYPx$&W-e!~@I4Gp7V|7LE?@M~=~|F0 z<7cC+4gn@}6xaz2o(0NwqS(u>8`MzBl(>qK=>tf*AWBNCxW83# z@IHR&+5eY{gSXh=GgSO)#X(MWLNa{Rbbcrf-eQB#4E}?PgEyz%$9IZ@e>HnPePz=7 zCCk57b^QgOFZg`H=XXfA6=klJzf$t1|26PYt(ghFRh&wiW6E+MimkyuQQj`vc>`Yk zA$gMn9VLjMc$b{!9=fqaz{%Q0&bHCHpGiwR0w2SEJzV$NVpp9SwVVza+C8`~8AOGV)RdVr=1~u3tb*_co&0<;qsYoia!1 zaq$;SIR_rp$xrN>>~T!MgY$?1Hdway-JF4&1BTC$)NeC~|aic;*3e`z3H2<44`c zp3gAKuk4~4&!c(ccI|HAVuJwa*4px{3(I!OqGr<9GT<{BbBs0;`0F--SDa-SguOM* zER&XOzxRB27x5Y_W|H8dn+JfjzP@u2#-V3(J*%PR2VC)Xk(NcCy(o#cTlPS0KX{>+ zupc6C<{|y$)jc)eN?46k2f~^7+LKpsI{*ZZcUc-#b5>7#_`}uKw@La($h>_&3qCja z?~!@?wB-Tu!b;?}i5{I6j4=|6hu{ z*3O&EVu(+~TAQ5?6>(N3QXJ%LYS8 zeUR134}<82_e?yNoIuq}b}=US7q1NdH;;beCH2@pQ1tU@(*xp%O%MJmxc-WMz5w(E zpx+_=24Rmg^_wbA58XjWY34YxtX-A1Xto-|HJ!WP!xfM^!5h~L@tU8r>kH{S{TARE zse9#hpO+Zi%WQ1k4w--`pN60>olwi>8m5@52n<7@sccRZ4+TC|SLflobCnLk4SuKJ zF7Nc)1=vm|WZ%_`>zD*KaTGFqYhBNwa?_f`BD~XY*nnA`%anu0rW--hm%QxZfl<6c8klLCanZJ-n;=;;5>>FR1e%}aVZdUn1eCca0XOYahfk1Q^xdT} z%-eA0U{;CUUe_fl`^)}MUvkS;-P9dG__b|)O1qubH-H%V$d-xfY3%#Vcmv3N;`9L^ zPh~rz5YG^)56cU3gY>C)kpkW5fgcScE~x@~wqz@+Q&Wz)sG(!`*ZrU1rlC2%1E}mM zQzyYtk+J+nmlq*AQ6K* zfIN^sp&tSS^`5-P>a*V0|C950AKwG$2feSqqubv+0N)J0pMqZ=!r$qA{hdK+8l`I> zyg$5CXWtBd-=>;b#LwHO|Exnbz3dQD-XPNAZyt12%P-o48O#6}aWDCzCv zNpTAPB?AmDWe_vD&D*>FLDX;336d1@cT~R}?)P5?pHKT85I^pB@C`mNPC%c)2l;}} z7kub1`1~{Xe?-h*q2B}_7966boR^`>I^J`pyJLEbH)A-UjF7ci(BzlWxf)Rl6VoBe zyqe&Yvrh$~V<&PN$*){jGwx`3-9{>WS)3X}9vJiD^F8!&)LVt!G0rAu?U_DoM573c zGFk1$&{yWxHIHeL<-6t;;e81+_(kT#)xloUhru|%!Y_DY5jdzE%eVIvxw0>NhtFst z<_7c+d0X$Ga7%m&jAm_2bbK259X=@xTzgmF;X{4E$N2`I;SA}bURSQcDu=r_GS!_t~#g631^%|{e}pN zqR1c)zy7WS@YQb5?sxZe?(MBz^|r2rMTV8E=SdcUo2|yDKr5CeMrS(IyjJ;msnyJ5 zgHtSVx@&jFT5{+u($~)pk2S%Y?u@oM(srI+Sr5dxbqN-#+6j)$y=o`>W;1Xq3g1xn zjA}X~TOS|wLBbzPu0E=V>}J#3Z8cZ)Osa6F%G<`JD6*Mxe(NCz31sC989}l3(X@o*r_bzW0y=q;mMhcV0f{<#T>I-!VD|e);`;XIcAk ze5d$d;XA!|@g3(kM;kI?-4L?n-|}C`JR{W`PqD@IqxA% zz0SAros);E+(l>)Yh2I(1Z?mowo6B|Gvwo@Ycz#K6n9c@r8+g{!tlP$R#$aCtd}?P zwASCa!f}_rg?lq=x0&hjTv}7VV|Rvo$v;&V=Egrn%gXVxV7YE}ycw_DdT~AGI(-=k zj|PONIXn7Q$r?HPwl%9J^Lk28q-$3bcx7iSOrS<_x6xS}1ZV zR~#zS3nQ~5eOW!=YiF@6ZHL>=Lebjna?s*8>FedqsU&YDxfu4O@A5n3^ER{p0KfC7 zF#WvS@05)ZldutBHqmrPs%?p<7>!=eiCa6^nr;M$1Pg1=$+ZoIZPtDVQ;f^X2 zzbQHTyyUmiMKLQptbMtx)+>10s5Yy7yh6>@q*o3r%T09|w%Y@kY}w@%*BYg+*7q9? z`5emqj@Rdn{^`n}J9~u*)brfkQiVF-RGjiqQjDQJAIFEtu5sg<-eXV@;Qi%V-XneL zNrvDII7UMU#OljHW_A-Jymagf)35eTX_Khp6{Y8smaJH(ttO?NV`T7rhaTwS_unHG%0}M_onf&b{HJy>#~Rs7k`C+0J4fa?5FXdDLp{jbZha zq*zMBp{MozDAFgV-dkW2QX| z=j<`w&!^}95znoKnefX>JL+wV+gjWR+1fQphu+Ne#z~27uGP|Ux+Qb%Z{mNvB-FOQ zZpBR|Ct4SN-jUYA)8h@)uO4r3=YL)iZZH4y@;|@i0aFz3imh+k@e$>^TI?qmbT9{I z-y9hIY0~i6_C8kh4#UOu?P0ha$;wPPMV)lVC#=vNpC#S#L2jpWe%$eysw$g>S05H6 zyn5KL3bI{W`$j!ztGbjPQbEEdh#y5Tsd9;;0A9iOVYSKG>{ z;+L)D+h1o&KL5A;53`uB%D;~P{B-~G^mGIDtEU^h`JY#i+spmD+|MsreiNqbnt9jT ze4d`}2K2|Q`Gc+DkGBIuZJV*3R0MO*hi203Zv%GfEKY;@*FgRHxdu1a^NMwQxt^En`6clN^C~ZT-_3j`t^cpg$NYQDr~Vr< zpV~lQqTguc?dhoo>Q_%Scym9maJQHHdAXlovha2|S>53`F`rYCo@?N?=8Hph#k!GyV1ii30~2~9_pK~zU^Q$6+@!$#QFuA^dLYqj!~UAu9lkB+AW z=6c+0Q}qWGw;u+zUOc>bmC3wP?@X(Vm9&zpw(Ab5LUFr^)p>mtA9Uocr^8vKAAHNS zmz&8%akQN_Id`0mqDSg}%?S2-Z!u!Hkj+W3KO?2IT=^^RTz8~I6#GoJTfNHt zO#}C%--h`-w}2<^=l=!sd3vUS`qeWH-dxWs;_c;lUXJG%L>$yM#;p0x5pQJ4Eo^z( zw3|k}?c}p8ERP%8G`;IMZujw!i>WV1PE~Nv-Q{X}sjG|__~+i{U|-m2Vk8r9+=_aG<7`vW`{zdX{H8v)YNN;z zz3a|zbykL<;;mE#TMCl(tg%CQVBTpAuG8K++K z%d>e(djzR0YF%XZEa9@7&S#bo_)$xb2jj_=sgG-@)72EkX&=pshJyGo5QXbb-86Sy zd+#Kj)-Z6VYj)!#3#&#I&f_kpANb~gD<>>zuis_E=cxre@jgF-_JGqV!1T+hl2Qmo zPE!Bc2Pwk0`=F<19N@2>aR8-LKO;a$Rh8Te2@-guALNHXuPmVgQAytQ@Nz^iNAwTg z{^142n7;SDazizHt2UuQC5OCO0W$4+#mTNK4u(QYlWY2Pe^9O?d1UtHu~6q@Da2x# zYxPd*Sv_6OhR-D9?YK#tk+d_+^hF46IZg~&(w(}jPIac_`pqbE^iF9n9ZtIg>P)=V z%n^&mH893ORFx*~YBe^uZDrVrO?h z5{x!}$!1s8Z+1psO!NQk_sV@?1}z>D3Zt*NM7MiDvC%@3Oo`d?p}&zK`Ib6Dv_pl^CYD37$$yE&GdSRS9x#+ zpgGe?9!dg|M!skIJXzroD$x665=G<@Ul3)aAR+-yr(l8HgxodDqaslf3z8r!xn`&i zu%9~#EfZFdhzd|LfeTX!&v8hFOI1ath0ikboGdH2KuUaTCZJLZDj*3QT2>IU*r@OY zq+mY3FE2<~R?>sSbCC$z#DXjVB*-rm6&@;n6Xkb>mVw%nHpuRpiLnSxpm01#?kw{} ztav;^lFSuo`{cJmD&o|FA`9H@?lNSO?nS9ig#(CEAWivD0tKoq7gRxbGYDUdp}L3+yhj-Z>n>26yOjwesCh2S?t#H_q5VXOzu7MNOWH4$Wn-ID zRI-Q-275DT(1S^PN}Q0JFUY{0qz74gy#Tr4dScmm8AU@On~`^TuWuywF1;GowW183Noya zwn}ALK2cDK-O&-B=My2FT&v=I=z5ZbIMP397D@Z%GMETKh9zDp2pl=vEzhSQ#EYNHR0R3cNhg=767>3mEG-Y_ zVD?g z+ANi2`H-ZLHWPXIHg;gjQ%RepvMiqrmJRiw(`=p(%$c+o6!JE9kOFRzTuWuywctA` zKO|Feo=+vCIG1JlRAQABP9WiZd^(kXSenr~qr>DYq1E5QwZ*4rI^nOL=|nuKlE%3J za>&>=8B_T74k?&fe-z!OiUoiW058yM;rGS2|JmD))dm;LPW|G$j&~a64?0)d!a^-E zX2a23zZh3n?oq2Yx;4AhX-r*bVJ(iQy@}$vb!6j{HQHR*#8$j+yq-+eKs$%E;-$SU z_9vW_+TpYuNp%m^%je>{v5TYnyj!lFCbRG~7l)S%FSEN!n8Y*pd@cLqzSfM)qgQE; z*Y2ej*~dnQb-biw%zTqcA05E)W^d_9%be6Z2g|5gQm?e}q|RjS;0C1M z)Z_ipiCuWu=v>CfHM6^px{YCZ&$ujWb!9$X5$Hw9RYjg!>W%{K^ldMY%0G8(_WNES zmA^ac3wr$S7f3bwo8e(YN=aWJmA^ac3x$941yX#f|H~IhQ7B(XSrzqLAp%${7Lcp} z4+36<5x{jMiXcY>BB)3rkexzgl^|!x4_r}HIGjVnlrPi2Ijo{ki*RH$1Sl**9`KF? zCdlBzB@VD6$a!7@{wk>SW^Fvt~v9e|dR2Pg{zEJj7f&o?&8PG>HFAXpO9xH?tLPN<}PG~?txEWIv zZ$c3uwVcz!+x38w@QoDSqzb~SkW<23fvWQ4Rw@6>N(yBMekA2=j~9pyfs|Ke`7^!; zEQ(Xey;9IlIToTTEwaZ0V}MpJ2uQ%tCA4EGqLs-S0gy*xyb37{f>s~|5jZlKI2a4S zIY5Vkq(BnEqk!)?xC$$PU!{Ub7y#Hm)LwxkMS=l9fHshflv`z{PU;BEUx12(-Baci z(#51KMF4~YKLGqALPAKP(?)|N7;P}1Bw&6@ZcTLL5Y&o*kw^&IBOeP{3Rn-hhSH8( zip)a_j7#_-5vx!_P@&)g5E0H3fRIDE3qT_jIx@ia3&ivwMTUE#0_iLXr`?s_M#5wO z6`(-?MTa~Xpj?pYZ4mUAL`JMifVx1399W_PDF{d({Gcr0UK!9PGT>o40g#^=1({Z` z1fy8QKqc;T!!*E?;Y|raW-VlDfD~wPQYe@VWb~K<)C^1_B?6BrGGU~Jlny+mfQbWo zN3x8On65cy1%Sdpqom9rlwsUt2?`7~a(@MW;)etKxzSD!p?3&g24q45_)kH0w;%A1Yx4*O$eNiyr&g@ zzTF7eG3`j0lCvHHA<$GsCB2IjB`-V-I8jJjO1RxfB`XJTIS+=LwHOGYn_wCOAP-YV zn)7FEBZ^Ot4aDy~Hc(cCJbwQnn1wKqA05sDJp?}V#cN)?<{ur<64YAWDETa$;rTuy zTPjC+KueW|Q}!oGX*WJkssXQ6tCiDX5^~9P85sH@84g-JyEu(X(zSS9pv~m4>GHPL z4u?_HI(ya5YU5sy$3YrSd2)jE6cuN4d$o$% zO7l=3&imu}vZ9=Pw7Vwj5}Y zpq@A#Mf_3hR>UE*=f~z|U56ikpmz(oK72w*oskw}6h z1w1yOb3oXH6p^iykn$HuA`p)NY5)d8wni9Iuv+*?(IP+!31CLPTnbDKu--?CS9o3o z2&3k!y(#khNbv_?M2P^jY{8js8{TdPsszFa(#3Z~mdQyP78StN0_G4;FtI?Wo=CPL zKN6I!kS#u-FnrEAC|1bs1~3^~Bx5ZP39?MKKvRZ8;X$4NxC1%`$dd@@OoW;gJ_3ak zJ;)9PQwxBqMZ$o9%oRQ&1xO-~M2>Df(mlo$w`C0hjVVd_*5zZ048Y`W>r>4O0R02~ zmF=Ep+sj}B98@sfWPQjCJPA5H-IKkq20$c{Yy;B`-G>Ao0Z+)7Zl)gc$k`Ti))<7V z05#<^ru?8l60k^Cm&qpdLjr>SCQIsIBO$OK5fXs-L4v}mWFJTZei8x&Rv-ba5fW4& zpD5io&u@zX4W?K%XH)=XRcPyHNX_y+Km6App1ZSuD0q8%@+SW3$(wI6V1k&Rdv+fL zCQDfP!9if4Qs!RZ?FHWc+2C!zQAU?D`SFe*FjH;51%a&{xsC=CIXEA|%qF}yX#^Y7 zcJZ-t-c5PEAL_}8k<6{gCS|`}pBW}I8<^o~F?5@ZwYZ#u-S*T^&j7Ftk3S)!EV81E z`a-p$u1rHcZfE6wFJPvd)2Vq~Sd4m@O4HW5x>oA?c-(OMXwsG=*Q_|Zh9Vs|*f6ZL zQwH5_5DWynfiGNVD-1`aL)0xRV?o#UBYVm!yZ(6B;pIgri9MdJ^MY54gHgq8p}w4W z2d2KNSB+Hzv*kE78)Kyj!;2;(Pbzgs6rp@8i2H2G_xnNIXA0BL`$3!yR@5e%ZXoWd z!oLaPr2hcoVCEGh?1>~eE8B@C0aArD3Lx{+bb%P$v;b%&4ZFw^QYc4!CAd-=Uy}LK z6bccoWTB7*!(>;a3vo1N>u&oPXK0Kd0J4?-wmqK70Y)efTmGq>;0`elOGxibaR~{Z zQXWDlQtwVyq{WA@jWj=9gT4z9A-{3r*iMEv$Wk)@5dV`WkjSIQV52me=q@NJFC~rJ!*mH+$yT%S1Qj4%iYT*n zsw{yn_EJEZY4T`%4h{Ab^A#}~awFbHZRL24w9|c%S1zY9W_KZCH?Tzm&E6u)GIU3?)~9mZs-`3)d@=_>nY zB1*XKV;ZwKvIkKbLUtbunMIF1h+r^73*2HTsffmjJ&4jUu~d{5KMVCr<1uqt8ootZ z0^ek5NEVG6y|2C~1Mib40DtJrEIf+NDY=e3#EFEX-sjCjkjTXJCRaSLTakpJ(HPY{ zFI{m@gIP0Cx;&l&_gs_)osjQ05nWEsp4Z5uO}-h%|KQM*r-vKkuO4pv7J4G(C+j~1 zp1^$aqvK9^Ail4#lNZAOXFuj~|!Yk z^Z9YQ-3}HB%h#&CnRM-(lU>IMI*K7}+3sZCpKiweR+%d7wryG3wo7PnT3ojkX+_SM z+@4zX<6s@z7u+6ICh>7R5*K>kEw0ylxmE7?{hbE`uQ}Lr4IK3c3|sH|o%At}p|@-( zi?VKMz4qoZoDcoZy7~n8?`)6Z?q8z1Zom z7U8Kb$~;ww`LMLCv`Q#L_~e=J-vr^8mC-e*|1yNntHeX6fhS}Ek|)R*ll@c#Zh!}L zPxfX3hmyc)MUX)b=t(3{T@t~4bBN5|@P~w^kVhW`LB0j`BI4=E1}k0u1V9eg%LEw% z@(Lx6?0bLYC437tAv*bx;*;zvTP(m`xNbppE&yX4O3Qr0nk>xm$f@Z`O zFaZpog>Kx7Bnk6sDx#Q+ghOzEa{&4gNI|f+O5z@}5C@TB3PNglvPvgoa@ynC=hTW13(u9x_PV0 zWKCJbzj7t;=^4~yxAgCwNB{(p7jGDW1bhFmbwHlB7NJ@s=IMnKUO3?&eH>eTzS?!a z=~SHbI5sfez%vK!L(S+9&!sCLX%^E%@y^g)#&Zo3<8xdRx}8%8tEV02{aUPz&?Rh_ zkLICc+!bS9DD8!Q+RHW|p=+MCJq!r#q|X3ng~b)8(Dc zcCYNv9?!2vlkumfY%smZb{6NdJxEl?376^dqM=ddH(iZyu1}?-!&QEtQ*qA1thxDx z?|~yzufk)mkgfwtKzZL}*_WSnWRCdsq-y-tld1)UQ-$;;2^@C|H3F#f zUZ>`~ywgAY;Ry$3`rfyL@c2CTzI51~!Pi+h7dl$HV zxKplOX+QSr{nC6&+UYl8u}#%QMfR7m*!&UlpBCx*^ss9D)x)aaJP-!=@bW+}5A^at zzknZ2s&2jdUHqtV2!e5Q9(dJ>VO4RU7`5JpSR_>s&}iNq8^H;+*XzhM1i#m{rh!mqg%f63 zR`M!XlsDd0FNeLkHa=j-nX%TnTw;=9H^GNRYS_c_^57KJs>Bqh6><#D@4}DxL1TUH z{KEHS|AhzovFmmtZ~_be3{L6kG1gf9<3oHofJgYBOc)E?S0Bj`uq>sHN)eU(X>$>Y zZ)dxyqWWE~>gAGNF6kfal2)pPD(^kP?ICz?mEg5Ko7zjQ(++0Bu@N`R{-o5Af_i<< zn)7yT;hc|WgA-Xt>-+W^?a|uX9ZUGwDzj6&t1V7?l}{B`wPm*^OB1D&h?l`73*NK0 zQqxjH&Dn5+##J$8i<8HVc(&?eFdMVl_B*bJ`FTm}iQ}c^47*`y&8R~Ecn*WO8Yr9_My(w3S!tZ*zj%msapx;rE^3_J#kU--#0;lQMA~?mn`?`EUjL50Xxw z;`8EM_V=;9kIB!&hZ8S>PYTTjTuq+(7Aj>R7DP(45UG-VK>8_++~oi?auTnU#Oh5{ zu^sd1k$Z7PQNd+_-t5o|$$!zowA}p)@-A%04+)7O7kciVM23)qQ_>%UBk^43G4_d9 z1kLH?p$6rRAdeYYuKTY)ilJ+IX^!X$;>7eoBS$@Hb`g8Kclzh+if%=u+CB! z`Kw+ShX3b!ffyhC`!Lqn+pzpP;Cp&>JjUMw_#|23Q^3b_D#~Bu$csq0AwKd*?hEm~ z5Z?>&ebX}dVBz`a_Z=S3_RQNN1T+s@V#`(0Tm*yT*ckKLyr{1`tt&6}>hq+%D4}2y z(pQ&E8~tT+m7IVzd`7Hp`tzh-KF+S^M*rNLrmNQLb)=oy_7x4%M>V=R+Uxb2+{wQx zHUhKd`n9!I5o)&Y7lrjz9&wX#WU$tiKR0WkXcW(b$|~*U@d`^DrY3A<+}v)1_IjsR z+$$d&vVUC5@g%BvXVuV{Bw`icMIB=(4cV=q3^#o5ta3v@duO&0Im&@IsKRYq(PBsI z^oorOY0KZ`@c8Ez@C5OF*WvL$4eb#u_H)o)3h+chcm#O%*|g}o$KOME0{)>0FZJU8 z`3A(H7r)uBpLp&Qah@MiM|lSSY_9BVv1b+f$5hk7wTOzH^+_{5Z(&;7^jFb~?Qn0# z_SbJsQd0?}fha+~s>}Umz^6eb=%- z4D8_O0+RpNAE!e^%fAfG6Z8OlJ$y>-`NPtU;t^Ey5BjZi`_{gFBh3R-mAgB5cF&LK zuh90)*iGzuwkk>LFwcRrJ=bZn~$Gs{+OQg^;eoF^b#;m=)VuvnY5-N zsZbf~LY}BrR1(^m*2#7p+ls4cR*%-0*eG-e{kwRpJ(;s~e{ZM1mcG>sDL0WtU>|#P zXWws@()kjyS$dKQwGgrp8#6!AYGsl(^k+nv;y(HWEMXnThfgdUS!;V|Mt}MTdk<+a zws&R>Kf@K9S=`QJ1&)*1o$2mVOaJSeeeW&qR8@e_d^m>g7piuy75b6y#D7};j`bY} z#teJ%!zJk9Ir{Ao`j#Cd3WQ#nf>z;Se_q|fx@PhzkQ(%!ag=RP;z&v0feJJ!quYeg&*h~uF+4X`Ysza zh|~tiw*~k_7>i_l{_BsFi^JsD*ryX~oPP=PFN>Qb_R2mT^R!YS%-d(f3=bd3SLjqQ zA>GgI^vyO%U2b_v!rm_)W8ZOU;#-NbAJn+nhtYHYI~}^|BuyRB&7}~ulR6&igWh0J z4vz8_65@*AW_j?s9I#gCn8)~yXD>YB$ScVI<0{F{3|H>{BV8;}l|RKpoQue!$w&21 z5rHUMHWB`m;77J_BFVy^DoMP41m9(!KjrT1{i`WADe;(4J3B20_auRo=9xUCWqFpe z@Z;FuWl4F(KSBe#SMd6#ch?5bGknaQ)hFWo9&>>Mj$P|ND#?@IR1ib^T4)QMItux; z@z)DWWnp!7hx8?6-RjpDmYTysf2>qGrIJPo73Mb9$!QqPv8?oqD^H%axFJ{e>$TE$ zbZ)ihwKE#k*2xBSg&L4qL-((&qVA9QWSzHKr>3vu;Mfn^@*rhsT!dz_8=@q}UWIR- zN|nZ`+iAAyhq`wNW!!R>_08ox+=cGYnO&LjaBuWxO7ZCE4RhI&JJn|AjEjc~>!(Lk zb-hvOhwG`}X;s(TSzTeU)Zy z@Avnq!bQEi-FCF#bS-w)N2Zd@dIM)#Gf!uCGjf>?S4$4{s4{bR9n;`u7r_aIj?^o4 z_Tgf@VEb6|SchGATs}zGftr(s5OrgD+*~c0xm#H|PFuCNn)ko#ed&_wxVq)5RGg0J z=nlHdwrttfu0A({c?L5Ne{SFbFn9n@fS;g$_apX`wB#X^oUk*KUAxY?WJJ{ldm(FB z`t(hbYa=uV?23b6x;{#bUNBC@W2fW}r{2sz zmXGl%8y=P?Q-!K4lkMbO==UoFgJOkxr8&cklj4->%39h}Yc1@Q3Vbc-jW-9i$jcj7 zG$&m!*&9t7)}&CD125hscwSoJ=`bvBm}*VB1dT>02P{tuChtO~UFvKXmr=c?vYuaN zP$)}XU3Hj&%@$W~w=rE6opqT$PkJ-k-^A%M8t;dN`G^lIPLbAIO*p)u_0aAYMzZN# zY=cs@qvG1(d|uI^-)}1_X!KOy9nN8Kp?USWsW;c4GSpo;-k&h!3kS;{%!THz*Wj(y zP;YWa>0BKgywY?$#i9i4mpd7a6-Mr?F727SQI@<2{B>bIb$EsKPfp2q`jRb)QGuMI z51mfe4tyGnlxab zD)Hgwu#MjP{ch4;w$W%*8+9h#sk*x8kh>i9)_GW4tCiY{J#kZhQ=>aG zcD0-IF7noI&c>jtpQYe&_o>V#T?b>nR_p0)yzq@eDdP_S}yT)vB zURMiIfwl=L>ENx&?08DYJq=#?A;nXn=W9`ZYlrwDNqW(Hd91Pcs$QhYB*2TzsK%b= z)IiY7GUHw>m06i5I2^XhB~UgC2iIiU;{~3~Cg6`EtD#QgM9~}+0s{{=>KBT!wCV4~ zQO)X>Dphi3N!8(IEZeWSl`>NwPGs6Lq;jt~mZycOi5G;vgqp`j-&wfEv}hZ}fy^LdlhX_g zoJCpDL%1&1HzvFk=cl7Trq=wnaDDD#>@j`oUVV3=fBW|~6*?;LWs{)B%H>OZr!>);{GU$F>OQ|dEWNS;l zlu2!h&nG&jf1AM|Dl~5LjU;Q_fmK`}DN4fKO#WV_xWyI^c}Z!ciD3iDNiQY;o}bd& zo_x^nWVPLNfhKO!Z@WPM?%pjHFKqYsZWT$ QxHk-4*XizSD!{|xUI!sUX`Ik%7~ zKp1;C$ZOP5;y=BMbBm)>=hjmUK1qpqIJds$-1^Nsmuxa@(PQuC=6at5S8guivmic~ z#JfQpSns(tVzKQ~1RB=Ldks6l$|`+<)y2a=L(nA217G!tKW zoi`Ib_IALjL%!W3wiUVXt}2CM&-8U{?@i9mogNNeKl?i!a;Hot@%13(=@0up&xT3s z@6sRjI}wEaLVs-T_3V3gNcT>a`a*yFk9$qlB+u?s4>#}gaP~D3{sxm(NSgmECM)y$ z*?$9R4)`zhhjAytdC&f+eyvWQYPWW$dGR(E<}c0j72-hkefqt2mpXk#M6U1C8{AiB zfODsjxTiWZyc0XWvSO_6BoSUe`#b&dGM((pb&3oAWPd1kdN%!tV$iFc7$M4nNm63qA3Vu{NpfNk`-ku=GyH{VNpnYc9{;Jyw9lr5cfzQ@@WwFnL8KO2DoP595*sagLLQS{QVz}z?Cq87<)Xk$F^ zpV)>2luzNN$qNo!q8Z&b37p@mrLJpXbO6>wQL*hY@{|Q-|Lt&0{dFTtQA&!sF0?2% zLp|BebX9JdWt+q^W(q~?$QGO{Jjnx&PGx6=iGoEWj8I2ck~M`jHK&lReiu*Z_r4q! z4z9UDbw-N1^@@elK37)J)}t0`-8}0ROL>;*pgwGw3l=_>6y?u*rje`I_XhZC-8A|X97%DBFITd%G{h&|?uNp^JjH_P3K zR+Z_)#FDxHyq?dDh{ip`s;m);eJDmf{OSlr(`8Gj?*|A)U+jrb2u0o?<~vWWJONF* z7cakNPQp8gh2JgK)SLgD|7ZR)^Q(4NUw6B)Jo&^upNkds8lld8M1Nmx4La&%4y;Lk z`~IB#Fx)h~bC)7T^IfgrL?<#aMO!%!|qIqR0Y*kvuq+7CA@R z9GR_u80O3`^`=P~9VqfJ)bDU+Ug;iWQ9qw_nj_i2=tdadWQ%|F1Jw1V7>7GNC#sKd zt34yBjU1Vxf7bRfeD^ox_A#X88W&ai-UAfP+;zhAqjr31er&VK1N$ELxPn0f{UAMe zBPs7?d*4u*&wV|23*JB9=GNb2>zj`y1hfD2xQ6)--k#-{#suzj%Q_#XohV{k|J-7> z!w2GQZ1b)^<2)%bHDuzJN;h43Bem|v;as%g+QzxQC%-nI3$IQmK8(wS2ky zlv-7y_j;`};ws;ibJV`v^CEzDv41B<4(~qrd>?LrW4^PeVHJ+m5x}RPj;eBg6b@M{ zh~|jYZ{4Nh>ijlekg4h7sb#p{zL@YnZkyl|6~aJa=SeJPr?2Q6B^60%vf-fq0gb}4 zmQ!!vKttW~s1RXV_^}|B@DUSzrp7*~v)AE>kSo&XQi2oUfq1hPaIl3$*Tiy%9EX4g z_J7qo42*x#C-Ryc6LOpy7Xxq)`&R}|h#S=fNBGtn6$Sjy9evy(YAk#+Fdj~1J2ZYk zQ)GmGt}E)$uMh8Af0YZ(om3>k79HKx^T?RU2;gw+c=x}yz1`yM>y;5DBKbn=pl2xMoxg& zz_D?ix`45FLdp|^^i1EZuqgpAocN{N+#Ua@?c$xa8JG_Z(?izwpnVly*FF0PA=(KZg30$E zj+`FZ(IRxX+=JPYgN-)mPb014@R+8tdGm(Nz!*3VpWqnVK!#gK{&Z4~KYj=Mz}z@i zzgKN(<%JpNp9?caWM$+o6SnAv`@g-CRz%sK5z+NE-|j3x9NTaAyZeEWx(E9ke$YSd ze$YkkF@!Dd7Gq&Q78!&+f+%5|El+{*yvgylh799xq`C$~Eyf9sOt?{AboZ7~UYIF+ zyr?PdCPeh6`;CmaL0<6pmO);aY2wf4zQJ)r1>x9d{{@#>pa*7}sFcDxILpBZ9rrcpCeUd&f4qb>8nzrwMP6)89Gu75@9l7V%lum@-}MXV0vCK>LXtb?`zmy|MjN z<3|xM5=Q_~OzNzKIehhj?_g>~)KPt0gd#?tXjAh9f-&iMdh|%p@KOto?qowJd0x;c z0C=2k_x{2Vr$rcRdPEH3wnl;YgLL943b1s$W(5H!z>Q3aVg_8-XZ0|+e(qW}K6D|0 zZ5R-FQ5L%kXe4WCQj7Hv?fxT;YGD`t#W#md zn>r|XDJtP}Q$P`XUgcF^0zQ?mi@oICJ0X5=v%!9Vd|iC^R@MxQ4m~q4xU*`&)Mh)mr+}ix@Hl}Q$#}lM z4e2K5jBa271!dZ{_^OZ%VaNdukFHqIR0;G=VCh&8#fBpM?xH%U-Qx$BH=y1{I4U&BM`h*g@VMba2-Ervw8wtEU1@>e@#)AeVxII1P#@@Wb zMIzD>dc`jc>0(QjxTNp>5G1!#vBsfje9DJM2ZBw|raC{(HX-eO;n7o#g#~Ch=m}{x zcI6E&>krZLH_U=g_z0{U=hegN;m2lmpbi%d*eGHwaVS!d_%tu727llh4R zSOl5$C4)%!Suz;gK-C8c>B8I@gzKCpPVM;*6~(9Pu#j#Ve$Zk_=>~}^c|)ahsMuQS z76WB&Kcf=uc|!I6oBB4G57#gY4ArqdqV($febr|)DL+aTz4(};EeUkFhz z#94Rw{K6vu0Bp{#&>Ji9P~9T~ELn{}xT+ih0Lwv30`aUCQ~ z01O$ON)QPnB^bgH+=Z>QS55F`$Uceen@^%C$BZg+hO6x9Ow1wP8iZ|RD1{7a@TqJe zh;_?T8HFXDkYu^JAa(=2#EI=J%iKX5u@jBiamOK9N1=oen(l=`1;}*}8H%(Yq2ouG98($`t&sUuhYFGyA!-%SolneDWZ01^ zKhf=~ZiYk-_MLF+58^_LS+2*+^i!?!Bg-BmM2Jei<$O3dDupVCh1VB4MK3hKtihM zA+aLVBVlsv<|8%k2LOu_SAj&aKGCts0jk=GllSUSvgYHB3<`-B0!Aap)l@-YHDASz z+5D^0Tle5Kxx{+~LuRX>RjQB@!5`ws5wTVsP!OfFgytGRLj5)}97s^H!pX{^Wdos0 zS>SIO#!0ZlOWE77n+NQ|6e5oN4Xx#*0)p#Z@quMxQolj4CYPG7!z5?gf8c2ru*Aqy zpkhiL6b>lwGKvW4xAt3+cLEM-#LsiUV~}SL|FXlvsb@8NK*ivj zZ$0!4o54Z(AGmaB9NvYB5*=bl+IWpBf4caB{rvkv2NJlOq~?WKgMwB``bMGuC?Yw0 z{)jPv29TBc7uz+g7F~d(32!N;E^iq#qT3ID*E|e_267*% zJ}dwGZq)$qq;{w>KQ2G`mf&w99^JBf9gH0kb)B2CSTiH6aT;nsAEZ*$#e0Y6!e10t+L98Mv63o7;h;P)$h{QR|L2(GufnYNHy>M z`wB$N%4}5*;4AI?Bw81TDSJ0SeVYO+6AcgHYrsb^h#3J}?7yw5HrS!=c(y=I2#&XYGPaH<+wgN230>}a);BAu$RZ1kF` zN+r~wi{#(mh8Jlq)CMEdrK~o91Rn&qxIKw}v#HTG68E{Z3v+^KK2vvkeDV4SRVW5w zh7Nd2Df1-YKXihP#&ki_$Dl?-ucxV)W(byv;Rq4K!YY(^W26kM;25-4Rs(;nEKFC` zSIoKH=b+tYf@Yk0kVYB4F54#bkm2kE6>HUCnNYE7rRLW5pl~Gr+{?svnN^_?k0u$1 zYP(svMVK3rQ+_*U$0b2U=fFx$Lg&zPfjBiJoCqMnDG^vU3iv?BhVqP`PQY>-FtJaQ zv2xs75(ThO+CwNEM6v(JQ>IrI3iJ7*^z4YH8?lzX|pFk<>Gh z7uYu0fJhs}BoaGKz$2N7gfAgD92cT4kCYM~6O3mjgLh-u{tHRV9RlsAw+hJ-B!WwH z5_h>}@*g^#8nap$rRQM0^h_=v1-aI-Zx|rwk>cMBSkRXC!9zdR&`HspPLO&a3f0p1td`gBucIPLQzc$1Ti2u zp1F5~7@N{KR_^l{Z?&N;l9;4oy< znyhe)#aOs>38FbjF=}zb71PiT&>iIdnkNYjJLCsH9=WUnpfD;>z(=D7$>!Zj$!d22 z&Fk0{jEgglcTM?&xdF<&gG44$iL&=ah%Jz^&rzX3i&Gv5f0DdYK(T_qul2*#txm=9 zq$x^qq_EGalJ~5U2Z{Na(+J=&ndl+TfTQKqm*B?-o{gRG5oTPzMa`|HC#YHWQHm{) zx9`r%!|kt3(AC#0Bs%s3CSLy`nyH#f`y%9_>MK(-13G#xM3Lzjq-O@0fM@H&Mj-lU$S!1@$e*kPAydmvNI(FAOO^}bg*jE~ z+{+FmS0XfBQ@s9ruoP3)v47aC)e8jN2?eqS@!vyVEyKTh1wfwoiX75)r{u~ULL

  • 05sk=n2!)Qq5AP=(S=v(0HEQ{SMGsVO}U#5$9- zqG~;CQo{Byp|nKlv(@_<3Ef{Fc)_l<{-}$nXRgzepyx|HFcSQ)CILfAqC%^xxe|KW zJ`-_*E&v1=iuBKMej?n$+Jv=6VAz%R%io8f{BjL2^kV6e%M2lI&LGI7kqtr&RyYA+ zbl1W-X&TVqiZpT#8nSvzgx55{bcD19sngL9K}9_wjs_F=`G+3OfIsVS7y>A9Uci8x zXiqGs>Zi4T7IG_HKj9+j)auq*z)2I5LNDy`$Zu^$3+Bpiwi$t(FX z6ZkXhJd>V4)jeE&?1ZY%wyg^nq0lOq)$QUTMk#fc6rjhu9z4g-$Xk4df445<+i7S- z7ne@rqQSf7Py0{LXeNHTy)36lk242QimgFS+dT9A(ZkMYuj=BgOu}frN;}E;h9lX* z(#xkmzCY5?&a|e$Jh#YWS=3E983$W-^fP1K z{i3j|nw44)H@kaK(i>#nAJ=0dDR%Y|*~F^{+rtG(neXFlNfz{^$9M2cqk0%ISl37< zhc2d(&dgeaGc_pL*b)$ezc~f6=IlkvM(~NxNXOkPw{BUwFafS9v#*Mewree1)AwU5 zgSMn0gHrY?(hFKDdHlsur10$$@2OhI3A|oUp$F&Zadg16^TaLhPUQvFsy%!0oWd%6 z#<#I$kEdsCD3rpjENGUeDJbb3hoOg)bF8<)$T&G=4?d?U5)n(Rnz3jtcfzDJBjtM@ zov+Um%1&RoKV%&56JZE8VYH%JQkT_-qDzX{`#;90k4pc_nsyA|9uD+6J4!c}7oXfj z$DbSxy^qe&w|$dT4=K}q&K7%>gJUzqaO448-Ic7)cD$BsO&7y_LPW22&1#N8-0r_z zR#JS58%1Yo&#eUNPk(4lRG2;z*j;%MUa|Q{dXbIdWp|+hq7H;Jq#ZoaHH7fCWj&f_ z8t5iCV~NnG?QK=odnFR=dDRnyIdN)<(_M7-O1v~Ih&ijTiJJ`;d_DmLb{2NhhhGter03%xi=7@#1lDX+K^L!i9VX4y(#^oLl?a zF@1m&_*IK658y%%e&Z+H?A^G9FU|0xg*9vP@BT1pf4DLb^j3CU?2VY+A)UI~2u)fz zkXAq6wB31xfqNN$UYm_fECR#K7DPWIBAdmOQm&vaaB&SIlq`=-e ztnsp3G)9PC=KiE9ZAp|fk)^N%RX({QgPP%AN1#YY74Sw&k`) zD?REeb*ZW*Z50{p7b|+o zdEZj$v^PTo4;8&?USHLoAzYjny%1JQi>gX*f{*y_SkWrC?$NY%o-K1LlXD@asI!g2 z-dLOQm#;hzDSzyjyK?Vj;8L|Xm3tmd6)p!c&Q1l-@~qdq1e*qX9M(F^wgcXS;&h)jV15`J5exDAC2_m;3TcY-AZ90LuHSy8l1VzWP8QMG+7hp}r{^zu5Mla)xUsQdp{ zntYm{coWQ@6CKvh6jh0VcWm0Y5ZR^gkYI68&)z?a3rbt^>664-tEFd^GU=4W(jCc> zCmkmH`wTunM@i4T4RIoPk$^7Mutbej)Ht6wGi3y0X*{KOu~P1W@>-~$9N{_dVTAkwb5yhW65!++(tEdsD4=hBU5n>Y7<*z z=M?Rn64Zi+JH!l($}W0Jz`obSBWSrJ+0<}z<6Hqy=bx0rq}dP6)CA*cz`4}Hr&~Xl zY~p|9&&9#eLb7A(|MK|L3mA?L4VGpHp_N_i*hq&m8abgOFI z5@lI^!KFz6Kb=4@!7wvDuuIPPdMjoy#Q|3JT>~m^y~7_UAR~JG%pck0rXi%g@Th8k zVwlh%p4bZ|nggRi75KwPKt(agdq*^812}a4@&=rJyxeVcGhs z{(DM=R6HT|sKsE>fU))TesWjOX?C? z(5HG9HpPa8940LjCVADZ;|AVK$jHXs=TW@P3RBy9Hi{E-r9AxEk{YttjGB5T-8fL| z?xGheI8U`83>|o}3&uGx@UvZ14h_>yO#93S*m_e@C0G4ozhe*OEX9)sIo;uf5?+`s z!IJ`sK=HmTW^0STQh#nOaNQ|R7-2bHP+@;*OD3}}jD6%J?b+xCrB_fE4HOC}B_?YWc*o?X>mZwp&oj0Gn%VT{rl@2I`K(F=A5}Hjm_` z(KC(fa?+z@pR$+jVUN@dzy-9OUgr$%{_=b2N12e$L(jQ0mNf?)s~7}`Oy;$G=#4Az z8?tf9nuQlrf!B!{#C+RP*HBI()iVi=;1XPwYmR-`gf85l$ z3h_}+@B~k1Cx=Q77Hu(fI&roLZANT_kv=BURkGwuzc|~B`jbUVOPO2^*KAzJ;CY3h z4eeiaeyQS+)e!p3C>+?a&zMmS#%QA7w6X{z`QkQnO6#7FtVCpvfb|6%`V?Qr*Vx^} zZ?8Ng9c_~5HePf5XqH#|!+N1T2n(uPn0BefY;>(q zONQCf!gBJ|T>4SH$gl1e>|o9wue#teO5<_jc23V#eV0_{D zZ*iCfT-$zE(n1Sw_KAyYu}_1WBAelUM0@7H$ZY!Om32I>-+>0aw&@yNfIc=2MrxFeG1=5u^ zqZxxKFV6w;I5XgkV}GPuedLfmW+wWxG~5>S{=8)2T5T~iFJAbRRrl4PmT@cIRMGs! z!hKJ?8c*CjvI`0Drs|n0zQBmopJjmFP1z*e$WUF&s30?}(b4wX);crSeEtQYL<*dE zWn@y4)vN$FQGaL~MZ-CArn&FyH9;ho^+}o!I7Uc^Ze%O*R89_$$BS@vXH;;gO>i2e z!p)>mU63H)w=Pu!cb?{W*}os>@v(c5Dk&Zd-{q z_;5o2uy_>IsCh#yi%wlE7No`YEpNV5u?IZ9Lg|E)d7}6u`fu6|+Nz>n?WzFiWp9kK zu#c+7G_`yL3){7;Y=z>VB(Q57CfdLIAJdzu4(#C=uODTPH)U_yMgY$@fB7f_!~;x5 zfhk6>_sEzAt5nJ@3xa*Y@vV&Kn_ z))Z~=s2H$d)xFe{Q6*CWGY|x2xKSNW7;*|M6BhUC%H4jU@&lUvj@TfF>wGkce#lm3?4c*o6)n5Ey_A6 zTPFjd#g$60VnK{miXe)Lwij00wYfd5NB&53pl>FLbt7Ji-u`J^K|rM!>%oAsZl+z} zBM^#QV03H;t*KV~nrSbhU)caAXw6JGV`qnPA!JW{Epr34p!3}oT!rVUw0gR;F3aVM zugmd2;$Mr3I7V6F$QIq^0^a-TF^k`Fc1c^>r6+AlR!imjv$#P6S=his&FW;!LMXhD zig(E~$f%*B?rD2^mqA`j55mk9B0o!YS?>#NbTX1b3ONHE%Y9Od9mMmgFj-{?vz~&- zY8i0qFxxGASXbs{)Cxr?j=rVA&aqRiI%Us0mMN^QrJK@;3Wp~fCBrbrtk_7nHe zIkn-ju5`C4Xyyh6O+PiH8}ZPtNrUJ*eS9bSUcFN{Kw%%Cqlp4QubU=aMMjkSp>T*r zoW;cfyU8WSZMpBSiskXaKyx(~d|cnCEC|c7iJAdA)y$XY)Yd1lSx^BRha1+5&Pm#K zT`v)X*0o(T_-AxDZR#FECvCH_aSZWW6SI`)dyzJ z{#?Cq8^~bDAua??oXYsTHh();?zW1>noooz!o0BxE)wi5k9YrVp`Ze)oNjsG)$%eH zrRr)ZfxD20-dQefm5&i?XawU6d2 z7_NQH4-sk)E+Tc46idyA^oaLV0`<8#W6@&k}5(}DLe_s!~&V9*S_3+TzEb}rKjfEv9(`Cr0EupSA9Jme5YznK@A}kT3MORW_Gi#M}$w<;? z7@KiM`XUDNcQBo~wgbH&E30OOBb)Fo=4%B~a;$4p>J*k8A&xGM-flaOtE=Z3`xYKi zRZ@*1ss;e7AxZH2nn5 z`L zrC}7MwOS5-oYWx#m&*G#bIDfEB1sI~3K6s9mszH++Qhz{-D%9FImzv!x&fxAC$i50 zk8USXvMW3mVpzk&$)ysttoY+mg6S}ZwTO#*8DDyA#er2scIL1$NAsK%l!yY=46G+e zGygKYpBycduNs=_d!hm;;mXS?CCaO|R9}ScAzauCIW})^@+XNBXx^Y zulo_x^Grg$JcX`@eIRqG@)&D~oufU;a>qAE1}dF=+4Cb8lCS1q5j=gkG>zitTuh{8YLwj&Cy|yOPxoyTxX``4a3QpN2kzVN0Gu$6o{Wl`F#<2zI6w;zM);JP{n1|$~j*)FccWIkX!cr(! z!|M13BDt4GTsvCk4koAcriX)8Vhm;&b`{iBQ=g!#Y~*a(sd5eEF~yR%&t;+Q7o?3A zFz<%LwoAuZ5pBx*ZRhBhwGwMOo1zEU7?*Gmc3GXauK^HG@D<^g;WyCFuEc=MmJ3bJ z*8X%?hXYX{UW&{$eBTD47+9WrI*GUeHLK>8|13*1S@Jm z&Qb8PsTjj9EL;I$n`BhajD}RB!i^O86djvK;Sv(icZv=9LCUF(TT(W@99Ra*7TGUS z3aG6G46TgzxpqAy11l>cp}joANXQTof2_fFzjYRt2*IhDSls)gDUv-k#7ZZC3*q^p#^CytTq}QXKTETh=&SXJ3iKMjGKc z#M#?mA6s;E%F&s64JaM8e3IbatC9ofq@?-}5Zow3R))tkYWj8dFdvvLQq5$c^h0dk zR;HWpmia1B>&1hV5eaDD!By*?Iq0T|^@J!2>)t9Dh@ z$nX>toeu%{PHE}pCYma*mDU-oC~{^>1#Ym-T?6dPo$Oj^ z6KZm+p5$iZHotP+7KYk<5v%jyQttd$MTO?l`8pMS_$fHi}qn5jfAd zJ=g}uY$l9U_(yO?w!XyOex048vB)|F^rLv8Zh%X@79*C=_(q+H=qL&BxsVm8fpQ7`T+$jj~Uwu!L?G--xsfz8lCj~^16zt zR6I_z!DKRi8rf=wE>_1Ph+QZnAYk{ptL)>wNdAFHtl$>tY%sJnQn|dr?Mu~zl~L%7 z*Tkws$4=?og)f3(GcQVO{6xO$oSch_zg5SSD31;VNrI`NLM6$iJ(CvL3_wEg!wo-P zWew^I9(^y4zNJj!MhJUIO{wUn9zJU;!F22C0ldr(ggVI73L?P?cfznV^`-q-IFO#V zY0$EEPZFKblaGGo>+3nXoA)wvFld0 zwBy@j8Xqcmll2gJ7Xv-e`Fiqp?}TNx6TUM(mA-ZS(j6>ad)v+PND zO%Q|jIG$6U!XYs|W|$mq3{YqsCQps{36ZNU~s{&_lXz0}00*n?}#*_(w>kgkJ(nN(=AUJc?c*=GZC9Rz#>!uL!JVHLGg0qG(-$|wM*b_rcX z0i~5IovCfhmrqs8htP5m04K}`y-9NDxjy9|z@_iDeglIeEEll}$NC;Le6fpYh#drb@v9LbSD5}c34Q7MEN?`785!dMNpC>_eOL==%;@DM0r7LOWOVMI(zAk z9`l!&Ll=z`esY88TVk|cYcuWAO+cyrQhmcB+sLS6DSKGUUgdsob&tVrX!+OiHIQ54 zSpW-X#hHyU%tll6nRmpewvH@j>w?4!BK<(IWhYkIs(qd~IT1_&JDV;QvniA407*)W zf=D|jB*8R+`f1(edrxuuuP7e&O+Jt#dmspIuG%1B(5K~Xco3z|D@}u87$g}`0=r5| zq_@Nk20;K?*Z`?7#WDbRY7wQ#7R*)=_vFW=mW6)@<o49;O|I`` zdI*Tp57zyAIl$Vqb+xnP&lnAcyC@~WuA4 zko~lIz7p2_nyh{%)peBn(bfNU2$Wl%exw{FXZ9V z*ZuQjPM~T^HTigRM0Pk}Jp+%JsNXp^Dmhrq6N{(=JwQvh`9U7m|5yo)(GrH#+otj^ z1YBhiyHuD;*_`=pI~fLlVE~34X0alY)hzpKBPzNqhJ;;9DLYuWM9cBc)gnFti1S#M zc{JfZhLU3&LRV2*yiT(|^FanTt)0-6#vb_ay8z}b_o@R3W|jRESROQz?P#$2xX;A{ zCOSGe9tV+LG2)jQKxEBoIXAV(m*n6L=Sqso+cH<=t==Eh4@2AS)G94`CXeclQCz%n z$X@$*Vo$_)e|>24Yj=7>>d<7me+O95-F}9DE6}0(GUQ8Ci_--B^L0zf#fQqf{}a0Z z_2+>H^L&fz?xAq!^Je3Sy|!u3w>z|?O!g~o;a}_Dk>2R^g743#ecWwsiG$9@H%;1w zR-e}wQ%tW?OvvwM8=}7-i>i?b0)0cRu!InA<*lcG5_~ms4j4UDX3c*NRtC=(e;)qv zJ`#V8%J#10ru;mdS-ziVydRLiH{#^EDt`I;^sImP+5j35GDZIVMMcsFB}YW;6AtNG^~=q2Mk_7{5tw2O4u2r_Z+VLdM_WGyf?$|wjtP6- zUEMCtM$I`6e3B2~Hl$j635E#mNYyp(Zzeoq?TPTU(n(!vOab zi{CXsd))EVD&cZ3j;`>bZwlYo87=4L@Tdn1=|Iq~#4W|XKiXhaMCVJ{aomBobwtE! zRh38EPct}%kA?KhKmZg`KX_X6q)duyAwu|G)X9Z}8$&;Th~2!G9|#&PFyHBs$9Wem z@zZ84fk!XBv%To?v%dEJFaer=@Pv}RyE}C&`VKi~y z$LOMywyN0EAqMaYk2HwNVtx$;Z4?ooXjP8O%Eo7d#a8T`3L+yI82TzM6{Q!+b)%A( zA>nZ?V!m&THER~-4(91a>zohy6_>5z$nWNpN|t87q0&mDVir*T)qx)lVO!xR%l&xw z24p3&jP34#p{V+`+EJT+^p$iHai`%7*Jt>F*sU49V%jl6eey#`HmI~?34ps;lUw$<5}3OR zG1AvJ%m>F%|9Xs-^JJ61E^}~#Hk|j3Xxb$R?Mg3#`r~jm!#VVdXv9s9^bu3*Hr8DY= z_nWTwkk|9iUa?+Qt!RCO2o(l3F;rZSwCrC8=6U*Z1odz=G9FvXla|@WHEY5_Kf>)U zhHC1X|Irkk)LX7~;lyZmV{q)iGOyAUSqbASEGsjRf}7S8s-}xfAVqUO7Lsk7{GoTBgqZPQ%}b7q`K`LJoJX{+xCO^wtI3Kq=g@bG#$7o+ECG5pkra zaQOlidw+DD5M52+-H4(dNd7Qx{&Fdvy50qTWBA}<1@t5W_4B?y1oHk0+I_fVdLEd4usv;3jHM{seW$BA!RIjXgZ4u5g* zrSwBCrK}SCZ!~yj3GOv6AZr3R+uU5yWp72i>U;k3I12PP$i}s%cAV}7=G>y2j6N!*=rcUFn=gFe(i%jp*Fs~ z@z?s24}A@0pf~4`$KA^msy!C|D7Ig^9>6_of9v&*;G%UJ?2P;R+@65{PyF%{iu}C? z{fQ=Kd#@#KOXM8^suS8yROM_t$@6cD84i!s@9UJJu}M>hL+M?CyD8BXbEV~%=3e5g zUj~AJecUAGS(-z~_MtE#aLg{quY>5`KBs)H201B{itZIk7ArPTD1}&$Rx8bRg_QA0 z-5rQ@cJAu~vlZ*=&z#t^bNG5Jt843W!syvDDXICaZ+-{Yj&dzw(nqYQO4?djKurOt z1=R0J^@>Y37uf(1z)yE}R@9g3?vy{J=JWCc+tpzS->0-Jldy~7tmth9d%*@vpVa?w9gOE%bDF^lW2%;9 z+-hW}vXNJrvJBfNQh1Hn?c5uNE712=n~mwquCQBjndD_|TRqArblPb(+;yBm=_uH2 zQMfcY8%Z!%m98is_*md$5}yc}a_^y?WQ6B#n{l*(8;tsl$gY91!OA5;mrt*<^wB0m zg<D+_ats&eby|AWoU_SyN_@7oLxID&uwUr2w&C<_R!Dfvxr zE^u?~;gp55hB-lrxBa_(|NibG)r2K|pKs<6pwGcm5c~ZQMT3wa}Vj~3fd5$$7|{Z-^n8YQ=gp}y#MRPnvFJb zxJr8cH~HJAjK@L~`J6Dmw zWMN2)En&yx{2~R7oHXp^bZ4xDGg|pwP)-!j$mbxLSaD0L2fSts7Vbujd#XJ3{l24S z0-}3WbB)-+Wo;#42*O9e&C5Ogqd+WflB}sBARZR_Qq5VBvZH;I6N|VupyvIlV$ciJ z#7M4$Q$G)*xMbv_W<6o_EHFh5hp<^$Uw7IAz5< zQ>PMZ+Jwi`-L5V`FvdELP4T(tw4h@Gx-H5%nJn2zWp^@o7)$)6|Cr~c3-ptSpd6wa zi%lFtR4IhF?oDkAyf78_u)q(&8$D@Kq015XOL!GP3wRF9Mob0LTEIn!qyZe{@4r@A zb|o4;o!`W*ZTc5oj0Et(P3o5t?#oAQ!R$vTqpx`G%S-e32+1Yx=Uad7ufTpyjJkYk z_(u7*^Sj6Lo$$KO^U3!MNWa4zDm78R!!p(EIrG2B*Vlj^oX{7{-VyYJ?G_>i&lo1p ztAQ`|bOQ~=1Wmy*29bMxOPdHmp9h0%bTec|$PpD@Kszh*8pdP<+w7kzH0DCUsBcz* zDllIPM3St0;o7OShLHT5AaFE}qub$26O2c$jIuzK+P$vgo>#{{CKxzBK9ROd>Ny5T z?7XL-yJcxc!bfT>#!hQT(763eZzP$CteoQVBO$s&`x5f(Utv&o&iWi~mt&99>mN`+ z22ple+pC^u+4Q2(y?*_W)7(txVUBDh4Jpf$F1$aZ(BC7M{1<-#RAHNVO@l(YIE^7P z+N8uos`)IGkoWTe+SiBq{y{?T)7|y(qywxAA8bmqs#sQkT75 zIaKZ0)j}9=&5=5&^^u;J z@jhz#w%n+l1$tAy{d~B-S~=p-#uYXG4g?-m-@QlzFoiY!}hxdcm#jeIXQpee-Q+568Eih8MoW}_jltA<^4kn6ZZ$!FD0h^lA!n)&vca* zY}7sB=Lr9cpYkz%t_GWB#=;yr>zm}jNb$p8i$b||gpF6l4qFvXt>Q4Jzhm9^knVpQ!u8UL!G-nk9rAtJmkLM;z!JFA0tCG@iaG7%z z7J)vJ&AN&U*Blt35|8wU0JgG>8M6W zsh9g0PGw=%cST13CSmmKzTz2DAB31MrmSSp#h+5LEaH5 zUg!;{`GVgQFTOHi*6LdJJNvh;xqWr^pIF=jKbqVJjz+JzK0AWva=v~7zGPbGTDkb% zKX%LJEUQl6nR?wjU4kw6yt_YRYfbz3ZBO~!wq3l#^0@+Z0MFsBy5$KswDq8Wusw*JQcAn(=VZFA24dK_cotRJxC0Q%uvo&DDY zemdO*p1QP>Ahg8zN+#Bo2e&&H-A9V!l_5BX?RCBT5F7I)6rZuv%Xp)CL4TuJ*g6Z@ ze_3a?;9*|sG@`##+(L~Ek=+ozm+-WnS>Ul!cJ2vSy`dt)!Cdgw!7dj-k)m>y#KHqz z^>5E^#$69~DA3Hv_@Ky!B3eR!m&(|E+x930-H}%!n7_1>6EuZk!4kVuTU{s_a3Zyy z^^B&)->~+gWsQoH@J%dXRTlY|nHs7~44RJVQ86$o^k7qL~>5EIkS@dy9 z(LTJTgk0$50!BcjwB=IsZM;h_GO~&o#&rAw@T+VG4)$qD9Pp5Q#$fA%$bIMh$YJhp zTM=)<%e1&nZ!e5j%`q3B?FkoKV60d%)I)pV?0+}mW1pu48)oQ*1p6Oc@?o&u=2J?u z+An3)%eEcEL*-yyZL4dXO7*&zO5~-= zLBivDCbQfb9R;pJqT+H53JEe+jQrCs&i&KaREVUjA9z3mR}PW)KTxR6v!=o|uQ}Hz z!{J|$*mmm?MNV*hc2{vMGRX#UCW=5X6Oh;Hvg!N(0fRt%zqDxkfl@c^AlwMULw~c1 zXls>NCKLy!BcrBbhpm)-oZ zW>;$JVQQ6#K9s%fNbB|2_G~Ywf<<;(4rDbnovfYFIv@6HO=!Cd)Ntwl5KpEC;pa z*kH4{yX;4jAgMiho3*s0heL1Q^m2_k5E-iyXTL#`gXaR1&%47te$>roZCzSf zbhb!|^KCVG2@z$@$t+H5-T(0Zg3IUOzJ8132G0b>pLg#sxW4+Y1^(pz0?HBUBIM5@ z&eh}w_|4=7vZzSsl%n@726x=KQWg?D?c^MNP}h0m|R{hS5u~jHusxeii|R=ZsnMD)kx{hd-L*eD+!&# zY9AV#<6JovV#d?ujEC7HU_9F@Fdk(CjHigF&l!&jj7J8>qa54CMcB-pMwk_~9_pxq zKduNXnYAcB9#c%*bH?L^{gHTdk+3*m0*ohb6=s${I5VDAv2$u>cQCiZ{1yeJiUK+b=2v7 z#@*E=VTz~zp9=Q;cKErP*Z{wo*x(Ul}MaM!W;S~c>B1X0| zts~)79M9XU-T*IGo2-4P2jQ;O$*%U{W^=To)9R|{O&a;Oti9Z8K7FB?;T1~TUDP7^`2|6(yF_v7;0Wf;bqc8C)4i=b9E&t8Pbw+pU3ki z2PPPHXT0KUcRK+`;D#K79V~;B&j}1})QUJNG9`-^qR2r_acJDomDh zqff(quBJ7>?@em}f6fVYR1v`FA>^apET<00C4|NBbH|@M{`|A?XP6o(%DFBKJkOIAsead77(1lVcr&N(; z_@Su8M>3Y)*zKp{kHhZOgbw)4gbo0Q^t{_b#b@Z1DOGRJ`ar58@yWQ;zB}yx!*^Tk z&0zlCT;7k*Hx(+Q`1z(%qiCGE+wpPj_6zOyzPNUoQX=DJeOF)8wbC8+j1i;#+)_*t z|Fl01b~}^pDp@j2&9>2^5y(jo3t6j)iqW=NCcDvYI=2cLjPvt#eju#IhN$mzhe%7Q z)w0l*7EWcwUm~sz+KZ6CM0~rfxQmqPEEn>C&63Ap^92Wcy*5B@YpQK(`lRpaetv}p z+OivN>-Nk&;Js0*Dn1^ERWomgY_nSlOQSd``9S+DzmX~E^Oitoi5@Bj>9|_k5Gryt zTh009vyy&_Y<91-;JUzDWwT4m0DJ(LJ`pAQP9RFkzs&StamEq;mE+NeKPthBW( z$I`Z0JKrl?Ldi;@2DG_N)JF4AwIgQC5m&)a@<7z})qgGUMh`^sWDGc+Rv89>;wa_I zm?$j$jUZrIlrTj~V-+YG6l0bqRCIu6DZm+lcwt^D;xwbGLl^;a80T;GRX7=FpF~wv zl+z4Jl8;1yA~AUY3v)^W&HAzg`~=ECpaLWmV~O|}iNGF_q7Vnfh%&HESyCk*`Ul+g z8zz#YsuD(UJZE=4mmYWAp^`+1ltut1)aUJ-iRFqR*eumM=9-rd;WOF^gOSU`fuslQ1JP=pbfbG5CoR zC+A4A2&)yZ0BG2=8ki9-O#(fEb%1#n(~1nLi)93w&OIC|6`2nbiJVrTZK#ofJVQGw zD9cl&!m^^sh*zj^g*>aEFxUL*ki>X2y#1ulibzD>v-mO&j;4>H-TrynO;F4D*5C!WG z8XAk@g^V&WEh!>Md?ugDjKa|{4H#Xfk;qWNWJLHGuolYY3`np+dd=X=_`1woFKN2QIYB=16Pcpw-pyzTBt{TzpTuH zgSle)08g^BvEc7XzqVM?R>NvE8&wZ`ox)D59Yw!XXeUmnT(jO#yy_`y?OS-(XfIl= zO3B{Wy=JalE}Tls16}s&Lq;bCT-U5PuV?H1etBU{P)#vvxqRKPprDuCv1PJVz|EwN zM}4rPS!3>b_11I}Rp!TGdC{)=rcK=xlV{6uttHo&(%Nr$7;oj49*sOf3mODBJdIw*FnN^Os=Tw#)5Hb3Y$y6Tbn6{Gwj@WC>F_`Kh5^h^^j0v{~% z$Is6h4m4o} z>}dj>itB&{d_$^&5a%NzaD_CONSND+vHkQdHlPsZCKosGp^ktZF3XIcrgEl2WDo^r zD42gDx6x%a5vec-tV>x@dCZIVC?O2rVheyD%@D7NE$wGD&~LDBfDO>+r*K;lgvHUR zv-yN%7!TOW3a}mMGPi-#-(ccl7Gz)mV8+NWj|c_>CRh3!n2svcP#^#(wv)uOnFN+N z;j0z%hKDi)CaruX4{_PKBML?`V;8FNv;r(?iCl=uvkFG3dZsoP@e&hZsS|c|DT{5` zGm&~GK;iEJJQJ^Y?3W4^Ow$Xidv*qmS1G1|&&%U5UCb7r31VO>CZ=kdTm2N);K$C> zsq47@Utb-2ZQjyQOQK~j4K?y+;;6^K9sw43C9+4*jU#)&jPCBzyOs9O-cXYP&N_{a zhd14&l=W!ioIgs#ozx-~v~g{jpC6svrtfbvSv1#OkLW^F=vxJuwXtq33901!)O1)K z=}VP$G7V#x&Cen&hw_D)kqHxLm8AdG7E={XU#;Llrov_e8YWZcLo7fe$ za%$h|l|o9&-B~_j`HC=Tv~X&M!cDJ0P^#6dD2v8eRVo4#4ISrkEU?mQIm_%JySEPc z&yz8C-kR;oaR>iQ#@raF2zP#PSR-e6a^8&e{T*0gFzeLy`ZvV?)T=3}$eSstp2Yvq zB_YVO_#Xjd;MVa!kO}7P9nkK8_K$Wu6y4&g|K7wPS5ol~_L?4)clfAP<^wOUA~&)c zOS6xMhNE_Sx*w5fw-B3+Lxa%+C|NW=Eqm*hpULg?Q+D1>1m?Gs%{G;ncB63H*1HX( zoT>CO+nrO&oi@v35ae5n!zNJ5YGqKI*1YzizmwUbx;EO&C0-3Hn=-&)-E9n}al33prVJg1rPV;Rl$4P7i<3x9&72Z8j3RbgaGTq;Qe~sxU5VCF7#BM= zy(>^nP)BC+c-*+Pq6=X+G3UKiYCis@7~nIw_)jMWxvBxL1>PhvNK7qxuqLM3&N&h& z!|h)=2bj*>jLMA1Y-Ca9QLs3^l+?tb2_+2_kZ{5nhr*H?LMY+qB*B=oe;}zz!i5AY zNV)``k{Ss}If#a8QO3R^i5Q)I3bG_CJmvyNp-XTnIfwTX=+Lv^Qc`n{H(~~?n?A20 zK-bmhp{jF@0<52s7BX$*c`ItQp6 zSSarPz>>lqd=ylLN#kX4*!EmTfnkF@3EGp+GvF{0hRuC5sw!XNLkz>3OWa=r4EIt- zu!`Yif|Q3im&0Tv@>Vca(4`foz*542Se6y(;XvpN;|F3HUHlG=i3-g0ITm?7@Um$c zBSpdw?I2JJ#G|x`5FUPtry};^$h=S_Sb8XwsLaE^BJ}pL5Eh^D!Y589D1|b@OA%7e zO9h3DXHZKc=<$>Gp;(SfWsrMu13`}zB?+@W`ftv0URY!N80d}HQ+$Z@@}|U#7cYs~ zA{A=jqT(7S`*20@>qF&lNQXuks9aiB5rG>1pbvMDNz6e^1s$Vl2^0jbU1%3t;@7sr zN6)=+iL)rV+8m6qDxagHqAwAVt2wMakMJVUd>;Jeb0!f+3Doe=J0>FH&cMVsbXFNm z2%;iA`-Lvj2?ecDc+42O2}6UK{YFKZ$8KSsp#rX0UZGNzUtI`2L}+7g5zK;&c{H1c zXZg1Cw5lRl0F^3mJZOXX5S@*^NawKpLzGqITN#r51yB>a`QkFZ)jWxu!ljz*9N=XN zKldCP^%H+!nnwt!BL7+6)72Dy|PoAtP4%-w@rD7{H2q?+e5mF-!+lRV)|oSBYf>?mBe;;K^*EVD z`IN6~{KXkvtqF)eSY{^G<2j9NPMP`sqC?AI9M7Ums!|Gra=ZX2P7wiL-?=J^vq}&PhSa$yMyB;=Hujct9Z|3;}vp}Uu zo5fi$PaS6F?|s_%wJ)hq-D|@g8u*jaYFN*%Qn{_v zDn(~s(y%w{A?{1MB$>r}^%NS5cIoK1a;~0#NHVL8M#WB0OfjK>&-=;s#&Iq6$NA#E zH9a2CNv&bQ>#y2zlG)|l3zh|OH|fUv$@3)2Y*c2F{3XdObV!MYyW9?KQxoPCn%jd^ zA1nez3%jX-Io*t_IlP-=dEFVB{)+k9sZ4wJV5|(x6eGu+*j?3^ajGShTq(=ETyB(? zy}X;7Za&k~#)^sNmBycY+Sp0<8UMEDZq=)){>YoD{vHvC0=d2;&>ey92=oV{8O?P{ z=)L>F+gJQ(?wd2Mu^l?qQDMBB=PI>GEPLvt%BtPgBs`X6TWHO8u9=P2RcF6$47Zv* za<}DDanc^_rNjK3Z)xbE!(^RP1r4)IIcE;Lnll`9r@3i)n;O-}l~NQgr>XwLl6pW# zcF}wwYw9SNw0EcJdR}5Xy$Lgmqh+$n?VdhC8DeI_s85%;HVLcq!?3W3WEVH}fg>*5 zqVLgZeXbhRcLm2pt(hE|OD83C=g3M4{Y|crVwPkidWcWEaGckzLztROGrbj^7e3E} zx39F|y1*Mfc>6a9^xiQ1yK$)pIAFLD;L_C`fCNgzqX(eyf6j#=7T$)^oPBYANH5*O9D6Am%!?%z`vp zi5{x$R9Gn^c@gd=X8iI&`e{(+s=w~4??O_^%p!A<2~$&wd!& z4@msZ0rX1(mJwjIJ~z+qow@Js5=ovt&kW47EN{^gsF9@=}e zeD;MRnPN;OP$$D&!1UzZX?&dHPU9OK|EeF|U0B)VOotEn>le6C+(UD3`i}0!1qTln zDe2b3ZB5Sb+ZwMhXLh`L=VF-;$ou}#tuImB%8~!iC)ax*9OZ}J7JYYpzJM=BG%X8m zw*N+mh=i#yvrkJeKNB&}gbrQ__4PRqIlh$qjc2@3_$B#6$%FV5P)=CCFVl#}1F0&@ zU%yOYGzd|~&MF26S(Z5s3(28QJYue+upsgO#^dPuO-pk(X7X$1PFsFVP!z8B8+~m) z^cnEpK;*14n(>ltvixCy=kRak_f_gxTz>B3y=!M|M3+&~>% z+-p6ApZ;7pYuwrquqZ0RTDLcervH6ozuLqTQF$OWUv|FzO4Qn(`flJ_;lHNtT5v53 zt{LIr`ZJJ&#Q2-%gB2G9Aic}sAYR+x`yt@B8u$Vu=)#5iC5*BzU$(f}z>6m-8RWw; z$q7OHP5&NQ{+j=VMqlWy&h_B$lt6eq+w+64WV-7w{L5coeb9`!2l~Dqgvp_oL(ZK^ z+UMUm^zl2wdkhQtw;2`}Ai(Ea=+hhPrR>+S;oV?+cyte-q~xX3BDqlh7Jci_(D%bY zPst7Y)Vxif62t0ApV%uOPO@shVLp&}9_LLar1Y^){nWtS+YDSeyGwtn?fGrmR+Ssh zdE-Wk@PX<0zc*@HeyM}+X?*>Qy7s@|!dK4@)c;L4Nb-@jxY0GKzPu)XWj+dj;9lh1 zXwJ`={8Me4w`m*W8_s$0M)M(mU_Pwdw0)tSH<^#ljc$-1n2sBTc<4uN2RDl4;alDg zGB>(Ky}VrBGau92v@PG#cFo=BQvJYmgtuv0`p9Kr-==NlW!t~96uld%$4hJC45E*Bpn9GAGqWdj8F5?%A(KHnH|^*v}{&3|BHg!n(n zMh3^8Z(_I6|EzU?Zg0NDwUl`e1$^_wH$?u0WGFlDpOF8h@L%UG6pZ{!gl>XT9=|9|$rY*}$#P4iWDoQ~)ldLIw6EGbV{ zMKI6v%uNNxn8_Hh!391i^ zEy~@_u(7*I2s2BRs*Baka{jM`?jZyk!HOf=7s@L^I!f4`cJ9RQw2iw*>)6hZ>?9+@0P3o2;g)LU4eZQpWxqd8Y&?q%G zn|k4JzNPESQ!3|=TODguoSrYMb#Ikg%SC@*@^a(Vwmu!oW*vl4XI5u zTe75OeWe`2q>sv=ta{C(-mfgo)MS-gSXK?sHwC-UHT;3R+i7_tySx=Innj8o(@Ac-3>K>SkO&DYkNK=YT93tt~j8#|`V zwArQ~?crMT3K_L07uu*JJH1AJ0M`1BSo8MH-6^YZm4|6XD{ND3JXNMRmGMuKDVcRc zt&HJm)iRbvX>)Y6*`e5%<}TRJ{B!oRc@C34+S!}ES28M9O}3?tyPOTf8E~|vz>Np)+w4Rr*Jy#%O)PX+f80xbn$Ulm{-3&4jSa*)2ucxAb)E^`+k`A!#Yj;Y3Y>KJg+y-q8XIQ80OSgy?B)vb+TjiV8pY|?k?TpXaYF1mc!pGA(xHliRWa zx12w>rHM*fh2E{c-St}2xidhsYqJ0keqrnm=C0;16>Fe$@&_w7T7|^k$m7*b_s;$L ztkiY4(!s-a9y*S+w<|?wzMd7;qP6#(ZA&`ta_XgM!*a(vUgk5up4mgcoN`9(X|c2O zakwaIJ&SYAS^h>voKwslT5@Hwr5o?uI_Ax(|f zn;pNmvBsmyq2Iac?sl%^Z}!bEhkN;Y?trPElh4ydXQ;Kz)F^Yw)A=z@Mz_^b(Q!FI z{Soq&mSc8(NAqe|lHQ!OeGQ+bX1Ui~_wr_XH*&AdThQRXg26F6s0=g1RVF{Jl%3O3 zle@!fskP|MfMlr4)K`=LAqnYmN`{N_bX0!)dF>*Lu)*A#lr3q<-m%kB(%{!WHNlH4 z!Uk*2q0=v}8BOYERyQ2b=IaL8RdOMH?E04E4YmH=UPk#=%XF#M%&Ma~`{OL@O**J> z{_00+*As8Y2pXglm`}HYn(H#1YxWZrAtxteaRoHYUij0pchn5v`cR-HJ$*p+(Bqd- zQKK3jQ}X`yqq$t~kn20-8uaNMa(!js?~v=)eR_vne~fGIkn4B*^bWbcFz$EA_3J*p zL#|)<=^b+YDQdn$uJ4fR=U@E}xxPcLab0?cTwnO^|E?j|r-H87GA>@~#aj6dWn6!J zxAN!Pbx9ub|NYPZqkL!7-*X_z1f>7k!Y;%IB*2nShRjA6{r}TZX8t7#yM8-wzIV03 zCo`J;i+RJnAHSJ5xi@b_cmu?F!zSuqzmT->TX@6o#UV;`IwD;G2qG#0K>1DtaN&wBJ(E%N|h! za9qP53VNXeWJQmPIW-NcdNihAQPGQ|iryl-kl+vYMhJS>^L|#(8_ZO&vWqY0MNrSX z2uH9F%XQiJ(U(uPykCFLeh&~KSfrx&GZsw0%$CjX{M~GsPx#AwF>uhmdw0GqQoa*~ zJcttAjvd;6k3wbs+b5OE>^W{h7Zre200V99sbo3GVr6|~&sh4phjcins22HAqD*Jm zj9yKb(W}|TiC(gzX0|QtU|Sr6ZQ%yn!U(^cUA#)c(aS%U(U-G#wmW~`+XbH;AJhBX zxd*~_J|ZJj_!+CGreAS?5qz!m^}uXu#s1sh*khuC4tP6zWfoSp9sJ@hjI8bc5u6V! z$5oEn{|d%xwsTW&8RCME?%fDh`nisqCldc`<}mxt-eov-_q>>#9lecRRQ3L$raZ(7 z<{W=UN2;`aOGmE9iP8~6EW>cA-h_M;@}~)@d?aM(qY@>gf)oX+_|3>SBYzDe)sKt} z4Hr>Hs!)eije0Zk&B$NFNbr%7VW3Zxkw8?$k0bB%1EfFP-AY;HzVJS{1uGUKQb~5wF%2eNKi;es0BWw|8`sy+Bz@bj?5jyE0Obo^;Lehkf!*FrOo^d3zEK>5b!7_MNLgT$EmSJ3hN^K|6H zc>5fGHyuC5Wyp(hnTU==S5SBv#hZ<9HvSkJKgMLpYcZKS8#N3R?JXPMZ2So}evHSE zSK~3!Q4PVHi*GLe1Q$QXW5{dq7%1zS#-3FbX^wJm&i^-JB>e=2J}NO|=FQ08%E*r~ z8S+|8=9!UHdE|=cn~-lp{um)YMrHWL2|q$eraywfFn<&BO~@Z1B%;IrhLG&7A0?y$ z)i)jAbo>cAeu&Gkw_c&+-JH=?T~od}tra9wrILhvR5b+e*Jwwu| znv6qLIEJ4pBr*#mFubg(;l*Zmrhbct3RKv$GT6q{kq(1!!{=y%Xm9x*huSy(_YVda zl?W{VAkgB08s38XDH^GCcs$JjASJx~>~l0ys20Z2iX7ha@hKWpEPMJ#Abu1A;@id$ zXsiaBp%sk7kU&LNc-u0d(;16aXh$&b zI6+X0?};L7M1$dk6IH$Q>N7M^F<*KN<*-EKbF>0<1%(|)SPoqgF=#~SHVx50N#Gz| zKw04hNIH_kMCKSY{bBmQAR4phb_ZyPKzMn>=V+i}!si<*I1F#Zpfx(sa3gCNCF}+T zu%w%C21U^HxYolt(V(UTx?~I*6QYOx)`C@yMQbv_{A{EfR8JVCrV_|=DS-|X_9Yby zP)8vLMbK29D7@I^7R1pml}s26jd#tUO&3jpdyRq6yvf;oecH08QXGlp*3X zD1xRUiqD{`fdpAa_m(E>ye9%^AS-<3Rcc`*tPTXa%I8}IO(zBLV~rkx!Ra1@)>S1E zn;0a>ScMW$R=L>J)zDUtL1QfQ84Ttp0Zov~IVgbEWdIc3Ha&O}){-)i?s{P~?FTa? znfz9gjs_hN%n2(1rkfaqV`Lh00$8UqHte(rm?g~I_e}yAQ$B?Q6ahnB4hNX9CP=38 zFC5*EYVpAovR~g?e4G~lA)ST2CB2}<)3w5y9|Dycx~P^~#Cxuj-ff^w?@dN@XCYDUI)o6Uz3nUOlLPyQSYFo=4>Y{dAv)>Nt@ zhMZ(#Aiil$qpDWev;bJwS>Y)IV+;~>1t?RqFl-qEcC^QW0j64W2$rcW77s>LzX=5? zRkUHevBY#5MtcUPwrPBy+0Apj8vSb)M+-`3|7w zG%GM>V5;yZfT=pmat#<*lht^woz1Np_LrWPYN=qW+f`2CHE&aRFW0~48cggY%{6ej(C4yMdt z-hK+E7FdE-O_vXHrCP&U!g90w5f$!Lz$igDK6$o8z(`SepCM8cyXna&?v}Sq-ZMbk~|QK449`{7)_}B2+=xB@<7lt5k+k$qp2`Oyx+`AkYsH? zyabf0iB>DnG54@B`#E8CkU|u0iLzroVZP~X>xkRWtSj+ox~-I`azjo!o)wJbpqTE; z=or=)e-0)p{r+$Qu^L7nV!%|X;NBr5C&*t_R_QcwX{{#s`BWLHh+iJ2D|cP}6EIae zAlI7&z&Zgcx8oDRsse&bRT!NZ3**5MYh3#P^mRO#G7s zx0~b{%RcxSGx9@TJ9|s|kzgm00SdE_KM8hfR9Aq1nGN|I?BqRRAAjG5qyQ8?g-8+# zcG9zxRn5n7`YG7Sj@mG!{5hH(Rs76U5qDjEie_F=ZesxjkOY;DntGTABmw1r_;`y? z(MTqM2RrGeWQSHPnrgWq+_+Ty)1Jqov8+esv{a0M1jU;!nas5%dUk6GDlZ9RmH`^b z^i+vQQ+FhuY^f|j(7?L(w{?~l;mmx6%`fGeHQsZ5(DoF9UawyL%7Pq z*$Hs0L>!Pzil846TWW7jc`2*0VQcyJjHiK&@8`%M-rGSpMb_xhI4O(0QwQ%)#XIDphie=bGjJ%DH;r! zvoZnwhz5(GAJJguWe~UXgwXeBFg5U#wmsCSAPM^|gvJ_QORD-LM#!NCHLgYrpml0O z@~i>E{GbVFc1{SR5w#q7KvPe0!zxs%Cyz{uWb{3X4FF7zVk<1zAdJ4pyy+R5XyHF% z-a=>{M8`Nvav(oP$VJeP2)U{y`I{-4o@*hiM9@G+oK@7mO^i+hs+jXE4H5J`Sg+tm za^h#`N3>oDO&+)TP%}3H9axsa=tn95^VTHfbUft(h@cTwChrLh2`NiD(lsvF1i+6p z1C|Ax1iq&kh=8dHecv|;J|ikg5GQLg7|B%O{in)yC=~vGH{;<)Gyb)L;OA@y2o$Pa zu|NNQwgaFN`EF1BRrwCgj^`a=pMKwt2P_sP5DVsZIn}!o)Z1W3^Ai9h9p`~y3BXV# zNiscTV{z*zU)qwb6LB&Uc_Q~?$?v|~VV34t4MMs4U5_C8=agh;Bb-#qDF@P#R zRtQY8m{~q%bgE!>#ZfGn=uyI581;?=v&adT`-tGAm@!0LQBe?8o8uRSWy}$s{FJP@N}?5eLg?|Fpexb0jCI)F;R6vqDzEm zQ7*6u7{N$c19X}NqLX}t$yE-lL?BY_R4gZ1XtExep+abC1Moqr8cB{fMns zXmA<{ql1G^6piGdF!W`#K=Dy{Jd1*ZgI^RJs1yM>*$W#aH4208`FtYaKxYcTik4K; zL{#~aahC`VR5u0=kFqJ{As81ROXTM8ODfDH@t~v0zHjC__sC45FMQ5imXJ`2YiR zG#*Uu_43JJLf4QFPyh^dF6%_VRI}&Fw}>Rzpg^X20neuu0N?ZFMZgGi@g)GJiYpgi zuYm)HLOeKdg^7Zx^2KK(8BFCH7hfXaAj9uoD0)8PYv92377Nx@mSFulIPd_*gCWZb7X@RM zBQFRJ{n4Ueja3YYf)OiRU|{ACP1q?|k-0Sz2$--irx;k1RTgg*1w$724Zwk~JRXc$1X>WRC@d5%3f5RmUKEU2a)2QC zQQH+p4&uR&1V{m}&T=b6!GtAw2!a92MSdL|#!+Iy8fLjYuY;-jAHP#H9k5KQ*TF%c zC>D$`~N}DK_IlBUE zytNH6^YaS<|H&%k#gZcag)8Lsk2w*67x{-O=+>O;A(ch=^0~@L(ao9(Nya4!7A~s#ML#_1Tpf->KY10u z$|?B-{qP2H^B@lWN-X+e*8!*}m1;hjG5~_4;>%~XIW)!M(9il@XcESvAI19I z+KfeG6eKkQRsjP)j|*CWS=CJopUgNuVX{1j<+b2qb}Q zqNkF5?wyH6KWg?x(2t^h?o*0IBVET)-fS|OU{={5qFH%T{3cfAKr~&Mla27l_#k%7>J6810C>6WidEaI{13h zV=b|8@NtQQ5S$(;yb6rP@{$sFWD1U`C<4dSF6DjKsANviuN0Zi%`5Qx4HUuckV$D< zR0+GcE&zYrL7{4N+)0|`(enT;%6#FGSE(PV+sj(|webtN`UG zEgDkEkr3UbdJD^rWoRmll6vxV`$d>t9*@@PfymWi0W>|(72bB@wZkgAAP9=1DXF+; zH2KF8F82vD;$zW>T?4?KPgqSjB&aG$1qzpK0%*D)_)(sG zk+6zboedY_0%-QMRet^?UL>p{or+{GWJS=L&eizDn}k(_)#xq?5ilgtwRK512?w?e zS1Con2t=1&Rp@&bjQU1akw|PH4-xyKPKHCycIrqO+aKAZ8K63K4 zXWcz>QjrP9p(^_(=t&TWoX^w} zAz{`3gPj0^;A!E(!^WtwqJ67cuu-u^|Hj$>|Mlv=(}HBZ)J8EGw2ze0r~q|xw$nx*+=$C8X%HY z{}!|!d^_#MbhdI96l=__ojYe!MSrnZ&YW3pa`a2*WYagMbghD!{Njdx?iOf&J&Kun zv(@U~{+4!EQ#(X>H~MzKL4L;p|0C)C-QhpU4c)sKwDxCkntj!NsF2*-I{tfhnr*T- z*anNf=cm4Gzw=hd)y}!UADBU(50ZT~_$56E&BPz-!5^2c9W+N*Ztu>$x$D#2_{T4u zn7CEwy8m>mz{nT;`_*0x_9NegzfLIrjA&Cninec`ohT~WG#x1_kHRVJUcvAwwNEFn zrUi+dfozlMFW;WM|5dV$NwMD}+d^>`xDTGi+59r4LwQ-A@k^=EKF_N zn9erAI<97PTt01McM2I3HgM+*Ow;p_?U-VK(Ai~-J37Jat^c?%wf#RlMP=u@cf7I{ zk0i*KsX;ZP({cU}du|=S$p2uZ`*Uiq7S0#;&Of$Ocd>H*3_ev<_;(2R_cxEb{TD_4 zJ78~}SLSi~MU%nb3Hx<9UoDpOFBI^1On<%oxpK_;7kp~}>CWxxaplkHE?UgLM)`C1xSBm<*zo8M-|bw} zTixc&{s*%1zv$Ly8T-303+rOi75lfp_48gXlWC_ji*z|nf6DEwy11>n(t`fd%xCDo zJ@)=kZuo}NvFU%-pk$vXqlQ^?mPez~?X>$SSI=Y$|MP!b(*GdxdUm$T!%AOA?exOd z$5pv2XLqGyX4AV=Ym?#y_KHh?4V!9F?skTa-AzK+Ig#`1vMJPyjfH+VwGTDDlMWh` zJvi1^F7%JY&MB31CRaW;>y>J0U$XbEPO6q!T3;{St-I=4<6ElVb%w1mN}sGod1_Ym zdcIP>kn}z$?Q%hbO}ppr+~r8M3;C73oi){t**LDV@RBQ#efHG5jx!l(taPKTdDmS9 zEXc4eU$@g$?Y4kbGdr@YwY5JRVgiB&yZz>2barkq=PsPmvC_LVy|$IFmU}3-&2{_P z>E(<%2L~gJCf>GFCv$bMZOt| zB`IfFPPpO5VvY{`6nyhjQ%c|k|reGJkhCh&ZJ1uWym$%|Yvq-UH8Y(Q+z47v3XU|1wyR`!`R+G(T z*jydPL4&F~UiI9mx*69`ime>mIUq|$YYWcjaYMc+cwuNTZMNx0d$^XoLPqV$g*NKQ zPOp(4fVI9O*1UalcgiYUpwqHQfOmo^BdU87FN!z0Hdyd5`C{vUi%Upf!NoDG3@J z4rKqR98;-XD@DK0EJ~7UI$M&`B|}Xq*9JJ@?YapZ%l9un01N2`H23Hipb55kq)VsL zbnlk5bzy^p25TLCo-#AbLk15|c;sm*V>zv^oMp;yOx=?XM#{|}9rR%X%v<)^2ffz0 zQLYfHvpY$+)?L9~nLXoSL{?iS@t%9qtyV=hUz{T>6|mPS_NwnxB+N7GWJAu()i zJ0K=$UmQqKfZ?^_3`>@q(ss4GmOI@qp7WUIEC6qR> zKdf!)`)Oma^{cl&Myc90b!t$(v2lf+3BhyQSD{=*nj#(18Xz57js%Qc-%KxCQYUMX zQ)|=G8d7}{G}vS{|9xVcG*{bZQlq(fW)*>!#tBx0@aJCzK;t zGPYBz;8dq{CO5^-dYKzui8_a=Ve#e{=2S=-xzglng*!!+eY0e4m7IPuEL0`6)Xh;w zH?-DLwcDtinoBpgelBlPUX`xP0+ghyahsz{3XXc!ErhB1#TrS(@di#SoWo|*hihLY z&H2FATZO%e&vUDtsR9X7Eg!6rKS1M_S6SDN6SXI`tCPXWhnhBr8d$WJaAVc0_EtL~ zw-z)w-ApH!hF?i_dvhcoFjiZan}@py-5MCV>0QOy%wfgvTO+>q6U2@VuH7h0=$ny!QqwQz| zj(hjCM)EOrZkMg=Xo77326Ls*S3+V><~^%Mr*1YmxAq;slcHa7H3z^j4^E>y7+?A$ z8{q5snCn@?LU&fdDW|;7w9fg9`5BdF$y!M&{FmjgN&8%Xta}NEmb@tU%*uy4DH4C@O z8f%rod1noa^Vz1q)hek%YJw}IRK0n(^KsZ*SI?fBvnQoStKnOy+w1Mu*XBTKE@rp6 zI&SATZqVTN)&u*RV{PZ-RL*XxQ0wn6mtN+ua%)mHQ|Q+>x7&2yH}a)Q(Xa0}LsH4~ zvA3D@^rk*5Zw^^UhUxSfufsWXEwf9vO8!DcVy~T&FR2`!pL+RBYuDIFIWHxjJE%<7 zcI&n))n$?`Sr#mU?XceMzzN)J<=&)fDTBOIm4XJX*50))R}1FnR>eFH1}S5(ugx6W zKaqXO02frKSbk^X?ZF6kdy|dYm5O+iT5qT-mLnzabn4(bikCZ^3DOHb;+ERI&Q(djOw*R zxKqloN9LVU)w1%#6FSNhy5wNr(5L|HUe{x^vP;$V4H?bDw$?Qkjx3$bZG#HlWp{07 zQf8T)b47E}?@jt4v9}G-UR>5|kS5)nP5O;Y?Q9-A|6oe3U8^|+8Im;@q_^uC^9dCY zsjhx-3-wWYiGZCg%$1V79rrTuSUn$t2CLb<4Q3g%IbNmeVK9eMr{gtxi~UwP6s~8q zo?!G=I#f~8(E*}$ren%n-;$)~7jT#rk;iL)8fW9Qg~+US}- zC$));+_82tAsl(NjE;N8+R=KNQM%d3-Ky4x$8PGdIHy+GhEeFs2cvPU zO9g$h=}YMp=urx4aC%rh8E4FM6*>IZc{HQ&c!M&+AMx%}gbG?m~ zJ2s7V)3_R-T{s}O>P!?g-+-!nlAu*`s@IbeE(*?WUALL4XPVhGUfD~tQ5xAhVm6%7 zX4D)Htp0v#&+`37YquHP4tA|Nn6=i|-qLTJGwwc9Fm}qOtt~eb#R(crOSV*ZT}Q6^ z(^?_B$XnZ!hYnP{T`~~ZPE}d2tIa{5+{FS!a zvS$cQpxSx?t+gVtgVuu3z}Gh-n6IW^zpQ>Wi!QSnODrPD2<9<|yWe}xxwsx#Q^cg+ z!^9x=P%3E$y0Vrc3sKnK0@B^^B8r|+aXMl+dAAgtbPU_3Fm12(vefCquS#5BP7>9esh zY>JzG38M|h4z}Xnso}fMgeKa#hfckE+i@;_yN?6pLA;OhgInFeR`e<7ws4jPJX)7} zJ7syUAD^;;*49t0UQ6w@9X9fqj;MMkdacYWddZXCfGJ!iFw+P({qnOL<~)}iiK!?d za`WD8n(0^?q-aa_(T76x?p03aT}+;F;-Rq+50?}2;!$M5tl@X z&uu|N&a~{Zu^apI4(m6g!#oiFaLRk4a4%?G{mgMq5uT$)HnvH^Rc5J;@w_NlDhbUD zl=q^;l2<0ZGquXQP69a9$5Yxi;x!XR`W}K$#wJJVW|q1V+pn%>S_R%W2$Xs|0NbuM z=|#^FexE1(gj)ke__joZ-K&NK-9o`oc0dV{TLISTBzGSv!c&FQ!r+O}{kRnvH}X(1 zqwnd}l%_wFhE>H4`P%JMaP%aZ1*e6cUw?dFb2qXFVeuY_LZKZJOBTsDU=F3TIP~N` zOyHEW6dGTdQ${LKUpwJ4ue@bgNr;_ZHyNGaaA|2VNYUe>h8BfFl()UGHV^Qi6#EeU zyQt!g2U$JE_Nb~**P+xwg#zlm7v@VYatKGs6W&tKrSyG`n_}~)O4w~yhS~S+IlED` zN2P1%>L-2axsmiI0X)PAyBjpVSXyMjuefrgIZ7UMf|ww?Hw}sC)SHcn$3vosXhus2 z&mecg#7VGaYgmm)e0+#rh@7^?S9fby+E2|8?1Zybp6X_q;803%sqRQ9Jjf{!=Z84@ zMrOJ(@ux_L>Mo8Zaf8++p?CJS}eRk}@`_sJ@;^Ba(slcZtHOr4-7Ne4^LNSk%WEwH%| zOOA4$G;)MV7eT%6@9xR%-jhD6W((NljR~xS;$;bXaN5qmC-lsx7=Z7W_?k-E$Di&k zn3Egb->}5wZzKI!bwZ00TP2*l!@6;5ly~C1gRK~;r9=H0ooPc@YSZ3b`WtY-l_M8H z|FWN)kw}Hym9;h)j!?E_QzDr@dycR)sV}9`LOr&7?mWChoA;4kp4t`~3^63c6Y=C1 z`we(t7uo{U{#v9sQHf>RS70gYFDNZMT$zA(-z7Q^_#P4ZQd}ublCvVLJ>@<`80ix2 z9MBLvr@hz-tzv8RWm#%RsjB>~D@kZAX3p7FSE^55nEVaG z&2tf}eJ|6s%-<{j*s4z~7jwKx+n`zOv&h(!wbUEO8eB}ONN4X(D0+EiP(Ja7m6r1w zz){&^uIEXWUPn%o`sP7wcafrlz536__A}^hT)7(T>A9)grBdRFD6q|q=aQr&hM{+! zooOI%)f|LXfSv$wJM^_k#-@anB5YZeQQ!)q&~HHYq2b3PYWxJM#EP|Iho0uG^XZjUAT zfR$S6P?qF;R+)Kr40m^RcN#F7$IcxH0d#l(8BlBFaXwRRu9PcYV37jEcvo^+LtvG9 zv0nLPEhm<5Ls1u$`8Yne?CI=mfhD@q^?q{xttKeOuSH$8LUi4_;5Htt#8`goLEFHj z!o?Ri+Z}O_j=T7hH-uCHBF!hNmZ{%>4+pJ{(9Y=u4I1ga6@nCIQ`Jc?o)$g#$D5M;dX7Jfk`(NwQF<3QZ;N@~JnkV>C$7h9 z-`;%#i{91d;aDQ(uG!)`&Xj3*gbtZCsNk4~=y6IN-As;HRqPwkUY!Rbfkf<$J->8re47ioq0*+0au$GS6Lk(8A*RDJ$ zwPed&h_eTjegi@*LpL~!9w$__H%0C4bjPWIP)QusuIiwMhDAMYOpyLE0lZfG%YaXa+%#E6Rx&~2-)qN{P(@vx;q zw>VBD4#C@zA!G;1U~q5r2kN*tZ0vBfdmtnPbRVKu)fcKZ?P_w0IY@diNtndV2$X76 zvpisW3vX)Qdkc`OL+L_R=O*&{L}gRZ!c~-H)6%S&@uc2}Ke1fkppHvjuT!ZQtYWCV zSkxnd%K+l?iB+;k2zy#a9)>kN9+X;`Mu-I=_=14IgR}t|0TnASd{py(+;YA139DF5 z^Dxwbbth#-TwKrxfys5!nBwa0VZcT*kCvzXV~6T};d>k1x_BKb>;#;2) z+8M1Z`bNxhe#xBj^(3KP)HHq`Mis|}<;=05IIzZS5=Ob_dCRWGqeom-w)N2saDJ{P zVL8-#B|inpj_X$MTO~}fQgG^=zn~gnyqX+z6ND^}p)K2kv_cXDQ0vZ3MQujK0J@k#~-lGQEnK)WW0Yop}4s-SvaocT5`Q74RKn zAt@wmj-eYJP2C)yOFuT?hJ__V5KVO{>QDO0&-(q&2iv;j2wXhOB{YiKto!#$kB_}) zO<<>9QRS5)uC|blDXmv4!c3TIT{6urMCB*NNAoa<^d~ty4aAMv^%gCoXepeQ*}l4x z2~@CB-`Vc4n>%$pH=VuZ4JxyZeb^+PpjsCCWbAsAmMTuKI&{86A1B3jC)t z5$1OE^NnP*#T=oy=yD5ScnS-UPVj8De-;y;NXDXAbx+FsEuqUOgXb4&v>9!NmvSL* znxK^*^T^R0u~FuRrVlKqo6Ca2fKU5mdgN*rGv_8E3DY7nDDHzK`}PJ=2Lo*&TfbU0 z-hFX<^J_r8Mri+trHp#lH-(hxE{IdV(l3Q&pYW^NaklQH)^@GeO=rZk#|hP;%0M8! z$Ho-M$gIx6avMJs&QK-x##_ZFACef>vKA6Z;ueuv_2Lx1xbC@pzF2F2P<$Or`O+G% zIFeGIQSWzVDCX2&>BC~eZn4SqVRGDdmheY?MHHUa@4^2donHPpTB7 z{XMe)d6&D8VXnQSr!_#&;@y(fp#W-I;Mur=L@w17Wp%#+>r5?i0LuEIwhGOY-?*$u zKs4o{J}|8nfI%R1BE_kK?e$2lFG8AdjvnW*S3m>x0_a>2=6H@x`BTTX2w7wDge}bn zi9hD+6I2lgI%%#aL9G-#jvGIfg_KE<-@&GS0ybE3Zfn+2xLrOADt{Y)U9{1*2DS#aXd^c?2A(@ZOg1 zT&mmnHq*i5dBr?Rse+2+?W>hOG|Hiu1}E#WD`T~r5w(?DtKm%9hWA-3(s2+MHmGI% z6f>1312IImoF5;&IoGuxc%Dy2Qh2b9tH&REdjfD60tm_43hVNhkQVHl4zP0C?u>1R zqslqd$W%E??>`@UtD}ggr{+*Q!%=>EN3iDmx8*^iSV zw30BN2W(TlC|y2$nOB8k%-Mehm_fxItpbs3`^pxFdXF{gOkqVMdeTOV2r=h~X4V8D zkUd|-A6r4c9@-Z9^5x%w)Ls1ywH(>zV?@gd$X?q!7UqbFs;}`mMo=-Oj3Fy3M!8T@ z+%T;eGp3g~E^wUiqa3a|rNoX5S-DB5m&QG6maY1%hEA;Bl*SxcSp#Y3&6IjY-owjM zD(g)O%=Vlt%&S6H-EX1eU-<#~@bV^mwTI)}e$=Jv*|5tqgM_N2@R(bp)rQV}f$pA=hCCjo5ww0%9j5SjcO3u&HY?p61c*V6y5kdU`c;RSzLa{%Q z628X#h+oQ?TlcL@0^mNO?nG(Tc4NV8*TV^~aN;rI2e(&6i6L1J#Ai;OFF%z}yn&mB zb>61OHo&LS9w?v#kfn!*7kzH|$W1%D)ao#zK3((&IJQnXxlv8ADb!b2@`Gc#o$hc@ zZM=80@^TbPI|W>g20m4hQ!k(8;Z9y~oTn%bmMCvLA|566fSsqi$E7lN*v zbdaOXk&-u#y?L+rqd`d<;xj2!u}?mHrcWC$Yly|V5ODM?pF&(~pytV5?CLEyQ(e`g zw16Tux~>o*T@g_wgW6LbR5D44h#;TXEt@i`{)|wzV32$6w8tAbrPVVp;ZEI4q zb}tZ&%zz|M?{tY1gsI67Gi5KYQ4a&`HSVr5cZkHBaa{xc<3{(|d@lGi)V*X&SOb0^ zgl^}=8JplcvEQBVcltzFQyZ6A|9*mzvUvoiw&yOZ6DVhi?nLK3Wyg;A?8Da_yANpz zmS8Riv0U+2?fZOtI+z+%CQb{D44&}RK5wzJh*{F$v3c$2!&X|hw&U3)Y~5Fz|hb1cJmWSS6Pv! z7Wj_pqH;VwQe@o|Z6$iZjvWVCTL%uTUPGE>q?H?Xzg#6Gfcm68Sy(F^-0Bu0yZZ`E zJ6W4ykGNLEXt~R41nuqTF`R@_yc#i>CKQ_yzN6d?0tu`_oA>t{*5e(s9S-4$1Q5Ej z0wZD6VC~dK?|ajx5qLI_@eWnTPHp?=89gBY+Cs#}_|OF&3WrRp)aL_VlQlg2@L17# zzGvJ%HLDRI;4Qm(FH7jw4u(#=-R`&3kKo(2maa#B0PnX9#v6zSmS~I>op++{c1zSX zB!)_A5nuEMxg&h8?`Th!D<{&mlJSu@j=uPoGfwcLEl|y>|t#FgH|bueV|W_Ap#$J!>{5UHlcNV zNXpeF$1DfeoOgAlO>44XPRg4*e0#cZ7r@r2t<&W7JP}kJG_IUlN~9PrxEw&kOU~dl za|Eswp`!bwuT+fXu_*F7xo3gXgIUL95KmNxU9p8{j&EL?TpVTGQ1D)<6eY5qWPAb+ ziaRc82bek!A)Z=1$LbR)bEq1PkM5q&?Qnxl`J12^d1K*|pMBeBfUzKE>eA0I5&y>t`)mzXwFFyQAv3Q`f+eR_j`@zc?TpcEec4U{L~sFRwc{OSeUuX%O(&xgzpAVo6g*IT9dOyu_u|MJ!M zI(?m=`O)9{Id=8^zkU6r!D2=O{*aMTe~U-0{^y_QyG;_IUj%h ze%X9_O22zjzoGy7=^_5N^?!YOWxqRd|9XM`uCMg#=+?h}9p(o9q^*>RkStOjUy~@h zf8JIq9Oel;7?nIej{5588r=I@22` zaqqx=C04!W`mr>aWP5sHeueKR=U08q!((FX7SP*q?o0UH-9(nv7Pzq@fS@SZ1CC9r z=$1<{n5!7OYM4uN0^N!r+t9#*NydOq5#k5Xd-`LQCTu6Z0l253$GZ}$qaAh_TsmMY z9aDKDk&R5nNV0U$sl4Z`(Ul+VPA?d-tIp|IO6uvG#-~s-A{K~OS>6e&G$Nf|cO%zI z=zbPsXw8D3!E!xh=l$S&)V>LqaID|UQ6$v}TX+jK6+leuj{yG!?{}1|EO+HllKkGz z1<8$o!Y$vam^0by>-4pqe;;qqd1cq}T8vBk7<2xBsLu$WsI$0gC<5S8fP{Fsa%WI zF;!$wv;E*KsqDKKxE7o^s^Srv!SDd=Vn5oUya686hms&qJu( z5F|}ba??c%>J}U_1fRk=a|*WMV2qyTfVG%GIBG`0#%%Z;9iN^#Q-p@N&^SPXP9lh= zp2&g!V5Ps?ipvNFJ~R8*glpe{{hcK~-J#Z+KX>?&jgy%W9;G+DNh5+QhLGXw2+#UC^%`F8Wb5m%6S7~2Jbv)b-yxu{lR|$a zpszpm^4}8>j^e;C3i?GszbNRRM?q8tPzt*JBNW8mm2movf;2$6Pufr90TcSPnV7G_8rJg&@(9xXT3e~N`3gktHXYVx(u#O(LMH8MOM2tB}5D-$A0{d-QZp3r&(98X@S|MlD z9a-o$VceFLCU*;B6+A}LYdfF0K)@%xbz59U_Z|A&Kw#mbkg>Q6_o zi0Mj7&m}82s%S8p-qs1L6RDxB1|Y%7p>9OUBkJer(LsmLW#S&WG|San>g62r1?nY_ zdfWB-fvtPZy@~mKI}06H-MWOM;R%oJQbAgi4)?46QJYvRfwax|5}6lLw5haE5uPDLGRIblu+MU>C^T5p8>xw>K`q{{c#uk z9FY9tls~JPT|~CgUp9)oncw(7%4PpF{`o#G{RjSm{)~Sh6hnXFe}3`LFaG((KmTJT zINT{~?;qqJrTnb~$BNEM-!Y*#y;Wa%$`(x5HLU<*HC)slp(9PKdIE)tN5}(?{el5} zFLS-wE5V^KH88}sktdOoCCzWZ0en3>x<-U&M(}3U)sF8sbw{=PF*O6UQgIZnRau}5 zd9pS$y&Bt0!8_-UJs=_4@}k!g(ZD%M$WQ3`eqw|7T#h+Ib}dUAVxHarS?7H4u#1~8 zfc%#E*d0a_X&ROqaEZfd(O65;-5tSYK`{o`9PEClKc}D8B$kI!weAuiSpd0YU&XEe zPx$ALyWsz2{(*nWKk%RN4~&2~@~i&#i+_Ic&p(fUXou_%egB%)e}I2NT>aeg7ylF) z@*nJdTf3q-x9(qA&)%2V50C&!F7}0T@O(ai-hqNAR0I_D*RK)KS#wtVt(x6kRr^`9 z^`g6G0wE-U_kG708Pt-gr*#*;oFO z4erlx_kU=E%Nyi|xbJ?Sw!wkaY;O|o!6|HT#Tfp%!M|vOJN*B$!6{EMNcmw50wOYd zVbBYMUKsQnZE$n#GSWVYLA`Hb2<_3i;)w=5jQmBl?G2jE*wQC`eS^(OGV)w;D(iD3 z7>j-9jKrYTUovCUyH(K)S4}DPchO=7804;YZy1!u@v2XIyFqI+UGB}mwyk7W8MM`I z_p&!`fI$^WIfx|D-!Lc+8dg&~>qEext(RjEd&8i58dcScUIPr$I0l^z3oyuBC0ZDb z#JzFaD4pQ~A7}BtIl0tgc^?Yb)=nfS?u<4;?KWGU%aU*wi&;Jg=xDhaZU@(eK3&K!tc+9V+Bh7>l3lZ=%~o|4jQ1)b=1q_4C&AkYw^m2mZ~YoE5;AAq zz=zOE6gzv>-`P&~^bJD=^uS_^#_w*|9)ZA$?kt1l7?SL^N*yY^*5;k2h1qVb^UJMp#$rhAf24qJ?U~&_tWV?BaAnnw^?16*vT%tD^l8N6{zklQ?J%FM zXZWUj*j~EQq_=mIq#1_hJ?lWc&Q7P51@*BzNC|;H3sfESHMVv3vV6SrYp=bA^`-3wrQYW6{MUYPG+mUaaN5)d0 zpOe{3>qH^^X%#$g@aIG!{A%oZ`kfW!hu>Lw z7lr)-pBMPNz~|SCpGCAH;%f`g=e7XJhv^sG0JFS}SA!=KjyYh+E zCiYf4z03e*DAAXTwPDbVnj}r#L~o6W8~W2CemROc#WcC*10H|$|K&Wye)E^E;nm@IyLkxsKvC`Z@xvmZS>(% zkasjTs)NqS9}9=8qb$q+0f5d^0HD0VUb03x040@9YbF2ynH+#@4nVOxqPrBexra%- zReeRw0ch`UBk|PT3646@_T?htZTWq~TX*V<_lUPMAFD4C@m3G5x+ng&h__!2Ku@zD z@K4BpI_mlbKraA#0no1xxmH6W*8dp*ZKqyj&Yb3KQf>zQ{!w}lK>JROu=fDe@!o}8 zKLH>!4xB^fO#yl9!IH@c0H^{0RA~!`-gyPD!L?ecxDFl-o8eVTu3FVa^*-@0-n95A zRWPfhb;oY?72UJf+WM}5-T=ryt=r2z!XjBOl_>Jz-LPGC0>JrkOg~Lf> zArfg&sfz~Of^lp3%$wU*&|EH>mvyhbG712S7HzqjIkilf-74#bIjf^|DmSu2X0$GT zCEXk*Xd-Hx>rHXD!}44Y2mQ-pIT;_^YyFU}R3l!i4YWuv>*9MT%$yxJY;L9+ZYL-^ zwifQ(TE~gj^4Cea7wv4k-(G0XVf)%5MxN^jw~5>9MWJ;RI@&qdR!r^Gj>YQboHv+G zTM^6p{*2WJ+j>IyIQ<>);lJ+y=%0ZPU;IxH?Jt0jb!Z%Y%v;LAhvUxE2LB@XDE|q3 zir4Qi1D~gP57Zy$Jt)A3X)<|X&kK8A*z?O>KNH2M&OYV(0qpq}cL3Ovor}1Gb#rQ) zzT^%DQ_CZ*<7IK$_^un?#%be_&cw64?X%6MeKUf#oA$iP=2l;^<7Ii;Zp)H2&l~K9 z=r(rBDxve1shevTWs9v+cPfi@(#xiCt2H2WN!ci^)+=4Bf2h}wm!sBiNBxQ2&qnga z+!Mj2m)W}b$XrKmkU)18&$fMdKBL5UrE%4&;fp=F`Qgc$TspyK-%CL_z&3B;w zFyFx)dlZW0C)k5u*z>}k@(X)@rsqeC8-4vB>z=stzg72ah0Er|NGI*})MIMxrR!1- zy3FZa%WD>xlOT4BC&f-`l8_}|QTMctNmy=u8Qt?V&w=`v^Bla8=Y>2k&n)S!)L3P+!qRw#MoR>8mqe-d6u3-{_37cQR$^dFttY355ydd=dfZFeQ9*{WlNSt`rtSfMa2_~2=4yyG;R4o=3l3avKOk{ru9YeM;~8ff&4D~ftRn! zO200{8+)4PK>cB!gKzl5G+BGepBMbR;OCdipK&}o&2!-S;eH?1d2{-hEvY3Q=2;f1 zrgW9o_CZ=7PL<9imX)e{xU_6(*O-S##sqIkjM_y^eGi|#^*T_;Mru<7cls6G8KsM) zz_ZTvbfH^)P~X(6;kg!d^~q+B=kW2y+~FfAaZ`n5X)P|DAU<~!xX#>Cxx;61xCpzkAH{N) z*>$}o(}_suGeKIOx7T7}kLA6zs`huc{N4Ju9X|Z`?dARx96lc#EPkJM_)MA-+29n5_rdv61f}PUqD?*3G#5XiL?DTgTb=6JJDsR@;=u~)V;;GjXMwP|# zuxudP*zZPt+H5ya8%N$0?djeT4~uPNs};T5u#bna5Ve|iXR@Vjh2G?gdQ^n2nawKe zwD`C}R!h1IRZ2oDs;@GW4K$=Fj~%8& z0w}s84^n=f@Zk+(%u2k?0w-Vi^TMBhZNS@l$U5DuU;ewn*06YYVK{fk?x26xoz#)V z?bY|ZirO6Gv33*#z22%#ZC9B3UJGxW^)N))e&uWrS!O1ISK!b5=qx=#XQOS^Tvx9d z9cN9l8Z1x2a(Zi-nV8JH(@9-722HcCm`!c9@%qVe>Eily5G&y*C5=URSt44js08EEA52!1kg8ZAv?R-vQV_42O0@eq3}Ka`k}NTzNHHSN z>b*vmB$dKRjHn8Y6%5Ul{(yEAs9}gg+fB`hl?g%Y?^89Ksiu)?5*GN#dz z!utU=ltF7q)1U_mVk%Kf`8~$`(j_Q^5tE?|s|earVZ?c%rokYW@=nG`#yCHc!EoSG zJ`VT3gm9Ehi3}5kVesAxu_Oa=$WMG+M}^a|#ODypa3JOV<$pj8Q6;3nd?E%-z%>a> zr=-GIs*E7$Ti&apo%_v0@8I@J`Sm_lU`8n^@rlic_^n)nLB{!h<&WhQsnFBB2>wuE z@Jq2w5vBh#=^^Ovlb)w}HMAe*)c_`P|El{t-lM|Z{(Qj=t!j$;Qrs`b^I|;Xwo*+# znb!7Opru)N&dW1fRb3O~!7>X^%VT{t&|J56JS?;-X)Mizv@a*^6rGup>J@m77{Tfq zJ7;@uhNH-_i)+a?227gvs+mZ_S2rQt$s?Q-&QT|^GH(A|*g#VKR(%(XeDplG4K^ zi2zX98%!y1z)u3IykP`L1%##eO7IJ-URd?7#VUQN(CXjcj%GH_9edk~-AmOSOrn-F znOm;VyEz>^54zXJX{U+%bkwXZc~GV|+r(#Y*w*OLLUGqpBePs=3a}^{JJopVO%}Z= z56WDnNv+YXHZyyA%ci|Cy|z!HUOjEDc71Cqv*voWj%%H$e6a=t&$zZ6^Eyg2?`H1u z2DNb-^(DU^{&Tr)h$z%fz;%xyU^q4p@w-QGFRR3O6SgG(53ep1xXqxQGUJ>=Zdow z!iyiPT8UE3m7S_!rSu2Lc^0aeN-8PAe`M&MhIj?YUzYD;0Lb7nT)T_Wm1_j zRVwk@zsuo!xu!znB~_sy;ol$6K;KGS^dl+e3FrBhB_f9mIwVOYP|^x?Q(_=i|6quO zOi`eU+XBd44u>H0Wf=~IfmQCq`)0LJkjBTHTMl@kN;IaFVEhn$I}#d)A>oz+%DYg= zdKggxNAi(}%R?_T^Ri& zYJAc$(t1a|9L%ZLsoo^Juqs`5%dyoT;PG)G2ebX$_cz%5MPILvPlga&<})w8 zZAR-+LY#1Aw^z$;T}f}pyusZzv3hJT%rl}_(6F^o)&Gk) zMjDF_neKm^V+7v11VHre7*S+JRq?|y0%S{(WWaYdx1?i@0qKzux9npXGvE|Zr6FEL z6*VLh068lGq5&7nt2o`jOqN3`X`Flj0AgS?Z&j50MkFW#E`TM#RS*oM z5(T(`jJUf7XrY|@RbW7XumFd|0PC`*X$Ytq<^!TJ1byU;6u1{>nG8L=K7|tr?gEI3 zRARsiq`NcV-VHbj7-Na5z&YPDwufhhB2I?iJ0$Mz6`~>eqo+avCa2~!l;3ON*|}eY z^3mtsAnw`uP{V*rF-|ZaJn!Dv-3y~~y8ZE#yDNrs$&VdV6&Nm=b4L2nx1z#yDVQ_I zH#g6tEsakeXNnKE&f^ry9Z)%2{O%&Kie$!}OW!+iBp}hbgNcv+dxuQn*@008BKhGA z1hY&y`D7n2uEFAg;X*Pe#UCnQQm|T*DVDxnT!VF{<%EutRm{Hg67jERT~!9093;4RN|)oWM1+v2!R)6?!U zn2rs(k=bb7+fez|!OqQ$nu-$$%=?z6u z^SC&9inHz3(`sK#x=!98i&C3feVTQISx_Er>1zIEoK1gT1uT}wp0X`o{`!MAZ&I5s+NcR(pa*dNEpqq^5 zrbBkeO>US1_$7>f4Bz0UDh{NWD0fq1(GIr);SyX{lRl6IO#uc9_|AiH-nYZ;dpI{z z$@e=8ftX3sgL3ABaJRt$-{gL!Jdmh3l-n5P2L*lCDg%lKSA&5hAGr)Sx8X;~(T56+ z(>NIcTmH~L&Mx`DAcYkJ_86GlOj;0=w>c>);7~p^_u!?xpS)cjH6wG{{wU*o7nS%0 ziXkUFphrS{nBL0X8s#=!{D^ycD`cE6J_s`qDIV0LDtu=~t_2=f;tUQ*Jly;v)+Xmq zDmUrAFC!8Vqk9C^qX>pYdtY?FbnfN5^YQzk`P$(t^&U$FMGR(J$t}V1y{K4u-xcLC zWIX5#KZ>CLC@1yrihxw2Qoab@ikPC&_eDkL5Q5uPN}PF<$DzRKVOWZy{4l~Tk3g%q z4tTqVBDn3lBFqD$xNZ8a!$A7s{~wA}1VSLUR=;()5P~0yG$8#&P}$o(5Lg?^cSQt5 z8#iW4Z{4T4Vf0V!% zG`D|0I*mD7Rz4OXZr!~X-Ma!$CCH>aEbeh5@UlXn$37OpK%qQD?s0GM7+{)P%HI{i zTcrr3yU!N1uOR|U0yL1!zLlv2Za;rVJxk|O_EmBB4w#NU=&ls(E6#BC9|9(#YNCQ#?!G|l#iy5McfFVp`^wEepi(4Uf<+W2fLtpD`k z`;*X|yR$*nw4CFG?5e$uFq%!GlY_Ry6f>p1Octxzo)|65UBq*HVuw_noXhg)5q06B z`LVScQ8Mz4W`7xM%h=v*_m%zVnuIHXRa~!%omEY~W#js`HI20O(r8+ZC>UyudMap@ zc&%0BxqGvUtiovE4b$4XHMh>K@vPa7=5|w&nhnF1ThcM0)74~a&q$n5rMq%>f{23J zW+tDA>_*})!0l{4IF`@(zKEiSmqB~GG3kx=H}%FmAEz%8bmSxQ3}7y0xdbN)k9tuNg_95$ z3!pYN?xO>d$=xd|%s|Ln2IBor4?etKkEj){?i3!D0t530Mcn@f&lxv?s0!Q_)L0!|MbfT5m*dh4VQ7}4Mq5Xyr-LkWAE6NdK0q1{2OI>g%r;eLni#T0C}eef}i zVfIbwdi!L}9tLiqgDU9v4xiS*?O5}v!HQqjz@TX4{m)J?F`Wzl`u1w<$W7#<#|pn`F-oU2tHWNnOjc_kP@Ttr}yh z9&Fm;rWbqGTFJ1V8OrhamulF9+=AG;hVdTeGHNa$uOB?)K4d-n&o;yMy((?9_q~@8 zd#4|UVR(1q=HHtsH&iPm;(s0s2_-v&ddyExDH z%^OlDU2_((gXop`mBN!QczA8D_FDX*dOHSl*(Ru&dIR(@tmHWK6}obyb(T?TrHn;q zL=0pcCTUAts#mI5UO?6e}A#^no9mL$D`igEISn+%?@>sp48U62Gs<{6}xE zxBn@Sf_^UIS2h=X7P7I^JaUn!=>qV|F!YmDGH^~v|}YW<@E{gX%eCM z5txhl)SZ9Ic|?$%X5IOf#!8IVB_kF@0PzjbC=Ls8F1ITh?2j*!-@UaBzEUeu@7K6m z7|}$!x|FU^?a@W=ARWw-rw|@O^Hff#eKrF9^(V1nZGJH*Vf~4xc6F&Sn_x+tL+@i8 z+P-Yju6Yei*hN~cac53(QPAXBQ82T)*;=JxroB5Ivd9i^HcG({Pd@GKEc*Ls^wL- zsYwdE>>+Kjps0OHBB6&+240$T)2m6Iw(4wu#@Xf;9yJo_;=V28gZ|9Z>S(82} zffdWJnea0%Uv;(BGpU1bDyIdDs!m+`m(|0lYln8e(Ty%4H-yPr&=%?Itl%E(ruk__ z|EE{TpNtFx8cD0xz;Bj(CPkJ(a=;W9Wpnw3JOp9m~NiEw9Qr zY$u!J%kpzf0aw+kZIe9>hrDt4QOI#bN4+feO3L`OOiY&t2z^sMNNG*)qvv>wSA|dd zQm^smX<(f@w`Xb_F1% zu1tDFcw75U&m}i0nIy`t_1fz$u1}SHQ4{29OQW4&3jko$Dg_;E<@$Ii=nJb#?L^dR zCkafvU+sY@uR~<2tjjpL-F+a4*NeWJ-E%3|$`{3{DV$F$zwEiMdkU;o6)o{K*H2*_ zo`n2*lTf60+lv6o`~Ex4F!}tlU47TL*Zl8ui?+cyjj`V z-UxzS*xs0w7ovI>FZf3c0^)6kFTz$9`SByL`uEhRPG7^lOJv8*VpGMYmK`zA8DGpj zW?;TnyI{LT0eJSID0V)VfMOG(KJ6|)xwXGnNsuiwaeh1b&GgV^Njz-CXIKB4l6IKD z-Nx?4XXiFfeYU!treg5Ht$%IsJCmEkTF#9=SN=^gI>u}cDa}ZO;PG)QdRJDntWH(F zwobmY^%kC5eS@}nwF;r z`JaCfV^g1Z8-50767Bv1d&3VS}Qus9B;}yFmSVq zpoeZ*v)Ej9+MgTQM!Oc*+AJcpe9ilU46O4h=~Fh4b2IHKHG3D77D&DZly`-SnAlP_ zFlaM^Rn+!2p~YiQe}`+1dOZ@eVi8W+>REod{-~eV4vG8ER&^hmTQA83xNp^-c1B^{ zOm~3DW2o0wU?ch(w{iB*9KG6y)x=%Yd0zm-0ds8$9CWdxK2Tkqbs z3NLr9wHXju|4*N3*1yHkb0@Jid#ad$=!f zz8#o1&*|?Fc<((Y#EO+_Y;wFA1c5{PfI<(W7!^G{Fc-)ou2tUiTeROJfA>*)v*5$F zD>gvzymsYzP7U@dqL-hm(ssyQ*8{_ju*D6_Gl-VJUkF*5P_d|xRgNiBVC#+Nn{@4| zI?&)#Qn9y{#b){6z8yTI4yf~{8tC1;wo(FM9b|9IwdMurKs*D0=ltDvAlk`ETm-D#W{JLpYB$nk)*J<7#&WGn$2c?UdVEudJY^j0o4&D2xVNX9NvDW#htUJG#>xzec?zRdNogb?orayxT@N$&>?P z*`IXm*$r!?*PCr>249}t>KR~0mBiLDUI!POe(|f>ZU5E0?iH$R!`xHJxoZ)%}_mhentL-&*6tow4Z0U(^ z7B60@?Z?>IBsb&HGeLVZ`bx4sb-hUELefVwt4&&7N6Q%vY?1qm&d5*^-wdnI@XWJG zisG>j@s=`AN!y8yFU{5TjgM*xN5G(U*F`uBpIuc**n#&~Gz?hIww-`8x4R}pdl^bL z;T=gSghUzlHewm&*jM)71pVu|Qy)e=mmmh?lM@hrwaZZ2m)6DOYNnB5GiQ&ns)5d$ zsj3#=PYdP2dLG19vsw++6@@0_+F>aaUS*7IYpzEhjrha|x28aLIQh+_}+DKUwPQ9~xAI4VeIT?fBG#9UwZSIw~ zM(}vGDf8bITTF^wL`>3;!s}AA@;22+{7e|>U%w1^-sB~_+I-C>={l7)yDy)f<;)w3 z!C$j(cq1roGY;H~L0)?07@n!C0|RzxRkjt~2X&tvrae0NX`eErf+kE~yV%WD?NOiGQY)@Sx2&wv1c&NF4DHiL-Ronn3TTS)fS#lp>#->}!~O{R+GC0SY4mj-SIAvro_tDf}b zN1USqvoF>=&1_4dJgQ@I4T0M>p_jjQPH-Wu7&c}PD>N4&ZLP`}(*is*Z6YNc^0pd1 z-PT&zag?=^*kkM*bS8=j>d@rzNd@^MwyfN7Rult1SK0@=rZ31m)Ha*MBF;UP~l6>J}Mn|VC6oxaQ0p)8iNKq4KbZT z+p6hgMm@i;f^J*2#7&)05IS@@LnaWmF#4d0Q*^ZqjoM$`WI6wii<_Q$s_bc7eGMxl zq)&{@liF9*rhz|j(s*kiehNYMs831~_R{}h^y>^$;t}*izVbPT6U0a*b;(R8i9-{-x3+;28sUpb)@WH;xnOt zcPpF65;*0=vc)#CrYxD^m&-rhH=T=N5Y!vbkFKe;KcD&;wXU3dY(ZSHw|Z4UHGii$ z8P1JrncLfZM!Tkb!|okazdp&8sDBzG%>P&q-%hHC$ZsyOB|_fsS@*}j_UwX52Ms^& zg}ED`>mZ(R=Sig95Nl{`15BsmFW2Ka2$Ini%CSr)PmMRuwo(hJLZ zs`#91r{$Pn0z=M6q`0czj$7FXa#nf?oMQj9melJ_EN{#0tN3xeOU>P`TbY+MOb?$+ zVsCTP9w@ruejU6p`EJ-r$j4RQIw!yKIV)V>mv3D+c-5(Lr0qEqsq)0^KejV=Op$re zw0p`Zdc%AEKBR%w{b^<>h&7ka_sSK(Lw{B+`OVMn%w0*ud7>3!>}H)g-?NzS4tD`> zxM`0Uhu%6UyVTNS=58~tZc!?V-%MFYQqu-*9A!*(X;2xi+dyRh=GtMq;6i!(e!cGI zLV#!ET`1J)*yu?BG2Q)}dV;Pd1bn{OO51AvW|r@e=v8|9AZgPz>n$c1^l;5C&WsmW zLosH*c#4nrrdroIvl-DVzuYB{yF=F!o~KKmY1XrFk+3|M<<*I!NEzO-PoM>o+dG{z z1Qnr&o;S5M^JKVo*+z19_Vi>0qjOrUZP#v&L-6UP=5ERDn6v~8Jja(ORG}la<@QFc zcKfC^ggL#bBzL`Lj2t&?hosZd5*IfF17WbY+eQF?^iW(tqAl{kuuU!Gt9om4{g{W> zGPzl>4 zv)t{dv05!ojuZ~W04aOZN+QSFT8``3<68smtq?;6X0k}>By{F&kBg1+oiiM0v_E^sfG~unbMeU zVfn>5?3MEB5f0sB$EnLMA(!RQZI6?4Bs(>-Tg{qt!`!}(hXCuml&s-kK+BHu$|s%o z2C+(7oo=G0zN;$vqi9j|vUO;M0_k37rY1AXwPJG2bJhNO&8NN+FWa)d+5$uDIF*}g z^dGT{@zIutjB5`a6Yut0>EE8WcgV$|^lPAzz4h{^ zWIDS+_nxH<^@54HdbqC_)oUQP>&M{j+4}+*PLaMm@cfNN!je6}^j3gblCWL&JoMhE z%zl`zQh-;z)ym1!^;Q3cY!`^a?;an~s9k&0d$!2?E$}8xqaqfXq#0|h$AKh>1Jm(k zaa@KIcyh(a(34e$_|)jft)!ktdVQwzLmq`B4+|?71tbTHC>O=u%jr{&4y2DjsFs#B z$l8jFBZ8?5YquS>Gl!vi6I!3WIwpg9$9|Ry*49ptzp2ECYsQTjw%gZ#dQ}ATR%?2J zUau}e*nQk>;fZMB>#tW>W&8vV*C`-V**C!Da;^o>w&3V)aTNJkeG9+i?15Lc!|^aa zz}|MP=QCQT(}X2+*5a*>H@td4WriZ5iDYqR-UWN4OVlS!RI&;Z!HGEZf!xcWGh*zT zHr6HTr$utSiW1RASBx?aLsA6wpi6R#^3IM@(VZ&E#xR63ejg2RKKNfFIm-A#9a&<` z%TzE5^zL{WK=MAF0R#wC zu^>@_H~-ukJt{OB@kX*7(uVa(qE^{rv*^Sv@vtoj)jDMkb#eNHaExb?qS(Z5lHjuA zfF5;k4m>bN6`~HUG2yeO#e$#+xgQp`hVL0-^H4@t8E`nVq97XhNt`i9ySV%UxO&~@ z>eunu!Y}r3cr$)1AzZyLGxh7;tnsJ&1)D!!?v8((e^AqVkWr{nhxFZHr`&4q5za%T z;l}a#Cg11>9&g=T;?wQUv3(kN`?#roC=v+IV~|4$KSBr+>^uKWOo%$VDvy1oGR_c- zGD(f6b#}Ypkv0-1b!Z(1m$podDn&{eC^zj}(JOOES$y9j6FPa4*g?Mx5(ZV+MYm&m zZ`}B{K|E;cJO;&9kA7~U49~%mzx&S&g}SgF`l07pm*h`{Xz$Co!@3U(BN@t#DU0RX~aYXPYHn8iNF3~N>J9B`~b^3lIx7h&*v^(2^?{qKh5hd6|i!}r* z2cdS8;oYGw-tEDgp`*`r<~~cOnSohB_;A8076K*3NaCbvK%WO}fUM-eY+d!|qRE3& z(sB!l{rIU&h0KP_AvtiQrjGC*aT+)uD>Udt!+Bm<$$TV#+DwFFurmY!F<1FOm}ofV zyomfnkX=WJQM6V@XqpH*A1z2^6~lcI&-j}_--NX~K1K;?CVbjoKVrDDsedXI^r#NB~gc)-PZCQRu}Eq(DxJC55B_g=o~!DD@-~UV%Vx zq4cHHN}?(lXy2u@3xGzFLkJZA05*xmNH98o*8@<4;@-r57SJ9HQG-+nWsVDY5T;r2 z&Ll9p2Bjt3bA!+m5^_-eJ`YWlT~KG8ViQS#K^zKuJW%yrLLxCxQ#BGbwmh;Uofn7( z5{ar1Nb0a8I+8!Pc=Vec3X{gYBdDj^5F>^HkW8XK?$3!>V)w3PB2A4ah)+OZ6h_a3 z)t8H2M1fW3hwUT;fU89;VM1#ZlRl@w)5#c3$ReZhEVzOhB$$%uN`OGT$S>h)0@kFZ zAtr5#v7iAc8aG^im?R+1Y)m8$_9mc@Y&pFF;VKN!8i}MS zGC*b)BuhmUCQ4B)6^!=eZ3f6C@nSJ4KqS_Gfv`(2DFekY$Z=5u!Ksxx960k> zwhHMaw3317n4OBn?pFk`r)U!}$bo}=vFwN_Kv4QwMD){R=nV2vf|Grz*V+~maL9#a zWQ!%53b~n0LC2}tP%Csv*yiGp4TXYI7)9=lI~K{>kK- z2(tokq<7%%g{VaBx}sXCS88o-)xnOLs$#@jp)f|jdE3sFN^LM=J9AHv~UxREsdd9 zf+SH{g$7G(z5p`{9S(8pb3$IqZn}K4RG5`4q&Qg2)L+xEPa*45;TRpsx^Ta5pF*I> zg<#>F4TYI;r6NaMOjt6_8HOyyn*n85w+^d5no=x0(DUiB@}iS)Ye`0ICq)tS;qmg~K@1TeyrekytK$|@oqTAdxHya35f&j39LB-o zXdKKqj%(u<@}))dgqs50jNivJL-yYC{#izJ`gilY0EJVX7i?|5{&L9eq3FRY4g1MM+m=DG+62chm zzkzU&&xS09@{+61z}}Ljg2kJE5cdbcXW^IfqCq>cSN+u%qA{pN$ecgkM;uzTTF5Nn2%+n z#j~ARaHbw5dzsIF2BIuKbsPLCbZqr=I6j3q=|~z{47I)yTcIQBJPEx7Z$Nk^xj5-Z zGFr^J@{g4(X+B?)ZWkF|Dq5V4j2Z_uYTQCG;)M)ZRr2RN0+hZKW)>uvthfY?v2~9GTQ+(K0OLH((Q!ns4`(oQK(pO)M<17pzHPF}Y;U1iefC zjx7KWI2@l$?GIyPI}$*~nF7z1uNsG^pMaB3C;v5>4cJ@7Ps~S0wm3@bguz2HgYkFV z>!nf_f|OX*`g^Y+jpol#nuh{jZ}?mw3Y_l*-c8Y)Lj@Eqhv4<$K>9r)8z3XMcig57 z4g_K|&)_O2hvmQHP3@`KQwrzLo;VoS;)CfegA=czX^?0RhhQ;^s+(Gp{F@HVB8DA7 zp{$yn%K|$9`^-lMY_|~;>gkC75AniNgn?pvaAt|MJDz}ayTe|)+yFcDs1OQ+JJ(yh z3wcke1rq&28X0`xv!FCy(4Na8NLT=|L+5f}Pz#dA5!c^=2={)jVwiwMTY9WFG_4;15`kOZWY-pYwS+HfdM{691+6UuRRxQywNoShsuIKGI_*n zB3l4OFmaN%OdC}2Sh9ekIgDueZB?;;8mO2c%fxxAzhFhm?m>#-P{N02g`#Y5AK_XV zy-_j8Xkx%B<7d`N$o)6Gsj8y&O>rgYVhvV9XDZ?(sUe~Ox1oi2D33G^0u%_% zZjf^yWVo>KW=%B8jOdd!$sA-Rb;h}hYAiU1@Mc2bLkyWV5`#yhcQr6sL$qN3`3kxt zSQnZ>Y;a;C7anh%5Of0<8dh9zn4iNX?kt+jX`X(*a>uoYktUBl!7QE3>Cs_@>ABAz zzBan;G$a`Y(mSi6#z`nXil0e#(luCcpg&S$#P={GP1BLzvi0(nzcd?y*+5+ANMis^ z7!qaP*GAAbUJ?9*N0x>c{x3QOy1rN$oJi9n=x`;R^-{}L=@ZG4Adt_0R5v50#!bM{o;|w3o`HK0J zh9SY9Q_F}Wnqf_y{x4`Aj?DLDxO`ky%rOi~LEU&D*gc>DOek>dNCU#)C#0w=onib> zNG!5&u(%R9GqE!9`q4xP*1|>7TjL+9!87X}qF)F?bdF54JnZhospgWwy%aboM><0+ z@IN4DF{6lxACMWzuUHwn&Hq4~6sg%iATvr76X@Xu)TTn^rYxiN=pPUd=`S@kx;*Be z$_Ucs&PxXNnzDf`r)JW7PAX1?o0XtNk^X0mHD#koAY}#qB9UN*)k0f*usp<$sW`*L zj#;0}4%eqi@c;2k%(usmi62mKblhgaSxmArhK?cIvlcM+B5|P0VaCNO|1d%PO_z}X z<})on1r|D!pRCwn%7Wr=9}zuAnZgp-#y4VPfT1x?y=RR<3jCIunhu@)E$gqLWW?cc zA%bWG9SydpE&kttl*s5k{3muGvCCK~+$+5?6Drn6h_d)yDx)MwF9nd_0-jMjaAJXrKU4(*KAJ=XyhvyTzSCkg&_<8JGK=&9nLFw3z&spU+9g$CeJ z|7;k_o`k?4qcF{AKb|fLGLCRq2N=*xLo0NY^#6Ey+GYUG<9wrzD}DwQCg+I#QOBXk z{`TkE4t-fD)y|Wn6A-1I)TUte>l!~v45&~r75`EeXUf${LFhHbHw6K8CL!~ z=qm!KwV;a#{z+w4hwSn(hm7#V#)Z%klia(7^TLaz($ux9$}Y;?@Ti2>MWN zC%|6WrSy&%cVVU{;ri!pJE?9L1zycC6kLWZ_UxoT^aID`{q(1G|Dv%|6MLqDiit(UohS*RNN@MQ&9^qIOxM`0-2@>vskPN4Fx!N1N@&^$7~C5By)L@g z^SB-bT|>|Io4?EU*WnlU-$U(7S3T6oumc|@UY~*jxMAM(iR(L2*qBn9W}e>+iSEh= z$|U1`7*fsm6qr(Cso3dm;BqRz@*9edDH7@6TV?N#uYXe%6kXKGAa$vky4H+qqre!b zQ}D^jOI1Thd(J<#1>EDB2mgy+qWfXr*Oba)xSfrI`S9cy{FXu$YM1pVZr|ME7XT(2DCq8km|4djN#hE?&?3z2*sgZak<1R=BIM!slY4<9}&??R5gBjXkH ziLFAzQTh|MAwq^ilHOD(@W_HETePZ7{Sh%YY#V4&dIFsh@anC2Ef59^wG5!uS4fEt z>1+#JLs#MH{4B!!s__5(*u(w5#s1t1t@0{@FIKJ?(TINUsWTZB6^Or|cCN60>Mk(; z=`GWL^;E)I-*Z;l9V;(SJ0~ic94@otPVB(xm8(}HgzX|;aBYxck$!d!urCOU;WTMgklCR@9zh-DOjLC*40^}aFl)1XNvv< zQlk8KC_dpve@Muw2CJ|PvgrDqTlBnm&3vC&E!u5#nzjSy!_-Y=pCNPV)W19HJI&hG zKbx|zw-hWr_eA~?#r{>p?rgm8HB$5O%D$(N7knk?2pZ9_V@te zEY}OD2PoF|x}n`kZu;%;Ptahbm8P@mX8t`p`&=zj^8QT&**-{ZBiT{ZF4CZy7*xc5 zAAfs((0;`~0bzx?Kc8^40Zo1mjrqNfzNin{_zQRbgPx`E1V4c)EtnqwPm;HuWe&1 zM>w0!HpppL{%y`#@ga0hWKskb(+5Bwc)2pjOZV zE)(E)-cYk~=Wbl?9~f_a9<`cb>%}#kIjT%`h#x%(Dpu$)DgQnQNB`Qx^sFF6l{xy7 zN%#C+Kq-Uw62jcpYN^L2z@657rh==ga-ervqv1b`+q}t0G%>HkYd$PpsBBF;u-n~a zANC_am;4-1VdE!;L#rBELJV10ELg1MwA##Uc@`~cn6tiIbTsfjF<|CD6$drn%8`Em zD*P(GfNxN(ZHtxm(=OaXp{X~9=U>&9)2LG7px3^v_wB*2jv8oCQEVOlx?`h93+|wv z@$UZPbh)L3{d$&ElR5pUWN|hev20N*VoOJhN8`YBaYX@nN|)SSq6~X6XgqpLKM_+_ zpwcK4q^QVGQ2afUK(3kj?$%d=b=9=Z4rA-rmlZl_KvyH;+@rFw1dXooN*TJcHQ%+> zPPV~v_KhNjul2qflyX|}E5>NgVA7Of4BD=a!!ohwI{nyEY2sdklb zEt-7S*KlzqLF|c_#mR~b`_{_eg{5Zgi}c*wwUE))H@kvkkH`7!3+iq$`f}At6E|O- z!BfhWTd;%j-X&+&re+PZy#@VPU=jSoTWGnr=CgGZ61$Evkk8+sQ z)h%jg=T`1m-V?h>7?c0c6;q#!l(kr1xUFTXJjPoKF2TKF%^E+u#-hdSo3Oq)#O(}5uDr5DO{7JVUbjBYh;My1x8N;}1L_~v;n{E*}WkE-d% zrP4e%dTvHbr=nunnhgUNyKAk>vLGD-y5OLAR;$DfKG=eRS#W4{EH$@QGPWAawf&MD zw3Rg-i;(1@2UzKvs%cPl<7kSq3p=~sNjYKdo7_-ynzSS;F*^jZTAn3JXOaDvFld_J z*Kl!KtEI2e=1ZmA=R>zykXBu3CEZwVASh7i7x)Dr%lP-4GrdLp2rDk95whk?FT+*9bG8fTp&ZQ^oj^ zvq2f;!KKNaso*Z9xe;k#2R`+n3v(VmPL2S`M!Lwel-FKgy+K?2j$53KIx*5`6`RKp zmddD%`b))Go#mxo$^*o#GfSqe$;Pic&tvK?Ir}?6TXFr8n3FrN;&)p47fF34iYhNV zx_mLh-=%|B1ak+q+OB-+pczI!%N5lJSij!{d9#$P#m&z<>qnXW*%ILL=Be9%YSVqZ z`xQ#N#x;EP!g5u3R%T(^?q2pQ<{-+oGbfs^#7 zOZ3swC2FUhCo%nX%rP)FnsQKsn>Jn=N0F0rSihs9WuN)$sez5CDi0J zn|Yv|bX=t7rfnL^@jiFiR=HeAmYK%WDixB%b&Y}!yO~RPvH*;nYu#o2?q#EgY{&L?Kx^o9#*{65VZ%awL8t9)i|=$_>4;8 zb`u#VoZsa5#RJTDEafAe7iR^cG zTz$f&jXJHxjTUnNq5VqdC7yPNdsoq(;gxNU$pN!RVuQE!rFoQQ*vJTd%@rkv=7Q&{ zA8?23sVmotq_FdUwY9{%=08>AVH9w2(kk->y3SIes-t!yu@Qz!(V0!aCQc-l^M)jDssIT$vKQT#@L6UYeF@bL`@W;RLd7Lu=% z(oqQ%&`~!{^x(}@*G;pl>Rz0Ot_xNo*gu5z7-Qbn&bkwHYM>@2lT~se7C%g-#p?@{ zh85p{x~R+5+`sc@VGg#2l26Lc5N+qRiN7$RN$QK>R>2E;cIXe=N;Cx#2&IS%o4vIM z(~2c9LWr-nhs+?QPop_j~$Hh(wX-?U&X|^uiz(_nXo;eNM%DS=TSj_hIavDHF?vA z7agT@J8ik(C1wnQp@mkcM4A&_5JpcY99Kopm@y&yl^%Y;?*zct6)=yj&!?_4ftMc; zC#KCoIkP>50m7!+xl(81#?A4@QJ5%>EdjrLvLC5-iCI#gMvC7E~dKx;J(cnT&} z5d+*v6GbKYJp+^P#Su!dW^>}0FnmV;0`6~k1p)jCDbp>S*3CL+8AY3Ilgs!LdhL)w zPC64_HB43BWGC7B3Cgx{mQYZUf%C*1c=TQdJHnGze`=*H3B2XaPM3HYmFJ&_Li&u( z*ZJ#kxqo-2o*g@Km{3Jfc+&$@gV4_PQ2b>U5;$w5$3?jGF_|@WT5K-eI%GJ(utk$Ng8cLPwzK&gj9<&fcfisC7X)i93ngddGhO!P=*v zXm)oVzBDZC;y?q!_7+XgEM)pPTRfl^fz-EAOyH*}%8{$!Xa5fjpXveoDooPb`vmUg#X$acw8zkblO zN5qbEk+E%2v*zIq^HrB-&z=F2gmdhT{XAjzyNp2?uhP*s*1~?`!^-D5t|(gvRTtKk zz;+BugGdf?YV0hq@INx}(bSE+=t^}B|Fv-h4{a)9t~p^8#Jib4AUxc(9Tdjq=_J;@ zAz!SF-O6T3jEo7l0GAvj+iRg6_^Vj*H#yTgqtvnkD^$6giqspOR3`IyLy}oqu_Yms zCmtmK=n~#G))s`N2<=3fK`PTde>w}ni_mDY7!74ccJIciI-RSX!BYN2!d8@ZTGoI| zITUx4%*BWly)WL5lER7p@%Mb;a`^^6afD;GelhTgX)P!RHbeU_v@v?+GIst*ed-PV} zvyfKoWn{m;%csJHk8j{73FEF!V7m-hl>*mS4JcQF_m)oVtw6?=ZIS--5z3~Cn~RoS ziC*_OnOInNCavF+Kqh0}8W_YjcZ{)qK7iLLuSajWzCzgQ$Swww10mR!IZo8y4!akm zrcNg8F||a1vv`AiEQn=XxR8_U#Pfk}Hk*w14^u2Z=rQYubZnH9!MNKkm5In7lH<4D zxs5B@@k5k4&~dXHZ0$1;(rE#`?brj&l;UaDy;?>BCX!#%kW3kfA$heKG^p-`o;J6L zM<7)vzN!-Bop*Hg^-!DEPtur1ST_{*dAQH~F}Dk_>}#HBw#^WulV9@Ed=~aHa1$ez z26KfSy1G}H&>3gG{CxYTl0(j?d5%PV?wf5M*Hgp;R4#ZvISvbtaDi}U?^8j){@rln z%>th}RP{n&U!7a*m}=r*#%`f}*gdMv5K1oV)zlCs&1NRjfZvho+i|ozm)a-a(Hw;m zOMgbpenC3iqf6K}8Z=1oa_UbFZ^oTc;Tdoo*|fW7#v$i3+B)VNhan{^YQ435(jd8* zPF4Y1P`%gGDQO)0Sh}Ep5g}C{(DQbTcWXbfGIRbSh!}LjDnS*1s^_u*-4T0@ znwLqeyyZ6*=9n&*Ku8X_0|L5~QDTH};hVR^$$#SH<7-X=bgq07WgN_@Iz|7Lpy4leC}5$C{t3W8yAET3PE zDe#Obg@L}xK#C*MCiFSOZ|)hoS7Ga%g)j1uU<~E)?H(B&WF>gBebjmd#WF1o36$(I zB_%UmH`;9eN0Vnks7d{Z5VT71spvp>=-?e|OD->}P(@5g=aN40^QgQj49T~epMRTP z0}5&VyXlzIw9oWd=J;JZQ z?Bz2X2+ue5o*UPoY7BpwAnjc7nhw?We~}nePhN7F41xl!P7_`9(vHM$-_0Q>EuH32 zux@Cjks3?g_CuZ3xiL=*YQbkn!^90aP~kpv+BqI6us&JIP@`^!|HUN?sk$O{xcXcP zC+Kg`>=;HZ%`Zo7u1G4%Y@>m`lke!>- zp=>na2F07;Y^aKcs7sV^4;qe))-?)}!SDFkO`5^BA#t8>k^F38TN|6ek77I6pXntv zeZ`^iwG`>-cY;Yv|Fz6icBi6fm6#DD;Ga0|{OSagu-eI`GmA%#L(<>5l~RLJ`)vm3 z9s4@Nki@E;Dd)9kguJ~Q-*?xQ)cUQGLxUwuOE7&a-46%(DqX_|U=N4Hxr`?N9n@k- zRjpBTxNr6=511udxHh~FQb?ix7}YDYzxqbQq2>u|M{bB0P5ls55~Zd=yt(#<;8#0W z`Ax4E_EwU^5KCCu&ceicbRu%zS&UmIUA7q(1z<$+pi4-vw()7cjHcd6=4)V*J=3~j z2$EGdq5a%B)#y1c0$$8G1&Nk*9C8@vj?cZNAF0=cQz9!27SQ=P`LiQ}2UEpuTD3-H z*GH13EM$eCRx!~ZJR7M0Rz`!(vscX_X`8uTotKlH9CudKZOMF4qI2K#vGYsx?9{Kj zMN()QeM<3fmzcvXH%((`zUcGFI@6Yml10fqR{h4tbV#1znq$XMfk@Xh+tC9GJJVIr zq`j#4=3u-G+ha1T0$f)e`z3yXFj2r%13;1*lF)iNyOWI!GSdPy#TNoc16dqyczk;g zMG_QpB9f9mb$l`qQ;Rb2!CKl&hoM(sxbkAMhhq3+f-N+jT513ww9d&%8zxfO^&4ES zO=$7U(4t_SUWG+CW!7PtmiG1fxiVu6Vw;Ab`@AbIhLFaWr+}LH_i;c)C|@*&K0hj% zWtu{JvD=uMi05SlO)jfN)xB3C>pPu3l*ags-T_{kmK&jk&{K-DK?+P}sw!JG!FC(vQ*ZUacLE((M95kP(?k3c}-T2rwz$ zKJ;yB@2PztEI<4s1(8_&@xZd%oC1F@GVJ~|Hi!a9k9O!=iWEuI1V~w@+6IiUnFRMtwbF)BZ08>`oJX0P!?@R_~jbA@@(cQO6}f;J(}@$J$^tdMc*RDhEa8R4%l zz0fUW#F#h3!&m-Z7A#TUeWju=L7>xsR^(V;vNQ%vo?JEk|=R?OXd|i{uJ< zo+50_>A>>L(+2^~hnhhGpMw5KdO#DTNbEmnNI^+a6q#4$*)idyg~4LrT>r9*_Wt_$ zGY&T}E3}+3Bh^OXgw4(zlCqf41e%zW1O4V^oq>BW(Gmz?37C@C+X_hV_=Hr1<&?WI zJZtr9nugn-*A(ZG0vb<;Fbv0D2+hh`Ezgv-qJ}AiT7Cx`p-FszyHwW!(ep1f0LPl} zis8CxA`u3n{gkW!JCBVN+j}N@vxHB_!IJ2{9yZ<|#PEk!bgo~`oRjiudto|AHg3V# zGatc&zk|EUMPwAk+3rd=z86PZ7F1N!4tSocC1Jt`=BZOq7fnCaKP&#O%MKhbn{6jd z8+KSCWedGEmKD0P)W!!qofPvz&#SP?2ehkb2Pu2N1(yDDdUkx|Zl*Zk96)@dUMYm` zOzQJz_0}$`)+so#D}rGzX_$$Ou$A6uM<}3?65Gnt{xWu?3vw;{94FxrzX@$9}K zku00h9MnUy_>rtImpa(~?laQ$eZke14?IzP|L+>hr z$+j83`S-9^O@lGqT$M&@{B5}AEQy9H|F9x(yE%$iC*v9;K@X*--{!?x!uIa2=87c) z@B_^qxc?d;P3^urs;DX0SwKwspoaZ`5)tDVUZx~AoUhQqyNIW^Z0b$gR`&2_44Xv zjbH7I1uHdTcNF3cXu+l=xGsyq$UTp2vDTM~su;kN_;Cqi)9b6PTX@baq^~tLs-Vwh z&)G1QoNWLLCVZ>-KLCb6dA}#RCn4zA{kxg=Ze0TKEdm8^;xhRJ62mKk1KMyC5k&J9 z`*QDbypCr|h_@}GDE)S$HrlYZ=VdY|fuerO3aFgYs;~OG0e=2-h1t04=TBJzT}AD4 zeP41aY#()8{Ji_UKTD8THjpy%1YmA3_uk%XY}*F33zywYhMrLZ<^!0hQv)6bsO`%E zA2vyXn4a`AM%=`vK{f~m@u#MjUiEr+okL}HfDOZCT4tXlEKWpUa(1+q?nE5-?eYL9 z@S}|1m=)r?$oav<)!3z{JEO@@+y>t--2)_ltm2GVCL!3g**M^CavYnBn2;6CIdYSBz3+^_3&8a3_|9rxw) z2>lV@|E`nx0{&C6#BTvn<{u$sKUPy9%Rg@=+q3KKTg`$RKbNMTR_eb4)i?i7;_@0- zNBG`!0aNVx^Xvo2>$`aixUYoCI+zh0ofsqp&w zSpI+h@^Ab8j|E8*jcFWQ7EO%csgN5|A<0cN6Ta zDDxioo3lwAr!GishL>QaWfwd)wPYGT!4bY>t+HlO0|VO?MYq02M1zVzjV7fppzC{M znZ#Tx4It7nFfo*3c{KfwKuZg5g>5JU8d~U-j}*te+o#~#Ysiv@)oM8_wdFY-OF{dd zp?|mGM%0AvWtz3(`WVqxtJ;xo9@u{7V_?prmm+f2r|0buI?Mt@0?DgkIr6w15%b=_ zbqSKw`pW|UE{Q)%v-}7u{Brv_;f%^9&>q zT5^b#fJ_nGojKrAunsbT+N2r9vR6BBNC&e6IE9Sl&+RXWY+)yr`KBkBh$r)D#w}OU^xxE4;e;I@tk=D-|kR^okov0xK7&7lt%Pf_jo2cU1O$6 z6?NdTheeG-QT2JE$NksD_h&_M>})eLvHuLK`ZMa^Eb*<=GS?W!j<^3>5&@b_iPVGp z;|s_??KSst5i?ypIN!m5$#_u|48tOv4(97fw*KRhlLGM=OZArUhNW-!^PcyYMz6I; zo%g<1heiQQUm>_ZTKADeGC8j9z8Bp6e(9e3QlVU@y=UF8x9SQG6z%Td2UqG5{E2oT6#;5JWM1tA$%ywpG>NS|SY$&^}Dw&oN z5319ewR&LQd?mTH;6VP=HHABqXzTs^K8H^BIn;uu~|=Z^phXB(6I>pEehpGzM=_V<9|Pw)OHJgy<&=}*romZF~2 z{8_`@2cM$;{`W6m{KwDtAN>6<%}?^h$ofB%zx+p9)OB+4MEXMxV^<~HC*A-3FaHxp z`=8I?uix*E2*$D7y6We9CVpzIf8m`!BOv?_2?+mJ1a!wR@ZS{lZwmT11^xF?5EZwh z^W1+1{Qs7M=!tc2o{ zfp9s8YR}>C&@Wr5Sy>><@?f@99Pf(3q4sg?b9cyQ`Plr|nYek`HHa?z-dh1JYT{_P z)FXe8?m%|xfpbGdJ5|7rw7WEBI;-8{+qWA320+M|(9qg3w+hKgaJWh@wLSCYM-nmzXD=#HZ^B0)I{Jzvs9AvH*So{8#-XQ{!znjzZw;jru2E*esPsEj4P z_|$(l1rdKpLBzlGKm>S4f6qb4zd7jN9Q1Dv`v1g1^a19K|Nq26zuKSyTR^8;2ca@d zYvNgmQ4)XD^{)+*LmeTAvHq2Va!l*{fc#(Vee1HKNYn1Ebj<#Vvw`9~5%WeUiYLSa zD(F9silQJOpjWVe?@QcQvI`1qSGUt^^>nX(zgeRl(MuD^I%VZUK9v-T%3h+O=(L6i zGWsJniK6Y)QnsnSW18bW7RTm#B%ZiEj8gbXoaKaWZg!KC{Sbo!gh9#a1qM-GXACju zB+LYnR+igLQxAEtTn;dxFT0r;nl6b=2#{T`hLQ;3M6i;vONBGm-JbO0r3p=$Mkylr zLBNfI18*7>!k~p)^wkH!pq{LD2JVN!ApRi+@vmVJU|3RkV$c(Vo*48CEGfhUYvNn+%pOitfjD(mv)Qb*l~TPml4I^_E)r$u_@1d_xHjFM+ZRg! z^761a5v06R<6y9r`lHSDl%a+4@zTyFX97!!CcR@XdA!et$Mb9hXR#o++cP2Vgvr8j zy}T{T`;N4AZL)vTWpO75eLtSJFy_>yM_48rC{6JkOFgmeEPEq8U$%mHJfAK!Wqb(6 zIY?Wv1n?B_lgm1klYw-^jy|qVSbR-Iin^g#>ez4RB<_*e*|m*QVWwp(GFV;d>8{Vr zUp({sT{K+rd5J+kNW&Ej+yhX1I}O()K!>r48X_95VBj7p{7xFq`ft&2!bAKKUc(=X zCYfgp^u(Vh{`|@qC~m3}_Tx)I>(ftM3d-JLDaa)b?ZL{Cnuo-Y2CAJLoZYJDJLZY& zP0heqPo#;n-{I#jgHMtgAFf-#Wo(kNljjpn)*cQb`HKj2c3+3alH_`@s(fzq*m zi9yA?KEI7YG+_A$G0<}@=!rp340^X1=(;2Z&Rb(3Bd#$>A#}X&ZpDOJdUJEt*^-hp z>@3c~cBvj6>Y&ByRmlbi>lks@Sk4@Mn<}oEEmbezjitZUN5$i#bbLLP3irp6#9;XD za*g{8(;=7PdXOzP<0MQ6L>|mdJsF?oDWmtNQ+u;N4dqMPx%l=nY_$|_L|Tq`PIkSZ z338OQewwB6l=DJH91i_tu(=rBZ8nHNOVg+Yh!;I2YBTs|9`Y9Lah$5+QO|Z=?v%{0 zw&Eqz-p0T?3U55#D(27Q@ZtWVxSRei+cQFVxZ!Ui4X9Hd<}mX5 z#z0T}dE(Eni-D{z=1Tdr`KB1i<7*BM#y}#)_W0&3HP|3Jk?QW!4>n@XoqGJ-jHv_2 z9m7}To@R3VOxk7R5k4~4(K?u`d*kGjTg~cjdUOXpL^?ka=dq+@V94Wxi)hV+^-A+r z(wrJ*hn|J4x7!HA#Lgk4CbPbnd8E|hj>J;Mj_R>_Vbc@nZzzXM79I4|!FoUrbZ4~7 zIz+f7dxShCv|ej{iN>2_h^ye7$I=N;PXe_!22L{T9>9D>$=lP;$A`8aC2<^z9V~Ha z7ug}m&&jHtS=l%ljhllDzPZne|JthqtOqVwk(4b;by9Zy`O3S0Us86<5X9UpXGyE{ zN@&xidxhnv_12{9udU#*!e)UfujNleAj`yJEvbo3OZ}+1zYc%OO)S5{AMn;(Z03nP zPvm(b&wC?}7+>_m<&DVG`pmxd=jk*>S#WlDbkh8RKAdS=vBi2)+5?9pambvjxtGWt zK5@?d-o{#=R}gv3U@k5V!_Py_l7eo(LY`t7XuNbXiY2_b0b3(>%XaM(^# znJ`;?G_a_Q+u3b>9PBC9$C)cNqjA3%rM4ir##OC`>nSGFSvSIH$+nk*(e{J_PA*KgPk$o_2 zZ6$UrQj_@PCqsWc^9gqu&svz^8T1H2#if0kpW`*R86;}^Gzru^h{xh}uPGfi#Aj^U z+Diu^Ip9}svd0K|H{}L%T<$I15w|!+y1BHjodILuS@k4yLfJ;9P3cYItgYsJPjB`g z27A7?f`2mhJbcvw|LUs_itOtz1D_}OJi+G)KJP}kjm*x>eq-9fgTQBV5)KP;XLQn2 zHwZjwB(;-{#;4la-3#p)FfDt9U#U9vTH!OkM-Wl#9NH`L*s^jJJzUcl*~E;tDlaeH zxgb=j*UORU6{*)eKOY+_Lr)Kzz_6nt^?FpKUXy}P9K%Z(jLz{EbMnGx-Voo+XyWkolLXn5oS14f%<87Ai5A`U~_PrCpU8SLCTk4LQL^kQdX=b|$^ zR-07doP{SVSs(OuvrIb}_lF-R?O@)`JG%Aj(hlAmfF5pvz`wc$!d>e1lX-gr&=Y{( zKj&cAANRU{KksdNbl7-}CyOZ+ET^5${MuOtCu)rw>uuL`x97~DIX9Jpsk3E{Oxsk3 z4mp;0eyD59Ro2@tQ1s*V#?kOXFWeq^)|0zuf6fqqI>0%StCc~eyPbS$m(Tw6lUecX zPlrgW=TD_a&!1AB3;{@1?U^73)w4g>AYkV_Lp4b;F?GS=u!$9e_R;O1{1@iEy*B_o+ya4rbqj>M-0LR* zJpt$mK<`h#&G{pi|JViy`;{4WX8LfwY!2P&^i(EZ*Bc-ll^!SDZ-AhfJC$UI{$Fi? z(23mTsb#g8^$LKsq+I)%Mstq6-2`W<*>x8^o!&H8Yi9$yl^cXTl~EUKyFD>GO*dWn zXB1LRVh`-)Na_~=G_z;PVESSMgo!@uW+rF4!gXw|&939B>!aCs%`{5a?7|7LNz@J0 zBk{!s2!6a$D**aX8z3l?i_7(X*~6#r4L}b!K;U290O2n2`UyZ!0D1z@`{y3;X%d`% z2!IX&sU5;0>-lPDkv6B`@~zzucD{25K=EaRUdJ5K+c9fWABNM2KrOZ0p;A1~mRT^ufU-#J0dxOuztq=HDw?3%Tu4$SA75Eg8Q=tzGgnknEl#Oo` z5cC9}C;0rU!RMTkTj6clZ@6N_Bh=(hf1YkkwhcPXbFh{oH4ND0z8{FrOyiG}&@_8m z9CgW2I5fsx!Ih?g(B4h1?WJ;_31_*BAE#sA%;LCu!F5Nn#|g+5x`_3dTGOPf_0MR>YE=(*iDh$} zBykuY8dhs<&Ns2rPUo|QqS+}6M43@snZ?(*yu_}e*4M_9xMDw*>A}Gz8CmV5BEF}UfuJc1|Nc_*azSP zp5XHYpXL*MekS;^de;(4hx2OWBPh4j>yAvwcwl9lt-W5bXPVe)Ls?8{jWh(VO9pwQ z5{LD4Z=@8(crDtMuc=@fRAhRyHn-fhOeJguL)w-@^g7-EYw_TS#nZmpk7S9QHv>oN zid=WfX7HEVCCr&Cu>#Eak3)@^B|FC6RKPp{HpEK>U&dgCU)=0sCX zudloW! zrcI_)IL9aRgFfvrUncv~_WsUtPx1M}tN++?PhtFD!bJIb z^K#E%G0je9p{ZQ%DOP$OD*Vpn9{R7Ad)^s)9&U6Xymg}kilv`~+Y@`9*z^8R{P>xF zo&6x;){C~g75zV%a65v52f(qlGJ0cg7Z?HOlCh*;3|tS*w-as{h(9FZ_O%r}R`|~# z+#YUqAiTQO!IzutJdx*#JWu3#zejzByVM{4t*EEv3T>x9)C2#h2T|XcEdt48^;2#q zJD$(Z&?MLU(=JM{4g?+)^+d8$L_KyH^)TD% zG8XeC5F~#FW_h}dds4x;&G0pbO+v>wyI0*9r=c&MlyOcCb8&{H8y7#s=uw}fFH2_A zz}G^5wjacL(N7;F>S>?@qXKjQV;hz5MJHq;0}MD*#=MidE(D6$u>9*dDVa8MsKpg-!X4nm+r-@ zrKNhZex1fgb>nTfb}sfp*OCtL4qg-W*~0+CuxRSFdn?VrR%%v&`1K+N0MR`6KiPhsBP9e*Bfb0ECB&B15< zc_tk^;pYiIzl44>uw|tF{qU!`NJDK6eUO$cjOo`&2g`wtbHwMQgFzYoNGR#Rn|vAm z6iEly)?Ly;khSI9X(hX036?m!yIg5wuR=HI&!)M(SuO(O(hrg?(~dl50PH09=A}ZR zvp($vtCO(QCtKmC|1`sss&KdlH3pZsCMpNE?q2(NB(@ELxdc?VDUdBV>x z$vYquR~Wo8@1XTL@1RpeKbJP>^v~hi-1(kLFBbj&(3xrMd9DI5OxBtbt<|Y-xfnLw z&e&epJhaWpdakdg3O?LgY`)n$^+s>q^KpD#4dt^-F;|p#&@S>0=9UDyo{Q!UwP%aZ{=R7r4bt&QIJ zI9(*9zGTzQC0BJGq?p|fu?U86xyk7}=de8NgfVutrhCJrdpHx73XhyBl2$x)<09!z zq&`yg^R*Q`R`}0|ejaXdAiTcC!DsgEnR@U9pC|adf9%s49%8O^IL`-tzWtyNNI&3% zJ}ohf#-+Yr@}SSV1JA?l4TRUXH{b{!0S`@)b=CpHGfa&=5HGl&g+5R(%@K`4B~va_ zJpt$mK>ym@gO)Jq?%qbeeUWv&Ewio%>295A`@|b`_9xk};NWIhrnM58lunGljZBl| zrRHv5yyQoTg&NMIlwR-#J1 zz>^fbu;`ZREI`lz_R$LwNl*Y@$TA#r6R|WPUWx!J7G^CQE?UrMKIze8Vt>|RDBi?tIytx%JGD~59`nq7qf5(j*1@uACC}Su{sOE8+nVZWUoD26hzB zQ1q=Li~x>ibz(FhGc}l1{sS@)%?5JV}Ruw^2=4b(SmO#@lW)8)ZL@{5B30dpq zX`%@G34-Bo#lxP4RtD{sy-gBIprCC-8Oz?LL}8iG&PYPwZq`l{&_;`EOBt#SO)&7( z21!DjsO-J04o$+T46la5U`U;nx$?QPctM5 zdl>nmx@?9f3x5SY9kk?H#sS#nB*W0`t==pFiav+;yu_{EEJYQ4&cZY6v7uR(Vg)FJ z7u?EV1=vLmvIJ-`^g3%;OKs~%;H=)i~^K%;N|!T0xxi- zQ@@Q5>~(==8pvDToy!o6AW#kDGH>S!1P#jru>0=Y#*l#EVR>-mZvD@|iA=$=N@x0o ztn{X}PUy~frbHCx-WC}+q7*E@^r`jrfCfA)zjUfM88lB=HVdGM)iR2pI9N{UL%)!f zPV~MUilPB5AJ*t*-*D#A94xzZrC-VlKYEi1u$m13-QLY{S2E-_>o&p?pp6wjZZ=!X z;3R(GMHw2J57$7R^L8%JLfb>G^GjLbH>1*J`_LLWXphKC*5_3+nx;SZ1q=hBjZ$!o zVPDkOR)-AMhH`lBu6Yt5?KEsk5ltli7GO8~TT3IJ~3{uFNWQNw{WpbZA~I$ z@wTrR1b1OQYd-)?6yP9ucnXrlL(RYnI;6 zZAy1m`|Fex26U;gCyi;&nQ=!C^Yit3KBY$jH%nDmpUF}eg=0UQZmkKWO{nm2;Vt&u z<(J(E8y~@Wx=;<;pYWDscQecKN`=>ja3r?fDWD1_`lC?ma`Vh|%L@LQJ+z?Pg||us zA~%Y7isMUMZ9v3^clZeBelO!zzho#N0P;LXMdeAq7k4sr8QlU1??t##T~U$`6(NGq zxH?cODI+7gf$o>;10^1p(RKsfK)yIoR-u9Jf}^swznA!rR%Ov0dUXMk7ckr?q6Sa} zrN5W=Bt?`8BY2u8_?PmMmnotkzSdL9%NVm!L|3;al=m@ZMA<+QS|R7E^UIJD-ZBXk zihPAijsi${0NxPP-C7+eBE|*^JzpFs!a)|^sgZmgY1IcxatKAd)q(PUt)hrfz#QF# zFwTH#%E0=C8W?^T^a;A-yjKI`J)+=fiWvUo0Seyu!uwX1tONG?K*>142$-mE6srSe zSl2-G!mUPST-QKU#EY}bK<>r;cYOd+SLkN_{y-VN)pzzU4iqt59R}PVD1*2LVqb1G zLUh)BfKeSlq*fh`)WVY1Ld?(o*(jK6AeQLmfg+l#gP;2Yi2JG{rSd>ce!=@*p@aPzi?d7Gt!7RtAtK&tilr995h^&Fl8d=lfe5&YxVZ_7aPtMjQynN{ z&YBLo2}^eFo;RuwlpI~*Wx#EKDwgh^eX0+XJY7vyRl?Hs)tuJ-*=6)vlVG(Fk$3lO zS$zP}b+8LRTLp5&CFl0iD(*1rm^=#h-c1J0reFb~v#;@sDk(k~ zWkR=un8ll1fOk^_OVvbVRaiykL4=_yD5{yfg5A6oMFD8IC1%(BamC>k1v7su5|L}L8D!nF6^DjIm9mOID>}Vy zc}1VyuQgPR*!?0!MSKILf`(qdmS;bvu>|df_H|1 z{Au(^p_zlD0hJQPE7za=$de!W7iWHi6Z6=5<5RycU+*`K@HW3W39PjWq6KNs3{@QP zJvtQZp5QIa!;vs!KT&X3Juk-F{4hAWqlx01d6EYfr|-7fXqN5!r9wKE!-E$~IjfX~G4WTMsQ}GpBzB3zTE#})`D{n#a!;mId$vZe zgY_lCw^yz%%8oK0O!muV@zgK9GP{0qn(W3ddlB`8Pf&Y`9$j!|y=Qy&WayX?yKs)j z^D^f*%~an`@T*=bqz-{(3Zr~7;yV3HQ@1N4{RnyQUt7Urg+FJ%J?MIidw;*tC>P6U zh+&^))tC3mO{5=f1WOUGZUhShE&-rNf?16EHhsHGbJZIbskK=rYMtL!1NwPWaifzZfDg$CT1)$fm3~qeb1x|Ru+lyhC z_#sXyLkiP8y%mLOPKwHg9H#Tj#LVOAac|~!0*qKuu29s6_#PMy9V00Ek_ZqT-Hq|n6^vv{=!mNw}QjWv%7@weYj`?c@?!8PVm zVZG3N_j&t!ng;$(jthW6Ys{s>dZGF5^POwV!C$R0e+!}h8=T*xU1llb)m>(R!1H7Y zS}em56=(s1VQ<7=u>$e4aH~)ZYgMibKhvU~(Dg45teR3_k#B^qN1M$qotZpJw97eK zm@2`Jv^E(`dO5Zx6>iG_)dy+L#&zSYFRfBxUu12?&%$w! z5q2jSIql~fXm1X!r8SJDY}7liSBB!|N004k#XFvs;%2jpx=Gl)`0eGo-JR$i&rJb! zKpfa;;k&8>a+PYEmw^=@2v6Q7invpOK$5D{<^*l3xua-%!0=Ok)mdhe@kBVGgi*2& zgo$fJ-D<*$`MC5QT-*q z0auA@--StY2moe~Lri+K^DIR`X>ti68vL(Hn1F9mf49Xb`g0^j)69=ieNW_hBG11V zd1hYUpS&4)ZVOHjd8TQ#;A9v+2v4jRY@|SKDRkW1jqqe7MM_FwxkgZUD(;7qlG5Wd zE!C*bVIHPEF`;{2z0p$Vd~8FMv19$nw?GGKHoCl1P=p$RZz6S?}xzK(Nov|-4SxB4K+vsih9 zIsg91^Hqd&LzTiY7hvHXV+V#uM5Fu%4`qKOxtWW>F>#Jb@iY9Cku*f1$mqkXS&Ab- zTWtPTN((K8l&d~a`bQLd_6%wyXp(DDotvobxW?Hp%Bqi)+9y%*C#wEPu-q74VZ@f_ z{rOun@(jN~yzGzo3dO16|M?rqml#-GgjYI>zkgZX)<3Jd;yk0sl1&Ab)aj@-+qsB&z<8d;4!T1iU|( zp;{s=i_kJJLvTpCv+BB+N4~$wKzP*TzimY%@$CW%`)EHflR|RO$KW^Wru<$l17sxe zM?t@TLR5PW=bW)|O8w~{nCP7^OiX7iaywvGcX(1%T z13(q8$}*iT?4EXDmFM|^Rg$H}SK|_#lm1b3{G!3XeS%Xb$i~q7`$kv_vJegus@BZ` zGRJ~Y!>sUz#o#~hDEi4ocNBO_`x$T7$Q-Y&|e%XOFiORK2j)p^YH2yz(*Vdh=vV{N2 zUh{O$a?NlD$v*QSq9_Q6fQoORpddH7%dbD&%p@~Ob~2l+opV-vNSbb_>T7jX@m1rQ z4_|ZQ-9vjJ>+m?!sJf+|VftOus4izwjb>bHBz}CSfB$kylJE`y;{D0=^!Qs4ntoMQ zEp1Ovs>|pIbo0$~0T={vz|(ENo#!tz`@1Y2kfQZO|09j;Ur2fOJ__Q%O1|v_4+t!) zS}{N#M2CtF1U9KK3if6kSJdTtduT>BzRTlU&{T=41#-1a|40fds7I|~8;4CNwT-;L zr+px9QuS!jm*29;F5@|t^`^UcwD{g{TdZ-8ls@5{^-Q=+n68wVUBdRQ!it| z^i-$c=#GE&G!|Ib`ZqE6KHgg8d+HCQ&r1F8uT}WxmH)Y=`tL`qfv3GL546uJWdw(7r9jsX!0%t`zfC+? zZM%H`(n23AvvKaXCTDU>M7M--pOd)bz^#+D2J8o;Gzl!b(Sm=l=`I@e9e89PJiKo1 z>Wt8){`V$x?ciw*>&C{O-g|y-{-7I%v{sj&vSJ@&OP~6xGy>vp#FjQO5a6FJJhb+q zHv03Qo*o@-|7%k^B*XiRCb;h#f>k+Pcpvr+udg~>Dh5~S@@u7uo5kJDrhh$7^**#{F;>u1G90JMRih}(uyI2|<7>boM{*;9*UD&L zlt+v^jJGbgaI*boNVY&4%b*vXTvAXy}Vo2;_ zZ^e@)y!MtRC7|g=%amk8IGODnNddSv1lf3N?iUyEGT6|#_vnz)pAUUS0eJ>M^446(<;vPJdS2L$VhpK}-Xlsg+2Z8{-W|^*%|cWzk15Y#;P^ZY1$RA7or4KVoITza;mCkEi(efeeWEi5 zu#E_T3@%-h>KvY^6GL-Q0zk^}kgFDx3Q97F+1+viP9o1eN0Ujk$JSvA>AoIlDF7;y zB{|B|Y%7kv9eyGjg6>Yy0wkue9mLERR2b~1Ta81M&^sN4wFPbAz%+}s0PYu_N|(lJ zIb5#&A-Uv@j1v~%NY+e^no>h))&kBIn9VNEROZRUS;5bzD8|Mt8V@YU8>4e8CahT; zVxA0Aeu9{YKpLv*UC7M^2$QXKO&7t?QL`}4=V^O-aYC`!cD@;jP9a@WXuZE)c9ldx zN>Gs#7M|dQvxsBbv!E<+>?=cJv(?@$O@6_w3Nqma(R!tZQRMKmr^ zDQF0${E`B5lMY~9AYy{BF)>e(Nr?>z7hbHBSkA7*6*ianRdsS;F(}eJWG!%q?yO1< z&rab5{l>5U(r;VCr$pCdg6NMEj}$grF{JZcEpPI0<*pAH z(oDyou4NP8@aVUU>AyZkNoomFBf6|FsiWFtzZ%xwDW2`So3EA|KIeB?tDipSPoMLr&-nxR zoF5?lUc~ox7{Hp!$Hw=)76uEFXx|})Z^ZWzU4vdR8=h%$-MZWVXIuIAA`w6FeRb+( zd>@Jv*bpSEJ?$aD59$NpN7b)J{W|C zAOg1FE_jFx(RP{i1Mnk$1^Bf>{1f2!kpOjO1ux*Cm@xhV9~u3rPk-nU&(+a)iGk9Q1`>kP1W36jI!-_PEg0np35{J)g*Jw-%+ zC^_F-K=enG^Zx|^0RR8&eOYtj%ChcXA$%fEtbOUW1_lYQ-5nvsJkJJR92!BO2}z7k z=kY$@IKOcJlB+5SY%pL1LRNd(YqhPRl$BMLl~wg+R@U;#`u%TY`DFb5_x4xA`IFOB z%Zx0a7?YEvUk{WaG4cZfUYR<>N$SXcw_xO7519LOvwJ{*CxEC!%8INM8Ga@Fde9BQ z6pV%N@H+yMT#@_fe17Lz6x}J-Ygba4ZLQc9ZSx_h@SSeLC-x`y6|3>@h{#3N z{Plo7M6B(FvAtk-Pb`_%WN`WW-^`P$QFBWZB@1%2qwC%*O~45AG_rFUOI(Jrn78*Z z)f1y~W6fckH<+beHTJc_J<(%L;)LJ-wl8yxEVB$Z1*O#`&MwX3$s9Af5Lsezmq3yK z^^lAaD4s~$TuSy`M_5^`wu%sO;vu5h^$s4stWf*s#l&K${nT3Pw*35;`_RHs{2^jm zYZ(ZYW=fW%sZR`RYVzC?{+0#NdP4uUY_dNY&@NBl$=?cNj3o6Zd>c!~_1zOo)1Rp^hXK##lt+#GvuKwgf$VKvLr6!+D(I)2(!Ep2R} zV&vDFIg#L}A;^p+ErchX86Bho!Yy$piELlLk^t5I_u{8h`>@5I>>`1N9f>R6maJb7 z-K?2Or<+uIL=`Ffr`V+N(MD<`Bm1VFP20aa;Q2FJTd-8gJSi4ot}5rgLFE^$x_YilvjHTC;{&Nnj1sIB&U_1DJ-5- zqD_*)7&4k(%n=^pt1Mm`B<50s9p{m$rN+5gzKaM(Oy?F$`cyqbf_7!s3l@ecRFR@N!rvZ7O(o&7!TvV4aAw&ug=5=IiK&YA)K1RVKkMYWZouo9<%$X4c5oie*S} zT3{1YO<3jQi@^YAxzYk7RtmusjnTNW7{-T-4H+9-3qs-$sa#8Q<1{nxZMt1u8fpF7 zI7S+a%_=1t%<~8m)U#zZJ(3i;&1XoJAV{;POp4gB*-T}I7`1Gd)5@eAGrMuU)*BY) zlb(Q%@*_I8#z(!l(wLXYWRI>-qRAWs31VWOWkwyds1@;6X_cy{McJCCStiy=G7>&4 z6^GANgYWjFjoqY3kDt|<24f8Bn^>pYK&Yi;_M^3|ffZ{`k=x@<6KVEkwL2J@d1bup z@gsw;D@>lk)`-@qb)zY1Hq-|Fs@7L<30c~6l+{{{Pq;4A*BaSnbSafHak`-uAVISu z_VQ(AC=g{8OQ&PQWWLiHred;`i5FFim@jl)mzrn^Q`>Wcm`vv^!>D*nT%bxGBY1Wy zOjA{b%57xL5p1zc(xVzCmRl%m;OHjbsS`M-FuYz{s=caU^s8n@iH)K}mYEI&hF<6i zG(Vm`SK@`5v}!c4%BaMT_~mp731(W+5mL&UWs@eF%Zfp3U6z=x(=9BQ-PA~BgBUR` zsw72$uqsPio*IZU99n}3&y9I& zu}l$?%E_A=GiOp_rZH6Y7@91ilW|oTQe{TxIK3$$>E5D)PnU&tQ_pu6ZMs1+qbLgr z+VZT(33)wS8yM5#ncQ?y9Inb^8ZQ*<4Zfx)V`z25Ym%i3lOB^7igBx#tdgr(g(Zop zJpv_Vjh!^t-8=#b@)a#X6ywhW(W)hwMIy?KkaY~xXNo2#3)rezStANDGzQsRBQ9#y z9I`HEroHLR!dr5lOD)y1(9#8ptTeL@K~v6=V|xhHn$ymJ>et28qT5)e-zb1IC85+_ z15}tyy;O;Un>eWZbQN4W$^l-z{mEGwTj`<0=LFivS_v-S+w|M8VeFR8(v>FFrKkZ# z!y@uoq;DX{-^^|Wa!zRe#N9MMD~Ot5w+5bY*#Fk^_v>u<7u54)f=GR}Qhn?B zZ#{o!JrADj0rtDaf&C4JJ^^qx;vki<9g_y5I@l=|4{hNj}Vn?^VH4W#bmueSkgzU3~h@oQim zI4sO|YZpMLG^tsT4c)QX2NZ=;_Q)2FhVbH zF5hR-9pRl;yFUBV`7o?|{|TkrAM3wb>GtPuU#N8GBZ~czWxGJjqmN&ixHhhupaC^n@bx5i`Yc3xGHmN1)3 z_A30>!%{b4fp@-FJD02o@C52Wr!R1o-d$C8SD-#0BBrG1vd{oC0N^0zdh8USmyLsuJq(XgcZhiC1o_uZs>=ItZ~o~W`83yYi({7Ra%gN5IjWe<*T-=+Y4$L_@{wc zy?)Ho3rvK;3xStld%KTgphWu9j<3iH=CTIALG9{bx&j@I3OjalhNig7>TQa;D4K%3 z0E9q$zgUl_FcKsF4V=|ppKfm*GJ8aO?}!=PV?JuS zpxW>3Ws<^J_N_5OT!B+$1V_;%qA-%`2>SWVZq4EiDd3M7nH$nOQi{YGnyHD_Bc~~d zCW>~KL6(}q+jKA#Ug?I$38raNZv*%Rwyf*$2rldrwC#Qxu~umfG#kv;)L|t#h1{ia zJ}}`G^RyBT1^l%$J&;-k$iX=wKwiJr4b#dCni2sQza9)*G9U-cqGCc<&DSI@Gfw_* zd_*rYKPT_3ZvO=H^Yyr*Zvf)uSsskP?s_f^a5R<4WHbI)Lw>r|8HQpNYky{uyaVjj zdL`T5%gvdofhYe^M|Awq5uH5hh)(+Nh>jES#}sfbf8&deKjLqE(NXNx6CJ}IV~39D zNi-S%c0~VnME`a~|8_*brz3i%t0gD#iyYCdIdnu9yP{NBuaRz299!CqF*K@2=ci6j zDX;BP)faIRl>&5eIY8LZU z0&PUGVH82w)oOq`&Z}~vqot@!+FF#RZ9XwqHwfFQ+-TXF>DHv&nDqzc z?6YDe>q@TMWb5@Q)k?(TQen~4hVg;eS~&#!z1{+&I)hfTHIc*#PDoSTTK2{I^P=60 zipA0-k4_CmHkHzlkI6kej?GiE@q{2Tx`~h(2`doGEV}3xxFjUV^m7!l61zzXrAJ-U zppsQOL9AD;X5D!1@yM*8nmpUe(FrR!)QYfqHu)54Mcyz|6p4Cj5dnQuJXkX_u zIkAtevbx9?m(qCccx7i*Sr`wp(U{yQBmLf{BCEwlqu=P%%A^wSFF4&yZZ-vxU?{>I z&PwT&UXH42lPPxxjS-JmvItVBQwh9;I@+dFtrp4!aw;v2C81}iXty$!467N>WxGRj z9$T}GDAHTc3_V3em*#0l^a5Fg1Y<2$08eNjhvyv8(OhGMQr&T#1PjAj70D^NgwduK zB`rUzs@ZkJk;4(m<@!pllalZ?zG9JuFxLwbw^78Y5+f5zHZL%0g{fv~Qp#4_HMY}> z(IuppB&!p;&h;#Ow(L+NB#}=$j_9!(F)b?#Yuq)HL=07%BZcVD1vI8bhjN+F*KH|g z(zO+7S5wv03ibZ;TD7~jT(Z)YSxu`9V(mhDn5^-ojZ=ptwh}kR;(Sfc`$#7yAXuv~ z)%o7Dnq{NrB)*98i-JkVpH&>&WXO1vN6S>H!*&s_KFN+sWfRTx^4VUq=qQJ1$(&{k zJ^!3fNYiY0j;u&c9A)2B{(CQMORL7Gi#SlmW8i?DbseyeI-;K(E_3M$)ht@n87;mg z2vzys4^7%CJ}q)e&*bc?fPb-L1ot)7mLODD`vl|kPJBA0MJu10oaQo(&^7cqHrf># zy16&r5p5JRCuGvD*KXcPWD}U` zTmwY}JaUqKn@FxPk@#vDIo|Yd3?tlpYxQ_FhS-JWw^z(~d&RBP?Ikdu0C|z2yjW0P z3@9(GlfTYb;JfW*Wch}b@s1PlTG19lM}rA1Pz;a^jbX2aLEfg3)wgNi6d8GacPtIa z5Qk!UGU3~dJtjZofRi;7^b}xJvP-|afHi{b*SV?55}>qVUETv9xSN;82o-KQ8Gv z$quYjKEcJn`qf!IGluS($iQG!)3$>8&Qj*24Ij{qk?Cxl!qX1W{8lHu2bxhlc?MM8 zLyr^WBY7CeB>9RR$I(ap4SI~js3v>pF&-z;Z}iv$ddz9I#x$i3^uC3vc5u$7;3S~A)gt?CO+T_rKSge38~ zDwe8pVjYjNW2xWZ$D7X3=(bi(yv+1^D?=(^V^o{;9N0G5n#`L0NqS;UqFF{aN`rC+ zH_0iVR=a%L>TQbowIT?}P;9j6vL#idcHKC9ile)ZcD9+U(@yM*dagK4 zCQ+j`MFw+vq4e|BzL{-vDpN1ZST4tl!zyZu2_5T4xxQLa+8q(eGl}OZGpu6yDT-7y zB+ccj!(to~Y;-iFSI(7XMQWEgQc=1RmdW+I=3pjNllEvj9rj{Ws%KTp1umWws<|nm z@#Si#SSCh^2GeYIlGE&Pq|%5A399AZRH~b7OE+~{*R|1f7EM(KtC&WWX6@9R+Hhrg znb8|f+Aba`H}VQYO|@EQgvG|fW}-7ysgR&pBw^!GS-( z$0-lc_z8l?74AO4>K(<$=|Xlm#A5L46VP}e4g%QhLF16%IedJ)?7}B5G!B+4 zzaA8KmGeXX@dM7j@RYH8w7pmf@8EN|=3@*)TWV9VJ_K;U=WW;oxu0|&_6w_asD1)g z{cZ#GyYk%$)O}x%49^R^KUnoUVD-~Vbvz$Q^$9_K=kWi&S`|$e%)Q(k1o?!=e*keX zFmh{tvTwlB`mHUBnOmAusJ)$$Sju6+0eFe+c7W^K22_IcF{^1)du2XtTa01ZiNPYD zggalK9BA@on}SHV-E{jP3t8NL;Ba&qTkMDJmXk(vL%2>%TD)V0!wBrJ4gJ?~`jyh)VWX+OL^L zh?bUM4fN$&%IAqjh?>i z=zm4vianx<+k|j(0>9i1ec(%|S;22d6Tt+3W!`+QNH&X(!T9Hh(IbMLKoJyHFwCRh zn-L}=&Q&N>;CpLq=c;IP)q2B>%{9jutOn4u2!w1NBN@gV3w#7D;sIq|;=oJp4uYX< zO~LlJk~OwV0hoMK(1=~o$Gwb^b7;qHuD0*vTfIu)hw#QNHDL;z1-v%iF$rFd1%?-l zmLLj-pmHGCma`jI7m}^G=mJ;LW&o!8zGmF^J68N{q+oBwht0QZJzr`8w%$$SdY8oB(ywyWDvnIII(cYM;y4i+oPUjm{tXnNjSsm>mcB^duM!3J-!ps?MQNkh}sJj z4Y<_X^t|M_4S0A}j>3lnfWIX)C1oz#bKQOW+C6i$0&G9vnhv}zgUj%Bejiw#XV;p4 zZrcf>D9;7;+$_N7&TeRmm&~r4U%8nvf#qb6uyZ9iY2@r-jgizKbtYr4=i!Q9aHj-D zMt5m7lt1F{TNw z><6|MNfp%dR7H6EFaV!UL+~wJsR;ig0Rk=QzN=0g~Xt z{AnzimS(KM#^uA3v2gLY2Ni%FZ115BD$~opKf(rilmE4(Z?8PCUn|0b{o6kx%dy0b zBZ|fgvOV~#@;bus3jvxf94pAxb(wV5(SB5Br$yD;je4u|sg-%8-gax&*II*>#!IHn zm?$7bNdCvmV7_YUw0gmJHJIZ4&$UNrGd znTe7o)a15;c|l8V%1O5SvEXIicw>Wk$mzP7&ROL}I2M>Q%IgBPWijmK29#G4?+bXt zGWc?CW9Z)Z$T96|{oYq(ca(r)VEq+ZEd%RE9%t4!<;4r4SN!7+eJSpYDSk`@+Vx7; zze$zPwT*gNz~3fAVDb@EX2A_H-WGy4jxU}e-JA0Bv<|!}Cr0?mYd7B6OP_m$M8y`nI?~zq}fAVrZr<)*t(7#MCn*OG8d4p<$tHRqXy)Mun zm~<#}(~JJSDK9p#&J1UFo|a^PiYTgc;8+`6(axQ{=JOzCX!DVmsoRZR`Z1`i03hou zH?|(nz{fWtb(|=VS2eqL?qg?Fqi5dt{30*r{dhY<+rF{GK`f09yCJ@Ev1Q?=h^MGc|{=f$DGz8r2kPV13BHUK94Sn))1?;@C_r3B!Ik$gdO|Y{2$E_JwevZJ+ zL(pvJY&Lqe?Afo2P`AK9!LSD0{YWcjm!bj#e(zq1(n{cWFF_RWDg*NZBi*~ac7&kC z@YHM2bbGWwwzl%y78=E}uYTGs4R8yMmCV~a_>zX8$D8+i4^*v?wkLot3#!)J-tBnU zRa@SWcyKwg|JpPh&J!tOiyCyF$k2+0cGhfU}0iE~5I04&m%bb9ViqaL3Pwry6g=3Ar_LYQNvM zckJt#bNeJa#ZF~^PJ8g};R@g$0kh6A`0-Ayql!5|4sBKZ^XDa-sg90%0W#_h;|RJM z9pB>5uD*jjK9=^K*WKeDSp<$x;0X*pZtF6b`a;E-1S-O_;@o+n+(U8Z0#}@Y=)a>j z*Yh&*aU?x|JBA13db?9}xqX0bEAF#<3C++l?q?4Hv&vBQkR+IJ1=~X`hBe*4+hm}- z0P;FG@Fs>jr^o}&-K2Y=5>a%2ucXIr)!johN5UPG94}blt{rBj>aRny2qS~Sl|%(j2?5}xG?waF=tYMf`zJ2 zodp(xQU4hJ2+r^O8LRBsi{ z>weV~adZb7hoYC$XQKcFGjiIJ=%*l_GU9J z25;gCD^mIH(CT+oeYS-B^x|f_olf2xtUSZ88>1w|Rl0Qw^uVI)_!Jn6=e$W4lnxXNS`+j^1QLlFjVvI!Re_>TspiK`4G_moHCpKc)ervlPM=xifIcx@x6 zQ+xx`M|k*}fHaioaP^o!*@SZ@#Wx^*WEuAjNWZcXZa|s{o#hIugn#lZ?}AQV3jrRD z`8&l6oneId#~Vg2IIiw@`SS%4^%ajMLT4Bu{_%#93x>toUx|B<^?{p4h|rlvh(Fmh z;=MVuwTzF=2@jSES95+*pZsi}E>N|+r)^0ei-X^$E)U#YAgc$4vl~Sa7FXx%J^TemQgYnBiaq_KF$cesq`{1T(FSJYw z9TG?ej|ASWIWHJVPoB+jOQVJkRU^ZQs^MgSsM;mAD;Q~TPYw=f27{~lySNPD)LB*<6AfQPW_wS$H#=TkZ|ah|^>can=8aD{tYtm`79A1&CsBJBlh4z5U7g-*Y$M4!}1*Thy2 zbrW41d_B~K!m!8x{Lla1r%Z=M`c2!UBz1mpau9NEpt{ZU@qUKkHS+t%!+OqrLBzRLDWS?HU%$L7&L=FO^dPSUQYG8OH32*C={&OJ(57c z-A?YR2$=FxeRRq!=MXuek1hoxuhK`i9mMjdc_Os4l`P%KW?t&uPNUoLvuRJ+xIV9G zPg$k!*R)4)=1<)A82nb+57vBspw$;0|A1i(zj!o-eJ{h?1e`i$GINN0f`C(}4Bg)X z{wm-fPF{kMNxw%@>XZ@f^Q7^Vk^6qq_@#8GX$kvrhHey)Q#P&76OdDu=x=rPDpQtb zF*jL!!H4IA860pG^ftZo0ara&nZL}P-FzPeZ=M_HFp~0(TH}=c(;@O1TH}P)l-=B=e4Te=2~y9ij(e9de=4UIRy@^-gcW`-pAuEE6eSJ z&>Rrf&aq4~Oqx(blKt0V>wNCzW{*x4w2LEw$&MC+Y~JI`OxTLAxRce0I_T0O)p zMnlZoFkm{O@2D@Q=v1iP{A8l0-C^s$idc&C0U-N?t*O{{&tLquIXu+5j=;-cRh!U z$qZw80n6^gpZBF%TGqJf!yZi_>ep+Sbm**G>ENwf!9oOH{6Rtu(gwY{2sOOz1wjtU z;=)%1IUPE~WcqUrlXp}k%t|tynTi)(68uyJ0EuB{Z~;7a1#^Eq4O=BvC0Ujf&0AZ$ zq8AvKy5QyDvA|tfr;@DM-BkJXhW0+=TQZhl_&VbYor6F+cn5(X6}8DRo|cqBLoKTp zz-EXU{B(nc_o>z4u`M@t+0a?%)1Pad|EG7^^>>%`AGm#t``Kkf=X#O;vaT1ptXVId zrgDO684Nh0_hsRwbKrOB9iG?xzb#4e(^WVfI-iU5AMJDDeeMqSe;NBu=r=ZL=nS~& z&o$tN#Em9sBy<&G-hO%D4Tcm6khd$`dxB=si+fMdyrJIwdxB;!Z2mo$99JvI@{6kN z5k+nrB0}dfkp8MJ0|!yZ&I?1}o|ct*=cVuEG>D)%T>S_!bDetUuLoLw_}BlzP!tU_ zr{-E=4}7)5#h{l7K@eELC1)UNs-G({I&@AJ^jCGVh<)qiudS17%(qVd*2zBT^GuEA zG2}L#96Hw{`m4GgCB5k6pr=obZs#w|i!Ql({{^;hV!Ba$L+6G=|IuzZ2aW7=w6qJn zv;_57$n~qmBXlk@^yj+Bgym%Npw*kllgWc-@9>!KTf33Z-1*$ceLZ!I4xP&s{e?nL z2Y#kG9Xj_0`g7eI!WF^>7Ad^!@#I_zf{f5p>_GoeG0 zGQlHBAIoAg4sr1C$f7K$BWrwbX}o|F^btjIKLzqC>?#J~zdH$J@YvPI0vSg`rX0<& zBw8WRj&{-gl*X%Imb*%0@G#2}X$F9cAybh=GGr4- zR-3ClW2`}h0bT;)ed{qjqCEGofj8lf@1!tiQ?P@ zp)xp45JicT1l7w~zk$TexL_9R@0=kUIutScxhUd&MbOj*o8g76RJ{Z@4DX!5?Sz7gd~QfQj%65b$#X=EJ(`lBhz)+)szlZ0K;%Y#4FS&|&iWT;;|uUlEzl zhR%sE`?*eh_Z+kxF%k`7HWyTGeNL1Pg*1pkI%wCBZ0NkpvY~)IL$3`DNwvPFHVhr? znfCb>}-LiyH;xDj4pr0ul-sF6{m`n#J6-GQ7waTkYq1pgQl{?DE2r`V=eTq3A% zw&$>NIoLm;=SG8Fs+|{do#8ERy{WhG0+(yNSno=BjUN`5K5Nn9YGSuzWih2R+VvOj z-V0Li$LDQjy}zr9*dd?aed5hw)&N=DHD%ww@QC4#bW`~YA2DxIMCa`HrqKVFB7BAQ zNk=@5X%x{JD@B%gmg=`9A7rx`FZhE5_`1=xM33DqBk`D2b-kPo8Ddrx@|yv9dTPuH zmy(eGEXQg);k;z|lM$y3t$smEY!pJq_y4|~rcIkodedj5 z{9x(r%9YJ9RK+42w!NJ6BzV9TvQds3gmZuY@gq;D%IiAT?bTZ+yTjy5#d;Sv2(@y-8Bo_XuGw z41ePGc&o02kZ@|Uih0+iXz^+({km?niA1vS<J!T3dscZztFN9sU}lF)T~p4A zLy|<|dXL?;I!?uBMf06b#Y1Z9(8Wr-R?xe-k0TCKV}R)#jQ!X&*=V*5r%aj6iUN{E zDv{Z&0LxltAw*(T%WV014Ka@%%A=pWCsDcv$~%qJvQO zDU&gdHjZU4I!wz2_&M@s^Unwwcm7lXCiDd_)2;jwz1XNQD#5Y!_)4C}_(FWos@M4* z#^{UAV^4&}X^c-Pwi_CpTGv9Wy%`PsXzz|v)%;WPK_M=`$+4v35*m6FBSrM0n6H-= zcPoj+6~p>^S=j_TTlA9VXLCX$e%Pq%1qDx(nOXvRG0BmS(!^pPIQip;EV z3}yw$zw|MPRA#r(F@g$b=YnHXxiDJ95CLL)^=bHiFuK0c7~(G)V>1mWeKWCM@Gh#B ziX;3KkC0J7Q$#O{*@&$0SxF?W7}Q3ftQ3crZX-5Mj@myOp!aJBA8v-Dzg2D=hMsdj z>bxK@ycxb~^hx8VpOI;rIwK8NvoTdk1%U>r;t@b&8<1tFf9H-u|KG|}adqzDjXLt2 zfm-4zy6}PQ zFh+Odd~Ur2LEY#=Z}KS_U1)H^=>FMIS=obzsO%0v13W8t0GfHK?m#u2tLhFwqpZA# zt9A$UOL{=(n)Kk*bMP}?_^#*R^&GsOgX`bJRU2LXvX&5h*3yB2!dWce$UCf5V$Gq= ztBZ-dBsi+v7v88t^_VilFv=7J{ZfGtd@9gC?z&Xoes>z_XsLLg2s-}lU2oV^!3Q72 zWjS`o>N;IZ#r}ii{FMRi*mk$oZnm@riVWLAHfpwQq&GtuP^XC;%e2~>Gt_J$+jMNJ zTRl#7D`Of>tL=2lJcqo8^vga#=bC-cRxvNo*5&qn@14f*u#yS{N2g@*pw%93YRx-a z1s!yb8g?q@oiYdB;8u#>MIj4e>6aUX&NVlvqqBt=crMw0A7sSr^sa zwDE>bGyjU?{{R30|NrcLS&rk%ve;IHet>VEr&Gm2bDh@>Xr4!EHvAeKMM|8+LDSc@ zy#)W-9|jCB!3(+@cw2C0QbS24sVc=Pwz_T?&@G8fMnpzNL`FtN25m*?eEUL@Q7Vy% zi zrJN|SuIj)$=}01#r4jw+77635RdGjrm*rHk1u#x5)|4SV%O^z_z-?8O00cUc@-A+> zW^eZ0-t`*YA@=aS|E{+NUH+aTQP;hTFCH{mUePDJr(-dXh~@4A6+`f@VhF7?6#)Xg zHZ9Q>t%dmId*~Y0E97q8PVEC7Fm2!Nn6|If9TWF($F!~fxMSjoJEo0kce-Dr7z9QF zCh%V|XrqFbx_@?|Yl*xnI>)*P{x{M8aAJoa9s~=(emModoWY~_=Tt;KsZ&9b7+%Fg zG++U4rSDj~aGZz_v6!cp?{yFF`|)7=R8y!$cc!MX&#I;rj+!O{)`Vh{>18nJ+b&K5 zqmL%BtX$CK{mUKG#B?EU!=na}D&M1RM@ zZzS&C;^1#^_dQ*GPgUJsy(d-8eO6VC;i&4CiomqtcPu=xSa{GYxnCj{jvdYon!?}V zTxeX$`7-?PD6W6&1#dh@4yc2{U4ALDmS9gdL;nzpa_I|xCOh!bA>khRzi za|B}QyUr2!ms=nCthx16;-0qd!kSZhgxjY;8p5B~bAQSI zkx!fapTzNcf?fn1OVxGSekV>GX#0v2Quvey2)oVh*DqQ1%OC$rktF%YztcxZp`Q4# zPxp7~A@XTYJ>VR94*b+Zxqv}j(7scCSZ2D+SBkvnt$=PR-?(EQwtC&KIFnG&^x;Iw zf*#spz6*s9$9WH$eR#SNxB}Oh{JrbOPaj=uA%8LGggLmgntke{@_GTwqI?f|4#qy%xJ_~S${poJJ#*_xZpTfTAZTlf@^O9v-@qJUgF3HHki2;OOgphNtfd_4&Hy^*?G z&LjMsY87|P#CuMF`CNxNf`|aW{V>Pl6>F|UHWQ#l4Ipfli#9x2T2*#_p zQ6=mNPQ{OZx+5L<3d=(7~(xf4}QXP9?Z z)k~?D9+01+s+W%C{Q9bjb+A6@nTz`*sv0zH_gqHno~uFqu0M7oZ7j~g+@N3A@Y73Z zVXscUzwd;4DOcD7vc-8ip?Y%;Lbh%3o)hY&6CY=L^ez+Xl;7R8U_ZT!uSgH%yVv5a zvPP3wl?Q^JP_aXE_q0RSXmyVx#K(GJL`jEmkOo+QPxof-lY+ndqnOa|Vh zEQVOkaCIld0&u*cnTD-6ilK)LDdd2=;)<79eIi;RMGuKAFYj(d$q+B9svT17kRVC` zjS%A2@YdUn!k#KTGb00ivj9tG01m73GSrzLoMFr~)|yeMzUGsx*p6YXftI3?cuoX| z*oSm&M+nrnLgA%fku9Yg#p5bP#54T2LdLMB7ur$}fd2yPupv%0_!%4=I4HKr8()VVzM-Y^&6om{MbJP3Yy|FeP#7H}C`_L4AKfF6$9=)K{@8amUh=K+ zoM{S1Dt68^y(7O9(9nk~poGn60!8+>i z6XD*Mupa|M+QpjT{ozt{2j15K#E%!4>uU-M2HM_dP4RMhf7^26y}A9B6P=}qwV3dS z5YJikhYQ!q_lJ$uaf(v=H9K&{92C0qZ4Z{{j}W^s6u}O$AxjioT>#cTgv>q+$?VFZ z!0%wezmyeTM$3LQJfWSBy${EHg=-fqMUAG=4EY|4$~0@eZn@bwLQe#}_$U8>@hQYX zz>uZlAckR#&6c-^Fqk8=&hwbpR~Q8gQGa-m7IbwVKx6f14@#h4+lZMLtl?qtIUT|> zOwW_>VCb&Kf%Y!~aJ*pwvP>YZcE~Z%&Euws5&)dtg8mZ*_5KVg$Ane!U3l$p_A~>Ew;qoL2XPM{EvBa58{9y`A1YP^&Jy9Qs3$9!=FcVx59Jpi; zjKMkvrT{%2U!8I+RtKim!g6|i>H1-A$6DS6XES{c9UB}gf!TZv3RyWo=?9*|c4EiC zi7E=-iW6@51%(T9w)2HcW^t4(=?4|{h?7p}t5>j^Y+#bHbtf_K?NXp`!e=Xvh%;us zkYQRYUyQ`tsPH9<+dUsF*T5&jpfHJZS5XztQd})4lyET_6t3OUJ}7+DV^EkH23E*7 zNVWFWuTx)@xV9T4uXE#lUFxBY>{_bFyL~E2;P)MRuHWY+`STY9`3Susczyz z)W3wRCj}5|m4#>mu?nD{FfcO<=El+6R4^HQk0rfCAK0MILS&9%g6k3TdDc=qiGFzr zbKowu&4WUFGI8&RN6}IYZRct`4eTRAM`>Ts$J|w2MhRUkj5VG<@GKCC z;$eaz+9BO=LaZbK4sXL-d#D&n=W8xCq@Xa}V32)nR%01tUp-3)=K0_)=lyxBSRwvj zLExn+fg=Y=;Y(ck;msD zN|xv05m)=*G@%i;q4x#6CNZ?|UIXjJG9}emf^U}LPQ2_&q*8x*{+lZ56Gsj#Lj!Mf z&=)G*2rNOvwMF4EC}fx!_r7LJLDU^ZQgHH1trrW@=j1`>>=`xRA50hcjz3;A@}5uk zzLJQSBz-%o>phn&aqfybf6W8>fZp4t$SV?#+x5$2OJVxtzHluStk|6|TwG9Uf4=SZ zX!$Nt+ZI(3rl3Czy*3dxUB>? z><%KH&+1Be(}S|}Ad$jDJq~>ZR6L9AIik7sJ^w)AQrOTj999hpiftR}LWDI~bROuv z<)s2c7u7Zd#nt`{@iOQXFbaPHr`2I?8(l zV0P;36-1{?r&j+w4D8y}w-Spv7y7~l>nH|=3zlmP3YVn1wv6SU`9XKS?S2J)$p3L* zH4hjU^6f;l`WJfsE%fzJQNr6U4247FW9*L*5sH$h52O_!gz=X1-kznk`azNatdA)n{`aRstd zzxe(#T!G*1B~kAVFv3!A=s=_vm%E zlWs7rX6FqXVW8LW+@_a@etsY)husv|*ZsN9=jrM<#Oi;Ys(&|BukeQu=KUX=pbx?J zYZmuA(|sTBpK-pEfekCxaXx>jVEPjj+2E9f!^(HM|5~P>kgf$8#VJ6TPO#H?S}Kl{tyPoNX^AMw(YMT zzlOKX;t!d)GF64gs?_QaArKJWQcx{q9Gt=nvN|^-JGBGs3hCUbInKq?ZtJ z^6analHDxd`;1X^+H^W_`zf2?-}tsXx1*O zhg9oj)DB(TspH|LmPZy1Qtq{Q&ZJANVV7TH?)9f1p7Bt*K4o8l@&|U|l&kPC^z049 z;Vno|Ig$XW!<#39rcO{K$%S#zJ04%&5G4t?E~1Vz{{_uS-)g!Yh#zn4?lo<_V>avpGRu)-NZ6Nwi9`4H+(aJ+nx`U|2DCkKz<64!hnxP|!h zc0H-+ey7vNwx`F2Gu{$3r>_pe1A4&@@BDxc(52|9j9wwk!4sVhI*Meupp&wwhcrVF zRoE-Tb&!vXa=3Qy;_)`ACDmP>^T^S907C|R?phoUmIj3L{4l(FoZb13l~?g|PMzNY zkucHj=aPmUs}K3F9~`Nq_jTkJ9+uQNo+w{6+6! zO@P3#?Q0JNhVl5YWMF6m-0RuaYzU5{yV?+eVLa5J2n=PAD)_vn1_si&ADsBnnp-h# zD})4v4(nu&FBanY#lBEso{#at!0jXF>a;kPex*)JP^`cUUfhQ2^Bkw~bvO|-Nywi) z!psr!r%slE^Xj%=#Y*f?6$FLwru>%pCklvvt zJ}SHQ@^~tm1JC2RUbpY@=po`-P#vD-`Op`;U5=FB^kO%`Lw@vbH}uNA-P_h)e-~VG z`v$g4?a!b{q5#hFC%rx{MWgXJd4ZfcX}DS!Pz-L_4r>7*k?3}Nhku8c%f;YXj9=>I zaKt>kE@0I>4Zc0?tCu7ed@uA^AcE8Z0o& z9{Iw@3W9=l)ZHI8J+OC0VCE+K6UhKyBw`whep)m3BhY;w1L}+2bWr0Oqya^zcA!tG zu`^iUSPbzlc*2JHs*a)qS9V|U<=m^FLjM__Xm{<<*MI!|e}@0@_y2V^%6^F`d#!PX z3O!)ge)i_5XYQ~k;{V0-rww#?-lIil)wQF5mWKnwsNnK8+8E+2k)7?{m4GrF4(F!- z3?VxnI^i>M%_)NJ&wKjIm`NyG-)|=ahYXvejSAR<-RH%gz<9)ax_1uC+1t+@RnRSi z51WP!(30B}<1-D^t=kLqTZYd1_K|2Zh4Rth=xm{%;mN^Iq`Z8agP$m_SbodQBS$f^ zdrSA3OdJ@*dZ}J7(gD6-s{(ow2xFmndW#ZMyYB9>e0#eIi27K$Uhn%hDRBP^=IssY z^j+t#@&p6+izKp_yiu^R(YIs6XQov!;459gTxs))^6d+QtQ?vo)4F}QfW?;=O!$xg z{(o;|`g16vC7pdM-yL=36l?@VDPITs(OPi2Mg08%{$Ybppb7jf;4ydk+b`y==qe>0!|@%R6MP4Xq^!E*Wrk=|O>0O@|o@YRR%SK+2V-|1Q(k~3C$WoPzpA=541zB~^<~!IZVB!{ zkT8tE1HIeNcy~ei?ezYl7T|-O-WU3MK?2{yGra`+-uCZ?_%Ez2;ZXCkTbPiYl!NM{`}3)EE99dt1(8wwcNjyQJ}Ao<_EEX@g`S+Lk8 zAQpTzx0{b>YpRR*4Zmgf-)j4BkR@N>HkGN0Ex4lqepw>ivRa5GahoR+PsEb(7(DR9 zi8APC&fw9m0?aKG1@w%{t_{~I>se8Sw&6>NRaIlzT!@y+LdgMaGr`DsbnQlrj%DDM zD7+yG3L3KQy

    {qYV5zgVAON8NfwKAs_yj^(1kbd%ji{a3FXzuYZ0=D!?$(a@j$+*M*UBSO5 z5#l3{Z>c8%{vR5 zS&%nBs2@V zt37!kOULB~j-~aHzN^eDTVKI@ZNc_>EYshRV|uA@$8&AYcHv0UJex=FOIe9HSSQ6E z2M+Q+9!8Uy#m@3<)8g$~eA3p8h|RpD;>l>p2ifr8+CFqfQo#7wzofX!L@9=n6XZbt z7S~h&33r?4p-;6ddX;cEg?? zN;aWq!?_dA&dl5HjEVI&(XGA zrj3w6ppkf@S#XttRr{#7e5as2cKnUD8 z)|mta?hYInTEW>_tj3RqUNP?!pAmL2fjRMUYu2JO5TRs$5agV{{B#^8hi0qzsI zjNjKGEC$&e{`VK@g48+y4@p`g6?6e3+(p_@>^<8!ZW7Il1u;gt910jgkF<}wNvaMj zV!aLgJpz0SiP>L8Q$3EP4584p!O>F;->*Wz)(_uMz>!dCl_oNeN%yE>lt+rxg)x#h zavUP04AKn9sYq29q!%vtsne{61rxKW{Ym9kp@Sf$o*=9}&>=PhD{@Btn{6lOdzGheGAAi1spe!kuG zi`%VL#YPy=6pqSu3#(d`tMZry;LMxI=n6l9w?Z=)xrb2<;a`BQdf(DA6moJ{M{J6T zap(jg@kya2ktXZBxD7urLvLt`R6`waGyJHlLxoHq0eX;bL6+W$CQNX)PSk=_;!e~? zaT!-?k#ap7OJpKnep5Xq>5}ouWz`;ei&N6HSQUol``@R0uZ~wb7$77K-!r9Ju17Um zs~y{J@>u%J)+8rnEz|26i7Q4zCOYs4iNxroHVDN-iE^MOD#4{-rAq@{Id3?T8E-FOr=w9DmN5MO?YMy#qb4Z8&F|`Z6Oi|VAT)_mk2tk z#RMB0vOvd1rO;QGW|?6;-6cb+Dtyq~NX_0J3(S~Uu`hcR{S(dAJ?rKwklr(D@=DS- zd^a<`CNqnjnP&ONa-ZaLaDjwR3V3XfS4Ap?1lxjS{*xAk)CO6{Zt*nwAU#W62q-UB zQ&3C!Q8%*$G%7yn>62$L#>T%YE{dIEpeaH{bArVPtSbDC=>q^x^$E36I(X(vGKm{9 z_;E5&Rb3MSGEl5=%iWYBk~gT!X82{r(jgT42nvLo5aK*o27#)CmOdvIR+zR`7wu=0 z#P|MWTaMwE!VEdug2IV2Q&!D1AdP2U3?7J6!rY}4#VI)pjPSxo(@pP>(6^oY6llV{ zxn~@p{2?=*8tq(!&6f;bG4~G>rz+jC%zDtx3{J*?+dR0~u?o{hg0Ri!#um^n)~tff z_MFb{KUzAG>N$SMjc|E`Ej8IWe;9Ih>NYLHSxdWJm-(75oon@GwITv+JvQW$w0C$f zZJSB$Ji5NW9MHpBDBzkaV${C*ueh=VhDQ10IESHRmY`ww|K(xfYXbZKkckcXS|7B?3nedK8V zJ&(hi^wakIQYqjw{`tHYvCYt(4@Zec9?k4)IqF7E6zDu02|;$H02EIZCn)j(hejX7 z22dyybQy>Rf$*JFylIUzEf&a-pGQzjtkPE%$i=|}5Ht#;@Gjnz5LdFlIh$J$0c}{< z9we1(2M1GS_^6ds;za3S2B|2XC9+q4phz@gz0fRsSHiq?mRrmmbGV5IGdqjemDR|d z*l4=aZow7y3zD~BZZ)F=ewhJcAE~#&ZsJ@W@Zdeoz}i@yF7Qb3FF(R+OElym;{`jC zMBT4EU{v|NvFnapgnUitZEVMNV~NMkHU7Pw@CVL7tJ%EY)n==&KD^xyE^8+4z28>o5d3-++u*o0+a|ykDe_Cwq#08N*Hh2(*JGUDwqFx4p>jH(<891MEfD=v z2}|3rfG{A7(a??W2}3N3}5PLU3J9D{$i==<6yB}h_()t0(<~?5%V4_CMU(6sOT#z8*T5*}_0SR0 zesU|Un@llAVmyq5z+=l0T|=qs9_yOECK-2@6>`Z0h)x3GV)-qi6^vFKZE(WA@<2C4 z0Ao?WFdRV142)iMXZ@(D__jYKYqV61-Bl6h?3y|!L~SAzfAoZ+$=i==<+}AahNslr zzfNLSEat8`BGo7hi)$^$U4Nwd$XYIsA$L{vbrLAMLo?wQrO3s-F)yVdRmR+vW;jkg z?anjCtMWH;+J!&o@n*uKCuJdtl01Kcvms<6T4<}j8@tAroCGh}>I4Qdgnl>+cWCww zxbAQ=zx||WGr{yn9e1KbeD$NpiCKZbXP8fiF*XVjpZgDrf3wzOdGD?@xw0Y*>I;cT z4nzp)K66Lq>c?7tIx24;LK?#P z^~+#wZrAY|M4!tY9I_i@l9*nMp~-#4{K45&|cHnwi-S>Vz`YAfi<6+vs;=s}Yvy?7~2BKzq#fuivYA>v0db zmF77}!=Dm9m=Xe^uAnK46(RMCf+YNvl>i;TOHzc0H2l*erF|$Dg~jg5b;T_!}Z(z3mL=#+P1fqBy8ug2S&F2ZMTt=b*0%j&5Zsg74n= z*Ryzjk7M@V_461SN9|1l7oloa?s(h2+awbvPzXTMC2%>G+=r(r>G!x<4U`+xA)h{A z-A^PCrpWvgE=fyw8Th>935Y{nnB5pR1hB8BA$=ac@QGY47#D2-5~eA+JBU9p;of^1 zN&hAZ4|tytH~e9YUIQ^y!H&qtI^y)DZ@GN4c}9!fbxi}uLy!H#1kHOtiPC#(DsLBn zaezfgNvhKH*F4XEF@y4IvMmCoQM72mc1fR9LjtHm2`g~vyb|pE{Wzdw)D)i9Oo~Gx zcDe;dq?tFFnIENHP=@|He_e3UsE(0Eo3=|Mu5U}lRpx%JfYB%{*)CWfuMGDf9cl-w zc4{@xn?d%J6yltOYr6e_SOpKm&^NWZOt_v7SZ|1&8wVTkGqhZcjr;eYkiiiG3MW_& z^k*aimXe>6Y7rZlfuJy+@NyCH+2@7G7z1=9xcrsQ7~#GjD}plj2=_03tEYL(1YU-8 z{zB8?gY8sPqWR{+V`O7^NcDAa^+m4VSKP5XAnwom=r0hWy=+Q{%=Z2VtV3JDXe#d3 zWStueTrgdDpd-Gkd0lNlhdxL^f;@R}3?}?!?^nd{oho$DQR2`*Q;%j_Rf!oyiK;zY z+Z6eZj+Nfuy)h@8+X$Ox5O(U}bTnmfQB-Iu1xz%W`UZ`;qLX4Y!NadmR{D{ZXnNg| zC39*@rvggB#6`>Ha6}Tqoi2#Kn^I#=H0JJd4R6i^f#ju(m86|}Cq7z-A_&}-oILzx)la4arzblcL3X^%ML-t?q^ z?WGHrCtxI50S+N#uYRvORENh(KxB#KYgRl*z^+$OjDO$v3UamME+J)z?18zS2ewW^ zDFz{c1oKCyr!od#t^aUgGs1j4FTJtV-klFE%t`eOXnEJ%D^5>M;E_@B^lS5)1rV*U#CNOjVp-m31KsE5EY3`kaD zSehZD5g<|vZ84)v)3pK_CH4&OE9l!NQi06yNw&9$NEI zKK_2?;_h?W=;d}XN5N<>Nu-jxH-eKX zbpJC+>|ST#Bie3s80HdhfEi+0ZR0rZU^*{UUJK}A?G%Lkq!ZAamcpqfwOYfFC$wky zuj%|S=3X7I$)oi-l}G1f^O)>}Y3Zm{naJd}Wl3e~BMi_-+mMSQ+YQmYKIz`I{R!mCb%s2(CGWAToB*#WmDQoM>v_~FQoS!)O-&4(I!TOkT-?K?Z&G#24p~vF z(v!lf-$E{cDv!mU20Exk$sm*{565TCJw2(BLzHUpe zHV5JCVA9GVn8SX|W?;TT-f>9^vuKClS5;OqyndRBSN9w@Yj8rdeg-W4=(>qs!oHZF zPu3}Sr}6C7ITF1GR(5?Y{ol>;Yc(32X|@=}h*l%KcY zJ{}KW`E3lxa5fZ0F{#9K8IGZ6Sql8gYEX1T&8Tc&1(s=|D&7EA34&|}{fRVR`5@92 zN4-eWQ$RzXNJ=I`sGPXBPBTA%7m9>D%k^Gqc{6y2I+<(Jx(Ov;?K;>I*-E4nt;A#IpLNmbv6y1H__RG5a6FzOP# zO%>4K{ZNG2*I8EX1&xJLQx9^grsyO@A&BvKp{~a*FzW zIET+VlW)QSKD`B-T{t`tHGZbu^0>N3O{2I9kqh%`C>ZKBWAZzM_P94CC>ttF_?8KK z3`1XX@Fm1S!*Q^xI{|iJH&`)Rs~OS&NR8-nUyyxt+}G{8|Ce+1q8NW5|G67*GDUVf z_c(xF{rn1`Y(s>qd2M}L#0h(E_`cc{eme#JoE$+&&vltfCrs0W6x7x!O?5F0l5oPR zj}Ro9`!U0!Ma}h;K5_;cdV`hz;{QRhVHl;gF(^b=9><61=3{48N9$n>hv&Q-2o`Q7y`~h&3kg5EMbrz!?2PD$FT^9H@F2FpRf>81UrYUZ#dPeq~uM zE^WxyWRGZV&3{Hal-X1$VF#JtePdnI#qhlVo#Hr)JQD5W@pQ=mo6;lCfKuc}#nGN) znd^=F`g?qYg(;FtEihJ8KJ3X1reoDr&!^v*;ha^W$k}UOjGj`d+p?(U*V+B^@O^Xf zQ3=8-;?ZwD+D;juoqQP`y4kBbA-a6<(v*LF+p;QmA&2;K5My2bz^jPIn}er!@t5a? zNNT%kl#KtJ`=Pli=W9OOHZZ#^yH%6jZioQUeCjckoXS?W^2m0tU2C1KGu+Yyu-NLa zc3cgRYy$vXw^+mJUm`+N6C}Ghgyn{oO9nfw)9UcKh8^=)Pfx{*)vX0`R0T^wa^)VP z2qQO5qXT{ws`f^qz<=+DL1uZJDjg>2d&EMWIklrKvlwbGKGQX1NGa3K%3wV0$dKZ} zrTomQ+B*i{XS*ta6?Aoctcd_Jv%o@C{>&UwCJSP^z(rI+PDPg zU-dL5_|}QZIK!UkeG654g^ETEZ<-6MJ*uyUEq!~1(_Te^4k=(^IK6RV*Kf^OUhzOx zGgFzbf!a1k6NH&JkG&b=P1V;F_bOe<=3w0U&2h$RCtsF__94|Z5&P*|Lgofi7t|SU z+Mgux$OBhP^k0tAI6r;T9vz>q-Nq;ME0*9|CQ6)U0`-uXlCg#jQT>^FVunqbdRb@y z3fpqmnO7&;tlPwj3k&&H79B`QBwe3bY`Da_2eB%F`|rt--kIho?yOtGt^K}04jOld z?E}}l%Dv|v#sXLN@EJEo6$gD08nGkqwGCl08q~zH6ht>hl7DL?|5@AN=ex2(ALZB` z<`@ZpcX*2@|IoQ5#=m#(kX6{(2B zPvBxWEZJ`|9O-UGYlbF$xfhQ3Ov+tcrK4HiJst>rI5;@@T>Xrir2k`ExutR~g!6rk zCaKK3@i4;>#T6@a7!Hw;#kkxUdPE;bjg;kD^TpRg?U$)^^m%Y@7L$XNXI6m(#_^EaClO&%8EzyZUW8#7mstaGAzaCyY@b$ z%;fDdq|My91RJ+w9&K6qu4VQV>w8}WCA}J$+m#;uNrp=r$}5?Wd?(&yE|DT?iMMhF ziSOe=mq|K3at&FA>MNb}cxNv&9{<7aEaG#aMesvJNHfRHzF{k3?8uhemVPgk6Nx*$)=A^%v)(P8L!8MKK>{CYm@VR- zaO3W$ep)ssS+so6D3>+x6(dZZ;6aYqxNbW#4JqA(^sX>LsH+l(G*(P&lS348o1kYF zgw!oErKc=eIm2s1I)nLC@WZriQeP|By@=6DuionR+WOimbBc@(+O+aUV|NnD1Yt-| z-qiK^T1`w*`y`uQ(SfAHsn{4}1#6w0biNs5y+rYMlc~VN>8$oZX_Bk zWd_!I%eV&D=#Wg6vxmj;i$)57OED?Ec?51!QU><6sacfTu#boJ^52ZD8U*nG07r85 z7t>#RJq?i+LUY5kbMQEVRV%&q+Fgl{ttlAbLcssf2QuJSJmCgEzqOUEgH{N|dYrE-qd+CD-t^^WzjgaOfViP!V3AdOIz zy%6{u{vy6r$Y5$-JZ}BTeT6sKyU$MIJDbt2VO{IgQ};do)8FZHOTG;GddRLAI zxJduO0q!xcz;28-YYjb z_8^=tV$}gDz7|WDr=@9~TpB=nuf~u@HQw;B_^^RT8+|c^xeTE(Fosyi_|29wLB+Pd zm)si$>kYv5&SY&SH7=Y@+=&a<&Ba8YVCEst*Q}+(CyY@fU4cX@$kVZC*c4ebC{-aZ zK~8ylc@$b4cqxU2A&>s0l1AK}4<=tT>0qt6p1aMwgoG}-@&sW=-I{UC?9#r$Z_sj1~BCejs_-A0_z9*@)}4H)%s0r<)q`K}E1HjCVg`}jjG|`s7|S&Ph>c4#g(*hlA=FMW+Oeqq!fs;X{g&p`9MRG;Uox|lQmrf zB6S0y1cd4?EHbb90-}VhClg2S#A5%)R5K446IlyVNs4@p>r@nH;N>6Zyp;--NhTO) z%tk6>66|ZJ1M*^W;^-a60hJ;!v8Hcs_lS)dnJ4W+kh&{EF(Z{22#alr-`ALc%>%KL zF;-)YrA`GJHcHlbJm`mMb4BlB1Y^dm<1yCpy)-s1LZWbE!&J!dRv@^kHr(|p^&V}rq4 zVGMt3YlB6P?#^Il5zFDUq$UYuYmZrP5^)ou6~3S5s`D`adCOw(=@Nl?>4h~Qy!+Btyb|$6r{DX z;@JaF%?pdip>p0HJ$K@!KTt2f&bI+y!`ndH5;QXB zTQ`_TXky^XozhOxU{!OtBV;nk1wHilp;((iMF)c&L0tjg8!D|a+Tw!)K@WOuv#jFcqfs!w3Ky zgVywFC@fJpmfz1kzoKp*|L@zbDwMY<0eF%bX8$KsaHH(1$lFh|Acoc8SKsU?e_vp! z-O&V_fYgv7y(639bDaWHyRmE5>c#qZJ%1AQvqTRqNlUVEm7Qm%`zah>> zU*Pljt8o{GR2_yin0XY$GuT|2@XUt-5a^UYC^a8){hp*Io>V-E@@}$zK0djUo*t^i z`E8&o_&K_aoqwa7XpAoAS#62GQ1%b$v!7(ST@_KP&7bn+TlJP&0z~QI9?OUq2+-?F z)N353asNE;mZhwrzKwhfDi@_RVBFO3el*jY#GXu@AMYH+hhyT_L9G$Q3#y7sYrd4_w!>Q zw^D#arNfxD8h3i_cvv)eHJ&y+YjH}$D6YlMt`Sklk#=PTxu5$dzJ4u?|d5tcCk zMJlvIs?nKAsk)++lX@|$b8OHRPd9{K5iJt1H1>{KD>ae(v$BykzClf4s(b&NC?bfU*&v-0yTrl#R!@`d{ekVI?eUbi6aQ~EFA~D6 zn;!*P??;mRLV(MsEo3BMuA?5+g$k$9FZV@63cu?PI^dn*uhFg>a{sw)oFCFR&bqQP z530k}nJS~%OWpS6y#(9n{r0>^)b0Er%@O|TT+a-d8;r#Z1w=-}_f46RSfzo79KauF zBCgCbE+(&9 zzd@id*Dw>sg}j*dWSg$yWF=bHV=YlgRP`9VVkOLE0p1N?jwG7l0ucKXEu#ZIiS~BX z+wwhKLrX)zM0J76-U-0>*T*En!-_UumNuGRUmKDB_1%@lcdb*0!<9GN6CJ4&_|2X% zY&M@`EySv$jqIcBi#$ygkBZvdEz_jWhSgcqACo4NA9DBw%-o&CzJ_Zzai3kXnTMJI zlA%h6m0Ma0&MWl1v<%s#U7aw7ODRK!FeE>RamDmsA$i5$8))`q-yMAV^ko$7$c;DpT@|BRqN0Hs78h!cNiz@5U=mmPiy zanLBltm;pLANW>Pjn?T#)C15cryNMKPfrdnA7aC2rEZ0YrSjj0p+|#|-7Gu~q1U{= z12Y>Fq3GP&-IsF0J(_&3w}#!#g1@B25Hhf5+8DrvryaTp-6ho|O>#B+jODR0N`P$s zPHk!rJJ~fGe%k+plK$ZPMY?Jbq_s57XO_dv)h^RdOh?Eft%D$;^_yRtjExXJh{+Qm#+pwO_sP4-b&&o{8*slcooXi}8e3FPNRAi0gfrw0t zCTJn9_mTtGGi9oLs7?_rvX~ir0O}aNls}6FOB@`bE7s=S1XexN!&FX9A}$S3p?}m% zwRTTXnWOZ!gB^i+)`q{$V0Ww4%EpmO{8bO1!f#%eLF-d5I+6cSbP7HT_zTMVYuQ5Y z+iBYi<@lL@7~ixG@T>PsvRx5h#2+YBj4tU1QoJXy;FQ?YX8UdVQscK6Skf6|TI-_4 zD@$J39LbWc3g8ySqHFisg^RkVHSaQem8B}bTB^F>qDC7{yWrB@Jm;#Q=9Fk_QQ+4k z$IUx!!9|^K6~$7Wn%Gv_phewr!y<2$ciBjF&NWHgE!t7THEFnN!b)zzD>JNDxOw4H zL4N*7CE1a@`N*qGKXibbx=|=qsHpOd{s!8Z?iE++MD$G_(kznVOs_3gLwXqv`z^v5ge$Af% z1ZMkCCU@D*-qD+*^!k?5HuwoW3Vn9>_VVvP+|iE|z$8YTbXjw91H@zW?p^xYh8@v^ zjI8jaG@DL9iaT0N`xGjuls_G<44fA#opwdeo+7~MmQ3A18P!uMRV)>GQ+7YwZ)%uc z8yQ9`R2Aw%Z*;-?*~h z5>QixR1W4YZH%b`12?`Y%I|cRrW#Av+SJ6(aB`Q=cuE^nHofDRS&CHRxVIw;q~v0a zXepDb+|r&Tn(a{4Rv8F2)uxLKG!Ca#{PIKqU9x^TP;ez%@sabqK!_2MXpU50PToB+ zQNV<(EM&S)20N<;A8D$N6B?`gTnjR6y2P9~FniO#ucvT|aS^|{4D5LOlSehZUN5>Q zL(d|>razIMaOAlI%W{*MLw0wzO==V$<&n}DVoUd$-lMevbhxe z7c3gv=8kRK$&PK?wr$(aj&0kvZQIVt_m4a7IWIj{Yd!X?o>jBjF-eI6ph+S*YP4t? zpy}N`0kv7lzett9XkYQ%Os?O6e`IpgOwYeVFcZT-Ts+cqfA%y4+MU@vq&22MD3XBm z^#t!nBMjSTRo>^72G`#f4V>6^GffV0&>X90{BPv6smnd$fN?0**U6;IrN8YADdS-c zG5-gg86G^NM=?^Tko~lT{VRu>A!gEHHYkpWc+)kKXs^8i~fG2 z020K6QveZ5aQ2w|HyM5s%=boIaLbz}G8m}x0|BE{Edr9yo#zY{2&e;uMU?Q7AjS8O z6elyPmgA&H(<2u)RbUol^+JIZ*gX7JD5b~ap`?>$$celjivu~>7T`)yvW#|BAkdTn z{}9881t_JXL^)^k#+JNQh(+V)$Ub$&JX0ACHP&a7f(*l}PdcTLd@Q81n29A)QpFo7 zQZx)#uTcWRSQ|rLKFNVn+bhmI`^40OxKdlZIPB2*>om*`53nw@kw)kg&l?~Gv?=#B z3|mR+leDH(-L1g$PkQ*jU(Zd@#hjq`Tte;JT|P|U+!sKw|Kb_sr~9w&O8?d55&((;_Kb%S!w;C`Cgm)eWQN5DuwsBtegQJ7nBEYo%M~ewU!#0~<`@?mbpbd^qnXUN#i1`~)*l!h>(t_{knhzK3(FMcZh`ccO-5V&teq3COY zxMD|+8Srn*1-SWK3LRR%h^TOLE$E$9NLmo5jKj%{{n@Cn6^R+2lUhyTN_t6)Bj+K^ zgpG*v1LF=XAD6K{B_pTYozShwA5@+evk|9slc{X!V8zd2x)6{r4mwNf=j7rkbOYov zvC*(>v=+675r;vIi_?z#0vxT@PogPYH6XY-;PW$NDRUARL%zdSQC6+e(a&ITK z>00GSn|dlU$a`dyv(7fe6s5PQU_LgG+P-5XL0X;jcB!Wbg@1_9CwP2is~gi@0f>2- z`g;u!;lZ6Ua7qQADm2ucg#X%Lriz(tp+;Xh2R%sou})eIO3u*~4)@C>z|07VxiGm$ zqH!g}5EWir%}}Ksrk}*4?(nKo;ICC79V4Q&2zu8I&$`fH1yb4_xKFvnS+2$HZr1ae zoe9k*IbgaU@s!TBpy^+$)#rMbw&S!l;+yG$TH>_-F1iTdFW?RHP&t!B3|8tm`V>>%w$tHhU%tq zChj+ee*sd9!}#{ChbVIIt34OKr#m_lxzcR|Xk1l{$CGTX*3)yH3MV*KqJQQ=DV12T z$n1lTh$AKnvl6oOh#XS)t28XFQub*+kuoKy6_N^Xs;|4n<{Y(}C6aR@3EkeLNEOSr ziTe!%gzJ_*XW4ntf^C{(OS$Q0Cg7RNe=W8r!cz?NKP?KD>S{l$eLC9SJyefEQYeen zFG9{$Z|fJVtI;~OiUAu!r9npsdG>h6eaOl7%Bii@g`Df`ZvR!QCeh7GrVXTVo(r zxHEAQogZ7?u-$oIf&blP&SH%UTS7t4hIfukcyy;b1ID9FxXigHu$A-fiuEehJpH#b z2=9&aYPVqLaksav5#BCR{Vx5b&QuAh~TP32{kyhXyMxnyr;yD%dVL_9zK7=|Y zq*VvhzGeE$j9A8_8_!3gyS{-fkK3TN=DWW=876O(X@`w(9&K=Ne7HES^~80K$*X%e zY2kx{h}}no5)PT8hcd8GH!Ylq{$ZWl4igkv3`XB5cgW_Km_x zK&xr64d%;ovgOJo*_P-W^iPpEW@0C9s(?^=3)ak@RSV~kUD^csEsc&-Esu^oi~2TBnqY zECo*we_K3Nx_*W#=Vw;ur<1qWZ5XPts6g1TroS1^?!r}#<&Yw{b+~N5v39%u5ovz-_jZ!`-7>s1wkvGbege}qaEp0jaRa(MyZVEDF(N}q^PCWS)fds6kM2Cr@ zuWT(@3k6G0x3{h7vOnt@10KRN8W(6=H@0o;UVa~L)p1I78BsuFw{l-e5xB;`iYv-? zX@h6T(M)j3HYprUMRvJ|`mjep;;XcidK$ zLFm7pTDp3w_?M|_a`XN)XG!rx#ybDY%zSrXi__6OUvo7}-sEmKHTNXlw=3T=V!BOt z)ND&I?+HuOTBJ_SuGugOSv$y&J2BT;k03c9Vh=gBx#1PziH(a|!K#dok9_gnKRC7 z0XXtMG7%{=-SA)O26o0=hz#Jw) z1QU`i>#N{eNRdy!mTnNUO-SUz1eyu1>K)?X=HY^g9(!2U=GF7E zSd9wr1U3mGJ1Rkl7)DtKwN+%ct|L3j4uW6wZ`HE?aLP9iD}DxJmZ<03LwMV;P`UVO zm~_;&!$cTmC7(9%Fiww?3=$k{^?Z3|pssFir>JBjG)A`gP7M@wv7ji@mNe4Ar9PMU z-rJemDnmI-4((bdN4_$+!O}6|(O#h@MTSaxZluO}dYji&XwwS2cC;bbC*|^=;cq7(SG1!EnQD*TpM%FsNu=Tr`=9t9A#(5}{P&I{_7lzd@z%>WYXq{b zn0LDLGI9R;{)kCYNtTQM)wK)oMyS`h5N{KZO{kXzW_)P2o?EeYYkS9*-4j8shRV7= zQE5Y?;o`r$@vo!cY?t_xhOe$*-_c?;Aq|s~eXDb(E5bw5jp(==AJ(UI7kP*8NS>$! zy!x_=8LUg3`ZB7%`#9+?(%?qPzq?3w@JIUuneAw8ZllH9-9eid|7}kYpKi{Sau_X^ zu?lhFz&72OT3fyPZz3Sk)YIeQ`T2d~rK94a25HiIIU!xW-_$}y%)XN@NCzbp4~9;KCf;=yVSpQvoAn#WeRpsAFv}9^CttfQ?iWkOobBMS6WV!l_g{ zDK8X{WR;~)Ti8rzQL0qLZuF|884#Q|^kTUp)Cm4ftI&YuhTiMZ{!< z)@N}b7ViqH0ex1+hh+o3XKC{0l{V%xAPjVHq(^+W!QBJX!C+jHMRlxj9hAxAwJ)m6 zXkO+@N<++Z5_a#jUu7vG;cT!xL8!^G_~kbH%yTTi>jIbS?}bZl-ks;uNT~}!^!A@% zW~jKktE1G3$c~BFmzABHZttE72g@dC+s9_F7YTW#V@M*sxhh@pq>^q#`vA(XrjsHd zoU1oLRp2S>H!!Ja=9YZ%TS|^aheWlU!&Ao!_Z#UlO_H@_DC9+Pmy?aINI&n0I|uch zZr?63uznO*Wv-Hsw?C*g8-Go{+gx&%9KB}BebV1n%hqzMZHa3KWNceV>?(%r69YH6 zqU|L~$4`SbPpz>zoY4=%GftPLb$xuqzDIhRI;;Pc&6_v9YU}vExkk@@{6<(V1Buq* zQ_vhHXzQ6F{<+HfkhwM&`>2O29jH=ihh}49G8cI|^|5f8H4+jsRu9GmiY)63oX6F`Kc2IOs&faZCawyxOSFHyx=U8J zWd8e||4!hcaAMYK=>DAbk1aSlKWsrm%~sdc1J9MvS~6nxDQFR~2pOwSLIE;%*Hpp7 z|5xJ0W9hixTJJkF#DQlrGlc*X#D6`d6fA0@kSwi`KAFSge4!$N0a(qzdLb(Iys~36 zMw)h;Km$!OpmH?`pKnu^du}sEWa#oNob@n&;&Jvm@iRFc(342E1jWmdll|t(+YK3g z67Gm56)rL(shA74=vz=k2gVBNE@U>d({4N2g5b{LrX>%jnD9>f>Tn_VP4s+=Fx<3o@0zU70ip!7lX2f}nY|{bkb~Q`zXxAU|EK$JH*sFd* zqX4qS-?k6|K$eBlXN?`#arX6w@0SCmPj4t_CAg770qJ~2oc|m{BB0geokEGHTgnwT zh6{Vu3ha9)&}szvrk&H?F>k1L?*Nm9C2*>WG}lvn^) zDpVB*_os_I>#u%9lqUPY<~Wwb<|%%w zbON)U6NtWPrHx6@Xu`@quuaYw^jRk}0XmStRQy6@KoDq1)`$(oNOqOOxY=i|biqst zJ4Iu}>3|>=@7?2Mte7jH0uyM{;H^zjIPSceL8zVJ_F+D6)2q$n$bvyzv||;cU)j*blIq~YsPu?`s*ImZ*nbaoVX>Oj3`+jpKtR9FRu*LYUodFp zGPh0jf%PBbbb^S``Z3*49$4egk9}s&SAWBZL)~h1NjEl52XxF!Qj{w_sQo?v~J$Ui6V^UsIbFla0 z#Prsl-Ou`4!W$-gyh!S)LB}u*S%di)Twk))ENd|j7fIw#?`-y-P?5VZ&+%B#lT`F+ zs>dSH^E38qLY|p$Cv{y)4*IVorpSUH81t{V%*NkzEn~?RxkUyZ+*oh3BOfa5s*Co>|e!`(%yabd_y( z^M(fPQ55>kC0e^f73nL|fjnM=R~496B)#@(4gF@C$ZAbPL{_tJydBS%Slt`C>+T|{ zUbMvet*W>S&2++1RHTwszs;+MiLmyB1v3+-B|KG|sQ437b^cSvU~yM%0b}I$uVHab zvZ(-&b0#cXd>8y)_@SVa7TRK7-|PP_PqKm+*)n6LlSE~ z11n95T5a_91wL?s`z6SRZ)WQh%=B5&#pgr=^T~x23Q5l8YCD@>Zm*9`FSlc#(g5O1 z$%a2g3^vE{01lKE>n?XK^Mij=rt?{#rudBJv2dRtA^Ox%>y~?U_gTL@4KCe6izl7UQ=ChlOM?g7|g6o~6lrt1$DL|WtxYUJT1!Uw3 zh?GxYX^u`{iG#TGey*`XH=z8Xf}|8K|G0&`8lrBIGgPi&a#Z38H#EbRTeaBu;yl&v z;@bhTMJUf*l*SE$`9>G_9MvqP3hrs5!}+Dd_!_}P22rSoSy0YWIDT6+jRV(lD`0a3f@#HgJjRD2diZdu3Uf*O*|G3&`EbH1QkpmBZvQqav zuY%VZUt9c7|KvR|^^;KA8-fWfX?4HLu4OSOAAkMTZ&w)lcQ%yXG0IcmT&|~5)3)d2 z61RVn!r(MDYYES2!IYXPMX&S0`&rhdlc<}8)s)Z0(We>Q_Brn=lw zW#=|d=QUX+82d>u9tOk?Pqo(n#*ODS~ZEh@-| zqHY^}wdwKe`F&(y$vQ(JQ@rNT>q{FhP#Ui}HL>e)0`zI|BtUQ;e!oYYNsG?lMUl=A zkWKc$`Jf%G2~Aghe|3L)UN^gJFlcIcY+u8yy-vp93tpVBJGHNj4D_IO;%v=uKeiA| z`EjE0Y0-3DMGS_E=SA5_gT^HG2{A01w+h5$vq+7!i+OA$EcKm)%i}x|_eR?Jrht_T z)bX5_-D;D*3ly9+WaGRfz8BDYEdIUW&_A79zWFvz8&frf^6Gu)o^EO6ekZf>W;gG% zM*ZSbw-1PpL%xm&_^l{oG7=$~pU_B0W#^9N32Bi17r{h%beZM2j4qbu06~xFB_Azxf)@ay}4*F}* zjnzgmw=Ztmn$SeZIpnn;vg{^d)@Qy=hTst-PEmXDVgV3$z5468qQGM+pKZ|%4w#adptI8H_P~a z-Pmu6h=OQcq;w-0zSfg$px~Vd&7_5Ded()(>OAmtL&>g7M^Vi<Rc*H{WNxZnok997Du>o@YV349SZo88 z<{9R6`ZRlkl8S0BU;+C`qQQeOcY(x*yxiIXy~tYiF>>CbV!mnrxmcYqdFG0d$hp{O zPG7O-v^K>fo54dF`SgQ{)-D|m3cn3mV+YUTSJ!wJV{65p z*Or*y_3eM47fjmZt(T9OJS0i~nL-($Pn@0yuHGnDSq@%SIsCJy`C(_6d~diRK|fP#uG<@|CMtNYz9jU2z-EeA zy4zxL-1rM-6HD8Ot*ZuqLBtlf%7cj00UPu~tFjibMX+my8A?RFA$C9i=9X&y zhau!1Yrvv4yc)k}ANsS`M>brSoA7Q4ihPi4OVVSy57gwq${EH+?7Zg>$FZxHI)Ab%cIn9a5QF`-2;gI zW8ZVl;cqOjiwBN}(kZ%h;(hQM*L{m=7{dxtOLdMTQnR+by$8^yi&V;mf3^KInZ6Mo-1R5ZW zLFE8pYrw@Egy0_ev)hBn%V6Td&iY;4ZJM`&hp|0d`(K54oz-$JaG-VYzrex`5@<#+ ziFf+`TtB8?Epz$cNcYKC7Q&Bd*I486|BA%`;q)Kc$xXh3uKzgTXX-1Jq^3?}?0;N6 zDZemqq&-HLFo_aT0RVbp`e4SzVR-+_n!j5Zo=xy8zY(S2q<#sl(|CqQLcHQ^Z@Kx( z5hl2X_VyN|>TqN?usd_c1LK4KTZ%f2bTo)LUk1WP=_s5i6~K+MutLLFw`A1MLE!l2 zD&vTeDV00XH8-*MDEoW$0RS7FxA9*xs~IjT9@Ya2u^)YuZ+P|u0$lVjAJp2z8^)*} z{{A6x3J-EP_lmnbXe8cnB@~uaL%lf4wqAz2++a&;_q76kqneI?3jap!bbjOR!-(a@)2Vq*9cd2tDTR5f?mp~$GJ^=+)$#br z{E{qS;S?(#JC6Qd9HR1v?KNQ-hW2Z<%P0#b3m#gH?J@me>}vx7e%v9r+b~=9g4_}D zOgH{&)q5vKg%&6RARL-Yxi)Dnytg5HW>oIi^`{@&x?u8P7)*fJC?~-oQ0jKk{WaNv zQ%wt>9ElQ{kzTl*-@d5~YQ6V4=gOav0Xsgg5=w>4zETMgWCLv$LA!TmDe;wAtTQuH zsxggfW&o<^m1sX8lbrxV7?h3fp5`6vR6m57RC!GdOhpzeubElTVy+!&mJ0bg?72)| zg>u-*AUS$taL>s4vl|v{ttC5^V;HhublA#D)6fd7+wVjICrB_VP9_gf&2_-Ria)XV z%&l|GTT7L-V%*zkZjAc+z$FyXTL|#mz!^aOZ6Xs0G%yuFEFa29Pj){ppE8WMU2awk zl^ZcN#G94(K}lgpg^ijZFc*4WP)&X9)WneTkn4yLM}GL@p){vFAJSf&R;=HDM{9Nv zxTmc*Uwr7szJMTFh}Av`OiH4j*vQf-C0KKMN}q7dz7uoi4df6KQSzw)fv3NT#gX|t zLd^uDy00g%(zWq9EgfonSUJpgSJZzCToE!%1W@EB5bkpJ;STT?E5i}3*r7z;4940F z5<^WMgAgk0D+%P%qe!vGBn1F^B6FR4Y;-stANoZAf`3h&$M^sVp)Vhi%1NKci5SJm zJgb(vu@T^ED>gHx5WpIa7l@L9HREmK)3bAIfYL>GkQF{sqyyxuLRkJ9!AGcBXF#qQ zI}+z$3-;cIE>R|7N8{yVu&|pkyZ>b)loGpe+muSaa`}TB6IpF z*5)SHVO71ED9Oz49?V0$se;n$F}kpdr4Teo)yG#GP1|v*UhfYDI(3Su0_bI;+^y)E z1u;5)>a>#oxYKZR{m_h;I-UIH%V9>4E(kA6nqyIcRoRIGw3g6*WTD+XfYugTC(Qk! z|4h#7`ZToT9Kt!*E=*tdP!J8&+?7A3K@PlI5E#iW38;K-hq-?Fy%px#6Yo{~)renv zLMcHc0IALucTnq81q)Od*6{=x`=3gR!Gn-Cs+vLIP>z2$<@lh_gDzoVvT;^fQy?;* z$XMwFWe4L{b(dNXtt!x{43n{nnkjT$LZz#nsu6=D{C!T%1TsGYZiq1pa_m1 z;SFlP)^VI}$q4Y;q`{8V284vdo)q;OOsn;GG;4nlMgrK0Ftb>;L0Ao2C4;}HJC|Pc z{%nK9>p}yb#AUQ$EDrIu@S_hBZR7pQ|LP284v+76WC=$#)-eLf{$= zK%b-o+__|0EPR8pgg2DK_O1(3BTI$4BJ*K+#o>LV1W5JG!e^TCAcFFuB8+_l2+&bv zV<+%G+!>#SiiE_l7eXY8hcCdEeqTf{f1ClAD|}_gE0mRtWg`R7wCZU^8EQD+z#q9^ z{xG5aFoKtEdkm+|o{$K259b+-&9rP`A5Qz~Zwh6Vf2^ z#=vveS8!=^rY0{rJePmL>tBm)EbKK4lFgjiv7LS6K7e8h@5Kmw-hafLg2OFF>7}>e zr+W3a^z;eEK!eGx?H-DE=Es$5V6_{551fRVYysNA#$uq7Rr7OK+l&PV=;g^xQ%Q>i7!y>i@B6AJ#`8Gw z4E7YshwYXcK_RKh1UYSn1X=H_0&>@~791E$ZFb1G@{Urpa}Wj<#haA9?KUno@9y7# z!jPq7m1ypMLOurM#qk+c4w|)Qs@hM;rRenP+uU8ErHUwc`wr~%sJl5%$U?)xK`+(< zB;+^*{C1y*g`i;TljsP;jZD^oMbSKa4nk&M|Jx=AHC3ZqdjJIxODr{z zswulZ4o&O$R_2G3sV2Kgr+=B8%rywDfj^3SpwdoVNow=KuGT&axi9D0KOO$B*z#?I zkEdC{TJ7S6QFVlO=Eh++j-Z`w;1|OaXgZ9%mF_!Qy@JKbqZMi~w$Ja0XWKL=4;*fR3Oa^+?cb_0E&Zi6z{HIme^U@dJgL zDeRIZphgZ4WU9uua3yOU%k1S0i*Mj6C*`Brs@a*~&fS99wpvt& zA6c^-%A3zk{ePX7z3t3pPY*woVx4}!Cx2ny;m32Nm6Jtl&N2ks=xR@x} zPW;3V{Qo@Sz11BK+Us{!Fs{R5IQJ+cA9g(}2$?mTjm8qF*WSzUDI^Mp#BrEk{~bL2 zc|V~kV0&Vn)ieVjW>F8+AE(}^p`5N`_Y*TBj31REMxrJ;Oxs_p@tvW~4vF;9`0k$# zTRT!>^~pK9{4S`P`f8Z0@ii@AyhTqYHbL<`8?Dwl`{6#o^e=RP@eIj%-^G4a3j6ji zNv$q<$>f_6OMvwsj)hw1hlBCGnmWrE@UA?*#jD^zu;ZLc*Y=31JYPoWRBH6Uvf!H` z7kB%mxP)n@7z2_@bT<@qRXR`EX!Xp1@l-BXw`Z7QiUv#f?B%!416yhrXP7dM2Rt?r zk~HgSc7SV)WtX0EP1RLXqfb4Rh)DrjwLd27v8%1&m&d1QKdQNbnL$#gi>%6sHb~yv zPg($DOiw9WI?HKm@U5pIWZ7_qEPI~=xm1~qbaO3KGk9_QSsOZg#gPUARU=q|R#B`_ zon|rhSI^Zh{@KE~>x26Yja!EJZ;yrO&zvhxu^55#q;cd$_PY#ei#n2wKHLT`ugLF+ z#DcEkP9N2458?=@_x8kj!4WrKUo<;6S=o#=P34-#a4+`93WUGw?V5kn>7Za_02XTa zV(f%8SuL))%a>5WYp-Eit4<~$5#f}#1o8q*{!{182O`FRvhxF|RRN@BmYpjIS_MtP zf?-~w3o(WbqC1qG#XGI3@An2qh%81U9RkJ0fgec<7oCcu+JT?4FVuEQzMZU%zGP2G4J(RfP!A49UB)#b1Y?bckxuX$PI3l;o_|27EyQ0gryT8;0;&EEDF+Dm;@6eKZfy?&fzAZ2 zMp`kE#%_nQ4`K5|DRXs&L2m|n9*z7<5ptd6G~m}5v=Zc5mJXE!t5^F#4g0$FV2sze zXzvUiuJAVhpgpB3dg}ntZ4GoCnq1Sx@2BECzy&WZ^ya{8C;e&(52o2K5OQ#}t2a@} z>#8+FXW1;?3q7kb3pR*w-*_%k6&@)(1&QrP+xJsCi1kvr6IzKK!A)G6ii8Dq#YZ_$ zA!7uhv(HA%iE=PT!kHE2D&}-nh?E@<^0%<)2aHgguw}Rv#rIwn;Kv@Yv&1nWLh`t# zm79|Gg>w307(`*l*Y4t-S#HAjh%U|}M*U6$wjOCKw_Z7TN(Hyktq{e!K{f9g$5)&v zWxZJ&t{~xyv-GeVj`FQ0P-5>Q4@mP>M2^B6Q%UXqx6|}a7XbC;ET{jw;H(Oulk2zr z^S_q+w>7WU=wzZCOJU(fp)_Bo;#y7sp+KchOlPE9$zMi~QNzNFD(MA87;YXZzKqfA zzI@NCh0~CXM=@%hn9aT8q6P9EFJ1l(H7piyBCEwKEK(e++-4skI+m{xE1bH^-Nq)O zG~56v@8Pqiqgw^;8C*-#K8WF1_5dOo?d&8zX338ruUGnz>~^~K!orK$)QIp+D+JDA z3NKX#53X(L)>>WBdcJ9>aQPuAMlyj*Wf;34YHNXXEAn#*YpDZ~q&7`cn;slv$Ow_~s^`RPjki%%QoxahB3A zEw7KjS|w%k6c)z-Y#+jwz2b0v$O9zaGe?4p{> zgzm~;4uMrp62Q_=)n=!z=l2HL#>^4?g)cz*xfY>Ne}&sV&Owz3u>lOi_|xalHq{FN zf7shHP=KB3A;{K-J*@J8vc8W@gnk$DQ(=0!INQ0d%BWSzgU! zxc@Xf$OE_)`?UH*Rh|V0+cGdSLzw3oO#hKlVM+m$G92Ih4-SQxv;=gag=P+&rjLfu z-PZnCR+;DAR?Y{?^k_g`>iFJq3htDH=Ql91-43CSnCDS@||9 z_PzFL$C=lq|7$C@*?kq>AEdX<W0oB`^KEI`%2Z}JA?irv5#zL(=pmp)@u{P49 z+!FWSN2 zZ_igHJt18%flG_rEL#AooaMFv?Pk8~J;^v{+r;hNlg#`3#L`j*>nCAbHcR@14p*v> zX|asCSJ0(RD=Y~HDj;cS^eZa4-ld2NkJC8FY2-I>|A#Cf5g)UcCSA1>b8XB)(Q2z1 zE6RV_!H*Lo@TBk4UIlw^$2!Neh*P~!w;oJlEe!CCg;%UKN zM(^ouXl`-vF^T2B9F~?LCkzN~4mk1USeh#X1vPV(C?yOCO+ll!dMrU`MpcAQ6DCIh zxCBxbyvvVENu!p?uR5Ye8y?gb&IqULlfpkbYbP5?PzSC>xLKfl(Ae7-d_Xr!klz$Y z(ugF2V@RX$9sQdCmKsLt59fr&7^=?EVSev*F|E(UVy|o(FpBGyvNm_jB3ZTjdC&v| z;(Oh0)sBguvClR)7qY zJ^)xey(MleKy>3RO*y^DBQ}ewhuDAwPDbOh*tWufDvMU(Vg08G=uvL~&f9lsr1FC< z8Wf300JjTm#$7{GK)uo4wgpyg(=Q_UXtPr$cM;j0xyuxq(wI=RE7M-sq&4Vq5rGz- z0;yY9(6qi5iD8~D1LUG1{M4&)P55yIC1NAYn0a+eD=x;rQPcgp4Hpc{-HfCv(m_){}pKtm>E6qI0@V>4!x*QT?C3C z=`Bspx)AWF9BfjV(L06+Y*K#}>9$ul_MF*G%CRa=ux~F>U*#$nIH+SUCN@*#kbySJ zRz*pADM*c&V%9)<4U-DNFu61#TzjiZhy0AWe12q#xxc#XgY@gX(akJL7nXp{2{cPH z*P_n~r3|ZOv{wy7fthCH^Xl;h`aox7_baFITZ2P>{MGDM$d?HN=yeCn+6)!pv&L`+%6$nAySK&I0}G##nPX;m0vrn*dFPD0GV`f z00Ai93^c+S&5<2EK^o~u60K)=)jtJRnmJ#v#r710_~zREW3cxf_)l04k|YW=bb1mF zhFVt_DGv$;nbc{aPJ0psH@vq$3Ex8(dJW29NfRbTmx66vYa*-Fj&95 z4Z43pdMi$Qf2NSgZ42qp1}t)!goiMcesjv^%@^Oaj|pJ^0kD%D33DRvoqFH`c6%%l zq^vMR*J7Rxi{Z>!OC!#tnJXnZaAYc1jYN#5{3a6ae6gYaUpf z?MTqYm95wou@VClwV_aExh?+3NYvS zvA>WVD6$fm@(^q?%QCqp{RRO!_(v?E(7Z-H@d88R4)c@l&z-N&%5DNj>8Yy# z9t;pX#L&+3?u&BA_ZJ%$o2R8P8Fmm$^`aVNlgX1bVw2Ze$k$E5&2s2n$gn2m)w~;# z65MD2PjZ%o*kwNKrr=8gYv^sP8VIuQVz52@HwUF&v&WcuZt)O!*CJj;ncZPdK^>%) z_y|A89q;xjE-LJI(}PnB(Vj1Z7i0Y)JOvDy^;v$_QjOWE>LvHPoXLvn?BVn5*`MFx zH`VLTr<6a<1iD+xAY3Z+!`B28XGvQ<9Zx5anZC0F_jRPPY|#yT{XKRI0agf-$^oO6 znymWAaqIA?pL}ln9{% zrwDX(X;#a+gZHxq|w^2(GnR-gIiUq=wwQH{@(8sa) z8RRsaim(}@nljfA?Euc=md<|$%O}Qh z@w$<|94&ch69p+Ed#55~!Wvh5WI(_I*D45A9<_Q+QJMvv9eAFR#pDl(Y>8(e)|g+ zR+M8*DC&TQ*x#GieFzsd9_GVYeqipj<+FTqjcoe{^K*5Yj1?AB1QmRAjJ zh{dGEvpd9&c!MIIct_QuH zOWdtuqw!PX?v)Y2R@0UH%`(ouPm*kOu+l5vJ=c=etJHa|Q{;%}LZBQ=*b}Pl)W`h8 zEW@n}V{0IBG}7ZTK=%J99x-_Tdld;ur6P~7f-0%+Ie2S`GUcuyMI91az`c_TEE*BbU0m?#PJOj|4W9jKr+PUfvv}iE9q5tfe3!qVF z0(gY<#}CR0J557V1g^2xfE;ST#MTQddlss}RWFWJ{uF?|$S)@ujk%J=UpTJdS_XQP z&4}OZ8a`=-l%`ZIQHxMa2v!^&XGVn3&Fx&9QO+Fj+;Y}u5HTays500myfM!||Jh$u zop3~!dz^M&5cXnmS2(US-2`V1&`0B~r^>?^?rp4|;(ctnOFJs88MaEScKvUYeH??8 zmzqJgUdoo8wWlBD>Pu0Xj!8b*c!D<#{37(!{oKIk=(7Lc`9)HHIJ370t78~MFmKfy ze;t5SI5SG6src{tzmT-M$~NxG+ByP2faC0bA^8iG#WYjN_||*SRW(HWe`6gHG91HE zNOI*)Zb50}=(R)J0h0Vd(BmTkQUtr34AhqSd-0EE!su^8?jNF%`wx%v>~>VJX#o?_ z@O{EscNzEPomYMUG z7A6+F<(eKDahjQtS^OTebsWQGP+w16pi)^m&O04K>q|trxEe@%>CY>AxwVPa>Bu4@ z)5eu)UIU=E2ppRnR{_d-*4~j7#0X3)KL$I^U=YHeR$&k*#7!^w8~O0sTd&=WTXa8? zt{`&b0N7#eQ-c<7_3{U( zIuCK(zWy%a2uG3Ag)AHu?P|R=)i4l=hx3d?w zUy9T~MGwzFWd+d=_#yalPi2BVu7RU9nRLZ0)1s z?j=7TQN1VcRya}df@BD-pXRTJBjp5Icf8HQow)?k%pD4IP|nr0{_>Q}tdq0+FoB*k$Qc1eyCIrcE= z){E03&9O&FO$m}jLILuI@|exREPj|Qlt4=Y9GF-o`D2`iRSeWCh)3xqk|Yz+7rVT~ zOE~?FSsn~TMkM3;Vo&+Cp^jUghOELJ?j4RLc}9xqiCbP|1@3Tr)&(?oKg5X{~`&%8+>10{?wDwY=-1o4F%Unt8bzLB?)*?=$u>O*_pm0c&&F`(IZYqv(S z1C_cLszz8AzOd|U;M)Toy+h>G7#fWNASN=MIXaj|e&_ z*^pEuIXFEYDjSJg&=dUON*NLwM6fJP(o~qZW?xx}VxwsS%tzAUdTE;GnW!*OQNp}P z`wNSZ+fgexU=bZI3`~}Y4#x|NP&W<{q$Ck0GCf$DqbQgT|Fxw_MvD3le90f4c0?A8 zRrBwk=6 z^6&`8Arv^C7MTzQ2CBt}5eCzMC`IFg1>Xrrlzym4iec@n$ijX&Qe0q!aICTd#UJ5% zP@JNLsCI#bBj6yWlqkXUun<#@hq-(Ymj-rNq@W{{=~!t&4BbPZZXn8!lqO-kXH++N z%%1j!!Vwzo<=qpG4~CW)l!F_} zKA>|+T#WI)0m9ILEKDR?0VD9jk+}(|YGOR!fI%*jhp`3|p8%)*s65RbnQ}mRV1Y#K z0TY9C#P-^(pXR|-a#&nKMviAGP7o>bFut4g0hi)o9@^gnr|f2iq+-tFIe}mH!Tw&B zfIbuU8qad<(jmJS37RLvfxxr8#2m(%26H({hP8`8I2@U=XfU#*XqW*d@|ctb#X*^{ z2Y|Sx_#+I#01G)%pMYM^ALR$2YjKf_g_EcwV}38?_x5gdfoChj`0M3V_19K@rL8P( z+scTs657g;H{RJ+W@v$n)egX2631=XlR)S)JQW$s3?nfquBS*ZjpcAT`_;y>z`%Ju zQhRuc+gdJSDTWc**b~4rLTn18ZYswu87&(E-);+E7M>*$S&2wA9g)2(DeyvM=`a*r zojW98LjN05SfJf{s3;%L!>=)v!Bl-jv~f)2(Kv2lu_RPBLzF@OK~j6K~)WnTwp>hRlC$j z?y@Ox=!PwUuV0vtpjf=JoT2{Ra7P38BSC*-{C5=~_pz_}6u zQ3xlt2%vz@60gj0w8(538x#XSNS$&#LK@dJZPrRNb z^6$I7^2asfFEImelu-FH?%_;2`~`* zKq3`x0Xz*-A76j{yvp1%_>cODcpN5EgP>B*@5#L}o&*9feS zr;eR+I%yhsciMUkuzkT6K+ ztuhoFLNa}KKe(fc@OCRsDrjHbu9pJp1$E++A$EwTJ!}XKocCqJP<6uRLU2FIT3(7= zxf7!Pc3wSn@Wbg^fDSK)S*&9|dFg726|H53%kJ|6#Zz6~L2iZ*(r3R84g?zQ@J8nawYJ_GuO8LW0$tR||z`Qu~am^UHPiP+slfOL$nvJDYEBWI{}_ zzDG;MVahi{e9;NtPBV%9)!F}`{&x!H;^peb>E*~9^;CSxlA3Yxx~9!OlFfln%@j@yd(XE!V-+h zdRL7cZg2hAK^Lv#3C|DJyftn)q(zZV33NS^!n6Dx?9{zjxg#S2LC*@^BW5q68(5*-r5A?yju_lN{Vf`Ee(?*Vu5$#6ki+^u@Rdw{7UtcXmFd zyuIO+6j}x$e@daU+#bIYDof#k8+t6kWMq+0;Ym^mwcNE7t3XF4BcURSs|?4VL8d_I z@vbt3*$S6CxlH*3ZtMR=r9M1AhRgb;0{wzE*5s%rzn^p${5jG$&eDr$`N&efT zP@)wN9_94&Y^L}9(IqR17qsL5Yox)j(o34*FE|d|o1Xn6c53_paP((DTiN*GYETuN zYM1bM%FR;H!=|h2Wgvz?Y}vNk_w;8N76Xs-_>KwB>Z?~bW`!RWDSm<~Y)fXYn`@V>PPSg53pIAq z&hf%cu4A#cW0|BU%Co}NZVPkCdQz;yV&dxau~<-xdA0Y%Yt6|6FXsz|yYb_cL=_I6 zayN79Ztys6N=E)c;lyFPu1a^x^K;*+=B%q5rOwRtOktp?EoPE^EVO2wxutu;o#Wo- zbGiInWvS+Qw|gt23Q41C(*C2pxc0LXZp;f;&3aexr-ee{yd%u7>0D6DG57NU+u(Dv zY&Me-3)xbxnw{OLUJcC0A$!FvGFMKn*St3cs(*7+&y{DkI`_1zOmqBzD(p%@ z^SN5C$j+UY3wrW`pLSWZSL;046Z6(LD`TGaopPb-_xj3xR+1X@Gv|x7a-m=A4=UyJ z`rXz2bzhOS#|)}a$ldkFQtrM^_OHq3W~tAfPZ|%*xW@Chk59(%R?GFK<3`!OwMVrc_kuTA-CFPbf_lRH5Sgm7+xr9vkO5vT<8~uCt~oQF*IY3cMkkFO=oH)q18) z`O(&!qigQEN?t#R87Jf9?|av!md*EDkF%m)G_FyFPFLykRFmQ}4-M(u@2J<)hjynF zRP}+^X%DZ(G1Yyx-CNeGE*MgJXz<20S#3K#M-CQa>byQM)myF(`tdnLS>ZF&iD}gr zbeA)O4mB*^)6aue5I8fB7G(Lsn2~h*dfv=YFewEXxARyWuS5ahaMZGv~@P7l?(9{7}pkx~6+hoj>@ugGEN0 z7I{m5p7_T2!K91B!A!m9QH9lZkCm%~`#@;k4!MA@mqwF^Zj+*W?Ptm8bX`4j1FEg4 zdadA;uSV8Wd&*~S%$i&A980TCj9R->4J?OLr>H_RL-FSV9}FhqIpy>Oropv(mPnGd zY3V`fK1xsL7R7qLIH1J`zy44uHfPFnn-BW8_P`g*K8EqBd_hjCuHIuC|siK-hF)||C^{mSC* z+`YXmT{%OhXPNC;+nnmd2NqSBFFXm&=d62gJy~`A$+}afwIS~o&q=z|vy3~XQXNdJ zW=ARWGFvAnnZe>ls@sD*TO1eX+)S;KlgY%_{Z_RQiZ6w3m+mrsksn@B<*p=k=pG|K zKexNnf-7NpdqSa#?Wq_3q3F@{oeImOY1*cnm@m4StS?zmQ+n` zs?9t{793Qee=|`ei_+X-ozJS7VXo7wI_H*OWtpdiQ)3@GK-5$QLtUuUNJDw@A4d;4 z#ujg$uQLyPuTvQHY+B)`^II+yUySS59HrHy{8ID0SXpRRr+CjkWl6UF?C@9K+??3% z{C*tttWM#%MM+nKUPe_0;}PpHJXf2V%&62a_}9h!d5E&|cs?xZBS9+b{oGWQn$?o( zcoyHdrL>-(xfxPMOB(0%_xF?QN0NOiG;XbXlj-01x7IV;Ra?)+ib7kWKe#~^x>c@l z)w&(Xn$?w<_PI8GYS_xTirqkfUq1Vcjk59tFXk2$Qb<+;as~p{U%*fPLo^?x^#)Cxj)e7J1X8PpfY1CEQ zP49f7GqsW`K8<_osMV22T&uolG_8&`=d&|vvVFczKpqIy-e zhI+X@s!%th^G-ikJc<}tr{JK#r8MW?Apgene*I7`K&$X{h zOf4^i|Hidq+vSI%S9w&!p;zjb#^>6d$kk@7)VUhk9cx@EbnmXF1qY}=s=63^`Enzx zly8dN(v^2#f0~uEKoKaE_?j797ujLw_RjC#-8^_m6Bje}4b}S@p7|Re>$d2g-|N9xg#95dlHQJ4TrVWDL+ zQB~b_x+_lo5ymfyi_Dd4eM7?a!)19f19#(xK~}Udrgwcx^hX2g_s+FCE@AYKvDbw2 z4gTw%y}W-fkBS?ZM}2LYKD}4#YyUm1Dt=tK=g2%=-SR5p%5>dVPw+}Cv)lLH$!e#i zyId&j5lZvjGlJto6@LSMq8AqpFGL+#J*RS_dxup>MRZl@{u9ZS&pq?2tr4lETkl%ssb}k%Hzd*dvX?)8n`z|r zV1mu-)jE(~Gt1CmxC}CVdAvP zhe!N3AS!ff)E>11F)dcGv|my-sWry(Wu(nJ%0xmvOxw9#zQlUp<~GHMmXy3p*QSrHqLBc2SJ?L#eKvL( zUv~N?TS|IL<^h_=OMW=nQ}~?V(A^(ciRZrTn3v&UB;Tm@>Vn6&+r$WHo>BRl1Hvj~ z>U*(lp;xtTkYBV$4{MI~y3^$mtKtpm`w)-OM13EHgb6#y&|!z zJEL3k#*a)?ai$^N+?7>Wnv|}IFvmlD(3d&bS)sx9<~Ysc>QGYh_JpG~UCp;P1&o@Q zslxi>t-Loo6Jym6C?hq=&6h!pgE@zm)Y{Qicz5x9<=mH8U%fPy?x*^qYij4KG1FQ} z!(FYKXiBrXXpsHN(%M0GteD(1?5ZKqF<&pfEAy@d7;+NSzzT0;AS?ZYzpk&DI*8 z8tZIEdVM}99uJ65uSRuUmMyoO@KsgFVtT*Vv(rRnbt}RW9=V1Hj|R9>=QE2@(V>`s zg5)Y;-<3rECd}2yD`ye>9&52pW8{uDo6~?VGGUJbI~K{$FY?ux_rzNWZW%aJ3xv&i zOuaeE%FDarmsc*0!DD{ipt|o*p(+zvCX7C<*?X|m&ohTp5GG$ak5HX@-d#!2B%KmmGMZbbpuwZ(7A=SG)g2wP<_8R=|YRbKQu8SmwJBc1YqUFe_h`v%Qmc+j)-R3V)^?UK7ngqw8a!&?;DX>0(Y^= zOCl70l&wKE)Muw;dgE;=zhz2nK)Qa|1Y7-Dv+S<{oA~#z`Ro(P!6lJGseX)ov3CQKWJ52q}r#51eh7XzTyDpBTOSn<<|nF zkV1}Jg7AA6{%&yz!ylXe_wV|+kbeUn#9YwoOB5_;5FUd6=gU|_YeV2&tag<_bW0TE z-QA@>ndI@%wXY##`_n znR@(8x8Gs}#KP9}Ivdh{57nJ(PS!gX11a_}!1*R7R;{MMv!mB?V2WwyHXGy1lmvFq zoH;{f`2Cx&f4u%v$LMKmN`(K6o1RthJ8GGc(@+_OSZv%h2@ITvxnU5?S zE+|C3HCMPCP%gdY+H+YVaTn9ad+IrEZ{(SIr*_$XX#t-(1R(Q;nwXgr{{{rMsQ_K8 zY}b~HD$H_zEI!01>^_hyI~xjyDQFMO*Z864RtMf2Lg#7769a7!zCJwEqsWVYC`FbFq_fA-ceZF5k?T}AACYyuL#(D>Fx@v$u}9LzCl%OOGTaeGO2 zZm9gE^kVJgeqT%Z0>J}&j{}6TOZ$Q6rxrI%kpy0cvK@o6m(8DAe*yG^#=F?QHv3Zo-%ul5eIu3dF=C(~- zXXR|Nb)Pf_zasNz(jTs)(>=Ur1}P^`nfF^Yg+PF|j-+OmPo)A|g8*JXG7 zf2Q%LVZcq>D@ge}#RIjhNbs|l1Ke}3!&ug#-#_-GfceG!a=3Ux z@y0yQ6aL)17evQ#9)kDZJw6fpUkvi^kN*bz`=L*105<_fe@gbwSA#k_rGz|{8uUz` z8VH>>XC40c%J;JWgKxIkwc$xZtye}l`tno`ZS{W*;a7!e zdKh%Qu0eu&CFVQyF|KoZvyNy!8~zoIsr}ogn}x-S2z_DsX&`DxW!mY_Gu&M!Jb=H zO7uGr-qC|x#^DH?C#4r6)Sz%js3wbe|AlF&RmznbsO8o`LA!g2Q)b*2H|a86V~~)Q z-x-E0N^ejT?| zbPZWt9Dn_>bGMy(*A0X*Ec~XEHgJOL{LHgoU2r2yl zDy+Bo2-|X(95(bLvjCXM53gUI+PXhOW=o+IVwX~cl}#Zl{RF0AQy)@3c^OX_iAvC_ zeEA!G+mKUS2dpHB9*znFz~Fy zl`M;iM)jr6uzFH2q}j%RC-YJu(T@U>O2g+crS9}|azA}eCYKt=`W*qD1=JH@_YEgVeA`nh132@Odm;r`>QddJ_cf&H6-%XT5#Oc3 zGCq}X22@MF13RY|2HWgCmCh5p%iS_5C)#8%(Of;+-c|4f=>Ix}znyy++hbxWvoJO} ze8KNURamN8N_%DB615dZDbN1+arz*H!NcM11ir0jKp*tzfH3;TqX zBzHAtSz7iX>SLT+5CY={$qz@ah!S4?f^@gDvPY7BV|rEy_B4-XR1y`c{8;Wv7OS0< z|16Irqbd8N?cNHB$kxH6?*P}_=OD{GNh9SqDEL!Vq7t*k&@bzes?bV&U$ZUtZFwQj zRfcwwj76cxQ&Y^D|5@==HOnpSzY6K|k+YAAHb3br2AB>ljiC0Wuzfc!*@$5y`mt1& zP5*FeM=a+}e=Q=gW|@~bd_^GJekHT#+kw;iSbi7m_bdrz6X710Uhc23_ET_89|Ww` zg6|62)zjbMFL;{6&t{xbgk8!p9^m)G-4l^&xuCeF(o+;aecdCCz>#kgKti8Gn1f)p zVbvQH${Dvs|0qn?HLo(*cfa33jU zUp7wo&??N?t|EO#qrLz&&&2mOMZ=j0;j21F_iOG|TJp-G+<~FL3nII3VDbIilfn!?TQ!z46DzN~C_wo7* zaFVQQ1`vq{-}kn~ZDVQ1jtivg%^inNWaE}%n zmmWmj5yPBiO>-zugvj^H#5~usYSL1j_(`H3Ny)kP4d;SCeBx~^LsqM8F2;Gon(^VL zRB%#YJuw;=LX>wwh`7AC8|dmE_&ThoXArSI?N_4?Zsba%bGzDkH9qsyxZ5VlVMF}5 z_^d-FRQvjZVTdg#qtjI>o0Fs5Z)@32 zY=LYst7+c`7-4fs_Y<*E<=u;NGIzBO+gYKFbjm;WI^E_}jBi*emh27X>TV0jPJe+0 zrM7r~8ST@qbCOG1=B};s(-rzTuP4C56;oq|M4BrY{>vSi|G(qE0skkqFeV$B4skpU zcwO6UTsU6~k{)ajn`yrG^Mpk4`3H^`iy%3MTd%BRv;3~lQ&&yuR_Ia@5N{^d2Tvnq z-0-&TNKbH}+8Tn}haKT-#hZ3vdq39A9KRT_<5tL$@M+oX2NUdu^IWDY2+r!5G7B@L z&@RNLo0#VsaAvpd+|=cWl2bGm;D|*<%5L5(TU;Ed7OnNMub-7M4DOdfG6BntV}YTu zcKPLy#C-P~MRNuM9)-6N<*Mn4*tGgQc#_=K8EM#li@`-3L+0*IcIO__V3j*wF8 zbujuTKk%OJLGxo3(pYz738?8=R_qW~(|+Et2KbM&%o|q8oboNS)bOV83)%=A-`|!T z_n)Ifi92xqO_bk`yE6HtRX;yXA5&s`w$!zJHTpk}0QmXfL`nxuFm(-QZBo}z1OD4J zaa7j#lJKIEA_^~e((_z4!b|uv{Pqq6s1!}1ZPkuMLq3}+P`YmPt5Z3&NV=HUihCse zFuxEDExSgu&qL=9$oi@FGAIPO18j88uw|=3rCs%$xmXxr%OAa6%36uzJVRRIyyF9& zG*Y2r35$uLxC@+jC`nZM2jtOu7P4{Mm%MP0hFP|Eam!U$aSL%{lN}0(ulJ2pw`!w? z8M)fO0W0=v$Amf&PZj~`PmjyFF_B{RiEHq(GVY2b9#;zeH=VW@!+~otCxIDpo=#1; zK3VKGsvY5QA%pwJ%trazpHo`T_Wr;YA$tk7`w>tl*U0^lHZ5Tx+21GN|lO6mj&dgIz zOe*TWZ5OqF0@YwZ>5Z(wF5}v#8Ah<|=>nE@P)meC4yTd%0`SeIY&>)~QL8o=%H`|L zSGe{lE10otj*;vGV^}1Y0Vth`Mkc8ZlM|Z zX1!YOH!dA;t!?>HF`PGeAt@^%l@C%r-!e|j5A(3oGNt$*sdeX_N1hIH!Y~69Ve<=q zh_=+8RR4#3bS*`)XUeeP%~;*W{k}`C6qpli`t1zg$>w#Xnu2 z7V0UMJb-^0KR$jVL|ix62W$S2K_PR_gG7c(j7!)9+iW$g+#mko7ms*^73qX>0?G33 zyl^K$E~Z4wc0JKXBoMLvP?=BMQHz?{0lNr#0i_+YUIqyl?E2tV?&(diK$lFAagnNGY6G=%$8M2E(B) zhZ)l5L@Oa#a%;W#8{0s@`Prw_Kl3>sOMq3yB}+E*5f=m5u!F^2uJG2Zw64|V0YQy!fO-X{`DJXK=Ab{A!ipuS8N321dAKZ3a;8eW`#va|Cy;6K^^ znM<%V6U9!fjFi8bYT-@>j>A`&=lLJ^|NP}Y0t%vU__?>_61H;4;I>?SEZ1<2Nw{8X zI+>OtESCqNzz>P+_ioHQVpf2~i?~9aD3LfY{f9_z=N+GL=kauZa@r>K`vo_4F)c*X zGkg)pO`Y0Jd7}lqK93({E%6CYk_zU= z+elEo8!Q6$C-EOLP|^HbfFK3YBf>zxKi-LkzNsY<$dDrFA0u#y{+=m5LF%l%tM2|?T0=mvyE;}#&{O!T$`mh5b z+);P49zbU1@os>;5obVK?sw#OlPXSrv6EyR@ec3u8{CQUt-Ai2yu5gW~}19*%&$v`GkP^=%2gC*$`f@Q`S zARz^?#Ga5!VD|OZqQ&USE=C4ue(o{AcJ983VTHy)oj0tJm<{6xQY^C9I7$5ZxG7u2 zuN4L0QIG#G(!RA>QDDjT2i1q-Q9$u=`#?lCmV$zO1ECZIL>|TC*H78>oQb&S&b{Z% zM09kt+f7MjWv*N+GqG1q_JT12>n(eJkl1|PQc{@9MfNhXcIh@(;A{X0v$4MOQplcQjS+cVjMisJo!;%61X6822%Wths; z?iw3xpysk+$$H@UDiki@@aY_gT0{xC$=lf1hm2yK*i`8l5CcU84%r-Am$nx*aO!O_ z-c<6g#*4UC#C0Tm1N3jCtm4Uw9VNi-*abJbY23I$PiTG=(L1r+NvXkY>GIqtUz*6i z=#~)1>C_P?3vcf*6u$keQd0_lVXzw&ANStZL;fr%8R0S6iK^!+Vf*{?c4?FnV1|}113fU{ zh9VWN$eBnNx-thv)CSQ+Ex!7iR8~PXXnCiD8cNw;X(lRVPIQr#^0kE9U<}{YlcE>x zDqwalv#FQFd=V|0qwwZI%TCT#J*VOK5K~FmJyoTawX}Rn@-p{zqK_H*-b6lK^GRR6 zHmkZBPK~1LTtA+G&$lwqp)bcD-NP>JGPvFh3Hqka?MV#ADjcFd2i|d9I*(2)ahgVs z{)JjQksi$_8O>YDscZos=3QmUs9wzv8$M5=@w7<;XG`mfTsnPZU1jCw+#G?hL07t6 zz+pI}2{^{gX{Mpy*hSnR${h|D<7fAorin*P`;c#uH&evpP4e=>^^cAK(>|q3Ahn6Q7u$iv)Uq*Lq+_aqwJMtY3w#oITSz2mCE|afJ=BW=?GSxrK=k8N)%Lk`{ zLs++Mp;;t~&hbA^nX}JgEN%?=8P@y;E9|j(Csji;rdN|F?nGDZJS5_)3$BidIp+y? z*U#n`FuJ8$LI>$v?YCjJ`CBp-E&WbU7hLGa*W=|PH(|QlerW1DT&#RFY%^)*xgnGF zYIb23qf9*7gC6ynFUlLTQ=yu)vU?hqravuTP)a(^H;m@Y0Z*?tdfm@$?9EoAq08wg zY`63m_fkj!_}~~=LAHX1Iq>wk<3J0aaI8(P9_hjy=AW`uStHgVj4y(Hp=}$*HG(K% zaLb?3R~UDn&iHApaCx@I7ZKIxW7J$VL5Zx0%srX%sqWm(GlAou+oB zvYaRVhQ#8`tU7v4m%!@rp6bPK1wvexB~0G2F~Ay z*EUXv<}SbU^dG((ZIb-)Rj8@o&HB{u@rjxGHc>J6u(1noFZf{SZ#ZGRm?%+eZR&=s8X3}Nu`ryl<;>=VNUCPq~i7#MF zIrlsTyDYL$HGd9!EL8}t`8nIuyL2q?L{bIxD0z;KvVWy)1>=PD6sHyphIHu7=k-y8w zE{Xw`_30syw|637{oqOpeNuzV2{Q!y6u6apl^l)yd0)vl6)X=?lH5YI;7;Hh5cDy{ z7dzdIoFo3)KlJh~0V-U|S8SiOk_@zfTF2*m$=d6U2Xv*5pWQT}?l2a@8d;QOs!P1VffXju2r zmvSi?n}*@s^ZzVZL6fZ@n`rX>QT>)1W!INce0TlHbpz>b!AX%!ja!P9p9_3yzLRnu z_R|Gd+V+)hw2AZLLL9!>aws1uF@&ZyU&Mxo1)R;G&$>u;*4n(!YxWreJB{Kcuoo{*E6pY(@r($+U0 zA38p*-xtg6>s!}ZJ&knuG}Kmds9ovhx&Z7k&;oPZ;-AP`z3DSYCEVmb-NEPPqGO@2 z{ar;P%^hFomNJLqi~Jqydcz+!RQTrnV1E~n7WSRpqL(fB_@HMT6Hd5d`TooBQGC-E zm+muXhc&u#KC_v}4U#%bd+IA;m+DVurn1!Me)DT}A2?DDrd(DpN{Y*l4cG0yWaxO6 z?63>Il{Vk5?_9_Iyo9nI-7%tx*TIkR@B@YYZmz|*Cb4Hv0~;ha@m{}h96c;(qmAP| zYMMZb=GHkBrHit@43Sd2fTpCJ<~4iq+mWk*#1#bjc?D073h{jPzMzsgu~6;=K~cgG zEodWYS1E@@jb%B)8yI;oQbn0>ar%xrZHBXjRJ@f)wiXM~$Kr0lzc6yV^!I)qMhRD( z>^27xK5gXvSy1#PKxEBH=DT|4zY~2M``tU#N|z^&6;bX7&5wcc(f3@gy`n0i-3(XW zS^&Qxw)y9=kc@%pBo5p#8yQ!Oq)IneUMcdd8P7%*blhYZ3j zLHQ2C!*t^+RT3qbYaHAL8?C;z-X#T$$vx1;k5r|WnR(}!@;_RTsM*{U*Jl=JGDq$e z=HRhvIDm{B9O^4@NEGZ@PMB4_&6ynXu!#fK|QBx+!)Wu_ei4NMWNqo^_#KyD#1lOo>n@Eu0UELi*o9m;}d7$ zFtdkv^R|aN<;UT)Hk^cq>|jp2EA1-hM^FFogk;>)H{EDwW?c0eKH|{`BhI8^$@9CVCq>WH zQ7Xx%y6W1R7@5PF(Px7IIKoHe+vXQ~(SSWQiR7)w98}~5m{h_tX|j*=yPBO-SaBNL zEo1z?dPZC9s8941RhSF1>yT%p^vy(-Ef>7Nftd+7hfN)xhp~|yu%QNM{7TVA&ivg$ z>Gep6HS2F3yS^13Zhv!SE?Gz40omrYdds+r{&Rt=lW(%N*c5&38W(>S1U^Z)BD!!U$+ZOj849XJcob4yit5N$ zeH(@n6dHK?rCfE3$%sR^0gcSGUou=;E%urz0$p;$iysmapT|}kKBb)W0WjlJWO}fb zp>gDJAke|&rfKQ$5^`{9>d9$8-gy58YHx zTdy|5-<}l07jUrUk=o6D_KV!%!c)0wpB9$wXB_#WS~*v3HG?D`E6^fRW~bD zQE8K?uo}YEnW3wiZ)zQywVbJBkkh$d8Z`N6-6P{rR)gD1;`LQp-{y7ogjb774=PpA zfaBo{gdc|?M`#A;9<7~g-&kC}iE$a+fn)`jUujwZHXlQD5kCQZ6jlu~>#b`RXX{o3 zInH%pcJ#NLrZp6){MB13Qnp2&Cl>iV!|ICES98GD9@A%hS{@BcoV*TC`-#95caa#0 z+kbbg);3|oDf>}fn8Ub-`v1Q|{e8X67*70d$~~NZUxmxxN+Y;}oFY?fvGtz?iy2*? zFYl79GtvF}_)g2OQfCyDQ)>nGzw-3`KiG4XDqKQrS|H1S>a`3*5sKdujKC>0PX&eX zvn2XEct+t}x{l!_8I=`HtS>snPLjM$li5BeVAmbQ!`yMm5c;XteEC}l-;kJ}6VyHh zEt)f@ZXYNuu^g8EI@ZkisU=Qp1HV@ds#id}96zb4AH?AdrJ_!%Pf*YVh>|*i0QQ>L zocJmYsk=9nXc9`CEG_lJ8Dus{9>fVR9ZTZfcu-P{bNOLzEnwfBZG1iEq*9p_xwm+ z)V{X9@LTk8sHH@6S}FAuI%!nvr8+wN{A#Yg5$5y0dJ40r5${43$rU;=J3{~tO+Lhb zA1cRF0=euL80EU|Fv9juwHcNQ&`fdM;to8>t{ID+ZXpKy%+uF6Xm^~9@I|Rhi{}H6W~`h*QZrEgI%)gn=Dm& zu5Uo9_M|AvSBIqZ?~pu9W5ZQzlnS%|MuKSbBZsd2?F|G;-}W<1rtT)tXRl*>I9cfa zlBG)^cRZVrg2$$7Dm+$%c=VP^djLB?#J|+tIYE4N`DYt|w$*wPar#e@57EZ`5$xP+ zT=mzie4P=!qSR1cQP*t&f*j?z)H>aiB?RE5rsZ;IL}qzVUIN zPwLHF(G_Ro989+GsoYYd*`XIx_EoAd8&FLb?^DN$^6R_h->*`Mi2cU>S9ktdgR4;f zH~$$|YX9y#e-`|oT=?I;vrv&gZ%^GFpH+(Polr6@pBy;ttNEyPu>Fv-v3pw^d7i!P z3jdxyPdzvD3abUiJqO0jgyZ$cJS}Ood`o31L8<(X{rKj$Tj5Rd7W#eQjrGUO+~b*S zb`=O)_$`KC-*VP{CnR~Y--?mZA?|>~raO|$Vnca$uA;G(Y$t(4p+K$VYxDlzw-Ul1 zRqgJ+KBFhI9KU>mBo2vu?JF4n()3$fa3!5>qVYTo5X(7UtBjf z0aw>>767g!sWGJ)%(uT)V!AEgXEkP27wI^0_3+0NllqO*G7WYhi|9T5wME$1rU_K2 zfor)Mc|ZdzE{|tKGYc``@$^9#fE8_mDEL+O@YvJrj6RQt#GO?%!=Twc;RX&rSFk65 z0J&u=Y~q9eil#{vjS8D^qZb&ofx&~bf(zPE#Zjq_#rF!4nm$#;YHNStJId!vqj16I zJnyjpHMO}53~`CEGDLRW%O%*GS#wTos76uF3NDY9Q}&$|-l??h-kR;kSE5VS0XI0J z9lzL~H50iVx1St0TF$UsSa3MxuU~K%EchtLbiJ?mXhISel8c_4*{`$_(xUNgkN6b*gDczUwyuOYGTd|FTT9b~8V^1e3sm#cC z>D@h&&|9yjq(U~1#wqoj@7niDS7RU~MQrd*OlBg%y>xDJ0?QA4?fX8^Z>jTjxz7pqP>Q>yM z`4W29E~Z-hn`k)Wl;Ntb5XA;R)=W&tPD#dh@O%;$yehz9by&$xI;19C({GVEH5;?taRJXuk#ii3cHG>Ieh~|Q`6Z8THGh;vq050ke(LPS3^26F+$lXmt zg^a&Ao?^l{joIZ3z!pi3-Z=8h%%`9Xws%gmoX*q%`_=FG7V&KY@6vE!&}$0qgVZU` ztA#-Kw)YANLZUl8X?G8}&6hGu_3_`_c>}l|c_J7%pOaCZ3Bc1leB}pHz9GgpP3E2t zR#(AbtZTRyF6E9{RGZF_zP_;~`b1uo)aw=3@i@NASvmY1?>vM3IACw_TqKWs9B2fT ziFV;;`N`8B1XlZvVsM7v!BOv^W~k$Y4^m4>=fw{defsDXKR);SG!yao2@CoODrn&R zZdmD;{GtFd1ZWa%MI-3(?U!=?gGwjnhtopC=uA^@zs6qBhKE(=q-A6x6T7M$Yx=F< z!}Yh^H;#CZ`zzm*;G3UC706`(B>J`E-3h#KMXs_>NNF0=lAI7Ln4|=78BmTJF zz-Sr(1stkB+akX#0)yXsZ4>DU+(nD(1YG7$HP7QPLYfH#f?Z95YP+M{USR|nk%;@I>ED6dJBX7 zu~wjpA?PEqnYO9;pugXx#zuK%1iNI*h41+1-q8#nz^byC!aMACtoGnD0J$%ex?>9( z{p;8x?ZwX#VMF!q)3>E@5H!f-^R&_~AkcCT?yjBHLgZVhxvCwOpn!*oo+Hz_4fyR*pL=Fm#+gPt5x0CsX;cJoU6vZgN3A~msg-GME~?@LtYAX zByt_fZI!>pa42@9MY5PQpt@uDb+IhJEVVDU)3MAE*P}-;UbwOQcP_ATWqz%;Lfid2ah9z>rR<$u{ycQ@EF=*k)U) zjI!)}{B&@{zcm-h56AHD2h*PQ;3iCPb-jz#(KuYL)A?S_?j`v<+M&-^fpDi7Se%{h zYOIlrb6_A%YKjVZoGCNx?)7a8%_=`0CwIhZFx#@COKLxSM>2J;`gIl$ODyl>6mi{u zh1Ns#IRqXund(l;3Q^!jAB@kXQ_Rm5eyTFPSD@}JCyRZ^T$)DR@r0Y|OG!@JK@yji zIuf``SXKUgvS{n{rQRIZy3Cp9urVXV&RhhIh8SNRUHRshlt&=Eb)Ct%{KO!0g0{*` zqJV=GJ8>>0rJR%p56P8b0Y@r-wCI8a znCExYp4W+oET5FimOZ^9LA>K4+F5;}?y%NlMbS!)C0ajI?cAJtvcc>j&8>iaxb;RB z1>KNqtSwZb_0|5(Sy+HHVev!l1WI*`)k-<)lA9j;w{SfAiU2*R#hB?_6(CNglk;>c z%`P0WG*HbNlo7n2C9%RjG4M-c`s7`fngh=%CN`D0;EaHr!QykRmatL z9&vT=;FdkAz;YbHLqlpcy_$jK9cSMU4nGP#LDS6q??~uoLF}5C9884-_Oq{R%!`A@ z9632`#xr&;hx-=|W0xP)e1_xHaq5_J&O>5JmY(~YV%Y(0uYB>U3jUUz(Of^SIuX5q zqrV>0?L0b(6v(@jT$1l&VAP3>F$M?toAX4p=O3SL0D)fg>dA^eCy;Z!2kk0Zm;;lz zJwV|*HYV&{RF?k0C)elO-)wFH)kGfnj4K|SXoTk8Xd6IWndsKj-L8wYdZSwQeUhYl zivJ?^TDeB7bJ@4ln~@7&=-Ik5y~gQL?kjwhP0(I*!=xgw=9~QLlhgkj519^z?Ghmak=ST(mZlt`0_yriMS59b5;PzJa2pFnoG7V z?GgoGam6?hnTHupOSi&1;emE;uo>ZQgJNy3Wr^Hw6w3?{{V@&KCYJoDoi+X}0? z{bdH5g|yQRS8LTEFz3qljVppdeN+|K9ge0%QgR2RdVXw}4|u*-@aeAQP(6V=)&z(W z@T%T)&?`SS&^l3&jQmduzDmh>uKZ||N$=$!s=zL^w;%0m`=5hiCTzv|@ z{MrGlhzGlg3sDf*(8M;~7hT={Cy`A4JWdK3nK6~qUyptVbi~ipq^ZT-(M)Duehv8g zp{}XYr~Y*`%@9m>cJdOxnDpvk3s9vGYlUrAYX&~hl!6#}WhXsTiQrV81Wv>JbT)J> zSk%@hLot|i>Qo08ouXj&z2mb6$f~wU{~+mcmal%}GwTHn|A=13JEu6wO}-hyjihv+ zxuRy21?N3)8d!?iG$Kg*@i(1KJ;&OI#A!Zf7;43k;b6euT>-BB6?v>#rFro#KYbm)U)2OxR71%T+~ zPo;?A?i!;TuV;5XbKA9T=0rEBn9@@Kc8G#?FcTB(0|!=lo9c+ssY_udDMy-%KerDm z_h6HMLJ*FEa)BMAs=J*Ug?i2StMS>>N%K{ymaTnHFV1&Vl_9~47n>|lktepEtVtvw$oU{fKP_EN3$S@ZI$j zf~U)`?;56UsSR*9o}Z?g-lN{AxNKq^@$k&v;_TFyZABu z^2d-F^T^6#~&fgu)`q_7_i>x07XE0LX#?+u9ZVPJhw03Ico zcX-PAeSJdw(=Z1zN?N0WFur=1iVMKt9! zhFF}*R+1D2j|3I%0_Db!Ft*@;0dj4Do+(2fM8Tf#|M+h!%X$k9BV=8()53LzfM>yY`2AfxDZoJ_j@n+qG`A!a-MQ?L8xktjwAw%W_K> zh?@9bPaT*i)^orE$})Mq$c^rFOFY_?|~#_0{7_Qv9Ij?PV6X&fNfn zL1M-p9ULKs^*@sgi`@=XfsKK3HwKy2^YT3L4w)!_&T}+b91xGCsV9ihzwcb=TY$!f z>SA6_w$cIP#Dzy*LdwZQ&=f?)-9%}tXTxdejx)Rj&XFr+gK;nVhoHz{HdyZw=i9Xq zwNYO$l6?dcA?`#Jt>T<7zfS?3N4x?3=F*=YAVP?q>}#qRagVq#Rz{FU?vl5<)KC9(-bZd2R1=*g6i6V*A9x>A-XvF; z4=fhWM32s>#-KC*4QP9JibntBp+X9DWmY&amjyd>Z$BG-U_;&5C(_67t6}&>0_%^O zu&m_kZ2|1MwJ6r=h;Ls}tXJ?pvzCFEk!&mu3m5lJF2Du7(-nUusd1eUS zXy9gk?uNtG~ppW5L-6$giy({wj$XA z)$)D>CK9@js1LWh69f{kVikl+^RXlmCJOJ1alH#Df2BH>oSMtObcjkm!(!Coo%<4G z1L=vKcgoVVsgA-HmWQ7~Gm+HL0t1siWht&ezqyKMO%~;RB};97AR5D^j#*<>LtTH=>mJed3ga$`AW6=bHFnEt9Rr+@Yxwu>`j&A%ikx*1&E z{}Y_tV5nsuWz(L1*>i5waWX*b_3#8OF&W1pjo6EZ%K{3K#>aP$=Z8;2@d41pAE~^1 zoVq0ge_Xwu%4z~hh>xFYEw;u6Z)A)ikY`5ZLe=toHvqu@Wp zdKu@wsrquJA$!UO=4nYKfNJ39Z5PO8!N>O!9R&x@UX9u0z)R`a1|O*ztGS4%=wGpfT0j;E8jaqU4@I~Nq^V7K;nA~ za=Iz((9SS&#PE4Cw=Prhb&G_6;VJ1{(LAhk_%c0`!lyDRFB@Kqe=Z3xFDD`@aJeL& zidihWG(CZi9>{cy?smpIIxkl5!zg@Z6CGMgF2xvl`IrB!X04^tA2rBv+xQ>0e7Nqg1ARhvca!DFo(HaI)>_?^eS<# z&4W5VDB_m`u_FM*@PIe)c=>PZ)xTg&ZXGNv7?ZN$4`b`fOU-?bVdL~IxFWULjW%rH zfTNtf0kALuSfSRILe;yKy}Sw+vMqptKyku2pmfA z7I!xh6H6>cxdH{ihKE6UcW*@zQ)?WDrSWrnmzSf%n{3-Fjcz?|xnBE~K$SHm#D~1} z0Ft_7qsnKztDYc1n93s=@juIbAB(jQfJ51(H?fapf)m@{S6pZ-?3ycr>nyZBN)iZ^ zaqi+tfdRg+glG%%4Y3`aIpdBD^ErQq0MzcL!yT#RSN(vP0kI!fqbOSwK9zr2RqT7| zc1OEp9MXdP#`4@kh^cI|bSYD>m6X&y1a4OG=6#9B?L2ODZ7Ahin5g(;ampj68NRnX zUi~us^6^-BTN7{8h+w_B3g~ng9{hqb8(7*?g?|pBtM+9zsGdzX^sY;M?%=0(QkD-L z^iKLJ4;-wgA_Y5GB(vMuUw$0ZiR0hAth*Jw`j*uPT+DLl-CrhV2syXBI^Nkq;T8f2 zlPiV~o5No-y$}npXwx^KYmoV!g<8ION|C-R^pxJp@af3EQcgU$zu{B9K@{^sX`vm@ zW)$LZsbap!9s%_PZyC7UarG&5za=mqJ`Vb3l-!1G4MjRSq?%ZfSG9Jzp9<8L`{fVA zQ5iN$_WBUy%#Zvf5jP?eTewO~hEJ`pdwJkY`|JAKuZY`^W)FwPs6wXCq^eW#wo@Jj zC|Pteu9yUz?-+*NJ7P~;o z>Xxe}E#{Z6Pns|fyM_37Sd`t3WJsvh$;gpt@6vu8G3gTV-^IgD zuw|V;Hj-P*`EgZWe0)^eQb4J@gfJWX%7-01<)3JlLuURcj zzpFT71`(DJHKy`&`XBk&J(kRm-2sySqGAReG&lXnQ@E`DxFoA-tzw52g|*N{)NCLK|f*qGa%wZ})|e7bJP}Q>1Bz@}Muk6q;)0 zD~KfbEmO{UAe2S~jqba?Rkup7$T11yP(H~O_@*zvv}j%dR;62T6n5F+Pr)K!;h;8$ z$>@K|dpk?Yb6? ziqxqW4q!0RMSY&d9DTi|4yNs|u30$bwtNu_sZ96zgMQ5|9%cCoMmb6~MIY7yx9kpG zBU}_GHVI_MxHBzSj7^(!U;@>I2xgI9om8O)ssM!MV61U_dcY=eO@zR<&0nnRDGd{2 z?drBe^J3#zQ!vp+_wM4f-ET+r9id&KqpxEj>qklxAf)XNPI(troBZp}Gy50HWtNG& zt!-iR#4GC&!Jw2KK-=l~PA>`2vpH5v;r-#tVNwwqT0qThgo*AymU}}6i5cQ0Ewy-5 z5Lk$elV?$yulaXa6UjDpe9dtehu7Q~l$=M$Hj4rEB_y7gtQ8^lLXRg8^du*I;z15( z;3n_}0SE$zPXDtT`8VMIjdl9p{d)z6|ITmyudUWc2cs{_7qk}zA&CI<-S;Y%7u!UEw}>97uFev_gg-8O7>CCAFk(rE5uT1e1E_A z`CbDX$%)GHj=3)?<-@dhU3c36tTMwLzF=Y%MJqd1Q_k3Qlx#N!!nUIv2sPJ`P2Q1$sMsko+*Y1+OiI*w-M>Vi=q!{~%Pb9MyqQ5_Ny zGvG+&_BQfZwnGGWQNjl6UKSnlez#vDxLBPObmGYkk3aH3i#Q%{%}{%zA}nf_sJ+ZZ z#Lf&Px8L2;=%v?%(q8I_OZl1}jqMuP`nYT8xa;voX@hyXeC~OuBNCMO86m}cXJneF z-SqG98HQ0b`G#mlTz^5?^!4V=$~ElzKX3>WbQ*pmAwy@p8OAST-rA$Y%wJX) zny#~CeKNJJ(jIzQ^mqY9Vu%t9$|2jy>F~|U&r_~ZRUFcQs_OU@Dx_B53yViXa6US9lay(lq8HXYhbuwiwTZlZ z=_Ic&Icn#D<5h+T4gFCq<@9M&Nd^_W*?jWBxDDEg<2k;>+F?n7<0`pf_td{`BxXIT zQd@t*K$pa-Mvax}zKg9_I~9bpMMe0IP~z8`zv1hjOnqL?`2RE+qnmGc%mm7T^;Ejn6)oX^k=8M z2jLh0m`bjLcNwzMTs3wQe#GRScjhkNC!;PhilQgBt}AtJ@(*_D!IZR&D(JNPpmSm& zjU9x&oXh}k{*XKvDMbvuo0~*h&u!+Ns_#qX9Vk;4d5^eOK6h7s($9pCyz({$obL2& z%=CBl%iDCv@((_T8Gp!_d!@3)Ersa#nen>3#vyg9CqWD*KMXwmhccFO6z2z6;}t1+naJLbZpZKJ+K$s@AObcPB0bU#O8 zd1@R!+rw-gi>j96{SksX9sberR*1G7sW?qu;ix_~RA7Em4Fl)^4i)OC zpkwhtZ_0%)&wF1P@a#BHLPj%xsSp-_B&CS$u?tzOiU8QNa{l5MUoX}o14=_`BG!E| zg|3>m z@O-^Qc?v^&V$LjPxoP{!tETVrj+>7#;>tJG;NG#Hya zsblH6@ND^(NCHf!7)I`6dTJ|tEZ^zL(3WgXWrIeqU_)=`zdIIy=%NS9=&5t~b=6K{Ad zM=aD)elnh8Xo1Hr=Hn81J(WFr*nvV!#?x9iT8U*Z0mtlAWh#UH@QZ~6^l_8}EQ9E7 zW#Si0`<{u-(A9iBBgtu0&a_DC0KEZzs?}1dX{NisZw+g+f45k7^I!~veB&#nl+p@c zjE^}id0n1aE8=cR3pSq7^6bl(dOR@v?0fF66y0Xg6sJMR5%*V^uTMOykD$+H{_dmZ zLzY%u_r&%KL7Ahm-f3clM{RLcpf`cxKB8t+{GhitG>Wd4J4RPfP( zt(1C=Lp>9Dob{R^x19&FemwO`l=mkJfv#>gJKQSvfcuD|GKqbN0C@Gtgl#o@-JKGK z9E5JIH958t`-sBtjl8a-JtNAYv8TK@fdC>$5YmnI?w&R*zA!;e?_eep= zb`%!#vwsW6*ogT&X4iW?-0m?8syl8*G4xC#9k16s{Qd@UneqH<>rfHUBkU`zb{q9W zBR6yKM(#3g_>e0s^Nz;UgkfWSg)bf3_YR*NLL3Ljt;#w=8M={8gMr-gfrl7NAz+9^ zPpW)@7}+h|IX?g)5QAGoTy7u-bE{-ZwVvD9V!j+qSCt!0UBvbdU6LwpH!3SFvRk7P zRN0-dX5iqykdYK#6!lY=w0rE6p-z|c_;OklgtVqldr2k4{R8JY{Po?+imxxrrqK_c z{9|D)Y3H-COv;vyI%u5BxO3k8ayO+~lfC1Z?GR9D4ccp z9J%d{N5O!xAGyPzCV--63nTVi1NBf~VV<=V8_l8>lejwreENXb}*0CmoH`84v$r7 zy^A49W4;8l->S0bCBvF!iVkEt2mqvX=6R_naXCq4i0w;2AyXe znC`PUm`bq77ClK#iN-f6Y74RcD-FwYfD=K@u^6=Q9JOwGI(K%ki-M0mG{S@OI{~G- zf(3`m96^jip7WAXe9JLki&|oenFMR&&qx71XLY}wZ*nf)EAUKE7{8@a?acWK!}O*Q3Mu^#^^zh-K(OvjP*u!%>=}zKvkvqAf6i^dSu;UfeIZbm&abTF zMAIw}PUrllT;GOQtIJ=ks0zPwO!vA{UHOb@iKz+*9dcXS9h5hq2>bd^s#_8vFb1;d zehsg3MZso>$`$HG*3FIm#h-#WtX4oYlX@k_8qHRG^wrziD|{HT#*Q&ZR`6tXtObyWi0$dv=faA zWD4;!`lR5V!2{DV27^eq?%&r;OzA-hkkx`mOUO}Y>wW6G-DCMuKfgD~%oyXT7DcNNK24&rpz`Sm(@+r=zPhE{wmk zQ>nnwjY;$t7n$Jodj}^xtK@DIpZ;SifCb2!I|q>TFjb?HtzqkbYY2t^V(iPB9OZ#6 ze~=!;YKceh7-NhL2Fx26WOlO~`1Mz6*EbInb0emsJGv^OOrb6FoK)sXx4HwPk9$9| z28yr(lZ30V#&&ot1vp(?uv%JUSI@Zv) z1OwHxH8gQ_pgyB;%64U76&_fR74T0qzD$C*KCHN7q=%0^?sHs-=`UT-xsF&r^J~@R z90|1}a;tBTuaF`tRrmnSJmHHac0+aZOd)o}p_Xbljjz{>K7?{%Sg|?^?U*FepEUhm zXek%gIB`)BkJV5pvGTq8xnOi;R@i_NKhwhihI{wlLji?C{c=(1Cq^efDH+O0Z zt}KtZu%qCk^!mQwlUFs@su%E&3H-$mr7cj01ZcgF9bhie$_rvW%)XeP%o^rx&3~Il z6g>F=BFeT_lu!ct>zEd2#+pQUuwSpHrYz#W+uJ=+>Qz#&;>Zkb0rvweV1%b=mA!h( z4Cn{Hj|*4}?-gt)+%f6F_1tQdFD;#%b}~=xGcZ&Exxs%*q4!TS`r_U|p`a`~fZyev zE+O>8a?C@e-of{WPWZ0++R_cjfhJklXHlnbf9~o>N8!m$EPB`nzbpdSM6&l>9&7S6 z4)GyAL!md<;`a&E>YX_-z0+-FP`Bmv*JOBp!dM8Hi#tE&OBd{92LwajL!l(e&p5Vvl}?{d-6$3yc<=aQI&8pcoP3Ua!-hJP9&xw$tk~QD z$Nt>^(AROPHKk0&L4@o03k|zD22+%?AsmK|pD?SBvLy?Gd$7ZbdCV$@Sj!kSWomkEWyLf$wUk-*o zQ@4)sOOtGTiFLCVx*5Ta`{lG3728fdP-J`fIL+FOf-_EGz=KoVlWnL}_B2XgY>4~U zv0vFwK!U}d+H-0Q9@z5ik^;#UbmKF(0pUo<-96B zHG-t@ulywpFlLErsxDSSI8Q2LX!B3OZ(r zB$xA~%!Tg&^CqIceK2%-HbU|gCjF}Qt#yH-^I4;FI&Q~A{#hHL#j2Us5`fZ;wIFLP z#LHEr`)Xf5KW$ym$ax|vp9_dNgeDNYtH+I8%o66?5jLi+NY3}pMfnZms*aEubG-6qEQSmYqWGEELck! z^I=~h)97oM)MhecBoMd_U}!2j?4}xCsLdlFE=8FP{4d=G3khDTg0<)t? zHI57=@5Mo5m(<;-bc237509}uZ{}n<~?# z8&H)k_JTtTQumlGg3yVh5TQfsMER=_UOK%q?+A9EdF40Bn03Z#&TK7LQFNf_wlc&K+^9+uP8r_ySFk%Q z(hF;znV|b`QNpu9_v+Z_+RN+v&}z6daLLf)x9EVhe`PV*i(mN(_mqXM_uvzIQZx2u z!Jox$If`iB9ECwZY%2df@cPa;aP};Tf_s~6IW?baxTaLa@V?}uqAkqyFSW`$BJnFt zHC3&-bW9)+gvc5I|4xcPN~rVxu7Bi_4q4&}DGotursf2}tV^p5`Wt)zn{ii6o5oCS zTd{0++`EMrf6Q=Ah1#vSr`g`r3#$^|&a4nioD#en1*Ug=@jxN)>_)%Y;>frjzIFOT4n+`K z_Y=G@#goYEheR|`6c{xYYBz9?AM5*3`0zf5+`Bl#%YdNY-ao7k%AqG=;wVDgfkVMt z!e73PbqIC9xg3H;tCS)#snMi1*!aIpkPld-^TKh`5CZW{sT8>|S9trhyMgQvq89pp zDMoixq7o)7rAxpi3haTA}7Ggn%MUg8W- zaQIH}SD23^DBPW^hz~2GRDuV~fX&w;jIx3F!BxgXct@wFB<M>7Nm#mra+ z3->CN5fEt0#}b4rNhyB?KS<2Q(}@-D%j%=}KP6b0^y}aYQgU3RNIVk^t{)9btNvw% z;%-&Q*{Hp&D@$0G1BX|UUC7~IG4GUvVTFrb^CCPJEAlBa?O0TD zS=%+-Y*d+&i3;a*_?D%y5)h`CKu{^PYBJt*aVmZx0?Xx$N~2E_@F<^^oP#&GA8PXA zu3~pGkpeZ$;)9Eu_;4Gq__IwKxARQsu|hA+txi7WUU0o`f3+3V7|^+8ZDpAtL_o|( zoPZE;yiI=;fW^cG6hTSgX!%R<=K#?7%+9>!6TmV-Dp}$ENGy2eoHt z{-<$qmuzsPi>)G}EGk_v8CitXucZ1J2Z9rsNH#Zm5dp-G^u9MZ-PSBN;Z z&c7jp#k+5d9r7pVb-&hl^Bl~zGO8+*y=`4Rh56k;u2_;46Wzf4LJ^~@pFMaVcWM$_ zh#i~R6{hpg1)TWpl6Fs4ZH1 z>%>B5Yso}$UqV*+HxFKx54D-w;M(q^qIJy+FQVyC1 z!4SndxH9?IMj212vc|14Y0&2&5&{X>vJ0F>8eg!aP#Ma0XWX#5ntn`*ntt<8EZPWV zneQl2klJe{D1F^eN-Jm`rX0VLR5pJ@&x-O-RW$nKS=p@O(8Ls7kp1p1jfdfvI57#L z(pkY_ogu!=a^XrhcgGiIUYFI#Z^susX&EQp;FTU(I(I!>0BZ{9s{S-t>0K|S9K;=j z$>X=mBTK!ajy-gBk&gYK#`>aXJr^8VxsTZp?=#xLK2o=#grGsZ!D8c!uy;pofS?@%yg#61kipk_qy zk^Bh=zH%uZeN8SG8HyFuuS5Q`hh5cCimps@2*njf9I)oGO|J*@sHQD3a0x6XqVuII zlXobcc}wC%m{1cDLD|EvJ!=7F`*>P_g1>_G=G~>jyE9LMh-}n1^EGeQc_&(t zFc9h2cWN-tvFcOHZavZOEJrwH^~#5SWGzKaaJYLl{XR%zoepUtFg@djOjS#!)4hxn z&XMVFTc1mcb=FMY#v+l9sr97skxV-FT)_fCvwzX zbd{+8GSKHTCY7rLJ`H@u$g#LQeaaBazdET=Y807+k}DQP^!0Y}6&?&Bw-M9^eKIl$ zCLwiElrw2hc^_X5j-c5hug{w9YN3Sm?}nuWd(xkFAM!!<#}%CfcLQq z%o^ld8|`YPe^S;5*T-0NbpjmAJ5-_QQGXCl3wQv9Tr#K6h*-2IAN*(qL3jB5zQMLi zky33{7w$n5Z_G7J&|Qnp1-`BPu#Mm|vVBL(bBFgy6%wEbbP|_Zea8w|Lu7k@x^rJ5 ziP$FlqlLQgyzr(QIh~{v8>NmfLFFz7x}1e%H2PLCP`dPJCFIHQJTc8wWoN3R4ab~6 z{#RRZi7F+xmR>?SMX}0w_T~`)GH{!vniU)=YS*7K=)ZgYC}dsen1`YKq%ICVDOp{_ z+M6>80duvgenW;wV(V~9qzLTe>Kr>G&8-c&nH^kp!Tc>LUL9@~8$Y^P}*!s$}HJ;nH3z2VNkK8ic7g zQ9^hSC7tf#^`U>=SBFi*xAIxM9EM@u$pwKG6`T;jPPr(I+zUj z@G}k}+*`}LM;m2NfuSD>!>7KEm3@gu)}_<*R(a5V`msG!uiG*qt$u1@h;9|=Gl%~Q zd;{*tR^H+i{v5p!6;g;P#Mopb*^lq5IOJu~Y08;W7Ja21#Wq~LSn6h|-!{s%ryg&&AWyFtmKMRrk!9@XU zx=#aZLFLd3CS`6$03C2OboY8a9?kg|S-Kl(4ZE~)rjJ{C4@~!3tyHFYE+@I_d0#%j zp%cz)Ga2ucYfB~*&cD-b`(0b)aFu%H!g(%C#M=4I;pfAmLvm=}B zv2j(nGshH4DJ74}6p-BnGu;oAC-A~csy*x8btP)M4{k8>o4=GxwTrC&g93_bgh4t0 zv@^qoGR^OvHx*XSAPV7pg59wAvR6R8hXV@M@*W85gJ}LyotJ#uB)ET?v#RKSyF%-!F>vP(jEFw9#?SXg4+CH zY}|ia7EyY8B@d{HrZXwrGoz;y83JbzVsG7qhA8%fiTKN#(``M7=ytTxc}p$jp|nKD zvtbm5w_hGCh`p@()>6u=tZkzw#T~hj=~jIQ?tJuoMG^0WfrQhl)JNM}Blj4>_z3>f+V%j> z^H@2zUYP}?p$i@A+hu@f$dgJ~jU5zU+?o_VKKyrU2Dj4qRsp9rUXr~U!EfmtZP#wRJ-+dM7hVK(tx9Bl9p4$jT+0NyzJ~clCYqDGerz2Zi z@`F2T3p#z&w|L8i!2c*s(I0U|9}LqxRIzQ`HsGaxxs)xnuz;<=Y9hB1Jc_CQ2j{{^ z=(M|UQB%h{&nqXolhv{i@pgFyaAJKn9WYai#CeWPgbE3OThK!hC6SMpp?qhM%(o3u z-0T;`z}t2u_r2QbM-JV{A;MfVG)#VPyqr6iZw~=@J^)5Qxxb$$DMCmP?#Mty zESXiF9SXEK%3IFlPqiaS7jS^niEAe)#l3RxrO=Z?aD}^hY`A?(A+UbWDFd~E;;s0} zGBx#xCg7qP&qO>nWtjxN+Ni>B4h_BgAQ4tFby2bi2@|`|Zfk*wH~%kvg8$bRz`s@g z35vybtW&sWZpL>tO$W*1&jK$iUL@tBP$u4^r@+)yL}itRfx@~^VOI11Pq>*f=@&SG z@mHmOAoD70l&lWN&?`oqeT~7BiI0rq7jxxEF?YsMq-Bom zRb}t^{a_ixFYFBb@!PIAV47c6x^&>-22H-Cvc47Q4Euox3kjJJiH+wfV&xBOeu3W> ztOK~Sr3&cgal0BdLVoB=uH$kQDrKGt;I8Cv%tSW7o2E;uuZcZGrVPK#w~TeYnsyT6 z-JQcEbXmGWa#5D28uY@-?$Y4>OA2MZ1~bVEy_g)4#OS_fW=5-izg*~%R0{%K+IOv` zDGz)IJZ0c_k8pM_z>oUj$g_qI=kZ1M6k z_~+dXv&*YPB?<8vzFVvsSN;rmx<_Nf@bRmb!iqn}3!t!z58{U~{{lhrW<+y^Mn!Ts zi=sXo>>+xNZ_^INiA1rc+*!({TDA+p+D0l00K~G1m-HC#2kCLS=Ynxm z2~(P+2q*uGa0+<{*Vi>nMQOQFTtPQ?dsj{=+sltZHh~vgx~~Oyh;k9HE0kAyt|Eiat%pZG=(28Km9{8=(j*!gA2?w>_sPzNFLmxNAF`+Tr~#DhtliT zQyi?jo`BpFUligbbZ3zd0U_g>hFGeGYIze#2`Q{ z%f>dw7*l`&d&eX*88aJr`d<|N-R0f%>2s=!1`UxBQf4H{+NnlwMif>bJ1WysKr!Ta zW<5V(bbCw*6`sbheR5x+JLxi@l9V7B=ycRI*e}4WdCaM^Tyfq`=HI^!zlP5SJ1iym zXN>_yE1}3&zib9>p!pId{L)U4UJCG6Vo zQr})6rg-(T{ikp(-Z0`^fMxQG*4uHRbxUl+Eg6sGx@D@}`|W$VsD(f^LaOd;dkUuK z6nY$n;u!aBwpM7S`DE3n4;4aVsv|Zzk5q?z*%Jsrg)iKuMu#_05&-PeiAXr0*meqj zZVtPHS%_)eX(^iP6txt8OskJkqhF@=q{Z&9kYyq~@*j7Rd0}nWIc$i16hcw0qjE`n zv*h}AHx|Rwl$zDE)D?1MfgeUqO*&s^Gc%7((KP{ma`~}?2q)6a^dJWhGCo^&i_5n0 z=b|tk+WTyp2<9n@*~@x)SU@g!D*|i2?AL}z*W#}C?Qf1BPEdsLIsRqDiHA3aEdF5x z61TZQvC6{8L?>j6iqs8$htI*xl7==ZWhFXl4koX1uC zVNc|%d|4e6w)4Y_m}M_T?cuR3BN$NyiGTX~Y1dHF-32g*5(ptr-&mCz!TQ}f1*^b% z83=&!UCMpExj2HMuqX0g8!|-cGJSf(T`oU2vL4Z|zw+^9iqXI#@W^VRC^W}KhF_R` zi5zQZ8p~1B&-6_yDff&pE9iPu|2ftw2PndGbCw@056mz9tUqAw+;~S{sN`g!iAG*F z*PB<-UkiN8d-WD8xJaB2$=Xv2z5n_gZ57r81}4^dKUWb$6#Gj#Nq+#d_yXW&jVK;x zmR;L=x*U94l61RCkdrcNgjtY->k&pl2$&td3hh7PlaDpi#lOH3jEuy8)d}|M{JYb% za~9Okz@Zohl2+ymh0hrZ3VSJ;I=PZdQ3;5K+u1homI1wyrM1k#r;6ujq7e3p|L%e| z@khD%<(ZbhGf{4HGXJxXOBb;6B}maHD+|a#&#>5=1qU*otP5-Ccw07}oC}4K);Nkp za$D;fMe(JuZv-yyX4QB*l&AuYT~f>A_dF0bpF;E+R>8?so~}DY&UpSNN9G2wRW{2* zcr%w;(^ro^6O#5VWf*g}+YusIJ>j*E5cm}b$2Ts0J6qCnr!UvUCek#sXjV9LEd69| zVe~2bp_kJ)x%Q*Z4`oE^B&8B*kMVoyr8j|Xh2?mnV|!Mk^}f|;dLay)-D>3aFJ-|w zJmRVS*J%i7bol+EuuK{Ng-gxB*Wd|*rqR7tRjY$-S;_N&u|ZdwWK%(8*7UcV^=sA( zn?tge?SMv{H?4;pkthCIL)0FUOk8a-e|YCCuSNG{ekqIXd`UQauyTT04Q|x}9}*Fy zRYASZZExjb(x=-OugTxKeXOD&)UdG{-UR81zWAh_D;{=nstWE}pf-Gp9xDFJ zUO-~coeE!R&Pl=r^Q*I`;jx$Xvn&5BYybL5ja;1KHNAkiu0%Y;T=Qw>fY1m>sD9_Q zk;nlfEP4Se8f9T-B|N)MqP^ChoU=92Vu|5UwEv2R4)0Ej_!IQtp(s>Y{L-3F5_K(uBETtopv!Ml0h>FJ`<%GLX(0krE%WRy zQ8~qY7lq#mJk}z=qA_85fY)K|5hP1MP+dxJcA*$XmZ%}SL$b$ihiN|a77IpeR`~7? zNwd2}muC*nhM6(;)offrE*x0psy5OMhZHwk*2+)R_rf{6tqv)Ngb^U{=&SrakXKey zCQ6p#Co;hS-`+C`jj({devbj=NP}6erF48S!$XzZBAvY{3N)m3f;vzfT=)t%S8G?ik=?R3Im zkz^nU=EzEv`~a0h)$5U81-PY87x9!NHzr#zqswa7IYQN@@-Mg?M?JB<$mB9<7{^wK zs@a{_+@w6Al$OHGsGW5mtd}}f?cY~x^Y%;l9+Z_!N<|dXMVr*wt=`7&k15c;M zgReKAC&A5e+a?r_{Rct$=@)GGO_jHxu))oDngm||JYQ}oAI$B96SIO)(AY2nRK`!b z-|N*PRSEqf=1m2*_nb;B-`6Q%_}B)wHoFNdB>_xj^FXTagkSrr@b4TPw=k-}uhiE% zWo_(hg)GyNaG5CXvX6gds0d_#*jFem*o>uL!4L7ZwD=~_EV!3b z707h|@7{kMtZGEqi@kAdJ;1DbUtR3E!5UX5^dDBVRD469mMkq;y57JoxJgBu$!m)m zI?lnF>GYfFhdh9RC7FV&j(g#}jp3c_#`R`(=mNSTxg2J`A866{cbSQpj;L(!1y;E0 zdkE5KZGK57f*U1U)4}oYeZ~7UvJ}w!Ao-U{ohSWf+3eai8)G+HAXtN(x|PblKmPc3w5EFhnlgKa zMe9_sP{a}5{Ij%7Ry0Xc_$7jhgE6u%rKhin3!H&2DqhjC<~vn~CtnKX7to+)?P*gt@6J5o@}Azg!A4v5f*3!+;q6%e8! z!Bn2Su`TS;k&M`5M-@vAkKN$=jplv2lShf44&}9n2!Rb!%sfDuwqC>=;%Er{y~edh+xc@31Jvi)d)n zsj8JRrWDbUf3v(umZG3iVcf3a)RN`isaR81u8wa!??sO8uZWTs{FACuBCLm={MrE? ziJeE%;bPmkUt3%zvRS^1PlJX7%(J8Zv&H2UA9A`mjmV5(|4CFCN)v;1e;=-}Bq!v{ z;utD{Igi|8tT#QoXNQgT=Q8KfhyqSyd9~oN_-CvB2*FWh4xi7by^1@Qoc!qxbU(}2 z6hJ-d(;zvK{jFIYjqX(SD@}3Aydx^dL%tV_XI-C)8%yl5<2C_a_-LUl-9d!(DW^^c zY!D^C6V*>kbFa#!&(p|hY5GYRY86ldER1s2y{yTX9IA?q1>Z-`Ca3hYc@c;$+T$ls z<%HqBEU}&|u{mVyvuzG7z&UU~yf^x$YD(^H5G^FEjh1w}&eF6Qrz<;t;nTz1U~}68 zrDI@u{<|LXoVQ6*JP8W$nFjSQ1*&oS1&8&}^y! zgDRrxha1tO0LLob$~-6YLsw1Pj+9LqYuWibQIOI23(q)@DlHb=fcp%uR5oBA<`Vkg z5OxAQjn-PyAhA3Ol1r~qHMVU%uC7Wu;H&H+#f-bCc=fnB1&BB!mzY_KuW(;|zu+ua z$cM;QC-Nbg?~=oNu#9%Om0!UYb@>50;hDm~zIV3c2&w#XaFYiZtp z5A2g0JS6#;cx<_Auc|a(j(3&I>|csPQqLwOxDhTjGrhibT#|w#dDX3%joyI~`7w5> zTz=?Oa6F&eVcP1r5kG~iPK7`H){1JnQ-8(*(9PV!XLuYsqCj`tm*uB=aWZoQjvEhP zAN#pW2|NsOAMt=8$ll;97IVNH8+pwbQh)(79aH*o>lsFI$Uf=dqqX-mbP6E};(XUH z20XC4Pn@>CMEbfmzaM-{^auI*=OM{+eUPIv{I+qTp7pmWSplC(W9hI&LZ z8R5h-q~n>~O9r=zAI?x>e|A_STt~OvbRJD5mLsxryionRloU*{_lN@Bi?00Q8CC?(&8RNS54n%IBDbRzhTk1JP+T=Xr9jcK zon{3-PA~4dk)`jvG)-80#S@mfr-RFo^fVClU-5~qK#Rt#{T>@Lb*2fO7$J5?q8NPi zS?{g-H}dRDd~Ie{fC1UgzWhl7OT8WwlFYPXrNAT@kLx`2n1R-1C+=aiTdkN zPM~8gj`1(t6HBV48^%vBUJey#qFOi9u*Z`1`BF}e7Qkqz#2!=~xg#hBCp7-cb69!V zk7E~X?x0ws{75sbS6qe?#Sj55Gmt&X!76yl5uHeW(!c^KBowUTw{MillroveE|w0% zhKIJtE|&$wdL@)kw=ic{ERhcObk4sHU<9m56N_LtD=Av*pB zDx=Vld+PpW_tDk=lY9a(zOssUXTXl=3~x(u-M+<8YOJX-?<@*Y1nE@!o;hjwoE*l? zz^ZKFpD)ncS~BfWbT)tugZ0z{@T4znqn}xx?&Nm~%-97xHA@z7D*8!9{oC5@^}-H*Sb6px^d z7d);>1kb8Fm~i(SPHJ;{C1-d5CE2NdY}5Dtd*G@69dy$(f}B0=j=6X8AB%M+?*ej- zth|6pUWth&v2GVmmUchY7x(bc4gE}2S`HsxRd5rq;KIP|ez`#o^59;X(hn~k$H~VU z|9<&bm9m3S@`d*HEjSS0I%YYoEg4^KBtJ;Uf$MmzxW&>JTQE*3tDx)lKtFAz)e|Jn z*`r3qNZBaAQch8y*BX~ilH*$W0{6L3_H=*ZyMK4956l`ooGXhfA*-x~g-kF)Wt$X! zvH+)|F#~5lZ@(3~0OiyHV?pLnyvEh%#(woEZY^EM1Ek`+V+FtAa&pqw9?LCC$gXuM z93}tk7mmycFl--ThcAT#TRe0<#B85KFO>TPlAZFk+A&>FLHZvbe8i^~c--1Hbg7H= z5LjmqeSUfiWP9N5etLe_BxIeiH4#m09`P~RwbG=a3a?%ZavQ~RT)rh&RUiALFSrc8x{PwA{ed73bgG^c&N4+;e7tW?`^1+Y!xZoGK zRgyJiG#-A(r`W1$2+l&?`@L~4y3o0A{IDorK`d8qg9Xxklw3%8)wnZPQg>kauW-gm z?|Fs2cpW>+qA}3vl-U66%{&JS1tYQ}UkmKVJl~F;TS_TVyLua+lLX#A<_&blWu6`5 zVoXaP!tvdu6-V`%$$i=o?VwWm@OT{Z!TfFM+H->^kp!&Q1NGlGJ|vr0Vu&9)nbSX zrUtw%o~uQIeYRgcaSAGg?#s8njHvY=K?;`LD%@1bA`@nKi|ph+_<|GsxqEeBZWq?- znFkr~eC@D4f>5H=kJLBNaQC>BJHT?Ndjly-g0YM!Qr;=1y6YJ`Q}#q0YdMW=C^n}A z=UKd+EXl0R5(@b1EhS4igAIThg<_@3pP_XuDcF%-UCfJyS<$IJ-y2&OhU}vvB1v`8hkLsi_7d)8C?JXXKa*Vz-8Yx3F zi?4USbZzp)Otn~RmcI16lRbX;c<(od*NfHT82m$QvN^>%@MX1&`laKfE)G15lgRog z@Q!ai)m7_kgpP;w>G^oF1$hcVvw9XcBXbMgY$;Un*(j z<^D$%ZK?wuyA|P}?>W|9hL+Qz=dojS!3+WT6UKLWY>YOVomPpgWemrzw6x>Do?ILp zRx>Zm!UOsC_&|0Q($_yaO2zI)4>QsXAJG-w%_P2XHwFdqSy6GS?YoDGw4 zwu2xaumcO5L;NXg^d8!`FIifT2VK%-N!7k~#xUpSKY+V1dY zOmo!z!tMps@pP}=$-j2V7Q;_Fp);#qm78bSSRdrw5G9mxiakSNTIAF#XS%|le$wE# z9TD8|8j}*i=$sTeug>+ z^=uG3Dv@72_c0$HHv}Z|XPERKeKu+Wz;DcwHT@A=o|&3*6Uv{_GaOdA$11bkRxsey zzbK)q*Jd^H_u@aoPX{SnGr$~oE!nqUh;^d!>4vcJ>&ZB$njcblH|9i+M4@v zH2N)}5w{@=Af1=N9TQHLLlB4jA)*1Wcp~8#-^|h7MTuryy4cJ|sdDwpekM}6Xi-x* zYZneq3Vnemhb`|5^NsOB1?h7?`w}~cDY?l1cm1IT?}9xsY1OZiE4c*- zvU~F~h~b|#088EucHlngtUyL9w^1&0J*}XoP{#qM5q7h(~F9LYUwEL`C{;gb6+ydAjRr|{xLY= ze`e8dYdy+5m?=S&g}|&rHdvi}oMH$$%8zbTk(X$|lD{ToLpJxm!0jQn!?A2d6`v`i z|CXOh^8dZzFU4egRN@Y1;g|pPZ98NFKQKqx*j;f)xl3>S22m=D6VPI{U~R{_v&5;` zBN@FY{*D!qfy{};mQ_U#T+SK1{2qFr0eg{es)B}(R-)1?u7h#T@s8{$uV~+3Y9+9PX^48#3-Cl-cyd!1 z8dO2TE)(eHx2^H=ssjEFp1ne8`L3c<^R%{H5d(hT!z=fvPaaH9OI+ZBY=5ssYu0`D z1kZ*G*u!70vpNfaeMUCNPZ2l~F0gH5?N{s&b!{MIZh^i^Wo>tcZ)>KJ!y6C`&S0j3 zaxaNG7YngSq5G%?ohM z*Mt8SH}J6#48Bg@*`8bO_JLC;%Gt!+r)X;@Mf**mBrj8lg`&@b;e_SOhq{$r?om4G z1~SlVjBf+08;ri8zrds@2z;u-A|P^x9kVonL9R+sbZXObYi!531Y+?qM%0JAF^KH%)KZ_ z;A+=GI8t3d%UCM4Jg!r5Gim$;#Qtm8xSBgsKYn9oCX80sA$hp&+9KPI_B48KarqkZ zIE(@j7$XXQ0CC)(;qc=RWV5bdhZh2iP}9^u_#*a9r{p&XCzcVY>0hryQ; z`U&es^uz*H>)bzln zpdP}_6#FwPM1#|p{Hp2(!Mp3jpiVA_uQ;a^CG0X{(#^l9D$>%&0TA67GQWiB>-HEG zAMSZDS=l3e*u^E4T4g-Hm!wvG+I;e z3|xQSL>)ll$CV7s2!E_Jpr{x}(PwS4#CMnNcObYF(;+K5t%=9LoUS)g(SP9!@Yhk6 zwb-(NruAFTeqQz6|3sR(#c%!=jkDO|ZP&$=>{P0rvl~dfpkoz2o?KZq3x(1G;m{n> z_b`oh$=XQ(rmm<>sG`(PMcBBZ9xInqqv76MpW9rXXV!A$4i39`^hxghh(47GD{pPS zWPHj_9R3rJ`^W7qsopZe55O_4y5PGpewbLeQw3g>1t~;I(>|VYWg#>W`$}cLRqSO% zX8^bTW!NKMGG6~^hc~Y7Ro9jKx}*dT{3n0LH#-+M2)tj`XbKf~qdJE+Mch_RaG{o1 zmPXc&EA3b^bjQoM+1J`eKYjB8kQ{Q^uGriR(U9-m-QwkHnup6%!ic!8gNL_P&#F=s zRc|YvL*82QWH;gk^1AthpK-WPACv3)=*zxX38cB@{0}=CmQ>e`K}vPM*X(B)#c_Gf z9D8|=mM#l-t-o8ZVKt0YcAz6TAz4)ty2j=fRWX%I z#X`zW>-$98(gt-Ki#BuNkEW_k4qG zieYsfzhtc`AC3LpDIQ*RI&j~&=6N&?yjIVo$w6N-XmH{U{utdg>>{{Yt3aq6V!S(jghax`VWHqFHYUqm5yPVET{njhrt1>092 zx!zNqKVlR(!;k|2$Qb4OY_Xx{t5Vaiqu0QxH>(=SmX2Pi7Fa(MFOl%x$4wJ@tlrl; z!ErR`D}e>Qo+tF8E5nzQSv8+k4f6ubvZFTaoZkmtjZ4A7p3INEmeP`@LLLUA{CLFh zGdPl@m9Gwu^PI^r@t1I)4US_)@%qQn?u}ftQe`{XShrI)d@rm$8q*cNF9AXDVwbg4 z=c>i(@ydy_d^b)Zu7I5PAHctbo(`7u?sc!X%&xQfhk9j2%6NWLDXj0(H=X3Pl{<&a zfz#1(I;tWLdUlVuDu-yxgr!HeSKJ>ltbqjI2g-B4U~_X5-6jsxPvC`N?GKiTjqqD) z&n$fD69i@4Sh9Gdr=*_{c(Y_|?Uf!eFpIr$BB=-#f`=iX4IUSrvl_OnX?t(s8YMI7 zPxJ1t&BSL`snqAIwmw_d0L#x+qJL4R08I^1O=O05LDZCuI~6rWfKnGdS=IOAFtE7V zXpU(zV=B^k`^UamHwNIBKaUPvZIh-emLaIE9y2;;tKB%yA6Wo?W3leurqOh=wY^)~ zE02b@(oX;aHeGUQp;Qw69+|=`;%hFJB41C`aDx$)sUhBrQ|8q8rcHic1w=idEg+C9 zu|jB3tj2;uhYRh2UBo!BHk3a|gY+$ah3u7f!d)2$N|240gc#>fVWmfvNG}94FSjz$ zcHu4@)C<13nkOQd(cF;3$RZWKx1e13&s@)Q_3byRY!7<9-2bps;pq8a_m=s0U#FS2 z$2TIyXyx2qdLu<|+4jtHcI=(+>0Ey<%ShMfoe*v0_8tFU8fty_^1r_Mb76-QzlBEi z`|+>(=zl!4-YvH6UAPZw?rmb%&6j7Vd=YJO+p{KpxlM?F+(B9jZcl~QknD2JRa__k zuvCZ*jebC}07MB791rtZ-@$9=Cy?y3skvRkh2zgtm!HKHZ2ocFH{AWx${B5>4Z!sR zUlk{uAvN>_3JPZ*ka5A!W4CUuEUqI^cebA>GE5U!Uw!qZlAaeFkQ_5f{_;jw3b|TI zT%_U)8I}VMFkT(?bN{$sOEJ+oFORxVekq3ZqVEI!5v38?GF^#x`T^XJ#dP}$&+{cN zz5pA8G&Gm!@=k6+E3&kRDH&xn@!I~kqO?&QLDF|80)mt0<%-X8!N6Q89NjG}O>^yK76%c(O zLnVQ$S^4!Kik^d5d~YkfkJsW=(cG%GqF0Qjqh=4+^9x|1k{oUcuGBfO>~Yy9xhIw0n( z=ZZ+h#uLzRfvrQ#;XW`$xgUyiLvHB9j_>W%ex6Jr@tfAus!o=+U%%Xg-R+CZe!_Mb z;iW2_5sY$_NJk8E#o*P8V?tBqWA#~m!Flu`^PbN#n7>c(q(9`7yhPvSEy$8x&6yy21uAkyn{1`vG2a9-(lHzPv0t%ukRLhvvn&oCmpzoO) zgZ_*%n-qU$W7&xMOHpvuE_noeztwOa(#=5-hVu*NZ9<$0KVm~8)Z!bSzcc8;?S({ zO*K#|MuQD}7^`g|SM7>Rq@ppoSxpgfBfVyp%d_-^Q#I-heygW4!=iUc+DziH@Rr5%JABjvY64t- zPuiWqbZdR`-YOc^eyT(Tlw2MH(?_hsIQ%6*TDLIo_2~0I7OR$Y8^9mjP#_iecX!a5 zl^`x%fv4X?j99^f3M-Z*q&rk zYt2gqVg-&ePE5Vg4$3W!SvvMwf0m$(FQ;hMihF(E9<-ToSbD_7eyyt8^HGUz>w}q* z@1o#Tq$(d*gG97U5mT6-JP2>9C)X$zt|$*#70_&_7N0s&jEh3q*H-~ZztFNw2SWui zFI@}m@QrEj+EvxzWR;gnP~crPXj5ox+;4KQ-&q@76f&UM+T zwHQU=(J&?iLYAH19FUu~we?k_Oh`u46dH>Ds)nDR{bSrFIf2)DynG-3;2UVMG?6a2 z%QzKlbdObL>U^chnioaZmILB^#C@{+%Xti)wAVGN&Xeh@lXq5l)3z|MkTE?zQt~z% zP(k|@Cy+}u$`rw`nU`^E7E2vWO$GQ1iC7m)?yFOV5`0L;+d7Z!_Msnu5qRJx+R2|x zQRTrFb=8o(HBl|e-Hx1$7e`htbS=`*EE{WJ`Hs5?E8XjRxgcnXNFIbvp6AvY6<6Zf z(yIAYKITc{aFKWOr!anc{$8rWD`9`Q=Kkc@`xzVgO{l&XG_O@Tk5giG z7$(9Bo6QXyomx*|Om~{K2hCB!wVl#Fp_3Y-wW2RL?2Fw1yK5ftrwQ-Uu%53uzI|1I zVW?4|(5DW{rIWW5f$=OzQC+f8J6H*9D%IpRA`-=kDnjhz^O1)+B@14ZI^LT-fn_7D ziB65L*VB>Le>n1?tlZI12j%2_zQ_!Wo6evaQ2bnUtI{pVswATX;i4S%V z=11Dh-_VZSjqfWrW$*lGd)k{FMx-ih!)rG@tR^LmL+P_G7zUYFg5@ z>KgiH;@^ya4<#`QsxQD=Zade*>2=y};_uvmc-t5m7`!q;RTCD}GSf`X3Kpv67^$gHOq%ZZY_R@trT1`}ov zEC4T-laKS4+~k#*b-5Q;PI?qki)kGDYWd~ZXnOHJ%pt08Shiu~Z&z9^Dkbc736p9BV3fd%ubabk8wA#6y{e&TWe} z8}2ox%&A}UEverQ0oi<7i7;TIXF`wzOw*pu&gHQnimy;mgapjI47Q*o?o-6 zA0EMZ?p>Fzs2PeCc^;9F|? z0X=A~l7}`RJ&+T;WPt$RRfe?y_Ianc5#FS14?q^_l>vA|1(Xp)@5lPN(1wAmA60Nl zOQ6VZr4p29CzVR~_-yKEhTSE60d}XS+VJ5M@AwgfLf{NM(q3^6y|e6T3I4yvigM%@ zxvx-(M3%LLyu?2E^Z>xII5rTGn+mR(@qF$%3v zABf1ig&Xt5xUC<7l1FmV*O>US!$)cU4BwrsKL+*g8egra=-K$HKdNTMRWi}2&85x+ zhoz;pc23C)Hc&u*IF=hdD%}NtW;!-La80_@<#md?dv0K>)aFR~>g9^1ckP$0(vrhj zJJ7{2E*>53u5nPKHWyhs&mK_zg~XX#Z&M(@&*uJLA7uPK@c-UU{9j-HKJcI4WEa=# z|E87r|KRbz5By(_3FL`TZt)&D^=CfHWb3PcjUzXzE)Mt>^d|3r`mRXBm2eO1lIVKb zlm0B$>aiM)gl-BcnSDV2s(6|Bx#LIXb;uHx;B08S?*3#2{w!8>9z4gZO}zsLirq+?@#HwQ;13L zhV1-sxyM~Aq~~!BT%hQHD25W@+K+FVhVj%{14OYqUkecI+7dX%iIp#Q5`O8;+-5G& z_;-c$j&c8w26BwVE%x$wejoAH#LHUbcVf}gP5urY{6=~bl#j_y!r4TejAqsYb4!cD zu?+dKv?1f9Lf?s50U>EruaMvIz+Lq>;X>deZG^^aN)? zT!6y77nNrI5U2i{jr^&#V}T6a#?p~WkrFkU+2->p!xFNXX%i~w^u$WH`9m&S_b{7v-SpmhHZRyL-3TmAE^sX-$4T7qnD-cr5qj!!m$>OQ0m4@W%T7jrW=PmA9`dupGkQWq#>y zz=0JV9Xi7b6SX3eF%PuXqDrB!b!EQlQsBx`EAV!xFbOXKz9DIN;=0i0OO3y04qoHf z+U|JF10{gbz5)N$;>ZMASPe3*J`{{8OZjAVxMsci(PX^20IDz5UM@8mklHh5hqa#n zs}Xc?2-isD3Rw?<0v%;QmaLV9_8ys>ZZ0=t z3jD^@><8@Om+OagwX@#&#*p=Y_FPEAm-!H#(R%f7s`+*>px|8NX}V&`2*Ny;qxcw2 z2gNewrKQVQl8LUoVbAn>qV)pHB{lN|f5l^mO)y@B@@~1>uJRWZ+E$mh)r?f1vQ*-| ziIgtfvPAM>d9LMoq69C?8Xk$y&M6oAt?sar{`_~9&nsV7%Iu^YT)uNPB*deo5BzUE z5dkRib~ic335c-nYf)Hcb8Dh|yew4w7PYism+Vm*-{K&szd@lv)*-cEmqck1ywb-r zTvfx6yJRBhksX=f7^z32rlk{hY0f%Kl+Q&g=${%0NoUR=ka-Rm>iTQgye-?Y>;7Kz z0twDrAc2SBhod#i-xo@j{coGNdcmKc&6|!O0eErj;NO6`X!WiAa5d_H|CN7Twx0{Z zNr6$HC5O!h02JmkFr7#M&g+DP-2jcJb#pBu1ubfQkJ12;x0MvRo!xF2MHSYcz zw&f&LIf9Qu&GC3{i-!n+)Xlp30i|& z@@MlebAh1cOUo;z&PQ=I3&3(ENh$cHq`9$WCIT<#M|d#)9DnDoEHptbF<;j(^3ZMU z3Gm;+L+AC|FWUI{(%QT+9$$So9R=}L9Odnb%9}pg6&(JU>vf)IuMVt~SKsW$bGj~N z{3$mb+FkVe79MfwtGt}yZ?Whn{1EU*(7osQX1!QLIiSs*wb2@|-fo(E`yPlzSK<`3 z$j=`CCbCogR){lr7L0^yvAI3-S5SYQRPXw#)9Bse&I%gn7#I9WEyf!gaAL=v>+EDC zX>lB_Eh`CFSI98bCzk-SJ7yvds*pp83!UzvIr6Blf)?c%)Zp0cCMrbz+<0IbZ(I!`l5i0>*VUhabXUa`}rk+9Nrr_C=vU zRrp%0Z}hW%iKqv$brspkkxQb(k1Sd_6*^OIy6)69B99+FIh^>x)8lJx5{mz#u=^y(9I~n8c(v& z`!f6sbu(`|_mUC}as=2lYcZ~vesBT3Ma#Q91-U9lo3U()?k z?->`p{3f~lKJfpGU;htC`v?Fhq6;AaI|M@5X9{B$=M)D~BPDR4s zzRx17_T_%~T&O$BX>Kwmg)6zD>k29JE$V>BeR`8U_5_T$)>KadxyB-={ z*S=Yq)$y$d@tg&1SF;cc3tlt|Z%Dkt>fTtVa4;j0i-PqLkEwWJ4%R*vCjp0^;lB0RDlP`?js3*ePrJkmVEP1Rivmd@`q%umvrA~I>f z^3{P#r;Y_Qu=|-86CCUVRdmo#J-Iiwow8~6PF$Lgwv+zI{od42L^$Sd>Z5OA;vf~*b$YAGl^{D)OnL`S`wWg6wB;M=h zqv{ax4jhJ+94)FiEsa{1=N+n*yo8ax`v{E5$7h%zGd#s%1MoNbz|vy-xcYq{!iK2> z8R3Qx%LOhowE&N(){pbQ@%3eG%EH{1KPVSrCR{opA|e6`a>o=E5RoAQzrK^={rc%X z-RIm@l~x$ChqZS0!0l=ZP)lN$4m2vL!=9i0)<`^7yUdO1*#Wjg#4WUC>Qgo0U+A9t zs5%Y1G8IvbN2uQ7J%y)~w`Nd`F*RXE#U^^e)k;i5E}!-eYs+PXFR9Rf&z070?p_MJ z+6McD1#IHrR8kMDwRKBu2U%mBm`18JK+T-t!ZRWeeZt2c!H$9tx)~9=47K|GEv&J} zV$3-!P=mw2lSfWL#M$3_$;dQxb)d7xYI{Q?g}TSa61NK6N`|o8mg;&L3AO8cp~We>r~-dsoR)h1en5k)ygVxvghF`E?WFh!U*5 z+xLQC!A7I+ZNh@s@(iV&*qr4eB`WRF|d>r*&y7e;x4UtxJ@n?e@P-5ukDz~FDfwbK2&fFODM{J8%I~- z{GVvb^Em$H6H>x%iyH7AON%oqwZFIV5=6+wBJ3A^*3mQ z(gZAjIm+Vwzz(Swkjvc$XWqFRJj5*rG+ty^F!#cg)k|#+q>{_}lSi3&%AqE%35HdD zJ0sqAwcT)lXKKN77fJ_M=hW(KW-Uj-l>1s;a*I9mOQ@=4du8UUc~j_Ac9LxPD#wpV zMMdKWJvE2!do%8Yno(%@Q=SnPz6PhCIixAh(^JzN=Nmmv_L|WNm6FmKCYxJulWq zrarTSPx0IJaz}weHPZ#`RAI%Mx%4VZq>gURt+LVRhNPIH#){W;1DpC<$&J=nES@hR zidl>$O$-0T-mwY{p9f2D={osFWg};imXf;&mH4{KOyi?9W(2ZSG^$UH^i*uCk>!v) zjZ~now5qnyxc(aq^Z;7f%Z`ZxFQM4^F7C2BMXoyBWxZT9xhrByB3U-Rb~GRKzGv06 zfPg-tU7{!JP(@euAZLzq~{O8h=QHlusP zYLr04B4pa~;KpTr|9oqh=oOoX$DZC%uN?t+a+XEurT-SB0z5YK%KyIA1=^^mqbfxX zOa84dYx94|m;5ik|1J3c4o^ob{x54spiU2P86>kZ9#za3k2%VHRNR27J{MxkOz zc2^<`3Zj!PY_xAeL7n%2%Wr)sbDtG>$4BI$lhR58*oMz~w51N5jPb}hqe&Si;DcoD zP0nn6)#?-Zo$R`|(r~Yo;&13N|ZHI0GKT0_|C)5k`NADaQ_uKTX%0cE1 zP}*MBit2`y_zS6~yz!GdtbXl<$oZEpIGVpvgXXo3RBAsP7`>f15OeL*Ye zo7wQZO$jX(r#x}2xE%)d`Gzv}j^BP|47{Fi6cdOR+Tk63Ek4C^Rc92Vy;k)u{vySr zw&m6{5$d9BP!qTfuW(&xO(JEuUvF34}HJ19=&3VzLmmd z!^zah_@xxrKPgz?ojn_zR2enALlX_*L|9|;9M@|0W@%4(mYYQ2wH4So>IIJ$TI3M! z@VHK5SIW6J&+(e^EIK(#UT*X0S(nwXHruQsox4eFnv?y0(aktq5bNNyt&7>~4_q=D zt==SyJ>;R&sNy$%b%P3BiN957aEUtOtbIEVHUr-NimW3UE)1zq>IS@(NQ#iBJR2fR zXJ;yl{vL!AI4|UJzOJxq>v;gzs@51%4*QLef49G_M0NVCbS1>2FQD$!?NznS!^0;@ zZdFc;iTYezuAqmI4$CLKCao#p?-yDCB`jJ)uaB8NXqyY84+G zVSvwDj&&WgzAJA;UBKPA8eHF>y}7zK=US}pYWC$;`9wFY!mwXL1aRGY_!Yt5!=9zN z|G?c#42AW_PbL^iEUc9H{{$tg6S!A@VSdTa=3Pr(6h92Eq~+o`5J4}OICd^zmX9pP ztF!WH=f){SNiWd`=x~3G<-PcXqmc#Lv$@H#kCmHq0+X2yVx}pBg(BQ@aP9nbX|5NH zZN;J_zIu(aP`+=U2Q?3Zu}$1k_;{HupL6#zpV5B5|P=;2srw$>QU}I>6WBmQmBe=9_@{? zd}iPbpE3)eh6d~@L)Sm`xCGN!hd$es^NA<8hGO66m>nne>RUqZy;Kf67E~itRBy8X zbP{gBvs0erF+J+R$vJ2%>hgc(HP@Vlr<7RSqZtb90IIkdXtL>2umIsCALX+@7O@wH zW|D_yC#pIcI_G+TolUgvJve{kM4dBfzUSR@yM*qY%9Mu8e=GIf6{|`&(nNhZ>J8$S zwVWNPF%XS9JmFc@UVvpz_D7^r&bz9Gm$zp@qX&jR2+teT)6uJc<1pL<0<8lQsD-pXaFQeH8uRgB)x1%2W8 zxupC$h^BGv13cM(PRk{{u>*g@-_qX z?BxRo0D0f&iW@mwCa)Eupv%UJ?!{gL*|7nR^D-$qY>*+o2_;v*l_&5$C$=etD^><{ ze7>cB=b}npJTSfR`BQMi)O{A!I}g!8b$0-v@;x4v?T>sZ7!g0Hnm?4{&Q$wPY!1y0 zQJGsg=o&kKZ$9}a{=SFM7Pt2q_)c?8@xL^!kjjAQQR=n>x=@XZ`O#{v<#lHWGJ+Hq zp5pl2y0tmyKc>bzgL}C>sg^zlEgYN@WZL3Wrs1URcU!s|^*+tM zf>E1Hs>i<|e?4U>)jBcgg`7g;>~{bVn}M9iEYFL*ly+BFGqt*31K9B2n2G4?QTD6# z+#n8Er&c-pz7okcdRXEFa$H=-ZzmFW{cKXW;{>Qw2`a)7>IKH#N=E96#ye}Wh;yZreGnYtYT5q`oK%=xr`w+Y{)XH=^ z1^>H4-v{U32b1P-o(MRlN?oC1M_6xs)?B4&bt2)Sc=jz;!|zF)+{?(0jrm9$n~Yew zt5njn1Y-PJjz7S+W4_{cp;s7hE0)aH;oUqRB68xw-=_v&NM?R;m67U$W))oiE6~6{ zfqQKoN)B}~rT_2Slo$Uk_&uLR250_?#vdyd|C9^J*Fe1GB6n8#Bce!OHdw)J%3+T~ zMD=YTJ$zYs4@a4dYvfTg>U;lM?P)~TI5>GqWoi=z?Bu#~!O^CSVSOr7yJy8iR#*cy z`mu|C*ieC=$cQq28ROHGD_#S~AFHuk>gYdko3lCe8(SkQlR^-?!o!7ZLH#I;>AhTwF}rlVo8zl z&Dm|})o{m>W%u*9j+9)RW%?Sfj`i?-wX8K^!2B$IR8xMLNCA;Hod+LXr~vu!L|;J?iTl>4ELVl+$_wC6L;*Of&fMp`=lBWB zkX(Gq+_OHB-+|)@8^&V5ryPwx<@T49!t&A`v;V9l>}y+;0qaibux3!8+fjL^NJFsM zG$J-XUGSF?3H@y_ZI6UNli57Fuko7H3Q$yVaG`W;1jOo_Qf!*2Xf(hAK@kfJ;;U_N zn;E7;nrnt|EVIB`d`f6$9+2g9OW)(~%F3xCcU09$qEJyI^YN$MQJQa^4VRY3Ji?+6 ze=h%7f3TBySQ$KrWws%OZuepw230uw(3NeKpEbJZt{7daw)F*XaP@(IDVOGP2-s)3 zbN#@2uq@vJLQF2vT(3CW;sy=Oko0h20 zTMUi|NiyK0=#@#kfUQREAhKJd*iQBf+YrpYyf~>n?mv6kNP`m3B&F=)x1J*n^uDj= z6d3iJJfiNL%-_Gn+BqgCs(MZo6N4Zp+<%plKE+lj3-tY0K|>lQ(qM~6of90@|J1M7 z#PRg+Nw~wpQ+B{QwcN?mH|_3)&Vfq5#m+0OTDI%wSppb7GVH#;i|RQxUB~k%&(p|I zLOE5ptUopjronqFLA1{e%|`(%+;k%9Wcz*N|3!2lPyM6;*ooThgso8cM|?mfoXY@Z zY-niKtm^4l?((UdFF#6C%{K1^SO=`P_-4ACoeJODVydB}?{o)#Zdch^=e;6eU}{UG zy(|%dwZOgYHaA&OOs8dyds)BYwPbMqZ%jjdZU#z^!rRy*L58n#g#GOu>a~26)5K9# z^{Z~kSz8P&KUy&w?6MY(ynDV$A}D!?sI1yYX^>EE8qCFvyU!ywLP{91HVw&OTW>VI zL=-zIZ?dr&Dy!RG+-UC~s6n~>4MRJNx3m8PEKK$3prI3sA|<6!M(G3dM2c7T-uJ}U zw>Bf*r>x*pGdcZ^ru6I0_+OT3VC6HOk31zbv&$DFI9WLxP^D+o4N2XrYERqiU_H&a z9R*xXiPDV9Q>S;H)-TtJeHn_?%7_EBIH}6zP3?myUzZ)jKzh8dz;QQFV$}ieW|#oA zPQlZsn;cEPy(HeF80TZsUh;IZ{70cqZs|4(e`Z^8d20QG;xn&47DTVC-!qaViQGaPG_ z;D;*(Y}8&N)QTgu|EZ(D=zW~81acs%O@uxaabnkE2@-H5-SiE$N~pCDbunE<4Mc)1 zRI9!mgG3I)WPk&=!e*^r;BQGmM@NbswdX92u_IA^*a?}~%;Krxt*e<(6R4bUo(~t8 z*vP0|DA?rr$`1Y9z-R0AF84zGBhcS12$!SG<4bMcPbkMp-s5clQL;EDk*L>LK$#eM zO;`1eq$y{{x*G1y5tpQ=-OKjy5$?>*Ff*e^Rg*07cAd| zD{4PvesThtY(eG4)KMqEn_qxqC%bbpe75zDbNqKljX^E!EOA$sLEUajp33Es7j^-^ z#BCNp9^+1v*<`g%To==vJ}J0qjZsfR_{InxdwURX8pq3{WPnXjfE8wQ5nyM%1K)FW zp6lVifaDIvFuI$9pV)^Qh9RK*T&lnU{}4L4xSMeI3ex-)U?D)11Dvgb+RF@!@cr{_ zbATjyw?Z<8QnobDuYk}?bw{>+l>`)7;f*2%rWM%t9ueVL7RpV#PPvgCtG+$**tgE! zX3UKKLpmk7??bgc5OhA)u=|&F4|_|c?$#S%A|BUZuT$Xa%WU@O z{$vxKZjSZHGiz-dU}UKczkhv+`62CXP0Z*QHZ4E@WaK(e5gjozrS#wWSn3idsF9^u z+a#{OX%5!=fDdP0)NvINXncXPLwas3%~3VFx|;YG`w066Qeo8!wzV3x2c_hTpDsl_ z@N)l_t+@6oTSX$bVpSVQ?mer6dVo(hLU{HIZ~t#zfL=dInAyFY_&-Xj#`(!xzj-T% zB~&(ZkERB0T3Zvkd2}POBdWt_StXnI+~`eU+hZQ{xhsgm0!37F)h75HTlK8FUwHk7 zm+Uko@!U751{DR8Egao^)atg}P+=sXW%)~HxrAaPy!CsFJb zHiq_Z0(lQsHj(zsaV7$FXfC2GUwQ)5cDVh`jCzv`jywm>0#?8CG=BAns9#+1tp21np<9mOUz2(bag%^V}pyV8N%VwMj@GnjzQEfrILt!fxj6bBtn(L}6Ci%-qPY16#=@=1#)ewzSy21{DYIRtf(q0y zr^s4hJ^G!Zv+d5p6bd_opf&r>qnLP6y?Eu!HHzS_p!Qn#e>IrtPhb}ZDmYtysM+sF z-+D9pN}M1*L7*b-L8hD9fXSBfUd}QYpLvh#4@o%>w==kb125tN^w=A! zd_#9*b-+Yr9Wtox>TP~QF;YLrL3+J*H9)_h)r#g;G>>5&E&UuS5^toeY2cx_WvBsY zzQfmN1xaS{H2Sw1?{WWE7~k!LhUE5n#>4x#_!J>}gJh1i zFN|w$dnL~ZU8%$oS5jXRS4ezpMfp~{)FtGu__OeQ1`Dv~+LlxHi1JR+ZJO-^AJKh7z19BBo1w)=$f zl_Qe*nwGG$$;SA`r1yB`7)zDtu-q9Payk{%hx7Js5(PL^3bYokw^A91aC6Dm&Qoo6 zJpa|-NcxO^ffO<%e2m zDbV~r1E$jl%4=?#?72kFM@PgO57p}CQYog?w>7?wa28>&Us03H6OY8{A0!^wJouJh z?Gx>9cVQ#PBAoDYfvDm> z><|BbZZE8e=LiKs^{)izB^483HbxguLr>l=mTuD8G+INbBN*>6_?2lsk!A^uYyB|C z0GRb}?um+Q`e0UAu%1P|N(q3-*9Lh4jWwjgpZx_9K9p;@8qFC8gmSh9QPdX6J2VN) z`Le9R$&qtFHt<;+lG2lxY(`@J#!;BTz7`62W7Ymqs~k#x;$DO@a&m%fY_fB91Y$_%W*+{3@ikmuIP{&!1o^8cLw(1#t5HHvCki z(a7gbnP+2~rhLS>ZpVmkW+!+)rRzLXlz=?A6V9#$*-7H?awuLaWHbEw(!cZNjq~GM z{Hyux&;Aadu*+Xw16y(uC-tioH%G6=R5S#ZCDc7SxSnDzpap zE`kjoc6yb6PSE_-@=vW+6Ui3B-Cz2o1?`_tMPZfYAM*d@qs^ox1iSdOcTx5n0>iKsA~zo5%4`^YL+niLWfO7}aI6lv~sRzaOB zFvm)y&6w_Z2Z!5oQ24({yOM5Yd1d{BG6;P$v`0ilKtX1pM5U8n;Md=Z?C*AibI)3L z^zL`-4kW2mJx`^YST||=lt_d%Zti&-?|tNsH>_SYyfE0{QB>NyA6hWOAgcg7ZGd(= zu!dXa&E9%T-Y9yg=>ez7f7c(X6d{ucPeCVP{6m^<-lg@EplT`o$at!OsZw111?xl^py{fm=$xDN|`VVcl zHYR*YYq{Ih>uM{GdG4aoa>?rQOIJ;c9CYY!z=h@zxphcn^g;!@x#C*U)D`ngvpyyb z$Yb3a$+r(ZF5%QyFyO%OG|{A037OAApoVRb3L#3n*|SvVf`TtWuSUKT2Ws1@Ky~2Q zeOWD#ye!f7>U56@y}fO>RR2X&Obfq1X;SZH;hRSCPEziSdvT63rOiQ?WkFkR#SRH& z7I)kONa0Dn<2W2(N8AgI2jnAoHJXIN9_l=kND%Mj1lu1$RBa?0WWuMv%+}|ET}`Yt zM5S`)-?2b@P+I-qZF?{Qv}$Qp?=o48PJG)Q8bNm5kBUMFZi^e9yF^ z7-<%kk`URvsfAYc$<7)tG(6R0UX}n@TxJ&G4kXer+}p3iuG-VC^e~HEwxwkX@Fwfk zQgP;8-lQQR;f_bP**>) z*5P#e0{Z;J*!RdnOO{5KeH@8~QE6hRtMX*^ERDL)_-(7JxiXDB?g*({Q&YB_a=G8x zU#iMlOL-~7AGVFg`7D>1q`<9R#f$g!m~rr=@>t}4H;GY%P7NLgm; z)XWVG6HniIt(bUCT-EHXHlGds=!9)e!>kUHE59!boBOf$3)wg)Q@y1L!#gw_j00P? z2enIG2hNAN@#yT-?-u>o82xe2&PBjxbtOzUwn2(og6>Fz5q zSH>^&3a3hDv9+_^3#IUsoe?b@Dbqy$t@%d&P=E1u<~yo*-CB|7Bt)E&&lp>eXgs1T zmUSXZ0_Yt4%^ScAh_kjDP$ZE9mO>+~Lcl1y_RTY=5%iZFXnN)1Z(rSu9Gkeqk9t1K zx7#id8)bOj$a}3;&Irh03V}<>)s?~gEpmAD%Zm)jHt}$yFsGMv{j@3O`Cc?->Rx!* zmE@}IOe;L3?&a`{h*G;Xl$qGJrxM>h8FFiDYfOxl4pGg&*h4>Y*+raH}5DAk8vAqkSu1hf2YCm%a`zB*1&_p z-RX2%@vcZ(BC|Z^E2VF75>(qsd53=F%mb=pJDqW|teYmy3bTCl+Ja`gng^!H3VqEV z9HfY!ppYE`*ifY|m8JH6M}vzv|FfO$1F}z`PX&99szNdzS^TOcQNAh#EDI0xaq?iM6!4TrStSkI!Qv_1Vc9zNqK( z%0C`y^fGb2O$s#3tEHw^9$2G&moE|34nWbu>sr{n;}gT~gco1NvWd9st3xxK^Uizp z#+zbLT60fxJ}lYl0;`ebUEFk*`gsr3$#(PaSEZ$WM;8~L0TZ3(Iodrk>qPw$`W@pN z^9S13LuB`Y^$G%lmNW)7@lDy-km)1z!L3Gt#*zrPM=vG#Xmp{vSFB&1NXd$%Y^~{< zcGr8(xhgZGFYxoze*_n&*(1ZkhH4x$q(Nzm?MbM^les4^eyc4C{^F<@4Yil8YB!UW zbn>$GhD2#ju6ae;)m(JQ`oPL<3$^G1t>w9+8UR3Z@{B0xA!9-I$Jd=G+pW6l0prz$ z;7X6X+pD5zfJR>p6%E?IXbMfX{0(U9>WSWDCs^KfQ95Xfbo@>Ap>a!?>L$DrKkFl4 zLb){+TttCY-N8YBzpNEaU}nAWYU-+~b}7g>PNl*Ns$ zcndE<=V$sRQx-PhL}kqvpgR-aU2Xj|n?^UNSG)Z@U~p$r;wVIRG8#;~=)_Ng!*gq) zr+;Uaet?s#>Va5(o|ab0pX0$(2lQCF!k>{nM&&-E-lP$9a!Y;(KIz|8ZyB6 zS!2`n2t|Ao5*h$s%Zb6A4p^i=$v0(*H*bHSG=#pjXt<-#9kY88llEkL=Af@JfMUHN zLH{QegxnJ-(7%8IAa=|=(1@A_GiWd;0Pq`m7;g>rEGPNtx#rY?ii z>cJ1+wofwUh&Q{^<6oTdRkbjD@4eTo4^tk&>E$Z`Qwp}GP;q*eX~{QstQ{`dd?2K-;S zm1zR@1deMz+|VwJgI|=MPvh1@rBE(_c5TPmgNA!YGM|m)%gQ!l3tc3`eFp72H2oHx z`fNC_GdkTmva1vKYOq1$)WC4X0igdco~#L5pF7$kTjW3Z*&2l?MAoPld{D`Wi)WXq za&3*MH)%qhRFDgh<@U~R-g-3Jpmq*4I!y$^!nDQy?U78j1POS-d;L9}wC4@IB+D>< zh*;jw_)sWPgms#FC%CN<3Mprg6ddvTfwk7CK-XZ9af)0qt%2wn@tFML;1WF0Jl`qb z5BEv3Xce>>V++98RLcR0Up~aUh5&e`isSjOZc6x(^g5i;>vN&CdQq7Y&gys#&jD))r(O6k}2kA-5MrBv!F%f3bpIq9*t~Rr~8f zk2>@kz5Gp-HUJE$)$B@0n%+p}lL9})G(4jywH`qIB{uiz<)jZa8CnW9;cPxrpw9;DZIbVO=q{O#&+mdz~`aEdKH$U#xac7B=XkCqD zx(RaO8HtLDsV*DB(+d2h=j(M=0%OnG8|f`n6v&kRE@)ieYLD?4Qtg3&+7#l{zMN;2 zi302aM?*saby-LR#J|$7z$N!}q^kGv*N#l|*Ajqc%#0^)Mz9r+cqzf_^%BeG^*t$D zepmYi^&Fjf02~v}rUZ%jduWnUH!q48zAB~Q*5`=G9__PP=WBeW8Fh1ze0>3Au~m)P$+{J7Fy`xai`T1_pZxk{O%Lhf=o%)`36?Oq4ivd zRL_9(FZmBxvpd+4r0YQB^=RPHXR>g06KJ5yLaSJVe65GXSKGeo-<5*csZ=EHelO(m zz?mA;+tzGTx?5qj&`eyqRyWwxDQgQkZFR4@el)(EsrzT6xibkj@xiouqc z$22Ke7iU>8V9WFGVR;X;y8|{QnRM#U@o2rz-+*^4tnCs%do&t}>|j*zJ}*Y2fcwkB ziMOiJnGp+!-=y7};z0#{2UNamfFJ>k=;0L%GU*IXl3BruzQu0`TyBcOA-YF!xaKYN z;()@rz4Gq0^YY%R=j@#-l9(#0T8!TTI0~h#6|lKcRS0KOm)2j(ws=Sx>w8jLZKvWp zY?{?apdfAGiS}?>+W`mNlLNkd3HlU2@E7)Tp*h~8_!Q5zBN{pG_Nt`!f%sPms-SxA z7Z7b%J>Z+|ItW0UY+9z5-+&31qv5?k<98ua`YYL}gHCu4$8C$3+LZvpD?iG0&;x0{ zU)HqhD$|yGZS9KK2>Py?$d_3-A)K2QukZIaOil+mwT$}+8mnC?aGu=~Y=S&GF72-4 z^`R{@e_5GG&r>9OTD7Zeo4cn#v9G!jOTfb0O@d%`I&}M@ph_D2!mto}k@Zzm;FTHb zD+z?MEw#q6iSXCG4yj(V-(94>nQp8r^iuGl5bPz(Ch3pG=%>YK>*#SqndAo{ACpME z_NJ{ke8Xeob+a3Z)UU9M*ME?BQ3wZ+<4pYIB>@Cj9SDHE2k!m!N#v@=9V>~tUgkN# z-a(0dEC}jjbMPnYRJ?UC4^~|adzSmly|tR%6KQhH#9OSos!9QqQ!4FMwHPu)LP~4A zd>6NH(3eX*30_)cd)T!8R@b_DYgIEzUraouIG(AQ$iPv-aMp479{n8(-HCVQ(Z=^* zQh#wlN5!j?&jsIKst6)!Frx|_a82vp!CB>z-xDB$kTfL) z0U*rEm!rN~3XSqO-D2GWK*@OpdYIZT_fyn#bqGZQ{3^VPJCH%btLj4s{n1}czuSxR z&Ex1e@zN43gS#?WFRY1-Gvwok(w(}Zc)2Gdt=MUzO_HiE_wz~C#4s}7tR8Ua6Y`o` z_Si@s8ZXazQtGY6FS5O3%LIJXo8A!MAL>qQ5kMCZAsQ^k!2DX~quJ{P8v>5dKB$$l z00+H+Z1@%fSmiLYfb|&^lo7e25sh;G*ihZZWHIBxOs2gcT+$?=Z9wp&hDWdNmxiR} z-D9X7*PHrPwRY@}0N^K;@wQt{SlVl}g=0E0??sv=*MTi=f7WQDHm5-t~@&J+K@a zN;3AeVAE66)LTw+5))-p;nlU(;2dt&*W0i45BIpfX-(4=%mn%3UqUoIOSaJW;Y*wN zKsy*4T5qW%Aj;TM3)@@`(Xpl zaiU-B7JP7}AHe7*PZd-mcIq4 zs9(EGzNEmjckTnDP(w2q74>mx@JcTJ&=r7P?rK%Dw!2OjBE^zkRm0rVxA%@X=Tzqf zuW{1U%9+(UpQHvz`Wvvpy#Kw=i@vNUHg-(^!$)Ev7I2z2V2l*N)mlD3prS6UQ;k=C zjvPEJSkL4UfiumLYWWvStN?S0IZ*TKl@}74P_EUV@={$yvZB74(;`4zP6{7?X}ZG- z24<|hqO)qWtDj;)zoOlzN5LGH0NeicujsSwbtH3FAGxyKS0^U}TGrz~NqJ%ARN-}j z&&s?zHQChPtMJ0XhBi&xM@ZA2b8zzDS1UI@s6JvwDcS8>{lSl)CKiBbqE9>Q^AK%l znE9v0<3$#XJ68G=UqIgFHL)HCd;%+Oh@| z(Drzaz|sf8GX=beb|=iW1idp}!>_Y*RRJe1mq_yg0(|hyq!P*h;CKE#wV@xOWzpU0 zQ|#FL6tq><=j8B3QRHjd(ASo1X~RWvXa|LBtPRU`)v{$6ZbM1FkCQi_<=4bpMI5ar zxy9N0w4Sd1!^NyR(dL|D1oX;RX9-0Wrn zD|W{lRoHKkYU;u(wKw?Gm(idh#!$}ql>jyu0_DQxuduE!rz$kHZFR~A=gTQ-N&NM> zA%|cb$N8j;03IvS7G&dtpsfAjsH|;|?F^4sbgpa8zRpM3ib1RnKm>s2+qjl`eL{}) zfcCms*M7$jL?L98d^6#~{^gpz1lfAw%g5SUuk|&kcQUi%vzBWEIcE9M9uIOazB3Q0 zz7<{(>kF^OSXp0Khwh;@7TP$B;V{{Y{p-n9OKQfR0(o`vM}d1HPm?)b?7am0{1GFv zrR7K|idgThsv%;bisDsA;~KG91a{X1V3*jW2*i27%_bkV9}xK^4*TxL&+(x7-z>SN?3w^5va8^e@?FI^!@stCw`_rdL)2WUy9c1>ufz=?xgHLH|b9w{?DCK6q-2$ zN8-B#bN4A}c@W`p%(Q<5&~`-X@%#h_l=K@~V<28d@dUJG_S=+Mf0Ne2OVP@je~I`Q zO?7`E*(L`Fa$*LNgqTXMrsUJ&rs5Gv3~8spmPfr-9Pg@45iwf-%~6<;>)4n53)1 zf^m>K;COgRaKysKCgK78RX$M!lN80~vD;}=vAcxF$WE?#nlVoLfQjDFGXn$_AH4rN zc>XtF`ug_^K>Yg!BL3Sii3un=rZ9t+{1oo{f@hlc{0J)>t;OIb!meKj-d9|f(S`<# zrw!VLgqO9y1V9{wta)jL*2KiOvf)GTnC?z=Q2B-MzMisCo4VVLaG7^R7ZFX0QEpW{ z3QT=hI==a+DLX_l*#2Oq6=UmsX~nC)gugM*364u75y~$Fg4U9E`Z#X9f80B=)h2AL z_0HZ)Y$bG$^YlfV*FsLd!3X6b)@LU5VrgY}9VzKO$H66TXuKdc1X^!jOuL7JTrpZX zuKH^oRi8lyVNy0Ioy>c*w>=zDc@)(5HIwEH8lh<)W^d8>1rQsyvXskF8~0i4o`|9( z?CmUC_t%E8j;(37Dlq>@3c?aI6Q}zI=7t#Ut#%b&b$w3R_CQ6p>_JFqmX;B)h4k8| z*FkMqNkKdr>heMmyWh}@Ij}}GqeGw#`m3NxU#H^kAQX)4NCvj322@&9YnQ> zXz59vpO`ddOcNOELxevGkea78%_iWLi%)w;(Xv?uQF^bWg@z29$ju|%kQY+fP?>E? zuSP&tw^&+Ue%{OH)iW>b=y6Hf$R}O__9$-QoF5kJE0BeLX%=_AYyj2))a?5XHU$o0 z+L>4Ok1ubOk$Dods`CVg))Bs-Cn@McqtCDGwhzi1mfSn?HCiK8#17!Qc8W$?`-O24 z;KV8vOaGbk+$`9-TK7SUA0FGQsKMT^s2Q*8uq?idkFK1ySXbUQI|rr^!Ap|73-+qR zYO(^KVQJMaHjhGxW)}h8r0D|-Rhl|$S=r?@83QjWX>`2}&1N-&0iEBv(q|O-Ee#gS zAh8p|`sE?+a*$ow+>5$g2Y=bY&-EG&BX7x~sGHK2)1LiTGb$eC{xPMMsHj8z8Vjv@ zQ1pCs#}>3K z&~L!-%HoN`&l*tJ=npP{xZZR?v~8>7?ggqo3zjx2d8dsK4I;{hM&kc;F{P_d^h- z7pJzBrdATDb|3~sHLY%rGG#M#uyz?O5uh8|9qnXm+PL^EOCl1Zq2hTj!uR^~dLfq= z3!r`q?#?GhG4Q%~+I^Zhiqhep^zB?ti`OPlMuL#C9ZHf0uh~Jnc|EVoxl7#yU!ajM z>&wx2F(<4hjWp}9_)ran_; zV6b>&Cnat|RrsW-4Tfoh=qXv~my`h7YJq9PcQ#fUNpkUPCv(0Fax)Kz_qeyH z-e7zFvK|QE5@C9(mzH4?`IPdgn7VxYfc2&K9;?%7x0{mI*fQt=D6goQ$;K}nakMDH ztQ=%a!%o#b=tL<2#jrr>CHua~SEuR9oY#ngw6UJ%?WPrZ>`HJHR~^rA?oBC*P9nh9 zX@i-*VduCnZ3W9mbG|oIU6}?*Lr_|$mogDreeo!b#0TcJn;DU5KS(S?=fL@-z*_ z2pQgi>FLZ6%HQ-DpT0A!LOS?`@?bun863Vt5B<2KLh&Xd5;@d^1>2rMl+4BIK~t$q zA26O|Q)uro;f00pnomzV9$U%YwTgO&V02w+^eyB;E#CtQeKM z8Cs;?V?4(A)TyQ-ptCz)#^)FW3+!J*g3!f>&vUUiTQWD_q<@&NQO)48WY`zuTnqAD z3C1l?{H?L7fiXd9ua<+pc)Dzi-Y+{}RE`2vE|DT*)1n|Ip`fh7-SRyYRXcDD&E)iP z|Cu9jg@vW4$dlwLLFYsBC{X2|Gev^*3i-*Kb*~NDy`RaHztX7-%jE;RD~9GbN_=B* z!GX#ybo~6-nzH3&xgG?!vCfb0R=gckWe)mC%PtKcY;=A{v@H24Q37I>>Px1+YwBm`UE3=qTSp*yod%^Xg zCD<3m*wI}7Qy{jAiAFxpp(dQSq3sp&NfTj13hxu5IJPJ2&ZsXq zZxbyPYdc{W|8{j_r$Jcm7E{2+3w-&qB19Jj3slKv2flD+Wl^K#+3dBK50W6*?0I zRSUe4&ba9n7o5pf3nU(Q-L1p=!|p9KK|kJV$$@DvHNX0-i^OHhioVEU^xU`yN2#fN zxrE1#JnWC0Mphhs>IKdyD(z(AQ+7qO!XeI&*VpxhP}9CL<_ZdJf1IwWlI8nz_a#26 z1Jx%xDQ9Q-g-Q>7%o8?cnZ@eP^?=ir;u^h&Ly0sv9&~pDn*m#ImmXlDqhGR7#N}hY z#bU0$Zq&K?DlrbBK1##sQXGUsqN-AGzx&I+*N@xqEvNRoZ@PN29MgjDYq)=TmjE%& z0LZx@M`lYmLdPuPx9%%5Icm3t;ri~26ppQV=$T(N%A)rgRWWzx@|@eU!mw|b*?ewZ ztB51XW#z%xGD^or3SmfM|G#WS!E|O#%FQHOuZ#gA#V)1nvKxsWQ9~M*sec($Pjccj zB1Pp`-tMPJ+qjAv$F9y>GtqT@kOAt%uh_`%I}mI9%(^!TyajLI^>C%PU%D`4IygI( zhwsng1qfzGKOWjmAHHNaduh5dim_@twmU~k@&4})+rh~_LmFe|O@8d)nKKv8Yp%hT z!T+sq^uoD`ZA~5E=B-&4hTFLxfF8Ccvqn3B$!?h17;G4O_+}nI`8wd9EUMsJjj4W> z5%y^o)mmqef!SpCi6Oe##7eEksp zx5&6QVBJXe`&`D8EzTa8zY)&6 ztARV1L%Z2MNpZ?d-=d|>;H@E*)twn0~8ZdfeJtYC6(%GAD zifS3npXx2lWpogS#;C*Gy1~Lhd-gcFrDyYFr1~$e;f)bmf^qT#zSS(*Dqh3U-gvs__2uMrVdchTa1Yw&6Y!>Fby$d7 zjkvUx9$m5%*@6nJ$Z8mrhX6lnYTf1WC4(3Ij?LUP07^i$zoWNUo1bx_&%%@kc?i{t z`KgIP)O&)~GR|RW9K|E{o%AVAO2|-)h_Cm!yqeK&5H|KXkT3ck=-)@~HZZT?$4;cM za7~{%Jy9Z)*$P1&l|&o*lQAXk??Ezl!S8^^JtK0Ad5z3vFbbB9XK;j*^Cr3dxB9#k z1F`h3Yg!dYmT9aI4Cr_B3h9iAD^cHUAT=y9=*Sq!3siGz3WeBm)JC@^Y zL(QR879K2#g1-=f^}_(DzZbex#fr4OCL>b{Sl{L87g#3-jVff%LklJ9vEwXkub;K; zbF!`bE{;z!SjPTvr*pP7oNu@fS#Gw!GfwVU_51lY%gleK%09e(WP^;NN_whW_+bar zx%fwlyf_@2j~0^PSw{`vV9IuZ<3Y6cWLau3yPijfWh;v4E_l2aktdr@^T;$ z*b{->&o-R4@IDFsR3>BvFG`Bv5Nv(4iHZRnbebSpFE;npmj2np4BVOI^7Sv{i-)k8 z?wV(6h9Pw#gd+i&l1r|1GrnBu^k$AfIEQyb^)n4t+)u>)&4HZC!L%ml~SJ}^Uu$Y>wCp+c7o!>>tZjRXlxrAE(82r*YN8C zoFhtzk=zJm|Exm>1DMh=w%*MKbAFqR|b3i+2P{Qahu6ixNE`2ue!4q^p z&mvoYEjHk&-!W(3u+27*c}@F_-zgN0j)3}f4ABw4{$<9Av-`$t-~TPk)3-dd`mgLX zxLk~HE`9u>|7xP&`!}7>p~*4l84JwCzs~gbQ+X04p?_U>SZrgF)cas#BE*u%FBz zQ7h4`7A0GrLYDX%W!=s3mptanBh49@RCpvpVKOZYSD-cWQH23E_s{5JnVXGib)pED zY4}%UMtsKkT16n&)_D$^n(&3i7=L$vY}7+nAq*UgVZ?G1pyxz>Q+4U!em_P{ zcV&{myZJUARr<96MRt7_C3^cfw*=*f-8Ti znIZ6;s4*RX9PjERZ@RuF^+M+C29YzE;ZClyK08x;j2YZm(lb%n%TUy#Y~htr14JFa z00 zxB0%)(C8Zi{%XgJ&Nlk!U9p}a-@VA`e~Pi-F1 zsj5JS`K|GgOPAH~uJ7gQZ8!k($*WAgfU%p}gg(jFr^HXCERn7{Rr<5flk8v@YFVM@ z*>!mRQr7T+2ZFOf7EM5y$nZ%hQ4Z>H(a-vzM|f!}#Qct``QO1!cTMeR8DH@`E8!@3 zx*)JSyCYS6zS%jLpMkd_o}~evQe625NX1f{VmZ}YgLYxD|JS){H6Yl3bEB$Cp3Eom z;rN(uu;7JUVbw^~$4dWHfEqB9zi->Hj1aY%)(;H0l?1IA#$hH~rSY#?GLhTv%kMbr z>pP`)jUD|d>&OIUZ82`6fr0ttV;10*$_-jeDK!j@Q9|ZcezTpP@y%_MX;H~yyhB#B zk71+LU(0s*%q(oyDih8Eq&IdfJjK|~E4*D<316Wis*wdJi)<)5VHEdakcDmd84=bG zgf1k_0mE|P?JI|CeYU3+!?AF4hd1Z!sRzCgY2n4Z9s>mUCXd}ktLnxyx*S~M=f8n~ zqUP*Pl&emZz_NQ1#TNgD4h?QO+Kqox6r0y8U4w+kLI|V&CYDz_n-G?_wnVBZ(c(Ri zo|tk|PU*HnjUnT6BR71Q?-g%J`E5~Lwq#c9ki22$>%RR11>VO} z-ZfcRr7!TrsvYw1C~$39KN%oj^|`)GZJ*Kko8-c+Pm|wY@{t{A@bvk{3~!nlHUm5QID4>G-TJUY`1LQHH|+hci=~WF6z$?VAS;Y;W?CaO*U!vFxi5+DmfL zw^hfi&Eu~!jmD7*<7|-4=b5Qr!5|koJeeQaM`g*$ts7QZooxqmbUbYo>6f-T9@`yAFwc7ajF{7&M=a`t8_ z&Yb(56l-sem#cF|IPhTRen9p&)eX}9J6ph>qyD6yLLTZ zZ`*nT!fK~HD1MuH`JtJNAjAtsmA`-e7a~|sWXlKC(cvoSA2DK&eY`*#cAn2ze{_*h zJ=_A6KB^FH6Egct+9>alFN}ddyDH;tWokqwVKx7av!0M+yRNs;EiRU8%8T&|R|c13 zRU!*)9CkDoBM!Xy9E?qM*JcLV-+Z@E?6y47U?&rwnR)WQmXc*LfIU8mJ zvs&A=RKGPj1)mt}o0X#kqgi_}l6~V*b`kicKl_H>;PA-y@C;IwuEmeeL)ymIe6bHL zCv_7Yk4JH9Hw@!rAMfocnlcL}O-7@cuGC&l#M0%9bcf|?^3~~xaScNTMo^ozUU_H6 zsK1SsfZE5JR~^&qcu)>kc>ubvX=e}o<>*xzSZEtR)hxa3n)ig`4N$aH-_G3 z^=D!T;^X4gwy^lppTj_b9%AFxW@7C!9+DVA=H9yfx-5Vj^wAJ|Uhw65LQ`&ho0(Mm zDVO6Gj;^oB$c^!Zxh}kld8eEN=cq;O1;dXX84t1K%i8$JrS;BkAeDy1?9B)Ho-#gh zQ#HHZ-H?}q_?q@+9+tCL(dotr!Md--u*ogW(n7tPUPQ`UP{~abh)w((V?|Lk;Q$K@ z=zn98*njl}=No&&t4ffekpLJ8mw)Sv2i1-uG~z?;-DH_4osh3hGy`o?PwL$0NFTsm zWSqdjn@0Y=L$R2l4(uSm!~OE1I}^^Q9dEV%HyjDf&Fgw4`V&zGeamI{Z=WEaFc=yq z-WD3vyla|wi-_u1Y=*>#$FgXQ8>}z7dLz5#1N(F`o^Rtiv?_1^G7lr*8*lsFlxb?K z1^bRjF@7@*W>5?ADK0tuIe&QyvZLH268q>RUm3+1MZQ;$`ggM3JsW9eZi%Oe85;YX zED^+#SW|G3gjT#|@Ku_Oz9Z`bKZEyqel7NA^Qjw#2zJx(1e1-LxgSA58NSNKXljRv zigt)~_kk$9!n^2>9y?~7xZ2c$){F9F4*hnoUC7^1$^saE!H~dj4OQ|d1*y3KOLHd9 z2z2~HpC#6e967Ff15A+&_6v+c1vZ{qqXjO*s|Fqat0ExVM&TUAxcop+`n|@!2zL4y zxXiupn3;Eg*sBgyj=$7aei?yUO90I-$b>B7HP@x&9woV;g8t2#?ako?UxMO#afzW& zTu@%%91qK+DzWJO;&M{9h-mlLm^!~sf-B8S{}#JAL)&ZLJ3Af&5tziqe~$jBG4Pv# zpL$U|VC}o?kZw`TUeK6FedlQt0ehi%L~=9A;kL|fzTEZk1r5Zca3hk*Q3?dP%)_*Q?&;TpN z2w$Ra8ZKde{P5aI;GQjx3ExLa8b2_)fgR|{9xF*e^4RUi;M3G1@$_eSea#~f%e)Ev zw!Xp)=!Qg#@&o@K`Lwf#3$iD<3Tm?6O6zbCZL)xn&(m$l)4fnb8yLLPs8U1Cy4y^K zFGp-#&IjfSUM57(!W4@dek1L~r3G>I(s;(7UTMV444q#TMw7CL96m*Z2rjQhrFhG!gL2QP$+=O@0u-x}=l>&`9XS42wMW&tN$S$%fI}Tjm+s*L>|E<3QQbaljgvaBBK( ztt%&y@6kOvIMpKtvwG_FyH<&_v-5;`g{UrO9I|Z0c(S43N+F!B5dR&@>W688y^x*x zY1xPJX7bU#?9UH*To^$li%~trcQ1Toxqd-$t305#;-kW&0||~HnlyqUx-|>)Z+2g3 z{_6+G@(deyvH5(2eYucW9{tP^(ze%UK8V%b@eaRxD$9|C3##-YFYQo1$jSDYy(>*` zoo{K!jhTtd67o%4;l6fft$3fR*v&8K&47gMqa`qzf68r-=4#hGG7;Xj;Xv18JH7|G z{W#0}c_ZmvUjBw`d^Tnmx=^CK8loMK(YzUIp~_v%4e$yM&MZr94zpzV2SU5A z6oLmIss1dY@3Vh{7z5)ym++LtpZUV~pe0X08yP-cKLngyx@SKqP6agfeK=8`w{qxH z0Goa3X&2=L*46VNZQrs~xYFN1MYWdaIEiUv^)`&wyjb}mQL-$riOKOrGw<5V(&QaLQl^AIr?GNHYnkF7RR$#)0; zcC(_BX{F3)jMS067hxYlADgfbgRv5ztJ@zro<3R}Pk_9?cNnP^6gi6jIX*VFKtDLs zhOVmBUTA8mrxd=WwFiac;Q96}3&q*x-J2htgUt z&27eNV6QJ=eSU0iC}5`9L3eM{u^o&2Q93=L^;&&z0pfPf8eQ~dnAwe#=B{!eeIuNkz-DjOj2F)(RAzUx!!mq!IB*i?LKnb$gv)=2r8GRAn40YO4J?$4#eY`T z%7kd5df@%`U!P(|Kc@@{)bE*3qfGP2C)~i%j?Uh#AiC)5iyq#l`Cv?@`373Gi+8G- zgpO*xD>ON9ZZ9#|31j>vKCqOz8lAFhK?sgLK_1Uf*n zSZZol1&;tFCx@!F0OwHRi2d3eHqXY-H_E~k;{y}2 z#l8b;cykV(&W@LcJv060Mj-+;7E?|5a@p^p=mw`PrFXS8G_o5yYGiNd8&o0Qy!-K` zXFi9!`h^mQ8IpU-#NpmzT} zfvU=4k-DUEv#ntmElNc74sRA59kp5hi$h3eXqVT1Rx0tR$#BFc_!XN|1oa_RV=2`W z5WZpduXZuzYt6LCW28v)7dX;k9#fNw_)#R7@zzWp)P3_L*jV7L!@hkERPYU^sn$XE zz?oNmlb!b=3|KEXX8DXjOj~$ESRzYR0VV)xbxJq-)+?GvL?xyu21U+a z^O~p{?+o)56WCD0cZgN zbkXs!`^Ig=_oq3DFEw=^NyEOJFP}69Y3EPozLAYO-q(CyIc2A!3KCwnsiVPBV?f6Q z4=CkUhVPS{@~O+;N(`KkGZW_o1<_7%254YvN1w|U_y+|x(52_bZ!m+ix9f}CivP#j zw{)ut16}^048l8MczhxvMnFMlAVgjwARzGTzvOss_xI=?^jf{{;113aIZ3K&?@HCK zgn~U;(o7z`)~Nh@Tq=n~wFW-GpF$&hz~#!g&UV-g>0arrDrhHfOlyhfwgh7e))Yo0 z^&8KFxf6r^jhOh57^xS*c99;|$&ceh3rlJS-TzSj& z+}I~@Fdi&SBu5oU>}-23i=N2^7sbL9$!w|PGKge+xnWh{ z6Wn(lADKWMKEFAi$=XIb@IzGG;1fy=fG9ZepHGPv((gqjy*pN7pZ_ijiKm~ql*790 zR?WKD2$kF(scLp2i(@``CR=noMwj@6Q-X@}wtX;uJT@Es9xPAtx`=r3p1!vdJbXwJs!*!?YaT>wJ;Mwb8r?!9{c82CG6qth-vlSNjs4f98 z0J_sVqf_ikrr&bG+<&aNj+f%iZu|76*v3T5V~A*p_OeAUWYg)!wycy0rv}jUao3O_ zaf8jcG1R^5e4@QV1G3KOUz%m;iXyM^b2>hj)qP6ro0VTdF8L!-$e}sPzfJ0EF=M`x zu(&BRYOMOB5-?1J_H%EQC~@5dtmN;exRm%bNlZ(=sMd^ZwFr;eZg`%5uJDs%hHEoV zf9DR*8S)v*W3p{iE+4*)MS4@U{`>9;9zdgOd8+>C5l=AzAFmvTFIH4Kd z8}%l^Qu_U2$j(KpJ}HBlIc@@VU%$%JB`S^;|9Bc0R#Q{tV)G4Y$%; zVNO5y!s1S6n6$0E62M*(EKk>mZC;0?2^*+C+k%h58@1j+=3X6c37o4J3~KQ}jFqOj z(eSMmDH9So#+5CqtZ45fV2<&8Psh7jP2nO;Zm`kvLRiWfRBz&o;%@&=A{Ly{;-jhbk3XO%;K)a^)gU7g1WrR&gn(6D$wlu4=Mi zTOnIbU@!udb6`5gL^<%OSS!HA0l)sR4YY+T;w8l!#s=LME&^u5(Bo}~Vypis8>kw* zlln(w$oZZhTTEm_GaN0rB>{^)dn4ktuw6*LAz;tA5_9UG@lNFR)?ph6 z#X@LRzU#{e?{p0>iUKu-tA@VB5M)YJTHvoQz-Zy5*ASH3O#n8Qu&?0a*up}{|IhT6 zLi1JqcY0ehcKiAH8+T$*orYZJ>pZ(9T;|&E1omKde%-^5^-r*l;S;uA|6|P3e`ck> z5B&c{ZT}Nrrbjx;0t@4ObTs*VQqh{pyYVl`esgUH4urz~9gdN7t_m%>F@S?BXe}9+ z+c&}37|e$(;p*~b^cKJU+Lho%r)Fj`M_yk>Rh%OZ?ecnC&rmul{mnF<49!y(mye4} zsii>2-LEeEx{OV=l<$-C`WA&w3^?_?NAn(DUgfX_jaC~AD2yl(VSv4~j6>w0Nubp`*MNf^ozF%v@P19UOfPDdR6v z*RVg)XZ*1O5xljBWu;bJS`s!_)m{qxe3qU0E${|z$7T1D9Bk^H?0Sfcx@ju!Wkm4! zLVW&(X&2-ft()U4^r)v51zed&ySx^!Fm2a|a(Dy5LH}-V)e8r>QH3xqA&NsoPwU7* z>R>Var!rr9CJZV{$CvBJDQ~k%`0b?68~gmEl*(Ma&r_28>owa1CfM;yODd)C)@T0x zS!*vSUwL(I^HFpQyTFQO=&7c?5fIpK2@H;1Jib7#T@*LR&rhD`Pm2CThbqu9lLF1p zfw*klnr$~ZGRYcTK#9)_vKiG_wr}!|%et%d=bK@j<$@?XMK290RT-jUklN&Y=l6j_ zl344K_s6)yfyLenK^0!}LX?Ew$V#vDda&|IpemFr#;89iQ^a8Gj3LFd8!sHf%+N5n zX!p0Nyr$^@U4mTf$%X_t<#j7Q>NA}p@_a%L zRzV}O*HMP=eM$sw<^X``Tf|}EC1=#+03R?G+39UJW8Jg8pe4A)yiCg^`tz}BtmD!0 zt}3JM^3tOO;I={;7Qf_iG!uH&*La=?@Vl9JZC!E~F2FmKO~Y2wp1cdj47-6V5C$){ z-+FDam%K^$`+6Nfa_pa*wNfkD*Yu>-Q(t03yS)sgs-)9JxVdw=;N{FhH0gKs6&}+f zkJ+jx0od8b&;|Gu82US`%}6^{;Ppm~v-p3#6=GP>EE9z1+$m9{k73PRw{|#?BmEee z_;!};fHHg%rp?mP(s$P;N5cMmO`c#OGq_%>ewO&U$}rCF1E0U$m$9ZMo^QqxSI6d) zPowZn$D45vqt-|VA2E^$-`ZAltQKC|uKDPxtACWnjwB4Joq3A#cVW$JVn#7j-c3#g6(Yzv#C6y#(gqxOr8CfPwFxNKboF7BXWx ziL9A$p7Z8Nlm_hKhCEpu=AZ(&vmO1Pfl;;LeOtIj(E20Az3T*zAOFR%GdoTvNPZ&)`{fT{hnCoB339 z5+g)Zd%ytR0B%%MQSdP|jYzsnFJIuN>~*#0!339!eiFUW_$DNS@&mTEQFJ@QV~mM^ z+fatHy&NK7z_`3N3VV3FR{_RchrAod57$8Mi1LbZ zRcM$69KYU1c1+Xk_M+=LM2VIN#030waCKS;&liIq%>SxFQACj5c+nvE?x9}pnVm9=S0m7mW<9EiwZ_3YF(z^#F`C!9k!cpF#xS7f40VL3gt$g zPSTxuB_uyxJ}Fmjsg&9B|8AA-DaM+#gWFBbAWHo@#B;-Y>H{f}BVK{=**6Ib=?WTN zI^($%OgjW=)o)%ul1*~)DDja14^x}S1wk{_p)Ln2uGbEK7Mz5cdQ~w{ zZxnc{+3^JCkoK-kkkzT{48+5)-gxQEf0}942MP?#Fy~~iyh+{3^wZs=ffw9qLyPrA zz}&;izT#7|Bhtu%LQFdaxfG_1=kAIe_DBQrENm8EkA2_*$JdmO?Kqt6bC$7qvFX&} zUWypY1sqW^C4F79Vxpv&;Cvd#9{U`|c zccbR>r*;b9TS?X@f**fyK|$M$CIf<3`hes33bM>~4Y!?f_sRJ;%H%9KfTD_o60~r?q)oZlhE8sTU2ZxSWo z^G5Srf2}?+No+g8AzTh4X(DZ6R=_;@DOd-R=Uq1dbs$1w();p=+1^MAPkxLLdvsSp zGJh?_r^G11H5tj>%IP}XX(|~V?2{FIc&={sbd8H=G0RgVzSW(MUNUwul|z-m<6T$) zgK?Sl)@1(t%jgG~g>#kd&*Wa2mii3H(ikUlF?Wodj**;?7uA3tk-16B4ged`%Y9v-gv+ z6`>7Otevd{ z@$#$U{sgU|zv!?RQUr$&Ikt)T@=D}eLHi1ecvRzCtlt09eV1F!FI2T5;P=dItuDkE z9@U2$_3)9gspVXbTB~p+O+qf$wZIV9@7xsTa#a2+i5&|r`TTWqX{}=5o7OdDeFa_| z6lM8NPzkd_V)V37Rj$UfT*=@BYTErYd+)r*6<)z@25=OrM*Wr_blkk$<3A~tH}e*f zLoL`{#44M|TRl8vN3}0vrhv&m2XX}%SnF{`=Ivbt^HIqAbi4!nHBErdP`9Up>ZJrZs0Bh4hHXQT&k%_Grs)Vj-QFgPqJ@%UHjSU1Y`uY^ zJVUF8Y1fgW@p zywHv`TNny&%b=3>ETME!<>z;oO?5$MyO&|Y!N4}WT){CuVgJN!v;pskdN=hAEp_cp z#|q{`E`nP%7>s>FbPMu)G&q|#7mNq}K5){?n(Ez9yU8XZpP72WT7MU?m;ysmEY(NA zx}7R?`>hj<88whoKOBtu{ox=EIT) zA!XKD{kw)v{Jyh5n8^E%MM@*5N)F5}5@*JyU?%xc^=VA zAEgc^{@~b07_LO{wG?=p1v+BAx>0F}wQ*Cw-(*f0vN+SX3}1Fk6`mHr+hnV61n_Yz z2|PRf%IHyWj(`&Ss7Isy@!f9|Dq zJv7+IwV|%YHFLRJPf0quG9Jemg@N0Gh1An$E^^8AL;0{j2j^O->6Rx#B zn5KOSJh;IWu0_E;su9|l){w__nZvXor7({vm{Mhp!(`9i_S;*5MB7bW1v8hRTb(t& zBI6QgY-fbgg6;l?kSJGXxM4r3MnjZ8WekjNFBqRXlyo)nlUlmJyD^T?H>Mo5@aTL# z5=%EUQqEO{Q)m*wIqsmpbed?jM!r1VWt+1g2Cp6GAq3^ls4tF6ui-6_WbSF z+pK{CcAE~Cu;(2jW1x5Fqld|QkSx09)j5V5m$hDo{(Z^2M6eKV{GmP?1UTYj0K=O= z_w|f}ZxzAD63pTMmKVeV#A}T)1BWcw;b)j1{0hwFLK|f)(3^&Igc{)Td_tXlYnJHe z1+pzKcELjUP2BxImBjo@`2`2~EkT#hsC9;PP}%_7nWP_73eu5bq@p zu0{nmGjzxfUzo_q`DR5jZ>$wpm_GsbtV!+RHXiFq(`(*h z@I*k2Nr@U6dk&4m{s|ToIpv_Z@P@GunCHGId2b?qzP=?!t+c+(cS`JC6L{t#8ux^G zl#Ad0;5GaSf?+ctBlvjO1KXc?3HI`%@^FH{y5Ql(eVSH4vH(Uf(jG|2`J_fN+R+duq z_VymeU(<8n(i~ZK-{$%fCm!tr+7YmZ21$btWuBa{4_kt9WY-n$q)EdX(+Zd85{Wp38*ATIsTf(h42m6GVC=Q*Gc%^m3{;t^@AHfb!eG zHJP^3@O;ru2R~|jud+8^t*^&E4@-TZ^lH+LUcY8n^NhVA*#H}Ct$5VxwjyBu3SQ_I z6v_Td@}PY(;OZISOcXm8v<135?e-OZj}88GRVWi|({+$h25%Pz-qE#@MGj2MJL3^b zoS06-ERiTNlx!Gnvp{HFn51R2Y`1KK`t$Y%9{77<8HG*jqo41)d6=AHd)dpjGA{<|A2;~Dphp0nhgscX%)lkvl%@PiA7FP(@01i%2q_m zz&>;7e%KdoS8n^w&Yg6}ZX>vOPJ*;pto0EKE~1Qot#oA)wke9(i4Li-`mAou8WVg5 zJF@oMVEX_odnpE&*v56x30V8`6d0TsV`z=rP_+%eFuGTdeAE>_<8}fm*bl2n(=qeh zWh<2=^!uh0rB5G%6UhwaBubiKDS~Odo?ly@U`SF~@gA9nwlW$;7C3ey2-L2l9!2LM zWh92KD|A>0&_h{l6MXf(3Eog#xnk~%5t3xo2tU!6FXu=f_}TrTo21iDph|Wfi(-rT z)m=r|>Gq+*9&~efMU`4Ra1*?%PXo+jNw=25A|Tu*sd;xaul*AplAe;Akek)X5q&a_ z0To}~fZ4(<1l#O1Zs@}Zx>#hcUA~}c5-l%2+G7pgPT(u8Y4S@%KHdj>!4j1=D9*ts zV@o+CCls1c9{bRJ%=;h@^q%1au!3vw3eP2jks_FcC!OM}h#Y%g_WD6+E_ATSp8O4g zW#-?292)$7HZ&P;?VwUYrR!?QT(cfM7(Il}nrr0=6GW4!@Yl{6hI-ctGf%?r-Ra62 z9p$@*_~wNol{cyW5Y)Q0g0jEeUo#KfduU@Z&J`BQH+{yOhth>*9XwpQ5^I{ab>qva zcC_Z!n8l)yzvv6oDZ1GV8bznjc(Gs8d-!pfli0lk&uwLHyx7))w$OZu!>UBMp~yp; z19iWd3_h**gBsn$|Jv)U6G^SnQ#RO7tWDKND{okeVj?9BMc`!e#geD({Y44&MT_5b z19NXIv9rR&+!MDe`u;JV>e`$VhCikZ&Ep4rKFLX z;BI%+LFQGYYAIX6N%Z*%r>;%jXes8nm%80K&78kZ|IHhRr zOG0==(HXvPfn-5hXQ0d>qt5W;N{uL3nmmbtP7Ar*+zt52X#UO4!56h6whh*AZyt+x z9*(KLLVPgaBV$W(JPJR_l^Vln-jdCbtJt-M_i_BdN%23KxeC}V#j%YVd;>Db+ETfYJ$9mbSW&AV$ObEvHefq$U$(7|PsR1$nl(_pTlx|G^lN3%(63RyT+ z$r5Hq{~Pskj7A588CEiINen;xp(M(Md10jiEYv-?T1)N|OGr&QNiZYR3`1Tve6mGe z{eX^Z7IML~vis%_dCie-?=5mOBWRk2$%XVi`eBT!Pj=RREQ&-e@`BR$Wd|#+YWc7O z+bTraN6e^gVL*!oTqVK3?hh!>r-e{G{r)*lUQm@%VaV`U@s?v$(BSSL4Do!$C)0B9|!E3GmCfR;WOymhe{B-m(BBxOC(#A1J#S^_(qUx{J>q8cKL~8j(dVcBprf^zp5(vP&y+x*vof25eJ2?oKsjaW?j7ovMvHX^3K#}UFBMv=3Es@zNt)YR2Y*_ ztegGJeEcjVpDochkIe|#Fj?>|@(DBVWH0Ak8_lMjQKC{=4*Ni4q%)KzmybCg3HZ6F zLu-tM0Ib=Hyoeq9r>Cm7;ZI|nxg-6e8z~-0c?h0ss^&ejCg1Tn_~c_OQwW}wyl(l} z7{}tn4AlcW{w^0$)!c!L5D~-ByT5Y5Fak#wmw~EQlOqNl+^l4wU`{n+@AQdwEZ$~m zx;v5Qf3WpsUCQ!6w?8NsVID43R76A?5s*8kG_x{A;Mbp|dERe*=d5$v%SK5mReM*e zc3mg4ecFkw(Rfn;CL@OZh#4S}P-$G%AG{g1UMqhBVw_>ovBd9RD63;o!!OU=8D+VP z4S4L2K!l?w=kE;6?1RTPU!{Fw486$TGFQ0hjPED^QUt5^g+h!+1dgdFyf8WNGI!n! z9+j!byx-3Va8_C< zPSehTd{@Cy`=U7Wp*m&ZKySs4DIr_LCkTO&l9QF*8kG(RtZNTw z71p+fp9bAe?T3INg42n4-2TKO)ayXv!ChcDvJT{Vr|~@;PzIQX$I$7#G{9&4yN3~gf zHX$p|aKZqT-koO%)7j$kht<|GW)HTLnl7xrgG~?4c)PMDnt$p#UVMTeq1t?7yUs^J zt&=vUvqV*{gAgE276c^^3-1PU$iIbRid zRG&5O%h1v<6d;MQXCzsi@Xc(Sr30(rUzO?K{aw&Bw5ma5l6KjouuBqqQXuA)k{>}@ zRj};DPgYCF{2;DY6V-WlCBrn6QHX7n|O6sEPudjZzYc`Hb*Fny~dV~ zeC3o89`8edi&BJ5UV?|IUe_HJ(S5Z!aw({MKcYHCiV`2J7S*9kN1DOP`NdW)I`tK_X9}%r&P3_0;Rx4r-@Sx6p zM9w(977qxk2jd_k@t6^aK^RP+*!&5TZ;R)dCvcGbv!T8VT8xs~d^9+cZmMsB2Bs}V zATTMcm8r19*Sy@7Dv1y;?W}_OMr+2!Rjr<#n{swf|Lo}**8b^li< zakg-ua-%5C*_Po3mV&bC69%lTFJj|DfY5D0Yb4%np?DAgLC5jrd(~-`Ugkc2g^1gg z-7A{d!G~oz#{?FJJYCh;-I8euN+DBb#MjpcW*5S*Fz^E+>@Cy5-qyT%q@#ZIfP36O zy}*I9I;T9Aqo!ViDoIiX=25UdNl>5uHRh|;|E+Jp^&+g8?1IjVfb~Iu7dVKFBGYP^ zj8K{%L-GVR3kt;L8Iq4O1i8n&vQpmSGWvAkIwy*82nnb?He+-szIsOB1?7 z-$o>IwO~R+O9+OnW8Ix|L9RGMUEJA9X@BYJeX|Y?O=hOf28nOYukmgRID2pYs|;^u zN}Vaj^T|%!s3c7D29zX|RUTqbJqD*QvBOs?VmMK){>;$B8On9SNdHNKtL~T=n!b(u zVFhlG?<%dc5QL!D=?Dz`@k_uw-}$4| zwp|t+jXz)`{P+awjvcEdhUx45Nep7Gy@|?i^r5+Us_blaUKF8r8(!O{)Id`Y%!AMcDSoT9)0`YF8Pp@-fWV*2_gfeRPw+(I?c3C?U=lh{1lWCk2+s9~Xz z44pVk;@UFPim)h;yh{b_RK%a5teqyHn()Aso-7L07NktFg(E>yZt9K1R+a{+nn8?3 zrqkR=6!M?a#qBeu$>JFfGI^L%R8TxkHl34e1xpNgi%??sYiE&MAU!4C*b<%SA83zI!Qjg@Wm4s8SM_2SqKw{974 zMJun!RJqa7W1wNZu7!C6obF607}?JsTR^M}7LjkgpP|CFv&0qT5dYiXz}24j6UxbV z6ymu>v1PHEC-fQtSN7sR-Hw;V|0zDvJkjj^JV5d-$jkZE{V0x<3oL8TeXr*GeZ+r! zCN!sD5rUK$K?6dMM|nWreID@HlK29|v!ITfw+RD(c+8SZ4*OO5Mi~J&I0hyfl~wGP zbLN4g&9!O51};9ynfu{z)JMQ_g@nPbYSkc>hUcn2VqzXK+aPA5j!JVIJ zBvEtb-5De;=Q{mDs4>K|a~~5{+2ddRr0DTV4x)>=APxLcQj=)jZ}j%%zlw-z9S|r- zooCvA&>4OU2F`4kq%ff=SI|rqs(|~Ru**FIpbq8BoZdSg@A*=9k)GwVgtsuN@h11| zhXO|O-Dgn=KkcQng0)nhcCji?6V6EaQ5{8#<_}kAx}CoX7JN%y>PL@7;tf&f3eUDy zu;D{)7Uq)er8`xBlF`?FCt1z0VrRiaIY6%Udd`=pJCd2IA*>~sWrF$6wc7FXHCG6Y z{M=i~RGiCYb6@P)SIY`8QA%)nwJgrnt{Z-a{8&c^JAnsS9Q4@{0tWfQ3!1;|fz9#B z1w!BB{)^%7`$UyO>+HVmGMH{Qe6x|tD3)~61YfyF;pa3e%DLqRucfyU!@J?|0fNJC zKt&C!_S40N|nYPtbIn4D#6uz5XTBdihB{@MumZIO)s}R}=+qitpcydfN4I8d9XE=vDo9 zeRz3;uS8*s@&Asv|9jy7{IP`W?|YY4pgy~jr)Y!$6H~HWu(J>_ypcp?ZJd=m*6uy; zl^xlznVCf4{edR`W3)j3uPmWc56TgZ9&tfbd~|2sm6TASJ7a!5#rYeuS*B~q+ifst zz!QgvM{A6z6rVYUn&?X3F>ZKbseccYEkjQ(z3g-M9^LHEQ$_m#YR_hZn)yw`FAXhO zWEovs=t3>cLIwxcFrJUh3w?qF6CbkWs7lz`eqm0VVg*()!42wqt`P{RTPCA>>Yluw z(EU!fmXr&ps6~4$;BAIk-0kdcDR6FnTfncv0!Q;J3*Eml6HzGKMmzrq1%Ac%1IzHf z*Rb5|hvRUp6uUtxiE$JJAoXnvV|K?}YoFV%s$9VlYAZOR!~M+-|E7~jDLXv!OP&AffOI;DI{!!VIpu{N!hrj=3upkA#h*Vn*&p9{0@S z@%(7Qn>})%0^|yU&RCGSO#nQ%9%y*g`usb-q>HxcggBj%;k2; z3Rt-S3u^6G04MI(4~QA%5l`TO4Ub%{bX$sGi0`K8S9R!XhI`3KR$Kak+li51*GFI$XwQoex{?%dh!m!mBl{$}-Zq zGNb>q5C&gNL3*Jw*B4x)MLdNx-F)tv1wHUO0^OFK2px2RLE|nvrF&*_w^w$QhkfMB znqlmpClH{VrwlW+$}J+qK;5C^Ds<>9f5#8Z-LEPj#Q=KxP@-TgRI&Gmfc>iY?UiG^ z<+1Dj;%fuDOLEol#63Bw&k@pUs`R}BJ(iyX<`HOoxGvcP z%QHEOKqfpW{aeoz9NGfWHla-;2x@@Cw$`+f1U~Q_dvSE2I3>l56p;AeIPlG2NDyu|$i&w6Y?{=aqe=RvKglfcg zsi;qW)Wkwou`0)2Z>U#j%jz2mYlOQA!_z?lXMQV>Ss$?*d~lwI1i%%UT-6T%2g&22 zhlLuBFc=Ubwd)CTRtaIQ(E+JVFAzvvoWF_{AOcmvn{A(mZOB|APd#MG)v9}vlen! z*TsU5(U`UTSXxTsRhk}sV{jgOwX|ow8``{`Kf;kM1WQb_oqe=OJoueL8{1*m;dr|N zZ`3!(F}o*mrj~~0y^`2DJ`j8gf6|}7A$}t52|$x|97JUW;z>&V9trJYY zpm02nasz2&A!q}qSp)B6EU;TN0HfD+5l&F!er^m{yk7MwyQy9Yy4Dv z!+heoDAvV_5XKu)(x+UktTsD|gDonM%|BuJX3!5`kneVA0Z#fRNo=C@10PBA4&UCDTWO! zxsGAg`QJ@8@cRYbRlU?)hK^g-wdCP|R8?gpt1t3nIQZMH=K36erWiis68hMn8k2Vr z&Fa6LgK?V0w&EC6leIEVFl8lQ|5j4VrP`c0<@*P)ox`aut!bd+8uxTo9F%2ZQ1aqY z^+Dpwe$ofFw;(l`G(GjAZNpsDpQqsb4%m5^5CDSo6^P#)9?OhlszBBg*ScOo{{?#f zQy@bqk6xs}!JLhSba<;mmwtb@*;r89iKX(NFSlhnuny)21}=cMoto_V+?}r=vk^1!}b&C(nmQE zY}03kS^6fhSF;m039P`a-;C=#tg4a!Ew4`cpN1pRjnda6AJKe(%Fw02lo?TPEX}Gt)zEUGcnO z?CCz(V3Exq!#F;KDbAtLPTS!!ryL7-;(LOhyg*cubEtHOZT7957 z>xVj_0sI?A3{oD17fCY2@U9ala4U^s+-_|6~ zz3sDRULFBkzy$yBBR$N=v z9@HNkmoEiXKZZg*64wc~@SEMt@|$MPM@&aMy~72oFx({0dTCb@1lcF^Vr0?WSyX#Y z$9(Z7#NW#lf|Y+)kL-{c=?~a8fRMur2UE8_ynfmp`6l9pkr8t0`j4l)X$xBNlcfW_ z)S+v_m}nLwf)>HD4uriEI5`Ox4eEcm~UwoRqb^y zVt5Q!hH8hX3JDK;_^q1{&t!`(6Bk2VO4ZSZKzSkoe5{&Pma_n6ok(!E)k(zMp>pB> zmHv|d*cmb%S<*rRlu!5_!;t)2(`CU00-O(a_4w7a>hF5frfP&@udh^g;cSb1Cx%j< zNn?Wk<-Q2vG~N$lrboKdsOXFz?;ZMDrXNwFRX|&7S(ZgD!~d5u%0333Gw(=TP2+*M4PZ? zX*{geB*!k~tybTa7%uWmkOrz9A1(iGD}3tL`%`O}u_FsF(H^=7GX3AveH~R7r(`-7()KQJWRmh@ z=x2py$m`?xu7mTri^g{=2cYEdA7_b{iqAO#BL9e1Ipz6gL$G*+4=WigG_KYws8X&~ z{8e6Pv4wacPigVTmS0WItq{@EOl4I7aXmiTbFDOYhd`cjM93~@Zdnn(Y8LO*-_|Cs zPsy0rLdiT5EGF3`y*iY*@hL@&(@o%vNpQ)`7@-#heKz(PC3YSk$gTG3br*i46|7)) zN7_4fPk&qh?_}|%Q-JsPE6CIr*5Oz_Z7|X6xVM+}b!DSk(#x<_j_5hW`heQbrD`(m z`fmo!63Jqf%~A=N-Ux7#E8^PZeJ#TIBF_w*yjRKQqM2E?T1+v!q=KqpTcxS}Ec4=- z*zjF+?)tR7@=bcV_xGqK3YJyh9?J#Z>!ekOjsQwsIVJECW!$}j<6asZ9yM&vsb7Kz ze8aE@hAJma#5dg&#@r11sgIoq6m~C0J>Lwr;RkwRi*@w>h$+ zJCHT(f7Pf}ORNI&<_AlF$Fv1h*WC6;UHD{MOOE~^-;jll-fKS3i`P|9Rfj+7jYp7{ zHRWp~#?rT5iLI0+O=n)JcD@45Utvo}Dnt^i+Tf**!Lk`P;Hd~aDl|p^8-0A#pmZZ- z8fY)7jcPL;0@cHMxi+H~kWIXYr=MUabXBk9c2^R(`h|omPIqA=kIb|d!*h~9@{*dw zd}x`|#~^&JW25VJck6wm`Av2)QoCW#YcYwIJyqCr#69c`R`8wZ?}IcCxvk;93?)c0 zIQ-gMj+OsYa{0@#8a>suInea0@d-)~Z z-K|?=q~*~6t6Sr%?eF+c@K`yKHT&PmS71QkkX-`!Z$RDk?}4xGe=C@tfB#c>*k$;Et|)tP2{s&F=pow?swcuwedR_xTA z(j$IV1ewUjFxjKm9(n#P*f>jw{a(;c7TnB0dwpKOoi75DPXc z9FCit7y3dgz}{)6iv(;y?q(ObCk#bkdJpIMo5Z8J?6^0du)P4;em-#AolP;Ham2Hm z|9UGFdtp_b>ixs-O^LESJvDbVVC9Fg&pNbVBKQD$dV zp@UQ1`RnjbtwAs&u271@{+O5U7Dj~*(iB%_a|rG2vJ{?3D`%(kL_t$-QrO?$0p?no zn#lV&{_OXRfA^6*RCPj(!AYZ5uwgVQ`+rkq@lF9{GzuX83F8A$&QhJh(1@kkl=1Di zv6r}tQNU?|PD{M)?0}0g=9r*ZzXWhhFvO~3rZd8?Ed;2`54w#}VVA91#dA%sMg<;? z7htBIVslwXV05;OHPb)(IT#nISH{UKZ-I}(&XknoYK6)FKb$uoSRa7*g$fZ=9W zL@3coQb|Zcg>NDL_ST_k0ffCb)DgXIpP%67Pe`+8S7-?2#lp%=4D;|gmj7BX#@uPM zL(2&5^R76As z1a!tNC0CI<{Q6GHdcW?cZ%+?;a0Ycw898BR@3oShwbZl)M{^4_uMy@xI!8A-aw1-~ zBd%c7!~47Rc&TRt@uO%ja3m!$vGP@5z#$o_qeGg5J%M6B`2HX%XNP+8=BI%dNr%`5 zcY-VOR<_>nLkte%?oU0&&}Nk(Ffza-HssU-^O)ryElUw(W|Bdk_<{x(%Ew^@S}j|3 z9!w;4b=Q;%mqdJ7M~%?3PcuAx?*&9V(PIcjHBL;hLfMzbHa{unOU|@6e8qznqFi~d}BFZAij`jy6!-zwonW82I10lo>=;%Ezhl%C*r%&hq-*I6^~ zK@cq1roMu0@D7uR!EIL2J*V{TAVcD#F*B1gXVsY-B``9tP9qMCG7K}y|88`bjpQsVGzC|s4L=` z-of96{=JLK{!4tkQO5&ZbX6ls_WJVj8K}xW8?0+J7#YL>>VXqlpBnBg{xB(hG|w}o zwHG99&M2+Pns-pIf%UHhY&$4ucMLb1A5d{TD5O%X8h4}~^}1DjM8YT!gm;WZrN99M zp5@5+Zd8uI+2Bzlt-|2ty|;ur{HgI%abwGV3&P0){?2CWS$f5RId_D&obae?zDTk< zKRgr#>f)h=2UEW%v(O>J4CJfB5z3V%A@vXW9dMbcl$ju3g#j1zWOv%>;<+eBOATIw zyY|j-5@mMJrLKnL#S5rU@B!!H)if#|cABkW8DY@3-M2%Mst>;4#A}*T^rU9ku&Zw*`N(n`_>LsLgCCO1d3M%99WsA%G*Bnx|4<*EJ}Qg_ zU&*7dD-@r7u%(*!Ds+YZR*d>vuDzCp!y4eV83=J}na4e!pKMdd9L}6&{91Kb`4C;* z)w)ton2_#=2P+9p5F9D9uL&iVtk?mNoP z)e9c~nAB6OMYaSd>i=;Z+VG_-KP-85t2+YUv1gfw+-I#T0w_-_i%wKf3@(E=FU_a;LaNa1hEE5wUKP;8@W*kACbJAz~YS| z=lAjAKsLWe!xjoB@!$f7T@(>LO^-c)O8}Q@ql!vGLNDx$GB1F=D!k~P-!taR@lE0j zM2j`DtJ`YPu1JSlc&su%4s}4Xt=ul&ns#`vPS5XvK1dOnGbe#$Q6QNW$B#Ba23l|r z&?BVEuo{<(=b1d7wX1(*SR6te1u~r7K%-LT*LZDS8+rL_@D8`H61cZS9TVsG;DAh1 zraaIMSXfKnj?Y4!Dgw(u)L zXwstb$?pr$a(QDOfDBUelhZ@~JQxpstvxyIHCQV_4=YL8?_UeA2LFsRwc*iHs(5iv z%I^V+GkW$Q-5R7lL^|4 zJYHz;Oa@BUeZqxz#qUl3mdS&Y{OciCiYok&q!^Tt_6joC6{9H7PeFmk1=o<505e&- zr2>Grf?U5cE4F;AOB$gBGvvN!qY=PLjn{Wg<@^FRpG5({eqAD!1h?v(YVeeE8Ij;m z-pp|I2?qv2=K|=Z0_z4zz&fs*Y?)Dx|1>0ZBXy`@oix@Ldw0=mhVX6gW9J)XgA8z@ z=5m+b=w;;uPc{Ukimbui2X$lUfd!6=#_$5k=>qfJ#K^sqa5~}oDOyx7I{w`#CQ*2f zGKWKFE>2#JhSCp@7pfn!U4uGhtxzdQ5-YsCxnPo$%D%NN`CC&6RIWeTJfW-4S3Z}e z&(>pVwBO@}?yU+|9HiC47X{aZuT+w+_1Y`%B6|9S?o|W=JY}-{dqKnEmprBm3cqfDN4eNm6;3v+gW-PKm!GTprJCum-i;`lo*_nHBB9*e)q4xjq#DzEQuvAVV(^g!Ay1Er#loCIUE9#BF9G8NTBi< zXe)Kd;0L2x^Vh2=3LB1Ot(F_I`h)5nFkkc)n^2gBC-rBoQ}Yg$vMp(2JV7=jspo0r znf3r{>Ut2KB{#5k1Ws~TTo)%|;7{IGP$gLM8QII1_^f!K{+Alm{Kp{|ED4994LG|= z>L+-L`{4BvNaB6!BbHelzNKo+WZ@o^4aR*f`AV&enJ)OH`;Q!rL2!D%Pu$ycIkL13 zi+pha4Z!)Zy4L*j4T~~|ysxd^=k9$@;)4q^^`=j3A7f5zcyu@U(vX8>|*UmK0RVWF|6qe zI4#-$KB@hVJo3g&4j+dHD$E80Rwsuxm&_#4lx|dd=wdD^NGYf?o8vyfiWDI$$E4Af zvU?vR?VD}fA%oz`GRGSB0B*VvKQrTIb&BmCsQ;P!Xp9??$DGgeN|> zo=l}ggKXhh{vM^;+B_annrPpp7Z7Ncp3cINd^o(LRO$&f^>qP*!(kR)NGBQ3E18cp z%I^J941B741_(C570FMLQ`{=9U^ zBfoEbi+jUeTEQI%glyuAC_OODAh7yKkj_U&i{6t3@{L1W@zGd@<4HNf$V0ZoHatNN z+-^d9l@R=K;Om|&I__z8#j$RB$QEM>5jLX!Gv5j2%q&CxfgJ(+-$MUp@YJHG?O>hE z<_g>9;4Q8Y0OM&DRE+&!^Vnjzb3+e4BdGucF>-o3UYINwR?ns@;=^f@rq`ZT51R%8J`>d79ggHV_*7a%$BpYJ`(69a-5Yi7^ zTrYJ63!E*%ycH0=JZTgnstc8EPeL#lSL?1J7IyJr>PETIlSk*w zy|P&-r2@EWKfC42Q$7N_i)P#q^c3*{M@>NpG1$Xkkr;UuGH@`j%#~v^5!s=)ZAu<~ zjKx9j(sVIAQ|kxJy*%-Ei{{&ajcIt8=H{1^oW zpGA6K^VBwzOwS>p3-0%E>;fE80z3aP2Kr|%PVj}>E`XOi37idyrrAtJ4cT~Cj4ziw zMS*T%LWu^0#VZz<-%2{2&%3!gP3p1U5(eHq-kM-L4ppjn9ejVrd z9y=h%Jt0lnY#>*(HUxO-a)|x1f3z>nhCCrd{aC(vNZ{uq`|8fcLd&2*$mhWmK1bsn zkLD3b49jSW-Q0l)60B6XryJoGBr#6_E@A&~*saQFK`It#kUzj5!QuOs-|g_`JqZ#9 zP4^s<7i~rk;N-rQQtaTh1*=6}6EL7Ao%D0ocaS3*0j9E$J6MwU9uQ#uJ0KIYl#bKE z@IQmuXspAr7NWDTGdk@S3l5rHSW z|1uVBl6unOwXksdXDlV6GWK6JEix9MVe_BI5}|C6BoNXi=#Ufv_!6#=3n1+*IC&tm zOwH8j|4llORq=Z?@;l&GPTUJgxN{N-Qc>%iys+kD60Mk? zIt_96+YW!oX@?b+*$O!QAHDwXwfD2tUCD3u&h6j3=l^pz{r~mnZyf#)zhqUb(x`Vm zF@af6Yelt10{BdB98^#nScIG>A%W~@Ty=WBw=n;heC1*sdJ)!K;W<(>hphx3$qll2 zg&Q^UKBM+IG`g0aIfMXCYu5 zcWvvtWz`w{`JoPXk8u73OR9}KRAi*IUCLDQgQ-SmDbhve`r@dM1!0wzKWp!_a{k)* z^=Ov&P!yT<`a}wcr;(LsSJO3BaWTK5xX6cfa<=+ZsG^jcz13| z1TRKXK4kL6SD|QKuBlbE4$}i91>nd2lL0Z)poikP_SAkIRv(HpRX+=k0J1yohs;;% z*deM}vXX@#Hsp&JYs|LxxZ(N69pYN4k;PdhZ+++Rs<2!HVCub5`Mm|y5HGpSNc+-BwYaOcMzP&MjTBZanzXtdD@RM=m zFfKsaU0oNdcU-=!E*SbN`Ot3u$s@=Z(H&Poe6Ila>lmk)?I3{khrQCn%ICKPI5U*A z2s}F=`&LYXIW9*Mw{d)=Hw&G+gG1e_NAsTl@GyP#zuMBf)}WieR-?%>r1+7y^zr>o zu&cZ}1dfluFIOsIATNTnil$29@we7O!XK%nk{*N@krf@@c9 zc_uEtC*XkBk+L~znoixxwBaP%7O3LHCei!$R-HtF6I|p5YGSnvOb6A3Cv>^Ml}^>w z$B*_y0M=-tOZ;~S{C6wuM>Ce-(1ZK+9Td!A^oaT1ufPO&=bphJ}h z8CR~U`}+&5YviW^N28gTyBos&3axWkr(x7FE0)u?9ws55f{%IL$Q$SA{k~_QJ zo-JNrjbw%DWRy}su=7(IQMrBx)EhI0anZi1`{9*Gdui4`J^a+wRf>*OZyWXD?I&iW zMoYt>p)EmTb$aidbsUyGG5cWFHX;?nU56R@- zbkz_sf0k5NzAg-BJylJVS=l?c*V?h@e$-xS7MOpx`y6?^_eRh6Z_(g{KX!?y7+qMrD5z*VNKX0USY0VRA{oM$vo355KohlB=_3DZ2 zLm`}B+yHE)>u!ti}6chF>R(`ii&z?Ogz2J zH}UCrExWo{H34~+zJc}I+|>;|{V9gVN7No=mW+^ET8<`9Pg8WEKzg$`(h!YC9XxrU zz)g`P+cZ5}Ur2l@3IjYLx3=m?X3e^fhI8bLfq^e-&r4NVH=yEBQa?hhZA!4H$;FN)S?HLlsY)EN~ z5{GWS#qibAnSds+;ic8`0{x}0P(MY{G-}PqQn*ka4p7;C9G6X5@!Bay5imMP> z@3aia1<%HV88d*(bJvZod~VZIG>r=P2W&3# zT1^0!y7Fd1%0fPtL|rwTwDxxq!AX-tEwjdI_!*5%fxWtp9i|Oa+_%e=uxn~!!IPO> zELkTnu13p`8WVuY8SvHR4%1l!-Q2QAMNR^4p+XTAP!IJX!u?AMx*{)laA^MYU|mrm zD^BV1PpDph?_~D&Z?VR5ve2mPze-KpONj7{k2C9mje=c_tXLwv=qW zk_GKKK@}C|178FEO{t-n&L7b?9NLL&ut8Lm~K$6i69ZGzwcB)Pj*?7uhpp$ z%E6e8AY|^>H_xEBOFn%nbK2B@H`9K=MVn&Qg0JK0tyoMn^#uJWacUnAy-}9EWq6~~ ziuzfB6ZZ415^m9qbOI`4aPkYd#j}pi0)91LNIW!B9)k-%3cc40!q{EP3cOpI$S*wR zv0#nfC|SZ4g#S_p(B8)BY+^fi*NH*;q@7{vT30<;&^x&N!X3FC**Gq`%OGk z!h{8ahNzz_0(jYR7T70~5ndcEWoRLN)fDXseCZ#|iFYozx zRaQ)AiH*q$3l42+a|Pz`y>)z$m%$?11dgq!$B}Z_wDsB`tZZ25MD6ryf|oIg@h#mS z5f2!7oxU~Y&Gre;?0-Cb@=oG``!q0%qM*=Z%bHZ=a89~;kSO|DK+d$TbpX9oAb*&r zE86e7KqhFB1$MGx{<|vzq`z*fAAG@ki}25FFF)~~gzSgB_8Yp<+xq#AVFNoNlzmBs*rc!M{%kpmoa&E3W4=I{u|irb+(zlC0w2F&SarWYsil`?Sc0_+k=w(ybn+=69%#Qo-dPH@+q~+X5m~4bEl*g&|;El z59SS=2r=G)qdZ)x^OeuNIxZ_loiLqN?CLc-10i9LQeLRFRXcx{F^M6VFcficM>~h- zU!xCIc5ImRBRw1B&c3;7*A z;Qx;i-hGoE@fR#*i22MgRB2aB7aYcI*gT{cLR1(`&RDJp<`X?HG(wUCG|vd-RFiqm zxegXMk1yy_t=Jo!*1q?C2kZrT;GCJ=DuhN_LmS)z@J_eZ<~>-X{I>2L4z_%6$cvZZ zO2 ztwd;eSp(ER?>5zDG^>7BozRjYPon#cyR`GU>`To+2ewgTW;)62z9R!X%KPw*xyMP) zIH0D*E$~DGueKZP%$RN)SbFA-RXBQ2i|_EtuECErC1JYxQ{XAmg8BK=6*aAmmm zLwkA(P+)+i<*E~nLJ?Gzq%{l`Jp053l4eA0ZHv{s}Wx`P&GZJ>3wd(cClG z9c2SuLo1YcLum_)EwS^Jw?~RX5w1v8E-by8zI|AqWXjS@;1T*#!Z`9~G8s(p-FCi$ z(k7GGb?T>_J9LwRNb=6GY*9ANkx8YAORVMs4^HF0o;S#n^tQ@5uL;2^*~5NV3sQUP zRQ;2{l`Hq0C&6H*iKL+eDO17x6arQ>Z$nTsnhj+wdto_m(YTtBUxRlURyJDFvq`wB zOGwD>wxoW|HD7wm*=)V|X(N?7Nt6|q9WOu*;UOtFn|CmUK`b)^d9xaA)W9iiVzSzl z09;JlJ#P59hgsi}rNn*nVMo2U3F!8VdBI_F>)*O1Q0r?S>#arrE9ATj;P|$L zQ4qsPPFKb`yK7rH0?QGQIr4EH(KDB-|F&tt*M{C|3#0mOT@or#NgMv3l1ETzbb^)( zo94FFVYKf_bV!;;#ZM86QcINbyjO1QD3`UUj!^p};GR2L`^!<;`Y* zwiubC4m)P!DR-cOw{x7gf1P5dds(KM6b> z9E@8lXLkZj@q-$6lY!w3g3kF-8%qTxr}X+*q47~eLjzZ*&+q1=H=@5AG^1dF^g^md zU~*|L$teeASw6f;Iq2yf%|~4S0G_IjZ}u#^h^$FUU=HjvvtdaXoHE;SZXDf<_||3U zHi+&dZOPkuovqA{q?h?{Fc&r9RWeOofpMSMf;*a*zOlMv83t4@Z?!}Wx=;O%tAAtd z%9dT#k?aTYAm-uG7;L~8Ftd4Mw9PzEU*BSTpSsl@9bH}B_e9)t4|^LKq|B9TNvTwm ziu3idwqH7DB7TdvK%d#`I+LCJ;F@5s8J+h>$U9rNOrbGZlcHIPF{gnahgs}#Wwf>d z&W0vfFewg=1Vl#t+lL_QpX1M=7EFGa0Y>|Z)gGB1K_!s`wvlMQfbIgQtjYqEU}Tzt zpCcc$4UYH8x^a);TO0h>_3$(ptQl(C`v?$2KdRm48M9gL4vt-D1`p#FF#FVCZh4cZ zKGc-m?v{I1%ki-ni@T43%;*a{oqvxm0(lPdzE!gal`-mM3>gBkxQ9=S9p~TT?+8ba znywjhR6;Qj;O69!_iiyC*7L79QPi6+O11ZU06~Trsvo)aW*U0?;98esSMEqS0o`?6 zk%X)<8>C}n6n5mbaVF*q#u|))Y@?PV*xqtDJ{rfA74myTLIFN7NI^(*G!-S>#3@kX z5tSMZ0;3>CkOUnCRt0tz>0y>7*-^HOFwQ`$Sl!gs0|u3^)Uo9IdukZD9_PD#0;pS~ zaOUtOKN3SSjvi){gL>06xa+{F`CxF9%|NrPYPu(1(=qi^ghz(U5Hh(9-ugG&IhT$k zrmjeunnTj*N!tQuL4{#qX9HNuQ3*88p^!C}Irh*azm(n1Jaj!~>Wezhtx=w2CR$c9 z`{p^Yjz1H|Xb^G%YX1Vnp_Tks7zFiR_LfL@%%gajiV82J3A!*wHAGcAh8rw9Bo70clU7 zVkF*qF&fB}1TS;_nG5>bA&C&g(ZTv?0tjvupkPOiXM%nD;!tG83Z78kmbt`!+?`w7 z*d3KCw;zk+(A=IQlgQwn80zac>;4wn3`Ep64M~mz8)C_TwT=x$DS;y76lev3*H4I( zr}Kc=>rsSmGuw753FG6@C7?JN6o8@o2lid`x4>o2)uV`k9TVk9+G7U6Cu8s^Ldw%6 zB~krm?1nz8;rRfNx>ekiWWDsl$wfX8m_^iyQTUrtf0;v8dPV@whN(u!3K*`%nB>in z&lb5{gT{@HqM|4aLiY-_P3EQUt(2+7cBq#Md&4L1o!WmamSW|+a zM@yuEdGJZNdBZ+77anJ$SX3Yr?1aC-oCS1GzoS`=qa#tq&HyiQTTZ<0I{Vv)P#PdD z%MCM{N&ZeM{+QHa54$i;J80 zUH+&bg2IqVPcOkh1UCJc*;s|X(9~7x3#3@`b`Hn{ z5=9AKicLW8HW}H@W_&>z@Yy`k}P*2xdyL zm0fHyo1xw--;|qo!oWg6P4M2Ap!f!7q{8F0H6##Xn8q?`2Kfns2c7WUUKg=8RQCgb zG=u1l0)Nn47Nj#bAnH0X1^uQkL!WUwr5&fJ%9t@8yO%FApv(i2$h!k zP*8)Hv8t?g#Bbz<{AN3g5;!{{5lzenu_GficJ_{%*N&05eX=V9N^r!fW@8o-en=T? z;~M+rgfy89fUSimquC>K?5Vx@x}I8pymgYfV;qiy`_SF%l9f%4MOrW=PEH)BhSF$E z)!XG*5ALzdS68LaHxa?~YHKJ}-_V@l*53pkgz%&QPg|(I@{~>BElrm0Tc-Gs2g>u2 z=}rUeyp1v>Ns!v6FZ34I9~0b(W6>dJj1sbd@=|wSPhpO&$Oxoyi(ptCa-0Ehu8Isc zJ11TZrlY2;V7W!Yyc15t$RjxnQ9<&VrtB#YdAV^VKNEHcku8FJRGDf>N^ zkwmw($k~ecSpmZ#>hBg~*vyTDoJmp)16;IZi|C^c>SU+|q_{^SCxKADil!v`3*wEF;q$P^(q zhrl6GevX3%z9D`$uQegjvM^Y#bQBmIMj1s4xpXgsOIoE@CZ~W}9LLtykXQ_cYkZ72 z9LWMrDdZ^OTH)?&fWFTW8v9PBxhoUrK*!-4{zk})jAVp zJa^akn%)v=QUeN#pwbR5V9*Z6Nxu^)=s+-1REBqJ2IZphXIoQ9hsyf=NW(@c4Oc=N zLx_RQ?(Ey(T!ihV0!4g}bMje)WJVeljdch%bel|sfqHgEfmn{}IQ_Q|6QzVoGU!$~ zG~jH7nH20MVkXw27d<5K22(V)p-=`f1nl~=uT+!X$DuAdf%&_^X`^IfsXp1inHU0i zBRC3KHNrym>-2QUOW~D(rof$8ZN*vtH9Lkte58$%H67ZU!flqy;B*7t*|Cp?CO8O5 z3m1GjHWa)@aTHo!1TSNHmogM)We7b;bD|o;A}|>7sB_O1j4=@!fS(hw#zaoc&0-Ne zl_MywIu0CF=YJaf0EX&x@~Hj;mQq4$qAbJk%rG)EZH`gAmdeV_Y-$FXs?vJJTqN3W zmdCCo2-J|stsQ!wjZhN%ox1nc-9)jJV5{R0F9Dp+_tIgE2ltpEp~<)v3?>$1kR%(d zh+o!>?mIC)D-yTwMx72Fp`6e*2Kc^w5qsrZI2a;%+{$!ppMl%cWFSj8;@@U=6W#dA)CC@AkSE6J z2BT2e)Soj+%+WVj#9(^pRo3Yyz2-GG;C}=M-bCki@qAtV8KYrHhb1J!9rFPg_HVcTNwB-G2L z=)!u!k8M31{#*G(lR)r9?o*Na17XtIF>H~4@MAB36}+vK%-BiKh_wo1Q2wvVntC@6}B($ zpR?egTX_AYW=|lmgDl2`#RTLxEn&mB7x~>|e2P~#w=zB>5wJj?yXSyO+Hhxb?qC(h zxGQtEDx?FgVbgVQ9_oKu4~xLJKtu^h3_9;lujHeEE|dn6>a7yXgM5v=xEzIEdVPcp zNK&*hG_q)a)+as)2?7*^XQ(FGQ!XsOC2(WhM8eX*356RgZ}qzL?)jW>?sP0@x)adv|5^@T4V+?Q082{5ng@%~Y#VUjHA*#!VW zt5*yGKW77z?!h5_-TN3^1xVJk%o!|&^!Drk@Kiiz-)R>8ul|>OARN;sDRh5G%njo# z?MLAz-D?1HO(7%#zL(yRRE)Li<2LN}E4-VBHozUJ3txT+a_HwPh3Z2pDiWYWb3?s+R};2$!!F91jjjo;|$0DJDCPxhn5?rq#0CT(g(?L zJEY+F#Od^AXOmYy78=z+E@sHo#$0_o|xPBmG^p+((JTz&6&z^g?zE{ z!vGmH+{HyDaQak5ESmrOSY_un~XudrK&|+o@(Kb_MJW{2@#4OvM#w1^Y31 zJFw$3tpPuC&1c0dawb^o=-dinYdrM>A6s{GhtlW{nF$<-mTl=bD+Bzcd0*y0sbO@y za$y0P&H^gbR750J4z-LeGT?8D_?#u|M3g-}{tgIAQ9N^%*p@Bf_+5|IqGBMvX$eWp zUNc(Jiw#UvcGMyQZxP_{45EAoeMEzf-yf|#sD|o|x{?$Lagc=B9{?{HNcK(b$%>By zRDK#fJPI=FI2(pc@(|3jzzoFtT|0f-YBU@YEfJyP`-EV6W*Z~7KIf{8q=|dQaWN}r z3P2g?EZ}$bR$^lVc|m6b3uy8S2)JQcaS#%1O%dwqcqqawEW{B z$FgUXpU(Jc@N1$WW^*O{hA|UlBl*j|b3& zzXr3{Ypr~Jd9T?dsyCn?wyq2agD@pDzW@>=iCGQi$sT$7b2d>Svd6zG$NCd7`ivBS z{JUnAj_a>4|1B^3z5Z$N?|8C5*FO#Z zU9bB;^x^r~5Aefyng((n00KuG1pd^V{``?2XY6!x31NA`D^`YoImgd`8Vn?5S8=Qi zuH{?B%kk+Y<^4k~QI#r=NJ+w@3D3uUCrq(K(>ng89e)XTnLmE6y}289KYsF6^iL=- z&C{`S0rCp^%(c|dFO^t)2k`>$8y@hI5l?~B3-1B`JDn}Z&w&^#a67QxpQMVY?Baj7rbj2y1}gE`MIhzmR}^w=k>As zEbDVENHM@e_gfP~y!vgOPv-KxD4CjB#di|plhJ!Txi{bCAB8BsM0pWT z@@C}Acr}aY%)equMw3IeKX)$x6!$(inQ)nFf|)-{cl-1U3-l;%r|)8`jx_D(BfICq zdyh;?V3~MBKu%_7#NQ~7h&Z6v%IA5$@oiPUhD$-%?+ZQW%o{4rW_F-8&9#?~Y5v^` zK?}5Iwno9cHi{8mPaojXo9{?+Khx;6c6N0KUl29J62onF0;NT@U` z5EH+yLv%^tcyf4u8eY8_GI97#j~P_{EeT71LkCRDpWdvk=lUw5*Oy04QCX&!1+O4n zyB8aMBXt`-8R^xUw>E*~35I9M5UM>G8G?C!(_;e8_OR~B^kXT!7ly+8N1~(;bY#R@#_f1(uuyil5^oQpRseP>ee@x8YeH@tLI3F zY^`h#w(||F~4HHeo z_hM?M??S+EWSKM|3gF{Ha@X8Mr>8O%Uphxl>IZ*`C&^w(_RPw%CCr3c+3yk2?zy~$ zBZf4d`h=rlgM~abm#|N^vv^i-#JI;-$mY>7&^_JjzO!?97LE7{fzvQ);2`wG3_vz! z8W~CHWC$DEHv0MWc?L=du_`#+4N92RcbRM-LqUc;$QK{8rMmZbrah<^gdolRQgvAR zN?Yh!-syD~-%W&+SlQJ_RM4RPh&;#$7X6shy49J9NE>oac~@(Cjr95ICja(f8ay_n zy*#7qKFs?o-d_;+m01hMfj{YyT104%jdcJKtqq;JfW~Pnm!P`ypL2DNs?MymwK$(# zcKXJY%c;Alu#Gy$n6YUCuO$OJxfj%%Or@NlS3^w2gqjeaG;N zsTX>Z`B0rV{R<9FCtpt&$`yd%%+6Gy-UlajL#y_fD7K=#IXFosG?(sN{ni|d(V1l8 z<|X!mDtMvK+q?OYZ$T}np z2OW)Ra-`^^wc-Wy)EyI{q|hg zX)~lHMEbr7N-PanHxiJUATD@4-ul%%tL^PP^c&+oRh3T9`Sn}kY)^Iz9p(IPiz^_) zyYS$fgJx*kvsM6>2gfxQcbH-d#87L~#;&*kDt$@s9iA zJBgu~iqbL&n7L{tyvN2y6FrSVpehkTO_N_LHYy9y$dFyH?YTe8%2IQyb)mUygI3mt zxHk%$P02rfrCF`l1EViDm&=r40FUhYT&}Y6^Ue6!hpkSGj5&umHxR;Uxtl`Gh!2Z@ zR>~)xj1M`JfwTf(ox9(p(4s2QJdA<6b>IQ4cnP((#DTON%$Qe9hZ6fjdA&+rJuQ#h zKbZSjJYDg$+sj6Rp9}frm$YAg=(f4V8#e|}vOg`Zjl4@8*!L;EQuW8>b#p;)*Vm5< zfJX5aorA0k;&Hv6PtW6v_gWOcbnfRlDn&KX#|cVUNZygx9H#cqL-@Sx`3H$-j=S~s zbaihF86A&+6s7oZ&E}POLFBBqyXN0f-VroXSLfz@yc{iklRiE5izpUz`%tVQJ_lWH z3Z(_v`enGiuUB3!vG`#wBL50=C12WMcb?CuDSE%~6%6;dSMKdi41?#ny1J%)JCCxz zk5yd|Cb62qZAuw|T`n|W0S6vEQP+BQUitG&ZfPV_%LT?$0s`bugQ&*i4JXONE%WEQ zL2#L)2yYYyemvTfCx7DM3tn*OzMc(8PlUjGCwi^kH;1l0=FF;}^NZA7QT#3M4`~xb zZ&?$LogeZ?zT`6bFyR$9GG~KhStQaT4{;9~9AK{JPNZ=@<&8Yt8GWCCT~N9)&m^1P zzh)D8*hpqMQSHeL=4veXS8&ZF83LxkLgcwxwh%M*vG=y+WD_D!S=4Xw_VyJvhyTOH zPw*DIlFhO2su?Bb@7K#w!6y<_3_*Yh$|Ui`_DE%7bcZ{mO>?Lqs;&urMDb3l)S6*272 zPlIc7*gkGTq*GVQcCpxhgFBNTzh#jYPqg?(=hIX=zn?aAt`pdFUbhR{7MrSIG{~;D zv1ZpasoL&yWG^R(&bS3<>~uqw3Ezz=dEp=Kx7dqCJ%_6$z}MYK_Uhuv94SpGz9V8r zRP%CfAmW(K&M@Od^mwZ)n%QX<3wfE55eb%9WRM-<7o~1rJ1m+zT|cQ&-IwVwA4pCI zJb-FVv}zQ^AmhZ(o-?Ay(L9U>QHfHOfbV4%@+sLwx60dy*`E?R?7s7dy||rs%Cm}6 zrsbuOWnb#C4mC_mF<-Q&YSy!Adm0;kPc_^@@bGqv$D6VuddvDg4vczF@XZRLRQPF- z;K}DzdnLWB`88G|F+&n z)k4kdS%F%%QM#ste*0o|Nmzrt-IZeZ;nN;A`{gzsG<4$JH1s`xUpwUmRf^*0CY2e~ zzAV=h&^7V(ddE5uj!$G=WirtTy6|4|n?FA+%Pgy|`!xEM|N8Q&P~=MItcmI9Q}^*w zLoGI64s-i?Ifu*oW zw|X{Q;DarFpR+jY#k`P7_b2J&IVn0>!?H%xXnN!cOA+k!BS4`)W}jGqT?4fR3pr|`Vn26eZzbbY$U^U1U1~2QhRdy&j;>_(~2;x_8 zEJ!1En)|)H}_Z-jhl6J`; zN0tTf-DA$ys~+~-x{6noE4=Oo>^^6+u~ZrLsZ*@c+N&nrESvp3URMS&g1j?RqDe{Q zERlQiTqX10DS3@pe^xb-JXX~>7lfsXVS?nvq@i`1_-avGv`I5|KwpyN zq|;wuC+rv8qrVPEOTvi1n8SOad(r?LtvQL?_+%RFU$|UxDrAOA;8Fp^aui7TiqD7{ zSD){PaX%QH{r2c1hp#=p!eMM@O8r1Ts)g(sY|dn+(NNm!KvcUfsXQRP&?j!+JRWQc?>zTkSL6%FxU++DJE3Vwk2`^+NU5O+ZH*z&+#!;< zi(!&4Ual;ylLCT`wSIrc&plqC82Gc9`oK5~7x2%G>gVw-H{Qx^@5XrLQU7&>|2w(j zPFLRJ*9d-ypB7-Lf6)4O!2eCI)_*5g)4Gnj{3BP5dEa0Ef!4nR{vXM;;>164B?be_ za};=S7JkqNp*mRcYu$&FEl;u>-8AdjRPRLL9>q?Kgt9hDh>ZZY}=nc+y z;+iM;EA!8%ECw$%2*)qY0b@e`{Ic?8UnSKd-)+T>B0tYXSWe-@uWc*(bC7lBc3CAl z;;2^CiqkATk5thI&7Q66i+`k6r0~f=Z!P}|?9w#*)9+7EGN~ykhK^?2odB*zPHd;B zls2+n#zWp7sw*E_+g&2IzJap2vzVv(7mr7!3OtRs`hVXW#b*|p!+r9N0Ub9w$4Di? zzMz6j`6ZPmJQEP-T$u#l(CvFC?i}EnT(U6_)9WbSm$Zi$aN~)eH3Pzrv6uXl2yL|Q zHzcH%>u6SEvQFq@AHsmw74`G5MA~%cRiH|EA${l@RKCbtjei;xVYW&nTJ86F(1$(r zG^n95VvF{@VXEY4->ANkT4M`kh_b1((w0uiH7~!d!#xta_)53>9S6SekHa2}bOC=- z-g^D}4B1&_!u*;c#PFk6EsG{#y`w;13U75G3_(eb`+(KO;gN%Cix9Bd9mge`h>(L^ z!ts3GX<_xa_BS5magw0jl_~j-qJ9>5!cBLix)Z|^17JzW5rN9^6M87`#t5c!?qTs- zUW1bHvW0C?nbSh`3~z)${$)y^?Rz#nsUBdTc?++DuPqTgaln&s;xz9@{k)%i<%5Nd zoOPn0PuCPH&^~)w(}S_P;uF-t>z&+xfsOT_q&-%{(v78V4QEw^^w?j?=u!EvI6(G0dKm70n;+XE3G`(#)Ru%` zsb<36nb$3vfE3oOr-FityTY~s*MOenavb9n_0K}40F?TC&;EP7?qq@PZt?7Hc zB^vxNCpcTVg=_<3f|1c0?lfSQK&7!eRV$>za}N9>13xb2j4 zoP+fFYg4s1b{RTi;U915-I*ztfA1hZXuUsoGJE~STN<$6SHc$GGkBbs_uN)nxpjde zJDd$-()*=e9VL&V^6s|;nbd;~m4tF%%I%$nIo`r5%325l7K7rLwe`1(BnhH*E_q4a`@%(-6QUYCa|VRnnph!8>XmTCDw6s6K!FQEE0F>XXjoWq+6 z{5mq_@3ZOVXDmF&Ma8i@%jxosXY1@<0ec0P!||CX@@w{t#e+Ql9BlG2S_YwVb7$0l zuSK%?N^T2huywO5&zmMU3uYSd$A3@|>bE;rR^+334T@v+vKoAQH8-L6Edw{n>V1LpAF;^JW zM=DLQ&sZ-Ke(=9r!Yub{dHrW!FHti^JR*jg_Q(X(!U~@~3m+$xV1sx<+;a&mNQ|x~ z!E|+r!$rDnF7fyCF8PkvDf(6MyH&ZYyjIp%V$tik!F-csUwrZT>GB(=zHhtEzpke6PoxC-$S&XOzj`1-uEV?9RSWkK zp>rxSyC#WYtA9j}%{blgj_aGykWWW^qh+}cU8NjZ$f2vOt^YFR6MyjeBpLa_V!MWR z>otKtcRl$8c%dDLcWdp6yAlKB8=exA`(kxp8wZWB(3gjr?yL(Ia`S%ANvRIrEGmGa z8dU2z`iAx!AfWS}Wy%n$5wVE&=AgR!!feY^1oKeDHiWf@7Wq6C-q1WkNyrpxxC3CdVx<+>wvPZYJ(t?E z#Xzbdd%LQoY#*W%=KayvcB_7?J%G$m`yGe;q-Ngc;M$)UGuu< z!DsLc$O@N^$#wh^ww&L^Dbw!#t1F0=LOj=&yj zd$XpV1vEIL|6uOX4ERSS2H%?4zCm_4!yo{XbJv&e7nTmq`rQZFvky(Fn5yA>-YHrsjVqK4#6m%06e> zW^PDHR2W#`&wnTa3#Z&zuU#Z%M`?XD!0H|;5%vF**k|8ac-85cFm+Itl2`<=3v6Z@ zFn(1a{>LNiD0EY zm?7DHk%cquPEoEaDCASR{$#XLt`A(m2m3`+I0j+-?Zpl_JsD%FC!hcyI^fP%WtDtrITHIFMkIFAa~zcy{n>#^gcqmzzM0-brbol?f^Z@W@7JA^o2W;ZcY54_1T~%{ z>~v;LrAr2&eoIGwO({_MqqS+~#n!`0NA8K-j5~Fkui+QIJIK6mbCUTwzsa=oJ^L3Q zyD5p$`8z{(UC|!g(ff8YpPs-G1_J^*`R4TZj?cV!hlXhypIHt;WxigGctFKEFmTU* zTk3f*`AI<|Z&}`4=(?fxH#CRvOByeR`f@G0HyWw92!w|!5JG=w;%&=9AJ5@yhiyVz z?N%L&g!~TptqP!MRwP^npT%C<=?S!qPkmF9bT*<22wgZyH`g;Kh%6 zzSkQOwbu}jG2d8u7$xt{TLOLmSu>JlVE}~!U?HJsp3?JDKVNaYCN&3l#g`Fqpt9gE z892<)xHe<1ZxYQ-!I?8y5#psR$T0NhZTR(V;I=YY*)sI_zeDBK2}*t5JvB*K!xbNE zVFs?JH0Og{2@-g@=WlR=QzJr>X=^8#vc_QslI}zj^rPK(k zsdSpsYrw3Hh~fkta5vrPj9py#KXUl{$CrNxwqei8drLT17pj+x8 z%27%WJ;4Kuk}R5JAv(z`LKn(M#tzx3pMVa4ox5HOk2aYCHO;?=d58Cv@OZ-uJOE7w zLRrS|S1geMj9WNOfx;P?Fik|1F;Cc68>hI>eCD1GnFXrvXQ3U$y+dp)!xCsJd95g|`0?v%|Pi04E}g07zc>Dq7ddofrDoM(4!c}yjQMc0&&0It6s zB;#DjFlLS@ONzDm{(ILwsKk%I=1vEwxd1$uVa_fE06FK*Yzb)d$s(L2P`oF<3`IsU zNiV{T_5(8KjEoT2OGwx_E@Fy*!zUhVxO3uP4wNbjfn|gI8UwYoGDP9ri(wP024*TB zHVEENe=3dreSjPv@Nh<9c)5O8E-$nGyJXhKrgf$Y_UkGy{BZ+k3sMwK?|la_&P}nn zjyY*7e0ByY=s*3t>mehFFns|$v-)??ET53;Jve^{#9&x#Y~778r3tyRq2C85kft(< zpz5|>Y{Kv#{oiOMFB2AjDSez=J>WXcvGjn8VWepIWUd#s{~b`=^+6Xh++nyS8e$~B z--Cpk+_zWk0maENx=LN^|Hs1YKFM>Irs!*3^Jo`;BBSWWIh) z-6fr<;48^5M@w6tI|b*OQR0YhN0eMQ=FjtU=GCPW37afN)};yc?MB~6E)L2gC5VVm{or38 zHA5$S-pLNH)kl>4#M0U>}YpFIDKX|Wja9NygA%5%Cu+NELh@81T53kX@LD>{*CBqL}B zo0g4mUgOhoFGLplxFhp{(-)j;=-ZY_Kj7Tesrjl6fu%f?8=VC1c07Ino6)SWK5ssV zyXVH3f@!6#cf4o=|9ZbNmYWfdvT&LW?syVY@^1*rvM0>lZ052BL-gvt*VggF+u-m# zZ!Cx)7_u>w7p&=yq&g7yjI|!1Qot)tqx1Qh1%xrRXXNtHzgdws6H9|GSBw=}8T}g! z74+5h(E`A<)F_aAPlFElRVp7`eaGa)72j1m1MOha?I{;$)Qc4DUdw--iVGpakafq=G+>M3d!cbQF6I$fJoif)5$2Yy{Os)Nu&HZsd zN92gJH&nV!)4*8$v$v^Y9olKCic0a!XVnH1CS_m|a_7144Z)cDCVXCZXuMKT1TsNs z;(27SNi!U#5Eg8G-6L@m?DPJ;foBV52lGQHEN+`&SbM}o%)Vi3NW;*RAN!K*v*EV4 z#N0+XL}$H4ry`}mk!r@)M1AL0BEEj?`z8KMy_wb#cwPX<3RO)&jTTDHez&0_8-|#u zTbl==?1$K%wol$9`0eDKnS$46xiJXVAkcVZ(!-3_nfM)$ke;Lr$`^{%vLn~JGHT=> zfMzrh4_->W&H9-lwaF?E#{4gyt^jYX!TvyJ{)IFA4+C}gN3c!Gv89D`WT@Wy)}P() zvxiII$ru?^ycXQdP-)&@^|J|EVZRe!m1Fa72Bh5`(lq8uiBu(#=jXq%1Suz=FAzH0 zKCq|v5Fm;6CB!)8Dk=Wjqs~1L#ay)cL!y({T&W+NMu@g-uCoVn64FzDqI6#WJD^Fl z#VdX~+BkqSH@V6(;LS`uKNCPEtnelyz+jV%@Ysc_YNYLuT7t+F-s*QGa;NI`3H&h{ z7jO7CE;xk1zYh+&)5qmY&TF4YOj^wY(LW;hm-_x_W3K_H2%G!Forva;ko)R20jqVJ zz2*{=duBhrty^-XYrDqO=jgWk8{Os?w>iD}%sahkwyjoj*O8rVQe#v6uxAnLjGPjHbO zK*kMJQ7LWtn|cXXY63;{Utp=_&($&&^u_c(AB2m#(R+hkytc$6bxV zXDz!Tgn0Lx`(9KW^&c+dzMKKs{i@&ZFELu<-H>r{fSv~wIOxQd<+1&8Sy>{z(jZqo ztX}!N6=;67SIgwi$($vj?CR``Mm(3-C_8Sr#|RHS-_8w$5|A*GU?5uqSJgb5R{e<- z0qH|eHW3NJ01dvMKoy(2d7fv2ZHvT-w86fsWquv8?lRK(BAJxtc|sN}G_PW2zS@4@ zP-^Q&{{^;-BX>iBA()q$EL<^Ke;F9bRj<)-qpKmEQV`sIZppjaQ1yDAVlpr1bq%cy zGsm({P|Xu*+(-Dg%8vI@C#>3pWleGHj21(ZBNgRtwZXXVTZ)kEwHf}g6=%Fa=4NZD zw4W=dH@L_Y&QlM8%gv>`QKD>EiH!v>nLSs@Wy_soPYTOPTA7rjV) zHCSj6er69!=j#D}FabRxiES?+ec=)K^xqkZpSzuSnTas!y*UWu-q7EYqP6QbsPJ}^ zfY07aL2n{?d=^6hscko!O3YEo{awP-lluA}!AG-yFE^MWd_<@c*pEXnR*FVIm6xB` zYrIme2pR!u0{_UwiSz15%|X6r)nk@~UAsN9t01Jdm*x`yAH^l0D)a2`fT|M7 znM+`Q4*f}M(1E{Uje*;mf!8`UZ&F7Vz{lhej6}-%Qcg~j_lK0~s)zC?1euT4==ZWQ zq2DEM(8IbPdz9To*ggP$emy{yr&WK^SvFc^V4NFLxG(bYF3j+aaA|CpZ$XLga;W+v zA}vg+xsTl++}|_c#K8c`Fg{_rVunN+*9PW8)JJm$`L#^F8-Jkv)bFi4!WuLJKsx&CiD0y{ACI@`*Vf~w6$(wiNo+*R^+>Tjwev_PU|<*LS7+y+#XAb``U z5T}U=vMBt@9y1w|FdVGU#UJ{6^~s(HtDOQT{CiZ^WkK3$ocRJ_0Hyi^0oYdyFqtL# zgP=ua#DJp{=SceUR-8kfLKW%MuQLpRkhF^xsNWZ8l33xtRpyJz!~o6Lp3YnI?)kn4 zi@Cv+FbvI}PC6Y5>;!;wQWtG6OcA~m)ha?dX1QO=KrHU_wr+V`n!oaOMj0rrrXKOd zOT}sslhI!#vEuD}2bbXkBR{`{HZ8SbMk!WnBm;wS*FB;9p^d1Snj(qu11+nikkHs@eNs0_mpE?aRUES%98)5Qhkc3J@L_AC|q#Rlo~jRMne(p*Y> zsmFih0OYKZ>MHt5v)J4o_f@`sl733=HfIr9xkjjtU!C-8;zx>)YIkH}$A+qH&}BS*D){;Q1<& zZulqk@78-mh<68n$<4d}%2zPX{xuo{18QfZzI@lwCm394kCqT;OsrX};~HIkUAu@2 zyfJ4CWVRhF2%itKe7{JvdWc||U(;`o{*xB?iUdoNS@p|nqndlU(mK!(#_HEENlDeH zaw*6uOEOHlUF~Liyu9H97`V}2b%NvW8@Lke-%BYkAP?9vDY^~gGm!~>KvSvQ-d?A; z-cOcA!LMNJG>uMeU}|{W_HT&L*ds^tG;BWq!`_!IJBn;s{z_Q%BPW`9%B(Ci1_2TR zfsg>{rHoM^0b&x<*O$9EkvHRJ+^SnWJakveBF=yg8^>|qYc2P^x4glxBsv}L%etjL zUJT95#>0`x7ZL&DH#vvu^g_+MjV*?GJmVH?ssI}H?Ms#_gZ6j31w4#LWix)Ffmx9- zK=smD^?l9ZavjKaoMr&_W{EdJy>CLf-#JlH!c{cl;O`48K2-OG-X2@Lun^^P%;@>L zE$Ep}hW!noITSAEb^WkfCfX?I&||x8e~*##mD5aR0|==^Y9{^;DWAtYT~w+ z6EX)LD$*N*y9Y0Z)y~~(U;AHMeI7T2|#1|oJTN9 zP)r?qZxcnWY&t0PW)E!PdRaGDwZf2x4v0R^RW2S!77#k^2F8=>+d+A@`)epP>l*Cw zpzHZI$IeV~R%%zj!bGOixz?q-9l1x>jXF~nmISVI(b?mo?&tTS(e0{JwzGW|SkLeX z6Q|{FU3PxGD~W0c9E^)HFo+&#af}xLF|@4B zO-Ww;7I1#itDenHf>8yS?iBU0FRrQ`xQgq}Gq&=>y}UP;h)DJMQM-{wSc)|F z?e&nrG3eQXmBj-LYmkMNz=jGN>Me-^s(Q`U5aKansItgk-&<^fYThH7-)u{5gNnAZDffW#0A?|xIFWZio?af-P{2s7 zJ0^;jZy(kc-csseEqofkcV+>B$@V5`lX;73vb>;Nb#=~HdAN|T5|E?Llg@H_C&a)l zg0inr6fHPbr)jIYkE=i2In*n>1Ak2dhk0c$9fx}O{jxKYsyp<8$qR{+UC#F+=Tq&W zb|(YyY2dCj7+9*9?;YQ#F5D{CSqnFr`T&TI?&AH`>n;pH#~Q#4G2WhAsd{^$`wI@I zj6R$&+&jsd@szL$?n8e&d26DFXW-W4wBW{*O5?w4bQ&MS;sFDkH} zR8*YnLVg_CgdMHhz67G($`j{sbjM!&!#BdwVExhFF~XG*D8LdtG#x6;;+);(O(-vFWNcZPx=NM?h<`EUd~5(? z7f&KIqdhD=tL&(C4Hj-8%}=dS+}J+r;{BpZHe?z+87g_^qVF{uL_l=$s2_2F`^x^3 zIL6bK!SjQ`kg(F?;A(lKtQ?y%B+(}XH}Qe+p@{7nIT(;b_l|Uk_dAA9YQYllchHDc z$XXj9L(RiY{#OFTH{5J@C^+}SeqAE4_A!!Hl-LM&Bn-g7k{+$wjN9qV5%59zZ8lyU zr907{Tb$d?cx1XZz*0$hnu%hb9`gyw^rNkd#JWU~<%0^O(WbHlQ7|MNFcS9eHT*Er zn6O~kKBr&iUA@4RCreC--88DVS&_A!oWf6~Irg&piW?>lKFbxd1+P0zGj)4$6v0@8 zVbbJdV=ylS%zRck@A7-o#9&g3@3rnJm4~sk=h6qxrzY!8Ca19!#_RU>S?Cy0K_rRg zPR8+!4G6Q})MqA)MwD!sq~vwrYO^IUTxI7xa(tSl+hVYmaSO(3<2W}JxxHR6H1Aoi zCC)sJN>a1}P#QCc8uilCcedU=ZIYp7h>AL$3+sd+eSRr+aYZ9TPIVSsQM$Gp+g9W1 zir>Zbak}{2THgkYdJ={R-Ii-o5>p${!-mEDt3jlP*TL{99k~37onJVgFq*>*dxA&L z7>t)-(EDQq>LA|KLCOugbzm!reqnr+P5K1VD3l% zF8{IPZl{B)L+$qtDgh$|CS`?F|G6r{6UyZ2yUo5oy$3NTbsYzU;z?6=gxF*kpq`@n ziH;s~3mE6I6Gn+eo-i8$Rb`fOo^bn_N%UfM4sfI8l*uW2dXM^r?g%Zvx+fh^Ug-Wn zzubqE)%-$pR6kYZo1$Qc0!!kIo?xsSFSsxy;bYUEh2l8Yoyy& zL@#O8>adtbpQ$nolB`GBi**uada=7EckctX0|P3i()&aa!z#@lNZPYU%pfqH)Sa=@ zwi?^BfVSIccp?xgI%twzZWnKC6s%Pyio2leUR3BD!Mw}a9P0s%LF?n^f~1GJHyR^R zLBs@{6qg9=)fN#%ogh>p9-_@Qf1E_5JeQ9eGHvy4RCkQM4><-?1;armc^(a*#9QZb zAs{4>a|IoU~CO1#r^&?tDe#5_a~3v5aiLrQ1$oL ziC?a3u;iN%Edh*eXrIcHuN%+`XRnbdz*;iAB+M)Z^niz22KyXXWVDe0rW>49AX< z1T;r&*`N0?@2pO<9fQ0?>2?XIAzpKD?Eu>&Vn`!t$>h_eKlJFe-kwijzQIJsGi@5a z;$?tH8O$|m&Iw%k@%#K*h6HNCaCBzGI12Xp>JRrR+}GTX?xPup)bU6XMbo2+L|2ZD z32F*uly`tH=#tAYpnwG`G$1KdNNjeJ{hD@<`NCTo;F7yw?L*)=5A2H>&mxDUrcmA= zeF>v>^UlrlNIVz|D)5Lo6MS{u#S9%0iP{839Rp;>%R3nS%^h_1Kyb)s^_bM~gdJK1 zeKTL9E+cj<<6&cYMo)lV3=3dFlG}JieIZ*`PMk-*H-S@7TZ%C5CUsH8oO>^HG@qX| zq#vf^6AO5_0SIP57w+sAESkf@+)X@ys_X=dM_jw2?B)j$oX<7dxOPDVX3 zPmr{(R73#8J2~rs-jZ`|13(jj2f?l|0fE{f0RDpBL-7omiYN3&rfo>Vu&DQpWED%` zdjBOgP21E+x-y4~Ld43Uk=tD#dkTH!QSrz@|G4>6=Cq1An;DYiJy86W`fyBb$S$tp z`TUuDVBn_e#;tNNM92($S!c?`0WIbQCV?iE<-@e$T`boz1xD|kvjAcNufOp0Fdvm; zJYU`0Y$Q3uh8UzDOaWZ=WIYuikbG|F&RHGX;z+IRz;H|-2h@j^QQii9<#?`l1k6YC&x$)>y<@-qWw3EJK;!Zn1-OwvQeq2nTU~1r7sxcD-dV z#~URSc;0p1V-5~9yHUqJbg=vdc$&wxP&>l}x2#s6{Joxx5J;(=>K{V>HKQJ%rijRN zE2eCo)rL+}GNv}W0NnBnsAH#zSiGHO28>iqLZu&WVs(`4 zZfhZXy>C5i2JUrh9h22L%(FYa+|kKOh2z5ZjSZ(^4q5!A3#mX0uyo3jxK88EGZcXYIUMNPZW~Mw=3wXH3$lHA@=UC8{7_3Zt5lk^lstm#78_6bPkpvVj0Ga z3EUvi7+iUhhA9fz-KF;vl_W_vlsFkZk1TDd)J2H&N~o z^lEXs>3V*-p9NtDRH@(MJ^nm#*Iu%*1J50NnnPl3M4ffmn8r;(DAsYEZN9AoIi=|t z*2ic;C&%LXO)j6j){G}k)?oBU-irLwz6=|{fs`|)3G5Yg(+r?_U3PZe*hlBv(^y`w zb+w(kbAz==l-!GpO5FgZIWSID<3m1%%1A}qeP`iZ&cuKxvC07jt_Jv;O?z6$VK%9f zNZK+P`SLg$k&Lvk?oaVPDQa~G=EKgBa5H+#AnaUxgOuaXU9Io@k-Ne;WbcY-QL}C? z03Y91aitNZdiDKNeGy`5#->fr`1b~ zg56Z+R`bBuX^;DsF;`5nH2IzL1b4}5ZVwk-PFps9_tm5dNCHkz`a7M8SpeyY%78wb zd>|I47d0xIZLN;gsVCW2yOJe+r}MiLg^&;6$HI-yV=9m*rDRDD!LB4RY$PzkZV}fg zFr}hAOSd@L$Yv#1%k`m%w=<1u># zxVd;+u7f*m$}KbrmU}WypC_^m1?|~Q9P81fH8a{Ow^fY{mc!qo%e);l3xA%A=$sueJz;%A+>7u5)j@$CBhvW8`iC$>uS?~z zOTTjLqj-Mo%v;b4im7ZZ@oAAbj&pl3vvX@lp((*84-$XJ1>dtL&h(yTp)@se)sDF~ z5tt~wkM065eujxHc|)7JG5d?%}A@(q+4|ozd6;Kd-_BR`AM%Jz|FSK6$6Y+AztL zgFii@${4OH(EQb|h;y0>y~((9_`2LTE`psM5M_8;7rSIk)|&CiA+(LzBz7b2o~Z+v zbwK3dc`nK=8{!CFpw4U<k{pNKqj)`^iLk-lCC z;;JaiZgd)Uz`6+w!wPsJV#uT{QwRwN|DnW=dO^nzY>W5yG_Pw84+1lhTn_Em(?f9a z72M0+^LfTRO}XfMH9MUvI`O$l>S>lW(-X4y!|H*A3>s&{Fa%R`Iy0(r87O(B#HN*n zs>V*jQa^4<@!T_W+=$-hh%Tud)AQ?^iwCK>SZDnHP#z7+o0SEt^H?Y2|1o zDJN;i5VkRUhx!_B=jTAL{Lo={1A!&iC3}p%EGtW%Z4ay=bthCQhY>wc^BqHNhc`B- zV(yOEPzL@*z3j!aQau;BLV_muCeg3bb<@8fwI@pMpGBoT%O}4zM`ZFJ*Bte`Z31Z7 zxWJk*GK!9daNcyHkYg~3{BMKbgx;4s3-;$sIgaolyvvRL`K9!7NYL2Tqd`|6=}2`K z-+9jr@N_rQ-iAd{FMzKJ@9gyz^(-tydH8^(_f@2K!KOdHL36U~hZaD)A=3qP)V^7CI~yGXnmiQ?Sd| zwD&(6Twlo~*#Ehw0WDYFMS20R6$C(Azyw(hiopyAt|0vO+xx)RfBl!?mo5wHzAPDfBUNBw^y5d zA@GkcaUR^-p#1Vozw}x1rGA3rT^&T=3e}fG9Ta)>>b^)tF#pf5U%GxSfWi9N<$eCF zehI?vS-kq>*CI*#UkIB2wSU&Xuo(C2n8$tg3q$Y}_iL8qw+y_^(KPYvkau~Q7kNMb z^8T?%el5G_x3LZCZ*TLzbj>Sh6L?Fvbc%yM`0eYvR`L&zKn|%i+_SLPwr8j^-=!ox z%pAh%Sb+bjs}wE--)rwlys5Sg zMm{BiZSH_(mGwm8uL>LUlf7@K(4o4l6*khfGF1080Nral)ghC&)qUyaS1$UVZLK?1 zEd{vcJ-t=huxqL6@Tgj)+|kpLwZXC1yp+@*b-JLl`lKC1W6A8%yyh&vx8#v4iQ*)MD#1-I#Q(A1VyioXy@}6+8bhMa)`P4--2j^865sNi?EqEBCN?AR?R&i~i zPoG|ABiLg2E5rFMa@(u!B+bNKb!I-ntE6nTd%dSDtdc1w>94tUoXtvVUxRqIF43i? zdS61de&kj@;T6~+e7S~FGLJ~iQlGjkZNLx@iJ2O;(A`_VZ9L4bQ*?~*IxeTN48tq&eY?ZeFg#rxz0L4F51#7duHVDh+gcPDH)4D8L0?A z7t>RuXmRac;aXzTf;NK)iF1Ce6)}C=pOD0fmmP;gk^<=F&{nHfF~vD zoMd!GXGPH;`W|a1{D3ez0=RG%F*EPFG%Xq}=U{m|R<>o1Lww+mzo~$L9 z;kszCIQ4UnV%Y(x1D;Uny@r#ynWPW)0A)a$ztQliO@%!#9L4sYqWR~?V+0$Q*13Vx zx>B=Mdbk;XV1$2$`1i-PBNY7QO$#=EpbLNUe+H0lMI#rx^XqkGYLM?IxOV-hQsxsG2JwrE}J`N87BCz zG(z76i`gc;rLY0~HD7%Lk!AL+e#ykJaoW3`!5 z1$R;#!eSB!YZs)>A1_)vaTMuPIOe^4au&EgrQ)>Ttm%$gc&`<7PNj1!EH#uG|B);n zGBAu^?_c2f{5wVbqo4mT%3^P@JCA*99atsut%!dH9O*wRiw~3cI7G08GF1Bl%tQT| zLG5p{_{X8~2aO{`BY&el`&t4I%y1m@ffG1SwBL9Zr)lh?ph=o0 zNpP43u9;`r51zm%o+&62`~gpW5EPBk;DnEFpKtu>gl{;FvphzDQ%I5mr>s}_z&FK;#&W2#TkF7nl^m z|D`YgLiN8;{hvW~w?(?`e;L&`TYne_Mgtz4?U-^__HnBy#bqPoR|#jdYdN<|U}K$o zMTg^NbEi0xC5MIX2GP{@YUw>sInTK&9M_$li|?ED1q|l}Np8N7c%FGLkEduhl$krJ z!G&r2!cWgvmO2a3_I0#97dWw|cDlxR-Ev~uYAkVMe@FGUc9@ZP2_<$tP)mLk%kCf_ zJ%U%_V-!)ZT{|DuaMVssCkDwTZvdz+r!pL9W4x6CS~kE1}l zA$ucU9x`>)=c#{;dfHWT()+{yq@DP#V1pZyZA4A79)@zYGjrGYmb2`iNA{B4d)7QW zjWv45DdH`g3Rfx!yx_VsYD3j2Oy9{q;TAy2%8YqSZ)L@|ZD_rm^SzI)f@U0+JT$nG z+=zJ+#6v5k=zT36LzWMvLmy|qO!LiEYJc3?{(pNR^UtH;=LY|`7BaufM~=pM9BLSz zrV5S%dWQRGzrD2cY} z;25B!2%4se_H6?g2Z|G%$8$J=eLqHHBu{+cpcM@BdD()bF{r|Df@Js)a27`ZfS@Rr zTTl81+chO6#{z}OeXuOhI@IsyQg6-odGPyf0Vo3sk>x0i|1?tka5k`pQviuL?1N<} z(De2j(8AQmH+UOh91DrvhAu#N5g5>~3_}w{`)<&? zJva$^9S8Trk`#&k@r@tu0o)Wx@Icao#?lPO)7%etMG*ha-j^;Zt}JQ33RZ14cCJxX z+J%&->zJ`avhT~EYuZ2pZAbzEKgPOyo?vW#^+U|xd7yrQeuaq$337oXQ;1Y$)ycZ| zRG}?A7LV}HJ={Hbl7r&`I)KBUwix^cbXw5sU<`QXF$oGhVG(a+I0AoMt7o(zbqXgk zH2alhGAty3*ybD3mf_nZi<4hjn&m;?0_`8b0PZWtG4ydT5&w}CcmuE!$AeA`*#>a{ zEP`Pf92CzJ)Z-^m6`yIkE?K(e{P-g3g0zgUoO5RZ6>)`fPLUagLl_Hm4}a9oLH`}K zbD;HqYUiJz=@T@)W%svjcTD9?+If+09(R9>b-a#suzJ2u4Hv`v+M=mf1#)TA?#RlK zd_i7rH8;~x*EH1~r#U6B(zDFolMAa!w>=)Mz14Q!vh-{*CkJV~3Bq5It#o>9R6BdE z>4^DVf3CUAs61_3+fHBXr8&Ewq3q6F&E)O}gNix3*K4e$)e53S{AtixhWXqY;jtdRDK`re9sQnO~Ci|$oHVP=o>WiuI3&z z^J0Hi!gdv@I^>H3f*6gA)nM4^@JqvAZ+Tx37~2(>c3cib~G_12?LG?!GalRVE~Fai7Nal**+!P-&L~Zb}m!I{7&|5>XTm$_9B7$G{&;Lnk%P; zp|HbOM5$ODS_6MXZQJFYK?_!Id)dxZ??i}zYw)vAv0X$lx8<))o8hH z2WbGUbRi?`WiGodYOX7m8$E*_(1oG9QFeZ5mnk!tHClESgSl3zbbj(Rlpl zk=)3M9g<(m<>6W`@dIU?(o2m+()j1V#a_}1L{*9s$c~oC_nqmT?sC}(9K8(k_#-r6w5frTZbR< zeQ9`{I4g+gtITychX=xmBlv@GB3SC^OapFnpXRzxdGjf6-m=GeFVWlW8#Sq>c+jMZ z)&8be!7Bn&rsthjWl*X%I(m0l?8`u9%IPB0swz3EG-7J$_F$T4%_835d5iEixn|mK zjRn6@W)|&+UI>Cen~o;*{PuXq&+y8yGniK8=A=;fyIY`1WoF&-+#M^6Oc(3z^q!h; z<+>}Y+qCm6Id?c!HLc#TMJ+L_U0n5oQ5JMrrO135pKJio99ImlmEVp?uZC4Am&GWz zu$AoEu#)q3ytA3r`}}@QU`xVY+$&9$pXaIqQ@}Vu4RgxOhXYbgBTWit=EdJelRD1< zrv=8+q+T@DAt#epO?7>sKZw>A2oe<7aUw{V6G1}4H!n*Pnqq-=gEoG6nhqriM^g{` zJ}i(lakQLI(ef!;{>D2&)$yX?Ulj+Kn+0)zgiNr@oFi+wUa7MxPH3*O5U`0pl6L8Z zYf}8*SPgr@2z#KGUzu!| z+_!YbtEr6G?@X5bral~-erDEp3;Na-N8>%q^MkHJ)^kd&ot~P`lvB1G-s{#nTg;jT zd`PbOvX9rBbX#t;=GEQC|Bd1RPq^TGf$`jDpz$nFPoAqPa8ZV$Lo;2)`|$<;iv9;4 z`FGw{+~zIQQ%nzD+9{u)fokIjRT+lTWpJ`k$)~o4j=qCAs-rb&9BD(=)LH&uTW(JR#6XrKanV`13LQA*MC z32sT++PG`Adeney)>ihW22U<(?)o>gbRKtV3d7tU<7T(kAac06(nS7{xBdYXRS^7HV7qY zfbxty`Fdl00pPQ{Goa-K{>Z%>e~8M=a^S{sSnChM4d1Fq1bdr7K@>hdPrRKa^6$

    +;eBd&*-s7cD*sd~?Pq3jHN5VphWATrc&A+OOKEt8cQ<|0 zFPXkS2&8XqAfUHxQ0v=32ZBi$y1WX@Zq%+1WMD@)(@lxGB`s5)BbcsjIUY>;D3|~W zxi^MoXOlqE+*NjW8V|BW5e&m0UE4^OI3^+{NbVDseZsO&Sazjzb;V=7VoX@3=RRTC zFAd91x!{+AWe{!s%?MyH zvWs4+2y?g*N_w%CXKkr4ViaOY4KgCXQH!;<&uuw>w;#{RO=&T+=k1Y48$GLo3f$fg zDBWl{hm(qfOYYSz!c||N_~Jg`V(eYE3dS2WujOa zdfk&}t#DB8J#&n2x^$l^jCZ!)GZ4bWak5zwJN%eYDg&XZ^OD%2bZoX>v~nZl^IG8b zDa+|JS>NTgLcfS%x!`zNh2#Lwb;^qXVGirRlWWHb7yMEPvvgyG=>Z`W{(F#|P#VFH zft&(}lOU03g+elX_0(1f9dX~_CL3;=e-NPBw9Id=ujo2#i=+#?n*b3y^acJ|;Lg8W zA8vT6CM}=Q7R2!SHl6rFQw+cg00^Z1m|0E=s3?Z5D_@fXdP~6qgQ|JY@Opf-cQ#Wn zgI|UAD1i3@xCiDdemH%GW{zl&;xqA*2Y;fyPqgAeaWYLW=9*A!+q2%#$ESRuEf#mP4ZdFm zhs9P0`nZ=S{9dKd-wj5ix-ib^UNb-6Q(l=}rFTYpVO8>VoW&<{W>%<4qUKcP9cI#s zK3+*%4|lX;c8gUH5l&0Ro7@k0Kb;Oz5y8Vae;0e=2^YKv+6y4wF+tG!n3TasOZks4 z-@$6n5r%OC1X#k~-BXVVWo&@nptu53HZ)qjF0fHI9E3BJhxjQZVq>AY$Q0t)C0{1@ zs=@MkEp7_^-dwL!$aK;>2%4M^e0qTmp&|Nx*$`Fo3N8fKYSwfU0KC~#2yjy2P6Q?qM&<^0@T6}Lwk*^uYr0+Owws>D5w)JsY-6*0nf&JE^p%{XNCCETZW-RE5pwbN#{q+xi$eFQEc=yPek`&3eUY!I{O_ zqJe*&sKq}!fACojIHS17${(Dl(oVjcwiN8a5E)3}ykpQ~1&Vs}9?S<-;|no7qu&fs zLWunQ4*8Pt-Udk#{EuV-iQbzD7)Guc;&-=~M6XnIr`wxU>6*2zP^dqtEEd~v zarX2hhP=vf@%q6L9Q$dv__SMOKkXJ*rBp4aSEbxl?xph$r?zWF3e5Z5dgXPyd4B){ zn4o*C{D0L9Jm$E+j;9k0(?6;lZ+#}kx#9d}o-edPfdR~3vUfNu5 zwnBBpaARrBR)mH(n0E>beI=CZU;)(&#I#Uov>UQCtG70$G(iO}(_2Rvueke+>M&xn zmrt7=Ne8P;ttof-v7T<>xL8lqWOL(e(|X6udZKQd8qW<&EIYe*OXO4c(lkd{yHcmT zAp_e*?l*ETJ>`P)1%6ET(h`jNepfpM!@&FooEU%0i&l(xby4Njju$fcsjB}ZmlBulvy@tY6w%%w^ zWc$l(r$mV3U{LZFZDMSCs^z#&Q=E+QlTsh6`6H8Vlx)=|v2w2B${kHzW}+{={jg;<)Q&FKf~hCw>$D(rm%HAyXElf|J*ka2%c&We%9<$pW6{gV z=^W=3n2qeHn;mEBJeWknW--O6T_NA>RXl8=Q-&36KXUtiYeCL50O9Mu)Ar+e4mbnj zZ?OG%E8GqbD)_j#{Vm4&ct|IP!SMtN1Q|fJ%{%WhzFw1$vdMVTL&wZbH^xb4Pa=ew z$garO#1l+t?qqTNVDF?@?s$R}$MK&q=@TYpKVi~U!Sr6HxlO;#+KDx_qnB2rzsX~C zo9^gJX-PR9Sy&I`$%boX6|7O%Ta+p42BGxSdk<66&1z*XP1h4@U*30(p(E|uX3e$k zalM+IqXPFUa=k9){I)?>#ybd=rjyZbQj!5wGTKslil9<0Cqk%{RaKKM=NneXSn_rA zzH8!D-tBbLSQ|nmRA5h+s{krBrBb^tP463aqgMFYP(IkJ!G46*A&ORn|Jou zka4-$%vRNzzESD}tC{ApMzgAC$JDwM06B$~hW%z^U>XQ2?SCh0=P4JQFYp%ORkwml z5EQ*DRHB}R!`~b#{RFqG|4Af{IzEQW)v2lTq;E{)Y8d1b_+5Z0U`9+>?&fapSnHqw zTa)0IhICgFbX^prWpI_%J;gBvPkAW)5#@7iPvn^QKl6b)st7RI|0_8m0#7iSM{bK@ zf`|+iM$j#!LvM?gr@nRSJd6>E2J>`=h?cc91ZUav1jhp}L!e3EBy@tiGX(=w^Ph)T zI6mC(KinvyY9GG{>h!jXi5IH}S*N7U*ViWE3QK>+wLpI&bwNq)a!`{>Yx zFn0T1U4xg$JXCVz)^S+mBP0@ z=QYVwZ}UT)SD&d{XnC2n$z{S7^|JF+-SY{K&|pMPyOv0CAh97X@CoFblBvF zLha#c*eTgE1kH56-=>Mg$7y2!R%rJFwFwzhzNx~kjz9fCO>;H*_Zu%%IQa0lYnbr+ z4b{yQ$&WNlZpzgRTi0gVt%TSIYTd0A$`90}cBNY^cJjYnyZ&fc^6$xnGsn7-@$&;U zstIknH`4z*gF;ZWFE53+w+D1+v8a_d?$D% z+*M^cbOn0OvkdT*AklTO0m}v#L7PEGz>A=QKfdrJ8r=EXLzhQV&9%`7H3pAdxM}v| z3r&VyAz3;cijbi*$8Hb$JK(Rwzc2FHt&cXfd(e^ZzzR7_-a&`M=QH-OiJgIgKp{s` z9CWLFeG{8Q8^~dIlYu9}p{e2QJw_zCmsZS^1q7`i*R2;oTUtw(>@Bw?CS1~AZcEAl zGv2TqP1h}$L6I67i{3@-dRtPLxBYJ2EDs*t`#ew4dy+)&B}NU* zaw`h47^uMe%T(4LSXZ=tr1r&{fMCIX>iPYi#4hf!pO8Y^W7m?3I0<4k%T(rIHMtmL za9e_sDmZiHd#V~`QHc?e04Q1p;1tb$mR0;6DZaA9aO2hi@MeOkcak>!9f<;sOV(a7 z7T%PgrwUP~dMsM96Ky`kBX-!_NQz)2VIGUp?D9tMO=t%8f5 zJT1cn{}0PJYrq3D0H{Ekt19wWWQRB{A{Anplxr)Jrno6bLHmyARaY>8^y-6O0mGfE zUrM)p#R=XA@%L2&z6?NZ6b0rv( zhk6?I@=I!*uuF+bN(E{&cn1g?6Amd{yi#zA2j6~AjUdN88D%$RZJ+{S!}rmvKo+}j zq|qovnXa+mV!#QBQH!+d#UiB{wjy6N!{4|c6C(wd87aAjc~P{$c$9=?V%(uy<~)+> z9*deScxt36eOR=vllOsmOR90v4NAYtL<=QjQshDboE%fS5Gy#=dakC{rV7L+;2Zh- zlee);^8ePy_(n5w^C-L}rjZ+5%{0gL>Zlkd*ouISevB3lo7E{5fJRBM1r%)$u^oU< zh9xUHK%C|QmAMeM9h}Z=#{!Vd1+XfW1>h2hd;zE#Pw^f!F@*8|5yl?*uU!dy=3_YyA~3#@n{-QYyNeQUcs`(VhFI#Gl zrX|SqkF1K{lcHI&BJHxr9XbTvpBnbsPG_E-*xp;CYpSoJ)(YDL`5 zh_!M5*zQ<`E2-wDl&xUcI#{j+T@Q5>pqT(^3ALESIOm!154)gSvbR1UJc@0Z%p6tA zi|3HNU|jx7kQZw=ni>)#PYf~$Mj-X8s0KioONtYPJ7baqSYmz2!}+G<{;2d@|40lj zHZO_v=ZD0cIolSczJ5gfuk?93i8UyHi7#%}pz}39__Ic*5^cGRWay07o0n{y*YxJM zx7R#$D1PtWjI@mrYc+PYKt)Mv@RTi(;~LbTBAKe=8&O_EEg`&*u%pZpKh>g4vR9jw z-(W<(9Hx7Mv|?ev2cAgI(Kpfzi$^MwO*tMZWZsVi<>Glb`bwlN@_58#%S?_~G)M5{ z3>fh&7=o-tT6W_(_g>@h7t`Zb(e(tQJygq2u5C$h$D=@<3nuY57{h0;rCofX zjMFB@V9mEzm!zJ2kDWK$e@~1FB8ugNSBuzlH>H?@s3+%DU?_qM*bzdHq)0}x>n6VZ z#`Mu}1YK7Wb3sYa*(=hti$zLQWLb-}dmeAhbRiO|`bBs@!2x^ajK7=G`ePW$6($y~ zx|Q6@k)WGg7>l12ITFX|XCeRZNG+Q}2eL$4^JCeMBF2Bkq7~i79*dlo7$r$_qWgly zq8KT}EZ(3+T8ZP?G6Qdpq{u~*X1_`wYNi>UpazdsNNgJ>nv{t*zf2@&k|Ot8 zulfltAcBz?Ekjs9=dp;ce=AT3^nSeN$qAB>kQgxoBp{Sfl_fj@FOyCfOB|G#CJ&w+bc2(aED%zfn2-D1PbEK;Wf1Cd`~qL!SvM^oF<`%B77B1^rPYpqwyWZ)&Wg9CGMazrK=vF!Y|hD z*Axu0_rQO!>0$kzIEA|@QxTlhUU960gZWc3p|_+06Ujo=5djGpjE~+34p>dupt*{h zg1fXSS($0jhaCoig~U^?0X;0A5r%PLfh>K2a)i;01=pi3GO)%9j3-E{3Xx=B zEK1-7NwYOi@FKM?RZBZb|>B6X0W$#o+V)(Me2|1K1U5h`%vVkiL-YCIF5*d-4`cvR<4j9Ev{g74&D zSVHNCV0i+>KColHrVgR&$KdD#T7$p}QZxWa0T1;ZgjOib7$FqcZH9sXoB~r_0-O`k zL`B3BZ&w8d#~~ShB0giVZ(tquw0{;}`Q%Jp;$^Qf6YJ^d!NJ5kLfAYl}$9;d_00zISa;{w8@c*hNj}tdhn)Bt|ueeFk+DkoYInG z%V>K>vAN`Ehfsx0keLOAZa#{C4AQnem?$37z=_t{lm%yZ)YRRh2_#H(pZX(^xBmzQ zE}{~ld9iHDQQVwk5kjfygh=cklio2SP87b3MKgNVta$rO+O&7?@5u& z>QTI{HNEB9~6=>v@QH6$l~Ru1j7o%Q%W;sZKKI+n5aw9 z;qh9Ur=~)~({oZ6%|sNAOtrT#6E&*iCzP?b7>KY-wq z#E*Jd8x>gZ;vUw9E}k9Lc8lZKP+WgfR{zJwdkW`}8Ter~zHpr1p%qVg*|ge@WzB*S ze(@kc*%5reCg7(Hh(qp3$zXo;QGdc;x#O?;@fU0|XsZo+C75J~-XfV2JR}i5P-G2t zS9rSsd%(T}4Tbg-X$xw?6CA;SawISnDGH}?3hmIqw`MaiK*iu)I0wI^U|#}WLw}2h z@wM+{O9Gq=8IUKyIGKV0#<^+;b0vjt$cih0k4h-aHARwNQ-Q_m(LM%TRKn7v=BDfj zwyH@bxPbwCNVuCnx>L8Lr3)7_)4daZd{I5mzQZtAQWZmRzgxCqf@eSm8iEHdojDeE zuc2ckjpn&g3Q1EqmqclNPb;8*O@%uQR9V4L9u z=!#p7;-NTLIPB;XTB5GmB~9017s20P{Zb53370UKI!tn*F9sA+nu(^RaOZlC;z=s} zIRoEz0e8Z}A3Z>X9?FJSE}E3W-FD^}@Ly{-OKlMY??MI^;C#3^8L)@XZO8S>ie;qW z4^UfB2Q<#YrtXHdIlK~9C#V4W3I0QGJYtH+*8xWc^B=7a$7SISk_(2R-*SC?kX(nI zPa-Jo)l*WRteyn%IA1qKQ(>~8aN)b+*wlx0_JAmQ@c2*gGGtu>EOU@xz`akx^iipY z8%0#f;}=1l-d3>yo?JTRHkcw85Z&vgpM!iCiADf{w`d|sJw;U?qav~V z*PK^@r#7tIqa!H791_q^8Et9?=@3#VPXRg@>~gsM+k4`m8-9eIfN}jP7;yjWxcHOU zaqJQgJML?pr znuUy!h|H z_L>yAXgeexxAQZY3s{ zJNw`cDn;^sinrV+cUVJmhx`eSr~#&Qv`CT3u}HeAU?(S}Uoq=Er*$)l@=A~WwTRK( zf89O#7`wExXWxH=fDaecCjkE`zK5N1XaKBka2Ne0BJ~g{nt}7hp|Ot!@xT7<|Gd)U zk9+4*$WJgj&(AD4wQdp5y;lB;V%YEP4AIh&{+c!2ha1m|{O|wuzaum&AC>8t7!&8f zi4XANxjTQfZ~!W_Nn9u}zJ=*Rx4$r{PFW#HI`7}D4>w%!k*=H!-GBVQsKXJH;?v=W zlL!@dZqDc4ea;_DOtGf-#Wp}!hFiAb!s7H2Pd;l&`1XTq$KgFgy34{y6;tq(Jm5&h z^w7<`YH5;^>H^h91N{8si*LKAN{{_M0w0by`+c|?JPxdFxq(ZD0@Gb=l!_8q)Mz%t z;y6UVDN%vvLKiFvx>}`lOIpHhcJPfZ?5wp{HS<6)qGy7xTYhV!IJy9BbYEWZErI=f z#-B7x9XvYld*xW&k^}91wlG(MkHH(Q+00eEzgRp&5j63ya7X;%?%^^h z=1HN$lR_NgxWPDJQre!L@)nk7d z=HO`o^&-*Qrr@pMwZD}kjG;-69Z%0&XpX~CHLdL0vt}9^*@tq&3&fJI`S}FvDyr~(a5Ar?5dFvB(F@j{ZaKrh0Z|J*_s+JCwP#elnk82*>=rbpr= z5Gc@41J=!O6}%Hf6b_^O2}R`{{wL(PZ-TDPO(Z=3Gz4d^ncvV;I>UV@?c+VqvhOnA zDR9HrWKX^0zY`3&P?2!DBk1oGyxe~Sa!J|VeWRER!7v>C=SFk2AWPF7`l%~_8m{#X z4%RnRy}Mw<9_~VU2>L+@s)3(*0PAw@KH7RZ`y|+g3LhQ1;~VH|Z4a{>>JL5h!VBLH zlIRXfwx@4xV8E*MVj+je4@JOk|8w&#=zTQea0?9%?0mMB0cZXAGAO!*T&|PN&9l`k z_*3oV$@yOEVRLZND(1l7eRzL_H#ef$)xm$WVMX_+Q&; zvw!mVLh@(T(fxqUbh2}uoz(Cip0_IH+_Jx|)u-hx(=V%=1=AwSc&|HZT6-+RnQPvc zw#!nZ+?=zkb!Sy)yIE8q?lKcrbC`|C>jmQ8&lReEt8rhe*cIJ&SiUxsD~sK>XE<7K zHrb~KJ#*BaWU}j7vnt3nwo$xqZ27ERz^no)u%-7M%TdRqUMgz3A+^Y^-1HWCW?Lxn zc7EO8O>#L#)L5}YyF2Tin)9O$z5~*zzMnHSIX~8G^~FXSaXf_z>lyTO1dqN9o*05^i(U%XR|t|EK7Q+CvJwgWzj`3ukOoRdd8Q#vPd$O zhC5MLdfqQHx>H~AqBdP_M=fnNK?RcJMC&^OxtuiCgid&!0)=B@+n{`Z(!{p}Hy3Fp zD|f&nn^|CPDM$A4QYX{J&3>~uq!z5j&y>#Iu?Q^~ zB6IX)I4={jwuFiX-!V(5+T@I$hB0Ma?+^RKO3c{H5!3P~;~vo{%B4YJsY#`}Oy=3i zYNSu6DV~Ec$~So#@GcAg@jAD+KXB)&$0!U1)H1I*t7;k4f4FGf^RadkPlfP z9MTiXtog$NgNfmWmvz8{%i0*uH%Bnr(i9rpiR(sD5A>xlE9HE?kVS`u%tVPAY-T7Y zpBoQ*y*5@=DT<#kq*-0~6o&FPDp7i--tbLjf){aa6fTt6FlJpf-SuUd8L8>?gehc8 z2*1#mRLs~*wcEAF%`rdab%}F@MY}(#k?1Ic7HhL6SJx1c(m0Q6)IDOQ*etAeoN!!ej(IvKkxivsjT+QwB&ASnrS38v-yc9lsB3y{pPEmsu`+?swu>o2*)?-) z(WF^5%MGEf)ytTuhLx0T&T6Mqyphi}@KGxlHOQtW^S)KE@)BPyOW{I5G*qeK+k!UD z>M*;r097H|C|6V97aY(&T?0SH!Xf%;`;&LGq0obeJp%3{93d6DLBAa>Ot`YSOtr;! zSa!f>qLs|CjV7!?%mDn-i5qN%KLU2x{rKSfZSgJ^>qi?*FBy>`M&L*o#|?&!Wuuww zd^|9_LlJg-l!YQwue@FQO=i9Vm0g!Jf(m*Azkz7cn~20TPz(h zJicC(=<|<%M8EtAB<`33Yl8}|m$nsI9@Ia9Yb?0WfJ>@whWdAStNu&$U!<74wV)?x zL7x;4-$CHW9`O-hCzopj3}|(&Uc{|L3J1_gzN;bNw?hlp&e-?8&AU_DH%#BlZfT{`@;aU{N9G_202|OzZc*hby)wCKyEYLm~(#Si>I& z;f#wy9$}FkXX8~9$v>NG_xzuK6sFx`)p&kM*oOlB{6O|WPlY7!daJLR%A*UmyMpMf z|J{rVEERZp2E0`W3~x^T&7%OFcTH@8OPNKo@K7LZS@9=h$m4cQyfnV`(!>kl0JH zcbIM;H+q)!E<;?--=PjJJcndAuP6I`$u7>3eNAW(N_~RR-)R~V`*xD9-}&;+cm#*( zhdblrl)DGc_^>xHqlY=;5sXGrlKT7Oo$(}v)8x5!51sKa6HX6~J+a|cfLvoZ9^;KC z554g*fcWi=|5D!g<4o`a-0_db%U`-ZVH?QO$?FwK?O(6%5Uc0Up?v_`8oze#csiHy z^Ef2)a-%1&LU$SK4i8&w--Pk|zy9Mt&s~~MznSp%b_compp0r1T)iIIrT%Uz5F zc@!f-J{}{1!1Om7;2yR>62ulrf+nM1)*uNK{e~Q1Bwz}CV=@845szNG(tGrLNxJ7MZHCrps%~uDVa$#)sVvt80zGWwvbwiYrw$d4A>eCduW&3S*&P4{P*spT{H$e=5^Jd?4Pc~kCc z=xicqnYh6fHB-9n`Y69Fz$K*uWyw@gnl=|U-yv18(c{zQY=xML72WH}L%%QB^Ole1VMuajY2mQ1aP+58?7-CWlAnGX+@B@OkpVqO}5)>cyNWA4T653(TKU(pLBV* z$`bh+jlyawi*)HG59O$kQ{{!!O6Rp)rwA8gz(Bbv7zMqCNHBy>)3#3OOW5(o!F1Ir z`Oa7=I!wyYCuLJE&a*4GS03~YC)KU{{h6Ar(4M=hw^K&I>c|R?8qAFie=%X@qHa!8 zfX(Y1Q4bh&g%A3XkVhx+wWGb79eW+2x}K zM?C}ApmM>PkJut4mFDj;E|aH5-fk(i5=Z zo8NhG*B{N7pfvB)7P%bnx0|c1+ZjvqI^2WDVs75Ha^)2l`=$#cTr&H*$d#~usV|Cj zQ*z3I?h%G*h@v3(Gf<;Z5*rg-B=}OEo!gi@uNM~`k&^6AAt%&y0n_U9RBaIN6ch@` z%D6FOIB8B-SIx1)wli~+gKGnPmai1NN!MIBi)OpLkfDZFBZ_rrmd5Iuu*daIU-8g#oOm02m~K$XkOeiLK50+YuTJzT)L<*Ji;v+o8XM}=q5Qa9-Z)R+ei zk9WGw36HkZWOm>ag440mD=Qr}xRAmhiNUBcf}0HLwUo9P?zAifXbC}dmd&TDY^&t5 zSDcK;F%oQAY@v)N7rLIDXF5thJ(Uo60~9y}U}VQkNrif!4Nd`wfOQU=@)(j>mqP5ebET)R|%2z+9 z{2iyW`=LVyUN<@sG1-%hE*jkyLb|3~016Tk2;d}|U{KkZu>nQH&(kpyZ`Jgzn*RK% z>C1pC4_KJBzhIvf2NVC-znxo~rvFE0Q$F;##9)X0N!{%xIXf%h zHhiVT1LlPD5)Y;~+v}9C6N%g~mz|x+9zh@I?A+(qI1Y82wb-QWdaCIw{DymMe5|wN zt^Q=*(!J(>4KMJsGxeR@X%{K|3uCnq1cVWPz5x7~n-=2-7$!=A`1$v}KhtQO7XrEw zs}-@pOT{{QT4;YlaMpQ+b`ljaYna+CXWr#~yS=TXM+xL>5?&-1$XB#_D7lg$haZD! z{o15HyDJ_Ifj_e=rfV^yt!5g?7`nOLF!*K_PTg)$5QBQn?PeYHzD?K@8|9ibF{$er z>7XF_{ov@!X=nDCc`Zy9pNv6lP>HvX>cNo;|MuVS-%9817JEc|j^cbct$+US`=_-l zAp z``deM3%RAcryXnE+nRX#vG#&AWk;@V2z_||T)hSEPh7T7>SraN+fP|}!{uhZ+E3-(s)cqxCO79l9`A(0sDW$Fk2HzSk_Rs%wVWqd9RxfhJEz2(^ zX0}b3!wtRti0HDt_D;Wd@^Z63hQkEH2SfM`$Nzl&zPc}&+GQKdnN4z$EPp5y%XakI z6($y#h#FkKa9~0~5frFs;;F|BI07Ay!G z#_R%7#Bh&k^-HaSZ43gTvuJgib|`tcAV@*|BH4;#5oV=|tyr3o8z|YDDKb)zLb$Z; z;H^f=6-I+{nq@dvM1@X=BrP4|3}0YHE}bKUR)uaCvAh^QR^WV@iGlgUped48+9|;$ zRLd?Y6|p;Wyz1NC!fXlkCKE#!S6t9W`+3KpR=qjWpSz^4&oDl>z>u^yR6HqN=aFo@ zQ!2W#Y(Y|UT9ky5lrfCfP#uZghCx=+NINi8a!QcX7R1A2qG0!9L9^-CSd$%HG(Xmc3^p|~cu93Ar8t=_4IVBo2?tp! zQl}gY{bDNR)e%Q@NFPT^q~N5hST&|$yTQ$-Dlvy(b|xb#;`G`&?OF^CkHicD%EC$0gK3T!t zf*!~@qY4iTB`22HN_vSdC|C0chiVfoh{Cd&0qxUJ)kslQcUW|nOE)KS3#&&jM!Aj$ z3oR1O*ihA#T399xqjgF{wb2xcgKV4{=2JmMu6sl#J)|&;>(H$+)y>#eOPg|)J|XAF6KSIkl~uiAx*%Z^F+ zv|6E06zh3Pn)34jFS>P|&G25nr|C}0f}0J#+@U&3Js)5uvdj?ambi?i&Bz}0CNoX0 zjQUlCn@vo|gwp;bN>2I*2@uIq99q~45Gjow5Fk=jsqC`&lLv_WdOFOjg9*NTRvMJq zvrIiED-G~|9I;FhU`CJ2N&{nb*ya;VQz%SP#MyK=2c{_up+L5y$S#3W@H#NyF{UZ{ z&@>f8aNnk>uVk7!$^t*YH1)iqUuztF4EMey)~|LAofq_1#E~8IZ2ZFJD}3L4MISX^ z(T_J@(a1M?&wNG3wO(TT6&hK$HufucKfeh^VC36;^)_F<%~x;p)llMe%@h~ex0W+4%tmf$@hheNh z^_yyeg#2!t6W#d`!3fqgoY-e)&43)NlgSz#j9*pxXf%ZD9vWwVhbv#B&a)Y zN@BsTWQrDFvkDomRilSJMmO`b`K-jy1G_h2;nA?xgDZZHW0u{bFy~+uiETNyVv{`I z$;ethU0798YJXW?O|Z1fh!#`p3bl}_>>lUMh2;QbK%2h+F%V@=BSM{bJ5FCFXY*oe zH0buLW|prp?YIy{dty7V3g?L-QYcl^GfT?%2NjH;8QQ2W`D8ZeH~qof5DNLAQYKu> zr;GD|R!y(o&ljfTs5B||a$HMgtFeJ?#OR`61)U(gprgefG z62z=9p)#_xq&>`T*1EKd_q|nqRwx>hO)9ct4fA>`%}3^|4xTXwMJF~=)>zE9)K#mR zFNMDk19a2Bmx$3t8WM+?AwHE4BoF4ycaWumoM(S>*~H`-X8 zn3ipx;YWfji)_2t$?0`%EEY<`&I-xEWDXssT8*lRSx|#3567hxVg*{@g&JZhr}t!X zFoN8IxVGgiMSGE=ta@Pu&HH0l9h36_Evs^&PlPK+2;z(`1B~#-iGzo4Swgpolg_g$2wY45tx3lxIQ=pApS*p6iDvxs8b(>NCamZY7t;qtrWCGQBPaDUgG>wCH7c zHPbKw?j~OY)65(?j^faux8vxIX+Bh{?h6ilW17FRQ;6Jm3Nc5WLd@fxLKuaA!}q*G z(HB=?nxk{(?G$=Dh2Bn~w^QhuPN9sPo-~G6IfYy|!ZfP_)KTFKy+j=<9{@~qV;9rB z`i^Nfw=vBwIr3}SY}V*E8&1^{)i#8tooQNVaC&{FX3{L`W*E2NkC%|Aj^dQ^>2{~v zbGzAE38o9>GDbqG-<>p^fGd$?-ph_AxeU^&JHxWvwkuvmE-196O>?zKf>af#YQFd9Ny2`vi zuU5=qgAe#l0nu=xRl=H`q8v3iC;42~g`rNJn5Ef@IMilzS{{(%z$$d@#sDJw#=P6) z@)^X*Iz66Od1%n=V^FtFbLC=z53(z^xR@v5C!Sph-n@lVw&eExuw_h&scKDZN&9Qv8sD&6M1hRZ1Y4vrZv8YS3vf+gOA# zjmo~C$28;hEljh9JGh@?^>P(nju?X*&7ua21rDhU4O^PbKcE{ zLJuDH2)K`MgjDDT{r1K)a_DhtG+_;50N6JZ*P8%tr_9>zwDs}9_uJxKEY^=UXtst~ zV;H$@VtL4hjb)>m?0h^hyF(Fne3WW67m7CgbIK(!n(V~o@MGWm}ZcG<%ng90W*4>Wr{`-273mknPwQ~ zY#9G5APbHvs42*BU6 zUQtnH#_JHxF!~P2e;cpf#w+%1yn3ebDywVM^#S?Yh~@&C%Aj+AXzsT1?R`WuqBu>3 ztW6kAVoS&`;^xM9 zCHKY%>y%)+H>+X>>0o3~?8&2!oUI`FMLUxw$2ruQI5T82=SU&wyQQ?nt|Zy2E9Ehz z@l^#Nn$g%a)SY&bIV`euy)rwR*D!In4~2Wwt9eE{7D=Ol4>rNtcT0*+61#se)r}jA)(%M6)>{(QQPtK;e?< z)v$cQB-wPW8JVtFKCXIMrgE5IEjvNbA9l!jIYu-WcM#2PzSh=sNUeH|*C^z02MOeE zx3}yeF`{`jC;>$CBx*25G$RqBnS^E$qM2GFnst$w5@lapBbw1QqIpdAdOqB-mMTj* zU4mjNQkr+Na4ZjvlF-})4}CKuj~h~`XOzHrseXtD9?21Ii%6r3$&IUm{SOv{M( za!C4OnZb>&S4Z?Zj6zwgni=2}9ki$px-{zei07R=*)cOzJI9V(ITXkmM;%dXNH zq`<>CJL#&0M!Zw_{*>q_V=0xbca^%G=S{Yxbr&{Ss7calnnlSbKTz_;a#KWAvqaM4 zDFROdGHB$zNzIw81fHMzTGoc;*j`84Ifg0`jfE=kb3>&VS)jX+UkRCwv}Dz>>O6vo zO9oVI9D|CDbD7!LsH;|MS;>!O8>tu2j^2;=a#|Y<+mq^eP@?h%H(WL8>Pq_~ z8Lx0l!H2|yjaR-iZCUbn<5l^mG+w>coL?K&jGk#{kG!AhFfSkwkF}T#)%-e8^L=>H z+c3>9gEZeaxkQNOJGwez!am%mhtED?2>asXAo01NhMRe(0q7ja6PWF9m#s%KpZ~fA z;b{15vT`DdIRE_nK{j$6`K&p6Q#Nw?zT%~KXCvQm;^l!px*q9u1C7smjJ&E`1;|_e zox||mOzWTW=Y_E;34!=`_2szA>}&~#z0Mv}mStOrT`m>2F`|7A;;`uEbytDKBO;t$ z7(H@dS9bW^?&J?Dk7RFb6tSCO79K<2J4e>)e(a`z?I{T*`lVo=V`@e(s*ayzf=|PVDg(2_e`VDi*fvEB*2T$kyrKgTcUmPgzA=hQg*#>zOQ3W z!F*Xy@>l@M>Z|$#>f=utYTza3nW9#Kj1q}08kwo{8`=k2xaHT%(6l6s}CzY zaiec^Gt}wS@aYdr{Q&FiB-qO*`bsh|A=D-A?Qoo=!{0npcc+RIioqmO>xO!yw_ddM zMDtm%>`1W;#kGN#{3BdW*8b15}Okp@MHL+x6BApnfuh=X@B7tb4}CjkLL; zQ0hx*v%xTYh>E*V6!XK-<(Z`e0kbAU%=o_<$>z=e_<3)p=xBni$Y;j0e;(|c!;;-s zyhvocs=IJ%!mIkS&eg7bXipK(CFpFw0`HHwiQO>~wMaxrk1)O)xX zIGU&Bbz?t1*?L->gCA-ks+bk2VZk`cY$f4gxsgJc}vy}40A@nqgy6506KcfGm5U8UHH znMeb?>n<%!N0zO-T9Q;~uS?r_S5KDc3gN0GIa2TH4_Jj>)t4r`jEs&VS*H9~%a#+l zZSUhsN%Cw#N^-E=)!%pZ5(gnw**Zb6~^I3^Gp*D@Zh&avZ;%{SVvkcK+ z;xE^mA%Tl^vx7D?+1+$sKcNFd(oaa}0LmX8N$8LUGkRD;hmg$>1_fv3!&8mo;RXc8 zr0X*}P&5J)Ps-?k9AJ(|&r(25dBJYF_`?7a8 zp#yR>p#$>xgboCOM)@1I(~%-u86C)P$k~(*D1o5wln(Ed4)2r>@01Qt%|}{j4*OjL zL?d5J>3}xifNlADbD5oqK2k8IGr_aS)@(2urh9QphbmuXDZPPp_#7xwSNBY@1_?%W zP!$CoYAn+PL_-KJ1uD_v7H(&h(k7CdFAqBPv}>iPv`^3}Gw={6PApkzm@RTt$cPGG zp4frtn`ltz)!iT`v;1fyLs)s*ov?+SrQkWd$0^y;|92Tq=Z zXBj8Y>J!9Ndddh@8O4`beALQ@dx9yo1a+K^cgoCOr7Dv^N%3(?hdxN@ATO;#p(088 zG}|EAV4!r&a+Pu+Wmy|$P0X43bwg^(m3(7b^NdtG-^#>Ybpj5~V)Jj!C%fcA(+Boo~cN>hiGC z9yX;>VT9P2qpv1SnwnPsNGTn(G1^6jQO4TGrF7s1y-~4Fe@?l2BBjIXOQ&>r>p4gC zoL6UbNEVH-XM;XW%eo(vaMr{Kmgh&s03&M?>uG~yY<JSs%c8NRMto_70Y`qZua8PWDA&gk~mymFet@W%mnY>kJGw1qJ{3B19`jzI=}B}tge4y2E<21&{p;4}Oow9J&|bG2p!hBQ z?sNv7yL$o;=Tnsr3Y5;gh)P6Ygj~Zs*Ryz-N)pB1Zd2!SoaeC?4j1A%F~kSMy$qPW za=1q#53Wt-uRc7&^E1>G0eb62N?DXK$aJQH`!bp)yCK{=Hz^UU_O9M;$%b@Shqq-zx?}fk z3Fxf`zC?dP?Y;oKVXOQ2I62<-f+s@a}xx@a^MYEC} z_MrB0!Z;T^hE=M%?YPzGMPgkwdH?hWQCb@v`U9w~A5!?gsC>wZ9rBa>p_?DTCTR=P zkKZgqcU>?zfb$gq!+}&A+l%d5F&4H-KKYOEO8W-Ra3< zr4Vd4dV4oq3PIw(UXGWFetAZ;)bp?`pCRucWBMjq3Lw2tfEUiiMcrasz6T((S?fK` z?ZEnaO(x6ZO+U(}n}7QHQCrb&NR2IG7^!C`75)AH{quiZFaIBtv+44&a>XJXZQ@36&D9%)0TT3?N6@*g zv00LnGx>=kch8(eQQ475z;B&NA7{&sAb4DRef`2g-4O;SHvYAn>WVNRQuMj^Hb}c-I`1i{!n%t1v)36A70iifv~+umtXd( z#t@N><>XC`!8eE8Z8x?1D!?T_l@SKpTrE$X${6yg`<^|O5hOm~KbhoOeOI)si6PjN zwkz0f_%JXwAut-1+KV%9{I|^`G_w{en=f+F06yP{yFVPmb;{Pkfsq(n8=$IXlb6i6%ztJ=TE3Ji4CXMYdmCGLN$TCsq&J(rV5b?RIxTtg9v71=}RQE3E5U z=DxvfcNKd-k-IO>=?c5cL-oP9jR)TYFU~TN`f&mWe*ZA<6RkH}$R1<~dvpfeixLOM z=#6jUr2hL|;9O%l`M%=UDZpo`dkDwB!nSg>jhnQk5)hml3e zl>hyaUu^C*W4-`~dX>q7OklFOFYD_KXDWqnHs9va-K#jdQO3_}no**O15I-+0gh^# zYd63)b+7ac-mFqS=TN<&)w6f>?cQ&wnedE@!fQOy>sM~bT?^X!*T4U->&3_YUhD&z zcaRBWHwXIJUH|A*!w=HkuLRt@b@#1ipJ|zTvhIE}K;;Xo?rSaYMXLL?w!*}k`-5$T zkIp;v*4*z?t`hG&^!6Lg57yid9N2Ho{mIPr*4z`3^w-kdU!?<633T8`XC`^L4t#kB z{aBs#@^SL>>8xKAJ-vSA7t~pQa1xk}@8X&)FAGrVDFI#Xm($7j#KGF!K8A#8ZSI)u ziDyCZJBZ8sm@4MT)jobR{`{9H>MH@oZivCSA|1jF?&%X6+MejRy6b_w3fGSb+0T^qRC&E~vpKjNUSmaiiHUY?PXB7B z-396;IscBhl^!Fg&yVr)&Fv-YOT5HapGcK|!Z~?P3fv*}k54tROY^R&9=+f1jMChB z8#;IS`msrQknc(N5@h9x9y?WiT3gK&J8WYDq)L?SeGjqD~T)X?P;#Uk9C-?c`lSn^e;4iIm>*$6)73@UmyYH(9 zdyX$2)6)eOkFeUm8jDkxSv;AXzKaQx-Hh++Dp7`%ySmzN#mmaIONsJ--_=#3Bq{ez z$}+_8h$ zFkdyJ%}*17wqBgu($+A~Pg{d9YadOb!2NB;zU+&>NdtXg8)R-AefkX)p>`_7N%QH_t9AZK2MuE1e){zZ z=vy2#Op9|ZOL_6$(QvzIVp+8`Nq*?dPN1bc_~T1tds*u(Tp>!!pI+MA-SCHn=J~^H ztq-o4r>pkU73iEVd5{H}0}Yejxw0;R=pS`C-(n~dB?2xM!Onsxt7+9MmIU_GA9PE~ zLN})mbRn?Cg8;%A^g`Ly1pv02wxpf%NM5cT@1O(>j@`fmd7)*@vrVpm z8rhFe<$8#-T$0^Zh5aOc>QBXGU9bU?#WUW$(Nh#p_J1M-N#Z1#HtoyQ-EB^0kLdV- zs4Fa8!B$^WPM6F@xOA5CIQt|W8z7*C6oWNs5eJSy5;&9~(e!Rxr9A9PHGfmjDhx(Q z+9BC*@wxIKgmc$2<@|18Nu2utoB*j*zC7eUgW$9g1kwgc`D;=)tbsac5(~mh0Ui?` zvs!Ia+G%%sK*pKgqwwR4>ihO11bLDw8-n-EvSl-U210NMetPRJp)JQ5I)uV70fDH# zIj5h`?Ak0|kg5p2@DRA#0VzY1T+6c*|C?kPkOd-&$WUati38-@wlEn#$gjFK%XO^_t%fHgWg) z127Z_Q48(K@|XA7TU(7GEAW$o13jrhnMTB>x`rr7*#Wn$Noj4uM-Pbf zOtc+SIlx@`a)NxY(q;sS|BS)0`aeAc13-lNcJAM{iGJp>>jAT#w1>8{`(vs+T6*Bi z-+?mt2!98X^sAt2OEXgszZ-(P)XcBhQv^f5QMmn-=v(&VSMnR0rbGbP?-4J3gTZq( z)4U#$;x`Q3ZoZ~UmmEKS#qbi6&V%sxQ1diV(=|VN%r15LyWv@1L4SSCO8A&}+H)#U z_R^-1^OC?v9)QvuOV19Pjy}l`owkp5E%G&OZEchCm7qU2&WRVk?$oSDptkM5m8y=u zCY>a*d;ClSwEXw*Yu*7_r-Rcn(6>t^UZl+Rv- zUX@9I4?+3_?uMe-*VF&XxUNU@X?M{!RbOll`uwO==`alYFMo^a?-aa}BBe2Dj))RZ zFLh$pf(LNfs@ItHFmAQywHP1P)NqCO&>B4GPrB9yDv@SDMN+(GJGJhTa01?G6MZ@( z2z&U9&|Ez9DZPR;Bc{@bdYxvgZr63&C8(CNsIQWEV7S^qnQaQAfjQx3B|1>L4PntD zI@M+;rf9nYS(S`nPanFLt4>j!t!la<_0ayJ>#xdqTwy7@91N2g!{DMuhg zLmze)U4#a82mzhdSDbUw#}xV5ftma^}544(T47*L7@`PxV|#22~n)A zhFW0-*FwAQRc4ye5hm~~K@}J66gj42y5dNLc&eyF3Z!;4#OdcH95+y}=M$sma#5IT zm8GJzNqNoc>_801uw@miVp-kP;-W&;`U?@o>m6^VI(j*(;kw&)C{dfQ<4I3*W*I>g zooPc?K-aTQfar+NS1=e7IRlHLSr?8Gaw!&ZdcmiUY%kkE4+mUa!Nss!L)B4r z+#Qp2OKtPzjG&$79Mz{@thG^tF|dJBkiB_;mTN_~9rWTkv>`Fo4@+xN(TFZ1sk9Kx zS6zFUmaPz$L!0He4M9!TK9lp|Y&@a*Os4@CYIqkz@mbid)`E>nmk7jRmg{N-sWRc* z?hjo@YcFa7WifuW+SYB_jhmq~E+7s)uTdC^WCYC)q>Pu{Wi7734Y@rmVBNmB3<~~8 zFhxoj41{LbtasbZNvj#eiCY?pV;LF566R>uyu?JBH!XClF49I?c?s1G5AmFCj%G`* zW*E_Uv2+(bL#WY+2I-2R7EA01>qo(y54(01il~XQfeUd!T5z~z`YOJxj_NV3^tp`S z%qTdGaf6~Jea;z(!Dij8Ya1eLSL;z<5zz%V9j>an#hD4Fw7Wz&ZizqDy7F`q`vYXxpl{8_IbR&1t30d1j>j}Dq#OiD*$n%7= z5xAzVg*H_6wTR>5_R?Og7w|gD;YR6|B^g z60?R3H{Fo*v9)Z@;#8i>O(B`k_KJy(pzY3v9AQpkx-V$FgAglNEUzLXuW}2WV}azr zA=*qAhsvz8beVN|-JH(iN^I&@FX)aYoXa#gw5OQ71FsBp+JKxvPz&(lnr}^&R%11W zg;gc*WpkqU)KYKgaZs7`#)XiQ6kM#qV{tStGzHmiC(01=%vqQ1ki1wiH-yc@Y|kGS zRuw0iu3H0c0yp$FE9SjSZ)goseTG2o@_I9k8i4{e;{gQP6@thL%`$D8Z}{{ZX2zW0 z!4D(yC>1Pf<6yy3BYDc`5&{Qu4e?Ux!q6H_@AYnFMKu&?@p$hM<2ou!ib zB;K?WJo|f;AiKdR2c6OUPJE?uji!r-1ea;;YW+k?D7|A)RT1r+E@jGtfc>7T{LF*< zKjgBrBf1u`MIaetG}9K+c4hck_DRhk2Zsz4b*(4y(jkL>2lgQDp=*h*7?hUr?_ zwwm$mvId@yhuO_5|L)d9Ww?x)5Jit7ye1qpJ%X;j>s! zrySw8BOnA`8F%ylvy^+~bVnCkfIxJwyi#_!S5}d#N#}MU{@Ct%>GyfJOjW^L-U%A) zLX4*?U9fd2&;|b@f8{HJH26RN4lvg4=Ba*({v8We2cZ5s&>Zc|80)QTPyH`1VT@1`m zuksyFyw9tgzI!Z2q_}0eBX8*2s;h~u%I4EIC;^}LDR_q2%nH4AF+ktuV(=QF{cWdj z2LoY;ycq2g@`3eoWTcYmjG)M=p85Qo*857}pWKK(L;k3T=sV_~SM75BWOg7yw*d}c z)g@z;+c{ZcTQ`^w&gHW%pLO}H%V%Bw@Vev?E_FG*f_ zc$}+xXJ_<%Uw!DD3V7?_xQDtKo*@SA!gIYbzvOl>S((mH*L+Sat!H;hLT3pFlhx3B*H7-Vk*S z9suz)&I9rIK?cO5j1;Y&BoIvWSvg^yVA-5BTKqUCSjI}UfUml-5XWRv94aohY9qEr zEwQ-aZ9HjVZoH`*kZZ1Jl=*t2KWVEn!j|V2!ER>0(zatl!hEF3X9PzMJEWuGFmXDn zEG}?pVo|XtcveGJJIQj^Wa&+;i)c%l7|wcy#hNehl>t*p(B(MoVQIWToa($r!Mz-a z#|gqz)g5{btAY00aS6gAs~b&~iNg)MXxMC4YVg`MbkAtcea!H?MmR396&4GOxf)t^ zRwwYN%5fu3a&m|kk*!lvyVWZq^sL)0FA0dAIEyYUF^(RN6+y+HfOxpBzXReSb08j` zX)cLKYgLLgXXU6g-cT9WTE<*1wM>LzusKm1_U8p?2gD#YSy#{0t! zrV2zl1m-;npQPiI;x&#X%adrjF-xOj&77HDUgZuAE0&n>?XpQ1Ft|)a4qGnZo#m`! zZF=+i8s`dRiGru|5{j>+Gh>~}adSAd5@GCKU|=AGM~;eB$Z(UVuoHP zsx-uK(2gtfazB`qoN;9=2t&13uEwo=q_iTrC&)bnPDNC=t4}Z$-z;suL6on8OTU+9I>{m^DQO74lIM>ltLTkgY%Bea5cB^i}bi1%$ zW2HFneLES_xfVTXL0P!$M%n8B#8Hfj9<6H~G!#1E<4^p0i zcz`TC2E+qUe|}FOp3jBO@rBOsflBh`vZL2GoCJ&eAuIBp zKC!=g9URpg3@T3VmhN_rPuAowWO4D*fa2E{7YL4LJ+S@Yz~TZey`*w00960?0wgA&o4S74c-t(u6f2@{qM=8YAEOl=)1qpVyPH<%~l6PcqMQg zx*Cec05%O-~f9J&aRj(O{&WcT=hSB7ou!Bs;ipD0*koUdFOS0hfnW>mL#u5%)L?_k};SM zO1hC&S%PYsgkLYXvC9T1@g@@@zy(ukgsf@?A_4x zPm;E8KY4dAp?>xBX{#&47W3LXm;!MK^&u4mk^@LsXdqCoNedFsZGp5pcRcqwom@nB zN8KldJ-`t4Q9p1O*Y?o8A`w1;`a>pr0)ZmaV*^m)240r`Js6xH8rnVowTp+i+0TEr~wJ+hVMH4Oi?&;yH^@Ucrv zw8e_@>nssXa(p(+pW(YMn7Zh0(*F;;${bbc{5s>f7@y2W3yWKMk1?SqnP@Vd6V7n! z9(1eg&NMK`Eo&;X9&FlY!VARbj=XsMy&q55&5svd@#A^DU-I0oA5=VtvZ-690g38j z!SNW~RKQQBRqhlD?HnU2qUAaaWcAG0)J8fuxoW?@J5L*y%nzR(Frve3RUXH{b~Bnf zSfJvJEMPmbty*}-mKMNzm1+a^Zqw&Tpb`O9jnx4e&S1-spq?Qp(U6Cx{p;+vWSY;q zXg{aY*l#>k9oMvH$OXKLscdSdJ;#!R{}qd?2!fXp_MtGb^y->h0Dm_%fB$4$6Hyky z@(v`1MA;pQ8UeIGDvP&VXhAc#`Nj`AiWAW#l0Sif5xH-JX<$GjA&tY^4r@IYWM*2h z)j?#Y1pR_%i$f{jx1majg zCL{d-M#BbXvn`yn)};`v%hHV2;8I-ZIABC)7B{?W_OW8_+VH;3ys7Z-ya^0kvIK;& z9*($KWMBk*@5}}aeh|>*Q5w}wBA$JUy;S3Q!&7%ZAPHdUf{Y7k%sv?6R(CNf-tMO7VH)lk&Y zG#sJ`bs$Bb$nO~l5>fI=pqT?Qa2(Ml5q?1cu7B4Zif&*DfC9i9dimd)`wy)Vg$oNWVb~lth%o7f3+@qNctQx#ENMjMhTC(o|g~&B_R<)iSP1^9pK z8G`%UuKp9;`f6uBwMZQxyDb#{S_OoAGP4#IFiHYfjgdKWybrBG7a8;uXwC~l%-d%H zf5%gv5sO}^i>P7Ov|zLEqPd9_zLHGWHFan@dzYS3oDjU0fT#f5|EzDC?&4xFa{UVo zL^d^t@j484)42|k@1x_X#4fG_!5bxiJY&)I`&xde26keh zxVQEoAB^!g@h&(QKURF@t| ziW|7_t_ym^=|#)F=2jU(t~nRm`wb)taw4BDBieu&8EfBK-=Yddu+D&~3@k68^cHn; ze!dSuA;ow}Aa3d1DMLRSy#q5w0*nJRs22eRclF&KoDaE5>^5}?=_~ZrB~L*TgcSt| zOhws$cS%E94A`L8nrUe34>65U^K%fky&B8SSZAK#g zOmpH^^MQ#cjzkR$)G?80cYUxiG)Y3Gfk0`ZJpj~*!_Qi#1#TkR1~vLXaXdP(Hnh0v z>w)Wk0OjJCKqexobUGITpLky>V@DqXj}xQkJ{f*KtjqFp$wc%NthwF*)rcQ+p8_;o z2ezm)j%!*D)HGyq2fCd6Z z6aWo2fFns!$EpI92rZCBB113`D5z8FmPW+f1Hkh?kyd!n1zHflKcQ6g(dYb(sPl0^ zQk^BxI1}tp4hCqV5`|C>vovS{Br~;xf%>96nrM$nAV_hJqc(uF01<6v2}tTT01VoV zr7@=A1u^(UB9dgB$kG?=HeC&AWvA2C(tCt^mQ*zq?qPPx8(lxNJ*aD`hBb1TzN(?0 zt7E-&J6)Q?z=Lh4b48^5C6-qLyKXPt&TSHrkplWEq8_Zd4rdO^LB-)QsG{ol0_w96 z6<2+WlgXMmV=Op>42FVVpV+GFH{IDAv!xYXYfrs5%uko1)GHQ*4Wa<9p#4wHxo z5vGV;j9#worf)>c0wV0IYa;KYfd0m?A>c4x$R0UlVgIpb77n&L(%*uO-cYWOCT*ez zU$bL=%zp^HZ+@G*v+f@YH8u4&CPpm03ao7}mw zfM^F(s4w8Er`J6^ zmJwRedh~SXWlsvN4iag$!P3;|c8tua90(K+`B7T{MB4PhmN$dfohNOfTt%GP6Gr&{ zPb~3<08+3gEtiOy8Q7wNk}R;Yl>M2)cQtvL`EQ3b0;n}fP`CcgH0P{Dk0}u6!&cenl&4E`9(yo=|G(`MB6qe zD!q;GM2aa*;T_19fJzs=$}0HWCdM2CTN5pd;@o+TGX^`(sMTCifDBc1FRP9gOlV;P z;_UUH6omFdP^))ADExve?ew52j43&;J(68SGOEp3qT`4I!2FoIU>T?#j=|qv+!;H+ z7~iMjMX-_a2irh!l%H?$%>_{)8x+r$7iPx&V=(Vl#{ieW^~AjwTlf9K(7^OUr~d8} zXnvY~?_;zPNAoRGFXH@urA3xH%5F0{QM$zGjLsM~8EIsA(2QT9Y!ODc|Mma=rbQWKX)S?3<+jn^ z;f8NLPAHVl0K-=0p^mHAzGcs?Dm=(7KR@IF??2vxwzSK5TmW1Dtti_1aasS3uZXRD zu{B3D?$>bHoFj^`-6>PF+pOL6D$U04ZmW>16uL`juv;=lcZEP^f{CukNSY}>dn)t0 zX;gj17dtJW_UhScQ0p~On&EVz=Xyzg+RS6S3#Hf}WzC#0ii$UB!QoqfyyQ5P?(R% zN;(B24#n~14=sqQgSUK;6h=8{G8MZ`y~&=`ohM+|TmW}oJc{}5PU=n5LiM#qBy1=U zW#`bA9$LU8qEv)nshlE72q9Rns4?;ZFn~>1!8cIXM9b1t8SU1i)kVK_1g#E2o=0ym zi6nk7P>y5DDzZjtL9}cYn*J(1(j-)~16E5yrWYk>>))O01B`>WoT3Psroo>PrU6Bl zw{}r%@TN)vY%%CyWEA~g((>u3`Wp$g0`tP(v6?+uBMq2 z&vyM!9=EILvL?W8)5&sybg~^vR&Um{KB`fZ?PaXJYSJBm%CZ_VQv6V1>tAPJ42(0z zzEoic?23{|_+=Npg3~*^k837P2uoq}QEp2$Y@YWVWuKSBPJ3rgtrWzz291&4^Xhiv zFe(Zs?^!I{l{Ej4Pfe0`=k*gK;tk5%yuim5tOTQh;4yOEE6P+{yipTp=Ez+<>Z?m3tei$`31e}y0BFo$^e zeCdW^mb0Rv_$V0W?fhzi!(!M%X~{E93)lh0iRt9@0cx5aPfVt@*-V@Qt~> z<}DwuS}3-*d>L^Bp7YW+3{eLw6*F+- z^BV;Wc=3e?cn9c+GxsXJT45dY-k^x!V<5LSxtoC4&|mEN|IlB5FxU1MhjVxDZ+^Z- zg`m&)wCMx%c~>0Wp>2)^#7DYP#BdL%0_{OWeuxmGN3e5q^?lB*9(#fpH+WC zNNC)>H+ChvjAa3hxK=Surb3jDLmNB4K2?Y@6gZwEcC1sxuawJ#dHBYW5F?k2g?VO) zD)Q47w>(@I7XuY$LU1LzYdPxd~ZbnM9_z#_DnEpAF~3FEExv< z$!~NT(?}z+XOH4aA)g_iRDQ!wEH#WMI{=s3bgG2c$Vs@=aSwkwE|=Q;Ml{Cxn$Wv9 zaFAi~N-Pz_ub=^1!|H?-RscRFbwm+scpb6McvarMIsO2g=}$p|i*Tn$LI@uY0h!OH z%1vG)Ct*Ivt=#_2e0G+1pKU^;q!?i|*6vOCPvk&b&uuvg4gopPrfp4LBPZcN$E_^z z&4G4a`Z+BW90;Sa)uHtt#DSuT(BTk}18vH3^BOq`2RiO%h*NQ(SS%GP>uT$sPfDbm zbAqTgJ8*?%l;S>0llcvP?!Masii&rIj|!1Ax3#n+9d5r4k$@a#uOzj($SLXW~PEynnlJh$m9>(`k<&9JbKLC+@8kV#ArWhvt@Bu=_=T+ulKt zgZ3W{=s)}Qb|KR=bMTuakU={+fZN(ZVlCjX$XyIXT_=gJ&_<94TWyF#VYhvfcA&xw zWjWBZ9Z#M%YY-wrGyzBwEp~|aU8R@WV}r@Yy|OHhDjV~s&9XS282j8!x{u%ZbGXi4H^C9PkE@ zfTzU$eW`zt4ijoSpZ0`@-p-GbpAQ0)`M!HQG1S!8xM&wmp~S50YvjiKM~-r5#D79Tgz5u&6u1 z!tNy|v#_W~07xw?+6ac*OAPgm{%zyQANIqEqC3M2^a#cA;C0caUu-=)*8O!HTvx zBd=ag5y65&bn*_30O&4+gNlPMHHj8Y0R9%f4Kn%gZIC%7e^XTg3JMQT`z}y-Fp-$l(JJ2=JpV7|ec%kyFvxhdNNu*&wH$V{*RWxHd2bE9ZW&!30?N_Fv`c z@4pJO06X<+BKIFaq`$K8%Hz{kLyVwz4s3`Kv^3EWNe+|`yNsn?oS5h+E!x=mN8yGT zL&C$eLQ?O%aGxt@8l~m)FW5lhA0Gr0GVy=flIN##!5-fCS_t0`v%**1VYY)qk_J!N zf+0zWpEhp(=!H3&7m8eg6&Sm0S>=}6LxdfGp@eU{N8zh(_h^VD`9ic8ED3J3T|DHh zm^Lp7b0TL$^u{mD$^W6)8ACh|?8I1a z&BOb!Q+T-eXB*2`$SBOGc+u9*(9nG)HguHnTY*74B30ZcgY?L{V;Bl0u8n=u-lsd? ze0_wCy2bDnNi5RORtu>&JaKlu0|1E#_$B&DUR6`HJ@m<9A(P@t; z*(sVd%)T9@Fg{#!sYy1N=-n&bFpi}Y2IjwUNYNX@`km-s0NA`En&%k|~h$H$t zw#;g`S-a^~nvD>z7Vbg_F?O=4jdUZ#2ohF1q>Y|wXtOX+FVIeY()$+l_%IiGbth(s zv6IY^p@?>viO+$&#Z^rs%*AL)+z7OB6OEIXp(W-IP`h4gj}4+^<+$*r>KDImsy+cB zL}?2O5`&F4ayb$adlckWVC)k6Jz(Boj@v7PTfpv!<1Eu0M?Zu6Z5BMQBA-TiIiH`~ zd(dF;4jj7B$bUNb=#Qjr9Na@EWq$1Xyc;=Z>DKnaFwB;1n*De0>GEYpbAfG$F36dN z3k(o`tzoY-_uO_87SUQab}L(ijjj# zJN)2`5jD-6G{?Z!L<`@TSa8%mwC1xRBzPnw(F35Ucsl&sJnE2jxj>7VVkk58FB)A7 z`NvhHpp_Tc7Hw09Tt^%L?_>Bzv)^}sdlgUcNgi3U?{Cg8y;hdmyxpbEG@nXxscntk z;!hx*!I@)Z*aJS1)<>6K9Jpl_ojxsil`0F1pZfg>-Ge$*@kHV z?@BQt8(~y9ZfOB7SVPp|Qtd&Ak~wA2E$=nCF)pFCuF6FlzJiELyu_>Dzf*$~=^);1 zIG5tDv!Ux+mn`eZL!gUJ#I%3`pY=^!7hQO14_Kenbd41_F2U-eYIr2R9avBh@0!Ys zuE>mR^+Qv-D%+-G_T7kV>a5xC!^Of*Ok08N@ErbS*`^E}2e#fFik3IE&gI0hydSU! zUARIScbYZPtYNT@g$K#&n>%fd4!A5Z>>|Vx zu}RU9RXCR!TNO3$4QZ<|SkFZFZVtHrN6=OFYpp&mw3SYYmWhWG6o~RkcjL;ZekHygwjb8oLpZjT#6EQE`Wb@ z(H^MA1zH%Fu~Wd3-iiSY$ubr;^`UcxS+IUMw- z3M8UmXEy~WpUt*2*+Hg~f&W$7IbrascG&^EXcn^Y-yXVu$2G>1(b3@l`?qCn@_64+ zYR1r&s@+ceCYi5iv&H}ZYnu5d%{|GJe&w!ulSsBR11<4z&2_n)SuSOtd(-RMV`&=i zm4@S|cvC2G-OgRZd}WgFx@?s-%TA=P`%3v~Htp)R+U-BQp5JthyVgT8GwL@gqH>+67pnDXI%DNoGmjf= zYCYSuhxdY3EU20;H-(PUaG!GVX}*}Ya--htA)Ad$YC>wqoS9jT4$^mRZUzN$?R5~p zR&w{+b?s>^-=)$~++g>n`EoxoUgLRtV3gfzZ`yR){laynm(1(=?oCddPLiD$Bb7`g zA053@PXpmrZ-HzhHhOs&_uRYW(^!2Pq#NuEH&}Je!rFi&qb}+mBzQ6X~qgtZunZ7#`@_}N0Eehx$Zm+U$oq$6xZz9OIlJNpQm?C z_2mIKCho5mS8SZQZpbM@M}F(_m*xl|sl5A^V{Tz#zxH#3Rrj2~w4m~=ODZk$q+ zd(E`R-Im+p)pIG{8i@n9(7TnL>uJ7=8_ZdmyOxvXll2ERZ4Dk>&R`9@5S2P*xlrv_ zo7n^l0Nb#eDWerr^X>ae`_9&6zIgp$UKd{T)xojSj-oqLlquqxL^#~kRz2auPI zf9D7;t@OA6P* z4e~d-{bZ27Ke7vvM9`7pEyZEb}f3$fpZBLb? zr9ViC?DP?gdx__v?Zk7{m~-Ce z^<1pdcar_GW5x9@m(|>~^fF2&dhLGeUXYBtWUU;(*HUul`W`BLh1(`>@XmZr+0WHX z`7vh3`{GLzcJIEJ6dz|*OL$J^6iKTMtlO(MlGn{qH{HICxmc%mKHq5LdMPfI*}fXT)n220 z7Li?xWiyj(yE~~DikVC)lNoq)2uW_3X@aZ_S}LNy+yv5N1~G~3vuxDIkEL`}f(u_! z5iL&ZPpM+lTleY8xX^g6mST=1f$5E9d0l>j00wfqRIUxt%SC8o%gME5;$?yxbQ0}bwlpZu&TFY! z9T^-AH(f5RYuK_9Dv8*5}=&)xP+urtqcqfw35&5`v` z@+RfH(#rRx#MmusJo`8(=4Z~m#opD@sbR9N+(zs1NvnVU&@xgl%KdXEsmHS*8%>ob z6Qh4CmIoFuq@Q!Qg}9Kz4K}LW>kG*0y3-!?o-?V~ES4<4RJgl`j3bYAw#^o5@0dY0 zqjH(~B;fI{iTP%=cD`T^u{NB9Y#m*H{IBTdAp_(d@8aA&--*km+t>Rpo*X#4gItmL46#mgBMFGm_=`WG0MY-(uy zd@4^asLva`x5d15vJbs~_anbb_<_v#{0a@s=L`!CN5*j8uf^?*D)eyyOh^Zh3!tdn znz%p|btu$vfixG7;}TQ*g$4KoACGxS00)W-BtOOlJPz_57YJ)y;2ja1ATY2gAigjA z{A`m;{H>b9hdnM~RuK15owlXZ22n{D8yH&UPNC4w9a1MeMm2{(>h~>xL}wa@?Bg*? zcM>D9OX^E>381G2p*!DE8l*BTM`@C4qcm~CD2*Q#@q!1MIxsN%`7C&oBQ|#b*d+XWTw`;HEv?jQR}{uZnS5q zX3^2|VzV>5xzUD$Sovm;qRB4QJT4p-sVrpx2TX7SQt*#e$xJ@g!?rr7iA?tLW za`)<(mB(7N+Dlc1*Q&uspY%z$-)%nL&CE_W{i?s@AMJaPZckGQNq>;evr{pjHcOK6 zQXb(36{V^^v9a+>y&z>X*Z0N2Ln$lA;}0>XbZa-A`xh;qEO)t1dnC2lqElcw_O8`( zQ`sSF7M^;Y_%Jpo+!Us5*$WelV|x1LuK5gJl2t>iHtwrJu{TJR*%GA8;rYx>fmb8? zcsZO;|*jB6E^SkWOb0GJIFV)sHn`>uN;JSH#K6*;r zzLq-RT$goGv6>TGE;gOiluf%iAhh{$HCNYO>Nl0idGxstfe5OWsHIAZnjYf@p>)pP zBrECa<5Qx?=Y?w9si#V%{-mYl;_2#>SQ}lLXyLcsXmQy`-m9?Lo>QOXE7G`Io8}*Lol&hBy?eU77QHT;ui3|TrJ5bi zV&EZqfBV#FiqbVd&PN|}4+){gM$cJe64$i{`Q;uo9^3cRYNndKFWQQHeLrA9bb39w zAGT^WFVw<6Rjl(|!H?Z2bs<*lC!{A{YY&FWeD&t0Jnlc@puPTN$au3t5 zwY-OZkD%Z^5EX`Gil7wzQvCs5I>ndjlfXy*{jdLXoGz^-7Pwc4fvd&{EN{7Hx5dae zmEDFw_DYCY-eQyV^|W~5WG-SabOyv_S=C5@iu9(iYe{m+gy7@f*$SC9Djv)=q_AS z12zgng?IpYa3PS?UZK5G!aTtekj0S`=Gis-As#->oSb^-)+wXgk(N!ko(?wg4O2X3&RpRnIG=9dbSI zQxu$_WY#|GnSN1lIwiBLG66ZzuC17iB*J{+rbVK^P_IiF3-QP`g&%{zLyX@APjuV` z^~rUCZk>Agh=<@x*c9m6OGxZfy!yyOf`0Mp5Y|i@OX$EF3K1(3Hwzm7ZcUrrG8in zMr~k&e zgEE2J&U+)sM-IzQ z_enxNGCQT8gnYC^0e29P-9oL9>lO09n>W4IP4AF%8@_~8{;MXWUVO4on~DLr1wUI< zR8b4{4ms2UiSM0;g1duvtS@RSJAwkP+VEuv@~6!Zq|K3Ux`oc~)=eX~oMawsT7~eX zrSPXsOG(T<69;F;VctRr2T(P_oPqDmbjj4hY)pk9bVtrqEcLKa6d`;`3j+P5h0mfW z3m&uSg=o?{kpy*ZO_=4NqKEu&_?_3pA`)R}|3yHzwDV_wofqeaShtS+t-|dN zV^@9}Pt)Y5w4J98&{f&gwpJoOg<-r4PyOehJaw;PeMc>-gHH1K0zCC?YWvVodL()ccs z3=y4x>jK+3@X8Kfx{5$QT_w2cmWX|-y5SwK$1c}QZVKR&r-O(!?}$nQa;F`-B+=H6 zf*bjA=OSD@sLwde0eKA=19wP(AZ=eMQAuCg$hpHXS3{OHkz~Imbuai#LucroylBrB z6xmbbwgO`p4}iYZ9ve(4312pzKtCJrxJt>~gz?)rr3SLSGX4&d&i<_u6_B89dXOj} zv~f#B;whr7y*q3^4jhdkQC(#G;1iJTw~q3Ln-GtXl^+S4jzZmgF`~3F zmH@^MQ?f>NVT1AF@a5}ALz}OU5Dx*TjRobj?ogGVjo*D09ac?JmW;L&l!WC{FXtA4 zRw2O|NS?4hX;Ma*%UpUTBrjAW#8d7qm=GiAEo?xP!%TakNvt0ld#R~gKjGWI5)JMC z6@+*QByRkm5||5f#;l@W2Us>YPKT#P=Txbb}7|Cyu`z>;9{BIDE8@?S)(LZrV zQ@9+CiJ(H+GVMKV;Qu(c;|h%3PQu_*0Vjt_DmbJ7(^)-iBp|N|Um?(FXm|RAgp(u> z$4N+Z`)^LN11E_ll80QK;j1edrN2$%t7!tMpzF7^haNzC`v}SE4ao@|u?ST)fUMX5 z9{>RV|LlGHa^g&~=c_n86Q_H|$JPZ9;5pq9+`;A!2HUZ*4k09v5fYZf&42Af>=W*j ztV$9FY(rB5N(rrRVj2sH(od<(tjw&;tdTAnqCOEXe_#9$HN7=|qkr|^|Fig~YJV8- z7t`Abul%}X=}XGF#yMmD?upt^G<8|vm2D%8ctKWsi(#%KXqc@7U(AMz{WI~`W18{|GK2nXZ3e(^i^%F%a_k{cj>`$W!H zX;I?Giiyr7LeY4NwegSKn>5V1A}+u;`Hmu1tvmK~e$;o~g2{Ib_j7TXB1$G2exw-| zuyA|<+`Up(yVgl`(XY#hO^rWt2zpV@75nkU?>Oy^KlzUHu)lLJj*4V4_|+x=P%U&6 z?fvN<;Xl8Z&LNEpe6wZXZCSOXKOH$=yYo! z{aPEFfJtar3~0)l3Rp&P41N+u3iIb#<#%yyJZdi!#WFU)nJ8J}CJGsQgTb*kTogXq z8)jb?2I`BT@N*0X{E0G&bNO>nIk{FaVQ~NFWg7 z9=q5D!?p3K{p}&iwn=N$?hI?9KWj0W5U?#=u5A?SKIc z4#yiJ{Zbcm?)t(pEQ~lNvtRVv9U=fdjpJgHCMa+NurpQ$fZ=sT)sRgb0z&qGeGq01 zlYD=jF8p+l9UPFKgC12pWMWd7gXe)ng6s$Pbu(ccr^Wy5hg2qYP=5E%T_K&9LEkVq zX=0>FhvTo1NE_KfRqo_KZ~ncfh#5&5ocK$=9SV--fej#KciP&B~&YIO7HLs}6NL-TaaF z&^y9YqByZ;(nf{lXN$V!XR9VwXE@U4843m9EGLjA<4;2rG_`Bss5$377!qI!9u-^$kG z=!GuFxwE^ZY3451M{N++1N9mR7&3q&F(?0|kCs5(Tog^0t-15prDAcoA@Cz{@v9P# z5S!Y_x;RAJ*XqdbvX@Wn!;WT}+R%Dj=g_f27AKv@vYr(kIGEjo-q>^x>^ljXVq7=` zx1J*UK|6X^)Zl5o=vA6{#_Xh-B!~E3!b5wj6*6}H_W<*(Aq@h zSC8zIDb(FbT{*w@g{tL~)~j?Os9I}r^nu}nY&l)-qCb1qr!|I4BR0m^!s}eTxMpV) zep9KZGl+X{&nCPL?mNjJnvzHm zn8j-N>3^dQ%(XDmdG0YTj6+b+simZ8$I>{S8fnVmzFE@L!+Eo$X%`OO?76<#$T_{) zzfK!tKR;>^zD`kUKTB^@;gK_ldsniS-lh`mZ=dLdEIpi7t6~2OoPaO)eqi*DRhx=Kbj{+-MCc6K)gKGG{}bLN_#$v7+c zq!Ipx>kMR-a%_m*e;qjTw<+b^8N?Tzx2aN$jLtirJ&4tz^W-9b zq^T6TUK^0wPxo!gGj|5@MfYtgN;-AjhtufGq3|jB!aFp^KZ1#B zSM|a6hLevA@{4slq5($e`=&VflLbFJbWIHhFVm7c*Gx;C#!3J-wZ{x2 zke=CoU{I4dIOc{Guj5#rdO*JwaO_P)ypEg?{YcMk7WXl9zC zRNmuFzHtnG3;EyN6*rFMXUk^1NS3cqF@srtLd6VcL2HD4=o}9YUJ5WrJ_UIBM%>OQ z4(dO4Mmd^Z4PiA3a8U$K%_ew(QxiBffm5>q92Yn>r{L6h$yeWf3nfnzHTit?<%?MK zGef=}kWDQ^I5ppaGxSG%tGmCPiZg`2vhOF<6L*FVzPj%v;r+-umVCndR~`H9Hgzx- z{z+$YTeP*N7Yu-;ZKa{s6&1hnd5~#~2Zy35>IYtkjl#?4j*`#kHu;X>el9LULX3tV zX$I0^VY{dVA$Kn&V=-ZE0}dbse2T&Kq&t^E-UHnB(J}DtkVg1B?hOmyaYO=ZnjxNl z*>waS10w0FFlXZ(41lB?ICo`98XK~v0w$uMiIOA>sPjEwlsMaL9|aq}J%M)L{#0>C z?Po~9D~^bgFOC3fNMO~H`M0If51-vIOUX3rhgWL-Gk{LSKN1g z)?oS%rvG62-wf_#r~h^RO6@oO!>i|tlCS3iJN;vofVl$X=kzZqJWiS9-#+{A&s4pZ2GEQo)#S*ZPHFnC2#QSwDmU}rF#Iw}ATtn?!3B2F62-#&%y zAo27K!$iG3uBTay^eUpH^MZ-D92E0m0qFO-C8KVj`W37}q5dPx^wgg&qLAnQyb8HMysIN}YTC##3F z-t=JgkcNn5^^gXa%A^3J!xmxE0I`-9NP`mf zikDy?%+f3161vcr#UD5c6r^9V!cTDunTf|vm>YV#ljAe}rn1@B#=e)J;2Swka>_y1 z$>42z7A0Q;PR3?oF>IEwE3`h^EV&oVrDW222FGS0tzt%+Zj~ zu{sg@pNQu+)5lpOAw3cLo{EPr^?wfaZ~pN~lr>D3(g^VaE2Pm0)C@2> zSEXVg1QPj~$i|pgwsS#>ByIv_=}B?0awZPxshq4`FLy)jaHGqcM23qp@?X9mQ&xdSW&{aSfxHKQHr^kG9@0 z4;IM(>Y4w+fJfS1WyEWo7A(Z^VVe8FB=-p*R6L9X_&#JeAY2I+({X7^*m{8 zI5A7$lXAd!(D=@SMH5;ZkJ`_o@lrb-ir6!`eKYrpLs~TCYp0iQ;RIs7E-+#uV$s&J z>;TI!gl(a=z&o?;G=PMC1#LLe3>oD&9yatFhgaSjKhyHo2u|BT0OhTQrr=ap1cj|j zY$|BVT>-|1Q(Hj12r`cWj&v+Fdc#4c9b}#}1kln7S|lJ>-7;ao;419T9^_?9)cZS7 zDBiFI3dMT}O&pH=hWF_ne|7e@hCKkvn0iGhQ&AYstjru(r`~Q3P?hP4FNW0i97?jx_1cCoV^ta**S4 zDV&{ENP`Q}XA_qruISFkxFk)w#!n6>SAsO{nD7l&XpS`b&d22^gt)b8T!E)Rd@L&&yn1@QR{M zD-*Qm+{pf7Ir_e7HX>LU27bMw*MOGnjjj6HF~4ZkDOO)+)j;= z^M~~W4NF2V%vn-HZ_U1~F|vu|JmkkU&JPUxFaCBW=|l8s-SiW~@`w$#@Bp>^@klq! zoTv>i&>z1pb&D}<0Q{tAn9ik(OI$3@?a^Q6tTVH9rSDX1pdZAfVMqj?nXzRZhg9&k*^_=!f z#y{LIO_sLiOarYiSTEO|6>j;Cp($fi{Lhfrd$M|s1miXwzF{LHbMc+2jc&sncSED^ zrgGQp-!h>a1|9Y7N%=M!xd~ZE@7I=eiL=|q6#buxY{(s1u?)Oh`%lHXkD*^sDSdT0^KaLxaduu%sdWSt}*0q@E*X2XTNGFrEM6#DCB&`1m zwG`WXmm5^iI;dol*1t{keVZ;%I%-|9{x7xi%JliM+%2kovvb#|*B+wjQZkwSuYb%E z|B2JD!c;1>?;f~lEzwiBr+d0Vr?h-7IcU!Ai_f`Pq?zkaULzGYM>p#2vi43zW9m3Q z6=s8MDOc`sZ{ylqk*g={0cj)h#L0SOV#bv;b2m+<3)4#J?mj=tDwMN2 z>T*MRdcS&TsO{=gG%=RS1-^UFl`?mwSv)aHQ(D>{u%a||P47RlN;V@aL!rXfyJhn= z6`7^8@lk5roIfR#k&euDYGGrp-GzGbc8#7}6LImq7rF1I9+msz>qKbB;vsv$#zW=p zajL#Y(t1zLn|IAw#i&V{`$99C9;O=)DSkGM*5A}vG!}g}hV@chWLv|km@J3KZ%>n^ z*^a(WB&>IE=}dlY%2%&+ZZgUn=_h$u;@kAo zoRxI86s{&qs@{3%P_=kip(Ltbl9{)QB-3}YcmyDO4DmDvcS1 zF>C1%O?9fn&~*A#re{p7*9k`w-I{f36nUkLY?5u#*;=$ttIcwz6?)~gxFpuzb&Zjo zx7zmb=bS7$XKp+`Z;P~s$tRBqr%N~2_6^(vF6=0npcHOu1x6^=i#6knL|xpC$_7n5GgA{!qH?~_QaJ~bbD zSN(xtX78RJ%1KkZiY6zKt4g)`7VS3d0UyfueWq5*uraxL_c)A7k|LL49bSJ+rM1q3 zmP^%ZRpB|;mDOxp9?Vs#&1d^bGn_HeomTt!-PXf)`iuQYqWR;z6?wb!S5ul_1a zuai)>qJ)yqu?RQ23q_`{!&tM{sPOHEQEPPHhi}n`&Z8J_%(xg+s!_3Yild^_3_W?s z3!FV5|Cmou{ozA&N~d}cMlr!~Ng>M4>a~jAZaq_PkE+%!*0ZUInU1v!O{y7xicyc@ zO!4ZqQ7+|&c{x$9HM8P-g0cscJ52qFt8=xC$xN`{-jUUK|Z0 z)#78dUcRS?bW@7RoL((;Vx6gEDci?s_4ST_RqjjGvYE5wHC>k{*;uMQ6(0wVq`dcr z;vh~(rp`LKuU1j6n%e+0HBlu~x z_n3bTBf(D?NbsvmUaU{LY-IlY_%s%CjL|GmNsGaz=|X4HD9+N)srtB>V?##kp0@{V zYVXP9Q$CaI&%H0nlXj4UTh2tce6~P$+yk+ zo7S2XWAVqghn|`d-|PX6Vr7t(W?C{fk*U;sUN072J5qhdv6Ey$tj$~HWH`ij8)Lm# zPnw}je58j>T};;mN`EMsZ_~Scy4et$_rNmN>Qd zJkm3TOe9gQl*W}ACzrFsL@{5COz7$?HBBTai-{B2WHC`In28Our1Mf%rpmAXB|9}X zKJMmP<8C(oAU-A)fuZe}W4+yELZ%bhL?V|+*l)A%448h67bL2UzEKhx^p?L2TSS^D z8=pV7XYa*%#Qxko;C+!#wmB(LLq9B8--o{r*t4E4SDy>>xKbL%Gaa_{Ey@KS_7fE` zDTq}W{WyitBoO1S|94d@Ee0KQLfx@2Y_YcGV9_;Md$O-_-g3fv&MHEdC|I;c|NXL0 zTwX}BqM(3_gse(kvx6_vC9+ms)aBT0H8&Go(=k6i8jq8OugW7%>a@>~Q8anzK6J5ozA?Ukl zN2lFb*gdnt!q`Dy>y#*%)$j7|(8<2YcSXG}N}?`W{*!f;n-k}Nu)O43-s;@Y=_uHzzLWKFV!b0RosK%-+ZdX*`*9Br+_z3F)D8urbbpbo`6!f}) zW#UHc?zG;P1sINrgq>pb!>kL0=r8L6p~a7abpe>`0xL}5!@|I!8_bz}$8bLvQzO!t z=*J_ZSR%27mS0?X8U~^l(`j4JoqbGF-nqj3UCq}snOf?QHsLXPjP7NAw?vESK5b>a z=QFzVIpJsg1Y)0lzriXEG8xuZY0%8~%_>b4bCt$j6>%016uGC`>gP|3H&Mo3p80m^ zhGC;O?B}%`%Zv)vZi2O&VC^PYyE*FG&9Gxu#u|#GrW06eH|5H3-e%Gd-9+1{WqP_j zU^}Nir$dSEIGQU|+nrpedrv)I&C2a*Bb0rX?kY)+5=E-4=VEF#ET?Oag<4xz1SWg` zq}^xVpSsfhXm%xqqVq>5B0VbHt97k6%sz=}LG8SY<|Fr>VI#c}mrK8;dxK1>+%6l> z&+$g*{_Vb-yNYSORwhHeHWKPv>#86}-v%Y7q-&Br;M?1ndsH4?pOQk|Oy%WCNUAEK zyJqa3W-2NhQU=pTZ9aZ(&$W6Z{yuEyLhUzm*q8NCvosAciT<-V7Lw(6Ch17Zy*!-N zDWR(51->VwhW*;J)a$e=L+(DwG~V?|ycUbgZ@i{GmbFKjm8GzxS0k)gm{#x0MLN@X z5}%UUWUL-_mRg$Z-Q?{x+bG4mgC;lV>qaDX7dEaWW|#^WBqJ*2jZtLSpp%Lj=eco* zYu2PM%j1_vxjakjoZ0GXqojP5RG%h}=*0@7X{$1?Hrh}9LA(~1 zAByQ}vaiNcTx~2hp14l>X+AI_v&VaZqTV0xwXqzHM$)yFrGshhA(41;_%MZ-E|p14 z#A^BK3dPG4_b4Ero+iGJk!R-BDbmo1c`i!Ju^L+&bmVuF(HLjRZ#dve)AmCuReKV~ z`C*x1p6KRqI5#`fI9nT5%vUN-O(L<%^QfJ_S3D|_(Iw)4}S4=8N(sO>f_nH6tHQ!ap+AnKEiw5>G3%F=9mw+*j9iq<+^u#HcY3c=VIat;Nv?h7Ypkbh(TE>{*}I7%q)M^m60k9&{GP=wu8s8u(x3YzwO|t&l_9w0sRIjs~F%o!r-QTS?B{M zp4o@Yd(OVPzBAu+AMi&KnB%78Cdf06n6KK-Io^N*EBE-vllR&>9JKvCLMHoT3 zZaXr?V(ywQz98R<&=HmwM_=P~5eYUyUt+`StVen_!RcH>nsPs?`9ver@EhT$d+ZXc zJY-whgqMxRkF1}`Z!}IuKXZSHekR>W33AielOZBxRgE{vL8ct!_OYbjYT_ktYUk38 zG7yP#6baJUEP()w4zeF~MydpM3s2CEZApVuwBE}AFurRHY&+yxF$dkzB!QM$fVrNB z&e4P7dPXr^&yZWyeu}Oq19?tl{8^6hLPpX^app(j;P7m1;w*?oJIK~H@fVwTDf2I; zj)gIJyDQ+%Nis;UjezDlTQ0En_klh0`a(a@q6>P)O)1ysqm)S#56_?e#H)#gMnY~F9F7c95aAOUm>32S20h)AyT&!R#^R`?-CLhkEOP+k7IS;Z%vH1=w z&H#F{C2d3Dg&ByG4)jEe?a7k{2-}m7!}H{0XX?qvF+BN*TWEHQo_vtAeu6}VoK<%| z3A&^=?S`GRo-%?w)4yFJf|T_owv>UDCO}%5K%Qq)24tp#j14nCARyfm8}Mv@z}Rp& zj*2x=`|4>Ob9Mhh{#m|Bg1F z`{&Q_zYZxWn|c*GgZLsThu&fkilo>(*X=4PuFmvPQnHo$LAm&_=w!gya9kA9*ciar zniapneY(dky?fRh)l>UvV^6(2kE@Nz_wxMHHVCoUqS^K0%EReze9M(%x2pBczx>#V zU~P7n*Jt;A;rXZ7VAu3PE{7zZBA<8(nzneu=7=tEsRhk@fEf?NT=z~l`jBytq?g{T zp=I~+#T5s%AClyIvo7C_+x|QJ(F@#Z|Gn&0PsZ^J;W&P7$iYX)ubg>oVz54m7|AY% z__{~9ryzN0qIqONBHu)F`4*PDi@AGT!E2izB`hUvT{aBtyw&QyeUR$T+nYMM}a5}yN$j%&%Rjkb=f()fqbfDM9tMx(| z#|(tLcn{g*4$?(VMkD}ZyGA2y+gj3ZfD*45;<MgGH{uzsU7 z_3_!rZ7|n*rChKsu*7yfHc&B@E~~!F?WcR}luGtloT>eS1Mr$KCC{`86Nj_i5P)@r zLKd(PtCFmkILT0u>s&}c}B{a6F(*I3)z195Y$ z`5Endeo#*rUQuE4T#E{E+6@CJD%2rY)j)P6^%uM#8fn_$R5?Sb746HyKz(s$=5@ZL z_S1jxN=1|BS}Kawq|HU)qyC#oI0}%o83Va$X^XVN0!sOf4PO&}6XK=z(}3{GGn3@Y zGl^)xC{|mEpjdu8x}aFz8@8ZW{@^+^<)uXJxH>dNzC`V`O5CH{JC|(!MhpQ)_iw=1`nDPgi0290NYgz8mmpJ+v{D)2m|X$kme_taYW1I> z*$#BNjKo0hDTK2y1|%iGVaHFt0JWbX46iaiMZPi~-w*rZ$aA@u69$lmXKZa)W!&8{6Q8D+AJbV>!~;u5kkxkT=Tu z>vXXPiw{N3-LTa`%|3WFk16sskNcQ?i+*x$<2YY!yfA4Sk8~e1Lko&lFz&Gf&wRF; z_f#jI%Hcw`>>Nv-kS~WjvE`KQjoNn58fTL;P8u6%!r>@05<6Jzz{;PKcae2fMU-23;FgAtAnHes*vUTiu}`PJ?|EA+AY)QhUH+=c|N&KN0>pA zh4h=+KJMq)u|2}0BmyrAt9LNki^s6q6X(=5vkxF4x7X*sn{Q|VxecvRc%xjrP?kt? zdA#Rtd!3R|u(jTi0sXk;V;u6WN%WdQEL#~_MV|m4!{D(!^~2FWvwA~UR`AP}f1bt| zVCa$>=a@|h7zN|mrZR+l0iOi?ceWBh>^Ib>Cf=T7b?$m<|0 zp{=hWa|Al@u<10!5n6&Jg*6ni)|ba#%x%5tnB`ls8MWHC{=Cl{jDMjngP;2Ei_X{} z`^UxDdmcL}H^X)E-*_J8t?lm0b)-&YZwV)fJ`)f!e7@kEK{zhmu}Zz(6c_eW1mG3W z7Me(eAGk)a!nA6n9vu)ZtNgx7o)buFUqE~y0+ z1Ww=>q!9BcDsFr;c{h;Vp9^g~$=(Vfb3YAIcV4Fbh2+7jD*_Gk^L$yk#Zbmf8T63X zNT;zYqB9EJl)4#`^Y+&~|0SMdJ33h$;@u=}G4!QBG9ky>XzzIs0G1tRYa0Hxiz8;l zZTNR6(n#{2n-Y#q0zw?s_ z2X4RXGNt!Sxf^c=v*0|L_1Et)>l~v@mKKpgePNiZFg-HXX_+UJ3Fo1Kb&TOQt94M* z=}Ul!AWoL{+SW@HKe1%*JT8wzbTu{K3;Fu2@8D0C-v6N{M!e}kzZVGH6=I<6n>?cA zqt4NgcbU~Rj6!sMGS^m7(?=}#aMx{lp!DCfG@G}cdB)TUXoMnqJ`T%48Hij-d=Erj zC4$^1;Ndiq_ns8eV^XNz)XXOMFXuW9&K0(4Ih=5L$~NB{b<$mR(9XFHK8?Mq>}Xz@ z25Tk3$fzxjh23Lg%^XqXSDM~kJQQL_4*^VIRPT<1Lb-b=UEh)=boAdz*2E`2L*`-cWK|ElsN(SumSu*$KzVDc||ESQ}f6FCS&MpuX6x zh9_UnVz%x6$^D7WFfj3Xa(I_}9>|1tEHyy71eI?ja0+ED5Y|&6y#8}=NO%!`(%$;Z zg*Qw=veMx?X}>`odHzVAJI9r2{GVG;D?QL0bhpzeq|^AsHrKT}POg^`ORMhFq3P|E zfCn8K=J#)G4i1iU1i?#-B3qgWcPJ+Zxn=RyMVsSwN^WvoGanJ0d@(FqnD>=S&v3@- zx0s=xh?GS+HI`|jZppLKCnQS7igh0%Ut_3wK0*srd4zCQZoF?R->HlL9!3yAMnwmy z^?2dfef^&09KQu-yLRJh{}Gt&+R>EqdWE%gMb93u3g}dTi$^T%Vcz`_I6#b+T0o@T zLKxiP?F4&LEppU_^o3)ClbA4GD-@3{e6C^Zt->V7?+WT1Zjr4C-+0Dzc0_X)KpD0A z*L)X|GmGqvBBA)gr7r$xAi-z*^l1kZF2#%V%TBcJ*yGYsB5|hTP_W_=p z(K{u&;GP6FjWq5Ohl2*iRsUhwRWMCGp%K?3>q!~aTUCcaE}0Q_vkX2*CvJ*J7}frx zIe8O{)b2THT9u`-z#V3vpjcbZ# z=c3?<-=dC`cvWP|tHOla+9j@WGd8U%>)jaZb)zKQs5Z+kv00BPdp;3Zp6aNQ#d=xt z=Va7br2Egwxv4@cHDU}oO5=f*(j@AH#ZT#L8>B8=)5~TeHK>YhF!~Zepbh~4HM2M}6`aky$Cw1r;Q7dBfheqJ=c>F0tuSn@OP5z^a`IxN9K06);+M0`oDNxYIyEK z1+N=0fu#YNc4t%rSQh;JON-jzw)~n_2luiaQrYN z^3jeTAPibC69w}!q7r|+cZUS{;%f^PAW8-9toTK~hdxW$r$TJ4x$6KKG+6EiS+!-f zw6rp{wAuzKuiIoqj5JUsiW!>7&h(a2T=o+9J#pdvKIS&54C}q}Mkgp3$#PKZ6KE^rNCig~qBb^^n40;Bd(F3ir;%W{ZOrhaRFC5__6bHl(L z*Y|7#h>+X}hRB-i6iMYbjAC2KAkUR>!Mno+9H%!kA>7KX?Bm&v9Ba-{K6|wUcjR26 z{wNkgF-AoS@)38_XsYM|!1Sr=(R)bZm0xdbbc9&lhdM;z{P4*A(=-<0k1>1mcC$Dw z8rOb;PEUiMm8e>X#c>jt0BiNdVwuJ9w$#ddc6Gzo#y@ZWJ?`XgptzU8FP_423m>E! zl4fG7>@PEOsQ)h4SPWtC;)J%Jjw(4KP-(%=_7;~D5M*RMV|-YTbvd*eTM zA#a3LlwznXG}FmoUJRy8)PNm^CZ>&ibXR~>5KgCQM|lP00TR0s3pnhR@Yn6BEF&|; z=Q7ygdkAJ!3q9S9OrMB>HC!IvGPS3*S!|i@o-utn=*J9i?`n5a=#63#gAtIy`sT>H zorDLOz1+9otCIZB(no?$I^Wwc?PN?U<(zb<97->v1EybvSA(;r#^HbgO7AL8A`Mu2 zC5&z~#@RhOXb$rWE-e`H|9%>SAf?GzOH_@+JI zQMxm3ZdW5B=W~Pm!1G15z?|HSR0+sxZEq|kg$h>?&cIYfMnGNOcMm=#2SP9{&11co zwEZ)-aDeNV=Lf0P+yuIhM{R`^5Pv#}tQ-XzGeqf)G*)PkYx>dVcc6cc#RVnjPa_2U zX%%*eKcumL&RZ>zg{04%x2w(|Z8zU^43(4UvB zfgC5|ND%^eRA$3i(80{JZvP>#?!6pk$;ZzZgPdoU5Rbi%1tU4&r5LeY+|64 zG6~LlN(|Ll*zO4kxWV7EBe|`@6L*F1f2i9>yQV^IIB~(=jFZ>(NZ2#nS?X%{(Wasn z`k=$1G^Ie4;m6{<7yvlQ4>GQM@~*L{gH0d?d*MCzI)(x*E7X zV)In4qd!Ar%C3Ym0?ebD7as8>dY*GibnlrmhSR{RPk=$@&~rn3{mkf>e~>5M!4^Lr z&5qwt1piQ8f@Jj-`p~bA_utlh*HjJ%xni74a`aj3hAyldcoDh0MA;WXEJPuk~OJq*}$7Ll)6 zp%&n4(}@jtV*!5#0Ooi$6-8R1MIn?-CZh>38X^0<8`*k`@{x;DCepLx-7hPp6S>9P zo(s8-HbIH62^kZD0gTLtmnV9tGxn{*jnBldyuA=t*#4Uu-<$Zc?NsGBu3f(-=A(xe-5FYND&p)E z-ysl_F`sbLVTDn~@yN2wlhrAqBxN}AQ9J!{nUC`)Lh1I4x-?s7sb>J0Jlv4YpRL1h zE0FVRh;u*X=+R3_(;Z3oMZOHmz_E~|urDy_TcVEV72L6fK-KcqI#F18=&e)1?k>~} zG0Hu!#BsZbZHRb#(G>sZxP2*Bu_$QXolmdHK;xfipaHZfQ95luqh^04%GVcHk=(JN z&o*2(A!`Y-lINi+Cys1cRB0gf{_1=oCF|Qp&L6Mesq?IR{<}XENYR(fuNxfH$0r?T zBlU#uf@T?@4dCFoaBwu%J$Bx<8b*{~0UPO>uDkF+)nET7b;0oO!L~ z=>7s_o{p)XFZz(LGr(awz#9C|&DApa`emAflVO`gvSz=ptplzJWY&xxD%5umD)gx0 zTpwag#lw^m2JhVSeDU4^q;eQ^7GSz1(!YT0%Oka8L*+}z4@o_xm}ht3`mThw?vS|T z7X$r_;|d$UtBb5AC>r4RGu2n=hj%B_u?_D_n`vZLr}qoLT^Q*tx!Hy24$^1fGR0BNUTw|Az3a3(+crM|hs@7>7>A$%kyEAk zj7O;IlDpcw=uBO1#iT8~Mm_!A(a>vHFdzR{Q4rth^xcQJ!wOkbU$gY1`si(qB&YGB z;Rv30d`rf>d7EiQ+I-==HIF7{rXrn-y%WpE3`9^8qWab0N0-XXbemMd2Ds1$?__4U zc1~8@k#nUioG!byBhy(`8P9ufRxpm@s#hut-bo)iU zXUOUScxElk)1o!gJYWbgu#Y>;u|az;?`s!WN;%5XwV)ue!2o#^3kEj547o)kYyv!Zm+&uY*J;R6vE2K5}qge z*Ss3hOj$@_5)iu4RNt{#B^R!0#BhwQe;K61&_MQ4FNi$m%(zW?Y1F|w&7c*r(6rU( zLPbh&2&-^7u3oBT@^ z=f*KloBiY{FRM>-t6YO;EK)THL7 zeD>VjIW2}*!zq%MGjKvA?;!rr-aPH$<5RJk`>VmLRCC%ULPQ^6PTS;4>QGWed8u)b zQiPr`Zig6;&9dNZwS&2)-SsOL2M;&yiW}WK#&#Asy69~gi$qbmusoUw*3y-2{pz<# z9SVVkuGWraZ5 zizQ!vJmRsDyUOZmRM(wmvR2xb)m(Ra-n)fdKrBWn+2?tMQ zJps3{kmyB)d9rD*ly9k#bq*2$}Y&Dz#| zuV9e-PCC|CefpjJB*1OK23o4X7p!x_5xccnr_#iRWHwx>aMIjP;2ef$$iW1!!S1Ui zE0$Bp9-#7c5JI2%6&3F=Kg&*7UiIjSBl%`_gJtge9&tHFKb`Qz7r7eh-&kWqucdQ;lZHMQ${2DRQgs#J-USqcI)@(sJ$D;`PS}SfjjRep~9|3d}VFx zoTVNVmc2(Mo99!5+yg(}47OkX1kDFGD*slSM1NFV_fA?V#AaDD#qLxXMMc)iitE%u z?;9+y+Xj1V5J=^LO)C&0MwvYTk95;1c%|EUa&dne`iEgF4{Tb@Ea{0iC?(;;J?Mzx zE#wVsW&~miwk0-C_Y#0;!*C3ug>Cg@)$$a2n_jf+)*JbOi$Bid=G1(HE6@!oD<~mQ z!scu9(H9L*;kN^IJnXGU@!bdgrHb&07Lg= zdF?h96*?SYEhC7_E^i$pQ7@8F7h`V{0$RxeuY*pYF*OBN$7a_;x8T#UUl5RoY!j>3 z&0vQB#kYUB*Conh#w@=l`q>bUk|DtR?pg82j8ZO;gW6_>!w=VHzWPa~ME{o0t-pb7 z0r~8F+XV4Pu1SvtVZt4r6Cok!El&PTM2WHq8;rh`hgHG&jbl2+`vC)Dx?}oLD=n%6 zLB{Y#JaFbOyThGoBj5eOGNRaV&qBhpeIQQi)n>5|$LW?_yT^T@4@Z&pFfG?CfaVVN z*?#gd6jj37rG7t7`UkE6?Ne|WlG-XrQEx_}7(z?xsk`Qr%;kq^qrux5yUjZ^ZBKPf zW_ttbQ%PM?Hq^g7ayLx4&BbTpLN~Mc3JJs~adj_FN}mDaSv}iunwDJ8h)-R0cY66M zm416g^eVHkCk@CJyZDLhl0QjZ;YvB-42&v>T}#JQ6=Z6v^|)-3aa2nt|GEwCZ61UX z8n`wI4m5;H`I2ojlc0Pmt~O+Krn04~YnXlhawSvKUqo1MHJSgS4d+-BM_H4L{&p|L zHV2;5=r#P2bSbf<_vU!hCGenYCRPjyX*u+Uw69IWvsiO41!3IRwXns?s1ev=Uz4l1 zo@~ri#Dx1t^YfZ#_VLnNi=dIyjm=a8e#RpDF(-eHx-z5k)L*{=F})6|*bpj|&Td$B zb2aNcZp_{+tLAu-x}s(=Yf9zS^J}77!6vM0;dguLr{#b>eTNRAJDGS{Nf2&grInse zY=b&w5hi!G*vQ1xaHSwHJM~ZMeQ`I#!7zr23jbvLn-fDvhfz!UVXE%t)J-tgR0#Fj z(jQ?T_A7|!WjHB2!F22d8tb3owGvO7hun*pfaS~Oz8a3bS1s8HG0!s1y%z13+%Z8P zuI)f5FQ*X!J5t8W4xZ7%S3hzEoG^k-ov~r!0zB&B` zLsr-3z%7`C*wlS{@usZi^@IswewhSl+`r~iR>LQzXFOT!)<`q-WyRG;!gZW@wiijf zCqwH0!nP~s^JdsVIU0k%mEnzbNl9E?*_W=sGtJFvcDHcOMVFr{`dBphNLQPZqCK;J z&>nPk<2+nzQA@gT95i5)F=*!pv~q1y5et_p8d(l<-IZK!KDaIu zP7+r%zC5pWSed6o`*j2|Vja(1Y)%HObY;6T2P`Yo=}nf!c*$bkk8;fGFWgq-s}~K0XNn z6b^iRdxSf1KqgFAU zAr@6nPUxP3IMVo&{Zgloo6}4UiM4#S{_~}zClp78!lx2Rp9k_z|0dVqcyx*0d_C@= zEjFbBe*D)%Ki7g!(&hW;oG8_c&l|jLpQ(0AB|rTf6}^J+sdpnFXIZ%v0PNv{PPeaL zQT+)zg>2g2HmIfni2VkpH?|5qb}mYn!RZdhJ>@)B>*p#QUJ?5Hg<+$gN0!TCeG$g} z$n?ylze8?xSZ)+^dX+$SB6GhYP|ykAhj(_MSoSu;xqrPdA>Bj9Tsw?6?ee6Q_m*;? z{|0q;&_SrvdRi3*{?;!SSr5%W{^JRD@d?b+n`ADFf#S+A1`7@L61O~P(3>x*hGIJ8 zGVKPHo=Q<9>M@vPXkDvT&7Z2YaRghia|Ja6J|;#>{$s!VYK|k3kuqMxNn5^vku=Np=l8>1vN0D9glpu3i~=~Xw5d5dF#^zD!^FI_1khu>KENo_7y1uY}r7Y z`E7*Z_jnc8xm+wTEI(#bZIJwe#6K=_2vH3Fq1xt>g$*g;W)+j^$d=O&dafHJbOW}T zS_YupKQK*6a=-{q4D?1*yTZt3kwYhm(>dw3`<|V7 z?lEe`P#j)Q)N+8l_-`l%?QsgDkqjTIf?)&H{(%h<&^8)JW&*f! zW{(F&5L-MG2#VD@k+@#P5pHrBR6@wb@(%K@n6d3g*uiw;D>|S&Y>?Bi0l?4Xz!}^l zGbr?B%VPw!$F#96MowHu^0!?XPug>!Oy{JG2OVKxdg#qO{>1xi2~V1XFu`!|_tUZp zKE2H(%3yhF?W@s z$W}SOPQ9QEl7Bt(aZqD_^v`9=AWB%Eso{v@Yo=N*g?MLCpuUv{$+WJ$;xXhXo{A!x z_G2i}jBSyPDGrochQB_x6bz89D^roY>(|kjKwY0+j_qJsO!?a9JVMhzME&V0fxqkgkt!H<#=z$pGmE8^%LsvrY0Z z3$q`5=!PP&T$VxQiSVvXX6ixiJ1n#DdKr3P%Ew)}pLyWV@)QqjNHhLP{PJM|o}sHY zM^5h8`TV5VH&d9?rW$d_n<=XGnt~w?_L4ZVm-#h}?ZZi_tq{(&IBTQ_ASG|RH+*Lt z_LQOfQVNA51AHOZ$#hDA8s5hIG@Knl*g%Z10)i-J1?P3lNd=e$!)wFT5(>mfYDpeU zM|YBdOj~t2#i05PZG5)%_v2cy`NtpAd5_$81SPU<-hz~mJaYb~&KXUDdqkI~73_xW zWxX9w2_^4<|dWq$C_ub=r z43T*(o2GQ06SYG;X3ndVYTf*6vGCsC99b$32I4eL5`^QGt{izSa+8)p{Bencyhgf3 zfpc@eWx=@QBalC;h5RUP-?lK~na5x3)oD1u{fshPi^ziw9^v;YoZ~TXJCp)Y-Rb-3 zkwJ%)FDWn6DR;MjTsrgHV*#0LRp2v^AjBHPcFXOfryCtE>6rlHg^qg#+hYc4a^h(2 z#i_%LMxiU5C;nm_i4+El?FNR0*#jev=?AfY-TcEei2*{%1tI70E_7OO)Xt%`@+b;3 zl=^9ls9KQ}*@6Y)$lo$``uI9Lhd3NA;bS?f#fs!*2)*INBs!oZN)bISo#xKj==E7$ zOc`w#-!?&emFwYhTF3!NcXlV*t5CTkyz6u5QVIt;v?UF;}4?WALb$L?NLkal-#R@FNUZ?5&}7G zjbS}VuIpY_-VtK=4afkk#J`7i0rLqJg~tR#KGSB1nhb7W_fF%mxVL?vM^5TbWUL4x{P5+$}x5m1Jd<7ce0)e}A6djr*dg|H* zjkkP?jdrBx~_FKd4W3Kcb zH|neEpqNnR<0Lux(|k7~Ed3m#Gx&*-;^W7??tvA^CMgIbwFA!482vm^`wH`dMBT>V z`T@27PrdsSmiABg@q>va5q)AsMk-Aho9%4Z`HN9^nFH%=RCH#Lrso=*Xyx zwIu{(7X9wj1Y{LsuLO=2(6F7(%Wr#CopXfRvQ*kq#pf~Ul7DWTwSFHP$ni-scpWAm z-HKUOi}1Dj>J0w$kz#ozdH#?#x0K*(XS}-~MBP)l94wb$N4)02ZEj3k_o^lT#r!+3 zhEoE;578}0MEZ96PsqJ(SIQ0lqGt#8KHc;lD4T7C(~~T4o=*O_FU{PE8;yN3uEAo- z`9*V|&c6w-mSwtI7yIQ^LuLOWJC4`N)4)3aAK444_LwrpE`g&})lz2f?!{;9eLatn zp((f4HE6p0GE2|^J=5I^ie-QR`wFUq&diPm3Prwp=qn_wVi<=8wE`(Aamj8vfGfd3 z+I)kAbXzxrx%$nS-PUR;oyDjlM=;(s;H^byQ@4zfJcD$T@k8#12lacHCS$TndL$3< zW{Z(-Cmo43!GK$FBMsYup*6Z`?%cSZV9%ER;|Gwy54^3ZHqd~e3C!PX(Q)70fx+m| z-qtKBkU?wkyK3H7E(rJHINCIB@R!|EDR$9S4|WmKu@U~0P4(XpqpxiPCwIjDpCPLP z08M$vQohBaGg_$(r|32w;5_U*6wvw9*Y6*Pe-~#|6v|Z!-yrR6^CP%_g(dun%3Sxh z^-kDr5gcPWtCuKBx!RMv6}K!10o+%}N(L06^D&2fc*C9KJj(T3`B)%-!oen0MmQo! z31?*5NpTNzA0&NB3drH$uD(1^eDE&=5XMt&Jg@LgQJdR41R54vC-m6HEi<8VF1mZ#FF#j&;e{c zItD!OSuq102LvXIueW-af8`GU0em|F9CQl+OC z+&WV%HE^f8ShHqLcwYx+-U-_g|CW)(kKj<>PmZKD2y^F*EBCpu$~L_=Ak7`!nYAoTv~ z_Kv(%bfF|psnMrD-vczZo9n6?wyN^oWJgN;*Bb$x($Th5J>o`NM}N_ z<3LX0M9V>nq75}Km6oC=+8qw&-Q4v=OdDA`s3Ht^2Yiox90%15#|j7~dwJhg(bDAP zP+$6V>%^WVLo}sTW$WD`DCut^dyj8}Z4{s%%f@};;AF0GX}f0KhbprXr0@8D5ngj- z=$%{MYaXOUgoB~G)$XH|=vNz?uL!#=DbPS7g5o9q+BanXjz0K+n;@s7QV||RZ`oLI zl+s?%GOwNBG)7@7N^NAnT4kmOvMnj#l55 zdf5&8xiX^W;=y89Dd&SS`Y6=HF&;xNMD=xSK>S51!H}A(pS>ty+dVQP=e|q?Z8}$> z9=gP2%j!Tw%u+?yEK@3?F)9==?~WweZRpUNi&`^YE$uU1!_noIe0i@FQam%MIbhNZ zY7wpKM;Y0qSElBmy7}kSn{H)x>CBlBiEak_q(Q`-wU%;ID{uScGOL&!s9v!J$F+q4 zD-nxxks&g3i>b0kmyWQY%mP=ufWJ=J)!B| z%UF?|ic|BE0I!OolYeSiu5E3N{j&Wh8N7RC0`8{q7>=p=*HCx7bx|Juf9<^`KmpZ;L_x07hv9aVXfje6KyWZ#K5c}DZ*w{%| zj(J`x#F6N2m?5D>!?{CBJ%fU~>dd~j`|Q9**mYX7Lw_~urAKcGLs&V|HT^O}50`LY z_OdtHjB2^F$r0;#MCKokJ6&QHJM%rE%#Nn;O^+jWuhOXKT!C`5g!36Qvz5I;Zt@E# zu|92e%K$aU^`q8Ktv@)cHrPW}CwIS=W_A2h0n*B1EF%ct*bJ>ramOggir zAs^#YjTQiUmWDq4KRg@@>i6c#l?oXllv|!Dm`}oN*V-(Z82z|*MKG7(YO&wZV|5^9 zN`;nMahq}@W*4p>Ljn)x`j7IyzH{d;uoeTEcosVzl@RuaoGZ7?V0Dv+Bv#kgKG|$o zv%=Yiv2vlL8i$pMyMm#LO5zS}PkxoEuZkDoSzaOS;Z=W==YPY+k$ zrtDJPT4tr@LZ=+1g1fYFJW3&G7HT)@Zr$F=F4%h79)i!Mhn=nse>)y%3{=fJRvqDp z`yjT@@Ycp(X7w>;;K4B0ByYz3A9T0m8;w~6wI9W}c5mgD8G@GoygPWkHD?@9IY0Sn z&b@AlF;2J)V|3EuZY;NjlvU`da^aAL!F`^9tGu`~%LUV4rHzXDp2I#SKRn?t0kBzA zpR^u=l|jSjnJ{}el64jNv;33=Ua5{O(^SX`OJQTtX@}W*>do3Bv&L;b>)@_##^)N^ zzf2Sz@n@xq-mHtT{z1Lms_S1X{Xu;rH_&sc`-iDa&iNsj0-6upZk%?Xx5nS-fgpBU z)|KRPp}q~AJq8(zPTzbbH*bmuIQ`5e>X2ERwL)%nWPGtn)U?qbh(41ktmX^Z(`v$0 zjb~cc^`mU6ZaxFq|Kf3GQVs>}>YhG^AEld62RwMHALG*f3wY}G<#Nl7x>r+fQ`zS7xFgpG zx}4?ExC?9c1Hu+nOJeK#qUxgTnioHqk(m`Z6@CHim=XmOL5Y1`?KcCliu1Lr)hm}a z$Hf>(5V^EM1n5HEcV{5oh0gCDD>&uK5B*8jk0uO$=iC}GYNaawb}j2AEF;b$%c)BH z(pwyF5Z+!ZoL0OLxM@BDIm!Cdbm5VsFCXl_C1g5=D`@j_-STheLsnfC14q}iTn(q) z&NpeM@CnWhw>-OjywoJVEkzCA@}q_yB1Lm5W#{a&=PBT6FRljtn*tKi4spo@8#qi+go&RceyjQomIctz}MH%tM0`+Z;T>sNiWT{h@i;)F_ znJKT*w~w2BUI3cgkm+qTFy~)nid^OBM0cx$VEjm;eI`%u0t=)%P~w3OaR z9J1VZgCv%=GaQb37lXTgsL8|%Vwil01268XW&2aaDjz;~(1=Co1!V~K<9mCJ+MAMq zC)8qwO*;&&q2#rt`c4kmWSGh$(UHI!^!ZJoC+o`-nC(|f_5jnB@ox?+nt z+iIG(>5I7#HDwN*LJ!KElAId9z^)EOXIYN1QK>Q&RgIrBaNx%vG zAo!Plox{f5?HL;G+EbmqE(UoYD__#(nh@pZ<+&gWZ;=1?-_>t} zqS}G1+#3s!0aN!iU(>CmRC#N6xHISAlgvrwH>y4mvKiCG!`Jo9$-F`CWqpfUx6Gj& z;f<`@X~XyU7BX|Fb>EvqIDsAc6KTGBM=7+kq(h^Qix8vAPE(k07{0%j*HHGVz+@}) zSb!TrizG#!FZiZsko_~2C|M@7lLyn7NqU#?oO=1<{fJX*o!2l^iU>!`t->rvx zTU_2Pa2&dry)+><+a5ld`f#}o2G`HS(nbTmRRz>yMOUa>BJW?HWRm*%tyY6M_XeG; z#`@DdvNVrJCfORAky-EQw@NMnKOmn=rra6pQGUEB#neVjW$&8j#=1hV;P(@-v-YS+ zb0M$8!U&*%l58e&A~xTf5=vh+^u!0#y4lv*uJugR(lKj+?+gyrUw&v2Tv`_ z<4q!os4xY@U5ctOZFAH=ru*`FX#gFNj>x>EHc?-a+x-ZXu4a2pYX>7QP>~e0nHawW1*_R+aSFOhtq;t?_Y!?6Wdff!P+;?aRue%CZ z{1uWyh#~A9$lG^%-}ni$;pY;thoc1#qRd<8BwPJeG3%ZsGu7VLWb65cJ4R)7{nmf< z^9LO`x>UVij%7NMwewR{+(FQJ9)|>zFafoW0@16zo4JL%ioux7NycFQ?Cs#9hW|aR zlB!?H{e(KOmgg;+udi00ZivJiz*V-1+iJ9H`3}19=HyW;oa!F{lq6{SDV7#d8l3Wg z{C*-<_iGznXX+aOOiDw7vvq zM=gXe_gz?l=R_Y#6~BsXaxSLoM^{E71@E)4UhY4m`|2hY5^rE);}dXOoYQsabR>q@ zwI=Xnwen6>-@ldY^TV;Ml-G{`?f$Pyo}~Vr3UUDQdI^)#B$f(#M(6x(siE6~XwvaR`rCr5f)qzhL81h}~Ed(#nLn>LXu zfX+@UsSmFOc{z)1U-5^xeB}^IHcx_u9jo(;=5vU#2(EmNpz#NT;L~zTh>&v_m1NWF ziz&J zvTg$CQ%5eEi*J&RuX<(RKB$i{v0!w8S^~ZkqKP-txa;*BUdreZ{|ad|m7#+ubva)S zq7AdCTo~+qC0(wBdaD=f!l--mqMy(I9Z+tM1xYY``cjseBf#vlL+udcSPp}1oG8YE zw$>G5gFBkIbmj;4lSyZp!KD4RVI)l{fh0D@zWRHi0#i0BlaxG|Pjb8%dUFJBflL(Y z)B%J(2EqZ5!-nGQ8jc^5`h;Xi`fe2G>34_CPtyw4biN=$L|5B~;}G4>aXk3xQ>tyY z8}|pkuGAWc8K+dEOEcFdEqHrgiH!fODo%w<+GcNNB_PNP_J;eQg_t&pdlS+K%p^Rf>8$#ext%S$#OYmb8+bO?av%53(U#B8^2?QC7U$bkGUGssGNE^Tl zZXZ)e4zA!nH}Z2z3Fjv~0GkG&jX{g}b#O14$?UVt<{wE$IN9H@>@eFf!+FH;WrYMt zCEpBR(!-}pz2x+HDlrutJ9F;5ZC}v|gEGDSEq$T68Ye=H;NN=trR(MfjihKbCd7fH zUL30&yLcG>e;eSvxD1q8k0(4DCZ;7u$Y2SMG{pf5wp8D#l*8eB%7M7+fd?)tk`y_& zV8ujW{D6O&z6&)LGyF1a%pFtS2WE1Tb5*e0kz2FVl=4(mGMF1lf2kG-u7>h@NdHQ0 z@jS})Evb|d1zZzFj>a^}?j|(xvI&Lq8L(Yx@o^60ZvZ9PuWaL;xPEc+WZC{A$0j!B z1h@B0Crge$AV-kK2Di5rJ=dYK5!eWYSA2oCxAlE7NU>AC5CI!{%`zp9^=a*&0tYOi z0hYMQCO|hY9%}yyau;VFR1o?+(9Ln9VUT^+u8KF3jhXD7EPm&hdAv2Cdr74zza&!` zNe4WE$B5+3BoUqck#|nS7~_HR5&^KLOb^NNx~w^z(_C&=p94u!mBm(`vZSfy^l3`a z{alFXiHVUZ9=FR)XZsgcI0jk9hn!wyHSPFb&Z@P_} zyCriBXkPxt`kvtnilH$X9l&sYvuVIDuc8~VXxsriy9(3%ESMX~I$XNr0iYAp%a}RH z@IEm#_@^zDK4W<_1y|8#S2?npqX@P(_p(#Sfl{CVBMILUctQmrF>Eoxmb_slEG2&t z5;~3hMFq6cM4r^H4?C~EExAH$RS-_m5)B}Le_jyC!NbSACF zS;X)}yO~k@?MCfxpdJ!CyF)%;x+{K zo{L$>xcZowNcj~_ylJin; z(PXgT){ARtUABQ`d0_%+)8}DBhi|L0mwTv=9-cy%0E%EsE&;v8j^DeXF88?0A$muh zb@WBQMb5c&`3_FI`p)cKUjHemu*&5;|c$FV;+E?lJIA z`M{FD&HL|lw{|lb0Lx83@`{~-JTh0ZB8D*lu@wnkPYt@$PHz6s6*$Wzr-i8D4JXR; z_NGIHJ$CfjDtqw$kbW9ek2DQF&X3KKGrf1!}cDuSgb5%j-So;74ykLIj+p^EDkT*j3-m4)-Z|}amOqb@a2u27uA%8>u z4}1R<9(nVH|H83t+qP|El8NnPV%s)4wrzJXaVEBHbK+!@o#*#|-+jK1_de;X5Blov ztG-pMsy_Ex_xdG@?gMmMR#m9B_5l4z%L<^M`YlSAo1ZBc0Ahi1iVR+dAdAUhPQlAw zGAKC*0e!la<{gNItKYJt=60ue&SMx>Db!-$(oz!43i@WK^3zX`P&S-S#2pL*H?Y^) zXzDF7!MWkrE_h|}YVPUwbUzeg-AThVl{@1CE;wSrO}q&$P$Q#w3OA7*T1?Z~A7Q&< zyopvjfJ~KXr2io}hTAe-iB{fR$X3-NI8MTLuz#J6_|g#M7=qA)>f2{#NQ=wapGs-Z zg9*)@>ugWH2?0m=qPuEcF-!o?d*E~9DN7IvUEl%TrH+qpmUnvhRyj2A&wQwm(K=N{ zQ?2s!F5?MjBip$6un4LPlqV!xx}#k++;uM6sSNsfz*IMufBrMWFUKjCvelHgV6ReS z3Pb^L@gioe-T6~Crs~I^;g)MO3)mP_#&=VxS31LDs<{1V)8XOwl@+~Yc)-eu<Z3uBjXX^9O#i_%|AP%(;~C1f(I$&Xki(OzuvZDs^GnWSR8#Yg3VO4gznk;wY&{c zhaAqI@qfV=KB@GS&5DtQMN8=s=tYE9hah5~FM^D9yku|k`R z;?74`oS)zKXEoXPRD46054%9Q_Aa?=ggwH%xpd`k)TiVIks6KL=#M2tDBYV?}CO-ivUq4PudDO&F0~m`d%Yf%&U2SJS4-rr2Y>g z6+pe|=1-VSTzbN4kEyUao|jGDp`)w=Q%!-6j}C}^g)F_9#R^06VfFRsDy@ZI@6~kw z&a>YrFKgxTcUl+BxAiM3LB(W{ke*_oQ6@E??I1rVsNk5NgKCljjCG~XwT;9o{7RyI`xTg<>!CbD@37ml}zxny+bFx>eGiIJsIVA7y zC^AlY2m_!NAhDNh;XdpJ-V$gVPj@0R%^8={H z3}K&s5=?L>48L2|q+M3cEi-NyEqIgWd;e0hm!El+Ey=uzGa&ydG{beCfcY;ZYPi+d zgh6TB`N+2v-;a2CTYk=ao+*)&ytcwbLP|qy%5m6<&V{`$Ev7w8RFn{BZm4#Xwp)oh zuD6imaCvmtPu!>b*Ko3Ur!%>$eescPqkt?0G_KUlDx}6zSs{K8wZW7*W-GJCt9Q9c zPZ@cN0u!qYa`u7-9i}z?oI9hf(xXX5wr5SFS^-0<5HM*&=}oqWu_u0L)RW8%d$ps! zS2(UUL1yIC2C{lJM|~DnygzcZgfe@p@NaI@H99jKyyQC7BQLFD1F31B1`Y z71n|y2GZldxK)kI+=C?l%A(2NT)q#RQmrR|-&^8X=qdSM*O+BkW8fgUYcxXfS3}$g zheg|TsSu^M6xm>}GO6!uk9R)bNjGic8<3&JQ_f9RM8K)*?8fforUmy)c;BVLH%)OhmyWG{70h{!qo>$qL-YBWM>mpk)Jx3-R!@5~N+GAdqVv6DAp?iHAW zP35L^NY~1U_ASv1axC)8ZKuiy&E4|?mo9N@S(4+slg)N^Cn>U(U={1zmR3}nSbKZw zc7qu2L*-a**@Rjulaj0Ev@Oo~4sfl_`7`bvlZZ(HyuTIxE7 z!BnP=RK;@n^RrDoK9j%`&(lu}F{fiCnN`T+Xg3X-&7HXHtIEWsk~Wl-Sm*NLzvTKe zqqVN>kZ)He_fLIWS;zx+?95nMt$T{*0F9IsSbUA^aAa=lji zn%`yl095k$MU_Te=6hnvIQX8YQN&JFKmVNbN2&eduRJfVyb=jJw1l?z+9ydHGBY&q z-r64QaQC2GB~>r;fp3%Twp_Vwp(9|euUxEzjxqa}k@{4*2PYam$Evs8Y8@*t`$WU! z!B#G&@*|Gm`}(&T+@AfD5PxNqX;+_WM}9{@O|R@tV^J9vy|Sdx%B2*%0+FM|jfu^0 zDKg`OFaI^SR-K?PF;d?A-T2_5jWYV6l<*f3F|J&r(_O~7`4w1p&-4BkV@h4={=D7e znaK;D-^-ts(wN>=Y`&0l9GI13_FWP2amvZs<$9!L=2&sLN2og4#p z$|aajr;T^tifP;m!gp4%h3ULa*u+sxo!*pRw=iZFxAUHXU+uP379Kl*44L;yHErUk z-gAy=Hg!JAQ2+yeWj7TG`ZISl=20~wK_Ne1N1S#ha|)koiDTkmQqgCTMv-mi?5#l^ zQLtBN6HY1RF=5f=sx0GNaqtKI!^5pkJ=~S9Jpfj)Tvzoo9#)@aoo8NCcmF*_-K$Pe zF?!78oYvBHXrr8oJdCP+t9)C(63`BRXy5>aeP(Oyts0#^p36o&JvR45U%m|N(JJ!{ zFvJ;~L2g%7LuI@ARAi_zU-u3?nYf)>DmM!o5;6YfHA$~h0WO4sP zQ0|j7`onB!7?+h`fgichmAuAUK^r`mlVhY7hgepYmRuDlfm2FG<3brXsQzaxSvh|S zV0Q5)k6u5HPLe_FU`jRI_XNN+CSzsSVOh%_`*ts^|yOiRhnV`lW3;WuT? zNdq&gPX9DDkU6r!y>H5Iics_ce8^4F=`)!XnejC~e_&nog zmi>w`kUju^xX_r2Y0`|a&6yhZTyI;g!nb4DbiD)<>*@svzUV>_ZXz!fkh{%UFjp-6 zO5i}don3_tA`EKzZ>glM)=w7z0M;lGM7M1ttCZhA~#p_hV!o7htCHYcI~1A_U37Zy!W8C z`E~iXYbUPvF!q;w@T#UAZahz3N(y+k&6g?hHtazzNAK*3c0p3bWr}aMu90xA8+fh% zMI#Il{=sOW;oE#5=ha+8)>ct0Vd2}f&kv25D}-t~u;|^T_%%XgeSBEf0WL+?nBh1B5+MtvEztB(fxO%?L#Wz2<9B)Sb1TP za9>W@{x-ty=K^_0j4YKYj;weY!l|+NLL%+aH<%_ve%9)d=xdWixz>E+YR-1vXf`&J~L% zJ6SH35c1-U0K{fL^x$Nvd!la9QeoOJr+m8)w{CA%@3%047OVYHg%}6gj#4wLBsKwv z2f94b1)9tMV2!g{b)XXz(9pMg8b>V2V@IV&L-_pE%ptZ)sFVAtTw1*qEc7M#?Hjc>Cu&^cwm1?l-0O_@&fVbndJ<8d4W%6m>!>-=q*#0}L^$zrj#lKLZB7&R?)4D!l z@6$(cQs@(@M7FV6a53z;LIQv3Kilh;%t{t=oC)lx z9-e%gf){2a{CdV0#fOgV`NQ~`E^I7@ZVZZ}ieiXt?WF?4U_`pqk)-q%_GRy06qcbs zj*(}(n8UIlVk+X9#{NExDTK{Tc`)FizIa!TaP*dVDhXROo!=gU5SQP(Lz>|{o`_UR z(jnXC_d5pf{brR5s9QBsBPjrq5s^WEB%-aL6x9El{|rp*6b8TX?1ddlQd}#Q^=FF` z0EbTMr<1VblHsj51a0|qy2Zv$jf<)4A)IzCsKo*binKNx zZZw?(dUkbl*D|*_bnfFXCJ3K9dckd4WT-I{?bRsW7p=T2sw3h~DSxk`BU}vsU?}l| z=AQgppe5jB>e6!A*^}~v)sdX%ioFPddzzox^)kySl2@{o!t|Adt_kJSAsJT{vkc&> zyV4j2y0s_mZ+>s;uIrfS0b#~eAT1)ML&7p7D(1`GS8X`~fvgE6C>mcxO%n(I30+O< z@&M+Bx!&K~FvmFx>K07Q%mO`#X*Abk19@0#^k+}Gf7dM{8yFLEoeE#sRT4#_Gu@TJ z5s4EG)t}_Ahv6P*)y(1UNpla)&jawnmn)9FQ- z3YI`Nn3>rxUs4<5Mx<+r9AT83lXPUlmE@quUgH>Iv`y1WlGesGDnIxV;3L$e`>vAi zlP&x=0-BsIP5bTqle~i3T#|3kKvG5tG9T2qi0pxD=*ZTlD$R?WEqq1naigS~8j#$T zF|rq+Im*C$J^^@Ne;T{w!hM%3$80*G>tcJ3^HUlLQY;U1tzpb{Nxz$0O(%gf3;2fJ za9KfFuCheHc#s!aZFREeNONy0I6utBdE%wJ84AhFI`p+}@G_#Boh(UoFT(s!zSU>Lt z#4~3GEg96c)ps3D$e)d65+1Hm;(U=I7L&Ro z((K23v;P{pT%IWk!9gH~i6ma92eA~GT`o7D$%<*qD5PT&ZJ7jfNn(G;N1u-0Ct%CB zKULA7r?0Y1KyfybM!0IAU4xsbVw!Kh1e;opDDoCvO}cL$%YyN?Ngso01i>c{Hl1|xYt*A6nrX+D7?=aV`% zRLVToB&ujQKxz&`E%=1vQKRNahU}<@BuRBJ65cWv+@rHe#Nhoco1wW!MbEGMl1!R=CL-6tE z%P{BQkvDh!p(rO`J$XYpG8)6+Co{#>>pWLw3?7mh?yKB_`wKU89LYbFSKcI91hQ}k ziQATF$w|zH?61VLZ2sHfgd0$6TN6!;|c3fxwU7km+$l7S?)L66XnAVv1epH5O2QSmBI$3;@AU8z54c`q#u^= zmG4*hDQ@n=R9&eCxYJ>Gj*D$ivRx^ZO;?|f>dC$(L%DO?WWNa+15NZ~r_JVPg~O$P zpcdszIPFYRnQD>nAU8I)`cTXN?N`;TC2HZP{_ku;z#Sq9V}+I*{0_AUAks~zeV)L|O}0Zldl8#om`}FTEy*Jy;z|x<{o#pk zKS0WN^BO+d?DM#Nuxvi!4CmBnw8gx?Oz9@zl^O3UKyzqqNI)r=_@MuKc#0qrEz}Ute6E#8O95a}uL&P}}86#^yb|y1MqT z^w58j`2MhWx62wZ_R+BIG}Il`GtDf8Iu5TeMcCg~CP-c4yE?Fs3B*27T`A`>8Mf7QM!gl!(>F?+!QcR*_mb72#gnlg%BJE{3 zCgp|StDpHkB4p0@X;y4-!*deo42z@I<%m?lfhqxC{XzY|JKHhU1)6Ny! z1o~x1{4d)j#4E!vJ^J4S*43JT0KfV=E@>Oho_5CNt&cA2C?!ki@Bzz?#?eO!QV{Twci1wuYD(`Ue-~c=$To!#p8Fnyr$Q`@D!4@T<*4` zE|dgUES|0B?_-(xMF>qSZ_$DxiJk9$o9q0lcU36?H2&86rWc#|)_aNW4g3(ix)vd( zHxXA>y3y#XMytQ7C3(Q==hG0x2k^2+iPS#TlM(bn>Fc#g@?BXWaIlI{%m@}w_r@3= z02P+&sS;Au@^{9wT1rc<*RBzA>=B7uAZrN}`|LFGu|c)e@0~BcE4`hGy7j*(R}c03 z8YB9@DCgs4j1|P_C~pExmkwj~uRBP*=i4nK*qVT^bH~QOg!IAU2PR2ReJ`HyqNf?m zkzxxPz%cF;VXB)~>i1aE-PMgQ=axK}$0%7#Lypx&3TlfKh_B3aA?nLM`1cl=^(G9y0bm2Ax3 zRRULN>TK4w`xKzgypbWQPXmQx`y5q1`CBhs{crU3x6f2(7gPWDBZz^lA8BT4eNSiP zql}}L<0R6r~imR8_Tg&dbi6pt8{*7-IgQNU1hjgEbLV75o}?iFZ{mEFlv0iy?%-R zZ{WOrV$ZMC9m)-yV^%$jWtIC6Ppq!o^h?K<{@J&vwyN8>#F)z^Io$iy zx5tKcq|e3rj26P8gtp>!q$T%T{;|Yd*kq~kODI%}J<^OHC zNif0v?Lm!N^hpm6Rk~a@qzJoGq)k<+@7m~&i1_UO+>UO$4nJ(!yrD#J3)v^&ppwAh zWINz{7L}lgZkl4vEyrZLzuGi=+j{;Gc>);IH6{iDRkb%ffNL@*ta?HH#4&X^N{H!NV=k8sk@^f)ccHO>a1c3oboD?BqA zOo=PQ@o~}NP#VwZt5+J&SAOZgCHzMofX8QFv?xQixB2nC61M)g5&}>>!PM?IWic1%ks;5zb8?Hw? z8E&293%x_*Q|pzs&sHEQGqW>HfPq;(^?Gs*K1fv;Y>2gA48S?a6`8(irJdsDDY+(f zzYJeTPVth9`0yd9<4k%1`fWtY`%Q!hlJJ_aR-`mzaLUVi80BXXJB*Uy?$gB1cF%{w zPse*Sx0ygFrZmz}z;%et`oxPBTn*5h)WPHV- z=8ZneOviq>y(h&UL1_Jmu?YntBpZu+lple#_TwxKs0P*Osp zNJ0Ni%U9OH!`w#{p=)hq=*fiF5HsqaI#3mUwnO5<@{|i!ALsl|;B^A;AeN#k2b~@n%D$VEBC=(YM^dC{%0{n(f zi5BH25*(^%SR!sNb#wuHUy5eppT)Z zjPR;2(RK0lf#h3q-LcD`fW&k(YJyb&&*-y@sAY$Do0nnzWzqrJ;V_r95^o!Brrjq9 zYSYXo1@kgVu<)`GvtRqLV|VqAde-};;Jt4E`RL=nqYiOGcrR$IE~;IA5A#Eq^0Osb2 z(F({36>wsOn)GJqJT+uN$)>}L6LKq(t>8!dbPu&J%DS|Re2GDv<<9zVJ$ ze1}!6d5|-Gusa3WT;fGO{C1LgL8y5y_s_1%#0?SU)qo9y=20V0u^GgZs$%dcr!o*A zNm#~wpL=E}g$-#l}~ zI@}QqpC5)S^$$TML6%MS50LPBc={vet-a&74EW}6!9~0by`4?^)mk)k10=JQsA(R`;RM>L%izr}Y8<=@V;DaXxf>K4GOeYp|TGnY!s zLl8L{Do8bT5ko4(0&*UQ7H%adLwMDl;Wd{DiNJY_l&4R>*9o;OelWjNgKPk^I>v@V z&7O+M)DZBG99LJT0@VMc_E>b1L(!Rm-+^ifG}lwlg+?HXGCgxSxWid~tQLmrfBDn0 zmhCd3JM|V)L@E<8vln{!HsO6D+2q-b?$%L7rU^_#@@FC^egA83OOTQKt+ZP-*OLXO z#nma&z+IBwEm1(4Ulth&E`X-)O{K%CpZq7ZABghXncopVmkl@X=D|KP%ywSaI5M^< z>J#eB{~uu;4Jr1*@g+I|p=M1`o>(uUc#a-x8~^{Wt$QvtQy*Pu9nwM62{HAbCR436 z)4r|9u%@;Z(Jeo$e^v#1EBr%ynkbDsTt6eYVOj(eNuh*>c^?LkJg$BZk2|cUjyJg! z%4+>UQ~CJ{(oInTFY)pgHnE1_i%7k5)J{@PyT2}Gk)Rokqc5iFapro>X@zz<_@B5= z_5WsZodq@h{}b2$pNs3qU(Fu26Hy1_hE7)t3Y7Shgk|R?3Y)$UU>I&n_)TdAkBDmzUNOCpY0!Y*qly<*OF zJ>Jmvx1tnPdleLw(zd#W728-bePccz?w!JzrNa$+ zT{4p`ujW&1-;&vx~ z_G-pv$(at?>DrWQEta8f&jWbuV>8#K%*|Hj>-z+EJCpLcWW#Yud17Taf*bGRiz*>n zg_ss`J2sqb+Rgi$EvB6sM9;tLx*SBYL7V#!@(KxTRALhwO!RIK##gGB&vHGwWZXT~ zPStZ9a7*Jqk=vJO_kV;1BF8-10_%0&axZkv^L|eitmX8m2?S`%y=mNaUXwJE-_pt5GplzDpe0yOD1H30*a0=YsUA$qv2&+|Ys5ZkqziZQErZ{VB16E3XuUCI90g?Pa0XRLxk-rw40OKACfCq+Ql z9Fv1^_lg;KP595cro)lsjrp7wE(>Vjwa2g|FF)l)?6Xy>TJ)Y}M=-_CB1C@cV%1{( zGJBTa`|T{sKlPiof>!1<#`V1reZLmE;^aQs+?@8liQt=dc5Mx@_?`~ysrnYs1faR8 zmGBD#^Y}y_NsepiCBW_x?o3CzZ|O7GJg&1IO8wh#k(Ha#ZDM;6Hb$zrX&TWdUET~Z zYOw6EXYNfQh^NP!nx9A0n=17$jeZ)xGp$L*=4Yqxuc9heH1>~SM-hIG5xXMpx>`Lo zl(eOBPD7vWn@v-*?PuzR^Lb&^iB_}(-nw)-rx>_^<_b-I0qLlQf#0SEN5=+CBygf% z2$3q#WVWwfF0T;h_jVCJwRUaQPuRjsXsM4GY|01bCIHjCh@A-VDkJl+^5NP;DQA&eX^vihNvLZL7c^VJXV3Kg(QF9tNTh#2GU~c|&7l zG^^&@qd7%q4TPAK3GR=KbV3|k+#^i(sHj)Gl2BIq)FZdQnB(P+OMl-W<^gmlgQf<+ zt4s?$>-}4nY5OGswaCEsfm*p?$&hvXx7yTLvk0GnXr9b;IPCl~^!7$yFaqeQwimwJPq1ZPgA1SgvQ$Mh3U9NznHp7p0T4|X%#wtQ5dS*nTaoLKzT z^{>~1E~_jT{f3iHwi0na@|YfRJ4fKbr^$R!gh;c726}{koRsOe0N;6y0DX0F9kZu4 zGxD{R7eLIYEd`k^4u47V>dK6PX*E67Rbb_*b`x-e*tMjAkR+jkaUF?%F~yo0R?9ck zv5}AqhW@0#TDe`R3H`YKe6d%+?VGAa03O=^Ln(#vP=C4|2)dF6(Xlm{!xl95H2@_% z{$ioKe_I8$^)|RmsLBvTAEKEjvwI`Z$*8h_0r)JdmRFgGCP9VRTX2i%X@PjR&k;U# z*~;E_6OI=^u2_R-%=9=AtP;rft9$Mo|4ZN=jfk1(-y2C~N=pK1eJ2+w%eS@-phNA9pIDl72WaBoqupFuN`EI z%x14#=&`hCF#=x{yFw~%16}$pMsHpI0cZdhX(uDjTa8`}f3pHxz}8qRI6kj~q}~QDSMN z6sYpRuTo`Zzn;l6>B9ItqC)kyEKfch`=H3llLBux`S^@LBY1SkNCU8vWhp+!r++L$ zGo122A0c61w~KcXgTI|4xFCq6D~PL>*D=nzCb5(s(msd0ta8*I4y*s@65}VP#mj3#jRdPj>L?=EVRkeP)Ar2_@*dFtI2-$&u_*tbtk2QnS z&p0Rs3L80w@tkW-C#`ljyX$X{NBLv3pFn|PH_4uK2*!Sbi;*W7pyI+L_m7CYA;o4Y zbWCclKW|ZSp1eMQZ!=LQT_qSEl`3#3a-Y3lJT@}1|5T>0F3#*vW~iAQc0QY@1uzTY zq>EyIs*=STcT532bGNmw`(>s$Fzoi>h!yU|0np+KIuN+# z$~G9Na!Qh9hHa~Rn_?~ac?hz%2bQP)7gcGNB4w#K7M8*-f?NrVh~P}oBI|&4me{;N zSSd7OWpn{d8ZzMJVI;YsxnmTR-==?V&1@iVl40hG+<}+tU(o7mMeT9Uf(((64{OL` zJP0|XrXvE25Pd&PttRM*+w|Twhxn7oJVK@|QLtSn+JwSSWL6+8c^qi?9BM6rNJ8>? zFmjd?zI3(BoB<|A#4lKYr=<^=e>FV)#FemE)P0qC)G0A2Z;II$73adFX4mIKV2MQt z)dcA;p0oNAs#QQ7SRX((rBiVBGK)M_7qz>#a!qiIfE|}qa!rmdmXk~0E1#1hG=Xsj-%UEg#4~1o~jP^?DrAj z6^*rqI8*rpY_VJ}AIW;m2wGbe{8wi<$2-zs03LUM{xCA+Y>$iu3HXF7p;W;NYDmow z4Xt!#i$CRc$Ghxhig?zmq37dOpu`6SonuCa1XaCnNA%u8YKEneBBOfdgk*x#Q8WT% z8zs?FoCVuvj*#+>OCF)&(++wRch@{o5355CfQNv9K5~u=QwWbk4Zm2pgFe+v2{gfR zzlxG^&)De!+N>@K{7h`w!q;?Bu_*hs<3+3o2{b>{v$YZ)Szv(_jAtxOom2<-9lqxG zxwcR_a`K}{TC;#7p;{W-d}$wtRagr4agB^Yhk(3+)XM3JlWo?874246)TLM;5r;aT zaRBogC;ipe8NKgn#d;dvj9f~p?VL1I)mE(>b%K^{%m@D-L6f_bwG4)PK1ri!hNh}{ zn_f#35;k5y=(pZF<*xBDyrs4b{6LW_)(c>)!TRX}SM3g0wAbUViaj=Oim{`qth$T%{D{p(p8*cM>w&>BO#4C05A!P=dV3i~@ zaX~c&7HA^@DXc->A$fO43WHxaMKRA~z|0Z;=DD2}sssX5)=%CQ%SSuRz5{yGKg zCp0lx=76;Ck=U|{LI((DCN^7M3Y`T&LwEsL&w2WDZWIZnJE`eHW{%bsxz&szz1(T#@|}w1XFGmLt`sNvm@8hO^tn3 zp@#O6#KL`wVkBCfD%-?EleV8$;1+lHF{@gj6V$iAxpr{&M*)^hA-n;&=&WG)HZZu- zxXLJ-dC`>U)k7Z8q#b;_jhgmdU_6%Jr*w z)KT<${v=2EC=4h4j)bODh1gTVPyiaNH$WQG)Ys71Mzhe22H_(wEII!cO#^@0VsEg$ z8d03~pdg&}ffztEeXLn^;N`T-?f3==wV~^}m7m0qSXiuVEW&kXG&3F3V6;RJTN`ML z&-r^^xA_C!S0Y1t^{YB(?7<@b_BCHOVh!oU8U@}z`sF-v^Mzp(-%O36VmDVGZ!(H3(WH~Y^vOW%>7E&>J#%I<$TAXO8?5F}|x ztk%57g%91HPwpvWpk%a*D0En8BGGc!1x;lsfcRD%cz%LM#9sn}N8E4u@>r25ipox> zs&9Lz!IC*>@pWSl6>!L*Ux~s(Mqh)f#ZWuymi2HCJWtAluup#?ieafq_mB@y4{k@x z>xH{fkDnp>7sP%S2Ue~KDY0Oyt6+u7#KHjkZn@t+Xbj=5_nHZkqp2V4mo9jB|K08X z9cI=r1rP4`1Kag0e;n`BVHdp=6$`1vZK$|GKRlp*g+zjiq)5T|Avz!jg=$T3!3Coa zNkq*PdRLKy%WEQmVB}$Igp31=Xw+(F1gX$L29F#u#2#cJnPEnySpenA6D!tPtPg4? zZrS{&bTxWpw9d1HnAbEBRF!|zs#<&QIFUTU|KT*6!DG^M&r&3-K_#~Vw!+{ou*zd0 zV*h;#Rd}vA6Pz_AvA=Ig?}uM+C%@HX$4)dkV&_gSO`B0XCpjIbZC-hOBlFs9` z*WbUF)yig(~ilmeeju%9xy_?rUvG)e;4kwr$DYO)N)ivy2;6!c@B6mUe+RbEm zUq3 z^$MnO_2}!geEGzL_t%&8l_}4+Powct6E7Mc_BQWeOvaQ@!t@`-Bk{*tZ^l1&PMO|c zLx+_KjUsN-FEno)D2V=OGRA4k-_nETqW`8r|%qMQD!ovfltu~{F4vr6AwmBUzh||J}AJ8tJ!+G;= z$cy;7$5PZ3S-eF2J%{4!cNNI9tE?-hbkIka5O&r9+PyW%7oI%SR_i<66X-37)K=wZ zw-Agdk9EqkX7E^nuI1_FU~`0Q`FtEmn2~GL#n?raNa?P4faDcIepmRGUGr4?^`!6Q z66{EK*y&<)y2GPW#XqT$NAkcW?ZZVF6$VTuo!;~Gus8nn4+D}rE{k6It5z9)LHgjY zL`Z(bBw$Mc?V}$>g2xCn9W;7^HiXC!3_QmGGQ=4IH(Lcsr|^Sr;U{HmH|oG2OErk# zVr9QSrav79RCG+mh~Nd#{vgv$iGWd&4n?S5zAK*+hc-(Zt4%f02cuq1)kWrAMc48P zI9O=Zc#t;lgG@$O6f4+1de?@R<-irKGVuS9P1bpnVXGCjT3T zaT1u_#G#hz$Dn=>L`=GewY`$?)h5#eB8bWGgKRI(So~ z!p`Td1;tCr8z8?pvqkV%#)=R7P)sIV` zH2uA#wj>daV)}M_Z0BY|MBts zt76az^Vy2&5ke8nSw-k-$QC@4Y} zg&9W?{Hp@QQ8&cJCt$Fmn|`cPs(XN4@>RW}H?oo2+;K}`DW~|ZDsA@svpPT4%BVR% z;Zg|PBoI|l!?#&rcTImQkE66_QqeD2na+vB8L+u+53Mb}FA;Aa;?q%CiiBih5*$4R zk5WML(eDX7Sn$*^Ia-aj&V0C@{Q^CnNexez!mAv6zcU8PvuPh=Oxl|C^o1tA<{p5W zp?j8>HVF`xsS+A87TTP`Hx8e)tsM@H0xFaAaf}u1g?e@`D4(=#J2sLeXDcO8MU;|) zVb<&c;|Hy%O1@-2h|8m!UXV&UA;bitR%?prrsBWk855Z(hy4Z+@WXx{1^~awKk#f` z26cuKV@@SPrB^JGPTm8o3Tv(6vK)@Mwh54Nu(=zaz$TF~C2$5uTG*TS$#?B(2<~#= zE!Msie{0r&$#bKvN4w?9jzjO(He-Qd?%)okMHp7261a4GziV6(1pU|NzrR-rh7L3K zy&Zc%uhrC|`aO+`UV2sHJ1^i^@geoA42hlv9zcVi4rTQByG|$LiNO~<(yZnPSj2RJ zcM#pu*6yD@je6`#x?*m!oUT|>x_O`>WMKgr+7RUqb|rclSA3ewogf#Hv}kFG{7%Kv z#czPiUM`<_Ov^EPK5Tj2ELrVaSHO3}f_7;yVaO}N$wy>Vp%0LR1@}FygtM}84o+eg zcww+hD*L;guaDo!(Omu4Q8>ImPohhvMPP|A-G$-bMOOb7Iek3iM35e~Rb=>J!&G*B zmXvQzdI&rekD3m>iIs0Y#13tOnv)SXu@F#tStKPTQr}{ zD(jULkntk9XU2YEQFprl2P%1U*g3 z=OM3P(k3leW;cs$Ou36!&0?Yn}va?K1#gYLb`dt8Bg-5#| zR@rGGE?l0#6!CIu{?4)s=kYO4zbDd*tZkc$(Qp+2*mXN`{CX|LiT5YdzaK0L-bajC zGgG7aW><51qP;2~!kSuZ+*Q7!JzARd(vElZ$e}Up`P<>J-G}E~|sc|DV z-Sy4WrFxb$x_`$p7sJ@?pV;U_4&kb9V$-?D%_cpbhk8R9puMJ3&h}_HGF9PcCXgVK zKsn&c$FnTanI&N8L@vDwz`g!dAaDy(K-@3P~TLtD*2``NM?6m;h0m3%%J!;$fj4+&3cg3-9?Z1Fo2WhGrql_fEoL-#{t@(WQhz=&E1IP7T@jG zG@uHzcj}qBSYVU94tu7^+;b4kYinc z@B@Rv4^{9KifW#UI_J$h2y2XRvoPC8WG|SpbhfmT4fG9t|NUDy5oQRi2Ws3+GF?7S zWmVMffKhEsA!RH+2%?3b6>V%lc-6JYq%WKyr0p@agIl<+Y6Zgy2q&M!MHQJqqt^Yf z!0V+KkdCVm-lh+Q#57zQKELKre3+kIjQS&ZUCqQ^V@K>VBm zH3}0Qd#0uLL2w{H*tvTkm-YGR4p8oDE3Pm+Mx+!Z#O+EVJ+vQ+ilRBwmX)dK7Bb$H zFmD6PU^s>E>30dUuHe({2OA{WqhQHYi5cAG^yi&;gx3pVyNA{m-B0>1_VAjE=hP5G zBhH*HN+P$_4WqgrR$ss$e#qmD zb&P)yIx89KqhW6CAgLj?vI5w!K_Za3WBFHF(AuSI$mxE>;0Y>@ z$7HQGWlD{0{pCT8=a0KQrx3J z4MP^EQjR^qhxU)-SFoqX)c5FGGr#KW56maoSB>0L@V1CQOylaVJ7N$s=tWHKo>Ae zT8YtdZ*AT2csccxH<96s-29oe3A7o=wD|7$c-}!YJ7L0HRL6`x%*PWr@meS0xM>d$ z3tIZT?((bO4W1erUcD(9Dm-PUV7s<<3Z+5q&Sq$GiHhsN3d;i30(#s_t-<@=ol}rZ z#sJi=M2HxkMg106Oq8mrl-i)qrW(aIsijSv>f-xm7>+_r3?$aetZ7ur*ZSde%Iad%{f36rM9;c4%32Qe} zV=T7b_zm^Q*>f^lzVAfQIXG9ct|mMy_jbTmv!N22{MXocy~HQ6ixIh)rD=5)Fa1Wv zOG*jP-WZ)$v=CreWrS)1Qd}6Fzt~P}ZlIGg_N_oAT!iU5y#Lk)kJL;-C9jz!F@dW( z6^rkBtFS~(u_fNDc+kqf?b+f07C6|(LNhJKf!1rOU z#3)6vsk|pB#vxZ|-P9JDh$MufApR(eX){EO{sBCZKdZaBBZi&ljs|j~AO0;t1zE0< z{h|*tLmaIO5Z-7|D32R6OK$pQ+E?A1Ll@^9a#?Zi!+T!Wn8tvrW znho{pwq>wD2{aOp?SR}Zb5(BaHhDS-$%}CfmT6ES3%}hm?0J}foj(hyrZVDWB@!tq zL~S<<59uU&(?x8T?B^%QmSoE z&9JIa%fThJ&Du6~3NRz;eI+d<)&@~|(pcSL;*`Rq&9s$c!)7MRx~UwOCsuLL4H&2e zEJl;pG(!Q&^V|6lc85f4+6G70*zYvfIpwTVQsiE3``;^VGs3|bXzGf4^-LHAJfay&jzij9Lv3y5&|ydJ|0Q@SQgkU^ zj>Zxd=W2%03`{J{=5l726}zXiR014#Lfc-yzW@uUp0M_D1s%&NR^kfz{e|1R*Z&qB zMkE|q0oqQ7OV7(Ymeov8HoFjtyM?vZw$k||dLPFvJ9p*dQiE5jB!n%!By^+FkR^;g z#01An71GGWKg8>$UyR@w+ROUkW}1Z6gGa9AWtrjJF{-OCamXX!O|W8T)NUW;rM zOrvrXC5;#YV^Av$jjbAjPMkHbr@dvlwmO3%Ov%|Ga9O97Z0ac#F>p}_Ko=ILTPnh3 zEGAMg*GxvzZTEi=Y_2H=`xlb%_E#-OjIQL1RJ)dpDZD>{PC zn7-yKZNuhks%txaB6(dx?dj_R{+Z0A=5uK`D6KGeo6nsh7wc@x!DA@g zff$ZC6)Fx0GAxAG9Sait91aL2e8A7I@Crz-1?q#8&v4UAJlqUdkzjCbg>#U+)@PoZf@{6J5*!M zAlGHiu411fS}-;F?+;gQl@AHDCHipfKMqaBp>~CEysLB{#~x}uHqTLf*h*UIRaZAN zR7a&SF|QVdwHmTH!p?KfIDOPVP0}+C$U8@g%v%}p#-4|fOoMZOeLLVdT4?`?%?W=` zUFa9q=fCHn_UPG6W9);UDz6kbXlF0h>x zKLBbp#aLT!=3FjO@HZB}-&^fnCOPX&Q#_AOQ7q2V{o5?BD@3Ij6f;q)H`qme@-k@K zeZO!wC&j^0i;546X|i-FPwb*8c+d%$&LPdoP!VkcLVdTnz(zf819B%{M)7<}P^Y9y z3Ck%9i)AnnCP-pciZx>y`HM_py)^10Ckst|CY8T_C{?yNO?u$;$sjD&`t*RyRq0%V z_L1pf*7dm|-KJTmMy=3=nl1SR3T#E| zTVH$95*K2wq%jP&Mvc9=A$u&r7jV00uSkJn;#mcE)DS9g@p>VU)RpY$I;od)R1cRQ zu$aSha5qGr5`tc(DZW1}cP01~+9_mT6j}bjL)f*q1?;?7GqRIc{v7ZIf9(K zxEZyi!8MTLOsx+@9+-2!94_KJ73(&6Cs2IV|16cnEBNi$6#hUIzQkosf~;L|FFjsL z729fvUrh{knz)y?Pxd*N9#qB1Z@q18Sz;F`_J$1-kXt_~(4})HQ6=2+IF@JYdo1tF z7+ydqeNGfKGq@(-9WvleFWWl(X1xT9jL?!4dwbvcw1jG!6|QPCN|`h@DCPgkMlrdG zE$nbm={{KgSO`1>Kj|gGy+AF}TrwxeF<{781pX2vU_aKg>>>8*-#7H6Q}4UzT5rF6 zMm-PGSel$I|1i_^KN+p_O4nnEIxcc9{kS~0*kE2DSz|X@EuL|vZ3TQ!83;Bo7kS^+ zPrd)ukMlI-LZXk9ApAH_SXQAo#07ja0=nXd+z}0*lql(wf?74{5j-bBR=Cd004q_o zr`q&R_cxuxY7iX@v7pyscYWi)4D<~3TL{1R)EqOS_9XEDHLg!J(tITExzp z;h}m}p20voson0ZsSg25=)g!`PT|Ezh7TI6=E;++$V>eZd)Nx-{MQWES1xuYf$m{(!f>W?hkkHXYa{7!* z!Cpc$%{a2(u3Q-fq(6;#v>xpRcyloLM=Jju_K{%#@HMhXAK&?Mbd+|(G(-B1-$X}z z%p1X4W8bfAmNAWf@2Ur2^&&4C|3I6^#?JsjuJ3%V*=ilzx%w5V&hKut;tr5 z6d-Rhmh?(!I8h(+*|MASsTZ=7!RPJhj|mA4LXz!IsgAW_EA}2cL6IJEY$M*(yxQ7! zhI}Z8x<5kNP#>msBj1i;H6$4Oo{?@FQ}zxuNe>&p4z7fB^$%t}ja+-fRZn{0L14U8A>BUt9Bi)vTKTWd=tT!a4Reu$dX8Wv}KRzdhXe z{-U)lx@*U$=HEVEjd0(i6Y}|7{au%Qug(1KzL3@PKz1xmc)U&DU6Twh_+j?An>+tg zSV)Hz3OpNAk6QFoCR*KiZP%j}NVo9tH##OoQZAzyW!&FTQYwK5EAP@GvKGz;Zstou*k{-&Crq&d~=3-|f zHJMtnUmv!Hg+cL@Re}>4cI)stbDG-Hbm=)XsZX!-gs4i%A?nVfZZUx6YexmXeEy60 zbe)Tgbky7fH58d)dik7GENdn6j~sbKuP{iv;okw{M~B)*R2sadBWvuhOVH44L^;r% zz8md7-es`aXBBjrz&Ltl&0@cfkJh!{JBcY#y)$AjO2vCh=z$s9aG?TxVS``dJG|e0 zHj&Vm8z?*bQ%>Y$%}md&QoePMo^m0eg}(Ni(5!l8B2G62zhD^K8w(416n(P)0~$fa z%|V1-8wkVZUE>UIj>rkg4b6DHS0}{vs2O>XX(L8|IpsZAxJj$nZ2w^K>IGY?YAH|q zSRyzb$T~Hek*j4jY&mOXP75GWhHCP2GVxTTJ?H7FeAmgUOoXu#nqSnXD&;Mdkg7!z zk@?KqZngq4Q-%xPf8{ z&=-`lx-uwlF`kI~`N#x^&1YSuMgA~8zJz=6f0aRTL8k}wp3ATTDE9;%gT%gjLKDneRP zOVnmsW$6@GLlB`n_flJk=?2}e=`NK!Dj4Zfy?1}IoxH9mBVN%9#*gv;~W`O{OD=xi;DMp-K zs_C?PE^*U#6kF>UhcpM5Vuy0=KsKPt0d(%T(krOfs?C{SZ{kOO%M2xN9k5<;*4fz& z>AvLq3#xf>KzQ|WKQNIG71;Sw3H{I6Sl_b@JS(>IwsYZ<`V2ZN5qto(HanV8_samG za+BwYNFM+e$rfKZV&F_NA;E!03d@qXa#x||&k;;GB_W^^Z<4Civ-ACvj5;N(f`6=16BZGh3db&pgmeWiLK3tWN>GxD6TWzsdQ9 zxV7hF1$-r4&ik`&N3*nmOy`1{R5@9IRxND*xfo`Y6WXen=UlfP3m2tj&HG=$E>2JC z%BJi=p<}h267K~I_bmS%A;;8T4aFSR+RF=?9+!mJooWejqaQn5;)-K$Bnb5ZL|G1O zrMzH+6z~da{;?kH$|9pNNSyrpo(djT&-*d$kW?Zyi}mS)O*PB&UR6s#LcMY=ohvWc zfg`87VbG3V>f*05of6-w6+2g}j2x!y$PZ)+@Oo6o-P#g29-lk1>q)|E_vY8u1H9*f z*rBh=nAepE?bfIPkeOL=2Ef9$xQaPVi_0iTNAn`)cUlN>vA!e-;kwFN#5p0hdl{TGKX+w6bacfsbMPaGXiOeT6W_$Sdpk*GeBn9O?- z`~35NOdm_9LoR1^!#C*?vk7DALbuthiUq6jR1@omXY)vCioYjhc8Q6^9+993F*1#{67Le42vo!GN&-L zl;0c^B@g2&H3N7FWoYS|ua-L>!t%2)$dNtx;^QV{DfDI5QR1ouj;%H|-GnXr*hgjd z)20EDT-m?g%GD7MfR*nQfxDP?h()y(sS%M5r2zYJMTvl%>$HY^ANq}wpCtRf!HT#3 zFNKM*h^We^Amy=h(s&Y?fPOe7_r=5Zv8H4wsU44(KE@^iO{wO|69@ALjq6i|UvffG@hZXjYp&?Mh!Cq7u zGY4$t*?%(MCh3)A%(k_@z*!gm4Wrv->8&#G)q5^7M`chl5fWMj+5sSAz;V25h7oT9 zz+~~7Iv7rVkpRSP$?-4&dK{JCLiF#Mizy%9^?eC*{M)fK^7bg28k)1Q;^m z0MTIrFmN5XnN1Xg`5_9PoJ^tXwfO8TaX+fYxkY1WuB zVAAvKbiPb0f6#a=9Ehl1&O4<5oJ1si^9e~U5vRE$@xjaJOTuaT;D>x-{w}x4kNW6O zAi6GbGvjvxhN>p+OFZePx5B|FGvv$Z%v5QVInOIMI^~-zup%Rk7N|d@qDdmUX@a^U z$)=U?On@4;%-lr~^l`b7il3|N>+@O&E_R9mh=Y}R+c_?)Z6zwWne=6cA$zS3&FK9) zTBt?A)5Nm(==Z_6O&q!vT)#RdPdDw5`;C)cp-rOF<*TOgeZy==bGimkd~-;Z^$1Cq z@c|0wdXnsj`^Z?;iK|QD_tVf|_tOgM?(PHe@#GVZg0~V&oQ)LF{n;1+m1ExRa@DUC z9N>kkL7`v>G81RKUp)seorhJjQh;ba+U<()$YCxg-|h015Fm!q5_IlP=i)Mmi2sMwOK&M2g!5Y;FrpPT%HYzOE7B* z!?=6I7hrB#Q>l;-^p%kyG_Z|^UQO9N;`ny}kj6M*O#~Yd)q*W169QC2gjopqo^3_e z@o(`0a{+;(=IAE#8w%zjJrKX&i=ki{j&PutVG6GnA{l5{(q}2lmM+?qi-7=W`3gJI ztQkP}XNW2ov1945Lnt7k&4`dGMxZh#9z!G<5GFxQhzRN+W8w5Td8e7dNG`L5!RDV3 zVgSN}J4Td|Vm&0zwk(ihSr{FBmIwk_Jr8u*-bXyzWv(bA9JrB8(*f|HGg#P}yoDK3p&;U{8^W){<>bJGcZCal1qQb1{q_*!an40d)WU)= zvB?oADsvm=#Q`IkP63A`+5JF7&8S%RdK3;sbAeQa7Y9HR$8eD<2Bd$;vOV6P{g7v9 zAY~yACCtXfqxM2;=0bfRX17t6VPV(#*R~vd!I0SGaR{t|nooAhyN^((??Ay0m|ohGp$E0Q3#9&^eWr0f0%CICB?G^1z24(()-=3L;toMEq9`GMEbj z+OQ9D0?VeBXF5=j82ZzNklO{Q{5(UQ?nQ;r;c&@RxFY`1^P((3a0Qq>h5?NXho)Ly zcEZ#L#W4ShLMsRqM5ZefX5-?IwG*Vc;ErdmafD15qd=h`4fKb{F!t4tt0a<*QJ}DJ z{W?e}@J!2)ppa~W99Zh~zbgbXnJY{a2m=;p-iHN=uzHfr1BC@{C>P-~UaY<*ot?Ho zAqk!sp5qcjYoO085P&et-A>qP1=lsd*9V5d!e&~I+|2*1%u4A5@L-LA+F1!iO%P*3 zVNIiOqYwxx$3KbS1A0(&Uy9YKT`n+4N)$=9S<1XAG!IqC9tcIxY$HQ08D(Ok<5mDk z3KgKWO!~WLv+Ab%Q7qi4Y~k(tkgyqI#4g%aTHIs&BiTJ|P!lH_Q=t;avFx-tm^_)Q z{nQ~tsJ8w`vJo7s9}7qhR0K|90HE3rmchE}m;o*n80F#D&m(<}@SIwj z-$wbe!;0Vx+Q#;Wc_(`K7539n#RO7Syj9c=J)f(UNq|_5@1a+10LOE)>q#+HX4}gf|=pL_(5%iHcm_mV8 zEWIEV6id3>Z$jVML17NUOBwOP9_^WqyRzz0d@RxMVn8jzb z^=T^`f(;nTgAhoWABVQS*UJcHo*8YXJ)|4`RsP3}fU(%xBqT7w#Cya7i5LKR18Pua zRA9JP*&x1JRoa~i*zpgWV5=z0$Fml(OSW@&7Xp;4i3_ld;dS&s_Q%|2mi_S|Bn8&l zc6@Q;$%R=YNM#J*rD|naa4N4;uIafNMk$Z&qA^Iej44tSxJtVpP+(|iqmoK0bH`}g ze&EUlLPvq3jk)EFUJJBNDBY|J9bv%3XnO=oJ}C6p>Ax|9xGl?SdZAvp6HH``ymxB#`=gLV7J zrOdzgZyE_22Kr)P02k^u5ujWJM6$7s*u&e175fg40}QDnBr|ePQrgZntPunc5Zb&q zZB=YPQdOg6&|914SbQb-+Pbx`LS8}RW%y9Hveuf)=KInhGt76zchy?m(I3LvYlWg%OB!&SV z{;3axwmFkse$1+O+S1~*>FuJ%UIxOQeekB(Fb^9V0(4az(iPfFAMpZPqkn%}!H|9j zAMp(rz|wZYs1pxk@Oz7cU?E_7q?ym|v}=f;Be%cu9eX zclp)ISPk}`yI%0oH}hN3Uh5RU##}ZTIFJOT5X!_oHbnss)Sps8#wyJf9*g+lO?dk* znIHi0KS5yR<+|$grBh0xjBKM2#Wrc%q_(CbT>WcrGo!Ux=_*d{|Nhc3{qoL%^1c05 ztlMk5%!p4&BHI(K+6R$@N35Hm?@*71sZMzOb}y{mWF>A= zB_|1(=XS zhR6@?E1)8b3#prnJoasl1N8g=e>yevPxjq2?ccDIv8o0G77>Zxt959b{tuJ#InP2* zZO0w^O~Ei(!k4iTY@|pL`PmG|jtH|Ww9n|pEzKKl(=ucjd6S5spE`#z$TISMDs8E} z^7{d1qu`8FSqP06Q%E5z-(13J4DWMQR8}2wRy@RnEFL~?y40~9JQvQ^JBQiW;*4;O%hCCIGquTM zy9ypER_U|4^_u!3^ELVCxoOp!=x^M;)3)*0Uk_f)FZykkqw_&sahqR((Y~{n&Ox6R zUAonuH~XfA7o&T{bgAjhC_}nk+L)uQFVn`nYKxeM`$Yq{buW%QQ}9#cQ%3LMT=I{e z&DiJcF?5wK4pcMwr)N*|%6!y->2tyKK;fLxg=zI=c^4-Z#A0pUGT)y(Q{r13!H_bIC$Env-N8B7fF|^j7K39MuVu_ZSf<_Z3le zcQt7KK56|ipQ5YgCFl&5G4|Tr+>NL4$Breu%~93U?@sdV9Op$$ADsTf(W8zc_NfbA zm5nXid%qbeu+15rw9U%D@NXh*=?Tb6Mq8m3lC!q^vPrCU)myhlBzXM&7ZQnDptmY% zm%ck4l2%%!BkCiwr%ll+JU0p7A9o_PGP6yM^O-1~ueU5+J%5tCl?Z=j1_J*! z$iLWfla^K6vF6C!u1a}v_1ut{R}6&Dnn)X=_bfEUK{n}`fscE!?@Ct&$z73sr7uPz zo$+C7L3Q@{XiJ%1OgOgnm$VN!t~Vh6CbEZr!@et_tDmntcP15>hE9Ak0K_%WGtG^0 zGsOdDZJAA#xU!VXQYBJNk)z;#Z*%P)b`67^dH*8_7!nJ$)*Y51V*gIdT^s4vR=xw#UmvD3N%wVjK*H5-S#IibCzQ)Jfb>_^! z{o`2&p=D0;U#LFMapCU3Thcr|C{&i_$BeY0LWeifYN&2-O_FE5m~C}pbZZvVoiQz& zCYtkF$5z^(>!mq16rALDr!F$Q@0c*B(qS8a?o=PCxy{DV(}zyd_R#b{!osvJ$Eg}! zG(Pomb4{z^hlD?Wc5MPFyLF1ECYK0l31uzkV+;+IO5r1Z&L za%v0ts39((Q&Q@K_+Il^PY{dGpx$W2=Y_`sE!{w$%6aR!d2@Q#?u4&*t?P78q2X&i z90|y=z#L2N4Nty1Tkjy`wBGxqoJxs41X9mNIz4ElbZs3Abmi_eq=gJQPScIs@SeL( z>~W>^Riov;D;sMqRgr#Fu;TG+^~lt)RY#~_eD1$OX z)#y>>q)B-=q>YqJMu<`+htWdvSGXYJr`9`A@IzW{dUDX0da~?^hI=}!_{pr)iH|F} z!$7UwUQxil!aVdKX3uiHMC>en6{iuRqG>sBWv3m7{ZewW#mg9JPL@`d#>>_LXQ4bb zu5>u5JSJF}dgkkS6zfpF#He0y9PM05IWmJrooej!(;#zI(jA*6si)buRRphLT5zIPqGhGq*<4pv^*@fVnE!8sFnKo_~l}m9_~u$;G#nIOE#qWyL>Fv zRK4R5COyC2nX<;PM|4Lj8rc`7gSNYyYVpECLT5H=hrp&8|Hma=)^Qg+wbdxsj84e-Lus`Bw`g*mlbw1NE7gT#xrIO@RP_Zj*oZ zPJ==*!3PZrEva;-pjA--0EN{bWr#3`>x8%yyhRzJZnd@LkN~kzp_u2}UGebg5SHem z*V^8D;4eY5fCq_g%OkTC2D*SSWgaj{q+frx=id(V@T|h28ZIs11AQsh91LZzXsd(h zcM}5*4<@HhvwI*)>rNT(v)9U%G#S5rw*&51g?{5)F)T*`6Re{EI^BJF7lDb>DBSTx zo$^3TzS`y|%PHb`kyIfJSuIO_Y%1(L`Mk-bukV>JP7FngK^4N10|x^NCC)e=&z>*a zBuj%LK_Y%TP$N31uuts8jv2|9&D2}H*9ZMT;At*c31hwAk7;M&Dw7!QCa+V@lKJys zj}kA0dw5I9sn{rv!zWEh=Mjc^Um)NYk&yj86t4Mqkw3z4C?lHhMCSG>`7W`K>33FI z=EVcLj(vqsKik+5c4=Nx{; zOC`-t@TAQVQ-SU~_@T4BA+T_K?EM2lA&{8{#$qqzfn6yF7~9U{4h@~ye~5F)q+DPk z8*U$f%fpsLtd4j)qO&iKeYp|FhGPy_0Uyd_it8!~t{uDc@Q?6cq;t4Pc+kt#LlbAi z-`B7p-%?5zOu-eIehsW7rz9=I#rcJ5Rb*t$a_eXMZyB+h+jAqT!MjXb#tM=_%}8rs zp-KK38Bk(Oh?RSmCer{IwjB4iT#TjSZPF-A;!QY=sMhprK=bQdQhcbLs@N|o3$a)% z1Ev#=tV)@{B|+yZL3iY`GF zLFMseLq=*({0m4h0Uoi2s83&c9UX25#(`>Ms=a7r9n@n^xq^QjJgOxDs2AZtc^`6z zLbW1?4G^Fa(@FwRsA6|GHZ^Fr&pM#M%CckLWWO)Aa3KqJa_O*q zP67e~QoTCUym;e!8L&k;h+p9NNl8`inceC#-Q-4h@u6K-f6J8>?-4}cQWD*#16fy~ zGG(~bDoAv3Un&;ZH0+K1QnRF_eiLZ)r+!)S=bN0Qr#T&jx0KYiubkvMJBELdvQnjD zo>7ZRTvY}?`bOe(57l3V%DoFl|D2k$5oB7Bn`@tajgAiPF(M9DQeie=o6_aSB2@R^ z6;4ZgnHUB3SYLq+Jg*Q5#CEW7Gje~|3M3@v1&zeu;j&bJ=+&D{*y8i09_4P!#?hKlo zF~ck-(2z;L{^ge1b7A!q2rhcvBkTJ;=kGO6+k&V|=NVXmx8h})bvxM~9Hsr(D_C#3 zoHP-Rc6_z+XvMqV))vZjdC%agz`bN1@d_~S**$W|<~Bn^pxJ0^d3&pi6fmobPJ{?5 zI;Pz?H(hpkemHa$Ml3-zH4z;^0< zC#T%SwLy!;ZY%-N^#oi7Q?JZ{gkdk0L!tYBOx=3%|1yZixe*E0^_N4{rTc5Db-$`s z9Ok+&Y@Rpu47~wl_2#3W7LWeCmWHbCW7k2H^_VT*iitMChL_@pBjL?>lkrKo5)#dhaS_bjh3TB+_^og9cdf{t^8fk`XsZtp@ml#1QEtuZ$cxV*q21^a;5a<{;Z zWF+Z`T);~(c}>1^9LQq93ND-Wv{N1DuPCow@_WlS8T5^74h}%f0R6pNg~!i*RPf}+ zhg9E~5YiW<&FglMKV!|1BH(!YHV}Q>zb_ahSHE4^V;2PJBWTY?$s_lS6;VFwHOGK4 z^Gq}!o=2h_^xw5G7sH1G#(y?Lu$?ByP`Ghn=aZEx0xSID!{oU@>Lh6*@hh30&W+STK_QbrOImKAxp)LJ$j#K$pOZz&#BV0lepsz>{Io zltMr{mlnco3&91$3V*=Fc>5zlT%6w##H)G|p? zO9Z^B^9v@?}tYHbKvv`hn?7LhrG?_jE;s=DW9KFImw$OTi#2Mm`=jBHipJy_3n|D za8WEMwl#@Vo*5`v6p+-XovFEo&^ij-*4f%Q3s%^64`&Kh^v~m2do7)YTb?Jct@Z1f zh_7yQ`CW2JwH7+h{BnD^SX@Zxt~nvS3@`D|(>~#@2MaYgAM~2%>4RL24t)kWc@6H9 z<*!}+Yjf@=IX^FiP?__WXPHW6`cu*U_-m2zj;S#FAN$N>uOic{@_BReBHx|$ zy8doFc$_+7epgTR??xk1d@^TPxe)Y_duz0f*ay!tOpd7>9k_JiPYdnv4?yT^dm=QE zd-T|$4I0&nfZS0qq&?kti9waDm(MKZkbzfpMzG0z!m#w6tU>J+x2CbPlmfkLKjWwE zQDc4PGRffZk8i1V`nBMI&7(qa?(_H?k160h*`dm~2<1JS;(oW6b%S;5c zzgb!a-y*nyu%E71^I~R;NmbaQMR=+|-*t2) z?gQ_8-##TyBVzK}4Tu?oz3ILyFL~}}UMJDqx9ep70>Qljt$5`3pFg4d!EUm$q6MU| zn{iooC|`){l0y_(6OJmhciP0=?e}NB`dt9aXX7%~CFSo$+?;nY!X27^AaUS& ztS9*&V=$h?NU@T(MTi#~(6w}vv@U`Up}{8xz|D9xs#sm9(KrGOJwkGSv-_sm)DPJ1 z43NRkkp6(own!>29@Uw|P(wDLGxYVHA(ZzxluXc*Ybz-Su&)ZM`}OCg=Va$fGFDf* z+4wl*%7>-c9WR}y_iCf@!m5v4ynP~{dN%6=a`^kX{E8)2wwyjZo;)!-O|qaC&$awP;c9$knf8NyI^CR|Q# z@{OK?hzDT*wF46)VlgG;UDZ)iVM6jT8udR2OEcLiBM`{Xa5tsVDweN~^UMP}T$=1I zlOZfIY0@Vo(s+K2FqMR}99;DMoeEmr>_W30g;wlk+V`P z@wyjb3-XH#ss4r7i%K88tCRfn2AC(>fdl!x<@*%;Pm1voLux|I9vd(*B*&!Cdgadz zs}*cniRu>F@y5x_xus;^=8-3MB16~&#|a^vvq$XMeBolQzqM|j5AU1XW_P>v%?UOL zrY3g7?13dKRH*e*keqZ?`W>5e)%&!^>}LGPX}X$G^RiHu|5monu5X8(UJjv!Xj`Ab zd+5|iO(`b3PjI{)3@!BG>|6}4+}3=|HphWkvN4I`9b0FD@W|$w7`#}(TnfXi`B3Ev zMn{kBVJN!Elu`vNt5E{kSoIO^M!u7e)<&(nh4aK+?oH$w9Tfhxo}^<&36ydexew%K zG;Q@C5&xW}GNE-u?QWN&nvUfButNM9a0_G!6mlC_St@=!l+J*2||F)td&?ECP zwR4n?&@5bEc6)xxOK(2C+G~-(*rr~R{4L`aU>=1q;&JEdCX^mxQ8x!_h!AJ97ep>A zxdM~@{3q`A=xDN9hax*UH-wzk7N5Sj;0+tGp7b6vdUZzU0w%0ZiJ6{MFznwOoV{v# zE#u0K1)AwOnZV21mPOpf3B|(LmSYDWtrgQ%9Vw#4FoYjob=g%VZ?N&Y^kHhwWs~Z` zq&9)Dc{aXg7rJ&L7n<^u)Zn_y`)#tNw=)rRSJ8N4oWLz!@>YtQ^6ERxF_|_e*uk#b zmLY-H@j#NPEypRX64|1kNiDkFBL{CC%Qenu_gdbyIw-W#?NwgRy?yE4@`7tju^NL{ ziPw0YGu(0DLa!TFAhh1BPnE8~wmnvp#@#opz{c#J>*w6nF^01Fr(3OlLz71cOX-1)O!swSls8i9~pe6tH$|aCsSKL7f6ZwfE;x z<6|fc^|CGurdWSy!zEwiW?!ti0gYjZ9>%5|Pe(^oIK!^3$dLHj{w&sD^NbUr+BK0x z^$V8ZJ)-L?oqYAPfFZSe0qu%6tnC{FceZ?BM-)-Rj&-MZ?I4^g)wgmkbdf++XqaGb zi}&u`vf$Gia${nqAt}sjdArOf;!Z>uzw{$|Z-pqV`Hw?N5MteFxk{liJ;x zee*%MlJCvIWIh*`7^jT2kq&Mw9-y(nu+l!VNI-` zyZ8Om#Zjl{$0+NGk3~cKMJ=H;yU3E z)I@G%!?*3!aNj{q+~t;1q!i~gDU}_kEa3&wHd|{WPIp$&N$qQ*cER2dj#YfJ!4l02 zE!Tmq44BE^4Sdr6^URWS#< zq8mD5**$-qT=qCS@=yd}k9r%~k(&$a&E8;I{@(3grn_f9FZPVE6P59!Tl8Lk0yESM z_md0h*A8sI7s#pgf!EFC>hf1Q{s6E(W`9&LJwJU_Zh~dSS7*siizrG&;O9#8?kIU# zD}G$5Lt^+qRxQH(tE@c+sXYpTc6$M09a>yiEIHon>s$CRcc;M(T1Jq1k4Ekb-IL;K zB155Nj_Z3W#BYuB*F?jDd*(F9Y>z>mR%{V^^hUpjFBMPBh}{`t2{qlZK3UCXa-cA@Lw4q3>mf|@>j2>)bCUmY_AEtCAsEuuGU^ETw)SLDpLXTx`NZUR zO6L1>)vUC5Dln;E%ZXwX``*(r5ZVJ}TJ%AwHyzC{PQ=`WIxKgX|5$%{Bqr6WM~LR)1?bQ$CgV+SCHF0=sJq?`5Q?iZ72C^&ay zy?O8b$mZfxmn0M(2j1^?(SsiAy&!Vnde2AtoMMe)B~Fr};-m0ovouwos%W0^2ZBgz zRaE|rP7kSU!XH&M_nCC=04vB=9B@pah}x9(Rbz+en(4jzjm=3f2V(TI9XCt8>+gUmk` z8|Jx-9Gjav7C#y7f4I;S;$LL5iwD^T@mJUF>iQu58SFk%Y+^!N$%439+ShMETs!T* z7eioWourmOL!b(7`iTsI=2|PFRr6;FtbSMmw|rx)(-K(CpCz#RVF}c13Dn<fu5SQypKW z2}*rQvVj~G;wYGB_kry0+Ctn9Sa9Dk)$jXG7>Qs60TQ$Oq6jse5D@F>>Fhq7I=x|# zWsq1f#)5l;bQ3LsuC+f)HRB~(8S(P!h)0KEUp!*2aKb7@hfEhBsCcOh7QO}Is*s{S zx{v0npn42L6zaZQd9Q-FcZ4o@`eue9cM_oP(8JoMNSDUDB>4fdlNkvZx-A*)-o;#o zB+BTDp|&-Q_&~Bw7RkE<)d!3O)T-_p)zYp}mw%ZQjif4J{O8}Tg3*lR=kQW}+?OH} z4|WYnzlIWIjgAxgE*pggGs1xoQQvSpJK!wjhUmu6vCv2_L*vnrPjt9?0+5dhreK_j zNB%G$HGsz=!>TGQU_^T;r($$n7De0(4G5xb^XQRt&nOj2b%klEU{;NbqNM(UaSOi@ zUKlYidPYUci!U*e*moS8MLd*{B-GYr#tuC2AZof!&rA0p9JWI{aC{}5PHe^eR@RGl z2o|i(Z84BYxX#~)j+9jUa&As!IH8=#Kuv*nj7S)+dEi0;(db^`V&A;_10B8me^Mz=~QgjYx7R~O?~FvlGubRa9> zN`&fNz@fta1CP~Nsb22a>!w+U(Bd}lOR_i?wu*Lkg?-OE>Nl>6;6C>tz*>FBTvt3^ zO1f|vB$CMm^yN~=c%@rl)l?k__=0yFwFk+^4OmwHV2qdXq@ax8UsyH&z!#wd9Pw<7 z?r8u?X+G=m_{Z{z%WgO1(V zsesD^XUkbsD&^Y#etE~RN1&CJs*U~Fv@f6PcDWs$#Lt3CuwwwB$qiBewx1{eC~>(J ze$(q5DYHQQX-7z<-f-k9Hb9N@*g#U*`9Lm+p+4wvc_csY#0r%G_uPPm>eA@Sy;66D zEdqI>eBpuNN8T&LC%C(89y-H;k(@m*f=wN9Ag^wB7|L0~X_S|pJM8dIA;Ho9_V5Lk z%&|`ci3!jsJ5Y<5d~zYFCxnCVg$L~OPCttLgJLnX`&^<`5I*^sq65gmM!mqb?K=Lcl^472=tBMp;kPu-^b`VAZkL*6Y z?8@I>%QFLmPkf;OJ&z6VLUoCi8eHJ7 zo0axWaN(wQC9^SOw8ms;y=wPMtxq=*3&0o)N5L$q2>*llG)x(&)TrqPCkpBDFJc^5 zL$sZVE{G_vTDHiEt(&mMuXPEm{lZ(A{{oUyM*9~erPQkhB$f2NSaFhBD|wX&^Lwu< zp44>6?a@=#{FNq@W%waXTjfLMbK04Pn)kWWnTjX@23d=xuX=KI3Y?bwP{*=EaU8T@ab?%L`xIsnd55aDgNwQ1-Cx z*t&pypYdpK5LAa_LOV#HelX@v6Jaq+il8MwzO144JeOBRgOw_<@(1osm0wLn$G9Ns z63-`=pheHmtMHn*GH?}M8}Sp=0V$=YUy z3OuFBcN4*&x@Onru6Wc(B-%*C4y4XuGuN0{)X5;#Pi0eCiXbp_OL3pS6sCSq%n}1O zTOQz5F<>Prz{t+4N>=ShYJP*oQL(xZ_xfz->jq-*!dNu9lX3&omjmYs_IcO1I=enO z`MqV>eQw`l&JrnbTrv?bbLj$yJ53}|D+q5ScsRyITtyt?A^}s3Yx>x45ZXCLQlw?z z35=vh0)>*EXvf)cU2RmzLw)nodrdJ<=mZBx3;}Dl{5?*{KpCz`(`sYxDAJ_5VwmYh zUN3QI+bc{WBMFd{QhGd?5?B69Nhm;>aZZ#HXV{Z77(#gUI9tkfjW#!iknO`D(T5vp zrN&g=N%=6OISs=kHES~EYQRQDz#*vrISJ~M2zCu$grU=RM+Vs8o*i+a3uZC-ahuyr zLXIUd1{nqs4A?X(2$H{1lW&-@Z;({!r<?td$c=0zo{i)5NbWr?hqNOkFN?lAINoV{xrTxG9Gf>=b`J2*bX=DTLcD^X}J!@sb8jsFvk{VUfA+s4xXO^AN9Ff1sVh70pa9avPE>Vd-3m zr1cFZ7a~bAK$@}k*JH+7J{h9AMk7~!v)%E|;${$O3iM0Xlw_<-dyvx;oea64j*`ML zuA?;G-teyFM7$FZy5M)J_SlR1ONj|{ZvCZ%l;(by(9GmbFlAppJ)P*LFuqKl5ze?# z7L4=qK8eo;=?YvL*6iJNs1|(b%Sj!8?TJGBX(_E&@9cIw!gKQcR2cd)M{9qxz4sPP zHEo444&BI#*4Uql)<`-xK=gtfOP<6r;ZDj?(P7hdoltm~_(W3f%CCjvf;M1Bfq2w6 zwd2B#zNux`GFdCAZ{k7heF<2H+1jS}Tj5uIYiTwbrZ!+-&%fQC{NA*RSJ#)vC#Oy8 zuRs6Q)CIi91yq<-nI9|+c^D3$)bK!bxT|tKxcA@$!h=ucBjG5F_#l)Re&>NI@LDdE zAObIdbT?zbydiTBj3yL~2zQMyTm(Ib?HVUjqg+d*SYY>!3)U6^1OM=@aoO!Uwn|hO ze+@3zV=4Q&!iQh(8h^+GH8a*#ASEmnw_!AUlIhBk%u>zp3sdtgW?kjmO&KjugyG>X z_Sdg+-Lq1j?5ONZ-WxQyf33ZQp!MgG3Uf z2POqfAQF9zDKwIa&4RY@SfnkqG3~vqtx**!Y>l>Ux&U?M1CkTNc(N2;X<#t*rN z0q|Hc45W%W=C-@WL%}GQb`4JyBn#b@EYz^-jq+cA{?pnoRSQ!Pidp=0ySbMZI8Q$K zDIOf~)3!EfH$q>ObQr>QAM)2QuBKGUdU*vxj5r^>PAKVdUVWlwF6&5){S z;MokV+8jz|C4ssUVKhLgh$L{w4!=h!HY8|Psgzlmd#%8}Bxa&83P#$1_SBv62v^2C zBu-zrab}4wfS)XVljEJjF9*7SU2vzvQC59w^-<%SstDjpatU{hro2FnBj(<7dD$4X zN&{tmq{Ru6wIu*gaVwcBIR6Dxn+z;yi>SXQMi+Z>SKT>0r=!8c)#;?cx)3;@9T8gL z8n=!b&0MsZ{Q$p)#+AI%NRL*@%~sTCO(vRcP7Z~D}@8-4573Ndv=-bmGT%pFAn zB>8mD)mGs>WYBn87c|s`NP=|fGb!;8F&Coh)VeA>+hrq+YDfa6>=q7$w;&+WN-<+3 z9TKFL2nQ?7jzla?JJNR%KNNI9s#mm43T)mLW%D+rIR4k4|1>SLF+I^@mbrkI$G1JJ z_t;#Z3=W#i1*E$JZ!I8!!zsBWP=0D4P-*sY7`rMx_K;%UZN+b}!CaCI5P8QLCP$*YvILO(~|b=OuVI$7<`QH(7!K&xSn0(D~}=C0wMS;RlVmh*W7J&|q!p|NBzQQrj0DQ@ z_H=>LnAI(Y(cUVmBn>D=NhGc$GX3MN>|1PN(Ka*aFQ;!6bwQFxTHe+}UEuhW&jSZE z5R7g_tFs}7frrv}hzHwf38`QW91nWxoQ*m`EU`oKhgmX}3#?X`Vo1GKm>Qy(C4|r_ zBa)+K$71}Zi?BrZ4la+FmMBs9@h%fUI@;njt|W=+^NjyGbRB&OLQ>MTv;k9;kL;aI z%fsl8LMVTNfJbB3X&#NP34W@h96?(1K1eHh`6O@UjyB5t!+TK-ZG+H$lOuJ+Kx&w3 zmWG7>0B-weWL(MLhP#HjYa&xkXmxyZoH2RCTvU9mN$PL(E0SB%pdphVNU*+1N|RTU zKsm{1Add^bX8#Z(lRMp?cl`|xy(C2ns;0SD&1NJv) zld7^Q)Gq_x5l;qpIcT-2^P0z^VZdBNSwzEwxO&?c4r<^6vnW)dyBSJEN5-Yky}eUM zvX^TPWhRV9Nd-$bB;(t!qSzj-Ui?~h#<)Z-4-7S~zTncHsExI-CG{SeZZmURHU&tHVecZL9mrW?QzPBwV>{7N*81W^rIzi$o@=cLcO;;V z!>(~rxGl5_yHMtcd)#aDpto!MS~yWoV^6-maC`^;0--#})xCD)A?`STyO$3X&c^O! zsV9JNH6d!j55Sr1@+WLjDpJgXa^GUE84@&9j4uh2ly98@u8buKUZ1lEjH!>dX&e{P zMgkU!z}HEUC>~3knd62SGbRa|)QCD#!9;lvNB~ihW3-Zzm0C_i$4HbUk)^3)jAr`Y(yUwO!FIoF^vDX#y5tnty9*N*yJaBtg%0+gcxiKgIA-M^do{e8c zUrGUHW52v>+@u}jB_oHRuq)w&QlH#A5^nU50rNcQF&{H`FtLQgpbIt>{$z6~z_06U zq9Si-^(NnC5ocVy*&0gPXanc65vt-It+tcCinaPSOguRqzQR3h6&a=IfJ$C7eZ?1nSC({xSCoi4IYu0qrLTPWrd||~O5))It(9)%wEsIY(kk_Fm%hR$ra)O&aFJl7l3h3RKStKte=Ai8uUK&39|j>RVvz*# zxNxDh6d}q-NL$M+K;t&|<}8fEv+I+S-&^y?JV*ASrd8tW1FN`i>xq9kBe$wVb=k$`;_ z9ZA~SVih3iMjM^zYiFv_&%PQnAc0i8Ko_ut<>&&}ohvd#huVTchWdhB9M6bD<6%Vb zmH2^>GU#9c?_J5hhOEcK1EVDd{!sZ=;33KN!?;9a7sT=OmuK(>%iMI&GSyb}Z8F@gg};v1ZI z>ah(^V$iz*yWZpH9n-QZae}yfUEQxF4R!q9R|fDR;mgmHeI|&%h4nhL;qwhprhr6hIj0907f^byb zArd@n?HUrWrX4vCPK0p^li=Bcce@U#RuRVjLV}6%#giZVB;k6+6G?)JI*}wutL5ep_1jpUMHK;~ z0Q_X3*e`88k%b>gz>Wl}<0%Q&HA8x-NYGAQhPqa0)}(8UWtjx(Du9xex}c#lrb&>j zI)sf^$`~bd%N<-*>K4k}JFV(eO6r{+RflG1!0I|QXvjjHBv>nHJ2a3hs5>-(Qs1fS zgNBN9q8ayA2wx!q#JVhL&~Qds5~z?frRrz{=y^P{VHZ+JGs2$-x;HsU{uCc*D zc&N&GyKI z>W(~&h78hHbOFTPpKm2)eg)P*f`{yiM1lp?r*y&6SD3F-(go>1|85;XB#&eRAcz?} zGFl=WjNdoyh{Y8z8;R4=QXWUEqUvK=6$?@Ovay}MqZ1*#>YGV@&a5FcHql20?-0FH z$2g5mqkD=5>rC#zfCXV+-}IVLk`x1t7zx!t75k&jt@Zu#_(bDUYJ(I;PPbe1Kz5Ta zwC$c;O?^`Yg$AXx>2oR&sS;xXCxS}jQnf+Ets~u|I6LHvY}~k%$&6XKn8k~?+`{-J zD+bf*vaDEN!*8>MxmigiyEIm9MP*}>CY85--)4CqLggx$p!DrF+AOQyX>-Na7w4iC zFz+6-x3t!aQ0Y|{A(@Rj$^=d=gQja<0~YnU{0CQVO<$QV(&Sd@p-q|^($7zt9M;cI znpn$a0rxtnl_bsXDnPoaX%-K2Zl@30#4y>#>+T0R=N?ys5dv!$)aQO)rEzfsYbqTK z<~_kBUU?c8?3g`p7Z*XM{2rO3uE5MQP`oKLaSFX={E+q(&Di}Aa(hw5Xmw+Fi>zO( z8$YwrKnc;h@jLnb>Nd~#p{z)nal^Ko)Qn!&aZxo!G@~a+@B;x298gYB?W>q;?2u(- zv|ldeVlBt`g`yihN_jcID9#^DzQ1QZKG7uE=nb7t+EmtM5$_lsVGmWALe)0q(|72E zE??9OrC$z=3-%bN&0Ro?^nnySjc@8f=F0EdB4Ck#GRJ?kt}ph!Hup@kRI6FW)va-U zzH9755B1&IDfLG_52UDiKaqN8m3C%ln6KaVI~etR35<3PW~+WW9pi@k5g)X9U|1FCvxjMK)YxwC z;4;1d(^BdaOgY9USuVL<4odMQ5LQ=*=8DorQ(@ld4sxu|l)x8k#x@NI{8dlUMvc(^L!44yLxwXVks?h0r_a4U6DWX0-wkedG&}sz z(Fg2*`a^xdTG*spjUH0!%!I~uJTL5h)tFCgl}fl2SemlpX#?d9{6HX!(9j*E+MprB z;xw9(Xt1Eb`q0ICwrMbN<(~-0ZNZSUGRaq=4DAOT~b!waZG~T#33CY=$;p(pPNVIjV-6#INb1fQN$7 z*pKUZS$jzfA=RPREH?^MKPkpi-2Vpv0RR8oU0HG)Ns_%v7{9t~KoAQ75VVoZK#1BY zaR^qa>ob@c0HT=4fFd)=g1+hwT|aY#{u%2tbl;>-GVYN8MNl9_hf5Atb(@ul++M7{ zg)fIwbzR>-oNBLM#ZPwH%}%ZUyjR-^S99}gj#oSL|H0KmpV|2A$xf}dU+)|>k8dtL zGecb@Io|0tJKcU`=jnf6A5Kqw_-ByM5(AH3>Ey}Ik&9>N@adgByq8UNWYZDcyf8!O z&6AyG8^4;^6#j1P?=OCw6$xC>MefQMZ5rbpGX&69s~cKkM`QTaY=xJ`Ivv56pX}_{ zYWT|DO?$$B@~6)}xygmTtl*tI-2Z&nmrs6fU1<7ld;X#M?OgpjNy0Llj`lzcyA*qH215G&7l<9J9DjmcK))WUb}IsKG?*}DyrFS zs%drU4fyXAUs*}_>)WOK$aW;?{tNAaU}cnDU9WRy=Zr|OcxW`r&%-*=(WOa0StHlI z=hbuCU^aN!A{6j8IFVYiuo8V~#MsXK75k76*z}$jAAc-tVlTWcCMt4iWTtth;OSK7h1ZF? z*17R2n`OC~WQVFZF(6{;RQ2auPz_vUO%Ae1FTT?7et0|F&2m3e19%>;rLL-g&VsO_ z8jZ#uzx|`J->5FNXm6d|(%7op(g-q$gxr$oBCDtqR3p`y%d-Fc6aO66P4K%=GVk3 z%e74tlZgrIu%HZufb%p1n?N@+P)SaV&I)fPCe5Y5Nraq*WQIc%<@QQUzr+<5){+!p z!idO%WqsxVHINp>(CA9H>x~=oxUCKK>IZ z9R8(FfY<^r0?K$*RjqcV%5>bxBr(k<{s%RGkGr7wX^D5xp6dcCI_~VfeCmm4&K7DD%C$Z z!3D_4J@YAOKAzJuDY#d!#Ei!ubT)>M<)A%CK?dr1zq+UfvtUsHt#hs+?$_HlTqLme z&OUJVgLZZ4`+MscJMzWHq9vln`rWid zpN*VSn5&=lCMlKsb$Zg>cHFf{KP4R?F*@u#H(-?p~vy@l``{kGi-U-fLTb3~X^kB88W_bl1j)WLahbZbMq$mK>Zvy*b$u0$ly9P1Qta z*>3K2nhlK)$Dk;tDl`#gm38ce=kxPs41DEMSJcndH*-&t6K#M}s9tpd7s4TmI`u9x zCWb-ClpCsiY*Z&7t5@hSk_Ii7v_4rrf3xKHi|#ydMpNZ=5p8rv7S`akxnkn zM291%dZ&d;r_-%2y|%YbD92c~Eehq2_Rxv9%85cb3yda|^VXfwJ{Baq$JN(z<46sp z<4FXYO02x4vbn^{!kr&rtiI{3{^Pgb&&S43fLf$_LW+T7wF`to=Vw8J^d>x=mZx&J zJjGwT0_4R6WynEkT?~GF4fH)jn%l;6{zk1{U4qzKM{|+7J{CjB_jCvMIv-!VF)8$x zdDxGKfTE}UBsqu1>FAr`4nkbUFz5@y~v8g8c@AI&O zh7SEDnbLTWne$VmqkFMg{3(Ww)I7G?jU(_S5Vzb$*`a#p{IyAviaOC5nh4$`#kKLO z7wH(?yVPlMk=P6vQHGHy9a3mAx*YA$WS1EO7qWsja0K%JN1D*3{W@tR} zE_f=RP2qKOWzrqx4=ps-zluAJ5Xp6YICL(5(DUI);Qr_1vU5wXgmVe#;b`y)p1Xds zQ*Si(Ls0b?{%#%Y2R?!ioM`M%?xt|PSqqQMnNOz?eqDeDUk+#av*(0Tnq0|N}`ydFfSF^ER5($PfwiaJeZIxA9lg;u$r=4QIVRF7=|8&7As zw=NGp{GEzA&T>1MdzOHlg~YO$s4^S~uB2$a+ekWO5t3NvnnE)9ZUlGiqU-rDKKzY) zyqHC)5uPs=DL9&@%o9WlJBr=Jq$VPng?Pg`N_A$%;Hbe0JfA{5!y+DH$;rOFW%;oH z+83#i767A;7mnnw{(h)VwYMOSyg%+gQ}2o>F~Av*Q{zW7)f)lFodqql*+9$ReuHux z-`gr@st5DQGV9rIERLy`nafML!$uwA0hjA9zd$Bc5^QPv-z1UG|hiI#j zOH3sg6MdyYb+fsV@@UMT_R_Qs^`o3PmWB5il!>v_lnKUPo+cXfX_~_{ z3vh0A&8pviFz@(f?yX~&M_Xl=fiZrmsIB6b^)7{x@es3pK$x5U zR_CU%v6B5&wfdz=Mkd3oDKA4n;*odP@Z-Gt5`Mh1BX3g+3U(TMb6u*~uU(4HH|HS- zOTF8vRa9RmQBekN1npX9nY!`Xv8fsvw@F4S-pWDmoGhco2(b`tdgYQUngYQ?)E`%0 z4`*;*aP06`6kFz+nI|8@0) zTxjomlU$+;p%mURk$e4FBEWC-Y%xG$##EL-FB$+o`0=!VcHV6eGsQ7uvWNM#_7vLA z!h^>y^+*hkmYR+Q6)nzh;Da>33RZATmcwS(UM#q5;u4Z5$Bq1v4>tngacX>SNme!% zBFWu>H+zdD=Td+poze0K}quG0)`|Zr;vV7PN|kQmH5_%^Y;`45qu^sV;%-tx+nDwp$r> zb7LOy4CXBe7jhEz;4dj(pWEpaJ|?KAh(R@AzsaqRtt20sm|QNu5)hd@RFAWANu)^r z_dFvTNv7thn8oD6h$#-<;`uTveV>ocq_EvkeR$bBDZ{?{y_3_!h5c-ijp^LM3RcJI zmGv&gf>vc*eGA?H8m-c<);z#p%`PFM$d1)fBGJsf&N zN^w(Pd~2gQ4Taq(XskkuZ}lfyY#6U|M}l2@>5>FCh9Drd2m%YO-aQbkNlQFGU}2Tf z805tLtc5w%q&NZ|7_CYG3o0`@ROb`}B%YYFu!z+pSXhyRMNfC%uiGS?@EvWp>}&l-`1s~w32$L=L5|J;^G`7g)d|d&7#Qe}q#zm= z80AEUX<&~@C2M(BH`4hC3+mSSh!mvYG0fO#N^ApjB=KvxSgKRG;|Xc|{lZ07jEZ0- zS}Ckz8iU{_c482l6y$|6P2ZKxB9tCx3bV5;JM1iK^x<>I$ia;9*obGC$0hLj(n+@7 z3E2|rop!Cdgt)hknQyo3E+t*UiA@sYot*0YTry23)wat5qv@8ccySZ5fROY`UW#xr z+M9u1A~uY2-AeQ&Ehz)5U%fI(j8x}B2QI8!hILclazeQKYzk z#_-+q#V_kw1$MsNsJ(T}e9NVFHx5<&`l$d2N3;yMtc7q)teL|CJJr*v7+AkLsM1cX zdFBn5J9kM6Rbt`2##mJ;us0@6O-$k=ESmeKdiK{$zi;C>A>~2i$pF>&qS^Q5_}2i0 zZIk9!&fgTc!MtV-sHZxaWhP`gjXmgUDgv&cGCi3l=m*w^mU&QP-(Mzr>?T_2kA)o? zf2e*0nuI=Mi5r#0=nH_HsrOTp?moA`f6ff1c~)KIhpXGs-0xJ>euI+Q_-MOz`@Um< z=sP{4MTfGe5-6@DkAD`}sdvAaON!x;msoJBVN!}L4-s918D^2q#Io_lq(em3xQ>jw zwpnJNU<$qI%v6H)CZHJt=*&*HMq9+!?+wCDxM{Xfk|!! zGxx5%?=H=UnAes?RwJrOk%Kyag;#I%gGta)q!*Gd27lJvC5cI|jlZm@H@N%fHAm;W zCFF4Ou0Xbc9!?+<-L|KOZ@4Hbd?=Z5sE!;8PV4KD;JH4rp` z`ri1vVG(=lgaBS)GJf82t@!WyOR&Ph1er z_0kQ86HQ7R!vmC@x0f!7VPVPvz962Z@z7p-L9n-aNXst79ZAWBa-#FxjvOt5OkG;0ZrNz>q zugkItT~Ov#>xtW0Kzh+E%hK*7@RY4+DCWimq_|S%K;cR``AUxo~^dzCh6}8CZhkqr-1&lyG zD~I)S;ne|*n#okRS@~R7`vz*@B5Uv+OnK4j{PEjA4k&5IkG5N3v#cu0Nju&NV$oNR z2u`)X92Y*zE9x1_rC2(%RZ%}?XkYr@OpOW~8%#EG`tt1f_<#Bs_I@Bjf>|&H5Oj~?q;P;i;-Kc0VLw%vzMOjcb#lU#65RT3Axqq9O7-F()*07>~ zf)v(gHwXeE&&|Dbw~(5_4`?~wJu{grd<4Yv6|C6|So)k%EL=Uxx{r+x(1ZOZ>1g%O zQvdOu!Tr+Wc|#xxQzYP=8mRT-YEr1WO!xr9JL92ES{#tjHnhN4O8YyU2nLl9ZBYW%k?VqNA zBqGYhU??GX>)xfS6_$wydV3-b{HkLLu2Rw}8^k*cTgiei^G zHz~Nk{e*P`NwMNAyv7g2$^k62h0#(9?>^h;h0de#?!rP^Q7$#RA%heSy-vy+%E3e$ z%-wUN;_d2?xHR&*NWLUyn@k@BfqPx?PkdlL90OQ>^i&C0F|v ztX~H1o-cms=6-yB+B<)_Y#ZEL$40hWN^XT|snuGL{$(ygJR#(r*KKq}$crlv0-e-8 zDI+aE7INi;1alpnn0)MFQvN*FU|u+PDb+Vp_931dz*tM=>dBw>8gd=0*JXNj&lm67 zK<-*%_tsGB{&s8h&~pzVF~^3KO4NSsLHgV}bddX9@!cvJA62FUm?p^Yj^n*?d?{;Jf)aDmNKAZpHU4 z@=uP88_!~2GN51@_^i?2YY14q)JyZgpqNgRnL5=|<5i;>?CgCQnp&M=3g~aAI0h*I zV0pPcv?A0OE9;G2Ih?EKb~?pCPJ9g~??yvYL3L7%TD?|Lr!RYhb2YcTsZdLE*{#k_ z7F8MvVy#?hgw`-za#?%pp?l%8 z$P>n3AtWf|-U?_$;CHImY*lcNkaos)leNf$^cgrHuRE6M9 zAl3(Av!Frz_3Gvm08GLgtbA?$3Wo ztMi$=utCa}8%bKwAM?z-L()BY?gvspskxSd%CFsSbWc%UxT{mKRB{{SL1*ES5{9#o zLLPJ>kIx)fQw)5>({fz?S*Y3V@(v-8EacUB4vLcw6`qoLJ!P!uR8=iJI&be+m%g>P zj+t&bKlE*7;Cph`ki1WfZoa9~3Mq3r0?E0Q1$KTrYnhOzGLdqzLVHbOqTIV=mKzNJ ztS|4R?>n%tBXXkp#DcugnWao2t4gjQ$sC!~c)4L*uyIoKAq#O{3P=jh4b|y*mIWik z4GRifr!y}nSe7tuw6SntqeCc9(BE#x<)xf08`z>+ot5dAuMdBT7EQQt`FJ%;5=~n+ zPe>*Oc2r~+Qn|%2AJ%iZuDvxKN-Q!N7IU@8Pz|4xPtfphhmWx!J`W<5(REf1vk`jY}UKG-v$r+wZW^VLT{wg_k&g z=pDsFod=fX&PHSFCMNfi6&P%`7-BI@QeAas(TBB$`cg8pbx ze-wi>a*MI=vWa;AdQpByKiFHxrzA^PJS1>Mt~7CrR0fgdu>a`F_%^#uOdqmezjMO0 zcByPP!8zBR{$cXXLq~7}^SMA;7^;z7ph+8rGYhnf8uTpCr00ndG`2jnRWFE#00K=C zvl2acF%{`0tzNJ|qXxt}4gyUAjgSIH=zFy00960?0wr(~ zJM(QMo+9|Rk^GXW@Xm(!bLWJ?V>|-<2B`XcRtN4L$vZc;asIuJk+bNOUz$ zt+o$eLO)^<^PlMOmPaDky%M1s2CfLTA29xIzd+K}UEltHB z5TOVj#JfW_tI6o_%zqGJB=2}6m5+k0QedydKm`#7u0ny^+xz>k|EfB*%8s=jR-6(B ztDGHcPLs8%77qu7iC-_=O3kforMBp*KzF#FZY901s^!Uj#fOoay{&){dDqjQswD?L z^|*hh8-~xN_$R-+DG6;A^=59wOK;fkivY7w(jA>?oqQ}@6s&<=2D6Wr=r9s} z*06rMXx&^kZ{GjI7N9=FEkVtGx334+0|*2a)BN{P4;td<8{prsD7q8M?TNm0xtBA_ z0s*@RDL-1Ei+jqy%NtEOqo?bs$DEM_ht)yOX!=~ZF64})Uxf11T@H_f>!EJr8AB97 zxm%Sef`YyIA)DReq;9@YlVp7NS}?9tFb+e7PhG)SysM?=GDcErKVqT10QvAP`%O)Ga*duS-_js}%Yy`y0w^*b6^ z76p%nh|}H^7KuC3lX6@5^&YC&wL1@WK`L^K7 zg%U;uBVi$RD-u>FrHO=y)`m!EQ)&*I(jii9p=$2K>iav)sgzLK!tpjQS@%j=6a;gF zWKBVEtSSg3v|D-SiD!FwH-&SoNK3*)>IWpOZ2AES60IMQ(476o><4=m7f=r+RgIwH;8QB}ljtoQP4S@$)!<6=*jz2Ac(t=ym^yHnNf`!9& z=mv6NnA{lTVR?4zyN|%rS@;aboRIN|)mWrhy~O_azmJ(d<5;Osf^QuChev(3S#l0o zQ?o=ZLHX>17BYP9G1X<)t`xp2cGyFKmB9)*C@`n7uf>eAQ!h-kR9qxpoUB>Ac$w(b z;Am!gQebfEb47xe74v8Ms662p1igvhm{?zP-iBegR7fUaw)(<05vz3t0>4N-lYRz6 zmqi-OC8wNg0xx@k5P!INCNYZ@$0B*RdW)*Z5HDSi_!CkFRh5~PJw@BkTN8LKw zCa;2Wo-#gf>!xlBV>xFr2W??`vCik;z?R>#<7ie}!J+{kAI>Y@^F^OaVaaf~I$fa} zdO0KNz0?A46!4spb@RJcXYw|I*1TL-CFl$HbGF1`HFf0g_c@!n+roQWF1)LfR4$e3 zIV0)J_eHRaXo27}{$}@_8iMsd9P~tB$-Q_*%4WCds{X(ePv&l7u2GDciwhpHs3+K+ z5>Zb^VmCD>F>|}$)eRqvn(y}i|k-~=vVwkhMi8iK@rGc^R@8`trq+e1s;*|tJ-_$i7M2CP8= z!yP^(sB`g*y96VlofOVd{E!6Z?AK9VPb4th^#uv4uRPQhHwo-PAI5!@Pb~=!bx}e> z5}t6QKzYxR2r=#uB+z5ao<~>WK?z`b6R{A?K>6fTwKJ^ zAzF5O4BeQVR*RCK64VwC$%;3mfx|9574qTQ;p1)f53qI(1T;D@qk6A)crQVJnx!;pMRH=@ZZN z(ArAUlDQqIIW1DMM4f;d@g@wx*KSXBrSLiyPxW7I%Bj@`25frLQDDd1bBCVUCbs&A zk{L;z)6x;#6xr$+4+O`^r=-4h1J$?HvA*t?7AO0{kF532o@U_-h^In@6O($zJD~~& zu;Z+8-V37+Y~WCtvi=qq@fXMq@doZ%^#NQjSv!AGHc$(RRjQ>pxn>D5v0%Z>iTyM~ z$^e8wd%uxY?Wfm0iCGo2e53#B3I7k>oIS**=LuYD5fa?{LJJq|MnXH0)}U@wfbtq3 zb_{vDPDA@BP&|YNcD?&Ai(NbQ^kIUE4kV>8J{NzY{9tKl=v6{OL&oWnus*78go`O5 z!Cgn<0k;K6aOF}7r3uo|E(6h#ZUhawywjJ%K6?>Wnf_m>q!+Sb2yfiJZ=SO+X9o=Y z8&vG0Xgu*C3jsLdRZY-fy;RfUL>&`!Z~}ruc5xzkVp^XbrKM6rDBS2Wm;nS2dxCdF za3#9BtG)~JN%TC>Ki5mbe>Wakl$bKQN<}NZZ|p$x-|xhooA`;bX6PQ?T|=g%UY{5h79>Tz<0xX*eZ z;6qH{&+qojW-{)Ek@+}+x)}CvG{yQ+81Xj>iNF8)H!`6FsgD7-nQ=krlU9$a#3eu`buf&?0F}3w)Wg)7-&*%j zev8ChD|MU{N9fm_CQ0`~+bP7ez@KohoN~)7F%nwN0T)62r-B%S?Uqm}kIE6PoHh#v z2`GtWJtr<`lqqf2_2AhBr!aOQ-JbGzxWg`kp$PTgUwNR934h19ptO8nhP%J&_IKC^ zAkOb@_c)a^+KTVf(&$13cPJ~!Qn$9BGk zG4NGN4p{gqrHWISXt=mYn%Yj0f<%6b@B5b4c1(;rtBFVv*P_v*bpN#Gl60ck@j~u5U%`2 z1-fSV)7jY>roe#(SJ~+kpty*EZ6|N`0$--YCbGudR(g`YV5Z1Ih89#3*!4%{zM{tj z?pX7jU6m@7*lmFxx5tA!OHR0}($tY!n2~K00D&=b6MX$vB`wK&lP{ud`E0LBPm&QR zUqs<#NDBmwawQ=eSwE+JMOKEp9t%eT>O#l@J(UtF{LBJH+s=yd`YI=91B7zswm?t4 z{P$n~)u>HURa_+3t~+5n;hJl;To}nU*D~+z*@Ju2Q|A5(0)*KKIMJAkte4^+%oOE- zJFM~!8w-_!q;#4J`5-$(?lBpvNDTxNe+;E3+X1-FxypxN?kHrsZ#1bF((1vz1y*lEw>=Q8`#DEu^t1Af%r_hn0G8G&njwG($ z7zs>oAXN4~5?HpFb`m7YK0-oz5jzoxD<;pIgBVM<2sn~6`r&~QqKZOdh71C;bgW|gL_rNjM|wmlD?e%{nx*ne$FPaKM2$VsvedF zsyZTer?ut;uqt7;Tm@F8C$g1_edYB8H!lfK|1ouo=+XNw%G)5#ZV^nwvl@l`ND)|p zp|Z)NjC!mG9BM3`=K*W}G1U5q8%uXu=nJFZ*@$x0M3Rf0DZ$2o$XwmpZtafjGF%#! zQa8z4mKz%IvKlR73z?hb&6G8NKMbsvh(AYWL#5U<-^W#vrA5?QLmK+B`-~GUX@FR% z(PpJ|5>%WI)EXRKC7{K$wowIBNnJB6&KlYnE47BXiXo;}PuO=U=HK;l1A-yyRYWjE zYrFM2$V_~{HnYkqba|4A8^5+N{TW^);#=!&1BpT%B_b4 zb`Ffr!yVDIkkEnFceqvotkp5Vm4zq9yMi4|Jh|R5v>3O5@h5owtD8h(c7)&jKeB^Bv@JPXB@0E0Wo+e|5 z-SV)fe;Gm4(I+=jZ4t0Cc<^1Q2hoR5&JKe^s4&sZ;vxZMyT!XU7r2#O^q{3wJ}&HJ zVVE>f!wbJ~|0t09Ob3Oo%MhJ^>1^4voRMt^9%9BA>5L^ z$PklC=lkbQ0L>+OWoh52lwis&*Ad6{c57ix#ssZYGilZ18W~bZvk$cV2N@{e#Kzh) zgj@zH5@s1$gKXXj-^Kau5RI(Jvx?gJj zc|1!ZTpFZtC^CWYVtmW8@Hvb`A5P=Xx&fxyKZMhV!$A`9ZhrD00=Q0O)j~;&=ur>k zK(O-#carbC$l9%^fimULuS8-O9GAXZu1dgOo}b7E2`%ri29!V75Ar#vKfXdwWOswO;Xb!j6!xU`bq|&(Qur`_|;j>fvd9`O4Xs2b0afF(6lzA z>fqQQ$rtsb!lhWCffcTBW)TY5wepaa(kN&ju!S&5lEnZ0k7u)U$l_%rj*IhVqCg!5 zywe^AIOUfn03!XuC}7yU7_^8LA5u94YJl_Hr$BaOw~KWKB>|#%IR$CcQn!C^Z z$s8hHdk$#D*7J13YM8Uw(LlNPpsZsQ2@7PoJj_}6Zx{_bm{=SOBq1-KEo7(sG~ikk zL#=TOG54(z~LdwzUtlrO?iIgc&SQ$gK2Y|9S? z^x;{JYH==(MHEX3^*Bj`7NU)3Z^=O< zR&F)lwv@1{9)HX4e62gN+q7ycZXtY8e{kHAVva9B^L_`#*g-!&HN(Es#;5 zzAeN^G0oTl*?aB;`j7@6Condn^98>VTL~tG6V3fRPM}~54sJ9&@nm(@OfZHuGsa7* zNdzM8`pa4z#(3gPTbL$4r!6pBCB~z}T2djbT#X%4s`VPk;nfDlA?27Ph$l}>>(f14 zDqe@ejV^;3K=809ct-?@D&m4rI~E*BO>c14X_QS`A5FpC^`H8^$DiLh z<#H9uW*qdu=Vh;IM0I%KoC98@2KxI-$-I(S#2RJusjZ?&_4QLH{u~Sc^}Vm143Mk5ki}ym;-=$ij(Z%>Ncwl~%xt$zcLN_&Q>($` z^OvDY4RP-5VcE=Ij0~(JVO>el4?FVrdwWB9Yc=t-xr?!ecAQNBr-7OjKph!|%EOiL zTg}~fp0*a;X~o!DBvqe-7-6e(xb04Yg5dJD^kjs&=_4V!$_I}NYYPRV){~I55c*(k z6iv}Pj2i?A&01U^$~Hn<_c@}!REIbS6WdpIJ||lF{o%- z3;Eq|kfjVPkmT$)_H#zkG3Cc;p`E;?_DAV>7U;=v@LQlNTe$%XgtbNVC}z90&1r&C zsCVVX9eUaS96?>r#Cbs$rZ6o*`!n5q*6@K|fZ>LX$$9;<@v|axUXMew> z`S~yiko5sbcP?SXBb=a1fqDG7Za!Z}#Ra5eTgT4r0O68XmHOFbQj{aFI34 zG>bgya3LYOJw7GmZxU?}gG9J`OnxFK8(4f}4KJ^|zvsepds5+~PZHuu;TXr7s7a^U z5frb9q8)Yxf-e)DQ2%!n!k?~alRYT0(Wg~k&dv@d3NISk=cfT+*U$Zd3gxiRt_76i z(;8}gi|m+7WXD0|z(0kU!Z&5Dua+PiVKxulfAvHl+EJ(;P@eTPx#g_z>$mC+sl0ou zLwQlag|a!Mh+=2IUbok`*3&@mX3GWR!kL0}bco9lO``!P@{(q>EqeSx;)ExQeIr3d z0Y^o%(a=O(1r4Pbk){skWk(xHoMJ@68U)G}A!L<7K#~xBt>t&$sVzAlm)y$a3?R`yO*>{o=O}}UvLPr$LeO60mY5W+_ zv!Y;enEs!hmP(`B?erixOgpmRFqzZJ3~7*HM?z3MdHQ6fmF~>30HYp5h=YSM||RB7#9zraIR zN`06Il6%R?8aDwv*EAjT;k5tI$E92hvM_ARs9b5RWK^!knenK*SYSa!=H|OJn$lG9+EbFA0ZuHaNis1`9v9QNs#4|yJFE5B93Vq* z1=ljuyXkR>MWYG95yZyR(`gCuy7jSjeA7Dl`swq{<>#9TDvD!dWCfs)KMW{laO$=A z+In@YjdM+hVM;oWo6SiI4m z;~#U-9iUPIXETpuNX-bOxx(`RWfqOF0QGD`0fsr$A-&varTs8Sgs?At^2$Ey=p}Uv z8GTFxL)LMofgu@Kwkcc8E-G=&vNfEDSD!Dw9=ASzyq>@>W@QvJ`cEiG8y$8QTg28o zv28GDO`iFighQ%SwB48?K9N{P(RYOp2RX7X6!9>{xn7g75@`^XT#bg<4HPCun6~wh z#~cYOX3RS;;(!*R+s|zFp+2W+F)d8Q6`1ra4FeF#wIl)6m8OLOkR<})i%0#+xG>

    Os;v28cn1IFn9Yj~WoB z@wHR~pAf_RI;MSmpCK9|tix4FgYhZkizI#IqBLDgqm(a-;w6n}!A9J;uvGwiRf3Qr zrv-{|2et)*!eO^7pRCzAlb^)$=~Cjpo_{(yJNv`bKKkk7=bN)n7qj+% zF&FkxR}H<+=vr5ct;0bFB*;{UW0SfS7`bK%wv@HVyEw;K3)>YVBv~M5wEFW!7FgX1 zhz2s=_HA^xuF%bmY~rm<80yToKu;jF&Wkc>*w}0ev!t^{EiYNpiTAICB|R-=En3e@ zTg_RT!^fU2`$A?OT87bFTOrb;tms;ZGEUsy&h2oA#Tpsm1a3eh~C7WCY z@bAKOFXrFl!;SqG>nvxw#g7L#0estv)a#u_3ZCk5%;`=lE{LB5T{a3v*cttkLHoL8csq7&OupB`r!kblBk)xmS;ss$(dUSxNe5!C zhVEb@oNQV~SO=w=$8U_)%8=d32jOD_zV@AER@zK*O~l)tU`=O&l;WZbBy8tRgbqZY zYvo6cTw&KgYv*VGT>Hf7@!Sld8`ukN;qqZ9(B}V2Qc`6jVzch+$}1~7j8$owL7wBp z*QUU(WnX$c@Lu~Ttzo5HwVKC9>9}c~U$(BAH=nOsZ|4|YKlQK8OvOdU4aooW)^28i zkR-mco*J$uqABNW{+PKyrVn35%om~~I{$$_3#zfPW-Vc2>Fi%#wXU!A)UW3p$hPa( zWMZhs3E9>g;P2c0@F2;TCsXH|cy=Rl-BONv4@|OM-=mw!TP5B=O)y6q? z%!Bc(S}mERNI{&nCxVQ4CU|1hP)f?w54p(~0@%Y4-ks|FVpC29at^LVjBNe$_m*cF@)CAGy!&G``cO5C9kJhYWzsyXkM(-u$jw{Meee(W)Zi3KsC8vFXv74FN z*(5`HmD<@v%)R_(B7Jj`mwJ3tEy+_lzHe{9?7H9#UY_!F>X0_1X4|-U>YL8w=G_YI zb7s<*U0%(kaoL(Plg2Z9#V(AG!bdr~BGK|;m>vLvLm7tPh3OCTM{c6muZQLh?vHVr zm+08}8|0;_8}di;;#6z-TN9%U%WrCw7yJ6=W0YTmy$bvp%V=GgfG92!YmV0}aN=$b zDn=SH5!Ij^#N285P`uomOhhk1N7KJ%Oxj-ZCmEx*cgu`KYNW(if_)Ky_2V%wg6VM^R&|? zrxlC5;3j&dfLbFP^YKsS;jz{n`~KMTi7$Nh{z$L=galuGNk5Hf7!BJmf$YFP@AO~Y zMof97mX?p1__|(=i-E*Vq`!=2X%@2<>e6`g`cW3n}JP zva4o|)XADPlF6-WqiK&<3X^`ke1lv7J@Qd(t=o`<(`RmZ|G4t|DOtV}n&8uY>H!_E5meQE3?J`Zo z>Mg@hw!eDICc`j}>BW-j+=X=``yyl);*njcKKJLW*a-#WWyLP>rZh*_0uwxfmX(7q zU+;ry<>;{W+vl^7XGd3OpU=NuzHeT)u9utkb8%eb7A$O?H@IM{wZtThStQGsDtg^5 zT0!T=FK1%8WI;eLUAi!X?&{(Q`b_;yu4(es&lkU{?_yd}cIvk~s|)k?d^_F5ga&5n z^=m!LRSBD&zH;yUCp`KYhF1{VuwhB(Gd|UrkI&-ul{JyJ==! z%$1lVbQALF@)=x~abZwPlHFx1^%|(!7pcqqb_v&qLtj4@>@=u$wLD>JLl)H#x1} zizWYi=;dt0JHD`t&xU#*S1*~sEs_K^XI^Aj+(-gz)s{Xl_rlB${Sef&pcbbI$+Mug zEn~XLul~JAX{#=#bsmlzGp6S>FmPiA?_BnG{bEcmeMHwT#^kb>i_5ZoJBxNB-ud~A zX#GAWbVF9|T=w;cmHQ1@xt)0dl5rym4K|f0XI>7TnH~D!h@_RLxY~98l&4?ME?PHd z$D7SZvuruN(YW&O*T|ho^8Eh*00960>|I}T+PV_|DxN%@Gt-8@Nt(<_X3~^SGxwy; zNz!}ned-8X1l<~o%63T3r@vZBCP2U-WD5cA11VV6YNgfcx4Y5`A6$5U)JA8?1$?rL zKeCTo`R6l@lGq!aq1Y$n{NRBMaO{1>Bkzt5P;^j(Lh(Pmz!M734;mlf7pO?So?Ik- zY+U^i`6PPGXuNMOrRqHoLh%|tKNvC`WA=ng<}<)O5|M<^XfN2My}e))70qSKMJ|7m z2q(nfixFiQ`3Z^=XP8BCj0fEiJx=RM{y7w%i7)@iN*J%6#U!{pKd9H+jgyb9&Ve^- zw9kf!q3huM;J9^CZ`K3f_{h+(KRZNS+@p*)^|%Rjhg{sx51Q?I_T?@O`41>fsCQtb_Ve^Z3mVubaYES(uS9UKEvT|B zJ`E|zj%ZGu|NH!TT{*t^*Y(%V!}ZnukGspiXJvNG(ToHyl%?Z#`&3(&j<-{m+DD=< z%aNr*wd55Y3`3k04&9tw{sJ8Pj10@bZcg%BJa%il$YzDzc5Ot;hc4yX@`- zn(|vJOE9K(uM*YJEaQAZ7EL!%$g_PzemJtZa$JC`>8$EXKRe<<-OWx352LzJ0p>{NGiDc%eA0Wi-MY`(iX& zHWzPbKzfC1`$j?9zED=Hc*af+>%PP@3Li};*(8kNC(Kni*U7shzWVE~FqmhjaLo)S zesT^cesp1B7ry#!!HK7?@KLa+1x$BMZj`aha?2 zTc;3$FJ0@epx&oiU7J$vB{XOoT&3k%TW(IE!kzt2vRRU|-$`DJclH-GQ7dQv8<^V! zBTLtaJ31~VDhb`5}`dX1Nk@Qn=3=gv?XQ}Mry;!O-vb1?e` zja+26%Imd5gBjD11n>E0x?A$Azy6kzWUJ}ik?E!rN2a&SZ7qTiTL2k1=CO9-+;nv$ zMqe+UY)nDt;;HIL%nq_yIG}Qp%W?sgn_1LKOG8ziOxYZpCGBH!Qi6*=nNrk{R$GDI zqRq9^3zV6-xamZCf$eg`x2(i{*RrXEHMLRyyAvq}D*yYI`}QjT`%bc3`QLYEFy~Xu ztjA5b!F@Uy()jIcsu^K6vD&-k2d_>OXTuIdD=S-q*<=eH#%vpNfbY{G;#GyINIhBQ zgxY0(D+l-v4d$M?zKdqFx{_eSyjE8dY>_XxwdkyztVFfJrd=W4sP@-DB`~zIvSoG! z>^FANuK0fU`SPl>Nmp=dOHUc^uPfL|oKk`-c+Zk#?#VTM)fLMd<1$WJkJEc!-gcU` z2e%}r@S-BTOi>>L$k*D$x15E1Q38{>eO39J0T&)Qjtfh3H*Zi(xAa75<;mW+ zt=v^o%+0asY*NfZxhx-$IT@x{1ojHxcTary)lCB%=C#_-y>TBt{ON}9`dpZ~D3uCt zLjf@JBMn|2c-6BEj}v~Lh>n&Bvt3`!5IPpcRC>FX%!$_{EKdFu)f|nZ3X`ZYxp>HR zz0D3rBeQPTpFJ@AlY{rhOnFzzieMRzmhjX+DFdBO9;qPnv=7fHltVu0;2mr!e@y4Xu&E!Knq zzAm{DN%}NRY>^v4+?M!a8XVdpst4l)rq(943+hd{A=mBXb+nt&MDcTPJ1>+}S4Vz~ zC}~c8drHlSQjDH-dT>1yoN=W!*^Tr{oS@uTK%vBP-P46q(lP&x2>B@V)6nI$z(6BT zsNkg)fSEtPz4Ob1jqXX?*-QE;@i_SMN=y8^fwgIUiQ@cYk6{!*Kiqz~>vaCQ@;DCW z{e(RnC4~2s-^T-vK|(K{@9N-61beh6UYU?l4Y@HiHAxs+Bc`>snUUhpxs2^5Y`0=V zD_TR!4Iq2c*vERN-Tne-!;a34W)({dKVv^laBx^Y#cE(t7~4}sdS=m@lU32OxOQk7 zM%%M)Fcif-%&ZX<*bxmVukiY|&oKVwdjlGzA&vnu1?gZ2!~pwEOrEk;Df_~7|%HE{tx?!mrxHgMp=C5T}Ce+N$>#LC*D@T+V7+25eM%y zq}5EpXn7`$NX2wezL!wZ(({!YkjchS=T&&|}QZ#0l{LM~RjT#Ur$)C~)f(J3i zkvEi~kl!f#-5Y*URmF!>DZdxz;_0?9?JF{S{FHG03rG$84~T6gM2vrM<+Ajm9Y@8sMF z7D8*(^t{hT_5wIMcs(`+)28nsu!`R)^B5k`Cy9h$_IU%GpwR0vI`Fb=(eJ!bpZI+b zwmEr1u)HCoLFxly!p}qO!%hQ+1NtmL6UR#oBVWW)52py%@(|Oa>zG$VOzMfKeYUHX zqN13ya0?s7W(mQ=K1Km%cesZc29P;Y`JnI0(vJ+@l7VK;!h!q z81#$4gvTFbZGvZ&wMsVd{NS`H2IDbJ#Md#Yuj$}{x0pYQ6T~JHKKV3+ga}F;fv^-- z+22wgvcC)EqTCDIR@g}N1~{J{XS2>Eoq)kH2lYyKx`J$%(2_R_ZHab10W&*KH=Tgl zwoWaFx)CY8P_dzxNc(K9k$mXEETdk0#1Up%dxnfSOJl6#DKes^w^7dG24gd>Ts?Pb zrloY^er5+n7=2_&$7C{KY(b5)8w4%_4s=2|Evy6n%Dq){Y0jax@O?>~*g776$<1on zoDTvnV=qqq{yXorAH?y!5Imyc3x~$>kOO1V<;~;NVS6xPuvhq<0M9hyWkNC_fT`nj zIHW9rO}%`mp9ojmhu(E0wiNeh7}AlRwP3cfe5HJmg_6{A;}}sQ(a@fTwYDUxSBk=k zMq2SFei=~~XvM?K;F~Q%aoUZsHQ}*0C-fZOW|(7n;@v`pQE$BLxuT6v{@9{5KL%7r z|5=m5`O0#B1&a^#Yv&2Fg8l12iY3_(M zTHsliBn+_^t^FEC^DRxhKGNILV@=B%&NveJgs;KYczZovs(UWOj4DbzU&Jt8&oNAH z7J+Jl>t%v-GB=s?TThD^D~YhE=9_xQBobF9xF1s2_>D=pr=W zwRHaae*Ne5$GhwAH$QH_T;6x?mDMS0Ur>RNZCSxMg~Vy&H1{2G(tGxu>}H(ohmPQ8 z+|0$#R1k0OGZhM&R8D$V*Gy=wi-jGuvaS(Ra&r=WEEMsWquKQ5mt1{@sxv28Uu6Qc z%e|*FfAidm?!Ps&1zbGzN$e?Kh+O{!hzA#68uRrhp^%D!^j>88h4Gzva8e(6e0_T& zG>!S1B_8n?U_(Smx{RcQ_d^a&u=jc=#-T_*FMf^1K1aULp&(Fs0f4}-6h#S1UZ8r+ zF|aJ0l~s%4p$F*<_^1!~;;Awk=$biMZ>(?U=uoqWm`y>DwN8wYRssYwVtR*KZ1&-L zv~rUioi>FoC?d(xoK+$JCNm8>MUSzr3NUwdXc;F)LW5Q$5J-}q{jBVoZig0VO6sH=eI`e{@H=RQ-uP1XNO#xx{d z_@dU8bWH`n-ZgeQ^K{NKkSluN;M<@NwXQ~1HNQxgQ_)v|C#Wm#hvt7X_F$^O%R?G- zUQUmcTXRu~c0)QoVQ^GsuU#U2RZTgeG_S{NWD{;dH(t?{aV-hHBQ+A^>j%es-ljTs zTISZS4ulY#XI}j*N2E=vN10e?R|+rYw|pH8xhmP2Su79zD5C*}DXv z>29<55iyRvJTdSCKkGouRX=B4!$)LY{eiH@8JwEZ4ag?+Z{8 z`tunD!4HV8rD2|Ruyso6Dr~N8bZE2-8lL7L)~)CxTqlP%FrGOCl$ zOnr651S)9bibrG&J-?(f8d{ z0H#tC6MP?4R+gc1;_~j}ANW^_LXzZ#QFj>36rGi_2r$!bW?}dxVCMe-00960>>cfH z+qU*q1pm4Nmc(DNlWY!t?_95PQNs$w-Q_B}<}o zNQstP_fINI1 z*ZwMSP+)vO>*%}iPxA7!=}tQRA^qiyHzj|Uyo)-zTVLVppBxX-A8_mEUH5R(%=fU$27Du^%R#Zgy>CVu^1m^D zl!MU5OFx`+2HnABG=QQnM*T7Sf)0Uqww;41n)w0Qb^Tt{$&p93n@5e0JW7#Ak+rj& zrGriU)v>8=bvE^?W;V6_h+kY3qxKG&HbFk7feg3lUGi5s>}Ja>roR7aVFsT*Vl%+x zGlwAB>z-dwj68Ee`gw{!x$F=4isZMs%x%Mwh<~_c$ZVh#zvB!yxt_U%m|UCNFH6_- zOzikx^;LSUv`YL<;VQlI?UzT=bD0Kfk$q`&)UhX&R2lUaL%W&A7Oxz zY8s5ClJA%)tHNs;g~@GzV#e7Z$VZUWQv$`!HV0(*DnOK?BoX^i96m((VK#y+q<|7| zfNWh03$lJ#luH&8`M^RpgkqJz!Bj$(HOv3jCkO<_cHe|4ZpAp5Lz&vC5gSqN%lCl2 zkPmgUKR~Do-Lu&}m_OknSM6>eVtMfUY3lbgfn;S~|9wi<9LY%|6NR#oDjdm~$mkK9 zSs+sJL&3`eB34k~$db$ekeF2>3(3?4NXpid1qQU@m0*!^=>j!H$kPRjt981-Iobx+ zJjKsnmM9=P{U_3o=~;6>NQBD=gFaK~E!ENrk}`=1?1P zFk%G9-K0kb4unfDSm4_$OB;P8e8NBIfmzVwu0!iOMAd@`=QIY^uzEP$#0CI?f{SD# z=HQ%5?|2G8YGku|#eOuQa=lF-wjw-1=CE$$VA7-s1yY1v#ax;_&mqXe*X{+b%SIHs zO?rJLw~2VX*?iv=YG?I1RdlZ;&<~>-z5LF2?lT|~BLO5~R@I7pdH6=WU?;-m5;QD} z_>|B|6_*U$y9og-i6&IlSs_?Dy&$>7c&4>(B_eQ!r7rkd~)iJ9-?Dj;H>S@eAl zh#{|mUp{}N!(UU@%L@eO)F*lo_qlw2Z_+8i{&Lc}OqCFh`|N4zW9%}Q za%5gUSamQf%RdvcqAy3S0OEGopgqAT|Uv?XgwyUN(wq!s%VY2 z0zpVYG^=laHKx6&n6?t86sJ1HZ&Ju!j=1ElB!XgetMepa_)53BJve~yRp^wr-@%lx zsb=LQH1R6PR(j`lQy0R7meH3KIN?^JjHh8uHp=`3c>(*~AxqKcytLn=vFw~`?EhQw z^bkHfPwiXSj#Z_)5+xHJ-fFkQM0Xhp5qHlBoDZcD!Ad)Q-)o#@4egr58OWH>PJ^x9 zAuMPK2}fz)Av>`tF?Rcjt?WZyD=DLqVFcEbt@GSOwKimtSRw zWUup_JZ+`fh(qYKE6^a+rv(kw0u8ce03^OZEv9CzvO!*6-+7mFj@s<1MrCe~yXjgc zbVY56E%*qvWg3aBC@+bY#ZX#?eNQ9IoY6jiFvX{t+1mk9<NF}eW5uFzctXEeOi5(1Lw5#qgW?oJ13Te6g*>42gyk`q<#3@+QNqPE05eGgoz zW06+^IjH%@siU17^6<{pXq79hLLCUaQvlCv?#$vX&*QoBxqjx_Se|G;TAsUnegL`4 zWGyZ9g#K8Wu7gF_R`9;|Jf;6B->ZVw>Dv->Tkl)G?K|U8b{clBcoQRDp}X%=-JOY8 zUEQZo=c{*=#VMqW_ePPUq4AV)xKydm10*_cPqH~2_w^hBk1uLOqk|*ff*e9P(v<$% zkgzVL>m44_P-CSfXeSOkIy~e-=d8B`XHev>k;5$|=Gl`FW-XcT1LP(7FybYURfR3z z3vpmNpqv8T75$)CsBYxiebZkEN;=g&cOXaO9xh2_suDz;XeU0%af`Zf0(SZS*}(03D?h>&Upw7Jez7eE}WK=-gJ0fUgC zQuzy%43&U^$WRGV?hbDPkPI2JDqlH(6^C#=GhIlD>`22sVR`AAyCt$klAGcleUX|4 zft&}XDd|25X#`1AY67`(ZR^B#Lgp5G@;w)>HtQ~B*PW%Ln_}Q9Q_aX7UX~I||7kuU zlX5d)mJ<7Jlchut-A!gG@vS4p6KmYpVCvcC9T_~0hn@ZuT~F-`sH)2eF zFhZ1Zdx1ukk5GE3wfgBC4=kU>%K~%vwj^-gqFZX<$nU?d;ZUfgVGlHX8V=ksEwRyB z;ID>b-3~W49Pie7wUx&~ltf=h0aZP3Z$#8xQ`%^rCO48>W<;3_5b&3ADr9X-`fvQIZ6!CV_MXn4&m9 zJ)^2d{mqOH5@V?Q7Ad{wF&%>p#iPwNdyheeIv^c`47C6|1{sb)28AJjgA8idlc@(8 zj`h*_dJG9XG~q^`mUVf3LOQaXrGp8@%b72_ee=3w4^6BKzz)+-GzS=aP`gP_`q1I6 z@-D^M>fN29ex!<&b>|PmtC4lzy}F-E&Z}YvEqK+9AE-D~_tM7UvKFIQw*U9NIUw~= zx{*upQApj9j?0NFNW$H6q%)B$toyFk99bBJ)KyLk8JxFAaPr>3%ThCU^Z+!Yn{~Ha z@W}tc)FLa~+h%>WBtYep}>GcA{??Mj4NN1%MQ+EQ}4)rx%Tu`VGY zxVo>u2A253RY)8%b`UeTW%Jq~5^;`w!=iPZh}Att_e65p$7&$y^`Ep5l66L2 zIbQVPRwfyDmAWMhfc$T}ek<9>UK$gGINYsKx;|>v< zoz2Ob(fknZYedH}o~FisCercLuA9nguUpb6)#E~B;d|Zt^oOCXuFSr^w?z5+zqRxnMg97r%yqH%r zpD6w0@v_f`{=CBMk;Aflm#Wm9qG|ULy+ zOcYQ9>G=>NQ4JPn5)j)%4d7JYKG#X1T6qfN&Dx*^XklvPD=RNjn*r+OxY?5+%ZiKp z-JJ4bsyd`pg91l1%UH=cqItSZK^vA9mubV3uX7#LJn298UF_M7rvCxC#GC*pwaTq_ zL5~?<`6u+U_5-`RyPSDw_ooJrc$pI)K#kt=aouMoC24lt<(5diE~P1!-^4}oy6-_J zmOO;p)`gyMEie1*y1zZ2BJ=cc^WVzLECCT9a@5YV$TFBxy7;#I7-O}A7u5Y2v9qxp z)4I!MbCr*{WHN(kPK{aBxH)ryL~2C-R^uWnzcn3pRte#Pub>S(NpH8!KonW$N>}c? zod|#G9gpNEw-$^w!5L98g{ajUs?zeXIc22o!jZ;9_q2$_NW1VN4!PYde9a%{pyD&7 z)HAN$>H-I}Rh3{tO;xo7MQtm#4jdx#JZ-ZGahj;5T!MTia-hUULzih7vWjK`nd>*d zzQ0d_KC90tP_O{-wNG$hA+=Lo%X$a#C?3cjbUd;HZIG)%ZEHZH{%YG@TbBAN{0iqU z|JwjDKfdWYe%ff*X;3$j+2o(LV# zdS^%@+Mgd339q zRSe0Dk;6MIXv63y(?;aA-SH5o-f>T`Xn!fDBaio+y*^I+DeE+8noV}E$)sTcfN~=y zf8RHhe@rZ5fxW?#k1euLrbC%7;}|Z&$Z&biu|H#smx}ekGu!X)xFBpwYKvn57FVhGZ;C8)1>zb?;ASf-dvrnDOnv@q;O+KGsDO+$B}kkI$^<#r+c=W1!t$@3xQeaoxn5bv!qFbv5OpMA+tqA~hrx+xu%D zVxMrIu86{7^jKhWNZLtZJ5n4T=6b>N8}bpZ@NUk9lzXntr5 zlIwYX>PMj)*n;S}scQ>Xdhc3WGdD)|*kci_J!Fmft+Au{-Si#_U*{0!D)7$#_RGc3 z7ay)Je))3q_4Dbs^KUm-r@u;A)R_m-;`^ZR0{(YJ-dH&gqr>Bs8@m_Y`@QMGY&agy zKJ3xIrsy#xf1UCF@L!MP#P_b=?+u5CquGap^Ua?=qFWbB74qctV0Lsi-lLnZl30IbQ{HZrsLs|J@P{j|2aUnc-X@+eV?GsNfkxkmu~$1Tk6Is ze$B^-j)v1Cf>G!$@i;fxD@O+hY(Vihv!U=Cj$ihNbBfFcO6{{5N1oIF3I%QoV((dd zrc-3&lke#1A&R|3og>b)ID$W^<%kcF_jHYiuH%ReP1(osrzlJl{M=0zzW;vjH1^$q zuSjmD8Lvnu_R%n_=Xv&M%6TYTmw#jv-Y|0k(TC&vrxl6=Km1N67cTCjILDHs@tELn z?@aLeN3;dl`RQJg^<;{QH<;)Jb%Pne)8RLab;!3_$v#Em1qm=bJSu)Jhy zZV1_a#?X_l<b2Y_;GX_MX3@9E=KC! z7lD|tPgZx|$n+mDhmFUF^q{-P|37(m$k}{#_r)b7NTU@NSnQ41zq`jYosH>l^C(TD zCH`o{erK|6`i>1oXN`ZIz9YXf4Dmo?x@>prl>WMbb-7+%W0diugdD;6Sf6rQU`8hr zo$o3Fnk^MuBSm5UX{V7H86$Zw`dtOpD(XRIicb8Q-SDXPi)ZsR0wb1u>xb0m+AqAK+kWBGGXaT*`Qb^!QXcFa*pf|m2Zy+eb-F#9q+j40H$^swy=Hs%pFWAU#6UgGzA z2h+_jSL*=(!Cj{j`?6q_OsJcL8>9!5k`I^@;}ShM*)qk6vvi-FIdWXjL!RT}(TLOi z_q7|Qe)>fJu!xqcD4~MOiEbU_F7CGjkncrHQ@4x+RDjJ~!TgJ z07ab^B-rVr1q!HBYQchPi(0@ydf;@ahUg{|8~R;fdTM^@R2 z-VhqxP#WBnLYt*;C&ExEkLcBWGZlVAL)bN8Qb|VKtQ5*EJmVqTjD6VT0Q)8jtJ@F> z8XmOt7=%`slaw}9rpVpFXWv12QSaXJMTafgy$j|9OV-I#BtST5@%Ix`GU^p5K)wd|g zaCu={bj&?IuY0tkJ?i#tlUDss8pdc3H|c5b436n|W@RHP$rpRY5b((l>AJ+~rc5CDtcHOo5zfye@7Dshrw%=LWt~ZQ@@P$t?c03f#~o z`MC{&FIsh431XGnGnBp&wus2;VTA##ndF%)V8-#_E18>>ggq-KtA0XE^I;7L679AV z#Jen(DBf^7F(T8QAhyW!ly_R-+3e2aW!l`IH=a-%{+I|iJQ`NOGfvGG7j!yHkRpK;wAm9d^ z*|n2~O>HpNyz#J6iiYxGiU?=kDmcP=$D_iY<%5(BsSXG%hSbbwCs@A#I12PyC27|J zPiaFSSS|33S?;-FV5e#qiFZ6dwU`VH&XGMmEd0^nhW~`r;=GHw7sGBMqh} zc(8(LpjSj|?ieBjRylM4f(5IQ(JeM)CF~ZN$Qme^+GmE4wg8IX%^89Zeh_SX8eoH$ znuUJWa$sBB(R6e-BDj@|5LB^A9;4saevGlhMk{`>KpvuYZG``ctK}!G*GIwfjR#I< zV+K!ev}e+4A`ygwm{?-|k-2%wW5^Gp-v))h?@NyKBhx(vtH<`3D?Al{CH-r*GeEj{ zhuT?l+^qwzVO0$)4$$CaIfqN0E~cq7K^y3mU?{`~iITAnT)=kHYsaXvoro4(*-vEy zm&gm~rZQ;Y+ICJzQ$TGXC#N@+`psX%`4gDfd1SMvrXuHNCxMtJ31tdY6wH|a)878l zsuY|fY)L{4A3eLk79eO*q82bvJ1Q+mz`9N?Sc@o3T|dO**@6hOcC z$sZ^{Bo<_CKZ8u+=fN8_Bi6P^j0c5L_GRan>0X3_Gb(GFUvVPRzh;v&rdZ`{R{$}y zqG!uGO#R_o9Kr^+GCVs+WoK!FEj3KS{o8 zwuEK9((Kv5#{7Hs40MH(?V(Y`Pkt&4w=a`xdOdwi-;>*`8)i-1B73CQkVXF%*{rQY zGp44yQmA1H%Gw?e*|kr6#Ya=xb~u-{os~D&qzp8x3lO2+PW8Z6CAkbVpJvJ0wqstq zM>M~2TfIk`xs!XQ77@C=^%p*gK{{?s>-yG9w_|{-`|Mm{9yfaVsKb;jmUjm)NdJ-j(&FQ z$4N?@g>_Z2DY-WYKuP@zjpr%@s5FhSoA_%rcN!aB(Sx;!0IMKeKnri}Wru62HP$!; zzknY7B=zm(hPQ~A>ha~K4)u*QUxO;twW6mBHwIPUY5@a<;`Bg~TR&kp3~GS`7Q1V~ zazoH9hFY-l0?gjx&C$YLC-(RfdZVGXBfR2_+Sl13MaCqA>Pdf3Bd!FMuA$r($51@Yzg?;qgkhUeLKQ`+S zAue-w8Lh*V+@YBpowOWuQ^!w8uLF|fL+;R|Z*QAxIiI5k^aI6j9G|}FFIQ2Vy7*oC zEqPl)J0*>o7g0)N2kVH)+btvo0?`HuBwHg2-#E#7algfjce%uKCS4uy;?Yuang^^J6}DKFNF#g@j8OU_y9|Q%tlIvd;Jj;=gB0 z!b`s?{B8+O+H?T6gI1a{=t5*INd8@jjZzOHFty-a+(HVdv_QdhBfYe8cI~OPsX_eX zT4mGA$QsXs>_;s~f48C zcyFje$rNLc>gZXQwXM#|O${=~k%O6+sF0WL->IUR`-8JYSSw`u=Q>1>cqS=UQdghp zU$E{JJz{M;^eE~HgM-Pj4$^^hkvdqRjHoFQC5b-|sDZ=PY@)v|?js-Txx@ewBp30F zl)@bMWswcjojk@jid}4D$1?hQj3CIwvW?ugi|Za^C-wYFzGFFufQfaI_FsabRP+u@k~}rt@)8)O zACj_rSU$9Bh@R7goL_kgY2Kux>B;6@XYGXuqA&mjlq~jD(t`yJ>*%$nvKrQ*dOQit z1s2zitMT?o8osinE--dilQnRsu-LQ?Eb+TE97FeF7Ma*alPLc(%QlSCO?z(=R4LwV zh3&?ri$7n7>{D;xkW4!#zw0c;mn5@fsAk6nn=9|f=eS8`bZ2DPenJyWXb6YDPN@<2 z2{ETDZ)b*dks#!~+MOhfeieCeU#4)FZVC*%UsF_XteR^|^^WX*O&W{1A*8&aq`WC5 zgqFUgs!b({lp|B~4b_b*-|)E!6G%(r6`sky-hB$iDkBL2tV0 zsH&i^f8+3g=}lw`wMW5>Q{nY2==WJ5z20%BXF+K$nTaBqi>xnlOQ;GiWR=S&_0PZd z5WuuVnht`;p@tlgKW62_!i8l_^+hCoV?l9aWsG8#)(+SHv zk;CJtwA#ZSjRSJLDB7b?=V`~UjYP{6?N~6KyWRvSFQh7cbDts zHAWdfN=POmmiSXHf=pZsaJu8Jr`f$}YMfa6L7|NeCgkuA=#-Cl4iy*spd1&|Ko*v=&!9rb?IJ zw)pz2*5o^SdWd3=bp9%pj108aoiDLTjQ{=5e|_aw<~gKCA#Y^IubN@iKcbd)_#Ika z^Q1W=ZN?!p$S#hNjZivixRq~o-^#Egy$WGhaoWa^6m9hwJ;o?=_%#?-NeI5^#3FVr z`Zn7}G1tAaFv7k>JNjU{2w!%Yrd*&AG}(Kq6Ylwyn$mn=xKjm=+`RDsd8?9f%ZIT* z&E^wNVH=7sqUwUaVn_;pKia7cg#5db7aJ)}A0O+9l5g@mChHf;2l0%#I1an`8HMAPv3${0z}X zyKc_b`Ur2Wh;*nobs=Ic-ZTzJAJoX_RnE3XS_~uSeKP6?jBZ8kZ|}H&gd49xNtGc8;#dX%h&R)w5_z{!=?+V1jU^)l(0NL~x5!=6D&{hBU3l6R&XVS@Td0Syg69vWdzy&2lcQ}= z;wunWKnQj2!4mYFye4MX(o^26zJy#C8NpJGw^d40Cs=~*p_9=-efOAdxFOm-TsX;O z`_81g?U0zX)ZWICqo8WC-lffBSRiFeG z2U8mGs`heM3 zD3vns0E%rK#e;7+txfNceNAjn(5g|@jZN@vcby1pvb?a=v63#>icyuHky49XbnauQ1eC&~LeCduhR*f>+6xL#~CN!1e-D zk3fG(SmOZb+=0Q*g_}(JzWOg>`tQs1UzqM?y4^I-%74*C5=i6zJ5jN2_$W3ImL4{c zldy}7#b#=D;=O=Odsp5I6&o2oD#UrA*J%`X?~Fjg$TF!3-c=DoQaOnUuk zjU}T0!8$ZaZ(1lLx1%B>z+DF7gSiX5wc94#U>oIzlU6mM?FSitS*U6i)tU)7&zv^~TFepOS|xt3aM-+k%DQBEO5qAuSNkjs-}g zmY$#vYt+((S=EumQ32A4KMg(+P_q;I_3m+odCq%+v|?A?ej*RD%bq2dm=cLn&+X9x zDGk-}+``Eq>!!Z1;nxLY(wVzA*KnrYU}DU=XkJs+tBgh$v}=zzb}d&#ua}LcstNMf z>D@}9>#t)MHgu4OMCQy8$`h^Z>r>KPnBxx`0@m2^ZH}0>kf3GE&tzIH@~GN^YTLHF zEj)P7RxL`d>~VdA>F`Wh5$b=|o0hf3;ywZ=Gr8Y5>(EcJFi8f55B6n;Pj?pwWe3cG z;6~m*Y;O?hb&@uaQ_#CMM{?tZjeM{j(^OWE-&{>zylPhX^^WJa^G4fk$#60>iulP- z>T>PO^pzh~xh9M?b>A{feRs-+fp;zGq{*ZV#n-kaEuB#c=}0B1C*4VU*K*WeTw9Nw z^j_Lt-RNrK*48ts`4^wR9(H=^Gk5t$f2{LBe}fx%Ml1cEs68_>4;mzF+Bl05YH}sgjo=>KCt`={4}w zY3@@ifR)BdFu|xWZz~oa5SO6RXf6McNbsY>w6#G-KQPP5f_fTT!DNK zdhn9_=)vCXFfePdT69cl3(EC8d$6oQ3X#3V%9MF{50uvI0lULf512&(!s~GC(b3{I z3+?e^yS7y{THO{V_0A5gfjb59q!uVpGK(Ilb9R2_?vZvzZyY}*J$C#hiDi=FF|zqd zmKy{uZACJ#Q`HW@JE7OiE;lQW=jyo*mYne&dOLTq9lk)`HcgLSjYux6j>3U+am!x> z%$b@1ZC8ThV+$Ne#A-nbBgny_1uA<1BF-~2wiQ5lK~-Bwu-&Hx3S2X-M?y$APYV(> zU`{RY{!gn#6k7`(wBlNej36+%sWgu>xRfC5!d~015 zz@~s+4+m>~H=w7>Gntk}&e&By5r}4|15Ny{n{ZFG=ggl(Ez|Po%vGRQirhiygq}VE zva8H%zVSUQTK!ue#mT_=g%rZynj%E)U05}rHJ6(;L*BFig8;^4!#3$gnTvS~0VG|K zQW=zZWDpC)WFyA3i-DUGgi7Dad-#p%J%Md2L31-XIse-)7e8NoxVre|%gxu%r{B)M z6%g5PTjSYCExY8dvYV8^;~C8yGeO}0y0|>QzBqgCWF>9hojF2bCP)Y63Dsv^nZA2d zmWa4LOR{vb@lcTXt(c>DME6-Gfv}V$So(%$Y?Z&6$dU(3iI0V69C^M9SKzz}4JU8S zh-E|i%j7NH%(}$W4JE)h0~1J3jvM_I=oJJ16;AoR8d_>QQykU&vRElBI+1=6q1%k77Ligg|TAIM33 z60e{sQw}R^a8{9@t8;k%GOO(}Eu!U;1ce^l#6gc}u}+cq#=#KM$Vr89T;h^QZc)4m zWW05g1TE)*TP&#{PTTZ>_-!w~-p2_2zHpY2hjlkV*P*j+Ti!K0a7EYPDB4yO$%@Ux zt+<+RC}UN=k=a6}D)hp$%-JZ}combUT0bsbAHA+n{jJyjXu2&-7q-qs&|I&sc4-#SbZV= z^gaL9UoeH*A#6+15nR0Q6Z}$uKP0D6h&Ln+t$R;cocas=*M*C}cW&2&S+s&qc?>KS z)v2NeQo1bQ!&k6hNG%AP^b4h!CcXCyCs4YqM$MNhKCZ{A9$ZK%f(1GO{cAR)0IYR` zjkSv{)uO30_aa!sya|2Va#k1#d=-HfLQKtQM5{I|qcWN$i2%LQ^`l<*Jbg=7BZ`=7 zr07jr`m)^?}XNDeSb7E8hys;-_ukjov(puP9JyME3iYm+;nR}y=K!d zH_gdZB2j_MpIMsIGrIMr1t`GTWV$P3BR@zpomeK)6}rU+ez+h)DaB-YzlVOHaL zn#kq)sMr3|VlLN5D=FiUTrRbQ@zF5XarQ5#-&jcn7b9%Yn(u^(<`Y?W+tE;*XwDf% zsG*he!wS#p^S}rs`YbOt+UIkX>7p(HUuxR;N7HHJz>P`8R*NRJiYZ+V&$Y_8yTgAa zac~mgq@G+>l}FkPJ*XR{ob9Muv=UQ&Lw)FztV7Lh{$Rz-6!ID zc0G>-P>CCx4Ey`q4O2gTqSwQ^i~HhN*+(o;;SHRNkPJZ4$eQx4q9pO>7CYWrY*-2I zYM|TF)FLc=m|6n{suzAfG`xe|?4VyNYz-REjIajp)_)XEEgh$qw|-o zF{Q2?6A6P`=NY5~TXlHQ`sCi}nwQN@ z=BH>`Du?M18nDP&3l_g;#uB*3W0ceokfMTQJx@?dyz#k?bnNuNGKicMWY;==Xj7!~ z!hj+l?8~AydaXyalf}k7V%H{2nQJ+b3mwY(T8)OnmJ=*FttM<(Uou5Tqt9A1Y8Fej zAzdsard1DmDeLXHE6bFItKD0gy^vjf%0_Aki$3J@O$v9EW;~nCJDmso2dB|I_|>7Q z8Z@(lrFLw?llbuk%&59Naf1PBZ{=#3!lk9%m!kVEa*<*&NEHf*kDwT83g{qWiC45dcH9f@e##N+g+f-<>Y{rt|De00cVMb09Et_%N0q@K!Gr*#$|Rezo%|4&Oz z-K>)PZGpZjgDRXOmGmgJJx26C;1)aYwy?_R7BeE>G9_3l;9Ah0XxC8M>y;txPP`3^ z`>pc>=hQ2Diq%$xS~k!nF(%k>?))1a78BsR7m&mH?MQyGw_+jPs${P-F4-U)WXXjvX7#QVShnrizh$uu zcOjg2TjQd}2O|(4@WLnNw|hALzeNUYfk-&-Lm~cDPbgeu8$mQVQql z*p?x8-fbOC7Yo(3X`!%@;HHJbxkyuAZ&oc9zKwNZ`Vs(Lb&A!AZkK%z zB}!;P(^a%|L(yuhQLl}C&}}g3IZ>~bF5ibxKpUZBU!Rj0yyORaD;CnNLiSH}CKMZl zgDmTF9fpL?``{`s@IiSWz3Ov(rTXB3Z?#hW(B}@U>2rN>%)=JyrRsBnvH-PpZ=ue8 z(u)xEQz0pkSCaVBM9&rq-X}fh`^%3kg@H zd!2pH2H`+UI^V%KOM5o2^L^@rFZX~7*i84Q+R&@cS6QjL46@#@R6lgSLt8rEr#`sF zVGH$Abv{{at7+*E4%od2rPNuH6Z&oCh8fW8${8s~^uhh!h9kx!lc%l1f(fFih1DWI z*sH1sZkgboheZfh`6XEmPnu* z=qDPD#>IcG-=yw!d?7x6bJlOxZx6=f>G=WsGksdpw+G%MIXLFe?_=NlvLqpU@<0Oi z8vptDx&6{v4<~PyBqmqh+k=zw>0mVY_~AhOn$pLV|9Yza@$Tcq_io-E3HG2J z=BJI%8_eW? z>g^2q$d6tg=xZ`lf?D?w+HWHp9E@_DuhTgu;GBqZI|r#jJ(tgSpy$85`||br)4MO1Uw`@a=c|wZs{`Sife2TN8I5%v>r~qRVGz3T zXyV5HvLswcdi=g)N`O1}6DOTh=No-mN3rKHF&5uFk`iYYMDDjE6yX((4N3g3fBf@0 zO8nG+pt>Fkid5-Z@Kl&Gq93O8UO&biW0*$!JbfMwQ~&O1pXYB5;Xh>qtzmahl0BZg z<(wq@EWIGvIJb*jb!UsnW8#9;%V_(@mGiHnJqZ9as2pf(Sx>7!Su6j?1X+k$~8XLt;6^#sh@S&CSD_FV0+bdexlgEVL%*n z`9|B}^99r%Q)l=FfLtG%Yu0E<4tbogxrZHV*&j6Rnyuxqx%H067eUq^O2Rrtu6i2U zgeC!qx9IN2TzAJhRW|B1qS+KH8=fd-QVK805mhKME=sLLPk3ina$)7em!@WnVCKr0 z!eX=LyCenqC4zm-2L~|}sIfI@)J}&L-B}xzy$OW5T&VdI{?kvk21b20ix7E6jqT2V zq@Jyz@fVU+Y>)9F(})_G#c8bRv9!1J5Cy9R#O)vV@AglWkH2jXM}rA!BUa-mWWkHz z2_n72K71!`*Y(I6`Pf6X6}6vEXdkh(=84qpt5?rrvnPMiZFot$vt^7U%%y12;qL(L z!M99bhNs=UQrw;c__`3~UxVZeVH|5lTe(tWD=xOy&`m_AR@=JUPiz4aUc#X?%(h_e zv!9HkS_pBtP@ur^3sXR^o%L-m0IV^8O^+p~92$zB_V1HdShW^8P&6|Ci)<#i1+beEZ zP|vo&n{BpQL=YCzQw0dDVF%tHv^jHTyXm&45au4)#tt0Nvwe8eETGp1md)DU&~n=r z9C(hA^_lD?sPO<8_O4K0(3tpf{ewTjV$(iho5|760>xroFau-D@ z|9U*yXF^1*YcNX0_Og%c!I_SvR3V5SD@@jw^NZk%YTjIA7Rpurd zQXQALi1bYXfz@GuwXHQZ)v{Px<7hbQ@{R4WHy6#)td-hNBXjXTH?%IuuI)W2kmj?! zn*(v~MPrM&8Jxegh+V6->8_~@nLyj*^+a+C_!zcD4E=DQX$!!utE!aqrzMR8Km5k} zA)z~u;;qXs#$#SD@6Fs#(kOo7CZ&khOkm+gLBzM+1R?|W@8ict^e#kw`!6|kj<@iE zLfSFyfKioRB(ngcMQl@+`!CX<-fOW?3HAj<`)yZ*okF7heIO@gPlw`R({f97kwkC%SWplP@eFwyb5b*8&E>W52_$3-JI$Dwz>$Z_(tn>B^#=WaWHX*e?)Cbf+3} z6p=3$=s`S>y%5rMKDB^9;xyWNnXsYd2?)+YDf(yqX;%~^Xb|Xy3=3j3P=H_>90kfG z1cU+z%&4veIA%~!YFl=PVk)BlX&sDD`p`Vgf(A<(xvc@oU71bHZk?xRX}2JjUQu@ zLDuLfND!$;0ZLd;Am4ZDhS)7;E@obgHh!!BH%T) zsBsw-SwnN9HHajLDe)kLLx~&Qc;bXDv;_%fJYNbwN(;<)gPx6Q?#*M}`m^gY#JVJv z=V5QwpIM@}LH>$3QdiDJQ3nBP+K4TmQX5r(q$)=xyI{BSnL2W(2ysILl7i&MLWQ4i z^l2T%g#rOuj=+`T-Q$cITx~nUBbddb49$lav?p|ir#$bcrxQAx5J{0)x;mtj=>cm8 ztUyVMmT(SiSWsK_HuL7Zt)$CQd%;o*()#8?+ z%pN7&2){j;oOW1BbBHTYi7%zuJ`uR)&;!L^aH0XpzQKum z|1zi`t&&$bf7S2CRP0!i!2dgS5`VD@ga{@MNo6v9Q!?=*2RyxL zO%jJbQg@Y7?r;OXQs2@|$J-P#EjyCeLZDWA$2P1lr$&eioirt}Y&ZwxcvEXnJ+ zW1UOcbp;Y=e7Yi}*LL;9j~RU5_7H5gi3gFupz7641TBI9TviFLEkDiJxYmUc+J($w8n^GaM|Q*Yc{^M}fNj zbaQ$6UmvW&Tl?ueTBZD8aICT~h@j=`#ia4YClKK z|LaJX8NJp5Go!8x%;;{R|DF}2#le8lUszVmbeCB%6$ip})Iv(dTo4T=%IXGOHYH zUllNT?g$PZG?s<}2EHl~1&Osvl1}ivmZIgf3D>KefgkFinE0w!&m=ZVgx_ z(bfRMBpL?`B+@ugl}C>C08#w-E3m8p23YmGeC4{JDUB0ZGz^*^I64(ki!OGNvp7Ny z{ITT}!RmLnvVM5AKZmiu*m%s!zC7N!0b4>$P&-T zJhBE6SQ4`H9K`Al3ZeOKgb8r5fBHXxz3aY4wB8q^9FUPX;6p#gRIHCv#77S4)5 z0=hWvfYt#-HuxQuJ6$><%LOOb((}3JH966=7DFPYLM&Lb&$(k$T>J%y&QbvsX9t# zkPae_h?R3R1S8e9sVpLLs;Sd9(j=vhR1S$E09+&5EbNR3dDrw<%04OUO)cx~xX{i- zWQLJDkqMS%;mDpE5>VFLS#P-@XU4PHxYJpnKGYn|g5MmG_9l{&WaXvjtPuA2O7IuY zi<61fsyNdl*}U;L^2Af}vq$3UfX%}XGzfkn0u~ph60A)}BHN_yF(+ZJFAkOoKsM;X z@KQ7qNh&uH$5te|knL~c;Rk-DLAdoi_d^(cdQU=6p%6y@lYQIZu$i{M#J

    yl0=R z4~hB7xk?Mq{W{HbKtGlg)6Mo&7{hrS!!0N;tcppnN`8F8b0R&3*_^0za^o1 zzU>A z=c_DT%1`1WNH%MvkS-0nvah0NtMsO|qcbC2J1fXl`SyC8Z|H-c_=U@UwF;)+(ic4{ zm~DPmGh>yX58K>SQOU{^l7#MJZ zi8-C@#a70j(45xA9Aqa7WXYUn$)!D*Q$Fqc#R#Hg;dgUdqSXEc{hKJY8*@6fW={7n zxZjQA*9>_&h^?L43p zB(O0vgZ~Bq0RR8&9cypfIP$Lu{{^6caDGFI~lQ8=-2;CzZvjvQXuy)9%A<<#2lTdeGz0#UNMlqfgSQeR1YK`9w#& z4V}$WO#Ep*=Hw;_DXM1-v`^Ur!Xfnjq{)@>E#5YK27~4=WZu0V0MBeymX$LWA7VDP1>ai*#6&5*yaWRd!P>WjD4D zlp^+IJj>8zE?v}e%7}O1TjnG~o+dyWXwJnoqs=N(Aiaw691pZeFaDxQ`d!M8o<1a$ zceZhmA#wOFSjQ24#)(|dqeFNr5?LR~z4bX*IqSj-bLpDrfXsrjAIVBKRem!i<;V3s zA1ozYDH#=%-+0u44Xj`SF}d?>)gXK0=)C$I2u zB;c%vmCs+J^V@_ZBH&KlWJfCmXoXb8JrW>- zESOdZ6JFhNBbZ%ubis?1x;!{a?Z*W_Lo+_`69BO@kHpXPvBYkmpEf~6=V4DKDeB@` zL;GzaymoUI%RI+qjW=B@PCWTz>-g8++6~Ey3X-fdUphuLFo!)+_GYIQx?cL^c`Ect zRV*d}BFKWN&;^qKOl|x8Z+cuhV?Lz8Ag(P`RDc4Ztlo9VJ=*uW38?3zYL@$~0Otn;%*PH;U(o*d? zfRn03H|9n=I)Dub)rHXe0VI>{0h*4&53!dxfNYf+c<%oVW;1RQFw9N*e}yWn_R097 zpCMxopaGAs5fWGx&XWT@9bmG+xdA~2Ij+bMg#AdKYp9H;Rep8?L=0L`#wk`UDB~{F zxo553qc$$5lwha>qST&T#vz(I#*dKK$74rhXnu8n0oeu{td&$Mb6T$#-krC|Zr)Px zNTFV=Eb3G*iSRs~=xJ5tAps)Df~dErdL{Npy^W@~r`-$6cT{hWu=Ms6Kl=WC>Fp+g z;S4RC0Byh`;n#YoNa`BPP3HpVsIGzPx+=Dj01;%tRM%Ch;`SuYQC+L4>n>y`4nkdz z(bP459->}d!^@Z(Zn*EgjCt-XuDSocavtj8<3!!ZeMykFl9!d#xn2h6d8+eSRmdU% zBFKWN&b!da=cvw`Q0nmV8+%gcXkDA#NowXBt!MbEKR8Xni zZZ@xi#p4$Wx{69uu?7{adKr3-FIK6NDJv#sI^>?w$$cS_)RZ#BAd>R{*Hu!8W;;FR znvCEhSF2Pmet!S)?U(njudYA*`sV$+|J1_*n@Di1y;`i-+tpmEO$7)9WEBj8|AG;3 z(k`4tZs=_a;!GRc-!kA%WkSSslBmR%90?VX(Nj#Ts|%R+H;KR*P40NI2ocJrkRTT? zAtDr!q0z?g_U#Bh?=90Ajg_ zW_TARFjIQF6RuY8@x|YN{`Dz{yx6+~GnyLRs5o86?+vF3={@8rO*;vYPwOE!s>$?9z~Yt6)LdqPfU9t19-x z5;ICF=e@B^S2FrFCpuS^?-R??Bca9AibYZJTqh^hN_Y^m;>a!_Fg%tn6=d#4jMlt2dVLXFQOv zrZc3{29Zfc-35TyQ+h*%v72|tq?5|Xvc)OAt{LGH-9XN5c&9ll>o(j z&o2^WGp`8i_a+G9CPO5d`ReCOhM0)TsLkyavx8Vc$3T=rEa~s#S(-%I+wO1Xut`0yN&tBr?Eb6S6?W~ z^iL715IFCR(pI2u;IrhmU^O;$!iWit5*|u_R`OE2b)&VGT0+-Gm{uLVXojh(O$jn0 z2mKM-o4ZD2(P(6V)sDXXQ)!;nWUetVJm{#2%`O`l^ZS`HkRP|mz>V6AdKOLTZPz;ok;QOv@ePa&SC z^-u|>HmJ%@7*~RXD z>AB0}_E2L!Y7KW7J@UX{L@-Me8_6Zefx*UZPDqy*Z$WOTgzj?HBgpsQZyP{v`M4n= zwY$DjIL_K#2I0h|K7c;MepMC<(Ict z8Ej5>&;cx5`9xn>%qFx3FY8Qj1=uHX;LE_)+mI9h3F&$R60+?cS2YzpD>2X&Gq7}t z%9fZL(Qo)>MhoY_e02>eQNsewZQc9SDbl$l}; z2Q(D*81j!Tk1qZbYru#==9W2k3mXb3RI}=EZ@W-Oa+W{Kifnf3UajDU*WKhGNR6NY zzZ^^12-;o#^pI6%_*041(-gA)Lb0H&m7Kyb8aJ)7lqwzvMocT>oS=wlg_Qw`mA2cq zqAmj~{FF>7+_<0ar3QuJQk#R@TW^`>mMp4S-PUarNXxwIys4md_yuk%XblH66&j9} z8U=v;Z@LkDagW<$QQDGEhwv|V_I0(}$!1WL1u`cUSUb+S)Idn0DSEm4^ze}r=8^=( zlU4oeWn5|)QRR~H6&1yRs23^>63!#O~b$3b*X1XIv}SgvuzR04}>>PGvIR^u16e zGGFF=)p7+xK6zqyP3qI=wKlipUFy?)0GjOB%@sj*Mk~nW#%R#VDK+8&+-bToXG89M z=Hav4wbuB^HITxqe*OChm@0Ry1jf%yH#@GR%t{+qwO8S30-=heG0VV3`K->_oB^ zk-{<6-4W($NT0CI^jqICio9rMzu$AVa+WY2kKQY{C?3{T7%4S{jiO(F$X8CxleHQ) zwdaE6Z|ivlfb+zcdfmaB^-g6~h|5wb&A1v{82RNPSNXq-hrsRw4q@B;Vk*fUgXh-O8_V9-QFe`5-^?y zzwv|mRTFPxI2B(@bu7@eCVE)|;Ke_BbyjFOo{+49JG_a38m=SWoT4?9Vh>w&k_l%A zFrWb=pk@k%sSH4k$W3vsS@F^_La1C{yPwTwQ59y* ziM0tLFZS+;B@ZuvFr|!R4MSqPl*rDg=e!mRHrUB|}kSI#cfetE^p)*{QXzNKfAo8d)KjKxQ#CTSS) zYvGw4%37E{bsS~a!Ha@!i&a`fqF4>s2dHob5zOvtIM(o(q%B&d?i+KJwrslMwJ68@=yGBr22_ShE=+WAzsT?aP_dvX`FIj5QK>R;rv(%UUsZys5*Ce7J``u@LASODI@E^Y;xirCF8 znyvqyk%Zk5giT+VRgJxNza|uEf8o%DJgZyVh`8}5<`3k-b0D`@ z?8SR3N(X}x57RE0Se>Qu)y?e(hrJvJ8>-rqCqztkI^dt?K^zAw`jVY|P9*bWmH;Ep zf>1wdGU2xb-vmL-KAsKugm1So|0u?yj!R@EbYP~%AiW7TnL)Cy>Cejb)oWv1TwiFl zH&4Yh!qjw2+g-&t?d!zH4Vqur?U2tP=2shO%6YBOIAK!5zxLK{NLFMW!^4o+i~57) zy?PtUu74YWE>hD6qPJTtG60Ws(Km|t#g7?qr!whfx({(tmJWvSA}4#A=pCV=MnhJK zRgyOR-AxyPs;{Mns5HCXYdnan4RO6258eV7aWCC33AHrAmt`Vi*zLw9vA60ndQnU^ z9Y#;#n${!d3G5UvaYw{3t;Fpxiuaxm?(&X^9;oITy|Ky0_aG56Z2Y`+9CR2x$5Lzi zkBB0?r#B*U+)nHA_Moaa0{895L=fKU-!OLbI*=D9d==|K^<9Z+c>hn!t&EjRcuMV z$@Xkqn!E zi6j!;0Q!#Z#<};`!QEMQF8(Ixe_j81FaMYR+q*lv_2 zz@G0c6PB{%mhGHR{ml0!^Emjt=l#0O!Z`Bh^RLfLFeZZ*NayVLl|R1|A_+IGV$$L{l~vOOVV)q;rY&RcsLrrIJmt3>J^*$t9d4Vxi}b~zTDrDqvz0< zAG5D>w#My6JpKBK4=pgfllv4#*Zju`o5cy=vQvrs-B}n-`L}a6aqIi`?o(X z0EnTMfDf@U@{!Z^o>4(E5t36toGrq@&zMmVxCEFbD^?aBJpzM}A%Z{PWQYO=B104; zEr<63$c79%0-X8tv_f$MgSvV#bgZuGDrx`VsIHU7L#2|+>Y_mhiy7q4l~%~0vHu=M z5CT;gg6$$pGx>ZpJOf~-bh=aQIv8w0yo$2+AqbGw8xxWv%yXzu!N?3F0%kad8E73h zOwS<>Hreztw|qV>SrE=bkR%%uGh24E&7vS$EhY?N*-|42(!YIhe`^$Aix)4=*fM># z#R!Iw-Bq%SS`h(4J!-TH-qNb3TvUiS>|;@lw#Oa-Ick1>vuR<|fgHi)*TGORlK8-6 zv+Vb7vy2YaLYHio@k!Z&hgl|%mV1Vq7UpJ8Nxar((&?>f>V@3uT@J4!PWn^SHtcQv z78K56HcZs*QrFHICAXC~ZOFGTWH0I~hynBNFkXiL-K zcbGKF!_+GxV_-6agyqq1wBl45Zl=>lWkNcOSO8BO`-oc^BYvYtaN5}Zb_LH426~;7 zjKq1gVH^F}!bTsT7Hsr`Bl%XdQu{~-hiqpZMvzIPK*3I1aj>Q=4U$ksvB+S;JU7avwBw7LuS=G2IrEth(^CT{I@snE1O9crr2q`B|8m=_Q_ifZCyMqsQbaPey2)$QwN?*w^IKAis}q=j|`yQaUuq0gW$2V zun`eP;K5%Xvew|dl__9g@_>a0+H-hj`;)=R!!!Gk@Jt`MY}WbJbM6>i#j`75phXbW zCIc-R8Uz%{6&9`ATHJHu_iumvoj(QGZ8}#K=c&TX0~9Q%b$|i}Goq0(nmj(n2PE4z zkiCimCE|SmSdv5SU^R?bt)G&o7{XxLD-AL*$*q&#)uXmPWXtp;b^XTZ0HPl^l%p=B z(p4UPXdg&N?AxN!nmt+3Y3<3SDdtWKVGgP+OxS9w706CgOSV#>cR_&nL`Q^YQ zmM?m@SNf<8=~>&7*Ajq*8XsTZXa4D7sVfcLKlT2)T$L_oj@xqVtXD9c9qqrPm?rIR|fYpVs#jbWu?xqFK9YC5& zvfNCn6ZQ8qIY=ef%Z(pi2y&&$60M$cbcu<)=L@!Az~Tc`=QE392V7e>V6g*T-$NWI zaIF|_6(O-D94JVKK{RPV4){j6MslDu8PvR1DJabIXec9(U=flB9jq`4vyhUXfk|Qr z3-vxcM>RS9v+)dKKiABT`zSQ%6!KO7Nje(SxOxb=vE#?~Gc30rBwy+cV>f9V@_aY> z-2VQC*U{8jx_yR51#Wl`;`MK4@Ae61)<@D<`^*jqW+t;o38@%njQ6+f6-XUIGsghL zI}GZXyQ0`YZvaDtucK|=W`Hxg*)W2$Mjxtqn6(K?qfKg5k; zUqnjl7h1S|PLa~ObYw^Y-7ojk*ZNTT9Z>HrY+YJY7p3IsE`tIZy7*15j#vxR7OmmE z(m(@)uzZQTT1WjNM^|{VAbT&AWA$zM%=Jg%tltTVC`6)ALtt%WEV34j{uPFtE_7gzqRiNV6FZ;+Y8sc#z6PsD#O*mP0~Zm zr_OXHSpy7SQJZ(8<42IHxk}kpa2s3H_)#yX=?Ja;{yS5~rfs~;v7HSOseK@)Uxp6J zcS8W;PILKQZuX7@OmtEmc8tdPd4}~pW`Z}nGqiP+Ae4OqZxVz82g=++L0W+lw{Vl9 zGbh=X(w+0e+ zc73gYv#@gqudh7}Qd~25(1R`=7BAMSv(<(n@^sh>0Ai>mxCLI}L|5-c*02QGBw`u{ zzzQB*es8j3W!cdqFbEl5CsfGhA2o{4(|hy4HIP>Reh2jP#ZRPrQlDbB+ zKFQf|GBS1l*U|V9bpDq%QuD1Z<$)?FZ(ZkqKrV9smtl+!;g$QwktFUXW)%uaXef8-hG517wntqZdZEaUcWO9!wIhdl6G1Do^j=F?LE>Z4s7t zjNYVeNSu97zNDbq5OVBn&d?}jqg8bXIhxxoc5LoIcYxlHTOi_WiMs9}@X8T#3IpFc zLXDw*uzu@m3R=o3*66aD95KtS#?{tfA})~QP1m`-p_Kr-UOzU~l2!8#xT2Y=Vbxs4=u?S-EM+DamHf6Ljm1PR@Fe zo=Qr^$&?x8ooQj)`&;8`Ccu;Gpk~@Jvg}UXBSw~8rF+Ea&@Dz?RBk&`N0wv^s0DF- zy=b?z9_VpUQ4fyt?o|$pKMI0Fx8U|iHwZZkcEV7wELEN@ILemGELl9YKSp;XhJeCl z77^ltFAxa1zw1to?MudbEH+#vfHb2!_%|yN>ohm0R?(cHI6;;$6bYkxd zH3$9J`$A0{6(K{-=BBP57C{?@$tz^uf&FIGYLJx-fW2l6uoduDS_~|ZCrjzbVnA8@ zv1G)EXU#V9&VAjz(g*{ScE;VnTJP)+)6T~yMU`trwBMWeeqsKUqo%BaqOEXvZ~dqj z*FNIM%uh1@SU8pU49NWc$X~F68+kgGEe{&sk=R$?IZ<)k^%s{CnR_VBzo`!PAaZ#Z zS3@JlO~756gQb?SN*__!C$Hlu6PGjiX%L3bcP^69pR4sLOtTAhy~15^K@$HLgeYLI z!~c@t>Zjljgldv8pXvdTBHa|%uW^iZWaH}Xudm*`{@>QfgU8+P_%8Jp@id%?3ON;= z@jX5!`x2&kPx>@vi^<%-X4=N|WzlA)c2r~y)`AlSY7wW9JbDzYAYLrs9iwfbahnEW zKhXu0QIKFZ4GI)6fei&qGAR`>KOrkI2AxLXCN+gv@HkLZfFgEB1q$9P2n9~+6hDH9 zUYsjLMu&s~>OozTLF6_OXem*5v<4!<0x~xgG>aPvte0^SuRyeqf(BB~xOq_lf=eqD zI16coBt=khCkj>wzHiDFl6-(}5kYabMSr$&?WjEwKU%PiCFwf9#1OdPVmp22g;6kHi72CdJh+L&Kt5Wy zIzpw;@Q1}Cbr|(WpLxj4&DS~7-Pi1(vs9P_JGj-CywczAyo)!9V z7Ll-p&qrECxdAaPFWSJQ6kXq3Y&waoE5-exIv=z-q?9EiwF5_Wtk&?3C<(22~_| zWZ$QoGeLB2m=El#2v^t{_wV#1zj)n#|8#uaZCkHCT>MYxt+jvyP%gMjsp_Jnl^9YM zWbeg-R)?2^Tz?cV-tq0&-#^T6n-b}>C+lLv<@H-%yqv{L&e8c3DnntsFF#G!2Xbd~gQ3V^N(JfPk+QpHWGL(!-jSUo zYVRneqBA}Y44G926(gwhn_}@IL&3yQSE18P4Y(GySh_u2n{Dn*4A&h;ddR#IgfC#{ za_!(qzGRu}j)r+PxPyYVSO0kXzOypyIw~wO#evBf z=brZ_6AL54p3#(vb6;=5yj3dx+3+s+?7}F_I6;R0W?mXDR(V1&D32R=J_2frN_gsn zgSCu9(7_pYW9=)Y&p-gkN|aZ)-UR57tMVij_AdRQ&6G>S z{GlUxCZPPG!=dz!+WjG5Nd-nk6s(&fjWxR7_1B!seqbkB6fkHeKh~^^GC!nrun4EN zSk4*jMp+cVd0quY29MA_ptQ6^z#xfy(Cr_OhrQD*Sq0fDfi<;yH14?m**q1+^P{$t z|2=?4(1R+f2@s0+(Y)026IP7pRYv*q#PURTBHtRBg7N;B50{t!^-|^}#;Z)k@sd(C z=$@VPma@`vVA5%A+0hTAzTVN-AVm0PKNyC*F0`TO2%B^aSJ3RwmnT|tjp zIVy00Sa<+1RBkf=og1%IQ=`ks_oq|o>w~lqr4pi42)LC5)rukw2a%%<3gaQ+(QOz} z#-m=-;(RY8TWG)6kHIxKV3}%B3}B1JSGe{oz2p*h4Ks;Mm3qiXH6dwuN82Rj#E>s| zPzhU=epBHowe&woE+MYZ%@zl?aJ^&9xrF02A+Pu4DVOk1ol7|0U@oDicF4557NEN8 zmrGnRHsh{b6bPY|@nw0w!){r$<0VqACvT?XW3>oP&rfp{ORp%x%2NnC zfKW=Y>3JOprHi&IDRO!JZngNtQRY9TLfJmwIUFm+=pteA5?2C9m@s)sQkMZqnCw`U zaZqRj_u=y5<)=5lzEe^pAG6^#eKCiz4(k`4Abla*!Z zF8?-LnXx`Vb#F~wx~|LsvSppvRXN84v8$~U`HlelAip9KYz`=3%G?IPlVoZO4j6D* zi!v)%&@(;M#6Vkyg0zBly+y$S#cNTUCBxB>;z-=QK%pJf#H>=7P?H0lP@?7rVP({m z_yf0Lyh=fJ-1u#yW3({gGh_+0elT^9u7bed(@wz!gY}Z z30V}Vl-uW2us|u&c96`Wnp5eLxH#;-cM>4goW{{L<|(1Mh}u`lg=800urC2yLe2w` ztOz=Ld@O8FP99XiA_g)&aIj)B(wLA@Mi6Un3g?!jNKV`%LPP&7tdqPkl2dIt*Y>ehsj^l-gn(1*6`W-1DOm*-x%J}7mj%KS;H{=c4{U={K5GEO-g9pxud z%}*R1=D7!AbJSoDOOnU!_Va^%;0;fwBXif4m+>m$g3)`&?$l0zu1mHau93n;^`AF9 zGZA_#P(ctDpu5O%2lLin?do7)Kc9DYelZnN9R;N#OM1C;8MTOkKMz7VVLq$3ak&6xU{bHH zyK!|@uL8j)Pxi$RlTGC`$g5sQQh5-KUuH1GY#A|5)h z)2;)_02fN@L)a_fA$RBIew&z--GDYuKR6gF6;^mcnz|2`^zm@*O4WtIeJesma0u2% zv3Q>hjZc8EW8dPO4iL=hgf&}z;g?wRu@^K)>+I?WvDckZaoud_8TI6JO*c=BDgbPR zQT?swROupY8IrYi9PR-a)pd6!lzn{9X)4Y9$r?6;+zxB_@W~oBLG54-%S+C>^K8F0 z)^^I(%+F7n(>YHT=XA7finE5{UOCQeByU{7xT6yh8%NHC)_T%cz3Z#vCw*mt+Cg8j z-&g+pDvW}JEm-tug3Gx_Yn~cFPPy*?;6hG~k2+Y_cy0V7r?5zLkW=F)Ifax{LA;8x ztGab<2cJSjbs&q;u(ODIjq8?y&e+NuG}vWqX)i-MRe`*QceIVdPZfUJtSnPDmx5K? z&(;9Z<(K8$k7U=z?z^<%jug3R+eovBZ>8Y|CLw}rd4jH2 zK9PCAs$Th2_NZyUPheO~eB2-94Qa$I>yoG_R2ylfQ(CwF)lejwv-=y`_^c|W&3kQJ z(~UYt$NM-9MJbBB_UxLQKUuuagU>I9E7oYQJ705(6VK(1CqO8+&}=49`c?i6 z>ST-R2`p}kVxZf`5HbW@P>L(Hkjp&*^=?N_j_j)YGGWrJs7a<4MzrYs@Y;2cr3W0> znQhVnZ_RA0nr>#*ET&W!n+^@QcK_9_0cXrEr9e&@T_%6MEooE@p(Fc#>^8WGQJ;d5 zIX2uD5_A_M3KFQ!8wY7J5pAmKv6&vX4%F)lYZRqqEGGrc9?jGmMy#1bYm0vVwag_0 zlgxKr(W;T_hf0AL<@)~cKDemf1DQVU>f26xx9e25b`VI)^nqOaLYmGkY!~r-<#gJ{ zz>hVKKx3gx#HTDUjC_eJ_wB@&I(w_?mze28&zz6gFEN(2RFUh$)ZY+4+7+X`c3rs* zbr{sl5Dr80#MK|^IJ{uju*)z}kupf10+huB?1_Ma1?`=LGzCGyKine9KCEP+zx&>u z0D!3ACg?gV6r`u9=EDxdqMEKtd^NIGXT%F*!7E)8JsOV74KCbS4o%*Td38s9SP<<> zx>c=|N2(&-hh^c+4e15D_9gAd?twC@dAMHukdCBeF*3v-ab0(;5iwo-kqw`dP$#+= zD|fXTkr27R7~X47HCf*H#&Dhf(4)uW6;mj{+`U_mD)n}Ng!pFGQM8s{&5b^X;q9ML zuuWD2-3GSfnTR_t!`tnkH|vwf(wze(00Wbjaa}a8(=sxx7IgW73|8|`qUS0fP4tI@ z-c8w+#y25T+cU1WMyB?XXy{6&Zbn`pW$O2Df53X+_CYNOI@vUOpz}>?2a z>V2y&Nq2D(`fFSpA#~a4(fUTtc1&G&gaHsuDZ65vZ| zx{Da@pI;q@8%gU+ITb~qfHHxiV*Oy1vd6OX*Z;`VHH@3FfCAd#1 z`gx0Yn0o>nUP4P>W6eF4YnbhpK@Z}|#P5&ptW12@eX;7cqb?n5JSOU`y+t4u8E2pfHwqMN2~nW*dDlGxw99BlP-KHZ zZKEB%X2Mkk6A@683IWfymZc9a4J^KFnI~Kv0?6;R_q*r*?hkR@`MPCgsmxlFJ^Lr? zkz#CVPJvu|fU_kfeVbBvjWNpY%KyyO&^E2BPMDZy;mepcz%6mzCsQwDglu_4=N(r3 zr3$dNpT9PPs5O6W23;K^mB%o>&Hdq5V4tUtiJFjv+4$7hb=ZInV+cBad)nM0cGh*k z)QEPFS{vVK$Qc|t7f&IXyiZG4T)OSWO+Q!~&sX^&SmG_hFWD+#c_yI&i1p!~>eH*V zgwuIE9qaW+)E38j`$N}lxF5I&a;(=hErELeMAt48(vggfnoV>DDB$>`(iYPH=Su?yA0<;r-)aor3WUt)?ZWX;<2v~Xo%R$p$rkZ zioLjHZPPebF8GL=ZSHOuFiVXbMTi|rj$F#2&mqc`9778al75S!na<=Gf^vz;v73gs z;S^M}O22>+$k`>wF9w;!^yqE1h+f2?ruXFdNtN!&d!Wfa2DDPrpJs;y@@fo zchWZF^WAQDHkyXW!yVth{Rf4JxxO5_GT*=b-%~AOf3&S1ta!y$A>9Z?pbdmyv6h`q z!(3R~fu-2*mYmcfQ^)YO69)p4sk7M|Tn_L3I%_9yB(IvQJ9+;K)<{g^>_#n7(XVTd zY!ufN9>OyC9gN0hLzYz6ZGr^43w1 z(&apaY&C9LFdrHPOWJjG6Iq1{eCtLu9;8(XZ}0|sU{ROm})|Sf~h9= zBHAk5)IAy&sif|a*gDN=Vy_-l=agkESpbi%9tZW?MiM+@DU_R9q#k%wuB@8AA-1Cg)296EKFDLPZ^>8!hi z9n>);M{v8(xksQ|wCJ0*ZS^_wEihz2pC+(ziP)Y?8nwT@>1DKXf}WVAvd^o&x6PA7Fk8ISgb0ZDt&+OcoLj_Pk(x6-^V|$_<#N% z#^cEYvQPK=!@Yy(ndqC~4F4V?+aQkV;RSXA-A%?lbDPYe6RUm_Eq?kzp+WA6d)o&Eji|0v6xO$+;`N0y9J!=3SuGL+`e zOYGUi`9_H#$DF&~>E7Mcb-yi;_ib=I+M}P(i66M$^XXo1Pd+x&wduSFE)VIyPoEg4 z#e=@SIR9{a`SnYRp@RfR&C!z2Q+6t<3WbFNWK3<>{I;LveaW6!8jro<$r5?!(mLH6 z4b3T|Hf9UhsUkV24 zXoz!9pPgbVl$b3Jp9bPs^g|oZXv5y*=rH>9KW03hsT<6r&q{{Mh7&zebz;79K|{9v z{H|zfSDf>1-uDJAtY7(_Gu_Y$?)(5R{qlZvuw2Bf>p>>8zm*An51z(yKF>_RxGQw` zYa2XP5~Lda{svGl#|^8OfBJd4dyfW|mi(iq|!-g_;L(c|U{9FQAVRiw$HrWMmz*zzNIw_?WMHZX0e_Z?xfCVcq6}Gqa+S|DB)(5}7YxqZZr+}-D|A1^=s zJ4b!4y(WWt2=1eAEL@Ash>2qF6dANn{6w8iHbrT5yK=axOFJVD*;IDL;@{&2N?p}| z3p!=gXf0en&_>L37YoA~ zk1R{y6l$a7;74sU$dx~GKzdQ5bi5edVH1sK3rznuA|E~|?x;jkpZ<_PYtE5#Uue5! znb`0EV3K!Ke+X3>@~};f!H149c_h z=0dSx<*Eaf*cvGgFocHW$o3 zYuTuJX0cfou?EF36}AjD(jEI*7cFg?035F*YZD?HYLP;RMv-sAC(-_HOL0ynSN>*BerI< z)Zg^68C-c1LhQ>qMi%z2@eF&|F`26yJTGZ;{D7T3!{aDA@6wu#1^zDYc`ITz)kFZF zXRaGmBEcmp|9Ke+?y}NJxxZmx@kfTNX3%Q-`7Qekt0Fk09rgJF-iHDIb4BY*xVWV()31C6Z9Lr@ zPQ=(u*JjW>A^MDTBwf)OMKTospC?N_#?lt?hNF1rmvhPxeA|Gh4p$ii#qiWIBf9}L z6>^)?hI7BsMy#(Cf?5P!6|{tIxn{S#ATvn8vaPD{zTxLb*R!evVtf6q3g|@aLot8` z@vyx?!}6Sz+2gSg9TY{a{t=kgu*52S$%z2$07`~K| z!I0cw;s}zr;d_6>$Pm`9yv>M9P^L|fDui^Sl=V?$wPc7TzZ=CTY+^^j^iWl;lP?Zz z;kPHa@$9rF!&Uu|G2X*LyaEm^Jz2%f<=BluJmw1m~FiySccrbG)Gd{ZK(Z^a%x zLeDox+blw2z)F;0G2nWn3T??AFR@YEmP{~n_VMS>S1Hm5%~|~lHhysCQXY7^+`g`5 z1%dHi$Q~pP-GLS;0-?4wAUHI&?cV+#6qG{$70#dhSr7A2II_tf*zn0BWJwCH;~OZ5 z;`J^SDEgcDGt=|S(^-v99!oIg*gNDK_z9a~fGq~A3tS`ckmJv=XTP9mVPjz3mp`Xfc@FZtae3I(qUA z-Do|9>+@eq6@+2Z#X^J~NA%alQvSS+1I+J}+5Ct?fXoc?9Arlq(0<^BW)M;)qN6NQ z#RWrY^oZByR@O#WDN(I~u2Q1+kIcs}^YkoNvu#E%lxS&x+wjeJ~zLFn7bipdPB1 zDlxQgu)~>JJPSmv8=pR8(}tKGpw#TZ9`!q{XKFR-I~JzcM3hZk4c9`d1xffBi2HIG>?h6 zAE=t}yH$i1pV7rxMerV*W>TpOJxPUR__@ z-28lfQHIeR$?B9-yGa;nIgMl)C$v$fB6`Z$%5<3euBe?zJ4tGf20)t0>8Y#@``gV3 zX%DU0Z#pBSg-blP85r#yT60Biht^c4v_oquklLX&cWBKfDDBXi%9O$#T62fiOfQoR znE5Ubnfab|=Z7Ah(Wt^1U_rzUU|nqIkXHg|6rHj%@3*@G&4N6+{o65+XH^eXR&9X# ziv=YGM#+)_Il4s=liA;H)@WQPL~!4vJJ)oQ=_d2=ms$ry1My`@xUEsvCGTLFw_h!-C-65j=RGg zf?h77o4FdVjMd0pjLPpWi}KFWNd(Cp0#=<)6tD~Mg2zO7n!!I3rPYa}(hyVrQMZQBENh2z8Pbg#T4)-k(efkge=Eu>Z!_3y>i`szge6D0$aQU6R~ z;#AZ>j)@ETcomTRzFKt-<$H$qU}I`UEm}ZKW~&cp2YX8v*f+k=J$daekRyh@(jdvD zUQ4&4eyqepgOJ9`I<&^*RNx1o+SE#iZ0?J;)9lm;pua<9(9lm;puYLfLKyJUA`08AEbpjU=A*=xl zvZ}FE8(|%}tBoS86E^;Km!VmZ^*}9Md7G7V$MT}My^Q~tX(TV35<^0zPGdop-LY`O zldGQ9Sc<6afm)h&cMF^h)Ut~kL+6O7M_WK`nKa~g!h`~b-)`l`JlD_fbP9? zGnY(5=`x#9f=rh=gxq22*T(QV`ufjXhb2lnK+>*u1QoS5EFhs6Ml+Sxf8EaxD*tAp-SVKVUWz4Z<0kL7GIv;+M)I1tJ)sDs7hi&V>371D zh~?{5BsC1ws!??}sbQd26{-cWa`xo}8j>1H^{cL=hB`WU+j$KGwenlQyoSm(@r8zh z)WjExt8z_zQO^xh6JI2Qb-yOQI5C>Y+!(0U;n0}5G0>8I2vLR=a}URf3iUT%f4cm5 zM}PjzRLYI8aMR~?rnS6YVJ~yYXBx@V9eV}E?Z*WL5XS{+lB?2z39VOO*~;gqy1LtL zdgD%ZEXx@W=?jNTc&a@weeW-(+Vf9K;f2Yzz@g1>E# zl}te_x%q*(p-=s}_*Tq!ZDPHrKSTalN~F@#TPmc;_wizCqkEh_h>N?46-9(y)wL$FlwO_SClfCd ziC2lQ*mVlOSK%+ak07kkN)!kX8$>Cua^JA#2n0BX`w~93u^EsDOx*?QS483yjfn(! z;YaLWJRvrk|=jASe%6Yoejn#ikV^ojx@1%)qGnL5$r3sC}SR0SPfuMT59 zT2;@dO<+i&@NK!eOh11AN7TB>uujv}XaY3##sBf}*k)mkm#$AY5_`X5#AN)aWWc$5 zEq4w+xS>at9=q8P)0lH1yxy%zfvMdclOPsdDiFr z8O34@?vypm+5W|2NuO)7ux}%r#0jX|UE2y=ob{?}N3}{t^>s-86NABF$rHmt94pUz zVl<2sc=MhZkA~&CY?ydEP=CU&MatvYsgm$Vt3={%sy?Iliu3^U>WFn0`*sazfHsC# zV_+YUZBl3A?&hXJO%lHx9j?v{HHB6tlKt+9WXI%u6|{IYA}*ISGm`su#cl9L#I0j8 z%ma8Gm0yipBaT`Wndg=7Xe_hmI$*7-*k_}dd(~aU7DaT?M0e}M5WOY? z?X4VK-rTiZbMCo*`^Q%Y1!Q;Byn&;JLs#GEQNz(`(4!_sA$RtuneL97mv_|AZH2w| zPnizN#_p7PnQ}}|nZv{CA!;6k-QMkSZ<2qbwbsNr7s2v3AoRo~QBI?r@|Q(7#06C@ zCt^X8iz;2SvG$^v40hgKeaQ7Eb6Yb_KclN zymAkPsCsAFN0uumE?f zi2r=PdlO%hzv1PdlRsbRN3^kQ*S|M*Z+=?d#o6oe**X3B-^nkd3HgN-Wd&m6aqZD! z=;CY>q6mdQ(b=U@MWej3O9w@E=&n!%Xd|seV;kcK)Z^Agf#*7}@!xIi27ZqlYDE!R zuRQA>4Kg+0zZ>$##@LyYHybOoZk&s=*?2x2jV6;b`fH3HWAf{q|HHq&2_x6Jy*L{V zC+7Tm{C@w_J9KAly_h_?8qb$+M`yJ5{2+L)kGnOR4@p7t<#y}gAJC&^$82O=-yx6C z9jEQf^8vx+lTr=;?HwSLqs;&mry)gtt* zDOBp*&hjD40O@^1_D_M3@fQ|lvly7Sl66aDdJgYXl1W#DI((F zWjxz|Vc^Bu#z9dRkA{;mrRUy1;IHFp7RtatO!tOZH!gJ{`gW?haUuHG)(sIvd1_xC z1wC#YuE9o5pVx2wUR?&bc@VIree&+LbiX|aAQY*)dCb-W8mQY#bW9!?!w%MR6^UE5 z2_l!&J1~CVkWb6=o?a;}mBne614GykJRwkeFMs^cGnOu_Ri^hj{x z;g<1Z?f_}NiYMNUbYBZj3;u^L-9MK+ESbZ3I1XA%1a|;RrV1sPVp1XnT|+AnYsi!R zN*f^Ki|$uQbMAlavHMoHg&INJw_P-@fsV&!a})R&&DB?vZSY9ia|?If(kW2g5ph2% zC&lu>{#!y{*`_2H9)@`RM)`Y0I#%x7)jI$aZFq* zsS*B!*3PGUokT{+j=zM0>S-nSUrE6oRzA3GG<@fQxGEM5bdnc7S)_0rZ1BpDy}^O% zd_=#kf;bM=xRA-dGsQJqu*#6-pb&qZk;UqpyC8_k*X4+I_R;l@@kk(0+DY5&q zy@tm@NXw}gVjKGeAV(3rBsuZBu1{B0RH>4`RNK8Gzp)4YcD=&Oz~BzA#yk`mc)4a1 zBZ8bi8SWi`onrD0R)>BN8&$1zW6~%(=d&~8yvl+T!`$tXkb}>(O`Z=qT*^xCOL4!C zkHGy-rM$ih4ULudycfGrITJn{1k0ua`3m#IB&1opN9Q)$SI}j#N zA_d!cRU*YK0f3rP94u(>TB%=kGrm<~`nm=2maE2@%X!O{x+mo=SE4BAbX6c(qVD7@ zlmd%OdX|U2`IXRlh0&Q34^#IM;zh$UUt|#&410-(wt-20T^R}oudf>iD@+fz>s+0h z2a*U5H6$gX8o@W2u2p48yco8+lBMB*r?S45w^|^EQ1@vAC?x3O%w(?zuU_osoj1Cf z?fO0DG}PIxd+=m~B)XADxP>Z<)h%gzgBk~!>dvc7-sqtFU9$ud)^2xANsL=}E`pE9 za&Xf`#(9==1FVAJ$Jz>ie2uLz#;>^!*}R<77(Bwti?i>^E9Q`GLY5Yy`(edGJmw(z ztO50WIN7! zj)WxJV^(o z(!ey>w9_y^(p#n)+V+g+`o%!UXw zo;E1-T>l5@9G<#Cn3BoKf}N6bqc{kkh^Hvec+z`%+${(bN<;kb!v{XF6+44DzfWE= z_6>uQ%!#7OM?~8mu;qj2UJI?OW$!zziJ2nYu(89c^(2yLz_RxRBo=&w zxL3z-H}{{n>uI@AI+V%ee@Z6G&g~}^(|F9MBETsC7BcoE#>@3 zo2bcta#RB=+C+wt1e%1^TT+xtND*Ff0VpX%PX`wZRpBnKyM@pAWEDQ+voftaV2T&0 zX3M2R?clbm98Z#gXdh&?eV(m@5DGF8j0W3gB>>~O8|-jq{N6(-|=>Rc?mXwtMS;rL?&fDV<@-bczkoTlJcJ1S%O*MEFyx2^nF8lkNU7WN&UL=m(NK^ouHh1aEewm0ox4Lz3ejk%VxbBw zpR9_7&v^5zgg`OQnZ{cEik{F}+h^Q50qHcDzG-Y*E$e~t&j~3B{gE-+we6}~MK-Cl zfAJ==-Y3H+JjvZe} zx#n`UycoBf_+4_=f~0>VBlG3s?fdut_14(A@k6kUiJvaaWWQ$TLohyFTNsN*_$ALF z4n1u7Fi1oscee9{F}`c#Uu_GQH}1AX#)>(#6IwQ{12+ewOL~CBap=m+@|bg#3LN2} z>)YOz_z-y#Hf;iylBGeOf#n!m?NF`y@=ksSXhE7TSgGZ9R&s?(&c5=U2H_Ge7ps$b zmZU6a9Job79Zx*CM;~xAQ#;k%<7H;sm&I4zAan}2(VjY`m+>~{;p1%t=jf`qEI|=q zhSZL!wcL-hh}wtfkPx=YNMl6kF6v{`Q^`Hi0s%1$&r7$qn!i< zi|#7J|49V;l|k;9#tkK3$OAlNAt=R-N@!wy>8@9nXZbb)UD&Kd5@s~jXhBu08a3EL zS&7uclM@E_$p0m|7Cb)Tu0gbh8oe8K=nOzlK}%s{7RBz`%154eNDy}Kml7#2&=fO? zCDM-FpKh$l1na{@1Xo0{F3`-AY3dV3Vo0|ehXm>vWE%v}1eVB?T-#Z&mf|{?4YmBl zjIxV1|GCA(=KRU9JQ@Xxr2~0SuV}tteyr5kPdyT|2I#Sxet}I2MLi9l6-Q(A!1F?l z9DHIZ?plDB6KZ_}trS`qMquJUHHzqQ_=^p4Ny9zb&yBIIfd%LYQGA#E0T_8Vg8&JXLoCXuq&jm6` zHr>WpG08I$VbDlaB?gD7ODyQiG-owy_xneSbR*qKawaSyhg`O+2*m_}y8A1fi45Uk zNz-wCi28o+r|O7Rj8pm)%pfmp<)Kq*Y1-6}F7QBRnOMP8@~U+FUhbqpu8=rw)wm)n z=%VV>I&VH_0T(QQ{!?0R9YgxwO5rt{NM*4uPxu|YDE`w{wR`a?ifnk%tL6$dX! zT&_Ts(Lt|Z6p=$Hqtr449)M9i5i&Qmt#G9Niq^~F8wq|;4FF|Gx0wxfF=SOaqGGo2 zG9p7?&7AsE3ALOu;WMY(#7dnpDoJS6#>8omd;8LqU zd`3ItHdtGJVQ?!PP<7)e1?;-LJ-I`@mR$IxORaGE-i zh}s$Q6B5yfM7li`|LY);kv1gK?Oxk4B9R6&2987;z?(RTE$@3as;432CBR6x+gvXY zjPzk+=iQM%{(C!fvEHgne@SF ze+b(jR1!%^A>;@o;29@98)pllG7aO{aT8CJp3#Ivq@hvynMl42Q$T ztX$s72P+c_2eHV5vV||Jgf~DVGNDNgPsl_pD!oD`G>_y7nbfmnq79iGtKa#^c5fQ+ z++NA>TmqDo?Y=i-`3aO12K4xR_FaIICWwAKm`&$PYzG$0#d3_Q=8?n93t_M`NLQjPEiX6KjD;uMLSmKxo(_d4$R?bzMKuGi8YjPPsZd_wos+T=gM2$uZy*M;A`HIyz@{uQq8uXVc#{#%JUc~@az^zbxd@0+2SO6IHYCwE_jJ># zGfjBX9g=90A@!>apCpjPubvCUOss=0B+)m2c|%QHq|j zb3{@E$?SmKy{AMhpy`3hEtI+_MhJ3gnGz{}`6Yl{UNOLK-;=oBR*4|!PBx{H1Yba@ z(61^jo~rTkr-c<7Hb8(2ovzi~|Eda_dxZ){jcscseIp%6E9BFKIS05fXF24sIPUvQFeUDR+U34<_j+aUy*f^rDO9^g5{&(SY-T&s{gvN{5`cM zlF)}8EeT057hH$x(w4Kqtj&C!*Jb`cRtcx7F+kw@_%iprRBKumThd=nfz9dv0{{U3 z|LlG1Zrez*@T(C1l>ri4)Lq#x0UXEP1enR>B$+c=Lye~ ze0`%NQoL0c)go;VFm^1FUENjHb?d6?ufhBOcmG!W_{x8UYs+@Lg>nD(&T`+Ky&0Tc z@Q?o!f70!U6sw#%KJ~h&)8>(~1) zAAKZqYvV@jo6Fv4a@9TKqe~#)qeqv-EBj$hUGkMeTm;s7Dc8M4$CS+dfKJuyu(4go zqyO#>2Js)?HZJ{uJXm%l-gLYf`-;pX_FPYVC~-C|#3@6dcy6CC@|_fUy5;0~lb}wO zK`YRFO%!O}?esYE5;VVmy9k`w_qFA1p;cjpNlRJ59Cs3|0AqqQrA#?k5ve-)lw!Zc zQ$Z%)4$*#-gLW~91Q~oH&SDvDr!mTA-q`_Ni;eFdu5s8g>P`?Qf6>eZSROiD4lw2M+F(yFG4R_*pWd~J2e zS4NXIQtEihw!%(=E87YJoG#P3b0UX?3M?@mv9LaDlj05nk_na8@KVzL0z4o4>NWEP^Mn$9@U4RaJp`9=#Yu(m-RR_Uf_$+m+b`FB-6f zP)!J_g9vp51z3S1X4g8k25dq|U4c?&ub0$-M>kfkTuq9p2_bbAigd;`5(Me)J= zgvr~YK6|>ggPfdMR*pA)ac|V`R?3Z}3s{YIiB8WjGRGs>>3CY$k`m+L|S{GwK zmHwQaT7R}Q$gV$h`^8eAl#23fYcTyKbh}5z>%0hp7(@a+$fxBfUGm1>{ZiW zTdzia)eR`BzCWCcu< zJ2RHEKjsAYtQ8&SHh#qH^yG-yFHJaO9KIxx9e;Aor?Z8V``si?pDtsIeX3nQtX<2q zBFFbKsFy=0TwJ>>4eo81l(B6J7gl#1IH52_p111$ zh8QcwJTNNV%f`dX<*!j}uLBa2;EtTVH;P~sOfOXiqknRY4N6qg@4x=>&0&tLqX)Psr4nEkRIiz z%m14CQRJ_fq7;7%sXQEu!T74_pF?hMiW$;@x}0o_O~n7)!uqmV{h(8(UxiGgzdP%X z<*u@Qm+2z8c^GIxDnX-)Y6y3pg4M6)ATIMQpXqTsLW#YY55T>+6rd-T<)d`JgNsOQ5@!k(+21PjkduBzJF?D_W=Xse* zsHOm-_y6}l|NGSsoyfU^*ak6b6f{Bf-l0zAqEI2#3NA_(S{`#@GwLrp^G9tfTS90S z?^Y#Hq3>>h+Oi!)%YJs{&nO*1o2%96UkMN10; z3t>*i=$@uZx{3jEJ4AhPkj;hy6>qll#Mc)^3byVe@I!SkjktZ4IT|$4h&0jp1 zKwNzeYaFrB<*=qIO!ZHWSs}$!d=rt?x_pEz=B;_I*{)iJcwuB$-v!6bFDN&NGxi8K zE5(w^?MOv>@n8s=It56VKe!J2P9liRMG1MB%*BDCh$n#+Z31l|Dc3wfM8?YNZvcSY zDOLjrV&Fnqgi_fKWKVFZrwqvhKtio)Miv198CZyg<&1c65OGD^(Ak9Ni7_sUltSI9 zOj&|o2E`g|9F=R@dX1wl#5g*}-hpa&MRAgJj7^E%s4`i1W&KGy7WP?1tl} zkySB~*bWhaxgig@l?CRyoj!kVX?Y7e+PkwspXZchZy83hT8M1cL(^hX$sgRX`oSg& z*ff|47R==+(EPbJP|L?z;4g@$4IoG%<3Pd8I2^3(AVdj7lx1_NeQnwR-aAo|1gd$n zfeZs2te=kSF9K_&Z*lr0$-Nbk;I(1RT7L z?zBNWmK9ldol%BzlqEq8wjz&l0$Mb^KE#SV#^fqkk@mFweGM~JHXzAg8;5>Hywv$+ z(QddoZY|f5!lel_a>(m+mCQ&bn%6_&Duk0ixFvdB{7lYH(ie$9L9&-tu+Wx$W&sH^qTsEUkD+6OPAqCcXlPggF+5@g)bv@CU{38F z`Y*||GvG0?1++{s!X8pu{A3Si6qxXoEK+bI0TEgD!;X)2JGg zd1wA+>S}}LT8|{4j^Ap{i#mKNy`kqg z^R&Wk^XdK`d9=8*)hU10aAe~eL@e4E1C4X>l z?6W9@azI61D7iN!3)sm43R<$~*D;sHYW;Kp1F2t}PP8IzC$>l3A3zh(C<1h}xX#GvdVi7e$)4?&d#- z+Ew<>Y4Guc>;R?BDjc3V$)#v=uL|BPZ;o;;__KVB)GBow=Ab~)F-TC3O1ae=fy(mP zN`cgp*>bU|$U4dP?kD4%6r|cyzHW|tjYiYX>e8oVs)7trJPMRb^_QutN}T#9F>T;JgA#{P zp!DI8pM7bA23Jcsc%Y64I8fo5*etFJk#abQuYj5fi%L*hIgb4eaU>hZ;i>O+%ERAdk zHHA>X;Fb_hZg|^ctk;I)+3qHE?s)Rlq1rq*KGToA>{Btr2@UDa8QcJ&A5h(!r?7Li zHT?&h$(&_oh4gb#i5|cI%JUP?1JH!?9JRUMa61GA4rqtqqBAk00RSSJt3mAm6eyTD zLVJEiE?n$_*`=*Vf-IH*GyU_u5gqi44%Lu(U$>h#~HHG*B^#X9`J`i(R zYbyoB!MV<5!PG7a6kP4%a0pJB(YG*cy9S^=fx;uyp3v9cwjITwIU^plwpFkp>b_Se zOMA(Lr=mORo>{ksQ45M>)}PAX&tk}$XPO}*l0RO|>KC)RQD!x1tXYlY#TT>s#jMU=*^61N zVpi9E`_yjjMORcjbGv%d0=s&(DSuzXOqK2G)cgxKLEZPX9KTMv)^N2dsnLWjpqKp7 z@C$B{X{u1W8kd9%x2yG~O>49=a5VEh$JPZbi~`~0B`7N@sWzvc^8{6zajO=5~PFhYyMz*!=Hu(~`a!BtFR#3PT>b}aRWdUp@aw~Rh zNK?0vX!3`OwQXwDDmYkhdm9H&!Qj?;6RS?Tp_aui5x8?A(0zdVf_u0-!^B04+ExZN z@R1u%pBw?2_*g-r4HVqSZ_mCKW6Jm6m5ARQN71Nm_*SGhDa2sl|}8!z~DXVNch^|P7m*g#=Hb}(Sfw8MW28} zD^%IEEFl$UQ8%F4S-o8nQNlxBfC2J>HSXvdHZ&-3f!oanWnq2bKu$$_SQ1)Yt+8n* z1`-o~+E(RhBNjYBf|MTn;(wu<)=zbAJjcx^bW`HYH!p_;X3bEq9_XE}IhXA;nvR?s|YSSJ7tiNiutFxc(wm>ui>DKM;W8 zhyQ7LGvk#X{E})RnvIpX?dZP@7AvKAacpKE0El9uy5!wEF6aOp1#AkkqH$d@XaC+% zZUPy&xV7n{8RbB2uwbDzjon3Yusm|F4;HlBo=%FPL^`zJ9&TYXDspE}b4TlBec#oF z!t7^Ly7t`oBjm|vBfq$%fe((5-V!KL3$--ZAr&$@20EldEen1pE$%K3O$*Bz@gNN=l`wfxq-}AR zfK>7W`dJzk?$I6dPTpc0M)NJbvN5AJrv#YvD*f|Q`@0zz1Q#+o?hcmIG(AzT#Y`J_ zDt-i}+$CokMJZw;nH^rVh?r&LixyF!bQU)O4{cDeRPqd8Xm$t-Y(*pM-{1)pIDp{l zPZTs*W+MvJ2AJB2TbHMgL*U7c*v(dJKKw2dFk`9v{K=a%7p^|$7gBFUU`3liV~M{9ic_=(m++it6gZ6yAiz1#ZCO}cc&`nhPTr4` zd3oKqEV+@TJG;2mxpBoReVown2$_jWqm|`&5&hrDso(KE+Ye@zXR|`v=$_Tu=F}6Z z;1|`$_?6???uG?8w1Hec&H{e{N@KtQ1o9BBFZ9DBUD_{Ca&17}fP!T&tze-KoU@u* zF595z+CYA$Lct5Ep9jlkL$Zq-G3y2B>FK-Cp*;)=R`J+&^Ra3$Sm`J`Jh@}3i4j*D zVz(GuE;d-jCe>r%#^tps8;?A!i5*dOwf@8h5IQa(>=c+aqDX+fC<=zwefJYA%sb}C zAHdKk4~FK4Ml&-&WVir8VN{jeNEaY@Pyz+c?COF9^Em6MQr87erBz-_8f$F4pPqjY zYJ!P^HwPuEx20>s_M{yE5ZRXxlw6HkoX8u{1x+CkjwRi;E!1=q88hGT{K&B8bE>Yn zmq<1A#&UOg6Sluv`ymgV8`3wWx>a<`pcC2%M^gHiBw(!~b}vV)vD04nC((dv7mTOx zdInRdp)oR~sxZth1-i+u2+murT)_R3Pb{pfXG%S5 zAhC#a>ky8HSiTsxOt?QRq-c+gN|(jtyv zTc+1XxT1??>IKEJ()4i&=vV~>$zGBblScXw3BBhG9bnRT(+G=*P~Ak`TK7>ORE?4{ z*yw{r)gWtROnAmH?CpTk1N&>L-tHEUKK24nw<9g zH<2G%Zcbh7FRzX1BeOwRjNtV_AB_?eq0)bV`SvJSD*5&}fMMuU!UOwT;Vvd}B2c;m z3K+B%zvi-I96VSaJdRIPd&=RUD)e4M0fcpGLUQKQ6k!^#IMazjZgsyP5eEy{EDr@s zm?j|S1=S)KhDQ`ASmQNZ<6qubO&7FZ{RQX_bQCa<_Cz)o|v@Sf} zf%~lB@|}5dk1lBXdf49+P^VrTgFse=WcmmcV8M$;U7P_j2DH^LpzsI1bp-`Xx@G6O z;QbM55>YuLrp=}_16>qlZhSmx=0=qQ%KfEJQ!7O`7geP>?93P!w)S*Eg2yv(LF>($ z1RfPL&38B)e4p`jDfZRSy=k+F~!~Ks0WaI zC2cvOOYAXAht@b^V1Y{w*W%3PBM}+g{gqx8(MKT^GQWKO?SavIGE$ za)V()8U^a}*JVJ+U)n;)6q_5JadDW@fD5B3a3(6|WK+)61xsJZe*^0qhwEYu5yd!2 zx|u_I5}?2?k{dmn0)*#SVxh7JD9}6NKE7tfR{+o^_TFJnCopZWz{PhO{e)UBw$}y_ zW*4=FLE_SY7epdqDVSf_t!tL8A6*(v-FK3O)Dz6^3OmYot7RhdW_}sYMj5 z4X_V;TPoi8{qy=LrVSD>(-+qUXwQ4r$0I7{1ui`zB5MdRTxp3urqo#&te}dm~Q0#{*SIGWY z--0#bRwba+uGZ$SK#B1r|nt~bMk`17o z5`ls`4}4JnqE>BjeQc?bPvA}0^yzI3B+*E~@mPOCBzGs;oTN5xHJ8oS|optd+|X&MVm%tw*TiO5P@wK(s0#;&4+wKGD& zl;^^_z=5oBjgActhcJdj!4l`Lx}aTp`WTU&D)a3Yr$TJclXqQyd5d8wMtLp+dv13g zZ3KkfXk%Oyue~tLC}>Gfa%cp-CCh^LWx%zyhUc*&7x&l33G|Uo z_SDn`&b9*3%`_-rmrt1^0pM^NS{p0EO%ELBJFB%mdl=NTu`QN&+)bC=?k+Fm;qS1^ ze3)Y8?T&W+cUfUyTzCK4*xuJ>Q2UlO{AX>mrmm63{<~{1|KQ`w{zd(&bBEY$E=rgk}3KyTV>F78_o$omhduaQr(L(`L<> zh6N|gK_aeDIMeP)!YH7?30uyN;C+#=asT$;b_|6Qf4RTl?XK4>r$H_v!nv2POp^l? zcl?H&5uoA@nf_$-9@HZbH37KQfdVIGwk~ksE{Zr}g3{kmpr`}v-+}fj3LNl21bKCn zKK7822YuTeR9lMz1q=$eg=El9n%Doj{EjP^nDJg4G2J64yilg1XdoRPgHp z2Ul*mV+5w$bO8f}3!dyr1-@VE(aca>Zw-y22Bs{Yvamt9Pp_bw5VbfS>-h!3kGM?< zIds55;&(>z$9V86WNMz7*01?(m(*7#K^$p%BO*!Gbu;`Fmsq5q->=u{hF%H>6}ix@0LhXYt&Z zctGRuC2q6rUb^N}+``HKPOer`_8Z{^*LoN!XT)@c)BB&~@!k(+fG{M((dmL?LrDv{ zfZ)bwG2r{RR%koUyR*x{v0O=!y_Lq?Qn)bIw6x9*a5(u479Vvai^l|Gp;V5EZKvVxrJonoPse$VVof(?AiGl|$XET1XE$k7c6sdf)%Dsf(TX+nkZDTr`t_XexFMbM9XBD8asVcXs*0U_eqhHx zr{moI@eGE`qcVCehi@`#SxUCv;2?)Nw=p{?zJjX3mL{k!aKNNVTtgFJdu&Vh$2&UKOXGb9Msl0E2nbO*w^faq%ig6smN3(^MG zN2?w9%YHT>Jd@pWo&OLcbXM^-_J$Slw6?WR8A>G1u|HEIKc60R?CKU40=TzAgFFy> z6S2rEg%J4$uZ*0NV87wqUSGs1iS7y6D~ro)jDJyNQGU?jI>BPFRh=i!1BX713^L@r z#52PVUn+{JrUJN$?_yKGU}qipG++F5LQWxtu1@OAjFQ2^I-Qx*Ty>~&%T&4hlD*?u z%g6#5ypOTmG4?&+0{=o*1=*B5EJMSvxTJ7NL=2aTNw#)b62#Pa;90IHCJLiqV@I2S z-PO%Ru{e4LC=Oiv16_c!>xGX7uzmuc7=NO_uQs-THPOR>QfSVE!Xw17RD<+~78g2Z|lJ2Mi1ymJ)9*(3ErK-Uo?QE6Kn(2a07w%jnA5&#X= zEqQ;FYugH-@CpV}_OnuUQ!}4#NF(6aT<|VAvl)*L#0EaM>RE!8C`#O2zfdsy`W=(= z!~+*aZsBq7A})_eC?DstSBGG23)wV=0+&w}nXi&azNC8xJrO>UrKDv~Ig}GiL7wa3DQ-hI} z-_uo4w7febcf>n00xpV!&$H23=E>weKNC|-ydu+QM1EHV5HdQQ_k0!zDb5;|v9?}( z*{puhDbue)rXX1!jnrjzWV3Z~b?X|l*?7pgQQ2%VDSoFXax58!;y9b_k8d}ZSJzUA zNadLQR(9HaKb2yZdMP_?zAraVreTyi7fO7WfBeHh@$dG<1|pv=ftTv?@3blK14)b{ z7(jKWzyr4>7h3AQC1B}ohBSQl+qltBH>`JeHQX`0q-9#8I{whfy{xEL?B>oLE;RYzHIZJjxGVlur zKa^Lfay(#~BMKHY%@GBRJlJHdt*Vg)Z1lluYAf6Ja0j~@OB*a-8*6}K?LhMg{0AvJ((b_1uzKIo7G5L^=)ZfELRm(ESb zyFj1of(ERyLBYCyu$WkHDA7>ts8uqu>^*Hn)5iDVW*QQ0wv4t0-r3JOGwPYLKJI}` zvZUIMxz9{LFc-C8a`l=H!lwnKhj(!`*671n6A_KvtF4u?=$7H&mg7JSoAYK)g)L`{ z+?R4HZ1Wp=uo>ommtSGaK=JP+Vc~)nCH(Yh$D9!lVycJYxR9k!T-KiIzENi^weB+b z$eM=ocf35d1=-7MKYVxA@Acxcq4?2^1+&MkIX~;^7IoaoLCBTA38>^`@l1)+(qrs> z?ol3&u@ejF7I0?y*eTYH1znw|(5MA=-qyIhp_FI$@dxHWl2-46*}lmU8^zf8eiEqp zCqim7$OmP`5~WriGV9zS;uh2fpw;4 zAr(x~^1J5=fEUtUil(moB_Eu+e;PdZg{P{BT$$a8Fa7#6w^3Mf3~z)Kr_(%G+b4dt z9$7U*{MFofAhYe4SHyLHvp6hf=N!P=4#ZEA^S)+FNsPt7QkNiJf5*J$FYyEDZ$6tX zKg727|KeX>`R-=r?R}s4!1F(Su)LX^g6IEt{MU94TeST>aAxeE3;LUmA!a^|yZ$6T zoy4|o;?v$XuP6ENNb1Vu!{#_HIoX39vBS(mllH(OTkY9Dpo zt^bk^U{?nFhft=sQogzV9r6_0%2U=zy{SCX<@se6aDFyNufh2&8ymD_J|Zc%PJx(< zcV}YsE@q?sn?*N91DqJ7bF70&d%W6%vXvqCMlKpLA9zKm4`a?g|2S(!r@)g%TMnCp z>a%@6*&dg~8IgMzn1H9TT1$7q}6OSZ_(r-(mW+jh;paY`v+ey&E3`U!O z-;yY#$$9xUpdKH$V(ImunvyD94q~!K=RZ&27#&J6?$|X%kic6`ucoR*=qgBs+um^Ln?k!A0Jv-lWcW(Z27aR6CMs=a(n+h1Ft+Izf`2EN9P!rcU;m8~@b@ zZ$g4#F8|FLa>K!G8VS70D=#9kStp#F1ICb1oz_(MK@oig;<8HTpAxYw%r^so94LlU zS```35re4G<2)Bu>t+zEMD@o1ABK+-yDhK2d9kOKLb8lUM1THM^saYmmKT#&dcgA4%0(P1NGG7*)eVyDArLa8fTwtrb$BX;S9*9B;HcG8e4 zk%AZgqL?m-cQ2sG+L(hvJ8(5=O-Q0HqT1Avk;G7o{gIhDkgEl%-$SXY4d>fdE!7|n zxP=P18#Idi1tC~SU!Lp*UeQXX4=u5hM}>%iuBkFaS{k-FZk#5ki@31hrgU2PFkmVt z;!{duEJyATk;us348neA2$~+m9#wtlzGZ*_sbmPZo`>ka?R}=IEO2+mJ>%3UK%7vD z8dlO3LBF(Cj3un}`A>k@p;&+<{H8YSW_tAs?>kyYLYuV1TzQkz&M@{QkDJAi&VRjC z)1T}i7F*|^5<&K%w~EGO&vffXw$nTCLKaMDpjV1%&!D9M86Nyt+=*F)z#)zk7Fu+e zRu2XmeE|y*vya6<0g(7)Oz~8`nUIzCP<`5CkrH=~u{qqW?+t|-nlm{gpXWpY zBH~T68d{={FFR(`8B}gYJG40dg$35ymk`rU3#6cy@{~aYBhQ$bJJ8ITj+8 zO)v+;l8Fp6Q9@O{XPRXEI@rw~C67osL0p-z zd?jqYf(IXxb{t1-+G~1Mo}M5~CVKVJKB1*8&&sB#53+fonG%C+%`{Pv#BiWCkD~2r znBAYxS{+aKtmfD0T10Jr0;_J=8?lTm*3Jh{=WSadF|6qix+SYmw*I)`;HF&9kd<0{ z#8X8Q{Bq4H4mE3$kmv9^jk$yFnxGD3B1rP z;VJXHFh!&odn?Ldv9-)e_-PTLD#e1hwUWs~TkTz`9J}GX8ctLf`%Q~aC7f2*bg?z- zB%&0^ThXzlVG=7Fr>MD!P;5%gTF&SGl=7Iov|L_Zs;m_~dP1c7RC_TaN=w)&w_(3T z+;pBP^y{wd+v8H+nR0Rc8k@XaI`gq3$th6Ab~RfH3QMzIcfX4OIUd{zqcW=nhbh== zF)Z%k+r)=bhMHXCgE3Xsn0v+RVDz z)sgkB^`ADojDdCVzLv&L{tA6!A0Xe_dcYoOqJS&?@x5!zh#nKhlE*Wr zOsO0HL88T;SRn-2>&~HAGehK0H1b6Yamvz+^hh+sp^fpbd7MV^PJa0mtECol%(${; zH2qY!>dBYLV8veN4@l**(DlFL{U!$5%dgEDYx3wwx!nED=5xf|Jf>6FNdZ$vELYJb z%eB^Tv;3%vmXv=10pH9o55-^~q&d)xcP?Si+1#+MEbpAfO5~>%v{2HD4{Uuc zN=!6mH)p?(2k696S%n73A!c(S?L(K%!g%Js7WP^nfa4iJ+hJYjN+i+)^g_0?9^iSI zO2@-RkN06rtWbu^Ec5T%Bl%(f+>{|zI;@Yn&Agop8VjB}wMT@!2~JEbfXm_eJKCN1 z^hM;@Z1D;Xtc$^YfuTdhzqKMV%OS8%cfY~x{1^!nosu_+t3y~RUjx$rlx;Ak8w@jX zj{tpVEmFxOO}lL`g~pEcT5|FqdXM_$(WtIsIZaNOZRO>CPl*r88}%^bzHJ}BAj27H zoe7Cv4lftJC)dkY*cZo{!y^qV;*VngFM=p8I0n{17Ha@%PM9VbeK2gz_u4Rm?{xZ? z!{^8rC=^600l!vP;N4<6z%E{CHQ=74p5??zqFuA;kERXnyX5s)IW_8<&Zsf@*V#&L zTbV%yt>E0Yc5s&aN9|e7EmX_!PE8#oN!Hn4k4&{mAAX@ad>8 zM*-gjhQUeo*_0ZxyYjWz7PtL_ZK2WF$C2#qW(ia95(hcXnK`7u(X&!6QP?)k0b@I> zov_?H-E)Dn2{I$+8)}nn_^wTPGbg$Cdc=4i*6^$NndewmJ!LH1Hm_+{nxwf*7dg53 zxhB!)kfnj*)M$tc>f1J#qL`%qVkuyOwNA)VASx?faToRsw0-8xU!?qa$Q!`Nff$ZJ z$z?IIaAz`ohK;bz`JX7#Ce_R4(KC?~GTYvypgwYDwtciilf-Dj^u{?~8A+5AxmL2B z9>WpS8-E|`&ukdQ_cK)MdH?R%;$t|T}4 zf>QZ{=+k-!3sMb#vSYQYZ(P(r5nR5%-C~bwSBc4uX2cowSz3`Q6(qQDq1p1jt7p$2 z$PLpn_4xOj&J1B${xaDsVJS3pobX~zB0>wA`41)QPCCR1mzsMVK6A$$tVAN)U^8`| z+qiHYf!AeRIgjL`w>TG8=^n+4vD!FXzcaNoX3U5{vldeLO#9zWoZC`%(T<~%d2B_2a19nZa*YJ?SB_!L%7qJA7teTs2>S07hu;7fw2@BEiKYo@kPPzx3L4~)9f(I7 z_nBJtsY?LSiSJa}FOL5MP*X$y0@SyzZ0>{>gSdO11!SdRPP2P6LnVuTEnmJJjh&#l zS6gcY)yeXSLT`+O9oO-g@**eJ^2Njhjs2rLKd&y1?!QFv#tlB-&SxQnUm;lUMpX$3 zMb#WlT-?u~)ah4Lkjrire6x!4>kpL&UE6P$Gl1b~krF8URgg#{$*}Cb+YLBVAQZ^= z%VY$N;raXXj3WxNxKFv`@c*NWi9-Z&^FWP9M%l73pF*$a5ON^TfP7AFG;N$+yofc;m&Rj+8ydfssJ7fX+(PPyf}1f#BrC@jkfRt$ z#~$DJIZ`%ioeSyDCfO`q9ME$!hSkw@?|y|HPq-Owh2zVWUeYh~v&ps7ya&t}lZ5^d zf@ik56;R#50SOPOE&bV6XmLf6t=@d$3ZT6Gj=pJ&ZE5b&m+#iBpo<_0$GIL<^H#pq zX|s?8s84!j26%9RN?9SW5w&KW!C*NrVbqrgfs-#R1)JS{5<@{9>wc+WU+Zbb6$40cri zP0`pXFcx=vd@4<-Iodf^m;D1!`_y0k_$wz1nD+-oVmO=KBA$atB4lzp#T+=@)bNGW z;mPjsg{#LzYvBp$tpE7K>VrBml@wFDFTEQS{aPDA0b#a)9GCS^~OWt&SmpgzL7LLI3c<591k{Ohx&B3oF6A$0T$inIoQau9-lvzU7U9}v>ZbB+> zP{;x|dB0OMJ1c4+j&KS;`C9QIx>yL9{*bUQKvO{!dIanO0)c%l3VtdpHN@Rb2SNV9 zPs1&aJJcsxP7@uRRU>MI8B%(sT;g)B;mr1e8aD^>h%8abk?*s31U!Zn^u~XBRmOCM zcCw4wiE&-zt2zj8Yy%Q+Y@3Suw?g019EZM3Nj{3md?>K|S4H^BA!70D-K~Y`InB>& zeS&%Gr4TXx7P*8p5FSZq%Byzx-ZKrI_Y5-8(i53Y0GZ(>(Nm&S6j_ztF11;y>m@Hv z#I_lbX*{bw{RUauC%oMv)}2;jnwka6Zy&)NO{hjf`czuKC11+6BfWT+rJm^pt#sS9 zW$m?e{WXci&SB<&`=V6E^b*l<(G`=7@rWR@%#!xf(d3_t#2I?fqJH^xsM@g$o80ue zF-?T|Id8YD_FUDU!*SH9Ow4p%1?V)lNVBylA+e)cnPnm&oYdjX`tr4|f8KAS!z_cXA;?%vjHPL5bx;YI;bOH0OPZH`*`%j4!b>n} zk)!8=T@oaev6(CaYHkM@4VAs_5p&T|Yv2DP(ST`nFO;;W-X(bjPqoCt z)MfmcEL3S6R6cGHMwkl4xaK7(b`AoFT@AK8se<($HrE2tfTYi>iYTo-7zBP8cje>DIJniSf?8@ zTs*SP@-p-~b^s0e^@8!a-|zK%qBNvj3PZYW+3E8yzBkt7ej8$*^4kV1og_xFj*)Nb zXJqliCVmc`xKOtgE$4_Rc~{@uR2eaE^w|x=&!f=yh_G1WJ(;W50Ne*TAHKKG*J+5% z*m~?6o2n?e=}KUXUyh#c_6QyC*6g#Y1ep~XNbtr3W61)2ffjo>U8i0@@8ek#Ans#` z=vb)(_piU&AT{l|O7)4h6J95%Hpk9sgCjbvSlp+}CzVb!d0?y-kU!95^&SD&7&vnB z=?XzR(6n!w0nN~Dv#64l&dlj|I-0XYGf#E0wJ#hw9XyN^;YLi1D`pGdxwVS{+=6?0 z9~Bu#_veo9x2NPLdqeC3K*NH20iDAB#8ZR}Kr753`a=3&8Y$YlttMH6uozZGEG#ix z=FFkClW&Mqi6-fPF@Li5VPUP&$hV!w-SDBaWp&IzUQd6QcqLM| z*5o=$w>yx^t%XK!4z486zV5XN`vHAUX%Z-{Nn|oHZ-w?;l|r%49T0>o1YuO!8SD%; znT;0M{r&Foaq0-U?NJCdoew2=GNA@uqe^&+R6+~WqG7torIHDn?9)Goh+5@VTBqqM z+h;o`nke6IyO!rQa3kE%4leQ2Rh(S5OvkAsB?M;jzNo(L)2I*yV?`_GRkVgtGAaTo z+g}myl2p+y^50SiYOoDPElUYvVg8U3Eyj<#O{-c6AnZOGaz@t98txh`mH?cT)xKW4 z3e&`f2~@DiiorX-1{b6KTd&H6**LF;cZFSmVC=aTLArPxEhYCIK;3R_cwjiV)j3r; zv@~5!1TbI9O7-JN2?Etu-C1OrtietBlp@4En9pUb^*Qh0PKVC6xzL8xHe-~Al#aj6 z7$3XSH6_cv`4KQ*D`cP_hzjI0P$+{r+Tq98k69A7+jD5*p&GkpIt)v#$aqV!^*CU` zyD7fB_f*;URJ4KnGfRc;RKvQL(vQVX;X74Lpq=cGw4fG`*=qBqnn7#if$ld{bhlz_L!q2o!6ewvZzzZdW;~pi(Z)^mZo}_Z~|?j z)zQykpCbIS5VK-odOLD#-_ut+G!oxOS!)W+?S+b1bG=9H7L!qDk#ODx0wdwmJR&ZS z#tsf-PgeyyvPkucHDX*=SRwYLC=TC|KDnWPv79H?c<{fO5-|h&YRPdBw0yE`7{yZ> zYJy}1aA?yZ#C-@GWM#ni!==q|Xjdh_4msjkM@k{-87!XNCXp>jf?;O)X^yOLBS%!V zc9tW-MHoLUP!q%aF>N561#>mo6Vy4*jmi^PJQAfPs@v-(mF1X(myxZmimS|&6K2XQ zPIduE37=$TS~Cp>z(flNZJQEP`cEJ1#+W+7!U2s4O7G zpa*$RR%&V7t?v2rnXUF$_vUO!;Y`%_6id^uW5tLmR!$Aw6+3`0XZuSKwA$ss{g2Fb zjln&-_x!yl{T;gFR5|f6V*k>P-fSCm*|EylkY`1l8sQ8Ny5>MG^sO<4{%GH`|5)v` zuUYu+L#4)kt(9A=+F9OGM}_H~Gm#X$bR1s;j2J@kkt&GO29GnXKizQhu?Zpl8Ive@ zqQ8=~QPTbxcBeB2$j>l?Gm6gK;T{?CcOq=~zAf;T3!(lG(fdskx_(n zJw2_mOPhs3LT$!?5-EidihvN%u!|?E@}CV?ExQ)Wie7z65JQs-Bg-YDBf&#cTfEtT zT*uh+X93vz?_{J052(LlRIW$XHPil?(Cv%lEwF;+2m)DFx!}O&3`ITe&C z>hRhUI}?iIx~56yi7y;{yiN+aU_mQflVixvV!Ks=kcqjp*rkhXsxjOMgcgE36vkLd zS=J#?YS89Em797^k+F1E9T4tuOxPeu58cy z(gI&Xe1qbIyw%M`-RBiCX4~ffbVM5_t%aSLDor#|J*|F=s);;irDi86@uO5043kb*aY6H&AilN}b>j zyA9wz_dpp_eUeefs|HE`vlauVw6O|BaNRl;K}&pA5t9^B(}OWyGf$ha(0IKpR2g*@ z{;$g3jHMD`yb{qAV^Wrow@DU(-5bc z)KZ$rc}BHD|5)3-Vz}BPCnV3~W$LH`D9%+vja5cT==>}^45VLa!i6n%IESlMBuFNo z6Sczp-soH^5)%Ohzx+2smBai?N-G2c=%yWh{tRr3%f=3+^wVD23%5&`$~ice%?b5{ zx^t5FVSJu$bEoyi_n&v*DIfoX;x={M)KzCAR;oDjR9`RA=54KO2RviFwYJWmYsH%h z3HvN^;DK1U9#KFlS19zTgT=9}aRtX@Njc2SVQ1e+TYu7aQc+#o^!s;~*VC4;RCR=; zL$lw`z2kX^T^|#@kL8|5s$qyCE&E4jB*{Zc$geQ7lj zoNaK95@h|lX%-y)Dh{R($nMf#JOK6*Mnh0mLxCh#N*?;zeo31|x z7AY#ZaGzMrM>YA$PauG^bA#%B`k6pX?wd7>MOd(-5m<06+eCZV`jFHyCOCPI)Vm4# zgA1aGFE{_Ku_T4SwEZx*NW5O=0HiSMn8A3!k3BD{RshOvGGwUZNS_dxbS$H(hKOMu zrClEZnNIH(03(`+Gt9deEgxQ@U>o^6k5`)>GJuuQ-kg>KMc*YKzUTsce@TF>?A}*X zcg@!UNWctm`4e5~Jka7h5?(wkb@=i+yjcagnM=K7$MQWO7pkp2Jc%YWK3@eZz*#P{ zPid%Ri=!{ev+r4$tZ4<6^CfPTb2=}O4(zppWzEo%l0}aX&)Leh&#TTtAy_3e#bb0E z3d|*!!W}P>Bbats^ef7f22Q^7_Jq2ZXqiMwp?jST3SX)GZkxoZ`i;3dohBK?{!Mzgg^438qr}Awq zuvIOqn#U1ZPOz4!VKTWJxBlxUaAe)p#XbY$RqCoUette4c+Jj!4`)#4(Z5rM1M}ta z@SCq5g3iGO`_c^^u>aID{M;_DzFG9>#y$hs^i(J7iH^-0jq8(8h7yBTcCl$zjrehA zxomr+q`ZYyb2XTSbMqib|)LO;-g3qoDLVEP_2X`#fK3f@3 z-i9okF18~deQqjb1RC&8?y&)RxQ6EktcAB;J(B{({4%#59KX{?G~IiX@trSs3Kybh zJUKojUMK8ZJ5RGnd*Vb7#`w9T2iW1zFN=Ndvv3MW#wa;UgQn0txzRXQ7wDtj4%YZ# zyqjZ&3I~rucx@FaQbPh|(P%LR7zZ+c(5D;K;V-w+!9waq3*L*7ikmenZ7dl~M*=Q% z)4TVAn5{O7`Bno(o(d`-79H`$g_O7XA))-uwqRN(vJojTd%j)r0uO;AqfGeDi`hV} zxYV@dQ4zM$l>z{3>0PAt)&Q`#e{RNHL!`4q7y_@jJ4&r{dQDPP*WQeor8+U1oP65; z?}@0otDEk04?5a`TIgOVUh^Q6DX{SGeBAUEa7(jiu12f3-YoXGTpfYd&=faRymWLz+{G&hI*n`mNqC%$4tUz!u6 zU^S}qPrXv7%QiT!zRfg{JMvPSIf%;OiXKTr8B(Q*{y(QrKcb#;kSvj-e@P`tAwUe8 zCVpH)^ERQHGy4Hy5tU)ce4!8N`eGPV+LMYA+@$H%37sd)B~VmG@+uzlng+@xW&_H} z<3$PBK8fUtml!LZCrst|wUY^=dlLi*eUvMh4aBWA*mwdg;Lwt%-MbKpL8|*M##EDu zx?1JBn9Ya0tk|Hv3z5)P>auYQN_`8^hgh|l)Oq8Z9+~}cwto#99A5lmmMcRbAT3vI zs#H5z;-djjZ1{0K^%9TE`%d|#cTSf{VUyP&a#I+sf)IbEJFzrCrvN@?T@-sdyHXbR z>y2rvIX@XC&{yo>J-Q|$Mi}nW6>2i3K8eeQC-nD3kzI@Vly^|4Txt(Wk#{KL{tD*X zIcOwUM10qkDOahOjjq7A-tWhCggjr;TVjMRL&8t3Jp1g4O0B#Xc*}6j4_1Sj<3s@BrW4|}^#1(ADmFE{f{1hm>MgADi=IRum ze*Vw_lAbP1oIE%-F0n$$Z2^%Wpv$sr|DwGOU_wqIk0OXaho}f({Tt51`MEuLV^8HT zooCg!z&qGq>R$Zs3RrJJAS5#9-1eyOsDRqH7Bl4xO_M{=-q+Fb31QyCQkzA{-@C0V z0lZ>y+gm!k#^Q=C8;S37?fL_{Y1(n0hkoa-n(goR98+a<=Lpu&zxFZ&x|8|Z$}3Uj zhGiN}SAf(F8)xPC#GlJ9JQ2^?i$2nzjPeL zD729=o*-IqZj^IOd<=aenG#xnqf4?bnqSaD;L&R)X%$3PJ3mZrSpy1G9M#q^kA&8+UnbDk9}MClmSh zcZPs>%IUzyHej857&3XkB>kz}JUse5`P=~mp}D&{8J$9kaeTc}hzir=xud-~q~w^x z)g}vWs+Ng4F|Zyrwjyy2S9IBoZ&vgDz)SrHG%idv`rA4{vy$Uz1T30X0?s+08v@w- zo*>hkInj}^=D1$!mw7lWo4KagSlp8v$l+9H7V+($h$47i@CLgVI6Xb@ZCu1V2+80- z*Gw@jYz1H5BGWYTJJ(FivssxU9GU@d@tbTqUw-|)b$Ymi;s)7{R^nbjf+6He$?{$y z1d|cVmhG_tC2S(=^T>E%)vO}v>G=5>S2tBuFW!$|2UbEmEH!U~CS#Fv9q3@rmj=A_ zBBLx%Q8wI%BCM6&n>dkfgpZbNTx8Isc&0}WE|Y8=4>!tHChE_Al|IUC{}6?4ge&W_ zdF0fNz697B;MGMG(zjRfJP+J%q>1dvaN)*{#G^mZd!YR#Gq!Wq&z^-Zgo!VCb@c4m zrgMAs@bz^5vT;YALg)`zzq@ZsTHr~k?#Acbp|`l*WDLk9%PT9t;lsa5i@sROiFdWh ztfQE*W&7k7VX{wbHEa;3VtCkRwK#?ONsixBbv?YKw9^tIzM|d*4{UPlZo+W4#?uj) zZL2MEzc52kz!U~)jT?tpw1g|CU*Gnt55QD?ezrD@!lm`84by$wrXRH#47W2dAipP5 zI6eW?TeU23uWrF}Xw>8&9C2`vule*3ShCjDcaSGEq-%2v5vR2Q?!Z;oT)~D(NaJ~b zOc##jK3vp=foSUYFcel35DR|QT9#>NtoFx$38$l-4GOKSr|CC+(>jC|)vIhLXT&P# zlbiHb=elBEVCdn*)O{z!{}bkW1o)!CYfD?%Z?)YahwcB5*85e` zTVGEwbtkydI=Mzb7sT88Z;OzF%BDWt4~#L{#Hu(>2t2)=hq`4Gs5K)wj4k7i(cA9W zEpTujcb3-j^a8mO+*{QjUq~f4cCKW{8j zt)Jz39Qkn1llQ=JN-v(TORLUFuC5gl-s`~_{{VXPUYDPOJ%x!uU*eT zB>B9DWB$g|yMzZui2|9Z5Lr&xySfAT_tQwOs=v);eM|B7in68SvSP;!1(;JOiom&x z1T=|*E9!ZLj)QS(5wo=%zkJ$tQvW01Z_3T%BX-;hE17w>cs7h)Y5Y!(>gtX|h#1d+ z$+yILzxlMj)nI&PyWt)y-|rmy0Grc#qhi&1(0rrX3m*WY-|SDp)xV73mwrN&GI0|d z3$%7g6+-GWpIzqteTEs(4MGktKvuiz^NuBMWq-pyf;?8!I8KW=ZFlmy^ghb&Qopl9 zF)m70J{oX$F(z*lp)TYYO!tVVUoOEnRJh%DhFT^bT zoov?w+3AJ6;Yb5G+Na4_Uqt2X`?msLF4mczevZYyz!CUdn`@gNRij&qQXw>1g!7L* zW;DDG`hXnb8RU37ehNgzdUCqsUX)@R$Y?{>>kp^V7%{%R!F)tw9oi_bO9LeOW5!he z{vfa!XgkAsQ#jO+G_g0t)Uxf>uMf`Y%P(rUZ)zkNPh*!DDtLc*HtVWcoOs z-gT|qB#X|V-+-CZw`jffKf?wZZ*sKqjBFq%TtK)2owrpAM)e@@lTcxRQg+zfqGFoa zo8ly$cO+5lsD`g${kq2!?p5N~lgo&80JVoe3mo?)c=*bJ6-)(laXioE@X6yt-=k3v zG87nS1iJO50*e|}P`wNMnducMXb}FwdKf1YAS&Hbd66%AUQ1H^Da`4B18BMF0uPs0 z@#sf-up|_Omc4PBLj+`0>r{~$4pXBQVZOe@sM6SUBF&HWf*>ca&nLWpLy#g~(;kex^w zRzc(U>3x!NXOc{64wV{#%Ppd5(i3SO6Wgwyi^=PbCcKt|~Q(mRPM1K%XCQC?2jmw#x#*mbR5seY_ z`b>iu3?PGdsyti~Ry_)5nrOeeOBV{d-55V|$O+#^Ed6^aR6wjLv;xBi6#tJyQu4{* zp)f{NA+L8k7SO9!20EVY>EB12A;R|wqM2z0?2tY3(sN}KGLf?JKcvUlsmR#M9B2_> zG)W$X_fkd#fNfF1C+d8xCn z;G^bVR<+<+IS`}{en5zD%K;d3b;{`g z%uj(JAuwH5qjB+#vi@csy%7Xj$(fZH-g0x*AXFM6IaU&Wkv5~~8J{Mo_?>E?Ofb)_ z(TWs%5Lu%aH;%&ZM3{7_5z6Li_Ld2;<>O1Y8_QD|0AX_yOu+Y=@9=2$JeED={L!z~ zef{jZSk_PCGhBD-B3SZ7&Fkky{qp&E7qe_onD_f>Skdvu!mn=R9m&{g-{zDUd&mR00Ms}rEjr;H27|?(}XhkuTEv_(Aj;3#AyjASdZsaB?T`!X*mopG1^Q$60WcW#`%WIY2XkW z^n!X?;m)$PD~yo`Os}xm2t@`4faq%@&B{x`u4onr5$oG$b>hgr^3k{55?FFkY`Uay zR8mIst;yk3?u7yy!R|F+=kYwBAOkhB8Wx&ZZRQUF~wUy-H2rWj>V z@9o6xnQQ0W*8OrlX!-*Prtdo0P1jgqxC|B89H_dke~|;LHn^*nocFi(sD8M+Ay0&; z{Hl=a!8LU+vF|pDNW@|KS9e^+#RPf?buB+J3a5Bi*$|pkF(ctqX4IF zA3}MliZ^M~EodMKwF-E-%6Xei()61KP_v!v6i3gGy@aD6syYpB{#;(j7d|o;~8zuBY3=on|bSRwJ9dtI0WiBba5B_I@Mp`H> zCA=XkOFb&uspgO8m%M;vV{CcIBk@!7bxGWuX{rt> z8FsvZu^7r|NKXS9pfS_aInIt$!+Q?GF~{%hV?qG2CLf^b?d zW+Bx4C?VH$`)TnxYb-%=eKAAqHCy`Z@?Cv(&sHpmazXsJzZq3OK6%4$lmW^#k=so#L>cF??{z6)6R1h zv-62Kv`jD!64-X^e3@K~=M*t6FO9&^a|3(!KLSR9^M1$8L>o~2l^a~g^82?Wf0gYr zX>*3Q)6LUq>PF?95VP`uGTnQfCFxISHa0={l6V@;a^-f883Ti7D6#615|wBm&smDz zVMs>}G!MmunrbAxP|9X*Zg#ppUYc0kW+NG;*qN`Q(B8{dAej?poExDCg67g9>=^O- z+h^4Uze5ZQ8-mPh47~RP!)kk3J-Y}0Q$n>#JBa6iPWG2S z@`_al)#fzsYyGsSzFQm_k^GT1dt*R0Py$2|F5sXY)MDW5yaq^@^N3ey75RF7`<(N zs`|w7%1$w~<^&pL1UvD5GC&Z3KMXy*aVQc}N6%~p70&fcl)zY9T(Q>+JHPtvEw(nc zIbYm3F_~M>Z^CJlv^lUFOEz6=Iy^nE8Tuo2a7ZKzK16)k}{+id!merB^(YwW`rUWv|_>%G;5&a!^V;cRXfQMT;0rJD~Tm; z#a+%k`p_L_UbC&K(mzxI*%*Mq7tR*#i&EQ-5(^;Q<;5+y@WQ|s=u1vdxX`LCHKJlB zm2~k&A5M~DCmqnLm1pIyy_dSh0J=%6Yr9?=#`rsQ5~n>QZ3u(Yd+3gODaYgm*VHN_ z?&+LU3Q{%QE>@t=j3tr@Np!(HuryasR0Ye;q`eb@sAM38nXpT#v|WN$y_a=|LKOPK zv|y0ze&yvNwEv$!00@XaG_SRYkgiA8bQ3V&kk#5qd9?3e+_-4&9_uUcF*o8_$3#{W&S!@?WNf!yn^)U_36QS;HOi}22V4wi zI**XAWA=OuD0`HveUw8r_Y`$N7ZV3<89R)m!+6NA9j4YtXXFh{L0vb|^Il5Lt^JGP z1(y$bUltagj5qWd|>YfKe!=v+M-jh2;4L6O!AdYy!_4^Isy?7#1{xJQzw$4-a< z;ujyBSw*BrkCZ|$-zkc!OE$iWqt-})L{_njkwJ%SEW``r!>mg%9tMC+HeRhslH_cz z9n{9(Xx2(oKo?;|Gle-ohlEycFh}-LFE)&kW;=s~@aqk%>qSUl7-{fY{Qj5U&P>>d z7Ufa=bkx23HJkzL*e`*}^L`M<+Rd?}heO8o<7i^(+Qh+|GxpJ3J%dgY91Fwdc_~%f zU%g8YO3gmi%)fyXTByuV{Xr|Pm7Lq|FTy1)%^<06!k8O;8*nz%-#%KWinvnbp|bkt7yiJGnj|d<nSlw9(jG(ntAxMWbw3;2$eZO-wZkCqsK@yhsvO3=*IKDBR$ZbRAad>K8s?Q`9o66$JOK^$g#S=BWBRsGc=S9hAS!l#3rW-JU0URkNEUd5m zXkY~eoHYN{rT!0Ah1#*V7G?^u@}Uqq&40$QW}QAujSXlm{Spc;89~ z2^tS#gCY-jA2iEwro?|n(?X`3G@@4I6tWaah%#OzDh6>-C$KAE7su6blwr zJ$(d-vy+CQQ-WL>^oFRQTQQ=6&Vd(jvOjfO#|?>{_JsHSHXm9&jr@$_D+ARWe<$Lz z!$x(TFY5K-98Om6|Dr#Y_iDp8JaeiQ+9})6;yiG@UhY`gm}#>>M|n03o?z;(MH;0} z8$tuEMPbUsd8;=RX`F7VDDf*%Fj&>r=NoR$E~hM_ea4?aIu9cbIKO;05)#>zo=N3o z9PaH}C;)1L+>9iDuV;Oh!IXcWgxV%!JeVWtgzYF35x5>?t%e#7YQhaRR2(4_+sj7f zawrXY)_-^|sg;zttl9K3$ESAbJ)uW0BF;AGu8CZI%{24E96%pnDnO^rAcK4yR5M9Q zBV~Y6LopGLcdR;x=E1~P0*_ZtBNbl8Dx@=I;tg>x#f~>nrw2wyO_J6-rIMV?NHe8~ zAk)T0tEIw%6iH!9EHKyv+(lu1trC2@XBjTo{b*c6udP$4jJYZK3n7Wit}GDj!nyN4 z&muxHMkA`221Cl~r9n~Meo&5^bv1I$H!)-Lc7N{(;-Y&{f5$e;mXJt?VN43_)i2gd zVI!98-A6$H-qzL{6uplYCf|4H1fmR@h|IY~;q8w>O}dAzKowiavCi|>?9R3=5{is0 z1+hF^P++gCM@8`wU{EW`P*hA1NK_goEC42)f}9xuBf-Son$dqpQ8#$CvAxOO$S$n3 z8o^+PkK!YG37m>@t0y{Cm2qrN8K*Mq=|^KtP5%wx@$>m z6qKOlsmL$uA1#PN6*49M_4&l?gmj;s*SYrm6Q zP`eOrm9B#-qo~cObi};0sy~*>#BdC<;!zNQewLpORazeNp_bD6W|xwT>fPqSoKwJ{ zdN}T-h(H}aWi=p04@TPrqRWQg`WVX+ayW5~QJKi`8=`O2_Ha~>QEz2h=-MrpJvn`! z=aSrB4nA}pQa!?<1c+~~;ccxD+-$&f3oGwJdwEb2>3Bdyz^Vqz015&I%8>lRx`-<2 z_>FLOv!^qls{R$CQIDo0upd1Lo6;Z#{1YU-gz11b6>g~QUGa_x$PSlsRMvGFUd4Mg zF}ZE(z`_SkMGI`Oo;|JHm1d+o&5m0|*g@Z6FcA#(mSc{+cydy@70eDn z82#izYwuP{s3UnDcQKC`iQ{SxgCZ$kn3zQe$MS`Pp8Qil2M4lb(p|6@2_jI8E*Ysl zcSp@gjgGR-g}b+jF2#rk?8<5Zb(1;BvRu-ukEFVUvX%C>slp80%R}{=ArQ?MIQ$+; zM_^KB<>GCp~9hwZJp%tlWvG^F^N}lX`J=>L zzhOntB^d-SSEYaarFU%m{!xN1zlI0C$#~E~srhoA;!0pw(NE(T$}bFqBJ==#GlZ2iEIG z^u{DK^mjlcq@MH!(oKM3^5-AfcUD3m^smfPH*i=i#6S(A+d2Ceac!EtEg}tAL?ZJm zO(rIeJL3Wh;tyU*bTz2W$=;#8#Wy8q_oiI+VV(_VtFl7(vJyJxydifW?1xym43Rom2_2C$hxuP`s0tYn8S3;*wo zo&tiCojtQ;D_O}`0niPUR^C*EiH1L91l3+gE4O;)UnaeWpOVwlC41yY>qu*>g;ye! zPl(F!X*~5p!QFi`1wHBfK0u10N;9b3!qGv)cm!#yI9xASpW%^N;wzAKR5k}| zsFqThhq2R5m8Sja*vc9D%o(J}5*bN*P=91~lk#p5xY7MGQB}yG20d}0J02)LMx4m z+^}mYW_StTDnO!30;2-0pd95jfWXax*ZlYQUkR9$jDZQPEad_ClClgz99F<>AoY#UP$|WfOLh8lR zc>$nM!S!L9WV-c&8M#eCFM#ENThE9MYE6zjG%8bn$YXUQ2-ps9e{PcCUA#DjQ;Mn zBe5k}J9{8?@`2g63m`k(v8plw^QI-F_KxDp{%OdM|F-tWk?qLEo+)o68}Q{(rw51* zvy=y|onj8aHUg_wcpI=82|2D0pKMSd7F10-e!qRPXYsSr#ty7U_Vswa=<(kg)`HwX z)1Dd!J1H1v7ErFax~z1N6M4UsciDNF(ya88=o%EO+=zndE$817F_dJHhM_W(i3V`g zeS0W3+Dp@Vu?HI{lmJ`*CKRJ3CDj`oO-;BcO!7e{F@m#p&?XC0L>&CBeP>wJAO#nw zeh`_kXnLK!bI!;5h56#?dIugF)#ZO0R(bPwiWH|}@HB6c zfQ6O|Ly$g;@f-Nnz#lRhO!X891;sCt)oXidMLW6Ye}8@C{Ntm(N_B>N0K`bZy}t^H z4qwfJB7i&iPGl9U!n9Qu6w&17%T*X`+m0+51Vr{P7mbJ6s{cy#ldZ%i55`d3iGx<-#lZ#$HkjJ^XsJSogXsDyYQl zc9NhuDaG$7-Ggu-#{efp;|#LhD&}9Gk36i%5Rcs-s4>UvzTAj54#*1i-YvXMsnh3F zHTVNqF>IFd<0LmMrzbRt^1n}`Je67=BL^5O?BGml%!1R_lBg->3dX+%99@tbrUP|FJ}3| z#~!yv5s9Gx2MA74Lf-Uo?C!E-_Pr=^4m<0&{5^?06aWlin2@gE>uLS#c8{x5Ylt*^8VbyXM_MapfzBFu zP7dfF4Ylb`pwBcaOW`0%2%6fhw@3mq@-C>Mg34P^RPcc&BB{M@ZIbd#nuYS#a?(Ns zZh_E?tomudF&Gl)$xUd-|D_lJN|hmNsJcrN9h7SEypnR|CK6PWV&xAJa=IbZfLe30 z(a=f}r3)43dSdCY3i74Z^{;4XaHBoR)lkes(ojM30_*!eTeffXY|xuI)a&W-d7mktDgbk#sBg%0k0#bNsKD_=(1$=WDVcCBxcs0m z?R=h!knZhy*pw`g_(<)^1BaTQyZ?YdF#T^xgvkg5(>&o{l=|7dE_cQDZ>J9qs*Mgu zu8D%XZ-a!scSGt?&||@O#Qx$;@)F>!v!`VkXcHjsXvTW_Kp?vTe`dNTfJQY+Nmzp; zMfVCfTb2vz*tqEE(ahLW`XllMa6qLwV6KBkIqJRs)ba9vh;Q_U>h1C!YGJdI4@S}5 z0qE@TU7S++@CR=*d_n)?<@@pQ$uY;Ho_?$0UuA($$dD{M_wE3Qj_ z7yb*97x8vz=5UY$e1E9zwna~b8B*Njq_2>ySz~sipTyYlvM$ry=FM9VhVPw6;Jgeg zH?Zs-^>lyi`+lXlO_Eyrt^V1V6uvC8ppaYvO!J2X>{CgyKC$f#ak@{)$aUSqF$%g4g2V7zY*TtP8rE z0|bJyw_-)PH=qCjY4ZeM_yQp9oS~t-au%`&74U@y^@!#3hl+HHop~diCUJYz;PF7g z6F8>}9#BEMN7D`}=PP6L0qrPA;x0O56@sNwx&$iXem_9R^j2~Qh@TLMU8Fy(-_x#y3!@PP=1|Me(QzW&`+&B`up4H*aLTp@M{wSQoM#1_u zW3)5UjJj12_^iP)W3eqze@#Vrzp>uRGq}~Z*p0UKvIaNpcWv-($vs`g`OQZh(mjxl zw8yv4OY7Zr6pf1LeskZSqcjP7Xm}0B#}4#?22_M~%|mO8nMDJU&wFhfw%_TbwP|lz zA%J_VQMbZvw3CzO0gQAWZtDvL-gAoP@027`m-KRVf;9VrseFJ}{h)h7+4#qrL_#qx zWZHZxHV-~q*bw190rBUNUKp3f|HfpN)`Au+d}zGty$h63)agZD!H3`3jsEx3m*9f` zQIRbuJ(*d8$23aU6A(fJ(d@vXj%Nazl0asOaO3FKQ0&wAD?sh@31o>uYV)>N7M^bt zbp*95w+F8*xe4}E3pV+1gYAQ_qBmaX49veN1B{#n```$kn*ntZDJ%-Q=O?%9F9q(c zvmObEC@hpzh>fzWeQ^ZsS6uPe_KJIVd@Qhi@8f|1xgX-lWn7Yt8dXCnz<7ZUTSTif zgA~|~4t9{s8UxigX6M+UqBu;#G`kP_CQjz zdz?+c@)@YJ&MjvXod^5Z=s#F)z}<~7g^=rKIso68n5X8XT?990yz>mVT=fQ6hQGra z&DJ5Sgqr!Q)_p~O;WA?tn#Y|4Ut1#rFgW{t2+LgC9x7_h}0MBw>;b8{V{1Ul9$ zRTtyMib_p0wI<0_H&Z>VT7iWW% zm})8vnxGGe&OcDW9bkc{Lq5y1C8Kp#(vLbTm*N0_6#FcOT;s9q1)5~g&#ZCp z#mHMO7o7Dg^h{-&BxRU(Wnlyn&h@3zIR`g^lfl})E0xC`Slm_fxPHcXpC!{3xFyVF zpF4pJG{MWsO%SM!9B2n7RS%F|lYsd}nfu&tvR|vDM0emL!%I}HDb>P2g7_y;^!uP5 z<{|K!6ZnpYJ8Dma38V%XM}88@U2ModA$q?M-xJ5tq*#}rIYEd{pT%$cx%Srd1MoVf zhs&R1RA>n#+)o+4%!mvIk4Xp5+!j3Gbr31iYXaw)r0(R$xH_u1;TfbUzJ&-rCqDq3 zf>GpbjO}j%?CPg2O*J_#EW@K{HeV zy5bw}PEruW{ZYb31n0xwMMjFC<0`0R{2|L{DBKCk=Fx?iJ{F&Lb)ggQ#RwkG$wu3S0Ci zdn<$lPj(T+bgk!~q+yk^E!I9zIy68jp=2;P@XQ9M3bBHD2WU_AUV;`$JL>{BnS+-< zYz9Nc11S1Jb+NKZ@^tHR3N?jTw^X}cw^~89iO$eX7mVmtlch>?L@wcPv`a8nBrfbY z^7CPaXF0zI73?=v8z|TeUku8Z4{l&d=Fv1z`{t1;a7wrlO2B8ACmRlMt#Fc70ApUl zioEQ#Tgz3{nZNC)O0O{iZI(#im^m)!$txM{4lg8NeFj7W1BAuTuN`zjmk}#7I~`hE z6xN%da6j(U$`GOHN$78fHrh2kODMiznH3Rr;?Vq{GiOwgS0*K)$5{22`Um6p++LEx(FbFm)I zrTy!GbyA)~?qho!<_Qsk*RqXs1z{OL*N`lIDSm=-3GNflT@^9=LWp)CRo_6uIY8#z zwjvh@E9Ca^cdTiTRIad0G)wuFrx@KDJZ$(N+mV<_8Z%`igmVP(Zq=CMEYycRiqh2h z?9)htwrf-){axCs>!IbIce41%IroIbk{FHxd?17ey!_{6yHyL#%5_Wq|0uJ%V7jDLM9OmTG=rbc#V| z7X1ffk9iGe<1IE_MJMlpm-`1_@DBQYP2Czt;|UoK+lo@yD4NJe98RZ+e{A?`rV42B z>%uub?D(T!?xJzX?ESTWLsCkYV=9X4Ams^N_r#eM$&6a_CrFaB5a~j zXHeuKJTMD`H8cYle;UP-xA9@AZv-UCE*p-ueY^-l!4`iRmxX~lRh z4QZ?dt>X&}nu(|XTSZwdQOxh&)DZ7*kcqOYPLsOklcs~10IDqXl%lYh6I3*UtFeW& zisqn9l%A@rB345Ykx~h{qmvQ^a< zlg^l--_+oo>!}4EVtq111MV0a(Zy*~LQN=IC_u z8}9R;LRiYYeA3OZ2EG?K$*e_neUusx0U8n6zYs7g*U|w&4F-F#$XDt6F4ucIbRh*PVO_3lInc%o;_~BZr$cMPcnAe=y3R-(J)Fb8a2ppL-pB68&GdXKr!`OjFO0 zi9^A4Hh77mgfLcuImks^c3A3>*r9OIquAq9$U&2w9%=Gm@g`)+!8n;sGy<-)xT8Kt z0x)*Kdd3ERJ96p#V+bh1rTX*d2oD2>ju&AKp3}^MGO0Paf96CsD5GLLUF9o)`xGQ)gjHrdOX#lH~$d$YMxHBPXbj#8ZRF0Exq{n1Nz)6E zdgl7uHE9BlN$pd0(YCASFlJ<5hwU7H%AtYp`VIhV#5_?suq5{b9cR@q0f`&( zyqi}RwPuqUaoPQzNo6Pr!m?Wo;iR6h(l>><(*xB#{?h$qtw=aoUc9ZT*l!8;{?MX1 z)KeSr?TYHDj`7vO`)=p@a&h_ab+|o0dpU0B>NfKRf)uXMi)T5rs@i*dPd>Nu@Co)? zu9(1XY;O#1Y2W*##^~<)il57QVMsg~|L;Ja{};guyR6s4;edXUg#RxDGdD3X{ttq& z{1<|$YuN3#C;TDM{|elNorsjz%xHSucnC(ne(&zYHE%MO&ac$@dK6Y_PRuNPFP_Ip zO;JP&r%fP;R2iy~_`cT*zFuUaiO@mfSuV3P?lJ|3VA$Mw(blWsk{9Yir_j{5#D}Up z_Ouv!^!53^{(dvta-1lI5QlW2L5x0bPb4*nBs3hT^QQYc>JS4n)Th{n+d=JZ))^pn zL`nmbRU-WrjLcBU5u!|`8E4_}31J4v5oRW#3k^ipPh`NQld9YU4}3F0N=Aa-B}R&4>Z_JDykd4>-DfjlMQh=}zvobSCwt<0{!j1w&{WT>SB0Nrg!|x?xVjPwCA-#ds3FM7@qf@$7=m-(lXz zfMlOr02*!gbMW`$&#EjxF7Gi7JaRJ76f-p2cEN9$&$hjfy^@aj#S2H}-BAU3 z#Jt6VTb#C7Zw4`W6c35M3)Mxu}&+9CdJ-pQNP=2@1km%L>P zqON`Mgv^&*5ZKTR8*yH&poY{(2iEU7gQO$(2uB0gG^8SwAXGET+XFJc zUh8i!v^5sI7QomQ-3UWQA4o>WL}qP~pCYXxDbU7;jx z`bhhHBB0F5nQc}|4y)W`%W13MzX1%dP~*|dp+%0rZ$T!J_$OCAJ9M388uS&Aoy|)( z2y*Z*Ll+T)8pOw{RtDq!hTL=}qJK%aM$_MnY8D5J(>j>YRq^Ybci~b5=%`15TXRu= z#mI8KF3H=BD%*(4e090st4YWsu{k;S%#Z9x~qKy7TK6bvDVh}k33xODMga#gf zm9)GaE3p!GgtK}!Tpt6Vqj~-!#S{<|bzM?QPim0)W`FVJUB8{RhxQj{tTS1x=jTV8 zn}|fPJaV8MNUb(Vt1%hCBw#x*KTO1?)HEudV<`|Ntyxh^Lg2Go=nJb3Kh!rJ;OCBo zC+0BMS+5%9DybAgsp31a8y4_IE%EY^)T@jUWefDIaiMDfm;s0<`0luMLF7W( z1A6&xh@s@2z6f*|F;(!o&XjX)piAV4?VBwrb|4s~rfPd&6N&E>mxO>=TLtEWO-H0a z+=FFiXd$3LS{>r%TIhl*pDd|jT?{t$oXD4M7Xu8X^!3jwa=&g(lh~84qPFKAFx@Q- zKcVe9#M#}2h_)>gw%yreuIj;p=t91hf)X}ZQA@~}wj~y>cAVGqQ|$odx;Z<|brDOb z1N9)%bCdkc?AqTduPyAbL9c&q7h6y&M7KXLVsrb8eb*w4RrV{X9W{_ zJCqll^q__W63v-`@?`8peQ7 z%tDS2c~4dtXv^nWZ||+bM-{E1_uF;rEWUe4w{Calr0dZEdJrcLk#JvJq|{u zK(J|WqmC>hXp{ExwW&<$b8S8@TF8E2bsCLc4|E`s%98>@1C{Gi0V6gO_sVKMe;xj- zo0@n~SR1^CEKH`8x>p**PU!{xLJI^Z_lIqh;_gMq+@ zSopa@kBzniHH(Wvc-Hl4^rz~I!(cDXwrJGV$$s6+D;?iTn=v2Bb!1-KsRIY3Q>(1h zNZHt0XtN8Y6w#vHV)>EzAT7ig)BT-t@pXLYrM7*SWY1Hgo4lEkmkV7NjD)h+n<|B~$DbTUJk)6waFQp?Ib-*qL9~>+rR*AG znFGafyvPpX#cIZ8Q}m_(QUbk=`(Q+e;J^iD(3@v zGuoLqPf?CZ&9PIi(rbyyS?aZ4gO`@%UsZ!oJfEe7wJ_i%q`;wA+t^=EF$P@HLT)-a*|QqE}pxP6in zg0@Y;2?MW1`Kiz15`wxjf@w%-}>#XukPi zG@&(hxV>h?e)hIY(UAA5jsl85@U&<53T*xKPXIP#gG=qU4CJgR2LZ-r4AP0L0dodj z%hw9*Q1psEPKUb---(kuiKg4;YuY7X@j61WnXGmGX^P!LKK&_tjpR{ zlPE{m)5BnQy5zO$CQCq(P?^t4Az1i>hiy0VAQ-ug@dL_UyXA zm?o!iG`bP}64w9|27)L0&ycjN7S}*L#fdAJ>FzV_1Slbeq8OfpyI0MGr-Xn#84ERs zm2N-?lf~XAeczNNg7l`S#os**vx$Wpb{5kkSI%)7Q``FkNshY=K4xdNe{D4*DfgnP zQOpq9qxx$&4DU&TOX>zd&ia*9@e z(KUZIcS2Ki7?qUlO7o=i8i{n^uCPK4*K^Z!%Q#zlo-%ps z*=jCJqQ^OU(XI@-ySfZ7kH2wgu)as%D?&udk|aY;H8wKn$Et-@Y;-o0iKS&zt%7P9 zEGgp5-6q{0e~P?`m=5}t-aN%Wa?%x>x+SLLIoMnpPv?#wpe=nJcMq)b6=E#ZFT6?=ze>B8*Oht*iW3ie}nu_+EJuUGM@YYAGomoH@Ga@ z?n|Ki=;?n8&H%mdIWSX9wnD=F%NIGkVbTXs#nVO@-iAvRPx<0pW!d{HeF=*T_ z$hz1jeSK6weTbQkghTe1kl%vav0co7C1YIWq>qap$J?axnZP9NmF!6+?DgAsFOEJWY-T{AxG4t= z^)@Dg{USRzD5jXC$<*+Mn~ZqGl@s%0F>UwETpMDBxSc12BiH}XBD_NtP!LXVhZX%~ z0Ynm&Z2`^ZfCMOY2^#W+KEya)9LJ5eNNgO(m9|KH9LH@1Dc`X53L1yj&I3E-megWj z*9pYN9-knChWBQ%c~c^D-`_e2Id%*o&<(6F`yM#97t*K4$Z+rBMuK}CxPBI*>;=B-J{>~FH|oC) za}PpTr!@Xa1-LU+gPUAb-ds%d$|VtbKMpdyvNyTu7n}WBW)otEI6lFed}nR^VkSE} z(Y`}fUxt5lOr+=`pV(L=8U5?OdUh?0bRL387O-9bOwy_70n}xXn=7x<7+H?@+V0O$ z{ECKOO1vW0Ld?7L&VZ>AF(9dX#!{i08mYAKPlsS-Eg+Q5>SI|7mE^Z84C$eIiht7vmo@Sn?K)RP21F1bcubXsEwiMywf!Fvq<#H1bH%Zci6U z1AMZ!tpI5ZSFIJI>(3z5;vtebBhXZ&!;E2m&YDAMNi$qOz|m!qvIA(XgRw#0jJ`R~ zEjN;yta=bCQc)UF7Gn^8TzU?Cp-CgD(96P^o(QK;xe`OaoK&?TX8^`j!r$w+)1GlVYWi3;@L$>|FEQV$W30 zsdoG9^Rz5X1i{^+mM3~mv6;lNOU%b`TJ6JbYIonxm6~6-AX5I;TO1=jqe-m1Kjcy^ zo!<_`nmWL{CIJgg*rGB{u4q!IIrg6FDWsJ2pt?H<{MIkp6RwUo)E657XjvToWs0VE_n&n|YqXzMeA^NB$mvc$J9{fyWD%s7L5U zKY$ZSZcf})#YX6J&|F2a_+%5SQva)=6TE6y%JJQja7s0X@O}xST^w8 z(0w?3-98gJb!#rISvxg1AQgT5V{-G4N=>ad0hk#Yj-t^eCw=U+a)g28?X$Lc{XsR% z4t#$r;f<;E7OjUIxCmG8jiN5cD&kquOy59(c_J7gxKQK zjChhSkXwx=4f!z%P>X~t``zph{|282BfKr=#%v>bJ0c{Z} zH%37BBiZ7TKDfXVRdgvFR;!V{OHWlAd*>+#-2gVwSQqSS8apGLjXsiXNqhNAo(OK* zJD&T+0e5ui``z}6o>tO=3;Cn;EY@SZG%i{okHLOuEmAFXAWN9)T|E6dMi^D%5eDw* zM5Fvn^liGCS}L=lvhO{IKiw^)U0?B-d#2mZ|dEmC0Mx21=Y#2Tj zG=(W55xMhFv?U8?OV_)cH_q1e#f&2q*{y;ub zu*P|aq3AM=DAl}ZI#pb89PFmgiuzb892X#aK3%UKmnW$5LA+@SYmj zRxX}t+7wj5mnNg+%DJM2$SuFhJr&jxi`T=`tJV$3PelkTHXzXcO?;_uw z>4wFRp9MCsju-hj$ZbO-kg(wysZJ5A^(gZq!lgoq%iQSq@BR{#9_o+XOq98-f!ZK$ zZ6QfKY$x-fse3DCi`s%ecz}^SJtJY~+PGDGE_dI+-(~15-?(~aQ-fs7xIj9mCzgRr z!x5IkNoBY2RYtTljbFagQ)v3W)Td~$f5@fn9R3%HqXza1?RqktP35?8 zn)B3VJ@2IIlmbmsLpxt+F`qWF$TWw`(g@5A3u(%P?xab8R=cMbnjCKO zH`U5)nyDMKGN`My^_o+JD=N`NC7zFjCzT7Md!MsV@;`F4+%<%(ITH^Ory@QwYj#`% zN>4jFes`}xO}wJ9+7mqSe`#rB1*ad49GQ@oe`ZpI#2f$4TH`WgT@6SXhdva8Jgi7O zKjGDAJ@px!219N=umumHF6&m%*?WT@*6`2Gcc#u_CwvlL5aJ zla`%xlFoG%soSkaU-_WGO~!+-or^RmfEKYzm3|Q3v@(&}$D$xU8|T;-ZbSg^SWiqCa?t%dUksXe83>Tn;IZR_HjvfB$OckM}C>HJ55hL8zp=bdcAHV@9 zVK8=5Kbw+j0K`C;WKHUes!nYDYU(sSVhbez3zsoe&XGxOa9_e-D|yPzRQ0>Oif8kJ zomPJihqrGIDdS`r0CuXIL%A~;t-8-n!VLUnJGDzC=QvMgb+Q$3UCC$@FU_-+RpsY- z!|L%H_{ngfM1JC-bJbQZZGr}z6MLm$T)@ssi`fh;VL?@+_Dsk~Bd=3^vg0YiElk1` zR_egr#e+85{E`oj+XeTD(>)=9!&0HR+E2Lx6`iTQe^}Yksh-5fQu!?bF>eBnMzSL^ z|8NLm{yA~e)HVMNxVwPja{S16@*_fPpck z_`Va~E&SylFqOiokr;`PYy9Q zGS8i>A<8u{UxNz#OF+FY=$r!gsd(SU~4iE(xNAb-@=hP zf*l|xy&}dQVK}hn%O)-OVE&?q0a9u>zbcN(=d3xhuM4*2ah>BtMmEZ$5dOm{F$Fg> zRt4)z*Nb{Ct8d?vSH7MN9q$mtNbZkLG6j6@=*!#T)r)tUJ`R_qf)(6o?asX0jS82S zKdI8AyPCJl|Fg%<4VfJru#!aVsDj)mAuaw` z+`fJ+ZeUp2Q9v1~rv40UcNB1Y9fIaj11rk{2atZbL8Q0X5pTAX5W?DBAeMiipd24z z!oM)*aQYbugo*V?n)pIQy2K3mLmvKRZ7d^PL54s=%JMr4!gcHdI|;f=1wcaK`mLzi zjKsi(g)_5b>U)(S+JmWWB5O;1+XkT@y|wQuyulCoR#N0GcUSwi)`(ZOR6H&(`vmWH z+G(}og<^SJh}_!Pyx?!DjEm|?YY#+9R~h8(3h=(^8n5>8afW6>9)igV0McmtwpuBKbh7(@VYz_2}^V(&$&IIPLeZ^U3Q>D0@ z-LwJ6)c|2mx|`Lv8q})6$#`-7NGyMj>)LmJs|s>FB^rji4foQgc|ahY*4g@Czy?Fats8~1T-7){E*=C zn3;aVQfL698;8L-DMpo6og*r(*P72`#Jb?xp;RF(b|s1ofQ6$LAZJ@TfN11R58O3H z!9w26%K=B7;OWr=pmauN)B!;75ulKGI8U;}sHU^of+$^~+x#3bo)&9tAfowM{ z4_LIJkFxK^4|C)kxwDT3jXg@h9h0 z?p%;F){$ko5Z!7AfnAE*8C19tsu92amsL2`X#^-K5T?VVnht32%6 z6OY^soDm1DOYDNnhbSk4GtR8PTT$U88F6)LEWpni?K8Wjj8cp9hBhtBmH$O}1J?4r z%jF%-h@gsZoC?lPyV($}DEXXlRel7a;OekU)yI2mVwL$ui?z^mTCMY7dl*Oh89tr@ ziJ64is;D;s^j}VTr=8nd7ve4M5M=%4y3+jwQAsN9LQ(;BzhKHC{^~_$V zh@)kNE4kS>0Es!1$mEGH9eMX?3Ey9%`f|bQ#d9#l6$}pR5wb)L(V;wkvl+n2f4Abg zh5m9Y)Lh(QAAFCXlji>Nj^CfY@5^6L3ML5fr8*G4FA(}tVXCgcY0aTBO2YWI#p=-y zXocvv8!oHjoZBp_$MrmGcvS&GbV`-kzGNunm!P9bcx1Pv$J%$A6d@8e+tkCg(97F$tfftDh4% zY`3N0Jwq8jWKpEV^RN`cPirL4m&sC`U}ys*>9HDK+TJ*+F&fBHL0~h)l0NN0KK2pw zGXFIjvVq0$ExjgwDLdRTrQ+bz!(a98MJ6{)p9+1gEa+_+ma2w!^WQj|0?D?d;l3M2 z5Q8{x?#EhjD`7XXA-{P`=@CUpNaMtkQH5+=l|1d4risHgd8s_unJ&J54BOoksOY>k z>eZ{4rTDT{yX&g+4qyDY-^W?rL7@)kGAf#nynquH8p#U|Xjop$iNV;o7D+k5NVgYW zyW|%TZ-2MIH{=vEStsxAuIj%QMYL~6^bf9Zo68EqmR)+nImq9PyuV{sLx_oR@F#F} z=y{gZHYF~cjk}$8LU}&mP5gPZFUVZ|vNT#ib71oAZY;_@VIjZRmq97k?Mm7YH0roC ze;ueuXF79r`F_(J`ySsEB&Q8bnh!M^f9)`IFm?}u`_5cv{`IE4eCMossCtl?9_8!S zwl4kxx2n_aH_`laCi^xI>Lhp2Fi87?f)sm#XB6s;?Gz&sRUgAKVVXGWjs%xUXxv&? zh8QE-?JVqNarG;Dac+IWjgF78L^wA#P122JjFS(EQI8hbEC%H*uZb*6ciC0jM(o#v zg*V_t`@+FLj&i8_$7P?Pcxd|jh2*T)#<+b<1=s z7=0j+JxpARFVeVy8=snP7A=Ja_&~$T;b{eZeNFtzupjGSEej{hf|>JLiEOJerp$-O zUb&JISbTPArjYrMt+mLoN#2_%+&KA%mC>!NHD@oBab8Kx z-;amwVQMuvM_p1_#_c}1?J|(IB{pJ{WABp%Q)F+-l|n!88fFe|Owws9%{{MOi80NJ zD>YmLHG_km8ev(ODSc?d(s>5QON%G9co4fJdtR&j6#MzpR1K|Cn%^#6+c&R*ls8p` z`}_h*Bga+fbfWC(>#v>ZlZP5e!oifPkU+L;Vvv29Iyx1u^6{@ElMbqE)C)nIxz1k$ zd47C`iZ#O2?((*D_VQ`2%M0de_X-6ko`r{@NWiN(eX;$^)?5$_0pu2@IiVWKNXxqyCF@R>%dM)EevQef`a+Qv z*+SIC%@jD)YM^oBayBvS;mewW{UC&CI)49@8WnT_rK%mfENa0hdtzHthtKp`tPPT# zcF&n|sqHt8ZYFAh)DWDWg_HQWs;FVFu(6S2<25I-PPZS)-CgO!L`AE3xPwpsLF zKEfzKql_iD>oiIjrI1F&Ki%~w98j+#U9NatJYF6=_|^WL8HT6bC~<{7^|Z3W(*RM1 z4!DIC+6@-RhGFu=(ocOC0NSeL5fuw>7`BhaU^+Pau9#EbZ)pL#6hJdGCZhUswls#5 zGxBJXb0hsy|FuhtPNh8BE-o`}G1{DVoAFYC9IJd2xba(tWC#G#7tUv8lql~VXfGPe+x#192N+O{#JV;U=!K*ra`AkyM)2f}Vv9_=fvnYx`Ccow)G(T*hu6-=lBj^ok-uB% zt%c0T~a#*y=q(sc&& zBXNe;5OJZ5-~9DP&|wgI-(2M~j^SH+6rQnKSnDwb$nJ&@;ZS0!2zLA4i0LuM$k=wb zd+|8wD@O3Y%Y1F9#AMn*K*k47dPwqa+a~W#csDRLN;grE1FthEtA$Z{IejUhY zS63t?);MvVshG7T;nIm9OaD?#@O<5$F|~UoTd)$}N^;5t>G<$g;$*vkRaicGR!2Ew zop;4`HnPgML|JS%!BHtGEf!>@s`Q3;?zz``tJPz zc`$o;{}f-FauvPy*T-x9Wm|{KeA#L@95i!}$iQlk>?>D=>&I=To}GcHf$4AX|4Hs4 zE;Fr){Skt2VE-SCvi+GBa{3QORVJ@HW-uUyTyxL6>9@9kb2LL6anDPx$=PN+0RxC| zWM>RWS6A$|(T)~&j2V7mfT&)SHnHM|8mqPK$RM#GcUAiPz^f=}8iLi^o|F5#c= z+za>V*lG_KD?STBGcB!K?8)rW@KU#@#KqK=e8L4MT5}Zk97`yNlmSz5`c?19oIX

    ( z=&NBQvvs!5`fR!C6=e0<|pwJSdyBE^le&cczotEV+5-r;TMKNX$Cbrj%G!e~n?QkQ{a zWGAGw1iyE@Q(D{17=D?K6Grq5h!1P*7MNtYXy8quecjIKS@A=4PbNRdDjIp_YjsZB zm<`W1;iMPMng&bZM3v)OrD2evQqiKm*Z(XZP9gBFK^=`x|h{HZao+twMN5^WGR%`p_KXw<$uQ~Q9eCBIW=>8xrmh$XvUIH zdTHDBe7;@PNM(wZI88wXBr*W$zZ8!$YN+qUfr zs$$!AC8^j(#i`h~b5_3Y-e>>M-{)@SdaaAh`HnHia{blFckuLkML0tHsVU3APimmZM`Pco=C=Zj@EM@AQ($bC%O0bRqIT-T;9jszJn2?1-o z+3F2uD2ErY%jE%S7~Y5@(&kH;2i1uaoK~cPdZ1bMV?Vj6q>OA8CtdZUaOkg$Lj1>K z@wK7XZ#$!3Iuj4{tu+s9e#RcI0m`m4X|84qbw*qRN>Z6l8?KN{KOkbX;8*ludgS-+ z{lenCQ&ugi&yPLf=<2?|ot%mKtNN#7h4IPHli+;kNBP)jR3|11S&M@VJ0JxdA2?6} z-9a!E*P2cho77Z=lU+M`z}sxBvYxtD<&9_!it~Qx`ED!^#O`M0j!ssy8{Ng=L`u>k z<*H!16qUi=7Qz{oxanJsa{6p zHll+NoyQ9@a+SvmEFfI)B*SI)I(IS6eZ>b+y;@t5C%G;J+RH2l=QKvd`22<^w(p1I z>wxn60d8o;lwc@^5V5SOk7wNLwDZMF`zx+`|+Ij8ztYT_J`rmiubB$*y-7+^AmuG3H1N>H2?0ckt_ed zJWZB=c39dP4!d8TX3qzt5a>E)+@x%Dh8qKxDD~l6gCRK?Ig`q7|4K=zmf?$T`$xkI zz(tmfs;5OMx05XEcK{-M$j(d>o!t{)ZT#J`(dbD#kEi>7LASOj!o3lhBD$8wehZ*& z%|&K@zTABOe74wRN-hI7e|4fjY%VRyCN+W-GM;4TCG)?-ql4M$ktJyE5doQZWd$7# zk(6*m6RA|j0?$AmHlz}|W+AiJ-)`D5vGgw50~7^G|Hsk1gvdw2u=)+&Cjbn_IZ)rK zIN%{N3srOikMvAMB)Eu6dg3B^$tV$k038rB;ENFD8ME+#H;3zTvx(!0gu{Qt8Zx4S zqWIq&O}~FRn$iDqH2=o+5b5XP(&ztG3@$atdCoq4i+J^w^e)W_cwYxNn!^A`v;IGh zCSjr;pB~&lj%L!AqnYq8N3-jH98Cx4e><9Auk8n`1KRM@frQ^aD*%or)h9b~xW8cL zm!nBS+Npml9t9AKytWmh4#FJk5xH}5fj%Gt|HL8^U~t4fpo7llcyJ6j@wZjmb2h6J z#oy9uo`vvVO%HSeMc#|H{)PqrJ^CL<)BelRP4-BjZwK^hSCMr#cMIy&YxrtF{z6di_0M^311li;+I8(xqlR+tM45#3FDOX@b zU7p!P5O1gnTsv!_bgxBT4108J3UhVjo0m!hv>|F}fJcpE2}{$VGMI{s6yJxiw;HmZS_xS7BAP29r7;WvM>*LWi*_er32#yKXlTR*;{$ndU<`4& z5rbMnmX#UroL~ttol$n1Ln?`Q?3jXk+NqO$=;Lh2D2fwByLHa6nG5MIo)nU?c!!&; z2&$4!GJ;JtcsAzawCtX4odJPZvabvBV0*I-tBn!Ky>uJ4*)Nv1*(WFn-JMYzEdr@| z6`$4!=WleoV|Az;U#(6E$M;QT*N7`sEBA4rIWI$pEC(GLT*}v=fp5LRqK}tRgdnTT z$Hwi!_9oCyB?&e$=r}Cm9H1W^facMnL5KLmx~j+llY_Y~1t#(cCH7F%PliKq_F6)S zmDBKqTj6NWRY!E7H_k`~F;}#{On4GdZG-LMy2&9nX)OdIWS9ksy+lLWB5POUpusPz zBF>Yi!yT-|lZzQbH8B*MbXj5ps|~eso}dmpx;?4=c|9NWca6eSBz8QEV|@{_(0Zky zB;7jOsiOx%NHI)iPYOnavFvhO;j9W(W$_|ZQHZQenxmQ+2{EWU%9T|Qa=)S@5zMiO zP|6w+-(oY|F2@EQFQZg!P|8{maS*8)SUBxhRxSg-gShhXz`cA?kV5+~{(L?oQ3It! z@s{d*i0ZKtbg)Vroy6bdGav<~Hkqj$$N>E@Di*)kmO*SOn{7mV)2P-@&f6_yb~RFMqZip9EKn#`##O zg$EKW*4aDF{S^w^9hL$s?5!O!9U9$`rhg3joW6;I$0{Hl`b$x;2Rn-N310#X^4+4Q zm#1p8wy%wP;TMEwUQsX@I#@a5H=rb*QfV+0yVlDkEnPrft2Nl$K}z?VqY<+BPye2v z^+nf;ksIts?Q&z|J++zl2K~5>5;yeTM_M#MBv5UYIw(|8tqJvq;E`ouW)*7xG7s>& zhS8Bv`!`wJ552stXAh8Ib0ikXE!*$eut-?(vy?AiZ~q{95!5YUCcDKp`EV1NzASSJ4dJO*pbKL@0g;{>fv2e$K#B zA3cN#H>jBjq$LP{zeYn}OS*A05??SBlu15Bn1ccgc>@G`j4-AA-7{@{HHqkq5$st~ zC6CVIZs1}|_B9cl?U(c(57u>L@6bMy#^(1d^4Bjni(a?WnkH#EIqPx^xcSb6wpXg8WO-9BUd6d4y?k zn3XDdfyI1d;o##CI3s@5KS#Z zx-}=7FY%ntxDXUy4plRrE}?%JXjWG#7ULRHf0 z>mX(y@v6^N7!EOFIBPc&Z4^0nuOZIhymj)ssc>~!n#5vpscbJ|*D5@KPx@vz#_c964avGyeyasADGP9yrhcVHgGu3odyS{Zab z)7K>8MLXKlYo-&$;+5?$vbdKX!SVBzy4E)E@ zlrm*!F`XaK;I8R7sj2xv0=%RyE-dlVhBR8fYk>l&j@XPuv{(A3_{FxJ)PVs-}FP{#TnRsGWndik=sHecr^&`btnJE zwMn|YTwURAN`*F{`YMnuDml_J!5*9qXYg~TnrBDXjr8ilS;4MLZsN7di`+}Z3NaME z@gGSO^GnifOkVuv#P4pUPA(p@-&vHpP8MUAG+Dn%45Rni105y6nWO5xPLT}HXSeoi zwnDCI3AF2|7EY?HORlChJ+jc7jOI|qOLdhz#+Gsb|70A#MSVt2S^Bt#fPs-0Glt5z zdGEXeeF9cX_R7tW@#eET@c2) zR6#hD2aXLFg3+BftFu9ezZ<=ulaLWR`X3p|*=FU^FCE#;w6;VMVLH*H-u^TIUU<9 zZ2*bI>^^Ox{^Sf>Pz`@QL1t>xgzp$}&7wy93nWeEey_B& zqJD)De<|!!#H23`MZ8lDd#H@DCMc0AG63E)`_<=usYH0J=C=AX?E$zuiA zG^x9Nf&V&zIik(oIRa?s*#D+!vi}#_xxk4froen1R2puK>o;7QRFtXG#N3jDno`on z`GtO~PmrG$4mnLuhg*NU+RJS%^Oa3IIt2k#?&$(WgMOnhXqx^J@6r;@ez{sLSvf{V z2BPq3yMKMsi$U(^^LK%m7Mme9P9E7+F;m{94c53-utcmHbj#7w9v0&SAf9*Az(Amu zb8HNyz-3a)Bw{D3=pZ99Xx)m+u=bP%2S@Q|epZ%0Fr3)H4WZlCPS!seuoe_T976@0 zHbG_yfr5F8%3BpD6hzpdNf&X69z+BcD>x+AhZDN%+Yg2ljsTqVa6($EWcBxNT~4K2 z)gd7xFh-^DJAyJsZ0?bQF$!9DU_m5w_pZ~AbFc%XnE*!gfR5IT!c0gvX*QG?tcO7}XyfWF7tm z5-8NA7=kk-Uo?344v&O4378SkPyU+7GLP`p$1=H!i7ODm7w*sk`zC!uNTR&=1rQLh zY?Ab)+H8_R=Ry9aefzf9sZ4(_|K(^p0A+;VPnkLmTW&By?UHpM$3ITh0US*LK(HBO zT<+n#wba)MA~~_(8UPd4efm?-rCHUbd2jm&YW9UIzYTJo%(J*~R>xto;l-c#O(UfE7FaVIk$BHKM<|`yauYXb~R&8pL0q&s_Yw)NGO+N zW|N*dujwlqOp6 z#gR4;nHmqG3{m`n>IhF-jjjr3D03#Dhe{_!lY(4rr?O&o%uuR5>-A+f;4gk4n}wm} ziyycmxBr5jbztE!2iWFi=Frz|@Kd?}aWuIBjwVB-uMGssm!oNaPdn|DU$IO+%>pOU zhku%K8b&^WuLulysf|rG+u`bV2i96e{FQRK%Rl)j#1vL)VG!d8%DgXE69N5;?)r~W zIzh{Jb$f_AS~H>ZqIBmNcvoUlp*t7~;{NYV5nVC}#!s;f6Sd^+$Z|Uh^_TR*Cvpj) z$!_~j4VoVej2xFerc}{|?Sw}5S8zvyGtO+T_LyMN=55}Sfopjgyi(4sU79U+*yXx$ zch~ZX5yCQCtsf1i#D5B)J8f0jP_Y`@!k4v>i0sS2XOI)ePx7krORUqFM%6f{@8QV8 zMG{=B><-n&p;npN2@CiWLYxlzYhHH;{oSH86jAnWv@t%3Rn+%Fe}JXaM^%8V_X3i) zbaXsP|d*2&+Q7DK^Oo7}C2{~?`kG~nBN5q$$a)A0tSDzu5p^7~x)!sCO$ zXKs{|)I}~u>>E_a3zfA`$c#bm{1k^c+Eo&ZKAAnbuL|vjc!3b_j?Sd}3dGBOUVXkb3G;%Oe*+d`0zIyrloskJMQR z3c;(67VWuYXo{nAZUm)0W{eQj5H@<%RhUZ0=+`}Z?2opb_xaY1c_$%r;sIO&V)}*@ z$=J0_;2wy%t^@8ve=TO&S)<{k#l(Q|lt>vV!QGoK7L)}LG@*4CS+?wN+=GcpyF@8v z0y4Xi-{16-uAX_qAnA`*frd19^zvb6RFg>qhA+M01@BET15LK@kqGvJ|GrnS)Ihu} zmWqCZPL(%tY_OKt3WFXSckG0`{l=`gDGm@ch2}%7hlN2rePm~;A)rLC*d&j1-iWHZ zR>w>XG#{3Hqs)Ap^FyucN93_iS{dBEP>Ru!;(du3-3}FphDycZ_zNI)q-b8=-eehek zuN9JaJy)L83GK=_plZd?};hyUB*94+)S97xpmMUXG(`+WB@~xV!o-JfD>S7 zO2ylK*Zw1Q{j)g7K@vz)>#{?m+0;%*FO7TherR-)?{!0X|IO1C!}ZdUx>e<}b2yN- z>ruU4JojNY_NLsGo{2Pn8l;5s0kxq>JATT!fGa`|*@G0NSfp0c3?OJavL$j%)I);- z1Wgk`ub)3#i3h2LOg85zs~3;PF znxd+Mn|jMnr700_I?mk!nQI%3rmZaqn9OO~pAFcCgD>)cm!M3j z{D$V{Z|B7mY7S0SjD~Aneyo(e4{*wUU(0tKd)ymTMMxfXC2%0)$fzzW!OdAxD>?#YIcLvO)M7Aw zE`awie&kdRmln!J07THjhq5KTI98`h?RnE#&4WeKTMUunoArQv1hPEPG&UnB%99*( z5LKnl1`mrzeTFCJXdfquc=S{31Agn!J4dlYZEu|mu`{RZY2j3#0Zp;g?5p6KS0WcT zw|jz?<}(>9bGZvmlZ({w8kikd z$P7aygBes}jC-2d^n zqS6pVv2n+}s1kmlD$l)mjk_tk7`oO?>)89lPsiIe3sX35>&h<+!pz8=oQ)MSPX*i%gy7r$g9(7bwU@d5TV*_(*R3jL?IL1P#au1QjEr~E3+9Ed_oZ3 zv1*gOcRjZuaRt(jEolzUnLEqxFtN~8iBW0EEMN&UYr_dPcPR4g?7@n;RL~aTEk2eq zh!(q|GDR%xKG;q;7`E5M8*2+kyRfl%nR{fvs&tA-ewXZFD?oC!rd zf1`7NPv&i9F16fV9pGOjQRQ)R-#Tp)wjW@t)0Qo$Np_{;XpreE>T&N(#oW*X1N;Xk z5y0J=pq12M3N(BfnVd(PLN~coM2K&%ox~;lSk?m4cFK0)8a?0Z0vZ8EX4WTOBC&v> z9N4wyH8Mu`#_g085Z{yAu0r`ioO3xMc`gsoJ3=5!6(U9q4@5veQS8!@IOis0|4F=x z4#3E)jV|U-1O1$uzztjgD|wZnywj@%)2;-bT%3z2BoRGbN;4*ORJ#(FsK50IVw5bP z^%uMKN3^@kK!J6oe+IA85$uA$xqD30YS)HiF*9@(m&YQ@xDbgq^kmJ8;HU$i!R3Z| z*(y;p=5BBU-A_Bv@XU+;7I!?LT@aVY;#|!xb=#$ms$xV361m#Vm#`WX!LH(Gl|(Ai z{HyvSgjA~~%JEAmdg-h0KGQIllBh(8OWwd`Hc&rqB?ZzU+hnxTOl zTp>RW)zc)eDDY}fxzMmSGV$eD9&O7ur8&kfw5t3nx%Cr%?Rg2L#I_h8u<@;qW@d!(0SqZjlaGbQ2ny5P z7$yM7Ij%MW+Q;{j-SBHjiKG1%wKEk`D<0)hK7&iebuplHlK;ZtTSr5IToq7%pm}f1 zX=1-t4&L1m+{0AOu6nL>(xuby3)=AxL@A;~JNW_U5~CrA7+hkL7s4af$O_+;ZzL#0 zStFNpCWkZLLI-+xTF#$>{!G~f?tfbAj2VS7z2#PTk)BvDi9;zMf}9zr2%ASkT)J4; z5F~leYLbGu#l6I`2PQ9cQS6q*@q?<#)LTH@uK;FuH6r`*F!TKa!y%6}Z4y`OCbPXk zUO`fdajDp8BM_y^FqU0#B`#s*s>Leyrz-4onhJxYlg#N4ca%Ja^*aZG%5MTs>8MD6 zeF`Z!C=Cow+4Y=ko`oSolW#___le(FT)KC_0!XobfoWj(_p0lSJ1QAUnh%QkL!0OY zI!nnPq{rN3eOW7h&U>;ypy#SM{Yas#k?<<+XS-46Nk7F z0;}NGH$1Q)+*PDA*@{Qqtn)G@WOc+Z zg>~|+Tbq&>@b5yv{tSJ`Kq~^VqMD|*h_5{~7u6wMsZZp*n-8bURksZ0PfGNW5=y=I zV&UmJOR+5MRThF)H}cU1V5&?Ni+>e%D8b*=0HX?Qj|t}81=Nt%iC#YDzi-JjA`8J9 zG6cG8$srLO1`E7-GnP}l+?R?PLAOFkxwhbxj=-v@W^elLvwt)9;|$EZ*ZCc zeWx|MVbde~JhGV|!u3pTs6uES+IN@`$}rPl_7Ypa9qV>?yw~!z@6S$I;BYI?cw047 zO0nagSsv%sCfh?Y`PV7pauN;rOys$nUAmN&q5zYMwfM*-9FcjqgaRYOU))&|psoFK zf)1GvIKIAL!k`R2qkfh8wO>95F_o&h zK*;m8{4o7?VRm{lbKcM~d@Ms=UEnm1>@L#~%;xUxwj8yx_L_W5#o^vL(-&Ad`PRVD zM?*s<&k45c#-)(z9>A>KS}dq-=dG>Pv?w#u`uxBIuPRn|WLH<$!9xBE?}lx;S)tv- zITTyTsK=?JHTF2HllPpIek=clESM7Qx~pC^ToWD|2HU1nbSQ)PrJL>HK0isJzy3S$ z{q~!$`kssvIy#3>(oMf`^CM_AW!Lrcj64(@t1 zEWn(iaa|Up?b3!ndyMCpS#QFR&o^3sPUVnoW}tukoDxf1Qv0}mnrCWjl$XIhiSYAo zOaD!u$?)CO8`<^JlitJS(zz#))$i(0lz1+pwD>ccrZipB45m;eB?3!Bk*9=(=B#dC zei|Qg`FinEQKxOCXHYc(n+bW3w5Ir9FZ`eqaw38aFIej)2ed8S3ER9dwBcSPF* zI#&p+H7vPvm#Trn4Ah2dexh!I0tYC+=d7pYj#Y`Nr6O z8pWBejHNVA=?-?2!!MUiob9mF}YUgjy2Kdp>Kcr=j z?7GWI_q8=${D+txG#jWbM9BtS$1Re7khBUvrpCkXCy+W5#Cu13D`VMFs0LMWUy%PLRCit>F|nW9hoDj5sJv$FD%*>7WhC;5 zVpI6Z*N!7r8i$#)rPriZ@s?jL{{XiLKRG`)LjFrlwPzsDHu!;^?Y%e8tsQTp6Kl*u zU56zY-ECzRaazczwYBfYJ4(E36L=(Pp3X0=IcAr7-|&ncqcZwbZhziV^C~kCiyvJ# zS!)2)v-9(;LN+;17KX-yQB8|j?qdY~GtIz$YyzmaFsxYy6I zh(C{=(kDw@ytZsrO(sttNSnh-{gU>LPAT{~wcXv|D77~8)rgcsLHw^zLagoQY~9ug znQa7%PmyQ!N~LEnYi}0|l6stmZQ)F~qLX{g(C>$Tt_}x+MlcD_XOl(e+?4|H!n1JO z$Hi5)OM-g4PNoHUo!2NgUv(K$=^q=x&FvN}pMfC%@URZ;mQ7RL@(s?58Vr^CuR(NkHuG)VC=fdh!mmp0{b=8?pJ5qTLVb^q zI>SZ_c8dk z6!AUw-L&hUUiEscW?g75DCr#nO_YLM5BTyxi*d_-DnWOnK>1~>`%e^SO|@N*`bVz2 zAf=WG`n_Jw1UckcbeWlp*A-t|0iQJg;@#p>4DxddN=t%*i)4k##ay>yx1D~RMWkfs zmMULm*x58_kVp-;cvQX!TEoQng6D{LeL67dV%>ca5cqs|2sp5# ziLy3qCTzV`45(U@LTO>5{bM(;va66&C?SNWIZDBIRoByiw=r--#0;!-jUhp$G@@ z6(4v*`X@f{&IE`Lm;jv2ZgFcrxG3+q0e`sv#0TUE;k1SJ%At?MAtzJ{{}msQ!<+mk zKEUY`qJ;l>2OQs10f-M^|BajJ>+E6F8*9r4`+m=Qv$k}P_;{ai@810J(oxH}@n{Fz zvdh>gxz5>M9k*Hd%eo!usNCWOdJYF8{eQ&=lvo)p0r3Hcf8qn3yri363*8v2p<{3g z|A`N90>HMQ-(T^8?j1hb&h^`&C`jHXt6jwMgLLO84+sF*_6!pU$eobK;6nHe_S}`u z!#ibp5LDvIo1sVU@=~RETEM*}rCR{iCt^K#Il(pde#m6Vk_&bc|7eUiy z!3~2b;EpsvDcMiKdN@22uJDa1!fn*UP!Dn8R^%%_K%)Z>h!5O7Tx~%nROEE5*AX%S&lj_AS0t_VxEZPk)cO^88}w9^X+T!j$J ztoNfX3S{$5TL)!bviXwM8DNVOWgsyO97HG)pv!JxzZ^99Dq09>3yA7+CP8s_HwI#T*_eI> zqwL^d39;B#cH2WLO*-y~LNxqQs&sLXyPzv0Q5@vf zKgx(967QmJHa+NZMPOG{OSWn*BbN(y)?l$4<`BF9f+<^C7ZgZ`(B7>uOCT5dZPP)I zqoT(#a+v4szKDdJM^)>)A-8OnZ?+X^#W@nL;Y=uv)^h2)2-743ovS!%!~W$WgWP;wSx0uBF9bt|Vc~8>yKXRscJ0jO*E63|BU5*em zQN|J=Jz!#no&!h^Q~?fP0@4FPEZQ>B@<5Z}EpZ}6Mbaa$S=K_a+Sb47h!MMcOAI`# zVBWWMO;TRUA}mCRAVh)s-#5;UKR3zT-HAPj}CJ zj&9#liCU90lENjKqN4~+1oqA~^+=c8?CEU9yabM8#a7f`0GZq*7IrMcRl{`tMVAnO zgX~_>D}?R-k~4L~1tBJR|08E!?~(>fpyxmr@ziNS5qDq%;sZ9Y`e%z%y8a2U*ruXh_)fWnK{7~7-!5X)E*`NQfsg=2ah9- zW<6&c(bjPHQc`;k!DdKVcK@D`=s(VieO`TC?ur!y`g=Qveype3XWzmvo2lGu4V9SI zAk7L&PADktj*bK~s_^@NWCixeG|cOulT>+psBLXM)`I!&2C3o%77_4Z8qy{iI=*?_ zRV{(!-GQB;Pe3n%`SN)G{D z1;n*VyNZY=*9az&9AGN%+f`yySOWVH6#{vrff$+WzOSpG`osr3VWu9t4Yq zZO{H3EactUmW7MT+O45hrSqS|4&a}V5rp^aIQ9}YC1lr-sY*jnFqaUZ^)5*<*QN{@ zO|+{ki8;x{-P-mRy#O)Oe{A2|=|o|0C5WqZ&a02s3oLTDsgDymn=Fe4sj!m-?)KT0 zl^_(9BNofv7CXd5tEzKEOKYsSUjKP5Y;H%zhFvv|iRC=51bjFG1Op1n@nTE~X@zI* z{1FfrINX~{BO9jIgYu(4D{(G&e+hiL8Db!f%b{?b2N+++2 zgCm7lQg58QVNXA2&&uVJ(I|kv*6yN?L?lHWk5|4Ym0l7mLz*PGoz`+y#;alODO3kp zEp;0X7B2h}Irxr1wd+^jJmBZ`XH8Lpe2Z44LlhWrv0(E?wDFRSRGmzx41kX(QTwmzL|tXNV(Gg*aR zd~S`b&%Q%Izm6n(G+b(1x8kZJh^DZr9+%EdZ6CoYX5|>#oUV=>l^PR_a$5X{|B<;) zMKk>&E!#I7r(S5Gze&y_P}2Okl*89O&3`O@QN*z$%iVJ)Wo5NS^z*ucCNkqk;N-yd z;t}^unzt%}Xw{SX@a~ZtO+EE%bvF($HLoVHSh*@W1?;r(Iq(z5$OK#_tlIx>K)pGG zuNEKPWN6`J*~s>CF=(Hp#b&)3_xz>n0l3C?h#!MF3>{y~W5KbaX)VdJBd;%g{E;w~ zMUdj6Bg0?+&{7XKiAn*>EWj%p`fXQpaW<2w|2XBh zAH3IYz9g}qj4aJRtt50d?;5LzOb-+BOO;Ha293G66I5`3D|jwV>6eHz-6CS^O`B#2 zpBw)O=fpV$1jx2v@0u~CbF@5%t|I=C5K38h%>kaTbQ0-|)vVkrS+|^RW(6z5L`~m^ z+yy@6iWwEd)$7>vc6OzIU_Js|ZIdk;vkW?>pO3bz83f7QWr{_A^0(+aoXa>w?}mM^ zTB`)8nb#`jn;}J148W1W?4XCluwrSi;qtDzUw{C-|;v7gUp{E)}r{A08# z3r$<(aq4+pJ2j44<=)la(v3Ep7SH6FRqs^1=X=^Zg~XI;Gx+Y!n%hsSDMF+>IkNQ**vu{r+G=; zsGB$Y4i1+c6ps4A9>^-~>hl{9u^{Ku%hD`qk_^04GLE0U-351z{8l*?3R5H_{$}qp zKO_FM2oW+OKk8ywB#;IXC9N1oq>0d9BLH>dQ+OL}vVWFG)S^IxAor}gIe zkOSGk;y+eZE4y7|PXG4SY}~AdW$IqCQ!Bd0fYyGwnTG#%Go=frKOz2`9^^knSsw?G z+iYNffRO$pxBctH%|8*hB7m8>M)WT;bH*_@FT{i=gEPIvil_aQ^cWN=l#ZMTOOXHW z_}9^qs-1X>-#11}0soW@bPf+6s$e>nluF~Uf^j79syyo5LGv*GF5lmp1wGu#rlMuR z)iXg_t{$(?^ON*?Jg9+gM)TPvG(UJsRbuHT(@7tcovnYU*?36(9Qem<%Vx%o@29Nt zUZotX3M=kTGM1sWc61epPr+^gH9^cW%0S&+?zRx65UIIh(?<}x217byj1Mo{GhM** zQ3IW^MS)U3R zve|i}!Cc1=#GcZD+a6p46Ej>yHciTw)if+;CQqs=E<>l5OJsk*%-_A9 z>Z^g3Pucf;$oRy+S=ngKH{YX_ICoh23L3FUw%;?VQJ|668F)w8B&OoTF>*1G5P@9A z#QkZthZ>9wS1no(uM({moljJ*@iuwbakM}`FlvbW0vNc07D*SJlGbhqcn?KIihr>Bt)q=4XaGkO z@qt8M<#7Xlh6-NGEt|mxvelg`eR;ovXKXBCfOcZ_0H!fzCKV~U2bEB;xd9P z%tba#N5+TBajU3w=?RA%eB*B&#j{~2mY~cf3eQ)_|Mt@b?RR*V{ePKl|GFZp z4ai?`ewl4=kp1xMsjdZs+O&^F5DjMI?ww=53?Q`22LG6!-_#N&HDs$&sBuWKy&%Bs z3(G8gd%m{i<&DS=_^1S|0U!#Nq2GqN?*;$Z^eln)Usn&mSg-tY_+#T#@DhFk!S7j> zN>uZCIxg^WnCmqzTY!^wK3vVaKzQn&6iOEy>4xiR{kFyBjW!UJ&U+Lj0akK+6gUzx zLiB}K(!_$`4>0Lg6uzY6EHOBG0}_NJ$}RxBk~tKx1ptY*fII0YqWy+6xg>Z;0l3e^ zdXH0aZA2L_2)NH=%nuIM?j1JZk8ljX-8TJgw)X4Il1-n4O&|hrpQ&>RfgrReBHJ9v z%Nj(0B<5=2C@uUEiBlC-!bO*Y>Kpl}o{{RXfPXLv=V|yBTPz~URVXG_j~$lAkFEL~ zasN~1&kuIO`pt?11N~O)9>2d0j$A=NVmm{lZuWP8`%Lr2f(m?F6q+`oV7g_)J>Tsp zI>jI_8!hYRyMs;tst6vmFFAQhcDYpg(KJc@#LfZ!+y61>o}=UR;U^mH8^MM=U^nEW z`Q$xGLqTx2br>d4oPjx3yov2w19V3NBo7HF5Y_H0btTbPfpFnJ z1wz~?qX4L|?h^oBxhUGa_;hdth3p$k^#Gya&ESfrEzp9z2Ur4Fd@TVWroS;sc#T5V z(c_-%lYbA0O%JOMXH@p~wlRDbDzc{EgR=jQ1E>bJ0C@{b2r;aKftQfzEGfp82LwT@ zL0QStsFJt=WhdGI@XE6~H`y=?rQou+eaLdUv?lB^lWbD#Xa|lCjwCQyHaFA-5_Zpg zk*@;AZw#qpVSnv(7!q$D#xb(c8q_id1U393a>;o(*lLE?&oH9N zWg%^MNUi%{=b1vZ(7+C2zVOP-z!4498R$2#A#2&QWdL3&2VA-k1=NJVij1*?f@Q>F zTmJ7AfGM#*(y3JqtL65-G9sWhP5MP)^3k`TC;PjimrO8nIpiWny{$BRZ1S(Rc<&JAL znk#BDZ(_2DYQ{)>*N=OLvxfqpoPd1mAZunkCbmf|QUe@bk{J+Cwbvx?_bS6~5WU}^ zs+KdsJ;{GT^>(Rd!t&0oDP0`u;9{kOyGlf)DB~%l9*7YbjfnDw;+2r)y?O-M2X)CVho$uxW904o4@MWRcw@u6?(%4BVxV{3VR0P07PT?#e+{s|@`Dh73r#{mT>iW2}VB2Xo0Y`Lcn8D#+b1q zdE@a0SPoc1X6f`Xl}ACB{jPXSeo_;OfAk}rlVNW^8c_OqyOAhMGGswlp+(*we*VBr zsc|!vS={N7L%oV96=w`wFBI(%gFOSqC)dzM38m}q<#nVj`q~fBWjOFdU5yWg`NmlD zDwf^)BF;N0HeKM-t`%X0zmd4?jQ{k7<2IFQ29rW}$}Fip_#B~5VP60(`sIhWLarNBK44HU|0ehuMCo+r5Ul&_6D)C~ zaObGoc@hH+T5FaW*7fI;rh%JD`9@BRoeW;&6-Szf<>?tM6s*7OFS{pQ;+OC&(~R1- zD*=}ckK1>5<5*vw*>G61?ww+%UmLH0_~12S5bqHnJ_x6QCxA(py2h6X+kkqv|KOy> z8~5PcOK--*Q>UU$jyYzIk_Fv;Tq<0HIlQTvqq$C%ohzP240uX4_sBx6*CK91VVhW+ zBLYOz6yEDD!;vX?)5Sj(F<=>-F%B+#TeY7uSK={MT$mN(DD2nq<6(v1$cVq7Pd#xV zQwOWoB{yA#+_`8bDFpnM1aIMGsnq?N4Rf}L`2$&9i2iUg+XGW*o5$G|_olQAmewf8!mZ!&$8{|@IcV*qtMnCI~s z&CS#6kmG(Na6!tXA(27g4e8{4m)|?KCvnn8tuP>t^rh`)PZ>dq;TQU50)IH7Nh11} zJ-p@*p#@36k+ER403X3{mx@2eu)8;f*{^hCdownMtp2%no&;w=e$eXB)5J~WLV7j! zh>6AK`@5u$)qt*{ZXfAcy-4Ge__)_Rr9POcv%|zOHJhtBY!v_rQ7V?n5V{80Z zTFh9gk?8zc+W@@Fv*fi=vp;d-6hbZ!!^SLb@;q>o^E?*V<#$dT@>HqP2g)I&P3cP` zw;Q3fWhKQ-RhAP*8Y2XeZA&GorVdjyMZdFLm*PM%p~%y63j>|0X&gkOkG(u@OQg#u zf4QfiKp4fcdAFIUSd^?VJIVTr3yji$h{h>S-%PdM#RBIyoSRCKbuXh2PU#B2g1TM2 z_TNV8|HLUb{gq_aB!^wQqfec>;nl*PYhL^#p2JDxZ>df6iB0Kd3G>+Ts1EcW&P&Dh zG4)?2+XJZSY{0C|2MTe$n-AWy?4ZnM>>x;1YZnE*fWsA!>?JRvJW{(=Y+B)IN*;0; zpa;doylf4;a=+d~wARxPRx{7g+y>l=XjdpV02xVIn?9A0Qqg0u`5(MF+3t0wu3S*1 z{R5ZcO(yq;{78&jC9S%(Rlf3==Pe!DS?2EizvhW$4#;gBu||f>DfeP4`SADTxZQu2 zL5>YMwdUp+D@;KQh&S}FB<2M za5h48Ukgi;YLbWYvA`@MISP?tm_>-#FZ#`4q3?au#sV6?|3h_X?KZ17(4O-rI{W$s zhVpI?_q-%Hu7m()XbvIbt7<;mWDcu}J`Q=JtWKk%I-O1X{3OqbB>eQkgKWda{~_$0 zpDX|OEgiFC+qP|VY&#t%9j9a4wrv|7n;qM>&Ds6E=iZr`bEf7$*gt$~SFP82ujd&h zL_Z;{#P!gp|E8i>Cmx{;{y4S@%FJB zk|hk0ffT^rIg%?Y;PEIz#$w*QZtFtjlYqQz4ZasMZvPZH+r`C4*~Oeq zTk=Iulv9)HL|w0=aAI?Rm!+qP`@X@~F^(%5M>{~qUE1~8d+iL)X9-8L(8(6n08zU1 z=ovCB2zjaI%QAqa@`5`@z*MKlg10306*45sMKnI!?QW&ri+E7|^g^WVMz5B)lP(Vc ziHHA|6F@y!ud_kwfQSQ74;rt)80BV2`Zu4J2^Et+;AHA~!cT@S;L;8G(h0lFW2O({ zKs*2>9=%9ePlERtzOjJdg5pvYK(0AhL^6obF)wuLS*Aj(>Wa46~vwAGK$;qX7T*B{v~a-RFWwm3eLZ1Q78{Ar$-K=(Yp%{Jck8tY8l9N&a} zB5We}yqPO6Ig?Zwqu+`(P7}DUYbJPsNg-G>bAQht5ly7@uc9x22FeeKq7_`{ zV?&mtV7ECOP~WLCOciJAs;oGN=f4CY%MoX^HWZ>3m>he>I)sZUDMOW~*@GwRTnVy$MH@6xx`v=w@tQ1i@0+O^R%27M8U zd$8U6IE^MYv9r9<_;AF@8nUc>!E}YZpAk@arbXjmmO2xH&s*V7|0!0izL|%W*x@`* z%T|vr%Z9uq8Kd^R;L#g0tNxPo_NQe=bKmpvQP0l7jCblF-rl z5=U@`WDQU#GPl%FiA`4DSfp{v{y`|R*x*X3;}OLq_*>e#yrMp3pUDZ0*VAyu z$0@qJ0Z5`k4n8F*w zN8EdRnNNy_BkkaM8Doh|k`ro@{6s&;B8y%RX3zajSKn5d>C*ILdS-Hhj&k+M>GI!i z$`LS;L)g`7B)5M zNS57k*J1*ts*ws}r@exSwyW*HQ}AQ1U=8G$lkWuq5dH$@IGxuv+|wcz;L#{OZ}yw& zPqmX4<7Y*>(C@NT% zY8K`prYERu9sgeCxnu>TnR^ey3aJY=V=?tLSpl(UnXe8QKPQ`8VFom4@&I#4*x8HU z>8haCMb*8wBGvIvN12+p&!h^%zqCr1 z)fK*;<;HNNpCY$Zo4{PDSbe^?=&r%()sDMp?{g$W?_@y;EnClSX@$mjKsdGQ9N`2E zXVtGemmPAzxYRIE{+!5v^Ov#>**~7TO3PTM2Ph9t^1P6*{Xb5N_6xPSmT=J2U5)7* zegwW706E?v@zJ}zn2UlU=65KwIi+v|RKqjNI|s()z% zUXAJ#)?;K2=ur=!6UWuUSy%KxelEQ>=Y;wb-uO?(xZOt<;alr(uo)Ii)idNi0Z{h) z#B(4kB43L(`v=4QeW~E^08@(QYW=PbA_U;ksQ*_MiM+c_)Kh|WMw08A6^*ik>|>8P zWhTd{y^y6(})#hPkq$Qkck9cH{_@kb^0+~aS7Gz?sVa4tew+i4d*ef`<`I^Pm}4={e$hL%YlRGnst%5N){ zo4UvuTljCvnP79zXDsWO%_Oo97Ltw$*6xeU$jd(H?4EOk=1dNB7DbTjnm>BUCf$AR z2^gN)=Pqc$h)QHR=xc2JAX_0<;r@MJG|^Bz9+5irB>6k6m?s?DV#Yupi!6OsJNoK~ zFMNah>@zb$gQfw4T=qhvg$vD9Ot+5CDupAHJ+Pg(VSOiQ(d9e*25O0{Rh%vY#!&dA z98JypG+}W;s|3!+=V(6e`05I*0cFFZ%1C7AyzQWuvQ%>A5`l;zHhoIfT~kXahai^U zp3^Sduy2L=_K>-xxf zj}tqrN>K&Ei~It&tMOCWah z@{S>i^vR4K{Vab*hJ7-71OXKv9N;Vk$uvj?UOaeRZ*5#g-kaciO^>_N#= zzmw(0gOJ|5GzwIIr(i$9h-SvKOM&*;9Ci4zl=Y0*TaM-Zxoq11saW}hu1af`xHbU% zXN_}P-Ikxy3}R9z8j_4HM5P|fv9Gvk8*)#UeRL%0kET~neorojjtUXCZ1_tV7;WOh z2v=-?b#V_Exre{?5Jnr?M4E4!;14&az@De@pRM?*x9uGG%|sPkAL0XPv>@H>H)>hX z71^$Ep1PKliV;8kznhMc`CjqnBMCb6{#XA0V<=_NExZ=Xwg%m`@;9I8-( zi}NqxS#H}bBK3zWIpLrfw(bY|3Trq=B%xUlpn)zP1#2> z484z3J-=pA)sZuWTesN3C7iHtkb*Zkd%+S!BICPlH5&mXV|lf6;j6TFpe+2gc{NGu zJ$?tX)$i!x<=sY%=dWyMrVT7rn${gK$@sz5X;m;7;%f?q7sO?Rz@_dBB|}U0aw%Eo zbfvsJtdspnThg;Avd?rV?m1lKI+)?LpCC~Kn)d^QN@17B^`d;iXLjezYNc$6cIoc= ziUOTqa@WyjWr#xAGrRXl(dm@!=GR%vZOw1%kFSNxuY1dD7xeWqbArZE(&`vd>- zH^Fni^_l&qN7iJp@4ww9M-M8u1=#^30{2Y*W+HDT~+$}RO9nG zw^bjE*AJ79CmKb|nq47>8v^Ga`fd2O={VvF8&R|;x*M~H!q>VZSj-qG{clQ9gdt+A zq!gA02+}PTA7IS(0mHVu51L~5x4HN|6`jChfePI6%+bkrMZSzudf_I^5 z|H3zv1ttE%HvnQm#po|wJupuM{rFZ-1_G^6sl(Fx8!aCl(*)y zaeiQl_9w3zf6Nbh-q~v@2D_d z4K#j7mUV~bGknub`45i5_AadrUj_wsUsgDIa6-skxozFSi(YvH-;T%x{-O_KGI(Fv z3=gBxiHq-}#9au0N>A|Pp{!$I!mp)vfZxUa{C&dnlQ1rpm(V7d7HTN-U=(rIpx8=( zDKg$h3eNJ9s7I(dp%1pIw(^%Y`Ngw4KI)K3CLXB`E4w&7A%6EgD`ynZ=flp zl|j90%mIiT5$Mejw?1`$5dB-@vXUSoNi{t-8YH2Iy6Ga7eO}P-038)ddoppAZ#Y^8 zoIq+a9N`!eOO}f9S4F*@f!2Zb|LD;{^7Ga3>B<)B);j}a25&)Vl)gpH>TWo!_lTN7 zG7C2C0`Hlp4dTl41dv`rgdezx*pZM4#CGBD{-s9qW_g4&kv zdd6UBrU3i>xLI*g#z4jZe2yiG7T25~MijT6dxWO62-i4rmOcHTRU9@SiL<$J=rhm6 zcO7%Xp;R8Xcd%Do^fCtHZGj9wS4H$73G9@@pxl4TKlrqn_$U)vc%pzUN8YHQ|hUZ^|W7>n>L!sm8PY`dw$)(1{SzeeUZ3`i_CB~p0 zEaP^F^`)j4emex}#b3(XA9n|Lz-k)s>yo{1QXgYqrNOkHt6UZha*39oEPkTjr~`lM z7uf|+2D@tS!Kui6XATT~qf5=du97KqZcuvJ>Q+P4v=9RS^IQJKW%L-Er21?(`K$3(&7kWzN~GDfdo^nizUxw3Wma*_uM{$Yw|;|ahEOW&w~a#f_)Qg% zE%?VKvIh($JiH7#aI6CRj}CCd-`jdL;B!bdrT2Aux2|pq7$94BFuU1as9_SYcsK2) zxOL#dOMSRz`ogpXU%zG}X<>GbqHl&j>= zk4q~=`%#qQVTfU`GDkyCs|cZGM9fFnm^J35$SjCSA4B^|D&_`=LC-w9huc7j#W5WD zZ|Wsn;RQbO8^^CvMT)3=jY?qIb_RTC^{ivZ?iPcigtsZG;lf>Weg|$fccH$vmAoem7rApqll8%J%I zgqif1Z)B_;yX zTb*r2RzFwH+jQ32nzS_+!eT-dA=zVTMVgoQ@;RKNB8)0XDfsrXwjfXz+(lD*^%0Jd zyJ_@pK;MC-^tU8q`^_=tl8)c}CIu|VOdj@pWPd1$aC9DZwp7^leC#Bme(4&+^t?ED zt{V3SDev$f4|Iz0M;ALcZ0SOk*G#2^C!6)1qs|Al*G9arC^Q}?3DoT)Wn?y=5bME) z%=4WOBH7aedCUwkLr~nRXjlB!|9+?rO^hRDn?+VP@LNP-S+kSMc@e0^HZ{A%CHRE! z*bO{)6N@0Gf03#~LWH8M?8KS5fy0_^e51dw3U9<2+nM;+*{g`Ptj(WBxDz6txDep^ z6mBLo&A+boW2F*Js-1G_?|Z5GkB_F-N97)C`14gp<5rUoPGTTE>;Tt#qvIm_8jEsC z+Z5v}H--G@Y9=Hkg`$hguqU6h{2EAXamyu$<-I+R3}sAs3AG6F>wsDPPaa~&@~$OK zIp&g5ntgcD`S=s?m2?;uW{t>nn!_H@ndV{)D9V=mTdn-%Wc`dqHmQoGeO4lwKHO6$ z+i|i>QJ2*LCU}j#c|BxwV_}lX#H*DypmVtcZyC3;6gDzRi*i?=?J3<77p&>=2Dz!( zi!`H$2QDq~3nsU?;uFvKip=cjA@6wHg(9k|0t-h3*q&cJcBH4XGrIfWQ{!Gg;+h{g zovfsIu((2C?YC!xeo2btZze52x~+h$7jtCHSr3LiFPdf(mK4$=jFn@sKj^|ozb`zYUt3lT=ZfJRSU9vW03`X z9bSt%j6JjoP2zZMnytBaAI$@ahk3M4Jgzh&_C+7SVDa)P?!<}tGrB^I7m!<(N+dgq zl`3AJg;_ls@EYr1omdsx4L~58KHyyVix3KzB%KgQkMZU&(D z7jk{bZ>Qu@BKna> zygUc2B8UPr+@MlWxF?3kunI;(T9LM5G#e2wi7Yg)T1JLY__IB+u&QtyQ#n1p&SV8d zp}{VKHNKcqX9lc{j|a!>rj*6>$1_d4!NH+hd{X5)>WGLJLuI>+PxrA)(_w3qP2Gl@ zBR_769Po>V-6YzY<`dR05t-JHOlTQX^7|hyl%x&@#?s5I?(euGJf%vFTW}g)D$*Ro zrf2iY+bS6o`JbXQMYTYG;DLNp+<`BF=Q@Mz_c0RXgeW(Q}&IOfZ5u)Acvt_s5QOtE3o1#NsT5_-CjGH11U$ zN9U8&7qL<_#BllEQyOj~9{q#$#WHefg@4$164l^!Tntt4f$Ln%tDl(fd5sy=Rz}zj z16Zy25PfOe3InlM;{#Vz9SZ%5qdfw!t80}9fNyKmX;civvQ3Uddx4kkG;7+vk!Js(QizmasFWzBT>I+|ZPP4#^DR|X+w zY?|I*NHDnAR9b#h+Ql5$aZ!FDgV5)*jK-i5GAomGJlZhL(6FW!cD5cZLLBi`E{i^r zTRsec%gKq5YWmTU9U{=Q!kIDVPza<%JOYMMx=#pWk7MRAI9SOjWKfr6T6*o0YgcAO{FT z-^eart1l{-sG#hc7`YxMmJTO4?)AUaUiC;g_6Fbrj>vDIZP_OT5#Ts#b24y>z6RKE zB+DU!PlNnk)+;9pUt0e7y!Y!zL?;cwG4e=oixmoRWU)qZVIBZ`2Lmf~4-obFc0x1u*JZdxTt^^c*)6uqAAC=q z`Q8GIFK!CNUB&pgfU07IbGPuEDJBoZsiX|3Y&fcb$fwo~RX8|(1c@2X{I*-72*eGT z1XyKitk)I$j!e-Zv)0~AhCM0&qToIFOj9@C04VsIRLx?&_|2oCt2zJ*9_C?!BLGzs zEv>}H~~o3-x1V!N~Yw;v$0kl(h!H ze0YHG0^$(a=BQsc+98_YkHX+P5z76IYRt@v;_?FW7{QRx!x(5Wfo~}E(gtRG$?<_(&;NpDDWC@8&)tx(KYrG5?+kLFfPZM}ZS;UBmdCgS`e zUSK~PH5lltM`rn$*hL*g24lQ9Tl8oOegScMgIDO1z2%MYL2!yF_C*Bgvg(=0`nksn z5Aq!{9PwMk-n}f&T)hn6#R3UmAx)&>HthYp-aY*fw)B8Aaa|T+FDwp1fdE1)uyO=q zq@hamDnT4P%_c*oJ>ybhlguwHj>4gu|Z?PG)54W|6$y(59KwSihH>#KCJGvtQ=&$+{ zcV)*ZK@|4}XJOs~UqQJS-1Gy2%gx;ZX&@o$zjI^>syH@81d0w4-daZ2x=5l%=!`wD zfmbKprSU?}pPcQHg*uVfr*um=&c<+3p@Z(EW%GGhz+@anAsvR7RnA%d%QiHeH(Z;i z2!^l@vMQ7d*#_+24s!=8MHEZoInVvR%M0)~?0?v~-h(#nY>2jt};% z2kd-Yk+4BV_alSw>2gbOU;etsqnxAxRK;Jfu?kraE+->Hk2ox!Hnf=$xyP2&Me^;m znh8e*oezl@ZMm!es13c6_xjH&eCKX!4$fSUWYdj1nXQHedH9FGR~f4J!A*jmM!|+_ ze{H>i$AqDO&5aEwZm3yNrc6vgyc&d@cRt2GkbaHx-F0}KPV7yPUiMo<@46{{nr9j_ z4KVO7w3oqp>Xh9Qojx>4+b}IT}OPDoIuX&P$6stE-g(8@D|$X>0^# zLxE`zLk;m5#L%#0V6E4QoRL|4Cl4OgM`y4OCKGeYDfC7B1ix5{xI>An+9Ju7CDEeS z*t-*MU849WDhY}+k0 zYb&IC>To?|-WMV{MytA62f31T;oIUbmz6KGe|kr&LfK`W%X+!@GE`*^JmWHU2O18_ zxSrAa^(~4-`c7ewPirbKciG19S#yq;^e&6|uG-o2|9MT>rJl&FBs&N>7+Xb{&v%j! zU*p~h;Ke4N?R_vig%?mML`z_?q?+>ASTj$ZP{ubkoSGn`uh8nd2$eynYQS0(KRcFc zHj(AJTYq}BqTAXvlz3>YcEn3e97IqH7N70cbg-k>Yr&k> zm8y(C>Zc{)B~B`0kG7ER)Vbe>^D3Z^Dhg6yy=ITx6uZVW|6&qD8!Y?o>TR(W9I28qE>B6Pq(6rok zWXy^vvCb^)Z*|Zgst^waEQjtlu^dosN?qaTxo~T!3jg8Oen5tF6@nv~87Si8Ja(Lf zQ?od1g*e%fDC>|AH6U%jf-o^I)mt&q%MNwz5XLObkEix{y01ln3%hTwcV0C}um4AT z(cJTN=VriNe^vBaq378fu=T#Y)2=}o+x{KcRBB3(^Lb-y-m~?l3?u{ zc~@C|f&tCc(|6O{5!UV}oiOYRWp;gTMU~M8B9V->iY7djqm?e=TlPF_w6oF+^>;=s z>hEha7GR~-Nz^F9GpilVGjMJ(G{4CDYs^fNqG_BbDp}D2KYMvq?n?hOlvHu&v6tZ) z%&jzCPddVuz?uwljnAL~lgH84rt)t-ahY!6Lo6wip$c`d;X&wDh{;1+@hq$+-e2%- z;yr5b$JN`~Q$pdcACIRjYac*Jst9_?jf;r~HPsai{zM(f;P zH8U;QNtAjmv5Qz^^I{sJG;$253k$*`vxd)jB|m&A<1_N2HHL&gIVul zJxFEs23gjM2wI}h0mDv-nKYJQ9syK!CD8F9O=L)JlUUn8m?GbWc}{Jg%| zrHZNguZ+I3o)R9mic=}XyT>JKMpRjdv-YmELn90W99MYWeF3@nJGH3q8_H7WbZ}f2 zR-O-BEqgb|IdHc`m@7^+f_=N1c>%=)Nq!cHwTa_997hIsZa$CEcVaWl%ntXJih5@2>Bu>iu;Dlr3k2HZwUR-S{rflk6 z0=7mBivYAkz^v`xeOPLio`U~2cr!OKG&XVg*Whi`X6>)c4g3|}{}Q^1vzcT7I<}q8 zfhPVQ7&E*%)DBeA?PSiSbfIchFxd;yLh0`2$j)@2BP3wEHyV39Q77o;7b=7bauQ3M zZjgX}w=P|O4>zsjL{eeJwS@Jv-Pg<920x7hif>cnie7@M24@LNAT3pC&!ZOOk3>}* z7uiHX%Lc>1{7z;rseI0Iz~D`|3NUyxXzOSHX}8Z9os9Dv5-@lpQZm>(&NCY@6S0}5 z(}EWo{X2LI3n{(-Igji1KZ7@p{~o+y{T;lW{A=)r2^hSo^zDmd`Qg2@X_MBvF+8C8 zvN@ke*&jytL>|&Xu)OdKA!+;qi#s$!L6<1ayk)hevP4T3H;wvGHM=S@Yx0_NLQjm* zMo;b#yWej8RaJ$x*RkqZB|%l{l(ZC^hx=YyNSAt99*`;(Fq$89&hOA8cm3Ge8U4L@ z^-F54oj(|#Q{3Cp*?(zFfP82sbnZTM>PKXtz|zkosL*Zi9m#4gdmG;R=SE*+pi~s@ zTca7~WH`_`{tmv7D4B|6<(%-N+ReI~5$xxdR21JyUA;^(Nv&>T+Xy`R+6#~kloPjn z8}4<*%x4K(2I;^n@uc>Wx^Z)PFUj>ck5Q~j@;teObv^RKq8@DOBEpq9HR^yZPD=lK zD8jygQ?PdwkUS#>g#zt=Q1->wHjIZEIiWV{Z89KV{-|wB+6row`3U= zKaMFTqnPE`q+5`~utl#%>5yHT301X>jh80k(vl;vao#}Of}}x{asj7X(C3k0cy8WH zYM&CXT#>c;EL~2vm;qPv?W$?g9-G4c!L+h?f=lBRR*`2{A)p|{zHvRC4-;}5cg|nq z4?G_U7mhgg0B->)P2k(U2)tjkp)*2D^9%H zoJ4?Kd_T}qFcs#yIZaqdw{rwpoo!JYP%Tk*w?pp-QtD0qAY%0 zx7m;67SvAhB2`TzpBaE*MALeUH47YNFFEL-nu*7C$J5Gc__>cB5Q{Lph=MRmMON_kJ?W&*&ctCmt+auYLy{}$hh@D$IY zAuF6k-u9N7dgPB;niy{yqg_PjhL#I8OX3d|Q;q^950yBrQgg2G5YiAW93|9Zm&ZKK z@#h=hOzv;bq&;-<;}K1@^P289&t>I3mm@%0`?FEpo>xBkXU~r~?8~s? zaD@Q;c+?q;`n7W^hQU{yGm=Y$@+Tw&ID#Cw?&O;?RhBN0BJbsxY3e~bYRPsjg$c={Kv$s%U=Zw*iN1&nm!4OKD>+g!(W67~(E zA)vRiU1@&`-kpwq#Roty6@fy>%0>{l==kwt@S)r1^DgHzx#a?Ear&Im<|yt)$0dQ( z5=Hc9t6J`04#*#0LI~&EQ6OO8pKC0%#E{c}H5lVcV19;!Oj-a9MjHAOK!X9;X`)zi zrAGo|_1UqdY7D~ueJ%{xX})U{z5*6Vf#qicp?vj zN)RLhP5BW0ivbo4I%1&W1CB`^KoeiW_;c$}fbY;~W^Lhp?To4acB_R}OOCLT_-1dP zAERs7`L6}T!XQY}f(=BAzn%oj=)Wx(zW^4D^Y0KNAYc6SF{Oah(-q+K)b_8_6UKAW zzJPe)2;lT2@;|31_lz*#RsVe@{`s8C;R)It6%AWtsre$O=$Jv#~n5N1=h0jH;Ppd8c0rnI+ znLJ%Ya}Q3dU$MVS;d08h04=#=~ z(dXE#KpVqI&2TY*k<~)f+K&~iv>W;lANfL zd?=~n=8vEqDElb#glMsfv_zGgf*1i?rDmU)cA{GX|5L_OT9y`J8&5D}O*-%uAk0AF zYHO{zEien&L|$>tLq>1kZqtxF4M%*OBG=@SiXJqf0?K%`|0?67%K>G45W6`Y6?bk= zTtrG#!K_45{9h49E3L&vUofzDfmk=p|1RTuIpgRM=k0dd;1x9zLCjZ30XxknA`Z>+ z1A8i}dk_?0Zvo7`jQJH3CX!Emr6X9rQ}kOBa*6hQkpYZUN;;g${c^^x1pIRnDx>*| z!Qc>2D&c=z7-H=LgLz-rmqf;4FDlmESJnR2H(e`YDOsxpg?hw=={8(Xq218eU(`Vu zL(l_j*tWS2-0?)h>$bh$f^4mc#yYhwe7>|qjEjQUc<-1Fw#fEeXwkGeFOko-%qsUC zCRU zdSfIGLllQ2hEihGb;i@{+1Vz=AB8f6-v8?SadVnV5AJP@HbC-3ITy>%z5Q#F(-2lP z+plqSmFaK}%tGH`yk*MWQ{|(8aOR2tdTa^_31ncT&P5EOfGV2QhbHF%ThLpgwrVC7 zN>?uDtk>3i0lLD^`+=I#ub>D8N>1$p%5GoZP8i*l(yb4FWEC?v7?qXJ_)$s1&b^w# z6%90yXjg;wKFYdoL9gs~x+3voVMi`5Ha-aNbd7FEY*Crp zz|p$N`W#nwsY`3<(A6sPyRd%iHZyXY3~~YJ*282s%?wNLe7lF&K*~kxRe9Ou?;$1$ zpL}<_YZ%GSn)fqOOs;)?4=Q7`)%j;dXeIt5`f6k_FH!Kce_B=zsm5E}onlFk<8^;+ z{PGbd+R>eXn0{9`eSY*U@jzc3f?iH3Q23GN3h3i6H}r*!<(~n^C*p=EKp*dP4zl$v z=j=?6_7`{fvi(3_sJBRwG>^Ki7-uQ-)vsyg!3%ANr z$J)tcd9psg-ir`@Fh&aE*7`5ZC!0`bZrVOlb>egxV|gf=Fy-MLddurG@K(6!5-JXy zA*w|q5R{2H!j*lf|KMI`QXfILph^QqmQR_GE3`-eUhM&%Me3iDf*V5YXQchWI&1jo zlpkny7%lf4;;B`Z0@x76 z&%P}8c{feTR;<|@-kn8~;h(s?0AMY&ZPu%|Pmvi8GEi}e%SMF`V>2OxY?dkHoaG{sEP?#Q31T#E&zn7k949;F6Qy)DV>u# zxt!z(rkR_pMlBW=0K$}=CEb%ZJBry<1olH7wSy1(3Sr$1GqM`R-D_slq`A8`va568 zOe1>^LvfV7*)$=Zs9`X@0Di5u+rozPRtF@%(lZme@YvPMtyqVmWF^jeziLw|;GSGt zzwm^(^zPQ<5hJ;TJQJ%q@#N}?gQ`6y!#<-q7(u8^AnWWS)V}r?(!Y?a!jNt4#n|@hKTrP_xfUHvXNe2f3mBGx)N4Z zBF6t{h9KJxQ`26}pJ96!(U0RsVjP%pY8SYgPeKOc88b0#b%Zx%M%HW_pN`y!WykTh zx4zego6-!QRdrN6JakAXzJJC;4{a|=oSU1Kj z$_iF7C#=lF@soUejft4%o(ls|xeU$dT?-+^ADfD5FO5qWVw$Kohv>SBAZpN@QP3DI z5-{N+NC_fG#({I^gs`%B)~<8?Od2vVo<7l!9rc;8B0o4w)EZ!q*(n>z#S>i7@S03gs%dYdW)}>+Ti*!aQ zmlv>SyBNY|(bPQJ5TZ;ibrx4ld2iD+n^kd_DCD!I*^5A4?YvdgQO<}TO`I7S4E9lj z;N>CJ>i2z30*eF?V;Vl(k?3nw4ZaT%Gm?GBc;Li&10#z~W;Dd+=LJPJezag!jk_$T zr!STfIjC6*n!`HJYfT$msxx#n=rTCWC>V%QD+#YVp?6p}J)Lk~s*`_xVPu2S(m;0Y z7Qmf8lS8$q3-_ptfZMzXgHB~GiR@i;5fel8c!|Qb`&#P0!cY5{5>*Kfd&VQL0n(p& z!RV%sS>*vpHGb^%l^kUJpHhwDHz=ZCiF77A&!ALoz4rB#z*yiMaT;TTIMag)uW~xX z9n}Yxh#=xZ0n!{e)#HctN;NClS9=K7>{Dd+`P#|$mf?3;nX&neOMU8hTVvg~rk}%R zz5@K9?>AW6-8(EjMmQw6;k4a1i{(60_HWOg6?!%c>MrvzjlX^Oa9+ooaF;eeA^X$; zg6H>l`TrQ%We^2JrUAL<@ZWRKe-UalEn*5ru>R(r-dm{`L|cRw;HyVbgUBn;pDhSt z;hb=XtchIjXUgEs9UktcvvUa|af?-c+&S(w?x%EzPu*yKTO*aEzY4DFBt82w;AmKh z=im@xCLg4{x6`9g&GX7$6wUeArD?1IhP<4wdymaJp;_OC{>FsiA)`59!b<}UOHQ@i zq8yMViG0@jUJ4SJ+L316{=QpECMINx>vB|zIKv{UzxKbhWcHeWVh_uV0{~Amo4R8T zT?@d|?1l(oMh>^O2<}7r<_44ApohO2ma+#Ix`T@PKtV}8K!m+u&Z;L``Fsll1Riey zq&8x}>tC^lH@phbc~ueF97rtz6x}?`C7OWHt`bR^=88r* zA=RL$D-6R9M0msvPg`%Y@cd))d*zNG;=TR=X>M-~9WdQYRXx&KCRlRtf&vP}iYt)r zV_O;9`{Edg>=#}JwT4EAsY zffl4!NvG(Xne`kI9Dd~=(YNsgJ?%E7DH*&UT!4NVU8MM1cdZqIvwpSr`~jmDsiJW=CL|sCbB~lToW=$v zSZqZFpmG=T0H`&boKaxiA=^upcBLX~FXf2WW?A=e{K{Mh(M zt)bTRYCc-&cYu#;PTf8^%iFJfUAjm&3@7XAEC|Yq<8ADktT}np#LOLFxZLE~eLCkU zFm}WU2tKWrg4Msrez_1Wo$2w=&Q*E3S|`Vf+aJ-Z7nG_|&7ffYeKf%l875k@izb{J%5rKNG_G5O5Cx$|8 zf=~%GZ{VELX{!6V#w=Kaf1=)=j~Ucen*G|a>6Smp;<{04Wok?t53y?&|C3#q&NnXf zhgwWH#LqHFtcFSiGp=eP3Og_u`YK1)8D>9k8C%JD$f@nq{R-iyw}_8(WQJVQk%K75 z+XNZS1Qcdu<960+ScL$x^*lI*P(?ps47!Y=q&Q2mE2C3r3)NZfpe(RsIE)WsJvLOZ ztuUZ-H;2r^Tw5_AP&E7u=x-5HKy(>}x%lol4oO9N_(_6!7@^S9Z*o}r2UGa;9~o_T zX#~GuUy+!M@qF+kFhi;6aHf7P8G0IZiUunc*Q!gyVZ16y=uFmpKW01oL=5}1YVC+c zI~3{s=xT%cJ^W^hvFVKcG+Q2-XW9O%RqS2$pUyqiAI#dS(XaeOAs92hJIR>Q69+bL z>u=}21VKte_cJ%`>0h1uys$lF4b$~We8``}G>~)9YFH6E=C=%d9;%4o-L6*xVr5W7E@bCJI zR>(CmCsNxUYJMAzG1PEzJHRzo!6CGW9T4;6XN941!1G=C$u(II$Az!o{ra~AfF`Dh z5X56+m7hT1#F4FWzna|Haggpo1)GD7ez-YPgz`;ekzd25K~gKFqZ z_+Bq!!@;uIdUzo(Vuh^(VB|_wCw$6a68qp{pYiqkSHB`ozR?{a+>AU5WcvdFy15ZMMvfcOWQretz-hVWG$ay`NE1T?DjwVlNEcsC~A)-mDHDtyooSmBhI3 zk2aAEH#V%t5u4?h@{b?>nh#m$BNL7D)4Z)%tPkz*Te_2b4!@p->3N>}KF zy3vE4$jQq^0{Q5)x*gYY5S{9y5^H=tOe(HGP)04ZJC!<*y`AtR5R0};OR=f)l2{`y z=l{jtJ4JWC_uHCb#ZD?l#kNyn#a6|(U9nxUZQHi3ij9hG>-yype`fiNHC`eU}?&hZZ1aERZ8!pk?vLxUDHOuR`g6OwdrQ&?vgC zEL`<)SFFw>of}^g#5-Ei&#^vK5TE*|O~cq?kv^#nqGsGNVA~ha+RB?lWd<5>LY&?n z=rr6_I8>cN8N1Zb(cPXvMH03YI;Bf=W?6Prrf?3!7937+Jg&7(J`C^l9iOdJvD)9) zl>&*`?N=a&-#E@NZK3c*ljF>w1IO>TVrn6-@)u%uE9xkZ;Z!Sr9!8_3DhmlJRXzX7 z*+8`35GR3*WOce54iKeI$+L$~H625F~>}cc1=KLINM+7rc^+$Ud?VZBFdqjIDHeNZg1tNR~ubNQTru& z2PJ%E1X~@uaWziwM?`fmR5fuAG(AQoqc9?kcRa+T1#pProrq-?t$M@^UQq@+KKkpe z-n8EA8NGH!!{BvMDtDt0up_=yU6NcpwE7j=!S=$5f#{|vGkzG`{ z)-~Lyd_R?ksQT+yJE^2aQ|yep0&=Hhz8tnkXs#2tqHv&fWnF;A_+Z*QX<{9?vAvo={ zxz%u)G}a_vxpF&>%=D0o=@F?Rtmp5;nlJMN2yL-ER8Rc`Uz9_*F+gnVR>2G=rhI!xOgjo)O-4Qqe{NA*X(C(A80lY-9I8ajYRw58pHB*O-QWY z-CN?J*ztGKOCuZD67GzsAvy}6_p3CLfiYE;1HqJr3V=(v6ez>YJ z$}WpuY8=O>INBmBE)w>HpDqei1uNm%%VZ=tY8C@&mtvd=0u|P`{oDnDqlU75{$}OO zyUr;Ey(GNqXG9$!s2TDTQ-j@vB%?7K{i_CcT}9WN-|jSYrjT-K#@yC^61Lfa1Q*mL z{tAx5HF($ZB!QTH-#t$iA-$?#1nXf-YWw8QzhCL83EvRPdgEXghjZm@hNundZd8hO z0dCm-DKFbG$Jl?yq7%!|ER)w$edH{H_~a?8@K-hwfvFC)=c9U7e?^u@#`G4yK}#?; zjLE`}PCPIl@Izm5W$cR5y^?8*#ftOXa|>2+61fcZcsZkxE6ljap0Wi2^lR-XnP z7!Hdl_cyYCeEp=b^9TN$!17Ps`2TfasWbJzGq9XvQc~E%p}q|$!nG~x{?*H_W;Ki# z25J*w%3o$2lo6c<*W9z<%mS8=!dKPHjG1F(oco!*2+MmfmM_bUuO&tJX>jjfDSHZ> zSgC0qKl`w*w|OtBq*YyfU$1s+f6QXzv3;-q%-<{RXg^DjL}Wor~vpYI}3wJ#Pu z$P(#H45R8HTDj9DW!0SrCw@0&4b~|WzCUe8d+ZjHaNBG;>g)C0l~Z|5)Wi$icUdfw zfq2b!p{-hu2nwflYD~Vg-s4oo=6L*nDzMaaEE?!l70DjRQg4#Q#7H#`RJnreZc3ur zc3_Z^Wr5xx#1~E+M-XOes@s(@M;*L2aN&JkhU2b+qX^(lEk3RmABbloKew7QW4VF`Hz4j z0>&nue{;Hj0?YqC-Tyw_kF5Rw_H^a`kDTsw>2}S(nY^?9A#;6J+D*$J00A|UBUDALy*Vx{Aupb5w3KOW=L!X<#V(-Cc#=q2->v)K|8#Zj!X8lhBnQLj9z;}o~y|r59I0o(~|U&*ZWiA`-A!~hv}wI#zA7W z!DIVRJW{!&{KR|f@HaaWo5>8K-m#tx{Cq%zmy)UEd=^N|V$n^g{atmjV6^#1x)o%% zRB5W7u;U@OAkxC#)VgQ4?DeC{ut$ab>;i;+05BJTh#Uw2bA>#bl4tPAw}a~Of`jF| z2K9Ns1CsX3OhD331eN(sZ=L98<~LV#>F#GBh-lm%X^1|bj2^QSWFI{I+5;#M5!WNk z3_z_ZSnP@oV+|%UGYWE|g$OL{b_Nmz325{V^EePB<5(4kwemXi>^k~j-0TfN9PGX0 zZJ^eWCOl!hjlE%Idka1-ImDu`?SfaZU?FVqFcCo{b)##k{cyQ1Hh22$@G|n@Jv7=1 z33}L+dPFYQjlflU<0HKvwRTk!zcUaDd3L2j{^r>xB5c#VCKUrBdib#=lf2j6Gz&4j z|B0^?bW`ftFQ^~xTbmx@-tpOo%e8S1uJ8)F=TZw!!XpawoqPwa(+l!y?A`q7~}^K=%>hyMA{38gR`AI{*=C!7EIIn?GS#^ z#$Yjfss$11TdHw6N?T7|^Q4l?Wsmmh#H!-5N%QSuwYc2Z3bRB^zIoGVPs{_np*JVr zTvD3hF*SkbU7)g$!Hy&d*ZhyVq&L0^2iR$jUc(mW8B-Jq51^^oH3R=5J|d{#?(=9q z`X2v{J{;HvZ-75^*wbt11!Z>%Z zc|u~IM3FgeVw{_)Gu;>LZt8g$!i@}HumwQS-q_l(f0kXWqNPLPgLdFLUUjc!(p?LR zm8Es<<5EZSb#P&lK*BBC?3w3m#seP}C5ijl)gL>Gs?u&vle{6yST+ctm=9XmW1S{9 zTi-2-caCRrB_a|Tha|@1d~b2GU19Lv*UoEoWWkI`Vwct{)CQN=GsRN7tG-k!mtEJX z;Ps|ps3V2~1nmpX&|w4zEm-2Kn1Qk660G zl?VKKg^hVkubx zga^f7#+fovScrpH$hUWvRZY>bM~CkfNUK;+>GUQIa`N=E7)?cDbqX-HcKJSfqh z(G*vLxZ4oaK>EPeA`SNXUxv7q>l6^J%O2{t|GqrR8u)wjzA2ao7wPWeNWq1HikQ4bE!Xp< z_ooi^@3^9=S@xrJYOgv$7^M0P*u4Aefg!a(5xw4qe|&FB=2u`t-ZUyYK_hG4JOpgEiIXaVh<*uB#}(C#&OAAk3Bj@RQ`qg zKIWJ$ft2>iCLio;c9&~U4Rh&%tEJE|!A+v(PXW(d(BbRyJB-n*ay-yHiZ&xS%Mq4+muV{2*1`GR6pmzKvSu1i8qjvP}hjFVlwUY>|{%294k4CVx z{se)^ib=cG+(%)WZ*k+&-#lsc`53nx+tBS@C?B!r=upd*C52!4*^Zv%#w0)okMJgT z34_}MYFn9=LT#AVpzQX-+*(*RMatib;&w!dyaR#B-WWe!dP+Q>ChSA(`Ddta-(=b4 z&nFPFsAo8Z^kCvyk1g)NK7~A^ob!>CDSJO zbtqT*TD<2+q%G^hP&R`VJ8(y2^` zngcs8UIuZm8%ILwPp4&FK+5his!|x)DkuD?$T@=%Ltg-_fZEESDxYIsm1Z%nquhrZ zoL4?2QNxY0XV8SxI6vkC5u-mz%aGMJGK!t7x5BSadK5>?8uyimx(5r>!E4ZPeRk0) zSRboqueg@*BUSK5WyWzgu#P0~~^@&-JLc${sFJcw6A|uxlc% zgaaMx8sc>@q8sB1N9D5j%H2LpOYRv;N4uuM6a~j9s9gZ?>m9OeO+nrak4jjxJGOnR z-xTFwOhNRBZ9WC))Kb{*Pi*%}vwJ3N!ho^hTxdq~7YG+~qWI$q&y-krmR|3$`n-nG zc(cZ*{xM=DJC-f01}lE3UM8v3?lS&LqjL4v&*4>iN|9-)Rj_W=$Mx_~ZnrUg_6njJy$)T?%h>)Sp zVn6u;3d_3h7kBzIL`-L`A)n)U7BLkTj6Q7=20DfoHtRL_dFQO+lIzh&ZHN9spDkng z>WuC*VK!JU?vTcGfE+Oib18%@h(i^$Sk4!f(@5VMNB!oB0 zgi!%b{bSGgni>~wU}Q{3N?*w;y-=usgvRG?n!C|?W+l-N0=)4}Y96bR! znXhsA(wR}0iMrlMGYn~6QuCBddvp{?A@HtW%)_uB?-tE6pUl3_ z6kZ$9e~07f@$RiDf(35WVk`9CPpg8WPp&FtYQ{cc*ZEl%8zxD zIY)sMe`i`1!@lR--I8o+nE(rF2eO!jXXlyF*ds{M*Kg+Al-1|o+^Ub1Y#||bgr0qX zP?v}d7pJ15l?`0z5Pn!rJr1Qhe3NIpIASU8vI+pNH6KS*JH0ST7EvafZzzD+c zTFBMSZb^D>uMNkoqD;eoFKG{J1K0^VJnUxQM9+ntUZlDj^015ya)@-bfd%N{%&+!_ zqa4pE0Gp2-48f1hJIkkyuWCO(m-6j53)$}{p3>HGDT16XD^Y&Q0yeG*-jiOM|Jc0S z=4;u1-4MxK#)*^25kyavGyC`m71dL>Ae?x;ae?2F`u_N3a}ojA%M{qY() z|6db$w!dCO08uR9HH2UM4w{qif?<__-lk(^To21?1X1fJY~}(*hp2S{-`PQALBM3K z^xfES{Kh2jSTR{e#$7$_q30IRJjN?CBnVmS^7`{2f_o6wY3X>?&<2n#%Ux-tnKx#2 zHvRUW!21BrM;W|)3hBkCMcu-mI*)+gZ}X#QV}3fJNG$|0r~=G zdc>`GU6{=dB5?~J{D_JebA*fh%#mkJKIj4e(=)Qq3%>XfulSZD&uMF?9pQoijOVD% zcW4G#G2EhOCI=vj{jw=5p|KWVWyhaH>=g7%RLYio+vv&$IJh5l&HE*JH$$hX@P`Kv}>1)cqtN+_fUinK9|*l z&W9qVXr|fE0PrB%>wa$fn#a>L*CAplzZ;0&6&dVxoen|u9}qC-F#rV2`eXH;{Wk>6 zP~*t&PxTns=FfM600PyGYW~~A&qm(2i zw?C3^FnIG%^%(s;K3w1#P(4NlH+}Hkd&64Z3_!L|OMC&FxBS+=zH?a#RqIfP$dGSb z2ho5pm;xUyXyP_2>%Sn5u*n9E`l9feU#>x4dx0MCAjR`;)D|zuu}t`D8>ff!QIJ`|B20zqqjKk-V2qJayT#yeW*q! zkuGBTLavLQO+9}r0J+Eir+W_1Fw^U@E)B7+1&^%U9$*p>gDpiUr)wsaM=CBCjKly!K z`Ht9#4i2Dzv0y94{t8Yu>?e2}fpV|yha9S_R6n1C-h(^X1I-eM{S21zf^<-j<|_dC zSP{r{Px@OprF;Q453>J~czC@IH~~CNutK;;UKuBM2z^)G>lasKolQsu_V;nvFc-z% z7s*`b8x{m1!U$FFznaIAOyJ{o8oB7%NbF5@4X-7JVJ{dPu|+az-Mhoefq!AZwD`q> zN6k%dLM2tBQCN}nTG-2=Mg2&Yv+MH?z`)@(+bnPrgiGQ8qj%CiLosu7rJXJ9x&!>* z-+TEl{2&RmNQ30k$O$gYnl3aVW&c!<+5cHjO0oiao9kGJo7gbSwSLhiny!CnPKQOHQsutzuhBa-LuLu?)!O$dZoCvt zhm~S(@luIk#Tg%u$cI#*_fq*L&ose595Cq*4%iEST=qrzxR6lA+}m@fS#TM1XP_}p z!Aq;bOGLh&_ckr?JC8nzcIem-+ury3vo1F6*#RW=jtz?mJJ5{=8p=cRUA{3t4!q>E zG&3ae^v$lyiQOHo;4|>oUol+(CKz@S)eE2CQt)nq`^V}%PEe#x7qEH{87TE@L4Al; zMvOekl@xS62wq^>_NPH?`7}*xKA0qnlII~tyTN&Ssd^g;;2rZK$7K?c!XlCko}poe z6|n!sI|jb`=4%-~;C}#k6Wx3IeK%Hw^PiLP!Nj3S7wm?bjR1y!g^?cqik>gC2&#$= zIveF%5IUv>jhU8l45if%>5d;w{rO3_anY<&(dFR#$lH+vjgWi3jN}(3K`YAWwyDzbH%DHfr~Dk(4A_S-9LfaTz8;$Oc^I zu{lQqC+_!?#ov5_lYFPscXOJ^tR-VR@UE3M&k1QpEuG#6ne~UgFIA~2`Ws?5TXxwM zE~e9mH*eRK0S~Qwc;Ty97D46_%0k$7&q&S0t^C@DX-fSj?y}I1`Rq&4>A#?xH7p9d z<2ThkDR+czkEG&?$I}&VzwUk3gAyG$$*?D4l>j4`>un=~yIL|}KML}|5Kg178GE~w zr*0q8RC_kpZ@+20=B6u{cgRX6vLZwv3m^zYMiM32gssRSuybTS8K%7n!)&K79IhVy zEH4AudU#ZG?x3=^>k$8wuDi+Q*uP|bN%My27WxzDAe;>%ogy~leu;AFYH*BuxhJkE z&b!wcBJ48xD_aBdetpy`uO+@ zv7;n%(osUOfpTV$th$<{hWk-1C9qieC?MP=xHf$8^Nzl)u>TG{fE*W4JY(U7e4fs9 zvIh;5d#O6L)?2(dv3lJBmUr0R8p8Zkmzjr}hy2|v#-Hat#ib)N27IpOM693 z5+41ucoyIsBNGFcdpAc~U>1JzrX zeFi;b4km~-(KHrF(d1c2?%-n@kls&lgu)mh>eO$=(@2pY-FMN0Zr}FiEGi+uC1=o% z;9R$z4O@_8U&DDiv;`GauWt3AM9tMp!o>FB9EA`fFjj_ zQmMQu`+0r$4|`3dWi_$E!=}zQo9jo>2K3MJ1|7|WM6gPDC}bKfTjTlj#`O#qCx99| z=x+-=8LK91ilx3{Vw~#NH{lYE{);2-fWJ+5?u3@hz{~3LoFzu!w z8EZX|R#mlQ>^dagFym{3g=ednTL^y1tRjbB?bo)V<3naT;N&H_`F7xXn6h@OvGRu_ zryl z$dr~m`5R{0PwH;{mi?w#tSZ+np$;A{`3EO;hA$L`_z8qeYxK4AfHEYUDf6-$j$*lJ zJ6{AjaIEdrfwsRTkMRJlq2|wUix!(Bjfh-b2|{d5feEyp+4~wsQ_}++h^!>j@?iUR4D<}si0(%~J3w6>@uN()10?`Z0??cV@{;8>|EX zw%69(xGg_M3V`jE+U;-KYm~bTb&2f_dsqUN9nc@!E7JC2wZ0(wx4nnYl}}mDV33X& zA|A6hdb1#I-?^tOP$3m>MXzo1yezC3B2e$eMs4#<`;3Hu`G1Hzq9>?AGHmB*6BHyu;j{RMjV+FDW?_m@{8Q?;^jlQFo{1D!;TK zW!~LaWvJV%J{BRZvap!)rK5C=E#z~|Zp952tE4yncPplfl_P?|X&pv$g6Bw_s>B?Z z^Q>H-j|p)@aYQyKe6)6EI%@nM+v_I4_F9iYxHZXwO@d6=r0yJNK9PnEN6iCAa0dK2 z4(>&T8GzjCsvEVM+yb2`*-|Y0&CzCW!Cdv}jb;y4MCsm2&3K#-@Tw? za*<0Y*Dw?Q;o6U%7i&cVPRyRTr^Qr1A-w3Cy}y&qy2Pv;_q7@PvAw!1?~X*V{mb_H z^)K7&lHs7;-?rDFKepGLpI>AU!$J=k!_aFvC`JC*UTfaEO+XSGZd}4YY_Ir*+AG;` zD=`91waGDWy>a8ATu@W7Cji^4NPLDC@PDxIuKrCR|0mT1T&~sXhp3q97MFU%xVn8%Wl2zcMya_Jz-@puS|CpY zb4KuZg6FY1X01tYr>A!2@eE96U~?kt_5)=}plF8MR{eu*U})Y5_0udsia6G&*G34yR~aYKvEk8w1HLh z2emMb&tS()=5**||5QmN5U(wmb;JEf$TN-Mge-e|hUywR%}(2I>S`)e=Y6kqKdL0b z890p<)hyrKm6LhN+om-C|SKZkoKi~9`% zhp>}}tD6e2ecv|eGIbR+XAlHz-&w`M1Z^4t+jk9iHarz~EWT;bGDzHqY7>mq6d%#V zwT#|R1>bv%rTgtw_7|OXKDO`RT}HH{B62YUl|w6fLG~6Ohs!BFThpK39}s!-rvLZh z-Z3oeDe~l{NI}5e;saq;a`U<=?sHT38x>b zsPBjW1w;AzM_k$Gi_?qT3mQ952hDdK<^T!xyE?dB6Qs)XeZb{HwDf{Ip)--Z22rFM zJMCqWaqAQv+*5LO0&xm@PMAsRaM2GZJ5e5#Jj(=ZAk(ImtTUsHy_xa-#22{*D^b3- zeDp8VrP)DpAE;;u47_zAkBT3%x>5 z4g-n-~uh;PR)?RcTmGP;zzXQ7!u%CS!)Qz%&0D<&@L~&O%pdR~`rqKiP`oG65AY%(0K5np zp=Y8Q@>`ZI7L1yt2moF@rApHRMDl-u7m0KJfESrQ-OUi-`U@pB@;#7wdk3=LeGYjr zC5QF_jNb_Xkvw4hKKqC>?G%^G6Xf41l*1b&*e0aM6Z8+@#ml*eIHAb@1YQ(h(*b}N zJp=&Y#fVLm0U4sHV0^3s5e&Ati{kWt{(H{%OCJ1?b<4ev6-dE-wPCj%wO>VqRnO zrHI9XB>Fe*>v4ke^1!|Vh!c!YKevUQ94~l7KXImGi@p(o?sPa|D+?|{G%mZ%lCoMk ze|iaiP~LddB6^HOVz>ca_eZ?P#7Ek?O<@yrN9>-2@fu;K3k&s#a<>9{zy=a$<8=nC zK$56F}c=MC`PI0@-$HY?#YvqNwQHhD{v zP3O|s?W~eBcwZKd`b{62@oQE4&k6+iIwte)704qCUFsVlNUi)h682*9z^?x-0LmYZ~BT6G6iDAXAoLcO=mz zpg;Hu_XTo6nk#mNK7E(3WwsC=fcwbgx5!WUD!7L{n)iOi`PtwFW#8)IRAKDr8{rfc zQ~2{kH?>%yrXeo2*3(ZWW2bg;bqUoYE9-&v7nOc$K^dUwm6}GIs@F_>a5J@|=GF#Yw6-1yYDcm8yXq_RUpe!eyiHS^|chvU17xWDIxx173s&?Y?Pi z`2a5_`2fI+xh=pge@OI__??bPf$Gl}%aVNIIcJ&`N~)Fe-DJ#mv*A5`0s9-9v{tQ~AlMa=!48?FD5DlnR44~2sO>ac9QeB~g2{v0kORn02 z^onK$!ryd}V+nC78%mBc-qtOI-I#sX4F*x3l{r;CB~;3#XtHExA)4K{g_&l8&*72v zKn$ig0DKyYY*%YRaxI1x-CNGO+swfYLL&)Vta7 z+?h9F>^dvCDIyx>{4L0vjzBKubCMW~t~*hC6GEOOUnRhnbwPsOTCxx}g*E+30sp#S z-V%#gUdb-jOs`TA-e7wt932VUo)xDnO_|$E! zE-TN+9rOa;z*(oszF>gB`YMp$p1iP8z@5tEK4BK6=V{hk63HJ&REWCKDAah>JimZr z2Q9LrjE#6bZMweeJ`be15bww5X^8#Sf+I2$pP@M)Ru?uOhZK-gbF;^FIRu#!uQ>9D zS0eCXj?HdFM7!Tw-rY7~0>3tnj9bw_c=M*_btJ*g3S=zb*(wjiQhl_pDZhC6<of07x4ZpJ7wduWd5ahMuF=u@?uDUfc7weycht;<;|9~)5`0E z>2Ad6eSNG-qTjB>hf4(;>#|DC#10ILA6qL2yhZW8usL$2(@BzvTU(l9{4n)>5$JB{ zVUaHkWze>fwLK~;3q{hVUvzQ-12a!p6Uph-VHTb7oLt*^^2k?5=dO}P=ILp2EfYFq z1?)heQTR7$Yoozlr6ExF-A-+3M(RS`S-_-yjKl+Pxo?+tHOC-n<9Z;pYPm z7mno!$^qy_%_#MIHpEAwuV;9vT_+&%StypJ{`WnFcP)v*Un_0e#^E?Fuqi>Tv{y;= z{6@+K{q~_7tbdtSfWsiX)UtwBvY!+T5ZlOG)@hKNtHrr=yz_cdG;gTh6rs=CaH%QO z^(^7lKoVJHt;#DClh ztqx>(aYxT-Ah7CsAXdM^8Z)8j&lf0Vu*3+Am2Lvu@)6Y>mG(;;q0o*d4Hz@ksZjf_ zDOeBDmw>U9hk?x0m$g>#UFY7pR4!_#lZW)ldAzr__>z)$Vldo-$c(CWl zN97QcRh|i1h#+GEnSeIS4Av38;FySlwPKvp#Pl+(^ zx+VQd8=`x^O^GV&B6APbCof6Lz5hn44FhgZF^0*+J@Y8Ks`Q8$8v1kOQmh9nG}N2$YSTShx;A$(gpd;^(6^0!B(KGgsZzt1Wmp^V(&0X>R6#)3OPH3a2iksPdNR|dPI9<7Qd-0!cM z6+d)wN_vI!qsf*cDX%w(w|4EEd|t3@G^zz@CeK}l<|0Bp)WKZ} z+$c@94A+SBrRI!UX}r91as=YlPK{Vy_~v+odaT##``UHkPRV=Z0;!su7UMM`>o z0!-hNs=pbq_kJB$4Wrj$XE0-Kh}U8MK80mNu#8$OFL5{)awBMOlEXVA@~D@ASUbUt zUtKE>xwMp!sEp#{l<+(;zd`KYb*AV)sc1xOabWnP?h#qSj4yG#EYX+KMu0hs}l zHa8enRms>kcbb)b%{Yh_*^;M2BzQ1k<|*g5MHH}6S{Il#}$7QFLp z5VFy1TKn)e5@RwGr}eZzW1uYrvg5AVvaYiqq%}ZVEAovHf%f`fs5LE{DpHTdTMe5t zAb0_Kzj%KaE6qTFJJ?u<2f9WJMQhBf^!>;UK$-`Bdw{$EEI{6UBZ2NUVQuK^-nv%I zD#&+lN3ZMEG)w8Mir`EahJvbv#sLb{96LpU3xv;mlCIB=~`}(x{g=ER|&Z=!470j6#V0YbX;II#R zUg$*2P#+y5cLaH_mUizxW|>(4?Y%r5d@?KkYICcWR@9N*;$zJ-KWU`#zOumkwpHme zDxQNicDJpBcNBT+5#vt-8+zM*SbT{-`74(IzHBEH&sjxBHNr~I1rZYfns-)(&gEm< z#z=@!GzN<;xG8|++q2{nWv+dY&2b!^&JER?&ZfXLC@~QuB9nn zug#P6YmqcCADnq&tF+ZUVf<=M7ESn@S*F*#I;_vhw2KTE+wCX-?bb6jmcyAf!O}f! zl*^f=1|ITT4Dt)YPNuFs}zWBNV`>SXb^zm+EF`rDP+g3|xMeO%(zXchL#jp_vgy9R~*b z2?_5C{USQ}@3^x*(hK~;;DG0jONgTU3~`aLFq(>cGjKHfQC9``;-3ogs}2^p58%0@ zB58xdbT!u(2f_9|AtNK>l))22t z^twSULDr}Y!f4uK^%<6Psxj7@bKc=e3NcXk*M5b-GT&Rjgk$IG0=iAXJ`kB9-)}nN z5RJ{CORiAAE3UxaK^e->WTF1Mf;>bq6jId7oHiY_V1#9g+Hht!7h?CPf*e#%AB^kp z_T&6Fr5w<{cG0pC3#PCnH5F@YC3VC#?6{AqcEfrJ+8EW;Ed<{q>F_o68~4-?4sZcT zcja%%T*Fg}C^u95NWQ?;2c@h9hRLqe6~Zm~739L*fWX~to-1vX;IPMhrg>Ry+6S$0`hi5Kac=gHCA{DqVMACgNi7>Yw{YPsjjBz z{y^sC{y^sUhjmfOaG5U5iY`wEtMVlk9z~ z|5&`QZfkz?U6DT3Qp@-zE5&rG-lq-z5GlU(V2hj$=pf5-;2J>syo{6kU6e}&NVh6I zKWm%uDV1n{V>(xOQ)l$-m9PH!o0j3-Z9u%^v$W6AyZM~dhVwiYxW%JqJ=^H3+giQs zGypRHn;#V+fh*q(EID@Nx>TQ|87)VhzqOIL0u=!I%7NxZB*3gri=oZ1tptF+s+0wv zYP71Ie@G{SY|KEPWVpw<1cQ*Z6e_)PucPc1_u;*sKej!|FdI{77c8wnD$j}Mi% z&*u+JZ+D{6r9<4k`9QbZss+=909C^h2DRn*q;l_RTRKsMb)duxPH3aT`O`O7l?#mg zYLcAj8fPdY3ZmvSNRf|kAgB>t0Bl6$Em(ODL15ZCK+--y zL6L%2sTX*fp(3e7Uc2&5DCze}CEcsczygl_N?>R4i}^C3uyV&d8euD!H-r?JVC>hnWkgswq(GJWWRJ7~$RZ)$7O<=fzGu9;uPeW_FEQ%zT z3EL6@d-q7D@yynXNj0an7gH|Qz&D;>Poa+%{Ubzjif=E40uS+n2(DJQfC6&w1lWq9 zBdEKN1b-tDUShw_!z{&tp>Zbe0n}1A`t>+_lMeNMp?d|oh~X^e${0m@df=D_Iq+rD zI)k*JG1U2pATRo^77ykv#9GyHAW|;^b*>vbIt-oN=lQc~6`GfEhe7CKmb2mkZ_N7V zTwinnOqd;Ho8Pp#1k2W9%BEZug)&3U4ASt(nnTd|;)hplC_-xX7?#5Q`&k=xkK?es z-#A&@7H_(u8qRc_hi>2o*(AF9&Fq%<-U1ScR?bOZ4H=X|+hUSp2q!W8oPFKw5dWvD|J!@v^WoZrkd3V)kA|U(Bn5 z1kki#_@vEceldoVdu~{Asy`#ge)4DpoBe1Y=cNG#@5_a794k`$^9{Ls0ro1K;h^io zJyz7`IM#Vq7i-CNgm!{b{n7ZQRB)-6aiOYg z4P@~qLB`lr_5!JPqm1(bXMURo;a|QCeiczXI@N?R5*o?X_N&?vE6002P|l-inmOJ! zlyuf$zVdAYVG2<3=E15Vm`M!NLvIn%>BSA_I)i!M6)u$@-h1=DBA5$EOi zRZimq5Y^*wVp;`s>Dog-J62N|6sM4@pXyCWBY2E4V$U!bO|(4Ot;a^T59K3&Uyii- zrne2ZcTJpc&0?gR=&kFv8QQSj4D)TzJ)wV~!s!4>rWTWq7fGN4BY0hRDok0CU5od} zOz(2vX#@?0@wAr0Iy0`#m|6-BR#;Agw|~7Zr(@8MPd!cTzsg5#zaf1?x_7z*pn;}R9JHhvKOS)hbP++o(Ko&A29;eivLWav%+cvqkK?ha?eZx%Wm5a zngYpnri)`-=dLPK(`EZz{wu<~!)G0hdxtH_&My^cbh`Zl82#LXR*RT43EmdiWP4gW zkEVDLxB1l!_advz;csK6X@g;yk71likK47?hKmN=VPCm$v5W?E_?HP%1};qS9&JTr zX{}_z8(6Z4)xVT=<17#&cakR#2h8HmK@K)|iZ$TEY-;=>aMMMw*3d9_ff~@Wt{aC) z0lBZ}S5m1$rn*a)?ho>xQXy|eW9h!XbIjcV`E@e*+mHahor3#FPe~kGKd0Ncl?Iv& zcH4j-DM$dYJ?N2+lFgm{EGm*o zm)ehzHeTU2?$b_uy5?)QZ*H57zpqD60o>~0dj)AM85Jd*w!48|#jtXsM&EE`eDV*AqAdaGuuEiu`Bd)4ZG zT7O+%Wd!H2&8O6_Ss41XiehTVdG%Pjj_g(EcJ^g4%`sVyuRKF~IzykdATGh%V$##b-@R!E&zY^p|1%U(`dvH+V)r z#f!*zw1LI3qSs&;2&SSX@0nu%)HI&Z#W`=P98yBX(U9%x@%6?~T7>!bJ>w<_PBGi4 z3-ospA;j#(o*Xh}FoM_e)I&nj45vlHDF~7vgZhr8DLaami!)>YJw|6MusGF@E|kl| zZEW^kB5LK2!E+GGF~_FE<2h-hs0Sd@#FREy`MfoCEH~{D>%py35!xv|w1clqqE9b% zYxzb&!QB-hDp0_m(x5avNmPoc=5_`LYqGU!aTbKMSE%D;ats=&b8k?0naL>vW)}n( zuC)R9FUPm%LhlV;@Rv7=&G#*ZE)Q%_c%Q@#7xOvp{3cKD4y8%J0N%|ETurOz7tQOV z*~b7LeT&UbMeOF^__h+CM*IFvX!)mn{9oht%>QR%_kR!I|9>}t?-ZURcMo;P&}8Ms z7~h;u;4PQKnT*|iJuzpy>0-@8eKRP?d9V6@eG&rknLm-7v`ZsY zDQEh9eo@=uj^9;jg-y!1yRQk*6fqxz*J9sTUS{Yh9Y1HGAyMeK!fF6CMe6Oq*))Gd zDVWl$)S$ye9#VYPHf^np%!Y`F-bhPFt-osgDfaa@GiXjN1`(hsqW;ko z(RPk8mrhF!qvoL@zy6WOud@nZ3=)g0beKDFU`>mx*pH zH$7j;zKARX{kw$^LC`Uys1)8Qj*N$K<({O+sZ?TS=Hb}{0pLjp`VUV+yUdsZKdhp- zSZz@GbV3`XEZ89uzrV;Fls_4mxJd~um*VzTS+1=96pcm^Y}h!{H)%911pVCWkG9VjF~BJX5vXFz9UZS4S1e9-^B z`G{TS{Op-o@`!*6@HDJOu(jD1G8xi8o6%2QFz({|v01omFGLc9uBA&ercbmxX$ep^ zI1qbqrcQ7uy&rD`oX;^*Nw3m7m;J?>51VoT-LLLYazhYkPXMB!XQ6{F8+0`#x%KjT zd)|19Z?r&M*gPUI-HpCf;RQmhha_ZxPpBlxbYBSWC9VTd7jJ$}0jP_FSM;nIYraKg0LThRyg7in7;;~A;W~*; z#&ff|AI_VXf3&n0;l?WkM8^PyLx?tS) z%9VG!n4aK8GT%+q^x@egof?cD<)kK>6%+Q&F;yv zevu>@J){vkYgPA;QN(bHDG)~jlJga{?_~tRQCtXT*f%+YWXPJ1IiTg}P#}ZWvZwgM zC4Xb{cD6z%g6KvhRRO3R`N>!~VN6wNc3`ShHU!Pf5A(b0!aRX$6(_W+Qw1#h&aPESj;ym_EePP1K^c zq5)qiu^v}3v_i>p%?;4(*WmUr_xA}>KZ^h@alJ`IeK3BQ^r}!e_ee9`^gt&ZMU==L zsUIEEe`eqP?bzq~>OK>NG<7SyX`S=U=i$DtmUx<5(rx2KPBds%L#8A1qdrv-VzEn> zQv4|{Y7hX0k3QUCKtu9PAWMLotew~_v=h^~_o8c8*V2UD6_|8rZF};d04{a;W^f_| zsUDgdB2^Du)+8R)G6@UbI!8p!4;qpS=Q2oGJFCjxSfAU_pT1kwc-Mg!0FbM8o=Eh` zX5p?-yzh57&yf3qqZF_uMe9YnX{GlP^ooa&aFB;S-*F8Pv-I%0-iJ3~+4upS_5l<1 zw*FWWR5fgn&v;Pwtl1)Ec0x1xIg!P?^f)Gp4k4o?ZAk|kU}md9PUH@%G6>k|29bKd z%gqnfa^7=WUb?o{RNIJAL(cd%s@7d9XGm(nyo5q14FaxMH}H}0$jS3UOc)x2Bf!S zfc3WmKD-scCQu|Q???gRl)&L>BQI3}1FxO0yTTT;5;_!b8hgJ6h$H_)xT0 z#3ZCM-Brx3?(z1OPzB7X=3Tm(phD=6m7f7A7un|fWLzLV4cas|`dLjY9e(fmalY8U z{uQdfiUdA4+R0W8%X1wzD_ApUoxVVp-y;Kckr^MS#?|p&_#Sv6n*Bez$O~&2Z}Esn zFFiSeB*kg0vk3=y9;HftJ3aEvlM5T6C^%yzx1;UPAQP>M*G0XhHW`x+xTYuq#=?8s zk~9;$Wdb>PrAX7yiOid;DmzSH_@?x$Pdq!Bi&ORy@Of=X9{NiX%J!<(%w1DvlFXGu zNe5Az;k0`5{G1#YYnME(fw11(7Barazx?j?H4z$HJvP%2MBJJgSXbvIENedDCmal_?|Xxm8Bm0K z({!*W&yuNw2MQ13Q4edPi~1RhXMIUE2f})ze?s*g&c5+QVGSe}Z3EN3$2LG+M6KD8 z>_v-BayRotp^+XyYsFhs{9DWmuOFz3VALL=ayX{80!#Idz*7A$e20^G6OQ|;)5Uwy z8hQTe=IMGw+|b`u>)g7}Vl!ATGAhMOJ#0$^qgG@wdwj()Sp?Qc%YgZAP)WRLjXu5h5d% z741nS<`ec*f#O!e`I&{mQmHDLglCJhdWT_O9KnQUxE>aQFMK&LH@ zJUldh@QC1MBD1v+MKhp#>K*U0tR&g0Y$X5UIhyztRbW~!MpEy|apEhk^ipwTM-Kqa`a8l-kQ=JP~zG&;4#I9`oSq3b>Wd0#4Ej;MSLI z)xNkEKq#(VzYCpyUdb?O+$YhH>j>>=@p~Z?()nCV-zykY&urXGSAy8NnAcgVjwBO( z24SI2{ZXgQ(QslN9iZyZaMi&I%kQ5|-NdXCVRTrQe8`r0-qfaQJAg$KKX4=eNuL8d zX>$I}<%c{}`41hsK|Kqri6M~xb1b6@Ke(xUoOR#~N1#%mPGVjKRbmKnSsTh06KcmOWxjeC204<#U{rRknvJIu z!V3q<@)CBKs+Y0#`SWq2$Y=76SO_Lho1W6us}e{D-AQLc?fFg(%f`=;#y1Zm0MLbC z>Sk>e3Usw(rsa=`jf-iIMB&>Ue-dEcuAWu zqLVyp@~a9aEpTX4@&_M{Z?YJcI>saF3buwBGQsPOm~%RoLKPBr>pXa@!w5D`7zR&a zU7%(F=4_8|o3gq*LwB_x(S>&EJ~s4=s%&4eqGvH?_X-Hg`&_eOOZTbuRC!kKaV80; z6=tPxX9kTg%nW7evzkt%=3UIbb6WN&yXlA+NBDTVBuAqml@45eQ}6dJg{fuNcgH^I zu@Y-$-kfHVR$JPy;JuE0DgiW_8B>Yg(}Gip5O^DxnP1rvg5cv7O zw%RV`M;*5>pcCP4)>#?t;nm@--Zh9W1vjk2OfK&t5C0PuQ7@Pu%e60FAop`FLlaM!t+o_=T z9%NSLw8J?nCHTtn6HJLOcY6sS<%k7|m&<)vt-x8bb9!oLZlMBzQvvt!e&)ZMv48pQ zhXow)I_0_&eAF%OjJr!GNbkNDegJf8-)CvxX@lKOPWzxNPu$gK&VD@IRr@_jth*WN ziq!WNWJ>Hi`yd<5QiS)ft^{Ox!}760!8&YWqeDPA;7>F};P+z*C17YJ=i#Kf{m3cg z@k~9EdV{mTA`+=L=9frdHcVi8@I*M<#teEkLrF#npZ6kuM*q9ug*@=ef+1m8x(>=N z00~_13hVbpI^rF1{M!`+*2REbu}0t#Gebt;11QpGUeQdXaBzaWf4X8bhp?a$JhuoF z51Y6~KUNXNA9{Bv$%O0AVL(mZSilq@y6b!fTXX$^7Jb;+$!qb8_g{*Zy?i>*A%d1KarO^{)R~Qk_KAW-4!!RdK{#4 zCNWE)VfPL4?+r7gFZt61D)lw^djCH+%xAzGW-yGN>OVKk$b*GnB!MOSX95t5WgFlVw3zpF8hyl^;vbfYw zcE73w(}ZpEA}{+NUxBZn!@Wd9v3XoVzC?{qfMxlRDe%sq=F4>RFrxmk=%osN0xkL@ zuf-C{DjSb1ViD016K+sh)WDdqZV+z|CRAO}YHb*YCUyhyH=?t(C= z8YwZE{DMHHf2MLgz;TV_q*U6Ugrmf4eUb}+cKm&f)*{+EKl;OkG3J8YmNap|Q)qXE zH7>F7*z(tD=NZ7uw2Wei6Ec8IsnurDi?LyHDF8vS`l*|5S)Kb&S1cr`#^eP!;Pvul zxEMI#b@z9`3)rzYDqm=ITTIq?zFej=jLEy#tI}4gavHR^-7O&q=%LI!+LAGZFNMem+vRZFH*ohFG2 ze5z8dYN#a`;xKB)J4$KY#u4kJ+88Wf_o$FScUdd3#$vK?M7&{*p~F1}jTFVNhx*5& zmuG?e4GfDhijz7x9DN0b#iCzRSAYB;i+%$8WsRIL$FzU1k?mcssA3rQ6D%|Ep$f8~ z2kdMTkB&@nb8=vmLdmK?`qxXUwXkyXt=m>V=zE@6SA+%ubdSPk|8JT21F)*LfA_lx z^J}OeC+i)-%Ku(41NXaNvBU$?K>RKeuk_AOmB;+jcysN@7A|5QyjKFgIR$%!e8xSN z4r54y&<5~lC48RGRrxVJxM$Pn_(=Txc!z0t&e%9?2mobJUiAo20n0OB9>M-f0JR1 zvJNbPgI-jy-TJ?l|15Jg@cmil@~;|0sRky)L{$SqI)6Yl{Y{2RFAN&Z}7chNmd%d7vy#u zaS3BE2Vb7u=Y0hHmgFlOTfzn%m>1OBE2Nb#F8pZw1t6~t_s0!cbsgI&TE8@ZiifWQ ze~xs~#mc{mQm&CP%O+T)uKW`W17m>LfCH{_MVTn5Q82hmH_oK~j3OsatKl7wT0(&9 zltpxwBHUGRO;SJ~f%RppUkd1Dia> z%X|}~PLItQqYpBFv94RmewDAP@#Xsh8~Wfx$Dwl3KnrT+c|dQH`Q>~z@tV5i7lIT{ zz5lP9wP3oEWE(cEscA)xe!}nq$|;$;;wxtsUHMj<{cg~n+C~`!s_N@&@q+Y@oZLni zX?ykpI&!*RWkk;w6BT>&Q_O9cz9J80^5acVuObmeu(u$y=V|9Xod_mK_tMwC|XIw6=_ zBMs==I+|i0UC$B9#A2rn>Ae-JVp zyydhN9xUZDMU0N-jTV^%V9ifz74YA)-K5d8*2;A>LZ142DHSra>Z_s^-Q*R=C{&)a zMtgJTzTp# z7+3fBT2l}0(xpc4s@!iaOoSGuv!+iU)?DmjiLoOPWu!_RVIO-3p+8T0`;K9bCw?}! z;G0Kx$*?nN4QzL2Hf&LOv37P=F2EKBkCGRZNHjM9&WuvS(aTe;dN3sVPd^sI z_9jsuAGz6xifFKC30vahcTu|!zY48j5!SChu za=3qe4odMAG(p23+2wuzs6nx9mso*v9}vQyl{)(XVz5*O=ABc~>@Qc4>B1($?xlrP z5BQAlOIO%_%xO_`&GN-Xlnya+z&;yS{}iqaCOQD=^Jw3yCUIL;B5*g0z;roiF zPf{AdPj2KFf}_wNs@_PY*-uXq1`PIGqJ zAhegcZPhNGSON;9ta8%6Q?od53Vy9Z(U2gXdP};ForgJ!@La&Jm6uG*8muOngWIxI zJk6P>XK^|j)|m2hvA9;FD|#7(`pQ>%+%HrK+g#DTb;U7xW7@zy?RYO^rI`F7qlVcy za2&5qgqdiZp;!XaRveb0=5KS*1Ejz_J=bx55q3V-V)=1^dA?vynMC^czlhVZphZDD zmQ?PgV2(?fF+)_KJINf4qIm>nd$W4UNNCI}*B+!IVsyhPs|}s0Pb`Q8;7ybZQ=uK0 zT7-?BtXYzHWwoq0i-##r(fB53b5Tf{=TB-N#G zp~mRX6#Q?eHFap_WT*r!@Fl-p|BlVyUeE-HvW*`}O>(XX1Pt7RwwptFMitgjMS5;t@?V%L@#I};vJ%{5 zW1!}{y9P2qZI7o7TR(Ik>EnA#kL6T)POG6XUL185 zHa*!llK;^8kAF+&ze#gg#Qv+}@P82JKOKjE5a++g^Z(g`|IZfue{aFR|1Vqc^-Q(r zo`#>4;rv*Xr~DSnJnkhxJ?jVpB7LiGcHnbRkxa%>fFE9=o*)$=jhpv>PD?zCDvi!H z;H5F`Kaws65@BTM@p5-4tZld|#l2PwgRU z1Lk`>Oc$P+qp`6{9n4~|>G<12Tb_d)V5L5a zsl-(N$20M>uGyEVxkz-a?)&_=gJY*${)jngxR_xMFcj|Wa%{@V_qS1l_XB&6nGh++ z%GhahLY?e#!eGaQJmpbmVbV8@XLT^;&0Ym880yW|&OJqLN!!Rm-1LTR2u=C)yh;qx zk?01`p!&#%+@*;4`~jRAd9AE?!QyX&hQ4^g#bnani2c4GFjB)T)wwO%p=eZNbF?|n zVg4u@)p3vCNqi)@woD{XZ3+g5;#w9Yw};~N0VKE z&h9j~ATCz0zEUd5g9c%&FHl@e=>c>h=eb=zOE!p;%lqHL=vtr5gtOX@KO`+6BZgYBGeakn(dSMtjt=;LEJzmbLGIo1zr@H z9nfPAVg4psA~RmF83>Sv0loreZhv_++({)t2&D=N(E)JDjU?b#{7XboMUbp$a0{gP zZ1hiYQxD?OMPE2<$$1*9M#9Ri{1DgRGEISKa0@u)X<8MTeHQ}13lg=t5GaKiZvrV> zo-CpzDtBT?Ra(%R*jTxFh(X8gA0AZc@!H^_$!ng z?eRLAc`Z+y<;rn-437~>_?#wj&s-m_M5orUf=`Sb_woRo->EHj$K8ys5eJrdR`=vr z>-0*Uy}BLXD%+Y;)~_foV#&nF!bRnqy_uy^wn2O4nDDT@Fo*@SKiOhWc(80!RKP#e z-Yc2HU$bTJjiZwi=1;`bS%BN5t2%h^$3>Eoie`oT%tMGlDve0ZbDiX zTAmvyh7QLbb%Z|)B2lD$Z#ng# zt6Q9OrHENcnR?em9zaY^pRd&-6~19PWB)qWt$#_1os*?8Bn8Kd1Vh_$1xP3EBF4vA zVhY)teM$Vpy7%4!318ox3(`fzywlcG{~P9Ge-jpwwWH%AfYCuW9D9hX#sP8r`|Qow zL7X+u@GVzKof(W6GZeH&1AeWJ=R3b51>O%@v3zmsr{Pzp?N377eRSY=3Il6?h!2K8 z48JgQx~(rm`Mf|k1$M^Ke4pP&BVCfU@Dm{CM0&5ceN=)&$A`ZxB|Sk!XCA?k|3Q*n zExRY*7I+{)@xGwxB_dK9q=&)tAx56ND#&;Jq3uFhC%|yGGL5^3@MyN2*|^ereUYg4 zoYLykcjX%qL8R%Vwm$pzk#YsDKjza&g5+ve;FAU|S=C|&Gs~jn5mkp@ML9Xen;8R< zbR@(`VdrKeUiA ziGkXaT~$6k)U|(lurs9KS30%)Itl^NkD*Qtt?kxBBFGru5C20Q6mmWPX}@EG_*zZz zoFjqZdTmh2Ba{=&-w}x6oy>g#flf@+lu&!+-E&~ecodt5sz@M1X)WY3s1u=5HW79g#+$tKe^Z0f@w|AB7!bCCdO5w_j-hGR>U8oLj zcXX*1{zOoU9N{oc=W~)4DZm@onDGPknHM}Y z_hJgYcl1GA7K8-GUc~)ZcAUtg#_qfLr7-M9_N7bp!i%cK0bZ=S8a=hg2S%lYF4Yr+$dMb$@+=Hm4r zZ|)jv#2a4+@0qT1ma->q%|r+qwU@^2wU*aZ$B^@2m zH>N0v1Iza3P>!D^!57X683y=dUjc0$^T{`s{A(P$^}Oe}_kuV;u|)WXNfHRbp74;}ipPt#1Bgk7oN5lLPeA#Q*0>3~_k{lBb zA&U*YG(KnsBW1B1p`Hi(l7!x(0Y-wV`%2JyUT)~IcPWn8dTQq9S`rR7E3QvcNNsS% z@;15x*-cAeRiDDf1WpT?T}k}kTy`}3(0$4()krYnpVcBqB(7~tez{t&7vk7fbjHT8 z_unEeAddmX67e^Gko2`*S6tKbPill72kGfwi&@=gn6G;U=w6ot&P^RT)tY^|Smtl< zds|_7%M^6-shCqJ3T5v6ov7`1S&OxPZIulbp;OVlc(pa%%ypa~i5-+cF0YQMvw_?- zm3~{0S8^{LALG#KMH`A2xl_c|TQC2@j{wDV9sOcYuWS@Sp9}~V=d<)L zbznpoB#py76wz<#d|250L#V$QCJdsq7duX?U%nc+wRZ`xbH$H@4$Kv# zKrl^W`Nz*;W!(4Z?#;-3#tjp1!q z=U2AYtMzgZ5%L^3XL*sJsVTp#+(Zoa?S9S-u3y6OjBYcwI7=vZdz-HPJ~rP4XVrPC zHTAk%MUNW$Xsf<55LCmQtrhYOhw!-V+DSoz?Uat{p^Ua{d9M1w{P zT{P3<3-01v%l@O5bF`oYXRQRMi83^v2kfqUSQ1jlG-&{RWq~hf7E`IT;7Y1L0LSwjM?Kck}=$MW87bE{c{r;IyX_g2c zf|gGD%IH11pNwr+=@XBv9hY8}HgcI|l?3eIHsq%KRTm{+{mI&)NYy5v)&YE;<|mW2 z6$SiyRyWY=UCbahFX6%K{;B1~mO^?%-ap46?5+xLKe2Rihu zX4aLt6%RSD;$)1V2EjMgzLDXF^b2qrrLL$GyT84WFS&tPO-AAQ1%KDQE#W9%juXkS zW`HgEtSBB@cWbN^_rB9JoXfJx#-&Wbf?07!u)mp0&R!T&O0X=?T;vHfXy>e}BYDKA z?(|>?b(Mt!cVwhKv;o+g(7W0%?BNUe;tg#1F2)RB1Fj@i;GefnhtJrbniB)&nb@9Y z)Cyk-8SMO2+gur&8P<2*K$Qc3loNVm-+F@vdsTlhJtGn^$acQ|+m8Kh>1^EtkiPGb z{ZIP-cTDkAYw5?bbdygP>H`rB&vvK72wq(9rVBs>9EQrg|8Y833rx;3wE7|wO>t4} zo<4=Q)c^@ehP!H2rD}EL`9%P3qS8zpgE!zqm$Gy7E`7@;;QVpk*@yfgYY|wn$1u=X z?dHrnu^_Gb*g5%lpV+vGO%r8LJsZm8o6S0L`w>il5XHW7nfMrWV5x)xZGJ5V&qv23 zC&6077w!_>58F-`qLhQ{h#&(SnN98Z23L$pBr-!v9`*|+u9rm!LEO4h>=QoP6V{)8Jy5E@|8J@OancGZ zzL-oghHgwH4=B}xI+T#b9{-nAPxaqY{hfihrICKlCp(p{T!@J~wrk#nCxwS6$y<5$ zkLT72rqw@EeIs+e#HtSX#%TkL+DJyn57Tp??&7r3MlIoW^<4!H0hWQ>i z7?2~7?HY-cerf`?FfU2B4SWs&NxK3PWS7X_(1lhlyhVe78GEU1A&4#ppj6L?lk!OX zv$SE9GxW6C)VigrFT^ztT&_oU+I;Bc1L^n7Tj>fGUO$b@ z1xV*DN_!&%Z<=4z6>ka7Px%+A8hq_ZC6(ert1ZVbauM~ZnI$}aF&gS|&h7x6dWF=& z%HZzAta)5bUli&xc(k7T5}`j8`y5ILIL{=pe5#fBYMXGAV*`?0xZIfIVCez`Vw^N{ zcuHJ6G?rO7V8vcrXMw1}jo4}iSh2@14#(O!UH>WCr>e{;#IIXFhcyi6gOyZm=Hw=n zC0_)Re-q%F4B8r-+sUQMrU=cW2aSul+X{@>D@#fJD`LL~CAwV#-ga;JuvaDljM!^o zKN?dj%pD~m z%n?X8e)|?1X);hQJ`K9vq0@0Re7ow@$I;89{8g zkAYjQX4%`VLSI5om(+UeKmmUXVzvq`ZaA$ffAIU~nBMV!@VmHz>23`=RBh0B*Sp@T zK1TNwHchgUTqvr_OmxgHtwCNe)RwT%0sIX!Kw3T{k&V-bkF#voCK0vLY~V(}KjmV;m`;D?Ylr z{LiXaU<(zwVx3Zk>Yr7wUe%L)W#tmcZLr(Ugu%AcCGtZ*RxgT3JcA9+eP={gp#+hB zI?)8PD$#GBo~6smKszNGq}9pb=z~F-SbhWX3_1W}W5v~om*EN2H zj!E?X`mWyp)~3qo{ibHqa8nlZF)Tywu7?XRO|z@h-FoN^KANda9@sub@TjKzV-;?y zGG|=}O#^0x6@99J$RRE=OUxp0c-W+ar?-r*5aTgR)#zcie5}_qZlfg9 zO%w};0I}g04>OM}+GOYM+=DWKi~L8uzb@Q|1sD;f0}SvOX)bbn)kO8R77|9!vyirbx42A`__NV`-wm1 zJ!B{H0X*8X=QMFSe~HsVdEy&MJ(ZaEBqfw*7x{$5HeQOz|lX>uI_kMd19{ ze*Xe|k-V0R5ioKu9B`*PGF_T?(uir+yUCc32I*G}9&w}Zr8;u0{~eD^YE!Sxu2n!t zk_&qgB=W^D^bf{&nnaQo=pumhaNV{PfB?AqLC5pw_Pv)zjv9w^I+i zJ|3C_U+QCs8dmXbLurfH59m^sIyPl=VV=?a5~EV4^l2=$>gvJy$;rI|i?V_6^Tuxt znKlEpz%?^0XX%4t)cQ?nLB1mQX!I$qX*V(B)SGSM?AS2Ix0;Jk)EQsqyZ0?!VB=mZ z9eA|dc*|L@7bWxim*A8^s-rs>!?G@waeyY6ydF2)XD^x7j;bBci zP!680;z4m!KCCfDW6dx7>pW5UHD*MlarL3jyA`O`8ysO(%S0BWeuv5a)_$IRv0lZm zy)kDEB<5{Py{ppF`drXUR`?Fo@GrG3&h52zJ?<9M(ZkH_J43z&RjRf?uVJkJv{obo z>krDuRX{gqZ@3*?N2Q;^uN|yCxKFlj8VvG3E(`RDha0h#f!8BHdgoeSqSP2BUyczk zZaO~wK45;F;YLm@b&k)iJiKFhQTY#*&x+8^q z@mmLeHHC7`^`;x*>rAS_KjJ-C;IT&xcRBFY^JYE946{$gk3ND-9@e?!8k236WhreV z@mYjMI&5Fl12hyjDDy(&nZ{Op%4o4aQ}dky?a{+?S_9Zi=dvot`}ozmR`dMs2m3ua z%o)Wj-Z;Mp3nY|bS=VG~7_0AD0pD-DLWyj@+M^w6Cig6Gax;re;7hg_G#!rFT%><% ztKC7sy|@n?bTd@ggB7q(6;7etOJB9bmB0w=w{Dp*aH>a3qm&l2 z;BXZ0M@j%MbbjxD;dI8!7cG1(}8Y3*LNkW(uoVU0si zTIAOa@ge8W)71NIC_mi(?eIBE$Mm1P^ce6>5D=+^5ZnvB4L-MM-}8rC9b6X4O;K-< z@>LSPqR6^g%WDg)9Dw;~!+O9<{#HT{;dnV^f5%FbpFVhVOTj}!9R-h0*>PMy8(DI4 z!%CPF;=S52Y_#OD@g;SM3LqViv4W*41^`27!K^(}vSf31ZN#p+fD+Zjh8BKq$6}9- zC47Y^r<9YI;oM*6kWnymctcS=+NjuL{rg%T3o_9_yRAYVVi2b4)Ph$X{_&iRV0?dI zYx5;QNM7A^Lr-zWWTPE_fe}710zU}HHl&Ece5l?#PVa)MNigt?tbCXxligA%wm#g# zc#$F{Nj{@M*xhL5R~to)z${dd}~_> zfiI`GpNdS%DO)lsxOi>8f>6``unCgo?0|$v7AtZ(va~9RTHL3U-|&vl)^DdzsjGmEb z@~rcDHSN(8~oeUGJQc3a4qYfzWx8rMgQI?|Npt@e**Xa3EcmW!2JzO z(m$DSEnp@*Kt|`eUEGK(D*5|N_1R?TS1FR!C0VHtqmliAOo&6NdkC86d})PhfAPf$ zEjcP%XbQ*&c}P9i55T3)=Ma^-pGAR728dMmJ1tq=ch;Ts*$!&$A3*l`@c|B^C<6|G z0RjaA1N`yKi4S#xkmYaT%!=?J7IK+jelo2A&RDOu#(AMphB>i zx^{eSBv`JYr*7f>Nqrw566S@w95&>vn{1*32=v$d7+#Yl zw^Z+nN)7Kdz$4$dswf>g((OlqK>y<31APrf#c1gN1?aQ=mvFz`is=h9L%_w#u6xg} zMvTwTq;P){fSZS7uO$UnA{P44Et0k zYAc-vZUV-<^G3;Onf#BSUJkCEfDbB(GR(7JDmQ|L{3#Ray6-~=UGIC}E3EoTg4LlN zS>a<2>cEW_3rZFp=nSF+o~lp-a278UK)vA>n`|^yp*|-VTZK|oGJ%C+4q4Jl!7I}< z7;Htq`dFG5m{~GI?NawmeYV_V#2G^lQl$>CZig}!00|~DOT9Up?pBD$>{90Wo@ogPYGVT1&qavOVLZ>ZT{5+3DVj@A~h-7bBV9Fb9zek1l zGbPR{Cn>Pazkzxqzi6yH>GwQ6pyECg%md{R%nPHfQGWZ3$KfCYj`uig!o<;b*2h(l zMGX-4K2M9f79+MQoWv_9AkKdQ;`~19ia^Iz?7ukQfb|9h<>#b}FHA_sQBtoBdkMF; zx4TR9AK`wEcXi2cQmN$w5HuMhh}M|{5D1(1gN?wglJNyO@ysDa_IPz38zZ0>ji2UB zfAazPEcbvSariAUE-WP+@)DgJ4ro^d)JXj_prj>~e=xmFp~VBwyw=d%?o#K2eyNE9O{aq=MetZQ(qy#`;T8%Pl< z$bBD>=1&EwV^~i95Cr){^M8R#ZWN}uO0NzJ&kIp}7S;tPwGNe|XTnEGlI0AAC$mXw z(0-UdT<_%(2Kx44S?rL^N0_DLjh@ME?r~+0+8vR)U7;g-Yfh`(q5yE}9NlYw#|GKD z!I^R5fH%Q9zVFdiSfWkf49{kuGFB4=eX7IDS zkcKJjHL+`LIoB6=?FBA{XaJ%B~nE!zICasSJ^ z|6j&E2zkDyzI0x8bfTC;ue5MH15y;!55rh_OW1vS{}}P67?HdJ;o+AIVZPsQ| zqOPeTgQxP)j!iEH!Hx=~d>l9W%@l_n06qzj=UX08g$~TFB+{}D0C~PM{}7PpUoh|d z1oC{g_uWlccK*(Pg!^#pFd)x&-Tx!p8wi)#k<9Gmj9`&q4B+7FPC514Z9O#$;=0D^ zGULq|_lfOelWN>V;(DT%_)(p|d$sT;K-@$C>Tc#a4p%l<$!|kcTbr>CP<|EZysS_I zoG!D?`VftAwlw_}2(-SZ!YB>a3|xrwtwR0& zY7k`yxj$6stHV>73M!!BRqv*g^e(Fv;#a=HiGNX?`WQ>DF(9}0(G^W}X?z}q=vYGg z`OJin7_gmAq9`M=M?d1!k|ii{k!XoZGt=R#IO~5oA8v>ECLfRmAsG`mqYNUd`n1d- zCCAvZfFxBmi>>uit6;7d1?2f1p@rvvcs_4Q#w`0zcp;)5xKsj%Nk%&f&lj@qKIL`& zu2TZecyI5pQ_aNEtssRTiyg!!wX!iqexwslu*8KT6&h@mv&7GXw|+N~Jte7!nAP|i z@Rl|>0r_e?Ao#o!Ew2xHs%0kS1#$?A!eHqP%DhHs_}QZ<7smd?f=~FYKEF>jZIJU; z_dd4^s5%7?KzkU6+RVnK!Ax&-qFj$mRlp7 zuf^J!Q!ER?@(D)P*~cv>arXWceLltx57)uU^+}xBE!II>kfCqjUY@}! zG)HztM7=Ruz_s)E@+Uu z`8giU61q~HVR+vpPIH{Yqc71K^8ZE zSO_w!tcvuiZX%d=)&}daJ82mX%h%(qW@wf7ERkPi;Lolc+7zDqB=p%--1n4f?W)sF zdUmFS109x_K%<$Rv#dz*($qYzao3ka393(j@us(g0^w`DJJ*4;fYZVKy|UJL(4C78 zHoDj9!kCeq6>_33ibxt53uwl-C>YW4&^w;53pX*aysSf)#A?m}(qQE}E_Z ze3E=)5i^T?T-N-o@Y@R`D283JwpKi~a|4QW)(E%wMr`F8z zQ#p-Mr-vE`TIklFp&gp*t(|$5M`vk`r0QG6^yJ~Uh4Q6f7fKv^R1D7PnD|xCwtNAN zdxrMvZdL8gXG(oMZtdf`3L0!6-a086GMoorb9q@^o0e6!E1jQ3kNMDe^KCiWpICPYw z*8qXFU=95p8t5Q>MLQO5=Z?l~=%8hcG_4#}0t;p)fo*vN?_4H>YcQyNMyt$7WXq%^ z>k&Oax?sWSID#^Pfo)V?!SJK^W{;k|18(hTz5K-V8DQk(#JN5AS8!)|Sx3X#`jhNb zqX%UsZ?UO>=0n(V8AxKBYJ!WGrk$}FvwSQDqb(za?MYgFgnJmg>n6B|t=v)jG!{L8 zMydhziCC9-ou&yRTL&d(phkeV!!fqI|cg^4ynt zGiOFas4Lju27Q6H%EDI3)))0wKK5(OW-!*89o4eUOP8{u;`X0_B_SIHFA@XZK*y%q zh2o>UzM`Oj)xz)b7mfM)IvevEZRq894VJtBhp4?oG*-@a)xk4VR(#~Bgde)*iLFL({#K1ZnZ7OcEI8(1#9P4s&gD2bmp9)6w7uX?@gTV>;ZU1&ZhF|l zd41OE#uCZ%vx)#(w?oYl=eVE|#Tuv&9F9C80|k%G%Q9VtX^(iV#FUXkx-eC`&Caxa zO`1fS7Tfu467k6iAycUs4Q}f+4u-#!&Sk-fcSY4>FxLG~SISZM+bWXZVe)vkWtoIY zt%1L0X@$jrvq_1d7dFeN-dRP7l~Y~ zVR7w)!$g~1Tb()tug|w?Z_#x@!@AQ0PT@|c6uI+n>tbti*j}ZLR{ovb6#j#udUJRd z`lVIhuqx(5zm+f)V3dr%v#dJ68&=W0I(ZeKjj!Hucm?r$bnn~TLbywt>p+mVWI`1^(=Beh$L)#g`(SGHYIT+P%sVbTa)^B;6FZ`^qHy@iG(70QV z#96b;A&92WCstKD=PL}N*5P`HCqA21#p67IlTo-8nipf19)S#H3G6(JVl73Yskh8x zktjZzjF_D9=Fvo+o#NqNJ}z`|s+bqEqs@K6*a+W++!W#Z*rsGh=`j2BPQx)C6WpF= z54N7K2KtCn*9oy(*alAzbyPu%zrJ6Gsf2DM3gUs8z%sUXi+R|<*tL}+Sv_jU3=0}{ z4cT19ql?CJlql15;_;}wFqlNf;4JkCyQn3rXOD`;linNl_S2IFg#mFFLx!&&*ITQ@ zv+I`X*rV&#?MZKhuC1;Lly=|bu7XD4wij2|`~Sz@JH=S6Ip!FD#nWXz{WiCRV{i#zsY;Iv z-N_N~PiGx(y$9-Ei;Pb%4F7mn6~qb6@%$f%{+}_%6HRr;72eiP0hWCM^Lmzjv7BDw zIO+{<9@-yj7$!*>cxp(<5(;0?d|yEdNqK4#wmEs)IC7YY6bahl5%qd}-^KTSN*Qi{ zB7CnI_BJR(Tj7WUf9W-HuDHe5nv=pj>?{)AS&5m8#8Z2}y!CzGKereRw+kM<>y^V! zjZx)@2teo!Dz@_Uc<2Wu7b9}WXCS}A+~Mr5PeV0`+|-PwlL8hi#tSi~61_*^E7#i` zJuxyzpI2s117XLUnX@-GW58Tx2!xW!u;>8a5&#xq-Dzo3xYZ9q#-g6X$sH*13j<{G zgFZ6(nGal~Z*)r6juN*`5*2`7pefF6{0h47BufITOT-H!5Ti=Am2r7L{T7Vz111ck z2TMS+W#qn)&xs8iZ6$GYK2AYOj|!#5nXkZs@hBfyJlEM5Slw5i;@N#UKIZQYA<#~y zT`)bN4KQ%Zh!ikvb7+kiU95ZkUX2}SBXJV;G70`O3$J}5KThr*BK~C*C>+vud)n{$ zx7ssOLunC?9*_X>+ng&tE!jI4@t{w42I?07HVLs;+ny|PjL5}EPY&}K&9(ypX$}t1 zJA@$XDIz{PN7Ou8Ad|ieM?WyZsv1Y;Gz}_bJ7)4TA*2t(D2?A_1nqr_!b65G7Poqg zlRDzLzZ}x3K8jRxuWq|KI}8FqsDHxj{|Srzz*oNsOIFOv@CaUh9OBV2)C&;mcaMM# zq$W<_5czvrfx|_NJyj%v)L{@ODWFlGs3Tm|>Xr4?DF;=$;)AFOZNACn8hJ|uD3)_* z>Y-xKPUc_vu$c)*b?lgwq<1T#$SH@j8j!;)S( zA!jkRMwLg3<(9#n!h)`m9>vN*eOKgabyL(EP$A=sR^UQT`C{M$x}~}NQ^zy)* zjMHJ2bNQqj(%YWl%VEYf-LScQ;s%N|G0A=Si@$#(E3@?#3*yqm7A#lm{?^_(A%ys@ zM#wDRs5N4gPHFj*)m@KbPRdff^AyGs3H^pF_J3uu5+`hrEX~xsT}A zcm&P-QEcOFMR3;yqf?ZRs`G*ltw2j!B10`)@k&slTBJVeh ze&upV<*N?Gd0OLf`(R|JtSU9HHIh7uz7F zz1rxv;ljC8U6M&;Jc=YpKVSoE1z9!X=(NI_u@p435U-)&%UZ$u;+Ny*F zdVWR7N`VA-n%q}0yl%5Oac?>1ZXEXNjy-SpXKBUCfqd1>sg$z~iq}Kd%e{wGM$VOW`B_)m|ny zH^kB?om@*vB>8#1d5_;ACC()HVx1@jgDK5{4evfnIC+$dIiaCE@^k5bpIk@?(K<~6 z42Qui>6@SjhgID`Lw6+96^Q&d)&KkkH4yh&QexCYh?uy`^R4kB7$x9f9y2d@rktZQ ztey^BZO0|Og26_~KC-^PcW&hJ5tNJOr2JX|Lo0LgH;ykkVY?oqa|AIdP4Iy~#Jn(( zbV*cYids4}itkbp zBdFBBsXp&y?^|BfD1u_R$K`M1o8E_-*0Ycwv<#$=gz#inIP|D*v4Loggh`s};UIu_6otK*bO z5JVxp)KhZF#KckI(gCDXVYY8`v>y0jqv}-}ae~wJI%o+pDiNCD8rvwz;Q(+T5anjPLC|V^tTE#5G9k$ z+^cBz4SiPAXt}c@CYLFd)W{bMR?vu%CyTtpF0XYI6PUiep=w8#qufvPK@x4${Jlf93A zt`AFOYX)KK3fo`%%-b!$7MWc1d_g{2Wl@>#1iE}!W$%7Vv@!kNP6Oob1Ib!`U9v{H zM~Fc;%RPeWSe0GeMwMY-5jgdU)JmuoWb;=LU)sXrdVY(sx6QJ5C4uOy%ZX?-5~LJ^ zEotS{wPj@T_+dqQW?xjl21+2oX%OZpeA7fGahE~%v(>=BZMTfluDA<5Pi=SS9UjS1G@PVW?Kc%00ZRrF?Y z!3V9#xtLv$<;lUnq-Iy}E4WPB$ZAV6kKG0xkJ$Uz_4^VIAMMidD1ieQ@ES^-7pqQ4C7F;7 zhk8?>6w249v_fXz^>;=JDM+biurmkY2dk*O*aHBMYdzOBY1tI+^4j4*0@wCoS| ze(~Vel3wA=wojmK zwyRBpRM+In!nZE%Gh8;w(CRgxG_@_BIp(n&8`EVLu2m+N?_scM5scOG3LTr^@s8jW zWx)HlR-1w6qL-{Y^6qvg?qVfzw4O#aY4CAib6QGy`oNeS0$I!LJ2gmG@IioVjA4yp zg-SN#@*f{5WwtsZXT+N+(lI8)BTXV-?AB&jMSRj*@M5 zOzC>H2Ygl>=x#NgPNg-b>$LguJsh&ZR})Tt*#y{C`s+@M2QX*0&}CvYBV4{1ze;26 zjLWBlJ3TJJWFVTjkWNxXmn0pF^0KUNkd5l(Zky+jMAW+#aFQ}O{+?b z&l8U>qC-U5<g=%9TKA#w+`uiZB``s%mo(Nf9=zF@K&CN`oU)#7*L}LCu@*QPQtoHNu(abifrG zf#dh9fgJxdRAYa$$g~wnaC0>&e=#c%1sWa;1j1K*q-2JDAN;Unj?0DBXr zxYSeOF6VT;yw*38+aAdqP#p_u1BbGxZiKgVJmkf8j39SaaR0Z)1mZt6CJO$!G2!;nn22JaK_MMow@u{O20sW+yl>DS|w$!p*gD!t9pHFs3LX1iCWk4-4MQzY!! zxT(|=qB1+fS)Y)6>!89EfvSrKxKr3m=3HvG%a?eTbCpTe`yALVG96CU4h!nk*Ev6A zf#@S>m8!j!D`@rp=YP(l+)CK5WB&)N&;B>ok13Eq_R+U^58O?<>sKB#FzRNRqhain z_iEDjtUM|`T0c5k(yW;M%C>{1KahkZG;jMp>|GV_&k0x*tQq#o zFGKr;nRf_rXXM;*#1Azm1=7$x+s+6SGY3LC=j#m!>HF|B(PFB9a*nMZ2ZZ#U38S=7 zlQ0o38g>%SvF%fX&|i#$_|deIt$>bj2gv)U;bgTGaj^*{C)I4|e$^Lx1hZV-=cU!S zi1lGs3t>g03&#o=F>b*3C=!$X8`i%)53y8AEmIf#h6qelsYhfFfcV1Adw;P0%V6wL zRa{UEQHKM?dqZF-64YcN+Q0|aZ=}+XjIp@!^CN+8Z9Q(O7EE=zhA3$H39$5ue((h7 zb9CYOm%L1Z>8-Wr1;xy$}4I26Xi6vn2d+J)qmC1^`rFvNA~Q zC=dv_LXqhr7QdI!e)Rw!?7SwgH`UMK08o8B$`p6Aix%MODxh=-w-2fhr4Bdj#=nL+=)GUlx|yi|XUaSD!hrFdp$WG5p!$G}eiT$^4AmKe`U8U#>XLxVClC8nu?h3Dm^}Dw;VrBM zvJL;gGx|oOw0Lx%0aRZLln2V_FRHH+8>;> z~M7;+4D78^q8sG~@;hiJaZ>-M_7xMr~zk9VERJpt^|CcX{ldwcAB+-nj z-R3weSh87*Wxrqmqil9@OBri-tsgMYu2Rge2yfJ-0Nz`(mWdj4*{OZ8B^F^Le06|} zNwO$-9Y(`{!=cSkQksMBYCuc&wu0Zred?v@#R=nd4lZwA zF~!0?-GzI1Kq_aCf6+M00;8MuBd(IOpG-_3wRVUCs*#qk)>3Gy~z}57OTNAbn)a z?GL1%CoUsGY2?Q#4EUOn?vMko>SA~q(RhvsLH5%{4d_ykyr=^x`o47BP@^%@ug-_{ z4&X1m=M3C<4Xj{>TF`L#1!czbX2rP_xtjt>_nNMGZUI zeoAB`Y-iij7Ve4>tip@O1}`ZhOjOvlY9VFg+t%YDEmhJtK27niJ<>u&4moF|b*^%f zoLUjxEv&>6r?uI^mPjv8`n>}`bxGuYQZbCYAlkLh`t*vR$@?XU@|EHY94pc!o%I#g zU5$oFiM!83)QT8B-&W=wqbf6MBv|ip*uKH9F~r^tEJ--b$jpDlcSE#@8!*b<1B6DJ zdq~`XLf*S=gtny{#R#RqKPaQm!ZW`Nt9a&sw66a_^f9hTWpqD%5PgAv5&b-C91kk6 zt|zT1rAbh^vWiyBpDRFc1?c*=UX~8#CnxEX7EChNC^2maj}Ycew;zf=zJeu$`*Gel zbSmiP!l-OzlRMq?%_P6%gWuYbzuh#o_pv*wuM44-Kfuuc20c2dz0I__TY<$F#CTJs z%rQg|E8L8+^Ok=98QPY?ty%SjPUpn81;)EiaN&Xam(3I6rzKGO3Vf+9YofSncpI9* zrcW_*&J>Eqnn}jm*b)aE3M=K__9=$vT1lbi%Qb)X?brpmTx+)XTDlSgF+tl z?ta$29u`S%dw&t9f2E#=+_r{q>~&61CtI;P6TgZ78v2^;rL$Xbsm!pi#z(Xy zfU#oXmghz!(O(xw(3Y@1`!!qXmh~$=DToBcYUkmA4uq(@L5P_qR;F3P=68bI4$7|) zBqJvT5ng|7+*=--RA-&LQ#BNWj^VOVWNngS6iMWL4h9-;SH&F|kG^fi0|0%jHpY^R z$vuZ68nII+)f1DnnYH3d_IP64c^mt(Y49H}gBTe&X{T8n*aXZ*G-1vl%{miuZH{)E ziHitNcFn_P;g-%~foN3^!wzfnS1ete;2;ba^5I>nVSZ~5j)d|!hZZ>%zmo-w&wiqp zs0aat4k2J}0|b4Wq+$lbTN+g7Y>BFGWNhC}aty0$La5p2F=Nh;gyqlWYwa0t06aej zFDBva&?}ByPD{D=W8~grnadTCrpYDO6VQ@O>^PRMr|V$QpfRQR*1`*I=v|@wWATDA z(t(`bQ7aMmD}*(3;MnaXyOn&Uq4vB6&|u|)?$J^RLa&&(El-NxdUfA=&#Y#pfaKly zkX4RnCPs{W{uw{s_30?zDKz28*_vv3&EPAk2`|JCsjT9g7JY%7du47jFl}4A_|p8+ zFdhX-byIaG^<507>U0N2HJuer z4HO8hW5PbAeeWLj+3-9R*^U>~W$^j7+7-%muasV4iL>kACLPFQP4$;V1l)eFU8&s= zJ$eJ^#*jGMpoP?aoHgWeZ*x=4e923FR7%<$jx*j)aDkAz^`JWkBL@Nwo~$S>u>4CY zdX=-q34*Yy21F>i-SO4uN$gSUg~E=4YNeFYMqTnFWWDx^30t|nA$xaACPgYO3l7nO zDW=+6K~ALZxb@RWE{%*wN&cAn%9A-`KvTwGaU;qMx}P%TiITe|`X~37RU9Qby1W2` zZ6Hy$biDo~hd7AM#nV~qNT5CCuN}7ZUi_CopEx-JUQOrWF{{^NY?@sBK`_DJW;9Oy zxeEmo(?>K@0_};i(@V!=@CKHvBgco7p1vL~ikqJ6r4PCDF$U}oEn|aZ+AZbZp?>r7 zX<>Buc_xQJ45x0fiTDiM7M*c807tS^Ih5j^ufSH22PW^&lJ%+kdI`$4pZKep12)v@ z9+ypwX-dnto;?+FrQX=BK0IHk3J({H9J26yFwvu7qr>t_G7E-=nwSQjcro2t=H*## zH*@0BU%E*Cv)ZU)MEJL@Y1nTeWQr}yqjS!(in}f;3^(Z{)t-#mQCPl|o+aK02!USS zzi`0pI2sDJ-JGaAGUdj`mVWp!7lS8hN)NZ*+#kh`fM>hxSpSv)HQ_)hIVxoz24*<3 zv7#pEPh&mM3O=2bkprqI(e=Vw!LW6m%p99(;kzgQ1-Zg!f~>hWYT(jdXQ$4#ZX8V> z%dl+mOo{*+tWT|}(Htpj>YPY{{phP8W=)^`P|-0nC~7>X^h1wl48CgII$u;C_eb}P z_wYVOo&Q=62YF8+P8gq=z;r|BCL6hQNlnJY{Jwi3uC5%ppQPsy^wHydZMS=J-@Li*Db=~W?m65K zMrm1WE`}5NL;91h{wDo&mAdUiw;+XJWa@km^aqb1Q1^Q81~-Ua8jNo*w*N@_?Q3y< zJpBjK|7QmhK>8DwWdNjKbzeZidafnSwj2oN;?zyrKU1hLgHF^O)uI99<>@rp?`L++ zgj;)q=k;do?ByZH?M#)&+gr@)J#{I((I*H7)je3is)Rq57U5!-N{ZIAX1SVSA!PDd zu>Y$P--`V$f&Tlw?^`w-9vF?A%O{SyUtXp7pCZyx(J~-c7PcAq84WN)5uOY~_|do# z7;UIw^F(V{g)xetLW=PQ-KaznmG~+Fp#KE``e#{q(}3owu5*Qr_p2~R83OH80+BaB zYI1;juxm%Pzb`WgU!ukx!7IEf3u*w={nbC}{yQ%6GrHshuF@%8`~z1Z$L3BK`~_nz z=;~q6?=`c<^}*!+5jIL5alNRoj+^4v>T>GBESIN1Xlezyrv^MB zLS8_Ca{kLi{^ocu;Bj;sFyL|Yw-MsKKjr-5~ z0s0tki5B=#BVMt9HL?>Np!IqIH;q-sJ{kxUKsi4El)t&+D`$~96oMNY?X?iXi(V?E z-{R-_%@l>j3|%T_b@3;m7y#)11OWXJZM|8qkT{~x8!J$FnB-G5AE1AohRl@oZ_vNG zb9oM3$9aHcDz#yKcP9kp+}n%1d8+smNso$GFq>21R~hB9`;?rQE)lNsYXr&lA9)1uUV;hBMh8rw8Go5-}<$*f84p z@&=b$xpkqt7RB7APF(fl*ddilg$&V7C}n{>e1cICyRFIl(2A1s3L4QtWEx%{pHYXo zm3*__Emw-kfp##xlkS+IbmZ>8Lj0qx$>2Wi0YE=j(BgVhi?45LeOdckf%`tREF>D9>?)VLBTm>g!KdN53M4#5_DYlVN2E%P`lFUTo&_t}42j{gL zf*v89Zh0O|Zf%f-d}Aho4<5vGw( z9{tz0FYYB$ivtn;&FV3-eye>JMTciglU+d z0k2Pz*Sb1yViqQc!Y2HEN)R2{&SNkfd8L1DcqMsC@`x|0hjeuPvG)nXkVtpL%nMUv zg2OJb%zII7w}w@Y>Zy(Yw)bW4aBJTK#XkRw^SgZMu#|NHaDD>!(%+RdMw{{e*L0(; zJ6^rXJY?K`?gb05!-ZgLFc)f!XLP@md$vYNS+RnU<@#|I6n1IO8kAyrZ^x*vH2$0O z&;H^3?Bf8=?-UMB{Ke2_+EfMsC8&YH?Y2WDG;`*C)Z*otqKAOu;S#O)>x!UIw0O!9*h4RhlQh60X`>xt$;Cr^CLd>rLJFwD-pk*;*eD# zuhr(0lfO?&$G(0hI(HZk1We7;hqB}4)#FoN8Bjl6z35!l(oH!PZ`CJBnZliynP zz#a#>Ygz{#J1>YdI9Eny9FWROv;l8(?B$yvUcS!}?7~wil`7ByQDj31yDe7hwSn_) zWL7&`MMcA;l%0wdk}kW`jAR148L7og7<4t-mYdyR?dSK7WaDTI58%MXl(wMbG=SLE zWM;B!+HI;dBes68+D&lVtB2r|Rq%GMQMuto*((u56*0hgzEU!8G?@?3`-H7e=Yn3P|i%u5`gI?Jni+ zAKs15eY@q-^T@I|UQOo`r^wm+!N*#kP>D4UK^Nj)OG$RqEG^4@9*X1n{YDGLze4fQ z+MHy$I#k%6x|DgBwHDi0)Ro$)u-~{#Ji~EqEz6Z?qtiOhG5m_cibN-Xx!S<$(=X58 zj?&sitplP_>Mu2eC#H2Fts|b|O(oGhr?Y!kqX!kUS_rXR${5U?2a#y|bx%Ee1@m$i zvx7y-=s5SBu87I(u>&37O(9n#bd>N|=ZRr<+b+km5Pniiip{t3>ogecfw{guN`+}C z?<0QAbb)lhU{;d7-<}?!p5SUHo=)Ro0fZ%_0vBuZi+)VJ`p;;D!2{h2HRGRV8Fey> zh%30?l_tsmG{l?hkIJS}IMlT?P^YyqXDG&F{E;>?Qbd>IC3MJAbHKo7l0ioA1Q>pL zFymN>LbD~oUnskD>%bS_Ymwu@Z@`IW(sIpdtZ}g4l%ZW3_$8-gqdQ^sXkp1&perr0 zvX3{|+VgAK($Gn1elsm^-~IeEf#Wt5m5Ut|dFV_+Idv&F9}nP3oeTy!ZPxTYqTK8f zVxQdL5FF?C`_Be_BdEYm6!8QxFWzSpyc zE!SV`WKR%KtoWqnw-o0sEe;Jm)TXY?vv(AmGZ(t0^k^#DA!pP0sDK(suhoZAfsN9O zROZdu9OmVqH!aGmLesUF4SxGcof%g-!BlM$?BELdd*sn{4HF?>2nJnf}a@(aa6Xy0}TvvN*lf?DV^P zXBmt}z!)c8FL@fjeFS=m!k$s26oYgmm$L(`aXLy4xwMl#eb4$zbepn0sT}I*A)}T1 zOu@kU+_?L^W5f06%6M9*?<8#ZX5aQ&IbsLY9N=F8&nt&f|KF0tdR=iLnURcrNr6DdtGG@Jk%cFOctFErq8a)X2YKhp2syD4Zv9O{r zwnj=iUFHyUZZUqi7OYQCt(K#j%EGtMwSdP5qdJ=wn7~Hz1N6iF0sYcpe}R6KwS+Cn zU8`;Z>=DY$1popG_hTkf^Swoe0N}Wp)Aa1Xu3__73kPbYT9%Mq6w(l-CS-1!R{{i$9ni5$3C(!@rN%X(dQjl{5GIxwE zFo`wv7BtBxAUIKNkv{N$EAn6dSCQZLT%H&aVN|1X2SSvC2qv|Vde@;#NI<_+R*kYc z`d8wPR4qI=OXS%(zi%ra`QJr;%T}TPD)QTceH8f}IaHv_U3dURe(L{GQIc8b9zeUPgb}wYHYHz7rzoXm! zqWKs27wu8-?qd3}%KW}>`ZY~t(Z+p^{%7GQ+=|!euIL#2)6X%0(eVP9wW)_e^B4dv zeexVa1JF|XgjFAzQAaUW6)B;F!48#>_Pt!FX%asu#9@>Rc_`G4L|qr^!B zW(5n(46=00E2y8%sr0>WO#1)RfoA{XKpT8G(6x9}4z5gp75QEEac@W=LC{`>iuN%C zNly05$x$0Y6S)4;_e=k?zW@A>`u-s+0oZ>6{eNKT|NchhoN#E+e9Jh!^>n8)p%78< zQ)8;%7of+iC_?*iK zRWGE85^kuX#$CN)q9&}gH`!yhhRXJVJtiI74$uHTXD=(sK#kF07=6g-C7a%@&?VHT z6UOML?}z>0!S8-} zadxXo0po;!&Mqv*YL*`s{l^=X<3DG2hqWX1f0QTw?d%#Z)>f~wnTk`CTUn2N+ECrY z5rrLc_&B@d-7(ZnA7?lAue1B=iLfX=)$Teu)vfZZZ?U2>I0+p3t7<|nLhA9kj}q4| z9e+v-F7Co*Oe{PI>I@x!Hyxl+fJVxLhI#sdn}7wjs5ymIP#F#O`WZ2VJ;DXs8-WN}~MHEA6t}lwQLJg@icNch_N3dB;M(xQO zOT5V`w$5Ia^vgDu&&}T`ySafg4|>g<3+i$CqGb06^b-I;ztZ2Jf6dQOAo>_u=Wo!z zBJhv*Qwh}TF{FS~-SiJZe$IdS`zy^zAO3!zly(xvX=)RtC5v2KtF7YTft%zdIaz$J zL|CYgH;}^gsGGGJ@4BoWZHgrBH$?Bew(!UOuB+~oCC{#82B$9dDj}c zRjr8MEXn+}%q{t$Dh4eL$o}H|Z)t2cnCg>9j25OJoS!Hv9l-f3(aeWRx>*ckfpC17 z1qFdu?%*Pa1+A56#{dkzzq>jf%w}%7M@9OFIwy%QK{}QdmR1z7`>a<21zd1GNxnT3v?rCIg3MaUWX!y zPy-e3I_|-P^QukQFSb|uHdhUnbBx?BEO-a+c71Su5lyZe6gO?0E^*i0D|W_lf3(l} zY}Acjh2o#cD>2pzgfA3XSr69*r_ZSf;a_lc(V5P9EjM6nPN(4}{LT&DE!(;oxZe4R zg}ZvwF}FIm_-NbLuLmUkcpu!i5li=i9nxGO04mBeMDACOa~Xh&GJqDyoGs5Wa0!_C z1Kd!lGDhE*YwTq)T}Yei0g;lkt`U4Tu=Oaq(1N$DOkTyqBheBVNVE&33Bcfv$jsq^ z>cGq_Fk?O6pM;noV(N7sLj0nOI6ESo{esIPtsbdR2p6^24J}lD$iD@J7Xx#30aF9y zLoEK2VY=RdIod||CsXkg7McnY_I5@bx)tb7l(SsnQfsct5aqDwrKOi(Bu~;Oa7=XPm^jiaB$N(Vkw@S?PsA7*a z(t)~2Ddqe(=daU_8uiEujr^atBk13-U)7eZ-k@CWE8 z8cL@e`29N~nZ!kUq6>VuIdVs8vOF1(8}GvPOxIUBFv)$(YkuC?Jd;5l4ZZ5~am2Ve zJkOxJ@mFbSQWFglnW5Wvk*I`wDbjH>05QUazDOe(K|(|t#!$;7j;R{m)hh`&JP&%O z8Sl)?>Fareu6WOi_-zIedcOCr?LfmSK!4LzG$RG`;J&W!#BF&zf!c7X@B9qk^h`zG zX*5)Fm3%glsQA?N>j4~Plim%sn6K-$25@&nn@MGalLd#>I!$snAk)Fv(iuY${Iw{oE4vdc1dTOkJzvAA~)Kadwh-p4I&o;gG|{3$m<5}#1c1ETtw zozvg4c+1fI5)o?jkYo#mZoIKx&QcQWB@a>n7C#KY;twoP}rs{E$TA65Pji@)pp)}Jarrd*FHu|!t~@`uC^Vv{ce z`@&NH233!_n**7tl#z)FK>lEg$~zD8&cNSHvZ2?=duwwzXB{OUH$I~L+3mc!<<`4n zkaFgX)&=A5aUMgr#8r~%{LAFPh>K4VS4GR}ENr zf=~g+v$7YEJBaJx?p=FblRp=r@xS)_pe#IAl}_Hn-b4W;{^Bk_2?9ISTZPsSiC^|$ zk*m|st-O*)Qd?0)(|*T4$_KQepBuwglIuImG37x^&o+)n`q5^O`1@%|XU=JpvLkM* z0s%e7k(RYQYSDAdhQlLbI6r0@-y+~q z`p6vCQPj~kJ3nH_vJrl@l#RgZsFLFplAse`zz)6)X17;m_^C~M{@jIEfYJ1%C$mRb z`qzpsm1UNCznmi2TG=sm4(gX*T+?Djuqrn(4AG3t+SMD}2IE!kO(nr=wT zH7IwRc1aV+b7xTyG&OkjDaXmlW?NgR?0q54@&WxKwTmTRzEUZ_c`X;wG$SFFy4n>| zsebA(4amb1L1g3C45j`k*pQyVN z?pfI|v*u-B>#3FO8JeWdGugp8k2XZdxw8Zy`7nE+u<}18*m(t^b1CfVZ?1HmVnsm7GYFOhd`SI}57gSXje%4kEJ6 z^spL^X!#{kH{Wz412i@C9ZfOxzAl=!iQMJ``F~U=mz?uvBAwKs+B>P@ou@OVFf?UT zuG{GjsAjG)$Y=C3uE-U6+jHZ{@jS=IN~MtnFI@5yUg@I|oo8Fe|)j9@Q7nD6DvTBgU-r@eVp#pCxXpuQ~B zphOU09JX#_@@8>f#NOT0T0H*OopZ>+1~SpDJ-m#E5;#td1?7mE6cKU3D!4bhOHDI(oSXKW-Gs zowJy*40vfN8-2sL!z$0IyBhqYXn3l)MgR+Loea1+AaM_ktF;qyPW=N z@S5;5vwrvGYM!h8*Ad0(W0;1#DXao>7q}hdSf24<|MRNMnmKhbujRA3M@jZN^cguZ z=v>86R18fjSkcIyGZDpajjO5y4#kxw?i5WIU&=_1LEXsx%*p~o$!jB4*@P?B^BG|d zzdPp9H!V!e>Yb&k_#7VNI)Xx_7jb|!crt4EvJ~{WQ(@2Pw>e;n{Sa3@Mf=uv| z0ALmYT)7{!G_zvX-{!L(TYYtEVSsfo#cGr|(tg9g3bXHUxMX0n5$?kcE1peDE8 z{XzSs`h61g2Z9CH^}%r?3$}+>3>m0;F(RyLN4vnCAON(V!haS(``Kzj}Sl?B)>ny!<;^S|`$fx7V!>ahps#dGk64?5XydnK^>fI(g zpI7bW25p@WxqnR@TI#F&1>5BH8sb^UtLFg*K<r83X;~St&_gx4*H9h{dcnFEpMAO zt@9p;6_#XCP8-v}H>ZP^Uqk17y>1r+iVB4qe7-jSkoz5F z!GsS)^koj1Chc`*OqIfDL(I66lR>~_dEhRUBF-p0G&*|HmIfzj3rpOXfvp+$6vgAR zI=@{q8b{d|+j{xcYhzBt-{v9{Y zNZ_|Dh<(l_5>lt`HF?}d?r%#Xt8n(6Vl$5H=5fk}g_3TvwtIIznGa9_gYpnyVhHuY0 zBpdMfAdn8@j>Z~$QVtwN^vftAHL~UMjl@#&lB_UWhhsY#CuPeK&cNuIsFRPi^aex# za{m`DGqf34+EXA9DW_(w^n=cU+=IfZVTdh_STDvnZ+p zko&hjM zM!o#4oxu|b)_#`Yg4fpCP6(5ZnBv0vHNd&v+(3+3n=n!o7R7j zjdJ8p5CGXMJi4?Ey}{k2$^9e>@>VAT$o+<5Ka50W%KwMlpF12+*gu{tzb$%+diWF7 z*EW$2Hr-K$2uyb{EwRdz6IF5&o3ZS7vO_GF?33I46q_eh4B=FfD?*jlz+&7cUF1_A zkxUFfcAJ3yiED}*c#$Dj!N_i5mhoK(AcS2OesN^CnX59q6Q}A5I~S&t4317??~I_ z{b^c2Pnd#)AMz=Se|4^1KyMT{IiTy2`aV7x5O4Se!g0ZUR`O-z<}2 z(Cd9kEwkrpzaE~u-y4HJXPmVBdPBs9CXneuvwx?bv)S;NN5iKQptgy$MF9VZfEH#3^(={>*QQ~_^dzO{;ycy<*_HP7O(BI#%He*n{pai{e zgTMO24>%H!yb0yZ!Sn$}%0mai9#&pzj$VO>da>Cv#e5SITkhXP100A(mzCTxMd%| zk}B--F4$4c*H)YTxq~Q#yX5P^-2-&>SE8VHxt%KL4AAtBD^UemNt5H-GG%V^!KoXv1FQS!o3+eM)EzP)X zOn_DR%E;qFI{cBSeovy7Ygu&rMTH+MM{T*)aF&A=#r8u;(TAFOqw&` z&WOr}_z46iVJ*Nl|2xr)2C;?4Onr8q#+PM-t!Oa~!TDG+(@8v`oDQ5CR27C36g%Lc zc~_|F7-S;zQrZeT3zbOO^Hear!HZ%fU^8MMA8F4{MWCJomVL10pqUd&KDicLep}h_ ztJWzuIKb>ru{pvBh(P#9v!CJrF#9`CKFogka8K^~5*ayQ@y&VmL5w@4mGAirJ$vd{ zmnP~ZJDm01T02(!(*Zve$p<(cXN)~Z#krxP;FkvBAUfD)?1g*DcGMwr^}krX5$LSimV}r z5Lkw;;o*q(-ot%_zn<1-`Cp8^b93K)-)|keVPo62oyKWw+qT`lZa?WupcBCDHyEpS z4AdrT(=x-z;L!?vZ_jW=pBO>IP_ZF7g&HSsA7Ur6Z%j+p(YZKS@k@Hh z(xbcaItR`3jql-Mq%_X$OgqbZ(IvjJb`7t>I&>(FEeW0Vo8VQtgluG1e*!c(+-$_W zYZ5L;V^JkZ8k$G%-Ci>X&VbJr-HULktu$PR@>f$Id-(GZh7p*poWnma$+qVmM$khHu`j6WW;`#r%{mh_4E&Cb( zw?F!bNR|`9Y_=m0Qnmex{0rSq$j;(dz6=Dn5$*rD{rP@ROk>G9 zTTfREso8Q1Gkn>T?y!|?OrC5r_iPf&tkn@UC(s8{v{2bRe3(JvOW$mG_?C+Ubt7jm z$)qd)P*#1q{pA0+{eGWrzYxIf?}+$gM1gHNJJmMsxJefbwL38T8sYVyuMw&b$Ln| z{XP=J!v2_dNO2;ojwkjg6RQpW9GDge)0u63EvX4Xy zKF8UaQa0wV+MfYpQ-2q1C<1QgQ)ij>{d{73+AA(gwiChHr*$7vZ#gv!Qr6zbN5g^0 z!TMjd-|?&f_@aWX7HrjAAzqlL8af<}OdL(PT_*h3fcA6RUQs%Vj>$=hUHCrm>3`Jz zv*yEqCkYe;3w~X=NsUgRHd6NMXfAM^Nk2E)Z%|JtGi=-q=SV&%D z#>Z|qERroE`%d{PKmRYm{yq*IDf$QMy$5xd&tQMLZaLWHvxH8-%-@5*!~Z?_%LaA6 z!~VDExe2W?+W&Sn{YyswzXyLdQuioCa)IN<;Y#rtNIi-bA|g5hN_y{S_+PEc*u&un zL^2k9?>G~YZl1o#?sj^E4y5c9=^+$)@nwmlZxC-@Pi*S>-CRV9@zf)1hhsFYT`#Xk z_o+su(A^p? zxZdx`kA^5(`H);~UKklCF{i&%g3I7NC}3Wv2NH?L01@#}$aV7*e)m#zSuVwSFvWeu z3OwHwD%7{iHZvF|2HSCHgxT3Mi1;o4h{nm^TIS1;-d#xRy^_n2`K>&3dC|pe)TLl} zZQ!3?|8kb&R00l^(k*0Cwk}XqO-_CK_a%7g{Xg8OPV;ZYy|!UrWtDByVN85kbC+Uv zJU|x9pBlY-m9Ng(|LYUKNNvt(2JplOC;lIcd}hY_M#c_||6Wba6Y|8d-aCR?e?-#F`0RNyW#)1(wugVYz8)g zlxX^KJ5-cVB#+*QyvFFw`n22TfkXB)$!A6wAC`7>UZw)d5R}*+zw*oKg z@O*)L@a*WrPs~~kzY)ZmsH14CVw0yx!B+;TDEq&Qd_ag(u_Wt4^89e~J-L7<{t7+_ z2;hmI#~*Twy2phtOteA7h%cPCPE-rQ~fV(0J{AYwR)-c%e!AZAF#$13`U$)0#wn>HZ$!1b}khabLPd7!KN zfLZj=Y24$0W0G8&Qqa_LH-(oZ=cW24XB=jW&x__AKAbT z0I;8$Xgf>uOmmKG!Nv{3E9Oyk<4K1WP(6o!#a#~qfc+OpTX*T~5?+Wsld!(SEcB65 z?Fj&|e;3;?+NSg7-$_2-^)*C*9}Sq~o73?J_|f`dt`3_iz3o8ak#lx{>UsMzYM|r1 zlJndy-XY@jE91{YZmqqp8hN9SKVlgD`e?lQfa*D$M^Qh>J}JMS^V)ZMcK2(?UK(6h z5b2|nwK&|M+A?WRH7`_G`2+OZ9o5kq9rP0(Vwo87GvEVQgQ3QK*8aErv2x9*WTqYc-7 zJZoCuk#s>~zd)vB;ORBqj4YGa;(s3N8-Br9x-Yw7a zDgO%6I5ij-g(f&9rOU8^U+q{ePB{r{Tn+WJnc3O=UHu|rkyQ=A21?2yT2ThS^vTSi zPW=j#?CoG_Ny&{8Ks$MkGo9!In?KGcWe+W~;629jNy|htX4uaSuIVtt%0De@#8b|Hkc&Ab$zr7crNGB9h zHm<$n?L&+M0fX@@`nhvU)NqUgvpVHMN+fW6(@kQe9i5x?;hhsM>qP{w5|BGnKO<7f zr);*KVWiqouge9`W94m5lpl)jlwlx*#(2EQ~8ATK9 z3fdU7{NT;DuSV_nT%tDcRMV&w4lAf64sG!bz-}ulhoJNvg9D0Tpafd=r+nX8q+-9yyr;K~+<8i& zqw?0sBJ*|EcnHKhoh*6S1cwn`Cac2+_!feO-~77A7`gt1M=Pypw^!9>lg{twXGc%) zs(cZQ)XBHGm7L(L&vozdRh(H-^@D7<@&)$CD{!_Cg0q&3zvNVCqjIn3wxQ#ioQU9e zx1RlPJdaU{c;>o)NKFENSJ3+%z%<%knOA|sBD~hK30HHR77dcvDOk5_QCNy4f(t%B zbVT zJ>27Wd*;qFnfG{(XxzYlkl%Lh3_4{yWQ#|_3gVzLyT7tThUk2CZ6+VZz$;xaoifU9b{yA*I-so%=Um+Cc355m=gw=Zn6HR3W}})W3`6?xB9nwp4waS zbU2c?eam^NaSzP|@Mz5#;T1ZQX*{;C4a}^I%lbjN(WmX;%FrHADlt+(hO+p6s5> ze)a=YEXl(;mCDGh&IDA9IBHxkqxHF>Xl>3mY0rvA27pR(61_!|BJtPSitnYl)MGuf zEiokDrBQ6@C)`@lS-%$1yw-#%N2XduzJ_CF5MCI*%AWYsvJY3Ih}Cd+qZgINhxEL27PMR)fl+{SX1N}W6qz%fd8)=u0=j`e#F zt%?^vIz-RbH&tfUEf>hc5Gf|7{B%4YJ@@a&XfOU2NWstil|F(=3cN)e(rG~Vx}F+m zDV&Y`+&){fZ9bXs8Z81m<+KhOG54e4x4903Vg*+g99=QSzMU5qT~V@v->TKXK_734 z=fd;pZPFE4QE6vx#mvn@qp3V1{C?4iLVf~aIx$#kmfNTnBy_RbsP((s@tX$$Da7S-_Fqp;Y~8GxMeJD z;_+La8AiABtR1{BpSB6zmnxkxSdZ~n0p5-c-6hDp6_`K(jh^Wa zVb{V4EcEIxBKGZy{cuTGamwsIH92MHpPS606}G)AI{bABU9B- zW|K2%c}$!Wjn-O;yKrf?IIUE51}!$Z1ABbP(P}|~!Aup-P*ew*ter{n$u%<)3K31` z15AdnWemfLNqBol(rZq=U|WUSCs( z3^i(97qWpd(B+}sA)mh6l4rvQ)(rFvB0{p7L+-w%Q|$LfGIBowTvyxgNyf+Lp_S_| zw*~TIMK9RM#<1O00d?OD{eWLyabQRdpb#~_zT(LjF4t&H2Ij2Mq)PO%peN}Yz}#S_ zMh6ru20h&BPT{u}eZ0wRUf6>8wrIb#`ZC8PksRZx5vA;YUXd;|Bj6^G5iM`T>$(?L$Y8epc+!k|;pSz)BC-?f3*2f8E9R@n-umhJ_X>^@B?s zOWlYk1s5tGLXjGVsQrl+>%$0kX{x7S!w! zOyUK1^ku6IU)VsGc%Cn$zeB9d7w#yD`>7h2CsM!+6EOADkphQD*<1yO%8b|RVAE(lMk?OCvBqOKS- zg*zbi=l?oEh+_LbZ8DKP$}-N(nr68c`c==I9AO(XtUOGnQ6OhW6kv+uupG6hmHw!<^mOSZGAGACquv3bY5C))h9&oX5%aiH`-);kkRz&Z z%0n%bh0GnX-ycGd8IB-)-l*m%2r&AD$&vjBgW!Y!1&OfAABiEgs)ajZ1nIt@+wi&g06IHs$kOoY1uzXgutu#J{~ZXj-?-wyd-3R4kb1~i za@?WhOR(wPH^Z6x?)q$k|4$uitz8yqmXxg>o*GbxvOg$KOwgWq3`@dc&10~)e?M7Y zwjLtihFHj$n|^`iSLr^;8$4RCEF6xcELm9BLj*23FPF&lniAF}x5j4)uki4&42i-odmMEea5ang+z7uu|;2_NVLq zZyc(BLp;)cMNlc)vca$cgga%S245^>IC`Y=$Fl%DSz1i<`2+jQGA&;2*RP{e#gF8~ z#z>hp@!t!i^78yiQu9$X0$Okk{$)lHuRDtfKAF*7mD3#nGfMp*W)%IHLRJql$OoD| zdzA4Sw%0!y9z~6&gSLf9@ia!0VbKu>=JExPc^xjBc7GB+`}=Id$qU*ekDj13&Q^Et z;<6=1d!-k2DVIRekYEzc2-aU@bQq~E7<&W6_>Y(ashNrt9D15=xb`@;%Ax50Kt_wV z|3yaAWB|zM=iC!iSP|&UzsP8_;J?V|?vGHYJy^uz;Tg9!OAJXzCAIeP|c5OKZ+uX@os7+43MUmSd zqJ!0`dR09ao^_78RzLc*kc{yifksdkPyIBwsI28f`hJ0Nxeq0v`Bm#z?{0gJA zK8K%>Gn+q$pF%s7mABImH#nnwK0*$;5lR0b7QXlY9ezqG@+F^ipcIh|RjW4pi;Nz9 zoTDb#*G^IEa8`YtT3~=j$ZbHd-{skv*>IIli>{1kV-SFbHft3>3mUn+)CzG!Cx!z_ z9A%tctcd<~Pw-otuJ=V4^_!YkEV({MobV?z>P@(tl&=ZCB9O**D~tHLWy$!PUyh@Y zje{|u2^d2x3Tw!>491McQRa{ZBl)fWXSVR~4+y~U)8+0Sw6Sq4dp5_<2?iX^4`Szp z6H%Q&!0?j{GM|362T>#o%%TV8fG*CkTJC0`k0F2=U2v0jbGH;jAcTASWJbw%5zarE zQQpJNGjO>kgD(G*S9;Z-7wCsr8(=LmzTk0uTV=2&W4qm{Y!%xVf$;uLq zh1o$qyuU_P&|PJhOPI|^4qLi+EIl%hd&Y!6DwP*UT{3Dp;c!YG4w#+Q6~*fQybsy7 z+=hx@M2#I+zKmMPBw1Cr;!ZiXV!Ci&>&GF4w8_%ZaLKl!lUapkPcH0S3e6w)NQ_0k zPT@HZy4<-b#Pl6Y6Ztt2S(V$+6nww^T9h*)NuLq<9B4Clm)A@MPgCE<57>QjIav75 z?o)#7LUVCi;PI#HocEPdsRXe*tm#MJ(lWqx-t*{W)HmJ7IL{EOY8WVS*T`(DqdBxu zR(;yVx#!f>D!;`PLvp(V)boXPt#kqA02uS5q9{I7WBasF5+6eq zL!hIda0g9AM+$D^p4vj&u)#xARt~_75@(&+1}6Z9pWvPSfNgQOrC|ECj0)6mG(E`t zc$IY~`@Hs+X(cS8|7N28ah=tRO^@zrE}x$>X;55*bV*p9i(8P7C}*!s&a{l#EU0aw zJV8O+4$r~N;T&={Y?~@PnY~_XCNZ{ zDbIVI%lnq&cnitREooKq@0}P+Tn3)vfbisg89Saj?M@WvrhWfye(qSOj?Plsg>>A= zuQ7H&ZtcD9fd{FA?Oi?JY-rkg1>PmRJm`@C;;v?xuDFQ@rB~%*X|7y#(lWQ&&}Xg9 zg{7Pwf@{k!J0spwK_=*C!lJ^5pdy5&a2Fl&N>w5*y&B3&nxb*CApMJpx<10pacU3} z5&8`Xeo!UD=0aF76QVD%v#ZKWmIj@p~qKDtzAt#z~% z-G~=55_;20De9YHA$R_cAKT2jL0!3K1zQY(cS--sY3jp+QoBmO(f&mI@tz(n-BvR% zhIL)odL#K)<_6+f#*9!YBS&A$4f{N3euO^delCn~dRkJm^1Xb7VP+ip{ zuP<*Bh^cDM!h`8WgaEY^9W7ym6AAP;)seW6bfzN&>gK+33W#CiKQsZL=DhDK-vtE$ z!ZSEPcm~S{2+#W*9J|LnmaL&=pThH8zhwrkIa49754vn+MC8>LG0uaR?B)YG%YORZer`B|LcsyAGCv?|Pj`{7|$WcbNFQhX7<2h9T zMyZgiDC@cs5|@uZLAJ%HB|G%OkycB5n<}NjUOW5*Q!6Sj9ewj9XJe#`=?Un`dGQuN zh%Rc+K450Q}X=E2F|3?uz@piIdN_F%EAP`mBG65ZCJtyV}^mn-YR9!u0`!}jj zOyY;%k3@8v81%^6mb9?3=pMi2Ez)Zkh*e{)J#ZiIvfly^(vy)M9%NxeQJU6^&-2U2 znTiAa?`e=el+Ff+{+EVnFWt#fvSz@mun+j7qoNNIR4D{ZLaUd8hh8+gIBM?)#efA} zeDyw2d+14ced36Um_1M-`9S?#XFCv3A1EGb2*l>YKyVO<<|Yd_q=4S4vB zMBxG!bb)5NyJAL(&Z7Xgq^e5ok}b?j+T9Jn$8_+$jc>b4>}Cl9JSOeIL6eK^ipYAf zK01%udG3T-=TQ>}@ZDV?h_nY$J=@WQYYZ4C?ye{}7g4Ln(TZlln{JZ}=~P3;SYz!OHv6Wa^KJ}9=JD)OHiIMc-X^Vsbl~C-F~?sx8+z)c#>925 zLDibR+&LulQ~%Ze&H^Pdx>}? zT4>u`fj_ep<#4t>re=#-=*6sq-5dM=9ECdyjMLY5u`9kn`f1Q=v!^bk#)J$O9%l~> zQSC~QO^Q2K8R|}>+8*uzRm2E%9$~L$5FV4s!4f+QLfG4x&ejMIG}^}EI1z@5Bt8gQa#VaWS$VA-*47(Nq&1fKLC=_3~y?~-65iD3% z5WqB#I>GCh?JW6&f2Vuu=Hg__+QCMT%@tg7@XEQz>_n)8p2+ql&if()n1{flN>tCo zoY`8!o8PKzk>Uu)LTHub)ZP_iCCyDY4t zyN(C#Y;?i%m){ed(;dY3mfxceS#NlU;j%qsLC&gxbOO1gK~!p`Ghq_f=z`5DN7ad1 zi6Yz`WqrSREz{wumkCcqlv(5?w&*y-0t+1yq;}G1;S^L2C2~HipiVFC0D)!Z{bfa< zsk0$ZfLhA*QkNN~zG$x}+Fdk(v@rg!wF~TO+)~$VpPLJ8r`cKWwpd9`kbJEPHg#coOvmHC?RTJVi$g@BVN@ z>(nS;$Jz2etXE{kt?=AddFl-_pcnoFfJPs35L7W;84VF1u%@nS-jkM?Uk!rPn~(9Y z+b=@;th_W(n?Pfkl%3u<-i4u@;>fSi>^eJWmc^W~(A0tq{ZNXRen|0)_PeHnomU&l zJ?7LrfFrR}zu+y-zE{jnYkm;^#4_rq*Dw4*u%SMBcZSASn}Sz3K-wG6n)SA3{=r^y zDfGhtIj!^OTItNmcT|3ecffyGxZCt`HybEO&;9mYGs7FBEhsCK(kR91kEbbw!68|i zH9e###lJc9;^)9%&oeO?WuM*z)pipOb$(oc-%JO*qU9dJhuIN+w?jMgVEN6vvrfgr z$DBh7M1SHmN83{X#(%B9AICZi)*7LxI9nqt0upDcZ!-fy;ttgNXEyfn7fn)u+Q)D8 z*H_prN7CpGAXDV2HUs~w%;7rUDc2UT8a%V9UPB_#ts9HWP+h0N0fDZ^U6QMAseFvg z%o!xazOLAOk84`N_>VjWao zh!UFn%ZF2&Wv`IXi}1JN{^j@_Gw$BK_Uj|qa`Wl^_VL~CX&#p@oJ+Z)`1IgCD76*j zlG6DM)dwmL;XN>pFd9qMPKX|z3wVkeoePE_K>~Ist;`=m*1c`pxO$KDyO(#sat}Ac zfjGE)_`#DR!}Xoe4j1nrMBYSUD~kH*U&fH-ch<*83I~U->p)k>i>g>2ehc(W3fNw~ zl(U=OH!~fvTzLwvES_?(_NB#qtSN6y0^U`;FbKm+2h85;wwB{24;Q|pN&Lq5X2$1w zm2?BGRj1ze+(rjhu(zJ$vqbpOE*!TN z2XP#V6a=uAn$r=Ml<{wD#U|tT1Q}+>HTZXL6li-tEgxc1yzu(h|E%dykGeN!+nh*l zM?;42e*G0)wpWMz3v;T-55*TL@Udp=&1UEZ)UtQ-l##2^!o7|9TcwfxGFt}gEQ*Y_ zA9}9J!?lJf{UZ)z>$#k2;ZPzCL>3q6KeqflLN#bQph_!~CuT<5n`kD(486S}Y8gRzIOvX&i<*U&(r zBf7>J(u&$ul8G2@`1+8HOS$A1el*yYmD%3^a{5}v2hQ@6Fe`DAU0sy92+>TDfrl)7^5 zH_0H^uM3*}5WXuG&_&RLbJaZ)Lr#*pB8 zx{fJizDHv+Z*@5UOtRs!<^{`z%nJ+emCbYu?Zo36kd+AOasR@^JCY$|SQ>E-QbBFf zei62#OuA%2l=<-5SI~O=CHGeb&Z6)W82CMr>-d!$lc8Q0uWN6rwOk50jNA5sv!RB$ z#(PzHQwCDaSLNBpgK>i@$exfJ%Y$)~uKKvLIgj*iSeF%^oV3?Kt~HQ3Q&!V4R#7INw5RZNSxo_#k?#>~_WsnxA!9dWac ziQSSL_0c8u-$`xquwY>hb8rj?T<`0YmhmRN4!`{*Yf+XtyDTz=Oii=2b!U8L@ zIlY+GSA=b`=%pUH!MPrBSVH$2jh8+jGW}`t_(KIXIsWd9YpPHnL*v_g+4S7m_oHJ! z1VkmSX3i@m2VX^&y9&3*#U$z;yAh^9L#Be*(n1y;yWh! z+LkT7_9e+A#V%;>>3($2y1a~ID249mvtJIVbutaX(7udG$t(slztyxM>!dn zQfL;6f~_A@K$-PYqW-u=2(O~ZI^D++|45l+7dC0)RJa9J=-e8C?M6R;tuH3sx-YT> zr#90r2=ZyE2IliD2e}L$ea882#w%_1v#37X>y<4@=J0%w8iwMqK!QL?R@Yw^^2~OL zH2I`X6|T2i@fmKJdWm#|WW>olZMTRdhY*u;!V}k_@D}oodNyI| z;-q|IQMD_4U<3+H;0RDTl^ElkSVn{Ai^lknJKRI7J5s z5xdmnqC~;{Gx;k0p`HBe(SP49`30E<^1nf)f8D!+;eg??-0fK%vwZ$7fIm_+J(HXG9-3LQCeVjvo*75&o@r3`=;t42=L$NkEH7YX`d>D_|S?vm^CI{w6{m`o0VzcYp-31S__x__HHr zghh!LpFAsmLuk$##R5gn2?uEL0RN8`Pvso*-;UJZ77rP1$mO;PUp6FDRSe zl$SD3si@KOod0R@l#NEu|J&k${A}?=C;?hLgcu1=OpysBLh}?}5t;bfZ2TB9TQkYL zmGT&Ld3$}Ymh27snhG$kY>Lyqsb%gi_{B{sVv%k2dDZAT}p>09f-yL`llmWME+AZoj3T>Pa{Og?MA`y3B(3@FOOM zleFyf?AfSk-4B&V9b!=V)85UW65d1^Ul3EL90K2j9Xk{*226-$Z@XuBG5kVJpttuo z_&%QGe8)ATQCX)>32gR$K215rlUN~%SaEeP?#OjoiZO(^T#p3t0b8%K0>||Y6Pd*m zl`CKfqVzLrNKOYz$7G;$)VtxQqaJalM*^$&I^9wL4=_XA^%39@B5i9D05CJNP?kHi z@F#tW>~4h)U<1HWwZJ2=-y80TI%9`FM5Id;8E{l>7exk8rh{3pP4Mu-h`F-ZVx8H! z77gTHyj(?Fyddy*{j6G(GLk_O*Qyw6U!w72p~hPYA0zMjpg^{SVcjB~Mg0-RSzt6$ zo*tT>)NWOHKdxKHf!1G=MMovTD3Ix8s~qzm4y&@){Y{Po2}&EpM7o7Nf&lvcR@C3g z9oYkzcyBqt8h4=|vFRVAR8_)j_Y)}PYaa0=fmXqQNfU&{W~B0t8bh|2?XzX0Ci5RaI#2WZ_>GQqh5Glhh^?P*-8)w5iGwD7DJ>aN1>hIw`ypw}sa&$;& z0BA+uJpe~K^$8>Y+?f`@TQ8yU%NdrxET;;{vlwc$(Tg_s5rbC#v9hF6^34OElXwz} zWc8 zF_*zDTf=YE02}0HdU$6PYe;7gIu)w;69t_DHz~kh7#>DSfddEBh%(#o+cUy{lFRX( zIsNLPgkA94vLUS?P8?|UIrPVjEZ4x*V44CwUl%MhaQ7$X%>KsB=C=cZ77nw z6W5e+X6y8_96`cdwwK90@TAJg-=7}o&-=-^$DNo6g%Q!?b~{jG>!ee*=hrwVl*=oX zCw|^k8-+01INtAUw#$%2uIT3;a3JQd-fFjW>)rS26)G2bqwr&M9$W61Tf2Zx zw&Qg0arL?G+cBaqkgYK|NNp9s5fB!okZB3h!u2?dO2jN6FUjjGfKLE~%!7+K$DoAG zFkVRqKEAa%+S}ktkn--tQ9kh$mNvbTLL%s)&cJ7SVen?elq)se*%2vGeUcJ)WVVLK z(DuqRn!&hFk5OoEz1q&F;2Vy>+wLwH17Q%k8{NU7CPA-x@dA@#_6i6c@GVe^)iF{M z`d?F_FJHtyc~ZJ4g!Qg??wqG-pyAkIq{4J~Bwf8cFc$~oUhE@LDr6?H4iBr=;be#1 zV;$b!5{ZYwpKx!JoVPi>X;Z=lZh}h6$ZvGJ?@`XNRQ%Py5&N49xzF}2*w(e^D zr~=G;)=@OmXgw5N~;`4MRfV+ z&x~*FS5vIhHgzhIf%XBzjp0(dQeW+}ZyrES9xtGu8-xYF=Go!3nHtHZZ%bT194}i5 z6ueWdU}}uapX}_-WX>HU}EY)55R=mv}Gp-lUS{E>#CAubBR0;1&|Y)lPcufY-co zomb_Mp9IL8)S~mr1Kvf*C<%JdZPK=R?2 zVdGSC4bp>)zbz_W`iadS^QHp_Px=Sr+mlID4_}v*emv!(H8zhbyO-olBe9yxDPPao zo9p7CFjkn%eheD)n_p9yO{>ScKGeJXB-eWTF23AqH@#Zxp07553@P}1!@a#S+&4Lm zo=O(LnvS9daZ1D)ST?jEoB}0#L_XI7ndf`rgdDLCp{k$J*qIyqcAdyI*BpVZ>+_Qn z55|3OHo90lOGD-QPnu+(UAnWiCz}qq#`-LR;`@SXO<|uuxRJ0D@Z4ahN`8vAs6E5( z1-!pbJUTfG(HBTKDYT~L3jw<@dsS=ua4GEjR$9Hl^(l>xbt0v&hwTR;$=8QpzJ-qc z2}f20aHg}fhIpARvJD6xBYMixJ1uLt_o_le7c`6EI=j8wUw;Hp@C>{g&;WbvObU4R z78PqZN;dWqIwE+Q3nij%68M1aABtq3H{!0N$31g{#l`G34aTb*EE7{$RrKIsTL!J- zr}>-S4lYw*xS{4wXW+#c-X-Sj)h4Vv*R5IU^ILf6G>0a6x)S`NIUUH#I*GZXZJ{>j z&Ko+d;DskLv_^CcyMxNG8>DmAm_xRCcH)tFywkH?<88_6u#OS218h{A8(||0HCj?k zs8g$H&Y&d=I(FE%JIZFqTV|q1$;NN-;YOUz@t#o$q_4M>ixMDb{UVL^3 zinexm(bNJ_?(I}uW=7ah^DY~HQjBwyuC7oN^K~Te+E;z= zU72n(JR(6{_5m@o=*z))+KM#?qynGnlwj~660g`qAQEE^#kj%clJ(n$tMVV@Oh#o8^=Q`~~ zO&d&Dibr`}8mPpHap~G46qkHAt@%X^nq*l12$#LC6!*=Ye|Xi#NJdFrE^7Spl>>I4 zw3_ z3wyk~aX0YRShjRqd1F%y`5@l3>*`kOAF!$hXT_LnhpV`{+_q6K@@k-O;hdbADe69n zf)}~!t7_7%S~aaZ?fz(Kq0J;&H|`EtPYukTSm*cMZcL`64(fN(;9z$J=fL)tkT@NP z$Fwi`3Ekz}^85%6)A2^WJS!>c8n?#29U77K3OQ>7@%`A-S$YbXE|dX?+;uB>BTrtm zqulB}QIbvf!oJEy%&-X{T&Iq^b(~b@5i>M}`8{f-N4AIIX>EHn)oCr%v5@xkR?lNo zX%wyNS!J3@XY_5X1b>{-3PoL?;E)!H=ArQHZb)}D$AnTz&c|d|frl4kEY)SMo4psF z2laW<_ANC*rq$&8!XVTMYz->+`vM7z^A&I)WmVTRK062Ao5L-K2e~hS8iY56U&FFJh!>ro4ARBuj+W~+e3HYP`Q2j?Ozmlo<=y7c=X4s^4>(M-Im#+OW01+f;a#f8F zZAE_MH_1 zWCGp>C;X62#||KgH(lNL_a%P|bHDX|=B zjPFy8yeQu>BWc46FKoxuF?Stg#Ew_OJHhp6d z%7DoQ_nK(U>z=$*#BrfNxv)8bK3TJP+jG_geg&YWO(+zx#QcJbzpgx;RB2Owy2A+k zko+7Xt;N$%ZPsy$fbaP>eVOYCF40x&$8uSHQ}@IDK;DzOVI&DN`x7-CaPil*{}(ld z?zbNBRC8-NNJ;?myqx_+O_}$YF5vi7f$mWSM!^7mQq{-_@Ia;)sCnR_60fayPd(m;&tJo3*zshAug zBk|upDg4~czkSjey8^he^I>TH3T(c8DEt_#`%4XT;OqWqAsu6sUDB+jRxtzVH(0t7 zBI%vBIJ^_$(@5GXnfgjJRr*p6bV4C(U7ysI0nv9?QpT8poBQPC?~rfIcZhsKj!)f)q?hx1&}CRp-3TOr;8B zN*jb-$5d|%D0QyR%};kAm6pLpST~{k?;xGJ(MO#K^_W%J-n>-M{fX$EHe_Eh?wNpS zsvEX~$B@GE&ZDX|bj}rG$>km9qV%@oUfJ7gS7Qh#eB;jjEEuyH>(9V)>D#Av&9E%* zIj>eKzw7APtou{iRS-0E!M0MS=ppnLmB;mFnX_>w_c)}gAr{RS9qo%^0bWHSlC1Oe z#-x1V*7AH&{w)gd#Jc04{G}T$#IgyFVc0`iBadcs25XpLBa%Nxl zc*P@CY%)X&3t`Tn!Lk!5gqZ* zE`u&B(ka$TExjkFO~mGe2H*9Lz}$e#hLMt8&%xx0vmr@&V7+|m7BjLJ0fF7nr`Nya zx}hw<0?Nn+n|F|07+?$mQ*Fno*K~hp{XXbTqZ;t-uK%{?X<%vg%_2k|{1`vH?F09G z&?wAZHEW68wI}DjlXMHAV5Jf;MM{$noOwdn!f=`5uoVm)El$UdC6 zlMNkGGHR?#=2h4JKEwxE;1$ImP$->3520VX`k>*2s*HhsYjpBp1@%rtKo8H8@GUCI z`Y2mv|8riP`WQ{hK2N)rLz#c+8+S!bmMV4ml70Fo;)_ITdEV&_&iDN=DVJ_q(3D1w zzBmn#oc0}w82hmEnBKB?;YBeoYYcXnYf`lZauU+u@BPZvXG!Kq&<`_|C{%YuhWr;P z^>pC+BbSvvg*M7I>X-NSl;(%~{^Ho~WXWV_WF+>)US7X(?kmgU=ROOiuP^Mq8~z+y zLYaUt{bHn7|f@CKfW`*;brN3Cy0=qMqC6MI2NQYz#co@Bpes^T9^m9<8;nca~? zP&AgLNoQ>7gWBz!Dh1j&W`#b2y7B$-c3vI7DOjYS5IK<&U^uVhe3Z`jH;mQCt{SV| zql9|esK2{no}&muOuBMV2ex|-v2r&|p)K(%(6?yqI*%5`G)ZjYUX``Q$Jy*@{2#i` zF*?tGTeNW+vteV~wr$(CZM(5;qp@w|hanyG7!pbh}v$`GfWCG25Yi!`}P2jILMS%{YHQ26tH1?~u5BOlbUm z1@}10#9#SYi$Bk$sIsMEyEa6Kgu>}6ON-CDvLZ?Nzg5>rph$?8MLjYEHQ;88=jVI^IiS-=YPM+`57d%^>o3 z*^G`9bT%d8-;7Mto_FM#GQ&>;<|kqfQmrl3Kf6a$1ukeVx7zA;LlN$Ew7Az6;%&ED zNXOk1U<`?s<~DuW2mKcPd{Oy-&VqLjl61u^ZIfY=^5*VdkBHFsUikQ=y6${K28-{C!my zduX<6>3bSjR0Pnf3_WBQg&*hD{8vx&YbCquFG>~Uz$0U5X=m}gthfiNvwdf&6qK3a zfHLXbqN6y&pt?~Eh7`#!8n(xnpTsHy^?D#!18YC&Pw{^IV0Vy%Xchc;<`=SFW9qZGEBs@tR9J7a{pyK z(!2!E{_Fi?UYw0NxYJPl%H#WeGrhVx#Kt#SfTZ+SvGwdPqX%+~?R^5jG>;J-sL=*4 zyRYXL25cM*yg|(Ag%n1(_8QHZ^BfBfu-z1zSh$fHUX-U#t6#TP)?qlcWs>1q>;(EC z);U6>)ij<3jDP#i&T?`Vx?y$w64pp!VOYJb@wht*<;sI6KbYFrmkCIVnq*Ggo_B%@ zmkZ^A9x%YCEFhOLcH|x1-M9BvU2`#*1xQMnJ@)g(m&f!)b46%$rk&a>iY9w^Y}xMC zk@1ja9QKgq&qq4h!Jqx*l5wok_LD4*1+?&nVk>h@pNU+q>}e&##I`OM_-!PiZH9rP zmD@_E6frX=WjR98mpfj^5uU_ez-Y{R!G~H`^i@Q~9sTTnwNSwwc62Aw#I@Dom5;#j zCLsv)&jfC3GRZQDU9ezo@6W?IKZ{{su#xQEV&r1j^k}h1b(vkCPM4_v=*$ScW4&uV z{W)tN-9MhXZF*e}*=yfxb2)=FL4rv$8e^Sj>126it=Wy7;$N{Gipn>yB;qg`aDDaC zfHLmC1WBmGyz6brTIKWh#ccy>^N*ucmD>%QbtcWq2PRB%d9>3j{d&rE0GVDxW5mag zC0Fa?>`Ra<;i%C^eaiz+I$lVbk7OY^C0b&LpXA15VMTkN1bAQ<(sH#xrH9~<^V%0} zwfOfk$BSnlF~^cXAHI^9wBnhdrK+in09%m-YKVnPRIlT@Je+ZPS4bRgwEHp%gvah0 z#rN{mspGaY;pM&p1dXo<0s~DWK?mDOa5PFn5xE$bMTjHOg1Jkwb)|;W5CTyk-xQfH zv`^rL2b=DN+`bD(I7;*> zc!p3Du&KHC>7?a|Ar83&GJq2!kHHa zmlUKU(LWtN8MJ4JKqDP@Ah}+5UALbl17VGRrQmcqzQ_hLmbwHCOv}{i0{s%|$4`yl z^b_cg4xY*^Pt=e<-v((lEy#i<%Z$`F12j7F`S74$ELrOt*0l3e(`C`$aV=%~T9G|= z^tCIiX-d26WbyW$XLzwLNi+c`iA~r&!EK{9?kTu&vfU6&WI3hrUYcY=7MP3yfC!IwN)Gp!Pv&T%B$9clT?%~b$? z(4Y%)H$N4ky6?<@_-N;}CdJ*nL=Ef_^PRE(@a^k~H*wF;RQ1|(0Tw9GsJrw=T2AfM zg9fGAwVdn3SM5yHgraepjUrl-2iS5^hbfrR_nGU%9?xgsyMO3XfQ$5+>Cg8-!AHB* zOQrE!utKB3KJrXg_-UDBuMmo`*G8y2~n^b(kGPtEVyEY zPoH-R@hIfeb+*-V*2F#sqI9nhgnLF3e*XFPveNTLWTz#eEL0fOnjJPQv?Y;HC!qXni}eFdAY(oA51?#>^KcOwSBtWjW4@hcACuD;sJ!Wdk37X zo^e+dKcSfw@xY+wu)YE#oFYNg?}xUW?E0a>v2dz=zYv2S^}b%GLr8a{ZMqI&EoK~G z+VxuPS)G2Ooc4m~1mi^!(IHsj|{arNV>CipioF=JpXoTbE+17oy{Nqc! z!igHWEk_5e20?zud;|9rM?wt-R2~KxN-`gPH&Y75}04fiq z_FCU80hI@qKf9$MGO|OFNRjz@FjbyHXlh=)0Cg-j`BbzsR-K26ao{WwL`}LEf*1*1 zkOF=wen<$Y$fe*_2mE%ed7@0>cj-^|Grz2 zs9x7(y!oQNAyBawOezN>jbgLJX}{Sk>;o9uP+m9!AqZV|5#?O!p zxQf2Ak;MkX@7{-qpPjw`@t( zE*U5YB~>Icj43mZJH+S)d+J}$uRp?!f5BwzHdV-74IWz-^L`phe7``Y1DxzlT3P%` z%x{R4RhJ-N95PVhN2Z=bt|keAg}LZ(UuP$ltO)LWD2Es+`Z1H~A{t}NtA-bFgfkw*HUZA+AdxKto=a2gB3MNbF?Qu> zh#Nl^_gt7~#Ocg7KJ)V6u6_i5WEJ75v>c}6h(%epAje7~xZtd=&^-3^glCDFjeOSo8v47nfW18_CwZG-eWG)Nf*t*sJ;6zMss!^VhDu!oN_KXx6F7yF zC63>dEl0}-%~(OGxZrC;E3gviQ9!N*m2ix_j|Y-GnKWu6Ci58XQWj?w>5^R0U6!bw zaPX)1=IWAfVS?wl`ZX&c2&g(N^PgaeXH?s)*IT0A8hqmHsTC)`1O2=x+OF z+~x@2wD7Hr{IQT{o#WS`5^n&1x^Ac;04I8*1|@V9ILqrW3bu|&+j>Pe!9(bGgVI96 z5}F~uTGRw}+1qjX)-!O0=wy1YyV3G*9O9VjTnop1@}KG3kWnz2GvThH{4Lt7NM*4} zHp?!)@9Sk+cpKO+JmVHSJ>~v4#DeMlg^ui~Cy`+{@p8RY7GzHi{*}1j$hkJHzTQz#8onTW=mtV?vUH7=AqsUqz-NEQtOYb8k z$H=4ZezLO8?fJZ5YZwbcHU~K|>#*h#O2a7e)8bjy1ht^(Fix+xx8Uw?6+r`pff4P9o@&ZXNqH$UgEt$7U0 z5im8=)C&Nmo}XHzLYnDDT}+EPuQsiGMtzN{|FRmx z2YMGQCHHEbY@Hc4$+Nl_ObNA%zYT2UTp;JBC32%B{thj2Xmna#PaLbss|d@wtREZ0 z(*H}xX!kU3-x?K`8>Ea+Hg3e>Iw`jpuzsRg^KGtktw=$?GC17EF=v6nGcvh;F|v`m zmRgQnWnfDj5h$v4v7~jxHBp#eHIa>q9FWP4DUGPZT|L@LtXxfDu?#SpIj4EB77`kD zd5CpVg_%ZP3Mv2bw$HxJMOK?w*$G%b6=vXDNb`<`S_;wgi&2PIt@%{gvWGd61inzVXk4iqkdjvuxt+*rXXHpKaC< zc|oOzGilAps5-QYvd@6*ShmE*f%s|ebu24Z;S1K@+&I51>f*z)*PhtGQUU>ImQf_y z07C|sDdKxOzLy%Mk29F z!p&aFH;V=fz7)2RY3Qg0 zzIbwNhVn@Hj!U!FCmS_0gUmL`eY=pu05QK4N^Fp znMhCH@aAJ<%GTXj=J5R0X#dq&MYrx-{fb8V1dB^r>V1w%wFzHtNxwVNjCaeSO_?+^ zwXR(an;bUF>HLC+BSfVD@`VX)o}<(n#ojsvEwm-&ZqHn_2na)4`6vx!?m z9QC=x-f&5^?cz$bp==!vfEe78LQxJ^0|pFE(?5Gl|17YJxhIqk zb%i*>3&x!2bWy}2setWqsAf90XNKfX;KG+JKG)~wVWD9}ZMJZmUTI*bj#!J|Gx^wS z9+IMtYKmS7TIJb*yb&klyFJsPEaqw_oQK zw<{|9wUxts#ehyJ79Y_G;9E~E=F_eg%dQQi-@yEC z!1KqqW5 zrDX`ndHAGwKCxCI(T|hAq^VDa87YvJ#X?t!RT5XJQZ&s}I{u@ky=9ULwwp|HujP-Q zNk6+7F=GeFt321q$E!k$yAj)n&{)_#F~lZd*MjOHrx~Uq94=;=3Vsm4cn7Ho$#VmP zaYYvrSh})O_USGGG3SDTsDREJVx8h;N|nU#5m<1gEE{F%&BM$(nWk{rLk`sjo z^_WJ1Gh7#UgVd46_S^<`5YZ154I$F*kdcE_#^RfFB%Ig+ABRVj6a9dM+#|)}L3=9SHrpD@I~7?V^S=sEj3jL}UCE z59(TAzO!-u4{6G?JTeP9GHN$1i`sM-7ootu$IMgk1B2-242u>C2w|(9dxDj07Iq9Z zFAY8}5c0UFFSX`yg@OLMSI;z^Smj9j>yvh<8i2JT0Xru@Z-15-felD8Jm&kFY^?EiFeN^za-8Vdph zWCi_S-UI$cn*Lp@{#W&G;1xW{T09PctpB1-yjFY>La%(INHDhexKwVpP_^w6M8jT? zcw$BzUl7U$a^N*WsUyl#>~Eum%rrRnGU*0Eem zSk4XVCy1y!4^uL>aLmnle*@Z$&M5qo847KLA$&{AFk z4{V%&lw^g_i06*&GV34D1L zd>y$z^4(KrMMh$p()c5xc}pw{L|H?OT}dS<03{9P3MiI-?>+iUNnfl|?N0)VrNuN5 zOwX(WNa`+N3^R13)ba8hhxeVuWiIMi=`4>wrnjYLEMH4bsmbwLsHxq8PUal`{ktm~ zuPA>?SxX?q@moPci+)Q5k|7x)Q3PhK=h(k%_tFazCr-NQGr3vD2bRY^`t9fftTq|o z-YrBbJw?hM!hrItS))Wk?0fG|)OI@BbT_`W03HMSj?8&yG{>k42O7`Y!4noEU74bk z8+lx}U4J`@^}8jF$$v^mR~zszdk>*q6b^0OCCC=asYyW%*QP|)v-madU-zzyoDsmi z`$%%Tdrg8~ml4b<_t(7(z6@~hj^Vl~V!n+FAQg!LA>k^M?dBqqcbB*SQjdB40q-3H zb^X`98*gEKLj-2TsV6Ft(cdx<*WWVwJZEwrGzUv-^Srj~@}{+6|r*6XUDzyv6kF8#`t>><(SROzv>OnYAnMCOal zfLg3N+Bkz!8|wJai2urtxcUE5EM;W=HxsZS3Q$i~ydzMTSn8o-vH{b_D*;_+?#gr( z*~5x|Z~X#G`|*;E`8~;aES8$AgRW$vSNmN?Z($4L{X^`kEg4m~9_2TJ$`OiAHP8+$ z^~es7a%$9LmvZ%>{1eRB*fiQxVV5a0Yz2 zbT6Jje7}DEZfxN^V@c1yJb=Vs9^g8(LLu!R9sm)*0|dtrbP;G@8i`+65#Jh#Zvu{` zjl^p=$Gk3g1-^JQTR_H_3N6OCCY6ef5O<38=ELI*IN+$`OSij*%;9|g298Bsg6rF_ zx)w#GpsVwr&`?X-&Cd|_eHZleD;%j>k$Rap7X{w@W1dO`n5Wo6)z(h{=BcsFfOPlX zFo1aqOuJ~LH||N+JqmtXY;N}813JN13b_1Ocg2L@9so%<%`Q_<-GKeZeWYu?-%Pl- zBVzo;RTV*Ci+XMF^DswEmiwSj4jTYT&m;lfsD5h$uc`sDpmZ{6XfqVSK$!4m+eYtq z0vfRnl9l@3jwR|Rxr}yGC%HkxY0NKsU_!dilKUGu7oR-6ot&e;bjMNrgiv#zaYnuJ zy})-az=z76&B7Bp=Ls2vT_M>CaN&@jLGXApnw)&{3@0o$TlV7O3wIt6`J2+Y&m=7M<%C6L!;HY6ObR zqhKUa6(axhkR>Odih0(o^Gv?sOCJ;1>)Q6Jpa_pV(6dZiiUvjwAd zOOe2jv3B{J0jToTtpOfjX!#BggyQ-$c0em6PVMIqYhWrfHMj|YUg@8gta0f}Mqui& z)f+}?!-)Qum|96$SBe`HDvqi!fs5U@m9F}YSdgSoK_5s-!$w2H4F>;Q4~<=OEQ`nI z-6pMq&R*>kmV`1e=obDqpeW7b#kBu2 zPhrV9n#JSB0?bouKR}$YQ~>6w5X+$zo`Z;0vl#r^8#Q~UELX&(ZH5gb&46sF+UuMc z*m#_ME2M{jZ_X0hLia0Qd-_>%y=Qt4#b%D|N! zw2xZ$*GRxK)jLYy-(G2n=;j|9;N}kv;BxxQ5&Vt&a$1w7`qnLy^1ax$XU~;yaFC6< zjneM)Ll*P!Gb&n-zE3-Fr^WbK_m6xE(pxhmYU|UKomvznsr?dQ_cSsqj>9?1v`Q_j!V4DovC#L?1oR zp7ujyWm@M6wOA_fMwaM6qOxxwe|x1~@PB)yoPTzn~$nUB5K}5GE;U9!9Vh;PQ<(Zxh9b6LTT()D6k$6&)~Zm9@%miS@@qW zKoABxfM6*LAXpj;{^SyB!sk%dLU!nv{gao${mwhCfpPTwDGPrtK|Rq|D*Lx%yc(Gd zx(y2C(`w}v6ww19SStD_Sc*peoVSzK`_{>Vi=?}q!2t3F^qSG->l^NKkdx?kZO4rB z&12xJRlVK_00vMwc?IV@QWL0I(Bm(9YOQFe+iHjv?kC+``x7iJqt$XyQehF)a2e92rjg$g1*(%*a}EC_AVGWLt9X>EeE@FNe~b&I}Y40PiRH`4n`WO{Qu=Q_p7 zk7p}V(lE}eouw>B^Id_K${-Os1I&Jpwg7+KPQ7KzQF|t!rZ0gk|~`LHgYIFNe(nxOP<7BFDu61E5&y+X;MhBbHnLylGd?|Tp1aAi zaOrGn$LX2E6&B*;md9nW8k4Ctf_-Y`sa5AX82h`N^Nz^KLOx@%BT42`4Bjat`Hy{y zJD|zL&uoi_b1K^gfyCarY$Ux%`~MCdP|{mD|b_L8EMnpJpu0c zHm#Oy+CmCQ!}Xk+Fq_9#3~HZI-pY~LM4E?oqS=VktSGw=CbBrcT%KLtLCXZ)SqsIi zu?M3?bu%Arly!Dmp_jclc?Ei)rHe~u9#f}XX(70Q+{(D_z4|-5lF?3n?CkNBl9@z6 zILs8YmAA|cSY2uPs69{LlxE~S2FvYpZ(`imhsP)_Oi)hohTv|D3liP_bTBWKCTH%E zOrLmqESJ?W){i+&1*=VL#9pHn#3Y7Mo{ze%hR`)ROok`nF7(UC0pkQdMYD*F0cB_D zam?rqmQs<-c=X_bl8Ttb8lGHvB~l}MQ}Q;YlvA9*Zy2;XTLc<=WI2|y`dj7#ajqpb zo!0bnM5e$tMXRN92Psatug>CKx~y<%Bw{AcI^4HLPY*}$iA{#0m&{XRMu%Ci%vD`h zRZE^ZE9RJ}#-y)N+`SXSU^*F8_x%)?>#eBea2slcAkCZ);_g#tgZC-#E@YU+RHE6 zrh^QmF~U5h3t3bWmgHtmWk#DnC%^%a*fc{YeZfGac_CqrJWGMXpHvNU$#pWW~th_K2!8e z<&?mV-H@vlCt_^f9FC0hy{z{|PMOnw9rwX^(5R(O(3FI!U?SdQR9(%8ZPbL zn-OD4pdpvcAj`NddcdarswB=98gkP4hc3L*wnclvm?Zy3jf_YhZsCCKu!TTeIxak! z%oS<|YCvBDi;ioYlPZZn(*iZxIwwk2x7X;)+q$hH4@ILM2LHLhAx?Tc(BAMwuBCZZ zmU^~|VbdYWYFW+LEYt}-LnLj*-mD~cx~u|yMuS=gWSg1NId)#9KGjIAei-{pgBejeV-kd~XS|NeNU#0NN3qRX($WAbf8hgI{^0|(64%+${*F|rN=07b2y ze$2y-*-3S(U1P9SVpz2(rAqJNyluFC#BX!HaKe5-UnIqqYV)zKLk*z@m#FfN!u;_8 zb5&X#fsY9LqmlS8tD@zR?^u6nYtKX3J}XGb_^Glfutww(%4XMlxOzpoU%XNbK}&nmG5h7UtuTw zHX7_XV(Z2i<>ogwf77&AmPGZAf>24Lzc0j=ZyfY$n@UZ7(D(3<P1FACU zx&;(X8f!6vZ#z4XVxNX>Tn5Uk0_{7^h7|3h1N@AS!1)bJN?vJEUrN+Krj`_^mH<*; zBH?o%X$H4eryD`B_J%vBVH@g6fATji%6+9@s0HSEgE$`|Mi7?xYoq;k$^8-I|xY!=tv`E z)&=B&B;J(YLBI5xpjfcG=29e7c)kHunP?ySkJQ&3*#&V0cduLfp=_NXZ3JkQZdf4Z z*4J_=O%uhv3$`+1##v#8V!#avUYnJ1TWy`T^HrNbO82|}@?whB($JS;G zq`(i<9KN>7-TTN->OWpsA(7%M={~n-elPqEr4VM~xf-g*7)Bh)>DFyYqI(#fBR-}; z1`-iA-P4!7&LRlicdNA{=8$8<<&J&RpEjF9$lBBOU_j{6eHH)Mub!^t>;1 z*MJjLJirNR(w86)nkYYdWz{(-3aHR_;tDMJK$6XZrbbl$2yb+nOks72A9MY!JDi^+7ikT$_tYLaP>27J|4VZ@#4r+gE)B>ABW+nGB#HX~&J?yIWoJCg# z_&!i7WPC}LHL`ECg!KRR84caj8zh3&z`rd3#6q5TD$ry^+IL%?Q=kHi7)l>6B(0~! zS=5AHuzA?u*(3gwA&Txmq6}h0fXSdpuN(1he6ITK#M~3)jk?JfrV%4FPAn=y7* z`%KpeuujFbXx0XechZUVy|6q)+W{)3pFr_^1w}9Qj+5}HP?&S|QqI5+%6bpT3W%t> z_P+@b{Dg|7xX|q+*l&!MQFfI?e!+1}J=p&o=y~+qMSs0q%nG)xh)aPnSwc1uIQiU9 zP56uve5VP+GMg3(a5XqA|FB;^UMbQY&0+ zyO%W&@@v<$Yicy2mDX)pwmeGIedmbMg>;fiWBsu}tF|C>{@n{QEECxbmR+(rg@Gf! zG%RKm!lukO9v?d0&xX2Nf*KMmB$`F>dp&7*w@tLS5B_nY{ecm`4?P#|;YWGvO+zM6 z__J+yT}y&$(zd_@E__jvSdj3hM?jU$=vI2Ok*4i5I7jqDvMjmw0-1GxGS69K8M`*Z zsc}j}WxNsZ19PY_GeHkip-#2ZN{E zAL_QI+ZJKK7M{oD^`dxgj-t=X72$9Rv&RC3>G--40)a7d)e4%g0;5d*#L^n2VqB#6N9|NdBh1!VWELXo z4n&N11+O$bM!orj^Fa&xcsD#b*W-licx6s}7&@fC&Z-ilyxmMQUXHS=kS#=Y-AVMO zrQ+xA%TeVqH^47Q9YdDH2mCuZPN8Y+meuh*g9hH{rv$ZZPb~RPWn4m3Ha3JZ(^wyV z=i^Lg=9F27jgvmYRq$;GID9rRUEcazp?J8%GUU|(qO@Twba7+Ns4`f~SlKgUFftb5D%`T$;OrX3Xa z7HMBy896WOf+=S#&!?dj&dqf=19UbZTw%Z!?b|)D{p78S>DA*&$ zijp6DMOdBK4`kxr^(pc;zB0A$Bo9SnBM)FUW#tH5U$kviJD-s%F5ZVOjN4>PQeV$W zq?1UBvZ-I~VNFFiDQMjt8o*3DvAC^8?A^Q0><4tON3$vHpgp!pl*YPGriz+BWGSJ* zmZCy1H~)H()_r9BVLR_p=YZbNp^Ned06y+viw4g`J*iEm7V8rM*^O3iAZMt) zarmOMq+Jsp;yS^Z>1aT(7<(xrYz4(BGwL=3I9 z8M!&m6E~_PO6P4c%we>F#|8Uc>=g;Z+dkMhKIX!GMlov@r8#|_Gy`3Z+}*sVdGsj+ zsuou11CGq7DOK+sOeeo>GHE$|?O1hL)gL=`k~%_C-x?hCAUuEgD*5ck2FT&y$_fGez=C z;K0}I4K1ZogY8HL;%&Q>3t>dJ`ig0pHcHWIe+-e2)JVTef(!epg;{s ztsh|Yp(Oa9d)9xrYxOn9LUA;o-0)|}5KcqgO5+k)y(&t+j?3<|VPy}Ru80kZZHEY!@PzgFG!qjDn-;OP7 zf-;QE6lDIxY*kg!^Xp2_=Vh+Q2+KZ177l4PAtP>vZH6dLpg8ObbmM{4E+&Jxf3`0J zKR?jMBWx5ozcn(mM0_jiP;XrV7%ho~K@G_iOqPN#>{N6Uh^(kTtU;@0mgeDKp$|0y z;$;i}FEanUP=L^<;$cAkTR@Q~=%6?B7fAqg{r+v9Yuq7Ms9=ZiHdn~9OT^L-{#1q? z+z#}cu<92s8$?J==*oH_Fir2t0HpV6Ax|6r?cJDe; zNdOYPx$nCMaf(Oy(xUu!$^0rpjus5k8#y(lAp9OvU zT}@91gv`XUg$F3exsuFk(=2Jzw1IO9Hu_4FKSHR1(^;c(@U1!Q-JMMEF9C#hj7N=zuq$3}r(S~D}q!wY9S)ru1x6B`?3bF=jRG|xZHvvJ_Ed6_+D#wU58)KCbigB5E z5JbtrnFX2(MTjmm+2iO|4WPyeP5AdbW$zm* z3VN1wXJGRuCcS^&F&4R9sYX7@jr9)$ex5uIij+2TqqSy}qAt&}I292BXq|wammljQ zRU%A)tcDdSJ(>gP924k$nLLa>e!=%8fi-`c2YjOxD*Kdk%y*1f{`z8b@BBlJNfD>n?t3xGzL!Wafm;h*>$i2O(BBWY2d8V)u4 zB#L?MXclMsIrS$H*$$2qfzc4V22Tt-n3R&OTYfX_>3}Dh-m42}aGgjqJTmv-=C4$} zN*7%Akk0i4Gx;NE+y<^*CmQ#B(sbzSuoVgZN-`Xopm*UA`f7uw~2Cqo5r}H2(ua^<)`mI48mLA;u3;q@F=A92o!+C zH6q+XKZ+<~iT#GIO+oqZ_u;@tda+rgqk{C_+nH)0Umi+@VIlucLRgTyAyDIvyY2|4 z=%WH2kig7&fhCYru_0hLwEs*(--Eu-qO%IBdgYJH&{4leEkH*77R(Jc{JzUFPY0+% ziaYagaAo8G@kv$hfY7*h-r&ZIh2h^mC%qjf!?=64>};>9SV+fn z=IOg%RfE%x;l@p`Y1@t?UEABoY@Y}oZKA&ys>+l4cUc_GnQC%{!084{j!`$x@7&i- zBkCznp3dJ(ZlE>YbiVe4-R@=^{IdFh!S3YS{m3YEmiN5#L^Up1WcoloSbv8T_KlMb zdgY|%k|#M39HE`-I?ZppBynu%Km~*oP=7LMOEx+^E(e2B-Rq)vvz7VCO*`^vKi}+Z z!@cdDI+)4|vMq_7FF8(3EZDYu#_37kvITHsgz#*}HGk_t#mQ9~Imk%rFUkmP49ot+#t^H@2Vyd(%>1lW_)?zU~ZjOWD zZkk5=T~97P9<-n7$wp+~iV9^o;69t*9J?j61J=U6cR)6)bmRmowr zq~!923;m3;tFct*kca&-iP^4FqqbZxvag`?jb}E7F}xKE(Rby}6fNR{dSKNB@@B>o zO*q*GB2G{pgpd5h@3dV6uTs7up_v+XE1dTHb=8L)5J_rY9(0P*e63o|ERt3`F89&& zP)-#KM9EW~Ay<@x3~-qHMb=PMwj!ds;(n%p$xwUTw9|gI_cWq_IeG4bKU*$n&O^|S zDqH)|a)|MzTe4Y#PpM*?ac6B`gv3lqtC&rpxv(t2_w3rLG;6p|)xIP|*g;F}TqXoX z?qGVdpd81~5-xW$Z{`3-D*pnl&hWjy#g?Il3`{hW$W2gf;uOt^_WD8{aT;TmCv=l` z1!p0RHi;Ycs=>X41NUn#F^Ak!WsWC?dMwj^`A>Eo3H_Y-ksmAI*u(Pt%y`8HbR|4y zb+9z~DfTtFPsiP5PbFRE#lmj+tER{4MNEe|OtF+KuoNCPresFNjN1$NYqvxbGCsE2 z7VE$G%bX6$SF!Wd6`qh+d1cn4CoPv&6%HOuS2xNA98I*+8!DYD^$?vQVv|-TaCyF$zs&c zy?5n8x6a+37_6FqRhh_6U#)MZ$1$~7&AR^Hs$+3AvvRCp z`fxmMU0{J&)TYOaCMU&TVX8P=U?ylGP3XJPfLbMzf$SjU!{a{uHkHivNY2smRZeL< zV9xZ?JJqE)y&>z=Se&K^69Sculj_2?k5%e!t8)T=ypv12df8veba?sxu+P^K;=B}? ziiwl}r{qFEp8MfcV*V*=ha12%Fp$O6$u|zIqgOu-(?F;J^t2jHn@5-TrV!W3c zck!C_p$%MoHAn(U6E1U!q*AxZZpSe5Bw!EFB3P87kKTCis3wKR$R_Qr(T++<3whC~M_p*`9UqaOH%kwnPY0hn ziJxp&V=eSy3lzwolB;F+zwhqu4~sQ*D(Gk(SjfBc3#cycyS^@Me}KKme5=9qdq)TQ zPhhD-Dhl2I2A2M1^Zo}E9s380&M3J&s7WkB;74pu3m*Ww%a_{`5i7N1YPf(25O}@) zaZ%ISwh=|R%4pP?J z-_&?2yYO{9dx2s&(`b|N=7;a1Y0PD+q^E(80gVYa|h$7JLmXQZj#SxfnNQ8o+RvwPj zSXNwwP8KbRc^5IeE-r2IS#UQbek+=#PGvsy9w@{f~Y({2%@9 zBN3#v$Xs{J!rZ9xtDc2dSzJD3Z2V4EHo4^?9!jD8poOQf8G~s5>;HqIWB-3By5WC= zqQU+^(TV>b6fLu;62=uygm*gS5pgq6ruf9{i~C2v%jHMM5dhHdIwWk|4{{$13l*a> z`)rDvj9LLl;`4xn-{f%ue+Kj4$}E|@T5jgL>{`LLhrlF<)_YV$5X2!yk69xPOWc90 z6yDG{`Z~|O=`)8&X+1Uy8nDNqJ^irTng!KLY_Jz&`ubj4o?+%j&M((aB0qPn;_42} z-0wSWDQLh&uVMdx!BWM4fu&o4hJ3M^P@De(OE>ub<1eq)LY{IFU|Qe8|DV(PKU+|B zjl_acET0~vCq4|>K_7<-4Pkk+3Npk&pFSNu(p3p?WMJU;2R0^!iK~jM@|v7h2fX3P zKy5i+t(>=nozGF9+9XW{Sp6GqQ{K75gs&L0U;+2qy0l4vrYS0!roJUEY}N7ITI7VE z_s3I@?@UGwX7V5Xu4(?Qwre7>wW6|hYf9}FSrdh23m68=-;L(MRcCQ z5J0~>AE+EPp~g<+hnInAfeFy>a*W$Ik=Ng$!yW-LJjy{8JrIU`K*7w$=_~R}c%gd~ z)Js(OS3>;a6>8#50J1dy+b09@BTK>!10cgw^nd7j$KXoXE^RxuI=0!dZQHgw?%1}~ zv2EM7lMXw!*|ERfecxZrJ2TJx+qHl0TD7azwT|;RUq<5ef)hTudJWCNOXox4YsgBm zITLF{LzSO`{Df(Nxvm8q#8O#&1Lp+np8Q12m+<;(()ptZ75G?aYb-YvwjG~Q!KcpN zN?yHaJQ`Acy*JD>{`z-WDXHZq+2@FoIlNuK6QE zxHfPkUU)$ZyIpZof+x9KR$EGC>DI47p73vKx^KILeqa4TOFP4fE}1t;`ctenNpBRv zdT8E==6Ntv+$o;dfdFV}r(xGE-~hT%gPC|!-@%CBcGTRygR0lZu{~5f$<29fWrz=C z#LNiT)(vf4imr8N=X7YhA-Ti=+j{9L-sL&}3Z;|JcM>OJHyHid-kH36Jxay__c25R zUG{}N@>pNF)V7M?Fe>kYUydM{7VV*=LTd#<#GN8MemRs1*O91InT^K!DGVct`~^W@ zMQn7K7l^Au1LA97SSD_(m@Gui6a%z_&k&o~6o39xYRV{7vD(c(mRyz93HBJKnnzRz zDB&Tlad&u#>A(lriwT zd>2Wyno#~-^n&JRKV!QMDk}>1d}+{0ny?~)IUkG&ZavqebZHT$Nz^<-`T>Y=_$(Bz zw${A6ITkVda0@`dE6%|AB(eXGfEQRwOhu1NlwUFtoZXOwC_i!_-;X7=0A5S#H~OF) z$;2=bqf*{J;Al=nPF9t+79YE1K3CJPI-q#ng_NuJEmSeniRL)PZl?`5uaywl{DeU+ zBCmx=-7wY!iSYjtQHAe|-gXkHY-g zU%;UGtwB#&$x#s2`$&@1PSCjzr#5?1Y&GmZ$j=bRX2Cpc@*`6?bEeaK)-d~nxn%BY z2CS$!42&?p08=N9T{EQQ5B#YUF#2TDkjr@79Hpf9sa|s&72&UUGtTIlSCjySU-=V1 zfN&TK4jWP7&~GDwjZpxa${fVRg_u<25s;=Z>LnC-3kdFJf^S|8{OZ~jc8*8^`{hP3 zCw0f%X&6JI$187NHGi#aW#JCfqh#=9YMB@kOgpUoS+~AKn~LCMuHk zK9P@By;6tWL8H7Ye@T)pM1IIMK6;Y61C)*$w=F6SC6hde+?|ynpXu~wIw+X_{GN9N z(o%C`Uk=HP_`X(AopQlu?1UxjFmRN zNE3^N8`J!Zmcu`#qbv9QVYYDA|CEk`IC^@P(H!-8w4)6s@LpOR`Vlm}7IYGYFoBzb zaNMAOiCTw0qq5n49uCS%+cTkGbkMX2`e|Xm*{sEicilcdWVTYn72PD2qlnMc$ZWA3K zp?{jVy3I3Qy#B=?ra`D*H8z?8y62qxn<*qf0Tt?emg_dIBd^X9q@$g(4(J>`7c={I zYF))0(Q-MLP%k$X88Q-r;1cS^3p_##Z1Rg%L*(DiQPOgqA}a4w^#*J1V#ngkV;xx* z)djSr2bIdk74WLk{wM_Wy@&GlBg28_1!*uW1vhtErp#USh4x|ddnsyOML?R_skx^r zt5?O9dw~d=V{b)MNlgVlnkAvz6!4=cYvb79v~{ndi&~KGz58>!ZhV-I(#>%3O1B(g zm(%Ib-NPw#idegWflF6hB%dAxBYNAoVVJwP{gMyDt=+ zWqlZo-`d~1T~@nJ_gTZGszcy3uSJ-JFMvA@t<$r9PZg_>b1Pm74Me=VJ!j&t0a_Uvj@N=uRjrR=H^#^B zKr`!Dg;TcZ+1u~~^5_^sU%k2RD0I*wgQiMU4>S|aTu>PF3xtH%O7!Z zTFRDxA9z`f*by<~MBi9$MT~J($;XfI>fEPm2|A9$jm0{No@R?@#6{|tR;E<$4Rp3B z!V=s%)jARLljCv76x`gqr9KrpN}$Mb9>FR5c~dV1wnW6TN_hxJFUV~`Uf;+rIo_Ei@d1x4bD#T(hI=Pw8kT&Es&LEa>9R?*f!2(nb1*`pEq9t?joW)^EM3->BNS z5}Pv_%J5vN*|cLhTU(ztXfi3STT!zH_sL}_wqvCB2K|y*E@_54-3-pB3s@t)` zF8?wBQ*DK#-cPrS`nb~#;0x? z8cTF38%9@82G5O%_(i>f+QR>{V-v3jy4C0%xP^Ng>KBF|lni;g*A2Jfg`V=tnv$BE z2a|Mb$2cfW^qZ8_a{z`XHF>;lk{S^hQ|{NLn{}#XpW2;U=CVX-wrifZ;IUzMQaJ}n ztdb&*oW3ziDR){gviGF7c$^ddm>|*>M{#>^I zKP$KUuRj;H#Zu2kaM{3OdWITCN^gqs-~UDE%O=BDRLl)(wgZG=oDGxxXVbn ze{8uAy8qVp@w>eW=yIfaXe}IdG!7^4Z1tL?ojRo@?~7-zc<@pwQmaPnY^*g!t0?4E zgSp#mcL3=X72(bLStpADpWDJFjLpSQIC(z;!%rjb8Cp(Xg7`ds16dGz?VB&?dYA48 zg9G?)jW;DKw=!*$kbyI3e%{~;?7ff)Ludu|eYsI3^RjlCi1-!Mau#R-dpuOh&jxUB z$!TUl@!>MB|7f4;)r8ZlMA^kD!nQ|J%QvTF^q}^(p{Je!&7#T@GLpJ~ zE|8%2Z*k)MBa`b(Ah=Y#1)M9d3=2*ejzO{F;GS+pwLtDh;zTw1(Deaw*1AND#V=?W zD!|1zQv$F}z%IjF6tmV{bn38Qr$xgQf+rA_Gg{4=%@9@753%xwoWB>c)i$n(nuzRz zDSiW_X_3my9E)z)&dFie;q=pp^K_xQ}Ak%OG zv`^`93Mqh==|5>XzRVCLt(il^Xh}Mdyc!}xVS*hET_jT+qd#FeRBocb^4y?5@?5y| zblVk%%2c@^bd4p;Im->L0`16SDD}D+j8+4ff_(MjWUxE`hL*bWr*?$`(d3bXY6R;M zcKgd-m{K(zb6kJTO8X|YUgt>0DQ82jzQu+LaB%Z%-+c0NRHPpan)%7avS)y5AGu_iUYN)}kg6c!a=YlIvXiBZjP1qw$8VI1U{R`mf)w+ei$>4AcR3+`fm4o7S zv=JpAq^{VO{sH{#_t1yI6y5jfWpt zra>2&x{;;w``g5~Xw|PD-}pO*m`mAW4w5+D#w0W$DDp{hPx5oE4WJL7g47h20tU^8 zniUl&%TRx_mFOU$(N?8t=812*&D*}IlIUG$!z##E1TqNm0(HSy@Tdr%V}L_yF-0hF z-g6!NNy}N}$;?Pl5(3h4Pv5W4Ye{83()v&=Je=J1L33bfM9?8gYp>xSkRfWAbA-wf zYEL8;Xp0MFag8PHh9($0ijMR_O;?5-MBP*(;UF{gVeqDC&5liTKk`~%w|2hEpr<|_ zgnK(;yq#R7Gkpk@uWLo}^yZ%!`0|osKzu0C;qnU+g@f%+qD?R&0#9QQ%G8di7c12$ z6W!XPe5z-5<>f#jeTr=RmJr`1S)g7%`6lB&9UcYyXmeF%`ghB{Hpq!5eaa|KO#a@y zv~AsxXS|6aQ$P4?&wT>eb8-IIb3NrXEM!HO0icPbJnY;^U~8l;lfirJRK#jVq-{*~PhO5%!;4&g@H*%h@<|JZ z5WoYamMfcSk%vQa9a<91@wuLmxVk?GqzerNA?v@_vtX5)%tcd%L{z*RI zZ8*C9jBjQd$9mPK6^O18^G;%)KOw5uVBYSQ0kw%z(@u|Rkz9Q*LZ*+qqLI5F_%RK% zbL4qfyM5qE!X*Obk&;)j{kTGq$^76mOj*e3G?LlGfgh7kFVyfqvY|H&iIh9c^6Gb(wY-WhAzKxgoIZ_H?3(vTn=Of zrFZt`*)(&T>?AS=^i)bafpEoe45H-jPQGtcd%{9|~InBd9rS#5HXznTXl%D4dC7NS9mc3#qD*6bIha1xtSF~0OKqJ*_S!ZJrA#qp7 z_1>4Jon#N+il>)e_ROtvbT}^-*X^8;oy}Y)mr#xxY5&IMgra%Bk1*~rN!U2D6v^|_ z$+o~`F-CVyFOw<{2@75bh;E>Fu@_LiIt+v~p?V?7qbTSg-JyH$1?5^McF z6ySlHboNNLzQwMoxi!bSC%@BFN_b|mTD}uGX=6_LMI&p0SC-|i0aU&bmx3C1|76l( z>TI0KAan@5O1QpO;P&I9)G@F@@uzEZ;%#XoTu0GR#jOJthi9vzb@dnW^|sA0P(lp9 zk@vB4&fhL**Lz-8c|4#mZgsa>upa01uT_1yCDG2b`upN8O*+eHVyTiPeRj<0(l}D*~A#CY2}e zlDa#>-*jm??uU4Lv|~!gd{kYziwF=@ftBnM=`-ubW6;0Sk5KKk!J3jBM-M(+NshxMpua2BIy#Xy789;J_l0W&l~K*!3S~dx0@T;}#Qeg>qUm}25^70a zN#aoL`XW8PuQLwEYe7HBeJJC%XSuLHIDXxW$c;d5I)x#A+Y>I}?mN=Wk{twQO=WN- z3$^t4y)S!3DxQ_ssqq!uAhJgG2Lg_%ec>?82q>fO-79&848^7gO}#c2reu%fK061g zYhpsrY>MMVcx%Th*M*s7uJuEGr$w*-7^?&^UJr`- z`F?Jg*E_qcg}}A@NFB_NOu>RW?Z-6PElk-K818xR zN@MD%iZ4WnyAva&2hIt;#o%xAKcSttR*R1Z^xaH(Azo8yCHc(=ElCULb+^qLrA~V6 z?%2?2#}6!7ffLpsD@nCxc7tRgtlB=2Edd%u<@$S-US+f}@aSM2=E~G)Mx4jIt3_cX zl@8Etlu~|pgs2p>9)jSFi^BQ( z{~U(C+1fgpIxw;SyG7aVaV7f@7<>foKpYOS7Y+Tees(D*(r)g&veLuWqKs@N9bdiB z-y${TE|VgYD7w5ez&;R?Tp)VBvF167dw%72n4v8qj3WF^FtLu&tOL>=PIG)kFi~N8 zl&420T6d}49_e+h!53Ki7F+ZAuJ1d8?Sh+pZOw0K;{UASvddx4AY;PSJ6}ML&mxRU z#QkAJ94puiFWYNE*@&5aps@-gWD-ExFWm&NjuiYxo1Wwk`4;RELV+US&xpqxCHN85 z_s$YFIx6$diu4IhNJBK!6;l4ek~oM|tp^O91JbY4C4|f$dI!2wI74((6K|O#T;45K z4nR4RxZP{;aKU>=ve;mFd53d$vTyFLQ^621IcAN`1u%xqqQ<1yG4WnTZbK21 zgP=Y#O~XOGLmnbN`@P%vc%3u(J90-5Ke|i&794H&>iu4~)c`FdWx-eglC%F~(Is2k z?t_nb#HTkMY?p73gvP7mFd7BX^AE|XGzEL$KmfYHIC+uWJngvA4Y z)n9|s3j48*1^p*`_OIg$Z`9L}NX~x1ZHTv1 zgjOJXMR7EeO;GM+aET1rcwFCJ5X~Tc7V1vn%FryaoHaRxv`Gd~LNXMj)$zg57(PU(5_g${@uZjkZJ;L`^2|UG+ZN#GnC<;KCrEH7xTIp zrYJhR9UcOJ4ife5OY+1z%LoJmLCXQ^G!kU+Xm0(Y%xVX6`TYIdFS$@Z0M3zyHRvzX zzW&{iLnb@`=g60^o`?WKbY7%_1WAcmzM|H+E98Nvst3Tm*HP&AhnX$vE|j{uLAK(E?bFRpgL@019Vm)---%A!`vpj(h11ZNZ=q$GpeTP68V)D)jdbRU{y z{R1TiE$lIwD{n)oHaX`y28c z={jIT-&LP-X9N`g`$z!;@Rtu+B|~_GySA@>+CstQ5RqD0;>iw^Nw9 zsahL<)gxK)Y@5<0CN9`gj=>=H@vR94l*M)D%kV;y_$z9UcGDPo zP#6!FN}9B9Q%>s2$e!!-RsJlNkK%2WU|$1OU^whkh+wj4uUuAV?h?wHaeR4y&y!6BBll})I^v}(x8txfiXS++iQ z*!!l*=cjGp-zBpyDq~b6XPY%WkJT)nHkFKK#G3ThbWxed1n)OWr`!~~NbDHW$EGoZ zpNnf7AjqGW)hm+K#4Oe@$*?Ku;Yfc;6;0U*t9xNKswB#@t?*txj`^9llfrEY@S4a4}{(I`tGrLbD3#0J-TE z$s+GD;ci&XyieJCX!nSVvkv@4CW1>-*{R5px2O8eIcxqb>03Gjx^XmIcMl2*2P z8$E%&in1YOx=Nr{-4_LSoB8#xwI;#~r(NO=3JL?9P$7Z|`u!Fa9eZwKt$meh5Za^? zC+wE%%+iX^xn2R{k-Y%}k5zyq#zx^jOHO*l^RRUTq)*GQX`iK|aynd@Q?d8H-LhuK zZEK9R88SpV6lW&-y$rd=i9hjv$Y@^t{laZ!3+~0s2Z7#dP_|X{yQ(~XeNk}(Tf&P$ zBQKSKEbs;+k4n80!xs)ycKntH*z;3 zeAv`q&}G*&$pS%D&1Dr+K*XdytKd5+6mXt&8Z^CsG#+zcO&gFq^Q?x9@yN2A$);TbEd`P^oHR;>iF>niQFJt$F(@FrLDuYi%#g=_Ip(Y#q?_>SwHat zjTz!zZ%vzLEP22uZKkpDhpYQ&^Wbm`9C07Am%K$yp3`bHL|06 z4+ow5Xn4Sq4lHVK3ytHNGmY8G6$GS14vE+iIf$JHb+zi`oe$6D0_LAtlC`XhhRoAS zpqg}*uhS;gTFN^eroA5$ukq9~Mm=o|gT^KJ8{HE?t{p@d%y#v(=N`jaV0((X#1`GMg_ z-~Y_sqlP!1(Ht&okbMU2?Z^+}6{7~e9T|5|n>*XyFzf2c zP!E$D)e)=_)k3JX0p(E`9RO`EKs_qt?_4+%fMFC|4Ks_oH!CP0_HwRFUejEL(9<`8* zG6tweb>Z5E+1*&dhW@BWIk5kzN0HC}hkA63MTzJCRgXFV)T0d`5G~^pyW2It3?(PE z%glh525;2qTDgIlWwhXShStDD4Hm!b^K_)v4l0?-Og1FvFO{;0uCB~*dD8P%U1StD z7#OYB*RI2V6Q`)OvYEo%T0F!Nl^%mpcZbIz?~N_5Or$YW)SxQ+roJ&Kl!5dz22v zd1FWJ_oTSTW8J^n+)vCugeasheVZSE5Ox2t78~w99UdY@W%1HVok&yzf-2|%hO{H- z4Dtc(zngKIgjeC?yX0TPc#J@&g8hPCMjpZ=#6W&)ib*l1u5$lJJ-P`{k8YyU+5DQv z4&EWw;+uRQY_}R{E=0YwF8u4wJ(mNyEA#|Gdlxh-s-de zJ-jD?;Z1-Q?)`Uo*Ds2on*R(hS_GZ&Kf{}W_Hqw+>jU7;{|s*)Xv6X4!&yp(?!Uv! zEvx=t!&~%cc$Y4J0EX9NifVxSpW(f4R7})_mG&kXO4eA|KK8+-Wj28v#^)Gep%||7 zo(Yo+(b=);#0}VmCR{PZg;#7yP=tOchsb>N`E? zd1$S%%bN8KwwfBYSxr93X)Ld%Gj>-@5unnNQR^JATBic>m-ip)xGoCH74?~H3N`0& z8c>VAZpw+1C|~#%UF7kF;B$!iIJzh;jPp~7?S#$Wg-shp1;tu5OOcA$^<0xK<8rcN zYkFx3@Bon}M!#t^Mwt%uHqLyX*&&%PKUgT)s`ilg2ng>Z+xqQBAiW#nedA^Dq;W2|G=9&|HYfH{^HF_tp#Zj zAM+|xk=#(T3E!br?mUz5^njyla~jeWRuE)h{ImeQ^j>RbWdnnbYS_%T3-;-B8x` zHoKHoR*XAKF`ICdEB<_Oz4T040I9=)m{C1N(X7(&|C0W_*0-8&aZ|ZMD?AT9H5~(D z$?@KLXwlafAb9#nYO;a)YVLy6(lF{)&4nap6A%VJ^1JCN;R>5DN*Kq7Nhk-(W{s7G z7}j5MmQ)nI2r4K9ZNwZPcq-J=>FURNew~%cH8p2~Fo7DF18M}|&8MM)8UZ9)HU7tl zKtu=@r>rXPp?TO~#iwXUw?u>@i`1k5wUaHw@)IWVJ9gPKW8uqR&68eQ!slx5z$lDD z2_A@kU@6Q)P>sJaGB44#L}2x$2OSTIOuc>J-1_ztaKvmScYr>-FJ_+PQ=Wyp^KA$+ zpE?RsW6f>OolcSoYTmpgI<&D95Hfji6U+YOm(H$oboxcpNA)v^d*vH+-n(g&07nuqj} zodgxI7Mg!1LVY1u2bo#SJv6`Bm}ShrHx{XLZEg4@EHM9c#K}YKC-o3?^hL0F+C^s0 zOnC!Zau(+O{`=`DOp`+^h^NT5G4z!XEd7!wV)mhw5Vi&tyVur)@<|!Bs?&U=z1o04 z`8^7`9IA=&LIQLZ3Cp-(lk`Lkh0LTCZHPEbJ7XELsre7!oKrzMrZ6R^+sO`{Tt$XI z$m`WL=6r(e4G}Q|lFch3&%GEYeid}6DLShP@;DU#jnGA*LX!3rD*r03K8y0ajO&7?MGDIEi% z3qmwB867;5uVOZ|44FtOGVCE=cbl{lxgLKw(Hmmr(JbAQ%%lg~D^d$fTf)=0UJ)uX zMw3g&J0(=BIZfDuq6{IB`dJRaMi-c(0|;kaayv{X+8OE>mKoTFzco-_v1`8qT4_~B z=kA&Ym^Oq$mk+rPDJ{27%J+x9n!ODR#jGk~c5r;aU+zB$gzf4VUQ{^%5a*_gm4F8NJ_fk6ql$IOBOIUhJ<32COxE{2gCI? z6MjaV3)F5yY!Ob1o%a~s%(Mxvc_*pQZ6X*YU(J*E zuzCH&4EBDmzJ{VhpD=clDH4SBiSAR&JibQ0pCcnGfc!p40(&bgp~*r)NB-?(uY!&Q z3EL=4&2SZ@VKG#1uL4zO@|&+X6A6Q?Dr>EGM8EM^{h{2D`Y9V4iN1jZX`mbJ1x?4T z8pH$x99-+`P%W+pjssb-4nc}R_0bC2_SJ@2=LwH!`fEZK#lqdwOBW~KOg&LHuHi_3 z<8cK}XSA1nS$nWbY?dV>sTB!9U>0?H%qZ>D(;=lG;tg7X9xaPx_;V?cU`~;;618`@-@WE2zHI4@xzxmAjjgod(D^iNX@_}^TgJ%Wao=7+wsva z1G)&Q$C*U!v!1V~IBajqB3_{*s_qAmX1_<@$#{H3!JO|4xAwX|h5}a1lIdOLtoJvLJxJBGW&h_Hz&C3OU^q^f?l8Fd~YE+xc6bd?N-22{+%PAn-jmyW(BQ&yr z?aYh$24J%2l0F2CUO(vsyP=T)nxQZa@@uF-l2<{gUAtjc z36%N+1|fZnB8cV`i$z{WFl6+o+KU=&P@9G6{g`YIfz}%>9`jj`&)(a+7Z7H*NZ^AT3=7%PS4^UXE z%7YVK{A|?Iy14Y(&%Hsr;q90~-qhvW5BqgirSIiI7?Tb#cQOdjlb zwb;^OdLFUY7~2Rtc5=5k%bzt??;X`HxKI4EetJ7F>dW`T&RK&)r(iwTQ9M$-4pS-0 zDH%^=_?b+8$DuP&9(4y{9p~z2$QUoUA;fn3Vs2-=hKoD>+z)x#zo}Vc|qJUdBc=don^<-FN$Y5WBj}Y&K0hL-1Ne2)n|=d5yZE8wDGf?ph6( zCLXJ4dBKWbmX}7pbdKmpXw<$L@LY#=@o0?_;#ZYe` zf+kF#TADn^`rohI+n+qutbUBHw?h}#EXBhN!4*(pRf?*#GSF0(Vcv7 zDd=nkS)U^osIk)CU0F4Dk=6`M%iIuy3*=pf0yE+kB+F4RopneSTtS2OofD;y5=$J0bVP;#-$>5qo*mpb2?EJoD#!HyRv9W=7d%wVI11pfe z+5UC*cu!4^GBzMWfdbn5a2dc+6FHVQEn_9Kqb;D-K@wj&nttCqS&kQvj|N$ zC&EHewJiKjFG5?A(H7&boOX8MFF%z0i+F}!yNZ1LExwH@!vLV$J&5I zxC0Ynt)|x^dA5?kJNfO7zB9B--2JXhxOMXUhUM)YlfuYLM&J3Py+J4JF7ebeV@gUR z{f$d)ke3oDNpBF~Qomv@Yb|m%Mpc+vx3v_mbuCOaG-;#_o7y41WnsSv7SEf@$r&p; zqBQZnK)UPeUPvECl_`x^x=frmU{zLm=lRiB zVPWiSji3UKK;fs37HBc**u@vKoM{i01kpkVq@Ll-73=PC%%Q|*{tM&BH?mg--K*lJ zGV|H$%~bvNyK*zqXh)L8JA=L{$NI8)?W#jNZ9`;)pDI|6=@saHU0t%Pg&buaoj)X` z$X&C}12RWNPA$1Td9P6%xk`|k&|{?S=8nKfl!1jOwIWS;;?4V1_uY;!tvuJxQ2nNe z%HZ3kM6)cUY2%4482IH&q}oThs|rLMa5BhKo@Wtp?xTN&@uupY>RA?1yqLgHSI8Y2 znVd--J}}h-p(6UEE{cC~P z=w$7+6Q#o`kQN9FoZZx|VMg!VHanfgbJM0de6hsHS;A>SV_HN}7Nem7CY#-8*eQvGjB=?FNJWqjxE>%f?_VWk9ptIWfV@X`4^2C{6(l@(Heap4ONz-AC6x^a z1|=7%kKnF4(9mTZoj}>U>|J-$v0zI#CQTU|PtWuSbt`N1>mdvk8x~6;=h5tp`#T)-G4GtR-Fc-IHpCBn+r>D3*U+qnRLhDfv!^=VU@VQB zjA(tw36$Pr+9gw$94s?Oh8q-+*`TqSw;+vsk>C&}S3;GmJN((K4pH{Tl`$y@^f1%Z?uNIX4f6;2bzi9O!004mB37R3QtBD_+AzIWUSp+}=<5_RZ2na&d zy;*F2-67W$JPO?q^7c<*{=)EW?PqP2BdLvcfA*<6=$Pw2`xLV;wqT)`ftKD>XP#e) zC0yXJ^T(bypJA8cbWissGtHIp#O?v<_;?&f-kQ$SmyM)(G=srzv|J%8)JC34aU_u# zoXvv3PfeEflXZa~kEn4^n>ISwOa$we{4h3B79nQ6v9-QUSyxG!J+Y&+1hwS;tus$h zuv^vcdxInRZ=Kfwv|8vdS`80Cs|hie0BALQfzMEG)X|2l-TGf7;162ONBtMA&IUB< z0?=vz60nk?N5!NroL(U63P7uuW*CRIb{sx~WBLbbY=Y>(?4P0z0Z70nCu#BjKmyE( zViLROjtM}3ST_c6cP_luq znDvd0zly%(D=^n`w9Y$*D>3RXKk$$fTQGtgNN5Czrr;n+Cm@`z3U8!P6PR)XDMR_a z8{saco)f`BVApFA3UH`l3?_rtc2hf^;dadSFZGds4Qhn|pw&291{^?YGVDUqG*(UK ztXEZYU7}7w6&lNkyjC#zyA?9D;foFHfq|++(8M#dMtIVd+A%n(9Igi7D%AK4a><&L zH;uT1r38&Me^)8c6EO9eY;<%mqj73|R}?9lIpULAnU>m}q)C+U{^6_|DYeQU2^5MB zD^P;_04SiNVa*@ts7HZYIfl{gT9EQAJ*(@G}~a6>LT337=|Yp8KcU-YhI&T?qKGykJF=IDr*n{r;l(U zun=?*+iT&Opvh1{0^BE&W}MY?{%&A5bXE3lf>?&aVl7`!Q6yU>yo0a0dsb@bZa}2^ z`Z|#Z^x=|BortCS^XOnEAd(IITg<^tWd)+tXmEmqe@GEs8IMCN&i%wrgZKVD9O-jZ zi+vODsN?66jn@z5OuMZvu~!CDr;mzjK1L~YFuN8<&3y1u7|g^=Qs>usCAc?r{Oj96 z4~GY_Y;5(F_WmsmPW%{AI1LRw^s;~(&I_)JGwfP+kZLnrKF4_6b;Qxu?h&s_KLR>U zf0vd?>&gd{6Kf4_UP|6e3Gr3QPA#TB8Z}cc&W|a*QPqc!H)K~{)H9xl<;>f?q%pa# z#fDkI9Pk&NPbpvWunG^PMW{HQuI@p>Er?FP>WuIQ%9MCrGFH-sZj&1e!h-dU>rG<7=zlpYuata z_NQhS3**2*fm2oWOPsjK_F>b+Sm^SLF)M!`)jt&HQLLne{zEY-M*~jxc~hmuvng zG@AIyxzZ;%UrE)+h9<25oi~DL7<)3TPAsUq3ZAE{guK9D8_mzd)`6=m%h4lVmBL5i z$A;5)+YYVtwvnP&yTT61mB_@bvx?P_&4WsK&7=&rMW9pataQmt@n4Ar?UU|$4y~6B zb70UFeSKal9pin?;?8FaH(ap1n)5(*HeClg?O0~g8*OC`Uh>f{)4!~WbT$zQ_SsxmejfahAWy9p0y*+A?O<$E=Lec%h7{86-EKOG*2DksRfAl%uPt zW-U6l3LugS6`C2VvIh<~Ea&dYjx#g6_2A3wf-XBE{w5g=T&8 z%)Czc2p4wdF03;s`$}zMhhm62XxY zlLDLjteFAV&(pQ(;iVA7?{&dL&%%HxX=ztY*gSKTEc z4h;1-o6Bg6Bg2aO_b&w4RVqi(_=VjMb!XY-a6HKv}FEyIiI zI@xkoq492UKpnhNvR`*xPsO5AwaOoYNuCDs3suM^q+EMX|dX26Bbo_=D^F z@xVlMKvB{eu@phLd*~@YgXw-J8yI)FrIVv#8B#3F+5`-2WI0{WstA{UT&srJTjk58 zm5%{Y>&*D{ki^2)%ckL~CBlIoYe%#vU(x&LkaNbwn|t`R3*7b%PL~VkE5Ij$$06t0 z2FwVenEqH*iI`AJcZ$smlP^!wKsB5aCoyBP$<745$2F=sIZa&JmQwc+K$_tfS&b zvBc$+vYear3UU}X7}TkpvP(0esupqZ(?s1{as<~-8%SD^HEC1M;PncAcqbU0T7D;U zOo>;i$Xb7pEhnGPfG>f&Xc~9Kp>&*MRae=^qq_?(#die61Ns2Xq$328pbpVi!j%@G z*>RchZ9f(O@qnU_cmNxAzPUvK23ILgzIuC-8my2R7aK47_e6x*07kq$3iVO1#1 zHDVNC(}yN!*O=7bXV5Vazt}RP3$%zdY0$R$1~uj}Z49MhkBat1O)|FOHlx}L++z}w1Z`}B#g-yBDOI4z{&cRF-8HJSKmWC&Vn%M|+nHmqqtg4TO5 zcJ0SRB{PQgmc$+Rc(n=nzV`O@IW`2Jn6h*`%?cwI7w%)ryP4MWqg7^bS<^0bL zYbF;b_Q!^m2Z)Xe_p#0ryCUR^RnFR%KFMOW(K1DH2ak(IQ&adCoiXU%Jpsmv{K6^& z$6E4iw0_qw1YxIqN*eg*REj>P&4jW+7wRd+C08-i1kdrUi1+cVn(`u96m8F`sRv)N zN)zMFV|0q>J<)TaW=Ow6#gwB$DMBSqsp`3v4)$qD<_+fRw0^?I%CHF0yoUPTno7Up zQYWXx4zoc*D3LObD8bs=xTk1?Hgsd^Dfqk$&tD5q9W0nub}0CHj_Jkxyzc##nvCu*w}ed8Qzb$Cn9Kb~D= zYu3^Kc6R^F1pf2vUgQRv@TPO6Nw2v%ElAHm5<%(62{HZS*}aHS2J<$j(-^=J*C2+` z6jmFISi^bsdF0T^>*Y~46)XK(HT_M?#sB_s_Kf&LKXWyj4g8;#&}6@5oB);3I_~00 z{nj0OiCcmHSqU9$tVn0=aLW~)jO_$uf|zNNj=Hm0XCa0uT73nt4=;QLhIGml9a6e$ z{0qce4Rp!}1xgiOYGGFDeR0+JBOZ`ED>V|^m@a`6lz<1(I#U@iQpFO_^u&BuFwmINgr~#ZTpp^_85v~gn@#tP8Azf8la!yBo#~HK5PA3Ka=~r68bR6 zwW->Pi>Ah?59~n+o#UXr0>Oy}p5g|h-hUFkfd?ne`kmG`;|a@a z6YFt&Nm_~4KL;zARAH8sCxRK}O}9afg!t=oFlF2RSljgQ_AJOYu%YnMaE$nMbngT?dJ}Zp8KR- z&zdAYoaMjxqx>U(FQ)Vd_N3_c0xF^TM$U%*($5kB`WgDqSdITfKO6d&eirz@=w}h8 z*n<&fU(1yqFt`QVKl?GI|0tsO)-GVmlpGD+wc%_u(ou$S=TMpUPc8R!qXhPv;r|l; zmRmmyn~VJ0SsfK-<%{(9E)`*oS$~?>WT_+7*Wxmx-x{#tuUvK%4h`w{6_mQ@7k;4s z^u4Q5VHS-3&r$#@)8F$f=l@j-XtlZsXq)9Xt6eh2XaK(kPyzbA&5`t-mw!_Miafp- zW3sbz%`RlVJQ)+*>Ti!Ve3v%VVW@~9IVWS3?fRg3(DaNh0t*WjZ+d_Vs8|B+c0|$3 zHvNFYw;D$O_Z7j0=%{TReE?TZ$0E3(7nF}6PF@TP!vBcoVGf6CS)fP(M`gK^4P6R1 zh%qn&r`Md1l};pmsm{+YcUS25h4tn>Ppd9_YXB^^L{1|Hc{qnDl@J1%D$e>Z|BU>@ zKU+lhj zQ^$(e53dq!f6p~_pm*Pu?K3f$-C@NkSKAkYHMLPQ%WM#&d}SL|IG;*MEQ)H(wS3V_ zB{sf8ec>5^6#)No(n)8$?)hN_IGKe|_TJa}*XeC)WPVry8%BSu0D?bO09o&c6%hKz z3gG?A3YcR1&ii2n_+B!-9M}VGr&NLpE}vo0`4UpU-lA`qElzJ4xfo7_l!Gu+stIFOJiQgVlcz%-5RMF8JA4JDi_s%ZVNXH`46Fu6?He1X7A+nS zbujgvKu?p`0^sJ8PPc&y&rG{)Y4Y#R_ zI1>D&ClQuW?voq|Ft_ub)0k+`4S1N!=~Yu3+b3(&H{0#^@CMG?1fcC4sFw@Xpzhkw zN73&VBf^%xx`!=AvlZBfqdu*l(5mh&!k6D_+I{=Z{KCIoXgaB^&Ag_ugui2A_ZWX| z1M9gMndn-K4QiwLDKH6amfdO!xys^T6~T&EMt(WMn|+Iwa`;A7c`WE++rJRvSU}VR zIrL)$yx&Q+?{2CvU73pOE zOkq|KnO#tfVp?Cfnp%AN;Rbh<|GUHkFA}A0n2P^)R$ZNDvGi_01|Q`N z@>@5Y-+jgR*7QS-noLy~4;!>T(9$#FZ<*lKub_x2NBuNbp+LWC1Cm4M^jV-0b4~zM zzz?SW|DXb{Kd1mL02T1#a(B5>z+AP3|>6`9_KZ(M^dB0;oB(> zauKGnmK5niv*48<&xr7u?$ed9ze&L54ZWA{^>r08C<$2L=#<(e?It(keI>z)!vM&w24^i<4tv4_1*pKlx^0775xa5m|J zBi!#ucBwBRU2C^jNW3D$ERrhD)diV&QG+vaAARy2xB+z@WT*uE5(?5ik5Ia3q;XrT zHuR7e-AMq6=9cuCIt0OdJzhdSuUen)(YP;roWf{BacIlNZ_)C=*j*D4pLBVMNe>uXNJF2|jG(!N)pj6y@^lYP%Mj<;8=M4#BY=XWvxTz7Drq0^uocS@trmGCmCo;mf@?%T{m;saae z{S>UfbYt)Wj4umIGwhfK2E15FMc<&GI>%VLc9V@YQ z4vD@o-9&ew#G1LU)66gR**O{eKv=OzstodN)_>+KaxOl@>Lk*_AqWrRPrB_m4L`T3 z0>`f|{u#2unP&-lh9^2$QTal|>?3GtX`3~@5@qL=Pxmt&>(qlXv$Jgrp%fIx^M*@P zg=n9Ib==GTs12bK_Hv}!jMIh9wtPWlzVV5E~0q70tD+5oz;<3 z_9&n=5!An9ZP-TEONwpao2*b3;mr)%E~tQ-TcuI7N^ue-y)PPXwO9IH%&)fbHY$7q z*A_)kwL|JgY)B^My=o3wv(GHNdszCq7w5EstAt0WjhVohXghX+YS_#puU*p{)oh6u zPYTU^``dnn1e_0_1i+vLVcTuSxyJFzXqh^Pif|9FV>lM=WqNm*1(=upS{yLEC)a1s zNH8tlgPWCIVL=k`-I_KK}Zw`TT%<-i+D`uNm{R(&L=tb2jtB69z(3Wt`_d z%SP5&2)SW>ef0C2wLr_u95O_eSmMx&iTjB+iy(~BNuq?3Djfyvdt!5{q?&7B0*sh9 zX>~?mv4hBf%Mz5XM%-(u)9Isc$AO&qv!5I;vuqAzg;oSR=vsKO7F@9v;p13sF8Lo35WbGMdvgq`evh9s96#pGaB6~+!misa0> z)s`4fKnN#*;3>17DmsV9*H<@>QOFp?L&S?AwCu_Rid0QF;k5^mpb92RIUEv5TOwv!^qUS^+nmV%;_enlLI2cFlQdgSdGbCDVM4&p|os zcj7~8m~*hKn|-A7NDVu!2DIFk;yutKjQqUCs*b#y`HfOd%xBuC8&RxNvar&;HEb*+ zRBOgD~tJ)a?7l6e_AlDosZu4(4}s&3l)%2+}D>&D8rgD=c!+J z_`L2ia5LWL6Nk5dpLyVJR!mD(3g$Auvb8I8pRhFHz1rlROK7gj+_TZm6fmR0ZbdK6 zTPBINu0jSz`9i$+?YEwE0vUM+7$nQv-Nks~(nWbZhsX?WTqlSR#)QF(m#y5zvU#oa zSiUdK#uz8C{d76tANBem*IgN~Rf9*yMCTj(^%)+YRj7bHqheWp?7g5L`jGW}JZ(7< zW`_oqy-sUn;L%Oltyig8%DzZ=*3CeRFZ@ZrQpiAl2UjNHI1W4fI(f0z|vRBt-g;p%yzKbxUv(5oNWJ1+pCxAz=opPF4m zJnDM$KGg78qsgCms z{!;_n18?vH`wv38@(&^1_d!T=UBy8P(!UVT@u@J}Ol&%X8X5roa=FPG0c5OOjXyoj z{ySq`3&>dKppAC2Liml3u?8##gxu&+oyymsWmkyIDeZI=n26mxr*2<3SiGl2i#!i; zh){w^KLqW+VQF6g?oh1^j|d-5K=;TFA;1YJB@R#QUO!y|4pSW$#mhTW5+Tqh!RS@o zrFsxgH&-}ZoF~UK`I)06j81~H05>OfMr={3cEYApabqST-UelC{rV*Oi-Kl3^3f!% zn7f!kEs0l}gP#40=p4DiHE#gpa5k(HvD?1`7 z{Gq-102)JDo`_090$kIl4Y-c&Jhz(vmv7s)QX?o+6i{t;lqe1=zoo<%m~jj!qVTz( zMJJ#ccPqPW6i${n*Vu1iA5K8JkqW#Eq!@W$)E3H!HU<6BI?lR|retZj>+2M22@!>X zxV7|n_0ckdGI}W6I1@ZhQb+nx>z6N1kjelk0Ql7s$27VmTNuP!c=VQUro@Y2n4;9{ z_pex_TIw2~HF>JqD4S5L*8UKU`T%m64EJssZmqq@9L*6URB6WIwvo7L z!|#%dQ9~T`EF3>62Jt`*X01apQqEQmAPiKQw-0wkh>;VaDgbHIuk5TZ_ zk|iUwzG&zd6g$3T(p}6TP)SuZ& ztp+O(J@2W5%CTFKH>Nd5`GZyoFPH-{Y0l__h_13y0(EE6qG5MwJR?x|;Yx zrE1cxHfClFz6ay>GyQ10$8F9E#}CGO5V-WO%vtQm22S_S3g5J7ezItPkR;~>-I2Du zg^Q@X<+F2Is=bF@4K#SC+$w-Ch^*Z>kNC2uDMXzk`V@8bxl@H%0O5sS|4@!z4P8=|! z2K_yOIS;W>T~HqRkUrbc%+z$bJJdiyM#R!c=9_)dB>SmDw1Kze_N%+|2I+JHZAu8l z#VP_Q%JCm9*`*J$A(dtrkyAA;hIaY|l0hj8UTi?bmo<8vBZRS{t(d!S<@a*XHHaRq z_%Z1Zrnh@kF1vx%Z}PD^_Zmn?pw*&;Fg>41;%eb-X@}f7V)l|yM&sE~$#qV@9WG=v zX+Cc=P~rN@p+WPfqyiEFWf)`pw;S5-U7vgKar=6|Xn!yP$JbKv%kNL*nEt4Tf!SJJ z^8RWSlVU3sXAmEW06R$@hMVsW8zYZqL(+&ZL1$ADkLGX;s$IxrBE<(oze`!0Z9bTQ z`F#@LLK8m?XHtRSuavB>a`E0vroRYX`l>M{*o_Ra*ZQ~(9^yJ`-BNy9BY!ULXiwGL z$+m{GCM^>D3C^5IO@s=F1Vjq$e%7j~YR#@uTx??w3B|}6wI%*cK6;}N?=fCw#mXQM z=r@PK!TJ;#E!`I}ju<&Vj|*S|x~-tpK>jcRbgh?8rjUAz2Kxyf=G1}f^$gF~#&gOy z0M!>f%B!F|=JipEX{kw&y@)v_)9nbw?l|-p|Kg8S9@JjHPWHR4Zvtu@PUH4OccW-Y zQT-`{DBRZ5MOdFJ-{5d|RlH*SI zwJx-f?Fk`kn(J+EQfpHktTy7OVHq+7L^J9*?5JEZ^;8zSEG3@bx7vpWQ8jh$Yzyk$ z%~t9|;BOXxFT>L70WtyM^G*y|nGHb`t5cfYyy5N>BQ|FE>k%Q8!p`?YKCF(4ydWQ$ z0PM0;M@|{6m@lktGAhfzYRs4Hze^%zPSQn5KL7ROVlrnkd6>uy`pUsPA+Pqb<5KmKL|212AN6(Kc zRQQ?0Mh@~#4tZc+YVaA<{k-FKG*&N*-7EWig0IAO;)=$O@~3!OQG^x4jdpvAD;JwO zr6BK@G~*iB-nVvRMGCphivrM#J;&5f&oTtGzw^Vlp*2#XRb{lYP?LU}HRli%HPpMc z(PvKjxNaYwe&W?|Va3vj0teP@f}EhirFPjNyKfdSD;l$^w8^Thbw3jVS)stSg+A{fEU za=#&bW*+&vY_v94&XS#72X0<|v(X8aw7IfTzdT)^lJYAr*Ukm25RHmE8PyZssa3lN zJ1)I*Tj>Mn-1fz6735(D9d4W~xd19Ed=%ot=P&JecWF>ZFHSs{mL3&^69@e>v$}fY9h+ zsprlGwft`HBo3%PF0l^-JNVHRd-8ZMtvy^muBd_Pxsjme|zNB;t_*&r_4!d4P``5NKM0Pj|<< z=vku{`CJ@%J0CgN*%l^5tXK-hO8z3UIG&NXBwqP-p1Hi_Gw!|7u0dlWYHPHi1ef*Y?)u`~;L7Ox;f?=4UaGR4rI-H8QuVLJRAKUn-3k*@$OZTl!q;;S za?dCvN}=QC;VP*aNJFY+k{|G7dqs*HdFn0JpjubLh0@~yFCY!s{zCC9B&0Q+iWBPK zEEQZS8I6fk543-`Pex^5FAp8-SW;oerJSwDpPef6-;GjA3G%7DB`QI5BW1mAG+4|( z%d;|2$YYn!u<{N| zXp~A~YEzLg1T;z!K!09`;RmiAjP7EYSjA4AuK#XGu^~YPQjtt#zBCtvjzUx5lgy6R z1Px0%yX-f!?0sZqX24kmzSox=yl02R&uyn?ViWRE&9XtG3`L`N#BNFjDM(}GT)c8j zG&p0(Vowx$kLQ5Y>3LDQ^W`HC&|DRr2Z|79kdw8UbbbHLk!_QWKfei!WNVTgmmGwo zRmUUIh9MIdkxl@f=mujmyLMsJvp%Ir+X+(a za}VLr6cHWm=+guma8rG~g(CV9cn$V~3NpZHmXiI`@edcUg|A!67CEjG1@9MRs5_yq zRImHJr7z~g3z$}W4V?bt1yDrhdvA!KfM3|b`hoWe~DfE+Y9)A3A^~07eG9a{ow^T0=$4-ph1Gx-VZOpWHO8) zM0W?b6X)Mvz)ggb?Ej8kj9L|XNXZn(?TgM><5(dn{Doam{1@y(w;Ah4L<@9yZ#n6( zryDcz_y333McTixi*EO+zv|Fdehp254h`E+D1>W2KKE1MIi?d#YemLg9;8>HKqId* z@{O=tOhidwNDXc7Neht?tY%QcjDgq84U?a%4`@B#p* zx0{UMrE3>NJ>k>AU#FK6aC!@mcB(&xbi#ZBJ35R(PHzH}J_U5S#FozPi{;F}>d+*NTEpT)9~bN_|FSNM|IxZQ_+wop{IM>I z-&LRJ<7Ud9$Sx2C^Pfz%Z+W^8fGxSXurx%-a5Ym<5Jf$0*li-#ezN zxQOLUxX;0eDq#BgGMJw5@$zrIPHwjf)~BHZ|M!#oO0(~!U)7%-Xp>ik zY=om944^Yw)CLoN3ljF_gp#}zyCFw<1tuaRmhTEO?#3-wFs#-Gsv`su(d`o276`cw zceslop8hk%GS(+y7Yw=mk=2=kKoHa`8K{ori6gdVspz5YBKHFl49|KBP#y5aB1n4P zo+*8YP_P$S+g0)s>!t%4CkQjO*K7<|=2BChq{mh7-N7J6%RcF(rsf%Dv)f*$5nnL? zubsKGDr&u;!>J7o>l>txre#!EK*TN9L)}>rV3y^J1`ogd*DNdBJ0m6d7jMjRi%5oQ z`oCsbZRCJimh$eOSr+X&V3y?#m}SL63flfP%ewoRW#s~9S@4$=rjC7p_9&>GBNr3A zgRG(B5EX6k9WKT2qIGQ09`k+d4=>=20qv<+1Egjy*WBi6ZJL?nL7=#mcXi3TxWM7v z1Tqg7{9~5&f~Ecb?^)JI9^hk^Wn=@GWo1tvU%V2{xL`U4MN5Kvesl-;kw|_AbO&62 zjkeYM4(JZRMpq@yudDhL(J0_F$TLfHB{1!hAq`z=~VItzKH7 z%C;Dg7Gzo}(l!p366vT4~V|__Q315V9n}s4i}etxi!@i8LH?% zwr9ka1fKvgW&Hq5v%<(>blkgXJnKfW1?%Gb)Uo;zCj7g2JDkvRUofq`KQTzK7AK>F zKBVn&hmggY=b+lJq3pqq-SIMchU`BMX5^k2Lthh_w!<*2Qb(Iu!i*RZ372{WlC@Q^ z_0|Uf^X{p(#G*e_)r(*K%GsSDq0h{njHAA4zhy`CB>AnyKTI2@tiVEH zg;`aPFB&}scdDyx^B&0};udKy{tME{A?^`o!PmQiaBUkqG051H{F@(>a`Ja*T4?ch zE;?MPui!j+=&2FF9NKlZco;G?!JU)TnEm3iHhb#3Tb#?cwElCon4Nnd{jztdY+_vGZuoR51}*|i4-$8}&cxKH z(5s%~ea+T6pgaI^@7wD>!{O`(`^q6`nUg*JBr%FS_;Yi>WC4X%@TdHLBshR z#}P`43T80OxO8Q66WnDQp^^^mHW*I?J#55ULi|dETJX{CpcSP3h;qvpoWdJ#gS^ks zppza*Oaw158>+#L0Iys8$j{a6lrDdkCjJ6o0Y&impwbD=#+j|eJObhf-c{xO?9(~i z-~9YVZt=rV>;jbiPjzGKEXx(*doU)g$%SM>HES#tN`-F$JSQ}awP z(Ya1g4!e9iGaJsI(xR*4o0){bp)Gl&&cGACU)8}}F-UAaQ>B;`*J$DYHOhin&rx#( zkC@#3Mx88{BS1dGXz<6p{L=iX7=9J(>joda$m0QU$uEq)&`XH`;YDkv(-NLg%QO>_ z4)N(*N{GAD{19{KreV)P+x!_1D%D}YuYAVE}w!zb?P>LxW1({ zOx?q}L;|dU5P%gx=%9A@sof0rTabKfi<1xVl_nrDB8`SFyb9|J{Q4x5v2KtFUMC4C zq!ODXFSZ|+E`N5$d~KQM=UlO++#hbq6VMz>QWM3A$bZQ(aN6R`=EF*x+kjKQ3n4jO zYv&=uH03>X9oS(ZjCNbg)Nwnz?Ug@bXiK%H_#SM@_8K%9`9c-bk>LB9NL8Zb%YX*3 z0?J$|x0Q!GP}qmX%5vm~0*x3?+l*8XLX($xGjD=1xnX6yeyPLyv#Q{V7|TDUa|7A~ z0v#t{^TfcEfw^2$l#rHmmXmm+Pq0=ZWh#`ogKLeES+)y3mxv)Zd`ueh<8y!{Gd zEmUt~7`*K)n_JEuT%@Ap6D(kQ2dur8&EJ9(^1C(y1I+}Y&?{I^8FAw&>D6uNCvk2P zHa@fAb}VMZcnZ~YVIxs~c2b@tUu8omb6&hb-PQ#{*rsQapuARHk#ep1_KOi&i~~a- zN7nG0cua0>9Rv)=Jk)H|6MD#)h``IwC2pU)&PbHsZDABTAp(ARC5M0w!@T#9(_=4}|4DILLq8nQ( zl~D1_H1rRT(&0dw3tG-(IW6eBc{yFvPohlb1lrCjN86?k`%fm$Q|*f-#854!4QE7{DyklT{;5`)Z zL=|mM(odDAbBVk;Xuf!I9Bs-AJqZfBxegW zi{3JlNXsVBIf#6%C-4lUUas>ap5@ux>KmCmYIKxq&XUp#^A2vw@mCaADJ7=zN_wwk z_A&*TPq*PKF%2AZnoAKAsepO?F&zwWwYA852S&ENMVuPt6U6n!NkIo+ehJ z%U{OC?VW%=pL`yt0-9T^-DjXqu3Mg2tzj+mH*OyyPV`hVwN~ok&n7fK&bP_t_iSj< zcvIIqz2?B44>j)UaB#Wd%j~C&OB`tgN?c=SA8YKc=6RO(wwyS<8IDgoHFQ(xS3XS7 z0M4na7T|N?99hhgWZ`0!bmin9(C0i;ln7)!TA{1aP4zqCNH7t3Zt7yJ`GoB;AEJ}z zi!~z3T@b_D@;y{&C)(74cbQ6sH(kz})lX3i!=7ov;a3U0nu^%cd1;qP3?opI%T!X3 zzKeD${6VdLYMb_be4nS${oI*xwoIe&C9fpEcPO&Or->P@(W&b^J;WwGzJ#`_`Fn}g z5lag{V5%~C7Hfo{khL*y8!p`O65eDfw+PSPTU^xCX|Tns8;a9=%c7MFuWWMm7Fxkl zD`urx$T}CR>g(^PaE)rfsfx+TB6wNjcFQ^(+X{9SdTD})LFi|epdHPboK!hdn8kZ1 zu5VQh41?ggq6^&W-wWXgAC?jjCsY#lCpxOqiAuhu_=@Nb?o`fd6~pcZIk++@WL+_> zc05`UezV<^N+O{(Y>&K_W}7dVfcl}$$j;+Aks7*3?t;iVi|XT_co0~o%S)4A7)&Pb z>cf$aG{S?CQL*JTo-d^cx6%bNwc7ro-4M0Qq7^tIEznO}gzX7iZ*QvWVbx0-7Ix)O zpX!R8kWu-}YnO(av9mYDS|}=T)UU_YjE;}jyr-pK3#Qr+FQoFgj)r3|r<)l^h`3;k0_O&rbWqZt#j>&S_B zM%v~|$9|QgcWHr=B|#oaG}?g+m>mu+*w9jU~452cV+B#7wW-yFCUN`o_sFOxtABb z$XGYuJ@B0k6@T^IxK$i^P+a3&n+4YvjTdb{zi1m;KHu-y;7rIPe0qCu-}2{a3js5m!Qf3sMsj#3(2ydOB_ zRi0f{`1E&+Kn6!7t)*Kk+s&{?Ily3(50`-(f@$29-Na#*3V`pyBFYW0?FbRyBjTV= zHn&s`H#XFi{+euUWmHTKxKb(kz>P;X;mHpM;F)o0!&PnnMF#w>^Dx?6?dV=K3XS-1Ckc;aicJvC6d|>D7s}`ibM<) z*Gz6jM>p&wR6_NJAsgqdfG~2pt0a{5z9K1}0p=Udq6&m$P7nO+#;I2?2xfp}6V)S;;Jb>as)oMRU|q9t#T zVUTwYhL}`DyCwj^rd+;-eMt%+*f1Z+_dXh?Asav90RkdFT5Q&-pku)W8DFTUJCPV} zgaHJbp#ktO_>;g7f(;N47`*w22SEOdV9Nm?^_hb7Qv}oq^amB+r~u*t)qr?_@c49m zN1ln;$w3$(9&oT39GU-N2H3&P9Ab~ZvNygp$c{PcU!!U+z~4C~Q1(cS{g@`%r3Nin z5)2}mcOg^?YL*1o@(8vB>WRzSM5NXRxB8o43;!V49LJ?1ngmz|z2tM3+KJSqX~V^l zT3`SI8^<4kt(xLKqf-@IXyQ|3meqz4=4N5|9zO~nR^$ljdX{%Snp9Jd_f-q-0}Y5z-4&%p zV7F`%f{Lr5h@yui^3>R$r*<`gwSp`QV{&wjEX87PnsN}*WnKegK(0|!j=w0H?g}ys zs@LQU^RaEu3sz`C8DZ605;LT0XE1Gi!{^dnk-?MXQR<;-1y;w=;`kO8D?{;N20&9=jsJ)SeG!lFv#7;s{(3L> zVFnC9pK248ZvIeVmv9rNnyOa<8U3i3HvW0%2#w+O#TWQ(J!=rL%OYby;i~2~`_pW~ z$^HJL&uEB;QxHGwXvAFwX(zm|TX}o1OUxRL4v*5VS*^GDjs4rrIn54&F`aOiwsEV} zyYi{EAGZjj-kqZ7x?&$OM>mbSalc&FXo;xf9U|AIw7P&F`NclyO#4=EyLh z>Y2p6)h{T>7njhd@0P!7Ss&jgH{Hc_-DkXg?)#{M-(^MSF2j0);#eZP8j{a4=p`d) z?`N*@h}(|mw=k05@KsxlKuqwwH>S?yj+?)I{ZIq;5;VC;gibanNgk30v=$A_w{!MZ zVa6?rr+H}#W=3J=pPR4hd<`F8+p0Em;=VeYQZ0vw_&krRBs{Jfk) zF(~pq+2K1C;*j*NAS@35d(h!-Bnw)AQ&E2x(U*@_ws)cnYj7g|*xJZJF&r_<>rKR- z)5y^;evi}+*1^dk%$Jovkq!FtVi`ZC z=>;|@*)wne!UlE5IHNDJ4eN&zQZQ{)C-$_$`3GS;l}`jb=?k9E`GP@ue-)+@OEDB~ zkP5ZFOca(b67{Tnprmu2K4ry%$H2SW|I5_c086)vFQ09YCOw9|TX^AEcV}`;zS=!U zUio&K2il|G{7#C>D!KV?H5}1ON=IE9>NOBSZaik$L}WC^%LRxSs#=e8f-p|F71Q)B z{apk~kl@mTmw^3h7;d+`8 z$TG&flA7klz5%^Ykg93TX1Ds=zv1~uZXM1G{Jqz1ZeHDtqeUQ(0|#{Vpnqy6f2aW> zPb!5m5_SMJKuzycQJ}#F{1NyXNLTeKeZ-dK2K|HC!btQ>;@J!!BLKpXI0dD`%n4J& zdai(Qr&69Ran~jWbQH8Px0X7Ydq_J*l#=8pfR7l`ReB)lsE4;~e&NA@A$-bky0&N3 z1jX5qMO5^=uqLhVsg)lKGaro_?Gx1IFM~lMx8}+Xs}4Uyxg`L?HiTh7h0knV1jq;^ zd#+WT(4=I3&virMr16y)DxBWyMI4`>Cyb6xtFsDY|Hud^uJCnU%J@KeJJiw@f3yBz z19HJW*nn`|)SMq7Q%Jw1nFu2=IuOj0`L&)77iy-B^FYer2iBZYTj%l9b_IzxanRnm(nk(`yNuiA7K!sy3Qg5G)ky`hD$rR?~ zf4TwiqbCnp!P!+-K&{Q|P7G^b8wSo-e`$4dD!5II*zf7B$4F8tx!>#8rL~vf1L~}^ zIwINUSE5t~Epp3$S<2*qH}P%AAAYsMbBRuoLw6N_iId@B=_uqaXDaF2E9|PqKM`uA zze52Xq;Kks!>UH*D}|4m#zAySRtD5rySmlxr~nu?y`O=^7Mbm|Kf`U};`XXqcIAMc z%eUQmAbDb!i8LLxuW}l%~>_C>> zDeKidiMmPwg-$o{h7*!*L7$E{&}3pd`knIwiW<;rR zp0oda^NoQw`7FdK1Lt!3MF^-vQr}M#?l-MMdeNiPtdhH>x7T&O0Fba^=52k{D-l8} zBx{5XcYO)AxO7`3Lo5kz{I4Xk&Ngz%bW4qfB^m@fC4^zXwj0lM5^89vn|9u%aZ4U^ z#gJKmgGZ%tWA0J)ROOX==VXGf+@50HQ9zGzS=WD>c6>0ECO6g8mVTn-Tbf%#$oGR4 z1uTf?+BoKH^kaOloft9$!X{ITx*g8%JaMAa0%wKm{nz<wb1C33ae57bTIM6=Gm`RL~1E z?RQ4@&A5}P#VwR+el*tpzVAfPC+( ztOj|e;|P)^1}R6_2T_qn1HT92_S zsGSi2Jp#X?xd5wGBRu*RQ^Y}FuAxSv`3BKRsfj-nJI>dc4~jhNRiF1Tip^KEZ0_k{2;T+oxQRXgFZ<7%W1?RHN_EycBvGl2p6$8-cumeV2 z2Y)d0PD|#XiiN*ct6F{>M&F7i(o*;6#cPzT)aDlf6uYpO`u|F?Bj|H&EH8gh>=*3x z3)I5%_Mh1eXLf6gCysmgDAmdECH)k)t#-%f=?z>^tz>Rk>jkQbe;i* zx?{`65Gs%M0N_dkAdk0Gkc8A%vQq(Uaa^mks75gKE;D;k_ zU^Gt_S%f*jQ4XojA%84(f=rn9^fwdiW-*zX6HZ%r=N|1(ID?L?Uoz%IbojT*J)Uv@ z>9MsBumIP8JG*}-0snk{k6byRWA~qG22W3GSAGHTEi^U z@shqmqrRf>I9h-NA|GGeaU9%P+Z}L91Hvee9QSt3M=5Ic30xRv#YyV;|Fel4e_I`4+@&0?V)Ama%gvPTpFXCNEJG{^$MVMHN zyrR5-XEXt%wBZ*;uTA7HX58)4yTYH5*relH(FecSQ9!TCsJ_a{A8T-Rc@U-}S8(e_ z0%?h~%weStutMDR5#fDDty&Peg$&3IV!Oi$e>5tE_|giPVfjHpIRR!^&sZ~@K{h^c z-~6I}y=vH5aYg4dOREJnoyl?)!R`2_Xm!QhQM;(rqP=n+uD ze}4gv-Yn<+I)nva0?0ahne+x*^S~7E*nY1p+{N7Ah26O|y*;(pFs^?(XjH?h-<9cXt8=cXxM(;2PW= zg1b8e>qYiH=ib|W&g<$|)m86R_dkl?t7@(J%`wM_p%54vn^70Rq~hz~3?U8KbNuz!g8-> z819c~STQI%jgZr63Ckj#xfHbEPu?r63rb=YVm-fjMp%U<52CKPz-{AvUOC(m>;zV> zIRvYxf`GhMt}OEfLH6LQh+6G;atS6lSh5A#)hqZEo*a;4Hjb&uBLBq}3#J;ad};H>oF+C}-=O*Hd52<1=T2p|D|K=K5dn8d^2sUQjTibu2nK(AFgXp8 zV4eYcI5{CMCrYUKuW_WViGvNaDv;|IWf7)g{4m!3*(>#H?iC>{j{s3Xq+s$6cK9SN zZGqQ(U{;uyI&3(0folA%)9fSjYqqmn(svr+}Gx0Gf7p58i>EEINV6q-f zeVLu?$OJVzVd;QadgyY91Vd3@PW;#lSFDPxkpNh11i_-kxY~=y?Zh1BR97G%;!R_ z$ed;5ZJ^@}{ZYs2EDh9(?}}@$7j~}XO#3E(OaVT>e}q5@#8^Bml)>eGO>=L@i=zSc zrNW5H_QMndaoWFh_$dN)6O3gxwPRT~b+It@^4$N9W@dXx!4&HYa^qV}e3@!v==vfc zWAl4(DA-4byD<%ze>706xjf9bsHF0}Y?Wi}yg21Cii~5PZatfdnudE0!sU?RvGc7M-uMJ5O;myGIfPXyZ8ShYHKkP;zac*rt57OafyW1zD<$WBB@ zF5};6^Ra)dm#{Z)dEtGuoiP--nyNyol3m_JyNUTa;42}i>~<=KZ(F5IV*=5Xg-uxe zU>qP&y)N-a0&JX;qj;c8*5O40Of_aZ*IjZ<*_5nq?m=41v@6kYi^N#r<}a~a!*|5h z-_z;W$f5CLHTaChR}wAxRHiW?S(5Hf43h7N?}wwRl~89hai0ekB+ z@0}ZHtKim-_H3EeAHN_;*{nWM&kx zQ&g{_Uso>i%uqxYzjfRO+wc$1rZL=?w^3U3_g`bkZXho~Vp9G_&VM0dSUe62ICeiP#sL1jCGqrlF?!v6h!8OAETc#I402}{YiTd9ua zPD)f9QKxjPG3Pf~z|Z1dOA~0?T3jSl<^@Ti!8F3(QCO`jhG}vyu@S(HJuhBa_jxbG zvS+tKBlp+6D|hqlcJed_TcY>%b}^EkL+NEY4hA#ovI<(QEO#c>m7icH+k(WFR6@hi z(L&RSGRK5W__(nVAtkuA7Yavl^ma52Cl6`u#y?l+nvT~%5d-6C8v`@BP zk#4gc*wHsRQmmK&8Uj4!nuU|k=F+XGiU2Htb=lu^D9Gz8$i#P}$-nH@+}P2vg-d{#ol>EZYx-4FAbv zC11G|CX{0>`p!Z#I8Ie=Dl@w{3MX)(4CzC!oSr^Ir_`wvWfF|#&RtDw9rBZc>r@16-%dGM%q?akQ?_z<@RnrR zpWA!DimIvB$@*5HFCLnbxQp<*bzSIwt;t#43k~@__dWLLDbbpID-PZ;l#Ni>dlk-P z6{P}Q6?65)P8r&%kb)mFB!aj};5EpQuOVJUF8!g`=B{fFDF(x8Xxu%_87UslJ$FB0 zPaXx&MLVRfFrgsMQK#;)u@v=~;oNvt+9g*!C!AhN=BQ7wue5zvPgI+Ds;IB@eTQDT zEFK_3CA{g?mCM*Vl&m5Mvgs1okUh0?o2LJ68qpTHWZoth)i%e}xRAlE9AY(D>A;CK zv*1(VGLUf0^KZn&FqK;HLX-47IoHUm^R z&$WA|au{=3^VyZEt>jDLWgu7GYhy-k8I?{WcAp%i8L+iz5KD|?SW;LTo4hsfFOMzw z*{)mH$dX&7lR6N-j*TgiT_5?^eJ`rZXno=4>0kcF|8<;9Qz?OloghSF;`5i~&9#fC z-nBfnq%-VY&5TOTCi^6eVJ&=?sMXjKghg=7%a&j8MP_x$V-FKX8_45X*(im)zxH}z zL7fJ^5m$g4F@#BO8EXLbB=DKh&UDgI2271t_W*zQef4B9z2`;|!UEa)E~yXP33Xub z(vM!?O1r*F>ai?+mHr!j)3Kop$RMbK0a)wmT)14R>F}nwx%HG3VSSU4u$)jiswKg| ze?;U6zAMN>@1a}@Ni&AN#Cd)TJKnxnzaDo{?4cE%np7z<+F>+-Te~?>T$p zs*C##=*fBU_Ag(+1J=jiMoPZxY_Dp}Z)&b`4^F^~illE5YL&my>8pHYez=TUVpuzL zJeLSw(IK`$cyvAsbu9WKzJ?>h_GiEUOWzvx{^;Jna|N*db&NW4+~!1o?^JshP?Vkb z87}blga1O_VQMmAmx|LV`_vDz%G~7DZO|15N4hRmJae?Xyi!_JZv7*3iqxF?PK`*EmqOZTm^4a5M81f64$zhHH`7PEVXLmy?oH%-4J+6$75ttlL)RnRv zpX6PO*I&N1*sQH#u$qySDtsay-`>qm98p8kqBrEQcOaysm;-%bwN4!A&rli+eq{t8 zy#T-(`43>dJrwhpEZG=Mq^3_i{|B&sNk%{r;pxsqi1fnSn*2KS=;0*U>j{T@429VZ zdKko{bp?|jxcT8*tH22`sO`kb9ekXs>j-xi^GDnxg~3jKdT4$Mx)W!5ziu0^>3E=v zNRG$kk|pK!qEeKv8Jw((Mt^m$xD^w`L}Pa7T{a^q4-#?kHxG3@U0Df z_}1()Dq%-a` z+Skl|%(k(ZPR=gkASLSklbI}XQBppk8cZxS!>cEl{`!Kz)?3Ery>N+XgiX?b zDR*`ROWFGvJaF#1bVfiyKm~AS)!Zm7^_CUEUay-y_ znk&mE0QwkQZuRDC_PIMF&d%}jtcWyWQTwGcORlOB16~t&2|UB+C`nXy8?Qu%wvlfD z-CCbGl!@TA!NZ^pPXOn8@b3wF@|{m6L*J}#wMx{P3jEZbGdx~t4LgDKIzd&-F5^^9 zHbC@dsFs3j&ZG+*4vy924QmO>lY&qzX=!x(Yw?EImC7-XmHzYtri!mf-O!J=pt3o_ z8DP`mOGH5${9gH|yiddX&EZp$84EE#N6jE)?Sa(eZGGzhaXWa91<)O18I+eGk{YG` zF1hIJSc;~Rd!arA2jD=-& zJV;!Lv)ixo47e)f+c)Vj470w3Dn)X$-^vtRDMr;80NP(pNcqNx&Od`wjlE}tTVvxj z1%EZ?Tv^;&O#}R8;sD>;)t>ivudFjdW-ij$U<}eLWTy}G(#V#Hg>}Nss z4my`wY%675kTXM^(YIL*C8+LqW)PXKLNcbFbRr}IhTpsV44CYfrEG`SVSB+|0r`OV zPrl)VVo_cubVK!NRrrZEl}}Xt9&D%UY;><^x_*S>pN2a&YR*K@8%q3bLEnddf3uGJ z6!W@R3gx|T>01=xtLng0lNB^LS@TnRGM-$nBH1Zi2ZA4NGtLjyK+}FmH2N}k@C00J zAhPQF;R>S->Mk1*-Jv7`Vou~FG(wL13-rUa5Dn6P1oFWX2c9!kE>&N1cy?=IRbZt|a(4UXz{ z1C|h2>2{cMqb~omDL`3!t569H(Zw9`+fMdRqhZKLLlN2-b|^t;*ss79E+eG8ya}JQ z27-kAA_#hK3*m^hJ;_Jp=trLG>yqmpWwTPs9Uh^S|Cj;*#vo^+U4OczUi#1$YTfF@+l1y!Rw6DV;UJ85v~F7YD$LcJ4_^^LxZ-exDAs~ zAhXlAwm+tTmM*}cv-@ER@Y)sWej)$a_)HUan>CmF5NyC+BiSFqLqXxnj<_dAqmCvP zpP0E8e^p(~_Oy;QmV)<&*^K&XuTY%v?$Xz6`L6EF<1;)62G;Acs?OY8ZeGLt zoecdud95dlqeuChaE1Bx1PVv=X{2?pjRe=&%}`HMJnT(W`gt(ZhLPFqJXBVyHlJj{ z*cjrOky!&u^fwpWFqKr0y4spgLZk(f*Q!<7R2B?4h|kgMH7CKblziOkuD&B?K44!a z_Pv@@z{`h=$SEdDiglv5Yvu{|<8aI1RH-(X(j^!j7TXtXfG0VIUgofKy;XkBH=(k} zKLJ9~0l=an<%1MU)u#oCgISkM=61iJqtzYH_z><(Tgzn7U^sOmqfcl#VJ#Y9+e!o` zhidm5@I7zRj?3%CR3__JZZYR9?^f9Fi$#X_li&K)#pichqz=BStri=0#fy)91G(R6 zv_^|#yQHT|L&LNa)4*{=yIY@qQwYZ|X8Fy}%^FrSAXH{{I3 zB`MU#p|~i0cuvdpmKO4vt7Wx5ll64)7~)aHd%#A%9p$R;SQHB)ww4i7uFNB{uSKLA zuNXXZ6rUhEw&n1m;s>3gYZOb#YG~797S>T*aLo#H+Iefd23{#kBb@#r!p?Wk+cYhS z%e)>X=I;BL>cP#HTtD6};2X&U#B`%xcifpdm{ClWt~k^5Pw9?#nM!D%W%~4TYs|Kr zdMB5g)YI#Fyympk?}-y|b$BFVK!X!Cm^G}QUA6TNZhvRSkw*?_iUeNR27$@KHTU5v zDzZgqf}2PrPRZ8qH{Z$vd!``=JGh=%(rMWssMQHb9yF~AAU+NZ8x|k!ld687r_#^) zJeFlTuEm+-$<0(z0&i9Iqh?pFqS56O_}t1T2FHUc;2JbAhKE%56(&WfbJT?N5^WU( zdBs$xDA^T_Cm#<*`AV{qs%h1myIRX@&>bhUm7WsgamvlS*F*X`qlij^`Clt$83{a5 zvibEkjpW$2=6&c()?3i?D?39^4s4Y|Hs3v967*1dn${)Q{06g{LS?s=yLU0g_z`s) z_e~s~QWh>ixcI>>!KEM)LNfUK<*GvG{ zcTdQLw4x{|-_NCE)z{REc%C%ddXpP5g| zoZA_99XX>YmS$BU@wpAX&vP@~1$wqsb>rM6AP2vg=<-;+{ww5Mk%`486U=O0%o$!Gj37hiM-X+6nn@JV)U zil3eGalM#Sco+$kx&U(+K*ye&VtQuEAoRw7 zr0t*+eTU{ahNYip(K==8>i4jw0Y||Uj6Yc>>)yU_VS3u~M;;-Abi;3jaFt|}lGa-x zAD}8Vmy`;JHAr7edzF4qJW@LROA#QTGy$*#2-qI_{F>?*9{@-Ly5`~6>AH+@qY8a7 z>CiBsp7s=)k|$^P;(_#SB4HFg{=@@p0P%oPKs;a|G%#=S{a+H+n@8NTQ6NA-mN5V6 z&FWWEqtB)eEPw8%{+I7ne|G=xj0fC(sVExb(maM$;@MUV%n!A1Sc~JsgxtiP4bYrK z;3MI}aR{!yvVfAN@G}fGXBHiw5T~khD^LwlR+mH1>!*~fyaA-DU*rH;Kop_b({d1561SOg zQZs6Yc%hn>iSP6>B7=I*vIzi+Y zJM&TBivJM`@NNE|K>_)2I>d#Gcj-+btp;?I@H;K3-QyOym05Ob?XQ5V|98Nor6>am zh6)4$1O47|oB?XCV4>51DNCL+ zt7tXSMdS*9RB4mF`h?*8gz045`1Q`&Ab0g*6}@Q(icicX%*HYhFlA}ddsyrq(vLKX zgSEkX+^$VEym&g<0hoZmeRxtI8Q@xzjeRoyyNUe!$|-X6FK!@Sh|e0UTrNFNt6`{5 z2$sfS&*2X>mwQQr|KBnwHFF4*ACqr`4YQ_^$?H&>^~5?=z9Q#^XdtfQX-FH1s) z5c<0Uxmp4t3%)SlpsQp$K~Fq#vIwp(hf=gs>JVdRl+s@VPr&PpK_%>Xr8l<<*FYYj zqXG=vRTLb#o1CGCQm)M?OT2Q_(mQc~dfN?Rt56(igTgS&2I~efHu}5*H$sc0v-{G< ze@-lem3@{+b{2`U3X*UunrJ)(@kZYT#4xQki?K$Lrok0PlYsQdFEtNGslz}6n}QQz zy!2LYpdv^me$sq_0M~SD1)e6wC#)jr_x=IUUh3JRyJcNj;eU;6j>T_bp3%vQAXGo- zPdf7NlyQ8;)$&JJ07lvSKmu4_i%!dmFcMg4L}g+cGn#`uEuCzQ@PyDTxjHK++Ziv= zO34;H+ngDN)aJD_3(I8TNA$!v=rjV?fMF<;trYlK{x$`e9G>`9X|=*ve}<6R<+$)lobgJA1DFC{i!OrE|Cj%v7%p{8 zdfrPttIPvD);&SSfjCJ?Qe)yqlgA$ucr%v#<9s#!^$>kBM>K4&kn*udQVWctf;7x2 z*MLhi-%Y){zWN_}2j{Y;QXmhYE?^B@X-Rh=J)TxNR%YRl^FR@Z3CK zaS%@Q9?%Q%fnbyb5p~h8BHdJ~`ysjnYAOWqNAGB?YKTep!06ppDW8r&s1-gk7$K!l%Yy(PG1=qcHVw9E8g zD8+K#s#>1kx6WnvQxFF}L;;saww82{g4F9eqhpZMsIPWBq#6)!%Jj4xqQFsLk7IkI z{*VOM!T9}~SA|#`*2$Lu9-u3t9>4?4)%p^@UZ{NfEz9BH`VvaEsCTv_?5o4wn&Qtt z>2c$tWAU1rhn~7ux!$$qBGBKDlcbB$?BrV%xh6ooqamxfxcQLu0R(I_YKSf$a1l_9l+!M z2MCyaeyXq(N@4M;Hu&b5n2ynoM@fdJ#b;#hEdy@8{Ur>ABVZ@~pk}d5S{LOtHtzBn zw8xc@R2Na%_p4sFCaW6Bu)&R4>#qOIrv;j^D^swI9u|!G9<-%!85M-Uq`i(m-J-^Z84)vvx^l`jrXz%KXkb+Cd*nf z2F$L5RMC)4O9g-L!4g&Du2WBuf7YIiig`;XfsFCRx0AMJ&WN@F+kG16R(Vx5@lVpk zW==LQEfan0Q1Ss(a@gDrK1ibXL`8|x@v*5M!Z*8fca@c3S@6kT`2qpcNi&?$Y zK)M30D#M3qwhEA33W6jVz(9)LQ{zDe7upU6-8k46#< zKVX01Sm5JXwxwA4$rj73Iaa8qhYKrwAkbCtVvFmpijv=jRbk=$O<<{UJw`W%u6hwo ze$+nQe!Jr|`$Fac8OxS=V2#a%=?$DGe|a@uU|V%lISzKwK0Flm^RvR)azwNM@ktigf!ZFGRkxP!hlv7 z11`R2z65cUSd6H0g0kRqo7`;SSrJJ_y^J zahbS_oHMUL9ojpSN3IKMQ3ds@S@#l-)rw^vfQO#&>$I3Gnt!G!240J zxXpItKHoIM%&^{IVYl8|G-YLrdp=gbF5Omv7deq(e5P>p#Uj&{i%{;O!jy2fc%3uP z3Py@p1bJl4DDE={kxH4pVi|3<6yt8a1o0`(#TlDpg?mP>OmcUAMehhs zR+&pi_*@KCtI{VxdKSvMVk!_1M~h|P6q#aIeI8K3JOth;x1af)l;tR>=n{?T`Xg#? z|7k(9{{R&6+%s@AOy3lSE7}!HM~z*p1%^k7!&2sI1#^O#3ENiD);+6=s;n4}C%u>Q zfT&~p(S9cHn8tA$-|>L^69GB5T;&P+>;~*aC-&qmy(wcBKIQ6tKxrD$feU*GZvkDu zZUV%7SoB(kgQK7sXY>PdaUc$!yfzsEedAQafZ!56nbQ?B|M_XZ_T*aC#Fqm`&1c%# zb7>i;U$_V=8~1I_>)bZakk)z84&6^4`Kl z_v22j6-dyPHi{pX^B70QA~Z;v6vSlW$1H?fR$)L&)UYEv&fRS@Bm;MjXVn}v8#KyKMB8USW5cim&Pk+=H}B}ldyDAe!4D=Z z!>z=XLwPi78Y3T2i`*aqrRGt)BCjIOL(kCZonek}(U#AOC(DxQ1j)QdV2PRWc=nw2QwU!ra2CyhN%d!V@cayQ|Ackg3Ss* zb09?X`h9C9HFzPWT_0t<=T4R;5aTi|Xl62xZ2e?lN2P!HrTU5Nu#p5+7RaxkBhJz< z*r!K!%^hd4sHLa}jcTrgyA$*`+q=eufUwUmj@NeE-vB)T zI|;xSz)yP&a0hfr4|W}Q9%a!R!i(+uHd3Q)^c~$@m@nG6oNdchJrIC@^_dN<4#+z9 zwY%8c5bfIT6YM$o*E?1}tX(Gs;5bD<{hxNMFSfQ$fE|nDAIGWx>Rv;%3QR5i#fUlP z9q6A7oxNnJGnj<xMgaSo{onRA016Op2S~Cl{RId7IadMfYaeicFpXd) zdzcq|-sD$>r+?bl=Jh6n0roXm4$N`*D1uF>@ivl2HGqB1A^}l$v^))<3ec3#%K?0~ z+hqgnYp6E>`x@M+=f)pZfWzScKo#H-eI93zXY51Z<0(`Xya-pbgAvgx_hwKDMlGqEB5`OsApMP$vaJv5kMvE6=~1kp$P zQKZbhNOwQ8=K!L+69@_JDaIIQeHup!YS}8jS4! zp(OD2qa-kWcm|4O-WJL!yqX`x+b&A$m;F=eGJ>@-W2&}NhI24MAU}Xwl(p)UMeKse z1f{AaE6rRgb8en47*nImE0F~#Kvw)xD?5v;VyV9B8fUevy)CpxqGo9vK{r+W$(?R< zS>%OP8D8v`oN-bHOs~k!0M`Nn8PeH4+mfR?8b(UWHDZC&=PW*ACvIv2vW5h*Dl;sGK zA+=0xNPAeg{ME}XtX6Rnn#Bgr^hB*JW8qBadO@gWFZ|uC#RJdzC}{_Rd<0MOgARzy zH;v=Ua)E$81*aRmk<8wACrr-)&;i22-9_!!&K$X#1KRy~Nk_;y`op|QlvZm`)O#PQ z0AsSy?@0ah6Ta&_KQf{I$k)nK0IC2ho~BJRfGU8xk7S;|_!mEH3WMO{1rS^V=VApqld94PP>Mj!8xW@Bxu3;NuRu`6#)cmVPu0zG0b$!C`HbeeeNs zzr+5?2Z;ZZ4+u&O68_)=NP9r6r;*3ffpEUl;)IGy1;;!v4Fsh$G>F?s@cZP8bvbCl zd-mwi3-XO4F zfb_${H7;?-F~GN!^ak+X5r%x4_y7b{l~?+^AN=1_AEC8XU07|Lr@)5HKzfQOJ0z!N~y#&*jC?m;IA!=2Fw zN|@^ya2Ch=7UcO#hz4~h_U+~+J+dunDrn1dKw*6nd^c=LXrQ?YOQOPmiY*2J2n;47 zh|a`+00L1F06+ly_013937|&xvnX8ZAPlaJ6rAmfGiwEl!IRV$HxY)4UYimXp?X$PPuF(8UXcRV#=5mV)(E%c4B!xs@;`FJeUhNsxQL zIRNL13Y9PQ$V{#^Sx)>_h~w15h%^jz^%Q^NsW*BpxT8Z=Jwh`Bf*tEi;ibqNlxVCbXfzFU`SA(QN86+DGRCpVYj%*xMOR zWC^-9)WGla*?_|plefy5r-y3-LSUx^(B1j28?LkbvKTg(l$d<;Y-@*71Fb8fOtV8y zB7hILUbvG;leV3#z^f&(S-}O5?VKr1{pp?{$3>FNH4clg$j6=~Xf(f(o|s8=Pov_-fSo0}zK-YUyq(nq7Gv6c&OEcU zK+(Qzy=<9A!MS1o!I3^*5e*ykPELKNk6s@VY#UuLW8sIv(VHlFOA& z6Lc?HI&s=0SQm(Etta;kA}-DgNA7KWHyKq~J8BiOhY_qY7_++jcTT*}+I>(HN4n#r z8vbC4${-TP^m^-J>YE*F#Yv@keN$+$6`@(C^LOTz>f^yVF26{$4eD?w{W7;)<~0xu zK^5jb)~oR4WpRZOrgMT`l3680<6vIb}eb zaA%~b*9>97eC>EgT4n6f*aXI+h-_HC9!P;F+5_DSVpq$T_RV&p?5&nAxV8*TE0ilo z~^rasrODpq9zgx1z-QNu@T zF)%?9THQavE2f_c>Bf?{XHo}EQ!Ee6yqr>#tDtVMexH|Yi&Me(S&0aOoZ zW96hy8c1((v;~XY-mOm|+siI1jn?; zx1xm8lbn_;$EjHmF<}{+APE{e(2k-yV7$Ddl9{2AqSpQs7 z{ksd+|NH7Xf2ORWw(IaT@b>@oSJ%=?Y%m+d1mel#h~g|Q4SNcfs6#iO-36Xk;Q4Cc zse%PkOAiIC=6Rp@VK7J>iz*}cdKG~r3(OqE)9aafd^fh2^| zkrib0^E#Y$ot~~-iL7`OHk|s4Y`KV52J`$vt1*Brra=UwDWo>1HV2E*BCHn7Mt0g%Cnq#I8qy_a^dNKn&p6-(^5__3F;708Sg z)kj(3u|hdg5nR|AW2``HVRy?Jm4xL0WP+Gsl7_OgRBI-RAyRb(uMaPD1%`CW7!^{o zYdi7t2z zqkfF#$7cVM2zxHy4TnJ&a=C3CKwNVS#XL+;PFt&rg(9_}JcpfFB#HB^Wp+_m+~_^) zgf1JYgP!!G=kzehxv~;#=f{dy{#PokE$V8cKCnk6H1>nGas&rzc=8+cI^RiPPe4!? zfg3y3;+@7i{Wqq^Cg#)lvXl~yZ#HHyiTo@HcLWpin{K@tF;T#CFh%SBSnKr9?OBj* zU_+thpV4BYnrv{g&!_je{LGcw^4`>0eV#+&B$k^S#uGs7j#@sS$ZTH2JLv35DVkuN z6h0?^Ydg22aNj5Cc-AEL;wYQr`|cZgzm(h`*p;l?ZGn8uJA5|O&wC&$QkcN%y@oat zqX8UF$OjU3nZphI9wc}rH*Y#*v6k(;X$jXB2%8vE>t6PaC>kj;;xpD@gjztE(jz*T zK%12hV_I(^ou_s_V}`_N=&mJ4gOQFhj4Qj!v~Nn8y9))d#|)o;_*+ihEC6h|cT`6K zfGtuz9RRRp)|dJ z`mb<6v*1`0hm&3Qc1SXOrescp@{ylGmm2ca()xYVD$9=#IH2lbUuppXnqUTRehU zt{-w!1xJyXAU;F)O#?MtW56AU3ULY(VpsbgA_5UXn;)~G-t;N*`nUe&3$Xvo7l6}y z^??SE{6Pc6KhS_go~LR&-pC3dxfP;Iwy-usg-2{o@@W*1DAvQ{s)JsZUeYI=$o)S_ z%#w2`ev>yw;mk{s*=x+35M+K06eQN_TLo8-F^~F!uFiARq=!!HX%`Tqy{U+;@96Ck zu4Jvq*xziyYo@S)X%UZ@;EVyv%Rf6-8bEn@^ne=k``ih%EwQp0;|;1sYCaz{?9 zKG`RGo0Jt(VBi8Jgbevs4 zD(cCM2j@T~k`k4t#hn@eC5eOMX zRkiclpRN_Ro~DJSPwj`5ARp8TMNcfu7l5>u+0t zpRyutH7Ow9VTzSe6Q@`ZkzeOenv##A?ca)OoR79TsFYiv{PQ_2j*wnko2A)5dgJSC z^^01c{v{sZ?rYHDv(_aa7bw!A9CJUYC)6<0#ZX%pYz^C6Wp3q zBl63~iuEM6X`$aL%m8|aII#YX;A&Ra?M1C{%Hb-M{gy?Qk619$(a0$w$-2I>fiRrt z-<1H%5k}M<3zXd&fP00M>t*DR>h5Jq?V^p={?>WvJFv`gi=wk6kbBpq^66!4^K$*g zSH=c>e<=8^$w|8v#3#$etTKuEJvER0t=#5=3>fHlrER6QJ$jSH3Vx4>G++|a3j~12 zj}h?pDKz<~CJ2<*{cJorNm0@|30rn_{_?-5rh%xZJMch)JrYaIw^%f)Eco%0(ZABd7^>^s8Nu8aX z&Am!2z97ciY88&2>=*$+4f8eaAt$gIgLggrmAvYvOEa5T!%&zR}em<|53wKG4=4ZKj_DICZ~hu!*KJGi&EiBaX;+pIQCe! zVPOyT2fcgqDxyCb`KVz&(qX(K{S1s z0p-Z$+4X9|4+X#hP{>3q*Cw8GSQk$!d08PZva~?MDXZ7?o63}KF!Ph7g?~+0#~z6TirJ5+~YQDu;G^`LSndD3v3N!0m78XE3AZokP@p`wS z&)v`s*~!&)Y!T(50Z6UmP)tra)H`zAd9&dY~J`&xURpMN-|7xbICNDMa?fBxM9tr zToad-@{A`+Dh%Om#4g7}2-}mnM(s(ZMqDMR5qqRJpCtbhi{|c6uu*C&SgQ2e2X|K` zX=9DOWoXowY?`dR|F#-w=IBev1F_yX32mexG;v>NYQA?*T%alzqB5KfD~zp6|09rp z1R|;a;K9lO8L>R@m)5GxyO%?tRvLoGSt_d$TO-L>PoZ_XW$_MJ5pjhAIH9Bk#pj`1 zUWEA&trP4y&e#)PHXbZ0w7X{=-wQ0#TL*8z1PT@9UIV)vFQ_kWB4pif?n(%MlE6E^ zW&)fNq30+BH<*!|`t6DOG-KQ3HG+$4t=yxR5ZP-d2G7tUl0Q}k%> zR*48`0ue8I@( z%>)(V{wuq|QbJ9+A*`TOy*q#@w!*ly7ME6?HvGC@P(0}_2*j?COWXmgy5g$TJ1p4( z^wF`-?6a;@X^0Pafmft~0ry^E*~unLtxJACWfWL#-Mup-nruPd1vr)rU^u5l}wo2HXmq_1WT$A zxlS;@kNLY$22cA1O@jZb1m9y*@7(r6%694ucyOK)pYJ{ zc=_|ArW-?tIvU5`HO@IwqT6oO0^0?eXx3&Pauj20c8>wN>Mj!hMZ{bq#uix=69-^q zBe4~AD9e-tNj(W9gp|AmDNQ91W;T@X8HI`?b;cPe*Wfdf=ZEk61~TgoFX9UVB_*L$ zlb@CwvI{-1NKN>lBoOyYO=A5p&W8~9lau6yRq++T7qcpwI*ik8P5fN#?H_^DFGU;T zlh`ryBJ@IP*KmgPCywLF*yFSSXO#Sa0nO@p2NSnng6}np$`vz5@i9-sH_}$vI5${W`>aemeeE`77mieU*IMcH}^khB!BCkPKh7;N{^YsDr0lJ*m z`H)}wfPctqz1vRUd3wNCZO^^N4ueP93{daxZp65UfomrbN?PDM9MciSe3+o!W(VK` zhD9OoN)&f0HDDRAiu!^32S-q|Z=5A9INE=^XB3>D8l&?D4A6NCIlDvHJP^XcE2Mou zPV4h^ZEyCM(=^ry1LEhF+Y5z}h6HX2#qB*=@_|f} zpH3mY;hSb@GUW5|0g%|8uDLP})CP&X9x^aq1SmHzBqiF7i$x6+3G&EXEk4$={^&D| zNMc!F%NfGEW#?f?S) zMP7r3`y#Jpz|$}2%=b9)$Omh1!Mv0l?(l898!(10{)Qy_A@DCTpvRdGuVhCbM|T7y zf#PKI$uj9@G7N8gLZK}x8N!%vKTf+NZr>Y*f1rk32=PHma@w(4j0t$iZl0x{VofgV z1bZGLz#f39iL|=!nTPlj#`(K>J4D5LIfAqU393kFg1lEINoyoWiAlN#S6Qfsy83?6 z4CYfgFRbnWVMgz**t<#43z2Oe(4;UPWKU>ySe7d6I7HDx;GITwk497BI3uoq2dpz9 zJ%y6_$iAkiHxcySLa6uS`=F0YIEFkj+(9(W$Dq81IC&8X=1D@CtpN0reI(mlJqA(X zj!7aEbvgPCTS-pbHu_PD>RBPX_8oU9_z3K#6Y#FPD=K-pVTcbX>qREx9qa_~NU5YI zVkbf?gHlbbrbT%&1$y2it@#^+2LdK)&&SwNItXoRM@{@Ra}}ygjJ$C^r++tC-|5U@ zUPb!M14ZSW3sSHGM6epiCpN!bK2u7*J|Mn^UkJQL)`50-1gVCeGs1AKwI zjdtr3HxoTkMKoTziiZbehyVbB7_;WGIPM@fGKfEN=n;+sP9_RbtkZl<0e zRI4hL#jK1eb4~IL>BENey#Z8q-2Mlc;!mQ-&#RNE7W|{d8subE`(qXao!<^{@q21V zwfo#x`hhfYZr=nzVaz$?&(lU{I_*l#(RkrN)ZYk8=uMF3R$&!v9St`1k~-4{F>Xju zY1;DA8RoXSzTNcAHX2{{jgj2dFTBk|GQttKm4O}CH(Uir%u&O_dz;N+&Yq22}y_YjzMk!tKrT!6aqp|Tr6t;)YfURV zO9U=4S&5AhI1}3Xh{Q6|^PkN2vB1AeFRR>eA0bU)weer+QtS+aUQ`bk(s5yVbHm_2 zD}DjkR^RbNd_qrV+E?k@0RXoCK$QaS%+~|gIEl_p#WTEtcqrdOlU%;6Y*q(9f?GjE zKK8IKVzXBCN}i`J4@{52`MrrW2-k|}Ho$}pD9**9;_i+^4{ zy$5M0zT21Gt;=wx^HGvEE1bQJOj-nM*SP+^`q98GNQUZhJXXQPeN}4ho^eC{4Kx9| z`7k?eT&Xv)%waZB46q=O3z?mXG}KK4bnfcOR{X9@OCRg2)qxv^Tj8HYLG^a zr~?v2LeQX7oieyX55(uApu@NKoSjUj$92=m2{a<_)__8uSJvsL%_x})hbcmzt)%Kz z8VfH$OZcqs9of85^(7ZbAn@|q^Kl*2R2C{hfC1NL(yg%tJXxWP)=lw!6XIAwCl`3O zYw3H^6SWG%F{H1-gQ>Oa>S3nyGT*_}HQ_`U3}{TExKeJ;h>{igwGU*49#NPOnjVg{ zark{)UR>Rfv~eY60Y8(G98SeE3#KQgJkFGkTC&`rhVpqO>EGAEF%M+{1+L-fd9DO0 ze0UU#%O|Qo@vjk0hMFcAysTl3Rbn*YOT;vNs(2?26`Wp}v!gtJoA&}|JsgVyO=P%B zs6B5q#|cIlj3G6*_^3&(pvT5$%x%laJYV~CWmM90BeCW%dCnuF_wmEKit;c4)DHGm+-NolsZB8@=l$D|WkW5=i*eAw{430h=Db2*WN;AG8UJrKI2kRu z!D=SLqCbv>C^+U!uC=4=SvsZC-|E@1QgJp)aLTL(>r8^`^-V8Ds)&tFfBoJc#F1-=XC*F-l(6!I)*)vC;l06`gbjE2){oD)c-6FBoIUvGID&wQDAg6 zDmUb{aa49qAFJABEIT^C8RaSNN{BU`cMyeOqo!e>D09tBm!5Y&MH*RK)Rzw!l|LgW zy%C`^XXk3v(z41|^YW!45brP8dr2WV3lUWZlPay_S3IvZr+;56<`d@rfh?7q7nIyA;nmDIAN|=>_YyQ z@sGa1G;1#?F9)Wv6@4})rXfgjBc=i?YY9xFp6Cib+5H&UFbm)u$9UD!(88pwe*gC5N_Sm<(eWb9H%_G0K1GZ{ zaKSK9yH>gdf0~F0ih@bn)m^v+TW0qpYms<_8AMT3T#st}vgbr12JH2#kU+0mN1RUeC@$*AL-2Sg_Luj8NvX&2R=?n+W0A5=MOsg`qo+TNcYbsFJGD z3+KB#26WB<-4imzqBx@E!~Gd%a5t67pjOKZ*@YSHq2aPdPMHV3OELE?SJ=j;`tKYs zbqlc!M5F6`b{eG!3huW@%Gst~xz_j4#aE(DotJgM3hHx(B-ZDaKXRBfACg+_<(D)8 zR#%QZ7q}J!@(rDpfW{5la@3hR;HMOPmJKZKKAoX{<{ z&{GRIDCl~D?|nZ3{I#*p@)q3UU7Yw12(NEb-Ou;jaht!L%|SX(jGtuQp{_VJ7yamk zmYV&nKM#a59l8{Q_SUqexQDM{;6~`ag^Oy_>H5=&&Efb!-?yop2qLK`O_jOK?w}`L zi~ly@%n7aTp;eYFV8UotFo-z8QjX~>SQcS7_1*TB@q&Bt=6-y2y`WFJeLP?P*ClZ2 zbPf21|HSnoMejR;=q`T*+sSy~&CTKJxS7kdh+pbj0XFJZWd1+?fV=w_yNj)BgW~ID z-~ZUCn(Dgg{=XX4e_E-clu_F?2BeTn@E3%D3pP^sXe4rhlctd>i8)ApidCXMcoG0! zXDeT|*%A~087-2W9M0`e|7Le77XS%qNu%V5GBi&CS4Ki*5syKoIo)0X+=c|HI*Nf_c3d2i_)l%140(9DqmWK)~9L-6*1~ zg2+Mu4x++4XNY@Dkf{|zOzJ&niEFV$UNs!=u|x6#T+Ncq(5fV+59vFJ4{f~(!wXzH z6w}ExwT_iGTi>fswj~BY1*8y~t}F(jAyXB4rLdwlLch+%L=a{L3G@ z=bEZw@<9>e^>VYflW!iw9ay$mcncaai2(Wl98wUX7OkI2R&-f7h%|iggvY=sK?rZ^ zEKx3#0!8Dt(*~gP6+6nMyPTCy);zTkAG8M``pl_+)f5tjYDU%!L!GSG1Rg~^vdcsx zxg%i-j^F<=vj<<8p8?G5)g<`uo%=AV+48CXn%Rc|W_H5kJzc6mJx+>%J1D}wz#FhP z6p%r7lhm9s2j3^>J_rO_HI-8YwvZw<0 z4v#c%o6sibP}mDPQ>hn3CAR5{2|+oJ9{E`UWmg|y=dib|#k3w*{RHMq4C+^|~$IC4YVw+apL`^*z)`(Ai7x6X8ZNO0tp>*d@Dk*bQC3eSpP32_aN(WFYx~X~q|2h#=zyXGlbM zRWX4#qKsNp)Zm#|tGBlAcAd<{iVo}~HD#4gXvR5S(rM zqQN6@xy7BCL5z4^^3fxf%ayFgmQ|^>?tou0?{0Y=dM5Alix-W^{X`MuQS}lFYWCbD zy*2>rwtgd>?_i?4m%M2Oow)?!*myIpYcXoD#SHpL*nk>-H`d&6psFFneH^S^Am_ZQ z>FWRqiypA|fe!9kOBS$N6meO2`u6n_z?z?d*fQs9QaJO`DH2B%7ea4-ahV^jOTj39 zn4s6wM!IlH66-6MmRuMTN9oR>wo|Okaz7j9uzSB>ShXo`zLbc6(kCxg= zsAk}K`#MCs4Wc=UGoJklw4bTSyz%kw;kV@31OsmFWFgPU8`i`<{ur ztz_V|uWh#<8u=Z)>pmcf#bsn0Z&(NDHGaTgylTRSt~sTY2$uQ6tQ0ZiqX#k=^YuS? zkJXrYD=8!7kD%WcbQ`9KS+jb_#qLdjyuU3XaXUG8qL=YS38U6wQ&`rPW)w{`L03C! zdn5H?Q8X;XyjPgPbYgDB%IlT&v|Q};yg!?Ew+~X6;Tzv*V!xBgsV)RXfw|Km{DN4} z2fzKDf=Waozg=LnhlEqEc*9t#iL{rpN?AD~Zr5_GSD+#)c$El6sEZz|kR?HOWmR^q z9jmXd54>QFO}@DBnv_Yi_)wONs_Fj|sFNV*`n%IZ`hjmcr`{h0=6r&0{HoW>{?7hC z=Nb~YzwvRuM;d&gK`gGA8UmC^0^s7|OS(xJI36hn%Y3Wyv7nrkdMF*{RK3tctN#w-?B z3@H=vomdZZ|ImrMdb|Y7Y1G#SP1CRQ4E_-Jm;Lb1y~p-z8vY1%+P+83*?Hsduwmwt4&1>(W{!ae2K)n1YS6mJ zE$Wuv%)pL+L{Qg-)!c_Iyg7x8O8E~aIzzH_h%hhj76Fm&KXxa|JeKk86Y94olWan*> zfyr`WV z`q?+%ndd4`>&*?D^9@<;^ZSVR6Ft%j3QAuh!)y((L)~@4WUIk^aS#&Xw zx9B7~8@&xQgZ@}|y`X8j|OzmCxNTsIJ^9-+gO+I83YQ6gS$UQJ5Q&3f1%Qk~L{)q?CrEwR?Bn*~|V z^1D^KLc3&L5db@1=drh4m`G?^E*xt8gY(zPod+vKm_DlIVSp*5v|jx=zP%n{dB_y) z3>{KeqH0Bgl`LzWU|duS$`kC!pr^GtMqvNU!fwWmS1)&7+9)NfZL)yfJaofZ2VbPF zyfv$&)&Y7bYGaeq7+U)D&XS#6%44w#`ARH@CQEb++TGZiYduOkIQ(u9fT33Eq|SFWR|72mAeTa0iPk z@06Y3?IRRXYVhL}vbrHF3B`V8T|gGA=)0%snT0TCCWH|psAd22GYul$vr1fc!|XUh zWN~BaLWjMaRkH(8F%9leXW;4hNeoX?1KKQ8JJMgmIX3M4294NSC~?>F@%jXN?t(q{ zKAWMYS&lZ|wfYj;Tb?TjYTC5~pjz*$Q|;n_#?`sGnWF>w7{sZ;(*wo%$dc5i1N`Yh z+Y4O;%(xQ73ogauTR~aMSg9m@VdT|5vzs>t0PWnw%3A4*cFraz!h>|o$|?UuidAX$ zPV2NQu*Q^Z1xC?)b0eGg$A3#+ld8B0+b{(g!e9iOmybosEuRzF0pP{xmcZ$YN|T?y zxd1R4fyE;@^85GJFZ3mFQ4B=F#^%q_1(z7E{+Saz@V5C6%-`O~`f)+>Cz*Q#R5clc|eZuZc zpWm%bh?*lfvo=FHL;PhlODb$jXgBgtbp1uir;hF*MVv?ad|Ukt{$u0MS9J~%;otS~pl-*8%cQENn4g73WvG!e8Q--6+LG<65C|vU4GhEUf zw?@k(O2_dU5c>^f8g(}M%y*U(tloj(!4Svpq?*ZEZ$slsY0(PqsE@KMc~ye~H{u}K zY@uB_?ty$Zxy#ThF&3nPJ!pYRQ}U~+3xx6eO3(W6fLE&)WT!NjY18dNOtYFv_kMqJ z>O|YO)-F{roSd{LWAu*vB)-TqEKp68xENMJu1bj-*6dZ0%|FJiS7T4_7s}t*0_^=<#fC0m zq2pGZhKQJ4!9%s;YmD-OmlL;pGw%7U9DLGc@0a}$=_uy@4pCE)CpU@Jnc?V5HO!;h&09T{5wd1HDUb;0-dA+mP;ph7ELRLj&&*<|Vi8RdFDmwLseBwjO^% zZMH_T3af?&3S;VbVnL4tzRq{akJ}oeE2~yCa(t-V(*^Q+-QPl>X}U)|%j^+vfKZa4 z3@bAUnSZZMUsd$6eCYeJH!Z!!x`(ZeM|Li4%(J|~61@rrP>Z6OkCyf@8^!@~zZ?7c z0X3atp*sNAN&XW`P(k~pkO83t)`_-!YddP!+uXELXWJ0$4+)%Fq|&dSy?H*^L8M>> z_vm3CKuAe|P$I<04?p-V>=(PhBqFe2^(J8*f$&R+{rYg+QM1I`a9momL{;qfPKVO% zs=&Yzn4LWMT>)tWcGob0NI8u=Fn?m&d*|uLxqm~+ZQmCJ3J^+wjXqdF5T(;t+e{2v0u+=ATp&&H@?%3h9mb)lXUh`pJZpVn8ZU(;xkxsYGoN zp_d4v$A=Zs^2ePLHA3UUNdQA|D>h0yo!?7!Ri)FxAbJA=%Qy7h6ifqVORM~yfEH5^ z$qE6D)0Rc|2C`W6xoW~`tC8XDvSF+Q+C0yE3}%m=~)cU{b0(L zz4WtaP-?Clk&TZT&NRDXhgr5DQ#pBfUp0fEN0QjP@X1iqE^K<3c&+w*cBZYVgz>cU)X=vQV#f0@3hEAJP~pgvV~hk1uL znnT#(s7!+m5mo2kO)%bTmVwWFiyuG9D-)Dr9Zmb|-7y|{%KfH>4>6;{KHvNnKcj03Nx><;m8lfoo z4WORP$DsI@cS&sI#q9EcdC{H4r8ie-E67~{CaHFebO4(~LCf7~)+as}X)!O!r$g9oasZ%G9j6ZU&X;~%Y7OPT|(Wzvx7U8A8R;vEE^V=5AOJKr_j^A&fdM_vubxmtTtxxdBrCwWU zuWuMNuPXAY8W_xP6vzXGN!t}f{a#g8L(rKE%y}&C+=4stDc>q)wq!RbZr=d0N!*g zgCHx`)T2JF$kON!1^llf@UPUwF10%{ zOdCH7irC9J>~}ldjd?Gvd6aFl@_WdRJucm+Ag|8Jgg)}`QkM;=A~qo(3qeVdW+k?n z#MiZvR@RvS>=MnHZmxcdy69`TfxDo-#!KwFv~BZWHrp5bOfa7BH6DFY4b;mX`33a| z(IzThaa))I6JC+{M!H?B1%WKV7$ufRbWbREke4u>dbfJV+iNH}7vPQ2mdB~Tx4(bC zkGc$45A6;Z$(6tHs93Lu7ZoCNJ_E_V$vw@~C34}CuGImDlImK$nPIPQwt3pq z9B{<#m~y%^7W(<%x~+%sn$8Kmp-fPvHV#iO!;SZ>*NwJI0OHO<_h8SyYX7F_>?Mnr zXjKmj@jfLXuG)RS$ z-t<=aiqz8iSfYR23!oV)@Fy6|VrZJ|t)p2IJgc&~U;R_rzajK@a3Tku)oDV;v(Vyu zSiA@jpak?Lg{W&U^=>_U_Gc_rJD}lpT@gwMF3Y4WUOldD8$KR4RSfvH2h~oh(KpA{ z%60bV?Be};KMkinrANQ#-qdGPuaBB~P?keNT#8XH#np~S`6p%EQf9TP_R}J#^)>BB z9N4dN{n<5r0~gcDv&sXhw!PR^H|L;#B}~mxqv<^CuE-b-UlOL4AA`+9$e9Bk0`ep3 zg``YNV6%?^$S&l(7jldjTp8j)>AW(ZUiI$6B(`ETo$5nZjSkFZ+0SU=mFYr3qHlmvGfOodR^CLReDJ#RDQ?rM#l5v2^G6K zSB`wP2V78D&wQOWZRzQasW^Kb{JEE&N+C%WUy=|Lpz&a^YDY8zd($CNG z6v@Y^9(oSVJwWePuzrH}DY(HTPsKt`Vd?kiR~=DvAE$m;P-DL<)#8Sv#$aSJYb-E% zb9dQd?9}f!RC{H|MBF7bLzv}E_b(YMOo_>qXH6ySC|HLNGeab;d@tmxuFy{J5204m z=ul6{yx%k?CtAjNT!b9=3C%;ns4@0h}PF=$5{17@eh$^7d)ZJk-KbXfq=WdM&V%sJm0)twABaoAA&OKQE8KGs<$-Xc3C-_O4LrrVgjh z#vI>Ds2Bj^bG;k*YrSaYrdEylh$WnfgiDI4^Ug!6D?~QUHfCm}eA2S&Zpvx~C;6AI z32O67)*&yKM)s{qVNqs^JVjI)o*UK5wu{l6nH*$O5||C?(9{jGOy)~QX?s&=p4Kjt z#(mjGyh&=R$uGUZ`VLdmbuw<*pue+BGP-;g`fI@1lU{8Wqcr6BBhSyPj^d|t1~>^%@NS zRTdMzcTeodm9F1#6m|UtQMYXaBTg!&gPs-S;JB`WrDZi)ALt>mFKo7ZPJj60yY-Y! zn6v^(SPIElc6bYJ$u2h)F@#7oeQr!wQSii>9kUWT+fvsa4r(|&DDB!eUd1HQI{FAG z8E4UB3OF0XN1(ew{Q4`LKcnDt`JcG1gD#5oPp>jPvi6d)cfgX$#q?${$CJ%|2uao5 zRMCo8rT#PX$H$MYxIrj2lq-nw?O{0IIL}k%V7ac~?~0gBO~JIVbJ6p3xuwyj{bA0+ zVF!{#^aY9(o_O|TJ54>iVtrWZW(AS69UXA8rDxqCvc-1NmxY!qx2_4gOx{1G9{Jnm zcq>7c6-hpxi&gPBBiE*dnr+=ryV~rO^PZT3ZMEptXcjzQ*EZF>T1?-b|8srfvQ?h* z9k8WrC;uPy$-j7|{|YJ^8j1fWUdgU!LRsz)rV}+ReDqKa7MSASB(xS?vKk1mHf;1EgWfSfQOO>xqm zpMkl10*>_lop59kmgK-lq6TUiV6S~f2H0y!PDmABjU?#TM}3dC4U7T(35<~*cr6YA zgI@Foi-%uNJiuXljcXs0_VX5^kjww|Ux%$6)>iaP-`flW?^sKIQ0zSm0@w0A;+Ml# z_Fso>=a<9Qi19a&?*De!26>!h0#h`G43#1!gP(nQ*7MI&E zy3%Zyq5jMK|LL$rmG1b*VaxoF!&Zl4U#150e>iMk(+n@{%|6p(3i@O5f_!jGW>GS3 zjm-N?qTAiXFjtKV6#_K^T1@Vp)lh&&*biF3YxN-C5M94TjX{@-AoziEcBrTNks(GP_&8 znN5N?2nu2A zewC)eNX9JxEa`LH90jtOn9+al(wOy*+wANf3bl9wk@ab6imwsH#;7>HllDrail~4} z)drC_K)~>ch*3Ao6e#|e#kR=0Ji9N#`z{2KR%)nj0-CjfJT>tK0T$bQJ>lqKfW@|8 zUtp39y6hinZTW*Zt-Lun4EWK%)LQ)DzWpsM9{&o`FKVrO3HZz|6gYaDjBfw7&4H4{ z;tz8VRON9>cgP`3RP7zd5!=7d%>r1F^3`B56@WG6ty5j0$0A%6%)%C$+b8zLlyUg8 zeD)u^3lRQy-a^2uh1Hagd4$l+)I_C4Z<(r z11mm2o5j4W%-vwF+6**u^O8`5a4S7%OMghqwJgh~%h%B}J>2?mo@yece0globpNJ+ z*Fb%FY;{O%_K)NE;(P$J#bcmJw(FHp0Y@A#f2xKWQ z(C=?apANS%%q7r%WPsG89h25&>QdBbRWsAib7svD!zWK((rW%6sC6j9C@$KFj|F2wS~oa-H>iX+k=`7glux{X7m>W) zanOk|(^>btH1zRZmJh81lI6$_*_FF(HpwTyj+1=jBBjVofN4BfU`D0Db{qd%BrdmCJMl-P|jC>Id$!sZU4rHy_}bkAKOvE1(q>_*Bhj z0`YOsh^qc{g!rewbcwDyCaxiEM|!v9FA_o{e-9wkGM`>wl@q=|7v=6 zNbnsLw)IBin7Gq}bFtaQjqNO|?oxmmWy;+^ z&ffD&ls2Z4{TWj*VZ8#o$`p5w8B1yTsIw!2_=5k&$P*U&d*Zl17S2W$dk!wM_q=I2 zvVChtc9XlkLC_NtT#p2$X}I{SQ=j9aN@PbP2l%;ad!yW2@Ic1?YHsFRlB`_& z58%utMyD7^*NALsfX9~geiWLYl}%{gPWT=c6L7F4ZREhxgsTq*@Ysrdd2Ca#-B$(1 z$a+Vp0Up~47t-q_J&sXX9HFL6`brzUN!Y_Oj%eb|=>kEbGh97I_NR*8ml=romrGr&8DILxC;xN*ExFg$a8wQ zXk!S)`rmT8?3c{CJe+kIzuh7yCpgcg1QOOcr79CHWTl{Ef$9Zz(%2r$dA4M(1I!6n zGIrpw5JV@wNsHtt+bh`8UJ0Z>EG^Vw)u&ME?Z(+tQQL6@pudN#t3o$!Z2v}OW)Pkm znT?UmZZ&;m!~kpXIjLb_E+OI_Z{M18f`*bCa&HT7>RR7xsV2$0^@n&2oHY@up2F@L zaWxBBVmmZW4zu`NPyF5Jl93y%yh`Hlm{A37n3p{uW0Eu>qw3nzqc9pFM zX`3m2vbPJUf8Fg)==Oa`rXW~|O=TnLyv%G?Vi+P{;WbnJn`_AzeuPv&dR9?N_IeaU zrL1A-h^ZWfV9{YVgE_x@ttqNMJHmu+RI{N4gX;ZcusnP%UKqgsWnG=Scp<`r0Lgj! z@+U8z{dXm!63ndhgOdf@Csd8{F!v3`Hz*V zbd$E=hGohoJ^@Ru zBo^$1467%Ssv~7R4ULSkx{Hw=tnI&lj0-E9Zli-`HsH4`quhLI34RQdZqvatVmW0` z`mk{{CFmMlz7TohJ5bLlh`S1FG=u?-r-Y!H%RE&5o+3|H7$FlL4@)Wp<@dem6*Y~U zaPQtIp0PkS3A>ge`rDb4K%0*eu&BU)U*zC?6*2$)puJu?$uGcqDyb!HC;|PE42T6H zeUlnyjDsq5gnJ4;7dAjrA0rP6c`Sa0w$Qx_ z#!OL=>gXWmJYo$~lix6UiP;qBsk2GTV7^Co2ip3VYqt;AXWj-tIZpPn`z?IK`B394 z>mq2Tg_58y=BSWA%V7}0u6D^mfFbz2x(%*q>-6tFUg~uUfD}f?J0N2Tn|E9AmPMV~ zd2QK-ZK5_dfZC}MG+Q&f{U(v#-NTk4=GA}`_g)%IwLgY-;sf=CC`U26Q6(RlqB^IF z*}yEI(=vEP5|G&YVCjNkR{`3kAP=k4f&9XF+ zWZM<7M#>5cc~O{CU6c*rcg>GqsRZ8vh}wUNwH}%AxsNgg==X=-^ZcZH{4QJ0av1jT z{;9r=6)Ic(gI~B>z-^i+;5Ln)YUZW{QU{!O<1=q_ygM9ln+Co+{R#e`>>vD2WbQcs z`8JJ(@qgc@aUlEX>3;_906z>SE*VHR@g(XVU3qT}j|-HNY9X7PH2A(J08Z1mvk9|v zvIh|~1xa!UP7PJ!KmPUD!iv#B;g3&{w`tddfTr2j`qI#2RE2u9q7G{6TjE1i4&SUq zjD3E*P5Zv(u%2P2%$yNg8s}fDyY6yW%PSjmq|}J!dM*1Ag1Eko0`Y-cud&ilfzA}E zXXHy#2KCeyK+zVP3s#8!rOt})Mw|@#U#MF6q5nUscHqBJwH5!OYLz<$b^)kb_=BL> z?{)O?00l@zmq>*#K>oq`Ob?G6r0U0I1LRFBrqWXC1&^P21q>Xjc?KYS4E;B%Ht#>8 zYV~JYrhHqbhl|)Fo|mV+L;iN!X*6U>Xt z?pF5D2~=MX2rA@$O5dTsOplRb&%(_J_c43zBt*#^e6K|=z-03nw43YzOTc*OUsP>1 zYR<30j6zX2;o-2Q$8UpMJ5wLbSi!FVk*y6>!WH!7J7dE|qV$BlE7>@iQu>NPtAwq#h?NOeMMf!< zEt#v9Nt?_?7%D_*SuI00vdPbxPT`NUOfs^zu6D4Or&N*ZMtK%l$|(N<@dg<+!_Vav zkt1G=6HoPb*Cjk+3Vtn+XGY>Kn|G>{|E9BiL(@xRAqf`|UkemT$4;0sgtyQb+D5O| z5#b0#h6MDw!a>3~8cB<3URMlIk9K9SP$3B1&`nk0EiD_TXbRGJ{mT~BDkBST+Hb_ z^q3js&F84x`>@Qm0W-*BoBZW8Q4*~KhyzDTv;vryJLnns_MCVr?`8}(&~ zU%roE+@dCnQu&2NMahs~^*3PB~@bmn@bNEksllFbYWELLyR{ z#LfA!-R843aH{>PS1Hi)a=(Q!2W?=VNVR{`2peMrfzaZKI56I^?MwZrvk)>mbqN1T>3P=#Io{me&6KDHCtiK!8M%jyD6}D32M%llT~SsyQtGLfhCXVfOD-e z|CsdM)FHM0K18(eOEe_%jvip`iumTSQ_($s>w}3{? z;8*+QTN3V@Y;mfR9neR(6;B$f01g1M!!h4Gyqa9 z61xR)U%G5m3%TH@mOFoVsm;I00v?10Skcgp znAs!mdYuI*=%AguiF*q$w0Oey4N{PP@SjnL(p`}VZ0evEprA=efhCaxvSDDu!;VpE zi~>k``;aK!GJ&-VIdzVQkux7O=cFWjd*p^3Vj`AA65U?C`^g1bW19l$&{qk6UM80b z9SIOQz%A@6pTeQ{w6x&*#Hz-;k$*0vw3?o=U?QaAIT~6rEXu)E>*C8}8~u$ArP4z= z<#$6|lb&Qjc8EV)@M5u_zGSw}`;j_(DsftmYDmYRQ^Eu=?bd`TwFr-{F_+f( zikPkBVwSa&8s1uaVrP4`ocYV@I7m=T;s`C%qHGpAQv#0N3OQE|_fP$^IjP>$xNG_eru6$^oR>f zk0;RTe=w)dN;tM4oFD;_5Pws(|DHQkP|DQ#L$!V7=buxzz8DN4!Lv2fL;I;iKIg-S z2StskzxYn5ieM^mWe|=BbR+?@evhh>)90bI?DWE?ysOq#WMNW` ztmgWO)9O6A)+0EN#m<(TIWy-U*xC$=Vy2-9y!~s*>h0YW10EP}EYL~z^)-iec6}s^ zb3#OhEjfVnvGfn=W6a;S)PP*Extf1r>F!}-H4e`a#T`??yIe^r{+1%sF@(-30}Zvh z&6*`9*u>6G)wQ~<`CM>=tEpp2TTYDyNLxuQOPc%8x{jCGCFK&X5J37!s+{z+w?}sQ zB7GP=Hjw(!w7X!)8^x{}^!@z7qw$2t&aH=hewve3Oh8L|FJDn!eRm2mtb}FV$5c}h1bWe{q`GW97ngOZ4lL_k@oE1f7 z�_Pv=#n_l_PaT@y&{4+#iuS4>~3;C6BaIzsS5*uaagBXq=()?72wWkR}Uk7fkS2 zF`^tc39zcDoVaFGP;w6Ec`ojs?U$x+$+%6~$fw;_P=1LKO-dZQuIo}RfHzdh(@mIm z83u>vEyb?qb2?gh(Da%&z^10UAH3pR_v8jlIy8nsB5z?YX{<__^p;wFZ&WkmmLDxB z=aO&J2Z2BX;rM+sYu?IzZ9scM&o+5N1=OxUeswTzi;Y()JD}$E_y=}E7DTv^YZZ&7 z-)d2l6wO1{+Gfd%Jc~xtb7dPkk8LYU3A*gM#F1q!9h11!Sz;jX5OUStN zHk9{Tv*^1FtbtRfhpnfAK72y%J=U+b10zc^;q zWKDpIVd_4}E8Py5&;1w3Rr>e~a-7lyS;JBB@1~zWv!z_l+jPZ%S}ARJ8Ilt*@)E0G zB6Nsa>DC4b!Dz}cwA;q)B{L+8wd-}J`_;DDrbrwzq{lcI2cO|&#TDkPc5r^{jq0W2 z2KsDHy?124qCCI3b3fj?UL2mUuPMI)zR}v4+SsG+Gcdm?G%s)A8L8o4*8O#8g$Al? z7YQTpNdN!Qbq?%xu5G)G-Pmqp&e*oq*tTuEvF$ciW7~Eb+qSc3*ZRKAcmIhwkMp_i zF-9n0GRJnz{(Rr=LT|=k=<3$*KY~4N-og$3z$bKZ|KSPUze`G8!>Ldz#Wy$n841p% zzx}9HomAkcu{=mrVmQyI55T@GXo!|6(B;d7CfQi6vp}yVK0da^u=lb*Qs+(a{qs!? z1FCXXj+sA(aJ8Skef>8HbK~2vkG0+6tZ>)*s3Y(1JK~tLAy*r-b3dQY%g>iXk1Y)g z`0<$EJ)De0tGYQ9;0R+fQ;7FxT1S}{Sp#w(6H&snuK1hvwN6=@*b!(P)MOUcD;iKK zsCOmvbq^Sm6?|c)KVNWULj8Hi@9tQd%CQi3QUxia23{@$h5;Y}1PT3KB^LnU8SJDJ z0)&yZtc&#c0L(IYE{uhWR;! zKlVUDC_FFle76o+yZevvqAtXT01^nOcd_hT>!n1d+<&XsslZ_D(v=JtQfA4sA^ zEVtFUuL#^vYrpk5G3&~ChHqBa?wDJxe*LJ`2zE^(sWd1h0O1`}Ja`_-Cg`m$2#~vk zQu>eqHNjpR%tqTu%zq%UM8jil2k{kqD?jhei+?)|hxmZC5(v^Ogb}{mMVazM3jLvzrUsIp zthE8ik7MsJw6DrJ&B<9OAo#Y@MUL(gR^F$^CAGE*AFPOrH3FaU>1BQcPnNUYvWHbu z1$xglT(^m4x_=C-KRS&+Y>QspiUJZL;9l<^))WW1g~tK+mRF#Y?`nRExtI3fW}hb| zpk)_#R7wwSR@8ZRg_3*-htihzNONb4R~powugm8=!E5u6L0h#F(qg$@AUOx7{HYihjWZ<30K z9MOk(wi2|SYNad78F^@d&s{wT8touxTO6OWDulo9U#?iVH6XBA`O}B`Z60b7lw2sY z8I^>R9GsV_gTqF{H>J8qceSK{Q+l)m!UaOE);A5}foD>oQj+c`Z==r=c-hGeg6N$W z%W|!Om#=Za8Yud-Eo7}nJsk_h^l9_(zC=wB$o;V(a<19d9sUulrT?$?Q5W{Ft0dI~ zjr$~cx|wbE;v-x1YUM)Z^H*Pzvk($EZVf*0HV2YtvG=+}+|Eszuo<1Q#wWYJLkNF| zm_9ol)M^m)2x@tUFpVXqOn3p(Jrf{^5VT8yhpq*y#gbW;O)@n|fu{Bfwrob+F*XN% zrsn>Qa60H|U>(t^Ho4z<(*swj^2&PnHEAWwbqoQ`6^U3@1)eSfrf`-*bVr_xJQ3C8lQvxRO@Xn(q` zrzQ6XL9GT2l1m#WGGN1wC8ol$0g@7jI2Ob&F#dIUQZ6JX&>MSLQMmEBGHwHIu!9UK z7`qnK*`M-2Akx8m4+7A<1m~!CChOf^#oqI$27vmMLtEn|CHO}atlj4507YYwy~lP` z5UP)~8ZE7q|Cjx+fS(G7`^RWcK76wq0vO#bp!Ff98+g#c_nu}5=|ca%=k9-$y6eMz=JkW5xVXKcz+p^@2LS>2D65LThhPWYwy z+cq+xOR)Vzem{Y}EP$h$Omi$r)5u(PYrB%beh5ON9~M5KkK8E6q8xHIbFu0)Rq}(x zUIDs4@3)dM`3SG<$11_oR5xS5hCchwOxIp!`LiZm(GBD9z&TeRxM4kza$0=O@N=99xeStpRdR3cC_ zVFp?k-E)|{SJdx*bLBYexHffL#Th66kml9s<#Sg;{Mm9^rvuTvGA{S(A3gYN ztTXXDgxNb`DGEEXJUUO!%+w?DMJCr{viIlc${t(R>RY{9R=s2PWt#9Yk+y5(0*rma zxy^UZ?czzfqCP%_u5bghWG_3~s<6sIY|v;{4FMyn8lTN)#061ca)Qw{#C(T`sw|N zR@#~j(ma~-VXGGbF&aa<+Oug_cr=$B1r#CKqIwi}zF`3P@m|^mVhUW9C#OCdm|a~ON5q)l zdg(?N+EJ+rvtoq!e#m>`I%yd=TYobdFp-m&k*G{a`{B))z{o}s7Toh=^2)>KD-zmx zE%z;zDPZuxlj?^!=NHcwdUtADSeeGYZz*T#UO&=kk+%*=D_d?obtuZr@MwR897-o2 zYtXLdXtu40?9i*|$H^bi^AI4dk51i(H1E8Rs%O1O7t*9JQsDqb8TfKAQIB7nx%@tb<$m?*Z z(f-=4ON%MxLs`6r)}?DaH=A8F^P;hH^p+mZRck}BdTd`9{M0_%!O2a5Xg%b>PR1L5 zEuH^|32=Sl8ufz!2Q9h1(9}VWZm#)})Hr5uC~(nFPXe;{NNqSqVY<=hP2rxt3ZVTWQ-u z8AJKioE)}wY=c`fIbZ**1zZFh_{1l=hj0Vf@QWS5tkFa9_jg2h!#t1%_?kd2JfVKh z{AROyFn6x(MQ9>5+&AFmXRqKfz7pOvX>@!X(SxVp^iKJuWgs!q+02kBfg-OW@$|hQ zMFJJAEmHq6Et`E*;w++;g2d_FdxX3LlF&NXi8zq9q1NjqiMk>Xt!T#4ONj()*NMJj zZqVk)n@l6Z2{n4Sc1lUWzP4!e2VrfJxY+2_)A=MPWuGluPIYWswuX@iwF0@*e5nhQ zqS>}B6Tce8{jvpi<|6h%_!O&Ic}-~GALHZcObe97F)E)KbIvXfxLwJ<*One@8B~Ka*IN64y{uOe)%L``%2}TF zTH-&wxHj<8hU^bHNHSo6Gn9Bx(``~14p$KSI*BXKfh_x%Iw2lFYSg>?) z!_z|@7ez}rAAX3eO0b@zv;44O|H&%Ng=_BY&{4HT;`*|6A>X44FD$P&7>esH0rS)iVVi^2)%sETB?1g*r0;`5jRXrUpTm|RCK((q= zFU*RL&-_a}M|ahi_y6qBsGdYT`a4&W{=-~h`j`08_`jrt1Ddp(a;(NaJV(E9n;LjVCZ z66)*oElD$1eV(5BeJ=6eHX4br)^mlgdX(@lWs}0LqGO!K90xu9xI96L%1`#5$(I)# zb96}@H8577otQ4d5K~~^#kN_16olG&`63743pEuX7XQIWEPjj_j#}qFpzn(lTufR9 z)DXNwASc9`YzVXZ;Yj5%s9pLu%Y%Nc+W2~%EBq2;-+LIh{3x+=7?*JwubC_Cc_{bc z1s#@;lP3r-#wVe`{+o(Oe?YV8OHIZ4&OMTv6emNdnT>bTFpPwy81UgP{C}!uemyrtXk$Ft6;Z&$`3dh8!bmK&6*&-y?OLCqxy#QK~5zZ!z14_sjO{as%js39oV z$A46*9fx+>+D!KVN5+fTenW-xTA~SA3WVSw_T}IbWATfo`T$jXv2#XW>B52ug88*g zlkw_hUbvK$w(B$k&|e2Tv56b%8X6x3{W_Y|xk2~`G|KXd|cR4IOG)`C)`Ke zFAZd1_5I6X+KZZV9vn)vRTwcC$zGJu_acq_g-SH)GEvxHkxkHwt4GtOw7I9iyN_Y< zAFnv{Ik3{yEtD22DV;{4T=Bg+poQRiZW3hlh`>C_3PPv&N*y1JAR-8g7mEht`mcq6 z7F7aGeIkmw=E)P<(1J%`U94otb)no6+MZC*ydxcGcK3?Ffh1;ZV~|j&BJZyPkMFdS zzD;P2kEjTe5eaT46PpJnr>6<97ZBLx79|$BEL;dHj|)Rwg5_$fh&&JQ2aD8_Q^xT# zs?LFl!oXo>I!TeAn#=_33<~E0K;DO^Bv&@5;#vT9&KTWUc8bKP`&R!WP;QD41{O5) zW^k!57&Q#|D8vDz zU}TP{b&}P{rihpMNO!o=q}d5H5rOPuhkkM%q*MqH2Fs}RLA(9>gQ|(2AS@op5GXPC zCX4%zg+S#y@3+5Vclet{-Tg@tgCzG!s$Op=eBFMqE5MEJH?X`+$Y_uOv+qgAJ2jTX zu&R_oR+2LT%jU+b9HdfZ!QSJgnEgeNDhz5DD$4N~lErHj2%m zlA-E26%t#Ib&rzDhznVJ@y%#79=_c&RQ2b&-e|!mArSZJ`HTA$>co+Ex$axIF()r| zbT!^M&uMK7q8_=MjYE0(6#_44nRE)$!XXgPXfbPtp5Bsz!EgoaaAnq+Yj`sq`Mi`7 zOCh9q`p__WQI=8rs1)u49WLRoN}K&dtG*anDlcRR{AG~$B~(T2cZxfU{=VcXE-s|9 zi!lyqq$c6g_m55-lLCGiES?`y)1~k&>>>e}ZEAZ^v?SAaM0+~bg2rGwQ09oOFa>j2 zpJ8fW#1=%VU(h+|XBH(PrcBQv)`B`K2D))57p0g1)U0kH;X@ z&I#;R6ef|IF2JB|#CIE+%q_a#g1P=KM3gs7d6jMMt@oC}+emJl zaI@OpN4HmD@TI(aYw99fRoUjG&`?PK0&u4g0e8wnaN_d!{Zt!L)W&=pjHmWb?ae#G zpK}_+1X_e6M>uq?6+SL%Nzq(@4n)stMj!DhCOUP`qsj<@DqoVjkv`fJOU?bT&fohfI@=)6nCJIfI9tbF*h?CC-om8LBwAn!E6*Y>=wsH=F6Rs z9xk`&l@`#cF1la#wxP}>UKt9k0IY~p*ZC`|n7Stjvcx!U(ueNBC%E|*(T z_}%AiaSlxkSesk1$vP6mL^RspdZAvP2}@}Brn-MXz#3j3Ek;K=Sx7sosB`eUf@3Xa z`H2jL&1lseUuU4P!eWf)vExH(tdS*HTmF=5Nw7y_R^P&$mS1@{$mzQE+5fTNSaf!6 zw`IAbITak#_)kz<42TzB3Dqv+h>*o>65C^@hi}>ptgi!@nSMROwZdIJ%Cs`0#zBtyD z%$A{^DQphnA??s8~JI38Zr7Tus^~6Py(uFfsGk zFxPD`gd7$GTTIgOU5_s(A+DGV*xM@)bi~#;@`|Of;z!TYN0_{7b8R|$p7xHY-PTs3 z6NxBAAP>;zBSIS74g^?}KolJvW zTPQmp&MHAojG2P3ee^Q)I!xoygTX*Ec;iqA0t|KVP-G%NexYse(Asc2Kn>X|kLz}!vMzNN8q zwYr@FlH{-lZ`4(gQr|rru7dop-RJ9L#h6l_14e7J78Dw_$~bNA26l!$ zctaT3hPHpluV?~wQ4Y$=IIwzI!zD^&1wHd{Dl6~v@d&1~GW9ySiz^0XW0~kzr@UlA z%|j?DwZ!g>ub5T##2R%tk@;5&tJxl;K{#|z>G{~FT-&ox_WCxzd{XL|si zr`Mw!f0TNw+cws&e{`ny z2>0k!-)ZA%v-}LcvoC<~=9Cm`ucbTa^*FJxpx}A6@^KtCZ)TN;m}conr%G03(8Obg zB5q=n{}R{bo`+M3G#9mwND)0)WpWU3s(^?P4H*9Y9%sswZywN7~qSdyRPHJ#vec5xqme%Y()C1od>? zB8$@cCJ-s}zgyA3AI2~0&fyu7p+X1k#}%DoKAyKqIrVrtM1#*Iy=F|UzwSZLHM?>^ zC-9W@UVjOCi(dsA3eG?5s$G$GiD5#?`G@Aq63rZ5vyT?(?AF;IW8jjs%dRR<@5@5G zF8$74@rYtjeBSl`<8?&>3`Xhy$Nl^}SN>n_2aoxChk?5BOx4{_n+e@-_ zURhh2ReAZLy9L)uiqdRxds4dU`^RSQqh&e<1u#Xm7$NW8Vft^1s93?gCAZMhF= zXe1IE{~%ZFS6u&f_tOFkjMmugzT_Y)eBSE%+{cwORd3yxGQN}F&3rL44#JS9U6 z68P+`;?SRk=JwMq0mgPz#J3%*?L6N$JmxzwR*FUu~hH3e_Lot zBpq8+LIQfzcAnTY^5u7LSfS03ZstZ=uxAFQc>u)D1j0s=MK}uh97in@rE%3(UMb(= z>(PT3#+$*UfiKli#le?dAlmHIc*|Uo<#rkBb0>mu(RlO+0-!2fu|crQr43hM^E<7W zPm@|}AuGXUmEjz|0L5tyz^7`x&8Dre>Oe(-iFA9D*dtI;PyrOD-BehlC3R3Y7^_Y> zJ|Ze(OgJL+%*m=>ocztIj}s_>-e+LpijUDQxvy}_2=be2<*3D2)`&^p>E+-4#a+dS@qg(vkbHU9s5zc z?B1hFIBa1TRNF^A5}bBsRc=N@5RQjP>hljorVZO2|2IbETvn<}MRTKQ{^O>UedYZ<2`%QUEg1vIA#$800)X=_@2Mll7t%Gip| zLp$21KT9q7c-0ZD@8Bds7$+Kv5ghd9e$tEShde62$D$~Gk z86X5upcMF?{ z*>f5<-Mne#MVU~l{Z$v(=Rb!mF95fUE+jCk-u6lKe?mWXU;aWri#zy&GtO3i+@xwy zA4+(Us*w2O}MNc~9e7?Kl>w7W%UY_)-l>{on$rpXC3O`k@3;Kj8n9 z`g#0I{m{mIYVw^nAX5_%cl2_`Lv20&1V+{WN)xI*F-nyDwSqW!G#iBfi~528hx!Tm zOa07+{H1hB55?d$>oKnNsSwYUiRU?R^zWz zPh*bP=cj_5vg`dY`0x;*Y7o6fX+{yiZs3Ug=x2&cX(PASgpl+t(4V3j`@|IV`8K_^ z4{B;sZqBQKFjU7Q|B=!%0xVLgumN>$sC>lLo|HHiDpmI)qI&q#>Z$|KAEO{Uhpe93 zH#aNcgkZ=oOZk~wNYg}X@OQowUcZ8tD0tQ)-!aQ>yRsm=^!)!RQoUh_JouNDg^ki_ zDUcfX0*w~%;X^OK6D0~t;C6J6;IEd{R`))3CTn@mWVpV0(qSh_~7H(6-9C z>XRE|(6yDrPBeZ-M^){34Mt%(+mqpd4khIZmA*@w(Fo#Vbdor6qqu}ve0 z)kR!O7%%_eB-s}6AN9eb;9Oj*i2F>1chu1R$g5d(u;>Xd?0_g%h4@;r@XmawoQ?0l z6&bFi1UlF`2{E3N^dJT#@st{~C(mTn#^4`o?D3%6GetW@R$4m?DzDGe>y4E1iwjWu zUzCQFa~>G*oX}G_Ca4kBe3;TfTsfCBqqAwwZM^2|V}4Ui-CKu*eO;efo&2da&9<4H z&NXtEWPF;{?z&;p?(Vz;e5FRa__s#|D(QGiZy3#Eo1An7lP859bNoGb^!6MZ5PqOr zjMJmMtx7*@b3iKvX%4(-}5m}GbghOvV)QK8Y;g?VkuyCjNrL;>;9I6EpY~WJ*$!B zb?WCETE&Z*CaY|+Wnb%%tBlz(R=ahDQ@X zFq?@wZ6aS$A;-PDD|0S(QzU-tc;M)~-Bvy>`BQSuW;ztEJ)OCLoLZT8`M9D0qI_TI zckJBERunYiL^+nFddtL9S_1UC`p(fzmcsJr2;l=FJ=aBEJnTS^_Vb+Y-B3oJPF9@5KTf95>vyyF+JPNmM07vgB znsAp0&ByyfC|X{&tWABTmHcWbfQG4itaiq;c1>o9t&yurw2E=37(Dn~&g7rNZlN8_0h&V-H0Vx`~0X zc&5)#!Hx3J(#N}{WppA#6c%91>xU;b#AFqx4dLVl78Eih7M8K#5gb@# zO(01Wiv<%lt3sHVgMf0`mOl)@mnlwvtIy2}Y7?1x@TiJDlM@a(glmfX3IXASt8+NynB_Yu<$Jt#pZ+Mn#%GNZIswH7Mr8zUB33{;tCGq4FsE z=nT4q?Eb7)u6fU^t^JwfdY)6QQ$KS5Q3yt7=Q*u1J@<}u((#sgq~^U${PD*BANN$W znb<5PkozH`{(n6R%>R@7`Cm;cGWMVUo_|QCHy+o0EzBE?r3+{kf4rY&7FkoMNJ5s* zXA{a4YEwpVk@Dw6AL29leTt(zC6C9TAqC5;9Kh>TF6YD20@nCdQhzKOb!bZF5o)#~ z3B8tjHYT3%cYZwjz4O{}FjVFJF_;}Dxh*{r!e*tUX4K)HP6Py)4HAPQz8MDkgT?Ho zvn2;D7yM;^Xd(kFC}1_qO2g7~l&kGcuNhfr7M)mdz#Ws0PZ;Zem?0b#3%W}coKy!a z%LD7a8V9V(=f(LDa8CDd;jie(J0}>ZpPWVP!DxJ8{heZ{{9(#o(aN9rvovmSy4)P$ zXUHyG#E8z}e7n3DN7szegedk!!c$k?NI59vbZh#~03P2!5|+~#eqPh*rLp{AmoW{>ulNm=;6Rc_ZEgRc6l=b8}75!fU1VRO@)Qvtx z;>hGxSnGwtR~jty#~T8_fq7rZ4;yVlMxr%KemEOTi%_%fSYX~)XDcJtm zs9j!~lxKZ}x14k=kO)Y+$6|%$OkFA-wXoK53ODhg@P{eJzwA#BJb~z|-YU#FcF_!T z#-o+_`e9t!ZtEUJO%>kBKDoSabb3pE*mb3MeL(y z`apGWh^GOa9u5N>R3$j9chk;-+O_Qv^l=p`vq~40JsrRsP?)57C~HGViOW2+VSl zTIU6MQu9kgUn7rUAB{#Ys%SK@?HgF(I4EDSSAr7I-}hYYWY&ZMp7i<6$1XK-CcJi+ zl2_RG-;c%D*pGHJXolC$V9Vl1J?@~zSAQYVDid-HFS*n&kC zAJj4D9F4FIjwSNJ19Fj3f;oeATOJkSB+eU@U9|dgJ8+28fy$M^p8nb>+?Ak_a0N+0 zHIfQNGFc7G*BhU%hgKo_LNXzqE;(^bOECFt;9g&D(K!8#HeLF*yqC3BWn^?7bS` z?ifr0KPKJFio6lZ2d&a4);MI4Ocz8M$;8oK@Z9v|ft2h351W#w%ge}X?8o`w+=XwD zl>buv?Xq|~4qH!!o6!i+o0&bV^6>G7>c$)ALO5VG`FuUMY z?Q$44>(l(&p5gfuu;nHLM1Q;--TEj)KBc7=uEV=T;+Vuc>r!^LWYuD6{%*3b9k>r4 zDJdTW+U^EmMp<5d`l}IZi{Sy6;GePgiOU=$0QOAjG)tgVgNiUK>zdP4_@)5nJi|!=X;!#I3+4Zapc7xMQFNf2H{x5Qbf--<&-|fg;toPMorr}>)UP=3NUDU1q`Rz%<7>V=$^~3n=afm)DPovV(|EPe6zaLH7(Zg! z$(_#(sehk#3OELmKRDat;-A?nLsM><@vJa9=668yM@cy>a`q*+3*#mi)rY~Uxb1=t z(t-NY=P&u=jOM&D>Y#WB-R9Z@Sh0288nVvJnOY>V&+qq4lWNhx|Cjuk{Y(BBgGo@l zsa_fK1tnB7b!aQLJ^v+t3Sx)`0_WW-CbzZ6gO)S7SI7Ds39Bfy6y>rN)tX*<6;8jv zOU5X}l|a~^0SuAb@D}YXa){E5Tur05@<*^Nr6V(rciL6ZH?AOzM#;>k%g=w_C-D^; z&2IfZd{uSYeS{7h*IxRG3z`KODwZYGb!XiOBUsi#-!(olf4>k?26ySSJ`ts#lrzw& z_|Zn1_Ju4{2NF#S$Klu_lWt3s$9Tg45M9CydPat~il22f*QbdQ$feXJrTDDiYeSn} zct8-@Gk79fTML!eS$gkX$UF{ZFh$`nX6DU>#bk1|9>{}hxZn=Hm3CGZ@#P<3oR`8|RSH@30ix$JSW;Q;0G zx_qPMM4~kVVxKYN3^)&TDtZ`aQtxDzX}lP*JFwY^g{By}avd_{eUQ@v8~&|jhjM!6 zz%7H58}PkB?E4^T$^Nse2$qbGoqfBttfE>!QAyFy8u(UL3^V6uY>V<0L68I^c>tq+ zJ23K_zOC8QS6{{K`7Su3G+I!R-}BJueIkp{Buij0oL>Bp@OxL&*wo`z+>_jYy_Bhv z6OBL3^7k5knY-WCq)xFLPR&@I;MDK)^uwroP7U%(yueY^V_qS*AJE_(MKrT39wDxdTt&;DYo^5dstRnk&3|7G zWk+u${4qWZQ#L-Gk(x~ja^a(onvuwm@EUO}B6A^hi>(~vzKw{$ib;;Oo-vk{9<@pGhRS? z`HLJhSSohYzoD0~=$T{j+@*#WE6IaX*R&?JF(etFV7A?Tdegs>dAe;(SvkYk@N1(; z#jfi1oP4jqn~ihzB>}`1^=$86ciHxlZ3@cCJEmd0w|@>(oEmSFOLdO_2Ve|4Ex*P-OwX7ixxavACwx^xjt` z4S4&>ZEN{6`B-5czAr?vUfzZE0^3%`Wze*I`P#dt5Nfsxtu|yK^1#E+XYz5?gh5xd z^Xp|vH1hDM3EKVPAMch5x3FC%NK!lt=0p0nhWb6Gq6xz#o+h>1;-;VP;`bS-3%iJ8vi&b^z>RuR~-RguJRbm3-%54;)VDw8IrMlfzxy`c{ z$LiUfjbn?8YFM8JK_bs)9HmoMe@Bs2oQ;C(5IjO5iM(yHL9gf;6sNSa!oZH=u-nsJZRXjmw%DRQq)UJuHxxCQIXKF->TK%{OUru7Bjme z-*QxLyJ{!>hV~XO;RN#~rCgpUd!9BnW~T0Dh_| zEXVmtTpBc}VQ4C1v;;9#NRs*1shufYjn7$`YYW%KTymdM42|1`!MV)Gb2ZNuO)0@& zk#_kwd#h%xFq*oqyL(kt%6hS9LxKQry)#kpgHuCI;z?KM=hWs$I;#%NKbva&+ilC= zO-1$Zrn395O=bGun=0VnO-1!zo9bs+X^yg;z3B%ha8oe@H`UEQo9Y$|;UHBIqD*jM z6TDUrM2Oos{ZU~JARK|7azcRoNk&Y%z)iYsB|&5@_lAr5N+|h)i~2}d`oUV{c7fjR zW{>>m>xr`f{t>duE;w*g9i#Go-I55)*?uOZMJA`)FaT~UAHi=drvb?JivSV{Wf0oc z!wPOV_bT0;8jsA+yR=wQyOdkI+#!V3&$Zv?El?(hz)j_2`-TJDRIAH2S@n=6ywM&Swz-{<$chrfuB-vQN%$!hXF# z!5-r-^S5@LTY5=JQ_c@^qm+ZoGPFwRwePaMC7vzCzU6K1qB-C&bv>#xMkZ6N?Gt zFET$YB3Nw=o`H0!krGH+2e3tJHQU>8xx$!9SBqqDsrd zw?}IhfSg3Ki%Q$F5ulFirqD!qQmg$;J@z$i0EDA@@N4u4U;VB^m@9lRvIDDybqmOG z8&lI17N9ZSB`#u^+_pbFQt>;IELK0pnDiFvIWQ+QTFBy?R1-5zwFv)hGbbQ;esn%z z#b=efSwf|q5|);Z!Mee4xe7~@(v28WnTC%+zESkx$rF^`9=XwalftLmM@cxdfcm2Pks`T%u zqGw2;WRR$<#=BfV-T!j%f|kb92UBsyJkFXPfDfZl6*zUSt+VBkugN&WhOJm&vE7KZ z>R^rLIvUUShw4GW81{xu*EM^3G^^h?GP?;wZtRU0qJ?Z zMwOYX5eryb$_7unB@PJ<`6J0Z78ApWSHFW_=kg`}HC$PATDxO}Um}IHWv`SF4{%a} zp6dtf)PXrc?kzi9|CSU8jdyk9GjeTE8 zfe*3VEpB`ZO$;M4KNLp<(!pDh5f=|F9XpR0NBuvDX^$~B;IBLMc{KAj!Gb|*W`v0g zi+0@muK>+WaM$W5vJ&l8sn_Z^bSO{pgeBsrU!RM9q^(R(pw<2|D_Ad@fDnhG{g#!< zPi`Z_^*IUj7T^^aVLDp)8`4}?4d2m{%>I2#R|!(&YUs%Vwf;7JP50m1#n%x((%b?& zC{c$K3?O6ACbr9)1X*h^OAb|%_eGOXi5mqqkDH{wJdGGZv0gvl&LODb!ICD{2j!36 z3@OU>f-h>QnW7^g{^P?mkv-x9VRJqj;t9+AGs3nB8sOb)yRmm{mw?>kg$JRSXw-FG zLUs!rE}SoTVXry~x|s-%(LD>NXmA+Zc6<(j^T@b{?^E;Awpjb*R4?Y)5IhD=p5GE! zq&Gb+25<;8#^@pQ`H#A1z2^zhH26*!L4uE}lwH@|K7#Rk+rB+6y{kz*xp&X;rn5N^ z0z_SmAfDXiMLZQ)TPPtowozcfmiLToxo(A`3=F1qp|baLnl*?C&w> zK~;VM1(vDJKEm=!Bw4RVn;MVr)?L}^yVD_q_KZuaN?IyO7yKVNV}5K$h3T9@6ZT|M z8Qxa|>*2c7bkmnq#U^~XmtHM3XD!EyX}@_r88>CRlM_z1f5xXjmzF<}LtlH(Od2`R zqX}@KxE5f+Q&~URn5I#k3$m$%75dIU7OGoE;g|c--iRW5!JD~NR$^|OHYV={3}2@^b>jw3m+!8&vRk!ed*`+!mO3c|a*7arXkVh`;TZN1 zqoc*JC@W*Cp$&{18b8dvWhP`hdQiFtEIl_&w^huC!fKGh#=JAk<;+;rrOxv@)En-2 z5)Te*=ofzappGwuPE-Y@SIRt%d8E>Bi*fzhxSmc^fCR-S*ILETJ$AC0!wlk5^2;n> zQt`E;O)tju0ZtcO%Vl+=wa)#}&Kb2i2aY?~yqVk_Im^c^9g~HQ`ITc^Hn&Dz-m#9| z*>ZwoUEKS`he>#4AK^>5#R!e$Tq;X!Jer_c+;(}+q;k)34_&Ed!kQ8E$nx!;vh$9I z9*04f*ZKQ4coLmCkSl`1eO)ikOBPS3G5wIvjI*`6%~8)lqS&b~eXF@Q6Z71cFvMdQ z?Ism<#o3+)-cXh{F~6cTx=sGr3LVP4>t6+0Ta?hC#wgFKER(G-6mb&JQ)IKcp$qoa zHdrBGSJ&T&nLgPn%$;x*E?G%==F^TUeQ|9@qu&^}_nLo^ZY4wPX57MRzWdaj{rYjmWvUh;I5ns9^=j~!glb&2Yvd#~FPDcNx8vfUaJu1= z@56zFQ(s`W-ukUy+O?-EC+j!qUlu)brM%r*Q7E)8$i3OliL9)<@+ZB20 zi*xA(8RlcyZ=w|%JuWjJ7<%h~n~u^t{@{l0M!|5i(LEt?@w!;H0y~m#H=>gk|DFQ` z;3Q9pm2M8KWzD~Hz8;UxkO-bsHG8=Ju{!QQSI{up)qeJ*Uj)szoZA*0Z&%DzGtH9+ zN&H!N5gph;7cC^F*xa$KHTf7l{kZZ*9IV9UR5(0mE{tlm3S~BQ`12qN%Ox}2W~w2p z4q=5yqpx#Zf&vVt;JiDlTGO!1S;UGSSCKea*n%xL>d3wcm{L0C`R&57G5I>~pdL)} zfbN)jfzLP^X`@JPD9M@M`h}k#xtkDur9srK3yiKRg^pdvCbsvsh*Bo36Y;bsZl_3^ zqe*ELrWNO=7)Nv@y?~CXVJ>+;hjw=>MW==0Oq#F0n$6b2fIo?mlahj2dCsRASfksb zLweP(B0Ro06Bwg$(?p`IG-bFCsnw}pRJf0Msj5j0s&LM9owPge@$AK&?7o`w48kyV zbyj)&zHYzLm|y9nFQj1Zz$k>@C)msiz3Po-=2BRAQwzEjre8G=*WmWmKXYV(2$Jef z4Xbu@O6VL}VoWvnK)~iQwx~qiU3*9N=0!k%0phNBRTf1PcNZz2>CUTsK;x&5uMJW5 zPe~B9Eb36Er2+x23ngtMyhT+`<~1g1@a#uS0xxZ5Jm+_Y?=34FV;q*m@`sr~(ZuT@ z!yLCX#cDR(_O1;>cqri#>ZjH-@L)=Pk6v+CRbhx9>1;YxG`ZW6Emut`|{i}Xp{ z0iJp;fntKcn`Djl63U6Yyl-&%jCX`h>v(EB;>lahApMyRxB&oIa@@nEn7mfbGjbASk2`mO7$J_wuiQ&pi42q_8Vx zM!_xd^LF;C&x|bGY;g71z)7-?<8YExjXe$sf=Lo-*Z{B11rb91J?=$$k(w_8Jo6xi zfBrr55F}i27G1(n_##I5#LmCr|D7cFoc}dRusOftIve0)Q=JS#Q#0&*#{^E2VTk}( z?>OCmCJ6#^4qp$7=Dh$6$7?D|hBAoF(BT<3oOhL(!*XY(pJ&BTMN|2G)09!juAjA5 zeYOav$qB`=j}7q5qcWyqZW4g@OT`5Y)L52sJ_xIm356jWI;7u+SG1A*>`!_>A zY)gJA8%vW=wZCVcI-M=GtWW&-e13gdglqL{6wJ=`+sVI^#AR2$^dQ@b8{`#H zpgs!;^9Q%sX{ew^^-Q!wH}v00q5-+3{}<^Ki5zVwE@pif&m5_pXetUzFwB6lP=NkD^S@9ZKn@V~VU`U! z<&!Ae#ZAxMK}olgA^@U31ABEc0N|M?8;`P(X1cQi**Uw{NYYqc0-xmwyh6Eusj_3Z zMnWv5*V0rwfNY5yc;*2;VH4tQEZ0@x4z9x%dYs?^o_XZ6Iarj6!TZqnErrh9k&oLN z?I&@<35*GhzkTbcV=OS8XA>F=a+rXUY!&*wC@JkxFBXfrh{81xNPLrxBO_5wP1iE# z)ZHUowlnann~CKIDH{P&Fx&s2>z$)A;rqVbY}>Y*%*nQG+va53wq28LH`%tEtZAQf zUH9|6d+&9>|Fl~D->TpF`5wnni7x>-n?tNgGEQRaaSYU4N92jUNn##+He?npGv5h^ z`XAJ1ryZV?od`hssM0Ae{w00J88AOaq+-{RWq@k^yCFNZ;1oZjqJxy_#aK#fvpCPx z8_1o6qW%x*qt6dC!4lmE^L@~Vm^L1gcwyY7duopsi*sAd1YBjZmE;yrFageZ zc%m=z^$^A;W}$dyS)`O=qV^eb_U~D{vActi60PV;9q!Gbs@e=r2}aRHQH3Y#M*+8> zr$^T?njPMtKvq;DKQxwWAtI(P((P~z=(SkrZL12**`*{9=w^uBCtJeDT68#QCm?Ml zg2Q^HlB}wDrsmMAymF+apGKhs`S3M~zA2qy7!UuNUVP0YkcC`Brj+<86-K4MD{|I$ z#)rzEs8>zQfXZq`h9U4X+1TJ^39d=1qc>R?kQ@z?{P8-pqx6pGCYbrLo-yN=E+B+^ z6WU5~W8W-8=eY3QDx=(m2y>wSO-Ftv1Gxz0^m&k`xAa-e$37iV>fD`35@_|5I9XBE z5t#Xd_PR!xH}#EzZ2PIoqZ)<5@I{fZTpXPkTvWJXowXXZfucSh5ccU$NYEqE$?nZ- zah!j3mn=Hjq2@LxP79^_iQ*tyYL1;y`bBi(1y9m~x=_S*dLA}o-%serhNX`Bd9J*# zAfjEy%*)k63TF6Yk~tGm0edKPeB&?T(+sS{V~A2HZ5-*|V1QL<(J!;J4`F>3Lxl)f zRP5);4DVuip$D6&#Au6q{YejFio8SZam_$J>0JMatZaZn<<)1kg6IAjfK~LOEM>BC zzQiO@gfS@7%PQ)1@Yo~;|2gfTkG0v&U!dVQ@q|jrN*;(g^xZjrvv$IE{^6Gxw9kOw zqlkv3`pl!$FdKfxWCdqIFH1oCD*+!xmyi8Wuw|s3^wON}1LYy|Zsf<#?T*FXJD}{d z)EonQ*4i`&O$@$_D0n^SA2^ohaO_oy*Ayc%AjS*G_wIjRS=ka%O>VEoJM4+h{nIr_ zP-`HGuVB8eI_Dj7hU=A>wKpLCbuB&1__Pth2h+WXM~8Xus*Fz?`4rci_IFWfhH34^ zt{y(t;eXk;lVChUxICM%R7DW??nYDVNFxlPu3DHJHUp_sX+k$sGEAYgt(HgF=gP_x z-xs0?a3Q%AL4x(9d8J{YLTk~N84WUIJbzWBlM-IJ#%DbG7T!O2xgj z7RrYJNBZy2g^n~eQRqX$=YvKDpreJ4t~mvt*PV`8Zc& z_!JOpd91i7r&m(V{s;+=xlhNsFG+8wJcQUb3fX60b~Wu#yY$D2n~#INE4OF-xQ_*D zyhNxr3gWvO!9HL)(>b!3$OhL@yrgg$Z$_YC9DBlp7ad5DVhz##wcgd9Ke$x$pR=5As7xccp%WbrRnWT5v8P%7SCEY0ZK<%4y^6I2k`6ENVwBPi- zQGf2JG(IpFML-jgFQffQCZL+=#Z;iiX-kH5?(|giYyF^Nd&v-&o`d`6+qXLXWgN7h zLBoklJbENn8>XSriI|16h_v6qkZlEy>Y?Qy1S}g!OB0e&R?pyPQICwu@dh3pi+kHH zoIUkMCO4PDGQ+y+c?gI(nVg22GVR`t3JR4)Ki;ZT`hJqdmL z-nJ5BW66;QS=v0A)8>dd;78yhHchPlJEQZvD1OvA^Vn21JbR`??&~H$YHNQeH-{4; z+%Y^~8f`0fxJ>IwkqR{|OD}Ed4}(j_7zGVi4AfMF7tZye_ZF^*RJiVVx3uM7ENQfn z7Xn_o;kB1$8@?K`+Mv|kC;~1FCrcxxtv9)73>~iQVxBydcF<`8`TbL_U;))EaR2()Kw-rE}gW8p_pvCgb7V7 z7sHuXbs4Vyt^g4%ry`7Bru&+S?Ds;`@Tt)-F$|8 zkQ&LfA!&SeuGPf-_&ym|Sr0pHHz@F?MD{_Pfnd&?Oghhz9$d%0^RuXGOT|8CE<=Ul zw~M-E=H?1Z$vUrYx{a_YgI>#AwVFN4sxVSxJ|3v)A3)rxnWk3K3R7g?-&IH)J)OJb zXD(f-`x3IUDQP2EAZ6D!(hN3eel|_Rn7;O}>4q7X%ZGN_I4PDo>Q4%Rl=rOWaB5sM z{LEmC%4eGrmTFnyS|%55QPETu``wi{L0BHGO4sX+<~$>nQPXSklcFZ4W?vgl7A}ac zYAhg?O>@~4yJ$SOnxLdd+Lj=oXLA_C50ZxlNjHh%UDgv{7wq>Z!!FZ?+18O>?#{xB zVf5*TcOPh?oW4$V)L|TGg>~Zrq4QeSufd#ievxYfI}@G!9$&4oK>K{kq$U@^r11EStJM@mwzS?6x@4VqlUti*Hpg9{v9EJqz!!gt_?s z{};aJ$l)sq6L62#`d_*}|2|SQHJ$e*Q2chnKM}!D8yKUtTZ7Xb<)NS*VafUe^eJ3O z0vU?ufqVU`$okwmw+`H9FMC+==~YcteN)s;ODB526e0XbTay-}2Hq*|pzYZ&=b{1U zXj>fW(yz5!HpK#n^jmR4?>(N43&(_cU!Qe5QL&(j5IXp!IV9{iSqwmqkb_DKEueg# zXdY%LB?+MX8Hxd-f6vj>L?S{GI0MydI3r|uWcSnx368ziyZSPY-sh@C7y%7Z3FFc# z%07lXrtljGLnZ?2UI>!!Kw#u#5i1Id?!pa#un+pbVISJRVIO_u*iS&%2Pfhk3*`}~ z;*+^p9Wb4^-BSG&<~$XV%m-bSb<@bF45RA_>T5vY9lYmr_>s=(9rCOD_V#bs2Ukcy zb0?BhvLx00Q+6A(e)3;zR1W$}VVLvkO|0nEY zN4q^ZFv(Y!4K^2)$NneYDwjIV!~C`#B)$$vW5Lh7vCXKN5i9-Gr2{$kdB)gvxS|Ho zAf+5exrq+c|8@^Y)Dm#yhY91kL>sz%F5v$7aC{2&>kofvI_@U5M`@AAvoT~ro`~j0 z@bM?s`YkmXMmfVPLiJ>zm*3a|p|RQCIdgP!;2QSz0M##eLMN~|aZoRhqDCMuA#uUF zO3O5KK!h~VNamh}uG~nXh^HaXp~6|zkKBiNVdF?fNwBi68g>tYqu)i~Pm}C%W-m#k}=gWCZB?=*Q6lx;`Ow zS0d^^<||Qq(HRHD z>@PC+a3Kc@O|uazb}_#}?)UK1c}0KoKFiL9SwTM#S#&_qY(j??NPtWj3JF4`4muu_ z#QeQT^LkY2O+pLQ%d}r_KLneXd?t1Tw}HYSCiPE6xP(VI#`kAK{7+{*(0? zF$wWh&s*hi56t`1Lq335JW|ubJFLJuxUGvg9unxE49h4Z_=5zP+j+@pOc?GyB(yV{E^K);#7~>MI~SOL7E-IOEYiQM z{Hk~H3fJygSjJ~C5%H0JYloWj%Rk``mLgpG_C57-@gKma=r7=N6d?@&d_eyf@G&l> z1OPr^hPq#Y)}-z1(YW9*Mk-5`ROBHEKvjC9RrB+x*Cop2Dwm=oe%p0sx-bKgd)l9o zTa}xYyD5g$mZ!(SlDOU!$rLxmRF0q?K9zV+EtM!sBL1nIAD_^>?nE+e$TFW5?x7m)P`06W_`#lP?q=E<{24-yBu6< z1bCPh#QY#GcR=_8Ur!K977>O=ccp+7H}|OCP$vbn_B8vhkjP#me(<%@eDQ!iMhFC* z@T8|)H9CtkUS{sHKsKEvKlaR}B9>I)pYmsfUFZ8d@d zx~Q96u;ea)7BdF1kLwDov#6N)5iH7*RHq?xzjQdQ~eA@Dv zof_lsnOl}}8EJD%zYEbMIJDGXYZ#T`lhcqb2f9mMYt$P!40t9tQgJCUWX_5m3G&z- zg`SMVx32%55=C@}G4r&kML+Q9GYOqh1m|i!B?suDj>9$tizx8csGc>_ir z7NsV%ddv)^#8-`})H2)FNh|{Eau=^ivBg;ZsuyTL)#pAITYG| zHj9LpMX3=M(x92nyyE;}WRRQ^eBOxs+_c|vw0^p!eUx>sv`dyB%(=5_Zp|@^u|IR; zWZQ3)cC`WouLO4^8}H88n!Z60w^Dzg-iW4)JypOs3RsNDI7Y>!8oJQFJi#8W^pyjqxmZ6auSx*zpp6#8oSW@I<0x|nQf9N zqn~xFLtLNkEjmvowrh`%VB&F#$Bq_|_3@e%p+wxU6ng}IhL zt5@MfWAUa-={!V9QiEc)zVsjkwlA22^;PGvwfBOnTNFHgZB6tQ8#|JNZ2Gz;+n*;q$ zF4nq6-n{C1-k!POH0HgMQFQj{d!|n1kk}PDpDAZ85F%(0GFs>5f~UPS&M_5b+qc~Z z!$xPywQ8TC8QTePF85|#>{iO?)xl}9@coEIRr7W*+2i07waKUXx6>F_p)$25qh2~f z#CGGCGWK@US%FQ;Uzsx^syVzi-PI1~jSSeA$NZ zS`$&=vvu(AJKCy&j&g!{Jmd>_1*a*jn9;ZP;ex`yAwPt@k zoDilW*L|gAkqI-($SgP3=5Uy~Z6rkT*CE*m$js>FCZ!~~wF42?StXOY9lR1N}L$ z2b>pjkNLd;{!DiijzH;tai)^vj;*iELKT!BR+ACf^6pq@QnB{&^>ahVO*zga114S# zxk5l^Mn7;SY#!GS`my7DC5fn>C`a+4a8OmWmU|k2I`MbRx+)My0RAqVTy|%oqRPzh?ZL@uLS-*L%JlKi>zW3Ew%yXChN{;?o)Lo$0?PCMe`y8%R^at3} zdrNdX%A_%Eo!Z~a1*^0PT;LyEo`byVz6jpH2@xdtzcBw>%|{|Y9vScdQuAT^FI3Mk zfa*!KeRZoOmQL-uvDU-UDj!Z2(d_&W)l&iX->9BF?-V$Z2H2oc8i3bLO~6240seCI z+^dAQxiW?G7l`t`0T4lzIgs{me62^sxZbDLKPOJrO@MnY=QI97ZSoOl$9 z0npAwLi($+2&B1?S)4mjGV3x_`ZHdjELc0v%#zi5uz?GV_Ehd&R7L z5zbP0UhDAjLWu-&Frt0v1@jVQU$tCh1|h-ltRkv9bF;FMDYn}BE$kdV0Ajag{QkPE z?=f@5J{BN#cH0WO#%utwo9mxJUw(ktZKk*9nkC@*FVzDA9yt`1w6S?g+Cf`3IVa(Z zL0EyH!(&j0Z~Wq=0jl*n!0Z zF3`e}R{Fv-4Ygt6AjQxZVv^7kTcosdyscgA4e<+TmLG)?rwn9z02gS11P->46_M7g zo~b2VD%a3@ShhM5nb&>jS53%rQO$|?X!g2aEQ9yE`)bzqsa z)mtgEdJ)6-8TAsPs_Z*dS}vO~CO5}F7h7wpB;mjH%h&R=qs3(CX(7hda}R>K2T7ND zinsZt0bVx_LLl_>Y9iLNX8{fq7$;(rPMF%w42;oRR+J%uM5Y)D*?V=z08?Pnvs7U| z5;`{}6S&`tdEm38^x66MVy~t`#u%y&0d~t(DFXKiv_@r1hKhp8PVvm+Dy)-^@Z>_I z_3oCo@8G7vaM(MQ{PiErUIJ-w@S40j+>V*Oo-V!c>2lc#{WM@Sbh_3zwc`%6m6 zg@_$TlN})%+K?4qPFA<)_ z8kO8cK`XJk*~FtGE%gJ)D9A?-WDKF$EJIl9wmvo=s%%`{jrQSvK+5hoaV#AjBWrEo zE&Bsk`8m)UL73`KxI(Il-P_3Ho&6I&6)_kTI-6U;DdY zI>leE=k|ZOo}-M!BGD9YYgdE>Jy(OB`T5=;SdQ={sFQ6D8y?gp2Ijv>p9Vjp02U#T zKfW|lJx){lXZv|6cwom(bEnv;nrEi-WD$>0Kc`PJ!3 z+N2!-Q3ClLnFI`X_8=%#q4STUMBYEq-k(J1P>-?^_rJ5EJ5uL@_q>PyP5R{L?`y9_ zlP(LK;z(px;~z*-3eG1Le-&}#VJ3XhSv{6tH?X`%-_{d1??uAK$_(01j=@A#oKf z>ETmN;eiec0sP;&p1-0wLuHcBE8M@L1gR(XN}2pLid}jAChCbzCVR>C=cogl#ip9vDHp+8l3d9p^&J8&m+W^^uBjr2u& z|L7Q9MRgY2JTPCm%{hmhX?rD}^$!St)yU3H=DDFdqj5&?YcL#Nl=5D?B!9hX6aS%} zgCuQz+vxB3l^ykSWfk#^oW4JIovSu-?^KfhCFR@%(r=>j!Kopq4|d50ydoZVSP{Dl zwbN1Rq)gG67)5~l_!*vKze(iQ#4O(Z(2pMBt%gdOUvxWfg#oJkfG+Y2h&h#^6XB4;JPRtO>Ma=-owaQ6?w1>M|GIS&q`nfow9!2u2f8s1g^~ZFlaj zYrwA!X5L=D9qa~|uh?kuuVH}2r};j#NZ8CqTPO#JVP#=~0g<5#Z%vR9yE@X6x3vQ> zL{Y#0cA~cw-PXzeq1LqI6Ztu;0dzT%7dR6vE&pzlVv`j%#kV>T%#GS7*abRrDgsam zx9_#aznMl(jP6?-N8q(wD#EcZ8^p%24Ls=j?w)l!vco_S055tk95_~I|Bm8xo6pR? zGKaM;v+~>{P_w%dsM1`GI_kcNYoYJ{-lR4Z+pcMjC-SCMb_{Z&h;bCHd)!RLwfV5- zk;%FYx>3#7-e{{?guzLZ+ql>S4^Ot8D(d&AH7(DL~@~}1Qu`ld`&aIdf=D+jUZ|2h+FoIr8oEF9a@)(Ui-x3S9Vct{C9*mjFz2ZX?k(nz;Ixk%g?OcYpeFcIvNhO^XHlM2vV(=z@_jYMV9c&XC+q1k@ z)M;FKkXYuDJg{_Q&J)wVkKlg%;nJi^xwhF&O&xXqb3c`8l-EX!x@WK1I+>-3C#jo2};HsI4`qO)#lpuJD#LR0WlLx=z z4f%9^UaCFj{OvsCLT;vpnXQ~>fsC!g^rdiUW~~9DhtHVvZx5*r)J(LtjQO}F+xjjdz>BPyZ8WEWP7{4vui z(^?RDH_1TM3>KzS$Y32p_T34mXQUMebk85lJ3~1F^>W?~9KfRvRB#won=@H9mS|DT z;$abGEVSxCv9);OpJmemhtzI%0ihJap?Z2oouI)7`@G1d#`OT=l_?Iv(AE{_`g4SN zitHpk&KhhEP3J%X3lc2>%`b1MS~-f_d*RlFUls>NH;IbvS+utO#sN4*`!@nty)(gF zS+XjxE6wV;Qru93+i4>NaQ51m%khZ${H^60Yh)@b4AruRdHc%%kgg>w=1O53CV90( z1uccc6g~@r^$zk$;p%igV2Mb(d|=O(;i%@qiwpShIDN>F!Msku-1il}SHw%V>IhKt zDTJrrc5S0D`K?%^QG2pS>j0~s*fvFOtCPO(1(8-%ehU6Fa*6o6PAXQg*Z#zBXXZ1+ z=}%A2yD!i4yW6!d!{48X18P3^|I~cMe@S_ID(HOacz^Qhe`nr({8fU7wz!vB{b!NSzg#MFuP-=`EH=d(Y7?kBJM2Xwe* z0(PZHS7`G>QW6R*UH0#R^z5t$xNFeZx%>Qkb5;zeBA>9U&#aG4s@dkp$x83n)ohnBt|I95)4m+R zX`C#N<23Xctkl#px76b=Y<+Ei!9+1y(tUCS8_;9 zoy2b&#(v_VykbPWlI zl!Romy9dhqczl15v|WVmDvijKI;3CVmI`C5qkT1Gi0Pd)e(n7vOxUh?*5_}MWj6v8g;lU zRn#T5gRBBlk^7TyBRhwZcOkL2%s=2(r4$ehs$~ga+^pY9~ zCZ!H9bC25(i6uMV(|{$)eH_P^KsC=)i90@5 zu5=)r;Z3al$DAzO^l)IMu-k4iXuJZkZrT%xC|!l+{t9go4jupBB}&#H4g1nf=d*Gn z_j{brj#mSMl#Bxk%kRaZ%Qrm`V^_A-7GJ8HkpVbmqznZf1yOX=v_7aTLGeeIjW`^L z@FeuZ7R{C+ZEGKEV(fkzjJ81Ina{TKr3!KuND9tX1;C?&nQXk?L5jt87n{jl0GJgw zwk}VmX#JqPB#%P4&YD|}t&BT1Z`R=PvRsfYK*h7*qEslCm=U!UmUuKm{% zRi(1jgP0HkcOW4E-+|z8dQU*S*Uu-I@?z0pZmM3D>G=jW`VB1kaWnNC^W>rtv~A5D{LQRH#?TIVDI zM`q8o=o-6+KMseA+j$O$Zz;qroKEdN3IeYJ^K3x|Fx}@rleU3mq^@&yVPOl?kF21a zqhhyBc&F_Bd8yau+XqhuBlRSW@ne=-E`WxH9%<(+$Bhpnf0z|h3ik_y!^FphOo_Lm zu(v*kcU)592|;f^g+=@v(NZ-5`(6)p*~1mSFT(EI8i*4&4V5V>8ju-tP^{;r>r_y} zPtcMmM5}-&u%q4Q!Qu2|aTxbCKIR!0n+g3GzE7$tE{w&Xkj+|ihy!KM%y=$LW6W7K z!X40oMv~9{2vZZ={vBQDi*GY#4Ca1MXb%9pCw|Zr=pC)375$k!fu=)?<+eMtPs z523*XJgkT2mRa&NzY8B2^D$jCj9NXonK-;nfck8>)|`izaffHjwd zMJ3AEYu>3UiSrw$G7&ywch1f;`;(&?)N;93xOD_bH!l1l1Ix;ne`|P~v4@>DE9I6-7cEPzab+I7#Pc|dweqCIzY?YFPa=zv~8huD@0`2qXImWt$HZ_6zlTFx7+p>t%J32xM~VhF$=lnqIwN5ya82FyXd@; zp7+_KcLhiI_yG7mG4~VRn7E7{+rRsd&g_8hbq+Q)w?~jkGmTk;(PM5Xt(;TIQAZU9 zS1VLE`^s^yu{-mgtkc1atfN%f9=|rZ_H}yTL13PdDL7}OdnrG{U42W6Ml1Xr z@-~fhe!~$EX?&v?jM6ez%uRVh5j@4(DlQj#K6`qOT#{dUUPwgF&tjYJ`Wif%)36RY zfy>BgO$JEP-n(*(^gWD{v?P=dI@ulxKbM(8%J8QKE}@AAL}mBPBu1Kob>k4kF0dsa zCvjS*m3PhXh?`~VIZzzZ_pU^9F ziSq+n(c6RnxbCDcsX?*oBsZfrGZ+ye75An9cb-mdP~QLLMODYlQV7B~*}0SC3=YK? zMC5I7Ny8_2ia>ryXz|;Vi92rGwPG*IM*my$Px=GbP5Gn7G80_d>@+3rwbE@GpLL`m z0oeBqE$Y2^9hL#I8daN4Rh|StZ#;jJ=m6=+lhr&>CbQ4 z(!L~uLOCt$_SYjrKW=FRo-GsjXuF`NPaVE#Vbi&?O5)pe(mTwRPfKR=p$9E!NM(q+ zSJMqHG2_erF6uab|3MssnMA*kri~luTj-8XWFY*rY|49KK_~&VJ$apb6gBZ0{U zHSm)=oy-V4J*~-7!zBg7uCM&Ai)MqijBRX7xms2lTgvArKAw2L6b0hFz&63dl3uIU zPy|*E^tq2&c1@t`f}ud{gk4RtC#ybUdO=dHO^3;_M=$Dd4si0`P}<k zNJ34~A5i_Y5%l~fRp65R0#K)y*DVOl48dDQz!Q*K&u#)62o+lnWr77+52rpdv%eE`EN56&TFe&&-I6EA4S{+)0YE24ZN#R!Nldsflp=&Q4hH9kw_rPJM?Q^kX@%8V< zuYFyr=tZdSI?{$bU2%p(byCzk<~t=G&_a3=!h~+yKt=Hv%KL^xJ%*A0;mwuV1{T)g z>EDyZ@V>915E^kCMCAuwE%aJdwh@YhNx!u<KKYFM9*x(b}s%>qD|7V46E`fbtC}G73ETLaP>2&_Iy82&0tB9a}BN zY!DrEhEI(FCDw6<*<8miO$K0phrz+q`PM_e5k|B-*H-HDa>rJyl5wmsp z=%iMDwFQfAzLqUT#N30G=iO{{`k@{}<+2 zv)`8>@YA>af*g`~A1L-Uo|5r0F*d#)-0X_>+1Q2Mxm~eW#fCa7_Fgzkc{0TxuD!3? zc~wRC|D*b*N6&FE1P@5|+=15tl0As<9QAn@Ri@7ss&(WQI9QdK5Xa7+HWZJ&J%8>A z{V{Au!>tY6;+vx+{A+nEaax$^e&H{uCo%R^jT)k8oni7lG|V;XYz;*+u`{7iI;ceM zD{v%%(Jd(k>Bs^c*xesknaEY(>2Sc7GVY66D+7n*p@b@zGK z_XVd{R(~Fy^9;QRwK3>M4b3vVB)zh5{fFF^T$mSGcHopu*yz~#4E~j1H~k%V<^bc) zZ$fOM=kAR*5)%G&tDPeD2B$&TUGbsbx0z>}asOzEUBX+6V1TkM9I9@mOL9L5%1`q} zxzv-1;ZE>(J8--`P-e$#|MWlOj=`I>n=syUkfrNjMHh(UCgvat;bEVBh$oOl^rC|w zOi0%ndXV#yitFMb!70+O53YiAo=pI2x3)bLXv@;DS{&F2@?d^BT?N3MVdvd7t~qD8=vd<2hxDpy6`9& zw;=v#kZj;wJ3QsK0{2#g(O$a%)!G2qTd8JU@yejp@{7HbEVQhSOX|bQG-`#_PMffN zG0xUNe>Xd$Gj$;0oRA098rL&MsNk1_a`R#0qy$72H6{wCEYiVOB{+ho>eva8A@I~& zBf9C=dZ``}We*!#@I`}S9CR;6gR-&l7{-ItipAhlf<4tzA5%LUqk2HLK~X!Biz!5} zTjlc@>ac8*>4NB9l#^{r7kNXkLuLPUU{7hL=WDgJ9GcC#*g~d9+BL#S?$K%1S(Y9^ zK&+h)0Oc> zjaGjbh^{|SG6htqiC=KL7>fWH@XFF|e-3dLYyYA(_gs)gBj=1x3N!uWqH+b!8L_Hi zIEZ?F>r!66duh$cMsn-K%BX!;i0 z@6FKxxJet>=cw9D>n{q2e>@uWb@zd#z*O`m_w~spBD3-nfPRrHssiEA3H(@|SAvqp zYIj&86B4UT?ux6RAS*BaDNXydhe`J)+g8a0<%a~kI(bMXr?dw5i9^S`VvK|#0mMc~ zZprq*en=zT!b?|Dq9#NVu)|~AC7pvJ`zNj9K7@b`^#vJ)O!F7Ra7y>C16+QhyjTZ?1)GrOuBg&y(;1`M#C8>CfVLP2dQ%=nhlbMZrYb;$L@E3jiRuh`wE4}N>$_1Dg! z{(E;AIW3}c;dtE$Z{Qiq2#VOR*zHFxD7d(6#F2nWLeBozUT;-%9r%YzdFUi$x}1@{ zU)A_R91^>sa3h@tq`|f08%X&OXskL0Ze%7qKH92hp=dGnOt*Lh?Sd% z$WiVD^Mdmw5!#@MKcA%jW<_J|tF%zOG_C#sGqeGEJ^cdqEM(6iMuiW{>7j~QB)xO_ zB@Qu*mJ36eI8QtlQMRaym>_D5@e<9CZ;(eci z30I{w5olX_wWpu59fOMCrFEIFZq=T0gvvq5wqD_wRt*nU=vluv<%1BiDdp^U{#SHsr&hTwPO*QR1!9 z5d+F_qR5EsUi)2*x83=VsvmvUcaR z1}OsfgXr6E7X~HH(rKScDmT!tKgJF=PeOw%g}>)CIHg}MFVNOY43XPpKI6vt=zIJ*|nRLdx9WKYJjUwyqovEHt2;b&10Evdzg_0-ZrB|Phxprspq*MEgSE8g4a+^UzQQPV?Ph@yvX~fe0s>QbK zmvfmP9hq2)*Ne>Q!ij=WY2ptK&>tv}M=p|DwUx;WlM;hl#XO3#D46N}*qDf!r|cS@ zoiJwF*6jBy-j!@6i2V#uWvT`oD0X)ETktGb_+|w<+#SvAW5D)#wrt$&si4t?jWtGx z>Bmvv;bqvNcOgvrXvP(j_upm*50CNvMvR~wy3RH0OOyjR4~e;;#QCsJyfcbe<8MP@ zjqC9UwYI3op4-12y=nMM(NUZzXw%}iGi$iIf0i6RQ9>!?XHajf*;`mGl%;A}n~_cC znlvP79w!|%He8%m7h*Yk>pr;uD7^|!yu@2gH%M{?$)+N7pgt-JT~?M)Wr zp!+(ukC{Db;j+Q7oNC%cotDs)*)OSaJgawG3?9maGNO87J9LrLc-x>eVD$I3Q$@Dr zxnGG@$A3QRO{jvEyL*kM)ZI09$APgnvra2M2sQnEk74+k2 zi8Oc52)#TJm&|z^09a9@Lf2cXmj?quWZ%=H-8MfM44#;)RIJdg-0#{`VDL%}I5W@; zCQ>GU8ZR*Xe$5T_?~~?Er5Q{IyZ)2UgawyTC0^_8~#l| z`$9$|JbM;!6YJz;vbxP}C_Urtg?M7%b@4)m+{t!ET72X`7J^de*rl%zb?ldxO*th- z7{ZH1%0|5=VV1@&hc69%`lB$n?o<$f8tpsG)#%%r+{M@1$8+yz(d3*qgJ1pT78&ngDSs?!fe2ljg3P-&FfX~HS*!y3=N6X)LOZ`89Pw-#B zr}ZDehyF&)3}cnJPmA<_0Uz)G06w@9fB60aK3VERi~j&VHQE__*tdL_`nH%a=qEek z#bfRosDhj7U11@N&s~lv0*HRwFT#IM)6R1Mr)dJcAQqWVJb#7LzQaUQCkrtSUG4+` z;j}4w@L%DympR-=CO|k{0Z#WErf{022i>d&*-=&IE-oJa6vsTg^^b6R_&tvYN(#mF z4j`O%wg@_j*U0ZUgsiWHJU=3q_m9m8sTySh2&c{K5sO4Pe8!M@3D{2e*ld6wf@6Q^ zwOOX6$J*!$Gnf9s#!z7{ZphJ)e*ktFp;#a}qnKS{Mn5JAD6hFdRN|?(XgZE_O*E-U z9ecPguDv?VK%5KjYxan!oim5_qwiY_`*3l>7jt25oRNmorJU2ixu8IUM0g`mqB*=+ z&o!4I;{#P>W2xwy2b`u+`~q^sC%)cLjjO~LYa)xx#=OrT0V7P%@026^Pz(g=i->u9o8L;iJQ1_uKu6N6aNtCNTDhY$e17lTw zry-xOZ-DUNll{Z$+;$=*!^(dVq(re$Az=GC{cd`9%{b#bmj}p}1mH4l_udvVf0!AD z&L*oTw0{GzdRnc{Jy4bJQ;YsD-gETY`v1p!mf(tD7QdspfAMVQNJhUZ!SoYU!DOGf^KmBk<5{jbO-j)$c6vG0MOy~@Z_ zu&i#QUrmQ@7QQ;CttAUp*t_@D-)|mS&j9_NPkq<-(2Y+t)SZSyWmoBE^NF!9eUpz! z=yRNp9!j43;ZUk6RmCS$gg(#xOnigMfD-yChw{__%A4dfXu4mYf*MQyyUP-G@CS0h zJ!pGxU?s&&C`0ULeiz#It)s5hK1%66fyN|jK&iZcria96>=#yBRck+AHUZX z?ewd|X8=Mc&-S*`nUhS$=RWn*I|%o!Wc2ElGSV|>X(=9M(;0tEH1wlX2rU8LX_?jv zs<0%|V=upVmk;UR*RUpnhiaztkgFD)pS76eTlICMM9`IFLI za=`13+>;*}qR}?oLZ4z?0km6J3vLXoT55!Oj7sl{nR&UT3BddhR>| zQz!jcUO8o)$8Ef6k&PX#4nO05qa@w7ZTG9DnM&}w0K=EEZS8S4e=R*@Nv8K)~`<rQSD&SNTdsk~RA+6gsZ*@MSQ+dPsjxugx(`!^@*$H;K@Z%A|>nE!xsJe(!rBZ zCf2DHlZoKH6LhXjz~UgXir!x`a)a`mz;G6kJ9wtMh|bigzMLrFh>tsGg?)LOZwhSY z_P6I27ZxZT<>*uSVAxO)9Gj)gSjH0(zfEp8Byj zE>tRuHcZ2SO&Oejjml=8nB6IU8BAvdg1M9F$Cy!lu4R2AI!eqRi^jKE< z-?O!eIhG^!qO*|Pmq9TtWf6{uBUHNL0HFq@i`=4{BD9!GGFC~R25zJ3?|!&xQx*YE z$-@Zn6-_!SZ2N*P=SM^@vwV@><6(re zzaU~c`NkVz2RI>bTrVqoCmd_2NEodm`wMHY;7+;I^T}f3M{qz#KT=Q5jXOqcDk*BX z&*Re5-F~P;Y{c!luAAmEtH^_Xtl=`vS~5d-SI*-UZ_k=7J46ya42>SN zuvfrWX-fU&j|~r5TMsKh%yXBm#UY?2xG_HESr=YNU1$3eO>>nV&7;IzJVWih^WwjX^1!RWK!kj+?z(L7gi2U;t3KOmIJ3GrWUv-UUVFJ(Da0`znPU%vVwf! z5iVU$$)-#IbS}l7O_l4---0~7f?ael!*{$~DAMj>Mo*s!Z~rq zs$df#Jmo^X%;bw^rePsdRX3Wk_(vIk)x1fBpXJIJmh4!WMqWjQ5dumCPpMbyhGUpj zYb|cs(~5?cgRk9dBtkS0b-LfpW|gDz)1{g=tX2~(IH-efE$S)!(IJk+^d(iGdzGT2 zdkZpw2orb?r~!bF2>|e^`~rO5zW|>dm1zimXQEhTZ@S)RbiNY!<6M0R=@J(!<0nZE zSimYx@oSZqNp;HEbpns@UH-0`6!XMT)b@16 z4)fbEaW+L-cHEnyk1Yt4#IgxttHrd!_i&{mx)bJkuUVVdU7R04&kl=srHjrxs~f_FNxjeRlrgd))uc_n`j6_dx!q zE9$6yI1TTA;d|Kr&G$sDwxW8{O@HblYwCiGFit&9obSe&vJNEHfYo)x_XdN|Cm20099_wbJ2JS}fZT zEK>{lPD9Uv2(eY;3Sn~(uq3=Bbsbt#g;1I}A~oGkJC}2cAvaP`vf^x+Uz2UJ5Ml^Y zJsa?6`6ljTd5`KE$Wc#B=c9^D1KETp#?}+e0=x&4H z^ia~!3a2bcufPPvKgQYvOF!uq{CYJyKz4Y+`~gf*Kj37-?qva-Pn{xWo^T}}SS9yg zmV~`7M{5jUAO|)2n+7ls5!QY4zYOsBNY=$9l^3p7wj#;)yAXLTJ=dT(IjT-zT~;6T zKjUt4pxawr1bw3BnPFBIpAjFQlkXilK3`g=fHqzeg~y;#$dT!!tnBh0k1Eq?1&Qtj zqLC_Ozg{Pb> zU?mjn>H`R-0VN@7_m+c*@AxiPx4rms6R`V?mvFpnKo6+=eL$DL(b&QlQ2iJ)o!AC# zHd`vJ*b5ZtBVWr^4l)?7%#E~w`i=BB`TTn~?!>oS)N(o0+@0*hp*+JWJ`kK9w2#Q^ zy{w4Hzy0nrW_~=JhM4-nFyt_TsH4d?HztYqiNhoz3M-p`7xB=Ipp$=$_y3OefPv@e zt1DZFmw1YRD+ZfraLo}~dZ*XO{+Y25II&3xjgxEsL z@i*)U>_Yu!9Gab^mxS;EulA5c(Go?!<-=JwMJ)(J;J>qO(~9RXxmEYyMLa?u48Y zXpff543rD^Y_ngK>?|l{@~#~g8;IRvo7{$ga@jZ`I(JEv5)8jMPL-?c~C9U zSUeI<@uFg$L&$aB$3sHm6B>|Fl_E@c>(XBZ=;A`YqCH~(z5gT>^wU%c`SbYv=Wq1S z;ynWTtN@Xz>Tz+pI8w3lMf*@SPENS&SRi!mUp7SwVbeK-*kFbO>1$YjD{?j|LdXQ< zrnhnM_`hX*r%u|tHeNf0Ea5Mv6HiatG?;7fCxzRj@;vdRB@p$;qwI8;VAq59uk^_u zSz)NONB)ZTY?k)fe0!eq73uOKJ=zPWL}z8BEa72f>U#FcuvH z?=dac_ZM}Nsd#E+frx-=4;0z?e^qm9l4HLdhcj>M(%XBb3PXeFZZR}LO2l8h45*=By&n!85^6P zRQ-HlFFJb*I$RoTsdj%KuwK7)Mj2VwP$#_Myu-7wUfaR{eYO`m-~-Le;IM* zLyw}qQ!BwNyK78@)5hwIS!4U(SlSkz2I5?Qn0XBb8%gG%w`_TM&H*LVu^8ODxb4#9 zLAx?8tn$=aI=aPJrM-y(3KJIfiJ~R#Vh|m+4>)^L4c8UpGJ{oagNq(C(zz5Mgk4PY+DDgl z_%FD}@b8jIiIPBms(n1by3_aRAr`lOH=ytd#*3#?t_lfxEVzy>UYJD~n zV42&{6vlE}E2G$D7}2Pljpw~Rb?MBS2A{2Uh(w>@IDvTvMSbKv3%!^~gXL6_Y)yN~ z0S1R1r~78GHZ!Uov+e3>xiN!Lp?GRQVJKHvTGz*u)ylLkTda?4Jt(FsPf!{pk|?n` z3vgeL?;DbyLv${o3X3KD1NXdd8;<`ExQFWhgnQm)Z|AH9*=o2>b3}lI?V=yd_4@AS z!A&w08*8#@eVLXIZe4TA)j_z`?_C{{!k53{qTUt^OAz6OH?e9+zTDO?hdINXA$am2 zKyR6#j7!@I&vaYaoM}I(cJ^Ptc5fX}DEu1u_zPYBJAzvS;mDPrVaMX2_W)lmY7nlhAw4m{ogNPASBs zI;NwGC1FQ$xRaauGp#p4%|n4be0fQ8L)R6!o;ZdGEEdPDku`Yow)^^e7mQ3JF~U^!T}G3d7SR+J=41Fd0%Zrp)H%vHI894< zXq{w7L+Mf)vRnA1Y2S|3hnt-c5h_|yDYUaEt*lXv9)nbt99HeHoqq#9W=&+Fq5lSa zuoILv{s-VQcP94jgmdMpFwCP`2C-rT<^1tkj}or9C;r;r_#10u+^#OeI(6Hc&ayT# zzdmK3UaUg{dDfs&sR51Olv4-6RhF;PAdW!x<52}08jlCHL;8N^=1W@hcc=wZx(Bi? zj7a}&y@XYlI1=xGf#lu3{@IiSDj?BI+#$cB37P*y_)sooCi5nX230q5Mm%`#Vi?8R zjn88NGlMVkCvs;8&+R^{PH;99*RjD%AI|3g_{$O^XRE!J`ig)q(?W7-pnIMkbVp(6 zmdS`}VOS!XTZ-FSE&ycQn2SFVF_phPTWg9!V~QhFUNdQX9RS=q<4j8!b|wr>rEwAp zt=jneCKJH())IWqz(!U5FdUf*N z?N^Oa^~HNzkl_i2kUot`EuTq<8>ctqV~2`(Kcs4MZR^w0K9(PGQDy_SJc!yp>dmqJ zhP0-;y(o)J%{aosblq%5U2%X`58R6b*W;<?Mw;`v(DYKwN0-5i=C|{5xbp8-Pm?g9)q~!LZamdw_|@uJ>)PoP&z<@N`A^3bTtiZn4PZ*=@gJsi z|2n2rRO3oVQvt1>55z#WTy5@#6k+bB2Y93&XjEhOmLBR+VrZz3mr1aOwW5==O3gN+ zmx2=VVVixn{TIgf!>-WoKYNZK?d0y3$eUM2eFzi7H$NX6TC~LIGK@g;T}_TXQC6xZ zW*{cKJU*vBpAHM$s$(J2aeXgHShdrFm?PRSAjbW0kG9meQpCUr$=;1bfYCT2jaQaP z#Hqvkq1!3H9;AS}3tU~3PqSV8n8K!VR6{&{;=U0?q(JhBo$tW=JsBcF>{d^@5!}G? z%Lv9gBMQGWDqsuBb%5q}fq@mc2KBqcAA|0%XbTc<64hu6=57!e{2<-v>;pVVz4!`QFM$5YF4q>(sUfJf$f~^{ z|7*@9(R*R}F{aOp+@U_z<$=d!@o6{KyU#vOD~F%|*fL^lp)8F~1TfCgSCj{mG$Nj3 z1Z-^$AUZ;IhC*;5Iz_)3Lkxp{@?Ic+&ssC{61CJj4`l0}3ii6y+**tUsIj~Gwk5%? zldmzqd1?S^JwQZHmfLhG2P4h>WFvN%FfQ7dn@9WOqz+35b6tKxW7BiHL^Q*+K9|z5Ifj<&b;c&`&Ehr2~nKB0u3?;jQ6pOnyS;qo-Z0CA~DB*(lND~6NrQwhfBz!67 zdd-=9bY-El55Gq*2wnf!c(#qZx>WK>e4~9JdsoC~ zQB1?G2tupc;9F|B8JGaAHt1dh_JguqTqI>Tb_KD^=7Tf$mAnkt)1t?tDcKC8gyFYB zB*H619V*lK40J0~UayBID%_@6N%A9e7ADo5I&vVl?SxlJC#hoLsGa-HsCc0y zj9&?wi;kj1mq5JE*|?!5D;2a+Yc6nw$QjLy-$0f?jen0Jo7%f7x9+g`1`grx6tG?O zDlGz#A&l{4ILeZ~+n{j&$j^LkB6z&$;@_hSZq+(zKKq#vji_0~FZ#B4(26J|Amh@r zAH?k*XclE(wSjD>Yq)^E9j3=jGuTgBSqyQ%HQsss6 zmWAWVOgCxGrPidH;Pl?eI+)~4hc(=5su)h@)}o_y^Mj9(Np3JH?3}q(&w^~cIZQR3 zSU9uw+^#T_>>OMhc*pzi3PA8iaTwNrL>SyR_8T(-^13@Jj+M=^yr+gbQDBD#_k2Z- zuJ2q!|9LzG!NGh@>4m6Z>q(`bum&Xkxr|sGfomq|20DK&59a3uMSD$xB7}%O{BTE5#>}3}x=&JDK=4}Gpicn0Mj1T8# zy#aoWN;g*x748&eNFbmMTugkGlOOmL>`}c zaNSd@=pbv2WIA3V8%atO>FfdM-LO0Q6lqO@;?NTX7(u~Jg6cNgh5>rF$@J}W=>f-s zj0Tu!VwOJ%M|)!OjJ;%Xiuu;#$&hpVxsunuN6iouSBWrfdI!P4Vg$;~`L(dz8j`Qr zCrgp+LrPU*Le33IP22(!0utv({u`#yE`h4a1sHq3^cnwH;TW972iChJE+%Kl)TC&; zdKn+WSQm$WYmnRLKfiVVL!SHY!};j<*WqWS1gQ3&+Q{@^BbYgXq3yErZ3I(hl3t;O zfL?|%wr})(U42D{Enb}Yq#`YkuO|LoXK#iowNnwRn8gwk3tIho=Hy}Hc*-r{`KO^P z{|I#Jr|IdD{)|M)X{Ef*1NVSM9mw3nZeo|O|Jhw+Si8rFBQOhlgnY<%u+juLx6vK; z#l%`gh?xbR^1h75HFO?stEhm+_B-ZE9LXNlZW8V)AQCT$yLA^YSG8hW>Lg|7=loD% zQGN7XTuG?ygQMiS>qc(kIJjtN4%#;j&;pY4qS<8-P*5AwAn3_Ma~a^wVbroIb>HJl z5=E39j4LAHzmskAa`3&;S1ATfwvS4jJD4q^arFtX##Jl?^t|9h!ehAi`<7nYD{tP# zK(85bImHr4Ow<_auRj`~i9EPd#;rFSL~M;ab-Dbx@7tXjDbCo(>H=yvAZS((Sq;nb z8ACGfX-H658Xd)%QHhndr^B5A8FmQy=# zm6WQ!;C=pN;lRXD06TWvnFw}<0vt{N480V0IkBVq4g0FbvhQ1awWEK zy1{<3%luxvRkhn{*;;-Ax!i8=zh$gvV!ZarI@+;dHqC*FVCR>SsUZz2y?gsr0wspH z`3KWolo~^RL&Hfz2qB=g{m$)sg7$6u;N$d?R#w);HRzyeacw2AqDp(a--PTdQwO%+ zagg^pMI`JswD7NqAa1blRFa;~jQQ(sFs~}3{tnCEMfnu)2u=H)G;EHbNEQ%zR^Obg;MBaa* zw|<7fuJ@5x6Z$B3wKJdG8ri%GA1TrNnJ-!ufmhQknASW!_YE++^qPMS!-1rF{@DDF zs1F*32AA{yg8H!k3-u9;+hIrRll0&De+6|Lvp{6oKwYpXMVGV64WIT; zw@1lPQBr9^XxuP8rtyy0!}T@p=@!uK!462s*FxcC3z2rN(+v*66!jk%^?Ah8jMI`h)YGx@cznQHDr4O1w;kmm$pg2B?i2mM;URXXo zzQgtIqwRS@Qxn|KZcX>nQTNgJS{)w`F6Gs4kCw2F`V3{`Z_I5~k{fw#t}RHIE;<32 zGgyf#ywmz9g_Y=hfOL;6GyTzqKqx*%HWVP;Bk{YPX|6MA#eW4*6TQ^^s)<%{d@>OF z03Lggc4~IM9(xWm;((m5#s&e8JyiS1m%n+PfNtRVhpIPJsV^|ru_27wh1mM9H!zi) z(pM;vhTLSSuP1SySeUASOzCE zMc%)LO?@;s=}U@t_W6hR0iQc1koJm5Nhlj2kcSZYbL20Zd(6892EB2oXtdJth?%OD8+knR_F1G%5V!2^&PBF@VAzTNks zRj@w!9Y11~#>7`loNe;J^Ej3lLV+wrrDyLftsI~5Nl~K)2!MznvY^HY$fi5{QlJ2& z)9Tz1L3rkdy40AIMa8uPG=?3g+lpvOzwJe_sm~-vDCXS^ZyMv!SP9uIWj?AGZqH2U ztnJ&hlfG$&9bJvLgLgfp3GF;vusqlP^Qi&l8Pim<9%k*dJol%3#n^ClO z0N$qo<6AbxA9tSL!!z%z-iEHjfo!!vB%yAIomeC*1-^fZ_nOf~OCV1-w|Xk$g|a^e zQuXJQi||6%m3`O1cyG+qdqrm?h`SA8L>lIe{lEeme2*RTeU?EGHk!~MZx&+oIp`hApcru zHA;`>;Q{?6eM_;6BlXfn`j-^!W)TDSt=64+>@C%6}d_0;Pe? z)ExFL;72g}@Ewh9_JUT(O*HKF2c;|_n)XN>vSlcU(a(S0Rsj8;$V*dKtY;UacL4Ge ziOwq^dij_5H6(ZUOlmy0Su`eV#oP9JeEhs2MB0-5A{Tj;s8|~8Oe>4OUd8Y-Bo{L= zoAU`jAZdekjA!nyN5u3F?EM6~W~MCTGytZIlRin&&euyH$o7`T)fW)O4aPIXY^IwR zbo!g+E$Xbi^_lu94!fCoWnWdqqaxmw4n7H$Vhng(;eA6Dx(2gbls`}AAwXu%)la&L z{#;uNF6q978RA-t1_dYx;wIGRT(v#aeZoV-AYlvI5Sq zN{m@}y9d2^GE>T_^hplo$+*c_L2qaAOD?US=$NOl{YSm9ePiyNScp45_++?_7HNL^ zij}_o>dUX@=5;Xh1DV^lZme_THpY~Zg(PDGAZXA~))!TA%bF+~@zl!CHnu~7YVfC1OiXawsQMs^{U%21No(@g>rz?aQf-UhusLstY}V-aQ&@8AQINm(5MF`iu%vr3O+LcLm0xO%T2AJ= z55BEEu;wD3by-*r$EkC;0vl>11N@uyJR?rm=#0`J+;OS3Uu#)+GczaVN-z0%v3#j* zup&)rtn`RbB$wfK$OBLibTmmZ-_&Ov_)8mv@^2@1LKTl0^7TpNo*r4IGNIC=%!*Pc zINL@@z|{5k-Tz*b83aP`Wi7OM;TZPftj`xq3NJT!_U(nbq4@#*n zu}(7i8pH{Bco<;Xlg92Y50!|bN%;gLGB;BA0ADpl@j%t*) z)XE^uo^t!OZN`cErIJ_M4<^{RHEJy*#L^@FI7yy0(p2)C<3@Ji5|F*4FyGUuSP?+D zW6VWB&&C_(up@EYXLp2DGyjlTakrl=PL@iPi=LZS7DoQKO5D)YdE+pF*9+$=95NgW z5mrS_iX5nb23xw!yep{{*H0B2I?(-P+4l=un$&L1X*_04(;|iT#}qeR=5O(6{Bu+5 z;9A+Fc}`=#TUf!Nh#$cM%NYK+jBJxms8O=^RSG!ZEQq6+ba#a270PcX?1gfMVX+; zFN#QCcQ7)?GXJrjDuUV~%Xj0U5?t$T zoXs;O@6(JatBSmB7^Vct#5f;TOOGB~sA@V6-}m*io3BL+~@1Pt#pdW2#X z-qHgk^SwqAA~cT3s#l!nw;7g|O?STyp1wy=_`z1L^s8_W%x`qF!L)2YhA~;W#Z)kjUHW6^&H_Z}(c(6*is*e>tEpr?N)o+m6>A?8svz(spu#?|7DD1Z? z$GyY`i-ZHE9<#%n6vH92!x7rmkYcYD#FoeR<|X?H+vSs?0i>x{=BK7bh8oei35MfT zpreD!zMt8dPLbWT3Bt+G>7t5>dMXX7G&gem*rGwdWY1KMPx$zQ4aa_kE{oQB3;Rf{ zXnYN-k(iSPsN-f7Zvq$wr3KtTyc>yNj@&s@wrIJUXEUfPW$B6>da9)uUb^s#8+0mf zYtFn!ec|#5QM2~LEALf%?Ff$)7#14m{cfgsDsBIqEJwYm)j?a6%}mBV$v3GY2^;OK z<6ZNTidTc_`R&htJX0uOZl5XsmvYa)&J;koXLb17KcciS^#t_F@HC+282K%axGl+! zd~0L^U^pl^+K-oUxL@Lp2BL{hap<##I+Y)VRmWE0fV}A1BV`Hd04)?=**ICNS`7$j zvX!-Sd8P6?WQkfx4q9?5B*aZhr(dz&DNHuj`kq*H`0C z^Rd?^0;Z?aCk=5$p|e`4D+@?og%)6@*7rhTDBLCT`c8lvDl#rQlG!G|D!aGCP2-l6CXq{S2OV01JGy${>+4sShS&r*lD z6O})gg|Zf4n@0M#ZCaL@86YH>xuhVt?^tc6HrQ~P>qK2y`5$vM51~NMAQp!HjDKAy z|C*zHT`2#@9BsXNBZb-uW9Dm)CjB)>b1DD7=V+wN8TdbS|F{;=S3t1*%QjtsuP@%* zhx%ok4gw%O9ZZkbl;Z_hH8;xabWd6AZ80vax^qazmw5`ocPiAh9P3*kb%bDx{sMw@w(WwH))# zuq_ca7~l=H5XgL~TT{&skiTn@efX_2o(B^-g{+2V!h0ihR>wI^H51XFT*xD|-z>uR zld9UzG@>sohM`v9ohp|%+E46&sPgrF!qYJfUB(h+j7sb-E~XYvN=1x(WA}xx>cGqK}~FsnW1&7mkaGJQYN$VuC7TeM1Z@qs==OWz^)R-7c~9Z|5asqK*H)1Y zH2Q~;mhCa9~@@@q-Rm+bJFzgl}%{VhkP3({zd=MH++E6A@w7J zyA0Jk9-&6-Z>o&n(d*3TIu%)-ZH{uMtp-JQg)W$s(ms^+9<}xHWn1y@AtfneE)!HTu_*KP1->I#SfU z1DO?DTImcoIVku$gjpDm#u|wOe}-yNNG26`XF*X39yRyf=EhyenJF8~kPqnnwrx)3 zz(fA>*~e~^#@`$ZT+a|ZjlykxvP{bijhSWV2LJg zog+l?Yj1p58nAP8EzbIW&s|A}0$8H;c3z15gfXm|fU7fdi=H6uljS>e(^W_kZCvI< zd!C6}E9mH&TNu;f+6)udlZH&?D3#{y6QiZlO#`t6VZT-S7MzZI>cCZbh|T1vE45ui zvUgsI(-^B*^M@6Dz2cM-A6;h{cdtSmz4!=U8=-gD;=KLuQ!=>?KGM7_Q zMPiTXn(-lVb1TQ5oz+e}G-K<#qZPQvT38Re4;%MnfGHY!Id08&&y94jn9c75R{ z2Q^jctK4hVh4mu&&Wx5r9$BBFtqUJ z_OF3;(ze{T(&lWx`TDx;NC$$|MAs0Y-9)7gO1RB?^U{2VR0Z=wXhXRJA>$yoA2x@r zvw2eVTM>4DBvrqmW0@|zBxXWy@mt<(V^L}?$i^?^M@&Ixx}N~39!JfiJHmBzkg7jn z&hRPzH1Q5ta^`VX*t22SnNs7dM**B`t`ZaJb#8lN^&3Wb|^FzSA*EBZMI;42^N*>IPL#U>hKruUuW z)jv-5V8ZX!oYU7OWM-JhO)Q^EtmryS&Z>5Cd9E)MvHnHR`5&;A9rG~!GjekO!74qDPUSL$WNKYJY$b{&To_q2Ts z@WO#5-L2FpOk3$$-YD1AIBi>CI4f^OX2Lep2RTYV`};g2hr5#QZ~G}{uhhAm^e$iC zm+SPm;KGr;hC&j4XI3b~?F;}ciGUa>{ZuUzIJ1`P746{#5<6aMP*L)mwV@h+8R9tF zkNmrwd?q8HYbU-qyS-95qHomcM@UAVk}DHGr_?%86I)^~yi7%Nre6`6i>UJx=zE!8 z5NT-W8tOOl4q;uC8?nRj{wp@>kkJgi%mmpMq8ZU+0xO8MVbi9`*PI+5*}}{~`Gkw_ z-Mb~U74;HTnN33LjzX0j48N_UCGLyf1Kc>_0)8?kQVk(+g^p&*mTSP7=Y`R@w(2>l zlMTv22)41auZa+NKN!I}?mpEnCd7!+c%T$gwi(pK!gBnwWeStjzB z(=7jH-?o$5E|}L_3s>@UhysQ45NQ%-!%k1v-w+Sj^$N4H-8 z@vgdvd7>lwUsxZG|E1-lM!hM;VlWoV=Ay0F#ayqx@bmwp<@2RX2>p)kALVcYt6HU+ z1N@uK9`E!t;cdEfF;)Rqaso2vUWHFx>>XeG^R??ktNxt1vS(R$hL&)*#`D)~u_RK6 zO*IJ3Gjg*C9I{T4HXIUCccW$>Aq-O5KgtAQ2KsVh9|?yB`o&m)GJ%{g&}dK%n2d-& zkRCxTU2UHU;(nHZ`Ug_QBL5wkceX$CJyz-StPGA%vnzPNI}DWVJxs_u&J3deE^m-f zm&guZ(42e3m++0s2?jtc2bUu`t`H#9qj(M?d^4#@5=KN~pOI5`@?hf;{2ki{i1{3O z_!6<7Mj|m!WQlBr03|1GGXEjps>vMCedYYz=Ebkss65cte#A`ttTEiS1<_3?$;xkP zxfZoomQ3=F0ar@atN2#4FUaFd&(ZvshZ8JI*e@dppiIaFx#{kTpdvi+Q$MemCRH?Y zhIoT|RbB=69C&^WMtKG{Ck%cKkE*^pPi2z=IqI2$^%7^Hi zqgPXg>vi5(hZ=g{YHZzBP!eFjsM9M!9PGYKaRH7_E^&FHKzS)t2AP$3IQff7g8C05u<%X+jJN&^#XNpGfAdh#bDFc@RA9 zfi&Kk)3VdBY!%3}F%{Qh^72 zGCITJVV+wX(J_(5#^huo!l|nFY(aCy<^(j{f?sXt^UQ*D&_H#%Fd$h-UrJDe)XW?N zl6zGmLe@dOUn*(JJgZ~q3vK{=rWm^=hy(*OxVZSg9DTaN{1U*o9e$rt3w_9 zhMSBCdbAbIMk+e@IU$QF19w$Z^DxM3tZ>(+{aZjOv$bx0wpB?pcg>BX3;e3hpLs84 z-SJW6Rd`<2{Go^Al{+s;QP^)*bW>;>w-bK<2+4iOs8S12=EwsSQRgE0cXHnryXvTh zfDXET*_E3y;xIIv_ltMc!Vxi3pp`z5+&`%HxP!Jn0~Jr_gZq$eg062-Ob2A2n-$v@ zslg4z${>M?|Fq#2t5vq4UTqAoSBAf@sU8-~VYrg_LTe9hFaepuo=<`fSJe;%ZUuM1 zF$1<2-mB*%H;k|`ky~6{OBniv&#fM*$&3^i-tF_hd0*a`)n;hkV z?OR{U1Y=Q~SV}agFJ(eh4nUbu@1CAN{}1pp|5BU)_&-Ju*cAZ$Am$lInZ6JFWtzX+ zd+8MB-K>>o=J**CU<7^v@K6h8`ITA;tmajVD+{2AV4`Skzp1~q2aT!(`jS*DOTeM8 zXoqV~REZoZ7JrlsznZd>4=Rs{hc87;8x7eicJOueYa%*lKz^j!ZD?Vh6LZ6#Q2Uy8 zhuR$tHE8SY;Bxr9Q$kmy#)`3$2Sf0i6cDS0fmUb{c_--*#ip-S#AYs3y?UHN$xPP`0MV(4Z$>YsPu=--gZNgy2viR$HD>)gzu-y; z?`>N-!-i$LN{fWDVr#|}j=RheZ1{TWs2ZjDO2>~ny6GD~Jd8=J%z3id7S94;H3!^_ zgvJ+qY>w$)|L`-uO(Xdc-H^`cI)EE`fLYaqH2kjVkAJ(ZJ=OARH6yTRqM8?k8eHEH zD5by(9F2QU?wyE)z}!LFIC^A2eJ{(bV49xHtGD!T%hKn7pIJ$eDuXJ9uQ?+(Aj=lE zUI$jT9j_Ln~}bvopUT3U;q&vWDH+6=UvXt7%K|&@^p=az45Jz z_9Jr1Y)TleC{FMdTe6es;SMb{q~~up+$W76FNx`Zb?Mc%m)q=P*!yfhPEe4-7xKeG zSCSF=#^*&f0Pu;MpgaJOAGo8X>q}q-T+K`mEC6+PQ(kqF5;M4(unQ9(oXf<7XrMOrq&4*rf#oBFMnRaP0TW48e%f^>mLKeDsBPz3KTwwCduu zNDg)LE{n(2tz*Y_q#S;_v)>x+Zs4NCcEkE2$1mdeu<-5lSCLaOtXncOGefU>#cRGl z%x;&aliIbhVU;^mL?@nBDxtmYpfo-%%JBtRuhF2}K9fi?3$92tm9MbFcDK@?YwN zdBKI~n{^9aJ_Se`|qZQ5T%VIPR1*drU@wybMy;~oDAp~S=AwaCvru? z1KURYWV7+=h`4n%P9#H(Lo{P?9xf$^*vLSIMNWw51qK!Zs>z%a5Az02?9b~zb>E%c zk?ox>6IM&yR&@DOH(JV6@;Wk7WqA`O3rNL|>atZ)+5qYV8c}1Fzv+FI!92(zYdOmK z+=u7}&8c^+6GV_;tEt+0{4EIyO@sr(0{R;>^?=^o)`hN{SBW}E||@n{R% z6x)M|V2|Y z@f_5y_2@kEy+b~qyC5<$jJBF_2D=Tnns5=>^ob|ciB0RZZu4bG>dsh}qi6ow<&+ zmcPh!y5#Of&JZL@FtD}-ySz~1PcgqF&eXv+($XT&P2Gv`F;0#504v)n)fZ#lSzPQ( zx8m3&-pupy_!d@U#@7OPkkH5oYh?ZI>nh=a%G{yX%DgUdlihj8Nu*`37D&hF>=b~z z5d(T&6=%Y+#5Ak$60VKkm7ZR@7q;cmSDdD5 zy{uDmz90clt$p@TlHc(yysxd8d-XJmgGEv!rE%o)5NwGNS9fC}?qM*cvagc%9o zeU#b2WevJ#ipH+(c24I;&@23D-FJJun9$VyvT!kq#eImAlm8y8`8Bc029%mx$trE8 z4Gxynazr`-9}2rZZlRllf~NUd;7RU6eUBTvxC!z!M>g@s$($&LUL?iU7We@YyX}lm zMgjwfnFZW$bCJkm)4Yx-*(MYcgqJy;P0!1uvWH!yru&TKy~nYRs5s-H)YneH0(c*{ z^=mDy@Ew^m;y`D2eHf*IQS5?ue>Tj19Xoi0lF!%8^dE{B5&h3Z=$j#X=v(2oALG@l zes@t;e5hE5DnXlb(LmYx%HU7LhMurPj+eCcfZ>ZUTjzLT{cr8AZl5u{SggPMXXr&OGqS~Sm2h3Oa*iS<48GQ#JPslf|Y~`Y;_O9yi%Bs$Wx^mN0 z^4)P~aI|~y&*nS*Z%_i{CiQUX~ySCG+7t|uL-Xyasw0V$X{2{p|0`!3SB&%%952RHTu{w=f0SQ! zh!~61!ulPOUBlb_9OHuw!d;piAJ=d@VaBz~g9tkD?e?(#s`@NGem<}A-c}h1!8db+ zw7Hh>vSyM%w_#zNMje-5vu@6RM*^jKE&?S4P1-*pOY$G;7R%@^SHS{ak1%LfmW5|z zvEJCa+i@@zDLAlY04ZQtm(Tx8twSH83!z7kaM}(@+yw+iN)q}gH%BMf!0>mTljuc~ zFQ(jCY-}-x2dV0vh2(}C<&}lxgj?azLhN#F*!yyeh#8d4)OSb~bt%$vOf}yDhlhVl zPFf3K&n^f^ad}0^Z|!-8#p_W<1j}ah!uIX=_?1Fnv?kx}z!d3sVf8+1z^&h*Sq;E_ zsH83(R(sFc#;5`6gbR!O$)hSAS`hC0aiY?CK-CBG9?EaYu20nIsw)fvGLuv6feGBO z(>Xgi_%FHOxoD|$#rPG-6ZV5m<84RUZT5GRC-RC=A_6L&zTQ>t%Z#Tff8C!SappQd zlAjE3T0mnifmT|dhxP3SkJjkv-$`4Mqh5z=T6gEZj;V0{P}zg-F2-A!udL5ADcVhy zDqJNX>m$D#oDazQET-ra*cN_Dh~~b#`_hN-;dJJ-bOrx(6AxwQNPYuZpvlpJbbWIl ztH5IkNS#@1`_2gzTjm<`9g6_|XghKQ#7{PKzqT>xhteqIcp z-^5apTBeabS6yC@Mgl3ZgFEJn_Az)~`w#6y6k1eRq~j;z61MMV7}*(8Hc9z|dq|d5 zQBMTZN51NtBdVZ*UCD_Y9@|liSZPePrh6)J>>M-j{a6V^c=Z?U1G;1d=57g~eVl+W zkbxG;UF8hglT+k#$cz!epvUIXYY%}+E(d1X3#<(VPWe!k1=di$TLx*fOyMK3z_H3K z$SoMpqYzXc=Lb51$$mXn9f15*uBN3)WoOo2^)1U=r50>lg`=KNJ8t#`wt!Ruz&^n5 zmN@e`vNZf@5q??6uJb7;u0+{=vvtKm=)kEr1B-nDTIucZDM6acS0Y6*LVAxqs`({O zKc;biu%87HImy4{@+>711D)!YtQdD-O{8e5SdwjG`&lu8&7E27bZF+c_pEt=#Q&qt z4r-}X;e+%`vdD4Z?6+g?VaDY^^Ea(yn^-gaQfJ3|anF{M2ou22$agegmfniNn*dm! zN4OliJcyAA{E|Vw`&>fe=y|?rp9Hr!o>2(f#N87GFcYFhg|-K(5i|{kP5|p8=Ud*Y z%6>7)`npb|!yif?&pLC&dTW@O78Ca?E4;52m{hIj$&w@x2xhO@bd{|lK?(LbMUgI~ zJZXidVn|fC`B=AISy<)@6|q|fBUnBIPHKx)Znp)Szo`UEuFfoDPVrLFx_xdnUq!(b zd<699RSb*Jc!FpAJ(=lH(rHf0R5XFm;`6lE(f6jnjPz0HX~;DetR-T*1m~2to|Leq zOm%YVB;!@`#~p7UcS;3)_K~LXXAiAh{APb-J6`~0{j{~|>B+muXduTsFZak`hn z)~T4e#p~_fqEFT>fl3}m?rag-pL=%GKZ8{fMec>FKhP-9wim>~CX9E%)`&#ru_m1L z(1n7ATLG{SII~vCLzp_Vbb9Nub-Q08_f*>>R;n)uWHHM+s;`S(jGKS=zFE8$BqNQQ z+tua@LdRQkHuh|{c>T3`sim4c2G}v7H{BC2`&+@`f+_1py?S6%$Ag|<^%VgYLcncn zid3|}pE_d3+265Y;7*MTZ%uHneN{jt%FV6@Z#Eer0+4c12BvW zXw#2#OS3`tKj8;-z)Ro{59_G4Z>Z=v%_PSV!V4P+OI)|J7OYPL5dYX>g+neT&*OVh z0AfByZr_IZ3#^!>woMW1=tZ4EN57VI#JjFD8xdCdza52F{}kchQoGJbj5e|XIqIIW zFY@ziuKhAIC1Fa~^>?^-d-l1`I}V&(+ih7IUmwi{Eb08)qLgktVibG7qX-w+N@+eR zWf2;?@H<*Y8oLPk3Vw6w)fXpPY%ZvgXd!x{vEj=5{C<6 zaPddW4;GJ9e2Jh1C!_YzLPxoWL`w^4jKY+WHs-15<0PV>)A0K8Nc+?n+=--Hf*xzU z208~!jM1}Hag^0^N#FckNykQd$N*trrkRI#bYV^gOfgQ$%ou9{?FIxv2iUxMJ<9HO zEqheT(b;-lE_LD2KaC$}HA=&jdg#--U5;#jA}VXN;FGlTQpMA7vEHi1+uNk81HuOUJM; zFN-;iE`;jTEqay%^z1l{)7waE5Kx6)spo8tfsj&+GUU)bY`d9)?tw*dVwDQePjJCRA z=;Q8Bck!6%X>~?>Kg^9DIa|^N&v0Soh*o};Oz57X$f{(3OJTTm?ml#oQ&~MJ>5TsXPc8F@jB@Q zFj?#e<0>q*2S(tz0rqS)S-G_0)DzrOQvQOnnAlezV%11D15&V1kR-BcraWE-EGg0LemOVvz|8f zqBa?JTTE?8^WE=fiVDy9b|qDkVjf8&o^Xok3H?n-pE?_wTN(AMHI2Oqt zBHOoGztiAH@44>WLjz^vj#4xmrhCvbO{VP72;8I{`(N^3%B|Hty)$3Cx+b{cK$4MN z?#m_fd8{y+bp5T@Zx%d%FP89^hoiNcb!b(~UB1(~d2jbInf(#1uFF5pga z`#=tPT(ho0B=4b8bKHa-4I4>8fco&un@PSM0lhMAER<_^3=4=aC z)Zu(B>KIN$L`N3$98h?^ZOMgeuivjV^QAC*2T!kUy+KD!l|lOHvU+3l=Xm_m&{=QK z_c=620k2$rDIRnib1T>Ke&te8+Zb#VUJXr193+Uiw8)P>s?wqb{eE3ZM5d8XJSyl0 z2JEW zl&8M!!F!?sKtDOy=@WFhHO?IhE|nM-Q4oYtQOK3L24U{q=pR)0frFc{V5A`8Pksj< z1S?ylq{dJGNC|x0@b|7BQ`9*$LKq8e>LCV!gwig)Maj7+#RRK{fM4OV!+gXPC8BaP z{suoxIZ<`YfkCdEhG`JPB{JDN1sT85FP11N!RSw+Tq6*&$`u4W`Bcp~`XjI0U-*+~ zHYT|+5X7GNE$K<#xeD=&HeVs}Rw@Z%cfgP72j-Nc5%}jC6WLAW9O@Sm1DGFSKjE1; ztOTZf6gZtrKI%xwl2xetr7DlabD**BKxeAAF#{xYjd^_Gl?YJ!3FXkWyFdk(BfYI8 z)`s6siBOThS%)IC^d(_nA%svC!S15RHArZji(0&y>fz@qR-6WBu|US$jm*Spc#d*& zh$+MCY^nKfPurKX$oP(eW5u!j*`If&szTLEtK9(3l5T{?I{qHI&<}F#S-@`^ z-r|w4DZ~R!HH#o!rek7 zLqu3in}?DV_RMwI1?l21==P^R;U0g*{o-MAhmFu<&_~W+9mp6kpGX2AXl3+O(jf1ij^81J z3N`{ezq=v^8Mje_2=9H}l#mtV+$fY!)9lC=9N|f%SNzx*cZmN2US8F4$uqt8ncY6n z^Bpkk&3yD>TU8C+lD5rW5O1nffD||xxYPWrypG-uKDQJ7<=LmHc-awz>wn|<)+w_C zv-&jS`Y+L&!TxWV8rabc)~+@j5*URB{cKZnkA^$xh#+n6YdN#Hng=POAv^WO8bU<59tEErR$(Wq4$xTYdzcyc5%9?ZVLFDQzW6^ zT5y-IShnqs8|C|-K%w5BTr2E6+q|la+7wNzWpg|dpwQf)4SfXF7jYbU6BVl>m*_<{ z$7W@afMD%vdS^1elcED2TP=?k?OX$q?8^DZ=4XaD^8vUrhufQ%5Zy7t z5!LxEC1E6@#6%?;Ikz2?N-n@hfTr~$7n?-ic<*pSD3#z@GEZmV4Umvx-g{`rwKJo3 zV`LgzxgkoI4$Ajhdh89s{F<+!|7X6o@Xve=R^gxd+79{pHVI~-T#=6ykjVxmNNk-! zhtA@?hrs~tn3>0kZOa;JpUfZ1hx4DsZS7S*e*p*G=Qk@KgCx#h-w#EOO-$fM%9hp& zM~Qy<2#k`!Rb`^0_<0GcZm^ZkFHCDt40Uy?I5o1M!zF!2Qf+-c^ocdj2C_BJ&Azvs z%__H}%apovgng~o1e@z3t^+&g8W}HHV_%HIM#yH|4aDKimy5A1D{{jkSqAR3J&%sx z#W@gy2!Q8a>uz0V+6-0Ac1T#**C#O_WTyYDaaXRbgsRNcAObvUvh_3_bZVUXbv=07Iu&=?Xv4ub1Uzsi-RC&~&+s$%3wr?oNvN8ijR&Cf-No>>z z8|j@;FJ^alI9zk2_PS0#5uaRaXV{or7|8;uJ6%>0M{-}1L+>)wQZAZFWWV13GhQW@xyJz>ps8$6Oc9x^E|rd)PHS*VlOr>d zadc`vL~*X-1nigngY4uN642)bzmIe9&M*NB#o8@JR8&SW)XF`N7NGw7@}9Z;Ydc*mF^P0T%(ye`8@mqyl%b+AY4$->z~A3~Y*!X2zdV zV<>Bi7%&w(Ls-E^aEo*l@$DJRP0aTe{^ zh8{;|DcaenBvpv1YbOs%H&Yv0eJRB_^ASRjsGD|tYZ&8dM5e9nyaP{t{gsrn^KK=F zL*8-yPt52Dt8j}GmnB-D#A#92HEhG%o)mJQsD=#68JD)AAC1K%COzZF$Mu)sk}Q%F zonRd2lvAM;d7MV#TebSA=?#k{qKy;9cw#W=PeoJtG*K|BO>>Qp+-Li-|h z2S+WF5BkTv-UHP@FdSu^pcMmcoivfFiMMLKXg`M26wV={%_`4dMB3NOr_Y}#NsP$+duTy`UtY;xF zA4+{~(ZC@`JL|Dnoka5Oe` z9F6S%bB%oQJ!~jmn`Q5al+yE^rg%EUKgJ#tdEVtip4^c#jaw!-a!gTIBR$9 zGE&!*DbP_&fe2p&oKZjCqkA9CQ_;z-vA7lh9)b>Ia1qnio{!p2Eega+HyU7#U*B`7%z=6Yr@K8V8T5j(~`-{65VkbWc*y>gk$30{uoM;@me7w2R~rHxe##Z6qFF5P@qbhclg3UoE;fA2%o(Yr|46|i z94GBUkd5KX0pF)#;)sq?FS@L-OYzeo(M(beGEc(ZLRSDT63YLK(DtwnIDVyCoAptp z3Zn?0bLuwat?fr-i4Dth!k}XAcU@#^lOpJSgx7Z{(*!Y*HD;=9ImGAxzza_ElxhD> zl|VPI7$fDGY$}AlVmeA+phXfbCd#8*8a1ekF%_~(Wpg&X8 z3qQ|g?@buc;Pg#KmYD<%FjwV1t@(XmneyBT?bW%d%@Gx*8AjA0Xze!#q4Z%7wbVa+ zU>iZ5r>upQAnt83-X>PPJ{a@1_A^mH58Pa1pS`K@u>m zw_hcpOjLq)%~qrl8%bKAJzEmBX+Bo{DEmg|G74T(JTIT&6NUc5GUrk;I7KG`uuiA= z{7<(hP$%c#Zjbp@LVE8e9+z(sIlwvn1^GVaYoajC6Qi?wJIHdz5cJD#EDLJ;-DQm`gF36+`bvF$HwkTa|OHQp^PDz!z*fG5X$a zeH6^ocZhAj`_P-$Dczz93Tj-Wb(^7*Jcs&m7gK+(g58Jm`6olBBv$6V^G#cp&-Y$$ zGP1Vl>@|!QK{ko^LhdOel72rQX~-%$3J1j*Eqm(L#pZi!7m1eC(ZQV-1QPh!9cJq3m?OZF~t20%7X)Hnr8T zFqVko^SN-#d-uvecD3WT_iznm*JH{#Q1-6=(mB+iFay>F2YAO3+p=#~488}CW^^Cy zK%-y6Xyi^w1jjD7gT(x7OzJf$QPz~^K;$u;ZI;lT1OLf>yu9~RWUCGu(^~h>wqOT_ zM+0YT8@kASE;ZRE>g<)>EMtU}*fm0QJVJ3bibNk&8|2{Hx^LXVPTZR*F-#6{2*lcA zFqomoJMHLT8qV0-R%C}Yvga)gVcCFiPy5-i?+@$to~sz_Qw-5WpWFSt`eA=qn*P@u z*q3nqxROS$BO0~g*j9*#Vu=82AN5pslEc6q!m{}b*-2fD)2f6GR zXFVpOY{tb!RKMF!RwF5qxb?blMeN`?1t}Lu2}+>B%Utn|2j>86Uc+KKvrU;TMINGB z9@HL)s*+O>WO!|R9)i@+GGH4k*jriAeh^x;!#bBFVhZS>7N&%ze$PC!IiAZrk%8p& z%Q4H~kQ@su9U8K~)^wu<&i&KDbtk2p=&FM!e&mtUquu0<9XDDRHTmZ})%xVr;g3{8 zy+hKxr4eG0$q)QW#SyMTD!-#6awBc*eP*KMJ1;=vxXtn4CWNzAt&vcZq_#Dq#FqT2 z&G=^nM}~NyN>2GrhB*f`CWVD2ZVYV>ZMsU|A5cacEYd9}R#O*PtZ1uidRQ#V^{36J7PoOrx6R3Fp8N(J{VX91g0ilkax+D7N5}5`6uds5f4e z(a}r|s6XOqWvEhdnPE4zjbtdLcVzO-O1jh81d3=*gnp*Akxx_WH|nZjOt>EvOmK?yI8)kK`_nYf2KH{IKv3eh+p~IH+Lz#CIdvxK#LYe+J0(zYs9R$6a$}p!+;C#bHVW?TZq97uehvO+ zWh_CI4WaQf>X>mTQ>56frNjzR2yb`8kS3|(Gl%QO=^FUN z>UZ>du@Uy_I))BM0l!@7Wo}H7&O3JMqrv65Q4)vBSk(Xavk@HEa)ISckHfW4P~6ru z3vK9`zjy#XwDWl7aYU74>Y>P?*-ZxwsI^H2EZEg5(&%RlKx;KY(r}|S&7xv;2B<7N z6cC0LtolFjF0tA1wbg9v^(~pPCX4Y$3I@wJqIA%fUR>B6;g97a_6tBoqRKRbrGFJGwy zm5t9%T(AnpEoKdN9xvjxoAVpxuT88w*0y}x-K%av`qG5GaNV#1ckBV3LxoG{yWy++*OLP>!R5e3r8y@sXU1$%ls9z zdFB%0z~9w@7d~DzpYx;9G1-sOyqD=-8>}7ULzAyXh~Y1{oyXa6*V(N$t;Mj-LEWQW z8uMkB+dD6h^%jpF=XugqkA&!^uCxACepwgZa+mv?LICeH#P#8S_fC%kD>pOzcd&1E`)xk`a`KrLIo#5hrB@akSMf3xl#<}23;!vvDxI@} zm*~mQcU|vET!aWJQ>PT>n<0-X0-^{Uw8Ruh&Z&4n2z7u67~##(&j%!GH}z+t|5D!9 z1J92zUo&!Ojk40<)GQ?%TjOgUW~v1TW^B-#1lK78Q%pLnFwax26bbB&-_fk=O2^d402-j*=p zC6Wgk{BME_qUC6?81N5IEdqwiHSsChGhx*BA8!_}C(KgkYBbyWG6(YxaBgz_DNigj~TV0f6GJVM3F9aBrd8aB_#VMrR zfjM~C$-jp05&q6J`?uc9MemQOsw4C;Lv*{cAc#v{=i&!*)Ta{#45`Ks8~_u!svbPB z-|OR=L6(Nl+c`v(V6ogyarrdsyFzOb>y#H1@JRHDLXScj)#@NUKcJBms01aAU94oe z^W}X>6C@(WRH%YHuLNNG5lDQ@`ymg88;9_8yL`|ddW+6q3uGTXV`SwX&Q6idy35+9 z@8xo}lCAL@_mS~8(u~IB=Uk?ge+*G#z6}UO;UJ4~;eECu+OIP3UDM5Iw`D|#Na2y! zZkzZX8bu+;nCdodl#`BO=A1hFjNnm?62E_+VoCLrf;z79V{#VR!S)r2NC`px$C_X; z=!CZ#P-$Nxo6;{5mcYL;0K4m2A!^{bL1BSGUu*}?X)0c#BEZd86cV`rBrM$OpT1k+ zZ;a1Xho6tU)Or{6T4of2mbz9~f(WLE@)C0X;Zm!s4UoD8Ww???dQU4SZ9v09x3rQ_ z!iM;RujHYtl>kviQl|?EiIK)f11dfN33npfe}O;pgu58k@HKm)rF`5{@%y3AmWWEW zdL39qocJlG>hwTHa{=}k{gHb+XbcfwPv8%pi~-gTlW?1l{teU<5&PE-?ra-QB-yAM z6Fu-2FNc7~TsoQgn%Ik4O(RM2uy#17YSWK(Zyqh9HIWF?5>;6##ADr1?sYm*titk- zACs?oY<~w##%0Eq!mo_UJrcj59zg`dO!8|Cht4j>4RJ%9IQ4*DAAFOcD5@@@zlcv@ z6W+}3OQ~<4CRbF%)||(p9*?~gfuE8B^VcC=0kMn`@4sjUo6;b;tGFaaB?I=%moB)e z-#JUJdcg+R9=t@G6bomGVZ7kpc#~xHcSC^Ay|Y8MOmse|q~G#0R&(!rncYNZjju{{g;aTdEpAh3ARQ8O94(EWY%yEgUpLX8PP7`#HFILg>^A&KhR z+Mpx>&FvJk(^(uY(S(tP@-lpz+tuQWg0f2Rz-@KyMG4_TwTov#$vEcw%MJaqInrl` z@>TJf_$qw(gbQkE^L32!P-4mk*5o)J@D1bnMohR-g+yYQQ%MFZ$^wW+=&XbSlJ7 zsPpO>9f2JxFO;A|!vZqDyC%Anc6mqHWn2m-U@w?+UQlk4i(TkqBKWLCUIyg$CVnIq zp{P$KOgYU9^{c60E?PV>sEYpEJPgflo&shO+RRyO{0Sr~aUWytdrptbM8brX@jm31 zDzX7_B4(O&l}|B2^+w47Q=3QKa~|c~Wc429gFr}rTMNGr-=MJroP`gnU#kNE5g*yd zU3t*|M0}>0x?t@uKVXR6dtHwd&645&qAcW|qCHIg%`3aXxVhDlo$7Re z@8^va6y`mmG}#>483#BJzH^>dWnVTKSYQ$4OzV!BP|4$#n!kE~s8D#1+)a;VZWMKu zg){ZvpSA&aYl zUdZ7wzZVUx5W)dx24TBS1|U6}3pPz$y!7N}YdC!diWK#Ycr3H~M#W`*+w+mw*;;(r z4*TN~ojC?GS0^x_Zp8=NInY5(yA_tSz>DyjT z+K!dj3qyIatUJeG%o#GRUh{#0#al?&bJitUJ<+i=RcHJNzx}y4}N_o{i z?UYS$n5W_Wp?7G38OUSQl%Oip&v|cRjZrO^Q^E;g!ye=GBSf71^JT*}-pOo>;H!B;I7QlYx-DyO74Y;Cr@I zX90&*J$ECb_v9p(F3yoJ$-*M}Bm9pD#Ofw=DJu&C{t1}i2A8u+0=`3R>i+oUa4Hb7 zUK_2!-Ftf>#dvJcBjm-J^XuZbwpOe=u2pTYjU}x(<(bqeRih-DqChgNWfv5N_0u~HbDsc$R;N3s@XSU>yN@JK|Q+QAh zw!41&&76|`PSjUQ3-}HTen3?#{(Y2$4W`E)XI7viPARu@%p6*hsS|1zKh0e)2()sR zvfz?V$F;!5Fdme0@T8ztoCw2oxUNk^`3fOHQnLD7I<#0S1vSsL+*nLftHIZ8S*Z&w zfPH%Or_~7|*IL<^3cfc2;>8@fq84q|fthG>=@-+gQTFTWBIWkQXEOFU3u~5KC#5S0 zQN&uWyOWChhER{8Cr_0kQ+Ch1w&cF5lxRou64D64qvRm)pPF4F)Ju}m;&1eJ75dgLtVgub}F z0up<&Fn3BjU6M9zvCYF3Aqqx6DP7YswrjjFmRweRH$pfAd?ur_ue zX23S2E>;?HE~<(=q`Z1Be&r_YKX_GyX8d+QV`hld==1TXw#IrW1<`*GM%6-mF)Q}oTr>l~|z)0!5 zda;V8&a&n_D>g?1r<7lNc$rK6j7Zs+HUSUqoZ=DB{1)gAy<&e4{tU@IyU}CWChYWz zIOdWSI9=K*6HL>RwD48HOIrS^$;bNATHu2sMiYYbg(uO#lYYs((4m_qExhzE@X4rX zT4bkHvRKuLr6}M+AnpnXof+wfAPvhhQ7Bcxn|!=RZ}w*r&p3!7XxLbJ| zI77TqCH)`Hhv$Dd9|KA+0P`cdKEb_1)vITElW$ts&P8F(ySP!7tceb~VI3|ZXHOSI zH=$!aYI}ZebD=xE-Tidi^W0XZm7T!E&Ec;%_JA6InBicT7b8E-t5Rmx$w{ay4ke8J`%RNq>M`%9@{`VYru-%F z9*g*=AXZ%C9MC@av&92rnhwXbNH%#;!F#@6oj)a+tUpcxpIC$cQa)^)UzAVR&;JL? zN8w+}N9q4Z`7nYM(EmgEYD zt{{We?gk0B7eD966 z*dV>u1M8xBBc0{KPJSYJUIQL-28yuuvaf44aJ0rs`AGUwCKzh0+nHAr;XRJm{3U0< zs_x|i{wt!-))gSIaUPc2VxGrg{s!e3VEU0JcL!Q^mu-o*(v=Kl4>ofJKmN{Lzl}?J z@Nd&6z)j}n=`lc^-5lx*@)7(8@{uD>A%MpMKt7;H@Sp(5Cr@4Jd}tB=@4t{w@6R&a zvRICQo}qg6ug5C&hTaYe{>rm+-%4#4Q>LV9X}n@671KvT={&R2(&QY1&T)J0KO(Am zCv_4Mh$FM(N<&8=^dl?**7_xM2+H_npq$*8*ytm_spu37;?l@+2(agWUEd=J?UaDF z-T#W-KT*|2@Ie9o#U1I7vD@)C0)&OZok)xbko4h(DJOtJhH~Oh~y#M}y%(x1$wgTA03C+F1?ToEj58 zEB)36F#MFI3m9#=BwheyKwhB)> z3#?dv&1(!mjZ&U)6d8f%B#6{z`iaZ+7XbM@cF8r2y8)C5O%+R0owH!0Q(*OH4!a#1 z`ENcg?_gxYNX+7&a1NT|KEPnyi+qPpaTbE-Y4G@E{PfgOv#i=uqm1_jy3u!((((ZU zvPw4R(x+Ssec0`mb1a}o5_5cKYrcaeeD`{Ic_Ckr4gA-%T zNeK;3pzV|u+5*v^k68<`<1U#OI-`0lle`WtJAqJa>NgdJ-K(rRQi50w98mA4!_e@9>W*r63ru-@a#^ z{^nS4)P#Op!mk-5P_QCLA^C^!VbaDo2M|69SOCJO^4VZQB;)oHBzUq5)n&vF8UB}f z{{^~R76}&KXTBRNE|5mY4Hq6Lo!8YJU_CdVDbGDs&I>*w)a;1jTer*x%o;Ln3^&+j ziz?*x58;E(tOdyVhyhhcKx=#vKJnnto|3qR4dluMZpwdnYYj0kNfofM)JXa+B6Qmstp){SW(y!j)L zjESDhla7jVp1bD=`$O)GC*RBVpXp}`?G=#9qhR4L;lL!{z-hYa@)FIZwcJSeM~Rni|`rhb=8g_ z7j4N|{1cyf^d-yQw}z;~T7_1iT@0^dPBi)HAdZ;~UAITY$5n(Ffjh0<>q^Wp0&bTw zS)6}Ogy*97*VbSZD`P}|U-V*xLrXJVxkeFzI$NVI*E}NC%$u2pjR%c^NX5s&2H$sR zIX-L7nOiqIUeX{b!_D!Vgw~Se;yyo;>9|onIC}E0xyF`t5W4Lmj+T|XrK9tX>%D~I zHiX5hFIl!xHl(UX#M!Tyh=qPG9kuss+wri@=9RlSVw2?L9Kh!v*6ZjGlQ>OXhCu8@ z9fW0$<=Wyg?&UQ&K+Q+Ko%MbgysO@cc-Q%><}+ISRr5h>#QCcEnEGb0@Sndv49!B! zTB1a>!^q)|O&*py4p+a;iEHXR$t5l5sND8)SFSHWC)e2`0SKS$GQfYB<5YxXeh8;P z#5PXXfQ!1O1hOk8H&a_cHwiLkk&hW0;#THUtt7D=rNVgV$@I-$f{98@8Kk4oS`5t)O|F1>I0dihFgF^H9g!!ky8xY(EJbLBgJCxn4_pV zjfc%i4qT|a2X8ELE;o6zvAGODd0%p_J5 zugQ`WTF&VHRI;c@Fl1iD`RZvkf_<~VG*ji=XCz^*=N@+lYqL{%|KY4xJC>D7QfsvS zAk20arBsx{s8{ccZT9+6Ce8j2J=1B9zry?|wJ}50-DkIUvj8^V=(fZ7Yen7G zZ1m8M*v@atTDWh+(NzI~YMH{*%!D)jm$w>zH~|5pfp4tpg)h}$-4pQ^N|v%uT+??F zo#V-g(LlVB!lmhTPd!J3Gy4j;KqO1qBp$*`3G%dpTEg>zHFnOe!f*H{b+11+#G?=#AKM6>p{` z4U-n4hb71-K{(I0cf=Jl7WV#ZoF!%k{y3x=x8L>0#eXeFzGz+-T4r??6I+IWPFr(Gq>kxVvZ*c$C9ZQYDJ^*Qk+^j3E^cV z_NaA_zESs_30X^n9e2KGLQ>i$q1+Ffnm=vGtNBmOS-L8P>l2NE?dp*x&GDB9#qTth zw&7EcnSWTt|AY>rsH$z!++Kf_m|s*h5Hylyuz+SnUb|S}66TFzKr94oPE4F)PwaHK zibSf0@3S}Fz{I5aTWSu#iW9yR-*!J%g5Xl(Uk?L{K0E&@`qcKxD%tU*)yoA6;1Nm5 z|EK5^3Ml&UUYL5wQk!XS=sZ#hA@u7fKDx()cWpm|ZVDQ>dwNxEAq?Ql87YF&{$lWk zOwWBVaa)9_Lj)eA2|^MzLHou+c!MNW!Th`}9_w`Z0a~?b zZL~hhiZY7%w;W(h56E$VizpsmSGQcEPOl{^*o&riiXSD@zMPRGIqw#ZBeIvNI+Rw; zTgiL={p6F*;qx%LC75@M8l>9G-fS*-eCI)Ns#0U4OqMkgr@mDr*L`7iA7*~zGvg7H z9q;?g|E1`2o^BZ84Y*8_|I1~<_%GPA8lT63;|-Y75mL*}ce=PWQ&41`FN5&6Q-v)i zD{A@W@F5ZBc)ye7H~|K!%UM~KE6IiB-=5>%Zq~d0dVf$MzDdCB{Po{we7}s(x|c1*tTsuX>8kS+}O5l z+qP{R4c^(c_Va$)`|JD#_c^a)jPdsN-2K61+3uplYBcui-bQ4`A6RXGEyNbHU@lY!?~&7R1Zg*r~oS({R6I=}H5APdLP8 z0Qrmd%mdIK`O4kFU$xe^E+F6z2jnMRte?NG#ts=9rhuUo za#?;r@GcR0YJ1k(%<2 z9GStdA@g^uc!7f5zH&b%>A`!iyDe6}mu#JYjGxB!^9JqF+6f%oi=J&WkYAE=LdCfb zG;kiKtQ55Cz!+r2pYZoJKKjOQNWA_*iS|^b7GA;fdl!4Oe-@hPg`=nia)Z>ZFyHLU z(m!YD2B$N}y*p&dS0W6HBl#WdUjf0Lj5Sf^VCzRQIkES-QSk>MGY@JP~F0|Wb;oNMGl zLjc?Jn)>T!1~Rqj5UILDCul7*R*ntvf>HaON|O+K1fi4eWIr~lH`v|`Kj1qc$kAEg zq6O)^oe{FQ9s|@0*D6o&mzLqcWQlc966}8XC8_vuooYnVgIN?FO&+mV_+!8bBvT4n zXI(=<4rE7Xgv#PhIu2D09PJ{RUFXbDBPdml=54Msm`m*t8|_Wxn*rpD4}-}I??lnd z!^L+60fM5A+eiA`9#b;RpH-O0&7lx9PC7=nk{Km zY1Y;dz-fvO=# z$!0Oo?M-lqW06ql7<;U+i8MtzW?cKDmVn%3_8;hmr5Hp29c!iPuvjT0F9FWZJkUZw?J`ZIKx3eu_4msY5@3kPv&c{8satp zzZK}Qjx!v!00dK6e7_ajsGEYFeoi4^tn`_Z&1CFD0`|~ERuTA>*I}rARLT5z#>=*J z79I2)*vfAbkve0+0j$6R$({Jk}yi&k(&S`tgQ8N*ezd2&n0^ zZE$>SF)Bu@!<#N*-sU>GalSat!(fdCLL%hJJyAu&pV>I+E*$D1Y*Jei078M~ zro=;}v)7@;5 zz@90ngoDfvmaa2b7#V0y_stbt27$q}2^Xk$XAepsyfGEu-jnwo(_ZW#g=+5U)DrK^ z3Cwq6Tw8z}5~D@?9q*JA@J@qw|2fpxmVFqPlO;m6jWTotO9XxB3raBM-tIS!O`)_# z^@Bm5d8%21B_r$-CaQ}7??)O&FnB{35w@%rb{|o>`TSvtPTdtpZh#H1-6L7B-GzKN zG|RK!4A12MiRI6CaY$s|1x)Aw@fo;onGo| zApZOov=4D`Sc?#$q6*pd1!SO@%1Sm8I} zx)r6l2ybLQ@5=tG>aBpa{VCHXb`A)k2K>M=;$|6Dn@l)I|JtBj>tfInzt#y<9{|u zPTZJJd0F^_9rR8YTf1>|0V`VU>z3B7P|Nk!O59xWT?UA+wTzg@0hps`39vn-)x-2I zY!%xo+OdDiQh?3p z*t45Tqn9Ry&Tyalg4)ph0)K*5%!ctUE-~Ua)chrVhW50K!r(1t^Dzx80B^u7L=Q6F zJL#SFoG_3+z-CWH!}~3sV^w=AJj(}8TC3Ed&z;FI_vItTlS(fb{B7(!KqbdP~XE>?W--e z?7*CD(y5oflWRR6xH2Z*@6SrmcWyH1$#u>*0sUO9EFOmN+=!lzoFJ=18) zoZ*;XONW+wvLvpF5RSC?h` z^PDSbaA>TA=(`b@W^bjes!Z$7=`7a<q<1-IkOZzBG;1aoz z$DfFbja%Bo>(whlaJb5 z><=?*6dTCs+S*ssj>yxMt~;nUMMWiP%4zJ?ou7vHRW$GR+>Aw$o|2Y#Qw`}2G!aTVk{0@O%0VsfM-&hsH8B4CiKV{FQVQ7$x_(~HBd9p8|7o68H7p=!fLSvW z0$E)|jF-`u#WkxU-&~nsfJ%=~w`^s7$yHvPo-w(SbidlsZaS_WJ4!tn4^@xAMBH9zRIdPbfD z)DR!VcGo-gRHK{MMyYSmH7SY+;vf8q}&|Mj_f+wTmjqA!TcZnXsGYLue zLV&zP&#P4gF-8%%rByTxp?8tZ_=ltzRhg?!NTW0FX%!akMeyp}vEtR3u9l$~UwHzx zoW*_DVbttVg`DiN45RvR|L6((@3EP{(H_MD=4&{*ob1xdacX|evIkvCJro|zi}1W3 z;lXt}_CH7FdrL$);p0FH7|fGKbIm$^+Qf$>Vzw$dJo+a%q;z!HVB>HctYaxNW65Ym z?5SKvHlm4SO&g@3wdORE{IG3IZ1t4{eKWTvw+?iAyvPQVH)GvKa=`}l9SBF+rc=eA zS%W*L4<*M%LuTB5ag%I}*tR58|Ez!ZLOE}wN|e?Iw=j&T$Ye=SkLyG{Y<+G$WAJKoeZKwou+RIZ%qu2fr`G&mz@LAw6%CE}^_G9a zK7o>eu+L>mvADu_E|J?AiOpxJf4QGu!|!iEIR#jr-0`<=Z0@z%Wd0C0xpYo!3}5eR z$S;i(vWj#te9NVBKRZoAO@6xX?mBumD&uQDYQj9s%zaQa@GVPmReqh1Z+|^acU<}v zK&XY9bHz+fJ7f5@$RL%TuK8yH0;EiU04Z?x1O)-n@U3+ENd5qkSsal)l`PS`tWry2 z0br=MRQ>NzZPu{`6Sywu^bEQtf*kHFR3I&gzd;vd79S`8Wo|)=;wUti9mM_-T~?7bL8_&i;qWV zJ%c~j>*zM*NG`zdXd6pp*Rwi}+R+nI`k_FUQQ}tkXACe(%MsVJgfA4>I8L?%t6DH4 zAYZI>F{Q3}jmv`R+NrzHH#`@5))+6}j%|q*54Zrrv@5Eu{=Q|;Eq3S}NIvU#!bNT+ z+Q+FKN6;KSAiJWEsh{@!W;zT|_oq(8IMe;e}gRpxwqtSo{{i;~#|o z*rzKO{jbhWH)oOaK8&PUuI-F(q{VJ`j}Zjf!f0<%)1Dp8K8k;*Zf6n%oDD>D?-UaHGI@H&Y` z?@FYhmU0&LX@empc7GBy!bbpxYOMh6^q?!|p=_MBSoaH1)Gs(Xai?HjnHx)BN&LI{ zDJRTXu2>aXLZ?iABlC*%zrr-nzrr+2PagrIQw$^(rg#`??+)Nu5^RDh;sNjWGlj-} zvozt@dn>$!loL=cXlH#X1t|TBA>q-eoGwepKVG*e-!&oApkM)YpBk*@#~G*m0uy&i zbwQ2umc`a)(P#8I~rV`*a`ovC`EahPMKClrOO!29C{cun3+F# zOkLl(zo~x22a?Z3J-l^+^KQEUY2xJf^fjGWVs=b=!IXx;%ftly$ck$=h!p7kMjLve zn&k_d5C(H7xm%KzhR58U;?|}&NnghQA!PsD-M^VSkb<}v=IxB}a(bmptS_g<*&W&neN20fG74*-7{CNNy${(?V)Rf_)se>(HB7eqgyFTOIvdy>f_ z{sDh*H38s{^XY>H#0%r)|3Bo9gC(Xb%uONGGC2ila4b~0?r^{P zDfIJNFLdI|4C7Jdx{rQX z=4w@s!XkP&GwLpbkgu7*1JlnZ&_{=!#G+vQXxgDR0et+vH+Z?v=buctUcP<(l`FRS zoL}b}H-Et0j>-v|cWnvkAeB{klxfGC*|ry{f7cl&_pj437z(L|)FPN#1Tw zXnuiSNGBk8(IR^bMKcj+{JH6_zj}T3;c61ig^lbr`AY&3vDfYPeQ-?Jj(r#m=6dFt0tlbuc|gnW?FLEagX zo{CIOPa8zo-u_`uu?&!@4lLcos!zVB)e3<3o#@yXz(gg5z$wsL$H^RZG$M8sfGyJ_ z`=yPlhb{FpOe7}fcP#|d&kE!`+f;wshXyM&1TQ$V2eRV$qO5x{1xGq~j&+&isiyMd zU{`IADB{)0J>4JI9sKib2UP``K}##smnqb~xEKW=Bxkgp8vWfif62;Do16<AdI|{p?Z!))-%ufC6LcLhEvTy}=#9qy1P(p`0 zFA^-V!SNRN^mE^6g6Ycw>0@QsvEj3NkqS4)Ic1-2d9Q;{*)oSx&Yd^Fme89!8a}m| zZ5-p@#Mw}3*`#?279QHD>37D+GDr-x_qh7~Bh`R^aa(@Ope$1EUV}}QoRG346{AjM zr;_QJS}x8ekj1noyPepiE@B9H=H&5S;_-L<;UC%gS4Z3bNJeBFU8OAzywUNA&vx*8Wd$=5o__d%G+Uf;HHBBrT^Y z6d=w995N*`8Zjb)ptW}fo;X5?g^Wih7K^9S@i~^~AaTq5Kv(GqagNHLmT`%14F-zv zw9w#PDg}A$q)-gk6X>l)C3!2~M4Vbg)Gm?|5u!+(kVQm&DDrk@I8t+yF55wjdO&U6 zM<8J@R}{%_I;M|MbLAe$7YwyU>)&z2*RM1r6a5>sqZsrrZZ-P^_5!w~Pf3B@NZukz8ioI%?On zsrh-Q5jP*PB2F1_{hoe{^?BKXG+CD|pXE3!mWeP2&W)ozCQynwGqNgSdvZzf-8iBE zaU(gbh=%KMCI#g?OFRDk?N42qR0~s*sW*Nv(l|B0>AqJrzEbd0++nz-QjI3s7a4EF z8%j+TziGjxWxon1*W5#bbl2ehb8Q#Jn4>hz-o-nLTdqdQjvdmPT1;$eM`{vhs^w;7oteU-Ll za;&JzA#V((~92;;zDmbt|qf;Y%H>(f{TX%_b?p9p2V9oeTqZz^8-KlT7?mboE8pH zNyTW>1onrfVO!x*RU5wwRIel{#ZzyC1iew`@dq$J)&DR*=`Pr6GZzHrN4c-+&U4IG zipqwZJ zU*G4TOP89%CohqZZ%-QL9_v0awO9L5A}YT7&3Iq7;$)^nDk4NS70@3Te)?X>_`z>N z9s2S|<5xrMSCGw%--;VxhV1pw#=Ynve5NOG`3(z`?v*GmRI1Uk%8T3b$=Sq)f9)Kn z?Ah9pf60pNUM;f*0EXm$rEb`oU!){QEwr!D72_do+Xti74EY=$zlaKLS^u;H4YlnO zM$bHz5Fl0~!S0YdpuH2x$Rqugx(x%QZp!k(zlKwnt-QPqWl;Wp)6vh zkp8+72%}-P_v};0x1&9#0JggrIV#TPCU8Kr2=7y%Bq=L5LMHXR8u$Hj#osEjFJXx|tU@U*>|c*I7cNG> z?(|Bo`8lwnQr28R=Bl}eC7eUV$~ud6`J_^8`Iqs563;4vUVIUqWQqtd1e?lt#xjvP zLW*Mv$l`*Kv6(0J27sI3CmNIx9)H!WNW?OX%)23T$2{5vOnpC02A|Z>?giFNC`;sj zj-@gzX3f3wtAN#Z@)B>Fz zhHWFC4ghw7qmM%9QBGt_uAh*h>jwdY5!*m|=7`GE=Q|1;&u?cu?BtC5r!hD3SaWex zLP=19so(f&K4D?52SHE14Q}iy?_U@i6f_}w3#sg&_E8biyA^#Y(`}UOF z`eI57>HkQ?>=9zD+9sDqQmZ>hX@PY@?SF0VMaptsWAhHtz=GD;e~SNTindaEA}a$Cs@tJA$73sM_d z9GN9q%bY~)1Ig)E3Bs_*0Us>($7gC@JX4uGL0KZob0pdjBZ$nGK-MCRunU1XRuuFj zTIR?HUq>AiEu_a`c~9XtP0pxYVC5$yu1{$EBrgnHs~Ye+GKdlaU>c0lOnPX*(QCy+j(GCb>W2N+li?`Q%))ZV7<-sQ{N0J;8U3_-uoV? zL<-DLNFU7QQYGgiMAAASIPWvr2dXo^J~r z(7vQD8r`^p`!gQ0N3~W~iQ#U93~nf7#ZCTcNDb_AIn8g`hnsKRB+VA(eRSnI7sQF& zBX9>cp&%^Q7)A6#q}VN}@T%@(O`V$GfH$ab1b?)mPAu(PhRB`IHYM8IL+mGN>%kt` zuHch2JXKrtbA7eXNAa=4?pdn2sd$n4f^=-@ariA{D@&crWO$>31;NnBSl%)0o+900 zh!&Mb5^zwlrWW;C)YMx{SJl;D#zGR<=hvKh@ykW5q}uOJ){Drs_@KUk1@)+MC*SSWPOZja-)& ztQ#gfxo)Y?^g7IGEI)%JSkdzh|F)N+vi%uy{?^!9!qld2X)HFDS5e!G(DXi=i4`r0 zJLktl>@4Enf|sVTR>P;}AtW~H)k-{mSsMVLe!Q;Wr-)sg8Bau-cy2RlIY`Te zGv`d*v&`!SccZKrA4Bt1n(7W@7_To3L0S|*#Z0Dn`bAWCI{S)~QY{K{wJghrKU*<= zb~5Q(8lo#2>K!f2m%+Xk_X-*LBVXkt}O++<_WxD0Y!o1`EErh(EIokI9gnz!@7{WL;!IYm%&WtP_x(*7_muQavz zjaeT;bJRFu&&3Uki z4@uTUs43*P;#(6jKzey9&~6xYUEl|6Y#5pdb-_O_w~rK8TdI;#`E8;laE=_FV4RlJ zwr->fmJ>A*1bgZnhAJZv)PkgW%f78Ya(jW>>`S5~w-!XfDrryeIG}y&1lmsd5cpIX zWjJ}h+_+wE?UtYVx8?)DdOD{E0l$2ethZ|Uh_J)Sd{Ssq(jkVAXIs)`7mt%ebZnp} z<{aq4>1A|oB<)r&`#OF_BXUJ`fBsiDb|T9LT@YYG7yn--bpKvc>Z=ZW;^^LhYYH+T zIt62`5S)atO$T=kiR%|`x06{i|M$3=r^onI5UXSz7TRUuiSZEw%H??1aYv@t`|7@D z>{P73E;`mQI=6ZQ2oJLs|Bsc8ia&^(Cd3kpJ@TFO^!Vw8smy=@-L&s}>N5_pjo+%k z+&J+^?P-DeLVu00tF)d>*Gm;%sDxRe-ownW;JAY`>UjUk--eF@Ww_9$G)hfE4n%4i zbG4nvEdw*Lsv|uXhzo%3*9Tr@2#NtFV>#^5jg(hZ$n*a0Txz9UD(;Qv!FoH z3k!?d(=t+iVe@R5i}149zo8}oGCJ%1Vr0w-MEH5j?`#P-weDeoTh5>T-n?j?YSZ05 zS4`5^M&kj8>J!v}L&_F#NUc<5(T2PYvIU|6@E#e&6$Utz;i#*N9ba^KCr-BC7h(`2 zUe~O&F~1OP8m|@7)!TQmZix5vypKH_5BNk$ZV=s21vgB+goBnXw@7XU!1(CiDd#)r zX>SGYT7iGt0-0^T>({jyI8_7io{o0H=s&&I&i$pGAod%k{V4bcJ+{GsA}VI-?mHTc zdp#AzaarkE$tceZVcx5wpn_}5oUcLt$Y)~|!SF7rhp3}3y!DH87zg*?4V|-4=LX=C zg06R1fTAy~ehzU#8Y(*i4(oX`^MkS_K6S-!^AG(cu8gf-bxW%Iq?Ww$zuoLdtzj8u94ujldk^qJs5PsJlg37;B}&U11I&8 zQivn-ldMKrw@{mp*w9G$#pKI#s=188A!k@?5!zU@T5uk+Pt~5fn z(*Y_z4oI|n^bNX^py>M@3z48KEWz~Rz-sxTz0m%h-=*%o?2S;}AX}g)?MX%DBRwo~ zxC}PvH%N3qb<#@)wx!}dq1T`?40ZVKCPY$lG&40B9rfFqK&2ORvC5*D&{nO?iuNHO zMsRz8CPOgJ$mjVTxf|i=PU(@Pr-i)Bj)PxuGO~DB1mR~A)mpD;e_{cesMxf3yN#{z zEa4umt=Qn2g+aDv2PGK6VX*hxJG3@@2m+rG%Ig*6fyj>Ik`oV9BJ|86K;vCj9V(Uy zYANf8`YuobM5Xu!HnVU@{5_8FZZ_ncXfpNu@VEdw9bB}Mn(<%4N4YH2LtF(jujkuI zB~N+gumv+{b5xs2&>N8rzeh-o|5+e^5Mg<+NMNVTtZ6Eo2}jjdOfM9smc_KsEF-Xu zw2f(rT!DVVi~PaA?ga1zsFDu*FyB}TOPc^u5aDEDXJE4$knat#=w48nAxSbsKMOQR z|D<>b21r^|*BIja^yX~`mBZxkh!OhnOh@mLBu>uQ_VgJsLD>6~$k$86EeY8QRrM{L z_bY0ef&T<~=~NnO-=I{m6Z>Rqy-&qwL1jl_B+METV^icy2eBck*=y6VxVt8g z^x$Lcc#vGq#xDVy3MP!U(H=8-;H6;n8@ba!e%{)HYM?p5#a4ocP}mDdhyaS?_fKk! z;9jPy#sCmZ&qg8LrSnUTdpeYtEZQ1RMS<5s#1t*1N7TE@a!~6!T@W@&O;LKaZn?eR zfuFQ?H}9DNMi@{xNLGylmHY(1!J_uN^IhwaLCACXfsA@&kZ_LQw>#UIsvtcci~YDz zsWXRmN3C##*u?c+Aog{Bf6Gm;!viw|0*A*)!G*>O;Q9%pHrr1CS3LVv>Ig-v%A?iV`XNpp22Y+w!{k6blc$S>_JICDs zhb)4|6{rm_IZ{pB^k|vTKz+(WCLDD>VUFJE#-JBbws0-#uubCg^S6A1@?G>a2zrL( z-iWhAJX&1N?{Oz|e!LFYXzTVL!6S&`S+HLPR8jHQRDluSV@lcDvE-f5PP*Z_q#W_qF7@xhwvdNCA^Ai&B*`?*FBfb^UeT9PlS_Fvi0M z-ZdY7k|N`BHk6^OFW8RYzSx-|i+dEjF)8yxd{P2SkH)pWrZ2_D&cLyg{jvCNqG%f9 zkUKXS2V?;CjK7^Bv9N+1B|ifr^woK{Ly=P) zBTl2WOYsirNL~C`(NIXu^H97|(RG{Eci<}4`+Hu*ACi%m`oE(Au#W<@Ikz@b9$gh{ zfabx(9gb5f?R~<_IHhHrmaoBG{nVk?$kJ&vhso8fiK%)Rkl5(f0=elsz;)fQ4Ss~d zK%MPin>pxQvj{|-Q!fhm#sF)&UMH6OE?qA{e}|OAnvyL$|H)C^QtD_PwrWt@@Kl$E zabU2sQrt(&~Vna69X-Ket zXrJWSz9w%;GWbq2KJZc-uxR&A9)WnmM15P7z z_@Zn)Y8<5tZ#~a<(_!P9L*-sOg&d7eV$#)+^DN{Y^>f6Pz75R5)ahZ1>}O4{w%kT~ z94qpBFyetSp6IEn{P<{&Sh19O$r}9yj;uDqEXt#iB1czhmmm>#e!tPRwK1cw(=aSZ zuxYw1Gxts}3js9rh~`A3zYZ=5&S*$|$JRRI4nxmn-PSb~qu< zB309JE!wMg8~&*Jkk1!t>RmeMDK7-)?FmX3Mhh<(7}-D`b1VNKQo2Ze-EX zwCXdn&aN!irw;RkP43?Ajd*2O5@iuiMoi(})*W4|TLs4kqlC&Syt(8hh1><)$! z8A=Z|_wk-KeoNFo0rs)oUM#NW3W6%PY#T6HHA63x|HQoMc(IOxj3kWrHaObB>|pFO zyNoD*Sj73sf-r=%i|Yz~j#VA=KqT1oE4(*?N@$ zvO8uvn2aI`VAp7-4%AcnlV*fjzPlG|aCl}yeSB9RYy@dYAp*7BtvAO9JBSo4?-Bji zCm518p-gA6#V0eG7(wM05JNUdfM%zFAz$dj)LzRp;jC@!%QPX&Hc=yQ=mS~CdowVe zs4CF+OZulqFjb?_o5q(6Q8^^`ITSTl9yUrsve8WgW;S+TL1OkZ{~fl;Y|$NPK4zL~ z^DTwGV-IY|%k`JyVYdR0c5Hx?KopSlDGHv44pJe(6TdS0d$eG0K}Rh#2Y_is{h~o! zV}R?Kjl%oqXko>>1}NX)e!p&Y>ftHi1C($1O|pjo^2Z>%DH3@zXk1g zVJ5v1Kz^#EssZ&#PwdO(&bYRtm{la1iNSM&;1X)`6{G#}qxw)|4bRY9hx%Zb&c|SW zUY-e|OGwFg9F^1GWL-FyLGY1DJyeJwPg<_t5+py-bL|l{=ozJU88hDZol#j*L#A zw)NoABEJ*+O(D>@Z6%bAAwm_c5#M7GhFdCZYh(oA(DskG+uq5wq5JF5W*#ns=*MGP zhfuvsJOmFnpfp=sp7U%Bc!hAf2bK>3NDe=ck04_Fkim4+gdkl@z_trkJtqBNbJ?>< zR@W`4*P9{>w45JrG!-HR^>&&+>#n$$@+doOlv$XVkL=-Z>w#o&%y=V((f&%ba|+IW zO4sw^I6Fn@!g=QG%&kpPje@-)Zy+jUkMy$N@6LSO{_N%)q$)u;_$$#SQc^t#iUdnV z5LN-M(ua06qoFK7;((WfC9*28h>hW01oD&8Y_BoG_ueh=4O4>`>5UQebHl{jIEXtz$E$e4nqVcmkdW^5AVZ)PAsPeEP-c-i1_PBOpc;UO*)n z6zN|wR~OHP!D~i$B|rmgwdl7iXc}Hy?yiE^nYWp3I16a{$fFqXZZf}bQP0HbwV!#g zV@XErYQ8%1A|-EmJjP@mE#_WTm`d~QXcEk*B7IDrogw~hBC z?80~mCAmF7x(9~wCqOeus@1`PplfM{LD1hz$GvOQwVn?5tL=;N65y_bk)`Jm-)u9< zsI}Drts=7oZBU3~6dZl?Mi;|*Fcs)Ko(9Wm*Y^vxD+hjt0rf9pk9)`M2Dqy^fgwRI zK&u08xR1ZCRHEz`XUloP*HZ1yND!t~FVWh7`A@N)Tn#jZZN}E1av(6w+GZ})N0D@i zP?;l;A%Hiy#82001ywy86NcMruBz2h%U>*b{0uQ$jHm$EkH&#aKG%LT3vQ5Zn!0b# zdDT9I9L32x+_=c7PF#>eyM(Vn4vFjJ!AcRu5$tr|8FKMD>*Bj$?%5;s)%S8UJ^=GG zC>Z}9+q&aoZ?m5VSq!|38eT?TA>IyCi9tDbGozte2>B`ts(8%f9_j2}ErJ*iwv|~{ z^rtUdpSwj3^CRtf4C30=t?hV;RkD2hDd0GGfCYg4*aEPhry%udUuu2b9(xCoW z(OLUrY19eVbk9Rq^yE~MY9xCaogj#mkAUn#zcZmVXyCOmt6P2U(Z!IDam36qYBhTb z9h*@#)(MavkDvYk9kW|-3aXS$q92v5Lf~RO%w)^TU^H4sNyD^j&C+pkw=?FdMTLu- zElUAjyowH`>e_crveck*@Ue&1^ormE^38=p@4P)uVm6)|=hY(B`b=mg7fV3_%-8%g zjiqT13TrRzd|=bMg^*f_x}1|nkj8-p2u-7u4=SMJuG5I+@F`YFFx@fb@h7HC3tdO6 z^BknVXIk;;t+aO~VO*IXvdaGCi-5?fcl8!okNXqXWTa_u6o)eKrb({se+!k){)5(8 zLmAs9ggJ$D!{Z<&DsbK2%5$!6il@4Hp&lM9L|QF5X4$8AMbOvajG0Tm=hN->pkvzO z_JHW*YFFC|(D#V}Hut!$GK}KAPE5Ef5x!)W5X}BF$-ON%8eqY}*&kj6lTP#`?3X26 zJ(4v>H=@sSX_H1yi)JO&IYfA~v`S`6?E+gKL zf%b#NU~m#3u734&8S)cqoL|!cU3YEEqoBfV;FI4spl_2saW0LIu+poG?4s$#ewg!F zRjH5S$x6;tUM=c9jkBRBtJd>aAEQhr>_o>QO{VnmUT6!q+YOsY)nsnmrJKAVc!eZO z*YfU72?dC&H;v;tKnPE)t*xcoCGOiSS==nMm^I-bCdPy5ZA{$Lo*>BE*|7%}vad1L zg5tR}>U5l*i~SGTm9ns- z{Ls*iDvanhDhBP7{cch%0d?vVDi}_niCar9GoY;#v8S65D}SYG-=c6IMn*5rjIM%N z$3gvwQK$f8+G$=C(w)n|FU6qYG`v*E^+N@24ay<*!A0mu(Ld;HH8ZvjA^bLvz>1R-bQ(&Kcl{R)<15m4y+op@I}M=xkOrB2 zC+^-YvXcXM&Fglj)!^kjI$9HoNvYJNmgrF3$-_LPoCS7%C>CX`xbaXHyeHl+8W8yq zFsWj9xs&J=1}|LLD%O)%RAwGvp`~hi!|=Pr3MZp^&RFODniA?RDky>#c=e&Q4;k`62 zgab^~&(3G4fWsvhSenl1>b%_exk{y)R327l5;E6WkFKKNbNJZz>-@RGy1ykvHB^Et zBJxigtib}=uK~MCekoq?EaX72m792A5RjE7Q*~ho!}uJDaB3|DI5;Ya8Pz!SB2C5a z9<0|tfA5wVL%0!?kn+Kqv26O1YlvMaf3r@AJU*Zxl7iA@`3YAc7U+pZDuO2={$J&4 z;v2)iyNI*_6wreu$)}O{gk{0f@NeB#rJJ>0fuF%NL^FH+lx;#iu@F3) z_dMzZ(sk~^vmG}#zN?Wi79V0xNthH8qPE}!uJC*zMzYaWwMoyzVG8!GBA z@AbS(u)eX}?4I+r7oN8Ar12hha8)R&O61x@Vx9nc`_2<|+<+KBiS!vJ&PNK^d`Iut z82NE3|4G#>o{EVZxGVG{;u55L?|uCj+A9K}M7kdSTyx_vO+^lTw^JO&SCD2p20(kf zs(>D-{E7@ZnKZN+G%?`%+&DJ@e(K}ewmoIlUiPhc!&29w9=cR_h~FtQPTjDKfj2bxGhHdEepYKP&r_H5@o39PFI##aE#8f6$HK!Vy{Oxr~^`@ zR*c*dY$8>!I6^J5wZ9>0^q)g9qYrnK08 zD&OCy2lp`~6F-L{C7AMk!)@Qh%6-K&k5-`*V<`sg{#>!p*uhDDndGO?ZATx2ow(;= z1P{Rgd(X%{b%4Gh`rd{^zd;pkWCk;8KqOR3E+4-k`giw-dQrJM5&aM4&wsl=hIHw< zpSwRGMi|R>UKmFnbPFJRVJoK2vCBw+-5;4b0?mC7F%B`7T1Rv1Lu})qvsCSf|L*>r zPx?4Tm?|)b?>8#F2F3yYv8zi`&XFlD3Zl@?Kv(s4fY#2AStpb#e^(9`?W^S{T@8 z+i*xNu%wU4*YPSSJzINgx#v)eeISAaPklx8IA&n}@9xjY9cQU3{kj+v1f*I6UY(Zv zJDb9g4yjszSmVG|?DOEt{HsNXF8Il1c)KsWtI^MajtaT6jP_i4-|fU1$ZzLMni$9^ zvdx*N#I1~1F%G|ip(E`{drYgfquqWebk**nxqDfYKP2L0`(`|K@1DWGkzzc^o4s8s zg9$iJ&f$Md$7|(1+vja3%T<{4OxM3_D=HsfqBY*9w0ZZR`}_#ARd>+YoO{b+hWWt6 z?$!@z1M9XOo$6RY3T>qxsO_rmCxhE!CdIdz;MF$7 znG%`LxdfnchzyrZ80b|{+sodW%H?n8AbCUP2f-?w$akM#A#BW%pwB(*jK#73HXOx&0v6VUIC zzYEw#4WUdiDrV5Yw>(dy#9Zf|L#~YY|9*p_ha}VvhY}g%j`kGQd^9Xwv$sttTuP0dO+EU(DvGFrXq>tR`3{OvR zV_8k=iz|2eiv5894CdCP_s9qE((zW1G{>rNCYTp3%WI`0Xw<0BHjC~n8>7GLRS zym`lcIulmf9gP~HIO_2kvd=~ZSqRgOj5(*knc|^|Qv8&Bu>)5&=X}(zUwcyL934R( zQBuZrh~wqP4VRDY+Ljko*r|GA?SrDEFiMXIv+yr^6Pw=q&2n%ul6w*XhU&YP$vzf} zVY!vieq(-FWi59sT6eBkOd82?79SrtEw2b)8GtjP_Q;vBo*VVSX`@KG<=10bvuhBv zVxnLFcT4O75_c=BJ(HQQCn?Zha3gA>$bJsw%PXv?3!~#&1|4ge9G$)aoC%>m(4~(h zq5UnM6H@?Z0^6PwN5=YkcJls~&oSG>cZR5!u#Ve+x+Y>*aO>f_)GX&AgUTAGujuMI zwa~6-io@=MzdQsflvcFi@$0XTMx(7`Gy#TjS4@vKa$tRQ9f#@8%*NoYjRo^+0Xdh8 z*_59IhrVU!nI{hwAG#E#|rN3;~_)HvZS zd~r@ZckyTCubFTusK%3L8G^NR_jsUV6_p*xR86?7fY~4ODlrN^WO9ROXOEWOa$7R4 zo&&%kmG);LsX@{4lGXpYTpReXJ|M!M%W6TjlF z4~Of4=k!)Wm2+MGsv^$V`iK#EsBr%*EQ_AoX(tD_I+{`Im;u*^b0Ma4$lGvLar=VS9V^S7{+ zq$Y50GRyBH%8)U66Nj1xnZWy9g|`8xn(vGZF{H9$l`?Uq zZi*t9vk>iu*8<%0i-{GD843odIQC5mw$Kj^ah>l*MKs}jiUXlqPJ_BkuLZK+?3 z1kmj5j_@MwGWj3C#Ka-D?rISaetTE&h#u->$p-^7rGAT$1YS79l33qTluFEN(3X|z zK^T`+3YNQ3%Fi|nX$-Pjz0A1#&JNFR1Ym!X;~tVg+eL{r((w9=x-?gG`&e6Km!=oZ zemawyuY-UlPy<)dHS)W_`p8si;8+zuYtzfckSy|z3vu$y-kPk90kN4KlRM_B+8j;4 z1T)J`4?us;pZU9{8|{h1KEK{izX6WbEYKD^FuFdT8(-BJ z1O$Dy*xouUU)-1Pti=GYz10_TTxCBJBR>{&=IL~D+0ZoJ2g_BxVGmQfi*(usiy}B$ zH@uZ|_vsM3AUxXs^mZ=$BEAJ6;tu6}{IADqY4YaR)PMj*Nd5nxPG$QK`eXYW(ERA> ze+2#lejrO&GQdwZor4{{!PdL6?uK*HY#>uiF71E6mzHWuxF`&C@^Hc6G2_t858oSZ zQ&;)!^Wl2onY0jX2oxAfeH&J-de#$!0p)_YIN0H>SEFiJ2$_7*+v8K3eb(}FIsNfE ze5uhdqzFEZuq%d&DP23%66;b>9g+JlITGsFyPKHBj`gLiFH zi@l=*FYI!~PYIsjX<*m6ZD&EzUwe#So@vSGpFb$BPY5)leNo&Lbkf1tGlD;@P z7q)wNIXVTH`4TF1;O2Ux3-PvW-vrzjUh z($T+X@<5>QHkc zegj-EfNPd;g;aklWI%96jR@r76HE+$ZfhukMwXOEq7@e-Q}^lusbf9PrRQ6)ZoN@# z0_6-Na>|bC$4TJ(F76+FMh=G*y$D`+{I&9OY=NJg=x3dCZ5RwOfcxR-4Q&?G-T$)7s>VRpp|yc6_36pFzi%Iu+p9gV_J z60a@FZdxH7NZ&jMmPK51W>@`6T&}FC~0Z00Qrma0z;%;Eq^qqB{V%Yk^L(9}B zppq>T-ock$ohvc)0ENO}Z%4d{02cN5kw{{Yunt}_JZ&$W?JUd~xjs726Q{*ItLBolS0Zm4!D)iMQLA}&`L z_?|Z`PL0?!hCIkh4mMw$%|OZ{+l_lu;K*LA2u5;BkTg*Tf;UWgNR+jF-zWNmXDs11 z_z(RlV8@^x>h!PzvGU~tX;X`498-AHiF@p~Q;(c3$In298Z}|qqxS6f4a*=1cfJ^u zo_c;5`%ZyAUpw_R6XJ|=&`0~3n0zZ1mD|_yT7vNzfd0^YqCa%4otxJ_9jS*iv*>pdTJK86|J!M=Yu zQ}-36KAE;XiIX*ho=Td%!i`tn@tR|V-N(z>kN1QEYoo;O!qQx%9wGBDxOL`Mrp`7Z z>);MW1$23;+%1eGl?{rldwXi9k7gc4a#G_7xLuo7(5Zg`N^H_M`nd z_CtgNxgp}MR@lvz+tMJDwNy+skVvzh)%UAyv)$m?ynn+`?^!G+LRT`xA zJc)5PnNkw3FORPtPEt0Ra3#uHpl%ajEtGssGumf1Sq5)NkKXOBLty{B;CYd^x_;p9b}a zY~+1%nFNpjLK1pzNBtNTHJ=8)x0ZORMII!^9J@AlU7vH#B?7SZQ|4_ra`;S;!sN2m zQgi)<{txLxGul8(`?T2X-4!=e2ZfEZp4}X!_i30Eg87Q3%P7>F6y&c1HV@^i8_gJC z3@9Dtkze7RV`+nK$KPk1CWKsPBXKJp@Q9U2OCwzCpE9GsLp|q2Ds}*t7=9H4LeBXzs+8taT-s^HdnVx0UyUgi zaCfA>`9_uVjGW4qal2`VQAv)gD3_@y-%Jo}P$4iu#-&VEis5HuOVB%_Q?J_&&by6Q zuVfkYAj_||{%u9(pd>2)3IYi(Dnh3V}+lqMFMq6$SHUn$9Po( z-Y^e5<|0`zJw6>xlf7~LTUE-vHAeRpXi4zpd}bGb4Mk;KY)~eHxv;uP*@U>e-eMvZ=la zHgJw~ssL{cALM|Oj!XMt#Vs;O)Yo*=+P}>)Q)rXFq4QxvB84?bd)%z;P!50?n_6Jg zZsQN(J|3~vBV39G7JTqLYQYs^ zcsx0z{i~1spmlK8ytQoRT(8%H=F$U5BAynHcr0*Hk{WY=;~P&^HH*iaoFpoM`pN5k z;P3(=4_VJcpxl`-G8I}?q+^}0e5T{W^iyBW@aJ{)sv;Yo%#(V6Jl=5ma|qndiG9bq zndvsAp0x`uHFT%3lo<@#R)Q)DyVhgU1}m*QsA-9b?x)FPXne522Gj&{xzEog&jSI| zn-$=IYM<|57qC|7SUA@;_AnplU_l4mET%NMJX}4B5ILV^4q1@SMgxR-F76r!ujTYs z`mn^mUpQg^9Vg4Vf^Ak^8n>y(23B6eDu(cId{H@Q0_Pr$vYkA@x;;k3Zz#JdRCyP} zZiyzz)ToNKNB$9tX4!x>))IM+Uz@EmU_SzO{7Lep`#urbLh^S;)9ny+VV`dz5-05vd%#{-nN(qE*hh^Q3OB{X}>E z%#zX^ryw$vi>a6F<^8Zm7PbCS1{*#s-ikmrXl^A%khPl8 z#*&d*k?ltfMf0k<8^E2H-)_rBz?8Y`GkcHJpWk7WP8H8ZdfI$7K1udz#WQhaV;&DTDBlB z;%A(Djo-c}<4COAj2x))WE#IMQmtEKyt`q0gme@w1u)PYIzMqrn?{Isa^R&<5$Q^w zV!Lit7lNl4S|6+*l+|aN8;Nr}wTE@1imB3Ic;0YtHcfQ0Y`b=nq%R@FWbWXB?K~!2 z&5rE2sEeIR?pOurdT+KX)t7bRDEP<9o&0(&9UkuN6i(1dAAZ|(n;3J+DR*TdFG%J? zRgXb-XrA|OQ$*;BEyGWZf$0(4N6WdSZyw>S#*nl=8u2SB%;kIP0}6*TYo!~<*C0n$ zb=mi?j{Xza{`C(j0%bolCsJR89&Q=u)$BUDd`%jatxNLZeI(cq?F{3p1HlB$pB-@- z->vG&VkjDEus=eeNis~()ThLo|6o9y6aM-U=TBV9xl+ePwhH#K5mpyi{YTWG1`GV zh3TY4HnZe|RAuH8lHss=85`+uny(cY;(0k7P6D<^?;>2jTQhGRd4Jr6AK5WK-%;go zYJLs3$7*}(2Q2&ujxhNC?DWc}&jGt~Fj5Y{a5dVyIXfPT^y++V|D)!`N%`_h_`f<8 zaQbwQ{Q)O+-v0{)^e#m(mpVmPHcA^QJ zkC(WhbJ8p)d2T+HTjoNL&tmFK{3gdY$zN~0it}3VNx7se_C6gQr|0hLVOf_ZbU6+^>pnI zkO6X`1hlY!z0{7XHQhvGp-(W&SWI48oode@RILzJHAac*bEME4VD1k}`|8{{sN|y}z{9)V{`8!#1NrRmi-Nc2-3Rs=kmvyZ7W1UPS~{-ccXWc%FA|mwU+9)zX0W+JD9q*dPE%nl z6~jwk@BJ4rcpK7gOSmQ3DRm9GUE{4*H4jS6M83P_$*LXIWBFnnuZF%hIKZ1YL8l&) z1y!S((T1^thJ!+SBT}K?I9pG%kj5t$<)&k+>5uM1h$NW#wL~L5o|mgFBJ|Qi^!P9# zTFBff(I7M~SOhW#x8k6#)BC+tPgW@%3}Q4Oup(pZrehhfSeXCor6k*eelFQdxBb)7 z@&2cm+R;_fbf_?OkA?+kwB3>ou)?dCoyPCKqAvZ_(m@W*GGF89@dVPIhgy#Vv~&l5 za#Q=}>uW^+tEI!N0Zl&sw9=u(Q(A03mnXTUuy~M=iB|!7sq#-NofMq@+vhDEMnAUF zx?JTQjr291w9sT1=~f&17|p~zBqJ``;M`dZ zvQMSjl#(gaUt8Lei-D5FY;eyd=tTs4$QhC6B8KD7BAu?_C}YC%&nL{=?@8&g@%q`) z`Q^Z5>OD`DMMYpzdo5<`qrVB0{lM$oNij-&P40(520;NH(B2;`v*aMeT?qB3(CsuC`18}+m_bD6kc z3z`WQ`%9Rpug}nP5S4F+!OpQrnUwh)JQv~VpYk*}qNPS~9wz!qzwBOub z6_}{FN3?>skAQu_z^$uf-{B=1L1V5KD3)HBtN%d>RWzyZ@TCX5;G)rOKiAa*WQ<+! z<$r1*rF^>}tr8|q%|=kb`l`xz&h5Y?By0*>Vm}3aH~M4= zFB1I3_f%t26IA!Lrj?Z!^BOC|kpYzKz@+CL*6q#K4}>|it(5Y-jJ=o{;tp6R-$~!R zphpVcEf@>f#kuAB9c<$JNC5Q{0-$~f6>mH$Uw?v&er0z$L&3kvIjNBQA{|dH6}^J_ zYhG==!SNa+2$W|&8f;ryWIHxN8}X3;wRxGZd&QRGfYM3HyEe6gMwdW3{-$PI>Kf6X z7b|#k8%`Au&;m`LhwKGd1?sAC(~ti$+ooFu7~l}k5-;K-o=rgL!M5R8@)*Yom@nk; zE)vU1kU21!h|+3#rXp5((Y?}e(Bd~3ihuXkV&1<}9t7oCKOh`BAP;QyZRrrGM%b~e zUmKdpzoc{R4Q2JVpbbcn`$YnmyfZ`8wHJ98{eJdmDmpwMlDE3`0`O*Yu*>@Qes(|&bbYWifDT9+a@--k)Wvi~?*`z_ zR<*98eR`&{x{>wC0lTf!pFPz#kxUSCS=%3X>L+x#+<`*fjRb}qU1AoaxVfv1Yt4mT zWIz>R!q~=l3>s4vjeJDP24g# z=EEDYA-G3zKLj_j7QUEjz@Ps;B!d%L*EI*NV)hgy+hP>MJ^9xFmsY%Cv6G7EDeq$C zxzG?DUPF85B?~fhbY%TFM~B-qla;|e`7ks(#rJ%kKmKxkM0&LKu5MGjWgZGRp*y5A zisHW*!roUZqh=w^n+7SSbV2=Dm>#{QFRBzQjOMEC=P0EsA!d)yih->M%H+r%o?ZPF@2!}mV$yHRH2^HIY_B}hBNnbC? zq(aCD^9R17)uS;Qp_$z_uD00SNoB&Vm#Ycx%Ry#k{6%8N4~wqUB<704gfic;Co8N> zPDRB{C{QUH(*;i?E*7lmssnc!N5|bSEeW!D%=>P}Iyj~o1~-BFlhIdRinJn4eBY~P zhk(Z=74r|v7>fwe(h<(GXdib7fHv+R=x@o!*o z#_hPwsf;hn&#Ir2jr^<%hU z^-^VOj-?;u16O0MD^RTA9}``;5-{~rbpnz~ie?J|v!{lO8JTM!eDbcMx4Wkiu=0(6 zCaswk$ku<}E8wBV?<6BYoE2BT)+#*E%$N{_?~5ruGV;d6PrwTj!6q>39aJ*rLfsbH z!XC-91R%jm>Ie!`e+uBxHu7oYOi#z^K-WbQ*>8lA$smu-f_{5#qhsMibQ}{C(hfs@ zOXDgmZBu0-T7cB47fXmceTr6>a~XJT;hDt6s^#MT5#I6mXf-W!D?D}P?y!r@Wyu(s zqPWF-260D@*Jzq0$ol~IGNOwR)G!S`b%{7e#{zd~RI|+cKmoWq<^HjR>a$%e6F;gn zo&@34baHv)Z%0rq`Cdx7dST@WA0~O{&&|TTlw)^nMyVCr@v$>mlpwH)!BbwJX&@N4 z{Q&j*=!&G;polNS_8Xs)fxbtP3E353iZ39f#4VsMo8rY$89|?isKTwaT9!!Jd&)2a$#KQgVHsq%5^rLP1Z@AQxXPq zefyM*sJe#MCDpQO$k`iPby;xTd{?kYB}1hPMw={9g!Ae*jzkCju1kzvLD6e+ZD4<8B+k0SCw{XeAc9E9Tp^QL7Z*V=Jlc zz1kpq`-zwAE6LaRK5r7tNFEgJ6j|Bj?${-U($aG!&U&8+5IRIupWHV>k!jfz+*PZU zIA~e{hn$Rz#+wCm_BojtT0Wq-w+-HP^IN^`k6VFv4HrHd^PWY;H9Di))?;Ih4YD5# zcV`On-N9XHerTMl9H>EHc6i$jVJM^+e5w8LRR8-Gr*FirnMO@BBd0=fSsS7y6oo=!lzYi!}tw&vB!en zn4AF>7f{4TZ_FU_K|Mb~huZS|4o$K}Hcwwl{&);{H0%1lZK$pE9ySH9LkH;?3#D%^ zk>||nbZSGG5UeSNG>VbB0Nq37FWmn2bb;y)hk)$FmAGaBM>DX?P#apH5I(;IM3#(S z@K-FKkp+V7P(ZwJME+l72?-{A?661qis-ZcBwg+fh%BRjBMUG8+(M~9k(-0%>x;mW0Th(xdpo94xg6+h9hmX8MNEe+aoR&?4`3lju%#V zh+S$*&Zh3s`v0o5UsRe&Y9)Z|2o8jz!h}pH;<8s!elVw2Fe%;uEw~z)=Qs$|vn4i$X?1#9de{=<_bOEq4*7QiQC%z+71f3|U3w^}SVx;; zw+Z(V_dmRj1T=zD=dMEexi`>tkk3pLO^d~ShXf{=4+Khdbn`&C!$OUvs`1*CrM#MR z?rHL}>Zj2VLmAxU(Tjq)bP%&G+-t!NToAvvbu(3y1gi9{yI8w7syFz`MHx*Y`9K|c&IwR) zo~8j~ptn-8g8Sgw8m5F1R9rPFKGN#b$3sX>gE$RKAm)*LNnsOQ^h@-JFT((B8M~Dw z^Jj^*J=S^jXAU-zu{AAaNYvMUsy%%7s^8w+1(pga>xiT1PNO{C2ucJ))xlYYr|gA+ zFe9n($o-lf(IjhBS*SVkC(}bHT+5@`As)&5SFx|X8a`LAJg=Xd79NE;d#%ulVAP=r z$R-F&F6KOIMafpNwtHE#cvU4cbt2TvV>T1NOqTaR|A)nimvl@B{P_=u1fkMWPfcyhWw?&?YogJ;W1iu`DNFs?hgoJ6Ce1gZZTX?sagB8&6*fcv0sW zaS^;NGw}vKpO0K~tEdWi{c*p2&^Bb4l|vJcv3s!OUVXGhF7|e|c&+{xrJsTzoX|x5 z;(|d*gV%M}+jcehXN?1h2G=V!MnC1+Qh#|y5nUvKVWNWGrF&*=@camiN=f^l`DuekI7KmmS#$l85f`J=z^-;v^K@j8L>Uc{=9gE5 zG(C~_=`j!9h*bx1pSc_^J%UwKnDGe-NCph%rTmiEBu6c^zLz$ z8x%vqy9r}~xj08?+AI9^Aj22d0T;miTnEK3E1jq4P@??IJ5@eP{MgvIQ)*qFAIPSO z7I}(f4RZmELf9FYZe8|1;>#Y&0XOHw(tHEy7rJbzCZAsx8mxxYwbwtq^V6nlrfxy^sTCy$V`iiGyeZ9`9!fCah1(56C68v~&8$#KeWEe-HMdrs zb*VcX+)xy6WBXcKhBgg|EMEOD{>E&xu^> zz#FTGDpVuu<`u>7>hCW85}_m96)Kh>uD5bZOBGS`Mt6(B$7?^4xa@f@>gZ5*l!?Eoc`x)P9?d0(M)%DY5IqV zqI%pT<9)&(Y^kGphbRv$?* z%f^pBJWe9cCKpMd{bkjyaAhrMElu%~JGlzAy&zF_mOz5b)eSwYEk8~Z#dThI_Mj}r zI*r7+ZGgA>t8t8%J6@=v9$Hac<>lWE?C8!P!GFM z0Lz8c_abOZ`DS|c3Sqj#q#&|NuhQf`7*LzUux2V#@1Ks`k(ssDJPYOqIH1K0^sH-h zCf?iL;D?cF2MPD%E~B6pDN!DRcN1`w4^KURMtNrt{6_fTQgiZ2ON4S#$m2b<)247b z0KdsL$B|aS1+>~#5DcNvxA|vE7x|bAs?%R%_-7rcV-w+2xTMf_YZHSO+oBVV;^Ps@ zYHJqsSbWmp{eu5& zBi&)wi15rWO!vmQv45yO!y3`lNz&>}>vGvt$Ygt)(o}sJQ@)1=v1zaS%Bnj2fYAn` zl4^e{3iubHLR5Nd`4S&E@5W?6RwcfkpeEIwIVw#=OaE(Vxn7;lwH+{fFa)vXir|4> zI~&9=CR0soAhtS#GCRrud!3Z@Jl$TqDU{D$8M$_<4!F#o=BY3QRo*bgw6u&$?#?W z9xTQkI>KjtHXf%$u1HsFE=;ijGr6h-mK`-+y{xL;unN)NUB$~^JWV4m=6#Y%H04;V zGq%N>T>Z)UasPbZ;_qTUR#?FN)|L5VesGJw)Mg_dg<@4K9J;xy^VKzw!HI@3?VuUx3SNL97(0niZUJWxTh?_7RNoFYi^=eO|?Gdn3O7EWc8!l){ zXOC)E%xAdBODtnCcf2ou_4d>zXC0I}*h9sG4OPKEeWe#+`$FL8>KWTL9ex-Q4QV9tzB{FTlheC7wZYCsq>r4(Hfs# zJK|#$4w_!^jP>bxc(BK%@7f<&!t5lkkNQ&P zo@U0S840Y>XV(a(ImiNW-%o@`j5N6{cn9eh8^n5#6aH*a3gO@C0Y2aZ1!aE^6ZQvd zjw8s@3ogtjYQPsR%sp!16>E;h6-JlG4NZ#}r=fs!hUkPG0oiPnDT)x;u2M+;(F-vf znS8aS*G$*#6-eA{5uaEeaR0p%M#Kz2fNUvemH1@)mYm;ydjk+4m8$Npi~k}()VYW| z*48%!n=0e`BNCuAK}AbH25#aA3XocKy}=re{`W-}e?9wmZ;^1XP&TFk??F%XCx>a=PXy@j69K~fivZbtB0wRZ2+#&&x*7lh z;{Oi<1gKg72oRuZ`FFqu3?yULCJ^*>`%Y@75obXgeghw$L{nf0%{7zK@jl=YxyK71?-J63ifZoUFT86~EW%zh0(T%DIcnJKU+ z8DI3oKHr)EK!Cmx?jpzi0uQU6F_nDQ?5PJJK*j(B=zN5i0of_5$B1YNjuZjsj;~UA zV7ZY`zD`0Droh7Fo4@}!{15VLAbWh`i*=Qla(uCR((p6P+t?uyLQTn1A?fh1KMb8E z6E~oa+u57t%2L!vxJN{akd}LXq}xlw!gEMj6hrQyjA}AyoqJk(*&5*IQ7^$7Zl{ap zo~e|P)xRVkwn(U01s-B08z_`7(JjNuCi29BoUjQnM<;7kUpG1?_6bpHbm>K#cMDOn5CAB3)Kgb|7&tnpS689seUv?+5hph77A3sl8MOF*!2kvLY|_>W)?{lf zh%;rSw{NOv1tS>yO1{ZF@(peQ{2b-k*x2=jA;0VWHu(QRK=-Ak#8Padso(h;#_l6+ z0!;J|=QO8a$FNqBH$EqTc9?IIs{g!A`nW`3{)K>8pGPG$z$q$8(T)YR*AQ`*8t$6=unE_I+#?QdejvD- z{v7bC{Qp2eTbkKMr0F(X&B6}GI}H1Mu)s2Q{{sOjcGbqi{e^(I*?2$ruYCtsabJM{ z3juN1J=wfDVl6~k!~}Gs^H2u z?wW?Y)bi?2_Spm`?k=O6=xPdA?gZ-cnV%*%wY6eMeTofHfSvPx%@T5*x-hGmIN=>R77ALH&!XF4e9kjr}-`x=MwfaVA(NgbAG z^|ck2SXK?#odNjSYbwW;=5i@*)VFq`*~{&}6cBFS0%8a3Cj}&N^9Z1TL?w=qPSGdB z*nV^|1a7}sFqV&(4~hsTH$@cwXSJCaM2Q94sQyK!4FRrK9OAA;u%~3qc{1!RAcxa8!u}`Ju?`Bw*5HyJ zu|l*Z?c9y2kpgrQk1cUZfeMT%IZT57vjGZ2ah3kF8GQ&jl$f1?>K5Db^#Z0Yk$$?} zC1bubr26L$9z3@AO6eXp`rGe_{wNvq)0m;qi4|7xVleH>;u32DT~03hK7Ks<2r7m1 zDYM$WeL>wy(yEc?e+>{~K{XLayf@qq;PY z5*=uXc^=y|vpf5e!bEu?6%&cCIp8wcm*n4t*zmLVMU+H^nOunkn`IeBtH-8C?YNFB z(}YP-015?CfF3Bk52Grbq8}?-!^P2?rLBy7s9yEPYsVgH6 z$8>xteiEzR%o@S|E6Adfai0*-pZ6=~Vl~sOOw)Fj;gbv&b$^>R9@hmc>lhPLE*17# zU(O=S@DuZri(=+6bCDV_@lmpHy;eof zoT%A2kvrPq#Z>McZs%r_)!*l?cvvrK?>ni*xf`Tx;5|pH30XIf z*~m{riN4|Jui9-=)nCB-)yX5?m0s23b7pM5eP_->&1GPyWF#K60+;F`>D+5v6<)u3 z)KRe+WH$sFFX6;Xj=Y7JfAH zr8);!u|s{QXD{TX1>V<5kVzM=yR3I_ku&-I>?DtJ?878Z{)>XKq;ijucajLLDp>J{ zEVn824?InT1Z>bLqd20k#y-H1KS7kw?ycAkAe7sjqWFmC##XKoa({3SCt1nWv&@AG z@v+7$>|}r=4FVt_cP*VgsgnOfKwIwGS^K0;Ork?Rl)F1K{5W~>=bj)11)#PbE0D1J zGiP$M?rMih27++K3x*ES3$JJZ2uKnn>mLNfJ}z6203VK4N;O%V9Lw;>J0W|bxK|AM zDC;}6Mz`blW=c|5@)EnU8jL2$R7jhIM_9IOD}2c{_5yzm?7_8fr%I0#Gz;lP1(OY_ zA|D=G<>;8uV(hIs}@cD*1yWWIc>2GgS44{C>clZDl5X0A{lz#(2j2VwX z{p;FI{^A_vX8q-f>zs z8Juw14?~rTuHcB%?YZjB+eQEdwDn&KsOvuzP>kdCmvu|E5v!7+zc>0%R!M|AhkL z_zwjXvn!SCLumdEnqTDp%fy`{bzOtbC~y@n6<=3#%lazB_30iT86v*CQpVVL^LVx) z{M+g;RAjwOx+yN?=SSbfF17JVPW%3yRynWUQ#O_v;ePnD!xxKHPm4uM$#RI0lVJa6 zZGjBQH$uISKi%)T4OOhw{s3(?{g=1a3xKwI=>O1G)Aaq*R@3}fTiu$z0MJ%He`>2? z0ov-h)QeJki)03@0r@~itk6bX(6}5R5R~`vp+fWCoov53Z{z-eGBC(u)FItbzHFusO3WJI=H846Nct zogdyPGr2az9yh8!yn!IODao7&HGP5HJ>hgLRMJTEVMha7ubY1HC{rWv1* z9b4PHB5$h94=PN1u}H)%)vnz65%dH0e~t(~_kaB54k6;ZOZ+w-ZGMOUc>25l6PEOE z|7Q`f|6>o>|M3Ux{~+!1|J(nGLM3$jxBnC95C+))!3BDT@mrikB#*!qI}P_gW@yLV zZ6VxH<;WbPMjG~3q`mINdg5b21PY78nUc?o<>)lDt4=SEP6yq+m)qC3ZC~B*5PwW#Yx`!tE6iJY%ygT`70~uA>5beO4#NplC z;5C5w{R?_9Ez-&Ig|(LTBg=fj!BxP_oOl4%YM{)xqIAyD8!voCA$lp|M)x;h3tTko zq1V>v->kD|3Y$EVtaNO*-&XpSWaWrx?ldBGBksbeu$8LV7=IfmB} zgZ!vMimr8)LuVbhJb#s3Sdk7zqB1QS7mLUh2zNIRbP```0R)YqAF(v|6ZLCBo^b*cRT;_+e{p(jZt@y^)k>&s?U5@&#a9NmY4F;V zRmIH0cx3x2sdizDliq%;ff6)EYepgN$gOQGMPv-JS8$g`T*wDMv+ zAW1#*&P)B;gA&7tFT+Fe#0E?Nv7xRIgsA+4$tN1?xq>;^-aX_~9^xZX2k}@GarJ+D zUQy|^2vQ9`$qDbs2>~_qLZ1|g*@UujAyr%ab1S`Z@3-V`q3bxcPSc+iR1BOYN(7&3 zkMP>^AT85DVrup#9swCR`r!-QZM55#u$AD6B%<-sU8sy6{Ui-m=CH?OsgX_0X`$WT zoO}p%q{4EprTOA&_X|Q2r+?#5h_z|Qf+$26;;X=tykTEtZ2AX3y8pMxKQub8_3;`0 z*I!uO#8gy0WYQ_?bmyr67b%QDQXuMHz=K)LY!IP1wn)l=1t80T<`9>X!fd4c0EB}p zqPk_Pb{~ZXx*u>LkzDzR)N*yJq_IYg3K@0@wY@Ac8=}7S_hCz`G~Y& zZhw?L_6Hf&X0|;LI`g@PiYX z7eDZ7`L7S;A77G~#{nIEj^`97-tE?ad-!i7jry0qpNnl*=x-POSdemM@R;@{3up&& z#ZLm>v@ZhOe{(Pw^;xxRWdob}oj7|jTaX?LCv7#N2Hi`Ilj7nDQ>dwT0DU?X-5OKc z;TB=WXnu{f<#TFfIU}b@Qb9fgrwUwF*HKpzW;&kToRrZ%MS)Xy#c?~*v17u?gWl+k zz{Ykq)o^{*HTIYBG&mKb{?UzGZ95M#!`u*{;!PF=BQt5Y&Z@JQ*Mtn*_<@NuMgE%6uNjPqrdXqyv(;_~a-fn!OoyxX5 zCX~NIUaUBpo8mMRE)7mN5Lyz%-@mW7c2!tiZ=^ODDixXGbB8o022tZ(7+@R@GuWo7 z;Z;Ezv&gP2OmpD4t2NO7T4#v{80n^O*$ILi)KD|RRc0|LC*UKEU+wDb<+2ncA~2)n zGY&7K4@^(9oSNr8tSPPh&nhUy-7{1Qa$#g8hfZGSdQPs{S5M5IcvfJohfgI*(c^mA@XtnAeyVIdrg+#mOZ~CJ)6F zhaRtK4|71+?vY?wkaLU-X)|2^lpfHjU%nzE5PMnTtnlVgcZ(~O|C6khb%SMBae>Np z@nEADpMC`)2&nzt!F5^MqKPRDHk~TcZpf;FyI#%1U>#49JX7P%i0nLl4B!f2|4b>h zpw+WpN@$cXVqPPH%#yg$0xXjG+*lY?NseFuc871jgX^LVSBQ@EF%;6Xao#nVdSGRl znvde*zO(#{4GhK>vy}u6pu|pB0`Y;g8`(x=jJLKC!PfjL(pu4uQ43 zpyB5(z%<&&x8_uHLm5G<&MtvR?E~yw-5*!p)g5bp@;<#e zT{0%z{W}E&*a5n-zX3cEICZ+r(gQ~D%@+t;EF1H`eLY$|J9>GA2Ci-vMW<@R^v5(~ zY&N+*d)Qk4v)3mDu+oA2r*rDO*qX#1(51`z4_&%{&nb0Dd%yxvmwf-)KxX?=KN2-2-yFSqntWBXHoM!TyIR5M(N zJSvp+z7i>TeYe~@b-ii`#Ebudf1>{v{NwNi|Ew6yQj_e}e!)M)|Nroh^gmL%Z6%%m z7ycQ6s*(KP@Xz)4w}0TD7LhbJ*nz)aGVRh$Aa((8utGQge!y^Q=7epwNZvmh?fwo? z3&6N)Brmu%KHhg#DBj;lkeV>%wIX1e9^-kCP7-TpUZVN+*viF^YXK6>(8WZf zH(BV?o-v?*&=0`{4U3B2l&S7ztHILB3)9NUoyEmN7N?*GHg_g_VDUvKtHFDjAT;hH z4&QOo{>uEn@J}zD4!xfYHWvO0v{1##w*)|w4&KcL{=b@Z44ULt;!Xdf(r#ks1v22tfj_WY?ieZ{sOOQ=Y+qo0ke2bEGl8xVsysb|)nv!0qPmxnFwhI4sY2TlV zxbn0@VC#S#x`OAPft^Z|O!%z%W_AT9z#OzCVPda-(LXr%;}9h9m4KVFQu?(0`fBrZ9Js+g zH{5(k)YC}QxSwSF5B;;RNjGQ7xnrx=tj)+~aOne6vgDzUM~^yn)5tok#C@*W75&Dx z1vvnhmE}p_3qPCy*#Du}U%PMYW8t^#`^D<-gywi@w;6+KB7G0YReHc4mL{#a3hU4@PrnDnSW2lt(VUcbW(h9bIOMq|D$kn0LQ5G8&A zK%sTJ6a{1w4w5S9+XzWag1^kEL5$ftEKv-|f24Ormr{_m6gd9F|1i8pwp$FtdhLVs z-<<>apIiX{L&LXdbd0GELZ3}$&VJ9aPb1U#jRwH~kWdJ2@tSmuWqKxkGTI-p3Y=oF zkr_&~?TScXg;3M;b}H^Q%4df0FOK)Girku<))VfXLvz{wVQrOfHbs6!bZOY`}nD8}W0S zXu{3qF$SX_6*UWc&>lY}&0m4Yzzib_6LrfNxi4d8*;b>U5A>HaxoT7!Hjo(5UGtkE zJ&pUtj|0s%f3ZONQ$Fn@ywG7u_jtJh@89A{NnYE@cJ7>ErgW#rfFqjw+Xbz2{)YvU z*0=UC+IB?BI`P|jFJrBOcwH#|z5|^sXJpf00l6IrEj44)0jW${_hVBCh`mK<&fj84 z7{n!3W`+g=N(4(#;`kR8ab@T7sHdL#Bj$Xls7GyffJL3cG7NwPO7D&C*iL3O=l(ksNmBiQ&3x98ynua&w3&x`z1S zxY6_h#NXR4___2KQ`5z}yN`arNx{jJA0`V&Y3i9_xbh7*ky++H8nDc|^@_$pH&QC(tB& zV#AOubWVTqURbLewD!_PZv3dSIL=&rFD^9#s~8Q$565+<#vHPNe}VX#MTo`fW*|2w zl1%Ro`t8)T{7x55V`I;uF*Tzn#P+#TD$AfMQyb68(#iS5#cnwAce)wVwjDq3Mc8%k zqakI&>`Yk(dD#ZxSh*_WG5wNGC7out^0HN`ss=_feD;Wk1wBg?iUSoz>cub6kSlz`~>pl(`NlW)G(V7E`@dWD^ua6NPan> z+-2TeQL-iW#5l?BEY^r4t0T*3ExySS@7cdF%US{`&9n1NH^^k}Fc?<3SVL0s@p9w} zLu4_Ul2Z36E9$`MF!K>Brs!#tX7PAWcZ4ciYJmV?gyYi>GZY|~F1t9ERb~3Ij9v># zf*o=nhF4Mvj$Kvs4sX8=WUX~d4w0Y+ctus15Smt4!zpaUH3XDDzQUl@`c%%P4PslF zz9L(kD(EjG9An$o94kb^kC|~&3aEfCB8NnRFvR&6vPcG0H_ycp(Jp~{Sx?yZi+lA&hJD> zz>&O0sk^3KA@Ol8>8V%9AJ=zK9J=Jb34?LVw!Pm))8w8soY19~bdzww*fq_wJ(vi5N9TEt z=+tkd*#q#D*)(;_YsGV|tWkxT97xCeBZ$!Y=I23I)s$<7s=ZcTle~Z9H&{dN6uz;% zY{m`vuIU9EN0&sfEcxXYD?mt2cVW5HSChp9PP2A9Z*j(35p$&EVv|plmY1T;Myg0{ zNFh^&M~cirvnb$-aenIEfK)nK=z4Hog$L#KKVekVqadVADFJH3F6M3ZDr5I9UTJSR zV{_qldJT*TT^$W2RqLDRtU3<#Z%AP<%)9xsJwAP)v}{TF#g59xI0F{E3fcND1Ow=t zAin+bg@C2dXJpZo)Gpc_feC0~s_%{(RPVk-aNxk;&D$`09>Ku&_Exz`47Vb{vHmV> z!sOmKw-E@SoA)t@Nu$1aJnI_3CC79vX(BM!UeT`f=zEW8n;AG!TLvgX@G#?~G; zgY+9o=h$mJ*pI`8y|Y0G*`qMH4Mw-yQj>!k4~zBGjki!Y)SN3SneLNz8R0{X^C}p4 zk-*Z@2pkpih?6(-n%A1O8H9<4a*k?-HIwqb!Y37fB#H(vOSzP^ZhFCS$C90uEFYXa z?TNEf;+uCRFKW_^x@~aBan2nCrRVbuqCzq_Emh;==3dwi+Q?{&Cn63;5;@Po#gb1X zF)wqPAf?(yF+7-1ewuKby~1ipbbh^5%$2kZm_I~b4*hsNprX6gxUJ-&e`+#s@cv{xnKV}$$# zLW+qY+Z0w5fFCf70ZbO&2m1i2S;wSA6MKqqJsL^uYmr?VNz7{%JPyTdw#0uf_Vf+I zbm!nxbS3#(+4XzSb05v10!1~9FX&87FaV*NT`{HMW(ag6t3L={Q{NRMbB!a)j^&T@ zNGKlQmyJu;zpd^AwAsl|!lX}?L?W7fC}W^* zaQ^eQ`QlF30$~sknY&e>{W{k$R_*LW8R!p6JBZ*tWg0jRl~w{K zN-+meuEu@!Snptn*jeXZsL^h#)ZnTXSSDs>gY!kcpB<$b64+pVCPwA$RfGFw1i0S& z9e&`fUXzn2U2ET>syF+%;qRYRGuPWSKp9JI9m7QnrTlDze| zQw=cr z=a=9gTeM^JCj}X}(Ww*5raZ16WgyrtR{lwpAD-)~2<(9BZ)9G8Er`c-+^SIOQ?2Em zDiYhk2YZ$(37@2UB}j$H)}>!iXXzj56lppC11WFBHF5Omp#a zT{zQmOWwx1DY%hZv;~MVPuWiAUnz`&oL4}F(0;_JfD>gJW?QJ+0p7)i(j}?@iYOQu zj949EC^h}7G$%%}pv+H3d#|Vud%vi+574H{s4*eB=*~N;Yn-y^EGfURHoqCQ&rn-4AkJ5DdjR1KOYV4(-C>sWR+P!*6#YVvGJIC# zs1dgnax6k*X{o|CGuB@MnnlY*6O(od)t~rqVhJuizJh_A+QR1Y0%k-M>L|QKcLDuM zS$N$zafxfdZXuW;*P(i9CqFmJA>-Zh)Vyi1vh>gBpr=&#(AtDx%Gpw`{7#{M|8O7@ z1cmz9CU_Atg0xP~+VZve14T4^PoI#ps2h440|;4ooJk1upc7EoM1XmTOSZaVZU<-i z@0{8A;XC>2KY*4t^KtovmaeA3?m|uT&gI5?OGIL`e+p9Tu-fy0^?Bq8P6-7zizsA6 zalOBS?GBak$fNZ&Li_c9Qmx-R1zzS9L2^j-Q68(yha}2f=rF3NpZRuHq@n)B1&v9! zo_*VW`bJ{4!fI=_#5;u)?L+kLpBCB*oI_S=Cs1nv`z^yE{ zC&YH07jQ7t#LcBsmYCf_>+b!#Qmx0S>nLD73xVB!oMu*{)P?xezyJ|=l8+r4)lA&Y zbL7FpNQ_~^-076%NA;BWhIZ$>O&azyUxGCUH*>tg^iTIsf zjI?dRAMR{oW8yZ#jAcyPm{tg@g@gE`>gY-JtV%U;odsc4JDs=SLurTJZf}a-R_f@c zOQD|LnPz=1Hro&rj7!Qni8=J9rSYQH3%BG?ut6b72YZsBQ8}=fpiv~ov^uK9mg3j! z&j4Wd2kPJ1AHrlcA=_Kk>gB2AN4dq(QT|e^vw$&CHVJq4B|v!6^(V$jnC4zv#qYb` z*|J|T|M(!@0Qs)T#Ez*%QGJ9?bd>4Y_G45Nzq!^?*OK1J00g3l=4|`qkE);P$;m}> zfWNg3-r6O4lR;?;=IZuf`^L=H8v@|C{mmb!k$hK)8P_3}Gx;_$*>5Tum&Gok4FDek z)FB9*=s2|W8%gQzJ9u+Hs3Xnq5>(vVrp6Wu;+;j+O&G9^C#~=%v7Z-7>ia37sbO+a zk205&j^cxp8iKgB9fK7CVG()fUh-2=HZ8}{u#Q?Uu#!k^Qiy|)czkeTOVF)d$Io@k zdRUrUy0ea}QwQMFF`~Q7VBG!VxhtNY1}j>$=i!j6x1H$1_QPh zvHgcQ$~!{$hz`un#=S+tv@_1LVR@Meh_6~&xbaqEIu9Jy%fMPqa9}M05n5SN(+L|F z^q?5DekpNNdlggRBnwhOIwr1ZS88>xH*ahC^$1RH3%RGe$h;UDt_P=wCVa9+$X9#d zAm{G5hT0Y)o>v6L8@1fd%b^>^qw&-OO%}t4PW{OZ#nJM&9BLgVv&{_iuHGpFrHq&& z?rZjWtx`2|NY!T&GvcNc%~3+$oe2fu9GlP^a|HsI$@?$cwjRdjo7l-t@fU`NWOL@f zCJCW84%HHP)8TGfS@2=3Tvb$5Ef>U~Cn+h>8^R*zLYMQP0B;Cnu6x;DE>t2kxd8gIA z)agYmhGpyHn5i{%*4ikpk78+AQq>IOE88|FnmL-dtwpQYH{W^;nDCdxMno(PvNtXa zIJj&}Rk+<-r}V^n(;OOO=aiE1ko5;f8$dG;ywT1!utCO$0>3B5p!ND>|9Rf7W0E|y zTfVU0W-I0C|IYqHN>V8t-KO`vrf|uk2};Na?bKk5YvBm%XAyRbsx-3hl-dYvvA^dKD^LD5O&iqcF07XU6>dP$keVVR41xHL+u6VG^$_{@+@af zJj%51CtlNnqn*L@Q@T$Mk-Xyz5#8kp>~jLqv^8+FAdjmnGebx5b4Nk^=u<0Rox{57 zMey(j={^e2MY24um8yT1h))^=*y?(o9YIo=6ck;-hAMF6!E3QAuAibILKJe9( z{0-De8I<*% zqEC)*1)Bo%_r*i&`?Eap2s(X4^!#Ol5)Vzd#tC@`LOP5w(G^+n#tJKj`cdtJLkQBV z(kZ|AORbOSUodzje1a7-b`I&5RQP}lki9T#K8V-@QCDpz%+C|4t%C;&bLgn`e)H1AQcFkIZ`)?d# zU7H0Ox=LlDv{9lV4II^oR=;-&Cej2{&D(kapBmh(l`O^OJ-)jYxG4jihOcmF+2A~H zDOsvzM$ru7i>{%$-U7oUcc0?ugUi16SYo_?kD?!%w@%+qoMo`7I@T^K$al0D7=>VOlgM$-V z-1baPjhs=HJDwBSZas|jIQDs|J$?-sIqFMPaA3@5c*->`mW@lIR%}kUk_^z4h2DZ6 zzT&4CW}*)q0&t%JG)p0MNA$QBRy;K`?D61GY=dVCS$j1r%b{A?f+Uf5KQ+UAbs$U0NeLpYTXZ_}T2dkTm()F}Dvc^$%OqXvg$7rU1)&qZ z6-Bv9UW$s-ZWnI&>5_fZA)AKsbL0~B1fs*sx@xK!|2xG{e57n>X-i9UZ4U>F0SkkkYpwVCnfkoH0h{L!>LOeh=|V6eRj zpa0~Y{`#{4Zi-3 znxrd##L-p$$?TTuL(k=J7}VkE->xC|_i*sgblT4IF)W4t&|ePSBmB3U^!$aQdbR*h|0>FEo z;F8*oT17|KdPWLz)5Uv#pQomzH-JlSi@Cg^F`rj<#2JfzPMZJyi@Os~gwTSF@IKwH zZ&C{^W3c>}Qeke8FohQ^Ic;eRbKVElrGa zK=ef)p~RWVka$TK9S;geX&@7Gy@aKZ)y}S!dB=Mu`uBq4r@2H0KUNp*X}KNrf3J|^ z-{ay3WHqk}35{v-iv=j4X}4QN2ybSf1XM)xc3T*?z#z_W6q4bxhvwT0z}$zR>LM|gh8 zNSn(&fFJp;zWAaaC(zv(4#WQUg34gs`pb}Y>wT~U;rRH8H3V%}sbtmERnWbkm3U{B zhxTFLj56m@(uSwoc9CVW?mx5-dms}sE31Ih;6~_JHp&It?vWC(goxFUyN`72G3_`} ze4-a%^CzgYb>Ky;pl}PF3dvpT#`bdj8|zS z-}j^k-m)Xe!-PyNREMATt+U8`PIY`&#;L4)o6|Vgc<`rHEi=cglds~K$+(&ql>&J9 zO7^574b*}ne7TF@w@G@eZ;kr4S z;&(>@`g(XEMkWer%h%MwtI_<2Y>d>}Pa0gJe=W8(8!6>&@y*DVhoZJLuujsV@`5ZH zo|3ILZTc_QS=6gIgWBImtj%;LA@k#Zy2uX!Hh<*WL1IjtH&KqyZ8_zzvW3!=im8n- z=IbpvbM3`!A|WU>a4y4ILBV-h+6#C!?d5{ULffhcpCueDFF;5JX&XCYQ^Y7s%>5>h zg=OWwOx3kL2u|9&6A_-tJb5(+S#7kV5D&{T^^eW_+CaOR1{W4A7wu(ajYBXigavn{ zoGlT{3oAKCCzs>w5fj)|M7)KJaY=6V+M$sSvkyn#>UA_`AuP&ZVFW8tISWEFopDdB zhHwsvjMH4F=ijo2^jWL8K20UcEUzu=7Q757btR*IF=0JQQ|jwG8t9D zx82;-CHENU!R|ijhBMJzjapQIw=P7(&>Ytm4dJpEcR?KXh;hPt8CFXyHX=9Z`DGR& zhb`UQn2OED^9q=N`BFrvPaxgNub?LZTi~(w%MM0OO^OEFCmRoi6IHyXz1b@PrDt#3 zHW241Fl_nrECzUvvnse@ZOv3bKbG?F+xiAtS2=lX$%fDHoltF;1Z4C9Bd`~2k$ie) z2X{6Tg~;Uha+p2Pzi!)5bBZ#gPsK7B@qSaZ6gG2T+<%z3YfRq%;KUxt-`pLaDq8bB zT%1JRgdna)Z0ydX2W8^BpE1#R5}`fli!VGjM9HQM*R+Y@JCsRABk*J6l~Q#XG#jtC z!Lr{8bi0KVDq);JfKPK^snR%PTag#vFyYe5pBXQF3to>kTm}dqWR0`&=Yyrqm4G;0 ze{h{@WXQ&lklP#|n%kW;CyQW%{jvhccLqa285*g%ULU_D=MLR!120cYD2s8tov(Zx zmJZk*6<;vaw!>*ZQoBMArIsP*c3t&sZV>d?(IsW;{O(m42~bD&}wcOY5VM_x3{qGz;i3I8>XZ= z&%4oOJ?~r8Vxv+4x@_X8B*@Bm2w6ynXI`HFS%XqZNuS&C;SkOsHaYTEECW42lsd{^ zenFtxc*3Uo(rIbKQ{(n$DXFB6 zB+2HFRcTV4R0J`0CG(%lki$kwbeSTGZZ8foewhUC4Lis5tVc2(icPS)cy_;IOD|$6 zD#^?#8%LI#Xk^XqvrwE1lrBx6f3;?I`pHVZNk3WLQ&@xSVjXMxiy9arwp>Q3GQzJ4>6|6xe~pdt7y z8!K{e>9z+rs%OfSvI6hUrp%X4Uo^?XwHXDZrgzhV*FpL9K4MnSvcLby>l50(^Zt(^ z&<|ker7!A-;6G45-2X-WSnu%ws2}|g{~d_K0nWk!O;6s17<%c=ec4StoKm3B_g+bD=w47cVE=c(s1P$^;0Y9(UT5O%OpGppD}dkM$T_D zAr@!xZxF;mOKbkIcjo=Mv=tteIS9|hE5Rdb%*PRJj^oHg#~hVZO|Iv$6w*i5Fvlo% zY?S-EJtz>}z|xRRZo341AlHB#TD`0oyfulf+C~gO{je^=0H`0O6x;dTd75nIkZg!t zW`e!{OZ}8Q%8M{#?Vq9}Jx~*MFVK>`+Dix^MZMsmyx@es<0-wdqdff&^-~8jZ5~`( zUAWEa#H1HKrEw4BLrU-H2%vso^moVM#q9m>D7irDFQL5F0G?`$JCV8D)k6UFV`*wT z-8$*r0-%1JPyeBQ4*sEjqBZ`9`dOG8m>%|^{fGLw{i1%j+h+KAp0h+Q1&EDA`1EO)s?Yc@FW)Z@R8EwV5M@(ZUQxEn`)i=L5|rA54+8(~M9Y0uTD z1Oh}so|0ct(DcbaQP3~sfaSuZJ4g&#i%z&S?T+&1EWn_y5!n6$*>L0l`%;N3r*ef z%@@1ss*ejkoSP$)2rBEow57)!wfqYHih|Tw5CKt;a~BS|W})8~_k;Sy{cLSdR-pwG zeU;S~;(Pw9tX4$TB|9zH$XMDug>#5IJpn2B!ZC73_d#$BAq&g^X1U~($lId`76~c@ z2jG5cxa9N(YAx4TX1)05MS6uP!3PE9-!-mD7W1gNtmpMie~#}#z)ge6ap3wMg6ak6 zmIs@F#+@1rvL*L)V zUt{PC{5g*+u>yitsgcArUx5c?L3NT}S&%ECvb=*YF@&yqSdx77p^q0(`oJGC4b|>W zk=^hsylEc2a1cUnel(zvI+3<)#A-WUO)=UofodN4cA923s|E2w%YyQR3zF3A;yv5$ zC8xNEPfmYCV<1Are|~~^4fQ)xc2Yhuh1A`9OP1o`-6TUPnTSplwA@nG*Il zQ!y({mP93A{KW%KkBkF>#Qw!3k+N=Ji{PUujV%z>Vf?SS5w zL-tD+J5`y{@D&5wYp|0(Bk~Y&3giuiBojUy8>9t&G@ensfL=pAK|lXF>{RHDhU8n9 zlfZZ3dUZnMdMK>A`8uq40nIs#Jj6yLCm)IFpeUW*U+F`KZP_6km%_(9y$V2ocJjn| zEZ|6XO+h1BBF`lP*H^(2%AR2npI3dSZ?v<8E+`2`izs*R9_ClZl~fyZ zqrWq4xT7ILTbw;b*LL5+8jO^34|T{x9vY+QT}JyX&r4eRO*HIVu;WJPOcqIpEb+Bx zYA>M8GRftY9z6Vmi5HgKhbUVMEOm9$cq9=MjJ-QtI)#fmUF>!opKKVKS)b~}eaKp! z)oR7Eo}|QFzPBN*aTQIyJ1L$QyGYtZ$<6q+0_h-o_M((ZSJ{~NFx=>~Us$hFQtbc! zb%Pchprz$Xi^^|252 z@L5<7$t?`(3Gy6}Ny($y>6|>XY^kvoT9+GVN~CH(V7?3zOwlqc-#fTI_Hvn`c~lk} zfwgRsA-6N(Q&;s8RN<+YMy|kyOEYq}jw~jY@S!h8r0Y_-lUbE}Nc0bU-*cK>TpXn5 zG_U7TGhEE*zQYDldG*zyHEb7sZ zI;~Pz!k^*?AuhtyD;&0PicJnyVqE<_hwS4kR)_}W$Bg}w*6RBru|hsog>oiB#PE2e zg;q|c8z^eCzDK3uB)r)bLc+~hPugxp9kR8Ntty;K7DM#z^{j}4+Ih~a)0ij2$LPQy z8Ry)5hhiXSwgdX{la%EvzP)w+ZcroNc-d)J$&#R%W3(nM$$pthZ{a$HbNP3(!Dn6j zW2U8~!IR!9ltN7tUi#PeXR=!=8NbiZn3Pf>JOf{q?imrB|1|e8p|N(e3?IVNMmofz zK-&n^r1F$RG8Xbl*W!Xvu5?Pjk>e8%I|dR!)3-U!iWD3{WZ7Em3F6c__Aj*CEx=yB z3O|S-H0;CPITlOghmdmIV zOunww%=wBK8UB?||w?J1Q}HISXWkdRHi_$UllA?gvPSw7}+#d<__g+CQIE9^sYg;PAs z=I!CU9W!TBv#6f%)rs)`euX;%Fx@VXc1ebbn@0^ES{KBw2+lNcWTG(%b8P27MO z>U|dnPyh4j52td`d?p~sqUk^$`PGdHpnmkCLGP=61EFG}C+BkBkai#a`~lkaMg1ss zw!>D6y(k^ZTia7x=`7JA5jFad!Ps$og9Gez*3abAXPQ-z!1_WSewF12OCb^8(%{z~ z_*`JE`lL`6TT9?+mDQ)Z-OyAzF*;b@K;M7m*-u}cwQeohd*^2SsXp@3n|klca?cJ2 zJo!{yvVZyuV*`cvuG65XN06}eXIWRE{EQN;Ll<))=hzT#GlO3bFgd>D?erOi$Q$|R z<3CQR_I)mBM*uo?asQ!H_wPBSu3^0^h4GI>VOQ#|SJr(%|FS@wqe%lEAW^9L>eOxg zeJ!N{m9%PepFN2^G{GCFdMH;mdyzv2=(A5+BiAEPDX+8B`!PFKm^}HJ@ILR?*DDH( zt?FY7%B)MQw$rC3MrG0fi$4GjUH$Qj*g8=Cdx2WOtNonZTurb+s8xDan#T;To?L(-po-b)>t1QeA7~ z{#U6Eu=yj*XX^1ip!wG(`3->mrTg0aQDV3ex@`rGxdOu4_^V&nV&q_rmGXhIfi(1@ zufAdXbxIwH0!}IJ>+0SP5Q&KS8gH1ujx%(B`vsN8h5emlq?y0mxvPjRqwahl2Bcol^8Ux{!d)pWX^fb}*Tflg^nDM8hBUzTb)XaJu_&he594 z@xZ+lX6O`o8yrFHWbSCW6asT1F9R(qqI_6cR3Is_mYlbZtb`I-Sc!10009oyyc;UKn@8)_+bZ>yrH%Oo&j>yRB>DDl|x<&%o1> z3QB)u`!9vUuk>T4-ylC99rrpl^E-Ohy@28=LO51FkPk5?fDpjwmVAz!{0zI%YT)tD z{q=dcHoJZgHqa@{54e?tH^JzjrGRucCjZ8)#hL8>onM9R+ZBQvlLeh&!Qrt0ng!*l z3Ofp6Sr&X!?*VkU62&l}4+T&tIJ+&dfCtH37MIAA86>>MTz$CI>gnvFCjbq1#18zC zNMz>~A_p#$?rj5dssSNhm5~1CV=6L6L9C?IIWm;uChR9=QQcsO=+%?wZL5y{+7q1t zw@fQ~+G6va8t1E2M+_*{$@X4V z0!np1)}MmcEr~u_HACKGTl_Mq=66OF;O@QhZH*Jt=>;W0Q^B55BQ}mqQA{l0Sn_yp zf3?Y81wQLe6VR8gAtDh9LSBO+kYSGr$zA)omlHh=Z1xYGx#4H9f0FnTo`ATMp(p5( zb+4zD>BX4fdA5Wn`PGwVbIRQT*2WlO!x4(yg=$%v95e7pdu5V0Bt(UX&ax_*cjjz zks=#({%cPpZiQnlIHAhU)lnloiN~daP-BlqfEi(p=xIUWPv^>kYyt1VlL|fbIvx8b z(9%Zyo`6vH)y#9U9IwpPZ*!zas#{oiO_(8x3j$x~u5K^fgEaynPh$NCK$&ik&Rt%m zea>J_=QVm=(u(tlfTm49lg!1>>mh*bWMT4Q7DkzmDOm&7&pRJf>aOw;Yvi_)fL=n` z#OX?C4L*OiseKnF(Mtnz(!9Hc1wu2B3@~?@GT+xuwiZ0^$-}S6` zP>;s-2|wD!lUHo5;{(w+$a+*%6Dc;6Bs`G*_(xycU8k(ND!~X?T`Y8aS3c|@5zYu~ zCqwK$`yW*u%NiQNzkb!;2Od_`Huechi|y z8F=Tz7nuG{xbmc`_EE`poX&ZmAY>!{^-(`=?P6Ga$(2NNY-F@tR21<{T_hdkaW)R& zz#RfFSd%39S_jDs>-*myWY(3;DD>%-TL*ywBM+OlVDzr^h2zf+rusn@v3nxC z_84jW-3+DjXEXZ#sm$o7t}~xmS;#~oaD1CO&IFWp+IkrJ9^I3BHXfOA=~8{kFS!1m?;nqj8mw+iBfEq@hoTI?U2gdNk!m z3nn^-gGR^H#XP~s(pUU*h5_aOBnzgRi@Hd*_NEZB(t)AO#F5vKc9fF zuNu}N6K^`$8rw{#R(W^k7*|~z$7D5mo|HlQuFA2}bXVx~4(u?S&`ftnQDS+p8x=Ud z*NVn`%sofQS6xbU*m|YOg}+5`+>J%!G2l=nnKkl2MhGs)LwGq^)i}@KF5Vn;8a9T< z=-kBO7tYA{4Tq8yz0y!sca;QCS$TtDwz^hXB8d>#!YWIyn4Hj(o*{8g4QJ9Bim4Ggsq+F7<}M zMY@1VZ0P$KseOltn>nt=&l}APu33RgDwHzHAZ38#K{+~r=dXcf^;`msic~8pJt|A% z{yY_deY&`CgFWy0*yLP^cL(S&jgLCoNaiPi%u?3i%wpv7#cBH5WzGhTcb?y1qNT%4 z*l9oShk?t+-9$!=-zY)PFx*f<%XE@-T6{!*&MKdOJ+*&bc3tV?0P*jfET@Wiol)8F zqHLBgR=u9h%Ln9RqjlPMZ8Ydze#m%UWU*jzC8z?Hw>+4B=(d*14HsXq=y20i@ce8lL zT$LXZETAmk?i2DJR2h)0_im(TeKe z`)st~MO$g0J;q09e1?O;9{^r~b`6+L#c+9*2!iNH=+O-Q5YGu-hd>l1<1!x|uqXn*!Dfg4Oq6D% zJzZI1&NMj7ne!VLZ8Tn16?6*CtQ%?+Zzs+L#VpR(Ks7Lbd&D>Yj=L6l=#WK}p`@u- z2>F-&2278)o5r$S000)Kd8^m~Bl2!431e#eiqwhBI)TIpcb5~|&EnhEDj?~$JTmkV zl!?Pur0IjBYhUv*g+Yd{f4g0&c2~ASm=^q2r3yf3yCP=fl?)prxYLg>64#js7GAH- z!y=P1#W}@>N&K`9Lt_4@K09TBwFpKTvLLePvV@9RI+*L{5GYX_dGKQokzcKlkTi#v zIyNL!X4bSyHe(fc+*p)azlBx$hoKGh5Mh>R;j7V0gy+tU;%hGj4rI*e=nhe?3qWZ9 zGY4{VZvp;oD}lW=N{~Ey>G-ct`{8Z9x2{{X+!4+9v?A;{!4O^|*qx0YK26q@rZl zpRp_vbYa6Pdt`pts?zHQ+Uy2x6#py#`R1Tm&4(8#r8)rV5^nZWWyM`u)L*WOMZBKX zOlpGRL9M*l|KAL4O^-NE7-gUEYJjlR_m!)1_gyM(^e6YCaCK;wN`M<&Lb=&1Q_>vA z`rO;kbpK7s%WNHalF|6N4~z#t3azE?c{iWV)f($tXbGX!&g8(JRLY9`z@$KX?E_Uf zqCV&$Q|f8(&?yyb?3bc=il09m%E9GV6*}6`+Mgp>KE@4{FCcmCLH3NAeu&gr3bX`c z&paTyiH!NB%jCDFyXV*&{Do-mX-(KM^lpnTJsZC!s%4^mWt`p-3!9TL5Xr3y5_Q+cv_{UBVx7V>ko@4FC^a@!-uo!ydd=CzlS)pNWrgo)ftf!rG26zz zQB;5RU`}xtGz)^9kQ?DNU>SeSk zN$8ZnzS*Y90=!1%FS}BgEuqq$PVU+vs2j3D_JU){$hvRq<*Li37Z z4|N<4!UtZ{cykFQ`}AjRDCuEB{bUr8^VNm_YCxC2P?jx96dUL{V(?=&gx45wHBUjxFcZ(yiq?gL zH?8`2NPa!$k|OGKd0^4WuyyKD5ardehr#HmExbt5W2J2;HUPca%D9i`uDTKB=DfjbfY5g@Rf5G->mrIAUOxcY@GKpUK zM%D*$K8UES6?;yx4+4He=&vO;&jdBNZ_wBljlIL^dav1-z*f11C^ldcd{%TFT8ZAV z+HONKSijs;X{)*_joTb_IHMTJOFr?D5uz(fIseGbs)$iewdK0zHP3~DFM|aNuY?PN zPlOL##zq_4Suk>7MimfdQ(4T@(|XP7nw=&G){>iXzfl}ZMKi!^`|bF2WL7%{-~ zi}#vM-^O1X%h-|uo4xK-3MO^qBnE;gbs}QM&mPev7=@6hDP|=s8M+zx1$#b933>VH zBzy>ah`XPcH5yG*kE$Q-VF`?vRd()|8E;!raZnUFV+o`qLg1GHXz@j(KG$ z6Q3^1c11Dy_(h)>J7|47>msU!w=&u-=3dhvkGKYBicI7;8R95Unu;~bV4rIqd{cl! z`s48M2JNtlPj(g@dF@iW<%NjW64=@^)irXEhPh&s9!zjo%q95=U;CF70y=F91DgEO7Yr`^TK@#91a5CHim%^JG(Un z2-Y(JcbC+ukN_2^lhlf`Nm*y?_}n*pdoxaU_AGcHHR}2UdlpFeWz(!89E?M@PmRK4B@;9DO4*s(8B6(dUzxqQ3Z^#a$?t(t&|!K(|ts# z9ksb*Mm(MIzlyU2{Z%$>m%d>Ymlp1I*4oQa6hFBuBa&K zFC3>it=P?|U=(=_5GkB9eDGIFD)Tfpa3|;^4+8W0-1Zrn&sy4T{6JPL&VPtST#Abq zpXbn?8uQZ_WVdV}CjWZ)P-L2}d}tGIMawv>RNNyzp!{(`qutu;}DJ zo)gwQLNW7g4$K|FYQ}UVS@pCH1q$~8 z`kv{9#x25W+c9icpzTbk@k6?0fUsjaY|{uC-f@mHGH!%)7mJz74x)#JcDr=e!GJt-U!mpfO8>Y)h&mrq|YfYMoV^+s;^E} zU41!3(+oDfUnxQ5{l#(N?KD&ySuF)@4(X+vZuk2@s*k7<6|mj@gy<|fQwqi(7W&tX z;SCtRlF@m((Rz^USkIheqwEpW&Z!6!Yg42SNc+%W8-V0-FMK)$~wS>~2^lv|Wnm^kaEM>iKG-jmZB6)X3A$v^8*H|!0< z1&naqLe(r+_I{IQUEy6yfqBVOuOa4xk(z=5J+Jd_j(`1;^Yu})eU}Wkhoyx}RK>-B zcMcCE4>N%LmtpV%U>M+#d`#BI2KJ+38BC?Rj4ZxUk2w0Wi1!N2GS7h&*U1^HqtzKczc z#OfeLe_$ZLAOjRY$PdV6FZ6}q0laF*8@hTBHd8=z4R|H$DYa&3gvs5vHx5E;^Fhlt zIF-#KU~XgQ88~{UoYP-6Z9A%0-`i9J&uB}of5aUNvg-Ub1#W4&^>9?BP7xq{r~*pV82B|206-WF+7);>{zVu-W?_pxCWA0+cT7zX?q!Ky zYUW9oPu_q%<2}|i-*tuGwID&g<1PW@?`YThyA#|tna{HUIV_*C=Go*at|m8az_GMI zY6I>j^{x6$H5jS4jsRWh+q8kxKv|`~?FK0TVG#KjVE~Iy?|16?{cmwCc*&g4q4D7A ze#;Q+of$5h4WFB^i*?r*ACx*rsInhxm%?o_xxu3iDXu=Nz<1167$i(is zv+Dr5B}W8%u$aG;wW>xScL7oUntC%dV%*jC;9pW7j8vrrVg;H2%9__nB-PL^5he0N zJhTH6pVHN9zydne+T^MM?ueN`O4)Q45dgC04ixnbb);ns+6ybChMmnLHbhs^g!W1-XHhm4wu|=(`19(>Rb%wP5X`Bz&3!dROe1$-!$zIOO`W) z`~=c!;%=ON>aO1tq{2itLIQ;0FsY^k>V>2p7OPgOrExcjiZCpHDXT_9{>olNw(y`7 zEhsGFkM8w!HBJbCvbMHWjy`~ivMxh)lXip&J(6dfgJQD@eF!tT$VulGe&BW`J*(UX z=8nju4Tp9GHXug?d`Opz4>qyO=8!a8Z#4mwWnQj29`1>{mhX8cYkypa9<_TcvIsyJ zU@gmelHjXQ&w8GOj{*<|r9Tyzr!Y*kTc_>d*n<^gJjUb# zmfv5zS=B%2VfO@)maV?lJh`L7&K*L6rglu|gy>(NEXgg`oV_QjOji7Z9?3w~*?$+-1%(6Xtpy$Z?X8t#x}%l%Q2zO3-pCq5zRTlK+TH;7e)llO_9j@osv2VV z&p%!IbQY_IeJ{{z`ukUIXMYv0pO*sX3gRv(v833pA~@k$L+892MQqmL8Ef6ahQl#4IU~4fZm9#4zT3X zE0b~u;dcIte=MAc%fmmZY@gpydTIGnZ3RE=lyCon68vQ`%OdI&>aL$w(`i!RlamjZImsvDsX z;?Bq3Bz%k1io}P}#1{TJ$Pk;{L1L=`ChncDH$&b7qyhF2#utzRnVMXc|G-C&vuvpL z-ZCj&4VVJepY~bB-vGBQ3IfbOf2v3+UQc|N0Op??RR~1hnz{Y>lx2~7MBmvS_)Rb$ zU-(^}+&7CYM%+%G-CdRI7P+#oL#k&eP_6w8{1yO2p&n96gsrxij*mmuC5)Ev~muoRQMYR$Hh8ckz|2w_na zWBAeZd&rG4Jo2i(U4r!3mhbYVDLhAik+=OKEpK(pbztr%DrzhBHeV_b&WWO2F2Nf^bML@6F_5)(#Jf^fP>qr0bI=?WRm;hh2EJ4 z7;uK~1u9JMb)pj!HE!Wff9Ys!)2^Y@8WOb5wzElfMm)dtfMykCGgFA00L_h-guj%+QT(SdWHq&* zbI zW`C#vrKY39pf0<$#0p9*Ueg81;=rz=Fi;doIUhh#cvZ@_8FA%jdIC@silIXYj(myh z#b|8R4~<=GFIR}_$aXj7{?Sip?(hPuXy zId$w_Ihi}5k`Cm%;E0nmTEr~8nAwRzN_fvEcT%O!o3cD&wymo{UBqrB`qFs(GICnO z{9$6w8c)idp2CDxb8p4Fj)>NlU zZeZMMcqEZ4_3RM!aox&`O46h5MsH!-#UW@2Yr>L)*WxnH^W@3?^TeP_WZJ(HI7Vqk zvboE8`MdF1Cnr8wB^cM)i_+P+^XN%~30JZg5zM-ghp*mCCBgjzxcAg?jqA-{v0UEA?dG;k&tK zqWtF2{1UStFT7S9uugQ;QpBNgdvo2Q9kqSb?h=A?mmTpR7C8Dvp7!(2LYJL*nO(~c z1|Pg{lJkoYG6wYfp+FNy#keO_UrXxW6UNDiCT1xJ4o`Yzb3AR6(}*0lteVLk(+%fF z28HtvvZe_#1WCar0_@Jn228KfO1!9=7YXG-B+8l92Zz{H?pql_a_1%@W#r|K^zFhr z2Nv#w@G;Pa^axm^%gM};WRSCbqes-*B?gb|Th-?1<_!j%YrvRT@p|TQ2)iOxm!64! z#22kaez0$`+LN@~?wAgxGT_XVXpb8XSA0gRqprNVvfsm=%0+UDe6}m{f{Lo)bl_G#zhMdQo zjVu3Ct{hY|r;;2op+|KVzx}kV_|w*T%Iwbev762pKuExc5l}^x3q-@wFBDJcEA``G z3J1+s0EZNEy-n}~1O3sh$@mTF`bGO_#O@KWt;; zdszfjwK1*RYaIH?HF(~2TjAT5+rD;1w#CN97mlA4?|Ca3=SVxSa;|me6`Sl^w#ZKe zZb#U)qtKo^rE@1)s;XX@>I+mpJ6Qwp^BtPs?i+{$&~M9kvrW}e;o?eX$yQ34`RNcz zg|#zgj(FDf-f*Joxq|=suKPdNK%2&^u1x=X4a7qK z?=?_N!M_|p0f)(eHBiKq@9kwJI>z-|_+<)uN1b0UBGqHfb!e}%v9d~1ef`zFsfIAc z&n4Pv^yAELUmrh&cT^cTWw;P|RMTV~n|_6m)OOB#RadKKm54OO^8wHbKLQ^e9)6K7 z`gnd`f4zEaIqGTgHw+Y}i5@vT0O>CjmJV{Q_+@)Sb1_0d+3t{{fT7yr%ruta45AOs z!%9oY!%A_A&ni%JPu>^02QWrF<*CiN!qdFo^h}n5oFEP?!nVecMyHeau}Vkyxu7a!4vZk1Vyl6iqPa zbUzc^AauxI_$7I-F2y71dW*z8B_)cd4ZLI&lv{y%B}uR;bdf8wJs=?LxH%qy+E7@6 zm`J#fOx3pKr-tPs*MfIer}aWH@iTP@h^=P$XV@4|O1%=%%X*_&})bDtx}8o&N@_2#+m=V~A5 z1v4Qzh+meHM{B)U8+TP_U?j;J{toM0Yx=nvz>{gT!5>LnswyjmaH<>4y-6#IQPl8B zzWt`pHaKjuC^NYdapO$tnbgJGGbjjem_>Sv?$q7GuqAGY6|Wu$;)iQ88co?FG>GsF zHtoaYv6A-wWpYDFV9j|d>iIN47W5@4uy`BV6Bx%J@u^2W(xL&$UCkv?AsKjJzH-G) z^}$(s(+@Vx_UtX%!q~P>0__d^&YLXz3-Dij>5~(>W5WMRDg9oMxt{mX&*Uy@q~wmv zB(B#Lq^QI&YX?*W#`YoL&spLg8O`j?OXXnfN;~-Ee{1UJ4HKIPKXQXOdQ!OKN)+9* zvqeD!n%6C6r?Wg(s);Q9&HLbeVc(Ds9ttt)7YWQO-A2WJ5+c&--tZMB#l72)jtj|1&0ph8IGoVd#8^pzKV{m{%wP70aZFBP+spVf(^${L9!r#ya*LpO*3YF-zjT zD9sh50^$u!)hQ~TGJPSBoKcUsylD9Z9j^?T!9nA{(3 z5l%H*@%HjYYbvuILF>%!@tC{)qF>X+$HxHu4^|MQDQt4Yi-yuj`20&w589s`WG^O% zk{Y-rf3_5D-4(b~;!TjQYI_Z|fw^wYn~JNSoPQLXC27B}foYM~Ar&iFqnAv#a@qws zaPYQPbi$1gJtR$Bs;W}*Sk}Yr z&!k@4nNf!?`&wfU#EN_+fJ#0oAa3<1UbCA2@)fkzP+Tox`cjt@ zU@&Z}3#U$DI7p+aX?PnoG=11OjEk3I*+5#gWM|g7I{%no1aq^gq5U?zY7F^EDup<+ z-<*%o(#jkNUO{{kuf>pL>3}kBW+*E;)^7Gscb)7kpp-6!0mdQHT*t{eb&ysJ%Jmzp zQBdMZ-lmYOR-C{a(ldfPQd1|~=stw#p2IdNu-!r7D`4f$8qRX?P8tbmEH>^~?O%0% z=)8%htZ^>vP+yQ-$od}X6t$(TMru6rkOr_C8Cc0VlwB#pJ7IWCy2&fFo;Hl3LZACt zEIwwRaZH!$=WuwNm>FVY`MR&0;#P0wUx{r78P$5)WM06V^dz~s@#19>53J`vTb*UO zfc@nwP%N$fw$5bW0X?P=RUD?;`Qyo&2UEO@<)qVmR7$xQqcktSg0`6!0mGpsy@q{7 z1~gW8yo^DoQ)VP>e3q5VVsjF?RZ6Zdp`OUhveFkV+m&W_qCkqVH09tTy-NQ*O?~S% zI}=LJr`j1Ep7g~{Gg;FB?HXaD?HaC{(AkR~Q1a-waT4qxIxplbs`t;uf4z{RjnI)7|9XfWbV-Xja=(8)=3L-=TvLAheGTP*QMmH4eV;L zAOhb@#Omm`>TDWnyHkcBe7NzJ@bJjmYensncS`>gQ%abp;@#jbM6vMLVh^37_*l& zDejBHwoC~{s~*=&$-^mMkrA@z)EK#uw$w&7tucV|l^Hp#4NEIx!l^hYozc)733Fg( zCZ+cU6YI2jr5zTjT1VX1?S`+BTsjVzj?j==dH>dJ3+ZMah0^nKw`_%D)b_M`S`@W@BDUcPxF-NpalO<dKm|2lsZkJ=^n%n-9+3{st2!YgDR&$m0WDYMfLSO5BV z9F0d+Ycvhli#LjG=cycg$B>FbJMF=;VcRGA?B%xf=nqJRb-j`868n6F5Y2}hJ#{Dg zBsM;;7p9|qn|0#&3Wn`CdNE%sx8N{^iLOZE@N5%>e}D_O)U5%G;+eIexrd-`CTX`Si`+sn(DE8V%>-siiX{~57v;Twwm{#~;}27JQB#@>+D z)JWgZ$exkmzZ0SVhqyrem$*Q+EyGMC`KSBZyKUBbb&X2?yyi!Ieb$1svJ=H(Z)c>x z*ul@2+l!EU-Y?~69m0QZRw*P8L6$84+^lSM(leS~H>_EZbHR&`g8Uxlsj3QJYHGed zbiXD!Ng1ts7y0MM2=|NJK=98Hg??pH=}LA#S0japn+5=I3n+ha3&IEbmdH%vajpNt zEo_umfTtxh+1QHQ{>3fWw_*S@1lrC2(nG7kSfCB44diRw2A#_R@<*Ou@F-oP6|@7} zJHti1BgY?I|9!NQ6OfAU7%;WAeE}1-1r+UU(t09$Q2<9Por%tZK-wuLc#f8bnV5&r2br$V zN4Lt_&KN707L;!lKsq2-7W*+L)jBjGB4?Vwy&8o7I$9kZh{Rm%_@KkVXJ6s3&Y;G= zYfmI2Bg(Z5Z*C-Z5aXtB5-wIu$omCxT`wy)fd2Sf1Q+iy#h?nK%a zAQNVAeZ3)jF_$3!HtoCy@FSN`MA)t%|2FM3!FOA0!i#uPLBFOav3&=@j!skLPC9g; z8dX5o#3k{fqYLz}5|eXn2j6S0fge~#6SfVE zo#qKr$-N2~ZTGS?=I->P_T8G5pM_+t0{IHty9}oN{Pz0-^KSkp4utSp6hy3x>nv&eUB7^9(j;B~&c>6QZiFgMk z31)N!l6mUYKOGbJ3;?hNIUKf=HnFnUzuawtxJJ~#hsjn5$#PCa>3rZl76Gp23SB48 zZ^w2RYc@yxQDJzsdwifOtgt|ni>WKzL2`hFkdyT0ivN-yNx#4bGNGjiE;XHu{s!G9 zSY=+N^hP{h)onqLBbaPm^$)itE-Bj@8tSyg7Oi72Kq5}kcBqf~$XzufH@0C)R{(e*EP8zuIiqTLEwEczUPyS)P7ZbuOP!`%koDiX2* z+^hhwg@`lVufA%mklN3`u!V@-NPrm#{dpW3WTerxbggBY!t!p_?4-90w@cXE% z6ah!8Zrk5IFO|VuyC&9roz>BMVE2`?Ho3!+jKST0?6dWDAZKMys{Bm(*L7+b)c`kgOMh=y8oY9+%lKqY8v}jt9k#73h(h}Q{1Me(CvRO0I2SD; zpU9B8>ZXq|FaA

    Ef3o)v~o2d@0^qfwZvj9M@V{Qs1;i|Dgxp4h+`dT6evxd8CCXU^ z2L<=5eLagzV#_`iZqMBl-7DyQK-qLgV{;MaT+?xV1pOkkCH1E}YdoQaEj*}(lEKaU z2nxtTp=rY{SDvZP*56PQK5iSTx55b9$VtoCpqatlxZmLse~!dC$8?x4>pD*gFXw7Z zQDzkIHUXl)<93g9d)W%b0|C00eVEn$V{(FQ4Gzk8w?(%5hLU~#&=eqX-qNs>2HZM~ z0I1mc1dL|OqkB|yH-HKYusB|T;J)gnV-v>_oBfoCW<%U%RC6>du~!WQxS*SfFsux9f7JL z>%~*yL_0=QOqaj*lgw&b)*QEe(}wgw_|7^%#es;OJZV?ifcEbpr%7sISTT|dKL-OA zP=8Xz0j+q*7fS}5hl1|!Lz#5-Q=e^AD&7~>7lIFs>fjwOe%}>6IA$l2SmlEg1P}?+ zz8L|mKudNQIggDc6xGMrjP7PKeQguy^%O#zj@o!cVT;-_x^&{0@S4%Jnz6)G_50)c zqQ)-QQNzcRD@{S@5P*u^vKO9GB@QS557^})D)p6d)7m2=T^*}-jkvoBi`k>~clz5D zl)n6y&yDzEDR*u|i`xB}G!N%Ma`|7q`t>c5w@IBmmxj|ef)5j5ak7I?!^oJw7D>qr zD|bOKEh10emS%syC0OFXa>JHBnWRhzbsZ(Ku@}kOJEziKddW_}JaszfOdHZhyoPz& zeuOm>A`n}R+y|yfCg3lza?~MW#MFlU9xSS!NFM-fFpYiJVR7$HPsXFIV%C?09~P3b zt;XmKQM)|K-N6lDx{AtvTl&P~$f(w2JgL#*>4I-^>x6GkcHzz1AS&X5 zraC|uKXK?uIu0RMm$MQzQJd51%?ss538R>^P|&`SWKfe$vO1p(^0%TcXDi%T8|RGs zrSxSsw?tO;L1aX(k9;Il5(3HMbo^Q-s>RofvAh*ryQgAk==LP)KI}`!khroz_bGrh zbR{5i>jx3@q0d~*S|mf$AUMYGS}nzbpEXz1TH8b#uSZn;K!i&*Eo)o=JE+q*5Z6ai{o*>6I3JQ)PFz>u{_|K zm>VwJHBHnDkC|yVrNhF+jwE+(B0Ihpo{i}AhRqwM!%qLw#L>0jbDrg3Tg;2s9D&oO znRo3bW3Bi|#*NT&8P!-!>oISxS8i1Ek!T~sYI9_fX|PBnk@Z?;12y8dOlZh!9`@ZD zns090`*!$y*Ru$e7MjGWgBg>e@haVWy!uilEyZ2=G~)A!OFK-FuEDKp0jF8Du5%aN z!C#va+q-uOr#k60Jw8Vz{)+x>izg?$eNw;IhRv)@;sd(zBm7&j^O=3KaO`W0f%ZIo zu4P+@O0?Kd=;xOT1RBN!LwL# zU8-M|gs#beow)sDchH0-2#=aA?{T1+Zazruz(gkZTuc8pc-BS{7(;&bGri_AFwIH| zqSnlNMR|fDqZF-@YGL$dzqx*!1HNJ7)x?RM&uGxM^!AeQ6h=dAYKw(gS>NE2cqUiO62nwo+)-Q}Z77?Jfa#WK z+(cgwr2{gTw4aKQyn57%?3p)4Rshy zl+xoXlz;Brk!jHH$PV!qteX=@#&xvA#+9CPgTNKrty>m&s^Y!*(QWd1pM$w@z#Ocxssi6n?iT=dCyRu|E48Dx;PW)SC`mR;N6ZepghShs7aO~jKb;i?p z)Q$XnRronW>+>0iV)dWRAuSGcFZ>0>@%#nE0TN4n;I6ryd6F!~0zv>2 zl%HuAL_RMN7;$0QvfL!XKZykm@$Dxdu}~Hs0mMLv(SU;82Uge@2J#(N*#mu{>J@6I zvn`_fPn<@698>a(VR$6dTlxq*eA~jJ?5h_Y_uy0_mw>rW0C4+n%}$^_44UYtVoa!c@`?{Y@+( z?qK?R?f^a<0Jt3xa0N&7l@0Qzw`Yoy;Ot*DyXybc>|ox*@2&|I4mc~r@UJMh2KxWj z?7;qS&CdOA&2F{^i0xlByT)paz<+9XPyeaeb&?J#{I_NYFg^c7eJxf6sajN+S_JUn z2!+l^QqBLmOc?=*Wd=7;2e$qMYU+)>u}@KqN>2L^sM<2u2~(6@AN1=mv{@2n$J&) zNn!H*Kg&M~oAu|6X?T{!W^5OY$=_R`PKw*0(? zX?TjCNVPp;kbWKT3!=hAH-Zj0?a%n~W?+1;HYC;W0hZ2qHzN6k?mK15TN;ylA&KZU zBr&eUuU8l64tn1g+IgG`4OkO^C#Y_owsO``4B7mV{dTEJPDjsr%a5F{5&vczd~=6* zHX!%ZywtXYEqyo8xXU9V6TuYJBxw;i19ihN0mPN!EwkTU{vB8X0D(pJt^!b}bN3;O_r`$t zZh9*Q>#;I_S~|nw$8?-%dwFy!(QU~3PGS~0O~HYp=3?9MZP<}=I!|;-sjg&U_Wf;8 zcevwr35dn=Ah$S@~^C-XDzZMVLp<%lk={j2aLEvgaC z2kN`z&mSu>&@Vahc8Z&Q9}<{pUty8D^!(bOyHAEDI+mdVc;4NiS8RY<7mwv>t!+>n zj572MSq=krFnBBPw~8~GF6KQ=!5&2gU657)Gm8X_pwi3=fix4)rGqSy*b}Dl-WqAB zKEyMA*2zMC!a`4J&{iWmOSco67s&=L8e4~w7$fKEWaI2oX3P&i)+L7W`I6XG#gi%m zB6$F4Qw`=&MdN*TOu8U)=M@W8*+}OVo*yvYcU1%InCEJAh|7U@mds$IRW5<#Cb45Y*zY zyhyaAZJkiJ!&4RgW@c_+?_>=h2o2bT1yG4vE0NH7?4RKB873>TS}60-Gg6x@!go0u zrRRIE-O}_qWD8wfy+l??mypG)2jG5&Uz1%2?uyI9(m$>ed?63i5K1I_*7%o@+T^ zS{?{O_*&2C*1h;qa>VAS=+&we%k{rAhut9t&Ae3%S0VzJHv*@6dtNMnpV& z?G#;M&$RV4epG&Z6mk@K6*n>D3{3;J4b7NGH*VlEpTV&~o{=-WAu#A`IKN@1voWdI zmr|xb7Y8}?uZZ;HUlD0nizZ-2bFD+tpbNI;Ec!d+e*o zAVgwz(UqL?npBZ|>i-XJq!p+67)_at(xgd)lQFD!Si`?h9I5YJvm+ zr<|{z)_tRuW_RxQ=FkGr->fMM`odE{-P)2H>vz7F)DE>gdm&Si_zT;BES^cNUNlaq zo+k4iZ1o`(4`PDCCx}j9;Nkyi0Czm9W+3Ea7~H*; zbFgoFV!+qM%ZW$2sc45pYP}SDm(^bT!$U*fJtS$FEw+p6jP%bm49QyZMwS_8F=^#m zT3}uGQdnE>YoK&1N(=`z1w1P#M_SQ_`$=k47b#~mx3&66^|toeOE8$Pvg26Sy~Gl_ zJ3yS8@gZLCAlt2UpYF}Y1J&Nbo4lUpvZl|MzU5Y-RuI!6F7l$pkpdVZE&7s&ZzfWe zB^NYE&t(qemAc`_TZibxZL;^^4=gIJ(m}$1Yi8~l^!-CYX(Jqd2@&NcSpn2k{oRP1(1ZzXbSH9Af7&UjihR3 zINC;Cj!7zPX2v*9jk_8cW>_Bq+PhW5jG$n*H8~|8r!&BppDA*$VM`JubZeoiNYWoh zYHwmbw{WyaueS~LXj!enJ#Orab{;bxufHkutpngBn$sEAx>rd+Q!1bPMXzV4^No;% zwqEM=$3?yVdWK%Rrm2BU{GDTmoO4L`A)8`0R^)sTm@%eXrz>tP!7_u{GxQWEwij=T zU$zE@EmycqK^x1gOEzPYNb#AyLB|9tq$2xjh4{<{e31Xc!(3j=6v-#Sm4?Yt>-vn0 z`0NB^#_f$%Fb(A-?PRHa#wmS)wu3jjpC8fb@9GOji60`Dzj`ulg$%4JhSd{>HwSWc zzm52wutL*JU^k33aNq%6|2Yu5`qL^~WeOO^_iuMV((;2*^0YGZ)#FktMuZ*M5J>h- z2V37Ko1+g6Yic}MW;28uJE-nQjL!$N?$w-DZF^}G8@RRIG+|v0pFVn7H~q}Z`+NhY zi{WU^bz8+I%w{jHe^+MQ9a{571)`4La{)=jz#pn~=g`3F%QjXH(M+z6{+=X+U>Y6W zhxcDllX?2=m23F5c+RmChlx`Zz=8#~f5bHT<1(185bKCo1?EJNfTC~F46WAm`F$nz@YjgIRSK48CM~*Lj`7&S}LI1 z<+c@x9dP88Eq=nNCB>yy{srSQbmf6tEeUd=yw_J}%tq3qAq7jv6#h|Z;j~4hqX_Nf z14U5s`+$X2n60bCL2P;;6Xr^T8NG#DR~$0fg5E>`#s6XJoq{u6*RJi@w#|;!v2Av2 z+qP|YY}+xrWOyg&Ttldd9wYVsxCAWJpxi?wt= z(f*I0b1VcIUg0>&IX-oSyx0BYyrtp0VEy=O_dkz2`Km(GQUHEVp5cFFCH8-^lBR~; z0Y{5(Z{Hi_Ap9n#TfuOmbvq?nJnePm;SXPI^E7LlW%|z-V(JY^7bTY@mBQ;h1^Olt z{6xZ;kwK@`=i^?OnQ9X;H12>;6-t6Xo>Mo?0&d>tWuhtfaC1N;<eY?uGm(|g1YeeE&ncce8%i@>F9ZJz_Ql4LPK=i68s#6E{G}>{M9o{x((p#4q=IP=)*=q??hda3#1~N5hiQoeULdTsq90xE2MqlK z%3Os~g~S9bE5V}0zG2JcJRD}a08B}1g)q-mV7^3J-UY8T9AoEVOES>lTX|+5LCuV>m4QS7_K8r! z@K>85I~mk?D_RI?3yB!@qCs&EHiyE!$(cF=a{bj~!gaWTUTP#qI9*6U)gjZNpdH|& z^RQjf^csW8O1K>wAR3kxqk3CQ9s$d$V}|$)&M_uPg|%nqfaU6hnqA7_H5#> zDnc)xxHtgQs%LEMvvQ%azuTm+i^j*UacZJo&{p98f{*3skc)ts|Dw@zLv>wyXdax! zHy)(<8G;g$&8^oAQmr&Vsp7Z_9kd#7ymK>c%Ma7{jQK59Q5J#}qXZjwJk2!9P%;&y z!bh^(N0m`8z;*}t*LTTOo4p;-tpe)45dTX{Mkl*@v~bBj8#aJXyU9MQC(4Z}y3_c>s4fJFUOO)AMiDomZHo*WCZt2@cfQVqzt;brg3F$+`7f{X5}>>p9) z1?dUkP-w8oQW3Tju9;LhA5>K;1CNHh@j=A16Pxu#gsAUj4&)P;TmlLWc4%bjV>*cQ3T9XbPGGZ`!IKoL}GOM;ju%r?&< ze?`>SCSIlOm@hWh3B&E2D_rPS7YsBbN(ud#lT!fAF9fz|kb`r&29t=JpKYxWR$qVX z?CZbYfrh5RqXRPYy3qC?kO=JmvoqJI3+s=sU<*AGEM>^Q)V;G+!BPRyu~g|l&Zo{5 z5tyXN4KaHwtv=v|K-HQL-hcpB1`O;1S%%Mqot1M2tt|@cO;~gge`;lj(EK0-2vp&Z zwNgw&hp-Wb1+oFgodYkIG)%QTTTXV(>Ki}kz6%p z&l2*1>D=yyuHvg7NMU=dRVLiRf0F`pGawQXvPVt}CzWVfCy{@SWj%S)>K)VU9ss{P%kl1~)(n zY(u;tmoN0*@b;aZ4m(ucHZ36xJT*ARoiewvs`rv?hM=Kjr!@A*vCv;P8`OY}-+6YR$@Nl}G3Y|0>u+8V!0x9I%7A>v;-wcj=K4ofGJ$}cl=ZipOZYR9bE3MQ{^ z(;=16TGY5>+pHC~nq*ofXxm-fKU023Yj$qD!eu%=XLzh00W|t&d$z>vZF3bmdIjPP zlaUtSevcVeT(t~Go>ezO#<7Aqef_=qBdpQ-EKUck3<0xrp~`QXVRKRrSBQdv+=*Y| z?*L~__6Rbe@g5_F@n|MBw>G^b3yIlcV(xQ7hayu#vG(N9#ZTd^Vu0BpJQ@?a5nIdi zU>7RYLT+QE{Q5!7vSm2P|Eyf+m6?hv316Z^YJO0IcEhYS6VaSKBS&M2Gb?gyfO7&W zp3KAypZZWTr#M)etYCJC$>o&oRy*eae6B?$^0zaxbI2WX)GI(s_i89T@P6ObYD4hT zpAG&G3V5)xhQ}zf%8pgIO^CueJfAdR(ah`{XX@#qM#TdVH#uK%HYDz3ct(Ee(U#pQ zHgK#+K5|;kl@o95c_hdtVcjhwo?gjeiHZYtl5~cWn@N{sqO-z-h_Z#XOxFf|y3$T_ zgX12!{t7rQSUTPV&BA`Sw%pG(_bK+q?()`Wb3rjNBt;f|+Dpf~kQVs^XZL-rwo*iqE!Ydgr`lBTQ zhVGB)2KEnKUHnLTf_)a?l}&=R2C{o1n1Bo{D0{AmX)PMe@xbGhsk5%8a#7IWGhmjT z?>v?xLsla#m{XVfXjYJa+s;vJDRQN{{nBSJ3p!9Q?As}@CivAzY8M?6WpGk=b|kuW z%Vi$4A2}}NUpPIu+UUNUQ{6#dUzTz^7=+z=7>#QNTb|*VN^(;(9z~2jUglinf?)tl zt+^A~51w?*YfU?J&cpuvGjG)1ApX~v+{C)v;G#bv$ho6Co!jhKuj=00y)RYD^C3Nv zdE^qDe(C`;LCD{>4NJlqigl2ErKvfb)#%t96L;b7!kh%T(hr-0@@q&d7kM(Fj(Mn9 zQU@66w{eY|!Yb_41%glyffXo5KBeu+&7b`Z$t8^vR1#e@#}S8tsG)$0`)UcInyfdECtWKz3 z{Ebq>7zRr1IG3M%DtNG}Bhxymx=m*rK@$H@f`#W-^QFi-J7_Xg&M=U6#s%L ziBZP$$WGgb8|YQA@rStXqciXC_48=W^($!ZN7F=psQy4L4=LA`#GP7aDvYcdi74;7 z``1I0G+gKd&vudQN%9g58n`pm!F7<8i_pS0M`OAKQBi{ajQ~-#fTJT-@GT;^X|R%HPhfo@&$ntZeco9z2bgBNK{W)~>qM^%Ayn9dI2qN0ra--Sm*ET|_|(fpEmytq)<7VF)InMQAyI$Z*T#}R1oAc z^771`-u-#LIKiZvBDVm49W)Wuzy7*NN+dNq|5bTl!J2I%hg@M#agGlsi90Q_Jtv7t zt)kz69M-1%wA?RfEp9&xELmn&m)Ry#Mmfsk8`xK$^BhX}v<7aN_=Yd`Sa?9m5m-q8 zMQrrW8YmFl*8n=wQRsi{nIm$!@lrYpP(gHR`n~d~uJ(@tR1nQjos)sAowc%j1)Y}d zaFaYug>Y6e5*I*c$Rg#(qj48Vz5uGu(=C2q9ENIOm+u-+`AfVFpz6N-bzf8+J>0ix zzv%ymsv`>~cx(8g>ZJaUssruIeE5f|^B5$WOaoALAOBEw8sK|R0Ds*VRrhO>#((h_ z?RDwDRNaiTygVU*s=LfJiuCH!8BpVj+|q*$_67O-1U~i2#(G3fo&%ujD8HyWuCWC@ zBh$T8rpe^|HPuZhvJPZ{Sbg`!ys(uz@L60gn3vrW9Yd}L7x<&}7d7|1Na7fqQO^RJ zS!@q6qSF$xWhV6H0yxEx4bXBMck{-kV=l>t*X5RQkTK=h2g=H>V zm;XX_zF3eCctve$DX9Ylt3Bs}KkB=P7(wI*hzB3u#sZtaL=dq49!+#z6tfIOGszMS zK|pb*ftCjhsyQBd&fn%4z|=WHN}{zAdM`S*d+nwmY*wfDu^&8NJ=QiUQSKPs!iOkz^xLTFT zUM*j`iNPyhbvImdIQmm&qp^Xus7xez-U4Z2_#? za0?!E^1e(Os?X5W&=j4lH8=`^;BfPrs;)rHc-!A&>i?D3QQMwg&Pxj2g=BsVo46c8 z^E-m>o48~ZY3x84z_aC?L*Kzq2IxjFRQ;d4uDM~JO7XkEj`+GeyWc~{rXQzY&!NO% zXsC!rVvQq-3=Wmnx}2+gSlndV9Z?!J-jeb{*a#Y`9%2QySc-?=w}cO~f1tY4k-f(+ zsIJ0A)S`T{#Lsdc0)AIOypsgu<`vh*C~ETpNDHEhbT&=lkZ)x{xrVZi076QIeB)wU z;tKvia2y1B*V;dt5EwZXYjhL=;M_jfUm@>_h*^36##ng~h3$(5yRWEZ?{eDTWpnZy zS!;blSTXWJ^~;4LVaUNDtOBgXUOo2E8dnTQcR?31dUXE;A?f$3dI@o4?MK1hh@W z(i8<<03`+w0P6T9tZM%S>WmC2^dys&WLu!&L+X8B{{iZvca~$&z&uPpf$chL2ziOa z>>3X-1ELza=|CMa^Ly*!9UrPEt=NAu@LagJt+!DBh7B>*%hjJ;HF=HLR>; z7L@g{I}R&|U0>hVJTHcSEm1wME+3GtZN;*mO@gj9G0o0+E4q^&Gh@>Y#g7L*%jt}z23&{>u(FoP zj^v#M4iZqNC=`vMR#S-2-(%aTJ7uEFB9jy5;yF?{2v)TDWDCdLYkxQHRjs(GWwevQ znpV6+B0~~?F zb-R!&vU_@%v};--!0n4K6B9jgz&kXwj@wHO*Oc@CBrg}eM1rQl`T{lo;y}yq$JZD6qk=GB4vLKN4 zR9;Y|<%y;m2+4>mGdP9tz{?-^-=JNG{LshvIp5fn2U~mfT-FLEqb~Z(k?*J#g>I_x znTjG<#Qw?9V~yjSjfZGtf&2z57dj&Ldpg|jz(tiv&K=a5N(h#y(Zd>U{KhNa0_}&s ze*e?9;!*2`rGW4FR7s1pBtqG4M{2*W!}+KmMCuXmqg5^}|Msp9_AYwPn$_mL4!TQ1?LHC@x?OSO%%)sd$4xKs?d6S04DKJsig%irE0eEAp% zGb7jg1RR4tKS6;Mq(Q;ZfFOXN0O5rg$gMYWB_0q~ivL$w`HyEoUEJwFBBR@G=mQdh z(vZO#9nN5_FvFkt1pmb4)SsLPL;@-2?LPA-5p{V{jbi!ly08!-f%UXppP%D?AC)jc zVtZuehy|k*_c7Mrv&KML2=NIr&r=?VSaB^(MOu*k$2_cavYVc3ufHllwA?w_th*Of zm&x__t9K2wS4bk39&+YIJ3>2B0x+8wnczYoZ8dhBBG4$A0N3_VF$ZvJQi(nFa5xO9 zjqYC6nUlGzVX{3lh%wXzOX6g?E@PP4j>&={R1 zl|Q&GmMq)41HVN-sqKUa(ml^0Q~yQX259TBbCLG|d#jQ{Sp5vJe&ejQ(b7JN-nKw@ z+(6TgeC>d})nFP3gKlH?fj|5|RoS!FX`n{^m}u`M5#AKj)qu*g*R~n*XW2VZ%xe;` za}u^e@rk*5DbT#axWj6#(FlDRkUgQt4lr3iA7>#LlGO{G#u@Z=P|sWvOM59N=UEKL zlJl3a@krvaOo7M)Pv`uRxBCbL?69a#f}-R?HWF%a!;La__5!|z+Q?9TM==5lO0c>m zqoZ;}Z5`;Q60Ux`52(fmWR?3-3Q1-(hSttUiY12_o-u{E#owYKHFL+%AGD25Ku4!& z5XR2ftHZF`;$$rA?i@i2Bo_s>y~1A|?cuBdvGA>D8PRviHQBCBKk$7b|5wkI=c!1!af-A6-yvc@>f`i#$qQ@(>?0wR6tI#3Nw0L4O=lqw?K2da%B6~ z^$WW@A>lv{kX0`I-aFegL3TedaUn}{;KV1j*l07p6fv(BeB-V3IBI~>XBbI>r0CL7ihm57K)6l@; zd7+Z(PxJ!NyYAbOFt7@j_D{xup7^3u0dbOyA}gifs(_Puhelk&?Q({>ykzPNHl>NM z>1320s54|!+3wzajt3oC3dQ!7;X9sEb|g?g4M6=A!a0`OU$zz;s@qpri2K0CLfZB zN}o->d%~I%Kv-;^7JA^*#!VuRjt@5L53|n4%8h~2*J&K8S}%aseEfSsxTP^3z-YX==~rjL+z*S;tta!AhP^^gTC&DUVAX{S@L1)%G5)od|RCcz95O6O-$S-g)LR%)(vhb*Qu>*B`PQLWL<^$z_?eeb<-$ zci3X`6a|o3TxXu4wTun(lm?YlA&ANDg|hjUskU=NBk%5FPdlyVJj)Z%5ve=mS}a_w&wJQEAu;T6YM5g4d_3UC7p}Y?4IFklT|YwkcX7Q!n@Zre z5=>F9=y5s`%W#d7>JU%^;GBvWqYVp&XaD>RG_pmS_=`; z^?Y0nv4$HXs}RFnx^Xogh*3xR4}Eu}!*GsmChJCSk=HdEl}Q|Y;vY%Y_fn(g?B`Nm zh@#W(UMaYjw%kJ%0Tb9}S(M*A)@et+QmV=JjM%CTm~}L!xe+Q!r|9K$?%C0*3s)uY zlfZK>7-?V%zL!VUB21dAnotlXP;~8M(3y3V6ug^_?fmTB1P+rVBV6~(!AVUR-c!3QxlD~vRp98pZUj`@Ab#rBv7#_@0nOcvXvmZWG zGuEqZEHddk!oWany%H!D(|S&Y8R`VlQ7Q|}OzU@)JfC;x<03zX^RS{k>Pk#2qML8gmREG!+%lw;J_(Cp)77?mPEPRO&5>SE7OydBikI{~>yP!2?Qd!vq9 z9~Px1k01j3F@IRELcg5Yl!k_8B&9Zw01*c~L$^p0Qv?pD#vyoiYIaUbFx8T+wHG>4 zwaGg(k&)8L^Gu8PbV;%D^6tL#y+p^AMIFB@fR~nuh{fw_KG63YSxo_UP#L|=8Z-MX zv~1RfR(9(`&o*hbNpWgJ8XeZc4SOI)eO-i@D|b75tc0T1OcG!aXx7Enjf>jfAt|M^|4a zK^*;g`eXb2+wNZGn9&mno|{a@@rxT(?VQ%=kU3SNOxAvkz@EmqnK{jq4)Inj{tWDj z8rTaf6}YTD-MWzH2g8%qPQunSm*!aZN0J%N=<;wZ+VX;VRhL2wqI$Fa);qMDDPBEm z$X2Gi%If92e(6*yUOZcqp$!WR-xd$X>Nf4Hw|4UfSuF#81rg*0>~ zn&m_UW~LjV!}UGj^QQXzv)26+vc}yFQ4lY3sCS0-?7+~IG zWg-Q3Y5Vi#F$gaw+xzo>YvSM#X@al-$>x7nf;j$L2?Ch6_4Gf3_JALT7v>Dk|H_yV zPqZEhH+c8ZI%_t#XtcharxjVdxpgF6Ix}~w6Csc!i2gOwsrpv``DV7)-aHv?NO?ne zK1A82%kt0C>5aM`^*dyXZWQVgy9)cw)TpP$$i1KM$Lr3=x15 zayh3u9I#fpZKa|ihCJ4gTaW@4z@8m2h6n@J8MFpTUuFz$FRI z=0hUfZj_W)2 zR8#{vrjraK+(!BsetJM4;YJwv{o~$-SgDAxto*YzM_lmiBctfnHt$tZcynU}X@CT7 z@f7^~4Qu@b;NGtLuY3Cd;NG^VBo0r`*(SgTP;P7h$}RT)N4aJEmvVyu2T*R+u4Q6p zP#mON#`cNm!CVD_+Q|anoZf*ganWo--_%F{VDvj@baR(mX;jbfJ z_v*S-X!+Vt0t0fs#*@diEju};hN=wp1~z0Vf_4FP(n*ndyci*)kFQTcHpIplXu7KE zvxQKQu{RU}Vq9IQdc2KtO;<*$FwCWUk`YBD*8Q#7`1h(n$h_Q%(3g zK<%JZdAd%Z@5VUhF_o!;8PVST&N{3m9k%f^g7+5{#3TaBy3ZY%3cGnGyZ#m&W1(t} zgi>fN*WODoP14Z03gZUcaE6e-d-t-pe9`>hFe@M%HQ`Jr>1e(u&CtbK?sLpuIPF(! z<#+XI_kt!_CE|^GqdLc=0wIEwRQ3;K=Z#ZLDc)!34j=>_EdIb*XprGO{h_QwMsugA z4|}(mb2v@PmK87)Q(*@7LQ>KHBqLClQR~@(O@Xs!W9K|zveeb`_L2!*zvx|&>+(mzyqV+62s zN`B}g*Gwcv*Q}$S0J)>Tz~HSKl5;}`;M-Kc__oO}zRl=Ad>adsTt#^+wVG+gy8#V# z6G$lNQ_pA&JE(atr0~%UT%Nq35=#KFK{{Dw9#jDYTv`dZ>U;{rj*#9Wr1pruN{kC6 zR#F_^QZ-;N=;Xad;>CdDX6XtCd`atM)-yy#M|6QWvo|f#Ki^jk;TONL*Do;5PBa6s+ZjBb~u#r zF#kB}B$m04?J6i00!A&qQ@{vZB?3qO1=;3N%hVVtRZws4Pu{OogB023s&&Dufcusu z(XuAjnf#ergG0KH{YmgN$*qL_age^&RgshWPwR8~bnf~d1ye(1^lsS}*I59Xc;an6 z74z_MGn8R4X+dG)s{b~Fe$XLovNC<%EJBf$L#FF*$kNN$29rT;$TZ$ZlmOAWMGx7c zlHEpx=-@6r+7vuT_-{>sO3a(i`I;-C4c4K(i~k;4$?W)U*`c4y;qD)M@6TbOwtX)W zl8e@-YdQ?|F#=?KLgyLm?qMYYn@Dz3Bg{Td=r7HIX%D3G_!DJ2=f=MB_eNd3A1ADL z9$D5Upny_ol#r6^D zyEAvCwV^_TrX{H<_I(u;e)UbqE@t8FN_()t(qj$2P^X;_m-FLKBHVGNOq0;vLLtSK z<6nxXq}to2VI5~*QRT{yCK+%z4~GAyNM+(l9iETMDsJv%Rh9N@TxIgMoD!>G$}jEy z)3p0k7X_{Z7*|c93csK`eejAsKXp?2ZaS`*7ipUd8=^w(mW@!%*+kL2&y2;6xG6Ru ztuPmr2Fk`1T+NLf_p`^KodQI==J&D9m0p>x^G(>eI`!{*<9iCykWyD;Tkb5^K+T6bYimkQo z2#GYWeguUz73y^3_v%vUg3R40J;-9{?SjQR|1qYoWoe9Ui`Lk(Yu@h=CzY)KP;6IM zcy<-GH#(A<$ee&x8)g1^RU8TjI?P5!uQMdG_I-O^k^>K++7ZaYdbbY92^5XnMYmUJ zI;{i2*)xkkA8a(bDBQ77F{MF^uEv>~ctk38l$osG7xKfVS6OZVjLj_;rTox>T^2e` zqR19?v?*j|@^%Z30qP;InQA+}PeB5|zHNsXy^Dc~`HH4-yThXhbeg$X8VyO#O++@1tp}TnTv`{1DD)k?&7mvDu$ujIS4SH|c87O-)7f)2){Vw6S zWAJj=8A!ZM#8J!y?Gzk(v(7|Ii%e$S;UG@my<+Qjs*dDTWYCpZ*ql|V?lN{b?huS`Zck|D+$CS$-$QX^TnU?k^Pp$->EdPjwWs&(qlv3 z%4*v9?3_hCQkA-Wjd%+n>7apgPH)@evxI;q4jT(t!`rKljz^q*T-j84sdSMiTYVg= zu2aW{Gqsn2f2O*s9V{!K3b|dr8wM>bTzaHm(X{>~9~1+aA^uh*RZj3-tH0?d?mksG zxhA2PtfR54errg+LOh*3HQ;QmN6P}|qY3+6Ug?bP>x|UNW23b+mpNB>8ro}L)D^Ba zczeY9*9**mzIc4jf(qJ7&U=S|1~i3{C8a(?tDif{vTAP4!+O*L4SUOw_!{vrS;+rv znfvEo%RW;Od0gh|kdM_|CRmg2{qOHgYsS%OL(bc)hlWo4+W4K3hb2*P>AEqvpbnFo zJE$dAi{+8`yH8RmZeLQEWX>hf+LTm|6%g-8P80tP|z|Kk27L&_?UJhHkM& zT%Uc#51lNAZ@G2-eJSp~@$*!_C+9p8S-?=bInCmX73(@uR$CNxv{EPE`rlTAiHjfg#%fRA_YHK=P6sTEbb=y=E$)0Fe zRX@RU-%7zz?e>!C<6@RVbZdSKoXJH}mk9P4?+W=xKK42{R9XBAaYM*~X;&uoqo^D8 zQ^sxlv1$9UUk5qOE2#$bxpJPNF`B>-=w9sptWr;(@%YF@c;4^l<|yOEBl_7mKDH*d z+%=mj=P0bzaGh-v(Y+R*#s9*?7LrdB-vQps@jc!;= z@Y8znP&J-JPsx8KpzwZ!4&G56#De5xTA(@Gp63#rC!Az^zF*#}8+hh!VAzftnI^b9 zIO^g0jJV!ALZ6h|K}edg(K7Rziz5xi;_|Kbe}2QkbN({H!TrYshmtGPOsJTt(zyqI z!?M5QeeBhI$PXwA$-AQp@~C=?1-E)_lm9UQ>$QF(U+7|{|0DUg9W?$LNPX+gxW3J( z$qp<1BXJ9A^xar<%fYgi2=8&YZitfe=6awDBs^xw-WNKgYXe=_YDvUp@d+6)U-ZV7 zpAM;g+S{OL{;5j>M-m^(V19L-AEQgfBz~Nz*Vh3kyphHE$)~3jhQ?F-bh9*oB9&)A z{(A>12E>Ta0?Da#ChPg9kk;T3MAh(h3t?}5B6m4q(bKv7UY=Sw{1O#RZ6R0^n# zuz_HXE=y}JKuvB&7P?C8%=vD4QQydIhoCYI#NnMGMc@ZxlGqlTHJXRStzOKDar>34 z&ckxrfgJ9Cq@_;cWz<{>D9_Q3D%j+N;#id&KtNRC&jL+_Lf$o6s95ndgIO@cbd((b zFse8X@J5iI$-z;@A4_3xC!jy{`1@TS$M$GYi#>!Dh8wXRN3>ZwB4=#OfD)`e>TKtR z*p?rp?jxkaW*H!YYd0A-{hLk9kxHCrqUW~FZjdv? zYj) z3{iy;f&@kb9u0o+hx~%s8c>asb~j-^HC5YU?0bb7%sbW&qM}|||Bs_ep~vIQ_bZIr zJhHK)7}girlB#iNY-na3yk+>Zei&18Qfd)}yjjtW5d#yz9cVPmQ&78kQO-b=4`5dK z#HjrS6O=my^w7W&y>F}!(i?y?GX(`9M(&>>dr*`ESX@mi-X>^H6rw>w&3g=D<~y7w zh+_WBKc3C-R`zo?E}VEg1CiK(sD!opP%Z>7glUV{gsd&OhTpSJzTZvmLAER zAL1iY!+>{(gRP)cX=aIz}Zd*BjI(Q5uEO9Ec+{{1Z zKSb#<@(?aRg(9-F)@S>v#WxD za1;awLriOf!EVmd^K_h%z!**9XIl>iRlSOT3D-(JtQc#IKS|}M=V=_4!kiJ>HFZTe zo4v$V4EIT+-padAG;i%fgL{RI^g76-Z@!`+xl;Ybh4*q?k;p=j_A#1kQ%+e!5cDCP zJ-&ygh}LkxVXw%i}u_$T7Hf>T<}|alA4&=-c3f0q(khHjaY= z<9R?*b~-1ZjWe+Yr_EG@U*uhbdECR3zIH+WgI?K{TE*Xe5>K7oup#)7%rGlzo+@|Z ztBvDnF!UF70xRd2;gR^&FD`AZ%pY}HcpSvdrld>hb&htlm|aLxSn=Qb+FN4<4lg8Y zcbs_ja+9QuQnNZ_i0_~4GHWJ+sF*V*EMf4|^Z}@uT)(uscBxwCPpqwO_MbV-J}bY= zVeFfK>OFYan-q;9gpRxGOd1WJ$%|>Lw7NvK5$e=n`TTj*1jW8g_P%pqL zB9Pb=8ouVAf_LVliasx=-=uL~U($<9!oIA6I zGUq2*{Sp152+u{Va|uYN>)CQ#rN%3^K7L$b zIuQJvciqSlukLZh1GCAenc1I{G>2V~h98SA3%bNxRy%7mm@vViL-TH2$DLHs?=%`Y zthp0y^?bi_l}|UI`7Y|wc&nwFyVFsfDD`^RWi}SzylYwN|E#a!o~cMZu`sJ8a%y{h z25f$RvupfB!@QZ%+3$%-7NK8rCz3awHG+aQtAs>XR+ZIMzpS9EYXnWWELYzWH5HHT zak@SimoD&2d4qQt{N(<7A`{}TgMuXrsqcT?YjlPJ>-rdpF;jlfKfVMqB7r4u29m;+ zw}Ghq&WiBtph5r_LD<(oJiOr8rG}^I+AF}KJyh=G4|}emJ${42or+kh0y}=&pFaG- zQJ*#UYZwqvz-N}PvDt}Q6}XT_5CF7!sF=9}wlS~lO;@m^n{ zQ)d_kwcSnLblobTa0NL8xJiv3gTcn`I17=nxdTa{cv(N?5L|AL9tR!QFiQiOrGj(o zp784m{<8Pl;wp8SpMHE_o^aLdj)()=VO|1!sBHCjenjRwcWA-8DJ7Jq{;Mr7Mg5xJ z5Cb#4kADKec6G%m_$@Zq@xI{oQ#R98e=->$cy+sH6&Cj;XG2kexedN&3r-& zBi}{QVf?Q6UU{Yd>6ib?-!aSE1+s$Tet(=M=Ces_>xa?dliE6?)*6G;)FGAMxjX?5 z>(l+Yu)T9=53pB$g8VN&?G+eTF&vOf!v04tVgBd5qb>;;R>kO%A9{lfj7^8lKH3^_ zHgj1`_hIAK=ISyGvcbN-ITue1AfsutY-pe`q(6vmDyBSL*vK8q^+WGb8?T~r6}-_d z?ulQDM91oL4tjTTX*cIzs!ZXS15v&e(C1Z~QPqAwKj;7aW43KSSq1_~C8UTk#}$B7 z5=3P9wW|8D-zf%2C6sz_yQqCFI)fyRNI$`3mB?&EkQu8uLbceMi5B+H(5I>RLQTaq z5im&wQW^2+q^kD8gI+9N0TV!cVRy0i zZ^!W`tr7!(l76ei{S0xp1LbFRP|z&QZXP^|p0qyuI%*FF{=yA3NSNmSSY-ifvVF z+qP}nwyjEX-kNjmeNJmv{VE5)YZ=be1RaM_v&AKfgJr~?|~y|&Nk3Z@MEumeSe8A6VyKWU#V(u zP1|mQ3P1Z*gh46dQIBn^8&K%vfRi^&P}gZ9pJk(vW5dfoQdN$kmcLTf8Tpp4M!pjv zB6!`I4PC+W&Vm8FOi6E$a~!!Ceu6I?W=Bz2{i25`5nDoEv3Z^mWVjfZhZ~qCAa_Ag ze!`6g7%9=FsvJDU4;VlyDX5K-i)bKl63IdqOG{p*F6z@rAS$!-B5DK%;HfWKCE{qw zN2JbW6lgUiJHevFB8k{eQM_<=r@1)*PF0bj-bi}T`wrh3Wss=BToXR~ot$HmLIpF& zjjTcd>`j`FgPFQ_@Be|lC05tr`XK2{E7TpaZu9{eBY`jDiqH| zFd7h8kTLesu=JU&%=~tJOAOlV>wN1}>?OOJgP$?xkhurjyie2>k@j`eHNKZywt7I8 zg&%@PBda4MS^VQv{d-EIaqDZ}Ak{H6KSd<%&Od+0&0XY1F!Jr@;liAlg6Q8~2QBtL zcxu(}A!IPPu3gmNTZfTbVx#(`e^ZI>^OOzO-&C@;MUDAasTy5*Kr>xO#vmux7_*?+ z9Owq#_69^LDUUb#0p%E^%7^G*RGt&yky#Nzg4XZrAlJbcx1o&n7x!kK$jn1a?I3Rk z^JhtSV2YFuuYX-+mD!Ieikgx~5v?NPh3{@B_nfIdo=hlU4^Dkcoz3Pl{P6wqQwif^+Rl}N>1aN&|N0Vy^|g_7@+-@w&<$4JJ}{qd z_VeXKVsQmem9!@bfd=Y<6s>-G@g>0mxgt=9fpXr;!BVI>*t?ia2X%+rmzEF+8Uu5E zaLK2))1_t|rFw6#Ru{rJ)s?CL`8)qc1auXRbxN)CB)dU;8$<$y0qY0+ zJ)?on(6MXy;)GG0b@U6=)yowZf~(3i?w z0Q9ACyB+|2sl&he(x5ziHvVQ(Ld-$EmUFa?ynQ1`8v)mmS1TR}Oo0-}(iGgmTAs7W=RZ`+vVz_e`h4Gy znmTap)k)l87N?C1lVwFd_;DVhFl za+of)KXJn_I`4{;xJ~Bg*)+*4cYn8rbh1-SVbu`Y(i;9Ek!@`3dv`AJ4kEgXeOOXM zk(_7;3yNG+jjat1?b3hC+QK*P&$-s;>*V4f5WQ6Njuny7Q2fVV%K4AKRFms>Chf)0 z*wUluTG~dIIai+Og%SaHY}W#`vJp=oMMkV-rU`jSIRU;biudYvdShn!g|&xTbF_6e z&vHFFG|>87`c$D}P18zhD(9rL=%W zL;0{WMzUO4FN*1A!@8U^kIX|d#UMdqSE9WpDTa|I>WL9OCY#C>P(&esz!W)WV{Xhc z%wXMHy3#U1rFv9dA|;Sx?({QBaFU!&?b{n3!~RrYhnNLhHU>3-M`q_#DH+n}@K!V*jF zyN7u*#ck2gH1)^(&?D0UVW**UE#vU1I(q;5Nyb%vmLkz#eIv&x%XoH6cAbzB_NvlB zE(6F*M>~$=>H5dO@5rY2S zmFsy*H`4g&0{iS$j@L|^RmX!RKV9`;D)Xw{nEZU|Yy){~E0@~McRygwO(Xji=LRPm zn0p@Ol))t3b!MC5x5->aJs7q|*WnuVYG;}Bz*=|*=UKL_8k9*|jIhL()8-?6FQZ2; zShyAk$azKL@~Kt4z`ZMnDqZf{^!MTTtcUev8!`-nMV|O*@`t72%0@0zV$s_vdmf{9 z!yoA~@#DO#F&LvqSaPY0PeQukkRpmTi~0*-`C_5daZ-&VlHFGfp`o>O+0BY3+!MJ! zrJ)7JjGeP$G_1wX#86;tMq}Om{eZc`^hhO`L%b<-4~Ph(^b#&PN%H%Be`p^B44%l@ z%IbBL*N3f;x}%QGXR6DKS^r$>>(zmOqicK+1Rs-VK4}p%WG%#ALTU0l)IzCqS!xam ztJ!ACf66&wTMo!9kZMkn#S|6LF(!fLkT%gPq^iGP$h{NB9^abL!`l~TyL>o>39&FW-nq25SrHN=NM~F=2FvH%e9hYE2Qpv2lv$InvwY$5U}m=iF0r zKWd!hJ#u~aKUaL|o_&fYx3w$pXoL^^>{S{gHMRdRKUw3^ZAbhOje@3IJmYnK7#HMj z>$CkHj5r+G^@;o6VoP5`^c@CZmevL!RU-ommw(hc|B|ZN{*5i_>hb9S1VDD#DYJb^O0H|6Ypw=NU-jeG(e&ayUSbmg!2B>vZ8Uc4%)ioW@0JY9O6Ah#e zh|PaM)j>n6%^-3X@DX%~XH0M?!%WNwBK)l=z@WK&23>D#8&zj0^qUI z4Tvt(Q{6FQJJ$fUPD}MKL|EM`xBb6rox0l)rTd)!OJ0LN&m7$gp6xKu8yY_asCBqv z7U7HQVEXKJ(Ih*VA-pFiK=}+n=3j}??uu05Di?i^%tkk7k@Fr6rI=h>`T)_T;j1-Z zCaT{NU@!f|)A%AMGby2e1+F;vbLT!7on~ToZGaMy*fx87=Et&ZgZvMuT15khCpSMw zb+zFxF4{_4kg4bs8$$`XV75{$qLJ50Bx%ns&YJl#4#p9gPwDC{U;%@6ZDQ3Cf7smL zQZbWDyw2+K0+@wF4v!%Yy$vV1nuC&iM3!bzPsldJq}F%F87_)E_J6XAKv&h}Dt1^w zCcoNbBu&l1-%T3J|8CMCb8$j)|H&>lzUYuRH3N)5j4H`Ov(UL+mdxi)E{3ogkZC1o zdpLmXVqxyL8)!f2gj(ZUw=}NuzJ;@?DJEJI?)))QzraZ4p==>unRR%DUqYRBh!uXU zu6A{nv=2csfiDOAn1+cXI!?R%O9MHJ|0fdNG|e!}G;BR|MHUYoHS|b=YS$G-V9qk| zxRWHV&M00SrN!oJ+2J8QxH}2CXeFhTR>GINtIHvKAb?c;q|%5rm9pYu;5W@OEys?) z`YzVtOq0OCsCwOVKs5k3u2wxnIpLpiVpVEEg%gYgO8|IvkZ42pC;kCdgF2O!>QK?# z$(u#om3EJ04r;IjXX7eQ!@;vw<-SNEd3Iu$@&081xTh=wN-&eid3vqmmSDVos*%oy zrBA=_{z+0c#tV>jcB$_Y#~+_2KidaE6TtG_F7dvMDk}O=6;L9b#g$ldz#M;xSQ6QW zj948ui7Qe6MXnWV{7#^&OkA&x*|M9j=2j8(zTx@SqoX2f57MS`vMjgXN+38*$uTo0 z5Ar{gGTzWj6ft z`866cqZ*83IX5uLf-W@M-9ck&!4BkhN|JDxX}Y1>ljSBS$|awhKGpRJmf&?TfOcm@w1iFerHpRh5 zfWew_MrUsJfWRkoMYoLb4zp;|)r(Kk2FyeZ>_?N61}mtiibuVSDfMS;9@|&3&9+^8 zw!t1(l9uwblTSgU^3$Jk<3Hhmo!XzSZ(NUq!ITrq@=r{V32u97_{^uE0MQx-ZDYBnP_Ry65{;je4VQ=lgv-SpVz2Rsh@<0yf2dLtH||7 zZ#w-4ubgev@5X9U7FhQ~3!=0@CE}Y<5?X+{d5sa?RkXv(^1cq(|9n99Fz~0?38uWE zK7&LFqtHfwsqmgRB2nWLb@p+@LhN7`eWk0y4=oB+yC0S)_-Y2Qb89pThLV{2h5Kv= z1##9%tO)?IQs$frG$u<04#wPWcc^=L(>beT98G(rM~YKa{`lkCZ35JAYnCIxJ0 zN_;$t4-*SDk=Oi7*&e2P-ZqyFQhc-IWUS>q!EC^gMChXPe%8Vj7*|1OVDQIfQ?59U zG5BKedy&lS96}cv)7bLJ!wuKM@qcEujXu&>E3@&mNTcu)H@j0~n=5xc3J4S8&uFL& zLViX84@@_o*pH4ki##Ct&U7Peg8BF(?CRvaTW$p)bn)z-s$4hAm3{#j*3bZKxHMp> zriyfmN?o2s-EGAm`y2Y%CHjge>wH{>q;Xv_w-fUXc^wrsDq;Zb?rJa@9<#F zvNa**t6jtS(L~;P0i=n5%Pk;JAuwPq!%cab9Ehr)Mn7Mia`Qy3q{@NpLDw5^ricSy ziw_W4N`6@7!3B4g91AmzBU;zHQr@)^wmW)wnA0BjYHT|6tr9%5I*w3h`o-M~km=_t zfyi_S;|)y(KO97#zYYavq#D{GrE0~!ig7c9TenZ1(3i`e7C=ERWa-M@f~b7tk7r@0 z?G52ZBb3(K+$lk`>&nQa)3z`wbRfFx)r@=_UATgKhXqtTuL=uyk?EQK6w3!LVLugr zMQFX2EfUNh&$DU!vbu_G_Gb|q3PZDtu_ZBa?iLSe7<^DD0V&-XDb~qCfsw3-hVFxSD{VW^r@)axYa|gB?@#)I$wvxT3dH^ z>7|M2GDXR(u@bDdYoV43Q1L`@giB_apof(6rb+>|<6TS+O(i}x@mOexuErm`xApb^ zzBKds2^~5U zk)`Dvo}Sb}{p5vq69cZYI>IP*9g*f_5zGH4-Jvh3Z@-YBKf>FwjuLP7fwy-`2)$m%+523fjXXP=@}kslarp~ zZ^wd6u5as;o=F4_p!=>@O*e?7Lu4C4?QwqiH}Gt8E@9O7xRuwEQbwWbav&1x6a+sY z1*Y@s_0Y@nSB*jpk2gIbr2C@yMbvKf?G%8KDq3S;O@^NNmGn^4jaLi^Qk+J!W=I5XXIimmJ3-4l8YqB@_?^nq_$uMpS}DVRU)Qt;ktN z>vgZl10{ZnPm6Y#Trb^(!aPLk&ha}>Jeu|GYTh#QXf5aMGK{Q^@VJ;qCTXW1 zaVs+~pmN}7-VC&0Jg-QW&A&Ba2v0Xz`4NUPvxZb2uVn{Qn>T95Gis_}zZF$9C42|^ zC^faxkQyY^U7EfStH$Y9{PfG3Nq)jA&*jFgXg6pB;$j6yiG&a*(9mK2b!9*KlwJn$ zK<4;Jj~^*(g!Rp1C~wI8dLey@ayrnQY9m+0=0@nUNffF_u^9)$HRHpK#eiok*0} zHXmS~081_(axh$fn<02~{Y9x&9Op+F-1V$x+%>ZZa|5>>xb<1vrsGUFU_ma!GQEJe z4H~nE8e0DK^0xi;_}pPmE)PEWv}Zzq6{E~0?oS~+7!0okD1Zb=?+mvky0E$=Uz5P$ z`3}8}6lf=B3ebhRfcLQI7MD7tBFZt@^Ix#iu+2HrB7r%^Y8okl0kgFGc_MCd`8`Xb zCsaN$fh0G0)@u9> zMBfljx}Oe>U|u2~V~cr)INU@#e3Cf`_$e7k6m(kpEGPIsdy&(e1?|p{WJy^lmw)&v z{-~z>G-QqHI5Ph1x8^nJRG;eZuwnMSuQi@^KmiXQ2#Y`8I3aDLDW>U)ZR?Q?T`GZM z7mMk_TxV<%hJ3C!E1B=|H@c=Ga?Ct$;nw4AS=@rLmM{;-?1`!Ism(l3$mot4nE?n& zgIgy53QDWo4hMt*De9(J$+1}LD4_Qkrl$)83GSxX$bJxs0W0CQuAK?t&rVa@UV=(5 z`;Bnz1f=24^TY=5fQiA{&!9e?M~U55jl5M2Pe-RnDDP;hPY73sYbUe|A8XQ**lY*} zvzz6aHwI#+Vdqg@6D8|`0-El|;|kM?RM=JDpu z7P)@JfzZ-9qim2a<0_=n&6*;+(Z$CHyqKHdgrCrDb5|lcCH8sQ=U|KBEu8XIC=DzZ zc8b-CX{5azj+B5!Osf(l4dE{ohP2VC@{TnfPm^pnUkwpQjmm(K$V&39Kck?PL)Tir zi)|-@Ln&eb8{r#~kPMJB=9$baaQ8puhePih1sPSwshlt2Y-*^9mV^h{?D(b<##euD zG|GY8*%B$+3xt@S%?NFC(i5B(Y6Ydr(XjX2hm!g}JS*d!_Rz^@hc{Qu5uGh7|9D{r zOsuD<^U{_o7dIdY$w*wg8$_!g=6@7bEy1tCvHMNMVFvCG*504x_S*F*&x9`!Ys9fp zvw?*=gWsNq95Q9h+zOXGk8kRIo}g{7KqX3|o@^)2d_Rm}9EgqDVX8K;V-0`dKpPN= zW99PC{}IO1Q|}SuJd_K8ipWI64&Z*o?7bI*r8w!3_fG9%ilAoaV;-5L&N?E|9ndL% z7Y2_X(;p&JoaM&F*@S}c{VZgCc1=M3ZtPi^&l?*oen-0X{%O$NHh`bt-{(di<;|p) zbPG)b4c^X9i7Vz$zE+S}VD`FVWwgppBtae25k>WFprDWymd4>0m+mcd++qcB%Ms+v z*ac}Y492tBA2((Z$_-+dZ(PJ)0ihG2l~J)OMpHZ&lO1R0na=7DqqhqfUf<`~ORAZ> zr<<-}HfRNyEP|btzMFVUVBh&na!nbikq4gI>i5Vz_5e`YG@q!PW<6}@SUsk*MFUWh z_i^Nf42M7+i1Y05&g@`815af>D^03JUt=xs>vCt>i0_{!@L_ z&$J6FDvLig@hYA|ydv2tT!WJnAtw$fSy#+nzfAZSS%kHeta0y`Z3< zW8>b~Nuh>lbf2Lm8BxJcZaabfdE02AFq8sr+rsW-$Du=Y=&>nXc9}6 z6FM%7?1NBwuO;%2DS!ULUPQVlw6gdG}D1r!AYT%j2|7;?tKK zBrEpIaw-$Wn|o*1UBF_mf3`V)rj)^ND4l5e>YAtyQY(}@&LWqzS^WIqy zyIEuN>s6EZi)t28#rwTAm=765C?PGQ`C2)?_thu_$Mtx3EC;~2Qx>o zg*4!oPR?tM8XXAWUQ>hLeB`zz*EzfdjtgeprV%Hf;+gUAzZ=p>ID@ok$@Uj-aNSEZ zJiCwTDNF6QE@D5a!VfAZoj0i*LhKc;dfa;W zh3DG;hc@Q2p~$Fxwa;ClvBNh6y#n8i71q7BF5pUSeXbqVQurbzy>UpVpxW7j-X6hN z{t4^*Zr*|2yy?C|Ve8Wn zJHLZM_|w|*fCk*-Zb@u`$Lxh-c1&4yG_JHxzyJE3gG;ly7J70f7~X;@OR-@NgDl`2 zYgGe7vL|=zQXE_@U3g_IM5Fm|L1R>7#;dy-TiP&Oe(F&lNnl;ino$8VK|6xVwg*2t zPuA3tvF6pwbd!d2$x{T#)rJnw_RTa*d!o;nfrs#&fE#wTWPThoY06*Sw(;!Or~U)2 z(HoU`BYC!vupylvrzI6J`v9X_gaum@BzcJE^g3-$c6QNJThiV1_%Snk=y4&3J{K|J zEs+=o)BO6;%Jq(8M{EA&qE1Bc)y%ua%$ML(Jf7p-5SJ-`frr5!P zE9^B$yuOE!1cHrV5)BEA#rj59~`9&=+m24 z^O<@b!gmX~YnLAqfzi^KZnT})Nsk=lYt-iK?`Yb=s>ZcUky~q}?zuxO=a-y;zl>cV z-c?IX@po4rd+Sbr1UYn`9i7*I+0p%*rPS0N^T)8g zWR*VyBz`1fY9n$%ZJvu0BbjYuN-{L7r3r)J0D~0hX50KW^0-L-#a%ik$-+AG;P9q7 zy?hCPQiFK|$f$e0H?=Ze#OJI?X)|{M$F*G=Wr&mRbmEUQb6!~f!*AGRk3L=>e<2B) zRp`qzXN=~Dv9D^b^DGv~LI!O_Gw}?5rbCQ=E^mW@z`)k)%)qhzDgg?`SV5ecl`=k&-9KFAF5I8TH}j568G_wdd4cQDH%M)<2aWmb7A`eA{Yds}iED*nKhu?>@eml#>YSriKEycijb#24cR`#czg@VuDaO8YM&!Ejdd zA4CGk3t&iR{S75Y?1QYcGU}%R07(rpsR-29(13#sO1O#~9Cj}3>H@_Z5e%^j@Bop5 z8u|I8CyOpXDqeal6e-#Kg7^~(z`TKblfT9QFmIq+14z&4gvh&(SwF-<(0ZqFea2WA z0GPMme=%>kKwDshv=~1kkI(}cv+Hs9e-TOnG(d;wk^4NjNpD1u-ZT@iz5^0;&j2EI zx;Au&imbD$?3G_Ma_=i-QIqFeV6DxI7)b&FE81@39Oz3J2zd7x1?8Cc#W~IqfJp6>6D~)%9{!+q zovU|%?N{*HB*)+(PbXntZTFG8g~8dNen0#VlG=pxnI3%QZB+I)bO0((O7&#E#glHX zKIXvOnA6~atzk+MO#9o78p&O(Bec3h$Q_FqO<|f0q4LL zTYv`01*(`S@F~J=#2_x)pM61*sGm_-OWS3PUg)W6viJ625XcR(wM1!8BC-U#@nObE zU#q@@Oq)de+_>D!7XF&fiqt9m(SHO|F(pA)*?g1_^H+3))ZiV+umWBf3!CqG5JnmP z2+(61;v{Iz7;BezaB&0XSkLn~)8?~2FMqKqz&wI*F;=eSiW#2ggb$RY`gXInIfNrz z*{;=?w{aMmy)q(C;~y4suKP@1g(Il+MY0LJXux7nHp5Wio;S%l>OGV?*Cn6w~ETjx-Uc-m2AsN9&Yj?6|9bdwtQ1}lY zflAZ8yk;M$d$wqMpgg*N2a<`8n<09SY!L{~qUBaCMqV!gf+{)PbydT>nzYnObT)NizRVij}-L9gGi9;QiL*@vA@XUz{78b!j<_C zi(vWME7{l+pWt>_bpu{4@;_VjBXPPOhHfnioL@be#{T>Gw@-)niG`8?*@3SHL>VDv zq}>?rQvAMnj6D8>hrV##>EHTisPo&SvDzGvizgJhl7>~a(OD)rABcsbJgDaJjVKxTryPCgZ(e6Z3-_x0dE2^FoL0Ft!Ia%7 z*Zv!_irnI#I=ttsp;EeSgp>TwKb=Bhy`Rf_ThdNct3irM*Epkgfft@;U{ST=XFU-Y z1uilwf`Bc=_{RlJ7=i*%j#BotrLcl24QpnWH+oe(a>ul*6`qo{)W==~asv(Aly0d@ zwsp+i&`(7k=r+Z2d?b1aPvXvh?Se)>Vn});w@`LI7BX5eJz!!y9%Lo9(M5|$H`CVA zg}(~ywkAU+(B_!&FlG?dA@FlhjGRnL26(VpPcRDcy- z4dwOYa3Sq=6c(fOtXC;cTj_^yUvGQP&hiH)#xEa$yELcCj?Rk*HWOK4`Vakx^$Tw3 z1+e0>AbKKQ0g6kGA?C~PFEw3fl)}v{acj{t@ss8B(FVs`jKBb1icB_ldi$?nJW~<& z=UE?*&By!A`4yaC8;b|b`&9`!k;|sH>1~)(#Mq7W*3IblemeC>5L|fL=LS=oz6kuA1t<@q8ds6S23^$&J_Qr z6dwHM)$f~7?-T1>dnxS6z8?qBDgC5wR#s@dW+eACV6ia;%~Nq|2D9Xp7ZsmyT$Z8l z*(qJNPNJ)f7w_abvzd4Zq>m}O1+g9$l&dbB&DktG3>_bHmKWl55p7|0kN&Y;#LcE_ z(Wl5<)-io6YS;r(MqYgs8?mDJ$BBXG1esC_-ixjkLsN=)>jZ4Q{Ev%4v6bRbtI@>m zn3a0g^68oofEnHB63?4MmAyANcX)6!7g~Cl>qe3@xFo}&UnMJxz+?iBL{I0`>I3ycB$cer;(b+jM{N{`!dq&G3{AIU% zsT=%oX7&5t%Hv4Q&{0MujE$IKj#g6&Hi)_I_JHv>;{9zK75v7o06p+WCb5K}oS9YA z=3MaVG-WOnSSO~(sd>jXq{}nNi3oEc?X4yy*kDmZEsseMX%b z<=>O3C#7x0X$R?mQ?x82>dhQh7!o5E0t9VgxZA;Khc+z6r$LFKd(IeH`!C(|g5g%I zLZX*j3ZxmK0ygb1%8nCcr7gVFxnGA-4Ofk3awsju`~%q6#Lfmol=ap@Ra}(LSZc() zWSKD=Q?$(H=PS+PLeduqQ1bIp?8=OxdD(K+RJjjox7EdGF zJxJ0@Xz52`w3Gq9inYg+NWoi!WX3b*k~V@%xJe2ztiiezcRu?)Hvul~*+B@YeN9qd zP~8N|Bhgsce6Erj7ZBTl+^O86G4Eu^r#5k`#i&1&3O6rRQZVWCBLp_ZiNdRK^OQlI zTA|J4OT6JRF}`t~hG+Ij_@XMc0VEV>9N2jA52xiBnL@fIuKb_V3{%N1-=d1G* z`l_R!Y?H}Z?Z+F3Y;~Zax5j*kJP79S>)NCiIfZjA*g@)J(CLqO?)j*CTivt-iI*9j zieVZ8lc(PFtJPSFHD+^)HX&x8G#8gmbu>K1w(i@swDJi*j_Xz+t8$XYu27Y_q^Db> zhRw%zLC)*4P1T|6k^a<%xB|L5W;Pd5iQP~hBU%bW)iiMh$m#A_!9~wcuV$^X%UqW8 z!Z}2>KM-mPujSbrLTKAflX{sc$48}}iq{}r24%Q<;;Pla>aPU6Kx zw(GMPRA0_7bsxK8`y2PFzaaiwyCWm32h>nbKFK;wUCqj>TuXLVU7w46I6WY}1-MDK%Z-4B zY_PahQ)QhRK|n}ZHha9Qsur&l%QeDK=@?lV;CdV%LH5qNdA~kveU7Y$1JN5eL)YDm zxK%UB!q(8xaS?7BU*fNE7$XH~UX22I(KV7Rfv6F4#cNpv<5j=}K?j%sfy5tB?EGNQ z2SD4P8}aCdeBsCJSW#3+4aD)<4|$2s3Hf&k+*2%K0#p9!SjvHp_C{|1I<9#-C-m9B+E zF}bbJ@`K&Wm$c!`Z)bTjTf|Jk+YF@IW=p>B*a9Zt$@*j7kjJD`yQuM^?!WjRHiLnH8ep=|@C3zC5J zGmc+t6dt&b7%Ey|w6%6GN6{NLehGJ9TnQ#M}8PmW0{DnT`^u zHi_L@_Bl8*1e^!0zr_v!IPkaF2|Sci^ZyGRklY78V-w(MqR}0#zT&n)GKC_5 z4!QIXo436a@icXs3pC)Ef`e9_I z;Ubjq%y{pFF6!OYlo(4hOr+`wG>%(DF!QKZ+8dfa!oQ0IM_w0~Afo9jyoFx>k0QrE z&W${%JB51uA}}#fK^rd-o~#!p$c&t-pr)rQqB)8*uRvjBIKzQoN<*W)CMTxbY`z*# zrQhZTlrTpJLzGd*o#=t4>-!zQ z4i8@Ah@5>dLKVq0DTET3?8?AY9HxU}8X((4$FZU;YIjLA!)F#d9D;R|Z*ye^dNKEV}zu>GbIrM%Hs1{mbL-Q(%4o=Lc?1QZx*d11Vk|;I1db0tsEf z7AZlUt@X!FXYNnRux}w`@Ou4_xuF&jhba5qJ6oIsmZc1Rd(PdFqu(!4f(e!V-4{?4 zRN5%@&(rKlFr4AZq?e-Yoyd}*l22@pZ8F?Hsm&h#B<9RxIGiI5s$S^CzN!ZopKgz~ zYe2`Ig}u(=IROh5vwyi(;{_fHRsTU_$D3V(hLg>4fZHS*62_i%m1i0l8ePN6@dsnk zE^z5H3ayHU-Wr4o01}2XdBfmR`^S$X{L3ek20Er1EIbtgAr9rNnW3Pg)=BokS~^CM zLArf5(q!Oe427!0|F z>@zJ?^i7rXn29Lc=0i4fce8kQ&pw$)p%t^_tVe-CWBgT^1g)8Etey(b2n1+`ZJgPD zGJeb=hZFiIR0qiC@C@C19rK-a)T}G;#wg3vHY=RHnsVucUH!p>lMDW(k=Ed;yqUea- z4#lfQgMLZcm_&Tj=Tjxr2kK#Vr1CFmIvsZQ>E$C-XVzimTKrohRup2VzoLhX%Ylhi zj1FD%{EY;wCO`Foi2a$2yJGs!;)wec-Egqq(XBk!0`!t#viiZT1#ow(M(k&zUJU*n zjCB*Aw+a=WCsh?6jZHe>>#to@MN3XOsifX>*fKEuk!aLPP&*Tf`cRqp=gwSJ$GFTc z<}&g56X+7Ep$AHx7vy1p!ya9hJxTV8^*$GVT{(SxU27YoF)mvcUX!6F@&)J}3m&fP zyPYwr8HBe{IXaWuzOzUO3&q>SMUAEKj#h5SN|SQ8(2qkQpo^hwQ1dmh>31pVrb)vi z0&9HqUpxUzIVC;@1VT9u$Lt@g8+?3DhOQ5mYyLT!?!BlhlfuxTu8wf zptFzFQsxwN>;V@b>9`MW-zGMh`W=eiO?8js~{Gfj6NeYz1D97l5$KCene z*xX%tj6*4{qYhe*4Y-wGNjK-Y)=LOg2AWGP;4<3P?Q`|;_`y-p^jyn2vo(QRa|`NK zKf|7b^h)jWg8RTm)1hDv~t5JMzpP zK$~RB8T*Nx(Lrk&=KjLla)o{lIDFNyW_8TD(yiFG^}aT8%x2&F!GX21+sjhQ&knim zeY5NuFZn19Hq}D?9rOk~S>yifmk?Cr&N?}s6c5AaTxQY9GE{V$zdSmj-Q&8sRNV4p z0cG*mrP2pmnQqQPit40jyXquJw5h1NZ5ku?_v&-`9l7u8>^?|YBbch3TiX3>Us`+= zs=*C;Oi7a&n)r>K7#pXPykKwze%^`y?D=gwg^k6uYY8RSNh#*SX*k(&jXBY5FT2uUXWRm@QrsQzcjZ@b0@=0&!}9$BGXA@#h9a$ zUL>s#NDbCyzN?o4FElPw2A*zuO*>r1sMO1&b&mz)gg#=E57iW;IU|U*<{^p}h23^X zP@1)krNVKjjohiJlq-mbHN`qkKB*FNxDO?@Wqr@$F?FD}|LBEM23oIYyfQvR^tA_V zfQ4W+nYI(b$e4`ZXLM4DIz?kPH67FaIN>J^etVXoLS%r~=bq2_gi-6bezPop zOxPkYdFd_LwbOzXYd7WSTPR*8yl^_z6kEbUP`A^Cd3WUDn+}g6J^@FbjPT@uwu9e} zht&c8aT3F$>4SSSffIb|Hyd>o7O8iwePS~N_1c*Qa)##%cvg5wZq}|=X%fdfn1M-e z+3d_Gnd+aCebGqT=ss1pmVHc-_m}F6!^I$Q90~NAwAAnx)Qh;Q4tdZ=qfI@vRc;{D zfcCADJ_@Y3vDn4*e8f_fZLQE9>|oQGJ|jmxhT+XmIe7WOh@)4DeI0&!LqJ`N`CBY} z_|l9{7DJp&$h#%>IAjeBXIld&|GS=39aVEd4Lwy^VW_q_Ej>ioOLW3A`@%vH{}PMf0OZv9bl;8SIdi&4CSo@jQ_d!fRhM7QN#W^*N)q;t0yNK{xt z;#=V4hTB-QY~ve#G<;X!F1-(#&ykO_ujJORN#iShw1$M-Q3i&@y9V_QZ{#*-hUTmC zbP;HYD*2bJM~BwF&gP%zUV|ZqebfIvqfEdyfRh0hXkGv1jOX8s0yyK@1Hh%XLq8C~ zP-_{a8f|+flw?=190`wtlc5Q}v%T~sF?fGSu*ofIFS0H!GPg5Gi>@n3yd@-mpD)|~ z8UgIjd>QM!u4^T{NXpT7PP_CyLWa*QsD84PCqk8F<#KjG5|ndH)_o$h!8akH4c<(3O9z#|5h2N$#d z;_LB)v7U6XN+Ff1^A3==zJ36Xo+;zR%f3UutXo_F~R#AqgL$J+XzltQi>qrKBBU?~KJS0K6_LCe)53i+IGW;WC2M`lY! zWS_a-!IHD(w$O#XRxk%A>wB&LWx=&f#o>b+OY%3R*z5kAQij4JxL?fwrj%5NQdfv< zT%Zq-oT>mT-c<4|Q2&>Zj2==*D zK*2eQE?o&FCcl)mmQU!KfN(mKPemM=B&$%7<2UghB}2$PWIyv8>o%e6pg~JuN66cG z2_>{y;q8%RKuX!ErId39q!cHszbU1WC#F`+0`9}XM9p6~85c=<4|tDLV56Ca(0Kjc zH1|4v`iM9R8UZY~SYYOfC)B{1-%68r&ea%UsumvvFh9!^2({D`n#?J5Z#xV@?~mR= z8P%ZE*z06%Yp#iwL$_@A12yqhdKg=X^ChT3#85!jw6&w1oGsZ{^fmT?7{eC>UJTzq z{{|3Cz{H_9A3 zIh3ArZUB8pWYh*jzd;pkXa+NyOUhs39zfPw&eFr;hro5HRQwzLow82&766u(5oArt znU1P6eR-p;*m;qf9UkNi!ZuZjKW zN2_(v)#tXobs^gP3xYh?Oed_LFf!5jSD%Ey|Do#~`!fIcew{hlZt`T?wwr2lO}1@K zwrx+gZQC{{yL~qQb?tTS{aWizH+lrW@A-Kj$5BlSGXfE->pNirZj>7}{@nrxJTO-B z>!tk&xWcreMhaHTV+8Blh=Ix(q%{ZdpE^z`;wA77jqZp+vtQhKTl_MjNYq6eg_u2W;px9><8Dp$upXNewvBthlw$K24(in> z$2Q2vcW-gztq;6=NT>GIk=alqyY3jmW=g#XM93C?51=g#DDa1KOkA zO@@^tloC5@nj4^yLf_u=Xicm~vF56Fs33OKEhbfJF>Wvl10Q+;e4P~Nby@JqPPtbd z+k3b-VW1asun#V@?nxQkE{zXsz>>^E^T=AND3NLFP~CdtnBu%sY3@MhQ;f6&0gm~nog!*YlY?@N}$uDuszEaL) zbf|v!xmtj-hC7$_m0hKyL`{$7*5P-oG{rDI2H2**AyfVVKs+0CMp{xme%tQgQfsGc zxqAr;3?(Jc&{8-{oUvr4BJ8$84j!Sn_dm2k%5wRbkl)?|j-(JtH3D&_X_jVq-KNAiy<8 zc)NQPRC1KioQGaBulox3O+#O7v9;~{w8Io@%!kkVNsey5%JTvWnzsX?xo<4Obpr6% zr1@>t)_y(Gc<_{Sr4U;;LA1~k#@>7BjWlGXoJ-UE3ytOpKsW8#!>{o{2Ds)>{n`Ug zQb8!tX^0kI3V>wlbw-SuS0RrTRzT|WpTd}`tgJik?bk+xoJ(;MzSY!!4oW9UWpkeL zwqLiOd2`Ya=Y}=&@7Gjk$*-mu`FJ8l@!B2E%S?S6*Hy8m=;VK_yF zlcL!_x=XNbvWN>$Ii|Oft_?Oq?s^xr_47TeV@_~iS;;-;F&73iy4iOF`H4JAfYLcf zrw}S=&WG?;ZSTJEu#sIY9WY89_&c?YIp+?UI%z2_Q9MA7`EFADj4XYh-tU5oxL?4E zj11{8y_N=UQj?inoolsGbh&b~sTwPc(RT`ZGZeBb=r64>GBxnJPmM4#AZWf}Ksc)B z0^JFSm~8zC%@$#xPk`_mFa+BrPzU~eB%NuFQ*yx?^Gxa|KG-8=08L$egoMhvzz>+8 z0mge+>_4p2!`pn7fXv#DkC_uEk3}#wY-J>!YMYzSOHGXklAO-Po#L`FB)C@b%5dzG zW{t$7mQ&d81uYAZU?w>OB-9MjI47mx7d<&sd!Ef~=*`?UIFk>Gp=E1`>FR#UJoBzj zuPhX#Rg-OI;9!s64NOmPa-G+Wa%>-sncu(1TNd8Csshd2PG|>FdagtmjO1h!F_7ep zYm&)0qcG;BLPqR^2?+=RJChKp=O^WtGauwPraLT*RbSkY$IQCkLgPBky?WZ06QSx2 zt)}8jJk@-^WdV^Ww@OV za=zFd)UC=*#;nRb$4wKG^Mvguz|PXG8`*`LRytknp_PK#J2s)M490NBD?QgaV|xH8 zUkE!j0p{IR`#bba^N>^FDQN<$O3s_zJMp3HI06)VnSYwFfT+Q1a&sXv!+ zq2S6=?iOrVQ{^70kuEXpvyR!w=-Ux>`BK>QI>o5gy%rs1N}9D?y<{SOrLz9Ym$FZQ zGvbg}1=nR&Pld6qVS6#PUjD_IQhz$)!Hf94t^&S%#cm^;n@AnAuxS3NaiRqi&4*R% zPz^jz(PPV4j+b5TOX}#us#bV9*^hf@Tdas#S>qJyXq29L1wQA2-mR^lhe8w$2`DO| zGZ3>BSg?8upzhbeYndkp3*$DQXid*~+ z8f6J1;$g6OfZ;bdy)vJl*&Y1}M`rwlSrKn^L_5@xY1dr4sW9DdaOTztVI8=b-2&+SsOMQaYKcrZ~YIA)IY;uLoc--K^ zLk~!yNIKv+mMPNf1;mmz^w7xpEx3i>@uX1OLRuS4GCh+PjO{cu)S_hC0$lH(CGIX7trSY4+%Xe~Si&kFeJ2Jm92uV$B=lw7JGHHEmF88xU zI(K>lwh#Za(9Kdy3mN~vKs_w~4eGJ@gnHBgP>;Db_794X23GTbpq~8y0`+h=enLII zAOC`SBDw-P-qf@zTM))Sp`OjTwJyl0d8U6uJ%)dwp55>G*ikCv5#!_NA>@KdTi;~TF2?MzOz=V9@&L9M!@CNsFh?;r8m%Ibq2ppeogm$MZLNMMFK(J>P`4($A zzDQ({*@M3;Cy^hog`R_0`bSf@$rPWLA2IW3?MGf)7o^c@L*8%D4Ew3#Z*&y! zs!9jEs*Hgi3`TSJg<()baL5~*r^OspWmQ3l?|iZlD-@7yVgS7!Cta5)_zmM}`67GJ z;SDAJgXTtC*C7v^vUaqU_?a)0J_Mhys!19SZ-ST{K3%}8D(eptdWY7{Ku9q6qwBU@ z$w8o93c}~B>IH_Mz6&z0A1=?eKRf(zJ;HVivJs$0sDl~soeVYP#RTm%J^=rp+mB2o zYUbbDkMqB7KbJPfmw}OjFN>^x*nnJ5ID|J`#Ro33y=KxY*n*=_``X^0N`_j8Iz$o4 zNs~KEzF*AiBDgu{3Ih1rU(vhd_9z}jQnLviEKXq}8RjdCvtf`T%maVq-^DP&+(C@P z)F_iG$A=;R-$zxmOZg1*AoHHvp{$}$L4lQ@d%l~HMJ?$wHBqIZof8sYg|rZo7W~)^ zjDYI5HH_d?-#&p1+CE7U53SWO)Uf;l3Hiuy$E|eo!kG|UnaWBR*H_}8X@x^P zu45D8x70K9BHZ=2(o8KH5-^JqDjjE(P-M?@ATkoxwpc7`g{77om2X3o#;<*n@EUrE zLg}AkgjNNgYn|fd?DTL^X&NesVb#ptKF(g^`HuVzUa4ejel`Liw9|5m{}<{>Asf76 zM(*Q}r5E%sd@5uA=k}9Bi-gYgjS<52WYX_223>Z_HSd)X)Bs(@#>Z&Mt$xQG|61g% z-c25G{J}MnW<(pe&z_E$LOj#?G3q6N^;K!0k@Ez_G?|2Nr~Q)dzD%mkM^T>r)9MB> z%E+rnnxp$^b(5$PPOFPWweuMlO^guwy#2f++X(`0KV?-!2%Xcpo6Y4xZ(BU%*_pgJmVSflk0AnY28b;Vp)hG&Ho4lX{> z+&6bgUhN?cq9rALiJOb6Qu1J0qtAIiTkX1Lb~s zvfWQgb`b+${88u#kZ~U$AYOxgj^yp+&YK9cd)^Wy*!X{vpcIXUofm2}YtKy-_BVcH z2<5BdEj8BNUT%Rr+aho8y#!er$F6*Z=s=tDB-7SS#LchIGX>MlP7AOI%=~Xb4tKdgKB#YH1o%zAu!Y?bhH(7}_Cw@uJ^xijq zL2_`|Snl_5_cuZ`s5_aEo9ndj7WCw=c$i6BEUP(DD_iy|9XyqfpFmkgngUfNMY{MopxPNspv2-nJ7n z6gZ}6biipVre-8iaRv4fbqD!&cVi)^ry(>5&Gmd>kf#E~&jW_H9@S*7C`GqkiXXeB zbw&xx>oEY6N}{&Ta(Cz`IsnxJzsN;8x7iVMJu*{aW}P!bVlxZ&dTfdmN`TM=VQO3c z7ziDQLj&FOJ#WGj$whcHCxx9RsMj(WH}!|~8>~Mc9YS#=u*hl71RFLkxsA6GeTTMp zgZQk-XpS~~rQ@NK?6%X1pRh6GreXn=P#xR(Fs0?6j< zB^nAk0=(W_)9UGLB$kg1R$`{@1CKS_VvpZ@L_R8HCdad!Q0(`(LU`3^4^D#^6ZbDZ zUMr&CQIGv&G~Uj2X_yaU&tYD^w&$-3$R$LT>9e~j!g>{OF8gNHP_}DYkaq`~F~2E~ zMeHo$m7!>`7u?K>tBC_{Qcvwb#Jp0%s(KL3<+nG-F7#)CJZ#}$wk9dJq6^|T;{;G`M z6YlBM58_b7rPfv-ftw(7pTrMtYR~ zL3;X!tyxneik39OMY^oou%gK|-Bygtey+0rywVLrIgti}`~#1fhvHdkiPmjSbVr4n z5LK`^5X)}1oQG*q-i?c69&p_H+%@mMYq5u*2~zw}IJn#7K0-IMBw;SukVR9TQMwP# zU9Nl1U#7kkmcVm6u#&iurB0(p`P(l;qZs9 zPu9ux@hwPbMDBHLUui30_)$w{{LN7DK+PD^oi~taU7^Ha$9_OUONp>FSTwP5bA}06 zm`ezARcSnqGj$o9v_i0Z!1uu(q@OEUwi7QWBE7aSV5!|IxkQ|G68hA2&*T6JAQ zgprmtWT+ioBz|L*9Do+HQhWaT#gr!cyuv#la@NSRZ*E60;N>^Vq>Sli{Y`&~IDGH2 zY2)TlYt;qUI;*k!K>jSmc94I>Epuo2WQh_NQrCE)mE~671v=$AWL`qAG{6pAN@_kH zC2ZNe2JhEx#fWVY4BEghmL$_9onolBAg8ShT~o_2b70fPC7~+>v<}TZcWuGGk7>%6 zQfKKK+dytFh;uzWzL1E19dXgpF*IA`%4*B0Olws!TCJWQQQrV-l+l*ho6}QoED!}W zKxLi>-%dV-`5aEYm<8ro?}F@1tK8I)#axqu5@aJlM>MxEsaHz#L_*nDZ!)JY#o;UT zrPomjAj|Lpf`7{FRPQ3>lUsMB+0O#l*=$U-6AuE;(;t7a#f=jgxvgTSM=HNTIarz& ztceC@x@~jD+1pFQolG!GM95-wP)P7{Ep*ie%iMptKAJjcO2z?oof=bg?|qOT=}vk|Za z8TKbW;SEQ7pDBYNe)j?MA~IWwgU2<6hAkByw9Gm->5i2Adj)np!vqr?h5< zx&RWp+XMRvpCtscT(vzYR4Ow4?KSc$BVtt8jc|Ho_kG`O7dK}>{k&<@Lx4eYeTD(= zZzO)DfPox(cnTuNC(rM-vN9)Uvc0oU%t$K^6@Zr~xot%I*psr=H!cxPu0vo?$>rZ= zvLYHp9-%A?>a^|j{6##eQsxpXQkLacfVrF> zgYy`Bxu;mFlp=X21mxPs8^DmToFF#SmL+a2e2si1!v1lvXhqawfi(m+(3}#>c0=5C z2%vg8pwu@(?9N+ZD#!3?aRm6WYEL&m%a1_f*UGQ2{75McO9E z`R&x`VX=CBfyMsDE%e_cwi!|@O^p3_Uw(@z%)?$KEEDYMB&7R)0z3eo2X_DUAEf8u zZtX?$74V;^mdw^e)qviqz02H$>+9^M_x}6O1)V;?ucrVlNjq>gzI@||_3rj&{BZeL z6?=5r`5&u2>b3h{A^;n@^#8D-`{ywQpn7&B6TPy2Jt2VMG0rJX!mx#r`{1a44`_RwTanw`{4W!$^O7uvySm2 zz_C?jrKR0%mCRa@lwf0)Vn7_&*D}T(bas3^c)!&iaf+@1)%xda2tV7;O3W6A>4jV* zccgmUXz{?uO-Xhh12l7q`zK`I1FC%inz=kh)ZmsB65Wyx>^-xYw(jHo!>MpJny#Nv zO9KvK5lXcl-Gp9P0R!yiH~7C^K@gX|O0)&%dSQijXDeU&tmuG%D7Fjbb_U&cA0+?n z_5kWVfNl?`ju7Cx{@ooCftU#><2&Yy8BA$)#FLrFL@qfHZb?a5b7tCiAQa;Z`cjQzmGe0s7k%t3xj+Fuzc+^7%&!gX+6+FCUChL?a@&jr`ku(A_45^p5T3^$K}Yv zxI_*`mR>aM)p9vvbvRolH(4_L2{rZL&l8HCk~>syQJhhUBSb8QZl{>H+D~ zp6~bfJ`1$$by%Z^WRZ=~4PqftWZiXhV^Vqua@Cqy<Hr$<`pi@+3MI4SkL2(az7iF1IvUlA_Y z$RpvAlo#7VJ$;TbrtJZnKbeb7Bc83t%PwW@ov{op95xbS!egW7zW{*v+{H8@{9eIvCdoKWh^MXFZO(rZDF@G*2;2iRK|h zDz**~%_V<`BG^LOLS5_RuNd)Qg(qu#*Du^O^)oa9F}Zi#ZU2$i*1hHhQY(YVEb;Nh zKFkOR5+u>Q%bqLRFGsx!4)4rgR}HtwI*oy5bWW)n|0JhE5CgoB-}>BeRis>$vB`3d zg?J9b7IcP5z|UVf`?(7xXVOe>*+=G%UTY#)H*@#IAM=avMuF40Dh)FIPdh#l&#%yV zbHN@Dhhc9Q$d%b({09-#?=q$3%g~h2@>nxDJlFp}jgqM($ z6z4lhQQdE2P(QN;tK<;8jzL!?Ei0tw3o+f|R9&rw`x+BM&uL1|xE*;8$t1gZs!2*! z1ZVT}4!~H` z0Dq#tCll9RJcX)|z=VDs!dfD(%_d<2x~(XA#!6Y7@3y+O0x=-1AWE*{GqMvG_D*1T zd6(>7hJAE_%B8Wb?7|TD>;A(x)w&Gjix*Aj!?48(HR141puLW@2-^Ov)UyR9Rb=bJ zic>TNhn$?-?ShdnYEse$3yiJn9|SuW8StfBgfXz}NDtBH%2#j`1lsI;{yYAQU`?ly zEXi&e9I0^HF%Z|+V(+%)eVKf&OJ@}t=yqzB4=`u#Rk+OTUFX$Dw#3L8cMWV&tS#^~c zFtq}PwD(=^aI4Nu>E_)tpdSlPduW607UI5fW^wb1%T+z)i#V^7e3I{S@O;OCEE_Vc zU&^i;25}1?VJ?I7^e)?Ii)L)qW=?bBvW_@7`cy|VaJ3m4P=0FWBpr5JP^^xTD$yd> z?jaFoPC*Vt9CPn;`zE9E=xL4_#~o8(yDE&?D2-xfl-lhN{yX8L##_5rZ6=+P!k&_V zO8~7#LHL>Q>0Mfm+u(QjoA42mmGf*th0vUvT$s;U%wtKKj(1WFL>W17g3 zGrN7*Q0Cl!{@tqp^*7-oVp9;f1TT90Q)>dHAGv6kh3c`#Y*uyDPfObmepN3jq%+<2 zGvQ+-XJwou)FJD9_RU$2mD~UgB%Q=vDT(&6pdJOY6LgMFSB+tJ6DQ2tpbSZr-#`Y{ zgc`cxvLvJ^!l)Tlnj5S*;^6Sc!sgrW*RkOrf?l5qA9)(de-b{)VtK;sP4Cj{+rgoA z`gRN2w?+cxmdw)IEBHow6Jw;bqd$7ilcf*7)ut?oo*uz87)s#Xa9=@C(QNMMEuq(U z*yANyhT+h{MdXXs?rmwdc`@X-tF_pqx^pMBHoJ2W{%!cEkxmAyi@FGxLZL>Q!e&v1 z`iCb84=$`QTT^6H<;tls9>th@WLHUXtBvj?ax#21P8nf=hi+`RjwD|J?JRIm7Cf(W za}B~uW|$os_MKP@Jor*=k6m{+YU7{6fOhOU{SlLiL@3`NDYqM@`ipxr3!0u+_t2KP zS#qy%=E~5k_^6?wELMgweOFa`ST#&ByIwQXT?sjf6{1rLbvhC$oAK9bn?+);lNWn* zD(^6K!>zg_?rLQG_$aZ{xx8#@)Eel4?0)9O?VN@Cx&_f9{6me9<4$@DBi?NP=~Nmu zTX@@cn2Q$fBx|9oN-%fy;_{Fpj6dI(Gkw=@v$GDi%LEPWp2FZ0*_#cXTIerEb(XDa zP71%%DD8h>fF)PQG;0mtXXEY|DE&x^Z<{+SPq3Qf-pxv>qnp|JhZqgXG(a$m|i2|m$Nzl9wT>X>Bl!@w`oN0<;?I?^HQtL!=MCd9G-Qq zW++mUR*dMo4cF<4Rf05mpS>Zkt%=53_((?qHR4vcwU*K9p9JEhuu-#kt;yZ4cE)Cs z$k2jgI4Cm`(wUQa#B1zS2hyP*Wh zpMZ5cb2Zms6yw1DFW8w1N^`K{< zvo{%}(+W3OuW)t)W3vbnA2cdi*;Ffvm2zP%(Kn)BFV9LNa9knWF!MteveU^an1>;q zGgdsEU%F-b2$hK6ldbA(H`ZPQP5q*}t+!lkzVP;DPnwjJ6kauvg?u1XIU->mvy-+C z&L+nrDv8f{~Xo&Mq*yYh%VM?tY+vXzGA zpDlaV3{pQ0@KuV`v*kG2z1_r9X(EH!ldYQ@#->7O5bpkEw=(Df2-xrFQs-h78NC2+ z_;B6q6D84DSvm^ZW~Y%pt+?7tUn3-wRThnLY5viUA%XPwP|^tSiEhL#KnyiJc$;7A zyB~9`$rlXC4wnKC!}RN{p-=?7Ce@RoqHiQgSiP1;Uz#GCFI_o(jSr&5fogAEFb*NR zEVvP-U4k)W*Oq#ms&@YD;L*E=LE}R+PWqHZwq8@JFh6@iErm@coz(>6GeS5xfeKsQ zpikj%t`DX?r5DH45=e1i;n5`<_P~IgfhxG-lNB|}iKTd+#qn42?E4G=frq|=gzpBz zD<5bDPZm#EsQo_d){&=n2@NpTR1PXqbV>9zRej}Cd^FIy8_2B<^+h-r}rCss2?Nh`X zbC>$J?Xzp|*?z)Te_D@e=3C-QSe1Dih_?9g{5t9Vn&ODdRGKp{ur@5X+kC-~=>$c@ ziaWZvBiCUrObEgH`V%M%=u?m#<2yw1*GPZ~+#708myi!$g1%^NBl^zE%rwJThY4B} zux)}=ca8Doq)33>k9@`2_Xq*#E41ke4eHITybOr_9mKCUM8usFIOGS0d~2x1SHQIH z6a67Mpiz7=5Vu|%_CDPrtOH>-@gG_wJP{S^S-h+A)eDs0=+@)mzx zWwf|y(1M<8&F5^ zTiUrt<<9HiFVrV^bNyd~p$}D8`7<;6h{O8 zAg^N%dK#;(+ftV4;y#E}&vDsrEsg<-qcSF(e1U?ScamH6*mJlvUhJHrbpW;71+eO4 zr2{IyHx1$*6v;Mh>WjHaZ&G~nwmm@YwhnUQ7(LiIFg7zS82`;PkBJ+CaK-__HlQaj zh`SBo$L@^D+mie1$F|h!3mdEua-F6C zTLSEEr}JR_~nw#?Y_;07!x*ep*Bqo$9ZW0M`rx84}Ko z_B-Xy>4G+i8VQYWb}E*N?w>n&;W!tcrU=BS^HSA$_%3dcE-w}YQ|YU0G;r)X5=8#^ zGO64>p!~~~o)!|TpI=W2Q4$2#kcrKL@M!395$C1Zf~ZK$+bu$(7WV!H03q<0!|&9n zCM3>bt6fYBlh{t!ySL>u}cBVy1P`!@LIz}bM6WtXk3Wceb@cu16RVdoY~r< zKvLke>w(4IfHt4{Uy#(ZG?p&J_G-CRH(OmSu zW}gJm`I282M}rK5GET`o%iTtWZU@kM8)$q1MdX23K=U_MLIlCWvTc8^d9wzS*s{eh zBvA7fF~wRE2FneGUD_=3REGV$p%w}qcNopJ;;=g z6)vvSbbvWwnsbol87b9oUFsB9M}cf8_RkyUoiC;4LdT3N;Cr~z>JLn5SdA-9h!=zE z_hW$EZNG)R92+2a3!TOu6Y&}UZiN$E5KH-$z`hjRc6o-g8Sm*a>~mYkat6s~2eM=6 zh}kdS;G@$Uap)Gnowvs?Mb1!OxKXs0TyhWC)}3<5LOi| zY8#th7XQl*LN+lG5WKpIdCcYAVHC~#VbL^{EVyT;%_3BZd?~j-{qf~Nx2Esk3{cTb zZqaQamEQG3F1dKwwna-H(}>I9s)6>%1BMx$j6D;S*>Q0uVNnn8t7a5k2zpM-5u88e zagRH33)?LuxEnG>9LT*N5LEHplGQOZT~nj%ac>`nz;%m`h)F`AR1krPze{{#&B(37 z`vS|ZX6hnKG_xuBKs87hqUxD-kzM+)_X&yHSGehI*e7=WY4ldrJy_;>lHtu!=XQu_ zJV_mX`zcREypz|>b~E}?GPim1!S0ZTAS8B;dK4Rf%taICO_6#e4a##}A8h0)hnN*9 zGT;^o!L~49KcGN>Qw?4GA09~M`km80k-Gz#qEHQ&0d3A&N8HumIP-xk6(5w&cY)w& z#@)f6{Ol1gF^88$$fZaC(FyYzC5$4)T(C%p;gvj8NUMmtwOGfoQjWr{yzQpXrUJdU zW{;o*XOng+qvkj#LjNiN@3iD+fs!jgsHW=nldfzh;B^4V=uqRfcyC{Wn9~PwJ*PCM z^+;}rbd3rIXxzOZ&>9f>SzLmrt<;$iJcKy<4E-Q@gU9f0Yu+on8bO8xM7Y%1dt7<{ zu5`CmMO6{th7khh5mL#GQgxQVRWM#anRW-UtCHxh0Q*%>@ofQa9B-=-CD!J%S+unV*%EioYo%NY zU_dj4kqqN{X2~hd3#X)03K3wYW=ZTq9t9TAGl)>OD2Fb*OpYl+h<88^Z$p+R7@III z@E-o{w?h(P)sjVbmQfBcQ~zj=K>1d*O?YtuFjF_|b!4Ca`o7d$3MCn1dfR)(r9pjYazd0 zh}wx>%*+KK%1o_$(^GvKY3{IrM=HwO&?p)%+2$HVP0xdp$pR#jLuI4xHFqW)#mFY; zbtA&s$UZwi%yAt>hsZX?PH)R|IUYIWP_Z-ppEQvFw4-1pY=&n3i=V-rB~qn7I>-f&tHzX&0LH+~ zZJP-j$hKlS7S=VViS##_KM*8qw8(~*R0F^*e+HtMbv3tsHPlrLof*Heh=IX|=zPyP z%*R-eZqrU62@FhY4* ztTpd4P3p1VclE)e-?XFl&`146=C*CWmwUU~m$-zW-8J1z&Ta%M_q9{MHa23K z*0VZR4CY8u*u}F|Z*ipFlkZ(fp5U`1mMJqj6!1_2-^ACiL~>lqxuzYfFI%|}U4u4T zOO5tO_-QQ>Acl0ODVKG#DJvo#fPMX$+cFlft%LYepsSmPy=SjH$!8>6LouKDS_qgN z@{a|Wq+7JBs2H$y%Mzsh{@lf+d|O!<79WW+6E@TJv4gB=9WgkD7~@1P=JyyzM2Ur> zwc|pLY{SA)z=9BIXzqklW)<480aJ?%!)7W>MRn=)G({S85}oZhG%~8eTQgFrtTA#a zP*NH90@Tv^Ygl5Rr5c3Vs>d|VYp<~5_Z^O8@{Seh)#VuM24^FP;(CWAv z`y&th(|Z>h9bgtz%0c|{TVOpG12_H(?A0m;xm?%PxH?!cW3Rp+IoeBQ=wI$B^24{+ zn%Vmx&N8qxNnzg=&vx+5-J9DuqBK+NbmZB=ZgF#(zcq5n25jt}h;Q-W=O(8^Q3(z5f`0WYKMo^M;VN_Ih9~2D$0X^s zz?m09jE=|EXpyJ#MYeGU14{4a)V?VI3{rmB2Y^AD^n=olA(Wmf=2@e%?MAJc!QNuk ze-w}j97b7rQ+IB@@J8nvR0djWbtZZ57o2{uwSD;FZ1f631rv=D7@N)iVd{J{b2vo@ zfI+8X;6FAhuJ%v&2Lj!#y`Nt~0ev6dkN?>BnbT|OA^tC5&_9nC02q|_FE9vRuCK$T zv^nCB^c@7|mFL!~SIQRik|u=h(_$r9Ls?5%OGArWWRjDZe|#+Oe!-aV-HW&VWJQ4y zDi>hFM$Wr^mwJ5ayZsnE_zd8J>Q3r0i#u{!e64vGV3~e@Jlu4C+_^6_@GJY5y)|V7 zJ{zn<5Ly_hm9G{S4PO2Rdv#kNF`oc)uP-4UA$@?qZXt8em@}}>*V>#eh^f4|fC-xt@R=y&m{Oh+GB5v@Jb2_m z6FdbW*+yG;aisS%keJOpUUy#jrKm0g9ldlCqZLKB0Z+*5z2jT2Cy#!+Rz+vW1(o!J z=W5S6``DN-j{oY)5l>55Vwi8HOCf?}g1=ltYrwicw$p0RW#8V2mz6IdUd}sliwWxWzw4o1IONyazC4N@_yvYa965Fs`#yK?|k) z_49wrq_4b%$y}P-JhKWekJW&@j~|JLpuN|ZiVsv|Cgmg#$b~z89=^RlQ4Ff7GssKRVC(*__;({ihSgoH^`zW=RkoGh0GY


    NG)2g^6fsTTJ5& zsF6bByyP1#Xd@WOr_Q=|sKd5r05Zr9`j*h71)FjWIw(gRWF$vO;1^lgXW(bHMjB6i zUb!(I?TMmJfD@E7YY@9kwMduF_Lj7@s?g|&sm?9^j z!jyBYphi>l(-PBA-X(DKYiq*grl28-P_sUJ=|BtU_@r3m$#(GZ$PO}!&!nCR>5DQ)fYJbd*vcFFm);mU&%e8HX~}NJ{V~mS28x>Rb>McId^A54dW@ z#AW%GVDkPT*zn5k!#{1@%0cVG@E>`{_J19le;51VPBxf$yeXcC?-R) zSf?ZUbHWB?*{h7x1WoUKGY3VM4H>Vrii+Wf0}Q5@R&XRI12Mxm2;`JTI4p;Hw!DwQ zpO(#wWO8*4G+UF>NI(%}2n}E4EtT=;mb6HlM!QA^j~}hU6CYkjwdt0d8wGDdQ@aD| zZ3y(|2AhY{)zwlM76_{CbV}w5@(6JPyruJmceeW!1>fq<3n$@OXTmRwzH7P@+79O( zhRBoOa9(IX$&vz@al3nD8n4g5le9mVkfP0I>xKLEE&<-Pi5>O~h)YSrXOcA6`bwho z$sXgqae;?z)tY=@sL_{IZ7czeDiU1aeUgsj11Ff^ZtTPwqKvHU3bL^oX9umF}AoZziJx3ZAKox;oXb9DQ@x+*SYi?QbK&D)f!zPT!nIxK^bK6Q2um6O&F*l~*$M!T!j+kt~#D6iHr zIM1Ne`UkEG2<`XT8`c}Ta7?^cd`#*a({i<$s?MJxa+>9wW|`GDwVV1HXT0|Z1`{NU z8)K+s4t5&_QdN3UCHCAlDCHEukbf5D#Ef6pmVU`pg3r_GtFa#FV22e|iy#n3S3|%s zE%bMF9b-b@0ZViY7In)8q3<>7kMx_PP8INlQ>T>Dh|(Dr6bY;qsH_w zSRN>-H>7QGOmmtr_u|0d!lV$RkAgJ!83tzTzS|L1lo&8=Q7bhI18*yT-?##!afd4? zKsGD;nh$NHJD^4k$wg*sl)Bz8+f{UD?;Mzdgmz-O@RXP-)zv}7S;J4qBeL@}p(cC? z3U}e|Kl)1(4Vzca8C=LbjYzxSZia@0R7>Mf{VUln+!0OhO)8<=iu#7KD96JvT5nV> zeD`k)6>NKBbSVUsIFf~OA#nHZ)!E~*Gh}qM*Tbuu`NuuH7fw1`UUZo;Ws0_kC;UFwc$d-UE3P zCyYoV)Lsb>bQ>%{uwhvXPO_)A2JRycLaNMw-1K%&Ru(wC-ir~2*cR*8WN z?$~iZ&hz_O`!mPc_n*uZHk*YU`+|2=jVbBKGuF5suHdI#f_PR>6SgD>`{CT@T8XeS z2^`xqPIU@}PRuFHMr*!R)UrkC+r@G}T62ho8tP6n+%%!tv*22YHp3=h{T(Au17j{z zwe6_UoxB^h#*|{_7_2VOU@qD9%j;_$78t8uLmISwo2Kn=iK7$k!jj?V453Z3q#b1> zAtSBMB8_L9LA}>%ivMKGnUVJrA6G~?CQ(T#xn3~afI&22v93_7t}YMskQGIAu?BHX zZa$FpBHJW^CHrNhk9)0f)l|o?w*DSN1N9Q&Jn6EcKBV3@IPR(Ps2FZ{TnKCea~L8M zqWTq|1Ip)q-R)`?EnU5NfqcaLrzQ$|)FoYFhEa>39IPzQD{-LrYU|)oh{PctMFAu< zltWAOi3Hm`h8ZM#TFUX;X@p1C8mi-3HE4SZvVNiV&&6_ImsnN-6t|LSHeei6tuNgWDnvn`t}I zs)v*#du>KEH_<~IO_su0`M!EzH6Tu9R9S|yE0&dEJ1;D0Fqzxu4WogV`wkX!JlF?V zP^dQl8^%dzS9}q*jRUb#cD!)xVxc^C!tk;!A1FF6Mnt`>-Ul3rO=Nq~%inaX;4p~I zHADFm;@hg+ox5BnR$@CvOlt#8>u^=IJ2?ql%dktR(^P3((G6%y`m#L{y~GIJ zeTo1s2s-wExS&{MdInNqY+|cE49!rCIsg|0eMbq4hJwhyt+C9~)zhI#1K@(7?^5@h zXj>NQt9vrItBlMf}UNsZ&`@}j1VvN$s}x1r{qBA zNzZX6?G`o&-G_}zSx4~AY1Z8D^_>-wG)+2w%Bky8$aQcYEufr@QNA#*{$TLj$q&%~ zq=REmmJY`KFI*7Yzqp{dJkEcnZ1B!~ZI4FPnDmcMDv+2smpIxpPcz*_;TBHxx*yMp z0q0|-1V#M4vUl^&+6&BCg`C8{^d6Zy7GR~;<&xC#r{)%Libms@zQGtLTng2qrJ>jOmN| z+HObwQST4%RLd8kkafi5O#YO661C$NL4aasWHb>(FftC1fMvr3g&0Jz2{2kmdM$jL zg`ycju-sxf$B}$&_LB6wcYN>l1oVEi#sTjtCV&?1Z|`ShOsaNuZ4dCSDlE%!ycUQ? zs!)KwipK9HbkuW*`n(Fs7rBEDZz}R%xHsC0^tIWSy;0PaBw%F%Z}z^=1LkbD@2o^Z zoxQ1;JG{F*)E?~z5hw(%S2sNbisP{RjF(?{*?{iRd~|(3g$qG0{n_Pz(IBo*G^pku zG-v}0w9^oP2ALT*ya2RtpJ* zs4c?X*~Jxg4uoG|BZbCy%;TT=(=$i|u0joBaIP*9YCwE|s}P2%U+h$Mg*p4cTxYf) zr6BWfJgg7~{s{_Z4Q48eb}s*P_MN%l;T?XX*HBT!4KW0==Op)lo4U79i+q4^!@krpeqj0hX`; z!GK`>6fOX&sXxSY<2W*H;pLVIkANnLJ%bJd`@g76W+EZ|OSnL)-sS{^gAAyqA}3Oq zZ9bJI{7hi-(kB%=r;z?S;r+(d+D;<;M8|laof9vok?nEC@3zZntCJl36frQ9FakE z(G#^x4CXXy23si|SKWaG9HdE*NF)I!?xX~GcWbY28p_V_%VtW zN?SY5LC(-ic=fq&YM-elxd0dB+Gul;c4AVOJp#mVep=Wna3sEwtfn+n35aPC)M=u^ z5(&`{4D$i;b>U9OB)ndEBAvGCpfBATviv-gk+ICP{6~v6yY@T+nF8$e*S4uDLe@gR z$COWZzkg39jRXi65O6jlva|%A!gh^~l8^5^!#weA7`Zumssr~)x3OWYg|d1}p`*`j zbq&ktLwCNwSDC!i_-*(b&ItJx6fcU?{5qo}pSmhVGD0i&ro8vUgb(>60$!5P1!e6_ zq&oj{BeizNzu;QTdZ9tJn;~5IHA92~$%jPDOY?=4Y$KY<;XSXvw|noS(`S?3c3r}H zmAo{x88qrq3aq4N567G%bKN!~-^sdS0%@iU`u-m>2*NaRYwrbgb;7Vh>Wc@# zqjz~0>Q;EPuXk2x4IR-9fD95Nh4g&`kU^p<|0aVN|1TL7CMW6_$+AIMY<6(AAZ`VB zBRkwCEB;9a`OAxvgG2tC3{v?IWRTE)qp2Ez41)S0p4yhNBS|jwNd~q5Lk5`w$e^IV zWROBde9!+SgBHxc{zC@+{0Sg~KDJddBv_`(v`Ih7Aa!JXfpbLtzhn@?Uoyzr;PW&U z^hpL?JvL`)wACX+#^hzmkks>FvPKObq%EO|^18Uv>kJ-T$zwdxR)gQD9! zW$2}beKTK_xrW?By7GJ7ywaxFegVa|BF|^##r5QY$#`Zoc|+V=c!Lvu_ko=b9${D& zC$Z>lSK2X8o4j*mQ$aKQO6BfKn764rt@nUYtmJ;na7ua9+;dCAGd`|+obxeJc!?$# zrR0v=l)^EW6y_+EK_Phw@YRiYOWt-?BiMJyz(n!4ot(6@<&DdWB;TXCT4D-z*GPhALUtoQLcj&I}4gG#9e zxg~*yY&g-63hNPQ0=S%C-|XpJ`21Vzf3nPZ)MTD(UJj-rA$XEWxAsVU9*mU?q5{ou zFDH{;5t}=9$=%lie06g5LLv0CSr{&|4(0aD|eH7&_M;2$H$B({gMh!!)& z0AbzEoN7WEguLGPRzFGeg=HP`9z_Ez*py-1be)>X3Hbsa?W9ditni_$9@I)>a^!i znz1T(@FldCD2DGS567a~Wpn@NGDVZ4^AZf7BJ^#6=J`rT%n(4qe5LviP%C^RoB_4zzmE-y`-ye>ak-bad%9(_X*sU z_a-En@h5NkHPd>g``Aj>v`g9OK}6fYjeF^(DR1UO{vR&Ar$1fR1F9`f>V~}>%cZ&P-~$PQc3)QjIX+Pg0BwEGa8lKMS|xFd>`|7GVFIm z6N$P**#u2~Ax2-@Q?T_*lhTqmPvcfm5A=#JLLc|2FLN9>N8SjJ6WGi+#bQN6eJPDk zXzyHWwsvk%v5)~N9<9V6l5s}}*%X`sR{^Ohr4b1?7oepnxg zT%UTU7&REqt5sKtd9Ft(V0fnU+9NDHx;4RM<`j(V#SI!hGLe462)mkZ7VDPJ562 z{Jfkgso?QY){$1Y8$dR}$4|(|l)j{tu}m}XSq5T1oSdQUI7{adyVAJwfjHZ#XG~~6 zrne0^mk)GobM9Qg%tvQxGWK*xKbw|%PdQF*MfB^U+{^i=FpHt2eDOGrG8xBr#ZX)S zqvab<<-hZryM+(3-<%9Fx!h2%0hk4GMSkIx{t~Yt0NZSO&Oyjy6U-!63l9$yjLX#E zBXI{86Fq#ToF>!BX8Ncfi=Wp=MR@A9iM>m3r!I{PF_Dzx@~IL$T>OhqGJA%4!Ppv2 z`1l{?gNZ1lLd=el#;_D6Va#Mm2gz~zjt0e4SIhU+;+ z$^|}G4Tay*$xVQk8bK9os@IGa(lw74{Mm*i+I&kv z6t$A}_=X3DN;`;N>WjeZ>>%d>FatV2ZuuoYwm$FlPxz;Ov={j1t>n1H(?^5@LFScC zvz!ij=vdFXI(z?^5~@uXOC@K=5Me#zi(c|(^}H|e$0;(URL3*?e|t))iPaqk17uzD zePOoR_!Vly&EC;E?0?WYIp8=2 zpmoYu#kuNWfKlYEFRgOllVDIzYkKFPXrMDDSh}*`oj5-TiYH*6BNHe09fY( z$0-1CAU2Kmx9-dRA7a$dk-~Nl% z-PcP?B417qvZMfLT@p2n4&{V8fYxC^BYDs%Qtccs=@y8S(aP|%GM9C34I_q9OoBKN zd^}rLsV*b%bBFMIF(jNx*&tWNFb^a5C-!f_MJI;_Zc`uTI9*8Lf!h=eyn{?+4bInw zPJ4c3=2Z?20gdBk@-?k^PxwQaEJGc>>k7_LhiWR?RMwi6KyZ~=L(Zb!7#p{hS=xR? zX?5-#up?GvY|7!^09yxP!Gu6Ie0A~8)@66Svvnzc((b#*wt~7SRp3d7hQK3=B<|D6 z%0n5ZTQXXEY+R2lj3L(Sudd8hT?qXb_{KmL;523WgFtIgEqF^kI3UeiqRoXmK`lj& zsMA^jLx`EL+pC*82V7uycA_QIQt-PK<4qdqZjO31S!y{$l8u(=RAmt$&fdwJz__pE zi^vqyLToC*rIo`PCkGfVNz2u6eJbV4lhLg{Sn1E z8-U%^AZsAT``9h>%RwFSq3e5wpPMd$sKZo~pPo=uzX!w@aHkxTc#hJdcWYhgtypEj z1bhPg#9bE4+Gv)J>MOn3_&!3Z)*SAEg?9!|GnBY=eXg1ZVFCRL&H=p!vFR}OwptFAZ<(j&4Tq6ze@q5OS^gEm7A5}( zVgF|h6$z;c!TUidjZT@{6s?onIN&QIKT79-fV7?wjKygX;EH27r;n%D`xC^^IJ-sM z1VDAw1#NZCQV#?&-~E#*=7=s@J?#Ubcdjx&JOmka?}$qAFIY_JX~x9;G~IIk6!$PC zjE=7j1T3!LgIbfJu{l&H-OZWs#aP`R0nK)`+CGx4hkZUa4{^UoXN5D>xkphRF7l~~ zN=D2%0`b?ie6f_|J5lEtvWr_~#8qKmKe|m_eGv0Cc-l6;%}rHZ?vlEWEJ!(oFe@*t z9kypg;ak6{1)<$k0^lID)kQZE`&Qd=)>rqbEWiyV7|biUOqhu7ERLgdtb)4x4sMct zhh;i22>R``*gyHaNy!O~BaBy*ZibbTI&a}=-Y)0@T8=Pkh0s>iDoH6Qu>Y)YCoZ8g zhdxWS*RAdxYozSlSj<%PZgAI-84@eN3i@+4UTPZS1X9A@shs1%yb zFR8e@c|0R#L*_g%(7M>Q&kJnO{dMY(u|FGJllweytoOKO#ZM3AnfoiI2tGs7e`5kQ zM&P(oMGeiMJ-umtw`_YD0G93F7>?hO3!PQYgkvXlRMoT`U`0p4e<=*2sV)xgc1Frr z97j?1k1RAiP(T4x-M$T>HZ~_0M4)j4m1(V|YkvD?Vs+U;f$D259eFkb zIugsMl?{7&Xu^-0l*%2usBD{`=v;J_@p%ys-I8jKC%ddqbRP7VomeiRwrdjhDsRDi0>sHfcZ?u(!>({;ToHe_}h=SC2p=6GbqC$u8<%j^M>p709#A?Bh|3nWfO(Q5HtEM%KaX)=twt;uc_f1`(wkd0Ns zoNcIvWXiYFgKP8t0zk6;`1>=gW?#!Mii#2(Tn##Jxp8b1D$ix4bnmwbObCfs1+Sd0 z7k%f{iDN}dti>v0&Bvlh0NK7BuCla>YLt;Y4WLz%E=aCNpFl^fVBB#2rLzP*Iqqsv z8mVf?yu4(p6{!dumu3{dMHp&F`>()ZJKCC>sjW0!1-m$WzbYuMW>bh|T?lTpQCdU* zr&{f#BluBiHfBBW=PQalw>!_mwVQ%9TV8GfP4v}jon4ZTos<1s*Vm>MEHs=tqu5h= zotM%K>Fs*)+W`b{*|AA?rva5#6cL-sx*w@_c#k_1X2o)I4)g5nq`Y?SkM|4f1(MAv zp{gxkaGn-9Z=V(?G9o3J>^0jwtfPU0P?p!Dd08?uwqzXd=^%9Nh5p>wom3EcPTk(H zVmw9rwtdW%PBu1+BiryntPT>T(9&9zO6|V0YnQ|pbv{IKKDco>?q{!Bj*xmDHnn9) zW<_rkwCMED-1U`8xhFTX1;&bJ;u?MG5k;u09QAY)l$1Y8f2i$D+j_LMM$N-P7gI8( z*vscUWi=RVa~FZ$NI9@qR_IwNVr1cx zi3sI9R49jUb_~m0P;u(O9!IVj`+e+4-tWwU`s$^EXB>9es6{1y3paoY24XTPD2oHt z(S;U`EhVX_%NN?QQL^| zvSC6>4;^;XOCXe_kqYP!cE?z|19iA&-7RuD0d<7KaXIOng?9H9?joaP19zk1G7nB= zZ~CQf^jpKMtR@QyBjhm@{QrKWyeDD&l+7kXzt=KY8_|euTGdyCdz<^S1{50Gk_1YSz)fu;CYf;(bTv zKdryum@(bQfo6!eAYSUaTizpl&u{YEujJ1os!QUYQvF*(+7}-i8=_zuH$;qrg9YLVF`q zDwoaby=ls`YHItcx57gu?^P*ySG7O<;i&zk{Tz=MpZW38?!T%GTCqlaLx4w1>VJ8( zaQrg|0#w`o-hbXz1}ik@*iPK#J^I#c;HDwTcxyHn9X-`V5>QN6rm8Ngs$wI<9Hcgf z;*ZX3nNGg}mBE8|DiHyyq~dPo03LEn1u(wYH??r{*TJwgiCY^q&%=eOB7HU z4AucEgVJ}Efe)ZEfSsNg>i8d(L2%e#m4Rx)x7O4m{qhc649g`zWiSh<41{UB3}M8L zTJtGVHQM!2ej#-0N40=a%RNTN=fbyYgQr`+=yP#{d!oZ({8yEAbsq zvRfCE(dNuPfI(1${-m~89bTBe5^DG`>QfI zYMvzJy4Mo{4;&*XxK9OxTmLyuO}Z5?b}E)DQ!;u1c8_yw2RvKSuChtd?kOu^KN3>& z_H-|QInTK74Af(LjkDDKoP2M5(E=WG4zkqxFlg-1f3U*9@UrVHgnt*`4>W8WN`fkQoS2d3u60!iTdNJ*@n8NYnS6*$_aJmKtqG zhz6j#n?YRf*qm{ypKgBHwz&bJYw%ISxcuyl97&>ONWVb?v)~iq?pqs^IWZ(g>ua)7 zXY>z&P0*G-$j>PK@25v(*mM{2IdjpS(^GMX-sQa1StA?85|NfSHoo-}*CsbeazFF6f%x^vL>IRJNw8YFs3WKt zeaJC$(sGZFEO<+7Q896rz$EAh^0Q^>>X4+@J!JapsFBJ6G@ldLiHS=>L8@`E4>(&^ zI_w3)Z+}hc>543mY)7M_HKHGNlI8jge(Pd0_Y7W0OAJ)6ls)@Wp)=C@;@D(^Tx0<$ zpn-)JCU@rdFkWFW&C*>ZX-9Mn6xq#XYU2|}oljB@?>d8&cbx%}Zv#A_GnlmIRO-Ugr_-#S<{K|<- z_MiFMJQzwTJ#LBv_R*{}$u}3RGX&Yi4LqQ(bYec_#)i{Dn1g^KVwDgu;si(;L%B}& z5Q9)cGkJ3h$^Q)m1-bbWu%H5gAW7J?LcdIu8NRjmMG)cT&$1*S_nqn+@KkjQB{#AE z(>eV?lv&{`rK!P8;eZ`WPC`{Irw*7|hk|`TprUPZP6uj@r#Bd7e?_YtMo*nvap0Rq z^Wo{`iiiyINkXvPM12+t{pwP?ZVAIMcwj0px`zgj$^3o*yS1B-N;|@2?^_mfR>udL zZC||sQL;wO>cz8pn5FlVp|K+q(lU7DU1mT8$PE5KY%eICrs)u)HRRc-)ExNQ+Cr87 zBQp@=aTEQI%)pHI!2b?+%JsftBA^iZweoa=`ukHVBVvX$UUkw?Fy@Y~+;g_C@^d!6 z&y{}WR)lb|7Vk9AwsUa27>MgG4wgYr0? zK7o+an*JHRp$rMzm!QS;Nq4VLbBobmFwX|}Ocx+Qqo>)W!hX8jFgUQr7c#Ts<|h4r=}S6e!;HUy+`^Vut@x4G@IF23p8R*kx*rvxqaUzve6 zRh|JAzP6sK>;0ynChX_wh%9`vCD9&?=vxMOC*$PMWY&;n)YP&1TT^Si%6#gDB-Yau zvq^L{&D!3c7(#RJeJYiPUI{57($w4x!i6Gb}?Utp{)q6h>iOY>D^h6$_ zos5f6Y1B{n(;s+Ml0tBFQ3t#)bn&hwR{}NKbO_X7|L>S)8pRV=^6h;euv-ugHK2Ghg+Hn-t0v*9X@|g)P{Y zP3x8u^pidXXeO+Bb%Sx~xCLDuDxTYCQXLxUu-cLd>4qD9kxAJh$gMF&%7S!-d6$sf zmLN43a|m_aq?K<}Lp)fE@hXi7QX~5zg{}S2LQ*nv`DMR0lG-GD)1!{U!wrPD^%;}{ z7!tb8dB*~}!klgR88{(Qih)?_$2AAPf|{s#;{}d-ZX=pV8%0zPHf+` zBzSQgpFTBcpeB$qdpKl9Sx|AA@rn?UI4o{LQMr@!PmQrcuGW2>P317W_mQz8Y`3l) z?Q#hLDIXr{&)5_`xj!;=16n)0pW%zAm#VtE-0AHV9m23u4jUJ#MQZS?FL;7oAaqY; z9uyZZp8d~-_>Pe+`FPG>9;os^T7Xf)lbcHnNBC@x;hOBU{vuZ}Ce;35LXZkg<8!od z@>N(SgXZkJYD2NLjhOCiw9R(Ubjzwnxmu~tjmD^>dKu-hmUN$%jZC)Wi2H~(gsjeG zSY<-2v=w#IiJlg27uQx7LI352FxQXiSX6zkKUWan5iAxi3!Ng!i|eD%kQ05}IE1gS z;iz^dP~@b2cis0Idyo)QH=D~>!mH3F`7oo;ra1B|@wK&yJCo!Wq0I2Q4AR0@iZ;SC zdS=iQPsLsMjxB;Ie`iz^VEtejHGzzOwDxQyGcx^Q`#r@^Z^^UoY~gs})B=WqYTVPL z+pWDhE%Un-uW6AwKMcOzFU1a~p?f)FQ3x13yX>r@7;Rhe3L;OgHhSN#~kxMHP zws6Nuo7~~ezn`6L5Aw24h(GjeM~mz^%Z`K$cw@u6r{t{h;?w*7YcbdZfke88G?wf{ zA)fiD0Q~(T)@X-6G)9!ftGU=kp@YG(omH=*)FD*7i-= z`rl_u#q0jB%TD@2Hu1JkUUbaa2abbCqXU=St4{8WYS~A-ieNVrQvi;YJ#5DP`R({> z{q1(V;*einu)L=rwRg{HF^IudQQ5HdYYt^L*f@j&8s|kk4y5u9N0x<>1_aGtV$BdG z^=n*CrKU&9k;DU>*&aZw`DNwyV#nl5t3gkU=`o}bL2Z^osrddcVy%o1K_#C-t=g{{ z8T4b7?#DkwLLNfROZ_nm^Wxq8F=f@UN5D6`vRzit-wnBi17#t=2=eF_6#S8pitk}T z`?;L<8m-}N8nKcP(aC*(G4Xx+Y_h3`5VXMu5l145=X-Ua=Dh>N~MEM((75!CKqu&%_9 zd*9@)G17Kb;!WK!7z7B|{t|2cdiJm0!ofZvtc<_Cdp*_f9mnw~K`%FwqxcHap#O(h z;~#BUPo=TNzM+OP>Bz8++-|=DjxBJ2$KYI~c7)pq@EGubkbP)aArdsO^C-N~Bsi+d zS|K1HUE=G*@D1UHM&=54<#R<@BIfF)H(wjibTD$}=@-g+#%E?$`>s%c zFkAUInc5)&%w7B02|v+Ystp=ge=J8TB2#&7}o zs#f4XGHYFwr&}^f@oI6}($(7bOaNG$g~%#rM9`wc`EeZd;hk99jU!5hUM8{fdcn`s zXSZJLkn3|^|6a#fmgW70;$NLLo3J$wkG>XR?Pg+yVc6DQX0@X1SI%upRmYXc{NFtf z)lOz=kf=kxwH@^lz2oF><$|rZn5{tCf}vXtPDh^>#UI76*&R4&e)MUpEo8*;*50c>1EXC zYXtNs9FeOj*k|Jknr?Jev~U**ZI&1aW@k|;hGY_JwmKU$baG6=wS5eDw5h4|7I3g< z(R82PTCUr`b578kIxZ+!>tzM`?x=kxet=k;m=*wwC~f+zW*YwD0KX?19SGR0^ZU{_ zl}by29niPdSnc;6&@$5R2qS#WW-ib79T2_1Y)$N;gF3lV9Yr`3M_b-*=xXnnJF0x<8FD&rozWh=`eb(L& z<$ld3ZxTA*7WCEPYEJ>>ljBknnbhs;y%%cS=3v}>=7{8>D8QGLbq;Zo_SH^q> z;TC*m@6jW5E9Ac(YrZ6hZ~f5zXu;?c&;Yr)jHRfn(TbTXlVC~u264&{msd; zekpV_3M9YzvvP|ZE8!&5cz|uZ!J?eXjME?%e|)Kr;l;)-Y@rFa9j}VJKu&q%BT;Fx z_W5O6!C}5l+yU&*S#*N}jr%$Hzk#4dNTO>z@RaPP1HX&QxlmLAY{>cC^bNUzk8SXd zzN@|yT|inDSOK9Y11liGY=#Nu|Ez$zO=guglV!-z*fz%o{}B9ka?d5JBeTeBK>tbd z=+gM%=TA3g%MdOj5y5fJqUr+$%Wq0VFRn=he9Kj0bHvWMlj$;zLBz=95-N64>swA5Hoq&UpW9-| z)-EiA`^fi8)K*zlalJ)V-ZtvCpH!_*@1UP%v}f^Dz&NxbzaP`IT`(;K5iF$dZwosm z__)#y`15ErT=Sq8_1DnN1lgcThajfwK%r~lIuvhHWcDQ1$hE&zG3Jdy)Ff8`#)pFM ziHX|qN8&F`A|^tA8f%54(_B75;guH~7$Guv>zqD_nx!ChXUTy?josU0m-U~JAgwBi z$g;Gr6sqiIbB8} zeQ3|Cm^AB6YsvBBD=6wVrmAijLNOF(WfikWJ4qqsP+moD*Dc%gU^=#KI#*{5^Y>Fo zlR!)BB8_7$4+_5n{a&H%9Zi+A zTF6>!vt#I5DVqMHz=21s=f^K1atj*0q-_Q+W-jW?Cn?^j5)UmgA52wYQN$eL{k%HG zqO^F<#i~#?Xm95lqYkX@*8v3!7otCz627a`UlXrNOatX7o^ay^nLw1Jyi#<^e9Q~` zH_Qj6eoF33o?x$zC^4sjP(2ZkBIQkULeE`muOmNP2->{pq8wd$M6A(|A0y3Hxqg#r zUXgO2sr;5(^gUTYlYLQOxggrgfuaGjv8fuBKQ;C=wL!y?bZM2-h;^B9mLs;PY^H_G z#a9YeyA>rv_Gsd$X}l%D%{q$GFC$n2hxa5N>n*+L!*F)f@#vr}^I)5l#FcT%=OLa< znK35qlhJ&plYVYKzB9j>DWu4XMI$f{=m!`C#2f_T3TH*7!K<>yY&}C?zFIIw1Zej) zyz<0Aia`(Q`bacKec{ZcFlD{#eJLan_p){1C-#>BNOG%H7F~Yf7p}4=W5DdikpI)P zuOADP(3&6dDSxp*r}2KW?&t14XCs&PErHV7J}J3HPi{HRtmBADLm4acTjv^u z2(m;y57NPyK--$M(A=Muaz{_~Zz4H~!rwo{iY(=Y=9eFYgX<99L1C_JvS5H0e6;=0 z<=;T)OO>E7k>5m}rOT|eW=&6jjDv*K!Zw^R$B&Mc*Nm#=W-Eo-kG@ohi?^bI;Wsc; zd4g#je)xTJ^&oN$;`%o0^99}sc?cMa|DZ511EQo^Jw~}@OBTh-lKtU`l2lS(iydqKo^dsrOq^W?bg0tv;idEaRIP={svO{Y58-6#&=FRj4|GfDO=e)#_Da z1bd6F4@S;T8uU7NyY}nG+A&`kumJ+^+JF16Hz54R>rs;bpA8V_zZ)RCZQuq(r2iVY z3ANYDUf8Qivo6bOJowbH>~3M6OQQjAa(Y{B7gv|5T!>bn=<2}`<(Nx$6!YxHmgO|? z{6Z9TuEK=Ui-bT}K7!S%3F;3jL&?FTI$u5}l&=|vPRqcG47E|~0p)N*r1$pp>otqL zlB_IeQD9|6XuH;uQevT?WTD2tx>wJuKU5!~awh`R8%{IH2!tvmR-%?gC|(s?0Q@(j zrsQP6|B(i&Y5ZSlAcd&^w=@tMUx>1A)XY8p6t(N69ybSqfFBnv_Jd{sZ$9|0Rcv}N zu>YAs6LaOE{5K6GyYX)tXdXxdp?oGv>nu-a#{fDS`8n>HZ}!>1YbxmqcugT}cw1{U zWC;6{{Mp)JV}A@i8#<(7Q6z$Zoy5fiMLtA@sy+R7cd+660nufNJ?7-gJGq9J95Mpk zw4{|QLp%CE zRYMqZTLYwU4;w#PHxpF5IL7J?Q<3{R&r{t&QPRUK-Z0=ir>TSXEyGN${;WXw@!uUNfr$9u*FU^NUqQ@Jzs*HBh#S=<`+b@~ z%jqN*s7*t`#3S)m`>>I~g~~rCKtUp?4Gu`*WM~gRUfT zUkqz#wt=S<+*b#6wipPh1_^43$$$lG<3$cKNvfc>@1H4u7ZkF>Q(ykUqkYUAwp>77 za{@bZ|BBr!fyMtT0Pp)Oj62jO|FEcoB2qhI3zJe6@GoL676}yZ4a+Q z_o?O{Uf%15+0Ydba!3x=2JRBg!QIOf`!!|Y#-8}2;o`G@ljR?VLdyq&?GrR_P&qMH3jJc^K17GNbzOLFKFx z=!JUBc5Nmly%K112xJIzJaiZ=r>@wbgReus5&`5e2PxUcdU4*475Kb?Z)$|Esv}Cu zxM04Sx@lpu1TdAh;u4`HAb^&a@EfKtXjUo{IZ)re39K`fwT(KMn>bJStwj9!&>jgn zCsGzJN$B#P`Rpc8nRtesd~Dc`=}1!;J@}lJ&xH>sMo17kalO^FSsgsrh}fdeG?F?K zLP9R?^*fb=w&-hp&g6MEEEjh^9Auv6=dX0)1~jA-*F-xSmHfugaY>UY@=_D2D{np2 z-1&|G5Q~%ljNQxd10s9{x;qNf?d`FW8ar|%pq=CLU3A|Rj(ADdlN7mcGvF00YAs#bJONRE1->Htkl0ZyuCtU6fa45~FKMozf9vyV4ggECL0bEVfb2qvqpB+F!UHC&6YI#vNLCI=r zek7N{7P&8oEQAUYcof~JqDGz&9J?$<@8cd4JA--5h#0q* z=M!J%^cLMO0HUkNGA8?oVgO6WR=@?ST~%DHL#XY>$_3GGTtij#XT=iviCW=ic2{#U zTw6OMAb0^K+t8OW3FPM=vmDmVscBv($POJ2?nImrHmm@xjU0 zbv~mB^nI>uOT?+#p5H@^n#65XO;V&ViFWx~v#(@Uw5&5E12)FtGLI2@lpDJ{^!}!L zX@T2bIe2u`N=j@Azk@#WIzpr){pvk;DDs2vDx>2||8X;SA^jzf))-vkeEr}8(HWZ@ zeCxtq-Lwo$&I+P+YRk1Vw1)p3T(+hOz`bOqP02hZ>&D#B`Bk!3Tzo<_sq)ml+n6@@ zfKv-?!Yvfu92q)7Fr&lUox`JH>o#5;4^*jY2}wK4EImzYm!5IYk_z$OkD-^%b;iGL zT=g+J@Afit4PNPDr?7$ihBt;fJ-t;&r}*;&D!(4jtgM+%7AH7|9Zg_9NQQ^ia zrJ~(g%|XqHk0&-1^^Ju=+ST<{^q1EbSu!VViBej}-K=oApocWsyo=Ad?Pr+btl6lY z?RwmZ>_VuVizf{$g;=gA99SRm8a*Gnr!*LjE9p)_2tBzHMSbEdrLrW(reKX**XmQP zyXeg4^tPv+71(R`uhuAQMyU`F}+JQijFM1Q$AlK>c8btG^JT8su!$&NQe*!_WJeeAt zXf-#{-0y)PUD z_+-ykCyI!gndZklHZ3w?0kj(2eiZd6bxfg32muFpuA$`KsRXM@k5N#`w+-D zqRQDTUCQN{L-%lD1wWo+WcLK~prX2C6Bq&=+j7Ey4j(}_RdH#fGd+~3()3?l&^8BA zOK9)Mu~oglr;ZhrZ@|1vZlNF4$oF&p+5fx>a{B%g3IZxYyjZ{@=rzA;|Lg&ClY!;o zr+Hx;&!;Ni+IF9;>TK)_4;|%zxCllsr&}+b;9t6Li!a=~6=aW(^#Aoi#fme9X$wGg zf&T@n`{zNWE@8LL@u35m;jPOa+)1LiLF&g(B}Ce!JMTn##M3z1u)41g^T?kUqs!x~ zBnqKYhChW0^TrXazly)TifwvEjYJw^LD0)=!LM1T_#+{(*XX6CH$JaevTX?iL>;*Q z!xYVE^F#l<@9Xwm+cvfWcoou?Ea4Ho43Jqx3hr$+dbE7*b-jW44P;giI{W=hT3W+) z|8dlnVFFi?ZD0meCQ#HjN}Zt#%z#2?-e*88MckGNDZSKCe|m@!=K3`4{0H7=KoVQD z7&krgG{Mat;KIIeFpf7+VGsCI+}*X=LL}=X4%tF^Yb1@lA=iDG&rL{3g3Nw_A40uY z{Z|M2yjZykH<=-jW`ECWkIP7ghSjrU&mziZZ@^TwlHMo$>4CxD1Mj*1v>gnln`VLG zTy>m%evAr;SYB?N^b9;2rGBshZ>ghQv}_Vy zZ}sN(6D|J6z-4OBv&r3E+>2r6m99|&NCScLb^moKI02U_us1(eRNyitrhfkwxJ>b0 zZ_G#W6#|zjG$LtUc92U%kn(gQnh)%ebC}@Mdii*p%|r<0c(OK_-?lrblJ519o~fCU zL26^M$B=Vl*xL=wE7MA%an}h5KBfVeDW?$X7ifZ@+i^%idN7Oo@V!_3r43f{y#wt_ zaP@gV4}{D6{S*yOOBiM#4FvTSghb_vSd4)OccKR`5pn{L3+_=_roQB0U=A_CC{1tE zpXwV+D|%Thm*3ccBED=L$!tYQ%?I+(Asr&|(@vrES}%(&4jFr}+4gv{X+z7}SCOy=t zf@ndR+j1noTk{@0}ZT<6hXq+Vimr2f=$nj(`_kEu#CkHmrjp9Xs9B!yGWCGNd3aD@>lG*8Ni@CsKe6?g!4oJ@ArCOp- zM&|wZUqc^-5v!>5c3aoiPt2O!{NnWK>62m(h*n_CG2P}U zEe2LV?xjudD`zK*s*X}YcNJKJ zF~iu=WwmF5T9>iq9ybV;W37A%!f(tgnS*dw4?~;lr(moPE;VVDW>;r$sO2DH+&^QZ$J=Tba8`ZiVGYf)8APZWvh9t_3y79Tu5 zuP?<#4dg0r=Y9ApJPV&h4ack1jV&99vbTv3FaUbn_&D}9TMnJ?k*DShhY|gE095br zJ^)I49{_zI*)}GCnD7I`rBn9oCG%tNhd9j(B=$oMOzG%Dnpz4320&D6L{28X+kyOy zpjLzpN{~0he;+R7kI`klol@vm>~4dNs~b2E9wB|d?4?sy%wb`;F&=_~6INK!ihJbs zU=|$8NR~h9Bae3Q^w={-j4}7xTbGN({xY%kYNvB8D}rtc>tc2+-w%(KJ=LmKR-Vso z97#id&IJ8E;(1-NwcC!0NCw-+I4i{7m7OcpjCJr@c9#=)N6E7;X$h?|ZD-b{B)E0t z3l9k4;Dv7^2=K8*S*dl)IK^&%aTQ*8W?dTSn zIEO8EVZUKXoVrSH3gQ&ZnnteJe1PE6h~a8=v-m~J~+5zQR$?H zFJahw0W1S%@tY+?x9tpu%cR2xM8k%=VrN5&baLq`HR;s&*_zY-mXQk*t{k72ygnK5 zmw}kAae>9wQ+{bV_UPaxP3~ji443{mcq%VFUq}KIxmULo5G}<}aB^$wpIp-rP0z;6 z^t+uMmx$SW-ckv3!;+c%{A#0HJeJ@(ezP^D7rvYuw}NvpSrt!#*3s4-NmDz5`}eEk z6x(1WAA8W}%&bJ~%#&uLJ;Kvl3~K65gEsb?KRA4Rr(|<>0yk3FNpkm1?*!d!Ka6q3 zCK!%Y1`xUrHcLG;BdN{5-8Gz=31a@x7_bX1yKyzg*=TGhxyOBRFEr7@ z2Wc%28!J?sQ2p7&!V-5VXV}Z>X}D(8X6|Kcb+)N|VtS@g3L>HCFdr+Kl^`MMCR`T- zFm!voiTgts^r1xvwT|VY>}#U$GYFa7U#+XQmu}R+y$0xNfL#E01y{jKS;6 z+9Bz($xv~f;&oCtm6M5EaHMnjkg)1MwrBdC;gi1TQpe9cb4pw2%P~cPT%HEW{ ztitSTIC;*f!9hidJXZWBnM@{KGYfV=pM%}zg~ zR#_@qZ27Gw-sWXkClFH@@hJY$2=#>-qbm9|wpm0fQZxD_t3eaF)yhQPT8XI6WORIc z*oTltQWbM|*jSy+eeNimlMY^U`X(2vfy{v^3R@7IKzATH|#$5hcP z$PSHDMAMP_tr$jnv9k&-9gUR}sgVLz8jyVK^Ul`b5Kbma-q zg020nqV#r@>4JQMg~-qRe6o^LvGjeQMH*;W&HgiqbW1DlxY_gRFJ5K_)6=pWS)$>1 zpI!z_*d%dH^!4cSC5VF{=&0POBIKm!bqSJ&ZNm^j`*cg(Q%sW!+MjeQ;N2k)8XN-! zLC2RrZR}U`Hjg00eMa^q50XW%hPE+~k#l#i84Jc){&m81SC^M~QA4M)>4pCx-Uw3t z(^W@(|E^3CnFHE6L-dp^B!P5_9}dOB$p(!7Ii`jkdAgJu{`JDQ>5Q}K78?hY=Pgk@ z7n%`~L$sM%8ZoZKBQu_5c%fj@y4@j%wyAU7x@L|>XklL*H{G0!f^X<^lugHJHTzA6@4d9O=S#>)4)XV%wP5wvCA=wr$(CZQGgHoY=M} zIi0=V@2fg>-t({Pss7zv>$%suE|=!-mkXzq$)wB~a0AV7hwu|j215DA`UBOZ14tHe zpeIa28%stJNu7>sYe$JVWaD9twm^rK$p+(f79*R}(A*kuDWH$`=MSpmC>9SoSJ(%z zoe=;K+*59LTsW?GrDVg-GqjUwB4{AA`O;XPIS;QrQD0#QzB61md2;0Dy6z)&B2M@a z)m8W&c+ZYo5XP)_-T3rjYd{m)!s>!A?8?MeuSw`f>Soi&y$-*@c~<5Cw41nQMGog7e2*&%npOtMb>WeSM#q*OXcU!lMgnv_6~(@MUWbAAF~DW zsomF(nI{w`0itPD#XkBuYX zk;vKnAo+Yz`~KXt5&aD@aN6ngn?}uQ9yAR-H}|rd=2MwU4QUykW;>$bTbp-X!t2kR z&zBg!h-Ql+)>cmGH4!7;nHaxCt_g59E(Bx1dFF zSd!=Z1u6LQ|Lp&d|7XMp4ge`w09b(TzAQihNC9f6lP%IJA&w(I&N1crFeK5;o)S8b zz_z#?&%j;RJqV-32SS0z&Iu?^p9*52Z=E+*o&;ELz1MJif$xz!ddS84YsrZFpnHd= z&l|Vu%Euc3QUD#OQ|ukTxjcOJ52U~ZeMLXKNp!Fo@d2uT@F8E!8HzU?0`d=+_y;lg zJ^&e|CcMD)Kac{DXFR~#2loA6NC6iBQh-OjInbZtvB?3Q3)y4&PPo{qNcS+c?*N&* z1$15fcgnzS#PkmX)Ey~+p#3ye+rFo)D!{%OVNm9B*jtn41|F+kcJP4;kF`pY#poFK|d%)JsZm-$vYq3{Jk zYeZQ+LQ&Xi6HnY~Kq#ZhwK{=Bij`Eq z;_Ea^;F!g4C;|Alz+pf35HCYr!)d|zjv_IwC_foVUAylNnJ>Y@zabhr;=EX49-@a1 zy4{%$$x8NGh8yB;?!uqiuN@VJi}6J%c;vVQV7-pb?N;T~;Eqbj+&KR!Txi>0*jYqe^_0%GEBFpwjoL|$9(rLzKi;Xb7@5ESe}R{ zSapGUpwg>@5iaFpNX8Z|$Pxo~GfH)!4Y{JNiX~a+NAig_C(H!mI|Odt(19S zQyW@?=a`2W9yCiKXTHTvW93!?0NRt8`#h~v4-?jKB?MP<>mh2WXjn{bIr+Tufp#YY z-EVu7-cAu}@=Vf)O*9`v${NN1fOhI>d?^5+oy;I?VMghP@Su3})=paQRFOo7R5+DUzPvH(J{uO_jQ&!P?i+hKc`>9F<#6_;8gnGo z#fLKb-)UP!GRDLCsDZ1meBxG{X%49M3Jc?Gn~F8^c>Cm;Sw>~R>y7(@gS8{WtRA`B zPu*jp3;H0bYW(P8+w~Z5l~?QmwZ-BOM)ZTSh}hHL>)GDqT(JnF@85Om2_K`nFbKw1 z@poN7(N=9|(8q3f>qmc(rjXf`m3J&mfl4~IIkHZ4|Dcn2e$VQkM|ZRU+M~Xyo_S{( zO4z@8)~Nw5b+-h>6J4MkO1kGiH4uB|`9HlRzv2lC1bK%um~LurKHQN{hfelkG z$b&6zK?dr5_I2$$7+dV-L$FD=p*fbmnH1@KIe(IzP3b%SasKQcYTaYr-Buxk7E*Sy zs0g{t=HyDbs$l}Pe@en`WnVkems=^z^<;u0!j%2;#@Oe5M-%=CoLg2pNc*By@Ags7 zN_@6;E23z`ALctEK@xdF+#z_ix=ZZ>Xw@SAHt+yA0SQ}w5aMT+(-!^XdRS4gwK-f$ z#7jA43~AY0&6ea1q91p95c3M0nx_LDo~Jh(QHl}dy~mscwb*I5n!V=qWXwk5W!(6X z2}reY1Dc7TesalWD;vl4k)^llOHe5ASm64N?!-aa_V_|=?7jdaE~41q(kn4W`beA# zpU%W_g2&{k%Qbb{fl13{ROVkyGgZiZs=<4TNW^JCOc0r`ns5d#Qg1p#cc2cE^pz6s z=e9)~X!)|mI?nNf-|=iFR`)@ICj?d|#$aixPak@tDyNq4%SJXf8o?ky>D1=$nxSek zaq#=SITwDLF}Wnp@>~4&>(q9-uQ#Qe(yv%Gzf90$M7MOuov<|PH#yR&F3LD$e2RwD z7u06hW>{S-b|;&Tikg6=E%i<#2(NoyQYVt4c>@cIWX&WtEDP;64(^`CKQd>(XUv_= z$(G%_Y-_!XEC7DK@Pi4R|Es*_A=eXs!J%3?^NL15sBUZFzGo8@lENa10%tl7nkAin^-D9#b zY312X46by$tb*b)A!4TI+?r>Gz?nE8E?cMm%ndd8MN{z1AMo~ZT|QS4AwYNgC&(~r zl2n7Vi_#74=*3?3cV?WNyWiG=m~W0)$AIpdUT;8onc{o~(^nJaT&6l2OPcsZ#w zsb(2LzH&(p^Hw@~bm9}F>S%MDi^{13x9{{0C2XhdGq6c@zg=3g&F|_mtsy;gATe!m ztplHpLd)5}?vk77!pg?Q-;$>k=V|3$OOk*5GrgIY5_~%L8F^>6euo|RI-Z<3SCHh2#csUfpU9POP~eD)J#ybc$N!wwEn(1IT|Y&#cE4EJ}+{386ILC}i1AbqPs_NmDYa zp;Nn2ougBB2;{L7tXh9#`%AKxZs=*wJ?(WiXk<&kf-->9lAxFc-2JJHwU5 zq-RPcMwXwkAO`p2z^Wyk5nWpvE;?~UUY2dIm{^KIA~k-rVMXeXc8rJ8my^;SaIo=v zvPmiq@kXc7(F=EpnJBV>tY5F3&CD>RvLIxd?yP$LE>8!HmT2p%iW#D7*XNFJhPl$B z9UJu31@+$$mmMkEF=LhTb7T3{dcfj;T83p_wd8h-_?wOys3{J;5TI=-py7}0Y?k4T zrOpeQJS?RxqNzTr-pYgz2Kyxgs%)qo`77T<0?FF*Jy9VL>I86qDqs4JrKDafz^1yj z_Z#<6)|>_nY}tUw{)!0IvL58v$7!F3kM)9e^__b_$G9VU-s6{tbAR`u3wcxM)WcaQ ztBh<#R|k7h9*^d&K8C`r#Ay&*!1w69bI4WZd&|il);VjZF{Czat;3 z0+1m!O2=jQHod&f^_<7<-GQdv=}(CNHu9ml;(7b3rTv$Y&wql-e;N7sw#}#A_9H-K zWTjBntZc(;=x#5^7=g;nWl5JfTun%c4<$zz%Ke(>7&-O%pnmF-H1}HpunDLh!YWlO zd!c05R`}FXA}*CGG{f=$Ks5}AC5H#gp+z6BkGHLlv?ePkDpMz>II7X5 z2om2^0ikOW`yLST1Ph$E&hl_R`<%?452>X;lSI?WQh0Myc`zQ_c4{{YqE z@2&tqH9%G&y!=mAVZVv{H>+?{q`3bA)Y4{ZfUtreri|L?cO)3Ed1}99bNPROYM8UHjKwQowX_+9#?Q8Z8Bl$cuG}`h zkRPtlVc)Bzyn)W#bMX+}-W?_;aA^hO=GfK(ypTX-o{+?jU6o@))L>w@$?Z|!snS(- z0a$8k_F-kdf-fv}F|HXuHo-5;g$$BENUP=oB5hCx=6C;Msihy3Pw3It?FB!xe>H!p%k6p}K~ z{PIVk>E7@)ML|SbM&9k#d7)SrUt|Gj{_iP8U92?R>F;QRiN5yz?}d0xuW>+xRFN(i zW2zEOs8)3xw*&olfKcdbJ_H+8V2p0TeSt$}ixirCgl3q26ts#8z*3{5{b%H3FSy64 zmu9U$K;0Hb8ouVzP32ZM{++KbzQ7rEnC>4gwGI-Xnr7xvp&e-=ZN=5R{VUk;j3kWZ zO}x`dDv_Q+?W%YGlx2jq2ezFmncz!Sy4{~;u*xYz$noVWHH|0nNE)uU8u!hzFIO84 z_d;FGcRi)I|HU6+bl;}%I5Csz2NON5j9bPuM9_;Qtk8LTu20-9;lD!$wW+x$`^j5J@j zlr+kxe_W*q04#M3mQC=q>^HGmK4wornV6a@t>Zfy?A;+`1X}5cZixQ%iIm)OtbM`U2uzhsBWKJfD;SIT^V=7)&{uOyGL;- zZyeRr(k>3+tfPew7l|6gha%kuK`>AVi05JWL1+k+F&u2+=pHq5_j1|x%Tw4V^;CCW z&Px9Wbk%28xIC&2+U2uP@&?RA4D4U4lSX@pckZ)_tZ1T-wEX6e3hSO7XTG697n(Mz ztCJ7u?`@wEU$!5efUPH^8lO5s1P9|puL)q0>{b)Vg*gSg2qv6rvY9b1QY?Ovb~dQr zFi4wN+kjFU>T#I9Lf&>FY9M#HhgFNX6g}Xs6DJ=A0G1o}q&m?;!vao{0_j*C*3@D|7xf~6FP2=aEUton;DXq z{%eoN0RaWM`vLVx637~s|Fx+K0%3IKFYWg?I;w>_mAM}fr3An-7-e00Ox(O`gquT9 z0YC@#6ZfnYhE+VF_9+$Hf9oQtT|JQ~ic?KsSIc}~FJLKaX#RxH{E%$QOW{95{0T|{ z%(IiZR_%b?iL8g&l;L!!6d=+#!J0Q;Z2GE%`;fT{n=7-(r{H>h8#q^=)RJ>**)VGv zSH-8u*1dVq6j2<~95z6Ht||vkd@F|``#%62~KYlbxatT=Y!i0 z{Sk=M-$n4W+zE->$+L5!devfA_IW^a4-KlbmqF07Q$sLEuC2~|yH?qyJXTF(`NrU9lI|=S!#?(Up z+EpZP+P7uR-J`Um3GrxXb|~tyiqTrCJ99d6ZzmdvJvq*II5~)%d{9;@S^Xf{;*h?G0f%B0O*!5^v)RO5MeMR+w%*O;b=aeZzDq zGX`5zc&9;E=Pvoc-IPJSAbR2(&5eoXJJLOMTc7ll+SpL!WSFWrxnW}tTI(`A#k_}tlj#?pRnr4bCrxXM1dZ}+nBGNmmE}is zZavYqwH_9@I*z$0>%S<#@tV&^Z9FM1U805IZkMbk>399=`n zpC08X5vdljy2-^KK*a()#@#1Apdz65j=Cb?(ZYm`MFZ z*+yAYAZ^ThD4WTUlE*$T>{o$sei*rd$ zVP)lW}bXV*EaKr%_{Fe`{WAh`~|EtBc?z#JO)ze%TjRaJ;0yH}xF^-FH1o z#2JChgSEJcY~bY#3pzQoO$ntRSDNiQ|EO~NoQZP#-H7U5#?D85sd!$T=poNBSh|oR z)1Yk6s)d{K#h3!NeIN1tArdiD$6|>yvx^?2s<(q=>)-`%dhhr**SmT`@qit?3nusw zkiLJ0u`PvWOb=b6{0y;+Me>F`mBqbk$|MeCh<4g9T)WC^sqC#=qHJpC=aWcBDC-EW zaTFvCjS1bp;?xh!&4=!HvTZxPoTqbikFh#1VLe5{F^nECsVC0BuE`=^UkL-JOCmW2 zwmE7#WKxfH`Z(PV!7(t!-2Rs9weRz8Gdp(~+r4UfO%vo+7PgwOBz|FxE;aG>cx4G2_3R6sz;fN!|i z*c;KC*w{E4+p{tLuj}XkvZr#ut+*DugJSQ!b^m4Rga1JgIjH~nn$+v8;-aFatTsJ0 zEZfM1B`o=xn8Kt~zV(^)qD#q0eC)qnH{qE-PRcyvw*&EL=+>l+2k2%Ao9mV0K~0R@ zt_B|X_cyl-`QK#+?QedRU2dm#LKA{KJi%K9Gf58AwO?nw9dTx|sL`3LS~9=ZX;(zppVe-A zgCltFjn^T{chYSWTmjSYzFxot$A?@AL+}OOL%H`Qe`IVoT&w}jG<`JxJzmOWw_kAY z>1n@!X842ebpEmYq*V|tD(w83h0cHRlD=_iZTOTH%lm7Ho%hX;9UxEjfvb8#MNv}x zlBYTe@oep1kECj_n}-q?)v&q$(@bL!bM;894N0+wjU{(Rz5ShGk~|+)B}Fov$hYTD zHONwpTpqVJFh!wk!9v|=dr6?28G)3yRLv)CwVgki%9m`GZfHJf{w5nQBNfFX>|SUt zV_66O%JTastm7jCUzG3=au;;u9g0v2@=z5kf+Z2U216IFcd&A00O6L z%}*o4S!#jk^t0L(^#Vwm7^w2sUhOamVwyrOQ3E(gAYi#_$pLiM!NMk2hn=>TPxOQ@#HZ>2s%e!}vZXiLS;)32 zCY;uK+Z%pp@^o(eeCeXRBTCZ*qFuSh?z)>L?s($lt?rKt4CF{kx-ab+@|H_AxWzk% zKRV+@h!j>@?^J%@s!Z)mB;x!K1k#EBYo1qHWr(%I3j<$%7dDKN=(BXD<(N5`_dr;fT)gouY_5SMAJq_5ZM^4v6 zKa9eUIZq!@x%c>lb>Q7P;h8U2-d!Y($^I_U&kABkPF3*#+j=h~-APDZ`?0he2iW=0 zZ>vdbyUc0XKlw9=ev%fI8x7_ViN_6Zs*m4BCKreT$O~==b-Jwc-9<$`{;+Jm6hvcB z*v(mzS9TfG10%rN zD6zM&)R(9g$h=FgUAd)cvsK7{u-3BtJJCm_IO7LE33d|v4-Vblp`Tvk)Cd+ZNT=?u zJQtcmr@nVDzc2hXip57k)%Lb1_a?!D(!rHVU?C`TL`vqBd#zE~EsT68F1Wb@+}o#G z1%X>t{V&0(BZnUN{#ty{qyRMwWhdXH%8NV$G(V?kSqh9Z)Vkj(tFGrLK*Smxfd+4; z_gnWno=t^lVp*X0p_wx88SjnHtxfa$!U=9ig5O)t^_WjXuJoaHW#m}xM7 zIJIweS@!>B#^1NNvn`ZX>ye=aFsH zyWII)YCkJ_yI8@5K$v@tc(GJT5SuK%t@+7x!WPGST(-D=uO?_kwwhgwJp4VzhwoI8cot3h;zSUhZVlzK`mtcSspGLH(H5kqNJ|lVgSGFa3jWoR9h&HP)dw ztR<3v-%>-)tRuTdZl#S;Gz2|oEF80W_rPu0@;05?lo=sgpvOES$SZRq|U-mlW*(|YXO_}WN)_yi;4}6Kls2OG`pHZK0Ha% z&)0I&CmAtvoX1eC%tHowR(4Z4k9@saSs!-7cvXJXZ!g!q8iz}Y%}E(b;4~d8!ZE7) zh(@xK+*>tWnf*~`oW-PiWFE_W;a-RwMXmYD@=}PXilw7zZ zP4*Vxc-irHJXR-*)jj)sio3*W$`(AS)yr%;euxD?{a+m)b|(%zt82(!^*Bico#I5M zkBT()skUwpIRQq@r`y%vO34KLJRsN_E|xKth@jD>+E=r$KbmBW&VM(q1qD5*XO0(; zuTfWtJHha!{;9EcZ@KEPM6Mg2l)9MOR&{bBnfNBntkanOkvGt9$b;iyLCT9s#)I8j z^^n$#HdQeUs(P)tHz0g`=-YpSY5|ftfOlROoeBL)f*t8p^g9#5aWQl%LL>MUls6Nx zzH(AF^RT<7RbSGe3W=nMI2K9!1<=8W^%Ne{57M?gF_RWxraiWL6 zRj%7|eUGiW`FVrX1)NeD5=z%)n&PXso`_VGnPUU0h|+zv@t{+amfX4*a-Qk|0SC=G zI*@vNmk^r%$=H5DkynZ1P&cL9XpO?D>7Nrz>7nV znd1DS>%V7@3yJy#PLLu5wh$K%N~duWC)Oflas8|_o%>~%TZsFZ$nI$bXkg69Yl%wV|~8fzhXL|DYr)U*6dxI z98&Efcz0^o3%#UZ`_~%>p%L|5Ok^+{Vu|i}v85|Kb82!j7ADY06ETGxEgPXYs@OTc zubU^WHh#6_^iQHhnUkDLlt5tS-}l(_bg`e}2MD9X9C`!}GC5b(PvTrws&-CB5_EE5 zeoXKEKr&-Rq$2U0@xnxv`{F_>+4mty+HWKXEMg+I1c4ZQ;A8C9vv2TnHfbC+E=wsF z{$Qb&&Eo4-JJOmGbF$`fbydwQX>$mqm)5>jNr6=xl0SRN0zbG1E&kk8_&RaHE?%o! z@&tQiP;F$DoiJ7vfdG$@rN*n zkM8W>&ipqwk*6ORUr$uk9G~99?Jzk%*G`A4gLn*JI5fL*&AEBhX%816rwpZt#W z?0TPnQ}a}(c>Vt*tKof191lRJF8aT8>i$hu>dV%9;^ z3+vyR^vFob7?pnZsE9~3uV3o6c=&l~V3AR0x0g*-&E@zcbuW)jvfB-8*GYKxWxzAf z2o1oWj~tr(@z_p}B2fVqdg$-0Lin(>ac612duC+2$ZQficMZ=POt$3#Ugg@V~MY?vQ6yqG+|c(&K(EI zEiK9$2gxZd$`e5Qv$Nj=f6c%II%5`8S5usewVqltTtedx)Ek%Ho_^M52F_r22vN}9 zck&IzPs0T)hshhuZ|Hr7f#-K?USP~54Fc!#3*ys@{JkvC=WE+ELstwfZ1NssgLD^3 z*JKo*L5F)g&S{zr1Z6!IdInytAtp&Q_Mg?hPa3RaM{9zY7`WIsK&(PW#s|czf*)

    4|HiI-U2QW-o-J`7^x6-fe zv^=JT8J@1RU=-l)ZRl^NFBVKlT~!Ol+{(@n8#zMYNiNS z-`AgVjoty2##;ee5RF&or5^}YE;ELL{&&7=p0`rq6gOAi^8LaDS^UGzU~0enuOQ~P zpXYWFaG-Rw?vxckvfY>+qlpbnKld4iuMN$0K`Uklt_@%%{pGLU4Bm(hBt2@J91Ns5 zmji%gg%khW94K}?Q(qV}WHfgJ0Dj^-FelRPedUh6DXUpA!^FwMy7gnVT**K^Z=)$N z#XK4Zhs&(gT$h)(NC570`O5!i?pGM4l*hD~tp`i!F}4Q*c&Q$&Uc;xL|4HoQU(Alb z!LXYEkq3TYVXhv|qhn*o2bs&cp512Yx;T7fjq**+qg#Ja_jB+0M=0WoY|meg|M7IcAmK z&kiZ6mXVym5mxVT(6F$vSbg=ginHb1zYIRL37Se5K|4KCJ_CT&!W3`{@&0~fwc5F# z8N)dTqH-^2u*o4qYxntnFYx!)e5*dG4A>mfkrFZHy(Edu5OUCHu-=FM^Pp24%*cQ; z7jDP6uSIuozzHb>D+1L+6^7J6!x1hmv59D5?+ARFYAf7KTnmAcw2$44Q!80x2o>UX zlZb8Dc*C0L4pcB+B+&z2%$EZ#n7Bd@xLE)UtlTS9)F18?{wO_;IH5M-cO0=&Z9-cd zaW@O)-{!#JSr~&-coKaXgKulbJs9{4HwYl%T6T?bW^Y^~Zxe-`~6Tsk*Lbdf2pm=1R#f&i3h;Ez(Y}4!G#W z)}W$991Kl@WKt-j5qSHp{=ZZ>7cMnKtF2%FjhZV!qjtSvrSEL(R2@dy_Z;s(mwmmI z?2nt!x1BEs=J@lL07b9Hv-npy#-FB}aM63&wqHEiGw1<6;C)!jJi$Zg!JP&M!wXm9 zoL4-pOX#J`FawUcU@~0`kbY8=tO37eWsf@*M=N!h+0*j?BXDr zZp4cLkz2Jg^852L;B_U{3;GP1Dm85s$Cp4gS4`O}K1aSpD2@T7QAZfyDR|pcWF_LM zTX0TLB-Tx9$RtT^Vgr60ErW=fQUAxIRt(umuikt1k4NpP(NWPTC{05tk31DD2<+{w zLdgjz*r`L zChw=FIxE47u31+VVn)_9gb5c~e7#J~UrN8*=a#4{RHYxpg#ljbAG&CNAvm18kppfS z7oXJluwy;yE`Lk&w|Zs{I8v=1$E;Yz{15H(0ib;{LFl0>Y64N*gNUia!qu#k%Lev1 zeRqc&Y$qf;9u;f%&{wGz#U7V)U#3avv-ac z(wQgT9CG$?x}gw+j*4BMX0#|2lWxDoya}S!80njKZR=e~qPCW`9lSbu-&QztuN%Q^(g8+c`@i2Rqh0d|TX`OF? zBS!3K?p=E_EzWJs!u=%`(n7O_nsTvYMEr1~mMj!yGa2gF8aTWS@#%unGvH`LEFx9a z8+dxaDimM#sc$?CGZ}a9$a-QW7Fo^H+rOpmqIr6I+?eH)gScp?p5O=dNuK0>8OQSK ze%n@KzvD*{xA-??gz*OvL+p)qmkJ|>C_}AR@6DAeSlf%Q#=PMgj4|do>W&(Ju@=~Z zy*<`qyRH+x=t_{EwG=P(_jX7ac3>m}aqCXiKF@*f?-hy>-9LtA&X>w$8q|?}Cgke1 zA+*UG`O+!QG95)X!fJrq$GDkc#-KO4R9(DijYVIl^}!Kxdr>@wgY(h)@(4Q3%jgmf z9R56?ZQ1})J%Ej&$3i!Q<=}s8cXzN>Kzae(2wXrq+!1|qR(L>n?c~zuzL+IDlC+wT zz-&apC9p$!$k4IRQ()Cb0Ym{xILN*cE0R_-8tu2LbDz9Il@>n3in2|f9!+Hcgf8gCho#ZSt~GMBk~>w88x_B74Lmdy58cw|uh}|!_o-i}NM!F3BC4g*S3F<1 z&(b}9^qksUd!a>YKXl?dsq_BCH{DViFNbWb4dTv@N~+Vv;m5_uX;ejBH94qHaY&Mr z>Zh`T!)gM2GUyvdUG?efJh3)&i@%xAvQYMjZJi}|_{l@Pc;E_@5!OEF2WubTqHf_V zC7o+bJn`g3gWbA$=b`UM6}S@xWl(#1STHx(G$`!?ov=2Dw1~RMJ!xgW!80s;ihM8j zwUBx}-dPz*eNqo|!m4Ujyy!z)y?(SI0v>-14xSuXwV10&F8IuNhB4c~AbfAz=!TPY zd-KwKDS2iQO$hbNeqwVP(_t3**rAPVH3_V} z#n)w;-on_xy@efPbp~`M^LkN2dmI0XZvZT;>X5N#8)xl}7B|EgZ z9(WldLF|a-b#g9X*t7uD)9RNaJ*i)(X)OpI0X)YUXsIz(2Y2kQ_IsS&nJu4xJ41g#6nH$OxZsPPt#`BRS9vGtHP^z0Xc z%KK{K`3)Qu$kIF%3{`nGraP?9`hd1tlAXbzT9@y{iPrdfiyd(C9qE~60B<{`++1t( z8MuzYS!3oo&9 zLhKij2z@N!g&w1B%;#5xXdJ#S&`ei3sy>MrUK1rQrF9L8NwMg8PAqTp8rpF;o|fj= z5_V0ehL;g6{IF^boM67TIGRKAd?@FILzBxF!m}ay-CWX|D~C}MR-lW8^3)ec-+@^c zBawotE6VC+z&*VCLZxcfam{)zY!M0*cqwAv#&YdSc$^)^Q6B5eR+0!zv)Ld)Kejqd zoCP%mi#RH^sEspHIQt0H_6SBsoPI@U{ZO&m60r415da6)V4MmR^+u5(NK2Q!sCx~( z6gxERhqcv@Eh0|84zKQ3{T{&T*UWdx%g(=AdDREkXSWP1Y0a8-ts5nsk$U}J7`V30 z#QPANUOx-b#DA-0y-*~n&7Tqe8@^RX;3s$UJI+Gzy@$V^V`o1}Ga=@JgS5GeHRe-X zvI!2jdt~hA2H7ogJs)mOdPw1NpHkDU8^?C#Vu+^mzN}7NlpA9e5IyicLQw^b+4`B+ z^uCAMK_?zo#Tva0_cssNsGFUHVzY>tN$5dN&65aJV)cLY$%|C3q5IsD*2TOoN(4N3%bUJwpt_lUuqm&3T z9cwPmf^Oe)_NB%O#9H8Q;k0|s>)Ja{56tsoz)!-! z<4nj~$k?=k-#uP`bO_&-uj-eY#p!Ft6__J=SUpByd0{F!IOapDQbIw=Ie@+PA==tF zgFb*29loGnfO+N;=wGo9c`DB@JjbY=3sIo1NvC zJ+5RwQUZBA+@PZr0kSv|u2N#ZPM%y@W>d+m7@%ty`y;U)21yEy|5>$owN7_Nq_vrS zoJ=W4J4MMX@(w#WZlG#K*qx_W-GAx~>c5&kT>od&haRbq3rz20ez8oUedv&*PNuo* z`y5G{cML$2&@ZIUtMJTS_VngH$#_zibaLQb%!zf0*UY@YNl%PYRlO<>9GX`Hm`seANFkLqCf8f zPBYcTM3LEj{#7daqh9bY;s$_&t@<8K8N_Ta`mjuUE4!WG5ij7qH-VndWB)&V=UPk^ z`Kx{#Q^Nc8b|P4A&?M|OJC?VYGt31<2y`z)P`o5{bR$5b7@`zHNobla15`|cfT$1H zltS}Y)aNcPKO-SE|10W))q)`uFJP=F06&0)H|Gg2>JI`XC8<)IpD6%8gpyvVE?BJq zOkAT!%nV5Qh;TkROFmc^J^d5);r=J;vt8hPyO4K;QcS+=UVMw#E&0<_`#D1!0TY{ znu_5EwCFmpup%IRG^}EN1VlYxz0_ZZJfH0N0-`=^9Ptl);6*v!xM`vPj{0c)chsl- zKSh1w|KF$M9Vml~{)+pnn4eZQ^iU^yV_ll8wvec1CY|DwV8F3<)ZTPZd+zg(SQ zA^*Ws0bHit=$%mU{#g^p5*0$>FXZYCWA{Rcz^;+;13B-=*R#8OSxMJi)%rnFZ0;ff zDe!}BQw%TvQb~kBkCr|lcU0-7(k7^@$XI*D0ia3{16TcFQEgWywg$yTx^9!iMq98E zSWbm0Bx|eh|6@%|>}R`ARgy`R)pOjXteL+mBqkiu@m2 zu#-kHdFNmN z=CQ7YkzR4Ygm*-~qCN(YlH1MXoRsol@viX^(!@1^$lnHQj&R+OmSicztjVmqZ62?x zPrE~1Ln<^zV0G)D_U8Y_mjtxjvn}4$p*5PAFRe`SG%6%nJ&%SXm$@kG6w`n1h zIUK z!_n19D+WlQ=DPtcnXnnzX)*`sXP9*^7)chbr7fj$+oYoC)cDRehLcAT4q(v6Mr?4F1k{gkvUCvzYo+7V;;AO&q9uUB5?t zoS`u0iK0zgOFcyOH$*CENKySBGF%cwshXvz?(f1h_`j+?O?Gx-1plh~!2fsE2Ma-P zXX(GIKJ%7vmHDm2>Sh&>j<82wv4y~X+k?YDZyUG!i7#rSa}^i%&)+fLbqs|5fqu-| zr2m0_R3X2hA2t5<{~h{C{3q*UG${0ROe*1AiR|^iWqrWvk-7e_tk3cPmGvq9udENm za&NN-XZoMNm^VBWT7OAV^(Fk$`~H#_TY3D_Cy`7c-`1RPlIveCSnF3$Fs9M z)$b48A7T0@>!W)U?Ds!eA26s-SDGMwrMq|9FX{(igZZL2Ft~wUK5XU(}CZsh~R4IDqUSC!{fzehpprq_`-yXW=+1Sf zC6)%a9p$&@$3~?9jZ)F;I>l)S9}*i_B-P2x;7XL(Gx=tpvey>-$6UT(TY#9Gw-AL~ za7g(=Cw{;pl6*{H+`Jou2yhk;z<$2{KsekYv|GYf1qFx{_SazO;R|=btVV#m{Q_rX za)PJXe}h0zsWQUvifV?Xy?OULg(( zR+$Fz_DSELF0nXi0QWNo3I%%oZ|=t#!2LMu{}=az`ETxLme~)=>HHIc#J8{cMC342 zmkgz4uYde@YRcGmA#O-dVb>ed?^ofrB=X7NkR~$Z1M~IstaHq%wo~fa=e*e8>eBq5 zm+q|2XX}cDwW;GJ^yA$*5BmNSuL4|m7ADIUJX>|Pp#p7H+{EfdNN|wd3*5P~&%s%m zh!+o|lc&J#T6X6Bp%(6cLMEdBkc|be2J%skdyX@_qQpmIr?`?(gl5qy?^jXAHnj8R zzzyc(iqmn_Pwv)_s_Pw8(LK)puKIH+Y-a^H45S_`tMi=d#|8eS zwC~7cG*>s9`3)6QJC$R8d=+f-im^-hQi_@m*#1%AI*mzStn|V}U`G1Dbhd0pYmkAs57zO2zdoN4q{!{zpv zpC$iMuMKiG_f7Vq6==#jv;x+ud?YFtWzctWYK;V?BX_{Z4WP#H1)vaR;?lN@@ zE-qh~RE$-9zkpf&lFwxvpkg;Kv*xKdQqlvdQ6^O&0{!M;P6r&AE%L_=%uSwZdzUtFl9RXQhwIzT3? zSvo?K#0k4efJAxH8hvjd5>SSXV@dHxa)x|I^3-xZ+L*U^=01pI?<0`sdGOX$+8!ob zr^Kqi>A@D+-iR6-&6nJ_fg(y+)`U+=J^@FpO4go@lNy*q!O=r$G8hd#P;lHz+X^KW zg!?ATOX0Kx=}-pZD0{U%J9fx6A-0U_r&V@#Q*)ElV8l<`?ggOK8I(RM;H8fu$8odj zl5faq{OhtG_ofb+gu3!*W98?V^lD&PpAOW@Xdn05(Wtse=+LHD zNnnSv>s5xmHmJ7*8~QL436$h0r#wqe;7N?W!C&SAH8eqU2+F*Q?CTuwhy-42 zJn(8fv$E_YzrH|{dRirv)O{qmfhXpB$zGE5XhylPY~;QcyB-s9_WHhC)zDxiA!PuF za^XdAiNRQFlr5D&mnWS9{Fp_UTCatRaP6W6A8YzeTcs7J`k_J#Fd4+f3%Smi{ON%_-xy zxFFrZM2pr=-)TQP_iZwKOuBF!tLhAWNSqJk##u%Hhf;RncuefOLL zckBX7zg|7osG8&U1r=(7Kquvl)-{5Pcl`dg#rdA0Ld%ZmI-u@NzVNAXUG<~kMJGNV0uAOfIiJ$HB)T8k$2CEdTqm4;?gf%IBW?vHB$Ecss>9u=#izgU-0 ziS{BRJGWfw#u0>JPHO+Mpf*>?yFPzcpBd7L#)p?;Q0O_oH(M6?s~RRm-#R}TQ+Uk% z7+SSbHTpx2gPVV4h4!^vx7JiJN|ycy>3O?feZyOC&*%2`r=|-YYjyvU(lRy5e)|zS2Ojp-w9mXaUb zlx#BygLr`4fI}0S#vv@k;{*|1KkDVP-~(kqUKraWLFB7x8Af1{7v$m}G^AvJJ^P)j z=$dNf4G-mmAmSYl<({DYgR97W7p({JhO?f8(_+N34EQC3AVN{*!}$&@5EZ_y1GjAl zgn4WkU)-7WFQD$DiWm~l?2jEtI`F#*WVoyF*UY0cj_W`A?1YnStB=b^4MT83fIfQ! zRSh}_Zeyi{uwJ)WCo;y_LJUYdMzR`cjX9QOM2_GB$qxe_f!jU)k2%EX;0}MSWEo<~ zT3nf2#l{WD3-Yaf4{WgXUG7&cwJU;%fR>+RV4d$eF@z~dpZyE@!A^Sv)O~f+n3UL%{a4o^xk0H!cBg1R8PR} z(E6)XT%UR*4+}3@U3u-j;p{&7zd*8O{D99>6>F1t-}wwvV^al7;9{n4u!hP@AQef{ z3BFdaORRM3v)PfaTq>Z9J(p`rEyg0Gx zSJw)PXnVBRE}tkDiJGxhDAQnbi3h|+!i2Y742Y#h>dQDl=kaFi1V=LrADM#ZpM&8{ zpiBjv_4W6OiHACEu0^pbOYsD^WoD=utO8Eyk}Lw+Vvyo4D?Ojf8=! z*yaP4Vn~77aopXqvDP|U>g3Hin)BTAqUumM0QT&nLa{K^(r*h>eK2QQBlNd(nY>z~ z;x}mLVNwQD`*8lM#pJCJsopMm<(c%crd(mc#agX+94v;H0T5*?LBDV4QEQ=_WPBh7 z%dEkH2^NBg7|d=S@GPLO1Z%p+9vz4op<96`Tk$dqC)V)0Q)s@Mm8n59XW_&#k-<{g{=WXpKFqr3Am+0EmpA zTB(UMh7qC!6Fg9P5a?{W7H)JVaE!@7mqx#oz!spOePyUjn$;_K9|jtF z%@pbOX+v2m#s-Bogg!oEQaKW?{%p@Z&>>9sy`gUT#@RiDpyUB6KMpn^SH48@+;AVo z(B3dBVDgZOn`!KSoE&a16(=!aXp_I(2^8p2Ol(a#X7%W{}WgzwO=Hx_9pFMoCPpIM~PRE2n9M1ViTtkU@P zHpv}B2pe;ta%mTP$xGV_=s{k#x8Q>I>V9S>jRL<}v@5P;75ymq6W5zIkjs0D9m=;6 zyG$>S9xG%m0C2N$5Il(atHx4>`;FDS$zRp8b|^4lu3P$$x4F3-!4^K477OsT$eTa1 zS<-{SNt#{s9G2K1ya*PEhf={ueT7OBh2o3o{cL`MUMn*UF6yqmTN`&rx7_nlW?h~t zvX0Ofb0|yeNs^JIGVRc56g!?>oCsdE3t3E_gmQuFrO}gTD0CbznKDLJUA4G0XXx%B zJ0G;tcm|@oJMlFbH+I4fqcU=|*yi*HOgvsR(H79s7LQl}iB~$Mmb=;W>NqM>(XZ%M z)3pszTRGca#fQR%ww}mww*Iob_gOoptvl@6c#Qp%+-A_H)Y2F|7Qy?iMVZz{{@4jf$i8wXp4%L<+K>N^kcJpnGY+`zeA;D8*ryK5L)MRb2fN7rxxo; zEr%0$?|7JN~oSx8j98=y2oHjV8T(BNm(?D)QhT|U|F=}ym5!Ehq`RbSJ+B6 z#wWA`t;P*SY^{@*?S8ywFhQ%#ozCU(bvkdJqVoU994_yrs7jWK?mGD#oyKw~i;R@u zxKKQS7FJJD^vmlXG;qnDJ&%%SxcdmTJzJM)nSNt^BPn|wUbazYDN%PnhYYtRvu{T& zwq@F(C<66eLV6N0C&nH(Wt+u)b<}z*MeUu#7D`BFM?FNr9mm|w%+`$> zRo#M@!jUP;ZvjAofSBIvtlMbz4$HbqOR&R za@@8&7wLIzrzV1^s(@K$p%!lhqf#1x+eS+j(#H60r>b@PJF0!i5b=68O29b0MzS-x81c&8_zDh7P)IjZQU6s7rCpUp>gFO#5}_U~o+f=M=4b^K%{mM-M0 zJ0>W))>yMFn?nJ+fD=f>wH_H+7?K3A4h}~=#44lq)~i+4qkE!&A9lME|*SauR_fdwkAO8Z3_ttYv zrA6QnGbco-L%zFEP7K6~?KoDrEE;=etEK#qlJPe*UK;1{PTgQ&4n=um)hUsy=R01c|%DcXTmB0SgeSYm*L^ z5P$eNy0h#pw&*nG%gv+j7R;Eo*xfG0otsiHR(#5MP-Mz(ov>4(Ya>?%Zwkt`EZQHx zQItDn+@REyLTR}taE&Aoqss0}LY=D*U%OJ$oc$KzAvJymL!y-vuqR=015-uv0>^1f z5Lxnh{ixF!-xE~~7kq(^+6HD$>3wxwkKYqphvLX^w9LKz`9`p#UD5$+)ZqpD`+|SK z{M$ID@78;LvT}vhT?7~Zcm9GPR)0utLTP~?QWh(&y_sNv;HQyVAr(EpkvPu2t;2&n zq@m$vlgwdbw$7EKWt+}wqUCtdyWGBk{vCX-`Kx>P8O7jh}#WC!2Y+I0H_3);9qJ2YxczN05t(*{^M_6ZK-=eg!Hr39|M0R8rQ)s z-6e9=!-m@u$CZhW8IN{0kulKv7ZI@A+Yk^igw6Ulx+0+^hLb{4~&qa1e z|20{jw8^dj5z-B6kMkX(2I1e9!JM_e1bcYGP;|On-BkrkhbSPLr3gX z@d(ed17^w)h=G>hdRKnHh#5wB_W7UicONpZ(j5Pf4Rejpk<`!$0P$1em$-E_OgN{@ zrwbvDp<$?H2_HpIc!nGju`m8FGXYOFz)Zjj4lonos*C=D6uFdGq*yWYfcW#{MSUII zkN$NA8Tt?CvMACsHX-uvVi>L{vE!pAPkb?{zvwE)n zxt{BMRP0@&y#qK_&Z-5jJAX7=K-A*8PJs=R*b(_rSe(S?V+g8?%2x(A1ZJKY4%1x^ z0+eqLMx0>nY0F$)78!yv6s^XKlno9k?=;6BuSUI{zhJ4b8$3y){F7*{y@aKMbkam! zfv*gpjhhluNvIO;3rv&Bl$E>3-qXE=l~bDJEk}Ug2E=;rHQ-;K; z1w%*7;P?s?1t%z_v=F=D+hJ5{-aO6tbK>DuHlYI?K0-3FiW=Do zf<$IQ-rmN8vZoEQSk|C66^ntb1gSGqKW^4~?}MD+W5&Uqn07L}GDJWN-0JS!gyp9X zYOBFmobz#L&OZO$!Gz$~-XGu6Rl}Eqg&v8-p!M;R-h=^Nhl0A2)LsymV(sNJkf z{u(VYaFG zeB6>MfSJ;1hwC4Ju&bB%Zv6?159pHardsk)jr9-!W=gsBAEblj4}8(j0IbXWrwN1& z6qen7hPm6n_3c*_4OBEi9!OyzK4Fof1PoUwJbmL`v;)sD&GxsNHQ^PAe=n!{7<1fM zol&^U`L!y>GgC?ne!q_p7T;jT5ylJ<*hyH2sfGm4T#US+r1j-7dR02{dY+{{R9qiO zc*#HA7I$O^!VWtb4r7X+K9+o}26CB>TMm>7ga4p>$Z<60R`ArP0IU?ms8<&@0#Q(b zNNm7L3EpqlfvE3ndQMyR!nVWoRvW!o1+0|GCZ5dHE~GK6c-p@9-bkT~3(4LU*N?vR zB*0Ny9E$EZAAe%Qk|$$i(-ljHFu6IC72!*DP_E%XwhqF>?_{@652wi(`jJ-JzC$m+ zHT2!k)O`_7Nr_6Q94a?=UY&X;BF2?OHH<1R7_L;~+(f~zqc&)aRL;VN1%CZv?Wgq4 z5m14_X~0q2s^;)PNUoN41~g}xANF8m`OUHhNGLrdR$%lu<@kDvGT#+~*EfSqg@FWp z;IrWNV>$2AJrddMD)Qs^P^;@VEv1f;ly&aC4_+LyyDj*VHH__CDISW_Md7Tl`krOx z&{Cht;jD6*tVOMXsd(8V>P7k(kLL2V^O}&|G`bVE&P(fGMvGxa<@uT;O@}viY z%!}+KMs(k`xUZFx+vUXLuJ8^MPxgF8vn**ZFa?z>iQXP#{6=DdIpi0X2If9Xt;K}? z8+}fK?lj^6=9;=HGQ3jLeSx1Ppq2g*1$3agx(gku0<#HCo|LVI{0Q63=;%A8gg3V{ zX2-%v7h6%ZihqozBM-}+@LNI-ZC^eKf$ef!u!uSmnV9%(Aa^cA;Y5f|uB*<}vw7xx z>#<4p!|{ul;@x3EvLzqoTfYzus!^%S{*?`H4bYODEHrE7h03d+KQ$|2;mgO6Y-i{9 zExAWhbHY;}Q!U%9(WfB8y?3RpwV3ZB3ojxAEIgz`7vN#62*_#y{T?X`K^Dcou{|hq zuZ+C>O(4!D)nGiNxL{um{P7TdynUTI#w}16E^ErFl!wv4RdUK2qpzN{eiAQ~0s?0n z7qaRX?cMiCcq=1vQMufg%7;%?-26^!hUm!#J?C=b!+sfhLAR!$qZb#W+`SnzSmZM1 zv@s5(`i#+Q^=Ta~JJ|;CgVNj{TcSFw11^OUKyb@Rj$z1mq3LEd=UA9?=`Io)tI}GA zqEghy46mm|C!IkRbnhg@2IzUEm}fbtpzP39d>U1QA7=cK3R&)o?|cl4)OL*;bglj6 z$48eBSeUQ_k7hAwtUF*5mx-Kq> zl};_L*H-mZdGKx>w|&DQ@=U0D>yfo!!CTq_Brv!=;{tNIU?C0IUfuZkJjsn!#Da^4 z7r2B#hVN*{4fcW4>QjRmPxmbum_4CY>1|%RXspa`8t=on%NJy4E-UqQ^P@>_D5QOr z9|~Z1J>mHvy*bE7c#?*W+(|N~?BqbWsF%r8{r2Q}W93^ui692$c84F|ug_P=jyPrN zyb{HK^x7NeolQI02eyQBF3Tp4nYztq^RAs88m&r~^f=dG(mq<)_tHrpE19gesAZXK zX*#hX%Vspt)@3)im1#M`leKyN1R6^)NLVMDE0#@U=3~}!cr>v>X4K7esNc_nAvTo$ zFvPnKMxn1Rq>UO%Eh;Df&Hv-=eB7zLCp&>!}w;@Aa}&;jB3kn^yCMu_`nWSUgGRS`AWr_$Ctghl4Q9JQc+cZn|(JB z0VTRkf4XTy^=ZDXMFS!xo&Ffo`LlLC#K7)AZ^4pEge6rcRSP!jrKg!%N;WQuLL*yM zF-T?ST)`nl_v7a2jkBrK+IG*6uiPho=cx`Ym|bM|2W8nJzR=XAt@xUSyXMzj6r~_F zb{c1JuP(QO)ir#OKS_Ozd$nH>|LwXWNz5em9dLK~FNUB0M3%pXpU#D@f4!u3?{ZC= zE$^;M!-;MqEuFF6%I0a-Hj8v$uZhVQ86zYo#)*%8ko|%rxAETYY`ISTFGKv&TUPs~ z*{ufG%Ord|6QP*L1v?OrMot}=e9l=hB&wjo553*q)@r7+??*>}J`eCkr=<2Ee&CY) zCYr_1lFJn1g_Cw3x?k8&x;k}84_14XMD(F)qETnBCyIvui&SeaYGYu#M_3wf?St1pY;;F`xwr)&P)d_#hzKzXdG; zs~_rKMtlIOfXL;q<45!q;P{E*ezC*li5>@n(=<4*q&yyEJFL8+jKTx5FD|V)^t9Ck zmdS4GDYvzM1p=T7aC^$4@x_kyea+MHOx6{80l@|G_t|UM8vs>MtLx{pp`O0^20#_m zr)!kzCT=bcUj0QCKs}7J2cZFii!9 zjE#^@s9E<@onJFx_LJ?0519P`Pz4TpH+bK5uRQkpA@SZjZ^BgWgxdPKgQnp9y+ON= z54n>D;ETKly6=zX;2qZ8@cv0I;eV5hyBXYjVg@=;L;}_%VnICnZ$ta)%%8ED>$tc? znf!w)ZwTry^v-B2{BB5M4(Xy(=9g0ivbn;5ZGR$ucROBrS{Tm@r|DuWR)ECG+3yJ4 z;QF5){>1kGmsJ3b1Ky=DM}z#ARbV7@$4pU9Bv9m)fK`dQ9Syh8BPphz6%OO52vd=B zhN$3`Z_cb1CyP@SA(w}>E*WT1k&)Jm9D7>Fqfta}bgx;K0{MJ$Kox%cF{Zb0BH*t+F;GN9Er^Hk%r zlHFOkVS_4Duu?nqqft(;%e-8+^9ptJvz`C<xY@h`+$yy&wC-47}Qc%T-!y=!B( zSie*tssAKrGwXCg{RtQ-?eH7qeRuK=gyi%3CLo!YA;@Qy}}^ z^2oEa_X=8{t`UGr7zHvuwz|i-xot+Km6@CVgRnv32ZXny>;F}`2}|nj)7w{_eAPqs z`9O2+lGy&rE@<1QC$NuLXXsgu+XyKV$ktSiqD#-i_A5x__{pTk&IuLaos3C-72Pdn zCBG5lzQ+ml#LGL^s%I4Rt9oOZ8bRJk7%p2St495{g;?U_^ZLqEmL*xtDT~wWR>N2g z2c$o#rMK0ATV6w+pj1>Z9Szok3tQZXJ`&T_6m!o=wdP}4M{BgCSqJj1WOj$iicc{H zlNi2KX~Z$XKLqe6<(|b6okKp0ji5cXguXwTUMAk910&3~+bCOd|7J5`!jd8P(_U)j zTz8OKVLA%EgBO6YwIjoG^4T(>1Z&--o0J!|w}7q3jh;Ix)h20RO_ycE?LlAE(xr`> zJjHS5-k2o3QAe>#sZ*-~>@}JuunI8a{elEZVuRtDPG1Mg1 zwTv8CTJVg(SQb@62T=$=A~HQ!e~b?3pArh#baLbr@3ghrCnhxqYirb0l_h8nn(%I^)VI9yJG)ku2%`uBT->k<_ zIu0$4;g>YK`ugJW%sZVhQ9<#O?cN8#mWq8mU>4B z{|!k;P@c!X_G_fdH`Ms27(kgxVzQ|&#&s+wp}0$ctMkOQ#-l4FreHs{JjMLCjlrDq za-Sao#XSxGBTxjq!MP|2TWWZ{1F415W}g)6Bm=ge5RP4qrejjW#Xe#uVbdMv5qer7?u%qMDGBg$^^Qfs+jok_5pDF_!ak5%?uaJ^7+IRaz zL-Xit`Pa9#fR}y)uhhG(3Vs)&Wkt^Ch?->9$T5$!ntI8ocgC2(QW}`S$WE)2`O#nW zy?U(Tm!pU!A?QLGWK2S_{;v(FMGHzfY94!YwJwFmRhz@I=zF*qM+9=7+KI5h4SHUr z=BPeR!@5N_y&CEi^su3kR(*LsHrsD9slQ6)Qz+ypq%!3>e$|!0&)F@ALCcAgqd^%` z)gPSV&_?zz^Hi@YucY;xi*e?JnB+>GEp zTDub+T`X$wgC}r^`!f&3(P);d}xoU+yU4S=UYHKwtNb25mP z-YrMp59^2MzDx#axje0Cwz^?Ov-6iWO_hy_#hGwgX{#KoVsGt?IGDJ!>0>$<*ZCay&JQzkR4kYedDe_YN{8RenV1OD|?A9?a?xa?yvk#xSJ-F2k&*gXQQBm3TjoFB`d2*(c7qa)Zq>VfVFwQwH~M5|Vh zKUBLjcQ56RZFT{6t(%0)0+vgSe$>$y7MuK zf2@b<6Z+mI{pyo;FBsvsMf&mY`+tQ$-B=*vem0i#dhG`fSNcn~E*HJBHE!6f6zu~6 zOFUC<+;vZnb{Trt1|>H~exUy?L_xipe-Q#g6cH5=5HjF0 zpZ0IQ@~WSpqCanYFK$3Eva)iM>wByr#%*<#bnAPtTdsR+<48a!WTu=wJ#7=EEYq>H z_!9YYWRGwvz8;^}pQtLnk=tVMs8`4vHyeVBnYZ_RwzX?M<}O>30&D79>SFwuTIiMf z>G$=1#Q#BSwMJ0Wy&^a}Nwn8?3WU@QO~i;Zwv;H}Wz}zhvbvpw{3>Gpx1^?lk@ZhW zP1M2sha^ZEN)y3C;_0`^;jJ*!K}`q%Isw9fLlds*9X#mOAfBuT`P_=&6;wb$DAN;O z^~-=FR6zSTh$R4g>-Ydu@xoYa2Q}mk7vUQ-|B9jX!HV+6Sgd}z|Ht*3p#fysBCNg^ z_!;vGS}!W@=olJA9LwHi$w?5HQSuO?sIBJ)6sJeS4eXEYCxcMbweZ~S=^;F+cTMhI zzE94Vb6(sJyR?7SKVx274fdR|b&lJl+idKc&Tjw~0 zPw^T3GAB^UEhT|duU`%tBEOv~edwDaN-%YSw)#F7T)WgAKiP;xyZSPrcKP;rX}sGG zV^Hxuug7}vl_r85E8HORumOSb?WbtEaz$aKdXIXby(2JbwGVbK}U5$u;ZxTia~77%YiQ9in@CTA(JmO4O`>I)F1 zf?34477wffaS+14K@nJf+vq$l>SWN@ zuBA%jMHJsA0oeIUwBv|moaQ112gQGsKLdp0ehDqVMn~-X=UY%=y=@n@tcxUt7WkCx z@<_+g^UvJ;9bGc_H0=UwZqSZ}rd_|Ov?=3=E@UYnfl3K6(k5E#4%7qC)B?Y7P7Mqa zl7x)5%RY(Rzgx|K<+6{`GqadFfPeZT+OHNZF30Gx?auq?#hrZk^cKyRS> zEB``KzhsO7W)BXg&i<1&a5KncJt&a0PF)%feKjvmXM$S%*re{WVEN5}gJRHZMk;za zX4-YgG37UZSHBLTdk*Jp^sn9?iA_oSFq3D zP-FZ?`i}&Wa(ezqR$yV>gh45pj<7E_@G9FkwL03-MnRpb{(Ah?bf34~3y*?SwEu>? zHtAjw1@DdjthXp{SP%_V^_3mjZ5FxvDS`i0eypb7B>|tOn30OtNH$ru+L z3ACW6;8fQ5z0WCz9cr`?a~zI6#vI}k~4o+EC{ zeZDzz@ITw1?y_LKs=wPGB6yJ+;1bC-Xet+=WIVGE!1kv+_FY`AcZ(m0ho=vPG*x`ZEe@LN^%cq%55weVhH3aAkW%PKLDy5>*fT}tJR)+s6pl#Rv=}vtdcyv zJx8T%s$U`nQ)8$!CRLpuDt0Z~{GlJbE=gzb=Gg4Ktx70-gj1fqolVkDo&|+PSS;zP z4MM&}pf`84p3xpJYH@fVNUuvZS?BW8~Mw?YN1n$KLk`6z;z;aO3*@=aclv?`SwEVI^q7exM1>_lof}TsvN9 zIgM+`gb(YgxU(%e`+hom7NsrSj%+8yyuK#`F#TChDjCV;%t@I`&$z>gm&v5s8=OG1 z&y|30jO7?Ey|tf@d(}l_ULR(A3nS8duJ5Q@khW=tVq1*F#~tMy5+_2A z#IQf5-D7ZVY5E7OAal~j2@F|~5yeY~GC3x6;hfn%b}U6q*=yi4WrNn>FJ5wEvW1h; zyNDfwSW$1##s#5WRa$2AT|3jT6Y*8Qb-XOX5Wvhfk-i@okea@&V&w<7jG3ko3rW4Z-x%RWy0BFuNB{~O*wvrTfo`vHV){q5? zm}-|*$~{^#_F$ItH*pDx;kTrXrRV$eQenHL5|Ap{F|4j@Ys;(Uhhz__lZ!Om`cPxt z{-?Go+@?ul8+Z|S{uO0CCq%eqka4J@j#zMD9=`F|tD)5Io8DJdv(@d#fb9=s5dtx- z_6CjE-aZRC`92<~=Vm5W!m55{`&$G9lbIZ2i`T=szN`G>Z2b6y0u5F!AD2W{68eF>-+G1rW>B%_?Y(r8X0qAbJDi=a)*&5Og;@+sIb2fO*PVJdi#DTli z<4mPNV2or0Gdhgd000$Z71Kn;^0^EXV^5hfAC|elDkf!KHOa7X3w^4u5$Q?b6MJ?*O7-Uy7DY zv~~0`wk}0ZXciY{Yyk|^6>Gvmdf5i+VIse4er1JDl#dxH#GL$E6M$L+s$p9xU8}`(C&2i0b#DH^@`>Y}tq2Q(KJI`nwhJta3 zETP!k0NG0PFM&Zuu0Cp>t%;f*;0M2t zH`~#3m%&aZpm#SS59nv4$v@A~G{tV#eR||#J-L9!9N9LnW{N)|;hA)IsJ&ak0Yi@T z`VKsuQvkjgMqL4c5~u^G7dRJo_|}bd`BI7sLST2NyI^%Cf_i#1|Icr04?NDuwndsK zs_m^YmdYwq`H^UgzrVM$zQKQ0?iNkgVz=wDJNxBl|FJ#x-I)GpFYwBW0(|oYcs+r^ zI#8f|*)%C_;_WZ}S=Hr_IwJ?^+{8%9f3}6w$^E^aUQoN_=lK4>7eVfx0 ztv>)7|Gv8jWX{=Hz(mkkfo5X5_?uV&!Y&5wg4%~lOeH!8uOEIUas_5)G_Z%%uLY>U zcg&y{hH!xhmA(JsTMJ)*ZM#IOH+XUOH*iFJ&Ipml6aURbf`_h`u}JO%;7xW z3a5q(d04r~c6dP$RFBPL&$>YjW}B&_PoIbWp(!Bo01&`JIkzC7t=SHu(0G-S`|R|0 zS9W)dXA_Q}2QFE_>rb>%si>6k!t9|-Z8KiZ>T+qIyf^-c5sT$etrBqo_-k_RQ3#u6 zGYVxs;F5pJ{O6r&_Zs3oj?~`N%#);=Ekg?BW1oAJ6?%*$q zE+eEmltRhVv(fHFu-KAr7s@6M=Jpz<9>|wSyoY`kjI+Q=C@h!{<5V*bGd!ct)+Lx27WzY4#dl8)vuJ0^kUePi zcZhs5D>qzB#49p}act#xL6A3J>{hxHWgYfmG72x(g?OYoN_y`NndQ`DX-Ebf!#>!I9+Z#? zY`v81Dy405HOFPRpyi$;y{kc6c9`iG^q=1;$cvCs=c0k%dlx(szIps*DV&)>-+eoN z#my%giZsmm#5>NE5u^*YR`1E+Ccma2i&%(^B{8sc$^1^Y3p5ADb)GD&Lqy}MWDIvZ zp9?-k#EMhoS@g~X;)A7X?{6wWcTkDvD0beW8LtjijZ+?{3_j6>`y0D}ak+24^dXQ* zWH7omW1bwr(D5Dl>*Ldqzx{8S4*XsU{Mqh6;q z4hm_C(B@z=s^P3sRvV_rbIkXTq`9BVs9i@8^LOVAkp&?aYqzpT(1e=C>^P<{= zm#? zrn7<&RFt@d zX=~kIW*_}PWfVy7J^+xyGsNB2HWtN=I{>2~eEUunLtL>*+9OO0pHfaCIY0_LyH2S{ ztYX>W^QUTWyBS#rdo>1R!*zR?Y?A6jKxm=zB!2uB^XXR5(eSjg`0aol(}nUJs_z$9 za=U6}vHeA1qJr`R@uI--u|#GQ=H5Cs(TOD1tC~x=be7){%j*YrVKL^xI55|m(NQ$O zoywZ|nZr|=0<;papK2~sF7#G^`f-_>qsTc;tH&w#I5W!t6Pxb{RdK?f5J-+Nx@<2&aYU`yDh~ou{268GRW&(^C>vZ^h9q;#oNc920}{h zn4OD(-)@GucT9^{6Ubm&r@f|Oi@3~w(j2z@5|*`-cl%SbmEB?D^PwC~WP0WgwByAm zs)%P?WzpL#dzJ)=wdmORjm@r+%R3ASgp z<>$KSSH@Xx*2OO)qvJINY?{MHRUN!$&5f@Q+O$uklc3y;j|qL%$|;hu>WkcC@C^h{ zsk7GcyihMv^wh{4ykO|c>8KY|oa_qEKKXu`skn^o(aGNRoGUe0Kjw{vl75^g)x8R~Q#i3UiV&u6 z!(jHibVURWzpB6UbQrD4#|)P&p)-}|Oueh-ma~o z<;A?t_}~#Mx-7zRfVHd0%4`nvz&RV<@o;GFBzc&*0eqWTWvlp;1EvRNWCipTj^pxS!bcmuYm20GTd#@%3&*$2Vlx^XEa zz2uB^jazM#my*pcYGP|%HH|&M{kGr2ENWl0BRQY_!MG)pJr@hqa6YLaM&-30gEDBc zEpuotmF20OdNJrc$wCu@PGS_=F0>;su<^a4xTEnk`!Q{AGLw5AWCpC!35`L{;vlB~ zTIb4kQ312rVMz*g6yTU1L~s?_m0{H?h@C!qNNOk)=nwJCZ2nVX1`_T%7?2?_lE#%d zpF862w>{}&XOGuVDO7ZHQiJ4fqugKFnnfXMmRd7WWw0P{Rg|6E znPMK(z^1IVVrfQ_d#Yj?13XrBMqcyh*KfK!xq#kuZ6G3>H4Xbt+$di+qo49splywd z01(*dI;%TK`ZuSW2pbxozE;YMD&;%gc_OWLEUo^)QHe7Y;hqEB?ers5BmLyb-inO|mfCgoC zif`2wdDujfyNsK&f%DVejj`MSuLtmZcxoAS6cFBus7}siv$NY)&PX*wbV-kS6SqxT zRL0R;G_}a*>?*cB0rY6NnMZt!9G)sVg=9419k&H4gDj(3e6hdYEYt7><+Zc#PVMstt5hS3>TK%+D-H?e;k$e?JYmRUlh3B!kiqD=ey?CbVwt9z!@8JsB&x z7CpR}^F$|MB}P|KA?)yFl@-%hWLn(RmeuaRY<{(LXYj@Zep=+=X(*$eg8bH5Z0iX6 zocQp4=+g$yB8+4I-M=Tx@AKH_VOb|szjcYS&vDZr-<*0wk@Tk7j&ay9ee*EEkXg%q zvWNl3404QEyyALdI;NJ07mbU5ink`Qu($24P?2fzI&ZpgSAm$zM$_bNQ|A`+kx$LX@Ek4ym}6O6^mR3jUNubIVpE zGvz8ew_qE06L}viNAZV?pt4cv+U98#f*EReM$yx_ByH9>_6bj_O&PK^WfE{{-L-m6 zy_&xIoXx}vEq5rgbd1TUyv>tD4p&iIZLoRIgY9rjn$sVxQ~OkDUmL!W6W+6Y4e#-%8ZS*gBEYzc9jssGg?Bd-{h_X@&V2EeF zC%4;LDa%4Vx1m3mv0LA7ckF0W{5EjE9+*Dcxj$Xp-p?+dmo{#`1_o+7_VNH9Qf~-x zLdpCjlqhSPZ^!alwfUmP$RRq{O;Yps7r*PBx!Sq4J)b>nQGP@qqKfH#{?|iRRHBwk z9ALmy0T?j-Pw+A~F)%i9WM*di=aL10E$njr7m^(Vo9V9=kG7o+h^vm52jUR{)6Map zlcT3$9vFbKDz0SSq%X*vaC;IBpBvCEE>JaQ9?f^R=uLRgIo(3+U5-4sN^Zc6DSWS! zBK6rA;hmeg76^rR;X+S{@XB*wTa#4Pn$&}XON7NYhVm3x-J=!|yZ|#MAspi!*vvaG z^Id5vn(e)ZNO?;GX)Y-=^#&2 zz>H~$8!4g>_?#_}w*@d`T0>NGKuWJY1dge4>s*LQ^qB&x_WxSWRB7U*__cef>XC=GM-$H0mY%J1Ni+X!X^ zw54Vhc^5)4OHh0mf;; zE}#;15Q3``V}c4oS0QU;gi1=Z`$lrV2?S|N^fK!q|LD*CX{!R^-7&NE|6PT!NAfMY z+p2rei5a3RfJ5O{BXLprO4)XN{;f|<^C#&z#Pyp5HvXZ!Z~uGP-H~*x3cS8VI_U@( zd0;VcV~IiOlk@YiHzQ)JOm}&rIRXP2Hg}}fl)~Bgn{>qeRv&M=NV+^bf?pHt^uC)% zKLY!%LtPQD#jP($A8EDFk7jmB2YqdMXMl5c57jznuxG$L8+1rsKL_FtR{_7E{+18S90=G2 zvK*HY(|^qv#%%^<3lbSDqiX-hu`EGEI_wDH$ zEA%=I>n9ky-q=lE{@oMz^Dnw@rEZ#7!5?fd)u0q1MP;se`4x5~$1COcj}edTAaZ~B z0)UuCKb5lz+nsA=KQp*TE>JeaWzo-*z~ravbCJkDRy%ad>sCR%Fjm7Ne2hhy&m4^|zsyP}y}J=;y@l8Z~E7 zFy+myN^YgG>e}|A-~BbkFZC!7!EY5pc}cF-PF*HNB+KkR^b?0tlv-Iifa^8^9hV;!xYDzrGW2BBS3>*hUyFH5|`~vjkmU!r) ziInmz>Yk@qD%Pymprs-<2)Kl+iOMCBD!qx;lz!)1c}ruZsO-Z|PtN3ITgw%r&EJAv zk?@WlC0)zA1J_FOmP9@Iv4$Hp^^Tg7je zoNklf8@s8%I3y85*`lt?n~%(EA?K$IelVJCVMkr)pD~IF7|D{DS78?8ucE5sPTghj zJ0RzC>FUxs@ln;BuTN@f`)ZFI3Mxd-a@u7tVxr&LXWNSpWl?**|41;EndGkQS&v(& zj+B%c8ju;!eDFYJi|oaJXo^q>I=$eRtkGmrQjwb9&VRX z+VgO1B6j-$m5e<_B<3QQ=J?0CkQjtyq^L3C+pS}^S+I05%F-aC%RzJ0Zfm!6p;-lP zQAthoTh@U265kxK5!Ng#0#sScZ7wNS=Tf34Ou@Zo5Ko`8OkU;w zzJ$r7R5SQ_;wvsKN=rKOFJW5xQ2tqF5VVp2Mdin)&yUqo6DgBgtC z3ZcF4HdY~`$HR+nWnU>as)}_>^s=?=M^^cGnvt(77mDp#yc?sP%Ej1CQ#6YFu&C42 z%8sS*bPK+uOK~|W?>EiVsUXn4a-~v8SNGf-R^?MweXF5lnT4x6dj}1=E^#gkbw15(l!T1O# z#LBA0fEycN&BI}B`CrB>Yi6aHbFQ1u*GuddQCaBT{=P+ z8Kk8BHpJ&EjqHF#@xyxqJErMjVwlyh4MW(}fjYdQ+aOFW39VG#2H|6~KE;c$i=aBr z5?r*eDlqNuH2UCevs8zLEe|qxt|X)5MV6}b86NWkQ@oWOsB6k^omr8a5qjsL#8M*u z2;>&hbeZnKjRaJ=U_>ou!qrZXvF>qdam=-iygEll?e>uMG*T_tSzg5P>Ke|&FiJQM z+`YpGW9DMCNcp5l$!*+VFP6UHiHTUh?s`O0EAK+FY12BIFYu#e_0Qi6sa&kx2P*2< za?3CctTN>2y|67CbUgQi>0_Hycn5HbosudR_l&=_IiE7UJjA0UD4dq{8udnT5>X1! z(hNBv(5_+NdW+S`E2~~xSh;pu$0AqK4@kr!=V#bg`#5Ke?J8wTy;-)b>swoO1WNf( z=%FY-qNX4N_YSU^7s8K(iCZPOr*4>lmhG;3Urhm*DV z0kzW%Gg;pvxT*nhO{tXmc;u*}z4}58yNNEipdAys44NMK$F3jJ=96x24CQ!@OOPJ% zA36#qqbsrE5g{U{)d~Fe!Dw9(=YziIijV!<%nR2MEaiX$7K#Zx!gR@mpL5W8){2Cd zPrS~LTD>-hnPR>cfQkJL(dqsX@Hzea?2F#xiyZ)9AO@xY5$B&}IYl-1czZZrthU`y zXOG81)2ZG5I6IgH_qy@}e#gdd!Snml`>*_kj1*<>OhA13`QPFT^Z&+|OrN~)7eugs zLEP>=>yxK-jBKXt+@0&!wn6OHdm#V}H=MDl$>wQQm2Y~OgV^dU`N{E`GYLSvni8-z zT>V$P+V=m5SC0-oNqJrVSG;PgrndUN^z`*v>-Sw}Nd`;bIo&mC+1<8X3JMI_Tq3bHsf(}{DWz98N8sUGb|UK-#G4u=4@=gtW%R)8X6 zaK6na6G#+zg2ju?T`USOJH6!c?-)PN=&+w|XE(p5jDipRY&98h!!%3|%T|1>Z!xzP z`UZwu!PL?TYYid}K>5WCPCajea06=#1H_&X62HcQJ+`;rzA@g6lsvl4lPwy!1HVVV z{#pk2t^S9@fI1V56o;IrxO0*1CJPeZLyzh=!djax?Vad-3AE4sm&4GevChcF4ma+u zv4J%7w%^dcH?J7Lu^D9)A@8^yH`)mzF){A!2OZM+_ASV$S;ndPKH(T?=9RVN7*hLN z=dI%T`=(HQ(lN@Pe2+h2rJV|fz*D4u{9UvZYS97a)zQD^RT)eSodM_~kvX4yl69UA76G9_Rh3*n?z)5Uo-@_-nVPP4zT_%t)M>6He5&r100{ziofhn4dX4YG0YfIaqVbAojpHG-d_m-Vz{4TU^fRFCO~S3 z;Aus*4l7#iMgYYSVxWngW4EGNYl*JXb9+drW)K&onbz{F?~rJ6hp7R87^0&+X8qq~ zwmDj3gEfI1kxi@dQs7A{xv}Q7A&7OR;!&m{$fvVIiiNfqQBFY;lD0`W&Xl3aa!|4$8K`^Vn9j#fHDjG&gZ@- z43hHt?w2m0C!zF9fPhdok(Cl;(cjr(WhDm@e?Cn@U<|DZU|tQ-zXh0AT@ZhlZt5A% z`XN3kpcwFNu)KF@_>=#kH!~7_hwWUVHeu8GWX*_(YzotvP7J#fHkp2l*;2H&MFu9t zwWcJf+{W^?Ej@}#^{<{$@6B{;^df9SzYin1^FrPQPlqt*584=fRG{kI-lU?4sAsR- zcloVb$cjuHg8v5bxU4fRMhpzI#JU%}dxqJa*_qWlkf_SI-o$U}G%V_u!r}fo+Wi7c z;sKVbb*dxC6t9oi^G|pI2@n_odiAF!myBGw=L3MXq)fx2EMqkVM6Z`hY2Qe6!cq+HI} zU@!(Bdoda8IhX5O3->Iy^cfH2t%OfYy;ROB)hLzS^*hw{>=1TSoPoS6o^mM0+Pu3iVk@|A+hcX{o+W!hmM=CcNigUdAa ztQGHdhluooO43-y#oW?Km z8t%1FjU9w+D^_pF!au>J+#4Hk#nNGHLDg;TrI4Q$$>kbX1$WT#IK2d!)*^ae8$SIadqsKD^u6UXGri!4l41T=|%J4V3igOS|^|{YdA7i4)mU$}_WL?|?T6qPf zX(eu~0vAmo-yWIq?BjiVdA-iI%Ta)em2!`!mXX?GNKE(sb8-qwK{2H5+`1+Ju+Ge- z>U{vlMhx0 z%|qi2)alUl>&?-iaVz~UXWmZ!nleS3(Xy71a$Nb@AlpWXE~TY~ouIqeRl{X+ zhN33IC+wf(YpzZ=H{-OV^kZ`Kq=YUPat)pw>O!sXo-At5`%m%&ReVcq2ZGz%LBaVB zBQpwy$H|FliOgK1zqETSP?D3QE=Pz|YG8h~>Y%RZ*>?iVj0{`N9^c+#>OmK?iN+=5NNvbC2}x#BK3B*gXfG?&(Z0gCE70fvBrtzn3PIi zlT=(oo?@~zn^O$Ksab9(8IC-ys<<0%PZcfEE#x8Il5}b(2w=}eN2P%o}WTQC(5JmAj4 zJ4vEngmmuSbFX@M&K}Nq?zz+47Xndy`-3J8fu(K>nW!#{e@#RoTTAqhe^~0ykFT5E z7!4V)OL^_%MSL1)#xyzk{iuMdqtBx-s=F?=)|0;W$kc)06mCptS+!_YJbByGc0;hq zR=X}@NJSHWoZ7MMRC8UzjdB{%ElzRapfNO<7V_WT=V^9buSulx6gp3jmY1!?%7&v- z*{H+_zJrxS;@YEADr8}_YM$Aj8P3eP>0WL0SAb|V;h`0$qV8xO8E+c6WTT7e}~MtY~rjo=}^E=CpDfx>i^JnPQj6=;nt3A+qP|MV%xTDOfs=Cv7Jn8+s?!` zC-&d7_c>MPV*httec#o!zIUzXanri@F-ZwP-TaN`!E7G@c~NcT>ciCTkc&5NpwcOj z?hn;ULpqjMxMoVka|inzL>kG5SD-H>m=-(v6`cINkueM*(@c5f#>UQ8S4%fhKt^+{ch5s?J0xE9*0lnS@ zcqhRD4LEno|8t1>cTvR3`Y%cjz-1`p!SE-v`V>v3oszX@*9naGsgy+eb!|E`fo?+t zEZ1xM@?avGSaDWiucq;oJtvi|9^z*kAdoe~-TL|NanzPF2uBL}9H(}Ms#TrdjQ}?y z$fvF`F)doC9hrBATLJ5PSD%@s^st@#^%5tzPy#*xqkSnk#WqV=$q_1?L`1U5!O#AB z!0io1V%Vp^a|30l6>E<|4Fw-eLH)}ToOpJMN<^ngRZyw$3|)Q(;9?E6j>0hM<;h>S zhMKy74tcdlN=5oU{Li3B>hGXv$d?mM(y&G!cu5c}wADLo5Wrx7-v#(r=V}w4>U(Ew7 zj=38*h?37Roxx;7vDbth;p52dW5AE!yi2R5r~8Ul?#XYx;1aBVG7q65aDlm$2f#7$+_7)KTzrJ;=n-{hr9Ve?_;Gm?SJ}jz<~Z+j^e8i*G^eR*yb;Z~IFicCIiLVnX33g7 zLLMk!Y)JeIdd}!qPcgAbYQ+*@?mAfh;&BCXTEJBGD~2s|FG$9#lc2eWD@e6@PiFlBmsla?z)o&BRXvmSIRqU7gk5pHOm@E1!Qq>_I{hdr! zB=jzpCNlFGR|F1awd{R>7~s~msUV|yAD7C52watxVOF6;smf^yZ?NvVMQ(+DSak*b z6iscW1_uqy_8%rgv)C1nA&$J!0Byzy3iuSSK}yvs`G`W*K^}JCXx~e%heZo2Nb(oR zgJJ5Ax#)5;af)|cOwDkz1oK=}hfS12@S|7!bP!QkkgspEZuMYZNGy8bm{(|$tUr6z zX}x24`J{hoSjkPWxUDjjwue=%N+!@pl|GVr;8gU1`PnD)gPt_h1@E(pCyF%fRTBIW zzi7f4r2()0S*DQ4pl!wLO)2J57g9boz&Z}~o24CHnQ(MK{E>F!X+7)X1Y;)86m13o zM+=$z1*Zsb39X3>{}w`_o29Pql>=FI9BNilq$)@IBT%Y~giha-p_L!8ZMnect3H%- zL(fT+qYh~V)FAlEJ0f)+JBQM=P9Qx1bxZFiEttSA~W)LlJ$7OPIEQH9HgwXMo@@+F85$t8RY=6Wc%MA=%w$>y`L9 zO+;W(kmg{Ue80Ujba4YzndK*j1Fr7GPyIyCb(RAtkq z!Q@*jAL#?HliYx>N(DeN^v^@Y#uiCuBFm2<;ct=fcB!%MMIF~hi}myny^f2PqvaJ5 zaATU%W$sD+dD_#e1}bv>{t$HpMk8hrw{>mLjg^YJ`6p!;2gnXy)RBc&GSI|67S?A* zSe&a_W_}O|oh)ycs0mXpc)`Uo|wBMmaSXsYU^w~lUxV|17>5>?OPEK__z{7q~Jn0HyUPrBj0hLYy9Na&G8 zR$`PBf=Se2ZXh_VMS=~8_@+jbbBr)vmJ8DrNcAZLWh>{#vGORZH9mkF)-O*;@{4BF z?iu#`0dSfeVzC8Bg4Aj_B<%nvT-=fxZz8!BgA8OnV}U`yRskZWg)p9?#aik=JvZk> z%kI5`ujTgRlDEr2tQU?&2w1c3y~BDkx6cP1icjKrN&cqStiGuI!wRt&d;CQG1&yYg zfm4*Yp-{TtSBH7OL39wBZ+0K+)qEpjVRXsRwA8;n>E4N@lhkbu*XHEIG!4ca4^4y_ zsN#VgJi9e-UwYY^BT$TP0uo2hkpy6uMy0*TCu&aZHhS@o_XTo8WpQT|M)|vP*NGN3 zxkVJ36gc33r~omjFWhlFFjnCa{4KdPSh2ON4SXi1@q5)}ldA zdgZ(ZbL!+r5%Zy_V>PH-))6YcY7)Ui3s?*Z;C~}-!NH4O+e$!8Ww%Z*ja}EW9LogD z+gjFsEY4b@&#%P7nR*n#(`NSMRp_emUcht6nUMH_L;)tCel25M*$h9uI@xG_a3R7 z!lfzZuvSJvg)oX{_pUQBu_*biw+Hso?tfJS#cB$|FRf#+-~#+ze%PO3hR$INV`y1- z_!t!N$|q#vyZ#|gIa$ZgYMU%RZE@9&sr9?Trtk&b*paOCxu*qoaksSN=@PbaFR9v4 zQC>Tx_i^=glif+3F(c#o#aCzZ>BLqQ3*Sv`)RHOTGFsA!Q+-RnE=-{^1Z zRS}K`*j|;WGzX)YYR9_yX;;~OR( z|`S^mIW?eVVF!&0J_oa&)I&9Uz<{cz1&+*pqph7>^K6ZL4nP%1+=QzOWChPWfK7A!E=-k^adyXwx;86}TnS$#fyz?&OJr zoUSYNXAjflR6nA=rH!xpqZR0+*!#Qs1-cO0|xw~l}0{aS(y1yZlBZP5zQkJoJH z+kF$^GIhEUx7*_Cuu5s&3k*BmoV`p4%;K_p_FM3o>!BX&Tl_!gET=1G^N{49ZW;Ig ze*T&D1gmvSNCLkY~EzQN=q=%!fSkNBLOmo4Zp>`K>JYT#(EG!4_FR1 zDAdn`AJ8BmT(K5wVhF}R@}#5aWR>9La77xE%OWxm&Na9ip0P5~&$$7Mp{&rhmHj~m z0<1-a5GF7M$LpXI1)zNV`9+_yVFl49D7q!yyra^Vaxf?-&-wx-h=6e61RGe=dk;J3n%p8(y4jwo9g{$i7&+5T z5(;NofwWExh;H3MlN0SmSz*5pfMD>=jT3j!xU0>5gIoVv{bk9WQ}<&qV$9C|9eGo2 zf!wep2%n;O`TOc)0)a5plfJ7(#7=`{nM(lZn14|q-HpTkpYN}RWqxsMMdNUYy>Z_I zn)G%w62Gt#NCXYP!8zsLA|r3rcqNeu5xi?Yt5kRu>z;)ixPazu12@XOg^cZm_vtZ1 z-63ycjl3BGA`=ZDGF|6uo`v8&YZ&PR3(?j;3jQ0J+Pn*{-8?;9qb&Gi-*mhce#0Nf4vrvmPC= zDF(m6<%ao87Vn^1udlXAH#swy3!)LRn{qE2c?IG&sq9O1l|5UWP*47WvN5htxVR<} z!C~{LOgTmYc&6R-Niya2KBH`vw5;ot(l}XYeVe*Ul;Sl=aRGv^LcZ>YIT7PT>UUbV+f;+RYx2V46;vzjDcJ>>8J8M&7bJ^^N5sc zGJf~z2H+%F7%mv!{Djk`^4K^|yL*Un2(&MB<^CghTrP(p|RgrnYu zKAhs`57(6%3czY;B*^_wO8zQ_DDhOceWw~Npt)9wXvjewm7hUqR5Ok}8WewM{k$R1 zN+!wrkQv!5+@uK*u=>>Fk8mW}v(GbnMDe3(75L)D=^fV-#LSr$R%rG99A=-KR)uXd zDT5qEuAjikE88uxPUoIBWplXB=)!{Un=WqI)SxFdmGtBl^CN*w%cynTBxHQ7lo zL`qwkf5y!CMM7CcHt5P!0b>d2f|lP@bP@>C!Jv;JQJh%uZEHjo)lh4GJq#7{`3J_w zkDjwtc>f*HK@(@R0kLLb#euLi?`XV2G@%&@rt)wAg2Ajjb)>k631$-P*{3wx!Pz1W z^>bq5Wk+&A!hH}feFQ z(IVnYi}jQ`h$%bj?x%W-1vqocA6WN~nhF=iriB6d!nV`U0 zlryfFnIH9%!bTJiYmB>p>}9ZeFQ@#6~J+M(< zn;=G5L(tV9*8i?@x)tX{BNs%HM4KnFZ>|PE5L4u5?3^cJv9N7gRSdATWk_noqCO1t zY%z0RWjYa@Qk`Lbtx-tRqc!c5U&^nZk}>6B4cuU~5c1l*&s*~}jRbqV?PYkVceeTf z$tRr^*xdT8maGHJ)W}2~9gqU|kk5HB`Zf#lH;y5Vk2jXS=JH`o7!Af5D%FdEj}1f3 zk|DON9t(m_{gidHImvUOo9K_Tw&Wr`?v+CHV^>p#4wTS$3CPqVol7U`i573Tc(Rjb zRkuy|&uG5>4x+D>4-FXr$m>{#$8KNl)g6t8m@MbzFXq62=$D0@?o5gaU>aBluUFbD z`JVRr3$|EZ5|yWh32ByfR&1@y)1_ZLMY<(q3wEQMVk853+V}pt>eat{J-S+{RRPXS zU?H`t$epJv;Ik0P|9C7UgEyq`iH7FCunH z@aGRNBp(+GA203cfd|(Km~vKvljXW%cl4&6Fe#EiRS@}iak#yY@JAoL8N^9w{)XW( zVN;m$5lQ2AE(c!x;T!Gn>erVmUd>%CtN2ujIj_YP((ap%l#5sAwFi1x6+@j&CLT&k_bx68U>+ff51E zd=*_P{>Y1duViNHr<1=&z4bjK!k%1-4(ZNBt_1TYE;u7j_Rb%x2{b!qz{= zFkLck_va!xJ2&e!6*?E1!HQ0+TfV!!wyLR&m!f>Ljt^yq$MNdMPXZrmlSo3QgLf03 z3<~T*=pypL;UygyYVEMb(+>2oy+i>W2WTEK%FG!(=ee@y+e+nAQ80|kA*yXN7PD}C zGPo#=7Wl?w`(tqvG7k5i?sY*B*rd%g3cuyKfeWjW;}N#HtY|QhdV6t#*V88)zf6<`<6lA=rQ@sXNbx)%^JYEbS2bCy!CHN~SFu0zhM4i{cT zCGxw_Rq1@0&-I&{+?7V*e=JO;hg?fq8^@CaUn#gU8;VEG3RZua)04uaD;kwH+{VLs zM2O*mD`2XdqSQ$r|000|c7A8i2r9+*&D2Gs(&K8t`Zg15pBfleJUNu*@+t4cuehM%xprPI(n44zyxw8S-+K$7HDPggo9)6?9{73D8MyAm&tw2vA&o} z-HL^j4X%1;?~yQ-fJ!kD;-$Pu%!ReNfajWWSEU0oZodG>nNv@|#t{+|lx*Jz&g=jo zO}Mr}Qx~{qJAI@$#yQuU!mBFC^HY7n*UZs(1HFTi9qdJppTB&9Mj6CdOfquR(dKP1 z=BRKM!`%3yR(i>n%#vmp^p&O=RYo>4yClMP4N6NI&+CJlnPo}eGIHzc;QsZjzA~yC z*^TkYnsdhp+One0+)_wJ&OHGOk%(0rS|KyCQ5s2PYwpNP1J9~o8L2t=J35_v7+Cpk zI(vQ4BglLJ=Lo)rb6Hf}amVSe6>R7=B4q#GJCOP4fL+KFjjDzmm zlPiUxG~*ds#VprEBh2#kUHG;~dQ!Qb(IRJB&9HN2ZnYqC#pfbdhF2=L$9w*`KYUeg ze7)0nv_NKxCmbp;G@a#X=?1{GtIw>QRr*MPYwH)>(4RXs^*22U9)F0(cA*D+aQ^50 zCXtfsDhLooJpUt#{LhX?C#hik-yKajrLq3Tk}eq9Q@KD8iN4Zp4I^c12uS3{?TUhV zL26f}yMo)pARjzBcm^$NkM2{-DL`8KtWVEcxC-89ll>~OY-64WIskvM@@h`s)p*{- zr38R#3mJAV%d*ydoxcTqjtJhxnuxKt@_gs@D(hL!CWGb$Lq3l^t-R&jULr*TrF|&@ z%>_z5Jflbm86~nzBypmR4zwR;-l!;r$iP`~aP+?AW+PR0X~hC&3B4*)GRAPgT4W5V z15;?+2Awki3P$;xMUEInoxt|a@R9DwiAI-r$sTQ_2%$#&;3EM8npYg#D! zv4HCxA~sMi%b-yW)YTZ0}-eN}D_H;ITV^8O=7EKX$(O zb1zd@iIXI7?E@POPs;;i+{5<=`KHfDuPUal89UgPedq?MPOi4v7=gkL>o%zSMa~c~ zo0#u%h-b)P_50y*7drvy|2Ru8EMP``uLT$p%N4@cwu?FHSq5--ELMAdPe0L22gFJx zbR2PJtY~r zjg(gfJ8p0eDd$cG1(+Q{6LFvnypW^4)@XoKtD!C_?MDD`aCa-|#)OW=UqywppIt&& zVnp!Uvm4u@xLtq+?LW>^48<8?f-eGAT1j}LlKY40Q3RnPYk~u)a7lP?Pk0@mE&vS< z(LNI#K!aORj4cm{fUH28PnR!~ID_ILU9nAIqkKF|hp|x#E~{P#E&uBRO09KEG%Zta z`5h21wxF!SC`>BSF!Xc+$}*CKcZC#VABag}Pi~6U*_5<-wIs&xQ>i+S$Y}#&z5*yq zStCkpcoo&)R*bcB^798XPg{e4Z6H+vNd)-A7RNKDG?nO^gz(HgA76<#!RYbL{Y5!3 z1(C|uvv+#@H7R`o@PcDKyn`u*G@3hs?-ER>Y$U)1WJC#8|Kn`?rmqGKSo2F{iKBAJ zad_jGG3(3ptuO4S=#qfS^(M>_@=O)8oRaovs!JzP~$8#|N&LY?#o zgS2wF`G2z9vkLhIdjCw6&^p7eW-7d)1C(EXV1?If)6T>7#g(aCNXml-YX# zng$v@0!A{_s@JuB;soqvcN+V}$@7zhH^ z_!Wag%0{7p@1Va^uvB_-KS_vrD6!5|P4VklcpO*u32$4e3Cq*U_!FA3wHddQi1WIR z4xPe72Bcp;>2p{}<_afrA^+LIZq>=r>r!#b0S&fe1rv+Xe9p`27k#t%uZ`Rc+--(& z{Ehn^3T97X`G?@&C#pFQ65{CiYvWa|M1ojClfGhcOpJsvmPFD!dgVCnKR!S<`?^Gq zHM%I_eff3|^<{a>qCdG{a}ZH9zI5W>ZU9LHGr38hruIT8As*PSQV8;W<+X(H$7T(Q ztDO;9uSLP?yq zoheA1r=I+%{H8$vXZa6Gqt4|r^J5x|!@N#_k-LSQH@E4z=?ah8)!31RSS0Ys?bc!` z=AZf1$e-KcXPD3=X<<*pC|JhqWK^bA^}*5X;`e?o7gnO&Sr8_OpwyBsF#mUwz|%~e+Ge6l%>^S|h!ffiQ0r`;5pFa$MmaHbFrpLcXS^#u&OEWLNx zpFA1dU7nnK1KIo>R}y4$5uIhcR13a;OPs~4WK7nR->4>I$JwqWgB40_bN}31awXydF~|*#^}(`= zWWEUZKzIF-ox@BN9UXI}7v4RK8Ja^^@GKNEvir%X-vQ`t#d21-I4^FN_ z50kLOVvQt~Sg7bzO!#0?2o1r9$gZBAF%&rV3aPy?g1toZp2`ztYmtecVd8GbnN4P+ zCnrfVMZJEWt~wAl*Nb(^T1mF4BHjXC0CZl(Xb1aX7?G@GQ( zWIm@rt_8B4%V&}7QGJ2E3%e$40)Stt0n0L7A4+bwMS%B8pl8H#?AVlGH4}MqJ7tQ> zkYJJ-$Dd=}`!k9Q$#DgFFt$CM2JI8d!CGE&>R4(c#kv3UU`RqBod(v}-l5G!us2Yp z7#zyH$ovDq*W)`TigYK+Y~(>I`vr{A@NIxgT+(rM!ti>5ApuwEC>g_Lp7V@=?$wLb zgOX$+i!dCENgp>YsZpN}&cP4ZpY~{o+2w+RU&B;FcwVM~2~Jj=Kt-bAAco5M!qpn< zH#xXfNTG7=&uW~{`O_Z+Wv;F1O#C`~)nkc^B$=HuD=#U_dP`6iUZ&$2Xb|_$71VEo zDH=b-ClSUtC>b;&#lHJHVVOs#JuUD}X{4BN+Uk!@mu9nJ#>^Rcy4}xB?y&9Zt}&dm zFUuDEmU*%X8D-NR&ljYJ5*h6nr%8KDB!UA225;Gc`US9>;)*vS6{m>`qA5C`_KeXMcU+_>$w+fwt<5>n=F@iGlLiMBu; z7-BvrOD_Yu$?WLWnt3g$L!We}Qy0zJk%wa8!*&{u#o~a4 ztg;#}M<+cA0)p;4DL1AGH9c;cpSNA+pe?s9IgT2cUd+>QTF4R$yM5roYFr>%JyiH`k)w~934j7dNUUbMl5%xPSzH_E-bblxhO&!j?%l3pmJ(X z0y!Lt5lVSi9W2)BW56vrgw)7J^Q3XSsT(S?>V&qnZ|EFwjkZ0UYN0Vic%cN%rUvPZ zQV~0dWew#(=%%|Kb=U=hr5<)%Z%DJav1$=bO43|vfk<+LiSIW>QteOF7bXm{!rCwm zkD>?EdlJ4Q#hL|EG_z*rv$kFvgvu^LLyEP^Eyf@;ipXoLyBVKJ2nGgDfJwaWjA&1q z<_T6LLR)K0Z1D+S2twh_s7=A!65%tVLG9-k!&88Nn$Id|O@Y*VmTWbTEk?_Bu>Izr zWxsYy)x2knuo^7~586eauaGT+XUFK1xBn(s_j)o$A^m?eK>y|yEv=+AzUA)RiWfvQ z6?V=}dUAexP^mOjG>va7q z;TN56ZGx5);2GZ}={b}WSKTnQ1Q!qBFHO1cWygh{1yQ-{@AbA#RsUZPkk<%=6KD-W zqC5e1+&9R;vJj)lUCr)P-#>b!2uZULxzV#DBJ1w(uoDBTgHk_xE7j2={`yO4m0(%^ z@t5xT0sN(hj?5soCgFucy)-$@-wFTMUrGpwEQy0URA&)@;f&J*MA-*1AhO_+y_!fF zAjiI7p}b&3eqfT-j5>`RgwQt-11MpdzN2 z-Y{h2~+sNX7IF)(;SPkrjP+jZwN zNAH#GwX=IC*j$?M$xnDy2coGqsy`Iw4;S8Ro#W?uCKL||nT98O%K>58?wFb&-OHA| z)XA^b$lAre;lD7jJN98e-j*c0@z6vS-q7fb2wU;l;=0X;6m)neUg}h2xSif{0VUc7 zVhVqlHgy`^L>7x76aaC}faMN^h&kx=9SO#3fi`^ETF9mG z;OYcw?v=UZgje^pXI9Dexh;ff#0ZDKuuU+6!xtfvyF%6<=-fL`pWx5Iak>_dHW+EK zgKKyMQ8fEz2wva*Tp+<#8C_t`tkP_ywYIo8Kwz4OweSuHTLCq{_CEsCaAT*$(}zrS z^dpkMvWo}Ea(vCkj2{4hX$y3-?89|Yj+sq42^^Q)PwV;i$v#3*UNS#@DK} zH+^iJ9RQhyX8D11CNn~MsZvGO9G>oJM@X#+JJsAVCrGsYur&zU1&~=9cEg6pSSs0b z)WfNmeP;Bj08fK8cM~{fiwP$uWW|;=C&dH<1dvlPY_c&p4KQVbElp|rRF{p zGukV7=WK1D{Rd#}UUvq_ER+8Ltnb*u_7xi#BU|ia{=m50A;{&Bc;$RBoRnyT@Iz(R z1i^R&6H|wmX2BPV;bV-PRB8>@PQD5GLriLDFC#%3!3?}C*gjaMGHEp(DC#y(Sh4so+VU(&!U8cTRm2_x5 z#U!XC7JSY@HJqs|;8I;?X~ z(9t&Kr!z)3v6C^eB=B;8u;on#k@VtMF0={w(a2#duWJ+O&~nH&@-=RA)y4C6V;#Xv}0pKVHy8C2Ws&DsQME}7TeX|nIG3KqV zc;FZM5rZmaZ=tVz6ISZ>7E_rGucOUiOSpe2kOExg8Yp=d5t^a6O@~^)*Kn76g=%Ei z_z>gUQk6};2D5MNw|XCN9rOkiI#d9qn%IhTC2-y}8?4wAK-Wmg?p9|m@IE#GM+o== zxxqy&nMa~{80-=T>l&W={&oW40ficOF{;ix@U4{WFXEa*|7?$X9 zj9@ZQI8HjEAD1b~8mab&W|9j@v$8=CrL{v$lKgq^Yx&Pm8&E{iJakK+gR}9e9Tbi{ zU}OG!iYw(&ZwSJEB#KXefLt2YTnVT$i>)#Tza}>hyuYoKXA*2sLKDUt@T>lG{c8X! zxQ4c5sQkwOWDGC>weB6-ka|N2oft&eCkhJ1IRdP7?AKu^-2%J2>f;`Y=wIF#?>xXY zx8LH|Z!nR5gI1&ySdaXTOz?>AK{c3we;fb#b9c3TAAlzH9bPSgPj`ddJuq9V2R4^h zYNb8)2mQB2q&>*HZnoz~~xZ4$PagTU@GN%fJSd?T_r z(60~9b*Jux#j8;CH#2dXAN2nWE|kLLkBl31Rl91})AqpDv!gWQDnNKwAClFaRbYVh zwvAHQ0(erR=|@!1cbxfo1rPheu7)BEfg~!8Q_I`~0G?F-o)+C7+6fImTzUcL8-@3< zew~BiT%AoTUjFM}=&Qd*Ciw}Tsnyj33lGLvDE^Lg9@r<-?XCu8@b5^c`_hQxh>8I)(!sM2H)R2x^mb*^@oDj>yM(sLCR5Np`wf9O z;BJ7K{X@6WPG3KrM;bBN^!O(~bD9-n&QGt+&D^NVN&agZp~Q{0N=;G)UUG6ikTQOl zk^44i-6Y`n{p#q9Ig=xm``j_E%*4aPJqzjWVIb7+OiF8T_(>OMpbki?oIrXg`Q z5GB%}+Zfz@6E0=is~sjxv!%*)AD3)R;*QN2)tU_rFBag1;nXdxbZ`&($X4!!$Has6 zc(o07XXsM#|88^`ENC`7KKyvIbXbg3^3l%~KFF8cQ3T?fn>i@-g!EivIWGdobR@uA z*W+}yqAXRKS9QSPQo$``1Y&{)Jvvlr38KdLxVGud8t#iP`?MexIu5&$ZogxDV0)dO znRDk*95XQNYJpRE>4=~leVkh5k0-F}+^!yq-2 zDSU?r;)Rt7t}q=|h8z>gkLBk(7a1}2@PEdtsHF%0{<$P`Da1-QgJsV=a-tS6g>b5U zuoMWDPT--fKg?~B8C)xe$1aO0Dy?6O38Qv)r`~@TP2gnPJQgo>dZNbR{;r)I@Xv zhKxMqe;HBwEuN)8fP^|2Mvo(c-b)FGJYb%hmHi!FOZ>>6TVtg$YI(TWmoiOV@|LF%X?p$afyx1(b;katDL5?Djm_=~;Ei^@NUD zbhsEN^`DK0)Gs7*qIpl;%)CtMr!{wPxY)@UPV6%1TEDK%Es!b!x08%0G{7B9cv{H1Xv412Q|wN_ z`w1{^QaAKJnv9#G=d!8xvA7H=J_0lHcGTCvH0Z^S5>`dz^> zG07}>goP}FN$+FdXNQ|TgcO9-<+pm}ou$&AoqOmRk`imS48YMQgGieiaTLR-LA;}h z8n;0R!Z|Vjpyghl7yYqgkeu%ZF&`PD~*Go3aH%?QrR#0j%7WD!yk2>>TnEKK}@0$8Q6Oz z{B;0z_SO)B06&KEYE{v|~e%|B;H(oVPx z>xg)@F5hZ7YeK`xw|iECA~>UrU;es%5d7M|7GDpNhMz)Ma7Wfbbi?d#{ialY7~Crb z=%1yCSsnB;s-r0;?0aJ5MN!pLr2e&`8`izCm%yBksgDhZ>8DIAkPpbyYL z6NTb>D@D#!Mf%-)d_gO7uQ-!f=a&%>kQJu|=$|pxuEXsF*lIQYlnO$5rS6>mCQ#5} z-HxKA1tcQXC_&yU=^fp__^_wr3MKF(oM)3(>N5xAPj62wt?^Na&ZT7jxAMswxM$=? z#%9>}sJka*>{rm`L8KOJLZjVv0B!(mG$a@EGuc|7D(%JarVXU776=U1mq|;PSsN2> z+nx?;1>Uk%!rR3)8p=PG`V+zf zM*oCr>tjvggj@+ju+Xa~oWm0#61+y%ALRU3zP|mR`;~O9R*7g5Gs7mx4kj761xdX8 zOC?bPeNv2Gg#)T*@yt9jSKD)(SmuY?vb-qd>bcmMK`bH*v{s5K7?~FNGAc}AIXiv- z?`sm`S^NQI3$7tn<9Gy`31~Z58Hi4CgX}{HI{7mwf3$m(;-0OJA)-#4O>JhfX&Xbv}||Na0|vV za)ogh(PJN-%$P=sw(~6H*0gwqHPko#JY0CytIXa95!^$BqCoGdxGK=PF}!UqacsO$ z{GGR=nVXNY^n$bBoW>%(C7m~Jtof^UdOU%b$hi8WB&k&P+s_p#rYWfY#^fWHTr&JW zzg{`rm&in37&+YYGNUEr@F~G>XlK}U;BzD@{G_}5)tR;f1^j_j4>Xl*yJ26YN{BE; znk#q5vyrjG_Y;UP5<`(Q*`^Ezfn!1GR;$Bb#WXL9MzId81Yq^aB>04nW6maGtF)8{ zfHRSwz3JIN4t}iKOqEp`DYH*z9`LixJkYTVi`E5TUv9#VV`Z>(Ei2_p4UoMcU;72r z8|dwUCkOX?(aZWXYpUNu(?WxHu+`v51%s~@v1^VabKq)m#6%|25IdMuKvP>`U(QQ| zyi5G>KmG;r81nQp&^rg8lKLWus%&>ylwUYUn2YI;6HI0P3Nfa6#e)-Us(EA~u>W@d zaMo?Zdg9mKGc-JFS7&Yg3?#x}k_n!Urhb)}AHgf0`nN#aI8a)hFeNk#$3XGBTI72S zI#hJ%)B?bdmCrPQ`WCJS$4I^Jwbb~!bT=N$06kti5_A7j{-DA;z&|pJV3g;nT6X#6 zcHEOP!Ai=4Sq6+~EP-&vKQhweAo^#3&8;KT%NOI0haB6dBtn`Qa+#-VQ1l0beU6Fsk# zL;0I&9@XC8&O{-IylGkAM^`r9v)Cj~dXJTsnHAgtRX{s_gt2){MuTPBybEihPu;9Z z)xh6L1o=~vu;a_`8Ik1|2Ja_`eMbAd5RpSYe2cmJlNH^rIv2XDGpDc_3vrN~SMa*d zRt35&bfG1c*_pkk43L;eF9%ejjkp~M%Hn){LeK4Dr%)l&q$*$k#a4rS`x4H1&PyXgszQ4F$cW(i2V4DD!>R%z_V@$dte8rCZP4(mY6?8Uv5xB z9*}d~k9hZx!|ogA&Ur($mMq=R#KOnp#HnY3Hn?wm0YNB&wqqior*@5N zYBQrKCe8vrs*^v_PP^2&LLMB++1#v-Vb_tn@_3bcC<#*!E#DVuU(9Bvp5Bu$=YG6+ zqhyzx(@qZd(;!wXXI+Gvln{>e>yiYzjyr%e?z&LD!m!ernkmXP?UoTfeQ+TUCYU@u zl{zDnZT0`oxmN$-$iL1}JedIp=R;<>nXewDT&0*G0#y3R0>B>(yjri^f!d5uUqWwq zJS!^=wIuGhsIACKE@aP#fuxjwspMRPVNlmSf5G2Deifc zVv6~=>!>BKvUwT{F;Rj-^+Roh>c`PLR&!?ckqXWvJ91rIAKYk?g!{&kY^(j1i$f18 z3>eK-%tGS&j;#w_QXwg5te05IFz z!hoqA%#)bS?OG8`3DYp3OW!lze&efrlpjxwj9=46Qk8yVB5)P{tEUJr{a{KBH zb%Zl}9QQOW0wJU=PguWoYr}O8pV=|jJ_c7=cRSOaBu^BMUc-KlkJ$jSkITC0OLwaM zX5luqcV}*NT)`hQr^b` zy?&Ci7RB_LpI=gBC-A%ct}k>R+PWghKCG~)jTkTA%_{VB$hP|AQ|gPp~vonkNaU=nl6g_DDGulv}JfQS6RMz`A`yP!bw0!$juA_vA?i6)* z_fxBeDWN#&G*B7+679K5hC6U)k=8XGNi|$J*B-trl(s@bEReDj!}iIj9p)^itx$97 zF!m0!G5*W6DXc4Y-uQvv6dSc{T8a;!iE74zDHcO(MHj1yIuUc9vx>#Hn?Djl4dJu_xtSvt|{j_ZHX_HzhZg7IGelQRoe+Pa}>2p#xJ+4%A*w$87_2 z`VZjRA!?0dEXG0c3b6ec?I8_wa^@m?=!^&lKapd>4X= zgG>2o2Ldpg5N1+II_@EQ+Bi1jW2ym3SB3Ks7|3j~x)XHWiB2_zARm%Q*O6y;9OD4K zuEL&mTBDO+lnsteUnd=Cw}yQ`+Rd!-h=c1K2A|> zD{4dl%5)k3QKtJpRJZ>NrM`x6;jJ7PHs>^S_iWq653$3(zB!jn44UlBP|HqPLcU{} zmeSz?*i}EI-tP>|c2=Bu<@t~VR>~bryUZgf>N;orYHCwAOVztli@YsQ1)wgEUx(z+ z{ufH^SGR|wi%)S$!jgL)!4|UymXHp~JDUVxx(yQn%fC*60R!WWu-X*>)r-%PiSMbS zfiB3Sw5mxWy6~58?@a!2u~e_Z1YD*}q3`lW%JsSp6?@?NkwNCX5yb+4p=6{~uJh9k z!uOyDmw1UDWrgA^J)|~P;suamzi?1K2+CjB$&UDy&;OR`s6GE5VfPeXciVmoJGPT1 zY24UWW7{?xqp@w+kOYaApVY!=MEseL zk_X_J4)22Cc@ixK^4(JhSw0J{9>0LKnXwo4?=c`92qSx}1(ee^#UmYg$&oqwgeP>NA<2=C}gcj^D&NKpU0sCf%7v z;?v|4xd24Bp+*ye?)K8UJ*UlwHBhB5qio+ZQ8eTXdU;%O!2h|X1HJvB=@MC~%a?@E z6LtQ_1;Ad&No^l5FA_=d6}Da9)8}M|Gy<>QQ~{3ZpvBSZ@jd1x+D5_KW8?Ciz)%q9 zJKz1+t>N_EK5ISby<{QiQ}pS7M-S-l#x{^_+z`b8IT2LjV(ERIG+ z%lKUI3LT~#9JEbh@e9(3bM}T*%6TRH@Gvd3G?30njOuW;Xws_&`Fm=;i5)D7Ni;+{ zq8vOvSs@+^pPC@Cd1m{#$E_BB6DLDar%sv zM%O}nv>gY#uJ?E!Z~_o7yn)INWo@Y`X*0B6N$19a_31LiC9}SBOrdw zo64=rn6ED=n2RH>`W3klE`iF5tevb^bR)bqW)v*yB=nfyFs!=h&pce-NNZ<;$OreD zzj(y6!|s)6E1xu=eppKQQDA9eZ&ZybMFz_pW{7JQ`P6mEMmcEQ{1vnTPE8_PFlWoN zg6vQ#T3`GQQa|zMtUFN$TLdJ@Jtq(u*dFjVB>hBNt}}4DrbdJZ-5qJ4whPs1brQX? zt2`Z~=u$seDU3pEK{nZ?x=iST;Z^9c_&bywgEw1rQSqb7xPVDr3NB~<4+#1hluMX5 zpF)?oSJ2K=79cC1H=qe$ReqOD*!Qd7-A!qLmJbRz=^965_izQSF9vBbSMM_(b@-5k zD>m?4woek|d{ipf6-sKZwiHqjy#vy0BY}X1JIRP3?bx5wvQSqK5;*}|Vrs81bG#d3 zu7<~%x2r9&K)jOYyxX3O_dR5LcUDQS3wybDGLrmr#z#M?^U*RB@m8u5JS=jcA+>B* z(QYFJ)=yC*a9S;S8MNXJ)qOvh9^+QmnEiJL4TcglyErkuBc29N+Om{(6S}yG0Ao`eLSIo!f+}K1Ka#NX1WG-$n)yF z;MuwKlWc*VD}TU-VNpd|Ju&|RfVrW4pbh1zvwx16vaw9xKd%GEOmU|!#fyx-V_mwF zG@jw!5U~}w?-_KY`cO?<2BylT?3et0Af@%5sJl(c3I~jtHsN0OYh}W8NWsI3$Jf&&X%5lCcQ5Gn)>nUR4z7FM*O<$7b8D%rR(-;p(M3CXqc}S#or7gkv&J@ zJo73Kc5RLf`SN(VGv+Ruo5D`MSqwc}vpP3$x0AQ;&RF0K>)_p^x*h_0KHr=%06m|? z3~_TzY%2dLumv)loou%`R~_3Xys2U4eO19l^E2*c$6vOiJdSS{JwuDcKxGCF2#Y$y z90EVBzcMeX#;L&7VAj?my$mt z{UKhj<-ac^=`V=vOdMAsL^oWq@GE}XF1IX|2oY>>p@Jd1ZDa&H)}WPN(Be2@!(7Z& zL@l5I>&|A-Xk(21E<_Ql=AgNe@GK>CtnKJkY!cHZdw8$sF|12js5)<$oM&pQgSRc} zc)p+D@cE*rdf*_gEY7-6>kEzUSn>P*iHoKpD{K4xj0W9WyUT!&2AO&DEJdQ+Ktq=F z2=PdWXPy+As^Q2+DTz;bFa2|DO-ei(wx&^c)zu2qLsV^DtF|>9<bWrr< zW_s#hgrh2Nd5XqSwLG#;e>PGs?|oS^s9FuZFVW576+{PJA(y_oV!5NJ#Zjd)dj?v! zoSy4&f)FLrZ@DC79cE9}D8$_*4sebd%+eb)4$3Y>0u_7I96bk9)Ly`&*zTTI#d9aOA@YaMvcBAf#z%g ziOeanAMAxy+GSw-8jj_#4AS6s8}5oM17T=nTvcdmtU_CxJ2EB_&(*MY;MNtYq(gqUPm}u7e26o-?I2k!gb_c4xCZ<9=FJY8lg{@|qUsd=4Na(WX(d8rD7J zWMn3sZe_x^`!P$u25dJIdZ)eE;f5s1Q>R8L5t3EYD4~tnhr&b}!0(bsNm*-wM`;tO z^zA`p`NjfLj7H42Wilj_Gt$A>OaAELF|ztHWo}B}WnmOn>_9A^SS|czrh2sv z+yT=0@p_(54o>5ZAz9GS8~6S^cnEilgi`J&KCsn8tgJx0#0tWsFN{*(R|5%BdV(2p zk4(Tx9iRgw%A3P}L>`I&7&nb7{5+}4zgn`$!(RM6scU-waC-FiXmwYEG>{{HmoHSo z$htY1+vDPepe8=eQytb{{x%`0rZ*M}%ZFt&_|3hkF{>P#g zkI!RA?~v_#g$(92puM0*$ELrSIO&48#2)xl;E%iPL$BBMeoq9wnmV7V9iPa8Z2y%J zC7q(#pBW*#Z9XY5o69ZkyF25P?EveF&xqvwU|ktdw@fbH`Fff65L{F!sY z3)ioh@|%q>@^ip+gW%I15M_V27dz7=-nJLJZxkD!{MK$;v{mlkJA^Qu4Z6!GE6?Us z!WSKVcmxg52w>p0{O|ne%>bdr|LO@kYN`}cK(5gXlRq28blGdYC9mu7MhzTyaAP>RqTzpy)u$Fx7Ds0Zrolkm|`01%PP+d5gaO_&}V2thlh7_ zjyZFO83Os>p^HvI{M!I(W(I^7Q9uKT_DXW1GkRzWzlt;n&;Wvh-2^m%J~e`x>msFF ziRLlL_(@zJPtdOP2gvY#+&tIb?6Ksd0ro9_Km+J=z_cqI@EUZ`)ya4ZLr|?S`sW+k zLxn0#<-FqhY&<~z5&AQjvV&)nypqm3H^{!j~_&#e_l@b%fjt zkV9XeTli|*{1ASmgqh2SmGqqR&!KbFsfQm@O0!|+XshB8FFW1UX6+!C(1zeP2xSfK zBuuYPwNN8FB=#7J=ckL|Fdu<_z6O=Ivm3_V*~5&c+CnF3UGh;!LKd$= z-7i&mB%UKp7(!*J-o^|N^VaXm$(|#?DJJ}euHNO(zZ~h|$>6snIwe3w{$?GD%#xRc zmxdQXg)TNj5?3z)@B=MgP4#he6se&IH#2(!?nY+fmOZhX@D!B&G1xQBpe*YRmhhlx zlsIERO26QziLMe_c)Wp39uu4`b;u4lYz9BWWn_AC69NP`Y+XduFo{D}Jx!mbE0LsX zA^Fp8)dGT6tt)J*@8-hvz)kP>_-9UrAt$=|txnCD<0;=|42pEW^KS|J3YL0Gw>wLw z{N!822eP7v8}!1kmsTM_6e#??<ly~~##i56zbj$h|FC=U5RVOtgbR%))+`iCV6v&H%ec#g#}B2uAf!cQ zE+r%78%Qw7{<9C4C)LKAAo{@sNGyJziRID>U=eU6l7_t&)nw42Nn?){V&RcgM>P(3 z#5}T5l6@wYdN?J?7{P5oVj(T6#mh@OLhNDOE_@X6_=$-qapFuM4z&a-K%T?63$*h$ zv0Uq(qyxFG)8*BUbp>pTc4y-m1uCV`j;se+U$Rst`dgX~rUjw$fYmwi1gnY&S0Ur-tocDuVU8Dhv;T6rdeP-`kiiszv?6o z-EwvaqsNSrBc?9l^sG1X1_P2GMc`5jk6x4z)=9ht@PI3ZJ{&(1Q8uyw%Q=-aTI!t{ zfl+W2^dIPZJg*obXV68}MKcVVfYDIFMT)D`k7fY3-n_0-&_D%Gd zxN_9qcL&cs9$~Yc=WVk7c>CsL9w|u260{qEbty2?A_EhOf!{8#_dgwMdNqStDqGzS{pUz{zwU3 zxkOxDZR;P74ezENLu1m4WvF~sESy%iS0lsK*blSYH7O*ec@Yqj{0Kj+=BLB8)PD68 zPN6-BSEYoowjvxjxv#KiIW04;Lj}X(XxU0=Lv7J7uN*uHWtn5ABBqJGF$(Xa9+y|= zLloRoKww)G8yH41cxvLmh3dkcb-lFSO$Fffv>RK2Z;urCc{uaSUL0cpu7`8+>WZ|+Xe8pUM2 zGFY)WA7LpixFi=5<$V4HUi6HH+JFBg{>Nd)tIWpktBVH;d=)Qx`d9XID1y<8F2;rB zU28jI4^riQ4(YGA*_nr}6x#ICi>5Yl1-UsPoO0rgN z@O{pOGPm$cTb)E~l-1WV8Obm7=>>CMz#RlF=0%w;(aW}fF&exd8oQa;1iZc=D7nTQ z>3uB@BX(5!ItYok_87d#(At7|N4Top6ja?z{5zj5uQD#p>{j3)!jgm2Y2wV$NIYFg zc`XIV$$u(7#bOg^2siJ2Wrved#q}Aety0b#m1m)xbTZc}_!F4}{}QvihA>7|b;%6!uJv9?N(Ym?eYaX9 zf?8=vEAku(h}MTI0w0Hi-;iP%+#oJI{S1==!bcGtv%9%wi~YkSYYmFiJ_eK0pwg%1 zheO!1U4Yg*|#uyJEr%4^9k(MBMi&kDkQ3yveXdkMQWR+akzIJ_2urNAW?ssTe$zpdn z!=`D3sYTfKT0s=FVzG(yUzcst0E+6JI$6D!iM2YNjUBf8Rh#(}UjKsOAx)i}OmxF< zrdrz=vce;-@<3cy631%(j!f%B0d>#B{inl5b-2B?<@eqU&5HWev7&SMFhxo5TkG1| zVdwjp=$i+wMrSIJCX3#*G+e~=deTsVT>1_3xi56?&c!<`KPl<>mczc@VpLbyq0{@5Imh-3kQLTi3+S$$uH(& zI6BxsAPAj2hEX(D^LbTDV*lH(wO0-^*E!L zOw!}hsL=|Yx7b-!)7u%7S~WaJDkp-gi}5T+QCbF3wHo!^S<=hWw4;(A?#>*n+yu*y z?O0B25Tw%gK}^2945+97?w*-bHLI)5CjlN?JFVzs=?zH?46F^M2=>3#pu{FmccK`- zxMcGf$Of{I(ECM^y5^Xc*;nq&Pwl6?-7_$?m!HQjfsj69b!YsiZSx$}wNtk_Pihow zq;~ru@n#hzyP$&jo;Z|zHGZIl3p>i9X}0ToHh1?pZqoMi;B67^S3|hf z!8nq9V5F$x9j+5rTU93fYt_*DJ1h zcfEGkw@k-MR0vm|uc%@EvT;wpBv+n(giSI%afQjWvv%0LNxTnvo_-{^eq8Tg=;H=- zPwla#O1R!pTl1o?w9~i}F9ze*VcQ|7Yz-&v4^dYT0MpxT_4FO>x8O%Gz~zG5QDSdWH;R zhKzB?OQ`^5g99-)NBYEfm5<%5z(ZC>BAH)Z-j*m?SH`_p^?c4Ar`65tP>AcsM8N+n zenyYa02V)AUl%)Hi7rzKth?sDW<~|itIa@>9_Xp3EqfK?WHa;n`B74~;?Z5y^wOe? z^<0roF+)*Z=3#dEnBu?y!1k+@c$zAExeI<89@TfP2%yyzV=4yvFcY|)V15qFaK}xM z*#E8eWBR|$?N-WZ5)Xi#n$h)-w~9u38Qt_{1NZtdF&$%kN}F5Sn{9d?k%ugWfoFcY$36Kh!DqRp^D<9izclZ&#Hl74a zU30W{GP(~T_&R{IS#~o3YT9(Wf!@mPu?YJFXY@RLQ3FhmZRQurHYNzK;W1brA;^|D zLGnH6N=%L4K>aFltpKTDcQEB-ZCm0pFiPO`5Wx=<((EbX;1y@(={xa3@n=ps^>uR{ ziqHBx_!$8h{KVGuLZT{#{q8rI2h80juMWfwpbAvynZv@OEZ6xM3ZK8CD}Bqach5ng zGCYc4?%yKjCjL+DXADsL;a00V{{6T16I2xBJkv#=I0tSTkcZhIyKpqxGhlIOGb^KcGy(pt@!I~NN7ziK~KMNetCeemnzT@atOpVxMl z*2b79y)UOOITqCZ`6u%wBupYfhRbrwR%ypmXi>d(f9F2+FMR&aeR5*E)ek6-5P%zY z{%o>lDQvQiq0_rRqtq7$ysq3hvVG$eO5z6%x=>|rXuMF3WIrBTuqa5*1 zIlwD5p)!k4TNW)(NzCcnwAm*P&`S$~_PUj74u^T5t>n6uPTCz-qfBfcimcCqT76}c z^B~1!pH$^K3L7$;&o(7c;FeA|A=EPAOhf9W7-~<*y!T`DPm;1WnuDydN&G{3`1Wqh z+u9FX3>J!5%GV7!WI5j;u0~OU4v?mGVw7kKR8y*h zH*998Mgz)^Z6rPSh|9!Q^yZ41F&Q@z)x4?5l{ z`?^o1O?yiYXnTS_QW@pH%l>%vgWkb{>Lla5Hy1>^DLwpsq+{e`u@+48C8?a= zIfnxnZ=YP*K+UVwu(RU4s~mX~>m&nY%}Z_`k9_$F7?Mh3wghE@>7rh-K;lf9)@!-a zSUbEuY}?%`Y@KSUH06t4YBA-?S8;3(tOU|i5^@qy7nk2>clBY&^PC@)Hcx*rd^TO^ z6CvnJ$R@zC!ii0BKJwgHv4NF1_}l{R1;D$0ie4f%;zgW>TE9`s!2>ly*xImS6#@0H zp(NgCf=b%_NGuBm!jj`#_cgCfft!ey_HhC%iw3J>F?fzIidoPJHIFJ^zt`~ncJcTo zC*UxZp$327sH&i&-jbNiEi4Vf20oCLiPDR6?{i}jZ6Ihv_8F2@w~L@5_ygc#E}k>UKCsS()WZOw{$$l+gQe~z3^078sj1!3~{Iuk5b01-kw`= z`VovdS)R$y+X#r^j>S#u`lcS41&H7uYdTw$9pmUD?2iDnZq}6z)xLXim^U}9R|b&i zAJV_p^ck?S6k@&ML$=sZP?CD~Y2e_2Qwp4m&Vfrfw*3`b(w}@s+l3Tx&hT%DS=d6G zySGyJs{ztn zM+m*QQ54qZsX4IbW@K={D)cS>e&cG=lUkHr)}os5Bc7n)kk~gBsceEllI4J03FZ8% zw+_rO{M^m1D;9rDj?=6!Rja6opD|)^-aoOzrKPc2->Hj-Ny~C*D4aDjV?+3b8Uvw9 zPY#%NO&X`~0reP05U?x?*fu=en!7{;^@aa)T*!6hA?j$VY)xiFpF{0Lw@X5OWPmY&Yxyiw@z5NHSkMJMPuL9&v2-yy2NjOnASo?Yy1H|cg%T##7vT0(=@cTvgGc8 z`cW1d5y2vOM`pfLN<@+VjM@mIBpQCJj*|P@Bkr_<^&@zH!~-R<%|-^h$g!uN8i&N+ ze^-12k2fLzYrKN{u%uU+wX&4)Dy^|W!yeLf>46O!X*_s#BdX+2+zel%wAu<=bS?dI zV@@up6~X$Sx_!A;H9Hcj!xLf>2u^zs_SL%swIKlczj=x7*O44>++O!`AB-!H7{xXU zAD$e0AuTuMB%*yAK}*ugg-r`waL)v^Bv|I!mfu*JjW-kiMKLOFRpB??9UmKWs>|=W zG%hsFzmX&w`%Nec4O{Z#;swbZlS*j}Otu>9#nuc&qyjaP9y<#TVQi=o5pH59xh#fk zJzaeO#UHLH(&VqrG|C={xFa%}>&e5c$O_dsBg+%NXh-=e&wWdekD~~LSWq77<#QRD zjc6z?QO6c^5J^}Ks>af=iK`6>DcNr}sxxTdV_8bNu9RJy3Rj$ZUV1i^3iCmWM->~p z?nq1>SHI}#R4h>>?we6Y$QV!0R5dqpl_h*#$N!<%iG?Ra)LU}^$B^l#%&V6F^t^M` z4Y7$}GmaYRn1F=w=Qx`kIeOWKR_O;?;9trJ9l1 z=Shi78<5qt4Ls25MQ8`i{wVwGn^@4FM&Itc2&wu+RcD5;S$6g_C?L%; z?V>$-@Yt=_|0+6+XRupB_ryZ4pgqf2Pz)%C+PvO@%_)*k%g>!1=|aMDC)~H-U0d?a zIWz5E*<0@=CG=ps&L7Ipj|%v0vc9^DYUq?kCJFQ+LV>C!vtu=zqb<;c#G~Q>HrOSz zkuO-0f;E*cOymZjP3UIZ%4>g-jh{ItRSftwtyd72DkYaonV7LyGC*g3OYW(<@Iih0 znmno*#cAUybcSfb%XRshpaX|2zVqX#=DTI+Zw0F5T8ZP5gYzLuM#RyAHY@la9dz^s zD>bcq-6=H2{M4EjDjd|&hZ=jwrRy0PFFhj8(SxZF^t|_ilrsk;NvReKZE}#V^AxRV zHPup@dqxa%Xe%2If!vZ5V2f!Ff;$8mPNVN-AUMFvdd`2C^}le(u@*IVUW{t5Ze|4= zt}@!s{#MZiE13v-ON?l&>QSaq5F3 zY}0xgTJwTKzRv034uVsLA|sYdA^yAIB#AV~OPMKtVJV}6OdoJiMo~f2c=C41g1%jq zm>2U&1*za|aYe6(Bag*bR%^&5D$pUruD9SbHQ?OtMqZsnan|{M?NZpY1(zM|$Sy@e zViZh$mx=E0z-dvtNLVKJ{-~U+)o-{{`!R{}Y*n>5GvEze7vZC2XG)iqAQM*a)C~z( zazTLN58Pn=CWyvvI&5>?AcC^O3u`j!wi+MT^E7ZSl`LE0DM`&opb-w zI7atG&;Ri?nm!}9l$2N0lkIR4jZnrm&F9`@LI83MMU3aD{#G6LNV z$VSyZxYwH)Ym9oL`ge78XEy_mu&|naqT^YBoDh2h=>2$9Ci$`h8vG@H-DxDuoMVUw zMbG*Ke9e0ekovBQC5f)b zVn{D>-4+JXUFcMe7ATS{W;&R(!jI*!ohcx3zoZjW{z8&_s$cRRaN`m6IDp;{oIbk- z9RGC${~I%uSU*J;?l(`JbsChAa>Pt#$ze-r&0+o3+E3qs7lR9+rQ5 zKd*q^j|c%@h6?5%ETODw=_d^jsXS3I9J8r;?a4rZJ8j2?ISwC{wFNcaLi7ZG3+Vj> z;HPx~<{=ZVN-_ud|8RU<^WfKRR2%^0gs)wH{<_mZ;CCo4>Db;v&hriw%nJBmRdZO# zpoqr|a43V37t`Gz)L17D)&$FdmmZHxR@&%dMC*F|K-LmQK!O6i^sIbZZ=0g|Lx^gq zf@>xo0f9dk0SSr-(M#vkoz4Nc)1L{d6J!hSsv7_&m;&7CT~}vAoJarFlORQP@ZF}# zumT=T&`y&Ba6SWp*=Gv0mqJyL$@%O9)8X}L2EwQBg-e`k%icM8L+|yGQ{lbLZX)*H z@K#qiDE3;(uV4#~g6(U2!<7uRHg!JozC3Hh1ntZ%^lna7h5USrQQ~Ch%+iFS~^@3L#t_= z@UIaur+EZdOqtj|Yjo8HKbe_eg&i4~W+nrAKU*EdGjN~1AFa=qo_cQCYB3F%-cNU$ zBpDk?dIw==MQ|n+=WB)eeY=t0Gf(`oVPAdT5 z1flWb@=rK{Wmb9%WmtnwbElo9qp>PV?#t;*ETpl%f|qg$38?4R3WCCyUKaHzW0!ZNUC+$~q5tWP*W_!CYb0Z#u5C$vfFaQYl40rC?CwftPi ztuob!^2AeUB2IlCy{+y0>E?3cF4BIdSS>%x*T@tN6_72}hG|O%>QJRWac+Og^g4jG zy@3*bPH}B|U^r;Y@Y4oZs`e&w_A4s+3;SV;p@dn)5xakZR70oNYs3PyxD3dI2gtKt zYPVd=gi#$fiaW-pQu*q`Ku23@&< zp@iY`s23qD+IZdL_RGKQv`?HIdu72j9mFUlk3LC`-sgRqcokoI9Rw^xpD|UkbgqJU zV$37Md_caX*?CWx=Rd_CtiQz{mrUG#=riA`%IyI~ZjnrRyKJLfFcra{f)!&*r@QFX zcOasmuN}dWY`Z3nBp?0PsOD~Vo|^_)kklb$qU;S*)ViTBTzB8gPJov2AXQpm^2jH) zfWi+p36Hqd1{hJO`P(%Nnugv5&dhaK1Su=T9AC;UEndnUPX zBVTm2)UKU~Rvq9h`4!}Vo+AXb1NUruo}A($Ix+Rqh>i#u|M3ChH3)Xg%XsaGBt-G5 zt56yw`by%bq<)i8Pd$0YuA$Z1m~;qrtPJ@;L-R(}WaAGu!2bN+)xeaqNCWSI|Kwek z1-2Cd)ZHl~d_^V9_AY_{QFcT?pH(0-Su7z*S8JTAUipkx@8E#P#{yi@8FL_0f}Up| z$p%%L`*j2Bx;$r-V(K)&NIE#)1qtS;Sg+ZL(0icWD}e;+`m_1disM+GD;abt%xlYw zl~4rsb$+wO7^fP7aFK83$2nLs2a>q1@mr&Wt(NF}Ey46<77}izd?-q;0fjA{m_BoV z>>mDptqyD~?nqn2fDo2Yu-yk@_&iAX^u(dchFxkBCXhj_?WAB@lIN z(770&!tgmA#;2pa>n=fUn9@hAj6>W8_SUVjZ*v+~LZ<;#v@3Vml)( z6IBS~Q!QE&#a4Z>`rXCGCVQ{U2Ea_d2x($M9kI!A)_K}u1Vr)_Y9n(er*wQHOT`=G zzT4DzZ1?EQNZIZ3eX(IsRh1S;7Jlx0SAp`r+3OxE?>27QNh{TJU$YjX9g`FL z036GKx1N1p_RW~#wqw|o>VciM1gFTt?w40_Lrv!_I58U=4@8NPTEaaXu!L}x%?)ZM zhrcOd#JSJw!05-}tr>gY)}nr0(pGC7?KMZX1RTr7XvF&(N3j=hD#7T45ECXybd@wl z^e!#WWUe`KZ>G%H+k+tDHpKkkImsWrl|fTq-*-q9pV+R_zr{}E%FCO1GN>i0t-Tl7 z6*RWg@W=zxDl06q!qZZtXz=I3p$#|7)mWd_TTbvWt3ELm-uRW}r&2q=M)t0?4cz`< z!uN~**esc5yU=xL&3{}r#2%Vms-X)rYiPDtWakxKp;HK{nXrvDsS7Eb=X1zM*|LnG z@F%vQ>?PGQJEj{+_C^+7beP8oo!?GAqC!LZc)6AADC}dE13tnJy6~6KI(tvy)tFW$ ztNyy4F(HzW`$U;yu3cpGZE{-2G*!UklLKSmnz?B@qPuDhjl~*>=yE)UTLWot%<&2C z;S3dK_~p2ChVdVX8haTXvdd~6E}rX_R>0#^iTg^T4|BVHa|rakx*UzBiCVXkylNj_h!FZQ3B~X6?_a6O)*W}d0^7jnBykk1jrJq?7-~MU8<-_5 zxI@$>QUXej0M~Mb7gEk{eaH|IwkPFKNNj{eqnx}mfd52JSmYOFT%{9uPM(B|_tu1` zx69Yr-?cImwd<)ycjMpHN$gfQo#!pBGK@_qGLDY#T$cJ7il(UGqa?cKxkB0J>-L{; zoWzV46R-mc{Ls0K?l?3vNcQ9W%`EK9jRno@Cm@u5Mb|H=Y^bdqbxUJOw=37xbWv+a zL8oLLzS1||Fl*lGrs@l2oH{&2?`Q<`9h3!6A&bgmm1R=d|y-yb(^I+rj<3TmfM zL(rd!R9rm%4P5LrBC@a;+9!WKz})-IX?7#FF-ad$XlK5fJFN~gb$)`Vm5gSts&x%M%<*LP;YVu$4l6># z!$yFh?>PnBxEkWj3h~jXAe#h&{RTpGyR@@4sJ?ij&-#MA>YQhf$oP-CHAJjag0<*@ zUF75CgQ~@}b2=^(*|ljiV})fW?&V4qH1=bz`a+PzH8+o)vzqwyQ|>&lfElA$=$r)W z(2C_z*ATy%Z~Oi^_@k|OKmc<^VOA^MuD9zX_~7beGEf3o z%-+dNPn*nCX7`Ps&J;)T!*+Zjqe8>2>qZTHGEl0JyTnxfz9(PEIMF#zs%LWY{f-&O z-yAt|)}X~vQOcdebE|o&(~-Hz3+W(gt!&gN2+4lGk7rcu(dU;A?9?Db+|t`^6>d6~o+q~AA7c;gn^h_gOdC(F*K%VC z2~}XPkK=otu+Qq4Fe|JLy%KS0HCLgc?n;N`m%OxgbJSlW$&&0pp;D(IB(`@03mW1l z2@^7f3WlQ(E{bU}4mTN~ExHcokG>^pq}%=nlleL-7fZlV;fr|V)f@lN_)T#6F{Km;cjp_aN^S?$b zAvpUDn%3FW81}~omcjkicD8!Z-2r`LoWILD+0(&%6X2QAzT%1r-&ajVsPcscZd#% zA6|Ti8|{8pjyfpc4N}M(8cO0GA@mt*26CiYSCDX%$W~V{cY~*L&qU=8zTH$AM8Y%d>y35* z{8!JWK)W$kg&Y5?XS-(u^z6d`gA0J3tq0JvKNA%nR!460r=;+Yo(*!^l7q+Q`fAZr zhQksdb$puPi|Zpc&qa>Bh6j(i9XSGe1P==CS(>Y^bUw5Q-^Vb1dByjohqVQ@G?v4s zdq@FCriO98OhcbmLXOJWQ_lhtZzW>i9(B;n50&D1gE%!Q%?N=;c$-=BS#rkCo5STD)NtrUdBOC$aMI=(^T?#8Dho7Kl!|6<+iE zKx0HeWx=*n2LI8sF~FerPD-m!flMz4X1I#1e+XRiVJJ&zg(9Q(MqwQxgkS|>lUWp7 z)KZ2%&OGS|u=*9LEh2K;BkYu_6eW$FrB|HuDNa)lR-u8;o0=BxLO_h+P63SvLEgoi zDcN(?gPAcxwGYmQnXplv49@k z7W*!xZe<68&IkL32&jMxgR;!`-kB}<-{PpM60(DVC$CiFYYa?9U!No02jT$kTqzyA z+mr{emK3#_+D}uH_|KY;;Xd?Jv}9m;$?Q3lbptHs_G~E@)Q(xAPm4S z8x*^O7YVL)L?7vE&m+-k&~G7_ab?d)C=dn`vl7-yE+*|_z6t|Xs*#QuFA5=A^S?z+ zSx(>4Lf=iAT4TN(%qsWrYJzLr{Ar^r+xuc(+Q6oPNTbufxzv2qKMz`!-+cz`4`sD< zXzU>~4`s~%6KM`DeGO*1JbPUer4p7Bh0hw%2M9HMU!}skzg?v?rGLXRY|yQp$YP=# ztfL6(EK{uXS1w<}g3_DP^Xz;Mt2&v8I{?s5$l@in7UKGR7kZ`g6{W$P1G=bKYUewQ z2MgcrRK7F@xQ8}=&Fo3zG)QY5IjX)|}J^u0k) zZWBtWovVA@06l{&Y#TGqD3>B zcwF>co@7*%8%qquMZdJwI*qqG#D#b^#eqVT6^x1hkzi8qYh={u;< zLqOAM3BnkH67=&_1B}Cnx3%@28cKg4!AcLG&!pZo$$5BdkEL4bFri1K{2zoYV~wi2 zt7d{H2EF2_@=EXTjRH>@gVAo*@J_w(qcmWvhKNKSfzJG$WSI;7 zrmr(pDUOrFQDYHj+WK}<-OLT0iWBski#%m*BE)7}AU_f?b1MuL;_4!JHOg1<` zVr$8`g`K!{vtlI;({Ng)zEOBANiXj6qkSDWst3nS))QNPwf0S>uZ^N(Wnye`|H;f_ z3@8=?I5=}A&db}a9DURcY+3T@hBa(%nPf_5;|4%X!)Q zDKatkARX}Hdy}GBq3?$n`aAhF6r5wp3mruV01mFToM>aT$BPE$_ z`Fqac4sl3bWDt$ZN-y%r&(>o8YQxdsCd1`fh`(0+&&NktPn1#zM

    RD5V>Rl>7iuV%X3g2CEB2 zSFe;E@aYDYG~@{IGniB&bSlE;fkg1eKL2~A4Fys3tEA>8As-tHx=S!WmDh#bauoAc z5@QNuy#XPjU`SHO!?f968F9YT!wm=~BFeeiwm&9L6+n=%p&qH0q8&7_0?vdvZ@wJ5 zFTJBFYYA8#V+bUI7OjjMeG)5F`@#+N6SoQyMaCYC6L~cJcXhQjzccLcVz6~m_O$(0 z*-N>$CvlRN72}D~E~I=h233zNtskJmL5%ay_rC~pGT@VQO5(;^3uxClO^<+tGTy^n zT``)wTKE-~Rn)<$jg34xxT%%8Yh7rXd*Gn0fA2(7I%!)juBf4pu)!R96V{uZHB!~J zIB-ZNzZpwqummsu*|<6{jLhsx7(A-81arp9B-x6keWpf3JF&xcvi++A*h_wB?+huH z%BwumW?yKF4uyH&W~c!K^Xj)DcoSX}YRvZT45t-%yYmf(KLN)2Pzt4An)xcv*EFWV z-s|xtUNO<})W*YApBY9s+=N+%^>v&%|0UF8;i?kgQ6rU*buOq0Be5k>LlX`ko&x!1 zlZn zzDAuAZM`qu7p{5kz0esWv+tWFlJc}w7*obX;l2Lcf(?wYfoMVXB>c#O0v$_GJ^V+x z0~K0>-?+rCPbqZHz4d_wS%V8UYUU*0^W{ZK|7g}27&reqWMLY`@v>Z9bK;9Ut7qqs z8a_9$;EY$sU1Htf&0KoWzC{-NNC7L9 zrK`P7l^7k*_EtB&tv}}+N$l96O&6IPIy$F$1Y?KC4+wr8DsP41VNWP6(w-nWHh7T; zcy|>y99A@*cB{`ET(w)^u@fxlG!VRKV#j`inUeD4yI8UBztp8YVC|_oo-t6O!M?zM$gJ_6qZvh@qAS1g^`%_Bx3=6*FA+;TS< zK59QV>J-?MqgH8N!=(#g%gh+Jh1^9fR)A!^vBYqFIFHYH5OrI8nMDM4^)4?H@KF$G zzXyXNRZeSjRmfj=hxwy6qItBg^yDJPeGY#zO1umO%j zw}e0{y*$k34##(1@}}xFbbcc)e)?~cIim}w@UZh6A61W#-*Jdu-v4`6N!0iq?+?f- zzW*hwu>RZi+4)b`$1f@cHe(;0F6H9$73iVg_;6r;&%8h3Q?LhU-V-p+*0)PTGu`|F8-8Y;^2I3bQln;jd1I_$} z!I+IE#jAyG{vW|MQ^2;_MOE1NA$-xY>UUtiMBMjqlaDj7eZ?f z_p?x3$UvhH=?l2vT#L2rmYWN_+zUhttMf0bht)j~n~gMUG6ZLg_wjcftX|OnfL3)jkQTg;q&^#9X3luo2%Hl;uA)RL#hIw{r`>Aq-A#|eu z3lspRNB;o|Wd8*U2F7~kiBc#)Yq{A2{;xm*?_Zz*@B;J~D6qI89(PRr2PmNQb||BL+9@!8p>HIOCjcKwa_Tr2piHpqezbj~RlmL%bN zz)lzcrl3T@)In3Zkr*+zBtHvNMOWM@ZV2f#kS+E%yj8&RD6XID=kh4tT*^@qV0pA; z9ata6o`uv&3+P^Z_U!)v3Xc7nj9tZB0%{g)CEe-{@@i zLt>PMZM!5H4v}hCer-4nL@&dY1HMl~9E-QwX6f((R_B1?Y`ENISbyYa@Gmmajiv|C z*#nEc0e*gUArO|My{v7q>csMMURTOg*R&XSA`($6$YNYdA1{bbiI`n47{`#U8gM3K zIAqnclQ@XCM3aK^9fcdMU&b)9Pn~@j(fVi3qCbg(I|9=dERLpHIK=+ni&Er};HiYm z>GTb|OU5hZ#xH70d%06+PgZRq+I?=!fsK)+CcyT1i*jy-E~XiBh}mR>SuA|&g8Alv zvX8q>#%ZbqToJ+L%xbV|0t538J6>VWY^dFtV9&?F^tTiA%IqI0V;1VK;UzUAGGgNN z^Ca@~J}A_BAqz7KAS5^1byg_)B+3Fj2THIgYcs0_sE|jnY;Pm_j(ZTiSHL?)wrFH# zlMwvyESaYa4sc^WnbGleX>M6|y9FzF^)oZ%@|1j=q7zTXH)k++-rrq2h{bw?oP;Q9 zZaP`VFv*oyWZWhLqw6rJ{`Cno|Kk%#wDKkj|84vH^$FZReS*x#eqm={G4{4;FH`&1 zcY(B@_c_+u$KGRp%^!GkJ@?sKBMF!w06|v68166j z@9lK0nMTnE8$9HE2Zh2ex1e!5~@$D%@r$JwJ@2+!zJ1`aA?>wuvAuFH2>W#m$E{|WteC!+j^5EsGF0+A(YNZRt+$-^`=Z>0e4If$ z&sAlehen-ov83rT3i%lWG2YX9MSH$3MF7vCZKapxw;#yQ5O+{N_;30bh1dhE1nLWH zRK@yJK_wvz%-yg~-#%dgR)W^^Qm4OGg4LUyT*U1&1=YpU%U^ZjxGC)~~o4l|=|?=X^t^6RYZXzb6{entGHL6fC!6_^=ZFOvG!eRezaxE8xi_uU@cU@6 z5gT^wo8oqyksKCa=1_y`=sd zAH}ZJoPSs`l-5KpkZbC=Acp_I1UT()zn_FrkuOUcM8Y(0V4=~hDhahi5nZ+jzJ>gw!@D!XfcmH# zmu#}LBRaX=QvCgB8fgM7{0H}{%4HQmk4eojgkk=<` z!y~F0Uyni#V>e$U?NP%L>n8y*=oaqld6Vu#@lG;XH1SKiU9DcD@h-&;oA=&4l{hiq zPjSOZ%yZjgpFdc#k5c4HskTa@4DncC4BAPhs+=1zR9KWcP#DFD6i7TIs;KA@_a8R2 z+YxXQax{6x03WKVZAG9Jg26WyDSMTFKg2dfUK+>?=VrS<3R@?Zvm8l3-ioT(H#0dB zJ@)n*3IJ8jXyn+29jKykBV&p}WNEoZtTy&?Wt5=Z*3}qV(MeRD%S=#LoW#6WGK=xy z;x@%@T^eyxj?kkY3^1a15j|UD=dl1^q6anl`5eu1hm)0?A*+H@^j$oEI;h zrnK>4E@x_r#Wq;DvkuK@EU+Fy%#!h@=UC%zWW~4qnl+E?*IFNTGc3DnVFq%Zu{RJ{ zq$`HJlPSsbjow^4G5r#=pV`+cYDvJt_GEWaLHL|SbK)4f zom4hf0kdxI4D7Hfm)T}E7u|WW3U7UqmX#l$eN0B~SRh}=xu%Ijm`4|Z;G8`bXZE1J z(hNBSnF9Qwgi|mg^cP)}q&o6o4n@HZhHfqHDVBpbma$YxfFDJ{0b%xpL*li!(0l-} zz2^wz_-Jj>gh5C7nhX|FFm_|Qo`Apejn}F}(FMe~Y8w%wfj*x@Ws%;~RM12me40I# zvvOOp$-dD=tn7YG$(UM!wVk{xVm3je%l&-_x<4AO)lNuL%v$?*YQVn*t=sA47RG3&cW0l(*Ja~QQFGR5rw>FE zpq1oP*Q5Gb_)!ASaE%dGhFgW_-);SoX-lQ49>Mk753udIlcqe#GDKz!TarX$#O6tb zol06$y`+$wqMUH%#tp-OnJsy;vOp}$;Mrka7jUNILTsv?eyImpj1~~Zh`Po{UH^_& zrRnx05ia^iP9Tk}_M~jziVRq>8JoC@{%a*L zynW6L(Eaq{6tK*C$O185jZnn&^0NzYCLV60B- ztbTE*{NIe#I`u59kpBz$^Y6u?X&G0@we%?-(*{GvjXku! z#oT5kLITD0V+@c70`z`176HIc%Ga? zsQe0w&-jxiNZ_TXfoG^AKVaAk1-$b7E&SbU!mC`%-*;18V{5ocbUiX8MVLOUxp7w9 zMV(eXAmK#~NV*a^;qW_e5TV<~4FUegbV0u0F+}301aRr~=8@_5$KJxH&Y5BrGY^Ol zsCV`CSG~d4IAqGZzqaaUbbzh;F^65w=b(2Q*I$a2K3UqA;bjBpgdM2E(3e4TgCRp5 zuFr!HV5|PKQ`@%t*H(R1Z&V7fRoeq>)kv8$E`BhfU8gBM)~vrdwS3%NqAmX5DR1Cc z-RPfC@O-QZo`@1c=gw~E3*+*H55O&x@&~%|D$pYW-dHAR@M%R7=Ge7@g@K4l1QYXndV!Q(8iZg5ciNHkq6jx^QQ~$8bd+>qqQQyXpM>C2YOHyss{}M zD`;de1TQ8v`YoXLgF=&-Dgbb*QPsRSffh*e2}R_fuQlgY{&1% z7$@%q*#2(TLjSW_GfM0J8~a(ik;14EF+87Ar=@qNyg{Yrv1Eg$Xp@`-O)kc~2kDXw*FMH223^QRF2mA_( zWK_4P)@Gf_pd{lgrOxP^Xw%=t+J@$@P}GN3#YY)~i2|J1>ExaT>%b#o^#Qr^;EpiK zMHb`4rx~tc);8pfpiOCOd_BNoE%CN8`b`9b&RPGogMaHnz1ah}D9=Jqx@e!h^fbnx;du*pT!#IVo-~XW#vY!&xcs1-+nD%vG$D<__l*9+GwRd zK)*j`*eism@IXL%n6aXGt61k}>C-T6`Z*^8#EWkn&UM&y?8wK_%_|;}D=an&q+}aR zB!$_If#s?NslMkO?Tx7JfN8W?XtCVQ!f4_C?OBm_A#hx3y}B z1jHuShR=K3{PpS-yb;!JVbrupDR+Zr1W_A$(Fn0MbLn#F?(1_TfT6#Zz|&q)%zONX zgyUCaLGb)#-KP=w>dAS9pnEj}wYY;g@E%Jm&Hd?@u)D13KYKc{-VFwb{Xjm|3w@TD zY^bn1bSn>0(SJ6ZeuP1v;XwJ5aNk=AnVeo7^U`z{wS{-JY$=;_(VI>-(kpZu z%?UTfpTDh#prvu!AQH)J2RTTET|CAw9`pty&a?dwN#6dz7TEJ7O94xr)p`pK6;S4o zd{N{+;s{8EYgAjv{T6)qTl-NBR%D$m*W;`Lo>^i5Auo3W<2b@-sd&~^2{JDKMf=xD zok0g6F-SOgm%eWe0tp7xv6#JORM#%)ML4CEAN(;5RJ(f-%1hs)uqi<~yRQD#QRhNU zubn{vN*}nC+l7%2fPU_+e;^Bc5DOqRfrb6)bB;)DC3De2qxG@et5U{zrj2?P+Pyji zKD3~==Vi$1Q6%dB`q_5-m{Fz5#@iqdM^K~Bo1E1^1*rY(T|=ADl^cclm;*6C5b#oY zdfJOXB7uByxg>o6dxm%mepY+ZC*ORAglki7_o;rIYo45gwGFuo+VyV>{6cIo^7@Te zA1czv#4f2eSPt!eWHyPCaeZuI!wYkpYGhYBe#;Q=WQp+m-_&m2u^m3&U61b z+?;B&17N?i1dB{We=MkaCxQCQ9UTLl2vPz}M{XUsj+AJ;p*UuBOe4i-4hx9ydRVu6 zBW&-(MEY+D?G5f}LtfZ6=G=l(7o!5q;vH+)WvvvUFu=(u4ri4_NSyKw%a<)V_A;lT zoPon^Y1F!mHss|-HlF>{FDqFz3ujv0S5VimKNh-f`&>^kvK#iyT z?14lsq6mVpPd<*7JL+s)e&dH)s{cJgCS?mp+9=XAHxFQ>cK$m{<7WiS(#lW&XO@;D zXZ4(=OR^}5Bh{8kdr^{;dU)k{$QElt5C2|U=j^Mxp4cALM66|MUWX&{rbT{4bdJon z`HPX*5o!i6XF!^?vK*IS))<*CIoyG_r%v;-FgsHw0yTbkb7wziqUHRHVec8b&c zvSQeC_J!u`>NDBCcgB!Ak6Y}^f%sU!n3`;f#rHcaSB zVnFw&UczQ;4Po#iV89g1gJf&%7YTHzrnV)8w*H8FUo2)h8J0yBBAH$$hv=@eH|0_y zo@LO3bG(&NLqx_hSMi6JH!UEzb&gC)?e-X7(rOyrhwtXE#Vz{OH9zTxi@HNa7ww+w zMrIR-FA7P~cGYtwN8;ZB3QCq7qg z^;0hm>Cb&vDujb}XAm}5?U@Ub$(9Sw9L5Npq0DB*+zhw#oeVg?PtAN4FO=K8_ZrZt zwG75o{XFiNwKXE|$FbqoF7Yp@AUU5E7N(xY)5Xo%vnye{c&`W`|5UU-Mfwr%8=gh0 zc}{a%GrP_uY+U3~b!_~OM#+lhR3MvBK)-LrkgFfidBogsxGLXw7&x#o(k@ZhJcr%d zkcn)lRb1A#%DsE|Sq#hevt~ZFl#h}-e~%%{4l}EH3%#r?WQ#_s$$HxWD4&R*`42L$ z1#tTEaZkWapmKUnwe7VNf>TKue4QG4xMDfU8H_NEf#NH?o19_ zH^>lHdipk}FOba7P$)7trz6`R3Xj*hk8Z9HO{qXDoMfgiJ%49u2^lQv7rAbci-miO z0?FzZB4=J zbRx52;^$z;oN(pV*;QB4$?-yG_f%V#q39(TSh3zC1(~HuL7S8Sl@AeHmQSHjmXQ)F zTZAyFS?0#qAdB~G!Ut!9sPJ^`Uz^F)4HA0;iwYtAJ5DUgE;}t#3?buoebY_BC=Nc~ zPsM^0#Aht4ps#Jdh2Do^^SvHBuo(3H^oWunqkHhB8^t3&)Vx~%wZt2OlzzNAq#I{i z*s3oH@83oP?5w`(3den&g;4-09=M@R2UFnb5?38mNz?jkA>~&N$u1N%=bVOeala#| zy9OSlNh1tG`pwaDC=86xf!}z7{6Y}3SLXOU3S@*&*96z)t&W!ToSfBu>t!qpV3_v( z$}ZrtF{EN+YOAOCe}-x80h&}SBv&fgrXpODP%@OHo{!QsF82K^?>aebf=VEF^9W?6 z02?)Y+8DU~Qx3pJ?RFRi4aSg`vC7(0;Mc76@uGop#=8E<<6~^SZ-uhlW{Rs`(o)>Z zN?GPZ>(hNN{#vc)7xv+r_OPrwM^5^APIp?}{;T^c@zeb(@hTFiGJoW*TDI{_n!WoI z|6+}{O1ES5(XJ4L*52`kb^3l2;i~hG_7S_!3d7sme}CrzM$?C<`(JP$_Wy?aY|zjf z)Nf3k-2`dEr;}>xadnKW7-$crV!k}mt_ql`nwgrIZk|S-Qc#Vh#{H5vpXU@G>;58s z?v#QlSPAVlPI(nlrzT{`KZJN6KC>$2X(&s|6;|?puebzM4+D6gXahLghrtj&aNBiO;FR8x0*#FPA8J^Fr~{08Qggv7 zapme9%wJd;=%?5@GC;V=rzglDugnnl^MrVd#ah*YEAl{w(3(fADt}7yJ)#^QVSe9I z5>6~qlUzAV*h3BbBSiYfEPUW8{b5x)cb2H$81=v0VE_ZZYA`%Fhw>Nm9$PLnM&UEq zQ4p`%^`hf4mdWVuJ+X8602B9E!tbrt=8u{A60N2lvqm z-2vb}rvJfxY`%{JaG$4Q^{9!(gsYR=%~|NbxKGQ!xR1k^HEup;FNx28a35x+|AYJ7 z{>6PBki@07FW{blqh0#@@pdm2dkOR?X#{ds6i3P}f;#e0wbdn}OZ^7HRU<58PV=gG z7kpdq6q`Ufeh@b3NB85P@_-cxhzkS(_tmx$N+ArqRZa9#IuZv|2Ft2IIl@P`V7oo^ zxEQF^ZeY>YRxB2fZfWm(|2TnCudVv#WdO0iS1v?NwZJ^5fLN@Ho6252)Gz?FZ z#a#pNx*=wW8=yP${DDJdfg;)Q6wSTzWXRk*Tb=I@5|HscJh$s>nrm|d8mG1KAZ?Bm zF$82%N$J%%lgJgFR-g?p5&@!+`f?GZ<8FoRU?(O5#>PvmylS1!RVxP;wM*%<%leR4 zh=)_qyi2ZiJN9jGU#emQ%)X}b__1tDW|{2%pmYtCF#9KPc>xLD#a@k#0W^k3l9~dYkWrJ- zDhExn3XJDBWx0qSsavC$BjolSC+>9RsQexPwcGKkAzC3pfL|yJK{@hMbPy;n{_t-+ zFI*?nVx8Ou1-ksLonAI=E1yCKXL_7{6v6-UK8B24V}xwP>?G@*@#Po) z@;*zR7XR=*WZb3cVXhc^B0vRb?~aFmc^^58FYzDZL8D*(z}?0L(Vy32yik2$f9NSy z$%#Kv1jlGzr?i^PC1VLxuPP5Y2fSE&K2uXa@pW1RqlprI{0-KB&YWXFbRmB5FUiA6 zhzaa$mk>Rq7-sqx#rdnbAZbi1?VD>97o};|k5nxCL}^3tA?{=ZEa+=Emx#pOv<~5d zna)Pr#hffLT%jFE*8Dz|Ktaq4h=Xa;Cb=`;I2Tt8QrKSLpzr>nxJ=b%@S^vi{9GvL zD5c==$M)nX!Gh35mPU3hQnEC-=0Wst>4zLp`f9=r+kSQ74)E^(nPe z07?Y*$9h@z3GxE<3j7*q(>p(`8IorMK@#7I@68R3@8$dQ$M=!SckYOXz=ZQCZ#A8k zMBMl{^#ek$Qjbn@IWZ9zwU&ADs$7sg^r1rmbeg_?XE#vv`*L)G0rgOjO*Q=A)tr5t zO}RhEF)Y6m=F^jsHf_+O%{m&2Hxu9)s@g5wY70Z?XOI&x$73pTbQb(MrS9_mBqet< z*$JUzYej=FrDjfZ!3Z{;y+zCmT==7}cjc_Pj|z_d)5b_5+m?lo#H4GvEwGX$S>tJy3>WS^q{hj)C@7{^lj7FFV{jLk+Oa zJ$R_3D7zu6ke800y0JC0^YV^w_Rm$~pXlK{8GD|;m30+2n=i#`G%}(t5;Cbl6gA=! zm@3DfF_n0Z?#>6qltk#mKdaduk9n^XH1{apCWj{Q%_6b2g&pX4dG^~qAEov>`Lb?t zk;{*HWnsq1+xBnb-#;$!+QJH?Znlj}n8#_e8uCC`I%O9}|J0wZy9}B7xwK{B5LC2V z70<0uOH?PVHJjngr6JcQ53tRxv(3;Un{3RDSqEBD_{mzIMsJlxS_)|<7vWqujFVnX zICw1}gTvo1Xe$zyg_~ta0)QW2ju{blONP>FS8%~OlRAEh<0`;mwYs>PcYOLZ!5aO@ zsW&J!$L-$uFiJ2v<;298xXUjLljqzw*EvoeB{JpP-I)u#x=D)FU-JQ&K$=uhuqgvV}|Xyv;({qCy8wmG#&%% z%Y!s;UCSXFcP)o6xom9`ytVs=WkhpvO^`yNym7dRw)|3Ovh~t!YR$EGTLZ?CpaEi! zx^+pv#vi|wWN|ssBJ4?RMka3{XjF9_hl@?R?URx_@>%CFK=g_d<2K*BC01LO4PTS< z9&YLkL4lI)F}$d6=>1XLtjwYbmrn`DIAvL{W8sH(_kBhp8UYh|${9qlT!roaULj0}r4{ zR_h>`ZI&d-`g~RHH0Y;1 zy|)xxa2JY1_@Kp3oOKeR#(LvZdVYtr2M|65|h3b)QlpNrIRC1 zUv~{QVHX8jeK@nsof;)kz1cTuHH1!$EK}>?Iw55neDQE&VdNSLT?HVyMELs#1v&uX zW~W`L8SEn>Ul~fKl(?NsO4E=1k(9!)2|A)Sp~aIG)DI2MUJ^`MqB-drCfRa!zmjO$ zAXy5|54v$dnW`Bno{6EF%PyYZ0UGa4na{h}ho?hkIdei)Pn)N5I_D4)Rzk-fS(rn& zCN*Pzxutb}b||+BoxC&X?dSPGG-#SJ9@v0J=nFRIvkPteb-{ z+$i);f)HVajR&>6C@;u_;PYTNIg4vH^|P~N+)NNeq>8q#ie)Jzh0q2(GCHNL&qa(| z#oHS+Sq-GAF1a&E7W$8A1p8YOJ8&~H0?$V6hF7`^8bi9y-^$PT|Ec^~d6xn$2&Tms zhv2@Vr`?6p04hI5om57nU=TAQYHsi~FWQvk{CpT8R)cQ5aXMk^fXi>uZkFtkveZ&S zHOg9Fz;5c3;#2j<{tSTa0iZtq`C0$cK7i_vckU0sU%oV(U7o>yIAXQEyjv7?2#!?y zw|4sFROf=-cv-6iVLTfjfLy*VMf-FDSQ>Yq6^gev`u__2tn@=6c>gcJ&%ei&#iU&lvv;7cCJq^OPFv|z zYG%u?$H&~Sm--V< zu?>*=;9u$@Z_4YE^S{FhBd^lCGJI}zc@dIkq`FV?<3dso&&ZTQY6EvD!j_6C5L}rh zdz3nG4y@+7dQK0AXQDM|drY8KL|p(MZ|Z$|d;D-h1h7KascSoF!hgNzR-lvYRCyj^npNlD^n_`bXddO3;V8GJ>pZh`VsU z)t?{(iCdjnRUH?j_lS&AN1s6q%S(WnZ6bZd0+1iHz3{M8*Jx^~mxZalJolep9+`-u z*R1#Sx$AKA0EvPDCj{g8g7n<^#tU(ibunyy&Z}AclA5s5Jg6I7@PK0>F852WC}{Q+ zI>}c8u+w&XEH%*upq}czK*nO{0sIm1g1P;wM+|t6VtfGI3i(@4Mc#ePP?z*U>ZOPE zA7gPJ8swAUQwREh2P)0{CWE04_ZAd*Lf?+N*Ya&cO+9Of8fn;*JdkSkB;4j7Pt zKQ2+YDc42jP?uE|m$eH-K%UG+jcVyt{mhObdS7M};zy`I0iXQC+OP{tigBZJhpLeV z@7g_@q>pNL`Wx9mO8*-Ek}z6z5)>uyaux)6tBeg2ygxq20;bc z;{1t-RV|zlYZM`L@0Ud5xmx@Wr4=b%f|)hYa5m%H1+iH=F-QE{C6e^i3{T1nLvFPG zefT$?D*o|?y8xa}9q{O>P_agk8C$R?(u6WlSAmjap+b;WxgMLDA9bNW2IjD61PvQwCowJPb2N|vsayqF%!rAOlFtZ+$PYb9wr1es;GfYLS+(ReVy zp#3T{E<1yO4Pdw#JI{PSmKd+t5;enA1kkOA4#016M@@R*e0_SbqfTKLg75c+EGfT|uP9REeM$d);30HA(QnEyx_ph+6^ z)IG;6TLs_2INt+L(1js$+!9a7@`8dP-RQvPthb{{&J)_W|*Ui+~mS|O(Fuxeo?_Ir9C!vr8@geXGC|tLg@$Z+^W6+XLk={X3A10Ua{2dnA{c`P)IEC2nva zg%|>p!;))ood~TXb2Nz3mZd52&^ym!*w;=aBS>GSS3bMqlVE-!aFOgjP*9*uMV3YC zR2{W?G{BUoGv#D$us)+hRcEZk4PmbSQ6hi^o$LtC{Vmb%vl?*f2iLc%r#%q1#dX{& zNX+W(>IW3m`=RLY+#87W?kjY1#Pc5m3odmQp$_|EBZB-fkK@kqqgaGJg3hEl5 zD==FikSVSf4-^(UJKF|tb@K;J;1{~`vH_`wR0-m1s6@%R%U!c(MCOn)tPZFvl3nexiO1#2vVDl|11Y`4X@5B?YF1~)uAr{^n5lRV}0rPUHT@E2}MXngSS*OF4i3>? z*6LL7Mh21|%sNa1v(Hc~F3mj)25QvTpi$f!F1|UD;u>ft6{2x}Mp=^n1*iUb_ zD&X+Ccu(hqJKF@)*GQme$cqg`v17)rDi)UnYV_H~Ce=E*`3n8Wx+1;`+T;?(yNZCPW02+hb0Y8>DzHbbNtl{s2ncFFHJ8XTsbF2h%`qz0 zI4hUSs7J$)V?Z1UA>G{Db{_l_LD6+O6~q!mR>Cu8X|QD0)G#A3A_JDD!=Gc8eFWX_(TtPsR%=>{s4o43=` zs0%w5!Hvrvtv@YfWD3mZ-!yjlkgKw+y`=Nr<0em4%pRq7fyDG5L6kw{=A zup2hvIZb0VARJ-AS)Z;r`fgeyakOSuhpTk&%NoVie@_Ch-ca|9hc6B;g&h%8lfk`8 zgP1HOi{!*paEwmNRLI%AXw~D&sr7xZ*ZFqPB_0`Hk5Va;yxpi)6*EhN=slhcQG%T5 zp2}1vBt;WL&>}FUg;9INI#pGJU3VX$FWBT1-iY{u_ydfA${oULoLU(-}vM1aXUAB z56OE17canEDpYgxT$-w_5nTsVWZUKjEiACnhgPXri_v^=VyIs&iVeX&MsG1=Kfg^* zT9Lhip4r&!Lyp59mn5%dB4cadnc{hJk=ISN8okz25`mb{(n))~`&E2ve2gs$FUhXL zJJiu!4gkH7xqhZ9aq3e`kze#^>a(%t=q3h=byZXYNj23RsjBFYRW)S8;qQ@BhrsKR zHK+yH^xOP@sQ~>7ziI|+>&FP$+Rk#9mOv=#pb_z-sjueY&MZXeqo|pafZ`n&p6>E< zTJe*=UNd;3BSa6R5eZ=+#lsN*B3sDl@M8MCsSV?;KW2TRtLhiotsWQ9H;6MMYPTcO zxJ~(Ubr{7!J<>V^2qIY%XDZu$kQ^cdTN0K7yG zb*s*=`s+-3>C4{b>j&=UB&h*W*b;wNL&m+C=d0q0QYGDD`?(mX)^^d3>G@$8xV63i z%DWiCa76bf?tjx}3wxQ!*aI$=p#OsVaQut={8ba6`~62vQ2no(00VfdRAIkvt1NDV6o)So>E_(1u3d(=d-lM|!H5Uvf#ErRfVdDfNINClRx(Ew# zJ5C5UWSspha6lfggYb`>VEjLF0+@g01bB1qY{PyCkv?$)z6gtpUX#xh{F>8_g@wIVmmcR8g2rb z>}WR&Q%S$Qv%frY<3z66?yGa(;kaK`>Kr%;>dR>)>en|8h}*1-$9pD(xyP(34I}Xd zc!MY&KVGH~cFkuEO58yy{fYyK;OzFt(q9aI|A|;T7=oh@_=fyt)y`l+^2JFM=--n8 zwa2$lOw^%!PbLWkfPHr5|H3|zh>6qi0X~pD8BdT&gYbpUgFS$-j~K@%WdB*%yaxF0 z3w;zR-$>v#3?S^&$Ta>=igs5FkP|F2Z_dyE6=uIL|CJLQ-=xGEJwJm8$_fy4=e>4^ zFZt&Wpkzz?0iWY2R0s3?;WbRnArLNxo3z`G5h%a~PKF8-hxPI(ZvyfX78lHIvru>C zu5*QTlzFG-Q5dX=xf=2+c+O|8Lkmx`LCon^pq>!LwmPgrw7KjP&TRCs+UJmUAX;o^ zA8jf;77X(Oi`plx6U-%jH2;|mN+I7o^S$s#4_7sz3$C!QWksd~cMbDRg3@0*0g<@& z+&vr%aS{Yg=SF}8o~yw!!9|zOz10|UIw=rG^^jl;w4fPzLe45m1k=c(YvBR#@9U*L zzC%AF;d24h#mp8IVwxdcUMAl71{(fJHHYfUHj*vrLT~6(s2rm|3=DB605@u&quHi2&Okp1&!spLZm2UpUMK<1(2`?;xN``T zv2q=E)VnB`%NpA5rrkzOG47~#_f{>{&M|C2j&$D+PU+hr|0P{jB2fC5(Pm>Nz)rB> zsKos~=7cB70H$(zzNFn4=n2~P3Pd4`1ULEt=d3&(KmaDYEClJEVa$zx!cMjU+3UnH zrNeH_9cydWX=b8ekKRhbBKn6-uSu88izl!-rq~SFIkf?a7ZtyFGwK1!i|9@hRE2h7 z0gjnG6z15otCYk6>W;4Syvqt(P#EwDZ-G3~A^Xj0`_HRUcl!V}1$Lq*wY*;v6|S3* zRFF#AkSy?(0km*KiYn3X`0E1G`4%;$`qB4vGa;?C2fIU(?{9sg-Hsagt-bO-K;A#` z$SsT42yOEFl(_?A6=Cx*3t6ngw!(BwEmOsdDwwE5z)!r7qpuUq!_RzZ_k1{8g)z2C?-WM^d+ zZA^}_NKdYr*@<%eRXKbYx?d$iM%e{f0M>5iE`QDXJ8%bwnFTtk2y!$g$pfoX z{F0vSVOO=*)3S`__=}Y=r3@BYgEGKc&EDP-)f%A-DnEs1Kq3)VXG+YH3G(tcB}E%_eCD{l9*KK8M=!E8;;1IJy0o+|XRT>+#Jt zte#M%n+Uw~T8yG~55TD+bupvoMhyL#4e%2@uO(@vUO!?Hj_;(Dp0?TkL2e824+PGG ztZumZ102_!ye7H|FspgUjQHG#6EtI z_&q-iQsw-)HR?BX96;UJ2hv)=SX6nc%62WP)h47Kqd=KSRef4l^y=*uvHj4U+?jVtnT-HIeK zeyLzAnPMShg_Z=&;#(pq7-9fgl zOkzycm!+lnYrG;t>d+d|rnviYEH%Ge$#6k)7Mt&JNJTdWPI_|n;7#DZ4_MAhw45fL zvKTLeE_y&m|CLY;sLdpOKgc&T7;`(rV28xacp{)2vDh#Nr;he-8>Il zaX-qppA!w9E9Kfg_ZGgn7 zC2fUq)daX-ypjTkY-@N@BQ>D#O>lGNyAuo$4bx2E;2szZAAC;Ss9dCrHh3y6r)MkF zY9`OcJ?Mb;jYO!!Fv4x-5K0(h4?>=8SOa;Z8!Ze(KOnsacE zzYfSbj&s>V32A31+Zrb;^XuGSwIoB?U7mI_`tQ~BWv`Ib8p@-sc;^dYGHa94z^p{x zZfGktq}?UdxjuY9HD4G!QAuZJ##*lcc7NX$t|77*OE?f6P!e@%`#o%!T2rQDvMy@x zK4Y_-?I7ZxPD{ctdAmP|*&D^CiX;!IxgagEy?B%`xg78s&+7@hJn5s_7uf8kR<#+K zGYDNp-of>){xs^bgR)Way|gu#ph@^slrdJ>kb&S@Zo2%CCz{CUCkh}}G1XjZJyvGxVwUa!!${Wy=G-n3mCc8VUfnz& zt3|wP#HL^>C@m-b;~p`yNcD1sfj=uv&;PkY2aUxgXK zVPhh{kgxtkbxP!^IVR*mPZ@OneELFj#XP_MG?=-Vk=l|I8r$~UK;3@2-%s4Ok#C~k zuD(+-UV6H+kZD7%<4J~kVr2|d5Xf5f?9xToI-$QD7!}~RbR2sQDU^;0LOb|#2J|)? zLcx!xb)aI=#6cGk8fb`PpgEEx-!~FofI+|hT(JIN&_6`o68Z%c?2Dj_A&0auxXN=c z9$e?dyb;gJ{5(}(XLv*q{*8;S`BYhWnFuXFy?NfbwX(O1?eM`Z}cscarS){d9(D3~@gyIJ6Qgq3KKHXxRxM zR%iOm<6s0^l!pz}`cV^Gu0`3nb!$g+GW;9iEc7RsZi}(eoDdJYO3r1EfB{b(@KuFE z0b|p*^y!vLA4Bqk6b zo#;wM{M-3v$5H7HWaaYRM;#;e37P5V7=4Qu&5?<@4MJQv`}2?oUh6I-3tMl7fUvRV zhl9jIF1~L*k5O~xecI=KE0!@?_2ftO>p6hmq2}_xm%v}4I+`XChG&-^z$>WYmo3qX7DC3b6<#g;4h&${1IAHS$K zzxJfu*`c!}b{?zgD~~!fb^X!X)TWou%HILkiGJ~n?fGF;sMWRq8sIvamg@TN*GYK~ z0mVDuIu%CItJRsC%3Z0Fw}uh(BK&AnD&y<(1JEATbh%&wM12J3D24X(Pk&ji z^wtbG(CAC^y;dOygRPvBgT7$Z*e=)9fDDj{?Sbhv_F-YECH7RdX~kPh-h-GYUkfuE zR|fn*CXB(3#VApG4H5KVmw?@`d9o(F0~JsZO7wsi^<_s3{$8aAJo^nK2w-vvQY5AQ;bK=kWvKQ+#$O&l!BQyC`7ex#~VD-s4!& zo4O&g5jzKHyZ>|0txMhc(^dq;Kb#eLz;@7E!=v>$1@)WP&HT_erAg*PlxsM^W6B*m zkg>)!;4vlo2^^F;M~=PEaoe+^ilb2#Dfa!B#$Gn#jkH+~Fo~HJ*LJ9o-eXjLqgENG zmXotfh=uPrWDAs?kgt(t zLQEWHFtz@fR)Cyi)JmsWNbUHj^@|+wZhn*% zYZlxfCl#qJGQXB&0geIz??LC6%E)q2rI`c?t+XI7b5(ERJ$l5zERY*^uig4$TpKiurL_#;_{|C3d6RYO~)5^PC4#Mk zfZ=C9%YlX?waa^vX)q*3x8QRTJ!s&fz>QFmXD)7qTjs2q{jrO7pr>X270ncuDpU1; zqdre&{B48G6v$%tVi;cr6&3xcN+{8;k{axJV6YxyxR#VaCQVlBBo)aju%4O9^b%#M zOO%%@;`S}4m;~kD`Cn2|4dl!FIV4SCU*H!!EQV&7sSp}`vVJ`-oF~IF1EM}Dsa}ym zz+T%0L+bq{1Nj24%>Bp85eu{y5@;l&TqJ$zfk8#4{V6h+qsu**&xC2vc#A0gp+g78 z>i1{ZUico})Uke82!8e6W|)4fEOwQLlp#zfOP^=!Y1w{LZg%m%82?{cA8khj-n#so zx&?uIdsKfeSbK>qjS)qqb9*GNKQam=XJ5-9wIKKVP8)b_YY9f@z4j5$VYJlTpFRom z(^C2=zdWDAcl2RA<^5Ggx}}F)0aYJnK-Gtw$*&j85jtc$G25&5JB;Vzy{JnyQxEA? ze=5SbT6()eHc*^XvLz!;cc-AjvfF7RvOexxOrn?WKUE*FfN%icqXvBp{XAEyMEXR8 z$$zb0PdBJHcvHzXXoqg2I`IUk`dAMkO9J?wWU^}#3eu9B8@1I_Yjol=z(0hJFYnZ$ zf2%$q=?kdOa517NaIs%{yqWMoDLF))eVqBJefHvC?$v**K6-zs6aiHqIb(+g9LNBp zE9jKRF4(_SpN_x!Hi7w2K-C9qINS`NLl8jfp@~WFItwzFphE~v#!Rg`G!>sm-7zhF46hz!5Z^5PSj%r==tNOMa?^9YzSA`BBo?cnM-vo%KlWE7zpIq{O5}OghlamgI z6G05XI2_R$BXP(5T29iLW;gp~B{whJtQy5jcVRX@uZE=6Hh$vF#Tod$@tDo|0}S@< z)^i)@=cYJ7;C3)nJgJDjW5oJ{;K$Ae%D(T6eE7IiDj)>HqES~sPp76^Nu$9Evu2aI zN!rD=OXGA&oyt&DZ;?qq5AQv)*`JeXR089W&Z9NN(O1|WGxB2l+Yh-v3i@kJgC~ae z4J$C3HH+9d2Ki3{j+d8zVq9>(I`G+_)mx5J(ZT*iK{Hwr#bs zZL5uK+qP}nwv+b1)8~1=wbno0Z!aU+ZIT|j&N*jF7W+y@@(;8H?_Ujo#~i7rOW!fK zWx4)}Gr4;BPM$btX<2iTWU!jf*%}TpkK`y0l%&x4)V>E_X;aEN?8}L^4C+f8kM+iA zo~owlI~D{W+7q24nxy)PkP2aI4D}usG=hnQ7fQz(F-N z-UgE&XZo=HunJu4M7f1yVsyy;*=IxTfVL4=V}v~|N>ar@T_{LQ-}>XE1q62-+^%LL z##49qR-+zDZF=_ESjGlJ8Js>$bKDOg7BGWf&_kVlZM zDkZN7=v5lcT4HKCwb-GtT0q}qZJkFU%nAiaG}==8ELPj7cV|R(po1EhZz=(-3hI!W z;JoBgLmvpvkHj)D6C;Zxe)vzQ>C72(V-KkZg_M7W9GsX#Er-0AEoe{%qGI2mu?c0Ql)ZLSVO*DPUBu<3{qr%eY+ayLNe(+E*}H8;lzFVei%i zef5h*6>e%amzZ5$EK)oFmlIy0U;h)R(0Rlyf>KZ6*-r%M<_X)(`^f?}q!b$~nk6&0 zRy8SU&0;V60I}eDoX4SM3syy#-zmWPm#&jluHIuValLKGS^m&o;}-c|Az63r%G&;* z*ne)HOh?b5jl6lqU)YG;;Gb#IyPloaV(FHHyJRDkxXL#Bmw>WzRRCWw?f}bgW5duy za8Nl!_~Edk!iEk@#qS<14!*1C23`u+&-RXd>O{KqlYoIfQ{gPPPer7Xb0YY{9j~>b zL4h>vbiFi+N=bPt+Z|Q41HEy}oL9hmgZQIW>@~Z;>oV@&kN>oYwUUA~2X~is zF|(Xjt>50VRZBfNp5)5VJz=w$I|T$(x@KNF$zMHeF?MbD$?i@40se3AI9I#KYxMsM z&cpHFa2`Ot#~`33W5K{^yfgXhUz%qdUQ2g-DTV|zMI|NSXM$4^d0}2Lg%)o-Z-&ef zF6E!!F}+VzSfMCvaG9m!7_FMXeps4-tyD^facY#ODUpq*-iiUSUE&TQ@qn-Q=Z^1p zCYueW+VnYr#bMlwvJ*jMDr!P9!u7*`#8s+YavHC00QSXY#KF)ggJezXx~xBlgO8IG(4TI3!tb>fRY+tDkK9FUD0KTMdH2fJ>`zd1?njkPpe%0T3{&cxm3hZeZ1P^~K6!N|&glV} zoOe`8OP&~o;;U(0)0bX#Htv3;RXnu)9W+DWcj0J%y?kgG!J)>=ZA_()aF|l48OsUr zm3>Kt9b7Qp$h2VqK)CO)&b8W$@`f8+q7f3`WG^-=!mU{q`c zq1OU8_%Xsx+$bJW0QVTNz85H0T_%*4To^#}bW=JR`IZMr3kQCB5F%6E^*If+Yu3T& zV#`%#0Um^%e?15>+zjw2wCE$e4Z&P z8QrAM23MOUZtgqAiHE$bC^1=M2GDcD(P}LqRn)U9|H@(1 zeZgU8H0>59qCQ)02HRrHt7AA5uRq_2h&9lkOoKiE+Jpi}*N2 zrq4!2ousySkLan5lv9_WSSD3i;YS{yA*<*XM5tLAu9Xn}m*o)`m->P3e7?t~dC!%! zP=nuo1U7#M_;sxh8R!kpmRZVp3)kzH36G+V&;j4_O{p?QtC|4@7ykMUk99LL%ckZA zV@R$TXXL>v!V9mOFcWuYx%bwP^7L-{sM-<;(4kOY`4*YW9so*{>JyRuq>oi5UJdqe z8g@eTCRJ1BaR8MEx5$U)!3Q7G|6JSUx#!nsxyO3SlEYoQr3oES?pXkO z)6#rZv)zG!jE)-#^SQuKN=2tUDK0_js z`RkY4a#cZN$oQn0Wbu$=`O7~$2^n@A)6{z4l@-&o3x zzA(ts_HnDwKX-0QU~Z^PF~N#od!+Tw2+A8Ua@P-t+Pi2xp=0R5Br!90;xeG-w>sl) zM`tUnf8?%`+$%!;zJI_3j}_AnWVWJt3X0i|g6J#OII`3OlOEH7<&+678i5K)PfLY+ z3hK#95>p=a&3zdLh!KVtg7}!&S~h)ICFX>vNq2}J%f))7>OMgp-crJUL7s5{$dh~x z==LD}zulhJ|LOLm{!h2(<^SsTNG(|t0lGa;&VE0>XO@mR=MLABjd+xh=jh2<)x1S; z6+Ips%_hz`_?=j}r(^Yu3;nrJSsHUmt6_n|HNQV%ve8fztu6n(v;}h_7ss32vZ3{q zB&hTAF|+#Xv_mVJGuN%10$gyLY!5xBtn)Uxbx7va;@-930*(OHp{bp+SjLSmd%>y& z#W)FwIQhG(tr2fPZV|(WwyOJ!@jSj`UM0qWKYMk><&O6F$8yHn+E|}GUU|`4>#xI`@qF5Ejg49pfW@iaYiiVf!_F^(!|?t-Z?HEB6Q zyuQ;{vb;t{OZJUr;;UCgv0>tUbJ#%S0AbgYl}+PrzLsqN(pud`K^A7(1lb{?bCd8= zTY%x_5nKW0Y57PyJTNn{>3ssKXG|p|D3PC8UGolZ~umicw#>VCGnj*`&5E z040KBp2Yr_@bP`5KoA ztuLp9FpB!xxtN%rSh)S+$K|r|+hmw-3W8^>(X7+7d}`#I!rWv_g$cC>0}u7duw#tT*x)8|9h?l%+s2;?ocbz3h+2+=h+rc=jP*MwY} zrVKK$;1TLnp%h=)9S>{;=+Rd1SFOGH*3RpN%=uG*zRypbGOTeWu360F2=Rd_E?=|W zCNCP*l4%HQ7@7)OJ#aDiV6p$X9JIDmWTM5c3%jKRy zXk>zN8q*`W8tAo5u)?1o@Jp{m zbKqdO7}8L8dPsd-HnE3_sljeJsl*%?5^3y7pM%mI&+M;*ltg zm^^SSz)exCBl8fg$cv__o>&M74PF}E;<9R%aWC2;QBgfl2X+0jx>)R*q1KZl`MZCg zJqc{-qE5BsKItv99?mbc6#G4Pc3i8{Kw%3|5O!I%amz~GXO8go$K#$;G*EZL36>Pg zmko>2Z|#KT<-aWO`8$mlZ+B2}Wvjb5zDkph;cFLViH=qB$LM3(e6ysJ2IkWtg;_)1 zE)=k1rw|$|j zys4DsxAR=AGB+8RHqXoH(l`(hgIK55DssqZNiC=wu9sD{Ql%|Ikek@L7Zn9nzaLcT zGfDek?M7Wb%XDjcmt5ru@z7w|5>fBi`ZGgg@k1;J`#e^&#oBNQJlct*QB+xqnFn(;HoB3Qi>M*J`D4zCe!D$ zhperxy}sa^r9Tk=ZC$m7gXn+qJTCv`O75R^r4DGLw*I}60~IN~?Y+1G8SIvk8yy@> z_S(`_+@!6h-TUh8MS^vFx#mUA!&5RUwZ72kNaDr$7WX{F2fI~ftcnVX$*q?1!?D2- z9D-S3n_F$EY*VRBGYsWZF9)&c@L)Kw;N$)0Oz(G`i#Ahf_JY9rh|pfkDVfBlCBc?f zFQV(EJ5(R;Vm}So3ucv-frct1PNIfc=qJFE&=+o0uc8L~jka=gJ95{-+%*5doDsrW zKDbOIOr>3)fe*e{!KU;9FZ2ThF+SF0Q)s~lyHvuUaub-P6D+XVJ*3|Y{seRV_nDAgl z^tOSjJc#eDF90X@fzaIT>ETy!UbQ)jZ$nL<1m(4xa zM#31Wd44Av31CQ~_{edvxo(t8v0) z=)r=K`dd8vLwLi>cu9nD@P29%XtQ-8|N7;0XoXW|**Hs4y2a;s`jKE_U~aErYJj|n z#d`2(>;KtRxJn<<2+D-HESx#$7F70wrWr*mg*2+rXbZVuN-t{x#a|uGnJ}hQQol2_ zt0&=;jMO&FOI?S`AFb&$3TKJz*Gbdi?H2vCpva4uZZAi4Oz1VTE5;JXWj+S}jG|U_ zhy$XisonOb%KigOT!>P8z^AN&JdMQsorW$YrnrUGBLnUy#B8m|d-4t*V5SXT4|)`XUnN00`fGIaZ`Z6%B35 zLX+7@@)iLuC1F{A)xZW%~<-5J6Ue#WMxiJ zu)DDR=7AxHzpe>*46Hwx&Hk$tsx#i_uo?sJs)_HDg);I59EbLNr}r=Z9h7R65HS;3 zVl$+An_&ddF%V32l5Mt;j^d0@kTc-G_0_D$Ft8be+Y=bK!0UjCW zh`w4s67^iD3X&iw*z;D`HFgq7svysCN{s&e0w)-*+Zzm8KE0@7tNMgsUg1{J1S#Yf7TLj|cHVRDnn0mAN}y2Xl?L7@IaEnB4LV7yK*E zRM1F9Vt2KYSr-c;DWvIcE`nuiey4NtD;vaA2XBseP57iz#vV=u=g{v=zh`Hq%hRP;SdRbI;n$copbVigzfNjy*pit z?LBC@C(G5Ip!*9NM}BeNn<9dz9X@_zIrbks3A!r+L#|Atnq>L2KKR$j0U3;YQ zVz*R$hdd+W!@#X-!Jn0Cg?$Tm)kN!?5uj{N*fkaVK1y{DP`hbALXW$H!u&I*C z-lb1YveTI9ASMXL%0VeE3Z?MG2-Bc4O&+UWetwJ^&omL`3#ywiN&Zs{b5#JXzIyjf# zg2!%p0Yoy?C`NlWf9Ed6vo?*$YTR+An~-bJln_)>r|pA#wNbY;fi@W-den%3P-Msj ze#8T8yuza{g6**yqcms~-=bVZ>23g>~y_N#w5r#5H(I<0p}ru2MCgb0sEKQ%8l`1H+!FXwcC{%Q|S2iMK(^ z97%GPTkNn!r=j|lgFRZb`jz0CxiqN|px|2u#IM^PQc9NK+;TG9e~N3dxffpJR7rcmVVq@h!Dih>aGrjj*|STqApDsJN}J@u+x zzr)3Fz~wILMEG!i3DvJf-j-EkX?5Gv_iY37(i2_21#Kccb>lj+p)tUVqv}APf~A#d zncVkgbdy5pkN!=cFVetkPDwd>i1P-hq7XbX??f*Hn1g%wa^!(cWyA)Fv`hL3vsIG2 zM-pbyKy^&`qXpkeqH1u1_@%@L_*d|8N*tY{w#1EvL<7MrXCo~hhe3n*R2so`y`iD9 z&5Z^#oe*6v3@zKa3auaTn!6Nu9N}_6IMmKOyUL>LE$@m*GR;5p^|AIrAIcY{-|8FJ z8sdf)nL0N`>B!}krI6is#fOiq1eRfS&W&_5#I0WP9nS;FYUr~^6r(jqcMY{y$veIm z26q`qs3y|awU3W}lf&0S=u$WnG8-5U+5a{_dAt2BDM1PFmi_^rd|it^Q^zjxhUKxH zp`41hlCZ%9DwB$^YfIfUf2fG|v>Ip7VbHa3SF+NAxRFzqsWoc(ohvB&%%pK=soW~x zu@MVwNh8}SDQU07L)A3c?uI021OzzRR0Qfd6)`X=r=xROdielubB3dx!!6h zigo+B77W$XYr6VY)4`F>S;kUP9;f(Avh~;Q87hc}z|?#UBUzj!!(SL&T8pnm*ZC_L z3pDfJJ8x->7$MfIsWPCqLm79&fbPSpIqqwb4#wv<%C<4U`C)nTH3Yg-RBVHgRQrm9 zxuQ72ee5FB_6dDs@Vwo_0+I2&mhJDOHEe@xTP_pX8By;{=v>4ccA`v*m{to`J=Qgh z@{qgf8qe3r`vR(z+BUO1p_*4K%0GI#54I`x+4#f6Zx1DE9Ixh8|n z^8>G>n=3IpV%)f8%%Dk*HYhAk7tjX+Q{2`z-)X2*9}G-G$jXw))2#73+QFBy_6+QY z)Sev_Q}j&ifmCo@Z@9iVWxExlQ~T33^6}-n{g;SrCpZ~zhmv1n6T6RE(-j^qPI@{_ zlJfQ;y-DRsX=s-ne|WCGcs85fe{B6%^T1Y=^_bg#HxFyLjzMk0z%NAqD#6KC6i_7Q!>csQ$Y5=6P%+O}bg)dtykinDcEfRCst!m)LtT7;&B_UV7MKm*CYW#Wd}d9q?UBWNkE6+luZUx$>86!ss{9VA?@MjqVyU{bP z28e@Fjz+lGlhv(zpC0UOk(zlfhwY{Dc978V<-Z>6Gk^!XLEWMLc;^^%<`tlGgVf&X zm{qWSZ{U{~N(Q4h-(H%2rKe=$ zhOJga(rbDo>LId_fGbNe07uuk;%5$n3|)h|S*~iyahZYZTOrs6eIby*OA(+;g3PvBNJND3(h+=&k;2c=4Wyg+HSK1i2D>v*{M zWqx~k&!57Es=exsHduB|sV9lKh8QA+6kD$m%NoVtD2{8z?trOc0AFM#iFnGQcNa@; zn6+S_+XsmEFiNP@PXY%c=Ta`W)j!^#nFPXNZOAF$Q}mjgQ2(EJ&#!SSiRZuZ9>5dO zf{4HZKQfI%=;E%nKgXj^yAA3u$ zNG5RURJ2^3N4;XJuxR}zfuaq=K*NcKP|QuKIcgS9MYYF1!5$16hP)f>@0)buKeNmt zej5i-n*3cW2XC+}NrlZ=Kn;${Jh5MPT)isAl7wLu&>Y{q6Abq}h}+rjAxWLNs>gws zPkB)l3~B@{UNF|RiX1g|BLH)y3Z!ihC9}{q{=LI<$qMnLqn;-<;JeQ;)X~SKYJdUD zOa(7Tv`D=ZZf~6mm%z4IGg00PkcyynN_`Ztr8qwdK|_+XpyQ9o8#;)4FI2kZ6RmCi ziVoxhLbVaVV9~gJmdp;_r9g#6oByFF?q+n7d9ap>C%_g~!8eWe1ocjSerywM;bmzr z;7LBnV9s<;j;`=ce-Pm^)^(jS!aB{6SE1R%OK`^U;DS8ZsUW&~v9r$iBpD1F z)E@G4bvaV%i_tdS;^sV2)>D z=f}Vz4-uO^!`A~EN6ApX8=csN<2^K*Fyd3`He~lI1}`aD#SOjYNmz;=fEiOrJXBwZ-LWLZ_G|G2Q; zLPhbIT^c9kyF?glA%OS>d;riVgc0WW?b}*3Nl=L0c5`kqHtDKXD%>h?U ztrYu$9#U8z8T(P49lP%bo0=UVh!xE*H-Z&{X;&5{=^W~DaB#nNxK@uA&8%M{ypGCl6~r^a{-fuZoi-=!L2H2 zo*qS*6@3d^$~ep<2B4#c0O+WZ3a^s=%AN*KhVh$8vp3T+r;HBbbp~pFGVeR`X)SZ9 zjM>|2`VEFD&t+qbcx*>C(6-QlgFdI-wbZ;djG;VVrYANNgf<5h>x2R-`ew-Y*Fs3>R&Wp$n=;PRu?J>~< z*r@T!1*3SchM*4=Z?sLt1+(0w6EDb(WgDV7$HESA;lbC#LQ%tX<3`(C2tF3_+YDs6 zQLU}K;R(U1sDFrrtF#Zc7bs|!5f(rjARnq10R{^&(}qHr!+G7Hhz^SCFqmknQ)kf; zay4HP;DQ!(vzGnQ3Jss`0J_MV2fo#Wvqsivg1X_rb!0FI_5pZsTc^CkIS> z9HNxwv3G3N+JDZ};?QGLN_JrOF9(69>adUU4*3-O$DU~=efI06^}Vg=b&vW4<@fQ zL|KN>#-s#ZuA@a?cvZIuUcC|(B1Y?0Oe=pk-qpph8A*QGZ3{7dbfF%L^NX+Id%@nh zpjiiSqW)zQPv(loCZFC zhC0j_6-_}|1Su~pnj$N(Q^p$Kw{m#^-5Zo^6j28$ypOdj8m98y8^yLf($&Tl@#yJ3 z$Wsz^rO8)}B%_rgQqXoNb9&+A=BeeJwKs*O4xh+{fsKexUXPcyT?5>G5sQhj9bP9B zJyy5ir87MMbs5bpnKFd}xJGp5PTTpE1*e(r_d@@mn1tsv?b@?>_!QGKe|U5UdZ)>U z?(c+uGNX`etsx@QoZ&P+9wjP66Yq~{(-m6ltyPscXy$H7y-5{GIOqWVw80fMFD}#j z`+wI@V-hTtg8%nu&%ZlGLnCI59oZXTNDJ5jejJ#au~@m4Hp}UI^1`PF-H4|Rs}%B?=bLhql8ysRqEg>;EkJ#p;Pw- zH*-~LBxO$>JHH>?st&}Zzu)fo{@j?Yelt)PDElZ*fLJwJ2xc%x63$-ikzgR1`qFU?P8Dm)tOt9I`0h z8GVYUJubEh7(AKH{il@(PJ_{RD0e6k@DOdY`Nf>HArGN`?tfwgf8G@-`2UfSql%U^L@>cQIBTLhDTRz@2#juO*- zaQ;?C;q3GPl~LVGx4nKLy!ZN>5am1RmU*rKfOxr*`7Hb78cG#6!;?t=I4 zsTwzBqPrQ~dwhx+P#l8OTbulGnl5y^s$Y18@aL)8;1i=tSKq-V(^v4tn6H7~p?0^S zCteuqe=CVg+v(hXRbK*q0Gzn;4UW&Mf}m3JR4g=kB2tw`unP|5`E$1`ssr)GE#VMtgGauwFcZWm5EuB&#XHMk`5)(rC}YK6M@49YG8!;1hB5!%fbSn81!@zhz1 zz>LW6NBqUqhfLGD?rVQOOkywbB=!$S!zJh3^f&6t)dAu0W@~*~H$^QWq-@cWUouF(sgKH?fq6 z%-m6DRYV(OImMM*II$FAu^w7dxa5Z^R@KhVfa_4-qv8lP*h+$1q8&tC0zW}jnW{ua z1+yNd)^kCDVgJAY4ZcKWZI8!M&&_r^DvL*J+kXyAz^w;Cf*^O1>))Rgr0@dE*wJa&N7HNT9foDiTlVkI;T^*Bfs|_W&8!Wn041~O5Ogij0bQwF6 z7mu5ARUk#q_C--YkeQ~ur#3Bw-~-_%Pm^W{eyu*l^vF@9?c}t*+D!*}=;(_0dIo-Q z=wdGM3-F)Y_v%5e81T=$qqE5;R-J>I9%Q3BmHtmh;F>*qOnyYAvMg~KFvVNC;%+7< zs=AG+EFjgQ*2Hgb;#i^wilMeMe6ljTq^ zb@Ak*S!)+Tm3~yi2Y>$^$3F8}>|xfamjnAO_MoQMOCGuB{w?<883%eA0g657JT$Iu zR>I(jAXonudmI48p601v*N^`x_KbZNdpK9s0L30Xev;2(55?EN#h&_cI6c5W#H9;y z^nn%vO+h{WuHV|Z6%lnLH1jEqBKO(`uZig-rCqi&J`QsZbA8`)V?1$60}c#3zYham zb>7dKq@M%GV>B%vn*vytl3^3aE<*O>fALpQXR5B)Iv$%os4U4wKTvLvCPiF;X@`o= z#k?qw$!6HO7}_1VdgIx_<^Yl8y=FS}x`Vi>6+)CyJk0@o2j}2CY)~BD=BFJ-nY10# z8mVtmHXZj(bzVZD6B2qeA?wXNm}c#W!(g$n-6d@>0_IodO>@rLa%r=$ULY}wJU_WS z2?okM=>gx(JM$bk2m0OW@6NJ^fMSnM`Kx@A^QEn$biK__GnnoJclXVL-vx9biCX~y zDy&h5rXI_BEXH!Wm87InI1zPQ*338|!&;GU0h_K&Lh02vZdv8qjds%Mc>{8x?LfG~ zTtYY*BMtzxMHf))Aq#b+X=hFBMjpcxFff8YTvjKR-eLq*yNLQ3$7c)6-@wL`F__`t zjx^}3{qyICwZUbpWGcr{f)ZE!2FbC=?dHwkXyW=&J=Uy|Ggu=bUI+O9-sLR%)!*ie+`X5mY(*u*trmAN9czw*36kUDaHtIRoy9T%%TGM<>7@} zEn`TXcJ$C%@(jXFaBgdvgP9ig0r&l4JBuu7X-#9oV=^CGXn!gub3;oymMvljXxexr zT>(=!)Pj!3NVRkSTSi3*oCV}JjD{4X*T~USYvANVSnpvH3*06TF{TI^hdr4`Sd)GU zdyuAx$KT6LG*+|OuR_hS-OOZi7-C@5_Ow4!*9vhKMR~?evIX;iaNz^)Y%A{>&}+Ei+gMc7gj@__l233;@bHwsb3d}3C0J*g<_XBYvW`vBk5@aU zjZhZqczJUKbdr?(jJ6I-iO6+!SC8h%ZIm?~(~c9(FzQOWC675?P^6Q!4A9}le!w#2 zK7p0Bj8aQir;ggqie`7K!vhx@{4OoC_bckl>8Obj*-_8$ zT6vd;LOGk{3(3hy_zSplfbCOZ#6WV2Oh_CaQ@sx^OEtAp8_3Y=jk)ouTS}8aj zdmS{>>Di;b5#iHXZ5cj83iNBAanT=ama#{UsF7 zlV;q<4kWglj|z>lnBvt##R+faR(Q0F;;3GoVqb_AN9nT< zzjPNTlTHGXstZWnL4nQiWbavt(-veHCvTSRo$fAN7LJp(XdbBTS`>#mo38slScxUe zNcKQy2bpHGyJdF0#KQefjyOSSQ^{EGPOT zi{0i-fRj0HJ1bH&-s-n?*zX4}?c-1;@*F&otVMbVgQ5u>!GXopd(cJ0xxYqQHuvqa z6GV^wy+!*7=pT3_X=A`iY~#PR1ys=B zTTW9@rH>-*gSWe|xi8aQQQ{u5O|r?(4GkqtN8)x9QR7(Ex4Z^u_IPUp+0U_(0Y>dD zHQfR1=HFAai%?P&D1AESIV)e0580OIn;HUT>cYL&=fTDP1(Hgq2-ZqjJDC70MdcUl zXYZq@UA=~9xEDaP2TpJz_4?1pe~#!*GNGoi!)bo6DpPhj)}3wjRBpVl4y0*c zu}V(wqC@K4ac^8~Z=Q9Tc=v=r_x&%74}`91;{THD;b8n9#s{#Own9I?fT7gTOE-M6 z4oE4*Xa|V{S<8h zL3l>D4-He+u|4#&s6OZK-!<*p_4ua;if}Aj^XuJ^F$YYcV?Lh0-?qG`u+bwW%^UIA zYNuUk))0f?!^7cmTs7ZE93m+~L1DeWfyBVjj4=WwfdA(b4ICoWs9ss=PKlOIZzuBI z3vh{MVh)h(Q1mSlLEVzW9kvO$O6H%^`z?O~gibXMNtGYka=>659za6h5D|Az!IA$k z=Bovw@CNsH3YU7pmAoRC{ASF@xZLk>ye0tSJ+1d2o+EgTeEd};GDPCZ-<<>Tb;Itf zt7vk)ZNLofpJ(9c>2fZAHI^=%98otv==D-JA!xiYiG8-pJN(N##god=qVewW(0H~SMxlIhyPoU)D?|7OkRh-EJ%an{ z`?`=t;D~;N3t-8$;q0+rt*f%7_flaFxhc}zO=3Q?Fiim&qNF~$X~acehi(2&2Ja6hlYSZi^2h1kIT)Qawh*d9#yr8u(h?4dP6Dp3xhuF%tYT&OlXkiY$!%h1MdY1X5njZR zgJB95OsCLR57!a`8Pcg0L6vIvY&DZqorKm;fbknu_wE>cXn`H1(?!nZ7+Os31>_tB zRJqw+>>vq-|L_ulIRvk8O)6rVGhjHS`Y8c|EgFz1p`XE?Vk}nXt?GbcV@^hG0*$eJ z(k-n%57;v(m6~XbR(QNe+#J$Sm~{ z13;w-@~G=FW5XFW`%{G=FAYF^645}PQ>qpL`;2&jw`h|WHkqDZ?FtC3tej$T6HF(L zayTgVLbBQ3OgOmYRvZyjq8ExK^{{FeXbc3x8cj%th{jpb818mH3v7yr7B}xs^u`2Y zkeO-+DC$wSW#0<#R^+_FJvND<1k*Hf4k6WyOO#7csM^OO>Vs(%G3B$@gD>7k@`7~b zpV>O>Nc?_5pM}rk1EFOmN$|xL~(ZV8X zJ)HYpG{XC!7SK9vO80e7{VK|M?%PehGibyim?^+MJ!=3Lk<&z|W*Yur2Ycuqod@i_ z)i+pnQ%5@LWA`4Iil?{Lw0r~tyE{S{O-nSRZmf>X!bR*=MBxC=;LTdMjTUKIT~p zjIwqg$4aAerM{uq@dxcB;cOYgV^jTo)^_iW5$4YR8~mDVfoufkGw*d*c^2k&Bv6l! ztjIN!651b0{6EFV-E3L;qEpr4Qd4zgBcHJzO-{})*{MKFdg6dsPsDV~;Khr`4BQVu ztY`WP^_Ue@ac+m?5)zq{N*zIBU#@xSi=w~0-aPwM*GRDynha(q#>f1JIlnBljk3>K zs$D-e)K^f6pR9)3r~D*5Bd=8nyUo$>Ohq$S{~|u}HK<(wB0g%jG)W-;AU^T|0L16x z6g@+MaheuTK>b8~V4|}fp{oBPJ`U5Lh>wlFFEaA9V=Msi>A9(ayP*=@e)}K92Vh75 zAU=Hb0K{hsEF3En=@apx2fR4}7F8pgybW?QG+39LW+2EgD4ifSuGU9?$hByIz;dxl ziyTOyNi_5YMBkiopv&!V%-v^^1C7do0%PnbBV z;ORZQ^;y|2^SB-xMspWQT1$~I{hN+aX9Mf8c7mX*$&`w#_{nV>k zuxeXQixTdxY^RJJ(zahMgl(?;s(4h5F*Kh7^tcDl5KR86tU>LsCU&YuL4_khA4O{S zFXDstiTI>hZY{LsIUYahfE2rs5A79ujnd5y%Th_UW=xjLh>h7FRohYl5TD=;^%c%d zajj3pN8~&-ZIqaAHi@$!JY7oT7mt1NT=}-`g3%r{YT`$S#tO&iW^J&Ot##W)OJ?OU z!M3LRT&JV`Br+G1lG)28#pWt`Q;L%-8+NAf#tI@4Rw+9gDPZ zzEzm`Hg#)!@}oRK?#lSb*vp1QNK>g8$1FyLTY>{2CT9qx^$&Ebj4-MP&g&@^eMCU3 zN1nsfsL~R?KZRaC>`J?}VuTPmb)!3dT=OsCqaXE2_?Q9#T0M^Y`k#c4t(LV7fbf|Y z$`%3;KC5X7d~0ika~89HGHUN$@-A!u!iUIC_(#g79d~-#$VjqH3+QdO3iI-cks4-o zs_AlCbJ@5b{>-f-7GgJX+jK)Cg-reO$-`H7jyTPXNn@7!zD+|Fw1DuzHb*Na?J^WD z+!$&A;gg(bA@5PW39ip|JYv(<@DLL&4zy6e#UcKcCnb%=Y-)VMliGFLHgm1x!jxBP zpiUsH?d9?OtD;{x*pn-^`N^Ph&`;YH%RcuYRk5_wRI4=aSsRP<;@eZLy=RIG_dA}gWkW6y?qc7_`Y3{2KR zz--g4lNZ{(c8)0QwerGO#vt$e)62ds+_%mJnz-tyr$GOIbiHG6qz&7x9ow4NnbZB^v}cx*+%i-iO&$sI@)%LtcqEaVA;6;eO1s>7*M^@B5PnZj-V zD#}p|M&=-XHr=V>T#2Dsb#tR(={c#S<6c)CN4vthfn}sFU|8oumG|p`8FVy3SSoBL zo)p)BObgrccM*TpzZ0JbK&+zou_?>z6}wvE=`t|woYl}_bHXKbbjfMT5LVHYoKv;j zt)EO`NuOgQv$gY^EC#qxCv?ADs62ybn|~|)(7k_IhKv}}lgudy>BGeDN9qL>dtnXh z9yu0WW`fCs(n@FO+a`U}rux>o0(DfwTPOLRF!x@CNSYd`*6%PTZTB)@slF$JxVgcjB`(_ug6Tl^F?m@~QWav&SAY z?-TXEO?=G$46?cc zigP~y_r&Kv;Yxkg5rCTW&JBBp4CXS_-Jo+tI(2pNLt1;(p~pKX1P)gRJ3b?4jyLW& zuW)GlZm0_pO0=BlHtxiHf28+gdwEJV%boCNg_7Q==OhfgzGwcevL5Z?h-g&p-jFtGJH zGYv6hy#(MKwX28*Iv|PCsw@RNt*O}4j|CtnOsJ3V7=w+Xgj5cdtMC}f0~S8W#Ix?O zA^>HNrMQw^ep+tGE;Q*P4&j560KnWMz5yU7D8zi?qP$~B0Qd>F80CLCi`aM2I^pe+ zG>Fa{1#!(OtA-Jf&Hpk+;uF~y73W+&>uL%~C-n50>$?AkgRMW2D~c2bl$J7`2H;>T zPw&=w{L8_%Q~ig7J^uN{!H%zsSdg3hA}2IgmQeSOf>2A>FNUq$E;P z*UfkNXZafYIc@(LK0v{eSsdt8F=w)sSKyt<_Hhai6Lg z=z&m}SvPZq^6gy7X0&M+wQ1WRxr7>hWGOBY)F9}s(KvgWk+~R03(Q!qmS;StlhO*E z#^k6l``MB|lA1OPIZTYw*q zJcyx_FK6_oQB;h0V3ET*dd$QyP8L*yT1Fqv0$Kse?Tv_q{@aCinz<+;r8o~8OYMuC zAd*-X*!qCXiDEGQ6n@hSo$*rYe(Z~(fK{pOjau$4q@COI3ug> zN=DUTvNp}w3u-fWk?IKPoVAkvks9!VUIk#Vy9jTpDaGxpC27qntvq62Wrl7*Mk09- zS(j*+VPyb}Ip9-P0sv!f(CKG2n8q5cR?5{L-{hkppMR;DUZg#!yr_0rD1*6|H{Tyy(2Ar7m7h$dzm+TrBoc8tC zU)5@PU4t5azcEELF(>|h?L908zq}*M1RSd0!>{rE_ckanLi7J^fauH4_^~bP|C`WI$Nbcz!1u?6wrC zLSX{p)iijWM_;@$|7IDaTYo7R59rKwz=kst)S~#Pv)yIO)hEk!=C`UnELi2h)=5f=v2{Cm38 z9LC{lUb`k;YjNlYhW=Mr0j)>KS&GWyfQ1ikJvT3?rIYP|etAL>C zKa@NceQ6N(PGno)FaK2L@OsWzfi7aa5l4E*33&RzdtOz{wBhe6<@_IrwYj4EW-IXg zzI~@48u*JZ9W=^(^c|#35L^Z^0}mE@yNU5fB_<)S?ClC zpz3k)1$FQdS-4jRH$??>DUVmcx%T-N)h%aZ6Dd*(dj2hM~>V;9R-^O zT1W^|hxA*o&^CVUkQ5TQV=mBOuY=p4IjW~~^&w-=U)rO`jg)yc8Z zYi;x1cWuwc1|Q$&7rD6KI5_}YIw-p$^Ez&rFme8n*MgQLpi!l%84r7_w1R})&j)=- zGF!0Rw~#Pm?YfqodLqh^)fGq*6OIDBC1nsLl1`Aw z?A~ltLwKRv{umfL(=*M+&q4qnREfd6?`p>4r= zr+$&msE))sBd=lU4Mo&_vh0M&61jChp2vcPu0-qQ>=@~Rn)k@h6|V@R^??u8-$~g0f6h_)u=w*y%Z0k=p?%(iuI)x$0SLv zm^qjT+8dj}qZ=m?e9_)HC2<1lJfamezKp4hbTOTQeBhw9%M^hJ$;Qex9QZ&*cS{_t z5(2RyMARZ0@;M9nyFrX|d(R$|T}21pZdyo{!)X;1wJGslR!g^;85~q}7Z2Pcq5WFI z0yd?&Z{C!5i!at(r6T#!ksi4`?OT+ae#td7uYZv9ws4Fl6CYI{bgbn^c~{^<96~8f+!-VH$R;iQgwIgw zEltkU=%QiAVF=2fQ>PSr1G$h*)r0$0xv7e}E1g5?SE1Ea3siFvgIcNDD_(OQ%5oql zPcD4>>huZCLf&E>Nyn4Od8sOn|kjNT5>UUBEbGLSab6lxEIGd3gHwYuJ#QZlm zlzlpDAv37dy;7+tI}E1C$Jf%@ao9YNW=X;i{ttG1Cs5ro(g zMZbk9bE`=$$eZMiDs_f-GV&2ZlZIaPGWy~s4a%A6qZN5hqtdbZGKMEM=t>*Vfmt;g zgB9&s;csTtkGVJ|%n#V*O;e~%vuQJRa+pd}iM@Fq@aaqrPR7ZE(rM|80xf;uqe z1T;2SXgP{q!ndM9b-&C+T-dfd2`#e88a1D<9)N&yu{_7I&Y@>>2`6i4A|@@_hHA2m zcZ#N-{?JOysb$Ne=7-C!Q329Jk?Lw_&x(P@giT_6T;J+D$2tX;SAj7v)p4jqAsIov zOK1=gK94vnoV_`b>BT=c;=B*L_>p;8^6Y+kmhImw=~ObYc+l<5NM7I^M(fdF9{olJ z(bx{tWIAM^wblIMm)J&Oy;3YB{tUY}?OA^3KM@A3uyapx#;iFpF~!BK;$UK9@+WU} z;#3~m_?yO!xJ0mRB5Ba~wgg8cFShzN&=(YAEJ_bh?g@hqs+3n52dos_k8W5BIZ=yk z3ko5smw?Xi5**gLpj=&APfvvc)@OIeuZk5Vtw!KyHIA@S;V27dkaKIVjL;WU)2{At zEc#j*#QA6-pu~~=N6>1gtn0VlcbVbQvI)mok>kh45mU^^JTP(q@|*E{%;z=U+2^3V_4TQ-42` zLtl}7k#dvc;+<>b6!F*0^=$Fn0w}HZg0EPas6*(Waxxdb{rVS%ZSQGo%l=*}+W`Cz zhyZNKsi9H-R!{Hq$nJBZBL<6o<{ZfNcE;V7O9I6e8U#D$!0I~k3Y*cdSGF6om)y^$ zBjm?EAsci?(P#zQaBm%yzH zi^1Vr>HDO?K6Sn%T%CrCd*1Ta##bcRu;edbYjYi--WD6|d7gT-9P^D4k0-eP9^yXn z6bALD#v^r54Ee47x>WjhxOD;YpM4LgInELQ@P=3DG(Z@&{2#y@x9kM~@Yao;@+y z`22vZKx(Srl#gs8f*EETNObOqMKEqfKPUiexoLrHa-Gee)aGTENGNs>SHPF~WnxvH zx{V*d6O6A@NWXj9AS;PDHb2QSc#Og@4j*8P(ux?8;lCi5of8=yvEQDoMhPGXpvuQa zSuwbGfzFa%658?(8nwNsq=MFk0oVPB62?I78jJv?t@k7pM^aOZ=7l8mVpmm7YOfFO z4AfSpbRZE`hU?JO=ODCAqmyP6Up7@qz%L#v3T3u*mq2bhk>W7d3b!QY$P|rTmM7!+9P8)XwnN!%54rKp8U1d!|5fm^jTd-!Ab?V;omz znRbZwi3-_1o@*~> zRy>e(tsuH6PQc&j8$Im6Z}FytSjKxW_2fodgAu-uf*+qKb=U}jxr0D|xj3T?3N(A| zw)>r!Mg0|^^Gs0F7KE>aZGSC{?j|KFb|JG(Vzn)I zW!FWh)#>VCbUKL01eKQ%TLm3L+NzzF!7SE{`Vxy;M#x+SKk3d8(1tIAqC@J}LJEk4 z54loL_v~&_sf?ohIS+5S_Y_{r(t>^yM;;`JSLQ5^UC~^Qk~)xG7FaXZ32PBm4B_DS z&2448dg~yZy}bg%Ym%1+ZEVZ)`q5ol&L;7p(3J`Acdq-4A1&Cz?;Lddd3`$7ihsPA z3v%_N(HSK$a*+d+-H(H$@Gsr(pcQ6~Z=fu30VRbH7(tOs3X4T~-%ru;OmVlAD@!gg-3)c#0_w{#_#FE@H_njvxt;#~ ztu(*7@fkh!g@g{%U1zMzNIxpsWTOtW+u;7fS~>Fu^&gMnJMPVsap$?|uy!p6wkmfs zTu3}St)3O6Crf?zYZ3EYj;SiJLO!LSu(trQXu^RPFPAuqvq442Wd?tKn0+n92kTWd zayS3>NsfF6N2(7u3?2%~@)OZ$*DF2JDr!khDHlVBINA9?qRzI`hm%vKfJQ<}fip@d zv1iCQzIS`O)ou`#(+{C5c-udT4bq6J_%AJPp!EFR6B82Kq%Y=OnzkMuR1)vLZ(T^A zXrm4B>jUrR>xZekV^##i`x)o{{!}__L+*~su(pLQzrEfMs79)HPshf zEA$ARX=@GnrZMYECM>jIj7iXhYJN_3sDUdUfC2KZXE$T1+93_+W2?|5tO5OI5~Reg zb4xY7hI#<96Uu|sFOhH;M_vb`hR5A#@}r3rH?R^AZM&mcDST~CPCoEJ<3`FudkgBl zosd*-kFE=gA5*mjc>``wBzI~`eFbhG{RyVl*m%EWejQDxd+|Xt7gPa>T@NvRN5*P; za9qD4yd4LNmm7MVLeVhfC8Rj7nnmHZ3Ru@mi!VhiStZ5vK+oe#)1#aBNzxlCPi)>l zuTx*8uSod@=vFsR6=ej2QV?kSR$Pn;f29?ZZ*weR_tmmA;7cUd{psz>jTK}Y@D?0$ zYwNRP)_6M4#_NeOE+<~^O*t3hKD4&tb3_6z@#%+r zE=5CO;z|%Nzb_q+8)PWrC)1dOklqDP?>`%eVkjRKHDsC70WK}s&?~9O@T+<^)J!WA zNqA1Spnc6L%b4=E7Y6{SjCW7dxp~r(g@lG=S`g>r$*jNBX7FX%AQ`keiDF9-I&*&f zK^MVl8;Hp8l=Kb9-_!_-hZ3eOg4SCOOdayO=7lj8R|-zmKdJVxujQIlk|UKa@JG2BV4xK1NMpr4FPa)azq@ zQ4es*L%n!u;mq6iYqR53%#T5+)ga&;p)|Us`!Gd=7n=I7PMPOuNyK+4OB+Z}Pe-ie z(=qEuPq?sbgfD!cV2&3WCkr^CFXal`lth<`+6~L26XHY{V%q*_B~{BQ(0Mx9pnMh0 zrQ8UDEB!%AYnZ$rU44}OSTc4$TTY%bnGCuf?={2i=#X_qU;P6qTov3MH#%>Pc(2~_ zlGLG#Gly7M`6#Z_`r!Du3&|#Q?|ss-NjkPv^|Ro*3X8rVCAnenIw4yu7&RxUdRKeG z1e}9tI%WMV7vtgb*UqaYj$@Y!BXjzAG33g5|N0vl&B|nomfM4EyzE*x&X^T(PAN}k4goVK`dGZ+lJnVPYe!0b&~nw{kOqUw+#^K7#9uXWrzjrP?EVR~ZQA3ew9UZ{H zdAWM=9emEbK-4NP>UXjta0U4il(ZR!+`W1_sf1PB90>$wXPX}%Z)ZuBrEW2+_CcSy z7fS6Nq4c&x{FQUR_Wt~s>e-cCk%OsBAw-dwmFaMIRARI}Ujd82xMUK+Q0t?R93o!K zJjANUGJnfhlQj&mT1;0xW9&-rLd-!F66C-p>3vcv8|Rc|^B9JeNb12)Q1Zq#SzS%A zg4*t>)UkMMlY+VxF75udDADoCGogAsAgx(fwl$yxAaaC&Etg5eF5&5$5%lc|>d=wd zW|Eg{M`gOMDmRnhK;7S?HDI&xL)|RMsRJT!0;W|!4m;~&bE%DS8K-otul-A&@jQXV z)FXt`k_A!`-v2xA3C@=}C-BQD(?{$H%-%2SqE8y}cF0cBzJI6Fm(y2Gy`!MJx(hZ0 z%zGaF$cwVusiGCHOSN*cg!~2SgNvVe zmi#tj%a))FD?JGddRDKYA#t0V`}vaUi-yM?jic`p=NvKWZp~$Z?ZQCAh&#TVAlGd* zXn?YILQZm5Khvx;&>z9T#)v|0zYwuIQB2n4_g3i!dmzF-7Dzr;NNWe@QmVg~?{V2k)m z+%ug0)`Ea9stN>g!SK+8=DY`bX!Vye5+4X~Q>nT1wABRua*LYV+P?sa=`Z5-l}-?d zZZq(+(8e;^QS2BoM+Q#0ybpNu8h0tx_H?N&*xJWVhh0!apRF$%LB95GcHa?%KsT^HfJQL38#3E%s6Tvr62fuG z9lHo$+6*)3kc%$W$qeB$HUaB5C@pgoDnFX3%h;+a#VRIs8H0daO<)w!HlXqWi}xcm zmmBJxV*+qgc|4j4nI@|Da~VU_*Fjtu7tVRZWtI|)6ezljp1MW~sxR^KBeCbf?j67x z1-XXC1@D%hr$WYCYX>%xzGbE;BNiy+j>oVP-j1Rf+99Pzl@S4NqX<^Md;wiRpjew2 zGD01(2sl&h;+FVjO?#`zK`f6;pTPRUBU)>s>EV|vTjL+L1wUyCo|lPS5vzN3y)U$d+~GkGejVb;17OptIc5~4-~!PG zEk)3>k&Zj+>!#9iw0gOEMZ^IkAF#=?LhumOVfcBOIrO-uaLr9GD@Qv)Jb$XCdy?sl zQ0UXea2$w#l4*p)3#PJbMZ;aow^6A$PelxN``_4G8>mN! zMt$R5>rRLChbNj*so$k<;ez)B8tB7YY@=^roNf`MbBH~1Ug?e@Xo2y;q?i4Ix%(2( z#+fHW6#5WC_a;=Z$D3(ME*6z|NvZD?^kMH7au4VXX)^+*qub3whIwpzpQJ&mMDw0| z(evj|4Oab%JTn+4U-h&1upQw_1Rm$OLcb+J*BLuf7xKjgD_jasy}nQSxJG`HM+rNO zrui6C*9avqBSkt(D6<8EPT7uPoBM?$)R1qJ2t`?r0oeHH#^wFv?FqH3`||b(@;~LE z>Q7e|0_ZiW$L#uh^;n?O0=VYSq!MT4EtG1er|$;TwD%|wpikXm(X}Dd`1GH<*Uz}b zF0hy=5E8!-!U;`#^#L+QGA*wgTEPFcZ6@GCO~cmSG@)}#U0&f@&@05DS;PT6NBf8me+3;R9HitsJxe4!HFU{rWoZ5GeO&uRmb7B8uq(5;UP827-b zWGL_LAw*DTz4(heee5QA8ctNftN#mH2w1tXITB@x`LZbxpzWdh)^lE{v22LQ__J1~ z-U~c3LIW!)9Dr=gYmB!7vbd22QF4Sqp#LqaSBYuRbz6%9+2dQhje}S;heUcm*ac)1 z4;H!Sn`hR53{qSwU#l-$RJ^@D`#Devx#wA+)+4D7>Q_C_!J`pv1Z89kKJNJkoQ$JU za?2kGo-pqOq>1GFz`PN2a0jLVk{=CxdiSAK*+1NAApm!J2I-4C4HW{mu>=6OksTx# zYk92B-jUw@T6mdXHjFF8*Y~-Q|CzJ}Wr69!0nqj^`Kh*=o;pJ%ye@?3K%zh51-yv# zULFANn^&Im$is;-m6K7kqdE9B4wd3wBrvRqA0yh=NdU<|1$%mKb8KumY6 zo>5=c9{duEW4%z@1b(1cd-~o_)~jHYZoZuz)!%OV=%1b#Ph1i@U!Aladcqq>bw=KW zm{nk6K^**Z6kU2Aw&gC7Q&*LIFQgEVCwP^39_SD1}@Ae9V_gwS2i*Ab`3d>-Q+4Ac~&2# zOc&j5NSH}pp8)i>kZ(~|kXU+{2NJ3;^PpZ+3%5Z!P*6y6X?SPD(m6LdB2f`FEHtLS z&3VEgbkQ2#R@fj%DzsnfI~v_mmprkokGN$=&rjr;N2=y<_DV8C-M3 z?THoIb~vrl_Z%6!dENSTsopIf3-`Jt8f$`yr~XR%g@NsL7G}e$ZfehPDI;e zmLhFC@^bT|_XWrA3Nwg{RXV1Wx!Un)JAA?03RE#Rc5xfq*jnV?g8Q}hhjXcrzpD0y{dKGSru@aemY;DMv>_G3OFjXn~wTz%ynsN2PSeC?thcg6TP+4#8 z{1fB?;zNP%`_7#e_njP&(a5bNo^8A9a$htR+DDStxpv=quu12p?$K=`uc+o?B!Y9? zk_nfVxk_#tLs!!ZTL(Q9oLaFG#%N5I3j1kz+1)Yccy*lV-V>Ui zKl&FWO!G*&kIut?Fg zU4zUv1yceSMs^xRX_Kn4*Eqm%ugiE~TZo7ESXZQX5N~ZtZUGS-_mQ#zNPBEuZUNFB zrP;CBn6Ztv%e#6d?3v-Vp5dyrh^S7ao?}Do8*8(kFusR% zZwyW1hEAMHJKbkjCqHfPp)+Bs)qPKCDc2;P1h&@J(wvn}3tFTmGElQj2zxhuHf~hG zWL66rq10&*r&2#GvVQ+;k!sq_FQbXM-TY;z+TF>^akg#IvXM%RU%yAUuGikK5nVdg z7CG)717u<+HQL|F&P%)CLplwT5$}{*DD`J^e@Y``=pDnRth~kk`+_uhh1?@oB}JcU zSHk)HPo|3N-h7XHp=isN^cWD*t{xl&ev@J= zA+R@8E0v$$CySXW4+VFO3;7zZ0oUg@Q)PlHj)#SbJC1HJ4c0|Ml~ga=hssG zJkWBQ(#vhMVC|4j@usm#{9&afzF}LJQj~mZ+`zMGL z9kUg$O#>lDcfuLNmojds9MpOi)4Q|IEaGP(weG?dV2~cB+Zw8UXb! zeZJ`9z6OTHeI}SdT-IyS2a?}Y78SvNl9Z115h4=brZ&0gBBj_-Frnf(Zjs1s#grLT z@2P(C+qRp3QOvG0Z#}V)qE_0jCl`|v!&p!xJK7@nfKC5Q=wbm}sR`c3r7qj&TWdgm z{Zs|5orfez(2{yoShnNF#1J$HZc+P$U9(2N)uDz4UTL4A^15st@BKNkqv$#QLg|Ao zQ}y@aEv7do#)jqOYWhc;43t*OR@l^xZr8hWaY6w#>)UxAxk!`Fh6Bz*aOX&wC(D7X zX(_kgHFfW4Oq@gH@G5l^LX1h?y^qdO#o@hkpyw=7q+ksi)fE@|fo#%>Je^rF08 zwe*FC4qRBAY(>IwR1da5E@?2IMBKyz98V9+iz*4z6CdB1O?+&4U3dd~ne7Wukqp`c zB4L>rvIzxP`jCrA_#5jl@Mci+k`vkM5=a zr91ie^C!QX#G?q%5)#LYl~Uoy9Br*HWQS{|)i+zmuJtm(Sz3h7Lyzut|E?C_@wWg( z?r8o`od4EH%YY9{qx$bkA5P}~o%?X5_y8Jdh+ue(^cytv`Z!M9l>@M*tokX&9w*lk z@XaQj1GNMa5KNU!)a2A>vU1X53JT2t_5@ev6sO|HJAujevLm-F4-(%}IlXb0Y3TR5 zPWw-FJ=)|@S3oh%)BJ=F>SE+&Rrd7r=_U8`?_5wNdIY}>u zLAz(x8X!dhkZy2&s29rucjSI~0Hhms#q+#8jen~r_`(Ys(*7wr$}OOW7G%U9D$*kg zIR7mCj9&P_ouhVx(dFg{J4bTmB1E`D^BMLcp4l_P;1$>wm*X9{?Ye_wlz4zB^x6S9 zefl)qg7PfhSwO_VdVjr_xCjHs-qRp(FFzwbK8M}QvVJ*z>fU2%VN>^@JEY%9yC$Rg z3py;@;U;M62GFdc!)ypnk%Pj|emou{{ltKGZ3m<%UhsW?UmP`&1<01QSfMYb8`d?+ zxt`6pC-kE$62*PUs&K+fX1@OZ7OO1|=sZY%`ZvnOPIr~vo3kUHs57$q(SNFG&ZrSz)ig@<8yA~t zX3~V5|58m8TSVxif#~&MM6i^;R^mpuUq}&1>sOBsPk_zqwsLw+@~DTe29*g421tEY zqPRTG+X-tlbQ9?Et6VlvuB!ib1v`UPs?&%4^nyTnQz=f_xLn`b3a+rM#~o0Z;XGv> zaP682Xal9n)4lcgXr$#CS)L}8g3LF5<-45sCO}hC=Y91If*$=hL{Z$V8ED}*?<7kT z{ga_I!__zo$rT+J!UcBo-$vrar(; z;AGM_PRrzq46@$p9=m&1YU%!hNQUfub<;3uDxZRqzyftpRNyK4Ky2qUH6wu1;psC) z)FqPR9vK&dz*_EPPX>Vj*rOgN4ZP<*FIfSe>6l&8i&et1{9z;BkQ{%`nOlbhRbe~f znhE8zLRC#{vIvM{Z$uos;prMbwm*7U{7ReRHCI~aw>IQI5=qds%tLBLyzyUfRpD{g z@WEBvVG0?h@_=BE{tzGYst?1U(fD_H8hXxr2%Vq!u=bY)+{+DZ$qfiHcK>!Y9M%nL z=1!?ReSapq^z1$3X{^;a8lf)C4k{JQ{=tB};(+kp`tarTA-Dgi9un@`|LpPm!#Mjw zkp9F4RY>!$r&tjq3h??Ue|ddy|0HPh)@*8xJAvI>uKdUA6D)yUxc>^eJ{6?<4F@p# z`Bdi*k7g3G{5(@m@+sDQ(>vMAMc+iIHY?v@u9%w}uL@^AW6kYP0iFh}`z~<*ZDE6Q z-pIY?FQkDAOXH@}r$Aa8e z0{Cl6LI3-f{7kVT|54_A77ud4Vp*8t5slAkMcl>sPa27*S2GyI={gbMI(5lTSY=F^ zdeUb|pCv1xHQ*x?j_-3y?i7e0*OgPP*vD$MD2uB0CoB+R9j-v5x6{X+Xzth6fi!V$ zNCNOM<{t7FX%hB7t4ht$QGdh{$QD8yz-)2SEgp7nq7 zh{QM2-8y9y$Ozb8b4h#$ehG5(=N5R>E8DpMMr;vQgv^fZ#sf$6DL4B-+FyFd6Z!D7 zoDKcW`Xxpk>QXAm%p7^C$Q&&wgWlD}gt}&*A@%hAi!q4rBi%v#B}SEzbtK7pz3#bP zc#PaMHH;Q!XAOyLYu+_hK}-I8(V~1CON4B&hdA4bIAAfjYFI~ZBP5%-3jarp>Pgmc z-uCRDKF157)5-M)Z?72)e>3$^Uf438&SAP>F+Bo-AVoDD_hd{g?W9*45K4j^QpSsU zQTP*Um_op*`e{%1P4JvH>!P?`Gw5tJ1(nH+X{H*v(lyj_3^raG2n$s9{i`=8{3^M8 z3+f~}T`l1mm!_!tB>p?)sG5Q)WCUB2nlsSAX}Xs61};`|Z#)M}V{Vur8nLa-_ErY2 zRb56dlem+?u@mw2#9l)db@C(zLP{24e@Jp}JRmc-pKbZjRf0jyBhv@Qw3)-gq|~Nc zdU=EB5y8txD2s8MVRhy3NhAl`Djj}J{+&q>t>Su3T_{rh4jKl_s*DKWMfIM?eG%20 z9NC!}@e}p+lE9;Di;ym_GI;yz?GJMK5uk`C_nfEhF3# z6Nfr*<|##vBdF37P@8jjV#!Oi_+1m?Rat+#-?bOD{-E$TIXIp_9;mTBWM9|QWPHcV zX*@5zJHvW2ksh6QICg}5>)Lh1k@sF!3r>7q%MR=8&Y{v2P@BuxAcZ!q5VWux4IKcu%U~y0j>O?o!5sYKOx%brCNJ8TNFXFQVll$cLYBu1&WnYu}Mpr{ym?@ypZ{r=UHW4m{M`inud zC_$c-_Z97 zs;HM}SgBH=5tP3i0=Awrs|O8y#A@EOp}?}Pv}b^1CaEB`q3eEUg7SR#6@4QyH@@}d zD7*TV`im;R(QTSbY-xOs-CPuJ{ZTcaExWkPCd)GIP_|)j)3^vu9Y!Y8fvnM_?)-X# zR9fnuNj$;{ZD}yv(fm6sFMmDrd+WRl5v|A8F>P*tL8ED?HR^r3gcT>_OY$hm03HLj z0}mf#bUnxF!&FUqf3GogFDPV)?Svbc*dfk(`T;`RpVc$KcOl4NVGgN0nC~l?DQoLwebdmX3*UGtl#keLR$>`gzX>76g$Au0;%aRjczRs$g=fK{ww? zWkwrkX~z#Q>-G!o@-+Q1r`UE3iX*BD?o%6apTjw*mmmy&l&tW@AdI9CN8u#aL<5tr zhIndHd@}_mX(?o@667QXQw!$)?P^+D1pGjtLiNc#oZlReM2I>Es}cz*l*rL5eiNAcS3?mKHI={oJ>mjKi^*)fPqz2a1pwjI-4Etaj#Cadf^s{mjw{{i#JG`Udr_YqKpQ#s8Cg&fQHJ0zSzaq-)T{l@%cFzs9o2^DG%!9&PPYg9=X%*r1qGb2ZS5B$+hd%q04D2Vq?%_Tx6(Bsh&CY1W&Lj9DH8GyfKZ@*E`Y>GR>zo; zAx0z)%#(;1EM|alW{%lWv{{^9X!Q)9kBrU7iq9ArgQ}A~ZpJ1v{Tm?o&H^RH50WI=_gB1hrQa%VLcn7W1M6-7BPt!z2EBplf>(Vs@-#KFuqk$HxnEWmQEK?a<$ z_Cip2)aFO+bdLBpk4R><4&Kg=_y(N$n`yLbB+`ED4v*Q`-XX6i&ld~G@y^TDEryLc z=i`C$Hw(I(L0)}reY*XP`I!U`0SpBXac_pjZZR9hlaOz{v0=XV0Q6kKCuTe`|F#U+ zmn9Whx7H(ZFcA6e*H?*7U;8w09}uYi0NJ-c_e}!MQmuwaFH)`~xYvD+?K?@jf*jjJ zbqkQ3*IEYnK!zlY=l?VHVO6kU?FLMJSbSwE9uV9f@U7ACeQ1%}72-nv1IhlMsSoNY zcKeBEgzJMJj#c^PyssDO>Ep?bth2D-oRglfS zYMH1d0R+j&HRdN+h5TL901ME= zPE)!dc5rovb}~q2uVo_dgho~$}VS0K#I3@ zr;1dPTG|<+{t{(G@hX8q&0jc7ff*-sXWJue9=TtO5eSQU963P;ir?mcN%Nj0k?2%W zM#vvSzb)xDPLZ%?^^S{bFoSqwr~t-36u91tf&O7as<06-mQqMuhUJP6RyY&H<4A9nX9p)3hgEg_GxTw?+b`j!TLLVgnC zxrz~aYKA?2}vbpRvzv%#7|sDe6KPDsFXH%E*;k%J5d}3s4G6t8XuZ z5ap|Ov|KrMpZCngE7{oh79nS9^T(7y8^|<>xV?7)Kdngcx?4T_T6El|!OBMWs#H#m zUvwBx-4aNT)nHdtO#4>%Qu+&b@x;o z1!;{gp1z-qkxQrpH}_nVj=si(-CLVbzf!)ze)?{vG>_vG`v0`&w-}-M+gTM*ZZT zg@|nXwOd?I@%!_o8tKD4Atp!beNunuZ-l*l+h&}0+(q6pdhEC%$C?|g>uM8oX!e|r zBjX?G0N6hEx5o6dAq9Lla>&ahs#0Y3Zw!Q34crJK)+sDH;n@2H3)7{0eRba+HW+p@ zgvXCLj|_Ky=o?(nH7)l4nQ-ll(@gBPglls!W1!0rqCoZ!0xrE|f+6;j>TrZ?&EYFP z8YXpEvnCpwtjngG=2kFf?X{5P<%0x0oY|n*$GWU89QOxYHLJOCIn%o>Sg`&HE$bUS zb&Af{USs+i(ndq4aIaFjH$_7g)fk-o{Lk>+eOE?ye6|^PYnkc0ML9XHt4yocvJhFq zPG6yga4X~GSR}_1C;S$B<_$$~-)N`0A&9H~7#YoRNkDK4JO6=}*}iFu1Lqm^8>nU1 z$zP5Xx#u64>lQMKj3~)HmZgm~DRCweq2k_!L#M2w5!Y z^b?;m=E>eF_PgZ9ltQ;)<3_FFi$jiMvrZJA|AwX2N)(j8GPil1qdiq^;AUsZxQO1% z_I6zNNOdWkEidmn3l8OL8n1iN{QsF~v_j>VVdej}BBd0~hw! zAv!~V?8-XxlIAOsr|)P`4vqrfa|9u1^yaOL7PJCs)ZgU!6A7{iU~ zeK{GiHetuM>bbXD_nRjdH!$5%mc2Ln70*I0#&V%s6e+`dHChdGCOH+DOx%zO2lpG` zAF79ti)ePgxg-iDzFGnYTzjU2veA+L51SZMn@)V%HOsAK_I-vk>x`l1(wxJhAC#DJ zjDV6K!eAo;!kqTj3w%v!hXy{aT2`?OyOaYVyoMUi+D%w`joaEB&+Msl8rEKMmmg}vhbE04L~5D?N-MzN?!v$;j+Z3~jN+Mc4?X6igWxa%Y>{#Ra7L;PBqrPlF z-O)ZKLohJ^-=&Y)ypy#ghBxVaG1mSr^~1P7aP93C7b?7$>=+%*hT03o{MoF=vHG%= zf%IB0W5-#qOB$RrELtESZbPIavl$v0tPy9k~1NE-)P*i50rguG^Cx?m>h{ts7Kwj%=xC6^@B|eTf|iZYoVN-{ozL{W>pn} zjP;Z$-!B!Z@2(l3BBIb>mb)~WoZPx_vC)%7e;|Kbmp(3G+K3qe7$LxBaQxPswQTbn{-N zLt;exO?=fT7IFQ%VIIo@brP?l3IKr6$MJZ$Pt2bZvt0H}bOTmd#Dc1dX$BP=t@T4$ z+Fwj0zSx>uepM`Z>Il{?|K%9nqZX^2hb}eaVLEf}(X&}>ni`R>V^WU>f-R4XZGK5} znHN$CpPTEDuUYSRR*)-A;~XJkrmZbns_2{|Xr|!4%Q}m9=Jpm^tNz(D{cd;Z{o&CRheKsy!s$ZuML+8zs3X-#9#NQU6@Kj>k-_+>kuBb!o)rv|p&EoW&PI zIvDe}OuH_9EI)p}#rmpxPfKd)yCmIL4*sht9w4ZgzT zkv)fk<8r`0cXxMp zcXua1g1fuBLvT%y;1Jy1-JutI@A|8{>#uYAjB)N5+;Xwj!}rcPLuh-dObdnlWq!=pXYRE2A}72*#nUHz; zLxLOC#eOuea}W!_6vD!~sHBz@etgVboOW9NDYZdWc5^7_bVuvK+#scz0lTPspg+cgWma>S!ZOXkz zTvMo`fhC>SZXCq1O;C`wV-f&oHa3;gOwY}H#WcOeW4N^ZvsBho-MifRY0M1PT#u;7 znK@HhKBv6-!G>1&5OpwcgBz|d*|dT&VJk@n^0Z}%T)@Pmv& zcwl2&oG$3Y?szNX5fkG;kuZ8_X&_zSIqEA_74|n2I=r z-wx+Tj~_sC{sst7ecl!0#K_>BtH}1T>jIWIT07RDQ_O zDH9IgZxtv|B{C#yp!YyH3b5q&9BH~ z%nYG1f_H8_tOP~^!R+@PzpNQj>D-xkozR7R`${MeZr{U@66`LPu&A@aRp!=j?dNvh z&ohBOy2ZOf%EJ@CaKj!Z*@TU+URk%)*SPRh$qsw^x%oZuc{};cE0kppU|D`%AXmnV zZx`oN72|s!n@#-3OrF`+!XMNxh>0Nz%cu zH+ZY*8TpyJ3caMSu$KXRo{Ie=s5$m*&4^=1v5mc4#19ia;O+1q;03Kw#4&mukP&5o}uSt-Ts`zo|Lk33lhg2fKor`hZ0|&*(bfA|Pwv8o)q;f_64rnPeDd$#SKpj{c+dqxmTB~K_lIy!LokmNGk(~|3I|qx zcV5<*4ntPq$k=Ukt2V7*@lCJcVnWl%4AR$Fy+(6ur+>%@lWDg|TyZplb?M-=+T-4E zikJ~->*8`34{Wq`$ee)|aC0ZYbq{(LgR3-s@2dC2(UD^W0sIF=*hDI>yVN|0DPD#; z0~~59jcTNjms<@}|2`^4(>l7ik?=(AjBvsKATV~!G$AsBaP%2r@pn;T0&^GAE)^R) zM9KXjkPD;2edKJzmLm^23%Lac%i?k8bHNFx@*;ms@boBEt0&&9h{>kjFx%Pfu*?`y zdSsT>IyIK6358^_%H*X%?4A6T0uBh7)PzAPx7XZmFw|FFbZR^n3}Q94WxU$R8k;FN zhjK$IBLq!$l%H(;%I)L?)dvG~ZiYKKCY7nI6tBahJaIk}MiOVoq3dT*W4vaj-D2-JR0i_mTP)U5tMly?L^9*(CV`X=LkoQ0~zpdW~%O;W39>GAZN~Ny&1{C{;=3rOq*h{Z7 zGgUOAL5N(tF+>FC!uoZ7?InE?^~+I{8szO`=uQ@cJb40=8ryQ#)j*3bJ)%T2)hIx!KIO^CK`49D24_Zo4sn>ISWmk&%q&3TQ2Te+5D92gzP1S?KmHw ziZW<%qS4EwYTSUTo!265f#1sYp=Dd0(I6 z#6qUVqgtx1b0;IZhbu%;YAF|e0apH6b!6K z;fiA}3naW|LjwBtUnZoz$*_ z;CYq{1kF;MI>J;PGhI6l&F-P%&h*gnMhrQ@S=OBZMQLDn{xw*cM#C_*gVOCY{1Sea5WyB9g+>ddlqT3@m})r-7fA_{TKjefocuMd9tY+|JXu|FFUgAtwA{axgP#JV(Z|^HU*S^eDBo4RBewWy$k z1YkER&CIjfj4m}x`Qz_0un+UMAnr~48Zii$@3cYYdKJ4E83|8{)8{^(o@xW0B-ZN% zbwesciV`KBP1b;kj*&zQcuHz1a(y*o2gsUwDfwCkQl6zM>m?jXLt zApvgK;6Kwo2FNvcOk~e=C=Y+DHsz2@H*U;(AwcrR`0;x zco^M@J6%O#*#@@|rM1ml;F!${p5RF=fp5LY{+4M3CaZuCb8j5T?33q+7wM2bc2*TvEh!l=%M=nNJs0q^YzuLH!FUzmq! zp8;M%so_|Nu6Z}hPM5)_5=TS?dPs+S*Y#nz?3)O`>5nE?e0uvXV$yUhuD^tYL}L2HU=owUt&wU#_!%pg}8>j_+si=}PqCu=jiSa!64 zstvWYQH)H{(t5DXI)Q@jBa{VtPr%+KT5YoBXopi{f%DDYT&5j+8SzKVHFjMmrHtbZxV8eY${pZq>pe9_aV;ECkAD^Mr}BYak?)| zeHJMW%w*7PFA1I}>QuFitrxw!*nktZi(vaJltZB@S2oo)6}k+ot0|j16gSQUTm51t zy0N*wyo_Tbt@v1Boz2pFTEJg?8qVKdm5+1|(+Pga0;il=(eE(or&V)Z8L={(T&@|4 z?m=4z)&TX-uDO`EVCJwCS$nfN$OgvWet*1rdX^^buRtmg3%%&R2QaIvZ$VQ-4|kAN z;3x*8^A@rxx{8>xciN#Ck*f)>AE?5jtSa+_p}!o$bG-GNsO>^-xPWYXxuH=CGK=(t zI|^?b47~Gg+&U8q%??; zhvCp@&Q^(lnYb$sWewN*CP=WRCpbe0v~-|m^1}BwDBqnix`~~PNhE;x1B5Iu z)2$oIJ_JyQ;l9O=IeA!ik`AbaY#?9YwhX$z-jRe%MsGPYDtZfme`x=Nye|}fZ#4xN z;2nFE#rHo%hZ)lHYJx6(8dz%CMTrpw48%OLfNPuxTUa$)`d7n_!90^D%W(#-S8&1A z>>%yGKQ2t2qix;^>-yxGqK1N0S<+!rW?8J-K$c2xtI_)}jWpH_5tu*fXQDj7U|=?q z(4w-b2@qS6YDCPKW`h-*0wFT|{^Wp^031+oXios}<9A3EE2u>8ZGBl?$oO5tN3Gg0 z#Ur32^xu)HKt1?x0-e^3H5A_Sm4a+Qt2l#OzpC&>&|G9x7hdRT`{LCa5CCd7V0g?5 zd=~5+f)k*#f(Rj?MponJjN14G{jbicus81wf&;wWNL2Y5tVQboNdYM}lieyCz8_UG zjVmEi^|)j4gK&UA6(Wq(&=0-0 z>btSY-t0AyJ6ae~HXVv?Enl{4pm5#yL+E{Lko_cnGt+5$U-mTPdp~VinahGgTJFp% zFFE?Pub_Xtw+cTdQpS4Qe|O)Ji&g&fge& zz(lL+^^cy`i;PJljC(X6Wzm9d5l&(XFV+}1gQy?LsY!2pYs|nOuL3@&P4900($rx% zJfDdIhHE7Tz0?=`*79~bIio~oJQnsIm7gdWx3ke}Sy)|^4$OS!&ovV)SdPu1BdbJOZe;rDEDzVX48 z!5@?+(&pSm6Y*FT=AL27oJc9(^aIX5hvSnPEYofuY8WbcoDF8wWyeknzChNuOhbiP z@b#16EfxPBiyAolD!-rCjJ+bhvw3efmeDeico_MGZY9C!Cqh$>OFYcNc5!k3^hAEv zX?Ek{SaAua!er+@f&7sDdCmh?T*<>ZxBAhnzC3j-h;%M7wA~hqS9fka_ z^0`o)K!7WAi{XuiWs5AlE_A$y14)ZdPMgfmS3rdhsr_8}r#6i^yJe5$%Hzju4cN8p zG$=AfWs9BjOm$8=sa}q3A;ZO!?5U+^es9+>k9vtZcnbaYL2GqV2Td1n5jCHb%~*D} zpx||V1I?t9jpRt1f@3wSGuEWs0(G(|M_mRV-z(Q^YV4(2riBgy z&!5;_1iEuY2~WwulMr+0V*pR)a$v9cLKBYsJ)}<&x?d5d@CgenB+%VXlFZrAGA#8haRv#oaY>gr!6?8C zf{EG`7Z)_=kgb#+hi{GNt8@>pSR`Z0-rJK^m+~u7UY0pt)maGeu&~N;J*y4dvrZvj z4=aR{vo8CoCD9p#%nI598U$XGLPk|pLfJ2J)E!3S7NIivl3D1ZrD08Lh8Eq-1oQJ< zUdZj~Z%59!ZT`ObRkxit&HhGqRvxG9bNO+qG1;@xOQDCj&nPpkTX;G*gBXhv* z+#FM}NG=|Wr?O+0NvCcWBV~C^!C-3(9gmYi7X88Sb*((^3$D-~SU%BHcp3p-yO1U} zLZSp(swp#0V`@JV@rTsg4{7 zW#U{abrWO!uDh@&(kt`Zzo1;?PV&s?kC(P&rY|!77kmnz%yWc@vpr8k{3f*|1_eq! zQgK_!PUb*nkp6(5F<40O-EVGeVf!i~%O&AI9mY#*N>xm)rBy*lWi=e7ghESD!9poG zg+G4A(i(d}0{*+bw+nyD8sQqxfcRsZnJ)A3O-)dWH_%9-8VEg&ByR)?^mS`HUNj`!&teHkrROx6q$2$f&!(ltSCr%C%F`>nvfiM&xGy8&Zv=B}&wR$h zUFPjM5%#ups&WO|n5{}~QPw!BiT$ICq7OU)n*naG*w=rvKak|_eyO*A|NN2rqsWIO z(1r@-qq$t&?+9bDCq(bZUUM{i`?{TK-XjL2-VN`@S>F1}U(Fxz?a6;{e4DK1&H3^_ zKtOE&KtL`lpAZm0q(I{~-+9QrDr((+=IVsptc=pEIVOXt5s$(Vzgc1+07Ugm{?rri zKwd#kBMAnY0EqB+xC_E&&qv{9m$vy(BrZg(+cB(GtyU0nhP|U_RjtOg$Pay)K#a5u zOo#=OuBL=%f$sN%fLFeYWultCC83!K(w+KqAS5?{o%&Oy!0@+9VKW-}S=4f+#t7L9 zD-%pknap0y$x;&l0iiS#%_aaKAS(WF^I>fS00cx~#HkHewT&I}Y=x9^i1c3|pr|J+ zsu)4tE)Z*f7%1mEn8-K08Qgv+fcMRSw3$C*uv6SR0O2T^=cyK-_gfW^`?Arg4UqpZ zWdGu}3eG141PV|o&{Gjp{8}?)<>2%SCgnVd0eIgONSmNORSHa>Dh0mpA?I%I1AhF* zT{;s0l>!Uxg~?d|9(SnP=YVRzl5o|KOBE))s|GTxMy}rz;tLnrZky)ge#{jM$^H#b z=A!_dezEqCp1N>~Le1P0;uY#eW93PI=;`HCPi^y;p1SVxEQ3Sd_pomgHb9zB!f&zusL; z)8f_!BmES=MG$>sTMNPKJ5vfF&>z4MR5+wM49ipxI{LZ5hGueXU?hYtq}_;XRnH#! z`zI4!!oF!54-)!5Nnly^38M0kI!hMJShoaQWxAlFHK_!E_YG1Jak7bwk zElsoOLa#F-f~s1gO+8)5kf0mja|eQA9A6RmE&~&X5+JDNt%g%!gcBXRam?KZ45$#m zfD-$U0hMEIz(YIxIiPqX3(9;BD%CgDq;Ex~V>*=5+NeI@&re64pl%F`@T;tu@t7LV z20;w8O6Khw$W+f{j?Wr{pCE3JK=bg!&t0`Ig88?or^52itjnBBxzUE|6p=usg`MaU zOl!9_TkNp&G~n;*>V8V)GhM0#VDQE^Tf$7@&ZlDI+_Z&*u*%inY3DsnVa6{W8!3qt zS*I~gJUixm$`m4qK4v;TWeTij&XtAy@!?L_1M4sE#yuT_uvF0DH`+KK#&uQOsLCjC z?oz63d0;YaQZ{)=!hjKF`}c?%QAI^ro#_a}2aG7px8G)LyO0-Lz*oFHQK(a`!v8s< z#wei6!q>wABWeLKq7K3Tg#i&vz7AcXT6#PCZ5ZcTECI>IDB9*P$&(-7OdZr!=uF*H z)y=43g*ichYjS>I2wn6sr{o(#pU$HUgxw#QXxvmFd!ttc(A@juAVgiMHK35XlQyl@ z>#AK$GB_=Q>L29$O>hh7W1o@n!XMKHNA^as9F8;_7;ocqiM(uR^P9U1h6;gS)F|9XII$-a3b zV88U+{HXUwfi(j&d^=GE>jvbtG@c(V#9Bdaw5%V$RW#i)+iZ_}Pn6ab58MD%K`Xw2 zvw6rjW98U%8Y!YrY%Y9tfPa$*&cWKwKp?*&+TBv>b9W*M81C}lLUx zIeyu7NO>*+>MI>*^j2*%3~fc^3{NGuAg5Rkns>{2(xV0tG+*a}LkE0-U0%Y;Bq3qQ zMEcY#`u+N6UQHozG7K=qLu}@+0wfFEJJxv`T`;OTeZ@j}IaSL{qB#ZyHwhR0jqnYE z3t~WQRC!0j%_g6c1^hgsl5i7*y(Z3}&VuB$BHgN>N0Pbwac)mRC+kEEno$Y4)B@9LKU?mr6wHo6JRiDuRJO{X7B?PNoaQ<(CV#sJF#toyu211V48 z%dT^MdN^jmJi?5;JsPFfkpki>m)az%eV>USvyn#@ZX@=gCkoprxK-L@(zGWMd?(dD zx5)|~-k9;x$ob5=9?pqbUHXN#ueCx%2G@Slx+FEXFBx)vD6qvk4T6bF z!#Fi(6yTmNTT)hIPaa8gZO^qiJ!$JJmn%DsR)68luCw7tN!#6UqKUcfGCl+-{bJ({ zJ0g7*8euRnR&|tC!E)D?<9vdzRXavA37~K#^kd%s3^gF%mG=2pu1!V4$(5Wj7ZH_dReaPpHlbTOmQT%s96+-G z{EueAe+!+`PI3vLS!ng6V_4l8wZr@6j{%Qjb?_Y3LhM0qH_|kd1uKnoVw0`NBNtl- zE#XvtQ?Pw$B}vKBTP*?ESnp9BVyCdYAa%c6oWmDy^yl=bz~u;2?#HY_8utW3lIcMf zAJavnJ};Mtt49D0JIh1oKp<6-B1Bxu*0G*ioSzECNs$04 zLuUrvfuVdme0H&<^jcedroHKWBx7D3zbpiN4vU|e5gQ;wkB9mqex%?o(&dGxt*(>X zsx3QxxtGvmn*Zf=#SHZ45P#l~30@|-2og1EGsY4eC{0%{{k*@FIdWsvi-aNj3pK4aUyajsmcKwe2qT!lh@ zai=~7F9Tf_JFKN1E;9e+cZ4R=JZcy)`Fuw8%xZviX%Y{)m2knGz7pfhP6c{Uq4BdY z;|9b?Gl^pZx8}6+E_pxi#$hNnw(tupe@+IofR(Hd21Hhg&aoA>!5{K(t1UB(5kqNN z=`w0Wq5+HwM&$V}3g*&xG3wnV?EP1Gc$0=re1!1SW4JXe(uH?{r09xbncp;>U81uE z$WiE=4Ob}A#BA`Se7@}J249TNmDSPD(pui{KK&*^yP9!*EGeyODKE@oIL=ty&wdv_ zvx0zFy#c!*hqQOQHeM>$uFP*kKV?ToX@BhpJV7P!lHGa{h-t2GQD(5>%He3fP$57` zqvIiM%_~5l04N}T&}tbv&B71YC3>YmsyVZDR7#qj{U>~ef_mfF+zF|O!&Cdf?TiR@ zj2n$Q?1CP+t7pS!3d8O;IEcbT$DPYT5k_d4>j?(2nJxqq2bc0PNMulJb;Nk{uee9( zsWaeo_bCR#U8BN7U|@<*?*8y~mpU~R0{oww3gDunAFxwZD6j@>D!u5}?`WFTN)Yjej%6V4hchxanRdST;*>nf~wjOU&$Z*zmq?%*FQb00LdRWsQ;_vPf}4> zddgg_qxcmQE6aj2CpK^k)WH1q98C^WSuTVTRE}j2c!2;gn8#=GCqn>!2t~4jL$F!_ zSg3rRhzUUbSh$=X#2vPN=6^CA;sIi9?;ZI*9Z1M{^nQ8V!Jw3W>r zH2+G*&H)x6d7pO=GLU*V5si8cWJ4bG8CaW3fZbCjBm>;jy+H)B zRUv-1R9~WmuqLO!J9Z*|-qSU}^k3zm%lO5C_Mm@?6-r9}B~~cTs3iYc(gZnv7(>U@pxWPNgzJ1|U6sxPAk8IM!6|^wT#FJ{&tBKJuqL)_s;^Aj# z14;0yr~6y1knEFayR^KdpcFf`>ls-yb-?saI~$F-cVvoV>WZ9}`mar859$6)piGl= zqOG4bozmn2QxWe3o|5!mK%lM)XQ+K9puaX%aIUsfS#b(jKbkX}eUdKFot}HNOxdEZAs!v-HORX5@_HZR|cb|`KfH2?&X zqf+c|9$@CP9k6Nq>W=1i?mQ3EISSqtpHL_dhJv`)^RBmQ4`=uu%{o#+F@VgnB42g; zMZ}3#L};QL00MmhfIyjuhAmW4`RRm4_Lp#nf>X|HuJ)zcaAVhwxDcz5L(XKsbU93x zTFi>1+2%%c#OPtOD-9?gpQz5)xBV@R*l<5piAWmQWeZ`<`HY6`86?dFa zM$?N=YxH$tMi}g;t>+S1zjOurKh>WTw7;uAxDoSlgs(rLzaA_Bsy}>xRe!2RrdaC0 zwAtlntUpPhG;2RqY1l47T>uF*fMdbQc#LmW2*B-Ami$G1l_n@2*`run$^p9(`pDV_| z4+bsmFOxx~JCJ@_-YwjS4VtpubMjDv#OqTK=F6lo{QbI*Q{V*d*$ zf&Ec)2=mE_(&b>B_ppbM{o010DdN{*0-BN2UOHl2Zug*=*Vwz}1c1f>rhpU<>=8~i z(p}m?inESc1waG=h!(DiTgR<|0H4{1o6@y8ya@XW#8gl8azI6!0}9)eB@dF@OG&}q}j z8)e$KC`i?%U1D@W@27CuWh=bcCfm1*?BnD4OY1TMECyP`pB4k1e=G*Os9V+bp&0e2 zsA$X!ieke!h4*?chbM1R>nqJ>Qm&OYG zNiMn!3+#Tqg|(P?&tya=G6F<#`PX#0bEV)zhdlSR~G6| zJW{<|h=DDsJ9bmL3e0Z0!pdi50}@UF8iT#RGzR()IWa@-``P!OFGTA!3x_-Y&LzGy zYI_t?hc|iY2QSoGigpqXOu^;-HD9@qq%?{&Of~i}OxrSOGWUbPJMGHN;HYXFuGRCj z*YfgP*raVZ22W)HLhb3JtsE{Nm$ftG5msC5()EnGZF5u8_FFza6G1F&`+;az0Sz!A zWivFwvYT=N+L7Dm0>FX^Fw%a$PpC><|3(YWrt=#%eY)|87RxQDbV%@zWS0p#wG45+ zj3`ts*g`CH{_BQ{PnTx~|E%CB$;>JC;;bY3~v_*nMab!Bmun z{mBN07+KhP-IQ~@dAW)iH^W;^CbY;w8S^mT64=P>i*UOr-1y^$AaqlX$^DM&r-f-? za&wgACg2fL)AY&h5)yE|d_X$fOJY3bw2cLan4~gKnU(V4ZtcOAx6Ki)NRFQ(tP+@< z+tbZ@Z`iauzp=|ge0Bd&ZKfDW?9->n_>F^1E$?mi{4ZBk_vUYq77twm|=pXfDKxh^56 z^kLlHr8tjON&TDsd*jM6Iu1OJYgwFHoSF(-if3ZSPW^g0EVpfs)=CP2xD|9R-PbXH zQ5ha`cXn~fTdmeB>8E2NbpAN>i(SV`)!4F1)&O>&%*Lg?#Rd6W_$Xc-KANC$5*Pw% z*Zd_g;C$#BBErWYIa{S6%p_dHYaCR5lR;j+_vRRf&&v~PfDxh*B_+HG?dnMm=uGe7$bJT z+P^1x&2Ev>&)Kvbyc{l~;%1XfV`HXHm!oByO=+R!c+$BpJ>!3D{aE;5aR1neUR&cv z3L&|=U}`@81L*!xb*M8e9!Kj)fJfD;9{#@bofd9x6}a~!jj#b23jl9DA0MDViZY;J zXh0A^PyiZ;7|3g(O(7hxRnq>=R$>2#{)ydbL-t3E`!Mtj>h$z+)r{DaQ^*^8Ab+|a z6K*v=gZ;@{{DLUQ_Kg>Q>-G4Z@$aHDM0WGorWxcVMrY z`YOxdnv;2=c2PcSTa=EGkwF*+DE~Cf>;nR&Zw?={9X08!y@!lv81+}Hu8p+k#+ue` z>UqTmAd`{>tPPC};%J8Pc0S=@=t{=MWb&J3Xq53r#nfribN#w9nH-#juUHxBmf%=$ zz|`Z8&18+Em~h*rLYChKxE+FiDgXtcCk*P8-7APNVa*-GBi&IG<;~-gJ-bL=(8fIB zp*&##o`aNM=#&p!Bpv#xJ#jacY{T-VV-f_%1lgSG1ZCt?AEALpwD*s4F3iw-2h(}J z?T3{rSb~Z3AqBTQ%|g*)h?eZNPVh+Iu6B|cJ+QwYF%eX(SC4G)$07sfidCO0o_TV5 zuK7d#F9}->#8i?U6iuV>s&MiY#8a%W@{=J%cPRd72%I$@$#+svfC%nFV{i~4f_o^F zt5~}Pc|^W*=!SjOz9A$EX0Kyu0 zHf(4!aka-vyK4AB9P`j;=QdK_1>)3+IeNP8VKeJT$@OCu)d#7T3M#vo3G%- zM3`oZqw54jXTc(w<@_8@StOeIbONG)Hy})b5IWz?J<$en1G2-$aT>zI*$KAZLt#_( zFFp_xu?1rrvr%ZZp6=OzCk_A8g z=Mgo(J+OR%ZXQP|WCYdy9$J74?8BjY;(LVx>j~KgMYk>fEf32B5GgGzGV-=+0kN?w zNVueuBOtdVb&R?T{?m$~6lLvZ{i`}?kBgoWeW;Fg#TaDX z`&Bbdhv|S~lP_VjRW~8Ji=+2_GZu8-7YA=X-Jhu2)qTu-y91e;!C#_&Aa>!9XA}oJ zSnjsrN|Zz1Y;5M+Geio$N3)GoK!y;wtjJfNewlCv6Y~hPGLX5L#{rn&CLjf=gY%@G zCDL$NK}3-p^*{+$gHUWUi!$LsX+sS)@k$*k>upzGW0i7$ z_ESCNZ@yib_HYkvn zQR%KwQ=lHi1>>C)&a@kgSU3V@o0eIXnOp_z9C+(=4J>KHw~Nh^*PZg?VC?2rkieKxO5a3b8%V=h;; zQwd%ic+9m4z<^dbDm%+v4_<3ZO5+25RSEQlEnf9gV%_RRnQx!c|0-x(q3BT*RQ5FA zcZUvs?w`p!E(l#AUp9c!?BWmdGf7@6WuH(cli3ac7`1+Idnipq&K6Ch!c|fhNw&sR zV^WV__3EfsL%z#{svhup1-p9Hip4g-t>zq;y!7V^3VLcFy=Q!kLR@%wc33RZ%T{gN zgHVQ#vvk8cJG{e+zJqCj?gPc@EmO415V}exO zZva~VLbb8osEepZ__~rAWPs<+;)2qV&aYiDnvq-*JoPf-K>h(4LHNC&z+S>8T+MUD z;@-qJGI~0XAxnMF)A=yGC}s`gsEWgKF4y=|K^En=QBpzP z;)idkQ(nVQC`>e9R+{6bg;zubk52uLpN}q;&e&vt$zq^$V%Da2s`YL>8J@vqUUF@z z?d(fy6dww7@JO`(3Z+&Ty1Gy0K2}ms{`t#4y491`o%WhzJOyGQ z%bOm8%UgyX(5)zUleD2`8K(hiYsaM6r8J(quZ`L^0JZfIugL=Gh%G+vulh5o5$?O! z^-r}mno!uB(~_G^NErq%mau_?vz5}TsZlwZ zC!?dl9w2Rb;lvlA+iP5PCmzt{j#g;&O1orw5|VvQaxs%#)9q#*-S{1#jO(}`TAEdU zn>fqe%nFnJX|DXGaz1X{&eAAptdhMlEd+(2+Fkb?x)f6-y76m_eXm6K&kDe8ecN!a zb}{A7=~SK)1oRN$G-iOTx`IK@X1eVDThH7_Et9bz$wEhMoe&amm!@gV`CFAK!{Bmu z9<>0yJH>GzRcc}B5K=7ac3e0x(aBjoTbNizXlen*q&CY=Mj?xzWu*zkYqaRgu-n0z zTtFI5#FG=xzWftG?fAM8d*&BS?zj~7w9OggGooJ9cGG6;k;&#c+!#FHwe3CsfbR6R ztILX1SzD_s=v0ryYG#kbrK;vly#AJUwtc)7>x2t7vBUOje@7fgD8*kAevyP^2gSd< zM|(A_=Y-kV-CSj(D1?tC5F#kw`yg z_$K>14bc*hn<*j;o%J_iy(PhHFdgdqU3<{=RxXpSXrns){7LA34{GwRPM>*2^~Lqq z#SA`#LK{%ol0jWwrRKw+kuCp_U*AXMLjLjF6rE8gA zky6H48C%{wwP%%G|KT1hlokqf{t(3uNiKDW7^H7_=%}xwe#XJBJd1BStLReGV!G2@MP5E@#C1s@k9$iwvQfUukcCM+@U>*%keNmD$S#P< zTkMZn1eTG1hcd@f2R@zp;LjNy2*?Q!(oExC_J6>Ohe{{O;hO@W$0X_2?V)Off@=ynMj;KZ0d1b4zK6k@%VmFtcXoVmv zv#<+*JEO60fN&4^JU-3_Cb~I4`_cKFluPcjaS293wZ{RHA}bLgiCvh9y*0rN5`KZe zX8yp*35;M+bTBy!uMN2DorE|WUVd}%MP0-<0zDX-#uQgFve|IgVGsaKFGS${Dr3`SFMP}w> z&Md{9Ui5Ye?1U7_OGcRU{Q%GD{c5uR!8#qA(jJRuMq z&=-mChDEn`_dgN(HRpMMBJ&ck9d5DN0^f$l1nak1VWh>_>WMIwykldiA{Vi(#N$+w z9)80cNMxmi{s;UC0DwQZ|A0SoQ5TGFJmnVJ*2loCB+Q*t#a~>x{sDh@KEa>R|F7T= z)rgU0R~jT6g?H~aQ1rAlMj%FY6XQkb{B9eWo2-s{=>L>gFI(sF80oUCf>nLWtB+T8 zW_@6fpwt1qQm+y`iZ+enlySU_nlnK)Hh^nQOFOV!n+2bP(eSS)mQF>1bO`;OaT7bR!KD$;s$b)(sm72?1!f3nTm7}xq z%MkH+K)iM4yfLSVkya!$KL>aUu~gYo>Yz@muvb{SA7n}IRB&$qrfYPnAYyPyWqyD5 zwq-c#A8$DZr3gx?dz$Z7S|te2^QwqrQNC!)AOg)6?Khg=_b*)vkFoRVN7&GEtq#qa z1@H2|kd)5%7lcdBv-;)0Z*q^!7h}l_ofo&9VJ1;G{ZjyPIv@B~0f-N4!p7<~vAzLD zK~jowfm~@m5T$ApyE>=f8>wr0sF!emc!1af+tNF_%Or0K1U;YTmiO_ISp@bS? zl5f~lni&|nztrTt0N@YUzrY`?{|5ea{9l4Ui91gj3WIdaM`F2n?D0Q^Cb%vV1wX! z4)B~e)Rnuf&R`sB#8BAJfY6p1L0l}eHIJY$hSc8;Tp)LNvnwvE5$)swerbg zpJLIbgWcZSF_+9&(El!w%Sz+-ovhdf>Xfee5Y$sL@Zi+qA=Cbz4XHMi;NJltK|la# z>O<{c0iaf;&j8Tt|03)i+w1K6cI((`)HrEu+qTo7v2CMq8rzMXG`7{)wr$&8N6+iL z*7IWB_x8M-+x!IcH~;$>gB!H+LoRmp>NCnRcxfu|tYa+_7mH|9Cb$S6b1x@w?7|(s zRMQ^^<4aN~v-;UhY^l2L$Zg9h>WIfN%i{M;;Gc@~sZnGFCnFqALENh3k>Ja5Zv5j* zUz$Dv$eWVG1#^xK`*z|Lf~M?Pnp#{W=*-#HR9WP}03GCvvmyE;&=$>$gY6$%T0+!& zo(}P*fi2^iD*L?q$;5!3+I6ypDIN6psnTxyEbe~9vO9BRur9h&PamL{uGM(1X{&um z88F2-+v8&>TKHaogJ!!xI0+{d=_$I@>j!U#A5wEG>ZQDS|J_@NA&QIBbvcg$R*3^Z zf8;~vwdGaPq_Cs0wU(%iVc}nn`%NjtABWRrV}5p8!6HCu+h86R^EOv^EFlH!x6@;W z8QxRmvu)mbmC32oIr?}YX?~9oApLM8PrX}68J}qXnf17gbM|C(Kwx7apNM6j!Ta;& zPBsg-jo`2;=fw*mZnCdw05!eOQc`h9!w3@FD*Q-cY-u*Q?qBrhbMdS!_u*%UgMujC z#*~zWS;2Am$7WYt3CCEm-hw8#_n)mKk7PFecjZ)Wrb6X5tiqqt2n;?=jQyAW!Sq{= zw8?j{_i8ke(>jp4DM(7T8D_M8XsC3;MwgSpqD71{4XHD}%;>P?*Y9xm#AJQ6r*?&Z zY##)+X>N-((%BDni8quvcYy27ID7c^J%hF+xq|K6wBnZH-)-8-l$Emb6B%~-;X9qv zp73wL^@gWxYqFmy$wt81G*%GP?9p|WoX$5Vs6JQ-xp&?r6w@(L&tx~C z0fYdPv>qP_es$hS>6%2qO=y0_h^JR{S2QKl4RN_at1$P*V zB#%ty6umyZLIsrFh@Wi@79&GSPtfoUYf`X8nZ2{&#pr7x_kL>!!ddeByMy`4Lq@SU zTJ>3QL?W-wntU@k2cPoe3#(mKL*NWNo4#T9F)4QphD*V@j@L#emZPWwt<*$}_#f*E z4sat5%$uTOx#&P0?)>BxZMvVc2i2SuA4Is{+Op7wt-|ZFC(2F=%#A=1eoP33Wzh@~g3ZqAPDg#v3@7}s{b5MvD{;tZ^J@Bh zL@DJGQlF`b%+(y_c8+4cc@7(OHwf?{w-}t(x5_$#!Q=^~bC=QTL>K%vt;=94B7q!Sx)PJ*@{65YQS~eli^VR-j}37K!aGn+y`Jq$qc@C~t>t2LENt9EdcQ)8#zK8^ zS~w(&`$qG-mC?&&IGIjIXEmASh%!)8oy%-J-W4og+0bYvs^tBwIjKzrffFK))Y{F0 zxMaYik$)mkRo#N?_r+Y(%@DQ|v_`h(>v4Mqrl!c_v}TdBy()l4&R-C8e$qE{ihK+FaD}Et|oFMw1F)%{tB8ri#--^SC}CGx@_|k zMLuOOEZ3~P-{dLzMuok`cC(q=)eU%$6@iW6H~Ys0W_=~ts8t9#k$z8vwIooYfp)(5 za=Aa|u&h-?P}vVu24|_5*`WX8KN8MTN&!V^VnO8GhL@C)w0SooqSvDT<$t6o|KWeW zy?t=&Z!mt>{1^WTHN2(E;cIP)<+%OPDLx4_fHb)E1^M~7LuY!m^GNSsD00R-4^kAX z@J(V41tA~AJk+?@&)jk=r!PODov@AG^Ew+@C$Ws(hWzNkdobByZh(2LDsG zI~lv_Ce?Kr&rf*`lz{&8`Qy(T**Y4iwn*Glm0ZJ#OjGj*{@Ds$l}`Qey=^{Ne-r0X z+TpV;^!>&M-7P#nEsF2Q|LlEZI_H~U_+R)Rj{hwJ6xfnEZ(uZL*-blqGqWu=00PR2bW zEGsL#nJQI7ErCwH_yOu(j!E?EWB1heV{miQ26q61l}B>raOitEH;TATxU?+vljlvp z+c>AJFs=`iNH(0!DjTQ^l2L@AMKE~-gHz=i0{O#O)j~g` z2}EKAj2HzFdz8TDJrVnSz+j|?n5%M6fU%lNYMHuVlmh6NO5HC2`{OCX`QapaW>s)- z7<*C`rwM$sFaKc$jZA`)BhM4*jh{E^uJG*nT{a&Y0`GW=O?&bOWKY2}ZsY~jpn`pn z>H4R)*85o)xe;W#t@#RE=_d`j-5l@CKla%%-|SLutEyfRw!E#s)n^F$<9Wii|5E{S zY{g6ag$yQHFW%oR^8XnWB7(X98Wgg?m^a&^cqGRDtpKI{TLC)sA_FQw%y&Qq=*$1D z0A0uZ-wM#}-wKev9_SVM6Y%(BP+y6a_}t#c6#WW3{`68+1URgj^)nMj`fsw_f)Ul^ z?7yMIdCk)NI6P5wyW6`s!us@vr?Q4$c?AGKD}Mk0sQ#Da@R#~LtJ zW2&>igAtS7v_^gq!a5BO;S^rY58!PVruEAnQo4#@6_P(%TEM^qtkp_F7+*B=@sDfx z1t*3U(^*Gp43iX<=mSz$+CNYlqQcp&J~RrCp=J|L)_J6$8nZl69z*YorVM26zRBvs zYq*DIyB6h#(*IDa5uH+ndnAjqC3a9OJ~S*O1`G-w;bJo?Sji;2sDBL#8aQr>iv%Z~ z+Rv1$LYxu3Q$9>c7P5Clq2Txd@>qiCWw157L6VzET%3ir2(d1)VWB9C-JxkpTF9~# zku=Ha-DL3%(wZ|JY@JQj(TW(SFLBVO2Ev^qbMgNC_K!%)s)2TnpC_J`b@rnWbk3^84+&=<^Prr)JK$2yw-N{%q@=Cl9 z%i9su}Dp;?XR$ z;16yZm~kKiG=#n17|WI z+lVhM=T`jL+S)l07c6F zTLFrH3;n+pAo1h`-eI3$xqct^{e{`*s_u{13EFU^onB!kl+U6%&C z<4?;N4h3&CyA*R#doP{+{K!iv3eon~23)!5_Z~-18f+l7d`RWi*y2hVzd7NKt9{L9ZmFghL2ddBr?em0YqnQgH zU*($CD6z07TlYtD@&|@?vk;h3#&=)+)t^hJsNkE>AB3kApqwOvS5+#X-bU=lyJiLj zXt-g@&3;X@P|pGlASq^`0hE{QKLK7s-hKahW{qmz$hqL<>*_uv+Y~dywe~NM0;QG|92K*qkPRLjr0y$AH9*NZ zfoAcp2(13ct`KqcQF}%9*REjD%*`E~sObADK0+hYRNE0{nJ^{u_*Pkwx-{#P^f>!&}%V=RaCbBurZ0xY0c;*P7oowb4Ri%_aPVHKr ziUkSB>i9H})xWEtJrZ=`Ps6vOJ$TJH{EQiB)19F6l6T!IvX0RmTTHkTW&@6_jPbXU zl8)glfx;Dwu}Lv7Ns6^(HzWGM01B4gI#T2b6&KDE32%mQ4+CSZcab;-z^|~hDr3_C zvruQFB6~h8*d*S*f?wJ~B+iU60%3nbx6A0tUS901Gs#hWwwBf{5;AHc7Rr5GyCjWj z*4&=U7Eg?~@Yti75AXaHNAF>6=)}5x`YHD3X|f`PU&Q=fJs0$6`RGR>LZp;u)@fjf zS8YAg*{zee_N%|L4BFJ!*_D$`y4qfdhQ0(=Cj`_2HUk+865 z&6B>Gp5-&K-aAu)f250fkLGduQrcP61Zg!`zLF|si2_7`W`cqxmJ{<^$1HRmpIG%1 zsP@!*J5*O&ZZ;YR>FmGqniv=>IAgK5iVwEj-2~I!9VGvD^k!S;rl@kdaM0!DhYfDy zIXM00wSp>`yxuyhVHTssX2J_)>6lp*`BP6Iy9tfkOw%j>cUW?8EAfROS$H44g_zaE zu|C%^|2*<{$|b?JzAwAUYPu1!BG*=$GG=#bawEzkd9?HTAzJh&GDc>>Lb6^eVerE zR1Qs{buQE?D-j~wgtR_H8B|j$E~%&II9yHyDP8ZTuh$(NYJbj=w>jO_7PxwEAsb@m zLxjS2@lnKm(WLxt(&?tQY}%%HgM@!g5_U*}@ON%{RlMNq=H|NvJ&UaVjGI} zy?+7cx{duAJcMF8q8D_HSpj_6@x{*{Np>EDc;P=-mTWO^&tlUPtF^4*H;3J+OX)Bb z;MV$NJ-I8EqY}-WR-$^6H`KRdK`{HR9b27QLmK8JmvrD>cHq4y1hNoPA8&kednhOj z0$j#3#rfWwIU0*}c6rfL$$#&Uc~C@X7J)~vU(0|UAxFMg4j?8v@6M&PCt7phn}C0} zDF_a9PQm}CRl>&QSyyn9Vbs~Q=mfU(DMU%6w*YG6s?Lls!whp2qiviWl8^iw5~an@ zl0#d!u(j&g?GybhbQi{{_P6?&!f01xn4EI|V`jcrh2tOx3Raon^6By0my2p^@v9uo zPV_PM-v))!?LY{q9M2<+m8S}EBwY5F3m$$nq8Q#HxsD(R#c{9)5CXFGCvK`(C>P?- z142LvCDEJNg|xlcZwX1v>)ZwU5v z#iFJ>yleF(FYR36d-yOODX2ewVeW4+4+n^=|Fi)ubfrg>uy#LjOyE8_&Z`jhCcj(I zROf)*k}nWtSiT+2|4c(atBu5sJ8Y};#YIgQOAu8@Q#2@xatDTndq*RsxYr@doNy3S ziY^eGy#0krQQSXfqax1bCzshn7JWJ-5=u)WryGxvoOalb+Syi3W+i9lG!mJ$onK~B zX!#mfSHL*qyGba=O9BUIpif?CTfXz|6(up_Pf36Q>i?GkvV27XofG<;P?U=MjFEB! z$pA1w#2wVi!w_IoeGAVx`qNFy@;={5gDm@jxT;?8YI9cKJiW#43;H5!GqqR)LpQ(x z#rmo`{{JyRpO8cnx?Iv-X zvi^r%-G8ntpahivZwY9WF4wJ$Zj$`Z!m*xFZTLI}YxDugy@= z{4u!b`?34jzMHB9q*Zt132-J|D5QFjg!+Pwo;Bb4-J)Rny5&2ux+(l@+JeRQh?rr4 zw5m27iN1ydLduDyP*MLqZido#gz?CFJb7_HTEME1sL>DqS4)RCO|A)O=@dYO5dYQE z@%k5dg7*Pd1?hXJuvfepo{?+7s<27SCIDC!#4Np$j^#L??ZEMZ)IfM_P@Xk`5K!Dz z!%@cH5YQZ|x*Hz{6<}4^Gytp$zQV+ur~ZId0hxpqmM}GWFx3tHN?Rd6$0_~KU22Tz z<=0!g>_LRl*QHwf7Ip)Su+J2aEz`iFPA6!J^*yZwEfveO`3qrJeYz=bksHwGT31X9)9GDc`%2ECbR?}d=w${4Fa3|W{m zfyb#!SF$N>x@kN*9|&&YdLLQJ3sCi!Dxd`9OaJNRlVtB_*2lxCV1|E6K*;**s3$J* zg8~#|GtL}it3pVsnqmW zr<%sa<~j=^a-II*a1ULL09pGZd~U9qupRo-W>D=WDL;)@LTI$pwq2bj(Tr@ES2Am3|l%lybS6aSGJTdk5aCW$= z;}8S9rC&UY;>f_qL*haW)u6=?*;IQYEfzv<@fMH7>|w&`E1bU1Gy6wJUKW=qSogS} z_SU?<_xrepsVkzA0!oEc^hjl3bNa9<^~vbOg0{V*17Fyc3-^p<*}e>r zRj4e*#dO+FcR`c~?`(Mq3AT?R<#Qfubywx~IPnF<`IAl6N@aW%xfHSO0m`b%%14kp zV0YfJ18rwi@aKP+y*e2SY=tCQabd}s{?QVj)KU&t)tcP z!r==LKyGMQDwMw2r`Kfj#LYCGy*YVnd%B?)knhv+?mB*4ppZf!5Y5v|^hiOU*R&u* z7_a4`+bh*!H60i+pK44{Vxk}~nfQh_T1_)*+;qS#6I=`vsim;<-e0_lC3x@5gnAAq zAqYD3L%~z6YrKBs3aao*eS~k`7jntesQD^>7!M5E6X-LjsS z??yDN7wNsGU&D^e|Hl&tDfc-IA0Bp#k6EY;iwH*lfhgC`BdGjAIw=Hb0xkB1nS3u) zlyyL`uE_Cu79UNQbX&PJ_e5xCt?>y|-^j=1&27G{-b*3>O#avi5riN7(bJQ>#)eib z!nBrxS8P#}yLVQ7=AjpbF$)+IsP~3S?i!_`!CW^l5|e%6Zd($K2`N6`hxr zwDP)%=<%XU&{!dKIIFb#OfV@HImXpr{(bVk0Z%5c8Kp0u5q*nA+xd8RUI$e|U2P3AaysbtW%yIPaNLi`>qVr)i9g@XbjHH$2mUtOz%D# zIZC?*|rjpVvw+jVWw_=NVv87eF&@4Qau{5$>dLtPt}?rlU>XP7QeC4j$TZ z9lp&xkXj~2%rItC0gF03cZ0sB!A365r2d(hwZe`r_JvV>o=uJ)b6H4iPGdATl2j`| z7D%wikHrqde`tAHSHYEUGj+O@OHN*=GS>6FI=ynF1F$lWp2D-!{|@D9Y=W;1!ad*f z+#4`;JB*?z9$RVz;+NW$W+^%Z+FVrJP=Utv)TY-x$%DPBDmR7utz{SP==QJ1phwFLmbL~D1;_%K z`)9BTo%5LP9fOmlLy#bYp9C&Hm*3Gpt14#He=&J&vAlfI)NL+KTIGy;r^V}=*|^8B zk-3mri8lX{86k~wY?Y}||Ls2-g9uHjX6%`3+U>>s{AJGOndwFfy3@5=PZ_?|Sdi-4 z4VTLIfQD7?`8f;QoIbC^9hY1FL$L%IEjQ#tLmnpvFQ8@W<%VH#=TTLVC_x4v_664a z;;$wy9&(=hgq9)|ehI^og7_lrF8quxjT+Dx+yrx7=h$dPSV2%W-2f2KQr4zMJ*%`8 zTOTc%Y|mF`&-z1Uw@M!GoeYR_hvO<(8be`{(KcT*;HikkNGSeePH!k+N=K3s&=?pn zw#xt27+5wkaH(x3Uvpm+zANh*<9hKj6nesc*7e{hc6MIuIU@wHN3fWm%8Lh~rmTlx|9!HziVnco1 z>!!!=EHsPeG+ued7da=hsXk|4%b&2G*s<0|m_Vc2pSv)wX)l*QmK;`CXSE3-Z$Ej*J|6;eT6ozlu~k*&EUSYhJ8df#S1fA&mM5c}=O&U%L#W~TS+ znG2VmVbe3U6OIGP4$Sc!Hyy6@)a7eHD^L{sn$qoO#;5+7F7D81a|PTK|E#G_$=M<^ z#?ymiO{7`0GJ$}g8I|^RHCTI|lLGUXbnA9uA!4F&5a_KVe}{Hkgt&$9 z0%y6j<30yehHvz}#WDl=exKC=;xc*GMG2GKxv0y1a3~6}k&X_C!(& zhL;t1+gA!{QVjIv^+SuQ)vdkVmz>g@d4hh3P2*HX#7YaTcil=i6NIBoBt9szc6(7+ z0pBnoHWrIY-m?cPgfw?H(mvJlz1sGXWJZ{T`{Cx$S*B)!2`fuJ?acKrP#NJ|Jfp_k zY7E$O>82HGOs%bTy%sKr3A1C)ecdtPJFKY6%W-={8TV#qjvJC3zl;%}`=MkN2D`7T z#3DgQ#c}9nG8<=gnq2mW3`+JF4QKJ|2VPA`rUFMB&UB*+SBRqXWoGU@rKc7!Evygf z7Q%3;I=c++XLow;=@87HQ#=CGAC5p(8=Fi5VM&4?TSHh4Ci`GgZyGZlU_Bg7u2)c) zEqd&0o$!-Y%BW_EFdw10*Lg$+4P%@TVDcK7mMP&WJG(R=o1%44^s^$WA{pT5sqP?h zkySutfo%5ce?znmUeTLv<4^5`ch8cSDDK4;8)^Xy(g!*~=@eos z9fj48h0fw$&FZztNgGl*Q3^ zNqq=ka<}FFhWW@y%Z5iYHKX8fMXH3eyi7p?S3T6I)7ukH$;9-x{u7=sR6T=kJ-_%b z{_~yiFaGmS{l~ukzxWSUWPdAw{~&{a!birwZkb3==#(G-DzvHGPygaS`cwblKO9_!{>kqD;y)*qm!<&zv+9O5j@SV#>D2g8 zz((FIf{^~=KPm_KWS+LV@zrixf9^Dpzg^Cs0>=v6sPAT@J`ZNy$e2Ri>&hNqYgr0> zoC9n*qljiN>L|2lWY3(#t^|PpghN4P{>6VF0sJQ$z<+o|&b@xgm5c-U55a?7Bm7(1 zKll$%Ie`DrZ1nb|cx`aO`aySDzkQi+SEj$7*mHs=+61XbJk9LiiJtB-&>xU-7QuVW zGyw3Q3NVMY&;6*EWBz(9|G|Hr0sN;@9ibAyf2LWV2go3!1G0 zbvm~KmvN9)AP`&?!Q7c)0o4W}qejlfzLxGGJrvGT3F=qoDtHN>y*W$LA$jzyXh<;> za=iZXO8?{*jD*V)|F?Vww7YL6Nytyf`#3{K-;LF%{cH{GX`|S{L&2fEKT~5|xmeMB zri^zT&hs=?4lG>cK?&;xJ!22xYb?`q;fYL^LSL>r0F83+F(u1Q{`O8eCRi!n*NFz| z&4GUU-2n|=13DE3)|1(Czkp_)1pEn1hT%HVLxo9Vp019j zqm^-s1awKbty`*mI+!7=^QeOe+8k1jpJ{Il!X)!Fj$T=w3_H?m@?}2L_+!2ysQhFn zCJ7kpepFQmEElTfCnSxc2y1r|7R9{g$E`A@JRNGF{}b)ykl0%N5k+toE(LL-SB_ud z$&^}CeLgqB&w?OTLks%#HO=#Kfl<%Tb^}xz4MK!jpl2=Tp8ycf)t0=oWa~PVBbFda z-uiEc1M(=7)#NzDlVAMt7%!C7ke;Uuj-SIYCx5%-U;K=#k;P#YNFbfJ4$=hC{={8D zkc22%T8w@B9cF>6@(Z~>oHIj(+jp^_pfW{|Msv`mjHTW~9=`3%Rkqh~(jd$24pKf$ z>I=uP)UbQ4td+Qe0T`hG0Ce+-6?X*yfZ{E`5IUVeQdwGb%*ca1L8klc*Wla*5^{k) z)N;$uSeuIpfwO0&!(Jf(@{h@x@+{A6N28(*!p2%<1_NflO^Jmk(-%DZHD508&H~AG zu;3smAZ1HDgw6O()75n{IHoTp)Nd3$((>0fn2}>x+4DU@hkUz0lEfdDwLqz$XW$WIN+(K9mIWtT2j(=|!=oZEYvB>s|MNmx&gFc|Dsvk2F z5FQCL(^QE~P+MsQVsWDjCqhg5!Xo>8FjF94 zY4m?nKwzJT5iSfx4Pf%1nY|-ON*dJjc=v?cyW}%M2i3s}Aw)ne5${(&D{pAD7Qbix zmjTLrJPKBry7Xcd^ELd**@jj}d7-pNfujhwIF>;m#FX8dbC^>K-`ThbCFi7pC zfIgf1dm85tiQDYzdrL?f{}N?XR*n(h7d6iYw+=;vTvbiq5z_iF!+Eu5mapRfD>Wx=5=U%_+!4y9Zo3Zz?&StprSWx4H2rVA#JSUgUs_7Jzh113Q3~#}V-%lbS zzj8LmE>T>n4H?!}`?$E^iD8@aisV*vXf&SDSom9%`WroFwWOdQyq;WM-*Q|hr~P}k zMr=6Oq`Y?#x+wdF-kjy+ZRACx%TM_-b7B1Dib(aGnTbjXQ_Bap4`8jh>H2fhlv*qlt)iL~6^lJ&c74@6+5P*U)^+=*)O*NweW8 zUgN`G=2H98E!A2Vxr{B))F{kz1a=RPr6#$iW#quxh+_c3x*!@nkS6pJo%Zx1Ibycm zC*k*EzU>k3PG6a^r>!a6sYm@_TY^#OrM$iXOL%ZiiSb}dWTEw4FV0n1`Yt}DM^x`L zb!>*;)F^rn)vWNqo`rl?Y(ZBc+Vpe_PGU97g-+qFKPk)ZiZTz{bF&3WX2mol{8z%5 zr1ay&^5tid0R>YtH8*747MZJa7c1x4(nA8%P!!_pDGq+1l*WNlY0|#kb+)x@dj(`7Jw^=HN+XgG;aD=H;^C3+(IEAXjn2 z3G#nAkA|ZUi1_I$o^eyt=uJ*HZ!R9@+3(2^8lUe}$FFEuWimubpHBA8x__vN}hicy$vvEIZ zMo9gBX5(wwy!hBz^~l6ESx2PyZX)8>8W~#hv~Upo$r<*&t)ZEU_hZ>$A9QJ*^muY3 z<;OAoQ^cAGbaXn@LmngGr*i8_eXs>qLp{3Hal+S*+Ed5ca$1`xkkOU^u4m)K*1`Qy zX7XbG&MY#CBz412*5go%R<(V!T~Tt_d9(Xngs1P^t6NE1N|2;tj9V!T{3Uzj!(T(z zKfp4`RR^)EijBvz-tFi(jZPAh2(zuOT%HGK2dNEDs+bxutPxzEd4sQokwhz z>WTHAytwBo(0yHm!{tsG!qS^{s|!9AUJIm`Up0xdORt=V$+umFVyq8OGF6RE=tj(q zGJyNy^i|0nOKw<6!nDbAlziq5uMV2VvPyGs*3sKg6D<4ETpoc87ELsr&neOl2@U)T zpTOb=OhCg9VKY2ffdv<~0up_dYWSeX_l>TZ%nnTlqBuhh^(|4Kf#KaqF9{P-zv}D# z-c#mb-LdTh!|=0}mFrHSts%zlTHeE*j3EaRq>CX3B#MlsnkXAWKYr+1gp^MIObkEz z+Ia&lT{Dcp&P|96T$X`Kq>S(28TP0-vv!~{f~~pA*chiWpgdDj$FJHG*7iH<=OIJy zBzvfsB@Eg0_FK3m#VQB=Fzlqzc z;>h)%v*j-W#EI&or~fB#8}y-ncG^TL*^C<=zw`3d9s8)>SSF8FDaH3aKK}ed-Yr0$ zqAmh*hY0l>slY;iDeCK_uUVFs)EJ|q-ye-a{ z1QAA^nX{riXv^gUbGnBs`S?QAH%~+Q030d6(*r`7PgI{TLYPO?+!NLejoXbb4=0Q) zA)+SH-Ph38ZU3veD|BdN7*569e6C7xrywau4y^fW1;Q~K@OV8~4aO=L~I zJ>&;)v~XU>LJQacM+>hC{rv!MGN3`7k2VN zsCYz2RnboQ4!v+M$S1Hj9m7;tJr5!#tzh?n#1Er7E{2!8t0Y9AOZA`GTA6v;H=)7C z$}KFF_ei)>km-|gLBx3iNAc)wsWdB^`G9c8PkmoMUPR`|saGPOjgm-D(HWR3c%+!< z*j&F5e8Sd^Jx2A$!K{KD)9F)SQBo2G-lG^kIVW`+Ddn6<;;|laYy1kWvhpG@ikrg< za5U8j5KF;Dk=p^?;TB$Nq9HU{g`PzLIbG&0V4D76dQ>)*=#Q*aP9Iu}7~4tXbc@H6 z8&)1D`xOT0{*+*|s_HcfX)tBL(8ra}=aH>z^?Jdd!l>3ne{McN7Zt0Lr3+hT%M6VA zs(R?2e29afQ(<0o{si@(*&6&^f(5#jHXAh4*>ml2Yk%rVD^X_7$+Bu-z`wJ#xPwaY zqHT0QTkS!sG}V5qIvlR!2+Y=y(m+G;GXAu>xvqW@d}dHY1~RtesTyj=J(Di}CX%QY z4_wy^bV|DVm7D%ljP*oUn-DsmWn!Vf%&OXN%R8|4!df@v9X9tSka{Hz)YGbjR5+Gu z4TXE7FXy>iDmWJB;zUj#iZ8SH@gvf3^3Sq5O6uLm(ij%c3#$Dta7^Qu=QhtgKRQQ| z`+ZT!jyy>zVmy4LChkoH|GA~ge#6f0AzzC(P+5_+s&5;4V1$_$P-SX-hBN_}sunb> z2V;TNuftds7s@SA9(v7i6#7~}XKMO`z$ag>>q-OT^>& z@ictTm`^?IJIuoQmIXXRsfI@-wp=1K;FoUw)5yKKcCL%D()g?lH_LySys zyT~JtaS2m)FQ)pV5%iFJMB1yCYO8lAKV$o3xgJ(5$bNizN)hHyzeOFkQmKy(gsR$=V&AcxYld0{X?lWN2yRJ&@LKO3Z!?$=zTUAOm!kU0=B(uq}OPc@=|T`nUz%T z(URHiok`_pBJHJvkFGG6k1N7IE%Nx9kiNV_PIC}Q7lM%8548{(O;dKqc72|-gd{2y zDOYEuQ2g@ZdgtRd`nx*gD7gw@5yadID0 zZ{Q)mbrL0jO3|u2%N9`-@etMx{!kVYkYIYOt?>1Y&wtD$IWpD`K|gpSF9edoF3KE4 zcuOb5HeP@z#-4uYkLu%3)Qzkwdz$_9=5Svwc<)R>i9ggsHc#-Od!XvF$c0Aiags~H z&@{aO|1+;jqfBZ+E)88nk*8-zJ{uBIM}$+BvVQZW@mZ}Ag@miH z+fe^^7O2kwc2702C(FP1P9gy_byjA`nl>%SaOk>&{1CaKJw|D^v@}Cz5OiVsS(KEW@3${_M4y+(O0;H-seo;l8UVEg_ZU+mH zPh1m4hP8v7Noc7MW(_;pP*_no~%KEsT0sMa57n46P(&<@>02gPbSiJ ziRq{5=Exnja(G7^eb!t=+IGCQ;yTCb6fINiO3EWO6_uE|8#Ra6GHO9nAaVbT^+v>| z@Doe!1uCXN4BiPZ1DE#WkvUk4>L2~NhiJ#@a)VyphV=(wnFUgi`(*Of6nV9#poz69 z^G2R<*N5e#S)|k8-ntyFSCz(}oQFD~lCwN!*rj(C9N|cvk(~MrUmes)!=x=7T6cj~yi~T6c`Bhz;1x2a`rG)rYMi`@l z>34iw9+mM66pEw8dnYro)Gug9Qq;b3laTs$MdhdrsOus!==(ndCZP$|++I_@bd0b$ zW}P`UR@&T{LmoFLHJJ`ikF?g27zJ@-%uNtv%Kh>%)7Hf11bR*MhXw87NuLCE(GXqb zLI~`@1&$j?aZ$q7^&v=I*=_O3StvHR(Xs03ogA^uG{+5Dc~}wzlN2Dg&dS~P{97*) zX4jz$T@Ux;gvAF77j=$=p=?3$Dqa(a9DOZ z4#8rL)Dn*_59&Pj82P_lvV)~sE(E93ucjMyRUwolxIT!dPj4J$p>YaSKHpc5r<%=^ z3l?`wJfka;$1aVRvW^ID??Y|H&>RcKgOgcHS_(4X);n#$IBlQ3>UXfVGM|nhzSNVV zTPn!LeCHX9ffp+GlBRs@zMCq;A1epJgD+e6xV)KO)@*1EMt<0BR7g+XxZ6sV9h>K! zJas$FM5M?$l01TM7_}5>YGg+UZcMCmh|JJmJR&7&L(l_n^uorYFB|A=3#~XeM2}nw zsyGjv2#Z7PHFDI`Z|XG z$!;Pjn`)q;X!Xri7gh?4)#?+^Yqm9(w0?89RhVrE{_a^g_q$t<@aDR7IzpCuMHzBS zbD#dJV4yW~UX-rhFi$XdI$G`G4LHMYj(upV?u`7BHlmoC#slQiBZGvFlxL&SBY3m< z;F|L+uC8P&NclXL1<3h8xc%fpoPb{H#{v%^K0=fIp<>RcRC&&#WQffq!!k)c|M11H zn^R$N!jkeh>Rq|qBSGwd(xl$vSZ#rO9P%^L_g{6XhoZYjczO_;QqGb!bm90)ebcJ- z{kf&GFTFSyb7quKk|b-ifg;nMA66oekbI6^2E%l0X7>{>wK`i{vE!H)G6WNSNt73& z*po?GJI2y0LDjvPHwB?XBaSa{?7#00w{=dVHz5jwttlVemSje@h=>^rWB2+Q27qOn zft{0w<|`A2#kv@Qfo-C?HnH?eBd|+rER2UO=>ECXZB=}~z=F@ukC|!N@2LHGb3wB? zzR$&WdLW6a(#)POyi^x$^ZZTstqe1psOuumXPv}baYye_@;{&7|E!S!z>lU#T)$o# z^}f2T>pSjJL%Lp@d%|glIIQN{))q}xu^0ZD*Sp&o!&9~X)3X3@5dFWZH(M6Ud3xYv zBBuU-PbRMa27h*>f#47D(gT6d#GswRPWr{Rjhj@k9IP)|kGnoVP#KP@p&NMYLDyGb z-gf{L_nUNHIOVq^;&u#tN*Ti=)@{ouPah;sZ+J(ETD zi5jVrP0f|V4fVOC0+KDU4NOVrX);uSVOn$)p4@<+%g72YlXJKk!a=c+yL28-mH(0g z$QPt<2W;q%vx;CpetANE{ezB@cY=ZXhpT`i6%7debc&+_!?X@@%kMz$hYPX_5l>V; zlv@V{8cKBDT>?`4Kd=w>6bs*GpjnUNVHv->b<2 zkG<-a@Zy%~c--;h-YI+giBJoZjzUQu^c`a3V1O`AhpPjzoYh`fvOv5)I%W^1$M{mr z?GoiXCZfxQ9nrEE*bvwscKVo9WZMS9mPXfK!DihtvA**?Q{=(TlTR?P zo0T5roEv$hKv;^1m=5clqFx zpL3AkvQmLuD&qOOLT)uji?VwqXjDhs8X`Ukw}1q?ZwL=GgE9KKj}3{lQLOl+`9@Xl zeYTEa^lf~0cdKnlN;>Z|o8f^MiEtKkb=tcQjA8HHCoyxcudzSWL!qv4vEe>q^HgG8 z%TM7RnC7b}bHf$2I8rX>a_?TN?XEQ_Tzm1qN+RonSX8p7h)y&eGChns{Nk3fUH z0e?}_JJicqK2g&;j6Z7F3~3VBxBkQ)%BSh(XFzdI>hYE`)(FL)JND8j39Yp9NH$E4 zL=SK@)(#*8?k1UCq>~kq^%NRC6E28ZERe^3PEw}j5P3YDDGPrTVm&z=Eib=4ou6FA za}oFj_yxp0ee+CthI6dKR>(Wy=VbQ&?iKOzjto&3WV9rS{hmU5JSwrVn%J7m#fR=~ ze5k5AC>~0CC!t2O%U-!rhR~>j4LjhcM@z=hb{Rr&uLh&n-ZN%T{6iF!UJp^Btoo|D z$E{_GrnrkpgAbudRpY1!l$IOErRc^tG6yG8uGgaipNysbH zIj?9Y!=ktqNTxfjJ5*&-?F7{cL6SJt;``i$)Q#bozZA5=O{`&u8E_IX8Gez+5-PCx z7>V9(jfUjeSIlONh(f0dY#%opxLpbzIBHi~u-2E`g>#*v9aX2v{Y0eIr)Cw97mz+; zu)ukm=ixP}Y{Uw&nlioCVUGPpmAr}f1kE57Lcp-&@;_#3Kp3hkwX5fxT67yCp0_O5moH@b-vP?)?@7zH@YDb9p{?fV-fUZSpY?U!ThKcb$Tc8eyc~agj)uS9 zgL%bFPLWp24&iT8ofT>wj839kr@UcV`knX8f$Zs)ToaBZqgWNEK`_&W=M}6M%_w8` zuG0B9Yabd_WkXS8$k4Nzd8PXB@rLTg73)HPvsiMwn{+KtJR3Vkj1H5*DdGyyKExZ_ zXw82X&J4_M{$&5Y3@!N+Bl`V3L<#OsN|5E&Ctp|+6D%(?y2U0fFOteNnFyz#JxlI3 zEsYm-#qA%kkq%ey{pvv-^I30_Fb0{pojAWcOPV`^UG1%qgD(oQ`~E z+K$LH(pueJD(as{ync>g8NNW7MVUnW5T}bUS&F3{V@KsiR0oW&alt!wlz9Y;LZL4_dnT64C4}g78XUgl=KJy1OvBTt% zbEA2Gve&v;w%;^%Pm5eia8gOw?qqEC^bq_NslrOgsk=uSjP^0szUK+PLMldBk?03) z{S7%N+0;UJvf`;E82uozV9L%}-*dw<2A0n5J{3e5MZ3+mU4SV4iryR=>jR#too{Q~ zRnl_jcDgBl>Nm3I0`gx^wvaJ0=Vxz9xwD`8khZO;yJZrok+P?`>sS*#b5L50q;nPK?>dGBp)c;V*i=GU_SjtvwdFl->rgK3vF)vlW!Z z7tMA{B0{GK^}_M_?2s!E_B#xQD3=`NRj#}O)#PVm1ic~=3@fGR4Kw{7Wt8p5utmBG z6Z+lf1r74q(@GZ3%hw`p4cEY9zG($6ssza4=&(gX$mdS{%N_ze+Hk47woC)xFO7i@ z-N?gVB$Ksh0>VDl8qdl(Pocp@3kFB> z%_e+=?YW_LkDKjM2|;Z^aBu`?`vH;TYCJ1Bs>fdeWPD@KeQr+0C$7O;)5>i1cx>G{ zs{INHzRESH?c1EpiWb9EBwGhxo$Z+A{jafY=>1r4~C zmK!LlI-J&(dbvtFxjE`E5CuDo8Xr<@mD~z1#@N4g7L%>M58LhQY{W=V4Br8&Y|ov{ zMu=FGrVV2DrCl`{>}-F}^n5BO9D9#W{8`A^rJpXkjV^N-*U;2T7_LHPt(^J2{mped zNMNzr5?y_M*V1%VCPkG{Y#j!S;`v3!R3<8ornP}|*`6v+n}yMgnitSWTcV+K$-Y@rjn60fg|G;WvK4bJgV?(0g1Y6md zb&_jS0a4hJ>!0tawTTzOU}u~~tSrgBRg*m^JrD7ynU?1$FrCd*0YlHULBHNm`tZhU z)aJo8s|DPtSpz16W>&4_SBEwIJEqm)jQqAqyCE~ZjT{6sXXv5{_D;x`fooAW8CHy8 zhW+Xfi%yv}8)lQr6DFiD`IXC5b(<%bgXk>K<9PUDnv x3LnAo2axO4-KU>J+tKQ z%f4f$R7XHw?S+oD97rKGGi=%=IJs6vHJS6m4>~anC(-57N`|zO7!NMoILk}^)>dW} z3ks!{t;q|ZTpqwBVN(y20O?!#2Uwyg4}J2;d{MDX>Z0mAhX0tbz@dHCZ6A|m*I*kp zN9-&J?L zj`@^MY0sHwM#q}vmBs>g5JTob#Bu?&K0s+BjSJE)duw_G4^_gl)0?Hv7zzybgBDyCKGSC$8^xg>a@FSTI2@9Hl&ijp` zWJa=lTc@~%iZ&mzu^kt z{P`u0?gI!{kb$x37_CyU;)2edTuuIK0v9(61v=1)isoUpdD75zIBHGxnB7VfRa8(+p5=0S0FDkEf<<7DXIX9X%BWH|>KiQsDpXc8K4;M9NV2r{dkzhg@ zoo_JAs42M+C>?dK#!>i!nTch=nHde76})e$V2C!0xg;0F04CS812UfnB#6DRq*XQ| zCsYrXdIm3lufz{9|A$;Nl|S&(o6#-B_Vu^XH(<4-W6%%oL1JL-!vVDJNgD7fdv ziP)*#*XF(bGx#y*%&m(Yib~qtIw5YUESa1W_n{V-{2Kfaat{!=3b>m={%tfbTkH-n z=40YN@@jSP5cjdK^oiRzoPeM8|Bn3kjC;3|@fHQ`4PEgo8N$u`Ka1+iYOqF| zW_bDn`-Ts>e?p0uI8hU?CB=YMG2{&nILv3VNF~K)eXUhGVDK{^KqYK5?OG*A`|1$n`q}9dDQKG*Tm`&?zuY4JQcwsr{m{gK}W7aI|&pW8KY9pmnxDk8} zepq5tHD+#`n5C0^2{dxmo-A@9?y)@O?^wo5KcXZ0>AxD&nw9q!FOw-W`DP2Tb7;7C_J@D@0b>jIBQW$M{1y`CsGDIifxr3aKNpY@a@!BO+F^W6k*Ok2H8DiS({7F$2<^skj z%k&%zY)aagztuLpHQTYlaeUFNQb_8 zmc_buG!yGfe%U>oG4oxbJrtXYcODK4XJAm$bagBo;64}8Au);eY+eHzOA`cRsl_f( zt9nx+`IEPQC77BX_mA?Y;c)fU@~(9WD+ax-d28QYqRaQy*W_#gPmMf3F%|_XlDNw( z@9dUxnJ5{m+gHBc+L2oLAK4ENbSjTO?{|LS-{?5WI{O>u>?qyWkqotB+lNOBk zEXojXTCzoP6cm7+ZFH)rPhivF8r>@9h~N#>1xU9qHweB*O3TXG4(%wgSsw|OvlO-fnASSs93x2+Fcz04W zBR@Q)If(I-qIh^sEVS;hzkq)W9QvOQkGf^uGRM`*EepBUlEH3^{mF>th!(qFTk)5|O)g*5%uqJfRJ%{1ClK7s)g z*Uj^D+Ys$?6k?E76IJAILcoismTj5{A}z|G7_M?$G3F&zL#~#CrdUq{73G*4R~^N5 zvsf|B_2UVH#9T=ESx5Ot_yDlB{EgKPENmCw-fgPFCPzjOeh30IGy{N~ef|kSnCkdt%o+6@ZZ#nT`gAkE84)l?%{Ke0X!= z!+9CZ!V;%`-!Q$lr$hGzLw~xutJ4I_T95sv=(VsqMaX>xHv&!{%mn-!1%N9c#%$Nx zICu3w#!>RLl}!v9LUl|-EOz$Ti6ANjRaMKn#X`VF=v5eJo~SB}8ibRvIENPtn_6pn z5ruA3myz4#X=89a1nV}gqbaGkbPN3;C4aj!Bn8NRrsV`+Nt=BxW=Fe3YCkeaWiwAL z(rA<5-NyR*_sNIa!ElGPCNXoy76(O5KhT+arIB9M-Op(XBxpRrLULH;>l;Ped^R!N zJ?*k%0t3`Q&bm);Ij(Z=q8MBkAvrgvkDgTL??7-<_xAazG}fYicf>wc44`fj_5_e-NI|BF??`ur1B zCQI$8M3%YRq031wH<>ybBSy9h;c3*68N5^n8gLS-i)Q)LhEocd`BZEXK>HlA-+8kW z!dCn~kr8E3SwdriB)W=xNW7@n%7#l#n(1)RC$!T#BMn3?>*_)-GhOwQ*TODt#{XyL zgM0p^nG(ZE5nl4wcZ+C z%mJXv;H&Jmd5^V@6C<*K$%hL>PvGvzHD{Xvd1w5gNxIaC)cNEfojvIhQvF;Ud#_wE zMY0kBDZ^!DEZOpmAakc3!w6s!4qtArVprl$@pb|vVJY;EU*coSDFhc_(4*-~$k9q< zDkz!Lj@PhMFlsCU@<(O|Q{Nv$Gq681=``A%a(|;yyK&sjIkvg<`#*CNGdB7Ii!(Y&~4FhFs712d{{7@;!i4FyroKv9`|5HRUx&uu&%Rq@$q$~ z5>^AYZ@__El1>EIsZ|7O{kg!gzFB&E#{|n_;our~f3RlDbj80eL@ggzxbC5z9^8b> z+`VqWC-sD4WRGyyV+|?P0@1czfp`F#gB$fV1$fZZ0xn3P< zt<3G9@3gm(N4aIN6s?65JbjyqW2hl=zgYPRQ=sO`V?zz?^K)9j->JPDpwhu z{`DtouGzCkRZp9hYVHm{gkE#Dm0H{Dt#gOnvCZ`1arb|ofoKW12x0(9B@B>MQ2yJT zGY7y_OdJ^*82+>PaXRB_@x88i`%ckOp~ta~-^X_3?3&g;B0VxP<-z%T9YoGORL_qT z2a0oiJtt>dZfy*25ypU>ak-jBwUcGE5Y%Ag`O;Sr}rnZ>d&gNS|2o>cGq0OT+U^U~eu zxlzGQ2!Qd&!1~Mhqe2}iG$@JEw#*L;Fum#SN8dS_n^vLOGlE>`hgJ@ktMnKm@xcok z(5(0%3i|>>Ns6Of7i{psix`Dhy7A}G0}Isb5Gv>i{o&{MV-VPpVLJZ}ASgvW=>t8*GW_)bFACa!3ya&Y;s(}h^T`4d z^jcuyVRH|FXR|kQoan6bZ3E!hUXOpyk9!90egNRvvBOnNkBJX0Y@g9rXTQD8jeF3F zQda8L?(*>m2^<8RXAwTt=J)cwK*#-x{I{NM?<2!sjLSY$EDx-hyFh$HKPoT1YmeSX z!@)kGt%$x=ounvWj@xB{7`)}Z%GpW<}ae+#ZJ@rozL#D_oGkD2&aP+C! z7xYaW7hZoA`Jx9P{Mi&J8!|BGn+n1{=vs;drEP{Vh#%0_L58%2dfb+;R)R2u)r8C} zL;017X~2AD5wIWXFbF2m5!k?1srq*(b6ZPX>;@I~eXKE=q1@BOV!S#592cXaLWmi4 z(3w)b!etUX0NM&tnZI#AWMrPHk~P;Aq0t!^j%K!Ugk=^M7ArTGm$m|GELpARitKQ# z-=&X9z+{j*LkvZvn_DlYVdHo7j`+9&J{-}3PS^Tp4^(z7hV9|+7lAh_C?butUeO$YrQkysw|&Zwfl_C7F= z(zPgP?G!8`k1Kk^bcVE6UGSp_|c0hQBA@8{91k27>cc^>Jb7@E&vWeqd(B9e4~pwyNhI+Z~f z$6_5(>af#%lcXY98P+3DiC(-Sb%pwJO-!%tG!Iu*$o2;Gd!H_bm_uTu>Iu92K|7Yv zXc^|*okrrySAni;X|qsO^Ndsy{KRV(>pPiTz`@_a@q1Q*GxR26$pqsZB!dzD@`Z*) zExNAKZg;3Je0C}(&_-fZz|k`E1J~uJGWy4}y&DcuUn7DkQz_wU zB3zq@r`jDmWu1%zOR%*C1MmRfV8f^OjBF;_(3CkGNS90*yO@`ix$ER5oM07v{!~Ok z1au4>tAucMVA}Z~5`iPPyA^JY$b#EyPhn1b@JRRv@4H=|3^nAQ zkEO!5P_42DH|DGegit8TDf`|)m4pqlJ3>J46#3Bk8`NY%?rzfabfTDG48}-{t9t^P zUI37_+VGoELzTNX5(QxyThWTVpC9q>lwz%tYYR^lPYuftgxYolsNDF*XNs=3YMf$r zO>EI_w%2MM&1R6*EuaPwXHr^l}XPRSnNeCF!ndWZb>S1noQNUMh=0 zZzTKQ?kY7)Who;3I+J5~mMCO%Na<{1XYO)E$0b!i{&3w)e zjw9#UjuK&fK+hjrjNWIq@xL7*W(9 zt~H5unucSv@L9<_0&yT=jjv|n^g@KDJmusFQj$!>yWIA8AKa)zU<6&%16T6bR)O65 zFP1`;8jzuHmU2Pq6G|%w5fbyqqaidhC57gPB8=0rHcrkQX;OR;QeJ)*)oJ~z>&)7w zv!j`u#iRyADKr?j>SJpD4Xu%bYugDs@<6$EV?~xTi-Z1DuY@@84a*+8*GgRZk0Rup zVM#56wiqv1=&S3)1tmxN$1-MNTWhZCuHbFjlchSy+7v%r0~NS5QXCuVLQdU>Z+`S@ zBQ`bYFDcELbWBP8szk9$z|pJ!b1&<YSzO-@Iv>S4E z%vcrQ_B`^7Yt1njc}zVCoM{Da-t97?G_J@SUAhZK{`>f7Aqx*0hOA>FdfqkK@=k=N zLf{}w6GB_MSYhxksNO=$%ct}PBc)4n59-h#%~5pg(Lw8}6d(shD+G2UrUWHVUWcg_ z*gZVJ%BT8Z4u|g1J1ERRY!32Dgoc}qx}ro@k(hG5liW@|JQ-tFwhBQv_O~iTsSmh# zqE}rc>s?zK(*W@T`0fa!&g~|^^>aWv@A7~!oB_*$ssKrY^)!z5Lz{sLzv^h9#3x^9 zr3F2WgM|NU=HnddYc;iR!|AO3tDY zM8jECi-ycXg6UfW{YgNq*y$J zkbb&i+gcT7mwaZr6dCd}SgCy@c^cA>WNsBV9L(N0z*zn6>Nt#|(TS%S(1VnE8Jktt zZ*OI#gi>@lStI4bV6xK^4P*b8$;N~F=VA*aBx`Sf1-?y~8F|LkHl)deE)q{9&$ zV{XYAK{E5ZJMf47GUE_KBDnT`TRG%Sr-=%%C2KR6v&6|%+HxDH;T`S8r^6Bdc z7u3)8oH~)w#ZpLzEQ#QX*=DD=Hs1uf2>K%<>&ec91|oAaH_erVpK@!;2AmpFeeS>Z z&e6%ke|BZG&%gZCJ26QMCQB#Z5TrtPjoLMYhm3gui;g|9cfylL!jlOKW60q$6F zq;qV%#2y_hNXNsH|8@U5cApwW#EoBttgrPTK%rvPYH?j6OlL>31@LWMIumIfyRu!3 z1yWwV@G9YuCW(}d=8&X|QC(=7n0Y9OhH|M&*XSG%(0XaWeG*IZ-BmAK*8-ROJwhuL#S|!0i zyP_$MTdI$#_JA=dh!ToR?uZLxJM){PTei+es2Q5<65dr zgFLL_@dZu^pN#k2L~5T~uo%w4X`PmOkbe>;XgyHNX)6~;ITe*dqhBX_yKtrhLYn}# zH)tC9gR%R(@HNaofZTj!NPu)-9#oK_C-HDPiSTr%v@Wjwg8bZ|-}Rbk7K#0xo9>l) zqY6UBDXD0NzSGAvLKx(c>ta=!ADpg@PP5WE7!vOXpIVOTAVhAMFGu~n1WJxmB^y`9 z&wDtoxB;cw5IW6X6~ATPbHB8XzYE1zwrFjseU*9o*pCT~U7vuvcW&)=7>*dcrcUXc z&-r6wi08H6?%TKTHCTRs{r+cosa;pPgZt0y=l{aXzq6nJh8GPry903)U%tK1pnUKv zk#hr-Bv)QYh~MHSrzZUr3Wg}_hI6&OS0yByMgTogM)x4F(4g^XEwzh^%lWL|F@OYi z$>A`#S1;*9REfsTAT$Z@8n-;$^+=#h4Lt`c^*qq$TZQhb`0;!UAgj$*?fbWZm_bSq zM@@~M;ro{fAVsvd`tZIUcADan6@dQ8D3A+|J;-EB2&osDBN6$fh#FRsLt;-Uf~d$_ zuDd_=?qjZ6WoFL=QuXafH!dKD&p>_`egK7tunXcR9}pO4QTeL;l$($P7@)Z({~^R5 zU!f*`F&e+4ANz)h@_`-k7Zc?kTjFc><8-HowhCM|!acBhaKP#5-{*!Y_pxQR zw)2)6G8qw^14<9v+J5V0tR|}_bbql4+^0xvxEbUK7i4@b>UO>7hYIfsXt15Og2n&Y zvC&3XxZbkVbF#544<+w=1~k}mu2Yiza1w}i3uM3?@^0}_bO8;vp)mCKrkgO~d+D|% z?ym-$FL+fC^p%)m_8$US`RtTG$XL&;OwRl&uD~Tv+c5Ml@%pR5b_{5+F&dhB z@doBDu;Xm&AdPhF3qci)=v!Fioi*S!#im##_8dc;0@TUDOp2Q1A-LNqU zM(&A65*3kJ1~edLDZM}Hnt_wptp2Ezj&lu9O5g7kZN&OM0i7ja>MEb0_@Erj!lB|9 zl_s3c6;2kYOc6S#@cT#cOt~s6! z^xT6}5qF4f{(4@-=hIvaQ=@cVFVA3{c&b|GZ54`naptnY7VWA*D<@b7RMsnJ6~`{g zfF1EM1!97dasfpqa zu>JW(ITx6JMn&OJ%8|J*+@i?{tGq9f*zIV<9cvS4%DFVyMT8U5(PwuMaZR&Qh|FV~ z%u3Bd?g0L3mKksWvK>|u9=!r}4`WFcmQmOQe|)Lah&D(#*7Y!Qr7;O)$<$t~@I8Eh zA;6kvUd62rnKusy9(;rz(uSwg-Nl`4;W#We&qQmwg%97Rl_R7_9^;&=}c!%)P zn*Ywvt=S>e*8*`kCe@N5~F1?PP~!HY5}zplu!w&Ysjp z!ml%WoX~l_Ks*Qi^4J6UxosF_G?~A|@7&&NR0S!V{SRSAg}MCA#QwVdhe|!JfB=*R z;o#mx9ftI}1ycOj1FK|Tl+qLcL=`VE8Dcmp{6(ea|Dsa&QN)Dzj98I0n^kSS4m9z} z%`wExVoFk^BIoBaEZNbwbtO7W(c^R^1n*$2`Mr3;87+ZE*20TM_f-Q2D+HOH<#C|5 znACtj!ABnPL6>!mj{5`|{!l3M^zdign887Wn-t=N9r#|JrCoc9-FDLNl6V8Wz6@GY zq=3DuM9n3~@3Kxxc!+}+p5MA*Bt5CcEBYn=>9oz}<_({*NM^X;K8_LPk?t40*y{R!ElF*WtIhTkm2bK|lq1!hlS zAjqi0nTc6P4bPQ)WYV}aJus--bRc}>Y{ zSQ`AHKlU1o-clQ${sakG)_^7S`!^21G|dFUR*rP$gL>Y3XPe75?&jQA)Xtzs=9;}f zph9)^*?sflLbdTcm9zFx=F4L{#jSb~I>UGU6;8pRPp`3gv?rWvNu6>JPT`wE&`|K8 zsiByY?g9lvSy@VG0x$oTdFml*mW~jZ8wMOR^Wu)%BD*eveKpIuz z47x5`DEre^+pny4Oh$m4k+(|j&;SVsHfV0BLyTj{_e8POLSnx`irlD=)|0!k#br6? z01oVJ?M{=KSSQgy-41)=b7AH@b}d&EV%jxy+|=(bxoX<;c8>)6>M6Z;Ti70B{Fx)h?PSA3ZdqYGUaaxF7}3Q$ zneY|YgvqN4=Px=x;yP00hQnli3+Qt4u`?|f?7JTtyGPWqthD&qQCwublJ+5#CxQNG z-n8X96ILv9wZUDiGS_LcZ8qZ*pha~c6k~OY8Skj7?X`Ne-NRyO8=^S}J{&3EXO15+ z?#gYAA6DNhEjuk@*)YkA>2S+dl_z}1gd33=UzF3cwNGjCvr`N%T?)@iro5%bA~Mg; zSxmEb>NLCKsKrRp-fRetG` z4^|#_wlpKSHkdd;nunqpAA(4uUTgcMRF~{FWR_TxSSs!Ni|W;E z(ZAU!D6wi-+=eJ@!aj`PM?)G^U7G%~XI{r=|FF>M^A8GI$kf_#L z&&fE^PLE+Tf$d*9<~G|+ZFV(2+w!GrQY9)>Qmn2OUNUu8mrWLc#9T$H)6V&(&?-Cl zYJfV0DzgSzX|y>0(k@!aWtbzmi0idI@rJ6h4!qmob0cbUo^M8zt;6ORvA($_66yi~qdw7y=a49C#78SGXvWggpRUw<*-$%oN{4G-_k6 zTzyCVRJ_4nUE&_j@lS(r|8|J|`St`V{i6K@u!D zBRYb$ih+B&gKGit78K@V*lKc?5NoN)N0v-#8{8f5E17Q2&#Cs$^413leCe{(rU{D``-N zm8PzcPpS$D1|7YezUBb5<(TGLJO^gr@__xsd!z zsxrq?jz~jnc_dItK~{}KYwh8B>rJLaTR?gmAR-SL>67~qxuIDYpyaVj)+1vuRR9M! z&pfI~0bG9QiE5VxbOnkW(-~z*Ic6PVbiu+1{w{31K~7+1GW9Ggd>0?&cs028@v6_$ z`2{Q)yx-**>&v8`dJ9bn4bjO#gCidZzEzY$f&s*YqsxX+pD0OqZ8QPRXlrq~73=*F z8s+=D0sAiK3!IRFC+a|?(N~*4;=~%58^AfY;EGV89j?M}%9-P0Szwu1U&K)8Rqj&VD{Op1Afv)TTw}}Ix)(KU>G?Vuaxwk`pz^5t1 zN2Lkv*0gS$`}97v)a4YU4|+r#-a#A`VEhrKYAtLV-ol*<(EZ$!UU~MN^E3l=KX259 zIl-j@IUx+l>IyI)ZFfr2U4-Oye`|+@`Val|`fAh5{z{SkKn%Ree$Ps-C_wfLCooC% zHlp2R=8i>IxvDln7VJJ-`O^J-1L%ITg(+TrM_ZV6&kVnGKWUHOv?z#4R{Uf|#?30m z-xGd(D$G~+c_(217-XX5HI>QMsC`9kadyY|X9ce4%|DVgqYXU9wnIu5adNa0ZVmM< zCDDc4%S0f(1-iK@)9>U+=-t!hvxgS+Ryg4CJy2Ms!e;iS{}b^x50r=ES@*fZdJxWn z)B%x9W;0s0B$5BXaqd@%D&}&?=ZNz8nJ{#TdHm3i_!=3 z5EK#blx5DtHgGH?C9rOk{!sch&$KF?&9+Q%3k8{%wSjscA()p&u0Eme@fKlG2M3#S z=XEx+iZl16R4vBjA)NIb=xUOB_AK~Wh|Q9&(jW-1{oLNudIo#Es>UHCg1xNPWL?P3 zk#E6n0Rs+Ep>~Mw9e9ZwC*BXgDco60%b^=FgTmlh3BlQcZ0FDu8 z18zpgd}m}wB=bDIsKFVN<%AEK=pba%p+GFdAy*WdL4d&I!G!xb*n=S|V{4rCkL_nn zXYH)G1yG;Mn7A|Z;+mUMa9Y5Vb&N$60SU*He@aCT&!)Y6?5H`$Vd7;k9WPiM8^*_Q zotYFw3l6y>Kj}b(_DP!rmz#(pId=xzpvb5I34FblXer=i#loE=565zw4 zbK+F}vi%r~=xJARY3A17E6o{dUC=!pf1CNa`Z4^mw&Ji0@2Yb1cqbh;0;i@I!`7Pgj7Mg34JXU5Ns6$hh6 z$YtH!M!ktU$TX@Tn-Y-Dfsuf4FOY5$ zFBop}px;fMrU){9>#2?rK)+K}cW#usk5`jZMJ=i`<8z^t7|6MJm2u46O1Mz~{kaZ@ zL_mLzu^_=T=lT>26ajUg=en|M*3F}*Fx=cPe@4g89c!^tko>q@ljZDBNw}KBH4T~$ zsm^Ah24OC_Ckj3+Yh)%<_d+5vg!VK!VP*Q8uChM@=XyPFXdPN*O17e3P7REM<2X$_ zD{Z(lg>9rhzsS0}m5mpU7S8fkxw0qcvC!4e@4hYxjoULUR$G@`30Sn64xK1u3ZYoGgiG~qk-9FiMIk{`ofc`#Uh&vmInxv#RDdt|q<^-kF z2-J3-Z7?aFG-e7cXQss)wR=q6GY9T53uqW8*~T4{=89!yxw+SK_xX2y=LjddD)@d! z!2u;koLuN%c`Eo1$&vs%Hd?RR4bK4xm0f= z-gA~|V?pcK4&Ozk3vo({2nweOO#6$3O=D&k@1Ga222Tfz4ri>0r4CXgI63*FvL~6{ zYO2|TEe*F*myuUgd79I<$THv}Kw#~gxAzQuhWz!*>!^kl^lZ1LT{2{E1@pvo&7l3Y z_;7QV(P+Z*uLz3nrIY0PihLz5MLuC_?mbyLL7-=U|2%IeuYViqViJG37QREdA zJ#Qk=se|{!!x1@;-d$=1()+0b{eslc16JjBMc0H|;uOK%)o-%1A4UjKMIEjzrahw@ zFaz<+?H!;;Ax#M)V4&BPKd%@>BRh!u$MK^RyjhkioI+T5sddqWx6qXzZw>vWQA;D4BZ&$zI*%h@FUKN$(Gs^&Y_A2=hs^%O}?la zs}Xn(Zs`sYV;;6`mY5E(1k4&V^YPX`X2W-CPHp(EsE4;Z=T113>5`9udM{ zQIL|)@KD}Zix86!dP0SJ#m>Cp%RlfV{$ek5+QaNXa)ehQxo!|3G@+^*g+VpFB#R&- zaV#jxJ$utv6OfH>>$A}F_y_pMw`z`?Fv686xrT z6p+W>?g$$4<9PKGv1O7Kdl!(e=zHZgNN?)l*F7d;z(<2s#10{rFq={5ex z^CJQ1(fz>#GE>i!MrVinj1<76@5I@6&)ZUE&)xude!KvlABlfGKPb$s+j@ckkk^;z zXIY!J9rDZbBSZ0opau@`{BZWRA}3=S&%`LSW*q0ABwc2KhNijB1otVm)@GQI_68P!+Jvblalg4JZiW)vI{t zFl%-PYQX1K%S-L=Ya1b9Y)-FhBod)#;+LP@5-rxW_ex8|E!=`}HS-vZpH&MJVRz0> z@JthJ-V|#* z;lOozF+u3xK9(YdXq!C=qzTmyMsi{EyK$t>vpwp;yFqn=Q`%67X+(8sS+tSZrRgPB z|{)t)ftcXfWDCBwCMB@FkDC$n-A5(|__{pLt?@6#AZw-)zd>+ zQmR{6+P}wb;w7H@4P_(YugsPAzSwr4uP~g%sy7rgC}XinDLYkHqb`rXB3Yf96dd9o z#c1B?TCo$>^G}orfas?aAo>YtcYH%s4M=_OL230_@@Hq)gr|+!wX2Heb!g_JIc0F` zLlWG4tk1}1rVZts`yRsDU(zb*O?~p5x^xXJ4Lo*Ah-9Ey&wKHLv1J7=MssT_)m5|l zR&T0JbHgiu^vn{-JOSj`T!Te^Av5d0akve38Ql~q@A{eEf_(YjNwR-`jf&r-FAmz) zigFF2Bd3Hb@fol?4dHJ(S`%ipw~dIu7s&VC!CV9R2hg9>LZ-_Z*)wL1?SuW69JlX| zcqDL`-W3IeEibSbWI8Gc;%+59PXz%b)TR|bx9Su0<@V|Pa{KW78mzO*$!jdv~aQxdt-i1JXdLtiu$2V28>8igXRDBn`du7Rko8NsRs{S4yxSj9SLv`!U%r{ zMqU-dOVcSsaV#)OI|={0w)OB$BT-qwaVP;QFJYrFC#sbQS3TpI^hLMu36FE~(f)MM z&x`vZ>iAXF`+b(Q*j*2Rnp!BZggD3=J=jn2hBSJ8zYg2 z>S*zHkpcUU!W6Vz3n!22Z>sR_6rZ*xwo3a}4(Fk%+!&Voh^(j4MMWgy3?L?m?6-5w zp{v{{NS|56XwGgHv(x&~)I0ug&-D&~?x@l$yM{>ue8fgo^TjGMW4CIM8X+wMl;P<41{7*4AyA~PBJ zw;tZ7$98pxLb|8)Tk?Q!e07dm)~2W+Jrim#gui$hDa3h`+tr1J|Gaho~NkrxK=(?`8KM z96iz}GQ~-g@ACE0J(YuS0WaW8YUiunEb_!o|GeT@p7Emju6 z*ZE>0ooml8j#)h>Tf6c=Jlz=1)BcEq@+D!CY{mj|<%u}J6yS?nhQY}Jy1H&e==<1 zXJ@O!#g)-e2RIEr$#Ud5JN$|Xn5fOuv20n&aiZQfH=r@ET(*T9d0RhRUsI8nkYR6T zuBMc0=j_%I1wLgne0HKwKD>F*=oVlmlryDY@XP9Yv zX5p|DB3lQmu2X4B+{&rtbYsnO2`nI|TYl813O+4 zcJ9ReP-s7}{^`7BcTT-ME{dyns>B95-NGtB!byATC~h3cj>*XrJYyXR z95n#+W{LIeND2FjUurtBn61eX&z8m`77aX){FLNm+IlZlizE`bXW~F0GbFej{!8GZ z0Q3BD_|ml6ux~KB-%C%~plty9XG2xAB*&=@Gjkwqj7Ga2Egd&PgJbQk!E;LX59+Oq zU>0*YDmR|BtHyiRu3BJ~P_+j^+@Tb?=lgUv_M9>G+SvZsGP+Jd#-?#~cR*Xf4^(KC zx^ZfaQFFpXnG6TCW-BnG_9&LV-lF?4`q-l@mlUJ7dqq>LdKas-_VBmCX*|IzhM(UqucyKQXSb}F{*3M;m4+qP}n zcEz@hO2u|kNzSM_*T2u+=d68^*2Yz?$1}dS_s*@B5lMFaa%s(arwTiQwIVe^vF)O_ z^OQVf&wI9@slXg};la_%Ej=u6Jj}zjMe|5{N<(K{+BiKGP~Y&BXs2LoO05i%A%?=I zgeTY*K_ZN*qsR|KnzdFC$?#<7Kd$xt-f8)WSMC zQrNVXpqVo)p&t&EPfqTq`ozyxd78!$8mxLqF?6xy>>d7Y?hj6i0v+;4|4~8Er(tkB z$_ZZP-_xOS?Q_;^xz|N{GS<%Fq7vHL;$ce8sX`Kp?t3kBk7tN~!tB(({8HZg`X;vV zLCO@#KBr3*^H?X(?Sxh>U21we&6e_CP(o}q7}RK$y}rD5^nTe-zr25e{I{*bDz|oT z1K27a|81)<{}1(ZFoEqOukr~hR(W@DK2J|<%iH#kpWx*v)fFsJ(>zQs?+Qcz-P82o zw)hUM+vc11_Mh`O8aSMgq+_KJ(#9Ad(U~9j z7sb;8y`LX;Uo@LuJQn@yiW~Gs=M^2ZjqS2X6)kSUq#r16svt^xrh4CyQ2JebCW)ov z*T7_z$moZm>$6!yWT?fJu`KRk%v1;O09fdne`h#c^TJ-{Em%o5LECj`$DGhHWW=81S>%I&`cK{lZN zl*1$|Ncd@afLxG(cmIM6GAjN%%XiPrEL`diAbyLB&5MVc=_Cz~28iE4kU=(~u>j(? z+)NLY7J&He`aa?0((@nj8yGRkx(S>4On}F>_+5=cB&c1R~R|swhdh1kA0P&kS^w=RL>(}bs8$+^s zq0_j$z7EIIxoqxdCSz0&vPdahjq7fdpkX?2GL&r`MDz{B6OiYipb(+9GY#MgU|SGx z@ed55GLyB@W}GV8?I_@o@0K4`kD_K6 zJlt+0x{^2TpQR!WR9$3r$Q9rK;jt2jMhRt~hYXgVJ+SDcKlDFK1tq9DoEvX*l)szZNwTQj zC#_0xUuEVbCK|8JDE^J=>+$Nq6&2`S&)Qv%4?8x!)Ar0*?=_W(kqlP$z4KAE#$d<4 zRsd*12~EODU_kp2n=vr|9Oq&GE5^$IOzVVcUg812~9_Q(`%VI zF!sA0ph-$*ko{(V@#)^6_jjzojCUtc_DQC&@c_n3rOe^qvC>bsF-C)}OyxS?Xc7HC zW5r?IT+J4x@b6dww#sLG5&An;4#}ojA%g*9#ggLhSP^HEZu(ziWrC(jSQ#)@W?m>f zT#euQzUMN4S#ZzAg_E4WSc!}XDxbEm$G~1Ur#TlSQ(v$tO@{R*qwGSRA)Cr}2@Ds0 zVPDacjd&Z^{rb#N$tUllFLr@s+nbJ26_Gi7#-%lq*S`B z_og^qzg`o+1@pUy92U)=8i)ib^PbBjpI@!gxQ zb)dP6wMTnETJtBW_KTK+8^vRP{-?4z?LbKr7+%f@@QY$33NzmIplCSWk7i^+P#W|1 zxeIkkpt=}r&0!ElFgI9~w@$nGW!(zLRoKbTOv;AnIy7nO*buI&(6>=sx;m0=$zGdu zYN)%ZSNt7&J^@crhn>)-K6?jOt4YBv(-Veo*3>>cn{5`iurY7XoWrfuzhOfv(_G;Tc;CJD%T^~HaWO&LonIh|yd=Lpt3jLK zRfPE;wqWq@@-nOBDkmE0$8(p`_7+#sH@aS62Z8{0g3xPnOMsnVAo@4(AGg(>eD58( z3&rNysh@_mbzm;vCb#`QixPb?$AeTlKc@AEVLN|;|FM;%mjr)ceQmD}Ei$V)NZkOm zc7AA*V%|@KX+ssD9~oMxj9#f{x&NVFl_&M3HxOh#a_!Eu7o&inVWTo>(UThuGGMp@ zcNmBgS-rxaStj}ZC#0*3w;E&Kv=y~@E9U{;Yb=f@$bnqCK^h1hR4&K_B=I8^p%Y&K zs)m}cjdERRpQeR&M7o#v+Bk#7XJ={s0S+RX($@J7?*8oLz(GW79b$04pq`x$aJd$> z{LoBS1Y1U-yEF+gX_nuF0heQYC>J?9n^*Y86pk2hdb+6 z_gW6u%2xKGN~P?0R550hMu{Wf%f5Id_Je9`v(#g3ntp!_#wGdL0*lWHIDNUWp@z9B z#yetU>N5jh>WL2CTY<`uXca@lhQ~7amMf#)TxO&E>y>MQNEzBUKN2-8#uIvA@(M?G zT>s%<+E(Z`9;h5kl1dtCLbXa>unp5}UVA4$F`L+#L3ch)D)IF;_FwfU) z$$+j?e2`P3yB+pgV9c(fbV@{BChTVumo!<^9mZ3em|D@YSs_uN(Y+NzGq#Q7MHts8 zmU+}Xon=FsBlGkr_mzY{3xovj8U6k_x~;stR^q+&At4eft}TZgSJ_@GA|_;T8IjZ5 z$41raqH)ZTM9r8UX*|;)Bb-O2j84>UKDlmkwHx>6{rpNiU;Slom3Ge5ua-JNSSNX>RnWHY11%LD{QX&dt6ig{R!nmmF?vvMg#LaCyT%z~1dY9u+9%>9@S zLYXogX-|Ch?@~!*7tk`hHD`9U4Y9&$ay;gxwNkx;`c-fQea_FaWj1I#Y7FXgc{v)@ zEAhm*w?EdFIwE#RE5^9p(?4cpS16(W>vJ_da`ME=L z&ZfESnX&kWc-j*)N6mLJ<(Yb+jh#>uOO~BCkBhG!JjP6W#@u>S-9iiaxu6}Bw&4lo z{3jJ;(@?@RCO(R;$qDp54uTLP7Y+Kz*w+b{JY!EBj^$Advu=yzchx(y#f0@Q@JK&i zvm`8pBGYtEj+VIF;@f^iy;1DpmUaRgc6!2&319vyLXU|$KFUwGI@o_#s_fvdANlT~ z#w7-A_JrWPqIjL3IhM`{z0Q9y471@@=O_Ynbvb zoFu1Z^go4oAH4&Zsh1{8uq*>AJc#NECe3K+zi$8LeB@W^4U~neg4z>8MvT@27_AkQ ztvOTchV#5v!v*22U&ev>!L2vhzR`dtNHwsEB&lKn4@Md_tNegfqNCT_j|Ol(ro|@a zOc2#dp+#bI6M2m3*AV;E36*^ih5|srWX2h*3R`X>&}hE_T+gG3V0e|9>onO%)YDMcf(`nG?M!77l9>rOEO%fx5k85geXXawLwWOL*eNd@sLu!bA-Z@S!Fc;^0KnGGr%wS z_bkmn{ULHGQ4@c1n@3VbrC?;$B0=n^)|Sgwzi=x6O@ZE{pHq`U8X!YDsrL*nv>%XV1-ALCOL=24N)G5iiavf5tI<7$pT^#&b?P#hJ z2RiCg*wh*}WHqwhYycNf6U!~KC|*Av(rOd*2M^OSK=7M^w4R*cC_s8(+HHieeu^)bkJW_gK+4|j5Y!;uW+;w~ajp9IQ^vBnJ(l?sV}<{A!6Z*CU1mEiw3=L7#w z&c{;|U!2KWtDj+i#E45cSBP_NK?p9YqK#V3H1fj%_P1wj5U}rV(MZ;Q6SFi9jfr@AKKnHVkC8`e7^vORjf90Ql0xfHDtwRj*^X|8I8mtW>3?!QL0IB{b3Q`OVeGJqqHTp}9>x|VEn4KfU;MXaO*iNfMzB0E z&7U9z`)1-u_Fs0WBQR5OlMZg?jieLOUowE0PvY9`aTJ_@Ja?0-)yAKHVm`_OG{5x7 z4=dXP-ZPjnJZ`U30WqKSe_}pce`7wRvzYTa#{O1Y5_I?}HB@f<+`#xpKMKXl|2%aH zDQ^DMBJE^*-~soP6|_Xmwgw?8h+J`%8t@qCah0qr*8O#G?8AJnd4U{y-9qhBr!U1+ zRmiNk8cmwY?hH>RyAkg2x8;*~@t`^!ex4)Xg!Azke1eNuqU4|Gd7&HMpe~+&x;xgS z4I+7pbdEj^%@*E^|FPR`$VfxsIZQjs2DE`AzGt3-05rPALVxaqnXucY02es0Uh%Lp4~zhCcNQ!cWMGwd)_xv;(EHOq4{NK3Hy_XD zCD@5&q-i)vw;BHn?c;!v$9g2XMy~Xo?wRz-Y7YDQ$8gRMuO;j@;|Fd1w@iW(PsaN>Kd%M6YHAS;)vu2_?KhobL~&EVY${R6lJ=5cdphOX2Fq#n*8cVJvo_~Gsx^t= zg=w?&xako}yIhk`a%gHS?yR0~1GdcA69#H`b`o$retJ^UmFb zF!8WR+|2!Q5x!n7VA-IwN?o&tvtO6rZWNb{}R~REKS5H|7uK^rKajQpb(q0h(&9|1OK{47I9JLH7tMoC~SVgPWjadk1By%mT z@1)9aMO-ykkiu1tRP+>Ahr`COTKUS(g4Oe+pc-k{y)LGbv6aE_6S~{4p6Wnc+*L0& zIeY!CdV9lTFk-XF(^_;k$)hj>ycijbuEnUqEzZlIbuvy=OwxN;q_bsgEX-?)+$t9> ze2f`ps7xRA%RRX*I~%rOXMw5~+i5!0o(&o1*V@#~cE)#|xXf?BrE{So3HAxdxc!(H zwrv*3OhNOxJ&9b=;Gn(IJywDq)B%ei!=Z2%+BH7?*2;b^U)h0IjnK+;Rd-Az5>U{E_TmDU;ri~# z{g_SkBhw5vw3$ys`f;G)xRV_zhkK1_GIb00b(%4$bpSjh-r=O~`&lz|;Utn|xR%49Vvg=|j#{Wt*QHF;X*Zt{StJm_qcwZYWFXS}3Woipeiy-W;g65@yq0Cp ze6vE1j43uhsKKU!rpMw!gfy#G;fgy;GS7?x!s#n1navp!1$%QiL`=GwSkyHQxXZ^z z1TF6~W!L?DAEs=q3M%|YjgXQfO*IXg$X6cX23_qTlbx(=IvXjV`}t_c z1zk$l=OhHP2LxG9uJ9*V4~)v15Sq6%8P4n@^cF;tRPEN>V0D4%G%%CXf_&|6P{a_>fcS`(u5&k)OmZZC)H zcu2Varb*QYS50>ailjoovNYs&q{RB=!I?^1Q$u5+OOUf9)w;mNqDiANhp75~Z?17Y zf&pxN0N=C_42#-GM2M)-wE1Jk=10~{dFd{UumEO$dt8TYW$7P{C^B8`2hlZHdPote zuGsSjVNNwvz%d_6|IZLpT6DQ9k+R<6?j)b`9C~fL!@L3CG+4?5CgzTp>T5@--(1wQ zj=QC7E`-ARxfHa3QbWv}EwRd<+iu3lDr>FKoVHk&`JfL$+gUTSN?&_KhQOL{9nHnk zN?M8b!6|qa`P7Fy`GGttc#yvgkntGzm*qoXV7wn}rx$TeM{qBfO;|>ON%CfzFt`I3 zloDH&P-ksgi*JKnsT{mOt?9{)k4&Fn*oPmEiFL1|cfgiF$?@+cUPty7h4o<)06m|d zfS!*Lpy#6v4h@VpLiZiV@NdwE2D5uz%QxboasnI`N}p!A$;w~Mr$znGizL)h;-x1+ zZ$pa%TZEO)!pJgpt%bd8B#j>I?)4w>&y;bqvAV8eJvS-BQg?~SP3Ajl;i~6rH zvc6jVsCZeJuJeQJa-ChJ-}&X)rs$ujh37qe@7xyTRri(p3Qou#&Hsh@-)57MZPq!_ z{|)G2`4{NXNGj??_XWJ^1WmTlF!*?>!$Ej2CJpTQ4DdimHuxyPa^>5c?IYY2>yffIGTi-{Rih!`R_PS_g|bxxMPVY=pP-z9P2;3 z3BvDR@$`Ri9uol0!%zDkoCg!AAtQYT5%8|l19;a-HIK#E#m6Vs6c|DC3ZwnN=n|sq_;YLz%dksYW5H8Q6KmG>Fs!;Rr!Aq=QOG`RXlb3FF(w)bNiS zGVDkz4sN$Z>ve$Jt6aj`K2TKcWu6L>fvCpRh? z=C!jGlNv=z22~*@nx_865wuWhNl4o({M~W6$P!YY09d~d3zCh(GXfo4(@=^?Qonjc zbR1Y=w^mcMhzsVb~++qPWS-1dYxgH@@oBJx=w82(Wy zNu4^=y80PVX_$#O`2!BL%X!iP6!kYkxxeQ$=*T$pEuK8BP$nG6_#N+7nFqm`S-s~| zGZJb%b)EONEEW3;Ks(*J7OK|hPX?pq)@uo_TOul7{Hq>4a82yB&d;n37dZV(_)=db zX+J!}W>obq!^WO>Fj1j}p`vXT<~QuzG>>2i1Rc~?Rz5B-cqdY`4!p`$vY;Y728^Mg zR5^u2;)M#{WGfx%sj>*)w{MP0=5T+O^1x>S-sypR@kbL7BZ6fG|5DsJQqbwJ-tcZ! zNHO??N`n#B^Pe8ER?eiHV6SN_+}-)n1=NRH_>Tds(Mg0)J8hWn>*TtE3n!F8 zCg^$biTd?XgO$MK>I1TxGLh_prh}6s#HvcoF~SORr#%QT)vq;LbEj<wg9SZ zT-~+S#r-!Pp(GJBEpyd!Q6GXgJXIIi4FYi0PM9LbnS3DF<6V*yK6P;&Ds?!omNol= zkKwW9Zp&a@@N>e*9>UNdL+{j@weT$@8@F$2%kPIWTaW&$9>41TKRge_NBh(NpXVw3 z%5p>uWR(4sm0q3;7Z8i5k?95anlciL#9F+pR6-T%I$hdJO1{7_ZILLErF(Z9F10UQ z>I1Gpzb4-z=#r69&IQT}f3Zxt`<2G|DLd0L=9Prb)=SGUG*Qe{uX@91aq}YfX96wj zDL5S~N9}ct;DV{lXK&%m*A(nhM^FN5FBXsy03j2gTVqn*nQfgz(hG$%SZ1f~x-Ydv zj==3k`5ySP_Ll|ISNFM0a}vV`*8-P}YckQepiuG6yzSBqE8@S-1_t-}QQX|X$)Ev6 zm8|s$hRiD`k@=0zdcq6x>~+J925W*K9{n#Bwo3j641JF1p7C-lkcV%?j7%@=Ec+OU z1}yMWzJDp~a%=`zS(#^`Dw7~m{~08cPfbw#if*`L8tnaNeOy82xz*Ns5Q(V&tvUx6GlTw6ud>mqeSl*ig&F8psIt_ndx2S$Y@F z9Umd5GONyeTG!)Mzhm9SO~ur4`61Zi{?ItdswJkJ$@IHU^8c|G7R}64ta2_ z^#FB$S3`hL27Obf!?8|SAm5JJ4$68Rg44^lcME9x6x`3J747|GaEST);M5m5MxaRd zrru!+8yQ^fUJvW+bg!)EX4tW7DqD}mknr-S?f3xT3 zwfKDZVQU!+N;w}k8PfRsmsHpG$EID#OPC-*%oc%l*f~X6IAmQ#>=-$9fN!0TCVJ6r zuUdUoZW8`F_BLr+)FqlWR4k$rF-PPNw}mW%%wuJ)xGY#?&_t#x_U-U#l%Giz20N*c zuh##A^cVn;9wUu!A7eTjXGaD-aIH=$s6YOL^kB=u2*H_vi~)W>t|39<;sF@3wP!g@ z9|p21BqHd3)gnosRw{4WsJdl!4h)fFu_Fwq63e(N!xl1syJM!Tgl@h2UJ)oeX@l>257-9@}?sFR3%dj|`NW>b!D7zyvSg5&EE7$5mL zH|X!_=gKYHdHjb&F8e`fX6bcc=drolK92TzU-GH3o^Z1AT)vsEBDEQR9@TUw7c8N7 z1zJp>cYq>0LM8_jJuC|te>U;Ar#mCzQ>}OXC6irFr>M?X_3rKi5g?;oK`yb z^b=*nSvDW_b%QP|KWt~00QzQzmnsvHY}FOb!buXh6m^_5T89wI+m_w04sLSTNP!bL z+Dw=Wm~~QQx6Oyh3!1G!IMv0OQU`00pRLI4;m*2?04`iP_ zD46_ktL5Q4NCt~`xT=AswG0+dmDycnfxx4>v+iVY?Oj6_lS-KX6wG=5ykRa~Es>*V zZZXF8(Hc2#&w84OO|-eV?@nH<$VHHs01!Pael_HzaP7K71{LXHw#pz8*%uwQLG|cS z@-yoeNi{Maj^j1h0(2qPRCbd9qUTlp&~3Y>CWc_E{b!B)3Ia)(HzQ+yCm~<<9ra?p z!~lu8qbfx)i_7k2!hyC0&ZrRaGy|-JRd$Ta>?KVgHi8?z1~kw~fIa*7z!@f&oL&_5 zWjQH{D~&E^@>-UY;3!|JDUA^PlEfLb%~Dge<0sMGTuvkSKZPfDW|qx5dZ};W7b9rn z6ACGV2KU73&cP-Az-ogAAUMTSmPaRZNog=A)k{JRQXhi`otui2>6$SaQk^k~q2DyP z1t>Snjssw!6}PX7l=0y=bjpgJ7wjR$uWFHTPver~jB$P6+08yaT(-_b zJ@xH~15{2e=}By{W_#4xEuwIKk#Q}>X(#2r%x_7_bj_MgzB;D7$2V6GU=q8^gkc35 z{p8SQljlt^a5t@K!Q3{~CHwO#%qmQKMEE^QA>V2mT6k)6f;rE*vv3Vnthqx>BAEvi zj_NHSi0Td)0YlN=JTF>5@zP6JBn)@QIROzPiF7yT=SS@~(*b|1sq&*{u=78Al3hC* zkvt+6ExCsM?1M9$7JVi-n?gq5F1>MTe|etc3VC@L%}eY+0MFBn$X>{$X7+D5VzJau)*i$s+$B5vb+yHxC)gg4!Fyu<+(!W z)YV>e&Q?!6pK7BL1^-e!pQ2oT+jAeC1@A5*&+M20uICf*cLj}cpg{JyX($F7qF49z@QF_7isJJLm{b2Hkg6OvAQl3+k&FLtH*){( zDRm8}|Fe*afh4@;>LLjhfe&Wr(@~%UVq>1>`(a!Pw7FVqnN~&m+vHb$^5i(ftS|HH zaUaaAjj=cyPr%m}S?~UI=)P6J)ys;L6D_QKk144fnx5KLKSyp>2{Omm<451ud7j7a zN)d$m<>&|RQf`)OVz3Wf6x-%a@=MmSxgrvz>76Vr?>9zS36^@^aOdbDXuOsIs<~)R z2rYOtfgcCI;pJ%g!%8Kj5imsh5lYvkld**_Lb3h^@7!;FHTky&KiHm^?Y)zI#R3h97z}S6^|qs1U{87pfm5aot=`b%TUIinjSd zhjgE#2U(?vHl)1lpCHY@u$7iWYM=HjD4Kuh5``5H7L8up-!O`*W4P;^UPIGp?M5 zNf$>4u()or$}Mniix%Z$klQEs^657tBG|mWbwnKE2mam|97VEAmp-Gg54BmG@~@s( zLw>VPTmb*`zyfaUOg|@sEy%&di5V6NF$A1c3z`D+(%G^~jV2|PlwTTcS>N6Xn!uUe zZ_Bb~)b*y)_Mwjs9`G88U>@y)N_v+vgazgc;>d=Bw+1}tW@MxNgOb_b#Xlk*sci@< z(?IW*jVBzZ6P1!Vz9m9)tBB33IX||adgWGlRUMq^Y`KJ-MLg7KT~H;5UiJ|xlq3s& zxgK8+vIUeXf88GR((uGQrYcz|Gx{T7ztddKVVg)VaIvW>*c>SHZe(>Z*gC667OOMJ z+8y_IzNo?1PqiY!uH+l|6uhTFB3JznT)s8*LZGESz(u+zQ@(npsWsUyb>Ni}*xbeW zPp>v{kD!isFw-z1s>Ck<{f}J(jk!f}!wZ19!s%lUmt?U9S>frhSBmLT z&^xIZ!9A-O4385~==*Jou1*75BXJn{l58s1Z_p9lNgg!VsBrAdDHbs@pjOsnDMbCj zJku81bYrIci4WhY&tS!{Quu#$3G80DwYh^22N~~37VUmdad8cl2C1M&IERSW2NiBk zK+^^gO|3B^#l@Oqkg`2Q;&df?=?Rd1`ip&B)gT{xW^(>L)d)qL$T9s^{Uc5+Ah`jY z3XK}sOT})9xGayK^(knUz)rw__!CFM)}6)_zxFR)6Nyzou~2?XHqHRl1pV3;>EnFZ z{CB!!K=ek8RYRGe(c|K=2Pe)y-tz(CtmVs*|=zhu%NQ-xox)iv2T+KE1gzF|pi3HdJo zH}?_N=Z~Z#+y!86X+e50JW=rKKA*2uFESXuDALtS$O;{a0Yzx3G{Z7i7Xe!|`oa~F zQH!Wo3e4;?f`6#&?Y+_hm(lNS1BW-QRrq7Zi(-y`30|9$0$~X10-5)VA!YyW7TEG+ zu7uux`_W$yrbVe}&xCW_e`}=#CmJEi)B37-j%ZaHn|@N!M<|; z7y5Gw3O|K=C*~@Db(LL3zX!2HGhyIX*%w3t-%qk9fF7GL9L&Z%1Dy9pfTL|N{g^Z2 z=$q?QpxHNg$tp+oba3uTV#pn4yxqg7?~kkWFC1>990K?lZ&PikE{z&8TA6uH**5}T zRBHm*f2xmuy9=zlT12#LT{%SB-3T$FbVO-?H=}IGH=duFSxQ8^o%Za5qKUqGrB1RM z7E6zUt@4sBIj`va%QVjAo6T^XbV`NSVX$OUTFTFzHarrQ9ph20 zxf#=^hi}2ohG`_0=XyLi-mSkDKMFzsOs~TQL-H=zIWXtIXCqbnDCS6@0M5X;Pn0rA zI;vQ?s8S-Q4UyD3d_mp~#^$Q3v7}6hw{?1vZShX9DDIzidFMIy5qUs5Nl1>`p+1tx zl^tu6`TR2NnvcfS)BDEPDUoMr$7crTcw7T#J1vgqiD8MD@7c;>Qs z*lcupgEw4Sm(y(BBFBLVR)WdTxx1rrG>+Ut{8x9=!EfJUTb1vI-1Me~Pg}&b=b3}s z>CtIYZafVSE93igi`kFSQF}1BY@7Q+bJ&%jT_{npgsdgMxJXu^U9`&yyPI>4wNwVG;qq7OC<5!0OOwm~-9<(YMeVXDK^>6mY(Xc2z zBR(EXTP?HO{!H){kst#VHQiU6P zqL&JjcR%AEqJc(H7}k#Ye*YFp#h2ubM&$Isk*&n;pi}YA!I!Blx|(#yO_J$0ESb_k z_bxXLK5+;uDiQ_m!VUMur#6DT)|kAYvO998XIOyUHi%8hg?rRSkrY8iRG*BVNDVu} zKum0yzA=){uys5itFj8^%~FYCPi+EcN;s43h;_B5uR3zR!l{%q(49dWXM-P+;aOK7 zjp%0{J`$B{$ze_@<93315^1mrS%J|r9qieG4@u#@j7^_L2iE2DYGm9tID>3xVZC z1W_Yq3vY(N&#^X`I3Me!OWoZgwXw9EcKgVrsG(_ZzXwd#XYU1zjSCrT&FDIcGX-&| z?}F!InGka&y;a@XBO}(CYv%%qR@>4zfR8s?#mOvzFdU!d?kI%;>9Q(=XyaRYiLJRw z9wwQ?r6Z6(vc0IC-eT5bWS5$?)33=mk~}!f(os3|m`KbfKR;-)_b5lF(&J7`0d3s) zFhE>qYg|fK`m#bJ+baF+zRZIaL@#y3f(`t%Hm`i)fq<)WRy@u0GXV2XOcw0mAQEa+ zB9Jr@Xmn9*Za!Z%xUqp`V&H zk(szjmL8Ti%1t=VAD^y@>MZDeVUe#Mrgn5BdYU?F&GPIO5_0-I*a zWG5=EWmkQtS&ZeQ;oB!#KaOadR?<@~@X zF>n~?w8Auq6wLO9I9I9=YlfY81ORa}Pc|louK+3hn^Eg<6 zGG5%-F5?ogjsrQf48_YPN&=A)VuYWK?!T^%QP{vfnU~QJacMAW66V(bLPz0l%6Jd; z-D3lDxw?4nS)~6}SG&9h^dTOarw^2*%>&jv=KAVzhR?J-@t)9W++w+N0&Y#nAGDul za^T?M=~U`I&IjcrB`G!>g35lZ76^axIiLBO+gm)wbkJEF^V8LE;0GD+VIezj%0Lqw zZ&V;^9dMndU%r6z;@g+i_Sb34l>x55;ND4Fy138DH(LRe?arf`_p=$rph8&mZigQ2 zCjILVL?6Gy!Ih%xFWCP!TAHwLEG+?}CGNkC7S{hS*fU%+0lQk{b2yT;0AdK)fYZ0N z5D5T#aD{Kq7q>yI^=7~G<|-eNJ8GOgKD0f)b^IT9rUqv#Tz%iTMn5jQ9 zXlvMG0cze2fJ4?Q24`!x+PEq z!XD_e3!i}zP&h(!2*ya7{FkjIL`_{eDF6-vrl@|HfqYJp?}>ds(}lcWf<*yFY+}Rg zJaMFOC{EikP7bu2HC|JPckZu!e!_^I+G9O|XKdS-29te9lzmk(K)tnNUBX&Te%0S6 zdaJ!(m6Vwy*cHs-3UWLLzi<}dAozk%`Wyo?LE9P0K{*T3y7XEqUAA=x{uBP9wku{p z_Zo*xeFwTDiu8<4h`fK9$st98^^*bCZ-TWh8bIxM+X6lC0PVO6q<^!;IzSJq*K_3< zfaY(nvE^)0Lz25OR6h&Cdr>pc1^y+s{~{0~yn7*?-(hO-X6lRR9DMSbt+0iEh1b)l z*!bQOlW(?{-klHrw>?@gg!)g+$3>)P=htf;bkof=7_*6S+j|$5aVffR#NLy6Ka`z5 zVm=4lUmDbFm|&~ zfP^3w1+CP{Zb5sNHx&FV0b5Av6vroZf3}b_Od;3RLRehQ-$_^agd*VWZm79{yPgFu zUa>%X_3lr&GIJbwxr8a3y6^ufAuwW`1iH}$NC=V!2c`|1>{XC3gvRicV^RO0Jpj4#zi1D8c;Z}60N!7;r<0Fk?e!nDhh+Lr z!D#X^Xf2=v6eoWjD!|7cpO=z#c2E7mXc=B)%Pf?bQ+EH9ixqXtU)v+){7N`Ou@1i$ zRi98di>+93p?7k*{D#KtL0nvJ19}WJ`ODMIp$pspm4V64_AlAvse6T?#}#1&mK#{= zv+Y^6!e}SBN(f{^9a+>tXi$3#hb1)U0`F{JW*%WARUQV9Uhogu!(Myb;W}Rt7OJj> zRy2qCV$*ZtGcjchQitm@4gB=YipaMV+dVOI8nCxuG+~whY6zMrOAwA<1Gc9DWRI?? z*K?%_7+=P2EFeBQ!1=tt_i=03*EvK>1>fj#nEpYcw(<}h4c0*~e+IIo5BzLiRF3Aq z6`D4UYF(^3{+{kB94lkmb=L^xvtQ^Jp^iHIGcFLIbjvaJDCi=x%pWjf2}%ecXPi{j zUHYqZ8(2CoQc~1FCjouvX&T`;Z7RC?GI{eZkem#O6(y5eO@`tEO(;1>=V0$f)msTs z`dz;|bqU1%V+Mq!T0))e_7g4cKN5m{n*Ha$4uZ~;XzsJdq7N<|IWRNR?7J={l;EdCayMadg zVXs;Oi_+Yi_;gp#do=DDFkW)$!@ZP#zLvmdY%*Vhx?1at*i5*_x=K07Db#+lN07q2 zHIeM!n*qn^Fm?iOnR(a;C<^}ImHLeRYa<}&R|NdiEF#_+vA!@DGgU;mbNP@~a_vq) zU()762N9pMdHYgp(X%_8h9j#Zq8Y4)(#>gK_G0jFN?QHAV8wlUb4bI zQE4af^H3OhZ5O=5j46zCSmfMTCE`{s@9OQzx_~T@ z2G9{WY4MM>H^vLc;AErK_+`dI4(cwzCPk-(<}PmLRf#2o!`gXS)L`72wxa(k;yBHk zi6?Y}IFwFAjRC@e$PS%^GyX)ycjXbnTL0mB^*yp@LPb+edg<`4TLofreNU`uEwe$~X{$B{u7MuJdk!n{43>SoK*tjm`QnQBAt`dE9%=ZZ zy6^S33~~&Npm)! z^}ajdgrL*F%^<}J1*p}i;!~_nU4G#>R?Ml#q4#l7f$tPx`BfT+$wgc?#VOW;lU&@? z&&YT%;Ne#yR>8s%L0S1`C|7nFTutR*){uRHRZqMBB)X$=LcY!x%!SQBnZwp}9Pq1S zgd9{^!OMg6hc$;KcA->;p$v6gun4D76oGYz5o42g4ksFuRoPplJqty{WYQZSk5PYb z0rWu!rI@2cs)~rn|I7Gj{p#Mz?angaP=zlht9^A{fS*~@8O(JaoqFG! zIfcuTzafsHL%?;(2##keO+n~0?N5|NZ(fDSv01Rc$+x44KWkbt^0PT&B(d88y+i)z z`m8bxk^4zAj0w36W_Ku3eDvJKs!S)kp2xWy3lK-uRK{jTEIt_&A_H6|Nw$7?c_YH< z+;cINHZjA%5Z`0*>6SF($ycp~q`N4ayef0YMU{gL7^CQFaZyc(xRTcrHAkdV&A^EB z(2N{#+&UYpCz&_48X4r>@F2W(q3A6Y-53!}L=h%_#*Q8}(KBIe-N^YH*5h0cU!h&O z8S$sQiTX*?QJB>qxm7+Dms##$m(O;_0-G$vX6$*)FlX^MH4kMZF__gdQfMu=e+Mhu zHPhJLPm^v9T^A}%U(n1jiD#DBVS973Coq-{n^~KfJL@-w!ii?gXHcR`OPH1- zu9z54*1@77p9fh_-5N4Zj1(=t-e5JlbbH{%8i;MSHw} zzL$4bHciKb4EIC$6F6!Yh$*GdLm64A`(S;ZyKVLW*{{M5xYwi-m#DO=&A-|cG4Cip z`+VW^UCC0vQv*L^TgSv7W#$6^q`JpYE>wcW{K01yIw>7z=eqW&w(0prmekub)DLsNR_UP|G%wKqn_r(HvxgKM~1JlP4;jrdzbj; z`!V-w9w1ShKuNgKyOv)`*EkO8!R#-_!TiV@tyb!y1S9_nrxo#VR1^DaxHaP~q&{HG z(5^*TjOfCmkoA)o@#r8_Z=(UiX($;e(Q`Va4`3oHV%eS$Ltm^&QY1Ay|4c%VKAweRYX9*~=iZ1c-eLVsjjk+mn(M6!YyncEo6B$K=YZ7c4j?rOI8Xy| zhi)eEE!>u#o})NSsAjH!`NWKx7n*IfMX3nkV_3CcJrU>el~ppcaWB z;D+?(kS;!Jel=SFpC@7%dzMJp-$_uO7RLL^Wttj`@l)~?_i~>Y%1HK^NaDtQDL-tr z9()d!8^&|LR7Ib=(FJ}u{mo2WK`eg7T0*lLzJSFMPJV%xdWi}BH;I4wpGU|F8};Ul zs8Mbyc4}QiPdBC2#+D^eb5UdW0ujK08dhIw{sWP~<@X?D9hhlH@Pc!&|0#{mib;of z>ug4$MHH71Rhy2W|7%FYA*v-E^65HLYzeX_2rKw7Bv?v60sepZdgt#x*gk7JMq}Hy zZQHhO+i2`Yjcpr^nxtv$G`4N$`KH%(&&<2l%=_E9&i`Pq&)&yD1J7#c)(_OH85@a5 z5&B$1SLJd%gx&QBk4fEX_iFWd6JDv7L@rNRH|?4N#BY}$1N+Rw^4q;ouB@8g1Rv%!mF}o%3^9f z`w5c!9b`0tbnaAUyILo|tADi%RK?IzXtM{VqfaIeQfPKwaZBEbbpYD7+dQRgAeq$X z+fakuC{Q;5CSWGU|HUpS_qlP^t4d7ev0dqIY$|=24K>#a;@L0nX$mcI_Si^Cq{upx zY5dtSdk5PYAR2v`S^kQV0^MZlOjF385ax6~F!Ay>?(ZIrp{R#BZe#VDT;K3TK~jow zflO&W5Sexht2#*dOX8o)7OBv0s?Y$>D4nFEj17kSX(7kzElm7;0)g)&bi~2DQdZy( zv}d+C&#K`m7Dh;Ib}2!&JNCWbvdse4LBb4*jDi{c$AI@VchE9Aw^Q4l2|(ZktLsKDE|o6R8EcKp31x80d3wpFHhl_`clT zOie-=VvlG4!*A_q(e|&dM@h^Ab$JZeq{eh#0pD*Eb^>_i@zcz1t>kjYcCKUR5(695Kl!!ib znC&ZY+6<^jZUTsRFk}@M1t0nTWN6?NBz(=SE#R2|T5Lnm;ilCwIu~{W;r$J0p&31$ z!G%<`fVPVJ+8la(x#T9Q;ZtmY7DiHUYKcafU^#CNQ6amc#^^cS(ONV{VDYV$i}V4H zj@H6TjqEVbN@z;75wvP>4_0Ol{EA^wTB{aQw*I6c)W6XK^g0w$&KfGk=fp6j$vT+0 zOYo>w8>V;!bc8k$$qLki_a@L~%~(V3Jzpuv2DFO(b8DmmPXyIPMs?wZp0+Pht$`h+ zObA#GqXLfwD+m7s=*&1&2&j?O_&KvS@xMxFf&-r=wEQJ<+9sN^p6;aU-!s)+wl)C4 zDOKJ3Z8PS68DxsVN(^EU4nWuQ-69j9>zQ$01e5<>@T5RD=jQ0NQIf8JdaRFc7}pYY z4?1uSJCHOkz{1h4Kill|S8ob>T?siR)#+SgLH(Q)xZgl6{;L+2F#LyjJQITf&a?=S z@CUbR@++`+s87&)trtVeNMGfivO|05tXGr1S| z*|J@6(N`mp^ywmi=BEJowdL-;BagOA7d1YwJqLN3DFyCr@oWXA!u?yY-d*99q$%8F$5`!`*1tcci_GgC!2$*UktNOAB34U*PE7>1zrk zMhgx>Ffe9ylvcrV_m$(I$J@E{+H_QwK~@O*#`Z&Gk0My~`lE|XCj0CSy-pBaz}V`J zP&zUh1TL9EDic@o!BETS6J6Omz0hvdYRM%WR5mCwP9e?b9)a5>F>$eSmTj5N4qs1m&%RZr5PF?-hgf}bgLQf@BRqG~< zmWgkK61S~y(x%dcB>dpe`LdIV6nusn1P1hRI!Xw-}6x=TxYp(=L5N*%i7j@+!J(3UL-IW!cM z_vc6OAxF|q(%zE-$Sfy>)iasl7s;=HmCZ82F zziqJK5~uT8Xc}{3l2M+G85W38ibBRl(`^Fpf+eNSL*KlMVK;LK`XbQ8w-e#hG>k_%LkvO61&!A`+m@6oUyI|hZ zzkV3EwZEhK4qdGoa7>p`k_;8p)!fW<2C`q!3U*>8Tz(G=O5NQ{k5^M{5y!d<&SQct z`@ss)Kqw_kg72O(==4M9etaga719Ea_bm0LKtz01bNg9FgJblHl}n~b)*QemZ%Lt@ z@R^+zK9jh%oig1U+xs4NVQ)KpHnHtrXjRs$!--;EB0L|`JwYX1r&Zf=U(S%LX*X}H zxfRT3)SH|ua7823oi$)oTBxvhE=0|X*?jY+ycIFT{T-)xA>-HZ79oZ_Ka=IIZYrC3 zrSN^yn{EcY7>59*guJz?IJCS3#i{a~BvRBMSLR-1ySH{7$-D;nbh^`HhF$g-v)bA& zbHsXcn-&D2xdwJa7PPL_DTV#ZDl@+W=JJV#d|U?Yq}+YOI_1-|4sdVVeb)Qwq5!5W z(?8Bw91M4(Vj7U8JE~}KbhD^L zCUKd?(fO+ewHRMij&H)v;C<2Q_%d2)1eObskk}#@a$5rfb7Xali~qWkG$f(yk^Y1)9xQJ*MmoWk;U~EpLu3@8Ow<6^YLlZ^QP|Ym4l|(HINZjN5 zr^s781QkTp<=1=Voh8%4oO|f#lamH7YC+^pI}%H^!OQwlf%(KyzdHaU419<2iek8R z)qY}6Bk_s{e!4v*l*Vw0Oqx5%4P<}GG!X8VK8BwR`f?iSQtWKIbRno$xIsexPcLm~ zL42OH!p#Xst+cE}h>fbsm(I241`^Oq%O&c$Nb=tx^Hbd3@R0iF{r1r=(?J2!7EXL+ z@ZEYo&EDyaXQ^37ztb}LWKA4A%E4)hZSrOf{F?T|Sbn8tHN#W+OMa)r!bP@);y2N5bndvEYT zT9@rg!I3P#k)h#GAq8GUa#Y%QbSU}$BH+AHSwtA6hsmp+!Qk2q0)nCqu=Z5dr2ZCZ z)Q(KV*X)1Z{kTc%v9QAtL*wO+SkbcNSH}zOXBQhR0rlm3-|jRAGqEgW zAit%uT&aOBgB3>~oPpI#>4(ZBjJs0B%NPv=Q+2P@FKo7}73y_ELwivFsgBf5$I`*aJNt+oOTtuY8M8Pu$?Y}tldu0c&325Ri+8Ha<>n~Nbdp)LLz$ox~1C^ zvL8BHE;zSOdairLP6WNsN!QOQwWy}Se0yUj$HD{TV&fk*dtSn#GbmuAIsZ6&XyvfW zY+&4SYka@$0ZkA?ongGy4T&NIQBENp_5y8b>LK#L|9q|)>!Wfa39Js0Q-yMZi)q7b zx$AW`RIOjdq^qx*FCbl$+3|@ygtDlwA@DYY*eOuAr=vOq^|&xpa}o}5SZF7g_ki1M z3krLHuL`st4B1E09K=)*7yyF{hQI78kbB@wmvg#5Ju(s^Ea|#-dX5q#1`x()}gpFxxjM52E+t z)&~Yk6Wia9sS-%nCIg9h%akcX^5Z+rkA;TZT(LvpJg+h~%Kb86Np z=66jiy@vVkCn@MXarpw^r}crM?^lg9Y#+Oik**{^{2l5iLD`8zM38kff2c)0uikN0 zVFRt?fT_2@7IID`07Vb~v+?mud_#Cz=-L`Z$fqw4${%? zgi71DE2?vE%6%_NjB_8B7EkumLD3?62T)M0l+;b!7pjD zzIb3p!JiW!sd&J|$2rZ{f_|luI}Ts%ym*i6r#D;gdkftgMVn&?rkLr?8|cc!PyJTL z%kG_zdVgapeHyVZ!hXp+T~!#}HCnEH zmwZR1=Mo{?DS4Z(D^uen0GMs2W@Zy!vMQv}QMBGiwQAOG;>VcP>nqCE0E@g5p?s?G zLonJ9Gl<-WdRHY{#F^shXq!SAiSJ)&&rsRv;kVqZU3E`u)IO3jT*9kY7A}S-dj1te zm?Aq6#Xb;idUc;ZQeJ*_q>RB(p}>=SZ%X@r-ZwGy0xya}X5PZbj78pFz2&gKRuJ5N2u;AAUXfDxX?p33M5`(?j%*x$Eo}!$C*8;8iCeoO^oQ#16{`)z&W;6=B`c6 z)1|HnzgG+>37q;Ekv569%nM}Qgb}pE`1q7pqxX5Y*hNJ0VI3|=Dt3ynIYj2m3bg}e zd5=PgPlVs4)Btp-DcL$Gu7{WHRZac!4ZIFyksP{xQ*Dp1U+?^Es;4b{0Slk|*I&oB zUDJ;VnJ4Cz`atyRv$Nzd^j)}TA^h0%H&#`D)}{^rB=~vNA0K)xq~`{k7yelqeAl%D zz8}d2w(2JXuoFa2h5+n@mxWMnjKBd;(6OsX{`rN5O^*6!v#8&ySIzaJaoV?3;g~jM zNG7q+ekugs;s$cVeN!|*vG2E@s^3)Hk<=*4M~>XtTRHgnM%M;rs__o>vF}a1PM#}% zl(bqb#A$x}E@h2~MH4ckodrNA6n2bR={rBN8tzabs}FRmt+ZdSw+zcUs`8o{6)CWW z>MkB~rs+@osa{`Y*8EXBq;s(A)_{K@wxcrY2$1&hxhbrGB$&0HGtd0lQJ2Gv7s}Kv zr83!HY_#RccPVM-;M8woT}8cyq*f<&m!i=&k%t_WdMNitG#rIkCJTNQQ~8rt-6u$rU$BTIG{cN`>}vF7)PFb zCxq?swq-U}GXcS;&}xyxvT)#uMk95xIzL04Q=STdSe$V`J98!fQ1l#|zH zK|gY$PNcFkT)EU1j&+)fkH5IGu}Ytr(N2CM)|Ik$vM(^Qp?-ap(ng11ezk2~liiC4 zbFm>)3&`H1aGB}5qnpoMCZsSQ^s09c4_{1}K7sbEmxs^c#XXia<1xV6BbYEXTu;+S z)}3TEd(sg5=G!<6KP9LP+@=&$I^cVuX*w!1zO87)cMy+*hlM{=fYS(n4 zbrslWN`-Zq3q=95zQdk-&V8Au<&^9+unr7&h+hUL*wmXxEV&pla~p9di+wa~Um_n7 zgzxt7+`Ma{M4mHa&b*q>WMv_0`C@@bbJS7}-vi>0EhG9DK}cG1J|#1`Ok*@EF80+d zb)}6PbnR4JgghtPd9a6cANAHDzLdgC}@ zxndJI8#XN_`8gHnQUxy9SHN!5J-PCV%&N@S&YATLDMTwnyp-qq1aGcq`IESp6RCjA z;AGRJ_65jLhO(z<$r{BuCQmvC8juP?te=z_SHQl0qlS)JFlcZ-9Gs!m!AU{ORKDTl z#^nP%J%qhh_HY?nI34_~i*K7`Vjl|cCo+;|~`c7+vwT_rm6?%j(*kZgevxSN) zZ`sC$C(AW%UBe>VuV&DjN?Rx=O&5x_X`xU*<_^|mrF`dQg8G{W2s{m0M}=;z&nyW- zS0lp?xY(UOi^MsnW0f?{yTg)3DYx0%rn)kX#*9L_0OKNTZ#o(^&59N>JJytgO495% z45(y*OmzAbiWstym;~<0wJT>0+A@Wcpz`RZAXF_r_z36abSImFLpqnkeGdJ1aA?H# zmR}v&_2f08PBiY48}b@i6P91C?HmHLzeQB9j_CK5guXNX#CaR}9=NvWTDKFwH#1OF z7}2*YoaB%bD*3=2(>-2XamE9l2j3COO1Ao|wk?Ihw4wDC`9v*Inw&9^oE<<-7<4Pf zeSOqKtUz12<8{WePxehR?G(${EhQ}_(xRI118(PfseY_PAI>*u1t@!t{*HZS-a3k3 z++-g30b`$|_fGqxa~#?sqr>foX=$&J1cQL~Zop}Z8n|m6`&-`N8)mzp&kr_|=0$;? zfZ?yP1-1WsZLa19eZl}xn{)r)YIFZ2t50{2G`3%E#1ld|hp~Rw{3+$SjvuHH(t{oV z@x?=#0QGCTHdofM{J7%0ye22T^wZpvypeh^dOO(zNL0n0`FtXaY*xe65k$TLeV>rY&DniP69MXLk$qUM1fA~n>=($&1 zh;+4 zz@GnbgcLPlqi5hZkw6&_!(E(i2B5>ab8{rzN|Hp^_TX5FOaC8xxXl$R`pD+}ijHp(LS3T5K?AUbhX*jjKBe ziZ^6Ond-K5OdV#+yr74mD$6RTmXO|wS-A^C>^Ye!iD#7C+Z2lhA-#>7wbb~Jqh)wj zv~l(f^w^y`85TSaM#J+!h_XfAJOa7GtetXjP6}tj^c;=*asY3RikHvFT9chnLw~QM zGof_E=Brg(F+%M)>I|jr#$LtV9>9Z2Lh>IEYG>PD4{Ak=mRvYVNh;d+5sh%m23TOa zmxe3#YDIk`d;UNv6fhBHf&SGL7DFJR$@!`FY|;_+=<-F^GKfBQr>yp4W9`&(iZ$yZ z4eKakRPO>`8-(gcNjQqj2Bmq}yvYJ=V~Zq!x<{4ZQ{4l%%QmM9H%n0tcEDA$9u4Ts z=~}P&PcsMm$2fc~Q`p^PzWJ8_vNP!K7Kx!qynDUO^(VFxxN}Igg^xFDHB)BwkUIufk@baHyCIk zs-T>NlQLX4T>Ecjx_D`+n!O0`0TQY+73XRw)>V-EdmvrcyC=iI{(|~ z0}V-9Tw5kVDr-8oAz1#}vu?bC1zRxHRB}j^L9z}}2U?Sl%r&?RG~rv1?a zUTHhN#E=WVb)Bh&mp<<#8`%oB(O~BDGz1QZk=c!k+$&=etUfJ-*gGB^`okW_v>Bsf^^V#s zKq|R7h5wED?=twmku+ewo zo~b%Am)M_HDB}#U#~#1IR>;d3z$)}}Hr1JK?okF=sgmrs0*V0KH|o~W0?5V4K9s1+ zQspFfG~Iahl-c~wF=@otYgZN;I(4X@?FwQ6M5X64MKkrn*%>iXOUrQY>?rnj^#Wl@S*L~mNeKUOiYhA*# z=+2+Eni=jqm)*i=I=)HPef=RH3ndq3FKa(B!Q~6!Qlp;KO9wp#>gE-n4&T%R2XvtSDlj?UhgIMB-3-n-`H zik}8E0AHmmX>u6Pgx-i6C%B1neFv1~{Ffg3Blf~mrv*@-X5v?ii*>P2%<8hK%ir0HX%oDtJ?Po44|_0gnD2Q29;$B){8 zK!5MIxO4?txw+P7nu_vp~74_KwzR?q1j<+~#fuHz4IiUxe3^;*#l&|K6C$Z&vy@fHH`bq3FO!A-EfgmsrWCppe@Wcr zBC5qKR(rqx;4W3WqYpT*Gjmh7D656j%E*#*mS8x_xXaRYo7E#=tX1WqC?$}z zysc7_EdKYStfwe51{LnCIsZ4a-(ZuGsnyf44r4|dzi{i?7Kt=G9oBU>`>bcy6d}LczUk5?Zc(~#QfS$z|!!9{FVi1mkOQfME&I_l*cg?Xc;T|}s+ zj0ae}i09;>+peVIm#2MO5aE#(ql64>itb4Ta^!VQslqsO%=VkujOtwpGsEaml-QS> zCI-?6Idm;@lc-#*G#knDkIC{H2-xHPgqBoo86nkS7O@4CoRS5ji1}jw>i2ZQoIOsZ zd0p>!UpSK2x_1UfxT=ph(ND8ou3Yo?2hyIQ0*+h{$K0;yQqlDxhGqB5I@9Uaa%b$I zuql=qawkM@DuqLsx#uNEUlyhNb?5DngKQwZw{EGp88qNLmEnxWo@^2#i{n0}!_cv& zi+As}#dr+ogXOjA0}P36eYmx@X33MwO_;&@TpA;%Y+;FZT^6kqMeX4&uW>~1q6^Kb z067zs)^syt*}-1V>Kt}AE>iDmYSyY-^i_Ab?M)f@y_aywmBfC0i%69!WC>9Mb_2P3 zNogkeyOpxpfM^%(B=2E*r^sRgP+F6-ADTU!BM?3m!vr-dI za#qdI%>C(H2iYi$DBfsRLdDmLE*)dMeE96LCUY57%3Fs!)l969g)s22)0(t(ZC zC^FTBk8j=dS<-?wBgS*MY=0~VCh?itB;k^%?s@iXrA51vbe<~MCcLkMzgW2DlCjh0 z9Sy1z@3GaVLY^1sfJoo#V=Io4V%xBIm0DF(r6D+5n6nm|r{I=kZa{;0iH7PC;lJQ< zX=kjIcQu9EgJQl6^};-#Ie3*gIzV>BBg$m2$`#fqSHlQuW_}Arwny7D&xuEY zFO#kQ$Zro9V#jib(DW0&kGY)%phwU zIN5lm)l0vM+nAqifjMN6{lt9orI4#<-zy9wAt;PKH;~Cs)=G2;9^q_bTygjtZpHS_ zlYPgjoA|4){NpDDyRPV3BYr9v|3b5)C-SbqjlSonPhf4vF@)yKyp15X^&;1CALm*v z#F6ke{6?BG=bG@vm&b@6jY(Li9W>Q#N;q<&0kN)hk0&~c%}AufXoux+*6=$KF-T92>8;W9&K|s z$X5tL$DnkWde^3%zr2!r^CNM92@psAR{}Oyf8@UL{}o5r|6TC_;t0C`-#CK8#ISCS zuGOvL2P)u+zr5JFM&Cjy0yQ56Af-=&dtXP>~}W2KxBOa2-7x~KqaD#@D6&`|frGa^>7YT=xM1CeN zV+RSp9wbi>5|%F#+W;pX7mAPWkdP@@!%}c!135#s1}1~p2>^E>NQBLaZP6te*?4;l zPuwl!hJrM>5g*Eb<^IgjHS3=kApa~a1m}{?w4Q(cl z0PH|OqvvK4?bZd{)~}APp_YIV&n;-pt-%px zQve-e5meC@Oy-Ntr$}^cx_y_T&K~%V``3;Eiuqm{k*T!7Ma(IXXvMxzq@gEk-d7H4 zm^=HjyVQ$BwrAoB{>q};Jl^hFgY5$!_-s!* zE^{nS4yef~HAmtw^&2lKfvy274LI(Y!aXckNv}y*JyR0l^{G^ye9dVGa#91BL;YDDq$CBL4=GFP7}QdAV|hnLFiVlF3R_EPS=cDtrjLE}q`^b9L5&C0!$T zjQN5@bOrFUjx;#ynO04ObvFr>N~)D9hp{QR?!t(jfTA41Hasyv&{MW-{yF2(QMV;G zAR-;VLRCFGS@3BN_X6#B1ELf|WR?1Wa?u$N#0QgG6odp&?`Eg4u(?+u`|3F5H`q-+ z6A3^js$qxLPRS~Ex1isWEn&?W@+s&6@{Df-e68qL@Md#q=~T! zug)lnBQ*^Ueys;!v#Cp0a6DnEC`42yEmKwfk}zmHG{99Cv%dr-=+!6xs+1*3eu-0d zxf+vaq6$*>hgJSK|AB}@>v&IzimC}j3HX_xbLac+pNlUaX4k$%lH;N7qNrLg29V4U z1%OC$uKSqRZ3*;mBxx!}1VobfDeL7oDs(_3K_H?TE9D02>HIRcyEtzdd#q+#I5_ot z{v|evMr3skK?WP3Q3_FP;^)|rsSsy`^e)UJU)t4=I0rwQPV(eaWCCjN0s>1{r)_O` zfjO^M=AykPCkCu{9ILQekslKY>m;ztnLk~kCC3N9(`(>8lHH6^F{Q8yPG9Yo#j9>C zf(8yI!SI{%BtS8>>wUsfDWD;S11i@6>mBV{T7===P6FQEryegi3sr>MV}&4MfJ;<# z)0SPn7tZ+8C5o{xWSUkL0)*`t5)L!34-LIp%_LNLNC;(EN0{$m6w-8WO%v~@*3eTj zB0Z#m69t{Qou5q&zzzJ_lPlsG_E4pR(9cZo8Gxw)B$8j_JgjT)!r>#`fJ9O%=bvvV zbB-N3OSHrQTg9mse1>?&00vjNNP$UZKJ8^aYx{i@>-=FX)B&-uTGTX9SpC(TlhhvTZ8-YKCsk>{VY%P z*&UUah_vQiFTv-*fUtq$r;b9if%|4^0<>MFpv3FJehESJS`D$Qoe^oTMbWL~%W(}O zj{1JWGni5Avd1IsY;ZB;NA=m%X#7hC6I_-kPHpP%aI`&pkITsb)cy-z{}~sXCL9M$ zbtKz(F4;@8bx@IVAAOAEBPHs?=3P??Z+YoQ>-O(KG(*lpzYn~f@PEyWnbVg$XE4j; zgZwmk?rlTLChMX=-sz%=yKd*rfgQ-l5Qi10kJ&1xRrlYmsTyc*)&lPw3_?@3VONfY zCV3ck?t{sX0Imng@;QMLoyfU`@LRmO<7#I$A1Rl>*bYSSIqKkb?QGg-&J-Rb!)&$l zFWn>?tC+2nQ;1n#|1PVL@nh%F9lULMjNyg1ZN}IXa=^5Ue!t%Mj-rr_=6TzCRwX)1 zPah<1Z^`78!EBwh^}YXeqU_fB*TP5~pV|4yzJ;b1aNJIJxdOvuaWe{5ZpbkP6Kz`9 z!w@p1E!$5h)2jO57&fu9m;0sJaA$V7A${;NxPya6-nLy0A@`ZobUbt!8-{YPt(*n> zlTaBg&X~cFlhI>%fs`V&MCRth-$F%ptg>5F2#t&q?vbMnsg69vJ6`>^LoL(X9R+q; zDigd2U47D{Eu28A1}9t^<$1LF+Su4q2z!s4x?TG8)B3F4mzh4i7@h4tT&jVjUXF{2 z(m4pu(w?FP5q7w<=>9yD2rONMoH~V;eTs$}lDT!BQ)G*ef<|ecbvbvfXDFbaqpCGX zgsaQHd4lpF{AIROh4-}AXa`}(64;!5^Heew_;4yv-x{`sR)5RrHl zn<-1(JI)TTHCP9!1nu4CYYJ&MrYuX}Zo139cI$ke`Q63dJ-@2HjiwO^X>XP;P2Lz{ z<9f{mB3_~t-9n5vpc*LKrMJp%f&JE#$Si0{nna{|RLeCnyf>ZU^ZvVdJl{Y0WV7epqz@LUPF-~qx0&VwI9QPnm1g7*dXg@l~v!XfU zNxv?9`>Au`KIGIA-+KCZNQ%!wq^2fd^tIh}znU#!?9$W4HvT7_bkV%CvCOtK@Y|h{ zs;$aKi-os)hQ5bZNlMHzj_#gQ;%*|9eJdtbGsLpe7tDN`$?a*W&CsJ_h$4xz5I;WM z!Fwl>RB3Fw6z9feoLf~xZBhEbMS#y@b?i-SS%1U1Ay31E34|U+o7t^!J8rk?ImF&EPw3JQ%W}G_M$2~lJjeO*t4OQOtt~# zJ9Qho9q=rX4h*+8V-6z=tM9Nv`V)O$Re2)V*P12==+rj7R^hOFH>yqDNDqYiLS1!P zdavV>RLAJ}H#pd?KSj44pw?gMw2==EYg0BZIJf8>;~-I;psVA8!ib1dTvb4jPN222AG^hn;}pEu%L z$V3Xf2}(1^uMD)jEjh;^Pi*5I8k71DQ{?M&C_%~eJ0t@ z!V5O)hCs7$@bPzd(tef;HcWFMDmQ|Ldgd?=x@HU`0Q-J6bLMP?+kth1JX23D!=4?anTN2nz|F zNHi0n3}zg<5KX{PozVp2lMx-b(Ul%S+natNN51_CBL37-*!1owlB z^qDRR&_3IzQ@(MLbO1PcPX4Ep2eN;$K;^%kJhX`9BO8XS9Grf^Bu&S0n=JbZBv7FU zvZE$rIA1)gD3qo;Y69A7hpSpE?iLsQ!uI@Zb(*pzHMwq$J#{`a$-FZ-W~2jn-5fTO z7XHjXHG-;U=Ijf#tiR4sLpfL{13>Rg z|H5nMrv(0M*H!6Xwlw5lwlruj&H`leAY7r>CtG?p)@c<1zY<5@3@zr9E&Xf=`29Q2SFj#!vv8eH4@@(~u-KTwMoY7drli3K>4G`+h>jydXG zqi8OI-d!gQ_Y95AObeq@`4!F!fDz8PA~=P{Nx*q|RyP6p6HD~fHdyVE;jMIpo5;S= zP?rgdn&<$WJbt_XI76xLlA@fEeyVOgi_D=@FOLnHWRq%1CuB@y7iqSndLqV4#t^m~ zeepy8R!c_9`%{5tUQskHNUI9bHM`fusSHaJm-Vn+vpk~K#wXD*u?Z~L+FUhgFbxM$ zZX0-;TX?m#5?_r6s1XY2WstXsX(U7))pE)@1gJn$4|xS%@b7YGTO7Rso>__NCmUmd z`O*x?0I<@yt4W)1!@_8)uS4uPT@{JyV2A&q77JopH+6H7`lK@gyfWG-jBYZC6>0r{ zDS2uEN**oq_MzD?3BCSPExfh3v%CnVDyn=w+M399|FEU&U)_3{*JeK1(qwSsRX2cDtUtWIVu23 z9xc^@s|@oDZ@T{|c@`PVGtFgZ=>J>Ev# z6NsD=iYgN#j3MAtQ)AVyzfo*}7!(oHo3K_4hDXOxiPh|@vD{K$zN_NCvEn|PKa8`{0uO6addnUZ2 zhNH&nVrB(3SQNB&huD&tO=vqQu+v*~jk7*zBsCuI-;xg>7$SaLDN=(|mJgqUV?~#E zCcPH=F4zE3;Td-qaOFcxw-$bU)qoS97p?W)Yl9Hf8Gy>FT1MJT*V$}X_fUe4t4?ZR z6oiAe?2tSoOWwTI{OXAT3I_apCjH3f$Iw6JvZRMJaP5)La#_?)UAA;tPtU*G9V>6x zE->wYXYEkuInaq(I&s*oSRkP#WXyY*Nh0n2%qc6Srpw~UPI;}>R!V@cv@;DdrLel| zuGbMnq#pOf;&^D$rbGSD?G!(gXRrUAqVr5e)=5TG4@E+IRTR>7Ht^V#&u!W6UN;h+ zAk^#0l-xDsF48&pQ_p_4V*d*YzJ0MTjK)>1MSd;HAvSVHhm=Mu`Ca>cMYSTjJz_RrsrW#_mS71cPryK zfR`s^&-e#=NMIh`t7Y_4StJ#(2BhqE!59 z%6Zc0pgRbC=oBn66U%in_qja$D_2IY#H%nh@JRZ~mHp3R#amSCgb`_h&-;x2(oKH^ z#@CiVJm`P#Gu@r63!{cSE6~cu3eTBbyTjRioEXK5M1jg6^4)4+#0Qc0b8#n6Ln->{ zD4w=1?FCUrJX&ZxTKlePiwCy4fxs?^tu76M;BSY{o8jg!BRFw!<@I(^ve0e13X=+2 zj$0{*h_{=D-xPM**Rbw2g12c#-E>A-jGW*zg;kb@-;HUtZ-;WVu0!P}I$gnA`J1O!$R#xC31+tZJ;7PNeST^=BI%ZwO z8Rj`SZEmDL5G!mf>wHo9k==2i2Q4|vxo78x_t+r2^EW`-4W7f#VkBd&k(Rs%a}5!Ak>9(#A{&HceRP&YDHka&d>V$gK?+O zz<)hxJf7e#oHbsDn=coPvOb2eJ@5QJCzWC~=f-IQ-yOzcT*AY6HQUX28b3S!T(DHy z;=SF3Mx$-`Tg~6|nng!5@@5q4cI6CD^;<}m52dxmi`iIVniRB9~=Bit|A}_#($Zf=dujbag}aFxDd&e74S$ zrmjB*i%rx?6p3Xv(Wj4ca-e+m@Kjam=K8Q|q9Jx7eOlY7k8ue%YNX>&d^K`HRBl=9 zkU?1j#FMM+_qQNrS2?>MgvqU5?(r6}LLJM= zUu{{&6rptAQfFDLGmI1SSKk^|ts`T?lyrN2zKg*Oh8#+a0I_I}7&9}|W4 z@=mg!dz0dfze!s^&YD4|cmA$1S@Jq)LgeFw-92|!LL4vj@kO&W8zCc8OX^4pC8^q# zB$3O27l&Ila>7j*R&(qPCmQ1@7eh9ihQK@jfNbtSJ&En5h(iEy7}>{p7ifx=W%FZXr8pj zZIr!6-bpURMp^Yq`_ca({@S4X753?b{s^GrQILKGIC%^_qypB+-Y!T?+Ti2rl4!|@*}&o+1J z-%Ab{9utFCW0w(5TlV}GIDmS<)8*GQ1?f%ah&`z2sZb3G@?yJ&;?3zrB^&%#cbEhkrB{2S(zGvse~IB0~p6r$`+q z2sie}{=^>C z24d%aVh@Ck0SvZq$JK*`!$rwgz%u3E$xi8JbBIJeUcWqrGzebrq^Sa!xAWMx1QhN` zFAMJms6~X7GY94xOnmMp)IKV%d9GQ28h1AlIiGZ$2iK^DhCqQ-z zKMSzcYSWFbli4iYWaoH_0C;(vP0fSwK&se?>;1}xDP{E-en@=XY_zPK?GD-nU=I*p zSK5e6_}k|F0h^uQ|890VduurXn;l}nW(UkE_j9wOcQYgf1la6s{oU-8|K04oeF9a&CYLXs9_&<+Pi-@JIXMc=L-LNdEi|&6fWZ85YKW=qPhpN zLom3b9(r1kI;2ttCoR`&^X~xIgP`N2+};lRvb68KZ*1oKHTVOPSm|f){4vODmqZed zKK~!=fu8Zd*aHns#leIH%VF<=hkvmLf67g$$Hah?o=y;ySL!Sq%@y2|Y!$nHGuv$aSw7h@cl=@B#*K4~}I_)O?&tp3}zz#T) zOBS?!au2rECJrN0a9ejM?-bup*8Zp^LGAZwZmi6kavE=Qmc#vMfZedIBUL?N3M7b{N6A&o!s<3FRP-G`mkx&?ZE z>LGY$5AU;`yn327C10|ZHDZ#3@QmaWEc!=AdhEtzeOO*8GCqAUYh3%YR9Hf^iaXn20+0yBP>ZgVkzW&m;=jawMR{U5zXMGp{K>&KG3vm3tSx2|ejz5{ zB!IoC5)5+UAi@zZ30iLVc@7I|LX(JDbyqSHMh;UIU~i|TUo4}=z> z14$q@>eO}KGE?&ORXO|=wK-~d-LsIa!3kkeGe*JcUVm2)tuIqN1DG^bYS?hXmt%(w zNiVY_^_Es6JLD&?AY*Yw4V#1{WC*)Q!X|x)#dv&HpB`!Jl{=c0 z)t%W7^ZdPLiSXyM~nO@n8^&J zK?|uGjcNIRh3RtG_Mq&xsk97SoF>^Qil7!sL`C_oc; z;qf(BWx+cn*-lyYsb|lblp6na6dO~UwDU-+tBD)P3``}h~Mdz;R4#P>XjY zi#v%{!|I(mqu|)TqtVMUxmR3HICv7?19kVFd{tJAygLxp;Ci|0k;2|E=jApgb~CTV zs^*x|4D6+@wOZlg*bm$-54d(&`Wt(qygM$`l~|aZTE9)!L7mXu5gXiOC6{vT zSC$^eV63uYxUos`Xpf&KRBqoCB9`4ZEPpCWF|*HRl<|w1g%<;2k1$qMFdiw{8N+KF@L^eS+j+i=Q&XQ!Fj7r9Dtl&b-sp(-G|n>>6w~7vN8OM$w_M(`@wc9$NIN9QF^BO$D^mWAuor#N#bI0;`V$AHrhi~LY za7PvIgFZiw{%rWH8Z`z63Nwg}e2`2U{;87>-Exq?>V4oe99Dd5^X%yNi)RYO#UWvx z4$kI%-J)wUe`sH`Vs4ZA6TwT&pxAKagz=2`gIJwlJR$D^fazyFgi%?D!GMmY@n{%} zRF4iOvQt=WkUtj)iFD`W=h(3Lc}aRh~+Vp+*T zDosW}PT?D0*AB(e6z9pvjsu8DS+x>rDZFJCXwyMNBX={g3^AyRFpT5}lZ=q4=Gd-$!4Z|jOmrT5I6txMaO;wkRPdI=ZA_g2Vq8@MS zgB^e2jOCdwrLrc4CEvsq$|CSDvSVHYKz2@4kZCE1{3uu=e)cmDCrjsU## zsnO*02nK6Uh4SfLulkoLaj9!vmv8EyJ`XFP&-0Ge`i1O#^?BYt@CgybJ3s!b=~~XY zx5))?BbWH!kez=gD*&>S-<JE@qVzu8-bOH~)hQn{@{#cHKhpJoa@*y+e z(#c$LuB)}_Z->K%){N=A7r){ARC&@Rugk;g-f9^2$}dBwWy*mDIczAUc~4etK%vys zwn!<=b`nxv0Wcdz!;Ijo%mZeg~ zBmWtuUu-blEkWtWoIE^?)ICDzD+*Hl2|mgvYXM^7PcQf|@0j^F9L0AY#Zy3>r+37c zaEqxPWZt3=5Ia?l!W#wbqi{Njw&bP!5V&KtktqH)_n8xMcngrQoceDqO=OFjEAq0? zSJ`YRZ2e@73YfJ17&GF<=un#M@+M%WyL24O+h0voAp<}=hoadvI-EKIq9 zSUd$o_`qA=iH33VCcl9#(&uI+aDT8GELLKW6y8Nm4nyk~923Mt{SgBfaSL(->Qczr zLZsFNw;1ZI)Q>Lt@JCQ4w%q*zSVxhfMMilfn5H{*NovmMCT=YroC{RoJDD@9RjH&M zq!g-O@}!ZCEh;kh@CbIST-1`kd?(3vcDRlO9LWhqG6>%05gpM4z3#{}$Nngu16?i_ zuheq?ZTP#M#eaXe7%Za7l_+Ttf4(BbgHEk;)Bz|N`Pai7hw--_sdB1mlrq>rFnd;u zvsR>)w%XcB>QK5p{5_Jq{wOSkZ)fKI+r7nx0UQdkl`4uTgny3ne_8*Mt?34|PN9ty zX`7P9aWuQ_<4T%E6Kq+{5%67|$H4u=9uSPbJP3f;=?I=&TQ>_fxX#$Ec=mxilU~kT zT~Sa0aN7;VQeO}V<@yggR3yTUG?8+JW%pqf>R}qpw?R<^F5*bwjn802`&VS)SG{6R zRZi?E^<@_;a^EZIx*q1?+Nr2V%di{#g9FqQyuK^CPttMtRDTdC_sW2&bGR`F>)o66B$B zga{ZLnh@+;E5C!5?jtdCsAz_YUG4_yIMRR0Jn2j;FXCq(ZZJJ6DX#<~*udIh8L znbmPf3j+ok{5a(b;i~b1zm~0yS2)N-X?}Y}Qd9O96gb0h-CSeRza;xD*x|iVK@~Tx z7@$#t!oHwuyH$u%eGdiGWQ$60IPxBrNpbMjmW1i(*7oZ{oPCPr@yxp;G@W7(o~Pdv zACI#d2@UJegxlJI5GM=3N%eM)p zc8~CMz=`ZVY@_tM=J--`jPVa$EGdDFP3#Pg{R0@~*%{G*Ug)BWpRBw^n!nhDZP5~~ z($`^UI&%0lQL12}@%29;<@r4$;l<(Fw>N0WJW4KScUyE1OeMO6w}xy4cplJdJMNI} zPt)v4qQN0%DNg%2q~fJQn@(al@sy^s!K1SHP@PT$XW$jG2DZZU{7i6I-f`X4Xp!9g zgn@Aa83K-24nGfmXDV<`)AE7KO4U070+%YBf=K;tj-tE3t7tVbwFnT!MBp-h`$%0i{t(?k;;W~{tdf$9iShi9Msaeb zX}d`4$_WKhL;Fm7H2xI>*}l%cgs`F3MHn;*3(fR_vA6M#8F~huuq=h0f?t60kZXkb z)cvWc;#or$UQ6_&SDb%J{GxUey__0S1%n5<1AV>o&tWP-Irp8dZLqG-^2CJ27R8HO zNBlw|3+lkf=UYCKkL{coX_MGm&8qomz%J_ps)vm0wjEJcqTzQQI2c{*=9M_TYEX}k z)yeJOmW=`RnYaTbe7NJ8gPgyo<_0B+0Mda=T%w)2f^&&+z_v%BGbM_$&+aHlA)lva zV*6UL{2i+N{Jo*DGVt7C6HU>RcXnLDXc2cRyb(zfEfH#~SBV6xg=_Kj(eDr!*2QEp z!6=!rz=sQ93o~I1Z%4ps9Us8tsN_1Ykk*?f;OhAC)_-=@kR z%P1ntBt0lu6Kc}Nj!i8ylDufCMtgH`f>)nbaX|c_R@XRS^Y({)vgNLQD$#h2+jQ%w z{%}4BD0(;3M0)D3rSUh84{WMlUa=QNyK7Rn!YT29zFCyXSvj@M=E6`GZ-&X7{uwgA zcQZ$(>ARy3x~Yw3LhZYQ$t8rQu3tWgrI<%-P@noLsBfY5@q17Msmmb!fCkcWsqBdL zWWLpCCh$Q!4f%THvRfR>e2vi}0>6Wm=W4C2cU9M79Xveo(p=kxv%H;)XZ3gIB*Mv^ z4$p_yXTQh1G{sYl0Fea+~}>j3Kf z%2+-{dp%?HRz`L;r<`%m^p_gowMKG1(qX^ZF)jb?7atiLi^#>&Fb&DnM9#UD>nyn* zMOVmqYG{sKZh30j(h$)k*U!mGFgr3Sndw!u&UMsZm2}&0-I*cVPd`i+B4n#---8bC z&dF61oCNg1S5&Q;+O?@#iEYcJJ~Mvoo|}`{N_I2MTE?BnoG@fj-`)w^pT93idw5)2 z?DSnr;UlK>dnktz@F4@8lA_jnjh3gzY!m4NKl&V zfNl6&x1_=D_X@7ph1P!nhKOKu|jd?E`|DR#J?a9!fo zb&+$Scd&KkCC$_%5ne63LfLdmM{cx~gD{}r-M_`o{>-M|u;vc^N~BOta_btaDtbi- z&P*TX>mOgjC%4uqU`I?eNK*op$( zddH3pTaOU&olU6d|7P{Ov^7S|(iMLaK_Gvl1+!x{J^mr<*3$#s6lUv zI5Y3o5Hu^hjsbfRoC^FP3hE#Wkt%-;B?Mt`avm>l*Picv>0cI#h5&y9s8tp$X3AA<(aL#wcEd%oHc&>jkwiW|831H%P8KiItDxshs zoWrTKO9Ac2W=PuOmzRu?QF5GPBo4Ik4JMR2}n&d*&x| zsw3iWF?F2d%*0uA#s>vylD3BdMJQu_4fE|5sme#=z9luq5>=}$_oqix+-$OI&g8`F z5wvWxD|fU^4|=b^FHvuCYm1+H=O1!aE{K~%V8Ik!L&~FpX7;bSN2(p`rE-taD2dvo zR~4t{r9nS0ea~Ja@G7z2ue<*1{)d%lL-HqJO8Ku5QI7wRJTdvB=sq!tpZd>|?$_rA zkh|$wP?3-5xK)g5XZoN)z@QIRaw-OGZMIW@?>fmoc|DHh`^mgUr_#RfM;Tn8rVV8Y zV&378`=Iirvth6#!j`G~-;3Usi$5(2#gYj8hJ7ma&gws^s(e4!_#%?b$XPkKB(+4W zc$YfpBDBEb(z5VRj+3X^QDZ?UUkw9d0l(SlYzlt;B>(hyWc@6PsI^Ng#9FczZS72- zzp>EH!2Z+YIX;#!P5w`hN1SC7bS4`pfUBV7QGQ%b=o$<#o*=z`sRg*mE*!--m;bq% zN46S^9j40J^|e|S6{lhd&yaioY5@<|*f%kl;l3^2%Fq(T;MK=snUe7<5P(|1 zwh=b)OD&+d2U#9QMDV2+SYy46|1}+`hw+hUsY{*wLiD^2eB=t$ZsE%Wm{QW%;d;Hk zP#)hel;=x${h9Z_J)QzpQ}?eP&pn{W<5B48@$!Z8d;)qrpcg2evkGS)nnZUfcF}s% zZ+b$w?ed2HljMB<{}e>CKGK+^l%9ng$G`@@00O`afX_R?7z*|8q8%FHwX4 zj%QpfW(Zaz12A5L`6jK9``y$#;D2w0E02KqpUuyjf2My-BFuj4Z%ng#^7jmXOJha< zKTBLlGI8Sr$Yz<_;Pc=dSZ%C4flk^QtL4o2YI2=( z!mcQ606iXisTgTQGS)FUX84PSXsMfg7N5k}=q>6+#NF;OHCLWunk39- zimB`Bv1%T^T7X&rrg#ZNpTHV+3i=L~!z{4a8WQ+oE)WQf+06st4vU>gX=BeLMc#0& z31RJ~2Hti8W>sO`V_1b2U^fPMZKJimiF+r0z98DSK?8a`i#ly-aAMkBC5@=9q{-)o3!)tHJ`E{$v8qjv3Cjs0Wk|GG_(wD2`=maOzw;L-(zQv2hr4eI zqyAl=!vErz;A2Zx)}#jrvmsL`P3y!((4H<60lmgFL<&OeJ1J2Q+3wRaq^_MU`dLSR z`jwkbm0{hE9^DnG4pK}(z^xSK_om!*F)Q`WUu`2=)Zy`GDEZp&)+l0VcV-g3hf{C_ zZ8@%>SY{=@LAw9R@!aG1VRY;MC&v@i1*u}D2oF~(7uJiykV(E}zJ$;nqnMZp*vy)W z80WVK0a@AwCLu2TljBLvRgp##VX}*zZbA~&^lbP&)cKzrkEIaxfIVD2YVgbX1cNQf zU+k_wxYSUSsqc{O7p*>bzqC6CV9qcpCNHe9L$%=EgM#RTY)y2f_PXq1@Z>{0z)ME$brFR!?;{ep-}&4bC_at%us`s=I(3 z@ZoA0j7!Gu+ZWV<9u-b%`+TZM{6HEB)Zhr5up59a-Gg|u5oQ=+J9^y9SB)Ng)g7_m zVdS%8ZWUv|Os8%}5oG=m5u`!Tmas9uFK2eoa)5~fL8fFg^a`D9W|$-2C#VWBVD%mE ze%A+yvYo@B{9{{@p|4->N83-MhDf&COrp%pWBw-5w*qFsG6#(oOrB|rZW<-lP3y;z z%Nr4k*;>zxnI6ZRP2q@B%qui#M!G@Tg>R7=r38biq)cFpcWM zAeYy#j{S?K7I+(JqrXTtLbCVXPu2{(3#V1p=#sW_H!}U92G=QBw37l@pG$PD?Ll%8 z*%Njwr{#m}uX|CB&RsJRcD8WeCgIq`INv!Fk<6tR{mk*MjYA;_jS_k=S)}_g+JKE@ zlJXp@x@@iTGP)xq$@yr#sEdk$faq#{ohbr0624Xkh2IS=tu0yjc`$rKiIPVh@u68S zNqLw6qU-ufHm+_Ahbi*UEDzdV*_7q+h=<3!NMHkFyjIj%*gw%^4JzORUxI;2Ycj6Un!V+mT+Yu%O!Y~7xNmMEf0)yxXO(9!EiKSI=u~HVNHdS5(r(s!*TQsc8xF{+ zDaM%(d>o;O+F8tUz5K8c(`N^*Yb-@5#@B&BW|fvBqJZDt8KYI%7R|GrYH-_T+ulNbm|Qi@_B2d3KyGI*bYPMmM~V>`z&D{D5mT*_!++Q9vd#; zwb+NSUfBbaJ_BmUKehs0N-QwG1=Tlrci;3&IZrpJ*4KKe@{ChgZh5S0Fq{0VsspJ| zC*AReJ_5A)TMH(s(Y0BdTl>@@m~TPSbH`-Q%+uP`?SDYrHAv~=k<+$5EgsB{Q)oL` z+x0L-I!z>wfRZBhIS~}piX)cj%#gJW-i*qw1s*hFVc+z)$ZEC7zy-M-8FuRqQb+AO zbrIBKS533&pfinME%RRG3vgf*DRfQ%PL3@@)r_?GebZ3o?Q2`>owT)+*swWfrD8ZzZ4&A}ceMpV|^ z);F9?B!MRP`*{!Sr>E&Y$mWqm!pk8ErQ^4$$)sqvoOgmP_2u%>kgV`#73lby*qUCa z$v?F87M<8YGdvi~w2)cl()|AART(m`ujK+55Fz2?e*cMU+CcxaQ>mu!t11@lz!?te z=4J!qeQwV7MC8QwSCC8~I~@-+o>{#qSGZ-|pxbb;?)J3Cvy(-3ZSZ$ZnAJ=Xs?iT_ z*Ay=&^?eLSi|W1sVR#}|v@nTsf1V6-O{1CMRH{tj^i*DKRsm##?(-ZWh7zJewHlYR zO2YsvAjsp}+&5Xza!Fc=RSE0zv*<*BXwPvC;lZo|NkvHPQ&|L+>-{g?z^IV~zVR%g z`Wr%M$=k%7jbL~(KC^bw!5{ZQy%Q}z+td?;(Bl(&qBWo97`Aatp6e@6>WHkP2kgh1 zuO81EK0xK}^@a4PbpRv-Nr|*H$fYlNLfXYkczjUPwv-58NDl);z7X|~v7CG=?yJ?K z!h5cdKFo^G&6AI!rq&Q^A`p?CY(vY1+`9I6QKvFpn*}wsXc)B3qUoU1{iGnvOWz~F zXp;5Y>z)0-jwT&3V|tH((ZrVWzu2Vz9ZfVeV%A#GeHf=d^_%(i4rJ?BYrWFZR_QKZ zKNQWAtt1l3Eo*$eB}N{`jlcI8$2U?TLBe$s(-C2832_+L3@z6b+= z9&?~M*vzT>h1%QY(j}DQpu&T|=@)H2Es6JRy^oh<-#u&GLDu>o(yQ*qUX^V~qF*(h zC7Aj>r7i4l;(qXa*hEBr)}Fy4dqix|X$8Zz=mXu=@nF{E76ygn_p})b?T8bR4S4i} zesl)Sns606(19-ou@F6|6-)egkbbehSnhGcpACvB{98Q0`+cCG?C)VpuD=!7LM^>v zp}gaSy<(x<;*{KfD^R;YYj?3j(jdmE7r-+|ayANqs((rmje+8r%_;Kigq(s(u-edP zVdVDl`yzUfm<|w0?Sz4($IJjk&y%*?Znd}0r<-1khOOFZRn;rZnD1tzIagLS%n{{P zBb!gmMd|)`rrB;7gA!JfMy~=fB#KJRzxhH}3M?!~8~?<3VBh`|rK7w)@c`~+|H*CEQc(k=5`{}4Uk(=6q#Usq|T;R0B4MYy|e zm)!qcrC|+uD$?CgVm+}kPXVEzrd=TZbCu>+0l}&!brB8Npb#3B+J|sKPC21*0%AP# zSOqhvX^)QP9YwJzyRBa)X~>gjVmTjxNxDpgN)bY|?eG`Tq7&i&Mf9Nm577flQ%oXk zv=)c)lV>jyp!Kqd&O0GT-zNzzS-%e{wpOlBy`6H7H>Q>~PUMnkw4%Q!CP2oDPCkP1 z#!0RM=Y9>%b}7saWdONt7oK(oi6M_OC9P>$p9dFCMuLp2L4|}&-|ibAGrO* z9ZIwC7t!Np3xD|!(c>Yor==8|2q1clRhMq?FiXO%9ilMA9Gp4|wJI^ws9cG_=YR4t zMJH)gUN@u zQ8S043(WrCqJDDl&cPS#%EQLe8Wt@GDD-{RcqWzWC+{O=BMbEbHJ(Z4Q6!D;Ex#2A zhkH#fXfq#Q)8Ef9rgDtY{Sd+HaIlrYS+W0qiAW6X`2- zmhJsE&F8APRr`FdcqoaoRK@H;RA9ka*Ppaw;>;59%vYHF7v|RzX_*&3n!#Z^x_f}S zE){mux0R5&x;VUegT(&|2KNiZR|=AZV{@o$vT3fAb3bD|?I7%Y7XZX~+=f#G&n$fY zPmCwm)@3tsI$7p?LoyBE{@(Qs<;K4R_cUr5gq0O^r#a}-IH-~<0u z92R@X7yKwP)>dP;>rxaw0K|CI{wKzR`7h8T{C@*Iiu9uUO`EV~UqH`wMeZi`bTYq& z=aw-l2(U_hqZ&m9<@(Pe>EHbk+HdW8ldTw@H zt^WW$O*Ep~mv3c6GnaZu-n+TVF!G9W?Xcf5WLPC`Vs135fD4>L@52v-afCOcdkB44 zvD8rCPgJ&WfUMz-?CLEc{fsWKlkfdQB<-wzmq!6xiu2D2Su&=A4NWG;m)T`7Jrb39_(yhEO-^QP^ z>ay5_&BJV}5DyKJ`!{+w zbO=-%f1&LGmX@khVnZOykO1@avMMBi)J2llBQ&eoswQPJZJfkLCV8F}E7{)M z+;*I8ed*XxFY9T6Ej$kCjiPujM5*_c>;RW%xpJTsQ?5p}Ie^U#8<=BoaNeN5_z#i} zGA?Et+2FC7T7WjDdu{Oy1$4Bmyd9aU5tVyf6X#C@LH}2d2k+R)cS*dXrzX(D=7}iHE9b zs%99&%Ge-DG#Edb@%e_nILPV70=}c?P3V`lyQH?g2HUAJ_fXl}9 z0XU_if<9_QWIW~tx#!hf$|w~1Q;#8OAct0RG^GjmW}4`bM8sDCb39SA)pLy2IJ68& zt~v3AjMNm_@20McD3vAb>bq}9%f${HQF5aDAqs=KUe5;KHiNB7`NasGZoK3Iesf&r zWaa`t3VV$=MxB$@#a%)x1t2-tHx7$QiXkZrbcbl!1^JlifjAuZ44`4Z=K2K&y0P>s zG^)9aia~DNRU=~LgRZ3hC}47|!01%Pg4DU(VTCl78%ZjazEn9j|Lvy~Ht`p|Zqo{5 zeA>oNVa_VJHqIU{)mn?Yf+{J_d4Y7zc z9#I(cWQeyyKB*tcy@VqZI!48+X6|R>u!0)nZFj-k*rT1B_$Y@X`f0FJa5>_AsnsaI zGKma=q{4xELU~N-7CULj!JOQxdVphm-#wX4T>5jFP6f83#C3srVGkL76k%sX)}R){ z>}~$+r@v5a@o1{}O$jba@vFABP1j~msC-p+2?>6o24WgF%(tt7x6s9cL{sw zlq`^e(G6p+x1QLk#E;2#n0j``*#5NEme~2xWVJhrw#3{_Afi$gbm{Uz^|>%67rXf= z-gOzrOLcweS@7@c58sQpi!h*y+~FHWnT8YErsfa$vsE6wFM_8-6kKy-Yl}9k$P+;D zyt|H90SKPA{r^tzuxJh|(fTgGz4VPbEW ze(HzNTfP~n(vyHFZ7pkUZ1r$qcgat+(2|wNzEL!lyniKZIaF0-4$tiNEmzDQwj8(v zaIbHDM$Qe11eyzyaLSwVf4kWU%Yv}gKA+wmyWX=J=#f;mtoXkC(CQ7qP-|ewr;W!Y z*OXH;`9uhGR}zTaB-M0c>|u1FZ~+w5C{4Xo(-R!QQqIbJD!V7>vQwKOroxsGl%(Ad zxoehS<8OdT$p$HSD|Atc=mnHtUNFrATIJJ*Dv4ja1IW?~3d-RgB(vYX*1M&+P5jASzr4dyn;0bN=h`Xv-T7-enaah^7ZG$nwNZ4w~m`T5S?cS5Mo9 zzT!F4vp#GgKePpGakv0moD1fSzTV`Y8ywd;kbLxS#0%U?4EK{;j-WYuK-I0!lg9Ra z<~rY?-Yr~7@eVWBPJ)#*!M8c&!vAbwgLau7VDno6^?fj)y%ef}OsM!3Cm37>$|A}IU}OWVakOmXof7iOQeYgB z`R5P*?UrKS4$(-k6&K21Zb;-=l!U>`BkI{Y;I|5Ai##;|1;IXB6wyQ;3F@OsLFtgo z>*1CDK!bE?MNp*KJ6+A96enW^7U29&)3Y-MA4;JBX@5?9G4?yA_8hW~3aZ>}H)qfd zGbOGHqz?57XwXvn46rhDHL=M;rTqT2#i>SG>V`@;(7Jc#3Z)4~4J1!&2-oWEVC`&* zjn+p$b<6!Z8Gz;cyM&zewa~FTw-m=J!J_9gw?EB-s}uN(-)Y!^co|{2!c(IU0E2sr zK5lK6bN)+|-g~m5BJ>}Ahj=P>37})E21IvYB>su+IJ8UpXNiv(aKRZu?st7;>QKYz zf50vTYRLX8h~8pWvTekHgI0OX@OY&&=mgT~0!=KN!&~w~b&4wD#|&sJ%Nfnwp(>3w zUd$y!TO*S=pozB7C`4%8m&g1MzSBV2^N%39UBL(2pErUAfbYPqBXph!0PvkMaCh*y zQG*w<^B(ucd@1BFe8-wFOJQ(2@fv{d@c)bNtVO&Zp-klnV@=XZ+y(a3M*f5E3>d5c z!lhdj6@J=KU-*uF=x=2h0KOv|YA-cP>>Ea8lH_GXKgRl_5l7{s!US2c!}4G|Dd_`Mo5Kf=B+;wO zU=4fo)DUzN@+0{kHJyqS=$5aDw=L-S=myk01^dKE7l^qml9n5EaklOV#h4;^;SK%I!-zAjGL^ zVQBptG%n0yrZhu|8@0D`RSir*n zrx}{b_jVo%A{O$C-*I|JMGe4(2Qz5Xu=O%TrgwzXZ=w$FC$;jju~fR3LwjlG?p7Qe z2Sj%YC7LwxUbRm8mvE=qY+CL9aJcbj-TS#)BwySMi-@tB1Gh&QDJtIw{4C2*|nW^(VZ#Vwe8`FeA`~g1)7=fIn%IyaZV$%(WPnf@W7K4$mxrXRPGTaT4Oq z9;t3)jQwsD$Jjosq24BC-EhTTr;{L8KElr`TE31y$~hE5f*guvcfycQRNGWf>x{oN zS9G_Y;%5{xA`%A6HB!3_4U*4UUdXaTg0+aaE=mjw;CJ*8#)prr{?0t5oTOu@4f#bZ z+_g`<0nF8qU5LSBUO2R>t}N5@C1;2oB=V467RnZ!U&ZE+)^_ z@Hu_US^pg*!eTv!3E%nnilx}WRc<>G1S>z!mE1oF$A&!iY_)wOMH z%vt7=cQd_RxHMwy^RH9qGTx~-r8934KxgkJHAHE=S4W`t75R}*$#N&!J(A8TjAa`T zGy}Kc!CivJ<3h>(b>rh_GZH==W_6ZgthzM{9l}6HsVmyIOM>?n5|boLD$-&pehFaJ ziXys7?~JpwiDme0PEU298;IV^%K?5`0E?yV$&{)3kx8Xi?o9>ZdOrEXPQLcYW0l;v zTPHOpcx$EpGIdE05jBaWMRV2AuyXRgId@Eva_K5%re41?cRXFRT_O>YY2tlvrBc)+ z!^UpTKYyH5LT|{Kiz*}p3WV&HoX4xUqRZL< z_dZPK)kJ{HO_kA^5t34= znbGO*dA@r)Ha3@{o|VhDz~>x7A?g?DiE;(709%jQ#Y9JzQ8xk~94^d101wae7B{PT z;j*o3*h>D+z8_LjO@?#Zm=ka&QhD@?Mm!|wz{FID_z@K)3}|>brw&DGlPpCdGqHtW zL4!@!(&LZ`Gnm-Q6_{`1eGILJKKY-nf`RF%AdSWuDAM_$MGGfxRx%&$bSD`&4vEHj z4`Q7Z@W}NfZDxq)&k?A3xx*P%lAfb=JxZ#o=(a`Z<`E zu_=r`n{hN;%}m=i-$?}@^uj&Bbr-aayCrTJ$3Zo91lt#1+{(2lq9Sbbq|pwN$JVW8dO`FFHZ*8oW6FnkCtK7~byND8w6sc~5wSs~6^O6H80Dl(fHa+y2vkx47EroAa1)^m zAPk~@GJ>x29IRuI5chLLbTbs1m;Og`KmyPfCp>7kbMkop%^r~RZ)iw+0EFk26R?09 z@5_f5DsOa=qE);((d}LeM07SU__zO21loN(_=i;!svnbL3&?5t5E? z>nXOedjS)(Tfpxzi_8|?f+oZ&9KvEpyV9Q8$#K;Abkd7azf?Z0%6^5JdtGj{YhyD= zDoHMAYPc42QlrQ8&w4hEHLO6cITqjvAhKV-%EEt}%Igt0goytX2X49idw@=S-y{F3 zYl%wB%niiX`?28Csb>FSBpm+c$BNwVJs_s;)^-?$O6YNAvT3CI0?O%Blc4GV&Am8kAys=zeM3QO}TT*bsf z4**KJ4M5727C-2r3OoQWkj^Wor7M`ttDqkwQ_2VA6i2=)ko%d{R5co>SNixgGZ)`a zeSv!z87>Cr?h2<7$U{g>fN-5fN?NS3G8a$j69!S4xPX-_7pF|`AeBz5Wm8w#FKM^>;drJa<6yc94 zUUA6^r~r&3E5!pI(7ldUn!>^0m*pB6Vtd?t9zwJS-}SYd<1Nwtdpwu~8EYRh%EL;k z01)&L1J`6Dx+dS~$L5tv(vA%z;z9(awwfMdTSFJ@AQ*8~rhr~ZDs#`I9qn`hifiP! zG0U8CVntS&?EUZBhs_>*!Ah}?CHSxCCLrf2>j(;@IbgI{xefJa0VpjDt8CCU@ifGjj-}wxHYJ&};of&a=^q1nDti!o zSHL?p9FYmiY=G!a)S(9)J}7g}K>}Gt;YOjhdr6~MMg6>FA|Sex^}REd>kk1;`={xJ z*Phsy;~G1@@`hL%i%Ka?)k7-iu^jV}I2jsG1@&)GBbuSweJQr)Z)abcun)6lt^};x z$}IXmiguK;+yistjIVD)1h(6&Ysb&;!N967DpI9j=rt z{hwXXU+R)2P!4#aK1hDQKLZXm*M!YW2oIV&GV1LYYTq+*Y_g708h&<c1#Qi+*B zJnViY7OAF9k$K8z1($4@i*TA|-X+SPz;eS?Sxl6fqb&r=%FDSe;{dN4E@)`F?TpblU6)=?eYHWR#y-t*Ahm!ciV!xY227dOe+6~;#(>=pFqx`1F!33kqOHFGC&`P#jb3HIj)yQ-G z*yzQ5ZUs6EZtdGV#!5Dx2D&E`wECRyB^!(s5!5p9`IzNg zY(OOChlbENV#J?@fIQ^@lq=_zbq;$Qh zt;+S~9P0?j##s*Oan>xl+B1#i5@X!=9UqcoO=Lha5~rM)EmoS=?iS`OTqzWgls6th z;~v*!mOn4XO4cX-9{B-Vylhn({pQ6l#NJmZA^A?0OYc=kg}_`}pxL-+3@+p^MC?fx z?~|;X;2oqF-{V1Hok|M1npC1~$lvn&w=2lP*(>~?KZ=%RGZW0cM3E(;F$h)%3@l<4 zvKG_xr0zl~-%wB7XI`_izHP}PLq^2vJcW}%b(DnefWmjei6%pLaQ@u;&X=)L*vLhh zUXVRvCNa{aTF()&GA>O{n%9KJIz9NVW0GhtZL4mec}L~5TV7znwG+0UmCDl4Aq?kc z|K`K2m*TLd?}u$3UT>HtJB#qbC51m{GphYSzX+3&2hD(G$AilpW_|Fz&vx<_W1@^;iZj|qqN zM4s!*bG>?FY@~mWIWQATVn{zcXfw}{mc_<9+GZt5-;nBIDx03{p7`XzTkn#G`v1^% zkL{JN>(;1a+qP}nc2coz+qSKWQL$~?M#Zk6;-r%7USrI6ZO!#9M}9$X&waIaGOVIm z*evu$quDJh9EamSaLP*aR2}xr^D4X@`U`*8=j+AKw)P|`{V*+`#!sBZiD{MBN^d8= z%Gg0c0=J4u*{#=vqr`)7onDc{py+~^p7-PCy|b5|H3yy3p%!=N$p&rP*^5`{SbomO zar|RHf6u*Phva8*$uTRp>M%=g(u#@bYnJNBz$oj$%BNU9Hm@_hVSjT0Y$;{x$o2=F zpJh$wSHa98x;(?wei$0;FRT_XuO9fwmIlYh9@P4#6Q0#z8kJG);xU@n^L8`bl;Z=U z@A!V5tfQ>^N5Lji?CG+>g2z5XWX_jt@BY;>pm0>tCBsyarp18s_1n<5v+r@;3C-Cy|0> zKT7nQHTZaQV^K;dYv|(l*RMUW7i3u{tgZb7*6<6N^Lxa?)!;DWN<)A-(agN8t8b-+ z!F^WF?;A}klMlG~4Y)_r+jZ=oy9KimMf@emb&%41n^`MNT1$Jvn0fO4Xy#tP=EMO* zu&Fc44y(DH9Od(%`iEF-E)13|XC%`29*EaNJji-muSd)Bq-Zo4K#g^@X-mBS3jEz} z<$&b)+mfe*lNBHIB4)sB!LCfHD63JOU&MAD-UqZr8cAe9T_X&PR4gzwWL^~JT3Q6A zY({lgY+@a`;IkA2UN=Q_#h33Vea6SNm{NGa&sHShmCOk3h!3-ii0O{)n$0FAOS9ec@w{;sFxVb}Ghn zr8?Y>Y_K5kyI}3mB0kqh+{f%=Z-TdpVUcnv*U=F>R~m5(Y*&mhN`2Iw2LGXem*~f@ z_wBC}0S`_XU74hpu?%guO}aWk7`?7jo97j?VvrF|YS$I-?K-8K4@94U{UPRq|Ha-p zH<)>e2ZWN){}M`=nf{NxbI|^u#Wny1dPc{%7uT!BX$xoGu<@LMyK8qF?s0!9nH*HY z(`3`wNMWo$iftt;xmeyr7zJqTJoHG|k4E7_)X5*DIt}>KbjBmG4OA6Uq9gWZvn0J#5n~i}o!Oi1d#}fjkTNgRcV3tf zmVSIep%L2fSKletK#S(A>jSQmajH$eLqz`Ap@Uqp zeu!fJz)({E=sSII;wFhz9zuDHz`(V;#L5PuZ$eyeHd04EWG6OKzW@f$THTG@$ zKGP)o=Rgn*NV5W`iisOoZjwDK*F+$(79cTh1i1x9 zB_g#ALuD&}gLkEj#SPCXu_3ZSZ3&f>^=~eS@26gUB%RBRfWBBMCFhJNv*8s|$Ik}* zDm)dcT$LMxhg0GW1j&YHT%IcnTJ^L>H$SKP8%svj=3ry6xd0kyDAar^XDf-0LR z6PVI3*2mo%BY&VBe~@NTBsA#{IF}d=AViQdoBj~q85BIo;rSpuu$etBH`LK)I#tE@ zM>)hO7(KL1ke(LKh8WGbvb|R2=UAohWAK^z($O{?AS;mhP<|S)QxIe;OAl5IL2mI? zh{jCd-Wi)M->F!bOq~JtP9aqBVubJWY0k$rhN2RQ)JYuO=Zu<`1!V?6KP6{hn7p2Rn8?03Q%-e)m*os4Gf5_Rh=XH+ zRZFc(pLJiPeC~i8vjUab7xWBe1>Du^@(Wk2o--QHzTln>QH*-Gx&CzN1yc0Yng2HD z&z2`f2ItyFwoljjMzoGOCOPce-{l#%X&@Xt=r9;F&2vW{N}vhiw}z&n1x>7HR~ICW>EubIxS?R; zS)>Uje>>cUSDovV#pC-@7_fqEcY`{hb*k(CLneIqLU^`g8!GfT{>KoZ9Vl2e7ce=E zIQl47_nFFsH?V4jmp?N~?HU4xVaD_md;|%H@O0%_hcXcIYwxSglW5tAPd1c^EE zT<1!thCk|eBJAB~E-i9`A_zH{c#va7;pbgQDrfq2RBx5F^qE=ZD`orfru{95Uym&E zG$)D7O*30;r`>NINF|sxsXT_2&(Xm6kRP@gmI0(x^F6(Rj?7cnvN^_5tuyYQ(>q7* z2G>Ppkgd{#m}eS{kxBNybR5()*MnN7vl0J<0FO^gK49JbUWmjfqi$ze5%m}_2o!Dq zw)gqtxg;ckvU^+B8dGD5&?3l09muTj}aD81U(W&7wR>qLhz zJ$#60R@O@ywoXasvxCQN!&>!^+I6qbWvg4@H?L6oA_=_2bEeoiw-h zR*ot|PC+JLb9u=h%!O&6n$+9^C=E(tfvgVr5e-e0J;FZ$B&Y;KoR#;5aw*qdk$!6} zLa>k(Lk&HTG!^ ztkMT_Tilvr+Rb$GrW3C{cn$5|k)isfHSbw<8eR-adic1Ka2aPu2K~B3zz-P4+!KPi zWBU_*1gJzZ#A_aniF@G*s01lYW8AUkj-L$CLuic9tE)U{4s`uWVtMtZM2R-O^@iyH zf9DC{@8CP9ceIZZ@2_g?-icZ4wP94tRM^UnvrhNJiIa{&(zu*vlNz0}ot|{~A$oSHQ=!|Attt;t=7$x2VO>m`_KNb!>ns^hVq918dA{~CxdMnY zLOKuMe#NIa4j5WgqAtpBt?}y^pYYZE#s*P)3sUE1t2&-_ULHlT>sS`^Zoh2N)vvazNJ#TWiIFND)~i4U=WZ@X4b&$ZWz0GRGOJH zX1V>#D6TDS4|6bnW|VAbxEC#`cP-MUM~>l>Z;`h$z?6;7LgjF27e#M$?XV0-_tH=H zC?_R|b)L-Y%9HEw+BwGJNo`~~$@=o(dk&{bSNiY&M^O6_qhES{i$Yng6&(*6Z!{HpdWtoQIcTg-^#MF5%ZC_}(chjW)u?MIQ&q~;R?yg<6>FXhhbjqb7m>JNZl3hmLm_`#Ak2rCX^%K z+Z5yGC9KQep{J!jGx(z}4Wmg!bCDS3SI zLQW|Hj>ZPt^y3;os=@hqdo z!j6(^%=O$sej-@BNd1&Fd!jm6#j|@=<-z^ZailIiMKzybse(YZAURNwhtnq{==cvV z+$s9?bGpE5aBz;xqd@JsIU;o7#i0aVn4hS!G8wIFA28SunyrX~2|sWD1l zc`#iA@#f$-0@MFN;D~rQeW-;mCj_x?wrh#D)kINXCjvrEA`|4pPQCVndC#0ekIWr3 zBqW(i#J$7MFb3zW63*xlR#|Zh7?+EZ3e<-bnE_MU3%1zb^eX=<0qhMdTm5x<_U0%s z_@o9+7_5gvsQKpl52?5wvTw5=A>TyXs=xXcKYr?-6G#BdLgRgWE>a}xt!7~O6|xWf zG_tf{rk8(CM>h4_@25ZZS+nJ3qZs~Eoq45`*Xzx; z3vDI(2+=KJ)iPzHc7rb|Q&3+(H3Q~Fh*Hh4(!Kl)yzga$ck97LpWxR$VSqV2t^|7X zW&*C3C7%X9)DVR5aJY$=_MZt*3AEuLK&dB4608*-E@nJv%g@m{pqDT-Zl&qw3O=;Rg)Cuh50$u4t zR4B6Qo7B}<;x53{{HN6O^|#a`{Q@{%1DvYydLn5H;53JfFA-fx06rcTnf%N22thIg zT7>?cnudQFLv#$)*g@tS{bLW7e+#nYjC~)D!l#ik?x4FSxV;8g);WH=yzCux{@F&q zsX$hZ*U8*n6SrI3<=laS6=m^SKM!Df7#2gmT`(FUzqE4ehkT%Tbrya|-8^KNedF4Y{rOdt#K|6Zy=_`}t_qoJ_s zX81y`J__**9^EA{vwAcmiObAcx<30OS#`#6iHsEo^L49e0tqG+?|oZn{v8}|r#HY{ z_J)nFMqIRl3)n@|JNoxgrC}xbAExIM!1O=>n4S%jG_p%HM%Ef$=>}VRCt`vmEPdNW z@;5RXeHTx6WWhK!QDi-Y>3b02Z_s=g5!pe*!XXU(GUC2^TTNgwCFD$0782x|zJHgd z35aS*hyA*KE4O|aqJRf|*b*#e9*NNYX18PqB?LGZk@-iy9z7k@dg`~{Yl>9OYaYX_g8KcmX_KhI z(Y!ht{VV5D#p55J55dN*!mal^(QpveKTI_DR_^=Acq=B2QeKOXNGQ z*&JM~wA#R3)=8q5?~G_|WS$1%Zy1WSrC8-niAy}g3gqnI9a)>J@5&J4$#*reZ$cOh z&IbG4KXd?nrXZ3H<7X|wPn-j1G;DDr!jfeGk1CVk zP78}T9r#`^aU36mChS*`Kb=7itlY3h>g~Yw!2xs+^6%JSPGrx5=wt$X2-hjXPi!V%4XBb>mi0OGCJQ}NGeY0(IGA%!#)kA{rgk7vm&jG|z zh6X%CZ*gX}_fgCBX2kU{bDb^!V5Zv9hH;8CQK0jl<6z+N#=QkB7>+FP<3$dwQ#2=x zsz^sUny-;1X|o3AZ>wiX>m_=)Aq*c}J0N8KmX-VxKjg5pzM^6cn1uB}_uEV@^lc+W z_3wO48^LNf`L+^Z=f7dOS5~fmL{hy~SNb;ENn2Z#>%YVke{QUnia5 z16#wD9h+$)fX23287}z)|JHh%gMewIgiwiEFy$b|#%PASu!3%i|6jEpPe82){co+O zOjAS1ouG2VEB z`d?@O?>VrM55V8#5KB!s5~bF|eR#*#U=vo%Xf;f|XeN9rX$uWJHcOr{nJAwsSnVgy zI{F{jxnEEIPpq^qL+k~fW>a2W-Z8;jCiOd~m zB4bsmPMDP`)6$%{h#r5+t9GN|D8H>MyxG_7nEvfuee0=?zIIO-@nJbqe4TsDa zl?tRF6`=SXaWt{naQ77qM}8BzxoKoRwhdk7k@_sUSsg8NxBl}bZ(juOX?W=qeSa zdBMWsR&tC@;FHn-40Mu1n~kGtcz z8=Jv)7q(KgS!~9i8TpYQen=Ty469Xlh01e@3gwxTM^rK3ClI$?{hHZCpz_%wfLc{{ zTj|KJ9Ve=2dnj|UI(5^ros-Km=N>p0NaWKgZ0vymu_5ZpT3%utyY@;IDA{dc%pGD6Xr3zN)e>drfW#3tjN<9EE5 z(#hD%VFU<09oNqFARc~Kr!=|xm|woV;W3)9TYcAAay0|AddRVBjmFmFzM-uwC|-23 zO;*Y>YFTBnQ~RG=))aakM7at!T3U~QQmjwx*5)fzbC|IPp`Yih=2r4HoK@NATrL5z zVCo^&%miku`U9UmTAbU{XphG|Nj9YyF%sx4@LZb1U%8pPrH*}cyWmkl^V%Sk-7g&^ zK7?-w>qP%Br3u*>H(7DFBX|0ED+2=4tqAIY**vv()C4g=hO3{DH=3GzOYvrSuL`k? zeZTZdEbO1xbH3sUSL^cQ&hw7{PCe5EF1nacM_%Z9)lmyCCJE)f+(`Z`q0c&9Lhm6= zY>MYio5E%H$CNX9h2oO>(XEvTAS`Y(iIsnYyx*L6Xydoy$ZNAm6+;V@BJb4G^u+|)|*;!V++GNF4P&cuhyLr=!;)~>t6E|T_*bYTYW!_r+*d()jE zBw5tNv)$6kJ-2_>*s?AI#I~VQbt^37X~glM0|?8jaHEqVYHU|J-6#_|13oAUY-$7~ABeuID+R2zVDQh=QE5>7 z#7d0UzaIu{3Z0ltBW))=h^*mU5>yuJ6M}QS41jtf%m7f&w|}9YE_PY_3T&I^Zy7Uq zkdeMTbJ}N6GP2T}GV*+F8_A=ni^Rjf;Oje56Vq}wXxGt}zDIcWuzI7`GipwBdZaqw z5s-tGp(S^}kZX3X8C}^iB+v>{19dpTri5qW9;0VWf;&8=8<6z;aGn4I$&?Xshp(@w zOOGKWgcWHq23;HBY~`q>aH`R1c5;ih!O=}Anp_)v=Iz7$`Y~cL4lsHEIuBv$3xMhQ z_wO%359w#Iz*QyFyR|Zz*U}t=F9i2r`E_~#-rc?!jNabqmVIt%2jRNsQ|AQJcb)0& z58;2^Lg2Acqon#@NI;5Bbd6m&FL+sM z&@!`t0313Xf+`E7Z(nzhf?tO>T2sQx;B$Y4Q|*Kmei5UXB4ZmwU((NmE)6h~vjRqp z2kJAfTJQ=u367CPIKAdUC~cznJC$hU5(z+b(s~`6zZxIEH3eBOsO~`~P82j@5`-UA zCRy=?ANB`db<--O~6fsJbQiJiWSdW&)a2+u1UvV9k+$Nw-rlwU0& zLr7rlOF>BvM1QbdJmwpKh5(VujyX-iNWw!c+FlisSL&e+I@&N0z{{n2az0O1E z@AMY-k6ELD*IfRIc=sLjuF4JY+pz$;F_}6z7K1q&k6Ey@e?Zs90KHZUb+(xtq2&Y!)!GDF*SAcMu|5rGTyZTTptmo`eF|7@X z?Lq#DpGOo7PcH^9qoi%5Y{(WCW-M=6K;OfkU4RxC=b?-5>&>e( zgLfgd>V>IY$Br|(A;20NNn`03SY6W~IN})=x^pknhLS5p$0_s8SPV3cLyf%vNkiUpFwV~)Og z{vV@94exKs2VnHXDvC*StpiFv{V3CS6g369;ls8gjZT_Wm1w^O%5sq~>5J2NlN5J7 z7jAS{iTrQ#QI+PJhNvX;fIeWX041L*Y;Z^ko@iz62acmjxefuV!tH5kHliD!bx&6R z*0eVRJi#QR(Y0s#C$D~CQ)ek-*r}+}e~ljK`d`w9W>ZYjhj7sKo}cu=yCG)F1HmKh zYmxMrTL#g(L$s2aX8$pI=tjSx4{IESn|5J3r~Pa6jPM}N*sQ+ZO`1}oFV)YAj(ZlvBNzwZh!X*49E5kk>*(a9BBHP=Pez-BY8%guLdVpu# zlWpiBEBgh*uuUX^EZr+u|4Z$n74~n(hwzdTf{c{twoVoKZIW%|AESo{>dK<>j+Jg{ zajII&6kzm>(4&5bbd(pmV65&?H5Pl(J$wvlw3Gle{%tZnV1A=%F1wONK`ISOf{)Ro z{55)tse~&WtaCGdj#Sv7>oEa3K9%na1zhB=jvsb7t4WqbuJm;Bo6*vhA@vX9s{vJj zZ_P)7E;wJGQMdcp8B|D^vJE~1FecdfWnWbJD=@?ERKHmWP;sCLCqD$c8(C=}y^m=r zThR4!#BZT!Af@=e8?!FA7YM*Rc{xs(5#A;xim8UQJ3?u%Y0jWC~*!`$<3Z_wU|M0yM*T6wYM|^3B zcH}n5b5(Rew#pTN^l<+$3JFR^e~UvHoYQ%z*aILvs3c$?Hf!=vkXNYJ;5R@+K84|J zkbK(+()7*(Z|-OUFT`ta#N##Zypaz<%SDK#Hm&ti!_mByl$@M^P{pfZrj>D&x14cX zS4VqweK1>z|C!lr_D2`#Et{a+oaz2Hz+&aTv3zEo0NlqE;e^$Xx+0s-DIarD@kLV*3h|>P33r# z3JeMRQP#S>#U{uUPsQVIPLATnBUHB7M?V5WRcXV{0?ZZ3*^iTVrfOI7+aI;c zptM3RMITqzTIrr(1jz*6)wmkD(BT4f?#k+%3d<9`U?T@FLHjgSkIe4-^0F&$9(PV{ z(($#?{wjhiC%jKXr<>o5=F%4HrC9Z9<|H8V$)+rhgiCTS>$_wvRUbL7SR6thWQ64D z`8coS9mZzwt>5vuu<9)!acq_~_PO4Nle$~9PB`<^?_MkBC%bVo;^c`f`SF}wM)_=F z1k!c6VI~a_v}q4|!Y!`w$Y-hc<(q9W=dsS@ZS0ZhjOh`36dc4)Gn~aUOrIGt+t*z{ z5=0}+Ga{RAFHYJ-S-Jkn-etoo)=F6lZKT#=-55xh-LCAoQISMrt5)@p4yqu~wkrE0 zH3v?#i(QOgWM$wWn_N_78jv_!zPra_oMDlYU%JJ*#$xj|T=yyq3J=?VOoITvv+GvGs%H61`fQn65>nn(=0m-cuWFMV6oB-|m4dqYA-u_@ z#>JkLHMz$c&BR>}7GUd$@xg7c+;U6-!qxF|!;1Za_fI<7=b+G8p%ciwGun3Us?yy3iFZ04q7YX!`!4@U{*LSmo5*4LaWXKas;P!t!4j@Q z?DN)x>-4mJrD%!%NhR2dX^Q)=YXvbUe>GHQte5ZFOd~YKkC(f*JT6ZS9`KpvPQ6 zbFD7=?|6Oq8G+EPkT_gLtP|k{{hkK2tedu9t(xS8GNLg3Wb}u%SM3=Wx!pyY`83Pp zS8p!${WrxMiwLtolvV~zlT1HpuvxD&&8gGax4iTNc<4fr@Y%L9Le43;=-9Jv&U(PB z!u9DCn_8qd3duPWhK3pzk|bK3aM1z}O^2#a@?bf~lC~DC-3193QGIHsQV*WXpr;%u z`WjKo{D3x+wWcCe9k~hzPF(Ak*{V9;g;5xM_*zY|?NqF16@fYRMrf*TEtg6zSdFlL zC<6UvAdf=jpB^yFg@|*v=mbwK)5YJD1^jx-(X2=-= z>HQ<0_VFGcjg18>)o|6GCQUg;ET@!g(r=askh8;A$~gUk9iQ1C9O<)m!h7?ReSZI^ z;qy$t^Do$Q<8lZ1&(D7vKFkQBm;r<}shm)+kBn_=bN7!aK>7}GGV=%ivAPBPKeLnS z)&l&$;t?Um4Zd*yTf>Kr0olz7a7|a#gTfnGYm9 zjK9{XZ(kn*5|v2wc1el4{G)SaM^%p>@t(<@jjSX0&+5I|DnRLxFe-LjqyxG$NqH0D zz*VpX=8fzbJMmr#u;j$WW;5P`629W&m{VB&v$odv_3L|itwT9{GtX>i`LMU`8xn7Zj%?9Cq*!(mD6b&eW<{cB!! z1xscKQ|Kv9m9x};_pikwEc+mf1c5`@{%8L>{onm-vj6N~E5(1|p?nZXzu=+V6I6b1 zmw4=>^&mPXaxvq$3gciS`IQkMW1kZ%5+FGm_xHmM0_7u9O#C#AB@*xzA^E#8$NZ#7 z3MB?+OKEzA3*%{fVzu2<8_-@iR^)N{2#`<1Q2lLnn)MVJ<% z8JV$@xQUobB3bw+Zf_93(c$1cI1r5_z$uCC+wD>p3S?UUEavENAA;SJ9PWE#fU%hf zh?Pnryrl?luX~Ava(M2RMk$2y-*{0i^D@)D2sr`_C;SAyO}`&71`H<{FhgCEcQGs6 z4m5Y}FY6C*4a68#B0BFGgn5A{Zp=Rgz=ZW~r1jgtTfRuRBf7?({Q=Bh<6qY>kEdWZ@2$-@W6JRDyZnt*s26U@7JU@ci<~IKsYxp<-B=~z*d$R(-fT*toHU4g zlrU(2eq<|XJ(?JBGL5nI6@jV;zpdK?>O|qeNfuzq7*vH?k44&GPIZnSg}V$q%^NXe z6w-~UM9h;tvhKR1h=7SX?82pDn+GrLp7dKh60gp%AS^wQC$F%A958|@lp&Fef&r#} z32|q=tr)y2(<7v1)+HReuI)fe6hx#ozsG=sGJYn`Wr$fBi8JpZBkutoY^O>Gg$qNNhx>0Oo3|yLb}>N&`%S5%i#rI7?0=wB1ty;2ylgADjl1WF zSZhilMq^4PchMZS*O~~I=HqDmI6xAwt;j!#*(_g{Dgzij0UQ0<5@nNgKb=9-~Nf(|T##1G+cr?C)S?Busb5 zmjFml_CH9Ene>hj4xMr|haolaRjc(DU1h8qt=D%|#_=EN3-mi|gAUE-1|X~bPPfHG zMEV+(RuJltV({CZwq;Z-G|;iexdYx8c9ZIv-T~XerCP=e{WrW;zA5}^1kVQMbC}_5 z_92q7wZ%t$iH;R!822_*4lWlbE1(pTW`D6ig z`7;ng`4vULGs2i6u0LY@5ibXt^RZUzP|7Jcamx1g*q(?YS#?Vm{s5s%UR4#v0OLpr z^9q^Qg@T>YK;JQ7M4F@uX`b287*+MC9M^s$f48}=HuWu4l5paCQU!n9!lkbx*~#p) z$;5_oIr|f2-=mKtxHo^(c!U`wyH|r4TrxFpptoWGVFOqt2w-6n1Le#VUyilao z>SZ?ufm*=-LC|US8Aw9XUhu*>_)X&FDKtVS>DR&An>z*%XMg|OzjYtL$M&WO9;PlS z@+;9f`n!Rzh7JuDtz=i_-(vD&g7P;DyX2ZE1aFztDBiV>U+K9R=G{;W0UoSSigSvp zK6vl*cnp|t+KH6O%U@#-r7w~Z+d7orwh-333u5%gZzPVAuY!VT@HLJt|5T@M%RI*L za~7*RcdRQ6gduG@?Q&}!7YZtu69h~@9%dRuq7wn`u>_<#K-@*LaPrBtcxNbv7KpGz zr6)ZkYWdf{Pno4c$a;8K)nwec_o5DO=UIpIA5cy@s<;n}0XE-&X9v|`RKB7R-er&^ zR%7+oRoiczO1E#wdVJk>rBN&(x+|MDu;H-lnpP%Qf3zINjKy8;s&e7nz}jqGGokM} z^YaSi9l%nS>+=N;sdG=ce#5q+6^=hT?zBjyG;)gF64CLTEgC5~oX@emmQv*qypBfS zhIuDh_sOGnss)PJNHK{^IBIA~d##9@W<(vfBI)%=A4i!27B;egce|=)z78-BFXYZd zJM_fT2s|-#=aPFHTN2NG@see5zYlva!6|21uM1wySBo)CoaiFT#?o>2DBDTRuXnLR zDL>gHdqBWNVc1s$xoEE--?nt+2>IiEwo!8`^rY*t?T+wK-^UgM4-Hh6$^TW9UcIG^ z*(&W4BHenQV02UBY{VnrKE3yH`>1ih3S^u!j` zFk8H)(JfA-?Hi0#53*1QNsW}>xd5f-a^GMb@b;}fWYAHnOhMO`XK zs-t5+JHK6<`GW?nB$;^WF{Q*R&ndT?d~D zS{>NF!i{G|vf232V>AD9nv65FgNiQ&Ztgwfbe~U|va)9tC4^tqj|*J|vc8+YN3JY% zceW%q^>n)7M#xGN7^0lp;I_y*z36Efl2?6EE1tX%=ek@gX*^?w4#Hxxp!D8y2tClU z3L?6yom}Mu3dWgQfrb87TOWCq1{TN4GH=FA9Lt83@bqxtfDdpDCdzM_SI*Z-1v4s@ zpiweo=Vjcb+cAetd_kiAKbl|K%n6eT+Lle)&M;x6$Z_Vk16TGzbl zJT`V6UhRAQuO@2PvQMy(b7z)_A>fUZ;}Mi6Xl_Oir-ATtH~-nWDV};AeMw4$-PW7& z)>d3yU)h|^ZtCDBOh;v#M>!@Dgiv zRVuFb@`yvF;UgmaYEKouD*RC~Xa`6xh^dLs#qY(w2JfJ!LZ0@W8}Uy*h%}?K26nED zI5eHgz%mhfR|IF()0@5UF)5Dcb<1uM6ES?{lz2U=_*Ga`kUL!T9x_1E?qkpS(9z{m zk0hHPHIj3ysCL)=hB`i3A^funSBIv)S!3Q96uahNssrZ0~1Myfou8s|9xg z*`+jz_3SH%44AI2kQio6FHe{BfAD#PX7{p*a5-+N0-jN(%2}D|qu@2+D~<6(?xJzH z&FweHh@-RisthHOvN?Tr8RBCxlIE`Dv?egw7c@#*4_aUnBdt2WM@cv&z3$Fmpvp~= z4nNW!()KjO^SY1EuCGT!4TSQe(NUNfEQ>1-%yuS;?)bj?wdp>UHdNRs{Q-{o2}Da1 zaDUl?JR)0*ZpU)DJzK^3xAi0E23mb~0hqw!l`kZvdx~Xl9fc?9H zt(($^nlfH%(~=(=DE=C(6I$E1UT@8Y3)muiaiC%l5Ib zDCGvnDKpglZ34=VuGwy_zMdpjK6V%yuce5Kt(pv2=dqb+E%^k%hyteFMzw)4M1^oz z@#qz5euIa+SRp|iHazJN{RR~h5=r)i75`vEixIBf1zI2k0nzOdHWmnffZtzFAWm{f zYEK|mc1YSJ6!kt-_|$6c?-zAJX}0r1slkzzu;7)6r|Vw zmpFv@Vk29%#VEU`a}Q_|7hbAFeRn|fP_BSA#rhc&@GV1+;f&$4pm|5^7j(qrLl z4gA0BK9aC-fVxjvP6_Sbx=&}q>d`_l4@kM@S^}R90Y$~PjPz|B?dt{LA4OX6`%dY= zrP^(HoJ_*MfM6^+y63rcD6|i))H6$+=bQKt*B~8==Ufc@TSX$Tv%a9V(70P{X2NFMr++ToWM(f5bEwt208dnz!a@o?C<$IYkcy zSsSR{?BJZh&d=})Sp^$Pok(WlHiLK~G3kL4Y(o<`pyDmrVhJGyA3NrDNSkc5nw5Nb z|A;UR6M(S|+I@@J7Oxgpb=;}&F}IvPgqWTqgT-T+_uY%0w|cC%6;k1!$vi>PJZ&E( zf>15+vC2E7odnZl=^!i?PzqE2B|7_lIOFdY^G%6l{BPd}Fltr)x9@ZLPv0kxU6*}#d##w8yP zU$S0Lpmw?bigYXnrZS|i>~C}Pm&5O>UVxawpDC89$cfO`20MRrdTiUMKhbplGrC^) z5i@}C^do=UV33>YfEY9p_u*6IZk&rVB`_U<2F8&VYjAGnDA|g+A~qjy*^0A=^T09|1-Ebl-s+?eUh=SB{ragq+LR%+!kqUsp*z^kAhfSfblc~2y zphAGakWAk&WRz^`#JtACJOlE0krV2`WT3*q!>R#T4=l9<-41Jj5$+yrvtEk4Msy=J5=&Rm_j8!LKU!y>#r#gSTKQ+kwa;lCoKO(LH zUw<+j>xh8ZZqhJ%`S;KD&3Nnk{kdUt@l@7c7{>ixXe0kXn>UqjvhoU%Sq>NL4Hkd7 zxa=qn+kZpvloZD3C#~ZD?dg`Wj_hjw!Qfd(p>im47VbojzA;=czh(K3++(mb8Muv3W@-Bj%Qs z=SaJI;$4_>K4df-e`AJRkKB4#AfWuS(PTe;M12!A4A>=bW>%Fr{HOeLJl4t$DE}-b z?3DKOwXRMX^8R!YF;_I3!E2HUC`s)`iqfPa>CbA59$Mc>+AX;8?qw#$JYnO1%v8a< zRc6#tf49$A(9`&KUIHVzob>aDCwTO)BX84DbBEJ7%JS{?RxcP}hP9@tTBzDsEW!{Y z9__Ryv6goeuaT(UcHQUZ#yyOTf|-^M(E~=bT@udE?F)tTtH!x+=jpu1*XQGk4KTp* z$pBT9;ia?%U8@g%nbBCY5XvEre16?I5_w*e6dlI~9a6`N{k1;I6c`a%Xwk7SFy40X(YH&0BQq$TPatSc%A7mkiRS4Zf<^=8)~QvhG1+ z1^4#2DU0mJFX=5F#O?u=IZjWkMZca?-O}V%FDs)9GFG+Z9+x}suwl=; zqruDTeO-HtYqJC(Y3G|-<2b&XwAkB7HFRpcrBeZQw0CNKlwZXPtihGRg^}Dw69uxh zw?UKiw}$M$94b(8f47$EA0|55&^mwz6THy3)F5kjt<11a56g*DO8QW^oOb>#{}jZ< zG>=wiM#pxa`6xQW!#;u{>jM;AWYrB$a0Q>go~ z|6D)xA~%mto2-?#hcd26fZW=o%3$s|0WUp6-rm%DLjN2zdUdi+8V+}%ew}|rbQNeL z8!Qu{UG?}N7w3g0gllc(px8<6ys#_E`~DK*D;`*No+%Tr!JwS0JyX9^1{Ob+59QRR zvSgzP{c6bAC~DEx%N25HiOQ^Ipz`h9%!hB5gfW$CivQP9F?S0E)Vu|wZC~bd`Dqx9 zc*sVgIYh_QLg|gY?HIa6!*UTk`y<9|Xm+L0bPM%-*c77B9jI)Vr1E9QCwPdm`GQ?Q7mLSw`bYq$sQLlo(|h@PnzSJ z^^j{*U+POW7ByKhU*;_3wVzrSi?Lb_cwYLkk9|uLOkmtg)==Vn|j2rKH0hMm?d{*nVVPMPdaT6EaP$YUjRp?)d|j zB1#g*&3U-jH}%hyJ*WPZd&AO}W;Z5w2VrdVkdU=JIxMh46Mml#LT&6owU+9{w0;Xe zt(~G1=+ya)!=mGHAqwKiEyLo=yvK-t4p4v#GJsls-@A6SRXw5Wp=ZiV^g1e zE4`>(RM}n525y&$7WgVNvHd&9f$NOsiDnpXqmhDN%_Vn<8M&%`*|V9_rO#dOmfYrD zjoC!~DL6OrA4>%{9mb10&(*?8w&!}}fnw1{cFI_;l)*IRgS<4PAfa)L-)n1=ea&TZ zrtxlVY}Ov(KqSL~(|^G*Fu;KcqwK{8??D|zW!Txi13iExnuQ+0UzGqo02|=99=oY9 zpS{cXSISt*J`+`N_9qnp@qA$1LY1Uoq$%I!AKd%psrAm4>QWT3G!v3M$0y2a7WDdV z_6Io>Smd#=4*g6#YX*AQRDZTaP%<>g6fF~j0~U!3KE-y+hTnSRdy$QXPe{Hkh}pcg zgqdT#6@rQH!RYq*i2s~#x%~3z{)*z=9g+Zw>R&))i+cmo-u371bgR;NUI8zG5O1UP z{P6B@8Q9(W{?&Uh#C$mS1@YfrSB{3(qtXAjvd_QaMN2DXlW(>6`;S*dG*x!aZhVLJ z(e9-z7KkPsCYzy|)NZ2?&h8uo!DKjB51t8Eo~+l4DwxXk#iWNbTb@(RkAwh>e4VLj zDtC~t1_eKoOZKHT(4jlTgvUo2f6EmcClFuI_8UNg2HR~tiM|fGJOR80-#9$R8j0;Q5o*K$6 z3(`uBgXbMTD=7$t?yN&W zMNB@nW#E61%ioKv<0^iObr6c|(GLr^U>b!hb*mvy+5?FAH~<`K|B3i4`0O-0@B}bM z4n`+#te^6=SERUu@;%82^l6cjEQEN%eXP3md%4{5M?gSc;YvL7ft%!bWu}HM^27qv z)Y>h~11!5_J7W`8zH?toQZKx^TaN}m)67dJLaHEcdOnVRko7|R ztEM)VsdI0g_sR#TshuJ73BfI2qmDoD)^EAUjsa?F;L3{t&mW@)xyELeK}cd!^7e>` zzDU4RA$WZUia`W=0~mtxrO;4fugjaQQ4waPsrK-xitB zj|;#Qe_tRfZPZ$@V8ps6*eH32o^46$E`a>X%tMaf0}rpBJwf)ROPmk+Xk-B*^`u}N zM-Q$>wV*`^Ko|-Lst!tm`Q6@(NreJkB&jeJMP2*q1X>`;DySnK_U^V+X!YL53j=a7 z#9PKRCp$R`8BPW63u4ShF6H)DqLy~D7%pRhZ$Ux};C=edRw26WAQh(^_D#S|s}9so zwlg-hCB$nZTsvpkPK2VoRISD)1J3Yl%F4+{8bH1~)^0AzY}~=8@#KM=vvK?*QESbE zn>RU?F1gre+HDu&4_az~75YU(AJPU-OfS54iQt;_XSP2Ja5 zi7|l9G7&L#=&Wpjoe-SiBiZRnlcb)O>23f6M+f!cF2vyh{YYfdjzhgk6=TL3P_^=i z;_8uLQZt{HVtOuFlW}gO86PXGy<7TB>rN2h03*Oro`Zb)Q1)}5WlBhg&|?-oe!)se zQ3TNN;h%bQ$i6yt0xKnY0l6B09S755?*6CY!}(%(^7&;Z&@lvCMjv(D#QHX-p&3F^ zM22;-Uuz`@opKwsoKS#D)UaoJfJF0e!w2aA!vgcKn0oUOHWqvovHJvU@Zp>>BC#9W zgKg2HQhb($5t1l#P?GJ5{b*dKNxVBdV>u2l8?q4sX1$*3uuxKJg}Y?{#_P)kO>YQRhA{%PpmE=Py8#O*|hn|;+d z(s*8a=s&m*+Xk0!mgs3&0ZV`@BnPaaC`Tcjr-?27vlkodAO5@4hFkb>V^l6Fqc6;0 zIeul3(6>JnNT`p=RQg?&evO8?Ug4fU|bmx z8O1ZdzXurp$S|dRo0$x+S#h!5blKx~y!HP$2X>yX&bmmC=%&c~N8d&R8kS!(M>;vN zBGyPG339{jlK27a8SEVJg}8|+_4)=_=TPm4seW8&-d>P7KH3Lv{_OD|B~Tc8RNykh zjR>~!sD*Lqy4BEs*|#e#jK~h+MBB43llp6)4hOxQ^u&MFA%08AGRx?3*z>byad`M# zSWJ6$D~L{kb)9lgmJ|Pa-+{T458yp-W7~{b#;b{dOx=hc`$h#G91blK}p)3w(lNu8B%x^h<@J7la!O&AQ~1y@O>)aK>tAY87-)5DUdm*i{Yb4! zp!1u|IuJ@j`38YEBwxbMm3T7TJn@6B?2BILFyeJt!zfV$0SX4&x`@PB7U?q_yKP-? zjQneK$ba3yjhpJ8t0ycXo4tL_uDdqpjff%ZVB8XK%ohV;|9bikt@fMyH{0)x^I7g_ z0`to_`7pAnwNToQWe)}W4lG3nn*CMckcD;b?T`~0jgyI&4KajRjSk?y$H(srt!Tu$2Zt= z*V&9pi!ujFlUPw&_fvGLijTlY^@Z)9TuuQ7>F3{IC`;?_)rvCeR}{4UL8`&%tOR2-<>wsD|D&HCOCzIjy~g(}p!}ul!auv~%h)b+>iR1_ z(nh^r)>eD?LPPG|RDOzm*+b7w*)$W*C1_hgMW1J4W1RAYxC;Y8ieB+!9fI#W=YyzQ zS_W&=-i%D`jmNtgJI8w$sM6`d;MkEH>ohqu>(Te zT3&;B@y?EB@=XON!yRqR_z`lx3iLXqirA(O-0MQA1!55jw9|XEvC&Hlf%w02n4w2x z=49v|R4Bb{kJ$Ngjs}iR^ZDxNV%Hh9E3`Fm*Rk<&b|s@|MyAhxyU0jbg|Z~`fzy9$ zyN}|!sgft6GEW_=&$Ycoy;^AG+ld7{k9q3tG|`pnR^S(Es5eFtw;!B`B>=7N9Q)A= zuT^?vnuQupBs_d+nnM56$*)U~Qs&nbZaT4p*6OY?vk3inq^fF4cXFfZ>hF#eQel)& z)B?P=A4!={NRr5^r}bPmPngAeFci^DN?RMVoXjudZS8h0OEF{*#mlwYkJDL`>fiC32+#c+ z)aicEF#4n58dDXyjXScWl4Ci@dcW`{AfUk??f~7whSQ2voLRS? zVARi&^Av;21il*wI%h=wBjPsbZ*hB7Q~0Yf4(C(WYP5gd`@EI=dx=?YgkkVm7y{M! ztV==Itf=-SK}i00n;ZY?uu8n1fb7FKde|dhZ5{G&kvsa}cqNa*HvTXQAygoqQIzaE zAOt@-FrColPc0koZRy4D2|(}9=ERcdk5Rt;S`h%YeP-(k_Pi?N;f18GrI=10uQSvS zY!~YhmnmDJ9dVtDt_mraRJqt^FPBr44YE?w_?>a;dxH2;6C)tvyYua{Tly_;u;(V> zKd=8dr@F|4Ilu!X)a*;;3|sqe?zPq}oo;jFD;?2*4C;QKb3finW&kn$*C=8=cL6H z6xjThcynRTb}ssO7l7HRFd>rLWb~+H)<3lZ2Q#y1>-(x}Uu;LLvicU_X>g{8ScZk0B6I;Qbf<0a^0=2mO)!f6$+_ zf6*V}|3CUubbJzbUK6hcfPs$WzN`UjAf!Awo+uyuf*B9_-=5wwg^*x)XR~ZNGa&$N z!UG4^7JN+ZF4R;z>8tBSDRM>HJUBp~nC18r`cE?Q>pM-2# zj}^{T%GkrcCH))t@%nahL(2RJSs6}z&BEW`-|{!`6AvlC@IkfIsX+hG2MGKa=mX!9 zzZ%rH8a7sACH?N~V2XL~vvnPystR=6G#_Fnj0)HRB$$cn@{RyoAg=|Qkdt!-_s2tk zHUaqqPZ@BhcG)wl*!ZU@dNy)^)l5bNLC@C)752kJmYeGMIm%ztwQ{>I)1_F(UnZr4U<9Y z`~n>?rludC#8$ZIw#y%NQVZ}UR7*VW2_QCnPej+q7qUWT(vO-ldaxePNCHfx% zRSiG$D$uT_Nw!4y^Wf>f4vGqZYc=@w0aM&N0ac;Z0H(HU4{dr6#mKk-T& zkVbnSByz8R81jE#YA6*C22hnp7k0w&r8W4yPT_#O4}>&Y(~Y+(O#L{vKwUzi8yY$N zwBILB#}=pPZ-)7oysRiO8CxFUTN-sh-UlyQahSoq( z)`>zT>RF$|$W`m;+A;$ruE{JDKGqq>DZ8kj27l%^-T~+jv#HZR=#S(*>Gu1VQBV6I zEG2lzgA~pmqgvVnR5cVBH%S%tI55~oNt)U?VH@^(8x-Vk$->(sNvJ6E^BW=f@2}Aq zpVOwUmykDHz)!q95vZ%6`TBj)BUVwoK@NH5gx%7u7tCYiC$NJLHU{nAM2kT zY zvEj?@3sDvn23{qIenokG5`BYul8t`2&x~qUn+x9anv>s(g*Z%_{r=RFpDA7$Fv=Fs zs>#z=j37FnSouedD&}I;4}$)`eVT`V0J+*4n|OFv3U@|e zLjafiGA^ueLs?&iP`bB4-7vuF_aDFpp!__z7?lG%x8M0s-ABXS@mH#^x~p<|e0 z8d0b6?3RQ)@vf;_x$jr&XycTk{hHOv${wccF{-vQ0K!2=9E?b!rhlOlt;ib@V2uziy zS54&}5(bw1WlQ4p5nj}6PpAPtg{I!R3s+3B=7NFRIVO{nc^aJN*-UMSiKmgVWv(Ai z+XtN+qCZU<=CK=&;~sD-$=tHoEIm0V8_>FpRb6wtqSD`Wk=^qW zst2uH)NQBF1T$UKoWhXVS?nP2QR!`Rya}YHWTy$BEx(oJ*cm?c>sTo@-OE87%Q;gjdpJO3LfhvMfrN zKKME5CbEs-h_j&gRpdAOW{Xpm>lQ9#)k!IEEGpWOfRl{Qrp+4FO66G77tQ)}>TF;` zNNcx4nm)>?Nq@x6K(OQhwHq* zqUU}boJr2GqZ&8WyH#nnG|xePg~7^lF}QNBH=nk$p=Bx-p4P}U#ItW5skCcf?z@(9 zHA9Ssy9F);?$Ix;maRM>7N(e1ok;quWLOP|c0g_HTe>yZ#OP8!Ec4?&qq+-RaI_2r z$uKb7eUVHR+KFE%eI239Q10F>rfail&+~Y75&741M&VGCv)%s8<$K@dZP2&|7!{Of zjZtg`CAFBRdGP79C#PX_2qu-?d9lj$9M?w@DhaSb%E}DNi`#mnD57}sHKh!rj)Z`)5|6ge3oHwN!li@j#{IMs%nvg;rvv;y*zKi<5nA16x+-ZOLggfNPz(h@DG+ zuC!<_Y+vQ(k_dDyD)pGaSA*ZxdciDfOJq;h@jXOk+s6<{(!~-P*|Q*wwDL5JR5u+# zoUOnI53F;BBm4=Eb?Y?8jCiCpOi18%V zb^(t|BWr3->-U+ZeK8N>evW1O%P+QeAH~c^4-|&=qLGYo^q@(bu+ASG6zX}u!>3Vc zn+R>CXH!pLWk|Ik zdELLmmBw1kz66F3pzs4cH{Us{sRx9+kPS#j#{jPDq$fJyn+H5XYjVRFrOiy$WYv}> z9+>5d@h`$VhT4!neyi_!B~L~fVS>%5p2KQZr3E0san$BkRG7Z}Qmq;c2e`B$K_1#X z*$>Y3_5b{i6?kYi7Deae3ETKlCZL{82K_gj8go{0hq<#viUdmYy8tv7=&wpUK4_E( zAft1nit@J`X3~*T36hDfQ0MG=#mYeb#g!EWgd2Qarf7tL2zOp8lmRB*xD7Iw3lxYm zzo=dICNIJSmT(TQaG)%xP|hJSHACE0i1)xn_D1(N_VcD)w0sh`9h~@wy;sNrqILl! zzJ|OOXDzr!Y=qT2us1)WHRGaf4BIGS5?;(T=zxMOu;CiYck9&>Eaf)9(9`wcCrD0( zC0b+6L+sP_#!J>oA!yQUk(OqKRM;8*0kn(l`#rF%j^Hx;t;Z#R{nr2m4=KH-%y zkPy~yoRuL;+9%H24(JgVNQ^@ujn)pUiUuNIz>TBdQJ}TTjg`<@0AbI#4XCGs0R2D#uI4D&nmYV~Qjg3#)b4wl&VqEHm9E9yVBg*hD!XK`N-o|& zwy42^&%tPL?GI6=#+yed3p#VR$Rd#_M3j*e`VI*E{6_mH@B=@ZtloA_e~A6IZiqww zyw}tg!wR$E-bM|scNDcfI%>!RRu_4%|A*d=1BCHUNV#oF;$GM<(;>6_CdoRP#K07v zHIIrE${NNM!d@E%l|(y0;V0U>7bq~NBF~veHFPAJTty_*QvpsoVXA_;#5CP=o+{K+ zLlv!H7X7t~Z*iKGEvt7!Oq0bQkWCHCvHV$~2C@_yA7-Qm`W>7tdEilUIp_gT{YK0I zDuTYrw#NcnM0~hKd66Q4QO<`Gfd8!4(BFYb1)Atd76R~}gzUI@qNO22O@AEPU5qNS z5TLk?zuDAi73zPpsgkyU?NlLy&SR#(sv_P8B~;i5Ae)+)1N{L*&8tp|g{=X?hC3qp z*Qh`ZFe*?3wo^p(f;&8xofA3u@qZW^PJ)QpP`ObY$#j`Xir@y5OOiK7Z>PN!F{Q8v z^w^elPi6R>RBQ0^lRMv)S>JN^u7!;zODlqRw86FRFO0bL=pYxyb|N*!@mw&2h!YM!|At`}CdI!ji z+c=>JT328Y^!Jy(JTw_N%*T2(cD>q(t|h@wQt3_XWS3%B8>$hS#@3nE$;Y@v+unRo z#PJ^8h5Ao!zz8}FJV0CLj9x$n{7bMBKJa@g(1CRQ2Y_M%ID|a19{gU$r_1n8lXF3? zq+4B30tz*`fH=Yw-F_bErlH3t*0Y0@34+68X5hm@@8UBHRh$w*?M@2`>%Sn?ufwWd zdm66kCy=Myg$Oe(nHXHt&HPXvZ@}NfZonmKYlHN= zWq-~4)3sTX$z_t9F_i7}{ce_B>QN~3{1Ny*OuH`sL@vFenev;|`QT!zEjp4whXU{c z)j73fSIn&hRg^;_?&-xuhdlTa887Rkv=d%@I1(rxKd3wGG6ed<92gkCRBu9%w+U}u zCaP_dH1uNwA%6}o^}sq^d_jbiyj513iOrdq>r5Q*rCao$VtS{P;M8eKhA`1MY5rhXwzYc(QV_XOII$> z8lKD=@i*DrWU^bFM43)3Go+UY@}@=<|EvXk`GIKKLO)JSSOF)@i>11V`6YJ-79V%SAREnc5pU8JO3GXUhmC46yHY zjm|!rTX7vMfGyEx8nhFVB~7$K>rZiwVA767OFgMpg4sJ(Lp70&vMb%O=1Rv2Ubn7m z;fZB3py(KK?o_?G+ScvO*;6z9829Nh)CawV$YBaO=a&&97FT&5IEe)wckEw}jufRy z;@=`vD4=bRS021Mh+)f3t)t29DQjtL2*O%vW~J*ZYMq%i10)VqjsZ*g8?9Pth z<=NVOWi5Xtt(QYPTR%Fi$ZVw_KZY5jus$l=e@|27TWrwz$jN3RVtqEKJqPce z-}|8$Kl>$^{r&~Oe$>sQv&=i38}e-OOqxHz&cB%5-MTEAXytZr+M6j6#tSXJTNcDl!8n40QV^@xw9Ap|njq#6(?!C7(1v{m5sRYwF_u;58(eJ77?D(q0` zvSwr1T`O^E=IZjdxkW7&Vb0%d%cLGY4UkRV#S+GjfFZ^Q0<`_uX#T)divqfxrbv95 zPJ-*qYg>41;h@hXRwvpqHpKjK9u>KG`i@np!M0x4KDvwdV!8RemyjcX{umen??%gH z5$E1!b@csW!KO3o+L>gF;d!oPV0_p>8~p(HeRO%` zR(oKEP2-+Nq)P%+~Pqt~Zzff8w!kZ;!Y_H)O7oDKFM~*wA z!HnH$-|`ZB(3@NBQr_H?hX+?t>Naru1k3rpA@@<0Mcp}5B&j_v1euBXRz{ePPkTf1 z*vDx4h)|0jCp*NZLeh~X5k(9r_2^`Qbl*a5Uo4)7fZD!9yiDlkWQ>SD%rQ;E+e&DmIDh)lv^gF5;SgTm20gj znd4T~9G%P4QQB@+= zC}6p;<0Lm>#v%H5A2FEm0YeD60A1T8&ZrOq;?>TW;z%;y`2N9fyY@>MV?AuL4@8X* zh_GKDOQg+tBjD06D|Nnh#jny`u&)un?EKTJ^+4J4-1-#}4{dtz%pM5bU%Qi(J~04| zAMuYaPqTU#$SX%zcyi)_@0}Wg9o3#kL{O8`m?|V_M}{IgWoiIR_G~N#2KV;@7JB+Z zWh(B8yar0%yNuK7C!VhX^{PKR7hf$e?H$fUVBh!kjj4}*HMD-oxK!oTEMca`0K%hX zv&k2ZGr~EJ0It@BOwm+SQtZLUL?f$%}pf`8CKTj5wQYh&OSL81%@2H(r+yk5h;J$^m ziHni_C**hF_UxClQM3%ayd3Hieaanc5-fa;E&?!DC&xo_nSb8iUV1(oE?d>+ff@!H zm4}a=7pCf4gA9M2tq0`zLi4hO&yS9Erz!e>k2y$ZR}%{l`CIr=$`UQfE;0C3O@QIK z-r1MFG%{N$%Ft&5C1G4rL6NT8Wq`vM9-AW#;63qNJKKaH3umw1TYlm!LL z-6bYZ;=1$k-nq!``A}ZC$j8`Kpna}EC$<71#BkYx92i%wLcPujW2k3S%QY(!53cEH-8Z2ALyq!U(f#jaV1!@ z)e|m_nUUw7I0|L!HbB(Ci&Zd~BMx#G7YybjuRu57?eqfTFzr~~AumD*cPso!G*yVP z9xXHxZ_c(rEiRIIb$p9p_Am4!?Pa&mDeFM8~FXcE$PH zPF8IY-OMsFeyK!p=yj+pqb{On+iy~eRdRG8e2rZ}url8p0PR#Td3M~NSDyLcPLPa( z4SV9pW6iU8`aPmQ$U}8EUKDe$-xawaOU?CT6+vB&WUE7A!7;Ru-BwdVy*;eW^28iZ zh}8>)D|B{oak#Dr70>%VIK0DnBuL`^7=0S7B=&{19Td4eC+}INj9?qAuT;HQ!9PH_ zd;%+E5MkYirdhLsiXu7u1O3310)1n{C07VG;KDPvTVIVa&eZH7I49LLi~`ZmYq=|M zPd~kb)8RPJKu?#N_y3To-(^QR2Zs8N)hMRIW}wVBnT3v$cH((V1T13Uah5$$kpg{d z;wd2JLjqg485;O968U+KQj_QDKZX0_K2k?>0hJYHx1F^bRxk*BwJ^F8h4hrY(FTW< zbV-VTco9`eWu7NF5$qNg<5PO@oDsnn4QzGdl2ejpEG7_wmX`w+30nfBE3HVA?~(tI zT&9bk)-+jBh}nM!(%L(b|6TX1M<$m6&2qIjK8|cG0|nSzu)Z<-a{4FYzBGj3INIa+ zuQOnCnDEl~C#XX5?cDu2K;Q=n#gKoC>|>j{H$flsVa$qZ#@vrS$yfcF!GL1@+`*I* z!n3E2^L~5^Gtb0d1!N!kdh5i@bNUIaNK_xex_jz6md z!7W{oxWy@^m)8FXH|#}3Crp8k4>bz}qeZ~TgTf4wIto{9BxVTZhJg0g9GbVJ_v?NZ zcI+#IH9o2aO$r*qq(}_@uav-^WQ(e&5ZChXB>fYz^@gDH7JAq_)NDgvf_(ZqS`*Ek z@*WmmOKN6(6Cof`UqiuJarg>p5fcQVhd&_NSUsB}VoxH&rsWT1=cAkZbzT7?hEyR1 zmWI4Uk{rG+Llxr~sNY%>*((Qk9_x;kd>rl0Ia2{G=t^n(MfDph6!Z-YyZ?1heLujk zwzXglX|~)_*c(s$FnJTW+3^QNkyi-EtDLj}R3%W3mlK`$L4ZU3vymdAoQMES6DYRQ zZERpk+W=A_{pI_uUjH*ZKTVXvLtjq=!P}89PXl>=CU#*+NpXuq{^GCM2vW3HQF=rUE~AA4J>mG-G*;IBGY z=TKCV6AAK~x>cq!ejk44Gg67*Ys-=sKQQEdJO~D8*w}dW%D=~Xz?!?;R$=UktvL!` zPnvAuG%S2sXx#~K4ipf8WW7(2No~@dA-?4hra3D$n61@KsB{4nx<4G5Qba`U)%}zz zO|=lke~pgN7fi|4K?JbNcAs~L8flsA^2EJER=(RQd&y_tLLJhgQg!~I#tTPi?eC=#KZDt{k zZwxiK(6@P{^Xi6>Nb?%Rs9l!9n(cqZ+ryO(k>UM@ngu*|Dm~lP(F^&N+2T1QHB7z|*BTJU80as_S5EtZOT(NXj};7oy`WJ|7ZeO8mGI zMGLE1mw#jV5d|b)$j2~wDOC`;6~j8IDB+;md*+lc{o}@?lX`?^M+s_NE%aC^$%}&P z?o8&UU3v4|>8u3GF(a1(n@I_I_ncP)=E&&>m%Q#qZQ8QfafOOJ>6%+<>VO?9QgyO@ zoUt=1;MY}t&#ZezH<-t~=&a3B);G>QA_A}N&H^@yVXnk2k;Q>w=2JREvrd;PQ`On|5!rJ zrCIL6!4Tf7KTWRda}&2g)MR7JH?pv8$<~I0BSv#!yQZ{0;mwPi5LhawyvEar0K+2e zuR}=DNCXYi5oLbt)K<5JYL_`wfU;2vJ#8O}qOZyfgWs->ObcoLEwC=7 z)o0&4fN}Su4B_%>)Xm*T4IApxaR%;X#BsHKI+X<)@ywK#tJ}4Wnhpgs{B!AXkd~l{ z)3!L)y<9OK<=uvXtvLD4u*++zuaNOCD$tG_yFQ;JUm(2Rb3idHUlJ0qmsY%)SiK z%FP~1)2VSE1c7G6O|6pQYe!n?dGA{6+53W?wCV3)SgH;Cg9N~qmTkdx?4=M7Ea<1x zzIvB6&9n!V6Ac-hb0)6DiAhG4E=M{xpqnbDSKe!wTis~$rd(VLP_=384L(9K7$ej> zx=!m?v4Lv}RWXjW5tj<^QF>JBg$};9EItl{>tLm`HqrDA&vRH$pnjgk)GbqT+7091 z{i$}EMb^^b(^LbvFhZ+Be}6Naxe)0c+2ED##Xl{dGPN&jM5LqYYBplSr__wqc`Vu{ zIjTo4#pfsmA4q~ym~0HGzYu$9;@yt@iCUQv+cKL115u!+f@#{rqZq=0Fj_$6Lv0~3 zOyB537}Jv|qU-&mJCi=&T$Kyew|C!NQ1r+?#|~Ga^Aw1o^tc$lD?4Mb1!#wP2_I>0 zNm~%df+A^|QK3^nE+LFMd)AP+?zn+RHy;BW|L)%Dv_ z5K!%GM?XqQIRm?Bh}poMH{qA}ey=eZ?_mKmZ%Tgy9B))0X$?Gsc2A*z%gWoIp=&>{ zIxkL0K_t#Mt`fyu?uv~Y(U$WgH6PcDGNHL-nC&(_dac^$uaWMa(LJrP6+h7bHmg8Y z=$N4XPmIsMv&#R#_|(Iju^BA0b13W8_2F($)euTTwDV+}aA!|?KdFYO*qljt{yk2s z{2CFE-myMZ%W5^eT_xk+oBD~4m45~iI&y4A$LEp}O|}H0{LtU)X``k#|8a8C^L0e{ zeMRmcNx>EgGr?a;f$smMq##@?&RX&T#ysgpgvGcDD3aI!_g_f?cF?OK63#*G^#4~< zz=#&~S5nX<00!3T86@flcSh6CL?}YCLsCa5Qm{?p3eXk|XMeOH5QwP(L0mCDH=(&4 zfF4`lQAH8}ITRIFUwhhV0n22y^;y_Cya9F#iTOYifR_krUMo+c`qFKU6(jlHQ!J&*qU(faZ zp~S&*u_OBZf)@9_ZL5cj45<3-z}R-J1Ju+vhJUPhb}G33@RJ1e3}hhfcklDjc5Xim zha>X7{y0GVbsXXp?hcWQ3-lYppQ+NFJQ7#zBq9KNrWAL-^@dlCBWs-+X~aj3_HG*M z^&1NV5DE)hHlZ-Fz30%b7TppaT^kR#Xrpfw)fWE0=-V!~5#U=HZACupV{FRC-sMx+e1^v{HUP zO}0Wv({m7^go3WRf_2!d3!J+l(eE=h>Q92=9CR&4fYLP$GD-+liiyra2Xx~~Uu3n_ zfmedc1P8Z5h|NZ|YZ-7FZZd9>>4Iuz0t7wAL7#WG-%(sI*#NSSc3dJ||jhq5cw>jJOQiV7#mgtujbg??GfDW_jtXS2aP z@5{F&QZGyh-Yh8psd-JZT!8($`BzauyAKgHv&+ef8*mJ&9xPW8Y6_ZgZaGX#=)jk?ZD#<9&@zPw+{Q)!yVzet4XlSLj=SMyjYQs6;J@ zd1HKvFx1q~W?7P=BCXN)EKi|8Ev=SDW5Vvf5`B+Kh|gUwIe)&In0+#Qjr<+|=n*qG zUQoxpqXn|6((MwR^j|NbRgH_%Sa7@V1Z>?n{O<*?kpm~rVT*JI5?Ewo++=}iz(K{P zLCG>#V=cXy(*6@*QC8u5AjbD~6+fQfx)3@A(8LAcAiLN2l)?1bqrI$kzY9Waac_FR zw=dMJO~WU!{uD>gfiB{y)dVAHM?dK$#f9~qweS7?65f*)VlR=UF{`L_(L?0&mM$95 z`YwPv3^N%!;plGBNIJ9}w1a$u+brt#@kCOZi#cH0Qxhft{zq#x^jSRQ!+xx_%6`|k zIBN0VsE-cl-it}8o-LFJfoFHbH6^Id0l&pro(*^#>@xH&WiAUH#8C?e%=tQf7u&wJ zNRP6TJe=YcaH1^IeO^J6ZjwWeV-0>1b)9n9EPjt5clPoiHG*Wg%@WLS8AK=}YR1WLXT zPjF`vI`EyCFG4*&tQFL*H`RU|Ae-#ry)i315iDmKjpcWG%D#NndwMVnAYfU{GJGcN z9D>Y$bqFSwqmOL*B2`^TNA#HcpQZsnJ-mq(gl827an9{)iaP6EXc#&&a)R|zwEW(* z;G7mgCu?*gBIj|5;S1@dn*^9x^U$l)xpf0g1Y8YPgob=l^Z1c#y?y|3ty6a(qD>`` zNhkUp+c|ZWTmV9-&yxL+r|O7diFQ{yGb*oqz>}s+QM>xs{%}6g1f+W1>;<8gIBzTY znTLqIq?@p}ep6og!8P(8t;zSg8bduf;N5Zn83Oq~QJ)WBH5tSvW48c_*`JUd!GNgG zl&ruRbYMR$r0-zRjs)`9z>uyXW@C-Mdf?J4=BS@~Xe^t9?4cv& zI=|~W>X)Rg8(`dElaE-u*yksqNnb{s#_kjmVZERnuB#3h-Et)4&pUGLC&!Apq+>~R zpULP^8eEHEK&m>Tsv8rj@suI$N&zL*)6!H>KBgfGduG1l;pzcJD2Jx>+}wy=;g@|8 zMwyWdryNQ*KW424zMhu#FfGm63Flcuo=X7p#%vz1?Pmzx;O3_G07#+6wt4Y7uv7~B z9~_P`mzaNSu0LV*fG+L~)CwQ(;6&ORR}hN{8b_mBR8kcQC>qNXj{j!G@`6$zoR+81 z94BlJP2<-Y)Og{v&c?~Gfx8qOyy!!xt%fFS$gFx zXW6HN;LV0qOb$a{>G((m^Ddj3DNnxgXC4aXgHAvZu0szdk~USiyC;_->@GT}*T|IE z%ig5An#*eA6_^>P&U1H(|fJ zvl%LZ4VClJFXTVbm)ub3!lWqQ|@vpQ1aiw^|y{9dh9Wz^ip5m1dh z3u{~oCy|iThnEvU0H()05Q-%nK1m*HAGsQ*RUMv*SsKUwC0}8>O$r~i(P4E&SXwNk zYEz__@`kzv9Y)u*;8oo8ZR@TtqiRcc%Fs*Tk#7N;?lMHc$iKnzV8UorcW`O4G}MdX z{OHXwi*`P#g*s;!7R7!;j@Jysmv@j_%ZYCCX#}~gbFr^4HwW`IkO28>*s?`KNX@;# z7`K`^JtV*4m|}ka87mS}o|SFJ_EZUL`Rp!%@d(y*;DMS!xL~#B^R^M5*=#$MEM47y z0wa%2LrrWb+hu$b&QH2vbh8FyyktokOwov@>&Qi7DPy|Suo6!#tCIe?^zBqO=|zQ4 zsqCE%o60TFJ#5s@98~nET=p|n$ zDgwl+tj>UJ41apZC0}*D67=Y8eQ-20;$`zj90g!15D&PS769QR#({Znl6!Gc^kGXs zGEV?pzcv?;M6i!S4j_CG>;Qxhm?t_K`V=tCYiWsQa23^bK)jLx0kpr6(SGjTiak^r`cpYraeqv+q)Uw<~gZJ`2di0q!$$VR_O zw{(8tU#?eG>$d)l`v5EnoVOV#zwIEOx4-BfVEHduzdr2$>k(RI41PHwV1y!}1_D9> zyu;nz$%Mho-rmL3iHV8rKZH;0MmxGM!|We}Rzdw^xkmf$Y&5M-?dGE`U#dp!W_Ia% zj6ZJ)NmuD631=ow8wKC-L<=>?nR=hRDnAqi)-*=3{H>o$|A# zMoyFN*c7D`XtfiDJS#WUFC6a({P`{KN24W|!rFVuXp3I=dvViTbF;s8adQK(@PYYv z;lrQ)zZX8D|1Nyg{$2P`X(BrF+3M|0-uqan6<``LgB3A3*8mni{KiNEaQy}#!#xlr z0zhD7WZ^3ci-;n1Scm86NT0++y-PG?$Ho#nNHL#SD8F&S0cq4HobW$?qo^=|C@R_p z@u^Dz*(}R#daFhr#fb96{{bW?2;dG4*z}VTBosW}^gYQ{ zBs?eMgv>_wL}2?wWLf*^7~yx&>~~y=uN08`-kxY0qy22{E3bUnUsJbm0LxoVGweskLknQxgTEY% z^n!h3xHrLOp9R(%l#BTlXQfA(>S2D{1{_xdq_N;@4&Zxk)!`<+x3`c+yiS?{9%_K) zZMy+rc^m#~c>|8qN^kl@jCNn54mZ8T;!{)VE*={89LqGcxmUg$5@Ymo!Y<4aK7GfM z@#1Xpc@n45+kOc7?w7n^|3|M4{#y=S0&8D52yP=$?(}^2G7_pIzzeAmNFg3`VGt>qAqj_8D zh01W0Mx63VVx?u6!Vp|0w~~BWKHUar-c&0w2fO*Al^#_~Q#P;HaylUYYTl436M%lL z*S_dk1Z)DM&Dy-i|7iSQbiGrM91PfXJGO1xwr$(CZCja)CmGweZ8KwKY$Joy$y?v4 zQ~&>+i|*>`zU!;ry`Q}nJ=^GN8p=>))KTfn3szBQzUf_| zX2$Z?*}s^#WnQ6R39w*aRJZUFAWV=J+rEixB&ZORAR>yye}zxY{=dSf6HxdV=O=@h z=9S*kd3`^*#meG5W29v%l?H{dN&-C);Rou0>RySOfFN5QoO0d03P z+Yx{SwHjGn#U_IV4@giPJ=lU94G)l`vvQmZ=YKH%_-%~u{>B=?NJ6$z&W#j^R3C(B zi40Dy8l;M1W$FugZH4kdOp}I$N((XIXXiHxWWIIlB`{v_cm>#fJ|~gj?s^$_HRa~M zlA>onm;@}pD2mUVh6qWdvdMR}CU5DzYbgOKO?g3>KnBc;wAWa9p&a6tPrCw=qx;Cmg!0rQ151IujBoB1X znAg6jt=QK-avkYDpS6WEUTq9;X);Qdm4r(3#fdqoIq{{8EYkK^^mgZzn@Pp?CWRz*FJUh zhKvy!)4yqTTEIquRiE&XceQ)lFl>~QNdKT}H!%e3?V(7%8vbd@@RHF)exoP!hC_HP z!FAvNSML+MWnmXT;BNtU#A-iIT|wsl`IfHouHT1fvG=eVN%z6}E^9Hrbqr}C;&JOnyQsGnK@^^-Tn3k)+A zS+SwqQhy!h^E;Puc)sZ)f;u-MisO|XBjTiYTaE+w?M2+54tBHUCn0)pW{o;2;ULt& z?_%QtqHozP$B;*1S=t8|M6AUN$R@8{Wi3fVSOm6KZaU(i6X+{A2Em03C;Kd-vfD2J zmM7I9JUpx z1>1 zd`@?e<`wa@z$RN%UA+AKJt>}kn>;Vg)U{Qwr`WZK0i5)EMVE}nd$YoFfRaT%-)SlX zLQUCj)JyuNMwqprIJhQ*+sImy1k+3Mz{0Byt5tI;I38?th2d}c1X%b8dxk*9uL2Zc ziFd3P#%VT*q4cg#B_lnt_>GAiid*CslxlWI;qUx_cvZ*BP)L6bZla53E+6~{)Z@x0 zbTUd$143Z36^|vEH8pQ1zq#IKCr z^ol(y{^=X$D-xj{Lu66CYsZ!x-ZaS-H$(a?1a-Wsr*Z8JeOrDdnsv?y;U5hEN&~7( zfHszBS27A$A&@!(1Rd^(K5tr0!ew$>|3pdexm66BWC@qj@}+fShAr^iOco^usSbaw z>Z)2tOTQxXDVmX9Ty*3E6YA#4Fa1`_8hQpOFsge=(Pa;6(3z{j;TpxN0V__tc#5`b z7|_hzD+Z8xY~R5}EiU<)rHst!592h|A&X|Miz)fYOYdYOvSN+y$D7l^oEC_bJ?`r-xRGMS+pT!MNlhiPl*F z#o5}1nd(6Z93$Koi8c%#KsB&Sgg>n`?WrHk(ihRncM@9cv&)NGx6`~Pc4GPg%}l5{ z-{ACoSK^zr_#|XNHwvXxkO@tBy~5Ufr3#yOuitUv{6I->q(2&XI`eM zWJ9`+VLhX15`2NtC)MKz-DYvd;!7L_GSNYm#>ey$;cH|@FVjnYwiO&RlJC2dt$@?W z$m{|7IQ_Ayf=*S-*7$f%meYmAeO(zKi-Ygjbu9_CKCp^Qr5(C}aw8LK(8|o}+Y}5lcTMAjjhseM*U0pRP zUMz;C=kpY*TfuAn42Y0&dOb`+x&+pVb?D}0PVMv--(?70aclw^Z3=!d)bs;C1%CW- zn7EK4RX(@e_ayO#e<8^VyiN8NO2=c>Dz+HTo&WiQvFqAY0c;pn#RzQudLl^f~j$G0hW8E7cdjc0<%DNua|V8v(njSa!HblBG( z4F++gN4Vu%{u`|sVYSbL#on(+UmZ?kEs@6VvK)vv)3p$$GF7!A-9Gg~$ki25!8`ev zygv+wKTE1XX&yyGO{^m*s)-)lk;JXaOU}q`)Oz|(*EZ(jl;r2l;IxX}WZ{X&a+oqa zL!DBjmJLAa34ugV8m45+COY%IU|b(T%HD{HhL&N;u1uu>%sBvU&Oe&W53c+UrTmGx z2=nT9kDHSq5WyMS$DBIx8{BhBWyB~~n`B=wjQzBST?VP#kKTc@7SDGeNvjq3{%Wji z2_&jj&LCCh8mdoIZiMbP^Un`^0gG;fsopLJ)}Z?q^LZB%aF!FX8y-%-*sB--82+37 zu5bZ64H&{g;k9@g{$@ewA7!>BYklD)M`|MH?DIA@qwTik9*lLJaO@nQoq^9`j~Z2{ zPkXV5fKYbkA^Q!)x{chjf%K%?NSw5~;rYki7u^w2BPaJKO9Nkg8QhqrcJo--3d zKA!Ev6i!C_QGa~+TXmNvX6$$U#@9-RfAmY1+!>wPQ~^b!*6-fl@C_)lLD+|~|AumR zgHjI^KqA@CxB!NoZ>pQ_6h|E>0<9iowd|7@VS~s`YKUyrvSKn37BfQ~S7 zgxxsGBCm;^uWY>|MQ>D559<6)4S9${H&0RI?#JM!@cR-fy7)tc<8N3n{Sqfbv@#wP zNOv9%4VwM)g`8n6GWLi7W)`}>f_wC+VrNMA(|m_X^lt^1ugP=I)0PK`BV>>vbE?Ev zZv_vCDn))Gl{sa>{Sv>^Z2J75fFq#qrcTWHqMCL(RJKvxn*3TVHnyNkPrGf^vn=FsI{6f z)@K+^ab{_{bT!j zylzbf?~2$g zpE9>GNKb&DsX#7WgMn74`*Y8tu)q4o#UDifP{Sk&Hu+H%ibFP^huqXQnHJwEbN4FF zJ=<)!#g!CC6zkf4hm0bGzo_+I*y#_y6lWSb-PLqs`OafskiOCP)fhk$q>2XhDS+Ou zxU6%SyNg40>y?DV4|?}b7f)KgP2Mj`51(2_B|S_Iys$~FA*yD>%U@e|u-lAmfV&|%1(SoG(W6Wg8o0&1|8C#6HZvdAe_S-PzJ4cV5c z&YetN<(tzL{Pzbkc>ijiq2lRW?D&8{krcMVtTjnXU$flr16mQKr-tK=dUxOPr5vJ1 zz-XEXCa-E0=CLtAv-eZ?%n0e>MZchAAPIc~5@fwrB@Q`Sgj7a>$jS1INt;nAJ`PN= z_to8Y?v;2FGJD95v}|X^+Q-GczN*kj6<1XnYHYq=4~#=JX5hPm=D9eh^li-tOrA9bVq#`EnVQvnb!YVU35mX4H0Wwpn0G4(TxE zaRP`^ce5!<_a@BCjfGWi626~kii)BE6v#q6`z>AgF3@P%7>kOy)doBoZ=nuz?jebo zkR|i{zt=Y5FWcMscj%9|eHzepM9*^53g#EWAd7PM4Se|SDU%hy#{Z{o!L!<4nCEpmI+H_lDYea+`eGVvJ^4TJ%=L zzFb+g{!9r#DBy7YfsR+>W5*Wp-q6c=<>6uL_+t=btK=;g^Go zJ0{S;0dMl$*$g3&wX|MNU(V~XwX>zWwP}q2dGD{&Ko$g z2W$LPicfZ@bV_N`oAsk9ey%odOjq!s&jBLn^IQ5JaZWB@??Nd6<00`)LVq+7HPA}hnrxf)7z6+;&N&o!NX)b-EXDk&(oF(B@=Y&6uj!3;=tRqSB zG}{l!l!9605R-?U(;N`^6gm%OBP1#d8j7+NM>DAuecLtLF3ci#ims}N-J)%jjgdQ#$qb= z-_L7!ki}; z*w9Nmz!h5~%It6vL+?Ij_`TX%scOW<&(Ls~IYV>6OIli);F)bjm@OvJN#jeCtTYv^ z2-8*Bso2UnJ2ibTz^ofYn>T0PscyVyIv)F@-p61F)Up-KAV1GcOdVz558WoY;BL{L z6PvIfV;`^HGht4ASJ!>e5*<%n&3}Z#dvz>`wq27aS#2`Z(P<*R67;a1;V_Q%yYCXj zDTG^;CKu(6lsHYc`+w;96 z5i!uV{Qdswr8fQcc+1g=daFW24uy#fbdU;W8WoYDL&t>6@@1PNCCm1gvz=rjrGS zViOaloH5s~gWrDDWHE@6-qHzDXcUS}ihG0w{0`dfN7%NUS1NUdlnyitT5`QUXb5^W zs__4|{(AwQF^CZP>xg%jp8SiML^QDPC)Pgm0V#=J=aD`NqWI0^KrYKP?EwoRSuQWo zABa3-Ey7K}XlWW3!o16ja|D=Bu98>b6g>{q0B+JR5%h~@iZ*C0PX4%5=~t&dHJ@fI zyJRduZ~}65E^16*ANn>eF8HXSY*+wP@-8_1JI;?gk!Wmzzlb{ed;?1F2V20w8@&+V ze3LeKKU3Z!j@8Ft- zB~u#GwCk}Zn>3pQOY0(kMMZkW)(Ob#k5`4#Eq3(IrkkY8;Pr!PCyj}IY0i5j-a6$G zSl#f`CgFb(b+I7RLT7mjm_~&p?GA_HA?gcBSZSn#D0Cg$!CE+;O05KE^?I)~lLA=) zm16A(ajdk1U3d?MF8;}ARHd}(Xzffcp;IOXUAtszi<-;+J$wArSNd}~8H_DNU+3M6d0 zWe9xgxC_h_G~`lgO(bQOZ6K#4S?IH~Uc1dkAe_Q{N=!jMTP6V|vXmj7+jI#tV7XRA zJ`IfUg_35c|Nlt@(4GoG~i z$RaLFKmj7y0)JNDp6Fi^iKVw1$9l`il*nOCJ1~xd3B297L+Lst9(cs&^BFgP3k%LI zc8U>93j={6&i}#dtx1c-9Rdc56Y3ClqILXnm6mPHJx4FdJ);2lItCimxrKKnz0xHP zfYz%80<_gQgV1!cG{l57gmK{!j(h&9%x6X!sUSh%%D=;oOuC^D9;!V)Jf- zPSfi3FFcYj;eBpp;}3B_(GAS=y+(df`w-s^ec8qs1SFhZr!sO-i;E^Kw!CN? zgf%Z+xewUTNW)yEH!bh;@|k-OO15@E6{M}2IeHbhc^+iHf#63mGV9d&$Ay?@pWlp? zXkh`RptAP{zEWo1wUUv}aSqDntNQnpXehfeC_=7=*n1yvPcp#sQLQ@kVj4f>OK3MQI1B(BjNb{3M= zo-rBTS~)>Ec`qoAetDYsx9Lr-hE%m|bO*kt$p%I}jE~uw^XdWIlWuOfe~`P2c%9}P zb2VSB{7#PFE3S(u116qM4^4Q3HD#>cqBF2x+e@D)M@Psr4M*a`#ehzub~uH`O6yN1 zrkHFeWjNF$3x%1SLhFbV>|C8_?us!(0EVKK71==E4OkTuMYL%=_N6POX>saAYAV#e z@=h4zlMAiZRqz^1xwUZaXhnR1bYGJ>X^r8Ytt0ojxnn)GKI0E6hhw+kr}f*%v2Rl| zGx+g}<@NS4?jUV?ij198y>~8N50JM`sfvZ|Tlmzp!cPE|YT;pKUE7O%J~bYRV}1-q z=dFc??*Mtae@9H~05y1NAy+;O2v?j(8gtKF`nraLm%Ld(W&w-3&pBOmVH#*m{|wGd zed9=*zb0YFn~?nI=Nx&^n~{$|B|uM|szzBpej3nH=jl&B*>4SQL)noF5h}F}s<_

    $BXt7mRY*hmbZ+o(v9@=l2d=JyASdS@)M{dQSi^%Cix=&4qU@Mcm|&YrBH# z+f=3HT7by0+r$5<=;$E1My>{47`Hrn4}TN3%@=(rK5w&~j~ZWHE1HN%BJ z+_8)=t@PEqpwxV_wCEa<8Qc%&o)GkS8s7?-L(^(!J12RL#R_&d*4LxJoj*Ekk5brU zW8GwcmTMd_6$;BsXGF?X|GaUn9*!7olm{0Y>||{$DhqIZI}9^)8v$(D++`wcJQh|= z6j=^$O_FZ50_;iIB{ma)LL~BnO%Wep!E;vndJAN&`3>2g2TYm{GFp1M*GAl$^atRO zLpz?r?9Es{J|A7Md8|3kv%T$yqcQOAiYF`?8^cq%dJXaxPEV3^{OpbyOfE0#)Ns}8 zvuBz_&f|P3%@f&IbLdBX=hw|Y60h6m14N?(qXLCqtuD@=OYz!vFP zG&{isvwY9Eu$EmJ>Z@IA2p&@V>=>JkxIn6M?|CiKC7OZj6r4TT?G_gETS$Ut))qMI zo~baKKh9L1^-n6{J8KY9I|4ZP(>ApCOllPog6J zWcEx`XAN|JeGhLMD3xm&+G&VC6W6WyuPG zQJ~8Ac%xKp>B9ILPK?CWIHO+WH-r>_-;ts=yfwKVCTp;*)rSd&<4XVGbrnZ@P?z=o zE=RK*1Fwhqm1J^|OeS!W#3Jxx{~k^tvB0!8yjH(ASJC)C zm@n|C)iA+fc^|M``l1pZKZM!oF{sgNdwN>!1uT~`_WpmCOG|sx&LM!flJ~#GmH*D} zwANhyvfpx}UjM39G1rUri8}Q0Q9y`2kYe|WMLWUPRju~UDOEx2()HOHR>h_!$Be00 zlR2+l94G=m)n5!qSy6W*`c0ExLO5|P@**Q}e|?*t_PLp}<`AlYh&T%me*Hx!KLk@%iGWfIM`J_baKZC^(KP z$4~M2g?6Rn^`{>WIqGy}&z&NR0!oOys*_SA&+SM-UeNn^!gBR7mW}^Mj z->#s4&8i)*{btUCCwk0GAKV?t0H$``-p&L}kc17FV7SQkLri|V zO$8548!wLtTc85f5rXC$V6(K=ivgvAl2d5;7ykC!@_*oOz>h3r{k71ATsB~t3#*+C z_+il%-by4`1n?(&@e?2?@c7{VfXg(s%dr*sA?E4Y8zJ<5jt<=NXc|#VvvLjv53vgE z<^jEwf|aMo;A(v@D^`tf@_41uEkcji@&(rAmW<;3e9K2ZX7N2z72lH52vSOamL~!> zOH`{!9ntv$NaZ}62p11}MQT*5&0Rc&^ySBFRe+N_thUV{DLlYJg5aV@@1tT;xJ_zc z&W9PnChl2<6?$puB3u}zy~E~$n|R67)O^H}lR4i#FS z)j}QRs(8FR%neNO?`Y|W1WX-3S;*vO)87cLC|L9ONg<6#;K{z|3<`RLP!?n{2>Y09 zt>((t3^!Yj_aHZ0`KC4td(X|s?`xyRPNZsZ*zvP&^tlGVWKV;mizC)bQu&!dv#?Bq zdLEaW`%Hq^N%<3Zdl;XLcq;I_&Cf?OE)xgsKDk~Ny3j>@kcubs^J<;JE|9GNpcD$I z2(y5&_G$|u#E=r(yineLC;WtvKXZE$P%ZHXQ|_F90dVWJkv_`?fAvIaj+fp$-USk@ zUR!0h5@n1@5c`%OB|#RXO8zIYW46t8R%-T-LjGyeP9+CtpfV(>s;#|&|amEI7c_k_7#7iMH%v}UDtm614BoVVV8*Lw- z0!|S~UHTG3WB)G#4mVf*JLUTreBJSyGKk7J+y?{=9|!6QZYr1!2e38&KLlL208KFf z0mlPCz&Uow=7kFE4}Vbv3nUj=h=`K>sKT#<)drm}wl3xr=u$Og2~q+1RSB{cKJpt? z^YIK>N4{HdxabS}ioq=W)hYGHw^B$xK>Y|+`yIE3)7D!+_0!;%cgb*=R|ij8rQ49Y zn`LSludb-y4@4gZ{Kgb@$dWzSdpf@g= zT(rc77f?v}5D^mbj~kWt2Id{eftt%gC)uj^h+gN-Tf4xo{^=#BjCv{C>j1B+%5O}Z zmftns|4xZ20!n2%^+Vo7nCg7IgX&E&wjg7Sjc^>21I-xP4DveF=R?nfZh*O0M9HOF zpK6XZQcm-`r*x3svk}OqeJ`cS0T?))jFKA!bOxUzr$Epfry`Q&+e1#5v^KlsOoR6?) z^xiOiHr4C*-BUtQI5*+rmI7}~%eokwl7`mQ=+yS=U(ep1I`nbIkt@!e9yvDWGuHG2 zj{>!r?SM`$&Z0yq)I&P-6Tpv;oS%zDNyF70xzWOi$!&{i?rq|bsnfmKcwhT5Ucqcp z`Z3?M`yw?YQV){ldrl^oMY(|cpg+5M{Cgs!c$7dj3Y6h2d-c!&32WNCnH+w?No;M? zAv&FDUV(vwmBUAI+skF@0e?ypJ+C2iRMFeXcxVVA;?zois(<0^+o8MegSh#kYHU|` zOsGQVq5x1J`=Ol6IisAhMDBrqi-PB+=@EgwLqsb2E)-wp8`;Rgih|h(f?98s@oP$; zEnUt?3b6!{X?)t47V6TcSUjIS*EB`{SS3*N-n-img#Gsc#cWsEsi)Y~N3wG7J%Uw- z^C($uHn9Ee$I>%|o%EvAL{%SRxlpkUt6xcl{8Iy2<+4MSIs?^mA>I=X5-syQZ3Xt) z$qC*#UZCQWEnWbvYW1;RQAi7ywYe1;YgR}%s&BWRNtYRl>knTp^v-tNYg(bC&CYW% za>YNVnKw~x)GAyh^nNt6&#YZUJS`HeUG-u5$gV?uLPV=CMr#Ip{XQ!@Dv}((>0G^~ zMg9$mpnY~*)9_Q3cJ=Vla!n00;5OE<~+h%xVYy zH5@X06r6a1)4pJx&P$&uu^U#T3%n{Z$3?{K!s%2)!X~>XgQH%^`k3xei%lzJUbJx2-AE)~0pYh=6 zUo_xGgIkfw4c0I)ULC@ zw^Xnv$3B6)Ydc3aXc0^u*=71Ut%-#d6N63GR`=@{`fjwI?O71&5slN~_jpGgKf|P> zjcC+y%*%lqo*^GG#aUjXbCcO69@ha1y2)QgPsXh<^?s(Y$vIh!zmau;8LGdN-3^jy z#I^Wt(n!=>e%#lq;dy@*Rk748F<fyOhF}PGuSFT_h3>-`doqrq$NO4Eq#JH^fSHMvsxHlHiw2q@a35Thu?W#4u{7 zfX|qR81e)h?}otKMER=Pl}2im%kc;!>Ry8(2}G;p;ia2$r)iV&URGgn5|`~RlxPVY zd&8Yay$faByt)kD`}RZvoNIs~Q5m|n8Ij8F=sQXWT~?oLr3zzvvIMr})=m;S>+__z z0jq0oJRx^5U+qlj9#fj>;Sy!b24%kHIgA!`@Ek9VBz@aoxpYrY z-?cmL)V6(FYI54}G z^5Z6onuK4D(8usH>f}_4?>2ELo(>!`SJ=%*Zpmdd4TV$H=w3Da!uJTiVvS(TEuwGS z=XC)eqxo@q09vOHYvg!9W&BU~IH2hWV#``6jgttwAliDq zr{&K3bj-ajkuzH>&br$%zQefz&+hf{!T-geH8&x|$UC+!M7a&>XHg0Gz`PrxXzwa4 znLw^_&?lvu?CQmz+V=)!qvAAHBw#dBYGN374qWE~hQ>Js0`>bIi344p0jCN-6v+KP zcxnyLrrNZ6@mihUtY~kc)(KfOLWepwzWls51isW>{i>K}%}!@Ik4Z_c!?}N-qwg0!`w_J0h8SXuwar~0k14I`j;;R8`wqJuHh#zTrl)nA+_F+S{Kax!X|jLZ%ggsk^- zokCjOUA?uU(pREGrF7Yda3gp2$Q7YR@Jsi_fE?6$ACOv7-^4U%iRwf);9I^ezsh-+ zY0^sDfVJ#}1AA5F2&;Tt9|wM&&vu;_IfK_ABv}w>e_Pi7At4_kRfT^O|2z3w$2lWR z;cXnopTrGs6-10+ghMzPEm~I@Plrf)S0f48OhTo5KzsPl+{Lf4Jrl4ol$Dt%RV6-S zr5*SIWcY$loTyJAq?E)G15xH3_+iv2fC=a#GKfgCHnHs+aW^sE7cm;n+v8WE$5qc*IvGfEOL{j4HN6m4GWt8+CC)OZ50^u%H4Zs8x z_pt>9vKPs5gY_o@MLVj;t)oNa$C<*X<~fRV3oj5q#6OxF zuLk3U14n$%fHDt6;9=j_?m_$4Pf z|1^paf)iPK0zLh~+;pWXHKnY7hp)8?`uLtmDL69aW+}#`@}|+)2|w_QiGK{4j{yB- z58V#m}4z>bn;g^NkkOU?V=`0kPe)<|s2_UzSR5*PI+n{3D zKmD$kNuncf%6Q5q10Ch^rp7_W&L^HH?;to>W#jiv%(bxSi`s^{yoVFfgl0<&6D8})sPPPcm8z&DSaE9^X5Rbk$X@4+{sd7JkM3kTAL&Xfx@Q<_T@kaISQBgukLMBGm#=tA7LY z%Q@A`(PN(gd3J_Yn0N~tSp&x?GxyKH+x<1F0%Sl<2z?{AdE1WXelj_v+L)43-aKG6_GFGuo)W+^;TZoT2Uw z&FqBRv1YKi6+jkd?LtkZP;8#KZ&&D*4U8DJgV&5sBt%~*PCyug3Bcqvg~NG=7vXkx zE6~s5ctE6GG_8XUfN1U0Rr%>?@06`z-`R41&zO?p49vziSVpE1Xe#-YNX3+EfDA_V zM0Kse#ln=NqE;K145ad|s+e#=a%aqM3KYWS(I@K?KL+!~H4=L4I66KR>hgsq8S~X< z?GwhOnFoo;gv>KUPe7y?!6;gj)9Vnk;B9k6*CojiU%O6#Lpxwk4@CPvMEnfcYlOH9 zb8H8`ZQ_YZRs+vB6b9IU;QT>djm$#H=>NeMsGlXPo0wqH5a#|6aBjop$>_e013yqp z{Q$y23777Gi(#_KbArZeOJekY#dtFTcggHiCau@Al4JIOugx+}%YW`9IRz+HH9IY3 zZ#GI?9H(cHQ~JR+{wYw-q$w4|p@HZ61+H{5-?NENYVf2tVgCrIf z?K&diNF4CQzI|md5!DGYjBe%MCd4Tr1c-Lk{zBQfJ&w%^Sm90f@TL1edY2_8{Phjy z)pNX!>UuYzB+lI6z0~|Y1o{jIs+XMi-b57b?&eqzf2`a^3{vQ zL@UU5E3fKmL6@|LeTtX-u?R_%kZKJqAIer|bQt;=`gy&-Jjv^OZ0_@Im2G<@c8_N1 zPSZv5Mj*EE|UW zE!it?fCeqGnorCF%(0jROfSL5PPYpa1EtU5e@fN(LC~@bQ8d@tvbtw|0H?UpOdd=r z7-XH{uTqtdPeZjS799fk|5d6|{8OsN!oah>$`yoFxVl?W#XWAoGS~8L(M**XQ{;Qf z^b__V50X6wq1Yu`i=DQV(cCEfT?LrL>i6!Zi_PWl@c;8blrVLm#nMrM^; zoa;r{A`1*+*fZD#X6mw(@$wxQtp4FxAo6)g_Y$1cv7#yLFlZ=bhFE6iL&e_+EiS^b z$phYD>{T_h5xr>>KfI!G5p%POFZ=McuMkat5w}kNl12QMglA#Fbh{g9Ie&XMZDWNP zqHpt5l6riK!A~*%rs{mBX0~jtOhO@t!j5O}Qy%>k0_*_5W!(Ijs=kzFkL8K(^6;P5N;+q~9BLXlqouD=xGj&nA| zVO>*5e!exI?2>xF-(PRs@l&)OuYHsqqUf}lHx~Y_ZbczQve-0}7+Uo?lg|)wJfy-= zJ`MGf884=d|2q}Ej|7dWu?R$?v2XvyYu#SZEja>pYtx-dk=Af6U<7HtWLte9_A9J9 z)6H=@TW@Q#e25rc>%43R8j1CL>fyrbLmY6YY5Nu_Pf~8HxH8VGUCYCgp@Qf9vSl!0EZ=YY}~NUxOrU%-K}JL<8GI{q-!aE`2(caS!Xd&H)wD zng^7X4KZG()8ZYcT?uGv!voULQ3b#GFZ~6mlw#8dYff_pi*5>_Y?7dG;MJc2(?6Bz z4y5kL4({o=43FAtsx~ zs*S;c(rhQGh;{Sx$&J_)#et-$vS=E??&wzy6rj^RC9t0{mKq~~ih9ntPLdU?J-YBc zd1!AdBV;j~+7fL#LBe_6+^5!A#W9Z7(MlgFeQ&KE2vz3Ykz>y(n|9yg!d(zr^W^nD z*hS6OnW5CSZ{tCP)Yn;!(4U`fT@QC$mML^Y_@hsys-|d*mTby4f$H1x!>PNz7QR5B z5mf?#3vGQQ%e%_aMP$r?;wYx_&r*nX&2JDotJcG4IK|!p+`xBD^M(f}jLpg1x(QGqbJljFHCF5$=U#^l^<7~Zi?lvm|Nc?bP;*A{3 z<VLe04*zDmHE~puI*r+4qdD_{OA2U z|AvhjiwZeMraT(_Acp!^hZ(!HNorOnF5-QAfy8P#qcJ;m$GJ<6x`qTFBi;)$UPpY* zGwLkVYH^FjQ!UR{NndKua_t1*EfFn@8588uHx{NR`=AZ9~OiM~?(J zdVRXq9a=I@{~uvQD65`%tfp34Cn&*fJtP?K2=+ZJzAXkeB8MZCjREpaw))GPFe zSfiqCkdPrcC2(yI3wiV&AhK6uXAv1;vg4(mZojmiMxtG)`Q(o#lLz3JuAF$Oqn_Lr z^3#9M+c^4U13MEuK4L;x$%fW*VGcJ_5r@m#GsCk#CDu#*;dS9nXG>oH_1Myd@tDsp(DkBcxSQe1~V(}gq`+T6SKeQoheo; z2_g@Qw2qVF-d70(ub4foeIZ{u*Q2KtHd5|MNr|wP&-+KDD!^Ka{AxvuiVKZUy>kODwMDOa+QEnj8(yK z{mx@sOnaB^O)BAAc7%>&?~YC3?$yAV_Yg$Nc)>5k|LrCXx(0t-?f-8K^q=5IM>~0+ zt0kZp`JNDpXTN7I)1Z%|gwl3^W&Od^Z$Pm0TjA^}z!w9s?^@#!isG*muT(*xgU1sl`g z_hGW|$*SpCaw-sjlw*ld2J8Lky&v>R5t8R1zDb;*=G%8hh?^PPp|DARZ$lr>HztSH zlUWE+ldaI?A`K+`fo+TZPxG^9#awr133oO~1lNx`y(;uT8I%{s_J~vQX-t(Sq}L5% z;|Bxf@(2_Cino9}0BCv&3`w1HMJswGYyuEYQ+Z!&0ZmU8kjJ|5g)LCei0{Da{sFg7 zP~Ue5y{$(*B_X+_?!S1tcQ8q(75x6%pM(;-Pyjq#t;4p`K}$o0HFcQ-zc;r}!}3)j>{kAS9! zu3)=;xd(lHy%;+OcxUi)*`r6(<@tA!%# z!%dq2=U0NA$&yS5?e{6nipzxi>2EZ$qDb?G*5P5N8;u`Ah$WYWwml&|A5KWFAq+_4 zMLfkiE18BsR&mV*k%t2Z)#IR&Q-;0OOjRwe#nW5iTanNWu`>-=EG>WxLLbDOQWyc7 zSMR5JIl^B9B2&iS$fTXj)bDsWpQNKdxy7rb4xe^_hmy(UPcawq7fKd!>T#e@`mZ z02owxzB)WT4!OdP4T~E@jUyo5NmV+#V5>dKB*YBm)rL z!b^oPLs}~Hrn+a?jO6w!(LrTI>hYvmG@a=-THxmXx_-2N7tLY4lncV<4C}CkJW9M; zM2wKtBNBg~Kqg z)+P;yQGvIJ*w1lm_TSJuuAuwg9%z(8^&-6?IEu?yZxBa9vXRhK{|F1ztCIAI=iD)n zCw~aIw&U^|;#zhLv4wLBiyVYS3%I1ym60Rh(HQA*H$nFKpN3g}vjlhRn6%Ahh+Nnh zaEmaSUPp?YmhRI?MmCWZQHhOv(mP0qoelz&W|3a z`!3=xZeoow*E{F)1bkqGvev*f^n073=FL1Q!cyeze}5_cK!X^`R_96i)91hXRQU`T z1$BO^v3pC+M4PQWN{#;69qVkQ_&ySCbz%L_CEr)qxQ?0bz06a~m)ULV+!$ z=y`op0_$QzAI-&D0W){Lu_(T&FdpUPXv>*FRuUAudsFoZiokI z75Th4bA`4oo*SG-Q4S{n{HwYtoN3&6{S0<0G_*SIGWp77zOkksZtF~LSG#hzPdSJ* zw+c(N0N_x~VK$}WZ)NqF-DAG5JVi?U`86f}{KD!Z&NPuK=+XpW*ZqhnQU!>IcmWR8 zRp6r}8>s@|qter_%fw7u_8F>fyM*)pLVjHQ$}u9LES(&bO=rE@2@d)Txfd=z5*DP|&A3n^+7Pq}vLqZyR>FoxSs+W;|R>-AWnzB!^+^KQU ziQ&qQ2RUQRDjC)^?*ah7F420Y2vS9&4{~1}F(vueiO#f=gC`J;QDQ}mwFBW_i)sqM zqI!?y^RGqKM+T6nzRh&}Yf-JVvCd8VIFm0$2mOn$t9+A1Isq+MFfaknhX4!zL+`RmQ!YW^WF*}kVNvn%aRV4ke+Cj_p0_+N?Y#VFp=T_giHljt@f zgR90N@ks|oQ{KoiZMiItIP&9}yB9YptZD}$ox72)1dcU5SHV!*=n})W2Rn~t-F9EY zp63kshcJ&!k(2R^hK*%6w~mB*mTkS_%zoNB?Tzsd>pxW9`l0zlFAdTdx|4VcPc=uP zLcYLnqeF~AP0^iXh z=HZC}#WwUI7VD+VR=>e-c#Ib$$O~BKD=uA_PeX5`5%cRZ{l%!31@KCO*b9_!Ef4z( zA^1=Z)@$kQ`RvwAYD748+|IzR3U~2rq3Cf;Nx9ia8xJlx)yeOg1TnX<-<|c_@Tf#L zwFBbN)l`NbO%;qu``1S2nlOb!XH@mFFN%mswd&#JI$$i_)6I!pY0WCDY(wa$aQl8Bmpv+qtw+{aDHU4hF)+;P?-LysFfnx zyoM*68Xu4V7iJKa4N4EK;Pg$0Sc1dTT*~Ni?&+u5seLxqy9=xlsz_GxtynlX7c^n} z4rJxP%E%J`GxRp?>ta)S{6V3CrE@ZVyh^_0(MDD@E>DWkDUb1r59RL=9iC<(NsH%_ zR94!!5_n;*+_s@i&GPsB9}dSg9SQ`GM{|Ceu*uA}*d8K|#(JF>nJXUtFuj_3&NrVt6j`ldKX|y)^dSx#Nj!z={5iS`6`C7@@iTcuI0Q)@~njK zg>ECBWbWo>F-ZicKq=m3So))KC+QU#5y0rkg#CLG(6<-vZ_dUOh0J=PqS-{*pbE_)DV;{?lzy?IPy%+U{7sT92UJ$FhYTWR z>|no`T&m)i1;A6}J-bX%EJR6Xl~00xz(T1d==|Ok6a9A= zboS3KXldi7x_wW_dAR#B>WhxnYXk2~(|PzQ0&!Q4)VnFm`mq4 zHUCW|P1|DPm2>Oy#luy?=Rh$0F5MUKf6HK3W=_~4fTCT}e=FMk{2!f>^&Ur(7lH1l z{|?0AAZwvkod@T_jJ~VR{)SiUjM?a-(Zy{wL0nztKACc+1PeV~J|T*$m>1U@(Z{rR zV%O40C7W&kcB{BYe>(g>@hfV2@L!sJGFY zw!Ob}yUTF>P}#$tZl*gJLI%aT7gDs_Diye@1%=5!al!e5LT5`U`uH}9UlO8!Zk|AL zF@n|Z{SH6zSGP$?zg=tI!m2j=xZ&-OUNO`=G(i29*gA%b;>R>^13>mJhKR&Vvx4g>-z(Qxee8{_9xKPhyt!mlc5|ZA^LnCnnLRuXbGN;2@}RN zplSy#Q_zMOXR)GwSZE`Z!>0Y+{N6Q!XT0GSh&NLc6blf)%)oQfF>wL$3uxDee>zYC z++$-k94@TD&{TCg!n|hR4f4A!o6m+w&9Ku$xfSFN7lPp10#^=0uVf|LjDjSLKia;T zP(lXMaeHkIZ7PmN4@ZxXScrx`*knmQco6Ck{G9YGdQ4-e`ffgpS3^!z59Q(m@pM`+ z^yxw&Y4dB6yMs@eNz$H4SibMTKk3Wtf9T*V|Dl6}#r=m4?mGuaUm-x!u6t*C0^%gr zph+j+aW+TL5-3i&p3M?Wl3}`X8rx~1F~HL*Y6d>RJ2?h&S=7dvv&3huD2Er znE5TuO3uKo;-i8CW2us;QdHZ#ox48oql(?2H-S&pH3?Lp5C9nr{5r(r%IEVx(= zwsAs0X$Z(oxgU5AhNL=qEeZ>@`z(OEqZ@AYK9$fg6Te2^U*d=zVKGsR#OtO)2~Gd5 zgHE{dco=mmfM`+a%SeM@BPa)|4i}j2Iqp6czJEN~Ad(>;&PDbUT!1jYc(UVEtN5?n zSC2~JQ@FDQ>El_!wenrD!ib8rrh+s$$VvEc_HKJxktIuo^NZg@@Ml`jxf6G>-b4O9 zB9Vfbd=aAYCDv-~gVMD$Biw4AOS^PjF4d}$>keG!YwJdr`N2ehC^T1L8UI#Y0-D{= z1QQWg7p_tD&KT4~c`YC4y;Fgi(&}j!L^2L_2iN99p^p0U-JBGGqW0+kngCYex5>Ku zx<2h~$vR%hMhPNa=7{XCUtkNgis`w9J8aLP7Qi|9t1|*gqm|>-X9P(`q3!T-mMexGjML;EX(n{xc*0!K#Y~^|ZG9y-ysV*Mhn%c1`)IoaOQTg-i*7WtN zDZKgno}c2+U>~Q@46~(~XMr&0T=dDxcfQ{AK&dYw09ZE<_Md)c@aAH-W7=obYp5rf zcbz-!lkGid*{9o8-^7OtY8!nqt-WBvr=4#8eOdZY?uDoo;P3pX_!lVnFWKp5R^P+( zeuRkX5&9VCNbKL7($*3mPqck^sV4Lcm$m0sb=lt9yzkttNl)AB5r5dR%dKK}{T?>< z^`4LRxqlNczwCcuGig_5bHDrnrL(KBd=+}6%#KaqMp}Q${t}uR%k9y+EYnXl)aV~U z7jau5E`yq13FSJ;p@-#k{PorhS}A#G|poibFta_0Gb>b=QyU$ zwWK*!y%$c2&QOj1_YT%1K7(-{0IM5b*`$J@;Ho6I_=)_54bu%u?rM7K2=Ml~s&8Oa z-L5N}?p#ZjO5&-(PJ_H7S@c6_v;9+OZTBs#!N5*ndQcqc%p6bAb+zAOBDH0}P~N@; zD`u41aH&6kg`?&6Pt&mFS%u4(!Za(OW2dEMSJfHU^s?DEFJ8ne{x~%lABMj-xCdL^ z9&F#5*_zA^LNeOf9>#Lpk^MVBw4h9CCxz#!G;dkCZ4G0(bFsF?SdD7CNYfh(xq?WsX=-sH0q|TGRgXA zqCL9ekUkLf%MvQDS|>rA2B|g`I96U`W{Wp*Mf~3ru=t)-<+WxaqF+(>38o2ZchV z3!(J4;uo(KCMum3{7lE1H9Ew?0MT=?-|mtstmQk*tsyObM^JJ%O#$C0+UM>BE`-M_ zqVFUwAskNH)7Nhf)Yi@a1f{vb8cR(+?##;~;&P^dr9VhCP2b(r^nnH+_%et#u1QVP zFk0b(8g?E#QCT*i7R;$)QG&bjxKMXD9gR!G4~?15(5;#ioHfJz9M9aTN{fbU>0DBh zw{3gdUOz(4Nkeq6n~A2AjJKCfFI2l!A4LOzw9T+6x$&$+oG0;mWxtA;}8lxUG$}sp~R{*}nR6XXs>c@|d zu@kc|Tq$L}w5cIYC;DWFZqsICNSYeksm#=_K%nV~P%UITbIMbEODT2H&SJEwAeiY{ zQ<6xJ%v6XJ!$v9a;pfFHKiWV&OEtNHTDcN){$*Gc5{ZpfMCrJ-P_oEf9XVeBtb0L2 zNn|kF@h_}fFmGbL^6<2cw0yU2T-j~hbZ_a=srxMOtg=yE=BD34mD9i6-%%1Y)!K9y0e@ND=CX?}(sx9*rU*9NYq=>FM# zqL_A(Vt!=Pc&2@y4H{l);CMv=k?;l8EVc$umOCI76JGLj{1h_H z{s;NHQ6le@Q9qpKg1c6C%qL`BjkuH3wv@6W4&CZud^xeeKb|TaT?${yj|Pq9lavA%5YoF!bq!e9XPb`>4D%wHKf>sC-Gtan3b+ zAT#J)92VneE&2cy5ubQATU7x+VyU2P3J`}~db7`P?}leb=(Mw=-K_!bn~?}w`)Vzb zuz+SC$iw5#juF8N$xM04ImyK7@kKDDzFP)1|*=i@mH6Sn$(e4rEQ-5REx6QvgKOy@;C&D=axn(0B z+oX11I>~w1)zl=};-dZijE-_eW>$QuKml}OoFYUBKaOD9OYG}TC-KS=hDm&b-sN0> zYsP9A?taDw^sTmiEe!F)ihOduN3N5eo}j%k)#>Zu=I4bS8(Sx7w2QyS4T+F9C;X5oJp8&2qqVPL2S|nf9CUC3{2#98vsHn9{F@+9_AP1I>m{?+Lp9E;_{PbKBS0=h9E;=#gx^am6uYJOrtb9&Ou zCv=t-a{+!zXB(;lP_+xVnS+Ac4Gua%9)c(JI6nk1LH}0mf-4Z$9+sv(15Z4yG-@`0 z7|JIk>(^HIncB>gVRN(IjAB^S1ySZe-QfJ^ZS&oouDin^ATn{pZivCrx}4KhM3%_~ zFRB&NXVU)3EjpG*?lecdA_FsjbIZEQzqy6&|Hv(mfZPJwvjsfU_5#Q){l_{CNFV>n zEjtbW=9XGOZULN)Ul5+h;8nEPOL%P12PgvlxfB+^!!Kj>2sLFRhqJ&%=J^h@K;M+KCFz?LL z^=5$Ff|p{@_HS;n!z>Nu0G<* z^;;8D{5R^(bsrlv1i~fc{VuIHvo-z}DZoOA1<@qpff29}n%M6r1Z{02x|M;t-%v}p zy(A;6L79$;bcGh$W(-GGjd+9_K3HnM7|zTU~w-Ta^2q8Vg5XD%tJ7bU&q0w?U3Q}PNCk+d7?&46cmxSMv8~sBMqlmHCeUquh0L}jquC!)>;g1z&SZMT^ zDIyO-0HAVLmo{6$0yL~&&~hmK6dA9`hh1vGTu>=hpoo{4G74<`j+`7wVEI^Rg;ldD zNrtB@C7Guz|Co(THdn*f4f8}`Z8l8Y0Ry3U0DB8ltbIc!=d}kTcgaj|!PMkJ$WvZS zw{Y)NALNh^QZe|EY7BRou@kSLOD;J5bgAVkn)PjgMw=g+Fx&ZdAEVwdJtrrQuSqh$ z37BNrhvMQlI)*?$%UY3qe!(w*+Q^B2wP9Y*kd)`$Px@=W{>Oa)K`ZcW9f!oM6r*4_ zC{FYS*t1B#ulmGXMW$Q2ong@iK~tSXxh{v#miy*2y>Hm}PXd`7I&lRiUn0GAIq!*?m z^|bKB6yX#xN!9Rr%|2|ggT;@dVZf&eu-IIHuMqe%3NOK3fTMiT-Zkznodk4!hhTef zZ7{$fIlfq{@uXHmwckp0RsAaKNx0H86^|h(E2ee3U{Aj{$TI{0;SuKSfHbm71#N#z z?bW)chvM7jE2<^}YkZVQXxD_lvW_$A-=_*ysF3x?Uey2ih)hw*vJ&?$F*7|rNPXdK zxmmTk2J-Y0V|->M8v~%QBZ9y_Bf%18Ss0Dkj=cpbXYAABI0r(kG0(N}`PNewu6=VT zAck#kpZcV$laKV~?t6GlpMmhsa(8|&yDh<@|8mu(t2YGu&;_!)L*_Phc`*@!t%qCB zUj0WkM7jKzE!B7Po=#2`* z@M}N%4?=U13M}X_i2L5;$h91khJ{P-{#_q2m=|i|cKfAM*n6C#VfP z%E}|NTX4=?PA-1->bd@2URRe=G7uThFV%!!7UL7h1y<^?L?N3(y$mH@x^o2A!3jSf zP)sC5_|CJnC>oW|oV@t!w|cN*A3p9c6Zo+6cYOfM-22w(PBE9@6*Lcc{XF5h6pl6_ zX1SLw-HM7-OD%up_c&Bn&B~3LGUFNBF_Y&Z`@_<0&%o2??Ebgk_ypmWPP#II?sbr` z1y(@CC-J4z2F#auV5?W453o=QW9RM$wIp>|#F)&B4&ae2!T03)r=|w2DUgcQ!1F_6 zFVx|-u6l;#SI~pDtxZ`ZjTP&2ix-)4r6EJ5HV&R@+&RP8%_y2=$r-pLt1^PWKxYN1 z2V%9TwVQD-$z95R-&>jCbQ-JF(3o$sPUn$ZHRwkN5wXv@9DP?VV2N1_3Q{y+=jNy# zPDVK(y>rQFojy9vX}PHd9=OSGmsWcBNU)#iuS?|132C|yt>dDdfjL{l7Ox$GffJsG z78gd?%G(W7%kOn!SVbl0z*RjwjSEOwQ-A5vFF1bs<%zEN#$7dn49f5uJ{!MuUCS&g zAfw)A-oP|C1seH8c=RhV3#VsPf{>jh{@re%?p?y?1{gAXcy1hbYXQ5BHi|{qESO`X zP@i@oU%9r~Xk2~dKv2SBZw0@fgytJ!rTi{*7tXTXsKLaPyyz{VQB0q93L63_}v8{we(SjqBoF6Q;OoM-A<99hANR z$26mDkF5}0>hjfiUR`VoX}0L8`#jok3T<-4EdjJ(+swh|A=b0xPCfAs#) z4QO{FYVx*jOW_lENS91-U&>r$Nz|C0Et7U>P9S*|&LnjVHCRSk_3~%lI2$|4Q(?g4 zTBUaAn1ke34wZJQj)qHN#hY1Xl|1{!l9VC2mxL<)$C3*)0>o*kW;$Av?8a~F zuGKK8W*SW*r6w7S#xGWvJKr-Cz}HyUUr#EQAVqtI>-4c!pyw#8GpnO}?OlhQWVUIB zK^+r|MM??%*b+V65U1=bN8Z#=;J-Dompts7V8Ke!lx+514j%XA`@4ikF|BLJ08ewz zY2)4B&L%%W;lq65E7!ZhT!Q*B^_^5w4O>!Qg~j(5Khk1}tF~ob!yF|Bdu>NB!~m@PrZb&fIOh*%j=;cNbffAKPH#st1xXA#uIimuq`6 zJvX3@uV2R&#^TeeWg3aRj*+30feK|?-|D6QV8KyZ7Cbu1Sk-P*3`>Nmm zd{ay00KhxBUOS_~W|8gaHJkSDQF6`o2vV}Wrd>}xXxuGnwthNyzg2HuT{ZzjVXnSY z&zT}-FFZWunKySi>1gq&&m0)sOF#ycR!{MXgc z{}@`$qw_n^KebE0h$ITVMmfh>kZzrtzw?c7?~jq_{GcU^0V3n`*fUC`mg452Ec=6r zo;7*>3qGgmyg$ZyZ=2$WSQ23**S9z|3SpaG}P3l`Ag7C8To324CC0@SQJ#5V+j`r5>e072_mrr#0*0x?n^ zKje^aY@SsIF$ghFMjj*>E>@|rTUT-xGTG>cE*u?~hYxYXX%rIuBO>v&5Rm0I(<3~% zS5@|Iji=U^jZUxcxCW*?;`3?LF0O06(j6SAQDjzkb&ByCHEO zu4mJ~e%4gG(trG{A22@kJ)H4_@cE8|gcZeek+vPq_~ke}Xf#&GXxsm4H| znX8wGxihStC@z(;*j2IXcmN_cfkByTFel_Rpa2K(vz9P$3Co&nPUk*k3+P9k#Q_R% z_$5cdTrccK->Q&v#jsQ_K4}AL^o{9 z&!cjnq16e$KPUEDP4)fm2Dy4f>Q{y8LLCYR8|n|?iAaTh<7hc8t4gw$&}U|(=}Vf7 zgCxBRyvrf5-dv8a%o(5#mwRV{Kbvw~Oo$MPCPptMUqKrh2OHaEZg0co%D}hCPxj;Q zW@tWQRm7x~zG_7~jyAU9p>CnIS>y?T#4gkCB)s*7h_6#AOoF@jX||6oQ;j-OOFD{a zliqgAjkJSQ;OjgTJOetni?q(zp}Yu2x&E-5xb{qum47(Lkr(gzN6(r&zf%R;^C$tR zzi}l|m~Fk3p&!s1zYj=6ts+ZtWqi3gJGCw< z`$a)VzjW1uhN+J9eC1a)PCDWrb7IzFQ_PmO6JXS7lxZ7GK6Xl2YRA3klp&PmtS*12)B3j}Gti#F#VFBVNXP+(#}o)(HSJV`G|=B&E9 z1L052R!fvbiL!u>>C$f`hT|p}GPv8UtM^pdEH&gF)9@k13-TESKYaM%S$UQW_Hjrd zMSe=mnw?sXC8nBruS>wz_v`?5U)kM)k$Q66lW4m9tTtj(nD&5c+w-5MD-+Otuwv_2L z>7<=fz`#@fES1nEm@Z6F@cd(X5@LYA~4any?86i+V2-btl{ru#66*t79eGQ z5~0aUpSc+Jx%PEBjVXzDj0{e{9RManDvTc0GNJD98cFq9N)%~9jy%b2!2z9%mw?Ob|6fT#S0sG;b$S2L8@6Y>J9YF^(2ifCrq~H#T%T>VOxV7(ZKaF7P}z=QiTqmNy7HQ2 z|CjA?)WT>KXO_`0GAo88AET)i8=aL=>Gt?M;nm282M0c!yZm&tz6>UZleIVPH~w>) zjLE`U^?^l8KjO73Rz6K%6^b}AtS zbGIEQ4rxWhsZ2lF`+@6G@3CA(&_9mr%n>Y4{t!exrWQ7X6@h716b%n^bub^eU_8$D z)}@d!iDEq_ci@hMC;mob=j9Ee=^C_-*X8*J)QP}6lUh@}N2XE4(LLSqA(Mi1gklrJ z1!C?%5)H3)==V*bTMFq#)x(lHmh>C9U*8b+L`|(o%I652M?LG5$W9L(@Z{#b4W@JS zi!g3`aZrY3L+f1$w(HJCvbKS2ncBSMek4W&eCB$FDS6Rw#UfU4Z7XAFYR_wcV2eRC z#}pO9k|#%M(YjepJ&uO#Ci_$gID%GpJAFM1G*NjG^S|x!y z8`Btd8V1CGs-{NkDLG9_sPO1Tz!^-aA|#(S`s}gYYiVtR^{2dEe5!u3bu{gjUG1f; zC?heo9#Y!xyatO`iXghd)NKIS)x+>$;g`na$W#&zoRo5=VERZM{`GMvD!50@D%jj+ zS1+rU@yfP9^7o_N(q4{u%UXET(P#rs;}D3Mq<08yiJpVsBP5(LrEuLGvKkWs#P?Xu z#RHyj4}R;H_?-jj`+#-WG|4aSIFhT;59H1y<9ZuMvZrwio-G2SV#QyXhAv#EI26|F znVjda`4mTepCsN6^F;M2Gw~~Y%k(=VcZs?jIpLDdXAC!cPCI1xf6h4JS2oNzMk5KL zzc2r?ViI?c?5GtOmRQ9@NS+Eq9X4n3t7&e7lLaHin19}Pt#Uk3B{sZHVRbYXZ_=De z5smtObx^px6}iuI6oj55K`|xLIh$M~X)H$&X}OtbrVZoWpPlBv<%&`<2rjzAJ( zp+m8gQ{iUm{4F+%Xa(clZ(!BDRRWe5CU!ZZ5%h*ndZc!k(yZ_l6CwRF)_z$z{Ear1 zpR0!u-?^?jC`_oE!BCBM))%43Q}#!Snf;LNrYvHk6RRl7@j+1lYrtne5U$239mFG_a;)RtzL_(7{#JWVvg&ow_s}qoPltt3swY>Q5YsT-)<2 z$34wblYO*%&jRbUhii+1hqU$RH0+#bUNwH4-mCXdf`A!ajm*pr-l}sTBSeMbD(uCO zff{p+7SqV${ov<&aK!(`ZdgCwP&j&*WLMxmSeGjbe}QJ6gcz|0eA(-pgFy*O>(8t- zplveBt+s(;Um^*7F)KF%Szq8z`CdDb=#zdZb|LF@=O_2=4!<&9RB{Eujd+&}&x{T( zM=U?J1!XXjLN8DLLj{Bm`pu|sMdLHUo)x~ z9Iw#(HidF=DAk1WYvso~<(D7O4{3WZJY5ZrHY}mx8+DQ6ikfrVd1#4UKswj&@}K3& zTSVP-@m@M)o^rce$>RTh{`k@)1E^Tl1!E5gGRzi|t!zIOmmA%?oNmaL#v@@GI)-|m zxMY(#Tb^F0Q*~~33T~3U|7%tn2ZgMa|Noi`{mX;{xPx}Z{`Xv{#gc{)`p;e(5)?GO zJ~AgAs(LIRj)K|VlB^L-P5DKcc{|6ej1n3;O`(jDmunN3t4!0^OLgCqSt>fY6(-kW zDP)~?JqR)LhVGZD4sF5Pug)YO8hREwxQbynQ_=@-&zIq^cP8sK!m8dC{@E$wz1mA4 zBtTkXz#U(TgWO`-rH8h>)(zl6UTrd01uz!K{)e%E{VT4guuVP2RQvkfjV}XSSZV=@!V_{Mjn7>M!h#_0hO_1%;UhLkS z6+;7o)oQUE`Ld0vJ5)tv{q}ul~o15MzP7n z=@xZfaA06o_tlWSWx?iv5@^& z$C}dPz!M;#^B|Gaiamo%)5^{v(7-c$lHXx&nER34L3XkF-^oE>N*Np zLyL2IKql)Ik=mLs3_vW1xYr=|sm=iq3+wnS$2%j;K-s1TS(gW0C|5rA02MgJKGS2I=HRtMFt0Z1$HTNnDa&4K|jF?&u55KXajb zq~?P%(FKG))BkHOv;YqZWWYk^l!EF4~;@`PY+P`z5y4oFY9` zThh@E&*WX72S~lKY&bn|>TTcBWWa{Z*{ohFEdVGoK^&U*7+J0Et3vq)m6F{|RBt!$ zuG-r`B}~xeQ+Rc=jI19Sbxnr)y0DkUHO*RJp{qcfmnx;2Pvr{e0Ecwo4#W!V4Bg;?Yq`aoXj)c;Zzeh^t3ltDvVnO^io0VoUq z@3~NuKz9&!^us@Mp>YxDl79?BrHi68a>w9+xe&l0WGx~mF2H|Y9g#CFuh5)B1jt$C zB~bkkVaZAGRlqmj-t?gXlm%@X1^{J&$cd#IJ6EOlNig?*&PL8qCjiPV_vBkhi1Quz ztKc&$>9+9Y$~g4xh2fv9p1GX9@0jzIZ2tIaZ$xBWMhO?g+vq``9|+larE#NUIxMnRZ}*v!L$J^UK%0q%n>R1!MG*3~HFh70dqZMa z#rR+r`ftsQD#f^~(lz^jO}~m$C*%R0T`3|z&sx}i0e(Abv~lSUQ{Qy;EL+B@77Ew$ ztX?Qgypj?M-(;o&O;BMID^wW=f+o&QW9}A3&sh+@SzZMr6u4^VD(w_?wk;h28#!5* zM4OJ+o_um20+UC%V5ml87_16(Qb3y#ZY;$2C7;>f7hngQKoZe&GtFg!N~`bfggaMT zKxC8j#t1trSuMsT^lAFyx6S~%l7Ic zUhP3IH&G z6ieGzLgIU|w-%<8TSL-_RS5x4BaN2~bQfdY zS*6FXKvgTlwx;*r)FK9=5$7%dP;LkY!wOgqdJ_$EJOu!nxSbr)Gg?e{w_-E5yZq((%cF z&S9(U5%v}MH@l-2iYyV%R^4xP@pviFH1YP1+z8WPOE3yNtYP^DBYWKL62`^IB_WbTSzB^u3bIW{*=DA316dZLs^D)lr!H8h&F%{=T?9 zw??eq^7)C@5jBQ%da|-&acWnbMP~fcq~TDwD7m(?^RPa*t*i!|*qnwlviZGjc|n4x zZ|X83wC5@7tp_I=Y+2({dW7zjuF3#zh|uW_tU{XY4=n1TPUXFxpbpE)DO<7D#Ka|# zg@pHZHOc&jMJ;kk=y-bcOnj@<`OMQODO~;;W|`Z#nq86Kzg?d++=hJoQ_OOi(}V+>K+IgjJx^dmJlp2xaUgBh>)B;y`w~vMf$^=&KY6wH4rGgT_gMdk`h2iZibF4Q$S~xYq+1Hv2rM>9g$=!2D4&6qM zq-DK1M$VM<=3Pn>Blj#=*-5)H;LjV6h33EqFa75_Rw-YRfL^Q!#3UP+s2YnSXSgE@ z$SI4XIivT8CGVnsTQjLolgTjSZ%My!8?KVUi7u+cUtG*p5VLn$+MM5E%4H%L${!CG zw~n?3FRW8HRb=CjwK6SR9hwa#L-by)Tc$*@C4r;NAO;V%bQ6G1eUfDP-Em&vh{IDx7>#XONf_hvx5sLQ_ zD}8AG>kw)Ww5Sx7Za4`fTfLt%=2c>fHyYb8N>^u0q=pbOj-_a2o2h>(K}yxutq`qk zQ#Z!3$DE?qrAISL4@{=xFm`u(}ahl=(QAm+?SB&%A=Y5;?;gn zUOqAxh*ztpsJCalk!l<(9s->1r)TFMAz9i-2aNMAUJBf>mFvfeZMDsMPa3vC;{5VP zR2KA2)jH$tMlL5-Wrg5R)kG48qJqnzlqYNih>TW|t*n|CAxlHE?;KWC>qtKhS0=br z-3}!n;;h)(+O_Vbn2^=OE7%=7h;2_P%>eW7-UTNiXACn!WsVGVfu6E>O>J-#Pwk^` zy4<`f>7wou$AcMsuOuN!6k?gN^f*8}oa7`B9r*Fp-gurOccqlo3W~eQi$!}_XrYmy zm21eF3Nc{(-@q)SMUfB_4G=B#BPsC1ehS>eI3){+aMOkFU(T7%HF(W$xvICaNLWzEllgIhIi9^~x<+Io<|=B8tHm9~w8yy_+I z;(Kx)3ncFs0ImV(3vjWLlLQ4r1A+j80(>U|QkJxz_6HoR68~H0j_u#hore8xTas6H z*$X0Cv6=R=sZP&NqwIT19D8_(iOi1k+YN{{#-{6khz%qw;!onmvI`v%inWELCv$Cd zq28b6Q2y#h!RZHh1U`Yh6(GL%0Uo%xp3MHaR_&y_E70FKOUrSG4pVi)n zc+(PQCXNYCx62+C?npy;VG`2Q2oLuf$LY{wzM$Qygatl(&qdM)gtZh&MkcdisJg4B zVNIu}@L4t{-8dmGslvq*-#G^0Rz-b>U-mLC#}x=z z3(dcxAnl&wp**n^AO`Gp2Mu(IqI3n#dqmHFV$X6q!)$S~g@HoD{)|4Dzf8C?Ek%0T`8Sa zXTQO4KCd^KaK_fbVisIC{d|eIEIWXqpU%bmYj3RuEf7U2%p%yT7kpL*+^RPC>aqd1 zDu2MO%7_Qcj90=^!Y~K}P(Jf+)WTHC_`;3N<<*mhv(>r5`nGxLx*Cn8SX&v=SW;|Z?QRAD7>|{AbY6~P7b-jkj2vhx4h^W zrdw%WqqQ(4awVm3!XlU@NO{iV86z6}Gv*C_u-29Kc(k=Y)4&773W`YW7J)pnBgW9< zKsR%v4heq@brY$;w2H4)vCqg*AmJf+{>ocdwKHnPUa|blj1+te0hcPtJ>XLgfsN*J zZDmf7J20T51+D@HN*^bblbK6Ds60*S5G_PP&!umVC+Flp>kt@`k$2ND<(V#zV^4ew zj9w@;iPX*tNVhcN-C@t5GW9>`5zg7g#H)YMq;fZSE(w;I-T2MyrZdMa*KqUJ$zAZl zlq`Yh;#-DSK;NTe>`>}Ij5T=hTH;a{Wo4Qs! zzAO5eQ3qZ@twdBYphV*f*R7d)Cr0rHr!1(Wz1JYp_9}W7!?n`O$hYK8TOE0_ zk%W^A+=oC$sW5_@&1~z(c8v}{1v!rD%=j&-BxSEY34u}C$a07{-B7;<2v{uL{#eVo z6pB)mTb^R|n7E`($_$bLoraSw&0oV=*G#NA+P{XyVIY4(nYY}i%EnkDA>3QU_5H6? zm0zIzwuMjk)8DPo`P0jn&8Np`Y)~XzXg!I>flvaoO;ZD&i)8TAMDjgyG9~tc;+*JE z0*Ve|8J0+*t2brrr+W)$JlNgN*iN()f7*MOCf%z-^HVa1qR0m~{`cIdr$MQhCmc`I zbWIvxb%-*Ok#w7Lp2fL2HCZ`fI1%|otDVZ&b?l)`5Pw?27oc=r5R@N`QL>ub;7_YW zQ<9ybQA-~`n9JWKF}spsPqmfAJWui`ERPRkmls%LnbpV#`9a1pmrkSO*{1lt(E$n} zzvJb=44fQ#$q!gNkfa^cSH#<@B_Kv1TM%Z*4X{79wC}_v5bi0UMAj7?M%)BtQ=2;YrxIO*Jie~<18@D zoU1Nbi$TDf-lz2?Bnt^J6Jh`gIDS-u2Vmy-Xm@nvfR1~qNIkfAc7ADdw$ycH2Fk$A zuzEw;;e6rKK#Dd z)_YCLG7@Qkn(3~`f_S;JGL!y}h`o0ppaC29WBlXmMU?1+au$-wS!C@d4TE_U{`mv7 zv!Gpf3M^M@rlKNkt~vyTErJhp`J+ z-W^5?2pFa*L&JpW`I|Xspu7p8GsrSPAZsx^t6V5Hz*_G5NhqF)>cY{Wx zLe*R!0U+bvAHbo_2L4{thywOQv=x+G4y^(w;kHj5Kc4C)uz0LZDjUG|im0qu+Jsn~ z>}*@f%l{v`-my)uaBHwFTPdWhlJ{wWrSlSU0>cu(RfE za>ALLL5`X^EikfMeCQ+J0A=@BN; zUtxRdJco?MKba`kGURA4&ktz$5BHG$4118Bk;rHLL=H#*B;mOS4-??UN3V4 zJUm~esZ;l4o*Da|o<1futI|TZD@@0$A8f+7IP=G`VSV;%DL1guT6eF6(^H%3tW+PL zwE3?j2EHFBQh!)m7X){^lH*% z+MjFsp}XS^=$V+=l%tOa2GnKCUMPoqUEN%~(qvV8mdif#sq1%H)duOfgA4i{3dbsS zzx?Tn3K${GIn}>AyqnGK(N3N^GwcCxa|LU)h<}&Vw#^Neb|ea6&m;+VS2JZ86E#f) z5^$fo>{H3XjX0!U`>pAsJCfwiuJhe)1LGz$$g=d3(bno-{NBBdogCd7lBQ!et8|Z$+bo3@U4O5ez{^B*xV&U@O>8xt)m^Z3uN~yhP!K% z;$!+TA{xu`PYyOqTWO>uvkE!0sD2(-Sd}9_N#ft!Fd9IM(&k9t8Qn~cobSD zP{}JjrFp3>@jCEElvXaqMNMnb7P&4q|0zmxJkZ|Ay68`46)w%d>9w;+OHVRLQo-Cy z;KYK9ACf#YkMV27(1qeTML0w8g4Wl5{y_~*DCKCBj1k2nwZ zWrHjP?{D@r;eQ%g*#9>s)Pd$hH}^;H1;l%N+ANiN+XQC3;ZS;OrAzC-l#rxCOX9|q z6jM5gcX@!=0paWIMd$2BNn1^+COYDAgY1Y+YXLGsRS^Hp2z@}u^i}*PBh;twW0rz;?HY0YQa2ium-}J!%Ipbo-n{Ej7DFr_5Y#9 z!f>)77>-4id)czq!Tg2~*L+?4vz%cNc1LveZ$=1f=D!)Cptjl}Zx@cw^V%PjbwU_Z1L+nE@^jen(&Uzw?Tu8|^Fff9I8z zG<8l3Fvj9qS5X%v(uyPC7(TZqztGmW|3E@{CF+D6P0p}KX-}$lc@aR-S0WY#F@8)9 zsG*6t;#NeIWx|+64l9syojY?TRXM-eWKgoi9Nxe{i>`Nk*}*yyTP5oWd2hTl9I2bpb7q45dsF}kzxulW60KNrkytWfSN(c^EU4U zKCQ6KqDzkEVgq{Uvb=4lg#G=|oy#i^bKFj;$Cys{^j$7O51Ex#)sAPE#O zK}OzzjeNAeK)+Lsn;n@QxM_K*&SFr0sFXqbBg$xV^^%;&%yPU0v^R3VW0@tLLuxqI zbf0tKDQ13;mrAo6N$Q0DbfJ}5+G}|(HRhNdhi8J$;t*$@S!czL`6j+ z07S@yKSINzwE-F5r@zGaRvpb_Aa(=DQyrJYoHR3kJ0QB$1;h)~KJWVivt`LviB`J# zQ)qS7FUmB8o#!0Zo^(D)(4*cgKHY>O6A-}xX7Qim-;ChXXr-w-4+lNZBq97JQKKr# zuRsi8!Ye(d;i|>Ed6UKeFl}Uu2fex--gy2+gtTW%*Qd>R-W^FUc7b4=+Ng|xySL4- z)ekHn=YH`K0{4IsJ(p*Xv}gDQoJ0qZuA8)qI9QswN*p~3B*Ew12Fd}kj5x%DcJ1hJ zjycz}*57t)gPA1yd>eeW@ZYqAp`-(iYhzL7C93S;h$}fMp%-f42q=DAXU8$gukZ z&j9$Kh#$;y^T9wg|M(yxQbD`msU2Dm3@`!D!BF7HgGuRowoWL{d z)Vv;~I!|{nenXW_(FlFEtV^da@{I=%$E$)8$S3hZ(G#`Uutb}EZ8{~jJ^${hkZ&K@ zpmCYD^C&};ts+hIlYNKfm>uF@P+9}set>?Es>I7v(5R;U)~d2J{Xljc1X!{Yn}<$9)gf7Pi>-exm@a z3f@bri(su6&s3E8j?r(oZVelD@o&TZygrpdylx*wsmo@(TMZiub=*&E{VQ&CI1_vB ziqa*s4#QSPrECn23L`6(pVVD?T4ZCd3biw!!Z~YJS#(!#i7IQbR8}R_S80;xrrMEu_?nc~vNN!icGpkajlK ziS_qz#BAqWxpi|BsSH!HJ)}tBU&>N#&kD&IGbSx0IjRR4jPKt`bOK>GyH}@%PH?-% zACyks5o8Jb9$oP8Cw2zJ!g1jmZ%Z;tB`bL`t=Yy?m)CPNk~b(3IJ81NWj>P!G7n~S z)Apif_6_UDpEkH>d;<(EdG(J-M0xcil4eyD zMfhd)rSQoHSW(15D|YQze=N9<*o?N^-dsqu7)x^=x$nR)Yt#=8#$8!* zAOBEo8lI#QBudXuz{_4ePiEXFSx8&iICgB#?Y#X4oNzF|NlfX^L&?7TZB3!TPD=Ad zNgdDBP1wmQ+62rHI^@SuP%&uy#!etf>p%yHdJ!6{(HZW&Bt8ClNT*A zNl7Il1e&47?&Dz?x(aFzj=C|0_LJnVd~O3|4o&mYnrI0w#I{%ScDNQ6ALPiTGbf!R z_xYhai&mx$hnaxQCanF9E7JCu&QO>HC;-1k)rB5Wx8YkY?7-tS ztDb>h`At6q!O+n)v4L~Oqe~Fn>}yJ{%&hj;A@k`b?>862MgEfyGM1uxqB-M_B!UY9(7nYI!|-Ra*Te)qgRYGP#05<QSZ+O-L1Q`-N<4LcUb?dUOE~wa5%n ze6{K57HO6s(-2Cf~*X~ zI$XRL!$Vf@<&xguH#E-BAua4LLN?X#rOCQ5^$xSPfJ8|N@YBZ?#|Tr@XP*c{{9i5u z%>*x-u};8*sCiG|!QoE?V1Ob3CIe9ZIB?(s=oo_Rm-yhzYrhb9u?UoP( zsl6B?s_2&E52;{x!Ln<7?)ngVrSYeC_4At6#dXl{5G=+g%ABQi=Io7XzFAYZv(^R| zp1eb$pL1nW81`xF&*C#W4-V1mo9+L&VUdH-PyPJA;Xwbfv8k)u?z18L=<59m+y#Cj zNnAD`zmxJH)NDD>yu*Aq&I{zQ(oQiFf2!352-%7fZHgASJJs?w&BCb@@XrmD!(Z>W zjdxZY;)--oc^1oMjk+NOm>Rm~+{@_DyWdT^Q%pR}PJK`VLf@c^9({ekj(NYRHC$2_ zch2ao(du92TpOuvz6n`$5X>#e`kRu#2`8z6Nh=WB42v5DFb8Wo zKhUo%yn)Y9Z-<(YcmSgl@ukpfbC2`A2Jw5diUlHt9a$2*f%3@-WO%?2d$FR564dAb z*W-f(Xmtx%c)^{*?*dXn^R@9Wv4jk@@frAn9)~jhmXNUqNCW(w5+K}xn?r;k+-vyz zfCIPlbW^vU)NBIMaczAkx(#1HqPDXTB>H7n01t$u-e+1xCGjA~OR9g~@b%S#SHD%U ztgF+C*5|w3V#nzZWPDV*=4^e3x2Zf?JjMkt>ygMarh znwH+_0Y_x4*YYNVLDI1+7_)O*#*bL551U8kg!(WbEoZ>d;0!;U_GYRkHyk(8V!%EB zK8ML3LI#M(l^aq{31b%ArQ#R0=*^o<Qtl*3^=@f0hMtCjS05&CgDN?l<>il*k#1M;^aL`yVe z-FYV8JSZkzFy`~GA;c6H!` zx~JYQOOH=Pj5_ZH(DtZd$F=A%s>*B+o*|$i6kMAL&1r3f$qYn|xPBvWMHs%f47hL$ zcV*8fQ*hXbC|neL1sI#wC4Z#-G1vrNGGH^bSf?1{X%q+~6favl9#5E^0NF9L2myZfA+b1`3z;nT1DC^rT0P=6)X}Mz;#3;r$vZ- z@YZ!i5q?OZ?q$!C|Mt&jO-uWTd^iZZnjY`9(_^dSVDpr`#)uiPW!w$w5C&Xg_J^?y z%85;^4ByO`1@)JRAqu{j1pi)sGt_AF#Xq&spaSRn4jVXF*JC$JJFG+R5j6FI3EA%TgfQ+euRl8W;q1cS z>x}yb(2i)8DEbP$*v_D-`#yctlwH@F;di+Z6^E?&W9VK_kBrELHeOmHQWNI%{fKLQ*K?D{3u6GAK$GG zN>pWB6Dkh^yosyKWy+|@x6ITGoe4%Tt@ztQs#kQ=lT=csR@yT<8kWgjx)8@=FDvV7IVG_Iv(ximb)d0&*Fui2Wro0i7JQMvPuu)z?a~ZB4ex& zNP>VVX=+lFNF>Qv-VU=v!Us`%fO8Nu?|nAu<|*jil4V;U_+wK229)G}sy09?wAXL! zT7KL~*WCm*BFO4wl>|@_Dx>QxU$n6_SpW9^X+7kh?^@g@hzb9z zRW(A_3ZHD5+=+R4j?iTK!vOyS_kM;<{` zv)zi?h;^H#q)BSV^jzGD^u@#t6{d0HdE{D4 zUCDmGTsRu944b~0=ERlKOyE%FdglG6176J%JRRPpxNd96MjIzaY5<0$5V3w=d9PT( zkay9i&dNQgqr_~Lc*{AnL^;_|_WoXzc`J6vD8LYwQvkdVWf{%YAK~NVf+bjae}X95 zxuL}h4gorox-e+?4bY(73zGP$mb9SM*g5zWkP2enb8%waKZ~HBXnVKLoE8nvR||sH zM0RmoH;%rRv3Ykq|W5|xdd2#g+Sd7b1 z^Z4ohw&eR>s0dzgX5J{z28)K?QsP)=~ z`#FaR&EW1Pm`;M2rP$9qt}yMpWQBoxZtLFdIUb?#fPzqTtC*8VFD5=k?gVo4^Zv4~lhky(7k0?0w#H)xk`*=Oj%PgTJRdsh71uMF?g$#~j z*6ZJ|@pVv^R&#;U`zPfgR4DJ%M$>^^#C!uoCOS?%B>>^IEJQEr^+(=Ggn?+{+$&$8 zrm-F1fGv@K=5D&YAM0GPL&{V1b#dt~nOjNrmwf|I$k9_<0lBgLNi|g=PDsCk-H34L zUP{dtE-YluST=NCIhwED+qz4gu_M}8(y$N#174?Nh_fQ$MYXlJm?x&=&kXn!x#&hY zJw8`_hsq5*YR9Sxce730#PBP(#eE$mEAGw5$r#Ehp=@^Q)Q*(}YAU=SZDH6#v6#J6 z0@zOIOZGS*Fu1lW8WqXXxs!&?b$@N$mSxaH8#h4QfIun z{e2E+DRBr9MQ!#ZeOS_6zennE){fA>JLjSibXMkHF7m*%VUSY+-Kni;2);KfS8AHjyQ?j`(@HRD$&!J}Kux zcq4FR@~~A#*j-JL@e8h*h?1}(Og9qVhLjY|2w}@MlnRHdTW-{9K3`eQG1SPHns;vMyUlLTVc=N)L)E*s1fvDF`m`@wO08_gVvgSWXA;Q zpO1sl;rO%rC<6*IR0*csUM$g{I~#SOgbcA0fCH^~DIF$7Csx7+9#3ESt4s`Ua`Y(1 zhFiSx@m>_-uA)3}8TMhe*Odj86p7uXqzRwP@O3&7S3zq0=1l!k+oRtpVMusKF;zj{ ze3i;yIq1Kzft(0qlMb~Y&2VJ z`sp{3{JH5K_B;-#59Tl34-RQD+jWyViD||Auhme~Gfq8Q-I=NJ9}R?Qd_Z)%u;%0x6XE+s^}L~B5ikb* zQOa=}wqjXQ3kdDu=bTj*KLFGT1!|A*OYmOz@DPl(fcS&}s%qMu^ z{y86$Z+gcFOw6#OI$(7wmmv%hu-^%7*7>{N2>|SOEXmIX<)}m2Jivu~|G)8|AG$;= zyrDwfA{O3%<3a9#co38{zKaI%%_2rm0O(QqPErse5}T5tsG}AcEdlAwmY&imuXg|u z+j-26{7C4xj5KtN5=l(fq@D5{pkD9nKX$pXYPPEPwYtxkCGS1PyAC)eNA=jlt?fJ9 z9hD`K{yAQ_IUowN-O-Z*d)b-j11pwWY`1xkymTKFOI>obw=+AApaiM6(HS;^8fhai5D7@;CQ4k{3ceNR^lTMYpq6L474@r$~gg^S$#tK9?dRk^@ zlwKuuC!qb>gUFiZGYVfzrIZw;L71`5j~1*9c0Pr{f6vX@qr%qe>G%eD#jI;5^B* zsH7P1K69olA19sNdNsm_=R}bHHc)uw?YQ<-0Ncc|ciE^PsbWG@g_Z z|KdP2W0oY%pk{Bkzc`Rc>t7tm-u)x_>-}@s$0;0L?g!jSGuVe- zTh$L#1!Oo^c{P?iFxWO}OM6-{_B-7sE7X*~28GyiQXykW>*Mb?bF5kqvNDxFWM6Wy z^=2Cdk%k*E-B=dgDnL&F1_cX_h&_uF>oI^q!Fw^nkw)|u$a@=fH1nHMf?U-H714=f z(xQ}^7%JH~CFMY!|6Z~AaI2qNtT$hPmPnmyv=by&B4o^&3Q-f~lMi{44;Dhj1uVV* z9dj1Wx5-Vf;4h>vZRo=vh!>AwuTKqTvPl3QNC0C|I!++A>JtfN8|Ch{7PS^e|Bvt< z{4~hrP44d?@`ukw5E%0IFdqxvVBovb6hxDzo4hA3l#gVWqO#eESHl1wrS%j`Co8nY zt7_wK0zS<5c9V%;2(&o75x^3Vz4?ilbgq)!8<1bT=VXlX5y+XoxecZ{Obo9B4theX5jnR4|3G|*AM!}2M=S$CU;4a*ne7%SE&5Z_pHwmlh#9eBxXq` z)IO%K*7EfyKR0sO{THG9_^pn zZ3?Jd1S=lo?&hjrk5a-bkaGqm!!TbWkbB289OUlqm7=hFY&SL9tZVprifrg@;7ZTI zSX+2Ec2pbdWhQ?-lq>>P=X;?Y&c9HE-ux;GLnm0*<%o@j1CtBahf3cnu)_oLZU+3X z?{5}VISzLBsOvzz(p|t`w0^unhr?28z zlZl|7GD-Jg+4m#_cnqA&z*1O_HDYj#{1>JRw|c9vo;FZwHfEUJhVgVX`WmY~Z9Zj@sTqA)d*WM6qF7;s%{5tTFU%0lVEM%vIQLSiH`x=Vs_JqnnJ zqndPn;SUTsNSnePaOy45R8S^n4oz1!j*_>MVR@1r0~T&urauE=J3G&N{fxOH5lgsF zsnYW(=#?=Urqi!$wk(>{-Urj8S>iR_=@e2Y2VIh>w*a%YeHV(+{$*= zIeKkrN00d_#;vYOev(VPrfKdM3m%x0>iH@G(9NO2p0P)Lpald6(;8}Pj&7gnh6Ny z;zHFu4R@-axA0tlz?Qpu>M>_T*c0U0#xq3fw{}WqubeBGkmaAkO%X*!o~M+j1}TwI zDMx`rxYp?B#SJ=-p^^IFP|MYWP7*?|csTX6(q~C5B`!vymx}FO7LNfT!t$r_^ks=a zP1dgb^EC^V5{W{kG|@utIw8Gl$FaG{-cDPTW`&-*;~7aLzy@?^WKndo zSeoq+G$uB?D;XIwA;JD$3K4ZrjM`+6n+njnd^%!(I%u-B7UImJfnJ6j1)$2|jZ};*S`P zPpf70HRL%4bd+@bM2?vFgt)8>nV8u9oO9YFYIfXdogrqm|*mz`2Qy3-3{nJ#Og~kPkTsX1j)0#{OeNkdU zo8+xCHcfH`M(J|xe32?R3=O(AhM#o@%FT}*Q+n)p?}Iw$2YQ88t*veioDGPhZkS@5 z$}1TP!9OiegaUDcwNNrexp)WZc~Fvse_ly&(cN?X-s#c?xhuTNSt~{;2!lL{Dc-fkn>S`xwS*SScGZjAxUZJcS+tElET-PA%I6@(@~ zP&&{PcciiuJoCC}$dZbNfGyTT{~(FB%9sq>!U?MBJ?57=Zwo3U}!I^jfw>JF19c;=6{N&4DHQd1CwvOr` zB97b6SjJviKWv6nwIaYYsz9A^x9bg;zj3NSAK^f9HdI0qr1N ztq(wCsQoJD8WVqr@a8U*xcN+jsuzF-y=iFae%pBjU_mst*7MCZPQ8=DwzdDTpehWn z{|grM`z4jb^?$~K7#RNJWl$3bWL&@Z$PRr#2E?SnW*>sn@wuvm_M2=^A*3SIuDZq7 zA4UTzuJFX_>B@=8EZ-b4O^ax_#dEj5h`&Cl?l&Y1g5u#njwv65t5o20K|3z-b1To4 zpUdT|h2(CXhrxSpwWg!X-d0w8zxHRFj8FB!tDg#0u*_zaVF&Vrk>X7-bCA7nt!Ti$ z(eI+eyMfV5YchqQ25|s{4C+k*NM<6a`PCc|x#aSXFr~)$f(wEq!jTLFf@Uem0z{tu zc|KS{BpE{cG)SM&1jK~W-N6-qm{CRbYPNtFazO;Ny7>)wLmy)7Hjd*?TE#w&gvOeVHvyNJ#(PLVlE>91wX{F610!4*Q!RKTz=B6_>y1Mbn5~1Ldu@U%^DpmT>zk z&v~Q!Q1Is9TWhxE`W#shK9`+87rePmx|M5seXgkBo(RB6%u zzk7xt!d8FF-~GW2!rO4MlY`qeTaeFx4w3L71{{98byN)e*f004V}T;c)CJ@d^jUey z)q3zT3RqVGTN;GDN5t0Mc+6sx;oa?|Mg#h-kcSHRQar3cZ}32+nE2G+S))eK0_SuJ zu=iK-;Q;zNbF?VKUhxbVxt3(2hq%@(1Z!Fr7-iVTFRfNYMUqn!&YQ`*U95 z&Wol094tRhSKb=H!|f&>PQmjZ4>w*Q*BgsTN(yqG)Tw!O|2$-VK}Q%7DjwRwZt}o? zkf4Z?cr<{$4rYd7srG~qjR0!_CP@yH!1UmZOZ;A`RYOjmCLnD>7hlLaUof-BttNq3 z@bJJt}}J0+TrfuW1l{;Z~wHfd-XGmG>>IZA~@N6I4r2f6FO;rH6@M z2^ijkJQ`xkaHEaVAtrNi7HTcEg}?n#<*M8G9O1gv_9@xJcKfa|YBZxLYG8k1a&UJ_ z$RXAJvv8B!4LJABT@Hk(I$%qpHeGosHyEVi^wuW?ssR1KUg`bH-n4;|`-Dv@l&2M8 zGAY5tyrGi3#gQbO=0UdIL_S12Is#3D6Ru}|Cz_J32VqBQ&;rk0r|96nlWx(NkHbM7 zO(gb28=;pL3{+rWq7fRVjgXS>T0*a1kb^EcX_0?&%9|d9k(qV&in~KYbpP?Bj%I`= zMOkXTP!zhX-m(lok9wgkasI-GNhB!Js<=oNVJH6vv;BE%(%Uf%niQ7cPJ-aepq#P> zO$A-tK~9b>7C-_s4>R=}D6@L?CkzZpvcT4H5^O<1aT6oc!wtIiTl661Dx%K;*wEw| zL6qJskPbL&P9@=8Q~)Rmrf6N(KLhs$eyd)I2^;#(HMen&m2(<0^P0sTG?H;2*p+wQzSek$tl?}Tf&Ha^Z@%$e+fPuTutHa@?TRV=l zm)3Ou(Sknnt2>L1n19GnxM)9`0e$#Ac>uOhOWI$9l9G5V+wO!%wa~FDsEnWkw0ElI zW*N#B{!zx?1`_oYXnh+Jq=KPD`=5bZ(T(nwk_+$M*ed0;RqsWICd^ZsVnPy~#722O zYoM+rq)1%jTMTjI^yoerzy9Z5m>;iAtU%F zEuKxEWEXcdAs+*cz+LkMP#Vr}uz}>|)q<76@dv38IeKW1Ey7E^a&4aO0``VR)ukMh z3(Sq?K%+F zy4(MXsBA2TPSmBy)#b{}OQOlTP@N7a^?c1e^$lGG zF4hMhL3NEfLE4;I?Y4l7b_JJ2@^yI4_6Gh7$vskhA&+%y!%Q~)rAt=DZZa47-N{NO zybB0Ngi{bZcihpM%0UOTT$eb^=|>k!N*~fB55K-4ys=dkL&^1-pz5V;LOrh&EMGIP zW0v@HmQGMO+RBg-uWnjrPJ+pkx$%mO5gqhfd|PXGcmv5ZyLHGzPt zrmcxjYOFZ9nHAo44VP0q*RXsUTkDl_`PrYuC0Z~O2HC`m?W(d1pGi|?Bl5;-{HgPD zeK}!e>m{m2sz>NWy%`djZ{eWQ3vqOWc^AJXH2n=abfj&_lYW&oC#KCodl&o~#6DTJ z&ZQxU@$4Y}Gx_&#V$SHO$=#YtY}f=I>j3NV-9=mq1HrJUnx;mXeQ&9ot}p?Mg*>IR zJk581%9)loAB4LXyKpB5UMY)Dt4a!qdnjd_;%VuHS<7)NMhYNY1L#+A-ljc>C7>hH z^~{<@PS#kES!=MhYXbV6Dllq4(n|Ag)+H z4)sV6obL~nSX3iDk7u# z8D-b{3EK^o+`fmC6i+{0R`OfZ+RLDDR`!jZjY&ges9-eDF@RB$8lf#D|?R?8mSKi`UilrQ}IC+%-~^owdxTwQQP&a0k41 z@Ev(X;VsUIIctk>dx;E|L!nLxbOGylyK|qP(My4t;uKlyh8?p-6u`>?d&b{KEgs}1 zO!s?;XdpgE%BX>*M!C}N#!^^Izl0hcO}ElI_f^ANXjY5n(1P%OF{#v(M4{RL#96Tm z?Pt&9?w@94N39+$g%wVE7#mC>aa{~p^2nUD2~QLxrBf_tN(pWzxClnbS&t7|%W4Wc z!gF0F$&1Q3#a;zlz+dS6o!bN3ranTbhkHR-oD2>|`aPk`!+?5o9rcMPwR(Sb|4nZhqbQ>sD%;jdXq8m}O`SIJk%`GW!xEe;cQ|C&f?fGe? z$M&V};pV*ee=MD*q`k&^{m&>61H=C+ohBAYV0q_;y&{IN8t8N_S%K_jpF#h$SKW9# zgy1BP8w31@GxAqgXl`;ZEuk>b2@3PqkoD5crk(;=AP66#*1aLnUB|?i09I@jGoS_7 z?BgSkB~L&XNxUMsdul5vVsg431_%+?}~hK6|Q0r$8kORIQQ(tcihPD z?8Il>3dfFO*8>!8_&Wp*0;}eMfJmlVG%oerp5k|I{v9z%?#=t|2M`APBZNZt-BT3g zes#nkKSp0H|6ve44Ibky`947BbnwdhYr&8Qxm$A<&^cwI{$n^faL5MeobrlaJMPD> z*5uFv6Tw!|S62Z#r-+wO14EAmkepzDS4CI2#DC&}@A`UUsebGQYF>ISk}lb}0e^(O zux^9<(7eWegZ=>B5<-f_#Q(N?nc*r9g3(V0>pQ_*8zt!#=XC{izzH-`$CE~Vg^`U7 zVbXO0(8hV&X>QtE)Dqxa57!MrvftDWbb*LXEjsza1b3~Y2|6|_IW`}BJAs;iW6wW< z+#qo?E*yJpj?Nn*h}4s9RUYDz7b-%M5pw^}dkix{+^hXI$Tks|a zXyf29cB3aiPvAkpy(=X^&n&SL};rCv^lCXz5~mIMKY`h5s~O7 z6fxd}?`LRRH%8wFx_OMUYzUD_OSamnYK9?)Q763gd&i?rwf>f$4G++7QmBj~-=Ow# zlRl_`8q2&uPJWlLpWu)5c|X7g_t?A_MjEUq#ST5nbWbA;P~QqX&gneR>%U9yIv3WY z_oa=(56z+??DH&wU__9cIm`W&Q{3NcM^vj@>!(|hX#hYeD^j+m&3#~T3ykg z6hIJYy?JcnFw=x#BIJv-?3B3$d)uAItD&F^hK5Vzwtx#DDa%PMx| z(ZhE6LlgQ#41JZTTVs+c;PEUfUZz@FzAFniuuqDHZ{K;%ey}Y0L8o=d`@p=shpiO^T7GZBxtnv84OW#k?*g+FVzq{Q(JPYHO2<~pH@kc=uKYfa3Zc{G`Nv-o z4qOkZ%8~)Tg`nd1)lY2+hnn0RVv25_6`fZVy!~-EHFlt8UsP0Ho_&DRY8QC}Z%&vT z429Vj+Oh6;I;2+=gZfeq#!fks1EEpc`S?HW?I|eYNJ=_(FTjYo{*(zbOPU46W)Q;HmJ7< zJB{SRTYieu(N4-v{2hx+UQsu7ogD5|Kt#Y}R=P9ETnu zI9PtH|F%wjP?m ziz~5SGEX19sj*;o>DV9I65O=NjZ4OKP)%119lvF0^~BgWREFv3$75;{xEY7Dd9m;v z4cB+eVC>p+vR#GUii=mF-%st7XONdt0IgFh@Lvuz7RLRwGy0*Ib)m#+Qf!eMV2+Y$ zEsgg)y2YALX`Z5?nFgsac4-%Yq|wN1b@dP!u9*+?U%$m5I;=HEfOW5$NR3nmo7Z-UEs*pg9IlcFz zjQB*Q3y&#mHQ!RwR~5pqFCvSh>MCu3<7BFo_7qTa__z zgvX8#8EM@+^_L#LeH{Q>+RzDCOG4a zYyI911Gq@&CHoWx8_3q!-ex_%^-iF9$$hkZ?Wk)7VrAMn*xZr?+jRfyZeZ$|Xia?; zvY6#syS|)PZMsRmW&eN)OThL)SY$M;h>7+OchGl8J5G=ESyb+jb_I z*tTuknK+r)#%yPvecpPv_PalHRagH5eV_YtopafoSmUG8Yq}+S?=7Rm{_$*c37gH9 zqw39P@b}S(9nv1{j~y+|V9G>xGV4;n#9t=(jx}|$>V%>6qDtdVFu;YfjXLa|SMA|D z6GbsBlCe$q;YmM%M*`+MSizvZ3#O}~9S!R?Psz+22(M9B@123kNDnam&Lw>}xuqEB@^+a(T;Nc7y=o&DH$ zncj8m#*}O%y~?H-Yt9jdZlpyM;wYmOzkPo+ne~#+n9)_y=CrwIZqCJ_wBwEw6c080 z!goaVcLa6Cmn`vffk;g2KZk>@&hag%LC+XFTE*?4YR(TBweU@-a$+1~h!qCi3a$H3 zMQ8{G7oMW%h$+BQ9CvQHP8y#6RCq-Lq{g1%n9}AeO-hJ?y`9dYWHPFH*6Qe)@EdnN z_h%6?u?c_TwNmEl(6UWt4bTWYXq{JHyIw1*0X?9V5BVz>#BBjEkQzV_XfbU1_K|w7 z%Ck*XPlwBL_EapSTATifM#bx|^0wZA{nYdSBde%-+6F)Y&^9M>ARrU~{N`roXiRTv zXXk9<_}{FeVG&or)BNdM^n$1;)~JMFcF*paL zK49w&RvHq}1j$)a(bOsikWlmy^NLuELQU!oZ zWhRU!zoyp66=%D@1g9f_o$H5{6`znpAL}nIkUHnRp}Q8YkBHlnBQ{oq9eC{`4zdQp z{5L4W5%{aQujv9Dz;wY$99sM4M+8Fn_<$wi^6kU9iM!?5Pjd#y%&BNqe1J zRP`0mhuip(p5e*)IUzJkp8{SEFrs;9M2Fy5ad;2+szxAR67jy8dW%D{udOvBnGb5J zQXvtmW?|ZSh|#YakVQ`MDH-}9N%()QKp9d0cCK{|+uaha*EIJ8c}SQ#XY;7`FI0q)bwEt(gl1hp;)e1}i5zBgj}41Rx~nfl14ZXipvp58!7=n~1y~{=!_S}` zwyQl=E`TOUfX*@R;)g{LH5GFOD?mZQ4P7M9Ie<<&nro*ca5YA`Mn#H{R(iuT4YXk4 zAVpXgVs>H1H0ibGyI8whYGW19&tCJ)rUbMf%NG+heI|H0BvfT%&A?NS;s@IgTLU8g zV+8`)_8?j{*x;Afq+_~8b=Dh9`YoBKDfNbgqRkY)UK=(w3PVuu z+Y}#U^e6LiVrSqYy2U`I!~sidYLFiAN#z#9q!)QEu~rnwnSoo#)Y1!a#TwCQJ@2oTRc zaX43@Gq&O{Q@eMZBBvNkqzH-5=qQSly?yibb5hl}2UU+AWBj5h>$t)CebOM=u)v zX2o2$QuWUYlpS&@ zWT2+uGk+u7%@_K!DIRfZ2Il2gqJ#2Q?}r?A#$QzI9)rMkhCSbeu+G~Ts`fPO z9h@gcX>k+kah+B<0r8ig=Ezh%U4jZruGh=qw(uWv0lJXMO#m$rFp{FERR=%|G~D%1 z3p74N|D^@0`$E@bBfP-1FdAT}P+g`t3@n6K1m+7buu6=>5$rOue^+2Rbluhb6zTC3 zypIV}q7;zib)_FwXBkR3AUtf)1(i5KIzyj=W)1Jg|KRVmWGMgcxkNp}3bc+Rwqv{$ z3pBC`lJ?LYC1r1&(ij75DIu^RYDu2~Rx-jh*nvd^rSM-X5bS@fKs2*b1bR?t$~18o zDncJ0Dak)lZ4XVf7L0btW?vUpNRkT(?0s#Rg`n)fp!(TnSbFSf@=dCtv)M%N^fX(~ zl81b<3<3X!ULFFR>*E`Ua8cbA@k*aEThE@dD|A@|>*NrKt2G2ta_cEhyvjFEU`%PM zj6&Va{@9*z1Sy@J?D?Qj0e<*^sRVzX{w|`wE1j59?tc9PRmpbyRG$wt_bwnh`yE6r zyLLqLklKvADzR%~BnG$y=XiSbJj*Lv>Zyfo6!?Py;l4p0VSL(~WDWw^7C(e$(2MQH zB+DUT5kFekedss%WhWhW1bkYxCs#Tvr4ny@{APyu!EeotAN9Glo!+&1+&67S=*AHK zJQXfb5ym`q{nUB*c|R(5LeQpdO}+z=0udoIedDLJv~%2<9((6G!Z3uE7(S16`o8unqf74r|Tyulj*Bzhm0t<-9t5(1rC#R0J=!`BAuXhcGMVpu%^5 zZ4kLGRWOp{h{xpWvzOsy-E>s<^V+sbCc#;{ce~o5SAN z$>}6^971KI4U}{gKsd_zRln0eK1cj#V3+FGuu}&&PNn-=TH0A`s@eM^UFg!Ml9HtIpAAu^T#~|aZVe$HiwpIeyw#h-3Fk!y{Hbo$ zHI`bAKW1G;DyA|DAriWmBid%~p|b2%(zxiU5ZFPva)fModD3ILs0ppTHtXdgOK2XP zg+XS|Pw|iEC$gGnwbHq!9+%vYe|E_&8+Dm`V>r9{jkhR2by5Rccpg`i#PD4#2H#R} zq+ut{n(-x>bUv867mLqY&-Ix&fiR_^-9O%Hn;LH3nv-66Oox(!l3TeMZ*UL_}Z`Y~) z?fIj$9M7|XVy)UI2sk+Meez!XKDTbZR3htt^m*Ei^LqHBDp3MC8DMd z56%HcCoU`p8G8mN+^T|N+l-&=zYiZuU0%i+=KYj6bXZ7W*_g>8 z@5)Kh5Swwvar-;#A(D`Ojv1~SZ))_iFB#kWNj=ykz{19Q-szsMS0KEx%9177?h6^DL*)-Mnfz;xzED%r16aI1T^v=TA| zq!;fD7w-MGR*a$S)jlU~9S5#&_(H2&K-^Zy8f{5k0kVuACgCe@Np8U0#Z7p@C8sps z<|Re+9Vy2u^a6{#aEE^%-!?)gqQqypGD;3@j@q>*)4Ml3y`!9{CQyAx>eaS3SpkZA zm1+XGQ%M)Cn$J9*hnI(!NUL2Y*sA3mWP_}fR9-ZneUIaA^}62SUe4%FYB~z#rQTO` z=Jnhp{kF(H{<7)M{aa3XpaBmmw3Vf=Pcwd>3)}U@_yaJR_##s@EIH+Jcww@Uk#HloO@ETE zaF9fLWBIXrOZ;s*LPbr0GSQ@&Su8@3u+-4IPHTN%*WsY>_8=m_Q9rG$nTji z15iANpbNK_NATc0s;F2jHFtzpcZ_FKj-L-MzYILCv@mGNmDC8l6uq-xw+lKP+d-lS zTLRO~V**pd?x6xl9R|FdulXZGxw3I3UQ)3lb=8JlV8=Mefqje^G!~P zMoYRA>q&xDH+c=k2VxA+2O`)j$*`ozZ}HclL3U2*2lRokCGZwc+SJR!zxqJ>35}!> zhZ5?6qW=b}5l+{Ix6-HyO}K%Wq5MA#@#fPHhA`k7R}%%13e;u8>p|nYsh!S#w$2Ix zRH`IG+MwSoLuF|h@PMd`afhTytx_5_pO*jp?&lIxtvn0MVFg8gp;DH%e4u&SAyQq! z5k zbi1k-O9STKnAP)ZJ&r39lT={b%$cmrQVlp<|^?NhgF_@=# zF)D9~o^Lb;-9S1$pemJh`J+A1?cbH-VTm_X?GLBJ;gt8|i69b#Ev{LnbcViC)1E8m z;U$Fai|QY_9aC^i2>3VT~euexIKl_%Oqk5v5qG2&QS8klb@ z3hubCcxo=NYXp#L&2R-2(>p*>N82QSc-8w6P-uj@G>uzFKT(`nYw+^Y`d-5fuflfY zv3{XbGv(s$UC13!dHH!qbP$Yk#r3nEdHb1kCXKQbHXxCKz!s0jQS%QC;yQx7{ng~b zllgoCe~*lK?J?eS;)hCl-Y!&uk9!sdqii_9wOY%e1UztVYE6)ccrH~9(9(X8x7r6$ zgmS$2jx;luZG4C5Mtr9~Bd@m?3$Ob7GjeZ+hW0ao?^AKEs@FRehj)O9wretzv_bcd z((>dFkG~~|wjc3SHY$9+Q_KqDcs^%0>rPePHf0?-sM5kNDFF~PKDu=p>8;u386>4( zDZS;-v~A~))J$N~Q)?x$Ff z-{7C?Xel)R$fD6MqL4b7pklvoGXOS@JH9h|I9M|p;qcQ=cMWg@8{@MYgEd9e+DMUuA8VzYgXuY5j3&g#;cit{u#BW_^K*In1sJ*Z*Cw!p~A) z^C+`!!I&d6+J3aHY;2K_@%ipHTnd}oj&GSGr^uuI)9X}h1$Xwlg{OHD6p!JICut{( z^pj`tUI7kMx@x@;;M#O|N6SUp>0KcX=>Yd`wIcf{et>!jegQP)l^1G<=-!E+nEC8| ze@Nkc9rZ6#UDgoIi)%;mrB<(rkQh({BGvXLkLr&L35zC`GMD&Ql-CE<3|{R`a2El> z1y@+!wDfMka4W$i@BOy!Q>S%Lc6vc?#6zE9b+x<6rlrg0Ynt|}PGOvw=@Wa9YS53O zpp{kl6L8uf-4++kqk*~ZET@U;B!V`|jUvpuDKKpcT__Yr=38a6&1^iJV-ems9H$7N zdE^$W)_7^7IpuW0Wu@0OXCAD_{v6EyP>#l_-*uyye9oAUm$$W=U|DOiX((RvE0YFB zn*`BLiZJLf6kztJw8Z|?sSjK>D|a!J-0b8xibsw`-$EVhXH^H$(kiwJvS zMX=5)I64TMv&k*L?VV*}Vu+TZ{xyLbcKRu=k?#LBfy%cC0Gic3>Zp{;Lu`J2ND%sK zz++gPXq3(ya|LS|`LRxWH2XWFOB|$w5IUGWk`1kqbMXu!ZqY8R#0QM1iP1?@T_IP~ zA4NE}Wr3k#9D~jUE=172-ExNV!>vn39_X>(=;&PL0adpA= zCj$X$g;Y%OeTLpd{Z{Za_HOP9=a`D(k5T-x(gnjbXYs>h=h~l*D@{hA;mt+5MEaZa zv#}j8RVZ8|*PyHm>F;_`kNc-ns$S5 zm!6A=a9kA>QU!tB-gXBlvlgu$6@Eg(Q$cTP*6{N7hi-x%Isg8R@AW2(aW@I*0!{Qv z{aF~b2_W-PG9R!yemCgesu0f|p#^EZuwJqEwU=q3Ug*suw3O4kZmxo^5_Ax{O8>NA z(o7%IpmyYt1!LEx|84-LlB!9+u@E+3+hE+eR!>V83ue!WHRzx372>8TE%tO!`axvX zHv7|=ls4da&LpMSa&Gou+JtAcfCk;uEGMpIZm0eVB1X-MC*oCHGCuWq9=Mt zDEARm?(&`dviB0JQpJ{f3r>L`!=I^s{T;7$rO~xPeHn5?%k_Z-_>T3H+$*>&Q3CGK z?;EgF9%e~O#UI`ao)iT!+uIMJyt@ZV1(T~KC>sQv;$*ska$ZZ#B~3!Vc%ft*x`RpR zr@u*NDkdj4EsC<)x{;PqOS(Hr#}+oefhpXALMkVN-U>rQhAodl4WD#VFFQBx%3{9h z^YOuCQ?6f~dQ&}?eI{$jz|@W-#CBff9G3FNr&T}$TQ9Xy(qFMZtQYHPo%UN3(t7bO z{F+4hg@1frZ55u%s@OoFE`4Op{=lx0WqF~T@K8@M|KjYSE@_dSv!Veqx_0K`$9*UE zn-Pr;&&OIg#Rx)49_un1Qg_?aqSf?e$*{jA^-Rajv$@!8y@^dYqP1l^Om6EgD{N$=M9 z!8UBl{AQ|K-MI&J#r^&oQ5#Um)nHX$FP53+Ky{%m?|l{l_4!gW?}XciPEK^Kmo>=V zxmN4_jUm9#+s1ZzUbePD2pyG!CXDHJHvNfz;{XXj9Ir=u&@$kNJ%sAl4-$J7u zJ5b5wl623<{uzC7dSa+=oO4)`vQ)e3n1>I_?;!B34|!E#Uc1m1bimInaM||cAS&U_ zwDcLfKDZ8V=l=`&?-BP*71>`-k^sN{ET}!keP)vP)*~GhM6v6Qem$nCB!>w3#2I{l zZ^&7;N_krhx9DkjQ0CwDxV!%H#Y^}lk1+kfcA;c^V*!5XN6aJ7 zD|?E$x!(t=FX&Jp%fvxMUyB_A--iYS@~O^IRk$9ULF}a;xw+@U7~pQfH>usu?+ z$kmfBRch|)Cg-a?KK3rt@ib;ktbC7M0Hap;5Kl5+(>y9J4J%Qv7GM5z*ZNvH9|e1O za)e{-Ow2%U1+_H@@U2=xs6e{517V|&yHL|J7bd0_3Gy;k_a&a;hYu=3x}NnBOf1#3 zpF`epK%E1;w}zcrnsqfrYV_C2qf4qrGtjwRxYE?)0@i|80+^~&o8ib91Jy^ka!Bkl z@r72URt;3paq|a?LTrI0>N_FTtcZ!_YId}3thK#!0mbjdv?Yp0xz0NlioizAXXecS zP?IAhEvDTRVwlI4$h8>C+(7S6pC~_mDX2am^VDFNC2f}n5=#j#EO%$VeWWB6`rgQq zU&O}%vD&qp%Gs}b^@{EWj7*5m&iKZT$wXFeR3iQ)v6fB%UX4K**Mbs^3`VEX8b$5@ zz~;{LzOcEQ@;ruTNjQDGqyY{|6Y6W6((CnT1AP?`^A}Rdv%Du_c8$|RMM~NS6h`1z zK8k(e%kwCTn@{$(yBI77*L|LKU_~KTeiTunbgGG8z>k_||qvG*Lb?j3nB_&!Oh72r7r84jHCMcCX;gV;2 z>7LZSVeu99w?ka7pJ3kaq8mFJ)Z(XR7N`!imzYpma0ca)iJffY!x(e!DDuK>ttDaV(8(jCPsuKZzvjM>`rM%U~ zFQwv$^Ju#1r_~*M^bAD3=%GDFd}}-V!1Pb}O;KzMgyMa|LNL)i;B9Vy!AblCHy@Nn zOfbuXwcQ(~oyYxbY+oZNpkQ@5ZiNZ>21Mg{bo*eq`^PKkd!KNcuC6Vr-=r}=H#P#a z@E(<&_PERVG-)w$)l|R)Uu*o5-+$rxGQoJY;@YgA2lBVuxJ1`n>oUZL+_mG$BRGy# znvnA|GAj-LnAl=zHMAa?Y3-+&NhFbvyP(h#NqS7I0lEoR+#oW&O?DDBRDs&7O{Xll zA;N1l*gP6;=H$>BPr(dIsnXTTO6kd}_=4r~Ok+2s{0afET%RE=T2aCE(b^E)y9N9?Oft=9PdWOvXxu=cnmC3v1S1sDsKm05BK0{`ifDS=Kq5Mn^5bVE+0m)D#g$1FMV|${Cb{I#Z)qkZ^Mi=~n#2F&Y~?G4Tc$puM?fa{M!zwt1LcJ zll$YWs7>vLW1v9Oo`JkZ&e5q98+}eAHy5s7O*MiEBI1To9&L^PxX$nbDT+Px40SID zOu?=Y?kN?AoY%LsB2G$38XZr4EA9l2s6z}J8YQ=`jf}7pzP0*q6Ovnx&-oUSL1oM@ zlWS)J%|d4wt8@`(HhuPp^FnC-47=iy`C@Mmmb))}byDFE;cE3djw~W;^W07{;ds&T zjJjL2``Y;QU}Gm0K@Fp-{!!kfQSU^tYTseyHc~XoZRojmmZufAYEs)IaIoBfEaR&J z(7lEsw&_^2i(2M~yZzT1z4kMhu+~_!`61jzkkdt zj-a?<-o`7&72yRp24*ZpRxx_{eV&6BRD`Fk}(qfh4|F|JHy~+UC)_f zVus1loy=m5*Ry6iKzzd^0_$Y&@Z-^%*B0!Ml>D6?Gchubqhu&aWg->sByV`u2Kkv4K0?*W z%6@Pv>?*bOAT*O7o4m1$#B1^)9#=y0(S3*MJh*y0z|+z^^upZVP`TelP|XS?VO7ls zfdd00SvggTj>V-!B|M)EMs~am$FOc6+x3VYDKIPYx3g%T;b$tm5o0bMUe@s38017# zWZ_%=hxYKTW7mJ3=n%^AgUJ*w3qZ|K2+6S$fuT~%`nod}Zh67HsY_914>VwXD0qYy zB5zAl>dqMw4v{uikS+=dfYLo9WOA3Baa5A`bgQM94nR~#`Lfi_38LUTRWNa-=ik9` z#r6x=gxG5MsrW6Co&B|Q{!7l@9wxsd1K{L*EEXXFoLt517bo|t8kg1FB~2);ss$IL zyz8&Y6}=;e>HEk3-08WaGQbT1WRsx(DVzM)NSc%{f#JIy{(%^ZT1PL(%8u+@>$ znZLK?nXy9!DD~j`eVBf?TvKN4T3W)bqn8#HJQ|y%pZPF;eIpFHT4JJ()Is7|DWf;; zG6jcV*xI?))~h)n@79e%rDb461Y36MYTSDz)cgAqw|y6DB*xmx70&Hp&a;wD3e63M zj2nAsb%VLhN`eH+{bC683#j=52O}Y9l+-+t#DO~6-(ZMwv%CU417oGeUhD=?>X~oq7Jpo;cvyXRjr1o`aqxnqPh&b%5U|WTOeXLZXwStty5uzr(T(EPAme5X>qj zoCfg}8LVzU^yz%Z4+9>7i#`6_3ue^&ij5wz3^8espFwfF}})e_3o++IfkAe@YRjSm$4%`LdTb_$q{6Ts=tZ{r7q6WIt(uCH?s zYc61X;FHrdH5Q{^<^(r;ml!Ca*em`U76I#@T~=#AIEfA9Yqda6|C)c}EdE3%C>4^h zauuST51qx2l6U*9tijPPQZyO{~h&a*+de*LB*3 zeu+Of$VegHE{w6H&xz`%QbXyG&#L2DLZCq+c+x3Rg|LlWh(?Oc&x5Hj7r@YTZ~B{~ zz$2|7?{(`ul&=G)ivz79-sJ-PK6Uv5(v@^jDCrf9b!R}OSL^*;CAP+bX9B1O#MKeV zYy+_vSP0>k#kl0u6jt~xgI-pScEtF7%Kz>?kc^kAMPv;Ssb2QE<(agxHZA4^1a2-9 z4xp&Z2&Mj>Q=r3ROg8{ZPB0TLsQS>u{fm;D0c4W}AsK<<&RZAuyk273d;ld^2VY~1 zA&KUC>AeKgDIM`!V$6UXtS;(wduO^D4_Fmc?PBqI58_ z0o$(?s~&|R%I+Jbp5Gac6yb}^Aa)@#5qXhcDiI=aNK_Z1EtbR1@K)l#ae#ZIEpzfH ze4mZKxj=h}Ac>YHeB8RSdu-6+5s+laSegGru56N$9iOOQ9yL%7Os3wCR7Dm71#{40 zzQHm0HT*VHhB4S$jN`PyN z-YvzzrE4rgYRmjFHCxg6CaiJKKd_ZCm@fYV;jb-b=~&IggAhhLugJhn44X*D{u6uT z@NjD;P_wf-e=cTTxKH)Su}YLa{(Y!migA+Gw|3ThZnB$pATwa&Cm^WW##OrJ59-S% zfD_^QI~Bp3s)U*bCbKs^%3xRWPC3bdca_yJH0~m6ETt0hMVw>#oNh9(6 zp3ysiac>DUKTxB6<2(D}Dd_~+k>AMj#JA~mmQ6ga!fl3;Rb z7f_o-VyxKHZU(d>&0}0&lhrIbfXQl7fA$fu3qyY*f8e0>?ofpJ^&kqjHioOXGL*Y# zA_bW`JkX2aJl_|wacb!np6$7NEO!gT4+#1;NOpIj>fZ(yx6(=QNw|!_24Q(UEW~7P zQ-de92bd79c-ki1Xm=q(4fOI1+LiftgSB|=^z%I?w%%RzZuSd7Z-YC~FH5LLh02^O z)adB0=5!T?!QN&-jCTaQ{a>hB5NW`VV#`0@Ur_I%o(_~=}kv7b7R zODU=aMFt{)Wq(vfg2c(ap5#@1jLYn4AeUs6MoZd;@4BGchAFD%rq#Y4EzMwva8V_d zTH7c`2kC0<>h{~+aWa~A+mvC)k(c}GcBfxzju?xyK$S5{wS%3Y8X)#bJ*!qb*xbXr z#+&IH{1md#05XX4pwztXfg(jPQdrSORswmJzh9 zAtw=qab-eeG^^k}KJ)E;K%#75LKtAI=GU*N@Ql*XNet-O1Q%4*y51VHFP6ifu`rg626K9T`YHIvTRH|ATC(ltk2iOL*VGjca*{YcRM;thV)gnBf? z4$6@G?)bKe>-;cKL%Amko#b=fx}BpDWCN|3m*m>TfI3aMq6LQA%!p+dwE1(#n^dTE z=Y>^^LumcphBf$*4+>*=y{TgFful!yFVCF7yhDmZ1OCJi>D`n2)z#PIg#^k?5#^$y zKN#(vN0^{uY?DqL>PWa_gZ{}~yibTe)A+Cpzn5$2OK7?4;x>FG*qggn-I_j+=8M?t z6Pl&Cim;|`;!H$p408bDv}tOAW@eYo<#uVfRqpgc*>P+2`_Ohg5Z%plgG{Km-wrrt zmCkFEOgo-9w5j{>S-^pWKj}NsSq5Xy$$zRtN%1%%#t08bV#S{&EcVB}6HN`2)iJfC zI+4&$;FZ}H{A}Losx69H($~!Fko3ZgF%EiEr!I8mVr=G(qKwituTcvN8Mnlm)k!Jy zM41#k$=XPiM_cZ`u4KOlwJ`}lU@YkLC(v4=p0SElsoJ*=^C~aWYBKc$`C1Da76g9kV6upE1%Fl z84H}n1Vh^l{6-N&l^P;Zk6e@`%#Wtvh$JtTYfS&aRxsetu5%C+;&^a~9qs1AXoVQD z8?7lP&ET$aFFwwMN4TiJs7#$eR>E>ZfRAZWS^#Slk1%p<`-<5wBR>`UakjGurW^ z=jP4adYP=8(d0AJMTyYa!s0w@`2)G@DnlOZzpE9)&Qq>d7aM3WXb=N*k(yRE>ApYq9hBi`{$}d@yUb zSV)q1a}(_=fr!(C$zF~m6P)doSKqXCHP38$4zEb$k=W;P>55Qn)B@<3l1wMkw)mP} zRp1_|qR>$l0?K=h!t5RioS)yLxgRnwJPBUc2F1uFou`LvoS8(Av7HG*N_1g$8hnTR zo>L$GQg8h|kaBB*)|O0oK2Fng*`cZCht=sgYjf!S)-tx+$1dTifY4(1Kb3p_6I%W+$&Zi6_pW%dwOgB)=ntk@i-}YbjeN4T9$(2Z z*F?FJ1i2@;T7ix^6b(}T<)LzvyJNp7hEfyT#8)EEQsrNxo>MW_JI`}Rd3?W`E{8m6 zLrf3Sfx|b$UdLq5{(ih)`F&)t^Q14%o>JHx)O{#y3t_QCkuJ1m+5ku+=2iUC+ zslmq^v<-&fjSv1VvSlnBY+BDh`~=0pmS^`8fG7`@bWp=kOnAZHi>&D)426B%fec0h z7K_U;jSkMU7$>>dTG`W6HB!l5{*bm}6N1}m2k7>Qw1UGax$9(giUYbm=&K{MG5Te! zBo3g3;z&hW{N18q*9GS0_5j6Ccac90T=m`Um*U5Zy0I(;I|pcc;B&~;K*8bDMkLZZ zjFoZFX2?t3z3n(93CZJnVVF>9iuq9K3Xbmw&?`ESUB{Q=2ks_Na8U`-;Ny6|??s3d#9x28xt+R=cY(UmJ{3we=mTDIk)~>{fwXG8H8=+VxvmwHX0u zxVW)cJX*UDA^D*dj6CpONkRriK6`*uCh;GxfRXvt#sm&?hU>4Aa8af>Bo*c) z7#d!^0CN;Xq%`EcW}S!9b!04ZAorOg;+QdD=cLi#Y7l^-!bMW08Bp$Fb3hd5cSvxF zkB}m!3qWSw55->7ieJRz4`C*?>au3FtNN@8aS1M0=Z^+;gPX7aQItBlq~q5hT5jkO zkOY<>hN5-39EX?89S?Ha1hne4Lb(EV1dV4vuCz%+F)~R6^a7eVAXw(dKnVBH0vtVYO_O}Y*K|KFN(r4S+MiE&p@A8ep}kN3@6ouNglYRn zvxl+K3h=(do$S^c>o>clB@qTI1QKt}>X5;FILw=gW^y#^D z0oPjf%=B!7#5LaC;g=>5t%E*`^$Kf|j+oV`vx3v-0n7{E1@n0y#l}{ z7XeAKV8$wQp1v9OIrj9~OsXjKjyHF{oM%esDRA4C%6n>ksYBMVDG{j_S9OhbcHb=O z#UhoNM8aAo<@ElwdwvM!Z|foX?B}V#C@9H)Ff(Du-jKd{y;QCMDRB*YiaHsh=G%>2 zKjq@clt&0YP}#%#H-|#6b~NGlGCl=Qyv~Y~aWqRU_X4q!=I(!MN|Oov5XRrru|^W5 zkTxo&f5EZ3$e>_vlluJ&)0`}B226@lP9UN!@bw}j88fx|&}5)d2?;OnP2BuDh4|L~ z`?`K1mM%2XAbfxU{|#RLVK-B} zdq>$7iY(xDa`30snoDUp96-BA@n5?~i&4ne1c>>b)l=#Awh0+l0IGjtR`u5F0QnR9 zr3afwxqpRxQ&0K@qIyqnT1bz4wq+Zv4Z#mMVQW9~q}y>40tI@*ejokWb2pD~MX70x z<={x{a`ev%BbukvW62>BXd^EVEh>+u4aiNog< z$1e=GaT>#LKkZo%e0)jL{Ef$}-1&EzD8Q+frm`%_3E|s$d6$DYc8hY3|8yub!lU|~ zR!zIzSv2C+fW7>I=Pq8@htzaakZ`O-5ugPY@1p@8drUyk%p?qc4A0>ZZdGm-vXQKF z{F$vb_1)~H)1>wU+BqYpk!2K>>d)IT{EAcZNbbtE$)i#-px(nph);0$XR>VU`@Dgh zTC~!@f@gL{Zs@6Vb-E~>3_=1$ct00BIp|ms=I*Ku!rHz;%G8e1s>!GAH~0u;=v7%l zoen=DL^tUaMA1Uu6r$UJ_jPq9X&INm{^3)cRdpX3KjZd*BE)*%MR+LzX~K)Apk-qI ziJ*%cxhb{%h^JMyyZ-H|_YVBEX+vJsAHEz6X$PkwUeLVyBU6IO>P}G%q-;byhTPX> z1BH9`b9oEM2gh46PA!j1F~<+0Zrd=L%G6r%K((1g)-xA@4~36|b>?z}g%uaX3b$;S zq#r@XFK0e=crRh9&=L#OeyQpAzN{Qdz~JyH#L!lFOdj1hiQr_mG^t7WpzuSRu@YLc zo?^{#20~&DdCmH+Jn=j$9OVAD)YSAQkv1W2q2@}(?kkhA!NMG%QJ2-N1^ms;Hin4b zmiZcwgR>awvJc0#Jn4Yv#yB$6!k|rLQ_+Qo0QH{ghs!qk8F>uOF*WkorqmMWoM!O@ z4YvA|Rs~LK+-AT#@n=(zgOK^(Kgdm}N(d^3@5{}hkEhonT?}Qcl9yC?ZFspCI_P%W z-1dogaoTyaoELq_q1DZ)Hh@nkgxX0-B1|tvg7s{rdezTFr(y^pl*Q4%2@-`0ww@_i z4a6_9k{vJTGH*VlJ5LV}3~BOTV$ii&*d;GV{H9rr=X@0L&5L$*^PZpqrnDPtVYlhK z8WXmm{Vj^`u89JJH*H9%Qv1D{)?{b`=q_e<~T&tdu^WKUV;#`BBerz0_DxrKo2B{!(?QLm!laqT(k~j3*mowrU zHzs^hjWdE#Zj>1GAEkm_U!R?Jxbw0&+Ty0Dl|%xt@$#gi2wZ#)%Ac1V$awq&9Q4>? zNo5w1*e*y2Zse{XP({x3ULxBu>xL>IbbY!qgVmMtgB+TL8h&h=QG*V=IwSWv7F@iP z2aC3BuDN?OkTT-MWB%!f`m3jK`JLauAj8r<$5j+oZB3F3Lid*OBNJhl$y&0+8&Zz( zu%jZk??w`ann+0Q$RH!#Pz)wbJYTv?Au0BQauV| zLxvswj)hojr)9+8x{i(Wsl_@UU3M29A6`bkY3gTK{AieY8jVezTBqu=rS@t8!=twD z&SpM4bR56ul?(R>i&No7#bWY8Bhy^a=3dzFQZpmZ^0>QR6wckE!e7 zo^tF#N=-@W8X}P#o*3Pu*c+&|}EVEL) zxxC_nl@VB)tgwY8K2_(NO?H%i?k#oocJ=hFJu@Yg4cFWWnMZAt%a1G65=Fb86EkqR zls>{@7#d?RYOVQWNN}q@!-f}jCc>#r?{6133pwR(N_OA?((OQ`J)6$M>Wh*@VP}eq9Vbqe^$Eh~j8GD`(D+Q&eE;n1#SBE{G zFVMGV1Sc!J^N?hpE^+t&`Tlo?cb*nGmlaLpv#3nX=MW>UCqSpYL>kl1v2CSPU;-D< zd+5%&CdjMiZ|n;=A%P6vU&Q}K*E>a5!nSR;v5kst+qP}nwktL&wpFpM3M#7Dc2cqJ zUU}bd|GRti*Jl~)G$-p?&pqe-Z(HeZY5JJp{{{4L(R(Lk!OzbeaYM1vTK4n8nFF1e*pK`M+;cY%?Mmq^C@i7A8Ut%Dv{@fe${}|r7ZGlh1 z&crJ|=VcaH!h&|qCzPOGK4<1kNUW3$fb$go&^J?YLlRB6Y+%!owUu6a6b`*pV*o+a`%Djc-~GNRSbs@2hGdy; zmZx>#BMl%q)GijSbtY{NxPITw4a{M`!#ekD*?N3@_k#?P=%lFrhuC zDZMUkWjx+5j;=9K-{Yt*fIY4ajwrd`R>hCVcDTF&P!GJ_6)uVk0O|o-wEL?39M>{6 zy52znpdMR91fle!uy9V{wW2WIE_H1nfrO%MjTNx}SxZ4M6;LzF?!^=@KwKtCJ5rfH zl`eV#R1ab4O)EiRi_(la9siP4V#yQ2oL{`D;i(1UE`Guecx27=q13Z>e{}ehl?8Xy zQOLh@<)V&FqOCCtA_`CJGfVm{Zsn9?Doe9B8 z_Kr{z1P_D?jxcJ0Ovzce_;MBGw*?3Azb=H<-iS;k9Yk3QS?koSe)Pm<{TA*Yi%&EE zVm%W0>ETw-Y9*;~cY!{R@fFMDQ_#F3GxwRmxEytg7lJTlOI_2vz?Ip6tiTlj~EWm{zaZV|#m;L#I z=$=9<`phtkn4cLVK5okceg!*xMVCsFU~Qm$nTI~Ek$>tD@Q(~3EC19P#+k^p6T4=e zDzFd}0os^Ys*GGAaa|7AaIH6F!@5iZCOQWVtH>97D(Em0Uv9>$=%qo}C3oI2fc_ly zi2p|HtXW)hp0OO;T)q)M^RTTnF`sDp*WJSoxLJ&B#^z}mV(||1bIRuHgYmD9->{Te zp|`7C&x3|qgA`SyXlJu!)`ZZhmPw0-Gtl)bf6V5}RF%p0O=Q`K=ybe0>re@P%@l66 zRmHt;(@_xST1ZI2_z>RNv|YF75>8QaO*cBhRDKRs zyHC(=B;DPY^;4kizmrICbu8t}ME&pqOb>j3?GI3!gGM_v3&#Ml+e_p-WLi{k=+r`e zJ~lm5eGCc;S@tKi0JLmd;)b2mtP!Rc&PkEc|wGM}A_HtC^MYy9C ziGifT-r62yWV?tgEI)Ok!-GdZ{eb~qgLi_ACuXQZmNx_Cia3ckvLIEho7iUCsYG19 zaz5=!nUFi{fB`R*uQP5E>-9Cf^rZxk28N0v9h>vz8Wu)~5 z^@I>}Q!m?RjN~~v5ST#=`>O4Az0pf-R2(JlNX#hk#z7oV2?^b|7GzOW1&**KuxjxP zmLQ1ErfGfplyKINd}_rXJt{;XOqGd3E7d1=XcRMMS||QvNq|kj`vahQM7c%7oj(z4 zPh=|s^#MByK=p)4d4e>XMDTqEP092`PqHtAXyJg)#|NZF&+9W|$dk=)^(5X5&34;56s?lpO(MM=pF+bBDzrga zHL~7DMsMdp43tf@{-7Q}vZi$KTxE zyAv4TSwgH%4pUfe%$3$(P4NMU5|rSv;8d&Pw~l+?e1GI7clp*1LlMEf>n!O#PynzV z^mCvM0M>Jf=-EM#xC+2}?g3a&aLuzwyw4*C(h6#gSRVC~ElENhI-+}^gFXLJvpuy3 zcf~SS1Ss-5M1?3p%|#+-{tvCz;9MHnt@ycdsBic$4z;iPJzMhC08@fVn{F94g910+ z!LJYX2!ELUnep>J^D;IsHD1q&jR@UD<>gB^`ATEf%|{sf1(yaAjv}9Z=lYB=jUWeb z3nGr_B<5o|#EGY>p}oJtfF+c?#T`~|2IlG~C423%ps zon(h%W7qF=B;T2Z_EE2!>qS#FAE04yY|4yHVwwEL;P{FJMu+;QX@Fxt&RjDooxY<} zOtuqQbUycQKHPOV{-9}fBK6UlS2)NyRk(w1@0@lQR#^73Kp_n?N2=)c4w2(TO^d=n z4?hLYnKV?v!LJ(HOhIhnvky$#rII1hNirI7haYW!fLZ+J4Lg?K{z1CIRZnriHz_kz zZ`k&#QlHU&T?1BpoYN`o`qGq@P4y$FVmv;C=`n+MOKvpC8V@cNl@8raY&}6T1)-Z5 zJ;flt&w5plW!Ri@S+JX&=s;b4GXkyh3BI{R#k+E5bTULt6EztBqOFmKBOBi-2-s$b zFBS+IHA9R3U2=+yQ2D``R|(GGEUK{hkEj3kq@TYh-rVXSA;!u@fBn$kL~APtaeXm1 zok`dXmWJcs9<5{YzWi_;!3iBTKxCu~v}<_HcHCNWQxrky?i#S})w*iwwCB~>A%ZwK zfqBcJD}3XsOU!6F%Ef-ms_8jqKfKag8_uEKsRh=n`RH$usb1A%nrNV~`zE)oE&<>7$)|@+n&RcbY#vJthM)3BQPH=zG zg?KwgmHAi42X#sVCI>zo5Zgo9l6l|3XXej-S;>4fC4=nQH8nE0&eY{c6I|YDLQ%Yx zaM`pAeN#(8z|I(fpgG2sVwl$|435v=_vMZjPViaw<;D@tgE4*EqosBkgwe( z#O(|o>Z1paruu0$0gji&KP^8E=f0MK!f4otLy$d$-qK5X_2|+JSw=N#puPV6z~R+} zJg%MA?ry2yeM67CnhNuwV!O_HSl0Kv48bav*vPZn(!}5h_T$*Lx8Auq?X{E^u@O#q zW;0z@17bh2?#8qthFpk$yBiF}nLKl-SPhHpPe;%abl8s3ym2a_0&k?5o;r`mqBIfW zQ6qRn!1!XSlVJny^ISIJ@2(>HTPY3X!CcDS2|Dh=b%2DRkbpCtm>`}Yij&h--kfpt zfiIA0I;>UqEO>B#S=rq3S7metBOwHfHCK0t_IJl(JBHNR3q@_KIh48qXBPcc2TgMp zLv?YR9tDl}o&$wLi@aR4yBZ4^AlZd3f*LWKo~-ArE*aN{3_%~S&%&X`1tCe{Z5c~!XjiH z*X_OZ=W3*PfwyRi%1}XXUWgq3R;0f zkIsflbd~8d{X{E?^ANE1t?1}7&XfRWnN{6=%a--xtm|*`2qG#(HL)Z_)(mjdDMQrc zXQI$Fx+hVL*>yi-23I{q)zCVh={UDP9Q*}jGo&qOD?lkf2op5|82X|#yIZvdL^1FfDA&aYJs(mcZ4gAT8^NHIofDRoiI}Zs-mQ5|2lubxbnyQZ>LGt zYS&_i1c*IH>2Tm#leNE@8zJimrrJi>2W;&imOKLI|u1VBBKbx`2|KSJzc#ai(0gT~t0;lV>BumguUx}_IK z7{gSq!}!(GsX({?KsbC7!zW-geSU%hDawF?p#ebvK>;jsL_l0DP&)pAr>CO-b}#qu zoYEY1-j!b5^!WXW0ERb%QzO$D(sq7=gu((s8p332Zz&3$IZd1UF_jFoc2HrRR*BJV z$whncbdYhwlks+IP;%Mq%p)&|$=edi;Mr*gX>J*~eYL!4IS_8&nNsX+c&v}P{No&O z82S0~;_v@zG2>F*25tc79y@a)F2RuZ!fCQrtT($}@iCD=x}Ce)%g`vB%E-FT^Xx2GHf>kowx6b=U-q z20s+E?tlVG_`o5q1hs`^v%C9_2s!1PJ8Gr*7VuLWCTo}BGp3%17Avp&i5)PF44kN;Y*Ii!654-2;amj!#VNg$op9&>{R z!n_Ay!3O1TtG4Hi)j&eb8*8qx4(Y|0Pi09}uwyeoLsmWaj#Uon%MULhY zUiqfM9)<9$6TcML@%vGB$J%#a-q$VFfX8>MJWryC%a92FLR}+p+H{l8+pQZOvx!(O9XxIKCBe2A21u|W zBv3H@gTjeqmAML z5^NkXj*tiY@&_)^diZWoJyjYfGI7lqZ*Rj6qxA;CL~F$*cfFG>nOh&|6{uX}KmxA^ zYS|O*ByDFO+u&eWIk86E0gp~r-V5v&SP}^>ejwef4m_bgv!P>UN5ohWvg&N#syrrr*P!Ri^@g!T6Sh58VsL z8c1RHhC;lNXv6o$)v(r_Y+3MFMY^@s&E`F*STLTUCS3x#Vs?;xD$Ee@GS=ml@+AA+PAW|v52N2NP-^o@ zCI42_e#lkWE<kB( zR~B(TY5hlnE#ZFDs<=~+H!xC0Hht@r$S&d_Qq#|RTBNLvO|}bi*PS%vvEo8l|7rB# zYa}@k7AJ};#U2Ai1?p6CUd+MVb*s-C^5wu*kOj)2`YrgFi7Yi?0nXh?X%N*)?ZF)lG+`v%S?nXa|T}E4s(!@XS4>Ibz+V0geO=vg+=04H7J#<^I zAt9hr`dPMht`3E#1PO`@dKrABc=)-)mgB@SZNpEtn)5~WD7c?u1`!HzVaGu-au91A z@PSPS!Ds_zc7J0I;TT1$HVzX4dPGEd=}7uAVLLBXroOYeE&gM|#ze5sfH=8yXzGe` zCHcs;CoM=TdC0q(^#SSwje5h6_1{US>~1bGnlBn*V6~+RNa^4UGXHgD8KCoX10Nv5 zR=mFfYW<=2fKM3~>=i@&IWFYfE%y)&^8M)YqCxd8A*G=?ExdkEEF(e+Q?S$|I|82^tp(@j1vT{cl-(*AwbID zV@+5IrY54m&ql#}BUsB4BEEl(nihaU1?EQ;BSplh8$zgSz`fhi5jofKO~45}>GMCd zIzxXw3}r)HpHHt*GaHa{{w44>yd|@vfG?04%CaKQLHiR5^2f%+6&ronp3-M=O5^i) zRp!-^i67&MxH~p(olp#zOYqD+jAL_(_;d(oTq=_;>gd*jyhiS{5gEJ(e39wj{H&B| z4~}hdW4kHMpEFEif2g%TnAEwur%jsU*=q2}k7N&uwwhP*rvD*h5JmYW&9*%|x6A0B zC*{Bilu48yEj=Wc}RTaQLM;q-Xr=HpyQ#60UPB0j062V^PkWDXp#~_brsep6Y0B-lo z%PnFKeDP(wv8OQ^6ezqr>FI;c%<-tUs#OoYiZRGIt@B-eOL(!$7vo)-`9)t+&qhjR z=-(d@va>^!UNwbtrPF}!R?>=X6^nR$?r)_st0!ukVHfd5Q@Nkjv604EI49BD>pby#y zrinfpPRAHh)zKKoX)>QBVe_kUq9Zm9Zbx!A5M3_+Awz(k_Vl7bx|_bF)XSOf%=w;c z^v!$}f@^~bOB3q?il+qFE>{9)Jg$6X9QInmy#~0TzI8u__a!`#Fd{1CD^U95XBt;~ zIh^i<2f7H(8ubck5!rX-WZ!OS4X`6jI3f8v7*WD4cyx{m;Mc4H-*sfou{5=;o)~zW zuydXifh{?>7tZ?gn)+SNinFHy>9&2MqsvZolc_$Z6okBHI*H$S<9~)oQy6Rny^uIl zm`||Vf67zZN=(SSkHjr#4ZH0e&KpernK5U(WUSz%T0A^7VMmWH>e&eoBAZwc8-feV z`3cQan1X#Zo;y_nB8@DsGL`uaS!RK967Tu=Y@+i;=yuHUnKxTuVuQQ;sc}q2(maI* z>n*9uu!&UN9ec;T2g^09S0Cpk3Ub3y!4~4ZybHZZc)1=!l4#8GwP|>Ak8oAzyZcxQ&>&x@)WIWir@z3Ie%gsb9_}Av$=%i5AR+z@!@k6rkw2zektW4 z?Cq2C)1`of%BrCnu}&Q8JogRTXuUGb^sc{`74-6neWfFZ5}|DKNjTZ#pqK|?{Dli@ zC;}dTCPJt<=DAu-odR>LdpB4;C=Ix9-0w-93yveoDY1{uZ>m<}r`Vl_% zyF^4SX1mmjZ)?#fC3?E!pgy8zTvSk)T9I$z_@49c}-GpCDpJxm}&71u(+SPe{N zO0yGCtPA*xR4`bRPm;@QNZbIlJA|_8#$pX2WGK{;Kf4f?)zMzlq=Rt9d&d(M9G7^M zuah=2gO+149f*eSW9NGQQuI;jp!eCi`_7?zeL){22&VtZJ7+zacX01fWYgTCZm=PM zJ^kVwYHz@xK@ZSiuWfNSx2eC~fBx5GPyKQ?T0CH`6#SRD!p!*3>yM_C%dX@qpe*`G z07Y(0-y{Q@D0tUKPD=XV$EM5OB$E$sC;9erIe})l?!MHf>ykb&Vnnq>v2{Nx3vdst zyU=7H56W)~Xp}pcHXA=_=kxU3>+02VD@<6E$)g!)toH)4gQ3V8pZD*d9}iP5V~a&F z;}3g_T=Th=?uj9EK@n_gSIJLVhn7l6kmfgXu)M^KauO^NE=b2}Iip-TB!PH-~K z=mIK$lQ;P>f$&m^KUm}>f??CPWYRHj=)o^mNU7VAe|-pFUb1(xQaro4`y4 zARqwuK>e3{fa}6W^3JDtXes{WG9lAI#2Z6?^A!kDcpzM!C4!eM(ApF^7X@$b3OYc9 z%t>|FEfIuK>H?yO^Wz#8rLT%7NMp$#yFkb@(7w&>Jq(3cV{XJj?@(alkYq;Z;O+E~ zf4~vo9-tjY70+#Ra?Zl>8*)EzrJ7crx*HH#qVD)lP)r&{xOmXc~=0uXX+^i%3-NXYF7yC7yTRA94}_t z3+eMZ(2)mFwz;o!W1A6cEoR6=<_6U8v#Iumqcot|bGT49Pr-FH)z1s`+q-a0AXIqk zOgg_^x^P+A7tuAu@-18O46o)2-xf{#S1Qy7rR0DH>*3P$OKq~J_+esRZwL9jN#gJ? z^6^=9VMA#Jn|nHe2($(8NJ2hpq#g7#0No=fM4-#+46q^V3E`@|BS2Olt){D&iAoa$ zB~)@qb_fkT!#4NpC+9B?-3Kmy!(F`_bV(t_svufC@JTXFmp&mclPKeOV%IC2B7V~% z4~4yHVg|?5gS#^ZpH>68A1o*gZsd~&I zmBc)DO~E_Vous|Eq&@BSW>fJgM_L@&K}YyhhsD!6waT#bC+;&m z!vO0+_@<(QJ+2yMFss?ewXoA&{z13kTQvEp8kAj#{Xdnu9vCpO56uJ9cxMAPjUlWs zIv(xRT>2$~4yOBc=n(b655G3`*5%Q9KQO3MmE^;aRpw%1_jz<2W?9#O=J;DSE6B!i zrY9%_v7(Hv9wgFnctMGwbTxz^Jt{_>c%i*5^PvXW0C11BNqT7knKMAx-%*GOZm`|@ zQt`;8+z+kG@h21Cvau}asa^hhA*$9B3DE0VAgs+Vbxvm=?O>d8Z;}TC^m?f1P7BPy za$_8Z%NWl3Jue6PUiSvSyG24$LN9kEivJo(A>$(=0S4eYT0ror@kJ@57@+&?UADN! zBq`FH!^x<|y2{$^SYAi4(H~UC=xC4vFd(~b?wEs8OHf@f)Vvxb5pcADiLtxIxZXI< z=%u;@DT%rh$XNN8Ic)sJ3R=dW19#8T2^GL!v7WSKsO-RzS;izBoXtpvlYnHVJL>ws z0W6^-O6$%c+9;O_*GIp?J7FW4@@h~%7N`wJFURf+NtzA>hWee!7(O&7_uUQj3yC;) zW?m#Q-@co8oMi!|MaBJLAWEUkPwm)w%49*YGv}{lr{t}|t~6zjslV+Y(*Zl>DGFG9 zy@c$YgggM71^LMUbptd@=T46V_hqDZc+#r|+lIo0V}zg&ajdxg?lLx6hI^EnhigVb zn$?t%ti7ESQp?F5 z2ZZ)yT<$Vml$GGhP?mjkg@2J|nSL&zM@-kfss)Z}l5zSL3jnvw(`h^Erv~Jc3s0cO zW~fC@o6*m2w`q&eg5UB%M{ksTLd*dA0r*5PdquM)xl4)&$U~5s+BQV;C(qtFyKuXL ziTiU(PBzlGhcv?03jrZhg^1DIKXtZ&(j&pC8AT?aE^c(giIkJzGbk@0yzgFFE%cL# zb@|LGVxF~%uc_IlfU@Y$*81K0?T1<64__W7$gx4+jrgI$<>%oommQB>UQ3I{UwBpR zL%Mak_8g>XraVV(gL~8jaSt2WdT!@uz4FKOUpnf(P)pYLWC5G!dX@`$+Kc2#1rmEA zLqTS9k8IR>t^Q6FHqL0}PhLF4ua-8{78|H?u49^) zc$~3dr%BiXQ7{yU?2byxh%=1U^O3kyD;4hog+!68i4p{YmN~V0R55ioPPfV5VvJ=v zZ|?Hn>Sp5TzwykkFnRN(J(HXP57MQKCtp(Xk~<;4O8)4?#Hmxp=%G62~V}uihT>CLB}61 z4+NT@?u4CM%h4q{d$B2W?KGAwg~Q{rxUUHv>XBSiZ6Q+2CgI$4($E}!+_~iIfL{}v zyGgW4xva5=I&w#MRdxO0rnUxAcyvCmx2bC;8jYUDDi&W+F9m-kG-KbLJ30 zXYVGp#9;i^V^#i?B(|$kK)d~2m^$1D880s_VXn%bDxfh%6kSI?MqkO`_y&lJj%2+A z!g|i78x#gOOEWltM;&`Md#My8o6C(W3scY`Y#Wk=V zyEpiyGb|*r%y!}uKy}dmSXYd=5h}IwJR!a81l+uJm!?RPv~In*>V0X_JfI;XTdT#y;hdbvXJO2q>$l=gV(F6t;hQm|(W;Ky3u6J)) z{%5u+!)@uh14Dcf_PaEk_k$oJTYE8sFcNGQCfH&f7hUS%h#gDJP!+t>%&3LeEboD6 z4x4g^Id%y64m%0d4((*xVf{LCNDX2B{x@48dt64tgfen#D;=b85Ms#dvgbXx`RdB} ztBzn}MgoG&9IK2=Ux6fwVWG50GBRxYen)DS_ms0R228~UhRSsr#3VMHA&L&EGDAlG zifa}qK4a8qw`M)s#9Z7dJfojAKk@N!p_Moo4u3QA*>H`Edf_qMvLGAvnh%wnCdgd2 zA7w+;U!ZjtsoUB`Uc~+^&BdimX~sAXx;|OiPHyrMG5M2_+hYTiaaTI_zVDlfibqBK zCoVr za>8C`Y^0AK{>+`JF90tTHT5Q%9T{@1oy_!{yAtB$IRU`=5QTCeU{cMxGFBA8ut2Uw zo2b%`0;l2U$rA$~C%n?h^eDorpW4$i$edwbRjuPse1%3s*dK~%Wi5*3u6R_n(gIv4 zi32zJv8?@zJ(@Y5k*@OH&AS6bTS82rp$t(L_a~Bw&o@<;hm~t)SK_5JJyOCYv5#|- zl>@)g2w`N%Hx7Q7rD5w)Lv*_TR)%8S*0n5bXDJ;|cD}h~sZpgV-Rn5gKts(TnW4f+ zn`!?VFji=jT@W2E?_r-;DX0FAou6T^8yjLkq6tr}8PZ-K8 zdfob$I%N+ZX}<(UjZSACKOz6yb4!48W9;kygY@~&e)+#hA1l0EDF#!i7GE8HlV5PI zs|^T$Q0PWK?q#G~l3clCT{|o=V4HC062xvy^s1X$7kTZ*mc6ag*YVCq4c`(jS)G=F9Rlw=}Hu;A(vHDOJXb~%j^sIB=u&vIfZ!KHxt3s zI(Ko9oL%VP7yEb!B9wj`!WU3MN#RUy_(5L|Gzr5Rec*Zm5MkYJVQXKwW14<|mb%b@ zmm@9ClwV=u33-s9el+WuY}>YRPAEn;htAu7Fup-atQw`+77 z0d8H^Yx|5B%m<;Vk8h9q22*GXq-; z2=v1(@!}B=O;nL}^{(*HG#`B~=mbasyEmc*UKRTL$!!<#d;?&|)Z0l@r$Hoo%#eH6 z4yL%rNfWn0fT6&ti(*juOGwRp3rE;o(EUn}_EMn%Qp=WK&oY};WFmU_nr^+mEx*Hp zH@HT?1C;}YyGOx#IXvB=K*TicHtJ!hhcJIDlKX+l(wKu>B#EUxalsA}X#^2L;>v41 zGGJ2zeuc^f^F2lGC*|?-A{(yBNuH7rItlh#OziI?VvBvu++r{7sR*AUT>+ySK|Rm0t0$n;VovO3Xn&^nobY` zQ>vnmyg?xJTPmI0IU+-7Kwws)`c1}IXui%$Yy+8?d0yfeXIhlxEZ(8)Fq^^C^)*PHx8k+|0CpMT%_M9-!_nBxl7uZ>FAxdxE~>GT6?YQrh~&nkq&RLvLb6OUJ}9ognVMZLOx-D zkk2=|fC+W`tf7)bY9a@h3UI3x=FHHnkf&Jo_kI)jGsrDxkX142GJHs7NX;7S|2UmnbU<~8PE zlrZ*5pyx#@dssGNin&sZ#!D=cD@y=EKCO`gIiVb+@_1*I)6X~|VR=^Cz3-oyjPj=b zx^Y<|X*|rnY)|mln{{SZ!+8wMZ@e?56%}IwV4un(J`Y90A9~F6l{jsAR3x_o3D>aX zWio_ssb}NS@J=H%c?^X<8Nl>T1kJLlErsi$r(mwhh!P}12OiV06{`sPIHS!*o0N?4 zLRvoCrl`QsYE3m7rLG*?pp(>id{9f?y}}kc@Fq(GOP`c`hz}J~#gY0mtl}&CjFMgvoFH8q z2T}@aVYB#+E@|3KiMEfb-F$Qj(s=ojD@wC@Ca2SsZRtyT869iuv%|B1_aSrphlmF` z&+|>z%8AG9qyP!6?_)inE(tcRH}2F(&Ad?ndw7^RZ55|0pk3r%D#f`+{pFk6rivp8 z6<}uQ)}3P;GY@!>>f?K;d`(O;KhRZBed7xpKTwT{H^AzJ^NamDPqX_Ch7@$g?3(h1 z?-k-9{^0;Nm3(y%{kWvu6IuC`);PTceOJXHR5M^8X!_V@+)<0$7%AG%zTN@eqwiV9 zFt2LW>{{NO(t+~g=9aOU+l^H(mQ%kfJjGR7JECMRJ_q#fk)|E*fG_btxGL1hk#z#A zkJX}m?*FbX=^wGb`Df#zqIKI-Zxv#_Lt#=9%Q7cbfZ-)r?kAwe-f6pqIfv)Wt{2;z zu^oCu`B#0XH9Th~l?V5JARtScj4*?JF*}WwnGynKVN6Gwg8HNElWBZie;&a@S2aAQT| zco1E+pK)oZzExq){4r0~co=ZR{lW#DtfA#arew?0H3uHd9MY-oPHNkapXutb!Rd|a zvP9&IS-)7&NSGZGSxuX^HR}SsypSRrSu8?Xo=AEM!%yJpSad%L>g~ilYSqHers?7) zjbUXWn@h%*B?nVtWL_lCY6m(c8PJr>^W9C^T=}FyTDCTt-TxwYLX(8NNjigWP>ti3 zrTY@O#)Sh5Ij%s^3WD{OW=kFXkawMw_ANjhq4#<$TfVEvWWBN)I(lsv= zOut{+>QP6TEhSanz0OY0R52_&J{`xZ(=XQ%I}4gtg**4ruV~ZL@pUxU=u-hS^Eb+QgI76a<1yefMP`5J zAJ*6s>hwo9f*1JYf~a>W(*;8${w|hxn9CaYYqCBB4x)5W`)(XEs1)3+za9TR5_5X- zvaXw=$ytOEna&3atmiCGkf6<3eIomDRE#-6w}JG;L-9#v!8kR^Hum{;AxG?)w?tay zS*`f}iL->KI*ZeQ_dmyU{>CvfIcWgD{4hd8j%r;OYqv%I-UX(b-HA7&GWWeA-J4(1 zw2sm1b3Rkq?w%K=pCy5@2GzM{U_dDD%}N+ad2`m{S-S8E#(pI76YP)C@Thzg;`T z2kB$w+jW{JH8V4hcG<*HYUT%OpUrq3|Je;iCmGb2(+t$i)xd&-#slb)V4rZ+$TB0* zqyirN1Czefy9LJL4jTN3Q#*AhP7be4WyB`+@k{mVjs0}ls$M1p{$(D1p((<>Y#&Bt zGP(vdxntW1D$P-%?xMi9lVht_T`-YQ9S(?`6WSjwb3uw0DzW+rkTM&0O~6jrj}#1W z`F}w5v?XV?6YKlU)Pf90Ua+E@eFD9yB# zhSvZ?f<8u$H3~>-GK;;QYa8XL*-w3!Zo*ywc~wK|l%vz)WEORbrTe3>VyVxA=U3Y2 z$pOVktxvJRqa;D{6M**l_wP@EN6A*vfJH^q=d@Do`xG7B4+!_;Tzb8((F6S=5IP6P zEA*+kZiI{O51zjmzHN-pZv=o#wEz1u&AH7KiVbkHM*d&QJ?D(&da zd2u}5*emg6ZklkXsZFD(-G9nGva|oC+_U4;JRXC}0f&D&Ptl;y0?Nm_-V3l>F5ZY# z>dORRV^&~5{59!jO?uf9_Qb!5*#5}RLq{BMCTC&r}+i!obx60%{^G#(p-`E`uY zJ0p|~lqi5OdIu(?1U&YH8Gpx&B0TLn{mI(-+Mgqef zhW`^hWz_($C?fZekcjyE<12V74G5kRzXH-d0tj&- zFg*T8i3F3%ubZzam{FY#(HX2&0^ZvbUI&P;peP^1J`=o@L}y7crrbXaTn)@>!o7It z1c{qu_=C^LY0@r_?4^97tc)CAfVXHEMu%%?PsFti z_?OFVQWbNCr$DKO$TdgMPpbGt5qJ5xU9vnLknYJKPMAjvSr};pk)i+JUVHc|+>z*a z8JqNDg0WHg42J??#_chIFuz=GA&OhgC0_Cy%OQ(_xiI_8~t8S#fNH2xG%50LdbIJFn97t`mF9T;TqN~9uHn(w()qq(9c^Ctd> z@zG8Ggz#`b;0$?YP_}E#gp(Mjqhac^NZrwqOAV>;lj`CtmYL>x$q$a{gOY5v`3HLUi3qEDSmf3eJes31? zLR?b-G%>9>8h9dNAgW&(Dh8iWVe~?KI^Y#oImUz=^d@7s#z2W``Db5U!jBMsZ$G^I z@iqGW422<|6m!zX>Mg0SAxc3~igB4tX(0fmYMZ<|un?8FamOqPil!XphQBm3emixQ zzG_**q3uY6zLHqrDHj!KsWLq~23+wg|LfaIo;^iGcAqyE)-qp|Vw~Qhg-MVVjhb_Q! z)DJTuM(-7A|IE^G8(I*o^+qpi36crsFP5l7(entOh;V;2lLpQul(zHzA zb7$=kV*qbHaq&iRhJr1aJu8y9U9Q#lT_idW`0XaD)ZZkyzV_BC;}kG{`uK)aCg08> z!w#r&3rDwDINCP@TAb#BX~=d!Z>k{2WjdW}EvUIGgn~2BY4&mOBJx^~nEoDA2)c z)dTJA@lUh#iQTxPmg@%#p!`KjWY#b|#Fnp2HcxvGv1dH?Y3G7UAU}210@DP}Erv)P z1K73cQs5cnc<`QU{i%L$f!~xJE;@3oI(8AS;(K5w(KO&7yyVPvU@GLkfOlT-tR&>j z`8hYQPxQm~wFaq<-0zYqys~8R{QTq9PbUT^Nq!dSV!{p@1Q5)1k-*slA513+CT9 z5Bow>jCn8vW;)U-q84xvm%8?4D&;ijoWFY^X!}O{OTQhcG9Fj|V&rKw_vSaXsoVRJ z;nNg~rDWWz)WC5+n!(HAj&j(V|3Vft@^jbbD~8JUk6anZ6)#tA-bgbveIh@f60DN@}bc(UJ`OCuY%`BaaLVcAuD>4HKI9IoKkp> zgtkAUW8O>4sSR&-6xT5;!HzXoceJHSYK(U@w`;b64l8UTchQahz0eB!y`*5~%rFx- zyK!mawF*OFGUzXVPSnOa9|0qw9KpI<)$Gp!))HPAN)!>4)qabcH%1cJ3Nsrybyl=x z^m+;61fILhWc2S+5T{xWW4P^#b+QL2;mJB$UKGl5D-M)&Datyr@~J2gMzU<)u7)Ze z1zdi+U_qtdFC3s)%!&ENI=5y4hB@k-LF&AFzfOuMfMV_y)QulrJPo>=ip@C#Pr9Z2 z{EunUh}Gq+O2a}Bb}~lgmgT+2caKi>maH95wi=)uIT8c7`5c&Ck{O#>ZWFl-&<#E~ zw#lugkh&&Javo&}my_SCJ*~!>_>2@6PQd%`-anPJiWV9`;+WjvJUy{FC}=ojCeCo@;s7GRm76kIH^$^*$WDp`F<4890HtN}UYJpi#VENn+2HZ#@4?tVLnN zOg-9b1ryaPOWm50qs(o&9N4Ax;2p}1AF;6~ia*BX7d7c?l0?T&wv;n6yhDf~-$UjF zX*7&<6N2Yy;l`A6FUryS6J?2wXRjQD;i;I!=9cgJ)@jkDaO}e?(%FISgOw%LjefZYuC1C#XC19O;kINq9UQQnlqR44akGR%VNLnYi|b1 zjXl&F!zEpm0_n2`)cv(iN*re~NfzGeVo6+Tb@$awFRu6N&2HC-Slkyk>>Y|LcQ`fV zN#HnDM*6OQQ!tw2#tzJ+o3(FasBGjTng-7yr1d4eyA~{ylSP&`9>)hw@LBD4kiCKx zU5MGt!>@Qr9HR_VbHc@CQrL3DZ7vsgdO2!=RUX4g_WdQ*_S)C=1RB>HShF$YGDY!f zX-3qY-``zGg~dv6pzC)m$!X1jh^KB1B#MyzA=^>Ps#G`UDMJf3OFISAEig4eYfzCQYXegWxCm~8Pwq@%*z%dJ(lA=valhd?DrUAnLPJmDOkj!Aqf>V2&r20v@jZ z3UAJ1cw_UuBcyd3fgeF46iQO!M^Q@oJ)=$=J3N!k+emP2Gbsl0IWbk^;(Yf=xY@Zx zMm=F0yXSSqvM=yPQR{4rJyB7e%dY^a2+2FRUg1A0_x7f1bvg`MUH$X3f7u^@-6YNP~px-sq`wXgyTl# zNI{k;0+<({gyB5wief`v_PU~ACzE_RgnSy5Q0#BKF0;HgB)k0cA8q9p+D z_oj?X_X%J0gm@}WyI|B1{7CgQyXe9)f3S0fZWt@olw4euTK6Y@{!I ziC1i-fB6!h*or*>Pp2M^@tjP!u0q&YT(+h7$XLhqlDR~V#`}R-Awu5+(@FiqnS!34 zz~igR>=XJ#Q2vkvHbdJy%t1X#DtPcHmn)yR zf_cJvaA=9{&%7ldQQoJhiX_CR;UDOK^x5Q!%!mAC|3qf`c#Oi{fTDOZ)!cBht|ZLfR;!<!*)ZEtMnO?SCOplhaH)?HCzG9O^o0y$cFu{zGk%ZJk9@N z?wy)D?f-4v*ha_cbZpzUZFktQ?WAKH9ox2T+qRufvVM7<|D3CK)m*#wuG$Ct?0y0F z$@qT8xUO~lI! z@h5mrIvDmCN}vC3cMm<#ZjH`+=?NyaBG5V; z0GGW_?=rhQoQd$;A*IaDbO=&@E3&|W(tqCXpNO@NLPQ*&gsjCYj^iA20KjFVDqTRb zxXFu)U8CU$OB_@42WvT*Q)K#~y7DTckHK@gD)+^oi5<)8Ju81#Uo~Pc$)yobafw7L|mkDeV=^VE(e|4e%C;G6pn7w*CaQ zjAfN~H!(You0a-%6Xvz_FZF9ZHD4@0?{o6je^C6wWzXDh-b-iysC%P0g%!a}<~?uY z+dNlmas@5uHr^zk)ss$iau$^IFQJvP0Flh@L9*Ic!6B&Iv8n^3D*1NHP^24UFlwe^ zjh#cceou#BNx=6Ui;7fL7SBBPhVUEvx2t*KG!s3fD96aH`>EGxWU9N5@Ij(Rj<#=S zbpDOO<2mK654%UFiTIpfurNnlB@>}E7P%UywYOYwbbIn6K{6ID3nP{9V8UEC)ESmZ zri%|{G+^JL>orubFh%kfAbLiY*K3LgYxIfJ#Y*EagoV)v$$CkDRF zn$xev6AY%m#ozk#3b$`(147rB%ZXTj=?j>Tss`s0cM%sW`(*Sfz`WKG?%bIo$mvYC z0Y}tPHw)5bQ>gQJ_g$HQ^26%W`8sTiAY~oqZuPp;SC9oi6bTwYH%%(pI$}d2^ z=Yas7Pi6vJ(j`{c&lD`E@bwqGP3H~*Z&BJU!x0;h&sklxB zv-P2aMiB<5yH~ir!4l0WI5K%$vf8d>0p~XMCVH%1FUISLzo%FZv!$754Hzn}X0$~n zfq(UZ?CunN!rWfW`oY`~u4Eskb#6_Mk$cczyO28-dWTT6t_B){PEView%vXpmIGuy zh@arOo}v=xEzaZL(4beQ9jF|)eatJ{QfIBp?APK$7(Ih6LLMvqL|v;Ht{Qhdf?k{U z%bE9nLVa#b5O80)FnOT7wQ$TPoodP#UN~R*d?<``N$vM=w)I_@O~96(2etE(vebe? zyg%BhM3TLE4^+H*yKNsj{+Ul&!)iwH$HbUjDUIqd_c^>N66BG2E{FggiI{sKI2hH2 zLAP+Urs})%!<~c0dn5mE37yjYv z4}7#k30~5b*Qd({MPw;UccI~ZY@0Y6A17PWdVIlZ3ejFty8<48DYsg>55BlOvamPk zY>E*@7BagUh7thW@bI^uYe-F2qQf;NS`|f(c<{cb$!B*6&tmbSNJQ<>s+M=S9hRMfYcyJ9rw5(-6c#LStMM z7a2^;{=j2`ndqs{=+8p}O$&IrVZX?nRC7DUkdrK-OS-JI$tc^dhRH%O?vjQ`&4rwq zUygeXa#nI5rCpt4XIUc6k^Cjz9LNV>JXd=NAZFLOO;(9zz1Jh6O*xU}I-CdbOi;5C z1N~Y$e_rw)XjSwvPiJOJF=_RI;X2~QD2$IchIlh-$b=-r1D&nMFINoUJ)QH1DbZHJ zjHAaucHli@s?8OiGUixO-I4Fb`(3_NsAepOo@Csf=EOGc2N`!(yo4q%V0BO-UDI(a zfet^4^k?;_z;YlD%Sr4cdQb2DTR%gz#@W0cs_ZDSs@vt?%q)g&d6o9L7;Iq+wIr@m z|6Ne{OUS&lKwUj)dyP|!D3+$=Uzrau*r%<^(ADgae^Pex|2p!N5~d~Xk0?ej5i3zQa)7T`!Di)C9M0X=>XLbLFq=t?z6rZk zxIPgZbn9xZrOaxYAWR3fL6RNh7%%EZPWoOw$%eU{hoMC@d9Cqg1d9w^a(%mA)KP`< zYcCo)aEy;1oIYOLhXbW$TeG6A45=@7k$LZyypu;f8kpZtEoi1Ies?W?s#~4~uByYR zD=JDLrFp{f1|p7A{9VT)n_}<1e5b4J(7bihN=4fXxanu}on@Q|ULN_IBfOt%CG=@Ju-5NL zq&D+jJK~bwC_AQJ7LTQ;wT*{(x}_SwlXJ}(r_WaHDzLH$q5W-OFnQpv%!h8_6q{rq zLWOhHb<5SPg|w=I_Y6Cqt!KHENbZ2^C)frtY>+ESA*Wf3q|tptO!>07?|9@v{j3ev`3z?vt3YUyk>nPXX+WyL}181uBY0l zK9CxO0H07EZ?FyIJ)qYxfRW>hR}I>x*GvGV!L}~Fq))|uV+ZR{UoD8Ra74dk#(T!t zx`RdmHNmszLfw5ah%56mk_v9$z$=o=$GF}&@y?l`97SSvt~r;JY&6QRRVUtAoOj2_ zx+%7(UL0%ziVEZrZ^Mk?x+9gc9m;ZWA*L^ zqjo*SU6k_iAT(!OES_v$Uje~P4q0P}v2c^OL)%XxdfkS@UW|sLtgGdcIRTeah0BEt zRYiBKmeyr@T~;lNPW(@dJ~z)FbkIeQ9C3(;+i5j<268uf^a zoL|1jpI+X>I1Pw0zX@Jpd_wC47i~(l`V}!==!aFyC24-}(%RpPw9Bib54*`2>t?L$ z1aLD~WVDV9_ zsprSeuPq(rb@Td}UzOxja2_&*rdRbD5Z>~#PAbD=|cDE8e z!S|WyVNKJ}3&sBlV7>h~V;N)1hW^{<;MH)>1O1?hX4zTNGToGQ7KFa=`S5TB02C}b zk5>n)zA13QMjW-G4hf_a5cbt@)4c8i69ppI@6kcrLz%60SO10!CIuXUG#dSpuvO7= zDmc^rSSY;1nC^cUViKYe3TGgY!i@ShsQU45LaB$^p+S0wCLjhJfr1RZu}dZND>s2^ z{(RNt1a^5t?xSocrhd%W#6C~`V6ce|ochsWM|M>a(ARxClMOE<7p}m@jg<8*D{dPa z7*Z3?aofL{AAov;$OHbohmM*q#b>5TX0Rc@ZpjMterx?W>BO(wtXu@} z3DA??YOH3QX?jPE*urcq`=XC4HED&2Zm9Wa8$<(>!tbHphk<)|xLp5;2n9^S6TioT zC{A@ujDeg6>YP$p$K(BdS^Z}#Ji05wri8X+Y|W zi!Je#WN%}Dm!m{|4YHKhQ+y8a`7}U$V`mpv`4w*yM@&Qz>NE!28EOHk$lq}&xM!St zfUQQQkAnCfbl4M~lf0Js5hP%BIWZa`yWIxv3+ zB@tGEBY-M>0=U{bkaAx!%pl7&BTS^NxN3K+w55>1!UX@@=5vPVTZ=X@vmQ;qbO5t2 zFzm?UX5fB7e0!1edd_jn6lEDEQuFT>4!$$6Gic|!ns3+q3Na*kYYeBTD$V5pGWLgS zo!-VSu%zfpds1Lm3RT&CU}B)X4w^DNaSzCV8O~?~8U|Vx93GHK%Kx&o>+p#>b9*jyi@L3PEWbGOIc0HBf zSihc+R(#sOddkGM2Em2K6YCTRCotL8)}KEo!C!^ao&TUEVlEYd;2%U2%5GVJ>yT{c zOBDNLTF)FoxjPx%d2$v=``fBM;bBMbwz`{tHva-jOhOy1S+(m=za7jg6WPq2X+)IHaNCct zIwA zW!7#tQXIktwI!3Gv8ir)8?xh<5EH#5_QBJI(}4!-w^f@qy?rW2V#B_fW4A)ZBP_T}_=vVe6TNDd#Y27`jA%6I{(W3pBA&eF^L1fEQiB}s4SX=Lifvp9F z^g5{@*Gur?J4*5*!>I=E$_bmqNWJGn|2fz&RFL7#0k2DK5+tsvF0X_$U6ueilGhBmK3KFglytpu2gVw>F^W=?Z4zFC=4z*-MNFAiKBLg082p+gWBEQY zvkMx-P2<>;J6Q^$PSCErcUqD>mxrg^5OqWp<>BZPQM1#yV7_{PWTW!XO*($bIe$*zc@XY*Zc+fZ{K__k$CrHtx5LkHC=`%B{7bsv;kf!!P{dg% z9T>waA>1LE9gfl7NJ;Yw4T|fne9%`h|Aasf_ibma^j3%xRR=!mXz#=m+*m{={n28O zmlQ|>EPokwpp!gl)LB?0zKE#6kBfQ|covh5Dt2sf53n;!xF3EGCTg0`V0t|pbM}iD zs-&&87E>5VB){xO$XYuIo5MOms=&Kc#toyiFtO2BlJ=3ldey(B%@!H}wR7ynw=V@k zPSKXUoru>z*(|JnYWa2CSG;C;McAcpz0amSiqXE}!5ezN8c#_Y1EQkPZE5=JNg!lu z3eaM!^E=zslmF$J&=0v$8yQ{r%pHK3f4pqD^R{?(py#&n`nhrGTH$voikB{mPp#@K zjR~W{lZc)ybckB`d^X+jh#U|5Dy^mWleMo@gAg$T1fQ==9@^@91j>uL-fF43nma-! zq93~5Ld4EYT>_+Ow}D_T?ht*F95C-0)I`7_>Si@z*MuwI#R_;fh(Q?C?`Y!RhxE-3 zB)<6;_G&pp6Y?u38P5_`92)kKG zO%?ERBw|X{KoPUMZ+9$&_Qr#@yr6VOXOEe+?JJO&?E+p;(fD`KV?%EiI@nJFT z3vl_FpS#;|{2wEe12g1^gwC1oc>eT@j)2x$v>2$nYhEpoyP%jrRjD~TI^IgFpP}>} z6Lm46xaAWO&7$ZumU(G-ypE!os&Yy=P_AnQ_Pq%Ez{IXNUfncHN>-U zqtXwVHLvpsRs&RgsajFeIJV|x51_U-r-N-m zOD-zZgv&;6aOn$U#@as3u3^$JI5$cUp6A=dU4=czO*ej2?fzI_Oh}-l`_h^ob1}07 zFpyH==#J5yK# z;+5onttL^opcXGkQlVJ5xp&&*MokbNsI*Ey7#F}zG3|sIM>LdE2lq<5pyt;aV|RAe zsY)&3_n^k&tk=4Aw{j7t=N5&h@oDvbc(gwhD5Z?kp2uOs<`30o1d2QpDL+xPkD7xq z`zVGx>OTN*Y8aZ-_0eKP;~mN;mC3jF32*0c40(`pksaodB4Dv-DV6xiuhNgg#fx4uYq)M!!G+bfQb{?*X-^&~CqA6iE4}|MWJKL{7@e z=O1Vz@WY{lW-iADqJ;{`E}~6<%V*_gDIAWME_kemf5!*rqagngsM`F0%W0}U1VU^*tZo1(UOe3XC;dTzd=H1YyiD2YeEz% z5g|r*Cqo?cdTr*juMBd}Jy)#@Mj5obLI5|be2_typ-K2>$5k&1t_H~&kuL<=v}4XH z6=~m`5o)$h1U-~~lBl%a9n0)0EI>P@(%wZqO^L4um4K9qzuy@Ax<*A&MZGaP)>%lF zlMHeurx$Jz<<9@oAjg2*jLeVu(5C!`y5U#9&f+&mHhfuxf6A$1w?$Sg2X+c*r$se} zeSj{Upj;qCex|mJJfv0XvG6p@q3{xPxfipaEKNR0i)^7zYpYH`eIx?+PcI$Y4U8>` z-Xr-=cOh&L`}pGT=w^RfZo-mydiC~IBwXcDemqb=JAr8L0qSWxbYJx}2A=t-l@P)o zIQZuvI&|EuYyraC>_GTTv

    jp`D6&%Q*4L(vl)Iw zTNGfiq0f#wrMOEoI+|*$5?E0spmj>uDBteq#&Vb#UdU`1c}xZ?hvd<>EtvTD4tffR z`a|@g2G0z$$RG6?HC@2<)U8}AhTFy*rq3Q*-}?1NBSfs{Ssl>A=o ze3`~K8G7m~5?X?Vv`LTg`3FHB+HDm?v_EI)k(HN{8}KTV^6}#BJ$gn2%55B_4Oa0@ zjH1p_j($$;I17_H@Y@VR)-|{U1z5>>EK1z>CuUjQ(Embo+-wmSSu@EmD2dO^$ta#& z*>fn_8<=CtYXk77)7wlNK!_z4bcV3q6b}-vp|YXSqE2A{j5;_4V+dbmH*uAhbmtU1 z^rOTQEj1TACc9Q=!8gvwB4Dj4(%OkPHzc}H&wP7Nnw^8HSlX>cV`5NR9I08A*a*55 zUxo&=+M~9jrz#{Q8hf!hX#oiw#TUU)c|-(FIzR``L}YIM9z~~QuXOs%s5B<4wUszR zimX(EOTMz0MJ@Rw(M8|ve2zu{ZpqY64d;NHkS#MH<4)LR&kQt`!=>h&zE0fGgF|U2 z>+b2|mw`l}Opt0hAH1sannVi!`pRmcBe2tqM}z^S<0c~|zZ0Lin`N%dN_#b&88z%= zf@2y`><)V=dbF#Xn|3kP2(_1;i!EzUeCsL(H~tK2RFZ0?byB>B{h=-L6ea)68Zu!U z=D4hsNLc?%^~CSgH7ktHwuubolp)13EAnnFP9=*<{)K=J*)jX-jdJj}`jjXsZrjxe z`yA4SwQ*SrH|E4K4&0k|Ueq8^HCK9zqqjt9qY9Zu^+aqw^yoZ;$qdh5%cJHo4coEU z?xCCs#D8=ssm!IT)xlk7?+Rx3%s6joSn^r@TGONV9IhPIB@OAO9R{_iRnzDKika`- z=&Y;`CZc|=5Y`3V5VPIKbNHLe+tbdyQsdm-J0SWStlsSkpEK;5Z(O?HcQ({Q{LlavJs2Izcrls53QxLdR3lCf zlmo#ij~X?0#Gf&7UR|k}Od$9}t5ZrsP91K*ftkxqq^q@scUg2h+-eq9f*=+4Ve zoEj7#gxi?^(>!5ZqG){ny2%(l74krEg`YbLqpe`m-aX$!=4g&y6@f}r72{3G>z;JX z*~Wc;pyA}=NeNV609$x|B_&baqzdy*uw=AW=@HJ#s~Rsfpil%CUG;CyhSMEoo^;qk1q(av8pnh5_*k|(Sv9SJO zp>wHl*_uPKFR{=Dmxl)hJ$vjaMI*`26TPgl`PfXLO@vIk%0;xQ<~@+HtyT^j z#xk|#*YKNfEUr_orO<_VG5t9=O}^nP3uuKpOq zD+qZ}-*?278W79bLFclkXmbct^`f^;%+oxp5UKrHo%B^>9B6KQ*e%o zAFRnnc6z|hb9n*ef&(Oyid8;vtLK*9&<~>&7A%mIw%xS*t2G9HLRv+;hQg+QEmt1p z;Ar8f#1}7CtQK>Mu)vo}7#vvUyk+v0`b?ZM?LXTO8$MLJ^AAe z$@O8WQ1rb(OZyYS`66kFc6HyqNg+VBiTyb3=*1fHVe^CL4wm;9lFtX*|2X{Nt`1IQ z{XY$VnEr2vKUZb#mbx$(aTOCN4KGW{`M;)!nIy>K*S^v05}-JVdvoJVaqR!SxC**j zU}TbAr*|#?$At=aKWz*8R@1q0|6TJz6J)+yzJs3r`&mKi{O8BZl+UZyW+T6LKwUt7 zrr4{|1~7pIs&Fn>VHN2gPqpYi;`(kfp8L@0TI~(uTY6Tgw0!aPuw8k!cre-pl>lj( zQ#JMu*Y9b_WgHn1Ke$DRS^M8?$ z_5m`~H$Y$l>|uh1yF_>Sg8SP=Exf*Ds4rD`+!5nI&YA}2WkBA8tUF~l6p{D@w)r4x z4m=nMNb&pD^rbi%yxqtdPGZ+sdm+fKy@>F0MiDrY&+2k}*Lma&RA7J%b-}q)&F;fX_)CV0-0wB$q5fhRr;|4iAgqHHieoOZN=EG-?m!KEgWP`|V&+=GA^$CC$sNW(ZK zo9lMqZh%vwhiNT5+TmTe>-7XKGnI>^2TuLx>SI{ubU_b~v34!_Ek;=3ZBnhGyDZ^2 zGy%6EkKRt<17~yPV(7=XPpn1yf-$?Hfkr4aZyi8~Sxc;ZA$59D=l=rY_=F(umjmwi zNqdYS=SK@>r6!cfMIw*ZCn(@Z4n1%~Jfb_mKr=QkP=$SJU=SNGXtZ7QNbQPWHiMhR zR!T=SpKJ#YZWe5E*1-ReLq}M((3=}9zCiDl1;5QbwD9)d(;ub($J3vk{}v4ePTepHh76q}rW?fQlY9{=eD++~>iLYMl?4U>!ZH$9;=7un}G zfeQB9q-K(-BOXiThE_VGzx#spTT;>os&=ygh+%?fm%&;A`>_G&7UW0rLwpK35zrl9 z5#e=eVG!T!5FceL7Uq;<-@kqzRMSOE-XI$IEJ%GB-&4Bc7KhToYwf*A|57uECQ(mI zGZ&ca)*qE8@+gRc$oS~g7-YAm>t~R(0>9}jGLpAk=NrNX;kLrPcfFarivoGeyI55C ze!vS?A{30QLQ^^c%EhMdO_FxXVjp<~J6GR<@Usj;QF;w2?C9hT{zcAdR0T~Vu+#N1 z#KLUntbb0Faqd}Ut98IAYxNWWqSg2+gK(B!?p@qfZykIs|Dq@m3widAAfO}%h*o&n zD))eB^$?KKxhNoRNhjPg7Ubrm@oe}Nt>k}&`~82l{MkXu`rvVhKZ7^JVdH651VpPT z_wM$3swelt+&paN6pb3e&KbXFw{UzT-ObY(K_J1;Rj2rO;MYJ8KQ8_U-Qt}KV8kXN zMV!p&PF!$A@9u>zX#2Ad7(x&JhGU_FG%IqH+FUF2 zFT15cc)o8P2%gqRUUHL6H0o~GT@5(yFLMUg(x8xLdk>PEx3lGQC!Y^=LC3;EeE8si?OJ(oe?MR+f;z8PUvhOSU)(%I? zymBpxzkx>rRoK}~mLDBDvs z?_w>an>B2>slXWGe#`gz!rGvQ)Hq~!cuzfedI?lTaIibC2%f?!ux%tr7WG-s7L82g z!wp5yod2v16e~Cx0I-9ewq**3q_>*DAV4dd!tZ_{(w3vG^&myC4G_jwY#P_^kmzaJ zv{}U7l{rlBYW-E(tupbKxcXZFps~%>#aVS{@tIuCd^;2l1s)pdnJ+TEU0;^U*z!M3 zh9dkE3V?Fanmlrs z6G`g%DXz^hnq8{~(NJWn7ex)F#ZPCeg~8l0>y&b*S`!fm*9c z^p6E^M2}TVO=dmw3aQtwfE-0^{#;W`)3JA$N&Az&sJ@!K@;mIVWR>&&DT&j(8M@E1 z0>XxtqIaGl`kf}Fe6}h;pSpUjpuIhkowo`esa--i~iB5e=8KG8_a8o@F7^?^! zqRFCZ(zha0LhDYPJ&bhV$yz+Ijk;T;5u(X>{TTMl$i2{wd=|N7E4+>xnWymWTDZkJmKgsFiTc~&mTRDt zw_um)Zi{~6_m@f4=HiioGdv7N!Y$3<9Zjw)PIv;Dvdmm$V|U|O_<~UX%t0!PK=ITfbbLrs)+_#RA1gq&P`^J3xeWQ|UtX7Hj5Wn0duUl+dl$JKxibls9QaA- zdmV+7(cY#VbAL|@izP($4ii4Q@XHCS%IfyWI*4Dv9?W$%OG|z0+5*eK-B{=>Q}tz( zM&5;+O|JsJn3)J_Po=wOc7Md9^~i&nM#L44mFGrNh+V=(ja|!G6R4yqw<|I}wbR)_vRC zXXMbKh|f788h4sg@J3MoJv}j#835Dv0l>6#&ou2oD-q(YkyE2(*ktl(1&9kRA>D6j zuE#NnyCu3(2?%`mTnlB;2pa#5S%&(nfJ@csi9sdV1XYHHH^M~N0|>3CuT`((1AD_5 z2Ha`#SIpwP@;j#cCuZ@W-HrVdvmoa`PyjIt59N&|9}$p405MB!w+j%n#7;foPXOSX zD?D6bXDCQKBuICdwi`dF`{x7^L?rfErKxLAx(Wi)kqv!EI&LpNqUO^mBzl1Q=UNzu zdd;*P2gdc6iQRHXrB8E}Sh>sD!_t&j(1nk+R&yr*^3PMU6DzB~SQ`stKlM%g@Cwx} zg@3)tM-xbE)3ut0Y?qnYPIvh2^C|J;KR3CF2zxQkdnc^!ufoy!{xSHpXzQ-x_~alI z@$OB7+U?wBqHf=~8$o@r2^QhM+k^Gx0rRx`(fDpoD@;SOU7*axR^X5i zF?aQW0`LkK*7-xPQ2)UzNTMnk&`2UDcJaon28FO%-YgT3untH`f6B&LiB0`Qi~J2o zcYloSg}*n&Sm8M=$F^i3n(V7mLEsqAZzPeQE|1H8?C~#NA@)b?JvI2lcr(Pmcm>dY zr@&?#wXRcVs6z&z$uc*2qg;R`uDHkA!XSC7;vXD_`^ikm;<;|RU<9+L!~RI zA$xmyeVdGzznwa2ml$uEz$|;vh$%SA4{Q2PB5qO1 zMyaxWel1TGp#2#IJNA&n`hGas8KJoA!{pMrFV+|AEQ}RbdG|valU!+4)?F&-sT_kU zW(+LqH1tG3E3BsI?Ex-tvb8Hg_^Vnc5%FSsa4puxFXOF8(|=;mt5uGKF2=r!auK~{ zqZ~P5#{%*TtJ;^JPmtklS$Z-RzfbTux|egT@GI9~x=5Zr0ZoDq-~K={u(IR+^^UP_ z3E4(-LrSarbe3H{M{Dw|OY+-;rst=KA2dMrgUVWBDrkOd?cYmOL8zR|H@QLn^tX+8 z=k5wEt1(*-6jMLc#qY5Q0EGMO{@VR)7`^pzT!TQ#+4X$)=D}P-eScNTbq&-iVqjm1 zB)aYeL;uOX6)=FLL3Ty>buGHhUS)^}(#2D%4~OnW3WhU$#pV{btok?6WKuIkSAj{A zH-bv(!aqE*De7vp{(P;pChne6e3Nq><8j>qwSTlu|2tTx;GS1NaLRb!#F~$mmDs9N z`5x(yhoQDYJK&i&eLe;nfzfu(OHVDwK;8GA>M`=rxjrEC-8$YEa$glOCD!^vi%wa2 zIj7+~4e>SrxPM&i9`o*Y<~Q&xnr`Z8PWm?D^pAE}N1qL!f`Di;?sW?bjKsO7x^0FZ z4_~IA;7^cPzU=b{`L~}KVS&=FwvvvMKEEp8La8Ov$npAPq5i}!<{@I(NZ{(5E+%h# z1RZPHr{V1MhI~$%9Ams4m9Ri>%wy7FtfnQaNGN{XJSqNFB8WEGiD=wo8M55%IdYcU zk309<;peOvEgJEbuPyUS|Gt97Ly#PPfu;@BiE1KfkVGbeCyltyF*k{7{lk!-(ZD4G zqt1=;nURH-*iCtS{$`FI`&D5aS}ux(TlIkPcSk{8Tm9mgE!WnK;i0rx>qCFZdyOWH zAu%fdpf8gTdcd+*p;y7xi{F>4l$qyoSy45xIJu%Ulei{$2uqWzq&tNJN-MHl-zrlZ z;XHo9#B3`2KG6&Q<{bz-v1G$(nZ)mXe~+x?_v+Z>+HLV z*Uy1r?SMXPWVSLr(&?0J`pfVX1!*9ujA@&}y>_@Sou#Ff3d<=Ekd>m9K5wcUrmG`B z!(dsK|1gq4dQZiA8YO0y%+*iRE3Tqzgt6M6XAlY zf70R%MaNv+ZA3Mc6wC2V)I@vB4#ICG?8b>ZeVJtj)Ks^bx7aKOf(W>V?=yn7$Ki%@ zi3*IR`7WN`)jg3l=F&pFRP^{NEyF-@gsA{(IE(v5-{grZsGR4!64X(i&6$Y?a z2F9*jK{!nA3VYRr^MvAVa}wgO!nFHO+KnHZx1i>RrMOE%GeI$Zk8Ybz%Qg#)I6tJq)?23q_cUJQEYSH4<`t zL-{4(E(vNMdi}|xj&uy6gZ|U9M*RQ=k6z!RY}@C^Y@JE{`Lhc}5nk~E#5(61y-JF3 zcEmn28wts1`29!cdcvq)S=-*+?{%P`?cX6l<+RPlda_VLv27Kpo$)BPK!tkX0?Z;`C?AD0=5b)q$aG1zzbCA@HWf#sig4=>7;ApH6 zOKO-?A!0}Nh*Yyw^*)UW&n;-S_l&`ETnqjS{#&93G+96mBh&IUJJVBHODn0qiS8qf z^+KHHiHS?rtQ@4vDa9Q8ypL5v5EumPltsn;*tQ}Cv&?Wyt9%8zkpoTCmQL@x!IUbV zLrII)1RwREltd4(y%^UhESas53nmU*s-;9I6i`y0TenqjZ^=ky2P^V4dvVb>*>w+6 zu{MMuY-v$d)87010$csM{3EKmoS#*-#tIX^@fWVZr4OV?**2o+w+{s8NO~fYOQ^~- zBa@40_LjryyMLR`20mgW{(0-?KC_D29WM#Csu1#xZ$ba-TgDRgzwb!4%G5#u zi?Jc|C$NVs3jNl1->&IfTcWEV1h=vmzB_Of6UU%F>g?kmqM#QyMH7^Me-_;`u*C7Uusff#P>Llf18fzaRo!rF84mS2#^|oNy*Ga4C4Yob84IR#;bu zOVPxjsZMpJoK$5*hd(o78y$(gINxHQkGe*?ZT6irTnRj_74?Qq`VeIF-F9wTT67=& z^qUY#JWS7eA+1hLjLN0~T%~+pu2ScUW?;1tiMHS4M}+`aX*vPGRSL@Ug5qidhq9fo zCyj*EZO1)F3WKEeCI7J&VW7Vt_S15DpkInVgrB753pN>W2gV@cPomf1k-fMD$bWt! zMa4kf@O({yzIbpUhTd3VWJqdPzRPmJ0+pLT?EVP7M%n&70*KPZdyisLp2T;LVm4cp zt~YxGj6-avf$g%3s&T%D@<&f;+=BsBr4MjZPqQ$FaewhdpL*}e*!|1!p@5Cv838J$ z?pm+G);!-MlW!pxYp+E^fM#8ruFo5{>hi}Bpjjsos8i@2x4AU+y46}$jo1w(K8|H2AzuK=(D$p63!)JqONQ2vD# zoR(akj(oui-Yvgi1(dFNdB@Kle)PWuzIEifb%n6H%Y=e+CjSLlq{-fdaJ%&wr`F-| zPi3TE%QJ#9+_?TBM$e5s-G>7>3&G=od)dy>GJF;5?4|FhxaCD+1{;ZZ76E4=H&Fs} zKR-xD;h+X`5#^mnehVD@)$##{cw!C7WBLwAi5h^aREe38$$!4U^4=|iZ>;|I2j7Ku z2v!GZxy3)Q0x80cz};?vEuk-1!D={MXuc^$vFRX-x_t-e3^6u=HBrA&+p9{G5PdYT z?dEs@cKrK%ln_rt8-cVzCEzRso85^6`xfU`1786u6ByJ?BDx&0>TcFbV6CnjSD9Td zvwq6087~HV0#KE95ZqpHh}%}t(zNi@cjUpU4BUdq%~A`o;RIi}=Yao1E7$?O`=#X? zS*1oGC1$Yn=*3<5#!GH;eSdz2OiG}%`Rtw||E;YFcU=q(amaa?m>u8b5wpn% z|FH0{@aMayaZEtkW}ceXeX;MW)6dbH|I(Vy18Nom~k_3@Qea{om;kE&*?kJ^1vPNyz|>;w4p)}V2Xls&zKL_w zVZcpZvIWi#Nl+HT9~?ArQ+=RkXM=ZM+t0>u)2Ih&oaw;O7mXso4Fg?C;gwPWzrk(f z;7*!AYC}fOJWDC~@bVUlbCBtiOzioQ*_-$6-W(`^>ZWq~k$E6~|NHaCFQ8(VUmom` zn;+ZAw9kE2U)?r6A4#-u+cRbe(>6O0-IVMwxFe5h6vDB6E3j!_5KVk#E)$e)52G+= z1_8`oTLI}U5J>ZjNOHs$`YRh$lEa%we&~Tv+e ztV4yoU7#M70+wm`)xr6;>w>*FG-rp z>~Yw^zsXwdzd#&uwf`yryhWuK4V@E`e2_tK79co9JeZcY-;T|Ty@4&f6= z<`#zpF-A{O&17EP4idY-OpPkgEh^!yxVd#G4Bo#ktU_Jv=Y@;Jj!H)D+Gdsl3S5~V zd>^`_K9c(*)EP6*?T6qpysv*hg0$mw=y4q<%Wi+#VmsEBA58q<>}6D;_5s)HiTVVvx8 zN9=)(nPq+LQiyV$yZb?fDH2dU7r$s9b}dwC-@BvkUX?&D*!0%xPGw^z1gB zvb&wY4u!LCWc}iTW>fxv-dR zCj6Qa&3vxTlxZmi5R=x66BA-OhCHg!K4NH$a^u+y16#LZYuDw&3TN6($4lqLVv!)g z`DKEg67yzeg~prc`#mj~V(E?7kH2(vcqjl)frjuU+x(LLu^(Km4r^O>-Isv+ugsSEFJx=YZD!#1OVgDhV~%0 z&qf9IzH(VH6Pe){Xff4;a(&@IL9b(dQEy%-53*#paLu1C3c5e`Z09zqsEB043)RfI z9V;W+X-2O?(x?FHw00IRfCHxl@7Zz4VrSa|x|11P>49Ad&0|XPjj>JOi@IhZwU@BU zGUZvnrizY6Xnw_nr%!p;#_~tBtA=x7N$oFp5ldVAqK8N&y%KZDqVnErhz)0GrSmBx zvq9Uku9kRfNu3E3Zqf+9lTyXW*c|L&53RPt+PJ2X9A+A=rn=E&;O+$Sp-^A8bY8(X zwDA+Lxc2-X=^-mrX?9bu&vKfQei=O1L3M`MT30s##JhYomLo0|(+sD|j6J%vxIPw1 zSx)*>>!arT*q$DFKvWUPyVjQY)f^dNZ5L!(b$4E_65$KSW50Lb<~Z`txPdy=j4Edw zTi4|fl@B_$TW#W%0(^*4KjhMBinR;tf)t4&4g&S zbJD41n^)aF*Uz*kd|0s36*>vRX@ln+&|@hH3oIi-t}77WQ%c1=W^&&ZznM2A6`i^= z%P+M3a_l`&!<$6X^S5eaH02F?YDMEiPt;6(0@^4OYR&uny$FHUXJ7RS9VJlY?eEa zH|kvN^V38bmGPH=hIx9fKxA-?I4JM8%~=Me(Tob6pizv_vrA$;Op33TKQIx~??5w0 zMr^RBv%*r?92D2nHGZ8PawX@WFI;f3eHgtn`5C*!iEbPr$F8iTcP3W70F4rbedco5 zk{znlLHJN`j1+k{A%<64!o6DB8XHITtYU(qiE`;V+o`2EjCxtoL|x1*JkFa}5%a3) zac;jolLfE-KqIfeM7+(=sYne4*-8%2NCuG!rP4-He=4T%izI?$LXJ$>LOXq1?S$*f z-bv$XV#%c1$PHUd*{l{_L*3NJrO`=Vx04%Z_x%?yBx5n)6|L2xs_$lbsw^-n`_5&d zc|>f7kjyp9Amx)h@}O$s7TrM7kV1$=+2us%O)Htgv!~6cEId^2W}t<^gVL|Y@hM%5 z-Uucmr=N|CNaAn}JOCe!@)>Wt)h2+<^I_@YIkW@6jk_r<{Ob2_L;a5@tKmD|G`h;w54H4bq1|*es z){|XRk5|5c9OIGJIf3&DW3-#i{5c>;k&!ZJlho_I7yK{dqpw@q=6u zwDMtBj^HFlmPfJ=Az+}*#?$icuhSh>C@Af7AtV8cMsh)h1c3-dKmnFkV;|MjI46WQ zba_sh!|i|A)g)|?5yV7cM@=~7rq{pxeK??kY9(ITkUoHkh=`**gGst@!^MaI?CL*= zz`)gd#EOK%p2D0jKO~;4$PRu;3|JLD49DuVCOoe622S1e=Aw&ar~BDD3-YpY7j1(A zAO^(}@CHCUk^&TYiew*bvge_0iXLnh^*(f`u?u%q;UFrd8^tAkam zqRy-BwigJC+`gvf17<*vGUD6Y!wBCQVP>wN$Df%SdX*){40UhtH5Nhd-(rUahQ|8T zgpsKEI=^u~2^Cs00Bnpg5LZ`XCcsZ%(IEP&vvf4v4KAQVsRw2X3PFBiuHV^|AbYSa z0)!lbd(zR-_wvD%(oPW-cyi6Z9mL3@kuwKVwzXg-V!-ukW(O3)h~Lrc`*L`;yIBe zmRu&Cf8}`j;HLJj7wid?N?kN&+W}o@gOX|0i=!C-h zCbDY86wj6VC{-MnpaYlu0VrHE^>C2b&+qpJ3lY7MWhR5BH)+PyAfo=JIjDB)IQ!rS zFZii+{=eyNWv5&k!Q7FUbU`sLu%b{|rP**jp?ToKmDDX{Mp^C)wdGxCHS=OXv{mHK zB`ye|(7+R6MLS6YM(606vlc3_ez*90Rk$gozm7J&P7MsCt9X9Y}DW}43hs?RJ z1IyUlYrmS3IXE1|l}`+gUGStW=KDX-k0k{Y8C<+OK8nzoU++vqk5rrMi1tv z*t~|DA9L#;#dXhMHOP(2@B+eM(9N@IVn4==q0UA+VWL1&0^2U1_2Wb9!zTxn-U66O zks_X2O(>E!Y?B^R+;7#3Ha*XeU!I>D3A~IcMU-1cB<|-(RI;+-+c|uq&H$0!FSP>w*v5*=?^d5QB?Xd_&(-VARFLgyE_iI$MijdjY5s{` z3jw4}sc6rFI}9|mhLU`r4Ju`Co>U16j3X%64{TYJ3MUsc4t9|b*@aloYW$L3ledr^ z=9p5k^X}oVcKsxii&e0~TB{6xzY6=GAy9PrpnnF%0bw?dKi)mityPFY|DKpcKy5$L z9%VX6!x}S6d*Jq13H#X!Uxqf;UC3lYW0lWlX;5fdX@Z&t!F$5&&l`8}EE6?q^){`NUNm@MLEeO0Pcr;)E zolI~?pe&0N$Vu`-yD7=yXD7_J<^>;)O*_h=rDjx{mQ-3=u|yBOmti~bN63h;vYK@; zZMtGhp!B8K5eRy~&lmyvh-vpt+ESCriRd}B%e;tZQxqMf;`0*gYD`MW3t5CaF4c)2 zo)Z9Wi_Ez>Wq$oH7g6if+a02uk$y#ivvxy~-=w2Qgri2=q7!{9x>^-M-D&4o42=|^ z^H|f4Zd90bnBfvcYJSRY*x+%UgSus>E!q5oheKpsFe=1S)>MU~j>ET!2UF?ahfJ8r z5YEJeq!p%O7$GflFs@o}a;=dzr(QB%fvm5uy3>|u+u zmUu%-(7VPOS9YcClx~nI4|<$18z8Cr>m^Kp3ik{8F0-;>p`k5n8uIhy0kIpO1TT$eP0c$-|K z5`*$QT!T7viXtGQ4Qb+g&$a;=8n3x=Xl7IfRE5zJbk|QPNoc0gFQbxfvUtaSjQ~b9 zc&f6tN55g=USncYc-c8dPEn{oR(&v{o65-;YkNp0O3vJ5C%TcCNU2%t6&s(rAE@XW zM1;^Pk29B?f`~i+)>fB5N946?S>CO+x>8{i^{y&iQD=PxfCRuwJE*cj=Cdxbh_x^~ zF;mPw;^9|Q8kh--^}8NZH;wO`gllRlXOk%&$* znzwV?Iz}+oLUG=8ZB788n&LW5oSd}+h}by{yGx2hi{<0gx=T5D#YKan}AB=1!a zY`$xk{vXyEEt7AZDnWJ5cy~?@d&KW*a%P%VZFFQD3#K>5JzUR1{4?Ga>?04(4WP*V z!7SQiliRE@QTwiP@aXacA*6k##mOEtd!0?rlJW&Buj?k&Hf2pQRbf#S7za3R!E(~~ ztu3x+csa6Sp}8`W(%C;&>P1qrxqfuaOJ*g`Mih^(vZIgcwMP~3vb9ulDuRlKUMJJ~ zHZ_{&H$y|aig15)f!u`@=#D~eKJFW>O*~E6MDUQGLn~LhX^bavjcD{^y?`C{CoTub&p9eNHquJeLSDVueg&996&>@ zIg`2~x%4VvAW>`7c9+MA7auatQKR<8wn<=K+>VuUb+>?s9^S2+@DzHd(KfLxlgiMDzQ}YkWJ3x2!Gi z7Rre0Xq`sexr2+hM23m_t}+81QJCKoNta|#l4!&2P)#<{gbWiLnl;dYe#;_NLqNgxPcD~iw z|89OmIZ9G@oyW`VVcakgFQj&YE6Bwoj|svi}5afwh(bJgEly z((Px>2V2EttiGFM_eDHE)pbpK;eURA_+G?cgaK9dPMy@qM!iTkw|wBAt-^9LD1bC1@18gR+k?;WntU!R?zk^TCzk?4m;NZjP zr)g{E;@(>cF(%jL>>gLwi`&$3eF~_kjg^m${2ghVMV(btNu(!~%=rQ;B>H}eU$iEn ziPWJ!#i$;@>Q(`5LdgsZ@Tx7+KIiFH4Jh2oj>CIjY0wMmybmvazQuH#>B5Skv#!Rp zYnt<_*+BI(hzFm1pFz~NY9g`jRXN5VAhhFdsB(1 zQ0FB5#7f7uz)p_@#!WP|LI!*O25~z}BwH@rs1I6~1N0rGe$1-$MPAqe?cfAmVOLo& zv_f41fPU*F#(U%Iu?-C?4ANVoK}@tq)D!M)$+Zu_Q{ayX=03-jc**_(z(tLI zKM2%57tfQW8NY&iLjD(|;%^_3v0wfH;IO{{aBTkoa5(btKW{a)Z6~Vra!&jc7R`frFTTd`?ex>Brb%)U%>T+s746Gu9p4@a@v-sXM6JmAi%9?g_0DRIfpVX&b)m+L zf^sX+E+T}#2yk+Xy;7pyx~maj5ryPTRN`Xf8s4qIb*vY;)qHb4tv8BI?*;_m{`W?B zGgz13k)CnDjJAZ)Dxeh`KnpKNKr&G&LH=<65fKTsG7uTBt#}T`7eSv5+lKk8MNYrH zk-ny_Azm8p(lG^oOGKe>Vky}R#0iO8R^Hpl*|uSxuTllNdM%sC6AMy~&cP(tL*}GY z1%<+SC%V;EDDSjRl#zF`JpcWB&%c@)@n&8Pevfk~e2p=LG@9$Bx2j{klz)!KUqcQ! zBgn(<-Yi`%7=;hmMo=os0_1O_;lOVzmCY+r6j3U#@t&`AhF!qx-ark?W;|I7?YX!t z;H^mYy5Q;;G9iX1vSgwDWQHvmvK%!#K%*cKXGy}kBy_Gy#&9=tIpC8d^qKj$V$UWJ zL%ii%Kv7F&YTo0*U7?+7h&M14N&S%)E8@4-!?C2SV6Q0)d>y$mvDCZT`1fI~GVz4h z8;_W;^W=Jhl2n=M@kf|}CfGT(@d~vO{q_E28u_wX{;fy`zvE1HW2wr}02-i7q=e*! z@v1-lb`3{v3>Ag~?vv1^hs%a&{rpfJFt)sEq@tR z9{H?0um!y0-!O;eOOLPbeIk4qYKgM(c9#0sd5TIWg>(AL5n|6B3`|Cu!gt^hYRy0B z12zIp$VhvQ<|+n*1J5SKqYsiv?^rZGRnFd7@lbXvz>G*8zjv&M>6lzjGCC}RY98kK zjB^Xz}?O+|#TA`-4En zSiqbIF`c*e+E33@;Fzo3<*1{bS7eBmDY%biFv)o3@z-f;8A6-r+{h0GWy(2r1v;Vk zxDMu;Mr`Y~^rcru|CFe*5fcETBLPqryrE+l!NSu_ag*4|=Qg|IZboLRtS|Fd$m~&} zKJFTzz+)kGemUb>ze|7n#eoCYXIruH)Mu!5kUDk2BAXsr`?s}hbgrA}>GsA?3Om+~ z@MIiAxny}Lrwmo!PO!c3I6rA;3)pJ`bh}8qZSfmA;e2eb;9r<`G01~MdQTB|j|y=_ zBDfB#McD_)J=6*CbD(jbyx?X?-ZcbCU2pyuS2XS?q2VXuKUJ?hp?AQG`G`eUu5l7e z;gGb$92_z8E{w@wLi<6W0(;YTrQv7WJ9K5BFRAxncRGeI$=Sti-S*SIR^RM@m#oia zKC#bg z^~4f@C2L*M8)Vt|UYLOWEUES~3+g5}cl%5G3M@7{!)qceo%*Z=<=Y6DMe2Csv^x^Q z8q*HOt`pCbms%O#NyO?BGCMB@*n+&|{Z>5&!B3({5q7c;=W*i&;OLsx%TRmv zJzY0UK8mPCA$@_wE4(o()a-b58p-6fszvE1wIY6R+BRy-*EK6}`>ne>5y{~G^~kB- zYI2du+Rgh`1Ovhu?$(o!62Qrk`Ibv#pOCVW%((JZSJEO2xVoy7=;hRGpCO zc!01KOo4Drj#8B03{$TzAwBWp5Y}pOv3`xKI&&rNqGX#W`60T*T-#H>R&9VLsx|j1 zu4{q1an_zXq8>eji%|-JLzq2V$d->gwUJVsTVtURUap>&@!nY&QmCLL;-M&qqf*Y- z@Wk3FcfjlQEL^kuSS-Ow+$~$~+4Ugv5iHi^ae`)MX;x1XE5*NDrG(n&V*a}?=t~5@k^$TUnBaTQXUs?ZB0vrp94~a=I`%;+uV!Dd#m0b_Tq^pmfEcw7`lfG)$ zEWN_l{N<@;(T?c-LjAir=O0mrL5WnJ@tOHPXbv##3tOo`)f^7)isONJ=>8J4ugN+k zbm$G+T=(q9ZLx{c5T@tHtx3^^HgO1PR2k;ySsjfH4&z~`^qsn($&-pbM1HR&4(Exo zxGq+7^xoCkFNe~ftUPV_lKEyI3Mv@lMR_(nL6nRL58UhLDUJ*?#2gqcA2ZYAM!aE@ zu%1$cP`RhJsmxXIZeE8>=)(tV3>3*alhLM^)>V;Rt@x6n{qw`aAMA>2qGW*qx|caU z*q-ms<~HO!nKf7w50jRy%6D2~HreIv*AmYVvyRwU{FIv*bP@eD2Do8&7sJNH*;{ zW>5-aE1j5i)OUxBkS3+#t6GE$bxv4jDv8`^&05+hF{7M)Ekek1)-3iWBIhYLd-#nY zB6OVU{1$g;MN4i*iEF8C9Q3pG=)}M$li`^<^SJ8CqK&msw*8yejCVwIX5Dd;U&+*Q zU|+FVe}g&VOS`pYMAUn2fb6qN5OL7D=;P8dbgE zNX)Xo>=7mF{J=gGdhpbS=(L(O%~C0UptoPlGfhl5Ro36UL%|gJn86g3daaX;Hz?9r zCK64l!{)s_^nAIiwTO9XiYcFNvwU@EK`1K%(P@Kh>BfFn$))8HH^}eqmJ#13tTaGE zZLuyhXB2r`FevUdC8l$Y4d0FFl!K6a272_d$Y!mkLeKI9SdUu=?Jf&sZ=1XE<0z%i z<9Q|iIt3P|t&L=-ZrnS_<=PxTp>?!hEIx@?;7rUG?BPP&Oe-@)V3?h=yW4vvPzZOo zSn}>yRcjwmo4|A#x4M<{t$1jdp_1nv1ne`kv(^BCf5DRK0<1z7T!o^W$*+fpH3rHj zdl)&n`8kYYTr2@+nm-yeKnVg;#{E7a?-vN+dxOmkkLfh)OU9^e7^p}!!|!ZP#b>t3 zOAq82bgwsSxm6W2Ur@9~-un8~&H!2FcazXX$XO2H@fD*wf~;S-A(RCEk|ObTKcSN^ zT(G<{q(%8c!4yFGWYP_73)OX`FgupCe}>)Bz>=dv3GS~hv-RZLwPwCONkGkq@3$~? z!8P0Sg;nUz4Bb;#TiC0HTk8ASO?(i2mhW-iy(V8g(y!}N9bRg;Z8kf1+Z}Hl?f|}Y zFVe5`^^)KPQ}_~AC2~ML-!nEZPVT&f0oOE(kyEu2_G6k)Hk&@3-sfy~@Ad~wFMdM& zcY4*`#1C$_|7rj8pKPU}=~U4MDASdHATn&0|GfTdn(b}-K+iOE%RBh9bUY*_ia@5;@Y2JgwTh{`}rC7 z_|rz#Z=}O;27COAjJ8^zi;sX@<%=P^DQRi$lE@yh^t1X^6N7`ArqPFkb=Ho!7B%%d z-%{)uNn#?H&XZssodO|9=RwS^;$iq09)2KS! zL5dKVRNmgB;2EZ0>@T`og78-ps<=L#PSBlhuwN~nA!LB959szl4RPINTwx8d!)4rF z4RNPa$yH}y|5DUcE@Z;gm;%SLa$XwVh|tpoie&ScFt`&veS|gr&Q|;ja*f=(puqjp%YRC8 zi|eN-Xm`kh7obeX|G&$0FMu+g_cyULmWGT@A28He7$k8jUduoIRs$eUQF!3K60`Ks z_^WNfPBQO2+zNxCLmWT8F?;>N7M07_4BI{V6>g~*TsCtqG)KYRz;%1bEqfbT=x`1x z>Be`9XY4MrPgXRjb~O9T8)KPV@Qu|8)x;T|JB2);TG^d0N)|UP5CYUMDg3Fe@z9Je z-ebam?OR#T%qf0o(KV0@ZXUs^YE3zQuLVfnqbb2mDvq%&N?O`#fMT#C8*!6&=$&px zd&xHm9byEkc zF4#yi7`T};?VV2Tyf?qr4={>JCJ@>;I44;(BFOK_0H#~}*i}R6oE1AtAToJ6hHZUI z_Th?Vdpb6fWL*e}bZqlIjZ0kWHI^=Wc{b>|g;M`=+HNcf={J$+P~C+96ZnL3iwDlj zTo?Y@C@|UH2^025J1Sx0;k%!qFW=!Ql44r^SC#IVDrIrvubt@#4VNK#o=nP+DyU?w zAhOn|6nyfM%XO25Ori=jph`zCAvtQDtcSA0xN^t%VQKVLrBkSh*d-h1W`MJ5xz>@7 z{ec8A=ACLf|F23n|Im_@q!#uK_=8_*D5UlG`jG!)cN&lWZNWYX&kmgCvpy<0Tqd66pX}56Iem z($f5u9blt(^)>B~7W#W(osM&LAx7B{Bh{iN*! zEh4^|?G6{uZjuFuo7mho#NEMEJxcbX4`$eL#h*l9K<#zZ*8;91kWe{?Z9*ZoR29^~ z6XhLu5p6SQ-nK?iFvai)mUKh~=7EL38Cbc&V9r2FJccOw6+eRA>I~8HVtZva10b#b z)#;!v?Gnhh0d+cR(myQqsQxd*i2v$zFU1x`Oq^yHIY-IukkhEH4;1pg3BNeoXIZc~ zxE^q0sKD)6x~XqAvF5HNlWbVlI3Omw`19NyMh{RaCE)r;Z*sUK>>l?iEFjD?(D)6T zJxL;2X*WHKcKV_#_tm_o2;mG&`SU4%rNoHQrJ5X#0C?KqzTXjmtN*-@Z$%;SXJ0wj zl*#JI`DO-1Lu1!|V(jt1VTQgzo7I$zFlI=QS@(6S?>K!p`OM3?$YzwS=$)4x9gl0B zeZXMM5x7v;z;~vkcI6GXqK|{#T~@UV)p=p_^#7Tx{4nCzmVA+zjr@EOFZ(E)f^5I? z%=nN>G(F)*Y6kTbYBp#tz)#sXXgN*ntKU6@H0*Od8ub1atS%K_@LOqVe;UhW$m`lU zJ1clchuqJZ##%HM%A**JdzO*4Q(Z>vU5MiX!hwVabn=*hVV^{%r*Bmcw*qj}uqD4g zi}EV|h9rLeQK~YhQIabMMA^&YANJV?A%+W<$7gsr!O7F`ONk?~#YIoADV;(?u));Z z)8EIo#@h4_e12iug%K`uL7EARz|o7877tjblA z&#e6LxR(tL8hQFQw7{tO9K#>*%Ya_zk#( z9@u!9UW0M{Mo z!-v|lA(O*%I>evZsM^RjYq!u3MA^?W1b;Y?LmGJyi>4 z+Gy|{De!hE^_dxXPVLpOIWJs}Grj$-(TWSyaB$~*zrt!7?c60#z8=NE4GXOa8bOLe`-=V!s|w*U~^nVx?6LI z5XY4oWjEhx4XVGD)o&9D?(~zR{^uvUhNz)7O4lcB;EvEb=mQ8Q20nKU{DnG}n^s2# zyQ1f>rt5kw=-jjQ^fEJz zDlkICv)aOUYWQ{f%ptbhM^4iOrs%$XbAa>)Sau?MdZ`-t91R^Ai4^kZw+2ER^~ z#gt$k1a5l+v*v^HJI(68z2~(|22k?L_lL5sxPWt&{HAx|2tD$@ALZveu3pPUef{?X zinc^bl(uy5bPJ7%Ko{f0gWG=UkDOa2HT;~D_-ZX@dQE1{{e`31It=@YhIa=#y!-7W zzae5*v$brRnvK*t`BR&r4a~Yv@3;&zBP%T~2kZC3beg11Pb9(;jYGmvEfrbmMt_bj zHL`0lI#6W&<-bGYaBFZE0RKC7hQNK!&`1TfWpC@$-1wr>CPJlp&5yR4Y~6GP-3aYBt-gRZZM!GyFx?4rZ#r6AHiGAv1ow ztlrtW3=@LPFj^r##4HITpc8@2hLH*In$fMlqCGIDsMUZ{1^I@q^{*XWw#?PI|BmrS zIi8>TB5IqJM=r`ek04eIPEHmo*LV;?T}@ID@JsCcV6fN?q~@R8+NI*YYkSJRhkPbo zto-breJ5N$CQuWy!cKn!QLc#2+&@pr(|&Y3?P|4G$=zcQs?n}-qg(U(Jl)WLy2{#n z^#%R!Vv1kkJf$-rrUd_Yn;-W7wfQM%L;oqS`Vlx|jmvP>&14X z4sxhJd^c84iJwh-u&4!Xd~P8ircnA#!Dt@vp*@Z&fCM#qLJs)CKv~=)lzng&Ued`u;i0?|NWS5r zJQ7I0;LWt#-)us1LRA5=tq|R?g_cjp-83F${*s5{oXf3f&xVElB?;?>H4ZRB?)Y|oi)H9Rn1La?m|KbG$=neW#c$N^ z=#GmOW(OXt5fx5{xQq-|w;PP;dLZ-C1?z?c_pT_O1Etr{EGBs z)BDh?=-?}+Ai4u$ikP=ZP_xqp+qEKCx6B*$YzGU&t_liwMIsM8~b>kq(ehS#$30Uws?rQrmSnb9nSW!MMd5e#(};fL34W zFH`Y;Y=|9+5<%-vt!)aQb}JYKPm*{0xvVPGaCp3VjnLuKi^v?~j(;!%#T9!=kT&qq zQ1#IcfIdZm0AkAYNEqI0TL4$_3p#%3ce34#JPZpTv`7%jnaV%cswASVP)23$Ua<{f z2!P{HtJEwnDUHq{u_ZwNH|51krRo78p_=Nw!E z-rP~^QYl<^W+EoEUVO5k!b7A~?UN^@k;R(ex>o71^L_;#qyYx7LH9`r9fj9aI0(EJ zJ(A$SyvULxP`#Upp)LwXeXLt-#2*sdfzWV6Wmq^!!0{()8>XsJN@}El)ibd+YKnT{ zUU)LyKXqRE3s+X(Cy2$XyEzZAd9k?DlF@q8&jA3S@PELphNhrUx?I+Y_g1JUmWPTA~KpnokEnJOUml;&xR zf!QTme3WU58%wD0_{D}f*+v`UERm0|UIj1z5BgqJHyuwzgMEN4uE{vq5M8-}=K-hj zj^M2#*-q-bkX~>Q(BXWxHxEFOu;0ZN2nQ8`{4~UWV0iL#f^yaza)YhDb1v};y*t{P`pzZ zu;D=ngaMzJ*kcXWngMqQz)sFXfkP+?N{cfCM6&H`&eSEtdU8B|bjiSN!XvISs@qzopA`295moe6womm?ib#Y4 z#oddLI>507HKh$gOLisl`oT{$)amZ=FRs&Mw<8YUXTVWQ&<;*6JVv|vo^LX;`3vGr zwHi=8-?hL=psn8#*5T)NQk3HIG_3&FMvS>7mj7>6E?|yO2Q{&G-9-30w;2kE(p>O# z1{NMgl-zdGf!|m}P*cghQk(3EO)C{eybGevzOu<8!|Jf%X>D_YKS>mPy?&2mNVyf; zS$e{CfNA;WTU|`UXWQ3uoHksELT&3p2rca`G4jS6S3_qN_xKtr4iZ~5{k7LmIn@rYCQr z!#*8f3mfAajrcM-??P!yJEEf&?Wiv%@4I0XqwXe&uV}KOIOP?zuk9Is(%UEe`5<;* z-*0Oa4FY)*xNp>jvHC;w_~YHK_024hA3JS*6Ja5MGbJXwmT*S84SX)!QE$J0Ixl5W zosW`lzQj64kD&?GzDR^x0w*mlr+s&0k4h*0*@TSF7(`|L9*w<&{o9{JSAmRZ zNMSaWP9_u_;Z+rR(XKmEH;c=f#(S2fiHH2mrGze1gdhhqrU_ifrDDMhAh}LeFcPz2 z&-Lij=b=R1R8)7%`CHd!zaxl!L7v4 zQgf(xiDnkL+3cTQF4^gP zzhnJ~UM8!mV%Pmrr$cR_!fX0yW@^2kYg2B0G#jY?Y(rNR$7>@7b?C=d$M|$2|7|PX zs{B!ATr{_S$~c!L%qbuekDZ~yc>#Of78Jt6qD`oe%08OZZ~@ht5|}i zRJsC%NwkY=Z4KpxjGN~iHbjTRaTPV~&UeyrErI%Pzym{F1a7*YOL6-PEm4nn4fJ9xd)<#bx%989Jzx zx7ePK+_221iwn1yJ5&k*nKo$jEmA3ZnuF&x_fjk1MD9HSC1Zb~0Pqa;{p5Ux+$

    ?^wvDHPaYxh|#88f|$N{h4m>mydOh>P1|JZ<7jNz>t!T zHN~qQ`F!{7lS?BXSCfC>et0th_pGn7+OW~lXjp4*=|XqTe)e)Ehcs0 zlSzO*L_4VK1`kSV;;!p6oZPeUnOMp?ih+z={B()-EBT~=Fcj2rHML%s`ih|lhoN&Ra zCA;jxSQ%Ce(1@nGRnO@O5U=P3e*4Cgwd7GTeAlcr#bdp{?hl0ElYCj~V>i}BF>KyG zF(hdeL95STQ3m{?hz!kq__-&+$NIn! zq@?#4xrsN^;32j*o@j_3?B?$eBHz9A`%j+r&m+0VD;S*7sXfe8DUZD|yKcDka)3+v zq)#y*eig0DwsWn{{``H?Yx8J3b^3qM{Y@K0)a1x0RFqe=m$bE+bv==+L^BFLDcoyGi6k7AE2rSGH zANny1Omt$TVZ@nSL!RTk7z$uk_fnGH)lD_&_V)pp)yycASLNt~d4}ZBYf^IoGScbl zoCN@8HMSL(P9)H3>b5y^ZMYfSPKc0sWIwl^|DP{rwd4*x+I_zQTyTpg=-kH_vl<@d z{Y(2Z?ER(v8Tbho<{2^fj5UMncC*Rtj-?5V*U-PT2y`|CIkvc?jKe3mB>`G};mJTn zOfj)$z{mBBNR8ro67VZT*dH4QK zGXHjNfD)71JVHPe!m?_E(0Kqj!D(h&9XJ3^paT7mS?$u;W8c?e*aod3 zq?w^A-O^0)znRsQ9;qsw+>OQyJ&uS7DykWV*qQ#rZOc>i!|*bxJh>q0@Qkc-$(mKy z4JD33M4 z>$Ln_VTg1@U1Y8*0*o)58uqMA@G0J6tPv-8>wj8mx#S7j*!TW)I{RHC9^Ku`leX6& z<&Xt{wT~~$*V=~~dZ>-899JQLoVNg80g9MKyU_+kRjNFwW3mjBOjY_6!}Y9yW9<$$ zWL!A>X!p%p6O&&= z#qa!cT)Uv(Kbno#<~Z!TmBdayMTQttiK_jtyy}%}*hPqIJiEd#R3Tc1e3oVmmtmYR z%Tc!!`Af9mM(ymd<{I%^*ml0esD6~es^|XkvPd_z`Hkye<$Vt?0uI0 zv-e33YctJ^ZHTiHw5YcYP-5{5X&#Z&ufS6L+WUlb`vN~jK`L87C3x=W<>S>XVuI7Y9idD&hICa(6k4JsEH zoK?52>v#W1qU(TA9E0nqiMXijxPD<8N>N{QKKHj>T~qIvKRN< z7<0j$xK!`8A|k98`qr5Cpy3&BT=twB-)3qYtP@N$iS8X41InywD=L_l8@8?ur3q&~ z!kXHkw8oS?1Ei;Qxcr8@<5;9kNCC}P8|~*vAnbYsVlPmn+8~|c`Ge%B?ydqA5Y;rLiXDL%jJ7*#VECHVH}zE!ND2^<|yIhvYz?PRt3;|)Q@7qQ&Iz6wuh@?5sEvSnM=lVcoxJxu z`_s%jo&1)(G7VKVi}KI=GyQiuT5i4d;?IA)KQ+w%yg!5gyg!sbbP79m314^_%lVx7 zr@ri{GJjmkb|b9SXKZ}5DNaSC_Umg*abI~Ey~^srL4WveAPoo#NUyF?9TK+|dyr#7 zyPli-1o8aVa81=Bt25N4S%dxP${MFnt1X)fzc2ZSx8#Awl+f13O<>4n@C^B#P4UYT zVD2d*Tq^2!z8gahrZY2BiHMi~LF5o1*tnBdN*8^*uEZ{_ze14da@C-H0gD`yTG#VO zTAgF`nw1N-<(CFSk7ZfNf3?rjP+D;(U{3<(50>Q@cFn=>pZ*47JVi(n{wVs zubvqi`BJ4i-z%9krIvQ1wpvTBJo?t($($wh61|CS1+@FJIUcAW$O6FLhX!sz%gm`@ zZXnDV55e(b??<58gt4Yo6Ac;T@?_F+tlMp%qwy~_o5U?=fDcnB60KSzvp_RDwW0)^ zPszswC5k#EYk8sU|Do%hf-7CaE!^1Z*tTukcE`4@j_stQj;)Suvt!$4$Ih8qYwxOa zYOixQ>%X2i<9o+=9>s^3F>A9v$pO#k zo_@noBU1x@7hxrG@yzx7#8e$Hy6E)V2V$1V>;GtfH~`w8*8?5hX0LKWX`8aiLgeYE##``zq>GO22N){9R)~i9|k#%OC>B1amyYUKZViC7nfcS}+aA-E)Ua z$sd@tII1KypIJrE@jqxHE0CGz=RKV!G44;B2{^0E4+zJ9N5)2RmZcC*kTouw2The{7hWs;`!(&N>eNBY8N~$ScAg); z_w-*M3TN*+`(~+jO&mzBYWUlDxgZs3I7TGSpAm$yzh>wQcfy=jWq_hBA00_wEY~my z>lSPoi&?PSEZt7W{EjJ?Qaw|*Rn5xJfLJK3xoMn!pCnl5HoM2V`PcUYN%rBJdiU?| z&z$x`Z(@IIsE!wFm4c61x~dh&lQ9-Penhh8Jj_hiRZ~R421pi4M?{iDb`5kSY>8qB@Z7H zo|xFmO~T!Y4fm1c^W%@?0R8bS();}DT6tfhGd79_;x$w;;| z%ABl*kGSg3XM!ILtMrmq4sK~pQOjPHSHR(GUszQWIksIc8tbCaD38HwtlJ3IOA+=0O}J^9C#E#S$qNDSXkI@C8Ls zQ8>d3e(;SIRe`Wd54bi5Bv7YQc$YuyF7zM9+tSzahp9S2J4eLpK)%-+GR}x1ILj^> z48lKWG!`m)KWz{IrDpdx_v(V21h{|f8ACDf1$w{SKTw#jCEqeckyc`-mN}A-YqQA= zU%5Yb_z7w^s}2D<3M=-r)^x`SWGA^tq1V>#=G%ta+|Q9Q5DG8=lzR6`F-|G%vhxWa zFK{Zqck&&c^oIhl=l0eR8q0%WsMm6moEB@NE5cO#frhTi zR9JhlEE&!3BA#uT=#muB3aVsC4-&rG@j=)KAI0wdph+Q>VkIqmB(IFSG~(m$C0a~1 z;u69ycWsR@$-iHcg~OOHli;f-c+4H}GP_)p%ULt`7_UsEzw|&WLX3qKUY;NYo}yNZjI=uU*)BG!I(j=wBLmZ$wvOtBP9&V>4XY`S;3^VDWSO4nC?8*F%YmAK;HMo zO|TiVC24q2Qm*errOmB$T~ECHJ<}QD0#>2P5bkS^UG!8TP1ic-+_8aQ9(nMKchr$I zdD-Pb&!T@F7)`PIIlgeZkfVh8Z5?Lp zy&S4h=T92B=H6vRrgspXEjjAQ6RV7P(7llV0gpGq#Q(At9Hfjl(opo1b3thDf7xy1ddUCydA&0H1u z``VfjsXV6ZIUn>6$!HI_DV&8=JgvFHP!QIB#(QlGuxX5hr3@u4kwU99w#jyf&CU9G zFa)6w(*}12N)n5)J9PSm3^r1u2 zq9B#nh>gbz>yUJLa7SDjd0~rbgA51sG!Fes);RVE;-)jmuBTgOVeXlz5Ih_H8T1|8 zpMZooWkvW-_*Q0>-*MWxtTL$Z)35mKo6$L02)BU2k3rhW*WjmX4}_IVyf)-8SbF{_ zZ_04NCHF$fps0coW)BXg#^K+=Prh)k^0IYd3giU?dG?M5$sg+f8T_E`RqPh3?+#kD z8@HBk=IHNML3T`voMpKBbuh0=d0@|L!Jz~s?N7&9cMlBkIEi0&H+oQ}y?tU_^N=rp zCPY-fGfwt=CMv_T?lOEU980{aJa}p9;7DBUY~&nPtS+u^FDm*0j-i(p2u8L=u81Om#B88Xy&HuJq<=c}q%ewx_UJlv@^o4oZ4olVS?097a%NbivUkdaTXbrjG zJ;wYx6$`RQ)!$b`HP)c-B&}?Jc)*{Wf~~oe2l^$0CBT>ZBi^tcUjk&1c7I_X9dO{g z{?2FWf6UKmA%MT85(>F*w$zj;3|OwuW%c9{D?;#}-K+dmr;0rt`H@2U_Kwoi&qAw2 ztVvt62~Hhd?2-5eDsa{awF-P>%1O=+#G4HH<4Mh28UC(9Bf^TNg;g@YK!rzi#FYKsup;=q2VUKu&eo5qG(`vOI&kQxFuXmYM+;u!>aow=1*OL|X!gBG z{P#z9q-W4_F#_r(89PDV7T*lV*f#H@Z}|Fcle?s5PO0x53$uPVBu7>ERBgQU7|vmSXWca?h9Fh3>-UCE z1?|-+6(XW~H_C?(?QA(3hGu}%ZFlEPy(Rp6czHOhIoZG9GKb3IzRqz@RP73(O%+}% zED8gW`4mMe{b0SS!IMp(iQ;7z*DG`=Erw>q^*xg#aUdPv{?x`R7O>3KJlV&>|0$k| z$I)=mD1eLSWW9il3CF1~FMmed;UHZH>upd&Nl|v`7Wyux0-gM<%s!US#S`+|tfEye zD4m@1PKD96km*+z`!h&oM%X&fc`%dXkbjWNg=PVYr&T2?zlG2je$Hao+Bkxi>FOH* zKPM@5F0$TGkT2%5P2iY{u=pq+3AQ+23c4J7S0bsBF3i zo>5E8VZJJ75tAjYot7q(G!4E;p<`6-Id7@%_%vTK2fdvdl(n(!H8$xgL3dR8a=QK} zXN1y-r?{irMP?DLjb*K{H9N)bfkL0YEi)%tKJdgg?!am{iybq*m}8Te>3C0koH7Tb ztuH>93m(AAjvh_4x{yslvBh&6Tn~^`i_nWN-^@(dFMAK&DcM z$Mzb}jaC;KW9cKenJ9$Bp}#FY?2^G18qqGfOmsjdZ@Llw_+n+NK3ERN3joKfN2Cfkm3Lwx$|15=#51b7((dl`%Bv?)4$#RQce-zZ%| z^5mH|L-0OHe~4dZpX{}m<5&^da@0O-STPwB&&?i`!S|ePa#t4WGUe55diYT}g@j|KiVfMt@r&cZ`-xjR$#6wiUIN~Z{4wg;(su;H$&oQ7 zka~5@f_<_jcGctbR#$!4-<+SlBmK1O$j?R7YbUUow>YzrePYF7B1PGP0HFP@I#dD% z4QhhRP$;`_Z~t@BuyG`&z~?j+h?Z&5gU7VZM7e&Ll&deVq@ThesOF}8(qF1;b0jlH zF5k(xxtd7r9MD(w0=r9S1I9ti4ZU=)u%hRylQq79Bi zAxX%|3eUa1Y86JV>7F%fQX>EYnMLNw><@gWn(*JV5;l?QBIcX~J>16VYzT;-BS$As zE(!O1w$`;ZotdLDgm*359?U{3ot58vr8y~J%p+TU8;({zXsegiML6N)G2ALb$e4&3 z_G{UYdcZ;5dK!+461>@8e*0vGu3A)>C(VdnT&A#C&oFNop2EbqCLR#o#v%$o(lF)H zA{ePlkfPf@ozx>vI{iAFT)QWCZc}YLMwumEh?F-6-ng#xKj`Hy)9$W*J+Mrbtn({m z%+2RX5>p3LSV_AXB9)_TSfP?J^VVcFc9=dFgef_@u9+v*TkwX}j(AtiK&MHnF_y8y z3kxHuh%6Xt*)!;IY%0z^JPrBPKXPFO->#1^8o{?jCXC=U7hTMm^rMcY+}REij%5&!WA&6G*!9y8Ttzk5ROTe||M5TP18F7&=Fr6)|w$7D!lSI@of4ImQ z>xgJgsRSo%dLOnOLredAWqqex+p)|{8qCJeO(t5n7BuJ?1^2hzV~TPKHVj`+x>h=3 zVwn37VA2^9G0Edd;>em^JzT6Y6Gkh8ivmtUOEm|Fs3m*GiNtrWo%@QQko(_>D5Vb~?^Qi(RtW46F>#ghh&yp!#4 z@x`Eu4WzoBO(olw49{)p*?cLC1^Z73XTcl`I(C&?|MmT7sFkPr1GOzvR{^8@RV?fe zOURZk=}bM&n6^ZnN~vD#vX?6;$pw`wYrb+HAD$z=RmaAO0Omb@TeI&WP9I%Guf8&m zfc1|r{nr=ojoA$p+JQXDx5pW6*C0i`PbcqpUVVXY+xLs5AcK#_#~>Hai*UZ3AGfdW zJ}rdLFaM2F$kz5;`eJAQ{J%Xq7FNc8dvxEO%cWPla>}m+H02l8Tk1JSgf^1c278S~ z#d<~T+#FF+Eo_kD^*>#MGE6AE<j@4Wrm-;cT@87)i@WPOnM*vsrq z>UTuZYu+tBm**RMMM_pAl}YMifJ7&aZ+A&2e)xWNcfYe-d9vH&E-1~88=uvl6j`p5 zgb&2{JB)-0;&xG(CZ}+Clv<7b^}n z7hv#%)prAz#ytoNaX&{$J45!b?uQ6qRpnECEy?2qalS_ge?~^y{Xe>&dB3>%XY5%X zcbF|6&hRWK_%@(W@yIp@g^(>@T%0odmw+5Sq%YkMoB+3907(Nt_tSKdBfcGh zv@Ac}WKX$W>lvza_0NT>ezRgpU*Hi<{<_t6#!a`6YL-yS-g?K}MS~$Vz!f2j@^^!{ zAcde8n9}a^Up}5-eKC=sO~8dJ0i=$xWn$d;G%4>vqfD-9;u_=$3jk7p4a&GB0N}GJ zDkA_yI{yB?H2{$=cqB-l9q_89N0s_wa?=VteFelh{%lg)V(3zZ8GMfnsM39!Xl^)I z0Tw@>Vzu)W&f7WZp5XDzWf$-NCaWdvvK_3^jTxq|WL4|lBJ(6I@%Lj1#1N{N%TMU` z2fXcDBC@j&{WEl>wO}X0%{~C6;3*!>Y-({o^a>@|5BIhB!5-hDiLll%9gj5 zd^FZNGYB;f%C?JUhV2DJJx9$88cCq@k06#V*n^nJv>ZqrS*;<)a>)MpAkLowV1w z$eR;ze~}b^0)#)|8IDuow1_>S7ZhcoCbsHye>XEW0VIWE)Uz-2)*%g(^i779EY$O6;bMf*KR4uFzn% zg7o{&#~Nq`_gr7x{xgzUtXS6WsFWdjr~FB6^L1~+&oxRzky-jEhUIP0MC*v6k~H}| zvBi!MTAfl7$C3!drp0QFwCaD5bdu#MGc-DwU$Y+tdTRrPrvw}%h6>}fLJ`Pd_;n8( z;e8x5NO5+#S+7&uv7hN)Kh~vT>w8v!eq34Z^}lgpLVfPMJtvaLL1H1BOSMf#P+D%= zoV1+K;cc=I;1bfKuv(F(#6?pHZb6-5nPqwYpicPkZsAEnJM912-@OWMdGji*j{sKo z8OEGC9E68oE{t~-m0r4Of2X^$Zv{QitVAZX8EpJmo1QrdA&SO?DdE~CXAkdTo#rl$ zEtxw8x%~DGNio6keGFXBp*m~KGlFC0Z<~IYS=JAl(5r*M7L1?eU2uwr?C@urD+|r> ztXd4cLWz1tIu!!)yPS~kO7X|fBx1w#`|CgX!N zQQuae7t$h1(2L4;sp$6-B;2ea;3uWP3YLtkg7R>=AhF8(US4sSs(Ck@{H7RDkTO+{++DUdUS~kv zp7BNe_EtDMXOxj1SMN9=l$^HYJM~h_hC9o*A4(rMVBE(cQQ75Zye;Z!m-3D$uhMgL zswX?kv2uNpul@1P@^%X~yq93nmOM-tO3Z@a41k<(zu~EO_^=uUvWhjAczvc7U9K%)#&kmoTUS#ok)W6+qFinq+gN2)PC0hbK66*0N7 zP8|zs%DLuTQty@FB$Ee1isCl>96vE@N2rpdlRW&alg=BntAr#{^}4@W&|jn(GOgd* zURP9|KVdWsYwpg@eoi5OqL7?VGr$bI595Gufh1@z0~yps5WJYFw_1NkSR2B7JT$A- zelD88<~ymHz7Ilv;p<+Ih@om+a**v?S7dw5%4f1zJZG!nPvh&idZ;uy=0FfL8=?LO zW#K{~hD{IQ;3qwn*d&93QrOk?lvImq8$u@nMl7fCWQlHZ5za^abC|EYxDIuXRGn+( zNd#{rJ2Qq`{EKPe2-;3(Em){#3=|BGb-t0Y9Fy-_HrS!$Xz>hbDbU2sn};eyNe3$G z)p}z6hS7;#n7G~(NRQ(H=Q-Y zk}-FBNhbfw+HZ6H&GyTNJzU6M15-0=WT0YuX+17l%w`^)Rq~10WRs&T5GsN?;LPl{ z;!hu1cIVHA3Ls0bBkSqhIGzJpaMkiL+eAhTL!K#jmbzSS?<7O;?_wfM-h_z(lGgiz z2dO576E9~E0ie1|N-|KC-Ay;*xoJYn$~+LJF4{(J z(2z~WG~-3xv(Dh*#05y>ohaqLLh-6t!;tts_;O=Zzx8FE(l6*~jqT_ovf++Qs7hC? zltwDkCqj4J+L0BG-c4Bil$Y3Yg9|gv+k?8~P;K4#k!9UARxP(C7yL0VlG)dG(;u3~ zsqOOa9-S8ynvuP|W@Ub6hPKYEHcjN8nV^W21I4{2@!b_|tQwnPaQt$O$3nZ{LS<8q zxJ%%~M}!|_rC&XetiFfmD0nJzz*cCQ`&o0}jNrVh@RFwPVUR=J(`egFbzk$ne0*LX zSJJF=R>Uk($Q$+b?ZxAcch3le=7;aKd4#Vtr87C?8mX7r-dt(BdG7A+y)=8#{VeUk6;@|Vxf@>3=@%v2K{Q`cv39??=MWsz$7xkl(mE;uP zg-tq0BMF^pSK7IxJC`)eu|5P=&?leSpA>{AJ!(X5vE(ZoW?W?$#t045mXGnTD| zsSq58iRQ!cvmUbtd>bA{i}k)jvZKt1S;kQ&G(9@sU3ra|rRBYQNh_g~k@5O`spwaP z^l^|3wffk1z;GRn%-`aSbcwC-g#8wVfEmsmdl>Y59MV@c!A`%~8 zv7P#(GEX7TST(X$8E%($#ZNKzxRp&7(yeRK0tSNLEi;H5quZTJ`gJb9|zK?rj8FWokyb6W6v zhf~HP14xPb6Te%HYWKUg>hA0-mR58y$f*fo1ZNTMv?}YTF-XQ8Uph!s1FOyd+3Gb* z`{3^URj?A~A7RB*@D$FsuL(-b*qXRM;XE|ksbEOpoUR*GmY|(x} z-*xR}YvHonv$6db1hAsXeUNMczdQPpeq`0gc;oBorc#i4Dz(p|=Bxhe$3U2Q z|J5hrf1QCA>-lXH07)h7zmf{m|15r-D*$5BtMXR@oy&i~1Q2_3E4s^=aUR+F@=Soq z52)F7b$4P-*8YES3BElw{)t3E44!g5#nGzP$^({VaLGP9`*|~8xs<31D>ng|cdx_n zyYQp>>hrPr$06NPw6%k48o*@hQPpmV-3Ud@q(d{EXdhrcKnU#iG64h(Y_rBfOAJ{n z1&ArT>ZqXo(#S1p60j_EWn0_PyUrG7l?M(?ASTfL3%m2wdW@wx5Iax_7G03}-9TVu zg=LS5e-uRif&uag(kmI^$N~@PrL`mh)bJ1Z2){T0qaeaFZvO3`n6e3oDV0bFtAq#* zsBXq#Pz_Hm5!r+eg+phO0La>S9sfznc@(%ez6b-D)( z&ze3?Y5_&M^2IIwIJA_{RzQ)C*buEOr|_}yFCeDSr3N@cS27N2lNgPMd4U=3dd-mV zfawE@beDMl#FU=ysd1A3jVXWri78)}pUD4>DTMg{#+0i}u<8F#OaTSN6p#KFKuj@a zwZ{zpi~Mx}0>l(Y>Iy>KtN&L_Nh>?~0K}9fnt(;CvO}wXEI;>v0}x^hvqw?E$aACM z@!&RcXRarJ_vRrL!3D7VfB`H&dXSzs)&R>7;6Z_zQ5%#3thV?yo&=yI{`dY98XL&p zVu|+8{fDdg0}sEHSkm}AphpLK9L-A-@1ml9ng(O76j|DL5ipO=+mIf0#4S~qJZ;v7 zm}s-II;b!cJ^*DDRyA$T^g%l}8}`<~3~zSF&Nz-1T!msm8^H=12@2_pNQHLeYRy0| zNqUhOXl14oK(@q#B$p4o%P!2@RH3KF16Gd-^t!-X$~3C*n{!^d0<;hH&`S2a1?aTB zsb&&`p(*ztEot+YmQ)579%F!Q?jJ2_EC8@){boUg*Q-*AA=$`7?%5H(J`-a$Imz)+7skBF|+h{=4| zeR;7DVzS$hIKIZe)@gyibJLPd|57~XUrM?ai!zkDgEahUKj%%-#c>BocFzNJ1Zwhu zBv~`IjPDkJvHl&Bhv6?dx87sLbR{yQ*^?4OxP)3SxOhO>_oZl*rV4XFsZBjFkd%%@ zwNhYmm+~v4TtAb99MK=I1BGhs>gJ(LqbekJ@3?nDn0@zxJiNgkcQxmUeJZU+@zi(A)Y^y zSeTNkNu^845si!fi758G8_s?*b12*T%4hB#JFXqq(5*gEXit=#D#}QWm@hc6RITR4 zb}}a2(75NVEt^f0hd3c^OB9%_>N8$OoU!&dw9np$WX->vVF9)u8G!BQJD(xH_D}mx zMWu+a#X4&C5kv?i4uTouKjRW4+>$CDp5>vJP69$<*HzQ+Y@a`2zUTxDRdlKvTa$s1 zq4O*s$N)M4Mff>%Q4N4j@LiGAL}-|PI^wexP%3q5=Sy9UWsTovNprV2I;De#bSvIq z_o+tmm62!W(|Nky+Pr&ztNE3-H!XL+c z2Zpm2^$RoGpS2spoN@rZ`t()lPZY`8IRIb%CHvXb$N7@|T!5b#DL`a!?Jis@(uqICF(LeF>Gmt$A;gX8OtBOZsI@M7>=-N1RiCa3dQ3g0)!q>R8`e1mvxYtL{ z&);UA(y-QwM+^XcHm}Wtou5g@6z3)VYD{v6Ztkp_&`yL5OL)IWLI$~PVB~hc`W;{xO25;qfuR!$AH#(n8+{;mT{Zj$9#by(~Qr$?Rf+Fr4%vX5z*ISw*V zQ-%Awb+v(QZ8M{5##zPaCf{pT$MEytC)(4^9aWo>P0u)BORuZnMlt*s3$O<&Cpu=5 z!a3lw*;f=MLTq?h2c*sjVZ@h`q|(3i62^2i0cO(K4Mqw4@FuqIA^#fyoPaD+EpVu# zOi8`|@o|0d*NI&mXAzNgrnhxpWctX+&7}Sb7AV3Y^Mpeb?MQp#eEK*g zpwE^k&=Gs$T9y=LqwiGNMVI87q331lZf8BPO3pJ8$S^_XzM`nA&qK2|MtP)EgO0~` zrTDhG&{pn&9{wj?leMwkjvl9*gSRbo4F7GK`zBvN7mB9D{orCE&);t=@7yKjstVp{ zsXLo7mp3z^*46g5GF$FE0mz)u6yS)GUqY3*yIcO5F>eV{nb*pT$d25|7c%rV-6Wms zsmq>=Vw)eMTEJpR3D@%Yb0QdD>drtw)2p7$UUoy73AOlInOQl?*&F>)vR5-Gm-1!p zgnzSYu!x`dCyE%p2{A{gNY^*|w%t0I&IN}wkWf|5-?&_So~_s}8m~gNtzfY%wdO}3 zt{kvOWYw<872LFmyiNNtRLo1EvjTU0X6*&?iM>iz(!(qeHaHZzSqw?xD2WN4n2f)W zEDHX5h`z*fowKEb&J=o~*t@9DIVZ+MEs);@K4I_g4)MmL6d9fcU8D(6bb^3}-gHO} zJxe0{$d~+JWYJfXU@N!dh-ieM&AWI4^wZihS;Ie57%Gl} zaK-aZ%7G|9vMoT}8`In8sD0sa>lk=^oQu#p>nUN4H_!%pjE1wtwL=uo5o$U9;S-|EgQ&J!_LRp@rHFX2eNq!)wv*CZty3x=E2U*hM5|jev7G$q@J#F&P^tq zRLpcp#*uEhW5f)qPA<>FKxVdJmdDIJQ5Ie}7G}$nmek9O4EVoS4xzt zkN>O>1D< z=Anub=clu-aHE2HQts1TcJ9o47I^N&zM$$5 zdY$ea0iUgxtph-SY4uKn08u3UkSbQs;)`0d7i+fjJnL%nRLy%mZ;uT?R@)uJ@&zCZK*h>$`tB`6kavfY5|N-7 zK?V>Qs4lFgL*4$K&Cvl5Ep?&9QT!|!F)dq~+wyAr_2aGndR^R1oC)gfi2N_SJ-e(v zBHZ@c)Wp5j^}HqfuIN4d0=&;{t5$~NZO+yguV7zyI2_xdiNO6<@rNC^6tWu=?IPZs z%AP&`bO9kk<^C^x4^0CtL5^D9aJc9J=nm=-rQBbRaH*$de#Ju*G?{un2ovG+xbouu zwzBT?luS_?aJwb{41ul!Mi_vE;H7r?Q19meL!d%0$oUUsq-4OE<(;h%G1<5)RJ2RN zs5?}&Q{ogrTGQq9yaMHgk|S`_7TPa^t`uiKESsT%&mnXuB^Lyxmy`~VVBx?-dn#d& z1T)|G#yj?835I?P((gjG7mCcwF*kChcOLd}Rv9v-NGo1lj|mL0YCbFLGAMIu@HCY-jYW^l03QYFr**$whT~=9zh6pff~5nCjAQ2wkXh${xj3MPf=3^eV?}fw;H&wn#cB}DL5-Np0f%~57HOu`NTSbyG|bxF52^;Wwz{DhGye@vJk-cBv1r+B0p>9u ztg&thvdL{HZ$guo!?8oI24ta|Bciyd*e=k^Bl5t@B!)k(e2SS$mr{X4g{S~FK>* z1x3WyvGi0CZ}|koM3r)>u|qOJ+A0I=exwv4ih+X=Spsjl5we{@qx-au;7+tyFneI=TkaO-Q%gwqmzq>d zD)}RF-8bGr5C)eCPb7^-FYD1idC)eH8RZi-aFe^X%SGu3*YGXwf}pH8cDXsS1sQwg zrt#z?-R5m}3nguK@l)F;D{B4az^ymbOB*4)!}>h3psM^G?68srHQuQeN~#sf$1%~k zZvBK17N0nqgLtCA>z~34>}R761App_Sf1rkXhl$_>*8XXtzvE(Rn|FX=z;T^` zy7QbDJeOqx+&L@o;Y3mEv=vzuRrq9c%#bsWfP9g9i6~pdlx1( zLN4RJc-8p1q9X?}tS@54m7~yD(9F8Hi{Pcb$YvHKRKdA|c~L1b{bQ1iiH}V8!7bEf z8-0Exv*3sEN| z7u@18^%==}=fBlIoYe4}mpzskha?`V(OWgzI@N#Ek`x$&&~euH&g zAuju3l(8oR7h1_JDEwpzKxiCoW0H<8gqt~hW3nb$eAWo)KhlThHSY~aFt8fj2H{gc zhKv1F@B9@5q}_SLiwj!qcl~zwez=&W#5et00DMfe#RVChqTUhCpP=9ZGZxYTN7V11 zAr2ZV5UV$t2@pdJw6++c4*@wW@=FH$h!tY_`hB^{kHS&uA;=J;z(WIT`1@uKZ9TCz zM<0!a-5xoVTX&D{#(>Y@zK*q_?pl|$_0>eebLIVJcAL?F1Ww(=H}L|$l2wCtu=^On zg>e*FwEAOyCDthC3-%9hh}|=_*6(P#E%La$c`aV$q$i8L_p6Z)F30rs=wP3@pi;L= z-m0TFN^$6<&>eIOx*QWZ2BQA3(LWY^8T*Dov+dR_F)j-2C3;bWLGA>=TU|eaiM@pf z?o}bpFv^2{EWU&PV<~;tLJ7C~94 znv{ZPmPNTQHR^)3#lU7*p;d=L9#ku1^$)3k-HbGuKkjruWA(As|{*-Zz+cYu9N*B`Q-l^BrN$5V5v7o-1kH!&xP*Y3`Q)JK6V# zw19#Mx!O7q++iM-oUa)U4YM9(hWzqVq?{1d6Qr{roTOVs^TSbNEuG`WZr@QE!ef6oT5c*D zXh;&&dJx9b_~h2WuItOa;+&3vWtvi_QW6SY9MCB=K0dnl9` zRB<7@NxwDur7WglDdlA!bPCivgL5i_EymM}OkLjkD4;9(Pc06!;W+?s4_|7G_m5eNwVBn@L+oR$0(hTP0FZ0 zyR5!u3x9QGJ(<%NKdr0yE>(3cg6l_3<2(j3>AdNZW$hs^RlOEC<)d$fOImCSSJbzV zi!v!kr1YJpC6Fd@Tlv28BFt=ZBWVUN6jM(c2@B*ux_M$=RBU+jA$=_o>p^*|CR64s?gh z4CrkFioS8uDk6IJohfXR?6^l}ZJ}ocw}$jwsZ!vj$2WgVhsG>To+>b`E8Oe&ZRxo8 z9EfY%P#Caei$^v#bIAGXRbjeB^j6U`C;oI=#10k>x!2@X>Trty{>5Vz_qaLJBun49 z(gtB}{MMZ5@F@2zk^DPd`{X7EeAc%dNwYL53mGd(Za@wDj>a;M9(@qm9$s8=(I+>P zkUPeH=mik{>Q8K-yieq@Oa@qYLMzi+^(SvL(qC!)&X>>4L_7V}5QjDl88_};?n)o( zN{?BXsEd{KW3D|j3;SjDjh}3A>FD>sMs$dukPDaha#OQ$y9Aiblq-IloTNKN-dkwW z=AVo`WcL2-+Rgse%eYdSd=P-b+Zwm->sRRBNyNXJ8eO4esRbgd4?~uUr_AZYcpGzI zg^qJjxz|Er-{=!jB33gKhh|{*dr{<*5v+1##$pm*+##9BEH210a8s7+_8fC$cg#;w0VMw( z&`bis@f%(vjm;g3a!wot?b2BQVHJv*dQrYiI&O;a8_~&57+uU&IQVawFFy20o??n8 zK{3JSP<=hurNKJB+9Dg_oeiSr!v&zWBjL3aI)?}>XY~!k#lIQR&!O{?a2-PQq3?BPO0-L8d9kmR2 z*cSSi!2w|kDVNFLW5*_6rcz!Qg--G|qj&XpHIB+p{iBbgrPg+VZCa3OKR3(yu!-Fl z=jldmy$VG480>~N$-G~SXZJ7*o1cY`kX*PVFCX^*sn}^C?3i!`gcYCv3M-ud%~#{W z+`3x_G2R2eYS*``#a{7eY=1u^3Angy-S`5m9Zf`uKuSgrV4Em}L~L#ABz_V`ulpSOGrF99^A`kv#B`PkZc1HXA$bI$A% zgXsdp<(3}qpP~@|Kn+bxb)`*H!evre_&-M;uVHdn@L`4^&n^vDeI zm(~Sw$5q-@f-LtJgj9{7cB+&Xb+Uv3?~tIVf=Dq#S(4xkcd0HCW)+XH#beHi@Dt>qa|34`=u zti0s>sm6%lp+tM%i~FQurUyKrZqzCeBD{4kz1`@Q-|qG1;1X@|iL0^>db!&@tK{+2 zD5yx17Rq3;y)^y8K*cnCl$g^4pcG8V( z$d5##H>b`LgY17G&@|kNA>l(!!hEx@BUql|gq8t9M+~xJjg-BrI}e0buz0JL&(2w- zTGH|9lR<^cvDseG_z9RoHgjk%tkeQg`@2Mb+Uc>(ZE(NGk%g9^dC|k#A_jzl@OuDm zosHF7)TqJ|=t?tjG)2#ELOYTH{x3=KFM@jQ=3@lMps6|OGLdp8F@L%6&HE2iXgX1snoY|{zgg-WjqMZ9!T+2*R! zV@be8Wr!zrM;UU%U6bWrkgZ1jrx5nct~W4A!iQV1CcaRg%N1kA$;ZO0?3nvHf>Jw$ zT~lhP%r=2*POW_eQje2IwcLKUxPvAp5*mF~QmTNuQ+M~X>wo)TFw%#OtS^JATBcup zu+!ZdD?(^=N>OVmqJEH9`b~BO88S6t{zFyR-MXS?7>b*}7`87MVGFf5Z#|IVse^{7 z6y@;m*mk^2B>R|TpkBp;Qf&A92SYNAe0F3ZO53Xb-Eo zNOj3XlbIaK8?yGZVF@f5PKoJ_S<8pX1)GwIbG;Yf3Z&Zweu{mvtOt!E->c%?qnyUy6c8}zjCCxqMuT>Ni; z+?My2W*n>KfJhLpaz|{BR^bsr8R^8$`1qd^HpwjZ0kM(hg2%7QkQ24Bk$YgEKmfy_ z|GA^Hsae#ExQVaWe|OEG_4FZAlyxKyI#(5b-@~D@r`>S&k>M~pE{b^PY1_sZybj*z z7_6OOV8tMJHv;KL7x`iMjSNzKx5?rKHg0&MZUAs)femS2qCll_`?|6Opo+zQ@PYol zs9UH0g}+J}s<2#}Ev>Ho)4fyCQBC5Zjz)gO9fFbLYNjAD^-&xyjr6z+z&I*}?f@bW7bt3qH6@3V1SyDMjrz1sX-|eNkCIVbpP6r}s zr%0a(@5%1&%xzyBz+rd&xszg}H)UkE;`jbQ9pb;ZFY+;L*$=0nw?r^${xPQ!!WwmY z%=x4&+!DL7IF$dvqWQN^mfPdaPLh6v{k-hPQVXuJQ`=7TRxoA=vwMvr`lWy)_sQ9gMq!dB*p#sYW{z20Q0f zF$=`YvhIP&+JR!saU|gF6YFF{?dC@`Ho+I;+aa96yxxx=PzMwgbXxicym)( z)~K^_!L=VsnLbgt4{0Y`$^dc{z7PQaY__Zk=+UJInBR$~qr-I|Pan(4mnc1E>K7&a zVo$c=$m02~HU;aT6F8KhT3>@f!?PWC2jAL0EiW3kT*eDSY;20el5h_d<{;tEJw=1C zrLCxJm*JD1xm<JS3>B2c>U(n-P+tB}|R;RcV%P_T; zaF-m!)$e@+OBf1;?mQfIh7OO_5Xmqs^4a7scetV>Un*vC?#XROpZue>Y5QQq-nc-+ zy|flkdrFJB7&DmL?s!K8k9>H_3fq?*>B3G0ERogI+Tt@evM!WEBuj1tXS%%BfU|AD zc$UPAh2EJ|T)5uxdjkFFfC(@9rl1SCJ+a8*HetebVMu#7?7RsK%%?O+3!^lZpSLR3 zJ2w4K46kkUqB(=rY1l#Q2zh5!)0PsxarIKDk$zfIYfh%I{>00qxMTlG;_k+Ur;1o4 zlVV~vrNSNN9VDdFLOgdlx0bctayPby-(q1tFpo6H-(JM!?HO&mAjv0SwTS8RWz~; zon(?jihW8`w>sYa;&W|92#;ZNo%`Kx3TfkAp}~EQ7$d$Gyf%){&Qj!wZTYIjeInm> zYRJTqS||^f=WJ_JKzur4(Qn(-*?~!p$%VIEZ!lzs<9XryLt93S8%;lq&0eHDYT$EJ*Lg* zg}d96==2$YhxIlU9=(~~ zSPy5b){o|MjArrk%K7v5b-f?o0!=KXyM4aA-^}rq?|89uy{(!a2hGAWsZZl~>MPo1 z=eyDsgHMb4-Ti-$SI(Lc@zDTe0A~syAY?#{akqCeVKB3|cQJKhV*WRzXlcc*bu4r- zOn(}*2-?5NH!QEdxhaoCbuc70C)mUMPO-5~DV^x>FL8tIQcXB-v|J!L6>@Vv zCu=2Xz<1Y1!ns5M7l3jz%xp*-0fVFm-H=lou5uT^1u#SkMS}XELwW}$q$HB-46*uP zM3o_|+5~Fk2Lo#bBo!aH6PmtS0+IYJVn+fIt1hu!fzZ35thZ(ad~tOk$P2~?HXwiu z>H7cS>z#rtYuISr*tTukwr$&1$L!cfcWm3Xt&VMVtWNr@d_VTtRsT76v)1*jT65Gp zo@X?_q(}g~01JU%9%z{e=>|@K2U>w}7pkU%^hN$Y9GPnXQGU`k>&vf}Ga~%{Z@*g2 z%K!1Jff)bSucrQQzgpc&#IL(NfrKUgkn_IX@G=WFKZQ0Of z{2Sl}@Du>l!u(F^|K$a^26zF!jr1`BW2dLxOH5g%2 zqU}A&Wu*$r{7x!0cJ*Z*#AM>ul{4C?{=(l}$~Z&a8y4YL*)adCue%xo$<+l}B$F;% zOCQp074Zsf_k%2%D*_LCXE?=R3?cxN*Axxq9bS;vFgj;16vK}r%dBMkGC`kes`CH4 z6}FUn^wkO*oQ#so$$!}tJBDT>>>zQ`;it2SP?KjpUIVIe)f0`{LpwCkdH)^E z5}GFGV7>&|z%=9c>;J7+qyN&YY5Yg8hNBdW&R58;fG)g0*Q2#F}0P~j=AWa@sNxoYiAO*MrNCDy*e7MT8POV`!z*uvOu7f$zA7Ye-=yqr=(F>y3Js9N8g8lfcIXlL>ySJL+L z3`Os6Py@JOcM`bj6AFPYdWqOx}*>>%IZwhVdvc_ay$ zoy=djncT_^4xm32O=T4zIt-8hI1u7p<}8=Tdg$F~f$ z-3+J4PpfA7md^uBaO7GsT=(ZmLRftxNSCyS{ec(Ua|>yefNBjaABt9IV;K4b`+2>; zJjpXP+VJVN%C9bm>RopFuHMZl}1AC=1(Qj z-i;xU|3SYR&OlL48>SUqmWlKo;-9KjkutZy2bdEvoWPy9PeOyQCR+EodL9mt1N{DP zv*kGAsCIIi3qQ=X-7y+%T;Qd=z!KQyxJ)?3c=tdL<^iHWZ5(F5=~XFPMzQuuKow0p z&zQgvDn%&LOxt>ezPR=_eS-Dh8-F$s`_UKpP6oZMr(I$VVHV?h!S4ZR#uamzcj@1${QC>~7 z=airNfMiWpU=jDS1Y*76@Q-x)+KV9qLw#J#$=^YqB42~Q^&WRC4Xje~ZOXiIRO}nh z1{+fLvG+i`;C_OT_z0mdiXLUyQ=v5M^)t*p4w(8aDtc$f(Rm>3OMUN6+$;vT)x`0P zEaz|fPH^VG9r7)L4g=h3S91WjnyV`gz^zt`<~8_eksbH&+>5@S3*yD*;?sodsHK2` zNKmOThQ0E%hxB_I{LNu{u0$0S&Hq9&lIEj|=z zHc(cD%ZiQEMZiA8+pXM_5lcB}bt=wGD`)5GNf(_;*h#C~&Bjq_)T+kK+!pV^4dP@e>z zcsk_1Ovu%pR`)jX+-rDiG_wD49-ZPR_|C0t(&v0wT> zL@X!dCDf0wu&kiX=VqBI63#SOGd(fo3F!S)U_JY3IFy;p;hou`c3B#fhI#FL#SwQ% z6dfk5=>Cz}Lb{yPV(Pu3<6$9O<>)4Yp+jJdIx|%~BQw0`Aw~(?=P&}dxR)&PGcfc;nhhHv{I zon4$F3EaL)2JLsod9Rn93_eWwfI*tYf)|xRnka?uEic1Tn$YjPy~7c2NA)YsH&S$> zx~dDcJnfLv%%G61XMS8|fNUyLAzq!rJ-vgKNP)--`=mdtZr{Sp%ROTi9Jtmn$jfmUIKE zao@}_6F!I7%7bOpatEBdtH>p8v7ox7_XSr2oq?f?UZd5E3bjGQ+|}i4Qhmv_Gjvhu zV_e}rgmH=Jn+Z0S(v~7lsqePUdU9b>z1Q2J>fqvj89QD$K27P2i3%LYq;-gLN1?B~ zKTpYlgZ~moFj-c2Ig4Uu&(g2BU&68@fyW+@F!S^sPMIzSwWK!rr?2hI8#&$7wfHOk z$P76}XTOv*clQ+;HWCzMOG{xlGUb}Qw-!K;Ko_x#^wiS@nLios#G3{Ds(bDYP zwhy%~IkiJCU76tJzAg%5OZn!tzFfJqufMW730NA?n5A)VTw0CXl~ogYw&y1wpH|UB z&Y0^sTak@MryZ6iVpmZ<&FuEajHiqUWWD^%CqrX4&h^!AF3lRs{@J)MW-JXCQkpDK zdbRx`Hk&D7^E22AnnqBqdkh8oMv8U<$tll}>rIR%%8wwahSwwVASd61L>HRFd`?6( zMLdz{C5Otr#Du|7Oc}j%Y_{WL0#R{;$Q;v8EGvJ!8?OaI#yVv{+A*tq&(RtWpjT7b zX7hF_rFAaecJkC|E{V3rnhZ~6QcZtXb$_6ciOwbHTv&g2dM^i#Ac8MAUdu=qvk+}z zkXP5pNaAdI?Dv4c_d>$Pxv288retH6v6JgSE}n_oFmGMhLpn{W+bWLC%RE_o<3iNX z&-@m=Rql9_$ZGLiC(yin*7Xy^dk~;k8`w^1=~=(8E*VQDW!JNQ8<}4u4F%p}V4P}% zJFL`dE+#JouZH*mb(F@Pt9kuXAN5^&@z6rReyqU!nANle@q19Af}4FAJ~cW(uXbdV z%vfkzJSfILm%W#uIpXJ2TU(&VogEW{)hq%+{p0}T1vd0I0iT%&$M^l>l!dw>e*UrJD#i$+*q+Bq_TI0Y)X;AU$CaN z)jufb&7_r{2x>-#dNVYmVIK@j>~H)gBHb39IpGd=_G?ol>4YRLl=t0K?5 z0lNY2fBygUYE&qHo69x)&M;PcL-ae3nxi?|x9tJ7Gz>`nd%m5kyzPx%bN~Ku`2E@c zJ^1N)KdeXq2vH<7|06_k|8wa9SgQZ;C7mC@2S0MqI1DyCcYe!8;oAw(u|x;>k=1SS zFS2ImpA80m>Nh7@IozL{LQ3BTfr{Y1I0O{E@e$v#b`rfiE=MiUI$ zlmD*w3tK^yErQh7iacO%e6JlTb$tm86h-gIx@fNx${_m|qP(^H030`0#Tz_}B^c9( zD!?Qc&+GsY0Qkp+Jh^`k`UzNc>jN_8HLKi>-(1LjC?HLggy}B2-Ut;L@|hK|_M~iN?EuRWc1LA81ebN9C1o?fxHou_)hg zcIF|!5g)A=muXx|fxF$4P{E=s%!%S{Y+nbU2U;Kn&Yes;2drvZhoPv-z<(q9$P%NrZhJ4rS>-_+Gg!G~#dyq|Pp`67d7ImidN|*9q7U_nH?#ULx_p zdnZaV)7|VYaN?LBXUpLlgSoUW(kJ)Nd{r{J4A9vk8HtV5pNe2)Y0a7`>0l+Iuv$$$kg1)5Y8X;s?>&7 zo4ff;6PH-QmdDyaWEnV#vWD=7n#0=|HTf$%fR34gR-&DyObZ~Vxs>wPz=6f;JIFln z10VEtv*y=gD4pc?Cq^}aZ2bHZ~2xp!Ycmi z<>c()CAPd$>hf_XQaR>l-tw&YoJ>mBLNH~kd|%bHp9kgOT!YGU?EJNts{Dv%tZMu| zHd-ik|1zsZ9X1cLZ7zgqvV@Yue3{j}+GT=rwZ@Hk!6KvYcYe<}2trW(4Xv=(NS=?# zG$*I{GsWUtIi4id%vjz!3v&!Rcf~6N9)GyA_rkrNF-eKkBa0x1Y7yr z?8%k!=LYr#9d$ZjeCR|ODQB-&x}1jKHXKUDe4KNofv@nQ%=v0t2a|ZA(qg@}=^=M_ z03HSF;P4%PV`f;mmhHFSZh*F6WF#vH+h13j;9TppS5m(}g#|x?Zt2*)!_;-WGubDn zyr)aciu3P*DxjS{LfJ60m$9;KyOfpCr+=?RIKp2k1Q}qau;VN210&5V_q$Area85F zPyyU((EzvFH|}#C@pQPIX#ahGHY!DEKeYhc3jYBdD1ChC7m?Sh(Ofo-IO2E}a{Gr>wnd4?)aiJ+7oLo$0-06K!Ne5HQ( z+3=g*%a>S5WbeFCL-^wemb#X1YvPHcLO$?Y*zrvdP9e};V03~d7Q-;Fu?SPMt*6f8ldaxtK*Yam^*PrF6BOGpn?TiWLUDTdclSJ` zY!2?{(+lVN5j)<#2|H{V3Kt=^VfdBlHO7h!Xf##h?QHU`aCVEGyJ47&Vn~v_#bW5M z_q5RtNDwv}K=Q9<^pKX8W6<$G?5rbnU)JT~B=-fadp7IYc}icqy#;*8GJG;5Nb)yI zbl!#?U>00CPoTDwbQ*D;{#DDed9QSl4qi z5JPpKP6H$?nxD9h)M$K>IF|UqPukYOx;95B0hqv|XMp zU$wdY!)>h@aOM;!qSQcENBodqYl{ZGC*C~*h3O+`1f6yakD+xw2ADFXgEkDM^jXrt zBQf-s7-m6nGRe`?0@z#K&uoB&vl?X%!-OaS)UXuYk0%zE>wJ1(y*B-9g^P@dc1!SRV zzs59Gfch@;j;bvID{1anAlZB(WvV=_nq7NdE3YPjA4R%Xw08V6*f6QzdwqjN5& znYP_)kP~e(DGy@!L|a_Xj>t-L>&{W}uyPk*B^@_TH8rG(Tb?j2H?|J|`#3fSJC#>f z7*X<-o>@+sw1uTMA*3qLQ2Lihy^revUCu=nMq^K2kgw_|yW~0DiA-39di)B+0WGDp zUmh46me1A9wrcWVXOG7M`e`>sSHrVu|1Ab&C92UWM`B>e<#df_W(M91*UMM7dDS1m z;{Ee5Pl>>kq1AbZ?ljhgiS!h4A+b66r&CWc7i9#-vcmibgs;sn;ef`=N0&!yDv$W& zPgTJ}MdKk(jx%3Xr!DEfTsRg3YbVxgH>N}Q@8zlVnw2#b$7fnYuk3>U!80Z@rG5y z$`bh81{aU)*F6@U!W(S(Shp3wPTNd;ThTRVik{LI^R{4{w)j58|L8lTt94tD2O*ZK zTIZrLfN&KoEvAh*fJHHHeeOJJwU8v$g8Sf=>7eywLdxY!`(tV==g{Gix#AA)3Z;G`RJ8)U)3ED-#88Q z-ROiza-&9{Z~2d0`Uu|-aP^M$o$=BFr@<-MnbYqz^X?NL@O#C)x8N#-p|nyM+T54- zO32a)AG40U33{Mfo#-QJw;Ez?RrO|fqtKSSDSFu7tN&;+#*6eioceFgeFV9DcI3ai zi#}h3UE4E!{SvS>2k@y47EF^|$+ct)=;m8=6{VfF{5h$>`Z= z94cYvoqxZnS6fu-(U@qVV`bxyrZYPooyzg|@$n|$-Ez%&x(HY!+`2R-_N3&8xijRT z%3w1H{RfJt1WIvYwjXl=Q1q9jpehChmDCwTvYIOrj#j>3gP)$RsmUvZwIV)0Gg2dX z7%5={PE(ep(z~C?ALo0&XVnKr#2+xEgaoo}5oJO6VUvVPPN9d=Kp;)Wgp66@Zc@B= zZn8UilxJ?Tb9$9`S1HF$YR`*ZWxG(Lxws^uNg+<>Iw4sFuRmacru6r2v(F8%eM4)! zF~^~$icVk}{74`Zf2_d}U`ZD5sPE%Y_&M*%E;m;M`By|&cpu+3PU;8l1Y78T#f?_c z+%I1CaJ)ubpC6f+9R{IWNZD$cyb1w4)g123_&@E)0@`;Q11 z8)b;{%`4y~1g@scb63<+>);EO4@l`IJNjoWKVoPP$OE^ZU}L$q17G5vEb3D8 zK5zs~urWz#vdRF>f=H9pWHvUi2e-m~rh5ov1(-raWD|wdY6PF2ZIjA6!yv0Vuu6XE zTtMfp5ZoP1q22)LeT7d(xt4)Gl)Z^>6uhE9J8pOb4pOH1%To}%4h)c~y(Bs}$Tf|u zGAQT74&)rYTglyjl>H1^Y^)uQ0Fw7QxG)wGCUOK#J0r&39z#o^y5@VaQL{>i^%W%_ z&E}Hf*ZK<>q%9@`d1PF{t2BVKn6l$-Zm5OpuZII>d(ZN`S)tl7au5iVMgK&&Zi%0j z|MkW?gnxv&CQ`jJhP8p0_10$T;7MCfFJXNEQk?lNN=Q8~A)zwC~9 z_2br}w_})=3i}H{_8XStBf8gS4&Hwk^w;D*mvmzgIyn39|;6Py5hqM|6Pks>m^$Z{6pc!VR8pO-fFHA}}@Iekv%loJTh;PU*O>T`zW@&F^D zd#vdLmI@xe-I?!PiwL|+1P$cgg@B54?!WQp&sakJcvI~U1k<&Yc548X?qOB6Qu}=o z)kLjw3P6EzgoGABZ6xI+cCRz~^<${ugr|f`9OprspJYWb#ssJeBTk z%657Z??x8*m%p*`$Nu4K`~+In8->lyYyD>R2X=I5EjvxzIh>?-E>OkW;@E==#9dF# zf*0&DG_bK&k;tg3;$DmyZ|0WkLvpXU71kA!-LFm_hhMnWTO`KKX2&~!U;?4aeA##R z22RLgyO1&hP@a3Bn(WIiC+L9v1j8HX1bJTlqsikLFtFHN=3&JD;eo+LX_j-VpYZE4;sHS81m!fxC3xHxE49(8IS^+wVEf*u52B`o6CIc-0cp2pszvm zE_>VE*@pYLt5cQZc4PJHQp2=W`03HPAn0HDUC{H7Rmu|p^=aG`aq{&L{6c+j5IRcL z*%J{%qO{>R_s6EjfP2(hW!#3_JTmT!m9vY^gq(l5_Ha#B(GUsonLkyfGl`G9lQ1)M z?w9?PA5AvqdpP)hMA^d4X8>UIJY{_X?5orFJbF&PZ)!+naT}L@+&1lpY7LPf1JC?X zMbNU;`Lpboj%@X?#Td=i-1h*;ZO&pH4bU@b>nym%T1dMIP6F8P! z^eqnO{mn^dZ10z3;G2^Nk9@JK7kY`qHcIq|Uh_9lz`f;Q!WREl7#UI3`379oKKh2S zC_6#bdpkQUvS+0pT=6|4wp}%ztCBtZ2Xf{NiwD2Q)Ji`p{zlpc;3iaDY+(1Bs^Hyw zwi|(F{TQ;MJbB6~>w2qkhZZs>cg)h@8KKmM_kP9)Oe)F8G1cnOT5uXVcMO9h)bx!n zZ^ET^7k%EtEem-H94ji5G)+d|B~%txVHltv-%*m}*tfTJmM0mgtnNaG(t**5ZjrFM z(r6uHMrAGK;ofF#2kg%SdrXL|b0Mx|q$<@br*z+(VFQDhKbHgHLPqxxJ(Q5dAaZ$P z#nrO3_nfxrTr$E{J2IZ};7^T3*HLk_SR54O>vh{FAZOKco8gjd5cSzNY?*;GaOJQm zVQ9V<;bm%!Kc?%5I7GSE+8N5)u4rhj6GX2JV9mT zzD7)5DOa1yDnX+QjYiOOEKgT<52jDy`q8*rMl3^ta5%#IaB%Dn&V;c zs9;J_()RS0eg&{Lwx{|%^)UZi4&9Kx zqnWM!xF11l%!PHag{jKHpDD6|YPaR=0Y2=>au$30GYyM!YIiHzew$uc>*IySpBOVs zcnBgLoEsD20uIVvKI{n#R-7pV+s@ns;4ZRjp%=k><{%qrJmTMa2`>slfbNT%ij4YT z5#U~4qY*1YrCHJk9ddO+N%Ui1uA?--tea>?zeYrMbC zvEObFDYPD@r7#1=e`$DrvJkV*)Rmuk3{qq0d^{FiJ%)B;7~bD|OH#tv+jlwm@N3(j zmLC}DTgCx}q{+qkT^MzYyms)eZ8Y7m?#m5GUfk_Y+WD%rRDbATx<|5%OpMffTpT6F z_{3B*ra>;>xU{AQ^RK(T>!(pHW*g-!jLMQu$ZAB=7&Ud*{KfxI#}?C8m6$ zc+d1pJoRI-B+u7tjnJk$c<(9F{D{uq-^QsV6+ayHU-D>@A`dIHwm~Cq$#_1}oVbA@ zV2}!C0`d-{@c`FGwKQ!9=VhA$-lDc!83%4Q5LBTEE(#}Xf$Jev8^N-x=_Hp!ST@mq z^0^byf*mk8?QieyVft~vFmhvTsSnB^)aVPUEA)2pP=lEI4Y(6VRS$vkl(;z+9EgHM zy2s0fYHI`SNg%z+*JTy^1IY`l9eKxz+F32r-`fnqcS=QfNFbLfkT~;4)pL6^df73huE*D=LW7K8z%{wy1zD;Rw z`QvuDGqzq=;!46t)u{gNd2|^M?r!b9`3OZ^mFxNZpOZT2#hf3WfRqyTKT- z-)qh6k2Ar)>R|r#jR!*^d;jKptVAYZpJyMB3f{kDYG~gvej8f}t}=S4{9RrB`@SJ~ zpJqGE-ozuP<7FnWy2Tc&1D2RkgCBS(yPL@@mzV6%Y%C-+dMo#1%-9Z@O*+w>HY(qm z5_(+**cc+|4St4BAk1QzNHUt4NH&8ZLbcPgKhGcgJE>T~D?!937}7#Q$+jqSFWfMy zR>e1=%hJFEwVQ;tSzXCRdaoSR6X zp;6a|?}4NV-eD&`XaDd$5T1Lts3-uw=X+qiKejLth}D|FKYY&zUU>D!Tj{7bop+^9 zz`J)<-ABBAbPFnUr_={ocWtboNvDk$Zq`X3!s3FBnBDtW9Fv?Lqj#O?Z*4ZV(`~?x zA2t!}pZ6}l0)Y%0!Gac#qcF_A_=tde{awwZzj%oxg1ho?w_3Nz$lKRm>10C4e;RH} zJWj##sZbGcxN6Wi{ox3mxRR|CJ976%hXRY$1 zPZSuxR@$J|V6-+OFEAd7rT}@WYv6Ct25VI7e+@{=nE50bt+sFS9}TI#_#VT)4)Uc7 zGDUyIjCNR(p_HJt^BYkt&_PL*{D-o9sM=J5K1DRDmrA>J@wIqA{Xsm{zflNk$mgcI z$PvPX;H0xqWb{lj-IoBoXSjRdD#Tm&bk5>z);-CLTG)aozNY0WurYTZITBec6yQ>G zeq~o=6i6yf1s*zOX<~o{)2IBcg#wIP9s=Qqh>Je%ZhK)_g~C-@mxZlqH2#Pnmh2hW z7K;>rRUx^Iutyg*=f#ewEqABNiy&-6%Or=anVua5o7ipJ;m6}sAKMk8r$*yUDzOx! zL&T(Df7Go=utFr|_@sZDv~>`St3N(?KaMA6y{d~q0U zPM9MoPFs|_wdZ~gv&+rG#UrQ?Ln)E%XRsS759%+oxh9ocWnW}&VafN;gX_F&@{=Bp z9r{PTi6Jw{8e(?}?p%Ir^#os*Faw-?dZkm*d5uYlD*!IFAhwJ`wCdteI9R++&kZt~ zST*X`3{`rm2@ETA1-xCyrZY}pSSPGMWDo$rNBL(_1$@XC;A4u0RSZOgOK$xI_)vTS zKE*q^ zUt&>$77qHJ{M4TFbB0Kwc)aUz)(9T#@{WjFW#+Iuz#FO(Q2oZZ8aq->1yH z7c4l37h=`k)+${qIoM;NG)~W83QDwKvQNAYiyKM`dxo@$Oh%<>y z1kCx3V^de8Tj?7H6Uu3>>bs)b?3T|SYTOeBZImGvgUn4fb&L+&N2oY|yJfM1Y+g^D z=O#U^eY8oB(#zx9ca;$a9Yr|G1Q61N01E?`PS)0ml6Vf8T~vgsQk4`9bbZF|wl>m$ zwN$dhZxD5CI~Vb?+C7{meQe^ZB{ruuZ>TWPH&G}+FSS*_KcE$#8`cNVAFt@#)TH?D z!-<~v9Elnz<%|^7%~}#b}yyRmDW-}e4bB7@_T1`m_6w2 zezJ3q$0$9|_cortzB;hhOXUB+32CpP4}H=~>-@*1Mx6x7`t9waKM9k~`sRLvn41#) zm+H|$0al!cO+URFC$E#L4*AKOH%RUGIk;I92aM5ct?bL!MQz?#PkkET@$VaV22*6}46X04ZhTlz1v!MnU0iNe+j}ZgA-{g`ZrGY~Bd#`96J=*h6KaY2Z(_&5Do3q@ z*`)`n1|Sdq+M4rkJ$Mb`E_Sy~B0#IL`Zg@Z&B&k&zufX&U29hs$i+m{B1DfcZ#qv~cqzmX35xL&}?datI%qo^>~prDZ%r!SLGV z8C%9W{SCu@k#PJOI}l_Dg42C=%XOV|SIOov8|%@MeKsQj?zM-HVQ?T+p}i!#uFHrO z!rtCJryv)IT2Gf~{XmE7#Ea6~66ySmb-T5#E# zDDs3Fi7hP$NUG|E5nDFbeqh(g;4LPwE1oCSnNqMc>b)jr%l7rGM9;uT`3M1g)j!=p5 z;sO^FeUp!=E11Lx7g1V^oH;nCGG z_icaVdEHJ>F4XQ=BC#}4KT%7^*OWgW!s&RFBiW%W6!d%Jtm4VyF46Qb&0~Uqq^co} zFU7N$>`5%u?m!UJBBdzHCc{2^N45Dexgc&HEm=*eq#l>u_r2qy^9{S+B1x6xQ+f2b zl~5EX=L8Cn9eV;{f}>=$l$r6lY|9hzUQ~wkXlD=LMhT0^E@VzHKmwLR7Hgz;KT1ro zm6cwXfw@-WQOCQEyZ_hYz)j)2Z-hX561Qs%pfpI!(&tP1iPHc9kSTobIkW zXBB;}J7)|r@#Gti@}dJSZ?RC=aAuC=C8DsD_P#df1E}}wv&h{{scPV4+|=L?1VT#w=uVdpi`4~ zc*u0=OHPhjh7xOY4Yd43rgAa2&-s>;NYU*q1T%WcY|2dB`RghBj|76}pN&~WS&FBs z6~$sgCcs@KYG%hbh2lIN|L|z2i> z&2MoqO7sqfyldRDz2~P>Eaocdkmqqzt^|IH=FN3PVHh|-ZjTc51+5MM_>{qkQ4BA@$?F({!O_Oe zYv9vMHMe<(vfe%CXC|iQ4`bCSV8>wy(*}$f`D1-A6{~o~i1+|PN=h)_7I7AYBUj1* z98?|=fr)FjiEar+-=drbMiYLuO2x(#I|Eb%g#T6%K<1<83FC_OKqzzaDD_}uC;bKn z4##nGUv)JOVzSo-;(PoRfy)7Wk2&%E zzxW>d>HqRQNdUfw#!}pB+m+$fV;(O{Gfx!O7_psGsrQG^mn7R*A zR|h+9S`M?^!~_|#+=CEthvLzp6j zPz3(N_h8rjm+yH2@IAab5hMV2(cCkc9+rx?GK4OEhV6w1{24; z{I7D_HcYb=F0mzA8^kn6n?tISGDC32dfO*bb7&NY>!Vij8PB4XYd3GX?V8TMFdvCC zeEneB>10ILO5JZH!D=;8LNdh8 zRABLI0b~$ZdDzXgj7Yn(Xt}4gjGbBV!9TNwH9)=BP z;S29c;Y|RkKu5%)oFud5s|JF`1IM4dAImuQBGSz}Ut1Ir=_~2FbLY$_gI)!mbc=+q zJ%mW3vfFyCI5bNK5v)%d1eEwOPkQ&VxBS7BK4F_f)EOjLFqH<7z~4NDF4_kF2Xr zqA+BEiWfPgt^8>bwE1c(aRO~^nGgf;*oD@)=$ih4<4taqr~FY58J2`(Jd=N1@1PtC=s2k%;w+77(=Fh zJpvl9dR2vGvBo~UawP`v{Io3k=I@pjl%=u@g(RCbVOb z6`x%*R3K>erWRS08P@A&Q5Et>8qD6yWbIXxcqZRk`Enm{*{C%E8dUdbE@NxaRiTBV zYOGST2n5D)1;a`#=kEL3pAx+R!Vj_GD%3*K{2q*BT67^W%YtK#I>1tANEhhS(CiUC z_#c8@E=)9(-bb{f>_F={61!&VaX_P+AnA`i(K1eUsZF84G*Uu~;x?3W!HcHo`}%N5 zU{tcECAF_OwpXE4-`b&W7-8844q$^!!Z3e~DS(|j*8a2W$*7w}0LmD&lG}rkkM|gO zZySv&>Paeu)Pke;k=#eBbDTA2&1`p|iuw&-WwRCQ8a1Rd9Wte`y6ds;7GB4S<4jPM zv&UeuS!z-AeP|c>eHnDGNSy~T>lvU(o zrhTh z=HXD7S?^Q>I5G&oyOQLV4#zz$2T&n-gw9FmGo^eTq{vGe6|w%j@l<@PPFkF;4U`^j;j?pu(K0 z4x_bNe3BCvPT#g3OA3#)P2CZ)Vl7Mw-zzh%>J>j1Y-TUUwdK*qH zXIM%s-}E*-z0yR{f(PY6Dcm6LwEeeDZ*-+N&(=L}V-RcYS6cx#E^yfqRwB;(d+ zyl1E_o$BLtyUSP`?=Iuam4n(nr>>B7r6pWaRqs9=kF1D3AO7Bre|c^3eh|uYS8k$% zH%(SymeItcVB2{+F~@d`#Q8lNnA%5rK6nreY%Z6Inz5N)3Vqis$_exKTp6q8xaDW2 zzLM0L62C%NPB%9%ztJPHc!nws*!=^X7)6|qt3@>%*Yf( zWnd-l?ErV2O&mRlymV3dpx5=~aDM%xt&G)^MXsdQ^lTR$6%`K{lKxBiOlnrrz|!yh z>kZf9g^fisquGNt{#;M3!7GUw1rQ6bB@`Z|#8_7rYYt9lO4u}Jc>NP3K4PUVK9}Fa zb9mgyT$|}WoP-`B7H76?$EuIF1oL5D72;enoeI|4!dkU65ese9)@CwU4L>KZs zCV#(wpcG%j?G&~@W%wh@%Q0CfSy(&`GUbW(ZbfX=b}goTT6JYx>Ew)kuEdBEr>^Ex z@rX-#(&Zweq%^p7T{NrRxgl8Z+LMM=N~AZifT+$`B`tX~R-+;MOUkFcQ1Q*HXBOzH z!!(`e+KVDDso9DZf_9}yE{UpQE%oiHJY^hLTBR7_sZpW!VQ^730VL-mnLK(#5m8jU;G znJ9h4OYi%O9FgMFe6uMBd|KZQOHl0;`FUZp>+2*R%c~VmhS^qa!vbb7o=WN-AA7V< ziX@m-`gImL<8tt@K~6og_W9(ETjJC@dk>rQ3{Xw#J@;o%nt3tNYy|hFMy4#`wHv1F zET*1j*V z2%ia>NrFT`?tHFyOhrX~rG1-q77YndtlNqy(Cw53Wo2hO9 z_#R{0Q2^hAUGO|?(mTz#7)*In3(ApA&N?R}gk21E$eg4W0PBghr8oBD)kM+Ka_87( za|g9g!o`iLShj6Q`utIG=!f4lW1_)EgUm4z_*2nQm7Cqt4UzuA4k@u3ZOet%%gD;e zGFgqgG_Gc8TS-4Vb%igzZ|^pI(*Djj>3=Fv+|Ho0jsCU4RJG8D!C z;CopAwVR`T=DN?*@>f9pCLk}P;&njY2N>>H!F%FY#_}cDR5~>y3y0@m8t3O5<+#v7 z_NE+ zKiLvJp$bWfqcT1)J;coX-i1so>5L$4;-eWGq#Xiz ziNymCkU~EE9%rxL&s_3`POe5=z|ND8VJ&(Xqt`9oSnXXaQ)a~oNKqXE5$nRzKiYk( z7Tf>_De2K9GGJL*y$Id!-qDzAD1HQqvoIJ8`=!Y?R0ZEa8?{JJX+k&ll~@zF%I4kc zRFDlP_I0)+nY1l>t?FumQ z*#LGj6baOTz=DjtkAtPmd}-BV3<*e4CT$W88q(!HjPlpyRir7yJO-!1UP#G0?af6- zKtDrb)s}a4@I+bRbgNJMJbY2F@TGv4qj0e(jgpvaG{B(o-bkGE7fRY45~h`&E^Ua3 zjZ_U@JANo3t*=5D@eBb7pLlW@-fulL+?mCFUp_Zfi29J{-u`TTZkV}GOdCig1POkN zG<49HW^Ko2TzQ=GC-O%PdgC5ozc(N%LrbroM}|{W>|i~pwVGhoZ()`h-v19>?-X4L z*ltCDzp)i z6jrs^{A2}ZZ@oXTx2bw6)Zd9uQ0Jq0A0SAToOCKKP4uQopyTD98e$h^dI3T`*}Gsg`GQqat%KH~-ab?}LkaUR$2iJuo}47sFeQ-6b0Uw!o7 zAhj}Ns0j#CGv5F~3fG|Fr{#V;Wf|JtRtX+bV#3l`)#!je>!~|^g`t4Q-yk&$2vYn| zoiOzO9i#?pFTBnHK`N6l^>2{E*}3Mk>HNF!xmAeG`98mY{*3XiV<5!KIan8BdskFC zt(!AYju3z8Xka?d7`X?BP;2o)7q}H!UPV4n#v^olQs0&6uz${F4xBpv#={7bq;8CBB0D=6^ zAMlUZh~XZSz4IAF)E9fD@=)&&s=%a<10HA1YN|CYmA2F+vG9lTpaEO$HwA~?7pCZ& zqj$*WEZ9#1rkk$)KXtxF{_bEoPEfN+RQcDNhI*t=?(c6BnUUP2EyuSj$;jaLg4r9 z15SqX!ezE7a=7h8-!orUq7pFd!|isn%vuQH5kSPs!YbiLl2UN{Y*BK|l=xyPnY~vC zN0_D*gZ^HR#)DbNn6hi}#&K7z24VtP&rrah2Qizs@jgk1TTox1?dz1OomXavmMM6M zWiZWf<2mL$vkIY2bZOuZgEHe1zXqMycUlK?ODn$fPWj#^tA9^a*@T(DarmvXN7e^A zjsYw(oqU>v2f4Jzm*giA5*daFkrVoqb>%J949cDrD>zH7>o#Pd zae^st(=dbe)G*OmIjqdj(BbjUUkN+jo#1Q|W0H8uS0U@g3v`WG4093<5^<%00E!`N zt}DCjr8E={LR#&F1BX$-ewL(vT$|1d$Z$vZmtDO8QH}$>1-Qi(EL-R1E@0kswsSw* z(gm3Ja1Rp(Ze;WXNfJ8HzkP2vgNz8S@~Cz4alY5sd@w3o*M-^)Vnmx^(FwoU-K#7G zEuZkxeb6(0OUW*7?{S&!d1Q5H__VW<_rX0YSahnhl#*_t`Eyy*cEh6p$XGab61de( zNC@;Lv8U*C5JA4rjZ-6uKLqTn-`%`yrdIg7wCqayLadrTgQufENNGM#19&K+?t`^q zz~WWz2Tnzo$t(g@Nsy+Rpzd6QGDU9 zvWfToQmvyYuB)gY^l9u@&{gBl%taUYmMY^jJj9PAYN#E`Ens7(;_0TUK~LL4--vu> zF%MhXJfSKGw4fL^EdygY#vkg0ZEu276knrc{%;0u+*Eg59Z->33xz6K3{|@N<4(t| zZdMZQIiW!sO85%1&5c^MYJ=1PES$s!D6!M*HV4AYG1zQ7FLf0BUIlnA~kzX#S>X-cmNSAi|aoTtCA#! zuS~kX6;4OeHDm5rk8gZ|DvRYZXv+fT2!t(Uk_3HR*G+CbYANAqd45aza}>N293z#| zAam}wc7Wxmp6%=sR+a8~F|?^taef0yQ#z;f=9MzV2}iWEpGZI{0gfg4*UxNdA}#Et z?$q0@dB7>9Xe}I~b`p6N9DfZ0%FYHH_2vi28`7tubvG z+~v&Ht+{nJgI7FoIFQn-ktSt!+l8vS#)meqvmA!c`HPdg1kve_yi(dYX_5825DEsw zC-TiQ8ZOM!cwG0kuivwiM!XTzGG5YzP`T&)OvYNcS1QMh=p#oP^yDcz)3IjPHdQg* zZTM1R1B)XgU+jt-rldiEo2A|kp?U)NTH0d>$JU_@pZEDXRBxlf`)hrv9OHTn%fp~T zyz&QinRO*M8|AiuoV7C;;e&_3{B@uhq&3{v$le^eTR5V1=CP7|na#}!?*Y;(De+k_ zvz(Z`>Vz=ydqQ;zbi~LMadFcsUAj`}_B~n412Rg6gz}OD7ecgsjF+h-daKRHrs8yU z?7_E8gi=?n3`ue<_ALD~I*gJMA9ah+v%6W%$?a}IUX;C}&ZUJviCscUzoTi)qidC_ zl5IPyxj@af((B8Yk*=z8O%X+7$SGe`X=)}vgREY|nmTOKw@rn9iL$s=ri+05i)^>$ zy81B_D6*f@hL*7`0Q2Kx6*9GKj6Ld8UQRG4Vp*iTBR08mS-XVhAlSi~b*i2jkACCB zC%k=cZxBh)64>mV^gcU*YG2keB|)Pr_4x7AaT8`&k*TX%VEc6>X72D{$Y4@B57+&8 zRjp)V=A>C+f4__vHgT;H5^9Hal}Ul-bxtR5)Rv0PIW6uqy-mx7Y8H0_HO2C5BQc$^ zi)562qS>4GeS`(?a!Nu(x*@|jF2R9i#{xWMmb^%91CRAsp>8k|Z=A_uR3s1cxosetBz@xjLo5srVW_w)N@NzwwjhF!}ma3!q&&J7?Uu| zs<6Fk>!vdQ-v^iwCol+fM8f(=4#DU)hWSzrvxVY~ar=VmR6(HRon9uCdA$_ums2RKsXcuca#PfxCS(cq7l9 zrcZwTTIh20KtW0qC4D`Ts&%OuSXtMhjtY_lVw)K##6A-D8Y*(>OYAyKm8@}UF#!Rl z4R&*buPvod4I(6j&eN*HTOLZ?#h9XSY?k@WDKNwZKP9br1$#5OYJX589V^mfcj~)2 z_Za~g`xL#q$~>Q^T>Suyeda#hH|I7vG=c|a4xVSFJ%i%){o1{{i`*jHC^kp%@>4D>}FT8$ZXw^1tzO?dZP$!O!U*$v0}% z`}{(yC)M5}yMB_%)2(mP1TeB?l$y=SS)j=i8^r=R!$k=a2&adgV>$o4n4`bM^h+x- zzzA?eDE#-@r>#xviC}$FJi{`t>{Zd?hh276d$J{s+FL*hzfB#KtvZkuvQZ=iU`zz&tBf2E{u5NVvw zL9?AVFTkT+sk&uZNzvz&NxTb>Ku z=m4t^oPz%~AXs(u)^Ppd{}#|Qkb$(6N@M0-1h^}@z74Wz`vvPmdRZ0|L+qeVBbL)XQ_E!yZC zUABaOg~vM&nEPx9olqze2;_MJ@N*t85oDGBsi(3D?;Zg4RI3);H&X)_2ze~Bj4ROC z-dhVGM0+CGUJ3`a7h$;yVHb;Yh-jushTPmp;FzmHt$cWY7G|`lL|bSylXw^>z~1NL z5waBjdt>_jv>aXubhC_q<|6R<#*Feq{tZu&8qznzf- zZ44V|I4IzhjvD>O)pq*-*!zsb|J(cE_g$?o#sT&|(kNn24W5F=ojICPrKTxJA=u%I z;gqe&Gw#NASxyXf{;vKJ@kqP3_N1FI$1!AgYy^gWW}< zRA-B2MYSg5&N{i&8HSn}1sd_?uH%ows0RqS{$>Ml(FLaYY~60LcQ!~cDc1!|lg|ZC z5as6jQOLj=d(TU3kfa?V^h?^S6RboT1>fF>45#v1p)wu{U7LjupU8SKh4k`6gk znGJ9bAVlp~{lm|RlP@a&AfF5 zek`>j(&C#R7ZH_}MQ+gX<8@X@M?-20?~@eY-% z$#Q|7Aq{mmOr!NeC7io5N71P_LSTl*pdGVG3LqXf8V;GWpcV z*LlN7{az)YL<1C5!j{IL-#c>kUf5;J2Z%eb5Nv@3mrhl zKf!|b{c_D4kb#TLzt-SJ=fcjSfG;vxnB4EZ>*ceX%kdY1+ z$^YlbXk>a4?#f8i5UQTlYdmOqh_Y>k!`t^aKumZ^q!lX@by zxa4P!`BF|mia+Ti6sk?w-rj}yXnyN}(gQ^?xJ8kf+JJdK3_Y)|vh&u@I?7bT?LgFDc}p!#poS-IKfcBchvCI zmcKir{2gwW#1G`wV0U0h!TTJl-Am}W7OQSh*w@sCUP$R9>}{|%ct3DO-u{Hsx~B;Q zBh+F%h%>CYE6a&bt=KCs8?U9Y#MCcav<)Z&3~Q?*0n2h3tUE; zHX9;_xI45`xrzG^xL9NFqxyQSgv-uAoMAFmX5Q4q49%|y4?|g0=E20Ug+9=+J-B)* zMFUi*K(3x{yz*Wpcl`<*A40Tlzc;p?n(FTmWUhDppQAM7hq5qb8{xZo65WL5EsA)c zQGXN}Q%n3E8llEMugJM}QPZiFIE!h3RZ}{s^pI^O zO0+x60`pp3d*}30b@up@v-WqLsH@6AQ5~C$^b*2vtZ3{#0?Kjrv<2qJbdGv1Hdt@sm)dVauVWA@MfG2gcKMvRr-iE~e42HN8m59=kE2L1b28}{knk0=T zvrGHBaW77V>)wLp#MJWbi@?P?s4$<{o7um0MYo?^V#H7ligbhkjo)YDDvG5aC-~G> zK(6aS&Ts1AvIJ_F{Az3D8BN)j)ih%KeI(2}e!D+(E-vFkwin9qv$A37xg6^>Jp^c^ z;DuGGDWLm4vy71${h7DfTg8*HD3KX)P;<^N7oP3@_$n=oz+uYrB-uHSG2_fh(;^;wg?xp4_OwRt~=+d1*{L5M$D zR*iR}+1!-3_cE*4&AS?KuJxmuJ<^A_^`|7#0JQp~!fmDOHci!tp|Sj9Y43w`~*ZWg&%eDgxw%PWeUIi7nF3&#mzQ`*zSFr9fcNOgUUVwDbZ66P2rbjIc`B|f*QX26mvk}7 z)5{`{Gbds=iBiZw9;n@vSI=D&D1UwDk$f3}rP!<9Ah^U(%N?hPM57N~-ZI#| zNs1(9f|lZ~HJ^7{dU_+Ff(q{ojXBG#cZM-7Yp5j7l5ErBx7mXvQ$QPNX`E-`){uzS zF-da8Hp?3v&m;bA+|6p?kbyd55S^%>JW0o!xtrsRodtV=Q8U zdJs+-e1&mmI+~FymG?KMW`B9W*2Zc;-JI7xqQqld(Kq5@-1ED?u%`-Vfv{uX&Qg;m z$IBd|m)4{7?4}CVRQU2i1KsZxx!D9a2{VXVu-i;O?-o_TS4e4G^&SR>b>!TaJ1+GkU`cb2T#81uf|5rXnrv4r?pLVm+i52X+j zYw3X)Aj0OzI^vpuVwA9fF7EoVPr(`3Uk~`&_aKIZGVq^ zUS;)l==uwIsOa`tdgo&g%^|^~~SYP=8yfM?hFIH`4P!CHLM_GFf^osj-C$3?GBx%A_E?H~cfgh7pje;eouPF8*)xhWupC1F3)QV}AdD`IGY_*Ui7#k= zfWs@r;jMzNysMc+MD6z~WCcrZ8+xZfAr-o}9S(Z9N)sU7>w1jpk^pe;58uj=b(}LF8I0)_?DL^dQTK0KwTte#0%^PsB^Aa0cRN? z>*%DFElE@r&cL7{&b(uAZbj!NEPO?goH!>f0I`xrCc2=b8?Ff6qNI(n5p5ailM2xr zuT%`TgT_#a$DXN?G*UnLQYQK0Ae3K3VF@#^W`ZE!+I0*1LH#KP>m22C=Mw7fqFqDv zz){hF3gQlDKKa>1Xtd`o%>R+Rr;2>kBiTvuJs`1caBysyEOe?&YFUu|3}$j z5H=leDIcP!UlBfT%=GV9<3L}P^JLIuub_P+LnQ>ZJvc3?HqyIU9V2yL@&s(_W}geP3fFbYXZV zZmJN->=vo%b;vYOtjc{waiH+=r2(d+ByWoEUYViYs`&YHN88}get+Z*=HQ%sA5U|My9>!{M~xn$na3hBR(~recdajN^wrqYCy=|9ZpGMVsqV~;*V2HgP-v< z>_}iu=)k@Qf#4vh@R%`k@-Lw_MiRX6%Z?z=rw-y-0xtbH+8D3(la12GFj0n762pod zLmt=Fjr2U)QxfP@qd+<2dI_^}`k?z5pyH*fl8I!B`ZZG)}6s)hz4+83tFrd{WV z6I`bR%kI7YKNGIolh5lBOm~-}xb#V{k=L<+pyKC8GbjLdmwS8!h*FLpI*mGZ&!Y6B z@-wOHBc`{kYvbS@NtYMB@|Nj3l)t1L$X|+cVA}NXit2dlS^>EvhVw7Td*X_d!l*&i zp<{v3-W?LKgz`BH`@s>-xjV-C7FMs}@w0)^{kUVXe|y5MGc6-Az>3##f6GA!%4mfw zkRBqleVj7k9Z{+cTstPOdV8$@2nlw1eMe}OSR?V5yc52X+(MF@+Og^R7gD{Kk zY3#&ivt*Wdo89wn*6*W5msCdD4w#Xydn)9%opQvpdlt?ZwDu z)_%+)d>f4=Oa912CEpW?Z4t6_fFpEb?FfRa5;Y)9ac7fnSXp4ZdzVlw&(Cu|Y0_gU$D@lBtbTEBtx~ikj#uKw$Oj%>#0{C9Wx4@K-tJS(N~imFnM(A@ z6CLmgGiG`u)9$GCxfvSj1^!OdH1?vA zKRY`-m5UaRba`Z;gBXW#_%`awSmtfgIm!78at_de^TkWeJ&*r`^1fuAB-6i$Ff!i~ zdk1yBdLOtC*GtAJGwDb$ZIr{VF``Ny-{RH&rO;6SE0)7iWV^&V^30mTQW^X3;h+l4 zI@6uf&a|Sd&S5WNA_FKx>%L^zz}_1ranfHl9nhYyHMdwWy3xMO4Xfl>P*`R*k&h#> zoK=q*^>(TRmx!m7Sl0M4M)Az+cqeA%$F|CI$goS>yPtrLXWT68P$_cvv697^m*CT4 z>mu}@GTwS4Uut}|A%elR{!BSfPM$u^-&9kNnxB|5ch@o*+c1Gg09{>y3(0hBDhcY8 z8mUH+%C*6Be?O&qIWbV=bJ@(Tqvm9VC}?XHLB0uSZ7Q0_PeX_xfKE;3ZJ@u;S{mL=8Fn#7 z;vW}qA%s`@2%_4*y7WQzM>v`R^vVevjCaDas-)Hvu+i@nN zvu|8sYz_yw7XO4{kM*U8;u9cvDigNO;Im9CxMGYjS<48ix6&NXvfEOWu<|HwHcxO> zfT)v%G(22+ciNroU$q)WD0HztCR>hmUzhiW&3v8b#L9eH{mBlVVm@}6V84O?V1M-- zMd${DZ6gl1_V6u;{qtfKF?k|))v0H*XvT5x(BFb#-*F4yV%12+Wi`9TUi@eMmWj48 zmWudo*q%>^%e^VjB*Jhkv}>H5*_opUe<_%G20s(((`P(A9F@+&fLywEM>2*@%wjdAR0aDd0ri7n)^_@rc6H z=A(-gzJc(eBW7c>W^YpYuDZQ(VjYJr+}W(6J(*;Lj+2-J&@hT#}s2?I)!@ylhz&@{ES9o%9@`-11qVqs`x zib-O~+VdD4VOHnxvPMCa^pWgFA24o7BJHF}?{ba=$+W&b(3DR(j6@7}E{+Is(2j7Y z6V`&T(iAjBdN5Zjs9rdHU*xIDqXk>po2Cf)E_8!r+@;-LeK&64d{*!zi(PCn4G^Wv zPd;HIf{<6L{w#yoDzA9+giLjMEcnY}e-ej9xyYnF9dXIZC~JhusATQ6Zs+MX^+5{zc1xJB zP;OndcSk{=I(>H+0mR^*j!xO#B(~f>cS(==qw9;ONZ{6xd^YueUQx;KsqQ-eKbUm? zbpfccnwT$1;JY3ENeD+_q@QVJ_uagl;(I5aFk} znlvzXA9wD)>0{S^2i@v2Rg`W*H##NV@sAnkSiLSm`_4bAo^moCwcwh17kH60rXTww z&;5Kpj|F_E*J803XD*2B%=2z_+=<}U!H{tQhNN4}ZMJVnpt!zF{t7_rZtzi~f+i?` zQ4dtn{)R(LTIChsWf;r$4&q--tSocPtk|IS!Mhg7jdz%EXJJB|`C_cwAhS6@!Z>pa z+LT9Oc^)7#j}YOXXh;cX@Bj*3p?lK4K$vKc7z*G3uv5&+7vWTn^VJ>{FIdf=+ZO2+ zM|AN-@TpY#;~q=PtCkPJ5CL-HB^Fa!&@39$5x_LKmgek6ri zYk5_Od)0VwWBc>uHBs9cM;Dc1jjV>yg|&4oPFSbQrVApzrwvS7B`%s0b^#T*;y3{L zPvx35g-`mK4Xm`?5jQS;7F71+zCf;O2T-|&zi@27>XE%Z|5dqe0aUKogvh(=Y}W}d zl!5vfUrCmF*r{(suN%N896+6hKO7objalunf^QQxu|_@(v^E{7YXETXq1pvVuA7?v zPLOap3+}&g?@IvO8)pHJ&i60s!B-Z5dQg93&-E8}&* zCwv>^B|>Y%!33ak1sz^x z9_Pwd^9PF!tUmNK&G|Q=nr|oxF$Mh(>OoAg(^aEb8$f#4=)(!Q4AW`q)G6u(kREFB z16PLLw{M8;1VAkQz%~`A%88TwTTszRK=Vovk9XU3s?#LdGjb62nova+v|St8{l=#B zk3Y70+1M)7h6`zAjK}$Ba-AQlw;lKIvMN-!iX=hv%=bBC&@%stF*R#iP@di!Uw~s~ zE^ctvBzUh#v=_f9q&Fb9$Y`96FvB~-_J)iT7$jp&sNW>}lW_l?_zczCq3u37@BMSg z*DXT*JIdaj7Ro27vf4p#OmG??ae>SkgfKTk+#`%Sp6r?K*Rm=V9T>~95!1_P@wAW- z_RQw{MX1Av^|>4Qd!*xuGvR6U*6j8>^9cti0?=^tSZX5IB6jsEpyEU+WvM{c-IfAK};u)h|fM5N6Wjq3+Z^wR#H@O2eh?)nWJmLI{XN>?ns?`3i`rjQ3=+=h9H~^X%Yz_E)Bgo}P??)W2n2zqxOC?0Ce;dd z6ShZFVTHX8InkRTq?=Y@_-6MLMrFp)>I95SPyW+h$pJ)hW{r zip6JWb(;i-NB``W*%$)|X1_NsnBlLyp4w6}XStI`&nwsNZw73MfNR)9{i9g=oz*zjDxLD%3`DJDFRNF!n zx82#PTOokU^=e3|q#!)2fK#}RIyQ;^M`t_DUO06W0HUqB(M@(-MgV|l+uMigxvfl2 zTJ8w`=+vUN7Rqqt{`C7yi0Ww?P5il9aOp7#8|m@z@)@l2Q_odANX1R?Wb zknRMyP0Q|hM;dC9$kJ5Y_i7sAp2SZoX*@|kl8gx3*?TLd6|MQdAlh_h`(uA0+Ji0R z03aPY0HVE-+||RrRAE4K4bD{eS5tJ;u;r1`G6-N5s({e*vVr_;DCqK?e)KUGVwmLO zb#2o*Yw5Sk$9R_yo7dG-Uugw0K3Z9$HVI%~K7AaOo45ijnG^s^rsgyhhbBE8H%*7b z!V@gGU5!c1I-_TD64iJg%cd(UPjXs@zc$yf75ynKjILYL3KsLkaemcZHO``|)0GTV z07N_1J%y<&K6O}a?~|OlM-*vQ*5{n|Cz+Z^VE+^j&5EY-Mz`^BHh*T(yun2>fJo=a zKmC?^K|PgONL=LYX?YEymC`}6Xq!1Igo9vgdHu#>D{}?A7JGtC<8CHYSmP>eS@$1H z5&gJy|73V9X1sn}oZ0@4w8VNgdzJI{dCh~12uSbKL$x#hLFFb6tz6boXoJVKPNyCF zPN#*J<>}RKrak7BsXoZu!aUim9oQk((~$A+BU@~5tOiQ_K%4wc<>d#=11 z@#>0F>dZ-0EqTsKIrijsC*VNI|7bzj#mWXix*TVe2+QQ0gt= zNKRrUeUJNi(Xjupuq^V-4Rpd-UB;+y+j0+TGKH(ZGFZ%k#h5zYC)Hs1XTp+ty}mb% zC)M9vpdmy~rcJN6bbWK6+vVbb!07U#HqtYxqrQ{+<*LyS2fpEG?Jq}L!PLBy=4hUP zZu*FCb~3hsX4_Il9y?osEBs!fvvnT??nvjG%`cKd``Pg(>Kc0~4{ysDTy2^x56`>>m+M`pAB zoh_I8kH%KnF^e|*);6nV1+F;y)fa{sCWEXU30-C-;5B3h_VnfhSQn9?7RC3RX>y3t z^=b5PLHkygrE)Q8K<{fSVp3Kt+Yx=p($^^QkS4!(f-&PbcMnssbc)F*(Ze?R>mXDr zW5Z){rt9?-#0)hg9eyy=N3B9-K5UtSd+i%(dU`sT#29qUwUC%`tetu(v+vz5>f*_t zu?3Hax~B*+CY053`16&pL{^$@XazzLYW4g0sT6Jw+sB~M@xjwT8>+C9A6G1X-xKkO#QP8^CbG5Gus_WEW>D!7M(8+}#o=%Y4ga24GIq}oQZm2i=&V~7MbF}E?2$h4X>;v- z85oj2tbcf04nz6IcUOBjir;h)-FMWkZRj+bth#hAkM2kp>0K8!;^w_4Opc%5G?MHJ zUYcw41i?OZS#zpOIJFHPt?}8&o#_~yNi7IQo}A%xFH`Gg4=}k>B@dbM+twi_OK9K# zj*REf8J_fHzjZwEBqNRbN3IMyn>I%dSl!(_YnCnBEZ^U_qv8^h-ZHh&?gvrvPw(tg zazALjz)zV2_;h1e?TZ#Ol7`auFq6yZIsv8;Q>spS^dvdsWKSV zU7y|0m|S=)Z*TweNQsm<_Td^42ndb&|EPy7Obtx{CRY~be-a`Mb?1Nekm@_3%2xS% zz9UP7R0E&3Y<@i@^|@)JV&NdE+1WCKpmaT-+jHw?SDhAp;tuf5?vCir$K`d=b(0f~ z{08I8hyM>@LM=6eU;yNSU!XFjOX4Umxlqf%N)JmThme}a^X1*%@3p4~U3Vl}+rTZ} zC2I8LW2ew^K`egIfmUCJ|Fs%9Ov<7pCwfLg7!Xrnsrpw$9neJ1)zHF1lSvJzgkYWM zJX`y*58r1dG-!HFpjL$7B%+ineENI4v4cf5f<57b0TQAMq!B$4N&GmYe`ch|&QPqTYc~7{L(~Adev_{CiN6*i zT7ZQp@K9rrTA4x0-g*Cdv^t$WRQyO=NJ|Djf(~(%2@Yi>=4!U@4<*itiyhJHGFbfk zmaPu5;k8Q>LkN4F;sEN7_e#&%)HBXhPi%PJ^$dA%>$C?VEW>iA;~priuhxr5z9+fP zMONQ2gnti6F5G$6*j{L#4inP;SO;;SEouyYTh?F||VtOxxoL}i5tpZndx zdzvPv78n5Z-~#ziXXYrlx&uV6rVqsmcLUo4{AVi4{50*_bvP4L`>gl-9< z7mF%T+_4=L;om78OxXkAlup;df@N_Uk#eoiB0K(ybhf@}LdFnLVy4oc<3w7g2gC9Z z*tfk6;u|+%#v+QK08uSN1S_Zwq>C3l8UUTWrpD4rMkh01X0qW=mWqoM+mCRt7POIS zO(4eumCOluX}<42$jQ*OCn!Tl45x%tVV%DdEVxCt$Zc+C1AGaDzWA#ZLVPB=9gtNF zH<&j`bpyNj7wEpWaJIF-i|?SFzx_0)GF0+oD%FU~%wzYAhueR0YhGD&qHpt;0;)n-FSDkgq7u zwqC80AF0uOgo!0KDP?ui{=5N>=^UZ%{<>Vvn6a1|E(fLk3b?UkkZ6%EozE^C0z84+ zeIYF%2P88;aE{uufoY*itHBYk;HK*FiNruJKnpC;$ZCGo*{m}wm0_PQYKM@+s3;0N zme^v}VaWB_7Q8Zxh(u^J@}jaLIp)6hqU24U8LkEvnx!#Knles1#^}L?3ZBokhnXia zeK&F95&J;|yh=oVt??irc7d9Jq~YVDuATEnzba)t|PhA=!x6h99zjv za(%nwU8~|MFa%{Fslc#MT-K%$$GGN=;$gakW(HRumH_gfPkAXm;!03pl^;k>L>()3 zRbLbv=MuIpqp%|$Uz;ALs2O4}t(e@xIFW0$Z=$ogK(0N!7Qs!tK~C zz`r@Y{GDfSm?`bvT9F;Y2yb8re`B=BFC_s&En*~JTOb3tR**pF%s)}fF2j?8HJ-^c z#C>y?c-fUpOfErS#ioo~;HOCC6xYK37%RD_Aa%>Kp*weJ{i@N7Q2x_`#Wh=?MNc*~ z&p#GB1>#cJ;-=Y?fP8_P0^ZJ}boDgbL*A;3De_W_mTGpgy&ZxiEG~6X$OK$RDZ7y8 z8P8B&N)U365ymhGdji|r#7m75ol0C z6XqH6EmgYUo_po@A0RxKvSsGly9nBC<&Us2*gu{aW&~O*&%3U_kuX9(gWw6?XG`r~ z0>`y9u7zMf9#T4}Nb2rK5w%4LzY8+UAk`5JpDax%TytxUwDngpy1tp|I?GQQA6v+ z3gcaiT}|mVh0klnA&gmy^kn+gNGq}5rIR4DIu>^TmpU8Lo*s%BY!(kRf;bRwN@ybuzr#RKN8)J9FYx>K@Z!45M z8RHj!Z`&3Cw{6lXQKF=1*1hR1(E}^1dwL2^eA{We-cAexbU>?rl7P5Yio?o>av zq{QoV72%l;U;I^2h}MmLu!5u?UiI*bdIN-S*1=EQi1&*B-~pnRWIiQQ`+3 zWcVh@w5vxGbxst;A1GuBfBaq3SaKUhMB!TD&XMuKO0Y|SCyTtx*>RU#ehK3~D}PN} zlScZv)n#2mWvamU+m()AzU_=|$T}1MDdh)g_+xVH#AUam)fwk%4k^#^1$2n4*X_&1+0~bdo!OPA zI_TcZlTs7u|)(EWS5B35uS_K0kV`AZ?~wovzA!Up^6r& z1ht8+wQq#Tgl%KzZms;Z{WLcGd>VU>d3Zz`Dn8-W=!B|^gt)xr4AaydOr6m;<~!k+ zgiPz+J{{J&ao=k~Qluq{Zx4toZP$nl#y+a2r5V@M^#%6jCds2L5B-z(Axe>j*~ay8 zUdp_MN3&P8#~f@shMlq=Ygx$W1q;)~MRBywnhGQ>bURu5z1+;r!t5+}YSBg^J>xZGkd+f~0Df}tZR=p8uD~md24;#vmtVYK_V9s*@4DCx!6@9+j21Tlx zB*$MWAwqSW_HnDhN3)5=$qq z&Yp#zB>5N+9E-EB(e{IYg^v9$S&ldzV|L`f&dS{h`7KSdFshC>kM$(HjJ9Oh&)1yr zvTH&j3f@vcPZT_nKj{^h+0y4}f5#W_Ff?UWD;j$d+teavFZlcjoKZW z^wjPY7S=58AZ5IQUM(w8$au`NWD;kY3e)9L>2#}3FIn0!zBFn~qs0Re8yoRMpF2`! zXxxnJdsj;1;cdJkwOKy`df$?@U;!QjcDKM8Q+IJR!_&>Tor>GpE>0`TtY(yN$BUXm zaB=y@fkoH`&Uk^0- zUaUJ~CzOiNq3;mH`>EpSqEc;FCJ8B48 zv3G(byV`*yNeKtT??Xe}U@QI-m%4;nN*H<7WP`)$Dar>v|3(BUZch(m?1TmfdMcs^{1V4bcAKal)EuM|PG& zSF@*;g73H^LabA}gCsn)KPT~L_63u66Vz+>L1w&dnzoZt z9mSTeIe<$B-OgTd8smqR1$FjY*KG7a2p~A_Z^`*-PG1hjbz&=KoKj+xh{XIi92kYV zKI%3OY=40{9Ugah!6D@iQpHmtmjUOA_FX%F-prw|8jun!r_6FjgH+XzEpnEKi@kySNZql39BwYT3(3no(E|kYTL^{Te5vVq267xwB;1H|N6L z@E#Y-_!xSLd-m?W5PZC!&MqYHce%--BXSt#?~feP#DpkmQqEC=5~;L;a2RB@VUrxAL4CFvd@;W;*$YSFX*I^80bx9$ugyHM_vvxBiy>sE@k?z63c zU)fKEvEz2Sf*e!sqtiK(Pi_q2BZ-XeFev$<@5bfY9q%b?L4R7}n0JM>Rf4*`7V?{V zrOJHZWg-(s^@=GVw%%Gy)8=D#rC~{h9VcYARG9tPR#xGXaak&vM(BgnhEu5m_`Tbl zlP6ZuCsvwCX}!ZmP|xhlCG_o`bKPJx6eH}^bji(3M3YDJZK_u02@GW3#arlE&*EDk z+szFDJ*zbKMe<@Ap26xI6?M9To3_w~)|U?_H00_Qe;)hz9D(!->l8uv*|{e?C17L& zBPpFbK%>B3dPFX-_I_Diokj}@)gwzDLP{5at!C8DjdM)J{=8V%al{d*f`Frde7t0n zj{e2{%jgPi2>B;g2YJM`!jjnafpP}R?clHc%ywz7Aq#bScb>4p5LguBH((GN!8~Wozx~QcLY@51DVeWNM@14VC881^diUD6k4l!b*#bBDb-8h2NX7LlUy}GAw;X6gMJ7Mi>)zn?6V6U{pK=~qA6BO$)yPl(oD4^aN)EU zUmX=~Y zf1U?4HRB5YW7QH#qM4MjW7GDJ_pXpY8tqQtV^FUQ0AmDhAnozBkyKLEU937g>t?|z zo42ZsyPP(^=Ym|$`7`ySCP7Q_0^lf?{_(8>orcl>6ykm4%xTuwLWPED0Yv#;(11^E z8i0X(KKA?CpRTkVC=FDDbYy{z87T)fTp{*)0!$9g0*8!df z{{N2R;s5O@2Dg}j_*o;g5c3pVBQ`?nBiNe z9mRBUO!fdrafYbSef!sLH$lS|?Xtf9GkVH%x9zMOh~eQ()UK`V1HoqUxTyhYH+rwI zwWx`wWE@dAK1Zhn_WOfvb0dN%KPHyo7{VetlCvo`)FbM&_LFIz+MVF&t zI9XXj$1^U^Q4~V|rqzXQ^>ayNYLtmr>fW_n>mLU4x4vKanyA>XGJduHkFI+RuEXEE z1s>bB8r!yQ+qP}nW|PLY?Iumq*lujIcenp@&VBBk^Ss-$U+>Y2SoZ`c|m66cD z97xKfKMo`;uKolXz=7NXIFKXs7VpE-2sy-&dbz(lJ>1uk1z#8z9@RUrrZZREZ3kxD zg3KgQtRA^;mgoQ~PVH6@6=O5e^){Fu`oA4Wc_-E(XxkR!T&D;MsmFgD$Ta6ljlT}$ zSI<)gXTU3F{M?cFDoYSk95p9D3-2I2D`5wTyEgs-x-4}W_I`875?Ae9{4CnJzP8Kn zSZ2}mSO>EO$VSJcH<+W3M{|KrK+6tW>`ofx!?2om2vr>=+RaImJrT^sRh)(~1BhLx z!43~YnmVj|h6;07OvdKd|8yX~Lr0eVaUkRW<3NH#YIDaLaXqjfPRe!&*bnH=I5GBL z`7C&{_)=dK;PV#<|HD8^W&DSMJotx!jQbA*iS=&=Qt#gkq|RRklI{m_vQXP2$9C`K zy-TZ02$uMB`5ueXF@hb&*GPLYs@w5N)pJU8UO>sNtmzs($^@1Nruh@1XxAd!X6G|N z4vU6SfPQSVC4||Kb2*ZDMkofIU zhZj2;rT;SN1RvNMj?Af@2HMZ`6#LzKTa1jeReEh02%WU>gro&iHhBO4cObI>4kXN0 z0j4E*!VFk6vH)D83h=}FKO4l~OH0T4WeOi6>cl7|_;%jcOhb{jppZi4@+$)NG)2Gb zqH@bc{}NzxT&9YCBOmeo>iBdU=-iyfL5P)3kp;2({Kakmj7_h}(%Z5Ci`THvo08Ki z{l|mo$TsS@uKEPj%P5ffF`c*S_3ct50uk7!+cEhI=q=P!@VmiX{-2T^Vw-YrRMm4v z)9f;|Yg}FMMtEN!fG8QcSL8NFjS97EZ*%eOxz^O9ZlIN7QCf@PL;mn?!szL1cQH=j zMimpD0WYnaaH@o?jQCuys?E4yH*vw@RJ@v5Tusi90EC#A9Xg&P1PNlNE^FRo;tQgD z64nvMxmH0o<6U(RLUwCYnquNp2v(psiH}ab;Q#}~P$Mnrcjw{AFu@b6OMhJI zCne^vB6*-LkbJioK!FtTu^R!roeEd|!XnVNrEd$XPow>zBW3KCF>mqk4EH*vuQ@Z$ zLVX;O!NgX_S^TQb^7%m}{Y%f)5axHC98$A3KdNm4M(qJw>p(S82?&P?Vzi#{JX zeDA=Ou>n3bM$c_oI%_ROnO$d~&1Yg~L=PkR4{$?)EzQwu(R^#0tUFxE4`w0LFE=d> z!`w_)C}`~J0pW3M!}sv>PxqIU_z-?|KnqR(d z=OsoQ>20+FKbH<3W!I7UDiyvdA)UzNWdZ_p_0Sdv$`maJj*G?n&w_B|d z@MkNJYc70xNk9weJ%_s7UYi))l@;^09%v4EDa(`G)tK-K!IziuFW!6kt>8p*4x3^n zb7L2jMZ7RSOv6d3qdB^%<=)t;eFF`PC0R&}yCm zr3g?UTO=3P{q2@!DQlEceugqayOhj-(B-tNY@Q%VU@gR{SV(CiqvBXCy=Ldb3c51C z&JVpG&!8#UPMiAj1CadnKDd)ZEs8}~AM>-XY0wt<%+z2`zbXn-#VxQ!yp{ zj|KehW1~3cwhbUQWzYPd5un?p8dut%i0L zABS8SA?1)4{?M7U>zABQBjPPd2~EyV^Cd z1d?{7%G2tuYHJ?x$mU;8abj1Rx)I;H z{iY=NQwf(It6{!V`c^MG8S+&0$kssRZqBScA%xd}c?cP%LhzR=A>~(pPPXSC#^^|} zF5Z&t2f@1RYdr0gK!9r^(dO)=wnlS4G}mK|X~lJ<@UYy@Y!1WsQ5d|%)qX8#0D7DI ztmgK(hK^vtA~SUtRKV|6h>gwav3uPXwMt|pCZCAz)I{mT?x+8x8v{=n!7?glYYB1I z6}Z7>1i0Z-B3Us2xUB2`!pp)I(*!~@m1!i06pqHkhF^gTcgLG6$!4~W!N!mve__@7 z6PrbQ(v1;H{q4?k^>{=bSaJl{`kNCbb%_u^_MCYgLjg}IyGm4g9avF;i{i?dEQ4Ly zxmJv*y5>Fj3L-tEh&%u*x)_Y3=+`G{2Ubs3n4(2 z4>K`kzR}t~{5s5RoPXFWXMN!Z737s&yK$(w6wIi>5Y!-M)I)f3Ly-ppTcy{+oZ$M*{%* z`1kY2?+vm|RA6n9q>=xDJ_71?H{{D*aVX90BLmC43LZS|Pp=MH2G>SI$9Dn$70#~# z0eWKo-_S>vzwfC4IDd~j-M=961rZFNiD845!4TJlr)p^Q9E*|X<>xLsT&tO_*Zy(> zDQK2jR$5A$TNy=ZaXF<9e=>ib+z}qt@6UvdC+Z6P5qce}?p z2=f*c5x#m?M6gGbmiqluf!@!ffOkF{F2>5jRe%O8eAnO|$Y`siYD-{ikkI#Biyef; zc^w1o3&R<2v!)6`5@T!?PF}+ZQi?xjSVem1W7nqr}s?r0fC_ z??d@d8%W3^{6cw1(O!f(i{>(4K5nvIP!I&SW1QNfK@g*#@9^RtA@dZR!cCV@{+q8> zU_rM*Wi@5tPcW<~H?+f+e^Fdr)=>Ft^t*4M6@R z5(5lBn_Yy*T5ET(R6e3%Dv{=JY7`Uhft|&B>1V5F4XZ+H;4l0{HKv3dlDzbvVYO}UI02D z6>2i+-{>PxxecP5!CyLmiUcSZbN>&Wzot|u(gpvQ&TmBoppVRLGf}v! zzJou01uZnrLl@iCn`O)T2YsaR5I4=_jsRmyB86j^W%WQGbH`f`&2ui72py4+jupxu zZQ9W)i9mJTqU@tJ{P7hAVb%@U%e3(A5BiAnSI?iyE#YIm+R5I8f*<(&*7nFiX<|D0 ztS;e40-tgq(ftI7e!4|rD#E}VrIEgl7;24DRFk5e@73E9L1S2^s2kFQ+Ojv=;-QeG z32%+1q8k7Fsndb_@*Icp@x#pR9P)|__yN$hGhS&5G8l*(vkv7AaV#v`$4VD*5UHI? zJ=@2aio=rteeaEk$h!OV8Mf=fZ$|n#MOZI;C1Yx$!2TngQvO5 z9Q&0s1e7*AAg1ui5Zf)ukm+>MWM1qsgGA$L5?LI(IsnkY!$F9;QEM<^aTe*`1fY*s zGYkOqQR}G4Ynod?ANz`w8UBP;G^#&d`Cu%~z<3XzE9lPQ|EiD7uYEL6L{O;DeI=^+ z3C}WMR80pwHeC6O{Kra%TiO`JKdX$c9IQ?Z2EuTM83!kx0P3Su4+7J*-_9TP5!V9D z^7ol4SYKoJwZ`kSg;*Qt89;r6``&!dY?D0YJzZ9AR(Jr1JjX-e&BzauE(@vTsu&*y52`%iWvfuqqURsNsV|Lnr7D6{)t*V;Kz56f(&2GJiB`EpBND3M8I^I z6?u%%@(F5@8cae+g{P1#el;QWOZt({88O$Njn`zny-1Ye??l$n4{Z*ARsD6Ha&};S zkP87nK4IVkU`*l~2%X=9Vb|gzM7GcmqnHHq%*(+M7(;WW!$G+@+Oi+8Ap#7D<*5yK zOCouw$KrY4e#>tDAsyX+Pkwl#*k3X!w7@_p?A66gzNj~1eo}j8q zzIwcoe8R_ysAyZzrs*xFtMKvIWG!jVCF%s%I~iwSL*#d!+xGYTR#Y22yh0}3sg|_D z^2Uviy1v7o1tfl~EEa%wT~DEuM}j`wIoMA4SH73#DT)0u{U3Bb5%=SAs{}on4&*z+ z(9=Z7EGzaW6(8RGG(0%&i; z2s>acJSu812FzPgONO)HTy2J{@`|!!l*<(bi33#}u!D~4&3f#|9(-LUf7C$pwsz>A zL>uvFVekMZ$1*sY#dQOX{21(6I|U`a-I&e9RX;A_#wApASVg;mv}?-EtkbqTN;f0E zI<`-hHT-fF5BXO3JZZeRbSIlx5K=memTw$T8_nMJXwk}RMS7&y8H&4`**Vt3Sp);Z z8Qa#%#XoXAMqE~L700H)OP^A9hbPL|?b8Q|X<8eROdqZmV{;D)~Alx12`h-WDD@VZZ3j1F>?816rbo@Dk_KbRmbY*4;e0J%Ej_ zZcASb_@|Rphtf+g2_P-^Bl<6Sd>0F$H(2FVZrRM{{(RrvQMoO$eToO9(!)E2FC|Cx zvh;rH$z{$DIRDgIPT)nt*Xa@sbdsTQAT6DHu+dhrxHp%RN1gmiyJ#4}L+@lUS|pKY zILkQGgKj4AFe}^im~bx(1ev|jZrOkRgfC@n1G7cgepeyT9lNS#G<)Z&;RtV{GF;W3 za~~a_UYj>pt%$NHnLO`=Db_t%>&i(ISmlKWlihM94sJPrDu290CDD{~o!fZksz!NA z)>Jk5;%4T#S8xMFYx`T5nmsU#sqc~+5&*DPC zU7?3*`wY~E`|3RYqs$KiTpS<&$j*@B-s*hPP^u1X?Vh{3-oT-t`3qyAEI=)}?}o@q zKWMD3W8Km+&&fu<@Od}YyYrwXWbocH(l&U4Xn0}evlri^vY!oGVIxne5Fha~GlE2} znNkk~%3ld9oUyi>_c^tW#sg8osXV>x)}v=7w34u4-ggp_W53x_^=_TZRl0qVg(e`& z%ArvFE}zY8kJz|cID;y}*Ii?%uq0nLRfXW|N zc-ySa#zl6F!M9(*tHOB%?q)H#73L@S3ZB3m4l^8~POcXBMzmQ=u7r!ni z$`N~%1&XXHF;i&tXYT$jMX65~SVrzyC;Q>+P-33J zTzZJTLyLCh!(is3vdlqTJyl5+S{Ira8+rvz!Z%qRsh{%JCdOSVuSJy?>z$heB^4#a z8PkeY91K&!yx49uOdo7ABrau{W@e_BQ1=ZTm`fqA$Mv>tJR&NP#j-r`&^w~VZ(}J) z#hFgc?h-c1=3fh{N=Gh_aU9O+$F1_|;g${2CitsOwKwh*!kcZ~{VHo6$ShVMHdL3^ z78>9XK8kmv&K3u%Ym%o~+oyuVIs>KaxuxVW2|dJp07$}+1PmL3 z1+pS8P(!2KWoLNmedjVPv^>1CiDV{HrvgzMYx1A&PD?8nUNApxTY2NA?0lKpvuPPt z{k@a+)&z49GVsNLzAMRkeA`OO_MzyI01C-x{~kVS=)D*2-5bKLC#m21&HTMO>hYrq zxEVP0GvZtl$m!^;z}B)lQ?tj-*li@OCyg(q2(@c$m~wDDSw=?Blv`@h@~4n;{9b<% zyN95{pnAN)Ks<}+RrJU_d0#ASeD^lkIU&V`$k&WO9BJg_=;OHMz_)?vFy2K>9*C;m zAu|g_kk=zjxE zzTHFMqytKIegADj`JW3*Q_E#fI@|Bx7nW{@J8}EPX(Ey_YRvGD@9;I0Lbz)qbyu>` z^?Hvr?j6632*eR&I`ZF_QnKFf48o4snQ5Yhb^!FF1Au;f5jO<+{k)-DS3*&{8i_j1 z!Nzf2b7XEcG9BRe`|9_r#g^MtIk3f>69;14QE3XP5$2HbPy;XB=P%$dFnj&-z1Tq! z;H~g*u-`+*hb43StCX?8!_mhaEAoF?Xm4~6V2>QlPDy^>H3gG22`?6lQtLKE>Vq3J z#E^4rVk`03 zJ?KHaCTa#?CXh*GWc4`sObRhSte(MwMCgFI9fg#IWpjImEc*olgh)8gf_9XCF??xe zVqm1pV7{UpaAApizqI?DH{nO=(V6MFn_C4xoIS`N_ zy;kr<72-Ab6%Pd*S7bMaV12ajWb@t3^fyws9iWL9u0PwguV=@ z5K74*Ox9~3%VJFFskx2=%zAt12kwdeZB+9UOJY;$ndA6)e?YGemMr*WE)aREoHuZb zQE|46T3c)}-gi?FZ~h$tQI*)Xxa&`^4l9;+add)Rj;%_)9h0oQ#m~pk29sb-_Mszc zpLGtS{Igi9*_O@?bzw;5LO!8-4pZqti~Jkx;fXnpsVgz#cl1zu<8lTBHqc5?9=*U= zn8VJrMYM{NZ&Hd0vDWp^-jF0t3qhOS^<&NtRrGHIBrqUvi=38BTXNOo%P3Wt&(H^_ zl?_K=vs>_soh3w#g&u`5)MWOp`Q>e0q`SyY?GO~i*60vPt$`Z+U1&8R)A*0 z#mm>Ft;t5Dv320xo`{)ku4q=7nPUy@QZJmbFlaw@Mk2MT*5ik_du8h|I z!LSgo&W9bJx$bUDwyhOkY>B7+=(gXZUEDpe;R}*tf}Q&%AiSf(ydNky-=@%oC#VfO z*C-nv^i;@IGuhC7QnS?#TdI%XRK4;mQdn*I)@#g~S4kL)=X$w~xgqUWh_4ov@QBL2 zzXl{lnW`YgK-m_DVzt-<@9+#Ik@14R%A64xw2aRt-F%=ugvqt9y;iP#ycqX&4bxB} zCwqN~^G~6+aTgX3R>h2P1GcUYrCO7OAr`c+N{<_wlx#^(V0s8`r?%Q0jOV=%i}^&V z$B7Op00(|#24E(phT!_3==nLwv9Z!1bSe8K1m1+ssHOUZY01J2NSK9JA*}qSGrgjp z3{6L{BBvOxq_D#Mguv4^631*;y|a`b1y=V0 zgV;f^UN_;9LlVjU2Tzq}C*-f&bck~Aem&<^0dz}ETS#mgs|le($!b>|^5uALE{L=z zjxIsO;XhwGunm;yf^$lEZfzjsFaK%UMXke9M+-9TLh^2S*eZ^Uz+ToUi?KeEo9Qo~ z`PNW%pgcE(7$*3Yt~rxR{sO4>G!~$s)+uf#sa#UnUoYNF^d*|_HG*v4H9!=M8TUXl zeVEz@#{u`~*zfYKX>p)912G6ZP=<)>(4&vtr936R*%|?GX|;A&6mW|wCzwFOVtCwm zNXKH)%ZW~?LSS@OU{)V8Q=qyuXzdXwUqW(Jl-G3iaqBu&uVb}|&uj@AYy&DZ5idi8 zWyRl~#fNewZ}hW^_neON!>_1YfeHNq!dA0p#}1~M8#&2D=Zza2Agu@evbppU0Vdd* zE|vK0GK|}nsy+MzvW?M~s3Xlz(dYF6=0v@l-@4T1!oCj=pu$v@NhjLl>oC+<&PQxD zT60|^awoD9wn(JW5n^dITQ*>LiQ_F1#L0BD}fArsBKx1eZC7qPgn@+NN3P z9kIx|tfGH!;}GExI5#gn=ZWIiubk|plLr@iEeJq+FTj5{J$SU_(QmQ~6X-nm4`#U0 zXT*a#Qe#R&3<=hP&pjWWngH%qZEMM5BNGgs>c88$JW367jd zj;BG{*F}4);;B(6&7Cn5M*;p#+Kg)L}Ptk0-e6R{G1!u)wMm^X{-Z~jEL$<;`vYWsg6;i z$W(aqm;`A@Z`k@s8%kx^TdIZ{B4QoF)=#*2eB95BFLiiRgYXG4{K7zx*pI zl1an`FRb`F<_>x{-RVa%k+XGX{jm@(|HCxf4oM6!%M-XD)Jcp`qD|>&RQ15YS4u=3 zUK?+f#jkZDo4JM&>L(L#N%95a=_4mG?m5)j`Kq_ev_OMFG&)hLc)pDu(IibJjI`f| zTeGKW`mMIxWX$?cvZ~@KZ51ZM+>Ikn8xJ|JT`+#77}x8M(}`ci-5#2GNRRcrm(=i} zI7Byc%VhN~ti`SX*Qf@P`51k3p39i2WQO|Ik-(x1;oEuLPwo=PnE-)cLK#)X&CIq9 z$-=+baKMQ)2eML zW~9;7r_mJ$-o^gHXh{8sIV_-PXW?9+D{J9La4>d~hOXVB5`LtD9LZwMdw~{>@#Ahm z7hcW0+EaxqR}nmKZHX(F;C}I2@qo$pq?R3dmK-qcS~bF`{VYy!hX;yrlRO_UZbCbA zCiC4Vu!UbR3Pn|i{91l#xXW>|sRkqN&#m=F@|Kw&Vs3+l!{MKo)iaVhcm)&K^U`rm zg!IYW2v7EwH<>;pYHpd$yNjc96v|3?w?L4FaP{*+#3Zyj?zV$OJaqcIUU2)O`Y5LS z8cV!=M?RE4yg#@R9_DNt>lI;T-8nUn$~) z$v(adB}fOK7px%%jfm1-<6bluSq!$jPg;|bF41f0mDqGi9P6|1O%?8xod~H%pH19J zU~mm-QK@!d=PQpf*#s)zDWvnPJ@|^~&Yefcn>>9s_dDPHllMY!3ZIb!w$uulrfAa;zqyEPy!ivt9tH(r-ZGLR)0J)o2$4BDA zZ*mW3#7LJY`Cd@u>e=01$|ajVIB%NLX#VIsU0A+%k(}Dq5Na$brjtYV1=^q_;qGan z+EA8)VMn*P1B0Ea3jY4JIN9*H?ewo&BjOQKt_wAj$BxlISdS%P5PLB?!#x-dFpdp7zNFFvk<1;%$X=brxi z6{DFWQTD$MEVKUWohV_wd$IQ)!rtLszIiqIuq{RSmc*fvuI|e=+8UY88~yLsf%4&|Jhd-n~~jz(7d4NAz2{EanBCtgOg!hzfL_!IkI$01T%k?g5{-U zl#^hoCy8{69frnh8RVReB?Z=bKo`(R{)H}2vmH@7CJl@s($8MHDxHgS$nwXq$B!N9 zbojSnPxr^LX9XDcpbMW!NIR$S%10)W2FUTBSST+TQ7>314;U410M#C_4d!-D#Oljv z3DHniQi!XQSvGt`>kHIhl+0bZ&usfR%-(`fKkQ zTnd8goufE`l5EULvMp?1d!PecAZ?bdELwZ4O&W+&z5@Hm{cgY#j-z#zAl{Ky!!VD@ zPR3L>kmS8;TL4s8_X&E4O`2*$+QH>9(%dssDYr-aq)$=t>}y8|(XbE(e=!%pu=hfU z0{@p`uTOA$aFn^aA`M0It?Yq3op3n%6y*Om?2ASJW!TRY7Qz76Y{I5#W&v50P(e^+ zxpzgC6JdT!oYV~nTmu!$>GikW^UN{ywDzQchf|r@K#O-o8+x3;@k1|OCa=-$S76W( z6g>j%SpzvHhZsv%oD1YMoOLTyhHmGwu4AE0PW~pu$5K0x{QnyE7m!t)P*a$9fuo!p zY{mvsasE4HMCxCRw-Ew+ac#a#=B@xO0h0^=N!MA1^NlP6Sej$`Wc#3MxrM!}nwK7M zH?T_0F<3nlbkcH-vh)os+;}rkwHCnR%c!BSj)agnL5G?7XSy(4W?CV92c$SZ3H%m22`bL-AK@-ZP-K!R8lfSOYHx;SX5AAp!QO6l&ho>W)RnRA+zf#tNdsoglV>Y1B_aBLG&V$;aa~S%T zVi^(`+yv4Hm#Kv`0!uxx+9kmn=3Q78W61_xe!H*6Oy#OKb^g1utaK^zpOs}$q-k8O zcfiUrf`XzH(Gr=_CJ>5kKek;78KGcPkzEQBRRzW^f0=$_Vfs&+>6H+N`V+vmt)Rej zKC0nN)exr?_?K&dVZRa^WI=?G>YHEku&|y=!}9P6=-gRDhX6Wv#iJTSM~?SZLq{%= zs_=%ASfmr&q`{fMA>WLG(_Akm+WIjQfHI)5)KI2@M-Pl8oX)VV@jU}5tFKg`3L9kVaI$s{$$_$$F_9?935~z7mB|QwAkVIX-{0Nd@SI=d%?SFZS>dOst zkj%xJRZ`yXBXWJs5@l+70<0`wKm1);ZvHZ|5VDPYh1)9X{{BExR-m!};7Iup0Q1?B zhaAk59F|ou@i9-~Av}oWPQN zPE14EeGYx1Ppn5kPNQ+`87{jR=L#->W zLa+$+2_K|FV6X-JLib@)M}ON=M@+hFzr=6E^UJ>QEsw&fUAmD^8Q?g3H(`R%JCKo@ zA|DrNsT%3_hh_>&DgD#R`w9wCLh;^#FD()cM&4gagjP(-A1OLPEyIe-+!Khh6!cbF zl$^G|{DasF#N6JIjLUqX_JX%|?Ew z0ZlBbn=={yzAU~#BnNu+2eAkC40QqitZQdTy?*$cuY;_5UT*4NmO8cki`WAv3G_#w z6agTHKZrfEjAzgF$_9K2@Qe(egA*#kJGpW}GyM;UCP53Xg8>)V6G-2rs?Rm>-_su} zbnyzXewXVN+?&m3ito{8q+2{gTtS)y2{?RTeWy&# zt1&z(`;m-xJ^fk_MUOTAz|uN9c_)d6fq`$P%v!dL2Qr)zFU#XZp`hgcw)a#)LJ0v z!Ro53pp$Ilmz4jS=geq4}Kx$dm?XIp~L;S z5e;PHJbg}O*MK`@<#z1ERfisR0`CX8j`d$S>vA`&S$)j%fIy?L@g6peIAMA2skH=F`L+aK_vXGBF zMq_?xZdPOtx9Uv|+s+Yxb(`Mx7bgFnx+O=~xYb?NN+! zot&oHE$uvZM6~rwn*kI)N4`Y$Dc;PX(TONC2&vTS>L`p?`bex}lq!xQXK5{OCFKFQ zK8l`5Lh=|cqDA||%jlC~XTKk{wOdBc`+=g-@ox{Mp3+nuiqCN*LCAGqon-~Qa zneiuIrR5Lhe^smM^#7>XULrAyz-B_X_L}>ho{zi(cI;6ACpClPtZRVNe+LYiuzzAE ze@TsQaOAvbRTV+KN>(ge9CHeh^Y^}?KFacQGd_+e$~D9s|Ov|4tZo|ED+Cuvr}e*5~P zYoA$~m$)D^A_%{>70ixLtn0O;T!kIK>0MbWcVc1CgU+53>ifqA0tM!Su#BEDzg^5K zaYHk(L-{89sDzTuxpA($CZwiQE5zMriKg5rD~N0CwD8Wa2>ke@FT^}7@=**JCd-?W zV($FdCJ}aXWkx5b#Ub)G_q3DAvX0tb++bt*K=bt@8AnZ>$NI;A_Kqf zD%)#m8>;7caU9w8@g#ne&7^}KSgZNQ_9Js1?5tivHuXi-{{#~+!e|qiWA8|p_<~dZ z*X!)e>(CnFjE_KZhKM8z7j!$VWes(Ny(+NE^Y z$w<~Pb`D*|pfXfo%h?Yi!War~Y60;;V-?)SPZ6|6=zJ(`Wnq0MGJ5L*xe?~bYbvi$ zrz$G>43%CLt*i{x>Az~37pEK6OF2uk#|OlfJX*8!BG)EA=)1=6npcLIulwTn+H_n8 z)!*dN>~g_-M&endEkqL*NPo=2DxoIu)2!Ues*O%YB?_&0X+w7zqvu=WlQ)Xp?mKz# z;b%*@p<7+v#qArM6p zx!;7d_5))!dqZ~|ozJ~Id9SS_H{N>8yfFoy3UruER=F;KcH`W}ANqb$hB+G)jq^a= z_+q7S8?rOJPXa*O%Z|D2#??RrX#2CT?A7uB+TKQ4@dfAF|1WLNF9KLs{^*tYL)-sd zTK@C-w@Zer0+=CuP;nnS+bP55?W;$_3M;qzd(=#A%4*`iv+<1S; zfworjP+L~lnE5d(-;57GF)_t3LpQ^f^|0Q@JX1p|j>Xj%X8?e*%s z5vQ%mf}`tb=&u1G9DC8l0Kd<-ZGRaZayS~xR>GE_fJp0&1%4SYX^xa~fjSMhdvo zE+MR7ifo3UV?-cgXsc5))sLpea8dqI!+vlTpC}bC zOeL6r6Ux;Q35)-fRp^)s$uAsZmui;^fdI*|P*B267xEWWim3x*^nL-rF3ASiC8w_* zUmQarU59GUIMA*&<3#%0@_suOBxpIL-PP5-!43IsH(GM#Gcq5GU$b-gCR|RQkjxs- zTpJa!k+ABPNbE?oqHX}@m6cc*thNP{+t3m{FYR=36t6a{w_)r6p+bs3uzgG3QF?A) zoMh5fJ$d+Fy2PN?YkydT;Jx`eLiJ9zV}U1R20qXqxZiq|CuIb_*lUESxok7eDc8fk z3Rm6=J$9d$D&5-x?maup0w@W=?X64kI7c6vS0gC8M)Xh6ZuE(1WMkL)Dk~o3Y>Yh^ zEtu0&*u@|24_%_7o8b$&+3|gK0=ES+Ji$oOG41&bP`TODO{82dY)}T;RoC`ZHGt1nxe?~UX zh8+u~;*sm&QESi_xYG-g(xA*M-v`xIMOKJD)K+64jb}tfHBTtmQW7QlP%^nA+9b2I zXuzIpf$ne8PKkGsVqjhox)d<4?0+Jd6Y*zWdF94$M5H&eM;%-XJY~{ojWubOcYV&A z7$^8c#!74EPtfid5VRwL$DF9U-fF{qn=dF~csXPgbmt32qD`)%+@_ z9i#u*aJpPvHEUem`s%{=m;9o4(=d1<(HlQOf$UBWN2qg`1P2GN@37=$v zhDSNU8GQH$Enzu)Z3kyz8=3>^yE58ed|tg+{JrxGjn3BD>(DU6CL2is$=Ny!XAu3$ zdQVkd3DL-hQ0u9Q0fj4|COHtSOl=ObAU^+28Ui|7rusJQ(Qss(Oo8{J0$E@JqZ z7AFaV8+hw743M;Y0wnE38h(h}WxMtEFmFkXu$D9dk%4@XO(fLtkBs6t0Q+U2&5I}d z3D{STjv5Ux-Mi~YG=4Tvt_+rVCk{^4x{Yg*)wo)b*6e6g_X@nP#95-F`@q)a^am5k z_3blS?;vu61>J`HOn5-W=KLbKKcj;DF5C1@c(PB3zIpvXQ8C9tIsfynTFZ3FhF^>h zJr7b*F7S+@q{F2;^jLQv;l0r^yiMHGrrZO@m8Y=$#1Z8wC@>zTRE6~RkD#IyjAXFD zInx)Tv`pP;2uRwYJ{1c&Ngo%z>ZmoNE(z{fN@ka!?9=@<3yhJ( z5vVRsj+XLQ3YY+W0!1nl)0znG5QUoQ(Yh#9JqJM@v3W5Xu^nKaC6NJ{D%Uy+YW_;% z5NtA<0~-9yg5_hQf$uha)PYEz|BBk>0-|=&Z?f=p|B2ci{)yVfKgt23b{a?%|08Ng z$1=phk+A5-fwFF=WvMeLDA*UYQB)JtL`r+lbk;iO5_Y2FoL&AoDE50=Zd(qqtAhX0 zt{fo))@wQ{#l7okCct#Cj@N5J*`*%8R!bg(He)kkoNN`?ufk8;toTM~GBeGTLc&~J z=D@ijFBo=!?ITm6<$NJWQYD6O?AB|FJ`^M|Hk0oxR2IZbqa@r)2d|`Q!f^rd)gGzw zeSG0!VG6$Ye{t|Z;8>9a)Xe!+vIIFo;)c8d|UYXzhx0mm4D z)&cI^a^6SxB(mr2SvXtax>==XT zi)#b9P?YNA>c;b@=p+N!F6>VwFs@694TJ@`zNNK+EFOEYbyO%yH!aB<3sc-jNh3bV zo=>UikjT$ESXx-gVHxqwCO6;F@nHsnYBhImDBe`p61kcpUmgo;D*@@&qmgzPTiM; z)3oHWZk3uZt{ym3X6if$jX&NS>(gGfbY$ceemxkrpG7w!27(2zBE4=hx}W!+;~vVd zJ}yi<8Lf7Hag#JmVKa!#{;cIAOG_+B_OW)%j?eJ+UBY++Jn=~2+I!X)eUG;ko3k|* zNRjXE07*t}u8Y6;S+aV}B+cJQ>O>WCX)Q3$-e93MzZu_{HM^|^iH`s-p3Qn3u7%3M zEo5N5NyJU>37cDD=V63B7)=e-HJ!qpgouplIA`gGwZOs889TaM#KD)Dj0v&EA9sypqkchxwo9j1AP86=UVl=o{U#A(aH^_bk5D<|pxoJlqD z#;#0O(8{#LL!b_vU`D~JV#qgC6R<7Pfb~d6; z89_2OwQdl{n>ij6s%30f+tswjx3T z2!X(*=b$Zz)pbGWSLSnAW221!p7#~S)VF$!MjG9d27zNZmm=<+cE0Nlj`YOW4achM z_$zaZyN}pYN(|B>#I0@nsWP5s97!XEq=fNq{+crIvCJ(mer3pN6gKrL0gfqs`$>Fe z(;fNRlLAB{q~bH;Y6H-49z%egTIq{s27ANS{_<$;g*6&BE(&@P)I0{B@-gu|G>AB= ztq|`mXv)eKupY1ump3qvJaW(2QG}g4_L1z3Ke{7%HOW(TY9O;T@*vn8E(354AZfP| zHRhq_eG8GXDFl7|!d@E5NdUts<@d6GV_f$__R~gZ3)3VKq-)SunVbFf((tf&+eD~b z9dKIRn6*cpN$Fl-*y$GRWkYCuD}Q7I%q%mE^jSOMy?V(!-KAe5rrsUVZO-U)7PPrK zxZD7~sdJO@P^gEBAc^@WYIpuOYUls2s9keA;Si>!LYw*X*eybT@~e6bk>;lK(gX5_&Nr}rt=jpaCsUa=fusw~g|LP~o=c7k|K zqQ)X99eI$TT0(QK`0Lm&^?6CDg64ej>?f%ls}g-TeQb+MxGBp;L&g*bRJ0&98KgT~R-?GkNy-8Xcrm-7!SUwSKI@B~`{u^FoTcDf zqwj;x%aQqbZM6+-BEA|~0+h;7)Osgurj(EZ)K)H~>!(DeKMk23h$5cw9Fe-cuFCg= zDjxfOJ}TmiK;n_~@$(GO9A2UBTlQOdi`p=W4i?z3OM{6zwq27h>vD1sX!_y^{sgUt z!hdeC#LCGIlFZo5AA%@V8>)~WanU?l@ic^g*O>zEH>dwDp_DvYH@T$)PqwLN2UM*|_6 zhz}(4x{w$6cc|cv-0HV7=Zyll9UECsSWIeolNeQ#5JF-sjXSs0YRv14>*8xVXMb0{ z--fJVGCGgV@WqzMbyr6Q>qU^AL*O2mEMy-MR5=zNzX~b%49kz7sCoK;xJCVcSj!sn zFivE7P#;&mDTHmK(C1cev7%3XS_?)IN<4s7YTVhqgjVfc{CC+DZ`IQ4fBo_P{qI0Y z`h@*DBjCpi{)zx{g+R92fJZDJxL}v0lT?D(uh>i$iYqxOQ_w3?W4{Q|xECUslARzB z!SZEmix3>~acV_)f-SmM7>!X%O?`Y5=fn4fU8ks@n}lUB&D6%#7-MtW@6**s@@@*u zkj~C~)-}%g$Thm*8yD)ZepE1y+2WF(5?TG4J?!MQP!`;n5t=%m9h%wFpt3>a25Jlr z9$$R1SvX!l;Mbe^Ynaph9D8mg(Z)AKLqw4m7>p;jnAqB%$vUd164;Un8mtncOig7v4bq_*4__(3T+P+co>Bj>7EB81Oue2n4lG;at)Io%uW>%qK0YN=w#&Sxd59L&xt1Y>G=@;i*ifEi$)f%PW@Zk#OZ-!yhPuUOtYSTED7 z(E2n11z2HUNcs75Cy-5QFQ#8>X;kfn+MqgHk4W&PZ0aA$p$C;cK(=a zY^vRo`>M)Yb`03(styW>;R0QmGJ6qAZGWJ7Y#mO@U7?@lOVT4h?HtM*&Puqy{QL7& zernz`X&&n(C3x>S08vj-Jd&~(_&@BuQ+OrZy0#fx72CFL+qP|2RBZ5%vY0 zfW4xC405QY;8i$%TMVdSIzpgV#U4U0BM;>jW~4uq!lZ}F>>P~^+HOm(e@t#{h2b=rl-bEb+W-UNU-?JpJy7)u& znJ#{|>{(8w|EvZb^~Gsj_P06PmbyYK_2wJIe}bHW@3tF}{wMDa`@ivkRcUlT0;_k> z9qF6CbI%s02Y2!2-b#oG1O}2zcF+Efr#lrh(2cAMQ|_#FtZ3ByWwny>pWHfGF1mm^ z5ZGxuQ}NHr#^nM2y#J;Hx{wK0C&e=8-@%BmBNT;K`N^5O&wYZks?Lwx`t#r>n@g%>0F)bj3y`2%Ux#FfSp zbrIpdF_FHqA>S~O?yxDp0N%R(>1?!oG@OAWR*(|ps7F!=m$!NZ@)sdn&tI&=VoBkdbx&fJ4`Gd z-|FP7gVQD9ad&N>Ta>*`@nbP=#4!LLRG>NQ3LmdCHa|e<1tP&$1~~0-^I)IoeyZTU zX=br%@(Sz`|GuXAWJw5-q`M1nKW2)t7~M`FPyEs6ejNg@?t{!M^> zHIOSxfQeJ7r64Zj5w~KQe~pcIyl{LHEA&a459Dhx{FW@{t&-S!YE+?W8wFrz#WCLuBf#%CfK9dOfp%(+AFe9s# z+OJ(~Z7sPmf@r4z(0L-L70_@`#sU#)vLdKPIyr+Gg5uebhuyq;O6UOu&WdB7n+4aU zy-RHtM=oN(sM~_AqRTO2k?ZCDqn21u1z_dPh}&&D_0Qw^0iXl$rBU4hbU=i43Nn9Q zLccub0K&w#Af66m)c>Lb%!{#bMlBMGpisfnedRmdY?3fiGdv9I!KUgbID|MBkbevH zxWa1!+F|5pXcufP$<7!lrS*!KWanlQ^!XO5Ohfo#Y?b&HDB5l$p-XPHXV~j+n7p$h8zy=99}X_pP0BXJrCW$@QkfJH;{sp~c!7D@8QjrhZVHdO4r; zbB(l6)C14~R<}X_rUM2)=>XbZEIU$g03D#VHe^&(s6FzM=_RDwlq3(RZ1f3|>%P(i zf9`F`1p2CtC+;-M0a62u6FUjzDLxng5U&?zdu2GA6>kzWCkWFSGW!1`-?$22ctP&rE&;hKn6}>!c;T4*lz?i=T`+;uvlK;&m$~SIUgLqE%+yc@e147qp zEDOiwj~Zx`$LHbwRvyDgfbIwNUKEG8ClT^mVY)ug z;V7UYzVnTE7em%?N$`cWM+T=~7AkG(Gyo;{a`E2aI%o~VlqhOqJVI6? z5}>oDS(wFpV7QyqJY8x`eO`wK;4pq4(mfpbl10FhCv`5sLw!uxV&7`A0X%h5wqREv zS6+g@gT$pr3x3o|xcwWoAv{pCeEx4!))?TZHZs~%KFFlsGt^p;AguoW?V$7eOjw!t z8PMxuus#H)RwK7;1|n5_DEsspgD*EARXcyu1etzA`Yg>Wc6Y^HkIhzfo>5xkwptm# zZc}|3Q9@+wc86k@wGSqR;(-(L%cl|?$K$Kx!JP83?yuHEd%*h?0blF`?^zZc@gkuH z8FQ|@lep{v{5vJq?S?s=p8kG!icYg-S*PLu1_W-Sfk$R^ZcBIetG=*FCiHY5Y><8f z!r#{Q|Dd^GA?xJZ-c}#;Fhu)sMt|g%!ac7bY}sZYtcTQO;+v0I0VWp0(KZLJ!NAWr z)nDKLnzl=4KN7H|i0*j0L;D5R)tnEXS0nDHSV`ImgYMPVI^6neZN>@8mi+uLXQG<4 z>Vcab0Y92n0nOXe{R2lH?YXE4E&48k0vS~(2;cWc>Y+rD?p$?W9v)?u&RBYkH7iG< z)aIP}HuX%=GJ&Qe7wQ~}+rSE-U#Y8e@}g$Yr|xx1QyyVYve?m(+dc3k>3A8>zctZi z7@U(2-eW4pdvTMETLhZM+ftV+G|~g6HSWk)@YT0>6aRA=pPtVIqF}9 zn6=RwG}*m(w)9)fWOQ#NG6^$xT2LnD0j9@SI0e2 zainKz0p748KHsot1aY@`DkOUqyr~9tY2!P1vyc5>QLV4Jiv_Bx$c7 zVbILX1D-3a97J%B{n_B3kik<`biR%o6&^M1H3w3iqvsTTk2y++h`m=mnNaJ9%|y8OT!I64T4CX&gR{>&u#`l$4>DAFZl+*74VR#$0y@kdB?1Py$rHD- zeq_S^1v9?=ln#0}M$2G5eGJnBc_+V_s(<;{SAcT-AxhFZ{)Gb*Mk9SL?8WD<7E0Y>*3LWhXV6TE0Vjz;(tu}ht(x|OGKOqQGqL6PR5Ticsa{2-`LgAv$3Ac+9syc1Y^$ng$g2oG_2nLll?k{cq+r8=yB z4*BA?96$=ynJOZ}(R-C?qE6N(9iX}dYu_zS#FYbUfCA{yDzcjPLi(cQRSXv!5ip8v zPV^!FlCoG#aT$zX=#gMxu2f)F9$fJ`j%}R>t$Y-M`7;%7SB-yEycUB4{{d_ zlC(#&RfQGU9D+3B+cc*3-708q0!Nap$L)8$O_(#l;%(`)tONuyPYO8n8j9JDH&f4hgo;uvFTQuryar9%fWDw`O$))f2apJbZVkQOM3jy9U>U#@2 z(**A8T@uj$;l#f1lA(&R(p0yr2QQ-Hm~Vn)TKE3;?nr#ite| z=Ua`NtpYr6pX|qmd|G$}YdSk?4uHV#TiaB5*pFZZm#!W(zof&@Iq7+t*z{Q=FSe`U zsF&0h2e46<`oMd3-+15EX!(Y|w#z)brQ8aIf7>8?`{(n&(ST6(Z+6!62JM4)mxfFB zU(fsGsy%SnEZrhOYrbY*xEo&HZ83NM?w8G<{`imc6JcH=8zNwSVx#;&y)zjE`yQyVz8hmeOsgHB=vDdm1SjL*W>?Tuz06mt?}#GOZUg~) zR_hDuz6~FKyw`Le((!~-Te=~&T+jGab4wvNQ&O|z{XYFevBgG$DZ=w)Dx4G8e4g$< zW@M^FJ2_K`CO!k^6xEz?M>w~80zXB&8D=i#6@zZl17XJPmE^wz9`s~|6oXuLphI{M zDkv$O{1sO1!-_JyPqz!$+6M~C=?)_N1#^}ocvm2F;3uGeF;w+i%lOyQ8E~1t`vWlqE+#jy6Ks^zQy6d&g%W3Cji0-WnZ&XhKE)Mt_Z# z3(BjubaA26=J(?|fVq@fGDpdst>N9G4+d>)|m9`29kXX*X= z%~W_S@1xl+V%fnD=QKd+JrB?egg-|wfDOPa_}ZU4kun$UwC;gl!Sk05_(_@k^)DL$ zSQP!CIi-+S>(Qm`S(SYhgD-%KM-rH065-vW_o~4SgV^nkvT0T|C@vd z=~Kd^6j;`G9#%@H+NgEn@+sk&srJAp1z+|$A@dY1hs~czKDzndnLIiu^4iFZ2Vesl z>9GT=l|5+@+)%=UAowso*#MggDs(9Y6wSZpQZGnjD_+43@zUYH=2Ay|A=$J|@w#Na-J*CENPWePy6@?3ajYF~M zi(kr(^#pEvaEA&tij(1P1H2vM%CS3pSm1%fm6-f@A<)P0B!L$qASY33N3a#Tdswl+ zn6G%5i@otDEK0rZZ{v_^sT_RxWGS2W*MMqujr(!5dI6R9kOn^j&zyS|D)(y9`j!Wu zYCa5GaDTni+9#uQ>hgbKT2SG=?RRL`4~-sr4{O5l)| zdy@;&|1$8@mKrK^O=g<&HBLEA+6NaKe$48GX(TZ*oB7lLmNi19u1Pjub|?MZA~pUR zcv$}z15ff%oO(h&eBH`Ovy)_!D$G-=3jKE}83(j~yrncL3v~pqBhaNO0BWCd4q< zoZ28fZDIWqdy(zm$1$T%>W+y`q~j~R_u&enIt9=q0StiZy_O5mMWTt1$Q#vB*elpa znUf6O*47sS$a=VAYSCY~qFByDV+>4xK%Z8<&eFdX1#{fIA4+lx;uGZg&fG90HPHL0 zP8p!w(%7Yp?m+4;XOk7g-i#F#=?M?S0wX*eykC_obHRZveT;`Hf9jt6wJ0xxv)tYh+Jn;17#LX{pb|3*8rqS}n#2jIX7>WfCE>5&QJi zBJdl$M)1Ma;f15xOjD203E8CG4r+z1na>tN1zQ3rxA5W2Y@%!;XZrDdnxQ4f0wWFD z0V4>c1$kU~*|`oXABg|*mQp*02QxTe?r&ghIZ3 z+?M`ZPZkrb6skvdYYe!uNh6(Jt7B1p+>m7pTG?6wvYl;*B5S)4sYo#|R~X158@+dArCz^f*Xt*j ziJDD1u35EWyD??Ss@amgOXxUGq_|H&|Fh6K?Gfy=DW(D9`ba{{XNk&$oC<*J-?w(( zJm~$Qk}oo&5UR}-iQ#U+Is-PSkxZk-;4H)kDVIleW@3=_-Cys;WhR?__J)2gA=+_b zeOD+`8ROHn(}SCH>|$4Nv)` z06_cUE45r^W3g#Ro3(?tmwv0nWEI}AKKi|h+2J#augE2RC0)Nr7pUQSmO!|{*nm2DXmiltXyCruVXoVjIL7@f9is~#u zebKBHeL)ZQ1EJB%LQmjYv9WgtTWE-`sxv-Se5r;mox6a;=A5>Ob}Sw9%yGErV%^be zo(dZKpsgieP!(~KHl@470)$hOlFeWT<=d}#(yw{HZvr46-nQK)s_7xB%sXJ07}--i z(H_ii)wE5=zvelLvu8nEb4shWFYhI+$w1}K!{Uaw-NR#O1>C^o%+_be2UmYLy_2}% zN`=g)lzkLz#YM8C1RmB2`f~u(Wc4i`dn3w5QR^F>rVL2yNld01|MARZ1M~88Qr6dt zc~-Aor5eO0=(Euie@8>;*Id8aN`U1>$PlJFi&cj~vTF137BO{TO?8&Ziy=jnZwRO$uX zq29U?^1G(C+$Vj>tnonEqDwQ|Zf?lTA7zMJB>VAQ&TQ9 zr_8zZ&LXAYz7m{E)sEeFqAGZH$1(*C>0f%_;U-GClE9j#zNCcr1xe&*$p_tWALkZTOK|lGy7tR^6rIY-E#`1{b@; zwZCA~6bW4Ywl{-!{YO+Ew60EJ#ly^J)$sh!)ViK6iTI8DZ1l%dEfH{KleKzx^a^SLEg52$gkY%grvZ z1}EJ^GZ{Jw_>$o{nY|pINoJj&Q|Z@mWSh>v^vek7S*El{w{dHiP>bPwzywhI!A{5Zd^CPbL~k~MQTMc>RG)W zZ|<_1H?V=Hs4q1#=KK!9-haD9w0We^4J{cGrqw9$Ljo~g9vMXCJE_5|GVR71U`I5 zeMXkohxO7=M0)G*aUQ4o_Ihxh9eh+mqkLa}N_w^N^>wv;i++nh1lS2aVE^V(#IHs7aQkF}TUO^6n0fRcFb9QMaRMj#zUYdwU zOOC+CSp#v)7fqU!b9lXiKJP@MGs|95r<4Shimc5?nR2ql4EPeb%ce;uYzn6Z7Il>a zT-v*kQh<=Q_g6osw*4r66sTj2l~AQcSay6Sd|Tg=CmUE1iePO&D^|X_MFBczDYpMX zqF}DIV0-#!@{c|zc^n6T0Mg;5Dy#~HI7f~AZTeAV?Hhj#^c!>xCM>ti>H;kzO&hfR zeutXy{ACQK@i+OGh--MY?L(HyVqqHBiO?^YEw8NWJ~|7!t!#Ekp9&0j`b_>)@j4xU zHZ_^}Xk-XjYD*XU?6cXX0SQ>|!`Qc<5SGju)>{&FJmA(Q=KDH0B*g!d{1b>E;*xZ8 z@laURv<10=Xen`?>MXG;LIbRFHUj!3 ziq*!;6v!MsFPBYCKa+pxo_&6Xsrv?4wvuxQE&XOXwPq^2GQVwNT)m@DWM(S1eBg_=eOe3h6UD?F~{9(wO^D3I$}Rr_XXa z{p&U8NuhtU)25lf+3EX#oc+(Wjo$x8vIXSR$xxNhht&hl=)~3& ztO_a@gyd)8`54am-$zEcbS2OL74N9=M zs_=q0QiO_ZgnDu$Zze90R)wyT+VUimp@j>qvxJ#@j6F?8FytJo(mUHV8^%&+HdgdN zw%-pKbREBenRi+;1y?LVNA#4FjA;3>8-*85rKRrEiPb1ssVy!WxZVqSsjqR!S@aIH zni;j(Od#lUZmq5|{j8Y0WTPWf`FV}qEbC9uWhI@M@?)VWK8^4W)^DGbxXJu?+z`(Fz->UO7cAU#Pu$P2^AqYRcWb)u&UYQPAEmN z<1a$N5)0756kyVp<@7wNyW5ooiY7C3x}|VYlPn^%U;PbrCz74oGrtKhQ2IprVCu08 zU{3y?O%|yBdw365mh6wR?IfvQM`gu6j4BRB3BZp=-NC4zEwTu5fTJB#T|yO?5oBTT zGhy1(-%YTZMWt&_IqcwFy0sOthn!dfG8Tk&__oVEUvU1@&8wl9D*itn-oFo5|M~Ee z%dL&-QT)HTdAI2Q|C{&!2oyiot#yjjXGNP>HiNrc)AnivTA54H0D^ybZFzQ70ipQshi ze=TIi7I32b8CZRYB*ov8sZ8Pto0n^VfwaYYQ~&6UYK1`V0fUNreQuIVC_gE;SJQZi zYE&*+FeF&ZnVvkv)&2I~0vDuxL0X2G|H6G2Ub&Px0@6%icX>J<;a9EHyG$0PB`cwx& z$$x;{GJ)8MM&5tFkZN6;J%3&D6oa$Ehaf!*6I?e6NUQHUiqvK7??x70FRJtLU$jgU*iXmgyRA{k?Gl`IMR2dW%-_E4OB-1 z0dl3&`uB@w{JPEZMFag7H2JHacH8d6+eun+=1WbZ-mV&S8vbr@S(N?SB*+y0USLWm zPk-pRg9*fff;Q1eKaxSN8C$1lj8C#8&TaDK$|n9|D-6xBK@k9KMR|{>GMv!sR8mF{|dlXj9D2lgYR71zr=h1u$95G%0S0gib3UnV=GN8YcKSu z&*d5*Rcy@tEVCH}B%+5esXO+LC0A)NJLj=@V06I4kI<7JOpTi=lC+9?*La#Kpm(ov zB?3be>nz5YR3a4%YvP1V6F|;ju@dlJp71(Ae0c@A81~#`#UwgQicw|XLc!JGtZZr6 zkqaQR;w``u&^6m)$`~=szEkV^#jOU4W$<;>B$CQN+ZDTzP{r8b2Ej#3MiGv=h5$C* zZL+gKMigi`3`HG4UmE>q+(4p>>WqY(ejENKDH8rkf4=f1+!U8ZaZ;AL_SOeHUy4;w zSN!{$`$B=Wgkb{EZveHzMh>2qC@Ow1LO5nvIV8FQs<_pZ=EC_L4q62&7aY$ur=T*dvUXWX{$E_ zGvjQsN7p4#6FIn)gHzdKRn5u?--c%RZP!6u2RU#7|7qlwpOtkH)D($+@dDukburxQ zXRRpKFVRgcyO*e{WR*dMn|VQJ+l0%(YkErTKUDe7if1W_N_tF9+Lsy-ShU;s!)JeV zsVAj0ZX7iRyKG;?L^|97YyqwTrgIBTLI4i3dj(V{)PTK7$Hpll53abO>-pZSB&Q*Z zphzn)hMF5i)5Ea=Q{0teG*4oYJYlgc@2MqRASnTH z&56q%A=<+<*!l`*$9FJ!IYz)>@9d_K=hU_M8nL$<^*ZLQH11nU6ygH>`gBs=SmZ}z zlmVlV9>~8sqlEGOety5;1l8T)w@s_H4QYd2fWD$6h!F=Fzs$u@YtnPKBV7vpT3{Lg z=XeePc)&`3bG$dmYv!1b25cKSo2UQ29&o-A&JEvJNKhT|R2n0GHmv9ivT!N5lE? zgmyzN7%I!bm1~4s1GTy(`**3V0i(JolvX18Y6g;2?9qWK27#>dtMZs5pIx3}tqy`H zfiXZ zy{;M$aCRUwBej5qz74pa=fAJZ!`+faWKn@K1+;ELJx$18$Y z@VC%+2e9d+tNY*%8>%f~wbya2t5edOs+vIEux|g6OT|G~4K8!oh+x}RHyPJ1M*{GP`j#NRa>KaS5=a!_=Zu{>6<+5~UWxW*c*?h#$F;AoKoWXO81natN3OhE?er%+og^jtdBybD2_b|LfFiY@Lb*G6^A zN{wj=FiPAyCe!#G7t5)bF&%&665vN3O;C-p zpP0Xiamkn1Tg>P{NtaHf)GML)oguM>6xT}ir_pl*N@$!`N$x#04z8KIOL5PcU;(Z`W74*!~x8&~(NVp>U*FTniPb9VB?cmjzza~AX9 zt;dIIA@vXgPiCNCeo!r9@5G_D=vRtE{4-b`c z<(k7iL5)D*<;p$vX!gy9gZ*c{+lJBHN<{!S#|>m4RY z&q^;D3i<1n<@*NI^+ycmSRjJOn(xZ8gT*8g_R0dMAhFk7Uk-`7c+>W14RSaab+cy8 z%JG|2EYby9gGQyeV$`*k>Jbr9i_#$7)Ufs$b5k-4F__6{`3edmAp=HQNWzNoR2o^8PG`F_OU@%r&AkN_SP+zDY4NZbR8g~4Tb8WXlNR~TU;OY zSiT4qN1U_INqW`uugNXCO!9}ESfA1r0Ce~&W2O^`tDWo*axbiyMPck^30x4WL1;zN ziBpyW8P;{&7xkIxFCaRh??ILk(>P3rR7#(1O|IMV`DigBI&$D%D44G` zoxIGweyl~^OL$o*Ohe8jnz-#n3gP4}`h3Du>}hS3UYXe!731PrRKLNj< zco3CPp`Y`EK}5YB#Jqm~5*-Q-+q{n_NPdn{rO;7M_mW4^ql@aR{&xQaymGn+E0@QC zshIdMC29`qFlwt_!NuarMRZ`tuUx5XIPzLYHJcSa_%>~rs&kMhFf_kZ|RN*N0&p_-A0`M zPNYUG9c#(#I$U79e%mBO0avyu4WuTo<#03FhYD8VlH0MLUl)OsXu@0vGR%3_JGFvx z%WIP9A`r=~%u%0Iop1LYOLLUy{Fk8aT}hc2J*eJxMPeU()21a4P56}0Vv)vP?}_d6 z29XmsA~^%xOnjJ%6_u2YlsHTZk1~X-drpJoOEzm4SQvu#?a*a~m5Lo=krhMY=Jx~4 ztMRz^9SRPju5;~e5$mjUiPz#yuz@eIpnh1*`XKe!lOgDDKE>f3H7-;dREGOd{#nGz z0j-&xAX&6OY97hvPn9dkg$$**G-9Ibk{?5$@6t~pf!picl-Ri1s~E>i;RM;Fb)xz7x`0gwvMv3$W?S{5Gd4k5A@slei3Ir7WHH;kVe zqZ6D?{r_s$WtkD_hd&!Wv0m}DRHuPf1QogK>+z|~o-BO6oc?$nzWh24;sjoekf4r# z9IFQDUn+(aev$e!-RD}54cd#WxYbxC#u( zGeDW{m+C)Eq|ao?4@{&7WXd-tk__vk-;RG9nL;?uz?c|-*W#=N*9;A_dinRn!{|=l z={km{n(jgrwD;gCd zTXvxvfb>D^ZFV1ys&(l@yiPKJd$dW6=YqW8f(D!lKC7Z4ARx1FB=3_!n72A6$4NfN zC7nDu>i?qryAp0%zEEA`Es7#Npj{eme^UOB|JQK|c!mK8yZveEpQUT<_B1U#z6f~fN`l9FfOSDoRp4k{Q8prGOf9uuzC* z1WvmiTiOT?l+=fm?H^?COrRoFns2{Rqq?HExD}O-(N;=rrTncnsjE$ zWNNA$0Lxi{7<58~R0E*%r^$>4{?%K+V=S!GE_*t;Hl1MYNR4{nY8R?O1uNtRRYw-< zM1X$X7%Qz}1nzxRMA*noRBTXzCW_u0&1mu~?}9U|JpM=;NAL-`|0*aFESUkQU*>y#rth${?iP zBXSm`q0aqTurpE0fc!F^yS?@eb>#ttPyy0#t!&@>3$(a`M{cH%8hSm93Wd=}w4riA zz*%)m-6u>veJVj3Bk>`CX+emEp6+G@xtC`EeWC!6OhAKcGo)=(4qVs_N-AEbwJkXmR)JLs<2Y@PfGDNRKiI99P&l$bty_4W;HfN!Q!VyLa_5>+|j*Tg> z?o>Q00a>%mWwh*xSHg~yg!?XCobJQd1NND-Pge7qP?&MD%XBi(v6Se-X=v-mLNR@nXyjVAl1F6UwS5$KoIyTq zC}_sUXLs|vPr458w#QIQHnD91>pmrOPi9P7H8N8tGmv~~?>@X6^M<_Z-oo5lSwW%0 z7MgvX$OVyIfM^QSG0s-b*OgeIDSG}YL-7q+XwPK3s4kd0?-mLM%Z5>62%G3R8Ou}K zAu~EKAPl%^^VSpBL*YpblgCPK%)KF`>BmB+Bce=;JK;X<3EAw_9pInPdX^PU@$j9N zH}1fyG|7R_1_^B+R>!=Rl5^|D+$bumI_O&Ix!!1VrP3U)dslV7nGG}CDW04wy|Yq_ z=T{?3)-@aop2NNHwh6C4M*}t&@0zy77gk}wR$hnnCO`NuhN$+H4C$Fj^Co@Br#(>W zbJLsEEx=6>!iet$NjKQLNIP8Yg&@YIEGBWWi5${yWN?)MCA-mr3mtxTo2pbzS~eC` zMo2@N1&}=KZWiezC=y8XcZr?E6RF|1v>4q*7I4csEjLC>sn0htgx_7Dvk+NZFX8D) zyxbN?#F}{;-0WQB)x&wo82Wfs%tHpOS4;uhb85}Z!E(%(%S;gKBLO6eDcJ|YG`0HM zDC4q=f_saiTv?o9uug^zMPEmW^H(rVuD>q8Yh}526>i1f?@<=rvjxt;SSwUB<}T@l zCJ{FE+9FY-u&)iBUG%uY6diEF6A?6@8@geR+Ss^J%S%_9Ci9+g&%lP=&@&8)S=dzK zadTrM8-QfDjp)*#bm)wjZsA%Xuqm;=sDje4egCSa#2(~Wn-z8cd;k}s$|l11tDJWt z>W^5xdc&_$&b4uDfs`X8Q1RWi(aI;TT>>8ABtiH+y%QwhrA-G{Yw_UXvFfKO>&DTN zK?K=HEQcF!nb|a9-g0b~3pY{@kFYTDj2{0id`OXjANity2yWY_ZETdb;dXLk2hOvjP?*1JCVo11x^1s`{Y z3x+0`|`INg0V8P38r){)^!c0_v2ndG2$ z!kYa(Q&`+OoB`wd2$PrD&DxDAug-W7^c){7$#UK{!zDNWCh4i9&Afs|E@J zT~mn3?1wcy>oL{(Gn8{P&M(})bT|W3I+I`c{k>EX@thN-w9 zaP5|5V|^m{LN^!f3wf%63wo=^V{uScSdWL=d88RS`kBh)9t;cTo4XRJ%!209mSJQY z93sc{LG$8&IB_n&zZCUlu9mBS8rQNb%PW&D+2I$=s9r`)mdWQIcv3xIk_X-6@- zQKcT3qq?TdCgO15IAwUgvx==tGPEYqTQ)4cBA+y^(Wm(Xx#Xo8fYP3Mj1R`frYcrx zRv+fc7{Q_?m97ukspjUVL;NVJePsIuKU?!?fc6dXt+VR+tIl1MkAOpk-=_N8L)#SlYG6w?t9nb{jPVv7%{w%D3>)X!uOiL@aKoT%MS$zcU$KMaCOjO)C0nbfrngXaa+0lAHE+*mDsJwFr6CTc_3ga_>Q&o(I2^KXnEMZO z&C=NnSTe>1{%K^}?M(Snf+`~224vowrofui+g8rUQ>?&EbK(#nZjxR7YRbR3!5Y1a znVedUcQjhk!(tK#MDb=C2m~6lo5r3TwA=@1gBn*y1)Y-z%ul&tY1#8Nj^=>*iDvP0 zews}^K5??fP{17U2x4VIu<3#z761YxBMo0toc9o6!rVDQLwX}399f_#JQ$AKM2Z2} z)1R=z-vADE?6NziLX8X5PIpJ76(U?$LEIy%vmqYZncaS>&-p3aEA-I&7|VEP0$%)~ zuOE^#5U?fp9>=Rf>Rg|POo`N_TMbAGCQ`#V1|c1XVc%b{-F1~s8# z7-m(*M%(OLDuF~^jj>T6a;3z|d9*25??6Qe`?}W2OT77Y{wMnCz!;o@|E1A~bw^JP z=Lb7+KzDyS)XvWxKHARpn;|J6zDKK1%0JCH96oN8*T|Mg*iOl;CW8 zUh=AQWR6io4SOro{+YsjBx9KdLZ)e2zZ52N@EV-a=3CI?YvbV-ZtRXNJHWfZ<(*S% ze5nf}9R7{Um-kg5bkQ3ooU2^sC+MkHZZ^U7-f(JKn->^~nPIbc2hu?Mw#erIC4^Y> z16@$zi1J8{{XD<$zw;(AD_5RblP*Bsl&6_#>sIC^71Bm2rh5MzG|vtwnK(AV8@38O zSKQ!{YQ%fnE3phN(Ud2oaiya-Xt+HS@mozpAn}6KJmd81F!RKxG84;V+s{h=va29nb*7|ni&iNATnP~F8c&Q@C zQPuct$WcPQy7e@7&W36@LrS4GUHU9UIH$095tB)rLy_W-eH+Wtqk>@k5PP1gM(@Wm z8J0S`Wtn87!VUYoB~1g^k{=lcn~mXv;(*2!_(M$mJ_b{fK+uS_mw(JwERX2mPBkHE>@CJG24cH*!ZLsx}KL zibM~4!TA>K2~LMfY0GuVwK1!l$7)*{p;F@JKJeLhVhNH-y^aFkQb}U7vy#Fjnxdf^ z%?obNy8o6gzTVe4iXty|+cSTi+h^lE$q3 zUk-H#fJ1#5DWvoIiMTxl>o@j;(YSvI&4ga5vcJTW=d6jQ|4UbG`Ngab$xpT@9f_A%8roG?=i%KMG9OVm3 zu1=XAH)6<7$!FkoaSx&RplN%8>VN*JbDH z$s&a^%8(S-JYoMcLP>8Ls9KUGPLoQ1M~7Xhs`c|GI`~nd6SA@x4fa?v|4uSvl3Iwb z7-*-Wo3sf<^?j9A?3;0VT(Y2b#yF_#totv&+;q86E9X6e zv=m*3lU1|1uou$bz+8(Wqf#B$)fCjvh5q;TG~!nr5J(~pzjhN+TEyYviV0gkcclI4 zxAlGl&%9YkdwTcvSEV}?2*2;sJ_aOs9cT#I_ZtYBB9@wZmGU;giwU!@bAh)Tc~&yC zhc6$?K2F74{<&JpfZDs*nXJV-i|W98%p`e+Auto?yxaa}QTF)c&Q~9rmx2AZ;#zMg z)-)IYey7v>(Yx)<;^9^C9%w}II%UBQ>Jthp7|#>-l?l^+Kc6dQ!*&Zdk(ocETKsol zUDegVzPVGJ>eoh-n37Sa5!okXB!zUGp~wuau_xkR(>%ru1Ql-q$W(r)EbBdWNpEeb z;B_1>>?uRW=+%wz<2jj13M~*(tLGKq!xF?01IUhN(I51grCwNDK!v{QThzCl_^C*uBLrjYGg|bXWRFS|G=>N z>OMugrex=CJO_k4RiKmqNmsO;E-)`G!FOqTmoB}U0(h+$R+vAWGBpKaF4 z;wmA$#ybW(5mPoY;kaw<$pGwyS~ncrh;yKujY&bmO=$6>;+|31(ShUIviTdQrLl_~ zM!0jr^rmF9GsK!EZ&`)1h25}ppu&;3CE(!11%6>LE3oF+4~!*EsH_`sVrrdRj_gR390o z#zj2zL?ourL4vbr!uW*bI@wymx$kg`c{peh?tqEu9z(|ISK&`O{g~mdjKc_Li&Lj| z!ywx`1rUNj?@5NX(L*TDK!YeUhh=JStfspQ8PnP!q51m;2Dl<0`O!9Ef9mK=$@(D+ z9|Cx;aA<%ZdQimAa&VKYA z-zG!utP$LD!RpV%Y#4hAg4cPYm#bKQOF36zi`0&`oxD?H?y!LQ{2Qk1E<>LU8rv^h z&jgm{S#DesYndby&h*j(=gOI*)h*6gri3!VJj;O&ubx+O1J-mm=%U^hgh!7aGg^z-ZUT0*`RJNd?|IGjq};Ya!32 z!?Tgib#fE5Rj!=&@fNaG~u4@ z*qqf0=QGMq@z?9EhB0r8GPXrOePi%h-TNK1w2q=EZVAu9%EOdIDhh)+Z(UVe>nAf1 zryz`in0Z4**uv{E0}qnlVkG!Wnd7%i1}>eoYiyy?1a3uXUY611z3qoPkk^}kd_z(_ z;|JUMt&~MX1eJXqwFWfsNrJ!j17)}~wYRECdEy-2Sm&&rmciz#3bFe0?77|B7!pq` zr){?k|ednZKIP*QApG_tF zZcw%2wj3r5(o&C?%DhqSfz^;Jz}{JGI>8Eqf5T3`t*RV7>K`kWD)o$+0rLqK;yILc zf-GX}sRJ^T3$c145fh^x%`ih9#$g57f_2RC+n>25!9_9}*KrOSc}3Zv2qlfzwLgK! zPq+G=?+7n0Y4>L=CqXD*?J}?bK7SpvoMc1o;D9iG?Wk0AIY*x5^i^-(HAQl?>Dj5| z9TmZIdWvx>8^FdgtIq|gcl%h;*TQE<@BAoj#5*>P6 zdpGTeo~=DD@YgD(Q9>}{3IFVAzy;8y>(d{;nRQ}NmfM%w?F0>bLhrqHcfIfXeWtZc zkd^nY`fiK~f7IDgO0JNEX|x2C3?XJ0hzsJSjs_99ix{NGAcXOT!39!KqqOu<%?RT4 z7jc*8lsSBWlwe*7vy!lfCL$9F|7pe{&vhTl{SMcM0y66jFX9IRB_*L;lZQhXvIjM= zNK16247fI_OPnA7O-pZhC?7cCUwBIU>`He||CLHX0k(4?;!7y5S?i(Xqhl=H5d(zT z9oYU#rHm3b(8XNd_bIso8|4M+t81<#S2H=G*AUM%sN7YYnD44_XH7r^`4c>J@Rx; zvwDwV1iC?XoUf<)_abHi;X^ke{1m zP##us#~=?I)Bjt}lgwcDt4t&lzPS*45=-zeE4B;t9DrbS{sZHKv%5?}tqUmUDI1E| zLyEQi1eEh02J^~=9Slm&h>Daf95%8`B*@rh1FcL{0tSz10p})!y*c5HWI$M2M=VxE zN@W}pj1IR0A<>r=pu9%Ks$i}&h6J?pzHt@Ff#tg7hSwsc^gv}8NmLn9hZs$kt^a_)j^{l{-rsk_peIA68QcKt$6lhH161wJE_qlGIArAF3Mt%Rbq zttyyE5j%JD{T#K>J^G$D{N1wwR;hgdo{GF7W4^$yfNu&7hM6kDHNp%NDrW_1N*3S| zkbit&@$AJEG{pjLYNB$d6_r3|;;7{2R8@W&f(}X>P%QhqNBYFWwM7}$;G7|_6=QuX z*N&bkUwO+@c(nvvoEVLuI%j^shz$IG0r?<)&p^2*dD=JxdwHz4kl(RXFeHXMB^m={ zC4e6N3i{<*JwiRW_KV~uTOi!^S>9F%?bX)`c%7;(%+HEH82Gj%8PTlqI`@$m>EoBH z4cm9x<5=idMca((*}BD2S8Mulq}u}EvvkT2e1J1OQ-litJw&cJe{RsT4gTG4Nghri zBEi2~UUU>wZ08GC2b6+fTB+YWEJwe{fot(MnR{(fFA6$ESt*%+I!}=mn6z!nmAZ?L zqpiqth-(3v9pw*2RMTI+M17}=&OgjvqP$*uzA@jZ&VAhC#a>p4 zk}arwgs~xUb0<+)4^lnJ<=%6_`&4j?6is%+0!~p`J%!ju6TrOd#>a5zV#;`upD{TP zT0j^6PSRWyDyVODmmimES&Hm4ReIo3kGpe{Xn2AbNJP_&iqKczYB$9GIYmK$v*G2Z`83jW$;?e(CN7@Y8Z%XRy^{jkqb16y8S$(efp~pvhAycYBR@ z1GuP=TH^%BCdKz9^-T?{7IUL@lsA(12Xp*2ZXVdaK*B^j-0vx2UBts_N7K5`Ic=A1 zfLjztNLQ9c(4cqoUXkK&`mZbd;O9^Qg8PkgdkET?obcrFi|i5bRcKGCw^q9B5U(PG zl!z?+73iwC$QLubOz5tY5}|5LagV|%`pcv#Ibk~nBLNmOw@lPJO_Ej=_K|fZ{+uWX z`Oezo5M)Z;G_flM3|K}-jH65M7Om%ulNd~8rw#RJO1lO8C>TLFa*{ZvodI1jK@)pR z^-J#R68S%E%yJ0$&2c8g=Y`{r%XSUv{g$j03_*hZC>*TyKL_8gZR+I3%+J2VBc^p( z!ob6|YRJm1Z}2xLnY?tG)Y4JhOq_pzNa;9`j8qi|C|Z4QGrSYGhqt`RfIKf`1-&K; zOLUuMINpf?bP^MV6dYGrivVHv$o!_*UI&Frw+PaUgtskSJTV4epwJM`L|k1+SeGrF zP8H`^$Y;->zm~ltZ_I(RFNV0QC#C7{lZ_1;D?P5zA}2SZUv%e#b5l2BfMe9JM(kNq zvo(U3_~yB=w4T4(bkb1nNx;upAMR|j4J!j|H!tye8K)I6@zr0LTFn%I`8_NAw@S1q zYAPq;g4HdmtyRjFMA}MRc=^Di^VmVNy-ZiExMH^{7NwJYyCfxsUlWB8k`~G}@yEZJ zH5Fu~jWuRdd#mI4km@#yQwn+aj|;o;+?Jz3F`+0@vkLqjX=v?5BH}xLYbqBl9O?2% zLkBU5;qa~0m9Z|`1anb*FUUzk2hJBOHTO8y_8jt8Sk(+|r}eI*jmS#-`3QNs@dN>= z@6oV3W?x7p&vKY{L>#J6|8B6c{Vpp_jc>a*1X5@nacW8Fp^SZae^3Qxo#aMkXIilt z|6?zF0tYl*>#ju1&)$nAQ8qv*EgDEjT$gt3%PB$tw~JK}|Gx|&$m5{&LHp36&{oxF)_hFFn7vleb^44ACbPt+;V??p|V z2>~NCq#2#{~HYoQ3B!Y^mTAB=V{(OG}fRHcpQ4T?!%0t-L5SpG=S<8wu57 zIvFvy*fOh&ZS>_@T=g6Q^3;pQmYy`e=)h0Q9DGY<1CQhlhL@pD!LK9V?q|aig&wn! zTvjM`Tp-LdDY)&f7o1O$_2p+?2Z}CLc=2%9husZ6~K(h2;Rf>xl z1JOPZC`-QG^+%L^SsyJb0~N(8FZKAMLlQw1^7K=$3gNWmul1{wG^~qp{E7{H?!;Xj zy!y{}vT$Z{x8~RU^;+hgiCM3spW~EwW*o8P>y{AOeTDv`4DY|JD}RYBIcqz)j#nEF z7&)aeE3fmRlw4X|(h}?Z=)|4NI^0O1#h-$iJw8g*(R^d^**YNF)nUwG6?c-d7z`A6 zB?~Ji8@tHkI-}fklaqjR=cCa7T3d_4P!iTG38Aa(X}&l`3y%h^TF1awN)lB>7PXPp zPC{5*I?EVN-F=y>i$oLjv5K#Z!g!BZ($^wVbabDJ|9857cia+IAY~q);Q+y3N;t22(bYO z8&yChVXURM*v0%tMxAEd)sdf+(cz9#Nw<3(Qc8+?K}yQ0K%mY!Z#K-%i+2%!>i|qo0Q)kz(~dT1^mC_*D;o?-Yei(^^N-fiC-3` zh9-ZFRR3Y4R_*q=)4K=_wt9bnIwdB~b-g&36Wia~ja#2*gsA=FqdKhc4fE*pNFb(O zcc4*SEL%7knh>N86Zs_L|HSqCEc|+H>3gzDLmy;-%06A7tk-J*0Zp~5^((JQ-W0FX zi$tYoVn+m9QtoWrd)@y2b?o=fZqH=~C^7}L#)l3mZ%QWA3L@3*YII@v-RhEpFxMu^ zLtH}}tXCT%e+!fO8^Kcgps>{N`pdMm;w%9X%p466!AR*tgOG`&v0^aD)oua>KbWAz zC4N3*gna@bCB+qQ2{H4-4Wfosa0;A<`V*qg^KWjvX*}Q-DZf`qMx+|agz7w)O8WcvkYU2Vx;SXmELhMvq@NWc5 zhJ1huTyf|JL@+?%4>#-I2-f9x@i&5{03w+7ZEO?OC|IO_||gYR3sYcN^$BTLKgA64X6Qt;!;305#%0H-UrjX!kB4?6tYn6xh- zg5_Rfdb~SL(BaYljGyDg`S1ZEk$oZ(|KYKa8@gNzK7-2*^SYC-`rim<{!aws5Tc)Z zox%1HBeD#*SYSrK6ot-*Nr6WP|qh$6HMy?_y#4m=nTogJA3^U|JlOpPKbjjHevMN|9ymycQy(9sH8 zcV4WZfi%DXHrRd$!b$8LhybCl(;|`p@KFQFpt)VvPG?E&@!GCRFbgZ_d3bdh5pv>y32|btK23pl@>C+Y)HabC72X8^-d;L-`Pm}i{C^mR7u3rn8#fcd152;u6 zG$j3rPQv35Li%m-b+);3AqI5mm)G1<-dj7o&}>ZmGBH~ykf6};G+^B%N)A}s6aBPtZqoR-W*k^?D9}sIwG1!eXZ?>%oE%A z14JHIbrNidt~~F0B5Z~bbTTwM%v%jo6h6M(Ziq~IhijO<9r--4L)!ZMii*@?gKA?0T91{0r5*35Wi#IIS90=xt)(?zMqyF}Kw%1If_QZyWiF z-1jQ6@?{vk!Xe9ujuFq*o#rOpsCwJHNkp>P5}9cVm)ye`fb2(oJ9i zP3Rgu!QlrKyC=NEcb~BXu}8b9txztYxC=e{-IWiOp8iqI0V(4CaY_avUf~L4hg1NH zcz)Fv1W_-yBmmG5=APt>My7%dmv{!6F$*B|n1C_+NJ_^oU5d1g277c*3p2;MfebQT z1#GA(_<4{Y1{YalY|h+cxmy~2Tw2d=!4oLr%o>z2wV|LOak$^0!cw)uVWWCP1+_jFPYu-&-H+dOmqej@eVT}7cx!)mUb{CO*2wSyK$$k(L6{oPE zt=J2Emjc~8vc89ExNX9~CxgCblvS@I%;RY_|MQ;iRuWL-=H8L5hVv))wjGn#pS=1; zHqQDE6KR!n42F=l#zr7M4*1D6z)m6iv_fvfjzhJrE#-~H`_(FPD`ykDF7%gW3G}wK z$aY+!4B`>Nd&@E(<2IlCgyIg_s{ymRx{%j~jqBGLWAOWL5rU|VOF*E~Q#kA#whuiB zvRjsHeY zAx~H?hVW?E{I}fq*uk_{lxO>hU|M%g>Sky^jaVUCn`R6Ct%=fS67P0@%0NfLafLzv z7gVm(6pZ9J?Xewy`7WB8j}rj(4WeIEqczW&w%Kxg+dOpn6)nwV@Hi(%F70lCo%OUa zW5egwKTFKYkw0M2Gic@MITggZ9P=p1h)ox1S-F;F=ttf7@o2O-7on4y1EPo&tb0B^ zoFH2Bk+zswdt#YEpBVjPWTRg%9f=$QZ(ur^nLEBDR5s&DwDgk$(C&MwsxwK}_@~{M zOJW?2^pS?`?)jf~-@|{}eVPP3C&E1IQ%8>t`G>(?8tsUXN~3*x8(Zz48tZZE3C*OQ z6I1E?M04ugc~X_)D?eFX%jP@wer%TPTlUpJc-wwUy25*yGt}B`%MlPeqDRO1ilX8?m~`YXf*FZ8vPodj}pl>R71-4q=qn3G-WT z9%5LjjWasR3>q7lHc(`@jQfQ1^1e*CDZDN}D7H8ALWQNtO4aym+(W6)zVm|57lp}5+YgK%_V zYeh-1omuT2L2L;;WjhJBl+Bb}o*K?gxO!_cenTvXsOZqm^g@-ON{ui@;k(o^5(Ha^Xs|2G!9Pu}$Ib zlt|i~KYRz?>FE8(jvS|Pk7{S*c3p&o&qu-YI1VqqfFsaO2VX;Mztn$sHt6>1qWmrkJoUVaqUAro8r|9*iIl#mycU(7u@%4WV5TetU-9tX%{cJ&SaI`UvB1eAsTh-t zkY)GA!f5_+S@8i+RaLoY32qYue3wUIW+!o~*@jCnHM+#EQNk+oyIBj5#1EX#Z0hWy zLq7_NdS}dX=~%{z$v12|hM+lLaQI0=&N#plk7zc`q`p92q;gAI3 zZLgAFPHSKm$Q5DvF^cG*qm1EJ&bn}{1}@H@*=s@rEe^l%P0kk@q4ZVqdD$?00r3 zL!oVwSUwqMilSD;Ep}2=U(&MBlX~}VH~06@_jcMh7xj=qz@Nvn>hopY)tcY+Ur%nP zEguLmMH24?hE?1Xm?`?KjElEQoxexQ1a9cj+lM^cehW3VbW8a4h8m0Id}02tq(pbu zO^XURRK@+Tr1W1ZDsc}$Mg5)i1w*Z4lxbqLfn#07<$wSk^ywe}DQ|NfZ2$a_kr0sI zUhY*fmg@6NwY?-`EGfTO=B*cF^`J8z4 z`=@<+vl&tv;VGD`5*Y({UJbS)m@+#$qiX&wxZL=5XmO|%L=dvUuNgY>sOWd>Aiz>$ zaw+P&HPI`m01>flXNXZ3ZUiZkdX0ZMAqYsd9&sI^u%|HBB_JbN7p@J*r7lan12Cz! z#J9EHkDlw?*?VF2@I0JLD0OH=$!nmV0F?FeifOIe!JkeQR{(qxV1a; z5)LvB!k^hEl5qsP+1?K-95yZWxO;6F3Eks0M%Yp}hNhZejxwfx)_*gS3(VAiW_|z7 zNQ{3oQXnM1{5$dD2KE1SNN`QMADcN0?f@JTj~xIC@?*->Wsn-+kT^I0k3+%<66vJQ z&Ic35XOT8wh^EendUg^3Mcn|PD9+YIuaW|TCu3Magby-zu?7GX1vule0?t&BOQwRG zjJJOPojy$|p!m5(oXxD`(1=qY@mgM~on3Mp;Cl#hK|&oiM;Y;EhCD3gPdI2*phhcF z1)(C?sS#%Oglg4wQ<>mSDzSyNLtrb=1P-594T@13Rn)YlXfo{L1TJPP@>KeJJAWw#@V)r^hiZw0rD${b|QXMoQ9|2Hox};wiv_;}a{!#=bF+IZmU2PVc1Ds{jWS zN)CCLJYs6*&RdvL+`+hzG^&5zx)x6@c_0kT2p~k1aGlab8K#F|v_w=RV4$~ArGj)X zn%6ZbK!^NTqq1tRiS9>%nTDHAmd@S_q$J5v{pk29At0r-{cCV8|OwHy@_9h z7!p;jxd6#w*zsVv{qbnR&pn8r1lHS;^phWpCh`wJAd$xa69FQ@6hy8S;WRrPf0b`p z07P4cbh}i7g|wS6H!?XRs-Jof8>$*d=sgY{c04PHHCVs2Lgl}yIgUb#?$cwvf=R)NTRy3mSinWb$lZ)8%7G~l=lL;7d2K(E zII{$Pa%4)xIm|(TPzCt6NB1Eb&GGXl8?!|oc@db$4iy!rG+cyypr z1%ibG^B9)u>q&SRo}}AxqOsp*k#YDs{rX|UpO)s zY^?Rc+c^AynjU0~M*jg^x3 zdByypbxbYaS_trST6L(u@GO1eqgC^2I5AO7gvej{TxM*$*3R0nPFvM|z|gTJImffR z6PX$*-i{ya=k+_aKg`S;S8F#HZs)hU%P2bZ{zPytSHhn})l_>f}^SXSQY4Q3iP1bWZb%%4zWc z;h_sf)|bMxGm;kSYf)ucvRRL>jytRDgLRc*!_agl$eNbJkv~$-Q6g79J9@?Z`_)P) zd&hmA|7wM@v&}X8^-V?l#sva&3Zr13`);Zd?Xp8|BjdQh!l*gB{Vx4LszFqFv|;W3 z&kcK5bM(eZuHB5Zn@w21mE%U?oxAFK$)m42AqpkjO5{?=5`V(*nADyQ!2%<)2nP~C z7Ey}QfFMY0{6I0H;Ul8Y$|rsSH`lf7#FV>+jgJuY$jk!^N?RszV#dq9T%U0G=xe9` zSeOZsC9$@0DWDmjfodCapUaH_saMLNVx&~V{Zmo{G=p0X79mBK8)tAMzh$0QTYD|d zEQb@pwuDc4p8Vu(F?p?V%2AK~>{dnHvY9oEV`GJHP@)KgAzzkrYGcp}qNLv=J;xfg7J+_ z`iNc8uvE%LIO+_o?sUX)H`J`QoRZ{Me1{SJgrV|ooV5*r@PAW)N!HEAo`r6L^B52!@+y5<;3oZN=1}87B30TcS(Eu(EizOh(v`bFxHyl1moRYg@f4NE6rS`B`f3ua+9C&rtQoOi1ZBkIl-A-U9%ysS=FC`{$0fz?k6wt`_+9w# zXJvZP6yeOMq7%K>+_wgNtRek(t@JC9+;U>KF&vttiy5Js%iP&Pb&fZ}>^!EFMF|Lj zc}9*^M{UV==^*C#B7UWIjwhqKFSKTR*~65?SGY={MP45P4D)~q9r)=aR};)le`uRB zA)_8!GLH+g&E*8>vX}?awY2o6*ZP7<8wSVv87{H{RT->1!-FP~)rygj4l~D9Bl&g8 z*cMYq1dbB*Qwz;M*R>ejuivFto|9A%C#X@(*6C+S=}68tz=0KOC3m-gg!JRZI(@-a z%TZ@Kxu^mGG?eFB9auo@Mzw~ctgNQ2UiLDp4OT53*R6;KRG*lIk#zIV+0@3c*CUt} z9Vk?jUG-Y({OwTpCRT6MxRdH+ZrpHn1Vj*jNsR+paKwKHr{Tc==g+Ksmz%&Ce#_5I8^*$*@l63I}*Pqulkv6h1 zX9w)VVyY5BZ0dtfi1v$D^siqxng_>|YYz&KcV-uWhv|%_98PO~chLvH|BP^+ey5Xb zw#Gm6(8B#9>Ch>^-fu}yiags@W_40BvO&I_D2+_Z2}j^lRNJ9uLt4O?qyjjsI`nc?x6nb)c5xU( zh8N2M2ax``Kgn)zB3|vNAcS=~LGt;*z}h^67heB*_?QWWN%TnpaVlSrwCNuYUm(E4 zM?(8Eh$9S?K6rDb7li)1$t)jOOyj~l-?p?o5~_JMQ#vNW_a0;&7hx!>yWhwfbU?+2 z%17wnylf3z=Q>N<+e@TNJP)tqXU%=L+b#4PG5wV+4~h5f9KNxar-vj=^*u22Qq~$a zFAA|lGCGXyqM0}r;91PGp&Jw!!1?n-^=8^fEhvw^nzKL=d{^qoF!ML_&Q z*^viq2fZ}h+m3%F0(oA~4-qO&vL2#b!F^W;x*^92W8EcPkGqY;n4i?gTh{$WwDsR(rbaMV_;X|lgg}XuRUR*HpQWrE6 zD~RzA7scTX6Au0l7v=aLE=sdi>n|7O93ls0B>O}xe(lbd8_G%ZZ`H3nT}^W~z6zIW zh>gELkS36=9o4dq??|wF?ba7#+wnojA$oi{5Urw~lxY!~7ElCI`~I#+VhZ?h9xXB78Nq5n zrkA4Zpbb?kERQhL z2(eJ+O44Z2VPyO3;j`fIHo&86(Au}Aj4SF_sP*o~nfE3{V+CMQS}MqK)QsMnG9$1P zradg3VvEL zUo6V??|9_d|HYz~7yrSc;Qxa~Rje|}{l%irNTN;GljEfxRJs$;U#J>I9~J-}J|p_{ zzUk<8a}eQhT&nNNw$-apO+f7=j#~Ih@FL|U*z+BT%Wc`SkpQuTp4PC3Sek$|#Xlat z)-j)7cfMW?gqwTVNl*nIq>+A1YD>G&)X+oiWaYRDf#AFa(T(RICe2psWaUXJupSx8 zj1uL^OVk%!0`{#Zm;@EX{Ljg#27k>Gl5ZGLIHfl;QF-Pncor{Yl4oVh)R<k{q73q`*haZn*C?F24xZG#~B+0WJMh$ z)ls&BCZT&Rn7G;~4^%ENI2&K-V}#@ncZ*^ROwgai6LWxc)g`9oMKLB@9r1Jwt~K~q zEfFY~gTcOF&sf+|>rBtclb#L4FI~kCLLc(&l;Cg~VNmqsS6pCeztTNrF}P*0d9ht6 z(W<=df=k6-m#{(()B@jjKc4NcEU)sxAGU#}pCg?IjEAaffuBZdE@|bsoBk`} zQ)Lb8{zt?|px)8Jo*%>p-fQ}Y=7sMb>I&{d|1O7m_X7H9S*a_i{5hpzXIb(T8<4IL z0O@MGAmXIUbpinmdUd7_AmY28(UA;axhVHu-VNn_hgS`7p4tL&GBBrb*>wv4gX^7s zw!0Dfb@9-{=o+i+gwkI2U29?yopx-~?n=M=*E=Cz7blEYD|Qu@+97_I}VKDpFy`oMdV*5mFDwDRBd z$;3p}@i16D*a$>G`6ICHY%+pA%5=c$T54O4e=m}3P-!PmpPwkO4oA^NA0+IPB7+)% zbKRvdhi!__T}fsWVzD~f$<24p&ke{F%abc##2>C z&HK7P`kj-*Hl`d1vtsq84r-d7*|krQTPwLiq^aoU$7n=As|K`|X6>EvirM-(1N0G# zdHk6`UArd~XIKCP5}_xyGVTiQFc%?smDw!&y*zhF&fbZie|Z`o;dB3|qe-0F_pICnh- zQRnY7J9bRm@*|6q!^ba=3;7R|)SBd-m3|2e-nOy75>rPrqF7v4(}`ZkjqR0j54jN3 zGD$H(daHG06WT~452qGL!XI8F0(3c7X4{M&pc6sVD*2^gBV17#&TVaMWdK;z(mJ^r zjmT;-ZO@TmE5KtA7D5sgCd$bbZGMCNq(jx`xE zp!0o7o0L6{ayHd*HO&@Z%AGsaMOUEGYvxNg0H|X=2`roZEa`??r7h`*z4T ze2;XGQXqKVTdb$4UNI#=$*Z@3dkyy9s*eC;^IMd_xFrvlah;Jiu<^8p5M!=9HP#TO zu8ZP`Qta^?Z!7}Wm74#1X^U|~XCxH~qEEayaK0Cl(6{Y}Z&IP5TlaB<$+rYo)Cf}* z)r(^4u=55xS$t+uh(+G3n4`MjE0_q$Bs0Ok^IbD01JhUNIgDf|(4sSouHWk>;}cA< zUvm9&A@4UdU1DQD;3{h`xj9EwRC$jr>;{PI=x79LOgM`=^@i)}p_@8Ia@<;-6he4N zP7&7jFZy8ad*exh8+MyGHMqDbj3h>g!yzASv?kW{{OG`enKx>4r>M0l)swl$apvOj zlE#0_I+vK#89gVv^7?nW^o)o~X&x)$NWBxW4Fs%g8#>h@gUpcww_uk^Ug^BnkEr;s zFBS4=5ON z+P`F<$HTw z(_aVQW_fhEvdVmJI+|J+M*H?l=j(FicVXXu2O@I^x-S#{^ZeB&-A)eD8q!nI&B1=k zxOsc)RxADFe3CEA@b6M&Q1#!XNQM6_Mau0@|Lq^l2eE2l(4=iHc`OMy-XQzSx0n$hP^3)foI)x}?2bW2XPpn-Ax zxV7<^8oj^zq5|no2;jOgc-AoeKD!75MQ`Di_olI!vKcDYlu#&Uf%_e<*Z2W0;gtXT z*8`*9bcP&``ph|#~UqXS`_;6$Il9Bg+tq zBB~G!36#bpqn~N<00o~KKq0}y;mC#!>X_8Tx`&1~jWvN7be$x^t_NC22qc78KVe<^ ziYN??Rt!)`JP{L#EYgwzx_H|La?e;OZ#a_gSV|x4O8dqVH51hCwmVE9#HY>%cv#fs zLk#FxH@j$jL^~rAeDimm_fbriyAa0iySt!hd75rNbM3yE0wus_AbdBw@_L3(sSz@k zUl5;OQt!>aeZ96#1AV?Fi;hd8Q7Q3D+B@w(jZ|lDg)C768A=t34fcpT{xqz=%m3{L z^*thl+l@2s+zVs`Q>$E!}w0^Zm z0hs{Cd&hOC$emE@1W(p9yuS}Pk;YC|?_S7ktC7Oe-Q^J1766KZFIj*Yy2%C~@0f@5 zm7Rd~ACSA)M9iz@Y*TWtj>q94ZNudj1LGG%^9$vHWHdo*<8MJ;z{<`yXS+I{d7Wlp z9`+bTG|=T-7?;g{$77DnLME2S)|l+V?OS2;5kX!fKsVV%&j)@N3kl>ego2rianbGl zUi^wpu7Yf}pB|5l>thlnq+6&NZ(d%AKA4Zz60r=~#GyE6HceQ;Hpy&MvDL=e6kweB zj`lR-qNucj;)9boO~UsUmThK66uTAp=n#QL`DanltxUJw9%ERdPOgR0l7w1$!b%&zzcdD%Ct@o>BRsBRf$$u8p5;3$xT8f zlL#h?O3J3mC@>3ijmnh>ScUd`BSH^_llMNHyd}Si|5f7m{wKrlf~yVoB89*ew^GZx z!S!>ku0ZRg+#MX!sRgATB^63>s#DL=!FcSXsqS2#50?k7#$kKJIi@g$~kEiV)91h}(US)60(@Ku&Ny$J09F$r8W&?-r@7Agk%h6+N%P+G*% z1#bmz0r5&#RPkHB=}(okjoVVhpN1&!VGq83bve3w;3~LncVpC_lIEJPlyqbV=Lw~B zLry@ljJ=#E9<(hBMA3}4l-cjEn zFLAiH^pNc#S>Q)$gtqVouvv!2N@UP;1i}8b;K;n zD>lTh1tXaj+Ax^}6Msi@kPqB$VNuGI`)J6Wy_-hMB33L6p)!}~fJMO?hhqES@ldBl zItdVAW20bEa^`^deHx!?#ruVT%}^ zg#?WlyNFg})XO9y2}JRlj$lyMX>d4&nfGD(DQ@B2tI!7p7ke*~>-!csPAl1R-ej2y zeJ@Y_Ov+?*AVBcr+0GH~t!zsCq>4FMQMuA72W%tR%eCE_#pNh5%!}aE5<=J}xc@fMh0J)ZNlIkGQgZ2Xa-;SL-hx%m#(!U0vL&`4x@n=NSw2`EOZa9rTYyzr*$YQ&{c}C% z6mE;g3c0L`j-Ipv%>^oy})l1rS`$AD4X-YHUAshE-fK zn|AOdv(_obpBhaXcwVKdZ+&^WrHWhl(9Xi$Hjo68H{Hiq3=nZI2A*ZOt(PswG9dt4 zkx_uH$X1Hs@kclp(f4erc6wJyH}kzrgp~cM@-EEW1OHX>kSKL44|-M|&eBO72xB&@ zs&kRmq^h)YgZ`Y3vNq*1VI0RL#YJkQWm4MlUo8hRKyMAM$l1R;1ujSGS*-Uz0(e?F zdrb#U%@ecDGgzn7&YbcoC(4{oCRpsX8cA8#V=7-PI`!zyX*>Bd;h}e!=BzJG`p5=3 zw(fl6MM_?q)yVMO6rT)8ilBeg=O>46h1`nCjITAp8B`lKiZm|bkw<42&qoSmHCqP* z5o{Dxd5)Pi?Kd{05g)@D*|xzakyizK)+}CCgqYzRAO0W8&M7$3hV9m|F|jeRZ5tDt z6Wg|viETR*+qP{xnHUp0yJz0_|F^zC>*R>biTabzRRrRd+an8zzg)G_<1m#hqXhX(lZY(o+zvzpavGNK3gFZA4#9A zD)ZNE)wHvFXnR0e=+jmgX;`zEj^!1+3drK@ZG%Xe0Ee zq*wI5u1uB2yuAQL$lfo5`_thC#%ayATR%mjs!bC?sK?_^!F&E470(`A{(<+t~?(idl?`>WzTz}rv2i+73; zH<*k+No7nJK;1*S(&W`G$GrA%R1ApcCh`iq^KuNbto99i4@dZek@$~lNS9GHB{sml z6hiZV@0k9LmNZu#_FK@rrcA03PYTmVGq}AQ6~6v=pHsxrvq^^bOD!6%#YJwQS422?;^DBcZT)SDSK;%k)-@GJpHfOe;l0blT4upNM1KC&#aF&ta+Uj@C- zwO&Cp0JR(>u9~a{XEn82EadNqDZM5AtaTLHVDB8jkqG=t-Lrw>GxlNz33={e;2mqp z_bc|m29Fwl8D94o@F>vqeQvA#hgy!pP%qKJ(OMO?RnTtH3U{}_9$2`5jh=?TKn!It z3~xKz`$>U~>r_R!x{Mn8yydKej|?ER`Or3uCShd*|4o;=)a*Z;|BrMDg}~$b_D{N$ z^_RLw{fD}@IO&Ryt_JrJ;D0i0%id?d{jB-jo~oP>_feyEfZK2$E2f4d)Ud*z&?P2fXzE^FAaNYnJ#@q?*6pVXji3xsKsA>DY~M>2Gx{-pMO?N;qKC#BSB04WK@4GPjEOEx!iE=I{r@t$v zU#J7d)m)lP^_Fc-pemyExKh_Vz%dq+P8&UbrjW`4oxgzJ^{@}I<#_#BPQYd6Z^r=K zasfVnz>F!F6u>R-Tb>LuQ0jn74c1z_7E1ni#zgUt<@I3#v+S9NZ57_PFN13&1 z#BOAm@u0~~+E;so;XIS8uw|PcHz1Dp2-4Yy=JC(izsj_M@t`!Tf^S>^1-Eo#07qg> zP{12mO<#JP>Ap}!=Kh;PT!fHPqTGeXIgesLV+C7THt?OfvhZ#i@=k}qeIB5rw zTxgNbH^pU_wSRg6B`dg9#CFa-_63`%%S3^IBWS#!`fjt@_Mua2LvWNKb$RZXTi6&a z3&7kfiRk~s-0N2Z%$SfVVz2V8_iK~^GbU@Bof*V>3!iyg;|E~~v1G7OI^_b}rZhuhQoc5!MHqNKy&EaM=&mXjr(G_ zYQCnTS*dY5-~I7>dRx4P{_rJo4vJl3G6exKNB`L?&OC8-gcQ=B7G71JAx4PvOo^B8 zrv(_bU^RxavDkkRBXm#_-5I`lfe`lXjX8`T9AQ1qQO>iSi|V*-)0=)jjgH^dN(-DQ zdCyM4OjJ6cUx`<+{g@C+Zzwdi>mXXf(lvkMfXcm_9{n5s6RP};0ITS10 z{C!5VG}tky{V=%WbKOQZUafRCi86>b$bsSq$}yxkQDgPlr6pBAnwY5R{($$`ZD$MO zlbXd?Vo7?s;l2<01YPcA=iQcXWkGCZU%Sy#;*_L&al)#OhLwL(jW|EShMpr8UB)D- zvE@pP_%*5IT2>Xm)S->Xv!IY_orhh|XRu1Xo=-92xRB98^I?Q`4GpKEQ{cZfs(z>6 zwjLT{utTooS2K~4#g|lkrRPW6qXz->(#o4J={0P~*6`c$b{spP+we|mC?NX37we(p zk*_nO)CEo_-D74lMk6YIU5*g;T)1m3cPn34=ZK8EFJR0YkVmX`XUVY?+=>eH#$;iCj3dG zR@KoNiX!9CXxAvJgBDcA$zDSeiI}5?wb(HEOtF5dmCr_IgI#7G>TQ^H4n>Hu>&>oG0IYRb|0PtAi&2ROIrBbVChNU#L$XC)=<`4jsL z+IZIH>5Wd>$XX@nl^FJ)d^~%@A&nC+Jj&gX`v0IJhJJmI6c{?4{)>vpd&yqHGw#p5 zO7hcmb>N6x8-AmS&b$+xYEl|pb6V)IdxU+|k8!Q5!5P^A|q&`19jsl8XCj9cYl#3Q+4yv>I1Qe~yJ6w8iiUCp~(hlT*OIhQ`wsx*^4qW~9W z)K=hjhTCbfrQc!ZhRWjVO0k6U*g^{c@14;RCGl8^Q|=;-O8>Nz&UjJIwjFj8ylxU> z27on%zt#`$HHpw&KSU~B>oM9?mhi%Yjb~;N3$!F9EfWbgzlUH|BU6168dI9+4M`Bc zYLPh?r_c8yND7<{Pa!iCQ!UhYJpTpnF>|`87G50DDp*Y!-TCD9esA{0j~`D6re1v* zm|1&4r8gwH$keQ#sE0^M$c$FiUX~}P4mhTZzHl~9G>p-PaiO+F-k4L+BHkU*NaNj# z8whtS^(V1eq!iZzGv=y@3muzr;HI`2I0ySu3Oa_Zb)+|Km=Q#oiG2N~w*17z_Bzmh zI9z%t(#g?ffZeU!vbJ`Unv1yi?GtUNInA zN`Ne*f@_j&bsgd8(ysUSroL^aZN-#dI?jRH5=N6UgA=dWT0(ME&x)K2?m7;5`Jqq~ zpo;0QfN>WHjrvR8{`d&J8Oh{`_?R_gt%Y`7aksZ5>*|+Oc3<+6GJol$zUTJYufE>q z10(8G<*keP%Qtvq}kRO2K9ml{>e6_!b}FBKVv2E#57mzfz4p5H}lg9|w~ zX&>&sl63BUwI+yP1f8a#G?uAcI6huEVPHBiC~L5G=u7moSmre%ik+P7I*cM<1L3*! zT)i`TKJAbw&1RdrF<_Q=>e^W<F+RjE=(8Qm*GiF6K7JjGOL&+N#>1ByJ@1^fBR)l9*!@F367)IrWr%NKohZ)%h^hJgYzx$I& zDbspAIxpRuGU(2KHtb0W2;dlc3s)0Ts z3ZJxJ4lRuq9BJLUeE6;3jba7u7v<8E3qqI3AF(6{ItiM^f02d69}=}YO6rHND`>Vb z?%a**@NS|Rja}JQ{1cM_Cbj~tAv}0DWVR6L<$%! zBBAG_jK6fo^voD9SS!K8u66bS+P=9ukwVA!OzLlmlj>Je!R&P#i zVp#Ljv383$5u~JdXUPMeeYGtw%K8`9x9YGb(bmO} zbc6>*wztt@eIb-T%=-1~7d^1hMLXs^H0Xw}MQl~SzD}WJlXIpa>uI|zw`gxNGvbkk z6lr(AHNV|{&VQV3!)#j`sb;q5U$2nhUz_y9M9w$`ZW=na9&b8Mih(rrEOao`;Aa#i zv3x!pc7L8#yRS3uLuBHST<|dAXCMG6-~f7jwO+LD*WZZ&f+z??v17wL>-OLuhx%3q zB(ggyl;Oht-;i6B#bKFf&9iqS_YBQUDh}GuD88Bn)ZT&~&fCLdF z_h?b?H|1%9OFTeDd|{vz?;*mTap$-vYIB5%wuu_~LPR=6_xM8YhBDupA@Idifw(Ui z9$10Oe}1^7bAj2BG6etTMx z-p}>U_Vvw*k+5C9oz6Lf8-HD?v*X0ChuI8YM2D&ElWf_a$ zE8u*^_~vESOAqV&jfK6Bl<(M!4(I>}XsL$JODa!2LN3oBnEO z7Ko9OTF`R9T{DGq>XJatFE+6;OLR=>UBJ5nu3vG2UkGIr1JQ6TRs?((92~%>GD}tF zQg{Y&!#GLLkQ=Utvl-o>jw4`bREjR!gjuH1*jEpgyR`J|UulimkXAoT7CkQ_RoJ#n zHd@!X09qoRtLYU|F2-vTy&ElNnYoe>6 z37!&rQ?5&HI2GAcG!lA26FR0WCc88{FzkqBJyjUsw9ph{3Q(vx6VGOaPbgC*001MJ zH?lxQMeAvkcPNpA+uIIX{Gq22DEv(NVWR?#RULUM;glGlxRQ@lywi_Tupe|C8dJumVzo3xTcKW!lK6u#slIuI#kLB_jvOqTYL7s-nBbT)I0~V(9EaNd--}B=!lMk{Vrw zgaWGQ!cIXB^bnfOKv50U3D-r($rMNn(?`!zJ%kjK8eH^;`Cj@&yP4GCS9_Zyfjraj z2BBjsXKZu(44H$I6%=xf3&0kH>4m2T7S0NgDegd?LGC)aqFg&on?o}9u1&eUO zq902L(Jnsl7Wm-5s3Igic88D;o{`Sdm52!|MR5?lQUT-MhatPQSuNC5e%#xgf2h2FgVc{_W1J(1hvuF3#RbY<@F{6-Yxk5(IE0CerND3XV=^sqnY6(&-(>MZ& zzm!QeX@znJ3T|2KiAk#|`kHN^-X+R#P@R^Mc@?p)G8bz+Lh}I<5lA@8s*jf@mHWc-^;dZZ^VmUUcs~F4jiNo{+*9_r6vWgXAe~A1b@pn zvXP=!>d$Z#Le`yzAUdbSoVXv}&-i zDU4sqEdp?FN#O$StpwVhw#Mm=_hnPiAbJ3DNvctc9Ig`Rua$oDWno!W*<0z-ph95BkSvj;b-Ln2}Zn{o9#dX)Q zr9G|chB^1Wb3gMSpvm3c+2wWVg z8VXNE=oQr2=Cyx5R6CiAZ=8)(`0R{H1B8fFNWp04faAGo;q)QXhp)k;yr5dO= zo@?tOsOlTWhmpKQ#sUNxwJd5*Zm2W08V&c671K2C7SACI&Skc>EP^Biy=J}`5@n_S z%EB&_Wv;Rxq!ohZH+~n~=$$$%>0_+fq?k8Zv)b}NO2h$G9`%VHK{kEB0>6bh!mbGS~o}<~6cW9R^ z9bvN*R2b@T=M8hd$tbxf&!zlQ#oeECYAvTE!JxJFAjjTnD*k4GO4=u{z&3m|sD1zb zG-bG_SG%6BN5N1hl+fT!Ua7iq=d^5Tedu@Ql(^N#y{^$0S_0I*A*iigg}xC-_={_yF!CY!X`k4rUn59HCtHPlMCA4Z98w^@yTc!UBX&n~R3_ORoc3k5Vt;>BAih)3t?oBJqdY8fhY1}!^%Wg0tGcmKGs7O zi-)J8dm0Z2|Ken6l9~R{fC$*;HMBxr{+il*v>B9Gmjw12;=+4;U7O`Wb7iK*$L|6f zIuyUOtASPAM4)Dxz+Px~5FE&-zZD$t4j#30mA`qNC{^TE4+1xi${sGuTdnyHII_5E6llVTHp?Onlu+k$Ls5r1(c8@5 zieAiBM@Oc$CT+h@Z<<*1+p_uwHRm*^cM~Z6dET=4=vaJnFMlTRDtCwfwxbPF{Q+{IE3~oqM}(F?Z3MsLjr+)mWsl`E%zt8eTM(@3ZfJJhF04KkU!|N7jE_ zNiqGGKWe=V&4+&GQ?Erp*Nc43YV_u!FqZTx+1efNwP=QJb&W|w$v-ib*P z7Bw_b;^6D^Z!4ao(AyYa^glV)U;VDEH_;jEzxv%5lTBZW)KRAFhe`~;$K zEkM5uFMs<-zsoLB`IpA`@R!C1;7v?u6+QrjQY{IeOTGOga67qZLtQX>>`loyNe}b&spi~miK!wenJK*S@GVXwBO#a9oBpe8Ua-zF`k+$gH!MkXJyERjldj zy{VSE_1g4f{dbTC5It~n<8MzVHQE#*-up=)y-K9o6G7f!!M&DQUalts(ZIkdc#_xb z|6RXZHgOI2g#S?8blVwzdqu2xz+DkWcuBq0-*@(}ewY0t)`+GIZ`Q1&}5-{);qm3qr`~xBK=5#(SRHf2mBsdEwyl7;5&7@u#M1 z%bags!N^BzAVVlXzboeGi(q{R0HQ0Wya569yPZ4-qtlG_4hv9X-*m4c&j}+{CIfMM z_Z0&1b^8CYNBzh!@jn?^VnsDP&CwS`6V$9nDXrxSm>OXM=yxjtw~am>Na)yi-`F*O z(TrNJiUgyCy*BA9*?4Iw8D2jzu;6{sHX+@Cr$&$>$mbIys>tKb8H(jEZL+XfQI77wJqmn!9T^li5NNB{VDx4}2}NM{0bPb^C8iq+HgpH(}5rj+!@8J$r@ z{qgU5EGi?8hkK!}f$%q)wgUXSCfAMyr&xJip_UYU%sfif;AM#4kvJ>S(OE^xexB4@ z0WAakyD@)eQWnELf@wlhWX(*cpc!ZbIJzYU#qt zAQJV!r_JC|H@~F8+h&NU|0|CIYhIAmALR1@Tq0H!Y-DiBHkdF5lUzM>O*>L8 z_Z!;lLGM5Es6`RiJjNd@DxDU=s^D7$;ROJB)b@Gy*FJiHJgSk7m?F?*jeWc8^3Jl! zF%WFvxFnz1-x-oULQjN!AI`(b`YW6VE6XR}@09v$_%IX{P8fzySfRjamSwT`&ol-T zJumI(cHw6{;x?)s_wsi zY46t!FjCzU^+Hx1qpNmLN%9d-@r5mcjS~f+vmYAMz(aCumb) z%0S(C@BAGW3{_+vi{%2WKpWTtyQ39&!l;f?%1f_wG`(>ubqF9Og239{SL{_+aia|N7(Jrlj%ft-PS*M)J=+pU=C6BI0R8T-PCBnDByaI4fPU8lpx?#wc-}QPkp_h{+h0^% zwTs`lc=-Hi7J5n`kMXdHa@mI;rwq8LeT8l%8noj$&R!Zc^1wu`yzd!}uH@t;R2$!< z>G-0}E%B^PFYE2jP`~O}mRWqR*yCq3w^nbnF$Q!cxxjJtt-y;ehP>bGSd?*Gj>gc9 zCL)QTo!ZjZ+)B0AruHakAw5djuy3rhR{L6r1Su~F_-Km@!SE>T;e~hk_MWqo#bk$~ z38r*f+@Ou_annZ1QA5U@%$UQ(%BMJ%l;*e?qn(v;fZUde*W{&Yk{Q#kF)b(OW@j$m zfEzR5cUvlX_+m!n5`MvI@7`mWxGqUgzgoe&Y%n^;u<;WE zi087|(%v3q(@|LiFV-bKVT2AEZk9B8k`=*VKO$LGV{3ngehftNT2q+L>z(ThSaa}a z9ei+hL)9g)6uihqQj$@U%k||5kHbz4>oLQI~@`(v0>+3%f!?` ziMy2E*6rDG=O=LL0q8DfxY_{wuK7C8edouw@g^foHqZ29Z3xl%JxD3x0xe}>Z*-pugL4c;q8LYb>g=Zd-F&P+voaMZA`(AK-m?p--?;EPR-CQ=Nj9H@=a zB6C-BmUY#3QcUX89$LQu(|cp86pq4;u`zCci--5%IaSKW&0`aQeK)vbcHf)Y86%yU zP?pf_^r$zO!H{gOUi&RMn{h`Xu1!XU+^d}&DxWCt)*k|~|F`is+iy|YCa-mi3ogcW zk}oH@=aj2U=``OclUyka2`ltz{N*>lxB9tC_<$)eE!3pW#TzO4i1Mi!zAjr z5@%L4rdW0q7<=;}>$<6Rt8q5Wb8cm) z$ylOSOE*npu_||N(}WEz+OK4nVHaWJpu#GFFF+ZFoxk$Y08_VVWje7GXT!l>5ylI9Y2Tms$I&O$=1nUd~1$L{Scn=7|~zK<&j`q z&&wPB-nfg0poI5D5L;wIBPU73q|)uI?>x!4-0JLfttnGb4NIhLjO)zBcbJ)ql!eSd z_YxQSEAE*My*TxR7Iy4kWGVv*@z ze~$r;K|y_fSbenc^mRN_23fyc`ZWD(B}l6g8DM!6yP@lCLSC8 zHbUg$Dj+AID!bJq>nL$`d#JCb{nHq>yBmfA5zo%N1T7at3G5D2(5wr*L7W}q#wh2? zyy4B7ZulJ(;$W^IkOKJ^GHK~DKfd(?Yj=>x1(hccBvlPL&B0i$zHU&PShu)z$uiCI z?MzhVk1{|LYLBfj`cMfFp|a zKkcWO|2?7-GPnTysj_E8y6rOe-xoD2e!sJ(P$8~fZ63!_xmWxcLMOX@Nc7vePh`vH zTk98;Ghrme=Zfo3G6P?(K1aN(o56O%9Ak5{PR2r z83@XMV5xoney;X?_FSsdQx+@_Y)Sg@Vz}tfV5Oj3!Tqy(D91}JMgWfHNfMF|oMwDc zh6*%Ju$DzQK@}5tGt#gjsRE)DTMckReekgmD>64=g0fL;DiE9f`a7SpOO#;M{X3sR z{&zn08}-*In*6@7Kq$Z|1?c|)oKl~E=TlFA=ToaRE+Jg ze3lZL;EP>}keVYe20B#2FI$E(oJ;^{Lep9N`fLc17%CAFZoV9c9rapWCO_Bt`=_05 zjD~H}S#|X*%)IAzlNom$ljHH=brYLM%;nf2%nZsl9N{cBS{nY`-zwnM-zp%slMUg? zBWmo+mbDH#(-n`!HjMQ*^I+4S#~R@R`d+N`6s#DRe z5=KQl>MA-KX_CM&yuBao0~YVc!!%xy4p{s(*5o^9L$9O6gx&WWQ1xZd`ZPI8mY!*PaSLDp4kpS0g8==m)IRVjm(XT2HGwfV z&@B|u*&t6L<7l7>YROEZAdo@@naC=z#CB4VyX?k@$dVu#k&rehu|+T~>kQr(6*%@_ zOA^bZhPB6~r>#CNA(e`=kZev!#*?H{Qr6d>mfR95@H#tKwW|Wc=_f7z{tl3e0*!mX z??%{0QN`$l{(%B)yfKlb*^qTuW!b!}Bw$u!)Vi)H-(bA)7~oS@uD_Yoi0Ge9sgaVm zqdtWt;Whzi<{Y2*SLZIoemA-$YbLFjlc^f2R(;dB(@-G9go|B;TWzEh7`f}Ne&Nol zsNgT2xmtB#tzYWCgR5P_(bs4zRjA$tIGLrlhZ|}pm-fqYE)w?{kc$ox0&0NQG>ZL{ zFIyCz5Hm*#;E=~{BdXN?r^LDgI_3Ty0g{I--sulBT*Hg)Na+FZQr4^V6oy7)PpabH zgzyOm;vJ8#8Sm%l^tq_0Q`C}o3B7fZa_W*4D}(y00>~9JUn_e$;A>V#n(QSKm0{d- zl;}bwrK}HC5BAyD?x<5#Y6-lip-YYy^-=q?q2FL^cvOiGu!2BY@rG+MJu)1Oe{K*o z>s1|cVDCKgT6JLYb8lYe;PU4f7Mc(V?@?%Q>A`}-8&ZuRZ*-iUr5Fpd;kRCkSI zEE-YibO=@z+aiDgn0JM#UOQZ*H^_&d!e4}ET%Vyog!j|Ax;lyZ5R9WDxH073&!J+b8U zYkUw&Y}XEYOt~l6{ry9LG0?)@h#cg89nb*OXj7@C{nG#xxJA^Bk_U3{IcZ-stI0Xl zhO!lb>Pwcl_1a^kb%Z}|Naebf6yOc<;?KP#hd|W9mq*k4RT;uH9Ko}l`zf*cpV9HlN z@Bt-2yH|Cy-K!va(>z4NL=>LV52_G*byT=lXzyvwOw1;wT4G`x4)YY(00=KQQf{-BM!7Og8#V}+ZS9~aHq zFT#Z}9wzWE{qXcOBb8kr%V&hc+;Di8FA>jPtij zu5%e{Z=4#L!*7a2eohm3ZtQ!C6do|l6Ki9H88X2IJ}ZxXp%~)Hv;64KV=)^^&MgaU z<$CP=P>KdJkY$W}``rBwP(VhJHu!b-)aIkK+aH3*L0c~ezke0QHsaKj7yKhF2-W=LT^=|sk zVu6jhPh%Fu9pqgb`|45JvmbqPE)edD78^TdG~KhB-fou*es(>Ww% zBoS|m8m~$kjO= z_4ct2*oD_icw57*HTHkHpL%R2CEJ(-VdKfT&~b_sZk@Q|4)Hf$FG&`ip13 z52cHQf8hNrc9~uEfG=s=3d$bS-YEB+4CYw2cnbpxm{mlm?A=|egnNzE8lwHD6?%3Nu^&%T+QL#HlD6Pj$kPuR6)q6bJms{P;tLg zEvEQ6T(Q8z8l6=tHP1{LUM#o!t8VPgaV&;@-Q9!Z)uP%H3!W2d&g7FuUQ!-sslC%L zWi7#j$L=EC=|GAfmCM=WB>01lQpmn`rS7L=zH4$X-g){4+Qhhm{9^y;aY;ZC>7)?> zWVHLtYhx$@*UW}(s}F}R|EhHsv0qsS?HnA1oh~<)1DOW}1)dTk=8Jz@He8xnMuz7S zm%3p+?ZCzD+)+;n`uXzF)=lghwadnG>4h}R>cbD9F>&*?qt^tL*Ba}IlYy_OB#k!f5f-9RmhamUWdW?kJwaRG9AQ{ z2W;u0DFLaFxLlqe`ovT5aXi}Yr+Ey^Su`Ym?}o|J5bKof_p&v5mZb`U=q;9Nnrwtgi9 z_5g5W$KfbGYs@mq+b+YShju)9w|8K}^^ zyK&WQEjp$%?m~E^N`DfXI=kc=jV)c4i_2H|t*8N%2>Gt#>;O!^i<(VzW0VngJtxCyX zczZ^0Q?c(hKu;rYJ2QvFn;clWIOA0sG`E^eqO5Fj8+nE$Y* z`WrzNCXd>zGkgiY0)IgWxMU=CkNQF`aN0CdDKQ7BN3llK2TyWXB)6TX+H3);@gP_z zIXRrupN4dW9~}VcX+fjpfH#yt0arpoW$4h1;M?WXuJOa)S=}U+T5@?eZ0&mYe6 zINg*C$kKd1knD`XRkj#PBVNh>LWIE}QALaW>o>y2O(vmP!8ABh1>7WFYt+1@K1JP{ z4MUtI4hLMZaX3D|TF9v{qqX*TD~x*)UmcwyRK4YyK)|@A_xLP47%lue%J9wDV8F^e z3ZFUV_}Q8<#lO829&*ez$Z19q-}g!0fohvm={uB1_8@$u;~}qfV7x%|U~@kVaX6Ce ziA6vJrg;(MK~-o5q?%x$BukV;-k2}RFL2RBN?X2WENw~2QNOmC(^3#L(a^X?9M9UH zVQVoDxF$V|#RC!x>U-eVxijeriH9iN_?grs;|zyq z7y9;c4pyD$D;-$?TzrC5Irs(Iw`!FF=}YfsUxBvcuMIc7-{wG)h&6;xJHz?<6&4Ug z-(5Tra8gy_i@DII^|K83{aLSV8BKvQT4}mN<5_$}x6rvW4c8&s$mhmICbc#sGoK}{ zs-%Lh#L(IbYR}B%zDx2vd5(ftaOF)UZ0L~xA|1x2Dk40Ym!%5a1~4t}pa}Z{Z@}JA zKnB^3Q}D;_eV6>J8FzWLOIRW&6{FyN0`#<{Qxxhl`FzGW_^_PFT9GhZpss66Jt zc9UvzsC1fBrM@rvA@fI{LMvDQTEBr-8+_gVk6+%x-vLAgc6D2h8*s+T@W*XShL#y7!gPi+WeGN`Mo_)9mM_~ zrsVfm!Vv&FYS@DDrX?Cxqg51Q>&}DfAUkUN?@Ku3@!)#Mv&X$tUIcvRxCU?ty zp$mP@qv#*Z4xHy*-TT7(%^a$^{e6 z@A3sAE(c7`>>(yEDqF}P_%!~irwza4D1_&O(L^;Fxkuu};$n98mRQsoFa&f{&J9rm z=*&>KU_5qz#u);P(%^%sr>5%i;IT_)klzX;bD8Vz$t2m+Owj%YsB0Y`gpKeKY~MX9 z;*A0=Tu$G)OHEV1?E$g$EoW$_(9NbG`BVz*3izy*f)INQFGsKjRUw&9TT4MBOG^6bPDOsJd2#^Fmt+yp77u-OIV`a9{9wBAzFp-hVcY^1JD}`2e!=&v z#YSmQM!f$X7s*gd3<|(ZLc!X@N7i69pvl$0mE^B8staqBw=A|c|9nKBL#i;aX19wh zBG}hS(^NDxTM>sXE9+&`NVlq$H(0E(k_%}CrOMT`_qwn;c8e-N^#KvnS+>LF`No+F6i1xY}D%K3YVRzXMaPky>+9&PD^;uMi0fEe(zJhv~);Dl?OaWPyq zS2lqpt(+y;92@&MMG23F`bNPF_DwnGV2TK^*qe^3D}G&LD$9M^Al&7Vv(KX@Dh9y% z10)Vvtg{hzxW<=)07JmbqK24h3MI4ACsi?TLfHL{kgUh`jQ3;o>0A$nbhY?nNJC?+ zY`_q(A|kL3m{h%&SrgcOSlpz4eF#`pk@CP>wv}**wkRtjE@I1Wo}Ncl(C3<#oG@Dz zQUMMk_)1lNzZP3?x(AoygazVoVLg$W`S7Cz+<{fR7pU_}VSnV2vE5WX|F{=4w!-qzE!LOFq1~qvYf)S{}VGQegz0n#{dB;2t}X;u5Fk1 z=E;$jsV8IT3;;6;a)w}o-V7^J$2xId+%C#|N4|7#K*!%b)XAKP&@oz)0mb% z$(ek5!JOfPw&OcL41`f{u5U%1hOu_AAN8ev7*kJtFOl^V=af!_O5UCtp|<37|uWtzk*x ztY9aSSr1c?g1WicyLglvh}=(gI{>uN;5+R2(nWmIr?uYxL-~}+B)-Gb7K0(*ASJ5p zWOIR@E{;Dg69W}EXDM|#%Yb*52ydpv4i5@awQ}pW8ug*0E8?4w1i)cR*5xl!B|qQP z!ObuxA9+%Xkmi@Yq8c8g0e=Cc0x*-L1J`bWLM*z(#Plp9F#Y;GH~|2~K#Bl^csA05hq+dAF}qOnj3?%)hs5 zOX6~}Kd6HwzM^r*ecdW{hsP&Wd?*Y8s$#|vAspG0Dl-lE-gk2yb&e8F^kbRN{FAa%!2$W{oXw?fsL8lgi}d((pA`dt zojy^plIk8KAr>=}rMNTv@I7%e$|wl>-TZi5+VN&5b6U2d_43{+AV1XzdYx!z=sZ4#?{&+fH<&$_6FW1R zzNlpTPCA{gc-)v?`Rl7o5tiwUmaDnbuPBnldDazHxl(T~2gm##zkN4bv-wy!%Xa*; zrrZ}#u(-*m<)J;C0SgKF5p_c(EX(lY*OwKAkb0-nC_K0l1dO9wX{dTw{`z=L`lOWj zRssqQo17(=3lW4lJoxu@6y4l0SSo&$B8;FWg^-SgNhw{O7CD{U@An7l}pJ~g=0^GZs@{R%5(# zr1T4$9W8%M86f8Wa`zJqRC>L%Z#v3rM$+s#p3)+}?o9Bh!IQ^DARjjfZf8;ge*98QJ0*kQ2InGXX*rlOWFSC6m zF4NM?_%0%mf3*9QANy;;<>k^?_6T#waQ^h8wjKz-owQ-84q+Vs=hWj4BUhpg3*>;d zOWJv%93VmpVw>@12qNh)4~<{TmgH*$`PxKA5n{sJ@+vxfF~PQ4@51(lajMJNb}}Y< zo?v>--2MLW+_HI(0gsMuZ<4VyQ$jx{KQf7vYqg2Z5*u~8Vff5X7`v>$@N`JqHpr=@ z-iot%mn{5VzdI2@!eiJ_(CjK3-ipPtNH2SlTphl%j>DFI`40L7U)~Ut={%U-%n@KA zY(SS*-^LuY>k+7MTsw!h@R(Xaxi|-xQGCfe2LqTSGA*TW{LR;<>6}USpNa3J)(O@J zPkI#z;wm{4<}9m+EqE1>st6dIioGao-1HASMyK1~=MblL7>qD~h^F6=IBB)|5=sWC z+gUVKQ>J$m*_&Qs%Gj%%g=JOG&@QAe=9`(cr@q9w>DsfnyK|;U*pjem&#P!?o=xpA z2FV|g>nkEQxeFCin4T%8h=qO8POs-rU&FCyI-BfbA|0{%FSOW0)(b1CG|jSD)#qFt6bK3JzcSkzDQ<(aCmUD$ z_8^jZm6Gxt@=dW^9>@DAbRbHUL+ZQ=c?OJRaDGn)w8Jo;cr7U#FI+#|OuMyrQU1FODw(uKp6TfBOVrZfolV z7=~tL`^Ocfk+9cZ=k2=qj!4}$#=zY$AvMxKuM9WF)zgY4COwh%@_{35*9 zU7KE-)GMLE=M{qwL%TXoOYc{K6O6o%jpljQa}vq?_2Lo=173-k0J7RS29IrGKQpfO zFf^fWM4aJy&NPvro3bdiY6=gIY*t&__qQgN;*}VNOkiZlo9cTDv<8f|IS_eB2u52V zJ2^lgD7z~28twB8CSkY;+D96hBW{Sqz$lx- zcuCdg$P@8?`Tc#~gwM2Vy|Sl^fJXMW$-4gq=OC>Lht!qzUd(Z|7CnT=VVbwLHGG&H z<}uSX>N+&xY~L#_4p!q8(Q^!1tmowqePm-o06>NPZfp{a*&9>q(~xzzvRiuX5UXlV>L%$iEXz=-;kECu)UOa zXiw!C=34W4RXU8rjXnPU)L^XjxaD=+KvR;aaN#Uyr9DLG`}t_fY3qoJ9l4e)$DU}qIQvoImIrX}-F17^tqwrE+uLAB+L5ppaRghCIgOR=y3;BSxSET@9f;3zAjb-go zrGq;h3nE3DD<-x}{o$x3$}IC$WS{cC z(eviN3a$DVny2$mqSsEjIB`L!T5UXvHqjHR)*AL2en&3%FIn zY;HsH`*zYI?2)NW^jh}~JMut8E3xDr?vZ^j{#CN!X4M>0)wm#y1-t!<%=#-Tn>qY5 zqu@v;a6#5k0*my9g2X=-*rdp+=(pihsAnBqt86bo2!c>cPRLWfJ~5Nt`l@1dKW`^! zW>BOYv_s)H_(Hao>jU$d7wCcN-(?naWeXc4+66~N3kHZ;IBv&QE%n4jlu%5(`NEE~ zd2ClyKUh{(AYB)vmAtlnDA?^hN#P6}Kj3FgxQmrP+@?MmEGZcGvm~W|a-kO)*kimJ z*ul?p=obcu)OmZOx}L5$MM&lr`FX&AsipS%9_GtN3F#dpycHiyUPV3qnjuJBxBz!n z4m6rUbW{AQC65ndU}u}f9Zb4K7PkCOA;P96IeA@RDNInLrf2pu*Lzm=9fS>un>&`` zih@z2Q1FG@rdwmISM+Tf1-!?nm=mtn1E^kZSJ$uKE>e7U>(rtH9f)V44`~9rujRMn z`s?I(h&}WC^-k&3%-$s{Jl%;UF5hf}K96}v!S7IXv982|uuztqf){KFeFtq>{d)Jk zzlA=0Ww)527uIN$2pkqWd#dri5*R=y8sO9yhJ5(Bwv~-Xe`F}PAcEIDntnZ zx%KP0Dm3Wm#XN*1Np5&ne7Dc$;G4*av~`xagFYZ=qyg(_}! zas)i7JebhOx`E7xD+1qH5Zeko2W!K&0{suHJeo$#d-R=pdWpRPWo7H3sp$ncjhRIU z4)|)QffsCz;{&m5s(FAqA;MCY;TZ=>t`ziQP&M13IussO2oJ5{r`-bLs}0ut#whd4 zQMs;rT|+&>@|5|()gff?bmfU4oA|vbj=XdXPZ}A||Xe4%+^hiD#0?Y?(EXI+4YWs8?I$nT8RbUib>iv%#S3L zy@V}=kTZv5T3RbsO_qGhYIeRR+Elas2DouNR9mhcS+BE6IU{NFSz?0{p2JL@BUBEt zavZzVbGaXQc}f9P>rsL-!yp@GG7U7=JQi%3zZCk*sZyhVL?p$wcy5kqzO(GNLJ4 zki~&}MUBClhrOJYHIh#`^=cjN;y|X(Yr2n^6rMX{REC#*lNe>Duham_uwspSn*l1!{y$BkUNzyw#os)tE85ufc zGj8Ij*#G3NH?pa#kwlVb$IIQKjC4aPtYSDhlxYM?r3M&rL}^6Ngv{t+&`ch)jSzXv zEO9K82r0{LCWChRZa|ueTH#mLc~p-;WwaS0{7IZ34b4%nT7eY`bZO)vTkiQKV_J^P z{J2A2pmdYDvxNc9xt~@vR6W|;#p;|zfu7mO9_`KUW@yJgWFzzbo)fnYk(7aMns;RQ z-DD9&=QfRama9j*XCh`kQZTeYrYyp&cbB$Xcg(74r$J7%IQRY+GvVFBMdTKpz)+s} zjLZ~#PpU6GR_@I1@D;%1kNI*K6=a2}rlxq1gG-1Dvu?a1n+Z&+E6+D$Mq>;1{Y-s& zRX33c{!0E=D&HdXkerU{!+wkw6wVZihp61Nk39*FK86}ofv4C=zr!W+Uwggtmf6{_ z8#!Vyn5TcS!|VfQegdD{s$p1jvLL<%Pbr&{6nO4)(*})3khhFG`&tIiTepAxD^K!( zKu&r{UJph&3=cFpnvU?{H`=eCbjQk2{o$RokTeL z6OrLxzqNIJY9I@`MDRO=J5ZBcEQy7(e2cKN7CMqs~$+_6)mkBD(>?{?F0HAgRj zk8fwje&Vj!10OSM;JY3;>nc6G>h<1m{}ShE0@ek36#BLY=#gw&*|`$C?%Kx(D|AmE zBz^}XXKo=D3%rR9kvd%`98vi7TP9b-$iDOl2weKjYmSrs__uHM&Q%*lqfYW(`!)Tn z{{b1T%NaYZf{`3(gtFpG`t|8f%ZowB2hPh~`rfp4v_K8lN9W;FjlLtVFj{Zl%u8_h zqE|ptiva#c`(hO=ux-vJyycHRAX_5+YJ9`1i!Gmz-jJkWgHOW$GzOiJ*u)?C-vH^~ zc*2XsA}+7^ecJgbw7!DWCbM&WZ5K*&LV`wGDA9Z&1>W#1;RT`-)eFDW6Zc zEzJU*z+(nxf4zKOM|4;E5`$RL{#skWt%Zk;1unr|=xQH^y+Lc~AC|pFFQw%Tm zUD3!?d0j!GDT;3C7rmtVxlD+!(U3n10FXyfH0{Md-=OF zl8F^#8e8muCjw_^r~6fDfnV8U&s=j=bRH-|oIy_3D9ynYYJpv^m4~P`lW2dAHM=yJ zs9no7)v_)p2acu}j^G9;Efwxloh4R9x}R0bX7&JNvD!eH{E(yD(Tb%Z{F}}McyBTN zWOe>vltEn!d9>+Zv)^UdIk(ashARdp|J-W~dB1A`%;xOVh-C}_kiK~SLXCOX$nN1>o>oOGtPJvWtXrtQ z)>QfdH!gz$2efXnsTle*!bl1`E14X2DmaVTTcejI{Iz=gFAlCuDsw)m_3kc5c=u$G zAn5NxMMs!|q~}MK6ll$$30%MB!S$R!%dT}uf>ahWiv3p&;He(>TC;l}zIM~)*r|2C z0x0O`Cn%7j3@8{H5Cjku;L;}s(jIP7`mb>RFCQ&TUUyh00>FKqdDj`cE25txmb<3u z?HBvi35AG)NX@CfhCt6VC0F?cDoxm0H$lC*?@wAT8XFt%K)UAGG2(1=3}E$q86;o5Ax@1P1U_)dn`J(eV}0i&H+}^;X0F%Q2OAB z8#et1p&KZqbH?bG(vzW5@W*nG+*K;1($l!ZJ;~3N4P(47mkG&xlJoplY|#s_l&gq# zMOp|6I%Z^l9&at#VbebzFD&LpmM=Cv4&2W3+26;z&)St*JE&YFD?1;Yzf{WT{(l~? z@k)K|2AjDAWu^7ENu({cLtHV~pALT>FGX(*b<3Z}8~cyP`|gRbA~W0RIy2j=`f6ac zt~xRU95PxnEgvrZ{5nX5XO~Ves|^=-?J_AI76^5TL2!`HawHBKp#U1{=?iWKDu4lR zqQ=5_QNQl^)Z6%#bFs_~;R+8IzS7Spf(vwIp=ebsvGs=Lv3W2qa)o_{FHVo*>#tq; z+X)Ge-*uu-Myh!{IGm4Jiw54 zgxoc^uGS_RH}m$95+F{$BA8bnb=2#ByS=gqJfjtmsJV75q(BvKv_#Zg-u zi(;(Nf*UN|1>TnszON*s^=C~c-scp5%ifUk%{EoY&EKlHzlXC7e9v4A>~}F#w)+eB z2?20l`JZrq)7Mxa`V3n4pKyO&;6HwrO6ex+fdD*f(*Km}XaC1%DV>-M>1J<%xo5=W z7AO5q9$olh&v;~r0Na&q>vaawOGD5gV9>{!9O~N5%@g^B6VseHaeK5s~TI^KONne_2~-uir& zn02l%1lEwSY6+d3mSY&-r4KGDwg~Zf`EoxAR@nQKKaFV6ckih<3Z1Bq5ry))9G$Ya zaURWv{8*{FWRfORs~d4r`X1zu=hxiBBYyP&72;-q=zHVV- z>H#k50|n*q08{qPRLBu%!XGT!Ep99jEZQZ0>IHX_#1mA5k2mN728kaV=mF6Y77^s( zz&V77#JR+>bqy-OBO;sG)_3gf^aLbfw}?+%SV<^uScjzPBB%uj_qVxA=U+O%5B%UW z?$W90>As{n-~O@Qf5ACH-#|2JW1aB(xLThcHyS*G z2S@CiC(P);HhWEIm@7e(Z4i4M`vB^;=St5SJ>1u+o*2pPt6B>G)*3fNScc!7_9()L z-fK@H$nNAi6@5u=k z--R*Ss}RM}41K0X^=T&s1wgtV>4MOt{6`2+$g~q$hkz^6K3L{1CF|$WOt1oRouKod zZ4|_XJCW=UJQi4m7^6bC$;+82!F*iceJFw$i2G}CGvNEcXn%dRd3qWE-v=E^J;c;h z9EufpHQ}2LnZd>mAChX`v{qM5jbIivs}YdA=+B=__p#aKl&j?{_n`!=e&zVXMO~wf zLz_lbQ!HA?Wr2<=a4Z{%UICwV2F}RAMHSWA2-|NPZj%-XcUJ?33Bn3M6r@$5 z|MGp;htYe%x!N~Y9bv5uwF*~Txl6i2Qq7?kBfJ%A$qM}}Z3j=o*J?;LF&0`8lq>{V zSNQciQrJHQX>(Gb!@lNnHa~BOl5behE=Z~-9!S2%5EVy)F*G2|2T3&@(C%?<2rJ13 ztAK=moT&ZpDUE_k7p?+IWrvL@q0@plj@AYma-hQ=P1g$#rc5Ts%!R4$8QqM2`_k2; zL7f(HcfU4oND7HKyb*6qCp|hp0x-E{!62T#ShRtr4EVc9ZrbRUnz@x|lMJn%Y#h~k z62hS7((K`c4YB+Ym8UkP-?WD1QlLW?IFuPtl8Ao*KbzpHV4+7k*Q8nN)ScWHKb2U| z6TRQqW*~HFzs5=tO?Rk&t4+PWPkOsVSSXT29!9C$Ce+mEg$I zooyMiQ8O5chlTq*rsu)s0FPiL$p0xw`;qrDWDIvT@s21$47mK|`^(>sB&?Ei3&N*F zi+EbK;7HrE_Gd_OsTqFb{^9!!7CX2oCF~A~6Cb#NQ{A!nC=Z`ofpw&3dk!1;?Q3zy zXMI&8N4Z^tgS>0R?=fJZxMH}#&VU$fXXem zQbdUWLZmSpsX zOtomiNTsTERV9tKsPsu~|MaRMp6@XRR;wxb4$F!m#mM<#@$iiuNYx|w9_DD!1ENQ2 zKp?<_v5XSpp+d9?e1lu2x6kGrIQ+okz76T6wh=HT+3{yeveE1Bl;qRK#0)(}C`sx& zfbnw!SzV-2xwcXN%E9zTkC_IOHrfO(V_P5uOi2P5zfMPcod0&>s!xyyh~pOM*t%YL zL<24{sC`P&v4Sk_9L&~OC%sU84tMF98X>%%|BGnuHAg5D2`_H$KPXJO&pD!Fav>Bw(Uz=Jb7_l3I$Rmh;G*iirMNIwBO(jM2c z(6$P0tv^VdW|#ZMwXQ2D?#YRHf*b`<0dQ7CFKF3*yo4?U*QE<@%;QIobP zuJiaUr3Lpw6;r{zg!Ipwx=`RckWBD#FtT5y*pfd4peC`oT8dZoEmQIbhx)DDe?5A9 zAFzOnlAksdZQBqZn7$SQ`n_vht`6W?k|zA_=r9;l z6*U@&U+RrK02Ac%oi=+I0~Fx;#jzUIL>2WZ6!&9Nyp>{wp%ye@&|;AG>ABbO)ScQBqPBTgoaK0Wl;wsloB65`hGJr7h$8`+8sHwTfOo_eaz>ms z#ca;zP_;CLsW+15bRK{v2}^3Q2Q>3TPG8^5_02_Q$27 zjroVY4nRG%WI(~~zCuk&Lc}arXg8rKQcl&Z(n-c$E!5&J6Ch&m8B?Sjqq`eFJauEq zbx~8s2g*6JL=R2$wl;>Fom*5}EF~5!AeQ*Pjvn$CPBd?C9cZFJMY?qd01kORs27ivM?$*G1%FgPSrt z<=DpL5*RT<%v>@1n7wQ@r^XjBe?4~(gPmyF)ufS7`8*SaCCjkVVPGBa-uR6As-5#p$6b;ulRy8J^pt}QqA{Ga;>hUE975OlCF%ThzO5?`CK)+_6oc}XewK#=$PkKxA?Si?Imd=U}hLrrSfe^er%O6 z@NDpv4&WpIhRC{cF$x(5wDkLj?s;%&aR5yRlElzK5es%Yb9@7W-vhB&Hkyh@iB%aD zG680jAAhDKmndw?N<`T}bp!}{fAJgclN6kfQ$@VI5it+>QC-z?tw0f<#QCmAHmbHK z`jId{NLeZD?<{1cX!ZapTdIP2ZasSxOtDmO6~~fO#2EGI^bAs z?KN539T)tWl1yVS`W3hwjQuGN(5&?!oG^F`L(X|dV^^!(ZE*eXlw`=?DM{Bnz?9_p z#>cuYj5Ey23T-Z%C^b^bDUG5tx%U8o=4&|cL4(}w7P*|mSgUnW3peaM3HjRiPk%pasLq!& z&4Leq`Wl~>4wva=`n7!z3*`Xy7LntZ6V9YUk2D+(TYyoD2~dZ2~5)Ic!0+5&|Kzr+e?0LsyDZ zPN)^g;P47<3(9?)bU7~!OyzV8QTl#$3mvsx3h6I{EfCdfTx|;!!hA{f;m8uzIraT* z-h@}VOC<(?^GSX0>a2F0cp<_E!xCOsj!ByyYKfO(TC!8l=Lf0&4ZeEM=A51I^0s6M$&bx_bp zZl{C^n5AnBlk-dRy8_+90~G`y5@5K(T?YG|Fm&MVtPpOfyJoJ@0FvKKv^PQsZw1UX zK*pp@l{v!1S1v;{nrupRY~Enp!e9a=Xz#u>n;Pse@;%MS9&tGk43>|7Xg(E_g!@kg z!%g;uGdY6KbY>bEcp{Z{4-327H_1i3QsfN+c&weMG0M3eC7veo{_i#JGL5OD>?06Ys6%ixM&rFTMO)GpgT%%_Qri z1}NY)n=N`9Kyh+c?Y!PWBELo!BzvdB@j`RTFBWr0=S&+uo|g)d3s!fYJlN$CIkrF; zt|TGa8WU7e9rNA;WWBWH9welYS-mme0kU4gQ|dUx=^jBoKfquY6U!tPnE`fu33NHU z+^e=n%@X65uZ;lEmbV%r_>q@5i;w=Ps)EvNjJI;bq_u~f_D ziK?|26U+}KzNQrCqc|Mdog;BQ7Ox)!Y)Aqv_T{VBs+hqfFxrz0IFhQa^Cen{(GB19 z!VEFd^uHe6OEU*&M_ySiP|EL|o>%z)9!YpVMXSj*9X*UiiMTDzxL z3lIT*qMxtVjbRrwtXO|8A|1d*OzUD%nc%G4$tR0T zmAhM8QI?S`aY@nV-8_jS>C#F;V$pa@3iZ09LOfP58|ltQNE*QN+nuiDMAxQB1GNqfBZ~mR=EZo*G*W2%jXj@Fltn%aDFyl{X@FkTZ z>5}Mb%r9e3c|C$v&>!-k%13pvSHIFPWqkaJjSO}m6tgtc-FgP*`9{uj z?{C-j8Exgi{XzMM0)nOr$BaJZqz#}cftha1u=hK!8yik0T4?(J(d z=U_Aq)lfOsWLrD)vUkY{Z?-nC^4=Q?QFRvNYj#b#-!$Dx!pF8gw4r+Lp0uVX`)pc` zR)XvtQU{<6cH+0L!cv@>a0orYyDqg>)3W3EyqY%T-f4y%^v8}o?3F0GPQsw)#W>BA zg~3Bd?)~aWxnZgTRTQ}Ug+=0>*9y;aX zkebio%fskHnNFn8^rkfc>?>;t(Q{4s8aZ(?Ch3{v?Xl?mv2)JuNMhOz*xzTPWqc&F zo;E=kjLHEl|2U5LB5U?3^Moh5gt~Xp9OKgQN*bUrJ)<0OW{LpFp;$E=>S=1&j5o zv4H;mZE*x@zj6nJ%Q|x3^XswYyA=ClusnF_gGI`?DD+(gW8GYGCjOy}-2Bh_i706ZBzMzM`r-h6*z(fAF9=X%^kXghAJbFl+lIur z8$(=eCDlZdsMr^X3vTC#H6{)!U!RzH5}kC`lWr)~=k!|W^bp3{<=}jRjjEh^><=c zS+pciUbScS(CHnS?Fst!4(C@c>wLMiIrlWC3#Tjn*A%7v>wL+kd_PvL?4uC1X(~N4 z*LwC}AGO>VCyeH-sz~6)|3g# z*oZR?um9bn$&N3k_SmwAA3w^JYKE^&u6Z)Klh5IFS~pw-Hy>y^tSO? zY>;=gvo)^#!5KBW7xMXZ{_Nc|7{fgq>r3y$y`ygYEyjGo17ml4A)7!n0%b1#gS!+@ zphHmTff5(+`8k56vMG(=Dt-t7sRQN%_rz)-=ElzzZL<@H8E1}+12URCA?Cd?OJpaC z?7Y~1MtKZ0d)oboC?Y&CXy_sv{1DZh0lIau{IptM;*0@hTdh-apIIu>#Z5XbCdZb{ zBV2L)P~{l9MRj=s%GCw6b2~Ny*D#iilm~g}mm^;Mh%+JEGd;NYZ7Cf7&0DgZdYa^!}b zpTJ*?3xM-krq&_kA5-EwE(pC0HgQcI7w&Or*&knD(OedNt_~19ntw{RooO)I=^nB z)5D~AoLwkv4q`;Cw2czO!_B~p9h@3rRihh!i~&aok-SCB*MW#e+4|%+6Fn~+e^(LN z;V@+2=JqSel^BdQ673rX__gGbkkSpIZ_@})Q^3sjfbC+B z`2*Yi5!*=4GM91FpBs`U`d@JV;?}gte?_8y!_NN~=d=HR`pzWuL|+(wydX5StKp7@Ba+B{<^RB& zigfezL2GK?=z9Dj#+_j+d6D(K}VQHiJd$$mUR+url~cJi2NS_a*# zy|!O^0%10F0%jt^LJ^t;BOg`&^{Dv&AI``7ADmy`%i*>OIYcU0JHUBbV6IV+yi#%M zcUT~pTP~p;N&0T$IBs9q`lsnU`BM16smzcmD$tu`jzZx&2DQ6gvuYwVp_4}mv^035 zk?rUTVczt&EIlQ-=JXFhr%_t~HT8m!>H+(I(f3&bUr}0tWLwR*s&bsf`XuRKn zBQ;CcM$g1L_^FzCi&`6sLhpp_nYTZ5%c4+ZQJ?9OAi@>bHqq^2S3xvH@!F^K zdNX%00;j0=4;PY}#2$sn{{Pf>-r2DH(|5K|#0YQaHLfBrEl4G!snUrk+6jhtkkgm9bAbYsMgYLBWUea$Hh9<9On+{{{!e_L6qhFM#77^~=8{^)1beO#dYH|A|Cb;|q9`yK_RlAwzhKZQd;Euo$1N zDiL~Lqg`K%1Mt5IrcQ2GxQDv;d&egSUO1_%t67-6^YP6pO-a(?OXW-rb4lD9e5AkX zld}}8fcH5jy@;yQnCF5Hz@HzTeqD9ntw`cj0u^}>H00NSWvTvnxXbxCV>l`{5k+t1 z4$U}H^r_~SLScs{S;C*!*i-1PkRXCkzXd4Ifd44ZcHu|@a;3rts~ADru}AD^wBVW9 zs`Yp7-+ow%7iRAmgN-7!7l?6utt1@)yuy(@9+Gn6fl$2B}74c-wh~UpPDOJkIfsS zaKN>nk%#kMFi3WV6&h>JS&bnWnX< zsfS_=Q7Aq~rv&6Dz;-dy=4ZO4B6#T8;(iqCaa8eGHM2xLc@6SUZFKy9)J7Yy1GLcu zi85U*Pa8nT96*^i-7H!gj88NWc|Dz*P$NH%tepqGQ~|Wnm_y1}k$wiucR)zEVgIX* z4m&Nq*_=hre>Rb=b8YSSnNhO*+=u`mPn_=DHi3{OALuZPe`uqFJiLDH<(Qc7loCfK zcKtYzx6&hDl z+?2nIf*5L83`aP~bqg=B=}%2IJC*9lJT>||f4W`rNb<;~JOIu6J&_OexS`a)pG8F2 z2TqmHgXC5Veji3gP4CmF;7L4zFO7 zA!AM9tU~Y@GdD4LpCV?68K`uvZ;d7SPx4sOEwS}s;{UBZH>K&s#dPl!8*o;JzioTU z3wBl_6mXuT_txYNJF@v_`*A5YC}k%8)kY`27O2NtbA^K+zY?%^1br&Vf{FC{B>GM0iVcnWB+4$7^n6Z#epr+B=Y85UBt~x#u|;XT z_F07H)G%XAeO=at(7~x3G~yR;ns#L4FZv3mfTk}%HNLq255t)hFZQ+v4EYRDXsu+6 zZl*`%+Enj%S4aoBQkHYK zK3D;nkozO6U zH`o9-8klON>pMc3<=7{i_iuyzta6^_xoSZ*LE{W#*PKXFD_~15obvhP!t}u$4e)M$ z$>y`yXfHRIOksV%bL@3VA_)H4YIrzqRxDHTfugvWOtQL znh(v0z>1Ar#Xl1NmJFpIfsh7v7~EBR6ogC(M_1rVbsI$325aqFR)x`L-fSIO z#&%LM9E;lmxu=UXfB~$HWp_$Pio~U}cGjpjywFUQj`|KpKKU*Yn{L?VT($C}x=={%?DWgiBGs2?!o&C-Gd<*n*^BWF&? zsV(xLJ8d^x@+eXSfe^6?Jep}Ga=z^usKQxPgA(I4WA0K0LCoINi5K#SytcJj$LhwK z%cA2YL9)$-pi4t7W{XR;fI7#1b#7HC0Sk*2p6Hr1DVpC6RD|6yy>ogBUiGUJuUzY5 zFZ)-|7BiitP>vY~6joQC2@aLt zjRU@{U5+Vn(uA&iiMOSqR*O=?8P5-Q?i|F9;Vo>z=e|Qef&s6;wwd!ag2bm9^!k|BibFN*U8VI!$#o`fF)GXw z*e@2<*5DPaN(wlMArjReOEplr1_-C+x&ft)%vPxChR}CP{E9l21ZkpUW*JfzNM^dV80>9} z+>7<2_*6~R?L;@6r~jiY@BHC}N}`ZH4snrFx5#ZsttCfJ!s6?=YVE zbui7sKjO7Ui=g~%!|<)hvXhdiE=94C4_r<{x~7UNpsA=rMU?#LJ%g(*J7-{bN*AM4 ze=h^{&=~kv zPxU^No_(A4b1K=MfzQE6k+eCZ(&RB*v;fT^b@t3gvH_YV^LvUt{h%2IJIItJ`m1JB zIKM1UJpTNE8WSiU#6}i6cP2$)B|>H&^>|{}8u5$2f5WdxqQQnj+NtmEg`qWYvA#@> z6If`m_=T^J&p3E9PboRJ#j>VaMLD5cq5I_9BAh-Caqf~Sxu2CLUE6U@CRr~y+cJ&R zz=Xm})`Aeyl=u&ZnHMPm-+rMZZ0#r;Ts>k#RFd|f0`EFJLO2Dpclf&mwL_rB?c}ed zigZ=CACN)OHq)0nFYdr3*q3PgQJN!e^6QjFii*+O6x5?FvXo*4k=KOLS9lNjsCgkg zJ2O3=8CUYYezaq~0)E>fA1@EB)I`*Uba@{epJ#7uYljaCK&p==czVBQ-2z(8n;|+G zC};*!c{~*<5!4HwuR3>_UYz3h&w$YWe@H$*+WV~j*JT~ff0?0n0a9o}s}Im!>AU`_ zDF{D1+XpIGBY338YvwU&kX6adC<6f(5LGn|X9Z{HE$pa;M((8|a$lfApGpmzHU6@>FVu1pm=%uG3Gof6vJQ%oqqXRD95 zu>%=l0yro;AE4LI<$*Tn2hM-u7XqGqa7>X59_JUw>6cQ)2;;;Oy`$cFTJlx5r~l;n zbtY1Ba@!beWzb0{$~R5G2x$v`t{t2q`g^OkYH43tr3w;DZ*NL1UK^ZsRYpuOk)$7ckIa~ko^!m_(XXap4_dHGH$D@+NZTfqSCeEVR`vS&`Gzg zPAh&u8ke1koepl7gzKUM@eJzpy-*n&Ewf(f2mpyu0&b+MKQ~ghU*VRr;AvZnyOw0< zUFi?HM(Ct}nW3_E>;Yyd5TE~JhC=)wGZe~SGt@0QP*uiXGt?A1=zI>q3}yf8j~OZn zV1~LY)ZG1-847~&957sJ>oGK=jb7S}^T!O8zBQtHhM?gFNRASCpA+2|5JBh6WD<(t z@&^sVEs}5fIrAw_Bf7ttOwfL33yhna?-&Rm6fHj#j^4g06+)~@`p2}68vA5tA*s$X z;70QKdm~NSl!~7sag)k5+1GEPoROm+lK7ThoFOWA0B$6V7-u|Nl<(1}n^OK(Wnr*0 zP%=%}*_8mJ@w2vnf6$wg3c9!xJ!3d}V6_Rr45fw-Fhl7<{xw4}ppeC<`{t%&s~O%L zK#1;I0(C?i{=O)eSOnCX(ZH4(+!akKVJAj4{C)x&wsq}fw=O^rdOE2`gJH6k_?G#~ zq1J|hleHBu?f9Z>17UqIW7-Tl8(nN|EwRyt=x1(u)>8qk=V|~oG-R=3ZC-i0QwBvD z1vL4R?D`FSDo-xRDI3R(La|b{{UV8E@63_hGTn&kGJHLDWwst0E%a!jM)xI!DfkEA zMv}K0pwSXU3EJc_XzJW35>zPMuf>I^3%K3do~p(IXZ#F0?W@EXz-Ac_m%DEJ+4%n` zd#Ct3+qLgDY;4KOc_-nQK_aj>378KT3yRCDA{ zS|`uLT;9$k7F!PR5IWBc;)y@6;9(_Ho>t{Hg%%57nstN=%+vT}Uu`nakMzNc2p^T& zf=vJsW{MY1%A7D2BAfziKG7f7DQYr2sWlFS7-uyiQSqjGD!i_?$)RG5r+87H? z=r2c}(b(2O@<@pr{Hz{)ffC~ZK_Y^2}Sd?mM=vtDhSspMRv5+kh+r`+Y@GRsw zoTZxMQ>ERn+O~InHdpEEtS(PR%56>GMInu*#`?yas<_`X&T;v_AaRu*$t1M;rw20R zr7J@7*0Pzrc3`J@XFtuVKZW(zgyMpyc>7LmF)y3teE`f*v+R6-%uu6vB~Gk=%}}E= zQT)1wSFU_&cWz9d!dLWx9;RL@zq_OcWgS5unT-lQ{+gj||CpgN0kctP*L{E)ik`Wf z^`bB7%jox%Hib-}=o?N&5;dI>o_3@EQbXbXTMY#a zP(#`K4iZCQ4|&sP-)jIR!pG=rXDEPQtxmtLSA5Ag&(rL%QvvO+5Jb%wTVWJnY!Wc) zIP6BoRVOe;csYN7XT2mb8QojfnH6Tm3%kU2e)=gX{A?)Hz84@R z>f%iu30I@z?>bK3XyMnuQoLQv!R+TiN2;{Lpn4*K{Hj+A)3T4y3yh+G&*%gj`5hG& z>B3*>1U-rWN$aFK6BMJ5E4YMzkT~uD)KE>9tv1;le`lk1GZh(sW}_52En{K-o{bjo z0cNALK!jJ7|D<&|{-kwY|Cx;@-e{`~bY*~d$@%1aqy0UeUVOe529Ged0gk6W|HS-1 zX`NOK7+i|FHDA2iEA|A}8ynlCC159GUU)v$kj{akk^_3Jr_B}EHOsDaY?RF}E2b?m zi$4W-IIao0_Rk1lz2=w!?{^i)jbr#)8d$s1830c3Pdo;VHz`=vET=QvPYO2TVnYe z#L{>CR@WH$RipE=+A?E|V!@>n$w+%IrZiEV>jN$X#bK|ih`7u>gXSJ}ddzI6C({#a zz3=xsz@zpnYLtZ;e8up1Go;v@@A8NXFwD#F{uDOO+XS9`R7vMKg9=o$*5pLnSXX_( z(H26tY2u{*@=0WHS>qPeC~MV$y1VTI_qm)qfjdkn<8UN9dy5$}C-pJ3am z_XMAO7n75CW-lvC@Rd`6dl<|l$ukRs8d*!uZb-xO*oX*L!8<%wy9VC`xwlwN5Oe?K zW75#WvtB8u8AK(c&T1!5*3rz}5i{ItFKl>yL0cZl^&Kfe4J0bo!;C%g6^%Z_!ef1O zV`+F>9Ti-wAVVI|J2wXgYL^W!fFe#Y{<=hFPv8ZzE`riK=T17V&{ z&*htT`NOHx8Shk^6B%_%AaMmd<;00RR7yh4U@_p(L-j4%Lk|_x@Mn*J~Ov7}9FNy6Cba5a zm!O_x-`8{vj70+7(yn!9?V&glIHAMo3@)b()OFCOo&kqb&k+;RVqg%x(l1lihM!1P z28_oTyqxQ5yRJl}Gw5fqF_w^dRha`njS_BCw3^_R22su%I?g1=S|Wc1mq;R~kETLD zWHeb9+Sg5Ds{D9KThmmM-PwJ0%|0iH8jG)qa6*Duro`TAfqOVoYmJ)K%)4aaT}1Q986A9=lK(0#&Kx$)!e`$cQbd+>WEHxh zw~?NOZpV*m0@_Yi7_~XZYZAW_$`Jk%Sx5)!tS4WbiY&uhZ9OYIyjia5=a?oh27a;1 z0vgF#zGm!Z9#cuAJJAz!*ib@=+q@R2$h}HWhHX(k``oJV9O{A#UpukV_a!poO9^jd z*tVgB#)#U1NLvxC9B3g}!mOh14~S`3v--?kW3xTzbFv|QGlax-yI6dCJcEZQB^S8_ zoZ~?{w$5Eq3?b_lWbKVjJ3pSw3e(Uu{<-*akSxq z9y!GKeMNkPN#PXP|>eO~)^}zku?CU>e9UT5#6F^x< zjYIwSkFqYxJ3mgdgxI5vAQ}?;s+7^wAVT~0CA#{cbs{u-rgX4a4>hJZrp@fqe0Cic z?syXVN?7Nv>?5FC6#jyVm-=oci(xeksaTAPy!^59O9_nE*(WoLYB(xU)9)&MpAN@m9433}p~I!@7I;3CFrCDs zl&n7cn^b${Rc7=1U>cV~bO1=-gw=+w$?cWeF~fIwQg%!S^!%)b#U#B(j?6n$95zr` zss}3|SIDK$7(8h}S?6WQjA@uu%sU>FxQ@*^qYTAG{~;7p3^U5n=6gV)fqKB;O1X_; z5PD+=Xe&*v-5a!1oM7v3)YqS0si+k<@8nzE<^?nA6+lKQ#5qINmba{1dM@@vsy8WF zfL!CD9qEO1x078xk|<@1h~&wBwBR2(v_e%zd4hcoi2IpVDK5@~Yq7i16a*3IXRH&uE-S!bQ>z4dQd=OXT3-~TS_bdPqi&6m=z zzr8qDTQoI0O_MLSMMBrN4+t*u$UAcvKfYL}>R##j9^G~U|ED90%OVcs@W0!Va{hZu znh(g6%76RtA1xUPw?=4V>^zp#GiayZTBoN%*Q*BB>-Kp+C4pL9w{J5kEuu)=+jcV- zzy&-s70N@r5PZ^rbjA5{T>p5|GU}X~hlZpzb>IGIY1Jy0k2EKfjGSWg!1Oyj0VkdJ z_If|n{fK4HWU0(q)|(k4Ic+&9G@C0Z?za>CL8=Qf8Kwu4c^3{23e6Q|0{k_&M)q%7 z2UQq`6iTD?XFzJKinYymz?PJo&5i{N^d?~++ZH+u1NNXu5KJl$+uCuX$IqOIQ&ytB6*cYX}VFL;Ajy}J}FLUs6%z$Tw8eiGnQU-(Qm6}Rl~af8QK z--?Dj%H8TRyxVwD1M^1bc>GA|M5rpjrR<|71$hcX2H%uGK^2KI(C)!i zeh-5#g&ck|HtZK8AT!8BG5cPg?*}VAt)8G?;_^ylhJyC9@k8sESr(F})*+FSk3q&e z>f`SW$_7AN2R(k3r{hT?+t`>;%v$iZR$%HI^dniU9+AC5(WPDyafj8<_Xt_02`U=# zK{7SF4$vBwiySN7IfIrPrAA?na3TktNMZc=chvseSU)yc<^Fk*B`2aAXHkfvIt)-$ zJXB)+{zyzkW^?S^{oZDMcga?P#_y74_ok8fv}YtL18#zQ{#Y`0gC*b#d03Oo?q$R^BYppHL^WdLbuLYA=o+4UZsCqjKy#3Xq~at#Ass{ub5Mn9%C<(d;{x13m-UE*Q(7fvd&jZ2 zIJ%{{_a(BI!t7B8{Itd~+HRLZ$d4TJJ!*4V!>LoUU9}_w#e9^IC@P@Bq0tlj$|V;> zZ?z_s3|PR5lBd_Y;vy7C+n1{7uA!v_Ep<4Dx_&2;@#;|!RZ8d8 z`qHH2^J++jqtn>j>=?y|aFnpzFcxOS#3W7AWN>sl*B=ouEp(e*`Qzs3kc->KIRV3d zZNAouRMbZVkFZQA*q?fhNvGStX--5p_H6;$Bq+G1b1!8%82%)6?_?-|Qov;tuO%ZP z9_iMC%D9sYLf8oZR$%1k7TJHJK(oKZ{AL%Resdu|eN?m^Gur6{4LU397idWFR|>Ta zRtveiOJ?}%hG1@|q#%{Rbo@6E+e zINEjwNrN$+&Ff*A3#SlWe9+IK4@sa6WvZvk7RvV#wt&yzIiTEkeb$YLy%)GkM5|Ut zWb@SGETMuh1ctqq+2s&L?W4!O+JBr-3rnY4?0BQGyu4G3 z(i4R25pn%Qz6`@1WO7XVh}0@W3)vC)jTjj^)%Ix5`ZP|@y=#}Fy8-RNk^5^F6JKy2 z$o4?jrUT2Rn5`e_cN%7nA8bAEo>Lwv51*=Xdl+~hVkUvw@v5X>2f*watS$1mmY;%unI~?34S{s#K!Ca_o)_2}j9v?+}-Iaa{3CW<=;)}m zcy24_efg!|TH7a3Ebn&TTgliMITI9w?Ir5dz++468L3p+ui=W0wdCols)ptF`E+IX zJBIW6DM#OZ3%9t`+>89riPFQvw()-aKr3_jgVsjWMBB1oAMe(IZ*3w39WuO8O)`(kY+z@j%>e$_IzazOY1?_nmO6|q~e7I@)EB-`BL7d}hOD_Ypd z(9PR`u&s5J_u{^U_Tu4^ENtRNKP_=yK^90_ zcMD(o5xshydY!7G%#p@q0-Suf3Z=~u*)a@LTajBS!J!bkqK{Eu8p?%7N1lo1Tr4~c zyuun3p(^G|%iNAVS0B`a8L2_dt;}W=E$dW`HnB10&^E^i=XyG)tweZ0Og*}~dCLrZ zW>5WD}N*7FMLeBtJQ8ltTuqcPct;mf|5Y?xYnc=0RWi29JFjq-4q3vYSa zVSs`6w!mpL2R67zDQ?I$9VxkT8cUiYcH{x2o2k@gN3P=BZODXqD$x?&Z)%RqKFS$| zN@X#M(Xb<-%?ewTc9l}~2NHm;Q@h20o#Z_C$6w&wk~m!c&MtP}828JfqmK8k+lwD5 z^@Cx4)yAzbTD1xs<4!4;wo5tWHLztC)wIwDC@N^$EC;5n3acr7RiNLk~rT>3$kg2Q=RKA`zsp+Mmyh->)d) z&|{i5+~NbPG{SN5!S7{_Vr+lSio81xDlBYsJ?+0AkW9mvkl0L%zs>k{pXdE6agC=R zl^cG?jJ6oqD1)kQjmmBPGy=$cw5&i!%VcVtF4Agi52b0`I=7ic1GHgYvp;fcD`42w z0Q9SURQ%&PS$d{&GOGilPRM((QI?tEs=}6aZAMTkqZ~I z>eYLO6N+Jd-hAiv?N~tnG+ln~+NJktR+JD8ZT1A{XlzHTw**uEGnS19?N)j$L@g zI`3uDgDvNe_#Tn$9(~)~g`w#Z6RM82g+uWRhg$n)Yy!w1=yZ)8sb~+&_)S1%DS70r zB$yq0a~zJA-@uU42ts}oj#tjABU8WEH=b#3IMnLh50^|edXCSCYZUQDOU3VVu3kFQ zTl~a+1?ijAGhue5l$zw~Pz5#}#-}Z-T}w0?tFEPvhBe~CoDX?qM5rGmm++mCtsb~1_Yab3a?(J*%j9cdoZD3>sm{%Af z$&>I;$Nx-7;{isf|7g|ua?h;#-%d#XB6k0)RVSNpIO-gr)ghN%9oD9hB=8}$WZY)) z@i>}wo}R8)i70;(`Z4A8M$<-Zbpfv=!flMVXdW3iiYY3im}%djou5s=N%x)7E~_{L zvSJAvFICvNDVu-&td6(|NsT)B98NpG*F9eE%(REpHaSkYEOX;Yx|D1o9j*xWvSHj7 zo5FUU`MdG~F3o*lF`jL4&vYM$hSe~B1gK4vnP9m|a8_&vTubkw3oFv-)%TltOx>GhFS2wdGvlacm`?soX?ac8(V72Ud82jO zgkPvFU_-i?g4b@-+0bC%p_GcA${e7Cig)QZ`yyh(CB+1%}5m@Lzhk>?qCZwDt2Sm0?Z)`KFiuCTf2Rxar*~{=hct;7#{RC4%4P16M4%5Lx$H+M^vsVhzZG1G8vDj}eFF zRwDCVUT?buA90PAyyZFbI&)H>=Pl;KnDvmvGnRed@(}2zg!pe{p9F8Ud)Z}kutZLR zxdh`;)$9GH79%KyG#k+974uHe&HybVf(U7K2<>bH-+^yGJrYe<#hzRW>+6uP0{$|RxwZ&@0TC4Z zMV8+IEu=M9v{}j}%%1`b7oeEx24)aXA@%lG^l^5B5I3F2>oK~!6e~ultiplM-&A-z zG{<$TIDIL4bsKXl)AIIQSH+xIZ4_N)g(C5n1GBd1YdWgb+PH35V&zdYjf8}QIG%na z#sPag+UmrBgIi&b+0%rU&^lzJhbv~sZ>S1vlrsYupPT+9b59d8ym4ZQH-G$1=AxtX ztpk#|;eU+J&LszeEps^jlW;y>;N2F3IPn8;`L+Xu^~tl5w%s^?q&oG`gTVA*zcw&I z`ArUh31@PxyfL6XXQ_P`zbe!u9$g$^PCxM#HgjuT@EuWB171cYatR>lO}B=ozR(jf z4mb`w|8eT<5=DDOq$XB?Q7W}+Sp0DHDlUfKfy9f3zPXap1AY^U^3xTa{SD34=m?Za10T$#5l%; zLK9W`BC+}>?U*$Ze0M+;#2VJ1)!6A^?QE)!Qb2=Q>t;OgQn?$Mi^KE;Rbx{^8zuQx zM-x7xJzwoxl)vVSs!+kv>BMxWADO@B1q-3GYLlTaV~fk5nR~LV=;!An>$-nxC6p_z z0|ASN%GMr7MWZ;?di!lSOxy0QUkYBsmjF29^TpZ8JvaJBH%CqEPc%2x*swbqS9U=X z+3X?Kht#d;pDVk0bYuT3AuDxu~$60^D3DltD^iZjTk` zJe9}*U6_m_&pbxWtO8WwkwyO5aVHxBH3ts~d)0TI0nw}w&+qqj(Bz4;^=8Dmj%-tI zL}`8<(q`%i35-mJ4rO^8u>s+8s!tbx-$n6rxF}Opcdj6Wjj%GS;}nX+{c3$l)pAKR zd{d81mYlB}6%{B;P;dB(v=Gr~eDuOLAh$@uB;li(ZmFNDs88pe>M|gnW9h1j5!a=4dW$RH@d>QODCyex-O?eRO zU5~&AK0s5D2NY;SA`^q~-HRI^e;~gYp{vX$F!YnTmp6^y0um|5rDEPn` z`KZf~ltkI)vQ)J>DWG$ZwC>+eQAn+8G+Y-=UFm=o~eiRBR?suR5hW` zrsGO0a-s$~@9P?ti%}?qb>!88!X@fa{d?Y*9?79waFwOB90?x!=0&+!rcimi8-uPC z$BJj@pi8o^w)BSKX^p|9qTioC^ZFIN+Djff_x#{sKq? zvmqKn@5d-qRW$1(V@Y{pohZV)s;W@5TfEymtNJBC8<0~78Xmi#;gnQUx$6M96(UJk zyRG<26ZO?suwxWOYEEpyO`oGvG9LEb0wnMBn|7HgmudWO?_RlkmFnrQ0IPCX7gbC} zL>$Zw3}{L^{dAvSB7I~rUqGijUTf%kz#6bt%q{hV|Cdgl?c?tgO*Uko$250=AifXZ zVpgwA5QkCd(zB$hEQw;PfoYlhRADFQ9obJpc7zaV^$2q|e@quvz^EaipNzEAP~;c6 zu$y5yisWYRr^3m8425mFHvozHZZEY5zQwSDwelpBWw8o>$rkg%4HhdGusDdUraw8n>h*vrU5FxrCJDR5X|S zmRtgD%cL1|0mYeChD&bi_fXMzN67eU3Lh?dX?S)}t~5a}-uk;0UWMS zL*W;`)o-g0q9bZ`RJ4wX2QTra*4dd(Uv1?$_}IVMa2Ty(aa_U(q-}t5svOOFAuGd! zW8ejm&b5pd9D7L_tMn7n;$~<;wfcjA;7m zyIcL7R-pW)h!USN1?8DH)5nY9-(oJ^59L^>u4ZqT*Ws#Q-qh7b}G!UMoa0`ys^M>C-nGyqw3^u zg*E01cE1t)XzN*i;C$s@RU7wr)k0}u;b0uzz=R|O&nKZr2LG|>e{)SpbuCp@Me}vG zj<<`|h;H)BI$np&o(u_H@VDgf6xlJ$^juBu*muiO2H_6o(gB9-O7lt@psy6t-TCPS z6oQwBS<1>D@NBj57^fRk_o(VPO1G&erP%577WJ%U(j#V!fx>{Ed**&Av!#P^#@9*a zOg#5eRSm2OWx?BdEv$O1nwpgd7VpJN*Pq;{=li_db{Hch=J4_v>T1>@y8Nf-g2UV8 zvJ6z@&rjWxx*j&EM=Z$%POnQb#S-|4dAPDOR;qH}Z`(l^#m{*%8->-+vsAsDe^-ft zZ>h*EtIz!Exyhh0=N!jwXl1vkL*nPg(p7*#(KJI-s1qG~oYI~I!A_Nw_Z zdf~B(YZuP)Q(|8|t0IN!5LURMr5d)Q1iI{_6{he(G4V^Vqg;bzr!;|i`0|p>W54Bc z$zw8u)&-Y%MGFpXuy!^@9UUlH1CN_rVGxZXzwECJj>l+*>#^~;;}=_wxuE{9d|bK1 zF%fRR1B?WgC~1+_v9G)Y5WqlL%bWkb+#w&}|G5 zld5bqUiesefuM9`fXWh#eSxr!VZPk<5%SFEoB&=w5rFid{=RZ&{AaNJKm9%|FAXcmxRfNM!dPkDS%w1=dvCg98`cH#lsoA-XKzh~{}HlU+@&T7avq zfxyOHOlq6;=Bh9g9_(77;5`m&TDMWZ6LDOL){Jo*Y$cEJ00nT(R1gU1S-buEt>NPX z-rJUsBCG#DOzTy)Z8AU1i4QSzBfEWMf>M%uJqkAZJ zW;*TN{}f!Hfl>U)C80Vv*$yU#!U^?eBwZ|RHnc*TbTEN`*KcH~-h37U_{hKnwHX_r zV5`hfwxtsa&}jQ$Xb25w^Sst7JpQU2-~5nCibEb^DIz9PxnNoY{zCIxS2|%iCEFO* zMkJYsSDC>fmDnH`frSPhzn)0(>%r-Yj)({;B2iTe7V3}f{V)A9hCZ!P3XkVu;?qtY z>RYY{eLUri(_&&sG{Unf()F`4>=bT-RT{erN(K`t zRhRF#ldWs!yN4e^s@6xVbgh!0t(j)t>gg>lg=Y1wU<2bRz(#j)%;2sD86jJp zl?%$Msu4U8Exv4oU7Z;6`RP84syfMbWe>vmS35eu=8nhUkg|Fubr2%rbvvO-HSRq8 z8$g6xzvw_p{srv7@F%?aI4}qFc?`_ca(($=?zvQd)ff|mHd*=JK-<5=kF_dP)xJG4 zEIvb@2`t%>DK!~H8-WGUC$rE%C=Z>dGyKVlnqw%RYpLwyEulUudm?c|`SADX;)u#W z)~hQJZ?}wWMI&KwETM!>mg;B_7wD(4g|@k5f;Y(d6d_)MjQ4>W1;Al#lolh9Zu8vl zcmAUtg`mWOxK%=ZGc2abLs3MAcg)pgsRonw5Rs-#Y)^QiTV}hnCqon3I7Ef%Z3j;) z!Q$A9WPk6~1HSgZA)D$-Bn-!IiC()7b6+FcOB9&1Mt(Hs#+8J4hm*emHM=<$Oe zF8ea5XN=cJPt^0fgcNbY+mntWKm2=fFwYA=;~L4Q3xOT%-t>-= z(3QGN4X`;93;HnUf4jRqEThae@w0dvqD51!;s}m)+itE5X=F z_N7QJ_@)+iOcA$G~shwn8Cqplu^l!jpF$}q)U?Qu6FGZkZ&Agp(1kXT*Zgd75o zp?k~Zy6^ojM`A)*o2Vz*r73X&c%@+HtUhySfJ2sa$0m==rY}p(-rVKpN zpZI-OZt9C;>1-S1cUd8ty!#O>Fq>|Bo(Mf6fE~r@2yQ#`#E#?vo~ zmM@VTt_zK7SuV~64f>=V+jzr=n}yAutIzTM$Zjjx&B6jfd`N9|4o3^VSxa_uwZG%a z&c?>wG^b$J#;P&c^A|byjomzmnUZG4x?6?LYVd^q8pBcpGjo9?E7zqy_)qg8Onih$ zsKk9Ae;W(ad}hx|OT(TLgZoj`#E5~WLFBTzT5-mHHGfXVg^;PHweIf#;B6273|HY? zR=&vgFhi@q2JPFP3%h2@DxHLqi^`9E31@>Yj1lgmh@PMgqjIe3-4hw?Hs4mI64!il zWpblPB6}TF09|LvA=+zhGezxANg!jd!Y+r`R;RMddhR;kxKc~EUT@CU3ZrfGyuq=i zZqkI}8aK2~AIm{M->ZsM3pnx|qzKB+ehi7* z6l!Rn1gw=hT~tz%Yru2 z8-@8eN_HUO+g&}?<4+T_jE5w1%E6S^Em6$~5nMI#dQI~$$7vy_c51g48-Oiz=Vvpk8PWKpU(adVLK0Q->0XV} z5n3Gke`5P8b53_S^x1-H<9{bkkWE4pM)e(j|U!B-IE6vv{JpN=< zR{XZHBWksFW#qz9hD^1kYrm$|EM~7{=6c$^U^+u6*;x>ysBJvHmF=d0T*2BN#W$rSIut~ll4=F zVqe>~$Qd1$7$Tj|PKdESn3ls91Z(qM>ep#a6x$o<(hF!SCgab2t=ir=Ab1?GHhvUt zIH5-^AQclRKP;g$e+2ApI6$+MHSVHX&mNPl)f$IXW=DQ8F(59d`B_YXQaX!`hqlT& z%!<9|lYCBUoUa~eO{Iq`AylkYJwo@{9SUD5x6F(X-d)1P!?VC^9577N)cO% z#*jG8pGdB|CsgDs$+Wg~Vds0;xOVOy*RRGSXA&f~8{#|c#IC?kh!eW+8vUZA%JvJn zN%Q${;~sEVWEyBb2t=o>KhUHpGFhB)FB1jZkJzF%50rEeA4h?^?s`x8g_2IGqYdk{W30i@U1VJ}vc=)zhZ zAbI>?U@dNe{eb2I-1bs5QEXLg^Iw!M?f)A}xBS1MbYSqeAbk#0yFti23-Q0LwHNu< z7D*N~=U+|%x)Fy>fNmseXbiWRvAH60BfrhO1@|b_g#hIGSqt`mJ_Zv;nLHdv>^98zSiT5no8yw_JA1~+SI8k(C7SCA%qKGD zNg#bt%m?S(81@c*(+X%6&B#9yhVe^-u$Dfw4Q9N+U;=K)OiGDf3YNp6DK~i{M&W-w z7~Klve_}GjXu|0g+}(Y@+=7TLZHXaq;W3};v-kx*g~A2xmMF_ifBbua71iJ*TTc*8 z2zwoRUgBKP#E=S}f-|Wy84zIr%ClP}C}{jKZ9GPB${~l6A<=M2x?Dfk4{j=w!=Xb= zeP^c9iJoIa#9yHjh@=f0p%0aNiisUA{4IE=TX0cOifrn@$UTcNb`A_|eykWIoSvN! zSsZl95v!8nnPM$y@#V@I4~3ke(5V1QqL3CS ziDeM&{Ng!bDV7{;lEQ-9GV*1`_CL0fAsB6Y?0%yvDcX`{)=Yo6Z=!X$(o8Jk3l@I^ zq4p3e0v!imUWQpl0D(|2sH5k&+bV8Mu{$IY4K*6(|x5bXSG7;c0?_4*AvH_dH{#tz$k3!d=e^(fU{;4p?$MQ^i zqBv;N{i!gh3Ii$(aj2ur_h~vg@WH!d->_$EW$^0DO01};Zxl_#Z%TNFGeylgg0gYG zO+o_xm%`Vnn|U8i^? zdtZ?s3_s_8Lg|LT|3&FQ{*BTVBK{vJ9qC_`F6sXrr9o?5g6Iu(lUd=I%f$fQlH$trVh8w-)9Ag3ZA zRp^lwP%<2T#2=y-oJPH_y&X;?Dxn>}2PR+l%PneDnLMgwYuv##(d(dTP*}h56PXE% z2hS8#VE!@$Laf6)>^4jfD!R{`==f*IliTh#u_IRUS1+H)mbc{9u z^$n;CuVZuFoS~Gwb)H(B6=)4xq-VGs4;0lNMrFYro~9@E+YCBLu^=!UL}`a169?}C z@QNsc2Z6C!{~fC?Nd+&;KAr0D>n%vd-gT+~V>tq0gWt<}V1jCr)xMGR{7$#5&vS5* z7=t)(&f7}f6XF^qA*3d*sJA|r#3(N460P4JAFJXYk`DcUkaSJ>ltKGYxYi%BT-Wz$ zmEYL3o8@tN2)o=UInBOJ+>3~AqD*NS4?unl0_h*ox~bgUEQFu~A-XK)rtcw4kz~N! zdCz+m1~gIdtVunim+t6J_~}w~Pj^Av;e3D)dkUb<3h$@TQX?yHM=OtKw_SBLT(mBGakB+=!qtE1^J&`NNT4Qq zzbC9?fX*etID>24`aore?|@nK$YbJm?L9ml4|;CV1^M)<=Fvc3mQ z-n|t>aP5M+%NZXMabrjc@EALlqcBo!X#-wZ^VUYm^FMNMoYooipM8xSqD4Eeh)wj) z=_2QQH)WhNV$^oC%wd-l+xSOZi4tlA=zu9Mn4pQ>r2)W=Ew880L?k1JlnfoU2PN64 zK1Eo>LG?;RRCta&-qScN{SQI@cH9(SqMz$MS1Bjy3XOE!NJpdr-K47sdLXI>`FU{8#x$a)Apo$$Sie@D^O)&HfDd0HQ zWe*n`^Nm~VwYVZlHYEG3XfAQB3#_iR0Vo}3UeV6)==#KC zu_hMS z%^ihNmfe~MXUO0I%IdBpi1j-ev0hCz`dwG*FlzILP-U)=SBAc6fETULJ zp843qjSe`sc5)+W)vd0PP=XmN6M?1q@_}C1?wjco&pH}x#m_JoG-}Br)5)0z))aI* zrWKzG;5b%6hx)qOk_bEe80rIt5mGOotBjY_IMR4A@Hup=#(ni3$jtZ1HcbR9Yh;4TNe&sWG>MiS(vK`a(DY#{Bqx&j z&$g|a4iUY|Y!L4I*3RLcblXJSh|3eb(-C?6QIo`#TV_zj%{Y0UDUCx#&*dmzKVj#hK?ABT)}kg+WAd@q-tpI%MT5|~7!5{B@4+4H}hBTUurS|>9O4oT+K(V8*HU0*GH zPdL|kV8fdY1tql&IfU3qC+J14b{~sVwB{vWynsSg=`)nwgk?5g+IlAPm4(whd+Fmr zpwQ3nPzIYH&#z+|U%)mJp-zSW^6{b&p*pUk6)MxOsb5ixK}_oJ!9*OXqf5sX#FcIk zxA-7TZvyNcQle8@Ad@Qw(ntTwbM%^=PglgdTJuVzMhV5eu42X9zGav%7z+A>T{XqM zF>38u=)P%#6ZfvzW+a=~KMdw)HVm;alxvbZdga$(M6f~ER;Ta6iq;p&LVf8pQr&B@ z&Og^jR*N_<{e0=2&~HI3@H2PAe^5ii(^2|OA%UUlfoo!x-W2d#=DOGezD4MO17?qGjhh7qNuC_n{zN9xx~O;dlTO}(p9*+c5+_zH1m_to`3C&w zLz1pg$5;IUFt8M;@iXindb%a({Cr6PZsT@Z80$+K#c3i9R?A}ZRDhb1EHt$)%KGJ- z&PQ2tHc{7KXwFk%N7q^MpYQk2HL`USU@hUTecg2P`D81vckZPIO|3T5_|tVUaE*T5XYk>4;MmmJiB~%EbzITExM)3gh+u8n_V`B(W(KQ3;vUSjbBxD^g=mb zLsE&P9*!VrtHlji@;+Pl^Cj7PPnIH*+SDn9<@UE*WvdxBE7jK;Ekw-W96e*wd7O-I9fgPMd7C<4EQl3Za1-dR*Kdo?fQWFJ>ZY=c2BZ}^*4z_vxRpyh*|l9 z@5nR#nxNoG5cA|927P1mhFs*q#XNY#wPDeol&2(c!%_E**=dM3CcET4mYi$vARE(YE3yqK}1g|jy!#4*V$F?g4Vo@lU794-l$qj6)vKRmVY841?RH}lzk!S=yyiO+Qn&|OK7 zdq@19A_yT5av6IHf!?fiT_hF2daJ!E(z+dK8G{%;gzxSIF4o-g4<5kFx9!U*PhO9- zZAY*w0~A=%B6d4ClAZ}6J`__`fkHD^F648oox7A=Dr2!LV|kGANc^&urChqT{Z#qF z9{!XV7Xy}nE=un`}Jdqyu z88GnJT{TsPA(gH?zpp|}omf~ki~_@Ihazccr$UJm{|h|#@ZZ35`0=a6|1&%%@_)i} z=l>UYF8aTP=Rp5EcuwSB@EpN^!E>Ddg69za4bM?az!}y+Y0=kDFZ<#uR6I>_fuxUJ zN5b$F`B%evWZz+RBHUt?W_gkjgW!&&>qH}tWWH2@F5!o6%hKqF=N$-FNeO;$*`ju` zn~V6dvwd6jsnCS;KiIj{|HRI{{10|c_Wu_F8U8Umtd4Q1*!0Lr+`&Yu_w~G`H0xA-9TTqS*oft^iqrsgcuz;na|e~&gg|nGfc~LOy4_C+FSxQhrG? zk`M;n^#5V+p1bpY_b36!X>8lJZ5xek+qN3Jv5h8aY}>YNH)`f-e{;@YowMc* z%zw`d_^z(r+52P|J6?6;WK2mYfImwb^|=E=dMN ztD_tzxqbeefwX;WcBRA5X@lB9vLf)`5c7jMMW8gx-ys`4s4b5mwK%&r#qC{FB&Bi{E-8mRiS@-(@S^P!`*%ou?bpqYs7Gn zwEFe)gk;)9hiH*klp>bzfx>!Txv(3lV!Q_bpyi(PCh6js2q%49kH?KlhY+DGR35+m zg4VUOh5sd7Wg8c{Hg_DQqDnZTFRmccD_N~*?5yB*khO~BN$@~(B%|v4P6M&n63UiO zZE`QE1pej%?}ikQ{&E1t;-8cj!eErV zWl9yDK|JhV4kMZB?RLgKID~=E*HUz0!@Pk3@vNIWa|;}GghH`EmXUVWZLa6^7O+4n zM?ja{Ly@JSAev(KU6(;w=d{2hP#NVl8@_7F`!49u=awru|fblB|Pf4Jhn$ z4CWfaqis1|PDjs=2YPX`+}s!AVCw@i;sT1`NWs*MJwb{y!n?GGp=)~aD}|C4-B-KI z!@y`i(8kHD+O43q!f?&f&>9)q?V0%rST=$W_a$F}ZQIf(P8SvDmYIc=GFh$atL;y< zk#3oX-m&anvzCf)6&=s#uMv7Pwky|-vExRpTaVC&tIiF_ zE7=bvZ?C6SIYX{;>}GB_z+dCJZ{n=mBposSaxB4)PO$Pz#pm8+JS;p#$>&xQhc^xrfK zxU**ssHg+$H5y}xF&b4?5OMbCp?*e!t++BmR#W-&pRO`*MuboBTohBe5(V^|z*OBv z@-MPW^H~r+)1am(95nYPdRonvV&YciM+LJD-O+J8O#UXt2^Yx)%J^8ljYt}n}_Y{QU^hO5@spfIC&?_h&6b~aV67*%m4Rw zF7vzl92DXB*%mYVN+CZN3x84tw1mnL@6Mf0?i~31N@fS)I`vsp2xy9n_C?}VMS*zu zxTX0d-kG9PfL9FBeu~o82<$eTl~un%w0Lz&HdSUl1v$?`XafhwCcdkz$QJjb8frxA z$k^S}^SdliLc`;r>)e-xSlVU^=q-X4=Vb!D;fph)Ijs`FDcXik;@3I8XL>v~ZJyE> zF)js;)0J2=>#)fxQqRO@EXPCa>_`{navK3~+IcjEjq+l9Hy?ILzR@GX zFLI3yJ02VfeOE(F;#Fx*%eIAOrrL+lv>;{I;%xq-H(B%i7KYiNu`W618B8_JDYTmw zcpo#6Zy%~A5QVDN{j1;k^*YgY=4e8j-sOp|(vIZ6=6weN;lvj!&9{P;-CS2#7tt>& zwmS;-LGn09WUhAbb*NgkaCY3klgkH>8 z&szI;O(k_TrS!qBNkMMYcqn!V(LQup>-OrYBD$At&S7>&z24$0Kbg#^P-Ux9Y4fRt zHz5NS$ciQIWMrEpv5>6zlU)x{XY{NGZ{bHL-v!%|bzSd6Ne)I#%g=;rq_r_faUTQr ziAH^bWosJOdXv1xsW&jiSsWK1+%exYhCWwb0_z4kxkgC>!*@g`5tX_dh3Y+Y;B95j26hzG* ziz6r)h5Wc0u55x!zPo!FEga}+V>Mm9E@BwR?{{LbmRUoeY4hTA-Z1Gn@S;{<`36?{ zDkFNz=Ixxp<0K_E>8KM+se9)v;B?M2Q=u*C!w!^niq&(pGMumt8q2klezMKCF?rPn zH;826SIyej==n#VHQW0}DVZZdbfdLz&bFKtu4=^yt83|auLfytOXY@ot#ui{f|zge zS*mr>(zMUqt~<0>hZp1J!c=VGza56I;SQH}6+bv@YvZ=gk527+IS~eEwk*6k)8PK_ zwS!t>5|d+-V0;}dcRX9sMH02}BMfTg?w&f5s)C(cvoi2(I89wFDHUFXtSF9Il=ntT zAs>fvo4M9yKcjsD57Y0NaywE?PIY~)1(`|Y)4CdSQb=X$AFJVIPhNG~SJ*%!=2PcmZ);-96(nwLSuNt@IZQ4vQcU~(d{eWN58>Jk( ze223MJFKPJx=`2#zi>@F_wlgVWaAzAB1@F&bI)UZzBRY@@hTGc9eTc2lh!3`Frz+>b=#VS|oBKmbLkanGYGuA7XzC2L@i-g5sAb(yt=QmmMv zCl}w3Vs8x2!_0Q`-YJ_FKwRoABDLNH)OChlc$iVu4+d^Q?e>Hqeg`+2)u zb*QBTUJJjchMp1k6(j$Lm{Q&8S{J_mT_9F3Cih7alrJQz>NfeLdZcAV65*siJw5rc0l>Tg z@|a2JHH_R};0boV)V2}*ay<`6!cIn@Td&ksNByNCSCHqb`RSmopkbeK&QQA!z3#o; z4@8blN6Fi<=iKPBhf$sRt7Qqc2F%n68;PGK67;m;mc0QYC0rI~bp*$vhsh-a zj2=l2-U%dre6)+*ls=GyNW9RFsFG|97o&6NNT$W|j|u zU(k+;MayEw5mdBWEE>$>zGfVyhv{5zNJd?rM23$%6O+DCOm-kI+>{k4Ia}V$|M1wF$-@t0gjM(0_ML6 zAKT$Cr5_OSK)aYU8wNO3(MQ-~82PH3Juv|%#8d~%seW;Uif+MbdgyU6RIL+?M%P%f znoYE?o~;&h38~cB3D4mRb({qN_EyifKb-3-IP-~qfGiK3vD;vPp-q2WYp^9TYuzt`fuG|RQAxHKt#nejcT{sad z6de3O>%)wHU+%73k0G4$&+lp&AM_X+a5Td4MHj7`n$>7{9!h_hP6S{D@VvH5ITZx7;-W$>4i#FtjyDpmTRG}Urt%I6b;DOCxWS)Q@d%G;Y z+K|T;Lru!-j5`G9Lf}n&s|k99CQM!Weg9|pa%<0pxCh`QrL(cUF!~44zV#o!UZ<$5 z&%L{Qb=uAmvUtZpPpTjnHpSG1Sh_Et9)27m)gU&`0{oD9BJw&BkS8fBQytjKw-VB8 zdC|BN=XTuw@$2RP`t_XvzaI0^=0sg`zYg1Qnv!#7UMYI4e3=TvZ0th{=1^ST2-tHw zXh^-#Jk9R2clMr47@M7)G%~>k3(0YWux`$6h7EITPj6vRXUIb}PA(vZN=)#1#IFW* zp!r|*y3Ig9y-qJaS(I|{wlmKU_f-!;?7`pQ?D>7)cZ7=4%n&V4CppP#tNh*bCqsU^!smV5=Wl1x zSLK3f(vV=nx@z^eU2_dyeX$o}6rDW*JFFJ3L9XZpn7GAX=_g1veVsyzsU9b55jAl8 z;zD{j=xkr4xPg-$49^3IZ##DMxW&eb^bQZ+{Fu&_@6lklrB%<=M$p-8G1R|>+2Kbl z5HZ%VTGEi0V`U59`QAMCB`omyPg}mf@$}_-aTW__Z5TTY!S^tO$bG8u0&o#FzzGsB z#RAgrkO%+!vEH(*la$)51rQHw)ZSp-RT0F2gKt37kS)j*OH$fkc|qVmfz-TvNqKqI zkX8pngaR7a3||wQBbTm3TSvd%`01CS@oqt(vIyg0Op-0=>q&VUo@$vjxsZhE1zl|W z@~s8#1RkuSPx~5)xR4QHHh~?f;HfYh5H$}n$0*>&wc9D}H)Gad@(S#z+8$Sjb2CIt zmW+Jl1pRW-T&B*z-y#n~7^udF7S}4a?^GOB2X9K%y%X{`4RE+;^HTkB*N6m44E8ZT z^YsSu0&ypLQ~&wO<>nCzVL7Nv%<5&i;f4bmgNv)x z#G{Iyr;d0$gY>#6FvK6Udh%+@K>pIfd@kYES?I*tD+{}KqW?4d>-KmKhp{zk%LwL_ z`C5H`S^dUGZTG?4wVao|*^~jF4m6zHnrGirWX?R`bu=0-_M6q~>hQhbxWwD9@9E^l zhA+&#f(Sy2h2>sE{W8YAk7+iR#E={)79A;i1Mb|Fr{{hWil<@7 zV*ALscpY|qbnj=1=@w8>zT+(v{CWG4R-r;m4MDd1d(z^TheDyRRn4GTCr}mx#jqTD zmM7U7xG$^DL6U|uw?eR($Zg6?ef6=Xu^a3_*osH&$M?0Lt0@AFhfHa>&8HyMIB%#I z?vqTe)Ij04L+la~uNvAkK@3KZfag*9oVKwPF59&VEYp%A$q+WuYYG2DbXP`fP`)}4 z_Q&XMo?G0irt)S{NzwZ0#OlKXE#w<`+2yGo_LH$GjL%p7`E`_Y(W)^yQ?`icVj)Yp zsY2YbufWb(DY!KdHoQW8PAv^q(}Js9Q<6UsbZdDy=Fs4XmYLSBTGO268#o$ZQ?Dy; zm-xIctA@R2PgYoa?uqmjdK|TZ>Mzh~iL?1^7DH|^i>O>Pm`nWl#+!_}%?Gl3Zxf4m z^W(Qw9M#P*T-2>6P7Ii?s?NND+3~b_B;tXKQ!v;6O7m-c`YBwPz8#c|yAW$wg{KRR#&}Rfu)yDv?LnVBUIB$mfIED_aF{jeok0&mp_O#U^(~? zIY-pRMB-v?!LemltfzmLzic!J&gcgBQ#mYoEvFzYE4>N(gR)PmEXZ+y=1*IL@65Ukoa9FXHS9e8nU2JV1 z-dLP*G-e8}2Hhk5{-u+GNT~F-N1*|6sM_d?HAPhch6TOdMb)e6MIS1OlO&2Q!sa~)hds|z;#n}@|CIE6CRE245M zE_~7Apd#vxoj!p7mEy#v-TPt6k>3ruKivUARiN1H5*^1_v=;Qgx=^_tk=XA74qHke zL2fn(Ao(-eVxEZQaq2O(Ro8U1-phuoN-`*>PLF)BbA7CyI`G^n3hdoWgc>g4b71)l zxP8f0m;JiDmeTTgsdPPuS%w$RJ+4+tQw6oy;8nYqj&)G1lM9MumyR?``R0m>No|YS zm7Lm1h{~M8lP&Ze$>b8bSIIb0pMLE`^hJs*1P%amv-(|`As=NO%utgvES204@tK8Q^h&AgaxU2|TK_lbX z$F_@245ym1?=+(q%ErgpRBp;YDOl3Y>W^fGmB-__nL(e;VD zYm)qQDN^*i|M~IJCjYu0@+#n+?IQEVgH8m)-=iW~zy0Nq!6@zObgr}goKoo9H(aOr zd#6qjFZ<7m7jS|aG~eI<`P%5vESLfFzjf=F{}mIh@h)}cR=gmfs<3f%;Mp4(Z=K3| z0ykhWTK7*TyW?~ij^lLuk>Z?Oxg?&tFyAk#qbb(`UP7~fUP6DAMW5P)?~Z$6y~atu zLO5{D^1{P#R^lcny>4b~*^%=g!p=eiUsh-*i(aOu{XfP9?sCBQAaw9ZJ9*~_GU0)g z5c-ifnS9w^4%)qN$@2kJeSTbM>fsrAYIxlrs$RXC65f?XYDX;y+r(-Ob;YeOQCuml9FVZH&V`jsIcz*x^LC|IoOj#bTZ5VFzU1Dv>P@H`}E zQ03JZe$#hGkl>emL$72<5h#L8OWcQ=bAmr}UY%YakFNTLUf1jBcEd(yz#U*4OGDSQ zx}7?(j|&{2ik5KSZ1wPwu6eDtp>2(9!_0f0 z|9A}7i&_2z2|e3}a$t`7xA^FK*Pi8BcaMIpJngha$q9MfWJ zf68wdJh7)~JTNNw`4g(uf#QaG>TsFxq2mi5mVvftzk2AurXu_ z6(Wv1dB?=X!d*3&rct8GDu_!g``EOt8v&BIa0bgr7hSp^W$QvM5&bh>ObAxd_W@Xt z)Qq8wK#XeYqP*49Wxi&Ggtw7h08V%C> z&|xL}*uj|Ff3~Vp7!@G<7i6fJ)`gVqueR|ZyO%5|b3d+BQf*H@iA=_QEMRn0`i--- ziZ?(s;h$iY`DnyxY^NCs#oxRNAG)vDzyLTliUAxOy}`?-5^JWu(4RDEf$)9Fs0oC2 z4`dlN$Hi$lNfDXBXs+q*Z(r$d-P_xGJP@Y>cAD*8{K2j0TyXn1~mCG;K-I;>vP^eOaqqu=F!C=q>X zGuxfxwCGcjJo*#wW5^;d3;yC;Emy}Wh*#&+7kj1#)!FB_vHW2Z+6uD>bwin}!WMSe z%mID22ET!QTb;j2)q~Pk@gz7({)J0pR?9BMA;+;coBFF!t<&weAKSUs#aGyEYn2PV zUbVpspw!5Wiro0036&z2^?E_d%mLxeWAgfyfBJQ`AmQEqz`tT3RV=?GdF|=t)ky{o z-3nBgHy{ZYgBGcCQYZtzyFGl~ob|TkoGjLYECM-LBZgBnIKnDT&?#wNxBmc>P#g97 zk_QaVs#Eq9HG1=~0%n212Mdy3j5NRO6Z7*)7@#$vT{FP^j2gxOAp?^Wva>Gh?)-a- z)NxU+h3rMe`1!Dic~l0OtnZDA6Nm#Gq7;|EmU{wUbXWtNg)hXM+g5h2I_Mjh$B$Iz z?HRzeM(c&38h+)biT%mqoCKiiYpuK-a!Gvz{T>w^=PI+$zyCwkXCS@PfJWrk&hAI0 z)y7y50pgVr9FnU#4Dz6w8LJOmU#C>OM!yDl%&pGbZHxk)M-Ffv4=VAe4JR40 zJ`|*zQKT~QrVft9ZKgDK|75Q;XkKB_v6>XGV9G!ItwFCrk6fo%1$4Z{4R3rL`2gX& zeE-PR%4)Vl=>qN8BQD%V|IE8RtD~i|CWRGCmAOgf0R{7VI(Q`uyE~dG8~45Iyj~T& zWo=?w!PDV1q7DzX*F$##W$;Wv+*qI9T`tp#PNVMP(HqD5Jil~3VP!4-? zgC*k=wV*AhK=wf|SGPlbQqzDwpJU>PE6 zsvCK-@_X{joCgwt6>4q+`)F?s_|EOiN$~1Z%XRkR9js}tIScr1w58R_7VN%FD^K*m zYLX1U$)C})O7zJSTAZ6(27hNlJJqE3k(ox@kwh}D_n`G@pLPr)F1QbbKHsopI>q_t(Sr*SA9ycv6e$GP9NjBF%dmYB_zG%U0D?8iW`Bm9&Z(7#4%q?TV)A0 zeVQPRq;oFm1HC3#TkT8M_y#>GsPalvaY<^!xT1L$;sWgId4`@|2UKlW3NkTH#*<&q zD+k$M`1PlY%@Mk5jM?qI*A6HzmA`9Pu{0LRXZF8m z{ZeMHcPl`lTLQBc$mV#InjNCWtbf;$+n8M$;-ITxkh;HIh!n@T6sFNN;|$p zA(Cc0JM6cM6`Vbu?xN4ymQ`}PIc9EqsL7tv>^OGtL>QQ;m zdRv3>_fb)hli#e%OSuX1>UEQ3)^#)kj{L$7lF@sq+>aG4nAvSHR33YRU=eUk(R<(V zC6P)Uxpu5;FkQ#mqB#?J$tSaNTE`)53XO1IqbW;4Qw*YGPT2FPjeuOI*81HRJ_9+_{XJ{AAmVl(xV!e8b7-r?o?ZmGpS7|V&^T=p=n2g0sPHhKUSyQEk zRVy@VTMY1}uP1V;msbyzuuEa?oU*O~;FgF==Duo1-y4mpVH(v_v+FA>t=FAM^%976 zi?dzbe;8Ax>}a775kK8Iwj-9H?I2o!y0y!osIg7my>h~+1fEi@Ne=RyT$*rZm0BNtp=#uT_^f&lL6{>+km>=-`^kq#_B7(+1bt* zHuwHw^&S6U_1Hh#{$Taff3W(ef3W&r{{^ehX08-C`EPYQmVdpY3Z&8hCQD%`OblCA zh+qReizt+P5Y$(%%)Qhji5K6x{g{QS&$Jiu78g-i?j0^IB<0QgJe%I{1V8q3Lyy^+ zNuq3b1UT09Z_N5{*z(qYzqGb)eo@#oBauhdSJ&CWnVy`B$ozbNUG9D-x&AJ-5YX_^ zk_NfvJTIM?7j9T*hLwZte``Yr!o--wfPKSgkkMpjz!l*V-Lvko2u+-aD;toroy(Evh;s%TeCt)&Y?x;5#vLxN^nV%2oajMsg_x8=h zu>Bt^^$uL) z&e!{Qc^|#iPkdJU=Zqadexe`R7rf0&@52$c@1V1yh;dj1O1tZ9*BKs+!TRXGldbi* znm>f@T0s%*fh;C}?HD=^pKLKQUYfd-;JyW~pT(+3fbXs_#M=7DgMOAx&;)2GxSW?N zMzrfQv8qd<%0v=G#v;b#sziD9q-@a;fFJ9xe<}P@)C-gGVQrCwA^qnWg`&|6_vn>0 z++8xUrVKKYoU@df<%>vF0mBxwUI@(6p(F;RYgmw{y~r9R9c#2Hh&%rd4O0O$#@#6x znG7W>o?+q;lyCSET69Az9iQC#k@pi4KsG#X4BX0Ro+kB&M{vlJxuPueC&2O$T0NMm zZZ1ik3j2C}2f^w@cyI#E&%`|Y1}YYO)FZzvE+6W(xmJn#y{HJPOhTMZ!>1DziSw+- zj&H@d^;Nmq_eV4kqkc><{{F^5gbx`LM2`ZYx_VzAcwRRS4T0|ckUmFcW4MD#L`-5sBoke;gE$FAcc=G<@R4<@?#}FUqem)8 zXS`B5kO5~rD%P~OM6!_K?jI#C00*i2hqj~=uR041!G}>I z4R$W+T$-qDGiHlt2vS ziL$zaS|;G}TZIMuouGmBOhy$(VFPjClKNk<9v&dpbH0Dj1TqlB9{}^(8ofc|iT||3 z{j6?d#{nA3Cl=u(54hf%mb>O?zKT8zwDYBz*#%3JC*Hw~ff4+!U*I+0U}zgb9RG+Y z2#Q^{K69Cp*yCwOZh;2(i=S5@ey%wQ%=0pZ3Zb2PQ(qlECAJneYMoW8kMpad|J%@5 zru1`tX=xdg!~DRnO%-BELWPJIZ@kpkKCn^U)PTI<_-qDNaMRXm3bnXXztbMbN@^Z& z+dCPYN8Q|=TSL@N3gnzjn{Xn(>5E@az~$;}x-E*ZIf_PnUn?HYF1!*7q%nrZ%h-Ci zPX*69DB`FAXuXn9BGC0;w7w+7Hxx(E@!x2D_!t1K?``9%Yy1~lpASImrzY@Op}=o# z&`$tpeJkFOPd9_}2MfpUjy*9##Qmb4vH7nbm`}T|!3W+xIpx2{LO&-rS0)w0Tj^ib z3gnk*JjZX8yBXd;?7^RTzUlwm$hs)i&PZr&kRdStg-sA}TXt;|_1yy-ZNbdM6vIj= z`sUF}08%~r^pz^pI+R4R@Z~$a3K!}rnmX_vlWWms#2E6@;re{Xw8C8|Yj#X<9gZj~ z56k0iG3}C`N$uo*W25fd+hM}4vNONZ0~Q@zsdBFqa2#+Kh)zr97ty6ahtT{>ueBhJ z)B6MFJZL?GV4*guxDWo~wV%}Pd&sh*EbVEx$f+57kFt{wy}j9yX|n6?n)M($_87ZF z&$Xxo*&mL~o2cJ3*uxt}!*==nI`JsQrmBRy$6dawTvU@T5xQ;7olNssdQ7m7=CqnT z9ZpQu)q`XWL5iS=@Y-B@uAK`%-(#lAY^)nN;@R*Gtx;;IV1dhs-hpztF4iSS{$8jC zTD~yG8AMaHXcG=PgH-`~&P~lt&ZBioEfiDy z%OdoOkU+_fG_1-hH_NE|N53(+B%*{j3RQ@6@?6upyh+Xglj~`Mr(f2-Si83x4{GW7 z51KrB4cdoDIQo$Z=x2`m-Pn$q05-T6?7${n3D4<9o}lH#c4_U?rdQ3V({%dsfd|Rr zC*?-*^rT;Sbhx%mB*dU}y4#c z7ksho_h*ABxwzK9@75ov_{s1D?uafkN(;N|Lz*_r1c8~AkX8qx!IQm-8o=_;1S!Rb z!j4LHERcOfm-;~K+ttrp<+gc_x2&a^5|?H2shCvLAL-AZPt^i-u2S=iRsqkCIJ&Tt zU>yxi54{PE^H&~BoidmWt{}Z6Yr%^fLqK5 z8jT0>QB&;HcV^K#)hXZqB)b$&JEcCB(=ho~N0<|9o5t$KlfofAH!J^*@kxAD6tR@- zN}H8Ne?%&q-FcX}erXk>sdD#+su`r615)Vsc$BG8Q;ivA5J&?2fzFN}eI{Gj;au4! zgA=qAdte-KQ5zUlyN(yptIB_ugG61!UF7vpx-7!qqT42MG*xCrN8n=Gv{z3bx$ zH%|@>m*530_J22KhwkRAG>B;(xEZ*o)FnUA^mOP<^cxXkw9qSENYS?AVBj3*pj3Ks zwN>a^s=s>gR^-S@Hr2DHX%)&>4(gZeqQMvo3=ilGNNjecN1*K}Y8ZjS;f|r4WW28? z3?yaIhlDb6*Q&2UsQhqd_wZLWXRx)IjWlpkG zbhkwssx`(XD(HsS_yYL>G0#in&Y8|y$JQUNlC%ykFWO^aUc&SJRoQvddI^U zf+V;{SwyH!ph-cHr9m|%pQ>SW33KPKa@zeHwdl!VjvKN&W{opy3N6%IzyIUM+h^M9 z^^o)UzE3hCtE~5pA1t8dtN)@j7e%a!>XimhEIJJUWnyf*f}x8rE4}p7y{-T z{znG$_H~s=^80OA#uv5$ej3d>A`_vn+Cv)RHHe z3@ch>og>UTVC-o$geK=$liu5{-82HMlv>gQ*+d*O=s5U;nRQq&g;Xv>MfFsWjA;6? z8%7pSeNR866RTCS{JONF@A4$%rMAu?XWl!|VrtlGJpr%BxxKc=)Kxio%|=J2(shU3 zBpX1`=mgH8>l&|O$*B1=ep4HMMQXOInPYTB^-bThy*4f%GB#m5D;u@(t~pYQcaIgc zpaGL)cbZL`44Jq^-y_jlJ}WbtmY5jm5oN_VDmFAXeIaiPsp!eDY5k%c`$|~XAlPUO_*PqGy+$&|~=YPFfAoxmc zgnN%-Rgve*Cv9{pOsELKs!B^Wgjdg{c6?C;J4F%-kywNZp#YP%sG#Rj-QTS$R5YHU z(ayKQj;$os`>3qgr(xyMC;|A%s2dpd zt9dp-E^v%Px^tM~3cM^dein3F#&2V+CQ<3ya}HZL=WZ=U>>)>%z|2KqZNA+Kk2jqE z^e^w{X5q(w+n{G-{kNLavDn2h^J&l`X#Xz%Q>*^nO?l*7$5>NGtdELCqlrvGmG19H zGOBf!B&oSk(#vp!h+xSBqL&*R-s6b-IDhmm_3m~-lYz&lK|TWn7tY@kET$`|%D zhUdi|4>v>&2+|huMGK^THt?qLBsmNLk#hlA-JOqviimu4(}0zO(>H*m9+M}veX{PI+4f^JPHs}vK0UPw$f*N9bgQK>8O3q)$y?Z2mX(WFvMU33# z;R_-1*m=ak|CX5D$#VuB?J5nJc(%L0i}yNKdQ-DF|7zv|;e+s|zW$;&`0|WIb%(bk ziujCnZMgfG!y)f;(mRdgFUiJ`EYr#IYXj(n11QU|lSOlbQA-`R&x3#S%dqbsLsV5w zi1Vt!sN8+1hvB;?Fk)up={w@zrG+J{$Rmr}%~_;^M`KyGYlq@bVTs+{WB5Ko5X)cD zN565`PPj;q%IIH!tIh+xJV*9(jm-`%h@z9bX7TYr5G~svxq^lZA^1AN=mK(PlxAQ! zszK%xs;w!976kf(s6$wr@T?NpgQiB9c%|-jN@L3zF~}mu^!?-4!o)ILeX5d3Wp43G z{3#x3wPiZNVj^G}Tuz~Vk#?7Iwv9s_4HUV^%WNodW^j zoH_1NI};%QoMZTBX@R}J2^|wY!m0#^!kW?=ubKOK>0wKlJLqfGd3a7E5YrW4g1#Xv z)!QMjLL>J0L@g;4`8;(Wf_wr`5%@6!GCIk0k1aPq05PEGt;j zap%gBzao(;1e$tkgrhf#oJa}yD`o|nM;bC;LSnz$7bA?r?%ix%DiFW~{aSAYV1nLx zJ+}IQg@zR?F(kuR>dyqddiuJ%0W>V#mv?ueW)G+bLW?$R>J6$`GtPX?S}d}&8`9Md zY2(!Hsif~ggerVgk+}DN;&!SM4U#&`yvIevT*iqB8kdB~};WZIiYLH@Z2^E$@ zv^YJkvDT7ESwR~z)&zQrB{PY))zPnl=tHdtJpan|9}QS*i)R&v#;AFT$a*y}!oPw_ z{|GYwnTm=RFcH=qBT`lL&jNk4wpRNO5`xaZYEIbSmNRcHd?6>6Mo;ZOYEB^6Ouc2+ zzttQy8bE z%%mF~Sn08e)Ph_i49+6-_u9KnU-U6#u5~uji%LYT$$imS6iS_G1?*GL4*w-UBi#zUr zV*NTi|IU%oe`5X3+#r9t1JJjBV*Sd$vHtzvSYPpPtpEK_tRJ3RTfj2~wA_NA%}uLq zcqQx#!aH`X`pw|wGA5{^NyaYbWNGF)dEgvG$2-pi1qey)XVW*7DVD3oU=^}kYK-oS zea&Sf1Qvjr6X^~9?VBc4YGj*PR{YO=YeCC;w`gT25Cn#)f2I0CA>ICDH#i6-%0Nk8 z7l2gXB8p^G;HE(jRPhvQjwTDm3hHmFU(s8Zaq{(Vs((%jLQ&}kMtPK4R`sl_5kyjH zVhg4i43a^w%43F{g?|pUHV7mH)WB-=no*muqzCXtVeWs|3-N#o7ngu^fEO3U$y=jptlwOl7vG9Y?x`jqM(B^=d>)F#V&TAt5tTsv)3iZluNnL z$=ic#i*^ZFGTP`7xchrz-J+ioo)J-s8A+zV((q*563tI6xSL?V+ zArGutGXr6In}bwGV)jT!gI5E2O2<6M=)_(^OB!9wWR9vzqR zwy=875@C|>yE4V0wF_WXzvOId+qP*X+>blY>}kLAKc&?h%xe1^x|-Q|sWrIP@5g=j z=KaD_Fc7f+Ym~Xf{BC3Ak+U0oahoJU2Ynk`#w2nvJ}t`yJC*{u?EaWno(Rx8e`hnY%u|n$4jET$5eKtMVEKYaV4fOP&H#x7mbX$?cO6 z;ve{iD6tpH$EJh3Zlc5YA?wiyX2#b~@J)QSniQi+YFi7#o13{&n;U$UnDHfF-SI3Rq*7GI3XzM4<3qY`zVoV^n+P?+bFZVy zfy0MRk|4?8dC5sbcasJ`R&|@k;v(9}w2B5e(a>CrMy0%m&CO9(FP@lC86uZd%^Np< zZ-d#yLM$aUh`Bcq(Lh4M*4+9?&0!)`eOg$l>=AentE+tYJ3+tui@BJiSe~Ax(Wd^j zCYs~cKweLjOq(td{E+>DT#RC@2X51af=WIDm?yK}Wd)IIJ}nL18|&;SWQ9Z8zarM< ziL<^cwQI+-#NwASl^*ks+f#MDrQGH|aYD`#Pfiqe$anbDZ>9!cUa>qN&C$E zcMqebVWlsQG!I?}yqKRWTpMr|_U{w35+Gq) z9-FkA<8{h$1NVpEma=x42kVRP#z#@KT|n;3Fi%aILAYRH?}m<>>rUYyCSE$+>wPG* zGuATDXc_Ht7!rdGS;L-rOP@lZ^ft2G#*SV-3_5yS!j~a z?^sUDYHf^|U_P9TT{FjZx0@l$oLceR&Vuu%*3V9M=+b8IjL{mqBYQwsYFqyW0r~~& z_4}!UMa<2#LRZb2irk*Ul;>$k9%)$byj1S2o4rqg`J}j2R**x2s$ZE`J{j^>f*yT1 zRPF(_2~BSatd>PY6eY4~C53c$c{&Y_lIkG+U4vcsUH?40 zWUD7Zf(dJDTK|%PCU&vI92N`PJ6#NkbGHsQf(R;=>=vCa!e? zUnT78O|<8Y)wMFW`~=vLi6w*Mxo{d1M{GuxLX}cX8*H%FUJZDHW0}9e#W*j~SyC`! zld+R;#w#E0yUk`B^%xe&^tq)C1)1d>K02aTwMmadxs`Thhfk%i_rETvl{PqOoxt@A z96Nifti4)o8(}3dNKk87z7EaKlY|0q+R3DwY9`haFQ%f)(HY?A&?c`Ry>vL4Z)B_} zU?!#ct|^L+Pne2qLH6}1QM9oy#3n=cPt6}6*oGc@LN~j%KLnX7|RuZ)+ zAbE=I8zFad7gP{ci{0*#ca}^Gaq6a_pRbSH)(1yL@o3Sh22nML3cx3cy3p?FKRFW4 zxq$J_PVJsN)L1hX8)YXBSc?TX7M&k=wP z`b#f-zy`e%V1r(Fl2oUHKB>#HWo%`qar~g&rRU}YNzU2FI ziPmGWw$3NK+hyu9{n~+7vr^!mHm=L$y-#y6pdOtHs7JdY`~K$mj|ZcMooiRifLOnf z^ncr{`xiaR_Rk|~Id)yT$+x@b15yZd0|W4P-?{Hk0jT9!4G+u)WDg^2Gk&$Y8+3oF#FGM=(cQ3vMv4_2f)Awu0jl=#>C;3Xf?Q9|k_XzPSI&|P+N8goCGGo0 z{c&~-O(62-p^f$BgxH#x^kb$qAHV`g*j(9`o#&wq_Ac-M&FFgyQV_rZJ)jxQ3=;lN zGg<;FH&YY$r~Q2{{(b(*rPuGv$8&2%kIOT8N4HTNbwp*<0QI7&-&pFH_G}qW~9vhv0@h zLHqy(M9Q1cD6`15 z{92rN;|zTvVYEQ@HoWpWZlK-~Wn6hDo6<pEX{=C+ zosR8Zd4)tdYlg`B!82N~^56N*bKL(j<*tPo*q@! z@jB8t6_bYi@3A{sYS-^JEyl{P;pwG;%tg?>9t;zYb7S-4e}{o=ljGja36O z-3>)ONNDgf@9mGe)dpR_o4!EGc@ly{J#O%6ZLlEycLIobltOj5G0f~X zGUH5-%H`so5^9)*Js2nDohLd2mMq}8I4+Y=j~*NTA2N-EgrJL%`A|Wsu;UQc6``l| z9gs(yHCxfWNSL~o>%NOj5IHhe77G+|2F_3UJD;zH-G2d%K31IvNu*yQpwSN$1JOnJ0aub$V^Jr2SzfyM1o|^I-2!}09n{Iv1*9HO(JH`e-!jjfNgY7 zpA$1gKmeG+y+gv1@U^gQ!@_vKlBOlu0mzGQ+z{ewW2D>nMPcrOJ7F>o^wPIzWP0~8#%LAMT`d$7g z{~!4;>!-J04ffJ`7CrjNgwD)Uf&y&V-(plbmKm?%XenmSJ!(4pikfQ3apKIE?_FQ= z61xzR*uqbq!{ko&rG$TZAih#B6VvSFi;w)KL{8O|^1k?ke`8_NYxYlu3quf<2oj_WR33Lk{)f?_4(qSC zLkM4fd<(8j`?vB}4H2 zmgyaaBz#56VgrOK2omTY!`}karX*m#0>)57B0KBvZKvP6i`fpmGnIN|JXt++7PvW+ zLsY@>dcEHBZi2Q@ym5bs1VAaxTYD}fMs7YfWOk`NF~N2|{DrpVP|TavDtI1*8oH-& z>He}w#RrTO zV4Dytz>;#mdnRu$uc=X1K@V!h%?D&SRHG%A(%$xtW%4`y@8~5+d2|Fm0F{@kug^=Q zxaQ*A+0-Y4@iJaT*6TL|Jou{U6=nRY82h8d;$*x1s)9ct&c0S3v}}up=EJ>bo_E-~ z|KV<3k)8$I6_sZq_iV%(G&v8|rZSkIYkD#|VI-jmiA)POY=>RlS>pW+ zuzprHjR4EBTIuR9Z3C>IZ?@N-I`>+0vG;oXG*}fOqYO zAEy;rH$o)w4sq-AmFKD*pM6=ONq3nZm7j>Z*sVOY#nxqvL1fCG8FzA<%Uru4)6yQg zP!jQX@55DRH@#E7F*a0}xXVlXXRBLyE=WTcOPS?YIs7+&c4=(^%%9o$?F~(3AuAXS zDaP!TU<^r(@}q#v{>`7wau2!C19 zAdaqn!vxM|)fO;|Hh9m$_SE!Chz-gQ1#14f@Xm3jA5_WW(2$-&yf1FPE*Cw`S+YG3 ze!eTq9f4fVE#v-Bh*y=7J85HqHnb@;fDL$JfOR6LbI@2qv4u2dl3tyhVbc^>YoWE8 z$ULrD*0Ff~fhepw%Qe-kHkUG^g^fM>Kr!0e=AI2e*WJDln_t~(UzuJV`U6Sc?fjcR z6Od!=BA*JC*vn+TD=XrbxJ%x&h%pz`1L+_;^(EAZ)ZAVLYVGxUR#=y#;=rV|wGI*O zF6nNCgKa))!RnGJcaa@pnd%RTkc2{#I~`}t_XC!(=c!u|%tq96_XYPk*~o+|SV=;N z)_Te!^~~|RU;f#{UpHLj?8(3B?}Z0v)@r2KsN&<3TSrN(jdmLNI@_iBx2^(pi;%hP zLV)Js9gtxZHD-$Wap(?(O^e0ICdv5(ZQRriu8&#RC?Y42qi9_9g}v-WZ5w*>Y8pJ=eQLcg(fB-NQC z-$oU!1Xc(uWj={q*}G96ovt+r>V~P^y;Cj}7k7x}Pq*pgRx^`xh^DS%2cj;;trUcaq{kw4fYR&n)W$1wb-W2pF<3;~pt_&;TeJ+2p zC~#Cdb3%PW@-)r7R?qJORH3%KyOexf>CCeHj8(~IqpS0{ki7OehT125S#E|WM6c1j zz$gh`CR>!Of$i|*QZ?-Pz>Kz-Vri&~AU0TNrL3x65`TnCZwROw58c36Nx{=QA{{TZ zVI#s>Cq)xGsz)Q`@gv?(#$h3?uJzKWN+G<*G_h}nIBro6{j6#6`KbqO70V1hkrTFu z+dm+rSrrjJhd!7?**8hcwU?xZoF{aQU>$FR6iQ4Ad0GXT__2aY32*J*AHt|EC+F>E zy1&;q>dr4;^5yBx%N07lT0M3Otd)b9N)`?DTCZhIJ<84GLoz9U@M2ikyD?n%>YO3I z(3CdgY+6TCYG*e%`G7LLGSXON(?yP=^>n{TnVRGzLywX28|d_7#||s^Le(LC`myQP z@eLY#`eSr?P-WB~($q)++Nt0+ zP4}CmR#gL=z*+|fUzBYf(#y=4-UXsR7{7Z)k5k|@3S&)P)cKV1i)e}pK1K}cNouRZz5)C+~YOelU|7pZ-L>kKCV?y6IPe~D=5 z0x#l@MbbpPH<9P)q%XF9%vx=Ix&vXGRTz840la$frJxJYVej-r0{U@C^K;X>RdBLw z&RV_ZxYtVrwj_aJR@5Xdqt6?Hyom6Ub+@^n;6xAA2l~@x@OBw}SWgYtPsiZ{U_ru1 z1Gk65-JD`SyRN-^G7HjbZdW1NxlH^EA({$%^R#<72E4TOb$QIqS;g}8M*m-9P)U?B z>jxkPp;G;SVvxCsfw74rBkTXJn^zMGc~ZJ^!#p5ExeaYU%<5PCZ?`q@^gC+Z|JZS@ z#KS{@LR?gOgn9INB*X__I;*NK8k?v*%Qz>|z!d$X=5QQKye@YicBx5KQ$jGf(=q3s zIF7==nFscG(9vUDmU_0KQE2L0;=@%P->pWB1E@LI-%ra`yBUhm)d+iHKd`4w*d_ZQ zLTUp3ROQovGN%vFC{_4CK{-4^gunl%Q37;H zU7{#_zm)-Mx^K)m9Jjk|E)KYAAow+gyJj#KlF+;66ML9kB>OTl0Z4p_DX7FFI|l6k zU~{V5NnTX$Ly^J8LQ4)+CUIcA>2eG59CW^&^`|D|7(;G$4s`cylsIlaDcYzw$gvvVm{J9m~?n=VnTM@H?{+; zbiEuq|F4y9z|^pvKe%t}L29>Iv!G4W+s!%3{1fxn2Hw>L{|TkD@0IY0$PHRoUO=w! zd1vqd+%g%zzsqMHKL6dzaa#Ic%`oC(I~GqlAQIVUB=M7bN+LvhWY`@FN3;)OSsDsw z>vNPC#>45dJQ(EaC8%bJb0V{YN{~sI4kdDcyBkFYy$0a!&MTPA;!U+^AA)jhcA=n3 zsm|^Ii5du7BuId5XMgI7>EF&tTOg(LxiG=6zy!U&YTeX=meFPtPRfT z;;;KU2dNZwaK|*&kAb3MR!8o;TO6CWkbcV*#I9qoh4C|nh{PE1PZV38RFVU%U{G4T zAxXwZw!<-*dVX87ww!%+|Ly0z+r^Vr(;N0zn!;o0;00P^30#s@V&a0h0Hb0PivNh| z6mcA|3KePDfS5|qfG7Lk+mw*D-@mP1yxHLluYlpG&h9}mJVC-O*wV_&-TPD!=cIy^<<0f=dsUM;?ns_P(P<*j`k0 zU%m%KD8W9Yu|~#NwWB_yM+bc0uD?HO{h~xjANa3A=8>V~QeG|jAK*ssRfdQ)E;Ggz zq{Wjt#)ey;Jm`jp6My8RhAhKIII^~}7HA1~|3aySmgEgVH3uS7E?V~|oyFL&3N7+G zQ}MZ7p=hjmq%nBWwf*&6khO4Zqx^c7;n1TL+9NPm6pfjRHOe_)mR*a{+xq+6ORjKx z8`arb^blAiL<){>1X%rd=_&t6qjsRgJZW?RXMRfFe%*Jd8l2dmNUi%}YmJ~51u~C% zF)x^4lsvmRpFk;$b#_w#u#|)VDq%A!`R;C8){YJwCRo{BkBpubQdKjg;*}%v7D1$3 zA3)&E*sq4%?Ef}S^H1O{b@aPrc!ry7DYxqfC!u>Et8n2^@Mv^gPhIaa{~{6@sOcV? zddl~JL)m%4yi^dtQdh8b2#t=Xy5(Ns=&e&$-^~9DNv{?Ur|2|a*6<}b`z*X}mXZfx z@SYYQQB~~)|4as+m|Q+VHUPNkxMWaH^g?Y7`H9?sFb+O4p7R1~<=xxyWU*hA?>v8S z*^u?TkdN5Bz=l0Qr~1o>sIkRKtoX-d@1G|e-!-7qG*n47kUWw;oR`ZkwfS=%=1mom z6&?cs_YWM4LFu7i>y>qa2^btsO1;IVHyp|%K5o1HUuCu4Y>;0$L*_ASyIrP9@EMhhyUb|O`lb~<>Ku?*J50OP$e z-n^d1&vJBs?X*=EV^njcRR226=u8Ia{dS1yH-Md^LDQipex^oAjU#CnO}1F(k!o01 z|3=NWgf!2-*j4H#e#&s-1*UKdMu~jz>G*>kCZn)t>l!Q+*Z0 zuc-R;GQF9^RXKC4kZ>-Qt2lx+wt>nGEN#DP$9~ahU$T$>Jw{^{c(DG`V3Vt<^GRD? zjU~7_Wy_g9yTddxJH5P7+YQZbvv7HWD+>cYwgAC3)SDN0m=@T0l~!E@+iN98E^3&x zLaCU_=S;29n!CiQ#6KDtb6l!gaw0&B4hNEz z(rS=Cb;lhWr9ULi66w|)tgNjyyV5{(%GN!LebbgcUMC!TI1=3Yd%4EVNr8CRN>j5M z9(y;4{0*#7MzQn}t(?>mgDuH4>fd+AlvRGsrm3n*JxXS>_p`o$qPEJgp(+;XJu*2<*luM{9tmL`Yb^Y9`VUCzMgwZZI zRpcSx`yJ1gxw0mY@sO0z@JqWqwm9rGngY!JGRKKp8q%<2bX9*dg++=hz3)fgl_hHg zmDp&yq$5~OZ~Kz{X6c5M_UeO2T$m*XXBaG}o94Lf7E=Qi@W$Ih1M>~7G$t60hxX=e zcF34YnL%adq;+<4Y3AUb{fcTQ53=0HZ9{}`F@23U8_W8TGnut(wTF6awXc~3keNPa zm8q9RF2z=ptPPLcx{jE|=Ui4ajk5sapFO$?1oEYJK6KY!OZwwFHR!-%HVvC!!}_6k zL0q;)Z8P~$`hO9*U<%cpJpNV?$-7p$pG?io7c8$LiedN-%hD;2DIKM?3`p4o=|mKq zMJ%L*DwWWYSWT3~l zk*w_WJJPDbo|+#yHM%pb?MT&s{RJ<^mfXZJ26El_O+|$#NXpAK!ZD&rO+J zH+gWyMc0v(XBT2-TB>8Uw$yENSu$~lp_XrN9e9D9IAc!f+UUES!Kr0-CeLdxT~tR2 z4sN>rEmT04_sY0zZ@e#>EV)}bC{3>^0lXRxNHR1N@>u&0pjPVz2CI|Pvd{7p{ z;n{hoKTpVJ$zuI12Q^#qRB)_@i)frID~&VnNVjZU83klZdFrov<1}xQt1*Qs zUC6pIHI5ugd->z$7nAH__EL#wfm8zk=#@iLd0(}NTQNriN@}mnUBrqTr&IN=>I#qG z{xQDI{)@b&YE8PxPUH^chA6B1jrBZ?Zhd5|-l4|GY8c{PrN^s@8i)XZ(&@oYkmJMb zrQD!HL5M_!BfcSMbX)6+ALx)SZF+5cf*V4 z!IkUCdOgBvz|(JUaD}%mzZp*U3s;?5?&|gNI%)apbnMzm%qsZpq&PgVlGiZov{@HR5z& zM_K*jKbQnS%#qSRJl)tOrY2%YW5sIjB8lK%iZ6XxuWB&``B4{srhX}Gh+{V)6 zH%3ovm|vsLj#|PuW;`*!zAV^n+AT8j7N9U9^~e8L7%AUNwJrRoFzN=~fjbWx-HRdG zV1U{uYe$ZG?yYOz|2MeXiZm=obllMk@c@rYD?j~0gYj9W2{^JWKe8O{|2MdE5@IE= zPu)q5AwFIP$;S!$=_z>c3t#;$6b{an`T@2?o2Luuac9-{Q-?NC1`D&g3pG%E-iHzy zE*AUY2D=5wQ&?P(K)Xq5BgR@s828sV45Bi!wUJi*4=bOODBS+UrWxBM2bu{{D$7GV zL~EN~;mkJonty{krg>kM@|0>5-w03A-x%oaLb-!4jWYCnNu|kFakD1+x~fR+a(P{( zb8xMAE2mx(;DSz{x zf;267Fx7$OMp-M++25ABsdNmj8Lk--cT{%6;K8!ukl(O-8K-2YFjvhn(szX{o=I^r zJ5)=s#M>DGV9ON?30l14PTFPEDf_SFR7%dBC0aEY84PX$;0soK400*q$1iK(#uog_ zKevZ{GOmLRVdST~e(XXRk7a5jqEf>&z@62}Ag*lIb1>Zb^(P(tw1A z-sxQv*-}6-e2ZonsU+@(mD^CLz9ko8#n`arTk8GUszjf_nVEzX(1@^{;~&`A!I}xm zJGDI7krT}LVSdsKu>m!B3z*zp4mH?}ORO&{5L~0bQZ|A6p3}e68PaC-oQtV22QWrj zh2>Hu{5Wq`fX$;Pu3Z$==(kxEFiLRSm04!yV#E!?m9gTi)fAga8T}-D4CjezByipS zzr71YxyubN7^@A$ltrW?u9C{=I|wNZQdSmJpvD{>)+h#KDw*C<<>aKTMa@#&2s0RT zZy33YaTFgT@L{Q|0PTVfEEub@d(H3+dmWf2pVXY?iO+~^nx&7jlys+vvws)j)(d%n zD_8b6Q$SZ-k*%OGaYhl1QgBtk$y~!cHvwN6{gnU}>PjWqZ^&q>!JH#Cl7|RSzX-{1 z<_%$qs8{F28?QGQ43W?pQjA50%}45@7nTH z=|B3tPoDcDtmnOmx-cHZrO#-95`i0hph(jUtr6G1!Jk!obEG?1dt?LHHBE zZzZTW{yG!doo6`oi9N!#W_Bd!K}pghk1cGM*oz4GrI31m$?WFCdb0U5rnsw}0J99n zA6&oa)B>0JTmaj{bwKv@Yv26Ua~WC`=zdG0B;5tr5#&@ap*k1@+puDu_2opKMzx^w zAlS`46)x2!fb8O^GzWnUpn@QveP9WSn$@&CE?~#Melyg^)w(7rfFLINggmZi+H4uO zqxwqEqwbiMKSFj~a_PPVe{>E;EMPQX6+aK5iO~N3>g!ACWB&DLFjCKb;d;+|y&#Pq ztwJ|fe@5NpJlukf^F{B4*fB+q7|73|^SpTeC0qQ|KJ9BG2Y^Ao{% zRcJSY{|SydSs~-P!1NUqj-MiSL(SQ-K)o#C0E`!5l%GQdqIQAlWb!K) z9n)&3Df~xUv&a+!;GhTz*(Om_2W|B#Z36yhYS0Ck($~>s^#cv!3L^lsHWT3G({)-v z?eowpCGHER!u5a5+S=O1^_i>--uzlCe`{2ewj2&wV~p8jJ;U3d1M6GJo-x*9P8qoq zhYhM~T@2|O_zY05Rtl#grTS!Zb#DbkK+;U6vZpQ)D*#I~sn+eT> zSA7eorgm8un~k+-n=W^z1vZnljCmbnV_M;c+=51Q=1Jr%2RtM) zeYocj`r8v7=~u4dzpxvI+WwMPrG-azD0G#Y!9gYSa>j~z6E>4crdLw(DIDjsx5k`2 zic(;_e$5#_UXp2)J~a7Q)ZQ2BJROM-AqJ}876+BdP}yJNG3DdgWXPin-$5v=?>}$xQnf7ksSIkenE^t4_@?|2RvtyO=n(`BgeTXt(#$!)ZN^m~2 zDb>%>2i0%Sn8dFHTBYYO&*ZkB&aEPHC8*~hJj|?^_b<+%A?mMRF->*U1z0@#Y;DI> z=?hMAxCH^Tlj8|;%O&0VQmKE`*T*x5*y)zvGj)q)kMh~eL8QMGbBzTzin~#f>*1)f zwZ%{jXiMBtRZgWj4NGBw!kwTquaSGn4kaF~n(NlxWfbdsrbnS&>f3ny_}vL#OCFpggsNk5=Qm-Zh>_D?QTr2UD!ZP#^sfxxjf#9f%o2#njx>< zoMRv_8xA!j7o$+86bO!)g9^4{zDq86M}WcmN6mzW?R+-K+k6yZkx&kOq{CklNgYX{ zUfQ;Vj`FC6NhsK6N`wbt=y-tBtfRUUGR}7AXZST}gPli__XcwzVSy=%%gQU63VwvP(a5b2L*z@nAx6 zxkd+nSwVGt!}{afdePs#m>O-Fgt0M^A?D3R*Wr-M@#MnnUmysVL2DK=&*P$b<;a{0 zHGyUq&Uen)bT!&_jIlwRluZlSj+k&H zaD13|l$92&f8)vHEO~dbtSDj1V_Kd!2>*f&$)gdNUZz;OX(}ab)54sIGd(}_xHR|I zlJ<2+xf9EDiB=o4qbY1_N-63r(l_~2j25-}Yl@i3wYZJ6IllhtKmlDZ=Nf?hd`uF8Aso~cMGXx%a+Mu zmNlFLEXC32me<(zhL;=cspD2Dh@`GmTP8AbOwTnC;yL-`P4MY%SZGAbb-2gGm0HjU z#}(bjTpL2C*}d=glJod2z4?8i^jrsv1u<5M*$f%6Z$f z%{YJUUGMdaIMixL?;Ak${Qd?7Qji7(Lj!^Uf&wHJBA|m%k(L+`ARsH4|09_&{?A3w ze?Mm#_@gHP$n$$~pox(n^M1u?SUQ&nD zgkP1}TQAZTWJ{UwrEu5HlMdJv4v(f)B@>+LXRwOgdkR5?p$<(O3A~t)JGk?K>eC3k zB%C;oA+@)bP*N2B`k@v~B9l{MwDt!0*n66tkDm#le8uAb3_)L(JVL#s`C;- z_6hw!%fG2GH_U0mL%Urg$?ENj+konba=IORKataJ3kH#Dw#X?#0O!YMudBgiDO_fT zDSyy9#fnuljQnO-Ax|}Iwpp^lQTJ0q4r>^>-FLmMtcG7|*!*Uil4M@TtX7zSeHX^i zH=Gv*<%)atXN6p^IrS+-x$W!{;>(}9=bjV@gb{H`x;eQ4|JSck6Ws?aAVka<#rkrs zTBJxt?7MGBm$Nw7u{69j1-O8IQsTVUn`2e}4zS4G4CogxQ5i3nC$o3IUNJU?|InI% z?m6V6pDHM-)^n&M%Rw7(3BV7#;89e=yP}l$Hf|x14!%}REh)W?oyC7oXhnQZU{;qE z$|i4nPfI%v#4JlnFpbqJru9J2gPJ1=go>>|g_8ewi&=Z2@EF<{BNQ$8$3CBFhJ6~Y z{s1}9fl+Jd)bSQwrSpdNF5hkSBab~uTI;Jx%z;Nf<++ie{>oDyM+wG{Nom$^rNZM$ z9N4n~FCfCV_I@8W4;jH|3JGRCK(IIHm!R7H*Z&-2dX`ihT&clI3G>@R*f(mLS5j!B z+xdb1w_h)23A^J9AXk(Bw+`}ur>o^41@hnJ_)O_FF=6=6$+O2yk2Niy{W<#zCZ^|X) z$s*O8;s7{HH@N@dEFogwKQF)yM$O5-)(Wl)ZzE*YRA?EA|eO;3El~eysa;2>duy{G^p% zt(CrubwhiRYjfO&eyk@}G{UZqDyS{q5fUPQ++n{bi0GU1qEpePNcT9j;{=?i2V|dd zJ2bf$ILl>(w03_c#xaGHx(Hs{0MqA?gD&042;n<50WVNR(f+AI`5;;ghFwV-Q9Ymr zz|{^dGY;zRN?nVI2Rz!q<`V?4xQjV;!P~sxqBtd`dV?={2yW8dy{xBctVscp6qh!K zrXUiFx)6!mdo1LIF4uw2;Bdjb?Gz~Lb2YfY52n3|rzwEP4K;z1DgBx&RF0-M{QF9$UlNw_N>^#EZb2jXaGlTsRLFP z-n2w`y+4<3L6*}3FqbQ;$(SL28?7p+z%3t`=N#&{S7Nv9pW9#i!;~#+=i$NQ#X2OT z6phYYW7b5jqb-BKqM1(Dpy-1z9j4b-LW4tFAhTk&2idrjH%b)b`5acN?r2Coh)E%= z0f*r=eZ$vWNFn>b>*cA7v0^@@Wtdu%5@=*tCy*{&(B3LlEAaJhbO1LFHe+Udq8vfQ z`XhkRstJ2|6$&=1!$jl@a+duVRKzfVn`db%Qgd;sFB=ifr@GPd`N18Vqz@vGqaq8r z_Ol}YW}-=-U+*@Lf;d-2P*J$3B9m?O%|7eWTnX$i;kDA*61)i0_vJ?3p-9u{jlyU?R{#seT!{-W%*^VrWOKepRw1Tyq&BM>LE{ zGgx2m>TlZ@Z)P~-D+oC1vwavF$*{oGYplo5nLnOAv)?%dwy&Z0c`E*1g6QB3!2r;b zPu&y1-9dxD_;OPU^E|rsbPVH0vovSF+s^R7FV@mMXZ%O0mzG5$kzcZ;dqjx=?V}Tn z2?pGR%#S|*1o8Xx+3yQC{)XJ18)GdEm;clHw$IIfJNH7z-H-d)vaYBv3-@Y*64tY9 z*q}n>#(EdwliER+F62Z>p*CsY5-3X}zj^@@L}pnQ(yny6^%zDDEKHs$dY$XaWy+Yb ze|aFYwd9!NSE@cj74;gjBpwHL61mkd<*vjSP`0P8e5fMZvz1`q@iG{`zCi(y{ul~3 z#R<^AARqgmAaBu;-^Uk_&=XYuT&Tq=rXv354UMut;1>ll2X-^4{Rd{YlfEBh4t<sJYh!>#Zk!oQC$X-e>quvo*K?E-ix8jI!7u*sBz%;SsB6 zu!cvqD7Yj@hts_1nb!&Y6!cry-WKJ~Bf@hkvlI@VJl`dFtWJ30C;3S6D|6Td{$b#A z@~@VBi4orvjXbZ!(6@HL$(jRQSPBE$4s({9`T4<5Xjs(}UgR#dur4x+^fP+x7du-B z+b+M16Qgapg;_^NJ@&s1lv3Ys`AEKdqd_T|{g>vGtjB?ej(^1+C0%>+=<(GC_uaSY zS5&sA5H6Cg62}K!LF7al4@PVvSf||BreYr&x~0h< z&h8Upwh9j1#+LALBn{3*W)-(_Z&s&%xwcrrlyhQHzmZTpi#hhf3Z??-z;U>!A%|U1 ztR;KKoLl_z%$H9P4yA2JA#k2kX+srNb>VQC8X&`D{prh1A?>b=mHYEa@tUVCc3-%} zM#~!%lx}(chU!_~n!VvekVzAL-re>IKeWkBTYtrX})_5zAeQN@V zLI(S)L8ZY4pXpft78P*8R`@bHGem^7W%D;{Iq>WnMT8EPKAMbSz)=8@;|l>f9&?!2nV-g_l5>CH!>Ts zrilrW)!2n*sR@rEGMT;zqp^u z^%%&v^-icK5f0qVLTxFo8*Nz-JQi08A}<%9-2gG(ZHijyWM58>Dpl%e6GF0#xiN1*vnn z2_+#4XN_WUZZ;RwicN}`@M&`cKUqvgl9`5%do9l)e|r-klQTY#`y4{&Bb_Ebg?(QJ zuIN*j@`OlhwT7s6+I^Rw#ViXhY!t4I8@oerjo7d;JjuCeNb)p2+1ZnsDIHr^eWR*a zynJFosMDk8io3JUjm)}H5LONGQzu1PA}xG%FU6R%R!bzP+&I*_krHTqe_sEVH4gf# za?l})k$NhdJDb$5vLyailREEQlzt&1I~tEc<_dCw8!?<;4?8trCObAMZKjf}9F}T) zxRr|!9yM4yphiISVK(%~gdHZbi3HD;%;1(ZNw)f_`JS}K9}_Tl*PK0$rpQcIOqv~> z4ss;cYAVhQc&fI2|YG20qFOh68GuK z#?kyBQ#L7R-yZu>KIsJ&Xqp%g4ovli$3@DbCV7l+hvuWFK^dm?@Fp6n<-j9iq`rK6 zwu93OROne_;oMJ9@vt`sv=MWRFzu=g(Ejp*k%9N$sr99K}AVBo`5 zTi2}He%&|YM3e4$ZCm*Y)ygvVb$LLYBz^x#VEUmzy#IV+DJzZt zD#NsG*pqkioMo?UzBrsuO3Z&eHKMtLCYhLMm|d}ZvB7BNqL){ZlT712H)rfEcOgC~ znYL;7um{p?)5Y)^9eW$MG5EdKrAg%^6|Op-Z)W%Mli+f7H7?Dp^D6pIw3i5666r0_ zKiLM>sF)is`dT4GkWnB>v7QNrZj(=GE<`YP!%pKaT(eHo&&gA>U`Jsh)uWa<2i8h( z1sZSR&pc`g^BnmLUPTp+fccf&7YLj1!}?7P0(mXS?@!@6gV+&a0NfVr+)$FwLy2^A z9O;QGRY>nguKN-79m!tFd*JvLwCq!cyilhUK>IF|*B^bZy7^bQ8Vf<$u}P zjnu5;;!4NAVDxFa{HCAc*U70oZ1Z&T`4zDDm&)1W(c37*lHSkvD+*C7mhTHtK>nX8 zA4{r17y^+0DgRqeV*8(ywbg{ZfBj?dcYr?eN1w8lD3oah9*U5)Au@LdM-y=XThRiD z{1=p8e)m8+Ro+QWPR`j`dR_l)1tryTqT9Ha9eMXx=S`=S>0mex#I(v8s7AGV0CI+H zonH+d#vQ6&HK_os%p@%6d7EcT!r3?#l`kk%Y!S+ZFR2+keqr{zcPUrjP;(*P>@pXBylL5R=$3C*fnR^Pr{x zOU~H7XSP8r2``X-hxN)!b2KzR01N0v09vj<_AFIjp z#WMi*2avj@h_#18j6ocSt@AU&mlps>`;YxW{*V2!e;4Mtuli2AOrC5BSZcz)s%^gN zO1>@w*dOp~0QLu#9ntPQt6kE|OrYKm-&Aw_VCl};R{;A%?H~JtQGJ8qg$BZ)S_`JJy0QZn=+uvnVAvTlemCx`f=7*sCDNgklAC!^oGoh%xmvUZ+ zS{=j;4)(v8q_X2$bPjXJxERZjAEA%49?_(JE^Ks=1|i9g%|Ikv&F}+wVXc*~t{FU$ z&FM*-OftnXOy+otRHG%u6X+32rf{`H`oSWK-^u=okhfYU2ww+o@*YG;4SFF}Bm;Og zAUh{A80NG+#f-{OQd&?wCQ7>Qz!9`SazRkrE9~9zu<|G5E(?P2y8&)e+72)c0*iig zKahZ4G|svl)S*tgM(IK{Z5dt}@x;I)W1r!|97sR(e#9xcKCnmiUV=M4)iX*0^29%_ zN0mj|jwY5SQ>9s(7i2`lAvUgX0?)-9?J&FyCU+iC1v))T44{j2U*nV!Qs^YO+wz1t-eDtd=DorG|I=eRY5jJ0q}6@-{DTrJ=Pl3+`yR&C^(@f{b7a! zyww}|4g8wt9#LpJq26MHmG=wbk)d)#B%k^QaLmsg+iVUek7F_k7j2;}c$I#b9|nMb zq=Z?kB1XbkQio#gSHT{0)({QbLp9JXhaYkeo?Z zn|tBbF*(hSi_5E&E@%MaOzWrB1P;OcG2%MgAQ>E@%;Z7vOHRUG(hA-6qL5zufjMX~ z4$pfM>OV!Ke+~K@I-rOgnqgu9*DN8;!}Y{*BrDM-NEXP)7{SQ9-n8(Z^%_IFhxD4p zKrGi%h#wK3D;5u?1AUbmhhR5zfA*?}E0@u)O~Is7EEwXF#Qb)Q5?v9402&U7DZZ-o!Qc$MlW4^_5BObpZ2wh7#NlMgE&iR#5HcdoWJLoRa4C+c4tm=GyP; zeA)mSGGMq_LEkaxp>Yy+8`;+n<*&W>UjPYt&Oi=#6!xk)5EXbYQD(nBMqGzkL*|C}mi+3Jb85jP4HQsz zifD`10Jn{5LQ8S?(3kd8X1i5pUSeIB1S-Y0?j_JZ~--{0@Js5Au=fcR)~rHVKk1)@UJ=mI(6tE5J@M zy=X!aFQSM(&^d##Gq1M(@U=G;&RZqJMeI$l@ScHd=E-os)7^RI@oLM=mfQpUrqA~) z72bk0;%?iQI#@5`pm*f*%d_qPyQ1#7^)fCi@v?3iJvP#??4n)NXV#@b*hk216d*f9 zpce^3oHMmW6ZcrayKehck%MMSt}nn;ZpX=9W0rR+xj=|f?8}D*|GTs7Sd?)Ycg^(L zp65< zz2!)de-*{#w2&QZnNROLwe;A<|6zM6;M!Q0DxtMZU}5FxRdShzU;oPiZQxCbVuAb| znQb>p`;3K#O8fED7^L-3-)_mZrs#wwsa3zka#74IA=0$ZNq#%xk$JTRk{%OHsvwR1Cxg^F5~XY{!fS?mcs9VaTAn ziavtIj}Uhfnlv+#1P!(}8X{<~G|@hygeGZOdeACVT`Vi>7P54an*vxLM-ruw>z-$F zE~V1Af<4%!R|$27Xa4S8O}=+PaMdM`X>yQ!g#dH>xnW}L01e{IvE@0oRr=% zwk^r4d4EXLo!cRr!+F`s4fi4$JFDJF?Hjtbs;edRQQ=#T+@xqD$D@~RY6cyQM%@aD z_EBBM@F;dgG0n5w6P|_(cQ; zM7a$heDSg}HSKvyxM{O<**aUQ9a%B+(0zwpQiS2kLd5xwVDs6H3VR|;$E+Jj!qGh2 zm{FPb)YDhTi1_DRbkw{Y8Ky#@F;}8kJ0^}w6dFCptr;g}RU;mOKw&niNY;G3Y92jI zh47a^N!A{?1mErPsdYkd-h0<-*y+*g+fTsWlRN2>nGRB$#tzD;1aW-d41*dciq4NW zO*1uhs5Ks-9papQBeSj|xp)S0}Tse46GS^J9-xDerD@0p@JOhEV=~UDo zExb=FBT_9s_GAdSKJRV8*S1=@*+2|c1wcudP3mR5?OR@ZxK+2xl!Nr)^ zAX>G+`epd-xH9No*aX##1{QmMjOHwL|GnP!~E*U2(s_-u0E^Pd> z`Qr@PCE2#b)Gax~(aFL_WI9ix3bRZ@(Oy#UM{o@xAxkfEk#M6O>N$5Fg>&3*y(tES&GuHxW3De>tU4&nohz_M7!D+{I=t0oGk>oU9XD6DDOtM%c5W`-Hyi5GOvC!b z3+{0nk!XLAg;GRB_!k(@g@0fb^yo%#N;SpJJw^q8JcEd^gs?fEWT#w*V$FJ;X<>|6 zwlNaLl*n;PdeK+7F)@QFt9-A@+*>_#0ukSh_|I07{tLk4-9h|mKjvZ>Z}pntk>5+) z717C_PIPY@islfjtM$v>qdKQ{F%&in1#Md{|GYAln?~8|6ZFB%nZxwsmjA!5HdE!< z>Y@JsJc$3Bnlxh9IZ%A{^uL34fu9EFXKA%^PJfb)-%)Kpj|-I2YNe8$-PP(PG;D63 z%FUb_yVeWfiV#O047aPR7=FKAZ#dDEqYujM@T-=~8#f!iis^HGeF1#%l!(!mWDps4 zmbN=uv5S2X04~VKwBJWMs|}LMjwQdXY5uJ`FAx$NG%*`OO6g!O&u~~EM_n%k$xT>K z3tm5Q10fT1Mv=q@Okq#m9;WT$+=p^xr5Xo`A3+9|1z`IMq|wJ=j$C&~0eALSkVA+N zyEfni5l9f);*1sTep7)bpw$z6z!wV2@e$_VWgAZ4ErD=>9?9ZAR-%}tH{5A5w?{1= z4-_o{!kXZL1(0hY@2HjGQsRLfL&knCUk|dji}(%Z{a@s>V2res z@ig|No%#$B-~0Bj-7ft4t)I(!de7)7?_D;#t{?`7J<+}YVI?MyANEM_j6eI2PRF)wCmpL}+fF*RZQD*dwr$(&IC-n@duHDG@XT8E;rapB zs#T}XK6?Y$O+m)uS1fcDqQbgKg@{IcC$a3Z1g9=JRmOiRh>zz8N*T3g%%(A_@kV9s z1C7_DtMyF-;ASF5XF?HlvlK`^lY+ZKKIvr;B<-lFgMY^*7W9yG;6eYu>cB+km-c2; zC}c@#0fnhZslS(P`I0OG+Tx*aE{6qHZ@r|@AaAQYrHr%SY6q4*7T|n-b=W9cApmxh zsbMM%MdL5KsUB*nA2eB8_A*2iN>z*!2%gv!t~J-i+Sw8tt&eu@mS-s&fcZ4`_q1(% zl>i`1?4DvKrI=X^x52~R4*Hux)U*fPH%fDhsz4J2@$eaU(BUa=vx$u|c)YM6A}3VV zeQD27P{CdX9(SsRt1$wWL}k17Qg!H*_Rp3WHDHD{gggY?w&{>T>wm&Db*a(?GY>W6 zY3(pm+rdf-P4ZD}wUdp(Oe}IUfCr-o0Wxnt{*@&{17wNWCT{)}YLOt$XQZP#MRiu| zOadL5XNLb&5O+#GNnO#+cfa}AB=RydkSl@@nl=MZ?pxwJi5@h1#Qs1m%QT6cgV%Po zgCz@4j`cL3{9qnK)MV;TQY0AZ<9ISS{`h0U-#*Api6wR~h5VskNz;#_gdFK?ug;bW z=IACyO_%~=#MWtzYe<$Pv~`>aW4JMw-iGIX0>}Q*_mlMiavQK#GIz!t%>4u;I;lhe3vF7Sc!ptaUE@?vfc41 zj-2=s8KO_kt@gjss%NHW6Cpz2*AsEg1g^FxXm(O>?%Viv2IiJH9fsa}w|@CzYz_IZ zED?35`5#&0J|uCanKdLuCdGy&WQo+CD4oyNa6|PVzR9z02J#a$Iz|ID4T|$52a&n( zu-{zaBxaEj&|g`it!iZH)(bVo?lnEo?^}H;IDMsVZXY#jU==O_k6(^L za6Pu-*RCzNkz-*tFJp>uKrIl8cJ)-lK!Y0~Nsrl}(so8kjbT7k3Ig-~7Q-?SCBsw# z9hm;t{WMXj-A9&%O{V!9hkc#=^fL@G(_rD>vypPM7#3{l3p?wbsOdA(@gZ$MD*1V6 z131rs50}YFf_B7!1Xn7VFDSAD8z&fh^CV{<<>3~10kTBN|B)pgPC^Fn<7gMmK9e}_ z0TPHP>^iOTxIBcvJ$f=(q>nxF^RJ-*b_=5*ub)7S59qvoot>=tkU(Ht|0PR22FMZ} zbH49hLLsy$b%&Kdr!?#=L)k^v1Z)KV_LCq`7<^FRGC>IsvTAK{bn3cM*J=K#5nr6& zh~Y{6{#Z=w;cI_1fbTM74aJ8M+D$HAb~Ua2yshiJY1M+2Cj15T@ae^-vt+CqpXmFM z9O3&7;7YvMYX5z3u55pOw+_rnp(WTtl7;@F-+F$qk?$xGvyplgd%x;|svYXlFCR29 zA|Jknb@}4R#EbBf779F?x_&1&P$XbyT%IH8K#x=LA;^BwZZH4?x_*Hl;dLcCwXvmZ zG2Zq&+v?oVFvcUDb7#>-ZxWm_F-%~{@24vg_^g3&ht#?~?@yWO2_%l@R&BMQ+9aCr zDpLFQ{&QtEx&Xcgj3woIKk$#6`eO(a%YFFZ;RSVeFbL48l>K}1d-_b=%MZE}`a64` zruD$Bd^*oNuhqG`NvZN()k;_oXeQA#rieci2h2~!Am_+z_6m4sJk*@p zk0)-h&&Ixh`6;@y<w7iR@;n+An3a|-9$i*u)32$C1@r2Pq4oY%Yh%2rs9;k; zSCvI)Tabel@E9zBw2ap9bdGWi`Bx{U;h8o7%w$=qA) zHA2yI5cfr(w(67&nzE$vPP0&butF9GyNK07DIJmApqy)S+aZj376ES$%xj6mH8}{4 zF)z-fs^%06^iT1erhQ2wyLE)2B~<|+g6O*WX)Hkxla*Pt9`N(g8Hs*>Dz!6o-iZ$w zWvuKJS2WOk7%I!CN(O-lA~E^RpoRRdxMYgv&)ni9a9su3mfiaN>d)zV?AJnF)4TK% z)IBmdT=Qj04$Bi<3V~IcC1+-dyO%7J6EqI)^Aw*VL;4CyKI)!Jw#fPZ%+?qwowZVGO|kx znoo>8AN!=6<|sGk84(VU=70S1D*v@l!-%nowVVS`+Tb#9W~?lIS8;ufWdDI4r&-*t zt=y4#Jk8p!pMb<|lTlFJS(QRThFfEr*|C9M?g6zanOK>U-3t~3{W0+X(J1D2Y(VPR zo|;bKSRE}^#kyV!HT?O~ccsEl5q$8AhxHYtRlkQV)kx>rUC*pbj4RyRxiy1)e^>qV zB8B96^wO8;^%&1%9ov$k>d34$sRD4Xb(eigk0?V&0ypd@TBf zgw+$9Isait%BFwR>HsjUxx|rYZ^orG{{?=7$Yqt-!x*oB0Du5J)G`=?wG3b=3=MOS zZU1DL?ypm^v_(^Nyg#XwsZW|pomDak^#8qvQD9tvp@kV6&b}bEPp={Y`J!GlsjElF zRm_%!L|bziqB{j@K)~FkBH1PsAtI+P;Qjb9J{vo~)yw%H%= zpYTt~R?|0ie!bMsA?}bsd=$ALWg{m0ylV%=Jxs=FhiP(FV}gJl9(lDX2TH7{O`%Hn zeNKo8Jok0Bi%#!!C_2n%B~w1?(4kq*?r+WUC$ag&;dqK7NNPNx!m{{JA*>4qiny^0 zOdN!L6*(YAn9n1d=_Kq6k<45b<0jD{B79kDn&BcG|pNs$xws8|^-1HrsWwLRY=p_HSo+v_;}v@EbdUTklTDpyvS&rL^F z>qc+ie!=^y*qe^k1N08B;`u0VYdQ-5eg6F4hD52Cq71#ihD7xLG9(84Ye;kg7!qs# zF(k5u@_j-6r)?9eV>$gHfXXZRPl81D|Lz_Zw4?dRt9}NKmyJc(B5>>4cqpy7>GgK# zDbe)lgBn7|_DqaYDwT*e@RiN$Q z%s9R8J34or@v@dDam;!tJLVx|S70Fi_1X}d0d`FDj1P(*bkA7 z?t6<%62RCPPY>}xX{HekT#743J~#&}t0@Quhd69j7JX!@som9!H8?yoAu&E{1UsS} zTqO!csmqX>1A$aZzUT%s-~;kaV}!{zuQewa`FrIe4&kS=fCM0V*mn$w9?HGrBEO-R zeR7gs(JJi&42g52o*6p~KzwJ7`UmDv9+Ayr zEJ6T7BEIP-i%`~GE|m6EXF<=g1@=qT`g_T+SEWZqrf&zY3DDEe@%+PdR7zxaxhuzl znCI$DI$@GWfQ+n05y>u&Adg^O?nWQ-y1}e;zB|x}-$CH0?aAJ~$IGt5J7(>G36|cE zK=BKmdzzN@i;-B^moOc3k8z)b%B$l@2L-|SX1p)QVUqfoiGVbR8|V!}fTaf#A%a_M zKUffpz5{2UgJ46=HIs=7bJ*RU=3Wr~y@06($dH-wGDpbZ+NbD7n|9WU)`yf!42-`d z@y4⁢P!#*Vmflfg}}z-fXHS4^EGgaoBlOUVoEq;anE~E1gMN3kFfyL(J0c!JzPz zZtk0P4D{FybQn-~zDO_o92j`qzWNV_VU^$c0aOA^-DqZUY$BtS4$kRS%d1pz`3;o4 zbFY^ng|sS-X=jc}#qPyhN9_o4ur##JC>taIb~uD~76Yk`HX$P7!Q2?z@PUnmo*GQ2 z$W9N}41x*LxgFkxYVLeVP1!0wnY;tv#q;oy;NG_;^H6kt?5RAR${C`?6WGxKhP{!&9O`+A{fHOYz(Gg*Av z3lfzkE`AoE5i zu72n7e3Q-weBz4@72qO%!tV3uNJ3>4n_PaUv6x!})>eu$9w(~bN2oBo2Ib&2fg|y} zKH>1s{t$;w{TAR3aA3k_Y^lT~)e~+0&VU=E{if;ROY_%`=mpd`S~qEu^@(&6EF<_m z$nZyRl4ryBP&lIye^`S7E?F3MOFv^^lG9`o9Yg9VMN}AvMZJqD657EOp8>h;6^n2~*7tL+($NQna7E1Uxa4;_SLG&L(~ zi4nGE^LLoK1|LPIj6UX=eD&~(synJJa zIxbd!27NJjb~6;hE8sGU*OQSDkM(FnRUXI%BWy)@NQ`4XTGZ|4s!PQcv>kryI@rv~ zpOxgbWmB6 znSZ9wVG`b>qJl@WLfY?Pw)eKX<_kxY!zWWDwX1tS;n%`7@^641G3EmWw6g^HX4_Hm zF3EZc&^rWuK8jd$V+Jr2ox-iBLlUJ$1s>3GRD3TE1>>A z2`%f@BB#T_H00gxyObaZ2EM4w9^QTg=<*?s3OlV0Ordc`8jGZVMrl`|h3*NAAVxvW zbUZmOzD?3{7dYf?a>pJBuWg9>m(ZtLRfMvluaLFg-;s1fs z84m1CkVT+=x-J>e^=B+GL`URlISF+3Hc60?oQ?96ss-Cg-q_fI1WZ?H|e-!?C; z5ZGN%+V4U3U-XZJZR5z8jc2%DqNuSnt`h?`i#U325Bdr94TE-im>aI%Lc@@hn)0|@ z?BLaOpV^$Zm!L`!EIN$}usL>yyhy5=#x7kF_C*nU;8LjB=-a<;L;}Kk3a?cDq_kBb@?ApwDv;mL zd_R^q)oohP%DfYUkze7G;5|FJq|ZX}k2cxbt7`$dZ>G&3IuF}xup95S8EGinau2gg zs!Pu9Yc@}xpDjYKU6MJG8`w7DmUYz<;y*TGPRTa?1AX2)sfH4Sea z-cu!-t`QB*H%sfThn5I$9jU5S1?J(sM(%WU+3&I6DN%abI>PmhuGL$XowcV^8_GGQ z^{fh;P)jsh+@4u~IA-FtBlRyYg@v4>ivoeA@w3lU>_< z(GE^d5aMUcQ-{MB@eqDEuO_6NN2?t;vp(QFihUq@o;5ih7?dm8v86}xCAG<*m(xp>pkXU>n6Wu5q-!y39@yD3{sU(;8j)hYYTX1~UDFMTf> z?MM_|RStn#RO+9MjXDl%#mAdm>y3*^W;OS7oW7)ev=SB`aea*TzQpKUyr?Lif(|tA zY!Plrcmiin50c&F%#66)fO-OpHGZ0+np?T|NoS%J2Pb=90=1$G%HC^!?E@~FL$t78d+*r=pr4d8P zG;iJeEc3Y&>CZB1Xlu{N-PF^&3{Z&Fn|7o3&UYQjGa2Jfe!F7>hIYA?N70f+D_J0r!9X@VONTCMIt!$c^D39=-3!^BCLiD}cGYMXmXI>DM~1+HaIh%VE;5nRh92ZD9q zL$_=+bn(na;@3Uqp|KW9$ooq!-g6;fhyJlRG>zqGP{O@_Y}$!?>XXLybMp#X%7xE5 zXsxho<%zzTaWnm=G8gv^DFdr&5eL_1n%`Ju!}~`UofcTF?KDMafGE$_O+*T=3UdM) zUC1UMxHq{jT-hJ!slqFTX)#3|zD#;Jm*04h{T#a17!P^;d?*67CpY%C9z0h5W2ao( zP9g+gKZpvdmy_tye+Xw!Q}A&JACMPOSnjgIA#`{Z%*%RHLLps>v~giCx1S5PrC6f4 z90Uj(;ur}3c0eI>0e3$UvQ+CBV{2K<_;{#gn?6Uvi7`0?L9c*m;+607Cqi&g*2!*T zU~z0s%l@W+RP!hB*Dk^;a0^IAXue4~nOPu*Rgg}@4@ltj>&0Fn4ejFyj`$EsYhISj z7pvj&hFXO`!h;GFQY{UzQVB(5+_(?)TE_ToApP_PuIw$8Qj_h0KY-1o;iIHD%IGCi z4al_8&F;Kd%8;&q;+x4!JM;vw|JEfY*(*TM^50@C*MDGN-b6+b$)mZqG0m5-lw6a> z<7u8xI)Yg%PJiRpH>J&^biHG*#Y+BN?B>njiE-oS0)dga?g}T543ZE=w*9VTwW)>e zsV80SM-6ha(5}uhyf$Lnm{{Xh_jHH+(zHyMBmfk?Fk%Z9k?nbSaBNCkszx*HeA^-d zlakQ7LT0U{yg7rd!U!p3HR}mwm&_M>+5s$e9t`m^}swFn2!iAoIwAO zbca{j`fB z%Fn*7eCV+J>ZG(5H`#&Ly`?jaJz@Jx<5`!sA%6wD*E{RkZ`o2!AK+GPetI12bR1r^ zw9f}GKJxEruOX;v{hW^R{aU|vA7?DUzQ7x(;$gWumx~Xgg^hp%Ab8IJ1P>|HKg)~3 zF9vws1rBCh(8!QfZpWA^($8R!5m#z1Kqlhcl%v2653o_p2%1_LYe@E_=eJ7u1zvlS-RBWB$W7U>e%+X{Z@ z%Y09PfES|nOJWQ4qV-=ji+Is&l<(*MhHDX4(UF~jOGG}U3#f0c{PrhaIS=1aK4K?f zVI)XR7Ei-KwbPR?$aTK*b-e@-c&Z=MIhF|Ho}0CH9QY0409T^)_6ci!Mf>e>vg%n&9#lYa?32TdJ2 zs=oxDWbFX8_fE;c1`xoN$h93LqWw#Sp8s9x z(lX9!Rr8FjR4g~WQ$+0~q4a$sz5wzRFdaRd5HrL$e$yFN(80BUFoIO`phKoAJkQK7 z4ke?N6?t zmaPGLBsS5X`tSY_-pS^*Gvz>1Sj`$q8YRVm+Z)3J4xCB*D7&R_FPWd*d4%8SSv zJd!({b4$&dN0q>&dx|t$aM>Al*MPwlYTSEPv`kiq=c5T_U;T~Tbu~)d@kfU3o-WJ{ zH2hTDi_go2@<_6%Y36C2-RP2$#0}1+epFG4bLO)nJFGwpUgSU4xRSM?0JnbrT3agT z>PP?i*Oy2#ZjTxzJi3LhTaPxzJaI_PzzJO z7ABGPbQj01ViWb%S%*x=49ZNAk-bX-! z>r@kv;2QAe4MkFAmsrFk=$RJVXyW>akp?B_CXLz zJgpCvbO&ELmr5aFgJtmw=KIw)o}twcmLgom7}iB&h)xV z>YTrOP#z@o{nhy`(IPPn#PUaO_(XyD)jSRr3PKJLEy0-W+GF3wc&fkW@^%t(U$ zQL~2JAQXe-tnC7%Ip*Y+gn(E_a!-ZoQbYniym5AI#z%o4d+t|jd`=@!5Bmz82Ah(g4 zD;ZJMSaY`2tO4Revg)kAZ!w7CecN3r>7gSlmjv=oP6b`$wqT&0{LDM+wHQQ>t(_}p zhTwklwUqXL1YydVJYhXI>h+eY%W41(5t_{Kt<%%3Fey1(-=VP*aoBWDy#}pEAjwUP=0Qv)SV-?Ab7+pxz$k7X*58upn7nGGKYUBk7)Uo4@P7ygAve9<|xu z4n{iK#2v%p@LNr(j|5p2Ae_&6R>`grcN4VJ$}#~{{-sLP(7zWgF?AcgmbusKwV#RCsGw z(V5f0xt^3GiD@+r$K{<1vx!-E;}CK-#0O$)n)Qyz<0z{%Ilon``b~U>4vUQFHJqgJ zblr~MC5GS?w0>m!?h(!%;u^fbdQ6T(`BcPBxY~olRg`UGO5s9 zg!mfPo?NKj){8dj5q;~x_L3j=%#O%+J5QIv7gprdnRwukqiZTA%u*gvoppZm zQfpUF!uGw;V@e3XC$yonb4xtImwZzt7VWFi;^tb@yGJA6D|zbQ+={~kFNs{yI8%lR zDS@B3=aa;_jST@OB!qR0^a#bE%qzo8Cy=_1Op^Vv${6jVm0~M*X4t0?A}DNk>EnBf zG;`mtf<5KVze^r=M-PX!WL~|#m|y%9CeQA89%Z+dGCCCp9uv>ZlhEm&f%TnhBi+dJ-L7OYy4~!`X+l7D3FQ#Dx1p zO_NJAnvYY=&Uw3Hhbos3_)qOdmto(?bc-Mq@*@#ftZQFt`lXb%sp&aaIU18qNu(ps!=fZVl^ll0syokR?=qmCvE4OOt4@;797-8Kv&Qas9lA<4~ttQy8zaKZtGq z8Td@Iv#6!&$4+<7NeI`5@+6jPl<`8C;qtPXQkH0q4C!JVGIAA!smSRL%q19@CD_4J z)c;o=tZ>qb9-)F~DME_fWR1)ct{F*g1IE z*e!4K=B)<8&{NYPLC)(mH0|$ma=u}_vE`R zMF=5W?nZ(5AgtC|X=oth!s0mme^fDm1fvbxRdk~pX>N4(VGX|hT}ka4f~^d}ibo(< zxD65dU?yvg0t08DcXHu~^`!OLx%9iyv*vDqK|(b5&Z>{e$p!|}a3YT&N)YV8erzIn zjlCOyq2K$PyC=E}1IJ9VK({YHB0N2YKH7ABzP8uYc0O6dwCpofNOW?vRYh$Tba=D@ zMJ}`i6wYCzYv3=Cd@~$|yPoa+qQu5^vLRf3LXCadvev~%zUHymhPD>64mRz1s`YKk zx?armC5Y?UHjo9g*Sp0>*S&V%9|*yJ@4O9Bxfg01;0~OI^Ya4j!CV3W$Z!RYgFTVQ z^HFviuJ{!=a@J^ox-)gMnRH&U0UiCLS8I;m!VlzvRO3xHXh*eiGK*yJB0cJ zg9{pg-xV`24Xqt#o+<6p1Uk71fTp0fgmzi1|#-Q*a>gpNMPhy_;FUSXX zvKuu9asq`1-c??#s^VmH4iU~cIbE9zO;oiB*Cc@>Y-&V_PNC7fSy}o|^;j2BJ^uB# zdTh1lmZ9&tup@{3Z}s>Fb^LJ@+Z#!>MpelpHpiy8H*^csq%9aw?TQ-AGZC=g$vq}6 zLN>cE?~;j=&`kI9Fi{B{Ou<16D*(RW3fOF^AaLdeiueZfHV7d3wxla5XOJrp0>FmO z!dF~@768?*EM@lkT<6>{s(-V`)qk_c*#Bma8!R5LXixuF_Sk;0LRs1*isorYK(z@g zIZvV(F2rfv9u(yWzSPg8A9QGxsp8-4F{JnSeL3Ugy#QaxVnfLt$TiTqm6;|fKUj>MC&L|hkP#16`@sH=-`B)=E>1$ebCOhDMs#fmIv9anaj zW8p%2uS%<+vu~ptG@(Eu`sZ($_Nrt7gn(kp+`cS*iSXSMlYUCYkU{%bswm_2w2J4LgIvoikiEOAYaKtQx>8f=KzBKKJaMY{pXjPEbX$3=-9sv^&9vWi&ks4X11 zgLeOdnd2yhM93B5vDyih*B2#Q&U)qCZ{HPbn9SeuGnbyAqje zs)B2lhD!0cu%1ZG{PZ)v6wB?`8{vu}4_ zJyQ9CrS4-_s$O4MF<6IX@^K8KOdqbqqw{<5T?6iVaA`Bj5r0I7k!ZH{J(-rw2nhg~wxs04vZ2 zS6I)e1uk%S8yVHPH%9W#2$co~FiWmqG0dVaBa~dsB-o{)AEBQHHlz3CvVfVkh5WC)z8Ck=@6Ix1ukS!iLSV(X><>k7 zaN`CmN{MvrMG5>Fm#Y0XS*bkOnJ&J5baVI>s3np2!xRud@8y2 zCP!Z7*(WfT6jkN`Ut<8w$LgVSd)I`7M+$XQBg{TZkSpGbaq^Y^Bm||Gb7Mz+*ijnp z%M0U^MOu9;8@qmkfw&4$-PTrI7a)#EQ`#YYHEL2}t0a8#*aMW0Z+sn|0p;Ucn|cHF zU;J*7T!TN{2qJ^K0Oez;Hv_?%5IL8^;{!xJT32Sf-W9o62f)%w#GQki;aG)JdLq6C z=r&aii#@*~=pM{4{wc_wFNI=Wk>jo}bho&flPh^}EM_CAN>?*OwN|T?CTFdo&O{E& zogoe;8UY;k8`^(`k0s=BTLIzY(ZAti?{-8Hx{H!?rOQXNO=G7bycB&QywejECaSed(u>to5 zpnJ?@8V5L)d^EXys5Ch@8pdaSa@#Rc*8rB=qZp5!dTwh%!Tb%nNUyI>cW)at*iyIn zjU={?9GWRP=tO>DU|!sT92}(vWI_CXUJ`x!(94#>@O-yc#w!zJ-&FnC%P1!OPk;PC|jA_Y|sRbFFdOziQ*}9ka82r z|ArcU3X?PD=p2k8a-7>@zNNCGAVE;4ei3J>t+GOfUuhah>udyMsx?Li5~QW&K8#{L zYx^B9YKE&yH`$QfWQ>bb@pM7wWD1d+OmLk8fjt#XF)!}$!}hcdB#5G5B>Z-bAJ(nA z=G%!^ZtsVgL)?gL+5Wf;?P+s2^}Z}m=01k*s9Jl=ln(ru2dC0X>$T=bN0QR=lS+>E67@FtQ>{ z20b002^Lyzdrq_5OQr1U{63RDgTuA`$GZV=szJm22faXC!o}W^6~4S zmR=+~!R&;q{jcUVxc=D>7Vss<4JULEbLM5R!uC^pnW=4p9XFfSM}>Vn*j$Zyq+4@w zrESnAKFy{jKRMTJ=mNYoB@&PkaD$ai5>+}TFBXXLl-n|UTep9pC~`bNBZysk{SL=+ zb7>eXHhPVB!;QI{8X6X>%9La>ZKn&~($E@d0KPtg)X?{+TBGbeRR=N%-c6)hE3?iLa<8Gsl3UhHBOA-WtD8=JxJWSO&T2XaRrWzvY3BRB>(x^D zw|QKT=n+A=Y3&sVk_ro;_(}?cUyfvMB!}rZ(=upY zn{|P)e>Gm+^g1ovZVsO0%h7o|kl<}bG=S~xnESz%F=^@t57#11*5REv@&r4B>0U^B zRa?2~9=?rCzXq-$$gdL`AAyR*yMwn|!E5y!n2hKK^_XNHi8u`W2`FK za^fj96}Eu^qQ`rGqsNQlw(VA~g+KMQ0nuZ6EGYCsL5Zv=jWFXs;SKbOG6{)mt_EAO1lCW zEtNQT_{QsvcE`ZWkx2eeo4?%H_K^ee6}12xAbL!!@=x@5IPc%+F|TOVkpMXS^Dk{~ zwu`5{>e=f$Viug{bN7>>C9y@)a_0)RaydoWKno@H7tIr&?`HdRW19Kbp!EeNWMse+TMx95zL;wQX51}w;#E8uL}Yc_T%pX z2;5LV1uuN`_4zp0`&4wgpegHJ6UHK^_w?kzcmUotAt3us#~k%GK_N+Gl|Wj*z+AK(*x0I|lZ{X4?$k?u}hZaGwI# z&!Uw@!FOBfql@@P{C!mb;bRNqx=(5X(Gb1$ zZ&JwF1sE((%QF!4iR!uS2Nbn7IA@RK^1iZZzY4@-zk4?@bATD- z>of2u*g|!|~*+#bA6$|cELKoDPQ&w&_*!lTryy&+iKs?1IxG}iJ~z-*sc z#4Oz*3wp!awO*fp1*6-GtX8PR+211k-}3EFmn*2Zi;Z<2#3{gy|AgK*L+@irc^$5{`G@L?j3gg$Pve zD@wjJr1I+R;?;+z=;kEV<^MsUqWVk!7lA0sEoGHm5?TN2;LIe-oxnl*OnPTRegkpf z($6ignnXd!+uu^ipPxy+DF_mGL_F3?PtbT`$~2On!8MPX-}e1R5u?L)0ASzd*JK4( zf<^9+O(`di-l7Il9{)8)ku+by$Kvb0HAGRuYeGM4mKle<^}6`o)3)q9)d_}gJ1_o; z-C3j~mNhc&E5Dq5bvX6$^so|@tP=d~`xJcNhQ>0ap6W{qaLiA#m~T32C}IV&5$|2o zz0P4Uj9oR*#qgrdeGIe|)LPY!oLc{+kbBwLt*+()6!~Wze7*aiiCGj7*%`9MqF>n^ zrvS7MlAX6z0h=#xz@x9+sr|(Gl3`rvYss1Y1FAU4 z^B0c5ldk*j2eAATc0=IUxUG0^JE!C1KZ<;yIR3o;_p-4Gcorz|Tm6)i!Kb$Fv!Zy) z@&GqP2#|NU1v>B6c9=aN0ux>&-4uy#qLMZwGr*8k^QK$3Emvi~V>D!!S4J(D9-9CD z^gF5Vn#Y|5#60)ZB@CK1M(3AQd&HD2aR zAC3H-NE-gibLG%aH57m%zuBcSqwy~CiPSzWDQ-ss@ z8^blF>Glyh?yyt2`xhNOdzeL4UM=B7#k94V-vb=^l_s~%->PZ9bAo+XwbGcDSv-ja zl2N?O87?l42h8u~PByi9pIM^d&sh4x518NMUf&rv??$(I^4uuz1ptSfqNnbsM&jUv zJ+9AuAPb_R>{{0bk=LD|ph7Pxi1uQWyd-0Ji2d6=29El?a7rJsw?`wNY9l)AXfv@z z>!RG;pR>l5B#U`1Yjpew>n3u=Sd%-Ebfl9D7*NLw8e`|}BhL(z9@H$_^$;j&0DN~L zsQtW_f?UUM>6QF*@GGunl)>sxWVNH}Sn(uvy75faC+Q|<-7;-ra!TaSExV@@2WH28 zJcz>6tPUBc*T#&@?=fR4VMI_rub4&aGUCY=`7kGw^~(T?e7rCf^i#6$6`5iX8g)B36wPO}0U(;0;*R>T^sPIvzWT)3$y7|OS&C9Z} zJw2r7zlzaNt15_*_zuD(jh|-NDa2U82(iX#D}dwZ8+n5(_Qf`4q7RoL!E&Nlv+vfT zTpCPahcrdAa*gm_B_nYmtsm>#yiM6N=HFPLgQ5sXS#WTH3N- zJ6T&o7;l|0^>**vR>TMWWBIdOFLmC6KLVgdg#07skpB{Ih#=Nk+xJ)jyl<8#mMSZHfB$wq}tj=Cq{%SeKWdCG;_TS>=8_lUuS1@K7hU*)DE4ADS1 z^%|Cc+n)?4HPhhC;bmJPI$6MtYBO#t0vYAMgoEv)(b0P-dWJF=oa z4stNw+XRh%TOjjz>H9vqw=w5v;KjwH6#8ghl{;yz+e^bUr;LtRt`=+1+8q)^7+?EWvdZNMu<}PP;}ru&KJ3B_j&d4!Wth zax5NSZ~E3ps}e4r9YTnjXtQu8xIoNS^(EFO@-z?fPukBR>;19F#RW@AQ2NG_sEPxI z@vNfEC+hP??736B^2vS&cOteD`wjLY9|Q9U6qI2#q-qLr*i^`I9bX#=(DrGXUM`~0 zGLx1EAMBR>Y%)i}fO~KFiNzOZHhC2DSXMRA`7GI%Mz$zvXLbcy>&idv5v5ET>NA1e z4y&aN1D1-DqATlDRsl12x?ie5BE4kb8i=TZ07tWtaa;MTbG z$q$XnL_eVN89EyU#;fKdyxP{MlbvVh20qfxWm5;pAOYqKMrg`3 z{K@I%w(no;$Gfk(k5LcqHwZOv5d1 zi;#mP0=4}dX9dL=1?VdkXZ|Jy0=ebl=`kc9KOH0N3tQziqe*1n3Kuz)=rcw5dy-6$ z$y>(0?d{a88VF8!=Gg*OhK+AKWOtx2^os@(wRsWbeXGI>x*T%!pE*ik52)aNkP{CmlA`AQ_V( z5;QC6z-khGWg`24OHPrh1`(lrt5+$J5PLWK z3bY-MHq7*I&4KI@YICi2hVu<7Eg*_@Ts-CY7^<-4oT;)CT%)5PmU?~n zZ9JoSYVApgS>c>ykI?l>sGdY8>xp}wN$vG+OVjBuLOEw2{NZAx z$C_364lbMRqJ(ufB#2Zf4upiCNU@WHNZI|p<3c_9tpVOEO7O`pZ;pXYnuYNI3ZT!| z3BI*x5nf(-I+_~t5L+9%0JwHu;gwu&{DEO|5sgr-1i}=k*W& zES;OD&PDp;sD=Wt=SyaLmIPF{e`!C{#`Tq*$tw3=)IgxV*=x)1c(86K%ePW(eL?)E z#VD=+e&qkze)wlG`oG`ZfGc>i)jC`vIll$#IIXxsgdT-P(I6a&G3lIc;VPR&i2A)i ziG=hR{t#x8tt|p@gg*=F#RpuGHTev=@uiugn_TZNch=3&py#y{j6dS5`%#*9KQ@o$ zTS6*FWPz6EOdw^K40bc85bFzbLDs2zLlxDmH_;S9$}W?U!r{jbD8u$j&&&(HHK8ZJ z1{~tA*Y?Kkb7z|fOa{LkBa0eE}=A8qdxo%gymZpStntFdj{ zwrw z)u|7qaRW1JHDiwLt%8Xf%p(u*bf?CB%yayH=pn6mTFb&@eP*83nUXz!Cp)XDz-Ona zaRD)1u)EOIY!-ECbrb!uD0fCxPdLQ!svw~mU|L5oqJk%j{7~;Z3G4+>*CBA>r&;}? zw#|6L^xVRH9AAdkqxQ|g6epIOCFY7`M0wL`Q2j_4@ElCub}-iVV`OI*Bmvk!@@OPh zbX0>CPUPwA4wsFoN=we0D!bovc!=0~Ytv`~h|SHz0h!eDHR3C+Yimz4th0P!N_hK) z{qNy@*7*3Dy?l;0+B@oQDP?4{TCPm`wzJn9Yxe;k1z0*O z*Cj5PqLCclslMkSY|fF=7ZYYwPl(E_lNSSm^3B5v(*!C$p1{swFPZbHJ+1}`%$F)t z^FMQ>x=D4oRJ$#$QeWo-Q21lgq30?OR!^YS2RkT2eTy9vGMB&0CCH(`d%`(gkui4jW+sCeAc1$g=F7ScUcP9ewdO;P zq>B{oFp51Ss#qxFj&|ID1Ys&W!5U)Oaj7%lbWQmU1Zh zKnBT+l!Ntqc~wWgltI(Fj@r z0S?zQtm(lx>(7De!U{aVVBAp!L{>hGR^grHz!r?qVC4{nrR6H)I#xsxBD|&JeHi$faopR3%qHsyPNK z3XRH8gvWx?9CngearA3t!~M+cN|z-UtXkCjr?>a)2yu@>6VVZwaUtzmt{Mo~JozZ|QTJ_>>gcidg8+$}EB=O)ht`_bG zb%Bw+m(F}BMjR;*8wTk|YD&!if!27Qf#JMi)#+iR(Tel7%pKtp4=1|P-#3yIbZN}= zQS?jeE%jaVKz!yB-4t)UF4;+Yf7U=+?9U71@T>JwrF)h)#ua0I6vQ_@N8k#{(i@T% z0@RyKRQM#Nsh2>Sw0z+O;62H90p@G2a97yN4&j}Yiou!laBk%jOG zG0+`KVv|au3%Mke`KK zAn31xrX?5x#Ak<Q!6q=+53aMh-REiqK zLfESD>a;`~#AaA-$idOvs$7Ul>HhelW^&;Wx9Qi5Ir2mFn4A(l%w@&^`Pb!IVdi?k z4&bH^-5z)KvV=drRy#rPop(dy>;XUjuh&n$2Y8Sq@U2`j+#WU??7BcZ2q8tq){vf0 zlviUUQpAv-nF@d+afg|0X<|`ei5);{v>Z^H@ zo*79_SW)g73)L^szPesfGz)VaiAd&xF3GxT%&TW6IM3R zX8+rutG~X}o2>|lZzwDBfbF1{hI`v#QX-J&)$9;~(m3-z$|W41I?y#bknzf;%m;P2 ziva&L`4XIM_e&l%^~@D2s9`T9njaIG52VbKKuWM07jAiR>hC)#2+r#ApJHN=&M%E4 zx_Xm(nehfY2)F_7saZSZESJMm5c0owQrrx55$0}$v)?e8oz!Cu3*p8l3^2sP?H=NY z-FdL5`f-xLr%<_IJXK{oN{>bs;L(iJa|{L1g|#|RPs92ACPox!OLc|5+oc-K$w?A?KoohI%X(*S(8C6%fn2eA?N;Yw+wsI^Ng^`MZ*qsg2$m#E zLA4`bTBr=lGE4a{oYBT^G9aejloa1`@%v)4-QLV-Cz~ovT(E@#1)`g zi80W{8$DC5UXna^vAQu4TyDioBdiDqO3G%l2uqvFoePo<&(DO|tXlQsmWj(>kYc$@ zKl-?fU>{Y3_t{eiIgXP4^STVh&Yo#c^Vjbo7)-$=5!~!u*rH9+;Q+go19^-R;(qsA zv@U13!CT~QmM(n=Gg(aH%9c|`2_RML}L4mth8I=o>v!J6z7_4si5gT_iyevzwMJGmJq5Lze#&i=0DJb! zc3)}WJ@&R_0(oiSky9$1QCQ>-c{BTGD>~$w7og24*C^AC%{>=abBN-KdU22dae^nBKx1JIGiyr8Bx9rO?&1cb_ zIk6a!vu**4tF%7JxnDKV#-R(t`>mYLO~iu>ftyH|)XkM=zwJ^bubMR_lKf!5ltw!4 z#DiZdOmybi?fI3(PJBP^V#pw+2t16>UKvU3`lOnR4P*zOaAd%Khx~gV1r+i3J__XfK1wnqU>^kw z?;-=}+(^t2s)5DmDWN8QAv@eLv0~@d!(Z*kgG}xhgO%E;>O3DWqW$0^YmepWXqIdF zo;Ttt)YO6t1)p<;&v4aXNP~FER=!3S5~IAZt#|<@{0^n3YJ=XPxqQf_UR{BlD|B3L zXyf)I;takfdY)~?rz)}p7l~qSBQ+OPa$JCY6vf~BD7wr6-Hd*io{`xq0J)Tr2;i5$ z=@Hc<-cP7YxL5uA-*PFpMWwF5zvNO^V>JOfq1}EX7Yc*U>fC0K?{X<880Sv=O`W@$ zY6`1>R@C>GR+jL!tWM76z${7mph@ujnja2kLCgeiZff5An|v`3yJfGrVzkB3PG0J&p=Y%C&U78vue)la-hS}Z$B6jC!N`sgS{Da z&=OUgJP`q>3-IkXMTHog+}t6!qjjq+sbybfs{_htV^&Lc$+Z1gJ0`!r#t;~rf^*0a z*g826#8$baKy#G7(S_`nU#(~e;bh!1f?!#f5*bG$y~bldiRq7vZ3BFU(QkY93j4-B zA5`w=PRufn$2?Sie!aSbt!WxgqPZwpkH#o{!ruH+m>6f}MOAKSL<29gyUKT9Pv^7r{MX%L5Rz}vEfUVxwTkjV@<3J6+o_E3r97KaKLWN~#WFt7z#|O)#FsXW z*V(Ecnz*uOyr?SWMg0*|m6aHFWkp>Bo=*!&8$Ao1WgWf@-M}EtIjcg*)y{1h4BcBz4wbMVdI$<{_uPLIrjrc8H_Ar3&bDCMF0-Gg zbk}IJk6U7TUsx@;xrVO}Hq9P$-Ol#iL4eLuaGW$ix7|~IKb9u>e27i5QX@8^*{Igm zTv?k4m#Q9hw~oDJ#qN9P^~yAX1fqg@;O_Y_avoXl4!i`;Hle0B$`LVd;uf+kf%cMik_jbDL|+u=+&&n`N66Tx_8 zhinyUAhQ#sg7NaO*r66eoL716rj&2AxSjvh(kC_GO~_?I8sX>Bn62$@yd&HCmw|Ss z4i2|t5j@b|^op+(6t)lzcm2DZkqt;7+vXF8%?*tpI=G+FwKL+CC&YCiiuT)a&I=__ zg_dc}SK!RE3?rrw#o4%mRfeeB2n{e7(M=pk_EwaT*aCuHWKQON+%&W}5LmBw!LSB^*D zC48-YId?Syq2UQ;bYU4LP3Cmk;8e!36-&u1qj!y|2%AEe$#THR{CYr{g`|b3Bx5u8 zYDG2Abp|SYpnj_S{d7T5_iT7uXNH4ahrm+~zeCsz_Eg!N89Sw*&mygtF^6MxhVekV zS{B-db4kQ$U88--QeMR`d*H_|4d^4!GRO6og?`sa$wx;~f>@_dV>Gqrpr&jof-@$m$7d+a_|t$Lf}`BL(sgK z{n&u|d`AEQ670{fsPNHy^2zmFnoQk|1frWHSExMGlu-=%TiXF}vgA-uvi89j*#sO* zPY_42Bj1mymlP3>ne^=z2R&3~=AUJI!WlmAk#s`L8ASNu6GNRZ`gQcq2Y+VW@`5Py z$r{c3S_QN`yCM3;Zje+;iQboI<&3sF$P>LumKBn!mRx3jrOr@4pk1u{IbzC&Bm1%d zM;lT#v2>worIbsQ6~0{3aNoM%Icu}Rcl?BTZ&7y!;Fm&_dO4*#{`23zaykmNKl)ii zeSNZ4E_j=vrSpaCa2}P$uyt%(EfuWL#&sUQ`P(vuAn{)|Qs&P?&sP8&DFy#vnPOx7 z*G7s=dlx_QAwQuqwgp&5P`I~|YgoQ5g;6d_14gAk>^4utj*rBw_L#h{-a0t(7twb~FFD@+y; zeXOSuWn`!%5tMdmWSCEQf}a@S4>23k3L!HVNM^vL4N-dw5PW5V5{D8wrA2y$CM*Qh zOoEMkup-E7RX+JG$paIWZ4f%-2tWBdz8uCKwMdLl5;1;?*UAz0M3w7Z1%ix6&zHj) z@P|-j;s*yHqy z5_Ek3IW&*k~fE0^GfV{oR zdYJ%50f?EreX-QTN_irDTmwF02l{I0eO23P+-L`o^VWAT#yt1hx(t_n4RBb)=vN}x z>$wc}0FO(Za`u4^?pjUiabhjy)VhXpjCA2G4rTMq z8-P0`?e=q7Rj6V2xc2I+#HAII!NNSBW(2D%ewO&y$ZJK>XI%t&g$fSilO#$_zgkyg zooalduPB6`$JUHzS;r>SJHjlRV8<5hxg0U^F-$w7g}}>?ii^YXj zyW;`rK1@dWXbS!5Bb`3A#)Cw*YdMivil1gBvU66Cw`3uf1m4_n$5N?8wYG;xFO?+* zRC&Auc(Tr=082P`m^R`MjcQMoeIyzqpfmN|xIqyDEeF8g3Q(c2)^?jS4xr_Z=EeyO z_U1UZxJW5dyMeF>MQvDk$N|<_*)8m2Eqdvh0v7Ktwb2S6P9fp}AWLbXynwVRB-zV3 zu1urr8z3SweVcB_X=jn&0E(5XcjLdUX~sFc2xISGP;30?vt07XH*!GXb=OpC(^LKR z+pT?`h!OP;!l<(}!A3e~rQ)2=i0bI5D$L7(Sj-Btgbu(pMX+;c>^IRZ!L2oK!eV5% z8V=rl-PofD7b)}Heydky0B}wD0I3*Q2wEiYgRUnlD?kx#&f6c*LE&x+d16W+M|?_< zn3Td9ZKegiE06anqmEJBi@YxDKFS)@ViC^4Q5^?t^;aAE99Wp_D!?jG?Bvc1>h;Uc zGZ-f$Oz{k}J~3hk^h;Y4=r_s4lP7v%16ER6d7i&-y*?UscMMRM(iz>XkiN-QR~|v* zKs)H7sDc;v!kkZIkCDdhZVir-DOwgveH%`-5>iTTbhR4>_9+nUj?{n;?Ugt3b5Fw^ zgvQk%EZy#N;uZ5(gvl+M1yg%>P1UQ6?xKv{;yMBQ@JsB5o-LQWt)D&i#kB{&gmETR zVa- zq~GU@nWqzExh@xbpE9VOpBV!8fk>!j2Mye$>h9B*owEG290|i`Gf40GdHf<5WFime zQ}@lqU(l3m4E~H}HEuTbNRXW~bg}-wOrJ?UY$#7XO{PKlm`a@d61LFDd(3Cuh}yrw z*`REDcTE)*eE#E_0z^P)#XR!(VJZqiH(-Bs=JIRhZUO`9F_sKqAElaXS_=Cx*0hWE z>~}JRcU(HT^2%un(H`PikYne{$LgObe5YCa`#*%~fLbOtqkdKsDD?i8!7pWcCHOL# zDbnpL^z(IQt9_R=nDONrs^3$D9HKgx@s<{sQ&kFSzMDj+K zD1Y;LIUsQ#|C{k1(Kezxft4X3*23K5j}0k8AeU_jKd2y}gq?j1@;;G6H?L5u;(I35 zcTeC-Vd+zTQQ#RR;!gssq==1XNZdD;R2@TK(N8@wPZ^02%BMcAR`z&Xid}6$2+r9t zond4P+oo9ym8{!%8!8S`&Q7ome$KPsyoJUiP}}e^nri#T;CwncCu@fxabAB^5R7sa z1bSMAR-`MsC`~=#9N%3jg>nsvr;$m}G+ac(e=-dmMA+)GuIej9w5>M{G4-OZ_VB~6 z#4Bcb=y<=SKw$$;clX^k<%V>O$~Tr%K4L?hRErwx8pHoN=QKlaCW%D!OU#ahNO$~9 zUaY#CD6XREM&guH^s3t)&3u1R?Az*UUJl+JvlBL#0zpmk_u}Ow(z0K^zN3Tu;MXQ5 zcNXj$SF)l!PhYu+)J-7aAQM_9$Y=Wr4;Mhmc^#ZQ1*(%fuv$^Z)!dPpi0_}S4P5so zG4^@(Q;eV`$TGioFs2CgUMlU%oW#_(@npjlY*>LsUW!IP^XxD{L9<75Nt14qX zw`0Y*k;j^D(y(IL3O~Vs681wU{D))~V|sH|-G1GhFYP4-48##A_L*n2#-3!8(Yh&! zS|cyI0V5_qsv1O+HQ=FPxUDM<%w-*(v$39^6y!>_m*|0Sx7Tj=-Z(oV>YXf|m0ju@ z??Gut*JoF3Ge-om;S;M*AnKcm=L4FJwahRQaEG46$kF_7p)>4FQn=`;p<9T#(u94O z`O>2US9w?N8cjXCySry*X`z8uXSpX_;u@M6G}5`o;rB&cCVa?o?0tB6VcWf~uGiOi zD@X}tD=xSeEaa2uzsL&~jm8CaL8a0to14fr#c+*=7YDR|ybvMr4%bWc26X28Z!23& z<#>>6q}zu49I5FqMIz22;fsnCwJL~;F#1SjGyyhhHwTP%WCDQ)MF*y^Lszm2=mKw(Mg%;3SUrfiB;Fx?;dO9p7H4n{WJvW&1 zT0U0biQ}X6c?PdFhb-DfMFBHq)FExplndI>&V`i20 zW8<6zYvPZrQ)^s1mJNs8wX;`AsE8*iIPDb&rBBsp&AoR>I4UdQVf zsT;rPon;okO7a(U25zE#l)mAuZ^^m%(uO)|7EP1`pw9x@R!8Ka!D~5T(x$AK${!U$ zJUyFLv``30{EI*m;O5sq;|^EVp^VI0^l^;0*?P3eXbC6Q-3R+}$-5r+>3?cD$dmlp z_G*GA)7CKk?T*wy-PX2Q^pYYD{?<7=G#gt^yV*rU(hrN(oM9B+%m!Br3C_}#0UPZ{ zpCw!Z5=&!{#nG-vJKID#PI=yEI^cO&LbM?#x6sF_ypfo6-KQ*wMQ(gC182T7UY}`( zQZWX2z>bxSh=U-K5gBEL%*Cy!17U=_Q)CQ>wI!)RtSsKz3~xRM8Y8DfHuCplLqZ0w zm8;@NV}=y@s<#)3hzKW3a7!lGh1t_y#mQ{#J?110&l8Vt$$nL38MZLr`0a&Ji^)Ab z*&gkYkp_&|q>0UvztMOxJ|;2q*bR=K;Z8n|v=rI47bh6AOQ#gwo5^wEth}jq1pkV`Nq5VI@p*etcC=gW{Vbn#+12(Mx0!a z$jfyhEiV4uOF?A_wOdIuyy zT!^qi@4L|{H$col5#3h3V_(Q}*_oItescwC=K?bJisZv)N z0dQBXD&P<5yTDDjW0ACCXZHm-I_XUp@i}fR_f5gs>omR(;!F*eKFjHR?68BFCj_H$ zt!Z^`*eip2<`cUwqPTw8$*1q#_8nIhL z9n)RS@m8UZix?rqfu^}Ju~>dt^Kxe%sNK}6%D8o&*a1RIk8yS0Kbizu-TAsY>E^h^ z@b*Oik0jLP(RTj7ar{3psWAE9NodYrBs9JFe6KpO5K#cBIW?>w=sHh+Q&hafin;y_ z)?e`XN5fflYujq%$0a7?wghT4-4F_cgz~7-ahO-nN1r;8{~@7M{+iBi&yTa?bbpah zxmonTNhswz32o{q1dvcYr|(yC|4Bl_*H8c?bUhY8LeBss^zfa8HeX^*e~Y939G&tv z33X+%@_#3xe7{L(#cvYI_!kMak=tkx92debzT1aE|23-9w!p~R~)$uL}V?GzMACmSV7D%nn zK6o?^cadDYbnbzvB`OR{+D-mVLW%#0gr5Ho3H|U+LJ$5Tp=JOQ`VB)Ry02yAak}ua z*8(P``OGr7&mN!jzTwmQ6sUG$y}dXy`fEv9y15&LfP6ct!t|x8t2;1DpU;GqkRdmN zrv1M-zS3VDe?7p6KPCfu?JthM`p=b}$(t{>|Bd7S`5j-Fyl%Hjh&FslevU_Tp=?7Q ztz2PQRJl6WQFe~+XM|D^An12fSF+igv;0*xCIeQu=Mb<$#W}pTK~MyBH>Ob?!5UF5 zgjO3+9)ZsyO~Yc*Y9b5=qVxb4#iL z1h7LT@q33#a_sjO%D@kGx>mpzicT|TUt|k(L{B;Kh=(g9QLmDz%veKm{z55>=*rS0 zmlr*6)pY8v^))t|j30rjp;L9o31P{M0n;a<=X>1Rlzi{Y z-2Xkjlvewfs0H=|mYyQ!jADH`faxXqGrgIAPcP-~>8<#0(~I>!z4ZTUdYKd#@h(Uv zKNq?YNC#btCAF9Qh@HlNPH?}vPk_~s70M!SdreI}%(N)|l29DmA%t~JCGcm5O6AWE zRayI)M)aQ@D!2C?s%8mR#y#W!2Tu7u4oS9B?BGxFHwBV6fzxPow#&2F!P_6D*lub7 z)4Q6W)Y_01@z$?0-oOn#m3RTI@-zCo9KD~|(xj#=g$*Rx|5uK0?d-w%26%*WBL6q5 zpV_BR&ZdrxY)pS1p|lh8B|i9UhP?vZ5_R-)tZqo==dKnuYn}DwM$98oRvQ%FF$s@7wNV{;ruMXm!kt9J2PkEdA&^$WJ~D5__WjSp`|=X(24o6n0bgLaPFf* z{8%T18!|p$6xf6G%MBv=fgSN=2XOl7bb{pbgMqbq1`hz5Q1IJJu|)AT@vX5$iZ$^o z1j3&Ca@*FBkaeiNf*2%u@x6BSgF?j11iJvIA5Pk*C;yx*LV(lH5RQMv*N?dMBm_z6 z&W+e!1ImUx_lz2*^%H(#sgtI!n|7?m<=iQK%_hF zt`NB|s#^Uh6o3aGW?@Cn4 zdnKv_P>EV&Ho~M7u9)2vBV-%{as-PN2laF>s0Z>C5*Mr~KmGzZ6KVH1lDT1~DK(NP z;I50u^gfEB8QdlrmK=|OaZ(H^UHilFm)|-5EEu`cI*z2P&Mu~jg-9-k-bd@7mP(xm z%andE&W@mB&d5t8;6Zjq7BtcDuo0k;pahiY*DjWmF%l%Zss5g3N`Xa()W6*lOabf7 z?`{c@Sumjc_evDeNG1srlQ@VX#5>350lHmJ9+lji_Sd!^@bOIFcxee z2IqJkTBw-h_G3@+dtidBW?;Y+WVN0MQLP^Vm8ggIGzF34Zftv-?)vTEF{1FDiRcWwu-#tF*#P3jp$&gx*2EtO6TSS+-fU6MFT{XKBfIw}hDaa}-lRvP_NX9Av$H z(lgb+XQGA}AA2=4L&*zCFi&S%?F66?uAq*`Ms3jJ(GL0w#k8NtYyqAv;Z4SjPlXD9qCPa$3TQ%W`+Y|Suh;ft!&)KG4RtIt> z`qW9}@b)OuZrGu+yo>FzZ+}_$am2qmaM~g0o=Z5~Zm|zMN6=DpzkQBxn4I0HT%9i> z2=Jxc!+TXE`bCFDaDvmCLrHx5M=c>u_;O(BQTJOdA^NVCAO)x;p#Pp_jO$@dOy}gT6mag_3gAOKk`O!Bga(3pc6D0Q7y#!W|lf z5eCU(GWyr7Gb_xBc8;p=ohT~&9Oy47H1K7tzcW#_&b0L0A!z|yshqw+Vjxa)c;9RA zB4Qh;i9j7f3y$PzKrMqmnd^lTw#nPh-Inik2`l74&GByb;+}uW;*Ky}1shKE-ShcP z^2dQL5(BvR)ZNg@vsT)&OOL!j(nrg%dN(lz;5tR+sq{9m83mL5ub7;ZUJyKkd_&$o zflYq7x(n*CrrZ=%eHqofIwiTO`itaW{u{}6k^W8cU6nP_Tm;u(ynz9p9}&CBH{8{} zi9+hWLy&3p2M+cEO`u;Lh@H7hJTd2rd!`2le6uN;mErlvfjS5rjsR|X?uByt*l=ktvVm5Kg=oQ_i`YtC4;Sypn~b%)K`(8>io z3sU+4fVmIG9)$)a&OO#7*ZGyOk!)`a-<&&~(lj`>Xm_XagXqvtP34kVR7?eJpQ2rI zjj7lPZ8Hn$*k1d_(JIx95~`j@M@M&>d}dld}%TYC!G^rQtet;m&$C)UL0DWrT`uC%#z z#&`9oYF-tX)gGQi+M&y)l@%jVoGgvF1W(Wy{L3P3+SWq7xxKZLq~OC(tP#$)dJ zRN;mDjX0p{=T*q%08^Uigp+0qr~C-=Lu zrmg`CQ0q(HV1p`HN4X(3Gj29Z2xN8oSyEhL^h}dq71%zI85B|VHLk1p5T>>!a=4&t zBUn@&i9}cIo#T530yuuQ%;)49c{tl@0BTo_IVr0+M7*%~Oo-i8U1&J#2Nf(m5Y(I( z;WcA|Te|^406dpS34}!zEHuX5C2%P~UXT;}vh<0A|xv)~lSmFuG zg>5woCt6E%v>a$L!;o47iDh5vn#QP%hfCqaCzbLYZZU^@Lb`IGQM8JDr>j z&iqM4*17b_#<)KH11}9meMe3V1Ub*Og&x21>x%8rGjUtP?G5lx(r>ub*J?DNm`#!6 zI>sJ{SD1Kg#)|Q&3dQP!Age#D-{Ske;1@uYan28U_tH17#Gq?8DdOLABaVPEPCYof zhLMX}(c_zs2_QBp@)Yve?QlISt)@o$#h?^->gAXp5YNg*1*S#uaGf|c*d51Uyp@Bj z&1UFfF6sH6$n^8UW{qQJmhisOj1Lpdu9}Fuh%_tF+O$aOm^>X85oSc{MoI}YIK-sh zEXiYNSZh)xKGDb@j3&6*;;nvCkDAqv^3(EE)300h2a?m~N6?Oh7ZWrdKeN23cLesf ziZB!+I=K-#r3%P}0pZ#TPzQzqHSNc9!_OZ9`6&tv4(0GkRI5wT<9kr(#$7x?@(O}_ zv9`_>Z%K6ZhatmB{^v8KOShX~s>BQ!g`~R)m3-JwlD29UoUD#mbY`|}300W|S1)zr ziR;zI`@Aml_eaaFl=%4b#2Q9B!gh&ie77x-UZnToqKd#zq%BnIp`j#c)gO%)izabC zcjVl$i_qMy^xv*Qk8k*YENa+qQP*JMD0CFDKn@SRFwv1&>Eb#IA)3~A$eo}(wdK=I z#Wi<9G^x>PRCBQQlqpu*!VKkI;`EBjH2>m+Z=$GvB$~XII1kSTN=-?^i*i)~_^KT; zO_=~(9%B;cu`LZKrxWJ9j==<#7iLp9h9%$ZpZb7wEem0#1vOw%lv?M|nR2I}GsRZ! z!Cp~t+byPXx@(GMMRB1$`B68*4$!w!h+YTft%Tc;w6=w|x z#3kF&HDUsu^ESP+q|4-hsY5{Y?W? z+rJVDus73{lPOjKX38bP3R@+y@B5!Sy(sPPg&fzFh%Cm7T*B>*VY@!b#_w_5sG{R?X|jfBvcOBEskS z-y{-j%>P36{~?iZMZQ##&kft6yXcasm7iC-0^&Ia;?`2`BzVUJSK4rx@I2ziv+Te_h9ZJuh^C zA4f=V#ZRAfVVCV^6C^3Ne)hZ`gfxRgJu1|fIYOOs@UukajG}!<_BO$cEa&gY{+4hy z5rFJz_(IGEJ!5_&dtF|+^BwTOCrhLlq_72T!Y5RL5utQX*ufVTmBb#cPGBQ`@SsM| zK!7*m7;iT{M>v1;dX5d3w^Tf~tQv=$ zd)sI>W(q8co{%1U+r1!fs?L&HWP5WZY|Ep}b2U(kmU_d0k!)KpLviSB~-m*zJe@BL&aPirCTc6>e9q zzrL{Yf25(ZU(%Ui)e(`EpUkv*!59|c5iNt7#ose8&xQTn7 zwE9s)>sQ*D$k3mb=3GWU5gO^F!F0*(^-)g90BI;sAa3+y7i(*Cn*<*@Lsq8ho`h4p zFfs>7hf^Z_QPq@kydF)syc;Xr>(rwnSKOnr^)^;>k-LMzk*|Q@!BOFo4;8KN{sf+PaAf<+E{!J5MuCBmI)iMFWPvYX zF;@Mqf(CgFpqv0=pX*UygVnkwg7bf-@^X9LgngK(3q3(!T)nL)%@` z&o_QQAi62a3NU#~^Y;66P&y64XAJQ~Dv9Kh7iQ7t9L;F}V6SKS z9*2s&1~??LhCMk1-yIU*oga?)-s4aZG*%ia@XX|ZIFyq=<*)^m9DS#^ zJ1JJ41lc{)32KSG$6eCD;!r36V9)s``VQ>5-+{dvyh$&}`Lvdnvw?pi27N|QQ6d#F zfpIys&VylLObqHPa-QVd_2T8?ThuuPnHZ%Zqw>#_f`|weQ3}r_Yz;FJga5AK4>BBAC+`~Iut;HAszOU@vPrl{}+2BkYK{l?>bc4(q)p52iyz6GkM*QY^n2K z*^x6faNl0|3q$ZU=+$<|HT1f-vl0Lni6AYA@)D%79Z)zAI<8a3a#+Bx)QFg$8)295 zyF`+mbTo*fGJ(Koie>wL2{8KhpAbnyQ8#f>YH})2%gcqN{<27Xr;--Cjm*m+Kl4XQ z9Z9du+G_YHx{&hqQI9eZamN>(LV?4bCRt`&&%p5md7` zHfnqQ2Zqj3CCp}zkk^^LI2uT`ljg?-j1Ro6rpwF40Exs!2VdT9Ki!Hv92dJ~h>7o{ zfa9~@99;&!7KOh&M_sm*>Wb=LeJE4)cZq}nKq4_*M0a_M$sn8Od)l7y7Ni8C10eRD z>U!?JJ+qxdHoMo?tBR#|a{iD1)`wC}TNZooLuJ1Ap%&FUMNXU#j1CFQKR%V+03;Ft z;0^+avwD!aDH>fwFIYqCI5 z8C6<s6$w`yS9ffs-J0V?uI4}=|N)MAgIM0}JSi0`YxYpivamWhU#*AB!hZ|M3 zC1l*;69XL>;}C`3akz6N7N2_PI;igy)Y#jYT z4+w1z_P~?U3r_uUwAQQGaq*a)W>Hd6?Ca9SR(V<-l|Dm#ajvB){cc=_Ej_ASZu2yAS>!1XL=pP zXrD>EuKPw7NP=u8kJ=Y~dbx!38{pEFhrUfjf3@2<{OXPd4Y8CHF^(qEff85jW`K42 z(~_M}89!-)G=wB7ZF29?PUwTmsX=X~#kivS2wu3z#gw#C_6;@`4S6T4lZ{Ys-Qgmp zQf|bxSfR%9r!j4=q899|GZ~E_R<@(w81BHd?YnSg>{_!qePq|MAhTq*?!!YAg)C{< zb_HYK4b;I4jlO44w~M4+7m*q|h%(a-*kSAp>3XR>r(ZJ}=G5frx`j6;i7{iZ_Ogl* z_}?<9DB`7RI2rh`6RMu{0eJn=LKd-r2AJ|mnjA?54IOP ze$>LB40Q0BQxBlgnvuZy#L>2?5jjrOK?^L%Jl87-@fryeTd~`fTcVYjgR|?hM@joy z8x>(wK2q=+bB(F3JzVc?DA)1IBK6`^jDqtG-dwu;7-G77g>tAz$~=H$9yJ#M0U(jM zdwMh`{UXO9t6tA_>{al6i=s6BdcfTJ$sjV-5D*R|xDx|2DM`#Y1}qxi>+RP!EW zHbLyo&C>*Bkh}HcuqDDpC67&7BQjhn%@2O_`-}QMv)w^2`be)d9DQomGKHO$QWp;vjex)$6DkUo>xw z5k_rG78h8aDet~25Z6aSQBAbx{4gvv=fQY7S;zvhWA8E0EC*2pjjIFl5|od8j@{cM zv_%ePzTWF}41#Dkq8q~63OeCCa%Ver>)9Mx@pMFI7k=wWVfkz0n>~Q#)bt&A(`!1y zG_pt{x05wio(L!zD%!^bx1oj3qPqJg6PVV@k-X{te98qe&w?W7!N|^(l#v?85+xAe zu|YK-VvV0P>WMiy(t@1_K$HEOD0n(@J4P*le*(}JSz0MXi)y0zd0*7tDpEcP{}qMG z$>Dt0N$|gp{m7*V5{}>hBavA9OCkXP_yCCnE&u;&Ly<>!|8pBk87B_wzXJT<6zQK4 zDBXWWpu0f-|02*%%L0l9z#+a+1aDnw?=;{L-)!XfA-<(tlri8CUl*=zh~1qPZ1DXM zp9A~%A^y_;J;eVJ_eJJkhxmJdLwqxEIJ>0yfnNQF{)E&PrAdHBVz)-e-VMa8)rK($ z;}a^Hzp8lL&6$x7 zuhH{-V>O?M7WR9&|e>%AZpV_ zuOlfOPSwwB!-+ZTbaTBvcF4@RgmQmlCOBRnM%nIAEV{6KF@6X5_yB+p0s#1jl6L%L z2b|>CR7HiyyVVLIUttu$j*$g|Am^bU$iX5$m8-i}KD}x}b`9lnw<=g3X&0trUPJY^ zW|A9blISbW!vYTRy%G-~J1KQm>PuK*`T?Y7>~)~sy1%&)?ZT!o{}+Sm&6(VP-ZBsW zzGV&!c-KfAy#95|ETi0iR`UVv*=G%I%ZznX?Oh}B`i~lkV`R&`{|fMb|EmAb>DB%V z;8&miUx0rM0QiZ21N^n~BBAn0j zy$xq3f2P+IFue-z)7yP?*7>us`BVBtK)AzbpW|Zcc~)(86RYuO^$dOrEh)9u@77BU zz&4pAZ(@VFizWY`Qs&70+t5eDnHLffR=Mi9_GnT+0mmvPX z)=xbCT0gn`y?&z9S^xm}vnu0}+)z`Ab^w6ym4v4U99^5!kgl+VAOmxe1=F7X=5*X5 zB2{w2E(_n#t*vl2?7-}wG5=Ycce~vE8Sh4Q>e4eV*n4B_#TOyHB zkIl>CH&)<>>q7yV_JkGj1%i^4Q2vycN)WOGH8zivdl2e}r2Z)mfbP9TIWCMPerl7v z8B2_57cLCPZL}(1E%XYSgj!4iJLC$_Mc<3$4i7v1^z$Re^8_5?*9xSPxCH_Z@gIO= zrpmd6dNlZ>dQgFDZF1`DD7NZ+V*2k~Ui-ay%{q0fy1Oo@ZGL&L=AVQ0P2}bDtgbu& z_R&^H7riz(pyMFfjZ3Ws8%wmquAwjkTB0(8ptQsPeS;LlQf{AqiyIDU`z|;E?1TY0L;H6XPasNQ7X; zp;TBKf=HyUo#Z>6z*F`3`RsC}tqGn|&C3)U;ey&?sPB!cWH>&L1X|`02p+(_F2tH@c#}M1BTK(e|By*ea zi|r=;u=6J5GMegS7k(0$&39^jH&m%Ycf4BKn#S!U8pH7XyQ~^5y$hu+ay7@f7=fMb zm&NXeiUFYgZi&s+c_S9%6OM3res=I=BFVz#lmYD)A&=lTAIReOM=4(nXI(l${2&?i z{$TFGX*lxQ+jPw>1o?zBRqRy<8&ubdG9OCnJ4KVoYfGNdtU*r}LBJ8oB*+0x_4dQq z%#k(89Oz!ek|liHB12iancNJ%7T^varGRp&^XJ_gxM>tk+S>Q`JA9`5q>1O(aUa)6 z3fxte0(hx%1 zr4Q8ohfZNEHvf;kd+P3VTeL7=-SxyEcCYItp&TinR?bYa}&JOcuJEvCvc+-5y0lG{HLUw%>GX?^y_LKyF6BhPgAAUm)OE_7@OAuh>n1KE!@p zp;98drpD|#ORB5v*B!p_c#KQLF!dzviZVy=U8vsYJPUC(^a~hmB3RA zpCQEBoPanEFq+E|d6a#P%JQw@r2^8IiNjdlyh&KAc41#M}OkPr}Y8G^Z?UTy( z-i>`!Z=Qs*{dZD>H3i?#6XMkpzX2A6*#U!iIq#;~gOp;tTW>2S{!klGNFvsm=AJw1 zBBMO8t=6Fj{0+8?bYZUmVUlb6c;jtfpV9OQE73BBXYqykKK7JVr_JicEDMZBzsr@9 z(_C%hUb=r1bx7N(AL=;)cx-C%$ZmLa@e3Rf5me>JGDNhP3+CSM*5ChHhFER>ScdS( z5SV-;AF_Ue4ZZ_blSWK1YK#$I3Us3wT!f9fS7AREk0qCMvm?yi6o@;1@7F?dn@e#b zyVEv&2~5xb!tprmWxD=Yw?5m46GYDv7}nCb!(B>B<@H;O{ufm=B(noV+IHwJtKFr; zDsl^<@zkZnpfMlLr7LIKS)@DpVh$AbRn6wQduU8tXutYe?_|nb$liQ0Fz{%<%1`YOq?_X%=+jTZm^h=9WA2} z8N+D`N~`jmzzEiXI|`E{Tn|?KAmJ`BmY3OG1r^z4QRQ`qytr?s4u>U0rY+9ut`VTi zQhA;;%dS49Hbd5e+>8}$rm;8!10#eiImf67+oc4KscLwYkl&dC)-0NvaJZ}LoYU<_ z`KUWx(=NVcag?4XBqAiyK@n%=zT<7 zZArL2&J>NRGIPp~TIGgH0IFR6Ylw`J<%UtWER56mcaulTAYdme9!E^+Ss8!%WsaBN z2SNu%P2YExLKag^kka)jD(y<+{7RNBa0+7_=}QjZP(lf55`v+Vx6iBeuBynCX&r4a zS&d;j^l`}SvCSJlnad4XBxF%aqRpX;pKv9SP1lF*D({JnS8Qq}Pp-##t`;Is9SiNM zrde2zCf6C6=c7-yC$<0-zbX;`a7ih$ywi%!>a%GS*%sqa=2Jnoj;uc6=zz%aS;3l^ z0{1GNa->=LOp3$6f(W$_4BtIM^ww6S4tMF1pxFEn-XNq9c zC&8gC7|hmWp;`(9A}w0a+jjVwE#{bU$_m2tX*sGky2$~yELf*j5SFdsW9x>66*%}Z zvFM$jalVCZtn40R^{sdk6|XK|sN;7`w=d&-`f6$8(-D=SkA~?CVhcZO z^=XNv)VMBL*@noMFVC89%QTbK;4)%VLDZLoG$xc3w!#Kvw&7#D>ha5Kp*dxmbf~a} zAtWHgoo6P#yf3&fIXVpxj~oo8kTmNoHdg;v*Q zk#6P>F>_5rhklMdiplkrrU=E7`QASvh{e%&fN&JHG%}34WEXf8Du2fIY^+_q|61m4 zbb_Z@uM2EJDM}cH+<&0e{l0Y|)QJP7o29d#+6iK8Z~nPpOB` z-yk11e$m~+^5J25{bK)*{N$(K%+l3AOhd4-{_6;pH&Wy2-1m+M!}*hei`PmB1pkpk zfOh5ay}yS#dP$J><(?gu)N%4S(@rj`_n~*XPe4U=UadvNMDhL6Yp+sCDuS}nqhsej=~9XLMf>;Q;_uhd&AP}G5mxo{{tViw%v04^ zFnqW$)=}Gpr!Y&)m`|@JH=?&XW9%|o%++I2-^2T$+pWN3s<7?gv>eeHRCZqAWk>k~ z3&kWM!jSb*XKBeK!{5ODp3ISOj2I8-ke;ClqyJjhgP;EiI5~NzW`Tfwtm^^Xy;$?Y z;m5k(`6Q8oO-%CS$GYBQh2N{sc2D-PSY@mLJC|W4N(Ms@DiEZkVOgUQ1-SlB1$Vfi z+o7B-SQ!BneZg-QAzTNKbz92!$Q}MghM2{c3NP1kv2y3q`=&*sfNggxt)Pq+sNm)RnKvZye3vWTYm=^v}@ct3IwCL%VuLCgxPYB9dyS zcTt(2s7gWcdajFof)*uVvne=WToYtS7>kHd;7BK@-Xh!Q+cR%7{`eYx@zioxltw_~?R0a8;p)OdEDOX|KD>w07y`j94r z)>|H{YkhQNc4)(TH=~KC_Cx7hEDmokpJsNcN!fa?nQf%23@h#GERnM}$O-G<;zXcs zrCt2bE>e#wOAcAiLXOBRnH*QA_-s-_rHv=o!&G1w%n^n3Q69nsCg8h1j^mix|T*VDn(}orN21=ws~JX^7snXv4ME zZ(`YL_R!5pOO=7t&WQzDa6>shgd$}TyLU1;y)5u_$Ym+ARDgB8YSCw9y}b!yvgGc= zFY~h=))@2h?u8OpZgO@#=rOaUp1Q*M7O89!#_Fcasc1cb2hfs-PoYd8QUf2UzDDzy zN5SncmpZ-m9rSph>2{|OPexVMk8wRi9Xw_DXnknY`oz8VERsXf)d9hhe957~bPGZ4 z#(3FpU+7(X3ju!{cuNnWJCK_Oo`@YWZl{)T#Gxx#qykfRejZ0j;YQJ#OG%?x1*w_? z8tl|7GRsCpCJND8THc|QzcPF^NodShbY!Bh+3M!W!@O90JG!L6NsQstH70&^Ekmm5 z7J-`m>sc^)S%IJl9_S9>0clvsqjBzjzo_1VP)1}Z4-$DhyXd%3_L=0>fq>V86>R~j z{^n4>61s_Jcfj$H&QmEM)h{Ck@>Je+;RiT;dMgH5VziFVyf|!%umW8I)Ze2oA@JV| zQFi%@a`$KgW`Dz08o0cK%^iJCoV3}I#ZLQ%46R8$r-Y=e00KH5fJx@tI(6)(G7T7p znC{5oqYRn7AI%T`nSJOWZ;|4J{gLWtFa;WIl7=k4Qwyu8h!0=onf)XvP|+}!knbuE zb^3w>Wd)xv!Ob{=4lS-XF#afs9UuHVW%ugU6y(z}l_q28Lri!U1C zaTtr$)g}oByaz4%OE#{ctKM%8Yuzb3jri<54K&XF~4G8r$>JI3Njq$s`LhPjXq*vE`&h4nWlw^)i}adu`IeuN8HMj&rNc1Nwvfs-xZob-ZwgL|CvfOv&z&y3n_wm6%A< zmB=!g;Q&4fSsgA+Qnn*q)&9&w^Z9Qjwq(BU3+3qtF!jTit9HNKC?(>K(OX|*q z!l$9JGh1WmABL+v!G=`_W-B-E2GSQOhQjHL?x&w?8svI8l=>xuP`6v#ZTY;G4QlC4 zt!gJ4P$@euU02Mtqklro&NRo!sQ8&qw!<^IU@xpzOq_hRG@MC^KN^tdcKv0h2!inF zq|c_-FLd4}G!eV*ktn{dsx;O(;*05Uw#8gAbZ2WL78fxmLLXod-YxMKJbGXmx$2-J zau%BKNwEb{OjRVGiXAd(Je!OGrb2&`x*eLftwNYpL~Oej=?ZG_D=Uk-2ZO`X*Y(c{*p1y{phmiI@f-8ub%l{}9in^R zTp>%!#Mb9s=W(i1;-OmU!glNnn{*-LRFBMs%~kL_*x(!H5^&H^!}_Vjda6%d7nd~8 z4Y=xEVf|nXcs+7to4d8;&J9$1?lG3fBZ_0FeH>SF6}$TfS#;7bXxJUtASImC7x-5lgfovkcgM}FDDrDWIhpt&^bF$sF zWn134(L>*-nsXzxO0g(#hJ>!yMvN#a&t~VMN$P>>{1xx(347@}y!{xzK4cxtTEzQ3 zZy6~T41x#3U~^-`YXJz3)J{y*=J z-^vmW{$oD+Ct~`)dH(rFQMt^&i^{iIyxosxou{WOR>I4lg!HF8-)P%tzFi(y)Pk6mh-(FR&Vn$&CA`UN%SGHnQ@_IJ2n_h$7IMJj`taa1c* zH*co2{39OqyDR_i@hE<~ZD&KnpLoKc%eWR6NkDA(k_ct<@}#jg@8^sQwY|C)4eIZ;@1B1+?sc`jRw` z_=UN-eqYWKZSeN%5B}E`c;0GwssR3!k|Tbrd7jriAl~Ij0nx6-=WFmOs31;LsDShC z{H>mn?6PD21Ouu3yH?NHh0l*=-~|SF?5NEeboKM7m7z^t!2c;9)oduj{>Pv9&*A>R zZ$yAxA~bL`lJr4Gx6;|u#NGj8g*FBU!~WAogedY^N{#mLAD#bMLS2c3iQkTa>C;)ePJNHCKl~nAQ^1MZrwc6`QEPEpS&X7?-IUJc zE>GTThZUeAhbx-WP(6o9{MeTZAr`f3mO=#i`JtP$kdrYI-|fqH#yy56JeR{?7It{#UlI`cK(D^GCL? z_rJ1zF|aQrT|gbEC-GA#^;NWgZ9H3F~g6S6JPIz=a< z=+i!h7uuSSW-d^|9Zug6J+Hu9FD1qYaHj!&Ug>$BHYH%!nU8^!?Alq_{~9;8J+R_ zwR(_b4i7(t^{qSL$nH{ZUpZ_*xUcVNmP}y0CjWEL1Ou|;^d;!kb;z|!7w}e3EqUX$ z5qz~KS)))lc4J}Sa$2WD8}5FL-4D$iK1>Gjh!GBDFydmm=Qkw|*7t9O&yQ%)uN&67 z$jFyG7Mn2EhSq_m-H+8?4H=j7>0X~=x;G7EpzQRn2{3dof9&=_61=rv2PxkQwe)fO zO~QM-g9@A;aL4t-=ehNF-yP1v+pRehl;O%+qX+Nu(ImQ52;7lOqM6-7o z+E%2NMy9Ue;}fUy4=5iZs68`$M_cB1M#|?H%QaM6NmS$QIE<*TgE%)TocV^w zOd}Q{kbif-F@*3_eV(TqnS%g+Ya9M6@Do@hh+eUIVlaaBx;JCtGd7wsa(07T3{Dxz zRya%l7U`@tJ2LuSE}CM>DWbevwi$C`lnkB?DxBQ?CFyki+?dohlo(^Vz`~JzxNcef z4G@2aHaKzyVuS^Jb{ZC*6tN2AjQ|ti&Shqg;^^iHk+( z3Y9<>7RO)sb`2s4Hr*c6&yP)WdIgpMW~hTQ4^P+wlRo`L^M;58cZDq^ zI@W^d(%}Rg+M=XmCe-5zBF%HVhWgI$k`wr$ohvj>nMt?{7&mGh%LQUbV7y2|Q?5g% zg-PiWQOmp};WJkEBd>)!t2=^#`b)$1EvJYD`DaqN*su5~f@9u2Gxgn)txh9aTVasi zqhR5sAr~M<_BCa$_iz;me}(&yoy)w!KzeKuZk9Tt0ubZ%Hk}^p$BR~n5E3}Oc`%b; zGx$riAjs?C4qGwsDFBzo@tf~DsqP9s1QnG_(&87UzbwC!3+4kL+)wto{s{LYobr=h zuef(SdJ~5tyL9*N>UgvtUPG^xuBrmu&AgO{ekX>nzCc{4jflTz4LyOQ_OT*)KGwId zAO-T=xudTuKr|0{Ow9-^!`Ne%qjoFsnOeY&*w~=WHR!ln_B91M73F6l<*tB|rxET6 zh+4K#Zu9Kwa#N}pR@q;V@})Y`Js|Zy0$TRfs*98Hy_po0?os2}>>UYZHl*|=WqYeI$%+r1&)S+NOa-=UqLkA=*kxpTjGx!mh( z%iW!*L0bYS1z}=YV((qJE+*_xd0tV^haLb7m@CZec(N_x-(vR{8WP!r`O3fnaaiQ zymNQmd=gJU?;Jtuj_`5@obDYKqkf2wl8YNviu9nvBP-70! zBb!=~Aw5Y%3D3jYep*dw-2J%H7Jfm-Mtbz6q&?h0% zQgh3^G^4MeI?sn0j2{QA!hnFk-x)fS2VU*T6b@={I%>cGSF(lODj{og8CpU1es8D8 z3^BZ?$YUjW*|8ugHtwOF6ihm13hL9FP>)-CsU4nNUH*|(HH+^sww^aWQ3C@U8AqX% zm3i%8NipMzS*+JrZ8-38Z#AGQ9PT}ULo=nWB<__vkja+5KdXO6Bw*dlkzwNJV7F}| zyMS`r(O#cP+5ng|U9rZuqlyX)X?A{3Y3+SPH}Bsor@O5qTwuc~thPq1`)qoEa%eoh z?Ic1T7QYd0o#$vPx>{SPbIWoCK|{B>W3Y5#>FW?P(%3I4B}~HIt5NGbktr{Z&ybm^ zG0vMlvi_6z5}8oqV%@Pkw&_odu>~Q1Ko)C+9}R{W+&_IQg+66ehN3YqNXv06TG|n@4QT;))=$FdZxM)_0T)icqeZhe}>d z@<6;8R7*lku{^KF1>E7Kh~?aK^SHeFQIkH!v@&$Z6+Dc?zNDL&2Gk63UDW#b@4E98 zqPTU((fgPdJCOryo#u8P5}H;;vMjA;n3~5Z*Uh}6P9YUx?In)J;rwkCL_T(9>r8#2 zopiDR3Pe#~ae!A2Ea>fK*C7UneBv{(n)(iJa}F!wiMjE|b4DAFjJodN%nzAbk`$f| zKYQKK7`7ESC8}#`&ET)n-G@k74AP7L;OhYkC>me(k!L{fe1K26W~X4Sz`&Hr;>`%j z_`Zyt%4Ly(VCs{_O*Zf(mnN{GakH{1iq>ZK$qy6+F1NqaaYndIQ>Kk`6Q*@XcQ}98 zH~MT`QDY~ZRkj-8wJ*KSdxSx##|~=&y#<(mAI7-X&P~?all;z-pU2uST=$O1e1NLk zxCca5Q`NOUlVxP+yO&h%&|1}3<5?7RU98Uu3-+yh8|n0g2IWgMPK`;3MK4D(iRTx0 zlyD1y&K%PBXt1?}xf3t#KkY61H8Cx!Xt`C?)D|1}#oLKRTP3+qFZ2f$se2m8g+$Iw z2P4Ux zV2&^>oJ0Vo;d~7#M3^V3fiyUjNMsAZ!?(mIcT3v~>bF+{8bLjv*1#??5i>U0#oMij z3h*)s_0wFoa#;fzP)kMm=hQ3DL&UqP5I$kgO|th+sh8}&uFKfJzkfRU7_Ti@xn%sgzvUvhhG8e@2>o_V_c&zAtt%aC;c==RzF zmGI~O54X<-d@Xwq78=~Pb20kyM!MDy@I+dAuJoVW{);YM(@r0Fk3+_b(1N9^KF}=u zpM>8NP_-{n3SM~N)9qTRSDycCvdZgyls~jFV}O-|TYN>-jAt=}1%4GQ1}k#kau{=y z)i4@}``r*I3#joN2SdSoiPS8X*p4RL$AAo4yR;0vC2`Ki_RBLP3-baD2R1Mpbno=e z9JSu(;w%UQXdkl<@LYaiFuMGbCiyWrVLPyy6L|SsB?0*|cJZ^r=nX&_Js!$CM#yhG zlv|9Fd(M3J{3vwFcZODgy9DF3SdLt1y=?wrKd*3*__aKqR&{4WlEw-hYC zbp%j+M!#4<0A;83JOk}{-iNLjkbiaU=YMqVw*k8LHwF^}0A2ekAE&6pflt>utU4fH z4zvVAI{;n#knd2weRjQ&+)r7eeji=?zhgk{H`}6Ugg(0V-R8(u3_iN{Uz(Plbqk)O zKDzd&MLxRr6+XK5Q=dNjeRST>>9*M9o{=-NmAyK6t!*LDqa@S|&=pZXStkWp#& znF{UYLJeemUU7UnRxFo9vV~%C7{9rj-Dy_G=}s@e3c3BoZr(bwgc60x?^^2k=E* zTc_yq6w7fh66OIOlxqkcarwN&$}?wkR?j-bDCOujHKr29)zgB{4>f~GRXP)6AJF9WVktl-W%gG^R(4KJty|fi-DjW=8gd@NqvjN8|v`im2-+;0o?vxqG5{|WNYd0HD2#DOTBs%9{cC* zWng^ysvq4PTI89#=9tk1e%Y2k2rg!M5Yd>`dEGRF!71a}I|zu*o2kTY2d7w5sJR%^qq7zhYcMp8&Tm_!(_CdL5RK0zb;K4my~ z=Lv%oW(|hy_UV`VuOLPQi%9%+_3~BVsfbF*WEBV_I4CN;;pQ7bw|I-uMjT)TNeg_P zvEc@!ac)q4y z=city)9B}KiW3rDLz;osKjmN3yN$%Z{ZadKbXa12A8J3E2}w=U>2I|^$K=zYY1sTZ z(eTVdmsP0B<*~@@Zq|0nSkJ8>@Q7Scs6EbRia+4DEr{-)o_&DYZv@MPz{d~*^z7r2 z1A6v9&3*Lje=;+0Gr{Zx^z2v6lli|KEnIh2{l?X72B`huj?UeK{Os(c5W=S5R6dRwP(!2tRG z2JUr74nJwhBKVWM2n!Yva-wEqSjiRmI)bp#AELDjLZ0T^c`>P$L6uHNX>STpAnd_0i16LW=HD z#Zza!Fd`owq5~Ut@CVpWh0Yo9V(JNE9tUK=upg-YhJ2g@rzy`cj%3VEG zk369IO~|C~drq$JJph+Pq!DOS0?Sd>WL8t3Q@82n7taJ-*HX(2IdesGT@D+SkGk=4 zi7Rbwwq6wS_r%*)*@BvF&@i;~ZyoCzH7fjgKBrV?FRHx$%k1A!d{5>FnEgQV972L~ zln#K|U;Hrp7>0+G2qI6ow5@m7C-fmC?#cIDSFJ)fbe!Y&0{2^9Zh0>K2JEbZK5-|# z1+D70Gx@VIzkf9;zUdIkeKA06>}4Hf=*t^C7u$_YcJ!NdH_b zv;Unc$@7f<{Jo(@7h?4}6O-AEYibOc{TQC2fG`jRm=uoVR+TY01OI%Ockwm?yCQY= zZq8Ur0^{em#?~`#d{t*ok7;Ro{UN-7bKmxEMF)4@T9Uf9+b_FH->kGi{D6~AHR@@6 zX=wTf1tfyX>=S9vHq5Gb$n-QT+cY(*&!)KGxggQq*PzNfMvyc;#9TzXvoLxz40JlM9wtIT{kN z@ctxE50MhJDA+a;ps0)2LX0xm-I5erC1@(II~$hb-HZleadTa4c^ECEyHimr(lCxa z%NRPv@K^{NjLB{ba%jnDnI-_8x!cg`$MM*ZV;aeu3FwRV=X*@aU6LD)wZOk8r%8of zLa(JDjscv6<1yPMA{`HgX z{+vvM!hWIa4&!+x@&J=6?b~dP9hNnvu+oO zNT`((-qGgrjYado!KPt388S0^dEIO)YI*1g0|p}gfsTm}QIyXLeS|zCYJRy=Vhmvv zK_B9cg-+711r2kZQi)JU`4gonK<(ds*1_>zwzx-3HN>ppX3_x#CFn(U2B`ggWq$Ui zcO6E@*70|5JQGVp-xgqVuYAD6uzjTwV;Fg?Cb`L;8Qq6iN_3Y)xWl}rv zoL=F`WomJdGSHJlJA5(`jdZ!v8R%TQ@B{ovHLMT!a`?H71S~hK$#3>tmNcpJPGx%b zL1@}*IqfC{Y12!0B-l5VxjK@f}BX#HUOv%-^H z`H{#CcQnkpqy#kZJo<9DYQqMqZgpAs3kN@V^W(OaGyLowi5d^>^08tSlTU8OL}E0& z$M^h!Z}l704!(TOMmI6GHuOy{WhcfisNKQ=O%1|#XsbJpnFFi#pcq6dMJp%(Qxgk z$C>onfx3OV7BE$e0Yzzl9xee3iQ=)+uoo*SpWf7VmJ&hQH`KV>!a!ThZN_XfvudK4 zILH@#|c7X6|wUaQh)h(mxa3Z%3mYZOqR+=u%M1 zsqM|~qRj&9V>ZmFbfyh2_sQM(6hqO=*i4trl;mnnZ9D;)<90 zt(7x#Qz6g`s_z=6ih?$;y0|=XUv8NP|2F%FrjfsoO(P*i1@S`r^Z>y=xB3r2uz!AS z?xh4zN*xoCcsQx@kA1$toI&luuh^dCK!fEwq zri$|_&5!Exv(v(cZ1*KVbva$G*kFaF)i~0o%0W~pny;jqD?Ii{Pn6_J`f(#ya0yHD z81B$7638=fn+@(G7yZ)rs(N14!71RNp{hyQE6L}hBT)Y@x33VNe@%1KxU`M8$_AJq zk3@Bx-I3iH6LWReAa-Xjox+dM`QmmWxzn>L^`-jcBOG;0NlwDEEROfhm*Xyh^W6PN z_PwDHM^LZipwKqsbzEr&|FC_3Tmak0N-M&_eFOVQ_Vd2B_}T=0`cqv#`U08v;r0(5 zu|#iOoh;AHIjX+j?BqrLG1l88P z=-(1;x0UY!uZ14eKqcQeN-5+!Qf)>lw9(oB^QqolO>_Pqqy0ap`v2+n|5d#I&#e>x zfARjmi}!IwrG{ZXW+TYEqe`nkW+S5invHmOLs*iU?)?8$>jXWw>fdf3|HJLmDFWQS zzrOZF+-F%;=+ZCST6=G1GjIAV0a98I^s7fT zp1aaX+)vGTVEInoGXwV3-fkAV-bgN&%(aEfdh_GN4h~z>3KfC~QD(t?GTmW#m;<5f zXXVJ@pv+b?p@Z=TFa+b!G#YcUQV9WWKbOGdkK6D6e`ksq!fCAmyZU>p&cs8W}xfiLhb(DrOF`e;#nZ7@1{5l}ly)L~z=)!^3) zXqR17jLQvh`$0+{ZlCuaZt`)4`6uZzZumt&5TdQW>N+yWz>5J`BvdxI`#@_> z_vF12o>S%Nr;Ag@(+rFEdq+Lsw@2%+#$9One9yn5{RVB{11cZ`O^b+NpQt;i-oE=> zx9?DVp@9(VxZ)4I;9q^b(vrmHxT98@gwm8#wxR#C+fVx2?OOxfK9ADhZeI_$n%o7@ zyKhimh2{VJy_GTY5zxEeTT0Yeu<#=w`xJ~oig;aQCtGl{S5nknXEh8J zLxR7cIu%<@e|R54B+kXVITGpdyi{x+VVfs#%99PzT>450DaaK@1gnrzHA!STKzy?S zoFlUxi|~{XHQ^)LxA=n3%c6s|NXsChCcfahe6pdn>jrxYrBb7d^sJ8%SF2W#2zTdm z*etFhlPC;xsLt{gXc3k!o;w<#PClhV>L*ybzr)EL6QcQCCK&0x0X#S7?g!fs(f^C>uZ9tgc*R_JTQH_F)}4dp>!rGf zeX#w*KWyKplfJ_#LMG_R1J592Ke&(61Kw1-Uw>B=TMV{u|V zl8|EI^`}X)2dL{(VR!s$Iq!P;HDUXfN(2W88wGNB1elxBWJ@2~sy?=Y=NaQ^hhT?E zFwfP{btqZr?AVjFw;1FS@uPP?$Hr+BWjaabd_yyXgwzi>J=^zPG;7h4j(U3~QJBmCIE z75&b@+|7ECm*_L18sBD{;T?H%oj+Lo_5f+1vRd#L+m}2Et1joYt%c6Qmg3caxqX8t$_`{jEJu#Q=MZZm%?pi^)f}@6C0ytA+U867F$x%G z21H6RzuepIdiBcj>AkF!B<-qWF5_9TSJErs*LmS#i6Z+-3hG~(0tX=IBzw4^$vI6Q zZeNQ8LRtw+JLp?1KVj4r{m^g6-zg{?nOC+n``iGx&k1n*`I*l$(W_T#NXwv=$pqAc zXM{1;@c3=ri?CUzmYgxIIx0t8KLrH3e5hw8`n6CHPR91=T`NE9kQAjL)4ShoZrr`Q zKXNn-3NG)#-OnUV`pvy;n?LmkH*`N*6>6vaJ<38oNW7_x%yw7-IO-y;O)K*v0KlDt=e z|KwF+?1p6ZHhXNY5fJ*0ebiw69nUAIMa$EzT0xVn{y1Y2lr9l9o%o zy&w&bXb>!RpQW(+nc*^Lr(oBNJvB^gyeK?qamF)Tb8d%==jv%={uLMHXQ5T_g(y`j zTNN#>-?w`TfZKmDtgL@?ao>Ztai*+Kab8RGX6d+Bt&#oI7>ByAR6@-NaQmR-lTAvs z*(;ILR?vx|fw>Er;;uTbq7Ta71Ov-T+6^9P_pGyZ4aI*XB(VBeJopB#EKqfvV`tY6;K(689y((**do8%4JP=@I~0Nz3il}o*S>jUZhzHKaB zH3`u&)Oe^mJ2f%Pb(|4jS8js)%E2#H6q5KbzHTS1;IX?ji$JzzCsL&~L5fNB?fm4% zpWnW3Ed?ZX#g+ind0l^T>_8yL3c`2EB|ZrN_n)eZmH}{I@xZWN3y6o{Hc$iPn{!@Z zS8i%Jon%-v*;zQhOcSifSg2y61?-QuOVGg-`#Jr1dJzupn4qx502+I`m_mlx^g2eT zQm_cLc<)_>?|3CI-Ak?$%6J+Mk35ZT(w$9vc^ypXQn)uiX4${EiE_)liLQZ~9#pT7 zM@nRW^*eTPAs22MF2gjDZyCR{&Fu|DeOM?);yKL|6I_dO%hQ$psc&%&1g!1a940$;d#+wLwnOR<;47pC)C|$3c}}8 zw88Z!z)$`7cqi!tIe$oFJFrJQp-I-`2x#O8mt>q5!p3c)5aN;2=Z@^DW?pDk0EH3CMh^t2@?bqpi zy@bpeU6(*S-G(BMjHpk~=HNVj#$r7jevSdih;SuM1{l9SEFG9@K$tA3A&h%EY?rqU zitU3fia5t-LXTacd;V*GX^v>bGgW39 z-&7Q2GbE(1ZXsMV+^jstOAggNnXwpcHaSGSl&~&tsl=t?6KaWlnzdy)T;W76;og3( zoaNqhymRlbWRA%%x0n#o{Wa9(;083o>f5=r`L;7WUuDWY)a0vr1P8)4o;;YXA6ktB z@$-M;PPc=-apiYCg;QB4wg3K7fAQjZ zr9Vykl8t)m1_M&>mS_EZYvZ)b*t0(UW+H?Gpo zPNm2_Te5MGB<4!$Pv-*xr_wl6>7ji58=Iygt_Wze>zH)fYmTOITKfR~@&dm^%I<`abR~O!|rPrUvqT$4s9N38lx? zcbpg|b_MVVl+11rx;7JVUyh0=;#z(}m?sg6)T0&zBp?&XXk^Ek$iD^&eX>DGgp1zO zBYi>>SrE&0h8p?dL{P@6*$1pB01H)Z5jg?~{b8;z=f8@xUFW}wvm?NwU#R@T(JOQz zT00LeWnpr|yo#C^hc|tT3KktT!TH%U&483}aLp7(h%b;k_x^rKB&>->k>z zcuB)#v9+qU_(6UeLMW29@L4hSTXTV&z@UO}I?Pl5#v5!4;{u5HF;tine^;$YMiR)1 zXCq5$Swy(fg_0Pfw4K?PmsBnS2i{TINBL%SYH-65&m* zU{L)xQMSl+!c6^dq6|U_q7?_$6j9KB`Dp6&f)e3>2mI#9kvqZf^`C6o!hZ*RzlN}X z2mDVagiLD5+rI<8{POKHfeZRL?9473?6~gy?Z-%%Ii!nVCkD{@$%==(flkl2bFn&9 zu$E~k5Jg#oM?5TMj9kU72d|LYsLpV1y!Bz`j-TI5ls3FhRA~V+D;F{OXl-UmUzaae z!n1PdfMb1|i!3V^JZ8tuh0(6Nh7lz=SlxFmFaJt|E?`}MAQck}CA1O3!0KDHRADAJ zc9qs&B*UC}_!w*~v^#G zJs6eplBqA)zmNa;ortmxRgP>n*e)OjAoPP7-q)z%MLDTa_OkvZ^igj}WbfU)eEc;V z$ZyzAYOzoNc`_zq>&8F17z*f>fQ~>DOhL5-0$yQU-lNefT9`E(_6Gc zar{#6|9JOZXR^mK0p9((8aV1NfOj8tl~Ju=GQ4K{2H~g}m$Ww-`kY#_`~)Z%;IoPX zTM89oERTr3*pj@0zb76A!QK%;o;3g?)39pgFYd$KSO-0F*vk;vdvtacR#k;kdr@LT zj+ui|*QBY`m+j{!K^*7;uNu{+=B8z_;5+(D=(`~OsUX|E*2ngF4Io3@u}pYVKVeGW zle**dsagh#1f>w+q6oX*ntr@#&OMVY4-|5xo!tdXnL=@Jv4RX>`4eL~h5Fu+eChxs%&CXM$LlV3B5R~4QM>%LzFXp}IYwNDYtNp9pr_MGu$YfgB?)rUK zJlA<)iERcG;1TN@NEO_a1tjTX}OiVGTXWNau6ou)3NL z(C(kL^Y`xeQ)?^04a1U5&U7F9c>%QheUm^8i9wW!8VVXoYDv0`-&IcgJiaAS9Pr>v zW<4K3FCBIgpqgMq+3UK`=NL%8sJ8$|?j&Ju5#G4eFl(1~e7K=iX0UF*F^qJ+BO<+` za!=%xPuK`0C?Y-E{nYcxIj@i}Z&+t7>rC-N`FJ#A>Fj=kH9{n$$l~Z=i1QJNc4ke7 zyypY5EbDlJ+_1(}a?!)L!-VX`8kjMI)0%2Ov?C2Qc|wPw=BXmF<}sZ!RX-n_BZCzy`z`Akm0@~7Fz-!F z`xHGv$$uuQT`2Qrucxv7hfFIJs{iiUU+unaaT`(ArsH%i?}Zcz>7Qyq%&NS4)_C1g)cl~<=RDy|82ue^Yk-p2rcOgfvlyt`l- zvwANzow6#7$BHQJlLSRV#m1yY?iN^q<-XT*&X^`*!6geq1aZg?@RP zAq2nYpQxlKlB6a?If!)na93lX)jvBoS6;`qTz|+NmqMKNO)QfE*$gLk zR;blgmrmLy9JLjwJj(~_Sm?yUDdeACM<1H)<+#8}&bM{T!o8KoOsNQ(vW5~vJL9m3 z<;4Id{42TSgbVD8h*r?Ja$7H{a#llm@o`7ANdeoGUz%8AiNn1| ze&*)BKj%%7%{Ig8^f*iU!)PuVN~y;S9M^axJ;%@3@8 zH@4;tjQdU@S6_@e@sxK=g17y~zX5{#?q#iPO+z*UzbMPcC-54&TIR#0R{g6UY;Ec( zcNGVTwXPv~=CqTk4&gLZZ7C#)?){X#u=CU|_Zr{X+_mN@blaJC*~W^e;2a}JAn=$0 zV#68IPii!3aD}&Ssq{A|d*jU#9M{-*ATLz&MvF{~`IH*AFz@;P^|kBZU_d%2b{#93 z(QH^w*TD{NGoVnmer7IFFlQQL!Pu*D_At?r12uN#VLA6^hV(q=(wY{}W2<sSY@T{12z?CnsvQ;%Yv`Ocnxu$(!h$?vT{^`1R4&jpC!G zktD^XQ>|;&v(v}+n6zl$6jbCx)NG=nC-U0YV+ie@G~?ExDwD>a!m5>aJ4cz^8VurF zWJb#te7n7%af3o+W&g@ zttSxlxVG2U{(ASX+3CrZyY6tB0O|2YCveVx7f{WH*iCJO6{*>-X3o)ny!-7nF?o>D zaod?$XpMKxKc#s0*g*5^u}F8P*|o`0NLutg;;rQ~Ga~8u>51@xFcPCaG#VmR`+FLu zuX=V#=gSWlN>I2u+-+FuAin62z;>K+FwK?bmTI_GP!wSH+5{0r-Lgw75Zn_f`B~PV z$@|tx#SM0zvgnG5Q#yvK<#3UctRi%t0RVG(vSXW$uka$3&o3V=T@C@P$(^}mfodhZ>4d}M z)n&VrY+Fg{k5O5%KZX@YqlDlmqi$d{Z{}HqIlxg4sm@{lsLKg5|EkN4v71DtYtA`s z;hnp+6mf?BQI`wErM$561d}~*IhveDED@BHF;pJsEH_xhhw$M^xdz$ia zy8UpT@^ZfIG+k9_hV`w-zw$fbh}GbOs{z;7*Y7qR7Xq9`X|#&2ytW=r!irFA)jvhLznSdei3p7spj z#50prLCTFP0;&aP;PTVkVP+v#5RjyTVKcVuk&_?T!GM3y$w=Wt)Q{cy;qNk!6iWD;s2p`yY%ymz@(br|b+kE&XQKV*Md&AwsOm%tQ zliq36ZW(s>v7#+3pK727S|EAO?G{ZPW*kg7VSl|%sA13jy0*PUH6gC4dZRMVp&o^_ zR?zUsmD+CT(5|y2LE}Y@#>JDP6R6n_j^Y(uo!!k-sulljVMXCsuxX2_=e);k5u>oX zc>A6UtP z@?Q8C!z?B7*TjBb=m(oJy0{B8)*y(mI`jetcsasgU{rN*BFt-BqB%5*l$?>`6P!%# zi4SgEcZFFS{JPmE#Z&_FVLZWk@)K*xz5m$Bv z=Lh&7_2@gsx+Fr zB@;a4`i<~WoT$+KkUIHrJ=#fBA|4wk(l?7g=UXe6AwXCDfo+`Qy|u$DbtJ4`BXeX5 z@rw1&1J;eAo`J1ipk~3=OlXPAc+PD zDHh~Y#bX$TO2_bW+NYK8^8tqV}hG_kNNowv~sev@`~`ft(mduM2bG zS!DYhSmMu*Ux7I#q7^{TK{PN1P@Mf}Zw80Mw+@U1a=tGLFv~C3qi&3<(}?je!y}Jn zqJ4kFNycB5^j`dpNU%V@6d_og(aA~usnS{y|9rd)e6gbJ&iD&pu0`VsFh^nD_qqpc zGrG}rROmjjXv`TQ}JE%$B)ozp9hI=diHf(sU-fROm9&PtJ zs-y>65-sAuMhm&~g3P_y^M$~xN_1W*2c{SZf`g#KV}^o9Sizhw2HAzkia78<4k@J7 zj(SLedGyJDI>5UHji!VLn-GO^mV)_RPou4PLQeHpK*qq4eKyV&{vY5&IJq#GJz8Q2 zApkCFKt%2wxneiR_8e$xxHwdjL^0@7+Q0S+Oo4B<i z#Y%Dx`!{7@ z38(Gsdp#@VQ!R^~%uT1@1N%2=cK@S3f9plp`b{$vI3J#+xBFF>(Qy%}vya0Roew!8 zL@%?)rBCuN~S{wP6lb!wf zR_~0AqP)s)2jJH~4H?1%Wr46kqc_E%guO-Dvzqq3-cqx%3tnc7oLfo3s!Wt@$bT;4 z$!D+ts>F|-wb}9Dym@d_-cO?zwi_kA#EZ-DdC|bf> z;EdjPKC9mWp7JaokD(*?I8Iy`iq1QVVm71rc@EtH>#taDfTx@U25u#WqnMv7u4GN? zr~^W!TNY_m(Z`l9j`&D7NOA?`Oscvso8ZWWI#q~G>nfR?)tF9J`=1s%d=Aw|jh z=)@Y8RWi?yP-UK2X&e_)&vOqES2;V_HJDRk*0?agQhIhH8YTuqN)tKlZ z=H`p*sI{rM=VW$^)Zys$H0#p{umDSI`uEC%NOCGxk%HALrnNQ7<|OJ$Tm<=`ql@TQ zuZzqktk~k_DH4^_eYaFa26Tl(ZYc}Ynrzc`PgQw zPGN3Km%zicNi+Kn9V(0``>F6yr6Njn6z)v+2a`fQxF#8g5=eR8vc{BzH@SM4ud~5| zRaoZ4`NZlY#wqbtbbvYGBb}Rhh7bxl@#SxmwuLCsogW3GF11$#aMb3lofvjwNp(>s z#OQ_Ty%+1CKk%Xl7d;BC&+mEfJ7W224c#5t8a#;VvebepCROfu^D|JrJ)1xq>C&a~ z+dD5f4#X`JT}trWHkDa8UtSH9a9@*gwPBk^yf5MT0KP)`n|9BP+4Bmm^11WcrqS<~ zm=!iociE|AM??3&Ib)B6TOURacT*z-n>Yry@U;!;ry`6uS$&sy%3Ch0jx_j(G_r5gAOp;G%q%+{4vbAg;s7ESxYg)rX@>BUK3;%%-TJS)+838 zsL341$U;n~L$z&XVq^N6=iCrFw(gdEB4hy=9|x>OU1tF!EW8Djm)`q<}UvG7Uz1t^XnE`#`zMT_r$yC>+2yAN;%{E zzgwV>y-K+3$d%wvGp$}H%0$RWC9IUjf=mYX$G#68O3!js*Rmjb$wjIkgvMnh9x@{uFJ9czl)(n}LkY{A zqM6GRgAvQhcu+$@r7gaM(x_R*ce3LBQO$bCg>s;lm{Ltp{!NbniO+iuLi)S|9;0)O zm@82{Zjn?y=P7X6?U-H2skhiM_W);(T!_u&H!1vpB_qamEvu2BipQ(uS|SFDh$gwX zgho2<=pr==E`*jE3jX(t@O+X8D7gl)SE2_xBVSM#F)Y)86Z8wB;D>0%i=|gj#oCv5 zO+n^s*w8xE63m`1t`L_a_8kK0k_nhjq>Vhv26nF(Q-&fRQ|}O0)Ye7`oqYJS!}$ON zA7DN!SJK%|^r(99QgzF=LEl`E^*u0Va?~QFvEMN*->Z61>wnqh&?k!LlVPSPX+_*& zCr0)qE{mq9cJFo5@c;PezxAXJS)JZ#)jGGbu8G`jpT>1}dex zq@R_fy2(1LG$pCc9nYU7Cn2%N=s)ROlNdzhW_Y7=M6l`v4Mx$hVeqV?$FPRz)QU#R zSL=cZu~X&);`myV^Yx(bKZ+BLo^*3UWM`81s^W$OgA0e6fdJ@#&$>@S4b6zhP&{B; ztXD&)!ii(_*W<~^7=pZk%HR=z|4;#f~f$Qd2cwjizM@bne2=H`=zmDpElX6v84URsQ>v6 z6Bw{vgWmzd8xWT~xh{@j-KL*@OGQefmy6>jM&r?ND5_xj86E`p~1W$}j_nkra_M}c1Je5*J zcBEVVeaFsv-)?_HcFO~vjc!nD`UU&1o3)|yV! zU`GbO;l_RjL63n$Xtc4Ed$fm zv-wR!Rke%)nnizqoE((P&S19_lr~rAF4q$X1AqUNGBsCk1}s}*-DNs>70Y}&o8UVL z^I>RB2DGYt7aP!c5l2VtxoCc^<9lR5|&8hS3k!SxmwJvM-r7t|KeOnq3}aoE&w$cQkWA zHx#%DUUq?|%}YgPFMkE?!L}nJOU#R_uOuqpOvo7}NzwxY{30gs%2|@#`A+iDkSR9BR(hGM>2vGhL` zPwqN%{qWxO5ZT@Ybl^U?$u+?nFx8a8MYzJhUj!HB4EJ|>@IJrPpviwd|GkwMp->;3 z58l4#zx|04ZF;ZoxcT$*rvubW3=7hTYkcH~#3&ix*Qfv2vpy*@{O7ZC+~o*7ih(Z& zq2G^(&(&x#_r`I(Fd2xcfm=UWr<@WeAK3?}9I6gI#lngct?+8_eQ_Z@)H$CBn_OTO zhj_bo7gXQDPL-3VX`f{Mjb+OknJ;PVuA=n`dg_u_Ph9h^Fgt?qg*vX$<7KKt$AG|03`-q{^ zlN0ou%ma20E3{rvs>?jwfdiM|_x2YRp~?gfC_!jgi&l-xL@5ss8d8>D(7{0F1RO+onV36zInPia#x3LUCyn# zkTs`#GoQiny1AOg%ASa|<2rkS{ zd(Gp!h;*A{P9uPvlg$gTp|d07L{V0GW~C`cm1wyCNnP75rkD zu?G)t)!4L3sw;A_hFO+FWeZ29jOCu8AKCb^WIzK{*dO^VdltVqIQLpfuz-gjFYMCT zO)X6R`|RALiCMSH1D*RbY;&DCkL5~KW7Ij~BYXR|Tektk3RG7t(V;nm;>Ysgl}J{X z*8R#IhsFJU=J@2#EY;PvwW%gZ7OsZQrwvJUx{$@>S(mA-4y$Dz*72ReE2b?jiJCN5 zQAQlR^RRZlgY)0s8;XM2+bzE&j}bEr`#kZ|tw6@HQ1wUZCc`Jcd77(;4W{oED{inl zY9C_Scxz?+?loG_g7$`9vSs3vh;@dgtwFC|d!kj=Ja%c#FNQW|UYgl?$7Ob;44XGZ zpejuto{9&KLrS+?`XJ>~?%7ho$5XR7Q_zl>%d|4_jUBRW_9wU*Pw1VRo0O`=Ialt8 zaq+Lk#%deC z*augSJ6G*5Rr!=!+?)n-5fAR-_s}z6{mzOPxVdir+fHH!1nX&Nwz6$sn;Q%6Q)@B; z{LhB2c6(6~pYx^7mP(QDuNXwf5&URYDS__XY#4O;l#{B+ z(InR>LA!~yZ)=niOCXiMbX{~XripviL65z@5MLTE^VU-ciW)f2dU|c8A3_4QHBlY% zE?yjjDdp)DaoictEn>1=3G1saUQ@VGafj(#R`7=*bdc+*4| zb?qU3_%4S(Q+AqdP!(1&;bmAAyy$J|)CdX=_r96!6V(4!SipcvofIPF&%7j-v3yKy zgqYOHz>B+591*2s&6gRufbdIwVM1=bu4#%xnCR!KkrPO~6fh@ErR-(DUuQb4)}oDA zbw_0Wre@a9%Sog0mt*HdmY#&Ug76UgD%UD)Eb_F+(8yS$x*f_Iel8h$JziUV4(Jny z+x+3uUmmHATCf*kl<@S=N53a~CGlHmZKl+=Xw@P(!1u-CUn@)oT1k`5*$f>ToVK_F z>Xo9z*$4NG?FVS;O*f{pIbV(H9Ywo5%}AzJemfF6;nSbzW|88Cj#MCfjHb+$&S87O z0@E9#mS;K6HI?l8A%ijRAX7G&v4(4OSv`}xxy6&XYhOdk4J~{(uSoM+G|K~jLYsjg z0eQ?yvV#CT7nsvZU!Z-=_t(}{k_1nQdhoLC#|i-9U(k}CNcZ;m_1o(ACNsqf&nm;k1%!W3fL~c zdODz-K34=(nKT`xYnyrjU(kxk)^vey7@l(1CwP{7i*#?XyzCM>e*^ou0&|fuBG(rs zocVMwG4%IZ!U{@C{fa1A1zD=#-kjmr2&6X^PMyPokz|X=q12*Ixk+0keV*o!B9ls& z87E^Ve}$8haGZl3ab2{3sF775>8>8~(~VNP1$;i+aNb?npHL580blzLoOW9~54zzw zLNJ-ZQNHev@1AAZ42$jF86b&z(s9}q%M~==z2B|xF#%)z!ztl^J(qGjI>Fum=aMt! z|1mF_+1tAS=B59fOPVq3fH$N6%5(L7DAy_{o27^~n>wz?R~SPv#^ULJ){)87`TI(Z zJx!QU^qRysQ6WLbjfmXsuX;=&9~1te1L=+r?fpVG5E2pMl^v z-&Wi?KBGp!U4BG-eoTE7Z~b~}s{#6YZxUM{MWgyIAZ2g8|9n!dQ!R9k7QjTVRbaG3 z%Gbx_*m**L9~6_HC-e*v@2dc;xwCzAh-I-fyvyg+66-TwjQK+8^x_!#GTw-BBA^uslO215wcII);>3cW{f=| zvS&JSM9%p`2k@531p-|86sHkA@0=$lbV-HdSZZ-Lb)k&=ACM(ZJXB(TsE32!pnik# zi=&`|!e4I-GM0UWr70y5t>7df(gaH0k5uR1q*2z0?Uq|IKPf6NVvk~w6m-c!;zA}5H8?fXoKVT2JoF^6vW zgKk>j{^&2@Is_JEWL2E?&;X(#8+KB!+(g!vZ)Xb$|Phg3a5pJ`1Gz9?Dz2Em-+L$>+o894@sV|evN-Q$6)9SIv{ zRhsfQLeIfm5@RSy#Sfde;m6k)I@$NM`#Y4scSB2E1}4Zsp{vYt6G(9>v@9b?B`y5Y z`RGtE)BVNQ2PoneU7^!ao2>(ixbWuzfFdreR02CnX1ubChm@OFh0(y{R5uLH=U37{ zMO@;4i?~MEfyIA_rmet9ic0<#aZL(O)|p@W86o$b^7Xr5bU<^f=CKF_O%WX@`1b4g zZxo@UtK!+21i_&#yd^I~q&!}9 zIYrUmoA@xPNZWIjX#(u61nmPGi+M~5k*k}7>zlNF2%0#2T!lZ1hv+yTk1H-5tzW#u zGWnoy@Gd`di?^rXHypGm$Y_bhE}}YrGd-uyV(ZxAm?xKB)qi|B!X$q!0g+ zbvSefsTh5tlan;%^bR$e1G*P{ida z`AgPSjH~6BovA3fOREcYUp0(gF>Gb7s@l-_T*b_=T5xFSW zbLPmUV_^Gz+IjbonaGKJ?MLM z>3$c^joPDk2UXb{$G^0cjwC7hi6eF>a@hDgk(>Qm5spL6J|c>}=Ruht7R?&llXuyCY}S-dT-iKP>^=Ldjr5##-Q;zO zX|+Y7JMFxK5HY&$)E05j>jIw>EY_5Bi-cpP-^|0vha$@gPcAJXVEleEoB_+ye93b# zJ3lXcTUkom6w}3@#~@Rir%jDa0p9yXyn2{t0&+_AEY6rj+?X3_4@<>; zT(CC#%2GY_40c8^5eK2RbM+O4(~2ICc+TVZD) zAC(>Htxa1OC@zDVa%7#e7E2`s1p9C#sR&7e)CO*_Y*Y?+zEI)2v3AmjnlZd5jBY@M zS-LdI%7gUZVid=zus#%EBW`%Dpqp3qVbgcGLThZhfo!|AqcTCafjDs#xTm=s$T&wY z%&!(x`t~fv8xl#;Ro!ilf1jNg>>45m#tTLTCukoHDyRST)WSQy|5_J|?=6k*W=-IN z0a}V#y=c2GtPpsdg$dp`n7r3Qm${lSf!u)ix)73|sFO8yZ&*=9)t0{lTHOMsc-q*! zXL)TDQB0(-;t-&SsKzzX)HacJGP6$b)Nj;MvYvonC96xcTM?=>bIXuDQ_@~#lV^RA z40JXLn#y+G+J4Y<{+Nl&)qw@wgk+^g;pFl}HEL4`Yth>1rc+E$NFK}*^2 zI@N-h6;6}eVW_}|&eN+K9ZVJ=Ut%e-aa%PpjL2W)uFEn~(w1l(rOwviXNvv{*F|KN z;I%x=)fTx3%bZ)hC8zhgvI2hm9y{M+v($(2FNFqk=tq3Gvf!jGUGiBnTz;6fvh~ga zb|rYGWQ3a$rWDhp856fO3gy(6hWYU*qBgwdo^;C2)o_y!s4~fB*t+J*wwK+Bvrz^B zURh&y7l)jb8-rI2aLZ8MnQej4kzxRUaNBf(RdQZ4G@O{S>TdaGjGLu_ED44@Qd1nJ zj*rsLjDCL)(-O}(hE_n;`-kLF1f8v)?PZqa$)Hm_zOUfdsid< z-}ShyGHsL~4Pkks`WZBbDRz#ZJS&afU2eC3^|&aB8+$v}*(L4x8{VJI6E!amb1&on zU8Eyq5{_~D{|Ml6GXHnFE(3T!BO47X*d4dyoqUi4j)Nz4u$v!cViyquS8@a1yeQfiwsPD8%=` z^cwrPm;k>n7I~%TSW4YPn4=Mjuo~0h3W@=B-1dsI1M#q5PGsmA( zX2Pzq4+75w^@{ z4N80=NBs^0CY-PL?_yte)ZPgif4XAn0SV-P(Ys}9TYnjgg8UI=Lmn_5l2CbZn{1~b znAk}P6*x>+p8_;w`Q3r;;DL+-5dY$JQ}CdyfAKm;{=aygs|r%|{hr3&|KN3GW>#we zyl(3=BCl1ed{yfXfY(9!$y2`pt9#Y>pb_}nl8!h!KWkoZDH=te#pm?2*_JM6 z@V>H}CO2US7e7Q^-JC%FE^hye*WobrAHPtzJ|x!Tu)NKv!~*-cCtu1+C#ULT)!MO*n%*oPmo$I1Q=Y091yd z`aL{PIBs!5A+3dVy%luK(!s1Se~@Y=pc1G7CiSR7NRN#LbZjA_-iV!?#}ywe(THF( z%=y=lJ7d!l=m=rPKD;=#6OZso;ILV);Jitc(|@+Q*e4wz>^XmqEF5^U$sKU20s!p9 zOq5o9PZp`lRiy!d9YVWdEZ4~gF7HCp9#FP_o*USs373(bCbVQX3z-C}3U1p|U6e#TDXro3Rb))iA8kd3%XX>jI(%d|+~S`veS zOY1e*pr`@L3_g)%lw_(h=NM`idH;tZ*We#Tt|^iS{DOzw5EC;Ec!N!R;p0Dw+(&>S z7sD&?KZ;ywvd@1NxxkU6dy;i#qLSF*w1G)mqc^?Yzrh-14Qi6H5F*J5dD69GW~{e9 zsc}Bp@LX1x{ql(0q+)B=MmbM%`uw@_v_j4{be03H$wlY-m7irnJA ziriK+#I8klf+|&PVP6-Aj_dP3VHnXlh0I1Z*Dof$m>RW zLGAq^W)HCM(um?PcKr-JzKwvs)J;@)eWpMf7r|VMqEbe1}f+%(N z6m$kq3O1`tLmVHQMW``@ zZ2vfh{Ql+^PgK*%a%iYt^nN~;H+P#P1l>Dx<4~IS^%RxFnRI2Upgy0_(^DBl>3bOZ49UA`J;6Z3*o_Z3nv1!8eAJc` z9+Z327e{z^!>QtRaC=7g8(_(O2KUe2Absc{Su@rR>T&D<~?j)O4hQ zngiTLH{H%Jqa#(jZVhG{p#p6aevyo~dQ7pQ_vKg$2u?yZCOkZ|&fkYp&fG9`n49+X zTQ;bs=2Wur(@ye5QN<5w1$pzHBT?ry$6864$G{y^r%MWMiSSwsCmf8&@iNDZP6wyv z*7UW{i@J3$G{1}{!_vQ*6@Sh)?7S!rfcyr@Y_H%7zr;V4_8oqV{8pA;|FBR1tF+g* zWvY4w9=L=ruD&LP9a&1+ta^izoStwVN08B(#gm=MV!Xav3ggh4Ez!QwJ!jjt;BHs5-n&?@7Cg4l)b@Y$Und)YExNSi?xAn)%zX~bTW za@JCkQ!g>g8xtBk9OP+BT>B2`@W}SIZj0A2wo?kx6Xu_UQ{R4fEis2$x2J}#D*p&y z(CVLzl|7=aC%~Uv>P3!8W&ukY6*=T2d1p8e_jviEsBzjyQv+u5wXIIWH`0Tec+jLI!74$hux;QYW zP#Ktty)Ub!ZAD6o9lBhd{Q!qEDtpg-dQbYI0%WZcaudvnfr&Et=%0gINf?t)p{}_=0rTwfx7#=#ufx1IWlY@<|N4`5NlM zW4|T91k})ek}o!)PNg&@b5LX@wq0?H(XRhA<){HF@!h7eEiN!`;x=LC!)++-^~{vc zBvP#MSji|a8T6yhD5A8Dd0N}PO!<-j zkvtuz$X&(IwblBwm$ljGiqerIP)ny3R0ePaT;JlP1yA2piJz3_BG$BPyGCM65`1fm zJYs~7rva!(T6=I35i#3sR#1sWj4|Q_UVN^h!^*td}b)u3I1{Dw* z(S(Ci_Nk0vsKp>IJx&z&370s-l2Tonnk7Bv^?~P%Ngq!9fr0&vsmk4o@PtPON8Ivk zdS_xwGlj9qjw48Q(ziqS?1f@=lQC@V^2PFYO$qJ93Ok+kc$&!r+2mM`T??J6~q*k zLD<`bXRB0ZgZ-@+vG12$cod^n?LCNhFFL?MVl`Qk^ZSOdD$>jAnf)(B9dp=j06*?f z2hN@k|84I##r1fSpIR=RqCa%IW*y}T?_45z9IK;;s=nHuh*#5NNip%huZMHLC8bmS zl=&sXS!-5RVWC{nNv)4yecwS4H)>JL5M-okw0=*9gSAJ*xpUilUr#!Q3I*(l>ioFY>!)?>^GOJ_Icj!ggMXmEV0l!LYgpc zrMFH~jf@G#(Op4?<}qG3%luBbxAxXhL#rji4w!%*9xle)j*0tlL(hyHi#;DUOVuq2 zULsj*C&3_20cv!^x!oW1QP)sO90!xG&7xpRRO21n8B`zX$Im{9QJ0UeuOQ9LcK(nT zRi0RfdS4J6A^^Is2GQ&q2jBRku=j5TS<#?JP)y_vPU$S&k z+W}6ki2tGMXrLQWkOX&mUZV_l>s1u|{Hnnw!wy>*-jXfyoKVo)RsWZ+1OES*d#j+l zx`o{mcMWdA-JReTJP<6nySqCC4esvl8r&@ecXxNUAn8TEt^e8kboZ(1s=j-xxSbcw zHRgE6ubT^v+bXqo#23J+8z0B_@!op?mU4gJunq>~5+V7i=p5kP@~GOq?c>(8@sV^b zTeu*qd;O1n+%Nxi9~YHZh2p>Ib$?xq{VN8W<5~Z| z)9W<;((9`Jsn<3BpXhajZ2wKK0|rL_MX&QH{ujOO{{LgWE{eQ|^N(IPXe#$_dYzZd zh{IocUD2Cf2lxL#uk-(#UdNaF77yhQe~X721MyIw@;`dr%ZUZ&O&3Q#`m14Ku1}-# z^+^=ijUf*h#*6m;AeJC0{$4sU`gia+f9N9r%EI4y2pS{>^S5c=gPL{dsSvlDQo2UX zb1E`zmD^taqZ=x(CLfOh{N+FLPnN&m>T_l0faju*$U$h#oE@{4{u?~AXuke4Cpm*XpeorU`z_Cu4}H1tr|5tC6)U7`T5Vn=n|22*R0UgDCu_1Aqa{SGaWPj z@O-RXhee;>yQPgd)L*K=OHn;NH|#X*P&C)su&s&eSO{x!bD=`=QQCC*HssOp27CrF zU#k(@dTiBxR;bHfBDMj&6Ahv(aKNpLb%p=m*M6L89#+^#y`%1~Q%-k=~1a0f9bcx?=}vy#&2(c!(DR+`1{>very^sgO`sPV7-c zS;7sN$`;ax_{Uxtf)V6T!+9fkQV$C<+kmG0+g2w^^?dHQs_F@D*kk>>Ee}#1+y?o^ zcMk8Uv!mVi2?;M+kc7GFg{$oMy+n2^009NwigpX_{~@3$=c@n#z5GK!=gLMe5P-L$ zRlr-()a!H7cMm+}p+sl2z+2H{KAZH1iGVE5*JyKXsw7w7tte=;4G4Cx``g55wF<(B zD?i}YdF|JX}gF#-*tsvW*g^ zpxgn~fiinVZZ4??=jU)U?;uEJ2(we`{Qe~rZc-5^+uGi4e*}3w2C$H&=2xNy;9~D^ zxzKmXF^O9InlV#nNq-B1yIF!n8O#2Qw^CdBvwL)wbzyf1!&l>G|A|is5#%w(f_59( z`y>Uz9hIja!$hYPQ07>-ap{^@d?oM^b>~q}I<#JjmxZ{ZdMCV@k*T4z7VC~DTBn({k- z+^Kh0WkV^+G?rn-sdUg32?MkRZT0&Le-^*L^+RnFo@n-8UX2A>`{9e7m?7;AUh(BZc#eq@zUd+v=z58P`*H1cT_ z+~azzo#J}eixf`DZ#0}vUH>Mip7YE^6};SN6+WGh_cY*|+x)<_-!iZneirtEDoc?* zXt$9Q;b;kI1^2QdXPvqWt+(_}aEJoNO?7g~I>9#6t}27(uYRaE`?30oGQzrr;)!!uz=!dHJZ^Qe&^Uu-KuLN%WQa@>>8?S214kZr? zx_(X1>nG>E|LlFLpb23Ofg-kwH2c~&5uMmdVcP<+_}G_Qsfcl}1@uF+fqv+oY1sk) zXSV5_6pkm8J&JjY7VFuY4WJ+D`+StMm9N1w&x+wCC+MKYPWqq%g(9MpH;BQggEuJx zBK%iB)cvc6-)oiIKl-8HN`Zdp#yqTTgpL17P^a&Y_n-T3KJyr3g?+Vjt%i35`k|Wl zahXKLZMGZ1yw8ZrF}#{9QYN`iMgbH-~V0TFZDsC%2Pd#Jt_t} z?HPRQAVU`L5qC!>4Ua~b>Qh*Y3^FUS}PwjBlFtR*%ghWqJ!%t>a9 zndu)^SF^%SNBGWZ1Y=j4%T!6_c*x0l!HW6d25*|>b|0<7upm4pmf37dZK-mjR7qfW z;F4y>z>vR8zXox$5SwTmkt4x2e!ohjT#8*+P>YyYNQ^E>4owM@jdXTA8gmjKkR>w3 zGjWShW5&QyV*o%X1`#g~mggAUYtHy}?vltpIN}*}-tbq=B<_wM&g83ejYhSy`AQ5= z=HF|^uWOTNG?JWtxZtChQBJAJCTBNGj#~hRsR8-mSBP9|PVoF+aGhm!S`mB%b zCCV%)nfCuu^pR}H_zIt2Q4t}D^%*N;x4a0phRh#sf{?Mc{ioVQ1QKOkLO0|4_9DdZ z`onw&Gkats1N|FphXpsn>BYm>N6C@#&&3rVLODI+`e%yBn;SM$?4C-%98)A5kYj0+ zdM}!s1KwLS$psFbaeupP(}L;VGsUaBbjI0ZVnUclX#WI4Je+jxwgcfNM@NscdFMG= z*I>ZtWYzP*vWareOONfgpK9M_1TrXEZO2CD9t$E$*_V<}r?|X}Db(gv*qq?xd!4+ev0QKV^#P@W>m18svy3?s;;!pt>@yp5K!U!_Jl(-`%Jh;r+M_-fZ0IeS z7iaPrJjz{iAR*Gzj;^oYi=&w>#qijjy6$!j4~JLY9uqeUR_?qyT+96T_?zru1@DE= zo07bd{WVq7(;#)_iPW3)NbuA<3fKd8u9C?Y%`JP61dJrP3so-{^{@)YbK+!yDmlY@ z)#Qv)c{{S)MukD0#AQEL8267_W)&gjkK)~j^@cLoQ$F>m^3i=T;#|)<%H!0oUmTK; z|5DhvE{EU?X@(+iVxX>{(!O&7-=K))IE1@&q{~yA{WB(qc`Pj9JAMJGrv;r@pX>+g zJ^hMa&7+GeLA}P@WuG!h<4KVj+HvA zu=Ds{t)`iqhP)#2+&ht&-9j~}E2Fl$f)5ptrpdnUv<(FJwETO zr?g$N?v5x0Dt4iJekVRc5^{tH{Qi#{C3Un0wP*hgjk5lA ziCVPZ=D_sIDt&}bP+(^aOG|5_wkwj5=V`D>)K*xL4CQG$I))}9UnFStSUFQ-L6%pE z+kmvS<;2&V>U{m;YE8MIWXToZIORaG}N(pc9G<@nG2 z32s}E6~tHC2}3|p@EWcNctARBK>mk|PFs@8hHv2nJXoXPZZn^;qdbBFv!jx2LAf1x zZ(Ov>cZu+giwfrgx1}Jvk-_L6^AbR(q4-ayLAxOCp1V6>0^p)JeVMUcg9|;p(S{BxFXosKSy1n3D zbEBP`M4LmISHx02H^R8@x%_Wjp79Fy-y9@o3&2RjRmM2R?84D0AkSc4}FoQtyhDukcE$(nj?V47zlH6pKdMW8y5cxxXQ zK&WVJMGIs@<&MMY1VS)o1A%Plq%Y1|F^O*_ll(-5IqpYt@fvHQ$UoO77^73!;=Z3S z6r>_GTtio)b+J8lR6+`OzXGO^=$39~4bTRcA!rraTP0Xz$eqw;NI%o9lUv+;)LfmD zJQVigP65NwLb$O9&q>2R0?)}6a?mY0CMptcuRK)_lTnx=D;6JM$8LJNJvr&lzdz~F z^eS2Qt_}(4@?=JGm$5}7y-Vmjfbs@wZh7Z?3UotjSaN4V5wQudbAN`=GWQrS$a{_= zZ3UhA8iHF{eWAZxi#?~`Ayw_?);_@f2BIW)I~j{3(pzJBP|DHEVwLW1%%;@q>`9PG zFabImglB3ZQnlA4g_A$@;~ckAF^P$w+DMLJi& zm6rXoba_v^iO^v^Bj=t?zXi2rlIm|m+OgHGBq~`3^$|SuNNb&VZDe9&`=?E#DFhc?=V3Pb-}bjne%cOBx5IlNl^skzjw#8 zpDoaS-w-QIkAju`l)<)UIL;sHdNpo1ZW5$~_?8Ye9Q~6H#Wl7k?d3V|_bMj$ZHJq{ z$Cf5`MsIwdGuQT{#RgoS4r<5Sg@qi!-?*sC!Ff+7PmcOd3wUP(-O{^RV0IMcT??uS z6ER+dfc&@MRO61Ez{4Z0hcEL@jT}ZWxAKU`->ZJZ(c=@60aUc=!H^iiJwfLT{I~IM z5b)EIzK3JYc+WzZUjP+F(DC_>Yc+863-VlP#nFgtK|zlXQWAqecfvuwv=5-7;s6yT zduuQhyGU+12mD1v!RQ)f04i#-a{NX`v4Z=C|4v0cCcmyq161^=_t!_|de$q!1JjAr za&Ul(3cgX%vNtMv4vFN`NqMmg9_tArhqs}b-7DeWeVJ8eQHR>arDO;*`1NA-spjzI zWG=&wZ=%8mk~@84N)kUkVt`sOMJLyN+ClfN9O{H32##CKGjW;_+x=LRlC50db-(%O z7vGUd_QQfvrg>TU@U_;y*wIrDg$O$}*se6&`&ZA;GO5PeqP$`v+v&cCenou=BIJ-q z9;?jPzM!E`i4c0h1xs1jxIgX1z07-|TWNTBAZ|kiy^^3^J+VLT`{n8pz-3%X z@A)1>=gZDIZVD5*3WnZ(E}1H+J5~#$(ZXiTn}hJl124HwGI@&X8oMl$0`J%HKujLWAEDd*L6mQ>}Hyag{ zP~H8$RwRDz*`}oD6o0x*)JyW;WeJAu7-;RbCCcRN7v)ESb7!rtL*t`_esFKdg2W2n zeU2Y**jmX#GR8zJ7?v>pA`BS<{;P|NIfJ~77Ij-QUhL76I}@Qd2X6pDfcbW_glpM&djE$AmJ|Rni80*gcrc4e>m0xrpoDPML zuJt%qiZu?qL=vi|Ry5?n1c||>ahcBn>dwk04{__Q%zCTew zW*|);Dbd)5WvM!rvZ7I|;K!o!jsxA`d%woiE2!pc%pfk{VI%P}na5rH2g+|*dPb03 zP;x;O;;u7G(&2+b_tMyja)I;R@0J$aLr|$yx5?oW!*}Fn7L- zcd_)$i|DC&=)UYt3l72W*W0O6dPWC|5E0uwv{hAuQ9t(73X~VrBL? zLYXX`v*je|=GFUdAZ}rUvGYqE!F!0)%%uj#fLyDqfP~7}8(TOe;J@%| z(9;3?zOu1P&69mu$6^r4s|`#2KwiQ^>dkjU3c0p2TCPf&gvPEywuwuHkY2E@!oR-y zbx2rWyvAy6z8cRh%L7#OlYv_(cuz@Q8&-((x&{4*z|T#I$py)ghl&aKga7AvJ z06~1a(RWtLZwgXH9w-*#_Tnhu>__Lv*`jFn!y40V($yLoho2rp`dKWDqx&KwiY0hY zqE0RK5L_QBEgp_)8w-~>HeO!WlqmA!J||ID_M3mpAKAm$sNYX37_~Jwt`b8pl()Bw zPu}cUwx>&2%IJU0$IdjOE>O{OYmVe7a^xMA`#>t^H*AN-Pfwx1yH8Fi(`P#xxm4YQ7KsQ#5hE$>MMuv~i&ZpE>!1ESI`O zGWEU7a)m{)z3>SPVedTz^oa;2Wb@KAO;?JeT9Ggjt{kO2A%v$t))ExA*UsY-YC8?kZOc0ja)&1!%l!zj?*Y~}3mV(Gwv~-*akJ9+H6UkdVWuLS?lB9U57F(nHeDZW#!NLM&d7sjJh06@>x#P-jU_&D2kn~ zviPuV-lfe`7b7a{NtG>fG)%}Svpyz$pkn7%JRk^t_qD%X*79K`utThKP-?<5Ir2Ey zCX@mgu&B{!kar6+$5o2&nVJ{OdhcEN%3ju(>TqEk1f z|CNvaK}`RRk1h{sQU0Is(RGF|RQ8$0=`a-wxCAL8E{$0Nt0#3Nji{=$NvDWfc|9I+ zdMBpcWOhlhie(vV57MRNb7_c02cDR&wv#ehf_wea%1B(glin}L!xzw$P-iL$R zMw$tgn*?XZq$4)>%)7Ef6rc%K_p;&S8k^){auwtH?!^gan+vw2iv1eg!CUwj|)NZ)PemlH6l9xjn1w{<;V zFf>Gb));~9+T~{)%gwLQv8yJ}MDKI*dmnPbE3ZOuMkVKI_?=Mt>-m?Y!lKKl$@fpO zP007Ltg4@cGboy$l9TuSv5VtljiWRQ=z;HqKtI$UCaM$-Mh+%^LP^WHc%WBJJZB(V zqvJ`jeKXlvCE#rUi(X2VD$o-)!@4E&(cU?RMI3E_pNuPyMw>xoA_gVtK zFz>4CZTM_dB!@8+I3OR|9RTD*r+sL86D1CvUJ5Jp&Q#!~dbzAAZ0pob%Yb~SjSu*L zI=rXU4&VRl;r(;9|JV2}*f~-I*LTuBr07C=d)n9=Q0%bpAtCVpjNjI7{WE^MM(`2! zB&9}kh&`-Q7@bK{d0^K%!n?yWt>UvTK@1LcyrG4oKIWO_Urf4|AdHABQ*dZ-@8t?eI$dZ9BJ*sVl+w z9Yy0$n5~VfMLnSrjS>@(xxPykZCe*G<0fD`cla;3A41leT-_&ZR4!4Qm^)X@#$t71 zlF^=&Id}JITCG}t1!&(Q8jGu_&M&3DZRZlA(?iBpUg2_-g9y-=IaIbD5fx79ve*zm z0f!gseRw+~R~zx$qv;qC?b-er#Bu%0(JflTJuM!Ca$qT&O}XXAdO8lrQu}{21e#?FM-<>=!o7CLn3ebe$pZ8om41 z61ig0mLXdxYXP|8(iF#a9kb>|huVRse3UsLAm(u*{T9Dv&}D~p%G|j#(9d+p%~60$ zK8V|lw?S8s<`Ljm*5^6&Xj$OFlHU^}<{r!1qd*uuElCn`&5 z3iz{(x9wcT!$wi5q9e{vh;_hr?#bYv?Oe~d?cAov{|NWdsOi#Q{+ry)_BXh1v(5F+ zTSxbIz$WM&dEA`Y(3OmPPH(Kuu**r3pRDwE2I+dTr+G%nMcFAy&Z)ypExHNodQr@w zD5sjzzURkt76kL=IAd>ozL^p^!}dMVFP2Y}cR3x&W%oc52VBe$PYC}5@@-t)?C+Py ztltlHrp-hZ-Lvv@H1Cdc&OoE9hFk3g`FoH!-S~_-7KBh1IN#c;3 zS$&DE$Mh(}SRVR~@Cl zinRz(+@o+Y``Y~SLzV@SIF&#W=Tx8zRntiXNaD1jx{`!jQR<%1N1a1%$X;|*-8I-gIeYxlZ zki;>ilSY6K1BV7Dq)re{+rGOA5oL)asx&UdP<8GAn}Vj%6aYCV!~$WxWuUhv{T zHkU#0jT3{i-Qfab`eKlK(*JqAp~QjfR|)vvhjSNX)WrUSkL$&2T-Si33Xkko||2l+U?`!@dSj3qe>c0c29@oE_%mYr9`FC59wvLs`V*z&BHFba0v7;&zwR@uCO;mrY*QM zE7Xz3TsiVpYLqjZlC^d*19n=2V5jEhzD6JU;jH|!_TpAPnv;<}G|S(fEKE(~hK)x+ zIsW(olS4~V#J*h{Br(fo5pQ9ev9DncS44ErqP}br4_a^NOrOUe9cXvfJN9%s>h1W= zhVKIvr-_`sRlwjS`6zPB1z7=tBb2(RT z;G@{12|b73@}ZKcprfI^xaPbwiU&B!;G~3x*{SXs_Iia&gbjjbiB#Cx_w?p%IQ+`$ z&qHtV&{QNgGPqbrjCXn?g56Vgn^KimI~E(#%0G;t#3M$oa+v#PIQ`9o)F9W+!}17& z0@hFb=zAH{mMYi<$Uj3(FKT-|)lQEujzzIV=jMftLCg`X(D|XRN;(|GuxrgMv9tZ= zxGbu>zzAi9{s3qD3YF7s5@eqH>hlSkvQ~g$a5U#K5e*SotGko@kJ$eVz>87r286y1NyCdX`3tV%H-!kPN zT%Ryf3~u;58&A1`powG3qPI<6kZ7>!jq8VfRGn<$mjw*xBqZ5{zBj`;%0w%SZ{(ta zgWMW}j=@-2l_E8$L41m$1F~R914n8ICECgyrSW3W(b53{!a;o1i4^hXa|0}jCW)5hF#=&2|wh8v~@}p7ZaUm_jioDzj z|Ad#Gzp6D#R>Q~lyB0UiXA)n{dtTE23ZV&0B&*Kb>%D~={pEqUTvg!#AeDag`5Nt_`%)%Ya zzS!>HGWE6BaG4E2wk}v46Q19@fAtA^wSgFqzqtGQWI??yto%Hzc5w{xFsC9^*{dVC zb6>3AQiWd!`B9i-rG>mj+qIZ+DTPE5O@1j%3-z@HEoCk91*ax3!%oA0{6lWl4|!{` zX^>Z!q>StZ-pCW79ndZB&qvsCrTg&4uZ3>guijR#hztr1n0S}qfgcjnn+Bc752 z%*z}`=j93Iw5E#7`FI(6-|vw8G)*Ib&tMSK>nFpr3j*cLM4zf&+{`DQZZ9Mt(UYkV zB$M5Lp!d6rCMr2t)FMu1cID*Pkg_P}?&ouF78$Y;HYANieuJD(NuN%>qNS}84O8xI zm7LBF-^++6giWgsrdZYBjO?&>$E|@zwIHa6+{~BJ-wk|b=Q9v2w$xkYe5p45mdh(Y z@hBLOCVS4CjYS!kzIUt`z^+nc8B-#DI+M90eV?5bzikT1ow%x_pk(6xStUUp$;*8b zB{)##5`NqiIS^cKXE{bhad_G3)Dcs1 z1rHun<4BgSz+gBlkA!AaW4^}`K4q&XTE0ld44WR3NmF3)1HBK>=QfkVPYN94HpZNE zXFn?l-t*>}oiR4V6wW?oCB^sOF-(d2WFldsAI+ArYbpsVq?h8+>cM0`%7a{5XNl-y zLP~qbeJ~PyWSg&R&%b5N1{2Y@uO0Xd9>~6Ik}$J#~|Hg-qa=cGkYmeFDXix znrMnT{e>?d<-9-#e@&&Q4VrCqWxb6B_7 z7Tb0e+jMo(S^eGVV!cS!kAT^=8*cC|wzFeEa886qvm*|(kQakXS|$kzKH)csx#P35 zhefigKZsaYnJ%P3?32U_u@QAZcrcRixr|GTW@!G>G*Yg39kM=?=F6q8*TvX7CoTA; zqj{n&Nse9b-icwC2C^KV-@Hwi_~|5nu4?v1 z$;Q*bQjRO0>;EUjcLE^(`GXFDPtbFV^e?AB_0U!Fm%o0$)kCErY!N?hb#ly>GOk`- zxl~KvJ09kKVsOF3pz7!sn&*{s;VHiVWs{K8_Qe5s2 zOz%$AdjV|OJ}=UAIov+6J>a$w21hcbftoOioCJ9+% zZ@2HySAs9E>pc#5I3Z}17ldhjlx>S39jM8XKCYIPDpMjwixLW>oa~$z-3E0KlGmMC zzhA1>um44G=J*%EIqq+Q^U(iRaE3EMKmQ+sbGQ(&1ob93{|m_X#{Rzn`595f?NXHI zPX8u2`vQV9cQEh}`d)KOC|^BkB$pS1=G6 z8P7q?qGlF%8ba39;+z@&l=+;_BCP>WtmrQ0;(8IFI;~ZVy7C?|c{76MuYPDL1r^PQ zFeh+3nQKoZP3aEZ_i0k zRhJe&$s^0vXhxM!V%a%q6c)hW9vb5sIubJtV|=yNFJ^>g2M7A0TF`I(P^&T%!&qn8 z0Cz*p0P-X}l+Zk+lcj*wq%uaQWn@e{6jjCnp{Pr1IDH*yA;t^EAF~P7CeRb>h!~D*9hXtIHmP2>KAGC8sdz8`K)UdRW-o5EFLO%v}m&(fQ}QmqsNbAow~| z=aelW4A;Y!BGS+Kojy?T@??XjB62dxc9rinspF(i=d6PRAm8k7AYc6-AV2!Yw_@;Q zS&ZJYWHHRZ)mH6@T=fD`m7SexJg88B{AR%ELHZm?@*%Rn6Z)6ZCqHTkgL%OOp20~O=p{Wt5tyKUyIc&-i2nRix=$3g(Onyd{np+O319nDG2+Ek;MJB zFj9;a9{Lr2#vhVTW56B{wLS!T;%1LcS%Lso<%b(JicKL_ z;G6gBr)++na~GT2pDI>Fi!%i36fB zU11JfpIl62_EAr9_+fUBi;7A+n~I+(M|lCgRyw~i)VaK42SVCAHsc@}?`b<%pkGH{ zB|(-HsozMxcOlH(AHSJjNd{F~og{tv(TjpQG={4aj<|AyrMu`=--38NJ zTz&)0|3>mr0g`XZ{fFcq)}-VrhyOQ{|5=y`fo|KpSf``*pmu)?Vv0-{l~L7{WfspnrLzx5v^-#7P3a1sH2m}{?bM6!}F zxfz4$=E^u=WRjj`&Z_L0lnFUXb^;_vA3a$Db47dICnOs z&iFE_KX_$g!7($!%z7GC2ss!`f*Aske64;VOB+d*Bc4i=5y{!~g2DG%A@8v6#>(s| zVd~GATBc-w>WUIHMffLG&!lT2-7K6~tzPaV1R@X z@!{31$)#kN=d1Xk#(u?P8N5oF$-N8mxI^#DWRaDp^<9edgxMhy+Bzr!V}oiD%;4Ro zyag$XHgt!s(;jsmQV$=6;YRP;~Arckrp183? zyhd|*0gFpKTivx31h%o7W+f(at|;|S?&BRlJ}z$=&dx}>GktP)-np|+ao(2fI~;pe zvfPucF9VUZ-!IpX;5{ug=^B*9o1Y#(-?eItPhcgkLgT z1l_sUF!0oQ1qTe7{XU+5{JxOnEg&j@twpiZGGoWSoZzUj9zVn#GiJZ2QcFpz9>3-G zU6OJj(~~5`@4ciwLHy-{hQl-4IVvz~^-GaKzvhGqoQ${z6$7?)v?GJwcO*p##8c~# zvE+M(ZAX1gJ@aAyjL|Z+`r;S5IyXqJ)2AX_pT}N zF*r*v((#!&RL{RUH?Cmu@fr?*kuqiws6-k|l5M=pRQ8Q+B_{Kp%*s&uh_oAPfDlYG zGZv{lm=x)(`tc(Np+wwEq%C!|&yX=bU48(-R#95(HsmN7`EKRl@vq>lcNPVqzZYYp}kj41OL)Nlp47 zEX|QygYXzd#>~bxOq8OOrXLmhL^_xl*|iSXI|&YdPpL5w{3&1fZN#PGZ?(*w+nV;!5<&&C8PVrNm%zI2D5Bi~x0 z*KNHjIsaHS#z%@XY*5?qaPuq$>CT;(%|F!Z1f?lBwi?s(MA1G#Xx03}ZJ>={$Dj4E zfnIDS86!&HlAia%;WPCg{pJ(JH@`XXpMLWZPbJ1hel!r%Ls0*fXYYi^-}YIEXdNO411v zmm1>;W&U{xdCJ(fW>~LucURX}VC|(FOTIr65j2NdXvlA=&5)#!} zjjCDk+z(S?o&^Q2Lf_gGk|wHRKhuJOqIbmUz+&=C-|h^)@q5)j{2udv@O!LmIpoeS zzf)(ICj_!SygrUxj+;cjk^G9R4`=9*cEICi;q~J6?y%!5q{^t>TU1bOomPv9BXICv zV3*H}pnUDGPva`?s%FoR|M_C1&jg$QUlHgZiuA7t)c*{Y+zo3BLSh=T14Hr`2*O7V z(I&tAwwptqnWHaOM8o_cY$cBm4qU8TtG)6Ux^fXlQkA_A9B|+?p+A#XDtfc3)~yru zbO{o1_N1nqTyr@*n|?nZo<;Aaz;>xG-DD4Ok7P_!3n%U<>3Yxt(~G4Qt>jWf4XZ4| zlR_y7qZcG7^F9&G3B`hbjx%^eTMi#FC?Jz<&(vE zK~aL&YCUE=vIb_N2C=*2O3T0;!ljncYrX_=v17q}bPoP=asFtEby)zmbih!X--&>I zm-fY8dq5;~;nHuZWkn|h0^5-1UndY%@jf!)d7uCRt>{O2BcN0O0bT9Mdn2H(x|e1k zlE_SyjvIrydUO_0Bw7Fg#Y_HzSj3Gnu9so3?e{MPG?vZ#;~FMUy1_D33+2?X=&1UN zWcs7Tc_o1F#V}g(YK~3QD#_kIx9@;`$@si4X{4=m&& zn-}!=SHa6qiv@%BD_Kq(7Ba5LSTu+R(@F*boG9VfLnKm|v=7b?@(-9F1X_xHm{NNR z=smQ9<=G;zqT;GfC(u^6{9Ef%VqbgXN5ApdO~josE8U1EWN3pDkO-KtQ&bZq?~L$Z zIL^N8_t?N<$tv5V!WsLpXZJQNDcT{ExT#;o(U4NZ?tD1>C>vJO3>o z%K7J3|L>1a&WVO1cTM$8C_er3@d;`$=#EHM$G1r9S!2U~EU6t?a)ZudKcc`#Fgk=YNi^m<&~OY^1sEtl9AiIK2cyBX!?kVKHe8`gtv= z%_F2prw6>}7CjEltk&5wAZZ8a;fGgsogD+6Dk^ZcTbG`NCKZ?tX{z*k;V$xGIrdx1 zko0K~DXuYVea1mOe~pI&R}K6(rUO)U z%J9`UD!XHq6RS|t4>elZ9we12Pu}zJgXVa-?UA91Jjk|g=y{3@Zr$?ZD>t`jY)>M}g_S&m7TE~NtO}UCzd~i?0 z(++~G2b|s<;PlcpxzHS#|B@?Me@C5By3WQv@@g(rLpV4JVg2RW>h^2d*4}?Uy#y&@ zW&ai6bNuy9$|5SS4dYe2EQmJ15&2Xa~(o}`WaaXa_+d(5t>@nhZsmpfhDg>My#JAW!loL zq_q(sqGS8N7A22=KVJcIex7NonnFNXUcFY|+*!mxud=?nU=FJKBA##wYI z@4B44hKb>#7ybbJe%R`Cwm=Q1a4OEJUl@M?KIK0E{!scAY``zQXbNJKih02sXy5Fw zY`3^!k9vO#-~N&F181JGr|^302>*m{2}Sg^NgMcsZhmI;%p)P`0|1{vLYOpQ)lmGa zm_1iN@J)(?W&H+RfJa0owzV7E+wlQJ+;*0L*zkl800; zPrqHOqO;?SHhsfux#tw3hq{hv)Y>8rm?u|f06#|OmJezWBa;QWg~^?{-u7^W5eS2V zZpV{&<%8VOvrSX!o8gICY7|b>Oxc9J;5*T=!h*usUl-5+;i8Hrw4%}$9GK*>#s!-L zEno$NoOl%(ZpStpz_WEgZ43)?kg+J{*|y${UK8#x7XcTP8Hn^PO19to6Yg@vHG+RW zN+Hi&i)6myvpS52=;b3+INMTjYfvltYmg>HY{2Aqb3) z2XI<)7Z#Zr;6LPeICVvne7&><54imXrWUHRxonv(VibsV=I>6vin7S!6dO}usJb_U zz7hON(mt;@f=`-F3DPvaClnDXv_}>b^ML@x2q5_SgWv$cPjTRV4E-CyhZ0)|Uj_(1 zQOTlrDt-1F!9T0mZ2ybkhl7hlQ=ci9kh`!AuDg9!rWty=|@W(ddZ*wEjAY4aaz&^|90sx=+4dB12`MJ%@??VYOUGXyJ|@Y1HX64T}z&kFmEwGuN1p;RNv$W zZ8_Az%83|$oxq5hPR%YSR$w2+-KWvqe@u++qW;kyes_jr1Vf*)_Olq-P%r(d`r6y4 zE^BoQCmtcs?KJ+`u)MqnP2pX*lbI%aHiUz#n1vcOs3Aw26|Mofvhdoz61>6+%Thtw z*8@b(m!AfRJJ9P6U|VKR>G>%~zSTjvS;w$92qS(m$kXMi?rHW$Zvek`icX$M@Z4j@ zmDQ8RaUUyqya>gN8|dCjOesrzWd?_o9t@;y{uyWE$0$#fM2*j`FdRI9jO&Rjjg9182ki{)y*P7L(f=WcC3)=ZZ(_c8yfG|y>4A(cAm;01PiBw>zgL_7*q|YD zeU9ey0e(H2%PBg~aLh;W-~?VIFM08`3U*ucuZi-tn9Z{8^N@Q)4Sk+h_n11y7LH@* zqKqtmALR&Mm@C{ zdkjjHU3s3oIIwh`0oqEl&WjZ>E4X_Zv5*A57Rd3IBt$)7bGLRqZawYJwxwj+J6ro+ zynvXm7j)i0ZC9mh$6VIMGRamB9?Nk@PxWa{R$gjsW3zwpup$g~mghH(eEH`@ImZY(MA672E8Dw2UcMEpaQZ3?PRQ~b!A}JUzVluKb?WaKVJ&2=d#kWV z(VRbCevzdB)2B$2Y^m3gmmBv_^8=$GXTZYDjtX*eob#@xoYD;+=;*Fec(e@yQP5g0 zWpYxZm`t=0Q5(`KnUC-LO`YuDc-^ezZG4-XUw$^qWBj(qeC8hVJO(~hZB`LoK`Sxy zDMc;@kr3mZt-RA>^sHoTEuoWClwS(vLw$9hMrv<;aL|Y5iK~Rjf)~|^+g=Gb27NxS ztk3?x*t@HsJokM|)L3wLw?J@r4elP?3Bg^1y99TFJHg%E-QC^Y-TEV$tM}UL%vGm% zpX#bUU46&py!cYH{_psWXUy}4pXhBH7<%$1(>gnohz|lNzF<%2?N!R<)yB5%`+|Cy z`Vp^`7`%*vNj-V^0F4@RT1C1wHnM7oQKKVcC}9SR*vtXY&(uF(Tg9mT~kqRKr_Z7>+|yG+QHNOaP#vBWQ|JifeDD6?NK zVPPIO4CZj>Q~Px3m-l8HN$D}ITT^feLiQ(PW3+M%UW7Ts^DMuQYn3Bep9l;v338%+R3-F(B*U zNPY`y5RvOweW75SMVuf=^w2fUcEh{@g*7&f>C(%=4GCetl!4<|+h@9yX9=EMqkHa6 zQ@m1@+zBHH4`pfKn6eazP}RZ~4r*WyDrg7ylXUu+&N)g6ufoHb`fa(gtqMm&XSLz9 zdWkgb)k=!_*r7;7#{uOL{_St7qY_ zgg{sl4s9EUZUus-1g@@CGQT*Nz0PLt97f3I*7AFp=dZyJjACl=vqx(9A zvMaAfK)-IoN0;0rKaqK#Yh*9l8AW!vGM`z1cE+Sj<*&gyhZk3AzfQ8N|9!Mvn^I_S zkp;XuodKhYRMpbHc^d_m{ZQm|VN2ccRGdd-ep|{{9>G@%i6qE`q-E5&c8<+%hBt7~ zWsfGiZ^TW*u|EMvEQRw<`iUDePc%re9~YFeBS}H1g^PFimuaySv$C9Ry3x?M&W<*@ zEOJeU`V@77v!EfPf8ki|CpK*1q8$N8ghE?mY?#^&FSV-6E}c&rQqx^#33}t6x zc-HPG4#s$%y$>Rc2`8P1mN2T4yby%uHGRgsO6{}B8Bs8`fDWp>S0ubL^I%qX+bqD5!PXM7j-gP>w-OFR3O!9k;1hP9G z))TGkLUfbw>XJf5P7Qc+14`0jR3;b3kX1=gzNggA4{Tv(ti~7{29t-w44eQ(s}WyH zfKcAhO7FaSh;LG&$vkT#_?fg3jlK5*=yudQV-IUf^HFUYt)@SkMQsI{sr=NhS`<`o zCH>c6F02S+ATZlV<|59SA?ZZw7_*Bse#vQV8C=lSw~RJ=zB;CqU`hGqA9y+EGAhIE zKX|sOCtJy6$~rPb&|5B^3>Ou1GTBcIHgP6!K|Sy$b)GqC#C~d0Y39y0ICNSa(zH_o z0{pV~0KeAmd#3Q`^n%XUB~8ad)N)6sb{V7sKFz~2zMI@Vgh&VR>Y^u1rdV|fOKSA?@O_|z!ncMP#(dmE#|<4 z;Ppc?#Dl3d^kAhUNsJ3h@xQq!v~?u*^oW!)Lf2WYr=zz7bhqqLNj@8s2xH96*!r*NH9fMJCjVo%{yM-zCu^$E4{XW4@iyH{zu5W+Els@SS5FXygfHRd#?DiwXx7P0jKLe*B>K5sMQ0`aM)OF@!&LSUB_*Wck=E zWArHyY`1@=yn-gIP#AikKz%$_0U4Y5vN91Pnx!vvZYNQLZ;kO57tz^OW&uVTuy_7p zmk6vZu^5-Sy zK3TC_s&n*x(`{KkltPt;WYhZYUeQqo?9sbUt=bY3YO!A_zCRI}K%iN~-)fQ#eCi33 zIwOkqDoJlay@Q19`+flJj{mbx*ySRUH&seBlvd!VQfS-(7clGsizZ|`d!af_wJ zNvQPX7)7y2FPf@t3+M#NDWN4#w|>K+LJcT;1W~n4m>@n%GitYYnh!0kLibE=`4Qjt zSrT|w6%HsW9%|O)4;+Rp!}$r&DQ}w*+Zg*G^OB!57Zcc@)#pX?gB@PRLG2P^WoIU$ zy?Lz>;BA#+cIH2gl;n=^ z@gTT^$=VT!!S+wHz|?i28`8u2A)TXwW$N;!wjC^g@(Bkeb)_$Wa3lm<|JPqV79_!bxh zo2eR3qQPe7WdX``qV%z4QaL4?9DQfTse&uw#yVJ=t&j{R>8d{9pgqqr+Xq5^N_S3*$3+2N*nTXv&uZFkT<=j zwm?nuaATz2V9xlj66OboU$6c+gWDn!Z=t0|5SH=xU0=nQfG2C^AkqG;LZ+zX9}E3C_|vAmdYn>x=plw6o9sMjrWvtWrHs#5Fsho) z<*sWkEbosurO5reGSn6~!sx*LYVl<%TTJN+k_Qdvk~zX)LGb`%sUNE?=|`_t+A~-x zpe=xVwk{}|)ZTM2Q_&wxZ$3xTYr-`|;e4|lKrG)fc8KeKN_0-y@$?iW&_j+tc*nJ- zlFXZxNjc9e9lkc&k~_E=$O%+X`)(=;lj8nP12Y~*klIrCX=dIO5$+30#M7#xOYgo3!x#klXeYiKM_rV{2U*hw8d`$C&S9k7-dUV>E;31h+Jui|3{VZ_T8 z62mS33xbuiXd+?84>?jwoohBsLv7F%nPphmBy#Lim;C2rSH0oOk4uLHbUmFBEB-A_ ztjZy}Olvls3u*B7X5BI_UE&=unL>O8U@6W+n7yO%x7%q)54)kW#U?Jtwb0_bU8l~@ z3qfCptknc9K4GwbgMStwrOThj)j=qUnpttlzF=Ttvq+-=#wb#&9`QAk3`PLd!)Zg* zvKCt=bO*#+t5qFti1(_=jqNNf)9)AkAg&kFL2VYfMVrhME$j7n@e!V5>tnsTzQGLJ z2#JJ+bw65cdjt_)2A#923dE>hLqS8B|Z#zVKfHEDq>P73oBRBiVX)JpUnV=??d+>TbpXI>S{Z;*|r^HWNYq_BGK zh6^8ARjd{qg0lXZ1jG`4U5EJXwtrNKIAk(U_K{{>mdRDHA(nm7XK_cFZ3nyDot~{9 zY|AeN^TW%=Dj<{BqguV3?u*i+v7)(!-I0C_cZu9<(gQxG00LIBTyYw$He84}*PPIaAOIQ6zghPJ*~gHkLT$V}`@z~U@L%L-x@lOED+cSc~->_RF|xIoHehKa~v zFc1SulG^G^TDoMrHzmJ6DU;3#l)!i5jTdjOyO#|IsWMt{z&~cmA`^4k0m`Vc!Q4DU zGp;0^oGbg7@DZMtU-_*_0}^Pl6a6|Dog`-p%YzfHD1gVrG5rT-QadD+AV7YfIO5%@ z0So4xd5bPJC4SGhI{)~?@yl+b1xA=Tl~$!16#K!4+aA3okzHfZaQaFQ--C3Kg5eP2 zsUHw4L5?YB=)n#bJ0l%xAC^|W>evrN;sq5~T7Q2wV3#J2iXA8hi*11;g}GY2&MA<{ z*L0e-PZTgaW4ExkI0`gS{8rV*LHA@D^!dPy=>{PG}*9e zDjQVFkz5xl^=m5>$RweYR+@D{B$`;U(gOt6OwcX?@O6OeJg}0^B z!X5nTiB8MCoUYLnSV9E(<0HT;*oe8xRFID3oM)B7cq1e0M5JlE~K4#W8tnu!%j zPBbR#{H}}j67W^aYJ<*gl`=&{sjzvAxadPL6&zvNtrRzQk{T%q2q}LG?(E7Yij~^ zQ~?RLW%C40)_X7uW_z6a4y<;O60SjZQMw_|r>kHxz}Ci8drA}5Qbziv-Js?Mn}<3{ z&mxCST|%XK-qktinKC2}8Ilie5df4=RB1|kc+h^hNjh=Ce~mZZvPH&dGQjznSO2R+ zn1a$B_!R(@Ka^>={w+|B2rnG3vu`%@7f^m->)P#AH+KqM{oL-=#@FoT*e+}J_Id@u zbIknuX!W-lD5qH9%fHP)f2T}g~}V^w7<<2*}|3imPZ8L09|%xCEF zm=j3F>oLyHyr9?{^n0-H87L|@JDNSqOCO_oP^|Wx)gtz;M@-Oz@JAy64Se=t4#D>Z{s#n^4_eZ11^-oEUxdvz9Od8f`s{ywlZsdb z@cINMub^LZ8a7UxKz*I_m@45|lYy&h8?c;vz^$Bmo*y|3Kvz;_7*k~odEFI$d{s#; zbU8G47`3_i{OWwWtZpb$fpQ<=u!*8wme`7q8Q$huT&B_~n5P|rGQ+0Gc0SVQqSt%l z>G67`^BVQNgru;;^z-R%=BsL549W3V)#9aJdA;e}q7gpq<w4Y>9F0Lc{NHp* zWY!I+LP1tS_2+|CUZlc~RM=mhd6_>d*r|pBB_~)G$$w2tXZS$?ZlVV}>kK300R%}x z5>zKQjUYIIxp@dDcO}TzK7*4p+ZWkNjQhesa!I4`q%StDku%yCxmq7{Hw*9~ul2^E ziDjiTa84Lx!@^DOf!Z^Z*ps$6#eoyp-F@Zp-tK|Jb!YH8vO@_(jP6GS5>B6L{ZBB5xydY3mS;uICbVjrG4>0L9>oh-s2R1!_1F7q zQC72k@8p>=tE~tZ?ocD0Pc5|ZkU56S+<3-BSk06t{vCJ%M< z>Q!$L1pagLMWEu9Ktnf|?--ny8z|q=E>}zsT((_L`}N*bn03l`{309~12n%aZmM`E zBiQHYL=2#cD9l>~fDhU7)wm=nzZQE9505D6bFbnNyowW@J?g3FDd7+K$bi3UC4%p} zc?9i^`1wBrxnDU9<7=@6a;~pWthMt$p#0r@=>#ILG4ekJKfX*LRQ zh#;0JM>kMg2=WYVJJ1(n>>X?s8Xsn?$L52^orJ?ieqP_h1*NWNFDd7pBTIqsZ)Kpr zHey+uqd7?A=Uc9nxPCUF?gz!T;sVSrmdmVag@d&ubmYIFB*h>o!w?YRfJ@UKI~x=D@|RSeCp&}n(&AG zMR=#s^n?)$rOMbECr{AdX>dxFdiRw4a*R%w;et3~W^x_#r+|-mv{`QI1t!U!U9&y> zq2GL`)<%`G02u)5t0VrTsd23(MrhG{hxLX3g7pLCQ+^n(&&X|6;Cmaz;^r@q$Q1rw z7%zO0r{XX(LWLcF!e?p4=KX*y+@pi_PU{=`5Xnc96h%V5C-_r7arQd{b?q2X?FO*f zro~*kQmnR$bxD~@-gkkU`+*zl$tx^Q_mu@J8b!olSj={wS0_g@ZH8QZ5iyYOvcAMh zhar)WJ=0+OM>9L+230$2OUJt2dOBM!?!U%2KTKk+hx4Q&9kl@37`tc{huK^_ZJ6B5fbWH6m zr-G8cm1wpYg(&Of=?W}9mrHn$N)|ttu_sD0S15vpAPi2tqr(WwOc~*k=lAP`Jc{D_Fp!XedSpuO0LEC4=QE^8WiTD`m_zYV1 z_@KgzqaBd=;J}!1kj~A{jWYE)6j=jWjW22_EdCD zh3F8LNeP}VreGY0z&mraJ$?gWkzjgt(k!1RXfk%fqvo}I%sme?O104cJFIV8?R?5B zN7E=>yLg?Rh@w+=&}cB_@4mSX{4gUpAYNx%YDD>%24t6r_77NJl=L0e_aT95J{p(4 zggA%X19>fL{1;gNh{WdlpJ9CtLkuB62VcVo0PCyj+->3a4N%t^1yVl;Fv_0NjUq1z z8qMylHwawQ@QyHhZghH@F87%dlH_`*xpWY5#{x5j0lhi7`K zv=vriJ**WwKp!J3L>L)o!6wr4ql(~i%r_&Jk>zlP!$rl}cQBMIr$p$!?7|$0D_&LE zsd9vY(i(0Mo>GL96=-Nuh*1&e?xw^%i)ol83^QvDcbX3n$%F(0_VhxHpjz-x!g@y! zPH4;~86teBsB6r9A^5AxE^dXn*=R&GF|il0#VWq0Yw}`fSTb`kBvo;x)iLem#Cnkw zuosDuMg+$q(?<0JX#MI2(VYgyo-rY#G8TX3`|)9JVOsw2Mu6g z1~3@r{;p5FLzlJ)?+HFmC@o-5&-kABOR(~nCG-nUbcKrjp@m-Tu@G%aix}@#Nx+_- zYO0@w0pKgSX5FpAD9TAq$t~&bbZ_O$G)d6Nj?f3L(Iu9u1`1?!w1lYJX&nV=E<-mx zvjY7|@%)fkJ^P`&s{m~f$|jpGEhOo|O;?!oUdA_}pgtR7dR$SKEFwA@csm0MY=1KI zyW2%ih4?0>h`{TF?4I0gtR5%qbau`5Dr7n9I=}YOr>QLgbU{5SUv_g>R0F z$--Z=3x~fcEh_Gx zG*rRJbFI;kVw)9LJygm)1X*Lk+wSh``HIMpsey)1w}-`fle-)XXa|4v>5*v9j;Gs( z7oDmwq6DtFjXN<%P37!+5kTc^jb}P_YgOc-fP&FVc9`rHQMVchAf?CoLDo=;7etQpc_yp9bR3PMmOpD;l9MY0z&auj)QN67I}I71^r`?Hf`GdFwGWWUyB`_O(6SKMFq!uu zUQM#MQ7*XI7!6NL>x4#QyB*Cwu2uz4Z%B@^gSFR9jC@j$X^#pI9vN=BNm^foMP~Al z{^n=%a>dI@h1E_bPu6$2boIe+>QbZXf_E|x!|E9EwaX4ks7tf~66K0DH6^(aSzz|} z@Ju6>BswC&q{AA8Yv$t&U(D6>rX~|7sm$4ah1PCIH4Z0<&>l>V8VPA&nH}=+AVT}4 z<~7uh?rmgF>J=Z0Thi}Si@2NR(R8`la35l^nuB919IpUf((AnmI#L5qtS=Gd4UoiO zZ+>C{Gqm8fDV15LNZH3EhVA2Ir}8>bMbE5YUE-n_gjrez)(RzWgt7QfZF-#aTXLsIB4#9AmLFYRlpknbjK z-*zPm_;TeD@cbvu=MVB+BYpYv_n%l_7tZ_VpICqIXsx4kW%I9CfBX_1LhFiq?IdG$ zsm;KnBQQ=V{q1iNGZOUf=ve?_mQC_c7yO1+R`v$A3~U^Ko=^+Xi(&v=|HlJ_Pj~`G zW3iTi{ZBHIZgogRu4a4VpL|WoG;S~7B>3XAXhj>ACwLITx)e&u&f>|+Dm~t;HeADo zr4-m;@qd@{=|Opzm)ku6rTmvb$Eqk07J5ZG*x^1ylV2lm9k&c&Q zp5~lDLU^!}4t>`%*D+^@;t2uh_c?*Q=<4xB$*TCDz~5KLcQ`(CI%{VwI_|JL;ZrTm^q#WJsb1YrIGZ6d%f*<*k$ zz|{xn`pds{{S!bbADZmV!7DHdt6hdl$_=gE^s9brQp)HAC|J1Sx@jq3Smo>HF`S5l z?-T@yPt_?Tufa1tNZ>=Jo=dEaAQVCJ9?8Du-sk1Lj}u%s&qqhRUDvC1)SBUa!yrx+ z^&`@&`b{p4sE0;tuzUtA)C@evee_~@Y>idEZ}QCZ2g`hwXIO++Elc&>#H$T6t68iC zj$KUauH9{qqj#nQZ4qMYXXl@M>c^ZSAazQeW4Z&8o}14DrLH>bySWDT!1-E1bRDiz z0|Bom_xIP+N|^QXcT2$Q=>+h4;>C$~B7^Xt8HVwi1`4#Y`#!nUSAz&G;yE z)#vy1)H?UAQzYue4o5H2Z*L!K>6?VkS?DpL zl;Vgl^1H5&w3^TDl}0Z&UPPHBJQMD=!iPKc42x0-Sv!#`COwS=D-yqH9le!nI0HRK z?4{mtgi!0KJ84LbpUf_Uk|K6|`HioJ`D3N8bo;G((-y|oBY&h8!DAUur8mK}gjSZDGgLx8%N=O(GY6|uor~bM z!~dmJ!mG|`XWUo|DlJ@vEBOUgmK7)IpxzsJ4BptwunXoU#zfJMy9Rbl7u8;Rtmsj3 z4CV@JIE{y;5Id5p%yvbKJbJ|}(4;;Np=<bRj=0Tgc)$rvIkob*%WjdF=zE6_?aXl$NX+TQt@w`Cy(y0XE6IZ6 zeb^-@#9!nu49YUob#21xb%m>PMrI8OO;@AeW}L_;`>T%muU3A?KU(?7@2&iY->rNs zKr0`6=0pB_D<7P^yPU5hBwjjuP^>2Uj^W0ynzA6ZQ^M^!AjAW$f)d*ItQ+W-n?pi@ zo?fuc8#-bH3|xfND@j^G4xt6EVNiiCLLy@vy8FYvJ6V`jrBV8G)xuRG5ev#Ak`0L( z6LAh~cigWJmfxKAT5=F_rS!^@4r#A*BkK!QBF0TuUx=_@=y91B_OvsJ8^z`IYhudA zKl^#I3DiK&w5H)({aGEyruOl({DcMDFR~>YyP5eb@k~t5Sp>sl2EgbjVevaNPqm&L zwFyA8iShf)AHgLL`}3Do4!N(dnWs++xk4v+rUtbe1(UoI2z0@Q8kI~K7N_Z)%k)UA zi1?7g?S6?=oB#%=!APG0+x1^1&yRt(rXs2HakK)~W-Epl7V_mMZ&w_$rJ{7}ZBeF# z?`vfz(Vjg*DI67`^ga_uag;47q%K0Z!jPVk?FWe}611q42_A(8sws220w_V8Ki1BLJi0MBEk%cOY;g$kgF)>O9F|h>yQV$9>jTBc$I{%1)&Yy|rH`-$%#6#hn;& z`VfUZf-a@k{2Pca`DXcn;PNvz1gca70`mGk@fGdsA+}$ELb>yZN6u*H+s+k5zZmSw z4crT4#_FnpKNk2r?!eHL5wA?9g%{>#eh1&RYE9w;apoId%XHpF!SL3=fy{;%ok&*& zuiYsHPJy3$73vE9lADV6K0www1j@}joOQ*=KrOm)a%+{CtW6imsWjmWle+;54JhTu z%HU~@m5@*QzcQMMpIg}z+O*E3DOS1_iNXLwzL?EP-#}m@pMJ0ensL?hw?c5L-$}rW z)%M_k-W_S5Sp#cu@caB$pj+6TgiLvh!C50KH9;-x%j(#g0x)7LEA7k8sL5-EB) z4IZnp=`psuA~TE%o5YT7UrfNl+Wi**VVybq9(NTuK%+_;wR9RUW&q&g~wP!-Z68uyeMFoZ?y)TA?~7;(R_wgE=R ze)bAUL0hDA%<{e6mz2ppr}UEccrL@!iQT;S(ebI&0@<(JmKLP5R)SXmUw^36%m|9P z7WXTd?W`*QXi~;49?NZYW{R{=g$l4~*TMnG-PSX4|7ZiL!P7(MBHVPdbp%zNLpOvP zvs7-&(a_=h=y+TtBM-(7;lwQVuk-3awS4R4}W+sQA8) zbi2`Bqc)x!WeY5()9A)-nxCMc%GfrvBu~w!3^PGs{!B3xbTz8k^N>h~mQkeGlrl@; z$WwhRZ&UOtIzWkAG-S=Fci=FK!CeD^CnDXn%=MB~g;w*Vs}MA*3r}t3Srvkv!6BzY zw35B0zU%}xXzW|*XZ^LC1EOg@n<3ZeUyWIeabY?`Y)A#To4WjT3%{+1b>&K#P_La- zm>WNEF%1C`jyKR@*b-el<;F;RL8z;$5%T>;W}=rH^Kw&4dSzn1ckZ{X&x%5ZtyK+E zR2?*s5I?pwJxe+Sp8@qo zFIN@U5~QEg!*|DbGysu4^{t`6zTyGiR-Ogx9W<-q5FVGFhMBN7Qs(N28C0&jYYT;I ztx(-XT486I+juQ2{@8GK@82f$>!gWR@}_=rlyqF%Tt@{ zbEulZV@tx&BzB0SKq<1$PkBGzrK?Mg@rHKFyUnN0n;dCgQu#1F#QVT>;&%CID#kY~ zAHj6;A&&2&fu8F!0nE~?_bbs|AM`I9uV@iJTl_sb-4FK4@cb# zb?Rf$z|Q*dR*VMv6i+St$<_xg;94@vR$Ae+c38Mbya93Z@{Z-c@(24Q;c4cdCXeRj zl19c>emBfAhUVL9o1Zk03TPe{E-6r4^Zc~QpG)`qIn;aHV z$;JYDr#qB-H6me1<*raB%`A`V*M(A4 zjg+%a^fixD$1rNHbG5r%iA#bq)9EshT~f)u zu++%P3wi8}ahyWtn#qLOi?A5{+6mlpDuguaQ;yNtzrKMmfV49m&1&vQW6}17qO2p z&QwGuZB)X_{Y9S64@Dv6Ds6vqZU&eccZYhh1MFF$^?g>sebcmgE>Xe#9_+&oroA%C zc6e5{`Do;8R@1DEw0;xQ1YSamF@Dl@6$e__^13vpVyjB{@cj92Gkn}a7lwbE;r|Yj z{>v$7f4j#sbrY54DZGLZmm%JqX;}0Srm&QJs$Gp%b~@ev#}xF&u=v+72f!hh=h~F> z%?`AwUXJF$gaA0?KB{BzJRdo5Z2ikFOd%!S9dZ*!p^;G$8f!Tgpb;`}z8NojmayxH z5t?67lSC#QVazzu%2Q&#*3n%+a{&~X%f?hefo+ZGP0FGvX&Sv`oQ ztDne0ioywv9v1va<2jAK#@C^?h~z4%>3dErKpd$3?lGfm#ryA+GH^L1E<=wE@K}ajH>?>~maV5;ef`_h{9hTqLH{^!wF3SoMN(M-vlvXoSn;O_XNmb?k5X zU6hyDq>Vbd>kaf8%!c8$+1C~qe=GXT|Ly|C^*>#pxaR-U1}!ZioP4>yP`j`J{kX}`ZpQA<^NlTFN#$w zBvE$6W&vjhQ1r2Te=GU|?~1lMGc`R9Mugq_t926t`FsFx)>(w>9{K@Mz2v!&_(Q znEit9UX_e@<0c6&sr|BZMc$A#dpx{Klgtui`|I$A{jgWgj2U=N-|%1CMr>1Xf#L+ucFB_>Jg)Qu>4Ft1Nx+ct`Z1 zp5GDuyFZ9Nn+(W*Ao|Tr_sc;2DnP|1ZA@y*^hqkP!*1`0zAFIH-*`v#S7W{g{R7cg zE!gqEfOeju3Ya}CI6WL#nLx^VahGEFUT=3UB|3512k(RI`{mki_vJUDzxx}}KYB;> zW8M+{L!{7H?}fut0mP#K1P-6RY;c}tW%b{PzRE&%Nc3MFd@OWDq@0Nov4|U5``_Q7 zP;~hN03H0?AA?$e4!)0YGK+ih7Q3{yMWG#;cx`t2Gin$lYG24V|I(fvv-mXkep#w1 zJs~U5BksU)2iP#uC`$pG^^7y3T!GfolLM%roOA`bkx;7gZCg-c8)h#p(efw9nQYTQ zz7SyRv=Luyl;`PiL7p06#9#D)41eOoyQ1&T?OXu|Q1lg{ZQw%7v1+cz?fEsUnn_Xx z)s75`+^yhFX>tG)k1qV%OW0zA+HvZP8Z|AcFiP*=pr*K?hP1jITgH8Um+-H=oy$vX z!^+Y-C{6;hPM&rE*BXQbU55*E*?)!jovcCBzToCVR2EL8Lt;znOE*c&w8k~P<+zwFk<-?tUGpCJLNaEz2BsA+ znE}E7JH;<2>A93@F-(&W?6TRV3_D@3O>`_Q@Svc&ls68!G~pgd?Q>!Fc~9{{exc9F zxf!aeiu=0&X(4fx00+OP_`~wQ+8s)b1{qR(mL;uD(&WL%qX$YtANkN}?Q{;B*H({3 z>zu$zJB+otdOl-P6`lLVg6V4^E5VU>z@`D3CDp);8Vwf6aT0}o&0_`VBnFaJXfn7N zza9OVsCP%dJa0xmB_|lp2jJ+>>hEKbLb$MsO`0BB48|pzdQMBgWb<_ZwVcUsjhs__ z`OM|U>o3+75Fo@KT`WKxibbxv2(LMyoaP4ORsq`}wVt1rfY1C3(X~-$gubx-Nz3NC z%lbTdrB3MH;7e28?jGcz?tD|SmCpA^jwNTk=-&POEGGFwcuVw-AC`Ss*ZoPK$WyVC zJk#%|)b4}3gTio0Yu>;!r^Zmlv)>(ku4-P|zLm@&Jc?56=Kv?23ImhAbUNEdwJ&+8 zqe9O__df-A#|h9b&!TPAR@z^runOLSLUri*H99SlCflF-&YGGAt zJD2?r!JJ|v$an&F>ek?j7HL~pHZ{8HzbNQ{y=VB+kYK74oZ5g4-?}Unkm1wWUR-(n zONI|SBqYd&Ahy`gl*z0{#ZSTEA6PdmW2F?Dzxq(rzHwHD`tImM>ng}L!!V_2j(+8DN1q0v zu;m*vF8&e4Vh@-e$bgXMu6Wu4iR7*zsL@hwxeoFW#k=t*L_+pS*3J93 zDSFrk(OuFxvqt5G>kVEgCq9oGIorv?l%t^FRmimT)Lf*&PMhyWFGJH8MV^qwNlYpLi;b- z?~Z;7vw7W)=Zi9==lT8WaO!Dcoo+)=`PG6nLHY)dm_BDh?uI_Gd@<}2?!Ftt! zDHtv09IULHB|3z2eyHQ|1v3Zye1ROuCRCMPOTvJ{>dznAtMQEwPV+}aQHP=oLw9(R zE9oI>h^|aVb|%z@8xl*_odZ}74n1-#g`cB0RnK4ZJ@?0J)9b@Gg1e%UgYshmRp5jn%m7EX}dIV~%l8#iwg>((wl z9&3W!M%P%thu>FJM9*hH&Cuzo@}g?vNM=+d1|#*Wwm>n?0!_>*j~PJ+0)jKpi;~EG}#Li@Cdz@B2M-xuzD6hprV4l97^^n z!M8y$f?b9R{-+irR^D+|T@|*5>>|f#h6%wpoiwZkWC*WQ%q&-V=*5k=0)xm;0*w&s&e)v%VWUtlByVQdi&m*rS#km+J%$o~2P=yJ}jSQ{TEma&*Ws-m!? zGPqJlEp6leBwI#B*vlS`Uaa!^emp=5?x&*WOo~{I%lt_?bv!xD(Xo?y7#sVWRaXl4 zh&9@AWI(mEB6=zQzgi5h0@Oe(YhMCBlNk>p<(l+= zRddRT75p6c;FxUMt!2Z$VwRlvH5Jsk#tvh{g=q<$7{B6$wP={Ti}Ox&pdxI@Nf~7D zH8}D^2@|IjnFL9MQc@ICM0QBKhM^^4n0_vQa?EskBd962ccE+@I2UffP>-f9e6XAD zHOESMM{I!*FW5s;@>R?blD+T*=D=jB);+!H-qJ#34|a%Da;k$3;aQXEC;^C+#r83U z+4ZcE#W-oIwC7~}%IGKVd^afe8JA#^{0kdHn^g~vs$e*rl-s?;rIli%DJf#<&^4E2 zyK(~5PY%0TBL=3$iH2g-1#v`Zx6#)wT&~P_%4mVt%5ZK&C#K=(_G{1SXrudl8@_{MgleDXKFS7WcK9@Z1(xTb*X@@wWv-02FZh72am0Hv)b%@~iV zTQ)f(4kqE#L6!3|CK$F(us};=T+giI-VW@sju={m$M{sbBBTQNAK48p{!(94s(Go{ zx1LO5d~@j>yYKuKDn(c<)|j+kX;@>2L$lA#SGEUa`dFEiIL0Y?R%jOcYHUGZid%-M z8B>i{PmN1*Xc@*N`O4On{i`&4D{7%{+yh(9FIM=EEQ9h(Sf7#;@h}gghkyPb=;@I5v z5Qr<{X%Pn0zPm$66|z$VF{-mCJkp2Az27*;T_r)&R}g~6W$SLHnxYP(Gbb6^O6Ust zd?@mDlZ=(94mX-z_qz5*ouKYzcCX-)DVwX=X}zt$8eyC0y>wfSl_?U`X%*tRU?^9^a> z+K*h>*ZI1Xy~RI#AdtcKd`0-%&s322i|RXow^H8Ug!SwUf4!ArvK!GnWR+fhhYAKm ztPr>`*RFHQFIs)Rx8{wiC{UDpca8ezhB2h}=np5zQMpHXlad zV?^-P#+2Bkv%!T)<6%HPJ|H_O!=mix=ul(IjoWa;$Z>>P1m|KURcB$U6N-;3(0m*Y z&2jOq3XaHJsEEoQz>LhJp8N4$!KeQWM=Zyv%j-T$xXc8bHIi&vp^L-B(TvNvyae+ad2LvHTiYB8{ELKrRTgpw_=y<6wf9e zL!dYPp{$*6(5MCJId=^gqHZcODwz)Od9@(kxu1bTo^>DRh}>s7}2Q!T#VKHKu4 z-{09dce_~^xkoHcGs4n&5y-!xH?`BTyfF|9dJ-mKZZd3rq;zZA)rtW!I3Mavw;iF{ zVV_A12!BxW`{wqM z@oRQOwEQ+nQXJ|piJX0Ei3-KWm&j`GU{(#!(n;nqG3nA5#DaE)QIB9(RGDZE^B~@k z0gE(kw;b7zOo-WRneJ+Y`;`7q(f#F-9QjjsuNoEKVj{m#(&&GrfyjER>l4< zSBHOCq3KMqM3mBl$XV7)6hYwuy*Vz%4--JKX-aI~fcVgqslE=<2F)>87ywwsRW4XbqGm zUG>C*H?CaC{WvE`^6*6%40qm3`3JZ3Yphm;D~iH2_m9MX74TU(9%q5gBf8H&8I}vn zZ)K|F5*BHmqj7PV3ejJjKg_x2F9i{Cz7gvq3=SA~Pun0zdZ4MP>9XTD+}2#bs&=}8 zHa-I74_8!DPkaW^ilQL*mpi7cxBY3rU;L4a`Wxg&31*t*V&HJl;%cq%>!1>LQF-eA z88<-xKFruhn{AK`N4=`v=Rpn8-;|UYBsQ4cL|Rp`JRjFkx{@|&&qbL`M9|s=E9`}8 z08*H-;ir5$yZ^v~X!KoQ$jc#eS%zZwZk*k7h^E>kiX-x7BMBu=zYoV^c3ib_CkPpx zHfzw27>SPr`h!qVCRkyeL7;#7_i(@a_lE|ysAMJ>?HN8eV>6hf;PUPLBI4@szx(&J z@BMr9fAsH-0#BX;7q0w?q`fwOa75E!A<2X9O04I6XLLK)UglT-ls_j%jnJbI#M4D5 znm~H?iW=sD4c~BV)cnSBIcTONf7-D_1ba3%va1l=k=-(6n>EA0;zW47X z@bA6R!>#JZHMDjn)HR87BA{;n^zUI}{_5YyS|;EBYyTd1=;ghCfAZeHCz-Qy3bdXI zi;^1>x$eys>i@h*N@;zn5p0kC+TrRKrtjO9*i2#{a<$qZY%0?53R4@6wrk7RPu`_^QI6 zz1F61ed#TRpEdRAqO@O+`s3ua)wX&GA1Z_ZpnmTMsNWZLSa~d9{RDlv{73yBk`m%~ z{eGlf@OS;b9SH4P#tBg!3hBm0L(--aHDNa8+#lg(uo9T^ zLVX4yj$+&*x%enhct{~-ciU{MjmT3KB4V;Ui`PGhC!A<-?hk^?s zT2%UlC&eQKRzapXmv4~vFFZfxOgh^N-Slj1SH62B5-QQLWk=XQ6*)Vn7JD}fa??Hu{`*4 z_YRuS102n^5kvw<)aDH$fW{K0r@tbU`(T}SYjLQcP7B&Cb-(e;gF3XCV+zq6=2y_n z=4v7z=wVhAYkx{Yd2?Sf47I1mWjL=$Af53Cf{%f#5GH+6R4>+*6**HTr@*JQ^3A=N zX%V4kQvrp8F!S5Rw%kZ=wPAsV;09)Lo8GorVc%6YI7u@ztxG)|%QM^YcT#b#1zjD@ z(#o=I)iy6VJoR_bbsQN_+NNVk_?kP|BEufXd6yWgW!i95J;;QX;M=OX>~gebBkW*( z@{rp2yVMx+v2M|}eAUNkr_3_BWCEL1{eGwZs%)b_JJ#H_S+6q9HJ=(-f3dVa2=1-{ zHytxwjQLkKx!q@Lm$uXiaE0~cmW&0gqYyvPU-n5SK4-=;(t)93ZoRmIWSqRseNmS~ zWaVf9=U~jGmUP0cb0cGMQj2=AxaR)Vtcf%dNrcbicNRRFHy$?flT=xp6 zseKu6K1rxz?o$h^H3_>>r4v&u%K#1A=b$*5TF!HFCwrHf+adbp&86A3BoF8qoni>g zNi-hkY0XrHQvinoSvqwmwQD<%nc&{Y?syTU8>z2i1XD9h%)7d|9eBTb64Jlw6xDCs zNaB}kq0k)UimQ7zN8Q2LB{I1MKy<#fFld@K>mM9W)ZH9F`rHsw0mK4of&ryGI`aar?u z#*1TYM)eG}^~^ySsCHNBOhdzHVwC3Aa$^UjzSkrMyx7vCfQ4 zOs}i(c~dtLFj)2Hbo;*NRjh*)ldCGy0D>lHOovt)$;mdgBYO_$PNXAuk>i5CLs#xo zmdBwSgX(ff`qSPUodi80V&Z9NjiwozKKzI zovGtQ4w`u31!1&sOdX3+InA#%Sij1Pg)5ek_OClNi|3wNDs@pzDj8YyEO%2in_fW2 z@PuDZE)MFC z6EF#0+}vcjmq-9@kyfuxB&A9*^xb5$vb2sNb&`g}>fEa|*C%UbXuZQw^wg z*jSva9f`{IEG{-ZJvc+n=G%JzIx?fN%V4hje`_!oE95BttEBNQ!!<30X69^pprL(Ldptm~gOj0j$mL9yLy= z!6C0NSm0AS;jL=#^!zwIN;Arc;^m+-otj4($Ck`>eiGOZejIIQgskJ>%L_B5{s2)O!P7=!YLYt8wsX*BUvlcwxB^crf zT|_{^j{Xden-b`RIWnXooT&1&==;KoI~F-!%;#y*!Kj)PVJyE`oKFo?C0>KI3^8mE zW-Kbm*WZs|fXucYDA8ANy)ehrVK;l1!GyGDk@RCyB~`Qw8NSApUp{KSc zq|Mz)O{>z;TdJy@VO6)H%+=NzhMk*ULkLL>LMyw#VSnw2EUI9i*K~+dFroWhA9X4M zzaT!@RzE#Cp!od5Q6vlap?-*?@S&^hZD+aw66eO7X_+7p@jictv`3lI#M!B=lJ-bW_rs z!ePCjc>WQq6kK(?y6j2+U+CWb54wl=Pf5t$hUp53f6(vQ82*Lsm)QX5Ui;m56Zo!o zdXic-?U0Ii_}&Ab7IZa+I=D&@_pbbheAVjeq4dO|KA^pf1Bf#1^f##}>ApXnuiR4< zV)oKN;uX)3R;kg0;$m28^L$qxz7uFw3(myCD1rdFu5@MDK5FNAzsCP*2nQpKR>Kj5 zty;kI9T&3u6JJl0-jnIepwlg6Plr#s{RT=$mBuPD10p6Mp07U%O_Y&r6IN$h#8=ce zOPP|^jxZWD154fKMU}~E3O4!zi04}(Mj!@1nGrmJ@`~~&xx)3jv!cpq1HgSHJ_x@? zEC1GC;QpmQ>R?{9t3N7nUi9_@+>^co!2Ja5LL z>jDqz8uDDsG@$kFw^_$FW!pCk!4UUAX8InFUN;rz#{F;rSK z3Xj9{=9uDbLE=V2UtNgn0KW)E`1}x>9)aPga{%v8JTg+0^$+S};b)e28^ClCCNSaC zEe1#1B@8O;x(zIVQ>?+f?xzr|iX&hwmeP3gXMOlJ%zaB~y2(Mr~HQjR=9*8AZ5>Y974$u3~u<+A~>|&?R7gd5n-5Cwn}+ z$_U5-zUHH<+pKFrEs2BOM3 z`Wbrv_0Eu|sh5!qT>zRdZh)x&^{=CRtL2^0_p|Y^4oW!9ZYZtQ;skl_FIU+lSeTASINqtcq;zI`FtVD0$T$9XS?uQ@heJxS~J(iN*s!(4Xq4Mnz zrW&SmJLN|_-=o@17{y~z@vL;0U68>z&*Q_r=P}}B4bt(8q~J#JKbtW85^`V|M;KWm znJZoFv%gOIX8*a3(8gR>#Cva@fazsq;@jE#JRsKp$Gu;OMjGn03c5#A|LpkkNZ36- zebzFY#QYQTEjJ3`M8yB4SzjZ8)tW~^c<(3SHoBzjJnzHk^p&mv&Q-{M=z*5Lm)VL4 zHQcXKGN(-rVBB4WEa8HeJ6Ar{b>=TJ*4y2-rJ^p4@!z4LVM3w?%$^ z^Etpq$d&hsaXrzBsx%HE9b6AJss)Lf`Z7nEgi?g)!THqgwyUiueKVvSVFpyg9M&;e zf&&!MXrwXsOheIGsWkQJQvm@m9C~4^HZl%=G2(faF9EMA7Nf`Lyo%YlVB@gT#ajz6 zrL+52S;@;pHU8H-{vk?<`m3r;Q~C>Jm6noZsHY9g{6Nvbip($ISd zL?}=vx*fFFp1Cf1aPTz_q1c59{lV_0`1x^h@5mzX=-N)7bKm0;#9WNOkp47ig|{F$Q2#ZFp_@z`36>05A8GtXXfu-g)v7gMWULbN!(Q?}m~ z8Jhw|%tRh{tU)vVZv_W+J@&!G%*-fGL>u+I1bw%!BZJ!PmZiTz5d?=*GzobdbAPcS z_tw2Gm6XYwwtmfr(n0JK&3@*jvB^)G{t`i_eXC$3l!%0KWHR@Xlm^qWCb^c1N_}HQ zEoM4~>dt+!(YD+UdpN5~w10RuQn|E;Q@%Ck*CJYNPd|z#EzzH!w!(6EkBFC|_p!$bp!|tEuj@d$9 z9Ne+2-G)%Y75E+cHLb8A+-SZz2qmwU2lVVT>_wJNAv`kzBWgQqHDzORX^brx#>lnR z;~*p-tz|X84btr&Lt#?(E7?!(fdPh=OV~+EhDbH}u_ADA{WDc(YW2(*^VF}rl zo774h!j%O#d>ZJV8|8W6#ca%?cPP#;z4Ge>CPn?HZ9mt<>Qh=4p30Y!B5|oozWCN4 z4rhzhWo7S{aJV1cJUEOY-0|@wB2Vu+^FEz0ED3sZqM9caPTmO~6!g0k(M(0DJFMu5 z=qv{$GYWFoJO}8ZdQDwsB^o{3ek)rtM89*iSeg_;(W?+bL$_ut)?^fyI9~j71nz@ZB4GKBb}ORBSm3zKX$>C|zSY&3C`Aa#~1~(pZQK z)VBo<i0J$z#g>h|IA)!D%b-%=By78oj)P zI)$?mVPsO8XTlSR1mCh8u6~E7FB&x{o=t~nUfnQa^QK|nyreyZoJo%fQfMT99;bKl zMMC9o(K94Il$_d$?O~9Q+pZJN*5UGNr{tMAF~{9Ld6Lh*3}yk1Xd285tZzS3Ml=)31nW;vB8NFF|h9NQ*LKbl-(e@$BtN$ zx060EpHtXl^WyStaYEuzS@+k*Vs6G+*QS94bAu5bGD8-Xp;sori|5icpviO)AGKCKUBI>T*w(`MmuRc# zhVd_QR?$o80p8 zl0MEYuQmBLprk)?3%4QLhuizpGB0|*G5n`%m`IV+(PjO-9+)*Z3w26FKW{XfjV(U5 zM~~yJ_29e$y0aKSx(9);$v*Fm$Njd@`AUUlUUNpU7zrEIIM(_D4-tRGbUph+x`){i znQ4CYtl1)mr|4n$M=pv>>MZW z{k9=~|0~>Q`lFXI>BT<XVokY0Kq}6n zd*FlBruFqDlSbWWhEsI56sDu20G~0(A$6E{OGu`GuL+ z`v23q&oc$P<~Q1y6%(ty_d(dM|`gaylPH|dU^07KJT9XT30@y zP29QlU^QF4c#(-u!Qkfs@^JdPV*k_bsITDcV5S@dSK9iB_=+~e=1y)Wfo$F0A`zPq zK_3@v!V8AU-1tsh?EPv*a)PSq+~wkh_XFqa*D6c6loU_BI_$|FKA7^+cUFD7Q2@W4 zxBBj)aF}*yuSk8D$^_irYzhXo14aKcaPK#*M%0QyFupw-z|>@rjb9elb!fOl$NFAE zae9I{gAP)wnZ9ue95RLiUQ1|=_0Cnjy$mj&Pr+fGweXYQ`&O}VsxbRlD1<@tfL7Mb zr+wOM#zh8Csi|c?>rrg0xjyfCDqUN2LAe1~asL>q{N_NHU80JIz4r zBLdV?WXHE59gP zSMC{Z!U&HP?<_&12YGRQgDxsBayO6-NHX2mLDAN=(_xlCVMz=yl(LsVN0km~l}a+PP!x$YpxO;? zJBKlNKQl4;6l;D0mkKR=JWi7kjI*b#qnk@j&N-5>rzLmY#a(_nhpAkZfiD5EoLa#7 zA{%2UD1Fe#c1dWFtpk(hNQYAWl?92$46YuOA&un3(3wF^M4jXJUIQFW6;XMOdFV6u z>U7hb61j1#a(sX=!>gEk1%G}rWf)4hfL3*6f-Y-yw*a_k41^nQ;m$6d7*wF>XTZzm zrIp;P7rI`UERQK;VY<&1kt%BZ zGow%Mr!#JBvV3>KVy3>ag>qlAiuA9l`hmJVV=eJReRL6yL<=bXNq!e)P7<7G>^G*t zX0ZConKeHIb}CLOU@`N?DCpkqGf^YEjEf6(bmyh4`YdD0JuVlcBBCkjg5$Q;ts9q^ z`WxsAYn<8?W`@Do*eyF&sp(7S0s$~dE_N8h61B>xIZtPQWO00Z( z%;@Z{L3kUJf&N4Lx{j^38W1f%n8mMUK(sqa3j3vHXE?k5#Gm-6U`b;I8h(_2F55@? zjB+}kpB)VgE_^seY*CkUTFDiuW^1pQQl}`Lcez1T<8Pw^95Uj?ky6tAB#z5!-YA*< z2(n&s_lfcI!dVpX$}f0_YEq~AXT)I~?*(%}^#Vm#!WpBDXsOa+fS+gHwH7Xa%HbDu z8|0nQq^vu4CyWPNIJY&|D^5aAjYaQ@3&s!4sU&=nK$MAyrxtx2{x<%eE3$MTM@I-) za$B^Fod|(Qv}N>Lj*&(`^p(K{HG@Oj2|L#0U1G{iK8EcfQzZMZX_--76?Mb|TPg$S z*nDh|n#3n}M{GIJ_?C-!$fJJXu!}hHaR!A6FGAU2icaX zQuGy+>$+#1SBS=}f6Q@`9Hd{{Q6nvKnrsb zSoVNp_GuhgE?-5YpNs3{UHMk5s+TepbAt$SSGznnIMsH0#*tgJ_4Er=kOi8)oA$9= zZ0P^QY+QbmJHwK5YE`X{mEt7wp)r%=pFFc->5PNp@*plhF72nMOK6hswl%$E+bzIw zTs=|e48=AeDsBf;gzRS|cj(K#yB!I?vNh*eecNzfyGp3VvWl}TUsvDEvM#J&dz+Ck zuMA2JMP=v!YL$&E#|zk0`?6P#Q-ML;)y{@X$vg9KM`{WaBLioUjK$Cn>^3v zNgx0T92;H#fP;_M*oQ>a$WvRl86ty-fVSUCyPrL7*xh9XZQf>3@!Sd6=y;MqX$H$0 zcs6k5E98xO$Mgms|5(qi8y5RxTl};m+(I@Zj2LlGAP7fJ+v{c5&TE68BN}>O5dxF8 zOrp$DN5Cyj4f7M1vX5bR4KBngNfKGA;Gm_F@FDq-iL5-d!Vj-9JkR1c=Hl{9o^tlL zmc57Tr0sFDi1#Dre%~wtcyDFaoA4*>l7`pAjqlV}N?^{V} z2*9F#RD*>bcj9!qaZ1=uLUFvN)jEDztqhprS!@(;OJw||04%E8*v(R6vqKjakJ$nN zz@lGb^tKN&^?Hm1$|m8|?)U~F0a!Hnx!`cIfc>h-HDi$svEV4WtUvm#vhk5keu|X3 zFFMa-$`+>(T{;VYLtFtW7TW;K@nYUQx?`_&0tLwIWPx&f1lJpL6dTs?%EFJZ!W2q3 zDOE~^Ad_JzUsXV^xPp$M^pvy|fJMLGIZUg`a+?FN=%-2F?K$Q;!=Q5t02YPj%cX1$ zfZg2?A+Z>a;Nhlp^9 zxsLYU6d?1xsuwEpsRuL{^%Ls|3+#h5(Qy=q)vbuF9uZeJRl*m#q6yq^O<}ha@vXIW zi81Y2D2Jq-JHWGj_BmN{a54OPdCZp~KBOEGASApv(v5UPvNrPO8`+5GYIyf>sCnzm zDLNJjW|jwlkI$_sIJgDl&iMjRnp5yKXLvBAHmBmbO1sFCdPAQN>m3igEv-9O2PMVc zO@{UsaoG>VoG<`c@}US?FZk&6YAh507q#63aM7bTh0S_DnEWDEDe&rcY}u`TIWF&` zS$B2r&7y`k(Er3m!z)!2|MB$x^@0DtPOtUHBE&9W5hCe-EJ6fz16^gxtP6?cn=)3N zzGH zq10*ezW6;!L^pCa=Aok6<{WYDS}nVw3+dmm{W_@Mxhzl(=DOs61g{{6V&SYtW*Y>Y zbS!}GC+_vI)tzHb4n|SBhbIWgegg*M49osv>d0W~-C6`}%nb!r^eLy)SWE800ItCJ3FV`%n;94;mx4wo1ih>Fu!}VI&m;T z>-G!cc^r0DELC?k-fuuuWY~|D#+bta-X`g*Y26}uO2dURy>`y$3zFX|&m9fmZ+ zGFd&PKPu};(m+msKg@wAkk7oOe0>!DkvptiHX%uL0lq z>1YhaFi3wOD~5N~4?Irh{12#)M{-~N2kKW@i!h?S<`*UzIg#(M|6if(T|O1c_uSof_m)vGDy=w#=~?#PH$qNKtY!3 zj6etjD}?}6@%U1*fUly+HNOf1f2YlqTN_?-Gf~dj)nI^D`5hkFK!=dR9tH9xfyvbT z0G-4K;zypEF(cax%v1y0J3>Qz{zA|*OPR9=DCi@W-O>|3F(cp810qx(W&QFMa_7?x zI*>0|H99y45N!O#XOO^puXG?HU=twR zdaJS<`%mQXob$H`_qU0+(zS0-P31su&vin}mtbV_JYrU6+xG`$YBYS;s9to`wZc6e zBCdWqTdtE_9ANlD0={Q(#LsCURUPf4!$e1^BB$z^Qbi*dU=MhA<#jMGA=l@CsYlL| z;4f#CYu#PLTvjPy1HS1jZ&9Xc15^Mt=8S zMn2Bc208J^)FYq@`InKOu4j07gcJfW@-f-I0Hz*Aa5A^$1n{&dslCz%hsoNg+KWKqKUCN=@ekvD}w~R;dG$U(N&Alv^Si(kAxGk1g z`{hj`f|YG-5(>$8qH=rabF>i^ke>R%TH)Z zhP=e^W9zXIc#;^8pp2-;qxnd#R^VgnF@013VC19rWTt^21(1i#lE~SAnR2oKjv%G| zG{7++n2R{y5tJk+f*^(7$2=@Cg%$&->NnlbJ*;(c@GF&|3vwrR=X_N4K|MCuY2?wC zx75r-_hpM%ypH`p58;Xe-zFi9f>sPMw|NHS+arc_+z->Q-s^A+%vP6+ko=AIHS-*B zf#Q{yF2wgL1m*U}lmXC}eVg>V?M$%t*5=E6d-ZbYm!Y50XI`cNv|oJ+mh(fUZ7_;> z>csA^s(!~uRo}=sZNCksi9CS-fj_T!vn$nfQZm$P&TJ3Ui7m!lD;Ky9ZbY#x?#wE9ZM#^#qgq*nC`#RYW^K9d9MdHBQPi5T+Yzm>Jnj1_ z&N0Rz3{{54f6MBRXAq-~n&m%`>KUM=Rm8}aNMsdx6RTt~s!4>>^cYgsOJ&K6{ffG0 zpY{2(^a%PQob0(<$#Lg<&JKK8!x0jz2uxS7*#}s9{Fc4**V3a@t5hR{!s%a2k8Btl z_gtnenA~o#5!&qxA4)zbfxs4lnDQ5-URWF|@9^(+6f$k#Z4H49k`o_FKEr=2`2rtG z{=tWmfAgW_f8U23)CSt$Tb@t#9Cg%6%%SHldXS835=a&z%kpItz*9|z3DM}jK1cb< z4znJ`2D~6Ae*x&~zjjSnth}c~f$|^!>FOgHcaeuPO=Q0e_bt zfVj)%f2-GDQDn7lm+zyXeJeM334uDof^2tF(=rbd(0X)7S{;V94u38%$f!cwrO_bG z$aepBNKeuJ%BM2xcvy;PnHofcQ@pB?dNtHR~X|Q9h!bWtU9k- zuK%EwjC>DWM`h?%AjxEZ?Uft;4Mi;00XZc`!QOfJZ@B*xjri%6QfS?o>=%FB49dAr zn2-W>%uBZWoEaiHSFfv(9U+&{dPFC_Co_gJ%IlHR1{RP7UvJ|m^S;OV z@PKj&1IqgQ^YGmwhv89O1>N)~`QK3{ZO6q|;f3tdml}@adp!bmx#b$%TzJ{BP*WlD z7WrqP2H$?W4BjS{DX@6d$bjHi{NRd9v8UK~&DuJL(x;K7=WnC;!gLMAOK53f*6m>O z?{ql$`UrXjdG7P_<362y^Arl9UcSw@_#vTsVqWa%Hy{`Z_YsWT2szBO9f3!NTArwc zac{k7Y>P)JTvqZgBZ39H!7d;?)o3Bv%ovkA%i4#YX0}bj-0Tv0Kb2Y^cZyUn!)Yp{ z*PxkUCY5ShU0Z(#NcmSgYa^%LEE@G}O4cuPj)F8|NO!-^bdd)zhF00(M89$3Vgs4WXtQ2*@+lQ=u>dbtxs@S^fIGG|BYX&6RD1Q2^{~fYI+5f z)0SMnQ17N8U6Q(Q*`GRn?a!^jvKVEmf6It0yusrEWL9 z8YWMd4+Ge1XR^kO=K%HE#PzsTH-A42_TEGw&qKU>Zh zGrV8Sz`9=|6UO+u#dz#FL`vnV#Ny&;@lHw`4q$3Ha=)a`#YGv3!vy^$VL z{azjJk&>P}EhzE4ch-`lOew@cF91ciUcq>ewSHKY;dh~m|+w?-$?acVhpp^Q4bkW~Yz?w5L*f9RMQ zsh$;=yTreC_S|8Uhr^7K3xhN!y|cOHuoYPLNDmcfPKS#yu76O~;;QrM z*Rmu6DTg_mj#W5xXEnDgYR_u}>(TCw&c2;H*v+1I9DaWihu!vJ4gEguP=!mZ_2(rJ zdB>He=G8&`2ly~ zTz=XhTB-0Qx+QUnj)1!WEdd1ooGrTi{b{5xMb+_Khw^<#l4T%t`#!gP>1jsjfOdjf zN@KFHJ2Z(JTt>-6=FFJmwEv(L6e4^K+N274tExl1(Xd13ITj6lT&x|#IZsh{>p)rm ziq4{D24qcAoi7a1xCLU(38qN6?T&(-58_o>(+H`p3?eFD2ZV;T1h3A*vJGH-f;`5{ zU9JN-%Z;vEtWLqXk2i4bssjIWEZ1T(XHG^_MtJ$>Jihg2=Tap0sOn#Ylg-GoNC?_A zRgKMtj!AX;eU7oAYTqdVUcTPIN#*Et73@e!InDxiv-RBScDAjLSyuBP6^GJ(nq3W( z32*5Y@&qMYX$5OCTbfyBTf*XSggyLqXGBQT>z#2knD-av2cEut)FxUZ7*BFCb;fprQw{-I~3sj-}%XUKjY!p%1DS*LeK0y!v6H&dLy zr?I$)*dh{4K``*?RMdQc=~Of7n_$t3;W7@TZ(%hVq)X$$G?oj~?rH_k*Rkr!7k^-V zn-XX#Wm;<(!{q_$XSCMkPAR1)f6F7ld!h zEIuXoe5;q)O?HK;2vH%~nAbTbA)s8-G-e+84Bh_DlA!wwgsFq?dv6Yo9s5skjvo^1 z7ZN%1wenK@9X|GjIL$q33FR@e<%?x?dEVrxTlnJPq8I=6P5bqR+<3VRssN|& zbMF+al$s8#R1~psVI7{nt9)zc@81525|!~ueb@noyzG8*GA+8q^iN1+!KN+Xx;(&s zRQkW`WmjYbX8$iOzwC{j_>MZ}ft~n_T7KJ3)M{$*XYvLe81PYz&dD*kYZyXYd4Im$ zgP)fGmjm3q-84*B&ao55Dx7rs1mvhI!9&XJG$i4!0E}~rgNXO|tQ`)M)pa`Fb>-2h z?c3>HB5+G2b!dDnnQV?$%-Vh*{-q|nruW_=1fO_|aBqizryt)|!=^9p%Xn6%^gevd z>j3cY^VR;{FV~%=cU-0lLv$@bo`SFHC+_7lFa1HVuinPGLH%Ko1sA7DPEzi1owP7N zhnUM#hTWsw&wx&_y_%r7omE!ou~=b;+!t3d`d>HdnzrNQI@!)b^?oDRZs7lN0gnO% z%wABT-R>#<_W=R3gF&K6dcp_xTtA4F-k-bK7Z+yOndsei4?cTuSW6rJ$aWeDFJN;P z0HG3L&maDC3=?;#F7h)t84Ztq^`pjwm1-?LCjxIavMbU1Pe#w z53UneJ|Ff9JTWoi(!0W_C6M@($v4nKIiURZ<={f+L_2gaGcz)e@s!qKXQ1hfImQjj zwSjOr&cqx3l~9G-;R2iaYKn7}c#=y1e}h`16Gd3|wW|&^x}6d$Xv`8;)?PL!2#Hl! zaI~TjA`f&sWcTYK@}e3^>0CCmXH7+LsPlik6BCb8( zQ?kiE@0hkM0ODnALgm=IvEZXF8l5jxLFTo{2i)R9DK(#{C{z^T8S_;UM(s4Jv9rIh zwchM){?ZR4{Jk<Dqxqxa&N z?f{IRF?pU&?)u0}j4){u+n~Hd7hgF2Kc)Pj4=Ml6O6x<)Z~ZSRAB;leFDYMYUFa_< zzvn~B-zEHz@((|xd`S$je~|Jgbo_@JkdMmORR9oQ>yF8R$a{?)y#3iV3~~pG@n>v; zAFXcUngKa%GGYJELKxBb=I=*Ly?y9-Tx>Zf<_s(7pYAo&CjbzC4~2ANI;QYFt#R-a zR6dr8t40M5AGnp3Qw2?G z6&oF*AQ+zDW?0-BnqZE+@C;KwH_=qO3&=1MO?0Yf8EYid8llz zaGGB-MKa&xl;d8W_O=W^iXF3-7qu;rmHpzyXocCmuvn#4zwO$_uE%VagtyF}X`fr+ zp{3+{G9o3g1-YTi99rjMjTZNScr(3O zl}J*wiU}8=wM7}Kq)uxq7wQwRfOsEVE=Al?_R4N7^=MZ!9DgYM&G77!K&lW180V|H zb_5Yekwsk7I`5e>8AbYll`qNlOqL8l$`?R`FbmsNw>-dn6=Q)9zyoG_s-8BP3co7; zW;4c2vOLP{wmf~^#YMBa6n$o(!z1Td#xu!!bJn#)&$+o@Du#$n=_^mNmTf-tyFoJN z7giaBIfKM;@n$FB3EZys^7bb-ht{*MfjK5W_kLr}d9BW6d6{b1?*}q5sVFX|Eu_wu zY%#D-KPgxkS(lJ_<5wGpRg7es2Y+8CDk`xhG3;?C>^GBZ(uMnW!c^sEmC3Tni`Dni z9F|d-+E=7F&aG6!lVBIjV=!1^?uL(CXtw9E*b7_Ds4f1kA~Vyi=uWkE+z*(}mNw}~ zma`J_PJ|hyvidnb4rZNEM~Fyl@#A#B)-7w})tmGFb<<&_jOJ6RL33yacCtj3c+>t` zZnmKrXVQ*3?TD@0?4$(OV_*26mw^t{_}osi7-f(42KVp#g)ho&8Z__dI^0hmO6JD2RRQry4tG)z zd67DjA6=_0-`r^`nfU7vB9O*v)@afw@<3vU@Q!w`i3e6qm|as@&Bxsq&E1o!ibtr8 zLUFcAiEskB3?g<&Z|h6W2q8o3GF07x!XM^F_HARH;+E)?)BgyC%VTv|wMJ$9>U6nc zTr&W8`Vo1QVBw)rUOF=v<88=!j>2m&pRqkHd&cRGRI>f3l5AmOTKA)d(2_uUx&`Rc z(@1h0CVnoY^VfIVZ48Bzo=79+_D^wQc_Vhs2lr)mAO&S*^7mT{-CB+&H}0J292TAs zy}#D59MxY9RxTnPqf+WWXD~c7y}oHFn}aOa8R}{E65?4sJW9Zu{_cfNcy)C8#PwAb zzF-bndUvd2AfU3~L?+==^Kw`hUknwio$ESwDkMQ-{bLR%`w1)WHmq;LiYri8ag^Nr z@l=7jvcm7tK43P!@be-~p~$j*9hQiP!r^{=9h;4u{;o9_J8}n= z%Gr}0BSwXXCDa_fkQB4}#Ix8;5XX0AurEpHq1t6*<<&08l)g1}SczxmO$N0liUrNy zrlxwe(^`JHgI7MdH*N{x9HCs^o9GqQsf(z&2B~kwKsEXa@y%5$u?8a*RYZ{v1}r%9 zLHG0sHD5{CwL6o4uqq*5PCke8T474jxg8%ndP8N&qPygCec$~>b-u%bw|q8G&3-C7 zbq2qnHApse`T}Pjuv<>Pb|AA3KI1DJ*R60|wkap94PCjDypE}UAK$k&A49nj1JqOt z{}~YdAHt^oMX7bt+9K$AS|?6|=taSLh25F8Z^{1n_#3haZTa@w3-x5*E-{Ux7O)0NM}WpD|6RJ7uvs2)u}OiC)@3j}!UlS=s8fn5uXF9T~3=s*cJlYxp^kjw32% zS7;$+0;m-!MREJfXitw%r>4Om$D(P-nYMNOB8HQ%tNSwb&%_c^Ky!^!cS&WkdnwX% zbxe9O3uc3ba^Edhn3a%=M*|cB?uT;N;Ik`EOtQ(UKgU1uU*T33^i6itshJMog>hMj zmmYmSq@YZyltgn?F44XW<}?>e@=wztt1f@dt=@OBJqoXUJN@# zEwgJ!%;M+llG~w}!4K9_aFlL9PT!J_lTAlc&n)1fjNu2R8sMLXDYFGSU{A%y(FV(6 zUmOYF!4mHiZrcv&kiFK{h);P-@8Zi%90Blbf}S3Z@```)PcH!foYM{R|S0x3OfZcwq8sfJjtexzL-Wi)RL%rfKF1M35{FP)H5gzZk2W?7(`cPek#O(o9Mf z3dU~NwUWRY46*=SMOk#oGNe8ulX1_fPax@X%7$K@d@!iVFC#vCZQX(Wo+_I!W=V^3 z9fJhmpHn*~$&>-8+Tny)JsYanjhfZ8b(4H)vzqwr$&LY}>Z2#*J+?`QCJl zIp$n*kGZb>t!uA?ebOsekDr70|J=`g|4LkEBk+}4)lp$a|*;Y9=--U_ZYxy*+l^Nl2^jdJ=gGCSwFyfAU1!1Vw`rWO8DF1>2K<|UfQz^Vqvnf`QiU7ak`T0Px zw;1OcY4IztPyIL~ojugw zo23Y#beu0PDVzYXd!@IXto;23TN3H?E-!PvtSQIQi+TYk_v7mJ)kypUM;dW7Ev2j)luXo(h~xSY%s<_ zpyUBZ{AP7VzvtU;FTZBpYT@0>4}9*h=yrtFjW15iYplO?vtOj$2c^4)y=Sk4s&>M!w+dkIV0zzlTkx&9zr;__YnB%^yD!n+fgkZmVpcso!~iwW`c(OwvLKV$GHa8?<7 zn{zU>e;o_7Q-2R!Ag8e9moVkSmr5x0(!9`eQYX=%;DIQn`PN>Abr`&Wg-JXxBKVpM ztntT>b;EXIwAvb1pvsG&w^z{={DWfyib4QHSk7PlLZ~Q@VGR~33ghft+5qGZBI;Aw zViM1Wx6%TxC-uxiStKNId?!q%NZy4d?ki*yidSbwJ@lC>@9QE#_MPB#K_$T|-A`xPItO;0>o`VoK0CdO!tl4UjC$)i~Y@3i#YYY@y@5fxQ2N@fLPnNH;1`4Dj z(9I839J#$dh$?tSIXZxu?`ycEN8Ya)*LOzX|m- zr}k?P%&?-6{8}?`1q%fk?;u@ofg7P2`^C+O1!9DG)SCV5`r(35y9J$gjR~1TtYFd7 z1noqYa-~&5FS+1*ey?GP+9Qatp$)qhtH8OqIzR2t>s0CW1w)>eJ(4rF0X6Tg3 ze73pZSC%hoyCBL&+$)q2-?H7PJdVK);AvCVMv4&hx47=-C!T+edpd?;$npg5mD9cs zD=+&~6pO%)n@Ean7~F+^Ptq9br})`ABd!bMwyo@>n!>HMemuibMpqg z1P^Xl1iO-#0r+0;;c4(^6SsXki6EQb2GTiBL)q!W@n>oN%7No8S?m|o7c(M)7C=$I zlWeD>+2=Wd8TpNZ*|QtW5zc>um#&iCpQzHaBlOGxqG`Zm>Z{-~v@J#%N|#(DGa1Cs zM()eBKZ^Ro?ccsSANDJI=)PjPcuQcEr&V&gNgvAsS;FvIjVyM4z zJsZ@3WnH0fq4)eHpgZu|`PU2?Ey-KPOa0k^mbfDPYNxrt8TS;c%Iw2cDM zngki08&UHna3dBAG5?y?9H(A+_~bAP{!H2pdQ%#d8t1vAJ}Lje3p{4P8lJ6%_l&&AyDz^D{YTKUWPI$w z6VRA!IJ#PYfT4f-gK_JlwC=~SjH*qJ7>FhZ8}?vuu2CY$Of@n7>@fA)MfwM;vq4K6 zchv*C4e9wqL%LH+&E2MH0Kl*DVm=V385`DVA)yMXSO1#%9mgIq9Q>?}&geQ<_O8J< zBg<7%U4Y}bm$-=#_0&k}d%}JUB`q!UNS?8D#WFVH7gy%PzIGl1b^J7RTz;y=ZF_e3 zK}*cIv9YRP6sl17b}2sA0WEOtzCH&|5gg}TF4L{VVwa834&Hi)Y-P2AXA z6@_${^&Mg|ewxEk$=1;pG$}i-CBh|NIf{L$beJGNlnV&*cPh81@HyKWU4N^WDi78Qk5KM}4+SrFQI=@5kp2dC*eP)uldquO7c%3rk9qt^-<0se z9@ny3*s{4aGbgtxsp-p%jqv!Al+3QhWkY8^T4YRoK)bR|zo^*>839h9SqrzRZr%RG zujoWg%%p+AgrsI)W&FdsDQk0>nat^%(rR;U(X2W>6?8Z+h| zRi(>yWhs4bTgZSZyB(LlqKQj&{6uNeMQ=`e?p5XP$(m#x`a}sHAL64Cl29SdY%&ow z)5gIgWK3u`3Q{ba2Xs8~IqciUu&qqa7+^i@88Udr!s;uZ{uYu-l4Jy%zbY7Jajlz@SXCiPq(_r96`j4gM!sc2*k-TqX_5cN*;lA`nrAfDJi%^g4@0lg0_T>h2)BO zRAeVk#gSEit9-YfnF7*16MsSYk(Hg+Oi(9Ir3D{s6qZ*DmwqXS8-IR{NLoehmh#dk z6`O6-9bJS)Jf)~cj}C&x11*-tu8vyziIKT6C!3%^YT99bS)5a!xIqyEfGnH_4dR`J z_?Qsd@G2TGO?W@I?&TGIBgbP|`zoG3JSXIY=ST@P`fClI0^?Rlf|WhXvHv7m8G90o zx?QM=@+e%xe;)oAh-w0zpFk>fUSDd#JF;2@>g1(L7|ESf-)Mwtx?lIC1*dpuflR=biEZn`cu!sPJ+eiJ98e6?>06$7SCT zXbkBn zb~~XJg=<@8u`tk?*u`mhtieQQU=D0CE9qEKRw70Y317$)X}$ZnG7W^ z#g42D)QNi)%=65yD zXc@B;K1DU%%ND|RBQ)2SI|rL>y zyip<61;a-a7N(e9yeWh432_`%*C11(QVu-vNiOrH8(QG$v+3lH@er~gR3Of(mN%S}q0_{O3u_9FEz`q;*JnBq1=X`4n7_QE6o zWuv8qtPVkP#;F7#eOMat&99(zLv?vBek_2}eoA#>?=V!AA66uKq2i_Q^s5OXv|ja@ z8sRpIz?4wVFZ9qC6H07h)pp<`cW5ZnTZoV++!^kH=`3O5bz&yKzZ=93{6RP5883|= z;Du+&^RyS{LP4oVi-63Q47R^cq`Qzxs<fqz0D!l&9S}PWB)tL;bdZWH~U@*P;0Y>rJ48^FZCt7#t1S_S(VJB$j

    #{(h5YYi0bc*?<&?2%zT?xj0!h#tGL#RMQnicOmwhTc z=-T-g7&p8v`G7`Z!A6-Mq69eRQImxj9pU7gYiU0_eaC}f&HKW_DgC3Y+I*FHMu&H% z)co^DXgxWNTa4CgWtja7hg?r)pXzX&;4CT#a{cT_Ml`vZqikbBIo`2kBNEO@8#tms zVOdv`_8poKD3U+H{`|5M*?APk^E{cR;AQkUPSOKLb4>xoF6oeixH3mJI8Bo%j>$A6 zxP)e%IkKX3NrZcNF$JlDYEfbI&A^nd)8^r1;_2@EGO0_W&3Mf+ktjR!|FBPyvnx>EE)p7(>y zG5fTu>NYVZs-Ku@@(NYD+!q?(%vw(wXaxlX9*_(6m{M$HdqKZ#`I{ouxN-A#bkeRM z&$Av>AtJY+88H&!M7(9A%dm~V2*9keKwgwrTpAY}K;2H4?|5jvanxD+kwzf7c??oW zTC$eCTwy-&-^u8H=S@(3Oi^f*e?of_k*K_z4=tOPV!h~#oSe5CU7YfgK z(0q{7UqydIE~sIjcQ4{@b$}p#1SjA?NsJ8(1Sv_kT3&Pket#!x!+G}`?(=;=qR#sY zDDLY-&6JeXfGKw#q}qt!Lur7j#@!;@E9Ol-g>r1r7)%MiRDuL`dgWjI1dZkKF8s2s z`Mo!oJz}R*VbKt@i&I`7YS91U$8+=H+unSJ4ewN`6*yP==8OsKgyIgE>|RpQ`i+J% zP7ahlFTl}5MHxeJDk#JT?6C^RH1VMIDMXZxf zUDWBJ_w!4>+w$z}4VZJ%+|!RmT`@wL;72#S#HSwrLybh=s=??C23Bx`X0rn6s6)@g zF33V^Za0f7Nu1kvM_&i6ogy~pkbV@o)5y~H*?X=u6tJrSpV!n8P&zh}nqOnmtS>lXAp0(lDym4_m0_PRN{AoPvy5D`oi94uvD_YY zI5_&d#BUEJVisW;Zl8MqA4=ApwGYEXr^Ajd1z0KEt~Z{6l^4L6QBOwo$ss{g zZaPx6EUUO#Bf38a&qmg@)Q%OZG|sTjbSEiNKj!9d$x|!S?=p2MdBey=2meKC zJ=oF3I{)DTGkmsKl@@s!e}bI4_xZ(?cPcbpE+>1`K1Fz&2H6Y=$IIk)KSQ!^a?XA< zo%!Bge_vSzSUN7lAQ%b1zJce|>HD(_>?qlpMO71g1Gb(8YFTl(FB$P;WV-8<@<^Zd zk%IS=vkjl5P`uX1;pVyr^G?8zE3r|S`@EKN6uyxjo1SwGt(k_04$_n4Xs*!?)V?Rx zLH&ju9risjOYX0xa2zPaDtR}quB>X1N&G7fOZ5}J6lFK&exOrWN1*#$)LiV`U!^j# z2fo%g5nDw^Q8J*DC^{kR>$Y0wdVq@|x+z7lZMP-STU2I@@Pz0+%}`vs^ACnO-WNGh zPQ>ddiDguMIzXYO9}4${JaTU$l3~@hkn9-9K3$Mow>^#AY}~C_SZFEtbnKQIi?`Qp zDWpI9>LjxC5spiQRaH+>Do`X5p<{m^8j&k)1LbHbDF~M%+PRKjc3+35J+!Z7&W3C? zNnUg#ahMB>E;u%>HUf`M^0lY(u(m|(k}Y(0Xch1y(tL(7AcabtX7iKqFfSseA40e_ zsv(lFEi!|{FyT(IcTbWjdh;(~4l5O<`#LFbjUUXP7mjqhZ@-%RLQiE;EejgbC5!CW z4jYp8;yx@pa~n5{W~`+@hp8~}g}nrPg~(|OotrhF{z+jm4xK(67OF4TQ&hiopkky1 z++ttUEZU8ifMTth1rOgWd-F0A%N{dmU!RMOwyaAV9OSV|Qa&!SUmnYY6ZAR$A=jKZ zcorD}H#I?KH%~h4aha%QfeCS8#9G<37LS87q(^EfNlH&1LJ;VH;bd zE!TKxiiULG2g`G|W(LmQUk^NnGy)&fBAqR9MQP$}WYQ8;PE6ixsTGWBHp=6rEO0R0 ztnW8-rW!1K$s4>As>wi3R; z;$D=IIL}a0Koz3MV1jN@Q{Xs|W4@D3>azaAp_fQ+*m0@$1RRAcdj!_2HGONJCpQd*c#dV#gAOYo+OS|dB@TAzyrc?Ue2lk{ z4@%Sa70a=`gv&w`&a)a3^cXfik`Sg1U4vm-C&|h_eVzgrZO1a5W>&?l34hV8nGE^c zBv)P}lEWv=gS!=^1fvG@-N{!cKro)HpmXS->DcCq4uA{>*JFa`lNiAQ?7sms3XDfa2}Q0t`jVviz^hm`N7D*r-5?R)t2UW*!$FXgTRpTAnPn%!C^PIk2) zQKRxU{J`0{w;vm1F3%94v@ZrI?cZL$Xb40mXTcn)Q?R3Ea6%0zCAwd?5+1M5EIq5n zg3FrO8pFjH`_yf17!PYr>z@B4yD6QjOz;L`UL3aqgUJeTy}Gs|GiEnmyq;?Ogp&|g zv{b%Q#PgXAj#@(J(Cj-PwXg7&I=?!VmG$xUW$g0L;=T;O9Sj7P2~B#osP zfa@nVih?=2odUFc1lWV$T>s|g?wsFis#kia^6hVj##N`vXa6G_{SBA?7LDrvH>rJn zZGO+hA7~s-kW@K%wUK7^BEtsZ#05nY%_|ktllxZxJ~SRh@P9Kj?#iP0Z4a0BHlPU4 zrl@ zRpe=K56~$;eD9Q}!ifV!XF<+k9dEN0IPtqFYp_b4@C~sU?Xg`<#%r_gsIS*^ zS4!J3Qa0>p3n6WX%nh_G-*yULiTwGp=}E+?arWB7NhytVRQhQ=HJmxsph z0bKw0(D<`4!habWZ)WD^{R+|AIMf~lEpemGYV9`0_tu` zrrWW9Jftac1)x#k^O{FNtACh%cmg7tdF{+ngvCnThrF+8!;0MEwVAM}W83b9t z5!RS?fq+~&EHr*PAXk3>CmUt?b7}m^hQ&K={=Zuq-&~P5`;V_uet*^HB@SDzG9m_^ zgFnIho_!#5i9n<a&{xbNnY8`MWwfe^nSskAB-A3+0_59ZWhFXM_QK&d;QS1JlBT!IObwQ~%nO82+;< zarnC_VYu@B+i7RP7uF>(%uVj96Zzu12`f*FMS!K^_{`&#pW=DjI_^UtP) z#~)3J*gu;R6n`}(DplPWc*{?Y3+l7omujlk;Bp`b%gxNk5jPa}%>G|CB^KtH?7N7r zj%!iczP>UsMM9((h}NMClfE?nf7g^?GqVx3*(Pakr$y?(Q8C!$#H+HACVJg)oA0Ap?cF5wGD&IrvKjvSYyC>337&3!o|S z0nn6C0W>8>^^_xjTlt@V`AwtJTP$Bwhv%5IIVZcD1ufY7!JJ7ON<1NaV`n%U5|nA_ zm7OM#cXS804}M9XPwsNmj%5K@`3m=0Fr8%ToC@tG)XBf*y^;ANk3Ps(?yX({to+uE zzb&GiVpOCe|0k}``46tY&4upy&h@t?u6xQSG7-neup;K_xT>R0CylN@QdIE2sXS=X)o%B}`3-VieyCh5>w@~ivBbZS1oQY^ zrIPIZN(uvFL9e|IAm#JF{j&1fqvMV+({_liyBcyX<2J#r|MN;p25=>%gS>J`L2^?) z)u7SabH&IGpqkcmq1#hcv0&z8CV~ZIw>0T;Z3yGx^|-Ww-mHe4s_ClzC=i!F2w?~G z#uo*4A-%o*NiVTOpDZcS{nXn*a(;9DfIfHFL%6M_D599kn5HNqxyqPS0%6ym(ywNa z2qZK>evX*Ws?aT$_<$=Z=SX}Y>%2d%q(G$7+q(f*QZGQF+Vgnbg=6O;n~eOdbWzM! zlv{ega3RZ&pMsuUhg?fly*z#>DX%{_fUjOAE4*ta3j^oV8ue{>*hU-BU-Q^#8+ft@ z8O3lpT7C!jwE@9>eL!%34-njU`PBA1xL;4h!UNn9^sDsLy>k0yH5lv_-b^U?IrP5j z!gdme0ucT!jNs2pH5wsX$8xs>+NA+ns9H~NmXAi7jo}1`w6>&yaL?R1F?(eG1G77d+*Xt`z+TO#<{tid(kVY#v z;&Lzwo&iA@Ew)W@s*4)qKl|vr;A7A7FpN=TyWZ77A!Soly8rm1tO5bATo48* z?vKjm6gljdDrRd)Jop1%>&hiJF}~fNos8H(U1{Z=mYXsqGgY7VN$}6|2ybyt{X@%F zZwHMl6a#4aA6kSYy&-{T=e4(_t4RB=q}mPRt9rLM?GgrREJnq+=j9QG-?2Uj?=401 zwQ|_Nrd{q)%6Fy+Ge$m^sdLbA$O@{5rD$PdIk`W2Ot(KA*&h*t%5LG+Tp$ z6@rEtAqH(m?>~b3Bl6c2L6e1u#cEyAjAF40Vqi?55R#)1G|MA#Rz3`gzyPX0kK7AB zfU2u>U4rF`_GfS3z1FP&ti#;&ejz8^8@8ps^PTEv)n?$3{z3J{oV079KH1Yuc#AF+ z2sM85d#CzbFj_I3)c~r$phal^l#(O1^j7&n4}9+(>a(uIl=K`n_C1Hv#o&2$3?1&9 zSS=hD%^-AlqF(vD7Dam{gqI#coEeRX{gTmt@%^w3Q1V>>N^jz4t4qtx8oz$q9lfMP>s?5;)Be(d1@ijAVtI7dh`nKGboB7aHfouRn-> zAb{wffn$b|D&xN4@gCPBQt}44g4+?(fp0{4v`RzvvUD!b883S9>C3r%Zc9P0~ z-acjbcZC{sup(gKFBnC5Oj!5?$5dCeU6Dwa5hr z1fj6iv|it+8i_05$%+?Vi}))LPft70+hUuMgtJ>uZ+W~`H}&gJ+6#x+mH{O}%U&%3 zeS|7q*CO0n@K3(%YpdXGn$Bem+~R7e3W94e9>6b8C7;e1&Tv=#Ch|yp_d#YBA2?_I zQXpSfOEZ(s+4byDIg9y{C+El(6+g+n4q63VKt>USublz5Arrp^v=3SaJ>VwwXe#m0 zhi(}!(j|Xh9EKnBKiR%scE#0XtiVctT%(MvnZY|>o>k$ESW58*y7XVJu^iK4JNU&mfE{kr*@3{XiV$sIOX0CdDf5uAQK=Hj_6>zNGZ1?T%!r zZYT3)H7pZr*aeO8o;)%s5_bvKREJN0;AdN~Sg-=QZDgWV@?RW4Ha1`Hg)%PlfsSDF zy@6x9xXFx-@bw7-x?SIOmf!v6iG;epW^A;2IJRzI-)4;f(`eJxsxl|JqPD11$JRk7 z&P|TyN=+?T#^50J(*&WGNz^7}wrtyao+3_sgdWnZw%TshZ55xbJojYSj#q6%FEi&p;Yg1Ouv!T z848b0B!{GgO2apdEoU4_V{jJ$Tco#0j)fKv4cQ)=xr%rTESJgLgL`ctfr(r6UIRlq zwRanQqL;+WGFXlMe(R7zi}JWe$8FkB6Es`np}1f&$v8>ldvHYIqJi~ujv{GHbC}Fm zjq5tHCySGIHHt1)*@hnN?30(M(YI2`WO?KMrvjEjV~Qj*>-w~2y?bz= zz<_1Qz(zvjk;Ii+@BEt0PYzMN@_V0SO#3{*iQ0g;G7mhSBG(Bp5tkTV89@%rY?qL^%MeRt=$Pv#>4jT{0 zD(YYk4UF&oVt%Yl$?dT<-7&%Hv^pxa!8q=%EN9lPp-eM_*91q07&}sJXUm1J8_V_G z!a(F83|Z@8A^ti^)IwdFp6el+58U&{uSTj=iF5 z#jSzVQfxL=GcNeR^uF9tqv9^HAun%OI(ib)L#fW^LewGr{I@c(4!Z1Ef(r992s@zJIxpSQw5z z1;@TMie|?({)4Ht%Tah_7d4AjzMI*uU)B+L!=XV~Om_kk7= zIiJkFl|RkURd_+RI*yuQSpN3(r+-8J768;={0;TF{}a@=_u9~013>*;QXn8?z&DnY zm90L5p_P@rfh`l~$G@PyR7(dx(mp??bYJsjsiEj)+R+E=ZaCEbTSH&G_%8zJUcdCo zO%p1mbz@?}jc zQRIEMg~MQRJBUpiMlUkKZr6DLK-5o7IebNic4?%6*f&ktGd(1kBFecn6JkPWqINdO zU3zSfAS9nA^Ax=HM6h@f3IQLJ^aMU`_^xSnb#w2p(yR)b%*@!LM-h(v<=*F$wi~N} zKSwm=CJGp|`}Z7$9LIxWh+P2FkCyGvjyM}o&500XtdYl|SOuB>RK7_&qHXqk2U@NX zU6(StPaZk@Ni7>9s-VNb41?c~muG&@RX?IbY|1P_fiJo+&CGi`V5m$U=trNn7Pc9L zETsJtJ}Y(fv7)ACw!{iq*ino)T%zVV-~)>L52)`s_mfeTR8GGW8X&_1to+S+3Io{KFk6K36Q#Y=Z9qzxO#d zquoAd;3*IUX*P@gsyV%Mku zj=5MCMu4&>dp@@YIPFL$Fg;8=^BAia4Ay5W-yuVZj%9QBCR4;?8&$-J0D3)(;jUG( z&G!hD-AX-nV|OGqGdl)oG2cc52)nEc-$FkhF@e!}tHvZeT%P6;^P7yAocM8~BXSpq z@=a^-yf)?wDMVG$uuZIC4jMR|va=;QA!9Uw(A6mqb?=tu${jmM|fhx zC!ZW=&k_E}t3o>6#kpbF;t%&m|IXDoyYtInD^Xz9yIWV_Krzop3M z`Nj$0_5MI^o+4AUXk+?&d0%WRz$8)N&UKI+MiZB?l?UQA=`>E&TE<`jP~Klw3MGE! z_YXu%Wl-%M4+fO?;kOHLNPJ@9uc!n{E`UH2xwY!Rb^~5H%ik3N`O?I`Ik0%8rfqZxb z_s(ZZ7Llhf zDQ<_SAjM&!e9Dv&ncCXCL~<<-_U&~&QWy`TC1l-RQ^5U?a&Er*k8)A?1}dm)EoUYC zKG7Ey+Mvd-G&C>HU9-G{Cp|Y;t8#=^6FfWb*1i+sBMQ&&@;*pHHVR&=KS9Uj_$}cn zjBgJNJpW#|RoRW${!uw2r2HNzFpt7gNB>WCge1NPD=QICo2B7BT6-3c8dd6JM=fOk zt+!w0yKlP}xpGT8r~2a!XzQ2DzfiTd+Kow}DeBWF;B|+Ka?%J=K2mL${#1;tP;N!h zZ0ezu5f+cfyK|SDU~wEK5#TYnD@$T@8F=*2{R;KVhAD}BR*vUt$Ny(R!$&T~pVVS) z3GJN?3#HbrOO20VbWv<}BNBcg^0w}4gE@R4>CdLfWM`2#L7f1WJqjl4#O zxnb0=z<}hsl~qicpnahXTBUXd|2n=ruTx-XwJ&2dxVGfT2@PDaaD80?RVl@9(<8?& zH|kQdAl`jwt`E5akC!$;g6F7rSF1yyS%0u*vy9epdTI+2R0S{LGjJ&Pp zrmI*tliTZGx+dqJ$|>7(kLn|vk_U6^I`2WmSGS)->rlStVECev1F$}7Mo! znYry+oH!F!o1NB41Y+0ROmkui+wFzg{GYkHH5pG+WHRMEr2k zwm{5ga2r&Nk=bYMJ~wFIufpu)O=Gr%GUC@-RUNAfGBZ_ChnJvl1uffb0F?dW%_(~9 z4ESu8deZJpbdVwtwM$lTY_M_RPff(2dbYblkFKVA4E^M)>l|iO!{r?|MZ@xXY<-y{ z>Rskn_*(a9L+h$)9e7+WJ4p6o)n*stvG58bTMF*CBx(~PQ6*ptW{yVUhr3h6F^_u^ z<93Kgo$buj2NNsGPhi@S+6CkfebnnewK~x`lCohSW;fWOkFE0;j|`c%UU`0N4y?-N!)Um{Lk!{} zh1}Bj|LTeOQ34WY{YD!$ai*Fjotv|=DM>oI&^CLb0@BHg&qaaiy!xk!m*xyq70Y#~ z1K9(lp}yf`OnSx_c6Bh!hUlL>1-n8yhhf7NYcaK3i&r00YOAea($vYm782~1n$W{a ze`uFC#{-^uU!py=uNs}as&?t1LxZp8Zq`%R} zsE9QPz!sJ`L>6bZR_xJ%8IMGED-76Jr7_ozSHm;)y$qGaQmbyahTme;CT33KMv2>( zN{~hAqBdgB`g>qT56fDse+Tr(m{XqWM|#Z9F`st3YLhgY>C%uxI-^Tfc@5` zwibCh_uZy8+kvw_BYTXP7<(isIeW^k4FTVIy}8{F;X<=$Vi~<~OKF03iVKkHgYsoD%dfT5P2_2DYg|1zCP(3#sOc>QCp)Gw9royliz}R`^ zw)t?GlxdPq;WTo4+~RajjJru~l48G=W~@I*mXIx^!4<-u*N@v^Q`pS^uYr82 ze}eqRKS6%;Um)M=e**IPjsFhh*8o8N{X59_u(FE%w?H|S>CbbNIOjeSh)+gLB0X7v zKso6jf%0@t4y^Y;IoCe|<)yy^m8VEBzU_CMCer?@ov9wf=aVq)V+yf zhYr6A%5~0^U?h4uEy=BGRgFt2)X}WG{x+}Aa#7?J4gv&Z2K_G|^2P=_`hR`M|6d>8 zp{_s1A^vv`@2%ngmY|RMPeI@6PeI@IFF}8u{C^h;&ZeL;m7{+SB>KVbZijQ_ZVTH#sf$SQe6K>fzX(S}!vImVqqg;TW* zn_RzTIMNEY?sR=D8tZc=O_3r^!J_4%K!m2o6^ozoWgoW`kk+5E!)ZpMkly5H50P=M z)p=0O=I*#%TC?;IvaF5C3$3KF+{B3*9}!D^djTZIUvdvpOxA!(f8{CpujtK6&sGKL zgc#yv#=2kO(!s}eN%5Qb1c4VE8bc_8RY%5f`s6BNLZ-%$YL|9w?@P?I^_cv8p1M({ z>e7W0(@QPyE0*KaL*$2@8Bi{JMh|`gLX3_kT^Ew$hwaynF69uo3GxO~vWi|I5Pk}^ z9vh4vY81-=V0^2X768WIkzQAWL=ftQ^fN?slYnli4selhpXh-E!lf?G<*JBN1VS;g zWDMQO;_m_sM~Gff{t80kN`BY#58w6tlzz|iKlS|5#eeGgw1$7_`AQ4~V5)mqo}qPt z{r`=gAM#tzZxFNyH0rvq@~Y3+Ur6^Ni0RtU`2uC5b%~FzdG4~)2a5mFb{QmpE!5n{ z?KcVM?GD;yJir~-50~rK-&MCi3ulw=gkOpyZGjfN!$XtkYy|rfn}Pupl6iE8@I9KN zUDvuimbxK!4G)hPn}0z58D7bS!5&qW-wCmgbEwCNb$@?qV3MfX+hG_%TLWQkR52WkoF{uezT#4>WF6gD(Z-$ZsY+^lNX7L?eA(_2Hd>e=x&*YdfW86M=i zpC_AX;!DJm($`#q2dd!t;H5^;?DK(#@mRPU=%@6mbb?c7r6BjGS_8l?CuF(*hi0xI`C~>0YWoGx9p%#`S$@{dS?HTfo+Ox<03&%gVx~o-d^Tzfz zULV@d3Qurw_LTssrvGpZ5v>h3VN62z2$TwEk>)QZUJr=t-}-{p$7`Al;Jf>M>AX+| zf9k$Z2XfQI8xW_)_F43f7&L_C0kz5AttBlle7Ez9@Bgcv4<7p5zjgibQwankDQv7h z9HuYxi!~7RmgRM&|HE*(2bLdbx1At2sg8D z0Rj;7RhAtdKMoho_aDTudvl>D!DjH5Xu*(v1lw)KM37Oy<5<6XY%>^b;UH5$*vHR3 zFhFH^7Eof}y&3gjcD&krJcEyL%;UP0FM9Dm<@O2SC+3A-7e@aIifc; z=CdQ5CM_zGTQA}r3@OA#frlTnSEj<4S5wyt_M%vu*!O~x;08298dcIjq8~@%G2=JR zmMYC!Zx({B;BKYGe|UPEA|#u?c!Q#qA7=k{^Rwkc+DG~so{bmkmxN(A%)XsycIW6S z0vY6#7#mSq92g6vwk37Nr~CGX)yytZizuJJl=gL>Yf(K6fEKd?iSydfcPW#0Z$1zl zESrM~98%5EB%@GMJviRHS|4{eWgaY4A};`GAG5+wi0q(tC98GUtlJ5EfG>}|ClmmM zD&iJ64IbWnS(4hKSKWLjloT$ge8e_A4WM*tMg*AotbIE$KFG4jj9t=DM^=@8r1jlG zQ^70~vAtX+U~T6>$0~V4;bw7&;CeKJa`>4n1ZZ%1>)pVXALjxzaM12~{{s2BC%m#2 zfjY*aFDy>6$7~u1Y#LQE$UFj_t^(;dru(i1J?9^^>2nRi-bR4*56o^bFR$v6*u-YL zTH$|?dI8~Yse8ZCoWYQ}d%TnUa{$S|eJA-`D;&Q`{_by*k5>x`Ao+D;$eIj1?2Wzp zUDwQmYHP`$oz-g;$t5{+@ z3@^W|$nGh^vg&$p&neUjNbC|vaSI->&ml=-_^n0`Pbd>lBaHV8?|e}&Z%z3T=#>kP zjm*C%7zrZpqoWwuvg#?~g7n4R`PghbX4af}C!@Y-tJCHU+oMLVF&Zuv7e`4eG~ekO zS>V%`pRQ~$AmGun?CX8bVxF-kPN2nruhRAg!Z;&`*L@DL5BR?0y5g&TczrWxl?3Vo z_q<%db>Xh&fT>UrN1ZH--kNj?je1iXHlKO)i^7SE`{zo>=vOG~c8yOm0bV8ux}ya7 zabKFn^zAtDthhj}s@CrkY7WYXJ68`KBSRWvmHpOSB>l2xRqTg24m<2dGUECts-c0U zV<`a36wY%i2$+>HbNpRZLfh-uVY$_}P$b#a z`UB!l%GibwMiU-MsXrg4vr8ZQhq-V{KtK-0#q)X=iLsEAxeiNumRTxD8Jheb_TC~Y zuLWzM#32L=?ry=|U4y&3yK8WFcXxM!YjAgWg1b8e=#RYjs{Zc3YIVMw7d#fwp~%_D;>DfJbWhOz~_tOVoO&gn1uXFq)C_vi5yib5ls=+i%lC^RXAfM zo!l+E#G@D56_2GE!%4ZeITp-$+y_=+Hk8bUpRqFH9+d-LP2z$gaMbw7)$1sktY~j< zYBC|;AbgtfT#p*6F&0uPI~xAhbQ=NGJ=|4n=>?GU2k-WPx$tZ++0rzPcN^uel)Oq- z>RYShtOyPDnG?So7#%^;}7Lj&aeV2iLuqy@D5A_kJogjOym2}zxzN}5QZaPxlY()J++Jx7Mo zq@eMRJ-x!Qls9~thw`m0CI%{t4T6DL$9Z^E46jZ$kDBf#P)&zm!@-pj(eDT)rM^HW zvvg@gBdXkN3+=q~$pnndfkt*S!Lco|LY};OpI4NM$?USl`ouFSQJgk#(d4#6pO)6( zPi`j{wQ#$mOzqvSbyyZ6~!HU)qrPx+9m58p=%X(u7~ucGu>6*P+nf6 zXTI({_Ld-esKa&nq>RBjGg>Y?d$n*_8^F!r?KeBeE+rN(a7V#_wQW^;cKe-|v!H^G zkg?)q{EB^lRm)sEVn=QbkdzKS@z&lGa2dXNapT@qHC@$V2B)(R}ng4$`181-#a>QthaQ zE6XCbn6j0V^DZzFpyxAE_XG6&(r@W1s@7F%Hv%}jN^QsHBLfUpvB~|i3h3^$DECx_ z2$~iv@S*;WE7UKHU~J+_zUyao0ZO;uRx-%s(Pjpg38SFNc;?u3h}N;gSh=@&I~URQ71?C$?;`5S?C0WyCsV zE4+=`jZGWFa3e6AnKluAp;JnXwI_tbKjotCx2lDaX@HCO7rxGyb796v6LrEtEx%D4 zt)<7&m92FF9ok8FfnWXt+|%8}tDPvuGTX0J^!aqbbz3X4i&2mm;ODzebh87eMD5^X znmG6)akA9D;!N!UKt5|t9mo`TBggsZXoY$Hg9@;Ty<{V*I4rq8faC}595(qZJnjor z?bZq=CUlPP39%7&Ndx?RBcJ9!etzIze*X6-9{|aRYbjLZWI24ueemBTB4on)AAY_Z zmU3}TkuUSt5)W9{pEr=ti$d81KQH3EHc32Xw>MqH{(63WZ;@yv1E~q>n$}6jyi2zJ z{>r)3prO@f8-KDc0vl#+_ltS*W*zRd<5goH%_GI^_tSq~hK}m#Z@v02em*<>KT}lx zNUfJk-zz*cdk-xKx2689T{I{$AJ)nP8YJhpQ_knRCTL=($)hYgndsj8-swKRSfx89 zW#fh9Pp=Q&30bQnk!*G#?=6v@{HxTxiy-S)l?V6EL_G9o%5fB(Rn5LOTuqcjX74*E z@2`6o!jqCas3~V;9fWgPtIlab++bo%tCtD8;RmL6F<{2e!k@W_>7+y%V+cc>z(ncm ztpn|HFvLKTjw!vWh|jPxl)Yf2q7y+RgM74v>JkA*`p{rbi}}9=2&XjhJ(Br!!P%Ws zBVWzRB7-!zfzG`mBTNBM{u6tF3yY{H+$ZmFA#b=)*YG|MxFadH?>3-ZP_TH8Y5b>O zzq&?H_bF^kpz;9!k`=?5x67;tNg;O%mcxF({uJ3&0qG}t$Q#K=q@9CBle;PBci@cr z(y{uxc+jK7tvc1ajoTRgd@u=ov^GSp$ofxmzgCOU6Tvjq{iVeO@vu#d-eu2a;?e*l)&2T$&OpL5cR>7AZ1$g3+IVVi!3h{B_7 zUkeFd=yJ3tn_--CM<0(kn-k~_!e=G|o-~{j!l9S1KKWyag2x5u`8$9isvRBm1t0QF zE>-2v5G9lQ%cYIbw(4Vu;sW^?qKc89e9GHZSfDF)IHBaR4YvRXt}IOR(ZoL*XGp3| zpm)zPWIv0>R+I(060#Ps)VvTV%RV!K4CaFqwkx>zc#TD{1GFW#3n)^_q zdXV-f{J5jc$wg<7;cQT2Dmy;?Y^==sI%1JtzlwdzE%Y|wd^$8JiAFM(fHr_>%2@4) zM5bWe!>X70*Jd(_*L^w~Pf*`YrSPat0jtm)+J~6o_@&utb8%RLy|tFQWi-MHT1muw zWy*gKQNSzItWz{W+LLyP6hkwyo2;5m=L(vv-m@JjIC;g=?S)oV#8O8{IoB-f@^6(6vs9st6-SL`u4`eu2){3=;ah&yp|d zZr+x<0F>_ult5yeR5*?2dw%=}<*V1&o2bR2(6uLI z-H9`RXGxwL0qzOfX1*N%dcD&B+1f{00<3$ZjQUQf!g3213D!*WDIH>|8#7~CS^b*- zlRp|wdO$;LniS6f6H;7j;jK91{VyD<=im?}0L#aRh)EvS%P5HZ;!3^bYCVWgXAYj= zkybGNN6;U?u1QQX|I`8mXwqKMxQBtg*n9~3im<;#hhklOLwp$URWObJ67&hD7=Sy( z^VqwRHBZT{83n9d{}S}O40QtKeI4WZ^gQEirg#J2=>$5Uy4QXTJ|qW<=4C;^pn?dn zZexQPmfzXTZI|Yz;+g8Ty5Y6YH{e!Ep@4V-vS`^S?*XV$*#-25)qqdI-C_b($%9?* zKRgjZvr6Y4CsWB^#S!}61xx{R)(;C;^pg|Tb_Ivo$XGrJ@H=FDrIaq8y*$ZKeyzi( z-$jStE+QW{WbxwW&LExS1DFmWvB?`Gi;H^D)>Z|_w}x27w(lI`bJHjalmUJ|0l?3% z`XMCyvn0&f7ZnNz_LTI3gifVE_kr1_Q)Q$}==UTd_)qVmUwfc29zZ{&wl#gbZ6gGx zH;*maP=I*n450=BegXXav)6r=OgqLYD{B%-Y270xI2w@??5?3|-Hs#n9F_pwA$Nov zaF!CzuG5CN?!A`G9;N!O2mUu7@lA$L^(*C-T=z;RZ>{zvP96=pV8oO$*q9|hz3N8O z#UFkY7ng|rGA_MpEAI2*%fi2T-~)dOgqv-ng6+YTa{MVv9D@>-wZfhDGy@LrtmS-9 zxBVI7rAh|h6W!<{6#r|Oe%tz{16hkF-|@T@8dUSMf(#6{CIzEy7ROB#T%&5 z8(9340#Yh>4auRKeS3c-+a(tDOS6;HLI^nSJ_vjj7Wrm=o#vg& zN60M5+KyxFw$!Hh*tJ95`p9?eW_$BZ-Tr6Yp&I4bv{!rKA&E)LoSk3Qv=?2%<7iQa zq>Q|nH8Ce|yo08|V)-joGa=K?$Fzhdmt>5JVl-+hUfB!?nGF%`^%(-DB_J%c-@1xp zdsl|&aO-qMOQEIklYdW3)tMjDQWR5iYF%ue47nQmD9LCbC^7n+kAn*mWUXhHmYl7o zO!^L`XHwRSAv?lyO}14T(PVs?VCkr}Jh(xR{)0q4Na6mic`QUT%--<0ej)ZQsktb1H)X+4JZxsV&W9cPqA{MCfnxfst0u9T_Fmzhm;k7}&pQBS1n zvj=PJ8mBO&=3RF7boFKdBAKr~*XX)$z<$UK4-0CVXln3ZU^pz=118c0o_x{Uj%6o` z-&T_HoIeQ7YM^;ezgk=9B0bT?F#gp*Q%FU#{0R=$uPW#MtX$DqN?HAg zLK<#w*HqN{XUsR&ERl-i44OT!bD=>@gu&F)pb^HYu=(719TA`4$nu)%m@V! zZ+J|tq%lBK9#AryLH$!Q%X{bMT=eN$$_L~}vq)?;b#S|GfH`G)ubjecC{eWb2E$Iv zUMQAH^+}a_7&cR<^Dqssd2q~&hv9mI%!$uwnRS`En+izKJR>$%!tm?9MD8w(b=BgW zA$;)$bl{$PV(6^Cpx3$~EC?-1tLm(!kAMM6W@QW&#?RBt*^53uex)Z$(VJV}5czTM z3kAo}#48$p&pPbO?`-Fwjj|A{=CZR{)_Awo%pT#vlt;>nTbPKgB&{Rfmisbp!8g5b zK-h#}oIEcNU3ffZI*~h+H!Y4PQ@89sT55`-t1lNXtxM76&k|HXd3#|^zhNZcPfp)nJ9P3!BJ8M;%={qf&Rh_v9 zjaQN>Sx?LMT`9SDR85=4c-VuVGEqMkd6;fS3?ohWRMN2+xW0$6q5C=WPO`(1nY~U? zjH&|Xi{^8>nD;i$&@uu&j67N>TskBe%vUfyh>Rhb7X6mJW}?O5p3bR00y&6ZL(sBJ z2TAybpQqxK6P0Vx5~mo)SGSlMKhNha$@`ORCLf9)AwP;um}DIaog684P5jbiAtS-g z3b!1w5t*6zdC0b*hFupEQXdsY2NUMv5&5giB$&7-RQFQDD^&Co&Ua3cwYqRm@QmRo zLJ`$!hc+=_u5``{2M*WcE4pElpvtMEB~@huBUk45yz=}`NSHfv@n6pBMwdZE;RvjTcdp)FoZKxums!v<ev00 zkW`{yA83CVz(R3uzPUPu)}_*%F=!b!4fwh+!;E)@N(1#?X879^+TslIGfnJ6m^d2} zzCh-T^3#&p=oW*=gj+hTBrlo?FFd#av%7no8H$58gB^of?=+ul@L4#*6R6y)^7rpu zSg;#l^5v$l$};$P40RLVokj2MKI|YaCF%f_sV*OorkM0Dh)GXfi%0h=@Ux_&W}4qg zraktEsBKPINgqR!@K6r?aPHcaKusiriSn(O;w z|5XDg_W+-!#dC=Iw=STceC;02J~B4%Z#R(KV@z+)@Bh&jZ9kf^`fq&yFU<5GRA)}U zw8qQ-8`b#&FUk+n-JD9n9%Z2EZ`Iiv<;~;Oxef;Oq-KmxC9bLmsbQ=4`KI_q@Nd=G z|9`5^l^?2e<9QN5b#@+w5{CRgtIpl_(I2X_9YA${1o}sHHW&<{1*pzA>i7J^Pza}V zp)V!F{Uz+zWo|kD4^-#MKdQ6yAJrM_Z`C=|2V)!y#`yXl)mckY6+f3@o@?m+CANhU_P<;s%Q`(j6_nl5y0?5mL*PGKMwuMg(~ZZnMF8=&D=xT3yerG<u zJXAd?eJTDl*vAHlZsJa>!^B=5q(veEe_5mE8euk>h=fGVhKRWZau9&@qQV^bVT?ax z)O1keYc_9Nrf`M5z|MlJ3i^)f08x`VdL2$KwxhCZRolznXqDqm*daMr(Vy9u8hv}- zD)eZrn9GUT7S(tpzTLekL8CkW$ti31o`as2eL?msxEL$ve^i~R{#KnWnq|$<(~B^% z+I@91WKiXPxCYn+;|1Ep-sFcrL*{?gT={XJgf2V_I4JY90>?c~P1DSo{&#>M36lE= zR}c{3Up_*aBDi)?HUI(e{fTw}-(U9z`~ui+Dc%*8>fWn>ivMOSBa`h&vl#{O{l)(r z;737Js{5}m@1NRiE+EK;G|tgvEruC4S8*GC^Q-;dwtrnY#q zJA1iZDJuQ5VAlaa)MpQxpw?hAgeFLH2df>^Z~N27`3P9Kn{YXaQzclwa4~#Y zW_&FfqE`clQL_TqZ{kI<`+_s(m}Usl_UM4~5g?>Zf1Que6C2YgH33@ayHWxC+<_T2 z8_|2hn?8kgl@Senccv%kmN$|dt4qpTC}9#_S(@bd5cSW}i|Tas*FHpjV^OjS3#)PT z&G~)!u%tMYs%uOZNgq5VJ%_5cKbZ*z8-f?Wc1m)d=S5Ebf7(vTx9u}?`(N8B?5vm{ z+bLW?R9~^4YE3cz+D^&(dpo7y0kEB7`e!=@qsy3Pls2!gQm3|wBx<+M+4ns3ltFG0 z=bU)bqrl~3J4Gb1_3!Nz*UN{v&mY?<#aV8u*QY>N z@>An z))AGXD$m}F7sg?|;mHr7lgnxy`5)`+N77SAhR(Ho*g}NiyMwK&O8W0l7i$mZr6^?9 z=v)f`zTaUCE@Il+{Z`wlNe(~mMh&d4Yp#v18hzIze*FISd(!)NYJ(-h;;&;_C6|8zLcXGgHssW(%Eyp z(L}u#HCTb|`l-1xax=fpyaoG1(&sDvkn~Ibhoo-{kn{@xlKwG3(pURi(jQL5$O78z zeVcdgRIz)r5(4oKX8zLW+3&9E+Hw$ygy(iSJAfxY&bWto0mH)zbd3UJp?V>S${Mkc z0?L>r&DvwP`MtuLEl~*}>ZL$+JCpuW!Z-_HSaD?6SIwNq{xkhD8t>Fota0m9m%#&>TI&sTR!hgRu7#qW(_KTfiRqyab7)U$k zkNS00!Vh1ah{`8(NPeiqQrTWWq_HRqko1E9lD^p=Ngp!vFG*k3n}A|W7)Y+=1YTaF z#+1<{+6lY(lXSs~OPuBM$}*^_P!5|mA?2-@X6Js+B|dMZqW>2ym~nmJ+!J(63Bqxo z?JoXFVevo@t<^e4L@`ePnlua*-Qhh5p>0#3wkX|)vog_nxE?X=p!>S-vIc&T6>L*J zB!R#_wXMYB(olC=>1xGwSQ=9tQ$mFwbU$5A;xi0cghf%h4|qa@c4MErg{ut#PB+EE z9noZ3fY@@myo9+EwaW#c(lpf|1K33DU79t!wQkQEFp6yT_guUBG5g43lr4-~km2ig zd&!%2I;`H~<=MPAAIa}~C)NV7#?_!nM@cO0aqPr$bFDW@qoZ2Tw?cne`sD9U7pD|< zP&a>B`Wf_%XMG^qW?8wm*yi`_R|}Q0+PYO6zQYQ{lMb6;T8R=lko>drvj4L5kxTw% z=>wgam#K_|c_6Rkc^u2wo7AF4{yGquXB0F*T$J@NPD5aw@;D3|GP|RzCXi-SQ96?ZLXi1dA8|pDSr_6j(3g9^`TB{lNRMPu)!byswVa|LIUQS4S{% z&<%z=f0s`p_*2QB_{rl}->GjnxXu8QwN+xB7b)-TpJ6Y|W+P*U)cch0BwqL5W!y#(8s_ys z7^Ux_5ju4InxI>(GNa+Jazm8aw0Z8Sz*Tm5jgG2~J!^r-V6F)=Ce%TDO^ct)R^Zk! zuPSplzjnp<{J7^ECWQi5onEm{wav1v&SdyY)AwROQ9n)m8}BFeSAdKPX)#89TNz@` zVKSrS|BBJot6^N+L?NPh@jG$n@&V0f)0HkUi0(tv$NZz|cX%vV5GZo+xdl29!gkq+ zzPnUoMwEwY-;Kz@0yRO{xz?KpBlNF&iai;IV z_ff;7_Z(mRW-%$$GOBd_*3L)y{X^520D06>;D5ar7@?GCy8cmkBzBnTdly{YPbbQq z^Lr)l5o!$zKSCW_*jpdt+o&cI8@1mq53}6j*YFoqeosQ#hif2*`otz&@*pD&Oq;jZ z*5SLfDkT=~W*I~t{GV>*>}E<6cS6FONK=}C62aR5kp3aHo96ZPLI^Gh!t-Ko`Y!ww z(c0%*?{W8{fF?4oHSs6ZvTdCSKOM3z=1ypPtTzxsPd=1c!Mzk}a>O578xzxaJqDi3 z(uQ&w(A(OFpDq{E#dqJfCu+G*BUTALXb?Ojqvg3%z5{ZS$8O8kj10lPpto-xEL!$I zD8fd5dW{D1y8hNRbhcU7`LU+B*~qQgjP^ zC#^emGU9hhN#=AGcV=-h0Vk3;AD3QZ1s3DiU)-sOCV6Y41LodSk*(Uub-%k<+JXtQ zUurpm;1J_S zp+7YJ+CQ4Ur#PALQt|z7w=lGt96as&v91J`4PDo7kxuc&;$2Vn9xI03fw4QDQ{b<{ zJkmwZ?o%4JKWG7(ev-+*HT{tfO<#381fc03fmE~z9^>BshN2Yj@&ai3TOXP}!wGBd zvk}aw;#NZ~7-qT)JqSiQukZjS;d9WjyPJwsF#jec@ZI^Nt74*p^B2W~wV2s6Lt`5b z^`y4oz*V+inM}u|*9&(_R*^QJXQIRsvqH=fP9$*Buj_-CQ}SE;%#`h#k7I|?YewHT zEKfDR+pP8$IVo}(RTWcm!5lTxuqR7PuX>mm9}~|i#aB997gY4RUS0N`oS&yu51yN8 zfW+-CX!T)!Un?`|A?i{rvX#t!R7|oGb(Lm%;24M6M}`v~1C~IJ)%-P*kiONeKc_7R z$+Bx@@o!E43Tw7V#B@9;C5s-3Q7QA(Cbf=pIup(r44~qa%MGk{p?p{DV7CJl?Xvr=70?ph$dY2<$>7AImPk-r|vTGZbJ4}LS4Hlnqlz+!@;!mZXq>$v)6cDXfsFgAAh@rVz0{9Kd&u|1Vt8M#wa2*8 z8|v0IjcNxNGSLG`VG{+b)2~GFPFNUNq_B2`t6W2Qp%JYU~qdMo&rAPGY&#ixT^NtCEmkhRM-34yah zjHXesOQe5|gVa?Kq%|#?UG-;r^NSdt)eGb&9k`uWfec}B_uR|3JwzG0QG;4wL0hS- z6BDhnsEw6v0k^Pk7#x@JWOx~cq{GN<bHJFHm6zR2HU5>I|C05v~X8>Lns1Vl2> z*crB_rdlx^4^Kj%!?-Og*xJ%cQ7TWp$uj>Kd7i0+G%&F`@Z80V_I-YIGDZi0@z3LU z$gir~3jTV2^FEI|4+W|sxV)~GYB-i){rQG-xiV-IlB&b-0}9o z^Ox}7e&hYe&sAfHkT;kAjpsA|Jv2G&wAOmb%)i1@6jIP~;974NApyR`h@E|IQ1=qE z14au?Z&vvE22w!m9>t9mO_sR3WorJd2H3;Yk+su$#`|6L$h{J~FBA(R+G_jrhPCfU z-K++0bv5$3t3gAo47_MR5ZKjH1^?efUwj8O1BbYSkO6m9I!%NdMgj)%5%8_iC6Y~2 zfbvy8fCp7Q$pWYX$^ePT4y0N`4jU665Zw2q9%?A?3}hVn2<|I)0fPJCAHn?`k8XS~ z%zy#c2=~uIULa8Cf2~Es_UnEFtVOTO0P|OF-~&?oZYB<62On$Erw1`5P2biIVm1Qe z-&wkPp}=Zpp$&8-whSx*b5r(@Ltqe5^<%)?RD{ykmx>j!4^b>*3TCqY#be~R85rt~ zAd>5!xoK4m`?l%^@BAkAxWoAE&N&;nJ(~J+@(#Uh5g=~1KY#}S`dZMDW03sn8nEHM zkZ0%+p*tcj&X>I55S*D<-`*Cn8BhFOh| z{m@_22g!aJJ<<;H(Khpf4s2gW5p?*|Hp4xH`tmzN{uZa|T4$O3hxZvi%r;%P_D60X zt3y`b_fKvgw`4Jx>xtQDAqtiMBey>U*YhX0&xK2kzE!ybdI${)zJ5$fZoz)-^x01G zg_5d-ko@GHka|Ic4jm(`Urc#-wE=lQ4_R#a1YX=7Fg2+}TVY=yR(u z&;&bW4H%k0jJXGA%jhIT`SDz}*NeYvt5WISotnu}^HsGUJGta8?N#A)Ia=Up_j9et z&9$BUf%%TYB2jLDv>Ew3?8Wh4L(_6jDvT%<6(#VIO3<#E-?6}KXVL~PR*DUu3m(wk z*SG_<-=aBfZqP6Uhi#~3Yu~es*_z=&tpjvbv5TwQfRn%@6s<+v?zH711a#(9UX3<| zD})^$Tc^2Fb890sLbA=^AUT(og_{YmH&$Ee<{zUd*p`!#P;*q#2^7j152)!qV#mPTQ|jawC)wjuQtcBXkki04*{`#!`?r!eGtly*saV5eQ@*CE^WZjbSUvLG-2ej zw!bJaJ)5za{;0MuC1@3kso@z`In3_)iIuAzuwAvh^D>%8Bq!q!5sshh&lU{4Z2pSX z;A(2R52>!2wH$2YR0&w37M8`sS!!~4&7SIkjbjoyy~9bT3iQ=n-Q&6ZX_*a{!E&j+Kl^8G>MG&K7zgKoPY7pECN(I?U zf^Bx-t-jf4&tkBGcI+$X?Sdss?_7eZ4I;lF+Gj`?dK#pRl&ImpM|pyQO6XXeaq? zdQu00UHhc`T--aNwM^JBG(*2rEqe*f&8@H2sEJs zGRzn~jqGaEfwjf!1LechBm}^d*Wmt*@&T#+S8zIYi^#&JKeqR_XX=ilt~!}2TVZ1OuKrH znsQu7?r9b9*WCq|7c-D~CAtZw9J+B3n-sA49Ng>cx{?robdyuS3QER1^V!~~TIJ=t zYqu)R&?CUgAF-rsN_8m8DjpLr0lo_0p|h4e_tQ0#)1h)SCnO4Qf%&2m?8iSeWUA~NIm;dII9mf8c?G6+o@w1Z;8<|%ng z$X>_xuV|s>!|~HWi5_MhXBI}?RTIF2_JBlUwJ{gI%Nt_IjkPn+Zo1CAW|-Luv*n>=t3WGIL9_!F3*(5gnMacr?<* zsrEE9J!8Wh@?NS{6~(^F3Fme@&QXu}(Lte(wy&v;gYYP3{ks)y$R_+1Hh_d#8?Le5 z#2Cp$xk&GNh$QOQI-FJGgXKia(KP#C1+F9NlP<34&PE*})30 zIxwcRSy|uLJ$Vve0^ND$e2Bl>vet@Z!PP}vhA1YIW6vh@C?N;4Ya?bZu6f z)e3zXhOH_&g@$Kw_%4c*8q?(SF&kO6x1)trZM!H+6ERg0?PD10?@N*mLUK4Hw=#A~ zn@urK_)|mZQ!rfr1@noNW@rp?}oqpmdf)z1(h$xAs1!VPxP-~b~ zl|=fp9Y@AsyhRtrs8mMvN57RV;ngHAd>uMa<9R@NXwQ;1+J>4ma*)s4svRoYHfCA^ zCyOWM92G>BGs(|4zz&Yj?8*rkoh~djB?PsjEZb$*n|zB>xc_ah^XYRWUMBnZj)_cC zz?gA znr&O;{unzQ=|~Z~8x^cY>1XDueYj|atRTJQGX)d)@hq8)EofO2w(N-#A{x77BF?X6 zrF(b5`8#%l*(~ZmaBlZ<+XsZV=CC^eA852{CEMd2i+n%r)|F_2!1Uh9Q)#pF;S~1# z9ExJbKlXS*a!TA~bf_7X4BYf1n`VUK0tF@Xg&~5bp&_4g^7EMj6OD=bJ=AmW!Y9M0 zExpkt{h3_l@%X!rb`gr!<|cTCi7wfB1B7hgv7j|l008H^JANjx*}wTAJ<(acmtg_4 zXMK(z8t^E~Cw9DwM?1C=En%u6$316|18k(nZUKVD^N?FPeNl^AuaR`}{ZJz>a70Y; zbiqn7D=!TKrLg7}{BX9{=I*ESE6eTQ!TqPyoyke;_xVX|moPszFm3N#8|Dk$y*nAm z#lhp}5TNSnby(9^UtmvP*QZmTtc|zV19&%8v)^~`|54Z9jn!oOZ{2pxpsPC z#DC@af2RBY#q*`)%fCRc3d~7LkN$4`cwJp_le$XQ|de2u;xX3P<~%|LS8KCF;542(XQE z57Fl6~-e);~NygB88! z=HUx~=aUSXxzX$S7K*2)6u}Bt%IaMgG-lV|YrDxWFG^W-_thBbwQ!C_Nvkd{r4e+N zkKv(E6OU>gF`L^;6$Q0(&^b3UnQ5*(lFiV@)jU>Dxus2hT@o z&A&P^mC+L8dUPKKui(g?h+oqt+b1Eyq$n&Ho~2OZrjUwiNaVTjJ7eC!ZaX6i}B})nRzqV06X|Bv1pg{Mk)h|i@Y!r;Plz`rv z_$Rzi%qR1MOm>=;g1Z9*Q;*k#IkyHU1$m7V#c}@ipvNW@Sz5^^4cge7IcF()#|>n$ z{Hf8SN6GH>Kc0g05@D%E|8G2>=^vh-4mbq~=N*2d+=ErW6%Q}@Em)Fg+2Ok5n`>xhRjQLBSeh-q~f3jkc)PaW? zl+&8FW+S&g*yN^Q|imBUx=W;FUZMhB?Mo@UDh#lgP}4j) zeK;A+X&XOzfbdGS?eGMUbryxV{=^7n+(Yp*A_VTVHX&(3p7$p_C>zcbZ7DnwRkYm5Ac!z%3! z*xNbA*Mb>L#8jFogI|MqK2?ZTN@iXK6S9 zh(3&GFf+lwi9WpRKSW>u57GaP0#up)hv?s&L+qwH0$H!op&gAV}U2#c^H_{pzJQWU*+a$!otCg)?MhczhMBb z$<&Z^iO4Ym8<7+p`NX9_U7nw20w0CLE3i2vvem$LZD=0xz@^ZI^l@5JTI(n5EvO)r zOH5B(rD`MjR-bI?BEOIcNRbwhDJih1{@gN9yRMuQzCw`Bsxx6|Vfk6&5)%<-RgV_n zEplwWDxx9Jwr9DfS6y6i-#bg(Df9zUMT|$X} z`TC-FPMjf_K}ckj_!f2MR}Txj8-5%hN)mVcfYK1NBr2GH!Q@O>rpC!yif6`ynkKK5wTrh1ECGdf}8&3G9nC=IlWJe`;KLAM6!d|k|a>MOBZPK zq2$W=5xKnNk+JtcA!JTc_ZvF#6$i0j3b22nnQx-w*>F=ATBy$`dPG_6Igo*UY<}w< zOeI|VCW*YKPcQ6eTNE9FX2e5OQQ3@eyU& z*ZjHY^RM(iOKv{#J|Mk+or=Fw^R9z5a2pvtYUgrjF6vhb`IBHn#Zqng>L5JBBMTn2 zBa7-c!fy!zyrF35CzavmQk!31MG<}PLIboZT~)r9>BW2fL3F!HlW5Z&BS4GI@amZ4 z8vN&eP9SU}2a1t=PiJtit&I}ak%tRY=Lvl%er5MQ!vpYaveW9)iGQFzg%aUMd*6#0 z0QHqVp#H9Qw{m|4)QFJOyo~J1)U+>?8d=a+cHrQq5osHxh?NW{X!d5T7;0pwcpR)zjpdtxTJZKE!G7Y*3sfNh_p!%|ZQT;0b)i3{u??+5qnHEDI zH=)UEtF!b(5a0|y(YHw%G0~bSd{X_M;h%!E3de3|QL-pY*08}4Dhb%PT8)cW}H@MI}5M@#D z3Oy$uv1zZrQrAh~;C?Hb%XjVlM^M(?E*tXCk6YVRv7m=zZd|Ta_@3d?jN^bKS3est znxDK_nMpe{P4o8zv>CNR5Bj}-E8BY49Lh~rZaLR~9EohMXAns)L4bMwZKf1K_Tt4~ z`RwdmVC;&gMbkL@%a6{A*T|uREmYpyEoZXSBWvn&6^M|5cy4CM2;#z-etyOU+)XMI zCVY=CmIxDPV?=i?Rg(5D74_bXI_>M3re5=08k~}Wq(n!oVvXjKu%9(Jn}doR!ZPO? zihI<_5u=BmWPCm!idHOapraB6my8))<*=b91krYvwNX77`0K8H&OlI&!(hBYkkLr-9RtO>|N_4M8nw=hZ$bFUf3O zTxA@!!&t_SZziD;I9r%Y5f6JlpeHHeZk6*!2vTT2?#NhDIm z67wUJ*PfEkijFgr_$ot(ZCF}kT{4xnLQ7}-^Fgz{x@diNpnr2YTULR!Twz}&RPqoz z?Ne;y0zxW@R-b_7aQ8%bTJJbQw8^IqT%3r7jU!wtiy0P~JW84dOMeL9>eJgwfTqa>l47Khy46`eNZ!M-yn}eApWjo3KT~v?Z*|Q&z06)WXn1 z2+SV8<;t5>Eqm@JJQjGJSASt76yP2WtUhW1!5&$+?SG-ZnA&0EKkosw_aFSHjr^)5 zV6_az#bQ?)BNl5@?nkpStSYYBPm5-)7^Wg`AbOuy)YcY6*rTtQ`^8#(=q)tP#7W$%v2~uM$)0gy@~I%qoQ8!9Ll;1^MMj^`HCFY9ch;yvpaP-L&6KzI>&HPFN&q zdV*&E0o_J~V8?g2u9_|}OK`9YdGzh3a)rEYb{eh~oh5Eb-ww{?yJdy*XLDlr8DeZC z7RI_U1%k7NM2Y7w^U4XM0;_Uo-?%NN`$%62>JCvB9QQ0K0pHB5DX+W62t8txA`EjI2N3A&@i1~*lF-b^d% zJuW?UXvoeY;Mbj1VrM()dY^;u1hjJ^n8Ut=Ez|QKBVmjlU~$uiY8Pvr|yiUGB#|9 zD0HniEI#7lT^7CJ%HK#P%CCuW?!`Ne)F<;A!*()@I9x$up#>$ZEo-Eqq5?U3e$$2G znAoUdWjBgQG0-p|5b|}#juDL%shJEUM_duLk>?v z!f<^Cvbw~>#M791a#G`3lbD~uNG>9kl9iRk(U)={oZNBgI;!F1Sp853@w;JEoVvXr zj_l-#1Z{#BdOf-!qXIufv| zfA0KW%D&wnWncSmWnX=LyUQZ0xD98?{k3U~_OT}J@a8`+^}ksW^Y8sP#LxWq92K7j zn4_{op5TL!=xI01oslmTWpc=AntxT%B2~me6N7*}pO7)il|L&xi8|f&jd5vmV#dX% z>SR&>#r$C6d6+i7OEN$NpVjuM zksoGd2?GJjexElql-V7G*dz7~=Rjz-p#CP|Ja2Gchp_pFvd;l-gM=+29m1i74k;3b zyTgrweszV-P4H{zo9`!&7;OYn>J2>@1YF+SFKKstP;4*7Uyc=ltOgHGIiWqOvUX~| zr@!B(L@U`O-Pkk@!VJDI{V-(@wGW$s%_0`3?jX zwI`e*NE<+{tL(%K8uB`APkqZ|fl=t27h1ZmUWa33HidRFEn0a7LWwF z69yaS=xbRSr+hL!gG+r%q}cC=f1UYNa!BEOy`l6ZuseK97}`l*7Zj{v?U5^f{q(Xg zwru6&6bA=O>JAnf;C7kb>Xqk=$s^AgS&7?yWC)Zkxs4mQz|!_=6WkyKaS&^*A9Yw7 zd0qvor_#+)}X`R;Sn7Q(jr8pRq1R;DzS-RK|8S)IuaMrBx9^O zJ_4HLo3-t<*0_{ zJ!(0lBTXZ;Sx3mQ)MuOhp43cpnqsG*WGS`_nDykk^XyZYClr|`L6uoW1Z~|g#$PEz zg9uaCMoVNedUj8VhF^C2y_`Z-WTEwMM%V#_pX%rn;Gen{Vj`?zH}=`IxO%;=Z#)`p zx=^23VQe)0UO+&7gz?q@aA&^odrU2av_IZ1&>aJNSiGW>u55SYfq4X?Ke?`TJ|>Tio4Ug1fs1cMTfc-EHFT?gS^ey95XUg1fuBI|SV`S!;E#?*3Qru5)T%>^kR; z3U|p@nf1=`jqy+nvhUWypthr%Q zS+20YlY{GE+6t6{%R-9+q9V+)`u0*^7Q~Zq0TfVptt1X~Z}qQ(fSxZGDXfnqZyF+n z8{buKuLGor3T7xlHFlX(Q7xaioT}7GBEd;T*(pC>tWV5sa(zFI9trUEq`TY-PE|1W zaG`|`XL}Dk83V~%Mv)}3Hu8sKorD@Z6O;Dvt}gb#gbyX<6{?+XNrLb?OQAvj7Jgns z2VJm37lbBZlgC;e{ItTQzOL4uCLrG{m*=ODy#Y=p0dXCi@qI|PCk>FiZb}oK=^Fd~ z0Zu9vobN94t{FrZqhza1%3Q*>k6g7o_B{oT{2WCVKp zA;98Gcx2&(2%y*87_gIzUz{7vbt=Vj#nE~p}xL-!!upFs@E;^ zQRAd*z@9ZAD`RU^@_p^o#Dx2ox~dR8E2MokA1w`uD)om8Kf2uwiYJ3TJ3j%DX+HNc zfx4}wR(QTMbZyp}o>q}bdE5XyEAaNFHmln2Drem4B(KOq_!IK8n z#Zs>0Z{+DQZUu@>O&_2TcYQ+&t`lB3 zHCYwMyfA`-I3^uy+37bNfMvlLRtADch{;p=*a78-Wc|Ga_iCCYH(qD1@&xS7T9792 zDl=s!0m>1>+5 zC%``>)Uu1i=n!%^sOD<5I=wcUZm{t}^>Fr)PL1Hruc^-&D+&3KzT|-hGA3v4Qa5gz zR}7(~E~;o&Er6a!4daWd6eY(o12emP?CH%7VRvy{+Z2jVi06}`!8F2%!5Ora^=U=# zgB#Zk8=OpPl%%ibK54iGc=P?qr4+I@qPnq_G-*JU_6@)CcvzKBE5F6@ux?J|41bP! zHSZ~a8b0i`dNwv{ykF1L#-$O{QW|7nRhySkUJD$&lnd)yAnwHIYgsB|j8ancFK+?= zpfSxAtrK|GX=dA%>vJ6_|7h+{ztu zR_=b~(3~34Rj*~#js!KU6FWirxw#LN+A3?uz`4sQ+w>;K}A0h`#bR57~y zIREg_zKte4_r;|zUj22<9lj|VX3-WnIQ{YL=7 zGtOVbUnv@x;8_s2y*Y8_c}J$hY~+ohyBcH#PG*^FvWls?@@{<&W34rQ?qKQY2wbGz zJMtJL{qW!n`MLeEDsH*VoThU%XDn{@$mGC*gBPWn{hPhedRE#ndVXwhiC>uBi@zZe!zSwIW)b;%}Fub2SGp! z)*&JrI=!pw+9-<%#uNWVBZscu@U^<#PTg57f5tQsh3$p^Sy6Ps>i9;tndV#O_SpKP zZueXkvFucx>%t`o8FPr{_1Hypm6xpXh4m1og9wO7RggG(Wz4mN>|P|c7ZX#0{ zSctrlm=}rK!!{iSUth{VtDlfvao;K0TeJFpGFt9jV=S<@Qi~VW1PKYeNW6U-TABQJ zM_)+D`9)F4nV%YNi<$k`M}3-&ACW7$NOo~)D`Zd|oo;D)yWrq&U{}{mphBIm&lAMA z4l|D@e|;47IOjk9ORoP1F8w9fH~DWe{QrN+{2yHZ|1%}?H@b4bmd>u|Mg1=kd#JSL z7t5G!j~x07b3>!G|C23q4^K_uf64X#ob>75zUEs-YnC$VAKV)yqxoN=F;`X7x* z#9`B6@F=P&1gqP`#E#~FTbanUyVpusfvHRxxeu*Y-s&7;c55_9Y?U112z5W z-zOYx!~-Mih-_r0+3^*C<D4f=A>2yJe1)V{AGuLy5d<|E>4uW3>C_Im z-&kKHSaJ?FmIco1HZya4t zA)K+z>C|`4-yQyu=cNU^!vI?;nwKFt@prq5{Uu_^!yz{a+NaL(IH0G`J<22c$J0mt z=_36lZ?EZzuY1%D1QNb^&uD({vwz zpLky_XGP=t9O(6B1%FkehDlqL=6QiAn&VdQR+h$or2jtMnw5VO42=t zPkwAHrH>l>hJ*Ho74ZuP?Fy^xndK|j`R;euOXhkoW{a@8nxZ^>Vif%-MXg&9e=-JF z*9GSpID>-Q->Uu$G&k69Rp0Q987$}#sOks*R`vfVCnv<`C!{BxX0Lay`i7ntD_AxI zAJj7d(f}R&?~?9g*S;1eU6@~+=HnNy{fT->99IvC2w&m~0z?j=68#iG+b-7jF;VZw z3-7BY=j}%?5gv)|YnpF5LvJp~j1KuKVM)*F)_Z$S1njdOyMuDM-r}wFsIk4wFWW#j z?LjPh0p|6shAuTY;aA@6q_NNA#;(1Vm0*sm=0A-tq673SZ54mF zBGZDf*nwz+HuxbY*g&Ebn?JX~q;tLssQ$t|YtRQvEj&)P9Vq&?ReuKzB$5Tx-7ei5 zi)E44@ZL#Z7G#U)8x=aF##yu;63DuCN;n0W+cjmpxoM;xXbJ>z56 z0yEdz|CYA`fW0I!Xvd;oWx=DeNVRH-hI7NgD5{>;Y_`Qc%F8&OtN%z0*<70Y)UXP) zPS`Hnrfx?kHTxKFa%r&aTfoMkt6{R$kw>t|IcB1@7z12mt;1Q;!PaC?2=$bTyAy}1 zqMwAZs-5-EIyN>=&09P`=b)!LQho~I(tWvvNP#f=t(}nkfcuk>BxTp>v_+efu?p^( zu*CXfow%L$axLD%$Iaytdr!c|AIvEO3zC>mz=EXBKsTEeQseJ}elXOv zNMMV<3X%#@``=sqSilzl)9)5Pr4$aE*E^eGW%o-ffqPiBJ9)a)r>wOmc{#WAY$8SQyaUGgYuLIu&Vy2s zhSlT08DxXRUh~WtDfxO8=9QgI>yUME-11S}1=m&!7}UdlL{e*P)}hKWU$rh#NExj7 z{8Fz!(T?TC(fhEB(WX)B%0d?i?8HQ)Cv!R>lE|;i8ptU8*s5yyM~z?X-)j62z#2bO zwK-0NvCCr|$wj5K&Z`vuy$@utI znm)2K#Eb_}mTN#?At0)7+8a0@R%gl{qg`ZB3mrLKl47H3LJbcVdQiS-KOJz zW0alsuNZrIQG>uPCngRw^E&Z!AIpL zENP7`9L4hNpI>#4$CpD9P${Oe2oxTSS1Ug2=Di92=}Q91er4!yvag<3R~-K)7A@dI zeK2EiI_Ll7;LAI--PY<*pXB<~)~>m%nE2aCIdh9GO_uEaTGQTDd8X9VbB2>P1jz(l z*ENM2LLty6L9q05d?d8@3`TLErW2QVbbS4c*v4zQNuhwM`qn!tl$2)@^58?t*D)Dc z)q%47tkUr%bhwD??W2sjwb!!Mu{Gdl!*=U&wK1YlnNz5zX8A2F#uT=oGR83iL*2Ou z70tL>w~`oPg4pgA2QBR=8sdDzk5ukyQfr-I3M7`6y6f0psi_NUUBsF8-+4)N7E?mv z3blPk7s-zbmcn@EmO+{dLt9%$wXIN4>wne(#lOq&+R6?!J|H z!c(;jXGFU6obXV~y@~Q2n`atQj8F5=+I(NEB2`3>oK5^=5^S)38v<{qQPbrll8!SC^I{+*P*=+_icE1yQle;N{QK13Jd!hVZYZ z!epKflwW7aF@a#8_ev^0Z6KsQada5l9oih7zpTQCCJ$9$%hGc1*o-5C!kh?mssjq6 zlaSIW>c?rL+E=M8WNDdE-B5ZT_b+_Denhf_(@HA#M{*HuU~0MNuG*GzCwM@<;PvZ&DX6e zUL%lNIjfMNgmsqVwMiXDGd*<-R7#_w90mJeUKF^4@^$4v%y$@bICMu%!QYn>0Z)kE zHYhp=nM8UYW3%1>l!}3_&`6Qj&@A-(&yzv^Qmomontd{)vHb~_BNYM%Yo;beY` zx1jPz~fs(byUqEs_S zK_WJK5G5e86JHp&Xw~nxl|tbCyyFUK&ZfF-Ry=4|Nwv<#%nnY)3yKy|cxsAs(Rp;)A^x7Lh?iGWw*Ei?U_-(X+)1PJ!Q?MS))0ruyE-A3F5 zkk=QN|A76qe+T>UK(Md;ZoTl|wfLb#Prh?DWiqW@Ke^Xhx3s%$Q7(Lofokmf8L+@V z;m%k4aBrWXe`#29b@10~d;@a1xo7_h>~sAC?63T@yKfA1_mdnWqe@ejAJQ;@1=+4Y z;{I3MTwJ~#N7|v@gc0&d5JC2KeB#XX@9%}TtLk=r5$KN-wx{sRcDP+whq3koEiL#* z5tc29YFDm55xsZXbaADhiS^$vnEaRkW_T^#7D7ju`S+{MGwi3NQUyz)CFJ`2l2JkA z%ri{do1_7jyqN(QB9&y^k@>DP(coiJXv`^jk8O#K_72*=Sl9*B;h1s2+)&5Vw`ZyK znQL>QNKvs2*TJ@OLBQz#oKcFR$}qFXh)NHt!on3?QoBG;UyI<5hx~;B?Ujdon*r^H z=PTFNZYSa;3A^{C1yo(h*E~F(@RGhXdT+4q{6yaJ9bQXFX60j~LhiRcbi4p%WQe#) zKfC~m4q>j(AHNquOq|i*d$n9C#$74h>9M`t1EQH%Ra9tG9_9+?3Kg>}`=&Yq`op8? zwqnM9ienve;shaxAGok(KQ!_`Qv7SbQ~Y-SZHmA0FH`(0FhRgQGi>&Qg-HpfWXSAheBvdLmo-Q;V=AkQH4Qneog=|o<`Kmv~0v}3j57h2_ zAb+tnk^B-emLp1f%@b&pqn%Y>S0diWKPmov1L*GcsuWaH1sjkH5bU|AR#YZd0TZ*3vr&_0lrWzl^IbPtKj3#^@9T4pU|8F>~`Z1Zk9LB{0rGarz1ZWxt zq{0d2C-my!kR$QGha$Tcaf2NEDe>dn{^t^Z4JY%4|G6N@Fz^NG>BBf-_d67nkKOJJ z>1_@4(kupqc$zR0Q`9o+>c;8C`9-hAB|0^jzf1hDYWlzo5U|9bi!U#a+$g>p_##)| z-QTqxpcE`p0c8pwnQ6C7Pwem5Tqw*2@0RHJYO zCj()#KD@2JI~35Vm zID{bLK9Flx?&u^J0|-5Mteh1Vm}qTKid;&|nY;D9Vp%o;`l2H3kBt5o(3Tw|IcTJ> zUzTn{NI!u;qB@bUGk?fK7)%MxSRcCl;Z+CGC?{NzXn}M|fz21Wa;t>D{z`-Q%1*$% zwBTDN+%BD0yFSDPwD>`De6NP3+Zn*Yv=l2nQ zKyezU9ys$|zX|oa%orE@Zu(3PwW?ZnmCL65ltQxj9x}=7{c1Yrz&1Z&?@_W}j87Jj z2zN~*Tz&}xo*KnU0p*#`cm3rnSts_kmxzy)iU!QFDC%?`u>;8*Yj!4_zJq;AW^aN$ zQpCdDey~-2y!MvlbTGe41@B0r@LK`xGNd+%3w!PF*|LTYkQFtaH=SxwL_mFC`4Xt_ z3kre^L2ounXVEd^#41xi>Ac#sfNh3lB8cRoczX%8bZ)E`v)J*rk5vSRp{Mi41Vv5p zLNi~}rP~9L1`+e2uZbWm0w9l(n7yh@96aqx9IzNJeH?s+i|na>r}&Hb=Yc7HUgzH_ z{yd069I(f-P@unG(NX52=mq%OZrOJ)83dSJSXRH9kwpDN=FX96lG7=%2Y7KXt*yhd zwZaT0U8TB{#)dFdeda|sAFzQi<@+3%!~&Sme!q$AUAKVQiYUf(YSj$cCl=aR*hLweGsLau7RWht7=8ks=9s7TqF9U6>A&GcWV_?1ay(0=BU= zw^{(KL6zi1r9sZQgahfh{8>}3vOpHYx@QXQ05xYo(_jQ6!RpX$mbF(Xg;n>R8xbMg zyG&%=9`ejpaTb+qgAlH*#T5F2jtC7r0P`2Z*knnc&QN8*MMubwiFPfQQLdvL!GrN7 zBXg-w;ITxn+#xXgRNW^;sGgR{8JaT%m)hRj-T9 zf~w#BZmMd3us}nt5taRKd-YoK#5I_K}5T z%>%El+_^pZxecArT9`nH_lxEaCP|*&&-A*H5Rs+uanzAJ2n;O!D&NRUm_$^iauUS0 zuMlY&jxdky&0Yx|i^1mEQx~|qv-(H8kWOUu%!jDcdt4s*MP0BR>_0}mnq!m&((O3h@`w8_T zbNc&yY}#r@l=znVe4qFb@XHe#zt8$lL2M+Zeuly6Y)a`Gm0(ZQVFMpMWCUpaKqM^;#7Zf8zTNbxT?C(rAK+A~A0|BQ4BY9Xad} zSI4jDvYkLuGaj`A$kWJaY&os+7*tQvLc1yr-sdnND4Mb;i=Hhs z9t*DHJFQnapIn=Ec56F}xbc`gvKpCPJAHVvbdz$sU9442%T$Z}pd-eLu@FjJxNU?# z>yPa%PZxz$(?(@Ub8VRJV5}u55jF-m`X#uZm}ilF>oS@E-WKIP7TdZ)+Sf=nRT3}( z6UZ+sVII3xt&ASF8_unL@90dSpi{1GdSw)0w*Z};<&?}!8FP{m%ih2Q8==TViV>G)9#+pC%B)WTIy2;l@+nz+7IdNCJgnI_a939*mDYp%h*{RevbS? zcS>#abmD5qB?&UIk93lSlmp|DDfhXv5vG~>&x zv+`iUCCfWdu&vtl;$r?<7F%Z5iK7%@bfxH@8#Pnz`Gm6DF5q&{DKJEJ?_i38ilb=O zhl`23c_pnZFRy_UJAOduwM0GSMsgeW$^k6#SGm_dmG!1Yc%hO_PsaH6$!ZXbC^hXy zX&`CFs+{X*0gogb;E^;(F>dx`kamRjjRUEp!q5WB%>@i6^nf5a$^Yc{k;F-rvy>2V zO6<=F-I>)9kc}nGST|>>uUCSp^?d`HKK#wIn%!SEPjHhn_M{84QQ`r`$u#b)qV>gx z!CVe}@nWAdIXoVj$3x2J*_h|oYb%7?UfMuAGP6Oh&Y-+OP&1Yz4HGMk?J$4Q#<99X2Db~;t^(uy0_#Ct(`V}XhGGaOFKi>^JQ{pNKd;t zEl5v8lfdZ62{Zql@0Tq{(?5SSnDl+2|3+tbey;+dV@9v>6HYvh6i!p*Q-9PL+$-SK zw+`s-|EFhZ2@JSmq7&SyGjTx!; z#Z_-S8lpt38L6T8#w-cE;3NX5*6B+Bp(fTu?ni4*O|%=mV|Wnj?MHm_R24$?2iIqjAn6&Zx=eAY2> z<)*J=S4^}hncZg@V>q4*G?GLBEc`N$7xXN8KQ}7@vS>M!0x=la=T4CV!O&aGt;0Cd zE&GJ@I8s#mgvB`0PDiTus-Un0On(u+Xded1wMYL)ZSUa%Xb=L+vWjmxU(`X+i|m;* z@v{WGQ8is9FJW)OP;vT@V{`! zr&pFA1=_7sA3l=ZRFPBxcc@aKZ~qh}9}YMDFc1-Vx#C~E;0ApzIBUXd-HDp)Lz?xB zL(RJ%YWKvx&UCNRXIQ3GGV60Jdp}pzUa>W^39( zahk8J3&eSDB2#9J#4FS?M$y8z7hiKstuxYkP;(5pQSB$O9bdJJQlKA?_VL0GKU%0; zgRDtxYNA;}p+F-57}aQ@xN25L5F)>tS}u-8V$NKDF5A*v__?Lt&wJEVHYCx`(TKCm!Nzh{67bSiL(ikB@m`asR(f>pW?fqj)nEmsh-`Q7(l+gsh0IkN zQs#m~$KL<`BU_gSN#rf6F=&n+ifz9+Tl2^~u@D9WGSf%8!xcYSBYnl)zzJg9anxO; z#O=-k6g55oS!?{)<>sA|C05b0(zp z+H`vn;qxUT=WCBK$078FGuW=DD+X1WO^7c%C(#PaWppMuLoT@`+aGPeLCB`4NU!H_ z+Wy=nO~U2r>+rwfed!L^i2sQ9(f$qZd;eFw|Kop(_n97a{u1vK+`pUmXa@XpBM-AWgI5>9T(GY8WcH^I zHkqJdt(PYV&ob>dWC-yfu#mj>(Y0NG{6f_iqD3lL;yitU*(?|Q13+=l1*`#Mg(1Z2 zFo?;a^=<3^o;4W&_`RziVY~Dj2!Br}$ooPEw#?&GaF`CwM#!g^6Rph?a@QF9z}3+2 z{)5B@KW`_w&9K8EY&~jaJvuKJ*Kd<@NT@p;HpBQI5iwDPKCfarfn0j6jbBO zuU};_jA~4R5J4`Dj0X`$4+Fg%GdErpF{LSx4gApby{ylD`U*V1@xE;OKjZze-*}$_ zi1&fw{&=!)Vtf2}XiRX*z+80z;{L*QvHa3QOnf=~+iBW_h)P(})l`&#T?h zqw_bl^Zj$JDp1GIt_yXcxwDpk_&&_P@qL#2yd(^JS_A5WSg8-Nk9a8B&g!W_iL?_sLP2-=!I`g zJ0o(d0c6p}MBgV5Je7}r{6pOT4}2e}X?7&mV422EJ6B!^oY8J&5lVd9(p;MNzcR^& ziRPnf9(W`9k|J0?ZYmJ78XKN8kZ)S|6lfS;zoUxjHzcaD*zk!eW!T3*YJi)Q4ngD^ z)K%-?2G3y``BWxBOW+|@6l&@QGzL-Orf}d6aLA7nIkV>|W5ri}U9|UOX;<-BhE|-t zU;vDv=JQ&mMAB}DnE7Eo)NKdhygT;mkY(9m0=v1A!tk2^AHc6=Pc(vLN?q3CLfQ8j z(cHJoyua77Ywa`OUOHJJxtWrOE=x6rIOnCuY(C40CrngXO|{G&MFv^y%;@{F0i}~K z+_;x&yx8zX!nZ9v9w%CJ)DZIc0ZcCZ$NCYbloWac{%MfopDL!1xzgUUh}d6**TyBU zG6V=y>-(U1hwQMU=Eif2rJ<c`94W+81*(3%T?XPj{(htY=m(s3amGv`|pZjnzrpI=4^Z^J!(vjsDPm zEs#HS->isG(gJ4#Hwv{_0Z8{34;|u<(OT9_VM{U&j-I&T)eCxff1J;@L=ECjc`4;C zADgJl%XAt)9vIo#)9UD-X(euESe1s-$!~B2-1@A9HB8#Ha!P*Es@qzMSb{F)qgOAh z9NY|NPg$D?QOcPe?}YZ~n6YpaKl>*Ux>j0)pM{r^obog5%GZU*#vq~J`NIc+ej~U$ z>+Fh*+&ePa9gIgnEnWNunrt}y9(Jk;-t(hHNJPVdk!{b`OlGwofW{9l$|l>7hGGb@ zF764N9(zEFcX8QC#?_dxMmV{XpOVB?n*=sVQN4UIJo2^R_(22IJZPtU#|kkIOabSj3|@~`?^?gVd3fs2=}G`0r#!`!2O-gzrlTxKXBj2m&KLoqNHM&wAvm-SH7Ee4@Z>JaaDG3@*+#Sif)fD(pVT2;nI7`8bv@DQA^+fu6%t zM`}N@{y-Y0{ObSq^d+P8)7spevaSG&GjV@x=x0S=ot&4!r`PYMII~WCV=vr*O4Zy! zz*y|);x*YrUDxyzaut999AI)JLa-Ef*N{E;{`_m>{i)M}kEH6ylJYzw+D+X#XnZ5= z2Q~q|*#^aY`(j5dzRe`uFtJnaE=zRrENuvR6>>%jOPggasI=ol^#dHZcu0_W=$jitS`t(d%m9C_31&d761U2!OFfu z#ucf$29qb|;5BOyyif~0i4Fw^*ecN7cH2F{+fIKnPgkO-jj^Qyl*bt`U&|$Z{X$qB ztFxsAp=5pY6jWuK-l!Edz$;y^rfLLuD6T#`ECIB^4J7%05Uu??mBp= zVw24Qqf4cvpL$5C2JHqV$V!`hqOF$|FY^T3H#gV_Hp0k7k|{>m*A&*uq#;o5gfTJ0 z?WPwUgoO@nP?CUjsz3lbIM-UY^K){&Da42WR~cd_xNdMtD;gO+rL6#KCwG;WFBE&J zHDTIUFG~OuDgF=odE}(-oB`bGPm;2B$hI4Id1abiL(T{jlXsbhUcM$j8o=@L^x%zd z40Jpc@^W|3al{GvU>tIZARJkOmYnmbT0z^cX&2T)(84Oid2L1p1UopLr3%0Lq*bVI ze;PlGh|X$E;=Y;s#nlnDqG;^#M$vAqk+c<_v17vdI64C+$wJS5HZrf%6!;6wp(KG^-09kUVpPd#OtO!|!k;bqHYGyc*JYoTh7s{Bg<-_=U@uA*N6*%uSkm|`JAWl7JNbA*v|G2c_V%KhI;uy?gRkn=%imp^T1=* z1cO~uaK?#mTF#~ZDJsskk9~3vl}m+fkz1rk%X`<@6Bn-in#w zUREIum4c)C2y6T#@Z?>vO+zcVymTP5L^t~_D!48v@5+gn577R^#PPev9?K?gz%qZa zN8$^n&`A@{6KE1CK~lH<#Q@;ZTFJF|t~(Eqa_A5!8^kWS*yI!a;XV3#Y%;9vcbQ)T zgrhWXPqe|9bf?#tFz?eScjV@;fZ(ni@<%!{;;RI3z9~-xi8_-?QSaArj6VG70P1BYB=vxRL zaZ`1VF>+l+L@zpgp7=E~kuFy35x^)as=87v|^-Boba>Y zk)4v$a`(u?YBW*&$WMs~Cb0(0?BE`HWFODG)|acVL?tgD`}|G%Z9RqdoJb&atv*Yw zDYGO2!9FWOVlp;mEXQi@h-vzhthtwEW$Kh!mu)1KB<|6CaGIBK8%Ez(**;waZumxa zg-$Bo!-p3VcJtdFmF}+Il(nvS7lma{I_a#fo6upi1CPS-E-B7QipauUWwKYx9h#m2lx&j@d2hR`UY1*s%vn=WICKwOZpLzvzWI z>!>WwIDWA&sAKY%6q#*!V0Igcfa5XtFX^Rw6zA4mHyw=RbqD1h>l*O>k3kVpKAep(cQDoStfR7YE78;v!evFBHHVw;f@_xLh~RC|+w|aq2|B zbt|b~5w$R~oQGGbe7~G~@ll{r>h>LLKb$5@k9Hh(n3^MSt59rK!*XGG6)Yxvv+&Cs zUvu!zn679LVZ1)eFpe4H(J{S^?g+O!pBS+-+8w69ErHUE-z!FW1?~3VCb{mrGqre} zg#WA*8Vm&mCG{dxj&aM>r_km=-eSmfb>@STgyT`-`y7 zDPCVA7d=+2$jVKA@m-)tPEJIY5xuji?yXsO4aApx+ii;rWZ!yQM5m>SL+c*I2Xqac zx)qBuJ}cQ+lh{d3TT2?3i@~BSL@<4P?$CAXo+O8z~Q;4^5giC4G1* z;6@Q|Y!g>h)8>Ubt!oR@ZfA@ZMNJ5DVJ73*K!oV`$6vozMo7Kxn#*nbS_&vpPdAq- zm1p9!_u_v%P+3BY>b-9@U@@>h#;$0dC(O4=nA&lTrX_toCRB0D=Y@hYxv_2C|Jd%QFyd_&IR5L1vK_FzO5?Lp=QfGgcP%d0MAhPPC8+p0V)TwcgOUIn&e7Aqk7Ad{e(lgJ5gP7!^xDTzLP-NDX21`VxWwvWxK1q zaR>UZ8P(fe`PGmi)L>?dvVC~yTVB;qpCh)_Pf3E@0UyFm@8cT=pK?kgjcQsG!H?gc z9`+NK(uxas!M5?`^gz4vZkT+tv24-^*gl)@x4HJ%AM5x}*n9&1qLK-8XEy$0RvCF^!5}o1^!w$*eun%M8bZ*AL;2a!9ubg_Qb+;8)Av3%kp1d)9$H%-US z6&-I&o7w{U6)=}iL%IRmBakl7m)?8+RyFVUHz@>2QbO;@e{~7LyF&H+OI805Px_iV zWVgbM5_$pogcNwrLa|gwNUGr9XPcmt@D;gRsZl%_Uusx3w@b82VGgSPG)O8bGfpUs zjck3L7y{XCRr|o(*h&rAFD!&i0W1i@#ndn za3n?$)`RMx$5Dpr9B(ICwi`$n4xt#H^GqOM+|v7eW^Zj~2|PauOxj?;sNG2|?EHbD z1T;rUSUXZPf|fk7v+z_?$PPti!9y{uV0@3(%~A$8dWUo%)~Ad3JEMdFxMTPTX4gK! zA8M^&jWV<4HA(VWhfB0Xl`CqQS*y-!w11D1pPm#q<#{ju9wje;9;mXm8AI9lv~MjA zCsIV$8H%vCDM?{F?xI83r->)Gk7)9c0qz#ab#dm(&ph|0u{=M=;?hleebRv5q4LJV z5(|}8EZK-9O78u+LHPqo;I|OTw*9`gtM2U?kVGN_g~RSR@m|e&1hMwhdjd}8Dm(>O z+MHhAfqro7%?%?35Kd<;Un~mCm>VH|~LEL>I-c2NCUdj*^bsWSyP#sJ=L#4rBWn z3k6&$94{^?%xjN>dF7qFGSbrstV@#vzbfjKA^7g(!Az6+!ypf%Un;_2Y$WRfs0UuP zpu75m|7?WU3*qjnMcVswd*$1xrgM;AL-j^t<*%JM7;tZsk*{K&A?Q+6z``s4Hh zD*4e7Sjhu$Y@{l-(yqV$<$y#%YyiQ(MEQU2`2U#T*Ri3BQLV5nYF?TBR(3|@Z-iDD zDB^!pSF-UV_o(Aj>^~*=SI>%InnyLOBQYZxMKNjv%cHTsU_RYFy&6S;ok%61=EF6A zgf^R6J6mAl`u6AP4Uu=xtX2X(y)4b_=820yS6^AZYK`I(TE$(aYN-3L2{%$1Wxs)lD46-Wp$oXtnaK0MT=J6B~}f+ z;CSpJU-nN6N)ml!B72dGkB~D5u%HPStr7tVe($ZXRU8gB%ykd-zHUHja;#T|GmJ^_ zpmV%{1b>WFd6Hr_Ai=*;J2U)|;3x5&&`Qb{4%7TA!5?-80!Z+i=T&j82@pJr+fGUb z5{f3a7XQBfWAz`ujX(pee)RXXEI@*v{3F4CG*=||uLS?kzY_dqbgQa=C-?zYpE+_u zQ5x=#)sLr_AwW@z>TMc+oGEzhF@s5NJarH1wId+A|6#j6O``c-p*cS_{B2HYB7zHQ z`nwIZ(#^L-d>!DZn(QBGa!UwOFz1;tt!ZzLM@_;K#m8*Y@ISgVHqzdzZ}2U^j+}klWiSsHOViu6*A4X62Px41xDXY7{79+7Q9{p z+arZ>lM-e{9pKr&{hsP|#7#vem)YcF4U={Iq5q(f!_|4av}P@axNbrM99~Urvxyrs zF)N<-{_?We^+IxyN@Uah(|dMI=&aTp6zPthX2z;dF&@z19}qxE+5C>-rlyw`ZKCIn zbb=Lz>h=?6ho31P%;u-+i`3UNRrX3igP(w!Ln{(!HN}LQfj-<6ZaYMP6Dz{`7f2i- zkUvU%zb3_TNUj;2{VhbvD>2dVPuzmZq1et(c&`kkR{&kYKzdB8aBnDXyEgLeWK+QG z!EPGPKo+uXE@25S!oS;-jXAecR&l`}K-B0|U{2M}1J^C-x@X52b ze;WL+8-E)71|6z@8vJm827m9F+Bk)8y6>MYzdRWcg!UGWP)VcDpfAV+?xo+Q_nXrt zZ#V?x8Ls#p54cg*xAf$Yey*66Cc)Jl);^}qZ%bV(la7{?T`}UD7d4;#o2%UrVXN=k z?Y9LGy*D0&%G`6cwljMUAox3hb69pVN4A4!It=tyu8&07C;x2ujWE6TS?H4Oe{cE1 zkgcym6uZ*ZSQ_O(11bQiPa?cClybbbC23sZZ1Z8NurHy43%hwdZpFQU(XBD83aa$_}mXZUn~*U9}pXLVH;D zi=v+J0cgjX;Nj=s!Faiu9Co{D=U4?|fYj#{`9w(xb)0GspQL5OPZ|wTa{}e^tIB)c znon&&K(8|el4Y=^JJbst>$Mw_UPZOP6QAFUZ9z1Fvlh4#R9Xqz9zL=L`wmU_M?iBf z7xa>#db)B%SJVDI#w>EhA7i2%tJJ~SU^KX7M}u2dCe7qjEHo{*UZ&60iQovS#Q$Rp zVr6-{oTW+uf->d7tIxTdVZb@S6S~|~6`C4^aWApD4f+wm3!mPpxNa+PoG7e!BePmm z{!Af{T)|-pHlSbN(bm({6%CU9Jt*9GK4L4f(EKyR!fTC~s~sLuj``mX?}A8zyk z^`9-EZ-~rVA*j}%(+bQQ=d8@gj_KJqS|mP%iJv~t&q^Z^UKne6o}Z>I*J{w1myY@8 zM}CdrxD>o|>=_5t1WqEm^%io>NTpdtw2Z)2Kk%*5`Y4Ax60&an8AFn!Y>ek2>+BMr zsSaM>O!(RcU`v1__oJBKM%2_p$O}lZPU359_@P-ZBU$--Acw7fHhxv3EXBCuE!K%u zqAgTSsSVk%oBP78BH(?=L*AXG8e$IuMskS*xDFYaYpR4tvCIv8`^V|uzLkK(H1PKT zbzI2rly5oCiz1(@22ULzmEugtQi#Vpiw81*f=l*+4a@5WjktleNNtt?hzav&05Q>= zk~`^s7P7zTv%5@R|M`45R%CB$J%%)zgR?NvRL%98c813X%)nW8D5caIkRC*zhiebP zQ&+nks1G{PCHt~R<0-V=&mRpE`R+fx$@J4E|Lt80t8bByZfHHX9G|j?;3eAaSB7B)lu=+?BNG+)P5Eu@B8}p6{Mi{<43Ai zRqRcidwt0uW9o735*c4H4v9ppq+jR#)s|d#miqXSgh~yN60F|cJ>d&ZWr5d` z-_DduQNATc=-!p9FB()EJm{nw+`}|dnTXX$DWRW57Qo}fOMJgYNr(sLZdZ1B(ijLm z&h$ZNe|d%Nw&hNd08N=kJphRkL8&=?%=ci$1yg+Yv#3sin~ah6b(sPA6{3#A00{7lTYeF4 z8B_lKR`(I$Czb;_v7#`5zim?eE5OeqA`QX@KA4?_(ua5Jdu178AY@14OLWSh^o+Xh zSHCvnw@xCyuZZb^Zzx!y%`?lp-= zg0gMhDSut^?wP-t{x^OA(?3h$p+Kq2HO4sf*s5*8{S2Cw%)YVx8Sh29fY)3*1Ky-( z(qXvo0AmL6;gjNP1MGYHb8R|dHpbIhlON}LMIk;DlDqfKeHZ##HjVeJgQG*rxtZuT zO>&ay1H=WSp&y@Z#PSOTT4tr5Y4Kz{+U3Mk4HO;L+^r((V)(T<8U_Y_p#pR9q84~4 zIex0kwhV-tE5DSZH~mQRwi7GDkPX({>G=Fmaov(z?GJ`MNz10+h}5ZD3XTl&H`ufY z#RfeNTR^Z7=$o_ag9283apz`-%~_44i%%dKPnibv27TVGw8mK%B?y%gX9aLY2?GSA z?SbI0F9yyg9`7TW6SAo;hjmKe&C9g;#cN$o5VdtYC0bD%3?ne~* z6-@-?779O(9D7j}H`UZ0xDJxGq_r!%w!e`6K_D4P*4j2nnEK9}3&WZsIj5eqP-{Q% z*1QU@o$$BahJq?Vigk?a!j$NvJPDaSnd1s2&F;x=Tg$kbzQ`1q2AT^W$tm*$=laHkwjA2SXsI9DpA}ZJIs9$NrI8VAp#Y>$wQwugVio!%2BC-N}WS+UaNeccGEn*NPhdD>nI^OUfIG+jz4ri=}j+7Y-g zy$*a$eIp_r(+bHcva1Fj;xyLXxE8KKzvbs~+OUf87l4zpD|_1cMpVBuXajQ&nh@Jv z_aO`o$Hiu07k6Vu)SlQBaPwqG*7h|X&eho6&h(h`h%BXD;(zHx^1vzlO2u9Y2e(yA zuF!ecSBZ}`nnj?#+D>gt((8&U8!07m8rtl!z*9$SnrZXNV;v*xI`hbQ2wur85bMJH zp!#m#ViR95T)R>Btrp~_uW+rdzMF>a+GcRo+m%SNlwK3Xzd=*dGJ~NQdO<%sh2pmK zbasjZp|2IxrhlqMYsEfe{5CH8Hl%?t>)u=9OGqfG1B#P+voGpGp-P=;;;iDt>UU)$ zf+TA5MI3QYpZ)}kvGe#k2HnX3wK~=cit6YCjosze^~~(2{K|8J7)N+L@8b}q0$K?g zCbkOqTqE;!%C@w+1}V)=GU9o(l?@j$$Rq`*DwdOwK$@((^0#&nJW%KUb42rADi2Z{ zSy-RB3wzlb&VJtTVtn2BMiHOoe0SNhhZrqwb$vtB=)u)v!~-`EQN*PpZn5%Chb%aW#Qed)_PdP(&TF^m=-$@H|eJQOZO&Ad17yU_DW-ccUL#+$C4siN^ z1^E9g_<#WaFW0YsulesSlC9(*&B5K}U92p}U)Hz(IQ@2)nGdIrQ{Oru@W<(w{O$Dp zAO1stUp$QM{PN#BeMWkQe@yxLqqW|y{jZ2H9KBySd8`cP>|;Pl`Egh7F(J9cPr06M zn_x(tr;f7hWn=p8`eyq1Uh)hZCV5FRpcYK=9T6IYa<^lW4yn30i8*yM} z9}8ykBm&D#N-r(O6#FUE8BC0!-X_RC2m32X(lNDn73mpnhKe_wbW9?MRIsnM@Q*}x zmQhT&(_#VfK#`Ot{s(g3ZUp;NTD0GDa%doc0RQ|e8q)MJJjx?Sfh((+7Xq|Tgs=}n zm|H~uM}VK*-4>J^3ZBp@P2iN0(k+s4=&0@r zNPn?Iz9@bYog7@c++Xtk2QC=T9jhd$>ZeS-fb)UW!tP@fA*0nca)HtpKdEFV*XMo;?+Rjmp1_9>RU zt7v>hMX($25rwP%=Oc<4WGEl}Q@ipvARU36Zq0S(Q4IvIb$`6MHyFSjv*Febxv)fJ zDADj7`Hb@)0I2UE4^wz^23f!(SASG~z#8ttkVYODVy2fOv0qdZLSoh!^8xic|7WP5 z41oHLpqzg}eMEsBIU#Zd0O`5!El3pMn|>@i{X0D2akxFu)gP#j9r-^(eIF~m zPT+Mfpae3zq{10Ozw={CqCnpZjT#42^>~ABUgjF)$UOOk_On62jdIB#lLF0)KTzLG zS@-S_)UU>!_)cIJ(G32WYSd$XiH;cf2~LBBLQ`%YZqB3yY=1fW^PnCS+?PVrj(90Q z^6%fUZ^LM`4nClM`%*RCZx{=pB|z`2Yd8^}M}P#lO0u^I*rf*I<4LrqT<>Pk*k^s~ z0+a7C3=@F`Hk2K+kvwjY5pTo>=vWYZp}@Pw4p`)+MgXYK`d^?v(+%%#k>n3Ki0Ku>ClI6)JiE7DaBqNYmg=iRHiNe*N#}yrgq_RU z{;bISWX`TvS1tG#)aU&N)Ykz({pFqKv0f5+Sx^XA;9OjL1dzI)Piz*y=cmUJ>*=*S z5H|o&f8lSaKlR_CK51^_nBk_+GH)30l#<2EfmDJwS!@5hpcz)@Tb-pF*2xK5yQ1S< zR2;t~_$?Zda!R-FUY=B#fc9bZOVOeDMbyKF9AW(Y8Kkp9AoC$49z}yxaZxYk+N#jR z)-c=G?OVt1xoK1dDi89^#4)pFRdvF0T_xczei%^r@TZ?I$mmrI^zK<~J5@)!g>>qcejQu3p#$;F8$k^QZmvJKoW1U|X4*4NTicLH$><$1 zBhZPS;B^mI>vbG)OO6V@7Zg~>{YJsz884&mH5T@;q)uH?*LA} z)#1bG=K`F5EFMltm-mmcbcy@A;^LC8nr`Ll?w?^|gegAnH0XyAJZq@B9t zNMq5XvsQT09%sQ3U9?^9=(k}Zo~vYuys(Tf!iXqg3@^_wTE4IG65Spb!D2}GlVhpL zHc)kZZq+HMnFW7i#F3tM<;>x{7}?QCzW10Xk_Nq4aQ^j#3I%-tgW$W}S=ajvnsv@% zf|!*2D;mVv@!0I|6u*!E$V+M1IKdK%Q=W0s<-mPQ2YNj4)EAD8ZBe|3s3fnoR!+-) z5JX2m$VK>siy8H*Cu+>5)`d0gcHD+!l)H zWXSXT`H|y!2CYl563Zq#2i6L+VE&{xzdIcLJCFcO>bDb`s)&jZD2PlJ9YIs++!y{x zZD)!DMW53J-(x%PmSF=WEso_$&VZL@wN%KjloAK+_ME0lqkZ~}?3`H@r!$5@=?rwP znC+)S$0{O8R*NE1{Ym&V8Z0>HqHc_`rDsdCT;!&Dsrv~Gba~WOKRrVr1XSgo@06+9 zK2ujZp_7L=IMkCg>53QN%95x!%OpGSx#k(dhwg}(qEbKXQJAJg6pjJ=eLC(X3EyTH zl8mgKryDtvoJNl~B}I1k3<#I>2m-t@tRVq(&e8_2a3E9W+}x-1wP#Lfu)!5m5VB1} zqYvxCV`7ZDfIwXXlx@ zy(%H1`dIs^?YL8-5fC*?tQmJTsV{*@ZI=yMF|X^Z$;AnKmW0QWzN9rD5h2WPYWy^8 zB}~%7!enP9#wFZOcwcPONlz-J2_{-W5XdsqfVzNrU&Ppxnb2GYSDxzaG;zR^L-Sx_ ztQeWL`Vy)a!!bi#F!p!TtmMlF)Yq7$mR-}lTj0Z6EUt_Bfcgaujz;ApG+}N^!q+%* zPWLIpw1LaU4GDs!oJ?ts6wdqN)t`l%c3;<*=l8#R84u0T{N8>I?AR5npBfOX0Semxfv7$IlKRa6sSm^c9bY7}M(4ogJBS;rtJ;Cn<@}C* zyd<1v?p$qc#o*|r#piA)3SO;&4I4LBB1eTf3Xdc3K~rcT{jQ#S=AMMbNG|B(7B$FM^B zQCDkchxjza&JT?CUjjmzorFT&ejk%Sl_h!p9t9qgAAODZc` zAh6^%F&t2rHd_$?i`4&xBCRIVYtUrVcZIgVTtfj~SPcwl@v8u0X0}2;-un;NOhbPs z`E_5%f9Fv62ISsi0;oR1AFBVY!X^gk@@{3_cYzRV6Eie<3gPnT?3d45PDtvY?mOYX zTbUH$L(~7mMEdv2^xp@5XfpRGByzLu#^FlwSx7yKl~29!qZMK|J?UGasO}F_oe^d_tgRW{%=XO=sydo$ZNn18lCm>HC1GudAnPR zr*+7JQvmF_%s-Bl4-3e)_Q}l@1KwR|AFcgjYOZBZ5w_5|2q@^CsO?X zU+GLVi~WZbe=>mT|38=FPwXneK>qhspOK#NAHPhka4&Rbmpvk)DYCG&<6p4uXHF(q z)0YGPU|o}PZ|cEq{M}nk_!Xj+E7OQGbKLV*IY`OsNZiATHPf-;ZHRBI+jdta-b4Oj ziIjJ1A{ZSf?kH%|(6J+)aAiU?%{;gCQQnM)m73c6?fP2x{VFEU(DW;41;U&RGH#4C z+t@ZjaAB||xW*IZWhAKt3D>icFfhh)qp6x2GTCR*ZLnw!dlYPyH2+Fc+VO^Z_aLUx z``pwp72g4**g-f|Nyc)|K_YLgz#g}XSB%gXAf(t>(hWg*KDYsc*m5@hn-E_hRohqq z(DxEyzcUoy)g(PP6ra~DxEqSyXjZ&j=*eG#>B+$-^Goux+1B$*!khXH3KZQiKF9NG zjLJ9c2OHJ|Yz*NhR7EQZSi)l;6ds0f(VpTyJeh}8*7q96zp?)OUs&Jg1M3s~7#)}W zvAVL$(^{VFO0t8erXO4%OqPUrgB4VIGH`#0zTkO z@r2#21SQEK+^-xaNmUpD;@DW3xu~LH0QE&;$Bon7hdcZi)|Z>3LI$Mxfeodu0V#e1 z{(P?5Br~DSNSc8yQu43T!r(0w0ZQjjpz{b6E8_!(s6*!dsHGd3^9@#Kr>1toIqW*0 zEN|TXb;c^LfcY}DK#{d0$1T8f(y{O)4JUxMeFc66NPv54uSPJTedRKh=V2=CnH_@< z?cV}&!S6X={Tb7WFM3THeu{bRI|#=2BVKNdh7yJesT^6}fh6Z*u$MElqaS1e__Ls( z7AT3?AU-Yg8ijd^PFkgJh4ehi#Xqe6mryTDg2EEj;-obkwX7Ww!8TOxm-JO$X5P@_?uD1N+GX*ZBABY2ot>zq#6E<=!s0VE>^iq-N%L*@-xvzv0ca6 zL*L)WPvI81;=b1g{NnMPhEzn1YKV}qy^ygfp`3B^P)>JGiJ$P&Kg1wI1 z=kEBUKOKJ27DSGJP<>|sX4{PK*^!CPZvGM=wRBM@5V3mDlV&8;15j!3*6D-dUmIfY zId1*Y8tP@t$$>osq`NNF;GcT#Gl0J7;FFs#H09+01D^4Kxj}66kCB_J$aYA#Fe+Xk zYO0qe(_?kt^H_MYc#bkZNAw*yhR)OKiDQwDaFY6`00$Hr2P9gZjWl&95BrXxMOu_@ z0UN@E6+hm>bs)6!p^5RqL3S>CDT3&-Mt!qX9^i*qcd+U7T0dH}ItVgP>duFm0-FVN z_#u$jB^);6qFSaeST5zxO6&`1M89{iDL)52)~CKMaDFGJ|~Oxuxq? zBkkFKAUs^Q66Qa`o~KShwZwjKfqT0==_$xMT&zY}0Ma|535!g}scxag*OyQR5wj&~nq6R_#i<=;iDG4LqC{{brO&+2rF zqVt8Db+MzKI=qaCvsVtNE0-#6azN7n;c(pJlUo&$SA?u1kJiIxR|odPz?->+j3C>b z*jP~Oerq_zsL#75;1bRbWPVM^>P*_6QqS+@bu8U&1?IzuA!UxN(`T|D$8C>(sc~MO zElV=_u!9YKOuATm@+wb?Av~Es=K{5%ppax!@lVL4vVMCfW1$bB9E{XT znL8z7Fjn0+JZdj<$s0Z-C@*)?5Fr`eYNFElaQgNswUj)MJ0rwwjn-L$zGJtiH%ft+ zMd|EYM7Wis>SZe(zwH3ekIn&?Ym9qnW%Sc69iN%iDB4AA{9DLmj;_s+$$C{%bo7l{;$M0bAkLmo!lGG6Tu{x*hzDgwNTeKE;w!qZ z3|WmUb8pv|aIC?NI3?Ad#2Gf;=`7ZseO=`o?QEaFh9?kll1*Nd>?*MC?4oy$$EG-% zF?}&|*mkz{p=n~es2B1jZMjwn6D4pRO}z}0I#XaTngT7Oa8Yb0U5S=q@-Owz zP2tchrHQB3QfUDvs4D7!ch)1>Xq=ZsLDsR}tK^?{m{wTD$!*Xy@E(*JS8{TwH=Nwi za(!N6fHmKl*ELiT91ztJ|24}50!A)mA3}`G&La>zPsdGYXUB)7{du=__P0o9IhMvR zl_So?sn@dNecW%{)vcz+>F{vZ?Zly--tkQh@-jjW6YLVi$ZIRwcW7_@`YlWi;s$;0 zO7)llJegCKy!r}piHEWsWFl>pgrl08xZia|wQpDr)n%<_7?Cz@_-r1j{fn$h+o05` z5M`C#*(Z&3&`MPp6A}jWJ2mensA8L<+Yqu{#=I!E7`QN&-)83~EV!j*Khf=QfF!)q z62o3^+%(HQ*K*@dM`nD((}vg>bm=&!IchQ!ns^D~$~B>q^J-jF7lCFwQC{S|+at-Z zJWN8TO(6l{h8RF?+Wt94i6aruo7fhu_C#cX`CQm*Q0dIeMkSp#9I}bTKI(_A*&v@44as(l(l5R>Hb9w$UfSZJK~KUW_xX2YcZ%`k|~87b)w!%0<#b@QtXBBy3Q<%c*~c>`+R>0r{M@%#Awk{kjot#JuQtfU?6KI#LkAIFs~#EPI*5MZ)Snv(MO=87C# z9=dcH@aXu3eQG$MSw+Mq>a>c3n%o%j(}naE>*z-IpU{pqkX-!1!W63S`gT5Z|M)>b zO6d=y)d*Dimd8l-R-(AS48=+sKHgzbRi&w|oM2Qnt7((Irv81IR6@yggu3nVO^vYQ zx4(@nLVP>p>#Mhck(wKV;jxhvHBD1;yH~Euv481GaHE4&(-#m`dgcY~hCNzY^T25w zNrqZQg!C3>0p9?ro4w$OFtHptu3j&!N=ucb|qn@Z!S z&c-KWUgd14W(<`ZC3ZY{sff-cqR< zD6zp*Y9_f@qrAJ%=QbZupZ}D9$vy3Uae$k5o>R&dff51YY@o#S;?`J;CR&VSDA*~m zgVC3BJn%ghANeD~kLsMbJ7wbI$ZG6u%@fusuxV zAiY2)a^-D~ofXmQCB1zb>YM1?Pv)=AYZY?z1^L#iRf>;$L-xV+g#%6c?mP+qZt&At z^c{cvZ1ovDu^Rls^^N~M?T~5rUVHYUtpHKt<(cm2um67MbNzZR477m6{$#0`|29io z?E~57Qf`T9-BjT zJNj0M*Z=2~**5HkjbAsEG+Pbf>MDQ%H~if?19r1gCHmL2FR_Dxhfmt^iIHGcCQXzF zP7)6CLE~z`HHuwIkowgikQYNE$r7jn$`F;r9;8}Q9uJ4;>!wmX#;(R}XD{~N(Db+( z^`;)!(g2)TgrZ!h9ugnCpdt5Q2lyvGU@%p26x-aA>|g`>f}glK=f%D`Dz>qQQ^XxV z*!LYjKA-L!0iRE#=Z@mGy(2!joBCiNOJ+fUOJ+4Vt0~n3#WWti-Em2+ttTz!;0*Tr z5cw@VN2oYG@~&XnjDQ6Hz{@lkf$@f1?~n@yWXH)v$g^94M>V#O*SZ+ch2dQ9ksDk> zX>vhR?Qb!wMYv=kl52t31(iO7O#!Z8f$ip*O#GLrydF`&A+z^kAiyEBCv@cBJ(YJn z7TABu8x%SjP923liKo4bQFBDC5v@ z04RMZZyCxb1l7lCE41aVM&u{^6p=4x=heCJx)ini?jy2#+HCVD(pfKQjFw^%M2b(M zwq}s}6-NZ~P&P3bk(VlGz&C+@{yNUcfCB$xYY;o2!2ekZIl=kkj+qcvB;3F@DfI|o z*q_Qn`?`FBDDjQnoJlpt8t($7LY&ey4vvQQT4DZ^9L<+F_@_@*x+nElIlLWO0g-gU zCJlbm)^H7EaVFh+-J(+>qCp-IdPVSp z7s|b-4g8b+0iiRZAOV<`RtyOlsIzqqKgaz+AP>ma5}p1;EPaM!bHA-X`!T2QPN0h` zRg&8s%q_{WQF<6BPjQeK`U;C_`DBown=1&+%E|iJX(sGT1)zY=nVSngVAj_$%kWi? z`MYxlJXOB>=Ze|*#}za1;Y8Jrb2>EhqZJ^jrn@a=ntXJTjy9djx~xJ$S))Hk%pxYc zdbG7!5VjsM%~{PL`Uo7yB>0~aiQUt3TBqx)3jx0gU&9}sgXVmEJVm@iIjJK05rcUx z3Z`;Rv6(P$3PJ@B*gv)6=&5&$Cl(c}R-+G4+=#r+f5i7Sm;(Uu{Ry}zku|}W@!1;P zoJV>z`RQZ*Wx>3nbcV5KyNn$i3%ItN%UO>*>Jcyx#+E|)Z1$j&AJqsOgtB+#itYaK z#OY0S511`=x#UKq!_Hsl(KcZg>|z>c72qV%+Rau-%cACKt~QFXW9P{#RW)j3Htc5k zge!u3Hz65(JK&+)Q9Fu)yJ*KOmm33Xv*SH&{Ek~o`H3fa1F!5BJ-8p-csTh6j)3^}QvvC_RzbkWok(H7M-R6dx(L;f! zSg6}b2YqQ?l$h9BVhia%@o*GmQ5Ubge0rZ93R!GkQK%W!~@4eEyQIq&aNIJMi7Obm-aP`erXAX-E zzhhrHuMb)#b8ri~KAJfE1!gb36V_2^*RMSUNW;#r2zEk;8as<%l`?GrDgY>pQ2glR ztAE9v1?9c-&(^Lh-?TMD1fBH9M6)KaNGdD_H!#!NZzsJUNuHQ>4pT+fYXfXS4_ER^phB^KwE zyq#4SUUJ0{M)l&Hi)jXH!!!=z4L;x`_X_B8TaW(UZPA@g@BB`9#IZcISpG`Wu1AAu zQ1I#u>82Vyp9qlSc8wlGh zPwbAY7JIzy^@7IJ;8`5Ur4ncAcZ0+S1zR98zNNEAW|Ge;qJM^#T~Ngo%q}H*m#?k%6M2qMO|)@}adQM{Z@%s;28}MPw~Aj>Z51&Xt5~ zBXi1~t>8p2_m0H+Iz80`Uqg;Nj^C<^1hHH`!2RlMT!dHBt)?+8-|8Q+Ret*B??PjJ zXYxKjH6A?3c{GNjF6z}Zh1Ry>>4w^^m_gyN^xu`8AD)Ap^F)bk$B`o(mn|;!prh-Z zAK`THR;#Ee?)i&8=-;i~2NqL%QpK#4bp$*YVOf~|v+QR!;lqt#m!%4-lt6_2Z> zT}REmG@gL(Y$Uh=GA4H6|o z%M*v*M%5Ly%Jf1WZ_ExBq$?!Di@DYY4T0oCaC66SZ3G`GB=uK=K#YMT<527{n~-wI z-c#?{;Q_5?)%M$ER2A4|Z52mQ2jhBD?*tboRCLT{Cp(lB=RkNWWV=YVsl^vkSgcOC zZP6P_dQn9eIp|a{x)a=UX&a_`q`z)>e$I;5=7yLYHylhXlD4M89=1g4Z*E=+X4wo| zJ4_pmaHO>lA;JCS0#^7d`{J_hF#E$6>4Ggrq8r+E?YMd zOn+vqC6U4EENA*HW*hfu72U0af0TE ze=~u45iXC0w&c5#d9%FH>q4$j$fejv5D1$GkwLHqMa`NeS!EJHl1W*ZA0uYWK_$4R z9kaQ=I@6zHSm_?IfL#$F2-C-|E;kS+N7LkQheS%6knkCylrd0KMIf)GCXiUOTfs*e z8{KD?l8NaBU!CcP0$|lA`65y}rJ_+xlwJHduDX8h!6+X}vX(p{69zH#DLph@-v={8 zD*luPL0vdADmvO8PsRl#0EJEr;Mi+H`YW4Br=Y*xxn{H;U_MKvSiW42Q=T}VGmH5S zAJAR!@;yFnnP=Q{boP>y)KrMBY#NY>EcTD|P~Eu(m?|?Gn*Ug*pQBAijq7JmkaGw) zV@+c?=*B8fH#zB<4?z1eUy{bbE#r<840r~f+0hq$UCX2fd<-`NeC}X0B*Ie5 zZBEZk;QC^oPqx}w0GGf*2UBcv!m})K9B#awxyuAEm6IWIi=u~Bm2B`a?CVp#M9kGf z2uIoa4n34HP{u}v0HAZWV2i+6tXsF?80J- zVu7!eQeMEV9uJj(j#*dmTRULaPurQYjOMH6cq?DTa}D=r2h;gA-IQiqbM;glVA;^B zg1mYAqYb$73)VDz|5yWPS;y=16yZ(H?8C|XzwJOfUpTA&2e<$Cxb(lhj1G7I9Wh5x z5au$$U$lsdAHx!nlFxK((9X~P@_(_we```vG|r)R>{o(sU(z$v$F5;BLJ$dR7i}(3 zVH%PZmjU0>yXeLOR*1@9)5naRXJVRk>p)1-WT8Uu1;#07%>s&g=e$xnhem_dxz z2pZrI32^)SuYX@DPi+it0sJEk{cL27(pCLov$ZQzDWck7N0gqAuY=0tHG5CJ8;DhZ09;N(Y`=pQ2 zYDznYfJZ4TMjww-2AD|(YXOf^CWFT>;dSl=et$eliGKR?DCO>dew1?l5uNzQqm*Sp zbV42BJFYRQ{pF%nE$M##v?|a-|8G~iW-bt>3^uIZ>lozl?lQ9BuO6)WeuWaLDFyHV zwy%Fx(AZ^h)^Sr%SDn7#AEpmr`)n!r88ub4EJB{DsnzJTq+{AgELJH%d}V7UT1`I% zq6>SB7WiGVIrPXyt~YeVKo!q?3az#Ag&^@hb@6ghQtf4<=G%3fdk9-H2=``NvPzH& z+cjNMEM~B?;i!4y@UMZ6Q{q01R>DD%pMH}@u`kjZJa?Ag~a7`fRon0M6*=myyIyZY^Tya!Ixqs7ffGC$KnImmV z4s)Lf4VIuZziOXIB)$Ma6Yu~-+7fUFd4u-bPOlq7*lXrH>0ZQgg2bePH=Gkj70M#U zI`}Sv^@Si?jstK%;y?`Z7Eu(nxxVlVHCphT*>C#C1%%4wV6@)M@q`<~A}gJBdEYD} zv79`RbTvg&-5}-Io zT|N%;*RJgM*J{3qq;xWtW=;uB5v%pZ4w?u}usDq@RGg#Y=_Zs|5VmI{zgVEE6HNqp z-~P{L@t^FeWqkJvDAy!d^VY;qFxksJ3DYvMzyWSwz4t1T)Nzy??zl~WU63@b+V2n% zNC4XWm<8>6U5?wY*#o@a8w$$d7AEW&YZkZnH=$6TE(!FXd?X8B@Xcsu?;-+%0l9ww zowy)Lz`BuSplBW6peqtPE90*lP(CgJsras5EbsdF54R6bY;<}diWG{pB-6d5ie{(F z_gVg=?(Mvhpmw8dL06{0-T z$KSM^ANk0D4Rq4?BoIJ8a+2EMI8*G*GFQ5E{1WVe;OELKUYPG7{-Adz+%MUJ>1|m|G0fj8&0w!63s=q z$WotRaAi1iD{5Ahe8|i=Q?PgpG__b_s&NtQJeXv{f=0a=ld1C)(h&v0^rJQL@Ex2X zA|VnKl2AtNTv?QtG}B_BtGQ8lteMqrURoljOnyUiD>XShcB}{S(%5RrZ!W^0u!rE3 zn7+f%@aX!Pp}-?0BX2iq--83}wVBXOO=Gns>F{$BXvf z=0D*_)hDL&LuTDcLRKdbw`j~Zfu*p-Z(3 zQ`6bx@GH_QW5u6}u}a~}0Xc2}Qu{VEXbG|d7OnmzK9i{1P!!460IvL?JCp%9^{RJq zBG4K^9Ri-cF~-`BxLiE1*?9+0kJOeq3`@XkGKhVmcz3ovEra%b{KDEO(||RJ)n;>S zl&v0TD2`$Q_@-Q`l+)4UZ3k5}GLuK^gnsf(=124|D$niB+%^x!Z1I@j%#G%cUlYL@ za>l1VQBnk@p}vwggMDGn-lan!A?TTkDl-MOjGveD#9%MdiHJmM{p6s5n!qAlR-~S< z6>!4+O97P~yd`;Ng*P8Amu$`w`__*p(vi?*!`AjLUz0mPL65l_|2tu1qOzNygg;={ zFNa9bLzpt7rCtR}g||%~RQsA3+r;tHAFU};<>)i9N8iV;5Bk{Cl;P{90oe76IEX58 z2fcXwvivycuk_QD6{{8L#+9D)RaDZ*U?2{?B5-VjWfQI6b}t{%K1oC3pn!jEg$biK z$Xo8W~zd9VoHG~y7TbR9BZ_Ao)QKJ+iI3$ce;s#Fg zGFhSCzBA}&48Jwwv4sqBF$%Ig!2j+vkhB`g{^D@wKAY*xsrVSOsSD#i*! z3~_EcsmcGVnyH)Yye|oQOeLjFE)yu`YRinY<^{n+ zUU}7cQPjaYg-rru7-*4zVp*8qAHDKqClGKx{b*C^Yy0rP)U(?{;Zh&mFAK$Om7Z+_ zl_29hbG2`z)~A|sY3+%52^l?o5kKZM(Mif&->AMmJW~h!a-&ZKNtsuChl>IqQ;L7V z=R08mO3Whe=;f%5>#-fWywAarDhm_1rIH7*{YjJ>R|_s*gLCM_+g!vCw%;BEWFg1D z8e%ad<^Sr%Bh;ow6t0&fDy4hHGP}YgZ{wi9k&S7VGGq!;i1y_Zmww4F9dUR4BMqHK zI41BO2FEw3D6st!t^{4pNGwxTL5S_7?wV{jgjtwhlkFHHu-R!PCtKT{A|G8zo?kt9 zX9<;D!8;sr`^$U|d>vYI4R%bv&jp(Zk3aGE3zRt)QPI6*`5igXNp^8TLvx!Bq4)PH zkx`AXp}q*Ij$Gu3J(wQ8i(X1W+sZb#C0)@f4RmFIcgZmRdZHS3et->qK~R=*O*CxG z5g!iLY!Y6Cy}vakS6(?Qo!^k)fqwH)Ox?(O<){tHv@eFwh85P0%U_E$0e-pQbqX-J zX0Hp0OHO@#v}#2|>sVKLzt*IDC64DRxBFK97LQpp%euJ;>L4?kQ{HeN;XuD;M%Fal z?l}}?9+d%j-){Fg(8LK1wtTI;m38GRWaox{*AxYURMBSQ89Le2AV=;sukt3mc7xDq z#|DYKo!##2{9I|WuRpu(#L!Ay++e&#?keDg0yVTl-0n`1nwSxZ?_ExP)%<*h(2wb%Ct`b zzz1W$w`xNtGvclCZ5DJBcASn~AUc9_0!KY5agB+`5#$xkVA7d0j`D=~0#S>33}Ql@ zJBL+z>F!-M?S(Vw_4vG;Dz^N%nN?s2S#zJz{VAM|8fr;G25~+;k<1~E zS7jmQd;0=UoV#@`{uHuLa=KWOySg>n=d}=(e`*W*wG^j8;HqeR7SdY#X_0(I+AK4( z{+5Cv`7;ChvacPq?0sop#r9>cSn*Dz?p>3M;SROtB0g(o2TqA2lMfNF9#_$6W<$KQ zh_y*N^Wx9B23M$E!5x1iHzaAFA74}r-)jbanLF+BWS z3eq&c?~#6k2{Et{E3in{i9J?IiJLK)ch_^_M$$I*kOA6LRnhs1RvsK>K9>_|lAlQk zonGVo{k*y*pO1kjYRMGY62G2oi&V;LFX)AZ$B@6o%AGl0MSmua)V(a{+7E(l{motc zi|l8Pu|@J|7S&>>)H1QN`P6;Hb3F%z=zQgchSNS!5%YZkZDmmoxI;4XqaZ10$*IG` zZ2_XIv*Fy*kU2l#beCrR>#%%zR?v)o&(m@21<3(%?Uq5`JEnarRt`2C*6`pU;Kg(S z5;ZxRozYR6?Nn|~`W5fkQiHY$=J>3NDVOiJT7b%S>x#$Np*_#91V-%Z0M_aWuQ^_L z(W6}HGNWkVpL!ytvjt2mQ$-pT(QP!v`<>lMx$m1Eos2T|5SG$E^!DLXf1{Q0uBNnC zi6M>!ZT}yXy;E={?AmS}+qTuQZQHhOtHX|M+qUhF&5mt5oz9;9uC@05s{ZvI{8c%a z$EkU8&u3g?TvHDHiHPP^&(6)zKVmQXOxRvud;oqlUB|1KXw`#Yw8qTpn2DO%W8$_I zw^KV74$(u0HKwc`kqA}n%El-@7A1Tl>sveL>D?-izHi_05-ce1rB7`V;iXshx#K)| zUsNO<1sz2lt!-j>is^t_quR^7c=9smcb*>ROdp>!DavKMNWQk*t7F{F-Etl3fA&VT zKza5&wH5#3J&UyP;)m(Drr>cW%rdSFo2HO!?b!DE_U+hs)o=kRI)`+R_jv()UNiN) zoqO`&tr1PnNBXjjX6B4ORFHnk-xT% z4f#BTn|ur{-)!He(UG4JD^QfYMUx762+$8o>)^SKB%jnl%AF^?vlK8&i8OOSx9Biq z)Hc)ck|NMKM~x8OXL9pTun)37w3ZS&6G~js?L?;fr4g*+AoeQ-fkt-=s0Uo7$Nb39QH#cE>RPS!u6#HTpWH=mxc z$ZdYlk?D{IrjY=;L`#4fJ~~7{HLdU+VJOf~(`JJPk(ualwvBEXW{@pk)djdEV``!* zrBpBW*(>Fhv%b>hE2|6S;l0~Y!ucLrJ3%W3vr zZ#-)yKAo=f6lq;CFlamb`8K&_UHD5rpKVhNuZ~TJ4`2Tk;{U$6RC@fsJ>#?ehl4JZ z#_-Dve?tsKWn$R2c1ODb$p5J5+jnajP^%MR$Us2eFDO}*s@~PzB;1~cr+9UFa1xU; z407rEcon~1Es$SRrXo;*hEAv-LTc5s=YrUwUS^k%3O|<0)f1PX?1sV$9&~#+rJnK( zzTVUP59K&wXe`~+Ss#9S*LqvwuzjO$;H6|tWB{%=P8a0(G#&^Ds)eNun=rCfp`D&9 zMjx4TP6VS{W*?lAtmNRVdd14b$K}e52KJh`kLGlX#DqI869SVi#Bm5*Qvf1{)jFm_ zds$Q@2>~qhhy7uotezmGUhx)qMk4@_?+(ebK-h4PnDyU15N5in) zCd=~0u3%FEXF-hD7bmY_U&pHNaU03ZaQ_VSF}nI0*Z>245r3jgtp7XEPXaRgJJ5HY zra58$XQ2N9A=nI<07c|%Y%3Jh zd-N%L)+XTOCh(%*lX44`CEo^gfz|n8GFT5*FX9B67Vj;Zz)22l$$_hMr= z%u9?@IlE=n(8#7p&TAzbTYWx@EKpEyT&}yMlzNqJ?{gz2?6;4uD>%hXEtjzC6e^fF zXO&?Ro-Izn4WH6k8el+mO7HcOG1HnNoIe7)Q!iYsv!9tAXBD@^N%K@qAW0HhTuZJ#$tSmjN)*@`^AGUO&(IoD=!BMfpg?mF-gM}1|(QX zX(RL?cAP2G$LUxZVWh*}ehT5-G+LyM@xJAm&SHkL;-g7SC7AtTLpC$4b=`cF4@KOL z>XMuUd%}qTSEN0{!t&!9r1g3!vwU21{Ap&u6B2kvF(BNSd+Z`~KJb^xQ4$&~)i z-MFec&oDz=;Frl48N#+o#lwz^(t8R(AA(r1_v1Ng*^?y^u+A50KO2=SH!JjpNucKM zk3W&OAQg8j*g>2uB<%gx>&3Vn}S$XdW~hiKeCC`Ou>bK{)(HZTa}25vk9QG%n)0 zLAD!-H_A*R_a$Dt3?u49WEwsydI}ilkGV{icH&z@Vbf{T+s0&+SwaO}Yb zQpMeeGL?f<6oS|Q>d2vjj+EsXe>&kkp7m{P3Bu6ai*6#Sgv*Q%1{_!%2lsYr{&o@|69E?u- zdSAIX7MAR{)4s0rw>Nv1)|NS$=>gwThKq^v2Lda;bm&60kW}qySBhUvY-wx|>t*4@hxONZy6w`xFervQt^ZM=%gZm`@ zJq@fW;jq5S@Vt5S_gnKc##yJ|&we9@m4ArCi%E|$re_?sv8Je2l2cKtZG`@`RzGik&v;YI2@+Ylw#dNbX8`kr zO~ziAkemZn^n7_sBa4~J^G{PqojthH(lX^S*29{l&f@I!sA^gV|JhkEq^sx+>iHbO zo1e};#k-$@JRUs*Y9?uzNx5dfqWZHgWEy3cpueX)+49q&4NQ$D0a==J7e%?zgR+qa zG~#$OyIf@ei3#0C1!$XAW{BsnsLvh@5j*;5gw?QZp3a?4c6)2N7t~`<9anEWqcn77 zhj(XF(V3z;?}nqgh_bMS=ZyJ$iP6`E@z%ZIP=?H4IK%oXk6c`W*^`2x-1*5 zifD0OdX%{9y0Sk{m=qP&NXme49kYZ1%ld#jd+CrV)#*tD``PpJLq>}w))G?Z>IMbB1^r7f-sMH4 z43L^b;T<=|o#&8(0l>kqUhTMU*J>eQmME5IO}DFg{Wxulw3@PYw_wIN~jR zv$U50#J$L#=PE%3HWSSvrw?L$Dyl(TRJ$7TZ9_vQL$-O2YY=;9xhvACGgqNYu9w+r z{BlxQHkdOHKD1?~@sU_(aV_xXQhAn}ZHlJsEP{dRJ7MR+hT2{G2;j@nRq|aIVa=2= zSI(%RUGbvG{aj0$q0Qof)PsASOE(4qj1d;|*Y*<3hi#k=XH|OPD2oQ8_jrZV`Px<| zYQdY(R>t|_g=yxnv_K8r2S$1{$EB?=^`o6Zn|bE8)ojs%sn^W2&$(HRg0X?&E7zqh z1-;mGqx_8;kT!GvQ7vs%V>GtsDSspvNw6wj0sLA}V*Qw+w1g+P19Fy)(W!BEPq3Q=<+9a_vai zfx_VPm>i#-6;-Th?|->#6U9tRYF{I_)6Lz_gupB*e{{Po3)}hGN9~3C{{J@lCl;|^ zXBM%LV#Ii%6b7d>M?9KNABzK5cg{Y;0d1?-D9OHt{RTw({5-p5ZT??x!36d={+}HG z^(v~AWq*kV0Rpmt`5y@~OEV)=GiPSTe_oOP=Pn=QhUuSOzTo-)-Q}bFFT4C3g4iHP zA9LHMaRGzAt!hO>{Dg0N(v57~Oi={a0{)#mWLnlB^{MP!mYw1m zF5Cla3(?TVlq6;1S}ks?Bucesgm|NqX!$yVhX3UHP2xae2kT1ipGqZm*PRO ze0Jd$qp`+f@ku+en8(^Ymmx<;0q^&m=S8KMMHp*U=Yi%$g87vanQ^3_CN5D<#qA2( zv7~Yz#mk(^4B4Ur{VC=s6m1hwf5qiSLQ_5k4ghiaxwRTW? zDJE*FW_j|R)rR5{4!Sr+%cq>pO$lYn_pN4(Xha>1)UJ`s({{I*8tnb93Ev`1;&j)N z)p{em-{r;A&Rgn`OsNn_TA=IxhXFmi(>{>+@UksmDXnsDaQKelzuzyx>XQ9sqX&Tj z;_{jiBxwKIbt+_}fvv$JU6KP`{?XTirWHq`9JAV*&LiGosLO+y6BPr+2yAiNcfyf?+@(A&>Jp8 zyX77}b2Bku&ntcdm&iyOQ=z)GTA^64!y*L&uFtW?A zG93cE`%HSFch0Cq&i~TxUl2x9I9kc%tx~~R%-=h`x8QHo(|v2_$@+FCAiLh(jta>) zo+~KkuX=WdJ_q%|RRtY#)lW9tqaviS=aaDHrp1{>ev{GD-o#+eeG=|*&JpyZ zqen|d!L}=<*xImMA1i(KYC?A7>-9?D>)=Lgm1!Si4WDd_WFhY_m9GaTD0e z?v(yR{ap<4J6SWW21f!(H2gopJu#>9EGdxK^9rF_3V?7=-w$p&d>O5E|Za)j~0q)hV=|8__O~TH;Uurtyg{7OFlb?Ne_>H{I_G?6O)|W-n zrh>TP44CU5ET5G7HBSsQX$GI{ixl{<*TXl&yg)uN=ab_BBBo;;e`Z_DPPj!37;mh zL}Nx6J^391q3piU5#ZfvzK|=^1^PT*_a?*Dcx)gE3#(lsJWwWT4?tr5eA@kkIxP^p z9E@nMDjd^|1Yw=_16YfH;C0JM7{%R5+0?`Ov8;lGoW#jCo~Qr?ay&D8LdFg7G zO>rd@6R^TBEEGAJ>29={Td<+0TZr!js{&Qc_dtAGy5PuqP%(gBVqUfhzCCS4BcVVs1{}EolcF>10{%E1Ms5~C;~K%IKw{yf z<-tbquuQXe*0cfsvE>phz*e!u{YrxrHGk~TFXCMkp_awKuG8OlEso$0MjEUEAlwtc z`j)i|76L}1hr$NmKLF!tNkbQcWL?A04(PbE$?~tT;wE;MxXaKy?=f&bdOTMOv%G@h z3hJ{~?gWbL$GjGS_pp1Xk4a-l1 zafi;MI+zPG1}ZHzFZiVUiVkan;E@@s%ei8nX2j_&f2;;RX8qDnQd)dn3jfmp_+Nd2 zbhY4$$a)HXex~r+WbBZ^Yvb&qVZpjiowz%XFJYPTIAF0Bu>QTaMSP-*^%<&j@GCi> zyy69E+tlx1uWM9(QQW88^<8u1t`4tc?n+P#5W?b$$4+|YLMzdcbqVoK_LW)Z!d?FbzzFpBcAxvzuM3ZZYPLo+(|Z0YLNsv=c^(X;&0an7bWWDBrsH{w$lPP@)V?m=LpNF@I)Lfn zm5JnSIg@E^mpvsn04;=e%il_$P?7c;nt;D%<2+-$bjh?pJE$cp3-qadjuTY7+cS z5`+fxrLM*MPxw29O~~2Bp=J>KBRSViV>Nz zYwkW^QoiSbRUc9PC;UwmTDVsPn$qDiosi&y6aOx@O=K=B>aG9SOMZfb$6eYwXwr>KI?iWWE3PV~m!5#Y1eY+bQQRR;#S1Uo4R? zF|B&YLYk-kvDfKl_YiE55~%)*4d5FJV;IH@hcKvxnEac{I8JkG5Z7q zUQ)>FYlVPg9evMbhZ+|j(d5HkBbkk$yYoKz-6?)WV8U@3FDEmmI4RnV_0bZOK;(M6 ze{Uv>6m4SxDV#!=sWmNqj*KlrafqE9rH(cs{ir&(C5SCrmu}0>P2-}ijXc8w_ik8@ z9P;A#qkL6@u!V=36sdd5!Qx^22>f9*84{4ECok^oZ^ZReHAy_i(Kxp7k~ZHXv6Z_9 zm0Kp7YH2Bm^>gc57vb@bSGclkfp5quIhBdM-;EM)$}^f)7(NaJW9C6?v6S{YQLWM0 zrKAnUOFa_9{&-2$&Hkouq9!8I@kIv$B)#A2&={3Q)-4wT@tuK98K~;l!NNM9-bqVH zpuA6=Bno_NrOxi3I}Mg2fitf_Uk*5U{dav@C_aAM#&Sb>1mwtpwg=$&fo2Wet?udJ z%I<)7lkM&atuvBm;|Ky#tYrH>jT3n|h^&36K9d_;%dSICqDscRhDtXCg|X#NZuVE4 zw+on-Mw1KHCe9%NgSGE!wR^}v8;sw+bzC>=q+WQ{vl|aYk#!%h*m*LAykL9cgQw}E z@|XHme4V!~&4&Flcysg#C$Jry>r7p+zD_x+8Fjf(Z@aG25Chc~$k@#~KOzSAaky}W z$Nw@X=f|Mj1AUsMzZ(!f<00pVaegdId6h)7U`l;Yvhf8IVSfF}!6AHW9hLY~efL>? z_nk)VRzPJWOO@D{O6|9Q^<9s_4r$i=_C@%;eoXXhAP#mQlfmr{`gmsJ`k0L=5!+{V z!vFhAVPj@WDXaK6!^z20Ua=YwcF=xM!<1O>U1lbaxxP&aapFYn6eQ@nZ=|4= zdmNTxtJ>S#lp|L!P#tTA7<1YnI7y?yQaR7s0agCvm@PkfwjxH4_Es5bX*#HN<*>EL zx>Z)84PQX@)KrdVCVFjRNL0X_(pT5}jkp5tj5B8@RgxJ=!yKu|w^z!#pQYD)$xC9c zr>Gezgi87~p%9P$sO!)dH&|8s*M=PbPJkRT#SoL+Zx21w+Um5Yw&xt!tVUFO#z zq$d2D#cXDyCOPs5naKesS*uWaEM*eY`TD4&`H4>G$YBLfFV(l;vtL)vEj`7*{3mhN zja5Mt)4B=X(%6{QGlBgLXe~C8uxIL*n_)OYlAfOLOVS=CdWvW{TA)=CpceE2s4#M0o`ek`r)8vc^pFhug&9&LndU@^)XF-rgfGj>o1Kp1b8DD#dMwbi zc>E*|)>?AJ;SQP>O@gn)*GS~A1qL_b&b{P2sFc98nXjl^CqRCh#+yJF(o9JE0o{jH z`Wuq@;De1>e-48)4f~#*h0NaM8eCy)&Zpqi4p^SoNd$JC4~P%T?DY`-63kj}zw)5A zTb{b|&v#76Py$C^-vG603Sad4Vu@bxW?+x|#s!)g72n#ry@|F8Fm|Zvn}Pc%c)w30 zyCVee6)4ihPdfb_i~!vba9VH>-~sM+JQQ-080E|!f3KL!lcAF)#JsONob_OYv2gzn zhyVJUlhOBuAoTx@TxS3GOMKi0;3b~W>JR9?^uyqlXB*RtySV;eA=%L6Pa1a5p{}Mt#D1Ptg@F|C&xwi^F#o4*3Q%%jVJJHZJ57cI`r%!aPKv2?AZDn zUvpLrr_y&3H$cbOHr0Id_sL1$*VSyd3Aqwz_49!|!FikuGJ@2A{6l!;e0ode6=AvHjx~* z`RgOo??`&t7zmzw9LPr(&CLw3cNOGi<1X0)1wvRJp2u62k`9Pi;J{kGQ}~yU%=5?H z78Kk*c<33*C_K5RZE38$q_*X zzC{J<8sdaA5IzV$Tb?~WZcjon(BNlyvX4{{=GmUp?|A5PNtq+@-0C3s( zl&2b+`1)VqvO~6K|9`+`OdkNa47^(hWVz)F0GExL>#)NAxONi9J^;Ywp^6$1r)?lKj0H=GY23V~c>azMlSJB_oJ-zVSvE)ToVsCE@L6`w%;TC%Ojj4G+MRLmM zFSxw=7hE0#fXjpGB1qr(dRRDLg^I1|ccJj&AZ~BP&46FQVnGbl7HO%uo83T1(~m6_ z6+;5V-G$kdA^Wlab-HJvqaPN6DQ8?DD)Qu8vK+_Bp^-C%Qg(VIT54OLQ#k%0#ZvFL zdDK$v!H_xw@#D^bA>k&(IzkcTK<2~VkyF*?cEG; zL_;82MLz7+`z-(E#~2mV@6C>A8SR3~a=$!`1|k65&`AR04)nN{o^`SmA!~?lSSTHC zV+b}~U-aIIFA6^tkwhNfqSf;1W8>=}gda$~awoi+4eqpDr6ObgEO%lEs+PbiqCzVV z8o{>c?hAT|kRM<^1pk<1rD~(w0=Hng3tM`jZc=#x@rI^4TZ^L(W;sD);DLJ23J8wD z{}UV&j2N8xS8!~QQq_44I(RMctX<~+-o1Z9H9W~SmOr{yYvLOk>A7Eb9 z8Z#vQZy{N`bw$o#B=0Lkmfv0j^<%ID7w~;Ecl3U-1%y5*J3$umZFD3k8}1lDp2dDN zA=@KhOCF-$ZwR#WQhsOtnk>0T88%ynRFTmi&nUU?CJDv_3L&!yLUXo}#{3e;)&BPER+iV4b1)_a7DvsC znsVK5P8@z}o(vpkJJqh=27IzZ`NtKbm&D0dSVC&5Pw@1RMQ9*>{jCn#Yi zdhy;^1na&M050pB1=wst(!nR!5P1x61LGaJREp>Sc8B!S`$gU+?rLM{A-xYHq~_Ca zdH{)6Zb?@r&8g77DxX4~fZ6ft)tBi;_e>pn)AG%^&alc@9mK4#^qi8)?(|eJvl?|M zIXhrT$E>W4T3qwyca93!!#>vasNTm5h--tE8xipP0i5ClVFs!} z-5IyqBKXJf0O;f2;+XuEu7c_-AMljfN_4&hoM7m7p#(aELyVcQ(c(3qizyiA2;LbofR%wv4!y(q1v^l)6j?~d+EQA zIe@=FMiD%1;@F1LWGb}>%iM^cf}jWa#REH6SGZ!*eA-H7*Z0r>@pH#hypSq!FTXHurn}C7ZQAwykR}=X*6R>nB`#qSq?RKE>n`3+Wz|jK0gbo%#M6 zovVYJ@Vp`TNfLC({Ia2m7eV_D1rfuhn%^)Q-%B1^yOP$_AmB$dZ?aHv37-JqvS2k_MjV! zi|6qio7pAA%!c zB(?jchg6K;)Z5&!gnUglEM}up+EMb5st=1T}NT#H1E*p41~g+1RH~Cw8%vB%j<#ren@nCXc>5KG`;v zs78NcNCdSZih}677gU~egUKAztiCSGpk_pi5BZtR=Ox*fvZ%F^Ne??7(~`l9?I`aT zAIG{=8Pmvzer z*ccZ@gmjGN6f7!#r?1858M8=2CZSSUNIXezrJXOan89*zQ>Hw6EDS`n`j%u?w>7Gi zi=(TaT^>j}>^Yet@JpLz{?`vM9ujq7~EVP>cB!8hWx1kc#P?Q3Q^i%|@JfY%}-woOhT(3$35i6*fl&e8n&M{4MSWQe5=SsnZ4n(1wS z*v@Xpu(s3@G~h$={L*qrnH@B#8S?b#fAj0(BXqCnX@z=tJ1e&M832b=zSaetEHwBT zcBu(GIIt?9uj0tg=6$ggzn0Q*1Xz!%I2M{98F|hKaY3iY9uVPJxa=q3YyLb&0J!ug z?r7GW5Kd8at~o}`bd{GsZ99@Vtp4VzaCk;-Vss0AX zByg37BW2Qy_5WzLuj}|hKTgneStBSKre%${m<0C%xx)L$p%<*zi3+|NiesRKfb_;KBcfGjsfV{+U!LiQxx$ z`~=|44Gi*Z9!M6I9E#lrLUbc((DV`cf+QZFPg&5`Y94AHsu~JYmqTmw@!3Fx! zL7zVSVRx#`h$8i{cvmVEOnV?eP_^yr{j2LVdcw?mFetqZ&j{f9O+MlF-~9!?J`DO! z=y)QmE!~mY?&o}~d8ANUp-9;AcQ5WJci2d=M0nmzh4TVhuQCIE8kr)qN+p=lMCU{A zW6>?o2g}A?XmB17oX9sLs@#6< z9uQ*zupiCdA;aI{&fpJT01W$>g13UemSl)il2 zrF)mSbhPA>PY+!x9hIt&N#J(6G8O zm%tCC9o~gJ-o6U1(NKP}->wlno(*29HorE-PbC=P^X516L~!|4jAQ>XI@_10 zW%2&uGE0pmASr#EUU4Msm*n6rM&2M`OWtc?26>G{0pFRRppxc_b%S@2{bZpo7bY{& zDIho#Nsi_vjc+D$c~Xv?DFl-Vxj>ZCDYtA|8snB~OrA6E1W3tj`JPZVNtuGy3TPh1 zRJT*d*G1l&nemytakWp-gKAOR84%o1GlIGKFnQ3=-0Z5pu}dkSYQ{uU*S|W07D{aj z>H36!I4_r2LpmZ0S@vOt@ltp}hlB6|<71J9SIHQS1^(P&L(f*`0Qt)@mmq5xi%!>< zK$e0QWgd-=!>nsF=v?{OI6D{-7ErG|i6GJ%>hh~e$Us2!Z}I$8qh+|&RoOlDo(77= z)%*u$UgfnU2vnQ7dt{MKGMWR<)p$P3g?!+u%;n>w1?Nl#NXdw8AEs>}>o=K0H5$U{ zV01isti?JeuniiLhSZ@pRiNX9r4@F|#o?1LvB)~*2kf-qmG5%(^s;gnFK zov6CA^&mLggX^(ZRls1yRDyqCfl=zgIOUfX%Wj6CwboRHXR**CoOaP|!Ym->?0H=I z6Ji=fg1s|Qj+i}ow5~yM^Md)YPOdLF9zJbj^_ZlqHIM3!vfs&Bjq@{ze50tP*m4Mj zl0lyxL55OIe0xk4b-%Hs4Tk6b4xjE_ZShD{jgG|h1Z@uM9Gl8|Aoh@dpwt~^^>ycghd1gXaw1XOpl4A5N;}^U*6u-^Q5Od ztT|e#jv$LZvIMQ8QzM3vdi#?Y=aUi7dHuw`z@#&xp?-5*L-SHkufDWc<#*C21I6(~=-%TW7{_V6d;$@@AT3!IeQEHq-nglD0JI!2=V%fvR*ysJXYml-^vjH5&%mj$dl$e;S>s+Qw_ppbupn*YI|anAd}*fEZR)e08+IqV{t+NHkV{NtDs zgOAf}eZ4SU0qwerH~#<>tp*Y>?-a_<>NB(V{R~*5&LYsJ3Pt2>AdptmR&(c*aVm-0 z2d9?%$-!OE?J!=XoYv+Imrgd<=e{NDFZgXwe-2`<2UFkEr+=ts)OPRwep0F2US9Vh zi>U3oj;ImRH(fwAV_leHkLdaer0|YcIF8_Wi@me9 z-dALXnN*SQamNqG^Ua>8i6SrwtEi;18r*Bc{^ieu4DlyLA|y*&Sk`m&H|0EA}p-lejRrd3)jOQMe(zManMD z>n%AD zmsKjra|(Yznk{U-7aG+Xkr6U{)}mPUbwOhH=@=;~@0ZqocJGK@r$LkCN!JCFHw-%q zDspO)fKB>3w7mHczv>TU~{kSZo85~#q-g3 zurgI3`(e9!%9-XjuwiV_0+)#^YckE{mD4@zHGfEkbA7F8dweZL18k-3qLCm^*kUE^ zrCRtCP6`V)Z`{RB97EN`p+4L6TRF`kg6O8rB28l%6g76W`4;7IzsNkq1bI-hj+hsz zlI^Smm0Zq3R*ZWp3Wkv!ymzrvMHgc>zmqJ;3h&b@Sa|x})cs7`Z(R@)iz?^(>sM)w zL~a%A8^p~H+-Q1K@9*rAY>P8^HnuZ&+y%<-v^7ojLfXZ)GxYYS5?yk0i15whY2=2D z=JGK;OKNL_d5ExDGFQXgZ6_*u#^o{bH*K(~nsZ!^co)K!yqgYJ$AfX}CdAEdp@mvG zM9gJY8OOCS(&yOCt!ooB$j&Ip5%9_FzXKBykT=l|?fcwJB$6M-&!o=kKT)M%YI(Eg zlB=l(-en1Lnbr94Qdp-ed*BqxVj#?>*Le;KIH9$S7z^)fwg_1!vH4WQ3rE3FSEEcm zZB2(zk0^M8^W=leo}^pjKDQGVHPTAUb<>?n_Ab*GgiHt@SFGE7R>pKHT+$y$d$Rej zd4=EtukpvP-5ZsT>n#5v2y48!x4m2o*DU1o^Dd z*R+m)ob6rar10_)^b;N9{4UTb&zug&^kH@oEFXJhFUTz?6|(O(zqDK*pN`4Z0+~59 z?!dPv6URVw`3btbydaDgTtJu}c9xL}kL-Ch6rv8NXB^jc*F10W7V3tTLoa$+*Q_?D zi`gRv?0$h#pI$M{kLzZlp#z6y=Xx4{A=PZqvP!v%&t+Hw{X3+3kJ(>5*O zy9K`yI<4_tr~#mxm8r$*v2E9a_E_P`Mz%r2nbavliYpe>&6Ate+=?AG#HnwGaab$B zpBi8|Z*;Kj+V=}6g$YjG^$q9;COs*ATFQV9rb_NCB`~LO%GEbMEdjtGXrCp3U2F+Q zPEWE$r6F-3?!j07>}(<&$6GIh_proDKP4K$Cr{u#m&-=qI8@DAm3O_e;>1^YFfXgu zZ|p|FJ~nP;I1#+5oF;MX+UWes%9k9VRlfiM%YwB4Y7U-D5|m!SUWT}@^03t64FWaq zYXAgm=9Iy(FG)ZV^EBsr(nMD?BOg)-kFJtKwKcpG3)}d=oQ48mJHQI&Tn+v&?AO#+gMZEV3*W*i|sr>Ask&}nt@inPJeO)gx(+*LsAOZ_@O`ZXtz$MxrJ>TcE| z)}PT%fFoDJOX0IaD_9v+HmKh;!Cm2W#uJ}};}2+noIx6IaC%&0+K(c3ag9>{uE-1m z#v{AWZ|%)w9oSt-V95>xR_R^*#;xzMbj9YgvwDD?=cYejA3Tov7q z@Fx==Wvv_Y9iktH=XsRVh0;(w3L-e;KP~x-TWM)MqE6?XE^u^MhCNc=#1n)S&!p>!MYvv-q_SB4%`$ua50)A6zp>0k|D9#_ z{L3;+A=VSQ{+nec0kF&nxasQfW!&hqMmZ)2fo!)9Ocp>{9khMniL8EN+Za6ACchv$ zDHkS1r*$@^vfm_cYGr=hh@*EFHC$LK=t=Ru`iz5Da~I4cZR%4VlaJw0mk^yT%2NmL za8d<5LJEoY6MR*r%93o_J|O;c*z>~9;2`=>Ex z_MgTWcXXjvw{NzeT^PG-6zuiPe;Q-MfX3JupfRTA?*0F#G4}D_8)L0tMQsBJU2k7N)g3N(vLSHEbKAwE78ZEe0k_6#2=XyZ;C4PEsa3)k7F6PrfYt-$`q>9 z?{e;eb$zO^e3gHW7X80g^O{OaLeM!k;xe`JdsS;V5i-G$D^jn==bJ35h{FSr1*-Z< z1B})xk~%gn>|&opl%N^;G_rZ@DBca($oCobNV|_4jt|W43y!{VtBk9@bSPp z5pm&>yq)2y3Zy)pPss*Q!4MAD)NNN|VZ){FIk48Ba}XWDB({)w#XszSaPI-jd0=0K zg6LODopRJ2>c6aKEZ1vTb((%89|tS-d) zTxDG0G1||N;RO`ltl88H8`680B4~1?*?M?-eF~-Y#b4Uaqr1mB%vKn0o8an?qa;#UZogF?dZvQ(BqRo#1Ciif`G4|sZ6Wo4GQ`XE;KBJ! z!I3T;DEI<4j$})hq<89cO8i5cy`W7(&Z@!h7{?fK0SI7p8bV$?bdI#MPRo%nM*+cJ z=M>TQSe-Z?6Sedh=p9t7;C?i9#uf#5vU^rV)mDNzVd!YN7u||AuZ@s=$Zypk_b?J3oT}528)@QnI(&v87*dJW@cuVDrKK@?|ZNAiKy=A8uTP1 zrx~#a`S0)BYiS5UYNOrRuFFeph5jfLymghLsDB zQ7^p?Ok6SXePU-M368SGM%M14}1N$6f^CJ(f51(H@W;_9%20cFV)TGYu)^`V9!DW*?aWg1z)rEviA4h zo|fKTb@@9h->m3sJ}kIrnWm3Gt^vDy)ah^hIQf;-5e*`1)j*WJy_buVipu6I1mm!t z@L=LfeRW z88fdnxP)E!uw5aO(U^hHNl*=JzvAlVGZv|p$B4-NGn4QDpe7f607@p>vj}DK-3#7~z)f&RM~ckX>!eu4cyl%z zS%r`5WRryGE~?* zc{>H9v7}>#@7=QxyrwNq-0W5cg;1xEfk^h3rqL3QOx9}@?gxUE<|epCY8vw_yM__y zD74OId9p&R)*g`EquN3}fvjlSf3Q8jL6EGU5<$fm`+5eBs8(6}O4MKa02_D>t?wn7 ztI3=x-0zzgm5m#daF~Z$OKME?J&zS>gF&gr=t`#?3RS@XAG&oeu$4H!aFa&;-oot3 z+Or#O`fRvhlu&CvAEd>)0Q+wG~M`fjhJxeF5YpZM)=Z;(mUp z(QfR!nQl+LZhS|M?MWrerD@ujMISR} z?C?k4HF!P^ENqoGxos+%8pYlXnWd8Fm1ikTR9*JST4e46IPyk9h#w#|bnC}0Wd&hyX$m7f`T4M$WjNIpFyveF+`uY@k^ zEGe`2n*3n?!!InUgE2hANiIW7D;?5Wd*?)&FgM9j>!+GJQ}U_=h?fGlik6^eVnpyC zzSq8~qNv<*%rKQmN(r=3raH2F`U4yGJVMopYjEPF_BBg++M&3=rtF%iNLQkPD)4jl z)t%W)p;~hD#??Gf@Jp(f2AxxI!^gaJKBT&`RF6Tz2~R<~;1AZ=B$C96_JlBhLm6Dw ztvaS9wJFm6^qJfQb{@@={Nv&G>*QnVL(xf1NeHQ5a(c?y)8z}Ny<(uUtB@zAevAq52D0FVm!=eCZ>S$dKvLD`UsvY;?V{hwe8dN58o8zo8 zJEdZ9Ir^rsRH!4T)S>gQ{3HT42K^QKhu6uN>(yMLQOH^zRLDHM)472R{X8KV^PuK> zh6oUDoZ{Q)lqw8O>xM7AsViFC6#xV*9s{O=>2cs}tQvSHBZmy6;n%wQi3ce)30=Z@ z=(+UKY|F}~<2eaYT4g73Xol(`j*lbl%|dK&jfj0@r^0T`KRFlcv7)+!ubKo z;{=de73q3UtGNPtv}{$v#KigGW}dv{O9b&P7*xnV?VuY%tp}PM-J`)}_i|2bhk&JR zl}|_}rRlXT)R=Ld8I#E4bA2TsViezOVc+;e=QLjesc;1R`0_~r70B{ z?T%SYV|!eg|H;qq{5c%>gcfxqFEBO3+Nnir7-udjwTmL{M7h-{mG!LiGAiN8Cau~~ z z8ZMZr0Xj-;O9nA%QCF&_cZCT3QK?9pJA zX&UQ1K`GH*;6Zy#QJ6DoSnkrRV6sNC#zIW`rULBk0$qrUh55kV(SaQ)fJhVKTClfQ zO~W644BJ0@Yq}D)(&Yl$|E$__B?N53C`8@(Gc`ozy@P$dGP%vP-d1US#>>~ z<1iqXAwN|RkCN+q3MdIboI7>+nt&6esM|vS$k0Q{{nZc}EgL(P5sOCF%KoeR5&lj7 z!gzb`Wxo80?(=H-Q>EseZrf>}yEiA`^EK&C_ihC~JXiR+S}T{cb#HEss(fZs#jT;4 zlJ{Z+?bk2omU6z@`ZhL?j(}Xh^w$sn3FM3krcnM22t#ei|I6daz{0}z{fe3O??&m; zFLZaB@i(mo9!*zrl`qPz;xNk54o;fA?vyoBAzy;3?4RZmV$H_H3{b?#j6*=Ikb*c# zxYNS+@T^`h#yamzumg24A<~bg$*VL#y?_CVChobp;?r-%8X>4(XqgZp)@|OyQ0}(p z8=ANNB?Xk3@k2uMz08ZoQxcJRvcP#u&+?vh*SSC~xYF$yU^kF=MbpQCD3Ngzf%sBd zZ-_wMnz$VBB#gOoOTmk;j0}_3HCUikz8gl;Ai)3%!Ad>+a8jLKg?w-UohvDlCyNJZ+zKG)Mbi452?q&JXWjq zc9zIv7npw6GiDmZ!ry*d=0^H1)ODBnw#CuAPor%S!ck`xWd051j)<@{cg}`wsnOmBF_fB!dC3E6_HBU2GmR zvb?Kr6xZVAU>e1w$=N*)LVbbjeTgQk8>6ob_SO}B5LA&jI z8!QyLitK?5k$q>YorHC>5&;B%jI_d zMo`KOjjIeRFoVY4sZm;S2rn?sa=a-{#9diAE*BLglnTmn*A?;kjhrJO+LcLw-8PgI zX33!y5QYw6b5}-p*#pARy|&lX6>~7@S6C)oxsZwXGAZFhCk#N^7xlYL3IiyU0_?UR z-(W%B)W^je!JLrj)!{Ku(S#UM#!Kcx8BWhh7Mj0dEI=+;M#e@1^JMu`|+bOSXO{xs0_%bxx%_iV_IQnOMhWj z(-Wh!W-3q4RP?$F*xV1;7-wlR{JuYwXKztDN)*itc{@^H&he6bvP>xP(N*puiNY>` z8CIGfQre%hiW$}AJN#Ii{O1`TN@c1)NsU*mBYTZkbgNu z8}TZOneyVrTu6#*(hX)XeS$m8dzbVW&?S`|Xecyach3zSe&g>gPs}LuI&XT1;IeMV zjbTo-3kd(SZq^+Ah2cWlb+;JXpje?#wf`vZ4LqU0n#@fzGl+YE#*Sp zp;jDtx&kTPzDVMs>w%^KSCsN_A=-({RdrgJy?#$hU$1MSb_yUJz17=6cpS>9@)s#1NG1gWU&9mS?=<3HV`2O>~Svh=Qd(L@iOeC$B0XwZ#_BZ z^7jYkvQ5oVK27oNe?%;W^^;O|xR=|gp=V#TDl#f^k#jKS+eWBS*P%KR-77@GG)m(&nONx9 z5BR*+hS#|c)Km8Syo=}I~(9e(BHz%sZ zco~GV%3~M#5&F{u@1R&7mVU%yi>R5CR~uu=yY5UOfh<(+S0{>{oN<~vV6;n^+B0+Y z|JI99XLA_}^LWu?9xiq;fg6UHRQUs147x#0QZmBH(s(cm|2k%)D6!W@6dPWl`FLok zHV2)pjTQV$YtNakM<$Ht>OI4FQpJIBLTU6DkN#z!FJgf<(5#^!yy(70<@YM=K4ZwV zi6J$9YGsb^M;ZFctE~&aH?O2C=Aq}GwyIcdMSK07r-hq~VCIyvEwCttdE1OdRVjk& z3(a!Z;19fh4UAh|r@hCbI#LJ2#bBejRJ&=y$vJj9Or?klC?UJTsjN*)hKw!a&eDLo zh54qcAIe)8tN`_@%osC?Z%LNuXs%*K{J3f&`^s_g#VDJT%&MvL#68LW>8p}i{;9Dd z$mI2?x&V&bav|l8^njXyFkkwESlStx9&fE#Dqsrn;QdBGksUa$gO5iaz_Cln2L0JA zr7GH=QFsSSOPbLs>yB7?M&8R ztAS+2bVN3;KQ(>~o>c4I14TT2>KaPaNVl_&IvEvLSWDZoTNZaQ)KB|SGI9Jl|Bx9T zj$uVg&cg1{oGLp-@LHu}MlI{UHk-1@ax-W+4Jdh0O%39d<27x>AVVk#4lL@m;4}7Y zkY7eqZ4L4X*|2~Gld`rTlgbDREjNuXa?Fl#(KVt%l*(*x`Z300V$AmE1?t$9Ohhx6 zPFWx6s>pRl(g@6YP{nN(GI+^MCztHAJ^E=>DUfiX4P(YRh{w@d^2z=bw&nRl`iBlV ziP`TbNlTfL)oEYZuj>jAzhqIfGW4yuI|sjLFwchu7}8rRX}fC+#x043Q=TMV4M8K2 zh@{)Nmy7tQZlpYk69{W!cU8JPp#vw{k=kadSh~w5E>ns9U`wjcZUm z1U^50I&N+hilvCRdu>MlG3Oz+dKw|Od~|ydl3`WzL+yZ*^Tb4e?VN?WZPMJ{%Y54K zj0pWn^*S8F$dsR!Zd>9=L7X*-KdBaj8fEO~z_1;?Gx+w;BZ@6$@E?*oq}h$Ky|~RK zypJbLpuQDpYh)>hyP60h>8vKv*vKCQ>qw$q0Ar@2Na5MvxjI|Y3SdOh1hewkh6`pG zJf*eo?~nhazU|`Uid;z&54M4NYWRlU)3)&#i)>|RC8PD_$r?3?s@ z6=D$CVqo=%x3KA5%%E$sfQXOo!p+jv=Z{7YDib=HCKmL_Qil!8-015sJymu{GgQx) zIv35djOyTPd^$C5bKFwkZ{_9>>IIuf&u?CXGIK*V>gxDuIeV;m3W3ERXKkY;Rn0AO z?!Pk4UseoKa&Y`CwM}D*MO~p$2>UUgm^(3i?rG273CfCcO|RXqp9mH_j|kUDb9dVf zVosWFZ$x1haMj>K$tl14y7aMm^mNN^hGt-Fz$g_F>p2SVhvz+KYyIii;yNfRRHKKf^IvlLb1 zhrCsgl8*||_jdEn(EZ;XFje5I1teKre~K1<2UczWW*;uXwrhP0V_O&BwvixQex$(! z4IFZrYkiDjs^0pYuf?D-Ex^L;i<HtxDOPzE zeU)F4Rp+8(Knw`4%Z=1@vv(mvt7Jo0U;(U@FhzNcco!YjW=ld~_-o3$dE zMsQu*OP>v*{gRNL4u$-@2u;uncoR!vX6jiiW+c=u1CD20V5<_qjGx_Y-~#2eBP zAJ_RfejniZ;5WZ3ZJ!XLU;2TP_Ew*Ei2f*TQBD6SZGWC|*3bS+Y1{WlY3m@)`QMbb zr~gvgo?@lqLKrk3oBM9LTB@#CnUoXa?e$c2L$aMm3^s!Vj&#>}!1y&Up?}k@<*%;2 zN8X1*eom3O1}(eRSfJp1T@;MWCWO}aUUmuT4vj77|m^ z&qPJZ8G=HhZ^2D*(wQ@&#>ryUEM5UJ;}OUYcrX3Tz(~_+Bv8&C%Ra0X`;K`yHNx1x z&!-hn1+~&GrHW?)p$15r@b%;h=1QA|C!%W@p%2rf;W0GNcu2x=DpX-_6U*GE^|=#; zc(qy%A;0uCK?k~i0d8rRBve%FOvC4KVZm6BW=Hm1^`b7qup$;zf@?~)nCG3QO=VT? zsAVpWKBo{TAk_mzP3#)`-cCr0wU0&v?Le$TxXDE$6>vT=_=%^7?e?yyY53znBmTHp zhFS``YNdetyZt-QBZVKyfcrZ*gRwFU1(5B*pBjjmFmRV}CO~8iws$7*02=NtXa=5u zHQu|`Ru=xZ)s`oTqi;eCvaHJ!mIw=@?_kNqQy-Z4V2*3Wq?AH1lcp&Dwd(!VMESg2 zU}~T>oDH#Q81MJuI^vTV=&gVl41qGU5^7A=WmTsO&{TPMiXIVYija-RTyTXwc2laQ zy2+ovI#y|>ZlcFREi^|7w)Mv`aS;*omH|%ifD|iyU23Ax_@pw{1*Uqn^>dt~BEH^u zHheN(0o>qS`^UTz=`f)|a0db(>sw;=1i^und%=v2KtTxRdd7=y=A1g8Sx@Dr5yVCF z(I8=F-1#uB>Pr@e)vdP0aA{)6K#oTQ5)ULJ6X_F{fhky%cR`*BpiI;Im#UbtjwiTo z8=0?sEB_0JJFchsLC|@yBdC12Een0nE1aSdn490JCj= z@^7kuvp28p4(yAN7Msr8i#L51eaDob2laF$q&LDjm zmlgEpHxAVLP-RksUA)KAENe9t7NsQ;@PI}lZ|liBq%QNt+bNUd`Y4CE5i`q$*FzYk z9#byhV-_#>x^|I18#;RH`sye20Nph_l=7n+Xn8}TxXy?iXqOxX`FPTfX92+5w~A*U z%aTc%MbJ%iaXsm@Z!Z3UkWEC}tQ9F1t0;5Z=o~64v znGpu@xtpUqVXg%^bk$;UF6XTL!7IB>fvsz8MxqvLBJiw~$BRK6OWdikq~g?8yErP~ zT__OAlZJHVu!Q&G2Orb)8M>2Nw6=|wF?J_BXCJ8Xx3fu){ zVJ8!@UfvA{SzrpU6zz8gZLULu&&uY0uMhv*Y+L%b*;el0-E2!Dvc8ghD(c})w4t^E zF~0oUY&*r(cbxT?*%l9Aw!H(GZS^DpX4@j-YFL2T*0BcWdgEzX?M_!3Nlt_H@*Bac zzexnAMk=YjZ=ABG=NNjl#f5R+6D;OyJu@f^_i^5CcRi|Gjaq@Jf*cs{d0%QE3mYhJuv27N{XUr?4%EOWCYA6ezkE&a+WPo}0V*Y#Ii zL;16|1xdPs2NAK}Ti=jjyJ0MM%d!Zo9C84Pxj6=d?amakd;;}A6wKR6`9@4I6$dQ! zAAS0?S>ekHJ)(&w5@kZpX1DgIj@E;rKLWBpweL9FFYLU=VPt1>3kw$OU=%BOaH>^i zkyFocmG&?6^qf`T-y*rd`hjlu{sh%tl%RPsi!)o0-AxH!Mx&x?mu?2_-S*a0QH{D_ zAAkPnzXS6&tL%!aia-m(W}5TSP(0FAC``>QLl4zsTfy^D%l<3XBx&1aaB5w*8Mmeq zhw>2YUX8U1x!Pza@8?r|$%(rAR+7>{xkVe^3u3oY-A{A&bg?GC5=^`M{=I=eD;O>Oz$Rkw>IID^a8%l2s=2T;FY>E)B}pWen#=P!6$aM#i>GuxgXdZsKQkBh-%rdr)mo=vfIB!3RAm{tEQSQ5?YtQQ+Vwr zL2fCWO>b0R7l?Wgt^?PY64{-0IOn;&&Ahufqsol=BT2&GDm=4CPR zAKWQ_=92%2xLsU3NeIXa2pCq<+Rm-s8@ym_g=+9MM94@XW-+|crmjy^mR&5L0X+nA6XhP6dUVbT+>tDygxTT- z?vAi93(233TPF5Jzh0#%?F^OKEmNV-Cn?lXMPX5I$t36}yx?K!SLF0*1^2JPF{`v= z{vTz52|BDlUB#T>^a+bdjFrf)PaU-1B$%Y7NopZYec7F+!SEleYZ%5in>EGUM-87x zBJj6ZkuW=}9%7q&s)f(rv`f15iae$5h_#_s#_WX#h;1KwMJPq2_Yh*67oVnlAxSmQ z@h=zaj*kM9Tqf{BL{rbSqO;1_LCfnht5n7=fVpg2;!^9Cco!^O>hxI;jc~w5SJ}5b zK@%gMIFijsF<>a+jslxW#O~G9ub$J+h_uT!`-tShEQfBRjCzY{^=y=)F>|G@4O8i5 zyOtu+8SaLhS`GN+_Xo@hYppLc^kgNisfPw~BvaN~OB}wlvhE!4E5YxCc`%DqF|Fkj z+0m)6&mOGn4Y5$XI$Ilk!n^aTz>vE{sm8RJimF?7RlQ^g!_{Da*`cpKBIa4A53oVt zkX$?KOs(~T#1JH#xOb>ti>wOZZPg#AuZ+7&MHuyl)?c6+d)Ywjf<9B1i>5ztKqa!5}fU zzCi!_Ze2)eAtSpvt3}=b;gxSG)EB7@w%XwY{VRMA8OP#kGYD5@{uX%uvVZ6TcU}Zx z2St&fuE$Pha^^|Bz3>EIh^rJrF7q*R$+7hXrh|GU{1 z@weG_Wt`>EqGIzl-$%8!Ssr=)q`C>Bl=^>|ZKL=9!E8G{E1>g_Wzye~(tkJGo)Hf8 z8Ext%|2o+&i^)OcL8?pi)B<`K&p*q`maWBBzVK_$c)3@$S6p7k&xN`jRw}z>3NGVA zt4Jw|-D_fcym@x3;`6d2kqnYzQ_V)L-aoy)%K!N-I+qOSXqgOBe2&6Kf*eaVnNH+5 zZhM-dxb8IgQ_zh45M>vnz6@S~w9;*jbgVM0s2k}++PfRn3g8Ca1_HQ2yWZWPx_yDv z{=*kc8aMxPgC6u0fWNyz7buVl4x@Irgx}_ub?_)pW8$}jr@k69g-^qh|K$c%{p|)l zt{~a19Y+N+-MojzTu$}GrpAHWcsPO*(3(NnW^75U=$6S96PxnSnk}Gpl39{eaiQTV zJU+^+)zX=-s#s<+5F#%zH5)-%li$S^fE}<_bcV+zYmfL;k3ILpE>hQ+Hi;?n#RXwr zbfVc|e4<_MNz-^qu5TPTpuc=fBKZ5mQ#S>kWir8p3S88={fJ&6o*-z5 zBxsZZiyu#odzCI7v)TqXz38`eoCRS={HO{1qg`Lt8?Qbdr`;2$?=#ZVj( z&Hv^G4gcE>3j6K`tp>P32?((;r}VLCSTz4~gC_jt28}R9^RG5?;(nP$_%R<3aD$G- zUZ>}or7ep9+@O*fS!>1D*Kq&S4f+B0-)_(q&;RBIUE=1}2sBR_j$lys zSVC^o*E-X9F7jOCW@u1yH^TM5r`Pp;dI4rz!1S{H$LVbuXL&cuNUu(onnw_WIZcK6 zb@*ztQO^&PU&JB~UfqTxb=+sg<#jaUs`_=K=>8n{KZW^(Q@%ME|A2?0qy4j>GL85- zjQ*-o_|{>a>weL+VbFemlGmx_+QZyR{VHR{G~cdudOzm?VRmNDEW+}$MkbdPW;i9u zX?J-yrR$jcRry|nxH@YdyhAtU-j@YeK?`UK9wB06M8$cZ5!WgUJa5;l-PtT&;Wr=Z zb?1ZAoJ1Cc8h-Z*CnLd6iD+MSxDfch%i8;xGaTeVuT)oh&j{cpdwAF(UOgQWiFJ9Z zP*3e1y5;ZV-hl0tB5O9_v>C9S0(fng5&>zx4*D2YH=@rtR)F0qNYn=)ZRscx{jR z60^=MbKm#?c&I&uPC^jl`_SE2yv2PslHCI82jG$;FK4Izt#n<39V4R9*wzVrd=Mn# zUyy9xec8ZV&C<%hy|#)oHNnB*W-B~&c@Nkaazr_`O_>Pj_9Lw#i7_0V-fH)kXhRkhQi<4}^7DLk|LAqCE*(UU&UwhZus*95dfOupti zMxPOwK!ZUcxiBfwFYSKN$dW|IlVzk~&uCrjK=5xG0X2nd-JKi?tsu021Zj7tLo^A! zL!pAH=|JEEr?H2y$=xj7n|M0&pEYKEdn{rfflcZ4RQ zK=s%+e+TI77g3b6xb5H`D1mqr_iQ09xB$h9J7g zOj51}%0&xMj33^$w)kl9{6+cL)n-6*Y-L0OmN3>dr7n)VNqm0?`h#w9e+ByBu~6Ag z#P5Or>;^O?bT1&#$CdI%=gbbv*$39EGg)FSiIsx|1o||A#qqOWj{Aiy8V)cCiizF> zeXX(gKpz6*9JkZ?Tqi}LGjLqa<6vD18RHcL;Zrw zg!^Upn-8T~or>En;v4>n9l(cLHy{e#SBT|}F#CMZ+vc?k;6qtsv=UjF5ebQuym^lg z7zUeXzrKlKQPFZ!_pM|W<5SiVJcm23Rp{&YY0_9Syw!$k((w|EaOa+X0A~Nk$V>1@(hpxah4eUsQ=D7_8SmYsn~e0|8GE){ck{&_j{;MP67z^ zrIJfHvC@Dh1U9 z`q}>a?fkH#AZ>r99ApN_@`wb4yx0niVmH2^Jyi?AOS-Co~I#@(#;D$9=Z-oyc${Xn|ehV4dq{P3F_hzUI}Eg>8%(Y zcsHJxrU{#!+k(P8^ZJFiGqLIh>2#4(QR%@gMl3<4#1X|&B!Ka`C47NWr zleigJS~aHZit`}vf;vDi-vLqPCu(DI*Id9O`ZJ;Hn%F#WZeaxS&8|QAAw@u*kH*C> zA@`9_!5`apTckSYey94>MVp#q-v3JV!2zlMr@Vkgx+W_BmYR4>~4&-cC-&hwda9Y;ahEzG{4lgQps7NxQyl zLw`=kb7!=6slm0tQrJKw$d))qr}o^)a8SXFIdGR6Kk|yfKVV~PR~%Y_Q=_dz%~3N) zBNrhUMi>SVqGSyQ6g?fqibHWHlslb1(v7-oQlt-U4bb8_Yj<0sF5wXj>Ffxd4l2-; zj(nQ`A{Q@tvLMVr9=iNt2)r-gBLrY^by`Y{#3q?Texp9dvb#N*LMr4%%^w8oXRBV+ zLQvWiT2`}#5?TmaFME!HaXmHUm6q5U!;(b6pgXrw0ApF3l%9UM&KEL4ghjSxM;C$K z#Eo65Jb|f*%S&Z#?}Wf^7O>LyDzp39`iQ1vwInrd#w_)CUU!!OaTyM$6v!HOSxR@J@uVaC)ArB_nv9m*tdO>T00@Qv*!gl;*=bimb=Nc`x7UqWgP zsllO+F*kfovt@*7yuthG7WO>LABfd-LiRydRlAlP zAGe%3&3YlLYaM!gen@i6id^QzrTwr1T69ylr1r`BVdIlq7;`NZF28pS{or|F0>^2JUM$WV2V6vS6m)u|8l$AASTe%LsBsmA-_YLJ~x;b2;Qe-wy=ly`|0kvS1v z8W8Ds0wR52KK-drnIf;5V^`iEvjA$_yRHlU@8;j}H4RKe>TlGsEjByw+Rne%si1u< zHSBJ8!HI3LamG3mMAcUX7M!wM)?Hz%<+=?xC^@gRV;+wg{{gM{#9CDn-s(wIZ}eb0 zph>@edz%_vmv?FvB`kS_FUtSLthM1jR$tEZ(0!79rUwrj%V)S$4>!^-U4F9?V5taBE}r>8>%Pe=XfZfYSo5E)FDx;b9H-5(iY9T)&?L z{LF4pXtqt`oiepDMGE7v9~fA6B${^yH$t1T3qU063O}Rv$Fy@r?jO0{*GM6ae3W!E zwiaVNV5{OTV*u}OExBD?7ORcvPP@qo=0 z`TOQ-Em~ghGyztB3MDR$urhbmnmxxvd`}jMG60>tIOL`9t8voC)higraWtgFeW%~;XVDO;Z0yBbWTGd1JR6jQhr`L^+eApzd$gC(d? z>i(h>2g)Zn4#|)XGELt;m4HfTLYFRWL$=c;7dQ0Xp{arX3Ta#|;YtTkifrFE#Dz)_ zejf`DE_I^DX*@Go*-hqI*)awv&RPh5IAXB~2P+Nlye%i+UXEtRZ9(R`CQxV2D(hzm z`{ZxGy5pYIt&-wxZ(i9m9G1OP6+l1H3h+d1Jlv|bckS=;r5)S2rN*|6>?kcNdYU=g zA_7kNO}DY8?lp{B?1Gh5fAtwE91O8Q{0Y4EGYu`V=c#og0j;Bu)lfbvr#a)06E>-je6yw!dcaE&w_`UmGHxa_rnC$nm!NpI zIp=5)O5U!HG~X^GY?ekQagy;nZrSS6jx^$Xet3Jv@A*PJqdY3W5L#B#U_e2y|7zVq zGK^dV6PM9j2$t1iL(0l!7mUTNaQCSWj>udnv=WS=(~7C!BpylG1owF~Mv6xYoK+=! zMCIw{OLm6sd1gct(kfjAV&Vn|@S%LV-4PD(w;INXCM=@v$B5`GqEynqImbwBEP+8* zqGn29=43`?_Ss7M3OaN4NJ6nP)305FayJo*MK^U}x!XSb3L4FV66qbM3$6zt%}cb; zJD{Dbapy`uF~1$qeJEZn+g&q{z?L|#)Ss{h*+5eUs(xC&CT=ax8)|3wlZcJeAeJHL zaR)=be!lNO*f5-s%6EVq0N9^6;ZC25koZ@Jz9QO!W^{4c7M}JftnW<+KXVcbieamqtbPS4)P@iyuHiDF=rYv@J4YvlX^j)l zr`TbgWg4ctDKE$fjw)FQ51Zc4)Z4~N%W+aJOOUa}&{rBuG z6sXt7B*E+N!tamCZtM3|d}!%o6PR$iy*Z&EfbF3Cai87mNy|*BA8#7_e!ft+T-C+B zlMFi_PL6mA22SIQhcSpFP!;h)sqB~B36z*D(6ZuIWM4O-&18Rn3PK=#_e^fZ7V!4j z;f*Uy&=As^rv(G(Xn%eurM-}{-&dQCimNS%SZk+ zH~}I`C;rEG3l2#5A3-zTYtfRgP`2t4zkRn|aZQ93YOwFVTZ(XUkz0eXtzY4Blr#Mq zHRyX3!2(W9n#W)B1vv%Fac5%SON>>zo`-c61qB0TkjYD-gK;qAyGpFeGM&;a3Mp~C zr-qEqG)4R=qR%x1-8Rvv$6D!~JeudrsR3>rK{E}GTtL8&&ZSLGROVwf!-Mg8oS;|zv?%d<}!~Qx~9NQZgroJY2`~v_GMP8*@()+Wr*}aQ{lw}1Ax>ih1l1Qcp66;dU znqEc@6QZTy6MK~lz;`h%kc2(>4$lZ5rSERS!y=QFa2Obi{abwUIDgYqL zisV5R0Ehzm1BeP;ZAm}cu;86ZQULY&3lNpNzCVosWcUg`_cJrXa~QBmKhKho zIZYf`-<~r7RK|mrc?C-4#vxKMr;&77Q9KRM-AWza4-yJrC|$uETC6EK$sTCj*1)5B zug9{r1qcR1Z9_A7G*MP)-m^9h(IeG6=)q1`H(m_x}87C8!P_Hc5BSn`rCG!7XPbxPS^W0=tk+0`6KFg z=(k{IPvqvy&L_~cQzir4goL$lK0BLT)iv-&hd1Dl9-RRXvT;d2^iU8sSHGNxoY}bL z@+e0eWYu80e0;nyz<2hz!R#jB5<`PlPf%(l>TARv0li*RcksC~=co&aN=SO?ajo0j zi6SZVcvB^MrH+I=I=*FoLGK&uc56QXwdS?wQH%*6(xF{825*{fer}gA3R4?q(X}MK zSFlAHRj`s1T67#E%~z)1-qnE?=2O^vjvZkjiY$Cpj&|7_DB#}jT_KcU(_UX(>B?2| zEo`&AG1aXNWR^|Elss)PoCh_}xfb#x?4<|ZMzKWsEF0;p$}WY@4OI%wRo}Oe*@aQ{ zsXKM*GD{T2^f86av=erp!9|;an5JMFPvh>m{nX5-<2+LJXMB6CXUGi6LRvNzRsK`K z&zpoEuu(Pran(y}3K|9cY}TtQ5|fKB?vPy%!j}7Xtadq8SF!sK^h@Uf%iPC)bXJtW zPnJhYUA|&CxJj_8{V(*qDMFh|T0!DE6QmS)C9iOhrhz-Ec^?v2q`!tf@PEb7%XF>kHV0NjYPc> z=K3i~5vRH=fZ#b8Srvbsx~Jr{Rs;Hc^V%e2(aq>sU=QK5H`r^|Lvb3`q_65s!+m`yFKt-}zUe8;GU6VSnp|EJvuav+--?ue5%k+2Crgg!%3~@s3 z@$`xaMZ}0t>;$j6Ic{@6I`)Ti|i;xE$E04eJ5m+2{_ z|2k@@QlgIVWoQk+DG7HWBwsZ6 zDoaoP1g+Y_P?k3ZYy9lyZo7!+Q!=wMVoQSqQ~7e10Q}R)gfZw{d33lfzH?wA zm~&bSM>l~bimMjlWI5=9n($qtI#0TxF0Ym&x+5qopAAbs2$!bv+PtP>9%J3Lh=5Q_ zy8u)KPvD$-?Ap9=utsQ=@u{nB?w`T(AmKYlnn(|(4yIYZ&ylgIa zU_ntdP0T;a2J9-2T~?pCF)e!KwwYO^<2cCd`{RMr>IcSH`TE77FrpR26!l$Yk)dY# zE^IiZMob`w<%U6m>ggXRHL44J^6CCB7p^eDJAU(c0U~qJO@=P5tn?x}=^f6t6u?(T zg%0@&)7eeKlgjyEbZJc`6MiC8(q?fEI*i=gsRw4xsbbon?y7o=3?E`H;?p8xbn@;D zW?flj*+UxWmDR>u%Ip`0$&A}&M!==&P!kAu8zI@Of8QA@HierZe&M>8R0a@k2@uor}R zI!!rZ%9+Nc>%u-c76kWDl}qJy~`)?oeyQ0Pvw^OfIi%C=2G)xS`Jfa@~GeYT)c)f~Wp2eQ@;7 zhl=~nhe`+Vp`M2?0HRxNZkuOGZW~Stm<>Sl*{@Zh#Rt8f8-JOArd|ln(dDF!X9yAQ z9=3bP5c2u@_Ke$OylZ5#{0-tiJ&7(E8_NDE75x(|{XgVG#fppqLeV7T|66=0i$w~) zQor0*t;Rm)602?2(0FWDAYH^1qG;W%{Yu?#%x}B<7^ROHdVo+gvHN!@3gYyyQ1r?w z$HUB=EvaGvDy4}LAEnxe}1w%u3K3swi}lj4-`UH16Wc&^&%Cp#l1+i_eD z5qs}0hnV5av=%Sf@M-lw53lf7UW|Vn-rw(eKp(|?nGnhU3{WKee9AJvs#{|AF?UI> zu{in~7|LLdLJMh~>-vD>zM*ib|LE9HyW{GDVK}t0k>fk^aZ;t)jwzbDAB7g1Jmr{! z>Gjc$_W$go93}j}>7x+;-|VB5{^_Go{kxB{^#5%iMd+XVD1HB>kK+D+p^wt|cOM1s zr1HP@QO1ItM*s9t8UTHi^8b@Q3ejJE6vV$0{h_}S{d}hPM87%R-6DY5OcZA09d0Hm z%RF{U!XsHlE;Vr`@9YfB*y%oM!l%taOWEM?X}{=6(r*ogGNovh5q^zu)f}c6O;GrC z8VPBmCA|!LXuTvJ2fTrS@%yTQqPphEjG{jdDWH9WC4pWn()Ue@nl86g037IZF#kEw z-@&nh`E#Jp%J;GR53L-4Hv5ZKuJ(sk-tZT#eB-~;%DW?oTCD#UZSNSKcNgH@#&*)! zw(T^wZJTXu+qP}nP8vIDY}-xx-tF_u%$f7foNwoIzV7R~v;S+a^()SL>OI^r-D$qVF@72q5}b*vJt{{!15EUomk?V*ft{eWP*(DHsxV;^a5~HqO10FX6xjG4YZeDycP7DQA#&>AHVCoBs0=ZScE*}Dy#)HW zs>g=npW1<*u;);!^?FFJ1|W$I>cuH=Cw&|35`TK-ymSp^KiT}xgV`tWB!C|?5UWA! zCfRx%LrR-)TKuk4jYF;ny`n12x5K1B*bkFyJE6Y-TO%U^ZP3`dk$uxBD04rqR7>j2 zx<#eovJzvwb@*JkzHl)LyVEzh5NyVr!sL+ynP;dPVj>M^ea~_`SEFQLRKM;^!qiF# zx(=wBAR7yeJGE+aD0R!&C9BbEoNgnDBXv!N;6$jKcVSy%FdgQPuulIZDKW1qA;JU-DZP`I>~%Qa+K1talnRZ_hB7HUl4Lw{ zQ;B8v%F#kRXxo0l{wA8_5Si)uGfr*L1rG4K-G&}YBPU|7;R1{izv2A z)}&f@@ctUrmkV|~juUuQQR#*NiTh)~f%oe7N)T}Vha=Y&g6`EA)Y6XY(0d4-G|#6; z`~m~2_p+V5wgC8Vr7_5-!mppDCOWDd4!ufZM}WO2br}V~-qYrvy(iqei9dT!W`MmX zaXQrGYD(8#ZeYB_{qZox*GtzyfTM38{j$t>owR7*-|*BoP9DTuVS!gG^LOtlojUyQ z-cuG}?@8*<-jidk!K6`3;DpFR9fHRCSYsTkCQCmRmuP6~4>^0)s5Su37b@89ReFdH zRiYA+Q`SqYO3{7=g~EXC91jGapB zg>Ja$QLV=Y)!RrV!C;#`4t^*I*71~VxbqasP)mnThxs2p*e2TZv zV9Xe0m_*x{eQ@2PvC?{5*i42Q13TQ`6Mq4_2e}G;+P};s-8=<_YEx|wss5VOJUJ(Q ztg;XI8PXdthVL-^pulB@8XjcZ_6^3X`=-6ehN7ZC#?+L;)%4+9PW$0%Zz>$`ENTPB zgPze_Hinrc>-D6!asI;#z*QmhGc&qhZ932v^9#Ozezt!7R3?5_yZXM;O~xQ|m_1|v zc93Nwq^pb&Ss<`#1>QRQ6A&q~jLw=_CUGMIW8#%;SHj#XCYM61_ayH>|A{?;sfNT6DGX_N6}(x|qtIDz488Js%f~lb`aaKOhWe7=UHHy*S}`Mt>0_ZYm2;u_vbAmtnc@USjAO%Ufv{ zQJjsyhKywV%(A2?3B3@(3aM{r4KE*h3leS|`vSGQU9n~-8zrY3rqYe49=SBhvlCtH{sC9*y3BV^*;Jr7k+;|c-@sb>SXAwakho-awPk*(o z=6Vcz+0z!s*i;6tQSNYS8I#?6Kh=Xhyo}wr;K}p2?)sbtS6H~m2GiLEY5ESJOSP@@ zEVuRM4B~=^TqPVYOG;U;AG%$%Yu30TWYrr0*jAe`v>Vi&xM4~kU9$~Mx8iJsll!2) z0u+{bKa5F|mcn4-ar?4pJwztHB5Q)!59I3Zwph{5G4_FJ_kmSae;^ z;A3`=eXW~UU@`&pu~}0my5t?-EvMo=9&A143HYe6APOWBVOF|nO_y{oaAZ*Wm^hJl z>N9D>MjB3{DjRuo7+}ZiONR_wkNkQt1*;vZ?M9D0nR&0fC@pAPzy?irf8>}T)E1%UkC5lZ>3&Bx}^IJ^sJhVA|ng;Ox?(O+6}p36>hvFk!=;E!VXB6kibeF@+0O;$w2MJbX9AhWr#0j;%BpM-FPvJ26^N`nVw^=)3|_fpe#}s(3CfLcEwA^hu-;VaF za46je&oSFkxLHNGexEK^J6^c7_4EMji2qE%05>Z}A*wfVCuV0D+`8@r6M8{pT>qr& z?g5Wr+jSDX&9Pu6jy1MmN8O7&CEZsm{1&M%E%JT1K0wtddsz9u3;Hcr^i3zGEVApq znUiYCAj^V&7ifu2KMoJRoS2mR3^K&)rD_2L{mHYxg1+V-LI23DC)VBu@Bc?ZpVRW! z|03weaXF@4|1W|*6U#rBrL}~@iDqxtp%2Jl++B=pD{|nkqe}=#fk*B>j*Kv*7 zYK6uRDnZOvLvptQiJb$!Up)B^oeRXNf-3$^hk^;X#1dq(EMxVIXJM;HLTC9q_`n`SYDBQvaz)isoO?L;(<9gdYAaAQK3=8(UmE0ENOEdfnhkl%u=$V0{> z;wmpLQ=R1aCO4AaJ5 z-NP-B3HUp2DAaPe{{o>pSZouw>L{R&uLXJ9YpnN5F-E$= zxXQm_z*V6d%y?8tnjy!>6lmodP!t)89ni@nCboPCZH4E|e&n8WZjoyEC*Tv$H7!PF z=HUb6d<4yW`NF#v2^fqA%Tj8_4kXNBl)Q7yvq)i8$ZvTI&T+~@f55#Ed3h>nnV8rY z4Xl zE1}^oWmxj`0GmT{=IMO{{V>5k#8syYkenpivz{k%(E;ucw?{r%C<}Q>2ULrP)cGVtlbW>RR^rOAOJbG5kJe)7#Tmhh zQ`h;s65xmuZo8xYnE5&0rgxui_4>Mh%zPWYPLaRho`?c?W!P{D2o}9g+**jd&bpF^Cm+RHD_1_n2&| zmHVQU6P>t@-xcD#TPmMv#xIV>V_0D;@*!kLQcWge1&BSV1*t2Omz{122s+~vz%s7C z#$9}2#}ZWa-ezvWocy5wWRFyP#2+o+=^rhBH^>ROV%=Xr3*9!{37eA^>?=nh8cKuO zJBQV+%G?jcraGNMPyjU~*tM@m7{9wS2ZqVu0vSd2((SOqxQ`f!TT#$kfOGOm@b99Z8hXmc$Pm(}Hv7NojoNK}UX; z+GFS4;U6XcZkP`Ti)O`ZaK2CqmzYuO+Hxv6?35>%)mpA`Esl8}2{m^6;YybAC;8_<%td#E7`CI@gbeHzZ<^zQU^f3&M zptHXF?gy~^Gj?P2#H78r&}J6ro2$^(rmvqw?yTXbim4fn%vT{^4K9yc@0!{o4YVLE z2HY2X#NMqcVf>nD5T3q45tN+{kvn*PIX2&`0blD)=f)2g8#r&Cxwptyo8br&p}5~q zD_Os@2V*_V9s$sPaQY>1@&e)oIuC~JLZr;`p}!79W(7BQ zva7-RvTWA>8peKBG46{h`lLL5Q5XWL2g_=kqzt>DJDo___jn7+!r4Dq&Htu&G%#(d zc>(6Xj4PJOwoiPb3~9$Q2usNpx&q3_$gS)0Pmj3D~~flGxno3}_;DTFinW5tvuQX5Y`CH#2-1BbvUK z8g!10qJVBZBZwN=LPktsvq`5|OUBUZ7zxayvc!9@IFOB0J_-?=-&6#Q-`Y_qTX10K zZ~?||@1};huB8MMegejC$>cldf*rz5$dx!tWcjEkU5t4tv>>Y`??>P|zP^PGHwe-@ zx{pjd`f{Z#FUCW2PG;#A`Z-ik+Pf7{c}8nWlP#(VOE9GQW06E(T%Sa;EZKnbkohPJ z(9rydDpQbeoPGujI}J?7y)GGC;F0EBM~O5EC>-}}^dgL_=I`ErSD%%&RUWF;=%EZ| zm0npk&r*?1%=Po^8}=OrY(t0XH`CCRihx%3B1aTY}Q z4``63FpuoHU!0qCXoWWiQ~i3c8=FSCt~YU5P*DvIE;>w@qvpV=w@qM4oA5;U%9dUk zGf4_mDRi4_M`G5a(~v4G7{4Cp<|zVY4aEngFGMqeU8P*z49DJY-IxdWYT6h-pfE}+ zm7(2;F{-$2zkhdSm=Pg@Gwu<k;OtjI0ckCW1DZHx^RmhK4<)84wJ1(hZW!&d=%}Bu^Ys)w$HNYk$l|N1OLEYiqZiBo zoz(O)7cRj@#x*sL`y3wLy4j&&_Z-cakDK)i0;#eFG|L@sqq+TN0>{tq$~UOV=h@ox zM)B)Q$b=5%gIw>`rI#&%DwdAm{1=&x1+^}e6OSR>dN# zhBgs1+M7$%xGd)S1Y?s{=k=_MO6nE*QML%BI$s8BDs7F88w0-^xE_-`hrB)nbMG0Q zdze6KGBy2_Yjx$VX<0=rfT z^uyz?myd$v4Dj;TqYmgp8hS99TbWw}Dp6m+UB1J?k=!6mPa<*Wh+A|`MT*y$8)ic0 zO%_s)+8cyojhWW0+TWemrXmX zf+S^>N0Soo3FG4_ZGUq5JoxAZ=m)RW;DRC~y_}Xw*|=T#)y`eFqb*ve?01}K7X(j8 zs$8Vls^k=8Kzu1yc*{6h7_>j^^>}4}_!r;5rtilXA%zSd$^>N)&NdiAY8>U@WKd+Mo*SWds^{A?suLiR|zi2yY?5+@$M0m{bR;;2E zCNV{26tllI>lWrR=rgEMI^~pQK~=9}3nx9@yH{cxKzf>O6fMe|n`k8Av8Gk_wU z&B8RP9idk^Ur|-xdvX!@P}O3eF&z-@I62_7l7`pi(9_&(?4_P5V4)>d;&ll482}Qn zI)t(7I3p~bH)yaR>U_qnODyoVw@-*Kf9jooQXmjU#3kwF;-RuSyhcrQ8?uBDF=rAR z$hB^fA{BAyy&+x6;^e^6^wJXK2BM|Jd9Am=stobB%-!@K6faSoESD#9aJybLF@gW3 z{R6u1ke^|?pr~5kv5qVUZOGXlKkR~6Q62A!Qr^p?g+MyUUM;nx^fq=b=PjWP@i~D- zL-uPndHZ`>+HnA8SyFk0^f>eI`ManS^`)8xCQ3l9Lut;7M|H(=$UnKyt5*|}jgFL3pf3gyf|7ImfhEp^acTRk8=~zr4|7Im9 zM(Vw1!sJ49cCEW`1NNW^R}FFD701WRxSlE?^43U^%CO^VO5#83+h19gcuDC>;uDB0 zxuRL2D7fGpiZy`~t^Z~vYyeq_?nR9M5c7dpvRW|*BA=ln`YK4qNO{uh`jkv%NHwJu zX;d5iZbSW*Et(B5+G>IRCqlToMOvxrMZStWvN zoH+k{<~_=8sABPz#6nky?P?$VIw^SVw}44)xo{62a6qTK zN*uL2@voMo`Z*^f`rESNXc!OdM6wl(`mK8cq1I1qbw*Q`(gun7^2=IEK#nvaDF4b`Hs^mE~?PgTxk)7wm~?|ZIqRtAC$ zH2~wY%h$hZJQ7A_q9teK;GLYN0;NeNi6Q(l5(ECig}`WghDL@yJP#+U<%p8*l2K5t z<&k!7`3Pf*=hl)Y?xJ+(A zL1LVt;C4XW#L}7^0_TL>UckgHmhgyns&d7U$_X26avSX^=Zx8;2acRS2EF;rx;1Nh zd#-3~ej9HTT#`=E=j9G;tRIkc(4Su{z725`O$Vt;1KgV`jiW%O8*MW^pdxg@TamAZ z_8!GIT6kwUIa_#mB;$PK z*t{ox)Za3OtuG*sbrDRr@jRY(^*(1AP+_hg3k{rkH?guA6tUWdu!>Fy5cA1s6@PZ! zt5S{8oBtY;ipg|L0?GQ_;p(y>8FZ&#)#=iXIhDpKXEj*s9DZzpZTUycrvr%jH3EKA zj#Z@L0${p{e1za zL%ZTr)mRq!7u?)o2xj>*$gwZ=3)qT^{Y6e0T+=)j*^ob60!j>?=QFQhCy+FmyOR}j z#|B8Bk&i!a&3ZeAVJW|e-b%2%=4 zb&N2$a5wMxY+LZTwmHA2cJH}Fu-TbO5fX|)*%g2E_0PM^O65NsXzxg`hfShIpOr($ zF&%=P_;3wUf?mrH1HMh=+q-OAz`W)rIO=ZoeaK<8|3<~?H4JEn7$C?=QODVf z69*{yJmY^m`w;)x*&mgW2XywI2O3%eTg9BLF0KNsjvzLr5hGJzmU|peyYx% zJTrv#+$vBV88QQ;YN7jV@h%(WWdgz6)ZAByyPeQARb)E*?| zUQPB6GQPq}eFPRH<7|=I8Up%4ng<@Y4xKo+TMu(fZ-y2^DQ#R*`-*LS84Oq~gSuvb zWgXau^;Z%r;xeHCd3^p?$d}!eAQ1?B%Jt950|@!|)`^KmZX|t_b`d%sk$oiV&>FMW z%vCSN{+;+#SDA3n!Tp<)pc8X0b6z`c{^sBvx8?}*=WM!(tlmxX*n9@P9)ww}(#IYp zd)Lq=^qnR_KIT9y5BPjUU0obTB1mHW&L`xrpm$IXLZ7wo3`sYi|3UE20R$fmkcc`(azt^<%+~r6nXEGWyeqUpxFvLUH}~`!fLG7d#)0pYlDb2XH3p>aQZ4fNw^0 z;2qY{LJaDb?xf-|Y~Q1{2s0eX@1J}Pk7i7iGjp_vfNSg$UlY6ZOLg5ch zsAc|0EO?SjRP>#V?)1rmn(wRcc>h)pg;M9xlDck%%rDzokj1s1V+S7;zfABY0k=}6 z2&FH)SEgWSqs~Vg)W<+>wVf^G9bLc7mdeg_@?K5R4HRmmDkrCq|5!?%mP zK$5)^p`?Ym#(dPaCrEyeAJS7DTiG0BRi2}Ti+6r>J&_s=zQ`xJ0Pt0+y8eK>`9ukh zUClQnnr-L-e&sp(ijpA2I~NFhb9|T4ia;L2{lJusZCmbmx}-1{rcOU#J?HAckwdkW z5c5?2;pqoAG*5+mvSJ!0O<;zkbFLGmJy_a)*MY;P@d7lOn)gb@rQaF%be$o=x{s&f zfi-u;S;pKQeRjc>M0UGrotJBpU3cL&x3il77Css11;X$G7;Y4J+4hRh(_S(nY!tiq4$@}}xK=?*^BMb^pZn<^AqyS z%Jz`Wn!@G}VzT2b69rZA{ZFl45G5fi`3Q_vnWNJY4XE_&_sZv<9^`%!YZIb+w1Mg5 zlhx@FGm!WI-z1f&lN;xOcRS~`kAqbhgHg!GY%zcYC3wx|Iw#MV4eD_DS<#^(ZQSGZ+!1QYu=z0_QLNn!5TXt_Eu!U2KjjqKTQHHH*t2E!Mw61m?6x9NFwQwBK zoYhl>q?iT+@J)f-jzpP4wQ{MgEa{@o=^EK%@oan5k7`;jJ?O0Y>415XO5n9yvf&0w zm($juv-vc_7JO=Xa(RT8b6Qg0J&>+LdAwI$oNo8%=$wxaxIKTYe&fSgp~zrESgO{@ zNuoUefkTLWi&`xYOEg#>_&Q{eEtrduI0->K}F{`Vc;R*lcD4I7ru!J^5WBHD9f&2!s3ANubMJheH?EI`^5ar8P= zX`M{K7gzFYWv%#)*1v&fbf(ZRW@F@k){#pJhh%8w%)^I@BFiUbwAfB|=#!2VcvAQ?m8%6|_w$hQ4oY+w?2mtG z%A4qEJ&~;qT=og#YUFS z6VwO$;NcF_FWinfx?7a+#m7=n{=G%{Hf&=|zuaIBPsShi<^Au#C z=k%wwokhJ@37@}zl5L^_YYomG)XFB`Nw>Cr;$5us>36y%o^OglOWFM??%)3@?tf?> zad>euzP{Q2k6*0jw;Bp=|2Lq|_V2wZv2dc^2LSXDVYmhuxcO{Af?_;z34@-zS0V#d z3G1&#57Wqm&NBH;bK#rGVgiQ;n-ibH`XZ1=pYf-$CZZf9%I>K zs5myrG1RDtG1V(G`~&nS5&2YOi8U%nI?HjF>>aECK%Xw@AE0kFVOVwi-+_Jr-ha#O zzfuv-p24Gha22_-k9r}5dqo1g{BV!R#W&pfOb4eeh_>T%`tR6!Cu2;!ArwF22c`D} zfa@4WQ;gQsbb!dGe;S%hc6)s#NqZD@pu8+a*7$MDx>?f16Y;Dg|F!kM1O3g-!@#Pwr$YsN!N0YAn^b^` zKPJkQ(9lXCv7yjpIeE+-!vU?9*MS&chT~*3S{7QWQ6sE&a$na~y*B{iy&ZsXbPfw^H3LGn;Zi`cx5b2#&7%C$`UBr;YgZ$Hcc?$qdag@4|*e z-@nvA)a6>{$-x0tPaTLk_3yTp=98#WfV}pLoR9^W_!&OhE~*Q#))`-htyitPZJ=Y9 zU*^8D2T(6Nd1>c*D!!@|r>I^Du8cl&^ z2#2&2Z@p}gZ?R>_6neCo^q~^0={kLM$nU#rMbK@OBG?)NS&!fLIZ>UQRE7C2D)zL| zgP}?J`;p*GDj)K7CRN^p4NL6rtaB~g_#D_0*g{Xr76DC~y>~QzQ!-{ybULq zAf%U?5Ng+$!gTZt;oxW_xXAqnTaFIH6RV%qV(W)`ictX!6P0%j*R)9=R9$u|@)@Pm zgV=lKE#T}frjTEe!K?QU*+?rw$`_g-?`5QuzhVMP`*yi{k|R6gCjb$j7&f)N7H*4x z;i*!(D*(lR%3AUzQU|~ZnNb{c57gmT`(dUn=%&FL#QP&tqJPaxERho!S3oPSC2X`K zbDtnY0z&(y|AzJ(2*e!apR=&7cvpm>03tpYp13311OGvZbThBjaC-s?z2GyXW!Gd5 zN;K5P_IM5hT=~h4_)xsbaF`%g7>zSYPvUOi^H=Dms66!;68wZV zi)L`isoronoKV8|-Fo`>^sYG@3q?Of84xIweOKmh+i8X@r_!#%ALHq%T5%NmI0t)+lO}2E9j^DH~GQv)%d;w<{L1 zEP(Mk0bQN!*v8IIlP-%`?TaP1 z?ZU?eL$BE;y0~EeYP4dStc3$ON)&djeE_6Cx`N6#&+X~S%3pd`^9Si$vA{m1dlnDh z96assa_5S|7V=YBNg?`7oUj1g3Ef0w7 zOZ6Extt>hEK}KhfandpNh8eB}`JU7Egjc^|`e(7}5SmBFd&$Gw77Iv@Ud_@2Cx2cz zrAr9898#FgBP|SiSzdTLrDz{FFLCa7FJ6o9^*fQ@Aqb!qAtxjr>7=#gHz?MDuQV}% zvQVHS)6&4Vf-+|e|1fi##}=37#TscV)+g20qB=!??lMz9O!+r#zPN4S|&I{xfoAuLSxivcx0TB)|-M- zBO!Devt*z1A#6E2t80E&S6PVSRA0xs3u`hu>#%3jaK<->ZwBMV6^HkfWu+?ordJ}v zvc|LWX^JKd2<=BZ%%;=M+z(cieu-(~Nyl;Z)xf()xMCskKdr6;Rfj88B-}yCN%2eQ zCL#6N%GOJX%-N=?iLz3BZE!Y7E%au=_<6aeU|y(e7_v`FEbNrDaY{tZdditSjjpkX zq27VB=hYD|)d$;dcIaMMxGru<1k*!sJ2-xTbg@zyyx$Qd8T$TsS~e`4bLE_2vS1Om zVQh`hUUakCsBOfQE*8kLy*DZZO*spC=D>`2PUHNOahMtU7}l$C-TEQToLgASymm^E ztwYJY6R~dbD12&UIoVOh1{!0~RfL8a(Q?OBsjAvT4|L@*)~Sbn(+7V{>ys;VTAUQFGk3sM(IO6~mDc z+-sSUBWl@{z?#N2S_(^G2+3xe!k`@)UQwc8L%R6XAf{Y8c3$5d9*NacHAe|RrgV)S zW$Fby$OfYN&(iQ!fr3^6w|0ZcksZ?vdsG_|H(yH}4widXk+OJ0z>?cfvS|nU%EZ0r z8BJ#N<-o1wZVS@2Gy;@dn8lEQW-ZP&2i1t)9J-7LBQynInUc%lLmc~p0srQV?*BxFeg4LkxgacDc&b%*PddP#9?{Pr!vxQ zw5WDnF%$Rh)qERoOJ#N{NGx^n_)U<)>MlDqojP}XT)|+xNIO3~mD<@ryPN0_`7N_`<3P27df{@mEB{1)2mYjk$=EP1|Ed!3cg2a`&-(-+e^p6 zT)hIexF4IG!&!BNa0;i1>HNh_e{%OpzeCG&!I7c^OfTrY!=7W`1I`P7MPwq6TT>aA z2q^8_s`_o3SrPv&?Mt3*5RA$LO8a${b(~4YeSW$={N*4xIXni|51#bkj~Rw*>~AR+ zc}^%_I!$qsOUp`xM5&T`xZfUbv|nrWdf-3)Vfns3M=$p*qrQ(Uqk#oLp?#AK56x$I zw7nmvJ5L%v@d2s*=1veg0meKAB!*nP*@cbX-@k+qNf3HJ|L0t}-~yGeH2^Htu>L>h zn=MQYO#t)FO#gr-Ex?QC4y+z|)vf+RmBW$JP&}O6hoU~W?e%x3L?dJ|c0#zcVRiQ~ zUc($xlvTT#hb&3?nXJWem4&6e$A#Y0RG)F*ch58KVoWe1kuBr&SHV>2K9)G>?oDHN zCVRfciDJfiUgd9bkoc2WP?NsDUycPn=*lvCR3jMrj_d*u}K4MEjm1=?nz z6vC=b0{wMhG|^dslJokCG&1tJ2o1KlMVS_^^A zo5LMt3V}%#STXnmc#9!|<`Eg%^OORyXqgA_P%ku;@*{|(8_qmN8tQh)P>)DO4}7?1 zxQZvvJnT0oeQeG<|4-*pQH4;1DCQ{1NOeqjk5CSUAkR%C zo#|g@LDYxDsGM2uqC&BU$~#L89|U$E(5H_DzYo8i181$kM}{U+#)-*c>b^tN#_P`M zijItf>m^A?!}tXrhIP$`d`|JS*^3S)KYbzn%m6Z4X>XDCI!ac)Y}LusD%-`nVLQUp^@WonJy#c zzPk%5?#qOw^DtG@SBITOgLL(`zM1fLP^hV~re5ga?ule#?`Da{<{PsUFk~+r#Q}Kw zZ`URV*FE;cO`zZJa_4rQ^PO{bjlMpSZTmT=D?BIi{^B<>YdJEOKgE8$nilpi;YlOr z<&#<+kZy+rX((2 znhcaacUv%%Bba2JVo?pY-ilB$u%w_MW@A=Q#5|3iX995QLUj-(Mp`MIjaYj9urJdLG{c2C3m{-7tJy z4h%#-QV`S~`Dw}Ba8OKRtC)&2#{j6#r7psWoIVDb;-ljTiycOa9IlY-s5z@NN!!Xn z8X0R>m-f3iByT?B%ok~CIBuXT8(M0;stDqlCB{+ix_tA!W>DBX9j7=)AhWH}Ip*&X z9eSXga(bm)2vQ?%&leUxdV(tM`R65Hi`Uy!fKZRPyU;3wNP2w=E0c~2O%7y(E>^tJ zzBYV1+a0uk1g!|@Z}=Cm*fF(KA&C%xr_{`|rd)XMvT5ge1+;sCo5@z)R^71uFx>*h zL0Z-czt|8}J0OE-G&JB(!zN)?H~X_kW`!=Bouz72pz-BZ+t-W-n$Wq>uzMvqTDPp577d~3eFB9o}{;abz0a(q%ZBw+{5P3Sa=ch|A z|LQY>BV@6WxgIz8_9->&wMbBquI>p2^pAcx`8lN|YD%&e=@9r29SQKnR(8=)MtRG} zMHrpC;Xog=I_&zuS}fqlpBsn+W$VrKX!Awmr7onmNRob{l;Dwx$b0@?NTh46Tv}OhWNqzRK($OrmpNx;Gw7RkBxV zG(H~%1-={V`}DGPHMdtFT;LA#5G8#F@S6rFu1=cZO&dCz zi0Wv>x$yxD*EchPon*!YY<7FIUs!RU|}w=Uc?;^NC!~8X3qJG&qfv zQ;$^_C9%+ZaP0(bD0wV|Y`1S6|DoaH>liVSXK{j-nf9%*VOe0J0kr1$fzgB(??|`R?545;RsC#X`&_JGBiFcY5u0 zPC0w`{^u*OcpPE1fI|RfT@&di_TY_EsLD(t0zQcd;!p{`6ZKiJAzy03Abl0J0+Nt# zegM*a@f{(>p)?zJ1o44hMU9StfwiC8a186Q9FV@*ma|4(<_#{5|c1b^Vw`-UG{ESxe$iRvq0zb>yQlzhvE;) zWEd0|?U?bO-tc<&U;HT_=^7hn=F@Td(wn)|(OK*to609BtQVJl^l;idg_M)NQwJ~N zI$Zn!MO(FAwq(oS$2NAciYf3GmRL$T;E=nwDWnWQ5cM7i#X5830sNgsJuvWI?j$q1 zd4b@<*jP2O4cDOslVBy>6@Ag**tuYf7cUgGa_xG$vZ8Vt9iC3MVxdsIa=Bt-HXDJg zkA9OPFY0B%5p||e)tO-MLk?R}6JZs0r4JML)Y!B*!VW%CzqrhVvR5VLhjJsrFp}vb zxripHQqPe`%of%NXzlTVpNBa>Bh?-~phdh?7LDeRSGL|cLHt zWQgN2#M`d4i>$e{WEv*hu&q8;j>HmHj*(M}`zQYV5+*(e7vZGc4)5$LKqEE6CC@0s zl|7ZGPbJMn&Sq}To`!AU>R0WlD;-D~m_A)D;x6ufEo(n`B2J)Xg~G~{f>l}FZodIh5R|~#|b}giD z=JhUjLL`v97cpiy?CjFH1ZFri6H0lA$J*-Y3&QquiXEFR?2FAdIe4pwMr1K*XDa+I zp6C5CdV`|Dh!vxvsd#Gf?mvJFOtJhBJnoU~_UiEO(@CejWLj!HC)6=Kb zJa~9j7rsogh@V;vQnTU7QEJ(SCG>L$b)783^nG@aNmFU0ohnMcX-PX$OEn=m2XRZA zVJby=9KC%auR~Y|_E(6nCCA;(uW!Yde7+b=FE#!Y1zoMWsKRB$gN}^mbgs;YMGvJI z+@Kw$iv_KmGJvExmH-o<*+d}Mqlru>F=eX0x7my}zU{hds;1(Zew*f>v(jwTq&x)r zVcOZd%`tqaiIyrigQJ==U5Gz**Vq@0XE&aa`FK(!VH3MX%GOalGySV9I)Jmr)#75fG;b)2|bGxaw8V&g5sO%CkSv1&2zD!o26JwWQm#uVG3`G}oIDE;VcQxC{ zy*D$Sv~C5DnOPy+6vb4Z+U22BXBvm0YZ54R7h?^33r&u;b9=jf&t*NzjFMm5*oi)@P*$Pd~n zm#OG6hT;$&Y|uD0HalAxZClFe!XjqVxK{og5By7PP^#1aL)Se9XWDOT0*`Im={V`w zwr$(CZQD*d=-75Tww-kBq+`$1@7{A}&dfel_lM5cR9B_e|61$%WyY>)n0!S>=ImCJkcl98vRc;H(XjAEs7$?xV0qZp` zvV!1ykgHOty}G9*hpXM$nh8~mvnne{BS)2eR&$LPKq9R5DFO^Ci~j_Hp0r1y@i?A9 z278=Pc9pMIVpJw>uMW~}_9JLcFK?w$hf$+(>X!itgNY|8yOS*2;Vr7I@_d*H2Ka7> z#WT2#%=q48F^Ap@)FF^ZW;ho|{a-^_7}!r#}$>#>Kxg<`&f zrCEvnFte664MHut_HqSNAsRJwr9>dG4kRm1!N=L|Og=u7%!f(f_~AO_S|*s1k8Pe= z7gA$>VHcveahM6&;rf4ioe09ZcAVbTfXe(aYP)xw06+ZeduR9Cw&(mLY`XWGxb-)5 zzi!3**T)}I%KuC^LZ{O2i_P^_s#n1gF3Z4A+-1@zod)N|>B=B*_Xh3+eCu;A;Kbk$ z@rsS#g6;E;_#d;Yq_GUC|8ZgUpX}}FrN=51)vCA1RZ)IEWGRQakDG8H6xW?u7E?B2q`ito(bWUitv@)l%tjGncmeCy zaxunldC0kNf7h)!!G`~?TXWzPnNbvDtp5D})~#<7Qe;S{!b%QV=819+zW1e?fy>mS zCJy!MH})rGJSph|X`qhmwC!F2O*#P9tr@l{C_#S45t*-zg@8$?GBQqRMQIhzqgfjJ z&#if%TH5ZgRMa>dahyfS7=J9a!6gNGX!}rhsk!{QibG9g-G^< zUGqB%s7AZ==EjeeY5q!W34g`%+QoXAT9Z_y`O3ixC6!ws<%(uR;j3ArPDJYe7)aJ} zKG?J{xwQno1*$8sIT$H2rNxE#;p^s&K$xjUSH_1vv)650oXC1(&nOO*-A>CNiPGvf zyq(68gt`IVLD8@vqU+ig%=0I4J0~5AKZe>>e*gHNb?dvQBvincQp|zb07;5>uhQcU@;@!C+Cp5$lgk(KtsR+;Ku48AL>21x{E$lp9ID$=rgOEy97oAXd-!^| z_UC|8^ZkRc{a8&2Net;lUiAo7w;E_i1moUaehE;5UZqZ>SoM~6MMB7 zN2&lywKky59oVo^kNEal_!Yu=;4NWwMdJ5cf>mwe*|o5jsob_Ts5tPAV_B?_e7qy; zreYoeLDDWVD5Mu0{K>#`2&3g5OtJ9S4MNmS6>gAvqaTi736BYItC_CitTHR~$1l^* zeOo@_ZpGGClg@VJj4g9qREC2|2&Fc|u-y zTeK~-2bJ)n2%NRAIBNEFIsWvWX>OKc?E>lveUHB4X)OVCpu>GY*rG&i#Iz>d9A>FY z@z?-5(0ip>+y_jzPkd^CE@*)I!R&cxYp@<*AxwKN?1Df6S4%Y~xfN+vY~=WzsEaJfW5`J_?3{kdJ-*x;S|8&J7OnJ!$P=qH2D~YpHx13IM%{}B+8Mbyl)*+SFzTlN;UT6ym5dor zG=#>;treh^VF`gCii}7`xTXjK7b2mkZgN6fM zMo?4i9~x%-Z8SUUyC7&d9HiJa)TI`kCb|JSE>D-25+{P1!DUOO zJVJ!I1XQDLcCS>E91lDeS2wjw<4|Nv$8&Op|Oyq{AT#+W=O~HsSgNyV#;7!36 zl-Vv_cneVR0C-av-taKwhJ7%IX^d?!BX-77i}1!c_i6rpPS7G^)Ce(7Q&NFv7Po+q zcPyX`e~Vt*b|!ZZ{WQ=_=Zjj;FogvRD+B>LkF#a)5!Vv+_Bz1B3`%ZW&=E{O_i z_TkaqU{nva2LZPEP1YzWLsXbNah2sFqLQ{pFK0>hyH3<0exh~}GU+mlcHCfN+%AB9P>kMMjv#-k+p`y*; zlh)V@nDiHMkm9p8G}ZwZ=cGRkHZyDKtu}I3#6xcFTkpy;_rAwbYmyU$@o_5&)8q&e zaDbJ>=gb3Y`K6PL6XHH>qZx*UiDxaSTJZg4K>VX}z)!aOkO;Um$Hfr5hP^6P3OQfI zeChM;#&R8FhYhknWptG;iuTbO&a5oVh8%DKlAV-YkC4zp$_H^`zr8F;J<$1@w0wVO zHnYSCzk>qAT|CB1buj`9{%F@$;D&;jh71I#C-rwK51$Sb({*?!Y56$^#2%*{B9IDe zq$lDBY#{OBj8KtI^AN!01`u=+!+J=O2=YrARYoK`Bbgw?uSv{E|GXglEcoD)q_yZW zrZf_9qSF`pxP+x=Ak$Ue46_p%l{LC4D+}j7;ZMTq?PnD9v5ioiMOu|7u^THu=Z3HO zl$VOXwH}^yimxET%_Tt+W4+?;Y={1&V08U1A{wk+QrPDlAfiUY6u5 z*cz$@WI>-|kiw_eG!MCnlaaZ-X< z!hj{#m8)8!dGVxr-ZZhbzP}F$7de}De5&e~<)xI&nrmac*!R5LF;?tCDpr6 zNlo@Aj#kgkm|v|cy6hW#@zsUbLt_4n`PD# zy9=_*Hxv;7mjat^PJU~S^Su0q-1kO3*u~7`%O4`+lkWv_T>H5WGG-%%-_v0QxPG$& zhxy=0+eM$6OZ`lj75flmKj{#plmOj0yOMtyfZZEdo<{r`+M8)rl(YKJ602e-|2R3P zg<`oXkldzegwS!O>k^v_uk*lkwPTn4A5ZDjAhQM@%cucdh3{rMEkFWX6KQrw^xqES+(qG83)-DC@sam?0jg}VgWO4{UIy5j_ z6WIwR19ZKW3u4+2%1b9aNUxOJb|j6@RDd3f%?%LZ?{5tkP`bD<{G*E+65q8nnZ)Tj z(1cT#@{vv9CEuK@uW_~%x$fWWfGu1o!UrXI&CERy$PlYlvZpVPP;}F-_vgA5b9NSbdx5A}e$B|5Nc1%?bcJAF!Vmo+`vZHz|!U&`-?J_N{1+z(E zrAL}q?kKz)=6vSMmn$S$8DUi>j@;mn;j!D)-C=K zGviqD&RB94tL3M(6w*v#Wm@g|Md4t@fq#bdmg9L*MTxWw!aS9=lk5z{}8GV5`-+uWxBkbnNbmCc=>oL8WQ>0q*jW*4dtGLM$BDBzgb`TyW`LxEepNT3!1dxEjKWmVRvL;^VqT{$^s`Ku` zJJN4wgz+lgTx{U8Jk`S0G>|<{b!ALQC5VV_M=Wos`L=?d#Z#)G>M#OlO(vk`D@J)E z3tr#(ouJ+8!h}V{H-!{SgA*k`o8)To4Dj$^7Cnri5XaP7myIV5oINSCs#UWFtK2ov z1B^>&_#yKKu1bep%7bIea-GI?2&UyW)1E4 zX*1$0eA;m}W@&*;UF>B0W4Q2+-UpEonk{*LH|4c?DI95+ddFE_%am4S=78ZU+~2%; zcUz`Q&82juC4LiOd%qusIIbA}Q+C;y7Jz_C=bh3JBc|EeErYqBOrv)>wVxs84Lc|8 zekhY=Tjo;dXH5}v6xpH=D(>`K#*5<(m11Z9Xl++WdZ>j_OTK}A$SfDWX>vU*!F(KKh31(Pm1X zg5g)&`kPEE9X@7cmV>ST5#3Z^TFr@|mRI&En#Y2tZ9_~LqAanOUx8JhTKbl<&G$PI z#wr7kO8bt!T@_cA)^cQ5xAo(FYC?wgIpGM?lkjPSjUU0c9Y8ikHV3)sgSytvP)m79 zY%@9Kbn?_`G@?t|4V7?*nha?>4oqoUeh-wtVp36lHpVT8>**GTL;H`kqkXMU>91i6>O{Hjj#s#1bc2* zth)%#E1CI|$p>*f6}EN7*UD>Ui@L4a>%^9pS5T=30k3~5j6r(>2x78QGq$tnioj{r zO@E*p*8y$(NkLjFl6q2|_NAs?ih|cof3F|?rbrg)7|j$ZCCMXfq=&d1^Zgcez=lZ4`LCp}uy4{eWHx0#8!GM8 z)Nb~Fk9!aDxh|pzMv9AGd zt3(M22ThupMG~BNc8XF+xLJi?vG@BnhS%_5>m$5+Hye(^p*<(z<4?C1RYx%1* z(IdP-gm9WCwCaZ)W#E8HH_-2Gu#j@Ez@c9FQ`kvpdtoDelBMl172ik||Gxq5A3Yon zC>cUkEuwpsh=#qqKZ`e5kcdzm3Wdd-HK5KRlCbJnOSkd%1yBzi#2%{qoyb-xkZ=pt zIO=FO8gatCo~K_9=kb#E7#|Gz+K3CjTXhy~5T<6cvAfOo&p2!7Tc!mgd8fi8tkf*J zWa7KxEvTDa!B1)|Dwg_!N%qi0x0}|TECza63j#5z&HE-_v>`|t29WvFq@@atHKm=x|)afzQV_w07=kv|ke>v)L0*0+n zweN9vv>HdLd^gTUS3o47IFIiC3|norFsjYa4GwDy*1_AwR^SH9aCNfO-=PcM&DC zu&G8m=nV;#KO@*wfT{Ph0&yyNO=5(a#TuL4ie;qcw7?uKFaH$Ge_L zY_S(@u&k(ub&S=hX4SF@9F&SeCt+JS&UU38w5 zH|q(Zq+_`4JSDA7$Cnj za+5W;CslM5l11`}6Wh?8YQoh?u)rya|9M0d#@lP!L0_S)i&=u&A#09Ky8)l zDt%T*h^kGI1o}ZWZ)0wl)pxNuu|(zoK6vR>-jy>8(!-ww4I(y;IHOW+D=;}7m2$ibs%v^s(2^aT6%|Mj zAz)ZUr5St+gxjDeV1tQBfca)`8-;)@Sur&U!}~7!H@~HB3AX>6-*Q8dt}+Iy4*>Gp z2-;wUf^UOR7_zmp^h0R-`)HF*aBm>*-JG!uUh<)}UnbWt7sRZnR48u}EjJOPrUv?! zS~q8K_I?a1NU6w`s-#~H4DiDW6TKThw{uK>aS5CK_`Nk+JB+5Bn$?@KMpw}Br24hugkavZ|JHm#?^^I7 zT`@WdvNDH%a@3nv1h*i>SaU0VI_}IQGR!cXRCf`osC=8F6{KZ^6cPBqOPYd$|1j9pm95Wg4_lhvKYl1w0Om=`|@tZ>7hsL9ybM$zf z#R*0}+(?Cm1y)e8CKu31{Ea2L)wKZg(7I$6RzV0B3m%!95E%zw8Zm(=WKTSaq|80} zk0GT_b6Mj^R_Qe*ybe4sAkNEciD8OUB zI^Zr0K_r&YS4f1^k~rYYZ!6_~CDB;QWN<>Ea@&} z%EnYX%CkZYly4E5!ZRjN5ux@)cESl-*lVg=a@Ul}ueLLWg=6H8Ns(F%Pxw$sb{#>j z$3#2L)?VReW9NETGV@%&1kSB@1n&{gu|J5V0@14_FR(q#bm3in&|fe#O0qPr2X8lg z^ZsMBq}15N#{cr5)%}R(d8asNva-FH@=M2Oom{%D0w3kL&OW9h2QYyF>aXPQD;g5P zYvYC(lvTJ;^r@u}%0<(S>Ka~|tE!0Uchuf$mhs7jd#_Ohs<}A{#K)<4qe;1IM#uiv zU*WS(Wmj%Bo5{rfrp+G;K~-% zon6O{CzD>&S!=MzNByL2GLZ%CYi>^Sy)wyJI+=uzJ?t#DFwfsqTi@Gq@UXI&USQmi z$yta4YPguz45Rkmj5YdYx+_yNpThP~Y1x6hfUUe^jmLn)tb%?6Nv%ZYCP~w{p7WT# z|JdP$BrwQievI^8uJAB+)FDbeb4gXKTD^qq2i!Q8rH%i{$h1l$_agFZj^9}oC36*o zS5iyQH^6mewq&>BN8OE?t)k782@k)+p>nG~LBmg-;^Q&;V@}&-@t+crnq=oDVu6-t zP{wi^k22;gmiDck7D_-@7ba@iv1-{{l7>s421sr*@Pn)z#$R*jT(` zQs}h+=dLv*0_NwBT2YAE5OwjkHAf(hxYab=We{<;W{dE2AmtY*+e&K1zS+p9dF#<9 zQHTa^O| z>MAv!dd*K9Y?<)nQrW=HzbLmQx6&_FG7AS1-1AzTw^v&S184bKOHWgI4**YtM7IxZ zj8}GEBMDfgU+}c7Xt$n<_2lK`78!Del*C#|BQm3a2bX4p97;nHUETRK-SzRxv?OHNp% zv}{b6Fix4aah*^kma5+kX-a3SWnI98vCpQl>A@U| z9R`q=r(+);4-|9Ez8(&t!%gWv-rqIMGY?&Rab05C#^U;APC2zlZq*J5Z6e=PeuJMa zl*Pe4gLo}gidA`Ar(Iwq=#;L-H3@>)L@Udr$e>^SJb9B~I!rojqwkSxy5U2)c9O)o zmcI3axE7nsTN!Fa>`m-tf)?4f=jy>2u*?^=xn{@zzrWs)weB64_ujhBr|h_YefcBv z`R_mWF{%oB;AH)3)v4u-8Yd8;8P?vDhJ$tGwqX^VMgka!^Xv&6t`6e``HKhH2IBwo zH1@!KREqgOwY2;z^wQK!E|S9dC-e$qH`41`vI*MlUP2}M4MBbN%+ya!nSJqmPJy~u zc~*HR31n)rOiA0uyLbdu5ycfr}Do~>b+{_OK2EbNC{NPUE_sZjm_i7Wl2!%=XNaqNJ zy$%7X7bK$40%Y(%{lOh`z_*JhDPf5J)gKHDU>pooM)-XLNbAnxc9DO%le!==e3wc8 zZb#W~%pCiE^-oKSNw;?G-*A-A8og;qud_@)B}@278O#&L z8{-Y=>$(0nN*t^vd!n^gv;@y9TRj4!YaT0oSX&?4Fp9pXI{)U})huSrzTr>o^3!C}tehHJG~1j2{|K$PE=tDKSXF zay&9CCQr;5?mFgfpo_S8Crt2##VoB2FIaMae|7Rtfp7q+0}oE$AZ{x7E-D9%kE(2A z`N`}uJeF}*zMvpFh*l?VWg-{Iv;;Cf+V%aKnJ9QWW#HoU17x|bLKAlM$hWALdIWJm zDzV+PxG1{|CGCI&9wug-tgLO5AWRF^jeietPr6yw9n=pC3JprMQG?FMwe zrIB&G7%5|bZ%`x!C~5(ls{8rcfiD6-7@3To(5%_q<}KaTS`a6Ie(q6dJssS3wp2mR z9R9<(F0gW4CA>%iB4Tb*^szSaap3eD}>hc(J79fhwjY0wU92w~EHkh@a|E#Muq60%Vb z&TNvFhAnxscDY(n&%kawa14oK(4_~uqaqCm5#)z;-vEBGLy*y^nJ|N4 zS#Z&TD$YWK4DacR@|Kj^NpT;>lCpOacl@FQ3?KVh9`eauIq<%7IE3HzPXY(glO`<% z7NUy0AM%aB8h~L8DUfQmd+}-yTNErU#@=)hvcVzsjr#cG(Tu-in3w!qriOJpfGFK@3;2AAHtksl`!)ssiH=Uzr|~I$g82Mk3^n!2$!1TBzR*9fd%i zTDW2k++?41-!EfkkUT}l0yCqWMP+;Cn#sktK{X`{a5#t?-*_DRF!?|eKc{COn8Yk- zIOt$9y>JmEW`jBwy1JxF-WQB#5?}}HU`5ttd;=LaCzaN`!ll5c&fh2DdwuMk*7tqs zvisXwsl*9_%!uqeJy-Y6Eza*8k-Lha=0)@PtF&OqTQN+#iLspAC+xfLZ$tUh1L|aP zvL}?0FPKodKHn&@m^;5%4P|zo+wk1OYuw1r9A4>edyFQ=LZ&ZHzh=Z`*vqpq?d`Q0^jts;eWoxPBBsAKQqJPAsJn$nEw*2w{h zzvNURQ}%8p>aVzsRU>cVtmh`Rbr)3f8Z_L3VyHBwDU;_=Y+9E|rH)4Hym#qObzpd- z4?eA0qR-`cAsj&eD(uXZ~{sQ zxG@cA@ro7hpU&27zywaA7ilt3E1{p=?)}`)`^)oAmTN(lfeg;cVC2m9vHCK!2O74W z1)veClU#`fK%p!+1TN8&`%mjL`*iR7o&?jvWc2S?7uT5;ubfo7_!(xY3G$)QjPX+- z+$szFyonD}OSL`MRGT>*7KYvjl}Qtd2@L!$QDibUp(K&qxJBMjMM1Q#up+mHZ>A}5 z+%7BIu8oE$;M^DxiNv!-p8|=fP{^t7<0m6)S6sF#PlJ4a?*hLr2@gxQy46rnzvlrR zFR>#&Z&r1ljPv$Q(zxqLG2X?T5czd-$en<4HSExq(Q?gv9T#d+PeF`)wy)=$FfTa4yx2yd})xOFah*4jKfh)5mAGC z8_hlb%7XdxK*qNb0?iu`)W><%3J1Ij&XjMh`%GA6c$=NLn zjY-u>w#ONqBcRNp<1h|@`z>9b;^XDCG9H}reDMSwBYoUxTha;QAVK3;Qwv%^?bXog zQkc@WSL0TY#jwT&NtEfA(A0~jVe@ex!%GM&J&uvo1+JoCTD)Ifzde#VL{m{(Np!4c zILG3fn!`qAHbiNM((o?2$~iYNq3*%J;)XTh}fM+OcdrlbH_FIoNMOC;&Pbduu zz)22{z+`ecPZ1E64cVU`_v0{5KU2 zTAh$6OEpy6PIz4Y*6h8QSRSW70=JJ6YuQ5SR28Sd5}%ht-~Am@HX4{eT3EVq-rpBN z8v+&LA}!lU!eV1ua@$y4h-6E>b=(n1y zCbKKnKV~qmJ5dms9K2ra>2i6AEsA{oKYF6c>*E z_-=LjPoV?Jl4>?1Xk69D&B39X`QT`}^Y=5rMt2`!+W@#C_YMO&jAiw)bGM3jkpmvQ zv)3i@pqkupChtaS5eEsBC6`g|J5e>|bQSQh5Agz?=x|;I*wDIqOQWO95Bcz6fdb!Z zS^J~A(lbd(k2rSlVy53-`g$TBG?z>FMPu(4B%ah!t$!{^ z=1*c&`%)rsb>QzqUC$Hnwb{VS;y25^Imc(OgU{c(S^M`iAJN$3qD)r#-anxi5KgBo z3nErIQO*0sYwYRZU3m2C6C946@D#;dG&O6{A(OhLBM5@D8Y71sX$GRM>F7094Lla) zKfE>*=CS!nO}!?N)f+J72QM2ao{>AxLy<0Z!|RD2`EjPN(CHm{36(8svBlE-;6M$Q z;G@Ns%)FL=n9HVJZ}PZ+rWxG27UdOuUqp;-rz>edP$6hY0HVvEII;*kEizo`Fcvi{gw){`3kn6V!Gx~Mc{ zNrj;${WSeDsg<7AvbkUzbeTd*u2H$ZzC2H=_GTDw_Cqu6U_zokgtOxH5(Az2FpMWZ zeL6*p_zl|7g$!}UbeY9TGX0T{xh^&G2f`BRkAS+yY{cak9-d{cm{ibd`0#t9&DO_t zrb*1QAGpwvEP+AD&Fu>mj z^ng&7 z|N8gGze-y)f(w`QvvD5M?HoV2SDUr)I(f?H1@~==!6A)@~VE6)d2O+~LjPy1&FAO%5Sp#GH-=bF15iktv*7^fJ z9!Q}#GM6%S6H{3kc@Zz8Kpe^Ow`9dJ|LA|w`_`rflerG=w#)evpR*!m6dpo^AHPZ| z=Vd);Wt|3=dK&`eons~}e|#`NH$fBCQ@1e?#c7J)n$fW zn4Rv)D3lLrxy%Zn92g=2h?R~sQbMRDR63Q#knMTP_6}w*j4U*BupHRH4I!r|k`UvV zaA)Cy971GS_JJqzK!UKAXLM+Hg90EA`84+hE#fUvy%MObbD{K^gqbiT0BHVG^L zUxeiyfUt-W1?0MAJbOV9CWG#skDcQ23hqkG=nOt=UVt!4ej*fi_Mf8S^lKu5<=6XR z2@<`}f)E&QDGnUJazbmhzR1VFNIa;qez|#10&S0^g-%3*Q8F`3T{$PmKi6c@haas$ z3Wjxyk@W@p!38fm7DIAB=ZgmCPUDk(<$*fwbjH(=oCRxN#+S?14BUV`BR|;J-*rpf zU6U#uKo&(35is)=4YXQsv)&p)^wPdlt#mojKM4M52c5MC@<8>uscSQ4vBwH|Y3M|b zd+WD#9jPb^a@fQiQ6fC(+o8FGA!=rtcma@=SLz^BOUzqy3*tqj0J2ib5wR`$Yg~M8 z@0cwpE9CeDeCmU<=@XV5qx>&fxe?~oJ+_dqY<7BrY$CN|^MELraS{f}8njUi!Q2%_ z8c_3HaTcCkF!GRcnRSTqp|-9dsvyQz)T`*pkm*m1z`Rha?ue2HhN%Sgrk}!kkZ5+Z zM@=%BG_>uHH>9z?IhDEKuhS1Xh zIv1eN0IV&iKok4#iC|7~rozNW^EzigT!ye~3B>t{voBUH( zUBydLaY8xhV5!8J4ItE*DlR{K0(0z(EW8r z3Ez_pIy7-WDani;;s?)~cMdHBR~3*KKVOC8Md-9pszuP;Fi(k$S@0IjvTZ6Kn*2F& z@iLGA5#T6-C#fC-MFr|eUf0Nt&F8_OSdd0_v822ZTAzZV{#1!9Hr&ZCQk)+aO#ik{ z=PJTZh4MSsC-{^2JskChM5Y$10eSXq>LXKvuJ3c=@Z zZOb}&&@0xi!_LYVEZrv26v~jE|88<-iCeus0qB>>R|(K%1>F0!PKvLo$JrM#tAIf_ z0AeBS@f+mM_}ki|4N+A_R8a&9=S9zV4qXM??Wcf_zt)|&iTg`9$uk#;Fe(BfSRtr1 z?b3+ar@x!m0Dqi>5X#PphVNF;aBrc<1yv5!la|m^ z475HD4r^;g84PHDDVBZElxm8weNGP&R{yE3`$yo4&};%7O89&QBVI#QEmgN}3B^*_ zeQ;{oQFpEcuIn+>stIpiu?*8f|MQOQPcY?y?g97$@7k`L&ww)T*fpWU!`5Pht(^8F z!l2Dgf5=4s!ol~7@ktC8Xz*Ku^poMI_MWpJPMy5z>yQ-;{rdjfg^23zl6bp=O&ekA z@MG);Wb8qqkY5|;dFmIfsMcs4nT#6rM>K*2tsCR~Uy4$_Q3rFh7oTQzzeC$yZl1Ri zbdqxG%39>LIPor*k``1b_??us$kU^z$huI3m^q?DHS<#Hxj1ibJqhBULqmYaQZ{bw z1`ab%#uf`KCO(X~2;jUGXQEN`@YdC?J*d+Ce$!uWHP>rFWUt93Oh1;?Y76^q;>SoU zMwyVLFzzlcBz<>mX)1HkonbG#AILHpK~Nu$!g8HnH(jxF4x7MrX6p_CJtDF@Isi}0 zDn1Xy)yl1A$HRAaUO>Z!Ytxb4w?)?BU+lUi=<%X6RwHkf^+*&s|7i(-J2%@^>+|3<3^I-}uzFjx0^% z5ef#}`nz~P4)IGGwuhK~PJB>cIB@Lty$cSFqhso?>2~7d&b5K1B+iP}5l*`<$zs)pIoJWAb7Rmd%ffO_?o^a9~TXW2;EHe7Ak( zL&Y^6Gl_wW7a7HiZzhtgh!7K!%Xn_0n~4&sY}JY5IvNRqY^ODuq=Zpy8T!cyPCqH_ z$)Z%>e|1$Tdo|8Y&xD9-7zYzvv^8=w}vj`_$pnsVY31 z=}cP0p0MyQnD(`Iz@PgWElB@oE7Ul4id?sJT(jHd_+_17n*NU`NJC9~ehrlrtC6WP zIQi8AjT{apz7)U+a;NgiWzF7sc z9%q)>vMuMW|2Q{+%8497Wa!{?i`Y`(jcmbi6IkpaZ;?-iV94Iq%bd8Rlq&7_=!yoo zgjbNj%@P&o0r>gsr~N71eHPOZZWk;0N zB7Jo8O6z>Lk94JZBi1TdOi%86t}{oDLepX)_+`lGjh~vto>X^Q4}aL&794pCl{9a$ z8B9cjAq-Ux1zgQi;29N^T-jkj9qq0XtFIgsG(Rb}{(KPm@`$}N8{ChCZ8Ym?T`|Q4 zt(^c0B(#`b@B%|qDDtfr#7o!TU|L%P8^sc6jm*hrh!0z=GITU3SNoj z6(v2vP6<$oE9SoR^U=vz1d*q129MbeN8OA?o>%V5yO7sX$25G-EzN7Ywrasjpe%UI z2qSGhbTvoJaVEt(v{@rBgQF$NftSyyk7w4cI}`i}R3(#^?$l4d+vaFtXrIyz+pSeO zn+U_R^@$qDc8r`{G)YBL2#$txULw6LSP|5l@K(TEClM5-3lO%!MaFO1b2v%UaVYER zw@Qm39r|dxa2K~XC6(kZ3L10kT5^%%3vF%zbJIYJwJUc8P9?sx4&!!@bp~8;XmHI{ zta~ZAq!4Aq(7hbFi!FDT);~3yj4S*^>6{ZSqM8@;D=zgBjqXlQpRJYZR008+EH!f^ z)p)K_NzTu&FVJh$oe|zau~m^PGQwgA^6SiyG2Dv0mcV@O)e7zr1z&H@<@AZy=ygq{qiyP}b`I^^!~Amge*E zpU(juIw$0OqkHs=2aXeeMXrSCFp3neU|9dS#`-kdG4cl=i5#%&hRa-2cn3uw$;- zI3pUFH(;_R>IC=|$wi*_wZ(yd^_7;IxI$2bME(3+wA4Q{k%}C=ymKf8izNQI)Uje#Mxu^2iuW+_usr&0!fEg&Ko0%*A z{`HSv!DO`Y*RRMcKgV!Sq2Qa}m_XUQi-qsw_oA;FTbK;0^#uAegz~ZHN0`72*9r(#yVaQ#bU@KP~?Q!AvqSud_WXK zZEGrJpg{|3w7C85YZbn1BMh@AXD0QEsLWP-MJXWPK&miDsN&@V$}-?LZ6##L{hg}K zo%*EmjUjXgg(|0Vn+1LH(@LP8aO453M*YtACFJMtt^ZuaDh0vy9q50GM*sQWd!ecM z9|4Qm->lp2Z>9yh4djYxG^J0t< zCRn`d8LVb)W*`C_dmZ8Vx$09PfL2w2hg$*-e9>T-Z2SC|UtwYkE5_Qy6|tdN&cBQg zHOMA7)M5N;^*-$W05#MXr0=qe+Sj17MaG1L4JNB(vIaw1knI@LlC(smy8ntUH^UzW zNJhf|e8smyZY!{25yJ7Y1HHlnm1PskV6ew5 zqX*CC%L7(a`8}%aI8s%=$Guf)oc)`x7=mEQ$rmcL_aeX1La&U&*#YnsSpdGmJDlbn zlMCijpBt(hifoTL>&@CC_&6bBuj7ECt_Je#kT~8yHnX%ij8f^<%i92wNQo8EF(ghL z-qWMH3CNE`yuY@=@`xP3SA-eMd;s_gArb2qVOAx`QEbjI3d^42MQQ4BQ6%M;b410B zatmgRc-JHwrLG~DE3)CH#i3vi5fcx=A2j!xDm`g+H%R=KDx%1`AY%1Gv#ucV!-bWk zj=ig%A8W5NisfJj;7n!Z9fo=gSPB|F22{kNFq`BC~UeQ&NstkAd zon$g2rFT;|mzeFi*g{rRj@{yoK+BTVn{nA06l?~fDb#uj@Mns(|5Aoc=o2K$&Qp)8 z$b)R4s?6hMrG;KiQSZ6>mZG)k+Q+gvAEwR}PY$!;-ecw2E*+S!F=ogORv&$*|21vL z4np}AT4}2mJr`49I{fW@9Ze&QEYVCK#eNIs5dG)~Gy_B!7UWBKR<<3?6NyO|9`g!K zoH?g&+1e|Rn@6%i-SVIP)QTTorB$oqiFD&-kF@R>6?O*or1G~Z`msot09%s2mmO7EMg0`e>Hy9{MO~#(p{$0cBvQ23J_*1(pKuLk6mVA!k z*EltgA$g$&X1FS-WSxk46NEFgL1XI1FT;uwsnNF_D?y!>MK?Q9KEGnw-dhdyxBmE? z01rKUF~*C`zS_NC#=Js#icSSTim}xGNkmoN_Aw@#@gPCpd&Fbi2hGz{{hXhD5E8Q@ z;Ua^{bVEhZm>mF#Xj9V9oIe=PMfAU!#EPw|I!7~%4l4Cng@1zlmtHZGFqbZSxvhmx zoFvG6nQgD{{>r=2E(k~JqjH-`=^D-kt0)4{RXt5?zddrX@_g~#wl?12M;fDY!?1jT z3Juo6iSPf_E119kqgPDeWB1^^2YT$(n_7H32RFVBN|6l|QC`%%$+X9_ug7g#Nv3!BJN?6Hxp|ca8^Bi#bqCQ!uhCPZ zva0eMS_-R+&zD?cm6=2!*k|T$|HN|azN^g<>Gc=9j}2F%5|HF|V;I$78BRPPJZ#hh zl{iH@N1uXLjp)Ju;P0~fUir;yiDrZqXdOpv*JL>kXk-&4{h=pX%E2bJDHhmDLSRtT ziXjuMY=mp5^MnXWA??@SICOa(77&M~cJ zlFz;`09tX22^{=vnT4S2!Jr1%W>|V1Xp2m1fOFYI@AS3W&QpecvyFNb+PpmlIM*jP z5aA~FoHE~-UH1WcMW>CIMLre}K(CGCSe*Qu*^|I|70T z?DOAx#Z%C`{(~On-Ul>dt5Q$w&*zoK*%fG)hwHytXrKh410W0KG{cPyv9-|V?9ub6 zs^zXHk#tsU7!Hi^3vQR$z;u^fEoZ)zIB6far{k1tHrOltTK;iu8oo7z1&**7HZklo zMPn>^_IbVId@CQwbC$`vim-ymk7*mf!JjCt1o4sQqID==EX-i8&P&1Dpxhx&kGTQe zhU7yd5h61qzvXCeO)hSL;pMxErpek(c4yvPl7s{AL?79)NJ822+sgt7wf9IJmH=-Eid9&!2}i28n0N zrqLx%Nmi{-CsT9gwB3$@{cd7o$o;?Q`lskhw1o@Qjcwaj#kOtRwrx~UF)FFpwr$(C zjS4C}v)0=Gz3rT~_uG8P<7l&G%>IquDPdJ-;~3cAOhPu5MU{iV&S@3K;OI{S>#*q z52XS$w05#Q&ZYBmG{c;<#J{2kj}Gtam_*7MuTfIjR_@{9+Jv6*n4emGIB~;->qD15 zmXs{C`b;zIuS(%ax98AT>M2Y)KesyLO4O%?e`v0Cd}?kbz6CdvcyDG(9T3eg<1k@n z5CE#oR*R;iqXwn|V@u+75bX+_9ML!G#pxdwAKPWA6 zc`OvBy(=+)Oa~tm$p3La&weH+lDpYbE1WO+;LPKNnMMyMYfPUpUGo<{R-IVRsI;7% zQye9TY^9x}t>-zxG_B2WWuHs{4K|zphMc=OKCY8s?fx;`S)^=TL0klFgfy&K5aGk_ zWRbBzD$i(nezKjxNJ_D|Ap4n}Ez{eltM#M_{Q3|}HSPkQgUIW7iujGxThH>4WDC<) zWdq|5=P6NsE?tL~_Qqml@xhATD$|c!p)5?GtP+laVx!i_#$xRFE##7s!bA=nx_r=j zUJ>Fz#=y2-E00aP1p3RAu%!&jL+rsf5`(Ay0u=|DQJX=tYz;dtkkZ)d_lWdi7=3+8 zaqXy_U8lC=d=ws}k3Fvjv$q0|tss2Rf)cy6(cymkgaFq`-}urZuQ8BgJuyqqxnskc zGGChv;!{Dmk2SYf~Y-zU$}e$aSiUSpp4?A^RL|Ff&Y_A;+{kpEw1x>L_Oz zV0ksE9kfAS+~Qhu?2!6YgM<)XBOPyqWkAPDBt073tQ8BVL!~lMX!lOa8)0DCxQlZD zUqZCDhb?E3^C)I&n)9@Qp+^O>yFa`=6P$e4a)+c~S@Dvmig$JJ%#w|-@%v#dZ>VcT z4px|<*n;Qr2$vW_Szj2h)cW0O#*Yun^Fesjtadf+%6pYW@|9gjrNVyV@Q_AJxi&9$ zr^93anHnyuxs+GT)%$Ovf?AO?S`^4}-2ux-=cjgZ1gs}NllMRce4hHmtY>YVRsVHc29hrf5ae0xDHxKAkkdDUduj(zY6B({?+jV;IJTiNWCso>d*N8j z7m-4d#Q^1T=a2=wh$YGe4L4EcX%Z*bbQ_j2$WB~8PY6axo#oflJFcUz|!LnrL}r zCFgY_QdVzECQukXQv4)Z?x(GYJ#VSwy(h$k8e^~T)M`^i)6hEdS5d|AjKn1H%Enze zt#{>7M}Vz#!69WmA1;K!!TIlN&BpMX3?H|T>vi^l5@yo0BnYO4ny9YDuxC8_xGiPe#|)XCg`qfa%79N*{c6h zp`yF6n}Md*P0_vcr{G=Vn}En?yUZ(KvLXrP>)!CX=>GuGIrDuWG%<|5c zr`q%>4nAr|ECUo;E|B6F<`htjWz}plni>ayy8!K zDyxH|_#G1~%d>7H~7u!16vC+JA;C;+!0UMgbuxwA4O5+T(&ETzIQD=;9|D(&2xG zD?&~9BSgE!j0GY@yTtbSBYqEOb+#Z7g!V=NB&m-!OvfGaL*t7tbPkbYX;JKTtGu?b zY-ZblWo*DFn1tgJXkWo(j<_MyH^v~DbdTiSHm}H!X}gaF6F%cEm71O|0@}d0I=el0 zUWlkgx%s#C7t;2MG?^f$yTBZE?E&LmVLk|dW1c-yZcji68uEls_Lcy`JkvEZA+jGL zapjXIS3dPO1buR7e%Q=-AS6Y3fvg0CptSt`{VhJ*Tz9#UJ+|-EOP$ILcYV7qkVHE` zj1Vt|^{pn39B`AKTw72he|GEI4;IyhIH#kHBN2yt1(*RLD3i*brcHmu~hdZUf_QpoC9*l?IYM&ifg}u zY~X~d)Og4p2IBy)t0~IGeW8w7La(!dRNVOi{+&S{F4rwLl7`qm2$_8#_88Y4i9?oB zN<(qkdaHNn6|6#Y1Xhm`HnCizBo*#=kV|7;`8wPLqwTNoGHuA_gI|mug5a#U z_J)~3T2)R>%&mo>J+QhhI19QQqb0T8?oG8ML@L`a-ai!&TQ`6hv&O?YnB&M`co4gB z#F}Ixvn9ujDB(~bk9s~sw)F9O-!ZKv6u*VD6sM*H{-zbVXBBG7vo=t<*}^%-ot=Ud z^olz4!uUcyE!GCngIcc+qVdQs!A2N25)^_8A98x7fUl)9EOh2us4^Afhp|)Qd&F#e z(1fMDbt$+`4`PbOrQ&bkU979|nnh1oI2W1|EcDJ`8bfQHc8}4AD5);WO@rJH#N!|4H0+`$bIeB;W&p7z5qSdbH*g80tc-K{x~s*!!IxvoEVnUR_Ib_ zyHj?E)3(aPq{7I3CbjIu<@0fU-ofKDASp!1#aD_UyZ8U76{f zDx+4yN=;3RPqXJV!$}+m3LjKD$qgl$R+-8VonwdAOp)Z%B4}VoK;`8QIK&sIL2h3+ zuU|5_?{25uq5)ZuN3{=W8hWqg*=6BvstWSJJ71>t|8ryx}l$~P`-+f~YAS!l92eZ0Lp+an<*#<s zJCa@|fF#tFl@EGT2FCxn5ep)o673Iyz_|c6~cs{)j+IX zN)~?bt8i}J1*$Az?kTSl>%y^9{fEynSqp5T{F3XQxYTVZ-bI;lk&4d>EV^3ztbXn> zSbzmk-2(w%wWpVZDB?Wpt-XlHTu!bGr-mmG>vIamcFwJ94HHjk=es*bEU$RCN#O>jm2iOLt!wM!YC0k)!*zt;z?}4m*E_&HUKkR7n|2h-7%MoTLkdK~gy7I~a6Ly{{I9 zb5X)MRB_`xkMQG&!S**z|4`AQ>sr;)ezWI`gUlGpsCFroCxsN5%OI;8#akF}EDf84gKjH|lyckyv0R%+%reNOp#egE}8f z1#(&$PKr=agLt^u3i?J3#NG7&&7eKP_){&Dz0-dJZwNE%-k?qXWW zlz&s2SMj`Ldx^LOqj;k*W6^|pq#@Mwjh=dA24h)%?!KR^DsvfHqrNsr(q}}aiN5=r z6fMQlldS58roqK(rbEZiu(fg#(dZ1o?MSwmx`BXTYPl~VHkIwTx9#L9)w{VbB$xg| z@2wooE?NVlSbpA*ZEYiAV+wu!#|Ux_PlQWd7WZ5?2-#RyLloP6r^dHXnL?MyekQ+T zC9m$BUGP5qM|S$3E}Urdlyqm2hcGu&Yv9*46!+oWOu!C7f7lS9N}BK0iPrgQ*iKl5 z544Tl`(!6o-JDxXzD>)vpkHRb+L0CWqBYv2{U+$G= zxYA5f;X7!&<^&>XJix6=cHI);&JGG=Hwl7tLF*;ebQSvSqa%ZxATO<_foBt_=QUM~ zo=fwlZpD(By=EwQ_qJ8NDx(z8u_u;bJrq*i&N=lYGep<5{bX75vE}bY)$TbOBPy=N z?bD4Xn4vq`FL;HaDgqxxU-`@OBvVHeP9wY}e@VpBkGbud>P4felIW#j5+i-< zkY!CF&B=xp36>`GtajR$R-V_Xq9cANLqL0&+4GQ@u z%(|8{LT^2m>*{4%aXlAoWOwXeC@|GM`VpuU_dk>z)Cd9F6-|pNIH{<=MyNFgYA?K3 z*4HnoaMwP-b4gmWyA>&Q_p2%0lhaHluAU%E7QzK;8cnNQkGeYt#rE8PyGwAn4U#y` zD2sxkjwY;jykdo4g#GMc?)8m_`6A&_5460!Qdm483t&o_8oIo*sYTTb>HQ{1jDlq( z+SeCGz?wxw#M*~Zh$>K9dj&d+9-orLQG0+l@8j#Wim~D(rE%i{jGo~>TBQy;P5j2# z3@!Xdzw6}aL9FrUsYSVT9eS zB>aP6k?oaF<6kPeMXp_%DLQ1oBz{C)Zl$OMBV!O)P2gYg$yQO5Cs4!n*$J4f$T*m> ziTyff8zB`H!UL(XKgE6I&~yUip;bED?NGN*YkDE-m~f{M`$y}*kK3OgCy2h9R_~8r z{}qY)@g29S00Jd(mj4om{(C{vwgLo7sUQ4*7t!J2AVy`Z8cZi@RN%+%yT>~|it?87 ztENzzR(rao#@#d1yxGbYFV3NnFs1Wb@v=K^qteC!<9ZFtK_~{L3@3p9trkpX8-Y z;rUy9>xyL4GjW$Qtmzt0Ic&`KHw}#nbG{7Xf zFYHJ36>p2-r=MuJe+VE`vK!Q)>dbr?9~2>Y=e_Gtbt%z3{?T^=)7uS#1b6Y{TQsfs zRj?5DOa<;iAO}MQt-KL>3}`m`L?;u(XTl`Dpsnx%fQdepYrw=Ub29x=Ug9=0}`yoVPZ>PNjEt?5#eY<}-8J)zV7fqOFIp4}66wSCM z5x4Y8j*m$D4t|Ty1=F37pOWNldw~+mbW~$0f}Yrb{zp|2WIcq*1w5fN z>P?J@jG#fG9}K5NPC|GEG1t4_%fY}Nh4#hN#b9Ox^>T!R@$l%`YiwIVV zw%I6Oc4xB=&%tCM{lFQ80V=eQ$ z>iyip9h$pg)ojql_o|)R$`vL-Ss|)w$mPL`=-`c8OZ1R06y6?0;K?%fhIn*IF-}b? z@x9eMwYq7IR@JzsCV<|Prg&9D6@AYwS*n#nnGiD&;{lnb7;=~k4*jCcN#}lz%EMX$ z2&Uefp6MU0xE1aXm%zCwMa)Y*Z9fkU7QyhCnvPPB&d{-n zxR>i^%C|M@>s&OnNg1i%NqP0(Xh>G20^Pra|4iB%@!WEfXm z@L+F0Fj%{>`E)w(F(qbBpvrVc<2l9a#Y9DkK}Vz~!dDDEqkWWM>td8DFmQpeRiXlq zKX>--6(aJ+ZXig-e6tQT5UPnM9)j=POMTiTSpzz;F1=tbmkKdaxI~H9qLdF+ik@e@ z6mkxF-ct^T0tladmh}W=ci%j}BCs}gyY%mKNbp1nqiRxYUd%r8I9YTHKJ%bva+@F6 zzD(%5Sk`BJsrs=4rz1#gK{n)XnVt*=+MjGRaWiblED7z?38mLw&qU^$f)IB{v;$VN zsz&eUC_caVZdQ^Kv`Ou0G9@;-tL|vla7$lln`XePtU* zh08owzTJCz(u=MH`&R_nlM+QzOw+v!N*fx2Ch7rlCjv=*(Jsl(>l~>X8Dj;gooV9I z4J&Z2R!ghu3Y%eISbPvrsib9-%z!?X?}$O&e%ygc8v)0xuOF!OtkL(yKxU3ioTLkX z3nzOLY}(L>#FE}Y9--Mzc~iP}HuITixZ8*5N1zEaaK!uiXs$qaM_yJTA0;k``iG@1 z0F5VLtiZ}V#MpS*<47~cVBK-b%(AbEnMPGxkG*}h04H>Ettys zRC+Tg=NSZ$_8?U|eDv$UU&xdyZr%4`@Ow=#5Jq~Xer35Ca6f0u9$3G`1QigtM#@-H zzTtUu3*@^_j$g##eN(mO9r(-+ez_MamXBh{AV(mm)8IoPcU`&Fz^B z9P_QE=*@RL2@;ihi3$GOyNk3Mcq^@9} z^S_?z56m|nNAX?|7JVAZ+DmCfwCq1-cAU>V61H*ExAYz{gw;~qt832|SlW?Y*YAz8 zpCLEgr)M_g+fPPpe`U*Q6zs~X+4z%~i~C!`ZxjGZCl?O{e@cVJ$Nu>NM8Y4IU%}WV ztKPomxq9KzAB!sXu6G~1nK?|w|jo&>hBj?Ra_nKzM zM;||%I$Hv1V8hT$>-0NIjVMnKsLz8hUWI$ZPL>9`LOMN;cD7oHM2~uvT1y=VeiTN> zZ;Djja8}5v4kNFRnGM zw~O)BcYJk<``NhPVe)0hLw`FbL5?};u^2jRdBgkjTUZF21=rS|a?SCz?QM!nWVoSd z0HdItB{!BA&b4s)%G`eSAJ>jEh zgHy0XaLAe`JC1j5>o7oRn9pN(4)hV_Wc!VZc3+ru3MZi00_3|o1SJFYxXQ1@MMd;Z ze#e961s=rJA*qs*v*SUH-%Hf`gO@+~WvpQ++EC7^7YbJUt{NkB?tNi?*x zdALu5_->8~*dngnxE+S366)-|{nzg**mMF)@hQ+9*qhu9(Z)7}0#eLaQ346B7hL4m zyaSp^1C3np#;^?$X)-n3Rn=7HewwpiO!Rk83`Osb(($SxO~bC@i_Pmc zfi9e{C4JhHiw{aGT9T8W+2S@Vp(}jsFPzHv`xrvzBtdz$Tj$6*IHeGJD(+@Wi6UL48 zFZV~yYB?>?t(Biq*(zf<)u)8~tg!~pDpz-)G|jD1#W|3R02+3AXmyyP6q(B+1f7W! zE5gLezXBA`2;K6Sy1@X_kavJ;xwHtnVIV z5?=jP0@vi)0{>zAlJCKJZtUP}ifEJc@ZvioRH}IyerDdx{wtJs0m5FV%vIL${wgVl zK9P<*u)dfFrN%j8Am7YQwz0fl+^nIDfuJxKS$6eM0i|MU@PUDR=D=v#c6wp$u&{S%n{(W?)>XMSS>uQKHobaO zzV?AvqSu7!U?B38GE51_&}PU~#6xZK@4>Cw@o8QoN_>S_8lSrHCXS4*Xf7dLv#UPY zU$ScL$ZFx{9hwtef4sG{;!a#Fdh~czv5VGbn&ruA(m#ubAG|4lOdgd<%|H~Ny2&5Z z+QoK7S=emY3Xd&a+fLWzlEWmK2?F^sEb)9cqt;0;F=>QA#wt*bC>~ZRVy)hnqE3gp zUN}8yn;icV(K%b|S2lkI$z<#BT})XZ2y9p*xrs##8&v_#9GtRU!h56?jNh`AlM5As zKhw!C%^+zy3@UWb`yI|f3OpE=CZMIE#l*BRF=!hJYeU}wA%Z$UG%=2nOKy7JOlHJ7 zmXO@F+Elg#KbxYMoUpG^8v?h~GPvNLk^@PZz1aiJS)0!GSevp4Yp8&e|2l5di=SA{ z$A?Whhwp8yViB=pw1!=KyxARDiIn;R{&=q;g5V3xcbb`wwVg=b0bZz~wH41V86;;F zEJdwaryNzMaG0lCA9S&Q;}g7w95Un6@TKcfJ#5_(Bhsa{uvedJ78`0Qig^DjK^SsblsVj7Z@(fco*^YiM$>A4rsf=f$H{lJk&;RO=-D z@MK3t3Ojk~CDx!?PeO%KQzJP8>BtT@h{2FN)^sY)=))^YSc+1r!-wwZpWc3*+TlTN zn&v-gr8M>u)^Gm>sTmd&KsHtjT@)3J9`YqnT8Sz_S51b4R2A&k8Gu3z^8qL^A2a4; zQ76@>Mx{_~SQ)k^Np#YEy!UF)Ql7Ig+lavk714Hu!yWBPklRhW>fjG*;>aGun?9$5x(9RIT)FWw zE`4gOFE25<_7dM;G@y1We{wO!LSz<8G-8O5`RX<(kq`xUgh{j=54PR)?k@l(5*W&# z_Qr_~XfDHvwqHKsu`^cT$h*;G4{(nRgWBxw7|R2(yJ-1ikXyY+b<(?Yjx@u&DioeX zW;C@HaNZ?s>!<#mr*M@pNt?@VPi%dDPGr$^6V9S&>yn+6iDgrj7Md@qQibSoQUp6g z77T?vf_|X{i*gue;7dOEtOPYM>E~%x1k6(uOCV<(u9?VKNK+|3IorYopmr z1!Gk4-M-O%7ryoaJVPr_I`x@=+*)TVDJ0(+f{0jv;@TbhEb+aIx(UcekkoXiijc-u z0KEFY<;k-cvIJ`Uy z9)4pdv47G^*np}`nRp7XR@&=t1QVoypu1XTugtzbN)zbJ;$z~c0ove6<&_(AA z)9F8t=*4Q3tkjlQ4P2juywx{2sk>r|kd>ZXrTZSISvHWc z$r+qO&n;fXiczaEe#-}8Rcfxgg=1_~_07P_r!+1PGB#l+GYhTh{y9>Lcb^qBzX6LB zps98KYH9<|M1ZFL6+_2QPlOMIk^JLbvoS_(pto`6x_6Isq5NpE1ckHH!+yr4 z{A(T#U~`cXT&9s=0Ef3P1aNp4zLdi06Xq{o<#Yx%YcP_-oi=56&6{S`6kUik1p@liCv3psIyn$!>9e?c8R9n5&(up2_ zsWEqt5+0$Fq_rUsC!|QaM8XSWwaAZ?9+#P_B5^dHpf62I{=LVHJ)5BGmt_;bu55QKd2CQ zTSRg(1KKq~qlo|505-J8t$%C)xM%Y4nx1x0rZ z-oB^&3Qz7?Ntv+IT^-O`BT)%>rL(f)7q-{!pwo&Ufz9P;;;4h$CE>B;Og)P-b1PKF zM#rpMI?@|wM+v~xHwBiCv)w_3I{-}G_7_ukK9u^=H%b98HPFrg08?k{IDOiQf&@gc zAp1=u(LVrtNZY1sy>q0n`c}q>2`p+>BOqxvkS~`;c)=-;S}EvuO*Y1u zG6-%NTB0dWM*G_ffT?pGi2;~82w4y6w=sC$1r|=Uh*-$~$pF0#=U`D~6eLxa0vNjP z%|J;!c*7Os%Wl2L(sh5vxZqx2c0}tKk09hfFpPt}kc{eSqH_qj-8S`3@|mN7%Rv-0 zVXYA2t8g1pHETku3t3o|xs{Lg?@od9c0PhSj2ofI$sdbzAUM05HHD00UBL$%y`Gm{PQiTmcsG zkjB*?LrJ8v-T6~~bi@GeO+p@V#rPdR`Rmogy+aA;!Jt%Aya{XiXS%s<;0)_Zp(CF4 zKMhlg|29l1k&V>tfNdqqiDK&;G`ORN-6RuK--~j4F(7*Lk4A>k?|I|yp{!=eC_48O2NcZIR& zn{ioVi}Q}r6WB_Kx| zByh?CcR0mKdPS`pu39h&b*T-&<7x0kfEY*|+x@KxX^BaH>-Vz=d11x(N8^)ha)&PY z%?xZ~;)n&v5SWbOtUURm!?(iDdRN+S8&NobpS5BHc*%pg&Vi3s*oVS)#esxY&8c5e z7eX5+=YqB%wc}EkZbat}kLjZwo{{yOjL!E$p7&zrn?_K>1s>@%} z8g^Hp9UK2Gmy#q@{1;S5h1y!CbG82qs>z^W^=n^%5d%WPB(*UuBDHE+E}(APgn!fX z%c&W-?*+Ilcr*;ym&f_xmJSqkYBtP^BDH_L(w}_o-WH^$hg>;M)xvH&r++{h0EU=u zpi9*FaR|M=T$UOZOkBjDZi_mzATVR>{y?W${VC%)lcPV*q?%F89YRO~Kg6Jf^nG*7{^s`%o1vrfox)X^IZw;&k552Baw z&i1GAf5eqF+c~L1x9ZMJcTD!M7LDG&8McmF-1T3^K+vk+7anP=-p8cO_($8-MXV-K zW(wJNwh_yo9d;^c7)}tVoLD-kR8j#)+)d98TfA?sO2@1OpQka>{kpCBF|@E+ABQ}u zIRMVQj5X)6IIH%SaOjsmgnGL#*V`FssPd=yb4Z2RP*ztF8j2C%D90;+d>Bp^RneFx-WyQF> zP^Ymp>uLJ(zjPIr)#}%B27TTxqqJ(y#1B|XxFb}$v$#(Dpd}N1EYPVBtpuc?(tuzA zV!-WMNvk<$pKGpOwSDXYmJ^LVPID7|6n$H-mifA-I1Ap*6l9teBaMnE6X2<{b361+ z=9Hm|mXPMb7MT3<69@cQoQ})42IPB7np_-yU?ZbjTT%GS&5-XJ5?AJ@``lyTXJcZb za1&bI&JyYmAGRwxacyDBX>VcNaZ@Df&uJA_b7i0_Gp|u}7gOQ}pH@w8*_kCjeAjhR zr$mKzx1-I1_AsAX%)lY5YvWwh+I=3+ESiEhTZIG4;APL+4qIf0WcZ$pY$m@D9WYpj z?{h~xLhy7q+AA8akEK$%a@cy6UE3jq17{AuKbw#hIsKhCrMik`4qFSZLw5>-&&S>( z$|b+6s#!J#xh9%hMpb-GmP1A=eo?*zcYGoK7p!fb4Zbvg$%`0&HNFcUexj@=-ZRB^ z5th@1r3^;1>n?j1_{8@oqwb;fvVd!>h^PVTQ}+5hOWK++SuFz3kwYKSzyq7TO)wi- zXshNHow4Xc!>M8^$cfgfvV)&nmZN!VOr{r^T&UEj=6%&*y!dVsm+KF02#AlhBZHY_ z6CzszL&}V|dhYBB{hj1BW*qX1jt=D#9z`;cEPRv}iFBu?8B^S^i)l}`X30cnWAv0i zSxmE1sPHHDaOOdoE@Zt+97E(302E<@$T9GS~v zYff5_l9yT7$YelByYaP4kG)CETflGyhLE$5i41oFi}a@+TFEDa9khYKg|XZ3W(eF_ zSkdv>pd5iextZst4V;%xk#nT`OM$5Bzmsp^+|L-zUeiM4MqKxSl&}ukhP>+0Qv*Lt zQe`22QMWlMR6ZYK5Sc=p>}zWs~f5r z-f(vSaf70p^ssn&L)Tpfjp%-e z`QrNlc+c@4zHj+$#t}JFPPhk89D+_$BDB$Kw5w=yIT4;s0)D8DQ@Z^Fw`7}~ymv^l zG~`})GV!i81FIVVPwlS^!rXvBB8S8=Ps>mQyM9UE6Y6~hgN}-1*w<2T6Bzbk-}G`< zN498Fe9(S6yezszR_->zUM{aB7hkX z^#s{(|3{@1^FOzJz=g@>puNstVd(>rrikVnH-Y_rF{(mTg}c_Pwv6KJ2zV@D7yhhyZ^xhs|S< zO-rKcgWMFn@9k=};QZ&v%GcY(PIPw4Fg@qGg149@Z}Sx^ybo3?7W-}EVe|=>Q#_dZ zD}V~n)zXasX(A6&i0^~xr}c9(3MTfJkxk7s75as-jK}4r*QxjRLDfcMH)E9K`t}h4 z<|v0fV|-vm{Xw9rD6 z;^J|Zl&a}|*cAU) zQ+GxZU6cN;lycc-y)y*sk$tCL=wxQN15`=@$2$OFf&Q(OGIG=aXzI0pG<9?P9;^Oe zO>Gp3=)6mq;sqZ6v&`xX4aTd1HhkE+%-m*-Zx)&4g{$b4NB5|!Udi*l>Bnqb2%WEx zi$A>Gi*O|PxQsu@MSGsU!~Nk(veue5RQf!N_do&RV8*rZkKHHBJ}8GJ0zm~Vs#7&g zA+3po8lCSZ>jp-`=)zhpnAUadp?#x@bn^8yOVvfUbkcy|jX!f6A(Pl${;Uq)G4w?x zJ7bRZ&NFj}(Sr=#qpao59K1G3(_)@4Ot6if8XKzHKy3{x>Y!Ld=pxv<;+v|Lt~7N{ z&L%d}!DnPUfu`!(3zEg+)Y`zh=Tv*KnhE?I5i;yLhoq-yrT*?m53amh5?^7HX9_vH zT}A$#nG#}_XIAWyq$1BZ%1zN&SEwym!#|c9F|mCakDdz) z=)_V)#SJ^vsFeZom#ZO9H}njGWuW^6d<+ZY1yi*;xEA+s^4)f~U&rl2cVG<`8n8CN z&PQrB9k5~uUJz_R3uS(u=oOY?MmN0%dFmVhQe#LHRvw!EvT#PhzLmweV=lPvdRzi(Pvn;T9ZVC-9@MgX7L5WtC{HF_&H z$CsX&Pu}z6S@4A83@}i2Hg4agn1b-7Z_bx0WcELta{dEzo{)vAaC=NTc1x`@$j2v)B? zM1)h~lhAIH;$9v8KyNAf?7dVXyPktybvx@qfwJ~F`98?+?xf+4%d&aPiw~Z)hcIF{ zppWmIiMCkC$`Jd~hD99Aoe%nz!t|)C<>cX@e$<1p$LxH+!#x6`#0B6X<(|~2*+e;@ zQI>iBzgg-c$|qI;Xi`?n2BU`vIfT>*>y-?T%sU$A+=z7J+g zmMqIN4xS~)#k8b-i3ktWlI5pBA*s>K^xj?G8C~Lr+iy+VC5<)R9 z)n{hF7&z9XWDL|fAVjV_9*0`j$7}ET%!h8NRB%ry8-3>63}b5%xx%$(bf)Dtkc3s# zcs+EfLf{X6(K)@mS-=SJ6OBRMHcDl}vSLXwa(?Q3*tUS2Mr6Pl)yd zlEAdCmXxnA%H0C8xE8s)wH1YHsZQ*2KVPS4YG}6Rv$KmSgMJn5dMHE_2k{ae-?(|b z!r~TlXyJtNrJnm6SyIvBu{8P6Jr}{!x@WmRL7l?}tur9rz5tos1m$D@4B3CVX-m@m z7Vqsg7lumS2MSXep`D_Ss`pJf`Aj$&`Oebl|zJO9@2_ z4KvsiEga+>9uvi@lauxmidG>CD#wOwXRkr`IgR1n!4A^?t}`bcbw~bj&bn>2_Fffj zspq2!&Hv;sNl9~H%W|L=cJGuqf~mW|$Z!^O=E9lR>pJasyTb|PYvkoY#gRRRE@SEg zOE=?q1NYTTtZXuUK6C?`wIFXEVhrkn*LVjr6OE{sCa;{tfe@$Tz|XyrR4z`nqw(mh z6t`AacG>_Afm&hnsqhRg^Wt$!?R#M=lOSDC{Dbn7H3lVGFnF> z)H)iFN`-C_bC_F&Fye~|JM_0O#TiKx2?W39xA7I^+v*NH%OP~_vh)4+3@o|$Uqf6Q z8FCWCiee&c)SnKQ#OKF@^~Cu{oG)GW=}UNtTDI}NH`rs~-@CP&D73k7-?LPf151n% zU?oAtar30#aa#Ig4@8ySE^7&6>cBICaM?5pPG=DP$;N4WHOx?WPtXB94=H)@Di>&CC6;z)X(QQC-ii=tPGXsy&KfEzN(e>E&~NQOcW94#E9US`5%2 zB{g_4{m{0_$2FG+K{giB5X*M&`_ml2sbSLrocdZx%<1PIIe=3$(Eo&8{mZG9#GHRr zz`94iU8L6+$;xj!z>9G<0 zfQK-qVZ9fA&CaqBw7l#yYUK8o5JM^~i+O^y_9cj6Ky_9*dtnw(b=BBW8>3Ka@Gqjf zuVTyAaApTDGY%}F7y7-D&~B570zU>HkcolPXKyQ)evce|G=fbONsp_P;JM1@@xXP8 zI?M}H*R7$hx+3psu%)&B(^dIA-vu9I5*iMRZFkRW(`iLCt)9#)oki?gLiLMR-c3C5 z!L>ydp#+$dz=DnmuSAC0bNu#U2swnUJHcr{P5P;IDF@Rzw+DwtvVp6f-z7P;iq#)t3XOMd!h`el-W)T_@wxA3FO0hyX*iC2 z8HGZz3N+81=rNybI&dGtuEs9KFxtfqkfw0iwwNOvs5eA8u0GRKE&Pv}9?x&q>}S&R zuBmVeAe6HCIEsZ4i+h%Y%b4e01F92r+23xbtR3c2gA&A9TQgTjYthu!uV~pdPBx~7 z!Pi46n?s}bc+zApMF_HB^{i|;lfG5RLJiu+MVj~QF34GB=FUX`{>d*!r@p}V?^!_n zq(c`ZPX>|DZ%_5ZW^(zKZ6Z|!i&rdP6|x1wmhvC63!Qd@^CCD9AIkIT&yAfuH)T4(=gv>r zktHA#!kosxK8?UGJRhK}tLfsM^UnrGG3Kxb!C#;>0yOn1om0?u=)zn{27ym_5X8~k!&2v^WM=c_<# zhp*2ENWMze&)2X2nugXI+O7Ssaw%r!|D>USC?8I62lA2-uB)X!i&g4JF?f45U_z_u z4M>{<*u(2p)}V zM}Bv^VqZu0RK7AIKoU((Q11J~ES$I4}gaQTo(C-c5d zHgm{tnGSAOKUbH|5i?Q~sSU*7bts5pwcCP!Rr8FNv1-z3k6w2HT^3sIZ2U4cE&Hfx z;#(Y<1s!SqCk;KhK~3@;w1N;VVHyq-uxrki9Npc%Eu75++Bq9=kxixuexY zK&2AiOw!TEr48l3X=uGNAPu$l1f-##raU0{ANnUFn1ZBu%bCPz&7jf25xEq7o^1c0 zI23}*9>dXuK4uBEI;!Qr7e-_MI*0t9Sw74Eo!-sASw8I}KHW9P>b6OxElJUaYFkC( zZ(u0%6)HodUB2IEJTI+f8>1JOVMcuqcPx`JZEZZ#$d~DLx<@u>dSO(CTx!%a9yY%( zj*RMs|F0RX0JQ;ddN0y`iTtM-4N`99|KE(3a=1uU(R>|66S?F*K|KIzri>S%qzQm1 z$yxx2Li#6LQ}y7~35%ZX5C{NK23Sdl>r6(zGlWmxvFSew-Tj3qv9G0PL#5zP0En{o z4@5cs2cj6`QC}ye9!M_mTe1CxC~E+SqJ@y8V@Bq5yK-4ec3d@!`nMU47IQNz5Ssx9 z(2Tb6pJueKpS6SkX+~TArx{J*FGMN(3sDS>|3VZta|z1I|3H-ghrP3is;f)XElzNE zcL>2fKyY_=cXtS`!GZ*L5AN>n!QI{6-QFR;RNY%uvJ+=YZf?N;+l(gj zPi8dh|7k`$A^5kC-f&;z-fh@*0HjYO2jDI|Oe{cCsXkK*VZ@LY9&}z{xt~z~QR5h~SX+o-;pXL%`EypB{ktNB^zQ2$8T%#?jQE2D^qSAGT7ud~5p7!S(y0?KPW#pOhLqhAl ztc%7|Qn7jR;CWl0^4<)OxnNz`((M>vPZ0HZ3n1d4D6w%;q4-jIKZsz1nz*0fN$7Ls z0MP#nGt;Df4JK$+z=o+DNGQd-?L0Yvw?-Ruf&hpgd2-rnhq=0m?HY=~EQk2h?HYxwjd<|MVtr4A=MET0bq4d#QoUsIISy}F}hHzWXJ2`O$) zPf0~0A6(I8W&^Y~NooMeD5hNmlJfursda{3IB>7Be7W)8V}AdiV?Ox#YCX-OG$C)) zS3CPZ$9yd8LIl5`)7VJB2nR?Im0N*#`|IAQaB!d5ejK|)4|trh(jgSO;MdxGV{K&Y zMp<{CZ(kg}`#9PjDH?TFK_1vp{uKd+?ykjdlLWzQ@m`?FHBa*}t#c28w;g01_I%XP zuG>_L;ltK}qXF(+TK{37f*SZ%gG^}dDi&zF@h%pxC3)VJ0Ohq*Ihb}aS#nOVi%5U) zdViw%>c;3Rpcr*Kh8Lg>Hgyj5E<5j35FNJDx&&371HF0v(a+OAJUPLSO68fuT>*+| z))d6f-=7o6)uOBp#1oaXuCf3oB-US7wt=be<_BGbI5F>BAhZa?LDGLtI^rUC+MyWx z9a(axoJY_qCwoNG#HS{Phz;U1+QRm1E%Gh6`j9*j!v0qt=LXs}V?E^-DkK?<0yb`>?q zPVk`|M<(nf~zb;f>*_K+A_8AgR**jk9+G zmV)_+Wh;zRG=HR+xueP_igHG=JQnSVvP$S-I%9j3geEm}EWF5s-vE8a)?*j^ng!YP zi@nfs&F4?%iHcH82D-LrxM;*D8l&VGud+*3{L77|EWZy94{`sy7Bxm2gs@W%`#$GG0uUC_NhMK1 z22e-|-K;pxox%DJ3@4-n2J9LAZlOL@5|yhWEH|{T-joqunDCy}?s)-imgaY}hq%O8 zj=F0ePfb(h3!`wGq+KFt86om6rqzf-j)+DBBo<7S`P1isT$Ije7aM5=uyZWfGh~2t z8@(pX-J3<1Psj6nEsEB~@ZS8KbJMdsJ{Qlsbzm?-%{zikPltYx5g>}jXOqEdy?qg*P)9b5ywT1%1qFxjqW zGO*0|=inlP^dQvdKj!?No6&Y?z&DN-<(C0^TPG`7Y2_G zuNztW$+Fa=kkEFDAC0^KJ6a#Wjz;rtN1F|Xj{$p}%Szcs7$8}Ox%3_Z{K@MnxR%8q zSj#qbM)`FpLM%K`wppLi1aEz)^MZacEQyj@3M_p*zX60N)I)ZpO=z7h?Fh5ibZIAU zd$o{R4<+N^-OA`aC8Qa-Rln}H*B-b(yxQqUfKp8SrvHb`^QT^()}Y_@Xqb)v(4&P9 zkWqDdl{;vnFaz{xoXq)-k(#u1C|`;0m484t%HcMf1N3P5j$YUf?|QVY-3W&q z5J;v8Kf?Wx#=o?`m zBk&Hg?O`b~CP!q=oRa1kTi$h7Dk)^4+5kY0HaX)ucfjnFFtumt5h&1yUgvNb2K{)^ zYaJnZFo6?}kW^^}B?*}GWn>~&*=dvH+<>$WAEhH4}?4c&70FDu*uZS-3M z*S*K0Ix-iN#Zc3@G^c68$+^!A7^;yKA4HrAr?NL~nKHM`x=MrU7Ur9)tkky9*_~TY z<;Pe_14^R@-Kd&4YUyO3N%CB0uP27|2pT4SE=AW9WfJ|PGY6)R`E*Dbm z$PEHS==>QElIdsUhJ3Y_X;z`TxNzS_K#^QHuS1VVAHV@GU;YZ@u$8Uoct+;?Ra(-5 zMpbvjwo4N}sU9vJk4&yt^qG5^MZqPHlY27}titCDk@F<}8dNXjcHl&{pPdp3 zT4hyg6`BS&*=<;ok*Qo8f=IbImxO?)9;O>EuumCe$i;K;;^_1xJ%}l@bb&??I`L>% z09Z}%zzQe*k`k+9l@UJzp~`g#dKmsTv=9D(ae{_+PU~@n<*(LphStD zZ=2k|duTU-JL>6#8-W>=p}wwK;O@Co*|utU*F41UZCS@<-fijB2!ykUw+I)Gv=!Q& znl2?Az?@+pznFDBlcf2e+xK*o!^$B;_xbUMvF2^bP|KII{#(N`>1eYIa1&e8bXqW+ zr(R3p(pVCPPrxY~;#r1#mY*oxZGeo;+76wp?gwBaCi!sSp6wiv4I`BWFy-N{kVovd z6`1@GuSPwRip5n>-Lr!c8unv-HY=Ls)9Y_dVsSXm_b;U?!bfrzc0s10`x=Q z<55fbRL;zA<>=&IYpo5-!MKzQMHEv{$Q2ZLos#+vCL_o7OJq!S$sPkqnuIu5V?P!Q zBr?&!G1b~#44;m>v|XelTT#nGM#-5D48J&>#5Bf1PJg5WUh!K)pEX7is{Su=%%-w~CW00m0hO)A^tr90r+SWkg&OZ`wIAfU&Y+P@;P zQOKwQa+rgYc@X?62gzRy3Dqi@)wR!X?SgJvcST|!RAcGl3=&k2E|riE zS%z-7JPa&0%#r7sjBr%)8}d3?sERy*|MsGJt&zR7Njzruw4X))`T4C;qKN{eCXjfj zopq*&Ze{b)rNZLQ<788+%moL{)b+c6xoi5Vv+dc<8e{urw|F+)+rNGBnN;W;?mubK z7=NGi-*^0+&x>stMQ1z>TuKgGF~&@~9^~BM5G`jKsVP+GmGhRy{q3(Y0Vh9YCbshw*44^_z*Vk2>MjnxKe z14WKN|D{E1-B$-_(W?D_Y6$ijOo>euNFau60O?4y-IpN+iJ1blXyX+8L-ugIsCt&j z%wkauXuVm$(O|SQQ+}Ef$tvtQ&zQ+r7T~F2Kudtrk{$GW8!Deqm7nnQKewT#WO3iy zQ14o_X@C~(iQ}hB*cL#G)-JTk6V%fpbm#$pAocmd28An(7l^Zz{735r=86tzhOoZ^B_ur*=1ZHp|xpU<%J+H-5YJl zH15VZ6e2{A!TETBc3`dh2lc|`IP?;RC9H(oE+beM<4EJ71#Gpk$3GH6zRD%30EHwa zkIH0?v$Z3emc^S##4n@Z5&2~(gtm4oy;2hh-IiMgc;OmPz`T2;yD`K+$!cAqsLsLN zxW!Pk=M67T5D&z*P2er^VOli(PD24RwfO#zG!$G9!^rP6RLM$sjVex;;WlRaPuDmb zeJZZ+@}z*n66Hx3;IPCEaEeG>Am=O#F;>(JOUOkIobyMPO<*vzl}`Qge{^(!V{AfA zo`K+JgPKkdOa>nDO-uit3VqX5r-H>OHZ)m*k2R+|xC0>=Q{dlli+HzlD6sq55wcj%W$CHh)CmmS2C=L()R+qyuSOTK014qW|EpP*=FeYYUUxi~XHli}!?r8{~Y zxJsd`9Wk$c_BOtZTy^Qg7n{g@uK@aXSv1ET5Y4N@>2t7&soe`(MR~Y-V;=i84q7WJ zCdV3;oc8k@gp1P*d%&K~&xOo%Sdn2GYTyHv2z1p@Gl99b_*Hz1L>pcg0w6R@b;Pfi zBAJ|A;CYB)TA)g&ejWCBra{1PS?uYg3&kw&r=^cKq6kZ&_NaXzIyV^2-&MaGpF8Dv zF$x$Uu_5wYfeb(KUg>?z{yEcK`zNgxAD&A(PRmvxZc}n3J3t96~`^o2^WS zdO8MuePi zR2<3M$a@y*^Y1Lw+@D#fNgS+IS32dac&OtU;v9nXa zpf04__}@@pSD?NkT;1<;nex>E)*H6jNN+|svOXT zQaVt+b!6d&YW)P>{-h2IwGGVRT~AY?b5GeiI7xqaDftA`&#$(TTsXDEsk3)^x{nwCEb6z8Fu+o`iUup(`4u>KqCb6hvYoyUY}(;bh>0X zv=~16)qyEjFoZU$L)SbbWPg$7Q)P1c74=Y#8Zi+qkQ%ofkWdZ*V?4Y?kMNWV*b9 zh*mp0f7woP93ybJGlgNw?()gmhQf?taJ)?5*!aUg~k+NwQa()!gN-SO^0@pSL>!3Wsvaot)!{0m+l){fkPJm5T} zb1x}}YiuayWZ60rx{K^AbQ~qB7_$1~Fj^<7(>U)qkpu%8T~&MYhy4-dnNU&bW2uoy zPK~t0FQzV1z=9tMZ@EkBm@kt$nQ4{!qyf?+X}B$P=I+(!)18~DWB>8ON(j|m0qX=| z`hg2mi~PE7a!|>uV7{)cJlZPT_(fc8m(!x9VA~S9D&~S~O>SD(LHW)}cGSR|dVVTf zCVZm{pwetL{ zu5L&7Rl|-|0jt4HfKmsN+BzesQEH#2%;?mMI0r6dN1X{53vPa~Hv8DXRBv1tTw|PA zw}SYp_Q9A0$FzbEaK?20$|P;PBbC^qGm|#^^1OUTXii}&MzLgi|BLdHYTl}GJ6lF! zz9B}WFVj_nU9OoziWtNtHW&jHO&t*g*94B10=QWj*{Q8z%u;;8_0!c#Pe>rfOIPXV zX~XGs#ml-}HxKRx4CtA#oubJKSb5D4uA<#?5&+FRaBz zjX~*D>AoL3f<23w+KJ?9VtvV|Z2Y`nRgXVT&RClx4c2JF8R9T7W}QV{i(qnTlopZ| z%e}*0Z3A;q$ZWWOoppxQFD*3GG_LNb-m3}ec}3bFj|vXXpzBQGSyvyt5~92?J6!>} z;n(Fe<&T5Z+vjjFV`*#1lk{L1j zP$?yT4?gm3>}P}|#sCdvzU;<^04j|RWp5>{INM1qCZ=b+@FcZD^xpWG1o`qY74_oG zjQodTm6a;%Juq zG)*DpR_%SYJ}Wgom~$WakE=d&`a@l~uj!_bVN_sHqq+^)_ zu-AoPjA5irKMT6XLx}lN@Z`Qg3w)nn1Lj5&;&27!q{`GpE86pPO;Y^S)(*o?vD?!& zY2HDmNMN5rS+@qV*sTHWs-Pq5==SJIW0Hm~Yqkd;JplM$=_u;?gwk{HdsA`QB=O4A6%1 z0$9(UW+q0PEo<_D3QIhY^Kk2cWz`L=lTyHgMrG+S6C=tJAB%BTRfb3W&UqN zehM$P%72_fng7e=|Ch=Ce_`_P=>ESj`HanJA^-8q%kp0)|G!NB{|l4fB0NLs@!bOx z@D>W@$ogdbn`#bwI>pe_!kqQKuazj(^Pr^An|1N-0s;8`pflLV$JWtEIv-*7VGaRG zOGt8X1Zi+BsW%a^?gt-;^1C4epJiuTMDtj>(7D8909YPdona zC-3`?zxf&6i@@v^bW{9FzWy^c)W+(e93i4Javf@mrjZ@`fG~1&M>)X~a8Xfllakho zi!cdGsr0eI)765bIvU@8R;S+$XsY z_=gnl;qr%!xBF_-1vPp9;_e!yo?U^Jk*WqE#KHqVUKt+n^dvzuLz9eQN zJ7ht6HMoKIc>TfUU%YeqTL3P&tL=q zXa6Z0>03O=Wk>rcwf|xUB;laoRfHL`#ht1ZYa4soQd1U~}C!KBZ9I*R>xwuY6`W`Na zFB$T6^BR~UFfiUYWC)A(UBG77i`@@I;PC6uf#7Zlr141~mm7xxgv)UTNMol$Uy4#4GiW{)KEOp8V5-m^}%Mv>|siSP)J5O>4iHSwz;KdT#3 z5L{0Ea>ATgigHrt2ZYP}CRN$8*low}e#jH)B-}m+3rALuv+4aSu~9g!!EUrt{JSS4fNJ2Gk@{^!k&4h8zj;XU*iFEeZ$A#1zQzB0%SRpTA_8sDHtk#nMw2an zh-!pH*WNnH-%o_=f@_0}FU z;w?i^+)>e6%DB1szr0^?np;Wz9_VKAWN8AKjO)_;j+v;LF{1;LJ*8Wmsbet`k6d)2 zVQD@*v+>P+g}Np*ZNmPzOci0wPN^}%l?5*o9sZrUqs}+UskrbDr}*)5b6}<>vEFmt-xE zxlyiMwyw`=eZhtC{juHfZ!UilX#5A|`;Z^N017Ul+YK1&t_c&UZ~@tJ|2|X{ znY&^vVYIL9)bB&SSM`%Jq}RfgL`8@K{ z#oqT+PvyreYn78{#AgYjvxP|L2baNyGV67(ys+Un!9KdgOj_Ubl>D9EK+5fnz3=-G zOdVvW-SNOf%8AXgX+V*e8wC^<&$p0zN=rs_!uD2}Y~s5v#G3AzhA6_sC8kyg6sZ); z5|H`gn?kf+tNqoqz4*rW$|=b8(C8S|+^Xc*O^qUxed$oSgBn!ggIHWG?3}Gi4B2jb z<JZwTo))@0pWK?^ymU)BOqN^Qnrz7|TStHdzty`m7rA z37-{4R-!w`3RGOik#4UrEv>iA{mB16o?YgT%e)-WZkUc9iR&Lzv_B9ol8z20gD zhG`-I%g;rX=|t7!d%5NR1tT$cS(S@pwoSlvE|N(>FS3&Jyr>_*-i%yDX?+3v6k@@v zzM+=1lx_N|fa0X3xm-`Vi}I~$&pk1RZ=uNq8+S=p?J{y%f^N={X8C&Ki*?((#lZ3L7X=snXq*3f`PX%w6 zW*mF|IN)>-6a0*?BzYHSPzTWX2S#XRAAJjYEJ_hSsry)mXGhqz#(Oe8x}bpwe>~h| zb+1X>BrNSflKOPs-g^4fduwMNF2KeV_`R`dGgqv6UCzID5+> z1*wscQ%=YFEMdpAC2pus-uX()KzL|dzf3BJsgtccM>cV%jV&r4-i5s=h=C1*fiQ`c zH8p|xQu3V4T(u^bk0AwC!g9CtLJ#p?nXBRMzTtd*uOE}?<4G8w-)ibLd;cX9do9$icTNq){FQM z=`*$%k{yMlj|`-Gl)wt8DO76mQvJF(*|}X=4V5I5+9}%6+;JH(8}^G@Oq{gHmYL}> z!IvMYEr@$>{Wxm@N%O0+Gy*+)kx(7;I@HRKh% zUXD+F%)u4z6t^W83ffdITTS}_nLdz4m08H*tqZZ_Tw&w@J`me0NXUTS3=`<2Ky++Y z_a(bEj00x`LV_}oFqI**8KKe1nmwLFZkwy-G-6QEh3n9c?$(NX1@2b_@vu-DM~QON zoB|Cse&9+Qwr~_~Z?zt}Gs>a^A@B!G*&~`c>U`OQs+C!lk0x|@C!?acNhxKW)`S|1 zfP2U_%oD>C_KQ6+gw(_rV@}SWzNrWwr0flh#O$oU$`;4y!!%q!osyCJ2BjV&RFEkKmq)+~}m<6jr4+Uv@MY^_c-n{3`_R^|p$G(5&VofSH zZA%<`CBQ{3Z}Grx13RP37$FiiG-g>rN1w}$?fAcGbhgOCpObtL(!J3TLqIM>AZ!Ku|tXq z3*1q#1c=;h*`d>PO#KewmSg#sW@!fmX_87a4e)KtGW^IBF`3o!-58NYSz{_9+ek4c zC<2FVZD_t=Aq_3m7;70+BRN4xO-F`I_G7Dutx+LVv49vMRKi7frqpc>HC@=R`!om- zdK?Q;+`U9XGvHE=we)b0s|#Dg+nFhJMj@;Eyp7e6;z2aaXw@?{;7oNm9>Z#ylt~<8 zKOPJeGMlw@cRgLlZWkJ>%?a>#3~GoMkCwBUlrB>JbHzZ-)pU8ww`(W0%VPv5_&w*0 z#xy1usQqcs>Yqj?jDbONymj|S7p{}Bk>C*uQRQQPkb}Cj(ilt0;5+&IV4HdmpRxVAt0^FR+c0FA_ zI)SALK9+mC{6l(Q627g>H6ANc@q&8v6a_01(#EM|{t|x-)!}a~+crlAL(l!_vEfzO zMJHJ>XE}B^5ndWzB&K+@`41Q$#IgN~^HrrkgQ)#9+G~Z(Q+5+jHT&c9%iA*93No;! zK-B&3wpo44Gv4tew^oyB%+QK3c&LrtILp}73jAT~tHv&d$GqC*1JA#G<5`Uy%;@qz z!T7(A`GAvB%+f!@_yzzNKgKQ;731XTHF^^yG`1mTGh4?SSbj2WEG+GUJ#KqrzzEqC zhyZ&f96@S$?M?2hH3_KQCfKV(%)K8QP6r#v)J5dj$c?z`W^y>`jE8~)C;=Cn#1H1T zi<`IC%exkXTszQ++Zbtl>@g`$sc!f{vOqX4nukpeVO&z*I4=ee1ei}l3_$Ual_62= zzACx&@UTBfZHvlwP1Gk_Ir*(>3Uhv(ERyW8M_J zGC#Khn}9*)`&hy`)L%3{8Gy#;{ENotM*L?QUj!;WC1L(-xsQjtk7S1P=6>mj0i=N- z1zoz|AX9XOv^6rEN59#v0TmMi;oi)Mp{76EW@W$IX2BV1={Bq$BmP;ze#!`; z5XdttVPbh*c6A1n499+55=Xc?V#4DwgWTbdJye=$o=WGhU#oP|Hqm0i7Fz5=yrZZs z-1vq4Gy!ch;4)pPJ5v&xo=o1(?|D*PzeI0{2|N#h#gryLe?xQMhog8A=rN~+^+E)l zA6loEmPZ5A21QFxVSo)22d2RxGh4Y?-N}>S=Kh%bO`DLG_YBgkWhfn5;5FqRG=2%z zpESM;qsO^+3GYAC__N&C$^W47X_?mxG zy7?b8{_nDx9H4AA{a!X}dzCSLFPo9vK1N6x`+Zb#c6Iz;H2(QNXna7~>}&pJ9?t)u z@oCjzulVcF=EOwY=z8w_UVr?wW-EXPZ24Y<9g0KtA3u6@wkmyu?{DKE)t&=v`J?DGyG_#9klFr0_EB@ zZXymbf*~H*xDO07p6RXlA7!&ofU?;+APlf3jciz}BH>z6Jo)0ZD|>Kn&Ii?rOb=R; z^^W7)d|a7Ij{xBK?qZ#1>F5F=uKdGmW>?o3tdeI{%pW*E&AfJv%f@pWo4cr^!xoW=mD)yi1E01h2R5n{4R&L3Q3qG;42bSlb*p%C|@Kvk8A`{3%fdLNRaCjYb)HYt=W$tjR{U?WP+&f!1oWcNW zehOgC=g#VWE{qt4*F?78ocK5%bmrhdLlI3m3VuO(4Ss(#*1Uaj_^FblMA8W9i;8Gl zFGbQRo#y@8;`Q=#MM@$G0LSmNXV9shR7H&g;P{B|IDVAI%Zcttg#!S`et@h*6LOL4l?9cKf0pm{yec*Hf$mpVI z>(g4je3oaTDpCL3HiIT`rYp9m3#~b&e{4yM?ezJ4xx}H}rRd=2ZrU~I{e zUIdhIWL7iuLQT^v(w+dX+{>J#aaqx>PbQ;Y)~p^?{e56hHG-RTRe$(Dw9N921EG5geGvi18O9sYjU6}XW`XRJhs%lt!&&G{o=7Y-zq)L#1_2j zDx8brF-FaHYNQ*IzqJYiRAs75n@`a-`u5A|AqG6NbDvrFmS~OjZs&=zg-SQ_WXPvt z)es_#kJd#+hOq6{O8~F4jIn-2tTAe}(3#1$x;X5b7HeXYzIEPqc8GJ{k^|8A8=98+ z(lzBkV)kbx`r%w>{TN+jlZ}EKiC?Y?xYlIO{njJgQqYGvETIoj;wgz6yW%*SJ6>i4 zS7j;4*J_=WCD7YBM(G=Nkn!XUKqdTZ;qlt0K)|{44H^H%Br_LP$ z(;V&7Ya$9>H7~HV$QKl_AA#9wk*Kh6r;2|WhQGJ~TTmkgPB^P_ z8Ew78Ta+Uk3Zr9GKoof7) zYaX9o#l2|ZU9W>5N{i1Z5G9u|nojo=LyBw%KK8LgE>`%Zadz%*)NT^5p*2;Rk-{1y zy?XHYJ9GGq@={{{sd+OCLJ#dikASX>rm?E|;(Xt&!p*QoaV8A^1^PUG$WfSS1Edjc zh+g6c|BJ5#C(1*Odrtup{jY~#>8E^oi|tb^HE7HXF1KrQui=aO7ivnZcY2XNkYs}# z+nacD>5vnRkPBRm=d*fc!inTio#K!9{*r?XBbg4_3K00X(}g2BY440YIUWmOE~O67!~7Vhs7Plu_XgmoqJYF5voK@LZx7Sqj36wZUvv=i}*a}PC`_}VKL5|WwfD1U3-9{Va;zG ze+Pi$a|3XEcq78HUXI^5KD*JMaWk(!;$|W~1112{(mB0t4UQ>pOTvR0=*m9xrc61y zUMlsNM&D+Nlk$(anQ_Z5Bk?gKD;cV$O)ETw}>!nirgNwguunc!3}YmM|)=rflXB7;qL;9bwvi+czr$pE948 z)D~a79oe$;9X$9hw^WTd%5D~f$&I00 zDE&prEyMvQF0OY7Gd|O8Gt+K-!*adH(w{Mh>#gnZ>^gFx)4Kar7PW`y{4lUh&f6cY zo(FHaXs0w3$R=Zj#nh?O$C^;P3{UptWX=0EGbpZ4=M4ab{;OGkA9Ks+KMtX+{|Ypt zSe`K`vqnW*6)h`?JpzGMTcFZ^ILCjy#`9R7wc5Tp{Tpa*}Ja>`cA zEJ}c6#JimQ*H3o%oQh+!9Lj3+csJ6AhX4h3D5(43YQrX$CRXwnImqCZAaPBKjF^7_U%@S79yCL(Gx(lUy9lq|( zo9ei(}8X$lV?|IHT#(OGUKDq6LAEkS-!h;38m88y!LO8_m1a#*Z=X$%l5Bd-v840 z|E2N&mBwfN|3l+be}CD>{7+{6-%sA(E50betZ()Ps-NqrSLCUO!=%B@h&c?$y6b`U z&;y}!&)V+AG{vjrq;#jOau-%3KV{Cz#CSE-z(|~WlfeT$R%&GY54Zlok?+QRQ2(R& z0S~~f&o1XF-~_tnQIcS+`L^}$*3W3MB9ntFx!rQcKa6zZ6zgIQ>}|4gGk+d*xTXvS zrGEGciI1)tpOd1BF9-oJMMkLWq3#>w`j<8pWfa=IK<8te2`~|}Kz=9EMVYc<5g*=! z^1ru6#NMiywII9%<>lp%{t74L$%g9BSEdcj!UG1@;Py?>8}?bXixipU2aOqyoU> z%k{aCR3u_x=1E|&#jaPT3wu2^y>7JOSFM)K>ge2|oX!aKm)>l!Txj&d9|%{uJ4y4XAVOV;!r# zMzp;(VbXIKRTTbZm6o7y3GS=x7e0_YR?kE;Tne-oqw5Z!ggU_VO%Hzp`SdRbjsm!Q ze**cN>@uNb??ArcJCIKr_@YI*Eme-GSxjD3+UFt?6uf)KAhfn2ewGx`)g6fk#sEDD z0P-IgYBm5szMj@4-d{j|-|(ce03sE4D>v6Y-%oSe^$)m_*yrciRX`pfBEEFf%rJsM zb!D9ZARiV0w)wlXV@Z^VUW z$p6sm!~a9CUlHur;l_$!8s>t+bUD*=4B-W$&qC~c0<_;up0YO`BB_g~OHA6sLholh zuk5)3pPjtX69Qsbnxnk8n!KzbE0P)N)H2S3!58MHWIj0Tdw^@1Sw!B=_$h>mSAV1i zZw;sslrmG>0rbTX+cdm5o-Y~prR<=|RMKgMFvI_FK}kT+C$HtwiA^uaLJLx|n~$|6 znuAhqzU@khdYqQbgZ~e`ej6i;uszegaDFP+}V|;D;m17?D`!(va(}ab|d1H)7CDnMX1in<`t<$#~SVkb9u-1OP z@A$D#KmOkFfwEm`!oBE~l{cV1LiIGUmtgbyk+J90{@e!}w=`X17ZfiFXc;R+?k7Wd7G~M0UU7Abt8g-5!0I=sp=aPggz9amI6C;$M_-Y#G`sEONfBW_MMZ|{N zdH1)OdZR1e>Y)rC`}%hpIGGp!_UjXKzIsH(jD7cAJ`!8`?bjE$%He-iVk|4hX~>{5 zh{JfZ#%kB~Yk=soNsq_C>G~0rPM6L33uvwZK^>b?gYVSO355OEo?894M8U1kU?0L)*$H)cadw%8Ie787`R|&~Es@4r-?@9vTUmQg(LQ}Ne#(@b zR(t`=g~P)Wjj1(Aj7G8jD)%nf54ai40EhSTCSS)v_&EtgdNbb$WDo`Bztx@v5bOix zQplF;N*9o?FHJm+ltSc~XKS=VtAhHJ#!#{+)fxa9SVIlDjRBLf*ND#s0KKql%ep<)u@g+1IGm z5KtzYv8I4sx$pJ>n0!|ACfyA7uRdNkfGE7m=#AjFHIxob$=tA!v; zH0gPn0NWsej|e-)`diV{`;`B+A@0&j^?k~3lSUSK`#4|)nDUQ-l_e1XQ@$@?o`Nj) znS+VEQKCctj2Ci-drySmB~U1VPdkdt=`-3g2P^|V$#(x~%3}fit@Ng2=gEV%zV!jAZ}1iK2Mu&W5>?mL6>0n!?iVR@br zqQ6SjEvmZ4Iib(|zy_T&UZ!+GmZfjFhAkN#mjGIokg%h%Sdh=qMy!6#K~p9priwu# zLaPb!QFC4@&VKG-Jh|Ico{82U$!VPxS=-Og%bsK0Ag9@>KgJ->MjiJXP(ty8YswRb zdNBMeAr@6HSA5Cp*MbT^iccz9wF7Do$My5*&5_)$zmm2WH4@X*n7Gdv$rdX5hdJ;Y zu#|~A7$-_%Ek*Vo(os^H{*CO!#xk;q{p=`pHql0L+u zDe>EaLJ<29TF?;@))~gHk(fE>E zX`ar_jiSvH+rws~uZottqpm@KYpXrVDDiaXsaV?(L1aqYDRlg}y=E+J#8Us+pRNKR z0z{rYn_fYR=WRW|8p?;=EDi_2QjNs_5bWcmo8GntPRm2p&g>gf8SC~bl8A7Ac0y04 z(a-O(IW)2RmV|_M2)MRNPDdhS$7&G^S2`QtdMG39xB`Z}^Pe!{FB6ALsMZo=tChkk z*SCw%`AVfh3++40$bVhuH;kfDh;d`w%>csX(N$% zXA#4^_-vLqEz)TZ4Tvh=#r)%&yFFZ2@u%e2c#5dY#&Eg>({mjG$QS}vB^6NzlfxH` zXa&bk#)lG0IDJ}+heigi46V{!eAMy}yGyTzKhNR^dvSDTfs^9vGVP8E9reK6+vnGZ z9o_MNKK-&X9?XoQ-U@Fy+&-)t<3y*6K*7~<8nv$KQcN-KEhUyXc>OV&iXZQQBhjhR zVX`yM1r?fk-rX&@jiazzxWf&2Y`hMgyRyBFDJ!3kOu$kj!rp6e^PL| z?z69E;c$Km-8j8NSy%Kr44PKUh*LGD;W*+yAx)yyXez?}q;V{&Ur-!YTJwk#ArIBY za2nWS?WRfBgaXDcTJxoT^(R9<_FkcV>cddkbk)m9p~+4bxBhMBms;l-H4dtpz|*v= z#@dfGR*g0+ROvK9&ANr=fXmKEFc8Nk8tZr?v9>U0WpBP>uj(R7;*b zSm(p2rk)hxFEjb>87Ls_0K?Yu?P`EAmw#)vadnrZMg>b zEw$Kg2cp+Cf;Ms0*gr!%M}xX$P~W9&GE$jcd!g9Q>)o7}DElCbB6S#iZF|5zr*CQe z!Fkh=E-c+Xx>KN&X2i<9_=A{`RxjG^VQbyk=7DV7LS!+EgV&eai=h-3=en79?))zJ z!%gx|18qxXtu70ch1PW73{{Dlt`zh~9hB9x=fKyQ36p{H=AVFhpCI;rPHXay&u=^~ zVt0Z-vxw}E77C@0lQd=Ckj>6R78us{txE;G6EyHGyRJ=3zO8fKL(hH))FEHqF#g>Q zR*!l~^1*-F_3PAi7;?uL=;6{)R<)cvmh+mEm zz7GXt)(uwJ8w5&ST+t>s4G`Q%Rs#h0CyISy0EmADfcOF3FAkDdT9n@$1&5jiOMu{h z0U)^Fs}JO{VAek}k9v=Z2PGRlWp*9l1Il9uH|!V(+egyM6><3y+z&A3LFy=an1|xt z5rA!xK8pg$J~P{IwzXKWma65MFBY6lsg0`pOJ ziVF9Lcm;TQH~{Wxx@3z8We#(RKN3R%UQq?K(OD#M|B57*o1QStVnUcSq+v|PW~z%O%NJ|+&fJ<$h%GVgPH(5Sa%(&6RM~e zHto*B)E`4~0+2OBRcrnb^@jnX{%r|l2qjNF5BoF296W|uK$94}kxOL+P*G9!Jy-;xDebLaN7iB^|W!;o9%<0?W`F7?5qD69So4{+VI-ZH*X| zUnFEv)gmLPYM$L7^CUI|Hrzsn0V25hn=QV8X*YH-H(48WhzAca-Z6Pd`B(iTsMu}` zSfnBuFgXXg5J_U|fsix-&8JD?2=gRVa_qWBou&dYi+59ff?TSl8xV{MeJx&Pv9A!X zJsh~P<(N@NE@4I|Zj(S_!_70RzPNJLtux%9d0Gd4)hnX{Tt2n_)7`&>v`PJr-(l}TOUUw( znb)HPZWHstlgyb$8mkMRhG7nIW*#8<1IcKixL=58967)Xk;1g$RXhCv_pBUwHfu4JX-jzdB;kom>YvgHO^u@_@t{+|N91!yo<-CP-#f~l8*>{c$xko z%UQ0g*su~23s`aT58jTr2zin{cdUm{#TM?jvHhPn2HkA~)D&2?AFrrbYHGJW89^-! zNM%s<8e#W_Bs3Hn+uL2Ey&MMxqkTgu*3WdBZtXS1h+DIH-Xm&w#l48%eOyv;h3)1* zXUcbm?0E!3<*9N^_Sj2PIO@i_ zzvRJ9B=*Q$etX{T6c^AKDp8G=h8$Fgz}>7A#RS|8MT_*pMrb{^Xr5u*98goc+{d|> z-QmlSqnoqbl!?Bg4{sLcfajp$4?xI+BmGwSNU*S5nwLsos^6{x*}1rgPkVtv=m}@r za&`7Q2>s*HW&C05(>=Bo>f(d`9{v>y{6i5Mkc+2yS=%rD9lQY4^>4jCPjrE*vpID zecRo1q1^|2M?qy}@zU#jQzHCAWpyLU5-&!Fy9gd6cCtD$i{a-A@t6nF4_$xT|5+D2 z)a$pTsRv;?Qs$Rhdy&6ved=mJxy+7Y6e$vVrv1r&6Yx&r%s0=`+=TI9&n=9H$`ZH$ zvpdwa?L6Tq`7(e!vWA%x1lNGO|EM70;#EcN@(J~omy@q%t~nme{UVVPv0ZXgR~4Z! zsv0hgGHb|=D)-l8WFlMQrID;Ao567r^z-ICu`r=*%FB90kJpa>KHXQnnZxu6j3|-1 zjoLWFbQ@3onf_WDu63n5*ub|c+2dy*k+;&(?{LI3l>olq<;iajI7LQ_)=!?HCR<2# zLDjBP&@v}-1CmI#&xNN3;QR8WFlpIHt|VY4n<)M}N^6Ef!!m$Bo6#xT`jTepgz*~06YPNWgFQp$ExG($)U zvFf>|LRV;zwNkMU2K8f6q3UkexFUU_ zaup~%e0I|lQ!zP<8Y-UHXb3O{w96*@tS)ucIXItxek=J@uh!U}?>jV})uH8hPjrNl zyS1zN&ijat3Or+BgHS*jAJi`O^~*b@y$qzjq?Tlleh2s=J4yeL=wS!?cR;%AMc4y} zCiZiZr(a($b{V^xA`J`C} zAYFD3NSC>wdJ0|AHQ>#n8q-O?kEmel~8XI=7-_H5;pz&cqJ4#HEa}@f? zy(^mpWwNAFs|3o>hQ;BFwIsUInI1!hX=w?yo~&?%c!MYvRX3rh)tWY&EH0X5jt;Rn zhjIcN(IAD6kkv`T4|8#KNwol0#^aqR>C9HUbL67|lZl#UBK`%q37RX9>1k5JHLPSg zR2bQdFar~!y`R2ZPd|4YrK;&5T1T8Pk{G`vyL_THyP8w3Z{$hS-FE<)t8dM&q%5lr z94ms6WWQDE(~one@N!&eNBz7Xdd>jO(%8j0DYs_zDD?%BXUSR+2}{Fy^;=Z!HZ_hW z!K}<&hdFK1=R-Qg2^8CA0#>a^gES{GwP)PeSDE@PJW}N4*!pjPezA@h zJED}Vs%cft-5jSnADLZ7+uC9FVKf)(>45Z_SRt)i589=ORY(=gtO#IxyAZ0v*RG#U zF6|jIv|y`R&*lvY8OK@g`cpdl%%-6#9J9J4BLzMee7U_8z;}jt@t8T1>>*Z@ao=^R zCxX^EDKz;(Idal)_4<`ncAC5=I}pP86diVcPw|W5(AnY`_^Vpc(n2aBn_hz#Cqt-FP`nYzy`O$`pL2$KWRi=z&6$BdDp-?4*K zi6VYxU>=dzt;fynD}gvAa?CRBJk|x%x~I9v-{@pc7BLq(tIj6QiCs4s^i19sL7i`!!oWBJ&KGy*nOATB{K)I;{TnRYlzCk)F0eu%hyx)Df%A zTDA@?{LvzOM??!y55jj!X0;#6J2x=rg)q+J^Rb#DEbJ?W=%^93Ol5IYUse{JROmOW zEAGt2hx<RhvjP$B8Jw6{dC>1O82jZR~D-@IVvEWk#y*jHD7LVXb-4$&O1AVy_5?i zp}}&(D&IwGj@3)a`1q3j+$Np0FucDu*l~o0Z`MVQD{9Se=b1TX!&`v{pixlW6-m1;S8?frPrfNsKd*( zUEJ*b`^6vM3B~g#+rOow8Sqk;|B;Te|8GJ63#n@)5;^~A(@3TG9Hbt_8c`oS$w8s) zR;~)*T$1{YK!L>MaCUzxvdxvOA0(tXjpBFIp?M0p5)vxI@7>VeT^{Kb{XLvC%oB+P z>DN+LF5XWs^B0Vh%&0z%4JY#P(kWcUiUBmEr9Dnmn2cj(ndvB`F>4o?xyL0^L2(pO zV_9FqDBOS;4N@D;PZ_j2zmkin2`MycDGZ^o5dLLHi0u<3M^nhJTf~1)^_Yh zVI5^e76Nb(Wu7?$+!KOy%_w40&pC5kvnBG%;aImFl2_m=mPCeDMNvIS?@4@U%O5a2 zz%@frolH|3SSho0y?SI@q7)$INrc9$ivgcdsPa9MSkW4xVTtG0yyn*2Pt1&T*($*g z`jY|=tdV#)thEg-f}X3Gwx|@Kr~qXD8wDgEm6?6f`YGYioF0=6Vek{KEmDW;Rmq-j z>0|d?Q)N^xC_=1mcII{>;Ow{^%Qg#7ULz(E;OsaKDF{)Erb~haT?P&!4KF<532;&X z!n+zvgySTC!MOFbKInYej#BY1M}@s5cg@GyaS%P`ijnYM0eV_fD)Mzv+k%H;JDU6N$7R2IO<|Io z&dpFoXSsEFCc2u0G~4>YoiUh6e+E;gn>Zilkn`x393xV3bpvq2WcPraDs{ zm%V+o%IPx7ez1I+_+`!?N+9+CR;GGq^%79NyJ_=pf4r=Z<8}Y>$IJ153Hs}!+T;=h zK7^KxJ1jmP$Mep!vz2QR70-ftGhXjB?bOzn2nxbn#(2x-k#XagB2x01_Kn*4+4Ng< zDiq(dN;04-SFrI?g`AtS`8Ln%iJFnssFN??we$Pj{IJBV9^| zFNV8noV3Fxw_9XZQ9Q(@c?c}Qvn%PH?Pu4p9>tFUwT&_ps4xl6ip_v;?OS$X1uI15 zujyyO$}={}M`tg=_Bo8_&oSq3OA~z^K181vKZ$9`5KV)ZC^st*U?0`@vFJyWvTjHm z=+|u@j9Y1*(*jySn$~UI{slGRGHU>(YJ-aAt1K2%|8Cib@->s0aa=P@Cx5Q2qPF|^ z-2c9!$tG>eFVqgOOIc3A>#*%=Y&7&xP3JS!kSy{zV6{vI;xj*hv2HshES}S=GyUBD zgj*Az=V@aT7yI$+eUu{*Lc}HR=HQ|P4clz!BYR%GZEPz zXCjLJJ`-^TI1};LF6Driek!k^QrE7AGz)FO(HB1iuuD)W|j%JG-7G}ChklHO&Z%Yd8p2H{d5^O+dA2EOY5HcT2Ywfm}HEhqdt|Qy?A_#va zD4{QVLg}8M$vo>PV3%SE*rjZpy+4DP2J~kz|JkKnZ!66#-e-^1kSe%ocbi$Hye<08 zF+`<9Z&aYKodR|#>;Hb2veb!D3G|=P{-3|R=jxi#`RwQ)XkREH_K{R^k`;+bv6Cn! z1_!!TS4UI}?lZ8I5720}E>4`1vZ`ZwTbqe0wW9|7W9`qE4Uehbhof%$t?~lGFl|h3 zl~UPnjUXVX8rIv~Dj0WDLirk@s5~_efYg4i8-(4%R`&0gXukTQOyN%roFVDzro1Z7 z5-4AwiM}}ZEbqy7S%@+OIo*y1@B&+{vjWHVju4r~5rwN@3ZM=!u1U`MD@B*9vNL-V zqkxzdoo{Mt>kKN< zUFfs$WPMi`<8~zfrePZYm6;p3EBI&mg-7-N`+5l43xb6~$XnP`&Gq+b9CF^~?IV_=T^_&AZ!l7RXH+N570AGia#wUA3{<_@MuOr7$Q`I)2)JqgxImFbG zd4aeyI3w23CC)m=p)n^P=sfMsGkJ2K#9$R zq+3{9v8K^08z}RH+ZKoL%B7bPIu-;3o>SWgcMEYom!Y z(PZ}|E@|fakzY3`+|gMYOZ@iiK~)ueFNswLWGs3*{3H%o>=UR=H>X&+kkkA&zuIt4 zQwV(|d zx$*@8mNZfD$58_8ZeAgqJ=g6GjuimxpRRm>{eeGVADqA24<~vN%2l-2Hw$5}Aj2*F zyHU{wL37;3h#f=EmHUDVvxgHqE`_)8vjj*7^QLWg-*0=IzFALlZ=~4Te0YR3st0uRH`%vFB1h&edzM0L z6G{)H$n&QV!B?LZF4XS5yF&Hmgw>5@hggwExn_gP^e}co|0}is`X{yT^zHfkHO{W* zU{WBSch|_MNhOz6Gx;21Z#UYl@6VDL@8pQ_TZl`Ozf${te^UFdf2HEjf)=B5z_3WyZOn(3m4;Sb|XGg)KRS2iyg?U!ax7xx|KNKZUC= z8&vB(>!hPR!8B1AbCpQ3INbRZ!fT^S#D6i&h(mR72|vGA84Nkg?EVf&?Ms@zf6^07 zSTKC@ix5%7mH4H@UH&N~Axp0_k0UoL$42b8b2Vs-NlMImyP$JI&<5R@A z+m;9^dz0ka0MI9roCBgp45_|;L)PB*lz%DhfBNA1Fn^WyBg+m@PMa|lbky4tlchI9 za-Ai62)gk9D(%PrUE1FVl=fA{8YUX!wBz$$WZ^e9KMi`u8}Q1vxV!RmVDC>t7ERRx zK391cSbKC9S)fZJUZD0vo~t5)lTXgIW|cg`4B69cEWiNs`($nnN& zllbMs-PcL@d%4p@(#5^6zcRsQm+IF6&Anq>%b}`(b-ylu0b+}R8wFl{sBqsGhjUzA zdcZ%M3pMLTGJ|nsccRw^GL#Fg4XmAYG>;Ldc9tumCMbyXty@j?FA>@NpQvlXbKD;LmT{F)8?X1ne_(`dnwsU z`MTuO)(vFA6Ba%jjmoy2??VBR(>2rVeddB$@&bGv><_-Am7Tq|*=glLJ!n4lgU>Bf zeqXhtGIG-Ik6zfbRxSi=rpCLtHO1YsZsrYVwsGFSJQkM$9T!&nE`{*mv7Km9;2cuhNT7gd!G7TBT& zioATbmE#&dCn{@Kl$K#zThO6)OKN{>)m)F4#C9@t-Fq$TB4RUHi!x1I)G$ZFg7r^< zst{WlkZ~;CYuLA4&EK=@qkWB1UT>>2T>j3lKLfRYPgarSPoZ9V{;a=nOEKms|6HdJ9sPd zwWif7h6th59LlRB5gG_GPZm_4v;v(=@7wMvHf1-8$fu2br1q_vy|L!P>jh-yCtIhm z%k4WtxX2GSvI@Ss=VTtlw{e0OvFa!!F!4F56v{_|dVgj&CzF3SC~j8X89^;&24QL3 zkA~Z5dZ$e{=g+l-@EcKUHi2so56r2rdjP&5n;0}*aLJK}V}R|MbdtL}L>pg;8<5u`#9@_X76{K^u1nl2xc@)H`uDKFjPr-x?w}_WaG`L z+^XqSY@hYlTp;e})ihn0_;KV%l2J^@Z^eo36y_%Dsbk2Efkh`K+SpEyoz`Ty9(kJM zE$o$%OGmRcV&IxQ-dERs((TLP(huVpc^(L3znl`n1@SF#?Cm z`}1-}(?bAS`*Cez&eIKsHX@s=$8BW?j&)U9Nx%X&V(xkb{$APXpL~*2xA>|oE{1?J zAPxGPa0gZ$zH>G%M15D2T4c2{-CIC!aa;)Tb4>f3JqIN?p%JfM)Wnrn5<`VQf*wmB#?Ie>V4PE=DWV7Ga7>HwreAeA8g&@6`wbHN*<63$c{6+*enf{W zlbWfM7Um!w=(BeCQ#km<8!miK_}w8%Oup#Q{@TgL2N*`nl0pPRPpU!akK|#+3;l8;58>YG10k zmdNiHy2rvuc9cn#Cf=h3F$9p4`hD51f=$}5?rZcP|Ns{!HuMxK(O zPuHlLvnKc}OqZyWF5x>02>QX-lNIo#JeN-a=7UZ=h+8XbEolRd*0V#4lvQT7(qUA( zK3C3O^uLtDr(^!I^LZ(5{=)YFQ~#IuW!z;bP-X7OZnbpc?N_$$UwG$hJi6^J@n@T& z&>9=N+ZI{H?RXpRKbt4$pKIce@4Wx*W1mx6EC2dGA^bm&{XYnQtk%nU;3pysM;|>W zkEOx9T{P%Gp68Y>E=?f60c7p*@)lLh0#C8~5DyQ+I-(dVsEEp=~#jH$s<$mw70fLvS)%%DX5OZZ`Vbt=36zw+XQ_=hK(wbwdbSz9t&2sA2xt zHVL^IIEz{v1Sxa({8viFiY~O54ppF2G@NVO+g`0%eWdRV| zSGf2qwtts-wDb|%@8R2)2D?f5E4E)13Q7DC+fO}AvK{zzh=I>TtI;bkEA~6Xnb2IG;l84YUU+v~lNAY)^F6W+RO@xonvt0Z|OldM$xt zvY^*EIp%FAz2Y;%e8EoZi$QQJiS_~k9;T|^xHG(v0eMKLvtIo1#pJdN$a;3D3e~-w zK`=J(+Umj_oM+1YQ^}P^P}8d+5Mc~*h#9UKkwr4=0jP9+u{(IK5S*g;0_v7!<3$vL z%GvxtOR#daVOVVj*tpYD8CtAk;3HEZ#YU_oeTlTdQVqzay>td=eoz)1YrPC#^+~%% zrj`QFZdk46(|Iknk>VORr^Xr-Le(GlZY^^Au_khm44GrWY_)z)XioTUtYPMfDB7{H z{W6#&2xH!z!EKVbJ?|LiVsf%U#6?MoKKIl@w=4pUxn{awucBEe*mBYleQwc4?`VDz z&q%X^2O-^m1oydRnQ=FQf!PEZXrktuH-W}MM5&gEH_fXlM04rO%74{eaWC~jdu*0u zPxPb=!VgU24wyfuK?)&*SK_0=lavKx#Y+X=Sq{q?u!99AFL89mMdXmje^7iHt%EKq z7w?XhYPuU3Nk7XUEd$*niL5-Ii3O^@_O$^!*94d}#G)I> zk;_CVE|Wfr`tyfd^^Y&nn9<4Jt-Z53{{DURA$Q zHQ2r4hC({K4C7OC#uBvw41fGl0*F(Q@_9Oy;-_To!f!!Spe>J8R?dh;0K+eB0WkcU z!hScHI4ViKneVeA;riOgk3ZXv#jhftf6NfXEnGk-D+se3LxRvW(iG?QVQj1m4eqS4 zNdOprX6`9ffx@#qi+=Q6Sy><K939ohUjK9_S_683~1If$h_$KgoUJ_i2#eZttS& z1JF1RpnBcyv;V3#6{5eL8)}EH2+K_j7s~MUe3a=d){}!RTf{h ztz$VK(hS?Bx$12xTTh%_)dh&X}r?#mL$w@{#M2sQ9^apCVA_)yLXV7)L}(vt@_< z_36)B^(U@{#?Ldy3{D28=GJsI&kDOUFVuGoq+ioGz75^#Xs_f z&7|C6Jd5ebVV_)09T*`Fk3kd}zp)8r&u-=&CFsC#r?NiaOVhbN*!Ly9s0>!YTRc|V zhac=XFQCmJ3-0rGt`)*B%9!iPNeLGwuolJUt~(hjGG_th>MLIhI`<+QX}jnpsL6&e zQrRC3Ju40EyDkjSjid31G#0R}U%xR)r#@_(HX%egG*lo%PKA}zJXrce3TQ61KPuC% zp;yyMWfr*aeX|j>W>Ym|!x!ne#GM*+Iu(9{i6MEKqFNfc^YZwtMU?p!E$W0hdhG5e z7(LWwNwZmRMt@ZduYM>|9JN+zJ?w_A^gg_!0mu)KI}2PSnTvx;{)SK0tVb+@dm08# zy;2jnXZw1xx*4g~!Jl!j7W-r17w?5tF0gbLx&5MP4|CE`kVwMcmJoPkEvz5 z$FPAE&=!_pb&+5yUgfHv;SB9$WpSGltwzHo10-Qth5RY>?IJgG(nnHL3CO^cl)khn z^SZ09vElPc!Gh!9r^;|$l+^|h-0?2uHMnAvFUR#Ajq|YDVQ%a2^kGWWm(IiC^OoI8 zlXHqqV(u4LkK;nKgF?m>Os8|JcShcE!bDZu>fo4S`U}|>o}O2@|qzoWS3#jk;0E?l0t$*^9nPn1;Wj#YK|&p;RP!=1ULK4fu*e@zT6+VD1r7Z*j|$1hEXyOP9CFPFF>v#1 z=q9^9JMGGv&g+a5h3J z6Ew;79+TqswdHk%OJk$`?CCCHsI+3lsqDS>>e&f3&SUh%c8jWPzg9^`mn^-ZOGivk zFo$=(jk8hgxP3RJ!X4w+3b$vHTp3xn9ZSl#`l?@c^D`tqd3>Tu@&BKqPXJK#8~>xC zpWP)#uC-f5?(`oNeS-g6(f>9KgXGxtGxRlMpT4NAH3g;{f@_u)>K#Oh$QO9&-6>~RsTl(cN6EftJ<6>5Fj86n14FlY-*(c4RE-bnc*Lv^Ev|@{}$vq z0bFNuT_%e}WD$6qwa`{j(;JYoia~ChK%D*Ra`Y{0dUK!MogQU^tGGN#WqP|m+H92i zaHB^4K9eZ2qSBF;)$;Mtcysutuncl4azW}QQL)3B&5I*hwzrBAE3maOBX^cgP3tx4|gRBswcoNJoV0a=C|RcqP)cdZ=XSLNTp(An2E0@qazA$x)$yw(YcUOc7I^#^cFeUO~^c4h>T$btoNEFPi#zY=Z-`!2edU)-AjXy z1CW~Bms`VGCKY(l`K~t5;AooiB*kpW?Q7ne(GmRTW@d7rx z;#7h01zd$=cH|vFcA!I1g3QMd61g)R(cIwL0$~$@SGk!7;>5&<1}(9Q%Uz;kdMp?p9JL~Jq>xFUPKN1t7 z!VupSi^4?0Vp)iKf;WK*mYmN&TloO_y=fb_g0*JdZ&x|D+l+uIv zon3*qr8Q#|+LOe%U4dD41Gd;{VEj2`%N$McXeCn|`?H0U8p@r{F%FQ$?lTU?My3xI z9X8y~%Nvx4-Xh9AOJ~ZzSo&KHk2-D&tIN_By#qBy`mLH1Q8H@FD`}s*$|u;u(BlrO z?yL*?23d5D7Y*AQhY z0|)+Nh;j*xo&f(bL{XmXX#fmScK$I$>9DtC`7=a;(^E_~#*p6~s$N+~5o0p=7@|0( zmbivfGSRzMgL0XGw zCcdB2i@&E9!57#AXc{Vh--dw`3Nd>dsWn z`2q5AfPOUarO;SoPEteY^JZH|fbzNkKz^b!1A>bR%|kEdGc7YckOHj6kB=*mohUAq z2#&I{S5Z;O7ukkk?fsel7@T37x?E73B%FiOrrXOi4M#C4du{vVHC2$O2cKoVBU1y5 zhba^wjKA9VQ_R8>*abw1!MnOtHUN1MiS<_3nPHIPt+xdkO8um!Dlrf?)U3@q#{Mpv zg)H6{Y7beIrv=8S-0};lF)-|l#V<8-i6oS7MV{oPP5Id#Az~z=NT1pSv&jxDfTwwP zixW>M^2TEwb%+3+{b4|7KbGBe22!mwq}syWtB>e}98;M&9)_lK!^ac_5osBDw@dq> zWKEw%I&Z|45z$QQHa9bXvmucpfI=l%crZMs%fkN61tc`G!e2@W#tuHB1grUe=02~$ z*cXj1w&J0VbW5|}9rg@Lxt1`*(;d6es9KUXb+g|0?6Y!hM-MEG$m~O!zB^&VACABL zKEl1C(mJ#}JqvA~Yw+g90SN6U$jSji`*spNe+>Oxn%HIFb&x{%>TfV#(V8zk7Q?t-sU{o9;&JVghFnoreNL>4^hSfcVV3f|ktVHo!qLOW z_W7sku^iIo?10ezJuAv7@OP2(22rI2hSD_SsCqh$BjEb@9Lkl>`=mENCgCJ08>0pC zI@{DY$)le)#@%g$uoRy}?$#(@2G!I9$ty_E&gNRo38B%CBbM|&i>+85G?{5pm7?78 z7Hh;L(RM1cOZaS=&f9RS40~M@lM`mC4okqaJE1Mu?$u@yPE&Bq)a%2Pmo`(X8khaF zgGCqh^#}Ia${%XqsqYW(=J4PR7Vj7R;P_R7e>nacg2t$7mIthd1f*SRo;(jLFjG+i z&}OwUCcw}yWq&nezn{F+gn6wi-P9bnkNC!5`Sge5PdgDx>H9@f@uC)9&KNU>9XrK+ zj;@d{v~CajF!Y_!yNK<~4aIyPz4=X_6Ommuepf>q1}_}}41I@IVqztKKBOzICYp=q zH<2LS;!f9g9z`$cUyU({=O%&gvVW!aivg+q(12OqF5?% zpj_*{PIsye-JP`mX)U2ewZ@2XUBDto-Ho#Ex#78A*Iy zs00O&NkXnfId5;$gTz8j*VVa5mRs4GU(7S83HkW8URI0-a5i9=gS5W--PgEz2R(i| z;dz1d(i;zByImrTx)d9o+&Q>b7?qGgd+JI#EWaoC-2fmzQJUZ)UKDYq8edXIBhj8m z@#YDPDOsCQu#4FT%Pl%9p`(M%Kp081*YTL_1@somR^V6l8-2p{uYh1p%B?=-_cQh5 zGcb_5cEaWz8^StBEk+)ts8vBCeVjHK-)ao}vvQ}hv0JG)ZHf39*>uVVcVO5)kxU6q z(P`2mn-M$X0DFR;&PzOeTRf4K`o{wK-6_*5ew=X!Q@?+8#{5DX?M&rbE9%}2Ox=Hd zcjBiLCp~pM=&!?sbKdmRbn3L6mOiFyO|co84Ma-Yk(ij=oxyS(rt{{Wj1uyqOZ53R zX5|`Vi-qQyczRSQ|tC-Ukim&W7`Dq^O3EKGzB<045gbP-b*$K zKINg63l}8$pn9hYhdv3vWq!E^wHKVOWZaR0d>t2m)X*^hRsgkBmo&tKq?0vi z03{q>K;Q7eWJOI#%G=Sx{tF)pzL2S2!xCC9j7FP+6Rv#y7hYmBU2zku1*UK%h&^lMMZu~*xSKfWUrOtDw zD5;RCqFqcZ^hzc0%>%79FEtmDY!aU`!=XZBN0tcN$8n@~}xM{(6ZRzzmW$7?hn|7n*q(Asc7 zPZ1!st7nBgtmCp4c@WhHPSrk}G@!E)_9g!5l}3$4R9_XEbP}%&8!-dMcEVy!6lHMI zBdsc8?_lPtk#bFE0>XVpt*?j&%KeAS>gLQsDXK<)XLrLwX8cLyo^>m8c3UKV3YZW_ zW0k1gx5=#Pwn?d37mFzzyOKad{We_0l^;{V+CklLiwq;^EF8rRRdThGsm8r||uiRDg6+ z8<#jH>Ti3IHC$elv_?vp$SZG=*)7M2_bDFP%FOd&qw#(dL3M2}Xrj3}2yBJhq@%$Be38bBgrIO$BqXcoAqdAjkDDnR%Wm;k>v3-<=ux zP$zj-x|w`vfE7-~6;$JF0}{E-O3LGZ)%bGJM1kIxz#ybtA1?b+!FcRj_s7aEWH7g% zjn9KXh8Q%BtdH4}Rg#!dQ@T{mC6Ou45f5Cz%c)C@j7k22_|ku${Q1Xm}#J_%S+Qe4MtW{rbQ|H_*d{?bk<*gm zd(@4NkcJ?l@$N5+W%Qf7ug*0VPaYS$(pAnlpG;lD{i|KGuAFSI zF1DDuclv!tm%Ty%-J=QgTW96vf57?7e;)k*it|0)R!GqCp4j<)9<@zRFd)nM4N$pW zAJ||?9H&pR>|~?+ANywq_+ynHlvRwElA(V-d81{mk4#WFf&4C&@aRp4pI-*;zd@9h zHlpRLn-t9`>B?>Mwc%y`%542>@9g)_gDclz$vlXO$2}SRQ(0+1+6>|EwAtX_X|ufl znKsjD?4y{OWDhF*lQz2pq|FFE(q_Sx3{B*L3^wv7fg1N<(6yt zCHm<_{6U82w_E!(!)7!s?6_Tu`iGN$C`wSP&7%!>zrg&npbi^7m2QRc+7OW7J>T|3 zhv)n#n-PNooO~QW*$gsz?Wsh%V)KuaU)^=Lp#gC6QJx_?LJ2SbcJf(n2>o=?e+2SgQs(Bl{QU`p%MSfSZMm_Lb|S|>k70cMtd-|!s5ovNLG7gOsL_-@k7#59 z!e+o=#L|rHqq|b|ae{P`F$t}|_}6^%Ce?UZ?K(slKu9-5^2|z0({u0vmtpAC^QZGq znFk=AU}_;Jy#$xN85DHPh0DZg&EDw5FM~KNTi(fz(p6+Ler$f#WKxUKdzk$Y59R z*GX6Y+R{AqgkFcN^wHcu=4||CyybxKC8bP+nMG)p-NCHr;u&Hefq}n%2jX>< zrHrFW1Hz2yy1nR3#k1@T;svhEL=~PI`1^r!bvrD0R)sC=bD z9yQbV6=?qzftPA;Rn;hv5${|#hO+X-GWyQq$obA?F_aLa)isDFo1_OuDX|Tjq5iMhLB~X+N zDNkCXtQZk;R=Y<;F3)3l7J$>EkMF0DaWmd#mD?-D63|nEDOqKgIn8bUtg3x_AWu!% z0AdH+wk5Hr{g`0(xHXYQ4_BJHEjAGQZ8C%(D}-8_x;1tu^N9$nAtF~5kTmlc6^lAu zB5wFcZyx~iKT+kSV?qN!ejotkw|{{A$FzTddr!KEVoq z=k|G(aHBlqNp$#@vC66dx&12sw$F0{*7ZOjyhak{rL+%C;{!z|XlvLYSz1?N5sH02iMt-z`UT3nn2$ z?}P+K#&{1iXM|oJ;Nr{u1LMPEBcyaHFtPKnqBex#KlAP*7TmMO6P9cg`|&Nb9teZg+Dqu-lN7?)lv{-4uq_(Ky0$2BkCDO$hZ% z%+O8!6?$5in)14OAvs;B1!vcQdwujwu`=mq@uWfT>5S)B;8I0aZ8Zu6e0e<{l`@CZ zW4G8mNsM=+rL^rU2SUdm@nVT|R}ZEFabQ0h&zc^@prDUHAo(3XTKmA!&Diz+W8*er z0-G7^ug(J2o8CSn`0`BN6~y(Rnu0RiYT#}+p5{~vG%$UB7zpn^!CQK>q=*Z?JsxM<`JG;vq9wtg8BoYgd^T>7QMfxcEos^A=YyRnPGoz z&%Ggc^|cFhlV>aqn!ayPubpLO;;l2+1y?7no7whaF3GlP(aYQxu<^_sIoRRPf9(Pp z*n7-!%5zGxtrCZ`7r@=GAGKXTe6z-!-56nd1ysviW9#c4lOc@`Y>wQ6WGhejSw-)K zv1MSQ5JhN^sC!b|qx?pG#8%O8R25H;6f#OjZ907(160eF4|I^$(u6F+RkR?4PJ65{ zT%Z9m{&&;ph|4Lw$mrBABaSiBCkX064xZ?rui~>jvD2OVZ5PwH`M&*KTj!P=#xp zwrimg4mXrW+)^WbXP%K=XJKya1whANH)&3PTC-;1wNJbAplV`1`hVE_hu}>3zH1kb zZQJbF?%1~7v5k&x+v;?zj&0kvZFTUSxvu-Ir|R4HGv0&!PR>eYl1VC+^*jFSSndDn z_DPd@FDR*ZP)3A`>}4{4s^nb#b{DLHtXw#Z26qm=AjKF1X&F2K|I`2ept7nU&b>|R z>Fqfy1@lq-<8T!grqZO!vO7%*aw8#5dNq^~VXE zQv(XO^Xjrau>Wo&JZuv3)aw$F!B~l!%`5$4%vE|Vr50t(qB;p&_%x3Vtz#*AyH=NKv;*I*(*- znuyb3*gmMx&UyW3!D-mumFr_^f+U6`H;hLR|g&JpFeL(R-9ZrZ>Z_4D&HNst-}v~;2_5EjuB3|;59V__d=?w(il-A;Vee4v%1=j zsY$siNl$Q2bcXUI#31KTNil{alwZ@a2KW9)XG4;b5j;_KLQ9JyDZ}S~6R4_=T)D^I zyh{hM@ZncHMx?SBkD9c=OVE08#@^${Jx|+xXF|{DOQT{#8#>^M=HzxgH9b-YE6~ka za3&1BChxEYBid=BUcB#MOifu)F-?f}y?aH2;sc3|^DzkIJM| zFb1Yj(@@f>u-td~x>8D>qXl3^CG59m0yQr=_^Ak5UXDw*5lfI(8ZvhLdN>fddX9yF@@ zhlHIJ5f(lMBJNWB6W>ktZC`DOl0NJ*hzcoZIr!w9?{9OX3g{oN6uc4nQTga z(a+apt>VeGd<)S{+UQ#}6ogH488}@c!h*5_oXbC|B4&_7tKQteDHDF(jH{o2C2u7Kvw zM0Dw*AFKjlbM%q69WY{`HdG60Y$B`UtvB6oYj~;#W?V^;{!m^irL7N6pIaZD0Nvn$ zP8?8(r016+1Z(%pfXbPxQWRF)l)ctt?SkM@NtJUo8_Vva^` zeI6TdJq>V`V0@XCXMC5-JRZe?J?rrOBYdjw_F(gn5u7HGVAlL4djgdO)#rS_^`%Ih zxV#rv8eXcyO7(HtQrQ2|GB2mpLAU$wcd5puY@po6)LoBB>p>eP`qCHQqX}ZBDXyZe(0tUsYltC8kK+Y>sQ_)c5Vr z^}3j;NGs@KYeJANTqN7twE)1lUk@xh^PD$}xVo%`o^-dnP2!VtFM;#-g$Zu9Jziwg) zyak8sqM$VQBM4Bu&wJpQ?J}MK@e}^2ZUenMT>4*I3IRi=I4>J#uc3cE`#qcVe7!f+ zu`d5M2Cq4!DSn-$7R9b+bUWG!%}dRmC4aHeGV7EKb;sIJ0&4kJh359to&Gn;oILZunz<)l7DOYUo@ZK{)^@p0cbuzrVpU``?!8F zrtK{Mxl8fo0`5}ncVBm@a==|mv$mhdcsq5x9VqNUq{$a5xcvlO*h&z@8fgn3pBRUK zP~|Uzx+jA(nijtsQW2FzpBd}X(X`kUF_XB<2%>>5;{2E}!6zOI4Q>#llBbs2j~78O z6--C4SaDEK_rf|LPa$!^>M{#7bo`Z8eX5T|wpWrez49VwV*U-d?l5{V&z2Ct z8f5eU@pK-i{j^J*60!c*VT#0`75X$?5gtR|R)8!9qUH?Bb*su}-iBX8M9`o!4U%oJ zEgboUh{@AGw_8IO`KK$;!-fV9z_$-)j&EKd6=r1+G*JWVHGxnNa@jwEGrC%#)!V_= z(G(YBfPUtlZ$%r>e7aCd&Jq%0yrQ7$9D2fN6A)0U#b!OUWO(TZW6r)Vz=Q4CFbHlE zM?uRO|WSJ7(JB24!fHN=`*F_$&UUXjI zCS4Ta1QfBA#8Hcl3MWiOe$F%^dk3%vcw15uU0CCTB)W2@055yTJxeO{y#yAl%37SA}(kWx1Wk zwFUI@LG~fHoIuV!T(Abhe*mT+*$6U`@1r6><7D@Wa{lS%ZxS{n2+=7p3IKZf&z8?< zJiQDExl_bSY%s+%_eSIu=V3jJ2k9x0n|A zs^xRRZpCr3#}$$d`U-vt_iIW%`B4Y2A7aNG+>R~9BT6B=NH;mGHCJwyBD1{o;8Fwq zXa7<^FA060=h_1m`e^#GzQ|$Ur6hLxDKf~AMpWg0-S+!nA%tpQbxM7v;~(R`_BUE> z!%HC-5Z=)vG?AJ&S8*TRHS#7gXR8u7solqbvPXe0cbA^lw+`^=+?mlgk-_@#7C7Unm{(W0rD9_Q5 z$`(M0p65DwwGst^d%h}DrlfvS@^N}QSx98p0OfvPC1jyzfp!;+3TXG2avwX|*w4r| zeAIKwpPaK!YEcvjo+|HBpg~;*;`fkgfa?s%R;VTpllR1ugcXBG%b4oTN1Z^qyBD#7 z3?msWf@MipN5bvsY-Rg72-}x(|KnZ&%xNBUv|2X;HW8N?x|d#fCYRerVho?Jwhe5= z%SdslD&j9aK)J5~Q0_a`D>@UFxQ0?tWqhzW?VhpeHUT;)0Oh`b&x3-)Y-RRYdPFB> zUQ1L4@*53kSbp_PVMJK~+k4|N3cPS^}U`VY{EO-h}SWzS20wwEM#&9}f> z;C+GP`SK!8@?FR2(V$nRnPHtfu9w&0b~}lv+6`_<2|mQ6V(aNAVg4AHeMj1MiazG? zN-6!A4gQ?Cn4UnCXYoE=3+L9OONO6I1s8k+m?S^s5%?`zxK^V%@WpoMn*QW&)3js4 zk?+*gQ_Kab)Gs9fu2)VjH9{2IsJ zU)09xjgp)CYn^?bW_*Z8XB(1?zRl^wTz`Vi-{krpGbHrz#6+9=(loehVa?VL^`oLT zAc{@&p3?HXOqeV4)wl^nCG>7i5@YHmIQ61_Vd^pR*9)2d*Y)bROaCugyutU5y%B@Z zE9u!NiF7@vI>J(1bY;%f0h#d>e8BOFYdvPzJ;#~dSlSLhtJ5Syd66@`s#)m|9Rb+A zz{Lt?X`ZZ{*6Ftug3+7J?`<7AmTfcl)M~__|*LrR`v~#O>@|`Uvg%}k3iuG zLiWaz)|0+hK%Ao!lsMH~Ul8Mp9flto^N2NI zf3zfWGJ_baNEbxWK9m86?BSVS>5b#ehJn*pg`kOOG@itCqezPb9IkSf117vW3{L(z zTm=CRSLmVQe3}z*F0Cae)BGTYGAMK&Z)mUqUP$2nV>4EGAlH7m{Ft>WRj9#JB<`rxyz-si z<%ThH0-cuNQ9Xok$E&gSTQ_QpX?MZG+Axp?#p+>CQ@G;{QDo{ zO}_|aXHCny7FJ$jnlK{Y}tAZ76b%Ly;REKpE5JD4VTL zjKg)Uu~XtqC--^f`wNld4;J0pkA>1sJdR4=d)E^tmo5B>372BB6C+o^&Zt3bh9N<8 zq`WRpUGa6wNKzo4oF{lYJsvdHy8cNCrIZe?K-BdmXJ zSI8MLN60vKckiSe%(WZ%(+Ba%dmJ@$c(bBayyp>P_15ZF)u04&gH_;`0^r3^$4tEP zUEuX%9GH$KvA88gZ#MKpMi+2G404G*mH{$}%+`A(d&>_6$wUbPh=O1=H1 zKl%6T|M>QoklY`ZipAc4Y3qCqWey7cL2Ko=Msv*#=;%eW1&sl;AN3EGlIVNjs;#*ypNrdI+&YVE)REkb&-CAGo)E z*Iu44<9=ZFBRtt>JgDPTM>LJlZlLzX&v^=VLwDe}u-Bz!58J|*SY+ro&>0b=Cu~B+ zoi#SQ40p!BFS>7~$MrvSANaew#y@o5wEg^x?%Qi`*k_b{(f!*0L-!@d=j*@d{tJNa zH>mt+*v~nJLVn9q+ThVS=(tsMe`|;)8WP0l%;V|`VfW1M2U#HJ_jlP)sOIpvwHmFk zp$n2Z!S0xuK{S$e%NMi%S#J>1bPAP6BZKB#o|#v1K($EM&va2;lLwPuF$deAf!p(= zh#G=YQ^$Ns$sOaD#Hfz1!fK#sW{aogo_nYPm{e<|h=E0VX2BQU|GtvPu>0C5M}v7f zH^w%6EM%aD3$-z*ppRk+!3ycxis1Nd{%lpxWSERjI?(jTx*vHeE>d_Q!ue|8MyeIP z>>4751CmDdpkVBcEsT-Av>^Yr^6)}KjUD9lRwa5EGbIEgH={@cvbqrpdaC@OobW6)O*2e>05}HN2`) zFRxH9okr*4Iu91y&AYR6S9e2#yncgiAT_7xLv|XI5_nCfXrUK$$+Oazwu^-aboJK| z{k~EZ9H6Uj!v|iB6r~HRdWpC6OVd0Q7@pW1VyI2s%FhItG&v*Q)`n(O5i9bwtZP}f zUyC!a8h0WQ8!NIo_&J@t#C2?mH!Xt7;vvtPSdnEs?SMJUjAxK2L|DPoqGOL{1Wk;& zC0Q|-Gx+RJwcI8l!(+L0djJY?W>eiWW=mZ@Jj@c1|QR>`1Jh<`4FD6Y78((3AfX?l+3?!E@6F1tIL>QT!-> z_+tF||1f@2!p?<;%Su^vA#Z2<_KUO6AdHyYA||6R;eOAU(#1cF-xtO2Q3dA1iC(Hp z3GS{d4yT(#zd|gtw$rDNhmAuQ8@kb1Ltaox6cX!RC&_}T0(K*Q3l0CI5_t>fRX3sa zJ?}djGW;trqBPxDY3Vii)2o6L=i>zN&1(x+e#W;VwP!t6!>8G@syc`opBc8jC|)FP zhWl8@~Jq<=fuLsTmJF?R_)6d!f3B8d`R5&L1VPCMtVS&;|cDf5Vy zWBFh8-GNej^GU`n>7_e1l`p=#94MSUkLCp#NSGUeJ}lW)w0}{4Pe57UHYH$-k1pgN z%D=SJ3ZVQQBY?6#lgbh7MsQs(lXBZojXw8vPu18YfuJ|B!qx#Y0b$-bpOS8?aEM6)^x(adU4bA3mv6{r9{x}-ob`YGQEIsz!`%TjY&aLS@%yAOKbuf7{JW*2yfk*k% zK!%jpb2+?zNa!gNOO5Jn&EN*#ny()Ut>Oj++$v)Kr{(#nFnKN@CPB=H-rZ?piwp#- zpPvhkBSt1Sq&5^d%i$jF1dVxc%Jc{BQLiHKs}!LpN|_N;`Bap1H|}%On;JImBF&V| z*z=GidPtS;6~0`bhl!76)NS+HLt61|?FvrE-*rzATB2^Wg}bu(S*g0-Ul*ZoD(t?ugQAq^ysE!z|U}}QoLL0BK7uT^^veL3{s>8=6NGy(ui;tpn+Z~B6aRIL8f9sf&?^d;LTKhk))*x$+H3foZiA#$?-n7?@e0&PtX>PCAAhh^Kn#fqqM{Q)QnxZJ~>zx{OmsO!CSpVxo)m zXw{YsokPNlWeLHOomJ&eGkbp7h3bJ&7hSjimB3~DaP$l7n7Rb`3Dl~bAd*}YCZO1s z0yZ;83$%w z;eA3B&*R69jNn8Kgmu_$jZmhoaU?B;+o}W(o`}1)@aMBib(mq2-Bd1qWS&wZ9Z_CL zPEcRnCElU0C-@W9Frg@Ah(&V?YB-81oqUAoMF{;@DKS(9yPJ-NcqU7~H;K+bT2EDM zAlqeh9L`R9ahz5)Qs~#fuj$lush?ECX5_gZpp;tjzftB@_1JjG@p2-pzgdgjF7juR zz0`32AV$YV@?#8=bxtrA=<#g#0mzxA>=?|XckM`gtP?J}t^U#Qx6c0LClNOu1^_w<7sD8yLP+V$8wRVFkk-^b_583ggMym#?!Ta^r#ffhv zF#qyMc`ThUCgYKr4k`!!vxg0eH;{)LP}RRim_#%D!`aw_BMPXLhun0t-{~EXE-g$>{&Dr`ZuG~GVC~@?uA*&WXZ+^sv z3>lg5_BihKap-3BuLtz|H(JC8tYd+2eJWX_zN7E=Y_EI^0j^_?I+)(l^$J|!5gV=1 zqsl6Cc?D=Goj~3I>;A`5)&IYBzYAd9ms3Ov?LK3;uRO%BX#Y6be$~(=MBaXAXala~ zXUtkn zcHfGze4{;4`uvTS=%oQdRKtYX? z+6#rHhSyj6gKoIK*~gy+fSS_dQ~G+K;)vnIBT>rTd-6JQgUG=GeBniWfuN)$l&kYI zwg9VSVdd%qeX?8LFW!)yeB5IS2m?HV+p`@^=&9luO;zwwMWn#yk-U>zM8xS z=K@+kGREQ=2#}E+T$Y>?QH&DS(Z!qs_aHd~3T>f$=H6_BFaRy&+l)hWaNfl^Ds%lo z{`Eo9#kGa!u_N~0+f5F-EIFbI5`Y1k`^x}bwgbbcv;~7w!A4TYTOy9sAA`GD5csLc zx_qo7SZ7B~bk||k#ap!5GXFtUPo0dd2ej4qG2q&%?(ktF65$ofhTLz{|5M}Hagv7e z`~7xmH~=;A94KAEeOCv1MF%p|xLT*J!g>P_WYkmR=ylj?si*=JN0DOw7W`v?wlcj0 zGGbxMz7oo>_9UOypqs&?>*V4Vs_%@YeuPkeb>oJ4;%`LqM3(5oWPKW%hF}1oCXW#} z16_>ycam7&sPtcj!Hi0;Vn1sT1&U4x_Mzxwaqh2i8i728#RUm<>S1KW8>{laww+PS zkY>|dOGH^saMu6h-VN#>tx==GHktL*1{olGPP;cx9hU^~Z)xX+Tt_fsnjdN>KQ)0QGh0?YyI_yiB5M~s>IqjnlDF9uzA_+kjb3ss zX&7j}m=1wjAa6Uty@}(M10UCWukg55aQJW|GF?#-EM|p@`tyAp zI6DW1Qz3fe<+6bg*l238s>A#jJf<+ahfg-IPFx6PH%JKd2an)JGLfFKr+`<7Hd8UY6g+4Q6_(rpHF zT^juAvmXR1$m8>RhN4ryYz0NT!&&}|(+-eY662BE92{27YH6<~MgzvgJ8K8*r z^b`;@wT0?#8~g(7mo9allMgwKCZ5o>WypeOe|GTbxg}~y-DpVc>IIC`n>o^(b_eE6JNZ+Pbkj5Kx)$3&8Tz80+!??4+pe8NXd?L6@98#_Cm z>=uQ_BdHzR4m1wY{9rBYzTg0ygm;~PJIam*jcsp-dEB{Q+j$8Xhc7Lt$Al#Df+&-@ znz~F_?i;Nj?RkQk$sM*RhJ;1@Sj+58<+uBN$Z3z_-K1y5Lj?%2W7r-|>bO+^k>#vNR5NpqA%E_Gz73 zRo>W^*hqlc)GZ6QR+GdXhHaeOByNhLPm%xpCqVT~x^_+oaGHr<&TeMoo|#;;ZZ-7J z=OC~;^~-YiNfL+U3ju+HPPVIpk(f#U+=w}Q8I00Po7*S)6FiG9#HE|eBWdK4I;ToO z-&50qnWIt{B%XBRF%=`@aTYxoI_|z3OaY-&W%k>KAWM^c6%z0m`kQI3rJGows`O3r zf!1O~djlu9SEL=^(1#I;#{FQf_H2@*e4BMLZv#U5&t+KUf_}d~cPs2YR1ZsD>Z~c@ z2O6+=`TnIr6l|jvN~#|f`4Lfohubzz$0zTS>^aQx9hf=n7QvIRO<+DY z{yqr)snHS*x-!=5Q*o~2Tfi6Jme5G***pGA66wS$TLFBK)VepldEP?Np&5JnhIVJM zuVcmCHMzqk*5hpXp;el1Ee?ngU)OcABcL{Tvv=O2kw4sRawPGN;7oKcF|TcEXxHK} z#}x~(O?LTh_IS@WL5U!_L@JT&zGZ9tZX=17%BPy8!n~}8`Uj%Odh#*)imEm&vxY2B z=Al1mfKBNUl!C3v0cE^VtB>#jo75hzQVI%%p`5d4v$3*U6%XHT8d#LWX(cp`Wr$eH zm~W989H+vs$(%S+{;RNpif`uLd4oqE*Sy6`zvSrabVrz9m9eXhzg;Bbv)!G~RjAC4 zguo{JsLwC?IGw-1XWF(9sb2A>Of6kpo#95^nXmivexF{jeymr)C`sJA@K-Yo#$O7E;A&7C#); zWd&D>#2+};vs1w%e9vfW)&G!tnQtNlc{}!{VCeuf8@c_(tMo<7R}ZW4h%B=JPMJea zesj)rfvu6R>S~hLLVijEuH<3Em;z*AmEecn>N1Rd8{rS9$;Sqhcy`EF*0Gks5N^WP z^eUGiV<`B8M7Vf?-)aFRz7(1a=}5Y5ZB;3H;>T5oDvYOh;;C3it1QH`*|mT8$zX}D z#2rYdS7y?e5i0AgmobPhMI7XijOa_pyk<`#jO5W~Krr#)s9f2YQ=xDb_xbKck-?!( z%)t`RTPRswnvZ2MUksVJuIJ&ZJQmWS1FabgQ|3@gWCc^2Iuh~RLa-F{Du1K&P1Ygc zV_H-cvkqvS+b&#X-m9dqY93=7=NJ~TVjr?&N49;eo=)^e)6p>}O3!bgBrW!wCLsp` zM|M=OU~?*3D>#pp3`0Z*#rMZ|%`6xl;4KN&d;t zUV~EU{A~q%i(UyU+{x1+w%=F>M5JM z_2V>peYBEf((x{{l&qp$Ac|7jqt@}@DaV`okXgKblW~{rP>nm_!)GJry%qm2^z9qq z(`^$_G~wV(A-RbSXgGb=)A6ZnR~eIjxI8Te8F*4U-aS2Ngjvx0+pZ8?@AqS@xP z5PFRIC@H1XxR<^!!;*dyV1y<@;+sJD8O`rI>-!;n*^)dDLkjskrFt4(p+>s}RJ?bU zQy$s!wp^lCpm8TV0p9tbLswDqnkw)6)|dO|a1)NkzMhcnPq%y38d=J7u~uz3r$sZ*$WU6MIIGAJE3t z!L`X<1`1nny~w;X?*EgZ((FRY{z*{h|0byBuLPxYVJvZPRrER(m$oDk4fu{DG6Ch%3tD`@ z{FR{86Q}L;2KhGu2`cm8p9JN&1xQdalohZ^tx6vZ*_;7vf*cH4od7mnCHCTl_^4q$cDm z!<{>>>MZx^Kz)jjILpf<=?<1>9pGbiAhtfwBU6U~a~(#gJrfsz6gqqCG(uSme20@E z0x+}#+V$fQfr#1I=~I^KUbPwwr+i>lFVZ$92C32x;NIy$-^`8)*m$A?BL|bb4mk88 z)OsQ(Go@m9fv6Y@Xw~1Jc>-+cSOG^R<;1by>kZNxUuUkskqFg_*QAo}&KxVM8!Z2tAYf1W~Sb^OFBnM|{cp7{b- zvd)^$!FZm8(WO%~^>`1-*VJK0$S0!|g0vNC+z27R9LzEjWWsN^TWm>CD%eYRbPg=M zh@6S)X9&55b0^3QnI#cDUB6B1t!j!lBLZ;E)vI7Mw5@e;Cx$lN_7J0*v5^&GUMG$6 zSrTVHcqOQ8P;fJtmaglqsM_+PsJ*(yV4nSGrJ} zwLwr8QMs@~s2V8S+TiAedWo+9ybu8!RcNxyRHf!ecKJ#-=Hiff*h+-kbH1_wA|p`T ze(l1NPX(0EO$K3f$bgiovy zU-Ra-R$&jo&3n#wqeZ9qy-%kT^pB!d4eJx&e=`DLd?>A|fLqs$qh*{SRT@BqvQ%I@ z{T5}imV(?gRz;72-a^F+?sLXqWR{Nsw_{OQk=~6JijI~;tktkD<1G?Q`jwdTslyY4D`7eOkZr#&HP3;WyHG2pG9 zur68>I8_fE{ftyrB$0S$WN|b|MUm35cCMp9khB&{lQ5$9PLV!mMabK>m7G9(6hbeR z8tt~K!cGg0&{Q{``3X_PSk)3ers?R5BK710-T=sb2Y56`;cuP4Gc$MOLZ=w4WD)Vs z*vN*%0=2Vsdsd9?104z>I$|}dk#LYW%24|DfBA1T103{+I_RNkO`lWjP@5|7D36(Cyj>rz3o%g`YR6+b801n+P^{J+Zp&m641oC%u;}q2ms4Mmf^EN$4o6?O&9@fg_c4Z zy(R<^Rc?ekCc@tNWt0z$Ucz!h@5>nfAOBO^<)$K$idXGO$oOM+LPy5>Io}@VJZLv7{ZD-nT17)wLza zY(DO_Ah`}(KSgGlrS(1wj);+%)>0dRd=UfPJ*4vt)AT48g>-;xm!4C-7C%Os#BS|6 z+&tO7K!{zMlSIXr`F;hCs8ehFMnBx}0vmRZY~mmLOP@VoVmOG0N1TIVYC)7ILBxS1 zj3=L_`!|opOxqt8Qr8-0OW`N~@0(9%nJ-Df)n9@|D;#0med*oRGPZq0deRkQ>C z_XOCk8$gIUzbtDiS)lBlth9OEkFxfUAt5;O@U2mGw5>Xy1LY_{cVyRv?@2G=cng|} zdZQ{IwO8jMPn^qRM`t9$cF4>?b+j07Ls=LTDb0+Y*Xu%cUMH%!@m@Q}i|{%Oo*duI zBE(?vW!sz&?k8|%`=hVC#>aLPEI{HH1T22Z3%27U+vd0iU`-NfDx$!?_$m}D;w4b@sx}gwz1(jwWH+D#`&F;n(ufV>~dlY z!Z$A6j$B3(O(RoM%pOig?B;PFZ1!bUHw#iXmr+8k9aoF)+*SFDCJl!W!$CkF3mQz| zU@%87J%f9~W#0S`e@msz&bqz* zu8Y~vadpz8`W`>l4u`{hF+vVYp%xY1c&vo!A%aAcOyYFq=B8{Wjci<@evVQ!)nF0H9ifuKh4q7hX%s<{X=QRx>^i$q4;?~y#<^^A zqX9KS6pXVK4?jHz{Wii`xk?6S##RHSGbFx3l+AB9g6T*h%HJo&+Zx`gB9UQINdTw*ugY#Hc{QqTQ2kJ8n%l6KR=$1d&k`{#j6SQ7 zWm@bs9qe^B;2Eu}a?~aW(#ow3eN5jYIJaLg_%n+rTd)Ovw=ZZ*sPvtE)`S(}&{W|p zva}_mex=4nwm@;i#?82vFiPzFW*sNQspiDbrt64#gH+dV@&}()1*1WrJ)m`Ya?yw< z6AEl6`7vYs^F(klaKFOuQMhPo&#Sm%-ew#RQ_mYcJ*gl|{`cnh3GUnYxx@27@Zxo3 zP@#jB2Me&q`2xDf5IvgVAlVBz;bAIHP3_(KNBOmUswPf(BlVRm&THIFBj%RAh7EHb zwS!K^?C~V(1rn)lLH2Ccel5D&3U~vI4^y_&;5>)%;)wNYmlU_5z4SwiY==(GpGV1k zj2->#04LxCG&oMga>G|zekBPj$r>1iHGMYV*`x0PIW&LCPHD~2?A!66g`JF#NsO;6w3(EWJ>WdMls_`4 zpoW1s{~@Yoj#!EV$JW+pF>!WMOg{f8jtuu8OaIV;uEB(Q#Y-RL1pvP>m+&ge`NjiS z>1JgPDgmWvlWSH42HkgJIEXTpeQAyYZp{{b=Qq?Q%Po44qN|w+W6eZE#2wK+eYSs$ z?_}%Am71BC_^y&Lly%YED?958Hp>Em=?bl8L032#qILOAV?`S;V}2SN-7}KL=|L9| zL)UR4QEX^DW40MvBykWb=1zMVeH-gfdI@g8&|2~p6H`o1|n$ZW6u>s@^PyJ=0-JJScoBL$Ue>LRe#|!xU zNPIGG+JKMwCGiHBEaUAwO5LJiSlCtSXlthyyqQ32ZS`!a7HU}P;_~eo+JxhONBwW| z9Yo)vSJ3~hhKuTnkWyuSD2&#W;O(f$aU_PM2w&H~{X%2jEWIl=#nJ zHMHs+;cy}lf{AFFjlEFErg(*wKiDJ|0NiQr?kOKTJ|lkst48uT21k&^xA$M}RPcZk z_5p;H5Lc`x%=E>b(g56P0uh+FN{_gfP}ozL^YSY-k$o6Tj9V2g{ttJ8FrNmAuNIn* zw(eCgG)CDZ-c|^%I`pKcMWPtdHB{l?^zkFDKMmPt8FVAP4nl;RGmfHxX|ASJobIgX zYO5ToXexh5U9t&2`FD6UjqBdXT^F}Q+-<=T{5aeWqGlckIh|mZ6v}7_-fpJnlL`mN zxr*qd2`%n*(?t(M>5A7PC11Ovn*__iVJZ{-3ndPdj%5k+Y!8SY52VQ>t?&cWX! zN0(4A2zGyGmr)f+cT=fBwaRVRa;mtHA>iEWRH*bX{pygYk+1|2WMe7o-n~N)qqqTb zz$Ug`Q;jXd_tOOPd$1;$O*=IO_v4qIy1hHGE{wrnvJhSS8NR^E%XV0T7m~2sI2p%qp zCl2J44e?lfj%vx>5*URO>c`yODAU570K4eIpWh+mz?rwbOA|o}RQeDyeRMYN#55WO zHQsyWDXDE}&*8~we}zE^n1Y&tuF`q4aatUiF6;E9MY0I!jSEO`=D2*f#0@A zXY6ZtRQsRZ(Uwbjgj{)IC6;(%hq$8hxG*CKgp}f7HOFL1eNg>*QJq0^m1q}CY~?7O zg>qAKfUdNP^VRT6SBlO2r7P7cClO&bFZO=87?a~S)c)k6&_2*I$6X@Qa<2qjJdi+j#k6qXkx^{}|+Y3qG z)Sr)nx%4r9uurAownOpYx3(YaDjfFw%3_DUBzu@L3aJ9m6LYsl!g#l%N0G;Rrhd}v z;&kxIl~is!+`#w;$^~L2Z;udys%t$~q^<1rxZs}5R90WRqeOt+QOB{b-O-bz|Ll&A zX{H)g|9Do*L}`L)q&00Tk(pO{4+HFu;!7qr0(M7;O4(Z{*GB_eN(l6cS~8@A4gKZrZ#yP}Quxx9-U4)`EQ+=OT`6F9RO;W|QMxZ( zX;(+wZSQPDyLGu1Tsv5X@3Uo)<2?RkwT&3mPBM_-@?rWRWsGS3I9uLavH6EGtXps7h9&2Vx|4iwBm2&w_(zCmRsM2pT$8K&OdeZzOn7O8XvW0-) z&<||@i{iVa7^Je#W7nZSw9>qm);TH!kqvxWhe&ksp2 zf~z}mf1XDCtB2*#8)$NmDB5{X>Sl2<75%`xJo(t3rjh7x$!otiX`cmaRDvWx4g7oa z8%X@0!VcS^2QP0ahA3#>Ve2aAUUS_MIV?zQtk;;Z)1 z8RCT|I)7^5)Uy+dRB$u3@bf&x&~h)FsmjSdg8`b(I-N1goSR7H>0RwN<8y|=07<*I zbZXg*5sTca?G*l^%N`605k(M$z3kFhx&6{wRnD&9`D!E)b_{)7X={|R?*LsX{L!)o zsmvCWu>4u##W(5@4joeez_2?}CPAzdVgv(x_X8eTulE8AA4bUK`c4KgcsnU*G)t*hvsW{ zbO^wr3YLP!=x4oq*c)t+s|^`W(6U<^>TZ2pCHQis68HD#Jf!H}Buz~0*;hg~w0Wf2 zxA;d9jF}fz;_{>_DBw*PzdsF7WTI;ox@27=J{o35*sHV3ADP#Zwtde>1};1ZNY2Q1 zfOaQK5%aAO(OV|bwt$ITpC2p-r>q=ys5u&RA}@TZ?}L~};>0&8#1NyeYI_TG!l}@a zo%sK;cTU}zwr#c!D^5if+qP}nwo|cf+ZC%Swr$(CZF4>Kz1^dGjsALj?W~=Q`v*K5 zIj=eAaS(k2BEw?5i-c#(pjk+4yVvK_Z2kCAH0G6ef@5kgDPd`^-sXq|Z$UfW2I1<& z>?rE`&f5VxV}y?C-D6WqCHZR=>vH)xP=Vt0gWlio_lM9O` zWaJw4gC3HbS3=HUS+g9CteGh+i*+UayJe=spef9r=oSlnbsc8o@QJ)mvft*6GMm#7 zFEiHLUHGQE0lkg-xZ84``_eVCizlUV@OodUKf;cUJrTL!YTC4vU%OSF`2YDPew%@F@*a#Mn-s#e>shYZ+YT zqhCoopnRUUJtCIVKX01X$V_7+)IbF^S;!2{s-;3HmiYKMCz{im_;Ws#0Cttk$}p1q`C~s_EMV z%gY1C8<_p3P~rnzmIV%Gl)nXdapnf~i&1!lvgjaJuE6qg9ObKxOygXX8s&-Nf2axp z!w238sLlHCarPn5wn4G2!Ao|}r2WQ%6ZPGpKB*W=UcN3GL!x(0_7-cpowO%#yC#V97!whwhriqr zsZJJ7MQO`lMi#*~5D~*J8FgZ}+?GWi0=CcwhmdxAI1>a1=e@NbOW?BXIqjHmZ|Vmo z%%Q7`;ZBdVQdo~<%%*bfKZ$aJH1GvaS|Y5i&Flz}Vfb(lTY61o177$!dbXqRH+n++ zr6_s3o2q}J8(P!U!fg{UTGL_ykvRAZ>)=P~D2DB03cx-3H*f-@N7Gs%>CX3Q()9Ax zLpo&{d*Jpmvf8mkT52`HQY&gM>|voO^^)=Gy7PRg()9^>Z98M&~*Sb_iul42NNC{PWmfoswRx_A?+H+Y&n3q3p( zC2%X-zV*l7pZt7v(*L}fT6d(P2s4Cuol-f30lbTD`4#Tr<&u#H&$~0duiMyiYZ3+UiN`$`RP-qoE{OnEk%166Zko?s4pA^8a}qt+V}%eT_`W^*KA67+pp?&O5Z<8h zjS0rugLi!}0h_UkO`run@Su8+!1-tFS*}4AzR>9 zs8QTB0pjKoQb(M_cmF-l`@$2zS!|l zBQp1L&l@%7Y5f)cNi24p$ECM6Dm~u1yRz|GXo zp7MeZ@u`re22_*w>rpPR+OD5tR=KhbSONsr1H=s$Gp2I;N`;(F3s^jLv+r zDi2PVoT1NoL{5K$b^c5S_bZ)|N(%--$wSoB?%v?{3GFPTbu9GgHFP*oXTER`+bkGI z{GPfR{g853egGwZtq0dMp|xK^&BzV&T7EKRe108ykK*T}&@3zE>iB_Ua^V>)o&83r z__q`nd*pQ@hxTa$se5-}o3h__@w^wxLQ%8=b?QXNl)-Pi{7i8i#dFTpO7Xf)kGBCb zvw-({F;NnAuMW@}=F40go_V8|Tg66i_E`LS-Dn|Pp}SFVHS&HN_xJ4Z&@Tr;X-!S8Cc^JqGx@&5>TpFp-yQrs(y)c? zXF;dSwg(+q1j7YTrf2OllZ38>Y+94X_EZzjI1WL)eB%b&&P$kY7T@G*k6?sOfd&vA ziM1FB^I^x6yCpA;pSL^21vCeX)gs{_1{9;PCuqcuNv=LoqJ1#oTh6W6mgqP7)x}+I z;a-cb@nrEM?JCwzZaz$IQt;>E`apz_@g)@mRVlv&XtE{KU;I&1tX!tGbPi@T(ST>g zAco#LKW)u-p6!tg9$#bR4h^fM-fz*L`5xt9ud^k)eWyf5)atK3@f1Oy4YL@KX|qi zlp;gq4jhHr9jCJcAWMr``w_+0&~pP|nQ``A@`<_m)R5aFfW7gu@YGM%Bmz1fN0UNz zgrAm@L1%7~1sM7q*=4~_ZMW3jl}>aY>sfe0E=hm^;?W?;eJCd1Hd^M+YXOH;5_49_go_vm#&R)>{+sZzUX$7s7azDUon=a>NoZZ(9yGuKv6j zX)McdY%)FsxEqC>`D#uOkDjycS+Rqmx|`}x=lAo!YIr;v)@62*ceOr6hNIrgr9I}1 znA)j(?HwtQ_&IHgWymalhi{LL(JqInLSUFKA&>}<#%dkJY(PcTqxBC#x$8rW_r-y;)G>`rmi0YZjb*3}*%`~aIW}~wBl}TX z8geOEoQaAVj>Wk~mNt5-1S+GL((C$Ot#sBb#~kPBLx?%8yxKIoLJeV!m8QnE)T*9b zo7UxgPyjgU5+tK6#zEHb{Ew!{POF!&DER3EOB(s=41 zL?t?u-LCn))yg@}mJU~OEIoAZjPwCbMCputX@p*`wtnHe`)93fbc-Qpr7K%$p(Ia9 z=RF&koeuS!_Nj3v9xAXScN&*|-|I^+8ddn_IZRLLicAM9wl!h*kA|!f>eMv?=?7D! zY#NWFMnf$bA+ou)Z@`(OOA8`FvnFy6Mc=u%*kzzq7lQ*Concc_p8eO8 zt6tYD9}Mvp>zDIGjhZa({;}fl6xjl`I2%V)VNQ zeJ$oSr#2|CyKWsBbD^8X<3jXT^F}5P+~?g1a}TZC%-#svSQO43l@EpPEc+`z&jXpX z7n6ett#%%ea35Dxi@?3{SqWFeYY*&{&um@~bStA*@?hY@t%GPjMx)Vc*5V*&>kAvo zemYt$oa?}2-L+%X-q^Kf_Ic^Zx81RyV>$3KrIsh{%Bau!TR*OaI~t9 zCbw*@$JFG5*D_dAc0o#|&H(0pCA*D%Eyzbic&o*b5-!vUKw2}FX76U zcBG~bS4AjO`U9aFQnevcd#H|%Oic;PSE$FF?b?Q;(vsQNNUb(=53s<|N-CVdTo;9I z4eKSh!+pG@?EwI#zCMS~cT7WH_e?{9`3UeriFEhLw>Z>YA4@$KHO)MR-D_5^P?Eg# z+y5FeUC*t3eZ2(Ysv>!R{CjO9Rs65M{}uJf`VZ>y|8q)7w?xT7%2M!6R~CZ)Kd1D6 za7uRs5C5NVN~46~P(T1FC=vO8Tj817+B*F;=Kkx)`xo_?KicTih4{pWei`<*TWP9@ z@N~lKAHW_-^oNe@mw>;p__vP-GUWNv)6&c0%1dv#{_w(l{2{ufB&!N(z;uQ1+A8e_ z87?H>(!ch1!QbdRreCzT%HO_Uc+mK3np^ThR!lwACC`7o9Qb}6;kgfm*uzc0C(7bt zgneaUVluI zZ-$xeUo7$8L--+tGCyEOycm$DbSrm&So%OhDm*}! zJTUxb`(?xzBHSgq%Nx?)E^6rudy>onUIm9OtQy8?jR1iuys%6FLc?1)0}2wue0-99 z)x*?Fyn+>V7(Db{KFD+f5oGY)04xU5&*CM@T?jbm%mUk`@(%Cvj^QNB^7Fwl$Kd5k z3zcRFSrzyLZ1ZsNDqe?02TT-Goq+m}Xn#uVK4fqILw=hpByU6r=LWz)!UJsV?~9cx zHqX_x+N7PKUa|vq&9krPjQ0HFU`y=xu&X(;(7IWBXi%!vCOK3bI3LYB!3;Mt?St%* zBWSK3aCOMTq`rNhxgG=Lo`tIs_Epx}X^4^q_@0|wz@N<%&@R$L41Pnwxeo%AS5h^Q zsfFA_%aM&~hWrO3;f71QqwTaP!lNVB0PH|!55YShc9CR7n32u%)45DhN!v!=9sOA@sb_Bx`iY~d*te|YBWYS_Rd1Z|efg z@Mh*lnD=Mey1A z>8fymNy7Sl{KQW9wJk&i&tm?-4;f!Yi{(kne_KgYp>#TcIt#C;Fw(!kkZ(9YBiILS zKXH%LEZV*}rud|rzAmLMN*?(TFbqhflNu=NjTgIbvC+ayM;xe!YPg{nS`R$(!VMvi z0Q);o!2a$4TaPOc1->u);LRlG@C`qw;Cy8%zZSUcR&q%vc!SpcqFTCYey1U=7h5EY zOQ#`U`ygsdeOQ4EBs_F)Yg^Wa?;H82NV<_q;!IeJH5uyr?7kMP1mOs;ZMzCp653zV z<1OsO-8z8ucz|LoAnweP*{no8QSDWx%QV^C8*h9z8VzWV0{^ir*1L_cMmfp%I+OD{ zszIHYwl646>z3cee4Mh5s9F-F;V%q}R)r9OV^isi(jYBxuQaz_L(m(Bg@pBn;`bH-2`l>kDML0paLf#pC_ zsEL=VpNF=Lv3<2+)qcYJhP~<8HS5jWBEBIQ(Jz}&sZDr`v81Qe?P5%RYpPeGAi2jCfkgqDWpi;tE;+p4(7N0Zm zoA0ZNnKs;gnVi2POg(c{&rB%}(Bpxbmo_AK(yCE~F%GP}5NtXwlBWbQyHBMM;O_55 z5b>41XZhZ(=s7r=Rh95~6s{++#}tATVI+^LEAVj>Fh(WORNqi=0(Grq{_(?{A;SAR zyNxS4Z$Q&G$b9%AX1*Gl`4mr5CoYr;Z_B+>EnG}al)LcWg)z{G57ilWeNF1Q!_|o{ zM!FW=FXz$x*hPtM(8jXRgala=ZMll)%z$|lm7q9VC;fm;%UCJR&C?m+ApB;R4R&9C z)E%9;535fmf_9$m9T(x_?YW*Yh2wcpp1lkJ!K4acZ_EtmQ4U!Vpf>||j9yc5NIBV=75jR0**vf0W0uR<|Kw=WWAEq^gDZ=J3=^JDAv^UB6hHfurfDNvbC0{EZfD z30{epEyBo`atiw~iB=Zbg(At%cy_f$cYPH9DsrCuDx%Me7bhBGraRU!1#j(e+m2RM z;Jo5|<4=u7aB1yc(0n!=i{rTLpPBmYU~ytUb&$yqXIR6h_{X<|BZ$FF-E=0m;|A!O zDX|VG?@i}6nhm1|5hjj6#J%g&0Pcdo-u>PBLDQ=lJURHZyhe9`zR~)yXo$PLzJD1C z!mgh7aHKb7u#bi8+pgu@Ttuc;wxDs*Ixkd;(q?{>zoE0)#C`qPqWl4TnycM2hCMB? z*hqniG$0Sni}*P$x{C%ym;+svOu`(#;FnunD+*Iy4rSwOEZWKY%QVq$Kh^J5--lcF zt>~RldZV7el*`0|Z&Xv)Ewo{YJ#FMhrxeI^(tWmPd}QIon3PhHR-i?#qnr<2 zs+JEo$4zS!AL{8k*M%g1`lkDtdO>WPh2#s0b{H%G$kDz3Vk3&Gyf%|T)1#eRS?r9T z;FGGG_yOKT-1i{8$_Rma-Pq9F?{`Z{QwFkd4iPP)RZ#CzknsmlD^<$Ez0fQvIyd*n#<6JLhXK{t$(3YgXkbMxJv{Lptwo6e|{rLEg&S(pcmH6>n4 zyi!nC7ICS}7_v(3^n2%0^7kJ~s#GO8qEFzir0;MCthHs*Z^>eYGt)$rv@ZMoyxEr7 zmb|z5>aPF-Eo^n04MY zo9QfChQu=JqB8+c`oy@3WJOubYxDl$MnH9rqG8@_HI2jO@lFY8cx75ugiUb~<%~Of z-m>VJ2p9hOQd_EhXPAHuP9Wjn#bsBtFVe>V&6*OIrKlvGJ!HAzzERLgPQr*E5hNKK zHTwNHEOC>5DuhrAgmcl76b9K@2+2uLHa1f&u5P9KNiC9_2e;gRh;2Dg`Po$Oq4{S< zc2gc&KiX;hs;tw1b%>vqWDAd$=a1l_Lm!0aLN1h54g8wwg;~*5_hCJcG7QFD9_hF7 zH1R@#Hi5*A#p7B;VQ+79`Z<*GilA!T(2;a=^Z|X{3lkF)l=l!l1Tisd4NzTR#@TT@ zt6C!9OdL9B%rl-IJB?=MAHDFe9JLg|_(AP$>IX_Cbda_9+i;5{xlc_<30&CjQi&WaA#7{0zHfWwL0N=RPtn z-Hp>cBFR;=vox@6vM(>rbBRk&kE_Nf?aS(ONx$gkOx$Rg0^kB|?|% z#b@sKC%+0Ok@p0?nDtW=i~Q|N@qV)K)1@MuJCkE9AWn4*xFUf}Xf^g5@-8TV2U*G;+Zz)wu-IMQrrIOSG zd87ALi>z1A8Ow%}_r&A)(W@y9PtAj7=5RJCS7#C55)4n}*FVlijWzLn%&12|akO~K znF^4Ch76ScX>)iVXjmAI^(K1Bf2BRd3aL0%KNQ3K3&&3h7*=~=4=LfSO&zuW_*Qg? zCp1UM5!eG+9bS@xP2%zSFJ~jne>xl0|1W1_`hPeZc>&JG-T&!qe6sd?^S=}**b%GD zY#N-G=f5<*50wR+9)qZ~qEUw6^(zjM-BR5g=s&NI~^0t4`qmY$&`Ry^`Fn zHr>d@-iSZAuzWsxL``SK%D~Lo|H>wl&0HV)>uhAvzF&we^OUe)p`OL5F1Q*ymz_m}_UGy%D%=0gbZ-GFSQ9Hn1Pkw?+T;THA&g^U-7NJXF#iV0VtzhlID^ z%}03$jlYOA@k)VmYoi7mos7JauqT#FB>ZudWXZD){gfOHa<{}PNOw!u1C#z?Wgdto zIWDhzi>%%R_u!E@)Kxe>ngFUVsb>9MdMeg<061FTa~{9f>JP*;G6;CbXnuC8!~PlO z?ypxh@nVoTmNkFu5l~3cbO0NlWY~iuxQ<*v@$eDU0xN;l`bB%_hO`G#`H29@S*Vj8 z%JMH8KkmmXH>DmR1?A6ip#&{}=~OKTZjH%nWRFu(hiB$wWu!cIrlO-Wm$)UlDa%#> zN7cImu<B z#8e$A)JbiIW^Hc!90+vYDyAyixdMA{IM`R>o35B^X0411HeZIop z5|Il7P1j=GnGn^Jc*7I@+E1aK?QL@X=~ks;yBv?|XPC?-&G?1J3;{LMir7|i89xmNCi34Y+bhp{J=qa%`o+W)a3 zc4hRs)+P2&VW=Oiu?(bp8BWP64OP6kl$$v&+UYjdYio%*CKc^a^{{i2K2l-DL?e`?_J5;0FW}nK62}0COWxPN?!&wG^dSPlt*m{7@$cvF=hC za_Oj`WH6ot@}qdgD793;yGZ;3Q!T%KS#^3nPC*@^|3Yf}i!Nm#{I2gI`}=2F_Yg!} z`}ZQ5pL#v|!~%QIwt#l%UC(zC48a_r&W@b3OIz8$sFJMHx4A3N-145+UzA4SQ?gifz=K^a|&EdEFkADi&%p4}>CV zw9isi%spEc{HN_?v64EQRtoRLHyc`W-Y0ShNRK~Q{m$EKd*5)fFF8!H{-ka_2DEe3 zEL;VwXM6$0^XB!vmqd)SQbTdfFgx7uylHPa87Uy3w(H-5;`#)Ngfdq>LNnztooLtvJ4&5iv0pBz`=Ux;i zlV%bj^+_W@to&reehBPD7G`E+tp6+-R!^VSAz)6yT0xy|zw@0UagF90L~-I~ z;b(OHeLA0YXMu_|8x$vq<&pTm=3G!z}-7{(9sS%jN zqMd&xi|8#6i&N4kF^;ED5t#C8-JLsO@Je!ydTPio+(Rj&t;D)@-inJssH;B$e5l_W zx#C@)^YEj?GMSHh`y-R018ABH12KNF)P&nPW*Zv^2j+E-Q*QXq@xCC#TVthRM!H$GEc1 zC2fp)MuWy#gYE+?ez7VH@8mhx97QbjO@=Qi_icWgBcha_E5GC6O7#m2UcL=J8)s?b z-bxEI_stzN@^!;W%nni# z?T0XtX@u&trmSb#5d{7@R3;0jK~~JOTgJ&a(Y~_3t|;>y&2P(3R~>hsos1Lvoh84- zv!*}quK2qS$!_)`syAPQq#*?qTB*d|2j%2bc5i#F1rd%j@xa1I{h_`$*`=`I<}q}E z;c6S02kCfol-F*+4l@*lcEOH(z+_G?UA+Nr#uuR zOWbsH+@{@pk?OOjNZcwbdyYYul;rFMBB0HLcj-G@f3xt#z!z3xFSyS*K%PjtsoN(> z<8ZYEqEgT&hg`DXoBQ*OEg1|FV_(S*E>d<-L+H5HX~@nBX0s_?NKzrPBg-j>{{=fH z&>z+fgaE*f5Kvqjl<+0%p)_kE|ME6Y4lPZ9L0jN%%SbJ=G6-Ata!NT9%bNdAEwJO$5B4 zlJ;j1IL4s#v5khs(1a^EUt){Eu!~yRd?|qJC}lm#d#Q6!jrWHqh3fi7UJpg6#g}Eb zyky7N7o%nEQ{mKH!K_1LE)gyRNg%Y5oY(9vLx%p3kQ|Q0ndKP+&G4Vf`RZSq*s>gq zAv$btgOi4$C&Q<7&Xhqn6)?`dB99)1q8bdWnXXVylNzvEt%a^a0<9kCAyh4K9S+@wao1nFPSn5(duutl)Z&-<4~=LtyR5IecFG`K z$2^4JLJ-}sj!5iqrihp~cL$K!=&LtCr+4C00rdMl*nK25Y}XfO?fTKDHb2Lub2;-C z5N*HLZfou>FBo(9OM-oA?aH#a#49Tf6RK_-riM6SVXxr=q0=?IA-T<1sp_(7_9X9a zKOG<55)iCYoN55uF*U$rq8bNcg9MX2OL)XaL-d4V)Iwenx}++m64!_7YhkP^kFSd3 zvmFqJrteKz#eAKz01{E4(C#s;SIq~wl&w!EyE4=!N|1JM7q#32aL`tNw-y)vh9=*? zfv6}T5cU1HP?Goz1JD085dGJM^gCtEVGSQ3ZseMCowmEm4K(6PXHS#ZaB*0Yn1#TH z)RN|>_wzcQbDf!~SdA)w7Sx~id8clpvbl;?1oJedRvW++Q6qp>7f>0D+`#*iE67A^)jE5kLMe4k$CE(j)=ko}wu<^l_?lDLYLqG%@4h#w^#ER$5UTt$-mE!z%~ zb^;kOV*1F-Jyyv_%Y*-P#u>^{TiV^T$E09502zJHG)hO_Tdpw^MiZ*MfzyQ(xB){r zr;iCK-Zz{F@l*kw_CkVGh7(_!6aQLXH^ijCO-Pv&ABn3^7sU)p#QxSiTkbbf!I;4Q zY~`YkbfMbu&IwgIN((imt>^qW$ho2dW3O%1tH7K>V~4WJpbzX>;RowcYZ(C44o7;2TI)Ln z>`Afu1kZ_?X8A>Bo$-q9v5o#Ru_B>B<(q>ZOe8x;#2Lwe^r>B^LP!ws7EIQ1INmZd zygLW73#>1&G8`*1rp^K@{dWF{&C6J!DeFy{-RC(ZN@TUYWjG1M>Zsv^NMiF5(LrNR zOx6hFBxjr&-g;?A=6*=j@up7b#a24c6YU%IxSZM_*p;f?ZHaWsJ#sPB&wV5;^e2hg zd;P~~oEmThJ`YIPbuK6HR}lY=%!0{~<$8|uwiRq^AWU*djeBW0K`cU4q%p=|8M(j$ zxmRQ+o(?M?y3EdO3QvUs`eea@&}{?OYBdc-Fjq#&F`x7TcUvM5&q+4Fh_C$03HUVR z8%G&b@J09U?ah+hvJ<{!AF1C?r9N}>^lxS013uVn$jurPO$*4C5w2ap|L(kpb2RxL z2?7LU1^wRwQF9Xm{9|LVPh$bpBs2|@ZBKO?Jj>pCllfxnE#H{6KGv9z9A>yy@Bfcy! zRVzpt_FMp+5cBUY!?j?DxsRQo8H!KfwP1;1K1*EO6Yp?B`T$c)msDS;AgT`RGK~de zwGGY&Qa2jX#W1^s9XDUmr%$vc;s&YsH)+16@9e4P(wt-$t|r`QXd1X9TUa)BQ{@bc zkfBa#v~!^-uTovOFw3tLQ^B$Y^PA6ceT8ld|C#G@S(v7Kwg(@k>)S6FVjv>(%Q7NSY+Xd z$wugok{#hs_`b3rd?>)}cYCh$#=Q;4NDwrq9|fQC+J7}&ogF9!L`}1Lp$CNCLJ=SM z`hFhqeU4+oM@YFj|6;Bk_8_-KjKG9VRM$d4A1UgtGyKI5;a#iW%|CQQ-EB?Au zz8Ya@?oZsK)euF`l5h(?Il2{UIwTr`hTIKpWF3v}{|*)SW)nwA#PG1h{|@0-9mM^F zDfw(uj49OY0j~UlfN*&FL-D~#+!j*p4ISwVQ{o*x;Tp5#li|18B}%)C9lAflcTReE z*r2wWF)-0~KG7$1cE&g}kIqn8^u!7s16aCsUq7Pu(+~v6M^~aSX&~!un8zRByh*Y4 z%gyCoT@_^IY!QD)&EVHtO*EUbhWs(_U^+{K0BvK9w*Mjn5JA4Ck>R!xPcQw7#|#Z8 z7@kO9;2M?qD-HN>f8VTBk#(-v)g{3U#b1B3{BymZXwTqBTcZ2RuIh>W>#FUc!Kt3Q z98lE|eAe#-3*1VyPm|k@;M;n@^VHXq#`Xindi3aLCr-$KEPn_9f>ICOc9V-Z_y+_9 z$nuFi-*m{|RjOb$tniJjh}p!*!nWUjm2Pg!_AudyT*l&n(S!^gLruIf)L$xzkBjTv z;;5&BKD@_~@ePjuv=U}l{H9uP7DCS|jprB?D+cB17Ov^XT~iQ;W*v|@8(twrJeb6{ z7eLutFG<8`SP+?2LmEb{cT{R3InV-$SnBp-UDAt5V^64bBaN~8h4zMTO{g=7m4+SoxBl?Rt5k|o(45_lP3kJi>FUU5 zgs26^0TpPg?5_IYNm9J^kKKhMM|Nm zBU#=u-7Zkc>F86hx|6_k6Z&lfXit#N1(uxvNC!t2-C~Jls|w_kFlwz1aZqdsb#a=) zS7p`Rf@Rcu3*M2e0a51O94wKkkQCfhaj(id^`SgOeKlfPtKN2D@d0M5BulrA#ky67 zY{B(0^X4gX(4QmwnxfwLFmvl-Sx;*jAIGRuxhU8ZQbW%WMka{aVF`BSQu+D*B)@i; zGzHy}k?Llw6T>J=5N=tE)Z?a8W`?ua@on2r&~U8~_?}ac>E+4_*aa~C1j3ndM;RVr zNB!gBk(8x7WLxN!&gC@8*&LBzhu=_HHeqwDH5+6!FU$k<31H9+ocCeR zVFNGYiqda*jkW7NkTM^`r)PYxaV4$dJo`%UoGQ4f#!I=sMY31h?EjX=2>peO(WM{I z2G(nvoq~py5GR&Hm(Mi;l-eAtMM|q>e@W;J!aEvTfVg+Nb`>IG9a&IaC031obqVSCZf!ADQ!XQZ7{^hS9lDI9?I(XW%DRYIvc+MRNvyfFn!FM;7lGNmz1BnC?yHF#q!! z!}A8+w>`sry>Lf9f-_p|J$>3hy!y!+A}ZWfqHS7Pm!)gdyd6? zZs?8pI{SHn=is*j`x0`pmz=(%e*ofRG;r^<*8Q*B+r=;_#DE@?W6BqvN64$FkFDz* zik%CnrzOQsfzs#Hy6YvV+w!Ua?a(ei@hgb|Cp~sk&`9B*$DAB3x^Coj^THOaWDax5 zZH%AJWHg&Ro=k%SSv9NuQyh6!%L2X+ zqPvczt4w7nN1z_T)HG$5k!g=1%mAG)tymx5YN-kp9VGJYpA5X*raLXA{Wi-29qzoc zq%o^klOiPY04`L#+3r2U;*Ht~DO8~l)b$uY#Dv0un|hIBJ(6ollj9#m$9%tzeMI#@ zP|s#9iiX^ng(`Y!)+E59xstvPz7G+=h3Z!a74${%=v=`l46FutyXu%WuRv`TSZ$F*w#NTl+D}bdiJn#?KK7>uQv|6c_*7EcSDL4-iUy$;d zts&cwhTO%sqPVb-bLcz75FGtb)g96PgR?Gk`psRvPi#_d}StqCThoiG3s>EAy z*1SZk)9b4Q2fSLbk=PK)ki}tM2W6DQ@g2+vjwy|-_D{1@dCoBD(-@#Bnt?zdwh4VD z3Flmi6nFu1+4(g26;j1zT@KNlr#L&G@*~)3fa6&ZxNc7Q6vo1ZyOE2FY)f;Te0oXA zNZyKqLQ`hpp%PTvmDpi}H@$KDdH8Zl7kP3exL31tH1cwNT^hxlkRKT0<9Ip)UB~gF zr9gFSk*M>k{^6%t8H8Eq^tp=MC}ro$mPOfKTt+(49`QL^#ti{fef?Q^lJ)PYmh?Bb zUq8qO&LxV8ScXJ*ojqyWniExIu;?JxialAU8YHr??kW5BDD7$fK#jLfGJoIH88S0Y zIxlp!0l>gc=fP`76!;rD*+LUFkW>bK+uFAFG6sqI(jV7#T0PabcA}hRvfjRiGFXP< zcXH7P(S=QAdUKb9D2-&1Ts^FF?J3AY4^6sx&zor`n!>@dW!m%B+;uMw=-04KTX?b3 z@H{A4F+~uA9lcZgl@5kZwCdyRpcBI)w2ox9)ZI=tvyZ)wkN#<3Hh8=&h2~6vXZe|S zIa~Q)?B>ux-kf2JE+E}kQo$rUJy|Vx0!w5zF+z=1YOS$ooQ7@ZE(Ls`>q&&`swJpk zd>+XNg)q_a1AZ==6pEDhzESL*9`ACw@v`>T80K`}(g4M&y-w|{PKPDS3c4%LPt)rA zy(-BXZP0`z3-UKvl_*OW8s&0jl;!&x+M817^7?`cs;tp@9p>+`tBAC}4jCKVnP+&O z^sAC+*`~;IQzNO$mrbzG%BGh~lJ7#CpFCXqL?&cAy0ZPd&#}Qeog3Rn9 z78p8C)O#3fWFLsU9c_V85hFo-FdB71R5jVq(w}BaNH01kP0GZ9sqlM8gW?!_|9nC# z>yhi-NR=-It4jBF*E-N*XBg5PM{{o}Hlcg=lkn-At2eToI8U8KnT~cHQHmc*T+51dOTRv239qrz zl7H)>@Un%|xz!m2iyC|6-K}ev1(H>+i2I|ar{e`LI@Z(o?f&Q%%p(`I`|dV6JROB7&Z?n%GU!;#%oA`*wIXHjSu7J8+n zGT7J)p3&3O%sDcnfGo!C8o<;CV7}dq;lmCZt!v@mBJ;}&CAh(ed@!O!5|nHL&E$Xt zD0T=K0wR3SgXJlLc-#2Z9HIP8Li-#c4`kV%HK15Ss-P^FBrr_Bh5jB88V;RZGDvKz z?m3<CZO$mqLC5G$&1;epa24vB}2ZbG$V#@GF?SmCSrJKL%u z*s-tWT00KhI_T}9ZCVM1kDEZ8fT{c**(dmfk8vQ4 z?X95$hMS&>N8E-7OSX0(AK~|mD-eK1>kBSp@Z=qWv+^n z@{04i1o-WN7OVf785x?fzWrln^ahw2?JcYDv9AWI|C$*+4RnEjlhSYK2@+hn3`}do znOCOpg5VHnc9Ejo`B4R`u|{NVtwHt?xAxPSZ(ij^>yiJJj?n$HWX}G~rl(SiBvAS$ zYIYu^kblCP1ZfldE$UkI0Qf%0KR{PyhO*RU|LoiDuS2z8@&nb;m;IXg(FXLj%2;F^ zAlW#@Ke9!D8X9f+mRJ2HGFrTBcG+d>MM}TSPc<4{Zh%h_i&?iwtnNh=J5+P;^SHC5 z1EXj~O-lriNkd*|)tPcRtLL8L6!Ns2Zf^sWXKC?E#YkDyJvu<+*-yJ|c$SS?UKLXN z%;SaQKP<89e{F+OL9ysN7a;IgR${iw20ApaedQn1<@+stNFz0n#YS1JsM%65am5WdS0#2vN z8cjvCAjvy8k33uYxB3hw^TkJhsm+(K8(p@Qsq24H+Fh8Ay{=N`U8{ zcb`P>1x3{5vzKPvLm*3CHuMPczub`7ZhR@CqIF)EILh) zJ3(LUMG1&zv;ORshANYcgOyQ z^8Br;lEUKm5?P5sX6(Prl*_8|f7pAc;7S{P-8Z&vvt!$~ZQHh!PC7})wrzKkj%_C$ z+cx*;Z?4+soLY09eYtPe&8WA=<*4^!JpTtjN-+!Yz%`A|mqJwt{DCi8!0I4nAR%Gg zKB?zg(Iz@hG?^yeSD`mMF7myISh%As-0!a3%w9tOjr0Z3k5{$4erS65gkw{-Smda8 zl!MG5NEea)psElc97Un|5cAql0K;4^P@SoOG4u!$<<&ibsIp7>AYX(0ualo}lPpX< zTVgn+Bl2;9OXoncF`pA#QW_rsyp$W1A_(FoJh7GUbtuCF@x+cah!6D~W@e~!ncj2J z)Xuo0vN) zVi!8PQ}>Q1{a=sf`$rMkwo}5G$BB!|TCF|_R0y9}4q?}nKM7;j2^=VGTB@O9r!PyN zVXnjr^F5V+oSZY#V!0igOPI?e+$=iNNN7||hG7Dt&GUjdV+cOoR7cpq(7p-snmtyf zGGcFk5HO7nZgS?zB%V+ayg2pUs{FyjA2&uP+Z@|8&^c3U(>wpuH<&V_N7?-ET6i@aZ@x!QojRwXK4B1 z`6;7HVLZOTD3izNgNoaiI)%8 zB3L!0JH_mS!^p?(4?3q+>+A?wu8yyn)zt$NT`jO1S^Vwod~AD!?w%NFQ$t&)P%LfP z`k?l!B7?KoL@s!&ch5+vGs94SgDgk@81^_>ca=o#sp<@W7*ZbX%MQXkRJ)dt3C(Y) zE-tzR=USe-$u2^Zj>D+JBD;+lah3+_HRfh+?_QoajX+%+JgcIi+?ihI*iteg1#+M2-u zJeUBCE^Hnu#wKzVoP|kcZge!K-4k{L-3_u3f~}_rAP|!ng3X5!$CSGcDU~^T46xhi|H(*)ea;wr`B1 zv~saPK`jQ+&4sLptF-n?Sx=#7uD(cPP~K1k>-HcD^<_g3*-MgMcBOSdC>(b(*_oO- z86!WjJr3-URdJusCe%5Ps|K3JSQ!}$J+FOxeIB{~u{rgVp`b?T+pnjQepBBS>B#m? z&t*}5lg$3~1##_$TmwKIwj zb$Y1kz2(lN&3^nln#V*1MAYZIqTUvqd8;FSPHOkIP$9M z?F)oZeTqmkhZwp-hfOeb3KsO%CtQpO;Gzh-qfo`?jQiC1_MY=1Oq!As_KY5mLQV|2 zamCJgQ#Ftt0sLNO#8>qPRss5R=tLZM0QA`_q`7JEx#ZLo1ui`ZoX&_dhKe)&?ERpr z#^uN=l+8=l#Og}xpj-(``8;gHA}i`!X{i3U7JcBkRsI!5U@ode5*@5OolE(IRyVE+ zx=D$W^Ie=hhS6da>zBym*4U82=;b6C)58Qhz)xbGZBlVoGwxLh!fH0WEwk6wDwn=$ zjwJ!dD9|ug6rJ*nQ1@xPGzUBhny?ljIMw-Ujh4ktQ{{(~PWX>_4h4a34` zc!m-(sO!8ho5w8$BE;xDP9<6c;n>3>stzNxYeo#>>Jc1C>YlnV{y|R&In>{u6msF~ z<7$J{g=h-Q3@+3otrNmm>}cz~1J4%Ij&!9+d{nQ3<3^+hQfD!+mg-DLu;UGi*e!uB z;{C>t+UId5d)k_TrYurinSL{neyGc17iGvpz!WwriCtNtGy^#8T$ zbBRV{FD!RWDdhf)>QPD&1`^pa?Xdn^tNs!}S(L{df7v=FVH`_LRw>)1S+5Xachaj< zIp>sRK~=Bd;HQgtwB`zIoHvrRB5Ts5Ucl=W_W2|lom=*jIi)73RAz5J%T$mrWx|)j zT{TZS;ZQm)vZ$*Z;?X{YmEk*;_0INlYTJ(zM1wlUS_xHIMC8P0!MFD7EKK7%QTl~*6;<`WkIzHy zt6Cf~rh+4##`~O?)9^bTyPKO$d^Iu!EVZRed=CHz3LpXN0~q^`Q=-y2!v;&@Ur%^- zi3NTR4hiw)kH6<06$wQU@koDj@labIT%jg<4p>2mS}=+C<=V7JlZiV1z9w7F;^e^A z^3@jP2BM|HeW|y^t_%;d%H0U+mncyiFIOOU^aT8QGlhTGnSky&;AfaBD5^Gasw2-q z8*mFE_IZ;4PsI@hO2tQ%*RWqWvu`?I;+lEGfbK zr%o}Q7kVDl9BDAr&k9s11*oJMRXz8zp?)oi{GmLZHbrc#Op9>MTd3Z)G`c<4WLhOQ zm@N`Q@zhB~ahA5G0|gtj;X6|=fwwhyzB+j7FoAS{Rd2h<`&J0Vw;C%b_Ivr|24K}k za9Ke8W7YTm%c?h$DZ20QpI>5psst}K`p2rLYx--|xBh#poWBFW!G1{9h^FbH#s)`isB)cV_*+Uf#dO`%K=Y?%awO zM0$nA_2-K^Y)1c5mciYPl_8tGOltKIc&Nrb0|Atk%S+dU6IbTDMGf>)kh%E#V_WW{ zyw70)*ex4Vb+lhZp0+5t*XI2&aE2YdJN4~aPlVi);#rnKq8A zJuEN#g&hDE$lLHEw8VA?NA2wH2{snT$qkFT(aDmR>PBw!2!xP$>^*-Xd`ir2=edB6 zc9#ZDJlWsf#(5qoy{TI!TC?zic1L_vUij7?zP|x(PzW|8-`}F1>aM+~asPsEk75Ae zTg)-?O>AHLzc;9%y3KT2d#r342y@q;WLC$0Jc9+U0ViB6#JlLM~) zP+^@X=pr`FqApF(m&Z`EuS_M!Jh~^pXOujj+d~+?3*zt>whKhCdm}`0Rmk`Qoq6Z! z6Wl%@rD<_#Ly;CcxJpC-iDq01#ctnN3L-kFVhAc6Qyr_ZRTmVH>ToDVTlt5Bt3g>^ z*aOJ7P~4;<^_;83ZRTQO?NmalkFOyM^t6CEJrmU7KVUS9T|9rWO%EuneJZq+32d(< z75bG$_e264vLVQNK<4e?Gjeb-gZbuyPTP4$B*ntrH5X=4qH}X#3oL~=wB750l6dfj z%gE>5dLLzffHg&dRu~S2Vs7+}#ez~aNuW@$DrpLify%Ci=D17kO@+<`QPqTXK}l`H z_5PA?*#P9*CB-H4MU>0xlddpVu*$y^@+n%?H%%x-qf|(A)0IQ4)1WVS>eD$G>R_g0GzK21Fv3UNhUxZZ{WR$! zC}A5s1~CO|#i9yD`*pa%D`GDWo))cyz-eE?7lw;JcB0$=l5g85XVGFsCcDWtJJ`l( zCN6jwxuW(tAAjZjv4*}Uvh0BPwhkR$gcWPg9*yFriC0=X_xJiFRhx6F)<8lS)>4-9 z+PDrN-?BWnD?P~?(iT8OP2;2NLS!K7A#+tDL_v@&&PQvp2cF?AA4@pGI5SlHcnYNp z%M7(LpMq+&jrk?t`3E%SZtQ|5ffag@#`rUonWp zsY_RcbxxOK4yehTVF1Xt9P5Ay^1tNUY3RBmzyvuZDC{%*f~T$c49ho!CR-fJhlM{$ zG%OFFWyxsXLBYV@TZKa!{T8`m$mbg2(?>|l5Pt(p@!f{# z{nE;-nHa`v@lMUPmbr)RvOfi3Ts`fVVm8pvTdqYCO@E)lyqb#y9nucAdmi!|QN=|9 zs#UPS2=wX;b?77Pr?qlr^2cwOzt1%qYXFVSt)CLWE_%WQ_ArEvceanFXR z$SJR{)mKk!&`B#iKGn9bpK8JU_j*-f43&Rwz_MaUF>-!NJlL`Wsd@+B!yEySxWDl~ z1UkJLD=57mDh1hq*102lMy>IHquR;8o%vy=Y>#}?!USf`3oL6Xca$JwasRL}(|1_^g1^r1c_*FFT@&NeIvhtW;kyV6=cJMvD{pKN~ zMu&~BO#wi}HQ-ataBuni z#dZ~j(#^lKqdw-Lg#P7?@y;!!`?q$#!vLt=t1|H|#IA;s5aSY@gXl5vvU7B4qJV{A zBD{Z(_#ID@5b@(zA3`0=74&tx_&q-V_`TstFQ9gReDGG9&IO+(N?4mR7M^S>bo}+< z0RBZ8@%J`$F@zhg_8c-?hUy#k!;lk6{>+$p0};lX&#{4&j}r3Px;--pcE~+AX*_0k zAr-O_)I~n|E=lVaorqxm+n%^S=Ma z7Wl8QvD6Af}tG#q(&>o$8UmuoC4YVpIpDM8xmWJ zWc6q-N`q1`FP$!0VxNg%BkGGfx~nc6o5?P|C;fpHLLl)gG=W)uWW;qbP32^;L1-mq z&Y_$z_hr=a(coTrY%3PIa-hbKnc=1*mSI9=G0VoQbUmeawFt~k$g|6W#GQyL zn;CJw(ebVU+8K>Qh_-%ipvyM2NO5INF=9^wlzOm$C))@)u^4>?YYON&M zl!FX-Vfo@Z zYQVe=^CmB)qw>@y`KoY+FC$84+uin@WTqN;>OaSQ(8zA45IY{2Pn*ffu<$`-JV4BN zG@j#)cZulLhr*mi1VS^YprQd}<4d{|zD&B>|7ul>7nB3V7Lj<@ensy+Kd+1(`oZzoi3FIMy2$2ars)k%!Z1mx0>Jq4+n6W}6jwv=|^**>qFjI*5t0-A1KcuLh-dAl>TF(1Ftv_D)a%`La)66Y-8 zyosi(@)j3f(@D8x$<=u+$if430Pwe+_(RxgeElLE4*(Ng0#M4{dUy{}k zIV7yAJx_Q;N|tw*h;Tg46B65Rgqt2v>b2Pk=U(#19KdzhLmCZLr$kH|P#t-Y*G*iS! zvt7qz;R9sUTJwxi9kGZJ&pl-?r)ycmsGB!C8V)x{GN58I zk2m+G+rEXKY9*y{RSOb(sC?YigrgWl4dM+q-MR%rAkKk#Ynpp@QuJ;|Km6ebK2jn9 zsZK}!xqm%>1zaXvMgr9Uu2;2kF|RVMZJ+q( zYjm}GO`{L?g%H*DPBU!NcN++&T^~A!n7%7g_b*%jwrQfvo2YdCAG-LgO#i=Kd{JfG z<|_v38WQqLo`*9AAnA;o^m-P8(ga?-cG+O~ZIQxXH*Sf5E`CzZpOHyUCy=jpDc{~q z`1xhf{u_nq$w_T*<$wTmre-t{z$^6xXJGT z=xBJLoowqOC)+qC+-|85H&#TwL(qrt2LSi&?=^KgiJl)4+9?tG%eW=WV4o zfRk_YkCXqAdBxkh^gjHLlP~<&$uIls4q?ILK{u zFqqE#5-k$0dpA&L**hAlGGQVc4-q!?2qG-2s9vd*?Mz7+XC;{8i3`XgJ;f&M@gs`Z zR%r3Ofrv5(ZR^95x`Le>({`UbRNcXc|g7L-Fjtj^;PN*u4y}&_F4mJ}5xk>%)(!k32 zIt$32&6r|rGkIH(DL?Ocr6iSV+ECD<8*qX?3V8CE>qz|N42f{i;6uY;^JcpBBgwD_-l^KMGHryW8} zpo@)_;gUdlUh`)=!a{-cq4*^`M1VRz$hy*s-|-^V>^JmIVbX{VMoGN1F9<}pVosnJ z22}-fKJ4f;Ep_7(Kpp=KNfkHkvHAW}v)>oA;{%9FA|7veTL5IEfSM>Y@Cv8S`KS${ z&a^Q?FOGLsh-`qEmEDKA3ha_a*dt4x?6K(?a$$i83PMx7lS)|nXP10oykA}0ntUI`^PgREYNqS}7N2g$ zB6AP{;aD;oaj+!d_PM4x9&CP3hLpe*=wmh14dCv56A8C7WbMgc0%C=^;h+?6-%`F6 zWrD%XN_7i;p?&s4St3Vunf<(Cfc*)U0Re{rBFwRe2WDD$UXo5|Y1A%`*ty6? zQ0;~e;>UXDDzN+oO@}8SWiq0_RX>`QDrTBG-1F7ohk}|@zVJSsPW2&OKk+4Onbv*N zVB?83`+&PCwC-v`HZv#42QGRL!LF{AX1^KPqz{sP_+{VkH(iTPV%s)b?c%nlQ zr0&z4Jlq|3SxW<1v{wmF4kiL@1^=+@;Qr4nxvLr-^g1nDz|#U2(g>>Qr+wy`uTkGU zy-Y~mxZ(waE93~wu;c|jppG8`iJP1aP)fo*fLU@$Li1I>0&Z5ZMANsYbt!woxQ?=u z;IM>kXow|Lq zoSb7S9Z^*8QBpzP6Ff`G%YEvj$4DjO`-nkV>=?+M9(a=sT%Dn9-DDaDcfb{5ZLR8k z3|g-;^<>T#`xx`7+V z$@{KP>v@&&U@dX}zkU3h6c~#H9S3`ud3Ox_Tel9Asdg8BCzUGUz(P}p(?qDB+Q0ZO z>U-Y(;AqhP_VL+Ua16m*mn?y^*@6IleCOt%1cmqbA3)8$=gvw+Wo@@n+0CynM%_)1 z4cbXlUKdSMZCMc^MFEbyVjDXVQBB6mR@2~vKbvF1>DpR;Xr)ziiZ)fTts{(@rp#r| zj#}bpe~va#RC&egS`{DY@ItK>EH&0TueNY{Sy`G|vSIWE;p>mx{uw~2Nft8kV~@>NhFsC1I8BraWE4}rLbWwWG6g0v46gEtO*JgBZK zTX1jFx;Vvv_LX-5v{K7{Ge(tknXSwS%R~>H7^y^r{NV(f&JcY$AO`FelFo#F>NWe8 zlZ{NoiG46M;dDiI>#K0me+SI-Gi26H*!~;5!C^$j{F1v`gH(}h&45^UbAi|5bdnzT z%+EbKA-E>VH9aIlRtk>nMCE%ZbCb$~J~6nI+!6{YTkMFa(EiJnsiP9vydDB=TUJY#{#JtQRGb+hzSV7ZbiSt@zn<_r-h zoMoG3dbe`u{Ma|u+<8Y)7&c?tW&C?+M7ZTk8^c=8{_Ob5&9o5OohBBQ>HG2N;c>v{g%DEG|TeD;;4%y2|{6t+(PLI{? zvO2)OAFpCr5DQfLarSKwl=zQH12Lv<2lWFBE#RRLIlaar&97w8M2~zm7P@z(wv-_tD>5S2h{;gk_~JEro`wc zbnqrxS++0Sg9g*`5ir9A)PKA91DQRPoYmWSs$_`PKz z7nC)uRpsmuN_EluYcl<8ELiq@Z4px_(1TvGqq+C|9=*+n#MtWBHw``c9oomW<=CAS z@V?XNZaYXg1fZx$P@z7}{p2n&ii#)F^MmVeR;JSDGGvl{35dr>COY?hLu~>dH4E>Y zgp2%>=F__f%?nD&4Gc$mjW8wCzR3#+nyhGK@dof*p<~8l#M1x@3iQop--s> zxv>SFB`JfWQ_i*xQij+TbM(gnSfSqssy%8r5~tkPV4PY96cEe_PvGAdA)qLC2*9iD zBuwq8>Dvt)0s@VC*DVLd<$VgQ-nqht&VV0x(tD+@nxI^6-D3RF z^qGXw=72hL?h;k((de!JV>7O|A+9n^0JF+$z)FSJqXe*b1Ab7Hf9>5KY#uU#%M=pK zpCGB;5EUVf`G9ZzDUv5{A0^dBmm09r{ham`j*Z%um6W>Z4gsM5?&YNp(qTmfIHcIr z|F4Yxe>L%0ng1p3S7Y}&le-ZauM9Z_?cX(Q>dACIRq!ouy2pO`p;|VZ$`n-Tb&rYc zLmx?n7ulx%s{G73J(V{{YJwq;kJuk>yt$71Jlk@ft}Zgi;_3;gQO+H)9=vxmT7RI!4(T_DE%U|{XuVFUhfC-6IMKZ$2+<8cT@ zDt?Pw1HMV-@v6ng11mwqr9<+zhO68Ox?Z?W0#iWZR5X!r(WRs(q8QyUR2>!o*rc2Q zn{+YeO575OfKj&9eqFK0g$?>+$?bjKkJq?ME%vwnC8_L_-+bSRXWxVgN0fs}|I={| z9z7`EjjX_sHmUG@m^YZeDNipSwkqR$G`UgO%`R_ovW5>(X{y*TIMHSlVCYWad;108;Z=u($61>`$h~x$uPX$1EnAW z{ay?~2Y^i)^20p#WMl~)&7>mNNElrZXC7uj@j}F6{}evKURfDkWk(;4)Ozn#&>EJ) zZs@&TIstAG>Fk0>ik*(l$z*|K0k=~$^|%o!0K;iV*k8LGhO`4J+88>&63qGsh+4#M zkNC2XbeON+_#Iee5d{;KPdK@zYdi2PnKe-j-GE=mty+p7BP?(o!K+XVw7qS3H%=zX zwFy=wlTrilf`^%X4k{&UzFS^o9nx|S)DOVGy&G;QdVl0Dc~Wzf%x)KJM`~QGA;y_! zkj<1}sLjDrLI&SF*NUPV-12q?*?X-z>%6-!=q0`)@M09~eWKMiQ;l{Y+2vcpNk^NU zn_irp(c^gqFa?o{{!2%uB3eAOQiv7jO1MTtG#QMxNB1|boMJ(TqWwJdz!9N0gR3cf zN-)PS*o6=+gmAu+6!i2Pixdi6GHA9p$xbzyBnHOis~%ftxp4E}VeLbtd7wh$YKoik zceMTWw#@}1TxAr4N*qRi)qR_uyIXzPh*&=LwT=%m5A32Lhyt$JB+x5uRo?Y_QU0H| z3P?WWmnw)`7?R|Td#SasJzI&Z&^p*#`erxJyy!gQLLH2UAUP}tzZH+)e5*g@Z-B`A z4fUn^2;q{=T!p2B^XXy6K#~lBQ!UA-#NtS|#OB3;)s?CDyA-&H`pBD;b@C&+9p`HC z)W!U-=_rZx#UYK*Jmj|36nENjgr|G(%1)@F#%o&XHO$9el&Ghg@diQeyC7pY3N1=| zKlYDbP>9)3aZm;&JEFfcn&xR*Y2VOcZSLu>1nG*`sl~WL;;2C3FN)o*1`}?aec3$w za=@8h0>gbfy+g5+`W~Emh5oQN^V7R$_UpuYJC%C&TTfSB6bM$|Bx4xA=8G3EZ`3d= z{|8Oj-j`nkpY-BW2-zo>vmc$(-IqAY_=}eQ^VfhVBiOsdsLA0sY4OiO(}FgIuaBPr zpEja>^VTCCuN0KfmfR0dJ6B69z)3%G(ia zHlgS}X~!wla@~God=Qj1NJJ`XhE%$AHrga?l%LoO5ky`r6S0PVIASR3Y;YY<*Qvk& z=7^l!;$!3G{6v+;(S}1G;1Grj##nwI5R^W|s^2I$yQho|Q^O_H&_=r}N3cnyOmj=~ zIxC-Yc54xu{aq^W+T~%pQvgdD*@Nm_K{+8_d0&P3jhjeFC!HK~9~b_6X6rGr`9U=X z`~cH+jT}dPZXORO=J9*QTV7Br5AVhl1)VGHO9Lja{b1~81X1f@Ezulh5-5MN{%SA@ zF(^S5-bN~~hQ@^?hL{)shJeS;@8-+)Rev5P z@os#ZkU?E7w*7i4_s`oS-REq|pWfyV93kk-ilHIn7vcNCNrJUBIVmrWO;?BK4K}3` z?$REkgT5@lm<6-l5)L{cy{;-7(WZbKnjKus2ahie+k_EyBmESOf684e#mE8hR z`AIpriO*E^?dva; z=kM6>7^?6H-t~Dk59cN8*ZMyjh<$F2$;-W#(sDn{3s+YpHhm{D@7FTZcSEJ7ez{^h z;0!Nt5j;aH8TJS@u|3SD^DeV9AF<`Xngx#x_1Ty}!_^-nqcJZD3Ju{9zqar@Hg9s` zzkp(bT6dkCuwG_0{$OlL%*eVlcd_}S*0|0^pS>1;ULwSh;1SEA&aq#UR~<*d!s2uu zu_jH5mg5Bdqiz_%EhiPP=FOEgrhReSaN#l5x2{TQp4V-CN?2x@3`kZd@mz+(g0`E7 z13+btDa`hBFRmKz*g2lCnfgp}D4Ft#0Jiczq7_Nz2Q2&@DA$uLO9^LsJ<$G<15lX> zSi{lbz}dmi4Q59$}yiKJi!JfF&j@b+%~flibKP$MqFsSf~P0-RJ&vLC9LRj`Djn3b-NPzu_e@#!*L)#3AETTF z?hBK#dAZ8`%(3+Kgo~U(u?YW7{5$sm1H#LtiUlpKaK7t5g<-X(jb8QIu_#U`zxo#B zsVMpaZMpS4$RjVW#9=L19grUC1V&rbJv0quk0Y74J=_BJ+h&@=Qet}temud~2s|!V z7Tac<7YYfzviH;Y`l)tI?yDC540q-V=_a#EjP*rw!4$u+{jJG%Ht;R`BGl?zt_8bB@V?8VOduu<6>ZDb`)^YB@m?$&i=%~aYOCB9`)LC&s&LA5 zL;2>$sf4qB@Q?rLcY=>T7q`_9z8Tf4#{qp*full|@N3OJ;n$Ij32P@n)`qgs|MPAr zVn>mn?s8;7I;%=!{gn6_WvSmlt#g-buA%Z#GEaedB46U`;k!T9d|thl=u#iwD49;H z+@|0y#-xY(*tF#X1yZmb*H;J}8vjiJvJj_&5oV!_lRgBLq|=+b9uAbSeXDLiC8N>X z!*7+o&M439&zvN(I!IGXDBUVX3CkSC^9H=4HZ+W{MXezqO96MI?QqMU=ct4U_($X9 zi9(bXP5!bg73W&pzw$@7rr&JT=%<7~B^)xxEe*XHjGTI~Fhl;T@$U_C^VFz3eIDac zFx5N~)<&Daum^dr=ND|$3Up6f_gVC&FlDKv<6UNHIVJfJ6y>zXjN_qGj(3egi+F=p zli&8kb)J9^|Bcv>4*WOh+jqdH$7bw?2M1>g$<5E;&FpK(MyYJ|PEy(_#g#Xqbl`@D}!~9Pn)BloCT0eKWG5iUwK0$Y-@A|5z#D)91 z77GPepyQC1QkB$EM#LYl&xYLt|H7ThYc6>T<1^GLAL~C}Z26A{9*zWHr>o7((RhNs zG%5La9x_hOf_9!GhF_&m1nK}=zdiA3tv6)mzBdnDG$$j_-nEC9jk|aU6bNB)U>0v# zN;)u-g#&BxMuBh}s;Yz3GwEgnif#fHZoW7gSNd90f%LbZ-j|~RqLzckS#9kb%)H-L ziy;pJ%a4JW#6N4td>xf3ut7QACAmb^M)4;gd=UP&JUjoWC(sapdU{I%VV>@q92eQm zmbkFVmn)mN274xWtZlhlkGgXpMS13_f+oJC+3fEd=X1#N>`YGpf^olMUeBKpOTss_)oQRS)8vN;Ho280uk2_kuvejWi0tgz=iEfmp7H zw646_m?bWF@spkPXq)pXDZIWmfiyw_w|Wi*sHe4KYO=#R`oHQa$lHHpkI=;2s*?D7 zQqCp;{yUK}8>S;ztOUHLC%hIAe^6l$rga8*fr!qsVRU%_1R!K;Iq6;|ehS4&D$)#C zD-Y!^2-Zy!v_5+UU0|nLgL|ou-IFU=%=h+4Fx0j_rEm-_)z(d|n!!Z&rc0aye{W(z z7rmD^Oo9olF>$0tP{aQY3ZV!24gK29Zk!rTN-i-k16$4T<^V!;*AeJftl`r|g~Z}x zh!`5!QlpokNoQtSd@Y4J$2BTaC33wDq~I3YDsQR0DaaWRDlu_Q5WpX8`Rk7^!coej z5!v83b3ZNJZw7ONs8#KS)wDwyFH|bam?Ov?8G@>@rDOD?kimxkBcJvW@&dgl;Q{g~ zkF7=~(b%e=+& z7yt}_Xs zX!V33546;mDI|1Cxc;&O; z$>RH{l=q(gcNof=f{_d^!4w@uXd-q!jlMLAp$Vv={=_pM`odUfh%k1SXMJqNmor%nrsqyyWmhtvkv zf2OkcKTzQ|pn@TVGcO(kwyE;Z@H|4x}6T6xtI!+9OQkaQHnImW!@6$dq- z@6&5i1{V6tFG3}4U5?aR|Jq;rZV!JUFSTwTXpNX=`yL31UVV@kdKc<*k*6BjH8ME; zX1Ub7A_BK%qjIj_TVULRI3^0vREldevq7v{JmJ(_z!8{cf2W}|uih(rdan$ipNBxp zS%IYZ-06EX$$Gb+ua329!39sC7iiK@E1;j<@BKY0d&@G8)oVePfDF&bVC2m&uzJ#T z`WiM}1fdbC6Pk$y;h`)!1uwpjZr^JvY}0#hzY)oZl+?c9SYM=5d9)*4O~bMd?6CwH z7l;8{gFpO%rLLvj7#nY?7!1m!I3&!$3Br2-y0gjL?b{cZ46fTK$jHUQnQEaE9=+`VCm6n2An`r5RlJEv3gn90HSrzTGt>q6v$kV8>H0A=LWg=QTAp62J^Xjz2!Y|?y&_=Z{5zPPXB~`Z*R`g>gK_?R{PR>0;mtNjLdX8jE^R&N@q`cl zwJMQc$Tah0s^0aMHsXfw?`&+9E%~M!l*(_nJRBi1j8;Fe@HyblQJ#7ON#db`#yXh>qNpW z!>K_u8?_|?#A78$e6JZJ#HwA-xd>^nwOWWk8nS5 zY`-yjpLT+qQi!ze%qHOA@+AyA+e=7cQk*uNu$UR0l(G#yuBJhEo8tSpit%S{IEU7m zqWuxW++s;~`j@N}d$q|S9^yJ24e~bUX2$D%bS^G#(2ZuEKXAWue1IKocO+c|7H|w( zN?v_QTzBzM4Le$6xqv%z9(z`s1`Y zU~`4DwN#(H%|lW(YD$NZ=2H*uq-p_R4SsZu`%2n%g3(p zfr`*Ec5baG>@;HQeNTzfDd9%Q73!PJSFgIhiSIBEv{(Le(@;oR(I3K144e7GcY0ER zN1zCo5qslFy2&{77QYhgtuvYR2Sd30cZzM>slc?yzX!FVo93)Yca?GA${}r+H`?s? z+v#$uI5YM&Iew=bA;?E(@oq$a8isW*Vi{zl&XV-#wBP>aw6qdyrl-~}vToes9c;9U zY=PG&5x6NjYT0cnnoAl2W}d$y3S5Y=nVWH;mNk;E|l$AtUxP{M8S z!Am4vREKVy%F)ZoI+aQF+z=c=ZB~5EOdB1p#EcQ?LUm>{|Am?HDV@wYSomf5sp-o`!FD7bvhkvCB4IVi;qZ%P$? z_?4=0mhcJ7e1S)c>M-Wa?a$9NTVL%_O$rCwTk2-Qn%H2H_7f7&5{+CSs6~`*72cU z&Ssmko<9G=`n{+>0oCKjM>)4QYWt}C&y8;5wzm&7&g9%zVz(s=@)RwZsSZURsS+7= zjpPtBMD97F1+^jdmCx`()nEtN4&r*$pJ!qoQ9u!qOGitYtcR+5wBLr)f1gWNT{y_| z(I8$hH9|g=H)l?bS>?02US&;Jt65o%^ZhA$R_9s+mr>JM)%GSs%9}T9*GeIOVP4bv z0IzDr}#9BG8GmcK|As_X>=I}ds!4PXQZhbsb1ipQUn73CDcVjTecSEwe#B>NG>pQi zU{fxBU8j7|585EjJqw+Tbvb8Y07mZ31Avixr8WK!BR4@E1AE#Hv#(4HDRM`%9>>8Pa2a4DOVwCWXFAmy!f{K%` zg$S0*6o8#C^_*|z740PfoqLwbX}R$?WNNagv-nTQ^p?McR$HE|3eOw5b2>&~_m{Od zB`bY5de5AVsIAw?PouatBJaA8FD=%ElTD$yTrQ%AuD3SY0{*te&B7LW^l;3cpJf3* zvai%KzVPBn1d!z5Zqja$(Yy8TY9fC!Kb!3+v>ztBlp`ig;|KbK_TVl-BL3hBckCyM zPTh!c>Va%s#4nA483JaAE#@By+M)pvpP2GbK2c!&o@j!OtQB3F_v4STW?$Kg+aPs! ze%~tXzi)~w?p~vGWHM}K5QtTx_~T3T1Ot31^Jsru!}x!W|3SeZm@7@T{yuv!L#qzeA-~;C zHV0>laC#5q{%!7TNnf{4Y7IPmaik4IrpALPV*r1kI>M7yL$AUeX=;zL$sk6AAd%N{ zFbJaB9ZPUvvAFIcd}OOR%&j|cMR-<-_*)Es`D86lN5{C%Sd&f^L}O~xWjp$F>3Oz~ zUs#RynshoNLh3~oz4j={W6ZiR^ikDUA<%wys=FEpGaeNw@XIpdC@y^vPM4&mPBf`^=p*3Y22L`qWZwL z?`ppkTQMV!-+!X8{28@rZF1bE8XYpYn_G}1u8=gRfp2LDeb!huNo1FQguruY)s;eH`9ZbRD&`v3#MO~NotYi;qvx(K< zE+%5*+_Z*1Y2^-i($9D&MRHl(G1V9;u}`EG!(<$R6krw*b9FVQ+(@&C$ID)reOOV~ z=d_9cwxW2#C#_N+0ajE###KLE)xWu5fDqeA$+{?cl zQfjZ{tcu$KHlM82K1mX8I$k{g7R&<&6gf@qJx3^=q)t+NJ>Xs#pDF7ua{`zAro=93 zNyFa>l?PxZFe|P;)7AXAlpmAh6c?e#UsMTKy#fy9bL;-XTn^hMtcZ?(xfT8k{*@T; z`<@O_Og2cEDo=SFg8YMuB9KO){MdXF)Sy&V3rT_zjHK9A(oR-WM_goV|D06|Nn%K3 zHK!gp4HI6;=y4-a1Sb&wo}PI8pb)MvfHW3%+$hzH&K+Isp72u8xnxBgDJm8EMK*W~ zF#7aHsK1D<0orw%vNr%t55IS5x)?(|^#Zb-DInBD93!;W55#Vo3mvyELq0I?gukm6 z%>*^`6p#!UeOj@qk@Z+nJAG?+q;l~#QxsvxCacPQyZ@TZnS5cUATysh(;;-GU=W2I zz-M%5S4Z+tgx%Kx7phb-R%_snFvemi(z1xwU3=U|KR$&q&ueC#Kva)q_$mpn4>{)ju(^11T*GqFfoJv7FOx!@OJNcAI$>(+$>34Tu~qvId# z7sY~kNkAHnz-+&gF@5zUoD_^v8Wc&&v~+nOe0&`<9lNeuVSx#^_7ADd4~kvyMPsDaJ5Xb?=?B)qy9F1<~}87HXun%g?( zQ48+P)XvS)=YeY~td)aBhml)ov~rc5yj@!3SGPP0u9(@I14onm$M4QN#{+4XBeHW5 z!z#Q}N?qO9G}(E5&D(6PJeG8`K=Y{C5F>ih!ZEt8j#Bu{7>|6~1J@6k!6hWJP{g3Q zWL;C31rm>jn+Kjj9R0$G>LYGBG*M*ep20$b*i{{Bhc&xRLUXph748`xC;NN)x$?+) z9-Y(3ZO9ZPUL3)Cm3+}ch@qX~N|466OPnHjM75E*fCY@;Li46l3Rl*+h@fl5)PB#>zKOr5S0SkRDVT3$-K8}n%{ z@dSNUB@>oKQ?3K|a5OC6rfiw3Pze2?>QfzmPaX_T5i~q^7ZQb$yt8NP5rbiM2aH1? zuvJzvyU~!WX`$9LzhJ8W=;{{2p`5{~w6fP+-!rHi!S8{yG<{5-HpvI@k<)b&Ez0lF zozj-=Sx5Nt3MH(B(Jrk-H#QW&;3@tID6J?iKhJ=~0&X0?X%Ny6%dV#~x6q6}-; zbW>C7j}^7%*oGfEu<7j0)C|s|JTLcC*6KSIJLPgrS5EAR#||A%{#xEN zxgnbp{b$nhXunfwrFyl%N(p>YsH_2woti;U0nRBlth*TPZ*oh%q+d+GI$un=>i#Ok zPaEr`4SlumDxVsMD9bX-FEyx!dt47UAg-ZTtL9=E`c3Z43t)*+McKlcdUzbmA zV~m#HUy-F{*o9~&T_R13?S3>ikGH5&7vE<@F_4J8ih7@PKq%af; z$R|^<#M|8P=opSpXnTai#DbYj?!v-$%sz$0vK|}*#EUm?5HW#G)TsHlPD2?XBe;4O zVlT*QyZ&3r*l7yF37^0;g%XQF*#_uweOcd=`|PicIXQdSgdWYEQW~ne&M(f~(gzpR zpE1j;QvI#lA2_oV9wNCEjv%ZtJLbWx^#Uy9Kl?bHCg2>=ABW(4S&ca5i0R_~PH~5l zu{xMiw)MpMXasLIeqYvwFTQ-cSKP$rm%s^NsihCaypvbYXUV@Z5ER z3Y5rEeM^(DmJSp+%5!S7x(7X}5Pt!lSX#{$#HgIUeRY36T@lL%Palh zK@+VQWxy#lG$_I1slp50ND(Qr6Y0s3zM42iSrj@;YRi*Oh88Ze%@JkoGxatZ!BB9n zN$>8|Y#K|Q>sT-VS%)9h=-T^%eeV3i99+=?9obt>I;!Q%VH8m`m7aD$FIJ;up|-SQ z;CwIaslLuBXWlp1YG%}CHG!bd^!6F_1VC}t28zbGA8~;0IV)u5=O0JDDELTign5l&S5oB3CvN!2PB;m} zsY**VlvK^7biyctogfPbODsYMQ-VoK#O5ImX-&aYN zI8!rq7xkr|G3nv?`PL_rznwX6#fBss+A1@Nzy;y&Rbi%u5(VXCAoZK z?*bo^=JaBJWX1dA?;r1X50xirO5oK9yPq*|rqw8=`YD75LrtEvUxwViLJjuHcVqQZ z`rCAbikT9z0Iqn+jemhVmKMV0LyNRo@qTcV(T#8n;{J3-AK=atEX3VBkxRZXlwH8F z0+2AY#VI}7&AcLBK&vO{pfAh^xKsAVUFa6PClL0jM{M`+D}ESo#Umhy(E0~)gnQEm zY<^LA)OO|z10+fR1@8Pwk^;aT-@rfM4(p);>18kg+%fq8cdBy=ay|6koeg3&?Na`{ zg^oY3G~0JT7#&1lQnobBN;qpUqy{+LR}uATlah=Fd4dU_w*uZmAHRtO1x*2xr12oi zKRPDIMNWexetPA}F-%^9JR*O*g?1&}5RxkILsmu*UC;{j_n!gYLLX;>3^?ABED4fi ze3%|LfQ~tVvW$F~v^JQ6X(5a{vjE_Z? zbDOmDxwXCBoP)o-;;G#6>h1_0Q*FGj2_K7Z<8|k@^@J|@K}TQ%z#R|(xI=*G@nSVG zflnVCKgXHz>H|a~_dq0Z>8_d^rcnz%gUSQrxl^2M!c*@8K9qK&=!A|MnTJHKByiHOGURoD_0!{+cDkR+uWl97FuPoUS~^@7Gh#_pcYm$|hFHn=Ig zBodrd1%NvspX>Z*)Ik0hxU-5KQJ9UYI2A2j`{)Q7=-m&z%OkSULQ81I3p5V}^lU`1 zkakS2j`k&D5kwfogq@-p59m%WU8|%4S8Il6=96Z)m0|E?Z5endXny3$@EFKm)DtwVxr+LmZn1WX~zcyRrK+zEFo61B+V8)P9~!Zf0$BrK0`cu)S9bC zkgP=CnR-6NSc@FUdg#g=e)_?GfjiQQ?+5;7?SLdHOAr}M=0}ort4Qbr+`;|;cWT_s zTTnm19UHr30JszJ0q!)(C-O;&ObVdbZK52YAD)7yfl$^uze=Rhc7pIAHR^&d{$!I# z#M7x!hogcdSHyEc9j><-ms~qgMU0BnMauvYyu++(kc1t%v?@4H?@bd&N6P_+n1W>^ z^dz~~!rw>#L{oyj*9g1JT|FDIjkd3+?es2$Ei5|RLUW2Lg;gSO-XXYkuF>M|pJ2pP zlT~2wcaRie93sgOA@&RT82Lw#bbXlkBS`8a-$pb{UzNTdAG>8gZ-=KY>U&8F2$HIY zDP=j+Z)+&-wc!W@f}~$gsN}zwwNL|sq_0Y}V|O1x(r(DFZUyFHb}vJ-H{>Fx7;I#b z@y^)DMx#P?bM=WjOr0ZLrJ!xmJEa)73~a?%Z5a{DiCKA&h?HH(&h-f5qxf(<8Q5nfb=t zy%!D>wuNHT@lpE0Prnlbrm61VBMoSm6{X(=r*GCLPk%&;IMgUmc!xed(LC+~`M{6Y z77gU16k{X}f2+7UsT8Z_y8kV#>Fty zw;`Bm7IwTbF-AujEKq?}|1df+>0l#AmVvI!LP)(|g44Q-RsK$mo>6|JMwy2iM&+?i z?P@+!qZMx%83drevNZjEYd5+DQ6{}*(4kXsih%S}PWYoL1J#n zMZWg;ZXG}$D$v>qFuTMAK&L;my6m07Yol`Vw@Sg~#HsKbaby&kcPT2BA=;QF>&E?p zBeLBpkVs2@5O+M0<9P|ym*w)XzvDylP*!p(qTv4A{+Uv^?>&rz}eWe$-e#wb+ zf?EDLN4myZBt8!K!8NA)T)_jE&qq9Dbr~CvBy)K?vTJ)Z58}g0-!wo>!K;b%id{z-<6Z^ns&>}h zADFGqT*lO+0W3I*O&@bXxJas z4mn_SbwhDC7IP5z3svYs2ap4lDmTH9f?a^>QC?*>g_--28b!ORs{53Z_5cNgZIw%6 z@)gNv0FJM#q_Dtn+eoO3lbaxUin=2_(y4mv#FeLkQ;&XpbD+Npf7BM|-q_>pcVsg~ z3%HF$W4}B(dH8LSd@1}Asdc}S?kO8Bx9;7EdxHIV-&W;MT@Sl;(mo#7&M9354Kg5W z9Xsw++o`p$7ZVF7o(d5yQ)55Cs@o(-1`E8hqE9E!H(;oH)gxZv)LMhr>95hMR;rA4O z-0ket{HPR0G(7w(OVbysZta82(3*P-dMN6H!QvTB-6iI5Pzs@*`kDBCKQM+;XbNru zAl$n8%sw%~W@iEla9^dwK*BXNxER-MxdfM z^rRL=DbTeX22Ok z>wjRnRK>9rsVFr3*48I)s?$y6;e8is#4z^S%)y^3muq6mwcnu5_qd0c@Zi#hPn+5) zbea#CbH#I-v61D)41|HG_FAoERKj9;8PZ9^-z;8BqL#T2W#F;>$(FFICU4wpVQ$F1 z-rV~*Ps~`z#)?zE1c3yDt?O)1;IW$RQl~B?yvp??Oo~nNGdvpFU|y+6>ZD->FKu+b!vgk=^&>5g#Gxzm=|s&i&DB_Y?ii}h7@uG}j-zaMhx zqxF`8$UUfIGQDB;Z>P&BM0)jk$tDFzaZM&co`{#^+R6TifCoAv*rLQ3@!Z0WA);&- z+^}CxtNAA1PK|^hp0c5kQs+5yRT@{(8`lk;)52vjhlcS^T~_HSg$N)x6 z7}}}p)*45w@}&RQF%)|@7kT#n^0M6XLTa}zr5aQb)S4YOY_chpP%DR2x1-sO;diY^ z3c_5Qr~q*ZZMa@-gv=c-8%RNo($WuwrH(gH#iJc(;qVG$j`mBGm6Sd#3fVA`36Ea7 zau+-3w-HhbQuvb2ziV}{LoZBd5=7NoKS{-e_1L4P$<`to+@fJywKFS4$S#3lAk7_xgmWbpy>Av`$W(md4{ zgJr>uWzwbf#ouRV-Tl{FE%Y1mM3p30yZg-?p0O9@2YP?>QBA8)rXGs1MB(_Hof44m z1z+rE+5${}s0bZ;wRm_)cHNZv&^Efz{*OMo3(!Z=p8ktITJ%RBy~PEZ`b!_J0vtpC zqmR=3rH?NBr#{+!k}UKe`sm94=%X{S|JFyn|BF7_81}b5S}KfKV+5N^>5O*UFIUm) zY7YhX(qgaM)mu$SG zc80&@XVrkAR9qyv{J(CY3Ia7=peVpCG{jfRJS$U4HG@(C8VELQDSOTZblTC}I92u^ zw@}r`EtCPcg>b%Wj{t6=jE%oDRMAKxt)a!_dpsJR**M_l~Z&_hbw8K1kBP0;E*iaIZ<}d4UaAqq~7StFHK{r3d(V3t{rnJ(1 zqegqlK<-IG9`+Mykm0*u5O0SgnBg02Q;-^cDC=P}zRuWDaWBh9tuDd+Or5HRspVHM z8kRQFzSr}Ry=xoR;O*RK+0hYJm^34QT2c8qd0%`(Wb&UAQs#$4uraYr$TKle)h+B--dpq zLUFExesKd|bpleMg?7L_p*XR3P@WKnLgN$;%5q(DZ7eE3W3{F7FsZO|ANVc3*}cDa zK1K~3IfXCKf00BZJE0-#PYVbvG8;(NJs4~0#T<(p$BMD6+YvE|jIZ!mgzJLo6h!+7 zh4!rSH-Pp4LZM6TaCva;F0D`ZE+qyH*|>vJ!7(&EsG4r}4M^h7wBK_jmN1NaG(>NH zq55&d{)pphjw>Kr@)JJZXC=)|TYdWmZ32Eca?r}lwiUlq(f2F-0ba+L_s#Po71~$7 ztimG*{;oY5b|?|@VmH=WWxMTL6g}}C5pBREtOvT|rZ8RsuQWO^tuc#l?r*gbMvtFT z#pIU9159w>R4!Kgavv(Jw*L3Y>P?JG-gPmVIUzpAvV3&ZYS zE*|U(92%;G8~>!oDlfVAaWZM~ic@n3gkhSO)Tl+5ZarxT_y6cYdHf2gLhTPog)+`) zvJJ)W6FzFy0GHl^ouE%aH-Y)`{`PZUG*p$lE!POJ1Zs6b2}o4q1wnI?QC)gwpzDiQ ztLFeI6$X~WEXQXB(4%+%UwSme!%r*Mh`;~}O~o5knYOg2E8+V4TveyFl_y*$Tix4j z6VzcTWRk&pG}51&iDQ~g(1EV-pgNt)Ch}0QNpZPv$S2cSK&jNr!=HPNW(^T;oEdI} z{e5EN(Nk`DSPt<5H3)KF12OF*6gsVX%MUzhrWPG%fGq^)^Oe9zznddJhz$76<(T3L z^cLy?CNJ^JP75iL`6~k zPKSzA!uwl`$cqY5thgwDbd+XA46WcXhIap!14zOe6-nNz)p?$vDoDC=bA8GS4PAPc2*0aeW zwTaa-Y6+T~2hK&ge0Z&=$2|#RKo+E9yQN{GPfMJ}5Ad5;K^P0p5 zEyj#2@XgI{k((R*6QhaBqnI5@_Eu^xy_J^+XxjD zwy#cpqMFF4I9gjzDLKsBit$M{sSYoq3TV92nAwPIt%T7GsGcgP`z$Il&1Jv7yQ4lF z?Te|_FXkWDdy3z6QTDWfW}%dabu|w7hmG;1xVueR$94(x(0UtZ-`$ZpgHxS3e9@x! z>AR7gg<4VWH0@2k2Sl|gE*#=V0r;qb7`$<}=5wc+p^%H9ZPv9`V%^AySub*mTsG!u zH=#o|@L%}oIRGD3QQ^u1txV#R(}k`alS^gmB$y;zQt&!}y8YDeKl|vNvMFZgs7>># zn1d*(KDCjn^?1SI^m4&>%3GO7wl$Z|&Ao%(SeZtW_{)!$a{rihRdHcGzpS zUm8}i4LYUej|_pT%+8UYxKECt@+yqGg6E%7m|b2a-+kJj0Ps; zc{}>#sSZ#2S*Wj-KT(DaXO;x+#spQ8#% zoJuR(v9rKS_c{<+WowUIh<{SH@Vg9^tb>8!PK zF{e2*apUZh1zr&|=lCyyboY-yI#!v5<~i`UK-!WKJ(?=|Z-KPm-?oH&;xB=899A7R z1D*lnJH3}c%?5T0#l6Y!eu;n$RleDwib*?SaCbqBi%l**HF{`viI`s^W4}q!fF}RU zoZ*aijOV?+LCDj!GYgCH3K*F3`6keJCggWf*Fpa;mp>Ke(6uEe-#FOKj7<2Ya)jf{ z7E1sEDcLN!7W`Q2SdO zytEe$m|q+%(+(JMAQRR@#o+kl_I6!2W}hEof4(4yN^gQ(TDis#WbNF_7y6EdnkEMn zeFYVB{(GHK59kL$nxt8>=A2FQdKyBkh4*J=Ys~NNp-Tg9Lw)Oa#FIVk`i%!)&B)rTw?Z#XB zaBr7xaA`z2d-Tsp3CQA<{KbD0NZJ4OtmL%*z0Ox*@fDG-n1+#ug~NC+A`1j6ke2FV zT?U307=>4e?&Yopl8E|A($$nZd4Ffd%&^$}FmtQ8gZcNfAk4Il>E|r2fcFKm?(NCY zzZ!NWhnCcWj+5dE<$pEo*kxEP-uBMkUk`qHtV{1fRNg1L5}Yc?@yZQwgpz;oB-cYu zw_K7Sw6FP)1Q?nr1(})zgAn4oVERq{Tr-no0aZNZ-^!$JU`j9vMOls6!-k-0LjVoC zlFwIx!Y^!4U$3wpFv4HJkR&Bh?D9&#g&H#rF5>1cmH7Kta7x|+08-?bCp?rVjEGk} zlsk-wXS_LFx9cq)cccsfIBntcGHT~N(8IE;6FdPB`_kf=!&Z51kdGCI51u5DR1L#e$s$MoQct9_HuCp=XC18zOkegdydn9eINR9=B2SBvArlO1^5QlpOSw6C%$^&oIXxGIW za8+t5i|UCT1*D&Dj?(gf*%v)XOYH0{BZx2}OzpsC+*o}HN{ve^Xy2!-t%f|kBUbSJ znjTUWibT!d#n1I9TxrQ*4>nQ&Ot4i-=by9vvEnfK_liSEAPtyy1%7!Q50JSj6$T}D zg0;Hps2FvA{W78AI=~;jDFOJSQ0j&4ZV9H^r>kij$Nbv6Y$+vuirG0mpOU^j4Fu_;mbMYI!xpfeg5_ zB={n0uflr2xNr{U3scul;(88ryP1|byBZ-^i;z}|vWtV2huy4Z&=S;Y#3j`Zrj@BC z)7diofH8-xS{H-ae#j{{}G37mf`f!F2Ja zVYTt?EQFVsllH|l06+Q$_rZ^%1E>G#*BOVkA*6+>0P1z0<3AZaPiYjCx>C=gQh(Iz zc5?yWA2iU80PpuG@~7Pyr(IcVMWp+hN#;~2ASf69bCtM^EJlNH1V zhf~q}kctbw`!s--q+~HLKS1)1%_rf`F#G4RBb-W{SJ}@2+V5C&=^Nim6-;+%9@M6u z_a=Q^qBImyKHUs+zYS?>g;5rgg}X>;atZ~4XU&RhhYJT}VcKK{Cns0}>UF2!Qj5y# zA?RMm@R@IYCTjZ-f|tPOW)4`C7SnK@5SD!GCic;h!0fn`7W{V{2j6A7_$`Y<)N?ic zw;pn@Y;Tjau72S08;}%!4#ZcAu6(V5Ck7poo|m@kyCirp#%`4b90Sgf*3^SBr%SAj zJQr`OSg&k&rRP>Hib}0gNOe488pq%Idua340LtC!-t&4ssS-VCNC?u*Bo}CyHQU=) zUA`rwLr7iC>e+yr_TjE3I?-(jR>T&k*KgbXSBY%mvuC_K=`dZkMXAq&@AbYYsM#O- zXc<5sy&8NEv;yd(BNyv-hcr0b?KQ>bU{~U_GZke^|DY?(_&d*%qagB z2O%N>X;JSQ=qLs=r{QqZr3^v7>xaSh@|NB|0txo?M;{e3`smNuEjFw|^&+S-1#=U7 zdkM04{n+qis-|oQj5LfvH_PvBn{vbeU%#L%X6Ar45!VYXi37nS&Dab5L{IEHDNE1S zyX}1-_9H5;Ne8p|nGC4U(QFxLAfU(AfJs9&gD>Em*8Gt4FgsDdZ~VYVoh;uj%9z38 zB+#DL>2u!tLr=b@Kp15fX&YeSd}%W&bj>{IZp<~&Ff-50?MC`?ehqapK(`i)HmQgv zoY-S7@7N_|sUe5SAsr~OuNjL@`*W>BzqE7?+$)`(@{t!bJp19;VQAcoR6DLXzzx4W z;th&nNB56CO5Z8CbER(5tOSUK(v@baNW3$Q+B_m6t&&O~#x|KZ3zL}+0{$OD{84gP zo++8ng*q6-gtX0><}wOUNem&6`P{_Z8IXN~6j&y|bpZNv4P@sz`q3Inu9Rm#eiT1lhu5Ld+18)Azm}P?Tj&zwy2`RyJ2LU1k^m+|2TZL_ z_n=}4I8gQ+a($r(9L3zN=<-77e`5tivu6>Td`0$=f!C|5F*Wf!R`=I_e{xpdr|N-< z^zn_W-*g5nk6P+;jTGJ34|-{>C=_PzQJ+HmNG?QAl(wRw@vW?4vmS2Io#?k7BF^`i z-0>8mn5J&PA&3s^BE_e(nnO6)U;qD7Y4 z%4c%a+LPtHyburVKAxqw>u+yKYX_E3?uE!IPp*0)JTa9PfE_80;C8#3Zt051TjVPf z>q$EiU8XpFJ@s&_3*0{zH!ylJEWy ztLK#{#K`^n2+;|LTxg1U6{OJ5_YkB;1V1~j6ogk!;rSqmq}V)f+yRt@tCB~9qw?W-!SJoosj znL&mb%P0Ggz1g>L|GSY)KG>T$hOdh235_;o6P%eBm9O7e5Un;T7C z1W&7X)42TsXE%g0NxvDUn1L}!gOcF!*}O9Q1@@t2F4BVFubu3ac8@2;XgO-WNDiAr zBn@Y1MAzv9yw6o7Kbs3GN3O^P2r?QROYa%gL8N=f-uUj9Ub{A!cc&biOq0-4k&VLY zsPndeSEz9rkr)t;jsHHbV_Q(hwA7ThCinnI87h7b41bnb9le;AqY1pbP3PG~fy5v@ zI9PGyeeJtyJyeik*Sh1`^mPk}>c2a-LEKzGjvC~bLbk#A%!zUk6>HS09{xlNIss93 z$yjd!9uD#2?URl8wRu5{04_@pOG|zQ>La$iGYGOc8lG-kpL3x9446(_%u8=ShntXw zkh=U7mvxSBlZ!$yNo@8e1Jb%feY|Q;nj8D zo$Y_7EHi*~`noRXE`o!$2e`Mn3IU#(-k(4T)p7h@{r>Tp37X4B@xLZU|6E7^nHc?* z8)U+p!Idtx>FT&FH3vxqr6ViE^pEqRzhafaygt)u4B?1r5W{E+s|`nO;=Fo4ap>gr z@+g~rDh;ffjnH!Tdw81vNj%Al>hEGSA5?6W#9N{gO+T4Vb}#K{nWU!UCYC&C*>RAx z6U2fYGeA}8xkmN9GNh-zVQNxmm27dHwu(0yyWt{d|OYqG=1KA+#?39wXY%lpve40w%*lUi;6FrEV9aMJQcCbxZ!?4oxd zqilwCRxnMCXuq(h^f)B#de$WI<}6>}|LPZgzmhr_)RU^)Yl(8oH}-R6kniY|Xi*ZI z&j$MUI1S)PB7TtY%UmAd_h6wbxka-P%Z+a?+g5PxL9of8bspsr#IZ=xQKs0#6uyl7N1yelr?jgN%aAd%#5{G;Yu;T-s)*tb0ozZgU;H!VU6G$PGE^m{3CU>Y|p` zCNnDPL3Cpg?a8ridpk%XW{85zE~4C^cm6BY;u)4*cF1kE?*a65>+I*Q>g z2ogacFfy`;WyJ+fQD&_DQ*^~WQ6c{d4awV)xGkiZCoGgFoQPK}lslY=XRJ9|HyC|h zcQhU1FO3CcGc1a7cyu!fugtz+y>%%b?MGg#(1yDc=;Am1uaI0I1-4MYX1=T-QQ+|w zPe~qP5jm$LWY&7af?LC)OFD~><3}9**FQMv)2bu1%nnOdU97JOHq{1(M!6u=(}=5# zA`U?L#f?rqujqNe2*p6ZUZ9h`XMkMy_T1AN?*atU7LiQN^d0OEfz%rF5&g(Og6t9? zkcw=G0|e4kCw*>ce@H=v7vjZ@zYHCa4?}0b^XRj~&^7~B+Er&eam>S%nafaFC5S_( z`4Gyl=l}y2C&;*r^b=oHz_=VO#E513q2aRD0BdtC~QSVIik%W04HC@fa- z$@$9}PBh@DlqfF}xN0`C>C+kLUnhROl7wn4rdix~eF7nyfWpZv{zZpQ;aZTzw)juu zOEJC>I_{A+&0{b=8M)JZyifk$)T;x+89p6a0Oy`zS<9GA0`2;X{|J&M-`+3f;}wZ- zG{I2gPlTc4Hwci#<1kFcIOov2EB|i9CYL|jeFn)k{G6T~to^yEfC;n?2YKBV>{c&R zE36<@vzMp$lVrGzA=prBQAj8*Is3d!19)6hjC6k$TYGYDj1a~dc%7YG0or1D6?uzi z%2BJ38hof3SEQ9c#inD|4446Q{r99s|8Td+o_nqJz(hC;HPJEhS{Vk~A$SHV%-cS;Y zbc}{1Fb>$H$jp4%&^^ja3e!G4P@SHg&rnw2ij8pU=-SA$;@$ScAT_)|fTKFS0kM^e z3rzV14lqa`JcVZ8=*#tiOCCI*$%LFK1zLUqPSu)W+y`w}L3cNmld;jfZD$>#W zYHDwO-M@!ff!S$t>s#lM2Y*pt6_9|C;8@E(z;;}gLlC14f`I8OSjn<{t}R&&{whB9 z;u@?>+nO4RjCk#`F8X}JdQlX}0(>r3?qDF%#ZX3P{Fvfl((-~=bgCBzc9u~WraY1Z zTsWpfJ;7D40vF3~cQnA1{VWj?bVP{F)fXsB48kpQnjHWc2Ntv^Sm4%$0W4R5kA54` z1eX;Z^zF5rxs2!cVo5MHLK=@uewW(1n0{J+5W?}V08ofV`K>@8cB0%9;3iUvf>#y( zpav`@tUyE9^zK4ZMJu=bjeU{MA4lK9M|cC218sl+YR)_?H6xu~!%<3cNxa`gr2z=N zL+2%OF=7=2vblx`#t?nz^8!#(KPzjC7|VGH1bjIIPitfNFeS{wR4mbZ?e`^8F;=uO zwo3y?#;y&aX2n^^#KKup=W>Zb@rvt8a~eJxU>z-V%tu`KH~>WoZ497D`M=jwwX*3A z`GQ?+X9wI^y=6meU0k~J7d37JADA)PUw-G?;}ou*G!WX4Wy1BY?5qd>6bRvbjmD9yBbf5Ow5##-t=o*AR673r+fYCy zrIHF(K}4z>Ffwrg2C}0>z_;)DIqo=}@#7?h-zo%XO zkMT`WheNZ6N20@1=g)RzRa9M@{a!0O$^;L}N_QYyI(w%Pji}1Dvf$jZw?#43lcBMz zX|!I0M(Pf&r->(ICMlpJ-YcH@ChMeAYi_R>y3-o&XzV-;ii1GdtvDwHQVS>+df zc9l76(R6{&<_eW4nIw)bE``nVmv1K7xmH5}v$DmNTiAoo7 zE}41x?Xk4*_BN=BX;8UwGhq?PH>tIZWRS_KOw>o&uB9Zz{k^Ph?@gJn^bn2`vZ&O& z$e|rnG`Af~S?WnJ3Z>hfCE-X~NUIwYwXVk*cvq>VTlw}-tUL%7e`Mw_O8ED_%j?;# zVgEFbL~{eodKDvj?n+L$-yu1hQe?|?^X94VRY{*iS8ROp6-pSFH z)TwiEu>LmqQ#^J_UQ`0*NP0o5^wrS?4$s`$R=(@TGJ}><+{$hGI#)Jo14V;EoSvY4 zM;!)RDX!yeYNGBDJOGH?wr2c0N0A8!K0~vQCA#?f&X>kK3BGxPnI#ViLbi_iWGJio z!KLD^oUun5vXnu~p(+?ryR_G!6qyT;U?6kx_5ux=JGLRWtLny)vL=LRr@*lx-#UH- z$>iklc;VFZ2uHe%<@-~nOluqqz8vf$`Vsz#1+gtv84G1~UoI6Hhr8|lAbC$|${lg+ z^R=%B>6_nzN7u)k4e6Dm&75Gc5F4=TfCSiwn7WaYJc!-e`53SGbhkUBfSxRHzJ;3O zDz712iV;9S8QBFpb|+^fAz*Z!2n*63;4f$Uv)4>eObQgIjm0In!cwZZEb3LFxhaR# zbO$|r3fsY069P;txfXWN?I;LA@kul)Bxe4kHaK@pz)~pE#D#vbo~n-6l3y&*?dFNR z5tgtxbw7?$^GAo(D@u&;C16;>{XF7y1aWeHKy_g)c4Cx2v3WW3^-B18f;%gOn-!%n zrLfavd8&>xFMW?C1F>2496CJ|=m2u(+^Ax%Sm@J3=6GjI?doB<`2;`3WTcN%soWAa zM?~gh|5-YS%G)Re`<~0d7Q)PhDgDLbO3UBJUKp9M=1$&XZ&Bv`6s$hS2XbJ*+r-<65kaR<5AB4HRI+ zVesRX^aU{D0I1#teskVN?ybk$Bx6Cs29r}ZorNLE&2)%vwyf|i9|lzKa(WOa!x!M_ zhy7gutOHcW6Dq{rCJ|j9>g2M}Eu?>3FxwqYp&YPv?{EhLxSQs1|D;U~ zNZAEK2Rr{`#32@f9?65|)8?^|yQQ;qAS4)G=?s7&4KNRua{M<#S_NQ8qX7&ld_QRD z3Cl1bZK|F)YNz*+HZ@t&Irx({b^g&pzZOF|f!EI5S@m_Rpu@2Z>~@gVNAt^9Kot1| z`LXUN*u(L*4;noD8fV-4zYhW9EKfo{@QRD zn_%@{@&EURgMNj`qWWG(fyt+v=QQJA_U6CRV*&?a@xi!3q%J=c(u`{~6jt3-Z^)%P zA%4OAtG_lJ!~h!()R2Uq$`46mX0A$!5NpsddKLDm9@W?;J9ABRH0-0xe8s`l{J-3( z=ZcpHX2qM}kZl&OS_+E+a8JO7gXjVV&06%6Nix})s;DW?$1ADjt_U9q6MVN^>hXN3 zJN@>m*h`}_x|lOE))9GNHHteOf+~K*|6%W)zAJt7KHJ!;*tTt_;#6$gwr!(g+qP{d z6<2KANmZ|^-`;PZ(`UcqjM1Yn`(};x2dshc=)^PVWIWAJ~psEUuGC9dD~pHH(G|xjtFWctlJUxm(R z)W{fIx%Mek9p_*KFLpjwIvY1)fF}F`JQ*j4%}0hB3{iY*?rB95B^qZVT5TilK%71i zWODL7dTzhXxzvMsATjHJV_cz%v*5;csS51N29d5+vX+>nb6%o{R`N>Z ziTa@*&CfBB1N>m2+<)6XP8jx}g4j;%stJF9CPQ6%y00wu$3ZG)4&%xIXgG*r5&ye& zKjss1@9Wh_u(^lzJ-EPwEW(#jHDwo?270)IlM+WF5S+UZEiDQtvwD>s0fsDDc|Q}}izCh54UWxQ$Y{kXV$UJi(Bc_kWWF^>Z6HqE5|oEne?SI;k-F?(+Vm<;i*dyf z7w+aApKS{+cQf=MY4BJn{D+LO1TN_*GigCuKv1zoezNxIAKKLAODYq#iqWRf2r99- z%OsX2mU}NvtS=^lPh+PTj?bF%RrMj4AhY?=?$O3dw(pEXd%x3;H2*2*FL&)M$@ueoC{;3z-XkbLi(x>k|Gy7mAPQVgse z>}LgO5fhpToi zD##3uxA(qG=b9I2e%8&*N92?aUL?R7MYEKKMeAmef&BsAnZ^Nb4$;Cr9nruj+cd#5%yz(Lv+ zIBEtmtXvpdM)t$*Z`gr`0T6ZoJM z-d93#yDVt4Q<$QFabrNF6wmZH4=~^gEjc+NC`Zw&J=GLl6n!7s0e)W+>6ff@uA!j* zl_Pk>EG;(10l_F@H(wYCaFDVB5#7{?aEuegi*sTe{H}PHfwq%#Z%e+T(;n{43h9x} zEA&Gr~aUw{dfttf%g_4lI|{YQV2IA7!UZ+^pUrUU(luAq)WEkbhW za+BVSKPS05zh6F#$(pBYPjLWF^sv7P?6U9)xQO4q^o5Mm;yOCz1CbiJj&gm;6y8cM z^Cg#(V#j)f?9Mxe_%ez}Tj<7n49nn%zI>&qMfWl7yn=*mRaG|PkK^)In1uln0i+1b z>5%#*{DSV%l_&Q66vfjvdbfW1NHG<0ef+KqMO4*^(?&IJHg6X9WjdO-FwobXs}8iV z+XZs)PuPK135Z@b$v*QHLp2h?7x5|el{7~qJD|Z@0~y5Zsb? zKb4el)==!y>kNF`Pvag16(FAh*B1adNEt~7*Twd_$Q66PBCScd+tB9A(t3i0#4P0+ z7{N37Og`vTb4Z2xZqorZZyh*ey9{0sM_&|?7k8fiT%WK^;TbJf;z@MGelWB+b|-NW zxteK0n=gD*#(hm_SqR6{a|47O#1YVDq!CtN@Z<3Yc_PuPcy*s zw&vHLL}$*?8D`;QOuY)-&BAPXk~BE5L%WVHXQtJ0sElkdZiXroz>Zs4(+lJw)cs!At;{4=2v3vv}FbAYH^dp2t* z75^~(CWA6S7@Z*Y>}I_u!=^&7i-3ZdJA!*saOZ#Zy4R$sfM<b)+tj7k4$0_TfR7>{0F#aZ~M#i+4~ zU_%J5#WL%eu73@MNiQ-rVaks`H4qR8PG?DMcmlJQPKXO#yjou@4?u9yJ2KSGn0*iR zizLf?u{C1;7TCq5H@(Rj0kXM3|FjVQguZWie&|?hXHs)4(&6^Mue=+&PveRPT5=W zMzCge82|Nb#X{3aA0GU3qcO2;hmBdDyNIp#L*aK0omk8|)cfkjE&8~v5o`Z9xFlxp zol-e|Kx83<@4B^f=zF<)`ORJfKRWjW`(>&2bwlg91D}Jw7H;Be!1Ga99?%6|qj6Ey z=)*c+KZ_Cz*CIzyG}f}auf!LnL3FQQjI%)z>gN|7foDewtJ$VjF-!%?%8;ObKAdrC z-^kcu1*x|bt&%(Cf#L7Q!`Z+0IH$n7uv4t-jv{tt1$_{ies9WbFk?ej_gyT+j6lpJVz6!-4<98m?FK7@*!=GBvWJr4$gIG_IhFyA5C(zD z8C(b*4A%f$3$tRONT6z07H<^TK^X#4#{KbJ7#f`4vDaXnj?K))15j|V_a8Hhs#?UK z2~H-w2xiaOxPnTevOxK`f>_ms9-FwlK(mfKofYX?#_5ITnrqX(ffMSLM=re zw$b<0H`}vCSZx->R4QpN?qr~<^pN*#zjnW<(eaA_e50Qo(rLW4&+*1>a+rF(9Rh;#b`s&h5}7&Te^Y9gCInEn_+0-}w%*>Q4S4%=1KfQ=3exjz4FIEjFNvEz#l@2cq* ze<2PrrhUv$j~I@K-+Zl*son|5-jSSbdmnQ*9|?$&-XOZ82=SVFe+{u)>9X1zfb!LN zQ7Z8;(cTL>aDpV<24duX0dS>8&bF9ozZ^Th#D4Z0xr~-~2ijj?3?dU8^a)S{xKeiH z!8ZU`YO4k}t%9Y8h{dxZ{TV=fdHH`9e)s}$;i6nX)NTaO11A)~3 z4XzyWBrZ@v3Hj<-7x9d4gj7?a(1{JL1m9f^=1r?|GC8-%)dLdoiNB;-o{^S?m8$;< z+eejkR3|M2yg9R=F?a0X6ocevVxC2Ts)TI>WXHxt!#s90t5K~dW{~^xF<12O{R!JE z{LircYt-2DwAy~&usa2CLMeIPu^05gnbc~dxB2x5OmI0K@Cn{Yfh7uuVeoWbrDw;X zIQ(EN3iwsCMsu*Z)txyJPCxasD<~xGN1JDbk~9QFAHT+&vQ4N7_ay?TTNUu+6CB_` z4>$vUbcLa>?1wFBeL3RDu9iGdBx@qlR0W0zay!r?Op0pzDw6O~DSfhnr+#U+%pRT>2 z+{oXqecObO%FQqLdOe*zwC_-BT?t~nW65lML?l8rQ9&KRZgrt%O$n%hdU-pdlOsYV zMV?7oQNM@`RZt-W!U1flBhs)W!HX>@TTbQ|xM(S0w#*?(z6bt; z66tPUOR^AELVCexNQV4T^$3Yqal~WlEJIzJnR}bKIILQ zMmv6M{7iyo)WE;FP{{PCV&C+j;CHYXI>o~3JA4Ou&^R_Rp<7th<%ASPq2V;?WtO0p zLuTeGqhb%X!mr>ji6paf^vFcN2Ib5SDo!@h{4LunfVSQRzG)FA|-C{L8t z71Yw9k5MIO7{&p8%e%G>w$YBFAZ~iMM_$EnQbWIK?O)!_K=k+t$KM$@hMv%{qe(Gw ze^+;~TCGJZ+d=CHn2>Ukwuq!^I49|qe9UHC(nUfh)| zbYGlSXkPGGfcUyCK_QQ!7y{Dvg}rq`j;Un6b0+0a7@?sJKiQE1>X4qM-5`~J()M|P zw7m>L-U+_~tH>9){*RosTYz=6)sovjf7MSo;8D4Jp}G)Y9i`SeVUV{9>|G4_;UR~w z($Te2_$s;A*;@0yoU1Rfs^$))e4LE7MR4O>%hXxc_2G(Im5HJSz)QQ|0eC5j)RCNv zvFmP1Jc^uYfUb9LCJq%kxWPCqh40wlw*4B3oSIim_RgR-@{Wqo9UlKAtKDJW?<3cp zgVE2aGfBL;aYf&=vNzkJszX zNo`NeJY-$$pD)=S=`pqJ7i-sGV0f(OW~VXggrb-ZtNFXj5Mc5YGzL3;H3YmqV9b>h z-xp%E4-DTODPiJF9bS*QX!dApVYjkt<*f6zoC&R9GA&s!*R=O01RP)i&)|{Wkyy!b zHyHEO@KdOb&~iPW2!C(SOQk*(LNcE=Z8G7Z|NP>z=PKP5TzqukSuiSQcO6Y}EVJ#x zSplMLceKm@T+@V^-6h1V80pc)T6`;SAgZQq=V_VHSUGoIhxdfpSxE&sR^16SP?a4T zCL`&3!PPiRVH=u^wnMoE>Vv#zU`4@f3z?xeROda>>w>;LvJ4t6ID<`>&`2)PQz{nA zo@R<-ccARQuJ79}bI90xr$l2Dv1U-u{OrTVaM5VkI^!+?3sLW0w^`mXh)8B3cF@#~ zRH9pC!)iU=j5jq@RsJowQgiS!KKdBC5i2`-c^+M^gzMBl>SD}_Zey=!JEbYdAV&$rU-KJML$HA;d)V)6`E_BUl(wPhk%GiD2Z=PrZ_%nkb#VlKr0F}+7u#v_-YV} z@%6Z<*~@)$+2S+k+zq0V>J6izXO zFqL6*bk0-q%GdC@NOZU1yRc(KQV7U7?7m)W2MMMS(ZJTf$|23U{wC_oFMsU7*daUi zt$ergLVm%<^l+`F=ms8{M!y{6!re%lbMQq4LoO*RpiiciQ zPg)SXEj9V_?mNS{Fw&10W?l8e)$h-*Yw^M|8c#8s;gcJ&?5_K1?V)Q#>o#r8>?4P; z0R*Dv6Z7E~9yAeJE8=okG03?CkWHGgay|~#aAb#!v@PYZOUxL%ub3Var{<(2Iaks) z4K^)9)dLADDX2qc;0G^~Sr4JFhMWe}g0NL)KE4ebJD60@i?CK0FV^h#U60Ii3}$`0 zZRk!Zk;zvUq)Fp@u8j`<+y-g!RD7lj7B(r1fED>r$!4%e6!LvHw)E>jj<|Fk4PyDy zLM?_#c8$chMqC8#+Qt{`M0A%d0$D+xv#3O;mb>H|#xu%XAlEBISj8P`!FmB`7VV<2 z*h+Og8I+PRomn;)FRqN&9v?;q&K# zslDBe$w)Kqr7;`0tRK~ibsaHcm=!lS6VX_t4~e%K_Y_Ya*A#6I4;(V4wbu|M0~H_H6rIHaiFUXzd&Q3RhSP za%+@R&Wq#Wd86v6dd?7;-x!UA+)Xm;aRQXJ`>hasO4euiv+}hFA56+4bfw zo@rZc&slTOm6a*wz|5J|x+*BUE!j?jSir`3k@k6bqM)h|A$FxVlmG>l$S2g}1C;HB z$Mm@Lxny1dWqTUIAFodo=F*AMF@W1(^<@Y>zt)Rxn-0wu4-O*#2K-doHEaBv!{aA3C#a zYA#`YJsMMO?Z$#(yR(x z5s{k}F%wG4i+Kg8DLp_wo-fsJD^>qFZI1*%OBo(w-tem0K2HHM(k=WiJD1I!5Y_yQ zc??Jlxp;E`8R_p2Aw-slo?in0@d=4xJwEHdWlR4)A^pGE(pQ!vKbP>1KT!GDtM&i~l>NKgB@H&M9UP%TQ=KZ7&sfkLJ*;_Bt z6=chq@TG9q&C?Fp6b?%)s!B(=w2vWWcn)R#^Mjn4w&VEGp!TsALRDsAISE4!?NE-o`ZSArKC{AEk& zn*Ok*t^b)V?YY6P_-}u_oPQqgi&DmIHyDvZufg9C0JNDItfpNPJwjI!0EZFEz~D)QV8lI;U*Ll#l|{7EUD_XM`gQ`pkBOVb8esNL?P+ zW%~i;PrVB*)v@`Y2nl+***nPqldc2n4l7?lGbS;>q>DoaLfoe1{@sc`3kQ*wAD-|O zI3*b2L!C9+Wm>Rk(stGWbg^Prxpa@K%E_9y?vF_qM4u(~P)#9mq;_n>FwDt%L-6^l zXLgxr6i*Z^!RhBH@@}U>$d&npQPXG*DgI~o0gP(4e5$0a0QnKuC^mI5;px6Eb&wtx zW#9u8;Xu$G*ar&8Fo#KM&V+;CazHK9E}nK7YxJ~I47_i!zV?i&LWAtiuS4-&t%Hw~ zieLTaFsUsU7ARu#yt;f-JuM8KD|Rl$W2L{EXk&db{(QYAzOhQjqritEI3J?u(rpw$QP*wrs$w{r z5NXtvR^)4PCJ25q`n0Ba^z-|5EbwbeOBQ=&=Zw+fFyU3*ZIRW|K;5vzHID*7L`MsO zWIZH7gTQgdnysrN7{UUgq6}IJa56lSJF1EJrk;wu1L?!>b5-iIyM|yAMkSS_wz*)HA4qj1FTBLmXqN^y4G zuX$BDvL>jZM!ghiZ)Y%H$XI59kZGEKUJDc1c@EEM@-6A`wexTbH}%F*9U-_OKpAe{5CKHGKk~v> zr2cV7QD?d;EF@H0QI7l&7!0HiWbHsZt=|fn8B@fSWtZ&HRWzWN`jXuFi?A6yirwl> zebgai=WB%z#du3$?gwfN6zZt7aR`6x-5Wj(FX>>r$a*m_9D(4sRwT8~IB)UYMt)G@*<^ z6@5e^Y+jF*(!2YeA&w?wMj0yL=-Gh9@-+W6u+7v%k~^$nc{0V_4*rU+h(vwZQ|MsB zDE|8&d6etulPkS4+O(r}Qa)!|1^mXNFzgXR86YYOdDP!B!PesoQQCwf)pDI`)Nvi; z4OVHU7bgY6e3)F@2@Qy`K)|o2sIA{fsm6a*0POkIlx|#w6pDZzj^JMY$4Yx+`d+OFYUm;u`S&|mkV*su8QO|-$Z}(c9?Jb;C=zN!J zq#xtI?NOu^0DBY`Z((y25-_t?yA5)(R7G&tY&klqiL@P>EN&jh&j;AJr33=+N$9%L zC55b_3iv>5OWtLp6D%@FPj-m~%QKsazO%$b9bz$`oZR*l>X0YhXwJ;R-+9EBA3q>n*xBBo>>v z?iVz7Y8F|l@Vl2h8c&lTb^mJaFcwt}-dCincD12te-?x5llMwy<1*qwn4MT}}!HPC>jHzuwnpW>D>Yerv2c>yUQXCFmPU0y$5( zNxNPg)n*+}tD)9Vhti@Ru!(h0vP>kXx&oIj=3U-hT^^H)A>D($<4;FGQ@iQ|R+ac!EZ{^{$~9 z2l_^?{8Kz{lu?{7?_<5-g|hpLB2qJFn zw;T?s^lRs~JDq1!#jf8G#o)Lxlb?T(Y))Z#uQXg-WwV!NKWsuYa61_8>pkYsRmMYd%Q56p zc$Vg%GXqmd)lGtPMlMIe7$&}z%*g?q=Z{#uZ#OKoCy=Rli>*b?+XNRZPD=;n$o4Im zcq<<61_$mKt_xdTm}DrWo7Xd3T=8bGk_?Wvo^YAkNgL$-%KJ8sSkX2P61lON);Tq8 zK1Y{sA4oi@{@unlnL#AJ)>X#r=E9GYm?>5RRz}dQ?C1Jm%&K;Q(QE)^@zQ-vYzq89 zjvfeh_WW)h)#wMY`BgcQS?28zjY>~l_xJXd)qP8J7i5op@Qj`T4zq;_$r$`7O-vkE z(9D~rIIgrxk0A$5hqjBvaY_@6?(C&i&$}51h;Q$CFB4N^DV#vg8}UD*H0Ka%W$A*9 zxiuRc;(ESUMiU^$cJ10A4qG1JagY&8+ID$VC56Sf5_=P8kDW+84!Th4-P)l;NmBI%kOCJW9<&84xr2-~p_T?A{S6=NCO z4Q6%K?^di5!CTyy(KGUt5VK4c*Pgb61yc<2F(wck*a*dwGjkJ|+i#reKpgB@?<`t7 znVK89$f8F$D$ZU?wm84-H+o~&EW}#irGn*Si<_um9j;PfMCTnM_tR;2SKo>wOuC9> zlBOJ!fVUXd6*tybBcp>~tg5$~p zu^N}t@+zL?=Tdi3D#oJ3`@G1k-Y;PXDCadJY;+vchs$H>`2siG?>4pI9Mp{n0tqVkX!+;h7RWhvS7v zzD-QKTo}{hPiuN5qiI&7PxB$rRD{l-O*))|?XA?nhz~6&FDV;%8~b^a!e)zJsSaVi z5{(9Z&Ml|qjk2d-VKcrVW29f15RHv^Z|5ZfMPHzp)^?8LTG7IoC}$teTPxhevh^c$ zq8YgXqH^dpYbvxY6#n-!QGp}gQ3`YFN>*81Raqjr*hXpbQArv#&1gdM;J|qH{dB+~ zISq%hUKk3-z;6ZqAi?g8B6J%Sye54jb{=Dhur_ft`*`#++MN+K=%GTRo$l5I*Da0h z)JYr2^2rEK>IF`2LN;oZSZwx~^oDfo->0JsZ>%>D#$7kq8)H55cpjWvk>ac#!O+v% zrf8Y7qq{ffHOF-fb5i|v`>SEh+N1Yxsee4%yfqBFg*muMe>E&!+n&1UJHe$=>`2pf z3JK{pA`S~iPjugj4t*^+N@#XdJ z_URkbkXlRC#cm0aHJ`xK*fdnCO9WXU1MWThhJ2{_k};)95rS2=xofMbf4SBqQgc(d zw)Mmfdck`Zr-zwG2TwjAjKm%oj7r}ef@=OiRG9FjW8esnVAFIGv#qvRLW~eB$$_>N zenhsDO7uA_XDQrqlGe}6G&`;IO1=eBMXU<_VzTN9Eg|iOk@4J6K5^YUQ>jUsYjNt>%_Y)&e4KUL9S4()uP}MX^E|z zG%&Fu_RQ0p`uptAY^=7k2oMb=`2Mn@v+&RN-vVxu&tHL7klbHaN;DsfwX}aDxL)Se z>NNdLhtkT|BsnD&*g0KI(9iQvJcKnXD9=WAw0&Q6p zTW`-*IEdVbqCVQKo1X0=_27O}$i|lyKjhUbz>uGmlcSs%wO-ix3`;#E# zn4KAkLUu=hBZ9%b5!joA5%2fQPwmzy#>@P z01npd8T8c;;S_H_ZI&p(E`b{m5ZxlK&lT}ZlHJ+>LloW_l%)yhqYH_<{c_**;tick zXkS(wdj;@A3Cm=)51PmN{R$SdUk2?joXQnD(bv@nNoBsK?033He&5{qC>`}K@@&oV z>*O;9dN!IIIOK#wEzc}^Zod`xR+Ga3-QNQisO}0K?hEn#>xY8maR)?4vY+rs-xENY zXS?GjMfQTUF1>z`FB`Z6e}uoau6o#3zs7xm{s5i-iWG-Mps>5acAeqQ7^H{(>${aM zSLzGl>rdb@4xngYes}esOshB$rd=0+=!mzy)~3T*86ocRaQzS@*G=3+7l_2vk0w8u zkgj($5vOM5#y{;)s4pK`iVvVQ54x|Eyua1~?a&?Mo;enEs3M7pz$>TI_hVTHu%K|^~p z#o|=hrz0H#O9yJo5&X}NFD*Rnf7BoF1H8VrI1l56>hF#ZdU8Di@)d&uf{~l?Yx0*rJAPf|Ybf3j{G#LnTGKx}{)agc z0bs|!6~>qfEb^>~OM!a`aB9l0T$c$mumHT(sX?$F<=9;V#+$Ql3vhriWgA_Z*hxhA zz_;J5kaOB3%pEveTN;q^7xq{@{~|0jWQW)1T!FbY1lB-#!T(^1xmg7Iw;HoXAafxY@gMm0ZI#tS*{%COrxa`JD{$t_BnjTyF38xy;+t!)t5F5 zKQv1Ve!sQCn-)oF@t9{$sK7UsW(<>M#uJJ=NJQD)bak6-3`dgwbFxe>YhYM0i3Fpp1Nw4Mp6FGAT0w@oFBj*Qb45o&V_>tb2bY zH-A#Pn>X1b6%u+vE;L|Cv7P4!^Lsbg@=IiQHvYCAx=n;7wzE1EG~N)F%$V5zcG^SA3!k6|}*`3!ZVw(Vd-wmz-P2`q|4U_5C*DHyK%mm%s|%-ik+QS$65 z@J#+I>j@+;Z8L3Y0l*NoAu8VAHM}xRK`o~iq8l0NmW)%BpQ4cSdCzL5IVz| ze_Q@Gr;#9hPP64*`&|g~Rsa_F7eEn}iYRdh%xi;u41*_z3>W)bRVOnBXe6Ilgp)k@ zdTaLEHAm}J^m%}-56#>zV8-9yfx|8ZGWj#(&jvITMgE=f&GSwLTh*i>j*m?vRhdAx z!;S$nzH1_3Z8!6wfm-qV`9%K0ZL$#byoHDb{NsvURadz)gI7mJ4%ihLc(0cx9P|M+ zlV9ufydJlKXKJy~>ZSZ8101|byHSa2>!7d2AY>;sPbb)8h@j63g}b+Z!TZ;FxR6EM zSFa<|Rz!)-iqnCR#2sj|Wu;=N)|na%stRX=F2QQ(U$T&j$9x{zr+2z>_(c{wn}6b= z{on0t>_N@1Xc)Q#{=`FF|5&0Z)j3LI0T~jnX9B_o3g2J(&cqC{7m}<@|uZgy*qk zFo7Sfz33m;xW3GeR&{ta=`&dZ9aFx+47a*-YQgsvn1FhyP%SDC&%BaiKcF5;+GdEi z+-u*ikY%Ehj+=hM95*r*SPOI;yu~6bV@7oxImC!DB*d>0R_MFxHkh_6ma-<0JiHK< zUEJK;vMlY#v*Gp<#fD{m6s}O5518>O4FlAHWj9rDhn`}cO~xJgjHKwNBt6gOLnxgL zt{bSI0|n0!3THPYvEa%{TC?}bXxTm^lf^((#-2n>y2#Po%@E(MA#8AwZV4X(wcnZwrZq9l^J^7v%uqSWirWSPc6`P) zU?bdJ1uGh6eArC}L-m?FyP)CLdJ_T?`MOXi)GDUL>$3dH=Oyb4#7!9aYq?o7mDoF) z+V#|wv`aHst5S21-7Hnv^I#f)Bx_vh*S^^98g+t!J8b0FtOBq5{$C zT~k5w#qS!3ai-@x;o_6njXSiRcZ##@?nq5!-DY~p1vU;713x4?YRSEL9KG6wJ8wDn zoR974Ta+l))c}qtH`RKvoaeI;fFp_?a4d&BtI`3#RN=enGDouKS~jzD+xpyS7_XbZz>OAlR=3$fmJ#SAkX zD^{A}C>X_Y&S-Y9`4tikE;ax8aP38Lw(Bq1&DE0B7%p`eoWP{@r<}^97p-Bg?4U3< zQy@s^G!~N0m%;ak)x|Lq6vZ_(Ek^!29@8agdDO3}7A#dcYx;r?@0&HNQ3`&YyI=v9 z!$CP6oYPOz!?b)JUQH{%Ye0QD@tk7mCh}=FbT(E`{JCL*m$;cRWLS>{ zk&bUN&nUfMWgax^kIKQnE zjjdXGgO!b&oTE(~8V+#)Gd>q9S}ZAHRR|XrS@zgQ-CatijkIrtLr{2f%H&i{9AL)B zo#DFR_36biftgHxafdoOlt0(2Cbi4tT+#6FB+?bnS! zA#;F3;-O;KjR0>|PQyk^!5*em6Kb&XSkv6hQ)q4cjNu=-7d6nm(8TYk#d?sh z*>-+`{1oj`<<|5iQ`P;l_V6IRKp_%@gHT;T_snp3vm~rrN5d!_b#<4ZbB7AwlQ`=3 zaVJb_c&($(+lngRJN-davUn9Mfsf^V#%y@EePP{ke=3cs@X0PnKE7+puKro^+5fKi z&JsTF`|gjQUBSL+NAH$!&Ur(#Ke+36oe^WxR;qR)e!fR9_bj8ixm>?Krf&5sMf425w^r($jQMwAXIa)dRy z!1V+mf!f`|dw}#vsQt%i{K<;MV;m7vZ9;GyQMV(-@8+POIT-yycw#+ieYW*4J?MA~ zH^3lantNw8$K({@l6PvD)9?rcJ5aG5L@&{=n@}$Q#7NKp=b?ZYiS~%V&k>SkoWp+% zJ6jxdS+b;mVyBZ<27 zu08nJ_*aZ%BmBAU#&L#*g8yOXI6|N(gXd838jfEL=nW0XPW}2PZ4KrCco1Wb8pnXc zc6(I~XR!)W?0c2^SvJ#+wCNR)Aq!LXwQzo|C)u1j-8?Q`4;Nri>WQPef^fULc1FGO zwI-tcA~9&j`aC-4IZMPO?lJDBuY>;MlQ_;VI=#Ixgi-NLtgsbUu;>*30E#{i=HUjW z1;|rGT!=us2}VY|r6vzk=@Sm60%>7YtV~oBk(*@phooj+rix66mqK9K<0NP~d|Fd_ z<0!RcgL3zHlU-4YiB)-O9(qK16thl&9Pvjw1qI^W;utIDd}bdn9ielwpp8QrmOSq2 zNxMXOe66%c3UNXcE3nCI8CcY;8ezs)_@UyEwr^@Z6OKUSUx1!;1j?Ak|Heq9A^wIL zClLJKYNo1;&cx805LmyU?;&FvFj<=i?E04(b~rTnH>f(4d(gn!krk1o4R`pSXrLhN zYqmEVtFAb@{RuO!cm$Y9t`=#<;-uMM|0~Q$ixPL+gd&loOQ@9-w!u0J`if~fn}co$ zn3MkKbu#JR7WC8UTXsXH2qOkYVrr!V%((J76dhNggf0p`YrTvBVaB%KA?q{Lkc0R} z8?n^~EDTU^fQP{?l-ecaL-30Z3}=G$MynOWp|CMjqBTePueem7AfKk#AjsTF3=E zhh9RToDbdj_78q-m@ghuO)&NhWd%r~_J9}(qN*=G;`3hpUa4QH{a!A`Mz?Y|p-fUP z$x15nZrXRXJot*FmI7*xb<|#fS|j&X-!FPzRl;*)crf_@kPLcd9#dpo{7UGIVIUzOCB&fz zGH4;qPLxA(jH6Hf^C8|XXjCN^bVcd1ZCwcugVPKa4pu%0-3)cV7tJQ8Ajt2mtej6M zc;sq|AOjE#-iAbEZqq{+b8w##$NEeCkSP$uzJ~gjA3*mAmFB#RxU=y^g1-{lZx4^^ z1ETP=$RQBNs__{~VisC+%1^?pw7IaNm*A-mfHFIbtAefcy^5|J`@ZpO^^c>H=gljaN1GvTey)w)jZ) zO!DURn~A5J>+ukR>ImQ!Jp+=@w^(MrG>@BYU6<|;3l`?EfTWYpSL=?d)*q&g_bb~l zr-%tZaoRVvo>RSjs4sbac?ge-;5wx4>nI@xDT;T{Ba<%MnX2RO*F3>yzUn|JGI2zT zh^vV4{7RFJ6Y(WC5M(}T>B4c)AoirI$mP)L_O5z@+^jnf`NDu;-PkFB<|N>F{Pd)) zH52q`td*+h^ z4LjH7;Ug7Ju3+w3#5t8mVA%Iv4?qyfV;?^BeM%jcI0*Q7^41{<(yRvUGSGHG4|U(& zvK6vhwEM92NLqvD?(G5-$|e67>N|@{(@C;GeFh0TpKYUPL(MgdTQ7?E5H#r1evAoR z+(CVd?QIXx(l&9pcCs#xv|)rtYF>Q(o04%AQGs1rPpR9IHRb~!T$$TwSkOAxk(s2+ zf+o#|tm%{3{N2DN!_V~`<%T+()|Q%DODjjOg3EB#HAy9SVxMvprG!VQOnc>2?incr zH9l^9ijRg~7ArYhE3*xeer{(#v2j-QPq8sIyHT;OrEE$j`>4aR%Oy4^izW*LKCa-3 zA20H8mCyFy!N#!a3`P8887(-;6O`QX`^#`zN`unIEMr*%rLoJ1w#6b0V>8X%gnq*x zx=dd9;Vo=@;{J}(G__=rmoLrbc?ucwR;E-2$R!nvpLD4mD4Po5BFJ?k3L1ZdjVY6Q zi!2Zq-!gU1S-*jn(@EYng)Bo_dY?Vbigp6{s zCx2iL?RlZB)e7yO{7C7mqJH?HF|&ZhU0vg~i_`56%BJSbX!_!Ime?RZmjVx{1$#D) zj});~p8K!9TpKd8i(M?v5LNCZ<=XFL85o zcRFLHR~s^)U!O3A0XNrpjgihZuzRiHEU^>+yzyEKZuPOzEs~KVFlpCoO{+J6hVINi zhLJxo-~F-U2+BrBZh7qc;ar2)YU>Z&D&+mM#6L|I;r(&3iw4=D)4nAr*8NO6Y-!4l z#dW)NSd)*GBZ_;FYea43eHhWC-eR09ic&Ee{qtZA(JWokskC&Oy&08S_hINrSpHts zE@_&g^s2m@V|hVdj!#sJ(+CT+B`Sbtth(Mbh6*OMe11#|#cPCsO8c7(xmi6wuES>C z*fSpUDnqmr(`87Z#5RvU>JRoWEU+84a#63~I&b;=P?lA18qWB%%RvW`i`luIjiedi)qO~pzV~fecgFKn)m7z9&iqVP;>M;K zr$16$-E7bIN@%LAy0EiTOvO18(HY)4*ny?&s%pX_b!L;XTs*nO1`M+0D9*pHf4!?X zh=)F?IYq}wUVk_kJF9d!{=rQb?&Lb=Sfmgbe|O}Z(|Wk8tSPminwXGy*zz4Hna^0_ zolZPMH+n%VXv@8)!^Sm3#A02#h@*fD;)A)U*WDO+A+u$-)^MM+=ta64TwRP7?(b?e zCVZL!Nh04^Dk_jkwfE~>dx99kdlFKQH_7H4q9QyRfrDgG^tRsLQ-|7w0*bbI1`}!J zp6r*ta5D(v41Py&ivn|mqK>xMIMsxOyc7(I9_*&ZXDlGn$a;6~d$IC~iGIEExmx>P zulH;uAe006^gH@owQ&nFqC);nt4r#8WwVQ^L7g`qdK-S^Mwc7T6 zV5VK>Ou?0{(2;!=Bx4%B>;@6VGwErEbfUEi7AniDdd^Qmo~j!h-^}`l+Dr`Et)>uk zIk(r>nR+Ux3E1e!lzQ&4TV(tRnjOJ8bX?+ZeVaMv&PRHulwr$(CI<{@AW1~Cl zIA^B+OMCCN?!BkZt-5u;WqwN4thZ*>?;T@2&qq%bY}-Bu(?nrzsfKd}MGj`SO#o5E zIlHt1!6lKB@6&n=c^^lG)cpLzu&JDv#72n6D0U@9o@~N~m-K{#Ae^$KL_|q-i+=xANXjWr4im482w*a3uV!-b8_(xyT3(Q%ErD zeiFR_N`h+h?+U^6adT%+GMfDxH5iG(b{o>$-x_CB=y4U(x4k{O&*bxtLt@?R6(p=}he3B;Zo-`F88Y&v< z+YBiv#<0z#)aGV49i7O%Up;m_8Ye*Na3KKrT;!VN${r{gjuqZTOovCmisfAqSm{Yv z(6ch{`rW53{?|Lk?nC-vFg8xEP)#=@p2aM(u&-DcxX}j|R|P+Dh$4l#-B^VPVXfBL z=;#pr!s0mnQi`AggVBd=X%t{T(O2tkNA7x=Qq0(MVgb*k?wAtQg=50)W(Z_htI29jOjggG_(4vsp}xdJ?+JBp@-UFc**OH6tI&!|2Ux3yyg!kgHvUV#Jn zXjifC#P90Y>rmGt#pkLS3YBlJz@CWDnCp)^gOAIA{1bmk1gRPMr~b~(=bFrinE+ji zw^;MbM5zvz2QACA223R&`j4*NVN)dhT3 zpL>bv_Tn`$fk*EjH^=eyRT~LJ<~Na;t=r$aq8tFvD0PJDKf0p5fq%N9W&&rzCPrlx zvi60_jAgcrl1PniZh)?60=olX`D>SM+Eg|bMW)e|><(>?TuQ+hkNyOfn4@8TO~hX% z9e~`4pI-7gu-dScKAIIY92A!qlN$ZniCRvHEIye+e-Tw#@9GgoWVaN!{kvZCNx7N| zLLW4g@N+fcLh3d-2GsWflzt+=x;CwLUQ=ExRUrVKmrqs7PI+r5>m08P#1NCg8Gqz3pjh;XcNM!&# zH)yE$(>QasGt7J;VQBJEl2!Uq&|lYm5}45#tS$#?6M5m61-&$Dvwqk#L6k35xVnw` znFoPC#77lqVGJ=Zd^&O4KSAxhVVZGQ;J|rAT5&hU%h3%hup+Q|$aSdFCQdV@{Os9R zkETeg(PtP(p7F~)FsHI9p~^OfF4kem#RC(o9Zbz%|Kz>EgCMj>ipuNkTu+Y8|Gi1#co z?)+q0Hl8H6UZ0G%xCikQ!2;aq!MCt!Dvkpa!GyK(RKTfv;TUGWDt_+=d1OdukCr4? z5&H3@47yui*a(CBa12ZN+NaO952@<_a&GJhwp(ZsZkk+K|&1WH`tjVu0&Das0RclijfgZ{qB`AAp`4a+9kffA3Edt_RgD0O9o)J(nPW|E;XgtEu_5 zwQn7yi)1aTFo<2=(Nw^!vngQha6bH5zqGmHnynMwtz9FzRgvx0a_Vm6M zg53%za&Y4dFc(FFR6U-X&f~AQ;J+2AS%A+Ql=r%H?%N9M$@`lpaN7@#jLRAN$<&u4 zLF2jX;i+Vn!WD+%GD#fI-M9%wPd4~r@c7=vx1lkHi%afFsC#cvWAiUBQ1gOG-0dktMIxwN<8uta!gtj3!6aacb*jhsn_jfj=o1gm zA}VVHG6XPOQ|O5lm;ZNX$}ySh_}|Yj4f|KJxv8de9|h6dv_#D0>Qx7+`Mnt_)H6(7 zP;L%affM0~Ji<|`*7$fP^STXEc;U9OdN9SzDhRfFzjk70kE zRFJfCx3gG6((cLPb{&Ow^@*hsNb^3}FnZ{8X~#_HZ<9Ugv8!OpNSHMrbiXP?b^m(! zF>>){UaOZ;UVF1L$->t^Si5XRcsO`tyH20#wmf=2k$S${aAJ;@T}Odg=xL1xsc{nR ze9o*ABkW9*=<7ORsgB8{(dU7}JhHCHPe>bZq_c2C(sMoCw7Q-Xo`$%Q*7=zOqd|{t zl{ILA;EwGkO@#}zXgf%}PpAwG&%*%;#6-s3e)!JQP+E3Up&m0$DE?7g`lv*vee#&0 zqQcP=1`^N_Eqj0_Pzyf7zp)Ir`03U%9f>}yM80jw%vXK0Jt3}#c^lu`fi+yd>2^7t z5zjb@k*~TxdBVJ%uH}IHtQ6EdQp8`kM#{x&UGG+JehE18_rz8J|9!w>9E;$}(2%^2 z4|0)FU%eWtCW?G!r7{G0L>&|z+amPX!hHLLmmC)Yv<7U!W3OK@F6L1~KJz=VamMI^ zj!R>Q?Qe(Xy5V+>g@~f4GukzntxR#;SQuV2THqN>uHx(OA*-ncEq`@H6RtS*F$1zz zSK8*LnnE(2VtL()O{93>PNEsOj;saOJzW53i+QEpD2LmDj&WB#*L^1!4=Po|-!0U@ z683vjexd~Il9H|>`I2bSC#X4qjwlo(ly%8`q+WR~wZXkQUGwN?hKfmQf(fxK@NlYi%v-)rLFL>wKI7%o{o9GH1JMPuaQ>!0>F-)rKg$P^VJ5U>3l zRLQ0C1bB@K#zU1cWSwbsAK_Ff|IIx&^>Ed~{8jqwYp3j(2|-epTSQ-&s8}tTDB9IZ z!Ja9Co5c!AXmY}6+QIyVWF?S`Si@O(Mv-ugtUJ2_G%l6HCT4&w3&L=I`F$9?hAS|0 zXpDZ~*<`}HPU+2%I8v3V%y?p}W7iALPe{RZuEg*&bSz@I;%VQK7$Z&-^D#Alq>$DPx=`FUl<{nxsjXE=T?6FvVc z(7sP{TuH(?>3XTL&5IhpV(B(+>(3^vMM933ewz)tcL zm=eP@DK~*opK6PCv!$V|)KMe*l1>`FM;{P~@#X-QK3N&XDl%kD7{IC1e`XC77Mfb>*pkQadpy67p_#>n zZz~Yjs0~m8fXlsP@L2-b_b!ZbCn?fqO&R6bdLJgy<+Y$_ z>VMI$z|H=F=XOGKk|f|U*%_mWb3q|V(~v)&OT;nGYHDdudPk2thetI=IZ}S>G4GAUq}|sR>SsHp`@Q1xVVTvRPbTWkYGoI+ShJNJLpglK`6}EyA0p8&3RrWUfzcG zMwPt<0sDBK&&`<*;_rJotv^*1kp>w6v0a*+VR0P+&+2Nm&Jfi`6jI(=M?{Ei zhda34Q~vIkJI42sHTG~CS0|+AhM51C(Pb)Hqpu2-DF|uyv$?&JtUfNx`lu;SNItaS{a@bwKL~ zf%;JDCoHHgL-Nwmb^s2NS7Cuvz~n9pkcSd$-583WTadjOif>pHE)B=(v?jc-_3A@` z@R;_GEF)ivA{?B}GD8zG*_M(n+wx*&F;i@I^d4K=z5t22F5>qdRT7GBQxkse*{j5b zdC`)|&-K!Nx7C$Xw@Epxsdw-EW23?1rvRk0_Xn4i(INWC%4 zi!J?GuO?hDSvlNLl3)qHpeJ8HfA3WipAgr+2321My?cor<{zH0uLBL?o_T2u?qn(0YQu+nGAZxeV6zXiG9b6v6LeljgFM#JrnR|oKOAty;|!`ZUE zgQ0Q2w71;`Q!m|^GImZ^=llHyq}>kAtox!DIuL-y=`CH!Z$$EIy^bp4G21go6Q}@| zQ6^`Jx3jI)i!Vq=-SRF1tyt5ktIlvUDQz>`rZ^V&pRbna6?F8hfA~?`RucW%0^dZF zs)f{_R}tTtV%4aoW-Uj*k>=u&;i#SiT8E&BA1~7(roB?IjMz2f8O{3Q&N-NaYdq~= zjH4p%X}wq%4Z1m8EuOjL>lPF{W_HM`@~f@W;+}*js3qlxbGE|JO8iw-d8wiOVyx8Kta^krt_O7VXK**^Y>iY9il<@^0O;;a3gOKPCK|+4 zmgbYFjl4V$=uY)>7*0r9FBFKjRDx zK@Kz;i)X+}neWp&EOiat=Gb_X^}vi2(!=~RX=VX|xVM#qP^dK+SU>ypB0n2$YH};a zS~GU?`vS?Pm%>If_9d!tTMA@mf#47CZ5)}V#nR<>>CFdsnPrA_f*+K@hyyhQFtTe! z4!jDZzrolssj&05u!!I~zr?`k{J>!*5}N5o*d+7mA=uHWeLwrbLf*l)Val|XXX(l9O*9-o_X88)ZF;&U=rR_lu0fM2LjfLn?a!)3g^ ztqFz8FNZJ3IJ`1ZdOJJs_r*Vr+lR~85bj5?7%*?x7-hJ!er&xbNBF?p_D-Dpv1@TW zwjR4qUWDq*X|Jep4Xg0s{7meqQ@lUPV>U#0Z=EUrC3ICqg#3wx|DIxO!7Mxe(QHF2 z6r2d3qe+ItyioiX*|$`uLP7QnII-8-pFs*rSgWe1_vt1K9|U z77Ljp{SpkJc_M;kK$&h8P@>ObOJ}3iM;R>6`ZBY5>mxiydDCpNXTz65Q_~?K4~gpfr~83x%CzJ@b|V zAawb#U(~Y@U!^eyFSSUH0^ly6`o~kXbKu?Mtf!;e^0M}vHlz|8c;q#4dDlDgNJxJ=b6i5L+G?xq?XkOvO)W+|@1(O6RmEJxhgNrPZm$H?DJI2?lWB3z%Fiyv~rq zAv((<8VcVsuK4h@BBdOD8071F#hca{O5*E%S1xx5x9|!^Nqbs}icJU4 z1x;4^f@fioZr~wlzrUH8E&H6^oM|$81@u%cZ$YrX(SSC2pv1T{r(yGSoRc;gJa0+e z%u&hhXzorlRAgvU$%U`5=~e~z!8^`Ao!Rw7{JL+hfBJhfVjXW5^s_cKN;@r3(j{`~rhAjF1GkK(yM z!$?$MZv(Wt&rOd?5uBx0PMSs6$$v$?g&DSE&Rdx&Gw}>6_DF*y-(RexL*C9K6ZFIxq=bT|5W^VN5vD5YDmpKKm}}>3 zHptHe-?X@lc8)GuHAU5ZO67{kj8BQ+tC*!!`T_rJc*=uY24L&D3_IA-hileJq5Vku z0!Ddf_?2>PE8@n&Hg+_h!+T3QqjO3<6EXHdl$8;v8{ve}dlRGB#d3aY;IK6b&E}B4 z=aT`tuWm?HitpX!W{_&XV;)q9jl(Lvk}rg-dJd|hXp6G0U%ABzu6Nj7o9dVZmU<#X zks+q~*{%vwIXd88vNyCyFppno`;wttQdmsPMqTX*+`9Ex@E19Ei~P0g4>|W|y!T&! z|3%L22+sR&q^e+&cW-R_x={s=Y)eDYOwx0 zJ7WN|V-+a-61U04-P#)Mv25OQAnX*oe9vRMRl~pKF{bAIcS`q>HcJ?eZ4;);jew8! zR|ynHX1XQ%?eZ(k$AoQqD8KZN(uu(%RHB+@8Eh?(p{wY0?^x zjQ88r80DW!H#W_~aNC}i8ZCGsek69g`+OWvp+8Sg@@q;Me#MVjsDt4hi)}^FbGz0C zJZrG7m~9Hy6MiOg$a-$!A>wOU>=Lswzz@dki7EAo$U0j{f5(dJ;YX4IyGp%6M(@(T zsSbl>c`)9QYduVI2t$mY#`pCE?K$2K2pPmLaOm&3P1%gHJx8>z;FiTl4>auNOnxAO zd{anM1FDO|T9V6)b?G)RtxhjZ#^Fc7C-%=#3is|wx}+rpFVS6xdL5Aqz+`=1o(X15 zOf6{Jr>wQcJ-wrd@sUYuEP{xo*6!ryaq})TM_7Qej)9o?C5jI07!>Ajt%8b{gg4mc z$65S{j-d>k*x2reQzo1m2{*WF6q1;cgqHn(!p#Nj?S@7F?CmPh(h7^ibYmjTYaiSp zN$eKE#Jy>1pckC}f+2<(?ZA3y4Vw6>w#(-A(k*MaDpivfv32A6)? z6^*RLc2tpTeks*ovC9|G%utbX{Z0{sagAJQV8vnE(-%`w@?<*N1GGX3+g3hVD;;8$ zFk=9(-el6#0LqoSYU}w55@{Y?knEif2PiRSmdiQe@#plPt||olV{Ui8!R4#3#@rG1 z*+^l=>v)l>Tt(9Hi!4H$AL07(3og$>5-DLeKs5q#XT)h>oz5)Y^@&UjRT;PKzVY@= zz26hG?G=bhEDmpY7cjR|{g=7jyr1*&43fXT-N)Qc8ud5~Ft?-m+uZH~Ft<|-!2X!q z!RhJ(O19Hk?083I4ANf`zo+Z6#+DKkPuKHhnyj|r^#bO03zsKJMj)ivTmN=$XLcK* zr7@3ckFwv!S&BR3&$dwzRfzNgLeBV=9f5{&QIv0J0d=>$$QhQ!eionMDI`)w0q2DX zvNmN@5RKAnyZvKsC;BnBTd+i-{O8;b?dw11cKD}T6Mvw&SpONCi}l~2xyS#2=C1t( z&E@<9&6SP$$r#Zj!UoSp=NpKS4@Y5CaAmWwTUMM#XsXX8irBTtMnGQ#m&=F4x%vCf zM+kO3A_1yy*~PPd`&scIWw__P-p9cAUK!-gfkCoM5%0M>7N>_rr&2WIe?W5~v2L|e z%aJQ#v+~q1@kcw6H*wd5<2iY|xzLc|-T4ru=;y0Te}VtLm$&1*pCrC|YURs2r72W= zP+--MnJX`^H&X95E%z2AfU?B@n&4#Us7f~T6wa|lYdja?L+bF05rY>Q7&Vp zODH4`;AZSrS^m}^VplqX6b-%I{@Y>xb+U}Rz&%%K3&xSNwV|8Aoam8g0?B%i?nJkua;AN9t%tt?9pF!#+cUFzptn-SqOzw9@nLF2b~0y zawuD!PMb15{?z)qI}q|&YC5hyJ@cJI=lR#y>k75jvX-yyM87Zj1&rj5nS9Dw8enCF z1bNcH-LJf?tqaxB0?8ROABYis`i*0Fv@h74{Sh4`eAU25T^{J>JCZ=(GuHhQ2!FE} z?rMawf2~QzRn7e8+-}Lip#|3p%Xu^h?~rL|*>#%mHYh?dl5*Hvkk*Tqd)}cwrbewj z&1Y~WI>o+KM{D2A$JwCI5nDDDT^D$l*-P&{bP8n(IZS~ewBM5tKMJz92bv@pH)Cj9 z3&Vn=e)(``ZLP9%bGPTZ>@#lpP->cFfm!dBU+AL&IHybENK7T~$w>S~%TuNncEkQg z0j$EIzfO4~q+l*v#%%IM%dOZ#*gE|cN^*L_Sr`FsXD3T`CX3hd4q$HAnHKWA(LQJ3 zcnvWsPJMVampCLGgsyGZc~bUes#>U~-+9IGyt){VsQD5Es=*nD;1l_3-O&VJP7AiG zs&9cS;;lqzNLAKI3;wY;a{o2;JG;6kt|lTA2)M;}k=}Ho$84O>YkKK29dSy)<^hif zpOX4t#^kELlYa{t9NYN4*ikzjzR9)sN{2PD+v{9%iol;(h#fb7FO=#Y*ECy8zU<6| z+EC1nTx|~DEc_{(a^jogr>|m~JZXo8pbYh-HI0@L&)%AI?n{lj-({-1Ke5IWNbd!p zb9HveanF+Nvp&00J3DamDEpGR)h3CPGlrN+a*EWWQRB^HFeDv?VCx`dB`g)Y8A7*% zJVg%H3(&N57^$_COcc^Pee;|G8@Jd;b;duym-}wq+<0CZxMl{e5ssb8yf`xJCwmd} z?XFI0xACsFyH`L2-2Lx+JCEGLj_tpwx!?K!H>kOg|No-q9{+=ytNH&SHTUBGlA0@B zUGV=3HMi)0Qgd$r)Z7;1Kh)gR{|##H$K3A!gqlkT43e^%>9x_mrq4h1gkL>CNm@%M zcDijoqlAm3#ka|*_fGikON7Z!<$DW}#6qwDIoaBC1$68rby-=E| zfhYT!CRm%}d1=aEcy$G*5(vHT(NQwXuFiqCVXq@IRn~@yC#QMii^85vHzj-_8^f;@ z_p=K*MFZF`=UM}?5D>9Kf?e)d!4^TW-7r1&slVQL9V>wpj@EN>=_MH0p4Jy)Tj5t= zqh+_Lk5QS8u>6|sbb|Bt+yaL*J6sQgDVjWhxOl?tUm%?0grGfCBD0e*(>>ZM1EUQ z%cE?V3rg!D{k=x=dosf*qDU!xvG_NHUNc>UQ~Mv;7|A4EOvjp zW4}EziRR~bczI0Qo1VsdU!2B64EN^*)A7o)S@@|pcp(SbJbZm03S?8W$!2=z2khnN z`grb}{p0QR2+=)N;`Z(x_}^VeVATR*|FKc}>3@Pp5gIw0NC%)}+vx3S<8Ohn!ka>E zK_%Qy=3Pn`tJVZmJ(0{5Z?2APzYVNE7i{-teg-;;<9tv_!kTA460H=Nf@PIj0T? zE4wqB`*oB9oAN<}l|vMsnHBn2S~Eu_!byz(>6OZm!uLtQfohr2=-XFB_8`2a4mF|*}2UEotEPNacBuAks;hEG7{~A&hr(wu{cHVhg*<_PG z<$rBA-e=DdN`T*7-Nsg_}bMh%`+eU0-eF@P}XJNUe|6VhLe(pNyE6!u4#%goiE zM(O&(@C@kih|QGjudk2K1DrT^=>)SHk#WC{(yLH_kvAB5M%hfJqQo$AFk<0=V1>lI z>Ant?>l4kHG#}N*nJwC%DqZ0%akCR>fWBimK-9L5M?_FboT=?w)%AlnY3F*7bV@Hc zg>Z+l5T0!QA&(YanthN*yT}M$I`=_T6XcKnkVjj4KFFi1d$RvR9zFewJgSmHQ1M^L zqbz@sM+?WPG>UAAZwh|V+j~2%zUZ+ANNK)(M<_5QU?iNY*_;Wswj14CmHzUsUw*in z#d$n>k45toFeb<7ix8L7fP=b%AZ>q`1=E)PrgYLAC{=RGAp_sg{Z)Q$fr3ILLJ&)&IW@oF` zA}b$+^k%$Y=-O$mf5s?+d3>W&8^rmdMhv4as4^6>iSz3D$gY{!!=-2>QtDqd8>Zp- z2b)X$fz5T&pARUuNCaSWBk3p8$nGWW%@b8LUA`m@n71D!?gV_oj_#+bbYG(ys|+gY ziZzg3#O|QsjZAL+8s157M@HEM>nLZG64rKUOX+q< z+WD+b;>l6Iz#HWgdB2h}5YU~X)nkrw$}@T~Jiv1#B3zWn>a~GB7OMsvPQ(im`YV?U z_&reIN@me`*nA_$Y1;y>EdVwtxX!ISj5r1A3=Y(EAVad9wKf`RwxVkA?}IeG!X1}T>8H$aG8DHnr}P5S`UT6`iF4cg;g$3 z2tWqot{~psm3wSeF2^gw!!3gPJ<9W^NxXLFyua4)MaBlstVhJ z1zaC^S!!pVEQht=62J=OXW9jk&kqDfURbs)Kj9*52ex~Pj`U1SG_purIP`~_3*hCx z;)K0pq1^n9n!Dc(pys9n<9!!6uK-YU*>?Z~M%bUkwxz|@hwj$y{;6axK?E{m`v{%*ZmQtE@lO#NN1SasQL6K!2z{&ulxf|?qM^l{jtM8^!}X^KUH7*l zbb>+IpCYsyL@ZX>jwdFJ*CMUoQhC{F>FDGva{i;2G@G?8<$GGR(DN{YKS}_dr;vjW zT-7@o3as*n1NY#=fjbIt;5sfKiAw6)++6?-lphL4Z(o%PBG%~t1QNP zzMBSspopWag3K%L^H}WRCJwlBRC}+RrJh=vmqP(zAzy* z8#?k!D5QGEgxQ;ZJ^}L4?0_cn*h()`6{$@&w~kENi3$PlR;y5XWVxtwBv#x!+28z| zmLK^MEs{(=@a`v}jiw3$6>gvgETFSho>JynsYy|ipb55Ys_9mu+i6|LU zd{Yv-j~?{56-CfZV7p1%1V?b=sy)@`C7jK#;$pSoPOmd8CPcjeX72vCX-6x_^6&%K z>QyvO&cd{4Tr4IR0q_M2f|;0Nzh&1`Xd^TJ65?H^+9FMt8J zJ#^6)grB1vV8GST5(XG>Kiz%JeVRd!n>Wv`BvxdT$=Qd|I%;v}2v&;qD5HPIHU^_l z(;6>DG}6y}uKkAr7p%aIKH^`9xs?E7F8K#B*Amo-y~7H{;G+V4s0@p;p{QAe{(KD2 z@!DsovJbgs53&nL@F~j-K)Qo*5bvTH7iS^!pi+kZ{C5; z*DiBO88TghRF(#)K#R|*hzBx*f=kW&)3%N!)c7%83VjfBDcS%N=b`FT6_)S+Ld=as zc&RVj{92&|WjrJOe7c_UVZgPH{fn5Zx7j->gf%UNcrd<9EUDn;~?d_EBYuQ1X-jX8^N;w!ZgLJyx@#pII51x#>2rDUk??eUsh zelcf3+Qt4Im;8$OCr5|p~TxnOech{f^ zc3ebeF-ClCW-*V|jaHEQb5IDT$wz{({PRU6{?~6cnC>e*8gQmE%1dmVKLT8Q{xde9 zq->JTzR!8-eKul%)iX|HMVQVVjRHJSv#g;ls|BR5!6kIkT^FpBtx-}(5RkdNK!1?= zu(bc4Fz=W4VGZLv-O$eqBW4bn{1)>nWI*yAz{E(kbVYzqEE5d+Jq12-*XWZ6C%s-MwlOcK1P*iMnP*|)U6i@46XD3$QNRN;nzvXt0AMb} z9NI%lUd8_J8PW}wTc1Ub4`A+wuGBw)xfK8bE*C(6>m5T={QMU%S9qOf_O4IZi=I-k zofmVxX$5nqhX3cx{i-$!`?>T1yJt0$mz1nMy}IkK?#2_h!8bdDND#_Ji19(sNvS>O z_UD`}$ty%Zp5vg!ErcaJeoU*Fb@);8RbbvCFRi5hSsiLz+QCu8DC(-%@j+*hDX=ZL zPkA%rhAx%TmJDNuv!R-ySh3PL+*47wZZxhaY*cHC-Ko)#{W>c*eW|Fy$+O&QBe(w zd-e3YMKf;txS0d{XFp&=*!9nD{@}02mK?#NN3*!m2(4XKFmMoB)g`lr$eFl`mXMu} zwKOH88}T8p=!}nZ_L~ah{< zm}0*0kz;FGJ8#r-U6N1(x-RzQ5tMNPL1IJr!x42-5g#Ln>?Pcz0=;d0fhrDOg5k|l z&Im)w_Jr$AOMPA%bA`5$Bo7y&B%X8fxv9J1)8vgTQ`+L;^GaR>1FI@z2fsV02-_hB zbb1;D4lk~>;th8_To(_udU}fm))?)Y_JwPBXdqe({G-amN^&Y#;R4)FyLtzb8YL=t zMuIQ?hnF!2&ZnZ>aN_gaF6b4vb{tbwF_K3g2HXjga03ovsd6(5OJUYSTR?mtTDV@U zX5=!(IHJcE$1&jt>Tf(X&78Y2Hl`V8(EhgBQKo2qQ=MfJD2QbkMR1Oj#yyW0#90hn zAvTuIWJs}alYhg;YuNLq^;LGl^Bl9D%J~rG1Dd;qn<;ktR2UZl=xf)m-6vKiSQlsR zyLHtCHzXuRHJiz8iQ$GTsw%i>Vw0cFTl5lO;)m;Um-AqdWCMoS5=yvy20dLDKUY1! z(IoPLeyijilL~f1AwIUIcM@->c34Vx>G)i5nGO%9o{7;HI~qZk-~n0TNN15C;|%LG z;8e)7$*{kfXR>x5Sn|~GI14-<$&#EWPE`Pp0}OAiyuqh(o=fUQ5g1ptkCXZm=>qi#ITz#GZ}T@|S~F*ktf+ zR64q-CjChe6YmRr)Zj-F*2(!5r^91~F3NuRadqdr<5TISHp2T!+kZZ0@7$WWU;h4lY++y z9We7dL0;TXWZH{}){%&<;ngS))Gpv$xgB%}fv z@>6~&h{$s(xz8Pehww}q#+K_sT#f+q+wK@aoM5o#n3Q+^tn4!$KvQyl?%6cws*^(6rdEB~w6jSUVbW$&K8uVuK`O|oG{l2A zCxGGM$8bkxEJxSVv^S3cA9$gc?KoY;k<1C#ViB46HlULj*r9cMOpkqX?LC8wTykQ2 z-v?xG!iu?^--605zJsqJ-J8mLNH^C-I>p#4C>rtO!Hdnxd7aemhuq-b_s9IeW z9DNdwOTGnfEol0x4D|Wx1_LsD%cDb~3c)Va=9UDVB=FVXLdSO1Bc z+bjaKEKl}kp;YxWN6+X3+3qNp!mze)->l%btBL10dE?j|;9m2d{0L5{isSPJph5w? zzk>qFOM!x+0YLyk0X`E0eWLy<^c#@jtC9at!wB1-L;u4tvd0$MVM{{_t@ z(S@{wYmWb~89wHJ&+wTq>5(3xiKvJrI)d`Oal(6%)NFj$az1!ag8BR*x6!r}N3kQ# z;^#-PrOo0SN3lOz5}ucO0q$GdnGg4^9tW3xHIDY&HZ%yNxq(HKAtm|1KpJme<7U=uP1g-CiINVu@{7AbF^LJGlWvM8_=xC(gY348d+mgSNqW$M<@B?-B zOL}3`UoA`nQeyv>;X|I@5y$vMr6m0^VF{Fr;nAxCb~w9L%g3kmU%2egV-@i7=0CjVaV9 z5;CaW+1QJES9b^^yQVa0T}j8q^K);uD-@L56OW@4@f<<;n-t#8_*Ya&2oJjjc>Ua&GnrW?vB&_( z+!6pXSLHd~{pS+XmajEG(3le0bi+f8K=UHXvCxb&ymIRe&!nw90zQlo6J7K?hncS# z2=B=fOO~YSe!&dJqP9mIcg%twj4sD%_RiT&soyTkGDQZwoKqexNy*|%zMuFVt5^En zHrM!45|pgqWs$RN4V9tk=!1@^7YVFdYmNO6LYw;v%?|%~eO8;oS;nC;E*@g?UUf`J zCs4^+{}1(TzAn+xm-QjRqQb8u!o_IpJ?2pZ#sXaPv5X|Wks4tE;7SIR$=QD9RsG*XNAvz}N# z19GMW4<^rnPH{i2AzS4rC)_o~P|L+K6H}*+*D@x6`nI&bMth+m`WO7oGzfz-+R(19 zzYkUOTEMQg#>sPget{}|KrobEK9B+ge&_51YO8B`|1x3=6TYy&O+=KKg*HU&hyC_y zcdPf0{WgEs#qkrS`=%sgOxU~r>i|&JBG}8ba-wIE>)X4(1<91i~V>6;8sg~1Q{ zx!z=mGghoh1%tqJSS2?9yJD7Krv?3c_o|5-IesT3(KCs&4_B905j1r1q8|5TNNJf8WADrw;XVU z8bFX=1VMpF_^l2QB0r&lyUHqIV)C-e^=Oy;Xk;^0RgG zxt1FBC&TDsosa}TVN6%#FVGYI1o_&4AYV^MNP6oN+T0qg0)f3sM|ZV24S_B+8Y&$; z>?6*p&6c>E;fao{lQR8%7AtUfyEz!>2kS_}e^85b;`DU$vAV1`w>%0DN z`PeFgpcnDX${lnuxx8aGRXXwKOcI~z^M`x=awRtW7KL+u;$io4^^=7kcS2v#S-)eJ ze(v4E7C7$^i=ol^fjj#`cD1=aqkT(xjB<}o0JP{<6!e>tXVYRCfkv}C3;gVAV5u9{ zp70G+ai8_l0?-LeOMc%mZ(XUq7C}pTf7B#?nc6eq<$!G83D(E#8`Vc3^$e2o z?xxgP8Z`AhN55?|F*b1*z5lgn&v93SHSR{8b2j)T?Y5YbLK<@?RRac{h+rOaDEgRg z2R{w#FrR0{Bw?qN@HUIc;33ZJcG|ekp47vbpt@>uY<&{3GB$nQ&pa|!!iAICl{l7J zw;IS~itCU5R&v={%S)6Y%FI6bSV;9jKyvv&5X}srzx@Kx-x53Ry1;e>lAk}g=Zgh@ zcM;ulDE`TrT@Iv{q0utkNlPzAS(5{|JV>XLx;d*iIab}VCJxZwj?e6=NAnI{+V_Fl zpH2C3T9xb&Yf^IGXRaQh@(+%|*kb+k<3qTrZA`#U2{=t*rptk{i6Z}Ar$R^?TNey# zRLPwGvn;RRj&gMcmkT|2DMy{8gQA5uCW_ujA^nCq=9}m3?=g@nx?Y+IG-;V~58_qgCCj zs(K>Vo?&by&qJ%3e#$bAe_=dMGLdcm9n_1zau8~cn%~Tu@nrd(w#qbf$of0(Rm!<< zO0a#VtO+dLLSCgYI!AG zt|U@C1ojS7vD&cC^!&RtpVYlSj~bfAPD6SXgM9BbUqc;ghmVevWbCYU_LD2|8rG!0 zzO{#V1$>=H)^!WKO@k(5g9u_3meuFY9(!2&Fr9?(8_XAHia%++ z++5i=*%&tLN#2$LbIaHhuneD>c{+{Gzfj?SIB;*`Tad;84&2?+OrUS=0lsK8=(+pR z{hxo7Kt{JWU1QM7B5;p>a`Ir#eEQ3Q8OkqzAw`U}XJS^0;0@WuNi==S6 zAH; z&qpozo>^jO$9rtm86g;7^+*g~DsN+kHN0aqK2N>l-eg9D<>c3bjA?|`kO#=D@cFlr z`lJsaiI=sjK2^v9ljN*+{FUa9x#Q{X?h&ge3OD-vao`&HV7IQnDa1vJf3;bfFzPoJ zA!5cLN7M3YfG(CkJ|Q*MCge>HZd^#hNmhy&rWPBlJ^Qw`rg2V%tMN*nE7X!LTgJlR zu*||eHePok{@VN4almN7_T#qDy1Tva%Z?&p=WAKUiUBe==I25`;I_O{tv?Rj30-VG zX7Rv34qVoUdz41-(GpRc3>=tlV2{~ZXr3TSu3%(QG)pb{+!HY1Jm_SioJYS82X3@) zCBT7;e-vB&>%)ONOb(zgfuGNML~53?ZG+S!8fFlE-vY^oaKW^vVAxt58U5XwY0swD zoTU*;Qs7FJOLlhwF1-Hi4Sh$$fUt;HDuAU+(P-G;1?Ci0eH1=pncB3MYm-PpL#a@w z*{I<5VHip5o5ReN!|7J>nLM>Ru9>Fv@#1?tyBXEZk$cni=5q_=`=IAC!bCl7R=2z^ z*qtReGk|n-PA%syhQQt$?;SWmoOZr;o+5gFg!w-IHq0lH?u>{A0Rpms`Ij@v)L7pL zAYx=={aYRiu!zD5Y(btA!gZEhlglU;nE5fR&ot*<@ChU(sh1i-$7harc_-GacA!UR zKuYCJ2#1rHZT=uEg1VnjuMTGmuNFe9^)HXaY-f9VytZl*@^dO236%%eEI@5Ie!ILW zSr<+>p#Zw*D~6O=rgD)j!O~1;kvLDtNe(>)5t!r?Hd9YSh@a)y8O&hK+5f zv8~3o&BiwWmG;Gl_xtzZKG|m-qo>bUBWulj&g-oYMJ_yPfny%|!69*7su~2Neo$g_ zy?jAma#*v-6lk{lT$Q1L2be{x2J1&?Jv4!@ig=`?3p1b(HJB(-6`ws@$SS(HH^%LG z>ZWnXAzaYe%~`E?0#TiVI$PUhB6DPM9iE+M6i}QU2#<;+t~{T5SjN*|#Hu!|+5gfC zbd+bd#Tj*5$5pS(4ViLl4DjR`*AZmJTjZ6J7#AoNhR~2z!>)z1AWWn z1?m3{L`BYp*^K+7PR6*;_#jp~1El<|(k%@7Ny)ZI)C13Hl5(T~eW;&#L%WcZXbjd1 zQ#b(|yc+yux;zts){@lA3sP?|e`6sH>@Ma6+UW{1E=>n0yh67+S$-aY4(7xk=kwOg zQ_+~$cYqiRA>=pa+ZPFMmw z-iKq00FcA4!xC9!nmMF@JYLVY$7^Xm)%rKgC%VzF1HgP-SJ}7@i|UQojn;pM`AChV z7;KzwSmHx)3;uvh6sD12`=fD|>}q014}Vo*d0t>Jp0FHZ8ZO-04xJew))X)hWzb0v zoVN{J8PXo%Ne3Ki>}ZuK34c43E+Exp$;4$U(y#vQCZXWWr+IB46%-Ne=YGwkOkJX( z#9D1~zb;Y878bscW6&6iM%SX%iseO_8+y+y05))~*I3iQX?y8mhgS4l>;nFP`A-TH zicI@&FdybDC;Au6H~0l6i~B5CNNn#%rA^~gGyl&kXX6op4_ zx}^)hC-~ddO_j)<&Br2loc6Gr>4fgq_Jq_<0L*6{I5sxWamdb6gh}SN&U?3A3M3jy z04(xJKF!Dbedb;ML6tDu+uLRP^>(}F>1MhkDWQ5rtKhbj---VR%r6JP{On&a|E+C? zablF8{mP_#xfubzC+Q0Ic8L;E?jtrorY=im1xW#W^6L`Calc+f>aRaSK#UWB|Dh$wv4=mjD9oT2;jkl?*7OBrry=A6iS+5e#Rwt?Yi1w-_NBospxg5;Yj*dIc;Z*998fIp1{nGd z1?#o`T~J@l#(nMeatm=!zjk~@EZ74E78g56N19Hj#pbJ$FHY zAPeH&g?S45W*io9TItLQEYBIvrp!DX9=3tpoi1TmQzB>n%LFb=sS?nSnrR$lP{MuW zz~DpC+dU)?Gsc-n0}B~cE)dozlHqTcU`FK?(^-73}>_eAzva2Amj)BCFG+J z{Uzidyb1Y&?I7#)XQM{;T}b6vU#^{+m?LgS4V}A+O8o3wD0>u7!+dpFF5!qOm6o1~ z(H`W|4VG&#XR4vF=hIXZcdg`5A4^L<}VAa9F`29Q8h&bsOXn5bl5UD*bf(yJfLcc_VZ z6Qgc1OfJ$fC^GtYRIYk7gQC>=Fmr_2>Y7oe%IY{AeqF8i3F zAR^5nZ?z(_ei;j9F+Uag+UR02)2bvk|cT_ ztPFFJ%9RK}^Z9EKIvD2eda=_dZRSDRbR)3a5HFd(r+bppK+ngjww+LX{Ah*E3uIMZ zvk|x4i6T0}18ABp?}TNj4Jfeq1qWSbc$wCt3dg>Z7(#yUG3%YTM~U>(CyyYO%>8Qs z*9|hidpw%V1Jg;FL5SdsjA~Z^PtOz_qy2TVb1%LxSz|G4hrLf+U2%~YHSLXpQRsy^ z|3F%w80-5CT;;LAS+cT?JG!bp)-Pf{TF5-5(4jaK%2Oo@`B~0orp^Ye;LQmW%YXsg zNb-Ljz-?a`dmF$N{WXC5?ri{<7P_YiFn}xJ$Hfi6`SL{U|2}{_WQOqpZ=GZDiuM~@ z1);|n^w(blxHvvS@ErVehTDJvT(N%{z+IMtt?uXqYX3EWyMWxIi}&W^Lq`(ZN9Gns zel>tVi0=@hy&sIR1>k%l22@rHviP7d>b~?1RhD6zvlscd0o(_Z+hdFe0M6G8b^Kz) z)cJb=cf{pw0GI#!9bf=gI7O5y+n-Yyfb;t`ngf5XQNB1}v=Q5bROIBY3lOn}^pJ%= zzOv~Hnt5wQGz%y2ynD}fhkxFtKQtN9uCskLB$83PG&L*N*^YMM`&=0LN{y{L1HW7z z8+D)2e}|4b&4%P9=d#-q$hjQ{p!u!CKywY>G$;VF&&dyG5bnXg804IbrPDxV>x5OD z^HTj)>Y_D2<73|#St#R=6WlsUcIkHIY44O#7#+?py|@lFj^g0fER{BOI^%n+Amf7b z_3r)v>#>xx?tKrMNiI)6y zrzLmJfB`2Qo5wsg=Mi3eBNN-KMSeO4TNC}p^J6=*-Z%UGW#s4UQ;ZAbt&eqlRfurw zxUU_MP;ev7WwL;Qdkp@GM1OlUZLL^yCfWVAfSZDL8TmmDD4#N~E&`Wkd(eB(f96c94 zd=yO@9Q<%HxHp$pw+C3jMdg{su1CMp(tAk8GdAJ8obWcyd%VA~H$ns~;JRNfI8hf0 zi|#)?+Xg%ph@6xz@0Ynt>m&~HWUO5ca4q;X<>O(9dRNTA*km;>q~lKEaAlN=pS_1N z_!R9>%;^-kXx2w4H?`%HF+fg~WQV&N+DI4Y5qGc?vN+P$rK9`JNg(8N(dqodi`KCJ zd_MbTueAoMykSG#p6@O3NA)8UJ=+w>5j_wulh&)lU@bK_r7fTrZ-e8^$qWj zB@_;8IBn4aSol^`s|K)d64PqZqfI}KBQo%m+13+0zvyMCTPhexb=*66cno*J7W6jD z%ejXdq{^hZv^OJ73#Kt@ibcUz8&bh!SIGJ;$b($bBmx#4a*4PX zC1@%LOtz+A`KiEi@neaxr8j-LN^{dUY2<%xWV9msS6pf$EJk>uwWe~7qn=?;A!r%?vRs8jww%p*5*CEKb$7Ufd8I(Xg7N(={on^UM>rDu0?Zu5#J+`dI^U zZXuAb6ZaDasDso`SCw9g3DFMjzT%*P5fY@eqYjC zCU}DhNi_Lm!-+9<@vgy|UNlfdXE4yW6(b?mcu`ZWw4HMgb%_W*a)f3!$g3V8ivUY! z9`?1Ejn6+tg$ygnu_$0oZ^#@!v5E7u5kqmQ=3jcupY&Hz4Bhz**+5g>a%*nXxH5~z zMKKO?3Q|GR;+bg58pt^9StCB`GcU)a4MfBiFd&`J{Gb|d4eh%fu;I}(qiLlFuAK#z z(XcvUNIG`oGlf8)6loa=`W^=jm&6x>vSI^DJ5>u>TwT4Q$i;6#*+3SnY%;a)w0RtH zqj9Vl+TxJ%UJY~90=+NB+3aZP$XNOWA?74L1Wo(Mc9)3hnpC)+A)c}V92VCWD+8IKsY1$@%!oB5L(l%bW? zYRJv3sOh_PFt%1b$YNer&53NxXx>>6jV_2ygYPW;|P%LakZ z`abO3)EA2J91gIwEi>^-oJNS)p|z)jQGn{AV7=?5@QV+D9Z&Y zrLO@({#DcTcS$HU6~;Kj1ht_HWkA5J@6yx5@NnG%WvSGAxazmtvny9aO^K*)bm zWfTzpL&DGOZvPJm=LW8?J)n2L482o$tObL>o;Z{aJCp@Pd#C*i~fWOLwXA5 z2W0%L74NSiL$eGzA#QgrL5ERn54>eILsthvzejL^cAfuq1b0mIUq)~<39#q%BtQR~ zln<##0IJuH1IgFxUW5**VR0=O`M#{|3m>GQHwT7_lf5DA-%`FyZHJxUGSdo~w$N`W zKUN&}9!jOMjL>Zsk8DQCv&Lw)!{Hl(6MBymR(uY(QFYea!qeH24}uvxuU;yBb@Ga}kbg z_-*AI{2Ia4c(d|NmV)EFj3pu{7SWuJE%%=*1MeZ6E`jCCWF531Uy=9nlR=cAddqxi zTqAO@F&6a&g`x8Ox2{HT-XhS)bEK_-brP5NKo9qJ3uY4bG}g?c--poat>CNCo#J0 zC4UhuE7^zUf_BhGnT0p&L^+ud(}2np90-k<{V^z68}*I(`b(~b`O1$7Pp6>J7h*%U zSO|fB;3H!Pzy-7waQhq4$D$C+^NFXH)Ie-SY}{951YAI8VSa@je-^?ytt#k#DOk7+ zAa;iBMYbnXXCcXj>yC?0TOBy-bgu-fmC-AY$6^R0Cu~ku{Wfm7`b>@U%!=oMKSppZp{^%Nw>))UIcn_u$-;m&e54Z$)0ieGraz_B0{qJefYP;0FjDKEAL|(NJh@-BwbV#Pd+>E$nW0`W`5Zl zm)8(}KE|cBrCAwDFUzOwXwIEIZNm@-`TTx(4X_6+O(}C)h4y9TL(0RCaryXWlLIH7 zBTN{6PUVFK@P{n!+H@hq_-mGr7?;rPP7p_S} z;~2sclr8<*r+lYB%MqwHwan%Cvx2{r9@;#h%0SnD!4+6vda-^;9%E%)kl_er|@j*K^z0ctV*?RM=v-9mM+tKSS`DZiU?C3u1K} zP&qBx+UArDA_l>etu2I(*SxGOxt*eCjaK1d1Sc}s{;4+yd#G%#xiz+Ig{!;t3~HaB$})*alJsV! z=Hy3XCQ|WXu|@ZvUx-SdcI8`3jDmGcPIq%6meQJUE-7;t%5+YcP^M}0Q+VvRR(^t! zmd)dxG_0<_>>Z?LsiT`K14=kluNm@>#@I4sk`OO8h%a>U=GAf*(bXz**NAe(Q0Q=( zA0(pJcv(itpC(^4Ep}SsGCtYwm#wq}=ah1Z&l34Gy%-WU_Wm{$D_-udzH^h> zimL+(tt2YMFOTTHjPK&AlT67kN)`CPf8m}tD!XNyax{VSq$LqXgU_l5%o z0*d|V1FCiCX?ZSw45|f#jGvnBVd9_yfr;U0H~Fs(TnUQmSoLoafDPOb@g)_tL%PqC zfDK$uppUwzTzOjZ?39c$X}ORwMyDb=j0xt9DkL9V5q}!+IOceQOGLZ7qFZi%7HC8w zi281T+jrHtHhTGt#t3y&sKjdfy@EDZPK^Y58zy0T6a-Oa>LuUP0LWC+0vq&4X->-y zwA6(r&0iC^yCRh0?hl)z&f>kJ=7QK!ExjcT_&DmTkLek-9a%IMIh!6AGyG$>6u&lb znXuwu8ru%;NS1WXrPg!+8@OX<(W=!uElB2kDWe{$6I0+iR*tK2Q!tSUph1*_z9)dc zo^>`1i)Ch~#;vcnhbr*E7BXx4F)V{9UHX+SoauqxI5g-a8-J38)oAMI$ycRvDQ$5h zt{~0%*eyetdXQD*zORY)bG&sJvd7{lgzeMwRNM}4jR-NrW@OPMkVY8(aW22?9W4E~KFroev-4*Pk3wA2jkToot>m0V+}XW_Uho_ zetVvIgKUF_c|%VB1Kb6-elhfQwFC$){n8NV$ zB7Es6@x&>qip ztmCLH!$Ds&3vW6)k46Ks3g`Pk1E5H`r8%v-j>Vqyx;~UfwR{KSIQc|??suRyV&9KH zNUQ0#OmsUIl^&7n;3{jalDOpMKz=4#$+)1D#i***40+}}I^W{Bz$L`2FRrDb;&Y}P zhoY&uGu{_)6QE&D4tfNkIL@OjF05-V>)Od}X%FLT{jOCOdTs5{z`E*a7)?r)gf%gv zeS4jRMe@OI{+KadhOC&FqNF4C6!F>$&9%GhelYs+m=lj;z=Ed_@d6-|X^fZVM{Y-8ns3kVodlXlXYVwu1>>i@fFHM(>gtb~DwqE05KKAp$x3 zM|v)nBS=^vQwEAahW%!|fc$yLAdll}gPEfjjs*6Wt3E=E|$$yhJh<4uXCh0@Ucl=Nm!v;iq50t@~3P>P5g53Wr+Ols7-QMsLs*;(N=GImjtjV97a7xczFoxwCFzrpl`Alr?bm z+xXtqxhicRw}OUJew2|&_Dx*+4Y856G3h;3$-+1vAeymV4!?jgMZWv{Hx0k;@H0Te z5C0DhzjnMJXzlwiau1O2|7H5NAcKnl4cs28<>CEW;aX?NQU-#}x49)!0J(Pokb6jo zEAY*oYEU<~$J-2nJ^h07xqpt7L0b)i|4);d{Xf~K-^u^e@c*BNkFQn83K(|!R}KI5 z;{S$*pP3-L^gkaj$A3Ovkkj9f7a=nL?}o%zScyUDj5gs?n;D3zO@E1)pktqJL~H?mXe6$Z;y70d7@;;L$Mi^;!M$AeDC?nly_oomtzdTh|n>DxDk25(m< zZ{+?Y_uY2wf028`KghlH`ujZn-&ZGKzpqXjh5m!w|JLw50UExWo+g0YTm2^YM;`#> z{uV&)TL(Wd{uj9iG$j59xo@}!Y>)l7T0&2Kef2-d{jX2nH?<^(8^epx{6#pHc0}5S z&5~$)^#B>#_lWrM!lB0?9*hYXgsk1mNS6n1D5cD!}VbILU~5-efbdn3UNpZFadpMJexTjOsjec(+j>zP@)!3_#X9bYux!g5l*@99wHDiwD|!W+U1Hoo^PWYc()f6l>IeK(F=1f z$CoYsK#_K_O@YAf7BLIJL|GiqeK|f}Ad#RyMwkb^&`Ljr2R(P{4@fXPi{Rqs^psR& zih&h9Rt`=NAJUqGh;^1-SJJaDh_dUF=**j?Bwu-y%I6&i25`sx)v5|lfOp?MG^ueD_biPvI;5gY3?boA4KCD{nU?`sQ zTIj-BE1CyVcHCBY*QTAurF!E=k*w*TrJKL+pP z1>S-EJEh-XfYdv+-}_fezZa0w2e|qWUIT9_eHodb&GLIGI?ydD(yZd4rx6jzowv-& z?Y~p{$AoVweYp+PK!JpJV^E>l zJX}mqtB_cv_T3ohK=5G8kmb~}G*uvO(BbOD-ydJpjMa{(T{AetGpSr?HIAf;c2 z|Mf~c$#-iY9Hw#oc7NSCid4`7eX*9ef(pKWDpsjrBT|F@Jrtk#mycLT0; zRH|r^oiYSG4km>YL6|}nUNbx&^^)@%7GCn!OnBaMtSMeZ6V#7Ve4ePCjw3v!ArQMe7>q;YYda? zzQn~eZM5e3O~d!l`>o-B2Xyq4-o1P4=~6kjD`Ku5ac-??;Wy-=eSH; z-dHJOse?*)q26rj2r_TR^cfftDY*)riBx&%@%o(CW>o~S9g%X6odyU&O-f{5pFx7n zME73f*3)bhJWXTdmPK-Br4ZNm^Td{{M#5< z2zA>iF%SAL4}Wm7w8hH84X#xQ z%~6LuQuKIa+udIHII#AoAj+iW9MZ|XMm3$kaeG$28acQ(ZjYAAD*YF?fA=T1M+b2G z>@G6jmp{1ut>2UGW%_?|`%N5OZ~(Ulj^cmg_D;XJ{dk>&N9&oIwu?d0OmYal=27t8 zTuPn!H&Fh0K5UVGrSV8g=x=lJ+`otVgtlQ7Y(n923* zGkKq!=+aglsKbXkeN}UOjC;KXrHhC6_LH8T?`gL^>Ik}EJ30JfBC+p<2&fHHc+&Ix zh&fPU1>cp~a&dew2ws=`C}1hsYW3~_u}Oapmh=Obnu)9T=ufZh(NaK2KNZr_c_@_9 zav3l_&T()h-bfUP0-Oh8w@FWe#f7^V!vh!}M+J!A<5`gDrVWE|1^-W zJ5(2M`gDZFdI!-S`n(_kbTz0dWI3E3vE&q0a_@O?Vy!Qe3ftk;0^EBhL11Yae2FXZ zj3Q)2dR|*85})Y$2JQs_;NIXNaNpg{H5S3YO%>>1WnhCT`rCpi9#=tftj$bPtwIf* z>n&`39c3KrQSapJwfJK4a=JNfws^@R4tP}CbZ}9J+ZRzz(m%(?)5(^rY*T8}Xcywy ztbF{B1|0dcqmZibTaUG3Q)|JD0l#^+@`TinPFR{st%L@O3%R-mdGOhP19bHB>rY4~ z_qtr1vUzEeqyXdN-^Yv=Tx51XcFis{nSGd$S6f4^T+YVK<=rtgs=#tp8BX{21J6%@ zQnWGOsgQ$;4&{Y5OfwmttRNCih+ zW`)MpQweFvanYACNP=bO#{}Y5-otIWmGncv_;}xt8b9^VQC4kr&}+Ihu|pA#;en9s z*d7I)xAF14JiTvK>^+S5r7S2ByitpWf=aY6{T)rqZJ?Mz%CXi zA!<^X5@d6FaV_2hq8O>fq35`!ofknX zOOn@%Gu55KC2Ud^U?{L~u4Ri>5)V7TUD)-K1c&!Quoo}hhJ}B6uh0bY0tMaA)VczB z=`o8plI5Y|@)IyfICo^)h#g-VClmJE$Ig5oa`P{xrKaPH7E|#@PIW2%WN1E0wdE29 zfFEgOS69k+P1<&zre1hm-Ihi?;!hm?kz7u0j+zzPuoZcY7+E}(etKB+lyE58l$zDs z&eaHpNh7dm;3Iy$sZoZ^;m^|^-TuL$ysAr3v(4MM*K0(|x*4@rIAK)0+D<1bse5EO zyaz@}MA4Ct$@n!n%9V0QUFD}316=^MeZ`#fIQqxJ?T87@BrV-9rc3b8iw5FM9yr4? zaTOk1!u)wCUlMEcFRiAdL=})lJvu}SfY2ToRdJGa~Z@#D}9_F0i}fnG(yaFFDy(gDsCRxRW4bIVby7Dg*wb zP6wpwxEYrIVP6LMM)zlxcD@grV32u;B=)YNC-`@UHw}OCP?4IFSWlrTHbPsEK2%kx zP=#*p@+`bGpjcAt5W`w4Z8I5SF1PRk{Lbs=?WS(+9o)Th!qp+ezCX%qlk~&yf4}}@ z*iVNV#|fc(S^P-d?sR#$)>*c4SsTjHxN04n*+Y-ew)?qhsk3#?d+5mzkv5qB74o0H zD}m8c#$Eg`a{ud#{x5PrSn1{3{fr31^@EX{&&puR{u?Nm8R+q2s6RfL3sR`pb18`A zier=M^3+zvvmGn5ypghJTwKz%@%z_j!o1U32NuZ{rcXA8y5lZGa987YppT8M>e6yD z&2c6cdWAYziDSouGE1*_58mGQ?i1Bjx!@*{=H*|ne%8epDOpJ+!x!M7 zkLE}y`pCQVNH5St6~cJ#u%b__XaRzyt3b{I;9xaw{vuuo`)MNz8Nxr-NG39bNmfai zGlbnxKfEjfA(FBHrKu#|SwIk=;-1fJdjzKg+2xwNMaxux0T+~Ag*J9CU&QogK|3kK zGQ={G1z2UiF`ZCtI6g*$wJtps^m!Dzl_z;O^O+>B_Qit_Ren`B(MewUNkLet&7uu; z9cl}qZp}u<%%|7KB!SQ2R^k7u&N{xoEObGLO?2D(*g*1w|I;*}rvHBHcTN8??UW5r z(?=E-SeJ$RyQYsw@>bJN+KscXe5>gLd4me>??T4(;QKe~6Fm&=2XdZ3ew)EBIEU%B z*M$r9j0Alx1eo~K{ct}EWJk4i2iMG8X`%Hb3~JJx`4P=Lt0I)=>Uldr)Z`pF*R!kkRm9VEd- zf4ym35kzWM_l;xkGPkX?Y7q3{$^o5;n-FIPN3b4wK0)j|LLDeKA0`g^p0gz*qn-2t zIc!RlBxtoHL(rM_7!4kTUg=cFVs3zM5JB2X=D*vAi0M=Ki1 z=RLAA>-g*0Zm1jvU?YVE5KX8Q^j)&mZ1a}QHs{~spUi}CeQ9Q|Nyk!y%%7)o?xEdrn;*@XuWSFo5`ODi>}6 z?6f0W9t8UtSp(T6F;MgIjDlh#B70T1Tt&THv6Gh7VLJ53bilpsoxG~l`^Z<48TOO` zz3$;EMV3dY4Z2`tZN0_0$wx!bOZdGT&`dhtYP#?jC?`!hU}7+jIlnlbp=dPFn=Jou zJ+$!bZEKEv<0LlV=|cCo|z9sX!_$8 z`U`&9CW-tbkb3D`2Z|tp9cPN}H?+ZUyh*EoqQ21v_w7vQpXeS$?{b#>UbM_=4;lyB zP8){}zQP}!GpDp#1UuUgyAQks(tu_JZ>(Gs)?5F&9mjb5QN0yl6FPQJU;KCBLySmhL0qj2c zjooYD6czv#{Q!fY!_=Jyn+{l|G7E_~T9r6~KPDb%@lvA{mGBqp_f;Hnu>8gDr|}{@ zV#ss^IIzDLy|)M;6h*zDDm|c)2DuK+KQJ}(?VstixzK@e6oqinz1(%rgOllgrBgV2 zG=TFN~^$AaslLVGT4tJ5St6P69slL1?8%~%4k`>7;W(AHg*AKPH@qtRzp zbsvbso?vDH?A}6n&$k5FQ0b1Em=C`&Zm)RoaKGkWcv*L<%>Hwq~NuV`XBHfatHwL zeVe!(um6De0-Z)L(;_B_R?yrNby9bmkISoHi#jf0BkCKGA-!@$3G2&GU@AMiWVSn< z;dgkPk}W$YL0?Oc$7v%Ti-;jVAIP_z08_1$*GdZo92-Q#u49jsrw|_;RQbFwDB~q3T??e0FqQj7k~$MjRyB0ni-^ zqx8yjpKw?mEOZuQUTiU8Mky*61MDs(<+7)4ZS^2a(`p!(OVAPRl6?s_idd3}xab`c zVCVoGyWP?lCi|NP%HXn}hb$iEGSx~Mbl}0^4++lB>z@@JsjVkui|u6Qk8FHZGN)t9 z*}0e>+-*rR96b9fMBp11hc`WuwIqov{q@;(5~`i_gJUL=F+B8Z_lu2%7`J?~upbg1 zqyyN_O9eRY&2Lc%FP!Ugssj$8F4BfBy&FUEoY0T0eZb0Jtv z^;n7?iw@g0Ziu1Q*_VUOB;w3|5!(PND6c@d4;bd8JI~rdxCCN5u{xhl#av`^zne4S zt2NShRQ2?%bn7t4VGn7RdA)a7v5+=g7bQEAFv>JcK|)#@~#^G10Z?el8DI8jIRC5WL&?NAsU zdknhlA_{SGTGEr+!9(U%mx(56qRXkqlW@ zBxdalmiNQ{{Mx(8h_q80oBXPrL}b&zv8@r$QzobYPP7d^F_Rd2Rr6*})8QgJa6< zABm%==yW8U$9YM&6lykZOowbI*QiMS(qpp{xIwEzp-T=+L`Z?BJX5aYb{T&b$tVAzNM5uUM)&wvk^JOF5lr)~ zNDd{ma0Y=8H6t1{BGi1OP?yDo{X?T>q^|-exL7DO`5Ori1Wzk=$q+@2yB~ z^{Ys(`m0Fp@m3@U08v1ZJoR6SlBjnzpZD8f!9Df3k z(+`l=ylHu_&l!qwJ5X=47gY){@FxH{ee>_TJ@{aIlJ&n(D8j!;%;2{lz_n#x8~+yY z*8l?kRzp(9h(%jzx}9>%^FIpsyUQH;|MT&3{Wr&l{_ib_f8+Q^e{+03JQ3uhL;%M} z4=EEy`^E8H0=(M1nl-XJxJg(PsRmT``sv&nUZ3`DGIo>Rwji9!_hEKM_t6Zc9Vx!H zVx;02&-7|5kyk8QaTLW*f}nTeo$!s`kuQskqX8bz zRoI?YKYUxy5HVFckRN{U1X5gTc(P%+1yHgqi0^mceUmo>KSl1%zy~z-vEQ2d|3?G= z^S>MT;C~wU@Bh)jH~8DY_b4@^PIQW!tI!9(Q;@{N@|%&_fPvGVi~Wt7=GC7C}pFs!PpEYTAmkt=RG z#npG<{ZxI`DrVCYj0^Eib`$l@DnU-RvHN6IraB2aXGK6>|6}>AU@OsVo zO2zGh!_jd-w2u~bKJPTidZ4Ffz!_gop5Za~wTrA~N=|IgFw43*FaTZO%7E;{dLepG zmOeT3ywtRxmUOZzXO0H|Er;s!fD85r?e>BTb_;!z^22%VZSi@-N`T-N^^Yv6_j)0R z=Qfov_<+_Wq_tPBmuo;0IUW5cme;R`Tb$sy@0r3uEBkuO>aaa4)`ZFAr z@YC64FQMWH><-E)96txp1w4?U+Nlf%2i!@BFZNgg?qUx|I(v<+e?L)lv(@%2xvK0zFj;OnTIFdkX?$|T%1&Y-=C zyQcE;qCT@HA{r&|zP~GxGqxl&{i4*lRda-yE`k87gdl};m13SDSuMsbzSLL;MjR|; zN3=>Tqi?TPh8FQ`YJd%CqB%>w6vzqH-%v6aTM&H5Rgk+`o^vfy<){pd43;&vp3gXFuG0Wv>2&)E}2nB5q zAC`&jT+?Cqqd~t(vI(S$U7^_BR`!IxkW{{>$!lBvl1ZqQyLKC3l^`O>E2rpVr*~6V zEsWFm!OKMQ_<$tCGqQe&51##`fo`(TghW3kY?%Brpa<^bSULtV2ysoySw;_yrLJpkJ{t#8X&w-iDkgBu71SSfdwh>Iez#Uef!0%@z$DRi{%Aw z5-NK+9T0z=x}8m!%xTZJ7$gAS-b;d{8k*+FkA3dnD$Dy}Xi48g? zh-Y?BCV5y?PpxWl@T^Zue~khGdep6C``6ph*2D-X|kNhW=-WRPT(tA@#e!?qG0y^4b^J_x@^OEETT; zsJ$@5--hg6&1y({X8qTYPjTx+T%N8;3Nn8Bi?)}C2!Ow8^atID2RzvhG!)scd*y{q zzXpftG6`vcZrmCb=vYGu6S%d7oKS&kZSkA!XIg z&NK_Os$W{p07Ui6_qhxAeLbVkfFEW+H*=ME=2!q8Baovy8|j@Y1d*_APT$vr^6)+V zWW!6+~wn>=P7E@i4M2{#0ZC5`3{|I}>=svqe?>e?^G`1VtjoG-dZL_g$+qTiz zw$m7m-S?mN-sha>oV~~UEnhRnm5i}|Yt1=f&~D?${0P!_snH&~> zYMJhQM1q^0Da#-$+aN^zYB_aDx0I)fakh(ROFMLd>XUng(faF9)n#>ZvfVS$dd1*^ z0Pz*A9BG@h`kalLC(yU@^sQ`eJFCLpJe}R)`-tj@a zA7qo^Y5fy1(#BNv1o-2No9FnJ9)0Q*Bk@V@UA_G^8%v^xpOUT8lQD~AXF8i+!_V!|&n+=FxpjUKdKDwduQLz4*7E=~Ae%!j4Fi zB(&`VrKsC`0u~y&bEBk(*OJ^rh5ITiJJ3U#_M4SuNm#2ECRoM?q(v#jxw#w;+ei$G zSxs?G+#=PP(6QZ!y``q0kSNpf$?=W}pZ$r-cwPCnx4jwLq=%gf_rd{eiItZo*{R6r zep&TTTo0aV_Z7!<1UQE#VkmWfskK$gL#Eau@IoYL=W|o9K>m6)?-UKv+R{nomdocC zXTD~`z5*ed#q4LPvU5^TA}cE^={72-8O~J%a=K61!~%tc%ZdHA?iY^1wAK8z-#6zV zG;0qC9L*h0CI=6;S&xlwg)&OUZcb7n6Lw1~-6R=3;(yE+leIP?r`Wwf1Gh;Rv_g&~ zmg~7{wF^eGtQXJjJD=(E*d%Z0Iy6MCxVFQ=A_0J&adaHcM>ubIz53@#+k#Si-hit6*v@b!TdGW-8ZWJz5&Ks5Nj|$yL+gk_ zf@)FomRtlHY#mYFUDw`RAns|GWS7C zYB(wwhlEq;mSz3-rSbYYF4=&>5_{Pi-n;Wp_G04%^Tqep%$4MYo6N5cO!Z5Nl?)GB z=_t$QEwIUHUCy^>67$}a_OGl{bNbkqmS(bmY3B#2XJhWvVIjAX>aw?VYQ=7R5Ve|d zF4idDwvh?@VxylksWZ_T&%}WfQ*=}#Li~o`83M$*{(SSpGcz?taeS;nzjH_@voDu) z;O`iGWFkDzm(vsK5tE{h5$VuxnsVAxL|1SbM_?i;RolD%VA2#&NHVtHH)9D`)y{)s zcA=+7M{t)VfsatWoi`sCDb5_dISI%c=&)8oC<}%G5s*NgH~R+fOa$`$IDFwM^-Ld& zZ4mdhbao^v3~u=@d2$yWobENj;HT4mf-nILa|Y{B=xjNS=~uOLiHw{EzjnvtYGBcC zjj_p>w zInr=Y)`2jb`})XVE`L*M703EfHhEpPN_zID!*3sV>3I|%{xqiJubmLfD9Os@>VnKl zCksjc=Wc(KExrWU#KVpq@%FGNkyH?~Uw;Fn3dhIJiuc-JOS=bD1ZMa7w zqo-UI>4_`Epha2kj+xDRbNhDJz*MZ@r!6yxr9oSv7&N60V@Ni{vF`sv<MsNl)ldUN{TbkN3M|Z25r*&RE}uRZt(XG8w-{(wkj@ z`GK<4vaQv|qv-G6;)^wQj#04s*Aqa|8@;lE1hjSm$tnjA_B1mJa)C={|64*AiKRax}U?k6A&r5!<{J$~M|oy&CrklZaFQ2ydyD1WIn zdJJ?oK=a&Vo_tZy75Fvexp}!&_TNDHE&mtFZ$RL4Ra<9T#)T;AKC}LA;A5+~VRuqO zg!l5Jb^wy|Dtfd7BqVa6#v3NE;{{#VVL_yE{xS9l3i&ldF%wejxa(TM_PH@KN5mVa zBWI;M=(B6?0Nw%_zn{~Zd^Nkn6Xf!||TKm|de{>55V(G`PCVszbGel<`uz1Guu*EL-i z?2CJdh;CVFd=5dDehYzm{#5=+)0Z!hCvy|Z!$J$x=vdO%<8!89H%eVA+g5f zX?iP?3`&U`gprF;BoUci|NBHvxqI7zIDCIpJX=GfdgFI-i&s-(!d~h{XHdxTw-)!Z z=p?vXKd-u+@>N!02NB4$nduM5J`Z;eXd3*`5<^ePPY(0r;*p+H;GxoI<)L3U*cDm$ zY$afn3GAH&#Au}Vi@RW}Vr zfG0ME7~*EP_>k_4VjIZOl0dMzF+~yOI^MIReY;tG{d#GTfI-b@-zYr?bxpJh2~&PLV7lr)%f`y#P4xYp5gu1<)p64ugVV#JQz4dK+veTRjn2M-1>MA| zCMT#U3W;^Al~RUW0h{Uf6%&7?6L|x7RXC1=x0?$M8Qz@_QHpM^s^kj%;a=X3<9>qp z*K;dh?g@2);-dnqUi55PS)HL;w`rNTAOVymzDB&0fukzv^m7>d7LC!g;Oi7fa5uoO ze*hZSfhd;_@aqT1f<^9it1JQh`gSG5NKw$+?GFxfZxf~5`R+MNTQH6sy@mhy^;5s) zxz9D~S%rLxaY7aV#W7u;K2MDMqLR9(??P$^nfv5&%O|ag={sTH zOX2dVeIWTI3}7ei03;t2ZG)mrINmC1@Q+^~xKtD1*Ox!z|9_Eu%o4WVtz&_c4vJ`M z?ak9aetpfQja!NofM4Gl;MYG0e1HV_^~dR{8M^VoPk;XL>tFuy>m%G0bFs8flcN3c z>u(+Y6blm-RJ-a6CA_*~SGygaThP&?cw~$RbJZq!LdZ5wYj)iBaaeP?-t#t(;H8-f zDnHQg4?z`-`F+3S|2wmP%H0~lxgUOl_Ay?VQ0x)r^2tlIr6PRhu>>u%QQzorGD7(u zzka_vRWiV@pG7%`ieD6NE6wl(gA~mTxf;c#-pBcgX&l@xW{SLDf&YkGP{e^`?kIaq z|3K`1lt)W5J+V2R5Q~qk7<2(^2GxuMz~mz_eXIB{zkZz|cNHH=@*pec16LrWgCK); zGNj;<>E}wiRl8%vQq*S6Z8BQ6p(P~~!`u5wQ_sm;{4oXeZF3gbhgO&KkeQKFihd`i zaLgiBoC@q2^snhz8vEnSw`xH~QMK(Ew!Z6a4n)#xX0F4FBT<|t_fG>dwRIqPgC052 z!aSDeBCAHZFQRZ`6t8Q#zpN}5h5$_d4hXnK#J-35k?EV{=ldX8@RB=|y)_qZhYL&d07C!Rqmf}}0Or}niV}>c7 zeVSJXT6-!!0kuFJ&+@4R8AGt-7Y>m+Br3eQpY(}`!Bjd(XOb2!t_HyE{*&0@Mt)j* z*Z%6eo9@(Br7Y(Tm#%qq?Umr=DAa2xb!aS%26?gl!W4~%X@$DU0~V*b zb-e;2;OCp`DTOH8d)Y@Vt3qq3T7iNDB`lnN6t zRu=Ilq?j`O(Uzk3lZc*A7VxMi*hdM#;H(rk$XjEbp9n-QEcO({@XxVc z%x_hRl1Uw%3PPJquHpz!P}TfKI_cib5;f=5VHDK!1|~%1f#skt)#4klpRJT- z@W4dVy299uB=Xl&zXm?IFsl=x#&I`F9rn~_O0!0aZxsEXMp&8%nWgJYf|v4l>r}-R zooBDX9@!LtznqDt)2iA{>+Qzc;mK=GeHGvP1?M6=D6e-oL?ceAw1yz2Y!AM-<6Lj& z%Y_k2XV-g`**~~Q412B>Z%!!tSKtSn^E zzDFrGG@@)CM>pZZnb7l`yulg_>!6Kz@~qu?0^JgJTZ}*9DS#ogR)-EXeg!F_&FG;S zQ)Flj7sD>SupS9ZEwsvt4}M39ChiO3WE;jcWp-%n9kZ(nw>FNM#WTppi7V@FAL_eF;`Agu@4yK zGIe}x`D|LpG$Pr*$el>hXl*mxEv{u33}A#Uw}$9JVhO;2Kb`1dRiXEt0?|T1|7MUK zfd~=v1d-c`iX!fZ>WI8yhQpsCVcp#Q!NSg1y8$}AqmZ!2 zUbBZcYE;E@5q8>gru^Un3<)8pW7Y_vC2&XF{LAx&ZrjXOj@V?^K2A)wtNI|J61dRW zm^d`#F-AOizL`HNyCXY!y1H*yKGF{%;qj?J*79*Zpi8X#@XJ4L{m_5o)<^7C`JJ|~ zHl3Z#`9E&=zw$fqP{QmYx!whKDRc**H}m7K6O8>wLZ5tQ>EFM74seR>`cIdmpBewT z*|%Q*xY?(8RcsqGw6TM_v(r`lQ`cMA+xWTbWF^A1X7 zVt1kF4FF|JqH2ZTQ%8ePMoDC9-3sFW)}?LL*TY52GM-qlb|r1)>hkh5H^KCg8gFbk zR*1Js0i?#i(~gw(IFn;Bjh1DmBa_9fo@3=6l}HE0QAUjd?ndQ5?nc!JYTzyKIN|e+ zAP9SxK`}%2mpR-|uzr~iqiE;L5GF_i^&-T#M5jfIRmOZ>0Hq`M6Hti;+~WfnXMmDi zGP@y5EbT!u-K;=|Bh=fMMutrKA^~~1_glR2bZXOraflv zA{I;{ec2YDzkrF@HeZo0X>qU5`<2-*$<12;5_J2y_(yp+W)bIx3$_4?1 z#8_W%oDwWCY>99FUhHfC{(G_C0H1G)Tzz@?Z7mnFtsmS4lZEUpm@3`GS_zO`<@Lyf!6=tF(|^Yx0y)W2Hxp-5%2FpX)3 z>EzFrRn&GLodw)hG})w0`iI(me7!079kyMKjRu}y)A>y`z7%;Luvw-8@tYsOSht-J z70>F{nG&}H2>tjxFB_Y<*uP&dp)evINjE1ql{w(+jdvX|gAg%c5(9j_OXU%z;f%2=r!nXT*PvZ3L}*9+Zqz{fC|S5W!Q zu7)fNZNSNoAmofk;Vb?HrJSc>6QR`iOV#9};$P7-1TS$dh!1frYBEBZp-7)wjTft&@}(2b!R|H~>oZw)+EApghBzU2bXOFj_qN|bjJv?^Q7InIY1=Omr=I(!6HOYkY zUVI1aQvdE||L=d^Gj&aed=3ont+F>ndbx!z!&xo(L6&1WI6xM@dcZq%_Y>o1A~>uX zpSLf%+>#Ui(7I0YofbFIf20oRA!;XTzxM6x_seDkGphMf>Xu&X*peDeUg zzE{1Dlp;w3JYmpwt~ZF}+gA4Pr)d70r1(L$1}8uEe*^^P3yfeUquoPWidrE!7L;pT`C2!X)If)opDtCa#1>);oAfZ||QoVxX7 z;3bxhYwyF-Y55H#Zn^+Ztb2ATwjBzz+GBD?1LIjjxL4z(?&G5wt!|@o%22%qv)yf@ z*^nvV`{^$Jw(YZb^hMbLb3+s`)SRM)2%KkuI2O4kLz`&ucD|{ptq1r>SD`QMRrSqv zi2I?!i-u`D4GRx&SMXc-IY{^J>skof6M}_)$XeJ#&6WKW4F&M^c5x(sL7K^E;U>0c z70@jW&?E@pV*hKzPw;@6ELrx!Uz=_fRUC;bj8P8-YA2aYS5n4Vz@*ORHr=p+T_=e> z7LoJII3p7?OrIY4ig4IllmK@9*cSsx!N?sZccB|^xXK4K6bG$jPsqgs0bc(7k!U8C zt-p5tlUCvg_&IUB+&u+h0v#GU-|S(9t8z>KyaEHwCEJKnA2D#1@1~YC%=-Dk8L(hV8^^=e_G_jT}86+_!7Ts6Ow>0`S zVNan{YITsF1Og;i$`z#`+Ik$CB~)mK96*FW%a?ubU4*qt;En+~VI$P=&`q}R+yjd? zV@UA5Og0F*?DzC9GuaCH0`mDFusR)jEzA`gsOjtKm5{YTXx?IEwT1#9#3omsvGnxdD6@%}7pQxt=$mVW-`lpPtN>4C z)GnzCFr0bIFZt+LlLS1h6-LSO(j_WP4KCDjl+gACOn8{Fm+XqZH(^PO%vsfh2T~H()7K{ z(!6r;-5y@nj#3HSPnvLi8=U>J3SLmUr zzW8L|J^|B|81XXezpJ4^gcKs}X zUEe1;qWlEn!en&#RnG9$ANm9Zs+)}aMqe23dh{^-NXOV$YF(TTHL;S?WrqtG|Db;+ zMB(ZDp|7k-sygyMMB$#ky3nbmBm`)@#SN$u=|(vi|1P zgcg+=Bc?S$qdYS;4_d2zb&0f!#O;KPynapN;$~_wt;<)Hn4^cUVO_uEsRJoXDK@dO z!;3iLUOPP(Es&^qf4GY}d?FFuit4@eX2bf5`gWqSjRRzrIcSS$&K+WK0iAs37yQN6 zGO;2M*jz$jP1u|v_4`Y(dzeeDE><3GWNO#GMMa}Y-ugbZn~zRTA`c%bWv(m2TIu)a z^S}hmq^bj>F-FuQLZvHl-2qDRjlI`Z{qK~WD2iB(u0d}DY#(xc$F)4ucO_JpW+S_; zyc9XKi>yn9CF?}aP;%nYqsbB&`#(f5+uy!YiVaq+4LT5`&-ynf^0)MCTz z5RAe$GkbB#&0^9iMT{+Q+GO401Us3rzj5DL$U1m;-Ze&>ZP9<*V?1+7@}8CxE$uK6 z)p=+!ZG4Sd5&EQu+a~K*jY)7KMHahuUb^i3BP+zavs9$r#74HIghgTXsI|v26VK$Y zTz}#2W@2xdAZTs=Y|3Pgj3IjUe6rh{W`G~e-sC`5?vjDio4Sp!nIOhN(Og zju;&dtW)|q4yp#(A&VE>6xbGAw2(FW%cKN;`}z(CFI;P?8c3X^!GxO~i4^#^qGvbF zi-ULtpXtapZ#0L#p4#?yB_>3Dn~RDmmoc{z3kw|{uDvWh#Fp4uLUezu5wHZQo=|{Y zzr(BGEov8F*UvS%=h%>p6uN+lb=1mOJa_KD2I8?7|CVHbot%D7Ow;dE*w)~(Y+Hvn6n;U85{!U;{#_5jv++P;g z0vHa=`=f&)dv8C#2xYqlJ3&j#S=b=s-g@(LDe@)C8U>L`)9GG&@{+@r9j93eHx!#v znxBOf%oPFj`lC|-y}qjIcvOHtXwe~-qK=V~cEPf&ExQ#?!c2#SiFhCRS*+y4Qe=K{ zs%GMHF|h^yJQ=V)d0m~>b6S>^fFpB>mtmE^7P6=r_1=viB>Tp@n*@U#K(D`83}JCn z4AARGok*q{(;Vhx?(eC|wJ#diZv&J2NtuHbcY8WL5jE=DE{NtXB(yyqq29QJ3OWbU(A@c|k#K zQiw=p3x4|6b}fH$piw=R=u40itzuWgAnAWmGQ@j{zVEtz_x8lff8mmo&U(?3srcAb z=AreIC0ykQ{8wvjfogOc38t>7hu7ugQJCbxGG}EZduehlY{K#~95zO7@L3&6Tes+MF1|?S^bH z=#uBA_cV0(Ff)O3@2z1%s286D20oN_9UYIAGXo?3d49}8NQJMUEQ(BMYo`ek_BI*B zf6tzdpy2yGb-|3@@2x33DeEu!Cc+Ae=$FXEATD%L$8~ z1tqN~F2FMdw4qIF;=s83q&ZFo^2gCMtFs50+ni0p2&GQ7HOLas8qHlIgw7e}bTayW zg8yLjm-4=&(^Kigh@bHp)ZRDm-lE{4bsR-*eVsEd=0z*+RQ4oEOZNR1bc@Mf8hT_k z1fv@2WKJ;lFS|a&hh1N_t#vvtdqP?7!HK?*8vMvN_zW%He!TD=Mp<+8+b^ktr9urE zp`JX?D!ldqjil;0`D)Ir%RO98$glA&i*#!(TtC?0t0WZ;V6WaLFAuuipRlh1eEyR5 zEF{_cUp^o3^Y1C`Svuq#HZ=A3#!^+UV~phP0PVJ7DNGyt*0mCWF-<(ri5th}0FUb5 zNl)N}vN%5Pi2wE$zcAU>{y#M!KQsSpr~2;(WOH36t7K#mc$>BGR#4Lmkcz5)Zku47 z!^%?hHCuXfpWTfvRf3y@0%>J>djQ%@l=@JkM*cpt7_yS`p_bLs(cxHgIC@wH1vP~b zO_P}T&*_cxLpk=BieW3T)lnl4;iZzRO+zeh4Mxdz0Dxj%%>Eu{9(rfoPu1^X<&ZHb zsWlO?kiZF9)P>YYg7CMZN4FAS4>ZX{7jg%v=*86&e|^NM4$5%^fpShE7oI<}oCksY z?*ydGKM6?3j|AkzUm0KKK4WjA9t;Ni>X+S}>J5F#GfgvkAj^=$YAstIFyjt@jIaEk z1myoY>d$l^-3FYhS8l;&LZI%A`?p$*Bj|8!ovbp|mM;*p(vc~3h2bmpemXC}c%t^!W#!!YE zeTbhdmDzoZ%4*zKU;;rmk(eC?Cy*WJP?R9^QG`UE3@0>qxHbTR0=&Y*G7u*&G5Et0 zySV%bPet(&epY7wQ?^B2G7v)`jvj>}l zj9@W|1bD^(Z#HMCJA?HTeEC&>R@LIc@#T+6^1uR31`sgKC`&l}2$(*f8v`1U z5?Ls@_Dy0G#xwnIhjK2#q*5|Ki>)#UX;lh8Gh`W?SPkNqL;nO!t%VW?%mH!Sod9O4 zsD4UXk5$Uiion9I7*9FcGP_%jh$I|)pg;H&^4@Z-fe5DX&qs{v=NwlsC}%8julZa3 zc@Pg3-f2rTDCIke8@mD@OKYYmvA4_4z?9KVac!&NUdLT=Wl6@Occ8{duT^tA zN>*)YIgPlhe4ITDBkrK;7U#3HFQJMxOBG;d9RjE%Er?#C@oJLu+%9wS|IDmSrBS({ z2(jO?Gtm;SqXGETHXvZyi1le_iVc?xm4~jH$3YSiQW4BF?P;F|#_Smbis;kFXFPZ#exk zvwGv7m(qkn`Y^Qm0%lgXxV6)P4#PkAl-ugT|G=mIHM1HG{he9i+JgV!Q+a>zsqkaw zh_CgW)Z#mu`>#iJ@4coV$xXLzk$tupbcDr#l@)$1PN=0mHSWDXVIrIxdOH3LTKQHy zF-r$HvL^daz*HLMqXBvH?y%D=0#jVZE(2cQjUx|eK=S&X0veEfJ7uoFasQnirH9eM z`t3jMRDb^S0(PqSJPE)~74n7{gj&lW%l1_;qjXcC)fKZNp^yPp3mhDU82on0hP*^& zL1jZhd!rr~cgC63Fl+qvdi^>>crp7oeP2!zr{qb%QJ1XOr&BhHI^T2gwU=l6-1Wwj zMl_sQD=;Gai&F}U%HJH3YX_MWDYHQZ3Hk{ql%cj$(j~q3vGQ7fYEv! z0U-v~T587o1Q{wbO)8pH$pM@cUu0Tdg={3I(cPo|<7N76V0cC!ZWtxWgmjuJi?QSq z!VCpu#vNY72M9`1La918ucp6&qo&Jng@%{6 zB70DYYchRnt0}j;yruK*jovn_c#S)?E4w?aX)?CG*7DB5`lxhc`c7B(dE3g9qO8wULP^=`=ax51utRZyrh8Dv9t~knC>R??;EGdRg7IhJP}_o*8&B9 zJT)UzUE?nfAT^_3>g^n4eU%m3@0G*#kzkuj0B9ls7Ve|3Kp6)eEb3ZJ8klf>?pzyK zLq3PKZM({0$B~y77Ul{QdvzRL6jw>LCJ4badMMp&3~Mjz!>q?^Im>Re_9vDZ`pscD5uHBjh9* zx+2}sSGed=P6#I|x=tp{Yx<}_UYwGSD0&9R+K`UeMH&G83K_lO;UNu@%r5XQv(S1|Ie`i{ zhz5x7izUHq3YGvxDBO{wAecf0eW*4fk=K&(6M zfx5*p)x$-c4GlH%lCZme4qMikq)zHaL)occ%>;l7E+m3qbpy7mqK_3LvSgyW*g6iF#BXw zfJ}1e9IJqD(x(%*{R@cvdw67}5}g=JQB^wE6$=e3cAQ9>mu!bKO#)^L;$;sSmIl(J zjXz(4R175X+=A_ntQ~7V^o08a*A9YQ+(bBQ)F~H6LV2m+|Hwd6i17%1WFR4ulICqa zt?f*848ISf*UkYRxaldfO{5u8YaBi$#pQeqRrmMUM&D^ub;e2%4R@Fy5+`5IC%hfQ zP2^F+el{9h2h`TV$f-$EE*9D?2%wD5U|06$fz|+qs=1bb4OMiSV(qr^NdIf7ibpF$ zfU;<@`z9CjXQ-kKT$n#ifMr>DZvp>XfwWQBo46{4+LuH4n5i89X9Y4UTvaFI8s`xO z+%7dwfuzyXP@3siWKNo%s^3HV2Y@oo?xE{4lPq(-sF9&h8gOh`-Q~4%d}w(nP9=S% z@WUi;9)Fcq40%J6c|Vp-M)?3I%P0MDPW>@#pfms??}sPpB+CfQ-|*Cr|K1p2^YWcW_O?A;6I1pR$0F4L`+ z7{Tq}M%0mkrHAYyKPeQ@mT9-m^o_dSF(oZ|MR-k}sbWpX|J51o;#%Fkrh=$7i^)Fsla@D|a9kzTNp@r_Cual~95 zM$Yc#`U7{9-@rq?eFSeKgB7U+Bzf>3ZUiw`KS=uNgp z%W2{duXKGrg%*!4Va`>mRTt^_e6u9d-@~uB_A*QK>ApW9Mq`4_9`*YH?X44t*S}UOZoo>V z615@*SgEWxK)x}oFD2VkJ8`uwuY`FazdgGrZ)Ux5){179t_x0q7gY~S8jIBfy}1y& z3wF6>Eawjg{M6-}OYUI3a7^%dQw{Nf+MgWVcsH-vchz2pSa+A09HBod&3wzliu!Cm zqgA5QWFc#om@%b_YD@m8>WF4vzD#4_RCjHd#tPd?wG{JUAF#!kTCjx&RH9u9n z*IR@6;Lox1J=fyFxmcfo{C!^Y;f{umlArLtyr1eN+o{Lsq5)P*o$$23{J zJgFza_vYaCDnMWEcT{ecz##&l^ov0pf{ILXyRCU zc~38sZaZwt=-rw|Iz$PYLxK?B!jT9uGI1b~uE0B#=(_fCRqd11xCdBZB-?attys$Y zFdRrd`=reOE3~#QXdhWetsK5FdN86FSEi6P=kjV~B!iW<%e?*lmz?p5Ge0oj#EB{w zRoF%J`BbafiA@e|kKmm2@(Chre6YE#v+#v^{t799G@Y05ft-iaU$HQhB~oybDH_B3 zPwqk($`%%NGBb-a^6Tr!rL(!11$j3t%o@`Bkj6v6y-v3dAe7y8*Ix?M$SjZO0+=-- zWt~Ya`v}r+bvJmP(~e6A2*fI!^Y*Zh&f}Nel9n^d9jvFbQouKd$y4ud+ zW{BTj8^+aJdYRY#JV~HeIw;99Dz^C)7+xN0$<>$`6*rg(4D7}<46jwGl$bf z`n?&4BqF{daXpGWv}(d9^J_!?xdpXUv5Fi+zA22{-!X2GW@#nxi?e!+H)7+;;$^|O z@wn0X!3RS2538oOpGcz7Z&_H%){X1(sxf-;SMSZ#T&RYWhCY^9#wt|%i-ck^&TFbjqJfV5shir0 zkUZ+JN8fNAXi9_xc%OB*lux05Mk+238XS{dHuLC=(H6ztrJw( zWh!Y)19@gU<_j`glqs`galGg1^+GOQkh0H@0P5n3=F}!ex6L?2$7(fJRXbsB@-%dg zK|Mt0$*i2i7`sVOtPy>Nx`M0%>kw=;C*jq6zZ#sQQhR#;+5r`cLQch(`11;){ih1? z>frz~8;DM1yEKGGOo*6v5^b%pU5zvSKo=uqf2Q^+wF)n}d4^uW!SKyTFE%Uc%-E8L z+($812HP7lGH5pP3#9% z9V)b9P)<5;QAG&$IJo#@fwanL>~oc@olJm* zqVf~hhf4DLTj%S4Qb{KLQAz$@RW9#x3?JL-rQet<1gIp}t(0>P{+CJ;lRW$PzjaM; zL2?9N{Ri0O??E4c>pSeV)q2YSrVBy;<~O-z9ZaW*0mWgY>%2~Trus@*QwyHfn4KRa$wHDu5pVOCms;p;FP zu4LJB&(>(1&!Bceg?}y~>Lo1p{T*g(oRksp;wsThaHLRqgrsL8P%&D0@BIt_S zZ~|8~UG*qyeK#artWZ=}6_`B%_IR+OlM?SD@(G#@9Z$H4kOe#lk{*nrHS>(LAFvR= z=7?Aa4c0Y@t^qGqgyLLbMc-J_0*C=F$woeKFpW;ZJpSO@$=#GG;#iy5a`K3V-)Q%)k|!Uc1A|>>$khNpdFb^ z-Oi1gt68?`4)w@cQgqY@JgBppHrNoYM8n0nT~vM}Kp|W=-^%}7>f8^zEk5780<$&gHa8Fe<(>MdRODu)wHvVS07|q4#Mt)K+rJystIfptX5>PG zcNnmC5~Sn-zQe%~M8-Gl=cD`+T|mDe=uL@of1(Ntr@W}FlKeqHJmlvTmFU*am&?S+ zzW!>f?>cxH{g|wWOVbbx2`Tx2@>fk2?#UgwoVQGBU}aEGLe?e$-YbzR8z!s&`HU}= zjWU6N92DAZS(vfHNNhE3h(X#n;#?TPMe|_u3Irl7?64n_RX;w{P-Tcx#Q|u2iM5yp z?3-fpsAeeDf;N{}LyeOa8HI3xTF>B$nPR&;je+yd*Ou8P>;V zaGWrUQEq%T9U1RB#7#in@HQqp9oFK=Zad^xVf*n#;)Y~%rrCV< zTnLaC5iAE61r0s1ekMKbzd4KB>T=@e+VmV zPX73}04Wc#`(^HnjiKvdry2wus;LU<2JknS+Wa;r#LAx=*?BW^{eB}|&amh+GXCEe zWV?iZqrGoHEs&zQ@bY%?)2*T`Ffyt^eYYOO1~bh6Wi!89Ta-#@s@Ez8*>!^RFk1&F zNI1c>et+j91Un=*i&eYiV#$o|zA;Mw5cS*Wg_L|%sq`tEMd7(I@a8vcuHN(DSlNtm zMb_4p><^i*V*YUuPiQgJTs=L2@LD7>gCnGOrei^~kSC3)i{y#3|B1W^>k%YKfku*& z!Vc_3qvBuMq)jJV-U&mI%2O__#=~62NS%3~A+0Ps23$xycmW`F1N0v&KKhS}AN|Mr zo}Gs&G(JAxeNYZ7ltT~*5@?7apYp5;F(7XMZ1Vj5>ili~*4yE9u;t=tu^I$lmeC0Z zlA_)YPJTa`a_bgv7(N!V?lXvK4+uQuxDFL|MphbCnkb?t;Ur?g?H#G0sz+nOOB?mZ zHxq=!sA`M^BwAs=Z0eG3@A}d5FU<|bmFAM$SxPr9a*=)l1jskdnmliT@N?<3@O_`9 z8oL--hwX>_AA;p00@Fr)XbCT@(I^gYA12Ih9>WnRk(RT9m_-xUc0}laNMW}^!2zqupOwk9=m4h5rZ!}f(#zc&IQ>c1YIdM)q3eo>wo&w(2|-EaludwCW@A z80AqK`)54YoJj@`q3mB>g#c4qp;^m!1* z8T8buplmY98frudNn+}QSoSNJ;%rKD%kL5`&k#3YL;5EYx!Co8Sw zCSVU+90{Ua8DL*R8yt8{jc5TF?0XLdN$Kk$M|K?1j z9VUjJtp;hEu`C_Zkbi3`2rd7EPeo4`~i^b_^X zr>snxo?dAlMi0+J{5Jn-1=0q7`Moawj))PJ(w!U2ud{SkO627td=H}+w3?bT4GEKB zsm^y^t>htH7$fOQ;8>Bv=w9;I2)$L7jpbL!;YPusk|-97xu5KsSDNceS4eKnbO%?P z+H*9V`(CaG6~znU6)_|CoW`O@8@~a&=esp!|04fBv(w-yL4>_T+SpC(s!%|%D=3~y zSlli;Mak>tQ1kWOxp^5ApT|(_)0`#;cNd;aoWy_;PdU&YWh4ZPQ_gute*uf*3!Tm+ zUXzOJBv(D}G3Nzu!>#%WJv%Nytxs;@Y`R)H7V$+z1wnZ>8Ka1BZ`KiA*_Xn;w`>kl z!R6sv8l|5RIVh|yylL#m_>EUzVXo^k?y-E1$Cq$Rb;McsNQFJf)QtzvsyPMnk!?!b zKC-gC7y|kBfKE-FlD9Cb!$ViD{;%Pcg3;hbECmx|v5}7DG%iipQub@$s9^bETQ~!0 zSB#!}_Mx3)pD32v+`&0w>BH-hLJsK`S=>3Zt6<)s#0Xuxyp_Kw&OW|9a!Aq>xTRch zw+ED--oIn)2Qaq2-vMqc#7@Io*1Px!wFv{)bfr^-Uu#fR{s2= z>Mw}$-e<}*q;U!th!$iQM-*;AoLvc~N8uP#GgrA6Lk+TAr%mdPVT@GAnc#k-$nX>| zhHbK;8IR85GG^ALUy!s(%FXTk-d?ncPy_dA1*k93=VQBRkkAY#xt`(6Us#k?b~pe5yYs5!h!5 zcDdJ-TeA{ZkKU8=$o-PC?;XQZ6(spSA-OJ#hq^%QRqbG zo-e44*dy7Io6nZRucPZ>RkGVA%QMi75tJM)L;SINO zJSlU8Pu2(-C@+V|mQ^y&%lLGAsu)#HdV<^`EhD|<5_48+@RmefLNUHjDAZ{tD!7N) z<0K>qomk|R|4l+#98Fn7@mF)ccl><3N!#mopRg;Y>><873F=bt2|!=s$JZ)9Xbc0Y z&fZ`%b?WuCCeo?Gmp?z>@_Ek*P8|I9oABRVCZ)R;Vxj?bX4q8!LuY1cq-O}wnSEyc zxClK{Ux~}-N$R=`af1xz&a-(nsl{S^ysSWg+kEh9J=R5rz(q1{u6`zdhCY-OLur~* zN%fIYRdt#Y5s!@}!k5gREXpT&s`eS_F@rwe~ z9j$?O2uK-1I9}f@h`f;KJ4DDQ*2KK0QjElETd{XOR+f2YRxD8a1U(BqxNA(fpY4LK zU-AZ)1kNCRW4_bg;FLXY$b$raw8;Q3bO3F#(BD|IxP8!s!usDx7Wjgcy&_4yKiXt& zfHoOKk9Z^o950>Nf~}mJhO4wc1sI-bZ9aDuYBn-C-MTL85WlxC2`ivYrZRCUR-!<_ z>Zi$OLwVJj@!k84>;0IIpk9Yz@EiXFa?k(A-Z=$l+Hi?Bwr$&XI#$QFJGO1xwyln> zPCB-2n;oCGzklYS=AY|xGdE8q7pdI5mCAnhUTgVmH<|N9fOuSp18~Pb1e@rCs^(+_ zH^znRG++#Kqz|O)&{wnlZ&WyzfD!3$o6Hk1B4IFH>sb1stt|||G5TK{ep&KP({p`s zkcjjSW@7Dq+vBJ6<^~we5It_je*uhUL5>-25P7&jZ!m&PeY~7exS{St`O#^MF%H>o z3{|*thUn4zT~w(aW^nJB8Ib-X(Xwxy3M*N9)O>1D?AlRR|7w#BZSPKP1;qw_#L)-4 zLM82hPrfiWT}ew$*z4WlYb=95wv7}K8k^c$0Y@h1DqdgtU|DuVaS4wX1@m=@()n)# z?w-TYgyc?EmdNpp$MO_~(TQ->5t|gwNzBkH*)!3(ll=^7)}oALYIF%jYl?~|v-#63 zGL0=`Ebrw2Yaw#mXzc?_S)~;aAC$ytzHgo3d7hO8;amPk9s&8|Xtq%xlY)Es;>-Qt z#k_UL8^NNA$(iXqL%}ti+kqR{Z1ZdB7koPQRFi$UpoyCZUWoyo6*yu2r~r@;tRYKb z6>C77EHglPFBnJ@G9w%cAT%q-T43LvV3jUobHbLy1jOu6?t)f^QN4Gwlb>YU74(S@77z}E=S zf)wK#OvH#jCmNk&N)t>8BU&v3?!b@E@Y4&49O=I3C(yA2@SrqngYR9{_P7I%$H_rQ z`@^IAHiCgu!K2$Won0czSHu#iN3{Krd10Fkg5_|1c>56z1MD=HBmbjvdnk&xHqY8Qm{n$OkYsSWzx&{O8? zi9;HqwE{nUZ@bY!NH9Y}XmUmx5?j_zqh%d>Z$mrwj5P-S+zJ}bnr$TCWq)BUI+hMz z0A?YJO|V8rRvhVTK+(9R$J*N0TM^a~FISC%gTz)wz@HqtU;RnAdH!Yf$D0$*=n5E) z`s^OWPAXkE^&0(gedvpS6hJ1Rli#Z#5{pYoX~3|K!>!KUZgyozN%0o@F}xQi6;P zD3&@$o?_i|@<-&gGwbJyc=M7gI=*J+X)SyQDwH92WEcU}5YIo|9_iExl$`%TDCPq~ zFMe!z&Dm-W7Zq!JJL+H*R2nPd4psu{{0>EEr{D*PPh0OY#{)q{3@i&-k;4QXH+_gT zZ6vrYQ2}ZCni*_R!yoRL7IpKP?t(%<2o{-+Q;MPB_bL2WU6$Qmdy4Fwg!O)9vAcDf zXFsQKoKDn(Y=pG{ev2ALm0>*Wnp5*L4~#(7#!;sNph}{t)Xh~`0=|1yPQla=M;qE! zrtH|_U6Ps=OA@_-=3PWJEYfpdf<-5ckFOEz2mcTUJvyTIl+^I35({&H>$aMgy`Vfm zm;&eSJ^E(8bBQ3|+9-ujDBW`r606-{{7yVl^FkZ`0DbH)AELgLAi3i2Mf>}ieEQIY zRS7qyVq;}o7n^^xV&IB#DtoPHtZh~B8n8M#Rjhnt#r)8&ip{#@Aa&YVZ`jJ3E*;P0 zv1ZfqdvRj;Vwi;_ZR|MTQYx1{?54GTd&pKZDBI*>xcf9%o_Y~mmqUC{x0%0R^#o&7 zk$pg=X1z1ES|PX$QD)(X56+MQIt|~3ksB#%IH;6iv?|}U=DT?075WV?EOe%AdTc*+ ztama2$dLWaemfs+p`ctUugdT-T)BXEl0r~{sRXmXU=YSy!(Fmr$6sb0zL>xpf()5n zOhuy_-RrVpbKgXMpvKHGtm{ZyQhtq&r3xC)z0MjNzC=W*Xuv3;0nTRpT_$^^@6NvQ zmebZc@_Tl{@~JZ_^Q_{&r0`JF#`SI}Q)69h%bE(<^-xyO_!oJZO-J~0v&b3V(_AEmJYi2?$AZo-j!GNDRvz1=+(#J5(!!O-xmOHwTW_|(oVtG;C6sFt+*{boPE*C;*K*RnYd>}J6%ZO%8HTE@o0YO=t&Qt{Nc$v9*2 zMTMWel6L+0s3oOHabIGG7Wvw0u$#lf&83-Im+vX$fRp4%As$=?# zFuH~k%j#59Kz_MJS1x;N7{bc61bgXvoEZ!r<-_eB+fJZfWz#Ol{hDvVbt%n)u^Q{0i#{yjZzER?guY7v1YxmI9aTm}-VhhI0G3+$=n~Z(7cTS}FH_ z9L~=bTa`%IByqM!PbJqT9vVvmaXtWZeYX;5Q2Q-bvxq^WmvKni=*dSDFCE8Tg$mBy zs&U6!RB5lWvJTJiWaI*~H*eXZ=u~f%vqccCVkQgpyivQ~Ub>l562XbRP#Dxlx5lav z6W_PH^{~`r`x4!A8I4jhFonfkbXx0MzPM6=DM#~Q>kPCsdi?|z0L*Dl>=_*B(9^NP@V{O0{?LSG;}*!3B{cfjod8eln<9f`{zcgiA=H$2vsW^ zkCg&ODV5hj6bk}UOwlglysmcTnfYuM!qcF)J5mO-*1fV9oy+`HdPdxoy;cgE$^18J z#YPFBlp)83oj(q1KZ^JwN}NNM49jENj|NF%&5#3b%o8o@3d>VM)i zE}-q5x*|;P0A(J>lls5t&9 zCS{ytqO*5Oxk*K&Sx>0HSF9|t>pN#Y@NHH`Un3w2H>7r(I63pwEz)Ji9#OARcHet+ z6<#>B-XnqG{1h3FgNTRBUX&aDDxWXMI;W8MgDnqZLx|!`{m$ysDwrf&Po6N?7 z&}^xIE4@=nZT%@sx0?JLb*;4c5?(=bO!;9-ufH_?6Kn5r>O@xXJB&E|H_Ht!zA-2n z@o&q{yx&JJ5( zmi4~&-q8tLuzf!PBhiK`D=l?=I_lp1Rl6zwTPNA_T zcji(BY83INlMX*FtT-R~IEv9ee*n7V^{V$5aUc&rctOxV^p1aH3XWAw+gHFH_H;DvxoPeWj2;aEw%we|gw- zD*5Wnk>gbT{wBb(TtP+zWpl!>UcvaI8H5iXr^U^^cIbI&Qb^uaG%nm<6u=Pzk!fW#)1 zAU2Mek1&8_v#8cB3J(aA^S@zbB9~JGsAt?@+X^ADpO|oGWkQ)?^7eKCC-VP<$>~)- z$_lUm)H6i+Ej7_E04H>G9KVGe`+|q^ff4b6r}ROO@(d92T^;ne*q?wR!e=tsFG9Hl zf$moJQ$OV))z^u)nDV+NlgcEv_m{W0y@CO#XZ-#eT!ENA6b3ebWlmeb@Q(wjci!=N z+C$K|MYF80|BT-EveIJCn+v3Q5Ik#RbA!B@GR~_Ir@JE-vJ?))B^fsZOTXSL0r}i$ zZa&iyKqjChxX07#Q6cYhQ|`mq^?|Kt(}_6j8VkZbL*5Y4b4-7l;Ia;oky1+PIf0_0<6GJrywg z&xFIBm;FbWJVr$t{+}@UH1lHD;NewJ?E4@fwdV_D`~^Pw$=6CU>0cTBCTVHzSh$9bGLx{R|mwNgA|EFo7K*(|&DfrN_H$~IaGpK&qe6rHUqegyi#_i zN!WK_9=UfWFtC9}8xKl6u4=z2H%}+Klz_#P7_>(f+5rtJgLq5QN-Ty4#KrbRlA1=kjdEmQn0mH*MM4~}RtU39ZXu9F{(0ZtE zL9x=vTehQ+M$>|tDFlOWk!-Jn2KrlnT(-Zv<|U-z0_051&ae}^V6LKlK1C7}P1#nd zP6qY!?;5Ik7ChLSHv+b;m|Xtc&!~Tff1tm^zcco~hX3^0e}?}V5uH$T6?hk1Y-K3x z#h2yXyUy{MBgCi#lAcP10Z0Cacdl2w?Jo(utS7Ua1MSe&FQh@HKYk?!@fBQYUjQ&#J8q{n zi@gUuWN&CW42Az=?}g?9qu>Q6UQt@)knB4RSAc-}pi?zOIh|{$o~DyntGKA_{kmceeb z1;+&s5g9!cO4ZGf0PY^WOF&HyJPr{g1TCt9d|_Kp%ERPT?YUWnK3EPfKtPwBYh?>n z&btQUP=Zq!>;q%|&j1@Tb#u&!r6S#Phy;HXRlByzzBK+LgFKZ}VD+Pl9SfVPS%v^A zZ`W2%b7W}{2lOtgYh_trjM}Ltql(S}sdhjj>|GA<#H80lzQJKPGQ2plbDaohLtZ@Z z3g*Fk<$Zp@GbP{V**OM7jsCQ79$Z3=ALaqaJG|&!@OgUK9Idt_nRQ=K#;)DxapeX) zZy^=*o)8wy31{-!!>&19&r_I(xV<)-i(M3nzAk4tS zu5|gwiv_?(1@Z__`WU(q4Mvc~nkE{bEh*fMXMqZxchLD8ehlPi-z{h;Vb<_Yx*08J zy?Uu*#VD;^r-BAChndJC7VG?#dFE~4HnBk&P&V&55X4fftEcX|!y|V$o9S%B<^&J_ zmfi1j9ps@>Q`XD{C?~E;!ap^lN97Z_ItY^uvs>Kzqs+6dc>0V$>UZy5(%sUHsCZpM zY+7db3M`%byP215IVl@zjmf&X{IQ2CJ|_%ieEFPLAmNST-fD?1O(t;>K72Qh;QM;n4qmJ zm5)tEcTFY3?!yx#Ad6aBc_HVs?ROTOJZb4yQzwAMQw8be2)(?Z2LA?FnursQ}p zIdcpgkJ!EZ##)@-s?q$}YF5q#OXSDcO7UnCd0Y}_Fl_l{Q?N4>H-xO%z(s^beD5WL z`4jY#_#<=^w>+0N7vkU!WQlY^Bv(sPT0s_1+SwzNsZ**Vq-3yynHNtI=Ath{OdlhZ z57-}^^eF@to*&6<{N$&>iFmNJJ@{7I!fJ_{N)Y~Di3(upQZ!{-9k3|g0jdp01$c_g z9>@m=KPsKZYF~bks;A8+%IJ!n5iF7C3kEvZ!?Jn_J9S2VyQ6x-nmIs`Ip#?}XJ;mb zirYoWV{$C$?;D&taQzflSN%k4n2_UyBH>Qtv(|y>d$d+sMy&dwXLjg4waCfVkYW*q zGUFkIW=iAYs8x%PTebzI^;59Ih7|RXpi1j_cWo(spGT8{vCPC;>`)UR^{VZQFe+Jc zACccnj$YRCtd-?7lh|JvTx9k^2xkC^VL*W27LR!PPL_>CK#x zSjwUX#>+1g7p+0-(#DJLvl3DInLM59<>wn7^Ju%NVJK{LOHmoAYoj)rNfZg1 z9xwu)9yaQ`qNpwucv{Yv@e^<8lwXYusHXb3K~EVBKp);0j#ce^RZ0@Nd-zbs5mXSU8L?y{Jked9Db=}- zfTIbV9;?b=pLtRu65jme_Z-!z9Jc#gfV|sEN<%jiuRwVosV}0iscIvY@jUnP1`yqjJ6GP> zujICgEOv>#DJ{RgoR0aFl0Pxd%_&xgQrJ?E9a|KPUdxJm_{_=TmT_2jN(qk`V8q3R zP2W2&Bgnc~1i{K;l;`?@R|h(-OP6>2fA@a)aGDs6e;<_mBS*#vOgQjTrJp6@JS(b( z@R&Wggy3?<-J)_+UNPX;woPYZG5bg~4 z)&ZZqwi0>i75-iZ~9{^U3&cC;4>mQ1+Mq4z2r-ZKzdT)&%;e zUd30xV~Ou==dLA_ZRs%1$#w_zjDQ(rrqP~fY46`Yl zDej5S{X7#aHb-75A0!`Jl)M|$!B`oCmxQ;lRIdWpQZ*jSK;8CskTG ze~U8ejqeLZI`UcST#bOXQ_2arPBf6k#KQww<2WVUUYO7tR+x((XaXTnAWGsdE2^`w z0xUSd1~eSdb~*qUpx*v5K>cky#r)HDidlI1#{i|z%N2eJg}_4u{RroZiV6F8U>`|H zWM6I8vkU3#8v0M$>Eq-EICiI!S6EW>Z`+Bu{=)yKE!B?GeX{80KW(R9o~{41omTqa zT0+(x(sfORGB=kf{Go$9&CwTp3&mN`fc=( zQLp(dw_$9QY(gpfp6mUZb+Hz*{Rk8Kwhd*$9Q1DqF!ZiG_Q`??-kWa2RPJTkfAI!Q z!~1)K_oYAaCJn(CISutql+DN3zq|b%hHTJ-_XVg^-T&EyngLa$Xl@}E#B+8Vnb+i= z=H_nU;}fq546D2$xFO`7Qn~tF5m7;N4au8-P8U4p2^$5R{j2SC9LD#-ZHkdgFer(g zx!HpoAj%0cg3Lz%f3h1h266(858ho_s;lPw;~XNAd6Ka{Kax1+YS^>zx!|9+6TX(Y zno4>Ui>OJRfaK*s;bf+t?H-qGJ;-8b650B!yilmPd*q?$Px0l%v*wX0;DfTPbEZPr zJ|0G5XH*emi|Q-|JT9z1k`?iQwv(?g$!Qtf0&5ZuUH68+Bp$rMGV(=_?nn7L@(c=4 zw%L9D@E@YaB*|%OWKrzsMRdgnpanN$TS9qXBaw4KR8?UeP*Uq*U49n+cs4qL$y9|U z(?yi4n%V9UXRs;_foM=|P>aPXWog^0mTON1RklGEoh)L5N)GGkIJ$J+e2~l-pmfOf z$|bN@?ChVuWNShSF{eU6k<`_>p!~H^BgyJLR}^SJ0BI*}Uz0)F3^A0UO>T*C6ehpV^k49X^XIvFIJ_YR@A^QrA(-Ez02T+%>>s5G0H96H>K(F1dDN(Aj|-($^i+RHWvk4{G8*M6l}Z zb&gxtc2AAkd_jo@YLZ?Ei{rcdQT-J_`8GnPLiJkXJTKkhiD1L6cfUNjl<7C-0DezkEDaB8%GHi3bM%R8 zqDY*zdDom({>yVjZ+3{CWcJ#KBFmcq5nJ>SSj6iWyWz#iYa5fOpB!L- zvMT$Yvht4s>TlZ#eeih=ty8^Tm6>*sWp-u~G?C*;mP&R@R`L7P&Th@md2MvkO1Dqd zy_@GcIN$w#6&M30`43n&3@IkAPl-os4j>iJ&#5RX-&>_8hl z(tZ857r>G2W-3cz-{|@iRPPu-%msnz2`jseQ1HHSvNlCQ7ebj@`~tL{NNe~}4;j>l z-tIwa_HHu-sryMR;U8NumGm?_QqpucC57zAE(ApQ1GvwC50@E+hE`+Z1KP%w9wY|=I%D<|XK!wSA8J{~+}muoVCHz>goN9qV@ z*7veZ%5Hds5nA9#X5e&lI^>jVQD^y-YucjxY#_V%-qM4}1z{=+xE_eV35Q@wZa zqk*X=%D!WiS%o=|WNpWBU-=BL^-t+K!IAP0rv8%CM zhdY5A@%LbLz$!`bQV;E$l*gWwZtr}&zSI0M>dEkj9d<25RZl+@BA`W0@njEyPzD<7%Yml+>1)Uq1FVZdJGx6<>mBQnM3z^a~Bl~~hk3!R@Mh0i7q z%l?*uj-xl7p2$0(8#TAh z__0Kwey1T@QbQQ~2;ak>BqtneA&Vsu(ZEuVEdiMxR0?8eZDc&;-obMHSqMMxP%4K4U{X-kSO#2!uJY)_baW;YVeY0Rg=3~DFglx2? zSH}6S9zQSKf5a3e#5fc~Nvt7fhkVunzGG6Gl?$!)S%U`lUw5Q&sYzRzYpniG7pvsJ z!TQ=BgQ!h-EvEQ6GraV~0)`l-G4PJ{HhJEYH)t2}Voe?@YUw!&4H=kwtq(fDPiDe) z-O0y>v-=(n6b1JI5N>BXEF|h?pn1pZPFWlr$IdBZl!qHxhgN3gIVJP%Nfk#|O%zaz zTw`MeAbbd;s_XceB>lB~-JD0Ubg7-FS!7Gq@&P$WS0_4+=mQ1*IaqPs;9_3Xn4`E7 zgo(c5y3q(`YjHBOEVO->wkt5HV6xnWY;jn0ak0scSf(tLP%5;iQTs1?>kMe;cw@NB z+G26*L$zqP>DVyQKX2gA`Lc^8fYWZfK$3&tiSM=S9Mh+hHF7JRwWoYi8ASYYyb9Q4 zlQC?jei~fGl%K*?ep|<$aL21rmmcM&x+|z*JWYi^y3{%l(ct?jZR^S%*h7Vbs_7WQ z;;-1bLO%?*q;qGy?lZTFU>11s*fJ}0NYmHOp+Kf5 z8w(rt_B*579`Q*SnO+NRlEvJ`1>`l=^$&6!5?`YV#6BXIY(pa*jo8lwD zN5Fj;)}8*<$Nl=|4MUY=2`A}s zd{ZUCyg8<5#^BXLtmhxO>h1*i_FGjzF9BV~@?MCFWCX7yaUj9=Ohpbo%3NdqVOw_z zgsJ=d3|0(N(|nylwHOoyXZqfz;m=+#N(m#GB4T_inUa`Wk!v;_u$Bi+tLY8tk}OWC z1NXlXB%VB5GOES`)K1$wQDWo9psSe-bF_bO%zHnZ+Z2CmpraA&{lQt%s7D#m67k>@ z*K=Y2od4)1N>`q<>uMMl>RBv#YxJ4}j{zTBfrh*v{!7G+hq@GBANy$_{=`m0;W)V_ z%St-PWO6G(W!%IHwY5pPFe9Lb5YfPnkjXJY@yR4!j9)KCMk*y4p92z?nT#LBKC7QD zh0%m5HT|`?N#eWT-jsB8YkJiIgg|EZrXarI@u`BBp?@w{<}GdR_8o~*+sZyGQz;^M zOw;vkqm}(hftcNUPX>pH;jige>@RV)I-p(z09R)OIS2k5Zn?taD!Y>N7Q+C)fu^tS zul`A^t8>ONej45O%Z6bH$KJTnKbKf3plv}fz>@Y9*BAP+L+MNkDLsv$*;rkp>P!{T zaQcl1;%t1LZ;7(lp^B?oR$eN^PF?M7O?-#KlF0Qx0mq?V z0Jcs+8Wao-2m%NSFgOtd-I;J>UH^Aj-9IbOzZKl|{|l?*F$Q3DNe+=!Pd>}ik+4)s zdlXj-b-h5;7Q<%4Q|{T{@9Ym)pxOKp0sj_7U=nN1i3$ z8~_m~^PY4lMEJK#3T0T$)2>2svmp2$757cZ){~v)A{%2P+^9JoOL@ zXgp}-*WZYf5*9c_xG`5s@k<5G#R0xK~i1kbUKO4C6K>g^6 zzqF~&06QZ%3&76kgPN#(5tr=MN%ETR@6PDu@6HJ25hLOaZ!XLJZVSR4351YCOX$D? zx>{UfV!qG`=bO-uf;8TyLr!rpU``5~#rt}Pj@c=P43x+K?2L@`3_#LYuBrN+SYzI& zY~JUM`INeq<9fRZNd4a$EOwpwAR>RoB)zSikhWBXjRz!n_Q}&!86w*k;DZXZ6WW)^=T{$^5xHo{LA>4gvuY+ zsZI)l=$*6(0h3JiVe)U1-`xI5;QAvHV7S3ug$7_VcH-`G5pJltWv|gf{q|s{yA?us zFJh?!GGb-E%o8TQb{(40pr5s-_XXn-1`{Yl`|zjjR_B0;>uo{qP>c^{G@q&~c+{t2 zmhc#rH`wG@IF}{(%4Ct&h9y?^6fg682$G!FEl1uUfX4!iNuVdtpnx%ngo=jy&IQy# z=AKrjT$swrO_+Y}mFZtl9X&fOHD448nTeeM6+rbosl&(V&?Q?>Qo<+7Qs1;7s{nxN zxw8p}QDljcHRomt>nI7bs@3Q&s=C3m72)tWdl3R{xjkP zaj_K0Us^@zvWjS`h@?^XDij563qqnV?T_{c`rzz4)hck4n=vp$1uF0f{z;+b--y#t zebGxOz9{^BL=w7=RU=JA+}w$xFh`(f^?nFLI=F*s)!&Gdzf)5|#TwlB4V=(`vpQtU ze%8%}KZH5QMjsbwBhJ31Nj!y*K1i*0vqdfLfpR*3r##)YyJuX8%_o5KlA))C7*!8Fun4pi`3u!m{e|kX{tr|q z%MKQb^q>oBa>Xalil-9>j48}S7dzj&2s92NUbw)&X<0)hUcgvc_WARQZ*BnkeWTpU z)L^0zV$Uo#z~S1808R|8$y0$XzWmBm<|hN58E+^~KLb@))6{Ls4={f0?fG)~?19Bq zb@1yr%C|*oJ)zO~NnDGEC>_mtR2Gzj4z6lgdvNK0B2EzCFnVk@cxvL6m@g;Fh~ZU< zOVrgPB6eJ-gd}PrhBrZ2eR>dKirLOWJM0R(?b!W&d}kw`e5 z6L?N`3Wycug$7Z)Rifb(W??~B<#-2uQon~GS4vS`xq5p0X*H2o8qOFHlQ|=qFcIO# z_!VKuvroPY!j7|(|506bPgXO5dYtXQ?Wy}h)#CEa77g$2F;2>uQKjkR@SWPvxWZ+$F zIhysS;0cyJyC$W$nHY$={_T-h1sqTKm*&pR^E8;Rw_qaTjs+^Ox;ay#f&F{y*{U_z z3?e%Az&GOeCtq97-gXyb6*uQ|^#BA)E*BJVvl%XMsypdqJ5Pj(zhoT(fUE=0L}2qO z`C;#COJR;ddgJ5nOH^V<3H@`es)TO|ka6O10%V+;^V1CynnGXCIjg!VoaMcEG6^7U zGyS*u=>x&;g428Fk4_n_(>F|{kX$t?KSBx$=-eiLUDa=-aa6CUuB{RSDo&RFsyO9P zMw&`y7mjYTQugQ)xl|UyQbq<*qG`yd(B$xR=oM4VhkSxGQ~cqDm&|!SP%IhuqW6p^ z3vjdQVElj%4R#8_6?FOstdoDnYYh4e*7bLBJ49axZe)D{CGZyvzE{LfAn2et?#+1hGEZlbPt z`-)s3?XaWo*s-{S+V9QLg!bb5@o-HjbRvRzui=Ojx?SB2tb@Xhf2l^EHkge56qr28 znKV3*m|0xb)jZB^Pd!z~YbEuVB4jkMU}1J4jcE|6`zyPlgC}&8>Z&^EOs6NpIwfY4 zb;PTFOP*70#}w0Y!}8gR9XAlff4RhCG_2(AAUG|czTDV7NygTWEu-l>^z>Xk{7gwL zD%zHYs4~KtrZ-v9Z}>^cxSXhVaIv@NME9G($d364xc$~tFuQ4f{F^qp_ER!<8R zMQLC3Vb`_9#t&=5%ML9)uCkPQp50Bli=n%%+hIWHHmw*vVgE@6?=7Kcseyajl^M42 zH-dxa0*>wL4?fxS#~t$)gjnyUYGlZ%$|{CO>mW!W?OF1-HG06$>ZbEZJp<(KJ#9)` zC7b5XyDrD}3@ysXKkI;`9IvZMV)(9qQ}3dT>Xh2c%BgG@`LGJ5?tI@#pZcZeAH3 z|FXkPyTSoQM#s@)@R^=MH}GR^!ABR0A7)u2EWe$>)sZ;pShy8yVLWZ=q2G6@ zF5OhhFvGRtqCIqmLm2{^hZk~I$8^!=J)EOles{>02J38LH<{4apyQPTlCoZbbwPe! z7vaqcU@)8jK|19%k!rq7e_pI9ftR8zsO4EU>W}X8R|LL798B#bSxY7#jfx&+{StPW z9uzerxDTl zDTK=Me9_*tRXp|kA*FJ=MwQF*2Ew1N%QF$i*bJrdC*<}6^;aZyz+aa50%}Om(!)W2 zeLdQ~MT2B8>~A!i_u@<)W_DZ8PO}jc5j5r%J*NrC>1zzJbrM^8-%g*RvuwQ2;+x$% z9a$`;=iE`AJId zOQ$%_n_-)f<*lJG2U{61*WWH2r(8-}c13#_l!=k%@hLJlv*njU90J9!y?PvQ(u%9^ zDGpD){1Tz^(O?2d>ukn*5YjU+C+pi5z!8*x-=iYK5!_8gTu{8=Ac+pV@e>9`HiR2) z6)&|TYL4oqQ7)rm*JdO#BgHYb4%>s_yKc*Z7PkkM8LGSs!}zQuv7EjB5&){pxpO9~ zecg=lArK%nyvFqBSp~#0z zg9FcNmUn~O{|qbWE^5b>7&5q&Kpg%$au{1=y6D(yZsFja2z9jsE{DaFFI#|4<371H z)QhE4KYNrfgZI<3xb2{&<~NCm8ff40>?}&;GD7Y&dl3djrNUI~e#Hts4@vKJ?CZ*d z`r31@22$K#&nusn`o`XwwV?9Cz7kO@v_riy%lrdN(cWGtq!tw{m|`W+d+!aS#RsSZ zeJm}^#sNRY`Oz2C-nAG4SH24PSixt+CUC|V*8O5zWCY)qm}jm>GHp;eORgKi}>j|y?adF9<%?>TgLlZw2Flk6T$k5ktsV{r^@k%K2X}LjOlE z`agQn|Ed>-|No*F-OWSX1O^QK82^q4<@(=5C|5^MUidu%g8Z+Iwnh!Ol{QK%km%c< z>z)h)b_2n5eEmt03Dl`1JgF5qGc%W*>gu!D2vjlgzz6Bq2fNot>CZO-$LX44ajexo zzgnfd5zC<)_WbqF+x8BBWKY%CA4~0)8)EOFtj#K_uQ3XBRMM~X?IMOD11r<~f&h&&;{W7JB71ZelHu?qz*6tYu z*nXbE4mc2s6mFBS1CUU^sJ|^7T(`R|9xf<2LXJ$Lhh!|ZLDF67U25oDBK!PbEtZ|G zI)Z=}PCr$P-z$)W{Q`b})%kYx3=v;GuB~owf&Z~3%4^N}pRzaiU!GNXejghWSXXbQ zA@jGv3BPU8wueIjn^0~Y5Uo9I-{@xX;855{sP~bdL0--`fS1a+HMo+m?BK<@Ugv4x z3%qG-*C8AgYyfSJ*Gli&l#}#SZ>(g(b^Tv$jyoc3-Eo)0o)98HnEdpIS z0>FeK#n>4~b`PTeWkUC#>4R;d5&=x;=eMR$028X9cL)C;Oz5?-sRcD~baL*}8KDmn zO(iUM;CK-Te^(&A|JID+3?ya@-h4t0E!D7!z+f%H|IqRhbYk z#pv>wbI=O<^rq9OV;U(I6_M(qSaK;A8FB~X1(F3^?<|H{GvZIW{eh78CM9rjXXKM1 z7-4nj1q|>=h@pU(+L&aRmyT3SXcQ?aBZVh8>G~5#&_byNK^^VzH|N7Dx;Fz15QA?I zK{%)zD^Nb<9BX}XhSkHrTEO#rXkquWR|NKDT+!Qqtg3>@2$pu;xo{Rx!7f9Hv^K!k{XmvNYr67Qb>x!{*peI- zq6JEbdFtKD(d7oS|AI{}QbY*lFD=E!zBNmwz$Jrbf0OJ|l}=Vq&vG;1pe~hb)F0f~ zL7oZ7Kcu0ut4oqeA}hecNe;49!gE0#W|9?&;x$pnjEdAj%LM6N#B69(fTp-0$iRwqLPdLp`y%*45TD**i>pbrrxlj&uy4v@#9b}Gzq36#xMmnZRX#k zZ;HG=zTon%LjxxG{e{GQ^a|*q6>sjk3w`lk6%n~!1$5!xS;)1(+b~rWfkfJnOJ^Wy z1!BV_ZZ)pv390eEjz^!URJRcm|NI_#)F(->_@ZKbw?l>s{;E4*b_6FU^^2DAGmUmf zi`*NM|9V;O{lY4+fAGtOzm#mr!+NcH+2QTGR?ouNTB%*frmJAW4%24&?w4CN%dIHv zUT**9o6#`bD(p^M?)Lqn1z4_PhTseo_~^7W=6M!yDGF`|^s5SOzaiF3S6O4?hJT;p z%7a^O)+GJCGSXF839<#EL`oZZjBSrZ@OKX5aX(een;C)==v^K&U;6+YaGwtOPsSN= z^GMQB{hLlLV1;>i$`BtA@=!{nYs^+_xbaxqmr+Ga(6U$&dlnjm`VT04djmgQ0=jsY zISi0;L0}i$N_;>wV|o#5vJiMXY!uSyH8YgxA1V~~{xjXp=r0vo4pEq@;O9erm{Ov> zw4t;B)h1>Aen!1J`;@1!He*!&mkLE{;yOYt{Lw<7O`l0@xH?dlf-&S>Ik@H0380=x5V*4m8c1&tcRrDj^T^Q8pQ2GI>@vZ~| z{TK5M;I1trFQ0J*^W-J+jp#Ftmv1wcg5H_NV-q&F#Yp>2H(vYRj%bcD8RT0E!)hQ2 z@j3n^o^BeS`f`pW%1}EIK}Zi!-e;FAATplFH89phI`9lL+j>Bz`Vj*AH7PqiiO?DG z?XE@xpAPfhMFc0R@V&M7XrPYo)I4K#8(~Sum;q1MR)8$+2kt}1o<$0xM40VVZHL-f zy>f>%U><>PLy9TQyU9q+J8*DwJeV4N=i9>ofgmGwon9r*8t$T143bHHU3KQedJ4?N z4aO5-d(2fnkY;R3JNi`8X8gFc-bO-knp1xu=DdO%=4J##0Vadva#1ISs=>b;!(V@F zqVArdY?wE7k~#`<{YmpwI8w<`HkDBh6!e;~Jv9oFt0106%Db@6>&E4%WV3#7j%DAT zo9mY0XIOG`^1RnilPB)f$a+zSlSoOwY(qYc6Vw4bmgKw6UwU9`zB*BIY+W-CIFi zZ2mssF-$HqfU~~fq3GClIzP*Hv=mgN$Gb8&%O)Ya4{+xw$#Rkb$w=5}r`b-Wd%G1> zv904uc%5IgG%}or7O~c?g(>&stR3@16rXl?!=S%55mF{g4>?uHp`1-rnXUQ?AF14z zvsC9#8!Gqlh>}G;L?$1{fS=Y;l*OG8n0Hr=V^W35&JD7z9iE2B&#o`N`4 z&w4XduTm}DJ+!xI*Q;7+(rQSp%x1uyC|12d+5m73^;QEZ)Mb0{5~L;H14J5fH-m~} z!WC?)VyjqFY=`n4$;A92U77}a$*^7ne2ae;n@*GFR9jAJ6#(8haPfeY*I^eoRi&sw=MO2hso?9MdXzJS%N zsBs+7S`OY1zGoI*r;eN^OtZ&PC4LI_7k?0qtH(1T z5^d`Fq-oYy_i%WkpFi4DlL`b^*aaC1W06j@Z=2E>d(Kx@4LeJn_crdQJ38Xmt?AfX zKhPWYo@EEj4iqQ#riS6`j-jJozU%3Lfq<@&S~eVEY-!#{KUx&NyltvPMw=$rh((HJm^(#dMK}gnD9%v z(=ZXcWmIQ~gwO%J4r>VMO|b&>cd455h$91aTuiszped)T4&FI8@@59fsk5IcirJOVLad~GKsaTjhRKSX&s8))JL>i$%gi+~) z9RKu4Szr6t0u@CgbqC;^#53Fv8D{B=gGcr1gJp|<5)06dh>YzJMHAz9PFnRDe;s|h zTG{8N;s5kuSP#fD9lJqCbE< z{yy6=jh{c@V@o98qYO&;x{jCgXzCXCw0zo{sfBJ+&^j7D+slQUTLn13LJ_4A1-}0M z(WsUPyvJXK&cE%3{%?XVi*KnXukz(@H+19AWj#*x_Nhz&vtC2Y@-V0Jg+U`W7}nQo zLZ7Q!S&~dyQbt`*B^P>pY_WvdJU8T{z^4boySOcR1!hQ`>>lctwMGGQhTaJu2dC9( z!Mt^`Agt_UobY*rrk2HhUf$Phnje}jE*X3qk4&eSH6MpA&>ll*NvIXL)+_Z*G}(7j zTyK^_peXBgR=VnN6jV|NkUA{~6l}H3ff`S(bSsN{7_;o{FjERGU`$d$99A8A;H4Mr zpg)H39K(h=t%3)T{`tXVw-}MHhExzDfMKan;Gbb>;S+04J=pkLsA!LvkwBWT^p+jNjVgownoNU2#%zQn8JSt%_5z zZQHhO+qP|I-Ss?UuD88&jel#it(~I%c5V8jhy zb*vny3IhxwzNqj#BNYpeig0E| z827|0Rm0RPu>o9_sZMlNuwSDzy3XHV6t1}RQgi^=sJigK*r-DTKr;Fl8;w*zJm}iV z(54E}`wU|nD#hr-a#)k0yG}V=MUDJ1(Mh`5$~HX!%~jFmj^gGo!6aG1%pL*8XdOpQ1;C7&~9 znwO(YT1>Y|{!4TP`%3X;GD+-|`jdM61wMxHrZDb?p3| z4h?+Yc9-$yt%{68g)65t%^oyl@yV38%RZPxomaF`tQ?A7*TWO)=oB|a@LVv;+Hw@w>~ydi0S91{V~f6Ouc z{?@NM*~>vHL$^=a{mK9ZZ^$H=_xUA_NyExdKeUlkhDX(i{~qbGRc&N6q|3nk+>S~A z=2`HhcwH6Xkqww+_#-uFOW`B{a1`!ea1`SD zT4m+L;vaC-X>jLC7w9iIirtf+>4srS`?o8N0(7OqawkA1Xp@I?lCphmuxW3QRD31(fnSaumLT>aw@wj(AFa!)lai70?U_s&rCV;9HWF5;d5OqyI{l)ebfYQmgv!gQVERXi( zhW^e4oO$yzdhHqm=>@bj8Q*;9Tqq_Q9`7x@5(7Ui&5Ihww-*+He|N_w|6crPw}KJ! z_n{{+-%@aApGgZoz321RCc=lo7b{Cq4($Dnd5NW(JUZCP)gSJ=KlaZ(l;<^Z{dG1s73Dj6rmB=E;^596tdsOt9r zlA~qeN%aohFT_mrV0KF52RFYk5kENfn?tM+5D#3@NH<4S7%C>H*XfiJr_NWzSt!ES z3C2t!qeN&?Xu4avWODmGi9JiMUVNA+k`Cc;-7e}V?d%vdlS&EeouX#Yxajhj4s5x> z8T1ADJ2)>wR@`qX=6+b8bKxojSF+#DDI)8v8tnT2VARPvDlvGX$YY~{*fpPWSpt-|X2jR#OL#oTC^^&b(H%pkNk+EYY%S}A@U60*x$nt`Brsl$I zh)c4we)f(IU&K-OswJr>rLm=Fc7EhhPDc4@|0z^(O}3Ci=IL?h&iXQA9v~o9w#hKv zmrr2nrSK+J;4EYSDW#mp@*?MolxcER^!Z`;=3NjgP-!QjpXAb<`Oq})6T-QsKrbQe z(vaZHBPb;(bzzZ-;HkNRwkg!r-j2KFAZ&DW ztg?OY+F2BQ?2+B`Ve63+o2D?7)S}U7=BZkkrZfs+q&w2|_)9)Cr5*G~-*_V!)3oet zCHttEu=Q%B);-kky~vc6m`-XBi>U|&au3K+Wkz%l3~gFqR-IWjd<9CjEbM) zh;kSmbB*N`g{D|&*{xai?`(pKzh$)o;Sz!<%x%+wLcW2OCWO1)-d4-0g4V(1XY5(` zQaCm6KV2uQLyzknlxTfVDWCvOx&~mQ?|4KvVV~#CN)R>i@F$O)Pin8YE}Cl({jSWW zGl3xQ57s7^CbB1qc$)OrDH0`SwLc1e*clx_)6=udfV+^YmN%M02X-Z)$_MYo6O7fm zxoK3z6T(4vW%yf|*!VJS;SaM)tkKz77|a(eM9uZp9t?U~E$MQhcac+f>l_u2jZ#Of zNpLYekr?2JuKwc6*z4?zaL*X{>_zrV;rKox(7HSaYJv5QB;}<-r59Jp^OUJ&R((&? z>34H$gw)UvHyVG%@wB(ngN(-l+aCI7qXg(49bMljcCj1=N;dVKkHE{&|s zyo+XZ%IrmkHU^8tI3njv>SG=E8QN>ul|?h#=h!48zXm;O?b|uAA|28?cz))V>y;!H zU-JYy3G1K~dgNHT=p48YPq}@pB1Ww-8XkHI$GUQ=)9P7N(?-N{pT?(P^(2-PJ9KGL z;sETzq>b~M)?~zoND+N#cXQxx#xb!YNUO7@v{M;8|zDFgsX=fJciaW z#Fx^p84XP@MqVI*9m50;HlIb-1I)17nsGYP#kcxx$3JPhiKfY{+r|`RSY&Ts8DUj< z3-$ur47cbFoX5}gJF1s9ZY&}?({psYn3B}OtN>gZ22unC_X4)jG(YX}|;vGob2P1G`uYssRx z%f1-5jRTgc4oVz=EV|8`o|Jv!f}e9k&w$??6LE3r%@>e|-XbXfZFAes^zWc#R;gdbd&`cM&cBMxIwPqKEtYnEF!RnE% z3y`8v8&W~hmX9#(FP5vf{8~l3hC-(;mou;Oa5Qn0_2JGUbW>TO1{6*pZxp%#qTWfBn-5K_V+VP=zh~cqJ`0{S^-yYsQPVI7D{wJRFpThK9T@^6Xu+lj-{zSk!DsAo2 zZix~m(~hM;dzwMrIa2LSO!g@A@rp=Dw&H%i;nI;piXp}=<;&m=Y18MI1aSAsyIIpf z{xi~$_UzlF+06kmcM~ORk%qcUD14(&RuDf|A84)7cECu(1?{8z(o59Si}-^M%a>c*6wu{RV!)UkCZ!^W zgpI>q)N^GDJ%s2XFn>iy;6QhP7up;UCK=r_U zE^6zH%YXpYehvsw9=4hrwyDL0xJLsu{gB_Uqek07#K-6B|G)&azo7kaXi%za*v~wM zLVizI*x=SW=(v@4d2fiw?iWPw%>LdL$nKHzPk{1q+K{W_aJ{t{Ew`fcmp;Mj*qK2z z`01P@YU^IF7ua+Pl}#g!>R6VRU4B5hNY~GFQB|D{lT$ti+n|Qi`zxOcf?|c9b~qX} z6R^_2yhITHs5fI=nYqfjNrdSWdr6F}rg2zU98`o^Da(Ew*4$Y!HyZGIZw~-Uk&+i6 zgqoPcfLx95(;N-0UD-HTA=VqPykalB^v5uftR!ej{ zo2l!X!(!E;PVLj+VT2`Fsd;3Opxd}s$E64p)3`t8rVaiYNPFu*xw1FxLHFRs-6G4B z1rrfI_-r>?WgRxMllx9r7J4^-6CSA1T8Sxw zIvB-q9Y5hOPe<*5rn=;~eT|uMnVQPM@^#H(&rp;gTOS+lAD6p5KwCe6D8*uMhqn1a zHWn52V0xAtq++-xCUvxszgkLa54h! z)V1(woXrm^>SbN1rbQhd#!jgrgGSgoGnzm zlM3W5>{spB){ksHRAl&9U_>dpv67N&@TXTf2hPU{qMO&2?>VW|`6|yktol#0rIoe6 z)VhvS?L_gR@IW=I#(DtBruDZ71jT?w>~$?H z{igA@D;`0Lgx+a;Qe1nRu;SV?&R$!WbmZ(QnB(O1Tci?5(amw2bI`L2CXRkW5`e`v z<(j@|i0yeP$;ed>?|#~O@rm!uBptS>l5Sa3KKpF7FLv@Uk`rPSUlsUxz@e$4-Wbiy zETr&BE7*3H4I}d5AwIlvYQDrEm$s>8g>r{mcoA~WDYqS;zhpX3Lhz_QtF050(}kLM zcJ&{Eq;!u`N+MTF%>FZ#vHuEOqROG&EQi9A+wWGce8RT!KrE6#AC6(l+Ou^caN150 zWud)!Hsi+%-wv?4-isxpOoCejO?VyzJVEkonvdgCGj!pBpB>IKb;8=8eS!*q1|!@J zk+Zl@lcM(LDd%Er6*W?mC8!Tz56# zH4of*8OwNZFNmEjC>ZsZ5Dx!&vl#iB+@Z*;4s45&WRdzjo(*E^9DM5$K%Pvq=W$gT zy%epvQ*@T0es*g}1IGy0{|KiEzonH;Sc!?OHDb+C^?(ni*Z{rg-{3jWiorzl<)l5F zn{h!xSZ6G3sWC#3QEquOFtNg;M?78KqC7=;Fo~&gV>R6DZ|=@K-wy^O z4~nsED<<8&;P_ebq(y#;V61b}I^T37a-Spz37M z@os;%8p^adaM`nzmja88;A6%?MdAM@zNnf0APz)R{IsfmMrg#>1A|#K4e@0Yyya!H zf9PS&dM0Utn1{T(bEOs=2*_Gp@k=H^r?IFq6*);~pX`HHy|s-Fh8#*W=YE%qQIVG6 zhSfhEYArRCs@yX`H5uE=j;U?(Kj;x=^{+w zH?53%3fBsrbetbv%ZJcO>ka9yjmXY26t)FA!m@>V}n z?UDTshOh`j==S7dY?pbRZ^7lD43WLnwxldd4JpzYu4t{Kxu~3G)F-RogGZ0pwv}!x zMhn$>n*xXi@a#{06ejlos0Nd)GtG%Dw)dXhAX1-Q>nY?N9KS9u(eid_Fixcs^H9ZS zJ1QtIINP>PW8;`%4XKpi^!$X2{@gdI!q7M>kwxRuN#Q)NaVg>?!SeU>m9eZ%jT?1?O$##0Tz5!VLL>G$)2A&5@z}#?Gn;p(xTu?W5dLzPW=imtTA1Y& zEJEbn;`~XYFyC@CVivE(bKC54Nf0UUhaDZwj(i{1ZnssjNKNlRQ~|3~6BH&5cxMj8 zeUUyd*D$r6BV&1tM-!e*R#|nfeHI-N+BxST*{IwqQURtw}vE6+?8@cy`ea8}8T3|u6#9#4@F-=AX zcumX7?^=6-$TSs8EgQJNAW7WmckNI2eO~D_w5mIC$Z9GiR<<=L$6)EWs!S*Zl$%~ksr;{cBOu2m+pi|dKl8$q*e?$>eD&ph%SsD+Wv(}b1w;gv$ISNJ?eoM zLrq>8&qHIZjD=ufEcDyI`R$z4A57xV$tQHOMlUvZ>o#qEQWiwYkzcBZw|0XmkPiPH zXy`x1`=E3svxmTEy-hD2KPkbk z(v8_^-_y+q9gtH0K4YhrmH+7%s-X4?a(}YZ^s3wDh4XsHGL)6|{queN=Ex-S>(nHY z`yZOLYq}}bx%&3C$nVV1$y3;SY3UN8{(_sqjxta- zr~V^O`u%@!(*Iej|36r(zk^E1yQZ`Ea#a7)WA%~Jd~Fxi=L}1Xnyb2)4z!XWT3?Zt z_|hLe9LNAWmUslCe$A7Vt@0LKo>KowX$eUV{v-pg?ex`htw|i9xR6%pyP^wE`MB4d z+5KSNNtb1--2V07UW!s+QaJyox68r!KX3Pc-tPa&+r|9<gAog2rlQcr78DbX}IX_Fsufd-29~m0&IzsPkNEG(D%R>mQX*Ty<60G0ohK?yUk?FsyxK!8%fEMuzK11i2+?G0z< zV9#;N4yi^;>V`_wmx6bM>}TuyIg1wG5UF{gY2j!=gx5p8`0!&Y-3RQcbUrqXcdh}i zm^yLqdyd2nqq0Te9t6ZV0D*o;g}l!*+h)sj15sZ^go(hCLQf2AwCAqyE{2x=@ zxWzA&5@jVzR2askAM!MG4JhEC_njgU9DOFLrl0%QFQ~+9->^}@M@E4)8I7~`%rtDt zR9$b`t_QS-jX=Z}gq?Gk29}jO%mY=xH?RJy)6bmo(PeMYv~YsSflD>h^?a+Hn_8KK zk7X4VL(70J=WbSqB5B1snkKPek&m%3{j}PZHQAv-p&+-9pMS^k53EVvmHX-<568kJ zNZLD`b`cA#g6JaJRJ9Dbc)k;n;h%DYRnK(xg8D3oemWNmcyIf)uEb%>uPA!>hja!8&! z0agC3^u3{IG{y#?kD#AsdrD$mV#2bXZpx)!L5<^l;31aGV%6^#L zs`x6{!yqzD%GfA}7jM3lk?veoq5dxw)H(|*`cFI37jCab3m|G<5w`#bA+~_6$j>Vs zHcZuT9jD5<*g)19gWINy2tWht->A<#F%q|jsa;`#=d-;7VHYA(z=nd{LVwQ)B6ZV7 zBzNvxZ;!BR2MYLAU2mXdXkDcm9IM(9VjioG-p zKwT1(pQ(Fr0fscKG!?AuvZjy;oB&arX1<7A8XVz54}G;=_nN1 zcrn%*moav#_^+k`hi)kB=h6r49+gO*QZn{*YA%3ZRVS_kpLPb}AQTG_V*?%&QhUGK z-m11FZxDTWjsq3|U^Fg2hE>!W{0P|!FmHjURzly54iyf~zzAXlRYmmJz;BRAuq`;| zoar$`=W=OF`q9G~z)xVzXlZQj$p{=*Y8MnX%2kD~@f`1%aas-MV&EP~Lv~*g*z(HsMT1-RabQ}ds$PUM9 z>Y|bL*q{$IhL>6U4f!!&U17mEn_B?j5)K}>`OH$st6yiDR5eTYXL!SpPCED-1TJY* zAz$e5u{DjI*SAt#;$Q>XPWHrMlrelkB18DYVKoxrKffR{7jcgA^tSZ{DmZxYhc=2i z!wf0f;%+xA^?9ky){}YzOJl z=%^7mJh@T|*WL7RoZVGx=`7}1qqM8q=5OJlfoLr7j>_Z9$tYoeDx)F!{9W!H8?RyaXSXBK`qcA6E#HV^bnm{zm+FiwW+{bb03q2nbpkSpDIBk;IV>KV`1Oh7t0% z0Ippwg-mOV+skPdEB9W-5B=6-Z!=N+DQlea;RfN;OzFEv(X}bE>;iHKT=+gyPSv;7 z$p(sy943cLQI#Yrgg{*NvIYZ7NTD9L)$44_x|*iow!@I`mydIlHwo=FR%8_E6_k_E zxmHdJ^*%9={*OvO*FU?-mz;CUDd#4Jq2Ej{#wXI^+4Y82*lV05m>LelO~vSYiu{YM zF}hbv?tU-DI7f*|bbH^e2*mX3;L^cw@>(W}w(Py1+iGxqZ0y;`NY%?gxjQ@GBIYTW z$Ot!cGt>`>vg{JmWq!AuKEk*iNfoyq*ogsblup^cvhY5=;X1NA*=9cYJD7aG!Rhc! z9SQF~ev_cg7sx&0i$>#$PF?Y;oetn7`W2=fU6)gaEe2N{mopaN%+3@Yr^tN4I|&(t z(1w3AWaJJ^GHpJ4KP5b_Ryd`un2C)xU1SVKgnsc-i#et(uOy6&XFJp5y_?;3ROjbM z84KkpFASXPIqzrJsR}0Q7qn^nR|f^UlChG{={!!}s*(K6`*d#qqn6=_MkMzMQ|<(J zLOqBsovm)mI%#~^{F=zb)+hgn=f`2xPoG31#VPmEn2Q=%_l-#W1i12$M{nJ^hlKI}) zkgO+~a}rEet)p^}o~2y}f(eShfAeXY@l=f=Z_ubZuU%Uw4zO&nEF4229L8iPQ5j}J znh}O|2qd}1)>5GBt=*UfLG=D+lx;nl#gW2=SZ5QJ{A0i%DWpU1cApsT=*oW_5j^L} z>8=md!jc+hA-^7imwz2eTc|gV?|^Q$g?yB>O_=vr2$jm-b`isQRkVvUgA3|~HLLs1 z^;6tNv$ad&UXi8G=9I3R+CaaX;ja*?(ZL~Sfl!yScjrv&cPVN$n``$Za*2S}q>j(z z;;iaB%BfR@QXFA5Wd_aApqj;dufN-bJul+MvPN;La09({-YMz=YcY91LRHA6v)9nq z=`+jzlJ;!XKMnpF{mH-IUs-MWn#A4~lqg>fB`TgLiAi04+O0)W7*_TzYsCULbO^17 zuB~f=9ZP@4-hB~iBKW@`|2rYn;iO6F`F|?#|M^7)DDdO<0759|g%3pPmQe<-x^RQ( zoANMJk%RPyT>~J${`3;vKfnsJu^P}kECh>K^s7Q0%+hWfLkc;i~HHoT(9tSg%Y6!jAHJA@5S&i~qO&p5B z?l_)kO~)7or*9cP6n()LD@a&NCjzcySKjl~1nVtV(}Qf(L-2!4$LFJ4Ind+~K%0Am zNr^%sb7_$mbzG@K|DtgU!cbBlDAMiYcHgmF>nG-D%O3^-S-~y-NCN(=(jhAevL7;P z^+_mADQyS*n&f=T@`#J=h+mZS8d2?=AdiZNe}K(XyTh&!qSwl^VySC^)~;XA5rRM` zupaAm&o8^7ZEMWrM|(g}`sguq8Y-#qwLQleKp_bC`Sa@#O`x2j^+AzxU%LuZql`4P zpdV38EO`4U*_?k{@+lz_X&$Kp$SChq?yGR~0}oskAFt zSb6yslpyWFqQpSmT=Hsx+=Rpgt4g6mLnAFW1egk6(9o5D^Jg*yLgI-WMFS1&VlCz- zLSY=_eT&a8AWQJn>QBm!$Rp>#XcRgiB|rjWxuCI;DHE?^*9 zAM8PM(lD{ZKt=p^y9I|tCCR1_mE9AFW8ztF&Qj#z(RHr`NFyPt*PtGkE4}8ergVin zZQ4^I*~mGegL%k+wYQ}7$}5Al$AVt1%LS5Gk-h%~put6#;kZJJ)V=1XFF02O)YFuu zJnG4#&}Wg$4Xik9yL+Sl0?^EiK#gXC$}<2T6mDOSy()O(#R;Rc05~g7WRQRIpiUdA|N&R1gP)Tn@2qp?mk`W zbT@X<;=%GoO1fL1#?VF< z%wHcA_1h{9Dyp@CaJkGa{A&B1AL+TJn>_N7i=l<1VSt%o#VAI@E_wLDEqFSFM+U_oNcYrvtTQ zXD`W1*EV+doNm5oP>q|{H|Nr2$1w5gf?hWm2<7&-y7l?F?3cRy(f+Q)(}_Y!u7+-}`2$ejQ`yjNjAcgV4tB-ALC(Rqi^Y4{H40z3y`3ZXRbscT zDW~mNcAD&*h6gD0P7?M?)}?hR8Ba;aiyL-vBBa6-W1sIGGWZ;t?5=2)g&Powgy$&# zu|chck;!YpI^zpKI= zbEV3%7!b*PG$H?1IA+^h?hk_$wI((gxvJjFjlwi4VwOBrly^gj$tl=>ZTN#AeazrO z^l_C_M{}*ANf%e0h|Tzi2m#C7rm4oY5TSmj67Xck&wa5)AIJU7i{{mIt&_U_bt{b6 zamWovMSPK(iq-Je{JmKMdGapZT{2oW3e`H^#WqM2p6@2BnR_KLwjCKkLF;Xe1;h6c zBc_Vudj&H%h#cknl4n+`RQA8o+;GQgik7v1x(ZybgCm(ZV&m8StTmZR@nnC&Qc>~F zdj_hP2o9>~=x@eV>hjlrQF5`M^%-0Q4Hp>1ri-Z|5BACyjpRx;{${hUtH5)uk)d5%($+uRv9GOEf)?1t> z?^T}Iu@)b^^IwUS?r^Fln`0!$Z61znSE<9hd~=k&&{*;k#PRr3Q1;86F(OLk*zwM5 zErgt?YPCqJCTne{24Kg{>j*);wNEef|3NAh(#zzuqu}b5z60KqLcM{0PlgM#YC@YR z^0&PI9pIj(ZX=d~mBrD0i~ZuSt?9~uRDa%>m@Y)AB{i-fJ#=3p85wyouT!i-&_;@1 z5%56=K}$!~T(SY5?l9cLZ+TtQN?ov^1805IxuUCt=;iNou+|cH56Es2`h#lJ!xP?5c z$ySn~KG*Mcysfqu+QuuhJf}^jRwy$iUKUVh--wp2R9P!@ewc}o2&|v^z+3I{8e4my(ccsl`!qR_XdN-Q#<-DEF=E=Z z!6lGF+V9g$d(GQ3u*d}ap><(~wk_RSsR(TE!5QYZb@Z)$nqBVX$I{%SorEN{jWm1R z^J(njE-PQE0IykC?FG_p!gcj6X&MlBTOT`BEnCnf={;sl8|9MxBzgO`48Uj<7e_T+k02kB+J6gEAzd#`g+4|ty8ibB;KV-RXN;8^ z5Me)?Ke?@>FG^Qe3fhNF+k{-$K1JEG{fxcAz7ep@tQmxatUW0CEc~q1AE497(FuEi z0v~tQsFUX+>@43>^~xDI=)}C~n3`=Hr54dJjd0oqcw%QGAiZSlNy+}zlioxNemRc? zR-P0U5j;M>^W&!X-t#ZwoHS&Pprj|OCT%ek_(4C<_R6d3Z`@an2f0CpU7RjFV7(xE zKvilcCl4c~>s^WORrbkNR+YnF_5HK`@cAxvZ^{DD-?I&o2>)+3D9z2*|IG&V@Q)43 z1M@%HpxUlUK>uR}%Je@K=>Jrp|0fmb_y139P%^USY|#I~2F1br_wAmmuSD)Ow{#-f zZuZ!Eue+2sti@6+`22F+dO9GVHXqTTv`DJDMRM)s86l!tJ4ih}QPkdGfkMy-h#k(_ zANsR5l?9;lW8AID*m{Q{J{=NXg;i(*tAIBiqox)fO7HqrY2?eFTX#XWTq@B;l|F`! zzFx+*>Iw^j&^TA4Qq{A0RVz3VQo)eT5_hO(D5e&Lkbqe}^MRv)3e7AaVtnK%Ok;`d zsGxj|g^|-s3!Y0*l&fqtKKWRAm6!px=URVbDt*g+2F!U5KU;r+YrsM%B9I`o*(n|B z-GrPIh}{E3@W(1Sg)VJB}bdD zM!*k~1&{7IKj|l~K>$5yRpZ@y>|ND=^`Ms|fFAVhyG^>ww4W|Hpa;c|2WXz2*MW{X zfSe{=j*RX4wyQAxA8Y@{`$;3GKB|A?{ofw6%jgi8aMp0+l^pf8P!%LX*#H^)^#CPe4(JQ#3y-xE;)c3a zmm*BL?3IZ5?E15X44Gx5BMR^#W?K@q`qUvfdFU}_P;{-rSpm;=;jkFDbJA#-Gi2Eq zG*H@Pa+;`=*r<@~t?UZa`)3+Dq~fGxA%ZI`v^}|F@WJHrpmtV7mvaeKwda27P~I=o zi00Cch9vh1%cj8mfi>9QG|{~Q6QSV_20;+@2&~BHyV#ieOs3SG#y-`#Yx3>BwJLTJ ztx2L!D6`1p238EV5m>>t73&%bc_zzZu%)3D9H+iO8F?D=@MDio&475XL_-hY^@j|# z3Vt>dL_W7NLNR&|dVA`e1ChjX}Uh=yy{2>GnJ2ksDfYHxe?) z2_Rwi)h{>a-`qsrZ@SsI5%!GdOl%Xw!Tb)aD})loD`LA98oBMg>+PU%Rd=)#p70KS zVgiu9iDlXC8AR%t!W#40xTvxVC25R-X4o3*^lhzbO8dFfsLvIh!5IOPj6OvXwS}No z=qhq9hd6R^ox6gv!hB`E?Y`nh99FTvcR0rux&C!Q;r|C0)X0ByK|%jNT~LSruU$|k zVn}~%|7QDAVE7ONQf*OTOlG-q*70X_xGOt`a{+pi#=xKv~3+Z5n#9-(PSZl@^?;r{DD2} ztWWVBe}36Uv65G>=zf0D$}f}<={GUgoj+j$gztaIqGD($v0e;+y|Nhg=gF~BdA&|` zeSQo<1>}A0S(=K~e)Lc4PC#w}dv&eWUl0D?nADR97~x!xm4Cg{ikJ*R>HQI~_B0j_ z*ca{96zotmXacvD40x0y2xgS!uxgL$+}5Gt1SQldz>IQQKTGX32)x4Lu$vmQ3*Gb? zsVX%^h~=tgqx`uVE?0<*0nByj@f}grY@OdB87KNHd}jpB7z*f+I>yt7UO>?)_8q*d z3=N1a!dYRNLe9X2_|eO5Y_R(LI57*ifZg_#6D(5xJMdc6G%)02(@qbFI)xRnH_Sgd zpDC`}wQ|rD9sZe5nh$Aii51N3LNLBfEBR@t{oCC$p`0)qHeCHTfcBY&s)}}__OLKl zwEL&Qo~kT#RO6TbY#_N5_)P?oU$*)Ye@%4kikl^yS)#uYY?ewY>RX6U!`L@zuJHDk zep{zf!Mpvc5}*M z+^OGN>0K);*J5ZT9OSt|J(2l7T*LTu&dKcj6U;Pyuh4RBMkGpKVKF|_(lXQVet+}a z*R0`Eqdzw?*r7#jx|pDQ^IcV{ZDg7#xAeRNdqRbFfzj}O;NEea^C zC7nkO47h!Njjzs6CVYQI z?8G(c1w#fQ%8LQN{ML+>W3BJAl*s+oena85yoU45!_Nkn*oFxm&TVf3&a9XG$g?%H zDMHaaE3((0l5v}G6>IfaI@3b4srKjCXT3+)r1A{CmjSuhV-m9DKyal8tU+Q5nM|$L%dg)0Zn736K-P!Dfy5cdt zW5S`^o~cd7hRWi>x~(I+(%bg_T8ZbTp+M^9TA5r<#s_DP7Io$roJ288)JW}z|2WlW zacz3>UmsLPa52dYO)ZNJt@s}{Gn-^ZJg7pZE`RS@DH@I#W#b{U#=p*I(fd}p5s_8~ zPL&Px8Lm^AkuXl#q&ls`c}M0)jkIKl2iIzT{CqkHo=BAx0IwoZx&K|anug_<3<-6$ zMTIqUjSR*vE7LJ{7A}Y4b189nE{m>8&x2` zwUW)W_5-<;lx4XtpCGucCXRlXYqxRAm>^}WM6XA|wAE!+6>5t~E&*pfCBtubXRdt1 zfooo6JRD5Lb$3lV$01oL#X=y#a|tLYY;!y0dN=Q4jkf~u;Y^LF7j|d<^Xv-RYfj(v ztlcS8d9Zr53V|Wu1|33Hpd1DrRt=DB+PoHXWCSe<5H%Ilkd89*EcZo<1_qeBE~8s{bP7h|iFX)QJ->hIF~y{)#`%01io9K?PY)R~2Ab@8XA z)GhoPc0Z?=W)~NXW#_D8kQg%z2H_99TbPH%EDJ-*Xr<8lMz{RGV$r6S?x#v~j+j zNux$swaq!BGbhkTJh-GM5)V;ObYcb-2%%Uso?SJnujS@{nspU9w6$Rk-MN_mYP+HZ@B+h0XdvL)-=ulGW91a za;j;_t;BI!|0BY2DC21G49>DV#0g#wr{&#PF<`AA%=^N{U1JU=wm5uw7jw2|tsR2r z(dKe5k~gPfc5my*zB+Z#da5~WU8qJ*7@++U6NvL1p~%rGc)@@2fw2r@>5tc{G|HEM z=Gl{M0FfQ1Z}nuCM+jlo(h~hnHEJS94s)jss;%a{)Ea0+ShrU$q;$mu|Yo~9v zZ|V#7zbi!X(ZsUA{(}|jU+x*OkQ24`|6@l7=4Onf5>2>ZM`EuOJ3pAG%>e8u-n{BpYKi#ol}L2?R}0WO*i zJvczbT)G*x2b*)ehs;r4D*jm#9d|3!`s2Bwntb`zD6)3rpYnqvu&H4NkeTR{yfa-2 z5n(HkV@`+xnW-`3-^`RF_y)*KQhzhk;or=Z_t-E^o?z?(;(_?4y5?#<^3sG%b&I#y zkMx9grN48K$sxnD-y@6jN1Scye`O|BpmOU@7WH+;R8=^kKU^D_L#{_Ptvm55J)Dzq z1|`me-3%$N5J))F)m^XwohJ$17Rtq|<{r+D;ig^$iV@uFEAEAP+t-GWIXFI~E<{1{h<9${>?V3e4~ws#>ha6b*|!uzOWO+syQnVe8M%YgpF3-_uBH~ zjCRD|)FD%fkpPiNo&~S~VC`3Iz{#XVtX?J})!rofguaMeYJkUJJAoA(rjw$fP-nsg ziBnQKX-_-lfT~?#T6pmcF^VVtSD$+yXNGE_^#F&m{IphhhHhAT=4%;RYN84c1Hyig zP}K&##`%E(TDXJyH!{)6PqzXhQ<(PTb4UViJqQvv=hwsK`EO$HTitB@aeJmzriSum z|Ex0)KO%|zm7{*mCSg~f7B5KhscCVFEii2isc1-|Ic3`&nHtu<+X!Ezr0qezf)drCuUtDJy_OYCD>34)xxYfF$j|@4qlMqxWOr2^ z4jQnDW+*un78KzoDq5-3&Bi|+VUM+9gMs~aiiWfHng*iyIeqv-C8k8e1_cx8g^44v zI5aXbw8m0%ePDeQAsw-b6j_(?Ok{|hR9dqOQUael_fNz3X4yNfo9EJGkG8dPK}mzn z@c$7)o!FebFh&1X95OGQ#apKpK;DX0I!s8(m`$Pa_~ZL8JUT+|hGy{xUZ_YzhSl*e zJbH!$fJd)qhhpK>5&VR^>Q)=;4`wj2{Bj@BG;>@1|H7k)k8v=s?qhBA_Pc(i(UV^y z!wl*9wSm928<`o{28rrCdLphxA=-w07v~k$BAqa6QD+qqP+5hJS^+C+9bp@LuBKp% zYSuQm@Tqrf7!st?g04)0L%wZAE`j<7X8VihuXIkgHmNdguScL=HCS|SEVmdb;DM_c#m?AqKlqn#|i^eBG(W1(Ug!45$3SSiRl zL>wi_hQ0G&^8HJX@@z`IV$=fYQ6YVb*|}dZPB?!+h<$s}7lhB!=}1vp_WH(eAN!46 z$wm_YhI0rXz#lGVHXio&X(K?-WlWKI)6#p0C@PL==-=#XyzN?cCBr_Uz5LYKHt_sqfK~TEE*)Ui z%>h_-*_Eqp)u)_J+FY!}8?zv~HP$(|HMZhAnQcWM+W1gM{EBN>jHXv~`-v|bghQpq z_B!N8lt*hJAd6bui-S#LGLI_`+%U8{$brizv^IKN?mLFu(f@%*yPAYsb6j!kSYSM- z*7EMA7NOn231x4xO^fHtwg4*%W|}OFv^itMWXfaD3Ok7EjmJ+<<&s4+SsB!R!srGuM7Nm13`@5(4#8iw;alj2 zVlw$<6$j#&^H~!?v$@hQKD&Ls_6}HcRZU{lXV-uhS(bBGWJR%e>Pdw) ze3>~FmOYBt4uy5(IsL$NDT@@xgW8AS^g3E=qpIg*cyX^pdYRp7R%f?OUWXawc zk!zdN??oY070_vnd7-))%xdj`NrGN$%(Wr0!El+5kkg}zdi7}|+=$AbJmovK2j*s_ z$+AgF!=#Mq-PaIujg)vO1&8BcTVa=TWtTS2vqn&wBtrh(&lrov(A`?fV64;$irJjj zbRX>neD};D zr^Rp_FuA) zR2!X_S6({uxT_fACVsoTM@VP^-NvcW?-$VBZt}k;7iE?orU;G2SaS&!2Pf-?a{0&a z4XBq7b;T97cwo4jY-*UqniJ0rPU{d)#wyq1ras$nrHa|b9BVJ)C@-mTd=E# z;An}{cQFRnU_uP=p-#Rin=syLZkz@Ni1f)mnhtqMu9N8 z7w1%KxBDo0U?TW7bSg}X+@Ip=gJ~-|NEDDj=?eBDtJQ}lP|HFVVP7vg;v$WhI`oF9 z|3XMs*d=++f@m*E4%^n%Z-K=nyn7{1+9+zTM+wQ99d_PmWXwrm>$|ZFxJn7A-kjF! zD^35yGicpCmKE@tYkL=*s=CfRL)ce+t{vHT}KMD zYfanl$HO|ZG&xeQj)mC@P}EzF)9rz=V7VIYi0f@kO=y**&IN|8PR@QN#7c4b9qaAq z^v%#Ot6QwQf7ww;vOlhA5C4Atn$ex-Mb2kM)BN~Zq2zaVyaIqoJ5Q`J?VY+eC^>%LN7!3i*;`TjdZ+Bs9xfBHW_r0oA3O8-_x3#Bmp@*-Xl!%&$RwyoUI zZdBw6De2qt+j?Z`VPHr>K;AAWm=&wu)Lg|~9|tFSbhxn-lQQ&k>3;Dje7%@sLHyj5 zR3Z?WaXp9Ctm8}ox8YysUrF=2sZgye$v|Ec10p_Y_j8QJS-7a-;_ma{U zv*A(axslcmRm93u&Z1afXh%u_X7e%%TnMDC)}B)Y7$plZng(k)fK!u79jL}4oJeYR zcB=szC^sWCfCkD0dV)D|l1iVkJP%?ID$t@Eyzs9Es<@(6VNzcB77U<)LVEu?EEDk`)kBa<=OZ8=>k;KRcn!bu-Q05DPDfRdf^vMmesQ@!8-y@Ld4+rHsVsg zwxu3%TPO4|%-*I#YohMXq<3~2DL&D5M;!DaU zjzW@eQ1AUn{?L@BUjg&Rq>5Mh5=m?yQ0UX>f92@L3Y ziQ|-sX*8Sk`*(2=MTmB6STaNb|CQtEvr7sDfCmbhZC@<99;-EG^iDvj>62xlpvHCc zoJZ@tDAWh6N`pTd)Eq+TLj{kneZl>s8&Y@ZZi-xTo~3!!g@?a!Zw(kvp$@#4i;FE6 z^&6(cG(^H781OZ75D=QO1}~&oG&p54dpAB&vILsY;@&D>?4B$wVbuPUaGll<_4a%k zC#TI=!SkZ~x-W&+G$4;ZL&Mt@xL-n&i>q?$SV2*KSmmmee!!Sa~ zUrA=sb3v4$hHJy9-351FFq#K~!W4L1sNI`}9d$>>JC;U)HX@zShC%eFFgv3LBPf2m z7I`%WvPxS;6PQ+jQ9@;Ht^~#uPw2vdm z+F$MQTxRjG;4o{d-&qoPN-iqYm1IB5ANu70q8DPhB^P(Y5Y+;f3xS6rEaaYuOKwv0 zM6kGDQJ6tsu?NutwsUS3m+JSUfUmUa*UiOO7=~Z68MIN|&5H>+weDrwNbgsJzY^qC z#pLTvJLUVhQva8*6-UCS5$k&N%NzWSfn5g^icLm+ZcuR~0^@1>!kUDE?l-u?%G1&7 zn8R&Gf<)SQpuZLLP=incQPf+?8i$mn;KwLS z4e`Uk)z*AgPi|3jQHYw6u2(&(V1#}D6w;4RnqUTk_(NbGTcs};JTYY+$v&W^>nn6)z16dcAdhZ9L7u5*bVa*B4WDbSZ4-N#^~ z){IrFL(^jirj=A#&&{)kKYv=4K6D8Y)%FmU2gr672Yq|(#Sep$1@zBwADxP?lM@%v z8TcKPwTLk9AHj5fn9*>-hN|Lw8=E$s$eUjk-#H_LCQ`K?eTGah6UA2;&Luz&x$xjV z9{3?qbTK+z{n=BZ?;q4}+psonk63Q9Rp#kT3N(y+adhXP2WLu!CN%D~%%>o{WpkOm zcoVdcJ!|J3LqJg<=Os#=ely)Tb10q3!p_p`jbDScj_K-EQtrNPPoT36O7I%3ag{b; z+%@9lwT(O-9~7CN=U9$Lw4B zr(>PN_VH=WG=&Aeb7CyAH2sHFQP(^tn~&%FJH13+sAkc)(A7CQzLV7zrZSk7OlG{AV8^O3XC)nVAo-FF1Qeop61!ey@kN7RCKDB$ zL}m>62`fz}4G_7!tB2b)Z@$c8M^rm$J^{62O=C6_ds6Le&`vW_diD{lDW-(`$zbO< z>5Gdyty<1eFG)!E?NGzd91IyPu8B_sS5|KxRq)Uyie6I}xV*jS2G8qi`~5Ph>FKcCjp&rb-m#GzPM5Nqe{ z8NYTatvoX2w};A<$zwF&S;jRZvykz)jCAZ!D=ZYp+n?OIS*G$QOKr+`wFO#D{%1v$*V z#L<=k&*k^y{)d@BLDJ3|PEH0&Cq28m8evO%m!Jfoc3KbhhiM!J>fxH$cwMGlJ!p;g z1~qrx#(`{2->s(J(w(T{0aFgBrC}3PI%hcrDx;JvxQ*98dTF|F$Z_8k}$^thbZ&%k*^Mmr}Q)g z^YAJ75YzPc)yflH-z!rgvU#8axGi-|P>JfV6Kw@iqiG^_#F#{pk3SfFf7wKwXwqvBZ5%MR?&q_6*aA} z4V{cd?L2Y;>kPU734xMM^qXmg2WS?_t92y%dy+da-ZMzVUW4<>Z$cqPEbY6go9Jq9 zY2zE~v1Eaf0KcLr5#{2T4>9T2NDOZVh5~)>94Tn1{2w*@V)eh<)n)zshJ(DO9)p2= zrCk&`e?;nT{vUo6(%0(+{;TSswSb@B`QtU?U}gr_-|zS(&+phn0d25A;v=+2tvfiS zl^<^tpP^M8%)|StR^S#A;sJdBs0q}|>-{;8|8&o6Y{eh+zul7JXH{bUM}U<1Ux0MX zZi5ji><0V|0ptdO%oB4TOkxY89bNJb2u@U6WDuP6s6>9JK&{mZRP$D_SaND4Zy*EN z{zje{5n)oJ_7Fmpod_nqnEJ@+mmt4>kE|MHee7uRp;RM07jxA04WEApFS(`_NPQ|B zr&WhwhBH^+>U=b`kv&+MnC4Gsb`|JqH*PsV{x@l#Bf7t_ET(W$OXD0i0n$h@rl`!Y zc`=^koA)l33jEJp_8~x!5n|DTs9CM*UX{>p$9n z5;a&t8D#0stRECAq0K9W7qwL|G*Q}+*YalIt+>1>{b}%8Z)(`iYDST!y|S7~)KfLt z8i^4ksqO`jlNwBr(u}oY>xyJ-$(X?!Kj4kP5z*y&Q(hEU@$_rHr6#rj6d^%BFK3kI z=mxdOq1Vz&#F|N@KhK&?3QWYI^*7~;4hK87h7Y#DCMYc>&P#*Ex2nuQ%e1ZB0mxF- zfeN`HXOELr3j_EM?Md+7Qu?Xd!oe8*hE}pzlfjn2>mQd~iuV}q7?^zX?{Q@P?nN+L zb1x$nak`Q`Z{B0*)m#PiNt=E$lg?r+DpG<;Bi$-tUB~%Q^CSUKh~ucg<)P4al6Bpv zM?N(ndxrD5+Y~InWszlmyMyX$OQ#?3VAU^jLhBKoj-$UIh$eTil+I(LgfpMJGkp7r zx88_H<>bz!Jnx_0=;?NX`#=f_g8nI3a)K#9a(Plsj@AO2#QCrPsp5b3KfV7~|C5KGidNqBU)|aITCXeuufSMga1i^$#KJuP zz4;qxW5}Kba`PP~+rYTqJb=-qf84T|G`G~Sk}IG5?11D=M$2>b%xg}(?M+mD>< zFhClfI2-1;hKyT6FKdJub_8@peHkJACMNL&Y=jnGiT-iu)Gg&7Tii~~F%>=<%Q&*P z_5WH>Z2M{to{bYg>B(>B4`=g%{()61?FV$>lz)xr`QbcCi$^DtFwed|;0r`7`-~)h z>aiFfz9I#?%kG5sq0Cm(Rcx%i;t*ZoFAA<2VPV6)NNgLConW3xy0t&(B`MktWn^`K zM`(qEZhO4nAeTtHl$?GYL#o}9>VXs&A)|aci~hz#?Vnoz8;So)MHpEZ#H>MR))jCE zEifYl+(A!_0C!OOE72g)c@(J13`KB^yuS_|$p1KWQ~?eh5}?aYz#X&@vW9Xte+d{E za0exI!v)+ywKd8HV`xqAObV4Eqzy!->TAHmKnpX^h8;ppYSQS=mNPfCG{nmzT|Z}= zjtS|#Rjnjz0*|ioim6lW0Zs6+e3csQSe$f9cS7(*YkbDoRL$DkW)M<`Z!WYmG$SlC zplfidGr1V4U^e5h`s}D~5;j6S1{rpi1F)L?D4|z4`aioiOM30A59{%QR)=2g9gJHs zfs?<4Z0%K}=AtufM=(Cd=SWe2ET3{cuGA>&7}*JWZEopOk9)$~sniJ}g;J~bI&#b? z8^@dW zUr9Wr5H>~60o*~$qXsGgchEu-t>AVrr^`-{4G!8A6==^aWx9xo)aB``(UD&k3--8b z1Af1GDG2q{!WH4(F@9UO-DfX#o1#{`)SpiDJ~> z=`TCl5eoOim{eC(1ns*+b+e5Jd{}E6<|9%X6ZVqPfaow9iTeE?=eCalQ;Yk~AqixC zb&ewgDNh~-N`ml?w5sUi)2gpWgw=`(Nr`LID39Av3>p8TXo~VAl><{1F`i5JV5yNYky^&HGARWD8{KsBS}rC7s{v5w-B2Vu5;)$)dp1Aizk9 zC6=A0%H6J%J9~qOF*$?I^SNZ07u&C=F-( z(Ff{Q8J-y9cBILmqH{>1t%;6#$PJpF^?a&0HttQr6@c{Dkh6+7inqz^|1$R7iZPW`618MN5Pg7K zLg?o2ls1avYN`#{rjgl6Tu?#8z<;y1htPZaU}2>Q1bv)yDyYqBB$n*{^+kv2k2xBg zur_dIF~zRxcyrsy)K1E6Fq;-z<-_B7eX?13Qw(V*_WTzW1vf8TgFzu;zB86TlYjo8 zQj|yaBT5Z0nY{8~-&dma_|7^`>X|;3{8#4O#ke2ZV2gkt+Veo-Zh12u^Z0#r+Fh2Z zp-gxR_g>1q_%P_(I9R-NZ$@jRz#-3^UfqRP4^t85F&aLX4*hdTeNuH~4yj|u#051D zrorH4XpIy``DAYP^XBR$kLSS{5o-%wAQgZVT|1+KozBL+3I@ilxzns(-@0{JO7`_^ zzqasP*2xZ1Yg+P&{R}16co@#po==vQ>vREcof1CBf9g-BlPTmB%orm2!$OjOqS+V6L6 zt$B^FW_KX)wBUd=!M&p1OxI3h!Ci>%Mo%SJT<0o;t`S!cE$#>~DeXHj7aw39t`v2z zdAJ>Q+sbP#H=I1CdUX&18+3Y&a6UUPW4ysCm$e6?++-)MjJ;)J%E|>@^AX%%P4Zqz z0Z7sIDv6>vZn6R%n9A?MC~uqQjW+CL&Xqq`H04-SS0;)!;HhMxk{Ho*@UPkib1vlaIQj!v^|py^WW!<)^w7|tTPs>t zbP7Z}Q<+zXY}QGaq38xima3lx3W?%O(r~G_L};<;MP$ic6NOSnRaXPSvG37k2p99V z?OV>a5@XJuvU?-kqD>Fwa+M^ptZW^#GfE>)S^x#M2kdV8wFYT8wDFX4p$3+&nWNO$ z{eHchDoU&cACJr%j4%E034DH1e}b!FQ8^fmI}B`CF|Yni%y>gu2ODPg6*gYg^dFCG z32QwSHZQ1N16kRXq_Ym9(Ih0eyky!_W;|ly$H)O~O)JDP72W8kvPsp$YGzP*vfW#Q zj=P8aNm=`nI4&RB(W0SIxY!1`u)vky=@!gTMfA;WZZ=Dc)=+i|j)9#dwRviP_82UIx{xy{&#Ebs%3O$F}jVTY$d zEzyJCSM$`EPoDJq0&X@M{^rQpD*}#+hHO4>VdL#lwa;z*d=jrqTDH%vHJjHNumRG( z{_L_A2J_LfV=yAK#E!{iJ9)JC!U)8+)8v4{!RE|`-r?kF{MW(=&=40E5HjCu*yvb< z?lU9)$rRx#c42cp-N_IlrfkItOJJ3GewhPPj_oQz*VN8Ra_&&enB8jw>{#dp8OlZj zHtS)nueHcLEa&q2YLh-iv!vQKoN79Mj9O^R1Q>7?cWDI;$O>%{8|d^K)9#d9xkJ)X zZ=d9nfv_>DeU7zLD?h#$>-;&`?NsJ~wnXKY`XC|-S}~~u4#!M|%#iV02`4Vt+!~bM z0=UcE?NH z=4j#x{^`X^`Pq*<^&;ukHkX@P0_xd2J8=D;uFbaH?Tud_z60ULV*3AGlzZ@@vx zwHzc9RfWk>$Wyz@(4eUAY&`b$DgbH!LMaU{uj9nMFiU`h8SkoJ2AmexY-lyT5^BXDe}nW-@kS2o?BP0!K2`(Owi}i}F1+{r$D$H0@I_ z80t1)cDwDhn{y-riEsB0JJ`J9uE&pHSd<9Bpy#mBfdM-S;y*hH?Vp`=sSPvg1K3H3 z8SeN$>q6N|SO!pcy;py&PCrXc|B4x%y{RV;Ypd} zq~0Eoa-7|qzdNbTKw)^{?@r?WyOWv$J1GxsqKg^AZ)_5vu8@&A=~P&)(xd89lV%Z* zvX6~L?t5lZ?d;3>Fz14~BH)JFf-2oZ&3reu_$-T0Kj=8*uBV4QeZ7}Uj}}#20!?c!MyBD@1Jb~PpHEM+Xxn+G*aFHC zL)e@*rwXq7^>n%6xaBLK5 zRFkZ7wT`i)t0qwy>hL=aq>7fTlcB>p1zvHBuYBns%m*4Ma#Dx<&rDLG!Dm6}CAH?c z0$V618120uO+WTz%*#JtTM!cJE$#a4%3L5bkp^tgF&Ku~7(@n>#oj{=zIGInr!i*8 z9MTYVuYWUaM-fE%6`Bb@K4dXG*k}~*b3BACz97*w^JB&C#~q0CCxT3Zv8dt;`DrGt zAbyC9dS58FvUz)lMwMDL>NOOLZl?q&E$lbR&g^q!&4xH)?f9}kr0)2Zd*6KRl6g_F z7s`VUoP`CBp;-vpiQTmDFwkYF%difrqn0^q=YGthUFvBq_=#Z=Ne{1lKL^!JKjho* z+S$GoZ}osE$+ysxEFy?bG4<$|5^A7Fn1Dz$2%NScqtZgkim|~77m+N9Z{<7+N^fp9 zGZf|XE0X>7TLb>RuQfZsOAAlTaUOiOZg*IiRVY`GW42K-J6X9-nSL_){Xk9W6dVEK z#WxDuK5Qm7qG*2xE>E6F334=^L!!}CLWBtvQre&(<#9f#E|B4zklvW3awse+no6|x zIEDG)`)@yW+)qZ_H?wCMEZ;R1yP6{^k?*IyJ#SB@WqD0GID?WQanyXMBJLJVNTM!C zrlTY@$`u>6yRWT3_;W(*Byd45DWP9*Lc|)n)_LN;}e=L3xpJNS7K?uF(C^6(d z#QQ8>MY4NzXy)Byxnz|DZpTXbT&*whA6itG89`%xmNlM5lX;kmQ!qU3f6=0*m9yL{4A;S`?Syepg4CnERA0*p%sqxtjN?K1^gCty-hnVgJXs{Ckp1 zBmdgS0Nr=xS?v2W$1J*}nEIK`ZUFI%3XD4#*ZU3c>|jf*;vK%&FSO7})ytOlM;Qih zWZy9MWPO8J`kzsFp6)U;fNB(3pqrf&cX67DU%E1Bn`+ICs};XfORw#{#JjbuQ*$*c zrRJh)J#0HygT_eJZ(S)^LjP=0=8$*15O>Km_C9gIH7|xj(wDVyWKzQVW z_Q6J0c(m1Zjnf@=8>Q1(+1#3!b(>3Ee!7#D0UJ+rYYQ)OYLM3snsCBy%e1&5ye9KI ze$pgbZ0SSA%+afx45rM$@@uBa^sIu$hO%SX5dGP-O!`8f)25#DI~N)qBe!_GBjC*) zY1qw+dsEo3MNFq!suHcAdT4E%kNrma=zhP0ijzaq&4hJRGwwvy8jvrHxb( zZuq5C^OBBPNJ`O9)muu13|QOcC{nYH!yXedSc?3i1onz!dFxS%G>3Gt>&r~ksYvj`DVc!t9u5g>05}5Rq zC%Ep+Qh7X9gv@RmaAW5j_G7=O6Awnk; zza>`r5CmCfS0xc2Pb?(w@~TUSrMsdMbWlIz?#o9kNI&aP_0>!Oxr{J`)=Ak+|| zQe!f1k2G%T=%9-&{q>v@*D029%$S~Gm8e8F(Lt@fr0L2kaGh3x~I`n1<22@YB`4AZsE2&=5IK_shp

    O zjoOnv9Bo+jq_$Z3F}$5-yv67LR|Tk^Ed7?kAA{ax$avQE5B@6XmrhL`%p(|iB_8pQc>&r|vRKY^nE z97O+uq8k9)sQh2sXbCj~m$4lRW=^!Sj)>LHa~c|^Lh+z)ncpY4gd{T`v)k~2N@6%k znq)n&kA(|+kDb$>KXLu8*jN!p8_&5}g8*C>DEAtt#of!!Zut&%1K=Ay$Ey7Q_(pY^ z0lv`|O!s>M|9^a=Oti~%yOn=^qa^%KQ-@L40N-e43j)A53OLF9>l+Q`2$TL%nO5O= z4^f6mAk0k68lHq~fU`iy`oDamkOz!U|M*7RgcChrML${4Vu)(CfqwFXgZ=ahUVH@{ zm9mQX!$o>TjrhVvxV1u}hk-CeSjrFtli+1MUTZMWYBkk3sP^$Q)rCj8$8j=7#4Jq3Jz zm;1)87q7!J1P~~G9doZ#uzoQS2m1GBLG3dgkWl+{9_ylFiv6DG&-*?_bAUoXn#T?F z3K6i}2bna47u;=V@HTNK#_6iq&z1o0!Uup81sY%90z9q*h7-#)a!9<2n3DSI8!eu^ zf-KS1XvUfV_(ofy#qzxn6ToCxT~QVXl;J1vG%Z8S-3~Q zry|6rmns`9NL<%X+{jbYxlYIJ*Z*!)_fV)cg6$5RI>oY6s6^A3Gl=dTsn6?a3=i73PW%CF^APz*;p@X;DL&7 z<-yAHD4vpwWOyQEu^oaer3AjSq!24(xJ$Y)x#Hu4akLt zS+nshg%(5vsoh6GpezkMSeEvBrq)a#;|BFhU*+ma4$mgt0yt3-j9Mps^#9F?3bNT3 z&oMZe%F2&Q#9!>^+x6mA?_$}KhVEigddxLCDqvM?9~#T>64h#1wK9@mZtWHNM`)mj z_8}Spd1v5?I2Ho!*yayAGY17KQstW+a8!hEhi|%6q>0xQ&%z9XpZ+0?abHtDKJ;hy z?qMv3$R|J+Ph=$#8W+%ko;;KbL)?xsDK~}lUeahSV0ax>%kc_PyT6v7J1yJGAM1I7 zL7$V24q1}y5&S~?GXS+jjOIOozoUEEPSlGJ zPzznCEeF&>pA;N9o@5g}K6T8?J76l%{Lo}qi<&DdX|a|WGAs4t!9ldcJI6Yh#?hfS zeTTAcQod6ne>L^)-Q+?0yatfo4A`JYe-Z$S zYLg49dH+lq>7m}zS4T*Rtz$z&g&Pp!S5@%;G)rSoxi*zoUozT}ME%`aB^ED`i*)b4 zp>qO@O6sn;52+hwkBV zo6mc|VofH34&_sxf&s5;rOU;sS3;o_<{Ru{=I+0wsCWwf&7*~1;>&f-Mb9I}HH3 zyLVY{*6xm<}2D(9X0n-j+XP&$n<17TIKhW6Z>P`w*fDzvZL)y7X->Y1=``!RKG&XtpcBIGX#9ar7-(2Yca=)(uAT7=%eT4N~ybf~|&b z-SG^u0<~3p7hoJ6Sy47OiSRaO;WK{&^g>}AerANeZ+5yBpB_FY?RBIN!8WmDS7VK( zsNpEmIhkR3(GGkcS=E)}5U|_gL@K>v;W4=|8OdgT_t`Ji&;&*};GG>I!f$ayxoVvK zKnXiS{ZrHQ!q#$b4Cb`#5SYy>2Iz&lH2)#R@fI!vS$u1nFeMIuP07=+lpaU8FKJg_ z?5dx!?sOeap*E8{pF9CIx}U8`lt_t(~f$VDZZZIW_on3&sJ(u+Z8Y&s1d1$KD083DtPomqG| zOgtPME1gkd5ILIN!*%t&*)^wFzfBqo^m{5syYMsIDt^RSU7;YwSVL26rT?o-QR z#uFzhZEb@5>d!QHp1IVmh%`C1Rbild{#zckbkzmKK@=S=utGHEk1ZXBGy4WZ6ic zf4T*%z@nh5DhCB&R5m>Ckhsr=_9y$E5X6L>vH;4)_hO;FdhV7cP6aNAqhJZ`XEl|L zNKX0fjPrn0M}QRIo~P_`$I|9{y^y zBA27Bv2~C4fpd)r4}mx^EzLE^T3nd}gfjnUEG>tgwPGZ4;eDz^0r4fLw zE`{OWwsnY3PI>5G1?S6o!n6N5x-fyoh*>L|=RKtK%+i=LHt*Kt7{H~6s@>0gs~a9u zBaG3}zPv!wTj8Qx(#25xUTscELEnzn0T#pOfcH6>T3r0I|CA@Xj>uARWNih8nGz$4%)!nR3RQj9aw6d!^9$^yL`oP`#Z{ZPIS#9k1m4OwOLcPNeP#I$!3b4 z_%~x488oGD!%|(e(XT!Yd#|7j#09HW2l3QC9wy!rEC-m3CeEu$sU><&m@(g#wzd+{ znV-i!dkRWI38`f&TAc1U#!3Ok(W=|F{}@MS`A^O?G!T<(+?gaAS^0~B(a-7NjWx4v zJh_JSXWYVJ#CQp9Lcp6v9sbdz8ui)W=8ZQP1X1$z8log&@%J2+!wk&+7 z(tqmQ_Vhob=zqGQRe7BFXyA@eU2j4=BZN71xA;%=zqt600CLU{1@ns_5TJ&*~mO&kSGMsTSjXn<{=Fz*NKVg z38@%--w=LwsN#%9A`;75@%_P_j`r~ONAYwp7_Ls?fCWnarTsMQUTqowSHKB24OmV24*bHOdgQ~BNx+XbyE8O4;aP$-@s^N zFT2MU#k(qi?>T1<_;Bk>aex-~t$MDrJA_%A4P(eeD{^FSC0T@~7pq}tsFWt3G*0At ze*b83OJ4Jno|n?vimY|to#8~k6MK4&j-9Ttb=XVo_Z@02D01C1RvQfjKb3hioz^A6 z=#oB@WdVd6&RxR0XUH`}NYMVZYm~@H zeOvuSI?j8W76!MLK#qv@#WuSmg@)DE5T&|q-UtNgYVc)T=remc#zldwzwMbYfwDSS zIwMio{f4$vITDdKAUY@-FGT3HHZ^r#ByRXqp>|@ZUBnLvig?|~ZclH>)a%bfI%J&Q znV4p<<`k&FW$~Ytuy5VdrlQG?wHT}`7p9W(! z71I!>_L%4x`b09;1XR-1Y-Mb`@;aSEaauzAjm-Cr{qv0sF!CpzrGKCg0lm$b9;52g zYxV%k?%w20NdLSiO_pYw_fd8(u;)#iQPcVJuXS`G%vkLIq3axjBW>4(8{4*RPHbBf z+qRud?1^o2V%xTziESq{U(dYz?0vqfv#Ywg`hQnF-Pe7uYb|o#^*CHh1Kw2p;BOFO zL!ri=S|4Me;$X%Wg$fW4R2Cb(wPk4H6hrfH*{R>4aMbYj%e69cEgWBA%uTLESV`%J zf}n{cuwyZZX}$Xly0MGIBa&`#!asqKQoft&iKzBqN0veX1UjvVz=kz?#7q3451|ep zBi~n7Bp>65RrN`s|3{z`7I?TXjw_xM>cGCPl7oS-(1!|vzy{{B3*s`I#^xV17vTQ^ zB;m1$-&dKj6RlXvYoTSg)S2IVd`EqUyK<}Wd>i~I&iw1GEv|O+SuUy+m6}$>F51qx z@cE<$i$P@nK$CyGNn9)?>JjR56}XR&+k;SSAZ8k#>@@=fWv1&<2J|Rf<`U2p(Mba| zMffiCZI9c)kM$)?PTVyT1ve!+!$KI3I~{)-BKoEOxe!%kxS!s21~t$Jz6pJtp86R| ztiw#TZ|aJQck@>|S|#kz8)cLZ5a{f%+yfzHj=FS1hjg7LlNhrXacKbrI^QgOaaEfB z2y|wZYJYc!%*O0edkBHcW=Ws*28;ep)S%|2XAsbE-*bk=ZWvfB9h+iI=9#ubQqg`A-%!+&_5iNT> z4=RVxYD~XBW|4E2?b0O2hfT0qTOSiE602Aq!qCo}Dfnm*G{?MOkYvM~%bew{#A=s~ zZ|0nZqeHNB0al_pI@ij{4VPSp?kh0=8ZeZKizJf>akehJRZ6QTwiea^CH$UGxSV!C zLVL$<(v%nHP&FMv4{79^dZgw75+70>B$ov12p`>w#m2VdVDObiDEcd%H5ViMb@5!6 zs7r8z#x8gbdyu0ZZF9=tnWn+DfvTeqer0BL!(oCQS1-ryb|AVUL)$E;mKp!>()3O6 zo8N@fR;Qe^ZkoK~(}k6gJW)yKohyf7RQ?b66lf=0y)n3WDvQlm8q-%g^E(P@1RUUK z;I+TfQRG2@bo8>?i0O*C>2g&#*P2eZ)UxWYbTrQgfH^~!^upq4zvCRy5C-ByY1fF} zJ<&`-v&9TC)#63>-b~72O*GSkHbvFgG0-?F*+hO+_k?GQYccf!HU-RtjWLoXJutvF zXI6MGA_mP}(~_aePt0T!7zmDm3Q_kM20I#ue+9Diheq3LE<%3U^EsdJeLhe0y+%V+ zWI;G8R(Z(IuMd|OmEv3+5>o0#p}Rq$&#!`J{n=r%&N-U=70UBk1upzPVR`golvJPh z6hMxW`rWWo=IMz;Dn++rJV+Pa=)~5VAK+PxQHhJKXs6P$4t*2_v+$AD1^8SG?N6Po z#gERv$Iso93!hl(CyU?Dv!#HU( zDU^>AoQXgmpMDvAp2OUM~~okSnbYoQje*sMPTE&dNy0}Csh%4jrvPbUD(clx^7(4a$eFF1qAf1!JgDCccWB^t2nWGToPJ~Yy z3GR%HK^neggd$b*g*&Cv9)B`lPkQuI)|PQlB?<$DV+|H#3( z4E!xR9||!7b|NmwWO36^iJ+ovKvLT0#Kyq$YFXUpkXzB}=GiY5mdu`0!Jf0Hq4mNJ zeEYaw7mumSD*~4rF2Q%m%Ldcpm7j2r{3S`XR?7D0 zSf}>b`YPzf{;zfv=iuv|DWlK2aPN!mckO$7q6EqW5Po!qwO$hB^UKRrjAUR z9ozd)73qt;85Fts^J(03tz3^NaE+YJuX5MfsXcXOa>>|0gT=|h8L&lRfAwYm(;{tzrtv{-_ ze_M}cBBUqB_I!RU=YidMG;SlvkwQ99R)`BStKABW)O?^l`-=mg@%Z!TLFRVoxnjFIlMU1Mz>oPzYQWhK%-%>O1ERYZ7Iog&a$7S3b zeE)4gH8-X-Tp!`d%oOsV%Qg<|eAST$mQQmI$;r0sP^TT+JZh`0yrF5EbDKMVL%M^V z11F>a!EMBb4}9+nq{$k+B54et-3aBd>30%!OX*zCCAKa3lW628ZuLZ2a1QV$P;~c< zDrxtmx2&fnDQ{K28^uQYLlhwhG&MaLxRqO)$UNo@MN10G@uJDPX@uq`)U;FiRBn=7 z*8Z!6`T{EhGRyPlhb+*a$&L;gAa_a4WKC%4RfzMg=kN@qZl24hp7neyoW8!XsmwgZ zj0p(=niP;;EZE-17Ffc1(9Q3<&e@<>5>_Bcj zY9q#;8&gS+JYYu{8hkB0v+5c1`}OQ+h$K>~D6RDnZcWDF#1F@dX9hU;8nc!cjvD(AFqE25H=YkSkI#MYtUbNz(IXVW~E~r37Qf~ zf!UK9O_v^dyk{`8AR*n=E7c&d?J(dqlCC^y>dzvSKY-!OrD0Bq{ji_Uw2dNml2B~%jFNfv@k`4dU9DTR!!w!A13Cd*!27n()2P1b-mZa9Q zEzv<>mI5xj?&Br8yPsbz85Q6%oNYJ?#4Rf6`a1cvqk=LLazgA3lc<-Srtn28%C6WK z7K_E~*C0@j^W5J%4%02?d@{FGlTJr#gsr$!&%3xHkGd~#f0}U;HWCB2&S}ohhUT4F z`J`!GIZt!S9h?Q90udQ6dcSmJW(Zg=mFAGHW1=#fLzhWWx;#08&o`8FYbcNK!KQhs zph8&npiD>Z&T5%&AQgyJ!LOWYc9*ek^G^pK1>I$$4LzXS2%p65>0Zlig9T?9#kooRBpv}l3L0x8)90lm**Zsh`jUE;W}Zsnj_E1c z8n5q2tv_mF|4O!OU8>0xh+ZZMg3YrJBR~fsAaI=Q1f83v>-27uh?ii}>Y08}M3zgO zPBraL@1*%C^GkgikywCn*iSF|@aJbI*1IS36F@o&IeHIxpXtKtxVHD86FKgIN{Jls zcKa;9)8f;wL~Qv2ZsA8R_E$41dHMKPGs;}}Uo@kqx`SO9|4lRc@AbNMZh$hU;uR6C z#Y(RgpV1(wt%cR}X(}K_b8;d{-R35g-u~k)-XyPMAzQXIkw--ZUAeB9^mJj(WxDQd z#{VcsTWX5R4dmaRQNRKQV%$;_uZM*yEwduPGYY!nQ-uNWj2<8N{Jxy2vJET)QGW+K zGamt-QNdM;|9D2h9Ss5%ympZTO}W~oOoU930Q+^V=;DEP!_1o%m2c%Z>OUO30C5IV zW!6?K;4e^HYNQ573RsKoK}=v0je4MSgh1a=<`=EY-rPm%zyQFg;{HF8`pJ>++eopW zfH(tA`73kLn|0Ch$alTA#OL+CpxKALJam9))ZkyD(HmfpFd7GdXjBlGS?UR*5D;Ma z6RCFx`(fw9A)I&vGT?GP3{UP+MG?Q#UE|;SL!zo>;&ElgH{`V2Ub_`vB8|(z*g+e& zOTzu|PA`u#=M=PxorFcVY@|2NmaX+{x%S3s2A7iHVYf6!peVz9ym%Yi#}4R$7D$a_C!Nj? ztC|)fUm)8qc)#;rW6MFhk_hius&0|TcsF&D7c?B+V09-%c;`VnuZc#{mc5&YTbQjU zj`|2e-DAcDjll1M2(FL_I(IgUPy|;XWDstNd?(PAPjLpYVP`y9Wy2mEKfkcCA4Dix zaRjI{-2SW1KnbWb^vkjSyUtLX2SZ#vhp;4xFJf+TE|*}(97I#nuLFkE8{F)mviAal zKLAi?=x_si)Qz8X{wYfF?>YmkO=Y(oq|%Us5s`>yW$RK~i`nzv_98x`%ake7{vXw- zvk5>oT2ayWCBHqBo~q7lJ=VT=6Bu2wx;4;`1-^4wHHrw>xW~Gkfj~u z^*i+spDnr7;*;|LOU~6$btil&wB~CcRi{pwz#PdjLmoII$itqw>@6X*-Ve+Q$Oaua zb2>WOFMY=lBa2dhGxf{#N`Eu;V@sB?)_$liL8*d>-%2X;`m>ErxhI&HBK7j*6Uoy5 zF^!(2s_4?u-YHqYek|r3Op~x@4a~&Un}fZvROG#ES_$F5S3v3_b5&y;po`L!p5D7a zt*piJhyO`0TD{*yvjn9?+nX*z)-z4}u6p)#t;N~h!c{;PdXh)@F{!2eE4@euNH3!E z7NUQ52Qm55X^Uq>o-Dk5oCIsMsl3sK?s)>w@!4;zdH}iO1oG3;6>G@A0zwa*ouCr= z0d6udW7k>}@0-3wwMAl%dZ%Pzz=+?N8#g?&PVL$s%R|8WRIW)R+J^q z<8SN!wC-C+t}BEX_bQHwf8bH0Kk#VZ@uB3|^UxJyUk}<{{;d-6ZyIclL-@^^q`F^! z;n6bdKk(?|{|eQw{C}bPW6>Cc*UQ+?`ex7;aTjX~cNm8b;6I`ITTlYE#*`q`Y1FHx zAQkdk5=?>Xea#gkL{^_4auMF(QBiBabg1mA0>qXg5@COq@QO`<{u8QKm+#-{0s0sY zDrXCj;&Wq|)nFS+IJkb%tOip&1v*8ahE@gY!SCAHa$=&PY(J!xU8IuR8w)q)ZSP9D~g&jx%TX-DjF$#2`mg&Yo9ddJ13iOLj zj*dGeXSr01UA(<`wnvv?+ylzB{D!|JvtPXAR)*y;uTUWoM}H77QC`ls<&>RxgJew5 zVH59Q3Bq-W#W6A3$5;RZ1-j$6OZ@`k>u(eMt-fV0?cv=&P@QC7Nb~EE?!^@Z@3WGq zWsi|)9`Y+QUsCK^CB1f4|B-Ug9(6HSik9NBPrpSeh4t%vjtoJ6sC* z_^C{4`81{>geg6?KOR?{j-x4hu5MIa@1TnAP+9xO$EC96T?9K}+or!lPQ@Vo!6=-%!^J8E@F%8nRJZ{&F^$Jo-}@dFYSTsOq@Tr<1v@Sc0>! z-v>fG7mk^V|A382QZ6>YS#J(sxpffI^I+Dczb7axUYu=u#1arIURL@u64^vD+wmg$AWLnaLl;}HTTjtvn%PWDeH9j0*B%QXnIt+}< zi3bqe>&YnIMOfV5M2BtZ({0u^GSD(gb2bxSZw;6CHAiUTwzKeIwSV=`&9msmO{Xrb zUaKUvp_EFLQUs-NJ^Ff+AgYebs!}X5GGI#bV-7WD{xvmN(3-sjZ=nPrEG$1!Ic({N)mPR(iNnK&Uhmn^>zRytNGt(mx3=im;lZu911fA43-`?Lz`; zoe|bK>Msm;4R$>b0}I0nt73%lU~Fxveanh858rq!T}kJ<{=^!3G$PNn6fRsKr-Uol z=(U*5qco8s!q6$HCO*q~y;REQGVnV<*BqYTv0Z2cZU^2pb1_A&syWY<)kPzywc2S2 z>AY8w!}4qDn>TT6+S;XWn=Cns(Dqt2-ORBZz#4&D)+m@uam4Xf}@ zrY#l|D15DdRQJnrXFnuiae#nOKiL5}!oB?dj?YYl{t@b)!zL#p7ig1DS#(+-v5H)w^Q+lC$-W?Lu9;F{wWnt;<{77 z&{O0QKtjIF@pz6&M81aVZN``LwH|S9@w)-&%j}7r&sLHDXSGANI7GqfQ`ZQ^EwufY zfYSHSOMJpi+~Vh6c3j5-uh6p>0uP%MBD-HtuRFir*ss&176Tf(S`#7Pj2EO6@`4QO z?10r{1lpPjUhC{Ba$R&wR91O)En0f9T;383`z&EZ4fTR^OV-73+F zgBP@0;PZLjL|ZkiGUI6fEGv`@>&*y z1MVs^@N}jWcW?EYSB)cUofc}u?+e|nJi9`tT!pcL@MoG<{l3p zl1q4H$h-vbSbH(!peHb(;9C_GR5V<7uAq*x_pEefAXL`wAneLvOjy{FLsGGU;MfWM zI!Q#--k(C2kQlbZXLS+#w%^dHUl|et%1h+Gd4WY9c9_I;hgWQHQ{$H@P^u6YMs+LE zAhk#2cXKMbw&Jgzu8x)|{;>8=E}$>B{JBC}h(p)C86b)0YOq3Z(XHcKzLC=t?z7{= zjG!g!fP&;{1=8M~Dp*q!49M3%{VQL;9mr7e#gSYbkgu;O)%IIty5LmW)dS?~J6kB8 zG3x)5uP^0pGBE(UCVGSk2)l_V&!g4bv^2aHhgvo@UFeh}j9BT6y?a-n*dobpSh z+_AYchL0CzLga!qooBA@hAs6Z|L~+VB>Uk>*RM{xj#H<>ih)KZea|+~=X>Hn3h38! z`fkB9$>mWx@y(Y%MH->K6|`H;yib#|r}eGGyp7#FiY*F$Ogfr0?3FXXiJ>)S=(Bw< zBPf}v=g%@<^J4raqUcecy$?GE=Ec&TtVB54uXMyRrk~#f``a$q3OTaFEba$m zRIDgFJPutzFhT(wgh}BorPZzC!X!r{6MiA=&Kb^giZX;EAv~V_@!OBtzxDcyNAyg( z;BK9@L;f54W(By}bm?Aw^MV8C%%Wd}!k`|*_ce2dRWoJePM2Tf4||83~i?_yZ9=%vhf+B6Y?!w4(C6 z^q%)z@Rm$v#rRp@o0!TYYrUYsxdVqLrFa`jV8;)S`)Xwf@}E1fc)$DU*X?<4c`t_*l&1coqU-eF9Ey zec+>=uDqUbPel1X2Se`cn93URGu{+Q}87d|s2+0TXA23bj)w^JK3r2L-3|0pp zbAO>*=u8Ivow*U1C~#>$JlKF@+o(s+QN@NnwC(Rl6Rhv?QFMIdz_HGBq0GrWX&C)a zz}~zVOCjeCy!xT~LUd+~zgzFp>=(E(7vrIG7w2=y=UP1Uf+?q=nlO0y$U|TqDYuM= z1c`VX75x3H3mX9#C}lX7pAAlsie}Z;s9t86jCI44TNEg5(UDCVjSOO{%ij)DZlonZN)*lUhV%u?qocQm4i~ zwoDIF08I*UfA6^tdmqKrG@p`$k3s9aqkiAdPwjRd{M=xGBm=pTUBUCAm|!L|GWi7$s z;+`$0q##kj%8e^@lFEI=SiM@70gx$nllx)lZMwf z4NI`I?qJy->}u2>pRlnGjZ&62Cwh7;y-gv4kY3$bl7|jE2*oG?6zn-tXcS(*57qAj z3ii!#fP(!+&iWe2gJsa2P!aWAhLtw+^`lz}H^pUeI~5+{laivzJ&Xg5x0xk#R*I&< z=v{_o%Bvs&C29$+>6jfkp**Mq@3e*yr@Wf3f6mY2DEc>;?s$i-c-W`b`J9x5ALMx; zo6kv?cWI1c!e~n|EP5J;s~4B|iNs-P^%uAu$hj@}wim<9&d?1ajT<-Cw$abiV86(O zRAR+tC$z^t+WEc4Es|c)`16*Wd@f|HO{r+Z4C~}{%Tn5)6cpl1@p7Y0$Yy=p132(nwaR`}G7q?}bAnj2TQissYleT3()}dvLWZ6G_2p7)4(Aa6VEe^GB9( zZE=#;g@|Ih`6Wd+j?5)C+9fgCL&j(n!>T%FCCNVxdp<{!gNYa-ykG_tw?l4(KMi{| z@q)J6VB*XHHGkDJa{py2(xokWP38t2hC6rwykwV4zoaJ5FV~R1(J=66LV`-^!Em04 z0w?dujht-gf1VAWU_*~!DH!4vunDF8$8^{?EYzCdkNv)aryWKB{#aa9a;IXUliBTGqIB&KQHpPFY+VZiAW9dgUHi$e zoQy_1xtO!B3_Q4PUmFUBGyT*FMga-?>BqSZ!oxoadoCGbcsQakqwAlBST*QIzxshE z3`suXE;N7(rdI@%v=e-+9$L!h_Bjj~xw-!)?7tg|_6>&+xcn<&k1D`cw}lT#*r)ER z0}}S*-afC5vY)6E4P~^VK7Z|lz z72csOv6WGU6f+9u68O~s680_m{`}4#_v!n&GkCv!j$X6{oHwaqej<51hIA|S1fj18 z;Oh`hoRfldcDt?QE&WxHzWz~=e*RIA8dA(1{|0cQzX4dOq6{b)8W02!6admA1_G~} zKlraiDaSuV>4wt=5kNu8v*14KkV`Zcduj30ghFm(OqWuM5OAKzyvG*cbF$z*H&?wL zUG*YtFzfe0*FkG{g`h0TV}`$C6_YT5B_^ws?cAhWn9I1spho4CQA1wIrgDTw z_ZU)!?^xD1H^8Z7H%1T*>JV!wRAnBP6Q2d&*1zJx4pxi`KuX!L3(U+5F*wU`0*(>| z^Q;8hGsNFUjxZJ^Pro;2iD$q|RazDaagG@VSP!7d+BGH*4(N9bC9Jm0>j14H&FHu7 z{(_qHm@|S>w?{<_RF(MN@L|)BB9qO^JfR(_S2$l$Ro8QJ5%f^iY@adxEy59il&+-V zcRF-8H5vP;X9`$oNtgH>vfHEs30NJ%*tMS#mChT~TM&0V_}bei#Q$-S0@}bL zh7ymc4FqtIzSdb_SB3^! z=57TJNR+5flq--scmOtqO#V1Xp?eSc8K(=1s`VXf$#c*KT>}ZiFL;&I@vo>9d`y}N zWrDBOQcFs2GxflBo*0Vc1Q@tQ>PHcSz8+q6|B)l?oB)e z-q+#zYT>Cv1k%e-1ZZoTQ%t$mr!dWTmJ9yK37AWAv^$3dDYo$|LUg1&@& zU!ZM<3^i-p0U9hQX(43ce`)|3A$M`I;!Yu1aaUbms&mETZq{E>n{=LPE|5Or|62n6 z1u-PKNDs}=Z;(Gf4pGfQv;>nomvDu4FT&49l9ir~T>z$fCax)&|JVM6|F4mqiEe8O zL<9Gub2m1p-IfNVk$Zr>bTM{8s z{Sgq32n<}IM;s4eM}yk7N50>zNG^_iZ~qa05=Y#{Qo7p|C{c(0O^QbvgdTKjPzZ#c z>+lv8C>C&h%eOOO6%g@c$CQDY!!L-u>M8-%euPM>D2bGwvcqmqHFrG13;n+Gsqp;y z{lTx}_nY&M;p;UI2HpsfTJo!<+eT)mgxjSXKg(S&OoOs=n_rM+HU%sMnzF}X82YpApC12hqamj&e zcaMVv$TBedhyGrZzR(8b7;v81Z^@4Bl>^0%m-Gd}G8LgYIb>>qWvy52(n@ ztX&}Z+s;8`ZAh z{IlZ3QUQtRGb`rsq`nl&MwoMPgHpXit@(*k{l_qMSu!}TJhJ@8R|6ERwK)}5GFY%7`lYp^uNhwEaulMfLO#c3}EGuZE;m6Pv(AUG{nhqF9 zjcabhbiKlXb0%=E$anX4f{LRg96u4_kxx!(zO>)s?oJ_OAg_$ec$HglYLm7+P4$dq z^53aI$=;oAmTi@~|Ay=XzrQ>)aZDi?2nsqQ-fYJ{T0ns6Ur!a(g2u%(n~M*Vcm~X+mvqD-=3@Yf1XEN>EP>)#rD8V-gT3p_ zAfeQP;iN9R>qUN}heUZ@6{-QeR2=5UNiWkjf<@%9cM zkAPu`iv*~RS}rqm(YMXd6Ci497OOL%^zL|%da$~|*gP{vWVeI6z!g$%PX`!)6qcEq zw=j9eg+~B!O7>Ny;1JBRW_o1&-hrIAxAT?~7ui>#eS4q2fPIH{!{rD~y9qdYr}g~8 z(j$%2=+aBggmIFVOSs@%Lr%2us=OLHf3YlS2mi^R@ETO+=vKDPWF!Pq*CjqQ185=| zXO5~5|E}Nh(!z6`@j433Dlz zdV<(^%#vBJUN1xw-m;VeL|_7-pc2TzZ6xf#XF~`D<^m=#Kj4UNFQ}w-ShXu3_Qsy* zaQGNTENSLQh{a|_|M$oVTB#O??Ue_%yZgyEd|p$0MxSqL88e+WS%>6WXj^Nv6A+i}G79ejrb~x&e>YzhIF&yLL}gINq5| z{kmXuz*%NqC`N7H5RryZqZJjZHJ^ZG6oX=Q`#L_3M;@6Dx#SJG!jd&^;*)@{ba>Gn z1V))l$bZewN}TAIza5QBBw($Znyaf>B)a|T?SEReS zI*W6l@cQ#Rs&nl<hN zf@Ne0f@N(M3r06I1_lS|-F>%)srH$MheTL9u`4L2yn709?wqsv#4`wB+gswh(|ETU zh78deR9{~GFwEB!xDofQx*u^RA$YN$fU~M8h0<~d2F8oUDIT9XeY(r+vgBlU9nWl1 z8jM@2!)HCFrRJ0F;Y+Yw6j(bPiZ?9@w9p%5T*p!ZH@#*wJ2KvE^RCBLW**2mcN^`J z>cm~x3O$=yDw5E*-mY+TL)M@3i;hlga?e+5gh?c)ly~WKT?6Io(_Q!7z=OA4Ez)cs zjk!l@ai%akV#vP8E)z}yBDB$NF5gV#z-5OHkfp#8^z*+7)6Y4uI7yLA zS~qo?G7Cd-!&DpMZ0$wjF(W%y?C@{Q{;$EW8yPUTKPDi1L*~d25zmDd&`6tWqwEillr5!OaPt8s|Os>vTuh zYzB5YP#v>6a8$EYUE;&p2Pv!wm@gW1j`}o3!zhdjaXmr(U22i?LE-8!8bd8;do0SG3(kqzI*^^QoMcq}f8GR5)nY{-%h7o-}BnB{Se4H20FrqFfOOuj`LlMzt4nb*Ec}eu{+39rfWa1o{Gm6 zS~L!u;c7=oNpDuCNc%b5t$9+VswuZN=_)q|V??sM8Jo8fwt+ggSpbWfP>lx#iOC83 z^csfcwB9Z1F{g-66w~h?88v7j3;84=YNf7Kt>8Y&8n$oVcD$reJEw9Emnsutr*F3B zaOdW{|+U;K3?WvC2{^{m&5RpWPIaDo_rFr7zfRq3o+I&XPsFJ z+pPF_msD839?BSeXthEBIg&u&IPa%T2rt4$!Fqad2@BFNNiLiniQi-jgS$%5A&As` zfYy|S0G@)biNVcrUZ0q~3}iGs8cGTZxk?Nh1nSPxZ|R7XUW0(Q{g4N*wm?ch8Q4QR z!9_|ukEdb|IO>+hS6K4+Nww!u))>&Ko%w>KP|5oTMABH~Z>;Y}gYRV3)T|#3-k_sh2*M++>C67kG{meS6y1=hHJGI1(`izBtucrIa>n5XuEX! zl{i?0Z$55wlh4N1kGBuos+l_-N6KygGC#TlWgWYsz6a&*dmO}DF>u!K2=C#-cJE}Q zs9-&;l?vbsx`~obfyGTe;^}=)+tcy=LiatL89(%BFmakl)i8k*mtx+sYTe8uJquSb z2(uWRXT1PgVB|!|=`MZCQ>YWJ5$`dVik8>At zz0+>l>vfbZDM&)mUXa;7#Ene#>0bP7c5AG9>DI0Vbz7+_H;&j;*s zwMkMy+F*2Kz>xC#=N+!USrp23yxt#|+`kxjcO%M>e(99x*S1>-eOC6!4Qx?zIBwe2 zK5IGp;VJ#;1xTV?H+P)$QNY)wid3)NH-2``(sW2xVfT`Y7}D6dGK+rq>kj z|JDeJJNbFz`*vM(GiR^4;Ap|nyjt0QJmc&pyctQywaM$R6p}{Usoo-9{bH)hBYj&W zLmy}L#p?h45@?VdrVjS{!mmu089|vpT;4Qhr($|S2EVHYr;E`M?Sg0#_)rO?iC&O1 zq-RcaH18Z=6^^WB1YM^Gi`<6GsH%h4YN@bV&ZQ_V^ziXn)Fi?v-W2ZKya$axb6OMa zIv;ua^sPFHq60I_$+M<@-^6kIl4FzMDzt`)D62OO9#XB7n3qO?Hq|w|BfB}JcFpB- z%HRkpIb1rW)2VJv*?l_OraA<=u>8yoFUFnKvokyTwnCmE6Drf#%G7N}$mE&R-T2_a zq@AZ>xdiyZe7jBsBathx?tRT>_W{Yx`-^#5U-qZb7TQ>_tGnhAWN})XNRdhN)1jz( zQ{A%LoRNl`w0%EnkQkfQga@rRsrJM%igq;V;~7+gWl)741TCx}cBm3!!aPA&p&!jm6n|;NPp)j4>e*79ICAZji3lr8 z&`%6!#nHq+m}PE5VRrbWX5jK6pA#_9(oDy)@)@`l9cN0N@kJ;}Q6DZu(}FhlGz(0f%@anuT* zMpx6AcuQ}pPLmI+jfcFdsbCDTq&K1c3=ee^KlRWfJw4HJzq&e54tes3|tS>TWXJ5@kYHO3Rs;`ICYJ+|2fpbEkJ!yZFQvJXU}uA;#u9fIphW z<_$(IR0}iht+txMN$yLJJqS!EPsBMNopIA1EQW!m2IL259%w6SYLgP{FE)cvZvM|N z$-NNyuUnda&3!)v8d9E{*VMyfufxZHv2W7_f8$vbSXp;|d!Rl4@{F1C@8@IxU;8tiwt=k>>hDrKh>s)f z01$h)RPSMSXs8;)t3Kpem=O}E}I>hzePe2=n( zNm>I&3n5-`AA@fF-Yz%%kr0rVxROuw;3hfVnWk+0vhMJ|v-rDdiE3vmXg76Iw z(()zv=mSgZH#ON&8N(|=)p?+o-)JJCv6*2dadcA7_7&j=ks3Ru6F^D@@8wb52;?O! zA@rl(5`!Fntv%F8_7gx62uoTwi?FM`&td~8f-ww{B^jDYF(9S2b42BhS_{^s5$;$H zXtlf|9w|0@c2{7WJ?fP6@91xI4EnGRZo~qYvLVR2P|^1&!Yj;dDZv#8LxDjxK}j&L z?aj$(5k)0LWoEi&)nntWT;2ZXkrc8oDSv ze>iNFNh(((R4vGiGPIvKScd;_*p5>UD7C@$%M&RM_AyuVMWh--+MTtb$^o-lIV*{xRdsc+QynZn= z{lsG6S2_PI6V~CC5|N8LC!A>|0MU2`WhhUQ$pE6e?dP&vvzLpz2L*&b5?|JQVx{k7mEWO^Az)HUz|~oj zDR)5hH$!wN9KOoAK;k6E;V)I2S*Y%Q)^NTVa=uJm;o!fRs&urZ93zeArH5tO>$|^k zZE*R47`c3%OQ&*$u4S7wWiD)A*KZ-XOv{NCnt&-RoQt-aJzf-4GY@nq!sSJXdGVNVSDX))1*Pu z7EzBuV#HA3Vt?!LpEm&kmQ=g?x$c&fUFb+2Li1a)8XXfTm#(Z01N7xILy9NE0WeTqHPnZcK{HZ*3*YVQMi`= z#ZpP=^GSG|R;J~yzS>G^x1{%DK*cz%kU-JTRz(NO4h$*SHpR-%$U<@gA9U6Bn~6Y^ z;tE65`xhZ!62<2`Am>KSMnb9#VyKd}H&W+>b9UVhn|6m>G7mw&M@6UknymAP$ZpEK zw#i83j~L*=S?!0`1Axev9*F3sMucOGFi(OL^W=BM`yY|7M{Dw(?N@-v7raM4pwJ)v z;L8WN=u-eqN!U2^h9a5CK#*$QdC16{w6v&D+I@fE_5ICCuKVb~kfs6TYPvLt4+FAq zkOIq;y3Wgv*7K%MPc|0m4#c`a{-k;pCr0p9k00%e0Ov>9v6?@t2J=OhK;StJX51TuhI>3V~18qs)H`kbrV}SIs zaB04BaG89Niz<}v9kRl)b^a|Jb=!9x*jJxM;VgsmlnUq+MyX2BJE=u{U~CvYN0df$ zCF*#ys-&?kSftYTh4PtA-}cJYIzw|xHka^6-jvlLV*@yBMk5XWqdy$BQ51nVkum(y zs0OL%jxwnFc}zpRfP;)+H3whz@D^3ijWLgH_?lgbhPLJu>~X6Lj)cy1zaGgIo_&?w z%~pD&k<(@tw6Val8qSyF3^YC%DBt2{sZ>c#2r7hOAG>9zNT zW|JCYedD7_hQ=cE<6Z2tE-pqd4_GdT3&R((KFe2Svn|v?5)P&{hiN?5V^sRddv%H& zWHUX#=3G;F2sI*TB_73a;lZ4ernrDRMYtbVeS4pXXe^19?bST`K!FTa(exZZovK+$ zYxyc{%N|TO1UHFgePAF_IxX8^dI9!PLNG=<8C|Y8b2q&L=%EOkmNxdxceM@PXSan< zL*i^cL!=_Naa*@0Tu!^FY-A;>3K!jJW|-HoXXOmJbV^bC=GH(9>xpm4nI>7BRJR5t zxkI^`R?eqIY0&b>$|h*&lhB~NWOEy5E@!aVLICMvYsUHzKR)Kb8o5epCSJ_%JJ@V= z;L(l{Jlw1fa?3i~$up%NwNAy>b_iiSl)@V^QctfMaPuZtBOnvQBf@oP$iLU~H8?ME zv3JFEk1i71yTGNCMc3z4VHOZsB`m@xOO5_N_Rg_A&wpFjvC-ISY};02+qP{Rjh!^M zZ8o-(#soZn!-yFb8qagX11jq{uYd$c}AE)v12zDX@j6RjV_uIT3- zlMcDam||Ocgykk8F0o?;^WtCMo*0ZHanf_(0NxbCM`Rz9`nfoi<3^*44}z-)jRe1x za>|C~(V={J@`oY25IMyOXPl5x%a$UaG<}R{EW0iZcD|P$SWbN4#Q9=%!avNDkQths zYOMEKE&}u3CpCL&uGXBAdPqibET8$pkRIN_&P0Lu_NNnb_P)|++VgH~RWx#8{hVVU zBd-;LeY5zNUHNp&=z}sT#_njAQfJ~!I@b-+%qQ8A(N6k=E_{f`?;%rFT2&{yT2qlW zbtzF6(501hxN_5V^A4=uXzmzsu)(_23H;1Gk-!riv{hK>p}|%xcQLJ` z?Z6)t^uuvssM3!6kq|7(c5H&}H?qBR->6s+a%it@6$5*HthIAKgcdzam=9H!L&-{B zVnZ{%dqDB?S9%^;wT`eaU}7v<+!YCVEsxUOJ2Dug`a9v=k}WVNh4yrquYsNNQ|f2O zxO!k(0dDr)<9AHcKcL3f-zCsWf)qeqGAIzB_NX`r`z!P?!Wpi2-r!^GphK1p9!xp} zfD6*-9m|+A?x=INZtz%Ih;QbxY>hT9AyzbQX2!DL(X2y{r-eJ0GCQF;q@G0V?2&D8 zbKIfGQW86#izM2Y4bE-oGO3vgoePt((bC>vGoml zv}k?3X`ml64qEBj>zd?QBP=)TW6G73=kqd9RlCXBw_dv5)#&;E6Umnxq&2j6yoYVE zoPKln)vea*$@`z?HJZ6cR8X}?&ZVpT)x#E3&-MVw&C$odh5d|c^tj&qr{?wFUctG> za^hZllaJftZ^&fr1B`5ZGRBkEks(4VGli3(Aqqu9Waftl3?NdM>607>xw!Gi0YLM5 z8=|%r1)Xgbkj$QV#cV{Pu*3ZW@~s6SX4%|+-cVj1Ls_;aDML@oz<^kCYN$^<LAKni&UXcNeJi7{YS_OB4RyFOY;>AQ1G#K`n~Y z5}TR+&^5C&kk#TR;prk*S({h}qd3Bt*O-6x*IVYaG0 zmIooR-s`VRwC~2+1|dg}5Cpn`_2JHf!T==S4g>w+@yk$v9 zg9ebUXMOnNi>d8+!FL>R7ixR{BVhDRy8_a*lyHi@ixL!^MAvRc7CKDq%>vE>;qgf9 zhG3JWKfps#hT-RB=2&Z+A~bh@u=+OU#R;IDy(XAV4uJ74ic8x*&^{dlsWoAx3|W-J z1NhP-@ZaoRfgo9Mbj`D9Q6_I1sV3$G2{m%UURkDLqp(VIcxi<|FaapvxGz${&S$mX zFopmm-+WPpqkOd=A{ENlFxj{+1q=>5FUx+V6@x?^A73xb7r*y~r`wRLz9tiSWaO>& zHq{h8jbI<*%uGTGctq}dpno78L&yMAf*CIRCv#8F!$F=i_!IqYUN;N_GFgd^2MNSg z7$?+05S<5%jwto0;%%27zD&YK`0RxIPPnCoAd`?~P~TM%$01M`2cj*0f!^UR%NsI) z6{jw7b|*#)l6?2VdWcZM%=V%1@atTup}T>Rg0TMeb60PFEF&lHJJ2$z!X^-UWiP%> zVG(8ugU3$2WN?-;&I_iJoP@meS(5Ad0Jr)*B34Bo%d;SYKK=I}9FktD$L#uhZCF8r z0x;$;9Fk}GPekm1;elQ;Z)+5x=rfl35J!}hD z1_UlTuu#h`E(xG`ZMU#nR-8^?Zs1i6_UjZoZmB)epRe7e^Xe1iYa3t4Xk2skY)p6G z{*(R_^35v>@`Q<};_3B2qDw~) zYM;RYbD2%}g>%!D&recD9&#)n%z_yVLeXT6p|Ascc>xRn`A!nuyteV>pHhKQzEfn> zid%$~(||9~x0`0=Lw;QbTH4PB%R!^8#lJc9DuUw)|Ipaoews$@^ae^q?6dgZsYx*UMyVfUfZEYz+A1c`PqjpA&l!TJZM+ z4z(TC=6FtQF?oJ!(WfR76vQKNV$0(09)nHls-7j9i)Qgp|BQfYtLdq;`lU1u4@c?w z`IiL@kVl=|-W!ADZ1PA`sKC6mEhqLiAA!@nVn}qUe)2SRIf-Q1Y#n+<^^-t%jV7{Z zZan$yr+vn`gD!mDZ}T%fE}JrbAe1}0eGoI9YP#-zz4Kke=e@VL>k4_cvO0SmginCt z^}gISgI_sw1L(IvL7p{I?;9W6@=X!+p%6gvIsnKwC`1Im<`RZGFib-YY?(F5?#7}T zQX28Sh25uyAsrg;i9{;Q z!ikYm~7i5Zv-J zhQDRdg1h7V&ZXT%uFZ?YVzyJ9zxi zi)uQ~W!=^0mtS)WlI{GGk5fb6Bk?bW_F!u|!kpT&+fsQ!NJhIlVp(rHbB%+=3t`jy z8GSC5MC)>QN&D~~*l5#WXV7NJX%s{pW2j+WBOuQ#+=R2!;#;bQSP`IGVsBLm*CMwx z?XmM6Xc?y&P?*WNI5+0gxtFu?U1fus9Zt&9(3BDqFy@}#qk;OS)H%DVPYF5#31y61 z`Sp+T`8#7Jo91pzx@(S`yQ`2{73y^tb@p+*SZemI3rfbDJK~H?g~~O#g#1s*B342? zly|9;u15n@C?<5(wLM2iWvZpX-DoSZ*t_f><$tNZ_=iW;4PPWxRmEu93e|Bf8^&-3 zXh48$5QtSdG1@3SO6VSb<3^-g{^j91hgC+9(O}}{cS;Z|I)?mx)`BubH8gjm8nfC# zWf;CjtA1qivX&#nlj^I0l!o0xt-5g$h2^Oyi<_pAR(|C7)vlE@+vyF2gYt_LVt&aq zsqrVqw)W}=q-qi{+40`w0it;rf&Q9mD0^Pq5`)+{>Z?wq=wGWEaDhV3Mo#5Wn&^7_ zXKd3LXg?&!T$pI)zaG7&QfFSZzEo$#-gI{?KN`we)4NiEBvqK`M%wON)l==pi914w&3#-AgrmZ z6dl=so4tV%A=Wgo8g;BOWoW;7TB;d)XOOAo@=Tdq_%+`LC8*t}%U92DYvLvS2x5_*;GSN!C4n+nuYSVt(x@S@>T<8lN;ThnTrR&_${D%n9{tTUj0~s8x=a$k-@G*O3PAI!Cu0`YsZl^C2 zBlj{CZ0`nw2$4g5k+BDR8APj_zvZenclN`u=QzDgrLKa| z26_N)ffjnB-FC2-BeL7Q)5*^A)*Gi(19e?*10`kJ7Y4>x-1_5gaO)@WiT54zVZSPv)NO{>Utr zpWo^IC4CP7_5E0!#zl+-;Q)*6o?$9tuDCGx< zJBLC)Yg@)x)F(**(AOfj5nKE;l{tkXcbc;$Fr5II`WaLhz zk3>&AsJ_Q$`{qxeV#{2;eo8npr_W?X_!fs-n_A#;mG>jyvv}QH7Ml->kf4{FjhcKL z7ooth&B9yIg!y%6niYo>`D?3|dy>^u77jcOA3WhDFnSXFyE;p>%4Bcjxb5@~=zRH( za>*`dr;{~HEyN$%LpXhIg_b`Zj+R@&%8?^|QfFV-ew^Bo>dggRyva;7CGVknrm~9^j8)fg71slM%;_ zT$gPtxb`sEopSdNoPQUIrfV$4|EHq?4u*ebchq*B0dO<`{)!NI`M)vL{qQ6QMRHsD zsx6kF8aIN4l9MC31L;V1S8{=nkd`z`jwr+P6mX>^R7Q?H(0<+CnUw>*Tr|uR$%UEM z-)!9do?hlJ7$=!g{F@q26u!%(ahE6s(~Oq&x>8{>j+JL;B9q3iU0~)PmwpRPq=+5M zVT+WvGAN^0$FGIA!sUejVFE$Ww*q<;zQ4lZd5U?n7!Teqc*aM81ssS+=0L#Of!!pc ztAfZv01l$UJ76;X+8`f@^0&a+p3mO$Cn z7uY%cJ!>(o*Hu4}`AT_4=eRCh5rWc`v{xG(y>&AbEsFkdn;BT(EIBMtS{B|%z{8yS`p55cD>w!%z@HGwgR z1+ba5X=ST!p@W`na!5eOIP5;yUO-j8JmE+Zg(r49~a3kRhQ*<9%Zq2)84LZWvR|^f8({u;;l&l&7l30k^aVXdIYTt#6FBFVGj}0F3 zMxD8u4y8pYK>eu0r;!w`K&KsyEwSksS~FZTBFSG;d!aHF#9`qv2I1$W=SY*9G@9C5 zmiCu~xB^uwF+{qH{0mPP%Sc-wQjS{XRagLVe#K^BnP!VNJ&VDmKa4q>w>~aSgXW$U zd3@1;e64p6_PjR%DziH8o2D{SJSDyN<~NEjKbg#XnYzY8F&q&kQC)1kS;s6>Q9Qqr zif2QS;E(wQ;dFFi0>Ek(u`2YT%%;uR>L+FyRtg*ltZ!NF7fTfM49i!&`xJ?LD|Ug^ z6{Iskc_-MV_T-p}hOMd%23hi9LpMvJ*Z=@Eaq?-IFX<;(E$Xz4e^h5slO-e<$7LEU z6q#M#+tx{bBp+QsO+>aLs6IgAfyF4}X@_f>*^@CVa6|fxW10fRd~{z^%!d$Gt*yrK zmz~|?4=tV`WCIpE;~T``F)kh=(mwT65f@OYT7R>~gcKeB300d+k>o^6B0Hy3aLL6v zt|C0hf52+2f5B?!7A~md7F!^Kpse^AjQ7!zptQLp7Q7E!2mRl=_$`ZybPE7^e#_rH z|AwF2n=eFSGcZ&{FtJkjYcv*xx+a_U=t7P+ytf0QV|uRwEhCTlH@-)fo}B#UfTxaK z02E-Gy~7R$fK_v_qLo8R5^Tw;u+wt|#Q7cuiNnXG1;D_)=lm&+_e+gFdxf|(8U$^mgcG%zBy=6VG(0IOD{R3vpSO6U8l##AS= zD{@E62B5uMDNnoTV^Ua-22EtUg`<%9B`Gf@yR%bO|6g&w!}A+;$d)@pG6*2fzk>T$ zoX?vH50sqq6%gkqr1aa3Y`gW~N1sLb{-#oZ2WpWuvaiMV0>t^y$qxaLpK*R?5D>P! zzyOJ)`i| zIy+elf>^-&Opd8uc<-UE;C}1fkXL`+l-7oFLI z1z!Y|KN8EH0Yx^dXa3!kIu_yAl_- z?VU-x!Bbm{TPvk&Igt4150h`P&o{QjOoBM&dV{q>pLu>s-4GCQe4Q8-(-PP$L0Li# z;=VU>>^qD+!2|+in;Xqk=eenyVYkZRqmdr9lwHsL<)b@)97IIx1Bk}@_Bx8iNZ~hX z9nR>7K%XW5h;VSdrIIe?d&>DrdHu?k-5K0CxR zH7u_D{=g*3gAonzMByznjYi0WHMPcVBuI4AnHPENo!7Ui@0=4~ z@jZ6>?xIZeEK{jo%2VTmr0iu4pPHQUJ3E%ic|EJ(ed@@sVzw~{+)55{I

    9l>8WBjjWa0gEgnR1mt>jcbWIh(Ckzq0g#>lzXbnQLG@x=pu7@(v13?C~atIkawbY!)?Ctp=}1Qqr4Z(kC>RD`yYaYi6`Qx%%E_`BV|kpQ>KC* zDyR9=tlv25;yhL+(#y{n@5#N%Lmp0@b>&+}R#EFORx*E=St)R|cuQqHkLcm#IiFr? z!hp7t4rtDM*Wl(<;l9dBlkpK~MwXjPzmLeW;Mn*yjZ8^jwW_4^vTXQ^SRE+0&E2nZ z?6;@7Dqz01yPTBr4*JLb96n!`jk)ZxiJh28gTj_GGx2KU(NR)qNQeAJ$Z?lQ0!Cpu zHmZ-i_VGu63#814J0@P(;T;{0c=bfT4ZsxI@e(hNR?%Mv@&&ZuemRzTt)Q zswtD`i*>Ds(CP6VMNU0{-Z8<9-u}c~{g-sE0eY=62)817^R9SJO_ge3PEKvEejVSI zL|5_hF=seJTXR%Q@v&?mLgDqXRo>bX;S-`k=f`K!qu+kfV;D+*zT}&TTqSo%a+5)< z?ZQ~)%P9`vjN!p(4eD5LSG;(i@)tPXN&ox!zfI$F&GgJ4{}(9kzgtbf+6_Q?Lh&^) z{0!Uyei%qtv>3UO_55~r?X%`^o)Ta?k}Rs#^nRA|+nVC!H|~k^6cB7ZE?u11jfq|b zHIv^*(|^yHS8f0j_djRMBjAkbuv)N^Dhn<;44iJQ&Z+qQu{HJiu>^=* zx{+Lq0?Ce2sYHlObr38 z%_2=JQR`>LUqrIH46T6HCV+@L{ngr3{%UP{h>3RGmiW;9)7k|3hw${(+O+vE;c382 z)4k;=DFMjydTx+Vd4lCY`3jC-17ODiGS|G4#n6aa1P^4)mgngGyXjF;#hIjr6!Z97 z^E8X;TE;9JnAFU&bt_od;9fenLA$I)+wq^)CZWm%?mCrwQNi$YZQyjY5C&hKhd{`p zA51uSnM^0>nPYA?;m!U~s#dEu7>TK2{i{5bvE1V~iEH=y+|Z>O@M%Lp~;;$>_2QA==i2#N4L8L;zaj{@vCjGi%(!Z{lXPAG0xKT(= z7iAI)2tBlbD~27>Qugk@S4^*Fba*^$Zl@LOS*k}ZcqOP@P;fICz}>K_{iB(vDosDW zD!0OA{d8TsKnL~&O1)Me>3I>3v{|DtdHqx?drw%c7H?{fb)xs%Kb_4MQ0iR$+W?0e z+4jLDc_NwDyzkHa1asbmXeyd~ui8P-!-<%kw&aQF!^}Urnfa{yV70_h#4d0R8c?nr zg%y79m*5BVi#%7mnP@}|Dx1cfCYEdANxo*mm{D#jAjn- z1Lgtd{}eW9h>O2&nBSJ^Oe1afS!dXmaK%KAfWjurD3msHOR^H-a4+Yh(b4;ZnLz6R z3njMrtv1G|VMRqRsxnHHiReg75Gma%k?FbW9(E=IzloFwtMaaKwlFuXf4#wH}v0ZD*0>nq)LWH>1X!j z4HMT24j=xLR4-T*i$$@f-nu!yoc9^$$r#-+ty_tXiT8&r(*tW)dY(qWW83a==*~7r zo1OIaSdpt$r95(?P*Y~Poq_8M*P4e>{NQm(K1+ZLBuAv7Xwxp9=XV=&*Cd>Dzl^6j zt*40o@L)W$h7X85Bicj7aX=#4tC{!gz-9YI#C@{7#@+Q9NM4Q+FxbDlt!PqAZ25x>?>=Osg8d7;yBHx09ElR{(%mFqS0RKgFb?Oob4%%caMwAdHh=;QyYri zxlq(!`Ey{P0%lB9j|D+;b(kfW)q_WfiYqu2)4aHeT3q$&O)dWVQ3IyyuOT%!V=2WZ zHcn&_XZ#z!0N`Fq$|mmU<%&!0wHw-Y>%xgD5BI&NR)Pm=k~guhvGnpczJyM?4}g@h z|DMzy4P>b(I2UL+B>S_^hfk~xiwMprSzOlOhHZA0MakCDXfp@%N9vF{2$^c6r4Wx% z$(FvPhtY|)ej^(nuy3-qADA|r(>(rYwT*b#EX_A?r3~|B1zl7?EmL-bUF?8Tcv#=`FeRoK9}CirQN-HHyRS{3aCF0XrEl-JqI;}s`?BB z_uWd2Tg&n4;KhX5ozGG97}l4Tq>0_Qooe^Oe2_n0oWflvH{R=TUgqsym=1v9B%7`?8JXch{lv^h z$?e#c8Uxv|3%42qUl86HO@23j@`-qrx5#>oX*KUe z80)zI33$|6cOF}s+=8GTdi?|UXPCwRKfTOIKri!8{~rm(Va-4;=0&I(!mnQD;4|gF zy-dW=T2DYPbNQ>6nMHR#RHdG{>3hKT@SWqAXL$Sl&)UXsO%$s!CrmtNQGJ>QXZ^Z> zfQS4m;K4)>Mf?hQ);+gVqq8V@8u=`>AQv=JJU;|Mx~W_Dv)jn5U^jwG=O#8eS6U?u zs9WU(2=Ku-*6>Fs=6P(Hh~(@#)GB5|FE|Ulsk6r5q>k(SsUj|dXiJj|>f~lJ`|?U! zC{P+iswG_}8HVlIln7G!Ai>tsb4&z1l9D)x2g-y@HfJd-7moL_jZh9Xiy_y{4kw(O zWbkHV*j0R-C?+4$p@tFuZGtYBcg9j5w%<6tYaW6dsZ^QI+05_AJf}HwRW_-g| z78Ql5?NueYkn3_H{a&*J+_Ab@87)hbca2M7?VG)2TC99ikrC{%ZvVB7nw@IOiK~>^#7_Mvcv#z-J#ar< zGhQpd*US}84Ryh5-{cF#*gMV?U5mRvrNN+#!aw@ucH@YE< zVdQ<4GMy2`IVaup0%msdIQaGf`Hn&vODNh=)q=1FY(nl4z#k_0kmS9Pbb=3YE)8i# zUK`wI=9)1PkG&$tzbi|h7@cW8{8mdg9bt^^QSD{ub>6Gx7V~QZt|EL=#CGtCCaQpt_#M-?Q9vLAf9DpT_ zB?tB5rYfSV=289We`@Ehc#v3`Fs05tg*zH|nN&VVZaMzP-RvpZmDj(+h3MFHRP#s( zhuWBdbw7K30~xj^4rH}3pay#!^a!l;kW~_wB3cM%DE-U_| zK9*pdxRV22gpQIhObQwkxXD9oo#bm3XBQYG_`gWpQdjZa_M8YiQ75=3Q%S$S3EHun zwb9$(nB*(rx=NdX%KwYR)jBy8E*I)NhWSF`s!;TECJg9ymn?GyS zkpm<=-c@+GCY66-QBT>{Zhf3htO_hq7FwI5%T!e7a?{b&J26_fp1)8{Q?UkaQeBtv z{FHwIVBCLyfB0PjT0THkfO_Rpk@kI|j{XON>q$1fUj4{{Z2`zY6X$XI(TOeOz5XZN zEiC^z>&M&wCfl@+_(7`t-)3(A)GN=mHSG4jW^UadkV2sAn9&oY@%d&Oun=*hTwS!O zQsGkLv(;N=`J`(mZU#+WjBYbOaOBkAPJeT|$TxgESI<6LwqR4(V(~77OSJ2=fby}f zcl(xAC*O#a>&qy!F{(1ajTgVH$ew<_-2D1{HlJynZH6#|lxhpRD{f6FQo`*+*5*~AOL8a+k?v~8#R-%d!*^ou4Ni2bANuLLxL7tgdNz`E(u|e3G zHk9_}X>*vut|0Q55Ue`Di3NbcI7!2s6zAPUn6Q4I!YkgY2>O?CNZtW>xJEJ0cqq>p zfVmsWJx1w0z;%1L-^F&#$P7Ad5nNkcl#8>LT0J;K>j~5ym)@Fw)^dVvxH}Fn?h?31 zK?zcK3B_;f%>femoM+^j=pX`}bE<_`Uwun>dHe0;!t&$ZDaXi@PzQr{$jB_sQ_3>~ z*H6@S!I^5FWeZN3l#Q01k7$Td5|5+R3-Yt>NA6rp!2TAB;H6iSgP5qdeYwv>gH#eu zHn4#3hnicbh7#af0{Qf3|JLs_C?VulIlR|?`iYSr{Z`fTTfdjQ8`mF{?B!gwUmKpd5oo|cSkOn=LN z_7R==$89Sf_ilnK6y8VcDemM4SNV930*jU64Y}wd(y_ij@(a1nejdtQ+Q9DdoG40d z0u(LaLJ1T@Uj)bB&XDptFv2W+HLuEQdT74O-=7-9X2SLNpd}&}iAXKy%5EXICAhf~ zjLym#sP-Ds50*m(7d$(Z3PG1kxp<4xw3J?gY-6stis@pe7uwl6$YYBm>g!|SADJmY ztuZ~Fq{=Sc2*-E2l&XSD4ZKrCGM3393&YJIG5|UVN+|wv17sV6Mn{<=lKdWHy?zuZ z%3jBO6et_p0Hb6;wRm(sDu~C@;USfi3F;5X5-27Im#AEl-e$9AsaCM|MJ1`` zl#oZ1MC34l-S%eOA~jdrrGDRR$=L=ntZbx)R_YI{R<%XZ9s~p@k3Y~U8^ipsqJTs9 zQ?Bt@eWLX2&==Jy*huKGY(6$&c*P`*)=O$M?6*}T9QxUvhBSXXu?rr(29!$25Iai1 z!4w=0I|VR^=yDC7ma8*X3oa1?9Z<&aX};;? zTCswsB2DYTi(jH`fboZyFFAKZ_tbF88>}$Vjm^)=v(1Z)3zLA43ff(y{Uuf}U>fEq zOGiGPYlgsQ9Ri7jQzcv`uGglcwW=w_Df;CEKJKKe7t@3E!@zRQcZM0POxD(6o+8G` z`RUu)`-8DSYdN9a*(coMl$LF^hh?p>glsZ2$C;Ty;98E_{U)xcnsh}x{=YptP0Q2** zT8Cwjy2s{~BLIjCO8nX@(G3IN6cqh~!62^-_LCm0ei+n=PoT4tb{+Kx4w5FAZY%Z? zz(Fh^+TWDw{YJA=j<@WG>;-xY=k}yfDSZ6mYY734rA;c(kOczyta1yvt7WhF+KK&{ zgL%b%D1|nZVCyXt!hJN%n9sxM)nnh;vHYLStx#x5$7#Jwy1qp$gu_S%`aKO zxEG0x?UNt5&>$V|@0KAB(Y5;_PCLn+FZy7f;uX$zKs*GBD$?)XARx)h#8M{7`VM_X zQ-_mEq%D}$4zm0H=|C|oHHdGBjv8ZPaR)4y4L^;I&()^i|HO#v&2fuf^T7^Wwops! zn8qSmmiY#ugy{l=k4>mpUd8@iXd#^`xV`;{TVx2?e#JyTAefw>CLj7cfCA#c0{6NK z+&VBo_;Qy~qQd9rJ<49YywuEf;qS^6paXqsoN+=W>Rh4n4swh@uG)xJLU4xHka8ig zSape90Ut2D%ZlyM`QSj1Vnp(*1Go}bVbw3azpWaW8HWvG!jXwa0%-|?->=coSCeks z3^$gM<)suJ5_aN%Lf!y@p0JP1{Q91_xjM^eS*Lm%mnWpNgHt+3zOqOHX^9}czXok-vJ{xw5 z|57xd1Z7{Fp4lj7pI5ky&}!kQB_E%*fPI%-u`d&uRFVwNBLGg!adE>D$n5w!TL=s!j zg-+R(#fB0;+zSE7d~3p<18GhKtbpU6ki@GZC#&)ju@i!1+dY38k9oP@S!ciI;X8Q} z)MaDRRgBR3SEc*Rbm#hL$FW=bE%cR|FXKi?P1SwYew^!#G*%dm@s4J;CcrPN9jxD`ZQhdGlgaTdw> zlu^2xw3BK#F8=l~foLUu@hAHuNble=IQiF*>$0L06xA`AtF8arj=J{dwW!JiZe6l; zNo7c^d1?SQN%Z;E@pzVH%uoEe+|ryxbhAO#-$%huY+NMWo3g1a^(0SXp+^I0V2_aJ z>u#?p-&(k>o_M#iPKp}2D9S}A6P?VHt1El%XiW>`HubPp(urEf652}>9dTl5CJE4q zd#dmnSa#)Ulh;fVNEb0vU>;)_IBrWzkucEHYa1_UONtWg1KMlnflrF&#jIxJY^7PX z<-jyEkJkN10TVZ8MD>-LiUxtriG^<@(jKj8ZmywK7HcNS$MCZ)Sn|wo?he8BEAvT= z>34Ivs0mdYS>WWMKpZ!Y_~SM_F6hXJSxF7F$pxd2e~ ziGQ|xadF#|T#vV>b2~a6rxBs0r1WW!eVAudI~~?@M2*f9u>b|!9%malGCx$M_1qH( zFEFe-019S!qNboDZ=#A7E@^hg>rclyvqBzq7$oFvVhP_r5 z(J}{OHlNN!p*YXx(PSGIFqh7Ey=#zj6_vvyP0!V5Am&e|jW~mG9x&@z>b4m?c3E3~ z9#8HK!#=d9LcI4WnTU6owVILBnF9uHB@1PCi5-Phkx5NdQ5d+l&X40%1ESd3_>p~! ztcUPX1L>NjPuzTCT3gr?(0^h_q0KlFC;lK$N{eX(_UA3RcAou0_aRf25R|CTM;N=} zcu~i-0ujk#PoH)?UcCtG!|vLB#%JiQH4e>@{VP3&)f7la;|sAlO{y=zW$kxz*l_uz z*PWE6hTz($u>EYm5Br1N4v1xVLr3F*KM9I44KjO8@WTP5R4C;2G!ClyYvBeT&wtg_ z2FFQAb%BeuvpLK-C8< z+&)ez$^Nr&^C2hvT$KH1;WqXETezwIXW@2*OxXR+{_Z~uH@_{%%Is=2DEE%h3c;B| zy7q;nD~*<#hX)C1zx+PwJ%;~H8i7lOo3#f7R!RS>cgOyyxq-3HrZ|EHZW|1*QVY$C=Dx)l2vt66BMPy{?6Hh?bxL7s1pnktKD7<2G zq>&fI^0o!A8O{1&qNc$DZd+P5C>65INTeFN=i3=;_&I23EI!W0KHo2L#Fp6hATseu zH;9?}IW}0MTfyS6st&A1Cun4*MUe;pF_OqA;o+#qcNe~B$686< zLYOCBiLjVd`X?Y0$zWAs6ste~6nbZdl7JFDqC^BUf;L8^i{j-UD|c}w{{nRz#FTM zlwiGO#EO(DK!lumFL;f8n}Y1#izqi{GR`CY)RHzJ^vM2s!bBLpS$VX@{|h_$vD0+N z5yU8|H0AeW%U>^N4TTh8lG{q60c{fFu|Q9_z<%(VK>W8~`91QF2=Sk?z%5rBLx73U zq~a@bgH!{yKF}7)$AoLAhRlc4fAT7mK`&8&k)(~3|86@a7+`SJ02oQ6_}zeB;04!e zHq&S?v9fR>jM_yxdV#Ot%6a5%(1Sqr(PTOjK)cWn(FKi*ie6vJ)sOHL4Z#Eq=Q_jwnrEpKBo=2_#m;!; zY1t4tCkXmT{l>QEshIB-z8EZP^U?f#QPHM6g?{`(8FC)Ew3~ z?aPJ$2&|N85bEboLxo^ka5x?|kWSlb|IlNH(S1=y+QV^~dX487K>FbKLZIWFK_6H9 z3pWc`JrZMMwy7|l;>_uK!IncRW(dT*klypq&7ek-DAW!4&{y zM4`Nw79YZA?AAW#(8Gu+wAfrB(jJugK&~nj`qk!T(I^dQ?Rs%M7hh~6R5u!>S~-tH z*>OI)7cBRU!#%9L|Jy%_)ja?*V*8a??ND}3C@I!e<6bS`9MFs(xf%XJ8<<(2V$Asq zcPu#V2=8oLjP<9FMYqnV+egtRo3v%kjCQRtO0_D~)4hCHERX71$8W_I*=h!Ell?Ru zkYzLn9BTX0 zqUftX#j}{7edo`;v0s4|XM7blvNFW3^qBnB_owX+%>ZTc8VwmZplGT=!P`@0z)RmH zTJTA5`3*1;YL$8_P|GFn8h-r{%q+bzm}_BGMJPd(;MT^H3fMBB!oxiO-NU|gvf+X^a_~=9gV?^kNxke9UfsLr(h)O} z?pxda%UX!n5k{T?hSXM%WpcTu+rMq34LTyeK0>kVgFlo6=B1o;=T-woL2tTE1j`({ zS(qWWlwIm0U~57giq5|SC?)_?$UXh`^ZInMnc#RK2PK$Hmpi(zZh-Jkgv)J<1>B;Ic+SAX^?vLk1`ba2G=LO%L?lR;8T*9s*MQNtmc zIk#M?4pD>4mME||)K`3rIpuRb;@?>yM=lQ62gDHR6N40nYqM)8H&)y9wUr`5AO2WM z4PQAEIdm=&m}qq_6@*&AFetbz`J5?ClXas*_#bx6_C7-LZq!*}k}XzC^ni-ML=pa6 zZ|e#e&OwUgTgYAs))5v5WJg&~0vt__#P^;uwMSth$oze#fc2lD9A^!4ir00A&;^fU z@>$Pl;OE0_H%-iI8W;4sDq*F@7#)M07vBM)AH#qE_|12;2YZgy#^=Ig_lv$%-Gq1h z+=s~wM_#TnvL>aCxBdx>B;9J)x@+m{EFx5x0$v&wm&1C7l^bS@YEd{z^7TA;V|oQ} zg?w=_1ssgqlOMcc5c+6M!L>FB@@g#)CN+(SON*}f=NORs?}Bn%n1J$bs$BezGTYEj{4XNoc@WON7+IokJS&TI?-(UA)@w|A%j`G+O7 z=3QM^jVB9x8{Umv>z)D^Cs%J&3F9{9iq7D^u)a1=>4jVF3)xS~qFo)6aN1e|BsAv5 zAK_7KLKj|U`zL`G{LtbA5c80?w;pA>5#^jNb;*f@7&KnhmSWKIxYOKmmIUx9CqQqd zjUruI$E&^Xi-7Xys3p zrV<79^5rS!K~kwISp@jaaJ0@EWRn)%IG8RnnoOwJ9y6bD*-S)HQ32^7lMLUL&Kbzi z06-5;EIo?5#@P`y-x5ysEwvGLIhKa_l*Yx?)$d&@jbr6Kc4aMur*$ID1O6utU5x|T z26%rSoa;}Ro;TTfIyehV+(iwGcU>%X6$0k}qB|NLA|K=Ph>f-WoFi7dn~-PNOOB-@ zUk`y{%oWf-7%DWJNTn9A(;nIHC#NSH*u$`QK73x!_%+t!L2SBSCZJWtkfFk!jzM8V zLzzz{r_Pd-u&`LSOiyCQCoQ)nLuT5KB3CyMv`a9=i{yH zwvwnbKvHQuIkxu}|76L}N>LC2r>m}Mo9b}EUdJK_Nk^gBNTXF%|5yJ!hkR6%>iBkM zFL-#igoWygqU~Tk+N^F-*q(BZovpXlwLF%xF^2U7G18l|fr+SQkwq=@ypdFh#?tjr zNNUmybV`RI^4$B+Q{A*>&i*XR!nyE%L`@OM_Rvz4x38INtLiENym)uIlwm0F)Vag9 zR}l{$RtrPpT>PB)(z9Um!%`hP2WL^*`1tboQ@1dDt|RfKO3ITAl}LH|o%PZ4fx#`Y zC`MC-QDjhr=I6X5D4E^!b51M!^kB;qoW6n;f^ee)|6x0u7%g6>2UB&y9Brf^ z&Aa3?V``fGk_ciL`QRHm5Q%BRbz(Zma_EXCr2-LXM2Gp2BP?5F|gID+1VxanpF2uov&|5Y~h)^uU^ z!SaaH`!I25dWHc`wZ8~o#ruy7=B-033~CFD?tGp(H&1ur;7nA7b$bhQEpU4{tJ1!d zAl`=3t9x1wM4!7p0wgaT#5WbXCN+7n_r|d>Q?}(x@j3@Q(mG#N+=Jm8?crN%3Tn$D4hg$6+{U|<5yi;(Rc~UK$cNSI+9YlUI%(_lb%MlU}Rn+s` z@1_|fIwaF=&CC{@YFb)es}|vF8lx#jiMb)5^DN4Zv_(6Kd`Gmz-!*h2@^#mTf$#lZ z-xy7)JHngsigpoG+abKgjtuzT5v;FPLOwIG)F}E4PQCmYtX-TkFh^f-VlM>N%~?h@ z%Isgl6P3(HToz4g6u2cv2XLnc)L#M=gga~(JdwaK3Tdb}oSO$GnrE$-yKkovDcQND z^8@MW3ks;Xr*c85cptQnJMSSs`j#p`H!eQP-P%HJh(N@43BTjq_tdq&D?68~H=UM8 zO29|hsU5H0J1z+~G<7}rkc3(d8hjA`FB0Oxz5dECz|K2BGyP#y>|JN>P zdGOFxJrsWV+_3Iw4E_qkz3<;$P@S#1+W*-F#r#$<7eM)Z(?EZU?v+=KdtYx~wzxGg_8gQ7|MbD)%=T$(YbLuDFwv$nlpL^^}W5JPchrSb(5%UW ztewMKuB0O#U*L|F9wm034lRd5SfdN4*{RGhBvj@O}_gfM+m?mx<`Nu zov)2i4s^8EqdiPRR6(i@*k>VZ6me138hH`b8(#Rs{9u0@=3T+i-#bg8oDw&hdhp>b zdi7PM-#%GcGWk->|Gj54LNwY1UISSU;b4v=jc7yc#6jOY__--L;=mE3?0>p--BXn* zTJtf`YPA%(6BWGo+w~#IlrsC=IoEPa`Dz2_5O?|lQV=`B*y6!FRi_=~t5OGwzfRRD z=PKE_!k9;dw)D-YE%^&#Fb;9AN;nqbjkXGa7-+PNiT*meZdH1$7}h0+Ps|BM=!gGT zGEY*56Q-)bauf`*_t2)(9&p-cy$KkC zjVHNy0)&Yz^wDP!iH6`N^>J#-LE|A!awZkOwTFi?J%u84JewTjfqZs~{BAYzpL?b< z{oVEODJ+VXm8J!wkIX>6B=eYatmVa<#p|i1j}ny?%+!f+(~og%of-TG+1G^fIn`7E zh`~3d_}^!VP)-oi$&Cpcbvq<~$(Z+&q1;8uev#?$^+8IQZIKEBlcR0R$M zzk1mD{iT3bY&nT|_SNwZZG?dZ!}}ES%V{*c>mPpoaK3&8Zq^wYVuoY>;NYI<5!*** zo|E@r7~+0ti&`9Q9PwU#?uyJ^m^&5z>qJqanpSxJdOPTki#_tP-l$}DuP$MW7FaBA zB{=;BjoZv5ePFi7htO*P9cX%fM!w+)JrniH*3bqLp^)pRiF~jjbGF%gyZXU}t znnb+cwp$&tkcgqVzteUwQugUjfj3V;2kzy*Sa=4yX)^x!J4XyMl#1%_9dDpW5@xj- zF(7!#T<|aNJ94|U*$+$>7!fRiuoE59Zlz8*LKd5?{ zVMYW+9dn~|KMQbh1lBW1l~K0rN(N0yUd&vgR{*r{7@*LdOJSWPN5ROJ{BLfJB3<4q zQ)`rigfw%fzT}{A~1vA0@iug9%2w zcY8soFjqK(2O}x(i>uJB7t$HUQ_O!^t9CE^5ua)H5LZ z6Q;sy*B!3Z4ypTSg?T-{IL4AL0%hhgpOE1+=@}KrV`^FzYougpc611&5x_bP!P>wz zuhLGwGPnPE?}ravao3|$Uci_g3inQaTPW7|X?zdkN= zgw+}2#QMTn!eJKA$@2fwa6CMy@N?9(p46WigTY(MaV1SACMbFbg))DM<<+&M$h8<( zP7nQ2!vv*f=+pbH9Xn@Idt%2;v^XkyEn2Va0pz7}PuBC5^!0X>ve6Wc2{ivmFFDc? zOsozr9e;8**!|JFu=i!;o)&BSK=lG++owB#)febYv{)frOa584=y8qIh&I?wi{Q{y z?547(Ipda2bylUg4X()^MtYnaHvf4|`PY6A576hK0Q-saq1ri8PSCDsdACVGy==mb9r0 z2ly(5nZo4u%O#N-_LjPIz*_4;D?gPXD2hx6N9#fwnGzcUEqNNX>wJCw`WacclIT0;x-S z-guKA#l@;L6<`jE+Sx-t4n&>$CLBv`vnE=&s}j_9C{b5}^*OOegc(Zqr&qmPd}?2M zAwVbBcy@f4`>C)bsJmc(X2P!~44%O?EISwa?=GEEFS(bg>X~WyW4bh2oSg?EVBc84aWd`aDz4y`amyTt{vzulGsB&X$lGyim4q(!w^P_7Vqvu*Ov%3NZAg8cnne1=4IwnliU-wy*i% zl)P`CO8g-N>upxS6UKjBaHEwN;xQ}z*1@lYDB~`p011XnFPh?Kw20-vm*Gw>@&Ptl zP;V?euAqX5SI0(z$PQ{T(}^{fQfKEVMeFjH8GV3ED59{Sa&$!yLkyt2c8JQR#7Bcm zy#p`0*F6p=mPVKzfwLHhBCdzWy2cRX*PMuLZx6Vsw1zbjjmAj&?x8(!ad@w!W2*sb zUXN4BnA37BvCxinEY%`ep-bhVLiq&K&^ZaqpD*vW7AHxEi=dp0i8yGUI~{)|$uN*U zrbpqRk=RRMiz2S3gAX^1CfjM|>*Xy)J?F~efSqmrD+}gZ<{pqpBxcr!*9Lc4vT;v3q~5J69$e&FR((u*rUjORp!2Rhnw<*QiPh!I!Z<=r zrw5%9x>(TmYaXqfm}}Ax!avcjv|Zk$B88#r%8e~#u(;j~&*Wl@z3i+T(p|o&r8qldv~wgfrkocV!RXh45#Y|ouPe^TDC;?H3;7xcQ#h=?@j9~*5M3IbLK$i%L)jt@&0rNHjBzWK*L3_ z!u+;aw_?ZJemxFHgTyDB5yEVmnL*34m<~iE@V0Zgcme&~(OLR5xcOkvy&)hE5=8sq zpKUdNG~G~{090vyP#o65$^Kuj54#Unhjgh5{%SzOo(mg zJGg{Hfv&d)hEGavbsUcEQ=${J_?woK0;~C+>VAiSDze``OA&pf^|K1%$0oUEEfC$2 zjOx*;nEr{5P46uYf*h)7bMN|@fAKaTtFf#s<6K9?3C=p?h6Q77#o-#_CYF0UaZFQQ2c2W$7%2K6X8Q*W;@3jbfl{| zVExJdE;7R7NahSF~0_+39hB)Fi@~QgTX$qGDa9}Bp0UTH? zM#(m@ee8kuX@CZS06-8&^dmYb%NG#jxaC=H&)EO~f?f+WcL6|<&A&hpw?K&S=6z%? z00`pJc5-(Kf%1zkS;W6Q7noBr{ahD19x?&|K`jE|>>mFBL4H7IUjG0=N2ywz03fLF zy95;;L-Cv%kgH)54#nIl`yt+6$7#LR6nYxouVY&0i3y z?lRVAPXy!ab)fYJrht5dQ^qQz$=eQ5+=}7iG_!}xan1Qb{jD+(nH?ZDz>>$}kmZp2 zrMPImaJs3p=lu^7R7vP52%T7}QJjJ|+}(ixhdSLzE5UxxK@u_+Hx(dZ182q6x5Nw7 zs<^3lPAv=;1j^QkvC788VA16B)>cK1qpI@RkfUTAcLhqdH|wKG0}w%3JO(kfs|V59 zk|RnKFsPUZ0?(873_UF{w0E_07Q_txh16| z=zv9Rr~ygfp@@d4d|9{|X#A-BMf8gxMx~R%LHpL$ zxkZx)1X-^o;J)%ZI@#3&@O-JE|8WXSLIKIo@rwxJ4hRz!N+=g0j>e|c1c9wIwN~f^?`(!_k=_22f<@0tPS}>NF*SYG z{VL*k-{)|hvB3iV*KDr2Ddh-iGzawcp8(c`n|)jX6L;yctZHj;h8SaBFlRWyisIkS zdBM9YRDUkmtvF8LVI}2jLL{6)<1q2}&vZs2MgjVvjodPPsz!phSdXo0GqWKB2B#OX z_@jgZ7y48L zwQXn%>;m*PXHd|HQwMl=yiOWF*(|(cH9R{>IvI>doe- zE>H>Y^Wu8N)R#P94?hGq#z@9za?W{`D=;J&?cSyU8@45vtkRPn--K)A=LM4isbV)k z0_!C^;1Gn3iPzVL4Zl_D1B$P=L-2E{{U0J|51sU~Vh484BR^tJwrnT4CE$I&h1Ocp2wq-aCxU$>Ep>y%SAeh1} zTYU6mGag$EI%A!QgxV~%KLH~)E5L}&4KQL;BJfW9m^YVC^TJ_q?gZ&iT#R+xQ_ptF zmV}F{wkmWr)PKH%+_U(WQS|*3)bo>$66-O~N0uSp0G*m=nWOkPS%?V??5F zkLwH?o!d%PQM6=#A0KYvl0y_OL-W=pH66RFT(di&&o6UvLI_Wquv2}5gMGOfu#b^7 zI*S<$Utg~0Dh1IkH!rqB*3~w)g>>T9O#w(03T6yPB0HNkp|!QD?^LGE*UtHGj!+Te zYz%-msIs!$o|!kQ!`Jzi*U@-10{Tp0qi>)E_-sW7zl%IXVX4dhT^iiAvi)WP#=NK~ zHi$#=l7i#a$~!XDGhGJc>gmQS?^V3ptB`pvH10mSzWUgZ=YlBnv=i`jCn?{bb*51N z?}$y_vXBSb*tgJxTEaUulneD2=Y$Qy5-4+8;kdPB2BNn{J)r3hF_gWebNq~hD55(d8#i1l5#qtH;LiBB*)%CE}>TDETZ98 zLu;ebN3qi>)@d*4&HdxrouL0qcb6|YYp=(Ny5eiZhM~ydDB0YQ%)u-4^aj~bfvo+S zn_-dqBMmhR?@~Lh>{yW!Lr_CQXJqr0fhut-=5LE8P#TK&<6m zaizvIuc8PXD=}kLU=8Yfw5nocN-L1w|f|?@sR?Q%`6NC*&xx>Wtz97{i5?MuydbTvw zm)mFt-<;}?(?4=kbx{Zc1rO2uXT)V?PR0rgBdl2?^==U1izh)$KMbg0YLa4?t3hnV zWPZdEhCCu?O8BfX+YPViPSjo&ED2N|CeoGA)Pe1#+O5Y1+r_TS^e}cFmqr;AKX`Ob z-5m$q$%79gdV90;a7GZ{IxznP5q+`*OZ3?~qQocgniKQWlt=JTsBzSH6~xt}ll5Kc zXdZ_mlzgsbNO*;*X21(1o(`?cd(4;!!qK5)HUJt6x{aKb?3 z4)BEw9O8CFd{h$1FC!euc08;++Q+A5-gPMclelk9*rife%3i4PB|z>Kj{b}dM`Yx5 zhs-TK3SsqxqbBFPxK!Yu<3I_F>d)v?S02Drx^aJ5GpC0##aG=u9&qqT>yKl$IOfc& zcn%kYM!S$FXu7LJUZQ?ahuv42{XOgFY^pnzYlqepD~Gv0tA0Ric$2+{^cmK=& zOE?RJJpkScJszgN@D@f@>&Mo$%%3H-u57SC&l_bPx6p=Cee~RwYTYRjjz)}9a-|BL z1|`=>YaG?Y-cih)*DQfj|A|wU{U^QItF{6}>9<$nU7~ z{6($w08@N$B{C;M7MzG|7(7i&7A^DTQ0vbx<+ENp~SEeF=Xqx|n}sL586X4m&VD7>8)Zimws_yPY?^4z7?N&n_4fIeaL z84wGGaM*03)s3YPB;Zl<$@nK0>@u>1g6YAuh=U9Qc{=k%Jca;>1;5kcoY&hEojjq% zwNBdUVklm%TW`U9#eyyVjRl`2W%?8T6AK1&{0)c&ck15_{($BC>$w9s_Jlf>xI_HL z1$u`GSm@?KjKUSaiv&as0mka(t95mb%voxvAwPB6he@oz7UuduqF&`Xgu=Psy~w6@ z$<%4dT6wsI!3a$vTl&y1Ve!Eaf7*d@-6w8iPkb=de>h8yE9&0@m!E}swT$EwnwVQr z0Y@iQE}mv&6H=FgasiChAbjmXbOG7ZO4G0$La`^qi|A-3r3Qw==z`k$=#;s$;giFQ zTnYA(s^}^^T4*HH?(ag@u;g|xyCu>I@R6uzSv*o8VF{c}r^u)O#)2aZ#+n_71S(Vm zk@fB$jKOouz)qt;#DaIb<%h%p#~!`4D6k&|q%{Vya5B}$PM~>GfaaBV#H-UmzODBM z?Y-~bSM#dphtM$>DD{7ksE4oFJdyt z3c$|E<>TS<+)acq+dt4a$cY(`i7gtc-{4d?xcC|3D|vNM7XnCL-61G;%HQ!y_#wIk z7YkwrHJ0U!cTBPx%I=n-!%GX-;7KuSI0hI2(Oo8q;M3ANDOo z^|ixLR}46e-}8=y^+ooqI6Xoar4F}BR1LeM)j10T%+VMM%{p_UbExul2p)czU=jK) zdv|p$|D?YGkq+8vPY4mfq871jJGjjqHS(yf-H>kBo6whqGM*;H7JcHmpLiVrMNvT8&hR zRU8|B%@usH;`~#~APm%@*yJqQ@BIw({_U*|<(e4r{Ne5IW38paww0n0Fx&}|Y_5d5 zU&N0q=;yy0ks1)ypTsv|If6WI#q8f;d<7Z;h^6WBey=JR1-z9U1V7XA{?Wq>@h`+b zdzc!1HVN`mT?@-^q9ZF`*C`_oc>B}cejw!!iP?xb@NE>LD>pHX$h}(s67=);11fM* zUjO!$iqczQ&*CSpE+{#{lyaX%z;A;>N6v*da*yi5UJ!Khl0QTN={ywDP_TBzSIKI+ zJ~kmuVP3`k@@wvjsAkF84Be{>)sE)R(cbUfTue7=v+uXKKU-5=Q+K@4rPpoLbQ|4_ zg#J*kLR%44vr)>eMk-$7i<~&(yr|nnz-0Izk-ok2gh{cCr}=s`N<4y7M}K+f@CC}y z30HxSQXFJ+`WICe-Z!Xt`kZo9I-Qcv`wI7_1p-HBB(e>1KsFnUYGP>P8j%FSVg9Ts zUZhHW-mAvUP^VvcGU7|f8lXBCG+^efAN00&mG?9LWB`l&L#`JNSjTnwl6^g+@K==Q z0pV|~w;k$la72id@%A&kcao4dF&M8xQDqziS`f3$IzKBgCfEo)|C;RxcZw|#Qq6mM z2ApsX>ma&@?N~(?e@b2)dy#GR%0X75JtGd+5il}T%ywj#9A5(Az$KN(eRm=9+sq43 z{ng~9DiG`YwCbAp4*U}08^|N*sQ+i@0vNHWv?CPeu}Y$lDBA8KgQ)3JK&Sxm52qKU zULClYusUlDo*o&$+ESJz%0LTIy0Ae&*GIct2Bx=E>b1!#@(w_)pyQNKy4f4}iJg(1 zi0_8#yRTKltx11qBaahh{N(RH7Wx$vHWT;f(X3n7WyE(AApK>!b~UnVm5e9>$z`El zn@o^KMVB}>;I?Z3Re3_@Q*=;#shOR6&Xx9C;#{~pz_kBdi^p^})t%Hj?uW8K#+O-P z+BqohAUtf72jh7b{-Us^YkpDYJI|W4u(9k*B){oURuAVCyt$gn~xPo>0T>LUPm!V72PFh)t$zVX!1A7>WV3 zgoRxzP@Fq=kRXg=>`vP$xz_JbEOF}20!x+<8clHq|3J&@6}PF*!JoXw#I82dJ8d$0 zc;=R|&f!XUpPkpUq&fD^q-k9AQEkaz+z|lG*_-;IFutolQAcxkTU05aT@M%QYz4kK zms*v=i%%a_(-_8z&ZD28uVgvH&g#fGE9X<@WPf6gUPQ)FnqeG9FW2Ttt*Q7FycqVw?zCZ8q^N>>_n^q%FpO za}l#q1QfBaw_Fm^Hmylo2o}|+Aqu-LX)WTa_j_+tu49)rg$Ai`QQxd>7$)BRBsV5#MZqlFTyspu~jrQtuY{aX21>Ch+4~sACAX( zrOE)9JvdIBu%qO(i4$G4Bh6!is)A0u<=BD89QC>zza@2UNgCp$B zY*G-`&f*ak8QYY?IeB~SDOs{s^OqKNAJGE=nJas1`^2rnAnO2fQ-! z64OzsINs;`uy$p$4HX^m3_}YA?nFhh?K4yyHkWuCO;0RKBhv9}tNR{WMJrO$?J^Qu z2@}nI9z!^LaQpdg(Z{X(tSa(2{kgIkb%N@$&J9b^IL>(xn4@iR(awuM%w`d#hxpNC z+z+P~S&Fvg+%RfP2Q0g6qIe9a!cDsT`3opkw{7r5F4c8A%&oT8uQUW~kC>NZaV+Ox z;p>EUDK%$+I&IqDYPG;9noW0N~(&+l<1l871m;V2h1}r?*j#f0yYIxuhium zQ4;U}T;T>D&Q7Ru!P85G8p8LHn7`#>PPc5rr>q$2m>&9F$a4hd!$2Ajk@rr@tvN%+ z#s37x4JvYePm=kwPG`J0ReVBBANgRFnK{lh^w1-lK`R-`hj-k9L=eeGvJ`u90>!Pi zx`jr{l-qid)p$Nn2gljekj-RPcaoPzPdrka@e#{NX~-z^{o)vx>#{VxaP?J9Vu>WT zMH-i7j0^c_(qm@?Sl6MBaOPs6_bi1w^C)PDz9_BzruE(|BQVu<-FAi(n?-oy7uYO? z5Gz?OO>Bs#07fU^|EYV8>G_4C)Hz+j#WV3(&kx=$FJFn29ihIGa=Bm{9ZUy(6$m6Txy?*FqVkd9$OA{VIpRz z`t{`U0S`6b2l=nU;rz+Km16chN%CD3d{u)_Lyxw=?D^Jg%geAqEztQg&aFMB=|CQ` zZ8%2=HU6P{3fXdXxHZS=&s-+O|EqHqQ0eSH^jZ49b*=yu(Eq!0b@gxON`o}{R-2~l z!*}eVuGx>c`%KLoI+DR|ro#ToFFC4H|1*B}_g}`{>oNcT`1ESP^&WKmpD-ZKe`j_& ziFuM3|D=M#0I48(HVz@jA}oLG6B? zx4NB)C%^sCjTFZ&NFRjmb&L7qAJXyDx^GFIS~~Sd6fV5zChmu4L6KIb9%kjw{Cz); z1U}kbcxg&{R+Ls-`VXBq#%h~IkV;NgafcW$Ljfipqm-Nv@a%&myiHY=uPWjA4a$Kk2aVT!HS>^9ykC3fI^&GI&AB*br zX3;+sL(XqtfhK%+@B-I$D8>ov_~K9bdyu3-bp%k~Ox{_Aqo4xKAfsI+fTtduQC#is zeiPiqA7@#AT->D^L0;)#&<~-y#e-Y9{my8Ya9_A5V4TXuHv@R^g0=^vReYI?7F%9gzo&|<$QDdVF4>UFu=-AAJX&1 zrk9qFFH9CY9e*K4Fb@|v2`Wqi-pd1C2dE=AKL?S172IB;vGQANiGLVmDOMvJPfhkQ zwTpPHRlJK%!C5mvTL;(BXb<3kxxp#QGsH&yz6Hb;@WQ*Ma$` zXkiO_aw&4a1WmhwJQUX0_g-{Qc1uWyI&F+bv8*QeO$xFxmvqmb;YW}wK{}p& zBN$VwDh1q*KmzWp@#a&JOx;jU(l)@AAOIMU8z0bvp3ZV{-S6dT?rBjER1QEZs5xJv z2r?o4pm+u563`0T1x$?o!GIPK_qwwK(f(-#`L4P10b;{T)-$#lVLa@%Q$J}_d2&Eb z8-P+J)_R>mI>3%(V_Myiw)y#>y3GKspg@8>2-DFFT|`tjuAN0A9sb6h3N2BdNFKx% zYjFKS(eDNO&8Wfi63mMu8kO)79J_Dr@N=Dog(x>2MnYv#5?H50O>VG#d?0j+tgJd(}qLATqf zvcaa-6@(q9eeZLOClFQ;<+lmQ3rjCGIwaND=AGg=07DSkEOcMjpd+yyzW0lK5kwg* zL43XZiTS!frZ4nBl(sZE!k}z6ATKEucRJfl-HlIc6tP$<3e+2__gAgU>*tIi$l%3gnEpv3BpHMsKs{AzfTU3Fi@L?DiP5O zZb4f4B=Q~56Ayfndv`Jx7>S4w#}?3tha?3y&$`v}VDo!0#OEeaoiC`&g%6^k7$BA+ z|NpI^{{n$J03eWnOq;zyD&_3fo|Qr}+k7|)K3#M{_Z0(LY>X2NI4w3~yr8>q?yIhX zf(2h7G?QX}q+Ol&w-(H32^kC*;381dPbetHAx{3sK+JU=aBqeiF^~32jT)^P1^^C5 z7a<|vb0QYjZ+Co%jJwFOV}C0jnMX=vl2qC?u@e#WK`;6DEvrWb^WGk4kM^Nz8rCwB zWMu26O&@d`WEplF%L6&2xaImO=Tx>dQ0Re5QM0$O4h-*N75J}GWC9D`RbN4bZIU~Z zAiVwbZSHDK9FYDumikEOJSYeRlot$PNt>$1+hxp@cQy-SYy&&WLWk3`9KToNe=(q$ z7&Ne>aX=x+O;5l}n10JD;kUMJ=EfQ`k~`Lm3TmUS56vAn+K3PF3=rbc8p422p5ns` z*xn#Lw*uVQE$NVx|GuAB8<)ESQvht?HZ<2FDn_A-=aLMK^v$%s8yWO-3EM?iwz?INfD<$%(|aMs{dcmR-cePQ9q-W9rhQV5JTaipEIEPZ zb9Yo5G|x09z&qzm{X1>sZI>TS2;iM#sE_B$qv>4HvJH{R4tVEa-lN|%Q-|euC|A=A zj3J&UsSh6*^8jn)EyPZ~4baBkYNj=>pYRIAG=~NNk0dQ{3K-o*BYMqm6F<(6eIf;}0hg zh8!m8YbKsgn?+@h4{h9)&Wpyg`AnvA%%Q+x{o0xwK_Oq6SuhJ%cgKX22wz`s^n?JV zUz(e{MA2K(-xYtit)?zIS&t7pEnR^19&^=TpsyI9vTjUR$=Y5oyQ=?BB6^dZikcAensZbD2V@u<%_e-oV~&LN z?#Ler0Sv+VGPmbQ`RKe%uuXj#T-(Y)%idWmWLyKPG z@){vT*2nWHIE8PqTJx+5qv_SCSk*Aw2XXClq(vFWlTQi ziJjby=jMxenG6}iUd{RI&=-vZvao2ZMp!$Ne(qP~BU%ZVRF<)Sze)%iEyi-76_Y=4 zv?F=4Z5Y69)60F3f4A$7BA%0+zw~fSwUQa27V$juI&@0CtbIo};i+<#(VxIq}q@@^fjUIh}wWfam z-IO^C)vBwhK0gG_!UhwR;3PR$0r1Kx?&NkDaTSR}Gi$~6tnp%lL11-xl$36papQm3 z9VuYi(~~BlO}q&wNp`B=(M{r$IwO4Lg~&VtEu^?loSU_N4xgB%W~JvP94#!iZaW}8 zl1bct>QoQgjIB+BE-YCJtuc9KYrw`Pslx6VPO6+NIQmWlo$>02rJ23jWRcr#2403( zImhpRK~I6Vwq;>45Px^WX^X1kG>TAZlWS3q08h>rSmH}=D=w!YDngTFg+9h&K;to# zjw<0kw)%bsMj2{R>K%m(mE-cxXurK_yzJ?ADljtjA%kJDDs zM!*f4lR1bCku;ii-e|Xy_C2Lt;g^dMQcD)%OQ$D%mdSAailVZuZ*l$8X;`w_0-L<7 zTZ+1_aKmf^M+QP2xMX1?cbV{%Qxktinm0}3RNq3fl&k>OgLo}#WJCwY_G9r$ZWZ~Q z@I{m5HxOAagI`?e?p!~SBWt@h5y<;Ur71R=nMXTUW`)XJNng|J&gx9(iT(sZ1?Z8t za?mu63yzwZd(lsLqTz^kl^};u%VMrwmK262xum%yi-_Pz29Hv{=TULdu3-J$9Z8g& zql=o|oUs?t>{9NW$DdFNhIoihqJzf9;`r%_id;)E4ldOC4+iuO$ODb;N~V^jUE`Bi z0U69ZV=6SkuZa!8ag=B^PW_efg}n}~u(!Vx)-nJAG*6zi;BP~F3H^x7d>RX>&zP1e z^hgiR;g4-MUSk0mP-U_;00Z*UP;EVNh{|~!0j{o>T`E|Rr8wPlwr2Hoii0eOdKvxi7d7wd9h`R64fIg6M@Dsk@yCid* z7DriWT`jk<{vfuMjKpkl9pP6U2++*5Do(=;owD17-Lzi;U_kmFKK9=iZ&j)`MxFTT zT?Ak*jvfal0gaTGt1TM+Yu+tEhVr5!b|g1>lMOckx-;gxdSBX8&OPJW%i-ld!*1CGgPpn z<`o~(Gc*y=H>vjUJU{Hn0V0j7fMW$<;L6Rf%g{@#!}(F%@RQ`m)HkK8crU=M=t#cD z8}g?y4_L5#5`-5*>j^UK{k?9#0ubk-^VGEuLl=;2W=G$#zQ+fcgy90{x14eV@nd5l z(-nTRFAm5pKJ5J;4rth`OY8sRfWX%rQ}vGgQnr?g031-AZuB^DbswG;yo?>;F%t~S zQq;d35SGgo(E)%1f&g$p=&1j2K@T{rwP96Q58wXp9=ap zIgT4JK1%oWOL4eOpQ%}W%2i{EAQl1n!oVcbvs*8SgFEtP7bcW64*CsE`jfZisf~2` zcFR6ywLS0y`*7WsiTS}P(^t$?J+=1&gBLELHwU%)D4IJ?dB`k-U_F-+1u(T~P_Og{t( zkJ2&tVF=&syeaCgzX8AfN`j;5MHkKBbJno%#*8<>b_0aAf~CO$9MBj@WC5n<{J1P` z^|==$u_I@|hIsXm+eDdF_zZ6h@zDft4%6n;1?#-CH&Q6q@InNq14+)+;;cLjLqniz zz>hejrhce&M*~DT4r!f~Uk5fsHnZV5w!} z8X0yZ(HdQ!TgNm=11M$A#x2R6t&U|(l|de{Mql8?tEKGI`=9hcKpvTS2i=aGwu<>P-^~w9H6zE^@jE@Nu*JDTlXOMGO*G%&kV+kQx z_UtvPYq#GBkzP_Mb}Hn3 zxKvs@iY|*jiCr19ZZin+hw=LWrsw&&ck{3r(oKWWFIhnkX|GSKsU^Kn_HB4*Z^6V~VH7HaKa|?q9;=4STU}kYU(vJO@;; zp_XmLE^OJ1AAWZwMw&qtcdXoN6)O9o*yWRkosgx(^-3$@Ky*Yo2fz&^TCzo_so{+CA_l5l=eWew>Hf z5c3D2-_a8SI{v_=^YQPU>u7y6GJ1Ez0H6xl&mwWJ*IPuR6sZH*I8*1K@j1vp<>7z6 zO`oe$?KliT_wYX00>y6rAKaT5OnL2wRXB3eq&j91Oq;xGBdrxEYf}pCDHY=Bb z){g3J>N@^0R5LHrMB{kN^8|?ikHK>-2D8!3J27Kb=sfKS^86b{f)~e8CzBzZZ2AXk z$&Tc@E;j%M#Ifc6+?!U~%4SY6YpLw)Lu(u#0c7#P9i#jddT%yz2kIUiqEDwGQm77pN z{`mlV1DFCgPdvPr;5%`c8tO+!jR%enJQE0xO?|-NEYW)?&hwyyvh~ieM8Kef8^6MS zLF+AQ({aRsU#E*cT1RQe-0E4TLt%7yTJuxTkIud)%vq@sXg*AGBWqhY+nyQzL&M8{ zk_5B99d)ugtx0=vi8ANw{`@^lzE|2W45-NiZ6<-qp-NhgC$qL5E&*G*zyCELjH7gY@BT1bS?KmPUI<+L-uh{K=yBT(^!GS}(Bl z@c8UJr47tG05mw}NynF{igpY?G@%g&bHT@RrMy8n&iVK67Vw@_D2I$IC^JT)g^tGC zde~Man^qGE5NGj# zqa5beGg@vWTq!KMU?JTb??)KrVOoSnb*Tt8HY(mJwyL0#5|Z*u(=64?$fHSSH_{7I z+Mlz2$I^>=wr`3(q*A!cZrlj&!Bmch$%##;lM<&6EiU2(!7+;z+z|?WeJQnADmra8 zGV?Xe&}e8sZE(atIOMIu)4@*4Ra|V5TyNqgt?aDfaGRu}Cz0@47+P1Ii(D9I5TaIWxf3Bb zHQ`y^ykO=M>U=TU73CA=1l4nbL><@-?CnZB%D6%95j& z(*9NUEH=(Tv3;(hR-y8p<{Sbg*A97G_0O?ZDHcz%my!WoK1Wk68(FG`O*VMJD0;oI z-mfxSt>;b89)l61Op9>O1{Sa7%-@!{dYkx;ccK|ZAwcdV8R@eOd+Xb=kf^$GVpJsv zKHMJPC|(Krj{9!wlNDGyQG9k*O-yk~cR~>8^g3mk968g$?u*!W!N;hes)xuRAS?Om z#0)LZ7cM9564o!neytM?rZHb3$n%@W^Lc-}s2rndT#_GoPPa`xNl)RXnl_3X+;_|T z69or62>WTqr0)g#zFYYhb=xVTf`NXJ!GoaBiKxOcGWry;FmWp$FB z(a8FsAF@wkcf3)68Te+OXW9{ZcDQBxSQLf4YxM>wpvRT6Q|Df-4Svk*&UJoT=4Leg z)E3~(L3nTuEIls@BLM93!nchqSxn1t7Kcp-Fs~_)-8!;YIVwlWj_4{uE zhi%;Bm7MZkxJFWLI-m}iD86)1G|C(2;iQOff`62*dGqDl4m>&${e>L2l~4#=lyC{; zc03^nBztO>!k#JwrU_f^-#<4lKkx0Is^JBR9PWc<%eXuin+ziDH^wSn4|it*@^sMK z-8wcK46oj&eEs+O8fL3LVgHl80CWQe;eW(`{8&SrN0OSp_o z2gOV(#T0=5B>hkLPnZy$d%`^A44`TX$N^;zgESIe@Gt#}dJNXADojIO5eFhZa(+KA zc<}doJ~Q}GV%?xE=~+-(r8PeL=ddD$RC2(T8xJ_F&;SlAbqW}O!%A!C0TQ^R?LULI zT`*1g^xg_plF^uYztFnTr`(kvO5Focab&bplFY?Ey*YkZAta>2KJcRcKv2?>Dpk3u zgkihT{R=cik0OF`Wg3#}fGY}8>?an=JC4*}ER;JOsW+@y8h022!00mz3Zaz>!XAbf09F9rq1H$C*%nm4CkD7Z(T#Y}L5RtGU53tFWV)xMt)sOV0 z2gIj`hzIkAkC)aehoC1r*rr6N;_)EXwhFn;{5I4pE_-D|jho$=8gEj-epiTeMbB{EH;H~~9T=h=2 zWu7N^3O>LOyjy3ICvgB?q}>>4aqdK%^MmK-0{lOBmEVB73JZka#5ha9{G{zwxZ-h! zK6L%!Fx-^nRctI$7GTiU)|b_1!5!%?;Er?;mbpv8`gt_ns_?Bw&~*gSP!DnbP9*yS zkHvW^!l(eQ!rUD*u%8ih7@3!V?RbaH7Wh6SHb}quBq=r4R!@Yf=mQ)>m8qa+Vp%ep z-bFkcSyEednY*Z0H|blc17OgGiedM7?wm!cC9Rmcm{q`4=?KHjO3V^eFpK^|+EeA} zhCn1Ru^xb|2mI&>oO=d_BV*DRwA;%movCeW0d2oQt4E zBxPGur~^-Gh}9YGU~6uQi#0?)3wPX>6^!&&vmVKc-MixbL!E*NmX4{Vd6^!2B*8uo z7_>cT1Cx}M1STk2qWU8w zuATEwSGv&HL7hnADZY_I>3W zhz98LwOXYjHXY`wcozlzuK6g4vek#A(oYbeZ2sJ|WD8Dp<6%7$O_csa|C9pgADW5( zrhjxu{QseUia-H9Ak%{Yxvw6Oi*9p574I{~-vstAeSx_3^K`1yF0K$;UpdGX;=l}I zU(ff)ZuOmCau=K0nI@FMC+GH^z8fb?wnq|HDLMI(lVFSZ>$G9W8&Xck@eM!9o2)HA ze0Lcvc5qRO5uB37pAn(pO_-+gKm6seC~E(~e{N!<72*9P+P^QOtlca{W%{PMm{%;S zzEl1ECCpzG@82OjYesfIE%nixUU#V_h{F4E*HJacp55{DW z)OnRp0R5xF3sAcKe!vNko{H1o$y^@ZZZi2Rp$JdD(4XU#{0AaH#{!y@vw=^L=_z{j zWjdUUvsQXj6o`#7=R%~xguG|RnNOrmlPJ>gD+hGr+e84B8K zU1%6G!qS4aleqlD#6g_rK}W0P#3So)zkxcc7%nUDLRy7>x6n__3soRK^=fYZt~^cw zRwXRULO*(NmQ;-qZ>0g!=(Q>@SEu zCvuP~M~PCqGf6k|(0lY!n`|A)oSdAsp1f1Vqjs_}@Eet98M_JXuP)I`I^KafE9|zv z`vP?2#ojQ1sJ{8*Vcm)HbXer<2LS$gR`{{56S}7Nl+w<-*@lIW}qj<3f>JNjW* z_G?}E>6VY9$kmBo=Vx~)QvWe2y1J(&;=@d=Kz7j(us|XcQJNF(rb07sB1p_BdgLPA zV4r>$s(TRUPGP5w`{R)l0r|)JhAz&SXMMIU*z9nM zCrQYQ6vB|j)a;df+bXBR#T4U*dd}}?p)9_enYAa__o-R+*$Eb!(}?sumEX&L3i(%0 zRWwjCVL5c-5fVln_gan6pPF`vamg3kmu=}mY5$q{RjP#1dye%Zh|+e>fjtS&3tb-1 ztUo(8!zaEX)c5kreKvyAq+9>xSTmT!)3%(AA1(KVEr>Gg*2ZLnmgx$hbW{Hx8OfLtTFiZ4CieWhMu% zCU>8rm;5|e>WO`QxmW5L{FWZJ7#u79wl& z#XUW!mnZv(RwtKpc?*B>nBedF$%>LTcg`TyWnC=OdPi2dF60KSqHtgf8S8TlX`qx9 zt2#Bl!CdH!CE3&cj9sr5=%FlMk!@c0nQfAv#1^+DJ+1k6EismCk|=G4P%~zaz0`yz z-9|J{Qv?j@EgWYsA!BgTB6~bG4Let|=B|o^@3qcYmK63y2t{{$#{Q@9Q5`i&tF;yI z=J}{gv$!;AS9L$JrjJbeemDBQuYP85`;6 z#y!pHxN?JW#74;y?V4o36rp|Xk@J6&mTfmh*ILG=KHLuS* z*}Tb$hp@}9QcJPKmDE?!qFIwGm}b=su0<;y<_K4tQ!P7tNzjD4(FRvqXAA#?NkWI9 zN27he(LiQSNB^6x@kS7nmZ1>(;)b@MPtkU|p!b1ZMvDa#kOSfktVu*cn3Ka4?W5+| zJEc`PRHvH2;mKQ)o;nfD0P46ezZ^aEX6C$l8P7(tU#8Ddkb@GYPdaJG zYFzzae7$3EC2YHH8{1CDwr#7EjyrZbw(U+jwr$(CZQFLzarVsne(S8-Ro_1U@;jBP znP=YD7^Aj)jG248_7CuZjt5QpBYv(a^Su~0IMjijSf6K^bT~9(#|4Q1?H`X?zLl8U zc?VI)21Xd3kAb7tUrh-NjuD#%g4%qXs0noKWOdqAN8{ZGzmuDuCF|_{i0&j5ay99O zMtNTRE~@J`6uJ0MDXK~1e_GG2IPP9WK5CpPhUMC)DXJx1nkSIPIsH1W0Z(=>IPVgrLa)tp0E*9HzrRSMc7{ zqFjbn?F`l}i(De8C9C5no4CsHhH~muq8dk7U9L?%G^i&1*8AIi;voQNW4X0BRkVTL zI`0&1fwh=CFrg~o(&eN3^YrQekN=@W`D`dr@j6Ld>I%?qJF>vEvhP?c7QCTDXgzdm zT@&h9@)>&zMdXm~e8c%~k0pB-qxhfyFZ}0U)tiQTT;3P{gM3GTdl~$?JNb(RYdww) zxUmOT=Q>iCTn(N*P00ABiU8WuM8!m9W4t`F6BS)d+|QBJi#shcQuzY_0Bw~OsH8XR zUn^7K-?&czgw&1!?@C?`Xavjdbif*V<~mqvau2=V|0fBw*eIkGkQb1jAvUPA0ZeFa zsAj;KSVb1qY0wNzbA8~!7_AG)1Z%+6Fz3Z&@NRH&5ffhIks>#Ls% zhX5F&joa2^sXenm+~^~H+hcrW`#SSb0?s@^x%_YgdS3w0#J>R0%s&9op@ZbUMgHPZ zbn%iT;N+vz68E{<(>DyGmxnjl38BZfY1oNDFf{`T7RkDOT6yFTV(?W2asU*8IQ{d! zia_32If2hPW^VCrUqzrJPE*|>f%PGh#kGZ}vm^fA+f5F-^vJ$)TvzDkh=?t~d&!l9 zb+QxPSJ6Vv((QkB2_`doc@Cgb0A0fTU+ec;fG$B1pi4MYF?NOUM0{0Ud)66v{)-I# zhPNn+^cVR`f9H(LCjDtTAdBK7-du+=$<^e#1vt722&>Qi$k?t=uL>*qro9z8@^#Y4 zsjsBm-*(+(0Ocy&&&T)>T+jey?imTjZH^{r&|J`=e*f|qYUTw?=^n50TKAZ8^>bM` zdiNTaFRw))h}{(-1bbAP-`7c7o&nSC)^MB_m(D+CmSZ)*>p!}L+hQTasss!{8-OlB z38SJtpG0#>KD@-o5BevV8K4L>unNRYBGO zWM;)ku44cGIrX0+kOcg419+RMsVUNQ?|P<#u#w z<97yzw^g-FQ~geY3}Hy_V@8#R&ZJ`YmytTMw_og4_j9rm>yPbcSbfJ&_#nQ*#tgM> z*adSy66klSmsH13nq)u{=<1&&kOsh9xO9MYEIjSZ7T==eh&o7Gsl$>@3O3hk_d*?M zw3Z0${!_II4TFn{Rs4Ao009}$rFP$m|6~y{#8?7AKx)PNf_FI##8nG@?Lm@1ISgaJ z+otb*Gk|L&{G45V#YDqSWo|i8$XX5>o2a_qypns&Q)>4;?X}h683Is1W&ct@C_lj| zdqC)CzYPa6N^FJ|{>W97N{If;zu=osYj&|7>2)6%_c3C`why@lIQ6(WqEQIe3U>v; z$UR`Wi;wsvjzSl=ZnkQrlpIQsMW1nnLL7S_;@Awz)sTD)+}v@ApJK3*hQ|IvN7bJe zoSCidp~KxI(WMopM_n!@3xbUp8LB+|$#+kE>rEN${SBe?9F{9OAQM|@v)FEQ3^1!o|>`YRE6C&m7rE|m^?_eWSijykx;jz9yn!trYf zIGVh9%-g&-4CuZb9l^NCj`+o^%A4wHOfEmoQ55uxg4J5)id}uPGXq^1)NP*Tt7hiC zi|q~sbg%;Z6MV+FYl-UV!RF1Uxojv zOJInJj;?}%QquJv@K|l9j)N&%QVM_OiHwglGAY zv3LE<;rqn_i8MD+Tmm>CQY_rh4$mbEqI!`O&0hW(i1eb?&o))I!JiUUFZ+}$f0P0^ zc{LhDf_b|HAzilu|5*L-`Nh&&!4(L@!UdQ6p zM)qL+Q2fdCE478*9~0tL6RnSi8w)9NTp$(+Ix+fyZhcYytpb5rvm%LKU@Un4GL; zqxFDqsZeG(o=6u0S|C4H&N`DW8c~%HaI+CH9gG%EBf*8$k<_Ok-6bR3@pHw{Hf${iVD z<}~%*pd$=tl{6en4$pAm-cB*WLkFdCbBxs^qFCp(p^JW5(jY*nU~C>HuomZM9GPrq z!#N4~N6SFJ2`t@xj59og?j(e7=`Mnb3-G=7bk1Gnuvo@jtvtBjqPDndsuVIp315@K zHAv>h!B{4KN=5}oEMiHGK36H2R(WBO6^7QabvxpVUh{ZSh{0d+0Hd-q7tFHAM3ahV zDm_h0i=?MJCX*NoA7kja!{_`$>1s1P#lO`@77gvG@fu-zpQqz&C}&JuROB1Ac&N2T zfYKKz2%MBw3M{fWYeYNCM5eLm$Wd=P<3rLs42VR(Zpy zJVwIFlbjcXQX6LIK1I$bg}cYWf8*>&DhK*9+6*KuGPr$6*msLa$T2CKA9%^pb#w

    |n6aTO7dN#Ok(>eu6$~?QOYc`QP9lHf2~D%g&cf6gP&3b#-_h|U0fY)i zf{I=OXE&Y_C%F%P-(22z#K=_xBd3%aveRA)B~?OL2N>F8>5biz7L|lylvj2_DrUnx z;(Cg~cwx**&TQh=6Qs<1PZS8!V)%roDDI7U77@$6vgZoS6gcfv-1_Lau6fi}2Rx^3Ul%HSdrY#sj-~ zDF@x^)qi8d!R;k%X;2hWNX?(rJNV0-qG1Hvl4wtakJezevhO{9z|faXez?X5qW48D zxuXTWC-8z`&2&WX)tzwylJURg3R<#4^{i!>S;h3sJ)Bh zWZ&ExAtCX;ry+S@DFCmMICUPnG0?i51dbJJZh^;!Lf(E%^6mH7U2l{-3ihyNE6dTK z(NOK87W^#vg~nkGSiS9P0)k^vP4aoW-w(Fh0@6#8X3?mO0QPTB%pB0O6&u?@V8$3P zv;q8VeT@95@nYN+7rPHWFneVU!zu_hR_qP&=kzdyW)#@d%h5C&U8d zLy#)zDi)bI`5h~E`iH03!4?rLc3US{ssd=^Cn{LdGKRvqT2<2z{ybDYjwpu6OV#S( zoEm=gyEt-(eA<^#lfnfYAKb_wll*Mp(uRLBoGcV@AIY+#l|sTYG&Q9N6pBQmc1XYD z)5rU(UnjBJr2=rXBfEWYo=#Bzot?9;G$%@6JS9NpPhg4;u z&FBWXbqKhj%17FF%>v}x?>oaL!&W-LnK6!4A}ecJiM}Je*X!cg1VzDVmo)TkV5#LG z8Aaq$m~9pAjikhW?&yJ`(8t~1!G{xpLe=2C-Kj$!QZL-`UkJY89K=)Z(T!0`h`GU! z%IJSs}+jS3eSI-Ej-a`;^`gK1*|Jx(% zq_@8P4`62(`CoQ+%#8op+1cy?eA@(i9|1cMhXWi11F@FR&ZRj6x1Gan@Af$hv2-D| z&d*DTQY*6daiy{a-;$FQkV1G#1v1~G0S_>ktuiAOv^GN5N~Nt~zyl0UueIj}Kmt*H zkwCKb-SfOiY5)=_^z8HH<7;TwzL%^3Ux~0Qi~nuPi9)IuL8w2-@LA(+!X*N#zgxBw zyPLw-sx3%tpO6{)%eM_fqNipD*A!b%IJXNRfhhU^7>jElV3G(1G2+sFFW&_Zcrijs z+zxs4Abf!plow8QM_hO_qKp*O>Hsz9{PNZP>Gy^|0o`e?BAU61(a;q!@02k2fj`OM zdA`EK{jCB7X@&Hx0n#=TbKP*99wdjvIgg_1!pA{H^yS+I`09N80KPiEZH@_DaZ_Y| zM!G7qO@(d;z6k$GtM@rWK7$UWiY_mF8rmy|wcZQYUTPEu*-MMOspCowdQg&w3c?-@ z5@J9Q2u$d_d547ONmnc&U=ok?H3fuut8Hpbjt+)z}sI4epiWp9k0!GSw|A z-~kqeo~6HYk?A7qdECQ*<0HjZ6))|@{Jai)>;jao?^Ua|&a}z_*XtT${d>=wx%`qd z;mcQ-t9Ba4b$vD74iY@k@8}I3*m;&9Xwe|*Q2(^^^#EflT!z#->6%q=ed`cB79)h$ zonGG(!D-L$$Nk?T&f0QF6m?Omx`5El3)1b)hG;HxjY0!c-ybU&-K`Z75(}E$X#sl{+ZqF20s7;2 zU^AKcG8~VF9w%XGigkKH0=&Kkm->DyhIPWL z6^2>4l5oU`>L2x}R&=+;A4kOFItwGU6@NSsoKqwFJ}}HjssQd)$t%v5WLxT`12t&# z=N7vinmO$~>z*KSIh2XUK0z%#G})j+V++$Q8M(#m8^6xjKu3k_=wg4_^r|&lVM{fo zp6V;agb6EcH+>L0Z!U0x;kli`w0`0E1Mt>&w*+zKp?m5zZfhRdDlL4;PAuK(ngXCE?{< zVBAAf)qW7~t{L{m;R%H5f<9^xFX({_2fogH4Y0Bt4yaP)v~`@BjvN8X5DMUQ*ytNj z!fp`5wq;-)TN}Ld*8a3**NrNWy3vm09f=Y`d~on33~*zsuOLwAmpzV~2__~VP9fui z(=YGsPF1M)s0s|fCEEfN>sO6OAibax?pF{9a6LL5q6a$a)+FQ|efDu(&{O^aD4_Zo zpjc;!Zd)$McEcMervS>xDx$x#%L9PSy%u-E{a?Ki@T4wQd1 z+fKaz%{B^U(9CKOKzZ=#N^%fU;L&JHb=TJ!N+bt4alm&oUealZ)zhulR2q*pfX zV^Hw>WopQrSyNYx>3UB?qX=7WK@&VEvob^JDV7tQZM9oI~;EE+lSm|o_fzNceE@`E{&pq&D^gl zi6i*0D5wq;LZ~^UgtJ~Jc(>$6{LKlRg3x8q5dzOcg3)7iVnSCnqI=9&H(2Fxx2>c* z#C`2)Xl%ek72bkY7bzkvDA4_f&qU%uDJ`B3S{YPy+)W{8pD_DY{YfI*)%6%Qx;fCac~Ed&}_|{ z1@QanAb2BHYnJUzCMHVOrp$HMuD-M{m}5lv(gj*TXx&WHpm#HJ}yz>qbo4f|q2qd}=H?5#G`VR*H`+j`kqhq9LAd zYk3Mps07R`bdY7-+LH?{Rn06Rw4xN4^hUHfjkvBNr(hc}0VB{6>J%Ktz$qac$TsXtW6MNk3nA(fhJ8FoerID!Pv(TVuFF* z0CgS#+NF3YE$5yCz0lD97v?&=@?g}iqYLfI@Rd%Nl_`q3%I(9Ukq}gz1O@-Q5}@09 zuJr4`(!e@iHr01<9_9BDPFyxv@`efrPOf8V`n%ad>!mw}P-~N<`&xCpaP6uY7n6^l z;S<#N!YH0yYh88ILzH1(eZ{T} z-fG-NsF~Y(PEBnqZUpd({Rzw1iu)u2y2TL+jYfEntct%;b|gfSP~Z5ZW?N5W$>HUy zd2KB<6xd86xEL;MODo3j4niVs(qhpi~_!^S)5$A#WSjBhB;Ib zs%@#?!UEN#la1+uz~IxK^D+^d-0Sq>vvH@kunuyd$Mo@p`Hz|_K+zTC-+-J`qzpNTzLI&@Zi5-_6V7~y@2&=UairWwyX@R4xp#2fQN2o4ftMOS z+X9{oFP|P8pBo*Q`dH2B#5W8~4X5+!>)ynzPGg#X7Ygz~1~{l458PW!ayDPHo<9cv z7>aLwV*a;hOVJYl=hw3(>AyW&nErjXNX6}PVsy&&zd`y(Cc|bNz#FDrmLuR8)&;EW z%M{mr zLF6zY7;b^Y5CDOo#P(}ao)+bBW9^^9%fE^U`j&A>-Va505@{V7O73ft9vVu{Ykmn0 zY}QA7&bIY`LFi4x80!8I;%H>jjhIru2lFLib7EU^n1j*V&EN??g*ZaA1ykWe@*I6K z1B18|>AR=gi$vk)sN+1|TomA26j^M0cv(BD>Al}QC|FLY}4}V#HABLhJK7ZJV z`V9v>)Sm38cqsU15wx|%F%DPg{|U}zDkWW z}@Lc*4wB}{bXKCrF9_7jiIjgwoH)hCkb1z7dD$`Ng)3j@j?*LVgt z_0__(FDYKF+hIgbZv*7iDVm~daC}sOB$~>rgQq@#QH2fgTj6$k+R31)g>oj-Vr#A*1)0B|)*CeQWPh!>`I@BnInMX(yYZ3)@4@<%TI z2p~;OOm(Be-JuFPi(z{q7SH;r;pUrVUFjcA|69BPV)_SMBw0);s9ksVk#GS>r}c#q zgqUI-Yq`lFo0@$GXbdNAw>8P~KarpSTjW1E59avOSXTwcxWy$aumNcM=A!3ZMAI&Y zW;)Cq?Eeb~DX79bQiS6KrR4+QAXESxWN~XMgy*MJekPIG0);wXCM|7^AhYD`Te^xD zM1-A4lmD-!=7I0zrK0SZ#4 zPmH}i#*9*7-s^gSa)ut=Q-lmKM3K=_`-DJrF5m=vU{JKG(}6P{r=ww-n_?Yvyk>`1 zeob}1T4dDqwcY|=B?pADe15lx(fC3F&#`UyWMpH-8u{XKBmF*R{L|ww~uBna8vPJv4~~FNISkXeM^lprgf!R+gJHX@Ohhs-z## zgK=bNu;|K_@g<9UWjY1@iM7DL-!8CuuG-`ZPUa8D1nug6WrF;_gS32kwxjjH4eDbO zg`p;b8h;Sy|0fgVuVLO)Z$RMPQ>g1!4)eY(A?w>w4(OOBOibH!4?3_wWcqQ+-$}(T zDqSgAkI%pMsc4v!$v|Ac4u9K{$%>WyNSZs64xN|LlT0QZ;U@D>2aYQ+EBI^qBp2(WCI0xa8rOpub>y#OE+B$^D!1a&pRPVbwf=)QMgU6*}q&9!jGBiJGZ za<608`fci(;;J7Q!%oi%QUQN}8UAfa(PCzUAe+H~aO(VV74ft=jUPXM7D!1T2ni*O zuZ%q=CVTDgaYp!epffmX>7ASN3@jYWdmi>&;itS`jNmC?bQey0b}E?Kp4QDMRR)D| zW@BQP9PmMJcm0;(?|^B0g#@OttK)|gEebj0BXMO+0!A)q4Rq*RM#wq!+~x70rzLlP zDhIuXVhONbuUMuFb4cpBLELG}W8}o#(u0`-0mEY!<1u0TOaFp#ndu`0iUCdO96*|1 zrBT4QC)(7d_|d;d^L3@+(xU)-Si@A@RBJ7It1KnUNh&xb*zUAw>p{JLwr&&gHpsn~ zmF_E+j>%f}RcsbNb%aiT7xm2yfU!=>=0|2d*2xlFPd54+l53WDv3*X^lD1wssXc$+ z%`f!?_I?U&H(QZ$76@a(%b29j;_qV!WPeBJ9`5?Q7>rR!)eQJka~a9z9#sKwq^W); zLd?vWCAlbT>$RLt`3runBl3cfb)Zpw-`&-K=Q>~~z(Vd9XP&p9xWc%rjFj*5u5#;R z`y|CszGGc~!U$vIk@ZE%FSqD4?6){Eq9%lS-4QAqqsneFpq^5s)+8VY>(%jp02d)T-X+mF0a64eH=+ z1AaR!7VOFqb|$L?Kcpk0L}}5Gx7Rg?^v}wnmJEN@>|xnTc0P7@4;x;tgO|vIf9N2FSK{Vbfb=@Rv7Y`Y#Nc75kB#JI z*L+TC%wJsx1Opc>Dx@pjp1kD&vyjokBuS)G)@7W^MUI`Lj~a~g`(q)0%XZSD?D-R| zd{?mkK)jCyZD&LU1Qu`vn__kid30xycqV)DVVvGRk)Rc$KvvOgLG!H=g+<7-eog&j ztw#K%*+rvlbGk%;C~xzJ^2W}e(0T*=RUN1~!bSFPg|=3Rb&MvbC`m?uNRTA?U40$) ziul=aXrs{&wL4n3+3#abu2_w)8dEK!Mr*tK1vxSIda1bSVM{c>R>LSTWgVi9>^WQ* zAi*SKAzkpw_MaIiprRzvV|tmac9g{Il6S~@RyEQN;lbg=?xCeg{j~OCduea<_|9xf zlqmLTm0AXgb{17OZ$ve3HDSt7sMk<#;aC_AOJnjtGg@FLVrm?|)jx!__lzfp-nSon z$xT5aQF_ocpN7Uq1#j3QMit}@YEmuEf#28e(_3E zdO@m1ctPtV1CU-XsL68tO|syZ@SXG4`ziZp!CnH3IXyv%?mK^!QV1$oDLSIZ+<}>$ z+KBjpG|$=!*lXXZ+T(RG3kLV?=t8(TuQWY?r{e;NZ>M9TpU-i&y->HYq)j(BkW#i| ze!;ZhONiJArdiEo=O1aaJf$-nDKEa;;p`&qOh+_{QwW5VO;f6zuXavb;UWo0#FI=j z>e4OQ0cW)Wl?v?qKQX|nHJSEkh&>Tcbu9WDb6tJ2K`X1nGAnL$DDG&j z4~lwUG6U*vaKmEWFRugk15<^RQwZS1IfXPG+Qo5wK{%NuAhE(&*I}3hT89u)szdKYpt5o0f0Cl+Yvv#zz(EakxuwO7X(FmaON2m3H6a~@Gc z#5-?0SL})NT#4uNr&|4yaMw0yyCcOvHju|A=_#U?`*mZdXp+W5)1ts@^^T z0gi9WWAg31Il;`qfj8HoHNTQ}tIgPJtR=tVLcZ#-$g443yE2sjwkD6n=57P+H8o1Q5g-3{Qg9A!M%Qou$gwDf$2N)@(GA+li+*=0Y}xpoAR z2m($-cf~v+%S>{^&%Hrl$ZXCDyukOxN34a*YWK@P^QE_2uv68cK#%C$0^6_IQ$UY4$4p(q@%aD@L6wo@wn*aPnqY$&)~>~(tB>h&*}DVA$q7}*Z; zcANLek7=i~PnWjOi;YWtTp*$CW6TtBuUlFh0rZX5g^JhHU4?*u`Jig+0hPSTSr$~Iv zBbm|!9n!GO1B~$HzVPM9STGN%FEpp%?b%Wg>Cc6q8>N+(D+}Ksm(l-Lh$BSlYXG5pMspR1L(%J#gMfn4Tg%i(#t!}g;Dc&S#h4h&Nrf~U z>KPYePthlbxBeIpY6M{zc5~}DYrs{!K?l58BPAk1eXt?D0~3-G{pbiX=)?&nVN|X1 zJtY7U*6I*80K|ZTYyp(e@seaj6cJNZ%u^IVcwMyJ5D+j7Gm{O!D;Q9W!y}qK@JH$1 z*Ovs|z4gfBI-F7J5+cuS2fzpA0QewZrY@WuA+YXx&%yQ_-=R|~gtUM7pyUVRmM=c2 z`t7e(SR*PF%^z#FU40+T#8IiaH=1+3nP7I>BD zA11dQK(lp$ZG#>rf7$hIS7H6WacpIZ{5xsr)JIj}Z`V#Spa__|=`!EJ5i;eRcw@qN z&C&QRnaevg0OoF3GcWvw%RK8`u7!ES&ou$l5j|Ay!gt%Yw(zrazV}E6sOUk^;#?oo>JR?N~%ZQlHkiD?d z>o~YRA`46?iy&)*9J={smx19+6Hf^4W(#fgeHQ~5uj^1Tqs7WE#d)(*!WWAnw6NT zlrDte$~63p2#MJW;o?TdTo&>*8mHA#Zl##0c$pbB$+b#i*-NOL*Ab47Z zc>o_Y5~e-*6q10;MiTAH`T1qMHt@aG&F4~S!J0^3b~fmla`H2hL^1o~gXk3g<%1aO z30XU#Td5NX5rqrOwtF*nO@mOE%?CL5WCKW7%2*SvG$AaLl-`8_g`Q!I0VSVUp0Ebf zaDI+az`4attLH|28`-)Td>FlE?v$`fPmyZ^t4OHEIA^@rf4F&==`zhU;_w*#KZ^{`vQtB5Z!elEpk(3X*fh| zrEtCp29sl>?e|K~7k$qAiOV#)dn2WmCX6Gfk!;P$iKZ%^_wTMN`-cTO}(TERGFwZU{&D1vA-i6`gpQ3{d$=Q{D*P68~4D9_x zRj!@EmttRh(EO~zN~k?%CF(SQ530vX*zy*jwcv5J=x+-0E)whl4_yVNNJ9!P&TZ%* z-r?QR;Snn()!E-YdN){XSf;`1Tq^AE@TUu1L7+x;n&8wkBbgGM&7S}(`W1{|6O*x7 zie=Yvrz)GfrHkaXm!k|LuPE0J%Z%~Ej`Z2%rd$O`k-Ohr%z+p_*Jfzjr3*KFEX4bH z)DGUaF^Gv%ErG8azz2=Jbc>L2Hhy322SO*!J|Swrl=1H~MBmkhLkgmlHY}`q{$_EJ zLg~^1vzdiy3LZ5D_MI}b$C*0Y`+wp<^Y>s+6sGUUrc9#>h@4&Q*hKyuAYcl0J@W!~ zw7Eu^&>Q4p9Q-%UXBY!saR&Sf%^q%oT&tsLhyc|aFO{uNzK(rIp#{bdf{Qp`$a7Uh zaEgi9mdxTO50I2GYHXq{tZujtu_#!b&2KZnzX_WWHb{L0@prVNKP^63$lCdKc2q_= z?9e~$FngovS2p-G~mbJTB{d3fu|9H(#vy<((|;SrfsGD*0c_tnDcQ3 z0PjIrB=F|>>$Gs5Pg`2O<+i4&NC` zkJSyHW8K1c)=2xWNLC;JWNgT{dv{zfgl)DySF*W+GThYyLWqqpqLjE*(;U<4CV3bG zi;3u88bmqkZ^m8jKAdx3@`U5e*KSBkjegguHBzHj&Ou*C8ul z$vI6MWQ%)!9&QDG@SiC}&|cpd)f@5RxCVIKGthsa!;76~N^+xg5b~HCiU)<+c?_I$ z5iTdXhX5ZWsOW?#cc9KI>*TR^k{3|)l8(p7A~v3nq@7wPaduZ*=%i~>f zZkF}R){03j#*L4{ig6JjcRdbV!NRQcNd-Bh!`W6Kt%}9(9vfTtd^WrUt8gAF=d#IH z`mdZ5QL~~~+~qYgZ|iuBaaM399vw`UQA*}1W4~DxA#m{~Ifc;a1B8H0{rM`=H*5<^ zFGM==f^zGlh5{mopWA+_fhM9q|MDmSTPrDRnOlutRVu%roeOA;R3sr;NSsBfqdH#5 z0GUpeYnu#aLclB}!9$F|kd7GN?6I+`n&ga1Y zElTr@TQ}}+z+ORRRByVxWFXv=A4md7HGENuDbQ>A!?Ut10*O&kCV7Wc(HX7Dp#Rc^ zz5#5*54gE#sWaUNA++SNyr#x)*_8&0L5OenBakK~Qgufg#vZk;%C*O^v$^~jYwtg} zC0jO)juzuyMgr)hh#VxKjAfO99v@fC=5-@Z5`2733XSblOvSMC=D~z=f=f=mcgT<2 znG!Fou0<9?vZWDm4ifoXP^JRN3Sdz;K`gj@gd0X^5aJa zaz!?txX`3fk5sbvs?pI88LX7%($3WBOxn%*to%G7~0%GhpYobMeDYJw1 zxF)N<$+bTz+kN_!PDgbtJy#v?VR|$n_*BlKH8i1|y`h!GrnkSc=WUB3_k3BY13<~! zU!1bTK?qtj>-K|EYs6igR>tjohZo!yt*J_z(FQ7(dmS{b?3l^4g_k#hG^LT%TM|0_ ze=xnf1uuE*aR5u@;6tAawc5ENAt!4|-tM~e&UPRe+BmqW1r~usr`0o={cefTwWHF# zHnw>to3)UjP7wqu9X4443VX@0zu7YsDps+a`g;>m5m6?kb%tT3m9d)&v6NqY+i?9p zc{R{weuI5`Mt`!TJqtBL+kokY1LjT&}{_j#yl4I^btkG8~2y?`_U25~4 zd0LpRk=-K6=RG?9BA>gYRjPExMV=B-_CbH}GhY8EHUvTVSySvQ`JQ z6CW$mhHp_-`lj<|)j-H8PASgQc8!jI^G6lK=Tnx?p%qJrxosms)1ACe`I;0;BQ)`% z)pp5Ez|pY+5~T5MHY7fBa$z1QF(Pq5wp3_;1tW|j(vWRQ<*A9eR#*4Q!0U9l9&T+NexX8dV`uE3&HpN^vnAI#TP7pE z)C%ql(@Ka>(12DDFy<-Kwc#4H%}mehS1YKBa0Q@NaJzKU!dLva6$DULPx)Tye;V*i zRd9at|3_KPzQ;%F*>RYFis*iQ*PEp{0Si!8!||&Ey`T#!L0<9FR$^7aLgWZs0hVg* z4w~9_)MbRYN9r~6Jcip@DQ>_>I3fBzP=TGN34#s_q74gAhsRLJp5auF5UTDBj%XSJ zjmY_wl6@wuM?=#=Q$$P>ZX=M@^f;#nf<#3K^Ofo)$!SJ+zBA!kFU$SUx``q#+=> zYb=YY3rFl6%Le-LG(a2oaIVjNVTza51qDDrr|cG(CF63oz$?REm6zaevBxvD+4{kL zjl$}3pgOlK7JyMpS9|sZ!0LQgK=S5jxMlv#~W)4F_@k2rLCJ9kJ~n zXEluWG_!@1yMy~`1wGXH16o1vfL4&uzpbE%e_KI0;~hQBjO0R13pu39aU@cY#0ZQ( zvMJupi^BrNWMLxwvR3Q1-SUH!)NGV>#j~gKzQIg;!mbXf@*Rf_TQp=B6DhLEWErER zoA9(^^$-nr%{M;yGY1uhSGmnoMCyA!>0iBn7zniX!xrPi9W}7N^ysM%P~?+ho$pqg z3qoVq#x2I?qM{9Z%+%TiCn!U^;VAtGwv)EPG~UnQ(7KnSFC!Ls%0xw)s_UbaB}H-t zY}LyD*{Yd;ZPkvQh67W~y#QOa3c(qm4jcWwi6^Q@d8k*Ky(5S4d7v*&$njrJ2qk%h z4R@1RmsFVEaJg)-6*PiMH1br1r2c<7p)e$22G(>CuLkh0CfZe0 z*Kf*dP$JyH%mA|jfx)haF#lV^?oZ(JF3ENZ`CPmYr8K0#&Mb{?gzt2_|5q%C4^b2l z3&M%`pIA_#g`*W)>4wG_^Y1s)?$*PvSWqMZ1@b?!pccZ18XfC@VnLwsxujpQpxZ#R z+fVpPVALp+k{y=*sj6Ad^iypV-sM?6KbSaW|dQn!bfS*FvOC0i_A2 zxj3Zuy8x2jg*i88o#$YO=XQGX6ZMJrbA*KUDEIhv1q_*W12w&-m>QCKski7iC_KFH zaSev?9u)HK=|P=8adLYPx4@x&K4tZ0;T#TuGB0Wzf?)DW$fZ6avj8HH3ttCmPI6_` z*P6@sOO*@-w&@BT@b8a1vr=fdLKjGcQw$2gS6tQ0;uyoLP}vaRthmL_tdNbumPJs+E=#T9rjkL>K<=r(jChb@ubn-$ zbdgp}KEGr=TVieY3Sm`413dQC|0X9nALvXeJGubDLr|*>b8sUG*vycOk7@F0M3eft zoV1R5BYO36_2Ff=GR$8;`o3B$Y>I=wF6A*Jkwt#|h_?8fMOf>hjJu&)xe`Q7M5AHs zSBXM!R_48a=J+ee5LyKIBgj6fadHyisv9cb@|z;dwHY=md=7>EWLW~`*s>`aTy8?O zs+ZqKUrKZ2-u?Vgf%3WD7n+*bF|Ieauhnar*g$O|Z0iv`#Z4NRb7eq3SFEiA<;f$n z&#^4*N!ix$9zAlmL!+3TH_udjX0@gUfgm+>UUDR6mv(KEh`5!tNuDClD-zOF0~39NB9{(J4%P9B{KG&8HEtJ3#nE0N0J60yx)I$L%l?(5~EjzMOJ}7lbaM1Ybu`1 zZibhATT6fI%u~O`5- z*v^6He!&9>9i(C@N|HWY7gacajJwkW`6Yl4lvOsN&`8`}?4=9l7quy*p#vDnzwxcs zl&~yWhH#Se=Vj%i1Lukto4Ebe1X#4?SN0j3vOIGbptM{5JVKtXBZ?m}bx^Y@jyRKz znWi!83>Z)+cyVc_$=%f^$+FuSrlc>Tu}#bF7BY{XjA-60l3poJBvd?7yoHc3Tfmr_ zPh@=S>$nJ!VTVL9Vh2GoTl>iES!TKl!%_0e&B(V~)Swj^FKNRF0KQY)$@-?AS@_=5 zLwhOXaPh+>l-t_bL%mkvrL7N0Z81JCNG@a+-k8dbmnTDS=4F#k5w zwzyU$$v`cN#A&Qw2XhjJ>GRrTyfTSSEX9QDO8tepAsxJ-mjI7t=96I~iL}VNToFrP zFk}b#HAyXpt~%DWBm<|D_tMNp2jyRGeJt3#kzX#W^q93rukmBzAG51CBa(Ur&>}2^ zXX(8DhR}Xdh@%;Nr_yPi2Eh7K`hqmtGGzMg>M>w+-%ny3VC=c^nlFVX=k|c%3?3`p zjxj?!&EhSI$=CYUm9i#Xe3=(vU&ehExJVL49%)s%9s5%9t9P86j@b~(S;Ca7?d~0f zj-PL;<jRkTb9+h$N zpv_feBu&V+uQ~H*ZV$`F>A9|&NUZLwN0K#3SK7HuceQLWcrVkDR%5dOVnJ}L_je`& z%FF@AWADyM!b2fRBDrO=tLS(6hC#VkI0#GNtNPS}btMM%jnr?MY$L776%j`<}XGYp9;JQpjHILMj~_zS*}2CK*+@fZr> zllQvFO2WDFk?VePr^?)w5LGCN?5pan**S&w5Be=$Kp{{C`x8QgG#1j`BP=Z9r1nE7 zXrWpCenLOz{NotI@HcIjmtOtN8%LgBuiN@FAC{Sy{5NzyOBFC3Wk!Cy`$!vV)Ro2k zewvmFan!4aa}rnZY#mb4arVm#WZxS4eKA|O^4~?)$#2;@Jhuo@ehBMTKu5tW#rD{9 z1WYwLEO<*|pMM5LxyVLc?Qjl?DXWB1sK$MOTPNS~KFjuEkCzs109a5{py!h&%>e)n z^63cwUpfeY2Km_CoSi-$wQ_eFc_RHGzR``DFSV%Hz5Ppq%20uXW6i#4_G zUQlCtb$pN%2;AtC&m?{RR}(jqHN}TBU}_it-==oV|C!oF?Mh;FMzMYZ&&+Ba(=xaM zx7KN}L)0-CAI;ug0@=9!(G@_}Cmb0q2Q2Mk4w+>O-VI)NFBtppO~pZoekF%lcyk%nN-uAm!%*SR6DR+%Jj*s05*TGBIPCXwaQ#lXf+o zM^^S){ey=?6HD>pQ%7b{Q|KL~qG39Hrt&;UqX>!x4>(aj(0_S$4h0ti2qP%rRh)v; zW&Xq(4)N^^#eQ^UQyZf1TI-Nvda;vP4+iEZKeqW+o);NDY z{xC4=B-+BXUn83)aXLC~<#-GKJ$a&>UzU4L3G@V+b}GgN5b+XsTR`13Svt;l1egja z3!Zkgd3s9vFfI3{Z5A&AJwZf9U)H>H^xXeELB9P!Pf+h6DP8w2P|ym+|6+Co6toI; zECW-xfq8ad{pY8^6mEnfrxD_Zv|r*}`$0zk*{^c!k20=6I_-DJ@C1a%3_JS5hV-5T z>7W%+*X5Ug@eCi_|MsgkyyulHzqEv-x#TxCC(D_`a2<)P2$IZb9RGD zBI(rpJu7XW#LDbg&fr7;?PuKu`dOip%mdyNYG|p(RQm?O)S%zf)yu`LiFimg&ZIiO z!K!V;*(e2iy-?EFrm5)*|%emze@jdE~MMAdTxB{(; zkvJCEQFrjX8feT&L8XY(em-2h@;3twZK(uF>rC*I>2mNWMo!{PQLtgx;C2U%Ug=FF zb0uU=Bw(B!I43iyf!ws)J|&aJ(QGT4ppORneRAM<@M-|Xps+3)DcMl!#icy58ay(k z43!Or%3%)f4s|i9MJUv{p}3VKzftz}BBldXk92)tox% z0C(;pU^v4%Y!G(-+gexCRt%`-m+%V5)QIEga-%Wp>!dQ@KTl9xPMdke9qf-!5ZTZ| z&CE}fQ`|a#L~wcyp)f_ z%0I12trtE|l!RZW+4`Bz~YK=*2Da zO%!FcS$FrO@an%3$es-kiFzv&<;V9UiMN-OmZ5~vCKM+eb_bk9*^4W}#X zgkX67g5&%gHBvi<5^x4RG;_rsiLiy#hd`NIf%bwt6`T=wQkL(L>tIp&9ammF51R}( z|D4OVJCmyy@yTd0mj+*vF&|GQv1le9ObvD-y(Dcv@hA7Wkl~mmw8**|%u@CnXr<2V z{ABmLiWP9mZYN_nT|wjDl-=^NhL+|B|0PV+?A}qu^3CsgVno+wR%5U}11o%;6Kgn0 ztNKJiKVYnZZj3?&?m*ty6>PKRvq0&xL`PGFayJaw~D`je=o|rZw0hQqG7{KIwj`8zd8iF<)w03uSR-4zu=qRAQBpQz{p z{tQeLBO##?6SQ0q1Oc!Tn*qO1z#`Q3E8u2mTu9cy1lsCaD7i~F{duf7!t*CGRVl9P zxE;*n7AwW93!V3c`w%0rGqER|+1=m!&KV%AD2>~x&4)#WiAzi~jIH;0xTB6FOCQV;;zo20{ z5#cTeWO&LOxcE+bQ0OI5JzQzR?41RK`~XDo};-r`T@Er znQ=+#C_&S|cCo226 zSVf+~SdbCpRfo|qdsylMZ+27&RzOHg*RndCAM4hwu(jM-p=)_c}s_# zgJ1FIS>jExAXruBR$1>@>XEj6Y4E8dY`Ho)Mt&1Axy_m_!0sj`X>T9z1K8a-Efufr zPNP%GdTp9bnGO-LIM!#O9Y%vd-L5W6P~NF-NoKG4U!*~k5WzY8>uw4qfZa_HH_IyY zqr)Yb#$`-Xf`B7){%RIs+|h69K4=rl8mSHYQcWGL88}DHz|DZ?)`(=JwEck`n=@`TzG<#fYXU9vh=uGDwS5g~+*qXTdZ4hGwJ1HD{Q24V@Z zO3!DUF`U$UvcIqj^xUfQ9|qeF1spmQQEdaXqZ--X&R})R_Gv!{|JW zm~2I`ne%S~emH`c=*nRsjGOa}6W2GQ$ksld=;M|a9*i=v=5adDb=Q0>#P=O@UYgF{ z2De{-EG1_!AhVY_XO@)E#0`ksnrztYj4zOTNP^ z^e-owGP5*LpPn_y zuCDoxIA+^gcP;Wd-iDB5J^VPlX_dsE0uiQi(BPBt{q5(bTHrkQ>Tqr@y@f@PmUw0y z$jAiU%>dZ5)^%GG%=wszTdusslKq@M^;=_s*3i23YO7M_>m$*Np&x@B^S(3h-6hpN z1Rli4)d*C|bpFP@Z! zNz5hw9ah{%?CxB9V>LK{gHOL;WlYKRR*GsWka6TQavC`4Zd}D{D@v#xtWilzFS%Y( zPS-voWUbRG-fS5n~0`PfT+YNa3&Zol0M_5ZY#r9O`x{bOJy1aZu{3$xr!Ix{zq%Bi zq)ML6-n_~i0ZsXp?RIY`MZxVQ8(7iXYLC?{J$wj=KxD+X%RaL5ou01eO#PlxYx~gJ z&||r~WB$H~uMZ8Bmz3#PG^F4;wNpI3n)L!0Iz~P|4UMVaDoxr_`Gne?NW$+OUJXeX zeZ60Mdw(<9bZKkzSBw@XN$)!@gt1$wXqfeQ=aU=)EJlez5I@WV{Xt`oGB{F#)`5jv zffQ|IfE6XoW@SxSMy{%Zqxmg28|~_kW^6DHs-+bZODsn0X@wxiWJ&ftum%HwFlytp zcln!w$SwNm1%cv`j9_?`yX5v-{C8mTHZJNrq0|em@+ZIYy^Z9}HnqpiK5?T6+b@5v z`EM7aP&D&LD!BaL_9eq|4_*noiDfhU{`rF5KqV}JzMyg)ff!;%kb2ub`yF780ej5Q z>VI+!%zM;o|K%9ie*M@gycV5g$j|G4-+W>1q)nskmj&Yu7PV2eeV2?QmepnSG7a0W zvb3D<3HsNlV7@$idJg|&S^i7YLS2HR4-oiA1O*s41Bsx}zrpOxKqAOO)1&JwCkf#B zXKK{opU{*gPxiYz;E4d>u$f1P=^lNG5X53oh`{a0s-Zv_8;f$CXAI?cx}XapVdTruI4B_TrnZ#G>qCY5^&0W`wR z;b4b$h$JwCb_1N4u%%fcH9tD5iI*|J_RzdOex5myp61?t07L&T}}F zvoVl7QX8q424dqRa8GkWi54^>?9$+7z@8Jb{IA&C00UMLj>?#n?MqIXXKq!LWJ_Je zvpvi`q{}DFJmiog-81PlyH)@nbVh9;(r@@B(_kKrnsiCzP%O*LE-4eL zVTC0z!jz-ykgLP~F8LXpIj8-@N24>6A zXoreIo+AAHG#L(caZx7(4eBL|<1=aOVjao%7<_r^f=WK$Iw(I7Z*B$K6Y@ZCP8^1= zY`1JXo%(r16eN#< z9@p?2Wrx5c*S_d!mUq-pqLDzaWOQY{PAUhyPEQi^M_DqtRcXiQewkp}$1!Sr%6tJ> zTz)@6mtVrY2#U$%yBM#4sXuI=c%B-xfb+Z;KxWYIfL}~lAE#+SPTUKO0uYGO&Fs+w z6SepOSQPCXMX!XF5$nQQaA2zO{;6Th^6B8eAYpD9D4<2qInvK{07n0nVsP;3I!g90 z#lR@@k*5(Y;O!lc+JSE8-baQLb-!%>FM*yLlKx9DLGKE3u!Au84I6Z!dd}ynVDffT z{ub)xo+aX=uCkqu>?dAO*BT`{o7;j{}KgR zuYyC+xM{Pr=y@V|L;LTAW5H>0;_!fPojfW3K%jUD4~^rm&M#>gA_b4mv{lU7N(YOA zBhZKGKJX5tFBlT-z9xu_!xgOJ)!*}Q}-Fb6~(pB8-<@Ot9Fr+o2H_z`HlgwuSc!=1LVKJ2x4abNZ zD25Q|A#KlFJA5AeO3%nD)ui-~T6yT68KNy44y%WPnljF`l($$nfR)atQ@86G4|(Ob zg_SeP1HW&uY`QcwpGp$<+BK7DM~TgF=L<)>5C%X^ta3K4HV1dp{$MSk zJyWP(c-3uK?eJ?S#MRhsJALAai9;Q-BmyDNnacf&`OI_TpmUBwWxNg&s;c!lIp`=l z^Qi)uDkt7r3S#LJ-Ri9t6-rw9W6H2&musWLqA#Z^n<#F!@Zefu#QY-19X#I5eV1i* zW63_7qJCd1~92^c;A7-2^=U zWn54jvFo`& z!Wu%I*IT*MQrNpvE-m*iWnyP>&A`1Ywn5KQQvt^+)1QltRuh^pUb-L)_r*EDD*2!m0zSpfG@_lGC-U(bsZrf~jcrnI9IynSO z0&?PTwES83dP7^!i7ia)UGryQ)wNk+c8e;QZrDrG4k;-8XkEw;0aOZ)!CGhMnMw6uMC zS&vPWwL=~0Y4;uDUDa=rjsmOx=rm`-0|fy|TXWP|VhQ8fcmu4RSG&|^fDS7}#PWR& zMz0IooNp`VNtS`)O_$I$EX*xUt8>G%eg=mW%fhp6zHkDwd25RT1iU{}Q>UFTFLY2- zms7L8A?o$l;qUj3D#=SnNEN$uc1FrlfmY>!l>j%4`2=vaw3x}q@?VabxU-JzQ$IjG zQh!Rw-&;*8tW88CSUYaHh{H*+;a)AK%X)^0Tg{gddpjX+ZcfL|IHef}9M)M8H2!eG z;p*&}p~$SdTto^}Pasm?+;|{szoILi*W+9=?VsKw)6u%KJZ}LhPN=@f7JvZ|{I?(MpLp zTp>E-!7mwdE@+S(7nx17qrUC_R3$XOvoR#g(TMY`()L}^`1&- zq6K!ZOP@if{rT@&ufXkr_U-fkJm{9$f*SQtAms2r07CyA#|9J#74cyD5?TEfNv55V zv1hj-KHj}R2_Q4wTT7#LlLVkK$=qFz{o{jHR)BmEZ&3nI4dna!-=7@+#RqLa(^TM$ zFhCRjhYw-~Bfz#d6j0ZgniVP1jwryzu7m=;Z}8$cy66-5x+n58mxB|>Xyyse(kd5F zCx9NJ__yKmX8keY{s@d?3(RxbN9%9Y-63N^#sQa8HeG-v&Cha*ZcSV!Ry(@Dke>tc zL88_`K1eWio`5~j{BN+352s`fa`>nX@f(<+BruK*VdN(#x`bh^K1joV@j;b-@aMFH zPDCPw2Bfz{BF6fp?B7ElCUZX45D|r01%oide_|Bco1*pN5+wZr0STjV0R|f!;20%t zBZ#{O9YJvkR{`^|O@4BMD!lYF@sG9x`5YB+8BqwM?Tm8ah}7Y{C>Az_Al4KVzOix=chg3ffgXo zxtBp_j~zn`oN>#sk3Q|F3GB)FX;4hF`~Gn z^qV-9Ur6G!{p!%H2(Pp8&NWO}1`l*LR}CCV!$X!k1Ucjp-fp8MGUEj-K?5!~_==eq zg3Qs&=aU5iO4SVEiD2=)v_I~X+Y=)G7ahd0BIqut%Dj!ukN~8ERyx~4pMh;mB`^&8 zVVXKTN)U#x*(2N-p}_N~7!Ta0l`S*{SMcYvvvK69xT z;W$OP*VA%6v7w6oYiE|?VT0Kpf2;Nogt}wIR4Uuu*UIA&28)kjX~e8=;drlv=`>uhmuS`X=1FjN)fkCRO{j~-l-bJZkKb9XGz%ci{@e)EdV~aYK}iKafMq@ z%fCB|T{Yv5)26G+FO6AY)%?)yK`WqM?^!PWjAju{jdn0whH7+7c!xdvd@>j49ATxx z5xbX0{WPqm8$we@jdXR=Ue>+DDIgim3|R5tu3F^Np5@;ZU9f$!eKkPv_m>)qfN5jNmR z@wV|qOn}d{+WYz5xiq&ii(rg>P!u^QTEN?^6;9HLQ!-9UtJ1JlyZ`zeA&?WoNfs-2 zMK%9{7cAb;9-cAtmC0mo_)|BwO9YFTG>5qJIk%2t~m=#=Mu86f|O-Fz8a|7yXo8hECbj zXQcWE2#L0Zx|InkfQnrQB*_6pRTs4F6aEQ=a!Axr8J%zMeVH${uQ1^EY*Y^Q2QWu$ zp;96;D~TGK3#v%17R{qoSVY6x#^nvF{x3i%Zs-37goH5)9VEWo>+qu|BlQ0p5JKU~ zOac23Amp_t_P+q31CoD$(9u6Y$OReve+GmiD z5NnF(S8V_DKZFp{HCoXBNeI#5eCuQJ$9co$r}22*42L8J|LgjT;uY);`Z@5!;4zo_ z;1caW1|bcgL8zb(?bn4v;C5)Aza)|4$b%w}Ia)-pouv+Uuf9ih?PkNa^~`W8{gdd! z!L$XfK4FV?j^Af$lpi#3 zj;(sPwD0gG!_s@(UXVc&hH7WkDFZ3=-Cp0oE$2ZoZ(h%tc`te(WFJq6#MI08D!S7o ziw#&M# zdw06#QLZ(7yHc0HBm{FZ3^A5JngdS2_{O4s*|k^i_ky!gY{FtM2KQh^>C`j5Dz!CT z`K*RpoCh48_33d|nqOg9UEi6CYdEn9m3@|w(?J~@GP7H?94n?02&n4&rYUcyt&zNB z^q)>fq?PZZ^YQ{A_x7I~1c+cLdY;P6ZKf&8^g4s_{>FDg>0qOsfz}f_$oY7XD73^( zzakX-W)L?fyliTc$k3q&4vt>T)i;Eu_nN)smPRiEb&9ZpavAt>MYGgh;iQxm6X*6k zZLNCjQ#(V8H3Z}KxHJvjKRy#Wzqwm%M*c$KwTlUq)Ug_tHRK;8$xe{TIVBIfBqUHE zZoAkLx4W5aHABEVZ8&np)b6AJG2F^L*6rlBf!XOOSa3B%zsXLbG~4OKLQn`i{T=se zewgb9K`eK(ZC1QEwnJ6G2RmyTO4eL4XS!i8d#XCLy54CyJ+G)Kfb3Kz#yBw>otHG= zysgg)g$SL>-6iVpEJN!c8hQQFqV;d1rzV9WSO}Xm=J(A-1n){VgHtd_RbD6UV05~o z0_!jg4s`~8Rp`ALB{EiI{8-*l4E1V`8N^in4q1l-+WVQ7Sl3}Z1#2s{o_PRAU)p72f$HipKYuDy&_HydZhU2I&DIhaf z$*(U-nHg!eiNpT%Fyg6MN=Um{9#@R*ZJtUrF{QTG+s7Q+4hoL}hk$c)%~;azYb{WR z@3A{M&vqGVFQ6gS46VEOyr?+~(@&NAP@}K7!FrGKwA95MP2UxJFK<<7_xkD=q{4;E zx!Bm0Z?hgZdEfBxp12^yM)!~1%J-=0*;e{f~Z-ZL{Ol@R+W&%&wFW^ zaC!cOM)@!i5sc3+Q;cMoaQtZ*T-Vr+0;<~edG*}Py!KLJ%|WrJMExdy6i407Wo@tdD}E&a-MNQ7~0pY z0d1P#7X>r=PsKjjPfx1r%D6#0gAeQ{!}E(`?s#}4zw(T^^Tk2r-d0Vs<#6rY=bwBk z+YSQio0bxXN=EO!-bHC&8(U#)mdG+Maw~FU_YDbQyg+d77sG^fR6z-HvVP~L2gMvO zAtD6J`C+;Z4T3j!njx_dUCylM_TtcDulB=LlKq08=jkwOr4(CX}qef&X6 zy}P^y$SYI>{=l>c+_a<%j{g0;n-+ifR5{Z@mJr?l3OLc{boDM$Rm8Mgwl%5VOP#xl;6rB+VL9yVx4y} zlJv(V;rV}^f8}`>dy@#-P&K~DsFZw6&eZvVb-B&0G3*|D)hPvHa&o;yo}KGMJ?noF z+{1mR!}j@$^uO)-zyigec(a-&cN5SrYIHjH9I14*&ph z_}>ANLW>AA7=boQi3+J|hK!^NN#ZFXhg$4}ke@0hrUXWze3Q&t&D0@B0f#B2!=vI( ze%dclw6zN;pyydZ-43D=?WxX z&gja&?6hprwn>mYE>J=+4|n0=2LWhOq2r6QcWTzmv(fLnb-5EDN-UH^qJfh*2P3Pg zsSOqmnT{MB9AE(YWhsu#7K|=}ORYep5-UkbNwqKuD4>PIE2*Rt&t4&;Vh=ELv$J(k z!4K##qjpSkn1--8IXHg*;WH5U{=Kz97`rtHxiB_1*4&n3OM!y6f1g)~`dXSI3HIKS zBQD{|tZ5?);12}_wWe9aWE)m$6##tPFr?91h?Bw#vGpb5k2QP+f^4=GsnSdU{3Aq# znTKFSNO5DtiCo;>zj*lhThbvGS_y)YSI+Kz>NV;512K)ui*vpHD4tg+yD)Q~`-@lK3 zaMUH)OXt&!badUnpogEHp6CJnCnqPAA|fINpv_+P11roIBbwbhWj; zU;*j!Wt5p6x3{-(Nl8f#GmwI!{=mNcT}MYJ;C@29XyN4fU8RvOjV2{>S=aFJ_GKql zu-QwIA&ex>|O{;7wEoE@^<2n7nAMuwkI03>Y{%01^NV zy!H){+ER0P3jqKq0$2F|_abt!G_x~f{LlCQ3RBdQaX^#6@6)(&$G#@`2q#E{h8l@Q zpa(A;R&>I@iFJpX`(1553e&6RSgl$?Q{zRY?7**T2Minw@y%>jrB8W*{hYh<>M@BM zh*vEECF;I^`P_@kX<*dv#A9_44KC)h@@%U9DN(8o-u6D6< z;YB{mcB>d@V(4wcRs3DZXJ&CLm*s}#MLKyI?mJpoCVK-FJO}p5gNVFo7>rA>))W{w zh`{fpu1OJi83;W3I_vNHX79!&#KzVzb`iA}-?{bVk)tm{<%5F)>sM`T_1EcN@Bk`N z?e=Y3=c};3kp4bIbTcm0CU`wD+TN2*;FF_*0;wf_2GFJwp7v89enG8pTr_wq(&3y!60Kpe7cXt>rqv z1MH zKL#}HyXlVnzRsKWd_NZvRL%CA>WDsXj~AL8zJJ|^K_R}x_6MHLd$fyLvMo!0z+Zgrn9UHx!r6?WyGfpsm7}+=2 zbN=rn!$NLZ%2RdT%UHU11;TCA)+QG&QhA8gwwWk;11fA1&1J62qh52)4O-jiO3jvM1CJ@vUNj!i8G_OX-mg7rU9X}R%X$qgdxM#q_K zdRl>tLP(f1!^jv=cWi-146}nFpjphQx<0~cF4za?!^_dZil@~g5y}h)xQ3}Y-H(vn z7^~l7yso&xPOEkJ>P{OBp?@WVV)V6~5V} z5T}f=r-o;V->@lVvZRYitzGMKHxB0(n9NsdIe3kaSxw;$euE8lg8eAA7fcV4nz~oB zpQMfQ+%7W4j*Ufz4^eT6gK=O&VLz-^z&?Si4)P8iXXZkeD>i|#cHQ06q<{HP)FDnU zLZ9(VrTtnSgts3JK{Quau1lXe{~KDGo+v=7GHLY@n^DM$60?H?dIdV8$maG{7xNFpmran+Jl^*vblcjF~A@<36( zGy=YOh7nsfKu*($Y^HgN)Jt2eQWG+|^I5hYLoBO{o0D$lkEf}To{pybgp*5WLT+6> zExHBia}pDCxG$dD0fP7*III$8mBn?5--BvRte<^=7gJP(^Ctn|d&1Wj7~tP~#Q!R^ zLZHF3?-Brje+MS;H~!B;i;d}juCzeofmIV3G$`;Eis)!l;M4!VN{blquhR0!zUuKd z)DvqF_^b6pKB>96q`S_a3?pSyMX($8P|o_10{xHL02U1e4b683GR!&+#z^0Qto%R^ zKMd48Dr+C&Wbqm@8YHm=ICQGGO;LSe9jast=cnpDB37HHt1)hFt0i-+QxU7@41RC( znX8Taj2815`0IsF*3V-KU+W}aXO)v%1g}R2!~SuxlzqE^imA$QYC9kEEwxm7G$XvI zcKRen!E5z_Vp^XrEHf4ydxwKohCVy;YmVxW?BX)wwnJY+fbnf4`Dv=8%Eq-K+qC!+ zUuFZ^BbQ_b&fQ;ws$kclPOWbuI+2et8TKTXu7%d5PHI<3Fo{3VHjCU2V!WR~wsds@h zA>{ES7J*e$rcVrI3B*SjrRv>Pi9?@^=QN)m@Dz;NJ0<31nZbE#F-*_UW;%G}CS`w1 ztf?u9rtC63=Sq`ye9p9pKK8?UpRfORgSX-vyuW?|bve-BbolA^GmezmM#E8cRe^t0f&cqcS3pzWpOMz1U6-X_r4AqV zcD}fTUFm5;y99T;XgCbt{Dppxob>#mE5lyAN1Hw&h{!e_q`4ByfY#5%0dXNQd(x84 zHLj0Mx&u!elg&Q`FB4Y+CowmN%(4ZTTLM2+0;!oH|q{Rv<@mDvTv2`{|f}eJ1#Tjw`q(Mt4;n{dU=z+Nwlkb~cW~`Iu?~n})ccJq) z_h1bF5ypBhs<-`?5H0teHp?a!Yz6|w=_dk-^MNSYEjQvVgDwcw&d#Y@3cE}AM}l%; z>_uhRwswt;>@|{JmFinC*gh`KinZ9pw$0AHkgtJx2ggL{Z5f+@}#6E#G zwoyP!Y6&7gd1j;4E(<;_nFYl*cJfR4&jM%9T`4b7yU+1~H__(tnnz`+GgQwCWWDz_ z&wFne(bt$r+|Fa%enhnlLGk`xRI=~V_ zapu<58s3738UZk=$BGOBu&T?8#%_ADiJ(d0l~|kGe6FWe|NHb@Rr~kD&(G}&q7I~} zI?to{u8b(}GlY@Q(dAvOjZah0-y^-e8yS>YWJBEWJR=;Nu7<3(&{ju2#EB;`_s zd#oq6eA8m~N}3pnqEA0dPYM#DVm5|cbFhVo(B1y`RMK=h!fmn|&b&4n*!1LG5hFJ% zYjcb}w~p_|dMYo0gfwbu-%Ln>DFZjjN_YsHT?9AcVx}HArRKH`i%TO7U!^?yHh&7V z#nZifca153mqBYfJfw}CidsUA#Eh&Hjvg8?{~i)lZZwqiQx(ysfn4ugT&_)KqVFEu zxc&Q@*b}R0D!pv8t(Gm37Ulb3Y@QsVE5Dd0^JVQ2Ok;V8%cNqTws=Hwgfb~Da&@bs zSa@dQL=c06lHe5*#n6Tm$sHuj>CWr)HAc|(8Rb`|PVPtPeRIrIeM{@KUF7*~w+*c! zi7338fHehcB{7ra2D+f_n*~+fDLYz#R1h81m}#jHFnkvbTwT=A5`l!22?h;Wurx}! zbwkN7cH7RPFtiD%P}#dGtfny9iM`kagSVa-Iq=GuF6(e-+j&| zIe3wX%*~;=AQ#F!aIgO@!v1Axg#crXT8p-#1;achY?VW%M`1*2l>{FFI;0s3v$52e zV?3FdlRRv7@pNQizzf;D)SFb{l2$GGqE)h0|QwV$6iIF{$Xhb?4TI zeeqApZWY!=wC~P&UeoWVo=d8zF-kJHr)D~>t)zUQ%{HvlJgaGTeGbbuTS!#M8Nb6M zC&pKs1xVuYz_kOkn7JF>X)2UzF{q5?L}A4@>MOgynUjmPHq(=$vF=M!FKU54W%0;d zMz_%N!cQ6A z7QcD#V#Aa~?r2#fpJRiKpRcL`*y}|hTJ1!Y_ex*;9I~|qH8mjLAdHM{AsPr>RmNj zW0v}ecKX(nmQxCJU)N#r#b!!!)%Jv$ES@RV#(b-JEJ)JCGe&-HG){G^m~ z&Ko+quC?Xo3Vi7B#B#^1>B^cjWw(_|mU zO*X4W9rA)4SkUvfnh1GT3udZZh;F=74gX*hvHKJLPE*U&B=~S+W<}dPx6%0nL-n3Gr zu*?S+H6-`q@HeRbJVQX@Ge7M1y2;sV{^~OoA6Wx{JbEx`vBVU zv!;mXYnXEG`%TpePKt%R$JCbZ(;5^7esd>E+@}JC7r)x9v!e1*H(I$tWi1Xi5qg7`fY;7ZHKl}`^oBgu?Y>H04x4TVn0 zc2?sFmuHqqb#T^!%TKt$7Qm~4yfSGVk>l4}q_wowV;Boe=~JY`@T7W+hQBO^cLRHq z`6`M;CV_$miJp?~0?(puL^-OJm~KRRI%$!e&C>O`b~ZwPi?i?*sw(9VZ}$DA)_9kc zQk{^d9z-4+nYyT^9$*Ii+)p)+#O$2dQT^1|Qfu-(a+<( zaFsu!&T5T+#EDVK)cFI;7(I#_z{$Bc#kYMm|28rzOqoWm$H>~2y=6LVaOgG;VOZK- z`VS1N4~A=@03y><>dR*0v``{oC2JAT64Z?$pUb|3AOvCu%sgZ?+R4D#iBNMQwxaTq zaJ zt`bK0z!()P2XB9}T^>=CaJ&9>$HD6oYmUDU-mq;W=Jux`#^dm(3`?RiaY;TjIY~)) zxO60XK{38v7Buq@3l(|4K6U{M`LF$KM@qUeqK)7m_Ps{x>l8QxOBFpIXf719+WMs= zL8Q)t4HkCKpM$1s`_zZixVEFZ$OJqE@Nj;kBB0leP2DGGTw`_V*LAqX6);G^=C#dARBXw7Lbz^zE*n;f7S)7T+FUY7_T}+cR zqQ@>9`k4+ey@{BMrdQdVK}y5WMUkc0G8XaK>CjLWun)VXaYZU@iK7>dp`zIE4uSH@ z{Jtmh_xL;V^@gA_#=6aNZTyDdK)6YzRV@Tw1|^~-y9MB4LCdU07rT;N1Ny*~X5?VO z7yUuOs#_X49C6$%>#}^GHg0DW_{^fNcB{G($ZU~N57iRCvi!^PG9H1i@Hsx-*4K$L zW=~t+yK`^?lw4o8)fZL;wb9YsjgR0TR8i>Ax}fOmmRqAZHKt|_6t_igcK=oaya?mh z0_QfnKRKn}uW~&+8U=ffBJ$a#N_I)GYU)NkHrzZP3S941EKSxMX5i@0N%!G;q!yQh zNY2UEiT4WlrX-;d2^X`KM6VTuS1eRL%I6!HI+{Q^Qmcs}|FHgd>S= zu2eJ<9nt8XIzICgh)O~%+R9Z4$U==+&9hoN7n8c@j+pZ>@|wu>L$A6W!}hjIq{`>t zxh^$lh-fIzSJUagGur&MRp9iqLaiHp(!(C8f~wUGTNyfQxm zseLx(=PaV|YriC$Ln00uDhM7`-33kjb@%LIO7NRJcK3R_7azN9hClVK72{D@E38YS z(&v7)peBTKcUmg@^Uc=IY^mK)L}f5mR&9E~a>SJ+^|i(~kt4))=)p;somysrRDm|N zCxV3TNH$SGtU4b2sbMk%#Xbg{InUVeC{LK42->hdyK4I5L5_=8MTT26H;?{xy{pif*wdwi zj$@G8&~Pi8qC?01DpG+wR%CK?H1VKVA&Rf2DdA-+%j@6>0Z|ix1GqwGqRa6{B5KnC zv$_7!infn&KRI^2nm;yHvnbX&RNWt2&Q@gnW>I4t!W*ef;S|7EQ4jX$~NWX2h#2yG$d#><4vnp2TAJw@Y$ zmmvwj17RYbC2YW=VdG-xmV#$G+Sg=Xm0ErB*r+3Yf=#dB_4DvAc1u8#2R1iH0HtEm z)5gL?WsDM;NNMSmWOeinF$xa$nbJHXOSw`^n8`}am3QktN_lAG&I0@a3RMyMYjT%g z$(`^_cn&%oJ@NG(^s}L5pUdOC3}SZd?B8r7M`un%N3Uf?%0E|^FzNuavRrFnJUdHz z6Ndv}Y85$|*>=jvCO`jTe_L(UQ%<&&t6&&(m5W#957BA(ah{BlPu++UjH`le!z)Ne zb*5>pomONAsLmjU)P)>@b*i@ON{D#+IWxZAgClBMts!l$7F|h@z+8rwp5jX9t`6cB zS)b}jGOl3|QD`wnE6IVKK@|e`eD*?MLbi#G5-r6SNm4U5YGV9jfzW$;mZ+`g#MIsW zmxX}y!O`qK9V2xli5|`wRpjWX;k#Wus7R7h6!mOSw@|Op*eomxJ#dwPrG3P~oPX?> z=`)A%xT$;D!q1XxL2t=v@bdFYt)Bw}vowclS!`1#lcLgE{NMnElpS|mGbOnM`K<7B0MF0;TuR`5jmYOD zUr#m^&;Dz%fs^j-vqIw9C=6;6*70i&>37f3W!~3=%^8K!iOBpCMT~4_!3mUB9mN&DA)y!!85Uy+mq+(K& zST_Eqyo}}drOlt;*nXufWk4NNXw?QKX(#AY$90e!MHb2SC$wmYNC{QNf)rEMsrSP# z-W}V#R^VU#Dfz3rUG(VK8eMjYjiq{K3mh#ReWr-*vUr)uKz4@ml_FJ~q(x8+B|L;Q zOwur%p@VBS`eGfPnbzK{|0b8zc)R6RGhJqSz{VR{yHvQ&(`grG;MN4TI7}AMyf8^ww!$gcS?lQm|Xt$e)${5 zvHQo*M)?MZ_yTc!F+mcL^Z`2`<6i-QC?`ad(H{9w4{}3-0dj?u&bn zMT6Vh{PKP8yz}bJAA4qZdwY7T@4Z#i)3tfo%O+(N5lDLiN^OJy^wfKjF_=|w?bAX^>*~XR8Mi}02s%Hzi9-0hUy#{_pHT*TZ|?`S<8>m$zaC?65Wfs`zwGw~ zMDzcc+x(?ehK_Ixk!w&Q}|Q@eCLtwsdBjoO_1yhPXL|Fp*NF}7DH%B|Oo1j*bZOR!y?myG!DiON}g+~y|B z(}7v~(LtxvWL;DjM!T+^I@Q8$kvWX>)Pt@QS9{#E5cvk<=1r=<7?N>iDRU}kGo|n; zfE8(T6Lplbz1qWtkd~lNffLqiuro#;c51>L*pYH5d-wp~F*)5v3Fm@AZ0v-UPJIb? z<}?<7S1HsNPmI+Kf|xJrKDr%N#}Ty2mJ`-1F!?AD^3wv$`SB|cp5kq~nT|zR;>v}M zL`k|=J`h90mDw-pZk*5edJkGfP@I+)Buh1JY>IpB0-u?SmyY=6hKsj1I+kQu_+1mcW zM+@CphB2C@8Gjhf8bic@4R4hGuWNT(*}XloJc750Ty@fNFixfC%Qrr;Kk?eGc@`DyIxaLqy>LR{PV*K&F_tpeooK`hcf44Di@{=MSvC_Qvnb0-Pl@&4EY3CeY)MjoW7(c?M<3KR zl1rG#$VF%LuRGH*JDppGs4RAbW@Q__cFdw;5%{S|>L*z9qvs9rmIa7s;B!3^y9ihm z(Ars03o^put+qs``^R;*O-K!1Kk=Eideuj1Ct>l{3w~z%0%*sE7^`YcK|rZ@U8~5w zv()9v%BP+?gBn1k&$pv<+;30FTy@eew$lt9{b0+oDur247_lmV>|j@r>1oWn_kH#LmiXPTETImT2qedj*BLt{^^5aDM4RB z#Xd=DqWNNRe8XPDUe4S0u4J16#N~r3E?;X{ZbxixM{sUebgs_*pZYUF?C}97IGISh zc!=$;UUaw5Z63q{de4NHGWeUk26>N%eJH##`Cu&*^UnaRG+)1 z5yK66b|ui~785GroRRLUsvkX<%kH}_>UjB}z6XUd1!0Awz+x=L>$xq?Qhn~ov^|37 zmD3ii+bz>14!E?ZC2FL8w&jCTx?gw1e_s}6wf=sKn0Q5^(`~3raC=E+aJO7X%lpU;4}qwXx2Mt^Z1hv^tLJxemCUO4vsiu)ds1SebW~Ualup6N*U{w;CjpdbBc@Rp$TOQYM`y( zzW^bN{V901uwGT%J4=9|Fh0)(FR={|5(#tvY`_ zMM647Y9&~i>bJz@HLhaKJ`H7@X_3}^t$`T{ZLy2%RZ==okuFVCDN>P6mMyBIO;$(j zQDukB(_=^;rw}hQd#mr7q);gnE31&9P^T^B>Xng)phonmQLT~BiA`b#JA`V(r~U4w`3Lsa(`SVcqjtfm?*ZdbzZPRa5L z_zo;PXy1`;&)O*Z96fe-R$Rb#2W+(Cz3c}m5<}Rw9Il7vK94(e*REBgy?+k4sM9rQ zM&7!MPVIg}uNK7bDF%P5vtzPwJp8 zV~FTfgU8#{3k8U-_ngNq_`r9b`=|R0i;PQtO#{bCi>XH_Y=hgWop(aN!rK{rQ!o4& zpSK6ox9MpRx_3xmZ*_J;5oqPLUN0aQP54FL~ZGE+#_xmHV=4;Vw=d;i8=(gyus0cJq5H2S%GK9z5 zPArwai|TOu)-M@nr@?b{eCLIx&ztW~Q2PKh zHBBz(r(hMB_R*i!vqS7Vnt8vae#9isPSS9$$dXD@$Zj@1sm8JDd^YflR+VxpbJSft zV-8BpPGQ17sbXn9D76Jji&HVy>U}9(XbhRfQJXdtpbp+7RA+U#gU@YT?d9V@H$hKO~H70UsUx)dvQjIBTq zXvKkvqb1Ct04YNOr|s5KxJwnQ1h3A~_8Gm**0<6iUWOYjlEb7#+sO%{5)|cbLajlO zZa~kQ+Ji4I!)>j=R^MT+Uv~)8W7_uT&+m~#UHerv8c5IG(qHe_-LdMfMWlOg`;r;X zk*()@;kgJ94?T)ReAehj(1F-f+^25sP+E?2Hdh6)r^X1+0b4F4fsLFwliTq`-c96= z1I4`W{)oX_P4^U74ciHd>s#Z*FIT7T#&Bpa&C!Z2`$$YgZ_l`zU5C4j6ZbMZQRyJ< ziXkWn_?(C3XN7gHKZ4PBo$uGr3cfVZJ?Y&~gY9T?d`-W3xA+2fOjAMk#G0E=BeT05 zDId4Ct8USW?-TiZ8F|mc65?X}@fhAB%M(2UJoJYdL=Aa&Udu09mUs;zApWfd@P9`( zM1hlVc)|)e8+(N~Or_`YJFp1wd2ZgkV@X;($Y$*N48bE%`_ktJQZOJSe!kK~<6zxd zsd>s;)??J>#m^Qw+>8=Dpuu z9&m>U_qRX(rVsJebCCJrW(d`CbtB-sr^sOi`Qz5(Vzn>4-+OL61D|86SluFf)`>x< zv{^fV*D#INa>`bg2QfZvhsO1;oFgD`iV147yA+jpO)Y;63{S-oTRgqhqL}-C|tTI~(eR=C6IR(e+S=0=W`>xa+ z2Wzz5dRn8Yg>(ICdK320Tr9UDLS1G)uzIcGL;q#Jpdn(7;AafWc&x(VUG!I2hD>(>B7xZ&?NHHcV z3`&WiJR6X#7EEQlo;DXk7!V8t5w9*2zvVoBsOzx$IT>Q&{l5G=JY4OE0OYvU%iqyp z-LZV8O-sW*tAgf^bz7n1H5POg%gYEm)%Eb9AcA214f%Od%KRB`Rbe3H1puPt5F3vd z@Wt+av*Y!NzpAp+2YaL+^m4~xN2mr4e!UhMZd&@i&#<9@%Xk9x^6NoN!Tsetyn*`+ z)iJMTrT<0w+Tmb2k117}_66{1_TpvPXY+Y7RsZ=7Z})DkduV%a>xMmbg8035-~1Ws z6Ibi|`SJxiz_RJNEUho&qW44A-VgoN*RBmQ*~Q0A2fepL*-h_x;Nm;w?Ig-}O>4Up zeXE^^QF&TurX79Y`Y*p5d49ul!5cyU$Ma6F{)|oWfV-`qxem77HwKL(smX?{tQT!- zN|h9`dQEYHS7uQKugs)>R`Z zK%Qd$Ok~H6PodSJu#fY#ze06rRX2)e&$h?L@pu5Ed(13k09nD&y;D3odo+~6WU0h6 zUUh_%j*R;>7!dx6GGH(518;?PR6Rj_^pss<+;FJK+7CzRaqG2+1`RP_i#I{DTNG6j z9cE@FyIerES!CJ9q#EB8&IDVN7xVf|gQ_Wh`^3g^WXZ4;t-Q3TeD*m-b>M{JRTi`t zCSW3sxqz=gEr+?jl;-LKc5F9~g+mDtW%v!=;& z@l_qyC8y_pUsWLdUoE2_U2gjsUj{pUpdY%gI_29)YIqy_l5!v`8z-Uzvpupr?CO?c zQVOPuH^l{YO^?J$4}TX)dd#kt1l)7*Cihi%HFp}u%QAKX$nq{a{``nHKnz>*nG(DT zu~B?Ki#42H)b3^@MY{0|im?fANR5T2 z*0A8=Z}H)PI#9Hx-n*jTGOFPIwC|h8J<7{@PSB1Ioc~e)PM7O5|L64iUu>Fek`=Kp z3HUSCVxJP^aBA1o*Fr4o6R3LX3QEqJDsMCL_qtqi4`l{sfr78!wrbY&IIMt@6QO+e zO=L`+89B|*{(nvdtM#kBUO}n;`+)lLNQB1~zwX}W_$R!{Su&e9U-~reMCtMf5X08Q z=f=;CX$%izxE|_kwBCDmg2#KRhOH&5$D1kNUTpwN-pl;&cC(=Oo73=~j^i+bfDuXJ zOOqOtyTj@A5!kO5A!<9SW3M8e2-u=LF)t%OeA0jPw6>1)sKDv%$BX-t2Sd(wVubHU zCA6pq9A{5~yQ4X5gtyMg~Nk3b`~&Dl`P6Q7PF z?Of>QDjFa6?SSrB8*K7+N8R$u7rNbE-FTg5gJb3B{M(^EXFMK<6~#lv;A03s7ByBr z7JRUNIukclH5E1edw^|zBCNPLY-nf*4iB*Vk!>PPnIUz&2#!Gi8^Nbf6syI>#gs|v zs-~u@qPthcLt({35+3cPrM1QqtxjRqX|qf|Q!(5w1b}J#4AyqzyY;YEmrqAiR%xuw z#&=m^t1f_vjaK8SDb~XY`swsFE}y%Y)p`qXRfrt^_OHtfgjr{%0 zs@KpN_ra>mC&08FxDluG_2O(msz=5Ko5QAp52*85IDF&vl8lk}x8t(W%N@4O%INfZ zQwCYryQ-kOIUmo1p+UnABHty>+hdR6rAV&5HvZIyJM(<|8(_m)zd)s(SLI_7am%lx zv-s?W>7qlA`?7Kc?%%P3PrmQc)qE+s1HG1EyZl;kK##u|V^jUg2e>sPVPHbxPjm!&GxH(>sY> zN&+hDM0N^)L~9l){58?Z#tlg6~b%JL0}M`m28&3fUw zl1|lGwwHPFMjMD1up1?MCrrUYhRYh_T);Vh%tfz<^8?3jpe-#|{REu3;X1ZonJ=U& z%^h?a8T(Bzn%$H=*ShzIr8jSY#yH29!vSyWlL(a>RAk+4@>faw(vzk7P8=*mipBiM z!}^=Sw2GW;8?|5AgCX%Q^kl8e9D2U88TK*eQ5PHV6HG%ZL;RCDkS5%(D!{PJHjb%P z6VLkcjvtfCb;c>|t7h?UEGZ^%;XkhAG-QVv`Th_3f!KG@1|cktu|W@-|oBj zCUYOpEOH46c#r8FfL2HRxrB;2P`j;#lZI{W&XS`P@Q_;zG z^xUQ_nMS7l>wda-ez&!61^}6qTnK79)KkAK84}`jgyP-Tg6d@L3Os!7aa4jF{O2{` zth(Ui`SCczd;cVv3aJBny0%aEe$JXh>;8Q}coDIttwGDplMM$5(rBmSRy5PyA+vdB zt@+G(B^tf+U74?e`Du8g`}svzHo)r+w%XG7a>;Tl@k~mGL3q`?4iO$eDnq|6zg%>m zzw~C}TfS7V?6<#Q$iSTWbL9$hu0K((?F`;ItNxcQenJP=HFM4W&=sHzFX7yseP+5?LEsg6)V!z$ zWVhnY7UH+EP#xiBB}q23r*k&O$GqnD*)@j-(xI_lNQ^SCu|K#DEdq(|aH~eP6d_mpA>JOz+ zNeQzo9r@8@w_e$aHmVas`;Oh$keHSM>tgx$>7`Nw=oOa|ZAS0Wpz0Iu`$He1Hjh_; z;qP;gF86n6G}`BW*mSwk*Dl1K;CnkAk7@S3X^A~|(U$Zjy{|HCG-4SO6L24G72uge zWdlgm37kRk+~TyDtZ8%^bVRz(GwBy&(`iZiSU$N?(HU&U%z^R&FAr2c8Uv+GcZQDc zr&E2WwIs~CYuzjFzqhS*;UEnb9=@YLS9=)vhzy9i*VrvQyJMFg*}rDb-?xg^Dl>i@ z&8RqiT#r)%;FC`7C2$02HdI;aM>cR{nyou?OD1rrQcYBJMmb6ORzHprQu)i18@#x_ zZ8VVD8_EEd(l@3cYjY|)Yyu#w(oien6XZh30t9$-c~0l*PidSvu=2-tZSPK#uMI`n zAt?{|bC}^CNYzC9b{GX;b#N1_Ey!foBEKC)nRRPm1u$bW9$Jaw98$}1IDwLOGY=cF z@0xU3C7kV+ug1gn0yh?yXIe)Sw2Esflva_8xaJNg(4C;DYTVq+>YnM=Hdp4FROb;P z-ri>RP@4rGf>afNrke^@ad+BDfbcU(sh@-_u~NxNmBf2SuRqbLhH@W zyQSHHimfaH$vdq0`we-v-O!t*%;+YsQ%K(@uCR@|$=zgmbf}1!gXOb_DWl?u7BOo4 z5@AYGmytxjF^78W(?tVEcR9UT2(qXa7W}3=Pc~fpM;1W6mTp|B^O7>2zv+Vr)3!ok zuU8NXKYZ#?MER$vxML*v?a3QHf~&7#F!@Dg3X6xkh>fG&E!>|in-Cry|iOa3c z^+41Biq^a6ATVt-mWWYh(Ap?h;n!x|3#BnvDsHigwkkh^H(5&4#yo!*4r9N!SK2K* zx|4U*{rd5BQ9BmpYE2Wv=a)88O37-8LCH)zNm9C2*>_)5tZ`ke51Rfw#RL*w)e{+9 zSQoR(;?{E85?aT@^AX(^_hWwKOU5>}qiJT=^ZV1@?EAb7T^;iRR>| zzkk>jb8vIV(Ir&y+LHmCq=)@0Xz)>t>%O;JKwOTjU=$EI4u?ATG4b6P;v(I_QEaN~ z>EF8lv`V_#{|)(_o{)`zu9+yFYc8y;RV5)>O7iZ5Ch2c6@kN$t=Ur>k@0Us@>ze3A zT$TCO6I#ks{6M8J_mFidbEZzo}oHT5Uj%z{1o@EL|qa+}AMnqL~xhYqR&hl=O_R zyNj$*lGam(4)pigy2FK$I>CC>Z zl$07KJ)H2dmi?1*C`%JVFKDOM!(kcPFV(M*NYE6LYPKmo=}(tK>fgOnh<=#EeD`K% z3AODieh4kzR6FT(PON{uSm8Gat$&4Ad2aD4akCl-e#!#Kr7WeL0o*e1fmvcG8UPn! zm6!-Et2Fv@+64ZRaia6Xs0_i+(@3D#i$!G)4O%YYC8CQ54Re>B`EG^HSgKUj;_Ea$ z!c?6P7GWR0xy<8Mp`bMXk#b4QXZIn4vXXP^VqyC(bVH=Kift!65Q~23OmRP_u&mBP z-kiv)CaBD#ZlZ9xv~ehdd-Pg0$(`BuGZtv)30zMUhu5jVX>_CYa8ZG&8aX=i#t~<% zlI7?BUDdlP<;X#j3E&beD3q{wD8wqvikBm=%4Ben>Y}ueU0+yPkNP5Gq>|S06?6a- zcI8T{%Y;O7K=8BNOgXsT#XUuy!(;7g=@VirV28(0lB!CviI8;=(K`&k+-`ir)w$hf zb#vg1-~OnI9~jrpL`ph$mhCx75~Xh4UgCLOh*3Wqwd4-5y*|$ljl(#u0Z=RDA6qWO z8OJoVMPp{0C@ad(bSmNAns?0^13IA!XBvkO*Qv;7?4Y#WvDUOtkq@h%mz%9v*M4c8 zoy*FW`f}r3->h;reqMCg7`0w9c1#jqU-aPv<5R-!!KPyAagK`3#prXOz5tG-yCIbDsT@+)Lf8RjiDLaqs;Rox3Ulob zZmZ#?rNtgV@y=}Revu#WuF$RDimEMb@CC|i50R57@@BfcS1TpUTVbGdH=N0dF`XA~ z1UbnMHJ@EGP1{A>#)Yp*y9-yG=lbgo;3}=-hjpguz^}R9BlgJ?s|BZzVpFP3cyWs} zFcua!CFB;-J?FA+6QDu4w!EX*PVwDQCk`xjJQw%mKJa1-#(D46A9J^XIt`r^Wo|4% zz$PcNh*pU=?(UuYYj%nxZ?|WMwI~l4QUN;xa~8WlO$o^ut&~_x_mrSX62r)aYcZ2loJ^Rs}@JD+Du4Vg~i~udb4$oD1;#i~~Sb*1LiZGf@Z#ASS z-O9xf!B;L{kcx2b5?6FfS@F6#v`n?qo!);;)8Zui;)&`$9fNQJ>GRq4^H>95(i!|< zL?e*n(>}Yf4o#rW#wm=9cCtM?wq3MBVN~RBy_XE}*IfIb?~UmP-aijk=2Wv#pCL0Y zDE!?Mp??6Qyy$@nUGU1wr}@hnw8tT}^}*4I+o%O)OwAuHPB9w7%3?#B^!1y}o>`E( z6xV*D_gk%Kc(Ea=Pf#9S>Sw1}I}I?#nCz3SHiWbHuffREFcI|AVy~hKktRxi@KA|p z`fM&=hL7C3`j%f90m?V7fb5@?5sp5}YD|hQtK6NRjNxD`hGJd9P}ePmnQg26IG-2>p;*PzFZqRbb*e>JccmXyal-GOu9 z%0_YKk>eloCV(`b zI+cro-NOuFsyBt-@pl1l2Uk3yR8!%wq$|nNZ?|A+L5t_YL&J?K7hSR22OtQ5nPyI> z_X>ujq=s9&X^lO%Sg?5nz6O=AGNMfJDLAQmthIQDMiDEjRUg=XfIpFT<{+OvlT55@ zkX?ML?0W}SJ`P$PbT`<&`eMmI-o#4DMNqrC?xmS-#PKW`AqCUinMF2Ih>)mRY*-0^ zo0gW+LXAwtOlsItb4C0xcVlzC+VBF#abYU|+z)TKOCvM;130;|6%p`gsuS@huYT1*(ZREM# z&-OMQsth#!U|LG%-dESYC-XgFuD7Yuby*wUT+O)7mGeY?TtUIc&8nDqoEFJBVcYG| zy4;zAOL&5Pqr42uI9n`3j_S&?i{9iXULxwIrhrf>Z?3d);XW0%Wk9@DV-TZ#n?Q?nE@v$c*1ousK^~L_@fyzGX15w z$075afnuq>n?fv@<9z+cSQOWaK`vF-1q*Sl?1aU9)i-rgp4Q8~PpWh(poNy9&Wtoi z{$H^|*Mg7DXAae>_x>uAe{3wl4@St!WNoF|F0Q3-@BC?IEoEyKtFg|~_b5(^C$x#3 zLtG_p?TpNYpi-kyaE?UpK1gV9Kv!BH+3$mm3Qs*CIjT6%V5iV97d})@Ppr&N1m&va zBOV(OdrUvU=BuSK{f03#=E;6R@IRoC;+zj6|9My}r^v^8cPhA%+^Nh_i>tLZ)@NhT zu{Kj({no3#EJtqaW;-jXH9X9TyZSKg@Mys@I(*{Sz{6RXsq@xSt&ys1qtRUaQ8%#i z_)l>K=d>aVE{{659LwobPC6D#re_B;_?b+6Kba`*QrF^byG-(!LuObqjjAV8x*B?k zIo;GHSz{B+gLxwo+8&M&>I6PHIdv8IrL+N=xcRc!!JbvJLR zE!012BHDtE)9v80L88M>>!GM|x|-jl&G(Mog#2f!kespfs=!)A{q%J2K^9+tLIO2-}1?IXbW&uU&1(z@V`5DC`v zhK=>6(hw@Xg%SSu4ikOez#YSRo7~KR-qIc*m$MSIx-?H_F7(%WZV0ZboJK+VXP@1* zHMJ6!lv@iSl$avn|LcexHkShdUwf)&IvJPNu%C@tBcz!pAUBO2<^umS6JZ2h%-}SHLM8K2_y0N~ z)Z-pHJcJ~MVo6RCzjJv^?0qCb+z00088~HM8-fF?$F7t!Y#a|r9 ze3NYZ5lOU9dWwSqFjGhh9z3a_K%o`LP$65S>eNab)0Sbk6$r|jLP|1p_eOG}LGUQB zKm_a4A1{FO=X}qnMw+s6Ft>byD~o`F21f0MK^dD#6-5$>p>J8#qWWGIxzh_?WzNsQ zrZC1+Z)R;XGlV1{WN2VFT4p4K7zyeiK!#WT1QK%o8#`WmTyy99pQW~3f-~!Un8F+4 zbLNFv{(Tz2;@8pw=%e<0C{|W!(j9f7pY>?EC&$F3VxbQHsN_TL+gI=kD~>e49~ z`gLIm-1-K(Rw7r8viiC)vqAH1FDl;VmgjoMYHR2Dv{*8m3S=odJoNHmSfbXg4&rS@ z<#^gUqrK0Z%M7zHEYT>7o8m$}ccLZ%jt+zz%$TaubVZR3vz5W$2$?`1&rWX^*5uFy zy-=!a_KiooTV1R;l|l(Z;`j1JY#gHMP{pw8>zl23h3>z@jNGKa+rDgS6oeMLirhcU z(PyFBUl;;%vho(#2P5DqnlLJ(+k?*Yy^ntBZ;q4umtlR@s_7F9Q(DrIw^lL_X;D7gk5vH*CU+s>nN2~n#cVcnD!hjUj7O@m|VL;4z(q!7w$5(x!`l@}te$F;_=I|rUPhg5x5E0E$sKJO96Iwj-w*~T4S z@4*xsG!6^gO?mK(XO&C<`=%iv6QafLY~y z`8E!o{2~OlzdFP&$WEyi>|{_=SuS?+yPssBGa^PYd}ivQkzhFe&Xk)b@D(Ro8IlKS zWGWj6lQV~1xuc+QvCxOlDBx}igF36}LDwml_bHDqr!1%uJ<}jA0R|JjQK7;qsR=2oPi2y|r;w2GcgfWx#Q`3++r~%LEcKT* zzRoTR2NAaHG*3?RMA<`1aJk3P4VpEda&FdOrTPWzh#i&s`$5PJ@0v&?eK(e#$FxzD zHm(YX_H1>^vK2&gGz98TyYp=;=dKc;%tm;#mT;BCxbAl<^K1jO(E}UmRd|Ls#rDth z_gyV1YdiLV&ypQnZ+;~xbrYI8l;q0~wJ=g1gySX0j4;YZ2j5sZk zb#uX>FNY-7aK97Xy%n%?oxcXrj^J}lQ|)*4O?2QGWk5*|;q(7+%H%e9^Lx2K{Uviw z0`wpMa}s2vkR5K90>B=fB{6>D`Nvp1J8Tw)(+rt@lPK!g5yHI(UrCJ0XMyAEyc;55 z;yCLeDL3RDYbtSL{?Wv`+DlIKkF+`?k}a?_oqTjsIf8_^5dW9{c4BtEdb{F7Ac)0{ zLjU9DVr(%IC}@!>lx8QS3TD1D*AM@-poBx-ObNTf8i|MT#vFB6(JRJuC2n z{=%0Tq|hBA>r+$^=htoXB7{{5;=tZ7<*614;28 zWx8OCxf440pHqyDE4mBxtaqkH>xkHeoKq4F%LTpRDMN4~{H(^`ZV9=Hk!6clBK^6f`PUv-np_;JV8ep#P zxLD&M?Dud6Sl7Gi_&3tJ^9X}&mWo8sHwEQP|C14XCB1SqfF^>H0i{83Nsk|?4}Y21 z(C7WQa-K%@-G({(0mQ@>=0e{Rl6&R#dM1qh%ZWmw zkUaf+Z?F6<1ld0l{;nC*AA9$3%_GCsAdB7gLXSst#jzrjchAgbZf{%}o3yL^#F*`Rk5(v}gE=S#PZ3S^Vqs;D#{)M8}fLRz$~fRXTC!_FoMfZ~6Gv>tBDbkC(T) zP-wbYNiBh9ki+dGbK9O-J#{gx^d=*Ohdg@(c!UcSitP&Imh@79-G2|#v8#QqpcGPvWfLI9v(;F zH3gY-*4|@^_zk$?>TgTk4Tl1v^~E{XtSMP0o|&Dy(@)2enzDKeKN=veVbicM@D;DL zqVKY&R;E1U^!*{%AgA%cA-aClk(@Xz%)XJxt+x!I4!(VgGlqSxyKRy-9jp!R-5A-k zmOCt^pZB%KnL4!xG6ye_v_CF%SVnSw_+Ant7sjLOGdNCjQ97$W4lgd#aOZscc=Gr4 zhQIz~_V|;_wY*d&uF;85R;Dm7_r#5rxGmO`|pvhXqd+ z<|1HiLOBe9ADh8gKiMlNtTvNZQ%1|7#AAb}Rd1~lzx{;gi?$R_X6a2%Mt2^6JF+JK zF98=r)xgTo`Jc&Ig^02%_IB=&iYq9;pnF$zsYJjdXv>|!o7$!g+=*_7YsYIgdDvwj z=d8Cr*W+;;SZrGT1eJ|2Dtt1D8U+f%Ao7b#G|*mS8!{BtqjwHEQUIquxYZe z%Gj~s?lP|0?fwr(-9ImAwX=((?N@e^+3@Q8LWXDyZ^7;7_XEjFsGL}w?%Fq0emu9c z+xRJW$Y@Cn7I^HU>uXUSDDu+`;EOs1r%wOZWsChpfIjY2TUZl22=~;V1XM zXi3=Z70+gHasQk8v?O`k&@S8qi08 z*s}(#@UUI~?JXhBVpyK4x&6m;t7DP(2!5(3wlDhcg{VZwh8rATEbu;!f_h7k0lciF zhSiSaZ6j8ndzF19!@ZJ>FWJ9Go8C&{THh;) zvR5*G^a<=j&WAJUpdh4SaZTmyZVW6};@cVqqNqcGgP|)FciH7_Gb|7o6G!_CCE+g6wXi0fX_#yhp_%7)#JWzJ0@e zd|G|8B)o!d*TC4W3Q&RM6oE*$6L&&|fj5@0W1xg+UZtp!zbxu8rDTw;vtRvx{tQsq zCn`I8TsSZy{^0;4VkMae+FHS;_e__WGAqP{;fy_$geE=lnE{aI$c*K_iPH4b_{(u+ zjihF^qt~eE4PL|ZGMI7~J!#2=nkI_bDmy#sT%r`GE6^MuIcS(Oem&&aW?gsKAFe^b zW|7k8NezlY($Pk!QAN=#x(9FAd7t>W?DQUr%YMZK%(S%-lrP6o+Kxi2gU0X)p4-@i z!TOvGS+Mx`AA0>@t17=RxC+ag(GL?scY${=eCc zmEIlKQ<}rGG9F8T3|`HsxsA1B{bq$U+2n*kc*BxvL(oQDiH=Y6fOAb_4cc~A4X$<{ z2SF*dkKoq-LL)#oT71-UoUs zkEFp?*(O~)-jmPgrE9ph<2f=6S7Vy5&A1VHI6-^aQ)hJyP1Whx*z5nzNnSMPqskIT zf%ZlZGdoFSH%Os-jAr0=F9QJ_gyjXX_G*S-lRcY9)n^^iM3Z|A4~~)#@r`$AZmI;g z@(lHDxnP*~t0@m%LUD4ivALK*N+<$*wnzJ(Gr&bM3kGT2T6HCe*34UcBZ!vP2!1f7vGysqY;tUE0G{3`TIo3(Yj#ue z^Lx^TuipXj1*8@x=4CG@(c*PtFkcDlkr2^Duxb?4k_Du=$d}F#BrRp(LLOzg(k2?~ z0HML>4k+thrP_^bwbjEjcOGcSjQ+FRg@QmnHKBy4NT~mv`(U}Bk3e$$b=Ps&<`dpk z&+;@oOney+CM_*kAaQ+P)C<(@6yL04z`Y34NF%G=dp-8WG19&JhhKKE?R2G%wXak; z{eWi&XwyR`i8I|TMS>Xxk{vVmcf#e{E!tC>=koM~e?dQg;^uFm;iW8| z&g6JJ_$9ja^O&Clyz307b>;PwPiMRI=b!W&eVMp2|7N}9=>8^$W(4~t$X|Rmg(m(tD1Nu7I(&h z52<#!PoEZcC)DETyI~rz$1(iqg+!33Qdgp%gHg8^ws0QdE`(D3+vdV>39Kt)4|~dY za+`o))ccb!N_BfD3!0MjLNe0Q{ zdn|?s(nk}ZnbSVvmoH{?qShW_yhIYqRZ}@c{B7=TI@wX9zECLlN(5N8AX{Jo7<6fX zIglIpTd`Pz>!NmkU|lq-v#{sKw>vCZo-?k`_8sNnM-;qIB)2UEbgxM)tmJalX2MZ5 zGFKf#o)mRqs?z^O8jU_~0=oi1Y@>~g-aA++tYX9p&1{)MfZPtd>uJ}47Jy^h5nfq0 zbp7L|Pgu~B0nv#BSVvfgfFShmxiM| zLEsPO3_M#jA8^}eHTJ{8PM#z9KG9?<%*y-!Lye97rZuO&qCd%A%h#F!^P|00O$@Fc z%W`6W8Xl2>b|aTjU3YKuy2gr=2F!Y(*}uv%drj4bk(b`!S9fEx09lV~pCbp2%U!r` zI4ZS>wDPFs7A!$#T$Mim2I=1fsGMM0Gbopba zuCCcbTd?9TGgyz`4vZiX5#Y39t+yR}-SqM^SQetW-8Y&~oQcC=%223?QK(RGLx>>| zh%xbI<0|xngUHcdioXG-kvFDI8_~7e#tzZXoE%{Dd9D8HvCRDBp)++S;pHNV9;N;o~ zz&{)euxwp`$!yv7XCRipzMV-+72T})E6C3+V;PLFIqbpT%1Rk@uzbqe-L^KNn2fM; zCgveYX=%)hYh~-I#&g2$iW^7IwRMI0A9Bd8~M;b3s^|6fU|F5+b-^ldVGbVcm% zMOWrGrJ%)B=&|KPh;A%M_%U(ZYV=sn>(e&?B798YI3lCuHbmD~QP}R$D!Lc2#nFrs1aXW)M_ z4fcoixEQU`->9{5iv|b`INbn|YlQ!0UMNh&+ZB8hI9^4}(T|MI-jG z0#%FwYpVc;A@O9e$Wy=&vgPmD_@jq^6+|o-Na`PVHj4c(sSx~4il%>wgj=%S79FHw z<~u1v%azT4Z_HQr4TidYJM2@3gM&IL7fCH%up>1RL!40!QI_sC2{=ll`N-w!UDE0Qe z#{WkMJoyo06!|9Z3KkH7Si+cNQ88iiLAC!7y%_Ooh~}pmnG;b{;$9shtz0@EI)?jJ z1@>RZfokHEDlY3xURsh}w$|lUq?p$ip?tow zC^G2}p=H0ogmT1JA-!ICOgdXMniGy{PFd5hVFBhh4Z#1$Z%|Mtu)Uubiz3u)u{c#% z&8C;w+T4_CN-$ve^P!^Dn$i# z2#G=hD-#0}(SiLtN?4=Ann)!THB#Etz9E|b5$q`9YP5rDwrOis{TdLMbSogWZYTjT`KP zQx5QbIXpNsddflxN>YsZ{|^Iuf1zuNscvZr?|(CWST`VPxTO(=^rEIyx%@RI4oPPn zZmA$H#9Z{3@rD-U<60m`c8G_L<@5&n{|{AP0Txx*w7rOcw1BjLA|*(NG%DR4(w$3p zt8|xihae!ZG)Q-M?b4k~N%w!y_j|wZ2lj&NaL(EDJTr68%ssQu1LgR~GF^YjieE0KMPj;=3Q5#EeLFwCl>d071Q7Vte)JW=u0x84)kL0Q!KBTiWn@lTe zb15hWww4H!@G$cK8^F&Li8g5JCtv_5mU0tej|qu_ki@h>!*D+M)A#h>a&Y#4^xkt8 z9RS@2JwGv~D0nU{UH%9IB3gtZ67^j}r# zDcG0AkvbGaB*suZiz-#${`k- zlU;U6rhW1`{M8Q`L&XR_)K$X6GqE#ghb0ehMvu=pL`Bw9@Uq9Vto zZj(a?$ORD)oDKI8qnI8R$iOag2v}ekqF4uc*r|7vAWyO4kU~=ScEE`#p+p<`K{nu( zU+cmweVyJBeTKpK7Yt>eAi+7&=m1yrzge0B?ZMJfCxuNtp*{=V7@mC8o5dX&@cJy% z7}GPOD6F(4fIy;@a^Bmy+xOEU#Fj6R_@|z81cNUvN=3BC_;o`DL6Zm62f!yA6^Lq( zAM*pSUd6lV0svGUwm8sEy*}D~E&b12;t=I~h9p|UIs{+T8Otv^c^13??M-8>F5jgF zd9E9eMt&XJNqGBDujan-voxGQh6-O%k%kl6tbK3h;`MEN#?Bsfnp;e5ckYO95LXSD zE(nE^O^U0&L~JJ${K4-;xs;Cw>m9`{s4X(OukKcUOnL|In6t(Yp`19~JHkv{a57HbL4MnBN zg=AiK_*`nN@0|SLtQqJlgA7q8^G~|-$I3+ztg<%bu@I~GJxvX>OD&sP641uwa}PRx zXB+(G2d>WQn3vhH_G-pf+7>%eROE^#ROAEFZ0^M;ZW@LL zef?!@AL=2hl5nnJ^wKGO=Rk2n6jmkUEwo+ONx@DmDd>yN8r1=Y-jQ}v88z$npjZt7 z4zcchhHSU^mNE`bvW_ozMtErk244g!=!>l5u=3dYSt-gfD}1@YQp3UZg~9OAC)+Nv z25B4|Vx2Q^N@erhrhB)RXSVFJKNw`~K&e3HpgGr*TsN?&QA_zm+raK_g7esYm7&jwXVsIt*M4OEUp&h4ZoXT$=5ey`?K zrIkYbSWR_3g1LD}(I+GEA5ZL;CZ8h~aSUS4e_qfjMoUEf6cq3+4=y=RO)j5KS+j|I z$md6$*cRQnPWSr1Z#`z{!M??jk~$e?X+^kT8tgWJv6;>JX?A2-*N@cly-NWj1bD#o zu-&aobC=as3Ij9l9tZ+xTX%Er;g!@7)90_Y@2P;z7+&${)e$m5+>fy}Dl(f^t@MQv z%#|n8+>Tk;vGjAbsCYmclu0}98aqunq|&MuX#CuJ^(71)zK_n5(kIEWoR#fGbM*j6 zIO(%Oz6J+#ALkHDs*;J9YniZMmynG&>%>{6w{Tn@ty64kx3%y4R~aA+;}$C-#Pe+N zs|wYdKVQU4n3W2^LRdC7Ut5qI!#r8eX5d&+fA6_gzWMp8VpmecQAOB6)3Ko7QGJ`&U>Bro!>EVHHEIn9Z*L zreD^Wxy%AG2Iuojoz$1$+IX+x<>2h#@ZCmuH|^iU;la@67H7tH>ZSQIUC3~i&Pys? z_rXoJq-Yf0(;CfHN+k(9y-*t z@mGaJyHr%x+I@HP>En{`U5r~Oyx2nzuKbF;1w|u8AVeY$?8WtmC@*W5| zL-Ta;j?JJmIlnDrvGfurwiu38)&#Ch{Xu-Eoz38L~Ns zRM^zkOhD^GQFu6RsG}o|RxRnmEU9IgO92g74C&X%=R;f}{-*l4xLhMw;@ia@o{{kN zY%0Ik$+5{^lao{I|0`->Xp|0a9=QcNC|~c48MP3hcmZT084~9(WkE{Lxg9N2h5+eCUmZ~PvH6ut91B&Abj^dweNWn%gZlsuM}6Q z;0d35g^5$KESiQFhs9AhDxHti!Axdl<=N+Uu9{JRyWy?4v7<4tIzUd@<;UJ2#wc{W z0yBnSniLFkT`m#>h%1J~q3A|_{+sXmlwXL^T&N5ZaHo`1!VX^tgKqlJCn}}LuXyfJWn0m92-LT{8_q&%R zZySyrw~CDStl1i}LC}>edSF?v7M~LbLEnuVTQ9vIKI2TpHVJmFoU?;^pvgzUeNY>N zB(%+|>z&<{ZC+rVE`G(}-@4hIh&GssDM8RkICLf*RNX4lYx24~Z*A~hULbXIoT|T$ z&vXR*T)78lX>5H#k?Xllfjks0seKxX*xQ>Xw0hNicym29Q`T~OeWuQ==XyPuBk0b_Fi-2$Yp5wu)1#w;tYdnockG!zo}sF8RMR(2jO9P^Q=9e7L;-ezDl| ze(&n`tkEMN0v}^qMhnYAy4vXTK0NKGSmAG{fc658x@>6rqx&4~Y`y5ZI4e#p(;L21 zM?AD%@;&SJJqz@YAg2fCc1X55ccE1sg1{%=9LpY-H&TTzug@qNz3w(<{$5bc0KWvo z?NY`E)&vAkNakwk*NOmFaXR-w)H|M{@qB6UEaGs>{AW=xCQ_D+-7&T| zXXb;x;KRKYu#n$o*-RlM_o_V?wPOvhQhJlHN3e*MR+lWEw@O_%$V#|vYGxG~Wz><$ zUF`f--G`aIdh(w|yQE8=0yFP1c&(x;)mfbJ$C34%Oonxvzc~i9Iag;VG%__Pi*n^Y zna16Oe>^fOEo#1`&p6qdU9Vy?CI)k21RBS+VTwxN!@|+bDP^EVyTw28mI|-g^nCTo zxTDa%D81}MeuW!9Z6Lkec$5%YgdF$t@~k;ktzMH*xT_o|46%8oUW=NckoR+WJ54*{ z7XlI4nOD_=0W)`5SD%>khO^{0;ivoN>8tqQe5+6}h*)>`ef+W|RC6s9dVG1*`RW+n z)j&iaIW;5sEcX#e|=OWTrf=*3g0MU*JuN*J6p!p%~RgWMi@uwar`M+?cGdJk(!z;NG~!Z zQv$l(WGpt<1Q#1dK38fh$ncNwk>0Fu;|G>HB`>23n~4>~=Bv|C_bMqR80pB+$+Y`) zA*YoaIcU6h*&Vq721YWTi{^RV=Qi$)vBwIXB*Bo}jlz{0c8zrhcKe)L{*R%lB-%bl zL9&{vjIWm{*jjO}@$6kTSM_^cVz6;mJL`tZKuVt>-X$l&3V4{QpIXDacFhf3wA4@fh0e7)RVoH;eO%AqD7aYP3&^j#URLp?^R1sm?|-l@wk?(t$} zDFd=Pmp)iqY?Rg(5usUo^WJ8wup&P*oYt)NeUL*_@|L)sBJe3b?43P>f}6e{M;H(} znUN^w5gTW^ilPxR@1ANVwbjs9t%B%yHCz17In8N(!LyadM$gZ%e>;voJ;1XtOo61HewUazeAJ z%Lig_WcZJ-j>92t8IJTG%bU%I7(c*SFYwX7G_f6}anoL4H3As9+v&L43;kl!zs;^c zLrv?50i2!TXuHH$2VfQ75f&EzmgQM(mt%;nTgG9>1nE@RikKdvPEp;QJs05@0i1A# zu+(lA1K+j#<#bQKS`-vpOf0O%GbYs7rd5>0-DgDn^X4p6tUQT%ZJ78$##<6KF)VD4 z(7QtBcF^j$)F|Y3ao^T(fpR#{$9>d@Sa#hk*eHSN-zYu!ilpGEX?Xr`EJi=;;BIaA zA0@Vw+Aut91s-$B<7TmTsrlmI4!8prat7(71eCZiW}*HCRu-oVpq!*DN|1>R~qCpe#1|`JL+?9i5u4sh_k*_C?h^kJKeJI33?HgIXW?ChJzAYyI7C-IbBE`JW(IUyq#*~pmY`~U2SI1FcSHUWQx5EeiBF19}KLRWF>oI=2BXDwsWd8xl4J_{>0 zKX96-)pC>f2&vnmK$%B-B&}SbVcE!GI|(3$s#egsWQ_(YJ(%YxtpLymIe`&OEN=ba z1J;9IyphI;4YZB{Ly*|>v=e^frvjB&+RK7PW*Ne^emsIgoU+#WhWwII^5ws z5&S0yQ7n}h>c+^X6nXcesZf0zW;K7F9B((K4RtvQ{-}tHU9$A8FXIXkhgf14MhywF zu#_hG0+-SIy6k6#lt9cVn}=6pL>Tn?^sw}6q`khn2?H44feW0i^aPYB2bG=e0vykp zG|ozYig`G_z4Z%Ns~j4h%lX<+5Sf;Gk`Y}Q!mH=%P?8Zbf?LfK_dvpxtLa)Z%2;mJ z8$+ntPj3^*G~iE@UQ!#|39DjQq>9$Gl~AbxcuAM??fYG$>R%;f3)jB>UrEIP9($ve zX<346RGsOzVCOr(MA;O-mU@~v5}iq2BQgkmwFYuUcf4~o9` zXZwfZ^bF9iVPYXO?2XUL(ugE%Gp zH+iyzFyz|5vAQ9U#`Dx}%K5l?IMULJuZ3unH;7_i!Wd}{jL530K+%b0P6WegO0`}5 z{7oVGGBJ=}G+Kyic2uNL1Z%Pmf|wQ2@0GNf-mF$H@Xv8NhCr{V?>PA+p!7us(y*WP z;ST4S-6yY76=a_YO5IsoD^5*(blLy@)mu!QM7O;R^F z4|VYWB|)6^#s}vF=)X7gz(n zY2-f77igC0@i)uO;O<2UrDim&4Q!9=)kf`DE+HhRkuBwaU3kLV{gpgq^98m|cMn9k ztqraz&n-}gCj2|H6ef@rh`eKl?Wr8@~o&7P9dk6Q~xwxFc@ zKR?9ZJssi!AW5~V| z5*+$;N5wc|)}!kTGNW19`IuI{slRo*diFjsPVXzV4&&Rx5<>5_bn!Y`=|AWtqIHOW z()g9Q7;qecyJ-uctkArcYWgrO^B^QFv8Nj`_(zpvKNd`d*N|vKp z*2xZXT%!!foo`9J>}IZS#e&KSXZEDfN*Ai95#TFvDukD(x8}gq2^8M(Z%ajIs8&AY zFbD5^OI~$}=+ZAP{}JuM@v^Z~u+eq)@&&V>*56r- z;VEHA6ErC)=+~}c2$O7$`51-@6Fc|${8^Wsp^z8|GCT}erL^0@ zO*JcBfcs_ben%2Opl!8xF5{2x3XcIujt8<$5JYw{2jcQ^R<{8&BL7-$kc_vnu7N~{ zJX2mY@Gvug@BoCSxb7TGNy_r}tZ3q(^N7p! z$FQOMRMZP_CU`I-D5l3-3Vss6erd5)04;tgFCrF2{!}>w$o0)%STh5hix!%NWSN`% zb;reSlU747S6%!g$AR~;efsF3jj4H)aH3-(YM4r3;j>#vNtB#k8b!pwt}Pt$%B-g{ zwX4=bMmERjCFETZgp=GZKjdMCqp^3$#l@xAgB7EHuef1R*5lh|Y-MW5?@Q0upsc~1 zWNoh?a;k)y@o<7+m+6~6`O&nnf^k2Cp)ExO$mnlmpp%=gqVrPAB?um}KjfSmYA?Z|p&zWU-+Invs|E(@mS*HQJ3jJhPe30W z0XB7foE7{*r0!DuP|+AMT`CGeJ;peIOx~uvRKMovc^yADPBP6Nb z{{{gusnU&-kHkpCqD};^w3xc9M_irPj3C=1arKy~RBuEVz4$MpN7s>ss=#0Xm#&~#(KxIMRqSzFt1OQJm`7)FB_K&u z-2yPKI6C2f9{y)P{>$!2@sJ*I0@%Qq$|z()|A2@o9uq9DqCqR<^s!y8z)}#{NzjRQ zuz$yiUqU-?pzwMpzBnlZ1uq4G@{@bh1YN~f#xPBLRaNggR2f)ZsGkWM}~h94QGgaBM* z9Hb*ed6dSlq&r`@;)1Zu0(+@}^B>Ntyf|z=Zp@1X*m`c*XYMwn8(zyb|5kxEAOtcE zc=MIR(R2n-q>hx-tKrdS0hl0;{Nq9>tGs9~xFihS$n}MO4D3wO%iG%ZkyImpk-Iv} z0K_U{g#y%}+d=6$4q%_l-&TFJWI7R0nh5qzPyj=a0 zV&8s1U-zVvSui!c^nfX_t*j%gp?J*rwy$a+$&wxVvzlCqVM~|vC3O|{p^oD}?^LeDdw*tt*zdRzw`WXL{4`HkKM}QTK*bp!&6~i?1w|WvCTs%FX&aZ-5adt8)wT%(I z6ED3OY2?Pby54tT6KdcMe)e%8B^zbhaQMRj@uvp7Nq*vE-GUxXEX3+kD8B1TCvdP- z{u{W2VZwQp&U@3&+W{%zS1px|W6oYPQf=49FroHZbvyAT`1Z%U!e%OV?Zy)~IM9Fo z9ATjAM#ifH50&ZrKCM{DoD_7z(Uk)zP8<{&Tlr!5RO<5Oy?QS$Ur{$ErDY5eo%?ZN z;|Q?8K#XVE=QVXALX{@s#p)gUx^gdWO`2F|Vd3<=x4Mmgk}A)5I5H7lMCN(OMWtt~ zrEe#Uz)7X#T+u#l9zrn%GyKt>@mK~q<<&X_PR&;pY1JP_zGk{>n&>KU4$xU`9^U6@ zf0R?OOt<(>HtE(xDWY&|f8-MoAANGAUx>1bNV>AthI3ovTb9=X)4%r2^^ptQ5cW|^ z(}^=e$=+$oq~#PIuXwF1yo2o}3uP?8lXn!5KrvnZbSu1X1g(N@a;5$Mzu7#bw^^BNcBIq{3bHxxu;SZNupzu&nT3 z=3A$ay&*Pn=G3G-v9j!qm89C@N?OEkIG~)R&x91hKAIh~f*Tw|I=)o=4)8z*anZwZ zFQy1p%iUGML?8P6cL6h$4K58T@zFLo;So-bNEl1Qc?y#DSKkW_Ozkpr8MCSB)-P0i zpSQ0qJfUB+`1QgD9Zh(*5%5acUjlQ`=GH}jyZE*7t1#qw+gx1VFItO#mRK0hH3a4x z6SKYjEl(JCGAU1$4+vt-6dxggiV}Wv>i;JCUEzQYqN>v(E7qx68wxFdAmfUN`8xQ8 z-iJ7g4umW%UFaJoAHzCg3(qAaVvhmBtE?Auk}qH%v>Ll^SHt2UV}PBjmPFU6X#ut} zd2wOG_aCj0hWFYh)`ec$D~itA#5_J2mFJ4B{L)gxz6P-pEs!B#B5|yXVpfbuLW8?X z7~=d9Tc`2gHzW^OIaD*fd#bn53p0;=18cp`iIN*TgLL@8pvqV7Lyt$(FgezLhzGJ; z^*1wEDb_|;S_~oRhlmF3uj(Ez^D|d<>XT~{E3LSt%Wi@Fa{aF_7p?WqqH8__NuR=p zH%vT{l;OvmcE0WVlVa-GqHv;b1&Hq~FUr7bmFrx-cEdSnMh+Pir=(|{ ztGG&%IojpSrDY09>h(9K`rrqfz4tV0BYAC|{ZDp{A{5*(k2in@wnxJQU`@@9t_zyX zd5@1yil!0g`0)psQwU0-CKYrb-rGBhWf}wI@tQxdBq!ubiLT-TsVQ(ZLf_f1 zJ-TTFhyYMF`oAgCZtp=ya)|P6r?vDWGU@a{nEc!&R7>J#xL{s~zp-8y8%U7S1Ccge zR`w-7SZ^w7xSK#36-c~RuTx89bIw7aIkXfD=HAhdW_6(y_%Ks|BI~@6J9(%FK^6a34pqxlyn+dV@D-+Dmvqj z^anoE=tk-oR%#gfkRxYTkRzAIyW^gD+5d^LrTzY0NP<>K5cNArCQ0(Xn&$n=egAv&GB5MAN`i_0cH44be$ox zWiN`CvES~rn(q`Fln@1sj>MX+F8iD@uR82eug&TBvH8-Z`LB_h#4Hd%4YV04DymLn zJj00-_iF;3HUKT~JeVFlwT$@D)@^C5!r-Ec?SgoeS&knSeMcc0vS#HI9QP9{mU(uJ znJ0?;g}QOuxb(<%xZP%f%kxBS*ovUUv>fAoQVFKb&nC>me~K`fuoy;2`0z|q`uup> znh{&oHVY$PEcL%xfeuql0?LX?UWgGi=MJtI5PURk;A&4r>S@E8=*AJo-7$RqT3NoQ zWgO=ji0`dnNm#b2fU=8;%%TXKMeewLQ4)TrYna21NyD4lb{NKO*2Ab#w!}|j2-0Xr z=WDIc+3W^$U{mkGcVV-pmK>KlV}B#ozeuREm8bvQ&8?a#B2usC{b<7edbTFBAq(d$ zK&arvstmw@lJ00UAt6*MW2;#=UB^*x5ep3M`w74w!px=Ux5bi1$+F z$d=>AZ=Dj$A1$Q|f#n;0Pu6&T%i2tO-Z)!cTb=e1vdS)N!W$S4(CHOT3*BMZk9#e6{7)|+2&HaAVS2HA4u1v8wBISD$b zo-WQaH=b1qJL^fzEtZ$Z78Nmev-jj8_GR1W${&*C;_L%A(aJuTWdyy$8FV5*-IT>) z$3K50w*OqN7&I=o<;H0H2<|iGaH@<5+uIBq?@cdZrWTGZkBL9_O(cYcft3{z_8j^K zoH4&qd<=BKHMUi*42dEa(71KDJhFF<`BkV!E;T(t+CS|qJZttS(2~w=b~q(1r7rhG za#0!Yj9qVXJkv4Z2n~{Srr?ra2Q+nH8uUf*&$nX7p{b#%tKH4rYo8`2fCOoS$8P5j z7+dk-RQOY$CsK)LIunij34Hc*K-r$&rc^h&a%)#5y^QO;1SLugNjeUt8r@vZ2Pst= zH!jN3^jC7sv(N3g2`YLOjjx~d;}_`5cZK|Z&zrQTUy7)Q@)2#x!D$2Fh~D`m3;53J zP^ID*Y}M5)W*)B~NIkCteAlS&)d{5QYE^gdPTk=le%_by!kg#lEGuri0&D3;|2wbo z-6~9Ec#*<|aEzp=ie$%-*Vz-#I&vs*P#+bDgZ@*(IZ_e8Ka6ianf2YOZoZRR${1+V z22+7~`0uvCZ1*f_?@T;=ym)?lu)(?Vf2(a~SAfZwEt)o1{~_43!kjF^l&T1w)hmar zRqv8RAK+)dB+2kba@cIQb=s3iL3v2+x`6CqxnoFt5Y8xa~9w#<^PrJf2yr zA#P>KA>0^6m`=R^LhLK~V$=J=y4bNIolS76Z2bR0LVYsD z7H-rAfq<)gestEvI`6*_S;a;Vye$@L1E!1)G6>3o%k@P-G$z8Qj~a~D^;<1rCY%)! z#32^20PXjZ33BJ0i-lao3=#A%L#hAvK^2kX^N_05Z|ep7FQ`xm?flN5u5b9uVSeynj(T4a#(<<=(`pFxjK_DDMNs*5#`>*|mr_0}I5&i-* zVFO(ZGLg9dl!G&8Re~$rE-aJjid_o2lRvKAVIjF7U-d|jQ~j^!q*hEJNR;BaLQ8G( zB1Vow;0vcD?S99HtrZZi6A8wI^8=j=$KM78o=g5PAG#Is2V;Vu73+yTix|8B=Nz~9 zS-niIX7Ncs3DL)xh|&O*a&}JxdEE2U+sledLR-L#`}_e4K0wP6@%;ZZDR@Lf%w}jy z8=PdVn>ec=5Fj!^PL_vGoaB~kFDzs@AFmo)fj*dx&+M@Yaqb*_QWeSH((*N_;Dn4M z{dz%$HtuA)#UKs!Tp$!FLIyc8aMQ)z_M10Ld+qg3gPy$X69WwRST3m$azgF)P<4i2 zb?j()#J(gc!JzjYQx)m8>ZGo+{&86cd4)3u5cWE7WcarL>9UO+wv`|vN*V~%@Jjt7 zkVgj7+Rv|UUkGE&;q)WeRRzm3|>S~YudV9<(CqsV~3R; zCWSCdK{=w!My9Bd7OtX0WR z>LX03A$E?$sI=wD7;p*7o%B8_nQ|NEfre-8+nZmlN!H=>GG_O3FJA*!uMJdcsj5!R zRSv9`lEPL3^5-)`dST+#BTTk4r}JbH6trA%A!^1zcaO-S&axrYStfgj_IMpcCVjXP z)gzwX;@mcg8iu{l`9TIfT{q!r)Ik z9w$7RWq{OCKEWXu^qSY;LXMvTyq#y!GA`#WySfFi@ki6*f} zk=adQq*(~gmgm1iyVm!}N$zp$@~8H$1qDq<77b+x#m9L07&6d5_If51(;hmLi39H( z#N|@>eP=7tFuTCmEnCyqbS*-{8jC^Ce3WqK+C2!jruXR6VQB_AitPPkbb%Oeqz_cj zf8?RfG3k&uL{T82OdXVVb}Ci_Zkx^hdRv(jf9f>uIPc^&ihCPfS?=*Vd|E;-^yyOU zzIFL`7Dnak4YhYP$Q>h$p<`oj zI*H}|>2i5g-d1+IAdVkSz&5>-=HPa{GbOF8i&ehzKp;v~sF;w(%U=ko z-)3h;*+Vb54b0>pya3YPuFkv|z)j-9`raBkQYCxz3TtHfg&}{AyVc4NfB+gsY8s(T z?3s&n-cXypM;L35&fhu!Y97w6&-#}SzDJV~ntPeQdpC9qI`V2i7@GRs9@*A9w6o$T zp8JipQtOT_74xkIujhSL!`cii+F{AibR^T}fx(xnXnv4tE{Yy+oaJh7VM^j#TxYGv zAa_H2{?;&5jrRpmb9$*)>Uw;QDQ42O;z<#%L{UpP0(P#+ey@@@gYTkd`u!4qy$&QK zrrazIdn}*Y3bVvlOxf5bFOQnA#R_rm#n(_#gewE(m2{Q?j2d2QuzT2H)0%T}yB>oX z-x|yl8sy1-60!hNfSI|Oj)RY8~1Ri z+zJFb7s;_(%r<(2C$#tDDbBQ3q_&yg=ZYlo691K zZu|Iq8{zN2sQB9BnpO+_hxp$DaLAZm(GljXXaL*<1%NkqOwgClk9Rr+p_01DjHC}} z|EZ_0+`}W}%Oq$~fSj&-sQuZ73nbI(90&Oipv^FQmaH40tv-RMOF&!ECgi*0=G%da zhN8pq#&Ik&$%NxpB(riDQxv+R-HH_g)D|d?<8qw?WdphD&FYkbtz;F_cbK?VNB$n3 zG?Wfk_TRq*5f&Yz1FbUO%(xq-B#yrHU3NJ24>wN(&f~CD%y|_FQe4+a=rAVavl*bdmw&VA|+!#TgOrF(D z<6Q8Rj0W)gQ_9yp0bsikMN*xC%DpINQ86>KdXkH_Tt%X5zToTqR}h0 zl5T>V+v=d|u29~i2a@v79muga2s1D%heY~Z^Q-$Ze=0rK1f8oIe&=>f%YMIVuY;>T z)s?VVuc!yiU2bu6lTKd zu7IXl`zx}Nmr=Ip@@JaIz=TuUx2wfu)o1y=G$qSe%rnE`X^^F=Hm*J0-aVMW<{}+D zqGZnnu)owvDq%&`X8syh5*vds$@pl;39zI~aRwteIGC~&}+pvIduresvPi_ZOTiaMT ze=F?31>`wwk3q^unX>Qrn!W}h%lD7TX_h`?R%X9vy65beb~!0otIhbShW(?_P5UQn zii&isnCNZ_f&l90oQTV41O$S-R+aWNaRq@ud_>e(pf3iBoas`~(;%QB9S{Gn83z-n zjwbsL8Gu0`-XCGg^|6iXXdqDQHx(rpN}vRNZIHuj>zD0lpmsH()7NA&XP_-cuUoE zi~lq$u32b$3`>>OO)u*0-CIUY(8y1HyXBX+5|rOz-s6|mQsh*3cZK1X*Z)<0Un@wXqV zYpmLWYB^%(b#v;YMBFt74m8fjVM0>W8OwAHn)}Qyn2QbH%!+Hk$FqCt`nM<;=`8wz$7yzCPRz#G&QTf5T5n#bE7^7jj6y7%V~mrb{S+EP7jAFf-jX0UzM zw{&k?STY|Hm+lsQuNDsDTYmli1L7$EfzCUb=w(u-YHpHA>+IOa^xadsxY-saZw)K? zV>Yz0pj}xBo++waWAx2nldidprPYS5(k>-~1wVW3VIKAsj9lUj2QdGvZ(zedJ~@6_;*b6x!v?Q&va=kMLD8AxkV8iZuT+OU%!c8 zOsX%?t{I@ZPjjozIeh*jEH=}>9hzXa=P{(mThV0{cg5XUvYLjjOQW%zL!k)rfl&E? zH`OK0>=R|7U1iO6%(Ep@_tArd&~L!L0sWytg!8EjN?jY-5YF5dU_KJ!wpZb1rB*T;4YF~wW2@Sc~!r|h_y2AGt`)(*BU zH=(a**h5*70b)^M4~;s5*DQCN3M$8yk$|*rkykB_`ne+Zf%H8d?T((B7!~f;M5x^@+d*N0QbW9v7XwPXW}eZVTyn7(@>59Pjp zqI^Z0kAoWhTz$8T)$b2)r&}Jvd~f;eB}5;JdN+pW&%|b>R#UE$wSEJQwNDBYORCKc zkhDl|)NOs0OB#F=3h-ooTG1%*8x8N*a7|OtNUJ>1m@z6mn6xWqi)eqIQ7h%f=ECqw zs(sW)k`-KSF)uf)sMOEb#3i98%IJn%hP))G2VKO}$ZY`M96KVUSvN~nk9W3|*faLt&IP_B8Jd$9K#{%v(itrU;(SGg!Xb?Oh_=~yWp zW0?A=N5jUrx}=xAOTdy|8pEA*Iv(wq`k{+{{hvuS6W)`_Hx*=SJ0htX28vbnlUs#Z z>im}?0flrYx5q8oJu+$O1Oo#Pc^lT>(4_~yk+ajTb`JQuYNvFsKK*>_zp*d=yG@Rq zO^Tut3rkppffjwQ^CK#uk9sVGj}c2Qhfe#{sNBpym1};v@57$)k8e?vyFu?SKXAun zUX~x;-s-vEZu;K$_+Ey!9PRQ&t!oLb`ds!EoG|+y4jtZ=&B*)iXo+=rTeU#_K+YjV0s_BnnF{LQhM{dI>=Sk zOY`kcG%UJk$FH__FcX6EgK3&X(SNLg`lgK=fGXkQa?e6y^TOIs+d^%!qc z8mvru#{>zx|NCy2E9XpG>HXfr`ON)J*?oVaklWqvoDkE}wPO86>CM=QFVDkn1F+YP z*O{-`{e_R7*+ca%y7haW5`~SXrP*RG4SNQ8qjl;%0q33B{PPZc`p((z%*rm=oa9XJ z>Y+nP)f^4#Ot2O8^^nFf5=7V0!aho~(yAt8=J4L2{-N|{6MJu&%=M7;fg^w|%HfA9Ta^je1B#)P2N=k?*fk01y-i{|!&z=BBXu`vdfnUgm(&8eZhsW=%rh+)& z2&$dLXGahStMl=N5YGTCX7``fAl=g7-tPM8s>$~!8J=3R6$JFFDFhV=-LIN_;+Ox(j6hu@eMS2wN?09+6ekjI>h>j|L$o}xz5>G^h?#0h{ zvInkm zXuOU{o`CyYyjt61;Q7!nedXKYuylfB5fpwkH$K`o6Sd8*9D(VvpMa%*Z`)+3m5lmM zyCO}pUu$V%s+u={-p%sTN8%E+!D;NpJae<*oM zIJY03KYZrTdyfiIzpBL&Y9upqK4+&$=Nt~~`|O(B_9M%R&1``H*E8N}-53A#ftMkL zc-@rHf*FR2ioD>K^bBhfxuy40S^jJn=o{trM4TEB|JQTJ&7<+^v1c zErUL|9d|K%Um+d}c|SqCofTiaSRC;+d4f2P)986+)pG4;#q@iExN;m1&3rSG zKd5(%HKrx(k-3LC5-)q~;662poTjz~kv65OkC{UAmmID4JkSSqQn>hU(^w+d#Njb&J>_R;6m zgl@F*gpXq?%=q``qn6b~Cq6kEl?zKjZNHQQoBcrDfu9}0NxQCgcO9m$bs%Z-#)HBl z+UDdNt+gHBKJ-=_nwk3@S;zAWU7wRbF=oqz53P{JpbOXge6$P93kE?b|Bws!4ky}+ z8h2Yee5@BVo3E3(vNe+y(HE2aL4zixn09fI={6}#dhgYfk8*f3M<90bc{9!g=Q`=7zw zXLNflLb10tLj}Vv%K_rGdUrP{p*b`YJapIAJ<3nMa!<1M-pxEy%*VfKCp9{%nt$<9 zv`VuTHW(iJCw!-Iow`rP9Ow8;o4u1u_*PZJ&j)2LRiAm5rP(Nyx1T1)^o?P>`TMc* z^`!FLSfj_~wQOI5Mqi%zA()$*ijPE!59x39kqcrn#ZF?-3=J9NKTpgiHC(%r%{Lx5 zA^HWCp?jt|mq-8HDo`ne)T3|uo5{8tH#Md3{?)_v>GPNsZz8Qp#G;V%$*cSr07V=}p-9r&qL|EHT7v73~GCBfMSnHXP5+tTl5bQI*~r2x(T3TG2U3 zJ~i=4$({%LkCmF*sNtmBiqizNTaJ9Z~5i(W{AWMvVXau@HlNL^F00W zV0T)-mHtq8BEek{yr@y49DH~0zNA&s7+rf8{2;Us=O3i(GxwQ73Jc(<3cdSq)nE~rzs8(mddlbPQwyq39=nQ zaqrrz^gPdTl%K^v^)tlh6qT!Ofpz4X)*^=uS{+B!`D1QM9*Y! z-q8R28C}gjm4atFJvta-%Jh0n^P|O(4D}F(`9wF7%!?UtbWJfP%tirgDu!f85y@F0 zEFu#<`E3X6=W6NbolD!;d8a*>S8AEgGb6$=7e|+)53lmQma4vsMY4W#IK(`Fnctj0CYat9|1&ICiq)C%9h4kT=7u0NiSS!Yb4U@6rsmU`FUct^Jr$fueX+HXgADl7_!N`2HWWT5#Zhy2Ibr1P zyV(vK%|c#BgHg9O6A81)*>#g?gJ8*&UqvFHr^O`So+!g$rc!-I(rll;=0wCeKMx*+ zp$I(*d!iP6Ba%T8j zvYuj*=wA^X5lO%)frKe*b&YA5b#Kj+$U5Bv@y23Ya7~GNp|iH{X-8iZvT|ry=vqyO zQ;mgOjsDJYPL{?WO3`4CLyj9Cd__~k?k+~;i_rBeq&Fg}a116&lwfAai#>4#ezLa- zCY7-s7IU^K!x!V_DSxF=uyt(b0#;-He>A;ySX|G~K8zN3_u^Kp6fah+#hv2r?#`mc zp}0%Y;;^UySp< z-y2TA4uf9tQ>1rJmk^CL(@2w1uX8u;O!3i<*K$(qNA;qjtRZy7*47Y^Q*R%sJjwDM z{?5(5B0d8QODcFNmFCN6vQ`j3Y=V20QHhXpt$A5Q`bkeVv~C+~g}`ln6C0t2gfRE9 za+C-C$c{Qt?hl*sX9)%RDTuT*_w5!MqXSAApeoBQiC7^~Rw`aIF(E;gA=&WVZ=)JA zUnofU-kVrxFqg_ju7FFqTEdz#JTwDEz(M$(0!@4%%n!o-9hi~?gnc<5=v;kB8;mJU z6Ske;Bfl7JL&>JYD22Jtu7VvKPyG`lTU?Mtr?`gEh~a-BLG?Ck$-$l`lP9>@#|L=# zyk8jl6XbI3Gco@wK82=tEb6<;%S-@S+Rz*Z_QR*oLjXkDxCdUj(Tv-Z4Qeveo0>mu zLrvd@Cu%*hS+|+^d7bG_Rgb^^dT`s((#4_|#XQP(j8m}V;*=sqq_D2Xs|i*bbKytW z!aJEEHMvMiv@`Bj*J=anD}$WLwdKYtW9=y3+zOf#mFZO?=ZA?I1gR^AXBfUg4i^8> z9a0Nzo!Dife;UM}vi`H(b3*V?*|QW8JIEo^x>Gd!;n6IHJD6fBAf5-SY<%gj>;R8| z(C7eukSoSV`GxfF-lv6p@t`emch_kUa(fTUUUU+X?U2GBE&71-k9X=)%fDtYh_$5S zjq-D7X+PCPFCR9xn~(?=(>0QYO9EA4TziydgX|AW znM3<*B!LJ`W`RpA5Pe<5qy+Hl1;0+&*LM3aauZ8=o1P_%mMtE|1*|DiiqI-UQ!(MK z4!WIt!!;Ji96eEuxju^{2Dx1FEGY3YF6QcvzM1~;G+jR+^hWp|x2j7CL-S{`0PoSk zrmd>dqoS)Uq`U})IKVh1LsLZgY4-3tmrw@T#_(TC4Cp7>PP>2?iW)#20}PNekRVGFKSmhhL)+c7&&hlyKi4I zTzRbph4qI<*=T6u510D4wZ9gaP!#vHMoME7p$VD9?pPeBMCjMcAK1BXh{IAw&hpxc z>Uf>Ss^w<*JxpArWRaS?!5?O#uSfo}n9pR5oR68J`vEGaYe`IhPn3l!_*;G`kLefK zpcI;_F=aDLGzYhmTF#7_-_LeS)s)O~+aUA9xez}<U-sIV_-&->pia|j6cMSI<8?N5@qM^fE20;-8g^UG)Krk~M#N$ozE z7JsrQJ6x>A=2DNutzc=Kc^Z|U{jq3No3IPAC`{sejUf>n?wf%~H;P=E{XO`~w;y`! zMGFMhRlSx8?+Z8B?;Iv1Q~>~=uawO@a(m|)b7Phw0!zVTWd2WO(0FP__x+47nI08E zGZ2oZuSHjyt|_GRc1sMU6>-aBbq{Zjt^p%$ueN&$e!Ze$fYXGC<74aPK#?G?+L zK3F&>#x5GKG9#~U!2xEN$L03Oe_%4ncjacbgI)Xid2mTNu17%%7cmDwP-UYb ziJwC%HEklZLS|x!m;|SY;}KWSEz)Br&|eZ!3D+;3AXtFmwvVwA`mwfHQ3_!XL^hr* zo{ZQz@+njc6)ys0=!k2%lHgyhN%H~ALva6-zR8+?iC&IZ6|0UGuD&AE)Yr^|DcJ&K zdMU{-I$YPj!m3l|VNo81j3iOxsxhynEg%YMRmPj5Flu%4Tuu?Qt4vSjtl7byI43Y` zg0qWU2hJcI^>TeNwX9(m^I&m1&1_uC z9dKYK4OIR0N1M6A_#+|>UFNB3$?B3N5g5+tWS%Hn4F^+*j*Q3uzOF0- zqs8(MYO(3b$H`!3OSq3^bUMKKuUqs}?>_zaM_ABCqg>IWrVH~SQ-zDRSyOyNF)>DV zrI64V{$Z*2+TWVIbt2Vr<()UHJyb^e)+#KIa_VT32dda&*{I^re#dV(&q6YIe4!m!H4Fcu)&z=w?^q&y{E(XQ*y1e&m(OUR%yIO>s6#t-z}q z*3n9))DWDqEA>f^(F9d>M`_CM;>I#C2^?zMp6;!bErsJLyj&GgeXO$QRblU9Qgi?8 zfFpo7Fri(%+Wfm*MqMZ{LdS-|MMy9x!3<+u9#pqFUNy!tA z-F3ytZY^Yme9Ae`VQGl3$iF8olr3QWkx1u5r%K_w5HD=85U;y_L1BGn!ot4hzyxMce-T6S#b~}}jiKh;j z@h}1Bfk(L$i#({dO7^SNq6Y@V(=)Gu3mMYexEQkBi30NvPtTh?CA_9%D_A%vaod{U zjd%Sn63}vCIlnN%@whr@P*>x#vtN;F@OYGG;L#V%v}5C@Ba9KCnRS;=eK z@{C`v_8@PkDTW(0cYaqXzKaO!x4?z$2jP9M{`~aZRwwkNN*i)S7kTW%SCOjQ0GHgO3k7$eTnJu7?sfbOI}NI?&Icpr+=qr~2G&r93Uj7bik^>EXml-Cl$aIZbSYq}@Xm`0USYvlZ4fS)5|s_?Bj;6qZ2}SyVgGX`y3i_fH4PbfL11*WT)jKwVC;bcT*#qW@gA*;g z@?vcXK7A&NhbV|l_sfHhD-Z1fD>r6$|@Af}##5`-LSSEK9ug{PqAI5QTRD(P)11B5d|xCL@{qp1Uz@`q!@e zK!VuY>NqJy7`9$$WHe8|k)dZq#$7kWmze5qS_W@8#>1M26a(jTgSY2;A7(kl%>SKtwAz{0a?S{R= zfB6?K?sY(m!)wm(tJ?@;yx_4fN9$D;(qlrObhyw0g=RjjX zUF0=7DG!Ne!`|Ps^A2(JKHzvKPH7#ywVaH*HOKv6XHgh|;iqF10N8cbQdD&Eo3;r2&amA7Q zT&HycTa@hQu!u}=E-xGU$+MU#dz*_sSAYaXMuoYYO*9zx`*&UUO-RRFgWJ30@l+J$ z54VD3&B_d1n$Jm{xYia@4nLiL09^>O*lLm~AIiyZWDnW??XKijGn=TH$wz-THVHAU%}7oC<@?6^C5@O+a;I_#S{ii}Pc#vRs&yduTU}IG9IS;m zVNzt=`OWxDi`m}SWK`IMmX?5Vc^R8E1sd%s-V9mMD^V5}dN3}7|3Fa3>}6>x=%(sI zPt_b2FuO>XtLKW9)XBm-7x%j$`@+Xt(ISV1O%DZ10S}{qZ90LyO@uUG>aoFQPUX$IxhbC!XSH{{KYgWvyNDP=nD+1$3)DR=3wPwCc*g|`%% znxA_-{WgypMekbAlniW>C|DoW)oCQ_@HcFNX>ChU6f{&zeloEyaB{mW5Fysl=~76_ zYaVN;_Q}g8Oi!ATp*34<@A(xC)$@eajjkQ+fZrbymdpC0-Ew)Uq_)%-A&I#LlFcJJ zL}YV&Cw5*u8O@ZrW5@urQtR7MqN5lNrEU${vQ0(;w0e3%bQ=WSuT*uYZgQFFnuM1_|n zE3vFY)%M&t%)dS0_=R|yG!lDPjS5bB!0XZuL_Mp)d_yNP+lc}sd%v<0X)F}eHI!K% z5GBF%;?-LPy!GZI#975LmcFw?7USnrtdj*K^LqZ9+DxDCQJnrfDms23-~CYdkpLIe zED+~%JJ`i>AJBc;Dr|WhW|?u(I?*yI+5Xf6Y?)}mmK^-*Qsb#qr&M91#p$`wl`~Ac z5bsh|J@C&FCf(IXNKxpl?4BJ^bd3NLFRI;*NA?g2d5jc#ENgxIr=VmH9Gf&37=tZA z{$%>w_!8+!N&jtY{}bTSmE&bjBI^6R3#+=GVWRcoDI7ncV2m&Cwha#xu!a&Y>Nuxen&&j%RVW#CFh!;aSe46t zZ%O<5?#^*Y;i1~0l<4A$x?simzI%S&be0@Ui?q*EgaUG4w*7vs4MH! zb`;!-(xqf)_PM&Z%yXY2=xjNN0BVwZ&qvYLH0>G#$FMo0X}vBo0fNtCd*`iK(yR={ ziK+;CmuDL9Pf^i=am~8{x}q%jS#rRc=ZrC{gis93UKlNjWiIaQJP<#kC^PdfN7$(v zIHakXgS@Q^8))8lJtqH>d24UEwNmoCfJNZkbqZgpU9(EibvajJfge|9hnZJ5^X!V~ zS>ZCE*NUBMPgga*x%<*@)2-4m=a9u02$Srd0cLz8i@4Y8aAT zC1^>oH`~g-HP~Z3W9jrmgC`x`yjDSjaCk-&3{RFC<$zX!{-?|(JwRVztAlu}FRi>Y z(_fb#%o?iY>Z;{>^)MG^3NTD*vb%|wdMp|5cx9@Q>OWMFhxy@^%TQqGH9iAm%Mw|# zu-H>n*ee8pT#n#OAu?BsnU$qt?^bA*fzg>>CO1~=XyMYe*Z9}bjOb=pF3-5fR{zF* zzq?>|Jg<9gBFd{9!~d+{<>drXzw!KzeBXtAZ+utan$wcfVnPi{+Q|sH=+^Mmhw-t9M|>#i`liO181G`5G! z&HXDt!1Mj!S*#EgZ_u{d@QF|rwEJ}5eheQDxZJDx6!psp$W5%$vqCo@Z-6Pd`98my zm)d@LJtA6nCdZ+@;o@}Z%xHiPBLg^Fu%v9~fPGkEK7S;EX*($(6ZN_2_>+9nnMFn1 z6?Fc2&$C)+FVvAc&|F`%X{Y}g8+Kh_S1Jv@Yl#T@-8avXSKCqV`LP=~E`-!2_r6P% zh9T@X`scam76I@w2DlzpVuus{))mhoeE7S`1M}T7RB=q@Tp9%EKV?P?Jf7gc_kj@` zycc~jc(aBJNU^@n-cBx`i{ zyDsq*@#r5E@l(C$bMEQqtJ-4~xl5oDy$ESM$K3cefdSYWtY{^&Yk#b~ey`fE?$F?< z4Y#v|J*9xhmviA` zR@S>4`(Fjjl{9p`kFq!*jnHuT2IEW42H&9ynrjm^X%5oEFRH`;X!^J>1tsUnRSVpM zisFLB263hyc27-sK84voW(oJBE zyk+Fql5cUi_04Aa*xRKx=O)8&;_|t_c5qepV6C(0UUB>-mQn zRz8aO`%hLH*S3&kf-wRdYt_DwCS${tuLY_{Yihbb&!h<~7BOrYDt2AGHNAOTKRu89 z;IwSS^1pf6vf+WEsA;lH+@1Dt%9W|}S|(VeSi*`&e}_4*+c;6WnMHP*&qcEs%S_?= zREC>2{G~!~*`2R2-+8d{Cu}ipNF~4CFiLZ{I`1@0Ox~Jqux;I z`$n_T7>Cc)bHGbk5JtPBj$Kdl)oe%&Lf}HcMyJR-dF=;ogXgz%1Gk~Ifq?7NJco81 zW6X2M@ryKeP7_oU7_Z0T{VKnH%JER5_S4bvUaiio_si@&N)Qo@UAy&e^Zt9^a_8iu zV6o|?U(XAz(#MN^M?nkf+Tva1mxD_-$90OXskF8?dNi1mfCuK9!X!#Ra*p~ps<-Pd zCFfox4*n^Eu_-L!fF3mclUh_*8tA=*|Emm%OKQ3R@Y?5cyUIH^tlJL&e==Rof8`Gf0|9^UgoUh_d=QaZ&&u=#qq8tfCAK+81G_1Kl%`g%BIbJufZ=oXP4y9pgb z<_KoFwgE#|Uo2msl_I*zeo=ND!PUd`BkZtPm?M zMP@%EX0yyq)0FA$#zUSxuBvRp(wlAJ z#>P}#9FbFIlRZaZw=VDc zsN6cJbeAVE<32!Ruzy79u=R`}&l+f-xv`@GI7-)9bJ<>Mq`0NxTY1wYeow!@&GB~` zOIz)51L%fk7Pd(i558^il)9k0a+ziVUuje;W3CNJV-&Rfj{MFZ_QsIL2J>os{_Qu+ zjZi$DwEI){&!rCMqwr%Uzz+POItL7HUK+!|RIchW2pUtgeRtp_Do#+rRfxZ7&_^}HeQ{SGf1xnpO9}MYiGy8hFQ$;M^{9yb?_%&^E|3+ zs{n+)Xut<-K9gLT-OxE1_#s5 z8zX`T4VHfU2Ni41wQ>u=mK^=1K7hL@jlna2&-2#tCe-(~VDCIBMsmO_(zw7KqoIIF z(E6G2bB_Us-}T7lneO?S-y0OO6?7@1Mb-Y2EliBH?j%hGxGI!6M+>mp*08PHxe-pM zsIrkmM+RwJ1F@baiNT?;d!YiGT|o9%!70H@__IlZyyNEsnT{ow)qfRd4+G_vj&JZ({yo6E z9m#e7b3Wqt;efJ{6_;{YD|Jvis+6rFanoi<cS}TLN<7*g3kjre{uiYbog4R^j{>8S&9E3H+E%~jbs#S^#`9-u+HzZU z1Gr*}K5-&&^!wqChJ!(1fumv5N#1?Y=xhy)0zu2tc6qwTI08*BvXYY^F8&s#@h8dY z$}r$qOZl1HBOYwGc+2!Ey_K^R#NTT8WfW-(+E`&6*Tr{5ZR z!a*EsunXB>z!_v8FVj2j4sQ>MU`vs{R&%vmCdSPeL>ra1vhO#$BJ0HSAa!9vtcr|y zwQ!-aqF96F2J-v%g*?24Qv%-JkgD7FGQkUNXJ^lpK3iot0E*DGLgwM7M+F?=tR(vC z8u%`Dpye2QnjBCT=$TRV+4XF(f#a?zE{fkbZ3#HsI;sk^m{@biay5+l{23H1u&cqq zRI6&?h}Zku(-?XWs_!pMpej1XR-Z^^8SyBSt$LtKnclMbn!|)H=wWyasDNA{^`!BAuX8(y@p1tvAbh`@Pk=k|bGLeiwSt34_kg(ZogK18 zzL)Vnz5c%cM%BbIkB8;kL%ApU%hS7H<9St$@FtC^+c-U6=RSQ!z{+FdLdUZc%%Eqs zx8HgdjMdvn=T%tsKHz|7f^VGtP2Uo2g|f?Er?r}Yzpt^uuQ&8^)BXMW${+URw%&DF z32JF>q-CkRZdhv#cX9hji_??#B zWa#pO*j>_w2WTqj9epL5SXCvpvV!>hOP?hwNMHh7){X`W?54@Pm zg}27(L2uiy-`+L~b6?dT8(VffADF*iuGuPh$&GjH74;Ird?(JN>ex@*U4M+|E>b=g-Y)-7@4X;7jGoc+UC;79)v$CQ=d|6N5maehQ3px-{yfPg~&(7hC z{P6oA;6P7IWAM(o&TaVK!?g%VC1>>kipjEY-eKXR>>sS!ShL8^NVU%|G&mfDBk}xC z4w4GaF@4Z>S2RIm<`@n_>lSqTf=-nm&$>IJy+o!IBe`d#D>Dt|iX9JZu0B2*qx3+a zuZ(umLR8eJ_gU#} zD#}rBkyrF8>GGeZ`*D_UdbU$J8L^J+Be>UdXBFAEPBz=0&f(3(lcO|ohpjhW{iLpk zPq{QcSglT)R%+OH*m8g=iP@<-@cOSR(#!oi;AI^t)f2FDuzGxPC^`nD%4~+_CLE|- zYfYs{#>X(w5?phWlpQ2Y6(t@dNNVBQQzHKWP5lLmCT-mFEK`9O5}&0KoKMnC)2Kra zdbw3tW;CucT$R<$5UHJF4G~M+XBum6-DpXL>MOHov`B#JcvP%yf?Hz@0x9oXH|kvG zqCf?AE=$B`mzT5@R6%1*ZX{))!RVwMC`q2% znwJu#m#abf-|Kil^&A4lpc!=tkZ}NKDT(=`YYpeg%<>+fuIBX~0z9ovtpV&m-@iKd zCdJ#2)6MxS-`FSR{MkxR@?51qk&FiI9v&K`xJRSM6oybWc}EMq*j-s+>L!fEm~*;z zjO6szJ6vPz&w(d%@l9QUFvhik{ujr4_u43@63FQy!W#$DOWE#UwRptvw9*k-@g{P0Ms7PI#}IcM+GprQ>g^agRskN*yjrn4>mt zHJeoJR|ZQ+1X4Q~K>F@Ogoirnl(K_&>)v3l&yv4ciawc)d?TVo3AweBidVlREr5;@ z{nX$i(H-~uHgD3_fIz}*-y5a7{hL7B%A&W6SYAwzpD@Ba_`I|<=8+j}-`MYjE zTVd_UKqneP4@kus|4V8}0YdTI2aPYVOSAZr3KwifG3lP_Ly7|BS6NXGgf%8nAFXJB zxj8KeW8m?RKU<^guU$ND$*GTg7>)|a)yGLwMA;mUfUOAnrB*Y*A9X8`JMSa(r$bX6}e3-@{4hJ4@o7 zremxP{wwg$n2p(3GgK&?YT0Ss;@K=+s29Z-7QO(&05_INVaC99={Z^AJ>N(mKF`a- z;PO2Gxj#=+KvE+?!Y`&mF@a*J`W<)Ih8;9vV~kJ7T#UZ*ndSI`>^n1Ad zQ6(yOq3GhuTkwae!YFM=qyUKDw)v3JC^hi4k=AUxOQ~)t!3Ja;=B^Wdb|{!?R24<* zvHi`0e@VS5cPMS!M5@6odAa9VPW zh_S*v0f;3uAoiFw2Mq9%s5l}=G~D99~1Efr<{cs zQog&8O}9P+`!n^eVUkSNEc`Z+74Lh^+=QIxd=o4dHYPaP39LAI?{{E@}}|k38bMv+(^Sn{K?Y8 zn!Shp{`}r0jeWNL#Eowh`$-bDL8roH`y<1pyl)iRmZ$={C)z#L3iP)z`v&(LbbFGn zCL*{JkjPy}nVramaBkb!d@Y!-mcHFg^u~jbh#2Km+NESWrSA6#j}?D=8+h@@HdVtj=NQ&$7kYpl1M zuG`(#^hX28&TqVie^sMJ8#?BKJdfWt)ZuHZ_(-qS;2Lcq)HCAjmhUri`=dh?tKi1e zOcRS|5Rf(KFZsXrWor)gKVJ7uYAL!XtE*HFsG~={r?y72I1#8Jf*kiVk zlN$qB93kfsk^Nn13RJDFP!pQZ95`mO@z*Zw&q*re3d62?1X;y5Ts#R_kuz}q%GtAL zI4WWW^akx@%@T<7M6^!edCBC(925rHqA#pc1i{l5TjtdZ2rwy{N5$6EX+tmgS?!%- z&RySAJX_oMxMqoou}01D%zW02SFWry5I|d$L9T*>t)Me?&g`mBZF-fYs?t}&ycEvo}ApGCgre`hx|pvGhJ%})~yq7`AOInrcJGddLkm`AoSC+oxSkp z6_G8A55K*{({p~U3|N1)N<$PX@*3vLiO@%syliqSHjTd`V_?vrUyTu(bD0q2 z01;kqFUAn*;R6Hg&!t9l*jh}+e~}OkIH2Dqc(BzqXd*jIBk;**>}Vfy_b-(l_f-LZ zK6r=|jx3cC2G^FW7P=yyDj8#*fNSB-$;)S>rx?1$TB-)sJg*O7RX&B}8102d zo+LIAHMIX7trk--X!H4+8zi72#Qx>^gLrxVi%9!ygWRJI(~jMag?4pyxf8gCpGsZj z);wX2Uhxcb*{#Xhg&=s|jp zZv*KIk9J*J_{rY4fA1K_0L>K@Z|RR&fQXaE3&o->$r{|wGbDF+dIafjm$$s?2%5(Y zD}-lFww{z_kb}U5(|5gois@iDQ_dLty#a9>leE2)0|=TQ4?n~_KOKkztzTp4=%|O# zjniNSasGuTxM@WOvna0_{ME(^5;J9H=soq;!X^i@FeWoL))jc-i`OMCBR4yjq=h^F zXp^O3A4SxR@rO(UoCB=QLE=||R1CsC=+2FvWMrhI)MgYOn{73FjZOw+|G~G9PXhXH z?thxuJr6)Ab>7f4A~Oy8>WP^JBYnK(zdy#l`%ETNt=w9J@YrAUX|4w~!Soo8G22y{ zzfmlL`*ffgO_kO1+l3nm`3Ju2D=4HiMQF{%x)%dZ32wIn9Rbl!M07ndZVveG4_ic! zZGy^UoIe$k87O@gbv~;a7(&uxzZB-)>LiK|2}551G@i^MdW)u|PIlkQD_CrZ4*0)1 zdcq@bk4Z|33Q*5ZvGTu0T8Ru=A5Zq94SclS9CgK6;N~IYu5y2>expUL%-4QqFx=oV zKYI)`psV%q z*7xOEtx)uFOyB!D82Z(x!E3!c&)|BsqMBRO(+E=!sp%l^GMroduZY@Goe`{h)nbhE z7yqSdSR*7=L4%s@d%o@lu*AIkQw8quIQt#N{>kZ&O@0f?Z3+L^4#gu1&zsx+FF2d$ zzabP#dWyjr$Y!OyQp9pyS-%nH=2VU`jRtjQJx0Gp=XALCJJ(qID&zvukbT$eZlOJR z-k#`CbEH9p3ljT?Esxy+Pwu&L)#iOx0{or}=~nphzjkCWT1FB_ord3OCeHX^RTL32 z0<@jecqn2_vj@|{p$_nQh7S9`#*gvoK#e-QP22z2A(wpUC)W$B{r{Mwl&^5)uDS6} zA=&>&{t-I{{xPJB#gw_l>HnU_E<>9taMU=Fgpwk_b>si}4UAr>4Qu@$eL9V@h4=D{ zJl@?;ENis?F<5M_k(oRJY~x88VFGH&`7S? zxc>JR1Rto;Z11cUTKV3_VHkf=yoUw%Xzi#%>`5B>Bf-Z{bmjlQzpnz zusjQ6U-DzX-kDnWKHTtn1y@^G?7360;Uy+-c9_qV)saTYTkjB>Vce zk7P0_i!>-7XKGET4_2c66ejSNEF7(&t?th|rQ6eyxqok6G?d!l%b9g_udH>G?Z1B^ zY0z`#6vZ@o(S{4ymagocb!qM28B7>qpuDLbA-?{Ma*dx-&ItF;U(|}Zu#rh&lDF-4 zdA6=D!o`&Fsw{87@CSyj_8`)BFcQqN)+dZaGk|5*ZcVbYJGw_H&kB#*1+NI`9$mZ+M>`9eGi$tY!Y|y@*$M{ql#4p!W@wqD(8p*6CZ`4y;dLhK-K2iiML&>=Ka8=2 z>I%+#Yd6_;2|DR5^I-oQ)^NM%C0ihyV7&$%GyA*_7{gfU3s0I~x$1b{moK{suUL{d zN!DJH8X@{x+H+5J?k#U_$(!Rapi4L-yyldeGeer4m^rVpg7W`i{}kM^OL3;LV}t62 zr?!P)h|7bZgS}v;+{ySRcMA36#Tf#2O6f^%Zoq85ExKWAiD(M)IS)er=xBv*g`GDU zyhxG=qKJK62b{{1w*N1&NstkPVrPLhitb$&3WCNYRBsi!W1g9HY#8Q`&Hk4KPZFM= zUFjBd`|AjjJ&|$FHA{~J>5&kKq6teMr)xyxp_Ot*%*Z>U^8vjjL%SX+IbxiqIB|~s zs&3tLMc-C}OQd~fw55B=xWU`UyH!c4;8gfj7$>wDC|;9?e6+)u5XZ0sQ9;$AKKvym zUyxX>t5HTeHV!E2)8{;>H6m5iot?LVe7`*`t2lXND(_0FAG^?U-Fvdj+Yd(Fg-W4Z zkvp{Q%tr$w!k!e!XsQ}tr+B&ymTHBaGUS;t?9yq}&=C5aR#M=I|qjHjj@lyn0e^+4#cn;kQPW6QV7b8H45G##-8oU;0+osN$-?X+_) zGHy^VS|^Vn-#M_q(2wp21DvD8KK{j097Y`IT`;IPjr$~o>hS{6Y~rMR@vIzi*u*>_ zy>MwRv~{aGv5NGFAyNge8=s|4bGx0^+s&lYUh9?ABcuFGAKndIsieWir)dfO(khod z4S);E7lbp7m+6RW6uoy`Ocpso{MbHL#Thz>h*Z<^fqz;HsfG6$;$Jz()avfef}sz8 zXnr(5H+6ouMm>IVIc{FgIaT&0K1B{XUlJJ2Gw)B}&pTeR3|kxuJwY#%uWSBK8DxN` zyhq%Gg{*jIu-+!6M4%f@)Dd#r6-COj{3oW6Ah{4Oq zjWP0DZ%}79DQ^T6_*!+zuB2ju5NsVW`LB0R{Vz4xfz!;wt>Ulmck^cV?VTAQ4SlZ3*(3t&? zVv>KOe6Z#J+_XG1YM3RXan^mSWC!7YPTr_|Gqp_3cG28a{G)|-*Z;L0ZF>HKjEuv0 zp+JV_69U;**#76lX9Hn=H*?WX*6H_ZMn$YJTrq#o`d=^Mu;8+;b%TI%+V!>ne=b0K z=;^r#-v2Ewb00aylH2*iUW3?e7^X`~hO3}tqiz@I%R=_?I+hEyk@+#;wnNS&8!hON zGD*1QKhQpdWhMcvU3!@XVyKenHtfv0{~PT8NtRbf$5Rj)hty+LfQmV({=S|!nR1BHgq%SZfkw1 zk522>IR_M3>fHQQJsdG1B31Q zv)iJt#+_M8vPhC~P0Y%$4LM}BE^{~%2kQS*-90&IX^zggb-KG9Y>veN``<*x@18zo zoDv#8Ec3kTF9nsl^Mog`O%s%aHp+MJ$x)JVONoAR-{EX?7H&yx9FS(CIMyqZLBp52 za;XJ_RclQPppyE}7n_Eq7PBrtFX#znAELpA*!r4?cF3mQ-g?u^j7$^!bgkmNdoVtu z;wg7RRkAKOnlOv=M=|Du`}M4O3#$3K96Z09P$b+mPYfppn0O+P7;W<@tFzS~gV(n@ zr?`^Ho3q5YttLX$faSG6a5QZDTYl@b{<#KQo=tfNl~?ylY=Ts8VD#(cToQ{bZO zgPC|?$m!8}n;WOO&`M*aeY-xNY?)QDku6lSL^=)RwFs|dyv3s*S|KY#+)ZG{hsX-E z-CyIm{J#T?PblEwm+R{pck6`$$1FNCTD6NGIWfn2?tDnLk+q>hJ3<$2{m@j1D0WQJ zeu}n$S?yrY<0rhc*OuFY#`T|$JpU3{46j(jS$&F;=x=W~cv$hdHzOv&fEjIyw_UjL z#Hh4IG)j)JEs!OyFw&pkhQ>1?zC z7@Q@E#f;WIf;xw*g%&X1wIrUtL0tr4Z@j?wOP*A6PHD>sOPEvEUsKCQIi&%-Jo(pF zzU{N$e7;-jkF_li&Do-oH$r7)%e(xU9B4FHNgDsJy0FY~&opKSI-dwV?y}CSQ|iV_ zFkVliIV$)vKiIxN`b)GXCF>ny;c9GB68{i+6bw%$yD+C4h4$)gjyoaNCNvTJTtaHk zRO@rl1AWq;S_67;&WA6Ac|p7z-sbzPv|9?^+7+Q;1rlj)SFnADV11QM#No=%pm*ipGQxJJz~{VFt}Dcd-^ zB{h6&u!DfnkH2a2+y$?%P}4TX@U5hv3FZ>l^x+liURrmvAQq&ii~5Q4OtBOEOB`w% zr(zCru7v+-&66FpTH}5zrlmxNqXKz)I7$4NUu;T&#b&U}$B@-qZV_s8_>*t8wPWmO zpVUwF+OotNlrq|UcOI;&pTJ21pZ!EwwY~qs#;mRUhLLa|2sdP0M{pkF)1lshaB+qt zDp;_bps8*P7Sv2R`N8qO5s5wt<#04^cDQ?M{Vv~T(QasJ92w+qbAG)mgGUrt#MrRI zG}GOEaF{UgI;S}9bnjgqHA?<6I~{W8`wTtXdQN)JzPz`?n*#mYHsY(&A6F2)f-Ygq z(sOlIwON{MlsXGj!BA0$eCSH z(!=W1F{w<{^WPRRLc1Lb%Ww~MK4O1?(Gg_Vt=j`Z_YBfsD^<}w8mm0{icmZdqE1Ad zYIvF8QM%}3uv5BGLL$F}){-IJwIx7TurD8=(yHP%MC?^NwsFY0!5>p6j%^Zc(cl&8 zC6GqW{F}`QpQ)U&td9EM;yYPci*E0}X*M>DfZ_Bb)}{i5gV`!a#mR_PV~Jv+*Pt#WBSP`D!EV=>y;%@05yr6@ygv7^Z3XZ^+QJnO7)(^<&DP*> zdUEyBOX0b-Fq)8dW)`TiTC}#ppHo#l4cF`2R6Q2S1ZSWfToZp#44)Jx2DM?(unpM7 zuH0j~c#Ocx{iZp9?pNGb=^6jWo;M;=tWVPJC)u7EFANP+Fb#thO=`3n0~t@vu%rGO zK|1}bg_cq&U}cEaJp5Tv7udt(bBz7$Gr#fq7!(VgWaTpu$sn6IlARjTou{_=?t{&q z!&B4tlB!Qo@p(gImA6#xuJS(EVtgF@@60eCGw&Aa9QX#vpRVOOF*$Cjm&ZYsj!^Jz zqwgQD2P|4!RsI&6noHuJ%^@(}%?08S5V1MLcV=zRwaw4jHRJwj9;B|6HAjKQlt|qo zvr;&gWC0&=6111W3u(Mm#@8Niu@iDUMKby$w3|PS-W}}k6ztw5fh2vg+i~vVF66E? z*Z8I@^qTSaExL8g7k}0c#K%ajmWOeX5t3qWd>5T;mt}F7D`@^7Rc{>^RkVc-58d6; z2t!MEhjd9w_s}T}F_eI`bT>#Nos!ZZ-3@{Q(n`1A!F%ubzVFZR59Y+|v(DaYJ?mM| z-aGF*mQFBNg70BV=Hp5a8&dyLW5H%1$_UrF^j2fP+6u$TVjAVx%Mwc&7G)aTBflj| zn=ObYQ+udtYE4Sij!REbLGh1z6AvJrkQ1)ri8=VM6SQXjsvO$qUwM>uK}N@2Sv8GZ zxdp@|%glV&K>d$R$H&r#XVp*IkvJwR%chH2wwn3?s@w~H(6K?>QTT%SiIveJi12F^ z_|6?&%J>=ZD&ME#HR*={5Zz=C<>46xOy~JGR###;L4D`>z7AG0_UtFOYsTPFnIit7QIVIo{fd9v~P zoMa6)Bqs626NFhs_SHQ4X)C9+>)y-3B^!?8{UWkz&EiDE=^)NEyJ4%jwJ}OUi5NJy z%8NVmOFiI=dU?rbDuW_&{g>P}?-$Z)zHGe;`snI^7b(v!`rGWK`llj7Jmwv1*MwSf zYyh?#%q&hQ#5k}n6Bd@UJ{y*En5sn=NV8mr+E6*OCdU4}((iNT#Do&OAxD-K&(fCF z%j_q$r2e9vDoK+r$b=p}XMJ9fYyt5atc)au3GXzPe)M$@dqjc+=S21TmW?JnpIAn2 zwJ*qqmRiNd92A+Jk!6!~gZcLOA1WUUF?VQ?SZioD?gJw=M5#vgiezJb0EUx~lU1v= z(nCUTm5M3c@Xej=9u=DUF+C^EM+bRd{I;1%bf|&b9y1w@To_!KXQW5DfY@MGHXvF zneH`KbC}qgmjR>i^#ZI>+_pgZ~%1O_Tu|(`enk;HSfv_W?*Q7&YyX@M?idNPF zYDgON%ByN@os_IQ7q>RRvhTCxbFz`|HoZh|@k)(0J__+yJ?sHt*Ov#XMvnL&)Vzj% zz7t_LjDIK^NE80Jt`)y)(=Ml0T_Ik0mf%ycITnHY`YGsH$lf$ zU){mOfnTi(iy{>|%1oGH7tsqwgIViTUgU$9880*?s6bw42CDB2`{= zgsQS!7+7=5Dlu#B4(t6GF6>*Z-j@f^ARV2-(lX9P<3Q=ooq%H$h07R8r{okx{>5hc zcdjQ?-jb~S?c&@AwX}}8odJPJzn6Gc(^K@)Ckuo-7u(RZR-wsa?a1Nv&oiLs(L@DM zOOlHqo|;43Ivmo$N~|pY3z-c=Twa7S@vv0dcA+=J%LJEE4=U1@NvL?tXIZ0#sx~0z z23jl)bD{R0=e(n``<$262?yG8*?65hEnMdoWBKQkd1nm5$BZ<{7_5JMU}fF6|MM|f zJvr;W$gVYo?NZ0wA;T=FIjM@Al|y8=7z_@P9mG-|x{_`PwltPw-H^n;A_bV8IgCn9 z7sE}F##b#VMl|VRq*_7Ma+72N;=B<-^M1p6joSWHSSob8t*P~YTf(gGe*v2}gX$p8 z*?dQYK(uj_r-Z=wc=V;OJNe15?@0rXQ*Ks~RkYzy0Q6>s^54ECv^(`pw675%uXawP z3C1v0W*e{wf(O6ds}=4YNb&uk+DHAUbDtCoo_uOVN?68-ozvN}<_Snv;7W%B^KS1H z!S`GYSaCN3LlF=4)I(nm{5C~UvIx}?vONpIg58_Db7-mcsD(~7013T0ZiYY&UhXaE zTUfQS5*H7_SJ4opBS^`C+nNxkW$nB3jo+B-V>&n^0q<-A?}8sPs%;H3bRtWsHexon z2*(I{-<9SJcL<1z?M?qXs{s<&)<6o!(l$J1RdUp&fag}WzMrG>-mI4siwuAzq_46T z8dWhh%NJW8eo!L@r6&-7MGD>xer}8{NHC>Uq~SGU4ZfZ>x4=9%PeSI52RdRBs<|zI zHN0sG6Q?6zc7z-Ai;NLQSPN~(NOMgn-An?JT{bkg&xUm%BB6B8WYp014wD=AmsxmFDN`>ouZSCi zK{(;)L)PY4^*I!aTlxxf$Ki{hb%_)y(EKr3rb11{o++-r4UgRuHg+zD;4fJogGx)% z^RrY<)BL?@;)&GRHj7PdMG77X zN1Xyf3ms?YfLbseONQ3c(>@LiJ1ZZ!_?=Ka(HI5qHe`APKcAfIGzoR2%PO!!iwi0J zL?8z*KbhM!AfwGOFp=&`FJ}a{#Dj}9ZC9!=u#W4KC#-N)DvYKT3G@+O zUcEufbpIk)j7D?8hKmY$RdTOt^BXowmsH;Zmo+ec=UMWP{znB zj40U6CRKW!=_;-^dl#Nz@Ui6dK_mGf(V8l=tWttzk>*|_IVfcPXYFT~)=cAx3Pnk~ z*Irvf)i>(TywWUOY9bMHi%J#9LXsy-0{Pubb_*P+mZ3V}S$WRCCQf|7;{yI(z1t|D ztAu<_*M9C2!TV^CYWkJG8E__WX1{GU%YRw%mdAh z17NbvT^2WB`ts3r24Yk5&xM4!qIZc>^Pb=NMES<(9nYr6e8R0v>p9ZHmiRM8pZaGF z^C)~CB1@?QEesQF(^YL=rhNPTGOLQUx3KftDfxx-GkHkX@Pw5WMEp!|Q!DE>d!N6K zUY-5|b@g;OECRc^*CAlc@IW8CuzBBY&@QJP2{4r0tL$vtQ+J)&9Bx6gDeG-bfjfUv zJo~;d1Og%MK0;S3f!6Z^dG6tn%W3E5d9p?h6GBHr?6=%VcA31x8_%VeGVGQh#8dTqPhFHQJDI@ueV61m8{AM6 zxK{vW4|KE_fX?^VbW}CHuN5!XInItFno5vG8M5fYJixqV_>_71lfSwCuFYsuPxH^* z<7n{Vj9+m1bCxj_DPMf7LI9GsLnrykiZ1g8tDNWB1GJHEx7}{XOR-QsXGQJ#|Au;sRnfzkp9R_ zH?5l!+iQ?%U0JEJ)Ltcjy2Jz~-v;%Z0A;A-PMbz}N#&t$)lU<%pV!U24C5LyVwW=h z)AhJGmpW?+I%N=ywQ}M`MQyU$`=xZLH*5h&AP{PeL84iDyUzFZgqY}=4XkN#IHhza zA123YQnz~J$@+}(RIm;7co0aBat}gf^D$YItKhQ<2P&zsWH(-?mCji%(hQRn)xa0n zKc71%nOQ&DliuO~qxO;{AItcQl$Ui|r%Y!~OJzIC80!bdwkXUAi^+aXiWvFrk#6K_2}vm(N0eZi+f0}U%#}1mhHCt)3zi_IH!yzw z)ZX8hXSS`;s{G7}gOPY#6k9UhsJR%Ww&e)AYL{ggZ^!3s0WF>isvW8$N4#pYm#4V$ zQKh5PJduhC`?BxY_Hx%Q)1o=|eHP=P9M2wQ;^Xc_mzmtx=B-~8%@KJMcIbSfCl2xFiS_Ai7T3w&Ce3lD#fbBtr?ff+87 zAHU_stv5BX;WsZg@kFN{8)yfU)GQ35+C-%eyCdLi5PN%3^B{ekdmF?(U(d$dfJ2kQ z0_1=AA4mM^mQsSG9YR-$aM-#3AV^C$?|6=|EIaFgQ`yW7F@9Vgjd^$tZfy+?eXMzi zh>Ib2`ztYjVI?Ok*B@CEnEh^2tVQ;~^{Yw%EzdGE_|`X_BlLcV;(^kt-5?zYy+>8p z(xS;mPmEqc;37buUr2w>Y87o)&!!7|qH)WnyE)W8?oM?ffV}x((y80I!YEBs5UIx% z6a;Tj;+bz(fFxDaXf80?Oc)io%)1TjR??gw!h@xqsk6^UYNEw&(5JpeZ5*8m2f{|k zwsRE>-3%LN3uRnwJ-dPr#{eY-@nBW-(z(CuTmSh-Aw@G@ZXNrLmb8pM=W|n$GE8+c zz0@!z?y)|-mhHFtvix?&G}OZ7Q&^8{QqpVH<{YyC>~r$(D&zrIpC?WVNpoR-d%tzlX?@p&kcKP2w}dGVI;%s2YYK3!gN=PP7aSCB2bYsvcwZ{N=g z_+BW7_}`>IR;d}h-6C9D1SXsk1RIqetTn5Uj2^KNLEgR4=u@wF`WaE zhx|~59CnqJlDM;C@kV1`g|i``6v`(;Aa2v3W4mjS&0p$mA8>Uk(h%NfwL0Q>UW}vJ z-t`vA;%IqMbK-0}c41)5{Q_s^u*!;0R9er4Tjaabx61*7iL_Q9g%2)36K}%}4tUuPaImg(K)-gTD z=y5$Kmy2gmJ4>B9^K|4BNwOdBGNR7AARyKzZz90u+Qwiq?ZCkaZI^-G+vZ(7Rb{CjIP)m20XC8P$ar z0sfCCUePPAIY2kpAc+@8mZS^DxA>ZC#xqJj6u2q&Gq<=tQ;cE-&0bY@j!Kkjxi8$g zE*Y@WzB;vMG_Ww?0>YHS6bS}JP`})yFl|IfS*uILsX5Ae+r@rlr*D8A!Ezt4KY~w3 zd_z0QDDxK{*y2ciZa73t_Q3ym7ci+J`FW*#2_IKCOAKE(T(ROyd)1!r)cw+^;062a z>Z|WjC|`(&rDa04JiDRiW`I@8Z$A|I>>=889~gs{@lK}r%yA6kX~0rpv4{Bi(}(CF zPbBu){4hrf+Y0zOLbq#W(S4O4)l1ePg%FU{^P!37Lv+3CZ4tl{jWe~W-pdic^AOd^ zKv3ifUR(Gq0{WcWR;Q&R*^w__5*Z$xbFHQv&_Dx)GNZhp*Z8C1z!Hp6{=dm< zA4?8s=uh_M>{7gR*`zk|57Zm*Oq%LO3ay%twX<*eJWJfJDmOkD;8WRF;0F`B{iScF zizZF*NF{xQxU|`p1dzKyv;cqc%_abFG1-q5UIk&p?@M-(t_e3VXcbVSm)*o1r3gtJ zLn2HEV+4gjsj|fNL`OUDFe@_Ye;GHry_r9b;>SnzyUH`4F^j5Np2ggHN#%)Bz-E6UhxzI7e z{uD9pV4y-d`uat{5|}YM)3H6S?%4rvx}JMk&q`{|;~hrj&@Ab@{Fp!Tlm7I@-WB%S zW2JP&XCBFNyDZa5Zk`ZuiQ|pNWacZsM7en;yW+NXPlr?Am$1;yk=8&W+r?_%bw;mm zEXiJ2yk7ss8s+~^xu_4OT;{4I%1A-NZ;OcMLyVk8j%-GvL?+L|Xo7PT+9N@KyD<=} zeka?5Ixp*-{=VWQfC^Vt#%u>6*EWBGUaq5H7Bok)Sa*dUrNwEWw?Oax;p+RJh~76J zCZ@oJ)0S14NFZBmz}}f3sc}lZ$)T?p+hJQJ8Avg^pB2MIL0COY7hIs2-s{32#fq;5 zC9{brv*1Aqi^Q6jCfYJQj+4_Ql?6LcuTNw)5-K2-W&^WML}VDwt#(;#@2_dhKF2pu%R z3o>J^Fc^umqk}bEO?{HO`(Z{yhB7`j^AZb0|Fl84a4R)1lcs4sEibKxI87;@-k`wj1gSqR%b0l*~ zEb$bNR`OIoXt_^!y2>A+OKuUGQ3yxya-!%%^JgXFhfR{EJAW(B$#wA(GJwpq%b>RJ$3!n zqJ&IK0f$X3uqVkZ4QDJ)UcJ-^_oWR?o0Xqh>N**DOk+AX<6(J^eKVa3_BAIaRw{c@ zC}XXcVl?}s95QtOBi6;Og>RM{pgIA zH6qEYK!*eGO!q_Tj&uo4EE|$9zz`cmgm)ymn9-eP5|zDplH2XFXpv2*do2)=E;5WL z`=SWm37L$^2k|pLuzh>!^$9Gs*CJbk8Nx-}>A*p7N+=Wjo>HoxT=qSGhy{~BBAZUF z(9U_Rx9Z~SeO|l~6DKtH&deP3yV=qJ@P=O~ZBMhA`;SgX1nz|l{@XdNe!ug^<=+i~ zZx-m>p1(Jcz?njV3c0z?UozuPaL5b-IjYkT^TCVk0V~Xo4>c^8L7tR)Mf@3AV`H z#B40Oz^kRB{gY`l)gl1xojWA49pop9Xk?bmdOwjY3a>kQ|8?Wv9cNa|5I711|3gbgczmI$ElT>@CbQdPhR{g zb)tGVE5BaY0?z{4x4g9UG9Ubch}BOm-ZwAW?M(_p(v~|HwX=B-L7{a^b#t3o3-0s= zJ9IFKfTKH-XJp!7b=ip`6mJ2j$JS_sA;^X#JezNH;hG6ImG~bgUmn~H|K@A#Jl;1twR*4T=2`(#cnuW{s4H}y z3v6_8jyw}dsR&oS4c=bAuODrlY3(8%Rr_IUjQlFX`w;a30z&_OQ>0GFyMT{Z1;Gi2 zzDbz~eJ$Ii4Kx1}<3X)@FUz}s8|l`GhF9RJkFotojorE*^>Tw~rJ8cruHj#N!ioOu z0cOqqGR%AA&ze)b9*{~6zxR+b0W>f$2469-jSb3)8=r!}7+o?V#Xy?LbeI=3ytixr zjxH?MAE$3zf_FVS0y$N4Uj>y8e=Jt}gd(7Mfqm4@7+>nmjmx>+a zb-@R2zS^Djp|dbzSv5t&88`(`G8+G*d>RtWAj$|mEPGJEjQ(#^Dq_nPH6@MTpVQ$v zBt1!(Vg7nEaO(iJM=WUiC4s8c(zO+i2v za?D(rb&{p4Tot@*bf)1w!3BM>sktC|-J)QOdXe{HvuYkov zv5i328r9?WQluk>;mNM!Yfln8BEs2Mo{yOb=K$&v{=UF;Zq;;eyVAmuXLDA6ecaoG z!>(SQ!eZmI;Pq(nntqd;YRv(5sf4l5W5RpZNkGy7KQqJ~EXxV9SJkw?ewrTv;ZWND$$&)zLbfmfyBwwMTdY+sENqL%E(i#TlgIf-GO=@F#W)9rc``zX9~Y4&Ix4& zGst|H{&Zpr8)vKTrSn9F!9JU5s`uP%Jp~y2WP9A(TwOhjp({Z$iE%r>QS? zb_^xSFRRR#16#g`zc@~DD2OSM$sw0N>mgBzbCdJ@WvtU+lNAM_78$9CX=>};S550x z1Cb6$z~7g9k8um9fsFxwi_cfK7WI+HKWOpxEZUv@{1U0uh@~Evq50xqT#!z#vuN=B zttj`1w#2>dqy2czg8o8OFLR2e zbN{MnHyJ3NtowGssn<;Kpz0N?cfdX9mIbx+D4>8cJ**J2*M24kFibqS-t`zVLk z;%~dJd+t6hKDg%;6bho3YKOS(TLK+Xvd)A0gY@@kH%6^Y@8!k?Y$5FK>#aKljZu7g z;!YzG>duL~TJrT%e0I7ITHn~_A#4c|UOZBNA)v3cwm8+P9t-;s1rOqxryECWon~F} zc^x)dvg=1&%&#PT@<5|q zz^>te9!7-{Hb!#}JNpQm_INsF$VmblE-94^^vgPUlMWMe5XQ?NA70iAaEinVOoEveU zTFeOB#01&ma_9P*jYH-CGGXb}zO%xos>U#&j3lhPDyKsj6B&4Ragp_$)Bw0738SeD zPf53<^j^ASw3?5O5OuNb6CYFKoEIo&=Lj>M|KBs!1Wo@qyL+vlaC#s9D8Oq>z8Ge_ zbCZ&_nl&;uEdc_3H>1eASU)glz$0?3o>SO6M#r|Qn;50_t$+M8 zWDiK9=NGPGJ_V)8P00Rr9~uY-UMDDGD_YlKR`cEsW=Sv|P2~BB{p4z#Jpp@1k>H$z zzceHzamD{e)CuxmT19+JVCkU`|0070jSQcosC4CzVjdGkm+3ea_A$5oAv*WQ1p38x zv}5X(9^tK@YxnZctc7RVsLyYT@PYs6A#)wbbKeO1aooqJrR;Q(MsGB&T8K+fLa(MB z?W)}wNN8q;XOTgmSu_$6)|oUmeq{jjJ$W0y`XqEJj(KD9{2W3|>1!8$RycWV(7&C( z2~+z9T%kl-jRFXuplWTcOb>u)*|M;?s!dXDL>i#9W963MIPM{;Oircl0&?cr{q?V& z68|ug#plIrtGFEdB}}X-4Rq?AqF0%>BKbwBELqRuOh?ecGq@$gD!&yKhtM z)Hy>Q-mu_o2Li926lQMTtcu2L+0BGy1-@;&mgmjD6#3B};81I*Z0*sV&;WBEUf1>gJko;#8w>BboU6rB$E|928A4Hg(2l_4$5P^JI3%2H`SYq%Zx zVO8>xxP6BUNh_0gC;oqtU2$7XC}8o^NmnI4T3#6gPpv_!87&0_a`mphkx@I|`f@wd zR+$I-yPlcdFFYb*gXjT!b`cRTa+BdtO6}!oNsUz=a~8DZfqCAUQmZjNv2gjBb1_pw z)52B)Sf*=;jZ&d^L5NdxC=LFcF#cFSTf{Pc@3)Gj=sH0OeG{w|*1$CRb4|^GRe(&{ z*DSAu!YpThxm~gQM~(!R_^Xx?e8N|gm3^29Nc-Te$EoAX0QWs<*YyWF63z45#`&i2 zIf~zlzg?9&pn~1d*9+Xc2)Oqz)d;zkM&GBYz@GFA#FT>Nb$flu@<4ebv<8iC`&6&wraP+qrVAfCh*+`%Zi?b`&{01)7SVru{AIY^ac!U9 z5PlUKfZ+IPg?Jb3q0UK|NNccw1v0f<_E&A|+t7_-0MF%m3R@^>yRP*xeqKB1Zxtok zjz~iyH`ZLTT8&hgnwZW3N44zRY&xFf1YhXLzw7#|(yY%IFEYm#5n&*oTFdr_(xsUK zqE{Q&pY!Q6*PrRfSJT^r;KHX6nA5U|a5;i5Eg`<|lA@LljtB+kW(Sqd!2D!5iF=ZZ zL6TGH*sj3qj(=o{eVHn}Ckx$5NMzZ3y{vMCdce`JoA>cl=IzH+?@uZ70KjK0v>|Z6 zTsc-SS@}+#5`O|6`tw2G?{!%o-WwFpLgsC(F{!R{3fblmskXM)9~X$e;o&$pEF>_* zvfce$Wgpt&J700zaExp*AY;k*F`oLFdWUn;v@YkwypCms(jt;j)pfJW09S?|Apja- z1AtZ}|0Gy#EebUddRo1ZfGeMRGtm-D5l*?=WZAh~zcKdH+>0Z1)**xZmHf`zoQv|m zfHL0tF`|84gsDZToTd8i8bpZPPaecR{JwNve3;Djv^tex7=K%2LlnRVkfAMs*nV=d z)!LU%-xwe*HZo!I-<;-_8O^$gZnpFJB|F}ixAs^?ih1x9=%Cw^IO_+8=C_=@9XsOW z87XQoz(G&^CUwqHq@cX~l==OXL#~&(GAb*Z%^qOOB5#Ew1tz*icB#Wo2K;yxM{yYG zUWmN{Ppl<+DsBqm*E^#o3D(P|f*ncz>hvAYUB>6Wz{6LU@oeqxe-9b08K^TJ*u?6} z+>IrF`dYE{P%%LM%)D{JWq74leG$&l=*^&U`Hj;uLx#sy$G~J++@N6;6!Gh7u$eK3 zhx-#5jHG_I+!{gXK$4?^*ah^BUV$X8mNahP;xu4sTFqFq_5+3WEG1a-=7-A3h&@!? z4I_Q(=<_?pfEO#jM=Uhtd}cDWY#pvo@{K8M;rhvW|b+f@7 zZ19d&$yYJvYaSwZh}G;+!#&#x-baP7y!Q@~t0iTu@B~o&ptYyWc7R3ja6mK=!6LzX z4f5+WJZqP2SvrCYc>-t4Ac zzyCl}D0&H3 zaD2j&+w5ANe*5*zF5*^ypq+NtX2A8FRT3NOdHTL|>6!SRwxd0C9w_-K+FowwF8rNX ztvpFLd^*1g<~0+l|IUkI4iq{r+GoJ%61XDC)-x!tKb?_ejgnDe`nntTCy?o9F z%ve#F=ua(=(GNTQBNhYXL2{X@wG-a_?R*f;1`Q*#&qn)f=lAM|-7NRPf^{KRbOa!5S*I z&Pa!Qb6IPT=iJDR=vMsg?!Xw9#QlA(H+Q4_c_sgNeYI3XtQ?tD?haJVC2 zA!iYhgw+oeIklbzcvb7|ArZn$p+4JK{I#Ul;7>wc^GZ4Q?l4QOZ#S9x9nN_7pM96c zgb2#|EL7>QAMgvSUXI%zZ%~#ADuA}v3AuIg^~Wa|ANT7Ge{T?eBs}`s3E3W7Pqyao zxC7S#Xrg~`iQ2$2eKiMFn*vd?<4~mtjYhRwX2UvAIMCHD$%!?$Zk-^hQ>MSz#-k}B zA`~~+y~V@ZTARoTDu0+ssFlJl(ZrFRnDIiFyN04nFvwdVcW>~#xy=~#DswdGYJc0FL*>>0-8VMvoY+&`7oZ;7IU1WJFn+7UA0K`s;Phy@Yb{Z$p=4~M#MLdn4H({qkdF68e&e8MU4Hh-%2xg1tUU4Q z;*G$h{d+kYNEZ)Nu`~K5o=YvkGHWtJllgOgI-;G$`ySxO`6k|7ZM6X@byv8vv7AO= zOFPQ}sWwVG{2yezqL(mn*c`hgx}mJB%2+IgA5hX zW%zVk#op9Nq41Y=Ri)$)QK!*Ro4>&JK{>aoU@_&6;Xkz@(cpGnf+~oO&=3OxgXXeo z<@?q386s#-*3LT5Np7AN*C_C>pHP8Zvs&(A zEJMH7{p)VC^hR2^{2a-2n)O#ZoGB9#!<{T=7e~V4`vf@~^SV_dN4?Cx1@Bj#z!7DO z2oYY+KWCq6>pOuSL4VK$RvU|02^-Hn&roe%4H^1mUL(+Dssy{VV4G040HdfP`?g=1 zA-J|zBC}NU;hy@w99jc_rxEs-5m~w+9ap~@#;65VS{9mpM}XKVllZ7c*m=00h~iW@ z@YZ7jHPhJPJM<7y+en@}q9v#?O^s=p&CO#xcyL&kC5LMdBeDj9(`V^GEbBL==5+=X z;f&kR*E`eWWO4d}i?tf8rlr?UGM7yRPw_jo#xf7ewm*v9|L$lifN@c)^6wbMQIY&m zu4w9?e^E@v#Q59BK^;?2xB2!d&6N z9wwEaeD@w$W*GN0Dq$b;nqQA`=IqY&{_m)fU~zU)!wC`(9{V8Lx%8Vb0N7fzU^XIf zo!XEJmFA*HZ(x{Ybq$|irUsDTM6Y)yy!dWH%Ig=DLU@fEu2 zK$ojwcx8?30PAsAKjq4TeNul1kZS1RSR$@DFTHDdkA zMa&ia_oI#)Zj@JKS_j-a@vSVR#kJp<3woJvrMJU(0RCyQuH2CBY^>u8mPkMeSFxH_ z;+k{k6|NREw|;~qP{5#FHOYUF5UZ3TexM;TYuHnSSS<7WwH`zjhX*Vx-}e$JtRI8v z3||R#bHjuBV5QmDO*Is9r2Qg`H4D|CohZ}efJb&N%SwDHhlM2vFJX`WPH_t0*7mJ! z(n5a;*6m{I)%vgg6wDIx66Ar!j4uNup?aE9(&h0-)lWm~Ggnn7>GxyYT}|zON&}*! zSWj9bkGFUA+1$u=u{l+~i$jwvRr6dDcbE3@ikf+M^G53R`WZ6~ht zim|jcmB^dN++c$3UJMwe7hu4>{rVULhHF`+k6%Z|R=a+R04FKB_~mh&i2a(Kn*8-m z)F6#!Te2Y~V9Dg(*@?yJ86h>q8fqgKEB1(!o3bg3_+|hI2;r8`RqGLlOdVfQ zqGh8)>qvrx_^sa$kL?$)QG2lXoLIq|jb9vV0>{<>!hRfb?scNBfBIdO83tul zVb&;q_BiZCLX;G~^lF!4nBywLZl=9lA(x(=Jw&-)`FSPL%viu;x~y2{(QG40;k5MC z@jEocFS%lSo3&TvxTa!8|7{IMFW>9d$Jz{i)bfRxbS{v7&?;6GLYKE%MTG~DfDkbM zF!*fJkJ34;Qbx^hqbN|RMczD;p3P?P{uuCs;5=XZ)LRWVc7TE>Sbl!_Cx3vN9HBP9 zA&?(CeS5RdrlO&oJ%ZL^6CyXAZljA_(P)g&vI!8{V^n2Q zDhXSHAwx^K-#`?oSZmH8$pm^{Y?4irBd^1=zw-^L-dyQMf=IULz@e|sjmeYF5=Y23 zk)K@Ar$}1YK|vqiZlLHs*;3=cxQGqOIM6r$I1UfxCro~=@MSoVe02Pa-yUd6&||85 zU=vV4>MY)Ac!?df{agOFv%c*=We7#~GaE8YtGD>5K;cp90lxVGSNZmFg?@r*EQ zO~jpY19`w-YQUj30MdzBpEsX8l0%7(r*uLc5kLoUiDPgyiEw|!#m)`ACLxt9UW_}h zFh4FZ$c7=uZKKe`fe1%pt9jO(&0YbHc-f=g%9&u=9=fof{pLM_B_t?AD3OO0-;oYq z`c+VSqn&q1PFBQ7vljAsbXj->j^MpqMjjul_>oUDih5~U&Q{Vu{>-4!>DsMaQ$&$) zyNz};BxKhd*t5CEYL&V4_EKG^@44!Mt<=9U*159cr5;&r`nk+7BaZUui%T+*3Q0fd zUj$G*GI~Q$N&dy_>W)rfGN{g5Z_~&K18&lZ{`w0REC{|T zMa%S5Va*z5d{g4qeC}^j!hz0aE-2vo(hu%;ty)L>~q%-cfv0 zpaO6|TYOzT+xb?lrnAfKpX$cA?Qx}@X`%mJXe? zJdL<=x4AJ4fgMc__U%2^uYAyVk zh-*igLgh`rp`TBj$YNe~f-y?=_F*dcxdP`oz%G0sH?YIolG-XDO#=I%RY6-f2>>!- z89=x+=sUP9(DKd2wEt2h$}muewhiBo799*!c{@ zLHGZy!@+{#*j!g5J7vTzKj)gR$nqXV z6bLUnd^<5=E488Yf<%2r0Aa#83)tdsVPZyd8>F2{5e&r24__ODZg?3bDU!C0B$BLY<;%}HCk^{USpKCfNo zD8gr3)0iqm0J#F_+vtJtu)>R;RY}1Jm6pg55_u0#X*cOiqu~IOgm-O!51|k3_fLR8 zq&};XIBIZ$!-;|Bnmu*xGPbR2>;2(>I9epry)$pO;pC-)3Z7!}qW>e97}N8H9`1&o zvq4Wr{3X46bC_`#%MvRHG)3M&)&qyOlRO}HGz=fU%m@ONkv#`!b_Le#?I*4^2Y`pC zY+cW%7j1%C8}2W>9>e|;VotCE2nNk0fWdwCNB+=VK~?>$^@5;^8ZqCq{4ZR zu0*sq-5-0&eG@K{TVg?6O$!1sp#ZT`Lu<`on=4^(9-ws@5L(EK;=S>16m1|E`@J85 zC&6u9r$Odn?re$Z{h*~V?P$cL3e1@n;a&xPvx%o$qoqAyH-yu@@zt#m{nFe;3{Mi* zZOOm(Uh;MSi-_Vhbodo?D4#sbqrYPUY&DSDIddvWIFd2gfL$USgr$&ypYMZ*+!T2S*Ykza$C{o z6r&)JYg^2d{T2ii8_0umjZ+^^uu1cHI!-_xe@oFDqG>aGW zdoyoUclo9MWhe09&Nmjom-hIjyVTyc*8{x#HMOYIJ;8JBTDw(dtZ+jrLj`ZAUobw)CXBS7|&Q+6`POu}^k1aw}{&x+^B??xDvhy&YZIS|DF}Hwv zE6DCnau{U}@9HJbdJzwHlgZ(H3}wf8zp1ZBAT>M)q=5sdED*>DU2t;km&2UCAZaZP z%sV^1jd|_DeTILnCc_~H@WsaJX^IViDbmAH8x~#EPg$In{)Ir>5@y|-N)oa~*#^Ca zbF`1U1^u0)d#r&bzoqAZoe?SFOZ04fB5#|Hi{Ih(?KQH(M5D zD;NNtx`A==)pNZ?_tsJAs%0(h%it zoZ?)*YV)k4e!+OH_0q1w7`P%+{>H!Wyf!04AwEB!5*R)pP#bPCxH!{e5P8}5t*tG` zf1g0Lhwh5IAM1A|L3A-`@PEfR^=?QT9TNqii;vUdnAEl7^xVd`RwytC=Fo~!(unB8 zUFF_2;0NxO zk0I^5#Qh_t^MHBmV->^3ur3zx?Ks2K=Tt(w@MT0w2a_bg$$@0zotDP18)S|Iv3WkZ zDiLrAH3ACM=MG;ccB1I0=mw>bN0oB+nb{re#~S?kTs0#Y3%|{0ZnUCw8`8(11;{(% z36AGqBzI12ZGf07Ua$N)p9H=D<)g8aal28-*W#vH19NnN+A3%+Q;vV5#me;6kXtAN zTR261yeH6#{Dombw-75s4UNoX${};$pWAnHfkb5ERu~{Mer}8{I`@7IMR@3IY@RyT z^z1N}X4jFKbKpEkY28Gkh=w%s^*9vSAeKJxXgq%oed9LC&%iZx7trljf;{mJMGzUQoF0 zorj0~TXuY}h)`2YqnEl3JhX$+zxxN?wq}p(rX1-y*)C=6n*4VRHsdQqD$Up9i+H6n zgyL?0{IozWUnNqdd-zKMRk^6yM{jU@WGYteMfAp{$H>^&`K)>AK}e+lSf1p+qsI`S zHX;C7ty~<+@wcntc{5stE>T>(1cuPs(3>T4d6$j44bghw6U$c5HjW4bz%yMEKzb?$ z-pz^SuSWy&dvSdVze)R$5ssDT=n9NHG5r`AP*mq=(>aY`BYCBqiHBCtCY74savITc z`qpK=Zo?KWIuzpjEa;O1)LOj9x5cWZULn_cKa#{%bJ?*wT>z83=(mSfhZtet*S&4A zM#B%@XnVOKTqt08F_=*M+52aQl5Rt|Os04nN#3l45O!DNX)cvBAR`6wCJZDMtmlaz z=(dxLyl_<1yT^()kS}ETHLRp@siZGTwt}XL)*>(scA_ghB>BK^X%hjqyHCRWWfwit zY;&)O+}MP)dkTDE>o7_?24rN6bAaNgZ4dy@e0`o{s&9c}=yZ0wtOC=s^8!B?MLzBl zfwP>724qz(+<_GXE;8+oaU1w&*a=2c*F*J(82#H~RdoQ-{nQm7uEewx!3|nKa31du z#(SE}JGYiGr=t*;&y^$pv?G4wH59&0C3+4}ii(PtUxD=X56tDV^c*FPe;F!|*@<+N zo30Vq*6{)t4@d=MbERucj0l|U2j#AxeFx!e=1$5*xr>YAfrQ}3@4hJ4l=dCLpPc^p z44u%M6d8x`#s0&nqAIc0?f1gwxPHdZ`R1$;tQ_`SOg3ufnbH*`Hfa;H>}|q5$Wj>mxPYMmtV~cWcyVd7*Mh6 zo*&zzFKU>F^)El-%kb|;F-f2Kwl#qI%6{JuzDHE15X3=D$F^g*Fzf+xa#~F>#Bl)$ zze9PoK&>&ap-#wYja|ABqD}92NEikBa=Sb4b=Yu&j!0GjBC+Lk)=hIb7H}~OaB(}p zkZvre-F(tZH+y|+?tMCsut48xF zqJKhXOF1CpO1`Yr}&1i9^8}*e~=p&~C%s8NSC?8e}p| zQM?=_%ApG)oEZ(hxVH!2zt>ZE{9RV?H2B}qeFq0${V9{?j(Tj)VOh{(CV3n;@?o?4 zl%zmD?E3l@-&=1amBbJ#mP)EjgUk}}n@DzO!8e~S$VgZZou06IDH#!K<4=ET5KDTG zQ>S-dpMEkv<@YN*igaHNclSL1fsZ6WNhUzTc<2-UX%~D9nNVKgfxN-)E=%FOmGR!X zWcfelo=xfpVO~JijWG3o4deeGKSgKyujC2m|NB#sAmSfOMG-@Z`X?dHp!|2UkebDw z2IHR`I6*}63G}}*-giLd|5~R(>BYjTeU4Azzw(O3SDj2ZuU+tDX$)BLxC^wcigE{e z$^=*-1PX>11W-8sN-Yw5OnCoW%#c1&s;M{IiL_V61-J-^qM{TsB5ye&nJ)L-&{>b~ zjCIJZzShkKq%9&>N(#D+m`y<1hD7Y%@LGcx;V2P_inU77|9FbZOo0H!_MWYVMH6yW zS)?sA3;)e&ig=}NQf0jIbZ=$D;&B`!$EXSV1qn3#l1SndC@EUy!6p^XlqH)}^#Ibs zXSH)}o_G_=7+~RdMkE@5^ebW2l7uOg^JLQl4aX|;S8TdawC-m z+^eXA6zq%6LZk;T)aT>?DH^aftjC`>nt+?gRfP9S} z=UH;MyWi2{>uDc%s2l+>2^X|qc!QBm(2F(t`?`ee0Wc3EJe!qXS)*SU`y9}O{nci0 zKr|~M;V7r{=72u@Gm=`)<7%)i8l;^Sa<+XAZ83Ur%qC%{%GeRf|Gtb5BkUZ-n{E2# zD0?@}uZ>-m@cV39SDWu+o_rlASWbZu-t*!$d8*ab@CA*T`A?(boD32dMl;cuTaCgf z`d-$(zyJi&chXkFf59NMlIe>7I{3v2+t$bU^Qrl-DQ)B`j_kJ2<___8T;YU%t2m7{ zoNk`iJG0`Xf>gD;WreL4Pm`6sI{o}_o?)B)eS?nT7OO9h^Dbmz!efFBsT!zR_U}L3 zAtMZH-`D=D`uc_OxLMYFmA;K$_sIIE)tx5n6q_VGV4D}Fm8o`kMwb%zgsn{Hy!bIg zN?Bcbf86FyHS0C1h zh5f%Nq2rqcPY~$cw%x0iWfYfDq;S(3^nuL-nM)A zwHvef(;R;HU25&7A zT9B={q5KbgaHTFX=fjUBoc>o~RU_g3|E@-f0p^pFZT~|wwcD{qNjz6^wL_#r1?7!u zn#bG!kPgU2?ffMAKk%aOGKM!AiO2q8Rh>juLh%-gAs$g`YvElu67$6;Jq>Gls$+co zYcu!BG|6fCh`$^Ec;du+qq)Lq6uWr}W=li@AY81^%ZN@4m7; z%JGJQ9mdiHTVd;!o6q93X}t!o?#7u@5?`z4HEEi0hC`dDW$VcGwk1)*PYJ zi|q^${z>LLe~oBlynB%7zD|3nbPIT&FsJLn-~9+)LriwxZ92mcx@%Pze`LItr9XOg z<)!TYA!~uwz|6UpPmY`P_actEn48hN0y)HOhjYVcZYHZr(SO#R0@!4M;vLUHlpj8b zP&5e3>V1Z_^)04fL@|zw6*A)u^Tr$rf9-KUT5gCg)RwMuvyYt)YTwze#r|9 z4w?tLXLu*@CP zWt~!fRrd#_d{U!a1wTR`=G41yLcnY>zem{2Q&Z!=U*9J+gZD2K=)m(SYvGs5t$omk zpD^$x5fpllvhoyhNvT2lKIycNR(C0`0dm0LiFASdyBeHpv09Sk6~XX29^ZEw&gQpq z3ek{!dY_fx84%6`AFq1PVEtR(l)Ox5OWPP|YVJ#9X3#@JzpAMgsb>n<4J_Jtuw+fk?lXirbA9*GBm2i&GAGZaTsCnA z1t;E|tYzo-zW#r&aqm(>c5%U|MSOg+=cGfzPw&%kGMgS!GE;|f>W-xo<=0gX82t`5 zg$zUk^$*XqinY3ICJgfxF9*3zx{lHR~We(B@{l}%=KkqH`rfHCZVu}Y;fA+HEI6FeK&JJ-sdXR z%X-arGs87>@niEPUe(aqWy(cm;bxa6Z!xR2WPn9<@gm@{=%K2+^1B>derClCNa^+~ zX|~@*qw160NzL5aeW=uO=vPAKWoia~KteZ6B7B_)d}s!R-)Q^nZmJjDrU{-cL+_wZ zkKK25(_<-!YsUK>?3(VodRa(Kiv=h>bYpIW!VL`to8HJwv6}RzNIZsSfnvm)UB5o0 zGz+#m#j@B_Gj|YRg#Yknv?y|p3T4B&uBbTbBCj~8=A)b6H{Q=okAh3pCmcL^Z-rQ{ zNZa(Xj>qQ#?0WU4Gsh4rIBRd4R{g+taQSN^Fs!EIDH?HoB7=CCw>BZTxRqI({E(LI0K-CyCgwb;W@`rNQ@+9%#5)6XkI!(w@?eU0w) z`K;lbs_&UeoLS9g(U_LF=3rCW#{5F5NSb0>+%XV*^E3TvSefo(s`>oD0i3pW8*_Ub z=yM42*{wnl{b6h|`JA+w_>Wy_s_Lp#171bxYolY}{VPCj%qYNmL)<?})1mf(78Sooo!5dQjipnl>dL{0{nQ2rST-{v0Y1+LJU%=UNZXfYMV zu%M#hqN1Up0tD};FjTT%p`@7&RdBJOO;r|>pJS?$myq$xqYRlq;7P6&Y{hSkA3}|Zi7&h%%xWUz zIhr0n)FBH>N%BsQpJ*9oDS?qtbgCk%I-4uZE(|*C51!|(K$I+02iH@vX!5kj2v*le z|7iL0dDcic3U%YMZB?a#k`mDinih<=6q4!rB(*5fkq(h%5zA?Xhs(;lSpI=2sQIdL zW%*9SkwQU?n4f-%%5@V!O+Pfz0jf$=#6m}qdbAnyorQR zU2ESr)(OaArsS(uEYjRM+=X%$=WDk=kA10T zlwfunoC6!j`(e91rrc7@z+M{1?BGaAIH(aUm7qxRB$D!$_E)@fH$3 zMS#)WIY4|d9!e4hXyIDU_zMZ6IJ_>+N;F3skwfkjoann`x=hKa)%fPN73JJ6_{>%l z{3>WSr2%Ga*g0fs6P}n4d9|J{Ra@TcmWAN-?GM~p)B9-REW-4^FhI9So7}2_;}J>M zjNf;TxvqX(twMIB4B21h5-=X~GM!&qoQX?Kl>=xiW$~C! ztIGhU6JcX%oR#kw#3tGxjB*?N{$MKoL(xMd--9EqGnzL}tT#w3>5W8#5T;yv+0bzN zz+za)RuqM0I!!D~I)~#5B0h5bRG9Hr#G7KsN|@&NLrU>o?{~Ij^<+4s(?XzvC7I(H z&w-EHIGp0m>N4wi(uAiEdcxIdI5;v0R6X1`_OYioayS<+l&U52VBwMr zGWKzx^}(>O>n#4G&OkNx5ye>tNev2B3Gvo9++{f0A&P=xp8$CQ8X@}Fw+1`hZDyRo z_`R@4F`@qD0A9TD;}optXs4L%JrJz%6t!J7FMv<3-(Qc z^w^~qUfPWSB_lj&risw<$*#^9(4Q0LYSl+zaucT%1wYAp)9aQ#HF_y6$YL}X?S@hA zkNb!ZnK#pFIZ?mkkIe4Z*FyzzddV#IEc&LyotC z_=)*zXYwU?Jzu2@uHR$@K^Q$u&H+^W6x}TzZ0{y>M$tavmw3t^7kq9Eo^En zP0yF$%816G@v4Bq$wBQnUN48hJio<6@ZXK&gDf+;4yp5W_K}Es-K* zw7e3xL*Sk%%G~Z0altyqWSs?LbXkHBTi$rD_r_f3aX5OhzT|@S$PYk8k|@$jE_T!Y zwoMyVZ95ST9bIW(5O{#%I81qW)ZGb+Y}>MM$qsUzGo+J5b3C|o0)+9zaejxsVVoz@ zH`Q~gAIIimUAP=84(p7Zstm(s_q^pM7+F{-l1-3j3PQubXVr^_b7Oe$;$BY?DEs+{ z4Szs!QUvJ)Nc9C7ttj4dcevlp?KoZ294g~2CZT1J90lzjZ*)alOPeZt64qdR*U%H8 zZ5{H^k-zNW;1WHBlkY^Dk{x_GjQtwrnyGIzI73=*g~7wP{yV}+wS%%eH-ExW`Lq8L zha;=JBD1eM6ZWPo;o9*I>VllxHYfbE(cVb&Pmwx6F6)YIsV+LbV@Vpl`PmO(W(UFM5pz~WhN_N98TK4>esc7nVmuuN`Z!9i^ z2p5Q*)(3fB!C8tPi0?3tjJPw^KLj`Tp zG!_aBEjSP=Q&pdP^+MEQ?g557Zb!ofg1gxpV;K9CEm$ewxRI#7Q?2!N12P8WQS8l< zG+=pO(E*EU%Hr>M(M!yURX`KPc!*y{ND*lI+dNslUJ=O}BdQ>qhr~=(JBn+R9f0Pj z!9^ty^`e44R*lo@Hy_Qk?Yt_@-u{4bYAogeMjZ+10cI8J4-fpPZWeQbAh!qZwYaH%;iGHIA?qkETsndO>NCBEgD zv??Fc57Sq1*`xkh6UgOd;@C!28E09uuli)=lXg;mSy9DL@ znQBf_v8$COQAykF8QdbPrY$zV6Y--n($DEG>YbTr_-apx3)ER%pO(gbS zsr@bG=7g{o?hf%E=4ln zV!Y`FF$?HY$@}lSJ}9WcelXE-vK%|CGDyzr4zQmKlbe(BywIXy4hw9zNyltKyAwNI zM&ErGe1cFpKAOB*y`08RdfKI^iU}*fL=<*uC5#t;&?b2D`#O%2F{7ffUd>A@5 zknxsUNYt@6D7PNY0$*_0I}FDp{ZV2N80wUvSS+D+)hRfY%E`hUj$i9s{;sT6a>|wgAGhM+8b7al0cx@-6P*~qT$^g z#W3()>Od;-Vaa{#%b8HEYqB4OXbQ7cQ2WR54;UvZpvJk%iX?rcEbtIBcduPmM|aWE z77YYe2{l*_ivw>yY;XFDz@s3a42S4FfKc93cnbt{>~ZJ}%nEkuas!%WFE#>ih(u_e zfqIZdE1O{fo{MM)1F4vLnmsnxvFt#L$er6G-8kvEUPbX#xSi|bMeACbzHls zQ0#;H-(?9VBU2f3O4lFpg#pl!XWx#03?_3FK;Jfua3aVzYlh{8$qr){S+AKtGGkK70~FhUj;ogY5}Z)`+Dq@2Ut&LbdUU6H}bLJf#5 zS+k@CL>P@PF9;C1x2LPF?ClcMW* z{agbTh1a|BElKEG(dVWU!8^r!z38r9lCE~5SU!|VUksi}H5~PA*rdi3IT|mMieqcB zhLRC%&5xeU;^P*?PbwOlUiQRmpd70#R4Ql+4q0b-1c_=1U&@e&Jc!OloA^yMT1Q!X zigR{*W5yn@C3kRBj=vqT7Bz3C81<*ezwi@lI~8ndW#}*J7z(oK1dPp15EfkJ@5nm} zv^9@j-=Z0c8euEJ3)%j-?{eLGI#LBy|NSl&$J`s(-XJi<)y?Bpp6*iJo2gIJVP_a} zu*1fndg9z$qKYRhLgHlHP9v4s{2o1(c0=BAe2_#K>RVRoYD=haK1GC4@2xC+f!(~QKoSWzlIEr2)+4XrfRcFus?2L51~{&Pfic{2j{`ooo< z{!|QTfb-S7GL<}GEC5JSTUd=C)UXPt>|}acQ4hnRvg)9wc|I)C-ByH}oP-n@IYsEh zWF^?`7~Z8mQ}$H9jtMOq6d$J}Z*3L#TndRYP3|I6gY71P=NJ!Ai0O$2)Ati-~m8teQeTM_~Q#(rtO^7qsx{ zUP|WQdb|D`qDO?c__~@Pee(D;8D+?((BS?c!X~y_h+frci$tHO)FlE&- zmaG(Prmh~6z7i}=6NnU!t%~lz4?w$7w}VIwZEr)+=u2(9BHAJ_SAU~9dNC$`tvnqp zWi8A%%&yS07r+^>;u;?!+7E(tk@)~^&ti{C%0v8V78yhB*v$LWSNSGzenxb&{IvuO z=FY1nHe#2|yaB7QwlNmIv`>kkRiul=n2 z_tibS*>Um=CBB(*7`T^FV@`CwuzP{3f&;bZJvM~*1`BtQ zGtK6btzO}%YvBBenQc8d`)5Q&`GRYKO2880>)oP&9d@#6_T@K6Fs?RN-BtR4tii6a}E^`g!o!Vc{-=@K7~nH(KUi>=eH4fY1892ASlin;nBy z##?lXQ*`C1KsI6Shon$681>92Yx>yBok?#~6i*dD75? zvOMuci=Ghbtki1{s?!pNkv~7y4js9?LmBI}ujE~fA35LXemsy%(>q=>KKde(szY5W zRvFV4N1K(!o|e@kvId3GR{oS92%Qw@heZiJP;9^Jq||YS@-(TpN?R{|8+@woaQypv z-Cb(<)VLU8q^o{cYW4fZ;<)^KGkFfV-K>_x{7O9ig?S z68sh?OcWfCreoO~jC%;g;OiEma&$)ZZ4S;kV$ANSv>WgKLGBhC?dNz|lQB<&JI!f{Sh^3~7xcTk9vLZLD5ys=b;;@v3;86RC)#kg0QH#E z!W*K4`db_~oaAa|wchn8LFl2~Ysmz)XtS3KvE=o!9LvwMm>V3@5lHdgA99YK43x^ zY3U0ze>D##tB}fhi5hd(324pKqT|)IqhhjtPz-WHSU<^h>PkK8$1L``Y_)PeL?}-W z{o<YkBsB2!xMEAwBDT>GT*iB6dnXuFo3;c!t19ux6M?M!lQX1*AZ>q zDjjLMRG#H#&>Bbc7KizXtdH%yHTeuMw`dOj zO}r85RzG=$Pxe!PsBSfN-$C%|w=4m>&qDG}`oir>#E)8FS>;oz5SsA#)n1SV`zwp^ zmJ92?59l#kL4nxWC~v$AFD#{Q8?nCcwnq*f;sWlValvawX=?4DgudV+u7p^f9<|CC zx@0{SyD#n&5o-oB1tt~feuBd_J+ zd7Z{ga^Exe=?JH54CHJTwVKF8Uyvr}wkl`uJ(kdk%F?k%hJicAQ1qESnG=HXVCP6{ z;mBGLi^ti-(piS!%V5__f5j2N<5bZ(3RviPHewq|*+HHxsoL{>0|d=>G_O#q{9N(B404Rp5FdQOhcF`qvd7<( zq=`-fHIVDFJEEiw2D*|)RCK13Sa(K+aJDm6>9@H*$Jyo@<%Qj|3cmNBL|Ho2xYgyT zOk_^d2T(c+~75c6f-^3&{#~u;B8Hb1I_0$98PLB;z zO{d=sEAQdn7g|H+S)8}ZCQ3uFQ{_K05M(4N1(7kR3_^0Y(@>mLjA!XNrm2fw*s^dgHek(KdY>sw}IB za~HhZ{?ui2uU8<)>80`x4^^l7A^naIwo#%)@AA^#+qmqYrhploQuiF=wP=vgfr5=v%mUqzK!^QkH9mrre|BYZpF8 zEMV?NFA5+>tt`!G=(B{-7BC+APLhY_1NGl(uQvIM~8GhZZi*EduA$T*u%#i zMf_3Ot;MN>{qMS1y4*1y?l|0zAtkkI6P70JZ|PkLEdUuc_J1Mj{9ZYd#4Yuz{;r&^ zfSb2%{j9|dWRvDSD}5ZxcO#s+GMeo{M8Bh)M^Sw+g!$jdc%_0T&fF{=1oj=r)biO^ z$7HwkX3;`RF~RY+{GFyc3b7doVHKu z=N(Z=!WX<7y3bI)I;_;N!Eq+W=ZGG<6A!Kj!3`EnGe#S}QZ45oJ(Va(g{- z{c1mTOwMQ{rzDoE->48H0fzr{he?C}=YR$qC??nEb-p%E1rHqEU;Dm+sBz?l-fvmKrLt;OQ`77(L z;Pz1NDVwV@JGN)>Ms(ulgotA>qIRqJ>=l6qz{;&;;j#1Vhs62n(IFv|*}J}+zF>SQ zs5z$y<~ETOAwg6C&1un(f}9ejcok$HS0AYF#!qywpApH8#t-!SNCtCTQgmJt4q=Fs zLYSqC@a1R;#;UL%8h`I*Cx^zjt5$erTI`i{O8YwH&aNGV_I=qy_eS;iRY0-{I3%U* zOM78_IH6Dp_BaByo{UI2;74=tUWXuyQUl5HHD@QL&iSKJ-wvI|&k1ZGoA=vRLRaSc zW1zUV!bS9IW3TX>(3)285fXBA>|lP4+Y-)yk%N&1i6BjCp0G1am_m<8}3FMyiy(SjO2;J5$um zN}nUEfj`gr1tk&PYAyRd03(18tRgGx?;4`wV-+@xso`4QDmnn3M}VF{ag++O=nCrjF(e3<`q66}Gm*^Hgx3tEjFEC|jezl*gZxPfy>l z=|hVfIxRzki#)7;8iX$reUo*DwKjV&H4@ijA~*ih=eImuTwE^9v8nw3zs_MxHmK|7 z8}^+rv~DjW8)?WB7m_G1>Lt&t+C(7!8d_Y}B{CJq+gz`m?MoEeOtb2^W}2Dk3e>4j zSiY7Rr&~zIzcq*X9}}u^6)kG7O0A}-CbHr2cq9M?uFJI7@P5Y$4pk-sm~9M=#{FO9 z7>3!nqmKV562KQRD_UVBK`2HwGbrm1)D06J&pDd03%s)b8!DA;kDHzuG@3M>0xvJC|_FhbI8d_foJH51hiGq)ru3 zl+^|cE(q*$+s`h6G}PJ2{O)1Wzw*OJHU&F@;dw6cLTNK(_NR?5Y@d{9-eG@#qvx3u zM|jxi?j_<<(OM@fR+F86nr_Wmg&kFP=$Qd?3NiU53J%9}J!3t|dvcJ(6FHaqUkNgk z?dUWQvMap1Ts+ftxycuMY7f+%>HWkK5^_Xz`dw;S1_RF;S%YsHBJG$ie}#{Q>*>pw zT?DvX{7eX(bj%jWDYC${t}a^A-Z6G$NPMpSd#+3J9OmbE7tEk^y2MyM7I*|L@Edme zptK3#M9VT*-G(i%OlgcA6M951{j^Ipi!8{o=+B0Hw zL~HEDA?Hy;m)Qw}|3O2~$jwFaBAK7VDv7jD-#u#O-SfKw9duv{N$0>OKwf>Z zlbuKo#BdHxL}pcH2gj=b0u0dBqE-kI15cMAKu?XY$+$9SC4PzsT=-OL4Fg@ZkSVWWH; zjzm`h!M{erJ%RH9wmj=4{z(=$WJ z4)!l{F2dVCFYR#*YWdqONHj z&_I|JQupe;+cMng0JPf9SIE=fLEYZW)L00w^CNgtcbD7E4R04SYNv5_bC#!)>`$(9 zv%ifqIYH2QExYV4biZBp^lk!Wd9P`jwo-LP_+TRDOjqN+TB$DF`qMZxBD4J{Gr*cs zUY3_Z(mq1M>!_*=THPYLlLr{+MM_Nzn#}N;6fRxpz;XM#gg3|;1 z!afhO7&duVqID%E=8~n6npt_zzB0k{@e$;;{9^k;s3E-*)ZI7~Yqtf0H#dMNMBoF9 z0pETz_I0h*Rf~swX+E~E2%U{H7lT`EOEbPKKPBBhw!3OtJ#F6%Po=L!b`-$ND+O&?|Te1{mF_j6MXn~QMa?Q+C+oA)+a78y0u zVQIUNMftD!sK9_vW^3nTbw(W^PxumRQ9di5#q$n_b0TQfS^zBediglr)YWd7E%%bR zqN8*?WSJ$&oqM`}a+^%2yknep?MCD56_7J{d96{a{maAhwy5)R-da<4wnf23>*Ia) zZwfx}V*herM{}45AP5MA2Ha4)07W|7sU6*j$T~LvWG`-PJ1|@~ zc3k_7dPJCz(_{s4{7o`(KLY~0-;FUYIyS4{2xa{q24?{RcmlCzT-I{PWM%sETwZtL zK-K=X&6O_7hrja(B?(s;Rpzgs=@f9oYT^ z8GF2CpQ`EgvIDbQ!IvEWIE6UhCh?3Cey2UN4=I261w{$M@xhY&?g=CCZ-zw`ZVX;Fm~ z0v>HqSoe-hpJ~`i>?Y*HkQn_2s6Aom*4XgZDkpkvT56cQeOaB0(6(GnA4zA#&kp~r zkZuX4@DkR)9T>Bd+C3YHloF8NxL&$ zgdE&A1pE0mx;~(P%YPAoa(#YyFHIUj5*{YVDc`b0P)nmh_|e zqx!~W`JG7h*H1D9x9{_I{$vIebZu017u;T69A2U9hqpelrB@qX6Yv~|Q@TY@uG62?LTj(s zQVl|7!Ey05afD^EfS|lgP`3hF_|AiE%a|(4_>(@N`xWC`IIWM)(C=;qLDEzDnfFT;&yupel5ATj zG^!DzJgn!g$Kw0Bn`w%C230TC4j#JME;a@&Psof#XFm;V&pFr?PthVjiQX>4<M?3eluM(VfPK2tkhLcU79m+hH6mUZ94v3R^WJ~?-hB1;7vD3#`M_aS> zo7&(8^b8w8w1f#G|J&^Gp59$m`6$*ohwOXP2l45b_#@8 zy*nE_3w5lAN(d{Q!dO8TN(fQQ&fLj@qXt{JpA$BMcsw1f30{TO)=*Qb+`_0v?ieS5=?LZqg{C0Wk>7p<%u z`o}eUQ!cbT>~uLC87s%`pTq`XJ?x<=K_wX~0diQPgg zuu}e4qfGNkskEHtb{IFiM@sT)f?Mx)Q(bUpAKS+m58S&0wcPj&9@tM?z|sTiSljTo z(4Gf4jNAu8eCNtJE5%}3P991A++%xrUB2b|L zu{k~}#rHp0maW_AUwLceZZlw7XBUkG3)*IbzE8SSN9Ly4G_mAJF(v&{Ash4R?g|Hx zgA0#Iu9&rG_=d=s8zs)GCr5u_Ka#TAx=p-4IB}W#C7_9}92`&jV+ z_R7GlHf?o1b|?F;;4vA{O)H(;0=g8z-Tlx6&K_cVGZi#_kP%SuAT6iV5x+g}ig!&x z1m%#yca2Q@3S&OtS4XI4q=rdqk+ej#;PQHffD^T9WZdhsM2%8vG+GlOafWh03K@07 zU-Pmv^c`4XI$8crszhHUW>@PtJD^m=-BM3?aA|mzF43tQof*$WZ zcOR3Fz@xvMl&x9MQ;yXeSNU`X2vq|Ns9@4sTyBFD2@2}-8_Z*iwg& zDf2EHt%^myN&gXejlqk8J7D7A7~*kKQl-lGF#yi|DX>^#*3#25$4>Eg#`?VLN7%B2 zrqkVXPS^S_N?ORNHS;q5?bl1V+QvRDt?Q|pZ@GKbjji^k9poTVANKInfUdWB8chRn zHc&L?~D(x;o^td#`+qSvu=j5wo?Jd&n zEI7-4wWEOh?6>(FClzko@9(@^$r~b@wJm!}XeEu@)%K9DKv?26E7<0Suh5oxCL~O$- zMZFbi^SAuJpVH^nvXoDJ1SB#M$)!uf9QzJ0knVXl#fLh`KS7|x2HK5}838G z-N_IKU={ZKRRvF>^O}4+s8xC1B~vl5I8j)w@zm8AN_w8cvfZZER|xrF(nSfwqClNt z+?Mx-Xx%HiOf>|Y!o$~^tjasAUB`W&&t|LtSnb9#W3@uI#&7}<128k!dsoXI(>&YHQv?K4N*v8 zmp2DfQKWwbKX!#U{rWQ_e*LU8dvC2u-Cy|hd*FAXS-VLuR+%xTjX`?(;^I&IihT?8 zz4ElU@hJ%@)#F%Q+Yh=SlVzV$0%?0xHT-fDNxfU>G>_Blnpb8MbL1Y517hs>Y|oKF)2+XQ>8n{FANq^Y8F#iqrHZ^Kq2>(bNifNbYjGK{y8M$N#O z%F{N-^5%NHHudnVYTHF40~z1pPCN(>(@DQ{($E#-HCEKeV9`nKL%W}Ndo8tR z&aN;|_V24PE5}9&Ii*cX^QY}RQ5|~4DT9hr$UGp@axa}`+SkIe0oLerk)kkLWBlAj z4TJCT%u0-_{d?hH#cTBi2`ZIaOTO~X_IG1Gd#qv^2Px;cGYl%o1QzeR3)~OR73i2` zo3lsy`rJ^$OZ%$Sabc9yz)kdlAOR z5a(`+>-=k^>j;$NfTxhu%^xfOu>>1FtM=95<)$8TJQ@(R<&Tuzj|1Y}io8wv9Pbf*=k|j4n^~FR1uJK} z%%=21?q5^qx%VJd8*AFS@VdBZ zA6zsQZWt6ByZc}=oX7uo@#42tf!QXDyl{gb|I@40Z6TvRGP{Mb7u&SvKbIA_m40#H zZa?*W-26H^aw5#`>kWen*>~&7EI$$@G8)n2Rwriib$Gsz+ba#3fU><>dnxHz4Y2{v zQnyc0DoFk56uY5y0P30h`{sZ9iXq6$esn54zHxqRk@-k^GENI@DuFz%S%DqnF0_yt zZv`#I7(Xuxj(Dh^ehyBIJvnbmxgN_ZHI{w-ZV)_Xr7%?AxLgploL_t3ZZl4<49?+J z|Kp{Tm=s!cMZf!bvjbFP#je+fQW1Vr4cLU15$OyiSe5<#+JV}farh=_-v*fpJlEm6 z!0AWF0lm!h2o~p2V5UifyH;!a=L@o1#(N2!L@QI+jUAso^pU^y$gJa0_p0d>I19P^ znzOjJ*49dCwk9O9l1PqSL~>6t#BB4{K*G;F=Me6O3)c zH82CS%mxWHWaRwloRfmHrbKK{UU#ebW-)&wWBQNI@fKX- ze)r1~xAa`P69;g7!5omiP>Q(7QW_7I5B^h=zH)Pr$Ehuc#dV25w`V+5fKb8`*QoY1(X~@N(oWAJ5;2Fp&Le|K|nw{ zMn$??=@iL9U_iRNyStkq2bdYY^V#Q|{o7~n^F7zMuHRn_^IR89EY>~infrO)@mlNA z4dMKT5ndnG0S3GIKZSmHZ=s)C=;s#txrKgip`Tmm=N9_8g??_KpIhkX7W%n`er}V$X6j}MK%^+EAPd04!UDX*`~Yrd0nz~M zJ9qxNV{Ugbcbxk;ICt;j;NjxlyH9{eK!A^jkN@xy3DLtx#E--2^o;=uZ>_~W8QNY=K&7R1G0zs56S+wZ#PW<;`><9Sku^841hbtSlGl^H*ElV z%=L(HFnjyg4*&ZN>keig@8RBmfQOHH0gMQ62MZhf&Ry)k_8RkQAI$TByTmvoPkCP5 zBULlOWpE_p{SuvdpYiqYW}y1;5fk5gr>_t2$SEkP9y32>Jrk1vjuAaWBnYo3fm9>rYCl^;YcMng$Z~g&+LBSz0v2pPUiQj)DWo75&{>=N8 zUr<(F0jsR~Q(e>2+ScCD+11@MGCDRsF*!9ov%Ippw!X2swY>vBJ~=%*zd&4G{bd&x z0Q=v}`nzTSWEU~Ut~+<{V&BF6%Py=tZkT~hd>7{_&pnb?YPcqjqzt@Y?vuTa&ivi{ zfRRuA2>9M<7>}HZf0-HnmuY{q?0?O$um4Au{oSzt&#oB&0X7!q;9(O3qyWf*tdQq` z|IL9t(m;j;2Cn$V7uZmMiI9X#N?uf1Uo_f1Q=*hV4V1LClJO|6Yd)FVE6Aw%tibdT z7nKYvmRd1N{04)PAV95^iC5l9^^qYi%6b}db-(X`I9Fc8>&+>?H0$=|wl0lg6 z%Z$XIL{l4C6;&mHL;3AI)Je*D`+;$&e`*Zoou@S5|J1e2e-H zYYZ?ZPuEFqmn4QioJbpbR+WW-XbS1fF!lf*e5$=;ZYHVpeL+TnJLhX}x)HpxJ|FoE zF@L0TqJgkmB@9@^^~PSommBE}s+j$Cz=f>s%ByRP?bo`u;Sy|=6}kR0D70m51QB@T z*WQR*1hMjQX!lgIuAvAjelmK>q0=u{F+sPf`+MxEt%zp)A89*lwsKhm%N{5!;yL#E z{VcCw_2(+{3-6JT|`qBjHi7mwBd6(143Eeip#ipC z6!H47x7U)gbcZA_e4~7o?FR73cEsJF`367)E41ZsYq_erdQLEzC^n4Krt~RF+1ZZL zB1A}c{0APu_v5ZF-MF{Fr-Yh@A0D}eH4n(Cr|2lmm_9dg<5JzVoEpw|_tF|J{!juv z?d_$u9XsK$sQ$95^sPxOn+ecLkjE(H?m0Oxw7>utSjay*rw^vXMnq@MzFHM~!GB2X zZ2^BW_ISeW>k>ORM|*g=PwKjXwdH%WVBdbCXu0n~EAEC!$6+)d!ij4}akJg8g~$DS zyM3BKz3XT|^|@_(X&M&WrISJDN3Aq@H-m3%8|Jjw0B^ez1jz8HF&b5#ZSzcNOicD6AJ!0L9JWv*YaQ`G?>X{Y{XS4W;$ldR?T*kjo%=HgNd@& z<3l}Rq^|^07Vfrh3Eyn?Tnu+9)@k0hUM(a$Ld~yszl+x2zKTm|e#i2@!r?A^$-O02 z=a=-)kZcI$5^rsIV8E#@zHO)%hoxTm@T1a+f%D3;Ib|9}vya@|=F(xC(K~GELv<`A z?%9~DRu97-g1crnPyyo`#}}6N`x&dk!h?qNir3dmSxB2PUv~5$k+;~ySr__&fq}cd z-stPG$AfagCs^bA2UEOq%)Rp{SP~U}*DkBSdQqq@xGcn54o=Z>0|>mr2}H6iKJ;dv zbc@kN+yIv6;DX;z>brCj!G3)&-^w^{DDetK6Ihl0`FM(Tqzr_vGQU_sIU1-NS^J+Z z?I?s9rSmj;bIZ4)4j$}|O~?Sq)czk1^%{Qro*u2ZrF_aKBO2E272`=5uLxkGAy|#w zf33WSB}1nEpWS2_4R!<}RaUaHJ?1%p?&o_7OIWX!YoFjf&x*n!Q+xT}4j@NvMPikj zL3>3n+g+mrVkeb*x>0}&7T^$9Yq4F>U2C`>(rKsiSN2Z-6KptCjxf>G@l&1wp{&L? zNfye=gv9Zjkx?U0l1<85L1#^^Vgsd`p)-Si!7DC?^8w4MG>+y<`7o`3S5KDwx`a#o zR_xPrw$s>-E5sDoE2>6MFINJr31WPY2dJo0BegADO~W{K_woK<4?JJDg32NEu0_0+ z5c7G9V0Vh=iQv8D7VtBc^Us`nGepbVLOn)E7eoKenAV-Pbobbgkj34Zk zUbfXOQ3=wmKO6GuRkB+a#wQZ`e8`0Ct#V*a{B?x8cLT`WmBb(RezoclB$!S(+E%XY zu-sMhsT)du+O{I{EOk}5>a)D7Lo4QNr+u9AxS?wL3!Fy{nM;wtU1OT@Y+V;+hI2c~ z0|C3{XCboTO%g{v9z{t2Hc)E~=)55(y7U)g6t@dv2zWsUi#V3RmanRRPDyHIc(5bj!$ORWdreg5w-V9_(^akKhe-vt+ ze)_QD2GHbk1Hij<$RD`@r0*VBr0+3pIYM&z;?x{%t$4{e@b& zW^MH`)#x>(>F_nNzr@BI&5}dqqfF&TUY1k#_GBrW z{)`7;RE z}Lvvkm5&im-vII1Q-XQ7LWGk6i$ z2!&469qf$QQZ3*Ir9Fr}lw*iDS~da_ymoMu+)SUwwyg5AVr|v-sXmr*seN1-x(U1HKo)6@BL%3pg01m3NDs7;ywQj0A@8_SV4=nb?5{~FD9%Z!af-J%I23qEv`Ay zK9%CV?Vc}3&S-~ArYxz)us#!hlp6GGhpNJ#g$dY7u{CJdM`IK3ooW$j(j3m-q${;(7nBdqbGR zDix<^z66SIkG0WHoY3W$VXKb^ezV!11m2GXc~2q;#XyD^`@2T_r<7|h!0{%8H#uvu zCuLhwAsy(=nVqYfTKVxcIv`ChSeGTV7?%u9U95lTAeo9HB!1%O*PK;_G|H+>^*E1v zYcSy4DdW2e-@Uxj#_^W4P1NpjgniVy@Pl0m3`3v6t|z58^ld+3mQRn@n8oVzKMzi; z-dZgfT^Zgf7wOF25EnHq=~c**w|FhAmw10J=0w<&ui8Q9tZr%d=syxIIbe zAkH!Rf`O>#qkNad?kPcFP-B_XoHl;a!njlir&Ru#h=npL(+?U9L#5sTP7`hb(tQo= zkZuilA}YW^>eOpe%;%S(jRyOq2LDKrS_@Upw{Re_?-#9?=fGia-5Wqm-YVBM!2)FK zqG*uRU0UzRZjO9rB2_S*9Zr>b0$^jsb)Sw7kjB9*PajBOtDl6;-bqPG>h9Fh9+7rR z5g{K!RvPiQ!dGY|Tegesi$6_gr=dxRsrv*&I!wuFeBr9USf?3*&GY&oQ)lM-K3;>l zH|@qRGz*{7zQT>N=?E>}k)$5CbCGz4-c=eaHdJ!(Fz1uz=M?1?jncgKGp;K19rtC0 zHw5QzFA`PEldgzg2ohRa7a_j38)%JAX7MuR! zN=Jh$fh~=JXnI88D*hm@)MvB0(7lP8w^h)hsX0T`uTJdDS+eB?7u3O6>(lvW;7KkS z)}a)Ex0VCk^8D~9J=mT-P9KrHqWm+PIld*(DDiQYys61hnB@H}+diq~5AKWTKrSN4 z(g+02S<^TzhE_>mT0}*73ZWCFjkR8qx6fT%mDW@zDJB2dJYi1KVLul6kYFJmqrenv z+-dIcSr|%LO4U$x11Jea?k;dV>0mo7BbdDw;%I**<}8eUa0B>pVfZ2uFgj^L;9OK@*ciZssabNiFT<5yCi zpi%P$WzM|ADWnQLL$7&op>3`ebR)hZ1i5IIO#jQ4cv_KBzOO$lwie*&DxiZV0bOBM z%dT{k&Ci6;_58s;&qzhLX^FxsYTOp&i*K2aDMM6>R}rg*bqbTGUy|MciZvU$_Z2H=b%{iP z#l|#CGf}oXp*Mhgnm2&8zWhx?r3Wl$k;oW&WKh+yfz5r&DQU8T>pp*AvSh|8W7_Gp zm@kfiUAK1{sNUK@I!q@v0-AVqu7BiVruk$xKGs2J^V#fi?XXpa*hlvdDs~Z91AKaV zY||VRaq7l3y5{RoH@9y#m^qg9gvwyvp0>kO&YH;%$_Paq=jxc<=YXsIeQSvVXmnA?staTU@4N# zX5vwNswtIeZ1;ez(*(N@+Z9E)^L_Kvr(ZMnA3Lfk*jeQ?DqU7CYWs?`OwkvOxd%go zt1c?9JY!plR9US#7^}7POch8)T7NN~<;ngKAcwk~OGxU_yN4H^2_PHMqbVC?rMfWXX=%3Q5FTR*OAHF=T1w=ymVuQ?juKr!p(cuHrGX?YBa1YegpW57%|PVn%hV~Uo{ z=l$IBARgRe>)ZzI#y?wi^!MIbts#{2i_L9Cl=c-at2XwE5;~8I@+VfDUp#B!gxct@DVN6()nNz-{=2Q>$&Nn-N*jFsx8 z9nn9Xzp3I#iyH)zp`Pt6Ov$kM?3pxVFARyHnO@m&=r z1ekoy3(BbPZWq`Z?=$%IF)yUu>YdV`wLktW@>ARjMBIa`i)pZt`S$3f=El&wN$BjQ zFdy-bZ%4wZCThanZXnsl;tH=E--qqGFHCIYNR@5xCG8fBOG!lJnnXMwf3GDEkH62& zqj~Utz@{UfyLR-cZ?2BRdb_Au7j)B`LvdQrTn9%-K|Lkw2CzRZfXGSjLnYLU>LuJu zdlqwH31mJ|m|ZWpq}gAi8o;$lY%QH;hf?d$7EgFL3ngTxHyWBnPu>8=wM#MwWXyR4 z6CHa*v$3xxPyJaxxi>Q8$B+A>sxz+g+a0Hi{ewT-UE(46;s*W@iH`?1N3d+BJ>UM6C7`EMs2s~LT^XmJ zY(Z^Nl|qbW*o#$C@z%{po2?W?Ir(|!hIgbOT$t!v$;06fy<+)tFDeEW`)NIvrO^>( zdrl|XJia0xKvjtc!klNcE>YhBVk~=EPZQZA>=c2Gm7;|6edyb=fqb=$7$|GpDyO9W zgEU5S54J*1A7Z@8@eKg3327-mT0~((j>Q|1TAxmJj;ki%^e4w)FR4#A039cXE9~4G zz-KvRgee-B9&iKLqP_t{uipSxeqqGC<#OZIJ&c3!fFKICx3YKLBQGzx>I1K8V)v?%%B=Jacc9ds@I8XI2Y%UngE^=QiYd_p4=gu&FA#@Hyd!-U&~=0%UQ z3TwB32b=z&l67u{1jTY>`+aeNYiR^%MX=U^DPaZ@VkiCz;*j@*vzvAX#L!mKWQp}P zz+{%C-om|uS{c7(hVBb_v1yUn~_c#UmER9jgPV>o`6K-w?8PeJ~uLw z$e)5pz11*j7m)I31Go3%A%3NYN}vGrq}q{STGF%Zhjo|)&IW&Y!=PyV)31u@+-Uw? zU2yr}KF2Ek=f^6Ad9%tzol8(99!Q_jej-2Gq@ZT4FF-M$O6 zt|yVa#4Bi~nxo;LBBgAZj_dR)gq@70?hjW-)l@RigJfV zw?i`PHr>s1i$a`N3*op9a8Oa~PRxZ4s!sV~A`udfa+kwhpQO3ng2x{;TH;C@AbI;oIG+>cS|QD%g9O z6&9__{qf{+11q#_E*%Ra+DPh{>TGaZxpw^B7?$(*DG0t! zWNY1nHbbfO;XY>?f$dgHDp{L-JtLWU{e7{HNrSz`>=d|#a*8?dqr2#NN{xbWEeo_g zPg$Tb@#RRI0?`@GW0tZtj$fu@sSvHOOEP35 zs1y6`F4LXchvUj@#!SxR8)V79%N_?Fx)lFf?b@OIS+nz+xLyV?nCn$6z;_|)Z( z*eKLlnI4RdjqXOWn=!o>l(?{@&(-+)Eas(d0!uaj#}b){ZVz}hEVI{3hJV)Qpd`k) zxbdmwWeEk}ddvDnq5zbQKQTTPGrJjck49I9vronRZAA|ZwPmBy)H)TXp=*+&j^5J2 zZKE?z8<@B^a%+H0T~FXKALcqGFGd+kVeg0^d8Xlf;{Eu@_WQWu9C&X)O_uHS5FhoE zjYr4TpMRZYt=N2LKGJ`+L6K4@cU>^60kRe@MIiDfh8_85j?GwWb5~FFHRbgE?L}Z^ z@1OS#*paq!D6`_wyz{-qg5k#0SjpON`MuX933L!knXNN$GM_y|R}rm@lsm;j4fS-) z0>ePlBfq&Typ3V;?J7DICs4g_^Kx6Em&gXtKEK)eXZWQQS6UHrHQW@GMk(s*oPbtB z6LxJ^bn;;mmE*EfE$Iwv@3TkZa&-5#a}Aw$!CyAwO#%mg)AcSp+j(O?Xu-irZnAX) z_Uyr$5YSrj6_rpyJ~iLR46~#bn1vVY2L%BokUrdM_rk2SGVHobZi`jyzGA$|Bn+Z< zv?!_3%GdEevEE2hb8)I%A9}cZ1F*kJ_uKTY4)CB6q}^61gdrzEpraeWwsD{abuh7! zCwEt#Ci%DTr9L*EXx?^pO}2qJSLNB!OcYPxubttrh5aX4A#8DT&oMdPe;k;sMJM=J z$fogZ3gfMGwQ5(Pm((!u)gC0Oh!rLM5P9E|tDC;XV-gt#2cI27t_;71JTLL%Iukrl7J6lVEn(-~()X~BZF}Znh5K*KPN9Z~%@x8R z$h~6kx8f3}M~hA1=_*m*$b4gO!O?>!wW$KM5>UIIxw-sQ2KShk&9sl!p5#-qv^NlM z)f|5D1{NS~MjcMC-H~DivsO{tSN_l$QjLUT{4e|jf$Kb|ROUz2zq}t+(=K*$g*7}w zWk}+t1LqA82GXUKaOT{I!W=6>zIO3Mwmixr`)3K(=A7x4urz+vrWX;?Rh+t?y$5B; zR55w&zYpAhb@ImrXW)Mg2tN&8KG26unqhQ_zZbd?f=aioRv>BY`A*e*hGc8vZ@HIi zrO-r@$FjpV<={ZCRr5%83>;5dO1}yQx1{iwBS(P06%jUcXG&+D$I^p8pk8^b)=0Un zI^bD3}3$;CQ$O!G7#p*1r`!`y@dW;^?l+} z(DNc4(lRZYr^0KM#NTwM?2N;nm?mnL$HPN?HRG(aSgFLgK0YgGV47L%746FdxywUc z@*%U3lRwmcN7WIuaB}-Y9IpA6D~0Br&7Z&PW5UPxW=G{_+YRNwxO!&Ot}(WY@i0Xt z8M=Wd4b3H8tkaT~e;wDhb&;ohcBiWd2FOH3CoDD|>#3A` z>u>;GAnTUeScz{x))TWdK#A`(K{aBk|JS zmw|@(g2LV!BgW(1P2bKFv`MJ9Lh`SXiFhIN>4qDCWSaJY&D1M@+&=>Lax)U!30uUh z3B}%aS(n^qrv7(NY5O6u1DgEYTd@q^($`xOY|_&QzygnS8WL`BoJ(VNAlBZp(GOYip#ah}~wK?wF$y05g(9Bkmx4eCPWnU-z zXLU~8ELW*i=t?}kE72NxgFwu~-tnQX(fg`iT0T0e25hcT>EDsRcv6yT5aA!$5+>}! z*AHXvkuXN)AA+Mk%F6yJlsNyB>q&I6IXVxLxdAvR4xetEfwSQ%Hpc{c(?hO>Qmzs{ zo3)p0jRrst6JCYt2ql`>LxXd{8-QC#uDL@Lo9o0ABD!xn+jI<$eDT|_F0DtiBw74; znTkcAQsc32l8Nwq$aIePHg*&S49YLQx4&j(GsC10U%mPV2l1D)z#T+m$`aAFT9|ZC z=OtcC@ggmxYrfzHFlmbPH__RlbXbxe_LWDI4m7S=hTH(4m~`*R8fHtM=y-M^xM*%G zN$R7B#w9K~E1`y`N90v5_p+Hhm1kyb$aPBDa@>gIx3-*Oy22v95jB0izX1tJ2O>#5 zj?kk`;D_RD`RYQVPVr>z!@Q0!3w_@n0P!OOLE! zf+)Kc=mTXh$4Utu4Y+?my$Ndp$q}}-IY~}a-22CdzwVN)5n(N3%)yim2CfU_$Yeu<0v1l~06w{}>l^C7uA0kkuVu{Duoh|z7c@2>sYL-jR=CyH`)>O^K_|BFih+D zeB9BPs?A6J!_>sTxqTpKk^Oy@-6?oP!3NVCuy;rp&}@{oRb9ILQr@3xrXal|wVf$&Z9(7Sy_3VRyPDr(XG^W3?Nc4A za5=5#ao}rY&_+{6Vv|7b95TJYigxux9iRjC-)%%Mt>&r@!xCyC<#X?pkX)l~RTGs| z@;hvB=`RR!XjCcZsi$p?zt7<q>+8J4%7Nt=3UmT24Ps*OIc=X85W={#Va1q5~}{aP^O z=5l5w;<>J5m3peMF`t%L4p|&U3tXm3-RHymG*bLS!*3_fhQGmP@;ds04^E9MQU$^m z;XF_U9k^933^cX;Od;ZM{AmE&^%6p%q*m4S7mS#yDV$Ds4x=yW*x2R1eII|V5n=vd z+ITKr{rU`;R%S36IJO&t66 zay{@AnC?gutEjI)&<6<`JFmQC3AtXNU!qC&&!icp(%A)OTf}OA1G`Wh3f4HEH*)Md zL=Onp@(t#)KYE=0JLlBZE!HSmpBYWBbf94Q0c+c!(iNflvS4DOjkpt7`1n#@+1IpF zTv^<#K2^kcbMB}_j)vc3lUkQ0{(V@?>w>TtFT8cArEPDSo4u;Msu&@yIX%jAu*}b~d&hPgfz1*jmk1JX?-)(0;7n|tP%5ZBtuab#pr^0^33Rlwwf4Y6 z>xzA@B_kHagyyYXJ1_;!a=iOvYg)F#lE(4xcU-SSy*g2 zi(w88=Ta}bKWdiE(O2eYDPElFqjmUP=3mYl#LKpgeEcK+Wo|+sg?+z1m?KT$r=g)> zuE!=F1*O(0u+Y>YVjM*%jVt%%kE^h3Oq;T^rl;}Y9=Jj);k-6>(ivXxCn-fMrI#rA zoM!~zK+mVpEq1cLs4g@?)fAWNO8dKNJ*zOoapy!XbZu{wC&4r%UiKhz>uos>4K2=H z7^X~Bhduev#j3ylmW043k>N8?l&e&iHqib*rG->mA$RCPkL8ZiFgbrlaUGO*Iy&($ z?VkaU)Iud3oP~lSd}$xk2b#f+*4x|?oVMV`_(FeRNds0Tm2*6INJ_(dNj^y(hwC)K#)r$8fw!&gYN= zhKU=%R}XKlqsTS`LNazV&8WBO>fHqQ+))8)ms(pR_H9wW(C<%7zHXq{8F>MH{;O)` z{g+LWE{OGI5UD#z^$3+0?Cq6>fM<-V_p}&Mv<>e%PU*jqkC@^WyRYU(@;eOhpb5$c zg`j@b@tH0i-uHey3`I)iAq-YH@&b&+LAf&q9QAE)=KDS*9SdAnaea6nUA1B;N&z6l zZu(nS;{Vc;24&5_f9!_*#?iQo(HcD9R|f4Nmlw*LYA}or$w#*P03W~8rc5zt9f~8J zLshkUix!^+3zSE$bu+4s9pN%fGK+_LK-fcs+2th$1x9URU=69919}0HDb80qe0dqJ z!n6;4GnZXyRhu@b))s0sBI+sXpG_v083zu**DZB`emz;W{o9jfi9P#CmC>emDpua& z72DDQ`oX~>gC^h~a21PP?bzxIsz*2)xj>Vh3{KFlp)b_eMQjyTB~8`h7@1#^rxDd| z$^)*`{9m_M#f$(B2VfE8(5AVaHvtN6<=eN3G#JC^kE)eFT)48OX~|!kEe0 z<3#ByFtK$NG`25PdPhb~mvGZ?9qFZ-u3x>ZAP8b5{k;0+fGs`p7%4^cF|7QB>{;oA zW1_M4q`1#xw__Vrzq>S*0n3W;k_KwrHlH)GeBHOkpkK^YX#K6@%&&Plf8k;wqt=Cj zx78Z$5Kc4Q3)v$3bIU`Kl82gkY_1}OQ@>+FT+<1Y@!g*O);=^@$s8g)Tn{^@js{PR z^jm5Ku)VjI@=RoJ&?!gK4sQALyoYYs3=doX~BxcGCbr+I<+-C z-BFTaa+z1MO9Dq+e*-4j4Kgs)c0tU~DkLiT!zP}Ar)5R8k_|qjr53)j6JF9RoxOBO z(dpU{w`E0mjE2D^LvdPm;;s5SUk128<;zLXy5C0 zY@|4wwzE{866554sDJK?9#`y{&9$GADSgDtc4jX&m~Udu{_JrNkG6tU#i;ZNnzYB# zIJ-?}ynDVXpZCjSGnXQIqQxkjf@4GT!Hhv*F~p0uh=VZ-uyn^4ehTbqq1!QK3eyW7 z012$Ro3{4Ud%z!=P>*JzW)~OImE6|mFON$SBsfI|j97WPj~o{B>x*+l7pnw&d(gSb z)ZVVe*TURVczNayDcW@kFkG6+_|7^Rb|Y)`uqt$kCk=C~9HFv`y!*Bcna*OOU2AxmtIkK;6o5e9vdhw|4mc8n-H zi_O`nciK$WXlz~iS67C3+&AX3_#K_aURzm+YjcsniO|t@LO3fO2^Kr9%&QDc zSi%Xzm;yEyIBbsf7PQ=#|GeK}3?E@=SFL3f9F6KcDGz6`~rn3(K>Xb z5geV)Sk$}a88Xia?p>7kJD72*#>Zy_ypg@HM;!X(y|n4(&fhX&|C-Y=F1%)ebdMr2 z;luAiSxm&XWgCYHh7t>J0E6j)H-Mv*(MCi&z<~mTODh-8AsZtDj`} z6K$%;Tus6qAP|nl5ep;3QQHClKHX^u4=;lqU(V%ZtEGWO^{V_?*ojM|Ca3jJrC^MvcXPqQIZmdCh7ZNLJCF&LI`ku(Yl#k%@{ZIvdz6|FFKvWPlK)zvptl>epe?W=XN{d&hpr8+VOl zlOy*RCKmCzUYCo?zURIIEBC+#q#;_X5Z8(0${JssWTk5l(v4_S#$Qf2Di;Y;QjI|< zn#Y@Kl}|=xs&Ro=GWIy#Z~I$b6vOV25p#|{dMJad0`;8ZjrIo z@3X|lPp7jgp+mE{i~@HvNNminv$xgWepC>51h@TBD%h608bfEb>5bHdN!X|nFuB>Y zR)+i((Hf+*Z-vR^_ny}lS+YLDvEEKVS^`lHL2F%qBusXZF0oFhHr+mhhf=9qCl+(^ zyJ`sQTDi3|h^G)hofnWJrt^zF{yCPWr?zjtyWReDd}XcoFUO(D;|RUP$$rPE=H-iI z1&8qi6ma(VE&5BR=?im&^@^<>&<*8LPmwHZ4=ZX+nK&;YwQ8+7V;S-^MV=P5*> zj!Q|M4mWlr+z%_`qf?Mj*1vwz5BacES`8w2x4r(|Q*|RmMLq863q|dVWT#NCDswMp zbJI&NQZUb;BVVU>O3`eE=?fVd@S7NGyV{+Do=Z%+C%yUxaJUKyr}~HA4XznR1Txz3 zMVo~jEHM?(yQ7#&?7ibYb)C)p8-O3C_R>w3!~0gSS3Cxed<#0sn>9#@w2!yrkjpi! zs$6q4q)G&;HZSKYhR5v1sh^aED1e7{n$3WY0;}r9vj?*dhjwLN&wUSMtbQMl+FK{U zzo~d>`&R!FNd5g>E@{(dvnn6DekKiU|1mF4POT%N2X@dtD^uLRWV~?G4kTQ6Zr2%> z6>?o19j|5H=nJ>l0viRz5tYUeR_E^(qYr7u#hyQ~Yjg4ts5iZLziU+h1#Fu_3OzLE zKTe^(cpl*-tFT-|CTI!u`&pir0J$>u4+~ycf-Q3`}9lF`{Vw+aXve=vJco$s$Hvkgx`|0I3 zfKW8G`=TaXFwRB7v(=!qW{BUNE9Ti(s+A~3rn)M2S_?xi8J>e~764W{Oe)aZWO*MV z9oa#DpI_=51+RYXEAz}5W&6b7#ve3F;%!mxU5wktPmQ=D*u`m0Ts|}qPP+8FPDlM% zo8;I1)ER!#BolJ5Cfw=Ndn#d@^fx;QwNSB*Yuji{J$`C48?yaLU|nmcvCIvbD%IS0 zO@oP)IRoknK0hmCGJYwC+XvnRzuwmWx?oV~ck(3=EDe^>4O^Ivys~N>s88tF+P<)9 zTj6W-3g>RSuHWq z+Pmfw{Ci@6Hx2d$;t=Crj7Sl6=@R$TggzNiVOv5-38bk-oI8zz$IyW*Z|^$OU@q$} zO{!FP4Q!Ho!uU}^LW1!025_dMMQZlGn!47BGD-xPo4J!bB+X|swyYPqKpQyGs0$|y zm~inke3e+(^TJEMc+r}v){aB4d~5&m;@+kMds|&PswAIu@(}NE`2iDV%Xo^))z8${$~|Q>Teqy|cn-6Sm{R)7v%)0*Q*Fl$IqV3E>MI@269tHv{4`$Y6U&TK zX!+6Rw;c;g|KwGM)xeyCWNr1BX|`g!x(eGjRW*{9;lcrwqFkJ(&C`+_05RWTiBLf3$hnBH(DSP@t)vrj4|0Cy zAk}*c5`Yo|)jt$fdfLo#c!YV-RTPf3ty?m~ab*Ihh)5?D8kTJNXk$)J|H50MJAZB3 z`(#i3Vl63PqDp6c9%i4!#n-(`GvJZHE24~h&@o_eIP5wsb~b)VUbO!^f=zlaMy3 zQk&Rm13hU+f@4&r#s_V6Hv^9siJGWYGd`RqoW)s6M97OeY{GD)TGp-<%%A>Y!30Op) zhj$f$igZGCbWfCUOB7qs|HK*gKw9$Pji?6=Pi_FshM1-h85hXEI7iNQYl(o0geui; zJLiW@A-Wc?q0|A*+8SL?zTOwu6H)~-2dWth{B+L8)E70;@9S3%76I^fpGLfmUH0}r zLOFXr7zS;9(YX1&Sz^oTCC?|ZRR#}sl~Wpe2T&`L%~cmXU0VMHgAliTkg{i|8QMT9 zI^M-@Y(kHr9jLwD@yFV7qr+R6f_vgrsdS0+O7h3Lftn+O5(~ zmR%Ni-&#!{MA{(Jo`<~-5PqxxT6jG*i?~1*a?jGNIYz`&&m_F>EcU5n3lNs$FUCWJ z@oOePcC$Z( z7CrSn4f05CRt0aZ`=EJ)p8YL^+U1GfYeC~Cl+_gI=sA)tDG&ST(@sZL^E78j#TdB2 zuCYdbfkvY(`sWf{$e}O~A1YhaaN7SIsou9k*H@61Yu1e{eNlye_HLHLw3DXJ?-FlN zURT&Y=hMBEp}Ox2&Jl5|Ej0Af)C8|v1hq-$s8Hz9G5y@rGK!R)N-nb|}XPG_!?3-4@Op9)Y`SzhW>+S!*9 zqd-T%+KcY1^BaJaA{x@gJ2PjH+L3bD?bUrAGJjQ{n0zb+?uU;dyx8Ja?QQkAgvwC9 z#^w|;O1)o4Xky2(o6doS<_;tIQwFQFg{~8{88kY(Db8slO~Y3SzV)Qxq(Tzrn zo8D~kn(dlb<6hMY^Hqh$2Fy zyV)%4xjI1GkD#0uAY1EdC-?k@F4nU+dQR5KY1_SWW4?HHbNQ2P=Z!KnRrp(e`WKPs zujHn2KKLX=mQBW@YkM(W4WvUi0IkI1?;B&DTGwKprFQPy+8j^uBiLF75DmIvWZ6_k zX(c+X(b*x&#rVWewC;LpY-KgxO_^5^k<8nT3i+m~it$=F{~gr!|H2g-pgZU&CpbUs z-vyJ2yDTNslN#D4oa?)Ng|Yl5ncMbM2P+7SB_C0cz6>d(PU!n#b;l4#PVG~tR#>#e1Pu}0_qRk=*a%yF9CN;)2Uc8o9 zg6=L*W10t(w@?2d`3ew@nM3?O41F`rIj!=>$hT&aKzQsHk|L+fuP@ND(oGn=ZH~pcC z6{6r1xkEJNNCYE(crIrN{ngtD`>RF2b}^ZTV{>jX6G~*Y1obE!4bdNNsM>9RXZTv% zFyaSvt1h5{G?drohcU-CbM`L9Fq9v~Rj}i@G4`8A>PIVWpnhJ#K}{Z}?%91R#{6_L zTFd_3oC0=8Ck#&Agx5>;J#xjE523l)&XZPI=KH?!Nnl`|Uc$;;>6Ed1af&6rz`U^< z#PcnR&d{_Ku_vlkcwANE7(aSap?{ssa!q;qQ=o*Ebj2Oh4H~IKAM|T52s1-_%h4`p zWW0~~R8E?EF`eF+?7}m50cT$-o8dMn@*V^kEHw?vWtj$LA`9pd^4S}>BOpcM4u8@JW zhG)T$^$BT2$O)W^o=Qpg-G97Q?D`fW9k1u@<>3j%gEihhAMup*UY*1l_CEzdJF{yq3lA8OT>8hsQDq zh`^ObgfCk|Ar%>A<3Fn_(^}RtBIK(6R7KO?Er<#xTa${W0AxVfpq>cJETq6udeiXg zAT@&C5RU4<0R(LhlROmC7d5K<9&I4a%U@Q+8*}m__kIpRsDeC;ttu`K+-+rlv)u=z zq&2eVEwEht2vb3qKH7+*->b2!Ja<(c=sT7_7VBmz;}ffmk;l?C zXIPYtewdR-s59%5$Cn`WSCouT=v5!`HPO=|O^-SijD%kP8Ht$?>lk|~8sKLFVXkl1 z)L`c|e8t!{6(Ok#oyRS9L_dY!%U$VrQ=Nb%Z=XpRsHPs+A9AMDl`F25i}CCzFb&~m z{Z~E14@ac7yf9sSD8v}#lH|X_jV733K1K7eOhabdV|~ zDgpum0@6#Qmk6PEh=TMcARt{S(g_Fwq(yoYkS-lU?+G5olq_cy`qM`&SFWg&Tb&Z8N zV}PUM%m6jrSJ2yYrb?LEJRdu|>G0hwA?7gL* zERnGu4*7J>ma**gy^tqPPpY$;XX2)v4nu6+XJqDBYIWx5S<51i&OL5vaa7qFJ_9rQ z^o9Kcj{7~Zol;h9xI0vP3uP$Rdsu=R+mKCOBmg12+Ys>PlGTaY`Do7XQuhAIn@SS_ zRq)agU%^g%>$yqs>bYMO>K>}D${Q$Ds`2IA_Dpar_OLG23ik{20bYy*CI})fdAXcG z`}stDb@-=l1rioS zv;}hZ1!%YXY0J3XlvFvE17i617#1w^xyn@*=t)6D-2*C1NOHtB^UPXX3keO|c`B;0$56)zr z&{r|oT@KjXm|TB>=r-iSrBUMb^sh=WpweF3hKk{cVk^?UQjib`(dpGIlW7)_D0;9F zkkD%I!pV(hasU6r zz=Bt?Ea-wbPj5(1bSIco^C9cpnKo{mK&=Ls&mz!ygkmMSkZxzDp$o7rPGs+@Mdy*N zOpDJ>tHoz%8!rOu*#f_TV{4J4#VQutIi^yD57`VM_;<~+`h_n?6?Mg!-qCm<*#;139|#+rF7#JRwcU>dHrObQ3opb^9 z(F=~0eZn_7EQI<-((0Yl(P=(4mRpFiF}<6Ua|Q4?vn`c!ktipf7U*2#?hm-yJxo!XxTPGFF9;+0k&Ejf)%{P574v07Jz#j zZ40Q?YE<|$<$s)&i*L8_2ONmM8zOiJ4n(cC0X~dZzd+yNn{3p8PXj>y&et-5F$sVO zAvY9Y9*a}{1PB^-U}1wfOV+^HFI10|PP3XJ`)D{$9KOQ#|MFQtu+=~Pmd5$>dBh1; z5YG(Wr$6lk8oPf4#tGcX#ud>robhJ0J)ga2;H7Fk@aZM5;8xHNtMLx=Waa9Oo+VD~+?GBN5&7d)X6ymx$ts0Q`S}ydFa=Jb+u& z`S`ka>(FU6~U z#C||L(tlQzf3ApzpVI39u|)7Q3%0{zc0lIqf#c}$#JUkZzd&!31_-I}IU0D2s?9Hu z8hAGXJmLu0^gp>n@T9*$)l~ogJVOJ2A@-0t9Ec+`(fb7=0)*Y5bNepTnn)Jm5@1&w z&Hh+fue#};Diiz)Gov(?k9gO%Q2cUJgEA~KYJM`__j8q9meOOSjN09?90A+zJ3!20 z<^L0wM(H0|n*QHbu7ASP{FgaD>O2)?gSz6USvi=8)tN=Ec!eys(LHdn-EVc|=NvjH zK+GCM#VN0pWcq1_jofDN5d5aSp8;T4G!_M;P}ZoRIZU#bt0^*`?fT}p;i~|akt#{S z?VH=kE!eh3{8Ovt1`cunk_r{@xWTa*p+u=7_Q+nY&**oxziZzt zIRmzCU5=lfXJTyDr9eCG{%+3Um_HEUcYVud(#WrM(=aTJp62JmWeuPBCguly`6*+o zF!_xy->z|CQ3hqwTNqZ{4K<g4pk~BYyt3d|j+5Oh@jC78 zXr7ur@hShQQB-4!>9fqwv3E4I4N*3t{^{e%gj)G8XK{0c(%yQJ2B1P#;5ag%-}X!@ z=iDjO>KL$e>Mqax>9oPWo%If0?6UJ60aT`xz+G4hsZ5pY2lgrB+Y|m>;L)$1)_TC# zIo$~(V~B}9HXBiR*|n{vCAN*}`bu8l+aYg}t1HN+emf?LtBIOuoN}Jk@ohPlc)fa_ zHNDS0`(3a@t#_od%t&{!j=6`AIDJ;?`01aY`Ij-Q=o9pg55!Io;U_fCZiQI6s}EEL zOC93}6=CBGu)0X!EQfC?CFP^saptB)d-(xVJz&9bZ(~3t|09rFcQ*#LHXWmW5}41srsGINNSxn; zx^crEN@}!h-pt0#hUQdGw^)^~P`5i%{dX3oY3bFI`GqS?cIcDbP1z>Lh9d+k7F=_z{Y-KhlNWQDo zhKW{I6YdTt3U}u6ec7^mHzpJzGP)d3ADIx81;w|L3uaWG$7)0yv09*Jo;$~Frj`O* zIwbk5rzQkDim|%h zVMUu}ISh~TY-$FlFhfpOCC>Lyiw1DZqa2{xK|;P$=pNwY zYW@Pa`k%qaOgRX)@OdP`Iv>v|j@s{soh`#VVsTF$;H&9#$AA0Y|MhRC64+ngo1lq04|+*8aHle$ds}J3xt}Me8PCCZ&qZx2r z6cZ!RRpc~dFBv7PBqIym>n@gTgmBi)DE3J}H?u3j1`E@Zj5813Lmxdx$_|Z+)rjmh z4jWFXnG7cSUUiM=udH_v*fzGY5WnfK05ev2=fumjN8uXlb4CE7kSAhpcw0-kY89j# z`fEdi)cfS3?^MglhdGIr>xV6tBa)mv)!YD8a-ysdIkJaf5rWfgyvh|xQNHLVL)Kc# zc765CWnb2>)nN35m7A5;hDCrOrc>>bKH<>s|8iGV^zwQ12Px7 zzA^<}eZ$e}I8?>>QfU1a8Oaq4*)d}B^J<$QX=|EqFy;e>&xcxhL4H1Lrz6Q>az)b_ zxl20vY|hreuUVLnVHG4a5cq@WcZ|)y2I2wH*8ek}7W(b7Rn)k7UEOb@ma-@DefN{R zS*lfq|3=gTQTo5I8g*cA0tVO1HIJXfyQrjJ1D^u6I>X^-)tH9Z;}Y&1n$?gowL_vrC`Tg`RJ}#;XKbKPkrRK!C5U$ zmPz7-QKSRiCEcpf*UpBTWxVUP19C|M4T%Rb0*pNtp?UOX6PNQo1nV$z9uSXx^{r28 zLZt-JM|x1pzCJiOECm3SuO3-v`8;Io+G@&*J=uK0_i;V-H1k3aN5XQVWGEBL+r%){ z&hFywz>JjW(9{fMR)&@TyQx)7h(<`jGPgI<-wGCr%+8o4?Ckd@TB)Dyh59-JB`i)ycAc@0AwLKB!yRbptn!P7LBq6I367Z3~jU;5i z{}vApEKl(D@n0Zz_+jxDe6)%GH`M~Z5Kw*-~(l+B);2vX_ zSC=stT{R=e|6p%ZgN`W*b}>G-`U&kzqi8%^IKrNI{kI;n-8qY8C3_ z%H)4U5&PeRNKP5aCe_n6gowv8$1yWl8eDt#Q`$sXm-X!ps^`$PjT4GvbpF~ekSJUM zr-7%i!F@V;3J9Pl7RLa1?cbp{E-W&QWR~J&+Z2Aw`nkTGf#)QNCyAVrxjz>`^Eu9O z*1)pW(rX)Z_~=-@Qg?m?I-GLBQQ0O&PrI=sxh8$-PhP&PC+_zLC+dC)Vn7!ec3Apv z$7{HDm)7e)B#zC48?QWXaSBkQ$Re%NdtcWBLnn+k^_+4hE5TQdX)0KhQZz)`4sm*W zoq+X6Vsz#R`GI5dlH7)~9h9%l#(ar*`iLzgbnl5i<5-x~Q7cyxe5 z>(?hZgmefiyd@T;x#_6C*}Ez2QmQ?Q`VtVCz9O`MFVo4vEA2GHz1QJS@fzyk?)N_V zc7Okpu_rF_bkp$Y-8@l5u^kCWveefW19+cmm~6`5${`;8-TVUt)ERMBsaA)6bL!B! zr#huOrZrkq5A&GwtiKa3#B)ES8$YkW@k39g=6QIhGChbQ%X@xsqgdhN?{|*g{|Su?Mhl9DK3)^ z{fi0I6c1uG4A&Pjc?*Kt7Df&a*$h`59rh^Y^GyKN+q78XH2(zh(}zI2;H*LZW08lt zuUxIflH&`q$fdXdwQIP+Z@-m2Tvt>2ZgsTQzQhHu(!``SvrB#mnQ1EZ>3+34Xsmcy zEWwkMGzRMZ&8lmO^-&SMu)8FpTT=T$CS8g7Ov%6xTo7Nhk3+8Iy2RraeCW&at_u~i zq@Mtz<>xv*)9kO%DZfBxBg32XbydQZ)=vYBeGnGsyxV>XJ-YX)RKqc;Jv>51$qt{u zsF}oHpt>EuP7-S>N<(it4jXT6SkqoCVY>8u$qNxpBBN6nduk6)G#^`y2888TfYkgq z-EVWR$Ymuk*)4!MO~API8VUtI=K)-7I+*}gfaY&YK=FdCC*eAr)^>6r?kH<(^CwIu z`b=hkzjb>iC~A?hxiin7d=WlLJ+Ifs#snqY8zo$T#uh_UgFEuQe&8Qk%8L$(#?wN| zF%rVxwjm;e4_Q&z#YLOYfV(*OH&a$je&CJ_?MJW2JsbU#V*m?Adi=?;hRc?vPx)v3iRDmK*`#KWe`=5Y8kzQ0__@v-Z?x3P zDouMcnCXIt0lsPT`nk@^L4hPR;fT5%Tbk`clP!#o}>xV5&U>Ufff>d?-N#z3+2 zn7m?6o(gp;#9mk#tZtpv-*bL7@#E(z7PlfMSeUNOQ%8De#kV+hdO1Skm)@8Ly;a6B zdZ~pdtrqL|)6ApNvm$y(^wwEO|hBQEtDK2_!nsEv%<7gKktKC-Qiu1MAzt_PSOZxqj6!I zJd4>!+YsLtDI|*{lRkykO1_o=zg*#Gl!>%x>L|xjZKPmfFoMN|)UNq+>e?{saM^t{ zQ)f|17e=!o5PElLDd2GhRJARIFw@xGz0WI-Vr*ad6x24-`e;@tA>u$S566K`H}N)i zrseH3=ut!IPMtpns9EIS|JnKX`}4mOQGxa#F)M00b&O18{)fLO0P5QF-Qs6Dl8?>%(4%GZYe6iXG@KkU% zo|`~&AO9Sm``heUarWaMs_TFEu6-wkA8p6-TbCK$q-v*kU=eN!O_G8c>x}@cR&pHu zLMN6c@8=rM6rkM4yn^Dfq;h>0@yp1HAw4HUfju9tW7OCC?9kAWok`t`mYDnLS6h&L z^WSJyT5f&24p6n)&&u4TJ?H4~&f}wGSguv*R!`N`G`TS}7kY9Crd~+D^h`%7x=qfm zZ>DK`LzT(A(oex-@Np8hnn~S=^j)Jc;AvJFk9L8kjOOhh8eDbx7|aSd&^A|^h+C&Q z@2hj@M{K4tc-1BO3M?#*6k}a;@v@9Vlp!l6wKa3t2Vc6$&JM z7qzYBZ2b08etqIxlJzv4X&F;PR&0))XtzwaZB~>R8%i53>r;TOI)29cnhdor0GoKe zuAT=$zm)ngVXC+5M`aj=vmvGf#A04#s1zt!dUu$U?4(SvFT;Ls?Nu5hH(omK_#MijkI@Exiwa$|#%Z%EC z*R{RnMo(9yBWx(1XWA3eAjNzg<%F6Z^U|90_n4s%h+%_#9N|$d<9^sqevdUlAU4$WNf{<*QQh`T#(& z$K^l4J%0dgv;J!YTTk)7l4XDl05-xUZos=}lJE=knD!vgZ#)m+c2plG)N>Qw@~*4= zALtonFau4|68sLqG;4LX?y(3J;Hj(Gj7dC&fh;~HTQ|+rOB*eZADqR8pz)j)wN#dg z0Dx95L_K2pj!?BqR-Hc;1X~tP0zxpPwfEVfPXtMKx3ewCiiDaU`UK6zWd$T|RqF}Q zG}Bg##w0p*AW&eeq=~JDlopj+OvaLiuDb`zSyUzi}sz>tvoaosV;K0 z?Vc%4jIpX2i5HpjYkA19ISjDtnm8<(n(HOtRt+C`hVwn~a)q9C>b$b7VUPb9g<*!Ed*wugumOq$-wBI;rn8<1>K}R$lk3HBf2tK zMc$y1vg~2fNx)z7aGHAhl*({d@Lhu!;ubE=LvF^w8nxH=Ec#G}=rjO%x*D3USnGPP zZ6u%eUia3n4cyZR3WeYYI`QfsSJu&7+0pTbjRTJccVCWdE!Mti?O41OGdpKEXvuJZ zpvBZg3do2_zw{m}bHOCUz#C+Lfim2O@w!!K;GI{i_bqbf1)Mjo5OlgB^ek2yj=7)w zhhZA(n>D7Hu^!%>_xet5)V0^FRoy-Z zc<70JY`w{zchenRDA`AXk?5vrq}7+w4zHH@x8;FkBZo6#73)z72Z3_ zoW*=(ee4O2)#%T{pfUCj`0NAll*_C>F`avoc-~XJTLXp5DGIMB#v3KSN*tF#@RzFb z1FIBc&%b+RGT6iBAu-YCldM5);hpk2OX?p-u=k#TMqFzd5=#48U(RiP+VJ0Qo2`Zpv|2l*0s87S)kg}qBKBjaI7|l{G|pc5X^qN&WgBPX zToE%e65=IH_nQ1f!&*Zqnm-85ugb1ni2XB15Q3+aiVAuf`}XkszR{4tQu!#5rwH+C zXF<}-I=Z!EbEo8EY@P$Wr5CWItq!#Q0^!u{=J4jPrMCac#WhgP^eU4*w9O}{?`A_a zUF-9E6l7t`WoD7~Mcew{_KzuZh#f(UixOvA$AkdDQi&=hh%H((`gYVJc@590hHB*_ z*D>u6eq_*VPf9j&CYGdbWVx=Z@UEb?Rp(C5fS95h+~9ekF97v%{RNr>)=Q>6csa0Q zgXyOMIL|pLfxVsTlsK6{f;yr8(|KcvNPdK$AiC5>kua3GdiLN53I@A!r!0R}n{shZ zw_%h#%sC^2>|^~0@U4HWXKoFV3M3Q|gs<+v&ratSm5%au@#g~oE1ePEme7)n$3uX| z2myf53i-bykpX(}Q>};-#2>p^?CRhPTQHF}APi+Rjr+RVEIFE0c0XnF*xJtmGjuZh zq+{S_s)PW+ufKtOZTf&#|Ih_+4F0zD`kvG7L;mSkM;Zb18BlU}6CTa>Qw#VIxdQ-` zuyl9fKUh#0vEOXxDw+`B-QE-cI01ume2D5m`iVLCqWKk}knMZh_P)8S6LcWLB z+0RZ!Daapd{;LbOuF`|$8nUYsn;CqW`Rv(z1@THJapuyz-fQ?DM`#CHeYM&Ea45e+4)(%gu>3Pq`hB@0NIjtWL zO1&}Ou9eS-Q1>>SXF1rOidYeKAU}hsk2^L180j;CZkYJ1nUxhZgU2cd+h&bTR(+If zTp~n4k|)k7={w$nx6j!?j?26}zA7oT_;b}DA{k+^*2oJPMkY?#`BL_7^H;FIh$XvC za}aPtU@#&L!;7yk1{7*(y{$@?-?=~g0Fh)9p6CC4vRDt??{!J5URspw7jfP+@rthXYD8@{g1YYB(2;ZSLE|p>xYh8Jn4IQJ@r2f^Kl&JJ zD?Fw(ofxSY%{ITS`UUo0o2G_dg{|| z@?=I{=7-~9^+?-m;Pk663Og=$8ZTMgbcKL%p?VKiD&2i+%)92;Pwz4?9)Dvz?z7R< z{zo6$+hxp*!gEy8atk|{kiIj=jY*N&XFoL+>~R{uhc&0&P#hT6v@^vcW-!?L7fA5C z6ELnej6hnkP1Cp&Y@*3-%kGUSyP>{(Q5vrWu_dotxmic4W6Uepp#4mt5CaQy$t^m&xn(2GkAcDCcS}a<_5GxpqapFz%zb z_}A~)lCh2-POTdZBQThWCwJ9eye}J1j2)>Iq{jX%Qct?^)^4uYQDZq9;$yW9HTXJ? znB7@JeE0^sX7=K0OHC8==AzPg{FU4*cJ6N-T3-WbOaHHn!Q7&QUo zNQVrQitTb+IP1SgOsIRL7z+fX0OTuaUgPK|+Rgki?`K~+SF5I96LPr>fx~;p8YUz5 zoD5zG!O~K<&Z%Uv)Hl;Klh~-#v?2$qrt=)@Cb-~SaG`9Z+rKd*O`A_7|2vHw_?~Fg zi*8Zlj5~Zw@KD;H<4oz9k(Yo#PU7M|-Oi*j+r671y47axV5eS3XMBD-QosGs_`*cLOt1bBOq9~__}PfV z?C|q18QW$2OANMoiaZilcL#QMb<`iEGm7(ay~1Kj>2sOq-j%F2zS(=aYpU8}A$Zqkc->6#C3 z>fvwKDV*;9nHf-Cl|Os5bAwp$cKO1w*SxV2+j~bDAC9 z=ExV#XWYguzd-q=-tEA6{!5$LFd^$~2eLRg0dEh+hZ~pvRUt>*eT5&QvgT;?W@qZ< z@Po}Wv+6lbZole;Cs}*z!>(n}{<|Nq789<`a1cUKRDh5Wtps?b?*g+<;wgat+y!Kp z<3*r5ODfB@|9(L#B`jU!M|(qX@b)}*CD3a4V6{5Sy(t^y>gjs7^OT$8RpIFv{hvoo zk5>WY4*BP9Dg9L;A8@Ff39;HBUK0k66}>L-DW9u~+2Qa8d1SqvI($%)*&IGpj{4J` zRSyB-nK5Mu3`7?fhX#Q3n@m^JY|!LzDkYn2+w1n)s(jVM>YQ>`%e6Y>#4#lEAWV#s3qm(;7@TdW!S2(b%vTip^XZ%+X!0*c>d*J|SHru+MSoFl2D=ma z(JQo5j(wC5@BI;(ca-Dmdd1iO$&FZEktP3xpg`XLv#Z1Fv9Ivs4n{mK4-qTMhMcmO zs1YHC6)aj-7#6)ePbf2k505pVBS0H}9;;ZKyj$!kD<1p{6d=Y%cv7bO7lms4E@iK= zvSJ59-BkxzZF%i13Z{&|Yt3nLva6K*WV2kFXW9oiH~*^V|LzF=Rk=aDLiQR{QtX1S zmyGwv6t{D!?fe;7!E2V8=^kN1c-It901~jX{(JN9FDL3qb<%*ZJ7t5lSiFt?NFRI0 z>x4I7e+FxAD1+SZyp|8>!!NbZRON%$(kUyz>!!}8 z^;qd6dn{=yjL}aHQ$FH`xDJ&Q9oiOSzMeg+&K_&XM^2q=*cM7W_ItLdF@+$p< z5$Df_9kyq-lj70X-TCBJ%Bx@&AoHjm;o^hn&xQ2iV%IJArlw8Oa_efk-9u?BtH~$Y#>(s$q*;W}wLSlizxeOubZfB_ zS?D{#^Eb&>d?Z4%=z6&aJxUHI2U>@(a zZ4o!hkZczU76=`WtHM1wN`2uXN{@*W*_CQltfz>gXjSTR$c{URyLpx&^eIuDw zMb#ecj2V%W`(_~-1)dGEpDZs1UuYW=pa^xEXUkaoJFCk-*j@ge_omSE=%wLfhd_W$FIpowfK3_8 z)Y-nbNjC|Lz;ih-tnD1AG9avLl2nTg-iF-cek&4O<9yuQ&58r<;wekKT#sr;+~K59 z)=QYVw=&-1DXzW?b2o5`-|VU@kQoifE|aqcPg)pnSVoVi7jQ*a+w?uW?t)}{EfK&a zchMi#CP$Bn4IN&+L%#SJX1c#)IWAX2DwjxC9!X@-s}R*2~?zkgu~+zv&n5T3C0Ud zSy#bUD02LBtZ8G;8ibzDUGz&5!@`)0c0(;G&%JDlvwoN=ob zXC2RJ1Z;u=MDS9W{1#cGh0(0YrrT@c4rtrM!Ll_&t|pFX5aMvbKL!h?r3x=f7?x@Adw%VF=Ha4#o5 zVIy<{4{{@K!w^=OM3e0Jc5O~9HRWj$+61y6`c@RhE z<*+4Xzdsj2mwBmT#O7m~Sh&B4^19*>ai!a(N3b_~i((L4P$r=!S-QP&`B2hN7 z~+Uk?&ybB{B&>E9#BjT&x&&urO{ozQI%Rfx`F{IJ2{CF2M z!VRsa^==q@CAVVMbsfkG^_NZbG#dDC^Ie7r3_W^xWx7i^@aZUy3ahGtGegTdh;1_W zX|!Z=4wku5I*zNQ+^&Zjs7Ts!x?3qJX9qX)Ji7cMN(|&?7`nBdy>Yq{Y&I_#3EY$o z529O}T_qBHKR11dYundwcfQ$1)-rZiGuKYrdf)@@$j4)`ac& zTKGt8LC;mH7dzvWpoNMX|86n2d;=p)u2_gTRotGCG3 zR^RJy-H&fZ7bZ=qhcH+vy)t6nL_9DjzGS{uocT7r;1XLHyrQw@Eg#{wku8b_e}9pR z7I(#}cDzA4f67#zlWuUjv>~2zsHNiR+E9Cw80>vAsNy+uB`)Yp8b{v>rVap2;ON^Q zun;)0GIF#cI9IKqU4f7BMzuLMsH_2P>SoShRilvp3E^_k!~OlU$2cdv_IVCo^@v}4 z3w%TL+zA@tx0cdBv#k^qS0+P!xv zR66qt4X2lH#>N;qSOUS@zpeu1E84p2bdqpAY(!{aq@D9kzje*VGN?YU?WhaFk}&A_J7X1#p`HC`3xy|^1PdmBhKieNH;jy3U( z$*6v`zfr=JKb6xIa?w_d)Z5%W%|Ef8`MrpZUt3$J1IQ%w=t-^ZJOiAnW-~2 z#7nBGc8pxHZA00lT3ik!|CrYOX3ptlfzx)C>ovctLwp40^;teFRU1EBE24N!+x}EB zL9DdBee4sTr)M?FM)QVHte_R4S}Xi)8I*yjnG=9JY*I1d>NT*Q;Z59r4nLNlUNIH( zz?HCXx%psk+kA4@!S$%1FI_~E!i;V&k-4QyB8aVb7K|;8jcB-s8Glw4ftHS?^a^m` z!G6{u=PWJSpnsEdJDhiUrbFbRbYh1P(XE@PcB+ZFhd90L%`xC2)A`*mz(4$9bahI*IuN*CZ4Mj zUnB$l{c#)QoH(({8Vmyce$fG6dcs^R1s$v`?aT!29L#L2LGGvZ7cX8SBPAudOhHCLK~6?aPI>jlHOi~k zuac8rqq}yUnueB^mV%0&fsTgZ1`RFE?@EY>fpacix^n5#6&gx%N}B)W$FFao>z9e* zh$e`M*g+Sr6A@o0`qc(v1A&Mx0j>Sr;Qx3KT>#ohLVEcM897h@c@1=dh?w}oMdIJB z21@$_$3YjbU%GKy_z?-UrWq-_GmXfbxKEck9#=HeY7JsI@0+^>ULm8SXJBOFy2E|< z9*?M)xP+wC1NkQkib_wFRkUB|=<4Yk7+P3bS=-p!*}J;Adw6VAtg0CCpYhNenDZ;m&z(+bxrNpx|Y_q_Kwc3?w+CHkhKdUs0_b~* z2Gc6$mQULP9Cs7rp1v%@QDHheC;OVQoxyVSg6$@}iuH7QsnQdw1#MQTSNu>9CTA70 zUXp$1WO%stvHGd@HiVvV0T;A5u&w>ki&(k70*QTKE7Xm?d9}G==6(zH?ReEpw z8q5AkDcXqh8rhdhNBpz%4@gvqDP5LcTD#nJEah0{k2^KlIQR<*y-AK9&=t4(3s#nL zsvl+*l!bBwd$UZi)s2PtJGdE)`o1>KVUa3ij?|ABO|CT583uSNcLeeEUHJ{DggzaT z758wH?AYapVUaCML%2{(P&uy|b+)titiX`rj#9xai=R%PXN)xU!#Aj1GJ%K=l zkR#IIi7U5+D2O^9F&>F+0$j2jzX_2t zUbOi+Sm@=eGg$hn3~|ug%M2aa=ePd)W>NL+H)#N5*-DYm0rv74pOKhl$BNAsVvg9t zS&4CRpQauyO5YRRz3yj?y*0u#<{3E8C&b?#UFn~(Y-DF+ZW$iXcP&oog9O^k81Fnt zxQ}xY1hS^I2ek-$eQ0;g6l?St4*7ZnZ7U7e{eClcRmUqSKCNap*p$w;C zj6ubnSLWC=DP`67oVgdbt~hjT*S`i_A2BJcRhzLSn@6ecW1r+g3+2tA_X5!ys>*bC zEh)=$Dj0Mr9?$P*J{TVbQlVz!D)R7Ga2c>OC5iCQW6b)MK`mF%k>Q-~BSRh%@e}bs zp_Qr`sw?m z=9k>&Rj`YEWhC>@T_3XD!SmwO%KUVJgq#OZa%iM4zl}lV;MMZ6{-f$I(`qa#mQF%K zR`OA+aT~l@KN`5pymAHz9YAVNNY~WLdC2I>-m#72_Qyp@$pK?Fm9w+?Y`pzQ03TuC znxFL8VHe?wk&&09!SLe|rU9k!eWKCrou48~T)i{r$W%u1u1%g`t&&K6$d?E|B`iH4 zN`;C~V7XoeqdFYP5(& zu6yWnXCo~WyWoTQ4dp14EMb(N(9_oQohzFoWB)zR(*KNy=`W9K)rmUx^ys{wFJ!ni zq;1y@WUm2MLJ%hl#bUztW3??ny3qRPr7?x4qC&jOMs-2XM&B)B zEJBGY*}~Z^--t?4`>h-|Lv>Q}XztLkiO-EyhI(<=7doXzs&zjOjrzn-1=)}KZE7<4 zo2#Ej>4ZGGH6PR^Sr&wL%*tKQ1R_3d!89q2chuBfX2kiATGG@f;T6`Ew92`sTXi@NGUTeMhSb1*`C`E^Q!Xed>;k_ZgoTYQFOu zzi(UCwFc?}FQ{Qc+oWPv?(|%I{e1kmcKkZ6yaQNN{B695kkCWxF4EWkp-V(DDiOZTZk^>Mb?iIQC>#RI0%ob zvyKZk| z0B z!L}dU)3h7-g~7V^t2tKnn8rQ8WmfoLXt&#_aL=u8C+y!x=F8gUuyep>9$;EdA? zZre!cE7r-g{5)N{a*TH**wlPj`k78+VeqKVf&bN3ok3Hk-u-WU4~c=RS+=W&`J{H$ z*XE}qK-9k)%&`--SaT>AIlp~tb~ZAFUZ}w@w zeaG`ac-L@L-o|X4e*)Ash$t}WK@GbhM|*Dcr?^FDT)*cUb-W-q<18Bl3B3w;>cht{$9P4u zoarGW!#;13Rv7ibeVbR#h1QaclEjmZ9L=Uz(v(R~2|~%wF2`_mNBJaV<`0*jqQA6g zMf*Lur#2yh$k(3ibtzG|(Hi-9qPtfexr#jF$Cv1g;>DQP!tKabp3=L$qUTI^J^2O7 zOk727Ckwq=a`HxqU}KVAA*o~^ULWZ0wB7|W%c=!*b{LqjctBJoniT{sbFSpp#0&yR zR?7GOO!YrHg_;{^P4z~;l_h+ew3!lP6fk%cGXsF9ybjLqpX#b7eEJ{My=Pcc-MTJ} z6<;hUML?Pgh!TqQPE@1|p?8S%CcU>rMXL0wRB2K}5C|PYN4oUhdneQcl6dC(uCw-8 zd#!c$x3BY^AK&+bD_oPzkvT~+#xw5cF7tM=6&~9AqJ|D8EhRqY>7?-P1}nvb6|w87 zm4o;lQE$bCniFI{)>Hr>Kv|C#RWK6m96O;g^NB0i@OMTq*@6epFWsWbxly@vq-%~@4=qpZp_@6-4<2K}y`GO%UL zHtt;enxB+il6JQ<%1P@i0Cg@nh_) za%$%n4?QF0dDw!VL>;Q<-Zsa0`Ide^a$%azJ?*AO0|0aIt{Kd4j*~k|a1B3ue7D<4 z9-!$T-wF;vm$}Sn-%Oqx1$S_R3r<8Wl?j;v$WRm^?KjDBBESLYZRCV^X<(8FL5|>K z-*IvOd_!9e&T$Qap<=Zby4p_>)c0T?v|gN25Bli>wyAl`JQug-;2USf1C(CUdI$D1 z_ov3vgfciWbeTsaAP!Qm$(SJNYryjKjuN%(CSv{;43^T}s%Jc)>;&HhI9*HVn;Q{J zj8ZL|2nU4QWOh1{;vRjkP*{iAeFhjtHJ@XWg}QlGA7bXp*3ipmF!Q?I_?c$WBgU7c z(Y76*5nEF9qxSBSPl($}BM3t!M{f&$X#s9AKCx)civZ)QBG@R51Jf8&DYyk4 zOk~CeFW(#>1;011|GYC+`=$z6JTYTP$nU(8IZd@V=T6ugX?--?OnsC~b!i`b%TLP@ zV|BWJkP+&@8Ly8`SyKL<&6dy-Y?SmMOWw@nSGd%T4ZGg|XQlrA_L;Nu(%PCoh5GA9 zY{@#DhobKiE&meg8+Td&_Q*)uQo2R}3@Z7I-=5=o*a6xvyET0w%+>x<+*O45$8VCa zXNJ#`2%h(z87x*U=~V@XrG4xO@10QPQ`mVn`2Cu>-PFfYA!mjfmR?B`MrY`wgawQr zBvty_t5b)gq{EkBAIPx9oHBRb{sdly`Eid$Xpvp6HF7PXA`Cxop2D1OcW+XWMZUK$ zJg$z!$3swuNC7zqR?D9m1l#Y4pH~Y8dVQi4JtrlL&gn^8@XtPFKA;U#DPGP_iC

    )mNu3g2-Y2CY`)CgmSg{f$}tye2^1=q*?`RQiMcBnltPj1Q?gG_buvJ0VR~ zc+ne3og(#ZnI--BLL7EY(7wwr9nxR}1O@BFMIw_9PW2DG%{3oRC&W4GtUsAPtQ)kh z5O?x=r(z#@-p{Y62b$!fiB~tSy>D;YZXmQNMmtOW>qMK5Y9j7(_Gn3CYu?X=7#6>x z$Vuc{y;7Ui*96Wx%zC4-VJD8BD+$wwa(h%}(wt2rZR5r(kEf579MeCqxfIyn@^tmS zD|glY(c2&2)CNlNAltD!32A0@W^rBpb}nO_{-AT32-h1H$B#aK+kN1yreJTKgI2;- z&TGR&TPB!`N4!Fjp;c#<=RR?*cU3uTxL9hm^vo0}MO*V(PV!{G3f@P$pGr#UFndK5 zoe1L5#NpI6s#0BlD|JQCm@-eR&c@e^I!!)2^&1)Yy;of5*GOQ!98K*EF)NQHP~6nL z_pRStH(qG}g>$Nw%=_Kk@(^B9giUUvHoAJFp85J)>lLhW0m8ygRB2ZMSGBfNoY;9- zTrjr8sb$zvtnTWm@Gh|n#8$RFI@{1&89-YEV=|!kEqGjws^a1$?eiKJJ!WSBN-F)* z(`D)uSEi2HU#HpkPNW2SwpM97bH;1OFtKBN#!;}X%?+x}vBh2siH>j$C!g;nfIFG* zUhQ65vbg*%OQm{gN6dHEPpa3XB@BY82v2tACS*YVJ0^`;xiQcEi?GfTD#~9*o0kOA zL`BfLmFR_Y{_~>5Ad`=IA>SIh+66a8dkylP^1|A!-zrtFR0p!lPdrz+`+Q(|J{>hQ z+a8nLjQ)HznV7v0?k~~t=|CjSL`|g26C#U7RQTq=Znx_`GqIJURJOaGyj?g7mW<3b ziF`V0swIy}xbd7$l>ONeq4|+3M15fJ1=OLg2s(;c_hVxDG`0GIFy7> zn6t`|GW%X7a&QtctUv2rUJ&D&+*cRy(OG}5dh@45Sb>B=AY9UE&-MV7&AJ2YOI@J$ zarrFAp06w8@*Nb?7F{XKVt!@53Y=ime6Ze1b2q0T&%*FB7|sLizLmTktCFw94XP+zbc z(4lj2Jih|az2D2>Bh84^89Y9he}z;n>2>jqGi&C>)Nb zA^5y54*rXg2Y(s7;>vtbj28yD)${nMKW{`14*~@SxoPygTv}&nJMDhZq!l75;PWKaC!R)rJ8#`OT3imjskTCFx;ORUyC^ zD)s^}T&oc#Tmm*MO)NyY_jblQLG>1*Kz3R=m#Xy<5jOnwV@zbww2>ez* z=vGu`MeAi~_|$nrv73BF#^fKfEYL4<6{&58Q%7eL(X8;tX08mzMxQ%Op1U(V>vmP) z=o0h>=?^H`Ks`Ur{H1s5-;J7c@Md}7^fhQ+e(_OE`1C# znPzXW^y;8jzS%Ox^x;0jtl0Rar#D=p)~+JDtt^Bk;$~SsxAt`JBNuARa9)Z(SfV1b z>L3Y{Jd2%e5K=$MgOw^*EX8m;QA9Xrdd4eAJ4vwub))(>$?I2*Zp9sMzS3sBN3&4K zA44ep)BxB8qCDLA-0#6J0j1kYkRal?8W01M{3QE!JpkaW2}Cpwh$TGwsF?AbD6p*y zEg#tBT4sL#K&2>eTDiD$0StH)A;7b>et=fB=-DqZPe8C za!2NcjMsE46a4`+%+F>SdP{#(%qXGcYf+a(xv}l@=`Y5MhyXrRYvQ}wkG)1UqAOR{ z0Jqw|d<6eq9{xK&!33Ru>+z#+3s`^RfZi_t>G3`h{DNT*sQVt>gr0Aqdv$(AcUI`U zZ?-+vpYb@PosuuP`pzWA{FU_EU3WHJpS$vsFOivQ&W6>+O4%|U7a3Jpdl^mLuO80$ zuZ(>ydIk#ogb}*Vf*nxetMRysUJ_5ycW!+~<2}rqsdWPoc#l-lOvRp3P zbI1NFYo__SvD<_%n(toDuoBFbCJl~@cS|6Q(tM9~SuHPbsH&{oUs+y_UyaY!q11n- zWary={&bFjM4cyox>{9J6fIMQGL>0k*TU_Nri>a`6J>Lm*jb21;J+Mn8g2~-h}7Mq zQ4}%X9o5WpOjtp)IxmQ%1Y4uj#%&3U;`n3u*TL6cCC21JGh8~}yNDK+V#_qS8Yk&o z4+BkaoSzJAD%Xv^9l7NCWdeRvC#tpnk2XVa#$c~2gWzVX6`ic@uAY(1tp2We$GE}H ze0D0vQaROv+R01oG__Viq>dfgo~JB`PI@sEuWv)WcqI-F)^p3BS7h0fTwqPIJ~*LXu}z%()sLpTxeBtaxdASodY_;j=69t_O z+KKHMYRg8at92?)B3Gouoc*Lj+lHrH)_{F))J8v*x}M+z{yDPtXTy(6QE%_v@kzht z#^-d$?#rm*40NYoO%`;#f0OVX#H-^GD6q=Dg0R?{jS5_DRHPNoT@}h|gs((^Z;8H+ z<-}LdfQ+@)0WXPHw39bB=cy}us!bcOMA^v^%n_gSPIu-D2hnM9QgxpSdM+punc!A3 z8z;~deuu|Diy39WUNm#H^pml3kNcbM1k9Y1tqn?SRxzmn7AUah#kL|}(KTv^f@YiV z5jZeUdNF=E!VHp5E9T*vNK_({|JJ&UgPe!xFkXkh#~)v5t!_CReIWCd|fCtO%S&+qijJh=sB>5KYGbBmUmIl_AT z%)GQR{NktF28Z|!#RQXa6kP3KUP_~tzr!@C!AMGTexh6-xxf9J#Nj+6VBN1K$eTfk zaZ{lPg&&7N4t|qt8V768hu$;tdHyp`^ZutVrT(@)M80-)O;CTlhw}7rCV@9Ne`_#& zZucSJkre+gKHLCm(Fr{iwnd*z0JD{@R^2~3_7kLU<8S!zbTPMhkK@BJ(33;>x#34Z zwjawC|poDM)+l75k!@@y^P_ z0$TR=#(NvJ`yc$M3-PwYj>i{Xc=5t%>*&q%K;#sqM&jYk4+6J>S9u9(Yn=v&myI( zxOLzA4g6C_{ofe59TxtpF~N)bZUeYKfW#wnpe_mYB^JR68Fn=a6zJ|Rbj>GtP?JE* z^;~O(CW<`vEzpFcBePcR9oZ3R0%a-lG8Ed9Do~CeqW+@l8=^w2oP&lbj$Yz^7}IE zp?hKXvkZ94q*$H`pLMc8)8(=gE{A&z(bK%%-s;QWPC5}vCB_X2St0$CY~n8&U+l@@ z_I2<7G7medrVlu%iDbmwci6wiGuv{m(7d(&{YOJ=#OTiSu-tUJp&XP{&wSD&)^0ul zrKlvs)IV;2Tw7WDoeN147O#K%{rcJ-NLJ)}f9eR}g9a=3y!?mj;n6$d(Sj3Rq{gwQ zmjC{+WPx%9BS`gSz)-?B5#)VC3n_P-^yJ0-!@9Pg_fy|{F;#?;$VA5^vD}OqPDd5K zJ^hYCqdet4`y=a~ZR}#ji9+MG!$qRdJBPl5kwqukcrn^{5myU)nl)mK9KL#R?~b1P zgdYnAx|3>zDKo818Sh%QIW`Zx@YPtBXk;*n5j#%W-(Y8(Q}UKOF}9tRY1OT9nzP?2 zgp(C1oI-&2Pi_St*-~KKyhb7Sf@1_yZJH=E^T}r%1G`D7!QEaMGnjpDNBxR+Mm%6L zwY|LrqWFC*Ls)SmukvC>%dsr=7`ere5iu)9cDMn%_tmK^&FHZi;yZn=!N=h{B1LG6 z=1pzW%4Slkat9IDoL#P87BigLYR2Mxz9K^T4qpUaVlUaeBnK`w)ZpZKBWWV%&=CfuRSRT9M7Ptu zg`E%mjR}QCJ+($GhuiD0&Lg79XFr9M{GqV~VT(yXSuK^Wy=Ob|GLW=d&_QlWax-z` z9!Da=&pr$H+}tei>M>&<97t{pU6NQe*|->rFRt?(J=L!SeAk&#V#h9q<yJINsR^RoAG09|IeANqHp+m`O7|z z_f6{@d0H*gsW6pze^FvI@`FIw2K^E~d&KOj`fB;>s2YGgqBFkW^LbN~Yq1edpu{nU zh}Her>l7?e1^duwCt2C*BFWS0T%WsV>%+4UncpOiii5{%C(vw+itXX8yvbi4MPLs} z|MfZ?2yH;kWx}UW6RE@yw{LJN^qa&pEZ4#@8sstd@GjFQolU04&io0RFL5@*SyJo) ze5?pjBzQFLb;?~be=42BowY56euMI}FYT{5K;{5^`10jHPZ9$}pe+$orv<=0oj9@< z#QZ-R@#<{RIxa{L!sLmR{pb~|Fu>OifP05lfRWsoc(>uC#OKyh^aqjX1s*1A;l@V? z_p98mXS4b!Pfgk0*C_?%c;1!Y*l>yc86NrRZqvsbYw)lPYCNU)0dcqqdRqci;013r zQ#UeGMUU?f9jT2t#IlDm?lL%c#B{{=Qfqnh{dn>Nc5id;E{1Cs8GOQg*{iby#xcSp zQAAtMyF|7f;16J@`I{6pE-xl&R` z0}~k3V8T&Iad5@Pf+D9W-t>WC{#B}#yO$P$+W``kpz5$5=5o(Kq5xiW#63cRhnvT3 zpK7wTu*cqel{+nqEn#(crTvu<)9Z3CGaItJFF*OD-o5v$lJT|Ly|<7-zA1GNtGvv3 zv-JQgiZ}b#=j*+=?OpODXinGBs*190oI>Ggqk7IS)9J=a0cGG=~ z<&CCY9yvie1D+>K=+}$AKpqTFJL}HMGWLmo)vdQuHAa<<^f0y*-D+w#QvuF4j{Gk6 z((kXoP{%CMuUcGCxOCpyO((576vT*dqAA-aNBGXU@~gaiVDda+P_EdmDg7<@%O&S{ zFHg>NzAWWjYeY@XDRh1E$pzhjGZ+3);ZgtI`^bROqOnplQtI2Ov{%ALs{*Fb@0P;X z$v@p9N|!sHq7n zKJGP%hUwk!4?ECl+Whoi%}fHD+xv6oIZdnVkD)^fwg5L^XP-Q%*(4WAF=BGfW3CGh z6&}2Emt0XIX44SWfpB+!vd_D$mda^gg>%nW-koTsp}Y*<%oMz^WNz`>%6YuKT+m`~ zN3WvoUlXT*o7D5(gBcmLF_cl*Cf;`qo1EhydiW6bh{5`A*J2iyb5#dXiFNSunYT)K zo?*|bu}V7mEf5C3eLLBy|Lp-?7|@fpnN{SmkvW0vLuBK?a^2et{JoFc7iO1^J+*BR z!$!;tXUf@+*Y5S1&rC0>fU?sW#_W4VHJ}KmsC%_4_guE32E0DAX{h_<=sSjdVl$~` zxborYj%2%=$C;YZlZ_lbQvW=WlKWd+h^Bq@$?T5B$>oO!;XFQWv6QnZ3^L8^C({ScVc4!Z6;%Ni7=WSZoew!?6 z>YqyabB51(TsiLYUQ}{`A1SQOrYDud=ZA@cxHRw$eloWq#8-`gt$163M%(d=m@|G1 zJ*j9FT`uSE2B>XcVFCfXtgb(2#9Bk+a=f)4gJS}5%6Mk)GiL}sNu1*>u?XwnJdAQYBb<*BV( zBS?03J8lHZvGElAqRUCMY=*hAAWQM=Sf8lF?>_rt+8{x;ZOExw;=|0CU@GTsLnv3e z!goVMpIusS(a zE4Alt$|>*AO#?muBG0(-hT{6qiK=F#bm!V%R2w)%9v^m&V}hCNkcLb?&k)*75ArHF!TM8%Mc-7(M0;S7FpAt+T^{(veg5&a`v8@#u+IJA z0EXb5t+L6M%;`(bw^SZG#;-(QIvV{`aR#JO@Hgq}v_(x`boy|iL+e2c12hW7x)q+p zhZwfXuY~NpK#%mUF+J4^QxiK8aU-QBepG@2uD@{%h@A2E;{md_49KZCi44PjX3JL- zy>f>I>D}w>j5s&N0zQ9vX!3E5z{$c#(i^y}R^Eqel5)qcEsw+)@6RrKL@6o?YCj55ufhYbG7kV4e zH}XPX8nlPu&Xm{HP(U40fN%Gwe(+YCHr1f@S3Knmp{mtS3~>@FSRS>~#iBNHK*~DK zCh^%D&KV}cDK9x7IBXk>YE0wq*9($Lbv@VN&->;f!gw2&x#+>D+O$TuGFPh+*+A3q zWIUzJIQSQ4)k=ptpgXIsZ*$x{se3oMGREw3#nKxxgdGz}A2d{Szy$ggqhh(O9anQk zcjuZ$F15+lH*UzbAq)v~7hgtINz=7BM-`OhX+*c1@j~l0KN#A7o8`ZAa_$)5ZNzrV z@vgQ`nqU|C-mI~UQ5u5k!qwBN)hi(?e>JdcvrZOvT)%sex9VHx`NI_CAf^$4>={C~ zl3z|Abl!$~hb)D5)EUk~;wkV;kooBfG+-mu19t$=3~6 z@xH1V`ZbFRLJ$th_sbvlKp9boc<^1P@bYJ}C#7S~Nygga68;Z74{Zs3Uea_1>`NjG z8iY~10`8>pRamV-pSXwc>Ko^&{8_m`5rnW&>s;ZR8jW^1x4G__Y_Y?s)xK!SZOuH8 zhiK8nkGL?84Dytlo{xTL@0%=T{vzLB4L_uhfsPIJS!o1;Ol`nENt}&3<#@({^}wVK zx?K+H`w85Q9>bVl&ZzGMAP{L%sA9g13_p}XZ-dEjmZBM7NDFvd&oIEn5lJeVs3Y z7)a!oQanXIvb&zCT3ybIX?e!FRFh^*a9G!jXnpK*LxK_z_4hj^N{1|^4!Y*;WEZEU z#mos|xr&JTP}J1`NQXuN58| zS`2&}phm!b8H>4CqDdAm!!XCx-7QR8W~||Qq5TlSWiPYV?gnqn9TWQDEW-5sT!xb8 z$}H}%BvF!EwBLw>x9h-hzMuh-BQ{?p)YDDOO`-SmKwOAC2a^GbN~zlQ3Mf*B@r2HL z8BQY`_3$cUi4Ox?oE*8bioDk*kVUxIx%J_nDt>_a_80M<^#4WWzr|e6^PvJA3Z}0Y zUF4#$l3M3lU5wM!=*n2k!tIt@`}cN z=d*mFbLK@JM1s$Qy1<)-PaN+kk%zd+BLx~*I);>8#b<2QJ8j2nH8#!zYbwLMZy57f z{)oxqtg9@-w>)`z=?LB#h1Jn^!MZ9P2qB!8W>xyftT5!^tU+sYT(*aLb6Q@D)uvl4 z5krsLRqI%UhNJsd-H*w4)d~$Jy{s0=KOj*`jE)`Yw+@b{EE_!Y4B2LccFxNC9L>2^ z6B51!y_UV9cklB)IA&0} zwzTba1K+%c@yFFMW_oNj6wiYMBQ9~pp{TB@ZIF<-U2cqsC_^3MW^%G`+7}RRE-I>| za}ySE{9r>Si`s7|eXe6%E5`8vQOmN{4yz;!DJU^Lq=>y-f7ca?#+rp>hIMVNQY6HW zG%9byY~%;6mv+uR9qXX9uE$*y6)|Eqb(j3@h9;AKa)|zp`;Dsn{p9r$ z1kBXA5B}OqBgN#v>zRpVLar}vUKw@@6I{9uHJ}XBT84X!9ah%DuB9klcvG&$n6c!$ zTvItqoB*Rk2n-L_S1KP4%hUjd)iMs(x-f#qk7;Y#CGD*%8XYy33Y?8CUXg{DV&e3T z51}7_WvJE~)KHuCH~FNWz@;^AZTWM=3w@CUIdsfN%Q#_R79V;JMJ;qaFB-K`o(>n4 z7v)94&vlE9t$&;(q1}$BRX+ckCS?)4`i;WY;v#!f?TwRygfq0QTB&eT?tFxp)uuO8 zA1-ODc8k^1ful0)yQtOxtwSqHrl9AvuGos>&NZ9OM7$L>!7*gzXSJlsHr_qX<=D2% ze_$V+wsB-RBfqVNwW*U^If45Klc@8N|15w%VuGQ^QDCH4mk67YNr-YSC~DMk%7LBwXv_;+Uv#vaL-@fQ_JuOx_|iH z;NtO+;J5ahV$H&iRzL^z>M+oWy?)rMuCrbMnAWocvBFe2d~bw$Bw{i6H;|*eX@k@# zhXi{rxm?4l$`xlrx+H4V=EYpah}a##gS{+F0s3pJ*__&0a9JHOy*KT+Z(rv76t*X0 z{o`=h!6p&&NyS$iR+BH7_T#Bs^1AJMRRMDKM4Gz&>#W3mdL2U1v~M*kgWpw2p19H^OoQY7`QGw=|Z#reFs_+-DdSfBJ`gn~S$#gW2^PKbHjw z)NK=Z;oBAhhpF^u&t&J2-r&>{qKzAv?&m>5d3}p_5S#BPBY|cT%4TtP#x*5falJ@0 zEK~Lx7yO|aFJJpuf}T4#yL5ylIH%wnfRu-9{$s)YkH7yP7T*AD{x|J?Ba#qJ1UMEg z1_#K_sm?$cmCbJw8rb8_+Vr%`n?5@<{CfH}Wx36xO7wp^9=#;CmKHex|bH2Q_2oWq3Ev+N)m0+UO!njjUO5DL~=?nnz+Af zBp-M0^O%hOx-u@H>(&`@)FczOw<6N%(sL|nm;Bd#kpF8ow${I9ExmtI#%laRj8KBI$5<}}HdW01r$m4z z@?pOUXaNfrOjnCMbs2_^5QCTATytv-Wx_x?PKuXj6Iay&gvt#*SRY1>_0In#LsVRt1aIZ`*k~?uB#2gwhr3nrq|nCVRAaVIlBaC)WLoVs+QELJLtqB?ZOFBj|-I-3*(HZDFe83!2M8=*|y>Dldnb_R^zLwR=OQ9)shquO*5CSUym%hqyaF~ zgK>StaGz1J87O+!ZqO2FPR`m9%)S<9`iON>qXNR#;mymEQ z&m#J=HS-k-BaCpn6yVAq80GtYyHbqIn$k9I(m+qz`PLz!QsbSrx~GBnvm{NzvN`{? zrfc)lwAip`^;gIv@M>AxFmYmcvb~woFGNLKfC886!=NW|ke8HoZ3T~R=_Pq>kgcza z{h94O&;sKh;j}!+Xq{#bt~_Y#l0-%3dHYq}Qjt!qiRq3OX^94f{BI`1Zg@)`22J>* z@gWdlW(bf%WZdCpp7=CyGx~x7fDyTa>I>g66bnyDR)vms|Jtt7PLW-d@Y-0;7{J@&)1QXF z3KDss0GWF=F^xUL7d@Y5SaFU_pr1-K?L_!jf`UZk1Q2A{Z~@IkWJ2{bVShH-Ny&Y$ z!@81QoDbdpy|>R46CUj5WvwY1Haff18R!pu)jJc2Yd5bZx9o1{Zj{GA=TPv|x&fIr z=-%DHs^O0GUI`gD5v(U52T$>!dvvY*9D_z%%=ZP1uwzl) zO{8pb<8j|pyn62zQ*U82JMikxP7bQR3?CnC%?r2Y^cy#wyL+EK6e5dTL(59%rgy3H3R#C<6VFjJHLK zYJ$Eecaw7yExwSDRx+b*Fl`b{jj#hK!zHk1OZv1794#gkfda+ZRIvs-i6P?;e{L=P zAio#lpy8;!H$ClfVm=mqtut52oo~9WSA|+uSsv_`e)6HjDA<`~65>qy=2^6feen>}wxN;w2W`!FL|Ur_wAgPk6aa2Ww+Y(W#N)bnwOA#UVK(X`-7jfV)eNMh-jnvbw5yoX1nJ3sBewJY*o>d zh*z@YJ{{vInkub860WD>p*s!Wfgu!+L+l()%$I9w=_>q&@dkT)OnP_p`XRY~13~q| z5Z<w;^WwahT@do^zwS1mg`0U3S|9Pusa24@YGC0g~GiVrNt1 z;#JW2lj9_wnVVyL(r%~Rm_LEjLjGveb*+p@7x6}b`B~KIOS#Ew@B9;^%Ese}bv*#9 zf%4aH60M}eFKZ({S{LFzrS@K%+FXxrMuJ-Uv5mUnRM~V!=_NX?G1+0th@1BwYF+iw z*vLX(O`TN`mCDJX>QDv2k(2`($`@fp^ohM+txvfDX#i-G`NRB!dgTjoKjx^m(`YYG zqhXYh&v_?g(7jJgZ%X`AX(VWJ$SXH=@%p@K7~d7fNru~BN$8*zLtA2JABeZGQx_dl z+!zy#aPap;3kIlG`WJ4n?xu zjL79K0g`qj9nR+i+QnrW4=tXHo6zEGB4xz+YP#gZ1+Y_iFQizGv65INPJ~7%hjlGYVJ2I#C$< zCbAy7FHuXz{8-KPcHZ>LGMFj)VQ_H0UgFYB>4dQtBGu}q;H)x|gGT8vhvW~00H4sFa-#bQ72h3xm80e!fawjO z3s1ZRU14;#gKbFsbvQm0JPFBVpM+%M3z@O<*+4yEg>Pp*h>-)j_yf4G6Lgsf`fonQ zz;YTV0q~ZYfW5`H1b}u6j2FYng+$47Ze`$EouhCb@c#71C!z4wF==er5r&SLPD%GI zz{dUX=c(dP*Xjis*+QXMAb12vv7`O%`BDW-h@5W5K|Ii8mx{uL(YGzVL~$AZ*tmHK z`s|Anly>d5uOYn>VqIkpIWHAJ+BPE?0EweW*|hHeO>(XP*Ju#>#sB{1@e3cznu++C zH-=}d1cm&y+Vqn%#dXgY+3!h*DvG%d0f^w#D0X<^O}cGG*7m@Xb3^PV)!e2X0%hM& z40Da>U2p#yZzM4KbSGnJcd&7MP|uS`xB2H%Mbuv0<*cgk$El}<$qm@@N>66LgMc}7 z+O`~Z8?Np77x%trU97c64TSrM#!w+xkBY9}XRgG@<*RDS=%lSvqiI>GD*w}-sB-q1 z@T0wXf~|W*Bgs<1)GKrQ^+fh3RmBTUq$s!o=050V%cP7%_VwKdc2H6O0{Ap=e<1GQ zB|RbLdl{Dez0P7a4HDU>I$bbff2G7ylb6SWc2|C>76O^>(9SQtni%(7ZHVi+^zGnC zrr3|K-ujR|m%PSB-R|K&`A3BhnQ^?D%!DoweDdONt@QuB($^12X++}aQPA@pcyuwx zEM^=ZF@+>}fPZRJ!!m=2S0!myq825#iLzeEa~zn!{SqkXUM~N~B<7RXG9NJo|A^=E zUW8C%Nu{w7i#AAj#kaE2?=_X_Ei2z5<*KTyVi>O$Mu$?ZfMaM#z9B(KAFNdtUhp8J zX>fUf9?NWqA@l(T+UtW9w}th^j4Hpx7)bL8loj*E9(~Qdk#p;_f;_vOD(N+h=hE(a zyFWxpYiP$$a1n6_=%7m`%R>@%>xK$s!J!GJDGqXmJ-(UK&LI8JZh=r z2hi1-N(w=so(iV%%i6!RtWvTuwPq#TQd8=pzfT`>NZjo6(%HS8$C6CQ1=AMWD)*_C6#`$LHOOIntP%&NEfo0u8#W(S=LM#3+uhhoRXJ4POf1qGPE z*&3QPH8}YUU$V4KL`tb5XGsyx#7CIxxl4VXs$-~>%@auj)wDf_eeTrya>bQ$ao#Nj z)?cJq#IE^6H$W2uD4$#h(Z{t9fLzdja-T&{iW5~b7Ul_&KElK#X=AMy_s7^!qo33a z<=kQhP!5l7QM{lJGHMbcSBoakr`|u8%{-m9h(1_eb>4?cPW;D)I0iqoU?#;cv!9brjz|wJ{ho0%n@9Dl!BF=6T z#x5A`drjgZPePsTkF7 zA?>1h9$Ts6A`L0YrLF{)Nf; z?}C*6e(e90<@tBqi__+pw0pjRw5v;{_Mu_{TTixFOU`@4!jJM-QZL0tg0=v|M?lqK zix)l!4wc~f4jY8g9e8|9f0XXUc>=wpR1_i4X~W>TF<=IgEeW_R#L*Mf9nlG9ReQlS zf1!aLCsHcIr89{4J%Ta9KT&QM#=(n@JFKXlb+gV>Yl#-0y;igDc5NUe#oOFQFa6#ND0)ljv7fjYP7b)FiFg7DgS^2SAc-8S}?MrA)Z%+f!o zddd$(6;n}&cCT_fEedY`!Hjc<_i7vHucSZwvq=Z5i&%8H-N#GOVfMUlB&E(dbt%QC z%6tboHl{N+RX*Nog;#o?%^>ukA(PrX)$B>^rYCa#oJEdE;T46i>%xVB7oP+Z{WFfJ z(@tM*JiT~$OwGI%e9eA`4Zv!xh!*f-KVY8?HUrw*OV+@)TA3Vwq44*!a`5d|{y+oq z&kNx>0e?iVw*ftjcR&OKe4CjP=xG4V--YT2;Db1z4v-pxnMPq1GJ!(F2F$BBZ_e~F zs*L=l+<8Vb^k@l=6#{|_{x6>eh^_w9Ye5LA3rHM>2Tu<^qB-vbF81gYjOBikg)O9} zy#Qsjsm?vq^HQ=L$b1Xp*$Mcij;I`tX)e)of?VZ+(OUHlo!AP(C6&j4)%VQ8$e=rw z2X|XG@z9mESg!%{##g&90nHKy^#4ABJcbxJfVQaf**%Tcq4P?*zeQ^9#2PRww1^69 zL#D?a)E#yk3{EUUR5{4?W5Yl=#auaU2bV4Qi&td#)Qm2NJuU9}`2H!s^8bIH0l{C6 zI-w5*bYw<4zez3u#clur$Z6W(%OG9@aJA8_Z{>AL+wRE{f$t7x<;L=m(QS)GZ?_@0 zLq3NuOvUH`fr&3 z1?PtolF?S^Km63n2Xir6bEq}1pyjsvVlLK4tqxqQL&y2ZIlb^0g|*^zKedpNN3(!1Iy`=e^lpJHX2n${$4}#yQH^?%yB_&ecez3N7KCbE(*Hv5DkUSgy9e)l+#axcBx&fQA{y%74CdAf zSVVsxnls~n=+a*Q>MteKzf(XxBjhebozv6Kw4o3kR30o!U-ZfQO>W37`%1xWbv$27If{mllY1&E6UP zaSG36wmMfM)(+H>pO{L9!~fy=PXUn9YBu=%2U7=lGXFyGoqxur+$1p`UQ)i-O3;lm zW8N9@Pp*_2IL-!4Dip!vdS@oYV!0ntr?ygk27eCw=jhwT7r@f3%`(w>A;@fr0IuWd zpOxZP!P)#h}fcV5V(u?)weH~kOl-?@qZ4`N6SYQiO`F@)_ z{|RK3ad)arJX8e2zGdMpxh0NmIz_G$9$iNq3_nOCW_hu$xbbNx&pQL5u0FcLaPx+( z2)9q}aNz@_aF&M@G?f3#inkkvV`hK$<34-UY~Aq@zolhkO{~X7uj@9^R|Ef5QdtjG z)e;a^bLt8m(Ua{dTDt5aW}b-XspG2$24n*Mj)L`DUx;QCoPsUR0HjlUb@rc58~p36 zXn2v!UM~_DOfHVS00Avemg)!ADZ@vT{y)K^HJ+9_z~St!xREjBWFNDY0KDYxPU8ym z)=XVF2sk?A&39)F)!1+I;MSc4wI!@VuEp6SDTY{`I*tvU@7+f~9Z%GwNhRq~?t&fj zFJ7|xtkrVSs9yM&(5~qcbQ zE3}_?xicqGl?KP?iwvYt{BW%xPu|{Qo?LHEj_Ppys6)IRuu%26k@aPcS0Ku53@=#H znwN4vee$ud6I)rDeDq8D8dCP|;K1g&OKZ>y_Ruv9B&1?8D!iU&$zN(}6j4C{H=oi} z>cb)&Sgj0nvuZ0pyzlujd(mO4Bwij1Nf8T zg2;drs%Pr8xl>=4q^ri3XQxIT&ft0GBPVg6(IRobx29;M%dJWY%2tFa^$$V9=2=)( z-R*?pv?-$H1#`b%qbNq!C5^_1s$t^PvAEG*PpZq4%Ru_QNRcVW<2Pglh@;>lR`Y3@iXaV-1<(DRJd76G`U7teB z*`!NRPAuMGdXlH32&3&CQn+oBP5Uy}y1GDrx~@(Vy6C6_bnXAwSlL7hdMIvPm~e<* z)`Od$W&^_x67!sb4}m6Ea~aU;e*+&gW+7U`7f?jYJUpuq`l#RWVin#Ig_XC5ucywR z0aZkV1tD%Ks?1mIKbNX zgHB531Cid$Tb?)ITo61x5Aikl-@j%u@$vg-lT_h^fVboWPs(9kyK6 zF3Qu{MIbPH*6><`LJ|eQS2i3pwk7*bl7f#+o|E6p(qj?TK4BQ1;|6_=NKt9fGkg4^ zvEc?w@>X_?RUn&mymPeOK_vIjLZ?|l2}!%dt|E~JC~NJkY@e{*c2+r9Z*gXd zZdNSb?&T|#Q2N(O`n_9oMk_@;ZC&T|+A~Ax3{0M?;xtC(wh#Tdq+) z7eqjXJQ+#hZ7J%io}a4kuK^8E>640hQYj@J;v`tA8?s!AOmy;82KN2IlO+YHkwYZI zbNKzOcR74t6|TBTkhLP1@2y|B97+1M>W$)<*vU!-*FS~VBnU0T@Q5P(4vZzDO~RO? zGkQ8{*-Ytwe?A6Qx)hAQaZKHq#ucKwe7vNPn=_w_a&($*B;z=JOb zoIaEai_!}rdmV}PQ)_C@sD09@H}lqde$Bj`wCg0#2R{B~b^C9GcmQ(p&TF0+%ySpM zFa#%Z|J(YbWF0+jT3h?4QA^3|*gpP5Z-z=G-oK1mpmI8WK2ZFpUGVn*VD7!+nuyl5 zQ4|yf1f_RWK%`6WL`6VAKzb+An-J-ps7P-D0@9^P?}QGKE+9k*MSAZop#~D-9rr%_ z+}+OiJLjJ7k2{dxK(aEk-Zit;$VP@&2fx`|^Hsb}D+posagW4aOTgec`9D2g>ej zw@wzvkHeg4uj$u?y>&I#s^HyfM93!#v?d+P3NQ>{HF@>G2uj$e@k*Z zJT;gu%8N?w?eXzRIRL19{lqrg?=i#o-S+Ib^BrBjFI#CBSyumj^I^^qu^r@zQ?{kC^$$Avy z($1ry)anKa>vFTKigYUWcD}4*zO3V4w3H4~gUnlx%UXt9NZso>MXDqvCD}5))(p#L zWXgAiFN8Cik5#b}T=u2MEt3Vqrk$bSB;;x1KqTn_WQ4cj@EMRv$f^tjV&os9@R>k` zy59uG!14s$ngnVbK~G9|q2ulRf2bC4#engfC=bCx!r&Xf3GgZ){IjN2f2~!2JrL$O z{BP}5hw<~rOZ26Hl7$glS^vz+-oJTi#SrSqV(gk=-ddq=?rbu|noLNOu&x&v%h>F; zi;TIHN`UvzhJ8QH7YFcRx$OEJS8uYs@zZW)Ht2ztov@41?goNRshLew*Kdut)4kId z1;`&bd-B6>%;s?A9OIzb6J>KQs+c|b~YK~`K&`5dvL zCTj7nas$_1&(7J0xCvH4CPuee?&38jHA@^$K;T~Oyfh2;@PaacwPbS~@QR6a;B;F8 z6oTY9#F9){AJL=5b3t3hWqzAIx~H&h-TfKtjNPHUFe`#epQV5kQw3N#pI85OgY!8| zP&qb-z>;c8O-%=?dMmagjlv1}x(S5+5(o~!)&R7hs~bY*qij+&Dtjdt6J?63Xe%>z zXwF=SshgAMmpKpv?1 z+@GZji0#m|{&-!5IWh9W3GmB-N$^AMk`wLpK3q$H$$`^!UfKv`GeJ{C9ovivoCH37 zVBM4kdbB>kKNZ6sQbXjA>$4>zkgA-Ho$Q{cL-ln+h<5O_NSqL4DTc(!#NB3@$;_g% zAYof&Uw~n6F8S`L%3-&!d5|s9H5AEdCBV&%2x*nix{02AcR%q33KHkhFQz7Uec7%t zMLCUoetsQ^ctf^X(>=p+S4ihQ`P{*B-Ty!{;s%ICkbwP~ji3NXL6r-k=nI04I{5j` z>Ho+g4&(+)&X~w0x6rhPiYG9|GtpZc-TwGX#!N+@^#divOQ+54|3#(aziOz(CFW5~ zQXFhMLLXSawp7vcoG0@nlip$)&IizZE(;tDkX-eQ##TK(T2`O5{h#lhFF2v_Tr-pB z{pjoYWDL6)FP9kiS_keWXu9{8w-`Pqj4ObeuD|Sj6QoX-P26no zsd)ghoH*G&aKVwH4BarLu4YzF)fDbN!5AF&0p1^p@wrpjXZGo9^4qQsPJG>VmaBxb zr)-&WbXS`$y^i(_gu0lnM@Vt{Hz=G#V}caBnx0`QWkOk@opErj9T&r$!5ta5a-DH_ zO;A+E`lBUWgz)|$t&^}1UXbvU9Q(cdUEcRcee5=iren1B_XcB*14-wd&54)<{uqo-Z; zIo`#Yp9GP**175gX0w!@nSyD0!?1F+xj==DDNbj~DPCS*4-j`33Ri-^C|QU2pFm2F zTHvY4^{IOrfcoWlm{sytGPV3m9s_Jef{ z3CS9tQI2Lz`&3X+4jEf3?uzK>QPvJk1&Xl`uOw2DNylj#Z!Kl<76o@Njh&pZ8E?2a zAKp?ZGy_a;^HPb6!gKI1KRnHnt0w8s6&|XgD)lmJ_8M4;TWJyez<8VAaW@y)+)(~; zW4zI^%nhg7&Zs?iKzah6YcKcfe|<1ws&qpv(VLh!*2(vq&G%K-Cna=3o|2XQk~-2^ zv}KlaWr&}cV7?eX=X~oeiKm^ouvb;zuU5+u=KxO2ugwPLxlK+p0qx61; zp9h)xRa#y0?gc0g=!;OOMWE6KcpjCcIOl-ib4kAmn)d_xuG>=FGWMlqxAWD3v>(Rd zXUi{FeJW$F%jy-!T{uFMEGIT%0A=|#pf&%+_S-ouaa(_%;t|A@E@0Yq8x99u@&F+= zy(|DLK>e2`pma&j8-E8%V?T|EKh56V`2~@U!O9}|yY}XSqgNO@`U(O`SD@2Wiw50n zj81s&ar{-MxKgLIklsR{pSZ`?3ZkQ;2{hm;l!VZ?J+Sb|V^%nNWyLNGsPY8;X3mN# ze7`SC^Tp@s!1nO;1i*rkk#K&d>9%YAs3$Hzf_v+UtmhEyY`;j}+@V9cW#Gzc<)GqFs$g9uTX(pXa->W1#1>)|e-m zEZmxI*Y6!@gVj9S(FE z1oImuvx>Z|^}s^zM$!LZypV}U2^NF^B&CAU)0YypPxR*rSoG@$LJ;xgl< z;_Y15ZntL`&>X|ad?Ko1)-b|9b9nzYi4HmRQtzGbvef!(6Ty#fPwtAaZRzzk1jgD) z{U&e)%9j{)VXS&2BZVrB3wX4lwmL3qlgYwrqx*B3h*H-H1*NTch_QNDunc@4l zJcU#n9&r?B#tMr}w8nz^C$v(#q&j+d=u^C%^K^U#22=gFrvsGpI;B!hW3L<8a?Y2t zh|P8F!sWpszX@i(D$Ys`^GeU_BM;b<++%*dk*RbwnG~`su$q6e2lnrjf-$==8j@+R z7itUe%NKuzo5_f#jkB*dMhO;&R5F_pJ9Kzf-6{~mWgm-toVwfA>9C~4f^9jga~`lEG@p=qF8 z92fq&2<{~=|Bu_V8vFBart5#T*Ljf2zwE&L$Cg3vQ1s9_GYfTwB}+j}4aNXgD|z6UjG znrq+NR%5iR4N&wNd76x_XVfqu{@5l2M4DA6W89ol#|w^5jL6--gs=huw4L>K!me2k z5e;_3$elELpXOx0Le6|aq|z)5uNw%ZU$%MMZ^olBTFyy&Qab?-%@!9QCOcF%o&wkf zO6otpBInhn{#NN8BeG#$mRpds_GVbSSSQLpL3H?}?kRoKmj!sH=FU=$_q|buEh&XQ|Wk@v1^K6$$DIV9z0Dm2To?mV{NLeMnUK3c{wEz7i6%V zHLsp2S{!^*A|YhW%Bvo_sHm4JOzw0p!r7-9W4H}{y8c;FJN@T|V9t;u#>>^!a>RO_ z{aw~KAW7gzuhR0nn5IJd_i%H)=+3+Vk@h36+@V(7Bwy;IO z$h1JSFu?Z5&p5aEv-_tqsf#~4iEp#E>UWn82Rde;uigq`=<==Y8Wz~tZkjMJeNxIw zwOlZ>%!J;$S61>1{kAUx25=dwYaW*Q9arngRopMoID{O$#y{y*m|AvJs7u2c0szGU zxBmq9{2elp^3|0c?b;TtIZuEDZYDBI*cvP>N-5f{(Mpr~!C#a-P?-_DfJ{KfD*vqvdDS6cK*e`e?K07FBx86W# zu7es~<&*z%yDNt{r?Plub~M&0GFgU{$$VR_#n>G>GmRU+$R=Dm6-aW_d!%8E^n-@L z`(d=X(D+dYxAO5iw@M|3A&1^nv5f`NfTx1|Y?`0mi8a6f zkYxtFn57tKqrHElC%}MuQcp;@^ocRmxWMGr#=w5%YMg&CTK9;oImUlpzxKpfxW2^Q zzJIPXDb}W8EJ1iCpz|^P4iaG3HFI7yw=_t^Y#2*>NANxKad*P@>AkjYpqCFL{7t}G z`LmH!rpv}x{(gv=?p*d|>zE6?GikD*Ih$&kF^No_*&UhGBM2mat@|Z4TPT`E-)hxY ziYV$SHhdy0z$!&8T!nAP!z$V4w!n#Y=we_7N(6cwnIXmxjX#xIEa@i?fe-JFnb20q zDe(r6RpcUxr-69M<5{ZN3ku@{!H=yzm3J}eUh;F!w(!HD7cnQYS1y8J7aL(2N{#N^ z-D8C`-2J-;c2I81?|7y5V6Wz6mZ?XiP!4~(=ppRVjUSjTolZvNC-1`Ae}ZF6*Dsr1ZDOEtlju?g1L!8adgmE0-_xldT0l(12Yjn^R+Ke@LHs*4gHMl#XPeE^0v@BjWzqI%}`>zSTpbtn5ggeGv=#yPc z<-?XjDH9-j#R4c3BD?rkpTb`wU%=mlKie6D5Kzi?VTa~WpdJO$jyzX&6+~ctMFZwQ zDbc%^y8o+VTG*G_-INHW<|O-Zh^b5Twbn|!YE6~o-Qb_W)9r=TD7I+%M|cFB=oQB7 zD|p+$oE1K{2dgcx6KDL8^4{KM|7!MJPJ_L!#;=$6*x$@V9>vYDn~$_=Vs!(w$7Mls zZS(Q&m2?T;QQnN{YNdQlBb-4!s#OJ z!^x$H$*90;)i_Y6sPgsxlBADqOjqyDe%Y6}0%vIFAmB;cKy>{kz-Txu;4I%t?frx8 zgs5kHopnE~+b?g3rL~^6>m@fCN%&fYMU-R7p5eEnvs-zDE(8oK5?Jjsd=TKNgqP#R zR%{vkdmCZA#+MYMjS5j)s2=H`nRGhSl5HGGWog^l?pvz7>+n6bg>x*BQ`CSNxh(bv zpg!(Ev2F;j0 z>S9sb|D4Th_b3}g-^b*afr477;e!O5{s8&94FRkEu^Zru|KscRzoa<=|HE0w+5q<% z(DGmh8pHNW8~7(`9{?tyX&*v=GQ&|~f7s4dwZOpM(HsCc0fTdP0`G+dh&lT&^D8-l z_qg|PExav5*worplYa48>%ap+7k@iR$)5k>Xh71QV!-4-4n64a$AlWbv5d_=55p-& zvKO{aQCtnNn%B*~SY- z!jfhj{BI5J@mDiL2qpW?^D3dnz+glfho=}cR4XGsrq3zcy7Vm&u=O^o@(y>t3M$st z{!o{qurD$%U72k&NT~n*Lq#RWT$=Ip5E!g)h&DX}$Qaas7+$zqET8FWjpUtN(L7Ixh+ z^NGCEjXZUicfY%A3Zc+*>zdZ`@0mv+)OC))qW<$aB_>7=!rK%)OuBJDD6caadUYIR z3GKv#WgU$_G?(Mf+~e1O^rSH8aRQv)(7R zs8{Nq6PVrE>{Yw5k2TvH%8svPlKu4V%mpEJgpPJ?C`QmlcPKC>q&xPe5;NIKT?1L% z=q(VdNjg4uGVzs}$vH@w&Me6Ke1_DBvcC<=AlEJKz0qg7YQ^FX24TVsq}OXb{TnR5 zFWkR)NY8Ngjp1y_PD|%+GW7JwT9`!Ssix-__cFr#=g!)aqjIsov=kjNntz5hug6#% z7}j*G(kT-NWc!;y@W&fqTTdG)Fe&*CC4&&I(+{|}AK6mSE}t)KTa6=8sHtZU)pb8rOeV#R)e2Iff0bw?Q+{w* zD0R_X%LV({>^T`VO;*nDZ&rT(MsV9gm%Ou~ooQ!9c{1T<{!ItZ56)e00kmac(+V=n z&o#bm6FkM}72>&Z4xdg|_pP;E;H9HdXpjOtCOR#$fxA}G86{`78O!5mAl{C3!{`U{ z4DSPw(M_2bXPVP|01+CtGOPFp4mdmvBH$h>!Zx1k@|I%kRROlAlu^a}9$2o#<5vJw;u8|8y zMDeGnoaOTJPG8!Mh~pisMg4*nS3rH@v+Tnyqg6a0^2DgV1hexNW9GeY$doE8KWCwfO9r;xLb$@zqmG^)ix z13DtfWCYu@*3RpBcM`}KUmm|*(fjMP8h z(@n+?2}}M>yE*iJ)EA$yKKc9Od^q1Pu!7S(clVqAfzK%8c!gI36NBIL{_n01uh)^{ z&j%>+_=3tfQ8w6&qeO!+A*5)MBW4FT73H(6QHh%iqz1gkx-gH_Rt=@0D%Esp!DWxv?0R~H$N0NwuIN&ep* zp?}wI1gDt0$(S6sS0rIG-F^|eSPV%Codtyv?a_5yjU09dbO?;N9 z^5|D(mexKdoi}nZl)|Z@wpdL<9|OIKRw*>aV@zn;wOudPyHQWyZ(UF42$_(e5Pe?z z48g>e%Br-ShY2C@DgQes&ObYL*k0IAi^rf37E`)zk%O3l%A*E&BI%f~#dHy3cdQR* zX3f&`n;X8%`(NP*w|dcT`GT8_x3^sk(>}ON(F-Il(qq^jv;I$K&;KX11}lY7q{Xc#iS;xF1?QWZ6)Mt_ox6_ z*qcSR%+0^Dy8MmZ<-fCU54((6MIQI#AMH%Gv-}KDbNzz3exO|iL$jum=Qy!+E*R$a zuc;PzUyJYcTMFNI+K4;>5^M&SHA8~fRM3olJ%>BA(~w9Ur|Z(@{;?W;rENp9TB*^8 zP;Rad!XXW=XC3{l7=i=btui0?)5bARD6tdkHPpffSzqx~cmJgYN{rGshx%$*X6u>T z^t{otP6kTrm@$na&X{_;p~rXJU~F$Cf;i=g0wLY`IszS_&Cb>ciKKY zaE8&eHl_?I9<3ZXPjgR;gT)_kMr<~|x{edT+(Zo;V){InunUoCg5d!I^W+nrMV_V3 zGFmZ|+f2NOp(@~sY z>4KS~yUC z`;(E1O=HezI_V+!6s2H|S>Ndp>Rh-ihKj$tI$Lfkm%qXOI)C48jBieWB_?bUOpO^- zMrFd^dwhqb@40I?G(D2bPc+K6eimPsYoNCI`I(Lv5T02)iV{Sizzbg%i z2w=$daeCowlbeRNsR^WSP0{8hm`PDj-_T07d#dHlQZGw~Rl-2Jty z2{SAbifHpMd1|#0c9h=*!dpJiH|jl(zW>(6Y)zTu3!A7xbATL1tTaFcV}!bxpI=d^ zfuTX&R!jB*3!2yQyb*V6nerP6-A&#}$J6>a?@BoyEkx30U8^4RcpgCPU+PF3tPGPb z7%s1)8;eYIUoFY~^g;aU_4!{!$x`1=1cRY9Vusj*bq>OaoJKlT+O9s%22IDL%)ktS6 z)7CRep6X{rCBg5F=I%VPdufXzj(HuxyQCRmY%^;>Y3h^Gh1$}0CMh;tGc(X^<-f;w z11vE5| zd1O~2f}J_NjWPacuBFOv2qquzZu#5o=-#H{Ct_pLp~a%&7tE+BQ)4y99ouS6H|?co zi2K9V*bV~4X`>6sZTyIz*l_$;#Xz*d3R`!}V4&?Vu4B14c}63Y-bVSg3DZucv?bv+ z%gxfP4;e+**utUJZ4Dpz@b^sY;nX;h6$%>6O`FEaR++*Xa|I6Ck=gRr1dh?p>gSuI zJ?&zUPbmb|FPUmF!B`m#T^EQdh+qms*CWl0=RnKK(+FeSwMP#Gz9g75=Gnos5js>I z93g5Zp~F)`RRoWZj<8QLZ*V%7c{sIGew|$qrRb$4@_F1q+|axI6G?$(3Bn(p@0edO zSp*0XSi6a?U4Ci3Srnj%Aw^%emsPYY$J_~!DcoTcHhv-p>#6@dz_>oY`XgrjdAwpc z>s>+-Jm#(Nl|CHTWtPVR8%}7vHE>xlJWcRzfW%j)+nY%B5@R#de!iM6j-vaq^AdKD zxx+^KmqXbp#6@U{T~DW_9q4W24zyjz1tMbCBehk*VhMZ21G%sjKXX}$I5NIR{dxkr zMM`^W8OF@~ZsRnYTC@mcD`&7YXfn^@a?nc~bXVkt!1_5n^*59CKw)-#jfthw0;v`Y*4NY z8pe~N;JYUdr9SC>wDMG#M4L*VxEJjs0vjiaMY^JWdk>M_uAX3THMaC(N(3=+}(xE;?6zj<4A3$zLX5cOV&N zdEY+XVQ^GQg;T@$t{jBU-vdgGRx%nnO|1R~`X#;p-NKt! zMQ`@%+;0bvkMiM}w&wZJ6y5x6U6rMqI*u1giDKnFJrg;6-rn_aJ1xpbae_AZdhH18 z8bM}d!-4?Rd53}#)1ry?j%eo!aQ?aKXZO>hp$uV3G7H+n zB&N>q62WYP^B{D2Tx2UZYVt*0Y6%!kXLu|m|S?NZUi&tE)k zO?-0RS!wRxN_wR!7Jd0;P(uH0s-OGtABoh zjR^R?cH`PLBBE;~#KhNckdcs)k&=*--Xf>GeT)1KIVtIF+S_-isA*_u$SCOOX{qTc zscESH9OMci@ExLSH?Lj0Nqvj-7WMyl`~8jJ&JBX~D-?uR?h{X zt^vLM)8YTvu3QEBc%AshO%hU|0qi!x)hmRASBVJ!^crX#2z*XJbmto7J)tMpskAJJ z@4He9zl+bg!Tz+mgGPG<#UWzp_WmXbEgd}rBj*FIhul1(V&W2#Qql^~6qS^ptElSe z>ggL88W~$z+t}LKJ2<*~czSvJ`1%EZ2nh`fkBCf2{FIcO@;NmvH!r{7Yhh7wNlk4X ztiGYKskyVOyQjDBd;h>Fa%_BJ^4HY#((=mc+WN-k);9X^==kLH40C?*N3JUbgnt$5 zKPCGox$XdRT_qwSBqIJJ*OjZ@z>Dw>(Y1R**D0T95nH%Y-4}j$gZgQFPIbpkb`fn9 zjiuWN2`z`{5-0kPXn&FHzbDxH|4)+rr(plDT+;+(gjaxzM|g(-M1U*#KiF)9TfYfH zp*N2;>2Z%n_YFE3)%zk@_c`ACUz&R~w8MNV1E#VE8qd?N$FlrXikChI4ETzpdOdg) zm^_Hl0ZuM<3GQlV!w=|&tk*Qcn==KqkFb_b(5gC0Rj(B-;&uF>Sm6Mo; z-NMDF7->1hR>zTPxq_C<6w=d$%xbZ|#M(uA`A2h$+KAtdy)AXrt zxB0+Zbe`P)V#JiEZaM)6)V17#v;fh$pLjeXc{88**F42#vOJU7cC#+hCpXZMUa+kE zz~l4&t4Os1Pb5d0wR6|&hYiRByx=jkHCrCRj@d#5cV%7u32rS8*vs!V9qrl&-DM5_+7^_k)hgG>fl;^Fti8b2r8OnXh=b$fEMIttE-}HY zDh^4mhYp30N8}0dWA)@&+?KGE_E7(Z(U0iTWW7F9a>q|7H9I%dj~M3786#$A8w>L-)Y(dVN*+)oOqRW3 zs7#rr*{L2qZ`eWobyQ}@$@&RpUG@I?Qs8d_VO))Og;S68a4Nd;G;I9j`AQ>fG~h|O zx?9nj{>q@Y?Rj&>%KXQ`#DT-dJ3SulOsJpZ&Rj_y?E8h-@%W-y!xzP;YEt|rnAU#W z4krBh@lbiA`jX1NF5e zF4#sqP#g(eq93PVd-WOmP2E3Hky5#>cfk?itUsc{#0F&R3JjFmF^>*zjuqv#Jjed< zzOm@G69}Qr2~3pL#;Ud;Q7+E&EOQbS)1mXzYN-hvY%(mcJv!u;U)clF&l$yMpwa3w z9KVHyk6pFVXDCt|RPOJiLHUEn%3-wUXQs5Kk;<`}`zpFgjwk4p^bTWG4W@nNBS7*M z8t3FJ3Uy5(TiDaT)mD}wlK))ZRz}f3(n0(pEvf01K0cFg36taN3K8;o!RK1lz+U52KGlT@>ryW;RuHyH-2c9?XCRX> z;N~k=I=@%DGf}7+$JmmB>o1WPACHEm>4dj*%eiwP{q)9RrF7>t=e?+ATLusUY2Shx;utPqD zAm(xEfi5y{Yx&5@zY0!2bs^aoavm7;cPNhw?pku3EG5xGrcO!ZjvX~xB{(FDn%2G{ zSZ{Xr?hIB(-cO|y=DJuIZevnMJ;==Y!4WIr3;HmKJRkGx`QX<5z3a@`9CSljU|6o6 zvb<@VS4nfXePd=_mLX;URZ||`AYtwE`Kbvj47p>@AkHXCwI}ZgfOPs#WDR_m4z426SMpsbxf(#-GF_1RQFkS20as9AS{@iLVQJ|F8i%N^OdNGo2R zEvz9vspJ#E@%EcXMVtX@aO>h3o#c;nZ;<@gmP!gAisvC#P3LQ={_`pM;18_z~+ zAmP{vUvdgk9k%d++8c*sweKOj{hmxqFLZ?$DpggEIF^%}eY2PiNHeTvMDNsHFdnB1 zekd;DPLR_XJg=@Y*`EQJ$i~7JyI3_U0ZzGv%gg{)2`XiQ?y*iwPKS=V@vO~g5Yfi3 z=9k?TsIw1A$aNs%!r_}D>TaG2q_7y^^Vk6r1~^t4w50l*V9Xl2DDj)X&J;ZTOK=0n zFpmF%X1lx!L>f@QD^6rR)(QC!4V7`+;EU)u+;xBuX%j!u0R=5~T|QX`U0eeQ*Z_mB zpVcPglH1Ma`}ax>K+zZY)iHiZd?^Dx^#to-UNkGE%WaLdF5T`2v%B~LZtV;aS&p@S zhJ)1~rEer|TWqPqOy%;ZXU_6!0N8faJT-E?d9=*PT0KMsBCe-5lbz}YJ!XUz8f~+& zfxCdE1}49Aa^TQO{c`>; zT440s#zgxU)EXj8R&WJ;D=zFJgHfs6U%Y@!2V;KNyTmb~-8*1|M@E{2=h>V?S`qU0 zsc*m-%J!B=KQ_`dK5a1hOZI{=6gsQux;J&46eWl>l!m$Xb{zRQ?wSoMYK7u0fBA`b zRa5;Kf6QqfL$XtpN%)5PVPL5LbFL4S^M?5`XI5+8mCpdqmtY@aO%!oAg2KqysH4zq z)*<_KV;!SsOqO@X0l%{|86E419)L*{7;)%#eN<`$?RE$Pz}MNnj%AEuh&qW>dou| z9BEwq>|_m@R1L%#0prV;pD$_=Sj`c(M}Jm%-dfBPK)L1xe5xnMywMei#VrN2LRWhK zGpw=8)MMuN?LvD1C-g^O{qGCAD;q7R^nKpq|qx&nUJ;n15!^#+2x|4Yo%- zZlIaFizYI|ZI`RZsNf75e}TAypa{8`khlYr?7`c}=|f?&zP$KiP^R)JGXe2D&4cvU zUaQf<6Rq!@zc_rxm4d&nGaO5L=?Vwbn(O9$JxrXts1KAU=1z9s1DF;v=1<|ayoKL8 zX}MrVuqt`m=ie`o0-noOS04iRPfvU4gG%4aF(~FnW#L5%^-5LE##+en+NYCCO}ZUl za=JUL8V)liz0xe4tk<dq%b1wbEY zoWBW2rFEjOHO3Dz;tJoQfvn<*X~Ssn)H)0cgN$7gM?C_X85F8fOs4D`C+#_tBa915 zl-IaV3ZM9UI(k(i@F$`-D+?FIL35Q`0p#GgZ!2rDJ(F=&27Yqj?>G=$ROfP)R;R_5 z+H{+kv0&cu^LS*OpQ6cx6aTGYtPT$Amrv9uxnytHn@CI0o`8@4h1igKT1 zExOI$1YKqs>e4XD`r94;;}5=MHV@g`#2+ez70QBJZZye3leTRf46Y;e?oc!@@EWKk z6RZ@tHS4vgJy^${j9r(UnQo1vT2a7iXA~O^JyCKFELJYwdc$0D`843{rJDjW*@Ih~xA7B}u zd4l4CSVycwd0W)g1(ve7VkLt3AMlJoBEj?by6*4F{31F47b`4-KCF6XGkB<}#Z4bP zH-vDs2iv9x%F6SP-LGqujFjSlHGYyQbAt|o+ROxT)Up0e?GJpkW!h*1ADm$yeg|ur z*qgsXB>&K=)&ol*UTN}Kiw)x-sKAX75WodRvBema_gK52w*J`dg(MnX*ZUy1oFJ2YY@N9 z=s|1$l|^+L>#f(IqJ+Ti(YEEiX!!9sZhvwbg_og78tt*NVVi$g)N{IyfwS*Rf^QnI z7#rHdT^pMOPTOKg?UN;I{Pg)}4~pj(1ADMAf0Jh3+jW{J(Eu33E4K>PD>PR1d$eP*iFr4ca)tn@`g7n^V)HKAUW`a(6(x+^1*eV76Dp z4sEU-?%Er5^DkcL^Uw8j*Gw7w6d5OzJz1^W=>O*^&fZ&WV@Tv4u5tT7K{fl~{j@nJ zR6rk-fl!a;9fMMk$+x9@@4I@VrGXf%xzYR|TF!@iMyw*hBsT^U%$wrYc}=~_;urw% zNjVhYvFSUa84tzF%4x0Gfe-lr#^T_p?o3Z3=eZ5)mth!haaUO#$zX{kJr~W+rXSWUTGN|+gN4m+{OnFPrHlUgrEnC}a$sFzn zMOlE~)xhES|b# zFkXHv+8(=vUvO=(HrJ(8AKp;h7@QgOE(I~;SvIptae=Nm7--LJAGpeM%QP1K8zV&N zlU^iw-{F{(tFqfIpbu<^+N}US0sORaU>8r`w~l*>nsz-hD_rts)9UA|Ds z$GUt$WG4mbm8U;M551a(=50Tf!1HYLU)PHX3SNG|zO7r;_yUAVl61S^wA#gpr%aSg zcI)H0WSiQ&g#vWk<7sL_H^ zq3Wy-j_Zk&X~wgdfR#HT*|(Q%QU{albEiiKbI6v;Ubx34O*DU>oiomFFCB7|pyMx6 z!Pfms8h3aVrK_|8F+SI%=2m4ezgqENkm~wa%i&<2-N+jjLj+r7L0C%;NBK;ur?8ls z+e<%wg+i0d+`06TQXTyy%leNi<@%^q8!DC;*qZxJN61OVWcjy+e?(v!5m-3=g)lG<0tC6d?Ghp-d zQ*~pEqxu|NTpVEb_#QWU^*>_u*H}u~d!dKCU|`w`;d-26$KzK(=QMy#wDTEn*<7{I z7gi$sdIzugIs4)a^!AJNZKzB*)vi}u{qo@M=Q+yDU$~;!g|kGl z6fB!2Cwz}|Ny@owud)CPqkX@vq&s!0(onM-tM71iEuIL{^v$dlNJy@y&9N!Qc}^76 zA=#1qAH=uAlh0`PF)>PKMtjcLu7Dqnz0d&L4b0aMepxhT*_{;U+~#Zm6GV=wjaN3Y z)*298?SB3v_RPK{V)iF78`Iw1xPkWY5kcC+4g&0U#$+&f(>OMfQSLO`-9F~bc$xME z-gB4Htji%f1}Bg$=I`@5GCA;Vk9HV(@l(!*(~F;CZ`Akyr2$pu_UdH8v`28Io`y3y&-pCyP^_rZB8#PbDVAK1lhtutK*TR34RN z&M*|zc4Iz7GeU5P<$9jOh9{`NqQ8J;N{&}WR>7GA+OAAInRaiIPl7B3>>S#7=;Ios zpke6e!;`SK+tj`TIg}QWLe0DCixoz`U*F$5n=Q91ye&a88$;%5JrUry7O8@BI#$gq z@(ER|zw`JrfU$0>Zla)e)esh~_OMaqHQ?T&&eqAhnQqN+omQu7Tqk`*NxJ^~i3)zf zyBc`n45wx3N|j{_YDx{+Z%;n$W#gCh+A?cZ?vF~Q3lR>qqD`sv6^Y~6$RWWgeBPXg zug0ero2Jjiamp``e;55}wOs0;50_sr=hryEicbB$C0axN6Z+@NLKO!Z7&aLQ?R-La6wF0xe1)fRNolx! zI!qnM4ns+$?Ma;7wX$TE%yh{Qr{D)^l~~r9D8w{dXT7b@ zUA6AkIw(wey-!-jL0I&f_t$`NE4q1rb|p!0&wnwKcWI;Vmcg@8i>f+U==6kU%~o+e zJ;SoW%-QN}kn@6n8|CJmZJ$6d=nc?nfe#el9wM=n5-fVag!!`7oZRNTG$U5s(&DsJ zeE%`yL)PcZtRB_(9L%)E&ijN(=24X)E&(*?Y2?#(mAlPI*n@^-sngOm_p^GL%FDwc z%unJp@+a$Uhug?Y1_~^%`3>r-%Dmfrr!V*Lo8=E}#}8kd@#%p=WI#VJA@77QjFR|V zSpBE@g8 zl-p7qOi4BiQl7C8+2wnrJt*>dFpZI$(?6%i!ISOO-+yec;st0e0q>DLqeF3Sot+tI zLyrb?9avG|=;KIAm-ZoU+CVM_eRs_RS>1^XyP?QvClM%u1GlvT&VUZKf-~PNZ=yYY z25v`->ErK9KRWU8%gB>za=7eu?qM`}W)1Rd+Ty~GG;u&n!7XaOC9?}_^3TA_Q~JkI za{mu|ZyguayY3B-iUJA}(jbGhq)1AQbf?m#AT1!$ISSGxAT5lvwB$&RG)POgbjOf` z6THiP_I{qd_xbH}&ilOQpXa<%L;i%A|*rHapQvv=tB9qKr|^GI}<>mPwfx4(SBu|ElM6Ftj31A-VVk{snMS_I^Q z>dP?fjf^~_Xr$rc3FOOB14bhjC+t}4wZ&L<2T+LX@!vx9Zc6AYMFTXKJ_6Wwtu7)b{}EC=o+IK&o_bGDVxj~f zr~A`S~D$kw1Uc9(yF6#Tl011=SD)Ls-5uMQ+sZCclpC9aqH|H>`pwGQpURqCY z61f$4*RdfiTw2g>rX}0Q)uVXc0c@APw~F2Ad9CJLAzePSgpc`9K?30Ga2`G+plsW? z$pPLFGBCq2Z?taPz3vFa2l?{G^TPHimzyNOOjn!BmwOX#*;ALdTG+OqJOEa{qE_sP zzFM+HALlO6+hY%9Ue0~Z*eCRkfmZTPlXZiL3$Nt&;s#HR7Z;O2#SY#@+^>TDMvIG= zr)RWKd>bPVek-EE%x2cW;HYJFM!t&LtQ$~Y5lD4h8F;#TqDrz4aj|>ilL9@S-WdV7 zX*Y{sv`^4^uP;H)&mf!sc53q`Zt%P`;2b#T^P<-!NGd(<)CI^e%1(kb$l+$cL5GQO zCr%258<8zXyh&f@9y+Fy&tHj`!11QbCJuTIu)u66msh;$$x_GP9TRnt7i7+;%vYps zJ{K!UzWE{hU2E@Chu*qUEqjWTNolL&h6Xk74xRT7$w~HW{C6FnINv6y==DAbXGybc zDGK|MBt>q*TBo#W%90qML~sSSs4mB#Y0q$E|7Ut9;`l%RG(3A(Mq+B>a+Lqall#b+F$c5bD72Oh*=(r zp%#yxr1P6oD>U*+o*?JxwdQ!AWnG_U{Xw~B`T`Ei2^dj3lWM4|!e(Oxh1aIO)EHKr z&qYYqTMYpF#I{M?BJi~QzZ};l5PR^YsU}`PC#;MzA8%3tPwiQtmCTwQ`|1U0&_5*V zyUzn%8Y5q$EJ=4Z{m;z`TetiXk&Fz1(k3p(#BEtLp669_WlDfS8vskxGVY&p? zfCB2sMg7|2nkfMSYn%lk)mr)B>B1j1Rh&KLTBn5%ac*ZryF}DSX$W96Zg+Ic*ofkV z4z6b1Vh}tXjdo=3=n9_3bfLi@##a%b^l3f zwd-Lq8zKo}0#gl!43a=+4Lb$1G`iEpS-!x*U;^oL^tj>F1GC`lqMAli%z?3}0oinS zeaSBepN~g`!%LV1KL6r{{o|AwsNiAhGpmoX&#@vPhJ`n$d+9kvV3aFw^2rOw^XtmOr7g`AF+y_iK z2^N!!_O!V82|ZZ*hl>~|LxJSc6#z%saI%1-gvevyR-r8lYHYFBOTi$QxPNLnYG4#Q zooI8=X!;d#T5&5ZnYoOYxgu|c*y2VzMXU4!cDKk_@iE$A@p>`n|=ndA?{z@n2zU*LeOTCTJSjI zK%g`2*$HB8z)l5n-(=o4767$FrJujUVDN`wl`_rXyY497T91+4175yTzWt_I`Bzon zmR`YW=UQwAW}nv0jl0Z>n>}ig*yheRZ=V0CFH%_yH1n#3cc`J064<$cLW;xHhTy9> zZhHg~b!X5%l+<2Syz`yD=PyKPITih^Ms+v$-uo2?L`uzab&I6G{1;UA%Gc9If>V6( z^jTe^+4c|a`Gr0rHF{IkzVo!R5x%!`$EpA~(7WcZeYoOdscu&I{j|%#_AnTyY5@4A zb~d%~A)g(nCWC~-)axo|Kh`#W_ku1ukDn;OF@7?*?a2Xfr-j-qw7UkpU*=yIPzy;z zAB2Dz1%H4)Z*%6fJjR9pt>WF^zp_4~?AgBldQz0QXwfHAPg<``%6BhE#;!>j8<^=( zkYRIAqX6Nz#KZ8KsJPrOT)#w5Y!snm%;&TK*~8IN@v`58^zq=mL(ils-mw|EJTnKJcz( zvuS9#53GBKG@(%OY(23Gx@4v$Arh*WI5e%v=fN9jxO0BScZwq<~qP6h~FwOsxEC4v2Hf4T0om$<0 zJDmW-_kSz$AUF8YRuuuR-O=qDlzN6w-(oe&Lc!#(i(>?%chdaVRnuoX`{V-Fg3>{* zNZtDt3%tiF$>y8Cy~kf)uT1}R8+d4+yfB~d(jfk%r%TX~Zf#?RPr5&N&7#@Ds-2di z8q-B%n=gEzaTc_QyK-!F=0pU$&ZBtjtKgM5Rpiow+g4fK^u0Nw{Y9?6UPs%owN3!m zz*Sx$I>Vu6*L|&G0%6(Nj&&M*p7I@Le?Q)jcS%|ku4nq9=fZ+~P@tRLr@Sflftg-25dC7*o!(R+B1@Q$huEwqF+ z+-OxoU*pZPGFT|#$j6PX>YANTKGa<7G}bY?^KD11aAwamveD~x9n}%g$k$)4W887Y z-a74tXAKMGIcv=8mkCLdJjm&Hjo)>le%8=R@(UgKtWdAe)}3TizxAp`!{)Egtek?; z^<{Ti4E)miMY+Gm#+aprk+^E=g=C4pes`g_Ml*O6xs%`E!|;`7<6gfjS(~h2oM4S< zu3ep8OEsI@Lg{A8v%+bHpB1W&ZqBZT@bH)UDo=uHjy|@f&{(^DcO}QJAG+jCEFLPQ zE^)M{qSh&__MO-k_+Kw%J1e*D8HqO!TM#aqRBlmULzd@RF4N4Nn>)rJ{clK79mZ}# zGJWbb`H~$!7<_jlX1n!WYDEmHFR-jGd9kYj_ErF%0c5+!$W__shEZa7L{ z4caz#*bQ6vfjDU_SS-%&nJWDKGP89=qU_1}cTHk+ec)ihy$PgzBXoLd&-@sOJ!BjP zc*|oYq`{A~MdThny2OGP=A^YAh+b0ajy?(776-Vd_mG^c|CCljaIoJpV7d2EVC!P? zQGtn1n(zEL%Q0`IDJ-l>?iMO&M;)DI*meo3X-~vDo-N{50evNwok9U%)esp8c?D{hFQ%_Q_UHY!tvSW4wU!gRalb^?;o)gwC z?3ri@YKp%5{AxE_t;uCGMyxcbJCxEuTgG7%8d)U?LDF@Wifr?*%~j~$IndX_uxpi| zl4&Mat8J!orRN<_O%o%nl!RhlnqGpuIGoYv5S9UfM^5T>q-`qV2~}#vr&8vEXHnim zXyK&Kv$(CWG6%zZYVyV%$k5LX(lJtf(TJOf0~^GxUIEDT^lGlE`Etf28V>Oqyx>T{ zT9N&rhPv9ezb4#UxHICb?-jE*gkd=!!1drfY+I`XN;D#u#Cs6Jg59qPB!xZqFlzAA z3R}r;-7xZHj<>kGN&%3jT50DbewQ{b@0b-$;|q65DxmWS$=dK=H=k>x($`UZecg;) zW2Fb~=olMEGv+hgs2beUpgD_^_6H;ph-Y(LJ1HZfv`+`O@y{q3e5pyW*u8tlBz-|N z@q93zrE012JQb>XB+hxw`Xn#NF!={=Q8!s>hPhV73%asdyG816Fv=VxB%tcaM?$$y zM~v}xu5|Qz;Hmsk!UyVG#@q5n5SR8DQ1gYL7|*Xr8e_u}Kl8BB7Z{ni9v@sTYyF;I z$*wO1!#lu@3s}Px8=#5`^T_(o&KcGA<^4T6eNv{~NiMKskV85MPQt*MPl&LlL;_Ol zKm+%&@S4uu2weQ-h#PQ)S}j46up6V$4*6x0iwiL31_xk`-EsqBP+&e#uH?n#%#eXL zIpW&B{=HfI$AC)f z&vArkf-K)d;$tvzxNCO+A4^DmK6I!Fkpw=33sqd4ryNy?{^RZJ{^?g-cN>%&4OGzJ zAcYR~0Mj8LC5CzWg$mj4v@g%sUyQ=tgL~oLae+}L=>`~d--Q7oD-N8f1g}KvXQR{B zGJr?L2}eVREPmNOZRz_29s2F|cmr6a$QelGA?!O2h^GmU0MyXG-kl2)`OB$4g4|?I zdGDxrISd6aP@FZt^=4YSiMO9jO;zqUjY)gW z1AEXv-8<}m-}|OTl<~{>XC|rvp^&zwUYGLhCfu0pCeC?@10CSd8Z2v`k{%97za0X# zXM$FI;~w_~Tc`s#aWVwKs9nr zr&jP%>2pVy>|sIWL<^=Zg=gVWQ7Hj^@Z>p%-e8%nvjHH!Wwyow<5^H6PFyy3C!kQr zg?AizW_Qtztu4t{q;TmebIW)zC=D3G$iRLQr#5z5UrzP0WQU3u_$= z5HJq_0G`M3k zH3vQmWNu8760*0@lIrKGW_8<2$zYJAe$YazMHJ1gv^#^3!8t%s#MD50ijtZ6uD2zQ zbRmad$E?umLn1@fN=MEwfn{O5C;e>a8R{ELl>%)p#$j5it|Ct9+Oc42v#)#+Z0A#>hqfIYhn;y7N3ynetuByXaC%A0FgkPZ90jAW zq?d??9bu85olZc|m17<7*&Z19^o2C;Jkbl=EZ~zJ;9(fb?uF&wEU(~i>M!1?kMYNQ zJv|=yT|x;no#^T$T-MhvWX+~D1qjnZ@oCwz1lmligZkXFK*vRLi0h)=5z{TXBAjT( zG5GhC93vJjh}vmwxmi6v+9@7V8<$aRfBvwn^J5Cwc{De2*KC@v2bN~6=F(gV^*S&4 zW|#Aqb~pb^@8{kIhrt;91+u+GThjw8$`%&v#cjh}+yj)_M!Gpw_6x@N3L;lL-IVPxyKC}q0@$mG53S%-K#GSv?#>PcJ^djzV^AM&cWj*Df4Z#fZ zcTxy&EAdytW_8phS9(9^E3>Uhb%>)Z=rwnJUdPX_pj;PMQ+|*vhL|fQ_UnS(usPg_ z%&GcuvJ+#oy}Uc6#t368z5fzPS#8+eudn=~U3oTV5hxdjh`zR-;Ff+CL*3Z|%xtLt znExZ_XC>QW)^mg8voqN(zVdQ&HMVe#w`V@Q6JmuB2^W1dVsG}4I$ZMB;cPpY^n^E1 zg5-{O5cgpN?<$$__`89-&8y}P8#nvbRc`UEZ4Id4M+8!KR`{#i@vsDIv`lo&;Lq%? zeI?s6DTmMI?DxBg>`0X^dVPmL&QGw~P`~~|Rqh=P$7Qc?h8}lic>MWo&J5^+^0cs7 zgIk48W76h&B7-e9uw#DAG5X+q$E_1sAGn*2zcSY=T$j*J#%J5;z}aTrrq4gw_onp) zLi8{8yqrqEp;{u*9Bl|%+%?pb4r$8CmraitMC-gn48+4So+IuA+l^}Ad2>;E&hrh- zLK|SNqp9OK7JsVBLu{YDG|lM#DOsLL>&r<`A~YX-YsYP!NU^EZH<$&phaNeXUIzI$ zD)`2A$Jn;|c1Q13NRm153T-*b)Wc&RRI=h;!g!#pekpxNzMl@xacCcpzcjr4O}kNU z0xce!4DwM{+DP%8`!Ae4NN#T@3-tNeZ&aB|ee82tJM^y;q_}AOU1$Q>s?dtwJFPf@ z;TnRbM*)t0LgFEFNF^6rR(!2WKNCE7wG)#4fKS;uaQ~DRy(r~<{jV+50W1CgYr@LE zOD<{B%{Vxu0fBxWf0SGz@_$WoNjeDoXL8A3l4ky|PcFf#(2ODunISkXps(VI)-NLaMHCr;fs__~-APJGN=&c8V-O7MFAnStp#uy-+$AUy zXx|fX2Nz7|g~J0h)=q;XA#u^Dmu8SP`#J1@t(Vvk+yFWJ@Rw%*9)_783D|k>3IUz$)4#nf z6sd=b2d1x8z~7*Nrq8=u(H(kf2v6Cl5Jc6ZX;CRlqM>}k8{<5+879!vA{YAH>$r0v zt+^DSPsy(Vsn08Y;SOVu8v1_oLN1H9F>thj-4NAR%4o@ckz^K!wL~UyQD2;OaS$!w%m0%{6eZ z`xKnVfK}qba*^Kh9-9TR1XKCH8effFUzWN$IK52G&Fs<;2c7SSw!_X!4q$I!RUAQ0 zxAJ?Pp09PgzjsMK!ilwvKrjH2Z(WjwH@w?I8#wc;D>fy;Y>ScqaJ*?2GVVh@TeWY7 zION)l;rh6fE}}8jm%5GtzFEAqL;WxYYU-3K$1jMpEt{9PBMD*rI2X;gUw)$s;{m;N&Ar?0dyU2tb}sO)8){?U5$_0?4~1 za|D3R`Yv*B^~EK~X?*lpztC79JNhE90Q#a6c>}gKJH3ltCC_c?!MV?3*MSaHj%(1F zs^k7csm{!Ifo9{~NlsUNU^{gBPxXL5rnfX9Lt!4)Qk^hN3-(m&yye{Z0=9f3#ihu* zz0J+h6`QE35jZ-Ou0lyJqHhz`Z;LKje>ty{j?q3w$1wS;AV<%n#xN8|4h@vuvnLmU zP<9PqiS0Rc_nnulqoaJBoLNKdR#g&LUnCx|1x{j~qM(#RVYN{N{$E)m=FgOv8x&^| zUXx&7gb2jp;N4^(LqdDU)kPcB1ozN++?)$Gxv9uar)0PAJRSUKat@F-#e)k8DJ5K| z<02O9WI<%`@5YR;pe+M&J_W4OXrP4gnJTPoorPcmR(j|8jc|qEWD_GFT7>72};O^Fr*}b-Jxs4mf4UDXg*V25t zC_qyuQh@o^(c61KtFZB2$;ZDq!f*pVpH*(;daXC7o6S9BDRIKilx*~&7x`vJw+~@R z>mxJi=Yv3^M<~YL^{kf%BUjifnJ7cf+wTQ#KB7d7R{{4j!0mtEmS&l=%RLK2@q0Zl zR`Du+nLMzTATpQia_w#@qWxGA#_JZy+B_i)r7*WkXUqIR*En-Ay4VdYpike*DpPu) z7xoQ}5Ik>ZGw502Ax6B^bK=~b_7FPb-{Zrd(@d!O#b`rM>Ut9~UoDHF144VXn7jePzfUFtd4Z@_M*~^OD@d^)OefvN>}N zh6D|S?YZ>%!aPR!*)~;tFYAy?<(Z2?+$vOa@2GtH7r~&=#=auXZe4Qp=_p4M(5q$@ z%^wd)YOvS2<6sTpDdL)=?b8uwHnN$V?2_NW>XU zNEa4vA?K9f8_I}r2q4wp94fuFDqi=Z%jnvyHjw6ND?5+)0!J7#%H%WHM)pPhcW`~K z=00Vcp1&5dU2TP2d*Y5X6T1;>E-C94XC+Te53wqw2_DPz7DxuO2$Hi@`45=}?+l^GO%~^j)%KS7DThvHUIiWFUZ3ztcb&8{^s7CyZ0qVzj8pmNH&k?_*XHw3( zMkMbe!Rj#6kxP(Uh5hhB@`RcfJPFcNcBlLRo1BOv0KQv}zk{2S(1(bgF>D2(x2XR| zdJ9Pqx4L@t6wG|-ZYqzYAl>C-+*WCTc)dpE?Rz`_3T0T z;fw$xLA?IZMJ`1nR`i&)#_KKP{id#C9X%)zJk?#|)|sx*RmSkDoz-<4=AZ)aK2k;U z5B4=Q8yg1tGEVqzRmS&X_(w-|k%bs`x{4I`%v>4XcZ94?6!4e3RXou{xCw0SR-hyb zO40!#_jc)`(=Xx=ZL(PU;O#!3zbu8+x`Qbrio&QaE|fo6O);Go-bgzxJSd06B*C2$ zQ6>la;3$Zl6lBSxc|9q2w!6q70f2h8khz%kL7<^fA0s3LI45pemVEu<9R23>5yk+i zrrn6X3qZ==YWiJ-R7(kkj>>F*oNrum5vrmCOv;;!w!(-W@s&f|s-$d)kDLIVWHJ-i z4+BdoA;De0LgQ8>9C^j<;dE%5{RB(83#UPE82Oy%dfmi*&V8)@Q?Tdv=asGCrXwC@K@B)uB)D zIgw{^dchN0a)cRKbA&aaww4A&4Ht{Ilh44;4So^;A&B8A!wsSJb^vrpCT5oqd&wHR zPwkQ64|T(4CC#gr?zCr7x@^B^6aaU{-RfJnD9C2Z3AhARYk`OAq2jEl_#A-Xwu8*D zj@LxJTU?z{?Dd2#SP$WX#%H_}we2c!qw6Y?USR19fEdIAklx~$@^zBmsWyV#Ub+{& z=oKrx2uCB(ygpM6)!F-+0nijge|6#nA1|Lf_FUw(Sue%G%TXo9A-FtZyI=-7-UI8z zZXX6fR+J(oMVB>Rx2qmz?&9czV@=KH z!wNq5Y3C64e)>z0qQNZm&=`Cn0s*$hscDx>P##qhW^9OqAutsz6;X+!TJ#ulnn{_i|fg2{cI*&UFm?`}1oj~tW$AUZBl7=o#!w)N% zurNt4w-q(K#?eCl0tY&;nU!QSMB~tce)k1--sik)Xyz(E@#bqE(fGxM`FT~CP253G zV~Yzv%5elYd`9CvNVW#-)Yqi7{P!h&kU54mh%er%5;1D#EikkQYuv^(Hy;!^GmJ7o zOU-ywEohOVvXl>+bUs5Xd{}U7ILh~vqG&RVL_>nclPLz(xtFC)Fg8fi4?kvWc zI&$5luh9d26YAl`;1kn`yQq*yA(3P!i-geG=Uj`8CKiMC*>S2B1 z-;3W@UvhkK28}sr;dD%`z zuY{f(T3y$)3lU=DSG4oB33IhCo5rmx|7@;YfZ1Gl0Xj7TJ>H5M?Tm9OR`DTOoI2c1 z+|Xz&>A`_9>b1>C{ORnk3Gyusz{JMyPAz(^ea3NlFYN}72tkexB-(KmSSv2vv6G_# z*$_c{^2FlM7n(p;q^#*h#JWZi<#-xd8m_N3^KiV6zabe5?fve4&_`alPyqpOtxi>s zT$%x&*qIlGtP!UaM1J(OLAl(>wa3p;kFmmqLfxF{xIni>*!c;0ec1Nr6!iC2gnB3rkHAvf{aDW6_ z$a}JVK^j#kH4((;Zsx&s{OQZrc&|lKWLFi{MI}zRzPRmiK*dieIpoaLmksvodNS-P zMMGQ!sb7^PIt45qKw zz&Hlrj?k6y38;g87Jc=RvomX=IXbZk>dI_$OeK;m2D&IAtZx1Hm^ETtanH!F7bnMJDn*2}* z=@>pkgaS$5iQmXfH2^LA9{oWUuwJub&Qn~_wOe#+opXq*7$ckbUN1kpxK&mtB#nB( z<=hi^B92I5wE&9_D$ib4*KhCH4<0Ibp%H*#K3x_iB@6Ub{u&_KhZ~HzyM|VrPjM(g zcUpsYM+mX8KfNLCB-EYW?q~3yG6-P{_zM47A4CR~j&Tj96r0)k#x!H2*KhTC z8Reuyem>XxTp}zzhRuZ7L2vEI9w?79(NQ%9z`q}z1tj{IMGp(Y_g7u^;k_1STR5GJE@hT_QnzW5+P{jM%RAajBC%c^Tr1^J zWmlS)7D8SHT5c}JFdiNBD80pXlcXH^v^;?>>K%9Q*4s6BeH)O|s~f=}s>T(w14NJbLn-C3$I6$tU#J{g-945WV5=|U5 zDif9eq6Tay%-=DH{Yg>8I)0N1fUa#%e3lUOQ0t3C?*zP2k6E#m3tkZg7Jv{lJvT@Q z9ER33R|GY2lzVfuFPNqm6yi^i?zO4p#JW{5q5_x^I&8jQ<|3vu_Stp$rPcLV}5 zE$w6b9J?-je3H=IUw+ivqJ$niE#*Yd{RE)iBmFP#qX57*#&ZV1y?P9~s}I29$l3T| z=O2yUP}&Qi(9!-6RRwRQy%03dY~aM=?HUB(f_LmnyQ`6deQ`j+ErqXq`uACm&XO%I zwk!ZXusvQ#>le3g7>)o4rCK@t<)&a%bOBf+x8(tHv1}WR`W?#|2UsEhI54?2Kyl@N z?s=27xE|P{23F!s9hDD>d5Q7xT2@&fWgiXfmi}0`6K1#QxdiN4L*i)hNRZQi_I3O# zjqYEKL;tw|S7~v;74mB!(C>rt4+?OJ^1X7ljnLLqBECuYyKEP+in6>e@Olq8zyvpd z|Ls5IRRJ$IEY+0cL6^V(eQGXD1V#v7DI2+gK({-7A6JsNZ_|T7SF2RyWu6*_bSBFv z)9a9i+Rlftt!pPF1x1nFQ_h%3H(?{gBP`&d=X~_x>}S6AOQ+Vz>mtD#dt2Ej+#-+mrEV7jx(Vg>hEuIZJdV<;Gu3=`ud9V5VWOnM*hO#aHr5)_wzrFZuRr?@HA}_bex@? z@q)gst*vp$$;nxShJ|@~m{AW=ufMJ@0lkrskYF6WS3F*9mb{jb!%3)m9}b6m$x$c- zI6Lo;U$kj+o~S3}sWzK$XoRI^W(GLHXG_*z*Td6Hjg5V8f>JdLInwKqNMu}MVxr5y zjmPqD#>dCeCMG6tk9!q!N7l~KPpWuQxRN5rOrI?yQS-5nYkal&QvCdUeFO1=TfKI6 zb_#eOILRn0_T0gNtId@m69$7`EHd2;kp-F&T*7N> zh1Wys^e|WOcgH*^B@&(jOB$r2pebK2`z+`mtJpCjPQTv*1nBqiM~+5;NB_-IRPr|| zg4oeLr|DXh&~jC-EzFcu=4P&YN0gcFD?atZ{F9g3HRd|Gx*NKmX|J;R5t?l?QNV9= zG0%B&q`v=Z$flO8OKxmTEZ@kQP7`LCc)a&QMOJnvz+w~s;0Wt;fs{OuVqju^ub;0= zW|Rzw1Ve35>$9Y5H%kn8z6UX3lnY1sX+mkYc)MLWI=Gma)z#Jg%?%B`ZO^0x9ygnx zUj-%it%XlB@)S`vl=o>CR@2`Mkxt)}Afk;Mx z;*T%_S-o-EsLt0voZ)7y0pYvDLKZsVP1IM_g~PREP<8Zp zZZ_~mH^55Ou+z$8~n`&xKx&R5JC%Vy}^q7aAA5k~E2e|?=(AQ_QaQAur`sfLByz&n` z)HPsXy2h=1U3n=&pTb(Siu5+#xFqxR^mM)oDlaRO%De6A?Y(*8+k84bJxvl$P^RD4 ze(cXd6}6^ip`NeH5A0O%#e><;a;)SLd5Z^^GdrhUp&22v_W(H>+OTSuQb|x9v8#DZ z4te&RuZC;?+`_T02!H_}W=+bo=JJp1zx_YPg_dZ}a z2;|=Zf~N#}^W@2sT5Zm!^*7%jWSN-zhlUD)rNG0-*MfB+ZES38L!rD`Qu;c}Z!U`_ zdVAU1YQJLr*W#nJV37PDVbFiK^!yEjJ_y*|c}~&2XvSABqp|cOzes+KQ}2hnXv%Fa zcHV`1wc2=Qrd)chHShBqgM;hdGaHHL-+d>idca&+V+NcSO2sCUKWx%ZXfMGk;x%+X zLA7MPr2^GzBE4|F(S3Q@f*($hm(;h$nruxEdb6i5#xUsic=4)INDJA z9YA`BEvZS#0MT-_v|O$oJ?{X`&dwTuK$8;_&SK-wRC0$s%=R}oKPxiFdlb@jkfs;h z4-O7Cg3ku58opzVbg111RwZP8V*~ttlT_w&vH0@qdb$Gpo2=sUu6F4K$_XE+@s=ba zVyy`Js!Y?=*JFA5#0fzlu{dD&54!?_*VUCL1iE!={$+)uYT@v6!6LHQdqNsdC=^C$ zLS=Lbl+J*s=mWheDJc4<7J)KZiXtr~9e$MYLndK{<8K}&1 zQ;GhG-Z)vZb(w1Za_;pJPX=HENMKzHkcO$S-L!LKPdCv81QXaP8R7ucil}oEES#t`ex-!n#ferv%>$9@5_^Yd{wKN^G($jtKMOtoYeUc|#Sy^!riAQ z3g!?Flg*ZuWP}wE9^PWk80Z3l5_?xiTUuJQuvjeEv6gOe=4*Ae8zJbGwe=d62f?V& zb;Ke(`-6t`6hT43 zp(~)2loS`y1ItQ7Pj~kdUMG+|UTQ{$UrkL7E8N^Txf8%4l0XEsLbnKY`}Xa@(S-z# z+v^9`G>Qhcwi|HZalDF)7jm1~E(rm|adk!Vfj+US?8GaxdQpL(A&=#0=;_r2h^#os zBT_DjExo+XEtyC;0dSpzaEHSngPw*O_jCbO>R(~d-wV+nV$g&CW(@jMivEi;)QuK5E*{f-VpH`J?sOd={N^@iHu<9p9@sMCK?oD*AD&rBW7|<@Jt&`Ng#HPoYfj zlmh|+8U}38&yC-)N6Kbv+g4Av3=Ix06pmyE0UKmv_k-y8-WMN*#Gks7%H|CY4w7gV z9@EFf+7q-tFw_{mn!rj%2Le3+chAhElYkz?D|_2@&(+*1F20eGkpZ8XorR3jJ*NvI zWmZX$2jIw<;K^CO?tL=1Xc@3M+<0O{I@aW=V z8MVM($U7~r#9p!L>6ciey3Q3>e$daZt}c&~9Mqo1Q!dK7!orQco}QlL>h$jJZdiCu z>O-R7BEk;f$4Z7Y67(i2D#{BtJ~uLg)JeAPRDE+N98jC+8M?92otD{vb!DKTp;aS<{1<44sa0Gi0j?qv*2MCGK?F){|aHn`f@tX~;A&TnsT zk4lz{j*V5EotbH&xEa#0qG2}acLgM@(dgGC`ryH#I1Leb$rVyECc2o=$;rt}-@Pgx z?wFVu2|qtSgYRoc*MXV(#2IONC%pRh(FKMLKATAtB3l^}avcKt3D|J8mp9*re`#v+ zk9tm%i$GW$`!*wuK_73u4JW-F2CL*TiI8VbtPK)7pJk+{&vV zLvnAjt3}nV{~D$KQ~7%Mr+ob>Uw_Ki|EYYHNkfci0qpvH{2_h`{tNj6w&1_=c^6^x z0l+W+MLw_oH-0Hc)B=3o>@$jP3)xAU+55TV_wz$ejVnpnug%NYa75=x><*9KCeCfY zPyc~2l*5bGd+G+&`e$Xo!`0T{)shE|Rl)Q<6h?*>+?<1DPgQMeBdn3L)~fI#jh3$@ zjPIH*VHOLJRkCk1!Q;jj78_0?Cf7iR_T!6-m#sIbUsX+)ZoaPP+HyC};oOF`08nJ_ zLl-S@a(WuTKuhZrkk$3@g{^HjF^J|KE5=}WcXu}+*?Q;HH&aSW$s_<$#SDYqz$x z!fgBtWcvF0;2@BTv-7Whl)4f}-)k`%A}(o|OJDR5#iloXcush~6eEUqet*BbM7PNF zkt0Snn-m0UYH0ACf4Ry*-B3OX7>>UUm~9^9>gwv9*cDY^tm9KrQBn6Hx`HjGFGTYW z2@z3K3hRB1qrFV|wg=HvaorZG2_MdUn@z?YYO9S5`BEC~(kG~?sP@U<3Tapcwf-yw z%(S86;yS&Oam|X!M#>mP!GX5=`g%XlM(isWmxG67c7SDDH17;~N|Aq#vf)d)bp_&dgBGB6#MNEiiMf5;g8po5QDurqk5EuVd+}Mcrt2fAxgQ z?w;@NZCnL`ejk5`Ov3-o!W8ybWcsk^sQa9z8z!pxs^*pe<-qX#?!to+k({Xz*}aeC zIeW}apFhi!O_Swo9zcnUp!f zl#hcT==~GF#|C;_lz`a+*jv|yedq7!s4ArNosO;`{q=HfuM!5mXL{E89O)YRZc z({gZR4(a@-i;D|Ups2_VP`)9Lxs>|usV{e>;ck8w6tGbrruFm6hU@ZBRrL4w`@1*J zkL#CM(^2j3?PcP}*uMg?_EnABRAT`L*$^oi;8B`=@vxRTzGvt8bFL)cJYnM7Z>XrK zveY#-10CVBwl@ZT+diN-TkgNkK8Z?5WZVjCKR9^|*hd)y3jpAxgl0tMya&JvZd2`J zk-)maL<|_l2U|B{X6!^VY%?_r0V8VxFlp)Ek>-!sO~u`P7p~1o5%d=ZeD>|*pNZx@ zhNR50%<Xm;FRbFEWz{B(^G<5oBT2UPOG*R-WC5EXZ};s5cyLy{uGV> zUy8<#3cfrwV9WeI{tz|(yWlYQ`&DkCFkAG&rl8~Pfun_O;8@~y60OD zi;5?p8fd&%y`wzj&DID{MH!`D4p{*r9d;8wk~`xFL*p zPo548hB`h>YuTa7j>s{uxW%5hWg^LlP|B6NUI}1G#)??2e#x|*`{!kVy#ox0cAM&e z?2!@T5r>1?K_7Cqgj>Z>YqsC5v%nX?022l#v^i6X8x_}>ZD1g@yD_VYt06c^8_)Hyjj zn_mIVO;6X`J*7Z2M*!DQD^&h=sUGI7cXoCvIl~)2+tXQz0Z|z0oD{0*1M3w$eZ@e4 zK+5Hqq@*Oq8Hh6|iU%Q>EGwrdK+hhgHLW1MkAS{$VEUNQ{AyRgOkn{11gI?G_IrRY zD-(zd0VqQYW@d^g1$d{WeNPo8r&@sF_R!5BZ5NRYpiN5^55%k96kz1!9Q_38Vx&R8 zNxWIVw~wEB0KVL$5l}e6``#CdZuKAGZcj#qY<@fU+Lt~9>|r+$$Y7tfkpb9q=YCgR ze*k=7>onl68cJYoR>{{Djmb*5#Cse5iSxS$>H-14dv!Ai#f`_@1^}X9=<}M8kdW?6 z;v7@HD8Q-yL78>`?B+6l@e@z|x*A^1e~mK#X^?{0zd)J)(@>v3gB1P@Quv<}q%eMV zsrK>{2=x2-BP0_07i7SduRv=@7XrZQ0l^bhfOxq7BD2N>`i(^1A9u}so>3^A;mil{ zu6};^B*-!dPe)$fu;SCh&F@QOhx+m|tyc4t*Mb@#^O;#5W+d7$b?g?G6i$WloJuGrUU#*ZiA!mpt>x1!qj3zc40%T!T7iZ!uPZ|Qhe?#C-9Zl z;l{y7>z0qZxUKny>>ID5OQz1P7Sz2P3s!5@I*=|8bM`|NR=h=DfV%mG6no=C*bF*T zD>*$)A3o`*wlTdGw@^FVu|AlRgX1lB91Zd|;@qktA-TN}D!@Ljq(_&sl z#*6D4_G9iFzbP{jfz6%g(Y?5R@9Du16)>(KOnJlshsvzBLR!Xp2FJ z3(8IE-B5IHC>NBoO)6_rArfIWksl6jF#5=&8^Ibf(mG5$-Aa_BjsHTVCywA5!95Tu zVWy0HfB(bVZ)ur=d~ZcNvcP-b@sCCtzb{>>{q<0hRWFXOzLeSOoyW&_vY`oM43Bb- zLUL<~Ej6|k{_e=B1_59-M1sbu?^3(Nhs54#2 z-b@RZjSuNJee)QPTpn~w29H@ro>U%>fSH*<=KZ}R_P6~o8}+M9c)dTY_isOcP{yM} z6@ZCQG7B81gy3{-s>(uQcqzza`uApPew{wrwB=Zf(RPI6_Bba&mQB`$l|**5j@}|ctAQfvi`N7MAt;ma}PTDu9#5N z+`uEck9KNJZThfP*v;I>c76!yTcMK$>cwY?4!!a7y-WGU&$m4Wk0-5Z!p!N$6Z>yl z?tPkI;Ned@rFikRYitta5gZ z+0v5yg|gPmFIj^;;fA(X)%1le1;byM5ng>y7=ibeFesJa=o1sYdy#?OP6KZA_T_?S*+vuUy9V^*dg;uU<)J4B3p(R;1WXfA zOx#=u9@+OyuSv;zwwPpAAGGLfPlxv6rG6wUxcdE>6outDJ?}>v&5Z01>_eQg?|fxd z<6k6yv|BCat|H2Xa7K>i%M;m{iK?hivQ@M_<%nU>aB6?%(AoE5L0Cw>`l*!q{DWd= zo%ihyWlA+rJFyOViZP=}Biq~C1lzukm9#fLmE*hL-W(?W#U4!CW}$bpF;aoExF;3< zfpy92&inFhihE`EDL5GSLc<@)f02LwD0Po4(x@8qyfZ|=v%lbh5btrH4e48?$b-sa zdF8hc!x)Q~OMir{_3_}_*ch;qIo!^bF8$iSTce)W@(Is|>c-BO4`H-dhh^~CSNK^S z@mhmIbR`*NAEaK#yVmwhhYh03H5141i@{oWCYtudgCt+ z1E)~ZL0>71^76!ri-X7CKGV~CTx5LEbhf>JSAvDHC!+8~!m&sDRM60jvb4OM5AqY_ z9&`q+aPEh}yJ;{RgsSQU4{R@C z`Man8TYs>e8xI8Ll8*OA6fLJVQAvx8481-oWP)fP$q03bXuK$F8F4u5tm&_iKXgH~ zvOS`7kBt5AW~_#0tEt}4IRgm>z2T2|{E&yBh-q<{k1&Qq=qb$=RwDy$p7FZ-g(q_48) zP3YxKPaM+H_8{l;ogIVXRo9p%3L1;G0$oS(I~tcr3DP(udjzV{5tABc6oN7wQVDwL zu7wX&%u-IqZ%9@Q+-%e1F2xwL>&{UzHN|usn|%vDAI*)KvQSyD>eZ52Cb4fO9QV@o z1$^L4Dq>hl5M-%5(Q-ThV2N7=0{F>a;v7v>7YdRH5grOMWq6ivvJ^(gLv5LofNv(; zjSEN@i914`KMywbQNqMmP6zg-7NILMAsOn*t3mNqZD09bWZ2p6hl}dE-){hQU5Bkb z!Beo^=m(hnW07ONZ;-^W$VM>RkS=|2SOEZx`VyPoqdH|df%fTW{|P?3>%Pvqj{BCS zt<8^$wmDn{x{BZ+Aq8~uB;;b1Nwut&1dvL~PdJAdPB(za{9_@6chSrpA?r*UUv!ve{USYt9;ZMC3BwUF# z2=*(5>KnD(d4f_zu))xUMHJH5StUM5s#59r2B6h~^>E46s0G9j5G$SE8qY!llYLjls`5+DxIh*v-U0YLdK9*Xie2B zvBez7CvLh;Sk2y?PY|Il@-M4$z{Bg;ATxgpI(^Okn$~ zn^1#rP*L;qYcV3AaG_=EYqOvg%m|2s;=fRFPywv!Dr#R|+r%V=&;^QUn%`u&spK6M zR9*8cdFsD}+B=rO01gN2Z58;N9uM4rHL8;Dex?RX(5McRtTRy-j%fd=n*n%zOnDtWRbLNc)ZjN%C5f;3r?_1%r{C9r! zV(l4deFcU)ND*z-z1P%srw$=Bt%!|M>30H*W%fublahT6HUIje2m>h&_$KrbGg#|a5ce|U;a!wq3-w@zRB>TRcnp5iV zSKGp0ZQY(cO)0|^w=uJ;;IH4F4AZV5wLc~U0RdySSB&}%8U5SmBum+eMvdhu>wAmy zs}$tcy{9bK$!I**6MxOuHqbk{u6n7YCF=x2^ zAeJOP?vMiq4~oc1)OSrZlO}M8i0`3BO8bRs0FRD#5`?qdV16aO#X-%1rkEc@;}`nV zPSfAYnXIHap^weE|ahcK;tJD4J(!s{8%-9>8N>BHX_mdqUtIbY5 zX32IqHuApc$!7JKmYseET_1Hh5Tdr^wy~v;kO<6SpDe;qZ-qQu9x13>Y8G^>k?xYfGdP4d{d>z z^kDkKuDk4NIt}G&js9zIak_WSd%c7JpZQITOV`Qd2-eahj3%P5wM3tY@5Nm+N8w>S z%Nc08#c@1%q%UYW08uuZ7U$n;J)oG^>$woYSEbzR^ z%*{4fA5`!?!g=GUS&!%BwIcURPU~w723I|fYb>xbPu)Ld_2`~Zf=c(fJ5>Ig7bCCz zd4L)qnAXh)XX1UnBsfmFMM=xN+zKcUqb(}J(3 zSNBb#ey*?kI1vMb(4nb(mxl^1P!rM>1PzWmlp}~6g2ez6)iPO`2fC)tG<@$bAu+?; zw>#uBv}jUv34^O#UZxrwgXzFRnjxyu2>a8NRBc02TM!Zm`gQ{D zBE!+Kd_fY)DX_6ou)djEL{``GUB{y$y4&wtO*32q$hzNI$xN(jhtf67q4#~FnlU9y z&;!`?GL?D57NE<LAMlb$3+dH?sNYPm!ZO7>xDilH5f{M>hA+GE+L9BQ zCuOFBJF&a39aL%@UnZaK5^}&O6iiJQFB^Tmp9o+Rh-W%|({68X8}ocj1z$`gJw3Ur z#o(G(TAB*0t8MPYVfx{?`l*Aoh27DWV5tKJZFc47U=H{{urme&46zwJ?+)(V>_d#C z@*~j<;DuC9U;~1pNnf*dbTw^LxPz#W5cNM?O5{|3VVZM!Zee@9V5xj+^w=ZBs$Iek zWq(I2cP4sbI_Ie;>idE}^lG~jcJZvpSenIFK2)~7Q} zasvOQtB5(2tquRz6&L~i7Q$mDhlNF3cfXE?u8q%@yi380NY=`pkM}J5H+>i7@Q?9c zhKkK@SL@EbSMxkq3a}v5h4&X7n($w4%@~Zz>^v4_qHOMwx zirIgU)WhQ>?a@ihK^_N11pg8XN{?_c#zBS;is%oDIB0HTCYSsBOC%l{mZV*El^)4A zNh5aC@DF7IdWzfmGFnj%QjD@vYe0frIwK2szX2$gv*_!O1bIbuHRP`+E>dh^C{?>XAA?*OFZcg!2l5 zJpP?r6zHy-Wojr0n9u8x+dcnwf7hG8ymq{k=kR7|iF`t0_iu0*TLO3YUCi?Gxh~9T zJEKu`9_TCb)t|;F+eL7kW_#zuf;lYtRRuNZ7h2jZ_v=|o7E6hDQ@PWc%Gf>bkjDpb zls(bTpL$$XynR`l%k5|Gme_gD`@Kus$!J4+cVF*3mpPkgA*QRQv z{r7X;pzQ5gLBub|=bE-?uG>lSEtIp5f~P1uWoPHD(ax*z9`ht(lH*`ZeUM#N^Z9xY zzQPi8v$S9A^!xa1S@Qe373^rPM1~Aq`3(EF@jQG?6eNP7bozkky@Hr!ihs*QNn~uD z221oqVn+IYo9j^{bzmsbgyg=wnl$nIji@TCDFW$Kx(Z%NgLsP2ADva3(>do$9|&HBZ?p&We|;W%$yJP@Bkj@X^MYkp3j`s1q9ZA17*L zkg(Mn>octVO&nlLjiGl+a|4`7IDqa{=3dYr4&YD8-ee-!|0vM<)g z3)&#gi7CS6!lnxYYYR_bG{2x66ir7{ck8Y`wlM(MEslkYiU3F<9?0#P->&_DKuBVx zH6_oPN|_L}600YD@F{*;wRfe1b2pRTpVkjT*J9jAbGm+LqROMoubX#uJ{xum;a_t0 z%HTRIP7c$}!RqcG)!+Jle$<%^5jHq1_WGL|{Hi0dc8iKc$@73ac3guq&AaR}-F>Nu zcFybApA3fKIOv`Kiai;+W22M<_eKs<)P10R`ei*iaqKf{PM($aF@L8uN+f5r{&0!6 zlna?}MCKqY50kt=RLgH|065I^*Vh8@Acz- zmzH&D!%_XpKF{AnyDST9%2vDC^G=E{I*bNi za~tm-XEeI#>Q(v3&Xy61rM4SWBSq~70m66cPf*62tM!+0h7Y^jnYMuDhZTDOf_E`A zj$A;XzQ4z3(N*W?#oT5!>-Y(0EFInXrVm_}uLWt7_4JGS-bKq@Ez>QqYG@EYdnm1W!!KLfF_vCbtnz9x16t zCT5`W5zvXvbWw{NE1DP(b>R?oxsnRd)vHCJP1T5~er{fOC{yE5W?%;`dfM?2QJu{fkigP_|HVEes zrHm5*n^?YHKbw!m`Fwov1+($~xv+KIcQH=X_;duh;6+t&K)vfUm+>BBC zZ8L~C?|yuV$Xq^iIpwB*Y-wt`r!r-^jX{CIw`1QajhMBsrX%}q7>{$x@1rWqUO;wA zm5Bd&)mU8T&-Fq|TF$zr`H3H_?oknpzTc-rueLhd*~|2mZ}s+2QGng_)|(~slgXv` zERhaBn8P+PYd%a#=Z~f-VO{f~zAQp+r0vE+a)c?~BZ$)L-RSMqs(b{ZC!kB1#|*?b?yF631XB9*+byW>r@q@Kzi3rj z_Z8CqL}}lcSnt+o%oz zYH(zu@Bm^rp*S_LY7(&cBB5=6aqFirh=;Do){~ZAY8*%5ZB3`rJb=V(Q^L0vI?K)+9Q9t$n`|`PT+FZrR zZ#>^gCXfe6U(@O-pyQHDTAJ2E zW++Enk&nRX$7KVO;zU9?A#1p!$JP`qA~1UURb0fIW1^15udLTk7fDx zMk^EGgrOE#O1{vHh2u8_i=d(gaX3Z5%M}FE_NkE=d23LTSNT|A#Ypq?-JkZ!X;Dw@ zzmJkU+K=AU3#yNk;no_39((M{r$Q@6)r*qK?!yNGl?(RIs`V&oL7JxmCq~uFjn0=f z2+--PZT9xW8d$KG6+m~GAYOl&5O3 zioU8;w(v;%ZS0Ouso}a*-O!NbC6ZMinsJ4;gk|#m`+PvDuKjcIWd6wHca{K$_Q0Ee zCY)1M`Cz46SBydn#n=T2GS?B2z(Zw`;1Gn8oE}GaZBimYIhBn*)X( z9hi~e-)9s~z4!9%<9xa2h+MT8&r;v zU2kUCyl|*ib@C(9Y79@|z87l3W{S$Ei6o8-H)iU@lRExuB7ve}qlOSB!}daeL5qNd zGXZAi1`y!-Cwj`doN&8(0ELO>WrzK~a}+ur!g9 z@XZWKMq~lU@dw1@mAQvO1b&STF4}+%!@c=9`0xy+z#|6dDXM5^^zO{eUE>gn|3iwL z^-Ljie7wtO=~zuq=@2KojWr_LDwn7dCG6bQKm-M`P$GjUB#ryL!kR6tWjPx~*J7I% zG=wx$-?}t-0T^$^)3C^;mD-%r6%&?t^Tof_a_J5EzcnGC`^ikcLSt zqC~3_*tmDnVI+hrv9z*3rtm9R2y>;uPKj)AofVd8k9c7dUv7&eta*qfLtp{0gKYq~ zXp94YJg;NR8m40GS4KF+hjkJ{fd<{znX2Ia$^bnACO>GGRG>zMA>S#F%8}MJr<91m6!iNZ!A6y}Jp)h@w@c&FEs79?2IYQyTT&g&KR3|$G4xHjB z7S#)l-y=(Hi54ZmjhRs!RyR`gSBEdD+=l;HcSxAXD7faNb@Gyyjjiga66+vFiQM$(9j zF3f%px>G;&@~CI zC^?u4bKZ$kM*_~<8RH~nMsvv((nWWveRYQDAwPS6HYQV|7`dh(_%uQd9+scl`BxuS zHw#6a*awpbS*EJ-djzflJZb|z(<~<`MfLCEF|=SGVmq#< z=1HQVM+&Z+RnWR)gvw&bsEkOwT!#v!W>_D71FOu@ulC;wOa$}?ZemK@-@wUwH<*CA zXJ!!bqcuu=8;A+^*%dZg%kyN4i+-u{p*O1aHtOGAZG>E{7h4Z0SeTa+aY+i(d-cH$~KAR1RJA9*ZPyaIYEW$M93+d z1$GqE+bO|W!7A!D*N$rj(iJG1sZ9H4g^5~tw#tUrd5^>_Z1tC9&$m>s^1wDv&U@Pk zTR(Vf|MuU)E@I zC#ql3l4y;GqA^gZRVBS>!~e+{lMBEveJ8zxjWR((sf&UPU!tjuZ9HpYkYWBN?iAok z9l(rYXCqqNG{=ZZhZ%DTU#yii>AQirv-gKT^l_Cb16%>Vv`|L#B7T$R$s~y|PlO-L zS()>th1pGWfg0AB8AS#~rb!+x82_)Z85jjR_{2Htj4aezd6!BEepqij1NQp}0bDWs zk2I`|v!wJCt5LJ7hiCpRP0VzX*4s@`f65IHgA+)c?7{&(v$Ek{jHEqSYG}ZAa*h0ZmQ6`i>DXs zAtf;`USz<1tvOGbeKjj)noa!4=N%i3-Alf^6~lTdnJoW<+W0ud@CIG5`nd8hG4BJ@ z#3jN*3yQB|(PM)ek!GLK!EeS&W?DxsJ<20$8=%vO4;&Apx;=Bn?Ol68YaD}QDliCxm)>h?sfx49V9e3ZlW5^RNto3 zo*~qfS2OXl&=gm2=+Q|}Ae67@-q`QwXQ&R;hp3N1i}EnkFCI9Nla?akao9BTf%2xW zIP}CMOsW2rahVqhI=F{~$@>PI|NZ8N$8>J}gKnl& z3UvK){GGwjeXJ>PjpfB^@V{Y^JsUBrWQD16&|v+|+Ru@3^Z-*vgM+yL8y*l}wz7T* z$*ujr;b5bGGbiXK(_U-!hJ)fXgms>rFG*6I zeoUG(mJ22|<;~y$bwZ?tqXLH6nQ?K9k=7MYO*ha-Bbp; zR2Yw_Lypi{{dQd|(>dGpOm$IE>q`wZW4Q-2yY!M55b51@ZLr}fQ5!;KQ1_A4P% z2hiwcDfXP(r-D4ccG9kBbg%Ahcz36z1?8huLd zIuzN0kZiPOxv&paf+>_Pe&YQOokpT?rN~G}AEXIf!OluVCM2p&v&D6vL;@UohRu(x z_&p=A+4ea$hG0-yi=$DzPse3wtT)JCzOx^I%52$w3}n;o_r6r3P|XZs%m%gi0j#lq zQGi4OZys0N^=@P!KD}Ag3fTPm+_0(dpJt#B%An!(2B5|G+hovKPG&JOK!v@(K(#jK z+PFP)S|&-1n&E7B(7H9PS*RH}$BCdh>m%V!0<;Cz>oJvyGS5y^po!VLzt&UUPpYXc z`@$K!;`O6V$tQG{Eg#N>Q9LnBk}@~_FGZCbTnEFoMFMM2&I!|yqBWFTojMLyFK1cd0ik;cR_9l9VgyE`p zpmNshiB!g$Rd-;~&WwBH81GP?gZ#PCw1=#Bjl9!ick9>7c&W_Q{&xeaBR%)48OAWB z;DEWeIKB705oygCzX9~A$x-mqR2!Xau&a-yj}i|n66cj_w5m&wYdFlh@eJh*&rAM6 z)e(37G{AGO_Hek?w9R8s7Yx7Wi#r3Y;iKvMyUMOv+w9+h$L6FpoJkV)R z9W_osQf;Tsd>0C4+Kr3)U}{>X02f}>;fM2riLGkf>_j!vIO0al^JOS5*8?a@#{@8v z{dqu25GD9>#j|$^g{=d&9i6>J$*?mX*8{=y38V!>?DRFlx_+R{TS$BUY}3;SjpYWb zD?PB~=fSH2Qp=n}sV@+xV-oqcA&<~}Sk#tw*SG1SOnB^cMrJCnSTq`ptE~@=MO!VY zgG7hh-2u+J`A`YCVl%GY?h+IjK0j-+E*Rd!&0OrqrydS{+Q1cB(!+I4A!GjtOzATF zjCt`Soc=q$z_ldw^94CyH%n#DJba3v!92~gS9Z8{G}$4)5u7Gzp;fc5KXL|aT=Hxg zMWf|bMuz{RiAc6p$$Q*QQnY4x?`A?93ZH7tdi`{ngZ+oo(jx(&`nA7IM5Rex4IdDh z=f41or%tWgfK@}e*=Et|z5%4{+5Ttw=VL%_TK4_SeF;>QZa0N-%3o|P6TYu^^p4C6@q!Z|IZ&Aj zY$c7n6MT{%>05R0Ni#XvDn6LJVmA18H*t~2m*RJ+Yu~HJ<+g2V7P-ebJ_Pb&HUQ%S zEkD7ZvUg+6_1OT=e10T~TowBAfY8u9l+KfA+0B8HzCS(Y+Lz{^H!a!R>PO~t+nwv! zrC=pL$8+@~1=Nw;!SY;wLDj#!1;5K(Zi`7*J%&p$rRlC(f{IR-;q}AIV(9(w?K3;| zn<6sTp_os+zblNjywusk9_zGNoOvOx!`w@mru|k&qXQulfk`Ruksb#dQctF|^w~0I zAK&z~XWk@@b|SCqZc^O3&mk!%p6VQ(nuM3pf{rN|*{oXFEQ|XcJhVob%|5Ocm{OSG~2UcxK0V`kb1C0X58z!e7 z>&+ z8+K0s^}6fToHnx_-d-Fb6k=zdyX}?LjvAq1f%c@@s7K|w!&-bn@hn=;#$kZ%fJIY6 zbE0YdPOsosHHv^1Jwmtbn0|cw_v8M)33YWuul;r-z(~hMPXoZKUA!}4MUWqBslC)* z+rQu09(SzJ>ajV{xV`#H+4IFaK)_s=L7V?hq^(mT?-4-v&@y{3ymKU>xOUm?|7`Zb zN@NQ@(|Lx5@-fNJ(OK3#*!~|lXd*5Y{CF5O=px zEs#RyKimL_SY~-t3y)g)X89j%z;dwIq-X}NHD3HTi_Lqf@S!Ejt-Zw)@mj*%|6oNu zSN2*N)9QcFfb54&!k9QU=WPpp%6~9|M7SQYdy<)RjZ*kO=m2ei+_^~CW@;KMoA}=_ znn(mjD6Wu5Wh#emD_49BbZ~cA4ODQ%!g^bU;@I!&LCT~UXej4Ft-KFwY`T@%uMV`2 zy^U1be3(CWI0Oy(osNpl_bF{^{)~0rhz_z21T99oZ+FPTWLZ?&93yPMqzlPNB+b2- z^zdARzb4=GwRTqVvZ#Ea7Mx4@?9Fe>9W84;YlpBHLkdm5&Jy09AzP#lQdelZ_>n`Y zY?}>Wf7~tOyPC!F@7WgBUe|fvCG~#xu#|S7a$$JhcsiV6eWhHI_e_PJlV%e`inM;^!R+R3` zeg3QwnHLJ-K_V0M@4WAk60PfHerq-FngzAPnKkt&btatc4w6-Gq3aA^K?c%iqh zbXc4DHG>&GAa+S&S2wLaE~eS!bNenvh<9|pF=5zV_u(*}9Xu>wez$_dp#?voOTEM9 zhuSci)N8unsbn;srAfK*6u^PlC)+J?So7}YF&zkeJG$TaOvHxJ0c_LGc=cTEo-Ebs zc+&eoE!-72dw7}IlDk^&lRTle9adIN{NCB(qx8Q|h)Z6?pBIk`6txUEok?)c21vOrkTC7%HWIgF4@V)ITr&W*Q-RzzB?_qb{Ts1I1akb6f zlE@~QctN&Y_=()KotgXY&S!YLT9$o0)EQ4tHRlj&p+}S#Yy|r?&9F`SX=)Kh9Lqfk z{?vlTA$GcCfUlWAYZb8En^9Ek=;QJk>O*SRV)T~#E6xfDai|m9tcV@~OUHTNVz`GI zpD6$Y*4s40!u|+rkhOmv%ZA<=1>r)%QAX&1ar;ijcMaYx8{11Y&x)zWCdDm>&W*?G z`oL|ccH}l#dW_E&gxlMwgMxHu^Jn1C!}-|Jbc=uSKa(EsC6V0%h?Y z%;|EuIm9J>MMo;|owL{}0wSQ&BPx2ZkGXi`G?Y2`F#@b#F)LE^#_6{jx!>e36np=H zG)qxC=~vBFsn7jbA6p;$$2v#vx7UXAmNa{xd045fw;mK`kyBig8nzr{d1f&Grfe;~y}kK#?E^hRi3 zFK+eHKk41j)I9GQ935}xrA}lNvcS0i-b##427m>}a1maVQ=~^FgWN59z_!?nBQ1P$ z@1Q?!x5h$4a`@2yq4|;3d=nh}Vc*E$cI;UCR%^axaF`}u_DJ~9(OnA!Ed`ho_h46eT-Vf1AI%nXk6cFu#}08_kyX=v=73V0pn7Di_bs(EB4Y;HV%I{QI6+%rP#!9ULF_48gDBgKr1dXvE+dq_3)t-H_XbT*KzB`SQoDV_E>^_FV8S9k%YQ-O zqF^5gyUQ*HisSp`Y_n)axoP-~LJy_cD9L?Rekp~S_3mCbj{@$gP1C z10*tnf#pAGfbED&ez(iDr}ek-Pu=?a9QLm>UK_EA(+sMK*f9q8&&=l=Pd~dU*cKFF zoH4VQKCUMgGqjm212IyQTYPEc z=hYr?K4u`73KV)l_Du_!CESvHytzFST8GR2kO^0%)l5P!H#JWA>*IQPndAY!g<^Py zHtu}0+hoxFMgLpS!zDrIrt_9>T8^(U{xt6v+bM2(ui4>pV1WPQ2r?*<5p*n9A3iRtvY zo@J;nis`xPG;vm-SqbjQ2~1bS5Fi7l9QH zveE;I^U%o5Oz-4Yjy zuf>~XjNintpR#$}2SdroBz<(MV~{7^^T&<2eG4Lb=T>wX|8XFDOnoGr8Z_7@%T`8|!u@bUm4a~wEO0lSmD)!MuH8cg^R}LO z9Bm|pJ;k*Fc|#)S3OS|YnrxFnD2mI4O&IS0)M%{LyUx!ktL0+Lmu{cz&)|*&>}W3g zgwV?p192h8hJ3f70?ZF9T(1()V~&hqb&|B~K^!CsD-{LcE{R9pF{lp~+hvdLS&~5N z@Qzx$Kn|T4<#Wt1AGG$jwP?qK)vJ4I>wN4J5AMHImlB~#lue?|K?W1CsNqC|tB~i3 z2J^&!&TZ%U8uFiLxO5P3FR7bO8}EuC_v#*ORphAn@xAQZn)pg_q(x>tD<`tBQ!@R8 zvi0aX1}T_g>BH2}DWgCW^b7oLkNpyJlc9-iND6lhAWJ_}i<&-PS!&sK(ILKUQOh0W z2RQx!Nr>peHes^c*?5y1ziaqI^=j_m-78`@#s7QZ|DYv=7;+gXfCxW;_aGx$gsYFv zs!{QW@qqf8od14%n+VCuUW;J{5}gyoKr8u*1?=(%jTD=vY{akdJBOILdL>}jw3d~Z ze^pGQW)m4mJ{YthHT9o-$|6e7z$HhV)|(M;&x{2gaNSnY`F)vwCbMwdA{CDpAipc@ZNlb!_Uc6>}N_Ggo+#h zg$A35B^B?W5M$lVTIRg6hcP9hHf6pxMqjqgabBB@1n(_d8xt0=QHKmwp{rGwsl5%e zO}p$%jMUd={a!1Kdu!K5wB}_Ty1)p#?-D;xf{*;;th$Z#cgv>GYBCHT)zsILGwrE% z{UF5u2|Qcrf6w=i??)du?P=3FD}fPSQ}^$rC_;`Io9)4loGp`qvf3b<%{riVIHGAU z)FBT~CV()YpYQ7z#zA*jIU&2rj=YpV@tWES)pwXyswN%9?8AB13Q|os_m`$|F<)zK zN#h<;nf@0@dv^W~H@&>2tu5>JO9lMMVxYenJ@3@##OQ2X(>A~3!j;Wl^YGYvh0B2L z@kU?pKU%E1Aj#)}uJS+qPgk7gG6A{Mmk?Ccps!cUN&0`L*KjHY=j_~ z{|{b7jGQj!Ig* zNpg`0{gcpHBrfuFOqN%M)_RAbTKBypWsWV%B3nsI zym$9-SXHLAh@_HzRF@4Tm{u{?pE0?I`a1r3)tEXNn6Q)t8o5Aohe|BfZ za8WO5F(}S2+B2ZXxDTmb&DjBWDe;nq+cbs8B6f*;KkIGJeSjq)76cF;aKUL*oSx~* zG;bf~|4R@DHYy6(*9FaYXT_nuYB8iB&ez6E!Oh`_IzkPZ_24ijbb?7nedi#(bZimA z-maIY{yBUpw)M-cY3XROE0cDf-DPv;Z-OnG{gXq>G32*{=#CgO+g z;E+w%*BEB8Z?Q%G?%y0j@7bJ%?e;wGD#(<%i+uvp{VJ7lwoFti3CiHhY$=l@O*48^ z1UjQRX@$WOqOc)NFqc{E9&E9-Cj!ctsi3y zike>CP2M{h8##h8B!?&Vae^Uk?O74@tWgGMr)>>C#O%@FMv#y#pC#nmkAvQV==dH z5%@GzkX8e}J}%vrS~Jx(Z&40II30$bn~TdzkbqhMhX;n*q(=a&0s{`lpYC89EB3F} z$Vbt_Lh7^S%17U){yg5wiEGy3({8_D^)zvIMkljT7Z|R<@g0tSGET`$phIUUAhSKA zo-AOZ3_dD@+elP$$;FI8`>=;8x2U7`F7TG-g@_dakP=u)C_TIljo_qhLqgaN^u`p-gPv2e3`>OH8bYf)N0EU+2UAk&fwlqxAf-*@%)^ zn$&Nt?P3wa^^MhUGMnt&sx}b!dSjU8OLbp$q+EOkM5gxK0#C2N04wb`2)tr{bZQSh zzKhk^M2(7S@}+Enj3pAdrBAX$`^qX-mH|R<-ANJVYurr+fQh^w|kfLcUs6j zq(lk$7#LXjcn<|; zILCnmXFg~fOJ;i`LXLk`)hKJ-Nzz9H!nX$i&2I zI7ZCMoQ@L^PbdrtlL!p-g-Vh?Ul3UjKHW$y_GEuTb)URBjT~?c-6yG=UUT^QA3mVO zGj0B8H~th>_&q;z;(q$C_ar~LrW=TVCzmpKz$=`q2>F|J!=5fPBWWQIle{H%O+ z(=m7Sw4_-#L)}P*GLh*8wfZF*rzv`QoC78+EWf;Clp}46R8Fj$1v!REbh+jzHke&D zuXBgv{$T%m`QSlC+qg-l(($yeK@4*`M*0B*h?g`1^0qi*;U6JYMorKYIO)oo7(lqN z8<*_qq&0@LBKlcoD`kF-+vmq(CN!sKe;FfKR0SHF-*S_-fI5G8U{7lH^bFtH66L13 zI6*@=jFs?!BSS+bYMyOeY@(ROWZ&~KWO>34wEgl(_5MD&qv&ioH$KOqxhjb@*9uJL z^JbI1ldPM7{(1P{yCihi-RtA~=y-Bt=D0gh{4)`+j(l@RXMmI5d3Wx;i_A8;=)0sTUyd>RCXc;iUe+cr>9mijxiMdXRf2*6wl1kNnOwV z+tAG!g0FKyM8PMuxKd01o@^NY{g^b-;KCjosX0fM$C@zwE(?aql#?GQE$L|1b` z^@^3`%Pl(ox=}we@tWIdxi^)v9Tc8Z=GT{XMkZO%84M8%nk`P8?Q5U|s?*K9ca-pWhv!{_sB~wT`l`>Dt4*g`|kOmPx6mGfqjNGRTnyGKTJ5@cIb9BCs z3?2SQqW+^uP$jLC@KJLuvdQna6ZlY=dT~o*sV-D6@!=x8soK%XF`gGeGAp!6zx{E3 z${uzE61sQmbB4CE3@v0rx2nn4(8CIg7lrowT{*6M0dE6SxSp73(Mt}5^YeD<(KMTh>-Vx6R6ny= zZ=KfA>PEAdbWMUHV{Q^k9x^NwGrLiCsc}}bvHN?)IG1tHV(lqX|E?qZNGd_^kMZdw zQfUTH`ZD7<qE|%5q{K?N90Z zxSQFs?Usg8v}hLF*4d0&G^&k+UC-RteGFcECduIRg(Dz{%j;$5!kZwU>AfdnKU35E z#iYzyxc|%q>d!aRH%a*EXer|1l^EuSXk{3`!jX6G%z_*Ro;FIzN37WP(b1d^bd10K z+Z=an6V0~dS}nvY}i;%+x06h{$@?NVOoWg954u&NPeW&@0J`zmif5oQ2@@V zul$VUNxOW*-MrtKMNqfikM%o=8GCWKFtqQQeRTZRd|R^Tn1NowlBjU(ZOWt+TfR?N zfX^1v-|#*yG!2#oXc~>JtyZ3&MlpB_6bwIK)Pa@9T9~s!7Pyzf55T&@G~@7%1*5V` z!M_Y5zfE*il(*{U27)5L_ykmLS8^kRQ+Z*=9*1CmheIVvxZ=134+klC=COFo#2kco z^UASG;vlC;O?dSRoZb&~t8YL7E~Y0YU-r^(^s6)1YzVxO;YOn!&epRwMAw1Jz1G^1 zw{_KwOXOKpc$ikhP0xEP;n*fA< zdUopJS`c8O!}O>l^iJ!lvCKCPzBIY#@HUw@+TDeq11^RMT)?c0M0Weyj)d~oubqjf_&(_PT9|hX_|fG=Lrt9Z$1-RC zf8+@Wsr8=E*1ZryIa0M2LylveWs{)tP?qW4CPO%Q>)(ru>%OLFDHgSc@#!c~%pQ!# z#FL2D`@9q!$F+p|PeyKB)Ts-?=-rlK3~%_Y4YAI*rQH+xx=+M&IUosMJWllQZD5;K z=KplooA9)iHCrcZaCn#U9Y-egsXERI)%WeJ+#j~KdlO}m;~rn%n?N*r76f8v{_$2w z)DxBhio6H{Cs(K(scG&+ZyK9FsPItdNE=hjzasx^gptkhE9-JH&Gh|zHVe%eRw$Au z4`5a{D~|JO)}AVw<%R^;UZ1fZV6v^vFju0TID-a}Dan&kQZ&A!D*b17gu6Y* zzhx5M3S}@g2v3x+elB49X>&+Vu4}C~7M5~Uw0L2W8o|=ZYumtM1&E3cg^;TeMsp=F zBdh#_D=2Uu;isZ5q?;K+d72m>&G}O4O%o8fNLgh-1kp$D6WLz)6P3zcc$ZxS>GQm; zJB?ELzip5#U13!qE(RG?m4!#*l-ko|?C(r88jUWtVC1!0r*pFA(Y6UGKhNabUcZY^ zhzkvPwuzNX)GC_0jT;l5l22Pm>MCKXn|IHNvqY@bEr79yJJyQB3w<-Q!e{x5TH#n? z_1v;Kgw~=M53@`Wv-g&(<5q8EI6L%H-&RYt@nUuDGkHSG{;3iDaWXTJH!ow@bg3TL zIb{*qN`^7||B&?-TyZvE@ZdmjcMtCF5+Jw?65QS02?TfdVQ>o?++Blva1HM6PJo^F zx97j-?CuAc=k)EV?yg(6`Zn<^))K^*Z?;NfXQ8C9frW&Mh$MVRiH6CtBCWIe(7mcL zVC&ZSu9YA)k83SUyr22phVVC+lHor}my~;3s@rF6FKV+QTq^C}anXDB(f-TY>p8F5 zUp`C7*5K4q=+uC3UJhUWs#o2%jKouBP4&xGKDfY(r-E|S(F5H@20v3F4w4Fgo-x)n zug6U?Je_@~Uz(z>65+M@s|6z9f7s?hx9oX(l<|!K$=7thjiG5WGp}|YRe&^TikCM0 ze+i!&P@TBo$EJ_vXrw7f*ThB^y2hlRX>MbNF@Bztek)Y5jKjt?Abz`chEh~um$U-| zP-0j=Wf!Tg$Tn=m1%CNUe~PSHmCTr{dRqA)Y0-4|(#e4qF< zAU^g?k`a}(hGkkv>fCCdbTY5Qv$^F#{9=|vyO<@?>DlTy&Fx^LQbtp2dJe5P=L%2P ztghQutF@^H88YkpYRi+|W;w{Hy30?M(|au>VUN?z@f)6P+l*e-v^mchQIk+bFrGoo z4_$N9uGvhvb3sC`Z;}kxv7kjgpvG9U3T@QT>^db=!I;Luh&Nk7cYb8)c62RD02PL( zE3Aq?c)sG2;p27lBh`tKrhxTa_2c@JwgN`}|AVwBm( zopUh9!At5jIto7od1C)KQ`I`CxXVrzR zeMjlup1#yzTNwAW)S)K;UTfLVMYy?xrFEDvW+0|x9J~k{@Y^`#uV!4Wf2yd0gw=V0-Ud8!>CR>b zP%VN}CW(Tcqm(N7VYn6JI7|NE<{yQjsipd=8|Ko7K+fSC}xS2A&Yc@NwRPf^2NCQ=LCm8QDuG zp5*FQvV6wfS7Ur>!`kF<=I44J_MH&T!xDS~tFt{LAV@UVLGa zi-DANE!oPyzZlXzvI%Op)gBE?N$F`hY$Rn%ugF?|0nrZ#9w?ufB7*DNS;B#V2we-A z4H|tvxQ;pOTz+Ee{C@@dm zdrlpFeW|-BBt@R1hcX4dgYUh5h|bA;{zq@dI-Gh!+##^qet7S-(7QRqAK=yae;(-PO#yB2b4shx;jA8Oj#=N#S3`oDxuyC7)BeOKFp2Hyt=mfta z`M3N*G^EAB#6vSa0l6WGXM7lP0~AjRwM7RC^)ad{tv3i`QmO zOca`ykjk{ABbfA56&$o!I86EU@DUcYH-8j!lh|rW7P8dNOep$M?`6aw8jaH~X)5AZ z*WsU!6yiHBR)Eueg#=#W#3r*jULpiJ>7 zBazA?FL;@Nn{!lXplm|vcgCk2PsR0^e6e*6b%$y1pbiX=N5klyK}O0@PJ5=p%3QROz~ zzV7{)HFbJ^{DwxUV+Sga7ICrqDG`q5?k>gIsoT@v^4!3qlUGX%s9HxF75a#JDslh6 zGZfd`5VId(By)e)WrcuaJWV_I^wR&|@;I5uL;Y|CWl9unywII27Y*k3j6Wvk2Ek1oe?e3_ce7V9-DoO-&Z77yr5Am{uLdeEX4~UpPuo zN$+`e15{)2D!sgx(45cglKgmjoB1nO!jt*P#Dv5C1WhuT-<4A&E(qgPv)Zn!B(~UR zx=ZcS;LEj*k)loCw@Y3Jum}tDi`V`^&eBq)N-AXU%U*jvKs)TtuH1}{MV+b>Ca z-&;2~@UEHTpSZ9(ajd?y8w$atRjWhfCo4v0N|392`Hf}+X4PP+QcV?AWWY)#Es^J;DZ z&Ee*B@`XNfkIt70}=Gq`8 z_8G5cY2Ou?RM~Ial#%s4AkI3023M@)p7~LhVjt$)c57e$ZTNeD&n6j})c1?GYz!Vb zJ?LT_-6Sb-sVi}$JUxe6%UQX|mTst~W>{!q#2xffI8^b|!)`9UJtTZ^poR)mh*(`S z(hj=p{DmZJKvz@{qa3QG+PpGsy*35rXzpVIm)pbH#M#-z#e`+Oz~*YLo5w*mmz8C% z-@)^>Ul9?IF^&5$*EGdISidNlokSc%)nzpum13M@0UscWlan%dY*=w;GIc-aTjQ}~ zVxZXYCeP;Q;U_B&_G(8iI3#F0BMs;Zj>%;AS;9zS`Uz79|9oU z4DEYn3*Ap_D7Bow+CL7VwtW}zSe&CfzpuRM79=io|PipIL&P0Qo6f0xHV z(*klT^LTUyy*4W5Sh_04sMzHY1uJHkx0L5kOfG7fM3`ua0(+5WWl2}#91%&bK}PI| zEo@mBEF^MHGC5xRbSN8TC`CU)K848Gw6K-i+T>VkbdX%Cn6h>{=}Ghk0(QQD$x&M# z8I{x8^aA21_}`D=pZ%ItYy`6J+t5*TcgR;Dzkl_40d1E~==ZASO+`^YJWvbsmhfMekY>n^DJqd{3glPA zMx(6z<|!79Bps44i0Qx4DM?IP=#0fvbQUnlnMg zRr0GY>XsleBEC;OpN(U8b&PaJ*m^&aLRv;{2DBWNh!crN4M6O>}PZ+2I2%GB?kqtTv|T3qDtf+8_LXDf9%> zCTEJyxh*$FxqxVuQnN`LMcNNYf!(@@i%>;OWz=_vTS0O>qlZCya8p^&&ipeR)SR+y z)sls4-7S89Hy)N)?7-5_hBbGs(oq>g;u0Dh-}Am_nv}|C67Zc5%{~H1mhQQ|A`IK5 zeAvhpx$TgM?3gBVm;mgr@h3AD=zA%`?2sss)0oHOzjy*FE!a-wKW@JhPJ`CkgW6H$PEHw1GR#q+{_$LzC+%F+rexoomMtw#;!~ zqy#!76(EF#9sj)CcSdf*6~q;2EwMN4>%zpKDrUqbjJvtY4HD zPDzczFvmff_i~J49i9evq$HFE+>VnKqyY`8IPj8sNM~XG3ElKPyL)`G(rwF(lbN3z z7o(&VGJ2uEpck4eCRl^7xrYs{f*TP!4lO`KxwQP&N%L37u0^n0FRBr8hfh_PsO8dL zK_B_Z|Ik_Vz0+(9B^PeP{k@Zm%wZ%c`)Lm43qi z<~*Gq`rnstZwtQ9E#oOOta5Yzt`3pp`JyToL?e+*O-huZLvS6_Ad;ic%2BF>Aw$T7 z*^t4;JSMlv7^|g|XHx3FRWz)n{;t31MAyKJ6&D9SSOj4{bv=cHNAP`{){OU^|pCrbSov_*vOBvuwD- z@1KLH9oC!J)*3C0e9~5`yG>&~-+u(Y$MicnM1-)}CsErNdbP<-WjJaxt520ID)-b% z*^2PvIf;#*0A)sa*b+q0uP!H-?|D5yBfWwPACO^!2r<{7S0R- zmAKjPr7RqLWQP$m5dChiXyKVPGX>afW08J0N#2{Oa0S-d)d_UfF%elSBYl`Fjsi)M^4*FabQ)BOVqnI&e8XWzd45u^r=ABbkcLwtrU-`e(+;5 z6zFQSKf75SOKF+h;PRjEo$hU4ggBbZisC~}OsNYqV9>?w;n4o(j$y?AUQxNjN!1=W z!_X9Z2Q#c|rp8}KVXO|TW0}c1WQzg-=73&{1P`aqBViuN8UT@>%KKlZo;l|$0%L-k zDlXF2!wZ#=DWDdPHFS|YixM~LP=vflA>alkBHhmUL;+Yc^Fk7aB13O-0dHi}{t&EDIWG=z>pk1Rla*xktfK^@a5uPi zKCw$NtTj}uA~D$uRFm(t(pH%R1F{okCYZM{f0F3f9 z+XukjdTpbT^#RCsqJ-Jh@`;1kq`Usfmul{CEWz*QPbvpK^pOO-~ty3vf z^C|z0gGK&U>ffB0fRWj3Eq^;Ub9=GwD9`<*Lx71BFsj9Zc;9C3NgaO zG%g3^CDq#E4D9ZsR2rqFSKDC#z@w%_kdb?teib=_CCn7W|)XPwgzL2r^MFV%N zsVBmi_`plR$f2kNfIx@gDYRfx%6Lv54nPi6>EYEzO}yLE_42@Z3>UpV9+O6#qq$-5 z+$jypsc973_}yzH(?iB-3zJ=J#}QUTi3kh^uv1bdA;?uSrYz42w$_%@@V9Bw&LqR8 zsMehm{ve+BkY4Fbo}&=}h^kP-MxDe`YelF#gC#igtsA7!v zpwbc+e4k?{F~H-ON3uBsNaZ?O@3^AEM*i80BR>m~;7=DyApt8a5_Z)X*4_{X8YODs z^5@{HCD~mi2Ki2EL~UpUxU#reUod^umn{2a9P~E$rLl&>qC-jUbZrk$Glvf%AZYJB zK|>w@=-!DR(h)4D0p`}eUvTc?9rhlzdF|4=|Cb_lE9I>`j-HYQaNHjJ#gbxc*3_Yo zJw@xQ(yTcM?iScbhJ`G(H zetblpwsF~pIMuwAiF#kRBAAryYy%~UhaWFub+R{==U)L=opGFkSiMOIU!N5{dzkMO zJ&OcE+QlUAZ^6Gm@7K!wMBP^nV?*rCMX(u}$e*6aXC_gRy(7v@PA(g?nS%m?_~4_d z=_@gpN$C78I(M+qVVv_3TmgWewaOs-qE9Z)1O*4^eK$}G3FyzagKk>CuMl^_&#@5a z8zafyj|v{x1TRz2*B)0zasxh+D-JhJ2Two81pgFt?ULb^E10+TZHm|MI}X8!vWAIc zB}`L_^ll_v;?+9gBHn73CS(o_CLc;E_EN6jc4|rqmug>rE+yKR9z14~Dos_NEQb@W8$rEX~XooOs9$&JT>M1E4dph>9Ufbh7b;+8@k#4InC zWPS9Lh{oohK<)FlqG?_z@teW|oJPr|JV9jqVes)X+(X~7g3O!?`76OQ=c^ZEzVr&+mX7Mk29!AJD8@5=ikmOA-ECZZa~yQ|h}Is499t2CWG~|{ z1~@urbKVPo=U?>EN^33lFnb@H27;cN%S_{mpL;Q&o*v6&MPNQIPA8K|_r23OznE=(r{E}j#p5ju$KOl`j5(|}2xDMYeSDU8nkREkq&lVsWt5nxL6-I(ruxC$q2d_4p)M=6s|A}>Cn7+=_o%F$Q82q6R5MLl6W&G^?* z@d`pXqqp^yT4Z!u*NOX3e}rWw9)S+@M}j3eor?+rF(C7(B1ta_-C&+LipC*P0duT9 z5ZZ>Nz3P?KUIeMw^TmSv7Y#khMO+{G5|~Ff+uv&bL(qpBPP%sh{R{{5vmP&C@(vC~ z6UO3&;LjY2t_8*!zSy2J0%aA>R;op;RHC_s8V(JVq;h>pNeDW2d-U$Ssd%acOZ2OnAa!Vt>|cant1RCw81RF!d0K1- z9js|lh@xrj_s84fx~Qm_QU#Qmcn=!gM=5L}+Af6uER z)ckxzG_f-g9a_O5GItGm=d8>lgGcc=umT-kVmJX)9Afy3`Df-<>%p=95}{MR93mR2 zfzN%J2Au75V$7c~_6eZ@lr$ml^0MV{5Mc~4pB`?e3L+KBk2a>aaI9(gl0Z(CM zB=096pGSSy%iOVFn;$bNOSk-T*&7IQiqRPG6F}}dCzEh<>^S1ifM}@hE*&9 zd*AMc+VUI+bM-JVB)2fsVtD-bTTGU(|Zs2(*$+=de{O_i{2gndWuavj_{Hw*$u<);ba6Iy||D zK5);KP@PhqmC1*S8pz2od_=NmwLyZ}w`{aOOt7SB*iQAT@EVMz$8=Oh?ipPw7JjAj zu!X^G5k`&}eea$ZNp8Ko|;(lHx7=Lt7J zgEKZSw6DU35;f^|sQN^2bM~8GTSHgJZp{=a07_J&wys$f(^o_6_PLaIOmRRuHikeJuM)T1NULh`ZqEy)3Jy%ptqk6C_lu(Y}>3!)3&kSMZoW`t?8z>=KlS z%76&OTVI6vMvIbaE?;McIoIhl`{y9m?GCTeA=~AyVDq4N-267?;nMJdc(9b8o0Hmn zeuwLv-4m<~2T0Vjq}oXw$f5#(!$x{WaxaMk;%+}qn-}qof-sj9hGZ;=BfOCZU?h&M z){Ifc2;5SH4X^-6$ZE{(ifl5|WZZWPwRk`*k>Apo(|tSKR{A2L@+0Xn8&odf?U27# zjxXj-|wU z z%hLpShVB>`Z zaPCYOf*N=7@d8&*zAKtMZPXUl@G`z%{zqkh{~W}5#>bUJ3sp_O@SGxhyiQ79`nu}A zFeH6F7!ccY68<$SWA0VeboSGNRSr2;;JwQ)*l_dXmowUARap{JD1r^H&v7(=yt?d| z+(P2+C$jkCqeY=fw8Org19|&sNLZ4kxe-7BY-f zf5ezIspPV3>;jf9vz3oYdhWX@%2mF8X*Qkf+r*CJME0xsUvO}_IevdKc$1031gGA1 znd|h6IH!Rbs4kfmAS&mZWxMAYuya zLOjr;P)ArSAW=rYgz(r^eCzV;?eCteO>{ytj=J0+Z#{ub+@y%d&irm%-q(kR{1^21 z@Avm94|lE8;hhuZr;{njv2kurJ0~Dv+xbQ7cy$fxlmQ#$^#SRW&(Fn|I-*}ryzPu< zq@RzLqh;{l{kx2Z}?{l)TCxS?jbG{zliVbgiH z3Pio`Z1$7E-aY+wdj8(S2g1Vk=t1U3yLh707t&{-_}riC*!hyFl6ojFA)%_0%s5f3 zK;7VX@;aLW02X-(0rh>7GiiSBsn(HYUOA ztQIGYvp}cHuF-#i&2d`#8ckA5kmn`l=JO`eWkGkZ71u@k^*J_z;f9~14tD6J*(5n6 zlo=4wkmWk)3Zj}~H3uwKkH`5j`Y^=+DP@t)t64I3?cR80kq5DDK3$Q^B-!>&n4d)P z0>jwHoV(P!hJX6~Xj9+jT7KIqjIdl_etu70eMtCdXS)0&;|67XbcI;^5;o1)yXE}Y zds;1NQhX7|9KtNPzv}_REv%o6Tg~vN8rVU}3+ZMrYdRlvo%;(~0^YmRCzcE42O&h| zuaxwPCru;!>UGlgxSAJmd8Jn+Gmf{GI>NcEYq3_9QC$D+F3mm?HTIW@a^@6-WEOJ& zDm`|qHD#oHy~|Gci$U~S=nwDLG4$m)^73zO@((y=|0R{cv-1DNu3ve2F<-s4)7PVy!Xe|}WH$$_lbi5nvpxN!|U? z+UAclR=y3uH|`&)owG- z=8U%8QK(#kG+~Xo;%2av!K_(y5!|(@F)CYK$pf0@zk^I!1w2|lVCMwu?Q40$hEpBj z(TQ=!NK{JM!X}sDvxRygiQwf--7TrX)9e09EFLi0hi+h+a2%;*t;tw)TphswezALr z_Tj}T25vJ;V`F-fzdGMJ^{0g2Wbm_1VvG8w3de_{Q!lT&6nAt?KKDc4Ry}QgnKg=) zkjDiHB%aMG3+Bn;AwRiS_P|+9up}Z5!IhIC5FXX< z2aOmo0W2zN`3}@$=Oe1u*Ry&+`>#$;I{?N@i{C-iqwqfT z+G~iipgrEpR8O;nU6@q67g%NbA7vqZ8m(RWnM+oRg3t1yR4fpA8NnW1(_d{DQ4Z*F zY`U`kz#!NG_y+^s+8+}(WR6J$t+vMjleA0;Hxk`ZCK^4;e6ES zzwN*C3Uo=(ZIIFXT=+XUNe;&4=di_qQ10I?W=Ew=-%lI}I1bdWFa$B+EjLuWy(u{Y zpK3NR$4|_U!WJMN+)W;lww-0Ax6iG+OLSjB4surL!L`)dUKL|7Bb?;sCGx7}F`@v; zBvjuzRrEzx@cW!pnVl@0g2duVk2+LQOGMS&uO#UrzCSGm@VE+&5*z+g5cztM06R)bDSikuNsBrfU_ege50&TAfStco)8R#LAy#@5? z7t>aDN`U64KQ%Rkf;HiA*=C@3MRj?)y%sJEDGp&1JmwF(q2Tn-lbb}|@h1gV{SA?S zM&R-qc-4C8rYUoNKTXy}h7kpwl?7zco=d(Jw^NGIF))%M`Rvh@;_%A6}m4wL#(2 zV!b;ne2a09BuW(Nb1P?q_C4pQg~0jSyII%99mlaAxeJ)P_77@L5uH7FfXl4=6a6&^ zh_;R4J$6w-ACBS|zO!xeZwqH29@r%HBB0yA9A8khJ@33LnJtyDOy3W`e>0lQL<3}e z-0bipvjL60@iFr_M1`Ca(*Vl_+|NXtaDO4NuKqSn7JHLFcp*w9dTdlo$(lSNp|ieLDv*>!uXoElnvKXO zyy0wo^Webq@BsZC$ zP>6-tD~fHX^X^#=rjJviqGMPL_%2>1At#48U?e(DRgY_!*PLdJu+KoCe4 ztfH8!;ap|_V$5Zp()0c{5F#;x z!qT#hW|#Yh;K^Ox^{%C8LI8F{yH)%M`h=pZfZ6W!nw3((pKlyYAFX9@GdKGS@5x@# z^RD#+!PBGb>b)2Lfy}q!e6Ak0r{P;@lTNfHCPTwb-FuavjSrF)27kJVnKNqgb56gRTOaSw|hWr15P#A zFi`YV>@L2Lud8>*0FZt?2nxHEXg24H_)A{4c5uuGv&L$JO7xYYfLPVi=;XfS!qvEd z`FPvDoPU9%%q*u*XX=O3z@o^z_l<#~0i-|^@N4(XC^pbYU!&7+^6lIJkpD7uBaLW0 zZHlz{QzC$=20cYV+A~#N{-T`>N&0VrP9c%SIP$CBhV5&SeXlqZuUuU@_F#hD#95pw z@lq!aF}ob?dJ0L#X=?Y1zzpdqs>Nur|5+q}*Suxk!^BQssaP@>eHW!h!NIkFN61q@ z1#z>IY1Emt^x2}L=-afN_MXY+WzLcm<1FT_#0#uZmwL%mWE%3YQRcyOe<)J%xF~dz z(v}!`_B7Ab%{A+kY>4u?&$H8sTLxjeO>L|O5k_)av3Jea7$pmRT|Q*k&OV0qsy>)I z1oEY$>fRt`ouI$;4*mKXdmf`W7&ZK%Lr7(#H=LE!L1y0-Vo^J{2}%DFBRgNe(P|qr zKQph=^I^w<_Pjq0VFGG%PYswCjLU|ql@FZp4_4M>QIU2%M(0JJLbbgqQfUG~2A~N? zKN`d_MoD#9(A27a{=MN|1MbGT>LG%tz$OE(w?^ve`ewd&jgi!Y5 zZ+u);DeJ9FBENv8GX!|$V%n)?kfv|5hwm-2Hrg}4DKMvSFAO_`Kj*^!IQs(w_?UfV zRplO=ERR#ou!5<@-SpI&Gf1`)@(NVXD`j5yUzu_`>XLHf9Fw*wmB;EZH=zI&X@8FW zOMgFK48Au|OI-ZdJv)t{a@n?FNO%Wd`0lQ{6w47?k{_)CDIt#~C&9%?c*IY^0Yn2a zSXfgrB3j-ba|N2>R97ScfYyuM8LliS7`?d*c?^Wj&OiSm+aVRj#yQZHyOHWmPGkrkawFu=`ByAZt zwWab2)Gs`Rdg4<)D=Iz#<{iE{|K^vMl!$W@P_dl!Db(TrhK{c_LGyAtQntV*@^&Q( zDI75W&8dMGHA-45g-b>whY7~el7oYuo(BA^FLfzG24=Ziw~>n9$-jfzg$G6@nzRaj z1nVwDsP6(T{@5^S<8aZ7BNY3r4QYwg$~UA|`Tv%qw=i|d5R}4sC2mB2Tp?Vhl1+%4 zt$M^SV37lP;OK-GP!6&llNhwc(1A8oX4xfA9&xkku4eZ5c!GD&jri(&Eh5LPH%o%?jP+=Udq^jha~%a@SVlQEzI(QM-b zv1|@0KyG7fvvb(jq>+EDt-XrI2hTxWWJI|X1tRtS4-oPq*@0sVrXNpd6b8EpcW0K( zBda$2@oD~%!eeJ?wDhDzLE{tJ<_m5 zWk`<@OYt~^Y1wM~tjaFEqR>Q*&%B+RdNP(z68$Umf3*e1$vN5XfeZos$pHJcf5VZ| z8G|HIy}I>$fXRUaPHJ*eKse6(9~Fet~~Wb@POpeIW%S&;Xb~4CC=2j~i3<);*y0-=~g@ z7Kq+kAdvEKxE`@p%aZ+6|9vW76p`&Wi`eKcy$_OPvj&k)?2Bp|hNKeYUONFD^6l^j*$=y`!yNpJJ2I z2tZB!yFC56AMy#K=Z5#B z?MT*Fv$e4qDf|uh^~j=w3)nkaVw%z4Ga<6T@nRW#H3c|L4TngI4?uQ=mR;GJ3F5q6FvY9>puQ0`3&J$=3g}?vTts*3Y8aRlnJH++&3KVguiWT#PKMf_Gu{HPX~N~ zU$OHu5>zp(y>^E}1$(?*KC;*@0(Q@v-x?gNWl5m%)ERx!G#BA2 z$ZHyBzlkQJ7O}+7o+<>q&~st2jm|lBB3;5zVb{8!+MAGN+jA!L&&3#V(dq7KUwp zxXKi8Ib~2aQ0+3zFj31Br=VHjwE8@fl9Be zJWFcI^d9b-f`}uq0Hf;ww0|B5TPY6rbNDO-sh_r(-o?hnR!RqP`W&TAaNb}wdP5DJ zq`TB@7E38@q?8Xdg|r`YJhiAcJAEpws5VQ8wOCHN44srhbSYNwTz6?Tq?1BI#F=sG zB5nH6OCdpq+Ox2V-^V?T`v#ijh!7N(n|*?N5W(ZMu0xCQ1)pW{E1JZT6+e$KCMt>v?i5XL*_AeJ z3Y3MyBsIFp7eChDb=Aoe_;g?5i5s;eaKFk)xv4AaffG2P13BEYY{A>!W!?#5uUD>R zeO6|3JSZv1AB;@qV+M<}a}V8}`cBz@A0bhEYt4g;Mzq(iS93>f^=JLlzsa z7M3{q3vL$eb&B9VWtzpx0D!1G4R7ruUVDiV_Z2|yWW4z6Gk^*JX#et>Km=uVtUDpo zFewv-8^?(i1%MkNek|P0`PgVP@^=ZiI&VJE;hT)QthKA+yr?I)zL1DM%{G<0&?LM| z;$6x=?A-8%BR2$PQGEqf&y0}D9!D-iC)x+O3gecj1!~uL%9yd#zB|SeL&RNP`V5|T z#vYTHhTDuTbA#M~{!)R2Sk}#2=dwPTs5(%xnd8s9s=gm7Z3K(?Zws$%db_Wc*yw`# zA6XUw|89jp_+AWd^}_6o{`!p<^L9+QAK7gw-$(SgJYp$Zun3#geJ63y;5ISpiuxma zCwEhz$RB~QLZjC$6cuE@z5N|xJ=JVJD^2wPc$wt<*zeN147h_l zX=c0GvXe3=KTdlPn$#TSC7{6@fnQXUd#ucuv)3iWg zTrno?SJ%^#OBwu+X&+P=<3@h3q8%=wi=TB<0KYUGw42w6XZB;=pCxO0@NPzwCaV|D zJ`w9TPiXmhJ_Qt%aP(?j3`bMGF> zm%SG&A1v+$j1emU%nAkw!9AZZ`CWptrA!v8Q{D}ja=9P9%}}UgImOi>46-o6)4$Cv z;O)=by;I9u4+Jc7MZ-;+Q0j}k4wnl@M-)F;EuM$IVb6H`*%@Yf>0l091^@5A>>Can{I;VaX=$LU>>W;UL zc4uO3g~(fzo*R_^`JF$#!9VX@=J2tf%0}D>PGbZ<-X$qFTE>^S#;1uitVVZD zfpF%&z2Zn^%y1-M8vOzaETjM~}C01lOhpVG&;kRxop-0uu6ki2?3Sm&wiC-}mDU4E5Tsn^!>8Z;l2A1{K1jiodoX zLm>VP{8dz^Rq|ENc8gc;^uKY08OZp?X0pl7cLOynfvFI&{S@0uES;mUZI364rHEAw zQxJgRxZ1ov3!~kJ=w)`>m$RMonzz~Z(bn>JBi(D)sq5BkS<4<=i3{>QXcQ$e3>%Wp zkVN<9!Cve6d+yyeexdDi;q>l);dDv%bvFoB{&I|#v8Ycns>&K{ps44V{nh6--&$S_ z;}Xw4%5&=HVa0x}O7b4t=VrG96$A6GtnNF=a? zeFp&!W##8=rAb8?44P9;*K_9T5RV16TGkhMKq-_cOi}5lGzg(QzEQcORz>+mM{#Py z(2D?|f=Bm$b|Jih1qAXv1i*NS$jkD6GpAIoU{`%02jyV{-JkwbdE@_`=0$nzDq}1q z4oEAG)nliDPrG+e>%GnWi0&;Xk$?1KqRL&@<4J)SQ>a4+i4vA zvtDn0L&>L~>IQ!ox}Em>3$bwU`w7f`6Hqm^5_sLm8`GQ#QMke#_RbRru&tzwlHi2e zse-^n(Wt0vtQjUpV#G8vG{AFqR+>TtJ_8QtS=M%)`d(8Pj$mfxqC(vzV!B3^zN<@o z`}V?YV8#kTy?|9r;(AR+G8}=n7dI?vb|UEiVGq>pMO0^B9cxlvr+!!$stXWOa68Xd zLw{6Rgo)nhd+0W(s9tPz)=~A-C3HP)EaGqeebGGKv|Mv;O3}a6rrs%3z&jq90E%GK zpc3wSt&!M79F}Tv3|$PVz#)^%dH&U<3(mx_{+g!~QxV{N?$=*!z;~tvxfasKL_FN> ztyil;+b=hoA1JB#U(RWwV2=SGkp*FPCSsRn;qsgME~8t+G1InzkO3V=fKI~}C+g^F zxKM+_MPJ~kdPRc(+}!jFPOabx95HYy;EgTdn%!a(kjP*!1ITM?(^`{si+e^Jj-UdGUbfyJhgZrhb(Bf-FzsN z%yJ^C2&(y8sCnPA-{qh5Ce=i)N(B%=w7j{N3;K8DQ9O6N>UU0Uej)XqQgiA1AhX7N ztpo4m9XGLnY47LuJ;<}hc#OTG2n?8D63BEeRVI@*svP|+V#hLuDXR7qS0QW^#h4}P1-)}N1c{LlMsHmG^MR&?`jzi}93AH{;{b6DBjhs`Xqerx zpi%O|3nPQsQxGPfzRin4=w9npJ&;v_rHb5razOfchn>2aMEx825;O7t4H3UN>Ejg& z6imleRsUhy_Lct+jpVj>!7Z0A+w<4+ij83P^6KBnj9Aas_>zc5N1g)O`a-Atf9xu; z1{KP0zkvxxDtB(HS7XgD$1!*)<4{+)A3yhh+RyJWs@L#I0w@<S24k!XYvB>0|&G}Iq(PM^ znv`DgSsGi!+DDyuY5Zgi6R10J&ukELOWx}Xz(7T(JWfRfk6povxrBwTFk3|q zHKd_ufS9ye=79zBNYJvNtucVEd2Ab_**9v`qXoM`q%l!)vEa33U|RxTGs`F$6d(f9 zYahUUtgA1@i+Nc|BXZ;EPM};O_1OcXxM(;O_43?!h6r zdvJ%~5ZobX@F2lqcFuQes%Gl^=6-kP{xx+r)%DVwEsMAM=_S3MUYCpQTjXb$AgQF! z5hN2zYC|{QxVi9$hUl>3e{XvZN@5}NZt(a&org2j3aQgJMI8^O_6^p6@k4Tx!{CDN zpW|VW;Je;_jfn<gs_% zhSx@YV%YJ>w%4M}dbm3i*ph74u6booy(>Kafoo-%I*p!`d@%w)H?tG=6C}QZ0lC9Q z4qsfzAkxMMFjq(^d9z7yVqsxa{KC88vp!C7bk63_FE=g%uD=bnB5%iCtI1*JKap@9jH3v}g;=hbaG2^0?UE+GDyKanDjIy4_AF1OXAN=rd0 zJr|9%L+rgbXJUMa%`M#yt*Emm3QcSohxHehm%wQl>4ZD#V z4?13}S{+Yz1FxF)N)c5r&y1G%x6s%9kT>0`R`T(I53O#}ZzCry%7A)T6}^QwP3bF; zf+P!N*7AKeC*JV7AgZ&2{_bJsjYPcI*qn?$2w`fNv41^mQ*1gpm=9*Ns9OtVQY;s5 zT66xZbVoYlM4c-+OVpq(YI(i2fPAsvvqT$ddB+}AX=d=ozyV4-v`Vue7wlXL+ndBO}`i2S==o$^S_-+M_Y^pkrVyzNq(SE-}?a>F7H;yGFjB8O2{5q_(G;Fw8D@zGncf=} z-S#ejhvbja~!SP-z8gCTz(?q)Qb4a4&3 z=*6b{3W14D?2&)JE5+FmQ*vJW6pt?CD&3$&&O=5=6va3;E|0`SmJK@sE3r`gF~9;K zZ>7-CVg8?Vk61W0U`x6-htzCjeaEpyHklEsxdu4&(}X9LkCz6qV`C*mk>B=JlF77Z zpQE|ZNP6B@MoYfJ4YvCX^z)#|8>>nADhmcyi|q;nOqn#we}Y2{x>{W?+=Vkt6z#jl>hw%sIWPDt=~B+*oyy}voBvWn6Dj9ho|_^+%h9iz zk1k-L>Vt$g5e1WyJ;&DFuTP5yygXn#BVH-tQ@#&hHgDLwl|`JDq<~CT6y+1K-@w-gfmH4vS!P|ZqcaS+#YF5_0z4PovJevTpUAUB4PiAntwi@YeP z6ONocyrObCs*@8-^23o7L>ysy!sY%|G$k)3e6u#vy#iU=<)ujXa+VHjGuY7)?~9i? z*a-~vhbO-(AX&(ss|oMk#l0&%o@{dI2&Mv)K%kM%eDps47pCY?m=-ua7;z{?U;m0c zeX@K7wNNibK7}-NXzGkO7%k3N12jfkh%hawYFE`$W5z6E{ny*+ky%S`g@awJaVWYJ z(};pOEWY?3Ak0wF4i-L#eJn#lpPdrHI*0yl+P9kG_W-#p2%sSUa3T;=uew;dt%ZbvkxU>t9BU)S*MkD3GH82T#KHtTWW)Fa z4Im`v5d>Ak-tt0iKjP*;@%(ttmQr|e8OtS&enni1c>YOr)BS%Te@Na>;&5>|XzKbb z4{hWO=KI1z72k2dGSYE#J(1D_$;HBcaNkE}k@u?Wez)=b{-yfuopVJ_2~$?3VJfKf z?f*{bcqO&i=TA_R_j#z(tfA5EEp!_EnC-KqHPPR{i{UBGMXZy>K^LqHIXiaI#7lOR zGr(Q8D;F_(4P?7buPHM~Ux(g#WPk~2J_}gMs$zj)tL&e~SfrB~AI{G)$nXi%LqdwN z2FV7%XabtZ5;6L3$A~-(&4pq=a^8>{(F- zkVX;m-`nr)gQAyx_#Yj1e;mlHedZj26&8eCrTKVJ3Xhg5_^t_Z-0PCQF&8+Kf?TYH zftb&G{miwA1oQ6phgn7HdJ}^ofq&C-_A|_Ch%7Fz1{_etdV+V$-52)Q`u%I~ z!*<#*NXh%L07H=juR4vbYI)IhdH=8&i&{56A6BT`eqQrqk)~(>DT%zo^6v~0_fc4w zcYaIUc5)AnCI8cjV*4D}{;K=!?omTc?K79%qJXPo>r8C}1keFnS+&2g`#}+B9UtqH zH|tn@*%9AwwcHS@&j)iZM;r<`PqeWG=B$6d<+##N_wG~vUS&U+t8#nUb8%)QCAwkC zBNT95C>TZ>$&f2yLY;Ep<6w5E-xC#@u4k3TP5S^+dd@)3c;nbMs>#vncAPh)I?wZY z#i%TBeGwym8E@tH(VP*5jmv9=?b|7ekaO;!FM1p<-X5bMpJ&^8U3E21{XkV@G`}8^ zUk-$pv6g6$22Lw?qP}>8%DsM;R2st9>fK%?`9lN<2^=Ef{+N3U`!C7&INUL{3mQL* zF}s>@*|Dsy^M9qH?!6ntG_TrwID%%77Os61og;i7prh*eBnALVI+=8En%9-sv|fV* zM#Evx(6H90{xfLPeOD~pkbdiF$B<{&p7eVRJ9B^p9l-rtGWSdO9rr0110peOOS(+NEI= zLEkXUP`w4Gy@^GVJZoOlGnf&;p(vC0^qCLY=x?a4je%}Q6=ippBWz-K>_Z8`e70Qo z6rU@-+}mWoKult@?IMpu=Cs4%`c?X4*7;oLQN^IUH7?)Hz`ql@NKA1$U&_AW3+zKm zQBiukjetQJf08oUPIXX7Z+t5Pj+vl@=_JKFHwzXhoI&f8-&)h9NC}=M`OEG5md{*~ zhS|jL7Wm6v7k49NI>tZ3->fG3q$ilpGk0IaXL7M0Hp`P>!O$T^Wd&>9PcNXDFWMou zOxAL^$SeXu6;7%9>d&$Cpul<57kLjwn^bEh0nj(>RKcB>6#elQD}NiGi>piA<`rSh z=br1a<7)zwKW}c`vZ6u{1%PHB1cA6M?qRT<|A01iO1ivvi!J*+Bt(077QkUKXDj&DT}p`)!n^^kC<2tC=cV`1Q z+;JquBmQU?U3-tOz3Z(3@}ib6>YS$4%XlzH-wy9;Yv>u~rWUPWEJwr9%B$^$uw&l9 z&A65~!dlWwYQ4I7Ia0N*_IVEOE-dMtW=?A+#N2023A#u1etTmo6|p3^c_Bfd(6-tt0Y`euuL`{y@zsQQlB=pzXn-5v zT}<)FB|~Argu8n35Cudab$`$9%2aT1mJYABr~qV8z-VJQ**tv^MI z-kEdRi&X&=DYqT#2v?jQz((n7zKJimJc_fkw)HjgIMpmO8tQZ5sA+%3MTV6@0+dP~ z_}{Dj5c6}SRl3V^J;?u3khlnf=20WXxQvlu0M7?=6&nKjmMWjX{Bq^O!}UBXj(N zOiP-NDaeNR#huEmcJw|BxK+t zhBFr{RHr-P7{)6UFJY(K?fw^o(XxjQOd@|LD=((1y558C znBhlFeekN7x3=1}R!;kBdL2Z~DMM0#mAWnEM+z&*hr^z)Od0)?;?>~(G5;|tK!UI@ zrtTAX9~~2iNPnYY&h~|*I2HVam@?n*w!Zxc(TiL`Nr@n3g50|H?{gWyBg__u1s*BX z)att=&_t+~>>o#$sn+s(*gTI>Ai+)ZN7}Z-aQ5VQD!lhs)xkrvuL-yQm_K6yt6tL2 zE_K}yN^X~;biTl@F`N2+@F3@-%aNNwc};|zTS`#uSzwZ&p$>Sqfe#WbW%r-y8}*5N zymUNV@cK66iLLNTjaa|hJVD9BAT?uCTu(<7$!Kbv>csy2I2@ekse%u*0r$ECUj+Ex zH}<`WfK;znUk!x-E+`cLfVBXFTl@Ec_9ATm>mE)pkaJ!8UMufQoP7U!KCi1;F~FBq zuW@^|`P28?gNo!+`E7+qUU%!!BO*Y*d8p!yIK_5)thM_l(M5~`+qL9N+wMPt z@JiBmvYb5ty0%dSHZ|BI>g_Css;%hIOs>WIQ8T-7fVt`XOM6D~>9IS*;0BKf6nZlE zy@G@~afz?9wXxZ3v^1f;DQ6HKdn)OJ4AMPI(a-5^tXf83V}J#~4qLbXhEQO)X1Ojb zp0VkuYi6}|CJixn%udCK4GDsnez!8SGPpaFw!CGqcy$DCKD#^y4@52L?Lq?qL?>v_ zmHv{J?&G1KDym3RzWqm=jD&+H@(2pCxYTlh{*;}K>#*vN0#f9=*A4J88jg(`#D8YN5W-kqy*^w*9-+Ep;1EwJd@=Rz(nd#s+5209N>U|ltHc5730A7%9pEU4L`~H%bK2dP z#Wjeii95$kSnjFC>*^V`V~triWvCdZ;>GE5a&J*fS{`8Lx(F{JtYJtd$gD$LdddFb zSt^R-mtj=S6|uKyFOum?HEF@i21UC8v$ z^P7--J$}#cN(*leu`J-BphmLS#_fR1OYYUzP6bJw1h;s6P0w@Bep7Vy5sGj54Bx{a zlmJR-kK-|+;G=K?;yHB;wO zqNQpvQIq|4S1Q4dw=4}^<;9}mq_HCAr1oQ85jEk}bU<-~k?SoP{d`EH#KB&MvB?%+ z5PKtMGMRhp8?x^8^0l&5 zz~?m|aFU`x;={z1;zamHC=d^@D9>ficG$q`iJfM(lLEfXoh?tXL$~NRyfR1TtgYts z8VTl|QLR-oSSq^8lduvh+eTfG^UPcP7bi_V65DNRMsiR{X%U(HVr+$;GdjU^0|Fnm z@f_WMe+#60Vxf*NxD8kRdc8Y>6-go?lx%}XWTui*DXAXN8 z4vjON$3s{U=2J9n9EtMeJdflFZS&$Pot?}2$&wx9btQPMp>C zS29V;4ths(p}4hbL^IMolFslN1u+F_MUYaY><^ik5P4g>9}_s2-0CXzG8g){J8dsp zmwt~|&sRvyBSJc3rq{TG%-difP8~l#KZlt>qN7^cZbB4GDT+uiF{~7F;NEPwwTa0f z6bPtV)On{=C=CcvzkZ&t$G8mBjXB30N*x^%OiUbIRBwPnwWLzDm?>COqeQI-4(jUY zIGK|jj-slpq-6&dsz}phewQICDkun8+t@r;Qb!lkps=yAnIH@<0F1ph*^=Ztk3k3s z2#4^9i2PHys}H0Z6K>g4hu6o)$Mb*w{9*F%4Nz8Buk^3iqR+FyE=`vrzc@xxuF+WC z+Sx8Vt5APY2X#9-3u>gw~IymmTJhRNg0-Z$HJJ&uXSjUQ`kPj=SU zC&sG83cTMBoHsFJ4w$hKMl>`u>_MQd)z$U~MH1!_WWwh-vm|De}Sqy%}`49FR1Prm-X$-wbosW&^Cy*j97;gg+%k!+3fTYcsbSqt z7yUV_^ZD1WU(XsO{QNv0D8c1J2$l&(T_PY7Nec_UEjvQGzO`l0L>+w)78a(by{0aAN zd3ia22^}7d36uhrshG8VbGVnoBu9%n1qJf*@+y#l ztXl!`e*k!M=E?2cxP}ek)e?Ept| zlO`jsrKg9F0$GR_Gi*=De|-O39Gd7w7DGlFSVS#jV{_VCYIRhVJvcbXw6?Y;V9~TH zAr=bs*yQEq4XLQ8h;WgZSy`|7vgEuI>7N+EqYN1%XkAFmtRBe{jzMh zaBj35`&(aUrO^7duB;J3g?p-zBS;fP-b0=ajLjE=TV2O?2K7j5r4;!BVwDV2F} z$E%j>|7(7F%>#g?jvl*Ex{Pd!bUyDXmG^(oFcdgErRJJH?)}Y}|uUND+{bFac9Za1K`(iUbzi7#rG( zWha1qn<}O?5AP+`$r~OhE;KmY0_7J2o#iW@l%Qyu0mf9X7VNdjV2aPmjN-2ds8F zgL~)e#M#*yomi+y;SMWq+?^8jZD}_PK9V3umfWI5asMe&Lw)_##xGY)n-(2K8#dfH z0dNp`=!34$$B!SYf`o`GI6{@hcB90y<=rKRI zL;Y+HDK0L)0StRXDB+p;r$d@Ks7x zL9-A2`0;}P)Ysk3AEAK=VTT@?7`T3J;K7CetixVTi~{&SG}s8x6u1PH)EpcfdZ0iX z8yik5*YX_VP{_Y#NayB-8!iDYtaNg)sHmt_NPoePW6M^+RWSIBEs>j_-z(c`{Dp`z zWekQgrNY_M)3PvZ79WO$eCOuTK$kw9RUKVtuUw6mvT9LBh8#`NQhyd-k}~Bt1PB=C zJa>V!=zp(uZWrLnomN~>4h+W-@Ae;aDRNU6$Ok-DO~4O01#rX#O9Ixp`L?+CyZXdT zY!fA!914iPVQHt={DM->umcdL1=Q4>n%bPFi{92~R-$$-uN>F=lp|9jfEZ6~FGr5H8xt-mAz|?J`WBl9>J-!QmWuAhJgjAcuQC3=-$HC72x&lmaPHP__ zNr|IT-Jf_jl z4VHX_L^f7dkG0hB_lhJasHJ6PM0jx{AAx$~0_gB1xL{YBu@Nt`rH1k zzT)@?T;T#({V%icF=EpX==?W>5Y7J;glI|YmtA*6A2k#)$6BW;Mx!YS!*mFPGbTM& zX!$7dgTVb*`l~TQE^DdhmEo~*u~H^PQumCxOz(}K3=k}cMPI@0fS4FruI9@aT>^W+*6zk`IWcUa* zvBMwBW}G&V=jVw@5fBmmGV}8M{nAE0?O$EZf`O!9liuho0c(zB<_54NMhr_#rh16f z)kA`WjAD)+pVCCw<`+)yvNtz3%O)l!6xXceg8=PC2t;P^@wwKmH z*R3jqBfq1F>>DwcyIU7j`U(WVfE+C>j_j$tPoiK+8V7eDNTYuOJ?q5EN@3|_75a%h z57UCE8Z}xtgu$G;x;nwL1yLwKdl|6r3 zj*q_^RH)e-a`+c2U4enjn^ujBliqt~-E!}qUv*VgRWsg_0VPsI3`?QEtZl7Cj;6iu z)dLO6R49YMijtI++@^^}D|`F{LM6$bLUO_PNSC9eLKlzf)T{NApZC@cJ8*7KFw^z} z!jh;MQuECQ38SijiRv2?Szx78H*v6r95EQBVa%G9b9{30AIMIjvkjt}W( zcYqG0%dLtxHFY?}vJfg;C)ybcO}e}24MSj8=qffX_O|D2w_l2o4QDQ#{MxA;s z;I&I}kRpH@&;0Zm6Iot5l!-;u$Y3DE!JQ+ktm@)anFg&hvYDH6FP(K_G4kl5$YgTm zD#X^4hX+p#(AEC_el14#c@%Yt3N!W#DpG`??i^c?n6eryiDgB9yj_h39SEdVwWy-u zV;cm-YT4+l`d%b}r;M343UDH7RqK)?W&&@CHevxjfez)eNI}^APX6J|k53G&gbBIx zBg>x{z(Jng-na$}*Eb0Ubsj*-xcU0=CC2KfNZ}P9HiAE=e98*6ovrN|puAq4x$yTS zik&W5oygJV4qx#mA=-uxu619Ri!;~DVW{QlToO2yuJ_FNbdj+(x6SdUCpD8{*bGy5R z%^d@KM~nSu6ih5m=-F|Y{`2rLlxujumcTR`0QzbP~^=&#V8IcNGF zIqJiA?|EJht5A^X>Pl)xnpPZYk{Mb>f00C*uCui@t4glH0@l!ecszCL_9x zkM`bvx%Yj%v)FsmYLv+Nd%qOZ%F{=0n%`n7NZ`<%SnT-}lf-;E8bnqU`1KX?=a-ePi&I8^Zwgcvf8XC@RO^41 zfI6?7aWJWcZc&=skKG%cuSXO3(>Ndyh0+RS1(Y}QKi{`Wle%5CI!!ojO?3)Bqil|3(gv= zysIRilnZ+N!*#vI*c+LHXoFp(Bv)O^Le63V#-60JUo-n&18&P&l4(aC@n*#lSlp9| zA;BtSP9k%MtPz*2A>6p~Qb1T`l1Qd{iWK%-oR$bmkQBBztS%BHDuf7j zbQWo*keT0F0N8kaW1H+UlN_nl<-&ikcY?msVfoqr^zT%)~V@%4V#?`1O) zZ5#rwH#lk+D5yIS1SynAs&ivxUI^@V8AyUX3r1j+hy?!eVUZrpiMl-|6j> zO-;TUWeK_GKuRxl;pxzj;vKKhgw4CA4j%q+Y#v9`ke!sENR&u9DVH>dux2a!eT61} zsJ@UsU4b6f>nc$p!*(E{Zy~horXRsrqTh{=h%e3Y4O6aq&4QUlIMF*)k(a z8cis1C|F2NjyO1x7+e~z&vHlpi$(>C779xRWnedJhqEqO`hIc-4_rmjOF z8APltMN@FaJx#DhNQb?J4I~*4V?@M`k>u#t*dfTU@OY`j8X{3mwTZ6~ z$m<87}@6^N$QXlqZc-B zLLOXbv05(DDng-*`jqs=ObdxW4!0cc3;C!#&St#L7t=uq3F-~oTgSY(fwl(5FsVYoWuHnuC>s($FTj_po2Bs}d8xPDe&cuMUav2s@P$e-5^)8fb<@Ad{g+g!|Eo znhEw9Ggt}+PD*_av6VuS?DI8U!Kt^O=&YyFdZy8QdE|Fm@W6uFWlm^3ypX#%VGJV^ z^@HrX9^9-Nzj$8rzF#3VnQDG5%-*zkdD?FNPax6 zerGZAC!S|XFtUT;6!U>$_Du}Ih=`RfTP&XBZ*`*?f4v!y{Pi#O^*c+1Fep3Fq=n>?SezyRz2IPdfH+w9bg= z%%xI%*mG-SqE$sN^@FEF<)ztUl$+Q*7F|mvc(Sg{`1oUb_q#{(_oM`K%}LiUt9IP0 zel)!Go9~w4Sw)G8GP@uu&Ecs^<3{{2JpB|dw0M;XkvfTFdLxdRk-|l5Hn!E4kq5e( z%0p%Z5u$>qO2SP^s~%SpKG|e$>Jq}#j%h^UZslb>+z`Y#?~np$5;uJgXz68&Ces56 z<}DrO5VY-37|8urM74U+NS77vJOhFkTbQCVR|=7S_g0+ck3rp7#Ap)w*mwGc}f zV`!*SfhEGT1I)g{2(WuW_lxWcXIrw4OHRDmX9_uESF~cI5YZKWl<=?UDSOH5!mbG{@!u^{b~**g&36vkxlI-<46{i z&$yvFJn43plKZn-5)m^e(70{rY&u}8l#+Y;$+p`~lNhbu5AnApAz}=?(__U6y$tQ#8x%(iiK%-!boofv^rjU1b3pUphTxelct7Bl~7f9unN#LG}H4l2rS zW>Jl<>W&m|RbKmzf)%74A76Bk$mKqeG-9hZR){H0J@!RHNa<*#fN;S~G{j)LeA$c7 zAb}AV5As)BaO5m(y)$YyKRI^5%JKaQc&4pOYQNGOSgx6j9}t8du@Hcy*&PBwN1A*4D^HV529jj zcZi5_anC2G9+#VCj2xeE!>`)0^sGvXxIAXIbW-}1HMh$FFfDL`u0Se6Lf&A~iI89i z>0uy7!7j_`{LAjksEBF7OWU-y9KmfLujQrwweAz~r6A%ygxopUdh}?!5X3u`lhPjQ zD{uUblRiAbR#h{;+nvo^4g-XO9^obS?;X(6lHG?G`xpbKs0Jy<{K0(VGj=|5Q_gX= zGi2E}vqHA1xo#0T_bXNofz>7&o9MjgU>aD8W);I>Lz9(N5R~)w>Z178xABva=A<&U z#AeG{dKct+=6!og@rb&M903F~J6}~D4Mdp8aFkT3beI)c=yBJ zw?BP}!ch1npXkIl@H3V$d$f2nO1yUWw}{t|a;^0D!D|98dWc`KsDA=Nza4X9|JqW< zA}1@CO+XRWr&>&c#7_J{*F70nE4xdQTzZdT>fZm|wqo`AewE)VT&V?$Ual7`>oT_p zJ9m`~l1&ubKn?o^micSobqRchCw%z45NpsU#nFOHCj(%r4R>cBMo zUA4IZ*Jw{*0b@wV7WM*016skU^U-uJNah(|f9=Q;6qI48riqK^Mknf~pW&_Kz&s^c zNH}b%209L;@KEyMxeum05_rJ^sn$K5hvo7$7WOkQgRDBB$VI__m}*tPq+!j8xQ46q zR79&d4{7HnV8@3ODfRA_SP-H?CPeTNUc+BUuFbT3Jj9a2^PIg%(_L4e%)C1O-bvMU zvr}l7vq=3l&*?!~3-m0nqK=nvBVVul(yyqUy-o z&;80HZ~i}1sU|#a=Lgv<=P>W@-QGsqjT+lbhAt=7&x&UY5+!2*`Wqy-D{2G^rV7Kh z!Uq%bJO|)-^B)d~))BdI)&&dqO7r=@B6HgM-DULDkP+o`)e1tK=6CHG@*dZr;vlM+r^L2k1Io|haCRZoI+|N^)OX+6yR8}*O&s=7&Qu3}x70F)n z@nSpU{iTww7z(QXyap>DoAqscMx$r@bb;hFga2v_xdw^H>_s?VKzYn=LQ>!T3JgmA zqYt(AvWDP0dAQ+fHy5G!d3OBzdODM*^A-2J$tZkFFG1RpHCmd({4EN%H>F13RlLqO z5~7jw#r&=d1_F2N_vdbkXNAtbGI*Q8iF@DW_YN@q^Lppe_pPV<^m#=ltN~`_kPiAp zk!Ai4(?g?KGFKX?q-j>Ma4Rj83Wb^uslY~dX-^-cWaiSrkvKM0oG@>%II+TPU^_$8KQoKH zL(^v8dvxv}Io8FOR#xiY)~E6V^zRR5|u_ixXFF$H*d zC+pSE-lv?W{DH*iAcLRaKQ$5w!I+ecJWYiAG>0W)@dFxUO!u#Z4ZCk$rKdQV5w!>` zA#o{!QR3tf<9z+;S6$P(1E7smM!um39KzgS0Y-`cvi!0h`BKufUBDJ!x!!n^Uu@9v?UhdKRsDeXu(~QD)y~glVTWPwy@c;=0GD5B z@4@JT)p5TB!fUjlj%j6wyE{Q`L};-wS2BMoFSblsqQOfJDMg2$2(IYP(9d~g?sd%# zkGU(Gttk?e&}bCJCxMj7S;SJ^gg#Y4R2ZH{46c?>MmZ2!{`Imv<_WyT(4V=iXS5{3 zjhJKyV;9|Cf)s5Z)h>a^6FTs+QWo0KYpk%3?wyX1#b2h=kv*GT^R&ljmx$}Gl1yfx zmh%YS={5y2slskS3*BGZt?v9|xqa;?>zZ>JmHVmqR2Rxv<&`;G4RFW(s6j9zDmY<- z1Z95%=Sq0cb)QM+GW{xJIi$$FqY{=u!jm*uiNfq$q2i0x zwBh5D3fam{r4U&J*hKO`?J2F#R@3O`zf<2YB7?pFP=H`{=f!}7HY$n09hyF?`NUSp-%_J3>_ zUSHNWuVyXFELkPcFjw`Y+Oomu+`I%ku2hadAbLNi%12k*=xr-a=C$1opMt$u>r`}y z#1CPS@KSL!Jb20*ZMB2)eLX9_#|U^I5BUAO%C?rr>-(qP20D-Tc0Yjs<_U~IXVFf} zXFoI>*}(a}S6L^p@~6PO0>A6-Mw$PatJu*9C-^tt>EZ5P-=C{9>u#1%2)I7OQ8n@c zs3YY>sO2V)m+RYJ+c#-tdE8bDU{ENb@7>q1Z=3FY?V2qRJ^nUtAJU+|C4ZKxn=12KQ>VnHT(d<|mg*gG03z^uLQ5*KtTNKB~0GFK%^ytD}% zU%PAf3oe(dhqUiw9qxbHDF%2?llURy@O(Y#btt@u7+&nY>^RKKF5_G9Su-|U500to z#+auL#8}H424WO%i8?3ox z$n{tolN8{$+D+`7F?eMNuIt&li7syQe^~`=VXNM~`ELF?LcudF=0LlN_diPdW5O#9 z7WzThjK`1S0ek_o+S}Cu0hc#E>p@jL565=h4fiCQg4LB5p+uD@)9w3}JuyeI7n2t0 zIVw+Mqg6aD_Pu6G8VSX19C1R?SD5-Ps%-!x-+-*u$#qh8^X1 zdz@1_@ITfYG&@YRwjLS!jU6%ZeG_l3TkWvxqv$;~xVg<$^nGjE66JBNUAr!(|Fz|@ z69_gAvRipE-^snZ%igy28GnDRUWC9f(r6E92)%`fi# z#xKifMBegQT6v`3TXQubX)TA^8G9d|!2- zD5+tBl6(YPe|bix%BFYU{K9j<$KB`_lW{{8o|iHrg=T@2V(zk)i^32WFRyb$t30P* z))O=W=>~5Vd*2(ruRehr4F@ds{I1pJkS^m)vzr&LQ~^4Rv{tmhq;WSOc`{P)&5ww}}y$|^^02jWdQ-<#aG zu>zhK=XzgWn(gffT86%BNaD>}y)bwfovtTrx@_;`1t9KZ&dpB?wtmEB7rJDl%V+x6hfvbs`8GHtrZR|35!Yj}fx>93W53;Nl6fkpbu{10Y_$^a zsQ3DeMbi)t{CCfj9W^aAao_sscNQ$Y-(!0T7_seV52^k+B(etFJMDlzK*_-aY`WD6{&=E0Py9_5f z(~Z`b+$-2(cO>b+cXM_R3Vc$n%TWv7>Sn_A65f8As@rZZdp-l>uNl`^DV-XfdEbL6 z=$b$}kv{g`opnigKg{c=+kye%3w(Z9aXOD>@o*(_JDAO*$e+${^E!GWYO#2Fw-awe zdO4SE64;zAoiT>;LC#{W#{(hoTs_rLF`jD3@y1Pm>bS$*$K&+8UmLx6I_|836N!RgfD{)goSN zwKuu_9SK?3Q7C_>=`-06Gm*|)Up{+Li2|@PHwgKp zobHEdzuckJ2QO@4xH^=)Kj-|NqNQ*v2ov!?9t!(Aufwott2pvtBm3#r!21iffYjls zIJ;CsRh*?{ZSb<`w;2Z*_dniR7b(@|!mIq~=3@jM2)J*ZvULOj(4d9d_uZ1V8Q;6Y z6rMIP>-2!zg>@o7wv+lIsJfb6;jRCJs(*}*^n1ca;SMIYGqG(>%!zF~nb@|IiET`5 z+qP}nHctQk&vVXt-_>h%_lK%=?_C>p749m8P7j|?6LeSJpQZ#6f4Q8!?|bPy<@hTe zx5m(?onKee8n?Te3O{G6$Ue`xylTYiru0jf+62tRM|Gw@|FG+{)5^O%-+8EmA>(0wlZEyNeWD+1Gq($-z^?RK}bd0M3`RrdLk zX2>w{H`=C0+!LyKs(={`6fxcXijq{=w3B46b57xsA&C`IrqG==GLRM3rIkqpolO~X z%W3Oq$)`tah*|Le+RK}-jctbCpFAwqnz(9~XUcs($IXKQJ#~N6H0o$M58x_~`(t?C zhR9NM7GVT#-bIzJ@V;Y`vbwr#%##}H%5!zhS8o!irzo#Y{`@dn8{LY^IE))ycNdH4 ziyj;{n13Tc;IExW^yC@5G#Rc+!F!quoaTG!9p#w136^n{D$cn|?{VkKLs=*DDEG|Q@N(BR(0<2rx>r@f{s6Zw9?|Kxpo3Bq`vnLk0vHMMiaG_jbQ)sHa$_Z$Tunx9LoLCOklbz8l%8 zpPHh)5G2fqlAXXUhQ>^7!F~(^{Ug`uqU2R71qOf<*jy;E9op%`V!voh>~d>i=IEx+ z8;;o~Bn6$;T}B;KGib}>tgjrEsT(5CX|)`}PmULHz{_N}E>9QBO??VI-`S>Q zrt>gPu=Ir6?wFDuAVk*PXG6i_OXPfN|4aF^=d(9QjS?Of0o&u)D3k%`?p_KTFa&I7 zkf=q5lo+|E)T#A-Hxnr5)N1vb=8a&SYa6=%{j#LC%tA^+xfn45cM_R9<+smu?^^v~ z^^^~%-xqj&@;gv<;qu{JSEs&o*gqCd=Qhq*M~K;J^=&4^yE)6%VOj|iEeTu7w(!6x zfPce%YcyrUuC=#j>l#zfW9%5q?(*K(y8cxL&_;XeoO=9pO98@peuXGU0|q$bDKpw{ zT#o7NRC_HI6%*v3L<-IHF_;wjvQa@|Q7GP{yARL&r$H&Zw|)BslF}fve9Wu65!%h6 z0g+v1&XA6|7=ZmAR2w`^rhMN?c-SfGYY6A@pFMOuyAN8?E#7D5-V}PSloJtF3#N-( z65;G`DQhh`AXrYD0qns#?Tu-^_b)jhV$$vhuY6WKece~>J6W#X*mhg_x@=k+xDHF3 z`M#d+zx+Usb?D)h{_VupB7#@(-w(adxbFtMYlUk(4X($Kw z5pz3U`8ii3ku1Z4i9u2Oxt6dS$C?7gTwtikOhM>Z@sAa>!d>U@YotUqV^$3~al8dn zV4Yd71-PF?TBpcPARcQQ*&?fd|IGs+SeBbdK`<^8c(e^1g->o%uUh zgwz*bbG-LDc6^@)dsb&S{iX_)ZX*2+0Q{d^ zfS_74g1!>6-)@#@z3E5R6Z&lKLg@(wJKACZ_E6eLbd3lN zi4~9~pNE5H3RzrGGj23Rfub|qLkN)Sj;EA*U#5Bbf|)iWy5Hanc3{?Sw{q8ysV)-T zvIvl^3daift5HgPSzpu8I_U(edo|w)!U^@2hLg!rMZY5l_Gjp6?MVd$R)=EFq%+iF0dewU$fa~x3z?jrhWsFK=I*hRA)_aSwX-ZLyscY0 z?NM##1lL~Lo#josgY+w3!6yCbS1=HMBOtTEzYV^pzIQ5>bMq z7U5~3sfE7?RH2N%m~lVAGB$93zy_&6u%1*%t?EBD7!(?^H6sYsXFg9=wb{=$R0gy! zb-vx9pg)J@=s77j8(LD6WDJuHWB))nzY+rqY`Ne>+uJLvcw1Sd4{ZiGWgmuW*P? z*pEM49Z6=L1>BDO$!5zy=v9a&reA&SA=+K^u*^qU`Z2pwvb+Q-GkMXf^_0L>W;-$A zJR&bjYuR#McwVs`(c9M1s%)mnYK8BlRyY!xHReBstAhT-wO-c z1T@9<2iK6zaR4Si)I|isd!Ul0r<`kOPow?nAMg9|( zq@Lg_3X`YdTW@i+?PL+`5BXfju@ss&9?w>+Od!02+OHOiRf}C#pBE+X5BYiLB1B{x zsPmqStI_0xt2n$fHvk}ymTxe5mzm#+{A*@XiXH= za8SgPsei}oXaG4&q9qOKmK0Z2XD{)xWB4CtUb9zI;m$`+l(+JPl6fUo!&%2@p$lG0 zQ)bcKLhs>(AXT7XsZ^Ei0!~2hTZq1JzAjMA;E%cV=QwodNqFx2p*_1fY)y=e zHY=w2*gbZVFp9nty)^CdrDtZBQ=*J;DhBj*p@AH{0g0nfSQ(jE7zHqhAOSV({Ps0; z6$7KDTA`CtjIK9|h{Tiy>FW@off0*2vF-}Ut-&*xGki@fjCC6qTCzAxaY2Jm6L7J$ zjLK{_1yXK7Ge3Tkd4hLP8;xvOj1!Gi#4iPzJuVBTMAt-Tr;G;wCMF-&TuidA0?%l# zO?3%AMbh7_)$wb9U5mzsOFA+P_q=IR6PH)Ot7fgUC~%+!S*HD@ zGCTi9m|^v)jCERH#s0nf545FunNCCDs+?z(|?1f(CQ7y4te|7h$lY z1=5f}vnVk(O!c(tkff{wE5yr}3r=?0j4(K}o>aFTxSzT^@}%SXI_^~Qn# zm8*=!u|bUg`O#}#Lqo@^3}w01LZ0$hjFs|br4sZ(R1uW=wHsa9nB7z^olI=+Ez(Nh z@Jy+flB;XvR3POWVdq?arg{r0c^CIRE!Jf2$4aZco3r(+CL;}_kN^8^O0aD)X@CuN zL|{az3RNDTs(m3%Js^Qeae*7=!|-&d?ke20Z=sox>RQQ4S?0j>%0d3Eg(-ZsQkfsf zXTUx)!T20zuZ%H&Y|oj--$Sho^v@m{Cz5BIxHE1nm9a+Rg|BBEsIKC(kn&)Y2@J ze=Vb_lmfJcghW{S@qL+t`qpUuL-deC#5&yf6E@iOnsWalHSX!-PL)g=+f!RZCKn_I z8|G@fm*SG4#EeF2;1Gmg$~2OK66k1?3Cp#n2?J!M+h)Upp`-7p)3vm?rG?5hu^@?f zo%TZpYZ$p-lF?zyPn)0;7gstbQ!AwM)9V!U(hRIBaYrj_h6mt`mf-YD5yrC{=};+N ze;){t4svEK*onX)V(*GOxur+arUvYtAa_mW~DXThS zZHbkzGN85KwRy;vTz7&DPgPVSb}l>IU-y%Q0`+(>RG@zeSM5R`@tnoiRf$mhIL8#gamf`$*z7+rS2q#L z52Jl?6+v)6Y1VOT^r#|eDhDQ)d!*ri`@%1|Fdp%b|1mALkZm?kOrZC zIk#Eh{%3>x$gfdstVFN>lf({OfHQ|n@sH;6$ok}lEwO3h0ICG-)5 z+NA9tUVAqPAq%e&gM+M^gDkvsM)s&bv-w#fT{pG(6m|F_rP#95reOqQr^yXw4!~GV`53_e|jxW_CH4jB34!mJ$>r&zX>tmnbYbDz{rE z+mQNd3L){3+`Mn+t2?kCWyERn$nY7CNg0TCIVCz%nM^32{p{K7!>QsuCXT4ZwSUD5 zJb)9B8r;ra4^$LN@acleA-;6_Jp*K%;47r~L z2L{6OJUr0Yx}ra!(syD6%=j{m%DQjHfa?f`&b()*$0pB&C{2dVcP6= z`$V_$^74f6)T1$t_^}TUt*3rn{l`VW7f`1@DM**1q0?fwOT5XbhRZoL{onsS(K$v_ zcjTQH+9)8Ic8fR;+H@P-`F~7l0fRLMZ-)QlaIP_$)Juhzy0QZO9~H=u1-ob+Mt_@; zHjv3K&a}m6MVZN+FxYTm!$O&EKJ3rX$08LueyYTRqjV!zspfCidg^F(Ne`@e`5`Lr zJApg}M@u1k2#B&`YxX!NW6=W1+kYO?awL!tvP#x zi}z-!AfPPaT0O?i)b%nXTvYl7KksUzjT!E!mDU<#*s&O@hT?&z#`cf}d!hQZa^ zZy&U|UQ^YQAPW`vu0q@9QWx#$Bx4Y=*#z880oQ7dV|p4-PVj(*4#pz0K`qZupYHAJ z?RQntX(ooCxc$px#2S$bEhh%}%!}MxV|iXz<-v}mGtSv~hd6f5CZ-x|byZKEHgQlA zf>i@sjb=9s*JIw|e`+kQ%3&J+F1SO(i>)ZzzTQSfSWSmM%9d%UuY6r7%8sM+JTWW5 zOp{7a*ve(*&GZRF6z6la2N5Q+XQrtFOd)_2inA%^3E_XfEFRy~VouGmB#R!9M07Km zii+n{v&t5P@c-o*o)%{a*XON`!JvQjwjxq@0)?qO!dTBF-DXf6lm5OF$uuSsIpObl z)eZ0GYhF0!f12;9f7mg+^#Lj{dG<<_g#hU3Fv9@l*l-u6^6Sa^#Pq7`Rj5<>A62;H z7PJ}_T%p>=>hY($D}-O!cV_n=o!8jf^dj?gb{Fy2HqjU#RH53%az0I?a5smyKNXoA zd%b?Q1*&4Ck{rF1A}YpX0ohExuNw-=T-MMv4ve#rujT!c)OmGjyp@nLENeC1yNn;6 z?8~C|$mmbmrb9=~SDJwp`4;4}I~qfyou~|Us)wFeX^=Z%Ut+_5D`dKtSiMydiWJH- zt~j`Ar03z%>LF6N=o*Y`jWtg@BbGqaovuaR;iLAE`|KuJjl}ZY=7ZqqYL1JM+|C=Ddn^onx)MvtSiL4!Xwg0kjCnUkTF zHiI--`uxvNk=<%{xQcYoYueo56G-+;qoXnC;bl1-5AVWNu+BaIW;|62zbhro`-fRx zKOE|1`U~C1oBaE(pPyc2EVdrN^5LVX43&S;?5_vDWce@Zr~zz_dfB0O66Y?A*Xqt< z?qi4uSf%!dLHq4fKY31b$dN^OgjnQvX^s<(HrsSuE7pd&j}nb^9*d5`3O_Do-cxC& z&vgPcs#SkoD_4Ibx9m#iIRA5M8G@YpiS>y`zX{r`S*5BdJT%a!3ikbl_-=Ce{g%)Y-uZ5!LW7jSB zCx)EDUw3VKU|0&jMGi7Jby(hz*$@$NKUA*uD%N@@xRYh6A(Jg@d)0V)CUW?7Kmhf+m1VC-gJdTjAHT|7ZrToEKfaXMD@y;y z9_CS%eC`Mzq15cAMAeeiM>y?|Pt$-zX5E(4ivlFY;P{ZwuQV*X68ZTXZBgyZx3z0P z)-kj6ev5==`@s8+O?OAiT@2&!_l{7Zi(!Bbev->#r_Hed{L<1rzal;f^wHP@g1At`>iR0L1NUuq{sHZQ~}($xlB#P zdU!=iR$TnDg!7<=PaTsHC$ub0nLW=?clYF!#^zEDt>}y4du-xM;t;Tv{k{A*{F8eM zF83(o2hFTmkHqI+5H!Tfk%WmqS`D-gx# zE7+9SyqmVWeaH$Yv=fNj9cTjf87LL&ZNfiRYMphAD?|(mi|}`I_lg3|kT<7K=F#hI z(s0#njqmDxvBY?Xd2rNYV!pk;JKz&Oz6z5%&PGoa_Am(SWq+x5-Ce+0rX%5Qv$b*L!={*%d5H23|nE&QVV8)?c>z2QtI>C~AKP_vvYd zpG0+Yip&$n6@ZF6r?PiM-#|BjiRB240@o8*qn9JAqzFCBEupst^6>;}Crb1iM4tD# zOf(#+IxhVc3X|Og^rwcx59R4jYCPGUA_b4$ms#~+wswg9!H%=mur)RcHJ|<^t8I8V zT(1qgh3XGOzL7hdF&A)NUAn*UBC6fq;_%m(H?)}g9=@GAe6ApSMx=(HZB=ik@c5}i z;3sI?&oAYE^C>pE>|S)~5U)+osaC5gOJCTEb9!v#fao9O(hmYNzrgt1zY1Fy0cFa+ z@I2Sdqf-aHe}kIF@xJzTrz@1WZ9pIHCefKnsL+w*IbOdC%(Ge#u>z36oaocV2GZ%5 zd1I-Z_>Vj0{WSu^-(=nGoDladPH#@7K7rd(>dlojulFvKoBC2P>4dZOJG`f&4lL9g zZreI$Yr$wqpO_lQ{`=(g%W~@P@}~P_q}G@}vdMy@i(OmkByw?dnsT%|I!V~cp6fg5 z!tNE5N1N|~zer#+Jg3>I@V|M=J_BP>?AgKVr`kGV$JCwf;p-e5UfJb+xo7^?vkjlY zo6oalFpue<(jpJ1UHyQIm4+Xj|Bg$^q_#9nVkMqSztwL>NJGot9-zB5G+SHr?tgns z7M(fsR=tbbAI^=Nfe<0A*MQJ$XTjpv-2W?hcIx&$6;_G>+1^a5C&y*4Obi<{eZ=D3 z>|P+)Q={WE3fZQvn|38I-aPRcO57r&fkf4D-u9H0Xx?lktf(8LEu9lA&wdz3yrRg9 z{-k*NkMrRlXZBh!STvi?LYq`f9mwZ^?}u&!zY?4kSNtkKn0rSuZ>2 z?pm75IDoGm_@m#Cr3{~+h6ncu{LJ*AroTfLc_?518oNY*MD<&0?}E~qKjebZ{s?07 zI2rA!Py;J1L~(OAiJ4t~nfn(T@ewq?PhBB(F%|B7J3lmQmZ^j=(RR3t))B3OxXo;N z6T2(pA*FrsU9+;V?!<}t&eSHSGohrV8Llm)kRnK$e~=Q}f`HDXkvhbLv3>i_1qgN{9(tSxJPayRod1V> zPyKsKhO|M6Q_TK{NM#6PYg~5NH|nYgmi|Myb3cx?L3_cMgZ`tASP&GMilc{M%7t1Y z)4=p=x8jm*!9FC0fr3+If$RW;36Sc08tHs201xHv)RrZN$N_UjggBI7^7JC?Ftz4$ zl0zJ?GTr;8UJ9lQWyN~O{yV+dRyn-f_?L{Pz`U0xGgJ9-w)1W|Ka1-cUCxCK&n2-2 zX9a41$YB@`y*6ubP3t`La%Rs&9dbYQV%H83$vS^5pW&e@Zjs2%(x@Q4CzOtMLPpLv zKvSLV^abBP0_Wn=yyFr_7T9DU%u=cjpLD2matbE;V#r|cy3uj<>MLiS@EMm zSrLfgf5aNtBLUpdmr+)Ybm+BL!se$}oN7kell17YS1A^ZD>X3wv^T_uVsdlklEGE<(1^Qa7aRJCWAwS;oSiJ@&2IY{9tE1V(+5oYD+IEX2 zQE)?r;(f~%nI93sb$lc#UMgUm;!SQXE~^^~B2s{jnZ(~r8x_ieOO*mDgwVDX=VW$q z7)a2K@3149^Me*&$x^lSdm%;G-2#NWEt|vJ?!#lR(>^e{HuuE|kWXGmlfI7y5s#s6 z!^d*ZJuypWfc?-z+!@gH>V*_LFW{0wuy<`+uht0pVITNZj*DiBFIwttTrZ*PO<)OQ z(t(bp+-nk8Scp|+s{Xzwm+3Y?K%MSXiW^Y(q3#EoB?XWcjJ?`UJ8b-Ghl=G9Rz^Ui zg=(s0HW&@xYbF+h1Q}nve5Lfw;9g6wovQC?ih)z#2p~3H76UE_EGAVS?h#7B$kyxN z&vyrn|7|fvKSI!2O?2}MDZtbLPe7T;+CB~5F>h6exll^p#HeE&^@mS)JAQ*k3v9$a z=ygZ4@r?OD$7>5!2B-@zvkC?!VrX!bCo4KdZfw&DA3D4$^ZvzMX6w7KPQJ;)<&6-j zYWgQsa8ubVJZ+q@8h`Hh>9xISq<$2EXgb}A*BbDtJ~d+tRsKfFYOlc*116y1^)i}o z`WY#)?BzJnt1~-m-)QqlFx7H+K1+sYG$e)hagFHRT2dKX@rg{DGqHRQ=yZ%UE43r^qpQ_dq=HDa(xX? zq1VO38mqcI^i+J?ry8;GBE)>#xrqtZx{`A@@3xZ#iNLCL+~;*Vh~8Z}#o6LVJI~vh zliuI$aynKk)+#aDT%*$+oQHVfMt%mVbxY~=f&&HQW2Pd8lSO6DC))8R_v#yER@TY( zL-VW@{ielG`$_T4{YB9yWk-I7GJ^9q`^A}M_a2lJk4h*kZDr8}q2~;rerBLm6oVI#!Y6n* zls~G7v!BmB(lX6U=%ty~*WONQoxpZ4d7pI*vrxukEp^a(7Dy4hy7)>+ffQ7t0gETJ z#YCIi==!w^IgfCQ><@MbU>)x^w;!%pAO zAx9@jwThhR0rRdAQb0+j_b`#3+oA{szBL(;_z8xQ^^-(L2r32;jHSe~)^NDZ{V)@0G1o20+A`RMH zP;#}(yxCYx-X%_~tO$mPa73NW@(K}_cn{+dwP0&<6jakezC0Mk+#cB+tzla^J`&NQ z5dA$N(M^8>2kFU6y`MXy+_S$$e;3LRJVl*jH`LpmK5+pZ@L*sst0=o5# zg-Wu}094%5v839+7s5z!HC^*R$eH2Ry!MxA53QQW@yYHv|Fs>;t4N6znb^S;$oTSKYMY_AI2AR0oNK%kZ1Tit!*C z(Vz(iX?~!4gpE7Kl^X+comC<|ld+5k3Lyt^Wxt5YG?3hb2=BQe15%-p2Jo59uo@y& z116%n(g%EwxLx(KrNu`{RO(5{c*`u-2 zNL(2i6s#;k0>yWPPFn77189=0K%vC~%~ri6od)A0Q~d%OYoDQsm_D*n3n?p!1OZ~I zNGFpH{36@wpwH2g2}B!U6=eLF;SDkj-RgxO<4YSSAkBuSaUN2ZSP-rw#KPeha*B82 zix>aR!ckJ*V+Xka3xm*LwZ?iz9ja4+y{W;2E`X;j&b`3Gr2r_A)wp;n72(es{>{@W znZPg}{M}oaYBd1T0GB_kiEx}1?T$Xp>df3vO?|(ADgy0zgnyca+dEqabw(x4QBH6A zO~;CpK?v+U&YT?oHr6CCA@f@`WkpiGgt3&DorXGhR>=s`F(3`4gSq_>5TH2;*fr@C zfY8zu{vmc`k-oo@Lq$~^7k%AT5PcF}u#T9~#I;#qNM~D0cDI>AODG~4?VGC4A0JQU z7WqR5JU~qb{{{*0gu;^v>$CD%il&t<^CU*~|4!xoSD5}(=#PaiaFH7%_a7qTOcg~c ze>4Zb7C}Z^SJ~<4e%OSFpaKuB##n5k>rS+q{86DX+5s{txO>oDKPVu`A4AJN*ZeD0 zD@!xOuGmb$w(k&gn10zjHeQ?fbmfGL1f5H$)~S)>R1o2!2aiPX**yq=3~j>{9TnG_zJ1df4_UglERn3|*sfhHCg~7f&@tuRT$jS&}*(SnTv!6EGM6WlGR zcE|6+7T1mE;8wux;WNr$e&;K~cFKGlPNQMw?)wNCsw1l|7q09q)iHfiu(Ac5tr^U< z2w7>`DaPq=R^AR&9`5`$RtyPH4J?U5co&Nl&qG&fF!itXS23M=o2jMiO;C?`KgM#J zw{=|?m@8-us&I4iaa=>R(V<;u-BU+)hcjf}x~ z513XH;X+!nN3=TA(!;?41`gpo^7wp00qh!!XQAp^ut*Bc0IdHv7ho6+DmIpmbq@V@ z@L~kXCzhg%O{XfK8pXZ0@}1zxj9LQb-8Td&P7UiEE{qV)JJ|0=AXcR7-C$l1koLN! z?;#z+`B6h>)JERb!Uw$b+q#3WbR->^=G*wKc*3>?Gyf8>>sh@f8no&xZfPE^(SyVg zj-{sLnm$qz6X*FSu*CDlwt|jG=oR}PC4V=k{>mxO`N^t0S>r)v;^|UPPXuW{=d+S* zJjDOu9^$OsD6Pcvp96G40xbYM&9V(ZIralOc4Wqi&ibu!nBL4(mkTccNYzY8q$!rc zXQ+ZGhM6?x{~k&!V*j*z)ipEC!SnI7wATT=YO}D=5p6b_Af~y(WPB(n5aP6OHXXKc z*ObWCbx1&9RmW8#yrsn)EukLI!>{G*aS*C2ELn1t)tmy-4Drb~Y@^>%8ZCw8-X@Q! zX|8VoKz?ZQ$LVT}(h?ol#I+NMpFXI7G=40F68pt)wY8-lPeNE&bo&{T432K5HdlpM zhHNYYI+^7QG!}VlnAff<6vpX}`(Co0yP`qC5L_6fBOTI=M90@K=CvC$njB zAmt0x-%kZFHK~y~Yyc)WrF3kcFuMwqrtGB7u6%LgD#9Br_A0PrEruq0wu+iG^>6lj z=7LEGvTI@xYC|NkCaz@WSwLK4?yH5l|JMqN7r#;;z<&B7Mp(4B5JpE$M zx<9>)GoKWOO-0Hb`s9W_w5qynqs3h-Rs?8)l}J_d+V;eyJIX|c4w&D+y| zsxm@R;)-HNXbqSU_P>i=tjttQl3b-yll}S7kBin~lih^)FM_EHUyweEqJy=!ot%!H zUjEeSY9Jfh;Qp9qH#ZBgz!cxd%ZQi_KQ$O)vT93+1o{8nkYZ(^lP?DMM8cAu4CyRd zlY}qxIc6qdVNRoLo@Wbkk{ECcON-y{5oga`FIV-p&Bc0z0D<|BdI(fx6(F+TE8R?x zDKfDz9>46_>_~LF`0tx^PsGYTOUo*LgnoHcN`gKP95OLJF&=z^fyh)`62n5=^_xsA z5e0en94i?VnJxIT-6F^Ly#9FW?c$Y#zuXea16z4{=EeOn`Da6ws9;fcos%0Yro_je z(dT+H7vK#qImT@_OhyLH+0-&cXQL8kn{uvPNSY#UMJ!dE_&_9PdNC+Dz+wAun(LIq zfL#vid9(TOJj5(;N${dkRc3f0U!s~!8PNs&G`qk_2sWAbKIwdBz|c+-v3oR zvc%?rQz&rc5QL;*f>Adogm_2Ihz>uhLiv3E?>d~%>tqBwQmafEi!V8_fnd$EU;~2c z3<8k^p=?^M^}=}2y4b9%l!yPjn~E${KWZfW>Vf$%%9&UiUu*iH;RQRPleC+u_Xduk zvkqbjC4>N7Xhx(UvCvq$V&+ha@xm2$n68lx!iB z`G!-0W5#_z-~`koAv_+}b6^Yr2vU)drE&7G|9|)(Co+TUKp}ibs}>B-6o(KmLRaQ_ zg`i<<3VG!=(~&p;ykn_|N%G;-R`!>ydM8k-@+%^|NoUF2yXtSlE{ zk-$*!*^4X=1IRM8pf(S=)LK-C%v>Smp4sQjr=BuD*9iAEPuhN*8EAF~rBXWN{fYNe z0|lJQXP_Lge{^#+c|&)=`$klNj%0VnQYhX@txHFYtidKStY+&i(pu}Aj+5xG)}*a^ za(C8*G&QU%WsApB-WAH4!P|s1Ks~Xb*kb(3`)x?*xB9_{i9@0j1fG4gZvct^a@=5p z1ccQTjUU|_1y}96ziqfs&s9+7hGZY zBj-QS3yyf*lde_BkBCc3H@iNIP*2I?Y2j%?+GkKo{zO&F-Dn+8=Fy>gY?n22|Sx9MyRJe{T- zabCYE!(oyLm}^5Z;(TIMSuI$1pw|R5ktCdzh8U=qxJN4C z!oRiDM~P$plIw;Qkee@R|1!QkeoIyL$gCSM3>vnxNo%8myl zVpJ1FqdgtRF;y$l^Kh#jQlDA=Kd6bFm}l;q z77cv2ei0*p$$;jSu3753i2`LqC!M_$MJW02FT8ebvohx3vt;4Nu2#GjtyG!+VI#%4 zH?o0L#dv|}S<9(uE_ur~A%=m|2za=QUqx$tpKj{Y2Ie}ui?nrT+H%$@=Mzg{O3k>~ z)-}kUK$wWt9}fJ%kY|(86SDd(`9%?54`rZWJFsXf?s6xP-i!i}97V1hK8Ze6pvOND zM{UcI_&>G`P{|-TkgDC24a0e`E;$XxtY2x%|8#quedovWy$r^ih|rO{ah5B0VL~b^ z)pU)m0dwW|bi6AZJBs^1x~YQ7=DMiH-=Ir*fwlhzg)w#C(~rd4i0$&$w%MCatDecZ zf+3LWXPEr7D;G7&V=TFnc=)?PJx4psAtHk5l;DLj?ePj}6G79VicAgx`{boe#GIv1 z@6|R1*Bm;QI2afdTmd5-TtSgSf~RF;%`?S+W(2P*m6sjkJi?wj7LK!M18|4~pN zmO1bzx}Q}H#T+};M;#Q)KDD+By#uu8FF3^vd&Ek8V>;SER4%BUk>lv`p43*}|Ia#` z@Jkg8#y(h8UJ%AeQpTM5XAl|Kv5>;G-ftZ$6#Wu_!al95X6M(SVT^^Sj&$fu`!raF z)b(N3mp!4*seosQ5}wqykAeiXESXy zheoxmfP0O;LT>4`3~^}P59073BX3|C{T5u?%EVpq=RT@G!0-Gy5{lR2xZpJT014UH zqmzCeqbzu_jqXv5tuilKtsHj)BmZ>$hh6%|7w(~j{?Wo}ZzDv%svg@{G`6MM3&8rW zN1;)SE<649mpnv2v(j(=qtERot*O5pR#mB0twdyW0UK}WK4pZJM?;|b^u_j zO1q4scWZTGO~QFCw17_;E0^>x>2eKzqdB&1TzfmU)PzUNCLQl@VLm{Q49C{Y+X-Y@ zk*ODNS#OQ;$LI_PLK!d4R(IGR=ozDjhelYlVW?!W=nS6t_?+yD6W{`%*z+Q&G;j#L zU*4o&Ba}h;9%;3rK z%O%}ekbx~Qv#B^lngQi_mkfQE^aeEaR6^gHM@ojCZqN68C`Nx&J1Zm&De;Q~qag^n3 z`(`-fx>yjr+k*9M|^m!Zh^URm*VD*$uDuj zOO_!@BUFOeqex|(e!!@K&8*kyn)zU|5c*|0;^lT$Tke4X`eni+M1fM&0~shl1n<`v zryW4jaDbMt92HF)_{+c?fKx-_VbUs7`Bvx6HuFN( z$*#ErtIG64%t+6NXrT!bs9v>I8aY=a>`Z_#iC`e(vp8A8s6)H1bnR)!$Cf2u867G z>b6j&L)HJNH+O+Mn%0{w;5kv`_nfJv3wI%sPRa-oGEmFfR0J@N~Em|XljRNL2qq~;q^|Z*|zcjJN)fn0=d*kB_6yQhN9#Sd~1G+vMZ74E=m#g zUVAq{KdX`$u-wg2sYYCBSR!D!3p{Zq&@y4VBDERiWcIO6@7lw3?@+J$FE1nw&5TW; zi&z`>604&_l5X5(_$PEpI*~`=-zEj(muK=sD8QsEDloM4Oa9RV#%ComR@7$BGCh{W z!Wa>O-wL#rPxsb-w+!z?bnx-f@A?YwQ+1DDYqy!XwCwXF6(Wk_`jm0mvJIEnMOd>2FID++`Qp2|e>Ezju& z#k@K5EXeHCy$#4b(7b?^XO48W(-|&drU&> z?{_;y5qoeaFB~C&GFf%P7XCX{L&8wmIFz!ElKb&J-_xVb%)_+J^G$*G;h808^D4W_ z5g3h@ek@fwhMK)Ey(u+7?oc30&eLvRK%A%2ks>w>B=pf-*mI4}yd@(95E1^KtW7fd zGitGjWO*M!+r=L@?>7=-Kb=p3nP7jnCnDmS^DGcsXfe%I_Jf{UlS)4EKgC zQWd3LH^94oh{sdqWtj{>>LeWQDWj&J__v2kIAEBwwr=vM2p<5sN!{y*x5UC`u!S%# zRSD6?2DVtGu_zi4OGL+AcO~W7y}U#vDu<+%=h=;hV;-YjxR^ET4Y~0M))`zRBvQi3 z@MUNkkJWDH0>Y*l)W|qYprZ=mYJJScIUCuVr;1^WPGhbPQ6K{z!dmgNF?PAGRwmp% zFgoToYo#+NFB>>ao5C2bR-^6;LTpj_v)zt80*_X(qeB}PjN-2!!Hp6TUzrL)c-bb~ zc#i;7#WhP1iwaGoX}ekm5W4TG~3HtvdBZD!}k{Kf~`m{qEQ%+L`2m8v#C@ZpfPW! z-kg_+;UL=y8oN;LBpuu?o|&4S*@mGrNUJ?@VDV$Cba_wvMY(!L?{u$l?gaz{L?IKB z*}V-bwZVCbdsY%M3-(r2{!n>tZNoXBf>&9&AU?iuFXqzonE`M`Jzzkb$+%Z6^g`4J zjR_fd8=92d+SjF8d)qoD2YH~uE=DIZ=zfcN3^G#N9PpR*%djJIp_~qCs0I~kp?qJy z-9%Jb&0s~+?|}Z6<6X?h^Q0XX-yOn_u~dU|Fsj0k+&~T%y}tkGFrG~fJr7f!NUOQ1 zyR0w({n26w;rz@iRtu~aT)}I!#?>sG(U#L;?6)@c4}}eCC}*+=18|?k%GMF%dxTIV zawr_7+R5dm>Wa|$~orS-mt7kfj|g8deRA_^+>hCYy@l@^DB!fxo#cHR>w#prIk zPEOh``^~)AtryM?YHnsxivOdQn?=HGkj_u%mqTcy=F2bRi zulzFW?gy-D=D!K2WIE2g#Nf%Z#vrH-@|G8T@G>eZ4+I(wec^!<+^6i&C9#~>{?cPz zg{TDbioY^#E9)~I9+M>604_{ZG!FD*P}1dcz1)EF>Rzz!1x?IH1VDKP;w=+E%0NCrHY5 zw}mn=zjs_9gGK0wQ1hVam%`MedaNU`f@vl(xUJG;IGu9S`-wsQ0G)j&c;vhCBdH;k zT`kxAXGJqo`C~~2N`I7CuRjM3hP1|w?+1?1pvGkeTLGj=l7rkJqMcbmK> zUw7r}=5;JorBvzvsU6R}E$-gupk#0JG3Z`)N?npWvXer8&OpzHvWQ2YiS)}5Er*6s zfD+9xZABBD5IES*eo|cKROs6Cc>^_<&QBUw66BR7!~*wnq)tDWP=~IAg839|OoH$; z1Wehm)O>w%R6~i#F+d#$hYa5pG+P*0s)MJS@rBWm-MfWasbJ z=F>_5Gp)**RSs+O&Rit32(|8g>0`4I6qB2$m^Wne0(f+VObh zr-^Mz)Rv~tp4IbI&X1MR<04@l#WW&NM18aN=2IIODZ5IPkCnQYPvzNKz&a*k z#B|PXjdYN46W)m93L{aRJZ0i76A&B}$r$$H#N&0Rg_!WS44|n*&=p(^D$3qZXjum> zXN7YoDh1!hAtOG`(e58(r5n z9NgXAokD@)?(XhRi#rr|Demr&;u5U5yBBwN*W&QydhYN2ljF!_XC~P*v(`FguTkMi z$y>$k-<8c0G(-VyNg-`+{hPldB4hvfvG@vsb0nKxU&f>Tvaek$wUsL29F0|!C2GV1 zW7#kS92ibyh}@NL9?{5%w#3Jpt|_lvfdLwPhD*vN$h(!n_C(e%OFah|AJ3&`ATP&4 z34cVylBerQxsSiGSJlL@z%YkPR^XGPX;3{v-zojjL2yL!;Jm2C^iY19fuROuGy?hr zeC(2!$myPp8Rw|BsXS;NW+Vi)4WIhdE5%~dStQ&-Xv>_bx}1+1U;YTNd>Hp(e3eup zoxeJIWaWEkDYj13s5je?jVAMXTvAqecA$A*K>53$vMQ_I{HZtM>RE68Fze0_Ve(mN z%XLL2?7te@K#Mwg%%mbWheWkVL2IOOWRHVYl<`yaV7KCHHqs7cN)};YNIH2JJ`9c- zKTJ*JQy>yW2sWz*&cNv2VvRw&gdZ?$K7V18(>dk+@^@&0EJu3Rn}2|{*J(YLPz*Yx zn9P+-S$fBe~v;!7IYbFRBhMDAIqiXJW#(4%$*Rokm zRK7B~bJQLi*GboGdvxN#h{^EHIH(VITemmObW6k5Z@BzM@0b?=cz7yg00G}F6G?#g z!OGI6a2utIndRVg+B%1s%%_2@24c*F=2-4lOcbXyjzmQE=g1 z`K>#FqE&g{mz~roaw45eoIzx>0-RXSk}f}DN0OHl*aDXKOJDy9c7N+)aRtsV>jBBT z{Q{Hyr_q8DM(6Fj~aZubw$db-TWT%=(rm?*L@F;en4ODBpxRGSY z6Wpz-!I6xb#BZ&jP^60LVa>IshOu{W!iDQ9M-gO|72!^#d&_7F>S}?eN#mx?hBI8O zpbCM?*bFsgjxbJmQ)E0& zUUhjEg2xNDUBxOMs_fQnRJ1vUVI>hy!S2o4C*6X4xfAp}maR{)=BIZ=#7~T)6`hj- zmDXn0tS-v?jJ(VlK7RNZo{zXAfgECh?V7237p5ykqqYr4@P$xqmJ*ZUtcv1%`BrH` z(KB3ygbMke~jIpQ;wlaGKqC%9ckNO|RgU5LXEDJTZR z&cC!C=OH67blp0-=x32E$k2U@lwuZ-kTTv&I?$Ji-|wF{BAw@Id3^wZ@3lhzPV1r> zxfMUf^Rd#i{LqsVg3$niBP9!rtu8W> z|9@V9#)KVf&uW79m2l9=yD& zAvFz?#M$jR``1YJGg%=u8lm03Y3lJ;IVNx|ql#-ZBt?`kB9dcfxVz0iA}x(02YWK!{uV*=S0Sz0 z$;DP?hffwAg8E$wjZ8;S&vdJ8F6z2eX@<7(=n&V?6F&%=G2z#ixd3Y&zfAiBNk@fL z2r=-ssjwt?HQ|MYx%{p1mhhj;#1b0HEAmE8tZli8HoE1ggXRde^o|%EzRYY*T84ux zM;_#18Y+AEB#6V~Tb``>RFK~^BI9iqr2Q5Y;XM>65kx3q_i%nEI-AY(HDZMjw9KAJ zVw{$>?Bdd(1!vMPIXo_5QabT7+3*c;mSVAW!moE6Yh_b9;e}bNeyMi5QL9V?$s07t zr8KK8aLut*Om}k7ox)ofK4zxP^yeFWCCEZm!^>+HI zyGt|0^#yqPOlu{IyEqzO+m9_4 zSd@-RaxG$cFt6)Z&u}q9Vhl`rWy7w;OLAI%c9k`m?>tn0^4hjylNMCImy+49S#f<8 z8Q6bs&Y*KM;ceCuO<}IsmsGLf2#&W?uq@U$+%tm~$|`@3L_)jJ=WKyBe!JD3l|3kP z%+mwUtJ5!L^g;b-R*O#$RcF#);8JX+zA3Dcw7#alhCmd+3I5#y^g?oYZ9RiRl)&OP z>%*8WfmS&_3^0<9=Wk!7Mra^hEGL0u+;1t4x(huX1R)2yc-XrHz3zX{_oWy%csCz~~#y%;>#L>3yDF#JUo{124pBJfN;d?FzD^#fA^6>+0|v90M_nMM^S%9_{sLwfC6dDpH6tpwu) zt#h9lGT>Ko68Cr-JZy-JIJ$+Cf zethR+EczT2xPWMP^_yXh4vubb_eGE7<`rvQ_@j_1=}o}$qRDD=_Hf>Dr*xd3hYnFy zO{)a+ucM?ykOhC0dNsIP?1fF1inYYY}cMz#e2MB+IsELIEs2U-;jYltyv3|C#G`%CG3FTA$}m=qcE?hxUjwG&F_bR ze`Yo4(shW-7+dN`{(fGdW_4Bv3`s`3Nw@4VKS~4W&a9foYHh@&c6(Lw;u0ma?*1?c zHn?sKFU}j)Yn*T?f_X9>_@%Zdfo#Y*{2xu0?snSQ5J9P@TXh5Nr;7msN%ZE2EQDr68sEcffKN9)_ z3J>YJ+&dSH9uBENqn47`rZH^fgBh6;?B^Lv{@UDOW23!+l$&~^am!Hc9vrwZq}^ve ze;hszcfH3EIt4N?jxC8Mpsb&fVCfo~d4jfjkD?1f3Xwn;kV2sjv;*r=Hw*{G>d+vy z@3-7(@)eNx$vc|h;zQFtq0;TYu<1rmkZP(l-4t;aMAFYG3)b2FTyj*XWt;$c&;a%_EmPl$NjCPd@%1h&xP^A5gh(W(r zFnS&T6^-F!X0#3WQI#<8yW(&B7x{_WPOoZT;N3|8ser!*4FLYZxYPGO1fiM!6x+wE zk5CS%69p0%EbnJXlVh_gV+plqMjGsF0;3%UAd>&P^Xqxhqm{_uGxN|lmJZaut}sYz z_Ok*ea64t49Os?T$ZXC-k2xI|s=FE_$>FcfUFCZ2KwHPM3MsxSVjk$H?E;R=2b*Zy zvItNfHviM}&a}5TYD0?aiYX(wvP|L1yWaWH?{7qHBpTKZP}yO@^yK>|w@LTM>@3B% z)h&m`KCdm!W<~<(J6Wt}H;z_mQ^=c8f zTmO+q+1aY)>2KSx?udF0hD%Jv6I+GPH$oM^3L)Bkd@wj-FF1Z5E4PTy#G@!tbDxF; zgA8?d4Ee!IxA?n_d?C#|&w`34kp)2{_xJ{-Xq@kZQE0P*i!R;T`fo;>iM{{9iWuzD zdm}MeEEi^q;UfC*e63<$Ve^862l9UM;RRpdyK-%n?{k0g%RQf^Q-12>mg~!nUwP** zWX$YUk9!9~R>1McS%aUl@m+cdQ+LU#kqEy0-ce zEm!w%(*>-LJ2S=pYUbmg0JoTLnw>vKgvBG&&z++D?oSFk;o5|G-JTly8K^?}w3N9q zI=_0Kwn?YCK>~1@?d)|tmeLW=H`<|EMCs`UtoJ^y@Hc9Cmz(P~%-FG4@Uj!O6%eWh=pULc-K#{}$Ub18nV{`z&4WXR>v3`nrouu<7NT3A!%0gEOo-nxe_(X_ifQnc<9pKrzppaJ zvuJ>t)MD6%P<C9=Z|)cmPVe56#me-LJJNrYL7dk2)ii%KtiYOk2C_Y4MQ75Oan3aD8ERqwS$qNV zGh2mU7h*U2`OD2$M+`nO+-v8^nPRD`v#!vqs>ZDq;tolU#a)+QtBp9vJNw%ujG@T~=`LzC zqG3M)4Vmc0ij4>&$(`9YE&H?G z20=`KqM5K&~p`Jcijk(&(JE7m!UVzP)8#i zv^v0=AyLpN7T(vSewypj%NlH#~c~kV_@(%2f%Ap$4U|;!?iEGbL5d$|N zG-H;&QQ@gXM(=2ZY|h&#rP#*7w&t04Gw?h_TT0UoP@!7+Az)K;{{^nG)q$Q5lecu= zFJ~O{c^iL9h_&y`menz=6;RENA;1AS*}@W?gmRjuaRbuK%3)D3oa2HS*T_AU?DU5H zOIvtkgSe%P#QxSv$c6qucN^p0W%>if*th&0tdkF)200cU2-$yh+Bq+v0iF)j(F zCYca>rkAN(G5BQK^=Ro6;+;wGVDvW`?L#7QGY-&#*<2!{26RLWvHv(`9*J4+X8MX3 zlI6S8k9*ytITAQnG*6Wg<`zM!x+Da)h)D5*`^yf4*=D_G@i?gu0XY2ihzJITdTd_ke4T;lY88bejK&6D3$JzK5dhIl7TsxXwZb%hV?X(F$gL< zHy6QqC&vw`htS*lF|HhTZBnourK&=aBNkOea}gdd(N`!FiF~|P`Ff|4FT+F3{v)cI zSX^GKk`dc=;Z{DqDLS&>0NYYdpJcy}1jBPX0(F})ZU8aycLg-Oq!=|ZWys4z&G}k; zz?Dp`lPTKDdP^9p6l=+@0Qvs2UJ&T1PBL;C4h64r?el@Wt3;Qe*fV4ks@S2Lcc29N z(4eFLv}%V3D`X)Lb=!9WI=a&LP`k~yk1jy3w64VMBty*IT=q4d6by*Alp!~+U55u>R!RL-Z2;y6b%n6%Ui zBRySyFAq_~b9C$6W)^6DarRevPZr4?Et(tm*W1#i7XYbMItrX4gun77=D6k>Z)`Zo ztS1?P-9{!PCe)dhNDU^RQ^e7%2e}JY-&lp4^prvb%FvZtQlez&CBzCE&9T^RKkW*mtgX%V&cl(%G*kbfBT{L#o;Wb_xBSmxb5PP zQ$ng*!$nKiFHnKLYdWzGUAOYFtwV#-MJ|1Vv_Ck147q|;m)#q)Fnc?qK>H!~ITt80 zS)UU3l}764Zw%!V#KTqxtrs$tjYUop8gf?)gowTx6nPZm+~X#IehDH&HakQTEY1;{ z=VWW{4*%T~)$NDwkAtYpcqL*@-NqQjxca1;)WB6|@)3F3#G;Tq&_$YrES8~$z0e%9k(txne$MaHw z-lPGwmg7N zFA$8mV@$ONRHjYuz7&*)M4i-LlB!;q!56hGJZl*K6O@nf#Y#T7aNcZ^xdChPGEfB<-Ms} zC=ErP7u4D^Z+Rl$*b5#6u9dKS({Z2f1f!7BQ%cwvzxF3(3t{^T<6*?Agt;8b&I{?9M3u-YP0Ic%q?+D0pB$FN^p0**@`H{EXw zHXAc)&(4Va{g2Q}Ym%FZ=fAN8m|VJ}e8+7OZk3POa(Q>Wp3Hxzrp-y}oRDOg#B?M5FR&3?-8V0Nl#0P{-SDr#z4_KsogZ`Fh~ziwPRQ6ZEgtXLJfRgmHGdn002X$a2KODG+)E>Cvw{y-mIEs0OZXHU_a>+XBE9u zz+2kcmYwg%g3$1ds!N+9?7<4LZiYWTxnpTjsiDG>*rgV zEaJA0`TMjm>BCa3K+JPgp?_{-L72tMtUAoe3~f4)@bV)%Bd=d-2_>_G>vJRZA$rTd zftmrS&skFBWMe+Bars|7ir`AiOiaqAxikxNX(Iv@Z=Rr)Ncmb0kI$Ys95QF3pI1!O2>?j)Y=RB2R5 zMTB>X<6BA?DkY%*HXTzyj`uI|0}en?@`60&TP3O}nh#Hgv+G#qLTtfOpW^&I_?NuD z`^z!RnA}p;uVTBDDg2*)@AokntZk`ulmbo+u`rqnZM<$#!JC@+A{ZM z1{USy?Nl5ANsbvohx!_7pbk0Yf(y3DAjHV?jt_aiADOHUTynKYENRt(9nu@UqC$S4xcibT z+Q<~?O3^fYHDZf(F>J{!AVxQ#4bZbX9o78ZhUNQM7#Zc|wu~)dTx-T+jF$w>aAxX| zAH6ez&I?1#e7jC*TqRC!bAw0dc8srRx_h{MCI-XUE_l3j%m1h=EQ#gUEVT55!#ZSS za%8DWYX0WMR_*m4-9OgvwV{{{NgWz?xF9|M0;yRwe{C=sdMs9O=$F>F>WK6zL^eBv zvLm$<=ofgU(Z%5JX$E5sz z#}Ynp`*aHppw@%W>}u;5lKuG;X)!{21r{ZXA8F(eXfHaFUOyw6vAyfw+$$z=-q7!& zeSwO#gJHuIWcaU(J=`|6UzX|V$MsWWbi9N+960TK)A*?SdRaY4WZ(nk9t0!IYLFAz zi+~4>lVsktJzq79Gf%h}?^GN{pF3^;Zb3r~-SdmG0C(0%H%OA#dXpIXxuxYX+Hw=L zMN>9`m-80-3ZOXQrQv5zU{|s55u^x3c7#b&BD7EclSb3>jiinN($iTAH%isp=S0E| z80ZFUO(+{{E3+DKeZ?D(F%MwDGwzs3eV*6s1d-F-MoVw%siE2rAs>EYZ8+Sq;M*?N zdx+NUVWB)27?j?a;KQaNN>Wy5X!vDuj(ZIFe!3t{%b|3LEtDlrVA?BNO=z(Xo1U~W zGUj_)AvW|y{sQeRI^wZlT+RCrl0j83+sXvxt8Nacf0au@an;l?jDWwYQf__pqQerV zDV3a>6P>~Z-J$EDikk!S`+42J4kzo2y2Sw}3(QGB+5t!po%rvyS{HRwz0z}DMg{aM zk*A0p-Gk$tDGO^_1Q^ct%TGY-H_FoNn6Z8*3yj1@Cs^$^0a4xuJ*770h-w3XKS9w) z#X=F!Y+I&%0w&?tAwb#+=lFp_UbN&FD4$RJZL`=&nw52(c}Dxa09>lqLY(;8Kik1b zaz-pYS-K}Kb0QO&i)P4Rs-&a@Hj@Nyv0-ExLhMBzRiE*iy}Xf%B}iSJ`mVlpoJX3PyL)RZUjq8)O4#6FR6n^i@$qHxfXM+2B&)lej>!2;@8Y^y>`1s%`$3qoI zN{tnC&+Q2uPqaDpzjEgT)^s%`Xpm-IBlVx!sQrpJj}&8DImhf517;eYxHLhf5C^S^ zmf)qd5Mg|C#B~tDYf6d-m#}0G=Vmb%n@>HRlS-qhFtC>8NUeX7NGhse{;-nb<_q^D z%uep$xdHeNMJnyo4XU=%NH zAiaiYR)HbbxbEVnsTn~NJ?c-IS%hW`6zZyJbZ|oPJlTP_mIc;B`HPO>fZ9#5dpyu5 zg+CTYSjs(~R-pMs!!L)W4}i|zqv0%frHc0#cWJ;#HNPSrp?reZ$|_3xgp`P$Mes^Q z^Ck#P;3n$Mm!6tK4Q8@1oUl@aXbi%g;H1Z8p5FgIPPV?U1)F(lc6gYO$-nB-ne7rW zouXn_T;q`$%-({{COH*94_ic>AIgEd)fJS(OmJg#`a}Et%Jw}mlhH+hifpBRA-3uM zWz?o&0Kv^c?c0fRz{_6yC**R0KaM=^y5HC~qg*+Z?;x&PfR@kFfNH9)v5K5~>@o1U z|7C>T1PMcFfS%)j_N=!kxsjXG0(7YLWdyBo5e|wmQ#o_mGDa`MyTh z{=!pjgd>B2V8H~DoQtFu1H^Zor{VIpX7)IoK^#7ocbZ(>NfJ&A`2SBCDjqD+e;S+x zQK+Qd1Dc`p=O;rk*3SN5|;nwci5 z5CQ40UB884z`8thMKxHX&uQZ$PVY(F%09+t>~)`{lJ-yRY{FNQc)2oX3No*;%7S0d zIo8UQu@0&sv9nDz@jcN(@S=2brKnKEXz{babxKYoN~nUKbzVh1E2jz~**3FlfgwX7 zRkE3Y2fHbP8)SJ#@5=i!=N+qTyT5iDnvNs&gKcT2lTEr|s#3r&^t{We7e*(yC%#kY zF1KzN@%f9Hb|KAyD;Nr^3{LIu-TQJJ1B2{2c*-cQMS6xRE*;MHh9`{r8;Bxfhm$&T zQSv=KfHX+_gxk?%GS%9A55X$_I8m0sWRIN)Fx9di1d)^%3osaK0|3ZEWFZtx$WnTS0QYW2{*M6L7!rZuq)2-fKk)ku=4EG2bK8lMpz`{!Es3zidQg1U5D7RlhEcVNr5H3I1I+WP-GF=0 zhu+vvWnOV*l3&Q285%fq3d96<%ph%oCP#X6s13ZJmpZE`p75Yg^4U_{NO0 zRodtSDryW;0>bb`Wo{SEWZ3Qjf<_lSBSGBJdTmZZYX$Cjo}G~QBqJS*R$-JHeYG2?5oXa9<*fLSf#d)3Xi;1L{~$dV{Yr-qzM4tiAPr!< zvTd()D_#B1zo#$D)KuM0AjSDN>-O_~HFP004EAq{#v;U%&MNpdO$pXgx&#Pbr;ihH z@atfACcXOCfhKzc=Hf>BrKzZ_wAg$HTB>dmE|prFAD9Fs#dvaBkffbWcAjki z|Ahr;oIWJ61WeL8(jo5*M>AW3h*%*On%SGpwQvp=ct(kMB(x0$GDdE8GR?^01no9_ zwLE3>*8ezX$egTlUXzHXQYh?({?!K`a}2BVI)~3?Yy%Z`xdDWdjS)y3Q%DTj#|P3O z9lj5FuO2So@A`gkhHw@z8NJ%hm^6(#9;VxqL9)oHS!8NqwUr_SGrX-B_Jj@%tzu>? ziwXktl%zyj0+etOpD5In{+A`j%qQgNi@#I&$MzWF`=<*d2@xJ$l9weggZ~Mqn057P zNDRYbx08kHcrpBXIQ=!~-58EH_@*g5S(qj0(Uymn%85TVCa0)n!<3~pnt zN|yDInI#i~Jy$viUU}p@qkg5E;SCLhCO%UM$EoB*nkGcEzU6>R7u%R%#J@CsMEkjh zat4rTT1_1zjI-sMrK&W#M|) zIelVL1El;y8ehAn#6piFNuhdyHIeGC!)r!!?CXCe z4OP-V*30?h-M&Z%0rxc{3LAjK5PiTB;A}=v7Y2V-%S*eHj(DTpl&&7uB6OKVf~4>K zkOJ0gIb+-czc8>s;GaR9L8!%5xw&7UXfDV^q(Vgi$cWEbjASD7s8-+_(@`Em%w7#T z4G7dPTn}tj$9+3Q4W(!(S;J;`QLI39{}%z?A**&!S~i(&R9E%*5{s5^m#O$2pEqDs z@2buN&1huUN;1U94Msa(za7DHoH>K?XzlnHhS85`3MG@$Mb!3!3YaJgf`FvJ?hWw zUOxokNWGt|02={*%~vODo(+ia1vj0$N1)s{lJQy>QeArIgX57S<{qqq;hZe2NcMJqT#5uV& z=l=|DZ+H2|fQk-*Z!QDEW`9Pvmwo_prtbY#AJwn)3)%)mgAWHiB3177LGI}-;Gf6SefH} ziGxKrl~VJ|c6ETnXT5gxf6GCX6qd$WoF^HbBixu3Y;cvzH7wNS&mcE_{Q9Y;-ylR3 z%^N85;;2dQdoJS^kQOgO^|;(S3q8O*XqdEp7Ab)7w@bj>eSq@nw^n(BHo4H>M|7*l zQG&BeD^OY+x1^>|*8Od$zE2ZO@d9^aRBIpq)~>kxIB=ucmg>A})GcoYq?Z{N5#=T>-J}Gbg3o{_@x2@lwCmG1sO44}_;J zd#mkB3utYVub}H+=?7Wd{Cb0KqGH-2&5F>=6&xuhKw{WU(C;GLT3E5nMmC8$(ZL|y z$Hc-(+-HeWviWGKGiKfUu1xVWm(P9gQc@MrhX(862&3_?c=DOoWIf!H_6!LqxJe2^ z`uGkPI52dOpTnu(m)@o*h+l^YPkzB86R{w7l;n)EVHmKo;?(=Y3p2piMy5~mUz<$V z_4&VWitbNDiqM1w5?KIQ7q<+C%RcX3vX799X3>~>T9sk9$7qTI-Rh@OcN9lS|DLh{ z%G#Eahv&QHcX9U@&e_haDgn#U)rT+X<(%T*e@!;7s@AP=Ql73C)F5a_>#MwZ#n&Q=HjyL9KbVT&ItK381X##T%eHOUgEF zqh{-avR`i4U?)Kp0zie+jCs{wY?*c=x|U; za%9TT5xZlK=KLb*JI<(|9MFC_J5TyrJGtJD(RxF~3@cV?t?o1k2t%`SB8!HtFB50i zdflQ3r!m?ld*WE}aiy5eSVpWP;^^|tL_DxWPn|i{MZZ@oPbk3QB8vvCYYBy#>%HL+ zyI1n?<#^NY3|@`fQXNyoY|a=}%g7)$nw6}p5#!Oe^3lwCnR! z1~RbaIdzE6A?km-JDg;NGFq~5x$|VrN&zH*@7&QWB$hY6if-WlU8K|`o1%vi9(OWp1Gj;J|F!t{`_P0f3rxm_}T1nd!Jm{X+1Z5)mHCdB+VT-@LRj>#mJ!g z)KTv9u|g3`+34kh2uPNTau%RJ$Mdiswecs8JbLLIvL3E#{`V%@@-bd_-PPV>K$H6k z*4pLT?Gfizt3y@gre2aO_I4&-3hFE-1d-==!wTm)Hp%G8rHYQGw$+2}3mdw;!y!Ut z8y9oC`c-hs(QKezicqZ)54LSBJl)y91EF=+!@D8$)YRCrhB5|6jeO>$j~ zU3{K={66`-{KGI;3k+4u<%MeQJ%B*k&dPku|M@`mUtq+e74V&_dZvCE#9Cc5-nc(y z6{kS1uJSK<_&ZlQ4FWq-!Ko0E7=k?1faC51?{hN(h#z>fKo*wJ+ylF22?Y(0-a|VQ zZHS@U`&*460o!$hh6|k8AjYtutsTF79fF4vF7NoiQNttqCvw>c)ZeRnbpFeU01pbv zFd7-48uh-3@A7|Hlm{|#laoo=1PX@ezt5W~D68#(YJwv42Rh9w{~JK@j9I54hgywO z_J7}~L#j_Lpd0k|Rx3BbJmap?75G)+Ja{2IO|~ObMO7mC?KM?5@=NHvVj(bLS)vqO zjEe@-S`AT==)euGH9qh&(=&{Co~orVe3159uLL0VcZKWUEdhTzjgC4e z-`bE=siL5c>)#jJ28xVO`)1Czx-ttj^J7FQZNRT1m&i4`((w_E@$iRfvr|k*Aj0-n zcyvg$*ckWUc1%BA*YxxTR_;O8umb{(WyNp?nkxgGF$IgQJ4Il0DvfQq=Gt0@;tc{c@f=Vu&euMIc~;nUT#uoJyqm%`R^Fl6kK4 zWg|bYj!tiO{UJ2H!qR(9r{0C1OCdTgyGyUeV&UE8{ZHfZFN~gAcnFi2hY~eGhEaut zTkxC=)$PUG24ehOz4v<99lYHy>#T0=YWgP)(s4DPoLvmFnd{9b>yDoPW8~jI0p6x) z`yPwtz}92k-&m<_@KXG%CtN+lYW~meEs@pGOKppH7A>aRX$yxLNE1tn)}P1zd0)rw5GCEbzY%8oL-WOBV@`QA zhK1nfx@K&7U(ck!4`!P3dBXl?OEGTH|JzO9qPN=P56UCaG~)lg2W#w)4(qWN!#I0a z8N|_pW}v;zmwb%9yp)p7k3;E6kPdV6Dbuhxn%`6xt;gcm`EOjt?mM8nQyI6_?f~rQ z!7L(2n-(?Gm9|4i4)aGv{Bn7Uz)$o#q>Lf%}`eBDtH~#o1}~v{iXR z4zq2!WxRgE1q0Il4+kD5L&~JO=rCnf34=vdRujgeVFN+0T8?C15I{F9OxCV{{^?mY z4(0jPhU5jV%eH5~?SEeNvzWACWJ%*-Nxj1_q4)^5k>6>)(Z$OUsQABMwjbLOVZ=i5 zxNR5Q+h0iTSxVicZuvNzWR(3hv3%b`B@sFJ^$z-ODImn#oXD2DnsL+66b((ja76_WgmyBCu#pcw!8!8Ry9$tMNLmaCdT*h(M}95HWC zmy@vqux%aQ#%H^KAYSl4m3t|nlmgxNwkxuNJ=;WGzb_eWN6+2_R#1pcb#UM8TNl?7 z-y4G*H=LgPr1LddD)Bjy7vH$x@A3_4FPHCLhO%YfsjdQf|O<>tzu`3L@O@&5^gXq6&PEFg7Qn zwGOcoC@;l==31=^@LOf${)u((NGTdq417I?kAMFX&{0mchvM?4j z+SFplL-A0p7_AT8j}4BCnF59uKki%N;^Oihy%PZa@nkm*aB2CTLz1G95E|=o)&EP71;FD!P0{GXIkzlx|`UL_8 zdjXWg5sDNkW+mAVG%|j1n}W<$U5V(J(Srg>^%JVFtcX{guf6vhXVR^erp4yRm$5ov z={I*?f#iUT6PF0rJxSb46kAdiyECm%aA5DI@AraCRG50C?^ql{;Su_oPsYPoTQM>= zLL_5PLwvdC%FEwZpkx|1y^!A?uMHo7%C=@rUhZJ&-a; zHhIRhr`!;4^m|>K_>n0%5f?Qu;0&F+t6u;zG zNkhwkT@n-#v_wE?U!$IiG zIV^Z^Gb^xSB67t zOvNL&oC*R_wVO~w=*&%M z;(kd}=5+`_+0e^mtACYa``2?014 z(WJufzacvlOiJ@%LnrS;ha5Sof;5TvTMD=0v5YKb9GHIr2@P1503Gp7{`vKX4ZIj9 zXDM)sYyO*=iSprE(6Eh%4k=+UeS!e)6F&f1KvU>_`$|MZyxB$PkTvjv%NPB9=!mW?OJ1fK84p$Uk!3&nU_@l#|t>yH}AZS{`9Hd?7?t8 z;FDQ(zWp1CCXUOf3<3OEr`S&)eRcb+<4FSOc$X~OxO4&kZR$iqSb(^4{nNb2Dp{In z+#6()7*CiCqA8786>0@5#P3m$31daTFE$>l1CKF%$ffN~NZdnB+|jHXrW0s)tx z#*ZjwCs8`#V407 z2%+8u2QU^S0>I|PazsEDJDC#E58`l}_4u^F;=A*G++w#?swQ@+Gu&RR)dlVzPk-GP zX2)X+-z6-#wa95et>pjejEx>P0~LDE4U!L%6WELcVrRttrk@Fo#lDAWtnKSv63vGQ z+=ymphRuu0PBn)7rN{ZPr=fyqnk4sh4<%%uOI;Go$z?v$reXI1Q1^s<2`BZ4Zip9ZeDK|g<`M+tAe1&e+kZs z&h0&}Cz@d7@M14OIZq*Wd>C2nSA4H(^`(g+&E-uSVyFF~A^O6f!;P7;n=uC{XhZ0y z|MA7jCJND+Pko}tgPVdL;(V}u zLw<`rx~Q9OL^gA^Lx$wCZ0l>KjAT~%)6TLgqi2|kjo03>)jwHTPKMDGBnn*F~C z&oPN(p)5n?Eg+KoKtBlAM_+Y^nuZi9W_Z7y5WpVCXke;w#YrD}Dh z7@cbg80{HTUu&dpO=dvDJ7k|)N>t@e`_qmcsu;W#uTG4A7f1y6`j}{@5pWnF1Irq} zh~mSC&CrRxNXcA%?V~^kuZHl$heInxC4rUS`5J;fn+<%$nZrvu(8xS(6d5+DXulO` zc}c4xP0*)|z#DHHa3Kq_@CRhH8B7J_=Krc9CBLD}+{{jWOlRA00Ra9#nyvvjvZiZK zY;J7Zwrx8bCmY*#Hny>`ZQHiBu{U<|&-+#VcdBQm&UE*g+qZGL51z*y9e3Vhs|P5m zNhOB8l2Mn6^g})&j%7XV`zE$Y_b8v=fykihpJjh>lOFOOkV(W|Q>i$|t&w!5g&Oj> zfWc)YNFKc$XME*IY8H7P4AsHT&cUiZsHxCrwPaAFGOvm{Strp{WmtZd3JyPJedHZ} zQYdPFx}`~>o7goxz9wvWBDGq;HJ4%* zNmyaaSUiE|T=j%U7G+Gkn;r9ac5$pJwQPx=GQvgy4u>Qub0{8>#+9wdC7V}GUwhPT!3F`@#a30F|YY% zaWGtU{XG0A*$hAojj})+vIBgxB{zi6d;Igx^j-zU56@418gsSyRb7*1 zGstI|hC;W#B(8Bu@on>RLv_sTnK04Sq6NUSsLP*l-(7&37#H1A^!3bL3-_AfU8(Y8 z!X8;w%Zx_VTQ;|p7JNJJ#~BxgxRi6V$4gPeGIiW2BAlxRW!WU4+TN^-+k zMQ%0R%lRi49wwiYn0QPB8S*T%@+WJY(gWsX7n{bL$hE0dC3MUJ@wp&2glbcS1ZpGC zC?D*%LS|Oh=?rP(4n|Zg{Ym2!x`*j!ZNnz{3B&-Z=7CrK+>mU7(e$EXOG}I27GosH za)MHCq4v20*;@)2A$+>WRr23~vawL0o5o=%&# zcOLl3UZ>(D2Dh|>*`HXiI}P+dShUB2M>(r6@Jwwh;qwT849^<~)qZ^wdP~xA^Pi?N z0)UsaxPn-Xh+&YDEEqWKe+1w~3>eP4>yK{%0RBrDK#IG)lPROEnW?1_qou8pg&8X= zgM*#LZzTmu1X!H^iXli#iKzepAd|op01XPH$bawj0zV*)WhKP`-~YY-beARpDKHLF z+Rgv~;?REyB!w0c_y0o#cw}GdyBn&hKYh*kCdG$fkVHfX1 z*mmO#f3y8{&41H*lB-Klyz|h-=P9<^%f2r)Q|70inKO^(*l+ZmjH}m?6UGD0dJd~PHbHGufj6- zLCQ}SR0P4s-ovokiKg*ys&q<4VCxww(Jm%DA(-Zh*EKU1?vc7>&})kC>lS%={(iF! zL+o{e-rkMTPmYTp;`e+W|XFoq*ADatkYSlLti}HlfvRqvV)pD1Zv_CM6Qk5N)Sx2kO9S4 zCJ=QMu`%IJO^Do#QphL?6QLo1;N7*Cj+ri}gkZe+IT60u&b+a4xq_z9d z^0Nt#++iJIV3K@Nx%4uA&T` z&BoEl?|$jkI0O#D!+E4*3L69G>7X=CpZeA|A8PgS^D1bfFe_wX@MVB`mbiZt6SGCB zn2vqf5iFER=9e4J{zIg(u~nl*NFjA(W|9Cto<(AL1}E;8)t2{L^F~$%}j0T4ZFyxTJF!w3^8A9R+igK0+5t!06V2CPv!c;Vy zNU}^^mY6gy>^8~5DnhK?6=Or)QX9!`LPZ7#x6~{F9mpTR#u5@CY^>pB^NH0_phJNl zFBj=xRwpIX{+w1Qsd`T5vwwtZpLYgh_kCK+TJnur1s1YIi>vH#A+Ih+1N1HvMh;>V z&SW~*+XAVTvcvLCxw^6ZRU;{~e)N{{?UT z6yvajLff98fu-7aNzp>Ku%{Q&o*6$^yhJXWnja4@jlIwuKO>$WUxRxs!%D$Y93`*A z?tuZI6<Jw7GBX+G$dCTLI$VMM^30o)(RsQmJ0~zAB-nrVndd4hPY8hgWxk2}Z)GM=aK|4_D9;>$m!sl6@8+reVse8c zB@9uv1Qc%DTsI_0*c@i>Wqg28k?nG`uyOPUP1|v1J!94Gkq4~gXaNogco0QI1RF?9 zh@{YB2*p?-j4-lTX2h!(Mv@b&uPpdJG9M*M){$Z9P~-SmtSPp_Oc43i!d?B?>H@NS z%z_#gHWRz5Y7WzqZd6ak)oE&?@qC%82|MqpgXX>EKot;|7USswF@^#Mu8zD;4)H$2 z)eK%ht@c+VH2^xwQXQ>wIU7b?QZJW2aPn_4&d&RYOj$JcT8O3!tTF_f`PXn_*Ae?FRSakq@>2|KzG zg{ZtaOBIF)RwN@c-0(fl9USa^Y#!VD2ecQ$!4GdS$f6b52}UYD&xXC1TFR8&IB)-t zo67sB*0q$?EvKg&FKrwtt8OxWLBTPVm`Q$6(5kj&uv0@2XeN+$Nx$i?@3wet$kd@z+nlJ$@vA8oWCD8Lgw*G93kBvL>!4}nF! zPAOVTxh}H$2;dT~wAbfEIHpqiIHE<3O44YB55!({sWHT)(3md8hUFDg8Z7vk6)rO635flu?BjT_<0SfFA}m-7LE;TWT8FpLC}hHF zMY8N9sZ;S!=`dlbLsLW?bS+^r)*gdOW=6jT1Y@t7MUdS>XC8;Uy;%MU^04OKTGii{8;6WCJDf(8l<6tm%zWD5gI-f(J~sYCPsFk#Wb9${h- z2qx6x1(%Tc9I>}*1)`sPRSX1xprNfSM!^O_2m^44Ai#^D;=!enmCUuF_l_GAj|Ewt zZ!vQ_-YODknqT9ly4%H_P7h(0iO+?g4Z~)rK(%0pTk;L_)xeAZLP3&n2O4nJh$R(I z1Y2aa<2%+MXpm;YN*Lh9r%fu0V}%K$rdsmx637Eh#^IW3jwwULX=pQqMUb=#4Zm4T z59^Yr0j7zWTr_sXG(#0BMd;HF*h;l9zf@1OQy{Y_ZaMLPkk2 zGo3AG)jy+V)R9)B?&!jS0vGieUR_+*E)(#{fFn~?(MtB|+SDDHVKF|$ze#kX2xzp% zO|fJO=f(2eGXECbQ1F%ql@%B;c)H5j!py>*TH0Jo#nYiL(SC!RCW?w!b-=?&i-{4F z%c)qL89`p~zzB;Zl9gHwto+NA_X}=7FC$?IVS<~MkTW{2IF@k@qezC5rv43}jvyin z)Pfy6hJz7rfH$Y0UUQ(t5Gix{4L!9mCc>XXY(T7!1SyKB8$chzk-=3B1%M{j4|D0J zDuRj?NzTP%PK36$>^`TV#A*G|H*(_y0Fezb&({7V*5i| z+iup+8V8!r_Nv%xUodW{)QkbPzy>E323|B?r-D?UtZ*AKQzrp!46wA7$lfuB4iYSM zn7v>W6bDBr!affAu)h{`|9x`oCm-wUQzv{(ILe51clz?E$gb!}hRS|aw@R&-gg}}9 z!GH7f{pK)@fFK#%aCG1`@SY;B|HER(X6dCVgw;Eaz|Zfx68n3dyZrvlbyMHNw=(ZK z>r>&NruxUTe_i#giK3ez|GM1!&{HU!08fT4=g|~Tu3^*+XZGsVSiv|F=c%&*;a6hE zhvQ*r4wuJXjxHn~UXRB|%63LQFx;^{q1~3so( z*K&DQ&q-3;bMAVrdlXNs72LJKeczoLOzT}09V{yq|9Sbq=Ct={mi z7pWvu$tCFb0CdgIq~}NPN{%Ny{_3lK&QI;!SZw!Lu{|)#^viy4hv5mBz`zT|CgC@5ECeBjj#Qfb#L#f)5U>U z#`~78_gluF_JYDghG8YL8GRyYB563XA>bD()Zq)-B(mX56qQTttW)I*`Zy&ztm#Ia zM5XKonXH>dV>+ntjR8u&tbq_kGa~T-E#xz?fplFHsYR+`KnMVL(V&DJWG%PR{;G7B zN;g%-yE8{2hu2I@?Xp$Z-HzJ^?w2xC+kN<_Zp(??di|=$j!ADemm{c9iTV6Jbs!%)_Qav(iITsjnBsm3gG>P}JP&iO4 zZP-{_gLId#2W!aEN@Q>s0@wTH6E=|eXI9s?e_@r3Hm--4ovHrMlQ%O`nqI>FJ4m10 z`d^=YISANHBj%p+yt#rl1NhO^+TT8TknS{mb+0k9yIn2)PJsjy9!s8ww!ylDdaN#c zfwa5IgSO2+16rE}YJbf!;k)-i@dPX$alJ!Y3l~fi8fj{szah<6Cs#rr!??XniKR$4 z+8-y6b2^vp*S)1C#{#P>K;%gkZKe~~Yn;^+6p{kW#Og3met}PC-m>_v896|!{#xun z#N9;adi@-E4Yj3YvzH2zS`5)2a)1t^P?@<9#OmwWT7=y7+Ro^^qc0z<%~TT(X^79mSEB~QgV@)+PZch%)s^} z3z=ifKi?q@DM=U=#bBOna$bn5;Uha`i;Gu*JG(>?Q7x1}vP@)?ht>y^4M=VlYObG1 zNFK{zF{D`^nvy|XaspF@U1K9$t1ZQ02_}vp<6dD%zX0!(3nJs=qd9T(?7vP^KmsqnhL~dOinB|5r+&I7!U!(z1>7R zC@*fDW2?i(v;7ubmyu#wH$h7I8*Yhh@zZU35AGcU1Ea>z|1&=7tv1zZTelXGE8Dib z-sT}Qab3-)__kM-Yrs`&F}ws`&}0l<(C1NIDq6f^)WX6O?eol z)1eyutJ!MZ@Vd`sh;Nxs%h!{C-_~B;%)x}XPMW=yjMv>C#p;hZE7UJW-XkyGSv5X~ zCQS-`*Ah7t&z4^+&QbmX-SR+FgjM6a##OhM>rl;>CHr(}_%<7-XH(T2RKz6XLcg!D z#^aur&e`H04Ap4>;g_eYlT^RV1)#6%1<0m=$A0rROm2ud=FgR_zp(}a-@URmA10&) zq6Ss^@57uHIjol-xi4lH7WM+);E1c%Zu==>4_A`BH+U>f4v(CIhpLmN2jVCYqdiA{ zIZ47}UmuU9PKhAdA7`4VVk6n~c^^*0_niu4rts|xdchvXs~hY1l0WHxjb5l8H?&U9 z`)+1(@<@u#&x+_dex^Ux_A1VLn`M8r1J=|w*0a;5S<*dSdPdt8^n7*&( zb$9*lI!y1e>}~tZR0bpHX6C46f`Q zjoz$1F`HcFkmjyFsH3jN2@Dw6hFkIV@1OH~Kc3og*sOYAsrBmduZ>O{>2=*VA?3Ug zKFwLaqR8|8S6Tc0KCy@p>*HFmeWj`Ag9zB$+n~&&v01|Mq;w-&Ko+j0&vJbXNZ@Vc z{Cb-~K3 z{?V8V1dY!;)9n@X8;%i;wF9d=&tPTz^bJo%2u#`)+_-5B!Obf9(wo~Gn1m$f_djTm zHSlYa?hkw3;qkmRqn`czyrS4%2;MxtkiVHzi4sw>xMT;;58rpen7Q*wcSv{@-pf}9 zJ-%1J!5V~j`bE2II(hkThQl#@?>l3IadUI;CmHXWH1yvduM2kq_r9K2Yc|!}zPmfR zPadjRXP-ZQ_kS{8Zwnp`vKthUvGL_PY^0dfC=K-9TlH!1py1__ z8r35=bf*RPCZ^X`H3CnBckWL`S4PQ`E~kr#(8@e7HR@2;@E1=A0*`hzperIWCNa09 zV=`p17%9@(8=fMVPTG?OBrri4?b>gut2MC%88y0JNk1&Hmkvt(fXO_b4;ej>X3AyG zS6DemQid;3kO`ukKYfN4S&WY_TdtJ^#UTR3EWJTdr02i@_R^9iETl4;-v(=U{lBN? zZt18~NJUEACdA;4q2mob*0fM*6BCs@7PKMbgsbXEKtsTY6-yEM-TWF^LDv4Q$36=# zL`AB>Wp-J~2?5RiN}uo$wm!~xoHGx*VxCrafQBsNHBgYfE-x$N0qz4uSxAhQ^_OOa zr)f)9x2Fr7%ks~a=jhwrZQGUJ4A$YKC)eJehvPS2zSbw3JvX}zHRL#^Fk$oPD0457 z-WL0YhWjSY_8<3zfNa+D66+bu0U?6?!O+z_|9=G;27;Vb!Ubm92*>F70-mU4Su4}L zB`I1@DlL~8J52|#qLS{ucXwH{8BBrLyIzRVilRI1y&t#R)wBBZAbpjsE`I2?H$G;b zi-&j;60@{+SJ{welsDw*tvc5$DlZTs9pVvHy z-)ZvaOVE|MI!;nBAJ0s^VC+;O%!1_8h31#p-U)fIxw$k&8&yTx0A){@e@ZMgpEq2WTm^sj{pl^CS zcN?q;yLa_)PDpVe8;I?9#}p7b_jW#odn=NRHa_oxxws3s*rC!^&e|L9vi^F{E)^UH z$hM1a$CQttAg;PkANsOrv3MH+Pi)+^7k{knAzG?^@4#@J7_ioIT>s3MS=U^_;w_~z zuuH=1n9CqBP< z6xvWMcbGX{W#0D3*zcP*zqVld{!!!WYA^h*S>4*Yno6on>k)DhNd750@~7GH;$d<` zq5s;e)_39Pyk37tr(=&xxf^jiOphI+4~UkG$8$IA&Dj0%1Muh1P4bH6uie`Xquv`8 z;P@8&-mtPGY~Bp-D@)40JF2|*2Yut<1!{!pYr0>~?K;2azYAjk0T_ef`i^G4s@O7w zj_-AdrM~UI_TxNx{k|>|bKy9POPyva{ohGAk1mg4MrXUs40%|Y%5L?cyucS!Z;P3k z3RCeRfw#S9vYD6jINY-t5plX|d%tV&2m<)ydcu5=Nk)k$s3Das#$m%6YsAl98c!FM zY?34O0$%Vcv#x4HWR5YwG?CSxa<#WVsT|z*~Vy*L;+g`$y?QwV>@4e2#Ot568S$<;?qy1rOJ}DDBBfa zm(p3N%@*TgYlc5cjV@{wLRpxJl`E6T6l6(-z)-=#`$elj2;{42=9H;!%mFuR_ri^dB}Nx&3ntMfk}N$1S#%oY_BnpQQ&vpi}$AZ z*q`VJI5?fm%7T$<2rM>Q!p66{-T!UQa?@YnJBx8|y%ka%bh~QxZ_U!pHkp2nIHaK8 z$#dT;YV}l#nlYbpRT_1xT7cer@tCC&F$}I z?E8F}L0SQo6>U?Y*>dgZvkOb+W1PEvCb3 zqx%s6=*aYywZY=+kxe_f+<9bo@6t$vPwhy4Z^W?6sdv)o~Z{X`i|Qb23G*UfbK)70b3ep6KFYuYeg8rmf5KwBYHVCDM-xO?VSyEo~U}>G#_(C zEQ3W<%$Ms-r8x06CP;jDzASC+KVR+N_E{nZfaed_ZeUnnd?4}fe4Q0|{%ZT(N&yP} z+4M2Otx5ONHvS}7voU?F@T2;tSC&yXL06kURG*$IsMN@B{&&-N38hX zT$odrmTTAUnh0GV4gFS3J`NVj-8{clEY$B+WT>b0O>F4Y=8Eev=X5d+tAfor+Avdp z;usZ#vKO0Y>Y>MF{LqjQgb38a(tt8!07JP@3g$i<3rnTZLYBtQM3$oiZ>&*42WKj3 zhl&1fr#Xw`awG+;FgWFiV9gx0%x;q`VXBCC~kUzhq-lhF*{3CvB%J~Rh z#HNzoKstQi=PAlSG%e2fe~8~4fh~X-o_E&fx%153_nPqfG{KRY`^Jw=^(|z1GeR)r zKI}4E1cQuI%a8D7^4>W5_JN(Zqh{)Vw2IR=bbXGn0;2tlyBUzAB&48lo^J78-c=Rp ztT@gFQF0WLru1=g-~VOWvT9-f?t?!yWUsfDVnJJGsk8TN9nCcX9DH>PYr@%Zw->vQ zMB2V@=0c9oWfbeIQ7zlvW%Pf%k9^eV?+Qp)=gUeFkvY1ZmTGH0;60aSfvjY#->a^) z{-qSpZz!dk*!Vm>E7tE$DHs1GNbt?^*=zpP`NmhyQuk%Bmtk?BQKC#X-gi z6b{Gff;EQAd1##wV#l)-52~}4C}!-KzN$gGEZUhpuvOS>RmsA#~zSp%W#R*L>`_dm;hAEV{Hg z%grh~qQ1R6k^W2g68e)jbDW0oR( z8#6i#Mx}k-eN2td{;kS?j^?+0ey-5by7qf!G|A)Z-fi}8qrVErGnWvVyp^UM*>=uB znr6)Xn(OxNv7Psni>$d&5s_KJHqWzt`02FNM>S-vDszTb=M+MtfmvN zmM*Q-X+NzFZRm9QOpGjwx`}36HLjvlQD7`ug zBAi=}94IhS=^y#+pcHT3^Cg$}ryPI0rsw-4d7YJU!LdjFAXL5qQYvB9%4R7p4hqsP zw&9v3{k6{ogw|eHr;(5-ovbGhlP=@g5#A}eOD(rwS7Obak{|)yDZ1@4YqI8RJVJe4 zK--mqgs|p_|j^s|!qX}mk(ObQMC!m!|fB$m#^4+}Nj@rnd2#0)hxQZ8dE%Y(;22ake<6@}n~6Os(9?|ht>Tr zQ#_bl)Ww=gV4S6905<1j7Xwm58$Bcu0F07ir2u%{iuP7jtZ!UOROlcg;emhZv6hcX zBYJa2PhA#ICpMub1)-5B6zi<@5@#0_*#1TRw z$W_zv8ot8SyKL-AkV_G%%MOccLv$c6zvi7@c5`)~&93W{MuO^w26YF_JEA!#o201$ zb5z9OL`Or<`FpJ=Mbbq187CnO%4Fohe}c7{WKE7zk%Q8+C5MNQ|1vRiqAY2r0Tm&( zKzNNXV%2o_AFE_~j@xY`q)j{z4mcFS{WZT%DnVa}D~+cV--ms2wZ z)}w>mZ5ld$zf?=Ne}jd3>5r0$zT9JayAOgoQIXxli5lf5Xu`hou5^7&I^s=NZax<* zCH2>-dPnz(^N3=gVPJ0>z}q#G&--+OM_>JH88CE9Z&9BOaYZj~jZg_gRpPOtTPaTA zWw+>aaE!`S!D9qaLFboA%_5zn5Zf*jRgpHonXE0C(ELa>tn9rzZIwTN97hU^1ZsBR z(Ze1F41v!P6I>KRn7`;koVdJYR-zo}?p4~PI=M|H0`Hr;u2pPVyBJgtmp1j-JQ9tC zTSb!*V(5$-t(D$r81#oDp&kGy&67N=x&8wYf70K2FxH5)R!Z()Jh!|JA)$#KZsY4V zU7hM?Gde_R^2Y246K|MS-9qbvON&;KiHFRv>UN#kO?^_Rf})I_`Dxw!##m+#sj!kH zGIX<()D;&|vvn$)tCny*-k_;g`#32yQDLFu^xO9Oqd-rT2|JZciiFH9ZcV^vWlGe zix{F@BuX4mZz?f}LJ}XhqH6%v!Kw_)%m$6tP52 z@;xJY)uUmBM-(u^=layNri0tSlSQNgD8K=#-s)cI%!a6914U@g zfAM5UIhsuFt9}e_Co7-uVHs9=GDTKkEz|ve{NPX=tbq#0Bo%p$Q9?Iz0X#LY%k1BX z9eP__)G3qiUhAg}>t2PEQfr?kittzmvFS&aQ3OdD*Z(+-SeoXgeBC&3f6U_ss670d z^5be!2=-Yg(oGV|w<$cf1REg^jpQgUuB;%1rI%m%qocatY=NA;aHI4SKeA$a2U-)$`|ubI{H5}o3VbSG&d=muMeq8&KZpz7=^U*nR#VKQyl z=idv{BM-4pX!C?ICSj2)p`&u`;E6HYaYH_~1J`ur%y>2gEl?(x(3I151`SKD+k9z4 zkWmi>@juaEfqk`rM1PgL2(s+>EEDYr-yJr4`#tmwdV*fA7@|_1c0~cwgaxk3jT|e> zW|@al#kw9GMV2C7Nwy^&0!0)S^la$dhf@j$nnJj!aANEGKhyc5L}3-(vdkZ z#PJ0LmzxD(ZIM|&u!=KTX#>CF_Fy|AhLXW{`3uZ?IaC>83PmQ!7&2IA{a8=3>U6tH zQXkD8hn09RY;dT9j3gC4hg^E`>71)OeySR5A65aYHyw9k0D6sj=NN^ig-?gAG}08| z_fjT=EDZabW73~u&vXjF_FpCO)sAWiUW$?a)W;P^h4A4Sj&2^D5vtw{OVd_VY5!pe zUYS8ANo)9!*0$)fF)lW13mkI~R~?wC`PBST&;ccWxk{0?5))R}2W7bIbJ5FiAk5~W z7GL`>%j8_s!LCBY3Ota5-9?Vb| zeR>+h)DbyMLp!|IchwZLCil(Elosd#a|G57ZZB4?$mw#MvJAH6H+buUsD97^B1%Yb z=0+u4Ylx7hH}kp>H8@m24i->PzmTf#;bdB+AgJ_U1rC0B;Ha*RK3K2JVdPA>*#UsR z2ah&1YM4C!;tZESm2O~)vxRq#w7HSOj9VNv2Ynwf)o#)0_wdLWh$dB*z;#o!B{SpU zX@fC}B({-Z2c7K-vDZ&9U9RW_;?0gLQHm|r_C&w z5D+gtu-;uApD0%Zk2g_oT#+cRxw_C+T+E3{%83QeLeA6aJs>Jjm%oWMb9iXYSAWHV4Rrm_>L<}o^+P{pPNl)VwpHJRCG0tGTE|< z`BX?$x1)kr%)j3rtOLK-OiSu!CUAzqVnwT`m^IRCosv0}L1PWg0Z~ufK~y?(q$ zZg_^ohPRzf%^V?@rEk<9!=P&vY&`~$`0mS16UQbD(uKqByZnCRs<$dH+Gteauz{kP z(d2!)`M9k^-`rXh2gL8R+3j_wFji|FOck2)|6z+Lz(`Iu#&)U_no|*vDPBtMU^|*5 zhaVm#6(W;NsUe{Gna%<$+O>B?vF;=heHlKHdMJ)TwG5o|}>nNKca@H9M`(VV( z7PMflw?ju8F9$Pk@-zYudY$1JzBs*L1S1rL%vk&K$Lv?_>IJ=IyIz~a{$GFWjEoH3 zR)e50dV1T<7E~>sz}1V#_s`NU8wOwo<<5kR446gpKT;Yw!kWav>2R1pazp^h^50TC zVEKX2D5oH98y$Ikf5-!(G%MPa|1x|?>}eewFBz3DP5$_g%YZnW*2SU?t#DJQ%YU`* z7vMn`D#tl1R?F7?kBe}67E(aOV;!37N$~$TP?07NoHN(x8N2?+VnX7@ie5CqRT)z5 zRB|7yhX|9q@>7h>cKjHYf*@Ub$ZWxrJ-?IP$U#4-ebVG($4krjKXpfe~fc7W|%`lPmyKr z8Q6wCWZj{Vy7NZ46_%#FFlo>Z1^N$60RrxpQleypu|hX^5x0(X*pbgL-+kP_dWZpr z8-#YXBU=Z&sqqoBoK3Qg6|^dJKA#hG1rJB-BUdBh8B6v9tM72ep}XDZ&FezDudStE zW1D=(T@0LN>pdBwy3bj4WNtPPH&^%XJ>74`e1I`so(}zEC`uoJyx9}pTVeCgd0Eo2 z+rUb1U2RjwJlRhQu3uezWBN>d&IxaLb{V=8;_7`XM*42_f?@pbA@o(*OA}`&Y7ci9 z@JOn($$lqFx5uB z@zYsrI$7Z|v4J`C#0{?Ugv4YyDpv)8jVP+j;*2EfIBHqAS-w!Ao1(KuYHD8d=H>69 zeyF3KKOoq?C#_xs^R-N48nS_v(3xL~Wbp5>X{jvLtq*Z$$iC z`yM}_Yg%>y5+4vC&d3O6&d0`$FSM6WVDHyFI^V!u$WrGx|ME&Gfk6#=mPB~|a$67% zDl}uE$vAuMy>I5%yLMUDwa znLT6SPbs~2ry*DIZZd=o-v2sLL@Eu1&9T&lv}z28ivbtfw;MTvvYuGDt5Ph}jefTA z;S?DT+h$t^?-x!f74SSF3ea@s=vFoMRqmcyF*_p6=HvX~SO`}6=|?)d9=wo)qvM(2 zs`|Edv<^s}#kcRxFZKWe**YdUlFS!i+7l`SC*wT*P5P!`e&;=AfC`9-8q44ZfVPpx?1y=ORUc$dB$M@gwFCf4gw26wMrXVd{#1Xt2s76KS(scHQm)?+ zBu=fH?jB4IUJw3d4(wx0TPh!o_A-p~h=(LJ@VbG6h?5NSshHZF>@4U7W2=0S9Q5hD zxMNt4Lp?s`JNz})`|_CbySA}Hl!Em$`L3Y9*e%Hw@l!yi*1Ao!E3+*y7&ds$o42RB z?6-dit-#gV)8r0s-STI_0VizghPZ;~6WxG>F z-;f1yqcfZpS}!!N%y+u2?vA=aY~JiJ{~g8YChT9$!wT)}(+lnTZD$uITz`gxaXBrK zO;lwqOm|!{`_+&dR+^t#dR(Z!2hWUYU*-LKySwZ`5^!;&$tJe{JkSS(wNQ}U#pa!J zj-YtXKHxSr50YoaGTkSrb3Q;c5cr#`ORKLrEXd4w+F{MP+nP?FOzE~!iL9+;vh)7B z`!UsZR4fMo{$qumns4)b@zqIA{Qb*j`!}ENC!0y?)U>E{LubV_V^t$vvu)}c)rgzc zOGt`i`|JMwBh6Nd0#>LU5X0xx8`-q0H1FPl zy5AYLs)0+_2b74FbF6@Xj7%@^u79^_Vcs8-REX#T-M$7yCVyY9rKN0lF}ai-*!-G| zesr?Qf-YpaOVP^Ooq0R$;BI7=JXxvSzxAx%FM*Ihm_m zkM`w2I?_5ix4EH`7OkH;7GX}WIex-2tNET**9A0@jlkz-Wuk)h|oySl89t^?*Z2aUD>^g zx}%UmL~Hmv8If%sX@DQMO;>36y&@q!8`l+35!WdfWxh; zZX1qxW~=iH#cz5RsTr%@-Ck4Y-0xR}sgG@3f5?FK?^lBHQZUN9X_V=N;B_Gxm5h#f z2R0kE*7UkzOX?dzk6le#Ux8i1jYDMRTNob9TO(g{h!*@6eJLgNU)x+@+MN6-fIE)b zI=Z}VhD-3hP}&i@88BoI*ROZ1r!?moD)q>66T8c(!Abs~y}N?>j4Z6Ig1lHX1at#3 zOu*G{ugm$(!t}d1OGjhriV<>Iis}t{?g{lDPv?(_&_T-Kw5qs? zMJZ-?-(kMW?dh9aS+Z03RiT~9;VZE_hZ)5Zjym5==t{R3z-zLkwp+It0f~R^`&v;t zkftm)P!_o&w(7SuUlCa`$h9lz+f%-B&~(Z(*XpsDvaPz`{aLevZ;nJl^2XE49YFey z2smlJNJ@R&rwEqQk@tF?M$mGI=Pyho_RSSFYnac=EH?%U6YX0 z@+9=Shv_6(;E{WL)!=8RM*sI^@_gwyZ7)Mvu+qpXA^%u?7rL&l3Z;0jE#GqFVKP~` zy!RV_fdi2w^X|pVLgAVJ!91jH*rxmeBn#vHkn%pFOgZiryRhUj0B9CEJ4vOApMU(Chk$mdA^H>eXPykhU!n$FH%^>yMB@(bm|q~4OdttCBw zJ@Tn!Fimb`)CM$3$HCXA*(U}(a=gz2uWGn!9D~cPV4N~$4ia#AQmR)2y|J0Xat&`~ zfjun12pa5NpvIe7Rv`d_y}-^8_;?x^KJm}0^_{2RPw_WG>2s0QG!G4b1LSxf(e549 z*T2!5GMf@9)!m7$P!lr|)|BR9b|1!ZJ)DlvM#XI*evEmxU>M$3RE~E1Cvgt~K`_E1__G+Z_5bZRkfN zuu{GU0fx*~Oz=?4T2z?q&_MC}l3|w?M(mKKDoP3&1}do{gF)r+yhnvW0R`BsrEaYs z;=ThFFDGqQ;Hh$1cK$--?)@(JqNWUb$>3Qs{D24{Lki7sS7j@)F&R&^ooL;!zqJo0 zw^T`MCl#;^6-e-Xxyz`>=b&l&`pGCOlzYBC=M0e`{(Z9oB~y3fPS>Q1l1Qz+?iT~% z?Lta7VVTP;mvv;&mkg8+%J9WatRqMm+nnBCyPwmE@hkby`X-bAhMD|{%zy5?-fkoO%8o(sS}9v64ZAr_DazSV9B1-iD3z)ZaupUJSyFoLpI|0O>?} zVXi2FT1#gyIBs2rw@M1M!fH-zU7&vA4Y$F=BBMJNrC@+Jz4#|5#10bRB;I?=9Iyqk zcrp@uHV_I{QgN;&D+J!$(-#`GFkrka^an?FKZJ9;vT4<6jy8bb;Cc#VAuz6&o~u_7 zmbUR1!xxm%HSn-)A22MqaWo(fzckjYx8qVAoT+-9F!yYaJ1AA1{J!$a$#^eJV3rf{8&{v+wu}?_Z`lbhwZ@wGm?%& z+|uDMhzf8qTy)sVt$JW==4e3z=871!C?*HUv`>xnrLx6cfX;tzSpaC+gxY z;Ls$(BDQ;Xzp8#rnsy7B@GC?9Fsp-Qna1VXbDw?x1o=}pA5epE7ce34ZxA@n7-Ry0 zn*rdCBz0QndObB*<4ipf3cC^r+6J8pDzyT~o+^zew@_(FDSLep_!)!2e*+cY>M31F zfb@9cU&QE~}g#31+IFs34vVSP^D@XhY+Bq`99#Mjn7EA8xW8pJWU*T@rk5K=sh zmpmuXhR_Jw*1g9uE1O(u0xQiYKZ%i_{+R*>czH{jWs#7#Q4RA826^&=8i7ICU4=((bf#tYqDIx+``iBF^PI-x zg(en7K%TZXe-pKDLiYC&kxKI+(Kn}kD8kP^JN*_8gMdhefn0(y42Vruk?Jj@-$K=% zjKwb?lkg7VSowLaA|{zJRF(WYi(0a8X87dYdc80Wf?Jlc=MJNI+pOBBG+Imzqt2J8 z>b6=Ni5TP(gi>u>PV;$+cM~XG7tsC`Xfjz>FZN?7eCqybpDlFjD=R#ATbKr5^>T51 zc&8nzBbSJa!Y7HFCCu9ii%;q>8R??r_Uz1Pn%n{VDiNA=SzGE8>d7)SYH(1(oFF|vT&D8m=o=Rp zVkv0oel`B^p|?-J-d+`fXSG-P(`QTrX${pKyx#9X6*3isfA54U}3w0m4A!N zNnSpYQpjJ*SxeNrk4m$NDiqavJ7kRlBES=XF()r@p}?U*9_!a}j47!oD?;QWmHiRU z!(}sJD_a5`AWr%#aL8vg)Zx)9o*Lvrmx+|=VAQqLn$;?gZ8g-b=JCaj`pyT70O~dIK6+*B0kfE2>+7pBf^&wQL zFlBO=Xf)~~P1SD2NKl}CwDwI&8_Jrj;&fZivtbzy(_!KVknC5qMa&vkrh3uGj==#9|DATUwV{7NqTJ?0E&EE4Jo zR+zA%g_vNvGX=ORk1u4qv-dbT-pc3;_f%7rQ`E+SLK$0a7Yo|F>4jrVlTQDSsc(*s zV!sO-0z{j^~`jX5cfq=Cq9#REp$uz;dkxEOsvA(hW@Jw;Tj4UXGTfmyL>_ z-q^|!&S$h8iqSsCu!V47^)3WIRY?|#A=KwpEwjdy*PF;wHIx<<6Q%Bj>3hx--Y$KO zrn8BhL18UC-{6A<^YZ_9=rO8+4!Qr1I8dBfJcT9(dC9OZ}`2A1|(aIR6sCmifeixe01Qnjvp#%K* zFn*ltF3XgkW-?Ug1#8s*C213G-=w+iw?a$`AtC`iaS1pzcFL;m{8W&(4C^QTI z-hozKmp37Hm%0HRShk*~t z@*s##8;2^0A;==*Bj3>xq!+eYOW3S%jbD8q+eQm=ox2MRR1Q6Xqq(edD_+RtkN7PJ{jyGdt~6ptIl|IZg-q{u5=X-Hs6 zS>a+3Ugab5XAB|tX18JwpG-!*>(%GNLP&?pLHFI|+kuqD4n(Bq3rI+vl`K#t_;l*qda6)sVcoqAUwW^3H6bcOECsa|9&0}h`0P5oc-ao0Q z^Ur_o!RX4Cooeg^R#%j(I)1AxKE8!|q3nKfu)aH-Jp4GzBWIxR`r73C({^zw6@o%9 zrjYmQuF1>uyHZu7=FSt$Z7*%Y_R(;AIU@lirRw?F3PZV2Vu`yW6M(VrDoF}Jrk=_kT^EWtpCk_+)UiFD#6HJbn zrD`wlPlb0SJkfhO{Uc=UnBrKGv=|QgI`f+DH?`7s!VwqxEI}ZeTn#iiLeBg>q&YiQ z?p;bnp+S0U*7y5aB`PI;9~FRCPOPd<`lZ;G1g{#^R_K0b z0!Zhur3iXlc*oB1IgP(1XM6cKG5p3c%R5wW{ThZCm3EFFSov05?P0gCImBwU@QH1ze2i_TIQF*g9+T?y?L z*}04EjhN^l+TtpnOz81hw7lt$#$s>t*~zrWK$&=Zs@WrayovaXy=qK&HOu%c!8M0@ zI+JqQrPrB%YS4L|@2A$0Z$f1gpMYhYA_qjJ(F6VrwLt<0YbSm+=s1t6s*fdSOVLrE zmI)-&u4ZuUJ-*2Dc<3xSj%Dz#YM(iKzhwrer2&|SpB5UWIKXgRRwk#rlcUdDnkP;& zT+9%7FV}?U>AfHKu3Un|Y?(}FwXOXLaj|v1%{7gjI&n2Y*>mcP&C=Ol{jtH`6?u+9$#p!_LYJA=S+%IFG8Ohl8#~ z>F2wC{zn*fT{Tc?7W(xJT{cYlkJ50#e7HRGAq{Z-YCh$mmGV0DLX^6ZCI$y)*-Rj9 z*)2=iucXGq#$QKvGQg8emeZS!tsb!1T%O0WF>8;C{nD3mAFNw3}1{Iwu)y=3IL&s`_ZH7E*Rx z=rpLDEgYzn;Xix({q8+0?i1^nnEG1Op6HrwwkDnNT35T@LQa5>)mk6bj5W1!I6Iy= zfVi8+ZbJT=hp8DdCvCoWVB|*k#;>}nTf|82bMv?63+*#+KigBK@q>SDk6R@VTiN#P zf5a^oEa(8~3c6qbLKTo134nmEY#D^~dx7jCUHaq(;>DX73A2855sR8D`FZku8vq#l zV?qRx`^P}H`v8Y;5eC9y9(qLdET=> z98t=w9BOqkq{$%MDgJQ-ePtXLaHwy!i72(`H!w;EtJZa-~Weq^@5_FjEN@@<#=86!wCZ^IxTo}L=Cg(i&c3XLw+ zfA4J|Of%88)nS${OSur0jl?J-B@X!YB7y-9V6&d3p!8g8{&4?Qs-w_1f?pED(^J%Q ztNM8~QMjm?J+97GrfkpGvqjWg-jk^kuxdc?e1W6$;UCJfWL#epR78@5+okz{)VXxk z)#7z<4`Y%Hgza#-7{=DJ1Dk*lCjHc)WUqsGI0e#(t!ODhEmmnh9i-+soh>$bK2m%dj2di^1Q z59zKtPdFK^BWenAZ7(a&=2x1npYb%39)wbK%GhjY^9}SZc(D7G2>V{JWH zoWlesFfo*h8jV)R+^4b;v(o9!wZh3m*HmbihT^wUsOoz%_bENOqXbRe)0m__>|Ws{ zJND<+^MiW$cIsrQI>K4LB5u`Xsy>;2J7jkJPwJ)6q%tPo#S47@uM~0d1BiJ0a|AT^ zABh^${93`ktSp}FC-$hhfr^FgDF*CiLEosWXa`Ysns1R>q=j-^*YvfPZ zF8?gq3a7ftU%*20!b6Vvd>T!i!rie~d5q~|B1%C@!!q_S=#M_5$pG7yk^>Y?aZBSX zUXdWL^RUa^ipt|)t-r;etCRMbzIQzhz^m?jhrtY$s_F4|>%s<|rDqD&i(?=|>_;&z z$g(LkS5dCCzpW4p`8SynZ@jsjdaYFs0pi^b2L>FB_%u(YY4B7-J$xXD?>d*`L(q4d z#MXn)_O-X(vcOo7t~5?DBQkO|6lAJsySj^sXOjO4miwndY{3$*3rjQj zbgm-OLiFMHOOhsHA7H@>XNY0 zVq>#mu}J}(#KjFBq9K}qO8Lc@3VB#vImS{0T8%`|wy%I54y=k4%GBGw0~PEhC^khv z*gw4h`(~^tqz~Xbl`TSLAgkT+f{}^=EQk{)AVL-WwwqRw_lCHld7I&tr1$v>#QaoJ zRrUidB*;Pn$_EOACmp3bwa5dUPzVrXaK_|vkDa5qK=A%f=PL9#wyUO%W%+gT*iVT1Du;cXD@bDs%x4YJ*1309UquwnPGQ z4aZFb!r)wIA38mJ+eD4W2IB=<)E1pu7H}5wYs!c#G>ymwU|ODE^@H7LMX@cUj_=1X zI^Z*=Q!Ym>Xf$f+R2reCV9DnL+OeM=NAK)Xmz!*tJCfshCV9}X{AD|EG}aIJa2B&P zV|KKX51t=sXUvAv(#k(m%R?>Q=XX<~*{t5PI>ajeHu2 zAci-SIzQVWAiT(!{mwDfho|uuPlrLgAtrCwxf=~vAI|8vw;q&h$5mo~Kc4M`mp#VJ zUVGgGct-6}sC$~WO~+m3#a&VXE(3S1&4;TPbH}<%Ny|;lf8RhNnGe4PVHx9uYqh?A zrTu&yz|-3XF&uN#Tr>BJOSzPaS&npMbsh?ug`ch9d=YFJG*c&C2LrvqUAO%woKdh^ z0CE({>|H6%R2JuHaLLj&Y=Z1`e|#A4Za$?OW9zIkcu64)Dc**N&$`Ph2nm{XGqQ^K zcxWvjk7uH+71RIp{5NVjpu!?UA%uyd-_ATpTjEB~YE?)f8Y zghmbmJ~q~Q#H-#F{^p8nZ1v-CtHKFDxxRre6ZG+@7@C?mM%>=>(GGO z-C5tSUzhs2nzUXwP}?p4YT3S{C0MNJTTbLL@aA~43KU_MgVP*AJcd-ODJmyR*08Cj z){Hq>2+|u1f?)4M2ePk6!Bsa}8rkKz)~Ups@8i_(?lR`Hy&g&qx}^F>;|5sv83n8+ z+V7=v;8ftyA=q(g_R#+N7=!kDW88jWf|te^P$gN+2oXv+dS2Qvf6KvAp@V)UQ)O@$ z&w%I4nML~1Cj7o4;ux1sKcHyiXrp?13wN`1$T`YfKe!)tpK_dE89 zLEh-3ITj3T{hW5rgexPf$M+6yH_XYwE0N{WW;Py-k19;ef+Eu9(Y_Tg;JB!w_X<(J zV*yNfdn|UY{_3^S*VYM8@ZZ|i`dER`(ZP6?Cb*M_GAGz`ii@eny*1hUJCInj4)IeyS7?=lnlD3EL~=1g9T>*qj#4qpT31T zvBxS|zXN)LbHimeGRh)(n3R=^;kcG6b?2fFnfvMw$EjuGfNx$~gxSDn>FlItSN(p~ zln2~Gx4{tgj76B42BF(%jM2oF<0De&qO$Whei}n<$^Q?}? z)6^{v1RAn6O^1bm)*3I-gZ4==EbG7ao`OT~-^rS-4<;~(usY3CIn8!Q#;P*icQgO@ zI481pc8&IxU4LdzBxN9+y+aULx<@s(aeV!4=KHMJ6z z{q+&0%x7S_vmrlRF70dUZ|jzLAqM@pSKrSD*)U+7;FLkfxJ|?f9#Jm?6n7R7N1MTdG@}x46!FB>v0ch@1hL*>xNity(5$ked&h%ykwrC|p zl8{KT$oRgMz0bWoJb)Q`p0CF@vGO9|OzXEp9)V`K-^!-doBipjb%(|a&xvCDemOD| z0+#5gqm|*h8v%bik~%ROR#@nSh^eTlcXDSm#mR6QBU}dvKhHh3z6YNNd3pe5qG>07 zY^j8nz>sK=X6_jTHr4u1Gwke606o<{6mFW6#ZLLbscfOP+C|)t@%|9|pZdzdVI1ga z9f4CDe5od-U3jWC^zR+kP5AOQW7U<|9osc@^dYY2I}9OS>#O;g)}_x05z^TBQ&5PI zQ_KBi(HP%Bv8(3H9oXSS6_`UHveD&luZFtLiFGyjglnhp!*1T$F5S1n@Dorx`IOE( zIgbXQp!7_!$p!H%dQ2(b;bBry&juM|gKf8(7F2~{XZongd3u1yA1}7%LoXeJf1kvf zXsd`)kaUgiEsbU)DO>#uSZ!w*gRjE?(BijBx)ASsOl>$T#<^Q7!O3G$`O8gOVu&V~ zL$AQmwWM&hc<%7^ti+pa@%+wz3t-#oJerrEk#nIkUcd7IfRgfjrSx1oL(KI>{=QC` zDDyxeLf_U(CkM{3bs>KlE1^|f}R!=s%TB&*|7|JJ&M za{jC=Zm4#3T6cKx$hvIOY<2pU=S<4R^zHJ$X?B~#lWZ4;H0_6~`kQuO(y8cdxZ%7w z5xbk(NPB{y<_TmF<$-v{goC)dqvMu};cz4D6|>~hoqBqSVgwK*hKzf8L;9`tpEwJ_ zh2ObE9aYZ+N{DwZS%2aj#rIM8WXul@KU;53oVny4e#@op2#7ljIGltUuC%l5?ptFg zA4vWZYNe~@8el7-?NGR$l@v(C(rF1Eb~}e&TQ8tVrtni)n`)B|>)D!?4+Z`I)zx3N z#6GVS1xI?hSI?JgU3RB`y-mFvOp(i071HFuQ{PGTYbp|b7~NG=fN8zm>cVxk_}V)= zGNe-3O~3DYxZ<9dHG{(-UT+QBnpYOHhA3=+=fP6bRLHUP4A6T%o^yFU8`h-hKAX|S zc&Z4b>HdUTX8~;i=G$vZJvo;!s9HJ!g>c#!*}8f|cs!eK_K7=126^sC!rOjeXfaF0 zM$$_Eo0wxF`m-8A*Icc^?r`U6x<-M<(S;R;#T7F>(<)&WItTnbB-GSse$!IDYs&C) zOgFWMTD!?w4PP$p@$b{spnQDb+%Uoeh7#AAFk@1vOjjLCnQ;H;zheI&W8)PXkVwj3 zv`X?nUb47%Dt2Y?ylym&h##4@mu^U)x|K`y+@PQ5%P|{>)v?&B=t5)cmv+ z3lVIPEGXxU)yD}LrKt`yW=~X=r|gPK2oQ^`D7<>a>g&`yOxGs7a_Y*7tPRFQ)G0^` z%`i^oqIiYC2ltGiy@Jz19gWv0gbdyi!r&&6Cv4BA_ciZJs@h;zuTrUSHl2#ix3ZK| zS#B)Mh3t*W$Np`xP##v4XR+BTzvr^xg4SvJ%FSUTc0tTFi0)^mWoi6fGw8ONO(Pgt z&4p^59_?lSnyTK*YdI-1Y7B3j#_xDdC3~X=_`5#1rW2}g-$@3{FM%)01c#!g72eOB zy`K@0Wo-a|ai!r7r+66J>-X^|Rkcoe#5_)j{$B+Izptus3Jd zp}0V`!f%5!?IH!FRVC2BAM+p1j%ubg?e3`&?_6oMU*A6QRg@OMI7Nmp8Z~;dgFVMx zt?P(%TC4>RQ&cUh7FTa$Td=@uGcB9uEt(cnRJ%HSyB;nE9of~E@H1h2C5JVu7J(4- zbT5#-B8qcf6~I>|*ZL~t1IjA=F-sIHCeh=LisxY-BmTWl5=?A4y(w}de|6^M&ffaR zR2>x0vJ2zNY$(=lu^I=G>weKWlW@}2OBo4*0a7TcFm7j4soy2C?duy2EX*Dzd+R_J zOm`khO5AA0%O+nZQxmd4E#Do2`n4he71u?g4W(Wc7c z4A985Zvr?@O0df#yjyk_q8ZvuH&hc$$f_|r+YLYkNAFVAKA4^2 zcHvRy88@A95ToKFBqvoNs6i95r~F|$a*f1iYH}yqT;AHZ`*{<*8hdq-rSLRqN%VF} z%5z6=^*jcygqhRv7is&>Pz)^h)Y`J)dIiA_%Bx(%bB%PP8-XQMo z4-R2g(m#7GmVQWxZMXSueV;Rtn7wx6=q4#yakO`u4^>q-SX&*qSpadkw#VmFuYcMa zvN`MiX7%V*x7K}Rcgvd&8w~>OcsqFq*=2#!D@G@!r}9k1A7gQO*{~kMu`yox>vHw^ zgaDTDNE2a6t@9mIAT0{X=%&hKdP&S$-3lGzR;SE#EFvrZ{(n_FFsX3)O@PFmj&@pCk#ZM@w6fF>=m`o z8*>~p#{Hw{=Z`+G$3XfIb^pZcSbcnU54!&cTC)3~fLaJ~J&U$LDPD*{g4)nBa}9tw z#NDyBe1PClf`eOzqS}52sN5!sF%I|@78i>mDpKSM!dc-);e*#(J>>H4aTK&;|DM)+hAG557ZbEWim1mwwe~sv39T^ zdT{XF>;Bcrie;us_qV$M;kveITaM7O6wStz@9=Wo>FbUMbfuBMT<* z{cdGceTI$ooACO~U<+oSZB7b{?f$(lGAQ54uK*dEvU_rCDSj8Jxs-YKrjRK}Vtx40-RPnZ5Qt&_aV-VU)_u`i_t%)-n z=N2++F%YAVUp`TU{r1WHuz!lZ37(sykSqI?YI{?G--RqsE#K)c{=<_O;zhsU#1wG| z1)u4^l)^A|Kaw0`zpA>0WSD7>MsmK|SzCeW&X`iIOHEW&a=v%|MdJ-x(Pxrv7Z*np zBk~iwvdMAw?FLOjsNm=|zyV7(4N)=&M9u59_sPI9yM{QLRX9J-n)J)9{iEkVK5s5n z@TP*mi9@zZ!hCJGI;NN+Qb}i2DPjD6g1vR8B!|cr6@42IMrl6x7loV?5f%qLZ#mWW z%EBijU>`f0R$CLS06{;aZ~=)hS^1d%OUA8$vE_a8aF5?kk%b1&<2r|l@9J|8E|BK9Y-zRZP4BO~QJlIx7K z&RgI{iyFb(+@Gvt15<>YzdEk5&2yUvuzW0;XEs-Qe1jDvPnvHgJ7PV%1kg9UM-u96 zQ^Ro5`@{bxU3-R+;Cs(D#(=h+qoU@-`FJL?-MJzu-}&-xP~+B2%-KdQnoezd5VwIx zI%YhkC!mWAS$x}OmOpjOx8X%)|Mq=KF(Xw=tpNNLGMY}Z-R(XW87#^&~(3np({n9EtPRFImy@Q=k!5+ zLEpoxvN6$y;g0c}k#DQMVc(4mLrT2!`oJs4I5lw7kBr5SQN+(KBhKyUPC}fe=Kqq4 z=B+~-Na=LXjYn}j;&o@+>}_Ywh{J%Nh64G39d;7BP8-i3Sl4TrznU>hmJ_x9pD#e5 zZT8P)8!AqdWY0Tg5ZjRUVtYE4BwfWh#EBN&i?sau3!X%~mSD&_l~oDj_liKJ%>r;b z%Y@z@Yg#+P0uBD&qjP41{gDr};Vic$bm!9;Oip%xX>djK5FN}RQpZM1E4}N}dDQ># z(8#s60ZLVKmt#iUw-oOHlw}3j&NE>5M)O$~3=K-B(xc2!!k>p1f}dBajEu|7Pp!Arye=bO%^OIh|uC zJ{!$0JN`7`OMG9&ODvj4#hQn*OwD5>mDQZs(iuF(` zZFf7Eflaxz|lHQ<`=Uw>poVp?t~8 zM8W=vm~BUEO@CbeFa?3Gf}M%`e;-GjG-c@6@L79YbZh=|rYU91I4D@OifGYjKnq5_ zU8DT;%55eGz$0E=XD#xE04?^K5DR8e?SUqW4Tx4LT@IRGqgH+eiK{jmjFj&0K0LLr zD@}Lfk59MO(dr-@cn>1L(!^M%k{s(~qT)VPH|-EpV8UrI2&O-gNwmfOrtoE2+5rTE zH|ml2CH^JIoQ(X*X|PT5+>4S}w^-8Y$#)&%Y<_^TfPb!1hG}j?W&+bL{?M=Mk20ZW z0QY-Pf$$?Z>%Q)Zi6FR6Q4)fM74J-$WsVYMY<-aGkAU+I$NywOFRb!)3{Nu#CAnbs zIl$|}8O&WefjC%z*=Ze`ItG0v|)oPBIo3Y?$g}l+AkO6fz zx>Zm+bnAn)DxFXUgHDw5@ByX5H{C7>udMA=$mhkXF&u6Uq)8nI2_H<9{7E-WY7~Ot z(^3xq9(K36x8$_qXd9`+yw>P05i{QOVW^d3aN?0n?7^LKMabkP*c z6=mamb^QKznrd(ZmA6tQFw;s|m`tHT@1L)$o}ZGh>Zv_-&wf>U(~x_rX!~s%=cn#dPmA6jvS} zk1kYRUMe0Q!r+p7FpeMQgq~}A`MpFn{a`NK?k4&cOY{y6X$}QnUfI~iHRMwpGNSBI znH>DN6HMhdjar#*SH@FtOhyYEx+K?aKf0*UKu90B7iL=1%WgqapFjAwR}$Ek?Fv{b zUet@wXu-lH6xWgg1wlXKoQSd+rsUpjn4vBm zxD*c0)B-W0NNVcXzhz$(X^HAWZqCpk$*g*bXM+Wo*Cp zRVgz?>-!rIT=4u0gD;G&=OL%jLb7BkN0O=t$e_-K?YwjHuU<;c1#V|ood?Db*l>9I zvEzJ_LrfogMgBNTR7OP$(ITbX3ztf>Zd^50j!S#tLMS)56`D%19L;L*V7X5%A)%q8z{&!8O+rB zADsb#%!hVNpb=e=&&9J(o|%dMn*5l`5}AIte?Xu`xPP7`q8v-r5CH)vRh-I1Vk&Ju zTtET^%owl=vCo5-?CcCt1}Nv8xSes>Uv#V9>EHy8Ig#(7=u60F zehGZaS@0gC6~$40>um2#PBLM)z|0lzt`gV zBt$~GYGycwV>c5f`36IFKn7TVB(F`!616+{x^|I&CTz}k9u_(jAZX>U(l1s7Fe}Jm z_YL5kzcI(}Zv@}VX_N2J`Jw)5<-|0>RDP(;o1`+S88&nfisY#_X0Np!Xb@P;8j3*^ zvlJ!~A4DHKTnSRRBJKZd8!FrA|2BXV-rV&L{X_VM&5M9jMCpS0o70u9h|*)x%SFut zX^<>@(n696qRv^+V5AdTL~{DGsPWI_eozo>i%m$g6!DM*BLo(I2FC zce}dTAAVcI7Csim((*i_V{x*^@I_pa<`-u{-#+Sr@Yq=EQ^%DKUr0tR>cj*|%Q3ez z$;PT8{Gj3yRK`*E$=)vG)*Oai&RgqFEgP9hNdXXSSKn|S(jb;VZXtz6oL`uax#)xm zTY{V4^Zt?dQ9$~oC=B0L6E~iNqsGiZ%CwvD)0F`T5d8$(8kHq;_A38UvhpS+dKpWv_OIKRCi# z>TLd`@+bPHFP)wVBIn8^3QFlX?P)Q zRe4U)dcKDp{u(M*+3Y9!Qm%$(5$vQPg4~89Nds}^@bUTRbXrTP#yOGsgrBp^KdpL^ zGA@dvSHZUu54933A9o93kF(8|pO-%_Ogod%wi)efWdm7L3n}I2`fmHj-ZHu0Ye6b} z_eX8HyD}V6%h`B6g1U=-qmp?P<5F`7QNK=)`Nyb9Q#er{v_${ExzL-rt5B&q^};F% z93Qon97iz_>yKAcCh}1Oc9sW8Oax_Ji>i3en{=2rX?MDik;r&{6c3p+yjT})$v#2A zx=1e#acpiqJV~1`i}JO9p$XF0 ztfXO#6nqZM^2Q55R~Fu8MYZvK@5R19d_*IG(`mtH)7^3Ikas-g9HL8-Y^7PJC=6b@ z;Gewkoq&`0#wz=5BQq3zPGP3AXd9;`=cP}3$7Oj^(|rTE!&>Z!o#etO zZl*QUB}}AALUM^41teD89nRBb3~qR9?$Y>rR{N$3FPbhcokpJ*E9z`MrD|5}Y%k_# zVF6m*%sf{HZ}y0MoM!ix{E3o{)sJE&7dtb7p8GC0`u8iCu)9y5$G#r{qf)3R@ftW> z82ie=_*8xY!I>kX9Kv`gQFC!%tSY!NQmS+ho@24A$OcQs8SW$|^R05c z>ay7L>G@Y2J*#HDU{Zixvr+nWGgM^BQT^#O-_u*0@~iQL!>3cH(Z*kE6$D6rk8dSm zc@ND{s|`%S$%nhEJ#x8&HzV_LTV5QCkiVm(zmD~2E%)dO8vsZv-9~CSb5(uoHyd}x zqBE9!Zuvrx7;NwzH{0Xsh2r?;Y6@~k|DuKFv7-zmy5_?e@&e9=(l*I;-?ibinFL)G?J4Ii;&!x$aooepId6V z=01dKzx)1H1ho>(a~BCTc{?e-psctk2KEFafz&ww2!R;p=hT|aqJ7?{w-mvkf4Q+D z1YqGwgiqM&=RD6;*`uJnP1;}^vHSjLAO`7aObjEsmMiK5Ypw51Ker}s*5;QtNIUF+ zoV6=f>=FFq?SfIENU-DdU_W=#<;kG+d3{yhmVkHK! zwpoO(@-6gy~ zg-OE?0k#@yYTj8$-T{OMJ{R{|-p(TA?mFlzqPQidqibi;)nqE@9$tgC8%mL1d{)m} zBG9q!8%!V;9^*Ogg;?ul_UoG$c8WqbLiPSVaOgwzom(y^Md1>4tNs#4)#B!v@kg>! zAtfuq8pl)2Jk8{s1v*|lBYC`b#y5gZ(AoqmoIHY3F*C1IZzUBoYsQLaYb%eUHYV6m zJHE*>!6YL?ul^<(d=yH>^<{XxR2ptBArS6JDfG56)xQN^o78igwMb^JZALvv9n_d; zdSUe!HON9gK7QTCx;v>3k|b|tm_f_^r;!<=I3$kwR51VgL$Gq!CWi3KSu&e*_-`8c_`eOyHpRD?#cJ<6 z2HaX&-+lG9i>#in$GJwJ<@jfvhx|WMwFnCAA?uH`JzsD8kG)sZ4~TDV3Ex7aktU`1HHlsrUGZr244aZxUogJA^A%W8 z{0X?~tB=Iob$cNGaaTSfL1&x!`N#?=l$EjeUAb%6Z&p2<0+e#uoTd5yMV|jHy~(6rp5jhhj37#O0L}%%J3D)udr5_15Cz zlO50+3DA2vMfBTmewzN-s8O{Dp&7^PngdL?qW@c4MPG=4ilFsoBSMec?KqKEk(B+n z<#m)&s5-1j9pZ1I>lfT24ISo5mh{Ok`IkCP6{|qbY6KH&vK8ubl@v-w=Euq#mbvjTO z-ML5Px^nbQTpMYTnPMH^2~2olkT^{&h8A#S$HJ`s6;o4da^dnoMe} zdl4&8Y$S4~>mTNQ2`wIkPfT+FKDL^R#T^8bMxJu$sW?DBBW@Os{2cX9Kx^AYJ(Jo< zo&J!<&VnUh6au$r;52`H;$pFr;g0QV$ty?^2bq5A&l4Z5@8DIomJPT0MpM8%x(ts@ z7$pn?<4JMLt&@c$w`Io0sDbabb&*@|wch|F7aJ;nynAXqPwzufyzhi{0c!VWx-Pz# zNNseqBu1zC&R<~K$=9A!=dJB`Ieds4S z`KX;#Nt8B7{F8tKv;QB3rv>eLf~#nA*>R82e88GK#H0PTz?KOY5AgBAdBzP zaDEd0zB|u$RHNI)pdh0r$Par?gNzd$LQ*I~Ft0Vv7$v&@^KpC8UBQ&WYn4ZjCWtU9NSgbj*_=iYSRSPGWtzY3Y&3e*#G7vC%W{0$lJ;3P?2m4 zF#(%FmJBtFJY6B#C_RokT1ErM9Z+QhbV0yatV)wcwCK3mDh2!7&Cuk4o3&Q~e9UHP z_1P`o8-hA6YvSdOeh#z*z&cZj%#136tw!$p*4O>EUl3&L`TcJL&>l~VFEI}fD^?3R zW5y;dCH|H&xkkZm3#6@XQ;7<`;4aks&_$8N@1+TpjV2l$qZ+yQCirY6Qi{N5{VNAH3E0ZG7Lr}>^yDIDXOP&atURR(JQM>4LKP7<_`oJuolu1XZDL<0s0ikEt@5g|p zCR?l}+H}|*`tg$@O5bF!^ojDxWJT8*Q6SvrtsrCt67+^dX?V3U2Zza>&WTLesgB%D zXslV)&;AZWwjfkN)M2yqVW!Ewzs~?H_5qCsV2Ao=tNmTGqK;Wih8PoDYWW!2C$?imfsu%mDbA9z0a{!gkXOH zQ6V)Pax+G!AQ@Ro7Z@czIKDg)dR7WF`-H9te0X(<0;=`@t*M+uS6aaSmK%XHH!xKu zU$m<}LGKjFr0Lqv-Pu-2F;@M0Q#ercND~IYZnw>&h+dm(8C9_V{D&GP4IXqb*1joJQ5sIuI1yp{jQzugz- z{C#4Omr_JNu?xbutdI!*_Ft-=zEx9v1{F}{wEw8W%LpA|tP>*$;j@##O^GGJQZ)TW zN2x!ToFRJAue>JHPXtVMSz{y|JFnT^DF;x{b%BI;z_-f?8<{S4d)v*ivu3lCs!Rn~ zb2`pL+^557w+$?IlEUaE!*_PuJ?9K#RnH9-b3C)A7OoadobrR_%8EDb6&Pf%`kvQc zelB#ZzUmE?nrp4w%yt>raqp@nc&1KgtBxlNTW(yr9#2F4H!Q zlLu9o;Q4w#82>SA!6$_Gd*G)DH9!lu^~xsGKf^c&qSxMXo!L$dLU3dOq?@Uy4s6A} zP?Z#_>E`MRos3G;o^5o3&pa%@2H=F$_e^8|z7ye3!ouDEI*o6A5{!_lX^cE|k#c-vxXlnOgjWsD6mp3e(s*4shWVT%ZH@9BTw<-Y|u9A z;rV*~&6lqEe*6q!dnA-Q)|D9t+Vs-nuhG1Q(;{_DMz97y z(NYBwozw<~xrdTDY_tT&TR8z)%q+i1D`eTbI}~(#wv3q59%uo&gMTza-_NTq@~;jvh|84R!0&r&rRlGeXAcF&b+v`YTji6YQEzTS+I;oolMS#w<@H{obe zPD9FbW3=_cAPqPs^hM#I4n_2UPx{Soiha+jc)uQTf14~RR=`WnQaj!_Ky07j*f~6p zYzh^36}`(mM&-i=y7DN?`KcIUF-(IqE;p^sx>8azLECSXU$SWDU+KBbuLU}Z96WXj zK*fub5eo6OBy*NVm47>MBE<~v$Hqc(y>Q7?7??ITm8Kd)C**ht&o8^A!^XmdYd@h_ zc6Ql4z3|r+FL%ZWj$Krs(BLdEESub*JIg5?Q8ATUm_NwDVfKoT&(D-mN~fUhK+Pp+ zp;(P@%d3-k@TK9H(){Tf4e?UKHepg*`CJMlpkPxumO znw7>B(bZCY6!dAQnYnrWNCMX@IZ#3TJnCSX2P{|-Jj{r3d8jW$j)b%HkS(jj0)C(k z4Ni&Z?%wu`n#xhh>VU&_N9yEY`%p^yI4C9g8(g7wFsML$$^wv1uike)D7kx>=Xu+b z*&V$*7@mky)Ot!oh-PUXX|?k6Vbc{_D+EQeB2I-x(gubGk*tAM4v~sA((5BNfg+Pb zE8J%qKSE1FJsVTN5mUU4FBFNh&m04eg_%hopF}T&$tl9pA}jp8i)nsF&%YiZGxJpL zY1g)gN(VZ;1rt?~t7g#?fr}8i4YtH9_v(Th=MjwK2vJIts~H^ZqQkz|dP#!M&T5=( zjm&iE)m=$oR$MtKLX%VHvH(;Z-k~~5LRh}ChrJteN1|2oaSVP_NGsr2d z8J-vIS)YoWbm&hWFkKm-(8|0rn49{q8oUGEAz0#OAYxCM>rTFo=_-#DCMmn%UaPU` zIz|sjJ7C1Ha8>dKb{^|eyha?aq{*vK+yVdkkN6Tdog8PA+Le|8rF==b=tKZ8CTq9S zfc?t>J&ZLIh_CMA+LVM>cRt35UimB#kQcquxg^DRZg9O)L)FytgZNk`K-Zpl$8T1b zZ}*$x|Dov{fFx<6t$U0e+qP%N#*S^lZX(9--Mfq`>p| zbt5l~9Q35&f=S4m%p%K!Pb7(k7V|43H&wnLeQSKMbqk?-<+PdLXT`5YPV{ zqonJd4|+xoAy*Zf2-plBmqa`_$VCbf8;b!wfur)jw#?_$K(?K%BibBY|3iw{UAxRl zmL!si%)&w&)4X^xwaD{TbOsYs(V-bFq7{UW(+etn_gw${YICp(XtP#&jDQ<>kbrT+ zExp44>bVl~UNOEX=RginG^ za}y}ttF81@b?Po~cBq?i_^A#eW$xuK3|!f8#izCcc1}pkaS^Y{^S~GXg`&Gc5wZd4 zWgP>*W_>m%N(%4FvEUje|AjLd`o48sz}`4@>jd_b$J_mrhT$zgOc6U$rIA%p0bU!F zUu8nNY56&~n%%UDzex;=$kr_P$km=rL{BIn%^!*63*l?w4x49W!)Npef(&S_x(rZY zFaCgq5b)K5`U^NA=PIT-4yGFHBElAzv0r-1W$Fa;Z`6imKd#YPE$gJ4ne*%NJPpu4 zcso13Kwe-G=RubpLwPv0a=Q9FR!hmLC(Kx{J&7nMrnOn`+F%NiY)bt( zU_YV0&)mCJBQs-85#n-^WEN}-;LX#Q2z>gII67y1*Mb-7krn3lMOf8mNY zO|aH^`p*9x#&9%VI)&N+5HLmfT0-p^rT4o3=I;vZ_%vsYWbWJ|ll=Vdo*3m%(PlCd znIHNkU?#gFE`uwTjSbxddN{Z<{&t0b=lWwZmbuE#Jgl6je}OvMf_@D?fK%UGLMeDF zQ7yJG5Nq}Kf-G`sf@!Ydny8{WsZ!RKQr)W(1)tkRha7MS2WC_`-qvrZXj=Niyp;g( z-{}IE@oOlHtK9p?MJr3-;`hC^lO;A{*WC`xgL9O|Rv7uV4QcS5>F4zc9GE}hp3M-{%R@p$NeLn2&wtj$g&@z%Ue_fz&W`|GBVBozWgr3Ud zyk&i^>^xm^xxw`U&9uo!W+HX6uPdZ23AY6acBKrD5$tMFd}svv zw_S(t5yDOGnSYJhn5o@4BK;Yorh0q=Jtlq$Y7Ex6(54yc0Hr@Gt9vpno0g(14KvAC z+)<6%YAIiLV+EF+FZckwL-#0*IIed4p30%N!oPzmE~E20uhZtW>aq4TLx0|1*Y(BY z^sm%ZRFYR3o<5yp+!<3cn5xUl5Myonn+hmPbE&snF#xewG_vRz4b6*sV`l(>axN7O zO@`x=5s1Tuk`YkmV=mfef;p-bfyR(%@}r+o2IbL3mchH({pl?Gqj?mo!@>zDT*#4J z?KR{UsDy9u_DWS5|N*qD+IeYQa2azW@VH;D(c<2Fa8;Wn>PEC0YR{I zGCEe`A_;yW#aX@koYhQNoXm~2sM{0fc-klIA^{%+?s|3n;AG$C71ygG$q%T6|GhV% z>>l@Ug|(&sB)QWThj@&dnZ=W~%8V{3CicFy1Lm+{8>ePm0)GuCa=WORI`c;^m;h)SJ$6fuwmYXS)Hh+x|Oe&YM|Lyy%pd-B*-UBaaCI$&Gd9?hDsd5HGDcIy0 z+>#aqu3m1NJ3##P?~k8y)Ev;eyy$F{Y*{jK%6Kk);g+|3FMPgWXewikg%sGMNR>BsSBXCf zCm3ruGmJ61dzmX>Z`ESXIlX6UL(=EEXG+L+Awke0Ss|!N+Jn|68BZe}ISeEf3sjoj zcgIV)QooHk&ezY>wWSI0TKpvLz8t64>^-FWW#@$FAFCOMS~Vi6woigcBEG>ysYD;PJDExIX4L7I+v?i1Cfdhs39ii{=Mo_%2U z%q~5v_4cF%ETfU#p6Gjc8%{G4i-mONY##SGxPO;~yjygF44f)V3Ex-ij0t~|HLFHe93Y5CQHF1P`8|?}uHl z^*kCc2u1Y}cb%>4FQo2Ey86kqW2M&JhJr(yLpJ&;wlnS(o{tD&GOF&{FB6EQTF*OP zrH;Aa%G)GPV_>5jXFNJ5-{zidbLXiAHJ44xLpBOh{DxnBG~Jqa|M*-@J$r7Mtu0MQ z;aWK}Zgj`0TjJ1ZKXp25D}red0N?#nU-R7Wujig`E=|Nd+o;xprHO@&W}~3DCC$eA zjvA97ea5~{$E_Zm_pgrFyC#Ai+DSWGIb68TCavkDEq^#f74V?$0)U9%WJA3!)Fw~c=v+9Bq8P99s2aJ}r7u!!mHP@O+FyO*gD5K% zn!$@7wnq7qc(FTR0Tmo;|0(J3-93JSL8^uhfU9c5Ey`}>B} zk5xzbNL?~)NHCTl{_}*!lqP(kIffBmMliNiE2Gkaom{?U;{BYD^JNlo4F%0a(cZ;Z zm1bbIoMqdiz7B*u%9LGl0+D*xyS2EMO^&4rwaP*hwxoNcPjf*FTn6l5_q@^NTZrdQ zE09XRya~YW`Jut;9y}d9$^LWim;(KVcy^%lyL5Z>!@a6$4&~==7gvoA(57Y9kr@2~DFgi@-@vkV+r*^vKpGq{UQKRmk$@u$HGB2KTbpO{(;O z>uQrzvI~OFSi?u-O*g*KCSNQZF%)ZenGIN4x>&0H3&~+-?0=8y>f^T89S&m0;Qzcv zT3u@oqO&beR=7H+2L_eKFCQ0WhZq;Nn=o=Kh`3=xgve}YCu)+ZM5`V=XgSLO6VP=R zR>$0Y5x3!B3&%o5c|X6UJA!(dED3swax;JOj9`^`Li`Va_7jhTR;}Ic)tyTl?vt)D zy%PxQn36@*mI&9tIWIv$lA^vQpIz?)TQvLTa3~Y>>|Q{TA7jYqx0l4NCQpQhry(`c z`}M(ab)<^?cgb=7fVp;8w!%P5hOjwN*%dvCaf@pnuzPlzc+8&TgkZkq_CE+=$}P?A zsYRbeMQue5!&k$L$&k+)pWaK`9tSbGK(9FRbD7e3?lI2E&e9_jzUQ-$WT`Cfw%Ccc zEj%AHSb_CocMhJHa&qle?c?BICAK`YbO4HJX0s9vepX!^vlI8p4!yb1_ldV!k4#*xdh7J!a4(@M@HPu1WpG|3=o9)Ryg%@as5cWD z&n}H1vOFZc2aiB5I>SkWD6EF_73P1N%XC{*ivW`Kklj7#+JAoJ5lvu$o!l2#sOqYq z$Kf|UzpkqSq;kFPlCtQ}q0|nVXLx*V^joTHww{_ZrP8L>Z}bc=OD>-H{=gqL5C4rS zwfQiRmOE`o+;-lit1@+a7kJ|TJ0l@|A30W#@98eX{>8ne^t7SwHN$*%X}sD#Z`zn) zPsKR?8jk#Aw%A=a)!-Y2tU46OK;Dp9z(l*h9h~78J-xsH$IsHR*fwpAiHoP8VQ<^ZN4ae}1MV|m^>8%wGC@pujj{j>HfCC) zmnCWVBa>YGq>&h@@v#AjkthrTbP&ZK>uVN7>wgPiJavl`ohq?UPQJ-of46^ND$DLq zxC2?ny=}j@Jiz?3O3i&bKXIGTE|!-;T3a0MH$a^NuA9F4 z&0Bp^%sYhnh}LjuRs!pIvOe3}iOtRlIBt+2rwPWq~SKzQO{OoCy5(#>U33FFORU`uq4p zxrC8F;gX_h_eS1 z%>}0rX;D-CqJ97Mf3V$$j?oO+`)cr`ow1W2gk?9?t?CpW(&F>xS=YTAmiu&1sFEm3 z4#xlck0I0$ort8pzRkUee%ze<%;!j$*9}^s7hd5g5^fYueqSx4f_#@1mcUx7G#xN5i2_xTv~Eu}(nJ5R zQB=Q2k(j00s6XgdP688eylAOCnp&k+Uyb@|{v&qk9NwC-Dn?V(yvNU9Q-AVDR=fnX z)S=aZuuIv7>q%7kpLjtglZh&3i}?Rx+S7%N`;WmX&d0WNk&g8n14S) zxiis@($SWF5p5MIkp?GWT*#!MeDy{h7g*wtIBrf$+ftU28qW?EOQ(I6sPfsX(M??g z1I+TSlpAME58d8|-J%n1YCP4;n$-HdD?X+7SUKt|J&&U+z}~Is`D}20uEhMNf;;ki zY{S%=(QJQsPLE@F9rVks9(a0C_J}mrrxp9M0ZoaomiuPuHzJ`>UxX>r?^d|Mbze)V@vhaTODrkYVuOy4iej zD?(R!L?#E{sQLV6m&M_}vdtiFB@*TL*6zntp$6X%AVItSH&9D_Rzks+$zsrr#1HZc z3C5{}Hq?ez9>|3$ya$498|b-2C*aAgX#oIicNd6RYVv;`d=y*97{kf`u{(jspIT;- z_gLNA2PrQbVP*iqmTAio{02H*~vgw&~{&NtaZQl>ZZ{IY)>0sT{9WG z2#Lx$^%gaGKD%qMhE%qG&Zi&oU|`MiUa`j>o?UmUz{u3{3|D(WU@=9WggZbG*HT3uHW$L3~eYqr(Z|ND# zIf?|;mjW*6(ar>yh9_ZLZ#xdH#%eoRX_S4Y`EBgD!-4kLembr6ovMIa&)$@phM)+@ zPk{4QA>;bERox1w8b97QEH|zONwI{Ruv^C~SBMCQcoL%`pmpPJD=sP{3i!28+2&v*1{hV0o=s@Z>H2Sbo*9Big z8WsIb)nR}t1$-oDAszj;sk(=Fox$sy6YPG`3y9Y2eh0~W+aK7q8~jDe{-JZ5vZ$%L zWKE|1wsC*_{?!;~UK1Z2<;Vta1bS!yHEONCs#a|0=CftX7!S$E?}`hEQt7?6+opgL zTxF7i5@Od^z?tZ92@0@YBRZa&^Qvq%;^JA*Jo!VyH+TGP>@$g%Kb}O3HZ)WM7W;d6 z7CT8S9;X_8AsDY3UGf6ERet!k5-tn7wXgQ5p#E$ilGr#O_+Y0L6riBFaRh8h1FT$M z3=cc>T}h*dfi$3bSFC(V`Vsj%rUX+nnfi%uaw+YrTr7N~G6}ee8r7;=!ShLRfR_>| zHvPruC&hIecu1IsQ|Tsp!lP%fE)Q=Sd3hJ4==Nllw&8s+wmJU9&li7wI%_Gg z6PV@&w82GJO>tDbf#J3~5TeMopf2R*eCy;2_{g)t+76bCG$lxZs=%ws>|CFT-!qaH z)VgZ(zSGguFaZDm>>cypbJ1A}hZ^HD=AqbcuWy{B=2df?V6Nz%mn(8kj4!`076?n~ zD&a_sF5@m=cRkYHos@)^6o(jbT5!|iR+LCuGRy_@)B13kT`b8+J2W3v`sx-G!;3B0 z@9*JXJZ3+i5^0#C1zv|~1Km^$|I;CmqGy^i3m#GjsBdA43t>*!9359KPwk!e-jKYs zGv*Yz_}y&7>udT~7>UPVqqbZC?JF5c(QJkIy42`jKJN)J;(hg@4Od9V84SK~($rM| zMH5~dIKJMN#UeF0$ppO_=3&f@G~N+(6^kpaR+Ih~Z{pNn$LB2?JCKb=Z#DF>VDLk< zedy8rPQ>PqXJI*n53_{N`o3X=JJUP$tj%|;IbcJoCy>3G#1zA!}!O2a0|GMm)%1}H)pqqHNQY?>`+i4}nJ-e(N z&jYzXPZ=w(hdxn^Rc`dF8DN2b+Elh%jAwL+omzn^X(5%QHO^H@Kz1<6bOeBq#wh$^ z7b3=(c?-yX$BzDlQyucu78rf`aB;)2*8`dgzmxfGb+74o!GuDv7#H;=Bu*iTs^c~QWPkYP^Ac7+dglcd0tgYMg{lD{Hi}gXhp~Y+ zm1`dfABT0q7lSt2$2lNGpy9lh@BPk0G;cH8VH?XnCgosf&5~dV{0a);%%D63^ zDfeM80E0C%@38{OvRcl0SJPXn0my~>IJ)-Br{IXB;g;^_BJqFN>LFO_LTS;VN#||z z#KX*msNFuP`!tM8Em`^pN&`yuN&9kZHQPE5k8jb*?V`?dH4ck^995pJ7|<3uW>lqz z(^;BzY3^HGb(XJ>PFRd5Fe{Oy(E;<->g#>uL4=xa0eQbB7W>VYA0@hY?o>@UW5ITz zDHY<2!xQ8(R`Zln8@1HjRHmenI$Dp(C2msFh*Xh1VRES0bEA*Vn+PN-8%IzStiVF1 zFq+Y!Dr{rifIMy~n`k=~Ve-_PTAz|Ae^?+7ISPy0ahw^P+2n#(?Te+njQMNsH_1wvZCLl_D&M$_2$&tMisSX2h^<qM1erV zuO8aTX3vE8hgW22@V-nHbZz`4$c0$v#H|>PCJA2tS5f9R5*bxL}_ zcYIf|fZ0#Wf&s)&aNzzdEvbCVIFVByD0Hycgw&-#co+GD94n6OZjg#fe=s2VhNFVi zD}PI17W~2*^#vA4>9`RMomJiHaKGN}@*-CeCGT&tlLaL#g3B7vpeKZ|Zd`)~X%=-K z5_%c^=>ngeM&y*iDuz7)1kg#;pL|y^;rPwi>$KhNm&ksv{I$JXs#JgF+P2ueKllE6 zU2)%DBTcLb_XjPjsF0Ii5mk%;Ds=;;JuO*rgpGO^Q7nk?2DrE5bbrvM9SLQugnuEW z_UsyjQ%!ZkM#RN=-SpKzK4RK$cb@XMRfcDN=Xm*2?3Gb{w6-1R*yxW)(vD&}Iy#Px z*=DdsJ=fI*7mXLDfLnkl^qMtVLgTeD76^LGX^lI&(@Z3bXh)I-7OAHg{wXSAuhwcV zP{h)px(ybQmvRV%CWb4t%(@4{+yT(1WW{@8 zKs0iU7%C=ZN1hnf0lRW+9u_yT5%Gr~LKj{NlI`MG9Iw(;=5lQ2NCVybiOrQkkV=;n zx-xcNl3)rFX;G+pAR{MMxQNhpIDa&1ud?l_ zY24>9&{WgXPs5?_5K0CKJXMpdbbUNceUtinw(qZp4g8S*Jg{k(|;_uDOMK+wRVCpDsugzP=r6;s%(L< zHN>YfS%i7!na>S5Pag5|ff&N%f(v5qodmk2hs}65J}8FeQ$h64vrz zlSVCHYqr*p50q$4(}aZ&4B1Rb_+59m+e6E43EkGEyVCP@T3lrpL{_t)+IU-UUi0De zsRLN){!kabzC(41k-KRF-m}apB`Fm}#kNNW7M-2z^Bisu@Baet0Jrr;hRvgN%R3rD z==6_4?)y`-55k~Z-D&IB{K_daQk)o_J}t`uZL)P*6JNhG=%a6)%-KD{xL006JC2--MP;0KxL9;Y`g;Sqycd_3-E-$9tem`OVgIkyEoCBr*+f z6LztdyD(Y{EAi$g$;OMs<<=#HCkN^V*gQSdHMIJ|#bLucJyZg7DeV3DFTgo^Qju3L z-nag;R)Zz~@jodR$X;lG2xQwuF&p-6T_nv4_r}cefM{_{Svgw*%YOtHTjn^4$2hi` zE%vO0{7d^eFsSgFPb~#`m(4-i>es+34zC6RO-w*uekA=ms9+gxt!?m3(Wf_b$hxaE zwl-6mI)>hiNfD>j@5A>TRPi%!Ym^Y{^}0-Yr|GrxQnZtWq-1B=IfuGd3-fGcW~!qM z?kjevr-i*kI+I8ekPCisg%zp)2Cn`;{-Zs)IsEdK<=K+CzV|H~uSBqM1KxH@ zbvB@Si!<#G@|RNmIyECgf5x#;YwAVz>hQFZJl{Zw*QgHZEQD74D%siISh=Jx)>+W4 zP5*ixcuN4D9?^rX1YfMH3;=5B*rqI_T0h*lr3SAo);I(sAE+(f{L;iN{%_E*5SbX& zsr>FY!b-Fy9NaNGSHS05%fTXGxuVLVsH=O_*MPGup90xjZlfIUDTlP`vBveZZG?N~ z@jJr%dLbOczI3?th&pm#TRPc9J=|f1Zi=b0d(z)w!!=)Fn*k$QthS$i301~)xNRLt zk6v9^b-0PS_+&AQanjNN)_7mv*X-oxRs<+_QOLdwP?%=>eED(YcZYb4A`H#7L#hvD zs;f+JKYo#{KeNzxnbGg~zm0g9Rp6%%Fj%uW2eGwUa79(&M=>Ukh-179XjW30pHEn{v2}VyiFNNuZmjSZ@rCq zcK`G-!#(acs(`*HG5_CQ+KU0Y&}=OK1 zL}dfWfw<$y%75o5rUcRTGHX3gEr>cwXO+pCz_^;d@G&%wDYYB3<<7H~k7G$kNly>U zh%v80aF=rcfo(52eY>R-09oLDy!G6t72ql=v*z~Q-Y=gDDEc}bQx{NJWP|Vz<;Z&Ik+4HmAql@BuGtLvz{2p4=^w^jl?by=@8&k#Y1bf}5@6eA%C-mi zhjN!1rIuM(>j?r$8h@*3ow}X7xA`lOPRv%=``fuJlWcn8vfGzbe2!k~Zqt*qGoE)| zl;_ZdN0SS(t?yxo3la1lDkNQMERBJ$8{g!@cZ>VcoT92H!S^=VUm}teDp08^C<@_H zMPkRkNLd<&c$pUTR687*c_EY`Y};~&=-t)Q9ok?PpK_hJ?=X`&s!*`l(w*d z8$1^x^F2;g2?P4qbrn;Gi-@3B!sQ=MW6})2_qnMfPR;0lt&bne^3bm2UI27rD3$Ek zM-)7<;4Eo#IoQ}PA$D!n%{}j7SRB5qPU~CTu5)vI9_pG)+O}HG2RV;J^YtU3(xd)5 z(pVc?ZloSMv#2+@036t^tOlU`oQBG%Re1%@Vas*FJuUuy)p)YJ{CAU`$TKdXxsDk&k@QDsu zNrL2U1Et8UMRCz0Um&F{y_{n_%KysBVNYb()Fu+n3i`hKQBnV@D$k%T zDdxoSm$l`i{`Qg6Ls{H;iP3hn`*E9qUpuPLfQbPNnixWQg{udThM{Fz=8L;e8kK5q z#uIga)-yoQHR7wRHpYYrD_Tfcm~xND^22?*h|?wK8KFnw{cS)Mh*`y=BlAeu743i4 z`-Rtu|8N$CwZ1~Zj0HFBA7W91LPZW}lL#B`+mNiiD1z}Z!3^p%fMZ9Y3dcMk=}Pq1 z>rcsUEvS_>`k#LYe0dGPR0lMn!l2#y*rNRRQ}O-{r}7PIY*u=3GFM?tB!)RQar%$ot8fc6 z3?yM3T?Wl$l18Y@X!ropUR+u;=@ImwkQ^d!ahG^ly{(sRjX8GJPIE@2n@>75CjVZO z-_HuaBt7o02zahWK8#vKWii>63`uu?^9Xv(tYI5_FYT4>1capcSi=`S-_j3S9oK<1 zf$5iUuB33vh`ttxvtjf!m_(>L)=vMlG}6}EK#7-+O`-^%-&DxrjWo3LVvwA2mS!2( z>DWk@geGpICs4;G4laUB4||>B*zzp55=F^39e38i|2K}OMkAE2Y)v^fIf>TXh67O^ z-R2gTMOy0;QXnBCFHz&M8tIMADUOjM1)FkOT3W0o!zjP1Yuez(w?AY>-F%!V>$OYu z?@r3PSW2xp?X0ItW(ICpFr*p4qrd6Tadm1k8+zrU zG*qsQrd$K98QeQ6uZ13G^l_tIk3v7XEu#C0(@>%O zC#PRIIYim0Z+^Zk?wV-25pn}9(|JA6Z4`r;W-+b*6q_-4&vsAQ;j65qJ9sZmmJs0ZVgcjmqjp(`PyMYZYoOrL!<@R+S7cA4#Coci_Sa!jILOjL`R zA^GQpLGJ6oQpcV@a9)<3bzoN4TAhy`(gAGyU>QEH(;kGg8AQCW`k-jM{3>oqIcFBAe*Bb{m%HgP9u-Bq{* zczyH!Q5*3j8+khK)aY02B^3?+3Vll^m#zCU%ei}JC7mT#qLaQa4L|lLYlLVQ3aRB< zqv`V>V)F7-o$jfn$6SHjdfL=vF^l*S;+6SKT6$K@wk#>o^k$mD`6iaP7la{S_xwdj z=n7Wjx?Xzi8xkR{8d>KweI5X_d96Yy)nKztHTh|2!uXkGy4F}R6x?j~rS2oM z-!wz#wR{DsbNzYfYTzxFaT}mtl*N^7fB`P#e{P$3spHMslfTEgYKE1Y3YOP=)eRA7 zz;E8z^-0PA3lr@dd!Y{__$Lg%7b~j8=C3UMKWO4$TE|H(wXWh-Xalinfj-4VkITil zYX&KPXQ@lZ5_+wE%yd{56qvCZiTY%E%_5O4RnD12P;nUXnkg>R2n)S6C2gF8Y8A$x zwsVOjsKB2p-@7?VJAtBNT{C9me1nLOqHf6l@qa=s?U!H`XlY-~l!ca@bodkbl96Jm z6=#X__%#q5ooUE|ek=dQi$A<~oHJE1N)a5N_BEot@PUU}f7=q z&vMgeevp^(?%-l^0av~8cUC8}AGRwe&BQ^B=JNz*i*7hP|y4b1pc?YnO7-Hj_eyP_x zx}%wZLXmxv6>Hs`0(GQbkQ;+9=RZtylnQtg{=?{0;Q^kN|J8|looM&M7mu^7kPloW zeL!r_D063^D6_Z+9`EA`r=5Lw+7GOFw;RNNnY+^k(4_ZvaZDu26LKf!rVX}Ewfqs~ z;(3IWlgIfNp=TpD7n7tE_HhWPi~-RELrEFHp1&tBI~O`~J}Y-ygZX3@1AXipJ zkm3Jv>IWW6u7LWNVz)5-;t9#Gyf=k3MshfcKR8OY6F&V+ME%1Lj+p#Dd=&9-*IL02 zA`mXCTHer#Kj&8X?dCVQUb(OwI_x}1uQOVp|94do(Fl3ky#IpHZSWsf6J7elk=t?Z88NdR~;R9K=>Kt0B6s)(4%V8tINJy!a zk=?TB=*Ps5l^`%)(f~#Pk!7IE>l7xS6xmwh>GMZkA%0yiAX;p^OEuR(9 zn!b#27#kra?lgJtf*Gp>(0ih&Gzw4pS%~(}T?WKodLR(?R+{U92Ea5a#ug?Lm~o^) z545`M5-D~gjCKx@=U`m&Tq$TExLkg2x_vZ3i@Tk|<53)&(QV~X#gG6b;Xw|AId4Y;Zva)oGBZbR&wRZ(DJ!IZce_qN!*$SVZmi-ttfOCQyEuW2+ zHDT zz<+buj4pwao^9NQv6X>g@FD=*fx6Vl$_^V?MEII+(4c0F{ozTYQ1c5nr|d3R%p!8- zCa*&*RG3U3P&$5Lj1Hq%2VkMMtsMx>^i&d1oPT%%JWln$gnIqyr!+_b#Z*WBMy$|C z+d|Ipzy!i|_<(i2hjNJw|I%ch0II2Q9tuGu0|pgrMofk1#NdwE*C58?Ti=T}d#+C` zS*bWW5jqKJ`ZFz%UK#)cCy!xlm;+Y7F47Z;ntdO3G`|@3V}`URbd<641fjzT97QHb zPXJhN(0(z}!7Y#LPYX~xTrgvltL<kG zP(gY%qD?>oVWiEC2g!Xdg^*TYi|pGmR`9{%9rx=vR?=oN_ufmS)6bunnv1D)!2Srj zKX={`48Z&g({l*Q=7B*^jAkUbMBB1|-`3sne@7%dMuOOMlo2Dn^#;5Taox(A<| z(d$WPf1$j#m<^@d;`L6G7yuU#1i!Qb$SZ2isEfx57&50Yo|Kt@>l1@uQC9|#V*E4< zwIdZ<(25UKi9c=jX(hv7=@wX;D#x|)dzQ~77sT)pv%wO|qK0L1^A2p7a$1-_&koLw zOvAjpaCqeeC?qUq1lmQ{T1e`8dwzQDJF?u>l$blX#LO*SA<1Heyty}!BqGOXt~ZhG z?zJl#JDl&p#$hu#P}8WwHMqLMx|N6v3|6Y2z zd}_aUzsOxVh!nCv$V#!u_%IXmR>@U{J=OJH)f@6vbq_$V`j+g2eu$RQ3OKxHl$b{n z>($fvcz)tp`>)J`E781Z>~+kmrErsbXRro1nJ=*X`3;7XT6PE726ehxb-AM_1$`@D z^q68riFQ_lksb!mv{*?wqwX%UGeA>mmK=zJq?)&96_F_YsvWE1rBUHwJGC`v?_b8} z1*kA^Js;vl`~x=~U%D^|)a@K2-h*;0R2p&zeR2$+eN z`n2eZt%)F>d`iRM?b2^nt|wK>E^0@TjYM*lOFK6IxFB1un@^^Y|E0QkLJLo+BG9eXgTW;rgZI9Nwpi15mec$Rg$|MR=H8dg<_bbD1 z3_YEjQw2omxSz_SBQaO$i$jlNyUS$*Bv$Pbm(TYfx+sOYrN_8SEp!0E^kLAqZ6YIc z$w|T&0x=(57FkgIw)boD)6b-#e1OPWlQ8|$sVS_*gX)tiu z{|bN`F<|ZfH{+im0N}qJ16bm2?_|PgYieR?$Y^P6Xl}~F%HUvU9-$y74iAg--)ZoY z5+X_f0LTPz_lE`rmdJi@_W-{jjikjz0N?+8^14csfF&>v5}H8QGs571J4gyG0`C8D z(mb**d_42;R8zj(?H(t_69oZ6%zgggLZVohKtqk(zc4T`h?@xd3(|ZM`{yXdZbzIb zJ9F7SRji_d&a99SegGV)EYW0ZT^T2pH3`)~#z^7;z3%hJS8KDIy1TkNy^np*^DEhs zs_P7wYg(;bcE{WWsoLG@{l`TRi{9HkGE|r0NZO^ph{N4!Ro-+%IR|Z`{h^z%mh^Lt z!#=*EW3>`XYvGop)5g|@v?VL{&X-I3MmswRCiPH3W;6hyZcRn!78-NkFoaRt5iME*$DlX9p$b zK$gi1n&Lm`jYWX{?m3VV42rn+-x3$mQi#|WML77Mmr09Dg=Ogm9*VAiEJ)Et~N;v-CwX@sYow|VwdH^Rli3$Kz9RLFDpC^(SoEOU6 z3l6~q4#uzx3g-j@sOi5@XJ|KFj;@FB@_rF<-3#N_*m3-h#PRW7-gn1)9IN#67$MZw zq-a7wA)<&U0#B!dCKDBBjxF!U0~KnT`W0GP7580yexr*E|}32y>7` z=F!eTekhqNa`5%K84HS?ee$xFf9!!c%7T~|)`DM#-a zy-77F#&4^{i+$*V32CK)d*tZE%X#sE0+khbZ|R-!oLk*O?UyqH{dt1k7yGU?e0mJfYZ|ZG+hF$R8(_Z6q%@JN`=RX}ZM} zx~jFbE2hMQMcTC;05n>v!)DyWOw8L(pR>5`KcME!ooHs+&&0?;GV=gZQPfY5pmHj0 z@U5j^Nfh)$B190i8OQ;e8!GNw zw-J)H1!CD60#P5|4vRz8D_gf?ZwDqm-UT(*i~Hv*pDTWw;S_Xh=WOy}mql%_d))_8-@%Z!e?jmwBx9fjaXDbUFyD z7>^M!YOukW?6IG(Lz?g3OL{4hI6Oz6*WWFPzQRi@MA(ffF*qOXw1wA~QKVusey+J&ikR`}MIW%3`@XNhwmJ z>AR4itTF5fRqg-^=v))m%;?_@AW7_Ip3+5*0@{tHbh5bmwd4hMGKn~`>czv_+?uH# z@{Mi(C;=pIT1wT=88Jh{NX}-+4He%Ei{>b=8utu}f(^ti!p^MJ%iB>1H}wGI;AbPV z%k(!g=|NZ#f=^fyq#vN2F8~0vz@4B$nx+R~YmxpA;7_o@&V9(uXWf+X{!CA6!bfN1 zA*LuNdrsPYOBNeDdp9t)9>r)oum1h9s{i%5PMaBZc492&JH>C<>b9NQxH*+cnLIC| zii~71RgK;Y@gom`Vpkql59jqk;JWSjYUjI8{>twr->*mQ>+9LC^KPDYSpN@9{2iW# zlK+uru|(3v?5de+tuZt(3+>{G^|Ou=2$T7dLer{#SGC9E--0!r7=bRLuZDW1@^I|f zGL^DDPK1PgU>8N4n0M>%%8KANIeag$?6p7&m7GXNxw=91z-)(EE12U@v;Ahk5mv#= ziAt({2C4PNIE)AF;-vHDUhb}hEkKAomy&ItHqn)piG&%+c0q&LX*OcwVW4%>z0>3` z;X5l(60AZF1VeiK_4zFE2Y2zw_DFm$&|G+xze{Ph#`@+bsxWI>hF=6KqiB|9tWu1* z;RpYWf2yw@nUA!11GDU1i{T$XWE6Of(qajHYo6{HZLxa459tV(95UvQ_Gc*yw+?-C zm)*&@WpLig2v!GG7~hXDzS6B)?HgS!vu{cvX4Lw5?{U3&e`0WICM+qx&!E1X1d-X~ z%JU>5B`HO$adNduaAHBCf9RmUPJfz%;8y^^_V-a4yPC!d=RI1|udj!tq`q-*cdU$@ zoNR19hGH^Zj$~z)AK}Fbot+#Sk2cfTZ4suUW8_;=_fd`a0eFHi&}FcB(2+!dk^9-( zgtVFVyTlazmm~GBBcJPe%i7NWN7q*d#np6S;;sQga1HM6?!ny#celaaU4pwy@IZi| z1Hs+h-Q9iX{i^oY*4F%)>f3d?Z{P0IN1tQ1|LN0z_EHvC{jOPn#?lK*1*s`E>)>ai z-&$*-4Hq6xmpbqd4&v<&a&pI`tF2*umjs4IsBnO4ZYlIj`&-3MB$>22-9(}|jxkF%*FatqiBoZC3TfyvS|5(=Wn>H2u zDZ#h1r;X6b5Ev1}e6)Lev6$(EZn@veq70)|6SXebrVX`(5kq0|n)LQHBwh%v)M8l* ztdMAJ55fFcB0b5?e<4L@qw}sBrab`n?FwWY?K4|5T%)oqrQf-m{!R_to@=If{M>1g zaD4EIqDdpI<#Gx50cwpCU*EuW*j|**3EYCk=8WwLVm}3ec;y;;8e!`uhGHg}P3ob7 z@fky<2jq^FG!*KbQe8q9Ka1R+{&|>1k%l^kKuJ(q6<|m?;>f6Rijcy7oifpeXxmp@ z05ikkEg->@3JmjBWcP8jnff~Lw3c7TgY);7q^h~wNnv!O=?fo*6+d){CX!F({Ob!y zh&eDk7trJ1bYw^KQ0V?_WC-T^BZ4#1{u9?X4BsW-F+_E?)oN4mOgKo&)U}s zJsoxj;JdExSGnG;V|e)|D&;Ra4xJsBUY{L(@7VRa_7yxY47}H)DbNl6B~QLR70+9O z(+!>;FQB)29P>PSkAlM{dQYj)p982Fo))0$nym%B}Ai+7~< z8!(I{h4ZCcb(!@%_=(!|VvyVI3AC}6(0PlMhJ^-+>V~sTDpoDn)xzRBUJ|vheH|{i zq%6pygc3K1!70dOp;N_Z9Y&D)CRByRje8y;tz)7}S)_1JJ-~pj`vCvqWP~pe56jL6 zc|K<=S92iHXW?sJ9>SA{i_6>geL(AFko2X`7VD+8p||_)KpezEo!;XUmeOhR%NP;p zg-GC$1Pg1|mE>iYJwf0MBA5k6Ju)KFQiK-@#|Xjct>|g@O^e8VZqtS=g3<6H;-*vjV>Adc&_a16R0wHm?;_=Z-)-KTa zG8K}~_fo#`4X5yV%IBCBYdm1RJ^my6^Mwi#(naPkpJgaU?NnzlrOe+FQ2NRAQph2c zG&IyzE)ee2$vY7TC4cFQFcyyt;rluQC|>m{%RaKjMpAyzA-?g_XJigX>8QPuNPlc0t}poR?)47y2edSLC+xRyYkd{6`KBN zpk?DA(eCap1QXG7Iccg;F@I*r8)Qa`VF4eZeDu3N(gVBucys%?+a9Z<&*=xaXO&~C z>GLYOcFmmqqG9{lGCVYQ8lh%p2&MxT=u-?%fnMdM}?!o<58{8L@uO&+d20q@Iy`bl{4VvCLqUWj34y$016mY zfd^feZ+_M>w&eYO{vGi(;OdUZ!QlCauJ-o*t;gq;p8L!3BIxnXz1@!c`IggdCVd06 zN>cmWbJ?=w4d=9#M14-wf%u0{P~ATJeRBDP-LT_f`u*eOska%Q9OCiaZ2r-o)$+4g zY2(XNZ_Ot7VPRom?uPrGqNv;3FT>6IiDIoW+`F;$ruF0<9>2M91|A}Ufew+bKZj(=YfPq_ zWvE;mwgeKzx(VY>GiDY4x0&naI~TqnnwwG#zu}ghr={nL;>0Y=_n-2SMVwy!g(Ud? zP7*~Xtb$2xV&mz(Lplt4CgmJ)-uIHv^Bb;!<GftrY~Ys$0JW9u0r1W5Ef$NUFMK~pQKD?S$qSaJ3o#uidYc#J^tw(*8RX8#32PRozcls4=8tj!IV zQN?8Djgl0hsA0x;eM%Dy@jw`5V;4x4zG|Iso7hc-Gs?70;pL~Pg6^A-+u-W1FxBt- zAuVecii$4EOsID+!j_r|aEcu-2|i5PpCn87(A2(m<>PgJFS(nWS4rs5@WhXWSX{o2 z!%Cm)?CO8Ou#FlNeqzQL`B2lKj@gSg`F zPgV0kuO1c4xUFSQL&N8OETvZ%1fR}RFb`^i=!P=_v!FklY7sdun~NL2=VQAI@mE=% z&&m|Gcvrg$z3;@Xi!X&jLArl>FC4uG+YKI{ixvIPBjVwAyGGcl?Lwv(h3=z1pL*w| z&(XHpN&L<|etY&m`rkF^oZ`i7`p!uk@{`0``ag75>5x4|Bj1u=t&$V&saa#}SW-Fi zhzhKR42bzdzLc(KiLXY$iXAcx^=)w@`VAo8aNWJZKoRZ~WKaH}E~+khXV4@YruuFF zR4dEHcETvNaVJZ1Wl!F5KHZlmGh`TDDIFS`g_KF)7-?u%4tma$f){u}x-uyLJuMd} zf#k#?K~NJIv=NTM2U|=h%b(gMM;?gdQ>>Ml8Jv#Jj(PW&DIuWq0fB4_vzGX*D#e{O zlGF_$7_z4)*PBHE(efaX-SR;{H(G?!>fNIH^BwMn2zOg!yvB0;rUHJe5RaWcwJ?+2 zVmyx*9s==SH81F6*3&c%t6BFc>j>FpAU1QNdf8;v9>FP)3{tcLgI}b7dKW2$6k+Sz z8;L_ZTsN_J0oj%PB82BShG&njR(mOf_M{+0_Z|c=3<=S4v?d4FG`Tt0N~GFYfLEpU z7GBuXZGG1fqOZsH5bD0I{WXnQ=;5c4BZoiB34&wm--pRpdqZb!dkY9TuMpWzJo)IB zjq5;h#n;sYA|2R3g#>};;?>RTUgo#?2Ump2P4COcg|*uwWB!S@j|2GUz(TJWkN5fa z)45T@U64MRg=72eB&>GwHxYYzLRcO=JtB$lp z;edAhJOYwFt}R=b1WcAER`h)PZ{CUdPj{*g^R8R!meT;G8G!!i<=mD#Q{ktU%lExD zz((u*4_oTb_kQNWk2l3lz2~Zv^cEAL1H*vZ2LMEUdlX)EiVIE#@Wx0T>LmKT@r=$r zbtd3NJbd}J$axu<>ViXy!!^M&*&7g|x;2Fr_b2_^FZUxin@VR?2WJ7VYJPg}WMPWQ z7%L8V7_q^u)uAXs%d5m{;hik~dZ{{kS?z3sFH>fLpG>!kYQ5vf?9J1t_SR~5$z8=^ z&Z_bKNk8uf%5yM^oZ%7*2#T%>`Ly_p=$?p8-N`~ds>M;fwbLgX4eFXP#=5YoK^CE; z^u{ojPY-6_Wk-1-+=-V|2#r;XaL;u*=$D-6jyq? z7~XuDMusPT=t^zRyNUwj_fGxW^>?}b<llE2$#+?XHx})DE{*>8tMf4HT4tzdb$7heO&Z)V8@??lQg6Im2sWD!oVIwcdkKH`W>)tK z8nMu`6kwlhWcS992jM07zs{)%!Ec?VZ@7NomA6I%V6}SgExl-I(o;_xstS1AB7LbV z&ijJ2$s!CxuWuF9=i>2#F&nIG>Qsu!sbSxGgr_cAxJSspWTGm*06QoqxpHi;wDgq8 zf*p|YwIsEliT&I(y7$k5%nEi1rJ|8B!Lp4dNpGUf4U~)sT zd)X^>sWh@x3xOiFd~{ccEXwYr}UO=<-04kuJuuwU-?X{BsGR`P|!I#IscDN};N z+#uDdDc1e??)|l_pQ=LJ2vA27bly8qWdggDsMTY?CZQwS;^7VoW^piug8R26E>Zxo z^eT@qHpQGB2nb0g^yyM(YCil9^#AGpFDr`Sx|ypF7qsEVm}VZ8#h2)#{^QUCstC12 zR^n%%MSMaRlW#vNE%f6|`mqNC%rt~j{FQj=N<^4+io}$E74EmGJlnt8LBiZYZjXPv z1~DO;mt7WA;4kl&Cj<7uX+99Xy8@ltbxSHnV{1C%+uSmvj=@i-KOz5BeY|C}Znj`j z7BFIaPs5VA$$Tr=>Xb9sr8I69HGGaouIo6@i!fX|3S+Pk_%yO( z5Zy8cc?Ut5uJXbdO$@xAVu3bo31CsqJHo2473MmZa=wg>#jAP`1U>3Zsc-(w!ixYS zL}3B<+b%rU?U9t>GG|HCrj*P7)sn*%fBX{{?(%QyYIy2Kzjz+0S+=B!SC$rOryHRn z9)9uNNvPYA$xf)Rcfnaay^sJXC{{+b@gG+)&*<mu$yhnG#pL%m@ZrtRn#PFVtBLe}AxG{B3l)>>?Y|;X2Zd zfQhI#DZ}q7tx&Q+Y?=DQLnN|-Ek@yD>I_Uo*!={fDWL``O`@~=fdE#BOMk1{tHV4m zp|TseS|9Um!LUc@q-Z=}|L4n&J-a*R7g^o!2~@@f^Rdv3j0J%8SbYnZ!btt}d$$lo zE#8fp#60`yO3b+XFp@KL^juX}@B-17#(TEuI(B~s|n?3mMXn@56y&WyMfalStx)6!$lE|A<9OWcMK~pHY zA#;8q{zX(#A*Sk`uNvdjMbINdj}6dZz*eh=;F-V>dmsdZuiULwI%KQI^#zRRUWzq8 z6-yOC{*P$Qw~!Wa#q*)#kV;Nw4(&(X+52UL%3Uv+C@yEIKvHY_K-G>b3yLJUb-S5o zQkB2`U8%dC9_7lXZL2fmO&nk==tVb!H6W^li^U!q2>J@?6_>1&*y5QAg)G{m3MUqr z+Oh`OEq`{DDS%O}o!H`%epQ7PBteO#t>k{canwfhCO1k9jqqt>wvF|E=Z!=8q#3@9 zrD^wY6TQnxK@(dL_hdd@n38Ql2-6%Mww;9UrAG3NRJB673jrUdZ|?bShd%(5?mFS! zmNkA>*?&uEb2JHlalRXrYjROZf^THllGjw^i_@ij@C3CgL;#lrX{fmOm&`CE^abQ? z?m*;*nqL9i$!X>#aQW7vq3VNKl6&{no;FiX*YI|YE&rb2B&MLdFkY>OOY*2Z47A23 zEtDG^P0(@jK6Ach2#@o<`tdj~3}du411npk3H6+YsjjBN`;b%#VDND(&!pV*!L!JP_G zXyAM#2!Iy72Gv`+JAziqlJA5FZ1lmTP@`*}Usw|c=u71GxFP&sH)2eF*u#eZVVGT- zhrw+x9Ohz|-McOtDcY#rTq6&==*;^gXLg-?U-(*mGSFN((vas50i90AH&p>4HBx?@-&KEQ8L$X){6Luq5W*( zyHAziO6C;%&pyhz*tCvuRO#QZG|f&{XGp={?EC6w9GjM=!j7EiJ+a}BGMRo)(ANzz zvWd{U5ax(o34i(;VMu<6N?4vP(|)wSuQC*-SNF$Fzd|2$J_Zev_`hXtg=?p5X)tGN zz1C%eTzeVqQIBvKPc?B0pMzO=N`W&S9GlDIU@(v*bBe@35d;$VLeOS^*s#NGvM4^ zwrR?W0nTO&aFnqES=iWaBH%yp^|}NQQY61ESnk_2(Umf+{;`%f#hmFZi91f`pGyM7Daf0xgMGoM!!g`1g;Uc7=lx4Gu1*{q;EF{-c^X#bTQ_dU7h) z?c$YssLd>J+`d@D`~2EM+&<}pf00SN#{%wG45MB(p9f!aqQi@7ib!*_`C+=jwVDt| z-DfkMX|@WRTuPYa!jp@L=+Y*eXW+AP)RJ;2`+Tga6-768uehQ|bt&b;yzNapnSQgz zgcTO;Ew`bul7{|$A67LlSy96zS2kau^WhG7AVxcRab6kFTdsOyLl0`}sy(mfC~yyJ zX~N)FHefH-gY4xtfEq{h(D#*qukc?*CYj8Xh6&iqbp>f+9`2&Ez$LR9dFo|{+pDZN8e&Kp8bXwmI zUOABm9h8nV?oW}K}F5>ajTT8=1T~NsZ0yj5+iH%Ls2pa zeionFr1#JQ@xD{X6|uR^+t`-8$-DFZ<^_m(5{Ou&>(Nxs+cX=0E@*6WM4!2cSKoTT zv00vZUl+(r&YuLS=B0{4A>Mo#<)UY!E;OCbuy~$R&Ve`8au~|jY9E@>6H7OT9_*;z zw71m72xd9jY)e8n#uB5u!MaHn$N4t&qzmk4L4eLaHlp6CrAWEA07KJ;wjTsbVqN?| z#K_+>k?Z=}Ty0CI#iJ&4rz;mKOG%VKfx?YgXe1!YxA_%anST0)iLDto9ZM(c=(C3A zfHv||J9uYplg{Nc5zI3Y%}9L~Pu|%Z*M?CZyH8XmsYQ-2Dl!uoL6JcHZcA+<>TiVJ zL_;U57lo>W#^w4jHQD!#aV$KJl8itgRs>OpjaoJN!)yCXqqlL-w+{Cio%Czxr5&Ti zN5{-IJ{mcq2+n?^9~eH-q-e-Yw>So*a1C7Y$ugTb`>>}j1AHN`H8BV{&K0FC6vGBj+acPfiPJupa~Fk6DjmEhie*M(ARyRXrnmZy?+IaU z2knk|0iBo1Y3L}GsF0E2E=kF#RNg5TQ?{8hugaAE8?4r)x{%=V3Hg51Pi zdN`uwX|>bYp>>1{7r$Sj_tFFzJoGaKGkO_CNQTJ7zTS+;sxY@@4Nxv?q?przS3RXo z4nBf_0HM!nzUaNJ+Q+n9^b&oZ3r&xZ!HW8try3S6J=~Mfoz%5VsZ_+DQ1i8(u+sz{ zt|5_)HoDLFoaHacx1pS4fEFd1EkLDARG1`s_*RqN>dKh0+l`-AeMp3^p_XP;-7L4~ zfJP1i_7fePnoDX@|4i?MZbGKBs8}5Wl+-D!4I0Z4>LuWT=mulZ$h*hRSI#?(cErd_ zFMSKQq@A3URfm_<1ctM8<7tYXYijWh)fiS)=L7*V)vDI>ym0Z5K0+TXh{(59>ZS$s zYKT+paWmuVCs3~|)&2R&nin6Vlca zzU9n-!R#SH=P&(*Q(vzD&V`z#p$nC0I1gRQWqSSJ{-II|fyJch%5EvsA$Vzv4g^sC zWGD&DV|pdGVst4x%*9xxZ>Sh#)={i+_aXktPfrI2dmyigftiGn1VjwQ7?W4Cb#+9U zkyfJ>1i%`Trjc5sbXSn(8ubki7lI=ST|_afvxQ^|L{XQl6MlkP=e1h%8Ew@kH9(eFr>tj`gRU zIt{hzE;o_Ax?3s(DnEPvk>u~!p;t+NIifXyGd0^2ATNK4YFsv6)XD?;zl)gg70gMg zc%epH*%sCKEQkh@lHUwiAo|6J5~(b0Z!594uPfz@pEh!IGGT?5ENWyG3Hk1uXZSg4 z#{aw6Q zs7B6Cc@~1Wi-tix{j#(LdI;~a#9+o#N-3_OUczCgRnro7l^Rh>EvpKMez`5f_LuM0 z>r}>w?AV5d4(;&}kJU;^XF5gUl2b7NGxV3lUKj+j;3k7mT#l5(qf@x2M=ca%N9tqZ@W8xneMq~iYYnxChq8w9jk0N}od3~CZ3@}b#k zP3%o6g1OxJNG9Q)nStes_Fa?47tADz&^+U<$zyWRX_ZyAUgr_T-=~z_?7Fv0K*Cv* zXQ9xB`LOZng>L~hEEiu0?~p8R1n0h=5pfw0MHm>kj^7vO4O_>e8`7Ak&F3|hKp7I-wJ^*Lp;s6u9QeDp7NpNLyp) zG4ZvN4LWkR+}(eU+@!FE^F{o4M}!-UyVUS8{Sr@|aL+6mAeB%&+VC`(!|2uSvy;w~ z_x3OTB#Y88!*eYqhoW>!{04#$AWMob8AmLAX|3&5K<0JTNXz?LI>qEAb>1T`>!tEI z%p6TZ{cTO*=8Bk>`R9!ZEwdCHLV{5yL{?L8)q=3orpJY6Xb*DB`pz8t1YcKMyWKJB ze#rbyXexign&-^Fqv7^C9p{H9+848Pj!L4N3jMAMvci;JS**4*?`4ZmxNH6j0>d&}FXy@y4K{pDE3xdbM;@HL6xa}W3BQ$WH7`=_3vPIHAC9|0&scj(u8ctwjUApAsh zI2}TQzo~MRRCv9_49aNELA*CuZ+hN%MgIifqQetT6D-lB{~G<^?0!@T!Qyy5Lg2tK7|5jJYhO_#O4$MNY^{zS{kN#*xXxR7s2?>t zi+Ni9^Myx>3F7tP?qk?QogYs|e%7{7%q0aYkdSQaaselP;Y(4;wJvW@Th?M+PSUL? zdpFirl--7T2;%OBp-7Wd!BSByj9v|aCr2VPaWOGnfax7f?bC|xO5^?GPgY{C=47UQ zl>8W`MZCltUqclnfWStspe*^#P!3!4jA2mw7@sM8=S!||DQ5+t>%dlljc9{k24@7~SR7>-6k^Ka7RP^goQ{z8R~T|R`u`+Z)p)4R|>dUO>n z2_ixU0ol7vN@{|F&WbV2|8K31bYXa#%POLZ-aOAzHw||mO-3*2G0H*oxRHNaaQ~XrX7U)FQHSzTuse7`PGPPr){zHz1kVY6ZJnkoW-opsml1GeYy!no|J_{>y zzA%=nTLa{@N;|Y9uAi61Oek!I<3R51-N@8MZOU#>OD0gIt(;#lL+jTaB&Bsdco2ZI z!`lZwYqY=G^#Q-2GSDFC(=hE2TeyC}*``M0>WA07Onyc?ls!elr zeuWW?7I9=ceXS49V9an%gj`510^jL9qj;w$@|kV1BZMKb)24_B8~%}5w%Z6UFo?Uf znv=)T7h$Pra5#Zp(Xo{~vqyMbQl4>@K6!*i&l0yjX<`M@6oe6UNli_6T#a@DJtm${ zvkhLeDeg3#bY{BbRRof#Ha=0k4<+<%G+OqkPHEey?d3dni_s+=9LF4xl>6q4KXVpp z(iV;wExjXq@%wAMhNBRTHy}ht=)JL}NTGW499Id@=_5&H5;MHn(Pj#=RnKO_wZ2c& zV{8JFL>s%aeX!?=ygB~Dc*C-=&Bzz;8NS$={CxY?e3+A2w%8FWA<8FLK%^Pqr!8uP z?7PII;sAN%XLu&!-xSR)ZlL^D)-2UN43Sla1CyV_&mx>TUV@etgKYo#xWM zx8r+bc=H9jW9H#%TXUU@@FN@)B(h~f7pW2CSz5L^YBrH{mHSy5(=Q_4GS!E_r5>{8 zKdRmd^oE|uV<;MptY%1cMB#OSZ)Kg6Gp#$fKOJZ zHSThkw{iYjqWo(2p5{!hcU!dM+YRB=*}tYebbfq$eJ!D*xmok|7;01`?g3SeS9+4SLOQ5vBr$xth^>DrC|mv>^liLrQ-Wp-yZ!i zEoQdY9K(T_bj*9YUQb}JA5_%4U+o|^(t*S_W0@W+`)*QGwG&1|=Rz%UdSZa0>Q7}I zwbWC*s2X$JddLm%8FlO?ErP|mM+!_IIPnm=3pIDUp z-iG0QE*nX#H3h8hW+GOir@S>~tR&_aK!1BY&XQyubdbmP>3*ip zpEht#MLJIKv@VJTGln%+zxUDRR)Rr?ReWn3h6EGq`+joHe>kwJLK))3sD;MhU5!HxK9ZSHs?K!`cyP>*ghG-fI?h zZwdumw%lN|ChU__TZZT-%1TU196`rUW_BI3 zMNh}FQL*nhRAzi}piev|C^-c-j@VJ>F=a;mi{@TJ#=RpGQakm7lNe44YB=WXZ-Y4x z%Mh>gyI8b=h74fM=+S;Gg>9Sk%fkEsmRATnM4tJDEvTZ@GW8CH74U8w>I`*YnIIma zCs-~aPSe!QGC0_0sAEVWBA9&`F$(S$Xtpx~qYY>sJ->}@7~-~#1X=qb(*g@$8O}vx zSa;{gRAG8gVpW)&P*e>V_WN}xCFng%pHqfuj0Qvv>Z@}1Xa)%-XRV-%kH$E7S&xq4 zIxlBoA&eGA?HfhbXkO#z8?h zfLq$Y?G$<}{Au-AiR7LRT7iki^3gVT+W?gZEGfKMyws&S7f<(f8?X7??po@6ue12y z_qI}6qx2Vd0qP0-rEQ)Dk2AM4f$A~n+KZ$LY@SbcL&!-$fas}9nLHrm5V)c$&x&8e z0ie$?U#uwuXl^uZ5BOaOo<}x1^^TbK{wPkUCR~0p@3K=#C~~C>R8K}ev!Ui48Ai;~ zV^6YMq5gUEulYxxu2xFf@d-k4tZaw?Dic4N&+Q}Vw(zv8eNv#ndpUmc^RR8GbUNa) z^;rD1vs$``*Ie$<9u@VR%4U65!zDq^x^1S2vlCx8B@?G~e!jVUv_jPJ{SxO)H*s?r zgT+qv7B$b`WYzrDd-H=?ZM7~&-+S-l6>aqcWcWiuBBD-rGj8t91=QOde$Yn7=-oEv zPO`Tw2y0e8M{OAtt^4SPm)dKwxXncxkk3@W5!^3MkQepleX@;^>qV_S1Jl^{i~yDBg@@O2|Gtyuh2~s6oN+`B<&g&7Veh zmUkIaOrf7OD?ePavOU*M^2&bbQ4&kzD%xvHaK1FExm=|9j`r=&t%Oh#D*3DIIQJ?Q z)nvuDX7A}y6aVm15z#}I`~d3eX-p#h}R>9wmD zZQ*a=OH@hvz-|9!Vj3kI1$hmlNGIvL2_p-SMCAt)fiSNEGwgqQOLeT+4OemmXXRaz02IUI}4*-sczvLp;#WOm+`80kV>3zDLJxSPr26YOEFw! zMyPcC-gq;u?q>X`ko#zRK-;Wc5kND~x%M#b|7$sJNmLOji_OXZ!yOAGbDzyEOG~sY zHU~BTN4pkMEd`FN3l>>CRJs$0cqbIO@7ai~)RvT)>9{tC4yx{Wy9t9}nQR9q!Xtbq z^Lo~5Hz;{vm$?_|Gp+LyR1d#5ZVw}>wcT)uWgDQ8?B1&Vk%;;5TjS5*FB$AKc5le# zHyr114dr$<_2@Lh9#kS7zc4>WrtiVL02nYUq=i{8Bstw`s4WrXC0s?QLcq>v??Ai} zQ%9E&%31o{_@agb>-TQi1Y#~Fgbw{yF)Hr1a5lG$f+@1I1$nx`vVgaScmw7EH%8j+ zG?O9#BI6WRYvqO>;v~(LP0my!K=z*rqgl6Q*kVGd*}aV73QRRlGy;M=a{#wWaL=;4 zm|a~J;S>72*OjI;8Ebaq`QxIB79x!ewt5|}sTSz#i)fuOrAT56R*`Xx0&d*iwvJ@6 z2sdS~VkF>{PG6AbPiOp-8f^3&k^nlR*rz`{A))2jnjFZZ+#Gl5CYsVJ-ft(V4NyE}5 zB^f!EtqfcFD*u4z48rF(2eg1eG}Y-!R8O=gg%y*hsV1-BKR#ma$_rF8R$zqaqp`Kr zlhzloBrHWc0+B`V0kn4N1v{j>+olSEKt~o#pc;IxaYRJV*?VeG7wW)8Q~BtZFT=`_ zs{WPmeqXz`+tQNfW;F~p?G#zc469%}Xo5&hjO5(hal(Y!(FO0_bfn2cBK+HG6$Akb zt=&|M^p2V7a(AK6dn@Cy(5K{9yd#;x(Ko?B@aqv05CAA{GMz>8f(%juX}bKhq$w1& za0e4*8v(j`sT|NT)a`QcnkP{d()|{NL9vnqMfx@OH_XZqPg(j*|iSfR71XOkDi;>|gPDqAze2NL4`lk4Z0`)RJe-dJl; zI+scfvsGiYG;XkQs+ISUinVy%qUgmP*g5%k|CrfOb9Axx!pIqNFRTH4+(H_>9rwyb z^h$6Sy&pOONsxOE^(nZPGWJ&DL*W9%(I%gvrr<)%W$X3U7ZZ+4E1#S%XECmaW40av zg)$>4OJCu5>DV5}^RXkECi-OB@I^;S^a~B^Iwd&vS_rnXbD)_QJOG0HK=iyJ{~Ah z=fJqbU*8o$aFNJj5oP2`r|+B54N43DhR2&fqW7JiIYk9f(&8Kf)L;)Ge5Q?cv(N^W zkMeQ1I>py&q7O+b)*gKxrl+K1*k>!a43*&2NGTO5^wh^F5)unhZof^$H0Y#!>FquI zvsz9+iN@sWi!tkl*IiQ>n@%bmg4WnvW;T&w9&6pULOauFQTisvltp*Nm9*{F*oB)* zY0eaV8zCSJA~Go}D~uOP`MUd%}g9&|R%$#pig#HDT4G3k@`}`MA5v1mN>tdAm#ibqKS! z+t@bn)`LN(tt9&i^aU{}@@3UijH&y$SQstGwykE}?w1v6c}9Rsx!k;bYU7z|n;hZ_ zWwKOtFA49sfbF_}ou9NW%M^=S1G|b$Q!{C0W_X3>>hBXJG9$>hX#FemR(NkFJ3}>j z?qX*pqu6Abdvi7(5@NsK>v|XHY(yC5bf<;RI-+nbG^oI}Feja;XJj*5^hfrSHeU(p zZ`pqn#OgyVuTs{2Xk8QHDA;>5VoB}GQ}GIQDz?|cieX^?UNLdmO~YcI$Xw%@CHj$k zHv0L;(D2}Yj#B}UX8ZW-`YSo}Y*G+c^nWWJ?F+b3D_|T|PSH?g5*uTsDkbN~k4Z^? z$|kc21i=Mipg@jk?&|%`wrDqH*T5%fb|1&hyN0*5uCB3YqQR-0H{Vu_>|_>Y0dTG! zvB@buMnCn#{bZy~ITqv>dXOL0akst;&B>l{co*JTi^=`_Cb4J-V`72K3mVW&iY3 zShq^}=y%9y1^OQW99BmEUAl0^g|f! zH}pQ~xaX43qWjm<4>fhn?^&Pc;HIT`v-UuMMx!)9!nF+@8|9DE9(qDkzCjF|)JV(^ zMC^Qd$!DYaq_@bXjzL&^- z0};sUjgPRM=6FUB_tJeH=yC2k(-n7YYb(O;e0t)x5^F=KV&LIKTObzIj znZ^z~LK|){Ui*b8Z0N^(@mMxD7KQ|(3<8UIN#PQ(e3~gg?(Ji*##e{4W~MxU$$gnM z&-R6_>7CC=Wu~-q(|6D6d^z-PK18J*^=1uQRC~7aFE3aIxQ5f(4Bs-1p@Hqq(ggGU zptu>0jH09;_ZQ4V=45s^gI@v>#4Z=-^Gs}iKzqOM)g){Ptkn!ea0y^N-_P})>H+?R zALgHEdP3HN1}JG7s@BtZ372S=G~~@s*iK*ZuYl=_rI_(KXkm?BNRWY4uLwGm`;3SI9X zc?SH@U=7H4$Jyt+C)YmN6=|2>=CEw9Mf#^N)isZ|Qt!_taO2ia9y7%1*&9D?odllylYC5UEu_JYn|I1JA+M?*)3?WexXsqTM-BdpbIi}lPIgNc zVByK~wRa+gq%9qDq{h|#`|kc97;>Cp2UIMPhtEAO$a(%0U1vkH=cuyxFkr9j%0o*f z*jAJ9I-9~_>amVz=ZV7MFE|*}`n|F@0<11-*zH4;dU|>}oc8~*^9Jcu4AJGw_;Y>z zzJ(j3YF0$pexi{Xy)se=%O^KQF!^N~UQ6Hmw6}J_dG047rhX76r=cDd8k8y zAZ|iuRTZyRoRYHg;E@HQ@e!I&-YyiOV#!>sn$Lt=tMCtMuZ$nD_m5 z7y?204F3M&;~=a$}{9F;W=;1jYseBe|oPRyk>p zix&<%IteJ?Zm(VG`71lOhdd6-DN?tCrIRvC;vFBLPPcFpPU}vX5+)?ceSu+5!**W- zHY*iMstK#uO@VvmYoev7KioWYA~3+Q_+-P4XhJ+PZzOfHp`I0i`QgNK*SJ+Yg|xeE zHZsy(uZj3ni^yMLnH~>cqd#uO9MI0FuVQCZEr8q!Pr?ai>a+QVyvBPo0>`Pvr@beo zhA>GOzm9=-do9Gz-L$=zUZWQfo`>H*U#>xV>DfRcV|5&*;tCXis)3bi-4Aa-nD|H| z3IVLS9Bb*taYOBIH`?+*v|0!#7${L53@9-X9$M9PpUtNY?&_3FKQOJYjE2uPFSl*M zD6wFFJ5-U*bd;)~altnU`VnjC`JlVg-9*cv=92`QZpwJYQ(a|HCrv%A4t`PO%K0d+xN^>^ia_Adj+WWdGXA&aVwco7h36Pft>k1 zkV)3RI!A~5zZJ8>9;JTe=!4J5-+t5A6_yi$A*WLP1qF+&rT;Kp$6T~q`?Mzg6_fGh zMVeV}dL3e+%lJyBui|nO9C)JEXQhi&V9D#XlpKQ*^WQP^{;8%Hv;F4NQZ!|2i%Hlc zR*!~VB62^ZwkXAwC3rt%Q>b|mB>Ei_T>=q#KO;hDPhN@MiF#<5s*f-pja7u7>>-Q2 zsYx=H1Oh{T^JXE!{ENJpXoZ`tlkoLwcJ15tr-b5}Z?JsJplATg(AvrSL0sz)ElT+R zVehS?;&`HW(ZMCS1$TEC+=Dv|65K7gySux)yF+l-1b2r7g1ft&`TftjZ|C8z`*a^p z_v-2HT3szQyLRoW@7ud1JodHp3q)`_^#cQ)M1N`qZq(5yev9bFS}OHiosDrA|2DEw zAje~9yi-D`=&<~k#P2?L4)axG%1pD%NUwZIk$8ojCLwISRZ%Rt+`opALbGYGHOU!^ z6J4v3$WsGBZ064TciWKL-u^2dEj;x=<-dk6f7_r*^jdm1s2a)=kb95mM1JBYdqaf;Q;=_lw)t6g^Z^n_+mC zSoy}HQZK43%^)9V$YNjvK;1>fHR>=P$aY81!sHc_c3Fn;4+JR{ZmbGlQMV79f)&2x z+$jrMLRYP~!Y`+#(Yuj1B?9utKCqHr;TJ4mK&$9yo#rq@LPZg#6T(QjUKy>_CRHyR zZPBjWX5W9tY6Bgpij{EA}`mt#sDM`}j8MzTGD#t{T>U#4oc8 z-{>)F*Y^v0Y_8|lwF>I>=9~obJmuE@8a*(N!Mj4b09#0P*mxA>91;T_npLa-^7I_O zV;-B=yt)%@{V#@01nSi_3;|A9c(R`6v{p$&Gh+ISf@ACID$DATy2ux^1M1QTN42P9 z*r}Zko6{gj!@G;2$h)8hhPc((hzJxGZ_ib<;Fou6Fs_PMyr-$LX=$iG{WBUBOPWG7 zT0@*UjM-qNhg~t;DN~EXD2<}?CQWb!Qk0^lU`xwxn z=|O-%1lKD0qJM)siY5qo-ZqC&51HIAeb&N{Xn)=w+MqJpW+3>5+bTDC2DaIxzw7xa zrE|g(RKh1%7?r$7sk(L4oxALBEtoYJ2q*n+fJujh2rxtorrwqxtPJL>t>v_z=86|= zKh5#OAckDE+FVXzG*;u3lCp(xYhOKu4R_c$ zsIabD(h0itcMch}5#)?X?NDY&@wQ9U&_&Ok9)EuK7oxlC`hN}eL@k#`mK^?n<3FDQ zisQ7@3VM78T$XH#C#WS999OY$J8*xtJf>Ub*Z>(PdN5q~1#L*52s(ah>M3;ge4g^^ zt%v7^08z@POZZCDG<=*rz{?ZZGtgsRV3OYye5~WH*LAZ>&V&M{cqZNiY1=9!%APsR z{>*ubtCAStBen=ILoL?*pK+vTCnq-Q=7hUWK8kprngKsw<)EPd(g`?7}h9F`2u3@c) zJ8Ob)a@L;XqG@d+;3ZMsn3T1Snu|VHdsXlE_zFo@Q|9O%?4j`D; zzyFh93I(l(Ad~0*Pk<$8wSe1`x?+PUnXy147~3qYO{xtY_KUf3!L*u%6Ea&B5-zt( znK-W{mKKM8ZE%9(>5%09&;F~-tzksi`V7N`3R_RQs@Lox(;x_QC#`xNX)s1sHS z(NQxSo?MuBS^doiN%23lG($y1KZZ zw?C2ztTTggB%)mr&fea}BlVr7LLmaMFw3=4`el*MyeXpotx)}r=;d55$zxv7J^uI) zvmJJF9!#ZXn3fIOiJp|Gm#b&9?jrfC z$75r;vvU-;E?fyPpN1{G7{U`4am~LJ58TQ13up}%==m!-j2;OC536j>z0$cPF8*_) z>ONNE`vfL!zh%p0RvC39E*NDtWp7W%Zr?B>jUJ1+48CxIU}YCV3%}|`#+{rDl|q!9 z>D&uA9Zuy9VYdEV6*Z+mec9w~TXM3Sx!{Ly&9PX)(Y>D_6Alx-T6VsT&}6Nhc8 zja61$HwXrbjWm&HO38QiLLvf1S+I1HmQL$mCl1ojfv6d69(%)j_8$W*#a}P;y8SN+ zT{I7k_b6y2l+t5|V3EQEFexk##P0)=oa(bSHp_*U7@&5c6s~+V(ISFA>Wdn7@Ywt{ zeA^wa^|OC*N!D$3J=Y2Q%gA~jjD?echitpNSG$(^U>m`#+o;L0oS-fePq9CCXKHV6 zCz2Y_EiJf0wX70&#Ing1eJ~&@v`CC)DqP>PA+1z)t>tIXaAGp`)U+}pO>L< zSK#qG4yrF_FIDua=~{k0VJTlHLM$O+jb*>8u0(ai{FI$bg&0H~4C+W&nOnu|OT}N= z6zrTx%Hil^^U=(~-rT3;#ZJV)d6LCq9SQwJe$rk{zE{nav&%ostuj`d+)l0lNkCLJ%FOi=X}B`Q*!RUe1b z%=++dSpFPkZj$pYmCOdrMAu$NmIbsdRJi>vc6uiN9Ix69C+T{jM>rqyGp(0O_R*x9vCQJM z&ISI+tyak*FWz&Z5LdP3?PMRQL)_HX_yD%!W6M03{trIpabjWbyZQya+x?L(G1|4V z(P6?OA8hz*w!Li65I7BDixhk$D9)c|{xmm&bmH9RIWtF?6`vle9w%sw`6Ts^A$jSZwfMB?zQODm#UD|yz zolT+u)SMW#BR~BEw@*vox>7oF_WIz|86tqm(RZr$uw(=VSEiv1zxWqLvFM{x(E8{F zY4P_ej;~0}Ol};m4gmoCy%(&{okR1HjngBvo7?}<6*$+sXXi8Q%>P<=kPFroL~DNg zjINx>MT@1kv)+!UGAt_!x7rW;(3lb$v#bs_$f^RP4{VZjCj}GIUbfY=GfyIcO5*6p zl&Ry6fy zT8T0^eS%p!lx%CZX9^OXpR`?32xYjN%yQ1^DL{C#p`s9dW(Gs+CCc?CEWHELS~iKg zpmppR?=81=ggKsI+mN^+cEIdU8f&%;14iv&Hc_M$lei-0SuPZQuvb7nIlOo0OHr@R zBG~Ogyv56~rIXQqO_D7F)G1#K43?ueig`(4Dtp7)XN9PW4!@ysnL1X$43tJ=u$Nes zU4-PiQ6P|L>69OD{(@%n63ji&ZLSv-DDDDIz!JMi+|=!oes%3sd$jy^e^Ft1G-wd9F;jUp25Q0ZYkc@kS`5 za35mykej`2Jn)Nr^$;Kkxhs2gXwc=e1x}vqYw-k6&GFCGYC;0i84(#hc_L+b!d9Bg zmh|lakSh-?nRpWF#N;HDc+&xnNFO#bB@zk?7lm#83RcAs?`78#)6EQ?eM6d3W0sMx zF%h93=XjfJWi^MyL5RXQ+Wfm>#JTG}RpmSBTHwX?#J5B;R~9Yi-`RHCQ#>M!vWEN< z>rZ2u!F4WRn%F*dx~aTh^W`m9`~GZDlCB0F3zHN`?oP;~Usrj%PqGLaI^MK)4Y?7< z=B;X6N+Sxped;>0jEI8-p&BP89mr1NcDl4(w+kid>(>GcK}x+mUDYSVh(Hdo0gfn2 zthDG#sLsJKe+S)z`&R+o&^Ji@(R9I&>zqB>P-G!0vs`dU8&cj)L!DKYVg$6}iXMInUkH}FQy{>m}(OL`tV>oftPz>|_gzz^lFqDek~2P3{; zBOEyP9Ao}%32ldzEB|j=!l$;gW^kM*IX9`a%F+~4IDTs=A|Sg7=*@S-QPIp z0M`dLOS@9rff@6p1&XG*(|(2UbDS(0m>@f5a*SoAY))7%j^MZb3?7?;bHq)q?wlvB z+17#h`JZY35&nD$?v{~?9AeVoKO7_IgK`E+G>M1Nnb;)o+|)RuaBgRMa2OoY1+Hkb znf-8XlHMLv?q+x08z8QIkTJ9**qBg_1dM%M37(?>M`J+eF!8CIxHbrSSbutu6`; z2o9o25rP}TQ=?}~2PeN!jTdz@za%4#n|9yTS911U3fv)*O#hvPakINc$yIfMjcl)y z&P}|Gu7*ze`;8aO3enS{S50JU0UBs(P}KleX(isng-y7cZsbPLfrRD%QaH4&r--j_B6p;4U`TEzNtATprmWRuO(o`$*{nVO>=TP0fpL2#W34v;h$vFoS z9e^t!Kv`!)x`|ARl%wJ> z2p=AY!VBHr(78GE!Cn!(%@6b8-hI!~InUd)30X#R!LC%cSWMa{VJQLn&SjlgwO-X= z#{@`&jfKy?9{c$CB7w(Gp-UUmij)B9(()WejHnhh^pn!aQaRg>w=)F&ljp^J!-|5Z z%H?EQHSO0^MeRz`98p`rd(pRV1730J3^^~mMO+)-=e=Z<<0WVZY)S+@v?=A(f14fp z`uR^zUYt>l*|B%=H}f0ZXdT>4-wNDLzxo|!9`;aiYeFbr0&(2&GQ@5b>g(L|VmuMX zeT++rXkm2At9M1b2S2iZ0i#Ac**TH}nRP;Vsv-_=*{F`jwFs9-6I}HB{ed4U!B8i@ z@QWE1;lk#VmS!xN5*_nY5hA9N2w0_tz6jL$I;jo9zPfyVv@mpj+Z}PQ9pFoZLRS+9k~F`=@803qG=)LNX$yT zA;u`?#vUAWYF1k<`bh)(Y5mrS;VQeG8AI8P56$y-H2Qh0?Bkts9AxLMRLH0v&r%C^ zItxh0H}~Qer~bGojFhq_@A>O1FDHFH9xiWq`}qRiizdQa{I-MAoUgsE?_~3>wr4dX z09JohkHdLc0Q?fuX0O?6Scprmf@?1>rtJU21sI^v;i?AkW#c@hD_m~7eqdQvd9|4( z)^!i){i)V-%Apvx>?FL;2rG%0#+PhcW^~1t|J{I9d7>095-jdAq$likzxqSaoh9F4 zvAmuZI7s7!6;hkg5#c$veN12fyjr1di#|ELvt4}NqV%>Xtb8&k43MIC(w=hHxY$?K zD0HUof~_{9rOzO=I3j<#(=w8x9fv1*4ngxYux)L&92iZk=4Q(o}z?haM6({{_<^1DL!|iJVB%|2!J;3GguCvSiav4wT$*{e?FH0XDVdp zoc*@{E{mkSUXOw9fS-fR&bntzI#Gd1udaAy09gL{Y-IaAr4bDdo1lyI?%qs_R*f3# zn`e=x#gOY?IxmVay)RRpFq!7LL=-55OI;LVdch{Nw-`t=iOC5h!Mltn6lj51WLQN$ z&kc%U%_jjHd+l|-W{@jeYGY|ehqO^cKaOwc$Wfs>bC6d$>fFX0Q`jUbe}nyD71B?U zrtwA55R@}XB_dP~R|N(@`8gv>}azrw2hmuHBtRnhd z$sRaFn+y=qHyShb_+Uk7_u5>(-$7XZ2JYMGA_j(_Sn3Ps}Y= z=j@2Z62;e=Y>sbE#`-&DA=lbmQimDV!r1i6D8V2Kxr#Kr+qVHk*uJT^z$(8D6eCYJ zwwzteRB=JPDsp$TxKpf-Z4i6k#9N)78@zARR|zx(3@QQ|TC(=)yww7RU7i|(cQ5xs zEN97tYm#FzRM}wTts{SA@?U(G6A7U_s9d-?T7<1w$D9jz?OTuE-O%pv+GPp{r*tyx z+bdB_nZut$n4E6NOK7n>#_CrJQH0! z8g)07)wDnwRorSPHURwvZr~|7l%ln(<2M2c?K@$Xz~U?t;9@GbL>#^MG$;lAHwFe8 z05@SW3D1z*g%%fbQ#i;xLbWHnmqn^Wv0XpbvA^J9fc}Vt*vOC%IWoyYR8CAkuPNTBzsdO+Wy?>Nl z6={ST%L=q~?X0e+ zCrImLoEI_>zs(~EXK!;`q(EC;W0h*ETxOZlJ@@Q9&dUFi*t2Q|Or3?$)qu+xoMZL@ z?yDw(Wi^|b#R4`cJ~Q*$PsyO3TKMRgA3JuPito~47s^2cz3od~b#fh$$G%fn3og{UR|8AqLa3iAqfWcL8bYzEYMrf!<~Jc2fZWO7zh8|Cx`EJWpV zMRL*h#8@5E+ud|dxdSlER7o73CY|#GAkTjlv<_jNh?TUjsc1y^?L?vf7=XMB*g6Po zH1p1|zQf;W?{qXIde2W{1QQZ$v^%5f10kUfcP7e(HbvA)eo83B7>!X; z)m)+W=Ze~-?9%GhO%S@%(T}qyljxcIuMUe5yR_H2@F7l0yElo+TI&H$sdLPy; z)SOTvnrgAf+^}R)4jh7^-{~f}$On;aIQ;_WB@eBULZ8;{2Q4cT^{9~`H)WjBq#Ua} zkD!IhzXnC_)$2}-0$`=mrxF_JKZe;fB*Oc3k~Bg&!sTijUThVCC`L!k6+u}kI(&Fh zcnonN3EH5DZHG8po9^@^e?)`-)) z=rdu8qKoq67z7$#=}ca3kd2|omDh^iAbed+-uyi#o_NY${=_Q3;s>aW7&eK+Tqm<|kgzjBBmRT5xpq8WOithuD#~&&anOxT@M}?a zA@=?mYX`H)c=2~~4=C3(+&(vWha>-Y>pW`=UVARWh7+|x@#WV2KZt&bbfDXSVz95! zx2S^a^4Pb28by-A6gr8?hPYx0nlU;diT|lDQ7jgOn&vS=jY9coLS&=)ApJkZKBlHx z9ZHQ#;lti0U@Nc;@JCU7J2$Yo!vHSS{Ha+-G>ZqoF&8` z`&HO-YM9=G568~(KSmXK$GADWQ_-50Q-BQ$ok^ic-aUQt*!vi~bl$uZcD`D?M{o*SWUiS5R!R&=%1sj56pX-;U~e^H9ZN37rH*An-$CHewh4siFxvBEHym|pylnQd5HtC(y zL%h3Zjvt*e1`}&^RMF7o&#(C^qJTpnvH+o!Sb5;pT(=y0{hJr_@H_CAwHcxGg`SAa z3Is_Ckstuj-%7YWpAnbI+(!N1UOIHt)%9*?gInNmX0(Zj(>SDho{7xlsT=-o`$bTz zN(5i4p*Zt^T$iJq@J=V8>uza*puI8{;w(PjWrq6hH)APOun)A}o9WggcnnEZeTf-n zOX{!Y?d$?TSzV{^hdB%&1~YHcR#i6VIUhhjQFh*Je8qFy?_fAoVy6IdVv5rN@F9$35$fsQ+Ls~k#VMx# z_Vt$yRh@oWw8U0h0{5RZrqX*2osJ9vmg)MwTW?6lexm-;}lwabtL@_k?WA);N-@}75IK=e4 zN*#Zb=2z`k<0vrBsQg+yZYD3^YqrnzdZ<-p=~-xgYPE+8{^o|y=LU7l9U2Sf(TQ%T z{%|=%(PoG4;?KwocICD~q_IiC4{}|)WpdZo(A%1n#HsyZZhmlp-Eyzf5zV3J8(hc=QpGp&r%Eh=KNS|`MIWA8`@gYzj}SA8Lf)n`4`*B5pX$8Ya-&^4eAFlXu8O`?DsqJEyN0YIKo=Xo&alwt%M$%N+~Y((}E z2|7P84n^iWj-@72Tw*Wh1?_scKYJeH;;FFNiLT7`?F?^}rz)+)=e%D#&pB04(#s%W zt8&@=?Qr^oG?7@XMC`>3P1*p5M-9Y`&}C4;=8H1b_9R4Eo)uhkyX42x^fo+{FJja+Qg7`&cm+Tc((D z_fr;HS!LQ8#I)RKy^j35rCiQm16X!f^UKX7>1y&h88iq<9y_dGOTiQEE{&#&AnZzU zUs}BuOxtQSp~jlTvM_w8MXlABNk$NHb@o`=AP5{g{7ywFBWzk6GW)D{bfjs5B)0(h zS+kVxs>dx%HgZR&m}~Xhjbm}@?^C4I({zAm!ENQMA5Tx=&?>{uAh=Q{@;QSnz*)M} ztsXf68Nfqhz}K0~1;5>}uYC0il=%pmDR@m!RcSno{43!w>!=x_g|}DPFfGG$@HGo2 zr`}LRaDNDZ5dDqJL+Fu&EUqLZ;NlS<#qS33n(_| z_)yM7m!5dy(>!)6bJ&RhqjCB92c|hbiY{ikypY@Czm_5?y`R;c^VhCKbf6;$QH0io zF4v>K*n$G**466$2T7eg#_y^luwMmnW)8p;-o%zW=`ae`8`4FxS*Yr( zcs**JVp4D6&QtaLb8@M{&E1CtjD`$tVMRR>dg&jm)7x;Ir(b_y)oc+-I_pe@E?$OeN(o4K4J8qtlmP&T|K0NhSe>@n^(`2P z+!6*xWyb!^V9$i_e^b~IlVgCGe4GAL`=xw7_M9q7BJrJNv$dFL)ngzo77%b^{)Yg- zrz3WrAw>VDrMU>}OZ?}0i$-e<6=cI;jf6AzrLC5Vn1KPf9q|A0+5%vGT|Pu*dRnd6 z2zaj5<8M|MRV|>YKUCfreI`1hXn%Ms|EfxJ~?IMHS z(492d7S{ihqG@D%eAB-4-^FL*J_qT8>pTBFY9zcJ_0+NEzgw(+Nj5UMI|)S;SPj33 z+foIGg(LZ_6nd=|;}mBQ!=u_NW+p2V+>w`%T5m;1XZk^($y*|@hlkMomCtAWE2`bd zM^D#!AU4By!sjK1LS6c-YCH3TRTVa30W37rXM>|*E3o01cW+4Z(AJAw({8+lz4XJA ztAu1haACR(MjY!AG~})3i}MuL@`wf+YUQdX9NItoTgvIXdIg4sw7r#}&_Pp4iz#we z5fLXO8y14A4G#3^ON<~BDNzPwUu5uK6;!6EDxshdd%>8^jmAx9ULv7bF`BU{^yPD1 zjE$^=CGb~0@tN4(bGm+wwzDrFFuGU3@_p;NMP~W0%WHNzw0-Z1N=?4=-wPDdx2X+( zU3DE2B-r?KA9e}(jU^4gE@oV$Kd!ex=OgdwT^yLP%Dfh*v~~ zZF3Xs+3Y*JM4%pt;n)}N{99GbOXBATV#Teg9&NHmB2)Y~a34|6dFo1YWeDWUUw?gd ztR~Kf*!G`#8H~qI?<4Hh`b;pm{{7$zA--M(HWW$XK5D<@zCM6wSxJNRTrcyToTThDdj-$mdY!&@@Q!eakTuK}cfIQkRp z={NXk3DIzV|Mw`8*thU@J&~milELq37GK!G`0tQYS%oUNh`{$ zqm3=$TtN3nwr%~Vxdia`fXu8Au1(BB)1;dbU4UgdSmDU7*I$8uJ^k4-)AOj(!k_5cl=QC@ww4y+ZJH zH+?=nlE7D6S~l=E+AMj*h=FE>{ct7fQu@0Yg!yVm&L?!fz6_=G6#k-R^k zP)})mh&56CgTe^3HUGb;8%)(C?ll0vp2PHGOt`uV$%*wcML^$s{J9JbL*G+s)h?Vb zgu0%}*6Qk0*UCJGJ}l4ct_Gy{&clF&r-#bT8&s0~{ z_L)4}6gclJ%JVyEZTEG#o<0Q&Qxw@>JSRKW7#}FP!wJ8+QlP&-p*mTgZb2A6-0+`N zHF_+sR(@&I@M)!2pG~*7uBes_l3}Az;Pv}FTduwLf4UYRC;x2nZ-0-omi0S$!U#N8 zX9Z;Oy$@;_cbC;og23n?u>8zOcc>mFt5M3%GqA?FG_lui!+7bFDrSbZ5g*Ve~+L6mPsXOBvZ z7}~#R^|K~l>@@cMMCl2x*U-P3=h3;N=>T)d4-k7xeR}?#;X9mD>6jQ>P-dj`qmhX( z!d;#AnCdVFxVlW%dzM08iVZ}?3R^$eBOh-p$-zDtK#0F-yf2vXz8*cysPns-IDY}i zXQ6B2|4uFXCq|2f7%CdtO78!|#%51^dC}c9DRiI#n*3cHUul^lNVk7tiBe4-p~8yv zb}xNuTHsoFJHNWh*}1Ba2OTj~w#tTk^z{%N_09+e7d+1*G8S`$VRn@F_iyT;PgQ_N z0Rn*B)?@dF=-@Op;}2Pu-ThV$IFbg+3%}~W*5T2tI4qJI%2GvAd84hZ9Nb_7JpAX= z2X|qWvO44ES0oGhjXpm(uP>Gsn5`{jH+Q61=nK_VvrCfe;CWWBp}q8`alE!j)cAul zOH-(avPcI>O;Gsq2ThW%aygaNE54wedN~>Af8&$062amYoQKs0ME^kr2>Fgrr-3nu&Pa+z7SbM7 z`Nd?}WWdzMn*hi#+khsn{D?bmWrb#)wybnKh%TxSo7sf9q8B_m`ZT4j>c(aC4LQOP zDgA6%4KnfCMbLv*Atu{=c5|K2#$$jqP|&Ct@zm8>XUGt{9CIJj@voKhBXnICY*!kU z@*Y%V%2)8WUO`1{cXqLzZ?=o{Fhe1zp#}Rn>}UhvYdNq4YyJ%jbvu&AK459?!j5)B z8zM`luYUNhF8?)t!7}L@j4z?pd@|B?VaeF}WB~lU?2rEoxD1TG=qQ<4KhVXE%Omxwvnq5gi%7X%|&;4uB2M zAN3>CD?6xA{WE#uzGw!@4G)|E5h^z>3S99LJk?%A^B?v2Uzy+Pj5N>G?JxY&Ot6^LbVf1%=YxUb-F=-MUpZ#wxnDs%4g z=tLLLZX?8(t*jpHm=+hiJI!A4U1|pUDe$*ee?ElaCWpymy+7<5f-wX2h(CmjJ48zb z0Ib*iWn4NYgd@c^<{Hq1t45|vc`km1WiM=wM7Dt($pAU;pxxiUre%e&F+VcDK#*p! zk5}}i6e~gnL{(o`keDFo=)n15fQe^5B-=iJ*V@o` zL}@@W+J2^CGa{tUkJf_=V4c(#TD_t;;{yQH?a83eK*_chZ{&mgfbHNE2dlFbX2Skk zet_Yk0i05%&7r&la6R74HyHdmy!5R8zM@+-x>2X~tV-11bIMv)vAD7#s)V`3LpM+Z z@lXXrN))G#D-GFwm;ep-EC6|-ujju4(6rf?Mh%q(lnu{oQ`fZ^5K>pyLSMO!;TraE z0PRPj093sOf;lu2Ls&+5lQNoe?{>j^hPZ<}DqD^_cu04jo!}!?6-fTO->tJww z5>$3XVO|TgwbkUnyrL+8h`J_t!%z+XA zlO48UVh^dOO(g_Gu8Qh6j=nxXJ}F1qG5XPSosybv@_IRShl!~oDNpti`_nd9h)lHy zF$8@cO}XF$;bcVFAZ$hayigpi`W~Un9DDinVE1u%+i?;eAcGAj0xgAKkahn!k7r0S zogXpo*lr5^!-HSn@jaeXy*^H>`QL_@-l!{rnql6M8L*)0>30V}xdSU%tzxPD)G8*j zY$XpeEh&PM5{lzq^=tRbNi|E4Ghu&bd8)0Z^GwQhvB^7=u`i0vXe%t^A9yt|i-Tp8 zE2QAzAOcNYovBihiC7kTM73clys+#GkeWP_Eb_;k-eVgf6Ad{UQ^u395b%v2q9n{X zc)-x^#yV!sYVR$)(EQDFdq8ZA0u3GuVaPb*Y&gIatr;y19qzpvHwp!8G^bGiH->{o z`xE(*`x1@&a=>vXMAGRELxZuI_pW}Kt_p*2BOVsG%Zm6q?O=2S&#+?=#;>U zg0@sHp-tWkR?dKy2D~st0~}6xIs%0-RHhx*i$(kki6-dNa}+6cZgMgPl1Q=f)HNxV z`;#JgK>joSm|s)7JuYk z2wJogQU?Et+t(h!prm9Zqaqan z85ZECXTFK&dM-nMI753a;0$rkm-jpye3q)^)Hc2qls^{nrW?G3vS^nMx6_P%pG2BR zW&LJ>ncF&bz}||+K+{qMGIM%C5 zQ(Uh2aQ`6g-Bs-C3t}xG_naFw~ga?}qJZKW~(gZ1U1^Ec6_>{mK z7yTf)e*oFD+~27vk=!>%G_fESf-=iu7Kf#2g>Zy$5T&Jqt#-AO^OBz%+WU;rEX);k ziEu}6uuPM9@O%^j$&D@&^mEidj9A$)PsSnBc1|rNFVh@3$H&N=aHK(qs4`uw*97P%7mbg$=j^qDJsIh+=`HuvCf|Bn;}yE1aq| z0ZrE?0&;l%G}-aIc~EKP37~zML(LNH<-Y@q#Jq&wK4Xt%`O&o>0tE_C3>W1jXyr0= zn5K?4X-UKX_zE~J7aTsz87-2l2Kq0hCx8k#DFwz2EBa@75G6w2FYFnnk~tWtp*&7k z>3VWSX?vYK>sQ~6v(&nr+)TJ>G65ig$b3*5PuRWKaJ%_=4 zk2!ox8_rE_ZRJX`%SA8koMV&XXh9*0!eIo~e43(;9HR+N|q<4Z- zorR1%$8j?=3B&;i?23((QV(yc!LZlLsFdRXY?>m^#2*Xnl;Hhx|nBR`ff}sJig=|GhoKHn1tkC_#D(=a6 zqEYPMC8a^5MM#4*q4A+gqrC`>`}wtZ_{A{IXTabA6?Oogw<{!oGMmL(Zu-}ATc0)& zO&~O%G%!+1yO$uqXw5?8*oxHM+1bFHPpI#3K4xJ9Zzb`8uu%5kKbDaBRg? zY@r>q5{ZCcK=bi!`0{vlDe~|5aU@B@Ktw~Ud<==&m_4tX^5}!{bOV|? z3dk7zt&yTp80}b`k*U0-QhQXjNxnUS$^7V}ax|$FXNdz`-Cq0g6D5Ou!Bv9+yke2~ z2&JSZ&PWN7_<&EaLa_%#6Qdv{5{2^bo=fUuCMHwN%my_iqsT)@F^186@$c_IN@_V# z^jjc<_&bS0@xmXJ8PH-GS_+esl&e?zBmK@NB{>C)xf$gZE0R$Xyx@4xyX#Y_OtE@$ zAj6?GGjcRwNywsRw5XMeY^+QW#}UaHqS)NK0zwj!xpbwBf~>*Tc1D8V z6I*m?+ODTPL6RqzR`!8q(9z}!^1Z&|Z$ z&e>9Q#PW7pnBi_13NGIA?uw#1j)?y{`zttnmEua76iKeo`vMfAd}h&x>4Qr=mV}I!$RsgR0up+cGfNdDY2e=rSjWC*E{I261P&Yn>5Aph zKiLf#dZ_zYF#8gdOiZtJX6}fml*8y~E*uE_7yw42_05K>KaaxA7s@B7UO)-nJy4dv zZ}m26m`xm?jaJ3)VjmWc{6*G|KS>~b*vNAfD6jzFMMgqVyiU|GNLdaF8u7mb@InS~ zLzBf%h6Diq+i<`s?)FZmEVgE*mPRa=wni3aKu%@{JBvtVMJZ%N{Qt5c%Sel>fcIdi z0Dun<3;q@LeVhXCV2$OZ!~viGtpz>h$>0D$M z(-bN&K)7LjPIu%V^O6~q2v9J!Al>$gYzaifz@T<)=#kiO@XVX=w%X8StK`<`KasSt zn9WJ&2=#DRoq7=InI%V-MD9(2^5J$50^m^wgkOuF}~HN-s#7A;KZ+`1_3Gr)+I%s+JM@TR2m zv)5?U>{eK~<4Bbibn4K(lmMyO!X#0GV1svbYQJ|WA{{@zeqFS>Z&In;)MdoMuU>j- zRHofrL-fe|yJFQM>^`uXV9Nf?LmV%>g_1ROfSoE!<;F*ZDhhuCj%Mw^^A>~^fCjnk z>E|z$pT9f79!ZT@m{CPT&@JoYt^pHyu_7#&YCe$~I{-<|{&qz(d^EFFknm*c&&lHcy$0-8DCQ`$6nN%9d*?x7&hc>i?@4bNyd2 z{=Z`U|9df(iLA3&PXGY^+y0N*nEU@M#*pCaAt~X(IvhY96JrYA{lC-3q=5glu}98X zk7t0MM5^!y@4Y?-#zR94V-kR#3|dz*2c*RpFv|vI2eQ!ZXG?_k2chu?AtFY7q2`Gz z2%x5Kk9m<0N1vxp2$&>|M#ObXsixJIc9zbW10-K3x4 zyGQM$cJyyrDTCWkD)bDVzvdg%QVbgpM?s}N@_((yucN;jyye=bn|em@TxK7#yk8+u z;O?|33hg}A=LrX)qrm-|5ag1*IS@kjb zj9+#}IMhd!aznk+>3XPoU+i>m2Q<#2^h=FS>F{%sxX12e%sMFgqZZcekDm@o@1gz3 zQmH$R8KzW^yRk$`f17@;dd!vL)aE8gAs$W{Z%QCHqs@$nsPSh@VT%6mG3qUc6hdX!phI8$Zgw3nay9| zs?TR}b`xX9C zQ|q<2@pXKIScdAD56z+~z_xgexgQBK5FtQi94H7Ham7H~B8$sk5$RBw;y_U0mkJ^PA-+_*=}3XKpf1CtjdAgIBJr}aI|wXM69=~!EI zS$8mT+$Thyk-fgdX!B!@M72fMgk7%DlKMbHg+Q-6w8CO#;ycIRo9F*w@)2|Na}~$QDugiK$0h1aTjT%;+&ux)1^gcSx^K3D z(*mb4&AnZ;y5A6mR_{KxS>6miGG zhkC9G5<2{cCD*e@#)CfDJ~k`fe)n(9#(fHN-A?K#Jk@M;A5PWCipp7x-3iU}D*e^@ z@}na=K>klcGbF>$jR-a?(mz8$ZA1mTmlTeOm|CF-4vaOPGhRu9~*yL zD@pe1^Yg_?>)Ys2bpOUCf*ZrbfBl*gBM}iK`()W0g3)mMISWHgRKtBs$+bAHHY2S40eKzlX;*X4WQmviXdsFIyN=1B9Do0pk`5(MSV`0kv{2u)U6{9n!V$a z0VSJc@lETa{<{%WZ`hs}de+q@H8eMMOn?yz5UK<+^RLKCrmo16+kDir)c#PHQmQM1 zEs|!@X~s3(GHdo=&(A8bVNQ+e6!tC0uq5=y7&><yzvhC9!D-I3@X_!$g@s_ zooRxsa;fSe78pva}x#Z&{C05`j;61xEfp_0cmL2E_=Ea zb=7^7Pj;QJ@vxuOM)%x@*4_t~ivisrftODP#_fP;AmkkWVt5Z9a-H*ie_!dR0BxP3ih+EteSRhB;OH*k-Z&lJIZ z8|SmRCCV7#Xol#NDy^I*JZ;`~eu!Br;nhF0N*jz&35+O&2umb0^$$zKif?wdMV}KH zJmUr6cRy<4mrNOt_a!6lh6kUTtA;gKR{Vpn(+x|cgA9oC4`0{JtRJ9~1 zKmODPF5g^xF3~zAXM0_&;W-K;12`=Gg=zBD`3zw6cebM5&` zT#oO!!OX8qv#iU00<`&jD+rF(q58L=)4UYs?G=|$h!w9`8kc8Tj!FY7TArVIbso4c z9{tm)f_33m6Z11?CC|l|BuyBx!c!1l$A}p67^98t?;a zI*GbwP9bxmGg&L1$gk?oZ37g*08W@_A1&t)A+q@#ssq3`JEgZFVd9H|?1B7H( zA9xTA^|Yj=W!b2BNfpjUCg9LR9M`Nvb>SeT0MLbN#{Jki!t!FovNO_ql#Jiy^=(Yy zx*O`%05Gen5q!rP2*FBoL3mB%9@|5ZQcQQo%gS$2O@$QvEEM6@6yZy6hJFmYuTz5S zo}+S%6T@f*eH}Q&?neg4Yzn{G9#QOVgnFK!UN55|sBF~y(^dY~*6USGE+V4{9xG{I zT?}QC_k4^1>c&}^);EH~O4IdASKo~uSUFoca;=~pVEJAK8!mlL0~@;Ul4$)2TeAB# zgU%LEY*W8ASu_&ZlKvYENlhXZl^4PKtdOU*pU}yZBC)=qM8d=MF?-X7H(~1H#o``D zX`78!yvV#JdPa%TLhZp(1(1(``yMpq;%vKsZ}SAcyvMv(oSl?Fa2SCPIZrasg$-Xk zkuC=DK*^a*qTSSy9cv^hf>Ol^m_E@S*E@w;SU2rU4w_G zh_^*aLJ<5hS5w4>BP(VlFzZd=abUW4J0}zqd$hzNo3%PV=gJ68gG>r-JG#`_Fy1~T zE8U=42sOltf8Kyoyo+dPT9oK|jbFBECS~;$jA#z>tFvuetwC(i05xN66(d{k>(SXH z%*TV?)bTX%rxuZF=9?2>%zLJg;iwHL1M3?CYip|#adNUQGQAxFL)MP2d~|xQ4A0XJ zv)z)2Kwm}V6e@7d)X0v3*t54I)iFc#>>#DV1VsV8?mko4}4JIm+HCi=JY5G-MR zroL!}mO?>nz3J$jwQ?TUe+oZ_N`FcOxvjc>g-{X68n5t2`UdP?fnbVtfo4(=!78E+ zj>wN7Eh@EC-Wfx8{b5uh=nGo>Dx*>FJx7p#$uB6?Cnt4VJVIkTRg|o|w$J4*0y^kX z{T^L9OIgOBgwF~$aNOu3T`0SLj#CEI3iA5Ht-Qp@KPK5tB&A!#ia>W_Y{h(wTFRp) z^DJg~AVOx4^*O_NW|e=pCYM4cQ5UKF6iG)Pp!<$QtrBEvYLX4~8F7iE6^}{c$DEPI(2B$`od~+mPW_Duq&;@kimt4 zppYHIUWjPV1;J8tv>(R-rf;%rA$_zb0?t@k{Wb8oJL9U4S&9}saAI) z_PiY!E6G63XqWug*QORYHTjv6L03?&%vy06q|698$ zm8k{p7vxM-I$m58B9z?{18 zP_*9B@`?X%OogVOA>|b@wbA9B`4gTTL#MaG2`Sm!KVD+ezjsUNb^smDXx0e{*s(6q zcmDB~fLk+_q+uCBG}#YG*mwyI(@A)>;aO?LY5l8@(z-CqwV4+8pbJi+sVfk+N<|#S zfpxyX?FAqzokS-x9{x69Piz`V1wJM}Glf1io|!5gy@)Q|GQ67lf0tq*R$5+kD#qmC zu=21*Q~yFLepZ{W6lC{@V>Kvv*2KP+KzjmMoOwpn6^D7a^i>piM>A#$i8D<8i!q$k z#Or-6;qp;C&Ko1sO6kGSd`Z898_XmV1_xw2-jn)insr)qQLzxQ>MA)b3F;PQKjUGG z(`nLwrEP4wE>4^+Up1Ygw|k9Jc={R5xpPG^jA-wlDWg$HwVd4ym}`!Oni+fug7&JX zFnY629u7;*3uDJfO$szc#W%8mYKRc=Gcp-AzW)%S_XhX}48~iDOk$3;9P@P9 zx$8O6UI(Ps>a3Jxdyc&w`EJ7d;6Hv=^KYz&-bj)ooUTGpNzQGe{6^M?4WXQG#{Bya zmBXLYPH$g?>2v<7Y`#P|Xt=*o>2}EMPlD83!s38P$Ewo5M}ai`ORmVgJ(wy*B+ySZ z#-)TPAFXzeZjdCviKY?-uN^f(9xJV0*2W0uUCV*09M5x&o~F;!d6%&{JbO6{7*^fP zk5qQ;2mR1)j&1*ZI6i$kz}@T3-mPTW&zs^?!M6>)&Rh6#lnh(%wGKyc$J3gYU?WxS z@e9UA%bg=cui13h{VxC>%G*^DvCcMB&+$%Vw<9k2F?hF<7$WC+l~}OROk|J6uIghp zDxqf#V&keQLl8Wi1f#@Z+3|D~Ch@(b$LKA@5Knf5bSu$DaT+CW3iqGj) z@^mLAck56XM0iKb7+w;5Xqi$LSE%MXl|M^+4|@M{^7UdUjT4eOh3rsh&D$r=F|xXd zCXdZ%Xy3&tpHgjXpch-x{-3M_;)@g6YK(G=@DwFXotD<-rz=q;A0|EE!!e4mhB@7I zGY)DdxW=y0=Q0>Owi%je6kMHvt@!?E1(MZmDg0LQ((IEMPF-0-h2)q3LE0cRC1N~H zC~vLSy1vRyWA&-6z3ly_%n42afhs@u0pyks3i&3$zNf=`yYX$ppDIiFb;}Nh$2Gy` zPvRou+@8x>Dk2~6d70DCqW+_=Or84KwlBAOJ1S0>zPIhKMi(UVHn|_iUKj2!c|H8@ z11?zpU$Alw6Sonu?6KOVNPc3Kh9CnWnQZx?mGpKJAg*=2+YdpPdShm~?=u0sP>+>wJNL0ZH(Oa)pVaHmi?3#{5}bXk zkIsDHP$gZTITVza{nv-0I3isA_EWVF?}hRKrk5$=1KZe<5BC$np54M}@B3s?z!w?b(m$v5w!H#U`(|snZQhO9i2RHDrKsPzFJ5;0Hrelw z+ky^l*9%Ay7-~_eHc6g<+(fz`7`xy|*{2yCyxzP*%zwx8YoRa%j@ud~g!MA*^=C&H z9!zJUOk!-XV;qtArU*i!3P}Y5#ux|~M?HEU@%-S^rIwz=gy^1*yQjxBj@ROMH?oFH zzFCn$EKw{%!7Eb;;`;;e24IW%xZ#8L-8q79i({au-x5K(a$fM{d~$#J&|*E@;%)fyvseX=n#Hq=WLOhmZUcW*+nK{H$@8z7UWA{3=Dchc@zf>xM>tsgPw`F8nXh}n? z*=naW2X5e-@h|*3u%_Ynsg?<$e5)q%*|pCAsix^0l6quSbc>GKkpMI5o?4K|sd~Sx z%mU_@$~^XfFFX~}kp5OJn_lY+DcHyP}o{rhCfEjwfHX! z`TTg1;Hm_Dif`gc#Y^QINn}$Gzjl9sN)803dvc%uz|VZZpzy_jN8~}Z&(GhbjWRZN zX{XU>(S%+*_ix3st}{l!0faL7vsAlEw76ztz||CToahg2BbK^g-P+@8!K?VoPc9<} ze;;fg%beDTxg|1vC=A!N)6|0NNO8{V?)h~(0Ictg-?Wa)(_^>S!`eCIm2A!PTu_Q{ zI6t1I*ST8fHrLAq>=g4}ixWmOE6=rNivc>f&AzIYv?NT9;V3CIiwqi4#9}qZ-Q#TI zO_8j;QfBVLFZQ^N{9*pKB@FVVGmKO_+K3b~O9Z?eVKBCLL?X&A>@an)lolPcY`LRv zBA`Bea$*LS)Y$<-|J`73qIVAF zR}ZmryQkThO04#R7xU$mQR|>kF>gWbS=q%OrBHZ*sqy*@5d>R_w@u^fMt4cvw3o0c5)~( z`G9EB*{GSZZ{VpoX6DiisMW3GtWDcG*y>+)*W0%A9=Eq6)0?eF<`8m%Y6Axy9=C*@ z&y2ocUEhm=4u9;I&A@lLM%j#JfotzZ^Wkw@>>Qtr+6yPfrz z%!a1}s;j*ZMsCLso!B+MWwJ*-?^`(3fb7kqVjhu4CAi+C;tESXz;`) z20Gm*z=*CmzyB@xwsKwy?aF)NZ&%aut4Cw;N9wM&v=15tb^kYbKj&+^Sf5Lj3&p7h z$M0}|j<#^r&}Tw=z&AHRF+e|fM0t{YWE5?11t$@}j0d>2=i1=`MG5ivzA5Vc0%i&& zja#h+N6^La+CNMzXS?oVx$%k0kKM!Jtf|mwG&{bJT9YV@-7(k&+l{LP@P^0z8f9G=p&|(9(#7h)UO3^0*N@NS?&7l5F&_CSYvX!j(S}bfG)Po{Z^% z^lS<(Kh}S+i79a8BP~WUWTY0^*nAVxFOg!|SR)e`#I2kR9}x4HFm?-M?q~>INB;zk zU0TA9hRlhB)*6aFofg~T@TI?P+eJQm)-b;3JM(@Sh_ylMT|Fmchi9>95Kio4?f`ga za+uz(2H(8tZ?3*MEw zgE6*rzUY?J5QbvI6J_c3{x>a7n-r$3MI%x@*OQdP&Zm`nr5VP zTDi2(?glrFV~GqbF5hLcq?AfZEtF`LsOGT~78gcSIW%Odf3_8r&gm@vUa5ZcI0ZoT z0@&|s^xn5`PhYFmuYt$CfN6@(XIUic!aW+~6$d+y-{yLPpn)_2?(o`<}a2zxlcJe|R|o|N;N?q=KdSd3aRYPg3*^B#_QYj4u?gr#18B6mr%9WZok3r z!OPlDhhHD)U%zoP)ld6^YtY^Juq$HZ4K`*+)~Ppa%nl{;0{O`$**gb4z?K0!@3&;)Ps^qJk&dqLzKAqrFjc-qF~7ajx14MX%s0--IjDReW|CJK~W%dmjr8{$bH_ z1}5XAT$%P@C05D>y|U8IQCRD&5kw`Yr9jnR#(S<>B|FBYnzSR8M5#ijWh-i&QcC9! zTv92k)kq=B&96tBn#K2taJn1*b&T*?9v{e1;xUal6VAV+%#vD`FLO|a=yrEp$dJgI zd~96eBaoxezEmuDF(`LDcI$JR)As&AW%bE!Dv(n7cAfKL)vkIg7Fj0gTRzQNt@m=` z0pU*}=yj*(3dI4z_3|}`&zr~JXVZt;x6@$Y+6%fj4Tq?M*#FgzFQ_l_FmpTKeKKL> z;~omG$4JdDa;zI)&ijb2bMNm!33TsSwH=WYc)IUx< zt=E%HtlsU=fZHobj@UP2HsbNk^#1kHsX-Bygf{PJiCp%339pC5JU8iMOMxIe*~orFJF&~-!^Y{0?+j|#LVk&zHblH-C#Gy z4+5-VU!cW+F)x|GT|ZOy{{l*>u4RXk?Aptejma8t|K&r*Hwd}SyE-|aRlMT!Q&OFJ z_XlVFm(vZgt=r4=4xCztgNm!$5)PskcIZ&;rx<8AsM^VZk)EuLhghnflP_Kazj}^` zT)IkL?+bo`uh|}e!_n-f1aGhVH7`s2hm8EkSfzh%^S+NMl%a9#_@gVzD*Yr2q;{7p z6Aa)xDOIk@4@%Wh66t7!EL>{H7!wf=$t)3~!CQC8G{kJy-5x)mm}|@uS7tD+b-fVX z%Vf}}oYThMDZVdnKO0G*(zpElW|dIYz*;sH_Jtpt?1WYQ+uAskj~-R-Qzw zQjVpP#%ke+83B>qeF(X7>u;?E8op&Q2DK}uDObs=CQzxhY(#u+#;8CB)8>XD`>D~A z*kgUiJe&G9axhTG9bsKDQ1{Gi9fJ;x2!JVtVpmnkEsiep`KR)SB{vU3xx#YXVsWgn zRNnqHh2}FJ7?+99E?3F!et$3nd%prCVSBU1-)Xhv@xP@j9d4ycf`kv>j}zc8wN;D{ zP5FQG`kNY2xYD^Tkc@I8NfGpM;qwTw6*cAUQ~SCGOdOg_ zlt%7wh}1!@&#`}|NxB~?qj&oEW48v!?`6JoZ^UgfJ0_Gd>m93^NVf^}?W{kQQtaPf zm*pRJW!N5zhc)lLr>;_*Fpa!07qfZ47X-!7V38Z zXts2#%$vG~Dh}uO2E{cO+L-1fxf>x;7I=5jVx9sYz95qYmc=TzE1L_xLbl za%N-JjXG0Oez4<27A0sxxflUviV+#TSmTE;ROdNXr$3@2gKj-xP8ge&Ny^G!zq< z!FGz=XYBx&9?_N^9gz^MRm5Rla zLWbs4bWWY)6FgBroAtu>twPBJ^SQ*6J%(cI2EsPa>c8CVuu={xcxhS*^&=(z`S_TQ zTiUUWk^l(mstNRvxtVl0>0MS9`Ly<=?Dk0xExWX-?r3_^6$d5&16aB0CSjb(Pq*T* z3F<0C1~3U)6`K1nyje;SsJGpsaH4!)=ZFG=$4$=%M+U+e^2|6?jX-uj#(}L>^L@$gz3!SpMPuk#hl_nNWjpKkFW66nshrv>5sBykJZn0t7v- zrnW{dyUrZXdYpMDGjPMEjzSuc=hE3-y+8dYuY(@Fhh;(f^y3{)lhxgSmtEJHyWrc< zEx859`4?C()ieQ{u3%z!OZ6ZoP{3Y-ARFvwD%b<=+ zn@X6b7!IqnRaP_G*Lx~Bs#)VTMgd3&stJUWF}n$5jHSMdD{$m=_ZG%D*sP`ky!+J; zJnMH3e#&{;YPqN^(%$YenaQbxAQQU0lm79AqzMMl=P=Gb@D|# z6*(N~arT?^E}UJmV!TcIn+f+@KHKhlTrdXN**}wWkF~m(3%Y|9Ki5jTi8WDye9?HZ zyoh{T%XWEm3bX95q!Gc_A^YXLf+SQISg&CUe~}>Vsp1zHssP?_KO^@1=#r9~%am6+ zM*e0P(M;G7O`JW?491w(o7AiZQlR0;Q7eZu`wVB2u3ab4m81ZX{?PHxsat?1c+RSA zdR`+lXInGiae35qf7z-ps^$WHY^N<@ua1TfO*^fZlDfJ=U3$*J;vD>shB6(ZE_Mdu zdGd^p#~NIsb`a8Od=`o>iba}ftR_;$`)g8~7rIf>CHi`!Ncv-YmM&xD>>f9JRn3sX z!gOT6=u&lbRRW>tU`6EznfG*-bRy)TA&Mrl7hw<}D2MdLRE!|BtCTA~r`Piw|E0V4 z{Moyn5^gvz*HDda$#pvM8-3EA5bGg@myJ7iEMI7kpyOBF?}J=sC%p#|R+PL#(1qvN zUYlQF{MV1=t`CP_y^rv7xONA=x;B}D$E#2HT_3bQHq&qzxpqqThmWJ|z|T+1)vcD- zkm7G6V2Bt2U*PO!J2FJG;8CERuVD)cad*Y_Lo_IMb9^X*5QX=?#B9p%&~}sc8-GvN z&X%8{en*hNW3fq1_9yzvRdFPf@20P-x8PxE!8D7m;O(X#k1zhnI?~nnrsHacuG1XK zru(tiqbM#0!u+A{*}+CiPxUL|$3CKy;-w^ST(cC_z!q=!P3!!$z{5lhp({m>`~Gi2 zNTbl|0zs*gb;m;muQaI!Eh3;wr6l!s7ikXaoA z9~<;CgTOk`C%M<#vt7q=FjLQdhTC~PKXJGFXvCxT!u;!EcId;awVOG@dExreMAMZ@ zDiG_NfaQDW<0~u#LDNy_$T<}635$8fvhT^SP=cHD#|yK!o*O5t&5zYA{bE9VKeuyQ zxa90xSA5X8mnw1FhcoZj+F@Es3)!>%d|7Kod zA&Q;|T4BMTDU}xM23Sg1LrPY06wg)4U_uZca$AATZSJ$2-@5%8@5lLkiQmBxH~`j; z*YosTZ%#07koN1x?;(Ef9XmnJNNAaL!@1vX8xL`6=Ser0ru0S1QpY_=J&4RMV|zBP zId!k6D5?-`CSSa&)1dsz=Qb!JEKv37;vifl)FgVr2h}Hq$V_*eo_?ElzBgU5zOR2j zI!@83$F#|Q&%1g&`?zg*ZnHmz)VD(sa=e#WaoGOKZJW>0>~H{8AIte%KAh`4*FzI+ z1pD#D^SN&}nROR9YJCWHIo=3fEOjVX#uKR|DUPLX$Mc#J*t^+&9=+N!8!+VUkw6K6RN21=ybE&q(2Q2v0VvJ>Q;e z&oB#(u-tf2a~vRoLjL*LPv()TJvsG5^K?EK*~@InZybRnr{G1aar{+6sahb~&@4s| zHYva&)VXw+eu|=J08oaqc=8Zifd@UtZYGPQ|pjTBQM=NnvQl ziq7~_T^tes4P}#wy&bQAoE*iis6Vj{CsvF?E$r6JN-p2-Ztfp9uFr}`ybroGd5jYj zt?|tS$(-dfl*5VRGqg~W8}#bH!!oi67UjLx&8!SC`;3DmqI-`9Lx1e!S+^!f^2J+G z;=7!o?0oG+bj~{W8@u%CHt}V3x~uJWf64J3CbQs0VQhj|yUfmsD+cFbof}5o>)(%l z$q8JgSi$K^PYgThmuqNCBe9rMlCS_oO*_a?9#&CfVuXaW``6_EdN5|-1A=-Hpl38s zH64s4lz=S}2#L`z-poQe?c-Xb2k#JnDvQNL;4VvO`VcK^JjK^61iGu0Lx)#eWRdgCPOP4*g+DWrQI@pP@M=VME$LO$r^;YQ zY9ouZ=L>KCmMzAm)qDz8`gl&0AdgN8%c*nX;MB0lSc5;BV=~!;lb~2=JR*eKQCF?) z!yis#>>=A>?@rNvg8A1T@k`km&Q5i8iYjg=~1RG0cEb(-*wCnh60*FiSMGZHXV zZ#KJ5Eqqsd@SC?Wgw4LOml5Dt!V*KG$)|Aq(nj{5MMGH2g#_AXRkmAaDXJk0n&KSR zU@POTM>qbL8H{O2-Fu97P4}760a~6_@E1tcQi|k%>uJr!c zL*FAdQ$^FS{)V?HS80D&LUly-x^@h;Ahk2zGsh23ym$BH?+9-D?ey!9u`Vk4)FeypOKvVrL8<)V1;D|go9?5j}C3weHnbiKrzTS8R6`yHk>2^5$^g0kNX zvCq`eQiakJ4Vj-sRh)22wjBX1?0uJBcV(|cK4X^$H)hJzbPeKAU33!OV-ft-bLsFYfi;&7=ZLF8c2mLZpvE6&!)JWq zm7OqK1m-1(S}#h-Ap_w*nZ-kY4B@PdC=Qkig|}v4W>Ey`!u{CzQAju?@r&c&rfFl$?=L;uPbuqm z!DXxJU{umu zGJ}dAa=89Y8Vw>-s`J%4M4vlwPgCfu^Iv4Yo1e`ew{Wwx+fK6ETmadYjhq-}hiAQJ zE~+ohmoU3QrTjj&Q5Z$t{X9V1eE%N@ak|gHg8aj7i3C_OC`xD_WA7UzL=hn}v}IjI za5*CZ8Tg%Ct~OyIDnCV|lPj=OF8>m6Eb5C@3XMil5}OHkwhcvln?(e!m?D`au3pEy zjTQ@N@`iOJn;oV$Gq}yUaU3cpQnokZE1=sF)Wgf-=LH4*U5nC*m;5gMCzV15 zU{ecj;thpG;=l>+)%C&OBr)v50~q0qMGcxR`lDWa56F-~P3YnZ9zEvP=P0C6Vr(ef z!5Q{}9TfcKV@j@{Az!@&^$ujTl7X3%&X8g-c^$r3SSmgAQrvQG33nVSuAY<^6^m*n zgusNc#?f%qQd50QKJF?$D$EEZhu$$BZ;<1t*}b?a2)j^ZB&a-HP6v` zEK=~D?ql!GnFo_bqVZZhCxX^{BwcALz`-cLQGiU$&B7d~#+6{I+B$}3^c=;BrB&UT z01LF@?fP?0fMxkNR$hMVPh|ydg;H9fKI)=>I63Tqu+c0u^I=9QT+P>Chk1CbD-Mw1 zAsnHY?P(%X81fr14mK%&OWj(Y>oO;8`FZO&Ou(T!#t!h*e>o#u<3tF0FlBD+M9$-z+aBW*q-z&PzLUHo5EPwEijEuauj49#vRDxtv`JpwZroE*O z7yn=zX{%UWP1uesp@Zvc$!(@4g~K9|-4~dke^Fk?-*WT@TyJ496!;_?(ta#WJcLP7 z4`njbn0S)2P<>Cb4{OmFbIAEd&FhZYC-)o5Ab7AVCu#~Jxb-x2tp1~}i#Pa2xh!5P zyr4<axGvfYN8>m z`2ix!8GJ87DO5wpPe4LUl%!QNNenMW6}#nxWSaw2(Wx!EKeC}l2ihx3fHYhL~836TVotv3tnX@ zLA2w)1@mza1haOC;~W|9URVW=omVlLl_;mZzS(9Iu=`SSRu>G;m~6Y$eE1N;1Aevi zS=r*4`ub!5!r2eXY-rYek3PRX0^3K&!u%b_KdQ}8F0!l5PB>5#)XU*KtC1Gj$R?*sWsO?eHgXC>3LimYaOSuXy`d6bu$@%_(OumgQud-7@ z97z2sRt{%xm5P`s5yvXR%KQ1K7iMYw#j@S>JRC!E)l$ z>1RV9STj)FHRDtGvrNc#OFk-KS6$Yav1Q&d^rN-4E#@3~A`OKqA?$f3Vk3oB^vk$t zo2aF&ZcX8{HrsD24c9Mqd;BkDP7j!AV#=x6K?^@Rb}VGF+cJ#K`a2it3Vig|2A{(X z<~1BFcy=$_J#x*X7{(PYMA;@uGh~^Orik*P{PCprsS=U7@coHp-`eOn6cD*%+FjVt z92#(5kBSi~=9-_$*I@kl)^Q*1DZ->J2OYVVRQlsHlCQ+-}=PAhH>uQi3%?n*=>wWR?{`e-9>SrSxJomxWD0BuSP@2SR;62{n5-y6I9bEp0?OR{3hfvCWb?nZXi?&BB&H93=~t zn7?c;mL(#4^q@s5n^V;=^Y3wlN2&{Oj>L*+Ianz=PI%js0(Ci$(9zo`#5SWmoNG>6 z`NGN}*&LRx9o%LQho-xL|2qG5(&eqs%yh;qxfO*Aseytr&EU5>CDB-RU7YWv0Jq>9 zDq0HM=-#x?w05iY26c?L>p*G=zK2+II_s3o0c8|vacGjggZZG?d%;xagpK#lbpQ8) zC0C#2Z$}sImpqx#=5yF|n%w`!4OSwtbOcNvj9B^F@}wngUs8+c5XtHQSS`P@_3}BO z7!w356Y*q!Wn(uX6jmKKpm8FRHL#`&1wL4MoMX1Rnv;;AH%-QE*X!2%>d{&bp!=nV zux6eIm6SN(O+DCb>miHre^cBB?1eS>?7|kgCD-a0hfaA)T59p!>}D}R6m4LbbiE23 z;3%>Fb9vz*)}O8T+qZttA{Po&JI<-g5qj`tMC}@zmz2JZSE4nMMR3ft9B{^~4?fC> zg8cbMUO`!^V2wD0pX9ClR=`Tii#bE>YQ8Ny z)Fo&=Xzm%xZx%kdL1CV0y8ONLnL3ND(bh_~H%OAV;Hckx{O5CMQc7mVhGBRI;BrsZ z6=k-TNuVuNHCOyYsm9zUl|ZZPVo52Oz?$F)A&Yk)$KUv|s7i=zRh4BgGoWt1jK0vQ zCCee4KkLJ%8V893Cir6vH)$IrYrxhSL;bd+zUm;NgsT#z6U&%HBgU6xP{M4eK`@+Y zHRC~zz+At%v1NpB9G3XFyRqT3f+k+ocK!nw1Ae3ymiD?VVc}C$uMfK(!6PKZ|FE%f zi5Q_a`1}M6U7#U7`b|HI<&)@9zkJ@(U)V}Us_Y^b#ThMM$+>FygkbstvkQZ#)I_Uq z^Ige&HA47*El_=7{il7q{5)d)*rS^NYYDs#(uX95F<049`>%uWIO=(5gJ5v&CwPGn z39j3}({6qPvzCQePu>3{KwW?yYOI1NAeVD!n`!!Q7zW59KQB*J8Z-22?ElGQ}^##T#WWr{hoYp}&vd$H+sLtA^qJd5GN;Ipb-0ojqC}uON zPsIUy_yMJ_R1gV^)|~rp5gF~pVA^dm2A5rO^4sO*2qIbmx>ut2mjS5m?3DL4Z<4z zX&SHpJ#8 z5R0h|MJu@uwjio$Jd6ciN5#7|FZc8kjeD3O z%N{z#3JmD3ipL8U;_mJa;&aGbRs%#O+L*T9Ujq?ia1+POorg_R^PMU_4w!Y$orbmq zqUC|73!vYQ{!5P*2oyAmKZVWoW=qMq}AXg?X(%@4aHh`k>u+&nw$}MZ4 z_ho)s5RtVP&SaFK28-K9XX1hL(3%*_gN}OH%P zf>p}U>X9^?!ktr zU&L_H;LWDcso?5(;i47cQxIVapsB3xGykfIx-!JFB?4m9s-`oV{TRO9AI<(`*a6#iavcS08Lq7HGg$0>{2uF0^=IpWg zY0GdkdhPT5?QHg?Af?0=^~u-zldQTcOts>+KTsYH=wh)KH(9hUQP%Ldjmcdk_tnK6 zIYP|!Tlt$~StPb)>3^zVtAv-_SH>(fNNMqyy_UETs;t^5_7}n~jP*N=HN>;&LNYX* zCogGS)!qCE%UBPrV1@-cB+&1jaOv1myzH-2M}NLYIC3B9wl$86?4Fddy_jyHJJj(= zF=j+LGw9{eB<5XsvbNdO@9T)+>li-8T|(Sv6iTuIKTo_WK$OT*!S1kI=UMix6oj*| z^Bb>10>)|A8y=8QyrvNOu!Gw-L;)E(c2i_netAKno(bt%Uj&(S@sKl>j6GGc9gI+9 zR2DM31`4W5go}v>Xr#2)|8l-C*{D}QO-o~Y;!IY~Gj#p|2@L1oeIk9p+O+m3YEaw`wx)!@pm1$7b*6gi_W z<kL2ooqbWlG^PYg;Mk}~4r!|1pe z2P7(bi>+#P$aflw9{b}-M`hwAYM45cZ(~)Ln$ChuCA zVI%>2Ir5`)bQOHNKACk;UQa@DbW=YTK(~9zuVk>E3v0;9e{}ehZ1x#XA;~2e8qPQ52l4}s?)^Pwu}Tw?#(}G6L-Gz zjd=|!J&N>SIT({%{hw z4^6D$s&^?`=a4QmqgknADpHcoUY57QV>YdKte^M^n4lh~i4}zxX8!2sGZL%j^L~@@ z+8F>8j}g$X@i_>#(K*nRaiz*bfZ6@BpKcficZIFuO--l_Fx0VYVR!NQtwhe(F$?p>pcN|umq`9LR0Z3d4~L%#Sm)XH zarH(0sqip(KCRxL7$0He+{Hzvm0~8Bs6y0)r*x!B6NNA7C7}5RK|*27@IUh^94TBz z9QFBZTiNgb4Bs_G2@*<+3$TaW`o9i+TtA0p*QyOLf~)?|z~Yejuf4FvJ6xf2h= zg>57-eO^U#X20#%jEuEO{=Y_d%<|3(2qED)IQ66dGu%so!1Gqu(sZgoDVBEo=KsuO z74*KZdlJ{LiK+jd!iB$zoUePTL|xwyb^Mq1e_h}Pi1@~4VKXkw=NilK!e#%@LSqM< z*;X&?6Z;Z#h;|S2Ss8sp=MNMjIg+rym>V`FF*^8{-=<39zx%bLoW_?!u#Jq%%e>3A zP)LMfLWrtl;|59My6CA&if~|eed)lPG%s9Lg04$vvZB^ghQ#p$?f-vn1{~bOv;auHXTZ5c6Si{3`a%qrC;KY)Bg4uS#|v zaGJVr;r{R!7w6ecW~1ZP&;05RLz=g>4-r`FUt{bix(#R7ON`l%d@7Q)>-G5o0L~u; zHLWl>>NQTsXBwv&NE~danF@G)4vx;m93svCbESmIFi+Yu7JN~ttkFn84IULQ{?$cv z9SlY#&)?VSQd}V+OzHV34DUBY5367UqjceAt2dog-QGGLFW}Rs?VNHksa{`eRP0H; z3L|Fz(-5h61?QA^{Oejci-6ztuDrGIS$H@f=JP290mg~JT1+~S2Vg~ zu6x(Jz%3@;y7Rln=MGSg?-W+f2Q;8+;}-f*qp%4>@Jh)>dExAdaKrw%yW$&mG2@V( z!5o8x&z{U6z1T0MbQJ+=H*6dAU2O)4+v_%hvrXGML3n)-Wdixf0OYSA^G z*R%uTZFdFZvFNyvKNPTF05bTLJu66E#2HFcz`Pk-@lDk%FX`xNCzeL6ru@^sPl{Kj zi?c2BIM--TSMc-xKeE08Dyp>&cSH~oq(eXi=?3W@5Cj3~k_L&P8-_+gX%H!CBm~5v zJEgn3ySoP%;BGwU{P&!DU9w!VhQ0Uqe$V^7&l~J-fbWACult5EbC-uZ`-HOY013}Q zO_G5Ryw!p^@qg+bu9Prht*7pT($Ko%iC{47K-tRU%Pb z{fq~u`#RJ_XM=5Ht*2D4HjWcQrlQ1#VRLkyu|S34a~Y_C?iLG-k^Z5G>koSbOvj#c zE}iD|oz^?bE)(&yfq$Uw(l%`(!9`@*%x|`b2Cb(J3SUC`Zd5p7#joXUu7Ez&WfF+5 zAF|NYMvji3S0$xpFYK-u^8O*HtQLl@N6ad4^eW(ea3%IXM&0&1_p6`wpZ&n2=p1L} zQc1)aP(~*t;5qtbxl#ZfCJ{)aKgdc^`_5W=#;i%rHTLXJD$xXg14v;xGDX6LjaPhG zycSrz6=KcLMPw+DWBGhVTR%4mu1(_KtMW45tAZM2Vd1LPpT)w;PVLQOR#wv?o1R&V z1%Rbo%E2VlPh1;}D*#OH&^7vfE_?YsU z+q*B~UV#Dftb$o^Wd!EK6lsL!i>Lh+fuC|%M|CM`Up-+i~ zOY_@r;Sp@5dKDFj_1*FwGuH8MnG*`t9z##aEe}GR(Z@MYj;VSbCmi%f{DIKC2TQh$ z@6+LegxA}8P>)yjQF2Q;xDfQO_MT_~=(|0el ze!sp~@^1zhgdVa>1+ocvj199wU8+{*g(1#?(Z3xdbY(SM2I@ZS9T%{+Ozb?}(<{yZ zLNP1e56i9YeS&ynBYMfle1N0Qg}!SQfAq4g{TwpZGa3>^JgtL4`4=%#av7^&u^B?V zu}Hl%bcaLd^|WxRb;l|PIb57hoJHq{@R*SFFXkFCzY)~!3g_ry5TCM^Tm*qO^#%hA z9^LNv{l z5a>@`*45VVRlI`~vJkvw=^2sNO;p&s(eeb%FRt@?DK8b!j)s*wW~Q&3>uNx8lQ? z)R)gfiDr}MxEphzL%5cb6)sb=1Z&?%HWLpVzf?d-IdHM?Z!c0%mMq!N?k;e4lIA{| z1xFltIaVwgRie%GbL@FdhNMsJ4H3T7z84R8q;0&ANGf_NF-LZGt<$TDr&cb~x*0o=Ygk6?R}jF7BP= zq8ojezfiYl0zd6wKC99`Kz^R$Z|Y;i=6c{)tsR{aTCF@`iA(jhzT+XlL0P=cs9UL} zHR%0N+u<2kzyFdT4-yUo3gr(wU?kk?d?P)at^LuUu;sv^qPK>5^gLx%wd^(&!M4J3 z@-xNXF1n4Jm-xjL#dr7$vr*==){84n*^38B9-&E4+Yt)Dr%NdOj)Hr$b6v*}mU@vx%64?=ObCX0~2VX~JYdC5;n45%lWUd4jJ-rZMjqt(hOM1B2iV03$ zyW=lxD-?M7cE;qrAAWr^aa7!+djQco-}|N=qYj|!v2!Q<74I&j z1I2Y1wzXGRil`!Lv6~WHF5q3@K<#4z5XWh_5BAW$t?NcCxMuO+4%98b! z6)R3a)S2O)@ti1bnKJ@9x6b!5@M}t0F+Z!Wi}tK_L*6p{{Q7f}Z2DL@l2yP>eYDG@ z;~V~hol6KT0sXezuR8loI|W6|<6{tGcjvHT$l`@z^mPaFmXeYGI4f1T3t9e}tQlSv zJT+^_tXceMip6&0l|@3#xUJf-U&X`f+L|C3hORT)?{)BSiU0`UjCZ5U9n`vzxtesi zn@3r2Xz=uvAKD`$Wy!3^7$)&04-Kz1FC=c?qxhjcdBuwNm=?Q}S&h`u&KAQayq{4b zk`tT)LcxR39~g+{f%;Ydi;xbw2E1mZy8H}N zesd2t50x_KLczWH5v6TxGa15SL;EncO>AtXHw=zHh^w!;!vo|9Aol7?8KpRnr$Hz= znfDZrL`nY%cqxeDnIvR&{(LvBiGv8K@T;ew!}W^Ng!17Npw7NGgRN4;4$% z`GA24iIE4#GjA*}^Oha9-m{~7hV*z|=DFTz1zidQlIS}S6j>X1yMHC_!RkuPOg@~d zVWFlz1iTDLWb|ni2~{P@BNzfL>&d+5>_NMYH4jQ=BqllcbS^xzc%ddd1WfYhgO5$c z=(d>_?@FvpWql^5?;*I^m-SDC=Xhl9v9ikASWP#c8?I|+mU<#5`^Suy;B%ta;9MRO!Pt^4mN zo;ilWx9EYQcfA-8{XhAu^hO6wAc@Jcll<9yo)aoQ);y9YtBA$6pEp`YOtG)sO`Q2 z&jlSYT8GyY@IbJP`b_@TTcCP(6aG+Hp#Dr-6)}zp^?RA#7$xfPQ za)OGGQoX)Es>MoDlI6P}`TUU$Mn|TKl;@`~$-OQ`0dU!;BkRO6R331RC)>M}#mN&o z(>#vUL~pQ*_165sv>RYI_Id26lAEAiX-Jkb)C7S1(C_yzzHsPKB(q>+pe0|cJ!L~P zWUDZU8Pe*BAJ5?I5wXX7ON_Mojv%mq7vcBPze!>hO}ot&DWF1%81O|~!)+GwqV@*( z%J#>YxN>hvwRuV>*A1dFvS-P{d~LIztZmwClnRiI0s&uauY#}0WyOu#Iuj!MHTjaU z<A|aI)!C`FtOtqcd7X(UAh`Ob42mplS=Ky=>d(ZmzEXetFYEjPyCoZ;FcjS`W%H>V~rFZsq#r|p}gfiCaF>2PktYxeRK$=f8H;n_Fbc_9D ztIFaUD@t4XDJ<8}f> zFGuQ!b+)^YW^E{bS7z%U@tX!;0tmpjuPE6_>e_gTje)y@_!x68$<(ik^SGTjXzr51 zG$_hz5+-KJqOTQ-rg*;e{0ql}5b$%10yy42U{qVLCgA0vi3vB1&Xa+A0ai+q;V7*D z2|SZO;^bKp{{ow-0gk5oYX#_rGlaf4s>}O7S(2>Mc z*uBP*Q$FbY3XlWQkAu;y(UE^E@&Y7{)N}~k24^b(f4BWf>6_Y3Z*1Rmm7#_tpdcw$ z>rYk}suC>tSRWnvQOQ)z88)81SdQObGk05Z%3L4|x{#5-{Jhizs|k5_-}s&~LaCV| z1dKDFx^*~Cgh6OSJX2B$PUHenLLx=9Y-r}2N3}&5o~s^7d6qhR5cssdnq9{7@Nw|~ zDi30d&rGGY&kdoJKt;l=1l}@bC7k*SN6Y8gbt&EJBb1Z}rnHo%*ip}uDY0WHX}5w~ z#{rgQ`EBDM{aAf@sG|B{R(g`KdsI6GP(fr`ZQJ}7OCj%BEE0>2)hhw*5h{kSJpk3W`4n-{vvK6 zLng{Kc{!ZN0@zgEq9N(rop0xn#AcdxP9F439W^nmvfg6%6FNPk-G0CTEZ%Dgk~Dsb zAu2<&@8W`H6!}0vGvQT1x5zp0botAX!dY-wzhAob7m-AK`u8ny`&_ixOh<&xM2$3* zXK)5@Sqh-iw(VEpzs1VmTtVW1WNb9iDn%Db;`C$g@l5fPLwOr7C(k1k>+rIGKB4_8 z_dO11=p@iz48P$yr`|Mxk0=Sm!RSOYQ_vrL#K&?hOHHZQEB)<( z4zy?cbSoWz@@8Q|shO#+fL^WDen@doV)`C?9Kc9g{&$V_9+6SZwdjJkg4|Cfi=}&~ zO~X+NUeE@hk>F11vb&|LN`)$?gda=2pFw&fpT#=(mKa<5CnwI4kuQbN{u68=N`KW9 zRAmF}ry&{aPW-8Z+4Q(Ll5eHmyXXzS6+FZC4fsR@Z*rOFBEL|&(5>9xnbqF79ulds zRaW;HRvrXHx>+Lhc=HW%@J!RE*2sCCxG}#IR=@-^Jj-O;X&K-#7Z%=1# zFHfa9r`Dyi^-LGfSt4t$Pky8)hzna&b?tgG=|7$A}18n=HEQ$74shKOC zrLST2I*Dt*i2|&Rr?Ly~2Wegb$=2$Jx;w#IUZ|XtbU0h&$-j8=qy4?_E{OuatBfnW z=rcw%|JK1`GDeK?M+JPI2^Q_=>ACw! zAV598bEd_)_D{K zIorN)Q|>o)wY~p}9v2!KYI~RD)8Uk}n=MgxLatyIpnIEtVO5qtx-@%f;+>0+B5o*3`XmdKvI5!J znCC`RN8j1m+kcO_+CL!iI>sZ1-oBa>yQW7|r-U5}>^1?%%wWDTF4^ccbaXtkbJw$T zeQFhg#2{+uU2(fgCvqE=N#0mh1@Bn!>5Q^#L6Y*U(^?+WnI8k5w<%!J}6?{nEGd^VbNeZzJK1z#V?LHlgx)k{eX zHNKP*bzCnQEk@UmJ#avNC0plk891smt`I&D+u|8(*;WjqVn;b^y?b#o6fR9;PE<8tSQ?G+Pq<&l@ zMRl6!$}lk85^!Gr{0X>g-9)Zdk$?D-Yg3KTwHaR_dV(9slXM8-+0kW2&<9-uZO6 zhe@8~$kys|>L=TiNG|y#TgZ(oDcq%N%DxwutG1E`{ z=?tO{DD6JJea^=a6?9Mf(xExG%hU`3-37~-UlGG+hq9EOBf6k*73oG=bpe%6%IDEi zoKZ)6b_p@J<)lf4Xm2Nix9LHOzIKfJG^{ME+h^Z9SLHY1m4e$1-sOnx{C%oesefhx z*5{CuRb)V4t%lB~cK2%}X>Mm_ypX8~(1mysV11F-~sJ<1;qL<+wN&ez7Z4ai{Ctbzt22jb@CH8f7iBe60eo+=$Bm;4g8YKF3iFNo2wr(E7Vk>d zJPt_aUQNkFZl0)&Msp$Bl12%k#m{s!MpdC~#7)tS3hI&(lJiR5@<^2X&IdQTl>pfq1 z-lwIt)oZ#pYssZfmYuT1`}we^@Iw-?tn%d~)nVo%Khji{t=>Gl^=Y!cELd#+AfvWA z8Ok^V)Qjhf)MZZ%(j%!`uNom$ffjdXRjCIUi&s{v%%>@Z!vQRmH~x5xDTa95YElnA z7RXGY(8kifxdFl#N$_07Ha$<{*=x8BpQHS{5_=I)&^~oo_TRhK!wK2tO}S z{|&@fGJaidInCSySSiw`X0_^j+z9Hq$;leECEmzGIp~AQn50sudZWb#_){PGI|*Yx zVX&bxpTqR{HhmGkRGm`wZ=P~IEiLcBsTA3&WGW-ixkrlOttr9L&Duq2OQ&ufu5Hc! zN%CyR2Emo5KnRn`E>(9hEl%416i&kQ1?k&HyxJ?TU>=V;7VNrTvi!ugn=Yf^DqgbB zOertJ%NJZ2zI@ozJ}Bb#WF2b%@qs)J?mYPkEWe*zYLLxo8k|$?80RYcBcG=&uHcLhn&c?nDVnO~ z`Jlbgy`C3Q0xRB-fd8m9_`0@4#pc6N_0>RKo*`M;E>r9Ifg_m=t5 zV`mEt?%KSFE}58#IH>majR`L~b7|Fk2AIlEIxaBsE91LK02Nba@tVt))=kVu04s#0 zg_+F>Et%ppG>wM`M#{^|PI^9_HC?+PNn!o+;Zi>O9vGc;6$&uB0Aaom1uWYmX8V|^ z9MLDBbiT1@gK_mJt>qMAs_z6P06^$JB{C{9x)SCb4`(fXfL!;A&dC2!aK@JD?f_Bt zgR`t_X~=Nd>ZF+?F4U?fr>x3khvkR2x-w|cvz!FZj~_2M5xrw1ZHO*ixii?w?Yw(K zt+VxOw^pQ4Ffq6jJ_?3<2@pn2ZSL2tCRPp*0#TzE{)-%NRDpXoEEuQ=RhIXT2rKHb z>OMimi&{DrVsEjsa}ps7dH14M_7_nsQ|ZK{pV8t!8zpM9KUXt5I;+hRGa30YNUZg7QZsC8~#abDz@d@hqYc1h~V++x?cA&<)g|U;y4Mrm(i^k z$=A?1k{In*VGKIJ1r%YwohR4Mu;foKou0ktNKV~}E|_i1mrnV{q^-hVD&MLHJn$S! z^iQ-jhUJQ*`Bgn*r7hk@A3I!nd&v^{AwVT_$8vIt>_AA@(c(qnkF*OZ5M?{1U9*Ib z2XG5%fhfQ;ZE2;?&$+_i!VFyM6AAJN&&t7`T0q@vX0f}KRtp3$KuxT}4h{!l#1v5pty9{U)V!Z*Ra}c|(P$!)E$Q2cV z#Grig%5H^@3b(};V=2jE+RzQY84+;c!a%hv*MQ<4-FHsAJe$g72Iayd)@#(ts?C+v zsvs1U*U)Ylp$5WuE}lwjrOYYWuXL`h#Z9N=%YY;6f_9toL_ims;a3jMy9h@eM>nHN z-PUsjjyRGLRCy6i=l(!q0QH9Iq=mDh&tuj4Z7m09_pJw7*I|<4%xF-cd<;#3*nTo# zIXc#F_-dK6D<@Ovx>IIRV%CD9tVQ5)@&|M!LY`Lg!N1l6q%4BtrxVu$gY(?@gg4S% zV*qN(Pa|df^1*XlVIyBUUL4pF-WMVQEPAqahvPy%?DhkOX%TPQbF?hIM98|WoS=Gj z{`q1a?PIf{D>q{wQ}Y`pN<0h2{^prX@mY%!-={n-ni^e3E4&3~DWQdQSnHI-0H>dM zvl@8kp7+n1TjlUd)&^I*+SdWd=hw$B6CoQ=PDRz{1XvkF!%!|WVjkNcvcB8pU;P%y zIqI3~U0r?D?bJ&68aRpN52{BdA4%n`WHntaFWqP^=3XyudI~V}<}NsR`{I{y8=#v8 zL*p=GxE=9aHm#ZAshE1tLOYEQ?DkD}g$wQO@$P%Z@?t)XpUP#zV)4Z&m=A40?m)j* zDVMV?ZwS}y@{;)NMBh*7)*OuJgz8!W{g#{ zHeQ_9b)n3iAf=A*AldQsHt|wwF28hMYv(`7ATC`pTg1f$Ex-nJ1RQ}ubEv-`q=zoo z?wVzn@{qmSBA(=Edj3Bme+}JX z?5OTC&B%!U{YYv<#XfM?1JaaL$2SkfOcIRM{IGIWu|WQ7-$-R@OsRLDJB&P@%F`c) z2ax;_S(o;fJe;`3#NP@?S~vZB*BBIvGy$={96KI&!2OReIBBhx6mWD2T+Sz^JUg(7 zjswIMCykMVBfbXochPJkv)H4QsjKk<~0TD zIOogo{;YXI>=;K?>q|XotDKTOHF(@4~-)Mm#qG%&9zt+lx zO@bSEfL=Dsmpydd_h9;F>;|W|aIP%S(ybRUj&t=p=G5<263v#iJaXXJ-1ZCyj3feyP-a*pJ`C&Pkx(vl;F}df>U`lfyn2 zrToqQkpXOPa_;-rBp<#v(h41v05mjQ9Q)ia=Q!u0{F15X)Npi9VAzW*tvm;2PukfPxO%@-5Ws_U8bKVb<_l zitO4wjcaFmnk&=kdsGerue%5xxVSf;2lM4T%LjC1_A#rJsoTfBwm4Z3YJVg{oI zoNz0@F>T-i>Pg2A-S_o|dw&rSm$oZOxD#hXSWbmNfa;UPEK)WlWoQRvP2DW`GkVth zh6xHFzOr{69}W@As21i(FxcN_#^la#H~AIlk%wr1b-GXcN`6{Z@HOx!O3N~(@Rv@? zT~HeL+=t#s!u_M7xa~Xx2h10^P^>sxcwEg!9-W5`nKH4w?NeiJ=*k{i$_g>8vu6-T%HCYo~D z@YLeloy_vkMNVzoXQ`k-!~&1q~_l}rpuUy13o;Be(Kj27Jsnd_mnx0@c)Hfhd{1nTwCMnj&19+z4N_f1ln3!{z4K6@P@3pe7;f+Q54DD3 z#!D_ecM+$DJOXugkQ)U`4(W`efJA%f52~OP5Gl#YFvL&eIzVF^pz~E5OJ&d%bTN%} z0)pI8+VCH%bV$Z1XT*&6jP}$h1_LF*UT?EM{QCD}gvKcU+^{J-r`^4>*_gjYV)!4n zc@S6UuDN2zf+h!ZHQTi*f&diDGF4ZojLmcNr zP&&QjBnVWN{N!e!>9Js;1yIKj(i~l%{B(#$KKa%l+A!dcPlgTP@=iWjDfI@HC|7PH z;+ld;iBkP`Ed=lPfZQ+BqZhMeGpVGsW{Ws@_j$wv)e8rQ_<2eMB(wG;3(^HYHCsdo zRB@B_?}KMOW90ZbL875=&~wb@5;YkTA7cyW&uEa(93mV{~I0NInU-=Ji7lSZI712dN6G*R`Rk8Zi@sGoV0UX2{$f)R12 zIZHJ1@VzYsn5=48x(cQ3`&_QPDc({3A7l-Q0$d(eM{wo=_v7Sk!VSmkubUqO=m3q$ zY$y$h-+U$(-)38A&TLfMQAP$dQ*KY#FvW9zr3oc=0a|@^U_Fr0^Red<-0DVDM}mX_ zAXZVDI`L&|A=^1{m2hgfO$}=0MxaOZ(&;$G)vqSl;LF4N(sSHt9kNa<3dpR`?!$gI zcogZseS(ojz+m%+C$~*q+nVxyr9vaEeWsR43ba#y`{f?8kNJ{8sgGR-);OzzhdN=Y zk>x##U4FxZxd8H3fsq2GzjazG9?JZGMkSo9G+2!Hlv{BTe_2Tjd{S#;=+@kwqf?P_t+$Y3r4?r#ARSMI-? z`dN|iF9YkY0-YU5@Qz&#a8x>MIi~ca>-VXwqeL8$vn{mH*QS?u^JRLG5Mkl@uf1xLx zp4X6RBVw|7d=%R>m{j6_RQvj(g;ra;`MCbkKT%%ZkuHUQ#d3q1#~e7(eMHsRVru(K z74%n-C$OrW(+{#$wX`769`-YdK(-w%8cPnB`hTryjn-|AI0QX@KWHza7%zy4XPi{pKU+Z5O26@6?hg8}FgHH{JM_w4EzUM)`PR zrX&dTEfa4)kywO!{{{90^={47|AJX3%hwQ({3L@~&Nl0=F+lSIGvWU%Q$;RmZsj{W z*)xlSUvV`=1~VMZ6))Slcsf`E6yWL(NOTbB^tOPNy@EllR9pD@6A&l>nK8wUVdg6i z08+Bylfp#@rWBS08cbmQu2fcZVwSKo<+9GN0lI8S1JwVJ!r83&(z5PAxzio@Tro?> zzsYmXB4F>u6Mc)yMdFJ1f59hZoqAVvE@n-ca|;9XG46pXw$pgGFBWC-I z;|?&(D6KhAG8E2@p;yvyuh%Pte!90nq~YXWw0KER6SZfemZ-{*U2rOF0L5w=PgX_RL;|jl!gFIw)~E1WGRvU_NDz$znj%o zaF8# z^$1H$P<&DO$y?IWGsIwiUZqdn`-@c|lTr>mc~qko_kT%OCq}}-Wz&07CRll|dlD${ zKzW2GfQp*CQCTf5WZ)peRL&Vj{XZ-NN?Sa+)?S(qav?FR32}F3agk;I|MkXb&V4!Q z>De!#q(-xuzqf~vUmK+&@%Q6e>xElFtb>8o_VR|tMW8JO)QDA5y*wctsq%q+r%yp2 z1sH5y_a-lsJx#eRCnrd5RpY)=3hs6Jy*?fe{Rl)No4SYXKox{uNy~ibmQRqY znJ|-dWZBhcqLJB>Pq>ke5@^Fo)M3=SdeY(whu@b4X-lUHNZe#iJuE0&wl1aHUmjz= z06L!U+k2+^ZNEECe&C9}7d;27=?gx$ZHAjMXFvy)xRJdRo`15XXzaO-@G7lG1*KDV zHxkFoB+|@_0R7OFsm&kS%qHGdy!Q!U?>QRi<1{~XT=f>iJ}RK6M$5U%6{x$%4izZN zx+lmbm;@oX3XzNfweDHyh?S| zz>9)ER&|1E`tE7G=NlV^UNwK?FCM*?DQCpL*rC z^1PxT*Ot{zM4({2OQb@|q)BqCVk}Q_GwJ5jIZx*vC89MT!?OFmG&2V906fC5gI?>0_5AF5f}9Or&5# zf!M|5x}K6Uyxrs0Q0YmnIWLd&x!^qTzU;l+Xp0~4J|8*|y0BiL(R*@G1Q`DFK5C0T zMLvSeyXXfdGMKmt^Nk=>Ag(how||@zZ2>Ca!c#HYKZ@h6z9aW3ZCZwE3DWxB13m(ZsrfkLhK)?s~hXT)S?PAgCzQQ|ar^49eVL<}a^bCK@H3)(7H zNlrXI>__{P)c{1r-HONs>s8Y3)jRY1Ynp>TaZ9uM>cf!(&uIxb1B@5X+l9$FFm1^F zW(n-Z6-_#EWu9ZPQ>T1s!PlWHf_P}*r=*BQI%xWoE_wH3eSa2Qg~>g}B<1gy z->1=EJR^C&CE9j$+f=`0$5SI%m}6hLczJnhHSjy2H*1{q$wKu>ULG;a*8R#dXC`T3 zyracSr>QfNBgGJCdi90L(c$g8uMMwwX!0JK^2*}lvdNLSo7EnlFS`OWL&VW9uP1Cq z;ldNvD~t0^^wEMH=o`IiIw_DiKUfF(FDlQC{+!^og+IIVjduRVfT^$XI^oqgzBl^| zs$x1Q#g7W;f^_`SH39e4IGr=akA!gYw)Yx*zyOYmRO!-b-P3s1fB}t5&fgNVNr605 z?t96CX*Jo4P++E_OYbm7vwo@2a<1yf!i^+N4vqdzap9IIColo1SxXo*?y>+Fq z_CDy)b1RH5^0CpzJ$E}@)|Sfk6Z15O)d!W~y8ilsWi7eW7eHoOJ{huq2SXZI}`v*y^7Yq&eKP<9eBYl`wi`3 zXA4&~Ip9;Tg}c18tK9i%q!plg5v9DH;(sxB`JEiGq=5KYDq(rqb>Mlvljc@I7v(tJ zUCrG&o;n7^U2%lNvf%zfQwPQ=DhOmebu>~+sRXEh^?m2bTRGl`cR-hqmYQaH^QHY) zZV-qiMs+K!dI`A0J1#><8Y193*utx1GL!NZli+kUzk`tA*$oRksbv{{3To~{R4K)E>Q&_VPvq2oiECc;Oo zYYu5IRRv2&7dvao@;!)_#=IONADPyUd+&#KpsR7~y`Nk_#-G-6xQJN7qD|JVa~=Yz#w+R>#Y!^7``hMv$jz*Cg-;@~8NyZF~1PY{Y6 zC)cgV*kqycEZseSFLlM}$JQEM$L0#hx`_*sjJZ|ZMCo@Y^Hab8vn?wgQ-dIVcO{=`nY_X%qS;$#Fg|E^jTWr3rT zZxv5bQg>+}O=B8alPAaZU)@N%Rl8(9s-ySf(rHt*0Id=U^^UHA9P#_+xDfpLhS)~X zl@$;AEh8k-UvL{}gxj5Zx!f&LLh$yz0KWuLKq9to$5qIG)fq(>F0l68j6;tbB5h zTY9>4ku2bhfTRW4WojR8bwWG)uz3H~;7Qg?Q-(2##I5bKw>c|plKnQ+2t%FrpTjSX z3!fkAEd)HAE~XC&_>%LzoKX{PkaEa#7G3yth2)cq-vy26%o>Bu{A~>RCuwXV3k$!{ zc;7tDseDu-ut`ct-0c?lpWf9sBo`Q#F%vTtqc6Bk+y( z3)!bTh?{;_@>9333ms22ker59CTxW6+3^}+#Xnzb8uK^DOjs{&(l#3QY9%CE@F z8z_I{Dp zn`}Bsh}!73bFbNlyM2l>)qaW+Ef6;p4zzLZ2JPIv58Ak&n*3tC`L1{%A<>=_9KEk` za%_~}c_FiIO@HFmTZ@~H=QRA%_H4AAH0^3M=XQzCr_U>-bK&+c9=(tS-zfFf^C-Q# z_%LPgbw3e^PWzcNrq>6$j=S{{+J_}bcJ$fv{H_auKAWg_UAr1>Ou|>u3zxeS;1jFk z$4L@TskMdbz&+nU3m6B={0DvvIUj;N$jCmj-~f$Pqbwp(UX}>k2%BV!6)7!LsVmjj zvGvb%A8JdZ9=q@v=8t*t_>y1%Q<)rd!MK3WSzmfO-DD$wiEbQ`{^j%$hXP@lZuG-0A}a- zzS?V|3;g_VMnl0j!SxHz93BFtrnuD^=QB##*P6g*zv1=|q6M}R>i{3;8N~(k{KKkx zpnzdb@Jv!A5g+ssbFqXK1QMXw`NDV7_5j2#g%asih+EOPTRx!gJ;EzQcQyV)s*~5l zd$?4#P|Vg-)u+@ZM$kN+>Q4Wzw=?5-gPF(2mq*8^S%H*QMpr8x&$%31ORd0ptCd_= zCdQFSm_|6efWCS-nn~siN&j1X23x#CbxcpTUPurj%p{?z;&q97W@)PO+)lo~&-)b@ z5?yBt71Go1PS74NcHV_O0?UHqIjQX#-Ii`suXd_{iv>1<*7l=0S#WqAQl5GJ8 zM~SgY@RI!Qq7*nP{pP0eYT|2R&y7HVk2BIh-w{qX(DPZ{|GuQJdMb6W#dsbtRjJv_@;mc)Ar7P-E)<&PRfdwQtO7{+SBixv5kbhohC2<4$VqvGLlP zRd!ZR)${w~98CthJxc;zlkJ%tym5kC_>LW& zO6|Aud>J!iUHiPO2ouL!iVAzv0y-0N+_?v)cV37#r8kvdpTDx@;_2Rf!`xlA@S!6} z#bu7Mg1RnWUU+gB%IS5Hn^9Y&#@NFbaI;OWhlp3WYaoQxsp+$p2kmx}HXJT^BGzvA zdD*-VPWm508gBw2ch^`nH{2sla>FxNH2c(eVCAJ8rX!xC0B{K6*_2;qBg`ABuTOTX zHmlKjDaWuTWO$Yzq%4E#eV&TlJuOg0y|xl{98T3hZLUG2NqAN8rLH1*;j-ks@Dj?= zm9{l0kWt&TTglr{qGmZ?GP_`&{!gc}Rd?V34FT*pm&aaSh+lrOpnXat3~&PL@G z+%eb3>-d+U@TJ zDW3AO=eS#(A$Wcmq4iqOdQC*-x(VgQuzPtW z5sQF5jc?hW&teM$?Xdf*T(BDU(>m$ucF*nnRPU9>n}o>5hLiUBq{6!?@|!5~+qgnc z$5l;Yk1{o!k+a&L$&p#*_||+og3?9bW5OqIOtImGRcxsa-rA4SibjvXkyi23Q~IzQ zd9ry#-GG$xvd;B|$(k+Ko8|)H+bFFC*Ho*NvocSgRQMprfR-aq-H;STsjZfTrKUyo z`|h=D?;GXY&DX$R5ucZ7jWOVw(fIf)2L{=csK*i+gp zFshXMHhiODx5N81a81s3XRmInFU?K&u6t|Xb}irbJgp>8$4z9iqo_5UBR0C?|IqXm zKyfuq*GochhY;K)1Pc({-Q6L$ySpqFAh^4`J1njNLU5PG-Q5@1kLUgCpWUfD+f#R| zZq1!D(>>j%3p?&sxkWocl9KCc2fuC@3NMTq!sqO$3u&!3A{*PQ+291*@Vhs>j=xeJ zkfx60e9BzC1$aNVJNwc6dAdI!x$4&XH(1=Q)ei0SFK1@jGp0+G)#f3+AgZ-Iot_JD zwVYHfzWsbGzrG}2y|Fs$Y;?y8-+mRSbIr3rlAyPtVa|DNGc2|nz22cdBfoTD^AJ_1 z67Nd{F1GL&5Gg!qu01ek-ZlX4pY_~FHZBTy#LS|7#@W})=J zx8)7U>R@GV*WWiE;^*9=u8pHEje1hC+V$Wp-O2W8_ZMXU&BxH2U;MsHe~yAd$Ma4J zQ{+zB&YRTb`BB~6et#)%jZ@cqlGX*=U!}Axd|kfIXiYeI{ATyTG<_!xC2;nq>ue~- zWwd{D$8P%*D@fatU7udH;V)vb>g>O`^im?c#Uz1l`>pvrOZH(vRH7rGla>vPRKehSY9(#0Ng+LFKf6?JbIrN#Xf zwU^uNxOc9`;u1)Hp7AEQM@fWDe6oA~T)X1l?|h!@>`_zxP^iZH^wv67{~iGlO*$vz znZPR|&x4i@%1&D7avQpFiXTvKL+kylx>rHJ?ipEYzw_$wPPDTBu0vE{F z*IeY>)v_+;+}#OYDcp%0RJ}d&-hSy;?%IlmlAfRbvnY72%>}#{X>kRy8WF=FCE1U# z?`Gux6>xO66sh@|Ty7)cxUwb1u}C{PjWZ8tz5*1bN@+8|XuUxlp8>XVTpuE!!gjAy6&n4hmc zjd8n}haRJ4L~Xcx^_<5EUc~j-CfW#yD3bvIrR}ofG)&}JxhfUQnhaFsGirN^>X2l( z^Ub<9~(M)_M@ln?wGEfwKG;wz{4 zu<*zm9b=Nc`_}4dYvu>xB2m>61sx5U`{0B@`Vu7t+Uy_Z-|QH&oce3M*(>#d1E|bB zm%h`J%yc>4&kmr~mqnGa%eH)Am;cL#49kFD-+b4E*ZJAQ5dYl^cC6ykEAZ3R05s|t z6~G(}T%!Z7?Y$oCK}bByY-*9;I-E|5Vi#yinD^bVAz%ad&*Eql_HKN2@O19itHi1ensO2&NMwF30QY zaHp$d(USTx+8L$y#YvFd2rehELfALW&CFPx4DF9dZGr8@XqqM1+b`Gz(sinnznMAn zuDRT-NzPK|st<%zI1dc*B81|j#_H_IP*vm{=Hl&NiUtz5L%$q_CsC+4DL>e$^#U;4 zcKDrnKDbGXeVckAMx&xIM-ylJLiBPpDtEL5kvj@hZ>ez_!{N<*zoDMIaUbbL4taSIq6c2SY3a%?bj zjRfB=nHi`4aY2uxjX0AW?V7ZxkxWn(AQyV`!etv_j<|F*oOd`0_Z(HpJc89iBQtn- zSy*0$!h)P?P+X0TZT+-F;{+#R6oZE85>O$3<``aqO~(cEJLFFcM!s4ON>_zx2=N3b zT@WbJ*j~X2xFJzHu6>(2;hy?AkN7xJBx zN~pmABZ#D=E>j=?BaC;krOOkA4wD&nlg^&TGcKZ$nhas)vI$l!o>Z&=fz{Kl-SKOS zId14Q`Hue254{h%?((mmi@CaPofm=d7e1HMk6XZrOZOM0M(d&FE+!>gVrvoq-$BU- zDEV6K1Y5C>QV1CFQ=;7L1Z7{6Ob?(cDi+o9d*{O*Q6frx)C)p!w2Mp2cX+xgPGJ(8Kcz1*H2+Y~M&qPrH?Yy} z)WL9s{i_H&fluj;} z8`sqUk;G6v?(8LCd508*!Dvvzm3_k>AJSpk8QE-^t&uFB^iRfHbkR`!6Q)~^+U<;z z(#HuPS_v#@Nb>`gK2+i39$)8{29&5V%k{-AHI(!)gkXLR&sDJDZhf}^|5Z@Jg1hIN zTp))eXK%07`6Xn65^05pkc*S9f<6FP2D3lFdJ096{f0rfNdzF`N+Bvn*N-V8mbv$x z9xoWu$gj^J#tv%_*=azZj>G)*CabyaS6ld@qhDX#2RF0wM>%ZWY`!f!&N>9|H=mS{ zp%@`kU>%F#;nGs5^HFSpAW9Y^r-CfmPp7>d=(EmWYs}b0Q%W{GeDn}Un{98JIHtuq zx{?AVd(Gr2rNhTer;r?6k`{RE=WS#M07TAiq(*MWh2aoHyB2G)?F`H!T^>r#F-K-K ziOdMUOfMFkQ$fAgq;d+H{J^4%Y&~u6Tf_9UZ{;Kgr-f^`bShL+?wDC!i&#Zf3pk)z zZ-LSmqmTDBM1w^#*Q;?7_&?g8R*7h+5C{*ygL41v6V0q-S4GmEnnuMjVYzTh1Qubg z2L3`t!l?V#uQkh!Gq4DJ8P>J~(~9tZp$nlS#H2&JPLD1=+AdPlfsq{{`Y4+)CZlLr z`AgQkumdb>hEf-sEQ7U{zk)`RLyL^GogW`-pzVK_NJ!o*xeLty<-~kG((l=s_kE%- zEm9!sbv_~)@#4?$Rkcpe`rfIMA>X-Er_j*ORnSI=*H1b1y!fxdWPx~_fxo63VLD&$ z6eEGF<=a{Qo@Y0){0unGef42|mNVbs97mT`=#)z&6NUIlQq8#v>K-F6;5RsS*QXUt zO+9<=+BUa6Qa(j(WmSF7Q28#Lb|IM@7D7h;l_rGZB5g{IF&tJo>eg{mE(;dJTRCet z2K&!M*X1jfFP54IjG2@ZTcGF&nh~!Kt!>2A$FVBWw9sPcY^nO;v}k}@+DGzko^$$T znxOHGn4oN~%N}I*AmrrlRke_(kU2Aum_pt=%{cF>W#E@>3k+PUDB~duBEweN;FMbu!gM39sZWoQX`)^`Jm5(%NaZLf zA*BGQL_enUm#1YG?{cxprofIcQ2VH8--b84B*aJuQL&|OePBx@#;?1#a%Qaf<#YiG zdQZ|t`KVa&d`myUDz%z;)k;hK1qY{rF#76!%v4KX_@!guUYXkR<-^!S0-Y3{g~^AJ z_bz(s*$uD_o6hhs7Mq7fKsc|vgM#Nxil-hUs53WjH$b1&I04B8C^!$O z^&0+MB?BQepugVwwF4d#;n5@isytu@&~Z0}H>Ur|(c;0=JWC zKcy@Zq)079&-DK2Q?V1h_G*{;>@GT!bDr{T;k_^hr&Spx!c1ItC0fYR(Q=(O=Xd^7 zwys2;Jr`9Z9bZ0LxUjatkd-)CXBinV%%F-YF*oxVwH^{REt=)#sY@I2ek-?@Zks7w zWw~w&LvhG0*U-$(lF5CM!k+Y^Q3^twsjnsCSXK5k72%q}ER zmIDaH*sT-p6w*$vgd*;00VSnL>%WY#gjs zf<-vZ$-_ox(1za@Uc%Gn$~=r|NW~CtV4%XCdy%RqpweGZtlll^D~*_(WkL+*AZ&bI z8k8C?ew|MT6Em@gtdgEK8h1()GkjmyC|Ji>$qF?ty>f?w#ll3}BX{fV`eq*I?6Tb? zS+bXg0ozlJ#&iTrfoiQb#40UNN&FLKYkr_++|B%~ z`0|D+W`AJCoy%Wle__yc%?TdoFb@OAGr}M+roGxh8_H0u%Qldx(r`)T6Z8uwh)P=8 zP{=#MWC;B4qi8(n-?T5*3>r3G=t91%=<{r>kG`;xQ38xcUe!BuMtTAKN)j|;|s=xA3$c-Z!_4sv_56)9tDTw=GQ)SJ=h6o_!KYMtU|1} z!q4x1*$KAcbp;8c7C6RcnT;mpG?_E*o875I^zf3!x+UmcVZr*`FmDJt~zej>TEIp~7z@z2XHB0jeEu9m&=fOpg+v1ViUBz5n zp#v`c_aB-5fVv?oqRlXcDi9#6*xPl7f}dr~MA2+w?%MQ`qA_?FJ(s;095$IVL-rU@ zkfZ-18P|kuLS}C7VBk5MJPYaK+plW>W_tFgJM}uGIGBK~g}MFdxbNZv;5?_!R7v!5 zXps=zZ*14|UN8q(#KzceHZ_G$v(w@H1>F{p%%iszYM0@BT1Jc4o9prgRp1o^F0CiS zO(IuQ-oG?P&-KO%zA|N^(`@hcZ20D8=YqGfWx{Iwv~j{`KkOK z58EU$Jb=(!MrVy|$5?mOI>ZBQl#MQQME=7M!?45 zMsfY6rG^+d(ZFV*zfvOH(BU(_OkSnyI`SD0Vg(7cie)&u60qnVEx zbXb41Kd~US*BKrG4sUZh5DihTx9#qpMKX6pNHW_SfJ2(>G5$VXSDNcTU4J|vNfkMC zj4Ns1^lf<>TV(8hsYs8?F~Rk)-2L{?fVqA5A3n3c-xT2;-Aa}#<7HYx`_(q&pK z)^~S;c;aa~76d?@o16Y3wVpY;<%woScbmx;{o-oB$9VTj+h;s)48RLlmps#Y+7!r& z_3G;uQtyh_!QJrA=%n@OYW@rJaMtS&L4I$w(iH$^QPLkOyqtXsM0rA$KjAR3+%)0B zDiLXMPKuQu4fnoP9$di2t1Qe{u#IRi-p<3oalEAUSU&NLx-2ACZg$jm=6c{N58%Vk z*DPF$=?;#O1$|*&x>bEs)OGiLep>v#7U>3roPjpfR)Doy2RsVgTQI}I0) znce*!)&VFodSaV9;iJnmcUhaW{_PQM~{y3iI zXuN2D@DsL#J;@X)>@8aH)fy*aNE4XrnR4p%THc}Tzp0||2UO^YjMQ@aMy*ds7N^r( z^23Vte4CgAYO7W%`lnsGi^=NYK6B%NSF3|=XmwAoya&;J!5?Q{Smm<2Hm0J3DjX1j ziT@xNbe*irdBhz2wEoazw+QHTpGgzfwZCvgfWhN9IU9`uwb|14FGJHFrBd6M8cruv zol9KPyscaocq((yjo*&D(7N=GulpM#C#uGEQ#SloK685rv|p|i3V&$59<25G0n`09 z9AHE8@^VJ2yYTUScRKpZ1?J_X!!G+|?t!|)btc39-Esg7Md|SWn-9IX!d-b0qngXY zMYMcptfAH>)bD;8nnu|~p&&PokoSJT`coxCl?uGtC$x}?H0im5yz8$B z0T?*41#ytyz@Lsb1GE}wmMFFc-=8YpkacVM3Rw{ICb8*x*!$0mxzW+GS6!b22I62l zQe*t;pE6ApxnT(r{*pZ3Cx=l0U{6qNh)DEGMq8MgIeB(2pPta)j9YApRrk3-qZzVE?3=(6}M z>dvoKQ6b4+$Go2+E~$+GWs7eOoKRH25;*`D=SK8$HflC^JC*d@jcBTAhY)(Ml{94} zEh4!3{IcPrImvfcuPh2)bd7G$T*pi1e=Fi$CtNFmIs5r?+^eepJZfVC`EhqAF+9ld z{nPnwmLVZ%k6B^0$)v$-n9KtC!|y3wxZVy<1p_q0^9=q{qM!82B87wH^NSH^<7_V{ zLRKi;^tFcMFLDU*AiTC~ZL{>p{bWLiecla1$5zu=Z44F`Z0Qey^WLP=4B(I@vPx40IVbX^W>ruk6A?>i9ODp~h zYL!#~7L#aL^0l}F?;JSk3H9+F(w1{?%>VGeFD4B97Y`q_90cHkr2~4gRKD3*I*K<} zTqzzCL&WbyX`?#80>=HV9bqWIIR1+$I|G|#qAzTd47JG^Si91mXh!htrvTPf=Wik| znevtdki`uuXba3I-M05>!ay{UB)Ql!Ke(n^Il>#%lT4_>=~8jhO(KqWAX8r&Gti8{|cgFZ_FcypJfTXLfn#`S$*?ZZ{ zMbs4%cP9V+VkTxjh|&QMV79NC^e6N=xMqU@J200249WYk)NZwb1aPVYsa15yc_Yi_ z^gG+fEhRw8TL*nhQ&S$2~Nk5j;MW# zzZeji7(Q1#=7ug^YzQ!j&#O`-gD?I8G5bO!b3oftZt9??a^kC_1;&EUqZn<%o8Q#guw1D6Fa~Nks?Asz#kIkvY3pAxY}l@&Sjy;ywu~aTuDt< zP(Qg(w9=07Y_JXHW`~4>?oI6#<9i0W2oBV61h*A~r%7rZ+ck|5|C#+p)XoyMlRCOf zMZ{0?UIx-4zikQ9l;HxZ1$`g;KE*2b#r+mMJ=E&3H@-imZ5(tJq_q$L&)1DGvnLve z?;p7fC_aF7SkzxzO0gs?vGAO}`S3mWX-Bs3P<+xXFK$S4DU|LoP)W7O7QN zm_ZUK2k%A_gdN0?lwVKcbL;T)c-;QYiZ2v)9lF2cXb^mvl|WTd-SejI@;jg-sIGNM z5VY7WJeKEo+-d94->?Da2>{$*v4$rrpAMKG4{9G5n_osl4S)}j2O+Oh8;z4j^-?mx zCPbUl)y7K%6U7OEllL7cF~jHQe9h?%-wmpdsn*aJNYP6eOke z))}TtJl{31yrxTh7bhd~l)L6X$6X!6Q#!AVe(-XamDL9R9c~Hf&-88*sE|A<^lr*& z6+U^QlB2|=n$yKF|E^rSQ@uF(P8D72SDu<+Q`v2g9h7x0|I2W62%l}`L7=?*-UmdP z%t&Z4#?`fmcsIwxd6?8+BcQwxb_exOzTms!YTjoA&W=4WIrzLx+r2y0ETneWYLpQC z@+SWFM~hjFD4#wBmJSN=E0^5%e&R*U*8r!BU%iD4zOT?Zx7!xFA$k0=jSjpI$N2g`C@9 z_}j(JPmL%6bIWTR+RX|b z(ny$*zqO)_gN%8jHPm;jT-@;H0Jw+#dgFI!b09vt9Ah&ijpO7U3R-9+TbH#V;|cfrSfaMN6RCSb{e^ zlb4-W1wX$h4p2bm2IQvfeSdoFaeOig8iF0{_S=c^FRh4EX6ufz(!@d#uGfp)IP@59 z&&F}7H4)3Jjy%V6yDBeadb=sRiuA{&pjlu(2Cfu1h|3{-2*GZ6>YB~z6XoEA@{+{ZRSS>HKjkexoDc`qx7R2T&63(#Qf|?3<=1yvl(vo zGh1GOcFo#9^45+E_KaWNtf0KNXbGheD0CnrUbN_EKG##-pxSi>pOk1k9``L03i3ZW zW|W~(daaUE|7-Z&?bOqvANgFzb=SU$-Ok=}h(71=i4D5GpA%-kw<|1ZferD-V$jTW z^S`&6g4~me^a#cWL8*`yk{QrlT(^nf9XNr_t<_{a;nVVXjMcjBW|m^lh^9EW@$|mW zgm#h;?CrR*5DZ!G_J$usVEIsIs=uKDy0`MP$<+j68BaEV9f%tZIpZ-fc)z?9Do&(= ze{*zu%U)=3KG?g>9{%1aJ2G8)9!%4~E|vH1)*K})t$uRyt|VO7mnEd#@VwEII1fH( z$!h&!5MFJtpToEN!ZE;X>jP>1<#XF@9-wo(R~HGJNgk8|W2#u;X5`I=sMxRu)sjiE zO)+InBPSCJeTy-v*OFjJAr}k90Ql2k0gPENBL}4rFtJ(4Swk>H!nLBl;$jy>SgGMt zq>vi}w#DChxWl8g!Z@b<1vUvg(O1DGJYSY7wFJ5u$JqXS9zzD<@`FHFSB+t zRWBVo{@Kh^p&{CAU8bS_`cyEq6)TWb&H4_L&wn=Fm@RfK?{22U8hW@69kCk;D%5u> z=9QaySSur|j>|N%E7V1s8I<|yH5d~s%pQluf+g3$uuBrXRm05o=eQMT+@{T@Y)Ohl_T^w$ zK<>-kgdza22t64=&UEwg{-et|{=9WJM7lc8+3kLZ`A2f~YB13Quyj30nVtLk_)N=G zrr3LZps{*+Tw&wh$-28A8Oj%ioTGoorH}7?Ge&Bmubvq2WWp)%{ozU({^Hs8aqS`M z$=Z4SYCpe2aCGAJ_y~UeL=E|I>nx?s0qWKNX*{SF7T}-eegzILQQ(r0eO{<$T!#zD z%EBK%rAO-gmrbbQYU>MQ6^(E0+5hNdMuP5rg8=A0MqLyT^1c??s8a8t_G|Te@RGN| z_rinK;f1c~I!&H-wxHH+&1aD}>gLGj*;TqQuX#Sa3-1D(Zzg+g6H`Vf00B<3R}$-B z`TDEoEb`QGhqhCc&il=ejA8PGE?jj!N8u1!rcT;YZWww4E$&NFS$M;(T^l&&9?v8E z<}V5)JT(s?#TGyM&&?=FwL(H+r&gX8(FDBvXXpuGz+V))X&mm5O=19bhxPIvUAdW} zl{f8*89hv(i_a#*vuC1Se|0rm^$|K!qX~Mv`_~-Y%8L8l88Y}z>(^ub+$AUhHU|c- zPrH=nsFsE7R68?!-%O9aCwOgWSMO>iZO*iAkDEdAf;Rifb}zBqQ{4z*cTcWgvw3o8 zW6xZO>fD;UJM7=wL}N%myAcw-F~4dP(TPm{zb^n95y;z^L%-E{miQuC-u2T`+u?lH zRo9Kc*&IS|`=>7kEKlL-ALUxw{7!utO%6cx)7!RY7Av>jG0xwuppRYL#O-LEj1F%r z!_OSWXO)6_-#dL2KE43t2;N_3c}qD#Ifq0a@NUV)?JDP z&Zt%#=&Bn%m#EFnKKIS!dDmzvQ?Wa;&F`5R+*%-OVsJ@0q5HP$RdLrs^12_?LdhE# zaBy?E8$nB0n+`68!pr*TgY8e=^Ve)a1biFxKH8@7JuaZ@c)0yj09+2d=%%1%I5Waj zH>4_Rcbz0DG|#Vn@*+HkT$aZ_I*%<+`m!D#-DJY_{`tw*wtZx>FmdL0RYlDYm*cG0 z17Xr{aWYFC>hyVSDqch-kh-B=W4$jZ)yP@H>kt^luLsDF6{ZM)wih%t^$pMkJ5d9U z(qJa}gHIf`J1q44T6Y~bteR{+``WG(0?mDr#*=0Glkbz+j}@1a%MQ z;vdg74V&?_+DC%l3VukmMrlbTYkgjWTi!6AuT(y0F+vZ?3=59RaAP&bukra1Xe_X% z0W+5-@erbYhfe6GsgH?oJ}>yAP^Ls1sWK8jaxgAlSe?~)-X<;p080snQU8wSaMFN3 z;nZ^9vJdT=75S#Y-f-7jX07C0W$n=n0J>;+!eFgGMfRci-*s~}%D;&@Tcd?EupgwY z8_4+kQ?E6v~>KmcLso99ZO(7Sdg z$oGzefQ$!0Y}IR!W&ayQofe=4J$gmy&foK+8E)ZSr~;<+eIYecROa>vr*0fvM?2)G zqoZU^Jsk-EeF&o%PfEL7hEyMDjco1|d+{#xa~$6qE+#gfrwjFB-?pM1CT);DeD_`8 zO+DeZHFKAEKSbM^X5uw);4>Zi0tS<+3@_UZ3K-eF?YqSC!dm*D_un1Zzj}(~mQMxC z{(RbAwL9LC zJjO313Es$>D(LoBdaHovVM3|G(!7W{li^tWQw_|y0)?${pPJMVI1NY_GVdgkW_cL% z!`0c0T=HJz6kl-AW*|y_6w1E0(39N(F2!&l-W{O3tzlrdIvsVOkoZR!L}VB8qUQc`;@@9X z{c~#azIi9kQ)VPUT$CAu9d z3gGG-{7%rYJKQaAW0%(LyV+YAND70JHPgld<11E5tC+)OchEwwh{pnN(mqk$(U`>w*dd+++z~*mwSVDqhHsUqQj-n%{G9|zl|Lx z6Z_egCD($LEWPrXXa(gP4#b`^HzkYHl=KT(^Q~_lE&{EG39EW1w2WtuYCS_JO4aVc zOeGJ^&ZCw-(D20L<^Fc;u`#VKbBbWd2FG*=amU$q%H5m}bMs}S+(y44T{4i%MLY*u;-shJH(SSD(T!pN$UkC4v;?LB z0@=uf@5wN-e(_rv#ZJ^ADOC??FU@}PQS%6v%hN%H<0JbR-uM@=Ef+^dhK7M1fJezh z4lp$h53Z;Tl%nYWVgIG0!g>uq_DrYE`Qd=x!-oYBJ?X`1#blUL1kt6`P-Lem{nEDG8zX^p4k2 zgFm1T%*niC|7G5Y=0rfLb`(|dzT0_5GF!q!S?;gD^G53Bp)Ay8@t-O!gPm@r34nFmMvxKQ$4xF_YV0?)6LA(i}p+h&$~$M z<1GkC;U9aft)Cb_rwizBi$alsdI>8&N>lemVWpyz6a|;+%T7~Dn}L8Iv`m3LTJ6~Z zjv(8cBzmp$)4UYW*%l~7MZ9|UKGK6=q_{bg_C*sWwnm#7Dsj8 z{v(v-{;^%*I9lO{9^n|E#*d$K^IwNsDV=I74$%uDU?3Fk)_lE-9Va`QEgyU<~ z4Idcc`i)W;jYEJM7C@NNIk>5-`#Os2KbXN3ow2OQb5-0r9-fZw5HAn%f7X-rHus+> zi~sXf;Xzj3as{_}YF*W$qG7B>OENjD$PMgoP(a0eC`uxF;5zr3scRVa?omnM>3;uB zl^IRC`mw8M-7O1`AspxP*Ap*|W&(BNpQZc4f>4c3l!x15M^_Ee`L~2x*nTpAI%|cg zT6sczymGU3itg*gSgo!>L{m012hm6M3N_*63jB2SM(cU(D%R!fE}E6(mGc$qH)NF7c^||M@ySo4hD$ncCImTs zL9^HZfu(h+S1*SfWe1=KR{%58o9Qvq*e-As%}*+Ygz#skKJ2#k=DtC0(=iijgZ(FP}L1d4P?kQtO@e&mERdmc*24Nn_^20`oP+ zru)IV27V9Q`4_f^d+cSUc6`4JCvsd@BtJU%?#L=OB%KPg&JFn+3fWQa61$woF~!Om zG%f3b9^FXXHdfga_iNIBc#Qukp9BpQ8dL=jGvqf$%X-QH%Db_Tq>rQ z)>``{Yc)`;P$PE9my#1fv-h0p0?o;0dva(!m}b7-i+R~wz3LpWmYsxHuic<%l+XQ0 zUdhB@SiV`h$@@o5{T*6Td{Ug$c{6*kv7bc~eVdfL`y7_*H*pP-0M@f#Qt(mEcsMkV zye~g}Jr{Izb+m*{tHHw+tbe=oXk}9s zvQOvjAay`spI6TBi3Q|&5cF7IcH0Z9G%H+Z{DPWZ@+Z*-3c1X}&CVn#(#7;?CLj`b zNvYb{9(iG=U2o~%9ZI|De`(G!bpZFH8*J*+lAK6Gi>dTIQCi1?mu;3>zR2T2Cssnf zc-TTXHz2YQ^iEGT92(k2-z~;4DSZ~2I)v; zJxzhtn;nOx8&@y+YLdn4n3~y8eSx!EM8;SS5RLrLx$eS`1)hWA{MxH=diB*d@%l-~FCKtVT&&LA*5n z&($^RQj%13#Ynel)Gn+47A~_0dG-aoPnH%Q?zz;ih23L{Qr*E`YrzN9jqi1{n z($mvdRy@CpG|V;3lfTtRX)#c;(N|i}S5>GtHdL6aS66Jm-#-4Yq9RVc*;-@XTKm1I zSE`R!WF)Jz(~tgK3VCNvZD^=4HC4w54i~xa}$-j+?<6d2_gsB{wgR_N+-WKcan`EB9F}2cv1W8l`XQ(na+F<^ITpTv-?y{Qmfg3 z`nArf9i7$byS1=M;!jPj-cpg`xtSck?vd=8QQnvUov4iI{Cs6ZdCCV}UQyP!xvhHK zMLq80;>Ox%h~td>ZR_kXT6Vn4URml~aM-oDgS|Vg zNjdv&ChLhPGbi>J_RG7O^sOoKP)4&#mV8?@)JCFWZz3Supq-0<1{&_Ixc~FAM z7BUHTW=I>W8&U{mVe4B;btM}1G>eXV3*D@{`AFU$oLlXm!|f|0X$SMW*ug~8b&#-G-%$-0od)m>zRJSx%|N~ac+ccY5}bJw}O&bJzw9SAQqSGrE` zCA&#)EgR&i>iqgn7H#=d&+-z;8hW}-hx<9FO>adqlsw8;bj?UAKy>=qVT$f^Bcz{L$2KE5L0s){BNtAGxk1idV|H$j-q1RQbv86WNK`Sl){(DtS=cZ=!8r#j15%DHQ z8Uubm(E#*MqgHs>zLkC{k=tmxALR#gf`hn&;M;g`2%@TLD$UG85<}K?jk`+ntbgrq zFfH5T3Rdp%Sl1_i%XUtr4AM#6$>Kj^UWAL@LC~5z#OIBTM-aNyWiiLvG#Tpkip(!@520oIoo9xi+RbL^sHhekcR5U@Q z+F&N+*%b8ai{#lalHQ*fsh|8CN=0c101QkiCGEe`q!Y#b|Ol=Mf`|Ajvf1+ZJ;KD-MVhKiGYbZVLi=3p-HqEjR zEl+Q2f`b#M{%S>IL?DwOY025tOS44=$1zEI|CG$Er=*Je2ZoFZCgszwoDx%&>7^Pi zG&|t_cab`e(ga-EDHGZrWg=gEtl@DZDZ@1j^vQGf`)TVO1_boaOQfN&5htoB!rDh8 zsu~`O-&RsohWM)$-+eFDnyO1@Zcho*PM1Gfuj{1g3G)}~(raRwccI*YUkp;;gCWoM zUJ2$ZWLhc_V+)A58SiMY+GZ*G$u$NQt3}?k13&oTjEeX0l9n4Y{=9qjcoKxau!dm` z65e&h2V_}sC~z09qX7yh%o@!yB~Gk$0iG(cw0I(l<_Ix?u!tkaA=tRPwUvlmN>r{@ zMvlsq&w7a$ZKu*oDM;i{HW-*by&9a|_QUnVCDW^0EXm9Abnk^Q1$+P{bH|R<%X$6C;^a!b1PR#u8VFeH$((70 zh6E?731`7DF(mcSu1ZVkw~uA(CsD+ZGqV>JX%RPZQWSZj1D@7exP>ADv!OWxxA*g{ zdl_E{q56j~WCb740hKMnXtJ4pd~*I%%VcHXU+q)3-fL9iLOi6(NJXMxpOlSwPIEN4 zPVWuO^@}UO8Fz}&VgyE<3^$XN13E_zjLOhw7Q*WoA66zaz8ac};v{c9w3FZ zoSdl|DGRUHn>T$=`YPD7mPR8rCVq0V{549(A}+23fUL4Wue^8Kq7kCe^fNqPAoH`R*g}Dh(k~o170W@XbMwTOduX?8Q5Zia zB4TfgPr&dB3JWjRavSf4Aqct&?(DBLGo_}TOkx)%C<;8M^eQGF z)co>Tuen{!pQ~reUwV_B^nJ4HUtL;=^m*zKFDj@Yq$cJiS*T>koXh9)HweiI#zWi( zu59l9YzF1+?R3*Ux|XOxKi9$FY+n_=mHJCszL9$NLsxT{$YBQl`&$(p&m2<@T<4t< zCi%&-DT zO?yR#2hA2sd6%pA{-*Eh$VH0&;cX1aSLW z)Dp98IL(>CH=zu$?djOWEgK)(W`c}Oi-!I90z>h{Ka+blqs&IXi#KnoG%lKw4QlWt zrP#pR(n3Bb=#oe-(bk%`9#?gZ!CER8soauR-JKevbQb|P_v1KqA74C!^z`*FU@67^ z+!?2v0$t&kaopb?kt9KsL4?3m2h-7Am{X<^z50%!>pqg(e*yetr`p zV}ADDr2YOowp6~d`RL=*Wz`39ZF>mDXlusi_qY8vU7m^}jEmP}G=(YlXLW&5yqOI# z$RF@alAosxL+`t0aGlK}Qum8wFk}}%Rafc(TGh1I!=D(oE}WUQiC>N$f_31!kbb)G z#p~!hJdvURO@(|0mu+`%D`$%1#L}!jK74*;Q1HKY<Upe1kmNPhS~ zxzDwSp*Xm7|Hsr@$JOyWZNmp>(E`Pbx41)bDemqrg%)=^I7N#~ad&rjx8iQ+pvB#- zKq>Fi@9+M+&%c{Vb~Bk=bIl~1SddJdvGeeKXDG47ldbWq8mYja#cFYo6@hHV@XyIw(jS}ctj(l9HR5NDGP-WNQrsBCWc>C47E{23mV$UD){C|dGHleunx0b@^Uw`z!C)aLwaAzV>d&zP@d0*B-Owq1 zuhjIDtc8Rh-QS{+xaMGe8bndC(%5w0Jp?*^0WZZO)tjL1#pzU%wecuue3bA;Hane^ z<1?8d4iODlXdX{h#rHKa5nl~cYG55de-mA+a|o(tryh{G<MxfJ{sB2cJ>l{RxLqc^h)(8OXh>>-WZyUSM5ny$e}5`8iy3=Cs-A1F(;Fu zym)>sHi9iz&H3q(v6{8BClsU26e;)l2l@8+6dyy8ScBnH5>LDM7rdJ(mUC*9-FwPI z)KA#P)LbyGWNv}Z$n8>G`KN^NMg{f9{9Xw-Gz-Kw|KNJUc|8_E$}HLDyA z7cVU&8iq(A|<<&P$wfJZ`ab#+OIF+IDLECN0fPs9>s) zQQ9L>dghWfzBMerNu2gn;$a%=to>b@v@qW3zc)T*4c71L|VF#-8U$j8`eqR&O8!Nxl%c!m8msqkTJEAcda zwW1D;G#2Tg6qc~PMCVMETx?2D86>u4$vkIe9_ki4I`b^yo}XF$u-mE4!_;4!!(59W z-$*#sBJuNJP;MR@XR~kSr}%u4&+j}a{$u@jW>Qfv*>+yWHR_XtkdOk-5^YGgV%o$u zeiS;y-QovokztAs%YdICOfwWM2Y*iN&$?2;&T)tfw1SE_18z)#Bd+W$%KDY8; zRwx2jYoJ-XCdJkrIF0{T2*zo3F|Z*!VW^i&^n1lNlO=h(H#b3#kDk0`)O4PlkuDu{ zXA|(8k6c{t#3m-HzY;IMEj9Z|rI>a#zOs0$vVw>~CKmGcL+{!b)*Q1cgHVZ>SE$Pz z$cY)Kj3R;m3V(q3Lc5Vny`0*24dmn{0O6N{kvBx=iB5@Niyv36|H-{IdM4Wk?OH+b zX*XY*{3nGVopch~?>5~J{!d6L%CO@`TqvfIpi$curv&=n+ePmEuO*02*FYM5oP;Gy z&HsBE=;*81GhxXH+%cJlqxZju;{Iz)BjHD4cpWk^TX9g}_IKVF0vZjJ}sy;HxQ!7DQ1BMigr z@RcGOUM~UDi+T1*>`t|@LrBTcQj zNjN!UEX=`P+hg>04s;;vU|V+UUDi+Qe|<&qZ!`|fbe-jr>gbz`A7M-=EVbjyRz7Rs z=d9?;Y9lJ0=8_~s*h{FvJ$efeZU^-wL2fgIdgi@)rn>s0=v4!>w`vCbe85-W5Q|Cw zjfdrwZ*_P}Wjl6a4NHKQ&cnrLH(6LMA-8}@dTCZ*G|)h^Se<2HVFBtMHBkywjxKOAhwcjtcqbBtwjncsv|zxJNZCoH;M9vU07*xz?oy(o`b z`u>xBJ=wIjHrRrvwSg~?7}`4u+WDJ9QtaW>P?SXKDR-tJrX+>A|{>cA}jTwKYo$?O6@1F z6!`I_|0zGu3X0V5g1pine3!y?KWLB5pfz%>``dKXbiPT;D|rm$tZG5NK$T|Tc01B z``4?FF1M}IbKeM|S^h6=qx<}XzULzxxm`7%l6C^GOtd&D63m5!gtV5Y{w_yrH~E5Y zLe+)wR4XgFSsR#9!`YAq!)7)94Li)VMizx~$=*#+$iZbZaqGcW9J9e(tv-wqHm2Cb zPlkeyZazsJX3GAT97*z_L0sIA)iNiVdQGOi-Jm>|2@^B~_*#mq<@7IQ*SO(`-LT*`$VAcMLr;qg*8S> zzQEIf2rHJWIE!8qabW7*hqrtRX0Lv{2exJi`}{^a{y{B%;3=YkE#~nuhGc4T=2d(j zLPB2A>flyxjvrPZBQmMP+`;s$f0z)M^3o<3D}EQ!S&m2<#6k39a+=IO8eI#;{vaE1 zhwt@w%|Ga1!Sn%b+~VIjRv7Bd?~%qWTB0OO;Po9{g$z2`--`<2->UVVq!$sS*)zI9qW(Rsd?>Z77Intza|g~j^VConYK(}xfYlSXxO zoDw(7R^Z;DCge+L_Bw~D;F6QPL4r@EZWI$|8HIoI7|=2{`Y6<7cp;4{a$2W`XQ(fD z$=`YQL0zcJY_=f_FT7p-ki~ipz&kwoi7Us}ZHuxt�mDcJ(LD2aVq|uZ61`(OiDI zprs}E#L_OMIt%8J#WXo?hjIh`oe|%0jG-sV5h!K%tkCv=J3n9hMf+lyb+c{+w^v`L z`;K{|g5V^LCsTRNu&!axCqU`5d@%2KVvGu4$=)KtV<458TJ_?BK4SgdH`pvqh_?-* z4AEcPw()*PCt#+TOTvQLz@QW=CT`I-l;FXo{v}Z1k!Ji#5LUsg^C5MH;*?CN=<&^+ zv+Y*c+7J)#7=KWk_4`2Ez24#}7v>8=c17J{PL)>tQ}Bo*)mhj$G@*DvA~*3hT}*L7 zl*(D*E&KvzW;36$_WK0sPrj&SW;f<*+}z?eMU`>zxUb`u3#Iu>rVlZelnhcu{pa3a zCB63@>a@lP$^9GesT%TDgeS)J_1=q)VM?>eHbHf&eK?VS^=Qh1Pw9mrJ$sJUWU}8&z{VOPWOzm@*7*Sl5%?%8Ab48M*LIb z-gM#?;Byh*mjL(OO8K!G z@kH=wd<7l7BU?Xim+|-_Rms+D#2KgR$q7@v& z3J&ZLe*K_y2X(3tad3HE3fcTW{0dQWq``C8ao%kUB}84m!-#f~zlSrl8*T&SUOz$ZKFcAipDS}F%{IA+i6yZwBKS!IvBKO$XrVjj-AtgD@gm^_ z85*F0hf)40+Wc*r^G53!GqaKgC zLmpusZ+=+kXyLzF$SC1QCmdV2VOUD77s)-2u3wgvB=Hg8`*MniL8Qin*Romj9K9%a z^vOElda|#wJJ=X2yBTsK94W1L!mRMNKW1H}G(5>6m_~ zN4L~mEkG!75c0$I@bAPQgI-#I1RK+*HGRFG@J(5P2ie!BxgF%P3#ug~Sou`CNx6S( zOh}|5s&z##{V|{z_Fn@xAhGXNf9iqCuY!%+`aYC?>v#BErE{?|Xa%EUmm?Y8SJ}$r zx%$ZbJS~7!ioMsXLDQ>%9e|kbUxziTqZU{z7NS(5r1PY{vww%ifUUnL=DeN7oPOCG zcjn!QWZJk<)uF>_>yoP!#u>vh(lk<#o5D>7D*j=xIn40Y;-o}nTfy>$Z=Vka36zd% zw}|^^`_vXX4hoTc5Sd0KZm~&nOK>Kw4{0F>h^a+~tBxm`796~-5}0WNZRM1`StiL|HGjKsU7-2^5lmP(*TmM$SLOfLX-v3YU~GVpSh>2ztk-cZlRu9)8>>_znG96+)Ay$q z|F2n5NDdV{6Jy?#hcM*-bEX)#@G_Aue}e!MWCy>?VNgz$^u+0SV6*H8oWG-W>Kt1| z#u#AmElEYzfoPL!gDWG*QG?o>8>FC*flHi}hu38BoVTHM`gd;mE-Livd1HW9l#l@e zO;=l&b9=nzW6o_~XyB0%F>%KyqF3>kldz~b3)WC9f;cDQhof#n$K*$&(wDhz5|K}S zrt(<1$IpTI#CfZ;T0E+H1%LWjqM3mAO6Zj*ri?)Ul`{ao@odsrjTloti)lh86PZa{Bof3^ z2`4aQ{L~e9bq&;7iYinW?mTmp=ymWMwMbmAv#OsB+b4RRARc8Z7#04EHfojV;Aiej z;DmI9qRQ|p2=Z()y)q%dxyi+t94$nz8kYXd8d-w?rf&WFj|DYLmF&c)_d?g4Y%gHr z$J>=ESxypf<^;UTRlN&{DORj~&{f7pE!g+-TOL@BpQND14=gS^Z7O9quQ;zU(qm!) z`Vo%aFxTERg6`Q;5q3qbR}-q!EU&c&%p=|-fCue_%g6oPHi=e}gH~I0k+^>)(qFQ- zo4G2o$rin4`aC&w^zkBb;#+(_QEZH;2zjT%iIL2sboUO2FVWhRuDFX4C+FZFIkI6SSX_lp$gZ>j zpd2nK2 zCQ1|D{gA?=F1?TU>x4G>6XR%|n}x?5XB}?u8>*d^a7pL?-Ybp9oy#CmGK&2Fla*D( znZ!joIZ2ew!$DksK>v?Bq)7jI5-%&WZj%q^y>FK@U+0DcHFBL1El<>&81L#iB?mki zb(Z*g#DwDT(Ep1MeO{soARuvt%6e|l%G5t<+$)gd#Kfkl_0=u({k5&>#829v zh?Nubz?rInGRO_`h6TIrBTPOoem))+@eNBnS%tf{ojh{&5~4h!h%s)}HpFV8?0p&V z4^EW5Z;rp0HU=F&qQ^b%LB?btKc*P|PYer4LD(h0ETXRHqR16%F8?3WDgIDP$9_yp zC=e#N%bGk?8P`bd-ArE;2M>R$kq%cg>h9&0#$$($=qay{E9QH}L;Tk+}TmexCuKITZdTC%Q6JWEU#)x0#2r zoCf_MCq3?!@b<6v_x6r0Huo{JBCjy4$p-X}zvd-*E^#7#3?0nGUuL^=p5Kht7j${r zKRtYyZqU5B%ey)~sywXJY4ALISXlEsX@FdX@Yil-`?Wellp5|-xt6Q;(GXRagj~@Sg=}h1m%7!Jq^a0hpXgw7b zv>({4zWbSdboxF{Ep{9>k+kDo)~7LRx!hRXLfBzySf{s4G79ggpF{Mfvms9+ZAaYf zgrLQt`jJF9u1G}^od77b=Q63u>EYMO_3!)3JUj=P=sd}2`JYj}k?xrT)U^-47NC7j zkkEQO@j(lJmcC$)W8wi!vrqw;hai_lhxwmyQ?i>H&{7@dsw@d;4KrncbYIP%{nyjF zXGz3@>m$bl!}{C=&ztPndjkUp3`F22RfoaQddVAw781@FWv$*t4FT)hWQ2`Bw=i+i z(~!Kt2ovK;ZAlVyPNm2?#xjBw;Wi0XU$GX3l$3k7%ipF>-^%l@_LSi(Ft_$}@jrKv zW}fc<8D<~D=4_2nZ(+f4wQ?KF)Skf+=c^;jNWpW4bR73GMBZDE=z_ib!cQS|o=kj~ z#*!OEG?TI2bDT=XbS9&_@&jijDgqrO-b&bt7a7oB%bYim4C@2t*49o(MN*Q6jPjj>va zcE(~>TufDyQFdAV5A2;DN1UIQejiRaZ%Ur&MMmdUt?GAhXSO$SuQLj|igP2I;8ykT zM*EC5b^W=|dK~V$dwxYBMj^Hi{&TbbO#0_y+04gcP`GH|b=E|f>%m)V+fU5L8W~Ji ztI4<&dL^cWYJ})Q@~N$#IegaPmLYn(V}HiiZ-SqH0$apzxVq>*}4 zy&;~c;nD#UUdFxQ8T1SA=ZV*1!|bG|>{vU@S&R#3`Gj_zU1kC!$+FQK$B;_Id=y4B z(K}U;O;w{qSZd)CblG{tN332%om5gl$F8d!;9tU+Qw+$5*zOTM_z%|fhYo%H65S3# zs^G1;dxGA?CN7#Se{H&pj?f__m_GhQsqS_4k$uP@=r`Ja=S7(90t*gE(vWQOE3?5* z2{DaJ^xF{r+fU4B-x~SCQ4|!vcC}|rQV${&K~p-x8%N0TpO-t@0{g(gEqv*IP~*Sn zZog8*QZ;^I$KeF>mtq`RyFWSOGI>VhmPIn1RsM|ccZ35ET~DJtUJ!P+Y4;{bvdmlY zfI!$i8zW4>37W|1UkV%L&z8fn>`uo2~^}wDj@?^aMy7^Q3E2EDXhSQp^{gQ0)NPr^My7(x!h{M&3-bK0oeTDh? zClk>fjj4tHK8O(6jG-%6g;=}z$>0;mSZgY((Dr`X3ruR{yb#Z^jkoS#)(urO?eet3 z$cELFt)jNkOC}sS3p4+MCN7!JaEk!GD*2tW4ddo0-4J1&`}(uk0+~%sD|z#c}AK z=*P^`oT_u*8`XG_(lME4*Pj03CTt%>utrNx7j(<&y-uNSU`_3CkN>tja>fsg8dLVD zxGg<#{vtyHI$y4rfOS%wFkefrk$Y(HV=mIE{yTkBqVZawHq01BEO;AQ4sDB? zv70)hyG?x3*h{S_MC+bg*v|@2zmST2ZsnvFz4wBgQVpBRCT(@oif(=7G{hzQa3PXa zm+{Sax?re48wqdk?Q608;+#Z6M@5s43LY6dABHX+>>n8puTKO=_K02^`~If%KZneJSDqj4o!mzxP&&QdL1QsWImkx81k!C_Up@nX`|^WUH5J4t@lTo&x@Cfd5qT` z(LR$!QHqxb97pAcBYg1vam(3)^(0`gqcPWl4W)S`1rP{9ynHBA@Ec;JB7%q*7bmNebo|H3AJ8)e2cHAN4`lzx|W9CS@me@Z<2FKOOK|a{ZL2$S8fV>k3Cv_-4fV4QivI zdA!4dAvAh{x97%0KYf57V4f}88F8(%Xz!P~MZTAmdxv~xdZqijF{tlefJ0ZA*tdjn zL%B_@gb(b`jAqMBF~$2mG)-T z>tLXwJYpl6s*93sL?j$&g~A|EK3+~`@V*)_$r$f88EWi>8#!hP7L5>emKcB#~@2)#r@r(=4pli%J_W9l=+*;R90DC}Je zEj{JbM@6kU&}{Y8`9-)cd17SKOx}@ElSc9Ts=gZoJd)2W%G>fOEQ#bEdhV%^u ztul^qtrc39>$LxA62|*=TkrHCBVV@mOdr)2r9uK+QL;0gG}&9(HfG!#xy8{Q&bda8 zwi^G2c-^%EPHPP{1VcK|X*YI|wDe7NsD)vyE#{(ru#K6p745-0CI4CnQw+?0VK@*s zOqwxdOm16TyCwEIl|*tDa-$H}kEK{}10NhB@ic4B2Ff-|t^~i!h-YtmdA%1+HIEjw*n=sn*mRm(%mi-Gx^=o?N1!KcDv z8j#Z>{K9-;{-a&Od}g%040?Rs4JJh8D1=fjJ<>uX0IvyH8_<)uhGhC-w{1$@;)UGG zWQzV23FeErl|kT=&j0QR7@saWQPSos42I2TBW~agfB`-EZpA~UaihQ7IYjeMUVW-s z(3-t`V3@csnU?iB`r1a!h%)&*L5bS$@C`i3oLaid!lF@9jBFdh?+l@n^tazDvIGxk zczC@Ob*I@mCW6JBboNWLrASg5!f&6x_n7mOA&YhXQGaeaePZs?@xCuB^As%phACUH zK~@>%&3joKCj^FvbDi2DL(uy*?|ojd-tv5@sqy(CfZJAdr%O9IkM#5u9QVOvs2aK72qA=;^}}!NVQQWkRQL+V|M65LPf7qx5>V$}Q$lIm+1H zfwIvsE&>c2kTt%YkKpB)qb*BCyDLWa^Uk8gH>3PdKZkEIJsCL%psj&r?m=)V(y?9L4Fh$-17jrXpjmoBVi4<RfAeUTdQ~>CB;qN8~P3noa&%*VM2ZLv<9Ss@wZL@%43&*mQUEhX_hr zwH0%Pd6)A`mrR{tn;dHUkp&lZRvL?I{F*M6xB#RG9f`Wt7C2ktclLvG72RqeB8pQp zPw0tyoe}VZEj||ix4AuY+WY2wLb8NLjQ(pw*t}9g8x1oSkPtBmMghX`cp7q3X5JOG zYHG%pP6Bp+UL-Z3uv^>l+pp(GJ925pz zb-R}jHs23g;%Cc6xc7(h{*~SO1~8&#NFb=BW$5Y@3R$!ljpfe$Z)2SW3RGmQOq;K(Dmtts648Hz_*R?_9GRr?SB-9@PQ) zT5SWtB=51(6n$MYcZPCw#)M3iCLWrD-EUpjA0mzXFvTe6E%dEwN=XeM(47>xw!% zTMB1Uorrt|XSV+H(axj_O=KJ4R5iJxm63s-Mo+sDlP=0_023b1FA9go%EZTo@Nk1S zq08+1lxsu6G6DwHr0en*`2(F(yXYoO&d&sgt&U%X>j{$;rqwA1D?a-?USM{JA15p}U^TG6W`-kLk4 z268F-ZLnbjX`;_r)K0vZ&&d4XusB4cx24+42Oe4Nqs3ugwbHRmP+fop&Bc`WReFM13I!SkouzEPj)B#AlDc|C?Rq;_?fhT8aNY=whj4FCEvYIV>{Mz zJ1<-P!PQqfJ#&>z!ZDRJtT?`5+qQ7u-K)#cqoSF1?(Z=$rl;?nz{;v z;g+&bAuQrN;|tQYVD@iKG~r8~3*HIkaPD0fPi4)Chcc!AEEC!O^m{`&{Zc_GesgqX z(BZBQd9FW>HfCE!)nl@8Le;O<+uBpBBHk$*L0x6Ax-lIH9BMjN>#ra1;uxHQ;WFOd z9TLT!=;KA>&un%q*Gc6#o|&`|@AwzOfIt`+X&)Ry|AOp|1~kbbaL1+xw{30LId^TW z0^nT|YynWVz&#kUkePZHvbmD_(QI+lV-Uf!K(jUm>nz@JZ!60+vND1S0C(bJcq0nEZ9!jwJJ2czLd;v>CL%0qnD7SLB9qp*k3DisthMjAI>)39^@v zl9u@J*o~Ds_aN>n32!hC{A8DnU{+Lrw5j6bLHxwv4(c{#7-S`fh)|6E++#pv=;X^A zotk7Y@*sEQVFhjpP-041H?yY+>&bE?Z+C09(B+> z*_w}--p+sZa>by*-z$T3)?$jBcFfxim)mkpaB9o0HaG5#$e| zHt3Gq<{9d?=KhqosrpX>Rtdqgl{dA|_SgaJ?j3Y)8Z5%RI;Ex;h06!zwPUZVc@(s@ z?x%q=+=mqLG3vp$CkC^ET@X{A@XWKpP`1EXZS_uY0mj|_uC!f@}hoQ*K(ig zBZ#icAuu3XNAh*?9BF!)yG+rn3Lc`O_sln7}_#tgYdY<%lOII$G~w^mqh{Y!AWUF3?+-`GsC7l3Kp}; z!*20U2X!ZNRInZKYzL0@((;8;V4?`T~zS(hesMs$8hWF~v7t z^4yDgzPypaR|E%8?uxKcWg`lJw)Fi@m_F8-tN^(FPUI2WsIr$A*!9PS3bwLa(q}@W zHg*ZYL()MEKtaglFrc>X+w9*za=AxPBUy+u1e2~LqF&vK@8YhjNiv>Z-H3{)4H-?2 z5c!G*hf+*iTM@e)lU1ft*rP1?xJKiCK8h`FPRvYj7knXpE941($a|J~_Mw~pO<(SF z8b&ua-7X>Ja9!@{mp(^`>}r;hd#wN^Tbv0knIF;nH|2Z8(b)T|?aK-a4eQ)E2|uq! zh75662tJuh=P49TJQ8rt_Hj-_lMdWF{V=_S zy7G?_NvwxUK?bU3jk*Iw_R?eO%|1NdbWR|&XsM(;LK_+&KCmI7=oo9odnM)~lsMLEw>X!o zJuB9yp?b7(eRZ`CZuM5cIo@R|CofDqFys4TiI4ryocL6|iXxN1(y@hQSM!kYaQ~Vc z;PX41Tf>vAaTx0i47yHYbyUv?O0|I_i01`$c8ot%;v5GtmGc$ao|v_LJ=DMkV1+-H zGfh8Oety8iLHTW2fBDRs5&!k&L%BJf7mzmtPCOJ;+nnARuYW&&yV)_Ez8klNhU*(( zc}+VK9ES2@cHM7+2dmylUq(}zYVS%9a;57U>;*Lj4GdfaR-W1xrksqT3ntHQNlFji zZwzy1nR+_Y;=6#sqk~?`>lo2)xI z{MLHn38ia0`U?(Ktkdqdlc|T7iR*kKn8ZWO9h9r>ye?VXov!yCOt84B!Rd_8etl4t zAj`pzSv6)_`fazDy4GB7c*nFWn3I6&&>Q2SvF<420z&P(yJeC|WG;(t9^_=G^3*_1 z5zpHD0wec3mrPlcZ+o6wkU-=@s}CcX2(i0TNKg1R_u?=~&~ju`3Nc&-W}a*dAJUao z=l&Q8=USmmvDy3y*4yUrkSzO zjqWgZl_?=6>P}hjlv`sE9693JM?XcUts=kJ3kyPC>3R#8qq?33t1$-jE4l{V-X3+6^w;IC?skV zCYLm^F6^f|x~LbbE)!@@{Y2V&W%FLDYKyxPdjIWex3Y9}Q6)Kv@|k<{lJXj7 zr4TK^9+?k~MoyZ+A?|G(F2H2PuGISNz=rAL-XoHt%YyfvH?1U%iJ7hf;f;@+cO*_} z{-$?n&BHk5eWpPE8f~?|Y#t8lj4xr8RRmo1=sV?zGL;a|wtmu>#k10dygVc)axF2F zOA4!_gKLjk^SGGu!GWqdog<<$sMOr|!-NU6;e+lk(hbPLSRxk}ho?RmJR$|BgS*dj z5z%t|~m@%2Nb zmY-_vQ8mnd7`TK}_8Y(8@FALu4{z7UZy655QOwlOxw?8xmY|2=kYpaqP}6$C&kHyY zVQg9Y%ogt6E-sPj^M)uKdt#o|@U+tQDJW#S@e-{IlknN=`SAUrgeOLOtTvrMX5MVj zERZ`lTR;6U^i*cU*PV)>g|GRz0A0xEM{%$Xt;;s$>Aa7nfq`HKMr75g*lFcYG2>02 zXbS;%JLSiHL-c*e?cu!o=O%Z(4^a}GigBEIqq6I->zf#+kYWZ?en`>H;A1(|mzN#( z07NLXP;til09bW9dRI=OkE$L+t~mK8g>71n?P|qSm%l+3e9~AvT`RPXLDoo?fn-t( zPI-11NYH;7%DSQwo}=o;3f^QH#uwcw{vG?i(Z?IQ*kJ`eseY+-RV*W`>^#{R zuGuKF*)%wVK-7_`nGS<+ySd#?@b3EQ*h=8mE=)E?X!?X0P3E(Om$oLAR~T!9gxZrp z&NP?hDxJ;Xj*>o48GKX8U#zEgG7*j3XrtQY1H#@+?(@)(rl;~q#)+(Hcu}KkylN4+ z*51|j&oz1csW#eDe;q(9G4|MJ41X$kPK|;U%vJb)xDj!`wh#=d=b#g})Gst79#)=~ zB8E(w3(Ko=X(gj0s$$hMOnGh=(>gp|4CNng<|7z9orj}Lh$-Yi4~)V&2`pu4=pa;W z8jMyh-l})FUFR6ZwETT8Zg=Lp53}3Awm7dWN|-jH`NJeUyy6t z`SSLL(4jOM@IJ;0vxKh{riHWG`z^kH!o{&F-~^iY_#st+;jvKLO;TMdn>!&YTLoR~ z;tLO-#m5-mQZmD+Q;qsGjm8ue2F$>rxr*0q>ch8GZYT48Kbdn-RdwmiUi8#kPpVOG zPtR`gB)~c37qoO)nDEApU)dN|59Fm)g}f#Ql|9Te!53cim0@Yj-36c8M+ATL^wO`Y_wZ;6@}`J zk!hM%f>JWc%tYiyR7R*1aj_GUCtJfeo;(vj(Vo(SzMCvwu`&JZi+0{@hY@UR4r%ih zu-7vswWQTW1~MN| zqJeW;#xf&ppT^6b8xN63zTNa!G-L1bmL5H7qQ0^}I#x?Eg)^LDqNY361n5H4TV$7x zPx?Uvb@&+ac1)5l>>zG<8SKhImCCO>$ByO8^dhUFV!><-x|NvgGtHGKlqj@|>TTC& z|8^8f&g*gAeEOkht$Rg_5miwwl(sk=s@g z(ko;&Mb+6qHct9i&{8wa`Nbwp<&?Cc!8a?F?kLaI`i?@JAbN_8l6DI6htacARpa?C zG^@c#fW;rT7#^87l7q9yD4nei6#`(Q;^{z-6iMi964o=o0sNcumBVrs`y=_^F`x+rQeFJqj~Mi)86dR0N+_`F*zf>Y5I`oogGq z$C3%ytrf;w)D=dIw@!aNQNUJ7XR#A9qOgltYHRA_;t`dChk#XcFGuSyS;SQ5CN`lH zC@x3UHVyBsJoD_`x~^2lt8;$nvw_*d0LOzrdJth%dVBeBFeWA&Gju=Job!_3u_V_1 zXkN^?A<}beSjypq#1wBC1pa=UT>@f9WW!=}ryV@6PjX`%2dD*gs(^H~54k<^KAS!9 zIvhWZG2n&qWZOOR+<+CgRDStLpWu$uKGbwr4|Ki3J0WyreBV-vZ=2!de9$vwrw zxO;2IF)T8&R7vLA4qH$VljQdor5Mz5aA-}c9@Xfx;cI`CzDb|+9 zlHu&kyb?~zp=r-g$1n6@X@$5~w%nb&wPZnGx6Uj}E5}nyM@320a(`2kNbqSBXa`lK z|FnY%JEd*iZ#3j$sGD$w!I}4is1177T)LOE6^pa&n)zGbWqR3TM~6h*ajTC#)-?aB z&|@HAApr$Ls>fOpPL)qT`#<8sPH{{B!e)-K0SPgBRAUZ%i#xB2fDU6S*81j{KCHRt zOW);lfC!885RN`AVsCT?C%x2pPs{9JiYY?+Xg|G8GA|H05YH5}>nzm&x zs2P{u_PhbrQgj@l#!Qsfy4kT7sg=jS#7w(!cer~YnXn#W9O_f_)X;o`Y28I8gj7@y zk-1;V!{69#?4`Ue#wd!HR+xzIXsry>|3+9>p8+xN_Vw!3dA$G^W3dSkXGc1D=h z2M;PQKp5><0qQ@1sGp;)oC5s$fovXo7Ll&93NDbD09NJ4m4PNsHkzq51?|^G=@gCV zu#=d38ZaeBVbzD`Q>pf zOd7YJe%?(kApe?kWF9=Cn-XDw+!q(LIRW{JH7WP7XmqG(IwEQV2N5%bm24y16fd!~ z<9z9Fldd>}DvX{kD_VDyah;dj^ll+A&6$vbD;7Z3KO16}!N#*GS}G@hDVyy+fGDNE zgpxYm5`tQLy?JPlbCyioe2`9c5rs%NpS3s^WzWjBixy2zMH-nvoJNuoPUBhhvrPtf zOSEZMFV(HIunr2*1C3s-q^_a9eR(Bo>TDis-E)8LX0r5d6F#_d}k;bYca4JK&5FQK_DNXSHEkP1CSfRrQ!4@JXs??$#}lDmKG^ zP30?0jTx?VyDEYGC`m&ar8Mjoa0$=Arl)w*BFo*fJ6Hhbxpk}OP0O1|oCH%>RZ1F- ze6|W(1rN~BqS9H=PxNn6yEiwTCB&e{`eH!#dmwWQbR6M*WG4py;=m)qHl8w&TUa_< zM>P>Vgal@^H4{No^p|BdR%_!4GX6GokF_0TrcE~JAWqcXJ`x~X!Rg8k5`vFRt(e%2 zRm2IaL^P+unPE6`-mRubHz!WwZ}IIJ3a#waXYflATbh_@jxpEHrjy$qSTi%IN2>P+ zlBwm?nk4$Kml;kh39;eeWTN8V}f$FuVgG0nIX(^AfBGWu~8D&bQ^Tv@|cv_O7Dpcxa{9+8v z%2dA}Hn?%VB(*ZOxmQ@sUZ{&Allbd4QdJJ7yOHWyN@sPLQj135KNr11=m&?~1FY@C zT47NeBtV8s)sw|q_b(=IIcNz5zu1rGPk42E{}FGfAh6oi@!MRQT#6H`sPgF_6jf7J0c>I_^4b}AN zMe_y#4%n^Ru2J0q32@vUIX&B?Li}Up=C;jua}may->AX#bWAxB|Hi9C!A048 zCTuc%XhGfgg-WW4zt$a`OO26p!TE$B3tqLZQ7yD(G;@`EU23r;OO*d#UzRIM_$m?{ z>(o&62ld$+5JnGu%P8=L+WjlqYMK$vO2$#dc;UJM=dlvbK8Aajm+m*39h}ko>9e!V zYtZwZRyJm2Wvqj-=(!ewd>9I}6Yu3|)CPY~lq=LuYO1`^6T z2$rn_7_Sk9lJKT8e3d8&4LHdxG)%Ue&Snacmic0rW7!}rasUEq4u1JaWS--}AMpE$ z$GpcbzV0)BG%<2VA%T!mLI=Xi?*_3qfZM|8v^{a85eEAiJhHQFkAPk86yUaOnfeeaaUNk6o zK)QmA7r(m_t*`?06UVoJGNxHAHrFJ-TJd#GOUB3B^_%9hg8CjAoS=jvod?&`@}M0H zN>;$(UZpbY!`SH})x-}E!6J)49>YM`#x3geY0>20VUoDasd@}@t97a1uMai4m43b9 z6D(Eas`3R4F*!4y)x<@U-W?ts^K_Bv*Hn^;u*Z_>1Gm2xW_Y>+D?9^{Xk7M?klfL5 z_;zU=2aA6zF}Mgeg_IG3UWyPH3(FyEVZY!3zGrqVnc+L%NEnc>0*02fIz&4*w?Jfv z%yZw@q_m#x-GzZCRMZD#aWVCU4;#VnSio|&VH47!(+h`otOeLW`}#?7Jv8`!9@B8I zG(M`Y6%eW0XjE3OT0uX#;?g|R?>JjGczh_JyrY+a^P?y|)s~}p+cAI& z;6*Tnr*L4b<+TS5ikosV+Dwo2wn#iP{Bc2QVS$KwP3ghw3j-RM{QKYN8mF&hmOr|~ zpF$T%RyVzO4eqd@Edb*~WFRgaSFt!7RHRk5mi)l=?J3?CXG_@&|r&Fn!rNqX!B7v7P8v;LDH=7Eg#Ms1FP-pz;V+l$Mb}cx+Zwc){F*b#JbK z?qBzh-vxTQb8(cNz+YG7{+<~JI12-rRcgU0;Z-2&`Ce{t|G=Ou)kB7Wx{ObNO^?$gDJl)-`*x23ioKn>p zj3z&{{`XBD;7$ZPd^WvUHt8oksAZE$((YapeW)1~YiYo(E#vzM#_in!1w%Kp-A#P` zXC6+%Ez|j#lyhNCO&p~^9S@vuNEc?PdFP#D5@u?n3*>||K7^0EH%6DQ%3D(aCD#8; z42tHY+AlPgqsdP7N}ohlRI}sI3UR7T0BSU28U_s{xqvA$xX@_5WvQ^9s4=ZH>(%}X z^*V;~1d|vArs)+C>j|@){6$n3;lRiV&J;-yVT+fTP)3c00g0zgkSZH0 zHglDZj+&?P+90=v#_+8Go{d6$HUkjRV`c&(_>M(nK~kg@0f`%(0EEA7Mt9Nbw^HO) zJK8ipf8r(kDW(P_N8%Iw)J!_BFN4AJ=IIi3G)u5lue(yO{a--Bk%bh6TVhKIr_B4gA1VgzyVn3ZaVI@K)^ls8Z# z#s+3G1Rb?+fHM;4+$ghp1?*0_LBU~#d>YHyC{TVwQ69{zOC+9(MLWAyLiagPAUm}& zkKbQ#*KU0{O3)N2{sbL0P*bgZqy!(gAikdkfgIH3n(o*)jL4L1!)oNO`;_pa{Zz0N$s4N+9;~;lYaSInphWN{Y+BzT4WIM>z?$Hcvuz-ba|a4o=884Z zHlhLtO(&MgbWr~Wz`k;@!KjR*$&+o&cwW{O92h7diEBy)~sW#vF5}yxM@-0 z!F-`M^lUB&!gPT=v*ZxtpLocS;0!rgb8@n-e#<~rJi zE%y4chA%$q@GTN5tmShidwWo@LL^Q<5N!~ZhLQTk@MS$yRV|C_N@?%875~?KEv}X- zBoi4Hly)VR`X(dWu8TK>$o0K?`SN6f(E|V4D@UFy8X4w)jv%v=LzrNx9XXlPGcOzo zjm}t{$@0TL^1QFnHUMz88PM5O3X+Mebz8g-T?^r~JXK>|t_U_n{S{GBU^+Z}>e_CxIhG zo=`TOGF_h!YRuFMwIw91Fj0C359Hhq>?m5$1!51# zhAM+VfaP-jVoz#;8XX4v)|1V0yI4v<0f9=qe*G;1|9^WBJg@){Ad4rVxXK0*2M?zhWpcg8$HpaND>+(j^!)`W2mOK^%H1AFpGPtJTZtEkyl=A z&keT!wW4|zumyaDkCaC-yLbWc+!1ev;II6DPj)!5V3$<`SUdcvO2yVvo|GDtYN-D^ zHt5PcSv@>mI^S#CvT#tZ$rS4|<$sRDgXjzN1-?G5X3u7<#xgjoCBI+oIi>zb3j*;g zx4E|GORs@e!rfNJ2kl3-ctM~P=-OSA{9zSqCAH%)xx`s4P&|N#_Zzy!jW5|8qu}l|*2H5@5kjfv$$p4)Yun5UTY%WF-xilFV>9 z+BnO?#Bo_P3J*0jqJRoQtoEI&hJ1X~**X-6gBw3pwH1=JhU>FO!ht|O6LpkfR$&p* z$7??~DLXc{3rwu0%%IisJb>5BS^-J#Tn3Fle_Anu^$zXIW0bW2o3Fn)JPc>oJ*C`+ zwF*etgb?F>7wP|J`+>4WeLl}hPPZQhg2xnC^_@zEHF?cJZ^C*O6PF>@Qn}k%B0d?1eMsip!;i6)E(y= zzip#vQFpRf!x7(<>$(Hpp(Y++yBuKTlvo&gS}O?15K=KIFAL^sb_PXC(*GwQF-p^b z>!b!ndnq3kE=~Q64-IGm7MN-Hu5ZNH`1%#^*FYeXx%S>cG_(|PW|1^72{1ars4TXO zzkl`%CJE$wZ|eiazYp^4N^bT1J3nCh18o=^4sLNA>~#SNqd}s|#cININx>!-=*p4= zbQ-7j|E9;pLRMAPWS(Vq#ZP;+2=+Aov7n#FvU9FanvsQ}U;g82CH14BSzsbT3b8J1 z#*p=aEbN0Xx@;IO`C zL}{Fa7Yj==mnR`@J^w#PzyU_4bO}mxEtvj-^~x;Y`8{Ry(F`XD1bX)qJXHGQ2o>m@ zZ1E$G%FxO+wecZFhk*_$__DpE8oqy<_457LYSl65X6bO7aPA?Nws3U zWBNttLceH6hYZ!Cw&$r>nYZxfcf5U_MiC2>%K72~R0t*Iz(G5NMS73`+X+$T4)^~U zHaw*beaBi6ihTS){HzT(B@!0^C6P?V%LPXQhpnR<2?a92c^aRF6Az0j85w1xsY zA{x*Ghh94WNjZQPsRXjUF-j~Lxiir3X_25W;!F?*URh3P{;#lWap4(RiSsm=pv1yT zY$HfeV8hz2u>kX1;s}`)WEL?x%ZwQQ)#Rxc7Rq-8XoYy0^C*nJyfihgym-ic?|mU^&TWJ3nDjg z-!eVSfKZly8{+*)=$Jg zg7#bK&Zl}U^Q&_YS1adp*_ytOb4jvthI+8T3EYy0?z9cr-rKR)rs#eE21Yi4T%yKH zBAp5Yq$fTJ9fvt%3Um@CEYnsWUx=prZ9N*mM?Ba?GTbnX?`-`~-Tx^1&tTGXrfRh? zZ&NM_+EY?q0ATZwv!`CC&}c6keM6w09Q)f4>!99CW?2~%#8O}xQdw*lZ~f6bbM^Dq z-3SIXri=)9|3-K3U0%}Px3I$Z0*hn>KtEnXb5XMb=>0&<>W>3^Ngc6M3AequZV7pxeIoqIqkPi<{b$V4|b~#q42k<=7&F%Cne4;)X-2yx=Mk`LD6@N*_^J5_F(CpfkOyV1pG9gYAjlipS8E^=nq}d0n9C6 zPK2?s=ZB1Ho>SSFjElS8Uw8-$6XM&;?5P6>BSYy%kL>rKtcZlpWquQ5(@|#q50c~C z@R|%97vDnkTX~(h)2ZrrZzKhqlJ{IJ@$*=|;c4gjID7=o;l)4rXb(s4d1fgw|V6drYkjljxwd`crTG>(VRzq1DB>ciU-c7w%V6y`m>l zgUS!UtH_X|9n#EO=siA;r!eg7bzcj~gl_ z3>aS9fYVI|Kp~0BwYu3NeK(s(nrF3x`zWn6#11D@U^C681AcYFrIbpCNU54?3sUFr zCLzdChx0{2z}h9VUR#1M6;8RY3q?n&0VgA>FZq3!*>yq3>%!PrT-2ve*noCRR`c8@ zNilmvxAk-?)QEFQXp@(ORnFwG+&W~BTn=FzRCLq7(WMNmYjwL!If7A2WfR@Y_8m?p zz#gS!xnimbIy4-xhFmB{MA@O{L=LI4vROC6~nYjk@`76>z*LvXBH}f>5RTT`Vb3d*AYDq-Wy7dP$d4I=(;qIiLyOQVZz3A)&e7Ef za3GYOI9Ejtt^98Sz1QC|;&#IM-ED_U1!h3Jn6^8!p-)aSRMyJ#4&PspDzb_LxQ(;$ zd(Kl!=|S2iVlG%eKBd;vL61MR@Y*db{Jz)x{{3FlYx|MpQ!H=|XTG(Wc1;7kI@3l* z`GhTLpD+x$@M=&=g!3NAxj6iU2~Zdi=4bI(Ll zx=v{|bAk?cx9$(|gKm}~+ddg<#U{7Elek9_30{tsac%%bjP&Q+M6f32T$!Ah zP2Er+cifUG7nk4j_RTW6|G#C?`_6=(*Mte3%og32OA9Gr$pzR4&q2KV1Wn@)@4cO=}}s!T9?+d;?Keg7c$nfWh8L8gD|PH7N@ zozBVgUN*%p=paq&kfS=}!7@Opfc(NU#Y7$l$Y18jU*^RgVsUF4UeAIKyF{N>XVEi7 zZtq(Xf~NZV=&)|P2R>uKADY4d7qN0!B&=Q;K~|RGtCr=X5QM$YP42fPmLmX*1d2r0 z51EP>CiB}2t9uc=2%x+ac4GJ679nuAA%FWuR2PGk_kK!KVaq^t2(ZCtiG4Rgp@5GF z;vfDA%SYUOD=wY!<4X8a_?F^7_d*W$3o$7t4ptMN33loEbXNcF+ig}5T%yh?vWCe@ zZ`mWW&_)1T0_q$!GISWhri;Hr{Lepfj{Z)_fI)p6kZr;cl>zI#B0+byy$*R)qk8+Qns?cF8;om(;*gCN2XfQ5rn9 zW^V|%p5Lz>R){EdRuU`#gF5rh#>*>(xxotgT`*byc&v2OyxR)US6`S}@4Y$C){sFU z8|?U;X|w5>+xlrpXFVD?bc0?4H~ z0O+BQN6sR0Y2d%dV^uvQD)YQ1IQl5H0(a49A5zvwkY90(SF@GMxUIZz62$(};Y!nS zD*Xj6Thvt}L_r@VSeBpUT^r9jB5!0>9Y-V@CFkx`)BM+^8M-l9dLSF*^Thm1xrxaG zl9M~y1tf=BZ~S)|Y3zNaJ2S2i>={@>2PY9ak2dRo#O+^KiF?OBU z&4Ci3KZi$YZk^3btv%GNN~|`!kMu-9t-*&hkvUl+0Ys4CrzUg&sA2L6Kn1FEssz4) zfmAp3SMoW8rlTJHMccN1#U_A>Z-508hys9jh5u>XV;E!;6%*4FZW8tP;)z#rb$=BW z1_OM~y@v<&4wSD6N;Fd|e}cc;{^2QQPyfd7HA=ap0RSu*KaJ$p+6?Iet9=w$qzjCJ zb$bbZjb=>diu4$zJxO@+|F1#lLr1+WKBVZ;QZ*sdZ_`a$x=E93o8UHEgHt%b4S)dp zy6IgnSv^vx%*_eum?JM%FEHc{KYq62W0M2iLC5|PW>Hr{E>D5&Ibx@{STU?)k5+b@ zD#Ap5yg-*SrZx980JNBFh~MnUDPTSYxNYarmF^$Xgy*c@`onQ(cxulwa+pTTK3o8X zICG2ksuoB+-_}m8^K=b9*^g_kNV^sJxgr=_%O=~ip_-3Qu20dV-|u8eIjr$?Ds`TI zKYWL3^Y`oOOZUD?^A}lk=-~Nq0a5xnu>CeJ2)j^XB|{;A;3SRocGgo&h98qSK4cTm zgX8nuRI20NpAVyl{-!D1Mcc7Hyd-uTwch*UTD@>EYaLbPu1JE%^vUU!gOh8$;BIfpw2W83I5%%6Zy};> zp@iU$nLNx=AyxkWEO z*?QT^QB13`{lzk`@yM-WecW&7!i5(5XVOVMlwiR(SA+by4sy#T_KHLP>L&I)pa1YD z|8)ujavf{@GQBKz;{YdO4~nvJ&+IghuRB%nGqKLxq?XItq&6=W$}w}#{QVs$v>o^* zGPR22XFf2;)j77t<@0%$WPj)km5Fd*-#vWx>Hh5RardgPuhRTS?Zm63nu;=O6IXD9 zF7Tm4Durphk#6l?C`|+raiT9P~FIvXKAy+$Hw3 z8$|Yqc8tZE)*_=v{N|>w(`~Gg*9gQKjnc$vJonV@{*PW*{Y+0K2vb26T;8%DzHK$1wt|IV1z( zpME1Z?GhjP7kjuf@TJ6nzije=dLosrv!ZFVz||%wqXQD=0Cu0Xi?T%jZp5`%H(JjR?EmCQBxnLsFwshz2|ojVx0k$`rUI#*eue{MHve%eNBzR|x9biG zgjRIX*iwR_UT|2pZ2i3k40Tp(5No(#Fq~5CqYuTTid*c`R+nLzedN*T{+ zz-x_Elc9Id0!B_d0WgA;rq~B2;=N-ba=l}(-(EuSQCIKeh0%rI(VD&cj6N2VkS|SW zauQ?}5dJM3GdimHZ{RO0&XF*U9FjR$7>mU7EsBDEIwbn2SL$y+Sdqf6n%Hp~!cXWj zlXt&yFp_P>IAFRN&6-=?3R}_M@`r%OPVXn@Mn;wyl1R7(dB@U653uqw;}Qp{^XPEX z*g5n|2=X|m(5a=N8W3aaF`ot{jVMUI;YR_VZ`M5r;==FQDBfL!ulO&M$bnw-QfBht@X2|5PN^e zmDS`9d;F!^GUyi(okLmcl1+Zn)A&-5`(IM&?)hcvm_~f|=rJhGZ5Q@!lm6G>m-h&= zH6q9*BZrR9%^w;v2%utkSZYhYhr;QuvNnsb{Bq$zze$Y>4-Jkp8Pgy|<{gnCK6Wf$ z#nqKl8vd?Ahrn&j%_u94UBMuiMWoOsApS@f>yb5xklAg95=}iz(LkNeGPUP}J;95@ z)nIMt@%#-7$w8cXIHVr&X|N$&gysMQLNfj!EuqCo{NZ*S1yAosRNF(L+BF^ZlIF*2 zCW|W5Od6)_hFZma1zt}Y|ydHIly#(T5xRXhx`G0nAuVA#br`3{yH8LEQnTcZvwN}k)V)!& zdpK}Y2VHv{7{a$J=C?nF;ml}}sLunoFrdW{{jtOlL;J7e{|!cYtogHOEZ;9<{!z;d z=rtZc&O0@pJI1R!wQRu-qIp$-&X1C&rogfyM2$k=K93TiH8o2Z$1z3XKWD&1hQ>}5 zheq0w!+ei@3wW_k+h{9S@ML~@d<3ZQVf91P>boY16qtqQm?5ws@|dt8_Y&ejhK<1o zQ{*Q*P7_~2$XFN@Mg;fy590eF(`}zu6N=5?p7%a5@twCYm+;bI;@!dUl3`E5XD@#O z*xNDS>z)UCP){wr0baUgd(wBduvAnX&QEZ8Y+>T?Pz^^xiuA{ngM&u*%vgvePO<8? zPSt(4*2pIg&%3h5ilW*J+arNX6D01_ET5=myL^X-uTqgJO1Yl@ zC49J(ri|Unnym3x+l6=RaDH@NK!tsWXRgh)=T7^gYfJ3 z7?w$gq{6s^^}#7h$tmpg7EG6RCQQ?vJ@e+9yOqljhf-RLW@%({Y~tcuDKp~XFPM<) z2TuCAt#TvhB^(&J&~Zr;%!gs-O$BfIX9Zz&_&v19y{C|~rn5xVW=h?}dugTw{{;Uk zUmsICjg=KT$q@Nx>rJASRvJ#ps4v5lnT%$gbGY&=CFs!TgGGclJaTB18#IZ|{?Ty; zSzX=ru+$a{S)qrYC86Yui-Vz&ql8Uoae!quuCQjW24`HZN$CG9hf%QO6HIslX;aK_ z9a>X2bbZX^zi#X%#@-a0&hjvnrngZr2|fK+;UX6q88-65CWMF>0YtEzh!)P|-gOq< zY+*VB=XvmVoX?eF?dc)pz+j%+)+dFq!C;~PxS}C};oJC3i7uTq`0gYxqxVnsdT%Qc zUXx!*?cGIS|1fb1L*GzmoVCzTY_IjHCMvh*2ahp~Ld`PK`C}1Zhb>m$DHa_pWM2sx z!}NBWNrQRv$AGPSxu9)?hutk<|MTdrn=h%)gF8-nfn&r$C;RxW7)kofxJbwdwY#yX zL3xL5U#-p>C0VgWsXsX-H*l(mP+QJ4SNQehg$~Z9Y#$7PJNbyrD*KJj-U&@OG2eae z)oP5FyK}s9!D1_b!g(U`9;|~-ST!d?tT|mJZ|p1VH_zYCvz2MS{BiZ;&W5J|Pn}{| zq8}>r)r0?+itJRV+5&wFuYP@Ud{RZI5-z69(Cl0-#jn?5wjB4is4u$VG+AbR=93?t za>MBn{V+(RNl{E^zkWsdV;C3C5Yi1_dM#Sh~8Z+s@I^q2?1y3n^7FTo;Kvv=^qdm(b%)IQ?EsKZy5hm-y3z;yGb z*{m|TSBR(!9SC6mG`=lLP#fwj{5z`?-9s>nT<_QJpNdE9jf`Z>I~ zxmMd6{4}GrdN!?LST+i>EW_H@40ET(z-?C4+B>g~0|WfN{diAW59Sg1tZbV?sViC8 znR^i;Rb&i7dn|G<%aAWl&xdDIefOz&L6y{(l%=7+3?qek{ zoHcd3@)Z)P;<*PXU{ztZbNGRNl)U883HpH4h*-+zP;@4>o8KcG5?wAF$=G+x3I1wec5}zjnx57EUGrQBIv^GeeC?6z zd$NOdGJY7Gef?KQe2MWQ7xawrLcB#D^nD<* z!|>$eerG$*_=cdzaZ6Wcfh|>I7(LwiXpi6f#f$wPaQ)AmrghwTw+G&@LPFpa-}h-G zWfp>P_}wjJ=kuz>(aWE_;k&Fe{JA=eOR6We8;W5xOtkL(^|?1QNE901=_UMrD5Fym z;o`y?tJ_7OxEfSKCzvZ)`OJL7wrcpdFl%08!Mwq^Rns&!zSC-5#j9qchUFs86M0q8 zE?USfT4Q?wMsuAji4-#q)?(B84yT4~4&!yb@9{6>cS67gQ`J+@Dw zla5iq1NCz$WOB{2r~V{*vhJ)TiO_=EHSZePEWBDX6L);{AdhXDiJa$IUtHUh_&RrXeD9f6 z-;00lMpR{9yJeV{z;o+tn$Xem$jXkE}V1fk{tJ^LM=IvL=kgFeWp zNY_f5gsLgRzykT5|9;+sZefDIiZ*~iZ`(WIe_l?m7Hkfd7Ph8rwhpG&mOOl{&W_g6 zYASMQ$V6|Kp?#2-)&PN^zX2OH;#*FN_Ul&*;1|4^qMS4c^7bj{DSN9WAUVtHx`9CG z!*3f@D$`qe;(tp)dFOxwd`xn+Gw;p>?mY3BQ!H1wS?F=g!Gg#?(o=SdQ3)^WJ z&EVv)WAY~`1vPNg>H}etzQz<3lHz^mRVbN*BE)kJhK8$lz*MtU3~6j05174raar=} zQgm(N`Dx-SbVX58hWBEHz`wyL?zxVve6V0?0q zTK{!9jPCudvBl^V(yV|{E{t0Qe!BF80O4n&r0BydoN?5d3gdC_E1ZgLfnDX=awfA+ z`plWs@-KzV7~!}g4+BUkQf6U81elZTafGsES1lD9Y34*)PjuTvl7w{~9yC?&N~OIeShr!Kx}xNt}L87DGRD7KBy7az-7lLsk8iH^Iz}(=#EtGjw7cH2rvXOs)9x6 zNVF*wzk)}Y1P(M6ZZy()l9I&NP)^zjnM)M)h~#dlTXgD?M@_^TUoGVE`7(4BNEuFW z`#b$n#T6FsSKGPdaT=z%6mPJZmA@0($7G~L&|#GeVro9F`=B|)qMOP8LD#Pi=&tjBDoQ2OH&)m*!Ni-1UIA)m#fIi zhy;QL75~hqz>hXfJC>vYAwErs!-A-9nAoYzl!9KW%e8!~op!HZ(EB|0>w>zD@zaeT zzr6M&lpWDuPR^n|zmBCFUX+BzJM_MU^gWdDyf}4#b4g@`kI}|IH2q%bW>kmAmUoo< zVuOQLWiJ#9$EzfMEK^EiD0g}X2Yy~7=m`bbhJigFmTuW%W2SX;k>>KCJ;a7X}*Y^4&I> zpvko$$$gTnA8CV5j1rPp{p8|J7!jV5q>Ekk2fb-RxXF&n#0rs5X*{w*883zKtmUrU zPrvZG>3C*AYV&?**sPPn_4QxSKY7^}T<<~3<*iK0;lgP~xK!(X&hs_jtk`G!l( z^j$Fz8qfAG2u=Aw&iBja(%SJ~i%;H#c!E-p)hnW>-wd-12}VW+QXZmcT%X3Isp4dq zJZiXeYDv-H8bK6szVs!rl3A73!d!}zS*T*J^en&kVswdKmsU+$_sR@b4#otN@}HnT z!x_mPqS3Cvs-|e^akxZS2)C@HtIRAfv_f%FCo)rxPkl?G8rNvFNSo5&l#tf@%+aI$ zrMHtgVYqwXacZ*CRClo>)8)HHdo;L!*OoIzE_K^``EzkV+PE6;lLfxU-FfPfu&DEg zQrjp>F>D!Bfy_z#&qibuy$XSMs6?ufwed|&{c1(rzv2>IDH~IRmFNmSD6=cl!OD28 zsduq+A(@S991rAhj2uA)6Va^w39bw&?jroyQ_Wpny@`lf!5S{Fj)IkZpmB(<+n>~R zyF1rPW`qfg$$^tdQQ{|_Ao9tr!;Unf)l}|Gdg5^#MKcIf)!yC#(WO!4Ww#OvhCY>Y zW76VRh>%NZTRo8L^c@1B++M-ZcXr@LE+4~*vw-|mV(fBj?i9a4p030Ue- zd42OA58RiWNEtK2nI@T|mc|{P6S_`Gn?2l`4Q@G2=D0(f5Uz*u%jO#g`gy__flC4< z!5O%WlDV%AWO(}ezjzG5xW=|A2E0Q$pG!ZkCen)BB^({_(;|{8_@>m_B^;@_Gxjp~ zd>vt!hzZxGUB$plt~eY0RxQXRe?Y$@KM^IsnEAdgMT1j@nOe@byYTX83Lf2vrs`u0 zbW*b+@3&)0(?=rJbrsHJ%fn_tz*$)?|7KGu_}8a4?Q)`cXU;RLX;P9PHLzgN;L)`T|csIJ6IJ#!{D<>Mrp zdC1Ii)VAQ-9Dd9ykCrc&9+0%0`6|80ZeXbuTu{hon2A~J4)s3V)?IHg9@n7?75jtK zU*F$_UA8F-u6{ub>l#%-8iR}GITkns^fD#%MD(eT2nx|^ka@qq<`^~OkGw=~o7{Ib zaaU$oTnZ)F7}t{;6$^dJAevxAxL}YeB^x%i8i=x<-Iq5wzvk&lWVXBDx!WP1(3+%P zXAMp^If5ftepA?lmN!TNrLPDp7-UqfTe3| zrE{yk+6LLls*MKPM}|JD<}z((%9lD`i;fBr%`SJQd08iiHj4~d6B}aC3eor?%#qa? zMW}_t#^M2`^13uN4+cj_IAbF$?1CWi`{pks!D>siuFWjrq>e`)0{+B_!598&{r6G| zl^K*oQbRJ1@Aym}r-7TQkeJfl(?{-tks#7+^}w=h?N1OUV;%7P!#v@x7axjVCg};G zotvV~$y}&NiJ}0Yx6vqXE)jhfy8y=AMAN{1Y0R?X`pMe()=*{DD?(wS$S(A|vpF`O zAYXq8l)yH(Jt%0s`R2v?`6T@{z!t0DQAl|_597y2tsAA5-~(H!6)j9^L^!DTKYsEe zg(^93? zD*}qRM7|P&F6~+%4L2b94O1(IT85+|PYPO6p65xKld6Q8ahCrn?@t^wHgi?}bTzf` z%x$v+=%Ov_hxs)LIVOQud$`spSEEiu()Q?E&CHrG6Re}UZRdAeSwye zLJ|8SBi@HpWKVRobpo@qRoa|z^$#o%!@btHvX&q!0YH!sdFkVg;9p;TUHv1g>AWP}SE@W4t2FUuxfjkH4hrkhp)*g-H zv#r(}nyvz7Yzk*6Op_9asu3GFb3QfCFMP8(-G|i)Oc6$blQ*}7{e?}UuLqgQifm4n z!4f$o+KS&`KWV_$NGq@QvK()nTB~uMHB5d6;ZCO5ZL(%pF+&1g{P6KUpfDmbBI0rf zC1YYz6j}Ibi!26wyvY7l*SIS9!uxO5rOMI_Kj^D2KUJT7Km$z^e-+oZs$x_8P*SM{ z8v>(b+m!wojWXz93ik%vO|Jig6S!j?`dfbe)ovWNaAYyJaOS}c~crtJTsME%#{3=R2);&rE<0C?ql^7!;Fd|mBii= zgTrU1wrE>Y5%n~KnHh#S)#b&iwHBt;Xw-u~**uI~XGh6~@_Al&9brf4V}?I?{0&FPY>wgXFUoRNzQ_h{g{Xqgd?zXsasgrPVX zWWb7Nz90?y>&7N~Wlw25<~VRUPqB^wJIo01Q=xD*UFo3u(tk;(<6kt}i|9?U+bo&o zRzRozfqYDHrG~s`7YnPU-oM2t5EQy=jAMq<@Oe}A1Kn(>wHW4M`+-H>-@I`3>64$>Ou=}IzOrpH>$ z_wmLs&5WADTB342A4kq(*Asiq)+pFpUkOW-EAXDE%Meptx|lKh$2Gz4s1IwL);|_S zIHhzu6tPmn>18x9@#GPcLMi{$1eiF`YQ4m5QvB6QiX%#U$#-!e0Hsp$w5Px19j!bD{ecq+`h8v71YTbh>lo?8NJ(-hkV#}l zbH9!z&!RbHma1S<!KUYpLAOqK%9&!f|uRr7l-^f977BbWJ8bJ1P+MN*i=!vt6FZlX%&BWKR z4hl+q3&Yy@*#rK3R_EpQx$PfP@P*B+3*DB*j^Cut*~8xY?E=o!%KeWLrzfJ$+Fo!t zq3_&kk=K;iiyUoiu2W9 zw!IO^O>YnX_!I;B>htg-F>Oo}z(Vkv8^=2_xXNv+7Lv6s1qV!iga>2F}!1 z(28dzjg|fORtoKIcuJtkDT*gAJCj4fe$X+>3$x{wfJGVM|LTyB! z@G_;|wIrG*cmD#!G4pa^&CtjhfAACEFxq0C7(Dcb(sk`ywDNmj>?vpWuUfFD3a`ii2JMuI$xd_U@mWRZz^+=KmwqIwgS_E=h zYrHeK-#6`l;u&DwewSFGK;JTMG&_MWPIiYA^2N~lH0?7*ja{AJ?%hS&U?li0JphX2D$hx0_oy?{fF4!>ae~r>-XBcw1u7ax0cf1 z<=+sS=*?d8-E%9*;cjWvIRv^LQI{G~5{q6B@Au?FD`68yfKxVXumi;Vpkr)#Js(v% zB1us^`aL0*G;9pDf@egwgwWaLGgr`bN(2qqHS8nTJ84L;^fhO?k+>}iJa1vp?vjoI zSHYOB-D+rNCoN_7zpN)#-zTxTH%XjT7lX{rpRMJB9O&-MW|cI1<~+0SOTSi+9%SZS zTYS6IV7bDvVkkOwjvC%IBp1l-z4=0N7TKZuHNq6;==kLq>K4%z2|kBMHzfP za}TiGtX=VjSSL6_23#h${GyDY%=9RB=Zw2s9=fi2-8LZH|3a-H*ByL)XM?lGKB|)^ zP|%w}yN?Gj1VOK}Zlc~JQf;h4_I&JNd}6LTY{8JnleAGoD_1BJMCh4gU;kGq?>~2c z+X9~F{a)^~q~Nd$(oo93w_$ro+<{G?UtM?0X7rIkPLY_HjBce}IMVz^SU%M!TGBRg z9~)@wJZCAOmcE%pvz{d*fwVBSq5xVe3Y7kt@ntGo9dvM5IX!(SMFF+tpAm>|z)kMs zJSH9rHO&W!L~2UQKCC25YI)pG>>N|Nj7T?peSEyg=-n@OiyUp2S%nT#zgBZn##Y%q z=qA&Q@T`;BK3V*-Ze=u}vZm|tsorrYsF5Di{^@D7#<4jeZAadP&wG*asEq}#9`1PH zB3s1Rkrpqq9R-$2gr6Gb$xfno3eB7b3PqV{n8n0W$$OT6T8!0F*TgY)eE2BOC(C~VR_yV zc{U2tl{Oe}(E6j*3wY_RTE{|U`IvCsEjhF7Ki>4@NAw55jKHV34k=F}_g}~^u3I6nrKhySf`N#3J zpy|B6)z*EtZMY!>e?EAY7T~qnR`=w(%W7hhK-Js*2f;XIL>xA7Xnj-8_;LN6s68#B z_n(XXAOrt({D+10Jnvg&r&Xy~Y3mH@?tL8Vo$Da`KOJ3b%=HbTnMt1-z>pB9Yya&L zvA_ejKFSPM6}kO)CE}#%JDj9KJhZH;i6y@?W>dL+h9w@^X`C7d&Q^n$$$GAt#0It; zg&y^IlJM;MkVO1u`$TSgQHY#+Ws$K%VUsbXu_eXtKNEOZnrA#(-7I>uPA)Pf)G>Md zskn1l`}l~qs*_2rOa`S7@v;Bs#@jtZCGkfaGx59ra4`q)V*7IwT}n1S?b4)uFGq&2vIFZtfR6$3aJ0%aA0FU83oJf%nr66I&$7_L{TdS zbtyAT%CO5)PF0tdymb7FYT=wN=A)7qpH7p&!d8dnrK|PES^pZPHD*%gWUz)+74bEy z1amF4jwmEo)tvrRF~)2%jm3w25LbzPVOU^_jHU}-)%o~@ehJ)uxg*V;rtA>5_}P34 zF)IodDRfRudlU&42|LjEc(;uU!`r(oK&ZC+)5uofMJnS_JQJH^-@O8e&R*AAWUSKw zX*yEU!^+vtWQL!k=PJ8fOi84U@NeGp@z^`jWnac%d}D?``z_CxL(i8*&&RvZ6OTG= zO&@SPU2+*p<5dtjpV2_7H~#(urcXKkE227^H`Nr_30}Fb_h@aK&0B**vpr5YJ?y& zW2~oKU+HD|OOrnM=G)T18R1vWnkv!z@7d%x_rX&u2~(o3hL{o*Ywdqp*Aql6PaTVU zD<8L|n{9_;*0($-zH@yk#q1iNhNXj!_PF~!l`nQ3H}PD5F`mjaEBd${Q6zRZmYU#* zCvCA;Jec*>hJ&$?vjmigDT#^HZi_fV5i`3mVW;Ryfe3}o7&jK=Hj(Yv?W7rUxc{`y zDtzM?R5YCs0Mr-e(LW3QJHMS@BM-`hbqIW}irjKvpXSRAlzuvrGq}DQgA)l{CX_RB zA5G+g*fwEaPrTr>9JN23##5!|xa=iy#dklvP7fk~{Dyh|^iR(4nf1o&N(?*!4@m$O zLfbw`{HYTIcOC%?){PzhN?iR~py(h+wics_c{>09@br}darI2wi$kHf7N2 z^9_!7;jWcA={aqJm6mP0?UMySe;3Uqdnbx5E`l8a_kysMTnA8Q2s6$7Bn^l2J&26F zM43zlT@)Mndk{Jtd4wqTcYrb-G5`)n1s&2*`BMVA{--=`Y&9CQCv#RHTajX(O(ODa zahQ!73-E(Nb`0&T&6QgYUv{zLuFWh9uE8{H+Q*QhPT`Jv%pIx?(Q>gMk{4{9XDy znHpV(Rx$?3WmxX`5$dj~@` zU#{jn8I~h|vpB6bkvweNleXrZ^WAs+Xm)=QBV8p0Fg@dH-U@gjlC+uhcuV1agBL%k9ooq#1=D!X10uCv4`I3`h58a2MCCLS>(JBD6!FbhKu}qd86>W z=}ar+KZ|e&cj0^a%?KtyAy%LFB4ks@hd8c@>P> z&KQY{iSdp8*k4Ie!pgMV<=jrScVa8T3!pPf!SfeVT<4zuel@aLZ5-BpFU1KCI zzVe+Ry%JKjpfHt{gwV~?REg1`QNYm?=Bsq8zv&IqIh^nia%oX2MH98!lF1E;bl8c&UbT)iAFee&aJ3;Uy2K!GqPE#je!Nn8_`QargGzO>SKAyla8-x@VG_4!N2ATHEy{vgcys zUT@F_?20F_K0?~|tKXofoBYjcxpcD?C(7#0^?9%1`3E2H z`nVdrd2vK4FE{va%w@j5K@oY^~0^@4Y7!a$U_hh{~w)3mD=S^1ULw z2avXJ<-AAcy7%|nj;%C@fNUe&)0O9Fwa<0?;j!)K?~Q+6yfR-GJNOEcd4qd?=zEWp zHNJW86a9KiS%7hb3fMkn=t;X^Tuq&jY*|+>`q@Hhp-FUr!}8tSzx^?M4dp{nsSplf z!!e`9@Ulf(y6!T$3ht)X-l;f%D^yFH$+FKW0@Of7G=tJTV*g2HUh;TnRRYP9Mby0b z0bOo|kQl#gLC)}W4U`9T4@5tz4dyV(vb6)oa^L3(^`n`;3m@Gd2WP9^)!D1h+rfr#5zVx*>XE{q<35-vWzX z6`t&OJkl>tCt_$0(eD73Z)0br_<-9U$^xBTK=4u%^>MfRdDxYMAY zqgnT?BG_pv{Gf2W?C8X zzCuTqGDQMbS~Y0u=^?%c!0mGMYMNUCs#RXfP~c@4rW$&y%DyYtpPQdw3Gq6jyYGt# zzwO&or1-cu<-mrp(1du3h0;J~CJkBLA6M@M{WG4WuX5E%%YfC}2yH zOn_?<8<^L1Hc3gQP5uE`xHq-#)Pf15RWo95k#6hsC{8t8ufnm24gBtucVn#=t08y- z3D!c4bB=nJ`X|K`An~)Du(r)l9u~OrvBA;?`wenejG`wex?1ucrM}xoQcgobHHI^Z= zrsvRhra^0%4BcG~8dp6p3@rKT>o$0j^SBx47n61q_2Kb^0Glo8eF>BNlO}%i2qqUd zCzP=z(m3C~Dxd4C(#D?~0t5mKA}@RT?1qQIT?bEw&SxQ-?K;BqFTO+V>9Lzm;GI>c zne>GFwYLVf3*A58KX2sTMe!EF)QpK(k;J-^cvUoR3&V3&wcUbt6+7(VulL&~+n`b# zNt!zH ztciVfzV<~8$yM{C3^T>E+;~e;;_kRz*v$U2;c)*a;IrqWqfo<-2$O5a*Igq$Qturx z-;3&$P^bR=AUSKrxbgT-fSfG6T(+1RA>fxt_NC4GO$$5D_Yu3-BQNycig&F{PF}dz zLXer$zFWfpq_WyhFGTM=E1WSW{pA@HjG*pQpKj3FND*qQG+NK7=`FBJ`!RCRGwZcKk;K zl(~JybSa(%ZtPyOC4pwK7%h+)kQp#Fxk?(TZQ;^;@Iu)*ka=%>y)#*XaM3Qqlac(ZB`;MXZQV1?vh1dxx?p!saeOC_LK2M#c6ivRD3fzwPUAV99V0^>pO?*54hq%k;zZQsqK`6u|PS?7)9>=0ii%8D(^UESvp|{&u{mY5L z;cP29h^(SwsN*Fl1k-`dl#ZWo;+tT)Wk{dyp5I1@GU);riM*#nV+4;@Njt>`?u#ZjFE{eD zKpnTQR7Q^pKDRlO{s^w0pT|5&S=D4ECOxF3W`?CIUE{;5y;XQ`<$utE!AA>?pOcD# zdkHa3NVzDbdOG{^_G0XOf2z28&cUCvb_{dfG{_~5crRRcmAa(wG^EQ4ZO-f1N~sfd zm`AlQ)O0Q_$>m{7(m`XIm1(^OXHG#K9q$aU#48;4+|-dVr|^D1os7t=&S=}LRve^6 zo5V20moF8XZs7x^EU9?YeI_hN4c;Sv_nCtQL+^o%*b@zd92oavK!xTMGCw~HJ-Lnf zPCl&Rb=FjNy^VWjUuF>a-l6s1o5qtEP)12gdpS=6Sb(Diix+~f8+!YnHkUbh8E>(p z_2e_z9vh!IPwzoZ$N{J88@4xOfS;cVd~QOm;IlmBTtUYjw~(&`B8rv@>n77FZZuTB zDSh3jIUeF>>O2p9d+CNJY%KpYd+)uAh4%TOa`P3g=sGm~yx)NP#b@jspt$Bfo2}>Z zqv@pRLZJC%+mYw=i1A@)|8RuH-}SKz_k106&#DGVJK9jqw_ZV3qCFMqg?ujVY(Orq zuTA8;bE<`uOZg--n9?@+{Cg6wMNH*}jEp|*W#pBmpPGtujNT6T5kOKfFlFYmbD!g9Dq*Dw6z8*$ zVW2DE%>c{%L~7E_`?py#lPJOl?gLaKg;~_;os0bwTP_SU{aFDwkWIjEKK`#c*Ps2S z-yJm8o|KJ!u(Hm(ZJssIDz7$7T1r`H?Pj6IUD7bu-lpe_|jKNJ{-6E78?w1o&t zu^KQ`{CfAtX{|{}l_K4bLg^}9CG9Kkg25Awl;z>F^x>=_^oHUZ!~tr_zXbD$xtEk2 zYFx!tS`of*QDG^b;CZJUeyD(1Hf*%hkrN*85`4!YQAd5@UE1eel7vm@F@BS7?ut)K zCo!(@CC%GT+Fb?|Ezd}Of66g+=W1gcY4~m5=G;;vV_k8=Fgo0B^*o4~5C#So)6z6E zTwC<8pdnhg9uI$`ak(H#J@L@!^>t@Y>h*5g6})1WdPKsVsq!s3)(@=Kn3&OkHyj!D zvPe*?o*(C`x#RuWR`PMmQ*h~iuU?NG2u0f)b8rpO(b7=wHV5e6%ZUU}!(7o{bDp?` z8P9LE<1jGZ!HzJ5y^|-ic%u1?vAg-4JWs-Ny)2MS*&RmV7wjYOvsSypw@_ zFdC}b&Cj6P?9l#F7ROB>N;rb?{(~Lat7Su!i8-DYr&=8IyxFtF)q&7qJnTN<5g&dw zmVh*%-7ag6%`i~mzI)n}=a6-#YanUv^n>l3{4TH@-?IjfjGv~KXN?*fe}(HKZ_g=@ z-mm@xdm~0p%g;EPb){Ik6ZH+i%1IXY*?b_mbe)BcX=(La#Q2U=3c8PbeTS)PHGjQ_ zd$;~tsbYY!r6u{{bf<#dk2Qt{D5Sd>fbR};&tY8=Qd**Fz(X&Gk{`FOz*;>B&1*ei z`exUtN9!1fQp;>>HoX5Lt|#X%{;C&4bB-{{CpVd2Y!2F`cIJuoPsu%@%W4!yp4;#> zAfrQUey-_2=DuAf2ET4wR6y&{d>PCnEH-NGwJ^j##%i8iI8{K>8|gA?EJ4vr9)y zFc9168tZ#xKj3nrO;8mtX4DS;KWo9}fzu&HFf?+vGifaONR8bdJyOUyRbD zG~j3g)~?7)=&-r@KRQq@Qj*IHHX!$&7DmFlG8dBpdgpWoVn(}=nHt&xca3+eYzEkC z%Ez_eA!tl2m&M)bYv@VNMw$LzQ5m!<8(#KDIm!?zwM@q1icDX=hku}UwxbL0uu2W^ zGlj=0pFgm-UmHEFM7_p{LPQTjPJmSzscGaDVaO@GQkW}FV+i`a6YfrHzQjHKkk(=A zxb`ATqBm&KXr8D-s884`sA{Fq5R%r&J(iFXVAcd&Q4BHh{8W3_=kI?SAo9jG9p`<7 zGwa89K*TI7>oamvAb7UcLPe~4!EOaP9V%Cvnjn#o3?i0r5uOI^N$d393NEuHID;fZ zve}Qe+-fU&A3A}VG7;ffUhJdVil1E}>5Vu|!Z_RZ?y;L8dVj9zW{ zTnKH=&9VFppf8|PjqrE%{+v4F1gCSsNwCH*4c#Ko*%c6%vtEY|Ev6-Xs!lAm3?k&5 zubxH~ed2j=I9z-yjUF1oxXXKr6im^j{NS{-0wKTULg;Q`dP?Aenl_HklZVJ1Zi%eZKgX~PD37rJR#3^5)9R*5l~5|WJd zk=8*id*#|Zj=!PyPRJf#u&t<+QFFL$Eb|NZq-94S=WG;g_;IzWDdif=Co(Cgo=hUX zn}t(`=czJ9=d$&cqEPu}WwR(he_pPTy5?PF<4#~-tBS1McaB^1!=DVP-|ekTFlHO% z39G(V9I_9xKnmVn59Kx<-TYGgTz=J%o&NrFV)Dt4or*7l{7uSWF&B2j7_Ixk>?G68 zPlux?^W0M1gQWG-76x4@Cd%`YE|zuj7S@E8gWnaBRV}vqWnIKpE$tc?t~DkZi9_km zQa%F7wcM(fX)VbYb8l+u$<_|kIEnWal}r(HPmszrlqyiUtV;5Gg85E~RO@!_`&YZj zedbkfbPhp}!k&#t8vGN>BqFU!)(2(AS)XvksI4-UEd{bafcIl?cCsp!VTUEtKeyh3 z$PPu)>ly<%{KV$@ppjHhP=!@>1Ww6@;qFFZ3d()Uu9b8IIhm=U%MG)}2Wj$8pi^RZ zi)h|(ZtA64shd?=q7eZ5Y5Hx#o2~q)3urS%<=<+;r`%4t)O4FH#cg?juD^Di>}{{B z_vqG{@4oa=!P8U+4^UJUtR}hI!W945CC!rrTe4RfYktEiloXrPV3)#R*DG6iyoYD? zZ!rtIJzpLr9`gT%!%pmolNHUQ1eu>K*6rHHEuOEd0hW7}d=zceS@E1dvK1`8ZJ&-e z*(f2kIuGxh){S^Mmi;^v=#8Rf;q8h4IdJ-5w{^;P^Z+?=l4R^4Hz#D(N8kBa8uQ+a zqRuZMX9mRDjC*9OVxMMXM(uiDQl{<$&nK~p0$DV2jV%l-Ys#dL!gZe)p|eoboq*jM zWFv8dKGH(@Nrj>JkJ|>;&E(F5I0BG#=QV?w5K-1Q>B^gzyNh6L!BRL+x)^snnNTUZ zv9R?xLR!{Epx;XKr=mlIR z-vkpZ*~PZMyAupQ;#i%Svqrrv`ZC?u zk~xp+OdK)=`yLmTr|8ND&XjLQaA&U23tFud>hO|NpC9Z&Lzt3@o^>Wm91S+~OcF{n z;mpKV+v2930^3A9+r`jp+@>^2mZjq;mN?Dn<(f7RZTdSSdp9-naS|Ri<|3b}-1gyi z>qrD7mgAecn#Ws8yoQrGirzga%z9jk@2w85cYi)f1JQ|hml~yKMUP*;D)Y1zwYO9( z2h&TYvLeNYk$PZwJ}Mc|=87xEPl2v`iwCj!xa}1oY1fnpXSoQEBz-M&25yCG=26Jl zk(u5r)hmtk*OYMz$Jx%Jv(^i_=+pLKGR*&K?wziuOV{%(Qq)n2QY0fwKo`xPhA+82 z=uL;Xk(G+-<0yPs%pfGnTN!3c{2kgshV=1XG*A$H*qkz%&~@gH{j~w2lN7+}%9;Qi z0#=i>aQaY<6xM&J%I(RmIvmU^xAy*cHtPeaX-#=yzp+)VCQW%dyURpJDa-uFX|6hY zuPoR2frS)JzdYxdL4*@LbNncU{r4JrinB#_SpAqZgwP8)1QoHC^}6L8M12*X7PO{_ zaRSM2z0Iga_0aE@hEIZVXz1r>utT$dD|i63#Y&jr?%t-;T}YWZ5y!UenXTntEqpb& zQA;vFXAiyaCJdorm6VxaJ`faSARSb%pchRjuR*Kf6fXJvIGLp#)v<~XGW7vXxMrCQ z`#(le9foQ6;=^@_Ub4T_qO#JHAPk3{AyzY#ZTx67S#?Ekr3;TKv*+T`TM6ph%$PH4+ndeBs9uPh{0(?w^5#*4#p*S;54vWLMG{q#QO z7MEGdE@eyxon0i((hfRI2CqMY8#?9Bk^=ALROBW z_6LV*&3+ZcZd)t8Mwys<@h8x`%&dfIHXW)AITQ8ghp%Td<>ca;u4NQcTL@@k$a=4y zmiX0#0VbgjEF&jnGwjGANSMdzf_`hy+Sui(=e%6#P77+2`*M=L?zan34D$gnDPy~l zbsWAcpAv631+UQX?^vgI3sDRl=B#FzV7Rlp926-4r$qCqS`f3n;ST>tOB(=q4lS48Zi?pbV_@rHwVIpjI%JeE4sk!lE zzm1tTc4)Vdu!{ASvZ8T5d{8y`d|)tf!E;HRQ7=fv50cf7jw({3`(r$ied6zKR(S*m z`>&v2Y{DoSHnRvu=BzCYY@ip8CqxDOS6cg4U$z;=J_3CB`G=?6a0dVU?}3SwsGY|L zP}36Gf5q5stG=ddU+ck+hj#U=@W0aismDH(md+A)1GSsQnHc?VVTl-~GNsQ8R;{cY>{|#IwP3$Hq0VT5~;{s4O zhss3@LUUdEUx(rS#6}W5328JEFzChs-wnBiB6Ls?{}tt$%&N$s^zKCSa2aV_OjQFG zzOrTH|DHjvrp@Kmmvk3GOWDfukDDO;V`mgCVxc^8%sXS~NOFS_A=c@|j({%>_k)J_ zAS{gOpz}_Q5e4EzdeUV7%y2#&4;G6f;C)v&BJyW$sb6sHnBG;&awh>^wD1HXzk+Cx z6J+Z}IXJ^T8RmYJ8PhNSHs@pv9c|<@#wRoO(k0G<4(8lx{MnRkt!bw;URiI$)7lp> zdU#?etdO0b9m(Uf`a(1z_>=t7pYlrJPorBfx0rvlhb_o3TD$=^kI3=Gmc*9ns~( zPof?6qL=O1e(*`d=PxFXHmuA+{LOS!hb|9`o@k6NcIly9TP}LR#=hXFHvv!Bnvtw0 z*>)N2jTB90d2qeStCw^j;r%;G)i8|Vqv5zu_TdsH?qEin;JW3m_VSD}7YzYbMb;NS zp~QQ*bw9{E87EhRsdt%Y3v{Rl&XoNj z9ZiPx!WwcP1%LraWRY7dPCMCE!p0zl5&qiUC9#Z7&f-MOKf0{tMKkk9+FM~ZU}|AO zQxd&)Pad;2Yp#Un1{5iE-c^jL-am3z zbajQmb*3W>5_ICOiy`Fm+*l@qdW7Y4<_sS)W6iVKFV&L^+44%2^KBiveqATRVdViE z-_jU6DA_1+BWHOYh3f3w6|%LLuV4X72g8XM?e~)h?i)Ua2b18Fhh^{Vrn?uvu>ylT zEC4Gy25T^7p;Ks|OgRJ~asmQC-=o91qluTfmc;Q)k_g#}3kcJFGD)b0cz+fb(`?sx z_*pWwO=|dr#~3`H>#wXMls8ZwwsB=kB@s5zPtJGy$j^$(2X5%Q5_tGZC$@x51b7 ztB2D`c&&KPD5vhRP!TC*9(@Qbza9t8ThborsT<{&*>^QYmN?G4%=hAP<(a(ZS(0h! zokh8xUZdjbG`4~i?NQ`aqG5O@GO}_Q(*SXlKURj@2quTl;i_b2ZX3lz~}|TCL_`CRL8=YQe}cIvV~UN1`vyo5mBv&>q&9s=eMvXv)U6NDiBNES=Fw5# zW^4oM32MvfEVv~RVjN<8g;3Oi)QO6Z6jiFrm-J+bT*r}Z#Xg^~VOUTUF*aU1SBNx+ z(YQZkL_#8U{-Hg<8BuOobh(QPCk<9iT4Fx1n!azTjxX~MPJHXYZ3DQ>!LH;eY^Ggn z(wl^P>I`BQ4$^Li+km$$4&yaZ9d0dbN=#g|=?O#d+XSP+#Mi19*ixN{oLXsRwnxM2 zy}9$;YH{Xc$B=dnqy5@7Ep~mQ$#SENStKr4CBASate+phymyRC$-O#pI}XMu`;3Kl z^s)EWfeDG6ycblJv9*8Mz&pw<^Ejt2l=3~CsW2y$ewlz9tF2CM$k%bUX1z0AH?Hw; ze6qvjG=~H*5xMWno>8=?`BqEs^~DjlXtUOW75TVKvXVCDOK@X>j=}fRvJ_N1DtXhm zTgcbS?qw4;x90Fz)JAnO9^>jc>~VgM{=x55WO~OfC+E)KVcI6s^z=|m<8H0IpbZ#Fk*C#KMUv7ouCQpxBc#V!e!*;Tut(77M=xD~<+zyhsC2$1>OJ zhH8^6O^$Uq)$BBbA7(t86&w>JshQ4STw0mVKH4c=8>?1C}gf+|W;da!1+;0K8+lEXUwP$r4mxHj&yW>7qWF1i2RbEE5S;?r9D?Wf3Ui9tWXS3yp_fG1jLe(d32e zQU%$ubvxsir;t5yYL;s+;eNYJ03s|>kEM_v96@##{67pJ@5N%JpG}KzjE=<`pVLQ@ zy!Jn=#iJZlKQCm@f^?+ju3Ym!m_xt{W}paIY#3c6yS@Cua@&Ff$IYTW+=UDkc)vvvHS2+3LMiG}T- z_5T4j6*!Df?#j(Iu1ggYd;g6A4Lt~p+2kGwHG(+$zqZ=nJUL4Dt?PFfls*3It%TzG z=X72xn%;{Nbd*zu*Z;-{8lOm~oLgXoR)z&YC-Nt8RABvM6(YXGQu6k=&n>}e5A9Re zzUb-y@Zxlk(1<)i_xs@4V%|%~f4vBITL%zSaN3M5Nj#?vx4-`nQ{i*Qt%OZvWN@OG zV9C@Y^T*vGe(Plr7Z&dJg0ZSHLoFfYV1001dIB-!>xVM4&>?DkCL=Q@A}=BM2rwEv z)*(}z*=D%}0Q}aG!*Jd1HO|^>yGVRi!&iLS^=D(u@F4ZWc@a@|I=3LTkbugip>*^z z(eD&m-N6ZZx}P9V>11t0!>vsN)&ngI-1yuP5WUe&_Bghun{0VkR%*Uza5Ahd`kh}% zEH-k?(VjufzV!zh16fD@3EfU>7<&6d-C6Zq_NcKk8uG19jWOT3Suadcg<)nF9eMGV z+XkkS%ARL&?CF^I(6FU~i|6{zel~b%IGL_sD0(O}#5H#WZ~3B&rd6>8*|GbpF&1ou`zdpiR@o4B#9cXF4A*t748mt znXjz+q9vGp?6%BCdtag~TKs;Pesvdf)mzQ@07-Ba`N>$>*zOP4DauzpJeYAyCeBaG zW<W zRXME);mi9Hza0(~@$_tqUt3CEy+^WgJ+1c7612KZ0F7^NdR6H{H3o$*sf|R103EN` zigTkC&!HtrGpYjz2Mi`i%prI8jWr9) z^?x-?2J?$EGXUeeto@wElfb%^yW>)=+D1PT{chcw@qdi; z0MM_kmIW&d+E$W%Q?4toxlN*VfyhY?Xr5lfnUG(z$(;#KQpQ0{C8-?6*8@kR+}U|? zM&~bGLR(JWgtWo!sx*OkeNRDsTI3l?k zD)c*2GUm$ntKQSsQ&%037!w0MRl)0G6WP+Y_O_g-{nv5I%EvXBlq|;j0YJhOKY9ud3`Z&;b37dCK-(sn3YRbi6G03&;x$2sDNPqqv zKJJ61qu4mK0}L0tFV;E~7P?<~%DuI3rq1KqDZ%6iejbxZ`fs;(^^0#Q&efo+<`<^|v79C+{PN#_9MF=kq* zxTfyoo9JEWJTJ_iV5%azC*hY^T-_)r1_y4FISwqlo7oAE6wNBM=U4lRB+{)uH40h^ z>Oy9OgeotoLY?v&&*ZU1uAXn+gs3N}=QmJ@WtiS&*VHlI&(Sv#bOlk*QVq*jBf)vQ zXoxv+<>$Zs zR@ZDlhY$}m(2xh>;=sU|u2^W;Ie115ooH<}z2_&$nB8Z3VROfB^g;xhgy zOg#nLX1D1wVmj)t&99Y?wwZ2+R9SNF$&AY8n!Hln+?czS^?eM!!mrA}kur=Y)YV*} z1Gy=tu7_|G{YufM5@N8{w|75s)@y{e{XU-u$BUC`SbrgMLgKwO_*nps-H7v|dma4R zZoE_9tEV;Zickkl97ZCm`XN|xsr!}sgiVDa^)DHb}TocYV7GXfFEVp@Mk7fU3u zGR*N;6tS0BQv&)D5l#LobQcVM|N3g*Quce;77cOqX;g%T$nF>5(gNiUsBI{&D9M*dFVka6$ml^~9vnQs(!<9M=x;J!P<8Kz zVYpvjX}LTlIfw&8G~5E0j) zGlj}Wyjt?X@6y=#A8mbz6q>pmh1H9c`8uJrr_KTW?d~1C{1=KR|Bys{z`6y{(*z5k zy4s2_QcS`;tZy-RtM6BIUZojZ&Z~cd^*6}$&MEXep$}7U1*%m?Exq#nk|YWJqVr`> zFY5VWSj#_X^^WNuE8L+mq^&LF$vS1%Rz}l@c#ZCt1^c(R#{Ug=iQHH=t~0#uw7w(Z;;@n=4AXT6XqZEs}Csg#+a^vy@TEhZ3nC$yz z-2JRkTx&Rg=34w}uKG75KlHecr7@C84Bu>UB`TE#H3i8~st2cs)2{V_i8B5{NHk>d z@bAu5tI-Jfs^~$d_0;w=2+`lty+V0TE1Eh=>mh3vFXd{n`M)eLLH1d-Im&uZkJYB< zvszk;1(;e(_R**K)tRVR`LTmQ+x_YDt)W@jl|-FziY zL%}9@O|Z`%T}L!_QmGyzAG_V;8qnZr2hG*sj%VQ!qNL-t1KRkc|4?ic3gmxfc!Tom zA5nJ;OSP?)#qK&6#vRf4VLd^R%W3g5HD~cVW@;Vhz{!<@`BlYIV*S9%zw=K`AYS2thr#0Usjc=Kfv}_RAmqLabFby$UlFN|%HZw+=gdZN(rSGL zwc^hx}1E9GsUg(?IT&YMa-7;`!=4Ie_*xSU?B*2Jgd2SvTvUjBk zTmLCo#OkZ)8e&I0jyIk~grv#NBL7?(a#TJ%j&6pZc{zt{R;h2sn8RmUfdi}A;11-9G(IZk5|x)BIkk`|6HpM;_AiHUES$fJ&oi88{Jn!p9rk^ z|AnNHVJ#l1FT|a(=Ocs6uyI4WXvl70U&%`5;E@{shNhLZqC(dP-Qh8Cf-~wtYD=9V zKyfz7>Lnr!^UQv`UvpP_U1c`}e_09Wz8S}g08K=&cPJCR5^;@V&>=-W!VV~_Z%5!> ziT}ZJG;NEKa)eKkLcbj*8|M9aUX%J29}M3vVMS(gZ+sn0W#3c`3@dZ0i97h{2K*R8 zb{sDf=PJA|0;n~Fa&SMSI5k;X!3Xc|71WzRr7jx?TEilH|68jmkYS1%lpk4^Hij5r z>(+A7q{iq{dvg5WM!wnWg#dJht@Q&OWoGsI+cBvJz+Y>Fg@0_ViW!13 zPQ(R;Uhq0cYmMcpxA;5nPyd~G_6+J@jg#)K!n{xK(Q}hLCgUI>l}bcKTg$88#ueEh z-@^(3^(Cxei2e6k#ynf+4^w*0%CLc9@5F;jgyltzjyP9zh>0on*2%a`v{IvD+B4e3 zJenObT0#HU>gPGSxP*zP!_hlUb$exW$}l(;kzl{2kKd0O_e`jCAzl-95O$A}0u#Zt%M)v2Q z{R`stf4@SH3jn;M6s|yA<(JD!k|7Gx&i>A2a!`Zt^-(H2q54>(ChqS(!RgdgdB2In z4CR}Uy)Ys+EKbx1Ay(FmNGa-Z&TJEzvoP{7A9M6QBIU1X&ozGdiOo}kPWiU6vhXlv z{K0EOJPqH2tAPFJ;(~05E~q8kVLzMfkn+v?sxa~P#Z_Hr9v<=opUl$k+~$)4ZP$j1 zbN=mu#37j3Qw5y8kl2!Py$gy6dIt^HBhp8LRbpA~k+$@A9+oi3!`^)lI@=lf(T7{$ z;c?{f`O}ga99H*#@3z&a+j&+mI(ZX;eN>Mm+QdGp@v%;#xq6B5Z9HX*jwhZe>MK9&C_bsP&-#RAU zn`ntYe$-?UV%Rg&YUd{kDv^R00ry2CNy`-Ejya$zk^?>+s`Z}+#vpaT7Xm{rt(x9D9cQRcD=WjlN^6wi04nTHP%&U^)u|D+m%9@mPO*cq{oQudwD!N2+*+qH|W-*x8YsWknHT zvuf#!o%<4M$d`ndOiTQqZYsMjg-0(yKQ+vx4GPAbY(mL#u~h2|ST$U;e!!=}y>hOv zbNuu1e?s6HC)E#XVxsfYy*Oek`t2;YXl-pzbjA<`6+A2d*T4<(COx6>$TB6gRLYUM zQd^rE)$qR7ik;5?oz%2pvN*D~tSGbR8l5_9dHH^0r>zrWD3j{HL7wi1U~?vk_>M}s zTW}CyWQjxqCjOLJ;w3)GC5b&l@{YQ4!^0JK9CoQkgMM&Tw&5=?1(t57un=BgrX!gh zH=k_ZBCBt@9!Bq^WdRZt?K4KY*W)Q85*g}0X(i~+TTYhP!tX)c?s+ZrN74#*tz1rW zFjK3F^|;1;qbVWNBU@>b-pG%Ttj<^}+6C-vhAw4P03q)lc*vsl@$mk5S$K$Er- ziy`wsr2D@i9F}`PvGOFu$%An^?mWfDWKrKWh5i$}rD@3K-p>ecRqph%=?(rM?+V<6 z7VMG0geb~;v?TRvhPg+pAZ2BQaAek%#~aAvtEGMQ{}4ut{$>Fg1!~W6p*gB*y0ULA=_vx;Sd;j zDsU81wGS@T*{k;lD#@=C<|{K)gwWc;liqd4LN8~wuNj_|nS}8@11@qFbj+5{(L+@# zJ>8PH{fci-!^sjMLU0-R7i_d!ch(Pa5wYM2j%gKo;#D3-O%%tN#G#|y(aHb-xnyBU zJ`;^OuKVi^7~JgIX|#vnA|L0wQ(hgZ?~B_X&28uTc_hEc`ii2255oVa@Vf|*NYYON z`m*#B5@a%pAN3PJ1F~F20%OqGXRjbB9#Nm1uZ*?YYp|_h z*R{5!a+c(GD?|@j|K{y4{SSoj+ziv?g+#w?ZmbUS)D_pDn?EMyo1BLD&@bB4+< z)$e_?q~Gx=NMOaW!~vihP%F+FeG=s}q8fE!XB_H03)g+EicUsCefZtMrKTFShB|MX zXRBf)B$_x%cqc}aW8R8h)EOJ7XuN=*L2e;vLmVeG#AuX3L-E+xlSinY&FP& zGw58!OZ`Ve^)fivu6Tw3X?tD{Bb{*RMCLuU8`O`ivs25$+vIm4t@tcpoS&YK^8Orr z42ml)zF*0{w=O20Tk{%f)VoCdfMsmyC(c~;2ye1xZs8iLpO~!|xs@^0r$SYbKcPoL zac4EoDiz}l-w=az&7&a|?X-tb+iRXATwoALO`bi)*HN2zAS@>0x zgJ0;)vZ)S8WdsO&-xQ6jiTPT2_4LJA;S5ws9II1mB!EwYtg4cV z-7YF7t;D}Q4(2!kCnq+>5!9EnywPJ1WsDGQU;x7VOS9E5thVILx8!NWv`SqhcSqT% zGImz(AxZ~5?hR$JL`4$TvPIoHkSx?wPQmCgeXAW6pscY<>*dtdJqvKqIC#-P|Luzc zSTv1O6ohBOKiUn3q@gxdNd$+5!8VGQ|H4+purXWe@HM00e*=&7V~M&+$&D7k6O_C& zAwOHXUW`}O!^b~1?dJLR$LY+TqB^D7HyMb;U6viRk)&njn{B&_(`!9Q zua_`6-8_*`_ZowRpj&Q5czp#~yafV96V%A?oiBT|uS1lujc(rzK#zzqROB?~HUa0V zANy`0xmvVpOeW^>NzHY0%qDUZwfV6gMt{S;nayR= z6SAeodZ(}&#~+utk8l=85h4b4un;uL@YrV2+$3(K=9Gbr%l(&Q0v-ztqj~G~ZGZ#eW%3ZtyIZY_0|avpJ?8u1ij2S1Anhv+#nL63a?!DmZR^Qk)!81nFQ z*uuKt;N+8W4u)C*5;AU`K|HL29yTh@fOtWb%&x^zXk*5I+mo4Lq z?0ss+tzN<1sHc!|<)q0}7RrRdtGr!hH$9ft&ztnG57aWQypjZWOt7paKi`3bMDRNk zkAe%7o-Lgy7-q|yh*9W~UnaVMz`I)W6L;-g9gQ)QD;uxR-g zKgbRc=(kS^KD|Q^IkKv(#~?hoxs;>SnHvUWZXhht_(xp?HrC{4NnU8&6fpQbFy46Y zgcIQksWM_~bklFlp71p}+&B>+SIM#CCKM4yBsF_*iBIs&ZH;WI4bp`pxeTpHioZ%% zxk#rz^&XYxXP6X_&L|J2+~j@dUSqnl=}4symSH9NVdmjK@KuO(uSNUaNuSrX-bl*z=9systWz%YiuL$$o?<1IF3u!3cc(?ik)8sD0WPc@hdFR&y4=1tElNLNgy3VH%YItfT+#2%w*lE4G811g?-lGi5pO?Y7B$+&1Xjn75jq=ypMB6Rb|PuFg)4?k!^*F8aAAj zD)9D{!QMV@^iXGESfau+R$D8=-ilF1P2z^oU&^aJ*_6fJc5ij# z!yC@x8NFL|+BtNxYXSByk>FSBwnfLs#_Akd*l^2;X1xgmad{93Ce|X+ZMTea1!aV@ zw0g3`>(v_P+?6m3ejvqpCCya1ytheYE;HNHLbi&861cCkF8Ek_^J&cCDxRfP+N_;A zsA80xi~Baq=`_7y$=|QBtB9XWzBF&)k*e2bL9Ju@d(sjh14Jw)56RF?_);MoHmUh| zfo}=d*BqY+g<4f*#Y!@#QSk5uCtk|XB~K{hcF(dQ6A`!3MB_oZFz6c9>elVCeXfq2 zC$F5ZVt`qrSloi{#SO6@a!W^gh?w;KU$>&E7JP73@q8oQ?iERCZ7+7C=?HUVw9AL& zBS@jRq6p>`)|p7dAbU?1raDum{IXzoo{8A-X?s#&WeE9O80E80-IQhe$%)mqwcKU_ zQ^>Stg3joH`40WlWMD?Q&t*P9YoU(ky2HBcoxTVY8GCuv=kc5AqAA7P*-sGLs48#onW-$_zdY&bv$^p3QBRHpQ4=yv2cS;GeTR2sZcO zFSosNIvzdm%Gk?Ta3{^r=MbA;fU%&>_M`?083HqfwE20*R3Mpuww|j_+LT?X!ssU4 zknj_)3b4v%g@N_xGjcN%3w3w)SODG|rKZo~*Ffhjkv0`a5nDArf=`+|mP;vIu&F@L z*)_zfeu_3`(@it9lqehc2spjl%H*uyKXi7f!!-4TVfF4$+w%-ZyCnW*MigS@7QpFA zIZ6X33>yvTROPd^(-f|&rTZgVm}SjE_q)Li=rKTrJ3dei@!DY_eWtLeU?%~0t}={@ zaWY8{DK)C+=!zsZ#rRhQCfaKg?z#u~AMXI0^WKlxcKnrQP7^bG6JoKu!wpkgs^FA= zFHx?VQ}`@Hf?K(~Z3AS!6-{!x!Oqb51X-Gg{MKOvA;KZn)c&e7-mY`?s%N9MXHa8t z{QcE`lH|{!!!Lm>6og$o3;K~&CssnmUdQv2p;1e7caJZfz>~Nm?x^9N6=PG8$e6>;Q&v3?5TRHi-onc!7}T($xr}#Dtgbb_Lc~z-F4T0!JPXjEM-}z z@F^*F&rkx*#%zwVg#O0>trC&7L&Nj5$1=#DxBn*;FhfF-)#3A4+tv;Dr*MB#W}MhB zItOCm4-exFb1uvv(EC`DXHfq*urHrZg_S85N5rj33VXi=AKF=4Rm-z+2&8PGh1**# zaDIv@nZ-YbGyjos!rz;Z2~tE`wAP=2Cl+)%*!!4U-X~`hC0NgOuWR7b7 z=DFtRj}3&I()!Th+~&@37JD#<5fC86;07Cg@UWjG%oA!qLVJe>-+?SK2{eKw!8`md z&~$_}dUhGehIjCf5$d)%2m3wjSl_%E`+`>En$6>&BGe z6g{xIOtgXRN8hUod9ktqEvfnfWo1j(-E4w=9mXO_z>^hbuA>V}dFW0{OG><1tg)S6 zw6awBTFpS5M?*t|oWpA#4~I{Tb^>lTUT$BshB>Xt*Ir#N+&;UM zqhqy({yDafz??6mN7<1nzNK~8g~5b*2U11#(w&%%=;g%x^|!P1%=`WjNzn7Fk~l}CgkrP4o?y&b+r8LxEL<(1l?|4gDN|o zHh_1ZAMQll98v_xw7qSqT7p$12YI~OllO);B_Xu0K`lnI1al|WXER2{7%mZJ_H+T)YS%S1L24uUifYBM>Q@QDfMyDc6Go56j`U-+ z<@0Otj&?>y?)1TH9v1B#8>-C5($$&4tg;l2!J08>CTig*R>L>%L8_1&x=CQM9ll^%*!TVna!ELYg^{m%2y_hq@VetmuHx$6>;&lw%|W*TZ4r7QEdKJ zdvI^YfBK}#Q~HrzC#IImg`wwwKfnzFblGK1Uk`7Sek$@70#7+yXU|KUO}b}l_54{w z8$EMHnrjJHQO{4Yr1y8<0{MiZAX_)mnJxCRi_!w@0WRm*pG(&97cAaxI8GyhlYE|2 zP}Y~dyS;goGYE>7vd~G^?iF=GczlXsVBOCd6d}C_oF=Ha09|+BTtDx6rEA8F9}P1H zMPU}R9%$7hW|=!OM;XdsT9wvSQC&i&(Ql4KrF_Q`N>x)6X_xXYc%48;TAuHy= z?xvvh!r|IDW2KWb8HN}9z20}7<(<$1{s0YXvrhL(f(g%BT-uYRy|F|m_kN@R zz^gHL=|EhP2b^mxYLdNM-SjQjzipjU&OY?V4Ik(&ghiCBep0&x2#CwmPefiA5Y(06 zvuck|h9^SBHXEF29F%eHDE>s)PIWy^Kednk*;KojobsUSUwC8yu2U5)6u)2CdTsUO zE}btNC?}Uk1TJ{Mp*QC~1|Baq*wZ*TezdeOZ}*J(hP^a|`dxwRqd9``7|R!x)@Nl$ zu6TSlkWl%cVpXZqfwe*#-NhKETs&F0(#dgw$IMc_T4@c<&8NdhAA6{W>`aaFW0sK1 zGAC1pKP1rgtRjRF1zu>~4&#z4M|GqsU*^zh>M^W1A{--PAD=R1m9* z4yNjvrWhG5fJ$3*hg0r<2h!Tq5nX&`B~A`bp3?i~p|Wd%8DwfFZFd6C=$1T!C=zp5 zI)iFK^10qrE;9~39(hwJ*6CQ`=TY_L!5_5aZk$6)fBR9q?Tw|nj4td`$RuVamSxq- z%E(N9hCFDgz* zfG#jMw2y7KsHwIJUN3HJ$c<6jjgi_7)^PjmOsL;0u-M0B&|>f-kL^L1X8b5G3vMPF z3px>IFUZ8J9Zh77;AJ&3ILd9rUo(~=>R|%zr7xeK_DN52mn7()GIPte=x|Ip=%Yip z=fVsugO(PO^AUs?03?M?uX%APt)h<@jz>?QzP5Nr?R_~Zv9?Itx2OG)rIV;t9`~); z2_+f)`bk~6hA>vc9Dz^JOHl4f!3OXFXv}jm-_^d~8Ct0&93Mjv9{%yMXULlGWt`iq zct10q z$}(-@4-_zZzL9L|HOHl+@W}dwdH5tu26w#KOgmHUn+46?<+?8AqJ#*3ea{kM^G)Z( z$dJoX_uOnbsr?a^I6=ZqbFHQZ1G$_K#>XLH)=<~n^NRJyLp|x-J8Ud3&}}y7&d8wF z+=B?5swpl3690x*zxVc#W&xTeEL3y2Wce z{!kYW9?Q0MOJU>j&O)EYiwe027oorfX#p{A$m#y{AjQ)1_gQxBv36=!kH`N9DMqog zmnR}i&|h3cExSKOEZKdZMmdhEQ-Qg?81#7$=QNG{WT$(pH2nc6QuN0sQZxh~$#~!#`yC&6P9;)HqRNPP#M^u>*h? zAuXOZC&$YjxG0l#4`i2lEWPqp+_%(^avLKT%bldmvM;cYBCIMoc=nME`S;d|?XDHE zVEURplX9|c5BZIyTlvZ29fa-HOcQ8Uak{1+qKFTchYTYfojPzECW^D8Zj<)DE zUX+9ej9OpQnk-3S+QlH#^GX|x4Kr-)(|}l~Jp5MC#I~Pb@hcK8V5Ytl)yvPj6B||< z9b$o)VQO*xWmvJQ6&=;7=49q#O>1h$j=RjHU^5m1rYWu3bKD8O%%6RH#E14?wc2l& zk#^!w^x9Ii3NZiG$S^h_0g-Jupnu;mMHZ}Mm;PJYhlt(Ku_e4ToFuB zaRG_B5P3!?{ja&Hvkdj74i%74f+B6I$+1K9p6Q$!3&+4Gsn`HyO(HU8y@-pKUpd3R z2!SKFk+1Jizs~p>DSqHBgxhoLZOiGfaGor=tNa}_yz%k;fRb*7U?K*mJA384h0r2T&aDj+A)4^kt{>XKQUIIY2bwP%^!JnQ3Lm?EQxu(9&A6?;`U~rGd|05qb zQ}9FZe1{f7m*xW8ua-4*JVx>pwF&X{0=;kp4$!QakFVGMjGiAnYq?$<*t>qux_2k}lw}@!L^<{pc{h6Q z7v!B}J9M(+ z9?@cy*B1X3cF}z@Yr>#{BlLC0v%4E{!kwhWEU)y^<$?%Yk9ZY+9fdqdt-P{)R+CrkFkgZtu9FB;nNJ>FOBKJ$4|?s20(KZCI16#sG#ytS%E<4=)}6NrA^z z{%Zc0W2l&>^Jkk?P?ed7k_^8_AT(6EKC~` zZmRZ%434%iMB9K6BXndkQK*NkSkP)`wlN&mQ7iF3_j5@+_SK3j&A!}#R}qczK*)GD z-$vHyDzWF$di!ZRTq`OyH=}#Y?7vdw$rjJlFPMAojR-vIx~1bS4D|v5OfL~!LmY|T z&F}-CuS^@LM#(C_9lL%uCV-=3fu7b?QwH-NjRGG^ypO8jIC9l~+n&C12MJ1Y6aQFS z-u@g$qr-%8#Es}M=E;T!`pQ(-CbP0C^Sz8xB)GQM#g!D~kxdqX#~VMiH=mM4aKhAx zvG{tS-RAlZr1QhP;cTwAz6$aq>M&*u*1+hGtvFw0RdgSIDi#Y*h42YmQb{QYqS#bb zo+11j2h3nYIO6%5SiST2Lvj18eHLpa)}Z_NOtws1@mOb~C6JG#b*Bqjw@SYJH4u=} z(Fvvpn?F}ElvhmbQ*=Zw!Q4U=LvRF%I#)}T##pWo;k}qpkt{zJ`J69Aok=+*`DBkXU+!fO%WOu zf{mQI5f&~Tvn@7QQD(29GwlbKZTS2Xt!n7~T`rEhcPz5$3DT-iS8@^Qo7w7OPkl#5 zmT0}GTkZVYAbdK2s;+L~f3ugo9i;d7#s=uOG#lR+^06DPcwhLAuTs#u0XWurtjAO! zn`h;hL4*FtcY#jqIVh!Kbc)+%F zpar+5+sQtR0ub9vhSNh%tf4id{gTy3&G{#fUK^X!<@U3Z>)Qv`se2!&xEFe*`5zUy z57Sw=@VMXgi8Uy6sULSB z=kRJPCx3bGV+~VUkW)7u$%Mphnd)bnz0D}$yaH?`@v))FhQuRT$JRhK!m@)4OAdj15Sny9IR6Ak(aX%HmP!8ZZC$*WugE$j%HW zqxTaY)~}a{BRj9Ve(y^`vJrynFkmGtKj=93{2h=IkF=Wq zTV_(BK~yeE@`2!mEl24gW8Z?{Y5kn#p!UksMJzbj&!mR)%Jk7}8a~x|eFJsPpov*rgdw6qe?t%#hOa6+zV}xjD zj9!XZcThQhADl)ip0eguOlGga2bfWOKR9xjf!PuHQ_t(Go7SyVnRI;*<}qWdA8>V& z-wUJH-V@{Zm!mZuJ+JQ9=GWOL!P~g+tn~plIiJ)y>5jX%&!@Hf;%pFU8lOpHw8Ouh zSzY*AN%gvTfr1Lz9Iie*DMWb>q8$&7oDKQCwElX%S<}^f8NEDoC7OqJ7PjMRktbXw zp?Uh1ZAOcli2+`!T70~VNee)jUhM%&L&3=CyHb9f1NmmtX2d0l;pi-McJ*tOg;bi z_z`^ecV6KYnws94{Rcsdq>J9Yi}z-`NEH(7OO&MWh(PwQ8qWxo3fIe0{5F_F`UO}U zv8_@5&wS-y0Oydy3zuU4`(fqFN!$kGVvP-)3)n%Y7CGKoYZ#hTJ7UeMN4anDo``+swDnr2E))#+tjd;QKJ;*}SLNxhW5#UqiMU z+VQV_YuCY$AKiPzj0Kql*f|AAOfgB$)2KS9cy2p4OePD3o91Xu6B(0F`K%j)Q|6`Z zaU8KaPsf7IxeuW%2c0EkOzh+N4&WL20swYZqdw20n_8qCBgf2O?ogYkgRE;>JIUDL zM$=m;790ALAndbxCamzY_+De9#F_7fg(e~Bx4bnL5hP=>1K>@M(@Se|<#R?za*~qZ z3gTnx7dZpOTB$;SW;CgxB|V9LIkp4j$KGv(DO2&E?a#4wO9M;hWpTu}J(V4ZD@L!!iQ|DQs)M2@(A$YqNi! zm=jEEa}-nWpCZ;~zCfooTZ0GlLhL7H_&`LiAE-Y!7#Y@j5XNnKETpkqiGS>?lLkD4 zwv?%&qr_qeAHPeTZyU_1(=7*Oye%d+6eBt=p9<@B+gz#NGYXEBD9ESvN)&Zfs9am% z4wC9Zs3sM|>#0Wo;Idzg`F^-ok$L!z9;)XOXMX%nG0 z_-g|4?jenLn=k5_rZbd|if5ul(zNGwoLz^QivXZvRgUa7l12l>dXy9%qG_L0a9)L@KB1zAk-~U;u@cx(=o~ zidrn(*>A^xaF4<=~`?F_eEo!PM$wqer3=%WcbrjX5>4DyrI`?MHl~I?c5QxC1BTpm!0Ghz!^XGEVnUGKx*Ey zrxbjya21k?0J|lL>LouJFQLXLein|?9wZ_ibh`b7S8fJ5M}#@ta|Y|J@!?v)LHxw> z1#-eK(bV9(sH<^^qx)74t0xcPJ*|IX4kv;F8&bUf!7{hpucWWb)OLr*oXrs0h=t;a zrZSNi&$seX=4K)(j^?(Wsh=LwV%nGG8>8d#bI%qR6o1@2XMXh_Xl$mvz7vsA0jCzs za)fHfS!gHi2*`!TITp2Tfm zBfZ)Zsg~11!_PH1Taw99sBE$D-KkDeO1}kqd3Z1k@9&dA7g75@$fROEl-_C7HGAaF zsby~(vn&&W!C5&=XT5q=Pq4ka2a;0;h1@g*Zv?jG*eFLy&78TQkR)%cbo%6a)wz?l zd3{evu+)4K#0H;SxbE5Tz$#irqykjn>@jUrR~Lhiw9cYaeIj11iWPUKheRhDtlKZ= zFFbrK1kz=TtsN>rTs;F;%uJKt!U?HC@Q*ssG|9@|7u`l2&qB((%of?|7T$| zrPx_)#jdw%*TAw7H7jvY2CIvVJDP{Vzzjl>3}3S(Y!F;NBvnrw_8flUnY--=*6YEy{#ln0gvg?-ebi;ir z;AT;zE=g9lx{er1ZI@}gQ8wxOTJL5&0Gb2WknAYp$=UD+Mie#3U?^B9I`TF(l9YJ|fmS3PRX2GU7Pu!j!&o1$aFf#Wa~1qFqE1=?c{ixJT{#NS6=Lf#=B!F-Z$ zRk|rv7UPdGjq6BI1_F)fmlLXmHVV|YNs8$gKx9g5LvOznS04Y4u(Ilyya=UwD69C? zR@usDXj2ZIsW{=*p=-vTDX@;;m=~{rV<7IcDHe_;1h3x-bX9L=LLd};{0&SpfP z=4&`vRM=9^{A?c$m9$U`jfDwyFjIX@2$WDHm!7}^`6+p?`&3I&YJv(Zh~eV%7gZ~Z zoFq50WYr7~`2}SP+d<<@E%gtNsOcQ%(GbyaT`sh4P8=EjxJy#^HF0jRSQ$NPn4j%2jMn)Zap6AMl1xf?wG?P zhQXA=h*)a@L&Ue9nhjX7^uZ#cDgw z55|hr160C4ie)R!lXr@Gtw(7pc6+W*{1!zNQgUOk4|6-CyLiNszhL-dLO4LIvJ^nskF=)$9>t|2|Byl0d$-{LKamOF4|Hf z1esI)I{ch9KXJ`;LhF6(+O=F_^XTIMJ*^LSyJ&Q+%2WYrVycVDIZ(WRhR)}WA)~`@ z>vgOc_$^;*S%=_Lwu!*AXmRD{WsCXFqs z*^g;KpEie0`bc>IpA^Q2A`+jRM+%;4m;#S5PI<2THZIW@5E=uq()x z_HaRj0AOqG#h;>{IgO#t!Ks`mDmy||08rsS8ypL;ELaC>i zs!7h&mU#FrC*xm4>!s#jQY88OZT^O>sgz~(w`r>zKFwU6K-R=TM(QGPJUB18N?Bdn zA$-;-^w5O=Bi#)OY=>7+K)M*_F2tOT)zu^cx`X>~=1)O+H4!kJlB17<=G*{p%G%N7 zWiJK6BN!I$paFMKmIMi$$PGhcNEt!dJID==Y`Gahg$@eh$$S&u6Xz|sbWr5+-nEBVgw!sK*I<=jhK^0#2cEIfeLyWjsKzpvs3)zkh>au@^ z5$^F*OuZIjO8k%nG2ehgz~9f~c@(3M9_-2{JO*JKxk{>4d=X|VN0UXTr35A zgYUBh{8~t*>2AAt3pRJfX(HXlXL?7vTf>1VG4?JXvHd!Y2H6xCyUkgoTLrL`Fke4CT1xpp^*<0OH`fg`4;-hE zoTAXVsOPSOfV+&Q7d>QSM{G)OBDrTnPPN6?UFMd5l35m$T#zoaWLgKAlu`?(C=b~S zNCI0l>E_%vOnka(J<#{ggSc401TE1nwe6Jh6mIi4cm~{xM=?aoe5{I!Q=voHjK%oxs1|Fn?JzWYhCO|sZ?eSdBTS= z`||SO@QZy!B9zQ5oe)Q?veeJtJ<W360&BjyRtL{(JpI+9b_%j77*3;Brezx6?Y71N zl2N?v-2fghw;u9f*!Sq9qk;I-_fsBb0?84Htc*McXxgL<9t~m8W2b`c`^b|cG_sZ- zmGa!jsKMVpro^&U3`zLT-V&GA%h!2}4hX+k#Fft<`Xn4IgD-@w*a__0403=qrSOAmD7KWlIDcyk_1+0_>t$Fd;d=JEfZASdPz0pky3 zvVD|qy=pgz=7W{uo>JIwi7AEFkdA-C1-`D_==AJu8p!;xp}*w+lwVEqeW%;1lPhU* zQV74(v|;&3XOp-8Wb-0ivNEMB?ZGEFF&FxRypxf`HRw9gU#@$fqsTy!Z%)xN3a`eRS1u-6UOs$qYem|V*TF`xGL#%t#8Ou1H3w#@5 zSEi!~8z8v__*d&JK`<&Hok8P%Ot1*(fPTu)6+n6ckj%0V0Bu&u68OsrqVnRqA>HNaV-!XH#EN z%|&1;*82tNuAS?slHbY4sxF!Q4gi;gvn_BmsKTuzn+^`V@nf4C43&e!#wg%O9r7l> z`Oi+0Q1bxaqLn~_Fn_Rw)#7aiqC0+Ok}pBL@|_~R6d~bV4lPI9{_(9*wR%`3ns^K3ZxShd5LrwcPQNln-C{ zLhG&p-66XJctO|^7AOygnY?A4C&R@56Eo4*RH8-#u(wnNzO6$F*mSrvQ=VX$KtT?0 zsgC#3Dk)#I7|8!z^bR4D|CG&?kxP{-H}*N&try8~TI}1$9^-~a_>}vWn6nI{1E(!^ z{Ms+3-jbp_omRsdCS%03md7Y>Ip1q4pId<}l2yj(wVG?$zQCEXg~{;^OE;g zP9btyYa}7E&oYyGuQ}1_WvX=ya!*g!%vq0d6OEglWeeGy`NBmXYKCF~+n)gO1Z4Ks zpSbxu$iZ3uP&-gQ!8$6iK*|c%lriNN-G#F~e@JWB=jY7)jdbKFPc-BnVkMCjfnsf} z-PHU9auQQST!3Rl?xB}E?5SE=m>)D=iqK6fjkd)yyB&H-*_g3>m*l1#OA(I}(+*QG zkyjvk>3c>-0xhRx3j&=NIyYNp@CB}<)qo#84t^y2yIFk;*9hT(d1T^-rG; zmdsQ=X`7af)25(wC?T`k@^$HsU|VDKlM_miCGIayj5v=88wWB`x>U&hQxy5EKr z>^S+_j$XX{X%@;shINI`-$>J1|-T~ia?(6wc! z&6PQ^a_^Rguqp2vt66YC>juozst#Cxi6}S1+xtVb6yV=kXNesd`J*arPU(3J|6mc% zO!!*=EQ)a9-A}wYT7Vx`3IYgUeVO!RoBpOcQ;kGA30-rSUgo|+H1c?yBk#F-D7ToN zVHW=&d>^PO5(ldcZn)~g#KSiUwi;cvkXXuZ2^>zCZDgg-|-LxFgq_(Es2$2tu*n6I}-y1nhJio{Q9-f zc|qjlRX$%0a73fYOGaeu)KQmY9333t2hqz11K;tm!j1Bq+ z!>lzY$u5`lpR(YCO})4k+jaS{=|i9>`)}XR`p0c~Me&*?_mKX?P7U(K&r=Gd3Q>j``(cQLw{^|xe zE?viGG#f#tAw|2X<-F|}85D~sSuU}oeu-?-p_u*hNX_Z~rpXZRcc9j@%?C9g=a@4S zS5-@0IP{nmJQ}`bjQp8@xC}N9P`_?v*zaSrxGHqTPr*jjQ^~U!Jk~CWh2sz8@x)84%q`j;E*#Lj zZk4bk6vRJ-86_nYh2FJ=#YV{-KbIhr-Z{Juwq>c~0 z5cnq|Mv0cRVuzb1^UKC1sY>_>32Tct;2jW&%l6E7Gy@B*!I znX%!EF&avoq^s}=K%^s2l%0`>+?k270TGo(jFY1VTXT+)Pch?vzV;r=ujFHga zXUWuS!3uV*$fu=uCAKG zb~`66%=ENu${oT~m*k8wrhtFfkRmcI-X&naidwMnv`mZsZOpejY>M)IzHw4*!)X3-{ev$Ch9EU--N2o1{uq>~Gu_5hS`8eef(Hi`htxRF^$%o`0 ze}S9g)?!I6oKleOZN zmDSH}x*lf<5f)FrnZkkbcF|C?-YUTdx%(#bgSlqJieZO?$BnKfG{-d9Y^O z)pS>uN*1asK(QrV^HtOOiRH^fCVm5uMY)C><*yRIrFd$C>Fwk-7O<}Q=R2B)4MuEw zOVn%H!`X!`l0=RcR$4@clnGdI%hTo#&5C_QXo+Onm{{-*nT{lEqeu@YS|#riVd^=Q zjsJT|;dRJ220MTtXKVW2_{H<)Ke2apMB_z`1v4|N7ADwQYZwz;H;03qvT9Z$>HI-*aELVP$EA3txt@hu$ zB*er-+@yZn(`MKJzG!OP2;w`ydYN=5_72ZaYx`S@%;7 zAfr`A=#}jXx8V05 zK8P~51A*p)0FnCnJv)lh|K;3aSj1?AC-Nr@u~*pH+S<~Yn$q544nvy0uOE%A%}f>< zFSuj_HV#SodjRdO{J=JL&K_8Lv$%qCYD?lTq7t6Y@)C{s`z(U);=ioyW*VT5uJ?_+ z|7Gjt5&_zE^+N6R(M>{5>lIC)ttKnWOki>_kj5drw-sNgrNGAv#PVY#XLT+lyrmdY zk&5OIClgcEU9s&*0{&&6U(;Irf4-%xiNjpk0d!DD!WfMIA$Y{&z^P~d^E-@|Yd6UhO0^{{bMZSM z)0enxykJsq%{`qSj7qoE)nH3^6u3}>+SJ2p0&LUf9a<3yxAQv|UHseC(d`enAA}HR zZ>GKUyE4B0-hgbs>8a)#Tz#Yy-&&pUdsB@0(j(-ZH1*KSzzEBVz$`Mp&w_PUU7_pEbdF;CP74-C&I9WtG^BgGf$=)IO8=PpGz$$ z`kZpVws8@CXPSN!1aWT_1=rpO^;(++fiX2Ex)@6MB5d@J0xMCYXCr`FAq&-4C%ZFR z(G4l83#3i9*5Ii=}zC`NvLx8A_(x$GXo#`5;XYx-87+aKp>xK zDvjN~Nh1;p`|j5$@f-&T6}@k`KSy#R?PMW@@3aBW^R~^=kF%ycHAOeXzsQ3jYl(nwRyP0ii(vc& zG%$37%5^D+bT=32VM~lI7*eb9;TBh0E1p@Hmc1jXIqf)TRh9@-B2;1EeZ4Cf{hHE{;Tpni6 z@OwW5;BBf9oHEPaWaYQS;TRLR?_)>bK8tI3`i)}YlD>m5V=c)J)YkI-94GJ(MF^t# zZ1dFAL#_A!9k>ww@uQq*mGA`7sp9{RV9*(7!}B8$(n12lX%H2pu*k%5L$&@FJ1qM` zAdOlr_oqudkuX`9a&Q2`!uz*IB{vt(s;=un{@3;rNpE`?4yx2Z_r^bf1N4I$!f zE;#X_HAN3vkx0(jCIR&C>XU@O@}DWMaR4 za`_@m2c+2xu~+3UYLIIJm0$0sg8z4RhH&P6KreY`pv_0vcedgG*&dwjaE5v4E*E=K ziJaaABk*k}Q0P3CG1dZpszK$yTUtU~!)IDe5OC-~;q1LKF<68pMOT%wVFQ{6oDX>}apum@!6r za|^S8P7+am;3ZD&x^mnNIgIANTGDm`(%RgqgcAY%2s1B7+^O4M@`wyQjw!u~AY3$I zbiR6YxYkiin_7JSg2Lh9vKxS68wJ_YQzg6}3?L+O(`m3%W(ISo>w$0wn zLz%7bRAS-sJGfRJ%l6D<3X_MQ(0_Y@1m-&{055_SP(;&u=tp$s)l#b8;x;I8fmO44 z`+H2S{vu=(0EG)(c_?CFs{RAgmnO<-nl7xKkcfw+%*bi)06j4duJ~Vvj_Pi-!rTgr z^f&Xr@Z~AsCT_xk@bkqX2!xy?B_^y2@T^arel05XrQnQ;SWr)Pk&62)R+NHu#Qg9e z9V$RmYU^e4?d;no2ocu*F$n?eeHYQ3i|1zX$w>hKk#YQgG<^kB8_(Bv(Bj(SG&seI zLxJM%EwpGMP`tQ>qQTvYJH-kVE$;4K+=IKjCU5%te_wL;oY|e3WGC6HbMJFQm=P)5 z&lZRjZbSfH$Vn?Rl(N?$U9ecE$tOp!ScWCd&NTh z=Z0>?9)#TPp;bkp-PelyxzD_DmDDzcbm?8-%1l-pW(pyJl}2YJ1j>PO>%e!{5xZA8 zU;S6od5HgdeErT5J3rUxoOVA(silY@XS|?q3|wZB;CM};qWnH`Gakv{TUl)*2ZGLGIa^sO6t03YYu=~Ww=7p3ZO@=AP?%x|Oo~myL9~h6coqShkPcN}>pM2Kbzd*yuVK?fkSw z!HM&kIQjd38i1H1B9wWg3LOA&2qmjNu%?@zM%b#Ht=DC9@vsqsEW|_r9ukZ1F zZ|7S}LP%-nZgtM$h<^6N75v;2`uL-FJN5E%2Gsb}Dt>Jb$EDlow%`R$bleB<@>cZa zd%ckK(Aw-+doY^kHR5%{l11%*_tl2`$O?npB4c$S2QNi*=O&i_+>0q!{CpR3)qW3z zTkZC@FW;YYA_A&l8-=g~PT1`ADHN91KT}f~(N+H4gIVX?1>E-bG!!pv;@<)vH%ZQ^ z*^UWKB8=4~=ihB!jm3_g(e3eFW9x2sF%fal>UENV6APWURZd>1rz>6YfXQy2x#Xj4 z==w;yvtlRy{Vendupz!cT+!^PnYnZX=J|$IbRefmi1Bz#=%3z73rw}sWgSE!7b4yX zT=aLBml%7UMBY*LfP{as1^xcxso4=A6t&Pz3}MQM=V6gxb70a2mQIu_FL$!;{v7IR z>A+^q+VKZv0K2n*|L${~IAis(+8|@$+wtzwrWaF{$=e%~8OE_F{jW~{QzIwXk^;Vatdy!cC5&AVgU z@xTD@Kf4tVy#xwb3}MFO=u`8uksQIIj1NZZS7XtmUIg57qaxX1d-2)Nf7_oa+r6LW zU~0GhkcF(MDEE1p1dHCOUsL3UHah{j(CCgU3%`GV&OIS_9ofxD$9^XHzeF%ZZgfkH zR0Xbhc2KNxa74Y>^*-b&5&BdN@|KjT+kO`Gxr=%37k}mj!D~Tl=t78;NPzDJp_JD} zwfKXx_-!@lp&4|JsOp7n0l%;ioBEFZkAREbspKYfS?%1d8wwRVnVIXqJ#!;Apnh-6h;*UgG8W+ zW;3xp>G7M2OpVtKRk(pIBI?=PO4ZT{9_z;hknlht=8RbDEdG?bI#~$!c0J}-T%G-y zK6UM-#&lur(8B@DlwW8d zkJlCBE_(hb!kNm*u>J-O+Gs*r-8OA9JIX=o*5OVKyMf2U88UZ{oLMpBIK1;Dx@Dk}SA}zY?h_h(E z&Jcg+^lIajTkHl*B@cIE5ib}f)z7uPKs1bFoBTq$01Sxsg~u5woBj$S68A!816EJeVfRU750uoU4SfVyx4n(9u6a3gM3 zQ}GpAJDLyF5RWr*mTrF}mSInrfB5m<^>cIPoo8f>Nu5Zv&-H$^3BvZi2BpQ)TB@AK zEKn8zxWVhK=Xa*DM+hlwSM7Z3vtfHerD4l?;ybY&VOtvC^B%GEK+b_CBk5Af!2v}J z^lCY<3Sv(lL+JI%8XNdS1@B^>qx8cR#*xX1s&*ER5Hj(BsG9qTBKRZb27d9?}!+^@N?+Xivt{-dq0o?|BQAyB4k?tZB3 zXsnzJF!miYCcunXr%YL*Q8Ll-DWkeAUHKmfPu$x|yy$=#;*6pP^15Ufp>z%uM8QD$ z3-4mJ{(Kqg>Zb+-MB1It%9^~Q*N7Om+mG;Rxx*~!18&b244Z$O^UQx0ktGIc_Hm{$ z1n+H@{lqs$vi!`Ih$De_pwV zxA(7pIuJ~$*kN(5>WW#Ych8Gq+($fn6xO6+u_&9E(3H{G#Yk|!$(OE=Z z=s#uzKW1yc*KB|2vVI5y!g?SVQ{v9o*6kgUbO?+OfP^Ckt=Rnn@VPPjc_I7R6Xdvb zH`jJXpM5`KVPyP|&F};MA9FCMTt`PJBmh?V^w5+6JZ)^11BAu^P?9IhLS?sMNd2eF z&Y*Jtk4+W%O$Fia4AH&2VOets7ooX|Bu|+lZpZTNI(e>Ztpash$G)m+D zzSb);d?oz*KV=_)md9FUt%^X+LW}&bi>Ro}77;as=ao??}-4HpGqL-)y=D97R>w695?7Voc*her*1Cm_B%2mgsqas-&tn;PT#f6n`SN= zEoMEOJ1veH0!1TmnU<_BG{tu!FzcIlZ%y$ND2Db0iLT!t-waVEbvWjWhOW&woll5j zxI2g2I?Y2fqwoW8o8JxxZz?+65AG{l`0Rq7F0-F++{CAsmSjxP`ZuiMbU05#AqY zNm-!QH73|Q6^$Nk!QQvWD;TcK9|bFO`g7W8kU7cQL4B%>O%Sk{zX#s}0o>50T^}}3 z;S2Y7sF0WOi=kqrl~Sm{+RcPH?@k(dH7~xAIU|tmAq=5bpKk+q-!s!;ZiBj&#f+iI zQ=e%j_QZ_gJ;re0?1Su=W|K@O_o2@hQIN-GpwBk^$-A}n`C*o_9TC32dd>`+ysj6o zOot5$!q2k3F7c&d2RVWgG7N!yt9@dBzojS~O1BL=t^$1$HwQSiuU3zDCQP`Z)1l(4 zECoRKj82!;=H~Hey!A&O_(Enkzn2WHcU(s(H*Y!$cd3o)O2lI_aq#WH%2skBI4S!e znb>?5ZAr}h77!_4dOTY-&6I;x2b-0UDsqeM6D31`|J|K9c+8YSZ|X-1T-dQZ{shFe z+N=EBRoN(HnvK+Xljq4U3I<`_)B`bSLsPb4C(TF6Em;@M{*M>Yp)+}tAJP|q6B9B< zOtexjM6=A5Zw3AGFb}uezui%-lMf#NGoGO;Npqcak0bT-?rRxbBQ|ixlu(XgZAbI3 zRT&j!kJq2u8cy1dT4nX-b1ahJ$9yf;yUo(8KbM10`_;wA;>FM9eXiS|A1m~Lwylm& z(vZVl_@yVaI6+%=(dI~`Ogflz#l{QttyZn-wzV!c*n3*oHv1hz(Uupk<;4BI!-_SQ>&j9;O5w8LB0 zXEJ}xL10a%pf${S%`f`}x@5yYO1^dk~CNTpjqBS2n8;*=pu2tAOXh zVbD8L2+bXAtC>$%m1X|?q!K%KPK4L zJRwhyH{bLFNcg7VO5n^XGEKxomhZiv68)QyF;=K85lA;vP%&H9Nwns_4&Rp`O=B z6E8HU!rYg+P*dzL0^3?c)Z>61*e)q;C!OOvuOG8saycrAji^HoUich9A9yR^3-E_M zZ1KyB7ixQ(5EZYD%)*NH%f|``+|3Yj4D@~iA41{j@W0QHTj=of&zEt~uE17l!55~N z%<0~z`9&gC-na3ij(zQy1J_)kSCxKFn%V0~)pA&whsl9n;LJ(Q0?M{xyo%7%(7*mh zWxWzk@hW7mKW?3o3BEoh8QQm6rl17XHTNvJ+@#e^Rg`gu0ZP#iZE0Oyr z#>m@MdsawFiObEYkNW-Qs}MT1DJgr3L+&GPjN9y2t(V?{3Exek<=M1z6T!QlN@AlM z)cbEyxLGPzpLX|e(l^S~9Uk*GX8U0f@u&!aWqps0e}YO;R!yc{%EYNWkBdd|ZyK(mf(!zC z5jhrdFkt)>%uJDy|9rUUUzO!$0PuhBpRI-Qh%1;53cAh+bGzr?ft1LGhmeB*LsR^o zab)1;`KCht5u+5KJD7Ms`Kj8hf3H>S;8>ww5<`gJL)S7 zqT};r?fJM*$KO#khcQ#CKJgp-qVDGtiGrYHlVh4dDXx!U7_PW+XCz4!B`&3RuWo=^ zg}H76-qO1ySG8Z|!#t*b>r&OOTt>uFp)neoab=B0~p!K6T(Ye*V z;!`mL8LzY*Y%Q~uI-cCDho_ZasOmTJBtk!zOnJ1|OMVJ)u74H4dfDrI)&7^EkvDWF z^A+c72|FVV4W;muGfDtqZ%JkXCSYiYr7J;sbRP6krURA zZOz@?j?=!jEb_Xj7suLPQvP{A$HHP2d>h~fb=`farQ|7V{D z<#g1^gr0RbtBqJzUS0*r-+cR`Mea}unbKy_g$zaROk)xAOorIf*IhVZEc$}Xvpou~ zZbLw{sWe2z=O$gV_V59bO2*oPnARWj z_{1Dyp9ee^w%hl%Ji`pSzL>hH7veNg`TnH?l{ACMI9S6dae>HtgUJ zjY7pXT2gykQh`ClU3fb;ghs&xO=X`{sFk0k8}_zPp!Zk9>SFMdh*Pc3GK-pP;zG8@ zofk_rw&ydq)@^ro*ST@0)p;GZ%i(71=#{GJB&m~=z4mRFQ@QF$`3e@Xvx7oqdH@1c z39M`3p;11j&pb3p67$yR$N-vRdp~ldy#2A`0F|BUIAEF$^tzGM&}$n~-3Jn>vnhE^ zqc)taZQOae*$18YBi~tlnG|?E{2bQ6k@HTy15An~0$i{|-Eepct^Ks+7N{QIZ;1uz z>mU6d{bx(pafAHZqQG*|2@$u>Tn7ou5g43CQJnGBT?F^TRf-y>4v~p34tL=vs*vK0 z&Q%8qh0CJb3RnU8rbHeLf_|o1d9M+g8(}eaDnG-bBzs16M_3Me zcj*EZLDY^+F#Rq=_simzcQ?2tFOj5`Oosrd!RfrQ;nj>Z3ffT^LhamR3=qm&*G13K!RBL& zUDVBUn*K~o@eyE7#!DLS`i_}Sn5IXReN0v7>ze&>7Fe{<1l8GTdLf0Mv_5Afob`~A zZ%X^=7Ttwv#WRd9wWO^it_P#1jbTZ$AP0qmt-9b_!w8LP$(uI5sx;-91G-m}O@xlP z3*E&9W{$&4+)kl{A!8HA;OMo}I=B4VYKC6RrCoFDbTJlPDH+p0k~|-^z4v0&>5YDw z9Axp5hE>&4{G4yYd)2A5WJe^EF7hiJVb|jRpjWxoLEYwlWzj6^) zA;K}QlIpH4yVwg}TTJuG5iI*D5rxkD9Km@bD$zmX{{bq-jYPGF97{qnLxt2eg3GZ$ zxxq}UOBA5+L5J1YoJ&f_IM`O!1s5rJMlzT~St~(OhdPCJdY|rObZ^PT)SqVeu#Pa5 zt$zVP!)vB7q+-S5o3NpVgv=vB5!(YmB_O-k_m>rFl$CYBEc&G-{lBOXELG-S+zVhw|0-7Lopmg0a@$9|nSoB+ltRKU34Yv-;e_<{YXgNIOkRmC}w=dRJ7w|V(#MV?(Mn78!CXj*1faqaOezTJ*K*yY@jH?L3Rloj_(Pp8W5fJ-@27ffuC)b8SDv$t9`qd4@b+=}M33jUp?pLV`cu$1m?3>=mwtd8K2uxK=SGlm8TVbomVgXai@K9NdX9tKbH zB#W60Io1aaGwUMrq^d9>GC+7Jhj>D73f(JOo)(_awi!+*%dE!(@WV)u%_KX_C{3B- zS)Nr>^jY?-qUgrud{H$d03>o_=x585r@KDQYK#Z91`(SgcJb86^oreYIyfwpC8`>S zVmzfE@gKw zejk<)Jbu`ZTx6#f!%L;qDAA|JoYjzcvr8@qUh0|*!d#!f%>3ZYR{UHwKg438QQhzJ zDViZN>5tS_WWxJ`lJz~HIq4vmT)hpb@pXQ;7CwuJ*Q4W*x=(Jwv64W>NfDMI1~?B|~jt2QFd- zj7eR;)Wq+YTGMY4h@@=uNEop*OKgiI{t0y*L(dEYNk#0$Pjxx$v$)iM`f(#$!oL#% zB$#5&QfXpajHPwi7cDMHRUi+vTYZCt8TIz#tAD5hR5}XGGFaj%eN0N)m^u`eSbpMs zyN(NbJ*nH9`gkn-*b}cVq>kR1F8*{BOw}rlotP;-gDSl)$7pA2=gVtW#hy@!Xub(Cd~ z!F+ppU#>a&)sK#D98!#G3Zl!YCYpN&0@!jsN)K9To4P4)9W zoR-m<^ZL`8B>$#opy(UG8u;y*@K=bIg4vMH_~O&a9talqIhraifVJTx427uKye0G9 zB%De$c&R++q(^4#w@FuI^-$ce{p7IvxVI(qe6{ai45cP!J!ompY1r-jpmDpVv5*A3 z=^PlCB_}sUW?@V=Gi72NM*cB~%3vCc`6d>5KtXHDhNZ(V@T(1PscJ|HOBBhrGB9Xx3B+Op#MD{S#tSCBktE0tw7g zHFTbXQHfDae_kzm7%S_=C!Z}iTyHJZjDlAvxjdW@b%SRkrb?auUgAq?gmp>jqw!j? z@iR%DG}QtE-f$h2xB383rqO9pmX4$#@u?HDNDC+wCs#&w`Q{yt;@wj0{os?EULeFo)o{*}7@Ab+YZFX& zIbN(i$X%N!wr$!Vhu5r|eGKBA#-Y*dlO#w;>f)os=3*%3j_lHCl5Ur3Ckgab6WeZK zfi!*&!V$U+7w0SV;ZRIU>N;7h0X-D;2WAc`&i|MVmmu#6qLwwjZNo>AIODaL zrLDezPT5&v=4+&-*BYrN5V483wHayrQJb;eD53YT=g?{u-cNzN6oY8T)UBJak_E(b zI{SP%|A7anG+#Y)Hhc%;+{Cvko8)l6N~pe@)kZ(YDNS`-aMvC|21K@9CrXO&CcmF@ zoo;1v>_owj6d}8O+iv9YW6)+=)p^WD9&8fek>wKrQaSb5_QqNBO$Rl8hjSnybFd3v z1v0DnJVLLAdSBQSG$v|!@xj)X?mC+ z)+{yEel&pe_6xphbG%dDeKJ*)z_+!Z z4zG^8(Q!a_@7lxSyuQCGEG$K`zmLz8J1dxaVY8dR`Eo<&vTxe??Y)8lewxSd-%Nm) z$fd6c@S_!;$YD-8*g7*&X}9sNR`Ufc9f=A&8$fJRV-MPMpUd0%VIk&t`7v{P`vJea z>HHVG_%P2d)y=3m-)8fb>z}*Ysj-gHAA!a_{La}eYxl45m**Q3^_v^j4IRkko*$=M zwOhs3RF<#gvXc-4&YZq*Z%(%^0hA<(c3v7ZfBbU#TSkgFB%hAc{qo4!VMY1H(U#1e z)5G=ViTKxL#94yQV1YfJ5Gke`TYibsnJ#~W9%zT?ad^;iCN4zH{es%n8zux1wW3^m zgu~7&AcD7Whs}cBV`ym=+Wph0^Z4Vpc}-?l>pUMgA3Rv()CUdVvHX4C{gHplaSYB0 zSc@^S09Mi?vlJw-MZ~yYWdkP8k3z6TY7<5@9E5vEVn?C?T76qIN$jZ#u^8`+%J2l) z9Q#Vkzbt}FC$EAvYnyE5;*hErZEa2HDLW)S5LGozppI8QYO-MHaJaKMe))#$Zh37% z+Kw_Pr9ZdTW}IoQnYnx?dBWB##!6+)`G#btv3GpwL$zwnCfU(D4r_&wJ}&e7e>j^6n4_M?ViO~CJ4>AM z6uaJCnP%=Dk%D~69%X&M{zv+?$IrX9B%Sllh5$97=)*6e05CenJMW9aXJP+jF>v1m zCQz;2B)bk3x#H=n_A6lA8&UeAY)K-e&1+FQo9Zv2HMHqy@{$vJvM+L@0ZouliZ%6B zuri-+`tk7T?0%E<30j7;Mngx0Y;!D|b7k^k)pN55MZc*FXjV&4DarXe&7VGPAr#P| zdn!Qypp{9;6S{%guQt?l+n(Zl!#BL_+muFcYnu~!QSV_gmMhW^%Tsq=ONX4g_2)VF ze_2HYm+Q3dL@@{BJvyA#gvq;gr3q${d2}>uw>rqV>3#QXXR-ex?DgP#jC3{>Ba_ zk4LGU^6WkPCAWP=d#Dag1$BCG!(ta%|s^o|eU@=8ibxg#0gaA`;J{V^g_ z?`@{YRtwzc;uhxl^&Djvewz@|NB#G_Fs34#54I4kskRud#qn@htlsW9mU>GC71n9I zTIXeM=iQmsyivo(LoGzS(foK$Xw8Q(Xc@4H;*fcDHQ}{X=4Dh;qKyT%*Jb@tgQ|Fo zs3UJ~Lg!0uOAMyXN#4}R8CZUf)`$xUx3AUw@=BjV!vd4vrQ`xrUb>v5SM%Fwx`Ji7 zfS!lq?<6xxxsr;+*l${^Qw8mxEa|nhlEOGFlFg7gjFZ#!)dX4Crjjfv+n%OJhk~sW z8>aUCC7Or?giNS033Q~Cs!!HfaX*h}FMC`;Sl9;B+-OcR`Iy37 z9#8S(n^T*GHha*>gAc!(of(>@Ily|=YY#z4E$~GYeg96|+s2!Ct2tp0<=z15TcCoV zck@oP_ac|Ct8$k2WtWBhPht!9d*h1ddM9gXiQ(rl(I~YiJKWQ4oQXOHt%@>>&E^bP zN9ojDtLR1e!bElrJ$`dQW7<$UQ7WnNH0sN@z4HAQ;ekO=wK%CSDa?KLX>*m`-1etG z%k@s{Ai$Pd4>Z?3@15<3ljxP;scy!01dV)daW4IGS8oi&%K|TPXCgV2tXil*C;>_0 z_w|B!z>7IQVf96)+u>i-bC8Y@Mtk6L+a>LkNXc4KGgY-<7O0&>q(+L!=~||2=B488 z!T{D*4gNx+Y+~^T97R1pML_H%-i3naAWyh}05J#Il@Lik{_0_+94A=Ot>q_ox+RPeH=J!9_~efWTw;Rr@(aulCLlcKXAK z+3%D@%vTd$rO$>8Ua`KTg}dACe>^_#6hRcJbkLTx{4?j<_RjuZo0(tV8$NZKCAj6c zxrE9?zvx2te)B1konzQE@Pl>VRw%d90z0ZCD+v>mt>;%oZQPXKU$oZhhL`#hl&9*V z3s}Ak&qi<8wa%jEsUTcbi*eSdc4l$r?2cFH*1skqzd#u+x%DdAh%s%uw@bdOt*5ZeMRRJxWF0am~*KJYxITWfwr92lMN_Fu|DDhz0?5%Qwe60>J{UT5OK; z{XYv7s0@t-?TP$>n*gu)3EC8X;lXcYBrHO;0zmHn-idxi3yn{G1hxL^9U9 zxZ*kEcFb1`$30>(UXlbm>Y^(R&L873iDYa&G9ln|_ucocT#;4+%4FDXRo68BKVLD* z%8EW7ugb+PO#X^1eZ#_fu;6wp;NO*8c3Zt~K}^WuZOs~UQWtSR#-O%50gIsUNww@ zS?_b&n{P8oGOQz)&8d$ud+qR0*rPbCla*G%>pcHKC>IW+H-G!l@e_#fa7Szv{(F2j zj)utk+BG~>g3Yk~n<@NR{ss!!LP&gCrN41=55TiUQYl-zmkg*J?#JVzAh?E?c*$I5 z3{p&{(808|A!n2MmBFRYXLR5p)XS+OrT0*Q(jVjDKJSlqw$H>&A<*S||AqMVImI7X zSs`cBSFvzl^Ij}>wYYk!W${Z)UlKJSZ;{c+Pk-*}WGuB*_2aNo@$NM-9tII?JT3&8n5$=tG&qbr z+r!ys*&Ev(M%KEx1F-v-;j`oZfj>_zNTbQU_EI`S#6%&gN}-^g7@)}A#Ge3sY7tLe zCH8c|y9swtSOUS=b(MPnex{%&;#)&t-mrt|hkBULY>vseu*;F|zbh2fnjw*(rYyP& zp2O4RQ;=LChdu^TAe!41&~w(-1T?xa)*7Nt9FG};FHa2rJ_$<1OcE&UlV@N595Yk}NBpjB+B}OfC7o18{mIA$e zZMTA{a2v+zqhFW#~8%PLCjk0?mCF)=Z+}1O=qKf-eAtLXG`T z2#*ND9+k@1WFe9YeTn!n=*)iRN}f)RVFCogRMqHui}@z4{=UOky_AW6&o`FGx*9crJlbvTrO%9~+mZc2 zbTF9{^I3I8rRO?oZt=gmS1nf5{5FZIdLcXY^eO)Rw+!aAtsJYY0cHB%ziQ&wK6L$> zpH3m~c!=C{f1Cy-Cy!*f*isrjb0Wc?Fo(20Rwf020H}UHrrDL#kNDOxHeO}7T($dz zfZA}4X^m&MVwlArc0{lGDtSZ3pDxoaTmin6%$xVS&}HffpcweB&27B78Ku(Wq>}eE z<#I1-smvJ=_t@${@yKl21W{k};D2UgC`tl)%*}w83O8Et- z?l#l;^oXE@x!Z@b+(8mBvAs733qpwz+0Sazh98!n*hW!7#?P6dD1cVGe@eN&pRdqv zrl5QX&S|4rOYiq>!QMSS2etxANX}VcKe+^y?H9CdJPB~t6T6ZP0F*JjK*?_B`t$uN z%0%*=Q3o4-QmJsm=kyOuW&mZVSGc@EJ+=uy61?#;q5Nd{z8e@dVUKOR8!+K)Ob;RU zJ6n{^i$MqAJU>47pMv*R=;4lzf9GQAIVt){#lR2I9npDW4fZd6Ut!w`J;Ag|p`KqT z0jKKsdr$IEanI3d#b)Wjv z)erq!U!PU=)9AE@v+_f@s}c6vA-SlXw-3BI`Z$u^OVp&p*+SIS;)O+1!^5>jMSmkc za6azcYtQQ#Mz1>`4&$a&wOUv@>7S(qj&4jA6k863wt@d23!r}@7rJLp(&}}8+z*9~ zMMozzz*_&tldOosvRl(j-dL}Gzq$~KZhy{{UPRHkx(Gvgy>u=f(3Eah`b!m=!9|nu zdNTs9=Q4K(S)TS9rHsLA+*-JeKzG$XS@US{>z#OZbExz9UIQZ=*ON%w({FbDZq?H~)<<678no-PiD1t0 zyBo9Orav6iF{*=HXNV&_L36s}>0xb8kE8LHXWkVqc477w)L!HIK@hGCZf915ryjN? z@AIqA+M;a@bFP{CX@W24x}J)&aoSE3kvOzDns)ExUqdd3BJgPdnx}b~oa*zKP!j43 z%R(07x2vyoYWK2;&3&$p{x%%0GS(a3-yw~DeuSKljK((^KHa^meyE(T%kg&oeT{&u zhyZ3+Qzy0g^zDHKN60IAD{n@bIomwXMZ3@LVmalXoVyIQ8Z-6n;2Wu)g$CdMnluwt z8bE~vZ_s@0Bd|`rH_HB!Qct|Ms3IE}nI6?KhZ->?Ii4v3%5>Xb8a&o8Nnp_GU>O(A zfe(PMf+Lxfb=gu69=GBmVv$3%V)dt$P~`y*{F8T2FqnO*fNZ__?Bt zVpKd^mN;%LIfRRhNyj1JOjC=MNrl^Zv5-WBQw`UjQ(w^G<(+twsV4ZXXYst@#vB*< zBHhqw;qJmvWs^f=Uv8|K26?jh9~YC^cgeD4bnP5n`r-J+W3lBZ+Dnz-RY z|1Cky_OD7Y`N$0ii3Dpe4F_If)pEM)XlbSTQJSt}s!F<5el`_|T@vSm1PdsL_Ue_nx zXU~%X6m?_(j=R?&untuVc~9`9%3lBg7TK3j0X0ey-XM0N>qLCbPSuRgDzgOBaBg&Y zzu&(^&;C33`nqcAAPBnLEB%_y5)EL0*YrHVGLG`JxyuXMb6%QxtKWPb_G$cMI*LKG z&vA90b{o(B{7RdT>H1$KHlK6n@ux;*gS60`-S-kL#>>*x+RO%4yTZFVKm^w#p5oMQDudm+MC>Us~zrI&{5LH)JHY zHqbm$OVhL1-Q41g<(Ndar`o|EMqd)q;0%RAulC^EiG6LK>q*G@1EinI0&99V#I+x6 zN9fH68sBp~>}oCtE(jfYlz<>tr4dUj_p7hVjDZ`qPHihS(TzwvojQSsB zIkWkU7G`7vmO}Q)ELWd*&dEe??m151{o?h#&K|$}dAq_~r>!XL*1mJLYxr=~bD}So zopxvO z5IJCWB+~=7z4#V?g$j+Ps_iqC>r{3<3L+Oteti`-7_rH=Jx_^cBdAX~xj@KA-9pMKW4T5EDVsxw!uXkS6Z|Lrb=H)&e^<0l~*6YcO^hNXCRN!gL z&7v6TGx2TKokz)rn8=cx`o|Y zqgn#`pmPoMjtK#B`z<9F94%PQ^^jYUl(u>zszRC3hbg^7Gsc-WnNm}Isyu$i%t&wM zvi03~uK6#5GEaiz5}VIZeKm^Zl=#NRhq0x@09*FW*mWzt-n#3%@sErJno*Pc?|&pG z+pR{9G#Tmv0{Lh{UqK2rXdEbrUY0+<`f5O11LDn>h)SmpcMZ}h1SX?X2%69UCMAMp zDF!OPeJ}-R#J`o3lS1f1y(FrdbYcaSsS5|ezsVzNQ>U9^#Ps0j@`nL0eeoa^>Hf;@gW7N~)@UK5(&B)gp#~g% z`_=g{xTVI1gN@D6uzJJ$?fbT%=A7D5NelG@!K=T?o-yJ&-Y-wUI%Qs8SNFG)<;TVE zezDhThKnS3-!E?W^1Ag|V81px z!?akoj}WTZ>QNK%BY$_Db1#3CE6z~&%1Ao54=nRI&jqcFdQ)Ia_RPbO9{%o_cxNcm zOtXTbe^>m$XKwb+L+&le>KXN(ALuP`ts(u*AvMDS;x7O-2UVbKV~D%iU+Ry>-jAZ3dF`Wj-&{{u zx_kF!BY-AQ9kje+cfWob=Kj{l@mRARS12C?cF6&J zxkR;=>-@3nG#?=3H6_=2;NnnU<@>RDQOB6AK^-N!<$POAr2Ck1^oGLiuOOOsrk@=> z%ze?&wo()R_XPqqI`ShK*LGjq4|GTDVw6;0Y)+3-ICzZmtKG^zoC(fVw8r`pr^)ln zZj!>xW@X+bE}b7o1DEtCT`<9V_&xj&C*H zxnvb{M3`bbfWLFDZj4fPQ0_0knZpPw$_Iyc*k5`dJ} zrq&0~^^nZ0M<-8!eYqvp_MhQYq@mE-M7@L9S@Z=Q$_G7Q5KSs$J@l5f=`v+k%*0l* zpWRJ#%_hxZUo+b&RA31h&Jy#o!ZZn?!XH+V0`Rtyj$@8)AGYV(tNpKkS1!1FX$5+SMcPxKcYKta!3-#h@#PWF&F*#853pD z&!%~|hJ5A7Csb`b=>9VsMd;q_z3PU(y@`}qa88YdrT@wW9U z7J)MMD5k@6s@S&Cv;b7UAMb~xi$aDp@sAJ?1niPD1*rL3G>AQ0(I31-zj09pHAofB zMtNdcqjBD0yrU-{L2{-sqbW$Bs>IPbAP<<1P|>LRB7D6wm~3!9Alh&;8>4-GkO*|j zHmS28^m{t0X2EHtLepwYwMt6ZkyYkGslfNVbxw+#YvbM4ZL^sJe?yDVty{=BivfOt z9Qr4EJgXeU9kz2?T&3LY8_XH5T3}N)99+wfQOus)xZy1d#W6h0nb#9@=7p$xZe;>p z2X-}q?z{4hmxR)u?RUx5h290NI_#`sRvpfwr_0tB-mOPNx`n4x0uES4@cf=S`Bv}a znGncbdr(#PU(a^OL2;-7Eu(THqDV1lx%uZM30SnEH|h9nLtj~2p>ZRAFxd;ky!Gqt z1_)%pkh*;^2YDR?((6E;6Z8tV{5^7v~7XKESKK7%*QG+^Y8FE_6=y%e3 zW1pObuP$!VzTuWs_Q62-;z8*jfAHr$p<4RW=#h8=9U6ZP6os_=ED3NHiuA%?mJ}bB zHGlDC&c3tZS8m)2SOT4R81?@e6**~!4#$id5Gfcwt`l>v`GZA%D$XH6dII8sUe>L4 z@Nsdkqm^v4`3?`Muk!DAB%&}M-nBc_y*O@qXBTQsSEL@BamS?ZeGn7Y!$oWCdelQ> zY`b)$f;MQ*6+%~@t- zL*I#4e9V)JLbw$SeX_77I{zDcNg+7KOP(hF4CO*${_L~)^zeBUIj>-V3uFUmcch{_VY_6Y^%Q9D)9D6nL7)%kgfqq)X(^HIcF1XXt0Eg|kof$<&0S{O@!T15+V~2E z!_&~f;n?rF0+E>Z{_5w)fXy~ywN`amYS+sQ$mw!S+8N=q)n7g#3%;&I$s%v1E{VLqab^@T9LysqcK{$j;IjQLVG%2 z7K!nEoK);zxrc$v9PVO`iC?Hw-yd<%w;yodd>0|Ij5ZcP=&4rdKXE@#Jf4|#d%k}G z2*Ju#x~pZ=!+7#ThU`zRVa|PR9_v7BL&&*34o>q}1K<4PL2h?j;}*(V zz%cBLlN!8m26?htv4uRW=eyzA0m0%mK!?MG8+Dw0Pj@m~WlWd0r_A-{W49&6`a`4I zQ*51E7!=mq5$FRvpbWviKU6h{q-ldav-PWg(68a7hN+x#`1%oZwtmeIdvAGA_E?kH zqQoD*rRE88pO3_R7DK(EaM?F>7Ei*#G^eVY%k`swKz;IdD zdOCmD!dw3RsR0>W+%t9xvq2@jLfTdEqwheu7vZ*>ksKX<$G%6zH(FhtT@Yx3QQRnu+*wi?@aqyJ;-8w2ZVqIORj+l|xMwr$&Xa)QRT zZ8f%SHEfI~jcubzWA&c&{l0te{5^B_%qt;6l&A+Vlk#Bz5~THJkA%5>taA~$FJ4dYr~S~9^c=1cG-DYprWyR`!yU{-{1dl zg#$Q1;q9!Qf35oExKny7SKu-tu2dTI+VI^E5O3&JjmG>9 zug8G(Jdk@e|WM_tb!J zgzmTEnoRH&<6h`Io2PWut6nL~g|j*TL+1o$R#V;vIBF%E(1+i$oMU%QG z#{0~BUFknOd$E5v#PMl(JUCO3>3J7T7SR3sJbh|meGtbceoB&Bh=KE^q(Io!i6C~7 z0!`#{W4YvyA*hYp6b%cdBY5LYBdaRjki8f0F%LQ}JA5mgBqev3GYQ9_!)=3o#k_xw zrRtsF8SRvQ{`A~qhjXY0eUnX!zPIYHVy7R3=r1MypbJprXNEk_-zHv~rKHdmbM+tL z2*H1U<1EeT>Sj7>J;@$xQqMUMC_9uI6+9AcH24YnxTNFhphyDwtOL?glXy}V@%r9C z;~_?ntDwI(+wZL%vTQ@ZZ7EH=jpRVLWj|2RfBEQ&@?xPi+r!@6Bwbzjplhp=966`) zX7sN`S5So$a&1pL;8V%23DPI+wAote2^L{(iL^AxlFWQM^c0JrxyJlvHdPAlWY}?* zad9kY8FiC%PsHk39FfoQ=`5`jXTP%xzW-KY#GJ7hv|!e1GP1(2aQ8e$7_)zvEozh5 z!|yATI%3d!R@jOv zX_VS54z&*+1dz+hB*PFzhTI2?Bxw`83n%Hld7DW^B8ZF~G*IvEeOm;FZk&V~0o_6W z+;eoA*r*zAYW4_ua@OKt$n11}&Qt_`_5EoaT=#1VYt!(Q?XFt1^y*HztF&}MOTAgE zz7Tx7BTbultOk8SW1^%bC#d+e2LiM?Sf5^6V#$H!-~z#vCd1#yTS7|8{XF=C1a(Mi zr}s**uA@WS2Shr*zl-VbE^qCxjYQ~~!YU!T7qW{R?Bi1_m@}sc06(p-f?n&(ZqfPk zcVih!GMUB@fpqj$kM%oFpyB{t3+1_B)vxb4&h7%dOq8tZm<#7<9hWP#XW!UJ%_&G@ zc^zA*KAQ#Q)4{m3rwB_}1bwAV84Eto`em;Wvy-7cYaynMuxK5*^98Br+v$}?L(7_U zOtT$l47dH*)M~4MV{`=05FLb8g-|H>OEky}Fnu2ZgA;;)NlFS;Vo;u16b>Wvy*WJE zsvUcIoN%7zbFEs`9g^=GDDm#{x=>@683=*-qFn}=2r~ox@1+je27z0~MtN zLRvUTTBe17pU*ZHU0@|!)C`GO9U20GDIM~;`^susJ2-3bg*a6#Oq|HAvjqK%1nsg% zUe;xF-|cR)6q_dmyZS6lZRUZmJ9wa@aD6rdag!TCYM-_d5Im|RII8t1v|N{ z=LvqlzvMmKPNCMcXXG@q-G9Vm%h@_`i0d(lbA?HUtn>ChR5y*82y=$sT;tdOEH(|0 zp=zW{P7tmyzzxx#a;q5v?&dsn11-(4zT+a-qNwkj3)$=?$w@$g&O)EaEvx)fLuw%G zUC&FKXeJ95ho(o1)@{``0&vFh@8O`)M`)%ZXTp>hdLZIynW7v;*8+GlWTWHA=8+i8 z<4b*0K8?@9WrT9GhzaQi10Adeo*C3l$~R%}Pj0TT(q8k)UCA5K1Mf;DO(84~ytuGx zW%#;7cSYsxvZ5&+FUN*`%G zZ@sy{mCFznNMIQO!tJT?iHmSQpjv=ajj$>_JMHPABTgI!73&Rvi=s<3DM9UwM!-mL z{an+or(Hd6)~<9iA2U|C6B=E_kjd1(gWmus-_|o$kUMa~b~#M1hDe;HMpN~(Q2LUS zO3OrBetWH2=S`g(kVG5awRFF^q0ta7X`-MRn*|O*kFiVd>aYf|4$uQA)+IPn2u^w; zmgarEJ17|r(s|{?s)FEhKfjsSq&W;A(i_vVAhpw>Tdg9QQIOVn z5J+jKCCZ>67vD<{;7`*uSvIY_@kw9CP(&uB;b}7h*RVB!hy=B_K1`KHn2Ol(n#0=3 z7TQ%(lzZ3;rM!rHgtsDZDLc>pTRK#m``V5xvW$Y$ST_}kZ zE|vJeg;B8)#7Hrxa#~&ayf+3XbIfR6*l8qG^~jN#f+z~sr^aR|7`lQP@`O*+VLGvi zNzw@kDQM#_@oLey_Z#~(+9aTy_4=}kJ{^2qyv%um72DF+;^0(Gl%(1zCKi&gElj+F zrl;kUS6c}kQ)-+v@SVME84JZi6Lpn8roNYiT!nW*1;D{$ZB|@fKnQx=KJ)>Va4WuH zX2^lg16fb23~{v{!-0CUeWHQd6EP1kk+=hU!6eO$MfSK(`O{&-0KIY+Z|jQ$ucsUV z2DRAJbC?s*4l%A#HW#~hJh?IIS9@r2H6A8rzR!Vq>JD4G*;uvM5s}i7?RcYHLL!S& z=XDGMSvn-xSr6XoNe10RG~2^6!L>S^<{bgv%13b*^?j`jv{V`Sy>S-7d)tHAis>w;eV=Z)Le03rP>d;qP z!$+0XlQJ!+$ct4_vDJGU07^7oPI!`C?vd=@V4a|rfAW9TSR1a(*;<(^PgYkEVA}fn z*^bi8Jkd?ng4~(Vj&Rtb0CQVN8~&3V$|M;z3egyKA%dgK%MUW=NjmQ633cn%b4TnTNSLv?pX{n+xDj7e(J7#@Um#$_U6BqTmbU6QMR9| z%p}w+MAc;osm-}rqp0kvrm5w*B;Q+-X-+624-+4a4@xiA*=6Qm)qesolaxi8;nwD3 zg;sIjaRL|opjGT1*}NI={HS|&Wa42PNQU7rY_?q@vxyDv zLdi^>$bNF1CnU+Q*%&Q}CRvD-J9FGU6NWO(2{FO18G*U#Wy~d@qr&%bi|Xbvi$GA6 zqq`K75l{XuGc#mofWP<}n>ypXSQb+8EwSO8na#|KFf2{3MD9*n#uUK;Z-o1H(weOX zuU=e+$gRze`sVX(&wBR7_wP)#FQ{a6)<^s2Y%~jjdy=px=-rb$kYwCMFeXW45ueO~ zLKY3e@-ZU(3Mn;By&aFo$r$3Rx;yfj?6xcG)h+`ZB5Jg?_So{NxabQOI8%!}K^=7+ z23_LHnF)6zKxYfysX&1Xg+}V`T)l5sW0}V%)Tp|58Yz|X$V(gZ6;4tM4fitkO1v=# zGMd6i5tCixSyE(VQ!<+TWGYJ8XqCe2m_uWo)jF4nGwhoYaT)Xr=};T4=oz~12cw#% zFCMkj!f|s4?Ra10X{?G*n~gD_6@KtHzsgnqnReP_+wwMYr>nBuP+vp9NH4 z^~S~^kyuY(LCE?>1Urqv3c*0Ad?BKk>Nm7#%Mg$s!fXkJIkU$ySoMs z6u#du{)rW_C9ip#{;$z>37jH7EC zHX=yZ4&2|G&>4?dX%cxJE-F*_L}VRlC*i<j$IeFGFGZY1=*yJ@jGx>MY zz_cP+Qng7AZHcQqH-_tkmd6P+P&*_H%}SK~ zjA>-_HXrd?p&o2g{`Xq|zgo)_R$R>r6!myaYB!|H*1+*C*h~c=_gaZ(oDaZWBk|O^ zV@e+^Q(W_Eyw1JElbPG(ho>ffLQeRLui6b_`b&uxcfS`()2`TYF@;xmcoyH%?+i7o zGSl+ZjfmWA1ZGLAH32pZo&v2Ymq^>yRx|Ty7-EfFSz(PNiW;9l@vaq`r=T}Ji^{SDWf~OZ|0IW8g%DHH&V#P-CpUWK>i&dFq>^*2Mwv{^ zW7PHfh`LckqsA<|noikRc>VgW5Cz~jaP=olk$ zn1WCyD~8g;7FDOJ9#^DibZ#T4e5$Hc2*W2>~hz*Z(H{%}0IeW?_is`9Rrfh?~& zpO|SFzR;+^V}H4^3GgDwY|3alEHY((8OC{w=PCRh-*n`Q3$KV$lyz8^2U?cAPCzwh z*VE(Qmmjxp}lBGBc5XxDX=9H=tq;_05{smE{{Jj~2Z{#(G-CgK7e+JxpBDjA*{ISD|816oJ!BJDII%!%%o(A6?j~w+O(#D{ zlW*DM#| zxk$C6!^$7JB7cl{d1U38UlRHDR={OtjCi{25Y!^QL_9#ft+BGm`IGD$OY6tOMoQzv z%7Dbi$%s>KYaNM7d`WPW#zXi``4|5Y) zWoT#gs-sz6`|ih7W%cFk~2YFHb$AXdJ0CHOq(Rwt-OsDssg;8cez(rULt}@%L&jnqHhuKc?_hd$z z^6*by9v-%OYKkmXmY(*>RK?*E$NH=;eVEtn(xlPoB$9(?kchGa44#f&s7h?j{Nnj| zC1x_c_5AP@40#9y4PX6!U>MTRA89WA?)@ER$hd{euBgt>_KNl%w}aPfK}ERYXVu2N zXkA*GWe#66B5whdRp(1uRTT8>K++fR^fT6XbZdkm5JdLg)A`hl#}XZ`c5nZb$p0aF zKT0XR+nQ8v$?HjJUrI(sP(B%-{Zktqy|8c>h)pkU9aMy_AVN@`m*K)M!uYs6ycFjQ0xs5~laK_;p8j(DaYkSc+fhy%e>ilRc-|d_=65iufy^t=P({ ze;wh+$U>GWy#)$laL1(cx|{&tb(_Cx`(lpeUhSNAL%?Vt8+6Hn|C>mNh=0(?E~4(y zHK=%rht(1-xp=TyODEGRVTpnGaHjQd5+c+p+v@AWXPMIMys1SbktB+-+Llb*e z@3udMaNpwD>nE?0Hl5wh{#zcQ^5WZkQJS))L&4)_fw+*eH?EBcNNFP>(bE+#mkbo) zvvc$y(LJA1{EYYYM)c>QvTJs54K18?XdDcJMuv9o&w{J`_4d^>2d7(mK#oR=07a6z8r^s`gJ5r68!%Yle6gV z?9vZX_#;Jw=}Bh^IT{z~?%e4?q{RA~=o)vGeJ;=W!H;2D6jWQ~>P4f?Blv<+yPG-O zquno_94o5gN_byA>bdMoxnaVex4;0S!rat^$;*d~CsJqn*PuWR8?OuFAHT7y;XFvO z_IP%I9j)BFOS4NGJTxZuOAUC3jPw-`f9i3H+rJHlR)+X4_i9p+4-Yehes~=Us4B+I z2y-P{#QZdF-s|HtvH2Iz<<=g%2}%B(6CuVhkl}iO=neZcu?W{Pwt{$a48*#RK!2!4 zFF4jtAVMR9Nc^pT>y9jl(DA!w=R*{A$v~nAW|x>=AoAhynI7laHJ@#?*itcJ7V7^K z79x6D(^*W-4!*D5V$Dvqm5Ar?M+q1AEE52Ygq z8`UN+eq`N5mzac9M#myjOH$MO56$KXDo1fu>X3J%>2Ekb;!O_(xo?Ye5;79?hB55~<@@>~BG5N+Ao&r~te>szMRX@~v= zA`awb)4HN?y(2ENE`ymtx0y#JS@lm!YxQ^9beqf-AG`_T?04FOpa`~?j8 zb;9{GA95BzSPX-kW=bcrX)bZ8Z&yrF?evw)As%<||L$!dYnz>I-u!_Mj!3Cs*yw7TFMXs2>9M*#QL^g870w)RH&Dk1-`R3(EUQ8UhBnxd}=bl6N%EcW!m z&6f5&mmyGqDxYEgo~;%v+D>liy5MMAGYum_R!KX^l)P2b86dk8XO$?LTX#@IZvn=+-EACGPS#By&A< zMLQ>6x$_}((?FzFi`1nk`-Zc-B5(IrnvxF+F@CP5!kUO;6f{|!KD-~&`_N#Apt9{t zx>XPJh}Q+0#>ufH$K@0#z=63aU+e@ZvCn6x1nu)hV5hL`6XxI8|yI! z!Xsdy$fLP71EzlVoeI~>!BHOW@?Y3j)}+eFFt=W?AFVdSqdSt&&$2`f?3b$#w~F#e zIaM_K;P^QQN30t`mpZTLf9#n;t!~$`yJ87)X%Cw^{V7jxqbWN50TfXFJQtSOU&;OW zFqpxjMj~%9tSm%5As#j)%ANqb_|0mPRYV+i6RX+c0*PKjGlpH2whvP*1(4iCKNI4? z2T9E~Tm*}(iQr4%`D=&nr2@p3q(lakS3zC;*Q2n(8T;fO2Bz? z0QJxN*xC-Ya#RVr%BYiBOZVHX%vkEwcP8ITmMi-fj0iXCzz@ZQ5Xe1bnPG7%8?>$j~dcDxs51KWLoOa zlOs@T^K3nTcKFXbQ&ZL}AdOK35vlxzbEZirwne?Xt@L6ockVol32<{coH@1GUWN!O z@Cx}aAhOY+cgsXg6RL}K1qGcp0SUe&)wFDq9Dc)i{)vpXz=6S-F`CU)M@6WuS(fRc zhKvZrUS0kt8mNR|Tuv`Azx2W;N&Ae!`V~TN`g}$glqFEI04R(ld@F)87fUJ@)d`e!wFSd6EDz#Ok4FNeUI`t+9z7l@Bg~3mqJEE$=nmkNEn2Z=%A$QY2 ze~HfYW2<3t=V0@H9PJA1ad_f_BAq3ah~+;qnIK`Mpli8@o6(wcaa-C*Ob=3YiFd6w z^IKaqsGyb8rgU@lltV$@m!o^g8vVl+pr z{9|)%P^3iNmi;Ilp-R)_M^re4Z)gF`jJP87KB@>rXUN1R zA#qe%M=E5iAsb4!yM(@Zkgu$J;@$)Wm@N3$O&Vlm#F6?*2%G_^z!jHFs$3q)1oapa@CL4e!s0dD4x?M@kIL*5#b}O zz#-D7gjvd^QM8cF|H_Rv@it9mzdtUw-5AC{Sn4)x9bC=a+_$ScHW2 zAYJSgz(>lh-LVkj6a-=0Omb|yr+!E{l0Lwa5Ws*7n1%7}w zKE5vAn%>%oI|67fNkV|oz7#_bvMvgl5Yc^>9tZe8upMjmXmR~}IRb>~nwK#4_{kBi z)~-`nj>ztPE_SY8!t*k`J=ly;h)ZIo#oAqIQ|dEYg6Cp2ML<@_Bg%dDGq;CknTkgylowl>X#ko`xq)eKI)HNFg1Z8`b)GI zg24n_t`@fs(}>oD2A$2Ge3!GJK%mqF9T>}_;o@LY16n=*$8XynWudUz3(h*VU9yPD zexd~dgC^1R??P>Hh-o#{hY}lurpW>BQx^@&{W-6vcM^a=&_zTgf4FBcdE=#e@fPly zjRa*JAt^9b7G>@uxcM6LI}h%EKk}2#{>Y%Ti1!laK>X8^ZAE^`-DMywvqRrJ zy!L9yt00XEmay<33zu&;{`8*BfE+(wkZs*yc?K1{l?-b@vO&S9fGkzZVmQGz4O&;2 zph|kSfCMDJM6@CN%84o%2T+xz?FTl51^l}u+?CH8h%@B_4~SS<_Nrvj)9n4tP)nNr z4@yv$1G#JF1Z7n5B?v7IRbH8#E=8=!(em!tmA)wCF3+nrdGbG9Bd_qXNNn4$}`7_ z_dk8Unq(4Rz#w_0xUTOVVKX(=hw4LX{3O^HHUQU{ONQnu9*x}%P~51ueG2sg>qH#u zV=#FVhNTmfqxBkYChdc@Qx4o`=7zap`-LRWNX9Z;+b*~{?UM8A=%BvwJS$k)*?Fe1 z@G!XZ{j&1(RJW|^s%@s@C|7o60$)B32`Z$RRf%(vPT#~(4PWbr#X;ubXA(%ry#yaUygN^;62Z zc1}4b&L8*tnJ8xr-0xn?)p<$WHPNFPg*m=0wL^D;UX)*Z>^|{3MLa61`OCf`gnE-2 zwxVuvjIG5=M2Rauvepx@*GiychFV{(% z&eZhVPO$zR*Fh$Qq>sD5@Jh4RBZ2cspUSpC06W!i;Qg3r@!kU$#;U@y?$Y24FX`5x zMsC|9w1vg*uX7G9xxUk?=O;zbriED*GpyV^*h=19e*;eTRHfLoLOplvM_IL``fsYW zbc=U{(lH%6TRL`I(p^g5fyKEcWv*3{!TsCY$7#2DzP0lDy+JZp8njc9ALNuwL}cg1 zuDv|4vSX+TqGOxRX;-}WFy{^It~vVTC@{_`9ozI7IAwPDSy0L9Y0^)fdNe;fiGV1G zmkJ*k5fkf4R5fWoph(Sjp z#LwJ6DKfLILlS7>2fbpE>oVFoYodE(ETdRr&U5l&t>s>@NaR(RZ#P7PES7@tUuY0a zH3?LU?Ub#?cjX3SYrphYGu)$1;%+jSz^bcB$1ALD%1~&vBUB>wnci!8jxv?dJbdMR z?xr!Rz>}{K$Av?Tp>srP92%P-!XhCVJ9Rm~Xp0=aca1qJcYXWP3bHjWu+4-M(3N+Z80Ezmo*Zsh*(4ODTlP@Ugf zQX&8@H@eM=aG6VC3oKqySyEd|Ef88W!)yu~>$-!D4)oAIGN+ zqh!90Zm+jkO27N}NlX$OlwUvxgZFU<-{@|!^}n~_f@vqOHSa%uyR^xMQSx)|1_#1v zD#kq;{obB!2LHj3TeBG5`kl4P`R<%6t6oBT{TSe2relB{GR9F z_i`opOn<}jNAON`CIK$8_uA}!Ve1L$gwF9j5%0^i%lpZ(oBKMU0d`b1n;v=i#_6ol zS2qQSeunJWV^wR>btPbOceOGJCl68fVa?Ss)-A_6g;AEzp9h1#lz*45%CmkNA9Xnh z5c7x0J8}PlX6~pxo8})OnVuOI>nW~K4-Q8!4pGN+W>`E;{v=yi)w)Ti1k}^4t<{^$DXAK%FM^g935{A2>EflZxw@LYovrW! zjL&rMbYc3Uw9{Y~-jc`=X^?v#s+v;pdkLqZ}`X^ZW@mmAdyH#wIr5g_lD zOnbTW97(R{9Qg;^B^5-tzqTl?d#P$9mI{@DCk}(kef^--INK^D?l*9MtX#nAz|37Q zVVN#1>Jq!yf&8?`kziBF=45;(c{5pZ6UAnobBHy>=osydlk&;f_y+5Y1%kKCEP2Sw zGJ{p0<8)t+RCawR+fENNk)q@mj)2)DCqyVInIEh>{qk|WP5+!)9nVQKvb|qkDvgEi zG;MdO)C*Nhm__iwwd#c0LDO$gNtql^9-jSx!C9A@rofu~#xC`l;&-8(?R2fTAG8)& z%av-6ZA`sH@A}zq5`G3E;sc3}Q0GFP%YL7~wV7yge7M`o<#m?J%bQ>qcIp26K#`^R zp|9@ECaoKU_Y!|-Q+_As)>7U0OdmlLflJKcpi5gp-Zjfzx{hGzM3_1aK?gg6f={pu zt9Kv%ac858oR{MdTRb5&vU1iPYki%jCT35rh|-`lo08!0WWOr*hft&F{0R3csVpvw z0-bQN=L0*jGEzhM7_;D@h|Ztf(}Pg0pVGaE7begQDZAF%BpMnCFs*NZv33>Gk8=QC z7;87VdhS11BI@v0mxQ2;{kvTo%*vq9vBw=K*&0NdnA)hpNT5SWQ?&S9p^mhqX&zF+vn$k z@rKBXIo;fK%pToTh2Ef>jr_~<25gcWN(c5=OKuq1(3Wo~$axwu)wsNL274ZwIX>iH664HL$`! zgoKLy9lQ1O*{xt6#m<5N8gr>dF#gzTYCaxI!%y6-Xb(nzparV7YR%Df8bhSQ%d(qk zfESu>4e+9p+GuYdD@KIV%p{VXPTP90O(KkgF6t42dJ7N`1EIY;NtRN;BeZ*?N96G8 zBg{Jwxi20#?ZQAu&9A|cjtij8V3pg5APmm_gvWG7W1QdVq_rzoH<;9g#)Bv%K*x}s zMXGh zJUW^%eI$m$n1LD@_Mp8nlecec;jiN`IS%94n^PAhSs&M&QaG8GPlo75m^;kpM2De? z=QP3gqhyl66wNY3vnM6F1y@`E?-(YgD#)ie`lP+jRX7N^Q8-d z0GMQB?MgT@Z`%A{fRs3>lWQ9b4w`ODZuKfgCtSc?%m020Fj1}=#pS_+g1p60kycU} z#wuThLCRXuqd>}!jv-zBY$a;vnxUucex!5caCcy0I5MF4MX>_%XjS4T;;hYt%7RE4 zX5Ck{+`VUg!Qbp)8mMw-PV-Zl&$2x3*T|$?NS131KM|=9>1EY%a!S=I%pz_8MtH`Q zYt`h_A_Ez->M+OD@B?aRrzdPRxp!|-xEO;uFabRtgdB+|+>;ES{{mbG9_lN?c;vB5 zp!!T++4J~<4%oFLL|Rn)S_4#7Ay5+yoFR`*q#J}Lvm@tUg9s@DlMw?Tzy3BPrLp%| zmLnU|s)JYi_SjvGklaN_ydh#=VUs)L{L=<@jx|vI*jnF9MUyTPUo9!hRkWg1X(V|< zBX8XtwgO8}pJD+uT_+?%Ja=Zj?^LOz4wi~sL`>L-PvfMz^YRWCKHD~lWH){h#~3j! zjYc;?rqrO_#VMWKY~EUDtV%);kq#hQ5{hOO0&2BvMkOgOm_<{8p+py9QI~OJXVaQv zlcQ5c?fS#Phqccn=$j6vdbm^H>Y#;NL`a18j~}cBlxC*W?8``zCF7H2w7HZlNp`T> zF5l|8paH35xM-FZB*c_2$mKn69JB2`y={JbHsCjoOGE~hF^d`B%p-N`N`669K;@5% zEe;w`o}9nh$~F8D#Q5FWFOi{HS?vPaWsq!-HceVC?6`u`x0DF6kWB1_=~hw4OV@@C zC5BxaB;`8KfloDw`eoLtDu|IRfz(2YWDM{9oA-C$tEfCRaHG_LI*Lu`M}TwMV_T6xL5$A!+s>pYio#A-Qei{J;Tp!+6yk*|sBVlt{3NT<0vXiCORG zzh*bUl)XKOotSOWQI)IwnQecydpjhFo(XqEQZ;wTrA6L!FKnt*wTy3J%=%Y&hPnzn zl)F0SE5K0UZk13(#TfIFiHMM8mjrWz0OsAL%QrDqf73t1@`cx(^0m0)BZF<3u(rcJ zq)qiCtc_7l70zwLIP&pXG3 zYf(m&zO8l*mK6t1uDkNPi^1Y3<+D5_bRV%YKuZDz{ULceWZBh9!s*Ap)8~GBx69kk zy+A`Q^K*VB19#sFpqiaQ!PVpBNy*+ynyL-R*(rU-zxrbA6sZ?(sST++H6(Bn%5kRv zAwEroJvPaet1XZw~>U3@9l553z4(03Yw_16fk6z5l}DC?oE>2m(K8H%QJ`?o_iD%u>KI=nXuDc4LP zIKp~3Of)Q#^kvskSE*QI%Z$a64E%<%S+cscpjRngZSq{ARuT&l?Oir{ym>EiU^U)b zsS`vWGpLlZ4Ptena3v+lO<1kv3M8)vSE$w3KJe-VbG(Yqf}z=CP~{)GRK?G_q~XV$ zsbf`PVqiw(a$<4mjF&7OldOlCI$>vpJ;-+icT7_H1Q8|p8QKl8n$6W zn}$j9Z={8AK-37~7)iQzP8y`O-`6*NR1Y}Vf0R(1yivxKn|vo+xupAqyZHG%84m#8cbKrVNpo%24*dw`}s zJ&_ume@fGF*gS#5HS%YR^c7c+VI2PRvDyBBh~W)=K}o%md_*LhJU06kY&X9Ap7v?! zZiSU@tWul4?zT0gQg3+-r^Y5F%!)9vOrgR6_2XhziX~%5k6}JjwCP>rVD1djrOyba zl%1^=w^@A9{LXB=SPO>XeCic6Dm4Kh0nj5=R8rdjvO)>csk1=XdP2p9uczu5v(tt4 zkk*l}X_Bnb{jK5XheI3pD|Yya!5Kw~YhxAp0st^^oiwesfZ;~qmKlnISw(V9R=04Z zHS)vNH+92lI8(cLGW{Z^mSb)l0KlWvDwCZxB0$Sy?wVu`*S8Rn>Q0)}jo@*TGnD1byIrvkSmdWZo!7Zy z))7a7&-}2wRned$&fsiH1PHu-Q|xI)CtrYPnUK*3=gUhfq>%aq4bTz|j?juVZaS+! z=MvEddLRGj^g3em1sx6+b)liw$G zUok5nNzgiGL~7wH))0hybk3d=JVH z5gOp@HgsCVYVonyK~2J2t>f;00f0Ik0(Xv!!o0S*E|DhUNO`AuXoWa*!02b8V$hW)bc6RnVl%dC(L(}Lj6PpMP>~@?>Fxs0caoOgXs3tDBPvq zBFb%s`6C8tk8wzmygJpaRQE0}?)jA^5$Qgqb3cbSyp!*A5Esc*zN!t)?H1u(S6Yvq z+qjHV)I$N>`qAXh<}!E2do0}WF@H{fUHsDoI&>&3r?-}Wl{ti`EsH$a!5@_#;TL5S7@PSgxP^7kHHfmj>%i?Kt_N_>k7p2NsYA45dH>SX3kFNb(6jl1_-wE`g zK4Cv17=-G=g7+0=(WN-9$>R6)L{LgJPxGwLhlJKgtl2a2NZ*R0UeG?rADu;-{iaaf z2oXKwlU8Vv$Znh{Z(LlI^C4tI;7k~FJy!J*>K0yEpS_i;=XMG|LY%@1#3G;%w@~C9 z1>N(+0*RFtRS3CZQV+Mg6zFVUPkE%(}8Udaz$n8hmA4;F;IuzioN?o(8 zO8MdNfI6pw1K?p8t4<2|Z4GOdsIhoEmI#t7QwzCIP>nC*pBq*pbt6K+0jEOM$P3Bs zuNaQu_~Y1Ud31C6CCspLX7-6BcjS(>9z0SvPGZW?pt~f219KLXKYo;13I}d zX*mJDWFs-oD?LqJ+7qzzHt8H~B9>q`-;Wf$^?H8msX+yP*gzPp%I^Sr807>P37!)< z^GM5-bBiM_kT*1y1>wOFYpkX0I3&+VJw-`(=!+d+-$RYR#g>vbYZ_4XNAxo-JWp<- z=E%WCsvLprfcoH&D5^LET~$o9CFW~ajWZj!IC7#EttuuSL`IScm#|C$FQ(Eg&LHQj zi#A}=>LFtV_e_t0;j}871-f$^3P^DR$nYs{M0Qs@6fo{DW>4!%|9~=~+tPoArw}lR)8I24w> zp4+1am;dOUwlhg;jBeUiZG(i|=cY`^(NOzs*Q00^r}G7rDjXYiZW!{H975ItMpK$_ z=W_3=jHJ)s8ny^cJNK#>)-+{HnrCME+sH0AO#l7W|Jk-b?N;~mL#7cegoOhNDmw2u zOk$;TUQ62J(@I7;fA=VpeNGza% zH*OXIUgTW4FC%wdw;|p8U)y<^k9(fsRx()wIniJlc@W~dtv+-a=*ZWxXu1@)c!j{m z>+Z$IHR|2Xb6u0`TT6i3C?JSuNjqc0jXK4_Ng;C+qz_E;7vX}c0Rs>rdJ($Scb3wW zB+*|sv~3|R$ggP4;jn`qv3F^wPiGENu2HpIa!C#j@U^9FOoC&?3fF1aozV~RrEuk5 z?bj=yYQnpj%kXq<$jfX_$DSNBQHiXAqEJQG#N;G&nJx}DBZ6vhn_+ZwlJQpnpgt!9 ziSw1taUr;InwEy|q`Z4j z6RM#t+Xbqz$)wU!ejYcn?n9gBakT;;N^arGuuG&xUsUUV6gNF5)_M2HaH{2Du>R-u z7k3kCU;1 zlZ5ZxKo_)jK;!n)uUxq*Sp5~6vViUgDwoR!$C96u{d?;HAPV{{zQ(}OASH_0cuvK5 z@e>dXQyOb}5pp;mJLItb@Hxg@8rM6McUA*N%NBte5@%+RQXpAltzDDsWYXr$?pwJx zRrxQ6&GEFvrT$Hi93rpfY}P1coTG~U)Mt_q1YJDrHdE>b)`NaRGpF5vCeh@gI>n zF%!nBP0s$ygzgUUbg8zc^ekNwk^`KN1|5i9qBUUU@P6-KXAvuSH*dZfZ}IHe=z~&? zptmAG%d~b}g_%DwPX}5rPv%*R=j-1PTA=bd9#5n|(fbmVbb0w(Xd}aHOWccKgD6C^ zt@^3T3MEmKHx!{_*hU|+zQvqvNoOwK$tD((Q0`x7#gM62NH5&6bDI?1Hq%7@)f1+Z zmH(f&{KR2td*V>SiOkDZLz}9j7lAjSAaQk!+k1 z>d@ZSEjtdYtX&LI;6|th3us~Mh6WW}sZV+RG^G)5up|WX6@3~>hsI5rE)-`qi;(9; z;f5F>Ex##$~g1yo*s}Glg z36d(Ioscs|zj*KeQ1umXRdn0ihnAKSq(M5RJ4CuArBgbjkq+qw=>`eu5RmRJ>6Xqz zcb{*L_rCA{e&YOK=FHhMv-gT;J!|dR>-=vqc4Afg7HBrs8M)D|Yyk*KwkCmy9-Gj~bSu(KeCmzICy zW6eWK*ZILF{p2w|A~(0A5p2!weTjxV-WxzA*w>5R-~n)T>UY8Dx0^5nl>$nnx{6j$ z0GNEDcoD|oskQOC$T(enlwoKQ#qw%V7g#Tqsqdq@YS*xFf?lg03Zr9x`~_JrQ9_JPMNh@!$;!+ouQ_91=|1#n07y6q%1PUI4QetD@fm$iYSu-7@o{xT+aaJcWQ#xlM6r~2YB4K2eI|{ z_y9MtwoavET}~Mj$)Wwe{OLwh(e>3|V8PxYv#FY8So>x~wroxZ27W~1ZXxJX7+?-S zIcinig*Mim8bM=%m;yxqqOm;dAD4D@?AdkNrW)W-&+Ns)U_eAkzpwcR7+%15qI%s9 zTVvmWoj)DT>#$-hiF5LvCiGxV-|Ml~&suxz5B65iTIYE9f-_N8ltDnKVx2;cfQcJ( z7UkSxE-(JwDohGPEAxNQmaE1q*4NK_b$1O6Y&V1}vC#0w8f1t>47nn%aP9*u9Rq-> zpmq$IL8^0R^d%bLZyh(($z5ht`<<#5$og2yEV)&k^{OLJFrl6R+t_37aF5offJ0qG zV$yRV;Y}-PvPWzvUa3oBa-J_UFx2zhlG1`q^Us&ok%rVcWl8k=s29ILbgY0D2Cc2S z#R*ic+q#I0pUBM(B1JgYF|=rFZn=%TYVS*b5zMifto5I#0-{ykpF=4IGL=ccLKmC* z(E0gfKOVhtc=It49bGSh*E**)&!PmY@QPZlS zV&-OU(gu^2D!kfDGp>wFEZaoycjD?>7n9ss&=v}n?7G_yVC~JS*3H@D*f5teJTs3- zZLcJ-!Lf?bLn4?0D!9%;L~}bZHqP&%hyxg;Fj$0*$~&x!ss)0LvE%nNbBf54zdEgK z7F#8GOo3tVAOy|(Ip#)fb6r{K@vkt^WyHI@I~@Fw$Jr2qp9J4qiW;yE0x2_Jg6cP^ zqK!&PMVv$do0HRDrQ{*rih~swVU!Nlf;w$IvDvVYBG*dbRzb>ayaQJzLMw}8-Pbqe zcceV_oHJYC&TeEZE`ghnKb!FZVt;@>tw$xwpF<|CcdePz)pt7mEH>?R&8JjQ6hj(0 z$E$bb=ZWqo1eHs~kmW&PiNg7Kq%5w>p1 zky;?r+PJWRFkbunKu%8RuS~lJTEq7Z!GJ)wdwJi9nQ|9ScRxjhPM*UqX~J+5VER%& zP8jY1_N)X2Y4UKm#)Oo-Mp0B=Q-R)Bog>h;v2}P=3ZY}PUGsDbSR9%`j!GgUlvr;q za^A=ZO(2i}D5*eZbbBld5;n#o;Nv}KjhB=c`3kS1IUZs zJ?A6kYJYHhW@xDCsO3CY{|2Xnlk*I|GkNBkRO!|omoqu~ z!;mci%7Ppoud2fGhOOhPjWz2Nl%iAaK6C1|RS(h83M86UejQ@xfB@JJ1j3_LV-tK4 zX5Tlp^dBV%+W?ztqESyWP*rexTDl9?O;Ah%V~jM<7-=lu<4TG2^;r+y9_ug=rq^lA zwRv;WEV>ASZo=R^=EJRP1**qTITiJ+Vk@c2fc{8`3+9i~+vbEtU^MKw3sW1ijz zbE|yzf1i7p;|u~|9&#HAF$)`NY&PC;jP&F zu&)6ZONaY4;N1s!w=4=+MGKLOrs}gH)35d&s2WAOS3T)!|A>`Q0Qppy*=ZZ1tCx+nW+f2$c4uK`nfWaV_&oY^3*k!Wx zR$#2@0i@8+v2*0`D??^y>Jn3&1DINodl|qrAU48bOf9@6puQwvhSs?}Z3wOov4b$> zb>MvmsUupLW@w9Qk3;~B4Wv>u7TM;n;?pQw8{)MYMx3p>oX#FY*-e1lGhU0Yt6oc4>zfsTWQGxU*)Mk(8a)d=R}a1ExLIiQR83X?E3$w zX;zoMVNFvafIzWfqP0%AhZnUDEt6V6%>4K#x2vNS2uP}4s#eY6Mna+UnjPJ9dF%00 ztD5~zbd>-eg0DUf+SfZ4L4r@B0dXr<=oIJ^$cNv{ZH>e8rrwzcY-Q>FOc-u~uP zhPEX38y`{AdA_rh0g&tYmn6F{sg#|kk-Jc;;g!w8NK%0}%{;rmVd<)p^<(hjlD+Cr zv>)e9n%TZHUe}GT1FAqguL=}PIDWKo_PW1y#*^~0CSO4VLbx_6_jxTm9X!R{PJfK7 zLtWos-%ESdrY?G5jQ{-d)QRy>0!lEUWfJor#)an!JN;=F67pA$f4SAH4AF!AbUA>Y zr5~*3v=m#%HQ(LQY`d>>{@-Z68&#xkME;$WGhuJY*R0^`UC}vpo;$2wbDq}!UkbKvGW(&GmFu@H6W&kLz&lZJ^qJ9R@{n$*fEyB?Wc#lhQux|K36xFV$2`}Y-AyV+yEe-N4f(9) zuR<{8*3DUoy!83~qW%h8Beuo2AI*#Z)B@DM7tiz2NWX}w&2WZ>1h%d0g##Spf}1C$ zMmEGiKMg1{;ey2l#VE9_aXp`LE6m#<56{P^=D7>NhoXo9-)m1nu85<6l^SQpJZP!_ zH<8^9gq%Pg$G@r7VqqfX*g-upTFCQ60Q0kNP4k=wa`aMlf$%r&akJV5n`>{f=e6;t z@@$q&Gse1|WOi>)^`z80&C8!G|6q{-TtP!T*{a_3-*t+4zkrAUoJY$qx2y&(EiDBa zSjY6O^1ZpBp0rtQ(9c;IUa{toYq9v(x49ZwMDH3!xaZG(@zL9~@^*p#yUNA%K3Top zhwNM!+&V^|)Uh~G@ia|KA&M-)0@+lM=z=9(lNI`qNRBc0uiiJU~CcOgSs6ku7yHwn2FTH5G#CkkD^~1MHuZl#L zp6?)M!y+E1Z$=(94Gte^eXm8v_DSmfD;F-NJw6B$9|JL@AD0m&rIfgC{BWvg!Nwf8 z!h;Z3!1HQG)4T4u&fuvad*65a;NYMgauR(Q{04 z2sSX(GZ)iMk;hz36i~SEpRgIloQB+pB(sszsW!vfu~L8rup8%- zzL#qvkNLirN==&W4{y`XGFdQ^^1YO>uu{?sMCR zdDM1)aN@J~e%13x`^|Vn6^_md)QEoi&gS%KXA-PbQNibB8&b)WF`TM9#+}D`(|*q3 zTk?eed}}W9B(ieCD#CBCR>r#EpF%dLFX$X~U2D`P+4>e3Afo=%>tl+$1d*AN1 zIqAlw{yq^&^}Y#v=)<|WYA`<;S$3;nNB#hChWOp})dfN=v72AOZtAbVEB}WQa0Qj= zCRk0n@v!3>SXSIphy) z<^i@=lnNP%19epJ002CrDhnxx zIOClip3nSQ<;doSmSFpj>)8%%>i-jm;rxwX*%KE%w^BkvS!cA4C;!&Sc-kA=sOr0k z_sS_E5Ig>BEQLOk&&p$UYDi0BHZL?zhTr06?t(~t19g=#6XRFP9)U}S64vs z6Z9=qPsAVDY=Nf*eeaHm;t8djdtqP7s?sq;x>0_~~GWPzE-JbVhaN&xjyt z1gKhW5n{8xvGgfZ>-!fPK*I|SqZizEqlM7(!NFRIer<$N;uSdIC>N8S+TT=q&G6j~#KE<0D!_CM2 z(4F~Q^Iyz_7`lm{&eBBT(tjr6zbuTRREvZZlHdO&lM_jtO2@p1`2Gz;1GIa8yo|{s zQc;3+aJ{^rw<(LujQ%dsl$N=fKso^kPT9xkPom9AD`7DS{&yf>nTISm+_owmwd~%H zHCG-9dXFwRxYHIy0HicKSr7IIBGSZ=Idu{C-yve(IOJ{VerziuJn^>LZJi@J@h)+& z?YHE$+%bPh9P^+x&T$-L%7`u3+7Z^Af#N%5$qbSZA`IU(y}4CLh4t!1MdpoAofBa2 zPRfprN@dM~z@)Q^R)5oD1vk4tH1i60k3x{fIxqiz*;!kW>z^CvP0uVVU3*@o zqcWCxAgfFXtx538#z=0sxpA~Q)}U{HI}Z1+Z$O^_#caO)VX1f0)OL{t7C7;|U%VpO z^+4&IO&qiM{4%wV3&^;e{``}v$g!Vz4ZH*fkPap>d{T7Q${*bNtLsHXW2$o*MU{N$ zAw=}?W1-sKdS9JC8;*5pSgnxie|4IW1)X;TMhI7tDoo6C5;#i$7}MSR=*{ohAwoqj zEKkI@=3P$!l?GMe)>Zt7-wM_~?KYyMFv2zqp-&7v`cOjoy;NXgT#l2YB@b>1&Vr4#5RAkkr?Is3E^6i;KtAFqdtSYGV1#R+=pxmkQnSxYeiJ{m&?)jnk$l6`% z+ftPO2CzVKiw!~Nt1g8M>s-Pcb(v+RSoSZxsFm8OT4nexVZJ{HeF{Wga+1R%)Po7NS6_G9`sMeOdl6;dN@Zd;48V9Dw$+`Oq^& zJE@SG>I^w*6-kw%DyV%fBquMK)2+gsCJ`hNtF}MQB6NS?Aog1f)ZRd8Z<2&26wpuJ zao;q_!!K~^uj%}7$yqofaF@v67=Q=Tqkr=OV(UvVX?jf2Y`V;SzM4{e6N7a<>IVxM zi7hC7bCv}Q5j7Z>>ymFR+%4ndT+@M++8V~xXfT; z95stLl@=mH%T^8c40a41XM4{jH7}491(kK<(*kcmkm$jSi}XL!Ft}u53A{e-+R)x; zGc)dm81S0VRnfl1u$^2=4 zZIPA({;2<|ue>3OAzopKp6V!#&{NZ%qz%@;{=&uG|4dRhhw(WGU8#$vWa1KvIktN# zCL^4&K4fOv0DB!`kJBYNNxYmyz)n@*Z`rwn4;Dg)hX}oZ3OVNRz-z=+wV08dB2|I! zyv6^8`GDl)*7Q(cuQrjha$wEa-v0x@KpiymxZ9GMGlX~RK#M~Ge8GBfqZka|fgR8% zG1Pilp3)#QAbkg-Hq8pr`!w2TMF#Ryhi1|J)@UM4!`}B*-uhqaXLbYC^-9RbY!?3xnR(2KcMob=PE zAW$gO&Cxm|-IuyJd@N_ATY4!eP}Oq>(D) zBUYFb2BK7Ue`wf(f#ncOt=JpVLo4O=nZM;FR$M~*$_k%x%Z3p-@;?URZ-5gw`91Fm z+;u#;zjvG?)Us-c4Xs+8Byu}Zs38T6|3c?DzVgdK9{u9a;keI%j`w?=DRzG>?umf< zCjcQ2x)K1ltc({q`CWc19-((^@xik*0Vw4Hlb9Lqgj6Ou^o_js>6(X>*v$LtRrTFh z4)t-bqWUdv+_rIr?ah=@Zud0|-YxJNfq_h9VK=29YbO~f$D#%yqv5V(WZu^@^g0?-c+Xe8E!YI{TJ|afVuR znlNpDFZRv?`_Hf2_)^Q4o5#v2l0S})j9vrvrWo;ZyqYar)2_&4K$RxB(Wb7o+LZFt z#JZi^vH+HgUTgIiqq%d)w=6g>`x+56f5P;?$25N>_P z-)9%J^76!m$MQbp$bRsQdETaNZoeHoW-V@?im*3$Fy#2zLK7GI3(uhv+z7w>cNQaR zCE2-_VN?kr!1N{kHf=YQX-Lz4^EnlFv(_n3Tl+l+$qLD3@E=y)R@-%I%{lUfkie~t zv8z_0a4B(0j%tO@>sgo&aEt2XPuLlsie~Urd8obpxvY$e2fO_pa_j2*p!24_!|B8OI1QG>0=A6GGHfUd4V1ggEKZk-`*;e+~UgJjVa`$tAF zVz{M>R^Mno)r!)C@Qi_pL~sY0;>KNE-xv5agwFTh3Gy^a$^(?sFEUtdZ#H8mV6Li> z=W;6#{Z9qaA9W&C3eP`T&crtK-zA<~U;ptDFapO@^D+*@TC1%9GLWkRHhj_0H~X6t z$Z^;bE|Vx&TLJ|p$1O8RuM8a3(XsQtY!+T8TDyDB`;VMeJrSDQZ7*AAs^_N&N3-VY zF~0hkUlW{0dRiR3<~F;z*rpaaN?6s?%V;B{f}YznaigHbW{mOUrf0$qq@Eo#mK z=TEdiMESc!F6kBz`AmCE&r`9D;OwU}CGYdPhCjT|efGq@o7tu97blPD_&#}Z1=%6x zW(Xd&@T2`RwEI^0AM@jbn+WRhb!Aq{u-N)#Vn$F)Gr7?6IHr^J9J$c*hIruBg9m=f zWZK72lIO*E?>M!emKJ5-p0z)Ok&$_C^h^1kije*IGT&whx!AOStlhNty1FGY5Q2;~ z=--AZ;=wN!Q>xSo(BGBTb`Z{RO!vOE^kP8xGw{?>q$VN_TM(rQg+bKWm%1h84 zT^YjM$t#f2P~x(vv_nxQQod|Dn~PDAYu@U_A_r9i?3zs?_|pg#ui~fcDaHV z2M}OEuW+ua^jb^sY25se*p832-$*2}^KAf>>z)R184C8uqnB8v&K!<2Fv`|d6eAL@ zKo$@ROBue;m$!w6Ug}8jz=M<>y;)w0rJ6L6W`5zi-hkL#f(&DB&;iz?p zI)+d#bQ<6rxG@mn&g&)fIs@Sh_-LfG2Lkl;v)c^kWXop#IB5mnjFp)k$%3a% zCYbSiLyxgW7EUEs$sPEV8WW~Co8><0(g8ZL`j8kb2W=o4PVR@vRZf??jc~zK|IqI2 zwGbO3dEd%XK7F|v^~xdN8~iZOBF2w4qvQB~9=UTfkyM#sdouGSTd#wwJ6{1!JK3sl-W7^Yv^*H}{vxrhr5*fv@@mOU(^ry3-7=bZ#yXa)iH5jees&x(%EK zs+K8VaL>b=O==B%(#7N2SUJePUHtCp#hTV+sL8TNaie=C>8PoIgc(CAo;|jZudZA@ zE!)TVo^?c&A%gkI3#J$gIdM$fb0y^~`e8R}>%E1PT#?BGmg$>Ipn+)gfw(~->gj{I z$hiZ-w{Lsz%FZ1-XcMV?GxBA*g@BVMNMZ1yAzs`eDE4(V7xS z=SF>4m1q`hq0Le>vk~4Bj1ag;r0(rU(2|6LSR$xX>f7U5S6W2hRCb!+Hid><#A15ok_Pt~E zxnG4uz8BZ8=AgjVe1t6k`SHmELN%^54pem1v6+7KTtc^xAt0id12Gx$H?6dOp$wgb z1=Y)RUzF?FqrN#o^9urQSN$pA=RM_99uW*kTHJG9EYE3z0H}!ofj)-3vN2<2V0n)H zYYT01vC@A_K#R6O9l(nA^y@OZzyF44l$Ta|9zQCSuYqbPfQ6*Ua5iIV*HZR`?#24C z1&^AREdv=x5Gdlbze{2EQ^ql?Cs3)4e%J9A4$GLC4_uz{zk7gsx%0q|sn2D69<1p-RaQ zoJVIKrR?f?c2I^kp7Sv!HL!~=$}ofnkH`cX%=p>z_VrlfVTWiyzcY))tRRbBw%l6{ z;s$t#XM_3F*+FdAzpxzJjHciLrvEU*CYgetom%Sa1mXO04-2`(T`jdV)zy z+FdV6_0CnNh`F?ND!#Vzac4m%HCDW_Q%=#R@|%6i#_3(ij@L|StH<33#tieB;6iJa z!eN7p5`cTM^bMc0xe!+Lmi`Ggn6w|mJSl9GO?{wZbW)5zA$m=Fib?=}s-#6&t>%osu@zU(GF9V1lOF;vyQx-Z>O zxM{L1ZFhY2UbW(|vMqWHHLPW79{m`pbadC*nyU@1*34rK%VfS=?d@44UW|RIB+sK~ zR$zi7Pw1!jN1;@_~Jk3$>I}t_IkWA`PC(Zf~zh8}4xpKqR@^cn3QmN3d`e{Z48Q1Uz3!WtvLDOxnex6#uXStX^1MgCS%DttZxzNd-#L#Y&IdL3C2rZ* z_f+uDZ};&>o+2f9l~9X(6$?0e@{^%*CIsC00t&`abi2;v53%yhW|2FzKGw2NtZ$>& zPoL~cD$hPjU#hlFEcI3gCcf<-+q{o?;^C1u{Yh))bg^;Ch|R)=TNzIJR+A4O^;&GI za+WNZsAZ4q`9^r%4zmgVsm?hneWtlCkhOKy{6(YbM;^y4+=j@WXjv=s%XEB56SJVN zjoc*`^$O|Pn}oJ6$V$9M56h}Vnl<91*dpNHKK3JOL<7#P%L4}^!3YT=-+RU+@|s6z z?YjOTn5$QwEn@#+4t|~dl1KkBX|e&F!OhebmqhnW>wEeha_W1Blswj)>3b8?@?ifw zn*G#?>8-M${}lEsYgWcW;5E_U!#r%=t0%2+i_uGc=}r>}e8sPdP`A&g8V94TmE}I= ztbb%1gLE}@&k823k-|b5?M?$?O&=g1n9a?u(*`LIQO3XOEjs*Ik3X+^g5=u&K$IwRwWgB0&OMlMq3>etHWT1!SgcfCQm z3UtD%-INy|MOosJ+`Bkyi@a~#{Mw!!|I7{P((Me76hPF7fbR}0ID=i@FGifH(Tz_aO9 zx!faUdqUxH2K$sehl_Exo0X&i*Kt-_5LChV=VdoWwkaDM1ElHSL8P zy}BQqS3Zu=VdLGnBwV?TeUoPw=rSzzFnpBW{Qc4SH0e;Hz7=2gwBsUjbS>C5b2`Rog$_U^J+|U}FJ9|^hbv=5{oyrEnSwqQ^PP+;kLZ26iKK^+SK}aiC z*z#q0_Kj@NU#l7Av7fBvyYXURG<(vf`P!d=A?qUuDL!I{Y`DyoR!+wANrgoXOxFxB zr{b)0_*mU^i`+FTHA8k9+Ae!pb$!+_Cm)1|L?BM1s}Ez_Jnb%bF}_bgu0>Vk&fuwz z?4i0nCpzoq1C!l$jYIZ)8{cL-Dv$K7$TK$^X57HpL~@!`jf!3JJl=Q%%`2m1;xqPc z7yH_jE$h`0`toZLN&j`Ib#uB(bo9J5w>+oc{-}wsr0?l{U02!eb~VM)lB{uw z^y#cRj+FOKS!5t{I$A=6Lhww(sp*>_7@pHnSIGJ37q&|ozV1-)0Awc$Ns0SR*z)7~ zpCB&g?U?kaxFT}gJ3e!oJN(=FKkVDp^*Zia58?I@Lgs&&ol_E^%W z?-JjzKEUXN8p>Xx_`|k9{8>ksJ*JVn@csBAw+JKfZY` zUGL??xoP-D(H%DoR71?wVZ?Vq@^G zaFgYpfPUOmcZ<+-fVz9Fi~KcT3LpORbN1Ba5=7!zYiajuY8jb@ty2Mvt(<>qZmL3t z4Gbbd85igxDbsBeiN?b$Wv%+F4KIY{4JX?N0Z1~KF$Ifk9|tk-u!%zxbG4ZKPFG}oGfFz)Eu|xLhZ9&Ln~@hQd4idg6nTi5^Pk;WKbJqDP@Yr6ri9|spCr5x7f+fV;3GuRkcCke ze{L7%uZaT{#!wB>>~2xq2z5DURlreaV;mAtgfmx_?SINN<^IObMu!tl>>nbn_AN%* zjL2v}U_gzIuaVAUI5ND(yV$$*Wft;@uuo^EPQ$7bWbC0q!XHM|liN zr_fu(vUyP1&Q1l4`Tp-wN~4j-^yu#z4=dgRSzHk6RdC~3zevk-K3QWGHv}HG=1G4S-0`nLP1;6AVy~6(9{*3rAbILa_^`~ zriL{O=8h9TZmYdfOQv*$9LlN*j48^Qa}@LaqF7mQWC@g3b>TJ~qF`~l&`GT#1UZf3 z#s-_sqM6N($eXr%>l|q9NIqh{+B?z0{W5rs^1&>8liha3Tt`AAEcB?OsDci`QJG;o z7%rqKaDo>GGVzv&DbH8{|8A`t4n`N-=}=9n{(LzpB)m&`QK$3c5C?^nDV*6$w)gLe zq~4ns8Zk)ZPNpJ@fB!iv{vC!=HU$sMnmZh&c0YtUkZnoKNO6K&0HNp8Y@aP zHtR=efnS8E=CBD1Lcgx-=w!QIYtjg=-zq20e?RA}0N3G-Db)6yJId<2&W7)M86UxV zr*`D0sb(#3oIay3bj($``gs>_z@P7<&pZmul6M@XUl{s(Rf3Sbyl;0u@?gx(_P&A7 ze?$s9QImL_2Cz2laqOIjsElWwZe))fmxiT|drbQ0&j)`xAM$f$bDwqoS(FlmZ8twx zvbXrf6~-IE+LnIGscNPjZpqPtm?Bp?=&I|x+?xV&CtWFhKiKlckVq3`-_3U^_Bk}e z+O=l0gvhnC8C7P5Jy9Q0UdtPr_(UcQ%;>Xmq0L0RX=?gOvbzf5j9TV4+@;v$qYgO{ z<8_Vh2P+^eCm|tWwCITXzAg&Dmc{e@Q=vgdai5pMAyRWf)G{FP;rP&{U02Ov7jdfn z^|ND!f~l?85JTy2LRqY(td1m%IL96|%E^&%X&rtZWJ^lpadn&G=-QvQd38_4M=xG% z-TTm1KAeWV*a~==lNyHmWs&M7_FFdksnlN`rnN}j(<4UC@_zzp9nCo8DOTNIqiNW^ zd|y!}UzrywuUikirKHT{EEa6DqTI(NA=GIQPlYg(jVP6o8C?Tv;x4YMKt}@=6CA6N zle3A0!O&eKpqbaoMr^$kg{2W~oaQpT!mPKk{ccW^Z&e$;Y|S;xMYc4~BT{wQqiW`R zT`NEek#os`T%$g3KeZpMVo7EeeAbTIpOZ%n#eIi`rM0LbF8d?=wHJeXf})4`{)>qx zCc6EaOQLfp8F_l20&FGvY$MayoeVV|>o&&BLLPA|7UH{w35&~U5*L`lu8eb=(Vggg zp?;1O#<<>;C%R4^1bn0~r8VQhL{j9T3AE}W6-snaTcC zkLXlz?(Y}_M^Ce6&`B&!5TW&dCbhpnuUPe^*!->1A5u@C@N ztrnub;81Zm?}|cImb(-!C++Q<-W+1l;UEpH`<}Gdscmamm2~EG(MPs?1zrME{X8AO zC-Lr*N#(Vc30U;2n6ZLWV!RpKo3&HHR~LoDBZpxuGKaezYsFl4guLk+XS`m$h#Fsl z2;2yN9)_zP_5o$AED?4HnOlq2K2_$%YnK;}e(vGg);Vs1c$;Tm#L2ZQm(OPT91*QP zt{6NGUVX@QNdcYh1$WBERbqB`;!#S7qu|A=h=-Sm%f$VwX8JFcGJQs)L9M0H0;-4sl0?hpQQ88}95et>AapB=0KYXUVfGhz zBK&>m>@ENyA)pjtK-oGbC9d5GM~d6E`O-10rK~KG>m^$Hkrq(ks5A{^Fx7gRq`H%W z6LW6bEV4f*XJAU__tAbL{#fbwU*-2aQM`?8=AORKO4Dizs@w}_iz>v-^u2{vB)0ga zy-~Q*z;uM5!G*cexI!Yow<_L_t=}(H<`22A4QQhUojA^GIDc=xX`;T-)%Va^97A49 zw1MC;ZYyjC*Djz<%zM^{;aCU5QqWB~z_8V-Fob90A>=ZFrG6e2P!=h8_OZjk8EE%O z+j**`e-ERxSVB{bbXK$usZC}a4fZIXSJZy_ZIqQ02aA#B;}WYi2YXdMCilYnfY_J@ zmK0N%qX83#mCX4iM<5nsQ5a20QpOO0)fkczww@ez`CY2NcHfO&dz<%DL&ZQJmeIb> zIPbwsf5DVE^Mv5rfx353BU6V0Utlxp^^N0cFc7cTbOK zb~6OU?G8v)Uq=9?{EzJ)#WmC#@a3H&Vf7HJFvXuG>dwr$+Ff|%j6HZ!+Fe{5X=bz9 zSa7CHo*8U-Oh|?P9i%*;=Z9CvBD&gAQ0>EsQpMsLa9LL*t=iN@)fWG0W!>xjl#J z19=rJ?!3iPAHlI^-fO+bPo52|-r(24xpTf?6bPCjASUh$e~tp1Ndt9aO#1NOl_GLV z!+!uA8GO<6JZ@kp-}l5oPPuPy`l}p9;@HzPe>L7NG~U+ZpsD&JyxA|~CyIJOS>Ym5 zj`pq~y1Q?&@k{PgfnuABiLZYk~4azxpjpvg8kBozm}NF6L*s-0&Y zMyRGuUyd#DP1)FkDgQ|yKp6a=yRz)^jYlZ zl(}``U$~^luJuDTiKj>wkE?ENyWCph$ER9_-(CDhGV1=Ihzl&{CtiR&@v@XAQ&(o7 z%&B#Hy%~OZ!K}A(s$L66xVXYklnDO42k29*ZXh_ zfvlzI-7Z@%*B3^saHk1BMur?J9f#)!&Ty)U_7|yLKok?oL)zz~%9ImjkMl#ElI=rG z(^({Bx8Q?VijnbXKgwZG zTb1Dmz0G;D`iy{3j;@fVe)F|TczOMscVX=;VA)`z7o8UAFABk(omIsHQ}rBybCLNP zi#T86_o!qX5*af~m}`pLLz^4YU5~frj^>5jj-6JQbg$hFl`&^;_hHKQtMuv9%;uZK z)IVL?+!%a{T4#{`;Q3z%oe|>1<1z(|kPcM*hG^cF=8XXELiSsQMG19No|;58(TpWWW?xwyGt%gHPLAq&62BAd zp{o+&b0L_5<{Jvf2BOKPL_VzaU>R%2asE){4x%{F)uJ~;OM+k-3cbd1L=X=Q9c`Qw z9lOal$-?FD)|Rq#cxAlpcJk9(@?VrC-Y|%|imHfiyI3xbIq=T(mX2-BCudfapJVYN zj<-1OIE43Wr|#RbezdwK^odHls{#7-EG^fTeb|_Ck;V}Yq0*IuGbN)_I8w||v$&BJ zEBqse|H4Q(PI~Vod;{aikg3M(OUAi3aXiv~FlaQYdz5L27o146csrUJeDzV9(aQQ;at?1Vw9T`R5|Lc8eBg>TY_E>Z>bW z0yew)csQGlWmpl?A-AihU#qE(iPoW|y-*1!MQ&q_ee)IF;%KKzl^mq*$jte%MP*W) z69dFs1}+7~9&Rj}6bn7BLVN~EMJ4=k2V#G2?;p8&ofeQma?xEz(hR&$=gmt)c)X3z z8Wda3!t-||aFzL|xmZJHQ}3H%7Cd%GPrM&){yavh_m6T3A8UCI>D)#%wC|D|?v9$b zZI*#SAhNrSqm$I}d5=;56P+X2Z1*emY(5MTp$kqhQb&jgr1XY(s{mui-pp{R-7VvR z5Ak$p9I|1cU&jg>bu)mRS5!9MK3_XEv_TRdx-{kk8+>m+C7)|PAI0~2E@~Y$dqxXy z6Yk!TwVgjCWTE=}x~bvudPrP-?#gRbaKya!zEl?xy4$&F@gfW6X|!)U>zOO(fr)9| zz`<|zaHV$6k6H0JmcY0Be4f3!a#8U#8KlkoMtL#!&gk9q%4}t}+pBD+r{?S7UbAPK zw3%)m-v=^?y#euo?JDm@&#p%5FEKP@4P7=4A?-lioRoL2oT}s>2y{4kqMdRbKcFSn z8wn6Qc5|4W9LkC4i|H1^zH-v>*Lh)ptC~s3C|eaxWpp^FYl=Qp*;uXaA#cpL6l_f; zYx+)c_-hk&((%4ZL|<#7K+BL*eL6A*$Go^{s&d?tBHqHxQBLYg3F(y8{L)}t(b4=* zi+=1w%k(@6E0$pmEn4p8dK--ql$Y~^iZoxjD0;+kld5QKt{Btb`8{H=Abw*jDPr0( zGcVD~so4AwI`_U~>3G#=II|sd8=T}QR9nuvpg#UhC$nyMBrrO3w=InBHSr$g;#x%H z=f!Lr^Bs!!{eIDCrH*ec_3S`^r@>IBXkDj&zt7E5|M9~VnSJ9A*q6DmYLRTZxv&*t zn#khCurpN@0&A%YBq?Xa+3Vyn6lHw)`RvbAf*VGMe zw-NeFvLq)qzh8_{TZfYc5#M_Hy=2!snU`Vv|@O*twh$mIq62R|5|LNAnexoaRIeZZ1P6@u_(k-lnjW>-~F6<-9oYujL6jM&`WDR-2B2ohh|2 z#OYamJ_nYgO7^`S-Ga9-5lO{uA1aDQO#L$RC~65uxfoT#JDm5x!anD{BJQW}Mx6d1 zSziGZR}*xLyM*8_3GQwoKyZR@Zjzi+;x$+$@l+N@71fN zYPYz3r_apv^y%q4cc#hm?YXncqpk9!EP-E8i?KABUqFUw1ds0wNB=eElIcP|}@*qP{*jKLSbl;aIx@Dif{t~26F*Vl@{OP>Ztj33G z`N6W)!qHq5I5kSeupnnaC(ome$C<#v>^x|q%3uSxaHv$BMt*j(qT{2hgK>MUeBMqG zfr57MeC_zN<8XT4lIFthaGz6s^VhZL?HioSqiR%h?EH&3#wU-7U*O8rN@|h zX>PsQLm3Q(cYT;arsuqa=ltr^jL6f@TxpI;DvYc}`h16)y+knM9K?HE0Q#hnp1kgr zR@5^A#dRW?p8fICz1#1HT=e*TKj?$=Ra9c!!fVmHThW6EZofKm$-Hofrx3Tr*KfH` znv4uL8^G0Zi(O*+s;9|!2vQ54PBB#Hk{O-hrg2oF!>$@mPLu*0i|Wg)iGT#mGB zTp?Wp&w?b`wljS|dQx;=YG2P>^#h_)(I>vR&|i4fXg@cas4WAT#w2w?n5d{}Q2}SVIon|~L2B;B;}e)7lQ(nsyRjrrJ#MIR zj^c*_(U{5rBwKK87_K`^J=W`J4=Oe4yHvh7rLLbqv01x`fJ)HKR8l5~zMHKZ6}n%ZHEeYBF)%qe9Vt2I=s$`62PizR?Y z6ED&+tBO%OZSEybGbF{_$lLT8zQodrpV!1`obcQwnf|`qcaRxcX2qS=eSfb>ZfsEQ ztM%2DdTQlyW?Sx!pbHXUbmM@V)0eJEAZSG}e?jWs8n)xCtpbs zmcocUzIs3${LV#7b9{PSB2M9|!N<1_Px}ttF}Yb6DfsIUiS>iG`rlnp8aT~-NWIde zXVXE18LWJmMI1avhY|Ie7dAqGk*Rr@eULe`9l`LEh5UXdtus!a{C4*8@>$t%5Jsu3 zcE3J#6h5G)t7^Lf#&Ocpzs{$N^K{L7wUp2BI$b&7eAs=p6>xOhFEbvk1c$tR*YYIn z|L5C&5GcU0Z{N^gg5^%tfK5gTCdumsG2s&tOzqZ^zxQ;| zHe2_Gu%*8LYYWy(F7`$Gy4T$+HJRh)9=jomF~lI1%va|uioL_h0j9fa>lS~#1CmS8 z_IQl%AOJz@*t`UH2UJWL)@=qtUz^B8;WubM`Igyrp6^Qm>2D)6ye|X4ZoiW6{q%k! z+^=pws*iu2sB;N`bbH@hc0pQR9|t5%l*GA^c+{?c?FsueUncL57G{7n`qE$4nF;VM zSREW~%?*-M7@d=x3*jhtyWY`LiV#BNLpipzBGR89#h5ZD?Byfi0<-AR=0X}zS|yjO zQy(tf07@lXLD5nDYWZ%;wq^ahsgXSNpY)sj{+JPR74f!cFbt!pykVUmXt#z`fu6 zA=?#SN7s&yT|~8Xb$&E1dTUn9e)mER>y5-yEf&JOeM6*oKYb^-5rnQiAL%&o5m}>R znk!DTxK*v#dUm)0fV0SWh-TdErpY8uUcG~~7JZGCyG7HvJ$udJ$_wgg0C-JAj9Kl+!g3)u6dwA2c4wrzanjfYG(6wco^9a07B>+;+=efbr{|`|q020_bxT=KQYa z;du=z>hxgoZmf>UE4Rli$=eX1HnQyR_weyYAB@uTPsG6qM8^d^qgV%f|3B9fFdK#1 z9aoMpdVYSK!4qFx>qb_i-E&^TM~I(Fo}XEn!cPPsT@&X~H_+PxLbHv$PAul(JkIat z{azQ?eH%ln)XDiv^$EK+;~?v`&jZR7?mu#0j$ZgbP{Pz+B9pGQC3I54DRn#^Rm6E; zXTVQ98m{-rQ1Z`*$9;Sp!~S@`w0|-pa6Gg8;&IrQsg-@5`?1RX)%&%~#andQZ7KVX zEpvADr*B(A(f3a2D?VJh)B?kUt?k6S^mbInPL5f87e?`?_QbU2O2* zT7aXU0^pZ^wwW{u-ihd!`n8P$G->=ra|iY-`v-O2`LedvtDU@ z?k34g#{e4(%xkVQA7S>$+#X2}F#UaZT;gh5*6)HTR%Tqj=86j4*2HiA7W{hn>4%a1 z$D?X@|D&dW1~t#ndW!mNmSW1Ij@xb$Vo6n5`%Qy)m+roGXZDd1eLaI^lD+q7ZGU_l zzJ)oA$E`U}&c(Ng7wqbc*Vjdd)`#sU4SJQ~(I%Ol@+<QeI_8(wA^cfO~F*O6_-*8B zC6(ncpYT~b-QxO3NrBQ#obf9%O$ID3ps zoPTLK4bp;KBI|*+1YFie$HV=G=sPXq7bZHkwR{d{S`0k5>naE`zdxlz8tCQ;2?kdeMrs2x!zhAXmTR;8T0fM z@*z02WB1B1M6bE?rnVb)gCP3>7H0*^uDQ?=(yQ>UZu#lrPu0H9#uK4|$2J&yL*Rlc z+PfB3z{B)u^AOuNLfhx+G}Ogu-JQTMjCHL0Pe7;dnxgcF-G{Vi5MrDyg2&{b|I=ye zNn$k$LUdLa1lwp6S6gJl{U}D3ZP_LCoAL_Vl>oh1+BVEA-PUvRhmTofVHs6nvw6Zt zD|5iFKbZN_A(|+97A>LqtPr^lV zvyevXX)9gtCZHE2OJoRDh1SIeEorNqOQ?m;B3>CbUv0ruA5-AS{sX4WN4e5x1fIs`)hZyZ1 z{hID|?wg*-Ss^1e_mh1XzIVy5j(c~oR-I=(HQpzRXV2#ol#SdBdq%yL#NK3&DP~R= zHT;=F`N(ITx9w(zU@PT;K2aT~Aw_IDj4H~G{iP$vpAC17+=3=A1Cu%FXc_K1qP{z& zuRbS~t~NpRCNG(ZUAN`2XD@@cr(BVABpB~MjtuNmm*%)X4R$|ILmvn~AKP@DtGC#7 z?pf;9JS@)HLbG_O+uyppp{$g+l3jZeH9jh64FDFv^>vtzjgrJaJ!N5Mz4l_;e*lV( zWe85{Pv4%VOS<&Jyqgr76ymg~-!1>l{wj9IU-Kh0_kIkt_VByrA#MJwg`VE)N<^FE z6J|Rxi*~%wXac9b&~`JcF1M)H5&rt_RgUm_b%sgj-3vWv)o+sCADrEU^%~PCSCANT zGiP)S)!vKMy2$x?qC|wglDDpTzm#fnm)vGC`uZ}Vl07Q-soRIF_-kn&zGnCq`U5(|#a%U}47H{qyzmhFss?-Zmec08dUWm#=S|n{WSq zpx+C6%Z=8v*2y--P`O9feSuD2U2i?Tzw*%Qe7J4T^Y)ZWr7bNJRt~w7YjbORhG{4j zv$xjeRaL;bEbE5-#<2`u-`mP&ordMTQTtqOFz`03S;u7wFqXq-8Q;9tPlyT1JJQ~j{pNx2=Ti3u0CPr*vv$CxcS4+rzU2dB@sJKGaq>K=jGRmTr2 z!w{@jS?%wrGE=8nygwgnR*&P&l-6$7`nr)}=-IpX8lUZQdoeO@rm(yA7tCsWAe(f} zgnpHG+3c&x0pup<5_gqGO^z1>>7&6JeQ)uxB;JEY43B?*ix~6yGV_JYAKl9UEmruI ziBKKBRG>^>gZ6X0+1OCI&M|_^u+sghDJ@v`ZtQ!I8?WvqvhIv#OEg#F)ciI>G~$R% zf~T`?4t9>F^^tYI6mO27x&xa~l7FWMitGtWS@3rZfns9h8y zbUDu(_GFhh%x||>?&&VnD{|&L*!351UoyglOL(e)^g2Lcq3oIKk7(xn=G?~sTXpC= z2Fs!^SWlX`9v9erK|WAdHrb#GFSb&xQhLwx&@n$BBO2n>a_Fdmf608KA8~? zesIj!bvjN2mL&%wdp0g2eCM@e>wbFEyWh3(l6`;FH$-{%d?B;0(Pp->$ZiKYI`i-^ z){s(_>R~~w)JPJ^OF9P9Gj#_gA3c@l0&g+h_s5vmE;?I$R>`7FN2t|tBIvyuh6F*^ z_LCDce&9c5@Ev1W>iL2{x5g%8#C}jyDEpB~^$HbDP=_TQOwbb<;u^c1B_N;BMq+W_ zMLv@8vR!=>@_K6aZ!_OMV(ZvgSR4y+L)@vJlq_f~abw-oEkMStwiZ#D4vwTyaAn;L z%%E_bXbQ2_&4hp(!ML>ancn4v^7uS~kKa-ss~`m%#T7)iqTE52S_Q=w#qXQc0Q(EP z_^KRvv+?z+QEpF3)L`!_u?}g*6tMH=odHEH%LQElssT}{fA1I#c*tB-2EF1W@d{T9 zrEOPxSY)~H*H#+(!LV{`YwkyMy0=t{3Qkte-kci)v4+uVs-^=fN^I}|785Q@cSiwi zx{&3OZ*Dx$#o#OHHA1erHBb9)%cl<~xWbe%m-v_;vpN`=lsP>P2S=@w?=2}Lc8~WR zAP-9J9ce@Popw{^a*Ub0YLb4GT3M)s`0#!YU#@Y*mhke4{T@Uzm5kRd$3E;lgm+&) zO*{dX$049&xQ#}kkNdGQUpO#jderl+ikKZ_j_e0)qVZY;j8H?vseetBl5VNg1(X=@D!btPWN1yED+Ne>c zm_lQOhw~t-W#`@VJaWyTuf-T`wzuPOrrDrabzGboI+2V{AU3YgqiwT+9q5vQWH%iR zlhDC7QL8pa=k9vpQ@B8Of|QiTHM%i|O@L=@39<^|K>`R#T)5D;mpAq&M+-n=A~>?z zI{Uq@?VN6DOe}HHV;LN$dJs=3r8H;i={#%f&|QJG{5g4A*;{AydLP!eY88XiI44~3+KtN?2mRYzC6Xjh&7st zC%)515R_4sNfI8%?|V;{<`eSM_WiAw?Tx%8U-jsc+uD~`sgdU4Jq(sGt<@_81zfh| z1(-fm04r*L(PY_`8`C!{?(Fe6PvKEE7G(1;Og9IkVGU4H`qcxE-o0Ko^Ph-7fa!Iz zhNN-fL{c?qwgXa$*2|cD=f!6Bb4^s)UgwsFl7`cmG~5A$uWQfy&>oCR$y^Mzu8kfy zO+f=uzzEn^i}*CToW6r$^T6z*SOhqkLxN%6awnsidY4pc<;jPR3N}h=P=oq-a#e(s z$EY*8B^F{b_H=P-b|ArUHhg611&8N!b3Z!md5$cMIu1*Xt~oh_aVcE;$W9^`zE*4d z_2Hb4Zg$Vbdv2l%ZE2WI)~|Mnn9F`Wc&?(H4zzODOIr}!Qc2c8ePX%d8Q6qa4S95uSl9igMGodQ~&VeT@jFju7D81eCi~Evc`f{j0 zVSkkY7BY;XPt#CFN=r=_be_dWFKN&}`kd>2=HSr%B-0%|c!S5wpGnaXIhcl$H(KIm z5!bAO&xLVd@gm#|yv2mOhYe z|6+9KB1O#1PsZ+?^v!?gyM#$a1Xy5ESeN|*k83paFeIw&I`-Iq49y4WxL(w~Ibs1{luD>da&nzy;${R7s#~Si&2Rm1N2ME!$M05U~NQj>#JT;ZE|gRUUQ7UXNLhEjC1DWcOql<$?N2Zjg+4C! zDF4o#%X&1F(QS3{5_W<4$MH2VPe{J)OP_%EQHyg4^qKeY?qv6kFIeRBurz#b<3q05 zAIE$hj#^6r;k`@gtP}LAycKlso!GAQOL%iIEY(Tyo0G<&klIeI4^tDvL%Z=e zUoX>`Dw9UVd07bZU2`>`)#AqDLjK6+e`3V3sNNa9{G_F@%cd>6=k7Ynz2ci8t?e|6 zDakzJlhDzu==7=UodieNAeR)#*&n7H(i5<3CnamW{EJ;K7$~}=UVr6aU|0G%Dy?a` zj(nBMw6kut%Knj)8^&oa+;Ki468q=RqSYb92sVgm7}onWS8S9AmM`@G=>kiiw&euRPO|(s-gl2NC03{wBmaN26qG zi|JLCJGaYe>)s%5`}_gPK5otfF`cGg$Y&5>x)2|z??~D?N4CN$BeVocq9{oaY!n$h zReb}Q=4yWEI1aD)F8`fLp@N8C3xT2fjV)*=8)o#j*1r44Z{21wKy=db!KSt|F{qL@ zrES$P?lCmCDzdV_ECP8^%3dI|(^DUOV`car00Qr=JaCj@A|myhzkSbm>MD5o=T#*? z{*!s8Rkooh;S7i$kJG8g+De>=iT`5GjGfS_9Kvv;y@526HEHGoq$ag^*X5uQIwl}P zK?VemvqcFDd!e!=k-H|B;C4D9kUchXIAjUBk)iAt;{0mb;fb~sT=r9RBo_ktQ>f-2aL`)pWg0Puu~0iS*AjEOL#Gw&B!b6Imcl^L#e?45`ENhbvT)au zd4ThGr zC(nQTdNZ6`%g-A8fKy&(9B=-{061az=n7XRcq~hot2e)~MIB--2iPb|$8Q9fYA_X{ zqS_+%EgmZ{h!6fy+4#)N;leX2r|K*e;EnGiX_WphhO>(r1 zlB(izyG~JshNL&~X7|`FH7`}^z=dTr7ltpit9<9ef2-FOx82K6eAfuHY+6)u0E-l6 zk?<@O^Mpn&Xc_(9Oy!b78KGsZS8!*IM@8)Pdk)Z%XHMpQ#VmntmIEYoZ?o&~%lP2J zFX+Ymt;&$%1QNu=a=G5Y&^29`>tjI7aA-F2ez;S1f_h1LIF`6R{Ck?XX!_NjI{dI# z7SJfrY>CfTp%Z8&GdZ}Stopj3fyWMKFqv{c`U&}mR+A$- zzQE*ZIT~mgW~2NERu2nu$+33X3ym4wr;;BuM#SZyDsBu9-!C$PID_C<@Tv~V^@c2> zA?sd3L9tE!FwNA{nBAOAoxAx_HWwZdfg2(1S0<0J2c=R*myE#d^D-tFeW=R>m?47R zYn#mBPhnIs!g8u0zKxZvn}c$$(-@oHG%AsC)fgJ^3OlkcHr$l8JouY>-E>Jh-pUv< zh-wo%7G5l4aYiH0vELzHG#wV;XT*GXy|=IMDN5Hv z|H7i->De%?QeSlBXM?#rE9Y*dD|mA_QtO+=HP1eW_zs-QL59FslzSNK(d{-rFj@f2PKcVo*& z)Z6#k%c;oLq#1)aUAr89Lkim7TzhZ@yB#f!;XeSx_ED{*}^IPrNA##C4s9R1LV4A3R&TmUfNG=h2E+|2)?A*sr?=8zXu?W;_ zq8U`&sC09^R4R#a@|_*AF{(QK34=jiJj*pO0IOr*#^!JJ3ftZm8c~hF<)=GR zK)J8w@2x5rkdi)0scJr?%fT3jh9nC%%4$c5?+v?pPsd5eew{HU@X<8xV#ro$9k=Az z6wg)*Ro7I}7ge22d28+wqvT!RhY?pEt4^zm;owgr%)z!lr$8!g$jvq+CnPgA#n)?} zYcTTgh%|!NMn@vJ-&YLK~h^cl}T8pNr>9d@AcaiFMU|yaB&08&W^`HRity6~2C} zMFyvLxnGiRGG^jVFT#|(kl`nCYJDF>t z^wy#0K$pdh3zqGuZ3uKHos=*7@0S#}E`Lxb#wwHP8CJP2Z*;*XH&qB{Y}uf2*CPv8 zxQipJ@D+4e9F~*Hh#Qpp`nFGx&^i6R7^4QhCbI^u2J?)Tc=0D7euD)T%nIz__|l2+ zmn$v|VVZ`9utk_`t7>b3Wq}pB5KzF|oiS9cJzcS7>GD=d{kZTI>H$<<+HuFNp+ag* zY~{EhX+AsH47%yCrX_~+2pd*>)#>rR$SQG-o3Idx2qdu*)P9i<#cS%S>TK zzNIR1*1+yJjEee>(S?eCzcY#}@-Vs)>;4pZve&^8`Hd?wGrsexcHi!?C(L2(w;q$B z{IHjE*b6Ph{V6coFR6C?6rqiF62HJEv_z9bak7!AN%MP^JP^A0zzPg-{b@H)WGu?( zdW-3h&R=*CvY1T=xRod@@#HY6>f>?oqvC#Hc8Z}TgEPXE`Bu+?X!E6_qQDq|6Nx5P zH3^(Am}-M-_HCG17`=R;6R!OjbOnT?64t_IgZU z@P!ajK+mRw!H(gI2JYWI(&Q$dg0Shq>QE_Y8I2@6+O(X#)kuhV3SXmxSfPc&iC26z zHJgp0|4#=P*&=gHV@F(8_pinvCs_ApnLNPfg$pDvYWsg8y3v2G$w!7Yuk; z&s(V(uuX|HJZyrIm=*KKsHLcAVI?z2yZSiO7O2Qa5t!$e*J~6S!iwb7b1MDXPTS~l zV>Or-?|iehx~5uV$TGvh^hdzNnh?hL=BD$2zjHp*%g}SJK5msINsJ>U@0ziQX`2Py zj*tk~xq6j)m(+2j(`Cw!Yc+An+X?3F8H(f@xb^Xs-#;agqaqS^JpJW}|7uRxQv5l| zPQ2ldem~aoTn3igF5Oup^^~WY^md-xZH?ZiI74mrI73g;KPpv6ovTVsr@G*==-y1N zr8|)${;=50Pp&DNc$ieIa9%tj*o+Zd#bNC@@ul0jn2fnCoR84*evf<=VQ0M z=u)@6oV48E-$R1(%faqds|4|czuThts}zLi6)g~GW~3%A`}vlti|JiqI#-kA>G=xg zQ%zjolSO^d;h`0uxO}K9osEVMEuJ3s813P1CWc8Ty7Up*8JNSEs;@HaFqg9-u)Nty z_@RQPLiIg<=A#`GM<}`*x-_xU?#*GTDk#>e-E1+e(Z0(>2ia?$vZs1c2pb83$Gn!o;#wz4=rI2aPJTg#B| zE`!5EiRzJ>D3h{O82xFAO&G&h`F5u1)_E{FyTXoLci_j|@2>LcKcC%hst1030d_Vu zlxbw0?%2In2!&@n4J#gST&VP>j_C}19<0C8f?M=ldgO}H=*=J5{%y|tfFLwc|Bf5R z z>By`cG9{Mk*YieT)rCEwpgGx+V+UQEG8=!rLl&F#s2SF z06n?K=4<|M|Miq7kGi50oKys97?7}7mK&5)6F$F?A;yN=-$vpLi-usqac3x#1w_q! z=G-bUL?3{EoM&}HsC8Cv^r#?qC96jf<3`gg)DY4xCRhKwC7)pEnquh2Pd1ZkBJehj zMp{j=Pil0*vx@+Q4xZs=(53lPBUUU`iyP_yOq{qn)4<%=0Eup;&teNRKjt9Z$#J#F z$i7~3gV`byTiSadQ?lK{WOl5pMdI!Q&otDycxdgED8g|x)x}mg?2>LIuVXp^icrXt z3)1)!%wmCgWLcScN~?1g@vQhL(!`)|?7Fwxgh;F+`G)L!d(X#9B>)_Se(Bv9WBlHv zp2qk1md7^$fMpfA=5h%;sZ4ztQ2NHgiYlKQ0sI{@UuC5qbF<4hz)``dQsY2mB4Nng zqgBK9yC!^TAxu-=jU(%yaU2}A<{ug&E<=6Q~c z=$^AvxP+E)emlGLU;nfvLA8+t!CC5IX7-A5ebjxQVO(F}qB%g8trLUKPIT8wx3yW?h03xzbPX91nvJ~lnw>Z5wFNm!2bHQJH(>%js!n5fHwNp z`wr56ws_t&8sz++b2dYx5jw|rc#Ll{YCWCfIDXz&H*!4BkM5PTG_P4T*YTkHMNWiEKpb}}7OD+dCh{&n`hookKU z_V&uE!W1O|w?h875&!YZDu%oWhqFu~pyQtyl@;vMliLN*fWSGg^`8W5u&C6BU0uaa zSG~H>8pOZMVugR~$+)-3%Mx*XzOr;lMnKG?W)g7zae{(;d9f zZq#m04_6qLHx-7Y($7?Qlg&Fl}zsK^-7Co80=NuF`L9YWh zBFxGMWVD=!LDWGg!&nl*NGJA3rp=b65mj!N)DCRvu1HC77W-8{50AVDwKcZU)bsFT z@=k@6hd7$goAR2BZ(Yf{G$a-jq82(*6%7)xv#Qleyx&DN5d0;-aXTVWnYq!Vk2A|B zteJXYIX3e_!5s1_!_|n$u+K*+EC;8CTg5Ej1nY;9<~z(-lKk!IUMBla9T0KLiOq?G z`{q?+_hL^&lWlY6q#mx?n5-B~CvorsV9kUs*Q+!80BTflj0tH!>8T4eLkkVMp>8Kt zi5fa;YOQw<`&T=mO=T)LXWxJ{wRZY2LI^b71KL6ez~kjDnFMBu)_MCt!!9p|PuDeI zSGV~oTps;)al46& zh=lv+p_TX|7;fWg1U+1F8C09bW>CwzN(YjNMW^FH86Z)@JKc=}IpZWcPXtB6**sDf zykZ>~!57it@UtBK>NwSJ`U{lDUvSRw)bQ4@yWRFgCmTjc>C2LZVpL&@DTunGW1WMuw2!$&%u-IYbM?>_U>kzUVxDxw$Ks=4S-3K7V%`;69UWsj6LZee(g}i z(OG>|!=f)L?C*&UWf=Hpy~iyv@^BWLH$Xu0v~1F$kSeRtd)e&7#j-f-ruyG?7&qGv z1h{$l3ITu(VzB#|b8Dam7W4)Z(~~5#d#JKw6kT4aLO_KHE~CZGSqdrxk%Y>O^4T8K zDYSbY3Yv5ZjaDY?zsyZ4%&$1_m?H&@YuZ(UkTHvw!U;eR%LMUO0Cs7(fG6A^oyp&tIdD=F$WrDDmK>R zDXbFXI6znrOqo2faA?&FY3 zYnPS#&0OcI-_(?XsV-ducZOtR>jb;_p?-fRfez_rG5TCJ86czI7BrHZDfM+UyQ1S~ zG-PGRu5KIJ(F%X?zv!kl^>PujHa6lbnCKDWN_ZBwiE&`5 zxXSVlxvpyj^T7Aa!1vf~z}4kel`yS97pIV=(-2wy`O+Mi+N6sjUO_!3#zC9^Yg}DI z&mMGV5=;aW$Z8#(^50}(#CTz8v4dD_)}_HIx$ozHPMozvj*J6+0tJM%eAY>j*lH|m zH750|uf4Ms!!o19LR|w+ET>YCO7l+zA*2^CQYoyj{*EAh5_B8!{=jJ+Y>wt zj+9*UhK#mo z-|$4w>4)h1dDpFkufA2d2Tv>J3R!_-rkvD3md!KUPZ3|D_S5}M4p+ zc6&7St&hhh$YkqxCh?~Kp+}MYjlnhVY*9UbO;#??zOXXwT@PQC zR|xqJ6MoX-xRiCGfbl9rmMdMFykX-0wvjblwXBSG_`K@UiHW-i91`+o=@h{(nASVRN2f)M-55$4M?&0KQ z{b|?NPMK}j40{oB^4bD9J({c2ZxCV=cZRPPqk^I8>@i2cA-^ByuX#NreGVxqG9`&ycGaN*i+=)+&Gc|?bL_QryJ0nl{1O$0*&>>**+17Wds`Y z)VaA#3@e7}eHtJ~F_!lE7zH*=%&RhxveM(Qry`_Ar-GVa)SvaK`KFCZtu9=b@Oic;%}yPeTQb zEOxHC9t2(Jw}Y|k2PC0ELRc_#w(?_Y#8Uzp8ak(oc0&>_Z1Lj>!olHxycES^^~S2o zp40xt97%=HxYu2J?7k~?f{k0db`@TdAOa1R9ji5hc)bJ^={Rve?0`4^lphF(7eePx~%obf-}qwxN)c^^_}o-ke1 zw@bO#TkYgNuCvc1XrcXAwwNJ{`{bmg-}kohRxvtd!l=Gl)D6wf;cjcy4YS8leDQPJ zQvtUNXG9h)+uu1qYVeEO=RNj`+>N#F)2Uf#(5Yil<1$;4+~}crRM_C#c3;|&_C$}b-M!X9k| zY!>FmM1D+F+ODVgxyBj2^T67J8)LZB{BimNu(j$d2Q@=zeQDFS2-MZg>8jM1+hGz+ zozbVvvAkzErO|p&3dwEG>7MzowbmsTmz}ed8m1J^ijqYBxR3EQ`xOHspx^b*MWU!+sw>vZ)}ILwG@q;IN*O&huNRh~Y%YGO8{5E&v2YWFy1= zy5}G#7&ArdpoZvu1>qFnhJ_i`oINZKqZwL!^$u5vV$=^imTgn}w||Q~;!JLF`wG5# zCsZ(V(pSx3Dt5H;5%{lGx`8FU$8sn%3{puYJ4`Td@NnRZMpZ50dO~{cKitW4fS@%{ zKzyUxulsW|HCTI7(*cQeDd$@saSuZ1^{P6i+IA2l+@-r)oo3N<0XGNEqJwzXzpPQ? zTXkKxM!mKL=jP$+x5$CSDnI?Y|0hoGiNI1yM{u0CSrP_APpx2zN~;2hNPYfq_*}qB zeQ$l9fAL7-2nSN6g;xI$?Lg-ai$}aB$qp_LB`mmv3h#eqY?dLFU6civ*`2y&*1AC1 zD-SR21i0YLS7r<+{&@P|RYoY6_+e#s;ICx-9D}|e3fbNMH|kMzgRCf<)r+4ei|}cX z;EUu^BGCWMc;w&YZxLiNw$w1Mgk!#ecYX-}Z*~#d6uMkEzT#g2%1+OuHFgPz`uG1J zf!_CKbV%l7=NiE?_cJ{ja};AsTvr?PB|5(^T~AM zPyZJ@`K&yR0U8P{B~(IF<^Fn{zf&{gm4FqpW^f&P#Kc=<9QcIEihsJQ!h&|Kons7m zKNzYG>reGl6-y5OHJZRY3zaA)eC5TI*4VHy04d*yDfhqb9e{lzr=+;uz@zzQTZ@Q` zQxEVc7q`*pz!y7>!+yn0%IS;KE<{DZg`09$=9P^_FF|2gGtV|~1-x+V*s1+3qLED9 zMIsgUt4KT#TZrQWa*U$>xZ+=oJpw;w*1{F#RRI?1qMx&1prOD&jN7nLy^0365!_e3 z)zaMBZm4E|o7MPjq5tYz-TLb8S<@tHF4x3eU=Y0>OcaJuqJk+p-J6nC^F~k zYMr%d8{)%Y6a=-s+J==~%CFr7zv$jz;QlXowQCUj>CvH06W)zDM~hoOqkndP{c?6&WJEKYU!^P|EYi5w^+y2X=ytgZm_1)tY@h z2fKHTQS5AVWQ5hrCB-#MuJX((7*Y&Gf^XW1EJe!oXurKz4~`cV`Oe#CwGc0w`1EIu z+_A;qmAu`ZxgQTD3{Hpp!z>jq+b?KMFKk?^#)PJ}x|)_fbdY~9D_*409CGgc3(!A^J6zQNRm2ztGSstki%j8S1lxTduvqm?^&ffdL90IW z6eKbWZ6$-%CQ#WD z^1@i{K{sXLt)}&&njEOrxT#tE@-q~=kRF7a)*D!)7Z4RVwz|hG(vJq}I)4a;VT(Z{XFwn&{;NH-CU?S|)g?RD{0pO5z-w1d?1KN9oH$dG@%}GELdsUk_sV}DX7y8+}`y{sW|{vDX=2#k5WrKR!bB4#Bjis4LFXS7cp0G{B5z=5o&#G+sC)|S>alfC5f}eee zkRsOXm1mgwcboJ8YmHMKhMgY2vP1;qQ*ohY&KQ_~=}Myh=%olFI8Ko~B1)!ObI9Ve z+Qy`~BGGI9;hzoDaZ3+O!`&YQUw@|sV=pgKX0&{At=<}+yiM=j5&lnv`hx?CL_AX3 zBKs>hZTYBJglz1vow!4bf!SQQJu0UAo-UOYg}P^ytxYexC9sJK4tcV45F=)$NX+gn zJ--;qUaB#m!JE%P>a`tz#Jlo{15k|^RKnR`+FC*d4G7UgN(Zs#h_D)l##=lQsYEo$ zZ(E!09%o^+>~&`syPbTo1FE6Eb9ssF*TFi}iEt3B)O&hWs$~wBB-K_WeUM}RLbCs3 z<{e{ha;fVQuGD1HbqJQ=(_bu|EH} zsW5q1`o3BQ5&r9)IC2t1i$kW6FBMd$>^Lzr)m>qIc(3dc-j$B4Ynk30?p`U9yF*jv zefE=lGyftyRCqz#%Kl&F^XD!Le&xpR58eL8g(r*a2Da=*x3A0KfEn( zjtx$czvvhaDA*^(2TILp5#Cm&kXGJCv2Tq06wgq%mc2EVkoEWa(pAF*&n+EN^_JowY9Sky&nB;PoGMm z=TcA198?=+@8cNg>zbSV;hC{+{Xb;=1ymeO)HMnZA%O&Umjrirm%%N#ySuvvcR~oR zf#B{ANpN>}cNyHd&GWwZ`@g$>ShHaDR99D5*Rg$e*OAi^4IvOj1s|C~9MWtd-zT@K zN~I7|dp}wgtr(;?!9+R7rj(+t6U#aEeQ%A!CKPj6iyDiY5xyNf%A3^>)9y1$p zfP{=A5wdn&Hos_#A$SmQBsgbO&(Cvo29JQ}Sns{5S9i_G&15$G_E;wnN2=GFW+st9 zU4N0dtr|D1EY9o1MTx@XoD7{tBVcKhU{yDVvsK!z3ZEcC=Q5dk*-Lo`yc2ae@8v$5gbU@TVR1c5BRart7{vu2K~Esxt)9y^w*7r@!`>@W_W zxfJBV`lasSoZ)bYfwgqTdYr z1T0T6wC}&I6rIW;>~xtnEyWK**6;p&-hn*`2BvRCKC@W57z$aCAo>yBh64Mw2&ERd zJP4szQ5a8}TK^x`R3Moce*KaHB+R^QR&^J{&{Gby&-?xWy+rMw8xc_#>}r@dAvI5N z{~Cj6&0n1OEIVEeJ#^5+$J$`G(fxZF+F6t5yY=y>kOiH{L8;}MezXQdocJnT4nJd0 zIWF$ECy&0vW!09hW}%^8Fmdd4I$voLQ`wpV%&xVv@r68f_`*gvb#%D(9fiRI23PUl z8!6l}JZChH%t zIwf{n;n30pbVW^7X0AD)6t@@V9y-Y+VmoK@Za zA<>TW`L0!Kd@hR)XB}ZQjC~30;p4VJm1qhV&<&x^Mja{c4i#$qTyOWS5nH&oBOc@u zhu~?YM4m}*7L5WH{C^gKm-43`a_uGa05*zeg!69OzckjpY|-bOep( zc?8RMvEYv@;{Lkh^HB52dd`V4g9cfA>=lPDvI;?C&Fqn&#R@DQ0p+BTux9)@&*{@7 zF{3o+*%B2L9A}PZc9F3R$qTd#`4~e$9Q!M-Oa2p2=0H43;!#(g+@eK$=;FrW3LN)T zaO4Pn$06BCeFKXcTCE?C^S*`jhI$C1Zk?=j3{I1=X|Y8(;^ zAu>&A3T1@!%bKey4E5wELZV$g6(RGdB#JXgAj%&|V+5+p4sa<4bf_taJ<8;yw-#>v zg?F;%M$Z-ZuK6Kd?IUapEJ*8Jh)rfY|1LijVgf_{N@m?XrMkJ(315Rjka-~6y)g4z zq|os{DO?(rDTMd3J?C7<{B7)U#nt5=>0hJJ~qra(%%3I zd)66le;iU0mMfV3mPxPZX)VJ6K@{z({8H_jjxxynu+n4wQRN>j8*Ve1uqJp8&G^f6 z$<^J&lm7D3hzc$Xlo0iAk$c5nT3t+I8V81ReB|xW4OeDScV3N@{Hl%J@Pip1HOo3e zm;Pdz+PTm|}QM=xlH~W297505VQq$}Dz-H<7#l0k!Y3Ue|IJm@d zer9k1XqiKwMo*qMkN8z<{-VUU!TPdCM^=mlVw__^m9$aC6BFe>ou=j-!E@nPns?D0 z%a*f=m(#V}GvBf3G|IiEw_rSynLCoN0f~HaWe4maAnnFM>a#l%m{mi146gZ@hclt$ zDPLPI?$-_D9@NQBNywmGlD%7NW-H}L&`gIPk<;K8geB-uZvj=1DJIv>ni*r}?vr$X zuCh2)k{r&{qNKW0b&xQXHI-Ni{&?2C_CdlZ+O?7ttuDBE+ic2`OXT9PtXjH_-6e61 zrlfLOqtB3*r-4qp?V{PB%YjgJYJYV`I(#-K1kheCz^0F3(;W97qn^<8NMgDZ5_>|G zj6WSwBqGI-za)kie4x!vx5cp&#RCa(0`|BJJXJ1k6k{pZUS^DKdrw?WZe!1Cx@FLd zK{5eb{wqh9|6^v(w8oL4Ojz$!vMCfuzGq3ck7H)MT{_w#wn789=<8vu&P|K~x-y?P z!EMY5%7hO-g2&ouL_gqrm?CQmUw?K9R5C6PJ3)yZGzU>JreN|mv#Ty>Yu8mI5GTes zh*XrE}1sZX}PDnH&O<%5b|NF7xpqKQ5qtYsR zcK3&QM0XDfOCZG4Cs|L2TKmHNd|GPmN6BHBZP&mAtZ!%-3^$VEsu`Yr_%-K$78AzI zxjD0T0RI+u0V$rUEKhuROs?m_O_d-kh@*ceqe0aFhGw-(TlV3QMb><|O zFODHj>Tp7Yx9xF8p5}k)=8A2cKHGZ2SH0r>I{K^B+>rZWb24{^K0opgJNPJv#IFU? zza(4gvL)TUbv6AvKTdY{s9p?QD&>&dlVSeCbcDntz@f<;G8;RK;=n0af z;&Dnm_8R$tx$0%klhRAdAF^5Pg)hV_%xa+QTA9k7+w|1M*(7n)-8j1H_?gZzp*2Un$_RnOt+K)qX z3lQv-c1MI~g!P?&yWP-}h`fj~n{yhG=4i+~$JRWokl&jAy=qp10}uO^_6ir6t2+mR zQl!~F2YF__0iD55T_Ts|9Uc3IpVGzrlHk_kkYjD^DtXKZfNCR^BA>k3 zTC;d>Xf=6H7$`~;V$`K&vvXOWa0k3DE*KcfAC^9XKn6I2$yHKUV-(!wx7#md&hahq zJwMb3W61B@yPv65HSX>-@)oX_vt+RtzvjSz0uq>$OPW?=nPsq(lWY_!{kl*NT-4eL zwO!)VbEbg0aVo0iQws-oE9I25(u}k04VjZNb`-B}r1v)W30t;$)MhRpic~2(#&S@d ze7I;-BeK6Y%Z|k0splp))ih{t$(rxGz##5--{P`~#EL$K$C@p17Y7*(prjnWuW&42 zb>RV?$X}M^3`SQ%S=pq2;Uw-wp|7&nT5tY_eCemfQlOl8OKhEC6vc5!I=8DvbF5CJ z;PN;}$&kJ%LFOpn!L?M>8O}w2h?!f&eg$f<;KWu@EKjSFk8XB8a?ydY=mm$95Uydq*T!;8gnlzz$&3X$8bUfFRSVYqYRXS7WP+A>ZN0TiNSPnAOk` zrB3of3i`jgRSt;^eMGFh%@PArdcZ}rDjIgzRW9Q~i=~cIw%=;#)cG*)+74 zRuz*}b(B;Urk6$gq8ftOYLfX`A+(pq@z#xesjAUA_ddya)ZIFY;4!B3Oc!bEq~FqU z4duCzTon^pTe*Zrq$E*Czd}^jP9>=G>#Wli$ z&Aau+9~LO5TBh2FB-RvFePY4=h~%A zgWzB`sq;XiGjn-r5ghieHbQskB0?+r0m_%YM;a>a%l;FQLYBwPNs^Y=^_d$O+#%~E z#Kqko>6?u}JToRul%F=J`oZhBwtn63|NmK~p14)*uq=dI$Xi&tZmoW{y3}DOjer>_ zmg04Fn_fKsfPzNIsO>bLrlg9hq)MQq`V~F_EUDV|i|0sA^HE+As%9+JIL=zDoHj2Q zsEnAS@D+~^Er=JhP=S&?87Lo9466y_)s7&UVXz@MM59ZyvMMyI2_W;*+7zQ*><@>B|cc5q3;_l+kGsR1r ze*2P%u9-Qdb2>X)jQ#o!v|r!dO+C?Ei1HgBOK=4yzP}VaHiRa2if3kuKXU3})0;9; zOB)jwMkJKI@k=;%?n^jO<=t+^qZHOMB=e7#5-WbDOxxz10kGs62p&~4DSO*>BL)Vc z-v6gFJ$%6k`+A0px>PWh&F~z}$#Qi|rSc607v26_$_X{n%&j+?3*d_BW(+vcp8&F? z+GE+^*mDl$nG`E~=h~WCd(%3mnd%{Ei&;I;{!%efYnd-)xTqE zFaZdsMmAGkjhU1U-e+svF4uH)%RqDsgn~hR#lVJfN*XQuX%*XVuI86gtK$iVvtPSQ zBofld&Y%OcqJ^#2$SlaEEWR?kiqJPHEwyS=4SwVodP zl&15o`XKY%X<&?PpVk>%@AK8Oh!?EQUo4xyNvrl>Mv>hw<=bU-*fdueuI&ao1F$dd za?;R$kLH)u_WwAZBx6aIz&=EGr=JOPJ;+G3Wow0ZKCt5;x!{-@h%CE4B}>E}=ZCfX z^UMAF7AzssB&w!D{V)DUhfl3*8W-Pq3>tS3Jk!-1f-DfZrB?$)&A;>|)>yUimiv5q z+*D#$^#DwtfbfFrf5w{KO`%c`$WyCvoIUfZHaZW>B7uZlOblC`OA@Ox|Bul_a>S-v zHGhWuo!}BK>@AkMj+*(djs$3B{_&xIbxQYWH~)9oSxjqc^@hak?X8xJp{@ao2rH3T z39D28FR=bWgyUzxDIsV#Ks1582YGXH>iul3WYY(?f)cW_was6z913dPuxg+{FxFfl zmiZUtHfW~WKM+e29ur(bTAJ#@)i|pk>;dD;B5aP6F}9>di1hWNF+%%ynEWa3ECNVI zHTn2V=jHTp{vjzd;7%-1Core!j@g=<#-+*u<%nNp@;~w5qADOCUBEAVTp$0k((We8 zojD5WzT35^BQl7&6<)!gHD%ydkZt8yQ#tKVU< zp@4$zfl3enj75Ezo3hYmzis^Oogu8!hgY?uvdBIufYjQnxd57Mxk(HySecxvO){k{EkmUs+HUO%)#(SxVgkJ zX}P!iU_(Yv&(ND&tZE;jU7GOxW1=B{i^f=<1q=;@7pN(+f#X-mnn{{ctA13X)n8$$ z#t~pcSjrqUDF1znN>-Fwi#M~_f_PSStIP&unOVXNjc7IKSSKrLdhO05vs`9nJplu< zkbgicSPuNhw!g(dL0i%|m8!xoGDNLh)e8$^Lpn0L7P|F{n4?=fpnH-`<`KnC#)=Oj z+5q5zzsuPXAwj5Fts-pxE|g~JGNZ|^9l}&x%Ugxo*bvw198R`T z7nt#Y(`DZvA~7d|BO_t-nxw-L$NGv%t4c(Wq$nfg*T4V-oX~{^*c4Gfpko<#HP`yym}7M z=kiC+_3xB~h4EYCY9($P)j&M)6ry>NGT0+{_yD(G1`PA)36bmfw!%>iL6}uwl~>8A z>a3S~MN%rWQM86eMeNTiO~jb_MBuIsgqVz}G6GstfaoFP@8r2yRp<7CLX;AaIQDBwjTBNWDi_%!H4 zsl-^t{!36Ok{Y*YnoOLnS+)MNDf?IuePSn5$^ilh=?@$MsHf`6X%1L(A1pv`@`#t* zv87-$f%A4pEY}!nn&+Y_;>?k5f>V<-!@5;KNJC=J+CyjV@UF?NQFwN9%5~bCw9oJ} zPK4g3?9cktRSp~XzZA4iL_`BiZ8e0=uI$3YF#GM@DiIdhp~`TBkptyFUQOy&cowtD zl{Iu?IxZ(P+P=$y{r;Hw#iuLY=Qen^k^t@lV9i9qvtE6G&s1d14*}(5bZ<_93fCDZ z4j^5pfdf!F8TOUO)!`Wc;%eLpAnU%yyo(Y{p6SH|1Ut^h5QuPkJe5w=YnURp?!O8( zb^(7ww6_&z((WUGhF%B~@;8K7T6}LzWf5z-;ozjTepZVO;7HaMlusWz@nJWNmQ#B$ zA8}g?j~`yTyIQ^|kNeI{DeY8HTSC8ZOU$P^jb*&Dyo4G52ESB+##th6EF&2O5FOzD zKNhR{;WSESsPYK0fOA4%U8B2oUee52vm-5)If$8*2fMOYZ*w<_yIk!?gJ2l|4ao57 zP4{7npdS#jQ))UJogfEkP9L~ey(MI^?HRZ!N!)*VFsLaV+n6#^`UhYu0A??yE%7r6 znkp(FW12^qp`HsMmi0wnyc10yJm9>DRQ@3Xk-8xY%Tx;TuzMqUK)xgetpQ{w(`w51 z;`}jD@gKvzD&P*>(OrH4xyZ&trZjx;tR|Zi7XTr#Hsvk-6jfiMeKcoQyyb{n&W*YU z)=8?;JQf5oS)_1cEato!s7WQ8a$^+rWec~ypfocQw7h)jSr+F}E@s?nT+$Qg2mqrG zI0Y8v%|~&TWPTwVUGuZ9_E<0`pyw?$OQKK*7!A+mrn#qZDdeH{sk$vK(xq+Z0Z+DE zBjI{02%r|lpNhBxZ~T*NMyJpjBs^&y>gb`P7ydbLtw=0YofNHIMCL~N5N$T++~-Gb zPUnc7pn4FxEuxkH6lkChzp?HO%%O*F=%}QjkpDI%lD&b(qkH`Z=Siz>0+1+$_b`sJ zjg$VKL%u~&GwE8jQ#|hrbu#7OuQsK*p%Ka?)-i`|o=`Yx@_m*#Isbrjlx8#tEM+TP z9URXEChoPLNZc3xjF3QaH(5{29}E)*QWQi?u{lPz8YCnNj%jld(}6HTxDXxC{t{Tl z_tQhWr#2C)G2J=8!a!+vHEO(ezokILHhe09$a|;FJ1!j20cVrVMYmpW6H!U*w5Fzj zqWmRhmftb*5H#9FidrBa^i5iUHfdhTqy#-c9_4z2FnXcJtr-o=uaUL1d&$SB4N(2X zjfKQ6^01x5iDU&&2)Wk|gHxhIj{C7WU8-za+DEzrA>ug3!v+(o)$9rxXi^ZDt@y@N zD@$jrsj6sO^NybGZ4}l&0$swxNPb9PfY~14|AzMLP z`}>p>yc;L8w+US_w{&mdn}N(+WB6-0UY7~EC$CaC{k)Q+%zcD%8hTksxiMsPdtd?w zuudb=Sg+5c=DGNbkSKR^oRQTEdaaf1HPHFbDa9PhRzn0oU`e?KSu`N z4|(+uX&f9a6>IKjWmd!};-3lyc8}(oYV12zImAU#PF&s*CB#H0F zuY!pP*xI~>`V8)n7+cCGa@9kIQ6Iw6ckbB6F6d!RFTUB%58kXZjUE=vt^V9dnl1C8 zy0qL#+MZvy(weuQ#C)C>e6)+D{n=WVCS3T;8j`w%U$1r_3BbQHIw_BevoZpWyb`uR zA3hL!qE>0vjajnq{-$9a3O+vg4x#% z@!fVpzi@l#objxJ_*v^b{ha%Hn>3IB-GgC10WJ*9 z4qmu?yCRvP&M|J?j$au`dt4U5dYh=x;hCk4&@N!!&M}MJ3I$$gf*gtoW}V^yT>&lY zGh(E1=I|-d*KCbHv#fad1_mgFP&opBF~yY&YYjY^*)&A;2{LN1Pk<)r>+jGfQGjR4 z#?icB6_|p^|2^e`wa8y2113N@oIYRXH>ts!|BgY&K!G*OSND!0fT8{d7s<%&9Nn?S zai1KiE6LDD!^TsGoAX(-8{Iqb{~)^p{iG43NOVL%y5UcSiB59)Y1J_=H}(czDDY8jq43+b|gBZeFj>@wuU1*TV?l)!IInTH_-Sh zIeGb-*QX=a^OuW_!+&!5e}lXk7ipw(!HXH_hURTp`jJ6<=p2MiU3F&nMC8*38lSab7otxdEnNFF69495)s62 zfD-WlxndjmkSf!W8Ks|SZ8)T70cKmvwIh&+7qbF=eBaX->k=X_Picn|zea|^=V+6S z)QP)z^nh~EwM*qzur=MaG!eu@ zK4Fd{cDO3a=os#Z9XYE8Snb=IvZnT$z7-rZ-|uUonL0i2Ir!jgLyY1u==Sa}-*sqN z=6(JP-83h3?Dk@xd-)v~OBDNz1r3~yz|pAHlizq-C>lf*P8|Tc+i#ftRPb^C@|bS4 zt=5^6ZT0G-JCZIxe5o5F10d-wntiwPuXVWp4IUmjB1;g%gZH+Sv#>8eU4ra|I?V5z|=9JkSEV! zSPM{I8-9|~{5Lxhd}6D&AU|&>L}q+vRpSsbjO|R9fVlJ4lr2b4Pnn#cHaL?w7PBx#n+-DKvM zM+;j#Rx&*gj?M%3EX|H=ty{HLeIb7E zBJ7KlP(t6QND{;UKS@A4gjxYf7#l3csrB4Xl;}S5O|J>R0BA%kRYsN9oiQo`NNKEH zGuPn36>tXW(4nR0W&g<=T-ayjW9x@(P-&B|YHQ7Q-FT*3Hl338d8L)BLX;nb-VlYg9_@!oA|EHzPg z;MS%FoB)!4DyAR@1eFNNetGkn*>3~z)D?v}ge^ay{wNOKqMcC(g@->TsHo69hA;d( zf&4?{Xg2EjsTZvgHi?tV4*C=CQNkEE%3*VPy-1QfL$*&QpoyxeAYLZ=iLwZ~Z{>FU zbDtqscg>t|AFt?My$di;t*$PMuGZ~G{r}c;<_6MACn8)dzHc!JZHoF6`R3%U)+Fc6 zY;YBUU;_@nrvGqYz^lr0C=Qtn#1)4E(TEh*23H{hAn}B|*YXGBXt9T1!U~4{SRkSD z%_x7SA5q3zp)j%EcpN~W_Q^Tbpgw(vRav%<2m-#U2nZ>B6k#9m2Ie?H|*X$Bs2^*s zOaG835q~a8dN~7cvvzEN(TMXq85jF1LH| zY91u-F-zjv7*eZSl(bT)90h>TLjA8^V-Hdu-M#C?>we5>XGD1$L&(5@Sx#OPq6*;fw@xOvP<+T7eNrYVr0l6DY=QbO!zMrgD?P7C zL`={#izI83M9%d=e3O|1<1C*DyK-X92oS=qZ+7FK4F8xNQ~?0-`1c>=$5Ape)$9OA zOf^)eDMAsaaw2qvk)J^iS}0DH%8(a1ZUY(!W(qLa>3AHaO(Nu`MSyG-c1%`hosrxu zkk=Z~PZ`NC`mM4f!iALn6dq%+LP-Ujj7>;1n`rqz86&{aw}SQL2) zbq_=HoRrS!%&`~%pe^Dr4WMk~GtO=w+oM+y3*k$IA$Xt`yKz(N8O-H#SUvPTAL6S) z(LbTFI9KXk-+>upJ};IMql(P}kv@>ET|U1=oN@0xPEjJc;Hp5p`q%b=Budx#dty&g z7Ero#$DTsQM_T|<1f8J$ta>Ige{3(pwP#WM`Zp(X4g~5##SLrU^HF##! z^>EjHTZDF&WrzhVtId`3zaS8%trQqQ_{N{&4N&f*tWR$r3!nX76>qTLrfPJZH^piU|H-XUW<_DUh9P%LQWZg=*OejEzMU7bqpN(d|62Zd&T$k`@BA5ACPVa|r zsnxZ$&JV#j#-WaGZm|I?Rs`j90{cv$D}7Zxb@dfhWvRU&}5{EUJ0#?Nhr z6t)!)IZBEUW@!}$@H-CU-UXmlHja7p7lTHPIspPePvs!|N2``KR&)s&=fN96fnY9r1KbPWfj7II6?Phw{=w2{-f94|y&twjQEH?nqXW<@m8#fp_SCNnRUQ50H(j&4Hu%}L|}pfI>^ zlkIzOSIY;8+?mbhrVrI1Rec?8>o2hGLu+4-7VPSENcy7A0thP4s^oS&UIccs2Dbqa zwnvHBaT+}{yI_kov!6=>5Hox^ zbYSg&`@aD&aU_6qP`VikIM`>DZ&vtbhT|jK2};aVgyVcPP6DZyHbyz-TZ;blQevq7 zvX_8!y~mxap+5u|&Q3pM^ZQoM?Syi_+y9Ubx;&hSS5E(<@VVlUy)jYjSMn`;k(mH| zUvt8pm%o?lWB+DZcmRE)<7hhJw-dmKFU2DR>5@C`tfV!-T?!!D{ozdFgdMqO6chzq zS3Z#<6Nfpn(gnQ~t*`)E@3#bK&%G7^E_!({focBK4lJ3^Lt8<4^NTI=>-SH%ionJo ztU;1kRi==%YAj4ei7|bxy0p75OF&R!-f<#+CIDPyGKC<7P|bS?phoUFB`&zJBLPo` zH!YS@){QpBo_7)#U^L)4I$BQnT3OGPm}zohyQ0)~xmKFi+3Dgt47CC&XQ3r7jgoK0Jb-Hq0DfJmqebnP0O1yd z!3L}#!pFo6x*lCwwb_UI1)DVK@61b*E6RQ!EcuQ*1F@QlH*8z4&z(}S?F%fdoz_L)VpDPbZlLfU~l*`p0H zokS*pEuQ0fIV3~MjTgBuM0l+keg+&euKb?|6Lg;o;XmUAky%`0f1uQxAyii$4(AD zyjo-1`HagO#3P!XM+f5Q7JUBJL-&rr^JA~R`<0`if+?s%BZgMZg->_@GgfskRE?OF zN?pR(tp>4GkQpDw%w)IhBQ*aW14X$m(DfydX6@xDcjwO*A0i&dWC)+!k~ar2eOxu; zi6|@h$j_O!;@F|Be6~~t6a)T%TJ_vvR?etZ>J6fOKon8<+!wYxPjCw`Q{{9C8=*}* zw*X%3*iuzjbGH<8St+z`_ew}EY*nj4jbPJ0C)bJx#O=t!o5Mv0LJ;Q1#nOjb&WpST z5!EocMpnglqXp1rt3R=g%@NZfsY55r0D}m;3x5yaY;RL&oiGVSn7K9XDY4ho=ow2;A4^k+_{WXouscxyd`W0OYbGo2eHEe@T7GZ>^-KP!@GG!P~*gSQ&sM zGQyWbHo1>3NPL*Q+%SDdYF>T|(+_Spc|^~wv>eka_zKa5#a6S@biZa!wP+p_9&K|HE(HuJUqc{*-+7O%LE6> zJyd31F3~-b;Gu|~XJ*|pWm6kK2dpNL+u;6M()$Pawm4J^2XxHy03{oghMvmP^F8Dc zphkh?@tlDp7D0F2)Br990+nOH*eI6lhA#sDpO8Ykk!U%CZGo;h;@i7TGsIKgyySd` zO^jG0c0fVk7s1$usBZe1a*+V^a-ky};fy4~yf{GYa|ok9b3|Fh0N@X3Tm&ZK>j(~M z=r`S*T?UQmf3{4hF>TF_sq&n9vt1mt$tr-zMOQ;tmhnpD_Ay>~6Q043qo@*a1nzOg zH{oToNR9iQ238NyG+458d(fYuyZ`NNNVu*V;rXcol9Y^Fy5P+mAg0n5jc!bhG~i!z zT62>JV=yrJ(*TNg^nQ}>pjD)y#rbzX1X3Izu%+{Y9+*1n0l@uW@G1V%7ZU6CC>@lM z{O|<;{K>C+ai|WTO%6-khv(Go#49yIZiH2hzrcie4XB8jUQrz$%2fBcY<*~rz!7 zztKL&58rLj$z0b&s}#Tfw3wV^9KI7pFI0rs-28Hq*P1Psv=Ml@J0RQhfs5r5g2*Zo zboQTph%H;@^kgxL_KwSLr-B}lq63tf?q|xbXOKn|-U>UG zqy4;Oy*@`HbtA~CW-;E#>2_?yP;>pNqaSD9h}?F_W@62uu%nrZC4ANhuga*@5D#X= zPi$^KJt~?*ht+!|b7{>FHQuQ92l1-n2Wmu&kG}y+Ng9R{roYmHIf>{H@J$j?Yq;{+ zV_U!f332yGLsNl`hd~ZlXNL@mFSLNgG{dk*w+E6nJ793`J$yoVzYnuIKV1rqs|Y}x z4F_}b^#-c{j|Ky9^qGUyMW7%Y}*?0$V@bq;L33Sn-#{I|GP`#=5@7vZIbkL zefn8!RSGZzaM@ZYi<7_n;&<3l>%IslTr{jLnUF zolmpPhhhDm!KdhWo6w!6CN>*mtcC|;;AdJKf$wgUphgCpGwv+7KU^TE8ht$2K?7Up zM_Xk65&JV*BvmT`3H-N<{9G8$R_d0IVlh7Kn97M(CG`5^N<=i2o_$$xI}l~q2vbdc zu`|_+*Y&ceMBV8wI;nW9#wO6s~k2*YYZn+N?7Q4ocx;3A5mgJB(jy1`i! z#O=(9!`Lf27DSO0OJj)jh-zNq>lD(Gk?no;9H4ceL84@L{m%JJ)PCX*rhKuy;C1tah+&u{Ii$NFEF3XIyN5{y)hFCn40+3_9y)iv@FpRNdnx?8`b==kN zRx&Mj_oU__<5Zn!ke(5>{WQR*Vt3&rF9!J?Dh38#A6Tl%9BnaTYmMThA8y1YJ~&Rm z;x%vX197F*q^9|f)s`~)-w*kpt-X3xP3gZ*Wj}5zyk7ag+-GkcL`;B?E{}%yv?pdM zi64=F1+|U1JUPT5ye}d&wqd(3_P>aGok-4jC9-)^_rDB#8Ag6Vk)F@V6bztHThpiu z!>fx2Qp0)Gq?{mvBnIZ}q1PG*TRDukpBX}AjKtk2O|;!SQ)2G z$}G_MKj0-C8y?i0J`1<7A!s4vz)IqhZb1F=fPic;2;?HKG*oXvqD#QHe{6u>etg46LE}&?2CNi?N*mo$FTj@p%0qB}3_oehKKi6h1APQ& zi5D+O9s}Qi=m8@EwgwK(^27;lM>88COaM%T98|uWY=>qBfTb8d`_^g$))e6gFtGce z_ixq+iEGRgDeo-+)*`{HGG)J?>%6||^1r#v(8CrSL@i&%Z6%ts%UVn)UOKN>feWtE55uU zhlLs0Ygtr6qgJeEo4@SG`CQ|#$=eH3O6w8%oizHLN%;FbVCz4T&!l5LcfnK8zA*Q9 zyd&V!xjN7&7rG1R@!#2)qN^8el5_psvt&Y+|JAFs_)&m7l<3r#( z%bQy+CY#F2HlruawdZb z_86U2Md-wW;NEyl{pn+Dh>6uqJlUl-&RA?4t(;fTp|aPy^oD=Mb|T+Ar59nWZu^#} zMD-CLa>Z+NUpz6wMW;`-wI9i>iAm%uR%Btq9AhG|t^V+q&|9x_Y?~CPDZLUb>U#|uQJ_}M9$GP5Zjrv@ZeSVPV9=rb#@UD1-M`+`A zP)^+OWPid%W%d4+LDqF-uN#Mw1glgZRroU`%hTV7&5ih_m)ITcS)A!1V$6R{@O6Q4 z!u?rzD`Cv%27hh!_3&ox`95k4%ft6d@Mq%MeNV(4<3;GsepMzt;aAUd88R(c+%E1l zSk3+}QYsd%J$jYnWM?!WrxjSDf=Ccxhod0S9 z!(b0?x5B=5%dm`EO_XYG60*RXFP<`~kS|`zCw4kEyT+Qvp)d7n)L@bxJq(kk=C}QZ z75>s`gT)=|wfFF}L;SR=|Ee%L*LffByJtT7G9LFD3^^EEei`zI82kG?Vf$@|bv%s3 z=|AuGJ3O4 z@(XF}jOg>+Hc>;khlQ~-?=t-R+z z677Daa#NWKqgJzSr3@sP^jrUL__QH~;5+7CxOQ(czP{M92Ud6(zH05ee88zCkywv+ zALFZe4LpX|J#7zjvR-wkzlij3>qgG!36?G1OgT9E&7xb~Sm9u-SdvTWimEmnBjK;` zgjSBPV5dM7Oc`73k&>yD)Gjm2{b;=Qc+d&i6YqRpYj`~;etNd|KUJt1dojET()W2R zuY8{6d>MOvTJ*n1?mR=^vVYC&d{pl^SFc@V@jENoqtPxmQEh_@>?1C5H;L%Og&lg< zFy+@=KO5+PirukD47ABRq!ml%H;RV`C-R~KrER4)L<#QoB>dZCPI20?rI)F;SEdLe z(Bqc>nz#8*h#t)EfWv0*sTn-WNcEB&)s?`V!O$IJixz>e)^#itV`kTlys z^Yr|7k(J}t&NzW<-7CWEmsbiScDgwfX2#L|$_($>)2l#PYK!OlG5tGomv9Nyb$h*FYZB@pP{ci=kV^{=gW?NPt1FZ@)S1g$clsPY#lrK!k_X{q})Mq(uS@_5T!!^~gB(^~}%} zOMJbZ_Fc&gCbNO^`)2_Q6~WvTlS5(!`_4tkVVY_ykSQSvY>H90v>yF2I!8#N4;PnG zQVS&+x3{UPKq6=b*zO%yI2uPtQtQKe5wx4%kE=YLg7T^>EkoK~GCY|N6xn`fE82}W z+H218nI*Z;WB2y$CkNXHBTrAW+Y6KlYb$W@y?24VJpUl0=fD5`E-%ylWx#&fM2i73 zP8wPHRi{e4Dh8(?IkD?IJSf1B$aP9TW$|txDz^J4zvZHUMON&tCFV2GS1RSTvv%05 zpS_pN&eoo5rso6fAaVYrzOj6(=|D`;LvM?O!$3U@>sNA@0n^>dBONT27l&QV(l<=XyY|u&-ae8WZ1lwTFqD1?K!;f^KhquZ3sqK zP3@bJ2VY#Wn+0#McAUYcYmo~DJ}H}(Kl)3>)p=QHDjR(Z8Z+um2I}=YOZZyiHzO-6 zxE@Jm`k4Mz`fhfa`yL4PGX0xak4{i{TD&gp1ZrWv-c;)Q?J|l&gzdYpo+A<>{p@Hv z&!^YNDw@xolk4iUAN=vNbR3VoIzN@VV1`;-lDrGT0EN^ogoBb!Wk4#-^3oCDTq6y; zFH}lSQA6Bxh}xqlGZsNy-i>TVaUXoOt}No@1R_`!m>;271-~;Tm`dIZCe~0dy<=vB z4uDCoOHGw~a+2}0u4-_!v=y<0VNKCwko>LnW2&tE$=oiL>MsJ*kA!#}>>f^4kSrT17_tgjVf4G;(o#tB!$b2=|8=JR|9Zn~T3-I0PlIfzta1-I!0oR5fuetIBdV z=!@nJXf&wtgsVeg%CEL2{x0ijwsHrO@%BwW<1Vj`pXCy+gHqiWNy!9Ze$7V?G=MiJ z5J5&cw^DHbri6^8XnNiojYyvcVp5wq{FBB_G7$e)hJniZG3{3>CiMrH z9Mfs_?%~)5bTjg0T6-?kZ=b$`FW}J8HQyzjih^%kDOk`z;W?=hlIh7Pi@iZVvB|_) zLTejGT|3 zTucsuo!X$@{d_8$tkZsmDgiOIzqH!w5BCFGGeLL_-Iy{w&ky;ztd^gIrEjfQ9J zV0$UeqaD~4RIo3utM7a+XnpyKj`xJ;y2h_K=%f1n9rcHIiexP0wDE@@rSnxzoE!3u zC_g;R$iJ6a)l)UU4-liMQe3bzOzoX(Z{uK#nDq#IMh&f14-r}^M{q{J=PC6D?}^ii zPXBI?@4n%iEWWUcO8HUYgjYnh5bK^v^s9bH{fiSNF3un)L8erXz-f_Y&EDbU)XRp_ z*t9gRYPz?lap({qYYwhf?d&j}Jsf43rsBWhw0bFtR2?M>BEf$T(hc6u?7?J#>7QW$t%BZ9XC80s^N##qN^5=#mhcFKO zkmH@vZl;^X`yuN3BXIG-6|3 zz9xw=96WsF4l2ju*sgwqH`2y9Y7T^#o=0-Q>wXQO|9Ny)o=;Olz}DKHN1*xfAZ?|R zUizPj1vrT-+rCPQ4XFzqde9{MFLTK#zNhbiy6`}#C z+!EL`=RXo)Ea$^-@!s<%#}n1-@K^VruI==VhwdLx^*#8x3Hs#Wqz#qIKd`W_)G?`x zc#c*+MOX(n$MT@ReH}1P(RWm~f=%mdf^{SPqs9$%+^!IK&b48S?(cm|KAdf{kcm6a z4yrDa1Px3{qBMq06ZgZjwV83ust6yKO|*jYuKf&If>PV)2`ET@d=mn8kXqre#DAU9 z!}oMbIb>ZJEs4h5O}cD2q1GBqUIwPjHjQRclLmP3l zR3|er$D;-(PfgD#F|i;y>Y~YEkY52>C;`W|U}25iCwIby7b1uI`Lk^`42TE`PL@!9 zMkm|mJtaSkKFC5}MjHBFPxhy5plY~di3xu|WV&Py8=}Kl38bpZM?(OQ9aW1Kk{H%` z|7#p2w0|l}6O6LzR8@I(lv^ zV`((>8o$DE;`wZm5iQI2vy{-OOGZ&pNa4||k3#x~k76`h9h$A@2z$CY6_slUGK4Jm z`4^XV-s5;R?shmlYSG-xd|Pg@uj?2y?rO8Oi2r*8I-yf4i+o6Ca+Z&$-l}TdBuTBt zU{>M(6v_`P(N{5_3bS3qlYN}X?kbZI-~pz30hVfK(C5VK4rSt2n@Hu&P^4g__IQkO7ECGy6 zfe+$wc%#R1@vK(Fb4s#3RYcr&V9?p`DyyK;X*K!^j{a`6?IJp!vK&w^pG6@QbP zR-A(Hd>?{2P`8j_e(#sTF`hQ3`+@w8hS986RQP+`=Kb+HL`th9$ zo~fB!T!c~hfRgVv%$F;P-87Wd9GvWoCFwZ{*?OErjlsnf7DBcS6>X^^G@ed~bWVu0 z^68&+>f#7ZpQeddlpg&i9L7;QF!zeB_B_45uAG8&lSE zUO2&&`gxVl_74@F1*`W0=Z!fLok{x1*2-K%nHJT!N-n?ZOLbj}J(5+k_tVqA;Z|oT zmC5$AWq{%mslr7;8S_^cO1UIL!|xl6EwyZsewY=FFZbfBjn3$CCkY)m^JV-XmSu>q z+W1W5wuoo1>f88Pc*(+olVY*xm^i13OKNC!C1o*>;8N2v<3~-dl|^WC_Bg=G7FsDF zk7{|!N68PMLykc0%c!#DOk-MUSkR}ZHl*pVpL!Qi;@%3>W#P%U+ZxOFh@eKP|Os8uFeLE z9U`Q{H9cU`bDAtw#*7{QPm?$i41W91Z?{1&F)2(ru-U22{3-`mMbBQy)ndPqispE$ zP?K>B1rb+KYL;HCdb_Vym60&L8bNQO!>Uu{dytD{!sk$mE8IN(Fb=Q0G6(s5vCnW% zu&oiwOXDgLrNTF!eDY4Q2&p2=JgKKoInq(XyEr((-HTD#xpNALY+o_1;6XYwxZcOD-<58iXTDFG!!L zmQXqFwwOfbil6X_wSqcHbKD2+U?Doutw(`^1LjZ`cHYUr@w3)?ndUs>7{D-(U_%!X zN>9S-{27{RCZ0auRHdj-5)VJ*M*MNwkVsKAs%c>py&uh7`(329o}@*yfdX^}^o_D) ziRdKbQ+Kbl0neIFB-TgYP6A!}MC@>6NOAMt1md?Vd;49UEdi?lPQPQO?YhYUISxL; zNA#==Kx)4BytH;LBZYF)f<7lEKY9n223u?sPaIl3>Ub8&@iDa}~wpdLg z%DXUh?;5MSkt9wd2gt_l!Slm zupmdq?j(b14Q3jVhJnS(h6{e#$5Oh7?IUPojUQ;s2pm=*xpuu@6@A?uQzjLcnY7Xf zvD?lh5K-#qs55cK6K2%J@y8|PWl-j@G|gpVbwTLb`d4;J9AWH+x6GlFGxTmcB%YNG zF2p%HyAA!Fne-}!*jiIUdkF5V-%t<3@IXsV@tR7!Nm0=qF?SVD5M*iYggBr3U)Efk ze>18Q%EfW!aml6KUve6-!a*=HP^~SqEg2f8ngA;FqY?Fm&LitgZjeIGAaPZ)YEBA% zP3gu>t-qv3`;Tn0f~lrIO3J%ek|m0TcK|b2sw&@AClv+8SiwAxfQI}Xnc-hF>`>0iCl0gOp?U3+8aPn5x!3L z*YkcbhZ1)_7?^l1&X(Et*T0S1HmT$gk<20twM}hsFbcW++jAopdSKTqKF zeb%eW>sBTwruzqHX+<9VubO;kFFxG1W0^14S@0w^MxHzqZTF$93}D#wV9CZ6|HleW zk%oz$+ZU&xyD$kxd^TGebGn5pN^`n#)vA<|!$G=!_dVD=0ddykGU>gRuKLukgw&BK z#^UueGh%w-kQwkk%M0CJ3t9q$M#J+`1u~tF)clri1A|u4sUCO08@B+JMTv8v|HMR6 zY^5aM+0T;Os5!Lc=n!S8n^~sF2#pom+rgjB>Yv=u*cvY+5zpmA?{r3geJT%7yYgSr zE_D(Naw(y!pV+qEgeo!jDSG&6{?%3#7~;&(=MBs`dRlai9%9<*OW^u#Ff2u+>i8*b z3IAJ$nL-qLynXvtu4pU4DE9>z{csbwrvDd*OKAfXFJYWffFLf!#dnsb6z{n5Q0alW z1Fr;tf*q3bylVWW;zv7PkTw`Ikk5bLl$}1V%?7>9lApFR!+yhpNg(XQr*KAS7yl@Z z@PiNkEf|`pI^8!|0k#)B^kMlaBBW_8q<_L}NDML+1J3|MOf>f)^O&*QL`!_zA2_#>(Wz4Q{q?Mu zhyL8H?(^$cK~E>4^TSKy$C~({8wHS{J`C){(**g3C*hgcWXFcrpS2eMYwkv5fJ66f zSqrQ#_gSRHZ7#K*HhlKWcq}UBz=EL2Ljq>tRWHfwvz8^i7ULgvc->k*y%-oF=j)Bv z=K(ZR5vizTlD})P;owS^*CPYqgVwks34sED&C?Yzf28LmK3i{d8xlbgtR<;7lFoEo zQa_os;nyd;Koz*by5Tk-Q)KdsB3UW4aednZ9eLcoqq`ZpQIxO-(d>OS zPyzXO27_2z2%Q?=bFdc0h+;3W^DW;zlyKM%x`L5gZmc_uOAut`rlAZC=Ru~P>1A8_ z8Q-ui!%R1d8adBt#5wS5KAWg-LpATSFtd=671Oi`e>9J5S+n`iPRDbJCic1zllx4z0`zeF52AY3=7P%bBE@K0KweH1j2 zIPY0E)_!#%SH*1C2Hl(tjG#v;TEnX?+7D%VM<|v2*ln!>nTBk;idl10-_%P!UZ%HUJ8PQRwq?5oBVMI)30YVRDNE^JN_KI{e+vaZFe|XyRYXw zKA$$RL4pSHJuV4)dLb}u*G3aPiUm$d#oPY`0omaUP9IOm_NuzGl^#XsfbjJ)+a=+nxl_59#msi(xSlv^Xp!SvS z(a|dXx+Y;XV7u&$P==hyq2qTOOrO7{)Sy27`^^hm==tY@fa)Q90tz~J z8Ak5quRb>%KBMg@@OyUygSA-&TqEYJTT~O0#mVLl2=1J1XuEThhD{FD`~hu%Mm}QG z92`!eSfXL3;qV0Wm_hp+<@)HlaR}dV)hUHM7jh~%5aMQJ6dwI912$@;F2kT=j)k*Ksy84ztjBe&j~PwQT>< z|3=p)IFKCQWN{$Jn(cA18>ayfdiIamTex)V+1d-7WL=${bn-Uq;EgHUanUG{{CH?@ zy>k9%otn1$A|E%NZ$B|lxaQm3Gb1#<_3z_`(0-VY!pUk_bqlMo*?I^qMDQ%k2e{UT z0$->UkSDs?iyOyx)=!DixebiR4%t6%&Oyqh(-BC^Uh+A74~q?6?QVKbK?3(&XRHJ5Qv+i(wzTL59+v?yhcw4vnQ$t-D&Wxo1jjZj5Lsrb;6mThG&5$m?sP zr?DWoByW34Wu*1BTK*_Jh=N#j!5{7hc<-JljcFzwR=j7GfTZ^q%e8{9K~67g+SCF~ zsM*9HleuMwkCI2?i$ORX(fd@{9LjJP1CGAPbcJ+G4Go)e`}WgKev{Xq+$N%d6U#$APvn8lCe-b(K-!7t zB^0;Xw#yNkl3bI=5jU2$8?eG|uHWXWn@YCd@rqJIstQ9Ca{SX7ex6O*>!OIAT_oOT zQXKpQ^{fwvkJH&;{@H4Y!iMLe%sbh?RIZOKyDw#QZT;U9VnGO_Yn6fIAEuL+!Ye{L zS+rz(w9PH4H|#UqJj?wJwGPVyzm)K{S?5^II8a3j1Jo7;oFpbA4=BwRxP1ie%2cjN#x;{;l~6%s*?ATlmS?>PxhRk!;^P{G9Sui z=}R>6)HK!9BpE0We!so?PvMoz7bhp~(W^%#tIJ15YZhxt;$dqQ{=ks}Y-R$m=<&;C z5esF@qtv7DWbic^?BqF1xhu=Z(`OVlvWje(?d(uXl}qSnr#NCW%g&Q+(>d@p%FO@b z-S;@IM0Y#8lu538te0GZMgQ4cT%rk9#$BGS~jt!cJr8hCJ7w7PNH9HgI*p@Ubl!S8vwVt<4iq;oR) zt%OsV@Ad9b58!+&v(l;surmANj6f0koO=bpSy(Lw7Hv)3Wb@eNo^o{s`mp8u}CjjQ)IoY&I! z^b5|G1x1$wPNOED_nA3EB6>t`FUULpm~8MPd4{8zmdJ|wY&Zo@-pO>(L9X&K}mAHufmTbK-Xn(SVI zw)}SGKX*$1%*`+7AGu_yG>C@3@uF2yaVxziCZj%fR4}BDKwpvm(JGUdR@$S6fX|Fe zvv^d#G#JFrtoncqCDXfD0o&^^e-R;)aVf!Tte;_&%4{ZN&jF7^1~XPw!jK`>wHicC zLX>T5<;nQj%d3t*DB7F9GuPX%n=d-HMLK-H=H#sarz&ZoD}fj@Gz;Z5%K@I+(3f(^ z(&JX%-5&ArG?!Z*o!zLGlhpou&2lc7jQ1H08=v!DAQ!~g%4?_j^3+cHaTEh;Uo#n| zKg>o#@I2s$8*1n{Iz(}?@RL`4e4`aya@Q}kSJ2kBYe)-POyg}?>R_9Ae0kXMDrK`= zYBryavr6ew#tMiq7?%~CXYzj2lXbDxooD!+EECHBasx#4?oGVV2L4U?A{!a==5+QsAJ|>8baK8KCZbV)C57r3n_o z8Z^M);{SK3=e4#cpiR>I_@J>CAvj6IW2>h}Qqh#J{4$);xT}`RtKsS`7Vp1UfZKkj ziJ)f(?c^KuFE6)GbTgjwX)kRKtVOpHWS+ZwqAv|9d81BGGpundd9r4Q$9qrDZ42zj z$d2WzUxVWV?mUnHNS!YM@ZAqDxR@b<7vCxC|7Migup%@C90$mpnwT9uKTw~R_W1ZS z8h;`S;d#E7sdRzr3huY;sVkz~Z19i3R5Pk1 z6BtE<30wF>Tn$f3%}rx;=VG`!qVruu=ctovZAB$In_(nFihQG;V+|x-d7-ST5Fn1A z+W%`q4IWk}|8x1qvWxc#pU~a_&oiHp7gMg=10q{a2>cHKd*wSU&d;I2gbfHx>DVAT zKuXk#g}xN`&LuK(IZ%GnXBVzl!{zEq_*Uo=>X$1=0YJ+0*6?v5GB;u$w+4QQe`yh% z6xJCC%;XJB(=DcgR1y)Z_5-dIE$_Wdb-beYuo+;dtT<) zA3I#x2-5{mahoo}Hyi_J>;3MVPy|(A_5)TX-WXIiF1u4|@3dqXPmFG@5Lx{v(~Nk6 z>d%|_Sz$QOLO{IP?sWDn>fq^Ad`U@JFNww=btE!Y%a!A0zEGS53QfsC9h(|4;j`F* zy^F7}ZW|_(za%ztFI`Gg-(@1pkas#M;HH)VF+Y{c=FLW@&AT$)VAsVfZ+Fm+RCYAvvXtDoA_2MtLGoZqx=U z3k5ET|ASQsQ8k;c0u?lV&a}-YqOKEPZxYPe_O<%835C-x16-eFMve z21+uhKQ6|${>H-Me)9I3==oI^lIU2eGiKj{rk4tSgKK3dk3n&U^MVArwYeZR5}pE- zsLaK|&E{_s(f4N^gHk1@DDO$4+1!m?9vZhj-b{_627+1ZPm2QJ1^^c~w-$p^$`6ia zEBWq#wK4Uq#zx_e@)=1b=9FD}X3kp*l5X(^(7WW#D4ZOFBo1g<@b8T3%iq61KwliV z;D+edBZaXP=9aH8#&u^X4SVLmQj3as; znOo0Ju3dM|AA_8?*vlrM(e(#F1(vpBm+`5myJyi(>{=mHR-Q7g(a;se4S?$l{-p2t zhRNAw(A^&i>nsqbRpP6z~0a5L66{fJ&@|Veg)4h1=+cg*F zyw|USJpOxe=o@VoeJxJy57&3APUOKn5&Evbvg?!yBYDOEO>K0MzqE3ecQque>!|i3 zm#>qWcO~WFm6wj(+ove#b3i%M^olWo~sW$4rJ_ec5amoC^ z(v%#J(x=c2mPZ)J=hBJ!t)~{&-MAnU7F7s5?Y!u@@8pkYhq2iRjdSXG-%t0!3`x%5vf z5TKg?v4nzjb4DJ|c?gkfg%j~iDaP`X3Fq?A&)+gF-E5Cj{FQ!wCg(E*#~rsZgp;-iPdOwD!qn&ra@+wfxf;zWHL21bvHHD`kqq9Ak#oUGb@X6 zJVjnJGV`rSX;bm5!M2l|!cBYs^2|RXB=y1zWn~`MDCKJ5;?>g6)O6FhydqNKwB}LC z6R{e++CAXR1Wwpw@E7?ELf&?=$|h|x+klrb!dcdkDoFY=M}V)!_3QXo#*~9u#y7RM z$d-(H;OrGq%A01{qa`k!$KO$2KP}pRlYkiIfhDzO#9YVf$HSkMQB}4k)$L^`~Dvz!PvlhL6a}wH3BPzJKdbRsZv~-vrWIT19 znKX$AAPqX^6=7TK^fM9qlguhVh5B+`gE`LiKu-8Ot?QX{sOKizsq5hJG!JyaGZ^>e20S=Y#?&4{kw?Q`2K`{Vz(FVD(FY0(ifJa zcF*Z!^3H9@sgU>Z%hP&ITs%{2J8(_M_r-gEqkBcJt)fI+=^aBMy;4*G13+gknZ_BH zKEF**sT?rG?7t7`6GaA~ik|oNWRZQsj!-Jhka?NabMm=dTxV3+I;)s`zPegGM(Xu0 z{~h_*<9EMm;gmBdv^}DA#1H;HR1ArhBCkT5$Y0?;z@08t;HBh z2Mp*3+iN^mU7U_F=?tR$pR0El@_PI+n`u1eIWM2G$nlQ0J!hTDIovpO1-j5n6g3{& znW|7iBiB~JKYrb$V{v+!(@yDuw$35Lr0Z5Z9tn#OMF~b&TN>W7lWeM0Y-8)Y8|H0m z6%7Dd`(XjC$lXbjsM`wy6e(i;I!?p-Xib2SmLKQ@%^>5%1EO7|&&)jOJf7aCE|S{A zsj|CEe91uP@{qrT^khEkIQciO)!;iDv@igE&>h!s5&OU#@u-T--k@U zo51;kT7PfU4}Ki?TX3RX`$p3%d%!NomC_9iGA#NEx&~-=!dm`ZE0RLStj5AKY3nVU zsCsG|&n?s;s-b1fTMiBFuE_Kz%jKW6)}=R$z%h%-{y&OZEHpqBXRyuVT6s)%+r)0{ zwRonxoAt4OV8f0q<#kklu4I25YK?5?R5`tPQeo-4Oi8~QXSc5uEx|vnQ^#TQ7o1^- z;nN}6wu4D6uYE{?cM~9%fI~=_MQlNs#kd5Dd9_6>-yfBYiZiQJ?C-rBq?wF6=gqbC_R3|ndH(2WF6ph6}n>FlX zB9s)lt%GtNQhL%obD!kZCJP$7R*B^Fb*(XrJk&2>1}`Ddtyyi` zA)dCBTc&NyM{kv&k+^q^=fyP|3Wx>h5uMtpDCak6nJ$|BB;b5{T0YjF&8rLjWPlpo zDQVC39^Ld+xRlKIu9G*w_r5DA@NWV$^y$+JC2h~e@4mg1+P+-|qnl|_r?s<)JTwQD zqXKIU+yy|Bb>g!cOk&Ee{e))>o^A+ou@Vu-wH#Xj^P_-v>37t=ZsXJrYUdL&h?Yx*-r zj3DQ#&*gtPv|F?|5eS9Dw!?9u5!HM?s(SJVckNp?x0m^)_=R!*u$T}(?KvYjZjYmHt ziK0=wW}DR}R0jR`)uYLDQC#%mh4$6@*c;ylt1>J>?0{l)7e>|=Q)ww|JS__R5PUv!WlK)O**JlPlOOR- zb*{>3!n#Rci{JWkWsNXnuG!E(-JZ$G(G`IoIve&X zKb9QZH&N$|BGyUoa#@*aA0k^v3{@#)-kaNGRpIC8$!aF)d0O$vS&miH93CWm0uy`} zJV5nCNIMRZFKjsFH8|x-Y|b?8bx>AzJV=AB$H#a%+t$%L$ zMX)n`ujH_73VMWXz%~#|)@n8q(&7{Jn|B&+VvkZOF{`{zhE3WzUEK0FLl}MdrP=U_ z<2+JWD5;p!%Q9|}N{Z>R7(_FkOoc};|E=(wY?kSTY;IDu%|TTEiL0lgTXs%mUb#%b zj-X6PM4~&Y&MR3R(X9#oELOw9Ohe_CSbW7Sh~B}ktwHhhWQ7(YE!Ad&`m<_aiF&W$ zXc-!S%I0&v6O}yEL(n)9U2SL=HC33hFs1bFZIVn%O$tO&0$B*%l^b98EN=LWnxLcR zo5vgEG0v{fX+8t6ltDTtBbgCOKQpbeh?P8)?0e`J1F;>3#ln&a_O*VpzvP@Ig`$(= zY+-C=;!~d?9LI>Iq9=42a^xM)*SB~skSJDutgc9OALRr^JUqC|NG>m2J6Y{#&)iF$ z`ki1)1*XZDBxPF_d{V!{@V7|@qdGZ9Hf#Vu`uBaOrOhA8NvuRnVnga)D)e zt#7x^i!U#B6L8CfYRq|mMYTmk0{7K#GNJGk$quUydE}V2I)#h#fJDg(qICj{Imyu}sO3K~!+Im|D>{P;R=Q6ve_!V`# z(`#bwyp6{|Ai+v#EmU}7EXL_*x*_8$+oFcU61AG8&FK$}vLV3^>(O7`GkNRh0x2r< zA0mKu{Vf&IpPAxhb(+Gn|4676XX5ln;ngEbffEPbp)=Po4|Yo1?`VpJ&M+mJk)zMZ zawRR0(tg85qw$q}i_?>%sQ%Nrj2_*QVISYqyg+JT(P{KCB2s<4yurg1ClzFouhVg2DXe-)Nss}X8fKhlt1E>!_1 zlOhT?rEWo~ftFl{qGp&T$kgFh(G-2WKeLxfB%$9iC9yt$4Kz-X`+1Pe*6BOby%>aW zrc+oMF~U7NT?v0nGHV=z8)pF$o+VY1%F1z{lYSs4!=HN#M*M<*W5XazXd2~`}I##^<@*!*Y2b3x(%-2p=h5%>QS(AoQ=i=3y;Vi zlz(VB5K-QY`ZI3(#2@mS9s!5RJ$uCA>6Yc?oRre^{ABf&?+v1yFy&^fLEY|o)4a$> zopYp-zAAQ%#oi6^hrsM=W^iZL1vj*NKPd}5TW!A+Qs`qbZ0$pK4 z65$(S*<##OCFRl7C;afxKqp z8HWg%>ArGE%sc8>)&*o7#z4`}vpMCg+K{h@ye!uR2za*Kv;}Fuo_7k3{6U3-mFh1v zjf_cB`^8~Pu%4D^m?Ue~cC;I6RjB1SLsgcKsR2o>pDa2aEW|S7sC3YXm9N4Eooi>% zC7@*a6stO|SB^-?Wk2a?XMNc);EQ8}TdB4_Lzqj9;2E|Um=4{W3Nr_C&&gJT z)`u;TXZ&BjBLtFThIq;M`ivdduF04z7Dn4SCne+ir@Jl?L9@O`ve9_tQa1t)wOs0p z9(+e_KT%Lh?r*<19z$%ck|=Ch^pd9I>X)m=D05ra<2-rtwm%(Q^Hm~1688B^ysXPc zjae^csC9LuEJ#~^1XZEjljYDCuk3HbtpChxRW-%2Oa8fIlFraRc=TAxPRo^!y@han zuDgO+@4~tnMcRp`Z~VwNrqI2lwE~H%j$@eVZP_{ zn8FDnPLUg;Unn1ditLlH&A7sbx6J&u1?RL#fxi>A5@WCFVpEiUla;dhLagcgBQiXZ zYC)}vpTiFswxLV^izF^*5=B&#dgR**NiJ8K@P&`#6h#T<6ax%j)IXMF$bu4g=H6Zy zahWUIepgIuf5&yP$1VFJqhIsah@aU(uJtdahv)hn^*oka$6~AVn6M!a)1wpY;+DN1 zkgrgdMSRbE7xP(prBaXoCboq%0mVdPif+~Yi*G_3NXtV$j8Md3&rLsdt3AA=3)_mpfCY34s`NOd9G-d5gN->8O=1Lc3xbFkK3bf=_NO$Bw~ zhjv%Q!UA>J;}?J1L&dUrJmPFFow_y}eB@b)DC{a%=(rw@DtVOp%ISYS`zJ@N*0;26lQuxacvUkwWblW$-f7PGY}uHS`l zWk+-3QY1aDel&e7H1drU_|8BhMsKJ7gU&AM2YsRZ*G$GaLp6LWNuJA@(LhVrRQLqJ zhZ!5fa;?5`K>GA&&P_>@pi`=4kz%AROEzWm<*bFHy}vrT%Y?>a1$ps=TC?Ye?6<~? zkqy#d;;qHOTtaKZ?xnOKf!AMLQ?MDlKMJlu3s=r+I_-p7;(g<4*A4SgEk^~KH5JTJ zn#UH(v0nm&{|su3qE}nm&;(3=u)88^Z0P$_`9WK zOfr4kfyY7_!stT9Y>|&MR|=_6;bu|YC1+~8db(+SZNVfsO~$%0z!c3t9jdJDC<$ss z;YA(|WCR{Ea2Z~&3`>7;5i6ahk);RhOw^E#S|y# z=Qr7mwfk?`*A$gB-;pQYLcFDf@eYq&ga~P&5s7^4f;Ao0(v{{Ax=J2Tn?5dqU-49S zT%-9GsjIq!yhq7H^l(LS_Qm(aKEFzsO(JYB7zT$gINoz_h>^xpY3Q$Z268fJMp|mR z@b=pRne3bloXry&6_EYx8rx4&UqqkwSEel)KK?7F@OOyLGjg;9v?fu4IrqC;kp-U+ z;s24N4`+)m!`bZ}B~Q+M1~NEU{|ei#v$4HnGaf*t4?~mezeDWb|JcLrtWi~P#FGD4 zs!k%o2oBMS)kVG*;opXw%)cUtY26V`3WAQ$&yJhH{wJO+*|pxj zBX&yzT}p8OJJhMcc}a8b{uUSapX9(feNKDUTwmCQS7nPv`p;H>O9Hb{RhOQbM$G@6 zOQ4}~evs+|-r;|0C~&9F^>%JcJf>p*N-w-PzuAA<@JE{4DrXpBWLUv3ETe^$Z#)mA z`+BWKNu)aI0)|VR-`kSkS5p0>MPH%YR*CJ&7KL>5fpA|>mMh5T4pdX3zt!AtN)NdQLRMJlLTQpK?{sd)M&=ftUK9D1Mxuz0_Jd^~QX+w&<+ zl_yU(Fe9=~IjWD&`pvcp>#1d(0km~z7$aoRy>6fz`$%x`2*O3iO2FlA-S~CB4bl;K z*w4`*U{bNivnAy*8l{Q{1pD~z>dXx9{3eBwX|dUZM0$*Pyt;MT(-nCC)dSP|uC{S< zmyy7%h(1n@orJ}dLA5!@fffT6))Q%%WY^@pvp+I4j;xM^V#sF4*{xbCsD5E!3{B_8 z6Y`7 zx6k;Yg2uD9Z+znzOJq~N!$JV5*c#-?+K$FaFKkYm!wF+Wvg!&NeXheBFQqH)(YKoy z6YJgY&Ha1CC)k4_*qV!Q#8XGJFn3+yasIcnj1OS1dur`eNfLZHsh!aePW@YTnT(BM zsLWIgYzj(>RV&XXI-ZZOo5mwyvKEdpfPsUhL635;dh$E@x2YE`8ZP77{E8~Gz$u|<54ZOLLKPNohNOk{Iu0lsM3w!eeV6UCJn=`)k&?{ z56xEJ5n{1L{=VdBFy6dCH~S!H+Va`J>y2fqFknZzNYzi@WrPcCWjfRo9x&E93DXi* zDKt`unwr7JQ|@^a>$`=WrJ@ltS61m6)yGuY_^i{I6>sv7okXOcNq%WZB~wsfeF6z# zBB#&U7IGw$Zth>Qv2tct?Zinr)9P=z)VN?Wv#9=KUGGUq1ODPbtVWfYzxdBw)c>HI?OttHH8rm< zH&_`6CyaVI#Qc9})hEO}Crw^Wa1(_W6asQjZ*X_OG4g5)uG9T@YdD48cQVvneGtWT zo1|rjH3;CL!_!mx|6m;pSrGu_ktxRle1~-zq!J0C6Z}u@7S;fK!v}Rx8ZFc#!T;~z zN7J(22{kyT%ei06;!8&hW)=i{hbX*AZ{DWPFLY=>ES#-XiH2*Pkx=m?O0MV=T*u2j zxy7|F7X}4!Kw)2O@z1m7(D_ya-^!oS7V4k+q-?%Uy(>cD39MG-wTQJC;-6RU;Q+9F6+B8pZ`3jqHYt5@j~Pd@9pW4e+>W9xr+eM!ApR$u?keE z?qR_DkJAtoB>C5u&YLN1zCD|fmBHuJTs6U>_qSgBaJQj-D$M~CKYQQ2%~vBMRHHd7 z6rcCkS9a%xPD@@JheM)>moOrP0M7IgoW@V~=5$!guNJAMy^fJ<5H`Ng*!rJLv!|i# z9e)*F-;gyRXKc^w+9Drli=^$y<$3W^vrKmRknXcJ>T${3cI`Foe-#<&xBL)ib}T78 z<+glrBZVrNb!gP>I4#XSkw(om)#yG?!CrRj!P2AXYUo?99|;-~Exm*(mlLwGwAyXL z*HzNJ{##63$pjaj%!C21JPoH=GcNzRLg(=HCb_LoSJd%5wgtN-qD(oO>=VDCRSR z%4o)Hd;iBcv1OPd30)#SY^=9BqWz~%hB{Mn4@ksP9d%e89l{D^!o|gdTO}f|p%wG< zEOAUP_3-ug3T>Blv&)BU$M|e^Vav0T!Bg*G1o1h%0&X@3#w=M#08^d~Tm3IAhc)wW zp2ulOy$E{a6+2=(T7qJwsw9pX7}Y5!&rov zc4Q$VS7X(o7I~c88Fw~v)@yuL9nG#d_|XP?Xu%V5OO3uXfaPsY@v%uzcR4%0uz=3`%ZP22m~hi8XO*Qw~f;*(i*B*1&uxgX6oK=}q>T^Z{<{{haL z*v+fmB_;10uW^(01G0|kcJG1F8-WO;lK2`>t=F%i6ATxoG5YDzfZ~WCc=#BMpQ!&D z3*dZQGi4&cKoe@k$f0eyPtzx;b+lADeyO?NH>kIedfEZV_uK4q1m!vN-xF$o^_=*BM7?!D z6y5tiyfjEjcT2Z)g96ee-6bI1-3`*+EZwkl3(^QIB^}ZoA|)m7;Pd%?-~DT+&YU^t zzOU=9nPVBfI^J@yVZwazVg*OVHi$@7!p^V0T`iLiIzh=GImKFl6Oq?q)#W6o*HaYq zoSpq_rrwop;pR^Hk1V2MOb)*n>c!WG`~AwfS-&O;G;wkO#^Ex}34DyW(Ux_}nGKGa zC6d9a;5f$v7=uG+!&8tiUqrVF_!_M}2H3US18V*}F-C=?53Ja0$eDdE>Jy7WVD6cT z{5@~|(=E28HvI(z!u*1@Zz;<(;u$Sl*$mUjvrquw-F)0VEMzEl%FKC(^96s0iNk{nr1rI=Y7Eh8l^25^pNVY%xVQ@jt%}DVtBR3VcYA4P0gS8 z9}=Gkt8@Tu^v25O>>@_Qe*7PUy+z(jVN)BZkR=7Z#`?^$#MSlxJP&H~Iee}MpspZs_-8Yz;v=LuH-}8({#$XUSlzu zzKU=|h#~$a=Jg`fy=_HT!Y6df31kE)3?2F_|W)NK*&R8-($Q(hgtm?6Ez;!e8eA95o8;WSj#0jII$ zES7n?zR40K{ycH$Z)HdCVY(I~G0GNUQ=y)yc@}3&N3JyRVqavu**H-%pgsw_gdojV zA5E;iI}VmQ?XH?f1KF*ah&A26ep*`URwPNHvGpNGZtwkvNS*womhn`2MSEV0C9S%c znLzmi$=ikd&OLSqqb5p-hen%SU$@)hJiij1E5L_pW{ew?4+T&@300R__vS^2 z~N?#BZ*})mV-CHsbV;ujMZ1i<%pwZL(|%m+C1m@MCtK z%!^Ncg5HxYcBsByeP?r5oxwVYf(GldarB}=vcaoe&5k#V8HTz9?8n7-sQcRM&2(qH zpfBleGrqwtxaa3tYcOU{+#HxVBTng5~(7J&`^XHF{o8TKjm|5Rx5o-uXlHT}!T0Aphr z^qL5dBr_KpGs(Y{3w2jI`=6MDTzZj~q!zhr!WBm~{PC?GK`X}6;MXlS>f0M>G2aY*GFo}gS zL6Iq+Y<+YIGLyS-8OBYJVzB?G2OtAi)ivfKaUaY5jyowq40^+OloQddLd!9h7S1Rf z?G}N?vY`J00?QkyY`=)I*g7KF+lOoW@*m^p&%byn|2jDd~ zIZj@tb`*Aa$qYIV3T!$1>P04B1^pNSbRDhn3xEA@2A!?}M(QM1SugH~q#KXv$K9~1 zQcaw%&r(-hiB`1-0jyp; z`IbxRPS5WgsB!!{?lQUmcv^YY!KB@q&K5b_edh_Cor&zv+W(Up0DmbgTitFa^uBg! z`2$lo414y*wn`ocBz5DdDCMq~x~b}}=TQ`XHuT>6;JoneSkvBB{vOuyMTCBQs6h8! zLutMu>#Cr3!c!bX=b~YH!db*y&jX(EZ-r7rk6r9;sgj#4zUZjlgS0<=8}qnm46F zrY<{%TW_=1I{o1gz0=$Yk4MTaYF|KUu{rwC=a#vNrErJk9YrF>%12c0Fx(6>OQ&FcgdqomJ{&@7p7S@%w* zScL&B6PVEWoq-d<7XkJ`$Nq)d1jNge6rbmZxQcv7TK%Q4+8>?^u&~5PIty<;7kFZr)Y`PN)URw$&8Ady5R z`n|$o>XuP}4DsbX5Y@7e~8Uu%+a{vIw2GS5N#mFhlfpK2h5<_r^&ntYIx zil&y5iQ#JlpcK~E4^L8j?C|mT1?EIs+04c3+;u^{FbKz z!~m)r7jhA1fAWZlSh~HX{P50Az_V?0_%#oF7~-8jd>2$l=rNA*Gr)!tPM(WcaME{P zi*O?8tdlwP)AQXc8bdjnoLI>n zQUG!SWX@q-aJj=+)#tpDC#Zf*oZ}%Z*}wxm03+M#N1bN?!Ke7sWysf7j~|^;fLQ7}J>M0ZiqHGK$*jr;oK7YvMsICspm_`Qd= z^4$AQfnA9W-#FHBuSI6MJKbZv6jzg_VrQ==tZ}&8B{e@{t;17?euAF=!^MkNtKH5Cd5``Y6wuk| zilK)Rh9iAOw?03yx{%raV~GH&x$*=#W{RX~?2oq~7fGKYY`Csnc?Dw@tY*IsdXJd2F( ze{yKMQsg4=ltY3%y0AoLP+(wU`?c~e$2tLp0KjLSuo_e-Hj9|mCFyMxW`d;$BAHAN{0Gku&G#VEF0ddP$Z ztf$pP#zK4Isn_R8kHv9lLOM2%d07GC;Ge$fF_?erYpeb9%i}tqPJReLhosgDIq_b) z0wtsx?ujJtbHA#Oc?5j8`GYK{C^Vn8F|(F9ilFe;N;=2tF8@s_y~fUvO9%?qXN$n_ zq^VI@=`b?kw`ViunyN*0y~{P?pQ;wZ!xDEBq{~d=wc`qM&E*LtoMB)lOV9P46ZV&jh`uA{;6@jII+dJTAsf{X#SbrxZiBju;(UT z>~XFa-Q(}!z0s4?@ny(s^oOv5oxC1lV7V}up1s~foYRyE;MwcnRqPFK*I}i}p=`6Q zU?mREOTPITjyDY9l7)9@@%NlOle1zM5_P&bae#;pR{Ho58CZGPe^&gvB~JY8Dzt;r@KDH)QcJd9<8y0YOMcIZp|0QxE_ow zHf=Y?I2&*GQ(H(xJi)Tk*?8WFj=TN7d7uT_;OLafTU`2;ZOM-0l|uziLc+QA;%(Qi zmxysKMj9NguQy$AvsOF~nvDf!2B}z$7I$isB+YfwO0&u7BoI}~?W})Z<0`cr|B+XD zYdit(90R1wC)JGJkpJY(^QQo^AO<3arTUsPX!w`HXYTG6^S^@~nG{I+ES7d`)scs7 z5aCa#8L&s=3h@6vpXS;`vaES80RM) z4vw;tuglHv{>rh+N{u-;9gXJ7qvvhETi1n8b4R)w*L9XPmLkfBJL6t&C7lC&UeRXk z2#k&T^PgSQM*f_4!x7@9XDEyhIqY}0kH?QA(AAHo^l#bCIoFJ*QNGAQAeq+mMAH|Y zu$7}JUZmpl6}r9gyk0I;xvw>*!qTZL@@g)UiS7>Y`0zLH!NVi_ZeC;h z+tn#k8aWG=a+{LU@Ndh+*Xla^f*Uyjl+cn*raJkY;?3M(Es_}`mw&>2dx^HVP>3)gOQ5rhsRLbJxZ1mv}2)Ttx#{ zIUxj=g}&$mNBT&A-ypS`<-nq5e>pynBqPIXjz^pwYk%kuH*87UR4{Ra0};RJtk)a5 zR}geXSoYc&{+>GRwA!y`AQdk~vQ%d@0o7Dn;KK?#{T*=#mJzGI_LlNEzk&Mc3Z6ba zd=T_0_~2veR!c0MgL5gBy=szHG%$f0c$Edh6@Q3ymR?E6AnNq45Er^6tG{wGsKB38 zDp98=Yl@GoKVFzUEFm1Dqc$P!R8oZYU2Zl&_p_InTV3XLVrGURQIUx3><4EPPi8W8 zNbKxG-x7298q070Yzz{$i!8s4XtkK6&OR~nxXrV-;JhE2xiTCj{kwOMoo}~s#QY)! z$Icq+^_qu@tt{Oll$Zpbv7}mQCL4r)WJQJ+;n%p&!b}^t=Qd97xZZM*B{Z)>mm-(m zlsf52N}99Yxql0{m6qI|vsUtmh^FZ30x!jA3N0;@DNwj`6Lok7EDX=Oc<% zr#INM6cTz^GkB_JxZm~noialWGQ=?|lokyZa8NK?p$Y3LG4;y6w?=<2dOV&m{r`$# znZ*!dJ*{r}h~AAVBOLND<^(pruC#KizjFs)_R0(MeaG5$KGTY-0e2R)RfP)nZb~3p z59NDND*jZ9F(LSBlRM~`=A{jC1>V+-h>BBT0T<%gI^uJfP-?wTsl{9Vpb_D77s zpkf76r6mNK@3Gjffm+=8=z*)Ai8liDra7JU{UtJ%F{*Q-r;hZ?7$R4&g*6)YccQYxFWO)8e}63ZSnrj%1Fc>% zxI954BN3K5B7@rvKq-Z5hFij<=A9z1$O_hKz$kp-<&r;(b??3w!dY@Q?5|KNm5sDG zWe-}r;};EI1ffv`Ms{`n=|{SKhd$9?O6_dNdMB~Lhp`-9y~L_&m5`Vx!$aFucfjcV z{Fn2{OgKZ-9Hr@$MY_q)r=X0OOnULhCZB`Y9a0&T-T{FUVJU|0vm7^w5_&mH$BJ&| zX{8=LRd4iD^d5y%LW$aNYxk2L`OMG(4@cfr3LzmPqI6+2W1;xN*G!a>?|VY*gV+8~ zM`v5CGkg{iVKFB(*jTc=?o7gXD>}$MTqr*9(}<;sDIL*SBMbfjNOG`vzvyzv!HFVdZh~YpP!_y!c{v+y z)s@sKggDz;#i{z2fOE2aMr1VhjtmPS&lSW8n;M$hc;}ly8H0m*ju3W!#Dk- zC-1in!xjCrNfE#8dGLqGgp)A0yysra8g8v$4Q!R<<{4##sDiVWEes%iE|jmC}Pq_VEVzf!7Y&7Kt7rP18 zr*CpE8;W=O*XtZk?=)YTTCjRBXLakIM~$>&ZWZY4yLkHoD~)mavp6ZD-~I7F&syI8 zk`A|UB3;~==R_IpmX8ulC#I{O6h-b(Phx-=+Wml$_e{M>Y2g~_LboMcvpWrrw`=J{Hn#7a+U ztDjomHeMnDhccNGG<6tkF6{7qwstqi=MIABoZZF*>AXE2b(DteVe~S*wPO~<)LYQz zJz#{CNx(mQgAAx?DO#-O{QZt^{omK1;^fW`M&CxFzDqvm7^|fr9q)(9Ma0_rcqH*O zlINH8GY1%&FB&sDz=x!A5?3C&je3H0_k(0ho6c!#L!P|*!uh!e4+7MZP%VMOeNh@U;_VRt(MT?Rj2>5U{tUfVtCkEma6e1->7ZGX zL=W|khW*l9wA&Ap2O&gyR#0Lhy(V?04N-?vA#+am%mgz^O3ok8WklNkob8SE+8c~z z)jUX|NieV*@ZnF4fKw^e0VP<2fOP{4>D*A3$Q3BsC{AJ`CHvS$YA%Y!;!;0KsPT}n zeWL>x;5AIl1MPw-G)CHsKO2NOTqi704lL_$<*s{O+Px9Wz1ZLlf~!fuj(B@n?JeUL zuvAB%C{FTlJzx|Vvp}2(n{}8o{|T8z+BamKElTXm_Nl#YZoT9)cB#zPz}AAavjF2| z!}xtkGrMfSAJ>>rfzA<61DF_@<0dxj#6xv+JBUg~Q=x;!w2nWK1&T+2Y{P`P9D056 zI;|7GYMM=dx^?}0)6cm-NmmidPmpYqJF%Ki@%xv zOCu`1NTr=tA2@Q-URMl*H+_cO5~1SKixcQQ9dbr$;j;_rmz$^e&3MEQO=+t$Zt&ug z-})bA6b?)c*}YI`9_~KVbd7IOro_^v7_45<0x$v^=@fQ8$8D&D`2|S>u%l{VUB$d> zUOvI_qZRM7N?SRgPSZ=M+=^kyKW*EK^!}bW%yP>XWrLO8)x2&Oerv;9ZOz3v+n($6 zvpT%(+S^UYcUvKyewxQ#Fo8@zzIhY1Wr5ysb%0!feZO(q%E>TH!jAP~Zi%GP7L;P_GMfNc=&OLv1LrZM)~QmFR(H30x=vDBEDVyw!Jx;NbUhy*F=@$Qhd9c^h`kMC#S1wZ}x1E22)@-dQ>PMu9xO=K?xK~uir{5%D`SrW{pud1=zus?`* zD0z|iv>`jbOES5FvND-PhdlBe03nWQDik3hC5Viu4UwfT+nWFM+=mlBjG#q&73+{N z;RI6y5~oKtO(q}Bv)Daz0PG%=QDzlW9F z$r3YMkzzS9RkUUWniHaT^Hv;agR$G%NI6J}&5k?6s6fQpscN8`Xh{<$KX-mUvj;vM z_-+hviH5Q}JycHMIDY0}ASf}WW3A{q*ILn2TL#s?n!;8qm3$z<|AiN>F!$*08UdBZx)Q z4OJILU7;AWs|BJE?YkI~PGI)19%bu(?4AKfi*gAm;brxT&+jIT99<~<3>b;b=UfNq z%eG&CTW7r)Pt3DR?r57GU5CLKBT?~$8Y^mr3R2wsGZOzJH7vpLk5QsmaY>rE17AG` zI#a4<0LRhk13c)hALp{Dpt%Y0@K8GfHwCd$?`K3h*%0p2*^*>IVY>#S@WB-&8 zBOGq<_Bz5%lzye8Bqz+QKT{Yj+>zdQ=O7w5*sT)W&-8zl=_!PBZ znn<6CUi)K{BUK5c@-~d>I?MY;_XGspV4oAQO=;z*?me0MY;)1R5onO~4OD8y@^?d+ zK-`TwzECx9Zuxd13LZQd*NY4?oFLkFqazw#Ye;odU9SvJ=dXxaBQ8!^Tm4nVOpW~v zs}i>%EsDWJ48zSBR_$SoNd}_OAczKn8?o4 zTC|)Q=Ogd$X%P`V?}=PUKJ?#wvOig@*j8{`jh^J##}%=)w2)IJ8L%9*s6!LTiJg>%&m9l(CnFYdX)Jayg=KLScilAdzr^8nb&w> zFup>Nl=iP6sG+dU`^r7)d;v#e2>;b5iJGX#n|II)OS0iB@|2`qZ_n34!#7z6QT2K& z5;T{U*&N5&{HX4-TIQB z`IO<5h;NnsO-N9#nUBHF_4(Xy;%QFhy%eiYcx2oY@{fDrmsL|(-I+2=vRD?^H+l7A zwNVF5TOpbVe{CfGtQvBDe=@@v(-O>`+lmBv2Mfp4ygpG|SbA)@TZHfks-+2}*lvv= z(1}!E+Sh%Nj$0`SDMiAsc}{;TonwSD;hw&_ihQZ%x4DbER~+(cMfa_J9ic|`Qj*>2 z_VUv1m7r`T<2*RQ4veJ*aZ{ic5Fo=5`T8??uFbqPxOhLMcDKW7r)`bjDvfaC`dLj& zskT->_r~s6PNcjJPnxx-!&H59yp{=S7p%Pr?+T|lHRjp&f(YDK>{_b zG2&gL#}MytqBV#h{aG{v(U%QtWx&@)w?qkiT^Jzk9RqK$(c)qze8Xw|3&?l5& z)zGuvRSXnpZ^fh&jY=1O+%S!^nhW`?cIxa$w(wa(vY=qeiE^%&5Y|VKk(&{;!GS2} zmLxMqQvTEfUXp~bKt$}zfV36OcKlX;=ZJ4>KI=O+3D^;u4k4VjQ#=aEMZ5lXI4Ko2z&C>I4zPK*zh`v`dtxWi@K+|7td0ZP#g9qMHS zwKXlv=Y&Os4PaKNS8j(4f2Wm5ZK#m1(vzUM$h7_KEW=}kb%2d@|G7?SK&lq8N^t8J z-rb2qa_8cFOR%(>p&#WO*i8}^Sf{n{2iVsctP)(Vjs|72VjPzI7Rkd+5?K0cj@TI% zq~iR;6#)bqu(#(xCk7?N(J!+6*1~}X-?5N(e}V&JIVJKsu4a=gL2gcMRmgK>rz~*e zX&Cji+Ix#D##?=5QF(RF6Go~qo5sWhwlqtxuQ^~^q24}B>nGLm;4 z$;6G|UHP@|SUP?br*lkX2wVo`9K6BwD<#GQGN$7@{tie?L|gODqwtC6-e)_`oAWc? z?Kvp(H!|$uNPZQ#iZgQl5^yVrXnX9b<$X5S_d~B!0qFJqQv7%w6{LdM0GYo z#@vD_`1?jm@9=3BOFza3ye$^Y<@Jur_7#P(3WU6+koW44vv}qQK*CPWE3}Mi9cfPw z%_uvbEm!7yze%uq@`c|*=9e>~sbjx6Y594R|=p zNrYa`gRGb=oQ_e>sn6|8#531CvPY&PL|g$;Z=KRQf88&K5~mrx1F1`|9#)T{DhcfC zX3Q^H8dGqyY>^m8jmkGv*VKrf?1k6X(S(CPTaJ&@USLEeXpkxEScvD2u?K~Q6c+FH zyDv~ob#Qb4i5Twc``nYaqhtSny2~! zto}r)`i*VcZ<|FM8?{U&3b1`hIGJjTxK&7YJ7KbqWOlT)8Z5@F*JS*@2ST+$x=L60 zn(#`T`)u*I2_c#)Lt;8NAm!iKb+`pfU!7Z3D-rg9k8eM)fvAI+$re#()LGa!^QIQMpR8bcKeO;VI`p>XDC- ztNWpmVJS9|Xk7{mhO! z%OQQ<->;J@k>YZ?mli!bC^;(5q%o;rV1FM! z@v@1k@M3T*2sx)gpozdrEL?Byhgg4yuO1++9IuoiVG8L1i=tnD;;gOg95r)v4wuoF zpdt>LepUbY{G;OyFf?eAhqQ*{BQ4N<^OeSeMIRt8w}D}edWcvfoylLts-`%VM=0yX z@7Mw2NP`$7^{+^Aujrm>#`p30c6ketP5pIM*#5ExhaJ$A^T*1HxfmD%`qyHtjP>gv zQ26Uch&;N<2W)Mce7E!Abo%|IpFg|odS=m*iDt^v%|G4T`-Z|f#KWQFQL zM!l6KAFe}D@Z;9sgDyYo*WAr%OwMIx*&~1g-CbX`{Nh{@7Mb-YdzAw_Vb6u-!PPIp z_eX;I%mSzgd+i$arS$@P(gI%TkhsAzb4GrZVG7;<^&RdDyn|wBU)yd{0n3!e^fKmB zp26FL-;MP`l<5ERhRh-aPM25j%UI3K1jqI=vX-%4Hk*Uz8Nu5yf%D&@A~Vu8xFQK_ zIlJj#%bG}H)eN!&-u_@f$RPy@!qDuAD!J|TOK+s46|Pm*D%KQ8%K^gUirN|=ocCCS zhMY6=c6kwoEl`&^NF8p9hmgiFC=6X!vZ^EtEX(Pr3pybFsz>B9+!$ZP{Cz7r2^I7d__-P4SAXN_zifN58Ojl32XB{X4b#(+#6!}6i?k0P zXhPGqPe@c zaKPGhzWV_K!bnOnYy?dzlN8?Vx{5d55>PwJ^>dqQ9J}&kt}IbLbjs^>0PC$1VFgdX z*0B9m`#<97A3FN8 za#Nz=0G*mlg!^Ef4@4OSjE>lF|GfD$ag?E+ELYM|xg?9Th^&SVN|1SN+m=o&D=ghw z_fuNdZBu&->AFn}R`YNAJpMEpNCi(VgX@*zG1Heu;~35s$16OPw<;^#IAYPn^E`w`zJyx>;xun z2Qc>TZMB){Yk0KCK!Kz1lfK0Z+*yCjYcv^LI|7{Z(T@cKgn&z}M1;M_TjJuJkb*us zPmg-d9a^JT)JCKk3WGpF>~nvuT3(-Q46*Sj5X;xen#X6LPb(F&URJtID>t9H#KVHX z9Kv2`D@N+t4N`@e#C5?Z3lG=k{40^6l*sgXiM4V(*UC-zcU3ST;$Ovo9Ia;F6+S&S zQ4!az%K=}K`D(C+Zkb(XNsa98a9Ci1UV#Wo3BszU84`2kjA6yMb`=y7AfvCA;7BE( zKRu7+-G0G8DLFN&ahYMR1^^;)(m`R{BHS0oqgeT&1KA9XnYJwn@%Rax`gVRj zzs~c{sz4oec?Ezq_A1E{oYfOs10Y+bcv-`TGY+sI=K1<*86tzb8sRS`QQFQoW(WtP zlklL7kbPq4CzAUSqmQ_j-!K{+qfM0*{Rm-M7VirE2@7kN=i;+Ov5Zh^S>b0D-ku;#rHEp;7Gtz^e2kFNL$j za^n2i6YxgRhf{_{La1*-#I)`T-rXgce^&5>Z=G%6d`nB~^z;l7ni5@a?b~ z;)u#ALNvpG9;p|&%nR>>cJ+^l{emB<=lgL=- z3Wnz*VX**pt^2n}<&5g-b=nw|bHQw*dg=bCAnNvOXu=Wh2H+aYZzh?J-Ttcox@m3sP1>D1uiV*WO}z4x zHAl4#|6IaR$VM;{c(B~wXrZr`<>SKWVTRS^m4bS<@mM%Qv2Ljwb(uoWT!#@1V3KYo z_DH^=e>VO~l$Wd$T{|%zFNe<|D#EB@ugbp^K;g zxXcaVY^(QmR+9A}`fQLcOknK>@eDD-3fUMhn~WU$XZN<&Vx=a&*%npt8kht4&xbsy zG^BmUZX6$B`U|`LHWF{qO49j3pevl%U;ugx;Q20eYtBTg+vY6*?wGUtKwVWDJL_^CegD!)ELWKMF^#EZHfAw^G|q(_^+g4; zW6n3GlosYIw;2DDB4lWY*R_gxz7e46<8$ACa^R&0h)v4~i!Tq;_mI<{4*#rsNh7{IG& z$|+~`W2s}RSej3Ah+50bi>&?CxoP_z$WNPsI=N+;tWtneV_|`(9F7#s#gmO>HDPV1 z6$Nz8SGSf!JVgRQ@wLp$7^;hpjJP9Y``DB>S-{0+Scp7ih!K#2K)NxNAqpZj%&it< zSRWINKH^AMxG_^#!+^vsHzWt5a5$Bdc*cP|HT{`Yb1yk(utj92_Xnegi1K zxrBuI6Z}@i!fCbYT6Tio+4Im*Ke%_Z8;zdf^0IcS@NtjJ@4PV*uS81q_A0{fewqu#f`mk@Y_mV zmpMSVM7O^;P{`-V=2;;?p7@J{Cu~P7{_>4q$qg)ge$TzKnCAro9SAgpu?nU3jn{@m zzT>M}A}%3Tt^U`O&Ztkjf=arHL_onpgMQ6@lv*~)wC$-Tk82-1@LWvw@Mm9AVGpd2>4F>;J1!N*K87j2g9&0sD zcs3{7S^?LHV7z1!nqIsw|vWg*0HtbRc8Q;$DS(cE#m;sT&AAS((P0b0YaIw_H@uXMiE>`5{na19WV-DmT@p?2il6?~tuo18c)~ z3kxZNbsZPPY5LTn86Wfg*%Aq|RPys!s6b5bk$DMnH)A@xw`fa4QeIi(XA$rk+OePU zHZ1{J-xXsn)0=|Uz>ss23v_F}K70Fv`}>WqBSf1>TJ2z3;&k!8AZdNn2e^HO`NKk9 zcUes_s0J8OIIqW=h)vT`kXl?i#`L?iD2p~b}4O*xfg*fR_ zqrxFA2J+ugi+@T3Uq66=s61ew(T2m13$!CX$RU=j{G)GA7cSWyZhQd{h$(&vmJ3QA zYTOmT`2;Zav%b+UN70iZYcoiURRj=?>f|A!*fqhj7QD+$&H;`9pt zfi&&&!Ra{L3&VguI`QamVs>i%8?PqVpNA}@^-W0sZ3RKnJ?s9BtQFZ4wylhtNUzw^ z3wpZ7d`0Fh?oa~b{HN?PN|swUXZkr@FHHiK1qwfSkeu9IXe?)gU*_ci6qL?SZ<_0f zyRW77ua{)~ihrp#$mAYj0Dl2AMGM3SK?js;2bG_NfZ@@NIl6H}Ai*dRr)kUi*X1e` z7UD@32qa{Mq*VauwK1r{7PX8^tFV(Z{M6@#LqKHWGVW8fY;NFYy{3YBV25t(3>wC45f%MuVvAdF1~z-qb_!}}un~ELs2NQNfE}Q$ck`d0UASk6&}@M% zu+x@(Q30D%s}?C8F9Xv5s4?3lM*EE*Ba1DVLSO3Nuyu13EDkWN(<+_G@NRoDzX;N} zcwR(J&O89kfJ~Xxo7nQ*eb}IY0){BChZ_^;*+r{0eiX+_EP?;(Mb4}edb{={THAio z{*~~IDAFQLLHZv64|14(Eoy5$k!hylCP{&<^ZR$pHP3f7zp-D|1p&wdbcqNtfXl|Z zTk2R1051W%#4kC9BKe)9$6W;9i@rQcujDF>ZJoTn!f_JmAfQm7DF*6sB6?_X`@CEk z7f9~^#!R2WY4q@uc(Cr>@9!27cP&|9w(g(S=u-VN(~2DHF2FoyO){NX=icVhcck5k#VwQy-l zd}1D3jmd$Es8#tV%cmM=jhnFR5X}*_@A-koQC ze4Rgb{@*ho-H|~)704p7LnFz5o{!3r&)e_N5`;_DcN`+rs8ri~|JTSN$05%4nU)rW zh>N;v&tHTH%6pc6VZFaHpZQG~ALtvIc-O;d79C)RCXy7N3627_&8zz+f{S(Zo8pWQ zxAE|GPQY1D{U@9!KwT^65{+`hi|3c=fF%hClejYSxK;l!1Zg&cOfj6s;>&rY7oc}w zG5Ap)zi)ff*Lxg*KmU0)6=(yLHF(1I(irewI{d%cL3sU7su9W&I&oYwpCp%Mz-#%&X3WnmQwl*dv}V^|@p#MHh5Qn>N#h8U3}FH!hgrCGcqdLYhPKfUcMYTrTkG}zuc zT(y9Yh4o*3P7&=L1hpaH`2b0hq>I15dm5LW%_B#wOVqA|Tx3Z1 z_al|RM9IlQD=#%~a12nlc{TvlAcqB|CY2!kh;1bFB2xxa-5jHs^%K>&Bf}s#Z@=Pw zI}Vz%yEz^mA+KBSTeeRD*za;Jnj;+Dc|%GFmBn_m>%gCLZc5XKr2n?TaOxFZLKPlx zx}&tz@1H^H(QBw7hqOZw2|;~4S9P9nyGq^UMioyIA=JJ55Y(SzquvyNLpR(g;nmOz zTOKD|18S~)wTcRsRDNXU z>$%N0ckb9CsG!{Gn)LW1G}i{M-Uc`RGJ6L+rXwAwBDC7ZsIds2*K8cJLm~O5G-<}V zHTOf>OL^(Ly-UD3J@NUl%6JpW$=i^a@Db-u59Wa0lKJrmV8-w^QeA#qtUv@hH1FK% zP0Be$NCJhnc!t2QO~C->zQB29aZ%7mK)?dedMmDj z{hTYKy-@Oh0jdDd@Hc>8z;gQE>^}vxjqM!@`~fC-QD5;M?cb3X5YtFBHz7G-tThFy zWl4!Cy@8Y$ozvX^f81MzWSaFHy9|i)ea-B4eviZdMKvK4`3K_vwSb3>V=Em~u9!Gj zvuiJP#yvYt11rf5_kYJzH-VQ0qr^LtDQJw{&AR_}+8E$%6=u70>=&38M2<)QH2f}k zUh^OP7gO7`6w2pFw7eipKeB0*4^hL)t}~!vAXg%#H#5V-c2E%E+ei~BUxOKtx) z8q4wS{`7hS`$2@gSl`CbfIl4MQYj4tkSj z0|-Kh=E9J_2$reHPv`j4oJcD!AB{$HJ$b0WzI@euQLuTXeIm>5b|nZ*#P76~1G}A> z{Mxo%E62q&Bh>)s#YP6Q&AC_NO=<5M`5O5!5S}8wgsmEpyB4zNcs^T~e-Y6>^N{NB z34Ne7BTIE=JUWxFA2jd2<->1Q#sK!=;^Jd>m( zRlIkofu7E(BUS~q=sS#cRb>AEX!;7UCcpn}N&*%Q+z0BRKpQ$i9BScdtJHJO%5cfBX zv8ee|-Zy-jYx0f(7%^zO4Y2@uIyHZIFo*R^+=0!XZjd(>bWbE6lP;gA{_{_u)MEJs zT#mdwV`TBLU(3~P+y(_1w4Xzg6yr zHz5%sz1vIf$gYPrfnuY=sQ*=(iuq=u-&xAmxJ zX~TZ5r)wJ0##49q0&ey>z01S%j(h%&Ryus~Pp|rMaTZ-q-X!xi%pRNk*- z_=G<;>GC*Da|r=2)(K}_>-AOnOC37zIXJ3&=x6o9g6K+BGpQRVr>!r5rtxO*+x85~ z7^8MVx_ct#=bvJ+ra;7(EnUJ&KmD{qPmju=s;r}ODy-eDlUd0yI95pp`tp6bSY`O1N&95xosb@tHw|wSU#c|79S4 zAh2f9YG)~8lvB91H2vIjxTPm!aK1xRn9}uqeLT!#X>&VXQ&X$=UzKj(9^3L;x4j>! zRas{`j2U!HD>k~xrJvck4b9TdaN^PcTw#T{`qP1ez8Gi}4JhaA>5^NK)kTOp~&;4glpv!Aa;+Gm}`?ziw{F3R(J~JO# z+#bLA45NKBe`~CthQb7E%}3uw0&RC5SeSBBzD&fO&@m~RLhLDzp8LL6B(_Yevy&gu z;Rqxr{djTXA0T!I&ZruB+wk-6KU-0XsH#eK#=eu}vp>yDuE}fEc|Mv$%ZqspP z;ZbeYsl@N?K0_gjhgBcu492q;&V%x{Hsw<%$WZp|z(5jq?t|%@^4FzeWGuAwI#m~r zS$f5?CG#q@RXV|QdMSfHw5qZ^*c>{V|sNz*hs$S=)A ze{UBP%@31Zzpp7m?3yDaz|B|BV09tObg+h_BTeKn#0`s8h@=h@)JtI3kR~ogS01$YF+6{Ur=NWzG*F$&QrE{g zu;dNyJHbH{CHT*Kh8Fq~Wh5GuGgD_g{10#vJo`UY1LN%?>eG9CTs+}`|Dk39G5Y5n z(XvhdT{3i$>WKYDp4rPX0aW_z~4D4mFfKW8Kbj-RXg%et;qx5Hn%&@ zz>ghKMSuK6kX9X}N%vvNM%pWjE#w+)!e?+|9|j3o@D16!qWir-L-s7K3k!@e2E*)n z?_j-WFtGXO_>VlEf?tZkQGDrg z=kkDqLHu!_k-s!Vl&RCWpClLA9+mW@uVkHajD3#9=yb8YYhGDfUPT0>eiwYqHAru5 zFD^g&AY1wt2QdeJvJ0b}M<9bfRNv37KRs=`hL|DL`-^t+;z6QrX+vhS?MQIYB%7*| z5sj-(+s_gwEvU(+X?mW(%cVYj`_te|BvYOHE0h89MmQfP4@*Um~N4{vpqoi`0*HLakscJNYk%z$`d4 z_sIgH6R*{=^HSn|`4^6A$Ddymsi)?1H+=?P89GwGJx=Sibg#o!&@OvuLS6=M#45V| zG`Ks8y8pgvKIMO$k?0AYY7n_8c^;MYGh{HL^`eliaz0&T+zaVe_@Q35bg1=0(?j9n z21K(Tdt*phV&3p>_s8N3w;cyIsVo0$2goaTZbSmNevao>fUe|u3~LY{Y#e;(1l}@7 zK7sEKRC}KeoO&OYLmpW`TM$B-!t2?zm*vu1L}!JT<@6G~Lk1?`*sOh*5t;Kp#?Od* zJ@l``K=4$teL5?r-Fs5yvd+l$XRv03M=_`Q;_!pmdkA|^7$YPrdp-et|QORa*PItj5nx>?|y zy_haOCw>U2ZoB(J#;U8;^L7AcJM*qR>M3Iox-l5d#u&lt8QargbXV#5QB1(j87r-S}W6pQ2*up-J-O*w~)}b7Vza`}DRS3FCv^uRv$)%l+xM(^;7r0m9gG8P2{ zhw1UVot`rqcCk+O0j88|w2Kh`p>d-nCW!pE)RV82pI$QM-kq&jm$Huv62O)!8yxe zFD3Lk9|2C}kjrL^j9!>}0N{_d{U52pFOm5`60$0@sgW1r^!i{mt~a3jb%TGbu@QOE36w z-YyiqWl~`0lPT92?U{vZ)E7o$*JtuWu*6i5=U8HL$3Ct#n(@&m{_O~ga2*s&?0cL@-I`+(EjWH znKFD`J#2V@wl)ryJPtrhJ6l0MZZ{XZm`@stgwJ39cNw9wk{l|i2O}BP8FBxUUd-|F zHmEmjD^*1~G~|D;Z$0H{s6BXYN`{_jXhehmb@U7lB9tKgzXVCY{NtWL3sd*e&f~Uvold~%_IOxK%wZNlxhLyzmm?Jjm^_AF<+K1M z2~MWr0`MK?5XZC-5AEFx!hjoBi@p*0j1AzIit);5HefJdSvQl5%#u2;ohyy!{fS%-T$9>OoyT937Ml2}=Rb!^)_SFx%*pamEHH;?Y#!6j zc0*?@M^W_7xJK{A)K32)hep&so}r?iuJ&kM&uAHc4on;K$31`WI80{$!;6tLewle2 zUO0u8BGC=r=jye2#jW6+yR2YO0%jhg)lvXsZg`Py0`DEJtuZx|bvdHck&T6J9GL45 zDN9=o-Z!Ls+KB4CJ3(|~wZ1WjJt9Mni|KNHVevd95rfV-kn7~k?LvNMTOi~RPi^nU z4_6bfO??s9AfKQl20kZ!H=TJ+sUb}%>D#U^O{m96>-L)0>_M69lM689HEmaR)`vBk z%QZ48?suUdPJi$AoO71HnzET4mGmP>{1MQ?j+s8(oIpO|)ul{KvP zZ4awl;WHLJ0Dzt6j0Ug=kj0?aOfm=u!^kWq39iiZIl~NhP<5Z%oCRy3JdGTbVWpvZ z7L(2%mT3eNuB}wRec|k6DW&32*k%vjiM$4Q>@QE9id2W%*Jv-!P=Fs#v}csSp`7W; zV@kZbG)JCOBIe{X689iNdXG&x#tSi`3vLs1*45QLp9~?d=%*B|ABq1eqgIS+oYYQ; zO{;Vs!!b8rQ_VTbkFGeaUVR8L2XqLJMxOGg@%#5!KCXVrG5qac56EP;NZS-046%_z z6Zmq>r93Q1d-*EoIFvZHkAR+;ArX#`Mh;~LxENZ-^nH4cMZfEk!jaf0W2ij)>|6RI zv=x{~kd@9);+!~!)HA5VEplc7_*$kvx+F9_cEc3wWnZvFRJQ0WWM$sXMWs_EK zl5U_%9c*2IY?#zZ$9VqO;-ZuY;wGl+6zx-LEIU+W%oZ&agB%TIBALAKb|kP9XCp)# zGZlD&j^yvXLabs)kS_Km*sRt@CY7S zH!qlOo1}qhs9*Na?iUz*vQPz!!<^_>oHdNKKb(y$~I#zj0 z%nUZmGgZbWte8q*GWgX(N9*fyI-WL>O?Z*6OZCTy40B@avY1CqK%hCnMa(z^x|k_J zqo_if37(AjZo@4`KNlS#2#gUUn#ncAVlh~8;`eG~m#owvUy;hdwY$C2=&rGm>N0Q5 zCct(AYU`%dC{C)mQ<;*TM^s{Cs1HRlz;%e68kkHE71Y~QN5NNER_)RY^0xwVnOthk z&W6r(hAgmOiACx}-cs`Zd`Gndc#S_xy~aL)jTB-^Vzd}IUR1Y!l8??!9S!4l{rvuz zn0Wx|PJfAwx3~H*aY7Ncvd@CdH7?ezaq)+Y=)Dq8!GFGi+1#0gL%PCYGL@g*_oX11}!gi}z)5TCJ0^PCnN>@KpG# zEx?KNcTu#9K2*(alS#lgcx@B5r%FUu0AOn0IWfCsZ%hECB6J>Sd^K5TgC7AJ`=Xt?T34H@FM+#PBTcd^k`;@;%ls4b`QiQ`^)w0g#3N_8|VdQ={ zjZxFww{zZ*R-cs#&DJW8%8iBv`}KTW(T;na&S;U;K^Bwq#X0qi%-2+g)8TP$(4nQ| zwVi%x=OE^dr;l)Q371R%?BS~iJatAZu3pW(LbZ~YDf`39@kNUstuY%4a3vJ|#0;6V zM^V58Y|npIhcw}{>gzpQoH91;X$mOCm; zl^HJB{0A|0+J7?KYrJip3Eo59%D=ulBmI!ZRsdHH#jf&tZRV&TzC)#JERp=@pfYbH?pm|D5aPp**dS&G#)@)i;Qkk(x>=!kdpvo4t^_BC;C0Q*VjU zoKE2xSKl-u(+s?r1Wq!c;`GOQX8YfLIZpL%rZkV%*&*1g^_st|CTq;o`)!oHd~4{Q zfeY^1D*3mRkzTbjYO6+V!wUV=3P_|+Y);JPpb&ndaiDQXq@T}aD2Gc-?KyI8dnf35 z*Cw?x328D#Lw|XdIYdZ|LLK&m%Z3c9RE7nMSIO=4DT)05D*QOp1 z4r@kFw(hla6$Rt{sMQPB3%I)e^OM%B)<4N6G;1818XA1EmaQ?S>=E{xV3fc5I^e@- zWGS$9QyoyIBE5g!zX6@Z&-2`Oaa27 z=GE|hLSjk4R(HTz!Fn?iY$N+NS8x#RRMdFjfR=YD8Jj&LHnDpX*9~4%Ootp~fk>ZK z?NVjfY50vVhukjUFu!T;BuRp6GRu>vXl3SQ{7AKQl25D;UYcSqdOiZL-#!}xB?_eQ zi&R~G6#rApD25*P$)TcN7 zY%(oAV-oX|)Ir`PCOey<80a*6a%hxK*w^Cm@t9PH#WPT7W41NfE2GRfqN#^S+)1@A zuBnG!uNV@f>zA5ekT_(PnONq?v?X7oygYZAnOOW-yrr64y)6gdS&!B}AM(&`JXd&2 z%BUyxwVcPVxB-hvY)N4y!~oIAqd9I9yO^NnT>hBr3KceK9H6iV9)ivo~BteVK z&ZsY+Ofn>id9GATNS2~!g?(2pjZXOW)tAZZoJOE3K2VlTgs7ENfSmrS54Hz=T%#l=y_i@vTl(K+& zW2{|+NRD=;{$bTM;D{0;1tzd)gC<-Ay{EVtgsbwWq8O~c;WE*eMn|i}l7BCG1I)wa z^R&~}0D*;M>@<)Y`ED$n!*tMaPnTXxy+vlK{@IG2Co(VQDI>Eo`Y;BM_YHQyJNPdf z!40;piPz3UCNF5jzZ2kthGa2L8k@Rz$wY@COoz*OhZhc)baj8}_30TY2H+M*#S?_M z@?tIr35uvNok02MLP?*#QqI{(2gM|s7*F*c^SP0LK}^5H*9*H;RM1t;1e_7r)R53+ z+`*_$i{5oVx45+LJj$xk9cwbzYmz9@B^U;LXSXkxJguth@Na^NhdlAG1<0nK_fZxg zmtEzwkFA2o8ONC6%u_50G-hZ0E;Q(qB^s-_tUz8oOiJP;F@PbVdU{0{>WBD^d?eH! z7Fgjwv3ewQrCnk*tp0#ijwAb7Z5d6JpDeeUT>e;TK^M#6^Q8K7teH>@%<7g#VK*ut z`?|c4Tj<54rlf7$@mf_kA)_-f>6UIPGB32eDCY*X!Xc6ptq-H+eE!ZMmxow1B!wY9 z^Y;RpxV`E}qtrGda1pDPR6Zuiz=tf8o@Y{4$_Xc1o}Rwc5D z;`c&tWkK$g#a$NuPxyx}NJi?qa?QxG`L3cGD!405z>pUf<3?{%s2oqsNjJ2v_lEBl zT{|U_Z0@)eeY!@z=1#X=lvmGxRo-Lp#e(d_b*~eq3ZdSEqF--Vi)(O7OB)6 z5wqD)L35+y``$X#WF44L`liWmZN0a9=BCSO5N_u9DVao|!m%ta8*

    Dz0HaXJ81I|SEOHg!N zvVPz|;^c&A&YblS2R9B?kF6dG6VlX;bcVNIXE6E31`>~MMisw#Qf#THOh779@dXo^ ztBS6`5|V38NdTC&TPKef+r7k-+pxS-!WqM$wHMxE5_y`F-kR(aao_Ig@0wPYc)I0z zBbhi3v*d=kmqLx0LWXt#Xfh7TEOYl6LY`ey?iei!Tt&4%y;cK#4z*6~a)@}&Ztq1S zt%kG^Y&b`ewv#tK&PXA%jtF&3dX3sj0z!m&xje%Gq9?-C++BuB$6XcdU4=9zXN?%6h+vXpz zyly7x?O$|4tUmB?F$mkhq^o+?_IpE}I78dmnqd(a^Dhwz+V}f$je=I4-!i>8{}{U% zKP8Ll4l~uUUqMhw;dfVhZ=B%1`UTvpf{fAQrjXwqR64u)`wq78m(}|xEXtF1oQpnb zEcomPV9LPf1eA%*NxsVB6A;b2ZXAgp_A$ zIGk^#4|%ClTh7uFV7^PweZC&c7`V4a^>31wCqL zGuqW^JDw!$zC$T|35%2)x1A8UIrxk<`bmF5mrk$aPwog*_Wi;pT?GM;tlslgLc*I} zAL3f4=XDF1-s+vq%VGaJfctFx*gM!%g6JCAFa-vQsL`@grBa*Q{w`W@;QZ~439$J1 z5)$*OAYV@_Y9z_*^KuY-{PyeWeQe2v=*~+BPng}O%qN*CD4|I~lRq6rP8fAZb0Zb*HX(6Mk5kP6 zIsVsZ1=kZQrE?SbmaCVU+)^OHyw7IYtTlviD@_Yg#zkGx$aRbVe&g z>j_nya8(eE0PdIOCFQw7y|K%tL{^Cr$3V$V$<~ylvf}_e|ZSAM&Ho)ne**QZ+2!rgg!9A znGOW15JkWo4r9+XD5N%!foNl@X_tgd9eI%Cb+ht?RQM*{u2YKuV;LtbA2vvB6)s>&TerD>%xC({0gu6&uC9(?u;vjT#g`gY6p#UusqOlJ!x^c$a6bUDu||_l zD4knJf<7)}6)n|W%UOjjCfDe%_9m#RqhsIqd&u-;#VY@RN)T|rS6}7hsr`DC+E?_) z5w2`^i{1+dE;4ttRHv1fLzjuxFkSBLP&QM>bQcjlQ07NY_a>Y5JJ&6a($1IDX>j(1X{@beKfyzO=g_5HeTl$Upl(5U;?##4WCZxc zgIbrgr>!Wh{ft&gB*E=7Y`cr=_um3gL@%uIg&?U4+P|PyW9O`Gg>2LGRj5od9+t|l4s+O zMKu8asmE?-^D>4Xfw!tw$Akqu)jEk z^Sje~fq8TDc;c-7C<%^A*X`BcJjK@bsiyLc@3N(_NT$u!4r?!lXzjkGWvwvspy&wT zz9SsdP@e@BFWzE`hHx#*i&`fbTb5xSt@YDa&SljiUR(|IL3Snl8Cx;`wx$V)>f&?f#JM zz{e;hRFc2th6_q^S(|eG)Awm5aX2b~>wBe|UdXnMr$wvH!%nq6*BD+69*V-msho$! zl{p}}a>Y+&jsnhyO75rvn|E}l`#5ag3({6fn z;Y@HVguh-?)J5h$a{+qCdf-udOf6;DbfS%kF%HTKh^}I@cze!{W)pbb@qfAYo(xjt zeML3~-vve1h^HZr7U7o8!k%t;70c7gKBZ@g%g2wrt$xgnK)@lbBfu>qrRkY^G@z6R zK-8VaHq_IOe5tdRqew6bmG?EG0WU#VJu9@X*O{TGGF6mb1pkc=P9HeeM;4Mt)Bd}H zWZ!N{5G-@d`Cu|H@!uMhxG+XOQzmR$CG#4w;kl6J6cw}iF3%?oF-ul{iiny5IZ1t<-fJ>E8zH%J z*r}<2<6PqQB;d9hL#Ag{^!cPw%NbR(D`Iq=0gm6@FqRG?$q)Y z@Njhe?Ww(zeb0!|w2)dqSkVe*G$$`8|=scU5R#ee+#9USYtjS!N~H@zs%gtz~_KcQK zlHlvukIMCuR@zI7>q^2mf0R)S!@kamA9hP}onB@?D#S~_Hnms&(5{uo!fTk=+<$ei zEb|#_)n;~hwgFUK?ZPppzvMHfSj+Bg$86+4O&T`pAwQ(^Jl}#OtDX2usM3p?0s<=e zj22|ORv#q>Uj3tAJt?e_0K}S43a>M%*Ehy_vcl)LeZz6Dt=JSoOHTsX^&1GbdS072 zuR{$Z7)$}$BoC3+|u40%4J!6o5O}60ExHF@GK8dxDSs_g9q?sJ^x1GyYE$P zjm$^e@bFPC+I6Z#D1Fk9v?@|PTSYrqx|amqaQ>_!`0cPT;Nsj^`fh3Xm!IdmV9ZrX z(fKd$yT!YoGY8#j0wqUSTFb!CtQm?A$7@V#1d~jK-DfvmbOYV{^4y27wdaBcWs<(~ z>uo_XnT2K#&mKC}Giy$??MXmdaJ1}BP%JpoLjK*(NpZV5!3-T9MQIwj#xE_a%xcy z57%Vzp%6oZ4#N7zLV#Cqoy$OikBj&Nml=JdR)z0_&9Z`|-Z1j{g&m&6+e$xKjRpo1 z3-O(v)wcyE&=+6m7XmI135;1Wi>q3GE->d(_Agq=!Q#wrs>2|tr~Vp*CLSkA4Y4~5^|Z%ROruJZL<=$o;xhp zT}Sgjj-L_<7II;>u|#!+5O|cynw&j{Sk+Rb`b{b6Js!@xFQVIcAj&@*K`ve@YW(ta z>kb@oPQRFp(-LdO2lgPwHDOksi?MV(&wGbFr-}BgHVB9WSzTd|j}~{I*Rm85=!VYmRdy}v^M6z)OY%;%I1@3`B@5YzpQ3Vx3nHoXeq)N>mElg=X}(rS?h6?~Uqr#4TUo+*G% zAT@^I?p1h0$Jytu!Yyw=O;r+RNIy@%2xJA`+7Oo9H&vQ4lm+RkDrJ2_k9)L4Fi;svfj^h_y)W zX%CR!;o5s0Aw+M-xk#$upue|Ao{9xyyw{&|kQxBY_X+flYI%&(Myesizhgm&HA+PT zz)HLdn$;DSm8vPE_XJvBlWn*UY;6w{;z5UmJKOuGcV^DLXZqt;9U@*YLsm?g^pkC0 zFH>uYAVi0Cy^!!9Cmblpp8eCDxXsCr8pfD>BI(|q5v6I;I@P%y<^{-H4u;jQDr+me z-yCQ(fTlQ}8AQN!Ov}*@!P=H9q+^6EX>!(lJ+(ieC93GbSm@|TOkwhhf{Jsh2EKlK-w6UIH^f9qTv};6LdUx`9tG4@x|rcG|bu7 z_2TT^6X)eyXWqT*-h?UtMI5cq#g3F7ax31@&R|vuhq1nd8M1KZS7r&32 zLmK=}>-#6mZp&{&Z3c&UZ37o$tyPKVjBOz~D*=gu+&k09R7ja>_fxECF)>7VoVQsc zmU1|CVUD`8uNrq-WDESY+XAm#EH0)zKCpf`zXUdgY;;)C310^?cNHNKlQY^Z z6=p4iT?vxtBv#>4hg#|H&9Jjlxf3r2US4ELj>WmJAgL(ePbLB$p*e>w157 z)6IrO<4bZ`e9p%WLwi~`%l7*&9qJ9Q(R^$oyHlL;gI`P=q88_ykM-V;8nU&Om@hoM zI$vOke4^w9yQ$^jYw`JW$QH>H8czSaSnW5&c|D}xCX4Qp>|#N zdSdWd{_Oj7e0ySndOZ=}y;<29els!=JOJP3-~>0K7)k!Q?Mw* z+x|e7_TaI8g0QHNd``skjPJYWZtV5h#&Nd7%8{DFhWI_vkGGwGS8v`UY7eldCMda6 z{SN#g5U_*#nS*pZxz?xqXMrxN^~RvUEn>%&q9d_%;D^Zj%E|QPx+>ObP%|A5nPr7O+KC8_O zS&rvR_d4Ep5*~W)>cuikJK<@unBM7OWBcqz@Yeh7ztvyOTnuT22<`^6y`Y`b6feRr?NhUZU*eZ3*zk8cFg`9ctmhjLc4-YG@T zG2q1e5hx9wB#qC-^`)Bkdk)NiPGth`+n+CMM#zgSj@;Vck`-|?5b@Vqm3J{N|9n^b5ZD~9K35{|LWY%IOMN1UL>em~nX{kz!aGf(nS zG2w~Dx=C|dpEv=ZvelI3dl#6YF@`LguKrK}d(t;IjT8pD2K=^4-Uwy9>$w}hWj{*t z%+rM+)bP=(UP!mnXT^y~-yq<~>zwXjvR8AT4?M;ia zP57iPnU4I~Wg2FEGEN}0*B$T1|2=6D0S5VIx{rCi5A3}`br3)uIp zI*%0P+U`}OA@+icU2sXkEyD?!&I=BOx!Qb}Z8<@>Cr>u>Qaq^ozP@20uxPr>#HCks zvOua1ABXj|AybGHYfu}RebGSdteUz1bw#?fUdSY+9Ll%drqj1CLI{=k?(Y1KZE zLDC|eg=@<(jX32M&I-Oo^_R5utAT?QHmbCM-|oh34|}qi@_Ju;e%~C25^y~~tyE*I zKF^|ZJ4w2RCChiVTCE@E^KtKPr?e} zXIE8}62l{?&+AsUXu%;8V?g0M#<|pV&Ityorgyo_N96O+C#5!B8?)Sb-mqdyrpUL7 z1G{|_`NOlxbE;LIs~jdheKx}yT@r>EYcVH4(}tKNM}|5L9@~$YPE5`0vYW!lXeH((&}2HUTo<$1D#KxV`C^Xq zcpTc`t!aU(Us^5pmh`l;qQy+gkwT)Xc_^{>Jr;_jd|<|Q?;OiENSRh=Vxdh+QTzR6 zO^w=y;AImT=kYpEe|e%rLj@y&p?3JuFBpg{Qz7%sIth05&C+~-K~yllZ4{;D&!qhC z8~5w)RzZ@yoL#BCc@~T^tvs$!`~^Ofhy)-q*h7;N4d(Dm;UGKyzG=qdwp0mC6#AEZIvzFU78qQl}S+?GWfO2oa+c4A0Q+( z1e}8>96K`9uN@1VCd+6B>t9H@RGh{)>0+~-MEW!X!<7l3HVbA9G_l|)i4e95bCSL) zP>&wJ^e>Q%+c(MkV)(tz`%(ORR-D6<@ZjpWm!8xqtE&ADfpkS8jG}bFkS8uk?blxf zJhw7g=?3OnL>*mEpvb7u^4bdfnPoq08J`@xw&X=+*A{!T*1X*@eoQTk))P)z4n|>` zD?d-hA}g?xsT>=jmvaqw+7Y7$qpoSQ7{ry!F9NhJeHJ&lb=_5dhHueU8y$(z9Ts|z zxZBiUj4f37TtJ|o&GbBi8Cok~`oqIGJl79GJ3UH>XHjI2nMs&3QI@czGpJqLP$0O3 zqsS}wDMMpehS0)C5R0FwesQX|HkTT@Vv@Kuv3xXfc3Ycl&&ID`&F=|mG`18>$q}U# z@1?R)Z)hW;i8}D@b6e_7N5B&%4R=w77$e4qw1Yw$?wiY6jFac>lZewtIO(;Yb=3{e zA5*_43$5>}C#$b#8c)TyByssw6_HoxYpDhe&d)|*$2fVfPuJs`(5$QUN&sF%g9Xm| zwM)H5cXMyKU|zHE08st&*QI2bbzzzejjp-E@`ULbsxGO|Y#jIDaUsrTQmDofN4zB? zFxwP)xEM6TGNrTwd=0BT-%e?ZBii(I0c#|kI9Eq-QBZx)!0EopaN_A|$(ZDbc5H3W zbPYLuuCdVoc(q8hossTTvvDeN-|hF|l}~o`qT#0U&des$p>T#GEWWidxbrS6r#;p> z1&flmyVku=SIS-VX{oiNqyA~+4$(In0V0x4{G2E-Dm)PVStgzt+z=o;8*C^Ev=gNG zBoU#)c**ZF!}{zvxJFL6!IE9c1h@EsaujV|bmG&aR`V8`KF-Y=ExLE(U@3hDZ5SyG zPv24Qq9<_oQ`D!37)V+qFZ;95AT_KCkOn9=ns@q2I%`@Sov~lCooN*8| zxCv8Gi|xocpX76?8RVB~T~RfUly1n@9)M zIVH;8RicQHNNI;ooR`(*hXaJkih&xqQDxxKv%m-qITcFs@da8 zucT6nZnHN3SyuCqY^K~?wN@{K{UyKf5gg_onvE3tH(^~aCpev6LBtA&+1V|LFu>~! zR&scdBg;ZjEzC;p6UA*sw>BN7ADJnYJyycm59WJ3yji^)NB{ew_u=w18cW$m{(yJlJ78tED3MKdWO##oV9VjF{T zNknvhxM65aKXe=tXp!PL)o&qUDAz%Z)NJz+Ci2m}nGaJ{uXOa_&IEZD8dfY3>F}zE z(SYmQ;m(34rO^AHOp)s<#wy*Fv#1G~nZOFoO$Am$l<)qv-wyE}_b?-eY=|Sla#Qj9 zO~qcX^N_tYcdO(&FIWnsRGB|*!nxc_M&|pH!^FXmqr^eaiiOrhv_gnAn4v{| zlEa~(jYx*JhP&Gnc!u?g$CLEe~rWpaG@Qk+9x-=^UD_ zDOXMDs~7LO)Sgcc(ky&iltClPh|4PuImW@+Z?u}+OzhK~^`PmB_-w?6nq<;b0iQ_8 z07j!h1oQLWrKBTB7Ay(B94=(Vz$sDUxQ~ZV&@a$v&?ISe$!&=ek_K78s>S54=4NZ( zEIdNMCUW1inmF99G;x`3@-_3Gb7Pp#oa+*o?T(0SA26;hfafhFT3S*Gv6p;HuIPA=) z(d!uMT+1Sg)6W(M)%UKCzz}!svDNpBEk$ZFG(6#jbNCrI=`XPj2+H>4KSSpqMe|Sz ziwp}vqaec}$Bi!0z*4|Llpge41_i|>hU;x6kte;HyON;#3MbQ$=9_3UXh{st6|W>S zi}X8%ss4Zk;e>6WG*9TLLveJZ6E>4}k)wBz95b4*utLVE6bs{VWSc{!qkdkuVdpwq zCXFMFuxmI*GuAV32}FJ6+h9qj8gQVW_1yxlpXPsx+uL8Xq8$^X*+D7G$Uo0__3E?o zf_YD5l!57j>(q5*wus4!+l%?RW~nI&bSCh#eWU zTD*)dX^!wL*4um6f$Stvgsdr&l(KxvAT&Q&9*lC7%&3BxKQ76&Xa781`cqqF<&KBe zz0PK<)H(MIfAi$UJk*st19{+67l4KXd;FmI&rVo8pQQ!Gl9pQDvz)$hJcVfa4x2P0 zxWdo*8;F+Gn{aRk2ld`rtn{#7mL%2#n6AH~GQ6IW_qb)q^TpYaYtjFVM;wc~edC!% z_~n*`;FdlP37-tlscM_yD#_`aJ|XJ*l))?9ho1j7f+M9q91V}-D72$gZ$D&uEa|gd zXyP4IULh1lmCH?pNpjMpESHnUY?Ph%a{9dio&qVNTlR->*TNT6h7Fp-h)qy^I36rG zJ!(I(26MUFi5TV32CaZvxc>T6jYD-Sxm-^2F`+gPzQNXM!p(Da&O~HV`F!ki3OiaY zDp)lv^v#oe?L@ke>@P`J=e?uhxydANoZts>RZ?;%?qG^uB!1kXk;Wm_otlx1(JR%v zmtx+Y{NC|%T3y;#ik!gWzPh`%OJLri(2Nlld@m{D?gQj}p`S)LusIs>^bDs?)cf;7 zE8#tHumMNu+$9KH5qqrxft-zR>kVm%^YY?-8`Z9a)lC&T96s^n9dyluOd*BTLp{sT z_)4)2uz10+r_ek3BI15ZlJd<4}jfT?^@ zy|FxYLF{VB{82*TiH@Q`$K9KOO;y~W-V6Fmi`h5K2T=;h2Oixi|E> z{XOqmhddRuq0#O;R-fb1aCh-h%(%GOPf}Yx`@4ALb_C}Zmynr005fF%lNUh#3ZEq} z=WE+1CZvxNV=K6-^mXpa!(t-sI5_B9fj@&lres$4mV@2#?WS*Z^pnS*MFB(>tjnvv z&wjx4A9KS$g31jf$Tpv}QLp=1Vexw&h7f_RqM|(A`#2RAAhesfH0NYkG|#oayZKQr z%fT}O+UTv}7AA7rPquH_ELp1bK6gm;Bp}Uy_G}>h8nm2t+t>b&4mzyuCcvEJNu~p> z<%ca7hE6^z6_iF6UzA5y>hihMufXje$vx@x_kwTbK@Jj>4WMS~o4)}t8Hz>MUO*aY zVX)*wvZ8hCeln80yaXY9{?DU>?9O_jQQF--tPykdVu~}nM{944*lGJ$dE1BOB|JV9 zYV{5J9L`=JNsi`LcceiK_&zDMidAti#m&>T9u<2E!O0Xl2PhijBfg{aL}b6ZWUUVsYtU+f6QnQ?Wo5>gV=( zGJ~jN$^JFGC+MjjV98_1fob(p3$av&$5RPf&IztLwtR{#FUu~MlPkey>u9k#;cmBT z>o761p1YZ$n~F>ck#MiZ#1)UDK3*H?F%%W62THbZvq)(IU>(Z{#vn zi%hF`byqq4s)8+g9Np2J$S> z-G_?#P%Oi>z6Z?Qj>3sWzuHsbwDbThhGGZAHFhy&Jy9=0{QA@}xxzH)KX$ zrE!`+R)jO(I}N7(X?;`$!P*9kr!6U<75U9Ix$A?`(&1u`SK`{ae=-}JTs~T|!srfX zX_WJ+nwVpgtJJn6sODkr$vTf7({DT$-Xg?fR%FeT55p$Jq$!C@4Bf1LQ{V|gv#N=} zoZalQSKxE&>3+Q2RlqPbq3F|yNA?iWi~!5~7#>h8=J_SZ|Q zyM*KLt$(++zNcrimy;G)feHfLrLr~1 z0q>?e5D)f}rv-GO z+MLTI*`lT3F4xa@}1f`<*||Q zs3Peuxx0r9$NT_uhB!cC`H#mqCzyl36iz!*M%eOJDmM}_$G>eQDf%N75+^nt_tL;K zMB&fT@l$%QbmhvOz{#R1H9pey1i%yGfzE5HG4dO*Y`bmEEm(gU z3Hqt#%fQAK`>wEUSD*=zR$~ z!W{!*{6|ROTMe<+w_IDFH>O!_42}P3wcX^Am1y-hPAOKssiu8a&=VESu^IYRi39X2 zopJ=hD))oQl3T+<<#~AmEj4}*%%3uQ?2f$v2e*a}BoBMzGU#M6`ncNOynBCFa^lRM zJN8pxM4F;BgE(#!_A9HTD;ljR%uz1Gr?dXk(2AtR#?o4}YgGP&0qL%GF{sPsvuRwk zQKiv`Mm;?gzS*k!Wz?)(2w0K&-lo&+#s@8*6ttbFS|LFVqvtjDw1a7jIMTRg++hrF zw??x6VvqtVm=KRMG*A4T9zZFy}o*LqAS*4AqT958pKY2Rc42 zgN#aP)MYY!ljE9kadNA}P`ui7W6{nRgGc(S@t!;ap{J^g2U>d$yP1TQb;`59F?PzE zm_w_aXDO{Gn5gNW0GSWtK85q`9c7;EWk#T;p60}<@RT9+13DVPHpXmbbUg^#cUpc^ zELpn~arSJQ01)-zu0!x&pZVZC?#;tC=V;kl5@&zRqmT7~nIE8i_*3cRw9WO3-!RQx zyX)l*t+K3OJ1PX@kj>0<6^wtVhyf)xRhBvPv!T@XWJC`zQw@H$eS?kUkiR^WIBeeq zt9pLEcpEm2u;rPNMJkI8eIXN}lAlP5QRAuCVtB-m*V-g`g|k_PtS(`BbfTxLE<6?u zN>9&URFMQb5l$%g|3IhG0m~zux}S(h(MrzeC~V!LePu|$9JiGt)B0*PL&|e*O}#)% zN?r9|6In7PT{{?Ijw0Fqn$Ud6T)9?AEuM+CPFeXTwcQuzmGux=Ut-cKV&ubC_MlrO zt?G975Bu1hG6|)31Fjz7V5A;re3id8bG_IX6`~Y(Cm-q@!5Ef`LlS3S2 zi$w-^u8&tB#oU7I#lJPJ=0CLF2#y&}fu>aE0X-w>vC*b0_x7T{Km-}uouYbGa zxYYv3#0nwdX)yb*Nx2V0!A!2zGF;Pm9o2N&cS1b@wu~1MXRT%$QAedfy0XSlkYekr z%QB_phYx;$=yX*BH3BO!2M~27!8A`Tw%c}%5RriJR6aNC(wBNUS1&q-%kDvRcbH^` zaDbpAB5Oj&<{);Z`WL$Y+qTFk%(6g%lnxR5oEyD~yp`d+htgrD-h)v} zl}9~${kMc2;YY#4rY+h*0EgA}SaZJDN83F$bhy_C)9w71ecBd7I8@_UY*Meq&6)lE z0Z>Lz(2~AC`Qy|Of2@v4Ntsh$#I2BG?! zg5val%XndiwOGD*RHREGCw7!*@3idt9M%Xz^1p)br)B&=yU;?}4brXC5Ziw$OnPKV zy=r)>op?$Z8Go=yn_`4kl4fyR>0DSM>)v)Zr>lSvPbOgdwnr zBO_$#>F8jz%uTQlWT<2dtl>+hpQy9dHMrmX8l+fKsaNAGebV#?L|1Ae4~u5`K_bIA z2^>NSEn7yYw#Cl%fC=%=V-^TQBE>+T6{K$A-Ay8XWC9+RvvI6Ut@8i z+gl|`*UZIj0^s~ZGkRfqkHqZJ=JS%`;t{7JHc2TA^1JR5{yW4eXf)rQESIJjC1@bo z(CSvAViA8i`hKB0yhIlLfkOYo+sr;ERr`WCsS_{jt|9;U264Y67#dt-`>TA8Pck3oM3sxFj(1fzg#)gS3xJM zEM1l4gT)WooI&?EXYSNIg}p!Z<`(?*RubyS*u3 zRewAZc#)`sI&V!#@xQ{?r)A7N8O8cv^bJUOdjiPvbN?9nDWa1dEXtC-CZ<#)W^8;Y zF!=t31=SEeMiuAz4CV8L1_kCp0lPR=L(Nf_9`H zD(VRVVUQg@{X@WkV0hS~8kF^Uh&*>C?x@qwIaP@dIf5e+L*pP{$^J!w3p2x5e%_#~ zaa6Uv?_V^)(y%N zp*bJGhY%FqWe?VnY@*iDBoM-ui@#nmlx(4&>i5k*;4N9?HZ!|n1>kJ6%wX+c7w&XD zP?#94+9JF5LDmdKp-_a8{Y1w(9TxX?6o>EvgHJc(O!7Cuhk-qw&FU_ZTBl+&uyI=Z zz`O4;ir*?dw6rMrC`>5+m7@^IMfj~@TbtJWLzd^!LWu*P)UtjW06&!=;KlNO^Z4>`3P4G{ z-2gIUzyF{#9zAv2HLrVe6Mr>(UNpmPqz-y1no?#vqvVhQ$p4iD+lV_u%nWTodQvjB zrAIne@^gY&DvN({p}>*4UY-OdyMegqknS;3b-X?#LH%8p=KqnDBQy}07e|ta7SUr` zBbb^ja4>c--vC(+=o>n#CBebtKRQy=(oB)?R|ZJ-NOg}fs$+tHEblob>2F8D1zrqU z1ehubn6RUpBkVY6yW8f;LJzkT$f58YEK=>AfW1Sl0c8My7RZGv@c8OGcq&!>creB% z^#2mcI@nO+S!c@}#uL&-uSF5+b}ggj4a#-q?W5(R!N0{}>K*cPzU4hc z7_X4Yd%K&Lr=qxp1=AlU4+&SlECWpvDkd%_$E$R`;x4P{;azmAG%&9cL!^Y_pj$^Q zP=EmV0K!`-uK$Fxe_7YRW`uq8pkR%`H8X2M)WCWJ8$Wuw2#f{6^QsejQpC58t!Mug zOaId$X$V>NJEfhvqqj!|2aRxUtC21zzI0Gm(82wfCnLb+=LV3buPs5PbH(Wojl=ONU*u%|v`YnZi`(Fb!-;m@`M9dU9 zpQ}C>yBAHbE3lY&I;}0*YpzsO;^5*=M7Wl#{d(5VCnPK&LD193HM+Q1{FWoLb%duE_UUfyemL(JbI`@^J=h0yZTc>r#qEQE~ilydXnR9bg~yodtFUdh*J1 z=r@qN@$nIf%LaML0<#CLxguQAfnDv(RMge@*}~ z)MV5NF!IWm)G!jPXLk^LA55%TAZHwP0yYjMam6HILOtTyQ{2MGvTwk-b<#cCZ*N#Wn@H+=21Lj1uk$bt-9asKVDHb4r;0v1(r z$SCbe0jF-s50F9si>Lx27+I3KLp3A@HMa9061dIbUnc^FD~_8sjuO)aavRFV+g#c> z{EZLD1die$2#Mj4(5r+*j7z>VkCePvT#`=~^m>>7Gs<)w)HW0?0t98#nzWjekB~X@P8Y`6c0By7eVu#tL z`L2arjoFD`5MTK{q>Mj???8&vJJfX&H27+Pn=5ubiQ?KA$p7a-|9Vt@-pZ=)Pj)N+ zmKV|H!`j}UpYT)e#W6=~JATQI^-WuYdms%kL-A}}N=E(}SskKP z<~sl6H%fcyG-UMF4f)N4fnATTz7;s)cud{;(Z0aI2kZ*&4A z4+>g*4Kd-m92V+9>9g~*e>wf;rUGl|&lquqHrk)rl38-4$(iL0hVmMp+NJnaWjmc@ zAU=j7OAjMVqb@y9H>W`J_0yRVSb<}LRaIz^dsJF&rc1=hiaZX9BjmHM^8>r zr3D7#u}oB3^-G#p{6E8zBV^Ro{_)G~OEy!o@j(FT5~3LL#)gZ{+zsyJW<&B{EG7rX zMQEik>7q2RXg=nIM=^8hw#l3JW`;RmCjaTL-mrQirHE{09<+NhF5#jgjxV^17sn;Q z%0|k{x^1%e&c!jOarrpWgmT~8e81}8B#u##nABFso@clh&{6+qx6f{IZ9_Aoe9ba< zSnea^dMsE%^x}OKkDw81px+w|9a1gc4}p_oD;iXYABW6!`u9`C4NSnS?*J<#-GK6sW-fwUN4V_T=aB&?rV?BzNjBQFfj#-wL=ZX+DV`l&Gxj$KfqJr z%?84uEHjz`zL~mt0oPp&RCZhs9mfcG-)70{Lgd6oqrM*`ly$yF3H~%|sqheN(K~$L zvULf4LXzLGlqc(nT4*l_Q%bI#j0X1<2@YWWNzxyO>IYwC^7cdUWq#quJ0r?r8hhuJ z{JTBrRoLP7Lc+$I$NOYH586|;;Ozh{L8sHr&jo_J*5_3U(p>!;l2a#Jgyo)Sj~eN% z!2l>6&gek^OLQW%kuS&f{ri-}`^b6QHv!0j@{T$JYZOQMXhM}tq zA7-|=whuqZpz7Ik*wQhBnV^<@vgZcYrYg2B>e8XHw6~%+ z#L`mM$cj^!3)tSXa`O$pdl-kHM2KWI-2a#Y6aA|r(SC19f#IrMx;o@gdSm}&RRyaZ zdTcKY2Keod5oi4?g>8k8t-Y{fIJs^)T&Ys+1GQfM5gVgMGi?3PTgOj~06 zdd?w-Icf4uZzY3e53`T5>iz7hs_ z{#V3dRYk#yrn9ZPEb#D~u^AO#v`(l}0^>@6Y~UdWNHG+aL4@`s@Chu04Kh@7+E+Ad zNjEejJ)?|)u|ofCM3cm%CMFea0#(1{&$Mvkl)-Re|+BFamviTud zt?=VEMXciBa0k;+{UX(cwsD=qZVFWIaCL3iou7Apah=pVcU%0{?4slwy9@#bI=QvKz&P5Xcwy zeedb12&iNQ?Guh_LSEPgRuV8Z>s@xBq=QtnRuHv*?8dD~A`%=$#`;fF^C*$Vg5U;+ z{aR`%4qj>zAK*P3&Go6e71wHAP*ZGbxRF#}N!eZHmaFOVutxyJ z2{PsKXUT|g2++Z~^z#=;A4D5`u0v#q{#XMyhWKqUsGf>zdhG7TLVg5KNL0V|xjb(m z0CDPK%eY>&C8Uk%5-Dz1*K#rexW~j#Io9T0iq=AQAY7RII$Z70c&!=-g9Bdq7Bo6Y z!5CIwU`D`ypujqlmfcx)|NDDOW28&pOTGYD)&FDbEx@X3+V1gV04kl*-5}jamo!LA z*P*)`B@f-*jkJ`sbc1w*ba#Wme;*&8_xs-O_rLV=LfvPdJu~;*v(~!T?0L!1h1HPt z45Sx3LCzo=Pk*&@lO^9TW5V;i%*QwD6d%7Bg`~3w73a@opVNTu1u>xDSuVou_e8%z zg$~j`oeq+XsvB&rRemb>6gdzbU?rg7e*h2?3UD|^qyG6I3-cA1WlQ^bZdE-70T$s? z25g803K4KhY8D~awP69W$L=IeP@y3yZYE*Q0&u<|NIk*KeEbfZ;9Mv(@GYa6r+XVO zoAf;#()oVj;U zE;Az%-a9XKHO%5p{_68Wh9&@8lDa+^#0?pUAZ&x8)e+ZgUJC_zlN@+D`l@&;CTQgiF{Q3TlZP=J#Qybf2d(tf*aRSxO!O9@lrOLv(|x z*Kv%cv+?MvXyy25pUml~Wnw&izQ@sq$X({GxHB*z)L-=LYm1Uk5gc4WGSWkHxCO13 zj}%O7Z!IlYV$JVmM5kX_THpZpQ$Qw7JA;jtT^q#Bm>y&0PPyH_iaPrmp82pp{QCI< z3@hidCeVD4GcIL}zr6Z(W%&}xriz*cro>_~qS5SkJsRzQ6HU>Qo;+&-Q+0pNx9~2G zCVQg)80tM5ZFf@tGqW=UL)?UUOL}xWGR7mLO2D-$iyx?_n~K^7;*!lRz}Ub7^QWyZ9(-I zGtmW^pO154la0m-@Ru}X2I+F>`{L`q7!|NuRi(bMzy_9DrDJ-Qo5O3^^wrqyb=P!4 zI&slSe(wG5i2F2^eHe7-&nf>59_WC>jFAVZW}H@xLvu&ql9$ETNN6%LJ&R{3aJrD` zIva%q1Cav>?itNQ*c~a`bv;V0=k2k}tRArX{|Rc@7~E+J@;j=AI(*>!2}t*dx>|n1 zd6DiREL*5?&EH%Aw?0n&V4E_e$Zrzg^lu&z3?rj>j`ITsLy@-W2CXI{Lo)3kEcn7- zJ0CrLH(LLGN&lFBUQM1VX6tvi>k%!`U_H$b9FQ5kI!%dDBdPq-ye*VOzw;N)whUHo z!0BCVGSDdDHW)r(4o91*`}9@*QIYe{#J?oUh;V9iOyI5m3Y&?pwaU zPU{PM9oo^QDS_Bc=YQ%^WYT_7bMOV?0s24FlF)FVs#A#4G&2NrPf9e zUNpkN^}4|GOtK=ec)U5}-cLz!^WZ_}pl1U@RfWY0ZF@7waHV-kazj>wW5?3aRc%Oq z54sd6pciYc4Kne!tPBt8KL=3d^unjc3v4vLAGcIJp8~8V~cLvOozGaJI1!5qJ zB+2a4UUg0v-6GZ?T)Gv%amVn#arRFFsZ`~9TEPu+f<9W2Pvzmm6!2X?LiBm5iZzsT z+X)GXF3dRn{$vw(eYpa(NWOzl;C<*M5k%ZbG7>QH3rT45BDMc$r3Ug9vnD(ym;~1K zek-&JaFs;wkS8_;R(d@O3OD-6>p#QN{;@IZpNt)DK-g2-UVa_;-K{A$MFt-GzaQ+^ z^M1-xscCn|p$UyfU@9FI)b9Xm$m;i_cA{@6r$I7fHlzbD&!7vs(+`;#L>^7jy;3jx z>C`5nx>ocS4cvxn%Y(ba^TCOi&IqsfF;s)N}Vzk%aR zD=#P29loH6CN}rzYXjHxr_R|s9xQTMK2R#IjOkSirGHnTYRr1}UA%>zidx3HpxSu& zYKJS8Euf6>=rI4w@V_|e&t?BKPgY+bh#kxm`Y}C!7lDDm5~Cv7%t&z6aqVB+g|hwu zNcN^*YG{)6E9t~S1rAgB52^_jk7YzR?0;rMaec>XT7baDO)tG<*D182m$^mDHF+-9 zwHLqkA16>zfk8vg8BL8uf{*msCsMZnE~$;NiB&PGxXeoh?+x!=H9a|sPP%XF80Gf@ z8HbL@lI)f?F~tZ9a+5?3&^{@y4UV@ikd2>Pn1_1(7`k5~Q9QQxxb1vV$@&k91v#e- zkrh$bEn7Y)=XjBt@TE`7a0Xbon=BAHU}Y~^&|=AMQ*-CS&wi+bux;2S7 zJ{oAPpgx+Y1wM?Jc|4mmZBpPe12+r|M9bIXN zP4`V$6y+0;#FatFe<7Rjc6?2v%mV#2+(iJ+fP8r?A2%0##F^KoK4}9ih|1{$zz0Br z<}t|eIuHgl;O8tM0MsA~ndBNyNS6s57!r4JDVa#V6Oqc!`DEgoL8RkhQmsoIq}4*!QO=+%{n^xbz5*$m4I3)NMndUYn>-{aRQ&8Li zsH^7|Mxc209NPk<_2W-o16A(ZuEk1~b+9(lS9z2r9~$xg2mZeMw-0eUY0pjhEw^?j z&6G2j2m!#h;(3(bFWFSE&hgr(Z*G({CYX!P_rC)%g;>gwW0-=lqRP^F>0)HVKjQY} z;w%|&!nl|5>s0Hv=FHhaj@8%KJeyVkpXz!3)M}SN6vX$Ix9tW}qvr7q?UxuP2qeX9 z6%eqg!+op9H5U|a0CYSEmueKZ1gPrks}5f3_2P6R%lESJ1DZJjqa7Q_8TGAB`k&B% z^yt%lC2<A$7&trm$No^vu4rOQV-KK8RK@$h zdBe2dkQdgc?@GSb@89_P2NGnFpj~y(NIRa~*!Q#R0!-8$IpUM3Qe>mkKGIm_8M8Jy z66!WGHzq@dIC6)07C=pW0dgOEHtu~jyg-oi*eQBnf7)oXq9sfUG^?^irp(>||H>Yb zp)41!<*0IHX`2BR6)_iiejgY)kf6}FEiPc*ekA((lOL6Pp91T0#EADS^;spqRxos^ zKuzI!?!^zTZx{i$N$aAad7;$YyKx8ScLwprn^GVgqygW+zr?c(qLh^6HfN_z9Enrh zP2hGy48{NdEMdQ%gVhtq&-F`84Gw6N;%Itvc`mJ9Bw<3+2)pRo@_||0_i@RQgfO&~ z)nMBt!iWd~;OU&m;@n2E)Hh{3z^5gco1{5(A$xGHon8^7S5ARFb=$kq%<6#kMJAHB1fLl(XrGl?_zw1{seGsyg^!XIR*S~Qkf0uUy4PdIf}E?(7FDD zB#u-cP4`O+(+SN5b!iGWMFsMGsf1`t_2EJ1$QN5Epr8}3@|W5OKN(1bFvjw|{w{vq z_^_N6o6!yrVj_C${^n0iDrWeHbZ}ButRU#DysGee{r+`wM@mG+c4w=r#>8sf>%UMb z5Pr#@!IaqKk4QjGksWj5&~9P_Td@rNm<}sMZKnF`b|7bzj4kY=1_Z#vh@>5ZxFFY*tz_GG1| zl@h(4t~``Er@Q+3^d=JzNyFJ_5}8%tWm*?OhSNF0z;O5k;3j`qoGDVoxd%0=eoV{B zUHHk~@UP3%_7cA28C7%OMN;r(dzK{UNR zUkiyx^r0}96b@U!howe%a-J&DZvxlb`TXWKmSm}cUEAf{ zxwjc^NMq{dX`1%ywPKEQSm?|FVc|c0JH13pS4@Mbiy~iqbxk;bYnW5$#d7tjX(@ey zla9a=&}7nuYHWZr)!%;RE>RV;j?;Lrsph`L0DN4J+w&pv>J?^yOlh!k{AAu?6W`u- z)BSuDl)thRE7$BY3`0eMmg-zAoXiIucVKU^q4}tW%4TUmut?XfNQSrEr=8;Ah$V|~ z=WonYlu6-#)w^v;8OUKO1<##AP3AkTT_LMXEu@j_rpEibQ^nApdfv$fmt@l|hTytO zJoZtwffBjd<7TieG|p`mVA=i=O{V3IN(wnNJ!Xd*=~9P7z8bnI7S{ffmy7HxTW!DsigSm92d%=3;Wu~QN-EBRoG^HF)CL!TPF>7B%zpldAR5n9R|ArXTP7&v}X)_0gY7+nLtxYH}IT}7ZT}Qn_Gu+I(?kP{-HoePzOoM z@*H+fzhelelmpTaNbt=>&@g^vM?|`%Lb{ts6|=)z^}nJyXf}z^LZ1&qQ%s~PQ8GP; z`#r$~KvYj0n_Uab$b4dCsqFG}0uk{3=$(HxR)wCg)R@B+#cSmG`8WjC5nQ3JZp`@3 z*Dk~0LdrRrC|(D(T&|CdBCvhkP$m7>b8j|;)b62&_AYvr<@KII1+@5gexTWx}($4Qr!ktwU)>tOaI&L^kxQFC%CZUzC|>|B?MA-sKcaXp`Cv^q`LV zmyLlnw`9Ia#@SXd(*czRUwT&hN|tK#6lQHH8BS*yKd*D=prR+Hu}7=sqcYjF80kf{ zjJjzWd{bmN;HY;}x6Tr;mN3lFStMr|k#QdPpZiGn07pYZ9b>x7YB@?bP$C`iP5mDA z8Jbf;sjlv_Vj+?=iXlmK`~`>T(bYNz0MB7T*W?v^U)#4QS5;Z=K>iE;kG%RN|1WVD zvMAve|c^_<==qYP70LP%%}1VZw54z6esl!z3%>=}yrm3-9p7zGC7Nmn{gea5kF6TFhu~k~ z(x0p0FAZkM3fmu+k)o1Y{YvP3FA84$^`qR0iLuy~L#mmCY9ZPkheeR#PXQ$G!-l*f z*qWicgIp1=u_#{kBo?|wm?&S^1W}VCa^+}q=Sm%FqbRfoim_i9Z59<^)R~iu2$)&~g z)=?=HC-71f3R~tN|F2E}y*-gcUi&EJFY@u3TL->shR%7G$J0f+Npvh950D~@UFvEl zEashg9^cbR&}6U!y<_~r(J*zc(b3SgXnlm%eKvR9kAGL$WT`9U@tH)nsV25h0?X)N z0nL;ghx<1`b1pB8UY<&I`-|aad=)y82*8|`awnRx9?K!=`5)PG~hiA&~l=h zeN~8c;=BJtyS@EJHa3Mrb~`HosBM#jAjKz{)m)%hZ}N_LNZ+> z4uZ7A>?BB#0oPggm~zvIa-aqQ)X4-E%U?ID3T4CDT*|IRynl*%X8))D!zS|WPL1b2 z`KV=@qshqpBcJ3{ZSr|$Wxdpl3FnNFPg5|Nt*5afv3q|3@M9KurJPBt4ikxua8D-#j-xY> z3{7Xf*mzRp_Q!bKot@j^9*$~kJO*j_VLs6A<3KZmubb!12~ysK!Ft z=s<^qvka&v?ublz^p24Cv{kX%^?=Ou-;0UwRwa0U9NAdVT-d#iVcj9o@JdEIl`UxI zlkL0xWU@;ZBVR3O@d+lm%#NLmpKZM?)7?4rNY9 z5pt83`8d~v#<2{&DE$|Re@eztPSQWX6@()X zA|A7BBuJOa+QTccOz)e3|}7-Ro zA1Kbwe{z9M>{n-tBEI@sqHe)82LN-{q-L-p5eHlsW?D0jgk0O`wADAC4xN zD_Sh+6zgirQz?C^jx)+t+!!;}_RJ9d?6ZTL zlW+Y}=)E)x!V$&LbeXC@uDC`z-?4d~_d>*RrE_GS7m7?PDp|+ZU+pSWfSoHcZs8!_#NIlB0nh z0M!LK9ul!b(1S4XIspxHXH_$D!rO6wXHFwBI8Z+0II3H21m@%PsGP=*Fd;_)>>STu zap6Y~=ed4puw?Q_tXS#aBW2BC8#M<=(~r`cADAYC<(fSypAqm(|CW<|D_HaWyU;!c zyQR$ZrNNCJwdfoeZC|OsJ?eMfxD7&x3jHTYWMW+>J+$p9ElCeWC&IMWC@<)JC>fa| zZ`wtL0Zcrr$Tb#SMr{t8$knScHU9*6aj_X;YFCa6YF?H(=T0g`GVIO}<=1NhKR_ z6bJS~N#!$Z2VOyv6t%Dbs#ns`wSG{1NyN>_<$0@2I}cWqO@rU8k!tl&cio9clLcp5vf<>6su`l#{$~!i(kt6i$Brqe|O8$FumqvhR1_@h79B=QV*1V)6d8G&RHJJQA;fi4JB4!fI4Bc!m?e&>Jdt zr9jQtcetyNx?O{fShJUuv)C-Os;P=@2q|W-h2hY|FappnXR*1aejiE71Ij+at+~jWwv`Zu^0%y^ zLxDpB+$CE1^Zs){M^>AS1Xs9FJV^va0A#=xkNu&KJa7BawDAt8g&2KI8{bJn9)U|F zCAEjv4RN-(OYjSzpQLA(;^kNX0v5k#RAbt7ijSXf@fgVgOW**Q)s&-VfH|NSE>c{A z>ad{%Kj-S@I>(@RWNf?!O!hhesL5$BT{;ohbJrgj5E(|@i#OM|e{yZtm^Ob5xT}G9TgJ#zXo7_m43Fv`_Kmrqe^Fd9QgO z-n#(j-CMF6)vc|X)t-0ijkC_7x0ANw2>VpY3#^RE4c2q@R z4X^O9g#t{8cj+4WtlupeKW(zv{n$=vsyXyGCEZ+?Q=3RW{BTo3_8;q$H^vHVqO z6~h#R3unSoWbn|93f@?r(yv(s^8aM7LsChkk@f2GKg4_YovifBKv~`V|k| zQtj*M0Dz*MYqh_v|I`t_sl#++5y2NY2dq`>If!*g5rwgWjARA znxf`1UJL>7Wm4AK!)3ga(k@@oQz_~eT|te0PGR&NJxkA;4zotx4{wC8>%n0w8{PdGbi2p2Z9-^w`JLHU|dhK_#?-)&< zkIfI)kxfPY+twd21?Tz_b|&9R7Afj&7Ia!YmFF+|Scja)2tjNyKsm)p=FqB;=?wBg zz5++Xq9%xU0AJTFBBso#p7WCiH7qSFC#d6ZL63N3`{e`veWi6&Koj46ZXU2#gk^0iy+@JUrcGP!Om$1C)w(R=TUwH zsj8i0XDk`2$srz1DFfPnD-0oo?!#RJ5yz*w@nfoKzwt2gnr(JI1gIy5eYusb9!ja5 zK=Pp{vE?2-{E+=GCmB9r1K#j+s#%=HD)#`d8cc?)qs?L;oA7oz>b$PH^t9Zlfq(`B zWj(NPVB=pez&|aHLEuRR^PsoH(QSW$RkpL831lfzd0$`Bqzt<4sLc;|5gJUF0`~ZW z5Yb@L14z5TqzA=8??{IRjznLonEswGdkoKxdX~YAV0rs_X)630e~^HRHE0+X#PwV$ ziL=xqChs@_XbD?wfaHK)$i(^@62jAn_wiK% zIH77F!3>?U`9rE(Z5Mq*PgB%p1c8M~n&m$ZydNWI+h|mD&h7PTEYW&bkxo@dZzkIl=!*m3`x=)lI9D0erJ$CAW5lRu(-FnNmQUQ66xIb#zCJCmDLyAyDJM=e zTJow1p6h%T_SSfCGB+dRzYT>&qn@P@dkch~=iU@gg+ScyHM`brg5ijT_RLF{ybF5* zr#w$Q*WWp?+$R@3mAVDKhHL7*!h^lm>n5M0v}1{=?bmHQG+SR@uY(e7M)z@6F%thqlSQw^$DaYFDUExBnF#w}G?mcS5!N}7{NQn

    240n4RG{rSSHFF=PS;$!_AUZJ)dmp9XQ*GZ`BfMq%nZQT6 zK>DH-btL(B=eOx0U_bkeFB$T(l+jTA${eD3d{x*(Mk||90eL^>_k%tzwme3IRHE23 zz>HT)q|MkRyXG$V)??sh2xk$3C0=+0QHf<+XpR3{oW+c$IT^iqMaV*_RdCvO89JV1_S|k)+MDNxb0F`H&D7^mfsHaCK=1R7B4*m88a12VpbRSDGjJeF_Y~e9FQ6#Gz`tP z&i5Z8of%mww$wHIV?JGq#RgCzo~(uK=Oer?<()MyH8D<+)_TgtsQ#E?pi2|jt^*G> zL-!cqSlE1$H!GSR(iun?ty~ipNMAgdF(K4nw#;MBx2%+&UfR7!KX@(!ReNYCGw0L> z3^xyb+aq+_;2E%Czl4!T^r>@OxXjV9Ri|zeZCEOJbX;AWrq^DWrmZOE*v-1*TI$kd z##h7@CTUz-yZ||8+-Y5Dz@^3ewwwjmu9cb;B#@R4j8{y0!C6R*1`W3sddlAt?#r0i zRy_kzsE-)GCA}kV`0dwVQqupk(eNg{@}j%!UcOV1&2O};r*qm(GTxwvi5F^`WtHU) zUnVk=aZP@KHTCT_&}TToTcR;6&0i9EpL7jR>hN|R+}Q@3rLPt2rCAt=FLLR7qA1=IACvomS*vDgrGC1&ZKxuhoueHtA{$ zd-chr@IjT;lcvTq2ltbY-b|f98TaIQB?kA~ITKQYE56!o8a|j{!Wn2im1cTT&#!LG zs+SFNygS#3K?lxYmIp{6$VFq}{@F5uYIti$va(5t;~K`Of3Sqm8Z|Nqw=>`~F4VLp zqd!gpKA_w5*r+-)=tNQt`yZDH=U?mE4;WA22%nG^(~NTMlZy5G*7i^R|7izQ)B>vH z*%~?e+EQ*IeDm?a)jh`^0GZ@+9DZHBgb|XIJgc-(byaBwhYz(?|F9dcQ%{yLk#e&n z9nmX?mUU(n=J`EB$o!USNI}koZ!<*xi1rxhtks3;^+EfDmhZn>{Ob~06%Gsd$McQw z6QTdP+TEy`2iH-M)9QcO_W{LZzEE`tEXvUgwPO8vjkaFr7|Z3>)3gj>)`tE|AXDuC zHn=QH4da2ksj(aBSN+qgFgXPEG><-=wmLKy>>y?~Mra&3QAt9s9wiOT05`{rIn88&2 zya6<;e@6L4oU$d|P6pj*!4*v8Gym&)1+ct2W@wnZm=|gk7JgAtS6Qch%ch5^`Z>O{ zD?}1)o!#?6@q?)ReO2-BdS_^&XmkK!8y8i|T=-$1DKpYSw#4`>MRt7VQIybxPHAjXVR~UB?sO-$}-2e+RvXI^w+Epoy9gcF1utUdBt()vY;b1n9v-IxioH07^m=y$)C=ja#%G7AVp1<$znkvc#S{olP%voM{N@8=ovow1%QrEC2 z$vueg;V@YU9aoQsosk6w)?v~o+!!6RoJFq zmZ>Efan+Nj61{K_pGI}$dTuUk+jtMscTobXmn*LZ6%WkAB5t#Y22C3kg2f{n-5@qI z6ovpP&nd~~HmlI=+)27_a#`ce_4)ZDe2hQ(C7@vM@fESw)eJn$?GsH}Rl^U?9>>(q zebphrQkKHwsyGFox7_RAKG=BOB|h$-AI*3luiPI$9zXr!^mzh~-c{UQc_(NDEPu&1Lb+3)9CEk;*^JW0b z&b!pV53pvudq;LCg2bp(t|?w~x!dV&gEFPb{!zVW$IQn%Vrj|(>clu$^e}1E&_ONJ z5jRMj2=dxXpPHRi_-)?Yw{AtdP;uEpCH`MxT zFGyb{YaH%aKz@lU7C86$CJ4AYTj)w%`8xHj?!vhXvS@K#rH8dU(6N{sFW8LB^^M zjTEghvC zc)rtx>rWhKqVVbRTvk_0QMN)MRv`PSJ5*{koM#e#LUm2N&N$#i#Y?xp=q*~JI4ZngQ zDFSKdArvl=F1SWLm`r6+PA|WS=hI>Dvl$wIf;V}jH z!U5u(t`GIGb+6fr6vc(KzK6TKGOU#R5G)+cgdsVS)Z&KmKf|hz19)fs_?=YQ02>fa z?z%F|8@^gMD|SU@oB|>KJ?@A=<|!BbH#*@mBMCee;$yw!R?)aLsQZhT*Sd*Oz>7jD zb12JucDQaIx!gbboGcjN7q8VN%aq=1w>`lzJhnyp93*=0_j>Qvd;d=KzK8zM`pEnA z3(ot@#0=2Q_fLJtZUpZgYJvVHGuf{l>pv8Pw1j09%#LjRacz-vhHqqj;qn}myo&1tWarR?1hh{Ybs>bd^t3pp0LuCqG zuYnp_wlU_EL$a_&a=Y`oIYtY{wC$qGVvcdfG$!R1HFYOp>f*1dN~6-FlnrGmi*jKX zloYGV+w+yD7c0MeI2+qeUDi6D2A>S}w^yEit#LjjSUPt8*$`&Nbe`yaQ|P@~@l>mO zGtVgo7Xa_|Akc8{CvaghmE#2kFhAe3B5-K^K^hbWe(7Q2gQJFkv;gw0jh2z+v4F0) zpcE>Wk)2McOOC@gu00UCFAMbj)%!n?NCVg*hN}#{ldmU>>@pK{ne!baH`yO32Yvzx z`sE!k|8pe;*QtEi_+Z=@!#|%7uu8>5N5xAm!(gSa-w%u6CS_JR+tsg`&7gL96gqfO z8Vw%h&lH;(Yy8d1=wzRIa9uO9+M!aUihrfEOBN=N48Q2V5HeWLIctf*jGp|}@26jj z#zkgCP9#+IMx>p?>M6W#I(2GxD2dnNBpHgO+dVTPShu(3go>&reV7u29_5H+8_Dp2Mf}6|zt9SbN5(XX!-Wv2OdH zw_3GU0!G0N+$&@j3G9D1DP0{AtEIXEVmb1rwDh)4I{_ zD@^MUj*>;_vSl|>c}_hAh&3r?8m4JYVXf|EGAlxvpAd!EXZn)R<8wLqI&I0c<;?TZm%?*JG41(Z+l;kj6UwE zd2gwWGPc!Td%Ytt>9JWpS-xoD^mOV}3K@%SdA-=^6ePoWb<@p_>SVq0O%-smgje?r zHf36QPRV5gXUBZE(`@RQWLDaap*}+*qtYeH2OMkKM+e=NbZx7)Nk#CZx?vCi9hcc; zw*_9ADd{@bRZfpp`)kXwo$OJD-6mPFXs?KJ+H7mA6el$u4t<@~c)MTHV_|}o+=}_} z-O+?XP)8EFMA@UF^av@i&K$gLFp*Hs(pqZ@l?sv9At3wKmmcLI&`aMu7qYS}W+M&S zYL8Y_%`oV`xC(EnziO_(`pxMnPorvzxdN(bKM)|;MLGZ+mez7=J=*!vb7pOvI||lQ zCA`G)^T6J>5#+afe0^nemZ4S$mw*qGVpQjq;aCpr#$+bjVdpW?PJ+Za`^RH~OL)yM zK>0PVO9paa?YJ5~6g($34fGXtBT}z&tqnJi-F~`9Lj|rF%}0ibrjopyizys_H+}}U zp2bdvM&MD!ppP1ojZs~AbI$pDv~AVLdemc3jj*~fO2PQWPw$1>35gyZ6T0k?L*R9@ zwfYG~p=F+?$CCzBhfc}WZ`=75u12{L7-5zdXT%7f| z4}7}9d(0^G4C`5bS#!^Na2*u4fRb8@6E>01&eoa&Zu(t5p&^QOKQ`eo(8`Lz?a^Y? z2zS0z{icI-n{i5zm#1zmc!)#8h7Z#W+#54$8b2Hr#og8?(|6@4c5YP(GZ-KRsh48b z4DKFPPhN8w!|n35@^cWtMZSl(Ir3T^=Ci81j+;OKrEl|m+QX|6Z?fjsB{Hc4no~#t zft}J+(#ZC=&Q3?oEN_!aB<-66=4egaxty4!f`#wSnek0I&6Te5OM7zyNsXR8CvtDa z-sLVm7_qtJ6uLV$XQE57&ggY)YGC8#d3uo9XqXmy%c zzsvNFWEvSXdYIS=+Mi;D&0g(Szi$P~><6T&?gbOoZ>?M^;F`!%-Xy}K#$&GVrV@U4 z;Q*9Thn|qQh88sj*aKJ@QO|ukfs1e(&vl>QZTt;L9VNugDgIB3*KLke@ag zLq1HP0o!$Q0x$YdlH07Blmkw8S0B6mWRFG4b`1c=KJ+`E=r*+NWaeqUv%-f}=ce{) zhsyf|&ZjSra_M{$uk||N*y|{8+anCv&y7p5ckqF&aSL&lp&LME`lr|)AYaX!Eh6w$ zQgU;YSN;`KDZH<^S!N#&MdL-HGc^D?n_Na-zWWBUq~>R3MW?%hV3hcZ(VV?U*ngg- z58c_rPFUe|VadzWu-D22vU~+7O-hz%sB~BAZhel>g`VvdI>kzr>;xw(&Tw!DFSm2MzyNn9?|e|DX-NiC9(Sl0UGO5y|mXB*OW@-8qN zdbhNf>wk9WAcA0_oYgi`X4$`{9gMICrM-(U2%(9I09bD@6ZxU9@wq^X<+{>9fJFQrQ#dS{SJ63<*+dtfc}^$m2`}hD?`%R|H1};WWSA?^H?Zb3-haWQx-{{|<$YDDphwJmM^-JYv0Sg&`Z% z2hHGu3c;bS(jmC~_r|CX*((vE!J?wnyGr@$2tSLnMi+(;K z-w?dvxhQ|0??ag*oUOq1Q@2VuR0qm6$y9+TSb;}C-{ScelN^#9QdKjemYRM`w>9pztl2{LA?^#x--$PR+ z=+!c-(_zQLZHLs1l~fob21QYjg`}~-wgaCD-k}da zQ228Zq=zkH+L0Ms}H3fCF87f+L)NjH_hp)#D@v^2N<0j3``9-`){*bR5(3hLM0cuB1vA>-0HCfV=UH>YTYDfIc-~HQ(kik3!TGy?{N{{xd?ZPF4t4 zD#V`^PzK2JY~5AmS~>Ebl1}+d=65HB?2-A&tU8DMl9Vu)E&5%e40svYCLP`xTs6{v zr>?dbIH($@qHE0A2ozf`azIw>i<*buS~NSq(mYDM=#_VSl#5&Q~S+DbXTAAC@96v)}m$Pq-6WsF#&_aRy>2{USrPGU1NY{@bN z)(>RDTkr8(L`1DQm_0%s@H{*`9>e)oRu&e{fph1tuRQaWH{_(TL;Urr^|3?xF2beA z$=^smfBhnQ2E%*c3@0FyrR9oCkNvcn80F4#%?H=D;!8_p#e;mgjpy~i)5cwo2|6PR zlBBFKQa5fNRo74>@w)L9uhwfnzUx4vg$oKI){%voMOqldt4UjO3`!lbfZz{iO2Zq> zhqu4$j$52WS~fjwj@+QXZ}!6ZY(|xU8dDyhnON6*FNa{6STk0A@KxN~Y({NI6D439 z4YrK#W^nKq1wG$1sKUY2dNQD*7*1H zlU^wr47+s9F8iMC)6X+nW#slhK8VWW4dj@AvWZnEtdDyWdaHDxayrKCrs*K3&33;w zQnvZHk=S}u|8)O!^{Hj^DOuor^f6rbcejbatets;Y>Z zawZN*;>LI_{Ko%<;>zn|R*yR;26St|6_`yw7R5nIw`?ZX3|h8FzY-?1O2?`V zH3rb=XTfXi2jqoHd;oxLb@0lQ+w^sH;=AU3uyvH13QeS&c*hMyp>7xq9t2Aa)6K<< ziwWq~Ep-@&c()T)1t+sV))bbZRHsZ2HIz9yY|!(-$q!G59kZ@iI>;qz#H%ws7=D`B z#T67y)YFQHJ{P_^`|dvJOj|uT5b2uSTQAdZpKvsnvznibgijR%L6>^HGjIm3jbPOy5}ei z^3}?Kw0pWfVV9HbT6lRT%*On6uAwn!l8e|7JfXZSyK(6yezjVi4#$l9>O#hlnGiiW z$u`!&0_|ZaJy(%ibU1mz3~hBs<1kve^U(q(y7ZNLbzY*+R3EqU?;gYCLn(2NZ7m9< znA(DdZvA5vzLLQr?HZc_@Tfa{GA{VR6E8Jg$qkF^^uQ%LO^vTp{^7iy0U#f_@)f(G zHXheU58cNP8KZo6qfc9z<`1Vt57`1~8?c2wU<9qk)v-kNqOjI25ExWB5s#p3O9B7aa)cVw<xZfL z$KcEsk4KTH`WH&ySTGEkMIJ=Z0x@E!!TBrY>Opvw$27(ruuhIRbnFkkq7*v|oDn?4 z-z@AStSb}}4X|OeWxo8Hayq%=arGk5f>{;)@RZa+D)s*Xu0T=0T}+j<)@&Xbo_vm>`!o`t$MN-UE&kJvj>W)L+F~oi>qBd|NB-++qo2Ub$rcTnvA!-k|4wYA1ral)H zZ0<pZeaP`-wmO$;;pV;Qjyf`ip;(KL029mw)+he(PJ``oll`!~f}j{oj3-zw%fA z{eSD<{8t4XnwOU?~f;B7dwHg{utAxq+Zw`;RmyQFNtReMb>cU+%YZ`x7K7x&%k z&fn?&aZ9+Z$9j2+%igq|CJczJZ+3^3(G!wH9q{(+g-{?I3WvghkPb96t@OFaBZ?ZS zD5}d-uWM@|Wz|wkqg9LcPLQb*@*EkC3yDpa2Qf2gW2{U!HgmLP>JZ8Jl=S178`Y%m zqPSB#3?&G|Ae11KP$U!*qA)KSGx0qN7R$^cU)Dy?xHr=a78Y4ew^#gVR@iTe?Pe}s z;_{|i)(*8)oKL>~wMYNi-}va$>+3J< z)93#L-}pTL#&7)kx4->I-~OX-|H1eVKKkgRZ~mRXSKv6MuHUTcch*4`n&-qq+XYG3 z>=}m8x)&w0)LxZ#yY<;3yJm%NC))UV+7T|Xdz2?5FCZbuMq8xHBYu014YOkQ6vw~y61_pjVCNkxake~Z z5}9nFFbo5cAe0~s!%$*tExM;B|1<@dcPT1WhK&_^;S)P_Th6`uYt>olWb0E{)0sB6 zMqBhOUcdcM(%#$j_CLXUpQF7u|9{MD1h}zPnJNGP002ovPDHLkV1iIf0|W{H00000 z001EXAHD|gB+dW;B+dW;761SMcW-iJFKuOHX<;vEZDD6+HZU%5ZfA*5PDc$28VUda z01Zhch3P?vqTm~nu5NQ_e7ExwgkioEOAT6K*fw0Jyez(r= zkJ|68d*AI&ch>q4lKbk`a%%t7sdKAn)-m7Vryt{|AC*r&DxZ8r-Z6wCDB_j}*YK0D zLBSh;C2jNqPA0~g`SAqXoXfc+Z<}+L%dt*h2I2trP6jdoA~nEFg4O9)$t3pAsZOS z#w`@wxabsl757yVZ@Y9u)R{EbDS`2Loh%XRfbx&U_~Si27DLG^inx_L6-SAP1XS>6 z5-N$D0SX7MxNOQHE=`$WJ8rkt(MKP1**BNwBU(57=U2Y^;p2~+zzDzgu@4>n#S14e z!gay>7an}^kCvbJ<%_<2{`pTl`poF|dt=7-fNb(pkMUEFwQl^@XFhw@{6pV*^T;D# zAHJ&?UQaVQXdb0r5SxZ#{IUOwa?L^eC~~tg=1Dll8Gh1eB{QE9m zR8HtHW_aFRX{lVecW`0hx!3|KREnP*#|d`#vZH(QAVG5krd zRwD~qOhLRc(~7c5Hl9Sq5~Sv2Ul~aoU!|14@H4vL8VlHrA36@UKh*;fSwHS?{oq^( zWWyH!_9L`{Qei-=YMNByJ{G!^^H;Ai7RcIIhRF66Ss5AUnrY3ZQktrM5oa*@E>+dE z+*o8rDLpJ27du+U{??w0Z=nZgE+!P0xI#p5Je$?=0JeBI{Hsmyx{ZP&c`B(|BTJ#3 za?VQ-pYBzjo6qq4K1W2FE!r+=UU1-(Z6u__IZ{E6n{fV}86s3N_E{%Q?8531ga8(# z6C&kE`n`^v*t!G}3OyQ`{{TP;0YDf}!VFvhgn1;Bw4%)oVRM}GYRcoz+i%layY?@? z{rx}hx*b5n!}~NCJRRG)w{vWB@=CP}4s%GRDjo z&CXh_J4YUzvCF(4Uv=&E*A1R=`f075U(L)-eriqj#~+=3=I8c&{lQn=e1DPO7IW{M z1%bWFb`1$&fKCT4Fe$3- zN$rOJ{MhI-`dra@|M-(vKsEj0HmIp0k8m=ZB4uV|QqM_}_2MLxk_jZiAO@sr`A|wg zD$ZD>M@QBJX;GR2%2X2o2*ec0Q6Y2@!St_2>sU$Tf_twufy>W7F)=D~&^By|&%8L! zsa)bVaWY%JtGbf@sUGy-Fn@#CtZ~`Tpdk#}1G&FpYhT4|M<17Nd1muNRIv~WGPKWm zSmJF$Q9h%w<~>H#m6;r`A%ZLScvPXtu~aLYT0W*wNs<@L)hx4`Y+Ri(GZAvlz}7W0 zNWgOCu&EH4sW#VgN+jmuqkZcSft5TsmvbA0xKR70V$|=&eyzIn^KMQSLuSd(OfZbc z()JQzKS%7pXG0ExO-y1YHNttzS3B+6M6ufg8-poSK=ubJ=B1RAQ_}b3q4v9ODTy+YHml;NC{}~rbmz^cv3O| zAxw!#5J7^WnW8NuR~(vocnp}GJFHZGh`<{lW7;C;O_#QxY>7|Xlr!c`^5`fLGDUL< z8Kk1W5)cHhSRf+t`VRTIR(ctco)%6KUuMCE0n1j_k__O!2Ojs((ECD7}PyPU$Nk zq;&MtQ0F}B^>x@*`QaJe8F+w{kgOKMdKDozeQblYfl~SZHnglBFjgGvKzXh(dELMOl$m6np5W7X3BjO=P)k!gC~qQDNCa z%-2RF?E=SU&GrCYDNfxUasv~i;jhqDV21R3M}WtG^|FV}xMCTwAR7xL^Z=sfNg-ev zFo-09Br7!@GYb&F88Z05nl$F$!L5PG0{I+dYa%?i)G73^*<|Cy>ou|bIv>O zk*6PSj^2CAM|wYY)2c_}Ij$tWsx2v%z99QkEBWm!p9kl&rJHzJ8P?BWiUt2RQ%X+4#)FQn=QI%(rq+O(YwKp4s= zeomjwUa{yGN`YzOY}kS;a@MG>*RQDp>qQP6dGhk>MX2PL%<7>fWtMTqoMo)2a3)z0 zNfw!8DW#MwC4&V>8cEgo5?j&MpN~v`tE+6Q6SG+|>X?1MZHPfTrc+9x%ft%PbH98x zTA6F>u{6bYF=&C+R0MCz3tkmfxjCt!r$VxGYMvv zo+od83#$_{WL3vt7%(#{u90KFl8wri2%bI|fRrFj$gB>SG`)gWOA;Ui6a#klonQt8 zAk`kc@Ha|~l3USawHHBJe@w*61cF&{I|7igB#;m~YAF?KwwqnLg=d+3cCF)cx>)?` z^eR@Dc39Q^uU0E-WpcFDdUkXamhmw__@7@6-?`$}vbqH@civvF{kP5_QpRYj#iP&4 zR;#u483D8a658Ow7<8ZsNT2~^U;#yc0pQ0gAGq=Fk10Q|d;T_Wo%7ruuYBOfzdvqV zwtefI=K^dD8hPGnpZZmC^V&|Lj^8NG?C3Advz}v|FKnJ3?!;fmjTRYk9B)88s@W%X-ctHR|%?FUnc>0x;#vu^^S9CY8L zeBboKcvDW;k^LPoQ~Tu8Vl&A(Ia%9Uz>Ev7`%9}oW~~DTA(L8XtQ0ObLIFLi*Nz6>8F#L@b=lc{QaTF zj(E%4Klk}_ngDj%W`@6&;FnCU4Hh-Nmh2KBgl4_!Zy_MmgHZ!VCfxI)3tN*3nKRtFSjZ@%(RS*~6*9XHG@>-r~B7<-H z5XxXO;?r;)RhX)a)C!azwrr@9qP5cq1*|v5wz%X+_3SK}B_qo?%Q%x+ONvZ#E0awj zT2hV*DKZk7Y>^b1P(zjyDihpbA*Ix`l7#d#t%NSs-?X2%?Bd&Z3H0^3*kaDbSZ(Jo zHCu>ALdH-kO7!6dmHIp=NHHHa?wWrCZ+9=AY$5ik`!KjgK)c3y;< zI0~Oi$2`Ua=SBwJ&Ot z^)~buem(27+K3)F+tp@SgDmQRO&84Tfc-G4_Kas!=Me@BJyiSVSK5ZbqxNd7Fe_~W zhzUh22xuz^36L2>q+eAmg=s6Wro9X%5`wK(SQ;B*Y1p$@aHKXap?3LM8(pZ;O6sy@ z0M9%-`oxn@*)@P)k@-R+zs6iS`JSHMcB^NeUHj~_YoGY%Q(oxOp(ckXo_s1WH6lFy z%(J7>P+ip$G{I7U+ zXGMG)L=7Ptf`rh@V5$)h3Q6^(78O$$ke5MP~ly{ODyVgu48AP`0HA8WONP>r3rs=B!m9c37?s_s3hvJlLnLb^}3?Am&`v3!Pe+pwE&45D6ky=4ZtQ6N<#aFI4BcqELds1zK%# zT~_!tijbhKR@;b|qrXN3{k?Blt5Dv3BhlDyR89x%7;sDn%+{x#PR*D}Zg$gM-U&m- z5W;apwJk^{q|)eVX|y2(q}1<=RuIDIKlE7*%z}uNO$D(b&>&+3oMj*))qa!>12Yjr z2+CM1k}YAEdi|$`WoBgp0X>d^fmW-v_SsRNtC>>r3NsjLa|GCi0)SR4Q$~YpjefMq z(-s|mOwPqpQWeS%(aJJzwOD3y?OLhNa{vScqy(lAKu{|S#dm#6-$Qn2vXnmkwF10y z+r}X~Op&9bT9K?ibO%}hl$`@pOA#rPGbdFxK%qAUTwOQZV+idSq;n z3&>Ups(-R^gc?cJJ2hG=g|SiD`eUNra$!w-$q{8oJc%6#h2}42!#D4)y1MD%MrTWo zk-I6MG|>}=vv@4lny#5_koT%&wsoes6gpc8>p)k5Z=+G+l^L0YWNt}n2ySH56x_SGr({h&Ut8Br)qDPgv69&0WP=If|;O+HCrH*(aUD%F`c;?VEC2u@pWt z0Y_l*jw`xyv<0xzo7GisWA z5m*6gQn2#eloW1zN)+U$<`9@KncyrEi~1QVv?wY*R@2`?Y;BH4@qK$`UyDyFrjlRS zc+Wol%{2_QCm^X{B^tpp|8laJ`dCmyz(ftho$e!fZ<7hp6<##`~Ezlsc<_+pkL#)2}Q?EYj zIvr}iFaP1x{dcBEe);(~U4G!tFM8FEVH)Ka+uRfMIrp^Y*T=v2CyTy)?g85?=eq{p zayWnarlWQP*8KXoBR+fu0N~SKzUiph%y)mc*}e)zh}zc_CP#ROKbICK9S5B^opt9JBk zE|?kj|8TFfZ@=hsr|$n8;fjEP$A5p)r%$`u$p4An^ruHWzwo*cdi9;>zUdotzkl|dUk32sfBN$CgX6jnJo4-3K5ykG&OPf|Q*d8A z>iE}AWs)qK4PDyY05c>rlaMT>()J3$?6l{>{6yY}=+?>J< zLKSj^P(?rc84IG*eA%0_2nr0C@?O;Y{MLV@W=h*lwFJsP2_24$Mh~^JQ=cn`^tVK& zd^?H}Ca=L5j_Z>5+kjwJt7REoI4S=nCxJz!gO;)G^0LB{B8ud;fal^$mas4WI!Ca6_O0ZbCK*B+vw!Mll>j zzTNJa`2w2+fM*`K|B*ZIwm%ujG`po1xW$l+3?c(%5-kX8_)E{(?$N*98!e5d7aN=a z;n-@Yl(nN0*^}IQ46QX7eF$qGdg7_pwgBnl9UuroZ2%An;0@>h{*?W9rn{CN_U>2w z===9A+EHm*Nci!W@$MY+E*o=9ZwNCGJSod@A&fbWYQ+NLu7M*z%%@*_@2hqM-!*Xd z4G*5O-_8vJPP+Pv_wHfiTtmS8Z+_$KuI>1tn?Cu<-tWEPhwqu|^sM^WzuT9;{*X(% zzJAe-o!jA|n?LoM_x7H8_HX{kHvza9ec z!+Rg;+)lZ$5Wu?!?mBP|9{b-DKYsLy&tG=_JR$%>2tn#oPo+eM5CGJ-tH3?qI_}uB z0pN`!h#KUkBW2!%{VzK6)cv0YzX&ww@&cEKh5P}+B%@u3r zi9hsy_VjB2U=L~t0%+H_-m>Ja+V>NG=>6<{NA0;iJ$5(ny8k@sG=s%}d9ENoV_CFRN$m;Nz7^Td z#qE505{^MqJ-|n;Tr|h^Y{|_sr zuaKZjA_Hl|Uxv)`=R8<6!=I)_8{|xWpMFO2GxuQa!#w&B);@^V>L;JpIVUnIUx3J% z!l=4=*;_t)&>7c0^dNQ|+fW-Nz8v-8J{gUB1Q^EN%dRFLeefne@SQK-5di3=J)e9D zn^3l2dJG8=wA1c~9f~Xdz6Nt=k?v}$gFSZRS1#@P`o(8;ZU+E6z5L9(|LaUJOVdG_ z0Dkdn-%DrxeGTukJpep@*AISs!WC!Y%|HF~gM06=6Rb@G0Pwc2KK5|DZ#$Qr zV4Pq;uN0YgKk}>B9QpX~K6c90x~o_(W>E_fyM4e-sjx#dL+`ebR}kJXgJ1|_@4YQ3 zlw;%6wo_FYpA#8Wve8x3z{&IgqKv^{ipg}wC^jh4n+ZPM+c8CO% z1Q8lUl9&WR5|J>rKt_h>W~eJgBR6tRIa238l}z$xFe;&e#lk3@M_bAss;5RjY*9H? zGFb-ka`3xdQZc#oQ{9dFe8RaGIts7iloBMU$K1Yik=@#zZiJsSx!~S;5hmtbx?|v| zE(fJ-pzyM$GO-Xz;Z2E6S(Wf(qQ9PJ)d7{cQIy0K$C^lNaP2=PML-+JM%3ex7U*x# zV6>#Rk(h6ka`ab_VA3a{+kh2zIAcUr_p4I<1~C-7lqQ4aVOT8_tGIV@M%9h3f;Z>- zvXiBn{sLgNU8DPEE+6?OVgEG-Z;k=`{@EHY+B4BCchIH|dV_%3FkoY`Km|Ks&h)Wm z>Ps}w3PRIm0g~ouUd3b$qbJU!5JY4TM}xL)0A9KWmq0hAw&JS-Ge>hEez4KX}YR z`|NViKD(TC!-Ik#?z-gQeJ=UYWxF1<&oRGSjYofdta__{5`iB6#aa9AdeFYR9<=YS zpS$59K_uv*-+yA)gZJI_;C*&ItM}N0dxzE#5z(3(KGePMuHF0Y+P&{3t2_e?Q_-aB z1o~n7{XTrmb?<-QcW&1{g}r^yV^^k#i2yuw&y`oc;jno-C_Oi{o?FoBRm+#Z?y$YK zClb)5O@KB7(W#PH`9I&`Q}=qY5^43w;LqOkin%ZP*Z=qX!P_3!x^mrPog5}A`^W4K zs7SOPSgYDW0I5uP_9qYo5Il2~yMDP~-Zy{$a6{0Oe>mx*hg|k|@$emAnD^0z^FF$8 z-p3a9-tjn*Sbh81^S=3$%Pw6w?_&$+eeB0~5#4qDp?iP)(7nHP)5Aj0KX2;&_&Jwd zfA-!dE!_L0g?nFi)5GdZM@jGw%pZR;w-cgXtn$5kgCH=~*xa>BBDLH?73!aNKg2F$(C*5U>KJril zpYvV{F9s@o<1wDn6vMRJCtL{RH?%O#wkZa_%y36kCmd6uz?~E>QVwT7`;(0goccTZ zKx%zxwhkk~y%mTtoG7GQI)t_@koe0n_#QKY)^411B87Ib4!I%|bM$R_xWbFlc1?cZ zf}e^~BiBh$?E7k*R!zy{0lo)s#tI#^L$G&=Vu4385d(XF3ZWul;sp`DE`M8H*Ay4T zPqqj)@7lB@R~^jyPaSBo=enmCkRwYDR^6F(kN5o>H??51BLK{uq1s)t2AJ1(Rx1Di zAOJ~3K~$MZO4gUBGMi^+b=9Z}C6z}=hVr29U}FC|QpxU>iAOmqNy31fN&Tg|P0k$i z&kPn24IvthMx!AbLNps10G_G@fM%o7Y&3LmA)1W_iH2x2h=j0lHiYs9pj8O~CUGNC zqd`J&qlsoyOrMIGQ^ky_m_C(eOl{1ZCT2{-j2Se2CZ^4#sWW-{OiY`B=`%26y83hL z*1LS+bG<6^zEjTL>zRM_opQGN`GwE*-n#WJ#^(&on8DL$V){%>ohhcxq!}}5#th7u zCT31+%$Q2kr-~U{KT+JtBz2CMhYw_MdUo@j~J{(s+jdezAC{?BX=Jn>YO&7c`MJOf;K~dC@3Qaz>0;b)?7KenllT1T zs5t;|`h~dmx@Bv5cx$OQ=y%bpei_aZ! z+HZe;@s3yj>#2O%<+mKLJ#PEqz6V}^;Nb*3@~dOtecUT9y5*wX%a*R;hdKm+_I%qP zufe|@w4ndc&t7-ot9CR}pVz(cJOJ45%fCNmznuZ#x(~en6#(#tFaPcnuiqJfWUKc8 zu=;O5$4lS8GXT(S%U`$fQU-9y$yZ$PFFOFhW$&MJ833I6g&RKjB9;7~uRQM;r=EE_ z2(Nw5@K;AxckZ(T+mFhaftCMrIX-#%9MB^G2G4)zTt6$X=(f3VpDK{eCFx~0*-T%5 z>?f}W037qf3*P>+11>!Igb)4f{{PzT>eKL{?;W`-c$ZUGd>H^%-*#5#MMFoQ|MndS zxcO^0AM@Q6A6)aT6OVt#M=!zKzOv$ceCx#HfA+Vlj(iRQzdCo-nZxIQa>vJif6{56 z{=)6wJ#P=Cl@R>I?@n5B$AzE$*?!vq_y1_`B|m=6m)`cWXr1Jm-TnW!fn zV}5=7xxWU0JwAE$oLMy5BFA&#^66Hrq--JB4Al&K*m(W}3!Adi=p;g+E65W?e$fi=9XG+A*=@i?|H-We?vte99DoxaQB(+cIh0Cdx+K8jW z7LvAujP5KI-zUWriu$L#(#x-SJIakkMT>laYW~99N zwNIv4An|_EE*&>k#kNuaw<8@18QVRun*&--nBML5xJrI$&H*U22WDjuCE;m^&1z~) z#^9y78wbpeV@Y&DTZ$=wt6H#{PyD)zMjmy}o934$;cZV)!7&O3)I{g2fz?dlHgbLC zy^7QlT)hOcZd#3MXAL$dJiz8cNo913EPmO|-u2|{?^*lCrdI|YJ`xvge>LrGa8srUk+W{lh`X|p z*=jjk8ee>Mql$IB;Ulj&1ORaCf8YO_oq*K< z4n6CX1GWcY?&1H2%U3^i^c)ay`o%}?31H=K&tUK|d!KG1e8r=8uDpoBi*~utIPLMs zZTBtVW50jE_5iSF=T{E9@W)_&aOF>~c;i>jh!fvfUp8H4&$s>YzPGOa#TVwk@V@Wg z`_`8N08YAk`TO=ThCu)U^S^oNIR`xY-HsD~dg~*v-+7jez#C!iTKynivNL1PLwCj~`qwV`H{mX(`zx>ZPFTV9JAAI490mjHppXU>P`XYdN?%d-CPy6{D-*}g1 zhu>TL((eI4_eXzl{;v9~#_kjU`%8Omuimfz(`Wblja}gCf(Nrbyu$k*hL64R;?HY) zUoe2(jy&b)z0Q6&{^iW!J!dh1Cw_O*srGxgJxtU`AHC-+VAgBi2H-0zI(G-w?Dlf} z_^~y34g>pN_>NcX2w2EV%I)4wuhz5hdxW9~MQDhaXX zhHEc5=r!N=K7@S31*e>}-wgTC9sLKMbMJRQe$X6UkNN{w%2#TTfZ;%76ccPO#Pg>B zJ-C@3Uv-Rt^KPGmtoXu2A|Vv)P6EG`L;u)%iQlmhT1}#j8zCSn~B-_~?znu}yH7&9Ub|hjKB7IU7@$k``Z}(fS7w#jiGu zu%Izfv$pF2ih3^oiU?5E#7oSC%ZaF|ak6!dppj^Ee`5g*TpotxJDhgqm*UX3cW>*#y$T+b#*5%pv`)4yKAfaxGkOKrnR3yf%av zjsct0LsMXDAEkmpFOT%#5n;dpv0=bce@Q8Y4gx{y++Y1En`t>phbx5ox{ieqoG}qu z2CQs;Z9vio1``0$m^!6_nKNdzTAAU#x^2^QU#jzKHju&Iv;8|LRBAM*D2?s3sna}X z0xs#E=08QWe06gA>$8{o2VEWb!WIz*Wv1kG~`>#D1lU0o{%A13>dv>qag%A2B+>tpp)*q_Sz%& zbgp+^0-S#FEl2I{oNoJ}^I>F`{&svW1Oy4OWOo~<7o36A~^)0Vwi)+FTf4Ig7F z53l^HSxOj2Wdy~x(Jpaa;2djcC2g@zew(dBSL`GE0V~#0BvPG6GK?HO>W! zHjI4LD;KG1+1(lM=r6OTIpIynh9YsUwUlP9P4>$}#a;l+S_Qx*fyP09l?N0H5`Zgv z|0R2YYz?-_qif1ka4f(hCN5(x92xp+#JBN~4eT>uRok$YRb;^SNMP;31#iQE!K}~m zwW?ozn1izK5-J9>KPd!BsXkJ17bB~afK@;t$ec|90Mn+=oYtgS+id;Mr=GQ$6+-9N zKiAB%URzLP?0i(QDA%dYDb41TX0thC`t+cBO6+*TqBSlarcRkkQ>HbiPM@~Tc4Xc* zi50;Wf}28Vf+Y!k!v)A(8BlD;<)0ISz` zXqxE4+!#F8YFvKB6;Dg?v=jiYSubYDh{U@$ZoIt488NfWv{;f?JqOAe90S*p#zWk)*G%q!VqHGahHSe zsY`zGZ~X_%y8V)WKkf<~^iIh;?f&M&u0Q_M{~H{jrn|znFMH=3apWKG=$ZXe01y57 zCs*wM=F_)jUj6IiF5=Tax!=y<2k-jH71-za?HFrJNKGY8(PYdLJHGq_pFZ=wKfU|6 zi)VYZSTeupO-o<*#s4^FujSu+_a3?&z>+yr-@8dE89Zm<$GTqslN%2?ZpRzH$Dcf7 z=!3hexF5d$qD4pD_U8{ge~vDT7JE!qsxp+BzVTQ^$e9+=v=l}r0p?6{W-C;Q2LRe# z0XV)qlPA znm51eyqW4!7DmR_W^467hOfg*J~)%nGQ3}jB`u+0W`-`C|0hxI23SLhWAT{q zvGKW-GpMc|9C=nfn|Z#XF~&oOa#Q|=eiuu&e3pt+qw(=qU#@WwXwSRdo`#Qt2}P-YKxTwqgDTGm`*ItfL#pAN-EEQ! zq`#h*X;Y^(r%e%4r%v5^8xRDf{y0iN9eLIy2(S?9lN^TP!Q~ZQ5#6+zXYLfBp6kf+Rz8eZSryYg|{5_swLMRv+sfbz7K#ykM2G6YqtQvto<(hYTpZwd(*A}fX{s8 z|Bl+-*2j(qobvtC7ryI-UsFF%x_bG3I|JD64QI?h`Ck`)7yxkKrI)^UFYW)l?!(Sg zPp5t94?WvzYDAKOmmK#0=D+Hs@4kN7zwg23ata1vht7}udijg@Tlnu^Hih-!D^J+o zD1bp3GqBUV_nrF1#h?3X=T&^%Pj}JuAH4k=yN{zYZ@S}v-SsG-Ih=$g*eZ3^LA4)E zg^2*Z`_dDSI|l%8^{2Xlqkr&4&%Tx!_|=Du1;W8cUGUc5o^bA4E?DurS$NY?A3E=S z`<`@V|4H}m{h5U}fDyo47iW);Rt2h-S=jHOdp^APPXOSc#g`rVJnNaU)hj=_c)zYo zj@Vnpx6kQAN4&zVNS^q^N&1X4Eb1LFZ}0ipzzuyLJK3!?n1SD%u;e!YfY+RV?7=UV znN+%P>3xx)h_Eq*0y)!KR{-#q`MTu=Q=l@hf;H^Zi`&A%zYe9ml#F|kG+IWbQ}cgD z;J$vL8 z9zDt{{x$uj+=S@pFXhg~^A;d+b!jwfwVQoA{~_@&6i{iyDn0(A;FV+Tk4kIM*cLEQ z&mbfq%C_^C`wiYY2CPOCW2XSGUVIbQfB~C?1OH03Z+i{EN^z?ji(Wt$8E~f8#@@NV zIxt8r2#8rSL0@PlK#;nyR9I*e2;z)#CJ;(<{J*!|yZAkCKlQXvKf8AAyWa7(ncM96 z>}W=AWYQ(?W!doFkpAW{efrdn=Wl<&YxeN`dcouR-`JRBoMud$y3MW~yS{FJ0gx$P zeZR2)fTobvB_35S;(`w~-{@^;M#e%ZT(yF)Id%0jYyY@%kY@rI`_EeQt2NsL*nid|H$1lee%n6s&0A*e`{I4>UxNo8&i?x6 zU!L)f#x2i2cb{nw+?hRJ=nIXh*>Iojllg>S-3Tb!X3@)7o!1Pk`So${`^loq&OKmz z?{!YU!JH3;oM+$Ne!vE8UZ7rC1uz@B564acW5lB#*!Z(LU^n*|b*+spc<>atRxoJ< zG7&g&4UtkZbIv{fPci2e@ME(b8F=CkeP{jrEvJ5Bzvr}%qWx@M^dP1B))iSMTasIu zY-K!}N&Tm#AJ(?AwJq6_Jlc{iDO;J85}Ep1R^4OFkwjdz7D_-HM+S9JSxnXMVs8ts zT>8U0l}@OY$roQ%*LXbbb}1E#u-3e8XO(u*m!%cj_IW>@iJSe~eamlmw@L5+v6(Ld zZ+?V19-RB2y>xDGo1ub-(z5pEtzww4gO;Y^k6l&r#hq&sH9auaqJMtO>+Ct+H%eN& zZvf5SIN<&5?z=IYOgTRi91Pt-ii|QF>%7$E8IM(W+b&qL0I2T7vDzw3749lzoI7cGM|P?kppv%{8HRf5CPK{OfL)T=s)|@4n-y#~!xAlNlvE8;4-*3fZuI z#Q<$JeM+uK+)KY?Yd}T2=imOgCbKR8kve%yXGaK~Ep;0e?9nsfqR0G@w%9G{Qk_io zL8Sl#ls-)T1z_i`X72vtJzm>;*3EzZ`@Ii74i9}t95Cmldo|-DD|=4ftH0m(=skb= z#ptuy=%~us3}vyPcCOXw(3w={+5xPOXjO8%?&g`%gjnZ@W zeQ@By{##2q*lZR{(>))(@x#aW{>;VFb;%b`@7&IiE&U&Bbtzl@t|QHc7Mlo+64y>; zP9ig$x{)%MLrbQ^0xHrvmtVAPOmZuendDI^ zTg)vP{>hL@WSKMv$3U_xS36=c5H%qv-JLXkJsq$sISz7InaNtsJ4dYw^Ntp#?ch_0 zcie{(xXAqFaOs3oNW5eYj)gUfp<>T2k(%HZG=D)1I_ZE6Gsp^4LPc7=_vf4MpXd45c&LI{9MaPz0 zr>scY)L=<#8jJlyp#6oZ!H8@nvFT+Ou{JRXnRKor+kBc1tQ50>XEt?eBvk&{8at># zR*4?!fT3=|P>w=xc@u;(0wxe=+L!@kEXh^Uia=!yBDRNB+GBw4{@bHdr`~te`w!oF z)>b)+Mjq+)M=0;#Aoux2y)F+EwB9HbQwq1A_G)wK_HkE7bi>W}-21@eQBT30#+sFR zynp{$k0=lOZTkp-PaeY17u0FIeENe>JJd#BrgUl%TnTx-)|_xt3u(X#T}!3q}p2 zjta9Ik~K4SR|Q$!ffI=Rj0G&-W6AOIGVw%0msCQ#I#4CLRx((w%}Thh61=)qMoueo z$RsQEZ6>)TwbD0}JetXtR{ip5CR;2s=1d}!n)R}+H4h#M&U4G$u4TZ6y{6{52c4bW z%u#m|BO=ZVm=_jBt{GoW_|s>^N8YNyDM#B$Tf%7FQlg&!_Qm41UhDezz2xi@^iO@C zMb7rOJZ2qdoGaTF5+vk(+f*A6Nz~%vh+JnShXrYBPiYnOl)>U-jS} zs~%F{w^-Xe!DaQw?ya|k@KxZhxZQ8Bx#UQ(u1h~u z-4Tw$rc(@98dHw!C4?YAr){xftn!%T7!YHqamy0@FF6ZCZhO+m`?fruIc zf=HO#9c+CRh?b^EZFN-D8}vmUXP0UrZw&wS$ZkMAHTz`mtzp2>mw>bJ%$o9gd>1g! zT6bU^^@n3@zXSwJ4utWQxa{Scb43ucUYD(am$_Hb!V6}if`_&m335hLQH*s44;zMr z`clwW{kAf0NjaKH_0Y=ntCr+UN|`~jw4VT0Hz&!A&?Ex60`_+;IsY~yda((XWUVa4 zQZKb)s-&}COYnZzo>3wmWAwL5k`lihJlF6ParTBn4u9J5J($eQ9;Mx}Bs-v67xQ=A z3L;3?4jdISM{_XN3B3ed)$rV#+`H=afGg0-Cf{DPb`7CMF;%>2uQX+yg_7`YKFD`` zt@iUqXX|c8dNumP4E8~sQGGAV3PXr7*+1mH#)8Jz%9X=Z`IL|k6&=;fv*0>P9X)r{ zPo6nhw*sTc$5Z4nK7T6^DfZt5i7Fbyekf(v>*BCu3N%yHyA(p7fu*jb0@Q&FdP`ib z*2&OQB5&AIb`e5ob5VQy78%nB8yk5ni_D4jq>q3A>HChfVD;%Q3|G!E;9?7~3j}zj z;gu@~-r|K{3j1kBS=jdU*F*%*<{|gO|KB;Q7$mc>mw+-$27@GVL#XfcSTJQEAt;j& zf#nL+(x$-8ydUM|(3TcQ2ZNm9ncw%=#_7=l>HV-f=l&>X#zT(^8@9^E{EKz50Bnz9 zFcLB{!;j%9h50P)g%qy%yevZ+RWnXx=Us19h)W zOR`j#+;|G$Ome0km|K}N9w61}y-a37Rh0`t#0`S3PCY02S}~;uYM%u?y!yM(B@;tw z&Z{M*{Fh19>aGSkvLD9DXv~455SA`SB(;NJ z`=&Cc_EgpsW03@IR30iiTbEY{!|3ixKd@^T57~LlC!&0WI?tlTSW*=615Gk7u z4<$3~2Aa|WM~(!xRuC$z$}DTk2Pl0lktP`=l8nG6o}C1#Mi=$KeaMUM5M z5Q3Olp9`VBk<-^<=5>3Q9bYS)?$wk^VbS2} z$MtH*A0fTq-tJ>=Gp%%{HKfxu=E7(UR50LJ8s>~MFE7#Hrq&?Ml_*5&Dhm+65<;JQ zhz7A>M|sUUhE!_{btO*dTw1=LQr(zQkQ(9HkIjrR}ZOsP}>QG)NErHb$NHfV;Yt+oJUN9uWA(35C=knvLGlSfQg{hlvY`cy9!jHUc z>ym?Q#U(>J%A0egFUc&`k!|LJM@4@#iA+kX50;WMX0_gsdK@wZ<9b+JGH>L}_u{yO zmQneoY8q<^L5pUt;HxsQS&G)v(^isW3JRl5swIL1!N+pqL5(GWzm|%KSiW#}6PTN` z?A%tQzuwQ>gWe)6gfefvm|eQ1O}tcK{jz4kQ~1nfE7#*J;;ww*L)V;hZa+qP}r)Ay(Q$G!XX zdHUp>@6OK7&dz*xcFzt*{uz?|oQ48cWYRlWs;63mQy6vw{Cu{45E2K}>2-{8r%k3@ zG^m95B)p1*v|C%A(-ay%xu6FR>Zd#8Ix%po-i@AnoVfvby(TY*iWJ zh10|$;MEDuxBuj&2{bHBpZh36pq2KZa-!Z~(pBMJ&vRk9qXuF&8Q?l_@#v)}X^qZ7>pnKkSj&!zoYoP>US!ftx% zLuTKug6009N|3}Vab~)?m}q=l;nLXDM&tUz_oAgG75Ia7V(yLMf|aO< z_=7L8>`x5|hKx`$j6ZdkT{YsrmMEzc+BNi~B3TmCxZ;Wbs1I1(R6(bsGi%(^KT%$^ zX89z|qoAOnicpPkSdSDns`uw1Y0gbWJlz{_zxd0&Wj5I!+&2+F`&;%;KRHr^xfJR2 zI!5MAn8;caJ+!ivTkZLoC%E|xAI@8L0@akU4i5YWhnAbu`f zxy^T~%~7%Nlh21~ed1Ro2W7z)ICf`I`3(z?evI;sHrdOF4PON(7Y>P~xE@Zdh3(3@ zO<}HhW_}S<`x}{nG$<|*0qaDA9@OKVo=6xQq4Xh%jci1ekJjLy* zeAQ#e0-0t|<~*YMGJj@LreYrE+IHA6jal;gsj6yF<|(%h5Kj#?p#}5WOls0Us&|c% zADlG(E-?1HRQt5rpt0EFqKcKshxxh2>UzUU%sQAoD1VOEyTb@kik~TPljhjsj*5Mb z^P4A!MxAQTAI&iG3qbeKJviEMT8W3!NITmu!H|@tZrJMC9A*Q_ee5=N2PnEdzHk(8 zzYn4D3qPd{nc5mA}na8SOYC$?nLH7jTouF$_xn$1^2@=Yfzvs$I3 zO;u52rGZ?$jU#;i`b#d(CxE!#v^@V>+3=4C2QrzhWp6z}r|==Y>qbA;b7`}$!&t-` zX7}J3Cen{X`eTLZMY%%Jy%c9YZ#kM)lpGXIh7>A7f`jC(ZnGRz*v0Q!7ca_fc-s|q z%2Ul&=ZKPSgF0su$g7ue1GwPx%&?uODpW20goF@$qx1W|&cC}A z($3Zgc3>}o@L6B>BWOhi-kuL)RGqDf)gc8`%tVch6-&>vp{k%nq_DI?8AN57dZ5lu z*^IdClfs}I^Mhib^A9MT1m?09^xA;C{p%Cs>3Xsh_qq2+ak?kuQmi?~Z3Om9E$d$9 z+=B7C=YfRKLX?IA^gXzIlT*+olssOn7z<7otejl;*!nlT9T&~4Sh=<|+D=Z~PUJB& zx}QB?rrR2DTKGAX=9Mzv!N@R%Q@!=+!J{FeG=9rA$pQPbwCj?kp=C;8i?M5xj#JR0 zeu4u!+4=`JUr9CvQX~mmsAx+uv1n?tx|M=5YF|~3*^8WN_V==<>2Rq_f0_zRKw6ii zFpI7WD|UoTY6meBFD!KIEhz7AJJggCKjQq*!ckX#=7PevezmU`WIXz$=s5KCAq<<= zov)aAU?3Y96a?c*EnZ%=Jz*9Rt8mqiz}i+Yt$2&Wrz2}wUf1Un*jCskwVOCNjj#H4s|ysZ zFJo)2`|&}R&g1a(yx-BMZ!)PK2l{3TYI{vI)&&_E<#AK5_DuAMY&!SK!bJ;T6}Tg- zvh~QbNZ^C0S1>K>&XWpz4L1s<#zhe5Q#|fr_hk8|;?6oyDvq@6MXY{+sJEQH^NcZn5(Tb}0R)YT^g` zSwmuanr-oI6&)xefh9L2$2!_3dcScfTBmxW1HcfElWs0D=i=_9$c?O9{di?#rzE+c zKL{{uPC~aNcF*k#nN(7wD?w{a;P<+EgJ+R_sSXMn3X4PsQn1D6>YSl3^hB2J7soRJ+l~K_H zV5;)<$(dZqFW|rB&VR&55S@-DwVNgKh~$Nh4i>e6MnddAMMdVaoo>t37V;`Z5z{#|ry{p($IoP8ikVmJQVt`znZ z{X*)ydq3u9rT;azm@L=&P0+--Cn6>28%?{XUrg!!F)h77g$NL~q2NABqkK?l2LO!S{|1NC0nC8Kge-=DX z5~c5@{?qG48r>u784e`IX=UsGb&i%h4cfCA_|l&I&icP($-_~YsQuW}KfC^?ve=>p z5y%7>v8nt2TG9RlxW?aCoufmW>_ob8y@S(`3X$zw2(&xT{@yCk|s1!D&icEb7qK_najj|Lh%|iPJH| zu{t^SXy7MzFmL5JSos%03FLtAb#XCOn|+E(H|&p8JQA>HD%4i1yLyLps}2?;6W=~R zK=xr|b(rrMomt9R-~;_sXR2$foK;qnCGLQMN#ksWRT7n4|J8 z*!DcPiT7Y3JN1LHb(NuKJv(`Iq+-Qk=t5+k8xZO|g`XhqXs&ZV7BX}449s6b%t0?X z^Buy*Cn)R~_h&ymnWs?Dbm{)Q-q$9z-k5SLiZiVqnBG3OltBplFL&l=^m_gBf*L3U zIn!8NS(k4~Pkb_?{xxEbaO95R$--f_he&Dm6B z5eIZ54L-~XA?O7K@}W5&oB#!dO4m88YwH|B6FG@3Uu{e-04M*eo`bmBS@wat4<=v?1(Af zK1f|HDZZ+iS)sd*V$<7zm3@n)pVyfq9o0G37vaN;;n?o#g;dkTD1&H?hSAwr^AZwj zWe|{NjIj$$Z2|qkKzHOnLx0BYIoY)BCIGb0p8MLo z_#)>CuXAu(A5F97Wuw#~W^w&tb2IDS*dx1R#P$+AJI&EQBWdsMr&r!NFtt#)SoOhoS)H7zO?adR+4Qhp5yKHEb8rC+r z6jW*O!e#!HnC9ct&e*9TM`Wo!yp6n?JYvHSU&~L8!*SV_Bu#xV zU4GJm?!rE=g~#+nqq|ST4Eq!ZnP%d~MIx>I(@rUCuG_q2w<=-J&n4VDJnx&LI5Fe_q*D2vzm6Te4BiauXW<64?G%D^2!wU?jVZx3M$P)z|HxhGNY|; zzeycje&jR3KA>f;TRIEl_;ByEQgqhbTbTxE8)hmOpDY&f9evX9T< zSmgah&B~SaycP4BtMSwiPT@-%99N|N$8~$CbrD(4C>#7OS}K|^-_ z(!N1xSy_yZ9k6s9@6cJ za}h;UmDm&Y+C0*AdIUcA+dES87fSxIiVpiap1MVx325wfLqSoyczv`RM?JK!YfT0! zYmw6vBlf|M9_UKOfNAw`zgNBf(9L$ES(J$Sc@NX_w#FnQ7tWfbi7WPK?0;lJ(;1?2 zbL_tML9f$#a&P)L)Ng zBZK{Ki<_TI8Lr3Au};r3F~@3Hi|O*z=nL;_U}V_PY@e=7*(8UaG{3$b*V43N(}u`? z>$HqGqlhP&r}VtW`KYlQ9n1CnXXH_lKH+w(5LaGGB_aZbkPFvw(3Aw2RA?T|vpiK{ zBQj)Z&UTwE&XnG}d;{C1up5MTpXX{y%cw$k7CM`?anmL0+;z~j>%=}jNqb}Bl+*&o z%OBkQL@46ef0A2U;?;TujK3S3HY_Gi$Ks44K-5c9m8&#x)t2aFl6!fd7_b4gK5gyY zxgB+La9VZ?VQKWQeVP{Qw5!fZi0P9L2j=Ywb)A5XHmt%3n&aShk{>`%So-VK$3TQ` zUp+s+-cMJ)K1^8ufnAed=l$rjKY+Q|VTWQQ3j|zlH#)qtR#|OERezSF%rf8OJui5m zvMNQ06`ZL5dUq5yaHQ5;e4+e>za9BkkwU?pIbZ|5J4(~*{bbE8{XcL(sypFCctOal zyMEMxdiFoa0k2cv{?2G5^`WW2oDOv3U!`iOtHdF6)jI#d&>5r`3W?@Fpo&QMC*Qpl z98~)H0;Sjg#R_x`=R^cd9H?+5(Bwwm`~TYLF-%k5qBmS?b z`0*vmi`uY5$Ny{L#>czcpL4cr%@m%}(?$>Q<^L{e+@FvPM&0b)v^`51$=d#hhW0`J zC}Y*uS~9q4t9V*BZvqPOucFHg>d!yueIf$#X*8?%|3XHdG3{fEGgr;lYhPXz*)=Rc zmi~>*fd9yGB|)ld%}l`VYv6tzU)BnFQ9#GXAOD*PsL>Gx>NHiJ@X7DTs?7^?MaM` z&4&vqvTi&~wwG802~i9vVN|PfFz6YK2gz#2zHOQHX9I(Oh!s3$!NK}!X52_Wr`)}m z{oS6#kFbV<=hMUYHRJTn+>dmYK?`im^RzYQkaePVGuwfnL^4oJ4JXa)g9wcV3md_~ zUr2feM_@U0@YP+Dt(i-qGM1!b^>GZUvI`BqODdVLCl$PQ68A+oL?J&uB#EKiqon-D zllhIyHtu$82psQnokNlwDi$2rrOKfFE6&f)iJ$PAtd?|~ogeZj+NpM0@;)T-MH2B> zm@)4Y#>q;dnrCE{gKCzOBh-EX&2TWdX%b&BK<7Txvp2^+ICuAh?+^YS61wQ*d(fGH z?8(P}EibNPQqE!y;q5tzekb2Eq&aR( zZMzdAIl}3&59ydaFwb)<(7;P?`xPz#I7{ntJTKde(dm}cK_Y=cy3K_?`P|fQJpRi4 zgx8)09ln3D&v7fK>|MFOj3=P1{6RWWH?_lq>zyeUQKsR0E_?&WQj%NCOxSK}02hQag}5t6|7xi1>aAdF@9mIhiKd?m;~tD!$!ZD~ zMZyD(JmbAWqglu4Z?{T>JlHuMb_XvmuYqfz2>}1a>lQ3I=17NithqsKB_xZzfg6AC z>}NZHcP3RaGl&lEj?*1izot^?go4tK=osYBu=8W4k@=JOUW*nZ5o}Sl2osw`=s1~R z+pJ^PVw$uNf~Jn$~$*-(>FS;i^QF_U4Er=`@I=r>X`wS;`& z`nnc;MY0CRJp1vCY+(92`!Q4OA>KAw1~4q6=SOM`&f&GeIHIK!ciBT{?Emm{Tf~~1 z->x2YZzIW4=eH?cb=3nv<0-G?D}Jboh>YY{3KQJ?9WFly;&k>q@)q3d5HJ4 znKwF7qr}qAr)0a6O$J5IRfVMkDf(;n16jsjf@2d*+dfCXOS4_wO*I+J@v%R*Oz&33 zX4~u1KPMrI7FiFx3a@1&A6;IL4Q=acTpnHI;n~l-3Y?y%#^xW~rd5_r4=M>sFL0UO zHhBJR67iY(VAEjH=Y`2v$n`M*A>_`p(b{Jm6$&i3VQt@uIv+ht#t;JPqLBi{4$eQP z<0SGCOl)}Lk1SsPq9b_|xFg-Eu(z_Z&`D`KQT-k3YC}H3%_f1R5h7O_JRk~_td@=u zUKy)K>wk1rIP9VzmNvL3wuf|T<4=8D3& zJt22g5FNlJTqE(Yv)#(O)pi4-K(j{e58Y~ax|2sQ$vBvt7@TgWy>*yzMV&?8R#o^;e&5ok-xzK5Fp8rW zp6$w0+jC`XaO5{Rfz-S$_igIAH8Xsfp9r`r9VfGhjw1jZSX_l89!}6p zh!MSd-LTR`38WQ^RRR{V_Zke`SXAT@$RrXIM;Dpy-QDX7 zB>DoxpJ3A1LIP~$YbHE_un}nI;P4>RlD2qh?IX1G;phto5pP#C4NqZ*b7u#F>kWi` z?+>qEbf=*hUVnX+pL>@_TnKEWeieHq>xCwwZz^O{(CG_4xeFdCI zg*y5P_F-~IQH%4r6-l5wt%B_XLYlW`8)Q9tY2o6%tJlFo^khMe;fn5GM_=VW^%^xE z*mkJ>{j}pJ89KeWzk6###ixD65!+F!(+vy%0MhnproMSY`uhPq}#Ov>bxuFmrkA&lR<`VC1Xuag( zM4fSlE(sIE=!<0J7nDi_*(t80|u&)0I;-kmG5-=!!>3gJhhHjQ8bz{rG?9T>l=>a ztBPOSt!|x>n|`Ywe)nw=s-E3f|HTu}z?-VF3M>}!eRUvatzmzk zIit>&l~pVFb=&A?#=jurVko>JJxz`FErVq{yrkP1Q)?Yj`5LfNZ)oDc z4!(9s?v52~%=u38OcfA<^n0l9)MzC^RY! zOuAfmordjj6v~fG>Ds@1(x`Lzjo-DmV~K9iGHki{A5z0zr+#JIanVd&cpmn50FYWCv*ML*>b&V2Nnd;W% zTN33DG_IVwS?*2~9~0{}#ju!* zbD0?Q90i*#q&hXjv#d5-7|QxIOWUK9Y`wa3X_Wy)a$|E9^`(f2@IBi_64RK9Q1D;{ z%6USp#fgbKM>SLTrInSGjM7719~XvD4?G&v z#FhUP4S-eT3vz$Vr0aUxqvGgntl$bKcv8)N*LOPr?>WoASM^4peydP=ov}`|MRb zQd*(K#kq@oJ6DV>qus4KrQ&yVG;jsvZiDebuIuCrns@LYDGsbrjZYvKChZLyzwm_28v_i>uaFiT{AoJMTN#hbcU*TMa}tbkt@SNr?m zhFSu2kPxvAowTB;fpHzmT^bkXRlQL(dYxO-Nc3m&93hZC8z;2>te=5C+DJsJ)hmlv z?k$-{5O4Fu<|=4S3+^84#d+Ncw1~HPxeUbnPspKqp%|W>$pdw3HT>F?gJk$FFf%ZC zA!6fvNb5!ZE#ZwjiyjH$y^qIn9ZMM<9UkcYj9~+1y4uG3XIVlvPB0}E)}+k@sk`ae z#dG*HCU>WA@wW*#pLa*iaK|hD3=z&QI`e%_!TKq*S(_u-fz{*Y#ujNDSHvx(l1sFv&T~XJdL#7evI~0UAzI1%5GnZ59CfKhiYq}JMAT{tZ>&622GRn@rYd~%X_eUC zE{*PqE1gGMCN6{b7rAY(Rm023!vW54^X>~co|TceYo^oK?@X!OyWazaZG|_SSkgEX z=Kk^|38QAj6Vu2uWo)LE*5B}n!)qS}Y9tkt1$16@_*M1V~f5g8U5;NnZI? zArD8c-R4|c&-JSw1`+%~AkBUg+b9V1I7cX@PC0Hzn%P9~Jt~R&J2!t+sY+8aG~5q~>La(a z-||2eh9c+I_=$n3^!bJ@3OkWRW8;P)8n8~$SG_?=uDD0YsgMX=yzz>hTwQ^cpMnM} zu7yF<%4|_`K)IsJiXA8HMg@6gfRd^#eds8n8C zFOa(!Tp=+d_`S7f3kJ^Fgw-xg7axIleOjnJzp&Fhh9lI@ViP(J*Ruc;3@9R_H?Pfo zqu~oI=majKm9O)fB)(XubeK48E-uuHmFiM-Fx15kx9U*kJVea#io{yo zWAF~lQkVC3O~A%ory2p5d9m$uy}e(1uuypCHk_P@OB$6cy(i@@XYY`0(1jG7sBcx$ zt@{N^PDqD_m^gPC^f31j^%Im80(K5={eu2?xyh9d&AR1&T$y`S%ep-1~&hFtkWPTieM`x#Z=-Ico7Tns3j zeowb9I5~J1(I*JChGe4cP!#>6gZkI1bWNaT>oq8g!V|1}Q-%Wh-7#>QWP13Cu*dOf ziIePVtDVeb0byf;kX$Dxg&g5Q5HMW%BnImu@iEK%{%+}A7)`)i@rw7+RX^e2>CPI* z8#R}^to>abSxUlM9lg4z9UC!}7{i!9E!tx1TZx|c zSIa_&K>!w9gZFs#`%_t7F=uyC-JW+|Qgfa;udX zC;_hc&@lBWv=mkZR^x;%;mGUgDaL2lZuuD<4NP#-Go`557MOvdo@JFZ~KDP*kt{3y5wlmgxn<&~Zs8jk0ic(V~u;C=c;|mUS zOJqwXK4~twpndg2sw0K~8qp`4dlUZBq?Xsm^DnUd%S-=^C1?aA@);phMrfd}CER`? zpMLf`WE9hT)(_16w6w@CU_V|KgrhoV3u`1-I@-yJx}_%y?3VqoSvCY@#If4F@ATq! zVDNcWCXbh1^7F0htLdiL{z`>ja&V(608%dgz_%K8pW@kY*2;=p2fJr!&Z#=J*IxFF z4l`|#Im1JGVpm)~>0*LiuDKl08S$@f&Wx!P`%{+t7s2(NA~%s8cUz}VZq2E^({S;F zA&ze7P`~F_1;CqsoTu@**i*=fR6iV~z?_5(68x3|5-EP07v6wbnZM5hn6SZ#KHTj^ zmDcXx_S!&=c8$n*MDDtL;hb>@eDMMdzQDXF^H|hP6nQ&waJXB` zEKeSh)#w}HL2!^iI|pCYEuI=r3jY2kRp(1Skl@`7`W+frEpE97-$Qmf<>ZY4uY58X zh($6f<|;zW)FDQMqM(Cfpe=RqiT+mO<6;mY4)*6AiNq9UMC^Tyfi_{bB+SG6`!0+1 zbrR~znb4N!8m_$>bpn;XGWy!t*;gq0?^}@JK{REcbCfV8L)YPqPIlV}($Y{A6cp>? zWq%-V3OlZ}(Elv{wZ59{e{=AFbfVk!&Anf9E0vhBGAh46=Z6RWR=$2=`XE3?>GBH+ zX|HP0DK^vn`%{oC@~7?L%3}`A4ZCrUgB3{Ra`J)_Z6XVveMqpR?q;jr*L(q7=cQp- zz(=5_q@suKn1lbV=OYjXv@sWsFr|l+2#-f^y&xa}9>&8T7UhfvS21ni`%<<-+ zm@j;7-yvh7_@@$OuB^tHwl?ZiTZ^FU*3nYDiTzEGN%Bqo_$6jWI>R=5a&= z8I*Dy_Cm6^wMGuwql^AA(@;|!`i?zJz=DRbEmS_RMD<$tzp^vycs;S9w^4*`d+L|| z!y!lvVd?_&PYl6-6S7WKWEzD6k{XFn|gXuEBE0to0nOONsKbq9{1}Sz5Hd1q4o)2 zNnB>Etoi$>LXDSYQ0>79)s)e9lrXy*;+#Gw4lCmaMcvUjB(MeGE0m+NEu_{*P;vWz zIOKx@OwXAcaIC?isdzZ)(bxNSO8w*RzB4o~`NV1SRr~FIh44q}Ti1%ima%g|E| zumJ<&ld>yi&21i;H()PvCsa8s(|&X7gra$&lHXSk3))iq>$9<=#%?v!JNFW92c^ zOx4td4vTAIb?O-VZ5A5kS&W6m%7y)yI}KNsCay(3UxYaOFq;#p~F| zkuqiS)&0}V1!=aY_r-_%%Sgu+JqN`&hwp; zA>SzaUvb_EpF=`kqx9yTF-a@K4L)<$sFmi>C#iui4;863k=MUiNxdnT|CmGg%DEeo zfA+CGT{|!gZZ;@0#uA7i@3HDM4P)qJ_Fk`sM)OR9yU2eTO6k;vJK0t-xffa3S1cTx zQXj28Q!(P%yO^c{#=Jb#vg~Q%LY*;*vn3(LwcB`U*%}UOvZ9Z-Rho?@#WBxt*Uj#& zt;X=@fGZF+iR_$E1=9g3ppw?X6-bb_m-;(E6`BIE$03Y83S6DQvuPF>f>g2OQzMGO zx=Et5hbE$23o+*Dx}_><&aTDG3;g|&4VO`HkRRgdc4RUgdVwV;u!@b!H=fFP)47yp z1J*Dp{mt_*OtcPSFP>I|lsMB7ES7A50s;&~c6smj8=RT*Vd7SWUB*jjmSq|b1VK@ z@RN-7dRFnzmt5j0O%J)r>_`^zo>Tt7S7m#8_5 z?WQ;aAvGhS9hb7d6_T_Vqs8Mg)U!6@#V!FEt!b`Qt^67{7O?K%hH&I!3chkH{ea|+=Q2Z5`|K7_00;Ri z*g+bDpAf`Hdb3!SVDJL&nji>$0}OVXDg2yT5gTe08ga~gvU1Quy`IpI55xv`=nmaf zTY}y?O3rax?dinhIZ@{XZ%Pb4!>z1Y9D9sKd6Zj@Fk?*Yo6C=^-vQHlIECNr$zBcp$MX@C~=I!YC^8JFKSt zbwGSX(m9vXAnfAPn`Ny#qICQq*r5hx!D009F?Z5KV18%kLKhvyOZKW8ZDYsrbUKE= zfq^`OowwahegUqWhtxY&*oqKTE3z~>|HjCVI_9VkU$Wp5hI)mM*LFD?&A|ri3=KGY zQp1@wg{D7WZIk9#LOiF7S%d59qi);gnVhn0sb3wO>M0=XjJ(iiRtJ72ath3* zfuqy#4Pf%iF)^WgQ%`78GrA=h5kElBTvUeHbcy(-IO*1<{8%xn%a@X^NM5<>V8Myn zo}yWr_LDM!chPO~YxxQL{Y0m@f#&ihr~_m5@Uy)+HU`AqKEZr>-KcB?4nGJ8QlqDB zh0pScOQaS3TSAR9uChS*%Wx-hby}xMS3K6NI=7_ZxccKgD1ff=S|r_Tqn?ZZD7JW( zx+f(-BpxpM4XNc%z=wn|>f!IC=QavId?BM6q2T6`mBa)ADale#{=0|7BzzcqE*~UU%N)&9vjQr2`4*qNXNe%>X99-UBP>@byGmWV}9-+Yv^4WyE_U8mo zCa*Yb)&X$^7{dl|ubI4S?#;zhk}d1h?{6MZXf_5v2uABdwUUc_g|XFAsVK0&P6bf~ zp+)gMflA#L@;4btMDWu`smsRZ?XbsgES&PGoD{z?)2zs!_QIToq|hyjG0f1>Fx0-n zQ&#WG9i*PqO?~Bb=grz%t{jzYz$-0?0d|Bt==Jdh2srs1nx)MBH^Pd#0ixU_bKtPmb?YgLu zh-kSC9rZ&FPuNj8{Ro+4uyKEUb}`f6d+K zd*5sYc}I1vP-z0A|H%Tx6gOoWnmOT|OkZ~>9sGxy@wG{b<8Z1)v49TwA(`CVwuy@8 z84jtdNr&9pWPj|~&M$UmBw`+R70n)84qrUR8AzOBG-jz}8~L8mWpOPywwx9M$?qn> z#U}<5Xkg5~ti7-8KcyHO@o@+@bW!$}P#_l_GWDarT;vWmnlraCN2h0w9!0K%PzDMiQgm zwNP1RRR=f082i-AT)WXUSZ>ubCE(!C#c= z*@VK+<}4`DBa#{bpm)4ik?>|bufu$Ok4WQ_LPe`6KRxO;1qs8c;EO3WV$=IG8K$gj zp`BRk&q{&9?$}t6iJQ|`T5Mo-EChg8T2>+=?~z;WaL?5S(DG0cBkb?_GUB-9Vr;o= zT5MC@NcD0Zii{pCivRUNg2WSo-UhwzcdW=jT;sqky*y`LM2>@Q+(U`67AUM-NsEr+SD-IAn#5-#Yc1Xdfe zQm1woCYlYy21*5#Y6R?xI^c#S-t`)c*-%hyFu>R-LwIeZo52UwHo2m@(}NNH==_n~j<+s%h%HcKJf}VGAsYs@=n1mwt-YTt^%R*T1f9Ki%b&jx?yY)8S0t za3+#k@n$rL&irC2s7FdvQtPgP9b9P;O3&P{6MaBo$BMbQ(@nRZFVySDx>;sA=qM&? zRlY0muBnv22ZU#6LG#E{SsdJpUyIwu`f%7Si!xgGS(GL)C95z`RH4MOOQkY>tLFu= zP^fh1DgWYm4G7HPm{w0zsi*w^5Sw#`AX-=y-Lf8hyhJ zZ#=Oep93tv4PFd{g~H20$s%ocpb?4+t%%qGHHApt3SbU)@xE1gK|wH9Za6W$^{U=0 z|GFXR3f9ReX}Xo4wW^J?zfihTIqY5c(Joikx9HWc(s?Q2B5{^ zuFH^lylH>hy$6I{`Ylmd5Hia9>r%AFD9I!L6t@59$t{jJ*vs;QeuVwGgf`^{L?52s zaiyrJ^k#_>Y@xO5LM73;I!4ehodV5odgL7XrnJmbZT$QCizaNy21xczLSEX)XF7{T zX`uAn0g`77qCquHDVELFfSpHsrr>lJ;Ne$Q51PmC&4uE)er1unKOA8UMe(c zMo<8hv%JFON;!ueSVejjG39=|{OmYZ2Z^DuXI_X;+Btv+0g@Z~U&|3g4_iRIA*uhUxTZPR*qhnA6sxDuI zkm=8F9`;9tmuGh{8hvT%!;;lqw?;2af8Owhe{@Qw+4M^O)G3Y%l|2?NBmp-IPjOP2 zif@&t#<~H~tI`+8hwl$SZIl$K4q9LRWrRJ61p;DTWUG9r`-d{!38_DP8R=$#zd@Y74hRZqlA`J%--kJRCo zveQ8DfV_HjgzDMywYoAbR=&}>Z-_stTL$M^sgzI?v~*-N^dQXGOcBmuHn4;Fv_Qc7 z`m8t`=!ybJ3Mocepdddh_YWd3xjFEuE9IP0?L>39mpn3@^w^eyh>o)Oto0e7wWm~A zyM6|=wrbw!d&$9v6w0$_PZb5lCqZ$$@8?sB>=;rMHnw$EFW>Akm~{8`;Og{@9-t$< znA3tAzS=b2?`2uiNruzTLyujOGVzn|B$2#r2H1Qymx523Z6lj#1H)V)K$5~l z-u|Gzu%`{Y7K@%kJF3(}|65DRV1)!v4C!>@sS)^iN8(Zm~+zU?`}}qs4}sSibGj9^oM8? z40Ui!Kwx3K4@n2PPvlrDgnq;YCo2V@h|@OD&|5y~Kbv7xq82YYZbxXy(_>nlHU}L` zKG+iN3$JcdJ=wYatpe%m_k-Q16zJa1OIw-BuT%AUpY!<V_jM{SEdLzN?Rh2at7NUfjxCg4m zjmf?SDMMPBaL~*+QTYgtFo!cugpk~5gmU&xgI^WCiOd1zXmO~Odh=TWo<7-xU#dJl z*B#@?*rBFV)0JI|%HHm?BEuZ5zmO%IvVygW>AC?ED>cg1pFq``xmYSswXs=Si6ShF zmpmZjL*juZhu!2a=EP;){i)ilKPi^a$;=PQ>%!i<7eEvVns~`S;8!Yo$~U!zNFXp2 zb{iR69WKgq?fJV=$$xsG*nlot|0Hcr8-3Moc+&6k&N<#u!ejz(MRQU(?Lk2FvzlH1 zPxDcl?{Eq!#d8C=RyT+9DC0(Pj+Zu0ea4*5gc?CYUre=4W2r9%-e&H$Vm}>^Ny;QT zy)E0Bmhg=`eziB*(;z>;i#HmL$VH%k4x+%dL=_!{$nr__dN=i&wwt|3)5;+Yl!)Ha zSbg>9M#SIQ&BJHVx(bIP|H2SMnb?$tpca)&>-|J$(|o%tM+lNN;E=Z5lvPFGKHZdw zluvEathJFg0au$|9PK#>fJoSaW^rbJH+P(gtjQtR6m#N|Z4-0KbdL<1|{Z`h)xic?Bp4Ga4#R53(Lqa>TMTJ)8RRGF;sI z=9Zs|lzx!QbkrpBtojMWJP(Xy+i1CA!4pOxsitOlc-tS>B@{DlCv}FI0Chh|=XoYf z6Qd#b)u}m@0xXl_&pPB)P(v5)G&i7=zGZGb4L|(cxOjZSQNxNYFe~K8sE`^(6NtA> z0Mwx{@cTr`ufTq7TC0tJdnbaIAN-od+{i`nxqK;J5;-_PZ_R$zbH!jMBp1?i>rlq9 z<5aGat{23|PRNW@bEO+*4(I!{*#~x#&8^v*qW+Ys2gByQ4!YE81A^}*utllEUA>G> zBWutl`Uh^)iPYN26ZQrd_NC&7ML4IiKJCnR~q#=ITcl;tN&ok-|^&-C-MH5QEO80 zY&Zkrj%!}f0S+gYI@+yljj?{&vg%Sxsd1Hiru`~+ z1!ucKPD3r8zS)yEsFUcPQeU`JX9eR&SH}f~PoW$Y19_kYz?cNEzbJR)POIk}TZqGc zGu5}YFC{jd4O&bMS4KPJ&j-WJHw<~`G z=c)4BNMu-TvO6ji97>N;q2MK&eH1TJqjRa@zJTuhGMIfY2)XeS%(7roMfEl*7S(^orfXVexr@);coA{t@0z*e%KLe_!S2`b%w7!zS=N-dR{^sd7w z^lk#Lj7i!lD=@kLhpo2&tD@`PhmUl(bT1$YUjT{m;Hlp3ZzT&jbRIxDqLpP0Zp2AHa zTu)b+P6>UfX9QOtI2hU1=h1N#}F@ti-6F<^B%WP=D7z4&s6 z%N%V8%Q3uEZ*6&a=dnOhcTg_ zkSov2s81%DW+JepO*A9;XOU@lq>AH;_Ejv}(OCLf?qGXe8^!@g=n4RWbe!2zcPusN6O z9)tj+qb+|AO1;kuVV7j@wXQuc#TiMKTr-je_!nh1{F_R>5eXp~8`t3pTJzrGw4^No zO0BYP(UVZw24!v5?&rgip1eOBzt%9V;XR7*+D}@0DO=7sfIA{2_`F=la)qM!G#a79 z5DPMu^Zw89L5kQ+0yuQHRDg{&(;9f+Acrb zAK?nl$2`Cc+1eM*l3SjR{Fd9H(RYHiY~r?+$$UApR_hPdN+;1qHQLCX!Y#*w6#d1@ zkfjD`O@NsA4FiBpI3|CEG$rsS;UwcsKpM4Usm*$ffs|l@<{k+?_n2*P3blt!TAS<1 z_(!u(3mwzZyRoP|Kv0eP?=dj*O@Nr#_;slGR!dVSBU@Q=wK=;L{j`&XWa4zY!k>!d zoUkprjaDbAsd4(;s`F%OkC5OrQr&J}S2F#OEH%vUT3hS3=FJ?e*#tM8=7K z_(Q~qk(+aoWx182#-;HF+pc6%fKRP!I(;bYfW^7=Ng!%nU4p@iHNFwy8POH%|b1&A9wM77CczLnQ((~Uiz{( ziDF}*+_;L4Ee|oXjVYfkYQ$!>FkuHF2ZjVi-*rN7h4^uZ>^gv21@AAAg$Aozja8(M zV;<4$?Z(#eq6zOeQmK3R(ZP^xk$4I+cOQ#B2@ymad<9MsZiSMitQe1K)vYvIUqwT# z{I7o4C~;IQYeIU~(=&4zE;$=hV8h!+p=L!s|7QnqP4&2$7!gY3xL$<2f>8K~XB2tj zFGvQxW+Q2)nf^lLK!^_bpNYt^9G;3l2rCdWz~3BqPvyQi-;tp{?DG<~BozHRCs#nx zqH=|<-VZp#hwtJ6^B5KEp%4!U=k5%4c#ueS9CTv#32|8Pzo>Xst{(idvOA3f`%uw6 zG-bqH=*H%8;vigr!Nj)-kT9q)62rxR<*4n`ud+`ei>sL<0L%>-dBPr<;e@??`wXV`&i#%konigTsmcKa zB$x7^rifIMVhu@Om|0I%4p!Hs*q536Vk<)Ee>%zn>6}T1uqn&+TIukH0?^Y#6z1%NSjSx5%3f3T_wsviz zWby@mXvj4x9Lyv1U*n1Y(e&J3%u`|LAjNR)`^lZD-+2(oM9CrMb3@|=1oyyf-3IQD zlaQVRb}X03y3P|nc&dutD5@$>w)R{l(+wZ9M;u`K(rL8(4l!C?cYf=5*BG`lGz;kE zjx%O29UBZiYJR_iyE|FtnqT9MJPLFKsHRU+Y(WY#d(jBMYBQ*S9A%m@uq`@#Jt3vkmdF&7UD7vpCN^kLr+o9o&J&@eGMfb^G=NSPtoh_0dsiE7~ zkxa7ClRPRj4JXnhxBq$~w%9^qF!~#;(YF@-YqEfLwj`A<`9{ET?*02HZL!;d^A&H-Llo~-1%7gx)H?&BLr~WYuB72E5X5OLJtgpRkyB+t1ga8u2IZx^Fd?F`?^l`*>_dfM|82nsx zc7?|P@{)Zj zfGh@>+0m>oJugv7xLfBO+Xu2DQoqac#l@@L@A`4j_jiM=c1Pyo-jcn@vX8`;f2o;^q1> z%RApBAN}IhBcW!)n#5KdwjX(zcn@)F)pSG8HDD0t=?<8t>`uE2$Vo#N22_p`eo`F^ z^-X~sO`*$w#`GcTAy~g%cUHTzlMs3>mrxdarr%os?&gUJMKRCnpSb_# zun_Dx=t2TuhCEQ&N`DL>K*D&x`9_*__kN5`LNI3pu`>aQWXLQkk8YbU?T?L7Aa72* zIMgkQAz{)qQ{dV6iaKL=E*2(Ezlz&Q-%bY`*^R4k>{Ig@d<4>Da8Pw5=7 zzQi7GofnpchJ4xn(1bIV1+fhGV!_y`NHC*EHj{N>IU$60LNZ&Uz%b;pX|OJMMW0tD z@r89JPODAx_uJj6gy!C}h=3W-KL;OslO3vqYmds6#{|@T>3~1OEOyT}T=95?o}VZ} zmEvqi@D;~GzOTM6TR()yprK99%0Jl~YyN({!pmWTlFaXiMYIptaKo%wE794#moo#1 zFYt7(uPVyE=q{KNKoVDsnK6Enq3>_z?YeNF^w|Ow0D9{FMbp_`3ysnlr_MtC@WeNL zx|J2_bE<|;lvz{$-P%Lu8xwCYVZLVUgtuikaK|cF^paoY0~v01Q8|K6wu{;%ulf}3 zBYT7z)-@x6>hgO=xK=5UExZ^5V{FRX#Jg@5;v{tih5XiBU33@zWY(TrLbp-#HUJQz z9~Dy^lnd^C%;zV!X#Z*&ED`?@4ia&OpgTabWI3b+3>= z(~FKa^umgiS>JTi{R0ya#G%1GHN8sTUoA^8sqnDF9?HMSL zqxr%1eM&?L?s~u0M9@V_59TXsa@4CS!D&_*IOUU3^zJqS81J*w4iQ$<*`w5kAN_aP z@j9e9AhjWY8h=L}xB2#!wulX$z(9wWUw&8N9R5!K;8oL?SHGI3SCOtpTGQ-W44~Ba zNiXN%K%)^f*LfeX94O4)EHZ0ArhOKm$R`!>p1mj(M=#uNC7cj*rw)0qcy1zz%GF8E zy*P;NA$PYa*x@jnZ0Q<4aQV?~FAOUp;uq*gE-fUYtAj3O>h62bsVKqcGmM7iaUq09 z$L_pkAt{(_Vd}StUm9Y-gJ|=L(>=*>`_a@mO=xsgWt^z{!4D}CgS5FazIRP-A91ao z!U@x1LC7}|D`~@B^~BM8=hMHM%xKk$F0P)U_dq1{jZ@gXtdee*`yNRQAg){~>=7!2 zcv`$zGc|@2)V*Ua*y4V)&>?Z3BFoG&&7v6%9KS9*Mh|$;8L=RAzy$;IG5Sr$(+XXm zanM4_oD~O?S{BMFG}=CN;Cj1;Q%p|RZc!vP3}zJoMIE3|ADU=CU!G;hCQR3?nQjZ%iag zk)4ioJTyvk%aTSfyxSO2VvhG~3(Kv7gfoGqXdJccBLbKrrQLfUcs$LqY;heSg&mpr zB-*_!3gaS0+J^XAq1K8!S?8h+?Ak)qDE^!{vO1*O0$Kg@l&pr&Z&P6nlw><8Eds9n zCw`;+Na;3j9$QhG0KaH^y(|N6IO6KT=6nVM=iaH!|KgY}OqMFB{SNPLHcPdjvLuE1 zeaOy;QB7{<{ktNq*3=}VD;4c&tLEP?KlvC!2c;}MPniLW#w!nfwaEWbJ|6i|n8Tk% z>6?g8kfv&@0=rlq;$r0XUL0oU4{t0;$V(W^4N4KX#HqNTK72~v{M@|ekwmx1xy3U= zlo|kx{nG_kI$=-sJc)R5{aEppwXX8weXLtrxMF zrXa*8HweUppi#pAipIu&8YdUlMe^rNg&U&+=e3IwtP5UeCoyD!{p3ARDOayY(=OZe zH*g~vWLf_DDRoKKVoB;7t&1*?6gp6}^?zU=z>g?$OGtYt|0zGCU4aASNuTfI=2R>T zsK5Xz0>DcQyr_RL|I7x}yD$DOoVQ-S{R~r_D^*wnD;ns`f$cx^lDrW8oDKl$En&2n zEjMVk9wiH!c`qoSDH-1iMs|9%Y!iQ?@aF>^x(JQxU0P;PtS-il@0ZKgwI3r8kec+( zu(8A=m}f&!X*6-hsv1q^lY1X*rmNo-%&pqCnrqXhKS1YSlnw+bE{=D^X-}sBaaSK$ ze(LI(Eo^{;?dl6Yv(NX;rv!YM3L0Ypj$F+D?3fX2?}`n;mH@jbAEGCH4W6n@ zrcEJX)2Qn$&AP2}%UWiQ;0mWXJb`29T{iidN`zXJx)tR#-Cb2p?=ddl*6eJetbw|JqM3N5a;!BN2h9Wa1!2 zRxeYv+wZTD0r)7O8M$~Q>v%%mUj7X-?QHT#?tZ1;hBq!)oe zr1W&IbW;TaB%)eSxBdW>wS$xtbZoilx}!YIf8AQ>J5H^FT?EUHXoKhfeTx!aYUuw3d2CTB!SY2EDb7l>ZUtWm3#Z@!{P9o)OVnLL zg%Nq~KhJ4xpN#b51x-rX$GWPgR~SbE-eq*b7QGQueBK@q^4XjB+82CAd8%~qrUp<= z=c1BosA@Ov+7U;5ikxw!3a5dMmn->5W^FR1&l9lo#-StV>~(R7##KtuT}oJoI3}d) zECv;iJr#hGwY%bhY5tU*0rNrolwp9%gRG(3&hIg$Pr|MLd4GJDI5_u6ol+|BbRkdy z_umXSNE~ZgXxI4{sPg&PT-Zx+X^UXi5%#Eq^l1Kvoiai9h&Ke|&nwnnjhv)Rstr)4 zZhSiY{TijYub5ORP0zB%To)XkfXvEjZ={F+-T(jR5lHyrQ1#Bd=rIO&ywgyz-TuM^ zkJz;t)cqCjz!6+b|AlfCvKL+>!Y^mk72Mk2|KhvijNKDi4HpojX~^BK1$CnfZ(bqb z@tZSqg(rMisG?!1ebI^NwsV1wy(%Uyo^o}QxceCRgGLkAvK^N%Rfd29+v2+vN=A>& z+KS2?u>1CFRDlQ^0$|s^Jkr090tVJkek*=*xbR?8td`}j`e>LhF4zOc@nrL_bQa6X zrB0>>7VL#yH@=hd6@OY|<`oUDVzh;<+i%^WM6`<+YB(4Ni!?9z5wYH8W$3=@(c&}x z{D0_SbqEdl8>)iGK!-F08h&N-UYd{3!IURItlN*IS$hBdLvpV7MB%u2PnfueU!QxR zEatPw%UXb<7hu8ue=0a}8|N=cs-_oUbm+FT6yi2_D9HU&6cN(+*~|5{I<_3eqEsFt z#nX}n6fbCwny$*3Ap0s1D8T#uxj0tkm2x6bC&%+i9J$y3W5Q*20%5N1hboeN+jXRC!l-e|ucBi7RPe{ryWAiKY>el8Xc zjx|=3xdPwewGv(~u1dqe0nFnyjsE}y#!-4L{n~HDR}noyyXGbIyh#R)a(B+EP~pw~=%;c&Q!$WPt;eK8nYNT0ff6e_fHO zNOvq`EB?)PSzbwgexOQ;2&9Oj-W{)6t(XqD37A?2xWV=qne`F9LWhbMS<|3b!Na>1 zq+kyPm9(7A{ag#q`Dex&JxVh31k?iOY6fp2RP?NL0>by;4EX-)V1X!jUjGRwkev-Z zU+ed>^~&&DUOt!6CD>`4wbBMCOtn`mc^`s{=ClQm`;d)^B~Ci)+2VQNjA4Y)Orpdk z>VV`TwePk~nACe5;fg~MyptPA0?>^Km4D?V;Oo;kYZ3tKMxcNTw|KV)#z>Fr8OWGj z2LX5f1553W!|e~lK`}}sJ1e+0{32tLt;QC&%EdQ8RRCG%?DNfe3CmeW@Bp_;-Qi~A z5#ync!4DFUFr7m!(Ih$WM65niq0E1KW&!OIRved7`9w%P&Wi00K;Fh{Mjy8nH$*=J zihK*cG7)k3ZtI=2E(oo?&=y|G_+`gG$@n>Am-fFdM%ew*`zvrmy-TQ&NlR-8O!Q#G z?kCe;Vor3&_1Y*hF;~1qGonZ!6YRqccLce|tJC{I(gS$_4En{etf>}oH5p=Sjn=6Y zd}J7(*I+>z$ce6xYBfMu={ozKb4)5%QW?!UCXCm6JZDs@*FnPnsu1etDBu8&)ILvA5Keq!uTg>9e=nn!@2Y;T?hCliv2 z+IlcwHwtO{6l=o!Xf5Bg9tH=C%j;tQxjA1FO+#FwY{7>_#wG^+C+nf+$8f(46e`&+ z*+4_TB6i(qc>lF|#}0V^@hL{7>QALE>o!|Awfdm2D`2bk=(j9pd4Ep#$}gV$H1s2X z`z1tyLs&0&q!nB;YF`6D*^9_%9b={E~kd2AET)6ryLF7Ox(1=0w7JtDDdNB6Yu(LXvE5 z+c0gemiK%p#5=0W=2fB>-~lIf+KDqfs}r|gE>m64n0n49UnkZLL!aeNkip{Fe{vHQ zfzPn*vO4EsMMyCy$S`c69}aFIO=0~-yF7_fbquy{P}!(a7Bl+kUr!g9C?^Z^MN8I7 zuvxen?9NAuVT0Lh!s(ac5#dLIC1dLtN|N&kb}qr$DdBVpHJ^nw9(BGoyxA*oiksDz z{WNjrHs&PgCL?%+{NCUAt#TFd$izm)4hbB51{4@Z7*0WuRL>kThkuJj%Lkm}w6H8i z5i(-p(qt`Nu0)QcscDMeI=(mPj$N6$u4M4uy2!O^?^i%eWEQZp^@PK(%D+C_Oy#rl zuVZB+_PiaKz}uVuU;$^ zn#`WJnmI9MP-DcEWJV06!1?2Ay(YJT_hUWd-g87{ntet0Pw^dzm}4t|tox#2+F;)9 zWirS^@78ZlA`~H%Z~8MwKCIL%BFrc0#MjHm6&jBHz*m^K|6b0ck}_9ebM`Lx7rkzL zCRk#oA9%s+a&fKLF^knh!9-*4F|7IIHobD*=c35@r*be}7j(AWJoAh@4PB+n%Ax((iI_g6j zR%LJ0glb^ELVE3Q9I-Fs@m#US)BfU|bF)oKcM}_s zowH^^X=`0#TY2ia1VDj|MtKMEKKiMquk{^VkAO1#>Y3y9%PsuKNU&SLa6-f!`)ZlmhDlrD1If<)dmi#UfHQEcv!FEDtty!oAY>2uQQL(%7QO`Piuut*Y)eec%8%I3ydx0U*XRo=6*h{WH4wLZ|#Ju}T6 zZ_n;r=!+^up}!m3s~n$d$(M8tU6|be`kr8F5WJoJB`Qw7r5D|kILV=r&h)YPQndfO zfcrISCnEKl4+Woy?XZNfK{m!D!1)J~;;ggU75zo219f#d5>~#anOfT(s~G8M8wQtt zMGQdC1J~R7TPyB^w4$lOY!gLyN3LX6Xb8H9={xNpJhi!dCDrEM_x80RiacA6VGg(Q zMf>$uO}K<7F2uxGfiB5l`dWprtAA{lZr_OB`=)&jHj(CgWsYV@(VNCD*^F4lNuvKJ zglRuAsvBH>1bd1<$hGYGd&;!dgMsHf16^r~N{SU&yvjd%^F*(XRtK>*>Gus)@J^$S zS8J!nqDCNx&^&rReoPXq=mM+uhQphVE0dRTD@3yOy>&jY9n-R+Q}a$@FT8_D)`sIU zxf%s??y}3itqOsezQ}g{h)-~2*lnt<9ux8Tji)n{cs==$f<@4njmCI*L%v8JOyTx| z<^xsxxw1z~PbMZ8_F~<2uA7*ftB*2b85;83_Sf?$0kO!FLF3qF$Jpq;nsQOAQ-ut> zhEo@dmug}dAOqzGO)6d{YZbJ#h}85Fj-rTOG&Xw`{B|*6X=rtsbyZ& z@DI@m96hZ&o!vn#F?q0Ff9Eo#Rx3C$U5|fz-{ffhi}^c%94?({1M!V9=hnp*FyRBLk;Ei{vVhfXIe2=ac$mxRZi!o zneSB9seV;1_4s?E7>T_IAVo=eQ=eNk2Erxt>*vM~h*N~TE=F!=OxsmKgLTE7q$tCwGvsCY9 zEkEc%kQC#0@P5pBne11NtG?IBbWXX)-w^-gNIMoBtxbMjON`gc0y5BhGXA#^Ld-Mfa5$BoP~ zNSS1rd#n6SL+rEia{;%wi=sSicB|8Qs1t**-tkp#tr$n^j3>b9oTsa!X`0p_qFfO@ zb9Pz`K$qs?xc5+b=R!t?dWDkO_d)AsB|Ke|-w}{-vYOkG=(HYI%1^e1=|Ny zr1C_Tv+l0$>OuIr=A}>WX(yNpaBF0Dm<5zM*U8n&K)CeXsfJbKccf$n`k9VKT?KQ>Gj0h#|!B=zY51r)< z1mv2_TT*eq%R&S$tV!o)ACjEPCKP z6}|(MJ8#?+VH1D097*x<`i*g0x0R057lfDl((p{&{P@TpZ#AVs^yuH?7V;D(VQ|W2 z-*L5ox2GW0$`o5Za6s8|r#2V%I_q7>y92s|4bvI6G9IsIFQBSKE(o408_O2D!|!gR zgc#h4cDf4&pM6xw+1PvO$jRW@_}t@3B-@55=iKjDztghp{LkDdv*KPMRC95V>oK_EUVT&Y_ZiYxgeg zh2|Y|ua#1@T!6eTnQ?8;Se|oSo~l*(4heR)Wa~HWIw)*lx-N=f&J22{A%P0X#K%#S zZEgCE;+k1BbW*Ftj$gIEkdNci*@58a8-qex;;$1)_FxPPb^ZD?zYLZihen08m?{$H zi!aBEjrLzU48ZG-%)3XFb5&-I^9&$CH^}D0WW;o6no31WnpNkqA1Jvf{<27 z5WGkx0Yw1QJJrC6y7xAFnqzThyGAi598L0gd`;k>}Uvwb>LOU7(nOs zum2t*i=o&Cifx;Q+%w@ec(RIkE%kDvPy4fxwtztJeaNJ?y0A+~kb1JdgRBRQmtdfA z>e4fLUEadYEhpMTgs02@pc)^zzj*Gv)#WXqpSKF6Yl&9D*I@nV#gYrfKVQ3qmhh{ z;EJqSJ_XiWLXVsT^o9ty8;tr`lXfQx44!&?Rd6lN*XQt>`SowlU_c*zv${Z&3`|W3 zN>m0952PJv)qda(f@O4o<<+);>TTXZYQo~I&+irAzFkZ*;9qVnWfPTm%KcB0;FFA; z{e=KW29U<0{BccuSx836KKymFogM%-o4BjErOHvo-T^hs0M5>(Zl2aO9sSIyOSYHj zk{?X8`f`eMzo<+zMPB!tf*!zhDH{|QX9Hjs`UdxB6;X^ER3#huc)Ybq`t57Mz17Uu z;gj#c1Pa;YLK~LrcmE#qIJ2_iPC@a-(kyJ+jcW9p*m> z**XK*_f#5|SN0{g*?e2isG5N#g<*T)yO<&2SQC=^b1=%4kCe~gwhd$Ogl|)L)azz? zT705vf_`4_*oomX1zYL;Gv+IG#h+))4GTp1%}|>DC_`rZ+IaT>))@ma1xb&TdkSqb zb@&lZTFxQ6({n%jmN{XtS^n!$SY)6($cpx9?*b|)ns{uA-`-Pqm|ui+5eMiaU^m<_ zwq5A~5ZX-}AyAe<{}aWHz!+Zj4H_-pdmiO(cIvcM0ep(M#&L<=ikt%0OU65=_*VHV z;a~KSAY~pBNfQw56}2eU?8rt1v~rA`j^g>8+=G+_5AGMDlOh+?lq7^`VWh!I)v?Eu3Tm8ON6+p>Z_i`yOo5ryWEHC{QFn1GCm`ROshYmA(Kq<<`1kXwt>;%14|AJdw-(S73h>#9$bF4& z%iW$Jl${jogytZGkYPo_k$@ag%W;YbwB@RPtjtyf%*cclwm zrkO*hC-!#Avc6TwBwYKCesM_iz{NiCjt9Us0qAg~h~fzhw-5$~HP=A{-!c-X*yXz* z<*cc-TYCzYxqk|o?Sl56lA9HwuftyQ58+{^-JrIzod}H>gtL2f#2@Xr0Q4bBpon>G zz)8u-t#VJP1JFvqXLY-73#HRb%%jzY@Qh^RdMCpvj*t!aXeNyHK)DFe^? z?3YwoIr!S%>XkC3rvAcq5_b$y{OO!zQg-0X=R%>4%ai>-uRd>n`b1IA`(t+!^PGDkRWgqYal9I>@ zvJ43bva(k}$hS)Sudv3NbZ^I19~R3!_j^6}Ezjddh9LGl55?1Ut>8_;z|&z0w~OoP zhwfPbC;5ZewL7cob)Rx@pHge4>-DiyQ{h~$E=XLpD2EleoY!&R;(_^@I?+acaGw91 zC;sJ+F>>x=N`p3D?HoSm1nUU@SJnzH(HX<#hNR}59JI=g@i%L9HdJ@KRX*ff#r*+D zdpE$foSAr?9y^GfJEW(8*Bz?LFXt|XDXz!bgyMZFVlo?x64~@H(HMZ3bp5W zT?>EeOmb3hSM=2n&FR}4XV;-_)7Es3C%zlc>RN9&FqX6=5T7^`aNU~I-`I0YCLNjV z#ZOF{-I?*Rh{(k*JfAl(xF*oN?Jx|;&FT*MR&{X^8|ao1MNiQ?4e`3Tt`c#(nx$yD z{S$SkRR9)lZ4&Acib8Mx*6!_^wh2GLy8Qp?xxm@s;nt-;zz?+4z3jsO7F5NY_C5pb zMlYON**Sg`7a{`f8cOVVM5dwsVwkm*p&9Pxcd+ zHZ;(DhMp7Pw1{5i#bvS@?*qNs7P3|OIi)Pwl?ge71ta8QD#ypYfmVCya?=#y*%J7( ze4Z5m`MLx9)XN7^V2oPk8@i`M74pM=Zqm@{8#cKz@AS6tEG}bm*Kl^{&F_MKQC@$B z8D8HH*MV2ohJnlc9;sR6bE%NLBo#3=V`d)+?WULMmIw|8h@}^+6H%qF9K5dXJ-(HC zfLUIhJj$6nUFt$vLk_2^pY_$mX7`OHZIXFq?#+M+b5?iuX}d*81i&SBdtV&#z-jyg zVAYrFZ=5fV|J7FF0@49JQDg3$%A_@YufM?yF`83(Kvqh72@S~IH|Jj;RVsL{7^L5J z2?Brnzqj`b`mI`WYi@&^lGDJFwOHEoM|_% zik3ZNy|bNms^Y5fI-}k`1zuPdbd1SEoi#O}&A>X=YkMwDnv=bx)V-!5D-8NX%@3B? z)~7yh23j;O3Z`GL0ViGSeSKFL<#j#5;Ig0EY>)}%-EK^{wW!rk>CZfr6P~Xe`jFKI zi`#T^x;SY6v+lweK}0X7bCP0cC`>i;a<4V%8DKLEiz0eUqk>)fB3EiVdhXU64o?GH zXFb>|Zc%?D$n?taXHNtDLgSL%^!$?SA~g)t`#FTtR;CRWLtN~Sj}*W=tLgV^y&}Mc zfUmzX9Q>|i-Js$$7Nn`2r!L`i1v(2zo(wsHQ?MYv)QPD??0DNuf4zRM`BQT;@;qlby&sEwZ3Kd zxN|~{&xMIEVuNkIvh_MAx{@*v4w4Qf5`9X1_j$|kw(twzv&cSj8Cavl^|P8@NdbUvzpc^!)B z-UWGWrr-X$xL-=ADL%fLORD3i<&1!E({KJNd{;7RBlAs?RCiQ{^IHz4HuIn?dRi{L z`j^1MUm6;UrCs=#to*XjQ`+ zYzolu(XD#?ndU1x4Egu;Uw%>((4pTKD#XHM9u$fM&JkOY3Fs!!bj;(A^vx77ew2*ZsNInV;A7 z4aBC65ZmC-nm@MEq1RvQejUMR)*iwhy&aAlEyaS>6b?{fpSD;meSW+8X3b5!E12-# z@8*No*sziJNIb{i`TZTP7%9@ksx!y>sT1bg{L@$7+`;}PZ=2bo4{wf_p3+?)5Q|uR zLs~T+%u~$;Xhw|D`r8p?`)|Guw8g7b4U7ALFh_9w*QJ;VX0bN#)CGXS$B!Q3j~_tV zSi0li&8HNS>L;@}p3w7@#{?zd@kny$lOz2*SYEQ3P0GpOX^S3q{~W$-3_xCd`fr;6 zAM)M+Oh3tO-EQDB5DQR1G;BD`cA?E%$bU0{N@v_RKdT*#(Ky32V|ye&;)E7d^cs+A zDd5wGv&S?8{!oT5kVOOfGt^pgQq*J|aQy(B!0f9U_W8o*`HOYz1{aqC!|d-ffCQ(G z49MYp4%d+`;XzzL`j);pb>!1GNDqYpVN>XFYaU#Ii(>eq#p{%9%O0k|-V z?;?{UHX7k^7nUyIL5zA{S1ec%$j_Bj2Z;71s_F<1W}lzbeUidT?ibKi2sqF?GDr>R z`vXq9yxh`pCdedl=cEX6MzBcJ-S0REw&`LCosF&e4p1W`7H~=_Zpqc8m+k!XbR6wW|O5@$;9=@+{KR>10t4DoA-sUgao^Sfcx^GG3X9- zW+m5lx!_QI=W|ZP2AjJ!@ayaLb%SC^=PZq`&qDK&%eF=R_BCu}(h=e=6TrHFPXj3m7|<2SAi1)X-M;a+ikaH zhO7_}^poKi| z>7~cjjulg>i_NSr>=oeg;~@c_o2f(pU+cf4E+is3fyT5iF8K|B(qoI$J9FA8HCFwX z`*-WE1vL4)nr4x@G>(p8d3kyLW*$jW!2QmMq}=eq4v<*L09bYCK(!TPss~UgvS!j0 zw)*^eQJ3sT@nL~w<*m+=&i&2?3VPdO$6ew^3036@Q&ONJoiS<@qE(=SF9~$xdqYEg zBp70ZcKGf7eF$6+rhhtnUd+VEY*fsVv~b>!6Y_>#T1(H2o1fW5nm=QplLlldZ|5Tr zLEf?)G_Jzioc`A^pjhnT#!!hFN%iuMB;{yDlwEDOcQ9E_KmUxX&VPRKEc){oP736> z_-moT*P4YTHn|nBx;I8so_vjD5(^*VZ}Z4^XIL~ftc8H8U7&}hl{m{Ngyp3N&?6qi zWzsx|Nd`1?@7;Zi;;l%F_+r~NSL(2H_N0bwT=KZ9l(JIn_$0Xr`FBR~JBZ~ur!*YC zkvx^)xnZ^kD%|W?&%(YJD|@!mv|OC6Pabrlqaq%<7hb-|A`p5 zi&F1;xGN6oZy4_DbZ>PZZlPW@AK4hLF0%HF-Q%73+mDCeqP$iZAlI#zk=pXAB4=W{w<{MxHLUfg|LAs>E}+@jZz?7- zGN7-hdxBl>q2l6P!Obm*^5R{I2LzAw4}iw>65+lTvb5es1^ydAfA>Fvh+g94)%~?A z#d^^z=qun{SL?5U9()||A~Aht8a3c0E!)%oD^dW?z2V{I4bPe%|Ns zm+1+rNYwj9V$!eQ`!ockhM@mQkO5RUb51pz=-;V&=St5dup{X{ZO~))n-LTT7Te>; zJ-XWFOwsOuCJw-dg;M#Ko7D8v@1P8mwJnV`K$|{( z%0PR6chPz__t)0c!&LvheA|Gx?IvisFQ4}FmJpxgO+~w4^Lp58Jp+4%Zuy-`&BjV& zDjA_(*_iLqSlIdb;|raPtTJzw>QpfmmYWTZwaXl^F7l7DF#wzwi32`t_8y{WsUX~q zR-uP(VF9co*nHUhx>UYLCc^M`8=r|IrNFC)ZX&zTd&-_K)u<1x;<8*lHqZy%g&Kb? z`;W^9AECXpoMYZuv>CL;SgZE$Mx_I+I6gJQ@rIJ6)ui~^bshV$bkDV84 zWTv{WU~sYQy|S&ZZKxmRD$@tb%)*KOZEDKrl!fnMXr&)ohepvU{Qq$J zgG32MkyejUo<#)O2RsYF3INfczKLPS5|w6ri_)1c;23aLZFEpLgTkHHuaye?XD{&dyzP|!;X5|DV9G3c7?;3W+5AT6zbbXamR<(*%Omg z45d`P%nZ!S6mMJ{;C1Oi*LP>UG}j2T(k0MPCS=jZE)1(jAR6yXd&B%fJ2A zCWKIINXxgcv#r(D@%mfOm^kRUoex(q62E1PbtrX*p-%6OQFqa`J`-*@ilG|2MR~R> zpJ4)%a%Harx37wQQKBIT&tW`yG$i*qd)Tw^Oc05|#rS@*wM}E`Ht|?QWrP}ziTPr6 zUQM1d*tq!|mz?ny*e2$4*-C6WO+Gas>QJjh3^kG~82jsWW9J>Lyp*e}$0_AQy% z>GHV=!5ySnc3D(+I9l1b@KxD547jbk0mX34H;E&?145Lvs;gB3-=+9D$#K?>G?ayB z;L?7^Tu0;k6o)h($+S5_xAhiB{y?Ueyp+Y#i9>H%GXaiGD6H>S1-Wv8iWPdLn8u^u z8?PHdE{PEfq<_**HbUwPzc^YCm{IJ?i%5uy5hi@hOxKp$gtD<)5e+XdLMOiW;?~DW zir{Fnm7uoz3@*oAl2CQREjx}C)K{zBC6_3Oa->RN{T8gh_EaghYrgJJ2;q-tF1Pgbr662vIjI19bsf4cF3(B6S!hS^Yy;W_d`i&E@St&k?ez= zZG6O!%2)9b9ek5ATqp)+TF9R#9e7Y+34<)ekY2XgP`BxBl3t@?7A(oHDf;nS7yOZp zfuu0~AiE)*_H99=5KA>|O${HJ6yO-^I9R5;WTpz|cL}20wO354dcE<$9)k28_k2XX z^kkFcN2CwKg|$dpd`AyErF1t!$FlX04>wNxae74e=ZdEM#cpAZpJYzY_VYz3PLIW# zG4n-8UcGt_LR%c^T_=i9a3Pkx6QKNjSqGJZsaK7DoGf1aKLD~oO}_@SS(7-W zNivB`w5_sAUvMnEpX4H!h!{6@q%m%&c2@K&ejRZv39-hl8xCl_uU!=QQ>I&ocKv;p&Rcc{( zj22K-zEZZJmMbj%T+`s)?{T~eIrmhX_LB%yy5OfMjHOx{QBt5n6;Ytmre)Ky>1dQx zLg8?nbsqzDz}NW4&cGU~3keHd3^;tm1%nAH1~}N?JoYzg-ADTft^b%bU<(0^z!=$V zWGk{aW-HPl#+Fr8T8mA`Go_6;mb2@*G=#)&>rrpSyQXsyUypQ+1HS$dh9MtWF(BRK z7KFfc4?>2}S`QujBVvjtQG}$6CwHRldN4X{?xirZ&KzRao0PO23vtxv1y$?4AB@}J zBwue<;JI-6DkDn24m0BwIP#oK@tdp>d%?ogS;jE2B7nvQKGAW<^=;PP_{QFz4w|MY!^YGKx z%#{az{e$m(@fsyWcbbEorjnqhKK&%;m&Rt zBfaOT*SofhNyCnw#CFCe7+vtBgoVN*pmdvt3GO!jBdt!GRyUnG?AruH*bs&=xBYtJo@c3Rk%4xV4N`8^tDOl$%iEc)G_BRZVXfuu*I*gG6j# zb~Jl2d(&Kk*;4$+V$-SVD6K>Ax^1~_xovgVa@%s(a(AZNmb)|EopFDryEEON>AvOe z4Er-)YPoN*Yk8^Fean5veT!Y^KJ?$#sZFnKP}nFMjUYP!d-xj;>2+ZN{QG5;*86as zR;SZl|A<$geOYk{O08m={m_0S=E{_rwj7ldRLZ5u#QAawWGPWD>UGeBgTi@X%UG>R zGYX5Bl1cOxIUY?9RPK4??K62%?*ReON4!FLvMD5PB}yH~o!K|9cWt6-$vmFVHgQyt zyJrIQbJv@_54cJQSM{Jc`IR9bR0gE?1P5B*$V(j9^-4282r^GOX$;GRy*0^gsKdg< zMW0AUt=lp^_@@zFu8F>&r+ng(cRqLRs$T!&SDycJ``}}E;34_o^WS~*=BsyJ{`ajH ze|LE!UwH0|*FOE3)q2cqE)^BS+TfIV$&h}Mcv&RMwPO&6MR5CMciv`sj z+{rw^=*W92#-)^?uob?0v?CNxDVe*N+=Gh&%%gDIy`0K+SPgI$B3$bn%_$CE>v^!4 zT_Wqe(|#dfUG3QCxWl+spEyul}&T zeY5@Vtv9a!tNqWdJAePvtmu2hAI^FJb@^p~+bJKYx28X1PTBE00000 z03iUo3XRW)r2qhjr2qgH0001YZ*pWWZDnL>VJ~TIVP|DEHZE{(XNgcwM-2)Z3IG5A z4M|8uQUCw~kN^MzBnSck001V8jAQ@+00v@9M??Vs0RI60puMM)00009a7bBm000ie z000ie0hKEb8vpgicvnTRn`tQqa!chQPJ0yDi*6^x@Wnbk*GroXZ}M61Jl`^67 zQK-@TTsIdzH7Q1y!sMubpLM?VtrKs!ep1(?HlqLf?_Zq!z3;5T1b=nfcfNJ`FIHiK zD?`T}u>Uo;-97QYes$%~uUPul^6G}WV%-hEI_CEl%LhxAP5;$-7yNX;gTDII>+k;d z@2?OvL5MU#6P8D)C@fc~0u@44p=$JO5rg6YDKVH15=4L!5F-|jgd!kj#6posEQpvQ z5hYN9h=l|sqQqmlL#7;X6;9xs4x7Oit{2HfEKb2E6T(;qhCN>r%gchKzz}grC;}D$ z!Y+VjYmg9#1X*)X81dB?Kzv*gF%T zEHENoW1EA7Ey;qQ1F~I~>nR^Q`=a(&y{I+6C6k%t6U`J%T>pwN0G7abk$tY4c`ay( z)C4UW=LHe-sSxG3yygD>y?OBe+6TA?@}H0oCXkwRYBNG(Dym)ZvHr}jO{L2SpNW;q z8?Ny)f=a<-nxAX5OgiDGTtw5TBI#EbUreTM{t_IMAtFG`OP{3eBnSZId&q^SwAVmH zB$?i{>_ORJE?-j+lOTvlSd>bInXFON7Kufa84n_+UP?hE)#$!6>T{3JdGq=C3tw5V z1RyiKYh{|O$RQvy{}j?j{d&H(aLFqR-ktO6!r~Cwl$%Op8?N6osZ?Hk^q=p|ejY$X zHtWca1Bn3u3Qz#RDzGXSQcl7$Y?}c<`DXz%01&4f5?ZkCrv~XHnf=OJ>u$R9?RVdM z|Ma`hKlkj)CVOIC#Cqvlm52Ut{slkXVebR~^1P|M5P8I81+n&UGSBu80A+ecL;zBD zn6d3P5ilYW5JVf4VuG3FY*-tJB@#O`2|_G+<+}l=GualscTFpW@zNh*3i*VC7Pkqy zfs_tjNx2e>`Iih}GsG+xh!7kk$B|9VA!8tyh(&ADnqo6@L4_Qg8L>tPP=qKVB8ei2 zBWjBziX~QNrh$|fCJ2DmNQA11R1?t}l`1M#sZ=Flut=f|t{X8&1WMRQ6fD93gCziL z5n<*8Adq5-05-7AW@wWFAXa*_lZBaU+Bw@_zRJGya?scUM@|z+-!uwc_c!MTjO2o) z!i@kB%_5?VtivK!PO@^DLCy?vXE=x*NI@2qo$2-JP!KWyt6oeIi?!y#{|m#l2`&H` zTruK^`Rap_G|0h}gc|oiv+vEKhrwD5n~9b7OZwI|OEA$XO_@AfNb|G&!bZ#>ciN;b zG+Ev%0d(2rDgp@!fy~Gua-y%{Dr9E`S&7QY_e4a{0!1KGZX$BQ6j@sui4cfHlp?Xh z7KANY6N0`ZB0Hrm0H@V~nb;&wnlSaX)l_zDFdMWr@tk05;yae$r*mkU@tN4hAqsQP zQGJf$D4Sx<>zd$NM6)DS0<^(qf(9GRW(!ne(Y^Fp&@$oHp_W z6e&P#qbf7vlo8`17=cY$9n=ggJ0^v}0u6u#3}P6j5Lt6@Sz1b=wTSf-5U2Q>9|6yxkVB>IiPZ2` z0Na+qni1i8Ry=H5;Uj=;czk4oW9Fqm89my;w)sk?djwDf5iKAhWf_PNAcp6x7Q8ulpCrPG zPwF4fzIynVztU^s#6=%0h?l?o`1l{3_T=kJ?MEjIniXpzQLt#Oz$r4@L8geH>?@`0 z$WjVQ$SB+jWUL6zvLIlv2niJ1!bc2dD8N8VU>>)F8X29t{>&`q=?+apN2?4_7pLg- zY|4zPGznKIVT-I@KlYd_0R%~E-wxqGd>EDhswFM3lVKrb$1ec{j$?@;D229&+hS>p zr7cDjAyQCI&xUdOV`xF5DM>ids3ch4rj{?q^4KWck}zu~)<%(10&R@l0w!jG1~dG> z!bTPq0?@`@wlGjlZ31O`Q-TpIp?pb!NE7x_=1DS98f(~6^N{DiU4d4y&=BSHYyh{t^zXmDvBZSgeUm$1240+^s-1KU@IcI$pKr?J@x6k@G4Hcz1d#%)jz>fi#4HLQoL z+Hi(17nKMgC{mH)wir<)Z85b+61Sl}mNyisLS=Y2|A+SgsVUb-9S=_$HxL{&2}S zn9XY2E{BYk7{YcgL{`2b!)Cp~PYl{YoGn>gwM;wPK>#a5*k5ec#Ss|d2wFs$#SF2Q zanp^;SUe3Mv8;?-AAyZ1z(UztGLx;klePWor*A9U#iBNG!C}gz0zrC@<=XltWCvuYfW5N63n*%@D$7B^iwduI@kBHN`0ZFP{&D877x0W7r z@K-PV*(EW60X;i%QZ>O~C6iIF$u46n1%tx`kRk;TDMe5)AgusWN+}SOQ}aj>5s@M& z2f)S>ZkUF_2ysh(2F~qR4d9tzVJz)Fsd=dR;a`S4*H5%`5{d+$Yf_?`h-p%RTFg$` z^g;#)lNY{HfiF#{Nt++kGNe)HIhVg)huSSS&}eNtwl6h|1u^BvkH5r}{Sw+t(?NZ55zQGez8t&S0-;9XHFU5Qj1igT}QUpv6&L|ZFGqB+s3syWdV zktm{snY3tPK!F8{J!aR>I;SxQ4QREVLWr&d^HwcujM>F#U0@-1kQRQmV3aO<7uU%F zRf8HA2{6UUHJ~Dyrk0A+wU9^7A`qGlf~YmxHieI=EFa1=J_I>@LkingB@n|o!bJpU zC9|JAMtBugtWcK98RVu55yNWj7KaHCaqG*rR?5S6u-r_5a`GA3RdA<>TQNMf6Bws6 zHx!)A=Q)>FAV>r#h|#uO+-M}9@7I3VktZ62zU2?s_-6oz9eLvC z`?V+UFEzLzMOrn37!W3H&>HAizD!q^hs9%&0e#m45a-*%v>*wQd^Ud9y^b>>Yv64` z`(i~ZQW1d^DW#MmWuRJ-GHwmZcs7e)+9Zd~7WIThz)t`6Xf38$IIypV{Jut_E(CDO zaULlSTm#`*KX8|oWj`sL2#FJK#Uc%KTArrHxe-kPMx#HV}6Rn9EIzpll6UU0$h^vaL8cBpii`EQg5r(j^CTO?eULYDq zwz4BxgbAdK8QefMBL>AxF(?x8W1fPF_(ta1mapx^@Oy!hUDSQ8eXDPpDgF>hSV3{D zZq1w+v`#qDT+yr&iWDiuAdm)G_Y?*oI)#Axi`jL`7O?Tg0c#@~%=T^QZR2oIjT-H_ z0J+JDoUSP8S2$~I&Uvk%YV~D{24A~I*_Nsor2h91vw;HG&THE(!!`wxiF}$~Y(fyr ziVwz8i4eAh(h@>QEEhFdvcR~oc$l>g!mzB?xT8YEteQC}PYs90r%c-gEg^wY$NmrV4C_LBODWhdPhCMC(em3M+Tyo7~C^sa_v!K*;wU0npkmH&rSL>d;|Fo|t>% zakNrRaw#W?7M%!du2k52gDWU718o4z;x9QxB#8W#4cdh{#B5)HUHisg*`S@PRc~`O z4+$(EWI|Yn?NRd&&d0>v%hMp5bW%%GE@cRaotK zOB6*BMWj>&QYwm^R;{dVO-9vr1JdfyPC^%fh-gt>1sAdEINTx+!K*srJv-BBC!xD% z=853>Obyj~7Qu_ZWTzcF>r`qL7r;uCVkHKWVM-NU5+No9L=3ZZ9WyDAv5niMAJ;OqtsXVtmT3=WFuqBQqSsw# z{RN_)d6e8M1K3(5)|4ozYKj$AHL1i1sv+kw6O%-s*a~)yJgKaX)u8Y>6}$zg%jTC+ zg)GTnEM(^+o2Udz|;(K zx2SEWF$^g77&@;R`s-Pvjpz!^sc~U?7aeI z9G3)&tmmvT+8HyrGtqnG&S*HUoD>=i60IxM3q^Ch7eEw@O;KlyOEq%G$UX|14mRFJNFIzMovfNf3U8NhaH*fpa*&b5Y>v zi*_4evH>hIrT$eS?0kv$^gEq?IZ$KQVV^_PBmeN&AW zu08Zfx$KE=4g$UN(6_&F(i8x|d6)n5n*)J)H*NZZPS;5L-tg;7hU1|VPdNEb*Fxt_ z{O30ZiCYp1&{qWWZ`$n4D*)h&mp}gf-3JH&JU4Z>5jVQXUzqsVNxKiQ%#+`G^6bxF zhU>4mU}ztk&U1g>^DBRFfsdH{^1fR_-ky2QS8w^!|NhtZ{h*X6TKLR4yFYZ$!>8`q zzb%$HlD1ePMRAPz*Ka%KiED1ZdhdR2@*7WsMKewrb?j7^>W{9ObNpryh$v7*s8%Hs zu7a7gh!I=eerwYM-gqWfoHMgY5HTX5SkNXEGukl!mNQR{PPzT-8@m(k0{&J5hS`Dm z?>lz9YWCIR#|`Nz0^r|McDm|1Ga|>Gbn7vn@DbkAJbe&lOE{L2xa-N60)Pjdty9rye54%nKR6>+rq;ak6V+H3%H$`RKb z-diA%u#ny2b}QLodfA6maSV;^X+~(a zo}IhSSaCtk#x%5-ORcc{7FtFS1 zU?u?8$4Km!Jd+N4TnV&oa{5HL`-{w8TmVFxQy(2=k)9M;2O9%esULltqTnA0vv z6bZme2^f_sL%%P{5+sXJU5LuUr5_}H0AmAJ#s+RyuazRguwUHqlf4IE_8;~-^q`yn z^vF>gDgv3HrUv3R7sB{l0RXYt3WG=>3Q7pZey$*5?CRF3(WF7C8jWevr^OrYv=?}bc?WGSb7&l}i1>p4Qw;i*cZ0$Cyt60FJrgm62OP z=1e-~>*qdw=hZuIKmcU%a}Uk{aPzB+hV|`dCJZUyKd+m+-nMa+Ay$YKMRTs-_n?ab-~ck7ejsncAqC*TU*B={-u(p3(9Bf@iO6gl zCuU*|PP8OuAEHv)oRk8)XWk)?ZE_{nFc2wY5~oNgQc$7@ph&66>hP(iRiAYNFaLJ@ zsS^NT4^l)C5wP&R&2GNvw!y&c2M;;?zwi3O&kh=F!oK-zCxB_s&e`+RTh~o6LpAw^ znzJH+l%jAU{mm&m8(CooMNvcmu=uTwE_>pqgMfKA{^$o^dt}FdesMFxE5E<+jLWti zH+Ad|>+5+pUH+}TcK`8Tx7}DpN;o2B(nOJ>NGTT4ij)Wm5leI6Y4DvayUV!Hw+dvb z89t|EJ3Po>b`UMUZ@cy(@YJyExHhEEuF-mSlj^JhW;aL*MV5|?$RM@5h9nG`z7nTY zrYdFz!72Pz(g4W(;2#58LEl*%U;?zD^Bw*114Yu(qwpu2MTIw=t3%sCNmI z7O~roML^KTVNJOmKE{n)1VoxMmIUQ{JhY%flEiDnVjAAaZSBjJHuVv!R;o?|v6LiQ zCz_cnRh@Q_8-!Kov9)aOzrv*a`%0pb9f3IwJM9_UKEhxo3s@OPSptCjH`wagbvM3Z z;@LinD<+gg8<^ImVyaY<#o%*>uohGLLr=m4-&4IB9(U$cg7Mx3+hZbxPZ`8wcr z0DQQNW!YR*-j?b@R2Cq4>-`TC0LrXY6CyI3zKpYi+3rQO?S7pjuefXB+t|>SK-n#J zPAIbqmwl_OEmxd{T(MzyAmh1aoYSqaZqeGqw&XNW#xFAq@ERr~`4wo9`UGZC?QHY!m^OJbdME_WA8KKO5E;0`%YcqF4UM4Ir-; z(UxC28b5hs5q9hc0Pnu=$45??dI3gGnX_PrFAlH*fD?*)@AkbTalpS9VTXRE_)eCx zGfEWM<5Lug+UB?!FCV|;{!2C57O5;20H zmBSfUUNZVJ2|x~gOwU_!lax0bQP7C>f!ek87RO$4$FWNvJN?3Yp^TJ){@d=-9{@0T ztIzex=by7a@4;rI_Rz0o%{ULsz-wL z_t<8A0KlLx8~}h2MK3;l#%0@$|MMX`tgl(*Q(rq}@{yH<6HSVgGJ7Y;%nKMPM7z~Q zqB;xM8R{Z3Q95?&MkG5=JZ8h`!Cu1)F&o)n*$1DDgNtB2n*tQChuIJ`tYgim^hLuu zc9{xSC&+^y0%eyBc7}Z?;TZR*TA*#aU#ZTFRF;KZkq+b-k+9{{P!hnle`Q2Ci^z_z zhR$p3c%>o|w$g!EBe`3Gb^?dpk?9gPeA%R>83y|`vr)YS>0WN55NQ@gB*LL;>zcsB zu7o3Y@#4izyGhJaddgxb{FD=_3~ElecziAukEXtZGGK4kamna+4q9L=8SIY+tEKz< zZSic+Pfoaayh(rD_=`=}6D}SS`+_d032kN%2VLA!=ZM*03l!#;14)c zR<%Np?~Yi;>O-avS@oMV<=qbwygy4S3#9rslDAP^^5Jqjs>nEo+tq7tF0k*Nzc>hZ z^{%sazi2vu;lG;p)4luCted`c2u>b<`IQ%cx%2)@w|@SNQ78Td0I=Vsf9?EYf0DQE zzhLk0%m4uFef5K9@3oQO?MF`E?MHtGfW7uR;C>u_)5PKZK#Lyy?or>d_U)^l`sU`& zAY|A*g_{fjMd-KZDPvCF=eQfE-{JIW-%vyjp&afIh_GPp9e3_=@P++CA)E-ZaNd+V zcR%QYe&lAqb?PJ^gb0}P(C={eMOzu8!ovA?-F5WwR}aM5k6i!kF}n@z125g0V%V|m z3NJ>tRzYc$5@pt;iIm&sLF5u};mj-LHee{szIE_H&s=lg_}%+1`rDbuoxI(}5A5~U z1&4S3)wIFx-@oy+&-7jV%*Ee+Xq#g&>Bh$ajQQC$2V?rEAKnb?a^BV7+@;^UkN^CP z>D&AVuDkU?0NDAwJC5IVBd=jA;Emh1pLnfF@XXWiI(8G_-A8|L{&{}}fHAjr9x~Vu zT2p1aFHli-E7E(G}|K#Rbw!Y|r8;<|pQ|5Wd z)#r>G(rfVpHynTaz|oj8`5pi}opayOyYvU}=9C>Tp9}yy?y(=RbClJvO@S1F6h(?M z(`DYHchT5WKTY)Zg4eL$XFuIvnbY~~R8RjU0x2SP9z6!O6=~%c#8y`j!>)l7 z0ip#;!Kv&fZy~W-J;QA1wXkiimI5+j0icN7IyV3zJ9UMOS26)278rf2=Q^E1o-Z`}BcFS>9nfQv31d)ALT_geP4Ps1828Orxc;1X!q zgKCeVvOLL+m{7wuBSZY&YXD0VwcBOC`*7a;yE@P92Q2+S%lprvx`^}=(H{WN+H|}# zhr@2tCIt&5N@3ybyYAlSpdW8Ym;+3|;$K(Z^};1||M;(rx#z_fj^0WUF!4(IpTEuC zTAu&i9w+Ybo98dy67=@{<467MueV*k(Y-^zv)!MbI&W*@w;now?+YKDam5DHcK;Es z{o^yk`eD|sI~;ibzW<@X?>u?sd?WANd3oO$)AyN|r@Q#YL~Kfdd*L8xqc&YjnDBC_bo3r@J=uZLWFNG}2&pET$D zH~j9z#dm+}lpmfr2}fLc6f3v&J7XH{`ck`J6%2* zpmC?&cFe{AFP;Ak?YL)OC?*CJlOw>&<^eRh-8NRJWrNsC3iqIA@~)3N#$H()pqV64 zi1sNeWbM_VV|nHosatsX)hkkKxitK#W2E()9n^SnNn z7bAj@>DvspB2enXl$;N1R+gY<+O|)cY|<7KGO(Ry&u-ls1YsevZVCSM6(V8=ARe}j zleqIPH$Oo__B0h+Z85ChoQWphrQDsm&=$vS?d=Y)+%^dU*6H>AAN-`aX8-_d-Cj}L z7B&bG#VU$bq=@3SwzP%Kpy@NjEVz1nW^v#(t$-@RqX21o>34ZHd)zxb0Ty!qm7ckXrdkGHU^Eda>5GFmTd zN~f{IMF80L;D5bw@WOj9*=Lj2|MW}9>?4;e`LRzR~~TOvoDO-<*EY1LvK!XD`$Gg`CuLyv>j8oN_EM z`~HJ=7(3(_=bkyF*P>aEJ-GkpzttZ=?@u4H#%6Gky~SWWY9ukHfwu4hc&MVO6L zqIAIwo3E#NHfVqn$N;=n!!gNHS8MjEl8+y&0$POzxaAp&mz*F?y| zHd5rao2kU%w8wi3+o;vHEuQv1#2Tj(b3$YstM%56qIMKfM#CnEfJvCh zT632q(YsGQwe;zymg)$==KJ4Smv)=j_UkN&q9jex+~1hhIHn z@TS55zV_=m`)(iIdRHM76z~FxtVsK zfo9SC!mZysOMdYCo44=FuiSd%d9JH=*|fKKo+^@dptvb!{HPpPG19iF@=iaw|JYso zr&uDu=Et44?+?y9;5(s7+<%npgDd~wJ+B;h$M@&Hiy{2-ZBOE!Cy)Je8ttX=gY8l` z0K9Sg@X7RxbM6?@3$yPZb$F0ErTyu*A7q(o0}U(lZqV0HJE8N6*Wdonoj?B-Ir9F0 z?SJSFeMRgs%7#os*?oqj+ybKIpy?$jRF}WEN zMCjXRz4zX)_)7XdA(gt-xe*dNMT*nFQl+*nZf}d*q9|UcM+(>}@YIpu!bi%^n)bGK zYVU~Kdvx^f>)H>oIi<=RRHcm0&7|BFUSv;w3Uf-rn#x+i|}L~nEINCUUdHrr%rG(i}{n5%3R{& z``7)M{lc%Y!^Ztsw*Jgn`#k%z{r*1Bvat7_{PDkDH8Pd&1K6PhvjxIj>XqRlp0^fL z3N?*F*a_?xS971bl5)0u1@BYg&B-Pq!3ehELQ)#OIKfnGuUAeA1NlGss??946Bz>B49hAz`+AvK?bFr|kk{uR<^dV1{KA0s-E5`@K(XG5GFjQ+M2I(*Yaw zUU%Jfdi3bg(W9fiM|*pZ_8vWYw70kS=+V)mM@Nr!dbD@6cl2oQ=+V*9(Qf~=ceJ;g z=MML8M@M^GTU#8*aeI45hmG8$W1SxD9UUD#%wPYuM~{vk9sZB|zrCZqW1aMMM|)e` z(Wctl+k5tI>(#rxXU`tJdbaoM)!w^TNAF(ky?VFz?A_k8S6lBs?Y;W6_39n>>fO<^ zXIsynZ9RL&J$uIP*}hq?XM6Tdy9w5-cYCkiaj!mYJ$uDHd$srM-QKHrNAF%ediIKY z_Uh5M?|K_;(*H9%%~`m3+s}N~jD+0W3C}MRko7}WW;d7Mb2r`^hEA$_`%irOt@rT8 z2l)3Jk6|-^T(m#34$f;Yl^4a`M3#y_{yV`Rc|t_8&DVbO!^@97<4FFz$k8}1pbJv4U1_11P{dLD|W0w^t?tjQc z6ZD+R|2d`)+{hPTt5HAPXV-Bzed!Nh+t#xk5kbGbPWk)YTkbaUsGqyWI_1uj`mw$8 zLs%F`v$eV3MiisXKe$=n z%AqHpamK-0T`>Lh^Irby4@Ra#fz4f1=AiVHJ&@NO1;8Fd=AN?up8#O^H*Y+8V`ta^ zRL@<1c*2mqCx87jChCso-G5ZSJI9}5juhDc8^4|S2`kVE0L=aE`0q~u0NiuoC}8w0 z7wxt1rsKY2&+n%*PWjW2^%gzw*hBm8GN!*jhkT1&oK>(|?IZQ&1gl0>A+2Q z-%|nPcG=lurW63giv63y9CJNgo0k=6U~8#G8BZkJ9C7*d__#qidd;6R+UIq2WvgAeOW|$v*qi(x$fePKUn|zr`F$T z%N<`|jQ@LEzcS~q=l@6a?)o3}UcByy{VK|wNeWWRUht^gxun*o5ai7rj&-@e=|2GM z%@QdG3srIh7=eWP_5(jY{I&!B*g0fJo z%n_vT{`2SO+`HeoXYAe+9YP&~HjrX*jvB5VvK<%>+-&cnhNSL~`oS7fhBdYlTN?b* zEG%q~XHU4QIni8AIMKX3;i~3p!d1vm>2eXS>C|eCF zey$%qn_=-+%5uAuWmu0D_pjSf>zwWoKEQu6N_}b(NST>q(>AYS*lySWEmNaDZJK4B z@9F5y6ujY>4nI-=Nai;(Ukke^Y|K=gp#U=cBCuE$iM*fzw_zkyoj|@%VJ~(fTPd>x z+XXRJA#vSnqu3LX9nPCC%86(L2duZ}_8U+BpWElpdG7ti3&qN)e(QOr=>k)KohAVY zShph%AiZGBQ23wJe#pPr?)AqP`_0b;*lVs_HSJa>z}`{m4O*^ceOdx|_p#t7JjeG| zP#9~b{RhB?>#h6gt+v~3+(l2mwBXf+?}ddN`?Vok4BkEtvM^inMUlAkQlRX#7xz)=8I0AYc}ygxxhU0tS=w>o=h1n@&P*A?}TZE%tN4LYepoBqHI7 z93l+S%GWx7TMoPC z=RXEQmty8Bs$TFvHp5VL{i@GSFDX!BauK= zw1B0ONQI2zZLaRK55B`CgF$)KGR>d?6?3_IVHzP&y)R8xHj5&%2s5;>zo9E(NkpnF ziDv(&swL5)HCRZCTVJVTcCM@X83t81RxWVidUpMkrGCB*3zpNfbF0*;P9V;s#_~-A z@j-xs!qh2(&A9k?Ym{Z)wXD3TK#dY}trxCmr_-*rqIt2u&hBlOenu)2?=c=OmwHVh z_39^ryGWaSV5^J+_E;2gb`HCoY*l1m4idKmTTIqoXLt9G5JQZTO(qSpnu+QC`3v7` zf8njsM;|tz&pN(tfq#Rfb#Pf`8zLAP6VY9)otuN9LT3k#4*?ZKyC zd1b-ULdiAG#3!?%%bCQ1Pc83ZzI@{S^#Ppq6@fjn%~J1o)&sySAXcPU1key+Aq9Jg zgtlAG$qox-Saqmq7%3yzu9DGRy=EGMx5<&EYSd+ySO&HOZ97DCav=ej?X;#PD0^|W z6A{Fz$w1F9Tyow07u%AUV(I18e3`uxo-QX@AWRi&u@^;~i#3d|p9a|@b;P-QvWO6v z%|bpiF+>!z(o7MnHfb{puTd0{ij>ldqLgz8L|7+UbD|TSB-LuNyjodatuEI|MLQDF zIe`P|OmgA`MGPf~su~cfYOX+-(p`yxZk`3t07Y_$B|d09ssW1zVVcjOx>7=*_BSJ= zB^$ujnyXr>nl*DJ;lyd!70roe&20P&#QLVWoC>J{6G%;!H9>M9?dQ3FX)(JXY6Ftc zw>f-YbH-V%Z9Esil`Gv3R+yl#K%;WjMefYohSWN2cLB5E8a{>XIHfC#+-Tp3s-DhQHa?NgT*GJ}96(=A~n;q}E%Hxi{3Ttkt&Ey3&bRxC(sg zQ7}`2rmUr`_8$hWJ3OQ?yB6}wBob86Q|w2aJLyKe)7dNQR3nurXhlNAL~I?e0V8A) zDTl)ZC-Q)T!~*4REVFWX23WFC zm^oHce1PzGj->9Fx&d2}0P0M(tT<5^#%S1V0GpkX9T>)qdaaqOnl+2oq6I=^tl?oU zDfDE)`;uXC&6tIlk1r_$W0cK}&3Gf>d?kmeB2=UKNtL#fz`*sz=cC!TQ zG^}J3ZWJ{8wHUSm*wea!tU_;Djbv9D0z{{v?;L#E!+vanVl*0ZH*~qaRAkteBJvC>3dQH=k3r?b$5$q(yP1F|5@lMP{p*sh(X^cSAxTB1-waVelG+Iam#@naB+` z=O+PIIiHblC81PKLH2!SoYexY2^q@3>9gz2LdqqTvA)#Lt00}MIO~=H%!MBWYY%ry zwmV1*{nYBCqcOX+`Ckn79Yx_ z;V#t>dlav-I8CHTMWhrF8^pFbgGGxLt(mom_FX|r#c^8{M^Uvcieg0(DN-u3#z&BV zm|5$pPPFD~l2nsQrCO~d$?_zrGBaz|q7g!ggklo`$_PDzHUXH3p@bA85sH~Kh**?Z zhYSVR2EJQD9-aa0n$cPKHXSiF-*WRJ_}h>QFgrW^>Sqb-2P-U+FtZjdqOFoG3A5HI zkUL%6xW1b8o1DT}s6gj1J4{F5Hs)rLkKAtEkRM5U zL}oERty`~<8en46$W(8nwIT=95qf|;RIJ=72>p;jtAKBFGFi5Wg zGmOiP5VM!bUK*BOMP)3XAuwB&P`O*W)5f#g4D(GY;UTZCnOn!~df}}gR690n;-WQG z+fRhpzcXi?5m=Fsy`|BfR%Q&^ZXOANL>c+X7eI)>qD@aJv!~Cj*-L7o@H^iF1={07 zRk0UV|dEaz2lDa#I{gs4B8wd=P}!7W5gX!6=ZTdZUXOOgOU&ta=>e?;ttC> zQ$j(o&z7w$!7dF8+w35n&2Tf~t##OoR76U}N{LdDxkbfqQG|fCPP9(6#cVMa(-Sw`+19u{Jq5cwy@O?*BejY|nLcCtX zP3}S>jl|(>QbgF#x0R-KU}*R3BI8m=IM%)gu2jQp=_;71cu(_3&2~ztQTM}#>yc>g>|R^uWT_?e|BlTE(wCJa7qG zQRMqh00hpq-E!sc(M?)A+OEURHU!U;k_Ild0gs&cA%k11$gq%$Ti>jVco2b$st&Op zMri_HFm$P`$-+4e@yn_fOMQ(ae7CCc6NQa9?H9d*vCj9zg{F!;(M-~w(vIzLOFpK< z!r}J_lU;8s$8ZR{&WiZi+{@aa@_MYol6#H*n4&s-lW*xhHe+OT{V;r4IRdV>yGr zX9qLX9;!f4g>x8VB5BvwDYfg7-Imw`EgnVbV%jjI1PCRYgNDJWlDD^Gc{wf|0Y8o`@J*K7JpqL0{&pwYsO0~Tv!4u}uXPt}!FStE#v z@%SxZyAW23SJRdmkHcLVvyGDge3@Y?k~wMXU$5E!YaJaN49@;VIsjxBK?&#hT z_ro{&*r>06J{S`ZmTgzR9oMF(dSd}o)D@LPg|awGzl0pKNS6B* zda=|bw+;6xty$l7R9LZ4Bf40b#7zjJ7%J!+ayj1{eDAw(4S$NkM8+squ;J*2eNtFd zeSCXr`=?|YDGwE>MKTXFY&W{c#f`UL`_`>2S4&JB$DFDiKR#!UOa+j0@<;tF#u=bi ziqe(Kx=7V{KJnzz!nz%a;iA4zzb!TI%*iFxU6b$mTrM zle01Gf>$sc?i3qRMwge%UT=gg0`Y`?g)GG(|Co-_11MqKu~Y&cJLFmJvyPiN^~d!A z2^1u1cahdmNAG1XwKz5Ekg+PfruYb^g9vrE?VqhgnHDqQj+fy=>O>zkq-uu5Qpo?w2+Di(T5ohzQOU@O>w6W>+7D#Tf>1SOe~`TU6pd)E+km;Cm$^wNRf z@eq%V_*$o>k7XjJV<0#O$vw)kaa{KgwSsu^@t={2`Dka8OSe zl&_9qRhE#uWV>DiYNEnL%+`{Kg~%@lpTq=0Bs{8fbn(AWtLZJJ=?5??OIEzGEcHcX zC1fGb+F;O`JgoFoN6+dGq%Hm_V|w?Kn=nnl`WwF*kx29SRvs?L_Z&0l?8cp#{el@R z`O=LvjI6)2pE7YH5qA!8-~PCdf_}61SmQfMM{}+tF#*hq55udpK$RxyE?!{xoWVkt9-V8ypsPL$hDxO@w}a zhH@z75hs3wBAo)=gl3?*R7hZ0@({GV%hmQ&$>yT7;TWEBX!nlsruK7~4)Skp=^;<< zdMzwFT#Hq8nMShM}Vety0Ck~@FAP;=s1tPtJlQ~AFq9%>`A zL++4~7`Bt0E4E4^4F9=WU4B)zac$ehI_xoiVb6n83)<`TA;AAUv2ojy7(RT~ql9z! zM+vD+`M(z&(gk*9(v>SRMlOx!DeC?A9Gc32I&y=0L&Yp}%MO~A3eybQ^Z$l>_;&Q| z&K^6&$O4N&iW*8YBkKQNF1hzp<0Vnt!7?C+bTOG@;p_V{(~N%wQRh`ZS+cC<&)`z` zB7~3-8wuq7C!+eT`YEN#Zk0NwG#1pZ$npQ?%zfB?`6i`AE}D{3deneI%Wm<%F*ndA zL)p-WsH?%kebw?pbNo-l&kc6NKG6_i!#&?U?lh}}B1$5DpJ&-5#XQZUwBW%BgU^;9 zpx)8njJuZqFu1lmxwK!gF&rti4c=FM+iI7+Ml*Y2sFOjI;quvg^arT~GkAVksV{2J z^CTw`=3cK-SWAz4rb8b7;N#`R!duUs?s$isNAfZIIs1G&T z(ebIeN3hcrwF%cP zFEl|nx)h>uqoU1auz}(wZ9H4G;8`|OA#hANQ!HGy_AI@YL4>sta>__1EGOX|7TBXi zPIMu0u6S0w5tyrk>nX6Q6qlQYG7Jun=7JrmN~we1^}7$%PmORa^fTk-xpsLB5odv{ ztaHw5mY45P)37;n(reQ7PSW<^Z1}=@yME|A>Rc1+m zNn}-qvU#lDV8#>cTv}PBnl;Qmwx%@CavNr5PvlrW?z?y%G5EfC0?j+Os~c+tO-FIHCEfmjx)%HEBJIZ z4jTTZz1U`3(F;;;uV^8uq)DFa4u8Wq!@$fdmPeua4eiKkec53Gwp@N~OSh|naY_SC zajjz$rM>C>5O=;dOKUA>?@)-$j~wd-n1+6fx|s?qFn87-&sCIfed{wU!&_%=$?pTb z3rUV?v`iio6rh}Aw+;Wq?yFU>;Bi5;_xQ`Lprb$UfQ-JwJs9B(sH3R$%MZNjT1o_e z+Dz8L@AMf)k~KMjIzEmp4RVBONzRjnq=VWwTfXyx?csfC6KQKNumy*1F9yH}1sSr( zRU4kGdi%QCp~yUpf$ZBUzSAgU8QT-4t8RsFwHZ(@TU+yve#xB7Ew{Y;XllmAY?}83 zEORNG4Nq7$*ZaIJ?yO4g9=oDBr0LK3cIp>ZUdmopUX{9bAvh7$Cy%~D#kN6JY+2(u zwdS%r*fv5FGaS1{7CDt`uw{->0x&I3n>knJoOlg;Z-SJ)`2Va8LH|7E3hK-f4&$Qa zC|??6>(b`W^Za}~Ivn=JGdEK^Z4k_MWbfr^*I#Vh)|l}Hdwg-YQY&7V^FyvJce;K> zW223yvh#*WWIW=G+Y)Khq-={wT3KNUF4K#`o=D&W^9;zOzc|$)pvsf^ey@2QAwk5Q z=}o4S{mi&V?Di-f`&F^phO=I;mW(IzRGOZ{*Tih?!f$%aKB-l%*d&q|1SoNNrs;3n z)|f;(VIq1bl{}2pP4cgG=XWWTVLU#M-0|k+&D5D5C6Af?hBA*eUM%VTY|+7dIcG)n z>AJS?Gi_OI6l1$brAg(3+Ou7CBJ;gvlGa`tAF#g{&Mu98;l;pto|ld?pq~x8?xB1T zhx}(7qOo(R=FA1Hq2Ekqke+qKK<#`ET!W>HYJ<~+-o3_36mrJ^ohAFbc&?yJ4<8d5Y{Vos{>$>G#-)_Pm#liXVz9EW5#9CF#y zJfbfmy5=^A`8*_=8a!9)V;H0yA{P))Pt=j@#&Zl)ly!bQ!89+fNxhqr%tcVWb-LH3 z*|vkT*%h$7)>yDQ8cLM7{lnyW#*-Q(l1*y8$}JA9Cy&>bEgzGQyVAsBj?|2I-iTQD zmuCVGZl|@r!vBcM%n@CW1G;IVAplc9p4;V0b1b8h`}?)L6WqA1c@xiH&A^mU}!wUtNu zsO& zXIJJ+RtD``^hHrMt9yb-2?`{RVmQwP7^9CO?o+!B8$N7#2OBp2n6Dw#wLyw#+g6X) zj>{Qvo2SOm1{*EIg%(c~)z{-y>x>b~Fls%U2#+pfal#LnoHqxpNSH2nEN%1s+Vf8J zmL|549@3h@@)E54fDP=q@)82ZrB>SozI2Yi>9#;zi-@%>ic$%=KdeLpVU?yICHRaiF9-ySzKE?;r}r^pXg3*o@)ht>SjUO1F~gP{b~|Z5 zZ$U?Lxm?XY7=2JC;x+7co5(r4{d6DU>6sj8`8wt*rymE&pPeXG4;&1k^n%SQEJhF# zo-Jv+NZYifjwQB?d@8d(1zhc9e5xzMqlR#a(dN)rjM(#-&bw=cokjzR&m z4u9T0D6xR(rgqE@F|M}l=tr}vHsk_Ci%Yir9X6hjQOoHTOCw1K%POOkO*c>#!6+$7 zx8t=6t76MYWWVvd?B23KrYr(IrEHT)`gqO>!})de*0#T4N4PO7>VA=cB2*}%or*3pph`Pwd@nuzc$HR7Cj}~N8U)k(? zQ$|-^e0+lFyHH_nAjfeH%;XUmwRrq;t=>d;Wt2uNw|*2xxMbvHGjSE zT6{YIUUg`bs0@?VfQOCgST`ol`+OLqZzZz7Hj*WK*0{?f_#yS z)LdPSLv-GTf2kNUeKjYx*<+vy>bFK$wD#gb96k;F2kQwE-s3F!%hEmLe<|LqBQ+(? z${FV4W9zsx$AV+})p>~oUHlhp3me|Fl7ERS^u=;xp93h0*+cLRez`$L;otMG!A0Lj zf1k2Q0W@wF87+^T!?XlCt>Fe++ysLZ*V{wkxXCc}?{UEY*rNQZi@@Ny)GctT7{xRg9KGk&6%951_x5fW^;lglet+#+ikT5qKgISRv_i@&?%_8T`VGbcA zkx+C0&0klpikZAZQS%DnsP6yx`FwyI?HMW_<72}78_v6@kqnR0=2DD2Hgku~6Kl@1 zLsX|X1Oldmi`lVG|9S}TY)`16$)PcktM1fJlS!;ngQg61g2oF1#u~=wZgQMCzk*`+ zyRXLWn6>|-yOlC^)?ulLK684z&=pVtTUn6dzm{2qM0^k9wfE&FW9~JI|M(scnMqm& z0|&EWphbm3P>33EFeJOT_H@Y}9DW=|9{DA$@OD**zZF^+_5YlUHWf3p?Ncvhj78WZ z=gRpQ##(^&$%hU)IOl=)NWI1iBhYvMN5y$CgNI4It*Y;${t7SkcvYQ3mK*PRsMOkp zNLlP)Y7|$?W|n?VcjtPH6|(D0kQnMr7!emI{i9b}O81OJ?Q%5xPf_1(yNd%h)cv^1 zk}4SdIUVN>eo|aLW#mKIrPuC*vm-DgcQe`wd~8J`=DR2SE#X-(D?6v#J3;oIS5B-y z^+-D*C^g!$#x!srvR2S4EpQcnl*~U!yCFotsBIEs2A1gXQr!OZM<-6!t;-j**9#V0 z+JnTgwd8*xlJ59-#S(ERNSYPqMFB~dc2k?R-_J9r2nWn&|Kzk^9CZAIwiqkya+PKN zE&jgAF)eF5!ZRV$<*l+8u=huD%=L|ZH|9!cf z*T1yc<0G115>n#)kjKyRCm1U$*wnrl8;5~F7*de>)dYi|>ah({xg|+Ao)g9%+VOZh zJG~|(;#2HA2T+!KE8sYN8`NHxf9Kr4!v^5}QhoV^f?oZj-#p~^7YTa?DPaWGjrz#- zkAsV4zO$X-i0$=GR8TME)d0iRq`S9J`v~CKX6zSiDdfI?75j?4h#8zq$8lZk$iWIT zcGHsO^6sv|*IEx|(3-y+EZ|bmC!^GE`S8i)dFN$e?Qwvw?)cWf`*8ELb$`trcL`sm z@I%|qM{^6NL<;iOAQ~v>VGA-j$3oD^GTViMh{F~d4uJ)2aBgnB&uEC015K=jdD5^X z)_&qbZHNu~-x|;X$QS8~u7(!;bJ|2sHfeKsVXAXK*AIM(+J2$7IyV=%6u30Ex{d+g z-e*?ZUb<+w{`~h)r<*7qXz+AIpOK>-r_F0hr%lqihOsAI`*ks(dH@ z{Yw!?D+jTrqo*xj%FgqgtP}Nhmg=3AiiaKvHIC9nzN4CxPbK4dTdy4r8U~jfzKXJf zrv*Med?2yC)J94;6g3uD``Fy^cy}pfn=2xq3&EbpP=*te z#;=;%nR-)~c+BJ!T!^mA4y2(sl^)UnQ|XI6W4NgKM}fxgNJ%=OB>be5C^8)AM^K2) zSF40cEEuuD9Rt@sHzqwLguXs1!Pama#KImi`rh<(w03g|DTi10d)C$mP?=cwE>vd* z!j%#H&coIZVs)N1T!Wsh1DCe#*aNe|un0%1PNWgTJlqG>PvvoQZs#9svT$)N_9B-y zE&E&Oe#eD{jm3)+#SoETs0Rm(!T7Rb{O&}Ro2fpGNK+2%67gODL1O%TdAR60Kj5BB z4s6-yKvhyz>^$d=adrslt9-_WRNeK=x#bNr z6i8qGcPG*RasBa@^?B&!q1)ltZJwwsIS4cxJL+B(qPFGtnf+$+Wvu&(H>3N(`}ww8 zwW&loaF_M(Q&GJroqM#P2IS5TSco9xTEmSPN9DM*6K=HRrZjihJSd>227kW8X4z$g zJ=A`GG-G>^N9Ma-j^C)huansYtimS)PbxQ4f;e|Gg}3U~ml&-Zv2dy7K}|CuE;Cr- zXTbC!EJw@5o3RN#C~bgEIn78U(0avY<^NTx;2TQ18d6iQbWcoIZ%m%O8sLq;`<=Ki zN;oxmT^!zeJ-k;p16xdG&ARXv0%Nq1|K(xDEjxS_-IH05u5U7IP@F4ORX?b=a3c2? z24o|sWhLP56?XN6Gw33qBrOB_Za9A1QnJqV z3qamIz7JoNok?7261Zm}Z|fs4&mCq%4YX5#^rzgC%Y%OU$(amj05IU6iolv>+;@`l z)c2URskEX*t+8#v7h%gt87wbFe2gSiIz#jFz&i46(5x2pV^j?b{1u zjNQg7@(%MknfxzG!X{2kA>!jV;bSM<(zArzp3uOFvSO0I6Ij7?lSYORR_}7mBST}L z&+9r1v6(4^#d(l`Hj{|sweSLAemjAJhl(Ts!|O;-0TO3 zrO&3;H%(-51f0d>?cMyOD9wC;PAFM;dweT-F6IBlZn`V;vp$$>FlJ%U#}o#LVwldQ5T+h3wZYoJ@4Gx z6=tC4F3?VhSs{j#ShA}J8l?mD=4WmCeVf_=O^yM;W4cNZbr8W38QNvb)zRvkhC!NDhW98!89(t5F^IWK2Umc>D zn-_4nclO9|8-YfiViTsU1TSg$l}l!dRb#FT0js3lM(C2a%MQ?|5qp#maZ$4;+ym_i zA0%G~2v{3#Ox%hkApJ`B@?FyV(}*FIGoF&~z{zZ}TQf_FzGqJh0GCOaW%D7F+>bZQ zB>8!G?!e)X2+`R5dt4*HRqyfDqk)z#h$&LOT8-&6Biw>_=kvW$sC|IO2r-P-v6%Ib z)ERS6fn`eT$H@!a|J{O?g~d}3)OLsUHIj-PZU7clJ4a_9Kw$(E1|QQar13?MoWv|^ zi%{0o9BR*EUFrXKSCF8li(R#_VWuAT``h!G&8?F`ji#*Hy}@W~OlzlO!enBP!47ud z6E{HVimmX==B1=o&j&o%2}ZvES+(Q(fSNJ+IFKhnl_}>o*uTZ1UnV@(wn92ou5~go zu8S{-%DS+P=U1w>9}#(^p?>*GT|0jH&A#YTH)y-YK|UmDs;6{pm2& zjJA{oF6N4r2t55oRj=P^fSOV5cyKbgpy7UDhy9W@;ZRd}&}O?1bf5`Jr!3Li5v*ST z5X?(Yy;iP$S!t`?+gV8c6m{GVzoIHm^ zk+x1ANrh^suU|*J$}>=iMEv7M?14#*4`%mrGmDxKwP10jaYZ)Ya&3~)_dHqaWVdaT zsUZXg3~!1MEQr^{tC0JNL6Py-F#tGnWddcDlvm3+Xd>Ag0yQRZX@#&f^kvTSPj7Ub zg#=9@<2;c(ec)CtuVMMmMLrl#th`=$JoiSW;p|of5j~61Ju0Yz16c<1(gI9BX(=f$ zALjjQ+goF*eEb~MFC6{|iPb1 z*pVj|K|%5%dXTJ)(e+9Zy!w@%w)3D4o2o>pk@v&d)9A$(x{lpb)l zI3`z(a_)U$sf(i%4~Jl04f$KXpew~QZ7Lppeh~)NRb&wXI-1J2lL+d1c%7*om9mOyfTf zr>KjHy`p#1VDa=*X11!4A4iG9$dJ_nHu02H#1ABVy`Fq(VPWE5o*s=8kO7z0lhn)z z;OqPG$G?;iT~OR~bn1qZ6&L65$Y(Rz=v0>4f3_P@ifW1gfKXwGJgs$i-8a7Movl7o)GK~};avY~ z-TlbwwW1(V1*iNJ;<5wG6(d>E z$J5^(@%J~)O&={~t2}?Z6I@UB9__POB<(Us;-shJw=XihitF^3)= zDH&WDFnrF(A8^1G`0t7Jc`ybSqfI?j;!?4<``I$-xEWk2!O__JnWL{zAFHlSg7$6Z zD#v~fTPBws%XA|E1yUAl=?BQd1+bO@k8_TGw63fHr*>V@W2vn;z~d>CAF02T)u7S; zl%du9HN9{h;2^KO6Gpx5hm#!P)&9}t2xkGUvsLJT$3&l3ZxuVGnt`(Nq0=+Pv;7V) z(;G;g=4y;y$p4YmVZ-mpB31Q-(q9W2u2c6<0B)Y5n)>K|N_{6HOpN!aqZ7{c<+C;G zWWZt<&1);LAhdmkfM4?&1p-RmPrg38x3Pk)qrTYne?&WwQDp|BQQ_$<{gkDPYxQ3n zdsQC%|FDdF5>UDzo&56tZw8jiGABu=P zo-bhv3UzqxqJ~RZS9*smXtuZP_M{Sr>HK?-Z0if`TON>Dy{%0`y;l!^_qzTK%Kqc= z8_a!=?)^CSSp7Km@);%hP)!)nGRPZ^jo#Z(;%ia(|7rnz0=r+H%5UQcw;(I}xnU-O ziFZ2`wlRW`oUIoCj%yf34{=oHn+^_ih~D3q;^ zhV%<~Ma$+2|4*pg>VIrIQqykKs3v6Y_R7J=XdTNFL&p(RrR46WQAE(Y+{D-1BB{j; z+ZGZ_`R}?0DgVFJg`EcyrtOUN>uXbLag>tvc(MKd< zyIyf{(+xt`R@P!$VjlP2z&b{}b!6!zdneR~GvqSHMc}BY@)YL`TdgllM0V zId8GAX!q?;t1j%`t_`uMNRgg51}y5sf5RR`mC^0qpQ)#K&)9bd2>Cq?R|Ibn7s9}_ z>(FM3SpFdE{aAfgaeMoS;ioum{Y`ZCq)}dKuixkCy_~Hlq)EWs0jHTZpqa>0_*D}N z`Ntp2O?5v_-e;Vh1zv4F|8x7TU#z~iXCkA@1wWYIxIonxGrKbjDKhFiuOX^gBk9i9 zFB)dD(Ek`n5SF>K>)6-H?yi@ozkmOEh-skn`6CmaS0K1ZF8|20*|(K|#TYV!1>n4$ zijgDb568Uin*!FzFV|ueTrM2PQU4n16DgzHe9uKc6+f`(i_6P2@Nwo;Xo72V^XU#x zuB_GVX}tVCz7tN*!BP^fGw)@;BKCFZYpuAN`K{L@qTda|7R2dNt_B|ML4GY-+zMyHBCzRIMx!IIGOJ0Qjin zD9KJ5Nr}{XWS=xSq@tGgfl0Xoj$iQie+jKVJ-vDA^QT4e<1}}uQ9}mq<8;FlK*em? z+drh;0mVZ3`OucOH7hE3zV-$Y^W(c^s^eh-Gskv)>VDbkydGG1e4VD6W)7qqr)xKH zE(0gP^@@~|nk{h7kbGzBwUl>wnqX}H+WAAQ{tw|2{JsU|%fs5kq0`H5PP)NG29{lwn%!SWJ78qA0mMVCfhfLBQ<_Mbg8d^4iy$)BwZ zr?*uCSR2A&)Ppclt{k<>eNFS)y1w!1+1ZVd#?%rprNhlREsmbw6iUsE*54ttw8jW% z>7j!u3#osEK@QG5Y*jlILWIloQQrT`OhLsiDdb_}kop5mv&1*iD3TK0c~ftIM+v$r zIGeR~!&aQOm} zh<%t2ljaV3WNDd7Myew!9(z>&8vy49frJQlsE5w!n3a_S-(vo4%vu_&{sH$-v;mX_ z&W<_4^0pN8o62hUPmi${O*#}iBm?k8thBzA5)Kl8XC7DL9Sw1?`tnQ2z-bewn)jpT z$a27YV8sC}M z!ugZ!%Rk;QH5>A~I?V6Mi35=M&hSXJgVlCktJBce<~7Vzg-dW1eO|vsv#_Sk*dU8B z!X{uZ!{C#qS80H6=VH*2y}TIPMfZ=&{bcpWzpX&qu z>QHL}TthH>#A3mC+Opp<+;#!aeR)qK!ZJGGh!abEiT%KzY-!G-hQemH_fJsmE$B30 z5j;k6RIR1tM`w@LNc_K(kx7hsRW4&|>?=8tovfUJyULxbp1`28kCcelPR-+(|0C4B_!gKu-$#?0{c z;rE%0dBi4f7C}K0m{tuxCZ06b?xr|FAWToxLDa#nY5paB06EvT;*yi4Yb4WrTUH_* z*Wv8oDLpUMl$FU>mNJ7X( z9Aq`aZ(3nqL-uml6X|#K_j%`Z?csO-$B!wiy0+~uhBJ)w-n(y7ljwxNaiDWU9oa%e^)r}Dc&@#OF4$9_lf;ix8ww)rdVdOf1 zRh`$<(dX~+dTwN+kMR6x@yaP8XkY+WLDJ@|tjqr1k3tW^HZjN@Ay>Y!{0nvV2snoQY3Tf~>tQ=viXFca_~ z>V8azedAgmd^`mm~c&P3YMBaVos>!gICL$gNw=p+QNTt~WKAxP$qd`>U4{eSCS+1nnq)SBP)C z7sjwVFYw}jANne=JrhtWa@l(SxX;s*_kh)joXgKU#CS20HehZr0 z`mhK-BJq|L7q@;5qb$kl{>u{DTfZIpjkv-*BFhIC1`re-wuG$KfwG8 zupQ<#c#Kw`_9=c!;3zB*J)WxFFEOmonhsW>aJX+g_SkdV6Ty9luY6I?Sr%!p4QdKX z`Dqi2ZxHG`)S6#|#(PG}7Qk-iKPXl^dCi_Z9A$Yl?RF>vXBvKAAfCp{am|1=N39jj zny$IkEYl8LI82r(G(CfIValBR=mnQko76lrRp2f%xmHKAf0$s*x_(7l&0`Lm{~20l zT*w7H##voYsv981+b)V&B|POM^pzz4pkh(qf>ZGrOH`ORBJFK{#i@t@e#A#qaaI4< zxQBWX7Dcny-G|a`HS$xX$ZiyxEXA!zJ~i)I`tv6a(k^|SQD*V+BmLU}z;Jq(JA{-^ zgy5=$r1UCkGB*9B8tX%z0DI+<3tSN>aAfpjxE7|mE5}g zl)PDsb`te|iNn{-MH#=36@ve(3+Qs+LH7On?m$gfyeaFNcF!Xo$)S+cQVA>aEoaWD zok%bmh}_M500@D^v8St6l7h)R=LTi~qHlR8aVYn2d6Ggays6Z!_wLI&FcjVHIZ|V% z3`uLaB@=c-s%hP56AmVf@LQwrJV#_A>1YOig^e{ot2wwCZl4Ntn*bY?0QKZ0=|!8C z1|$-|IC0irw7ox-;m|iGr8iix5vHS2e5JWIn*CLQ`uiAn2+(CI&uElJa973ANSYkq z5628{^9o*e1`8}AP!iHj$kHT~g75ol8c<h*+&~zFWy`tbN5x^RzIrSZwar1M; zO15SFa#L72hbDHua~o;RSrJ-1cWh-N1X3RGj21k_7D|J15&EiLh{Fwsjs{=I{*lRH zu-I9s&t$sblD?)2r6F81y|!%?57+v`qa1Dod@zC-*(Y;xS%%uqEhfrB5|A2s*Gbd& z@$t2-;Sc9>nH>J zVy8xx;%`HAov|zfVP44?DgwUhkZiP09r%Y^?mlVGpD*>wOY)3l5j4kl0dI5Q5i zFMW(N7si;ezRzL{{n!_uTuaTaY$dF;K7&#dq2MiT)7POOwtu+DLyA64VCC;7>Fa=x zr>^w*5iRXEMS)Sx2hy8PmY3(JqsBrYrx3}gdoo0zQAud4D>q_BC=735aUGOmaecI$ zhdI@zD&~cmkUgHHfK&A+RP8Lr1niU6R_A?~$^N9Gf|NvsbZ%BC|ABaexVt=~)$$MS zFhY=_>%?zp&b;Zp&xpvzew=w(0IUl|!hQaK&7WgrYcC0^0E((Tpl|CckN~k$iNxYW{8z*t9si2^v3Py1CHKzb8DB;e_u&qw1loV8!=6OQ1QI zdBj;0L`XILk#}xNmL^VSwR|Wps7wwInH4RRu={fAOSDAJ{14S@tr$bXoO~t)l4y}q z4FtpF=RF}&5o7y*&4^HfcxEMnpg^7jw;clnxVd~Kf?Ye1T{Q+mmS(w3Xg$^VSyDjm zHq5sB$TK?P)$@{+->7D*h-@_Jk;~Wl+RFy*YcPdEPh)K^enI4!sF%rLv*!w{gUJTy zg|{}$U1G2@7JLCNEP=-%#ST`-{vlN>ZB_F*ynr3M?Rwqv#}EpdciCBJ1)w7>&7ti)arPWzaVx!*BE5O z-AVC6HUCE@P(hSmb1|~2qI2HUpjnNfdStY_yAaYSPSJ0@8 z-eO&UMmE>(lPBU{@eqM|1s&@8rdy5`>CNdXaVnUs6=@jQt_>gCqrZ3hwq~*jx5o!@ zh_x{6vQ-mL`QeVb!}wwZG4Z)C7Tb8aTw>^QG6M$_hinru)I(in!op$%UbFK+I?^JoWwLiqr9Z3LjrPIaJ8+^rCltyY%Bi}KwpcRp zHCg%%e-RBe$ovggoiq~3HYg1~wzh_OpYF5X<7LTJE;-u}zmdXL8jwB8tV+JXA&I1Z z{u42f4cF7b4I1iOOH|a2XNH9klNlXEx%=YrP*keeVJBl}-*gllF807W^dQrV%iG8& zId~FjQUHLZ_{?5H=uPM-mQXNigrf)q0<; zWm;ql^CTA#*1(}qhXx56Az+dL8lvjv|qmx$j z84VW@G<<|u#3k=80`Nx`ha81DsR%^JC^}o0-ml}WLF`jY@%@b}&uPd6S-r~NJG*ra zCYaFl64<*RtHxF9|L|NH%31WQax}b<5~K3N2nusySeDuu^C(@M*IK0j0CP51s2<-P zpdD9L&T4!F?2^fPxYZv3rQLv0D8q)J9SMU{D6OkoMSnAC)-!$;U1u3d&>=P`Gdf+h zOQY6d0LlKe)}7h`6RGhVq|Ee51N{sdG(feo`D>Wg>{U!R#l}u@Vq)vy!8b)cBA@MY z^u|QV)X~HU?>O^ZDd&2%xpFv0nm$OL$TJ~lL*Ye+eT~tM)8lQqO@STR7nXJh1eH5J zrhh&z{sI^{RJdf|Y+&a-=<@b8AUKk>psrG8hlHC^p z>!O}KHMaUrwS}61+St@Q2*X0a9$F=+g=#)G&C)QJ&$>S|7p$TTMBSz+%c3tbp~Z}r zd2B1Ou&IsZ{em#6wcroqAGDV7c$$lS94Qn?KyM^9lRnYJLlu@S3RJFqNHB@@7nf7! z%tveWS+Hp=TD1#PqAN@wiK4Qv1^R0GBng3rD1?5;u^0H{9jrmd35c1}LLl}tueRJ1 zA=T8!#_o&;HDyv>1Ca7#%h!2|Xbrw*KKw^h4ceZyN+T8kewp_nC5trmz+y#O0HMGO zp0}Dvw0)Yt4mCpkRN+U)D%+5~Cn4QkTBBv4BrorM zeLFy8^Y}`5*;kFBwRu5AF!ErK2T{<)A3BxI=csxm80|ptz3(AIb``g7IGUJK;Vw|& z@_xStW$D{khKMv(?Z3czF_p5$$Z%Cb)2YMsYG(w%tYB@U-bE*~Eu63%t5RV@d~-=_ zo@&U9pCyn=2|DJo@v2OIG#$fgMb}p{hZvocG)F1rhB%4>I38pWR@tW=3XW0Cm1rOk zYY_k2bL@$wV3>pkVjIS@qnJxi&E|67!b#>I0KWA+XTF9OQ!N|?f%0lY!F=nG*qYYQ z_M*ptKUEh|E*Q{B^2&6=x$uJC1trlTG;xFOksK-|-TaiTtCgLSE!mUBX~vjt4wl%q zNU2rI_z?|9BnADd>35v~CLtyzzM1a6c(3F2nh)imo5Xp!wF2r$?u%+dWgiJ68~JgulGr|@84<3nvsB)CyN4nWbPPgWMU^p8+t z2?n~X^?NQBG8MLvqtf$&qzi%Y(Xs964&y|Jeg^B1F1;45h~y#J8)={CKVHyfRd|3_ zlicXoS__yf74vP!^sI8R5o!}6AfPuwchQ0_f|ab52Ud+zQwIp>(na(5Y=}0Sh0Sjg zAN+nNBF0BOVBQ(MO|F|b;=#ziS3cpneG3vng^-;_W6|00s3Cc)gpE4JQ4i%8{)qlV z_0b7(u*@*ZxCUN>AqP=eUSf~W|GtyjGk6I6Oh0g>gJtG3OZ_x9pb?g2~_R;-zK?*lX1 zpf8C)g%qT+`OMZtf`Y)cOi`uH4Su%{X3Hh9P(_|4N3CK=-|Y-Hn2IvTSpt{U57`?C zL2CFbv&CL@X~)qTJkI!1T!xd6uQdc%k6w-$l3xcP%I{C$v|MK8R;l0%!`tjoGXC%k z@$cWpG`HS@{+K2?lDpQya9pBk&CvP#t+N2d04pV@MVC+Uu(;cav&?pfZKUL2e!z%< zs7WnJ@#z+r^RH=J+m};w{DnNCy?-{pk)#Q%QfM_3ZKUr}l>C{Gt@d`R$QW|$ zWfx*9;gPALM{+p(e%EplFQbCKliu89Cn&CLS!m@RIB=Q+f#P&`@cqN5Unuz76LDyG zGu)zTXgJWRGMAX&>6LALu+W=}$#e4J*I+8cMgld%!Y3RvS{&cLNAF4ZI{OD8)70g> zfijCtRXWPU|H?qLV@vI=UAyH*sappvZ^B z`jV|q^9I5FR)dQsUvPlPkJYz%I2Q^!ENlxTp{5=u%!cOTt*MGJsPr zwL*xu{WuH-64)ZWx3E(`2hvHS0!}B|toW4r$lf87QUrRL@g$+vm>*I+SK8<5qxlU) z&c4~P$SK5e3iS;djPS?g#hZLDqIerUwF$BaCrl7_bX~Yjn-~V_yI%7OPJ7X2Rv zvoN~GkbdqmG(xKxlS9%>>+F}D&Su`#eGZY99fIvd6O#zJjjlt_8LMDe8vOklu(D9` zjk~5TeN_B;n6P=}K%o9Z#V)eo{@U$#pf=)9XjsNV>ISK&({w(GfZ`h$l>vWauhxYh zH)V3QfzmZ}u>x)<3JNFIX=)~ER8vf-POJx830C?lF~6>^_H(Ph<$pa8cth%isCu;s zL{dhqQ$DWw1Ode?Ei^ku@J;K|R@B$&WJSU&!X;dF^`u#p662c83^&zkV~vmL?|)UK z+)<#SnM#sSe_Jj) zQY+TncZowOL%$w1qkZHfzd{WfCjj#pCg|Z8F8Kf@c%^$gStl!N|G$rm_PDlWWh-^%flw3>TK0zwaiyp<1H$?K;A8UZUQY@dyKDfA{ zFd+q`I&!Itfo-6#xFaN)`SIX4`HuL6O2x{Tv1-XND4^s|0BljhVWMSk9=mvU-gEI? zkDQE1pwItLFV979c9p`L)r5S6jW=;ov4OCpl+GqC*j}kXT{%#fyG4ZfgIWTS(A+n^ zLgZ4<@b)vRr?L*x$z^^ld)SKwd?yeulvf^QR;_!tLS88`YScgcT_(;R7K2(h)+VZag!+YL$`3S*yA&~H4UQdUVMs~jH^HccFHGcoA|F{svaXLc7IHD zq${y%wAB8-rhWIH5%8VaubbdPPn*wUjT`RZjXNw)|3bEq_4m7#_ke#muVuwyA-7Bi zp&R91Ls5qsZGOv&hza5QkG3zW&JO#!Rq0+__$GStl5Z@vIMR1U60lMrh?%fB!OdR= zC(=hzvI19WbpBmhh4F4;=)IW*8lXNd2UDKjx;0WjAW4SK0P6^AQcX&}gH%D*;1o)t zIVVOy!+}Pc$^%;b(oCK1-su8>2bAlKv&dh=h8Y|~Eu&OSa@ptQDuh-A8Qnl%N$+|a zSrQ`uT#Zf%{a-DB4wqx1>p<#|sSeullA>M%3QO%T3_%QM5leRRF_2_924&?pgP=WS zJp))-h?W%y$q+K9U+~jQx`=TOG_gx9bfdO9dBO!w5hP#+jei7-8ENwkhaI0e?>qAD z0H8aynUE^ydxhKYNqt4_VZjJ^gIk8ENMihBtkU0l%EvQa*ywdw@1^w9=xsa#liDyz zr`E1YwjjSXpg}iW!e!-+IB?T+R8U70rI^kf-(F@Wy9DAl#ky%0rvr}i9SBgz6>}BCKYQdh0#keS(g>J%T4@x@ZC@urIBrOAMS`{pJmjFeehYm?x9u|n{ zNBmpNmmPg7j^iO>Dqm0b>m6C4iF9AqwRW6;M@FMS0a5dhrr@wA_BYfK@G!K^vW(AV z*oFe-_NNfz&s!UwUvo8L+j;&qm?tvZB5!#F_Ji;Q{sc1KBFJA8BOHU8 zoZMDprItR*DQZ6w6E0&)_)2r44_vdT?}H0M%<;;ncwSF2iSV$F=cG(j2DmkE-EWvO z5b0xId+~ldfFnMY&o+S9I@H(z9XV-zXXyf?LzGs^AFif1tDhkZZtNCBEu+VtH<`9q zc{fLVvT@?~pgLg~_Wm*eCic!?)!{po-$QY&dEo0-*oAzwR zMem%;T5!g`A*S#s-8v2tz)8`5ip0q9e#Iv!VX{e}F-CdU@`{Y8X`Kn5)R*=d6;(2a zRp4vfw2=uFV~-kh{Jbmk@6i9RI@#(-D;Thd^esy|>@|!9Aon$hgp$MF!|zYmd%t)H9F$9JjLv zs3@dihh(*&V-u1JSH)!4-|@#zv8D6e-j~|J4HcV(t@3qs^gaA3F_sHnY{J*X?OPzU z_--lq+g{YU|6b3VIk_hfQd<;Q*)rb$PY5)-1t@`luD;>R#=J610kQe#BTL2yyCZ{a z=5bU2a{6HqZ{V=a_qOm_(^<1m?X^}~!Us4a08YSjg_6AB)tirvx{5tO6Mz%|9p^>; z-Tw0KmvY@Fn(p>F9Q^n`f!#~$(fyWvxC2B0O-FO4_w5Y*?!gUX?@@t= z41SMs0pL}0-|Ho9Yk=E|0;r^sXggXXa&v%w`9p^8kG7fyLDTw3Cq~8M;Rlumfc<(O z{Y;?;`pB?7WR0w`!3`g?v_>%JGTCm?6#n_)PKL5xge= ze%lymofwVrQ*9f4<)=DA8>U&1TXCIpStvH^jhniXKySRVWy7${-a!)T6;RJlpkB_ zYHtj0Re}i8Lv#@&TY{_1!TFQS+^9U+vD~P{{Ot?e0Orff*REP(?14uF>+D$=IA|v`S=BUEsf^GV*xS{r0yqsJf3tSHe-Gdw? zS6gJ)2Th%wtPT+9GJ|b z52$4p zd*$u(a8qCH=ggDO$d}X3W}JXk317rr=?-Vr$=7ajHAgF}yu7y)!(z_R>}JwDK$v8( z9p`VHR~|=ooe&RmcsQod!gQF|qbDE{+V_e&yZhes;S+Ur?Qdq%2O9W-GB#tvdc@_P zSNm~rYhl&dfrOj0*+m-`RU;uTG4jd|B`J~+n`*m8QNDad?5DLawN`=Os8B~?W&6Ec z2(!X5{lLX{UavQBue)%*;9{@e1^vlVP|9!rC~VLc>wTk&4|1&4&aq_yYF-O0SQi8g z&Xj8yPTKhV{KmmcS5;?+InzFSQr6KHDo457Ymo!zO_n28@*fb7H}|w%zN0O9bsj@x zoI<6K9id)5AGLq&Q}Z+fe)QSx^=8gFL#JIq2=b9IU?;~rWTm>k^fwJ+*AMTuu)FZu zANV}qf#^8hcVCP5dD_k$tKpMM=5N2hP6fRl!S*e= zA{L~GhM=dWNqW?Nb>Qxxh|;P{Q)_hL6KfwTdvU-UizuvN)o_#HHmuB@2NC1#{B!dv zWosoywiKgQB`(CmUa@{de`39*6s#tAAv3ZCQaM43icWe5oEs^P6!0LBXit(Kb`OI! zk{q{EyoV04)tlyzX!}`V z)*W!Wu%kVlX=Dooh0z{5l37QhlsRGb9dMbH}WAfB0n%8 z2i%Fw>l`TnE@D%(qPE&9ILX z1V}l;8E8|lFPRsbj1vEh2( zL@7hM&{~jdO-(&0Nc$N+yT1f+2x#1}Yp|XxKAK zH>^j*5@lVqeyb)+H3d9ijoZWutiWVrtztP(0L=2Jq2crUQC5T#)(RZLu!%Sb>`HIO zRAuXiu7kYxg1;PfOqOv!#?V|i{$2NCNU{WgF+}ZG3iEjV-#s~Br>{D=644$p5hqNCsZ zFLP7EZP<`3Zy_6GHRo?5HpM@V+iyG zJa&iUudTMSviSY4yrZmS`x4ZRI6#N~29v0$Hk)&R!SQB3w7nqSLhL6-Nh#!PW$;19 z(DBuLs)v{ILgZr!`p8`%x|rs|cc01C0r{{T+T(Y^Mg9?+t(bl%!AdWw*_T5-$tL?> zkO^z4To-drX3wbT&NGCIknZzRWiP-JzXK52^d!dP5b4eGVpI7 za&%0hRB;PZyHZfAXTQ3I-}mDG!yGJIT;>79sZjhUS%r{N-3XZ}DYSW`uf7Rx$%isi zw;j7jbJur)AHwjHQ%CZ6Z1%WL75fwYk1SZY6Kn(+*zls-BOk&txH@q!n#{SHWRSbnwDFndB4TF2JTjS(6rsD++ie?fJOuKNnlQAHPP7g4TQ{y zSJr}zc=;rnZ}X-F&G3w-=+?-)D>-jsO*7O^ELGCxr2OwG2|Iv@kIb=1>I-pjn1^JHIU-mEkrMal5 zNV2=E`X|o*5$LbPdszutG2mU(4~ply75ABjgATCnC8)+DluO@gF$Ik~-@VI0$haqQ3C+Tk|j7H1x%d;`N!+Lw!3soow z;63qv1mDeML8I9zkab6);<$2|7tM)L!lLqF^%1fnnX^w|!n-EYP7s6|_#mN8|3;p$ z&Le~8ri0)cIflH!R`U78+H5U|2Avlm4XFi9ScxO`4 z6nQt}Ya?n0T?}V4R@=PlOgDnV*n{Mfmr`T?B4V&_M{)kx@ErNZv8;q!6k24V_UzlAnQm0V@Fu zY=~U7`rSq0Z|HA&94239axXc13dsN&sKdI8TALpvCRY(csLeA&Ym*1pjcf;WWyZV? z@C=CDJQyZp#!uwK##rC>R(ZB!&r>L*dEpklozpfQ$MhF=5kJj@#l{b(6nMpzCF_5(@eR5tt2hrQN^kO|niWJS*yZq1kIH zNgR3PUS@vV1Y5Gq5F|ykwSNfA#$Yzb;dT~ZJvE`PV7&F;a2Kp==q_H|Y78_D0&XR= z+9+9lWy+lx>S8}J!WClnByBY@!ZMRp?(a5w! zxhy1DD9F3yfY31?SQ{N?5r@Cdw`$uRgRmxr8RMluRmeMwuasQM9WCL$0hdt$chrHu zO*Sz40cDG`AHPATnwH*?`j-JwVY8HJQeugV!cT~B?-eAfTL|p@jCn;lHgk4P5XGK0 zX`_AmzI^p@0tu?&MpzA7?~U$bmY2qr0|b%~v+NLjkhk^i&3>|L($Z|PdsbB0-hh*j8$ zp@fOna|3deigW?n@BBY7przqglYpN5;>N5g@3~o-tAEKCJH%l-v}gCdPbP{35P}pa zM;xZz!(`&^B5*Y3u2&Zoy>lUez?>>uuQ}!N|5`f)L>kn$dfPWwV3GIruS2VZYdo{2 z1*>ibk}2%TAL$t~yjC8pOP_*;xwYzQin<^f= zSoAKMzYFTn&be%2-Y8ha#@kd)wXunONc35GYtHK(7`6hLb7!>l0iqOVY#Km*KdLe+ zGcwKi^kdME#hVvl*0=o^qo>G1X;3IIHUELg{N@-F%u*S-dPKhxAN*0b-ZNs;~sb~oR$BA(8) zj6^fK{6Cq1<`N)=%qrgXL^BC_dJFc(nou=3*Za$qvYvp&9ahb9Y;x7IPrOll0PviF zKp8>6rR@5i!ojgGx))g9xQh&f&K9bBUtXP{m*%C;#IK8YTIDKh zh!$PlQmsw5iCGX`T^vEtQEI*|;F|Gjz7<}q5VuY3b0Mwlcq~M0lw{V`f?8g*Pjnia z-%r%-6HBkwT$Ws504(kql`X*fc|Mf>Tj_9f$rId%-U;nRl0MHiTb6IBXVNqhTKvG}|@`_qsb zue<(_j7?*SK&A#Al-|nE+Fr=rnKCPj>n$0LJ3`jYr8`vbhFTyN)oN&rZ`J~6*s!l% zjR~XW9QnJhe9@&rR!otfI>M}&0Lxc`muh|JxmLJU6)iBL`@vcFt2G9eeRA@4*P2GE z)x^z7OvIC?MMYj)r?qlC^my?IC?BLy4iqdZ)K*nMHvHl7_ubb^aRmTOxaI!SS zal1PrQfqq%AV@#|bm6me)UEaPC21JipYDR@b!pxyOAo<{2>Vku*jW9mE+!YqC&xW9 z#d81$T;8>3M*Cm|8&yKfLfYMs3a9OLaRPYQBfdQ)TozmZX_)6-X!1Q8e;%`Yo6~#c z0aJ@Tu0Jg1-lO{Ns=ao<-Ez45Oeeh?S=fS^ZxaQcaCM)lnRK5=*ONlPuZK*&=U(fH z5y~I)CV^f2eOYM%k<7c=PPbe2@;y}o2oS{Lu+RK=?W2oTw>*>70-iC@L5QV+Nb&oX zFB{+H;xS9G^xsub#kPk9!6*=*pA_C+vLIFiW_^5PQ=qAi&=B{sMC69{ zhuuJIRIoZJK`1k6-AlMh3jdqM>%?)hn{}088?1fY4+ScNV|2)40(|IPpUAI9dGZ(d zt7-?L&aeQnC%ZZtdU_(U(}|P(_j%J)H~_}m)O82OcXqV7QdF5W7)efc(SaFAuoMrv z0hVAI5Zt}?pY26TdQOB~d0)7S%n<1SdiB`cM;6H%%K7v~_U6~U5qT!o0h;uLdz(S3QRI;s zsH-MG=Hm>e*5JECEK_mixjKzE=MG4U@*%e49sCuY%4>4SLCE45NEPmF1;iTt&f|=z zM_!1W-|js`toRQx(Qk6U_3C2$GFM8-kn2^tVFBf7Lk1!{5gr6HWRP9&Ta~Id-io^W zXCE%rJ4`jr({7iI9xpqSNR9xGhdmRd!Az|0EFJ<-pdpwDW&b(&$&Y|U1G&>IOh+cx zF<5!Y)p}W1r`Q%!ZX89W;iaE(Rx4*PGpXIQ#}^iq^n-k1kQ25;b~yDwnD+7CuE+3K7U&7a32gheAVK5>82*~YwP0c~*VqYxg1 zu+$wrR)+yY^*o>FHp!#7ji6cv$b(5>}V5xY*)g-9i1iNw=C>u$ z*v-SYFT}qP=pT8{ES}dzN0O9(UVmzpq<~)bYHhB2T1%K$=#wCS6V}6gmXJNJQ5GPX z-tLxJ{@uj8W%G8?lk3CFmY^*H_xmG1D*6Kt$5HZfX@Sj;2Ra_Mz>eH|LdD!-4aviR zeD?Wp3<@fAJ0fnPI}&!SC*d=V%4dq#?VO>4(UmLJ`{^Cvx4hWBuDwZ&HBql0t?=F7 z&%e&ST_5lWcwN0zaqj_4y+n)>s}lD+Iw!>K&R z@in;4K5wnyD+!-{t4e~++((k=R&EQ6<|jq>5IAd`xtwtxreNdQx~D&3(4xy4cN|N< zQy7A9oZ|zsVH`_|3aK1yqT}E^s0I6w;q2??E8S@5k}H+9Jj1r^CtUe5kP#7idX9O_ zP@eLC6zyL1beOfKzl>=bVe0FQ+1)xR$YK^>sn~w`qc!@{7S3D*pRdedm@{+d77i80 zhtubZNKHnWZ9=MS|vv`a^q>sL(nCAGNdgv%ZJQCMmHwQpqO$_!|19M)^hv%<(UPbYsumWh32xd}&KG~um}s>}Y_B_BoMZWo)TNQ!grRHD=) zxt6{)RAcvbKPF+k;zFbc%yvKh_MrD>b$#LXBhl{Ve*gRqd`D>KcX7gVY4`6%HhnXz zd?lNpvJ!5VTWY@8N^4~?k(l;Th}2Ag^3i>>%t!xV(5o|OoLxiy;DY#%i*I09kNVB% z9F$|9bLO6lo5rL_o+BDDErYLzt8W^*qJWBq4u0dhTR&BsL1=d$s!=F!F?Rv;o}Hk& z08N#SNGNAh1y>sjuk?vzL&di-I1`xt1p}oDO`d?eETd5G!#@HTVFDw4a^(w9;Cr5+ z45H6RTey23<(D~uEq0C}69!)vxbI}5&I+2%gOi8|z07uA5+GyC%HDcCh@FhnX>-x< z{5Q=TOL}*7^w;@s2eQW(Z@cuKL;N;Teecd+|4F!A|4U4?dtCu{3%r`my}kI|R6UOz zGQIZPb-oq0oxdH7*&yEOWw?Ivs1=Z}NcmUuRk2}V`l=dnNUxjXRemMmnK1#>nRKVniYLE$bz}?f6 zu%V?!Jzi)G?HXc0FE&hJR}+?fsMk7%fZR8w2|Bs4?}e%gU{u33sQw0q`j)d{*MzwZC`z;#2*p``ok8OU>seXs! zt8d`90kgLYy_bIjV+YFu-LLm`^K+j=(U1lmahmhL2qFchTH9OA+d zmRg$8Aob8*T$v&|ro9@5pHJI4)JC}V#lYa#gO9mjv{G0Gg5H~7 z_pFm_4}C1L$Jg8@PmCTi1c(3{Nq^GtKr~)7URZ4SV@A@W&y13wb4)DNXV0I7$B`cx zCvz(Y0s~2#iNg;V(NM*46dbsA#09AeV9_Kwokp*po(fyNTFs~iN8;js3y@!{r~wZ* zftNWg+&_8`(5WAHDLkU3Z&AUw2}zAM=qQMUmH`xek-h!&91)H|5Y;OKLILO>N%)n_ zEkCvnk_ilrYdCwr=PIQ6eU8LOIkpKuC@&7nE1#LtRwY4SWkz|_k*l`{_dXZ=qeTz- zY5alI-zF?nW_O?W{9&~%WZXQY{Nb!khOv`#snB=zrdPvazu&$UezEo9Nn}7qweqcd z{@Pkv($Qg(jFHRLCF3}Ke_gBdY@m=@ria)x1!>qOkTk(9-k3SD6BiT&by1<&OUA?t zXQx^Cg@xt%Elq=}3rTRAgAKn7s+#I81RXSbUuxmGl<_SI>d=Y+YN89tJi|0cbDH%^ zaBfF8i# z=z)RN)ohdQaW6z}*!IU*FrK`OWwfz2FT2R?Cs@EzT}T456yiD38WCJlo5Zu3hMJbx z$B7bLAZsbV1`|v6Gg38bmoQGZIu9cS>08bwz) z;zOn{LS7dq-&9X%*|d-aWMiRS=J7G>^Z(q19{e3wWJpCW+fR|glt*d^JLn@Ch({{)lbQ7%CXpPv zP8^y_C@@U}?T}3POCnm|2z_urn(&u+w4coJxl(^sA~Z0C1tJ`1`-lIOM}@rh9a7bJ zn2E?5=dQy=1ux3bp{=_I->hcn8G-faXiWtn($pcI`yfH2e{mKwO1`kOg1)s%e|;tu zICd;ePI+J(d#m`To*3M;$AIT{CyIOi<~x-n^%T3f22Izm78D@~k0BbV0G&r8j7A$7 zN5YKg%>pSONa=SQ*4NnUPG7Ijz&0~Y)mUU=T2^SvuRfBIE88&XoGHfvH@f5UG+C{H z48@{PXlYGcER$22EFL&go(@|j=3$^7BCZrLLYQuh(#OiUp7iOeP@k4;blg|=>WM8^ zkM7EfKNmbwmHhC`4_4g+)=|k$vo>my=W|SG?j&3Mx-ec^d&|pE|C`GAxksfoX!k35 z1rk4FsJDv!&m2}YM+_PAeC#R57=zxPulz~=-oI)8b)_Np^&83KIGBa1uui$8;L!^b zsN;NO#+2%gYo-39UR^}{31pg&Kt&Uno=^9g<(QozPf945)O5AqShmQhJyUdqey8CJ z)XCkG%&_+tQ3{1m#xu_hTa>+9I?@*D;PMeQ%_9~!2H&@!AUNL-pX;wYozLBpm%jPv%*N$aNp#%i#0+x#J-?Ggr->F6soAk z%Tlt%vKc|EFjX7;j1`3cfjd?ZH}|_PSt-t;!s2B5nLk%mbC2ojNoL5~#N;*MtDi-> zJleyvW@#)`?r~(rPr>XMdM3AB!=G9RjWa#8E2S72>cO{G*5Z^ST1o~#rIi`ixeT!R z+lUNU%IQhOzaE1g8CP$*q1hXMVLiT-tCb^1B}j#S3HXU8?LtXDx07rxjE4Dve6FjH zpbqVmiJFlt{1+Akr8LPnQo}gX?uqN4F9hhpXb>0J!Wk(@SlFpJ#C$?UnBBJ1FlE{7 z-7}FqFB!SWo{h8;jdE@F#k<&ZZFF7dA~mB6u-IjbGw)fD`5q68~z`HS{%>ugExEbC_|IL9vd z2HLNXsl7Nd3$??NDz732FX-%aN;z_!Uo-mo!Qh$VC?l!Ts^*zu8k0y;vXbVRf%3o3 z&%O-S@tW{jddR zDUKt-CY-tLf#($9tRL-jTph8-a}qDQmX0%Eh8*$i^|yT(gwtW7H2fm`jroBJM;P>tfTd<4J57Izb<|m5NQ+WX zA1gKKqkx03>8PcOCQ(wrS5oq>UkVl)8W!p2_k)S1i)?V9756J0Qz4&!Rr3&8oQlT8 zXP+4_Qj=4N1sFjgdGUK3-(+OnG=xEJ^)l`+5BN+SFH1k)GT}Em?gSRE9un4b7fVid z5MZB4ktgtc#qsl)Ex!47scH83f<0olwzW55F6xLp6UVBPv?%@{q+5oemv4e`i`xh zwbiRxl1JXY9P2&7MISC+|2+#KVSrjf{dn~x{sew99&`guY`TGuzu%sVwIKO3J*}2} zAb=SWhc)U=eOpP4jq>%=lCEp+%~XALyK?ncu54!GqYMbZ6sUN(EN%>XY;a;mvD0|D zNjV+iwA0_?l8v#xch^~}{+-cmZ+Py;lYHe>Z&6P7#b~)GIong4xcHb-`nF2_0Z2*n zPb?Mn7$?lXPi8P^clSf9^|8$1YJJ7`*sF{sJ$`V}gSWTgDV&zyQ6DN z7MhUwcmr*@f)LsQ8 zs0||N>?mEoU(*|TZCZ)1_a0m92aA>tuJB&Q2fy#dt4s41Mxwxi}T; zSC0&0PHYKbrbb;8Sj#+h`^n1n1Va2cJjA?~^2Guh*Jxu|;gz-^&e{SkW1WfpGa#6Q@7-e^8wCv#py0D- z7BP1T!)xrOp2?)gOkAVzm)F!YrnA<0WOZlgB{FPWCYhAeMuJ%I`K2{9i~_AMOrs;z z(R==4b#dA^+c({*r3(oC#3FeyAFH2;>To#8Ew%Vy0hgMRLQK!;xU+CU;`ccF9PBJ@ zsivah{4ccw&To-UBr-A*bh4Of$9=zr`l_m}pzv>7E@T5zdxNw4VnREZQ}|;ZUa?lX zqvF`G{1BEWGQoXr$W;~hHPp9cXlZF+7DuPDqAAqy= zuFi)xOx)+!f?AT-rkAh}urc4bUvK7erBPolt)^X9pLAy=eE<1`f%RGpDeUJcd#fy9 z(GdRZT7GXY`nhvd%bv<%BMONIDK3wa;9`H3JheXlS9c2DFr^a??Y%2Mvr@V{_9c9(%N!?O~FihdLpF0Igk|Y=lvTl>9UQ^=>M@5f!^u^e?zfx#rD4 z-1P_j;}Zor~0%VbqpcMYCPmj@yV7rlJ=QkMX`KTNksiZ$w2Bf%vUI!XW~-9dt1(l$T!N|k=)Utn`1X3h;05=C z*zE>Cihtcjw)m}b!G158=lps6*l%%hmt3P%92H9L0@gX`xM0K1EUT`v; zjZD@aB0QK%Wv7Xqdog&bJ^jh2vX@Tvgvq6WZ#z)zm^Bxi=}ebP`9fQ3D5bwqJZ{Rg zu;zR~&7zdC!~FH@V-Xd$&iYZC57P5l;N}QTp1j&PH_D!tGLxR0B$mhPI*;I!LpG}4 z)AFfNr8SZ^v(4Y0L~6G;FR5{!9Cku~6OqWOJot^;DWj~6h4A#2-E+RoJMRn4+c1wi zXPC2>jTgdk7=>$=?XpxouvYrh(gy+8?>t$XkU{v-${Fr+*5KCOmLPteMAj>Y^wUhe z=f~&gyEQMDX&pD0CHDP4&nXnR;AMAZU0t=&3T8VE?qgBF3hrcUS$1mDOyVcQ#{vQN zxr&w7m>zK@-zFT}W7?xT&-7WPJO!C|1vT+E>yJlcW?rGv31~On_2Eq9$W}>@mXouzsgchQ-(UVo1OJ+F?9f{ zLDnVg`Wdx;x%$KzLBQ%0G=i+Ta1%#58_rK=1ffVOfr$(SZ3M>2=N~M_g#~EARI)T& zVsE+$2Dj=N2kRz8Q_ZFAROGCO&iS*&7PM9!YS{kG_t0wFQ~(-A>mQ{~ z)*P+_iI@kk8g7z(PLQMHR*#){!DkLeH@g`w3) z#DwCG4JmBl7l@M7Kl-#YZR9&&634egz~)z9>x7= z;(xURKfz{J0;o^#pP})WrIx3r$}_jSv^fI)H`C2opQ_kmBSLTLkbH&mCOwKylXWk< z#g{z^t$~;`+P3@pmYv5syN@;Z&y>BblvX1dCyHY$j|uB7YDmw%PGjXasLwYqnPVVL z@XJUBNdpRjTbt>~ccQNHhbXobWLg4mg1UZwzdRzXX>|bf*pBoeU^UGx3J9QB*3Iyn zcL|bd#Qql>CIh?9T4sMC^ERt)RBt==x2lGU&_LZ4XWvJw^Ivi7QWA;Z=He3j94kXa z$*zXl%c1t64EV2tm653#z5q^ixXXI9r-;nE%gmN3p$o%^6)ZR-%1@&|SWB*PTLB&d^Wk*m1d%c5CRM4;TbN zFj$bRG|^+~DQ!RZ|3KaDk<6u;pi-vsb064j_LRg7PEg5avPQ~>N5$GL)oW}73H7H6 zf@x$*4?3)x6%&CAs$W(!hxVs5B8^~{zi>G`ydjLH7zs-tYTq~C=;t4tR04(Hf{L06 zay@QQL#UOOa&)=^lvI;~_b`du&)aMSGHL70$q7tWl03Ib#_?DS)T68%#P5Paq<9+b z&K(-(+R<;bXS`%FNW%#lIE#I*IQc}#^L@_8E+93v4S&}qa^;U|*kroMS=C+C#j;oE z)zMZaJ`FjSKRItdvJuV$>RR6IExzFtI|0{i7g^u$kGH3962J5p)pFRVC;5NLvY6WU za51jk?e6D#5#F`Fl%0*3Yq;JQ#`0fWKE&$!)#$4>mM_(Awv8TdbKhE@M#>y5b#f(e zr>49vG>&p*^!rA$?f&4WkoY+C^3RWOp4h_8_O0@ib?-jKj3d^q;lypZ{PR%7jxP^2NkZ41+RkqWzqz6P7@@FHmOGGE1Z2V&soU@8na;pZZ^qA7#1He~!%NJB z6sRswAH+c;;L+}I5Tp*1Z0~|2SH^=o44--9hkEOp7W^U=IqR3@j08m}&s^-ztR14s zh5h-V=hrDEzld=?B~4Y8EjmV8I>sC9*w?3<945*ZAJYZm%p9h zVk~L|P9rw_BA2H6w1~$e>v&K_!&uZaz+FF6E^pf$G{jf>osMe-Ty(|J436Jz{=(OG z^D5#=e++2Zm*G32#bS<9dQXjeV@Ri#k$#CCC}9c3G5Uxh{J=al%}nDfXg%Y7ik0Q zb_QUO{OaPs`pABCrD8rIp=MRieC$U!W&UF|K|C+0+x<^NQC8I$PlqT&}a?*p$@UscO zU%EU8O@rVV`KNnX*2-VxE%obN2YDNXhBMN94JB4n*jfDUYT*MDGrN&x^SjL)!co63 zc?tP~d#K4n5_$uwW}Z1z@#rs! zrqJjYHQWpZff&_X{nxJji2lR(16(Ss?*Bv6SBJInd|wB5C=`mjLveR4?hxGF-Mz(& zySuwP6nA$I#oZkWy!m|J=Qn@k$tKy^o!!Zud(J(3ufKV&0gb;qtr``(%V29nx#_Yh ztQ$4*x$K{c!r_rfndqb;4)A1v7TKajZdkDecFWKYh}q@=_=F9>KW7yZ+HC)+ zI)a@QvxP$scy_6=SVr3lycIe=Kal=ZxYcMxF@luw$sF6j4MPcmR2i zUv*tLC-Ri<@a4&&)|xixKY6yRHkO^~d)TyAol~OKgxiWt(~u6f>Agf6?o!UFDbqNj z|KTCsPDry%D#B?E(?bjJf9qs^MzZG^b?t5#;;@q*C}Fc6hkex_a5U{PFd03WyO*B- zH@`#E$`Kh&yR?vyVvZcc4#SeSK5T2X{4}gWi&hiM>SCF{VGIqU89C{nHCfa||NiQV zbAI>s?*I7maI(yviA@qki3#yoC~7cwi?$G*Id0%9drNxMr2fa4RozU2PJq455xxce zNB*OvTnH`?deKaY!WYA{hoRRp$u}hI{o>%c3=>;CuHWCC%Ue|&S?a<}TS?chvh&gD zkuePYY}>N zCYp3COSxat@opAWb>|w;uq+6)#(4FSm{YYP=+JRgd`*eDTIk-DZNqYMMIL@DSknc@ z9nbyD3uAA@Pq?R5v)}jF5}_7Ag~ehK30dXzSu3kpZ%|wD(`~AXM4C#j($p}*AXB>uBctK~L?4cW-C@0pawo--Zq2uT-{0L2X z<3LG`t{Nd?`3_dbnK;4DIpkT-HtH-@uPy<1G4N!guODJd}xe1FE=+g$*3bc zZ&u^n`uSgQGyDmWY9%LAa58%d-ck}mzz{_jO!==fsL-+H0Cj8`b7K>czj)(m|9y7R zzbFH-=o{wr-^r{;2-g zsMgEhfUwu;_=hXshj);wTv5OkDKG)old2S@-9uylW@{lTLg7&ka<=yK85Nj_9tIoM z-B=`uMZia=r6^5U#LDKCzJzW*lM9{9rI7{EU zX2mW?0`OBzH>n;6JTAcIRAlQlJ7cL=5g1knJumeVv3KFz>u-j#Ca65} zAe2Z8q8|V0)2L>c$u3=A_U4&Ut!#;@>*-0rD}zN23*F0_VBwE#xHPYeO@z*GM_ms? z%ZMs>hYA-ipSuHAVnUyu5=Ru|t}DCowY~#gUE83mM!25cXx6aAl*Xe^0YibY{g@yj z48L@62l$7kvHpHPRw?d4-gZQ+<}t(|9@p)fp$&tV!`WNu=a0fvi2$D=2@o5?v*nly z0JNFax3)%TpEfZ$L3Es%DDdh)tl7MQuSQZx{5h*U{)(jY$g>O}*>sq2Dr2`NHFO{4_+4#(>;8p5)?|%N?N}1jE;+o(;NAE7e+g zMaa!mWO*cB(d_Qu7n3;2_R(=kg4P)u?ou}`4+}qQ)|G)k?9VH(TF0OUuB%ZE2n0S9 z!>F`$T?w^0YrL%(5atFm7s>lE3LspbQ9+EU=HllDFM{8}A>IZ)7}!I_c^yRqV7L5y z@ant{#&M7a^DhT7bfdnMIflA~c~8av`YL>8swbC#&jsP0-L%Y(w1RTN?McgQ#Z%ku zZX7cIH+!>SMpAfK?uvZiLZPoo9pQkW(EM>Gr*R#R)#!4aq#C)P?HD?caN9TOeM-_> zY7C+G&D{Ob8eku~s2X+SwivB&4_wJTsuuk*rBHaEA{kIC)dHQkJ}O6lDzM40_J=mVr0(kZ~> zBH$;f3zZZ#F^&gM(r!Z*=$Bc_IMnO`q-Z;E0>KbMd^h-GKD#RG?vugZF!J=D&#K`kDDXTz!sdlM_Jv^f1Iz`t6DvTL^my`h zd-{Z&>@%d@p#um&@g|eIVg4p`STb&pbl?)oS_-FZ0p=2?7h2+4tcF@8h=yHeuZ#T# z-JO9ScAY=c*#Y;sLPql!ObUb^CyP$3h6%4neLuI#k0jJdP#+Mro>1i))%$i^P~CEa zK>_3AbSGvgctz8o1tvG}ML*`-Wo$)u6B7I!D&a#d)aXPC!>+Q+ZG2{C-aX9x_Hp)J zQ>_aKjh&FOTij5|SLizUSp^C+D)g((OAB)FBB}Rity36~kvh#vPF`wuP<*Kzc&6OW z?Ka%u;tSl*|4Jl>CeKo@r>?HPjV{n%oXpEeU#Wa04v->DOI`vstO4y6OfH3Fx9YH^ zE_rwQ;#s}+L{&=Hkf1Hq)NBPd^YulRIl^~!n%-{07(N|#S^?P`j4$P-IUVm$*gR}m zeB9jZn&HPksr4NxTM}hO!hc;zgtdG@tqC-|LM(Yh%@VDJ zjjppuU3EACHi<`Y(j-qR3vU@kvv2j$6Y9-K{^wnZCpqyjvi*~{N*>ZuxMp2M)`$Dg zixqNw0ecNI>pv)x1lSni;wnGPu2!i}dog&WPtYn(0Dq^7V{*+Z;)%7QW0eT$2Py)i z@aSM(m49(C1ESBIhxjly?c26~=FSBi+^%$S*oR&n@B}Hf*{>yZ)q42mZZ=;9k+c2U z!yQgClE7m0q_r3^x+iqfkeI>5{qZS-eKeEVal-#pTUk#()X3uJIrA@C*1+Idp6Tg$ z=aQKocM+bbc4Y6NO?B&1&EsAYyVmExyyKpTtIp{}#=z!kcc^ndQ~}4#Cm+dWNzq3R zH#y<&l-@oe`zDI#iuXUiO$O|)q{cnR9)#08irz-c6pI0Uo1fU1kNcAh$v)LmcLsPL z_^CCvIdju{FU}M3i`xQRbd>qC86_O%a%QTGw>!U=;^?v-=l_}cm`{v|opkt(#0-#M zX3Vn<38FO|u$-Mg9LL6OJk6D!^=vnL+y~Q23TAhBrm}ohky3G1nAxuZTbb*pG*&vA zi*=uYOSX?-p1U^nS9MNrDDV#)KI;{W(!0H0U_XCU2`qETQsF_s3ijG zo4@2}nE&%Y0(k1b6sg_F+1D599IigHIXia;9&JZH!eTuKub5Yo(jn~owQkf_oPwsd z4^IxVPTdUzT>HzCpjQ`~hN`qD$9PP7+1iI{PtZ_hl4C~<16DTFo+5gB{*cjRJg^|~ zi%Kr{+Qw0luv2z_6B07Vfv~IJ0%@AGpgTB_uMy zMFyF`GoY*#1@G~V8YaVJP5WrI&}d;pi;|9yL1yle5f>j(T+m3`qC%`TPKeeCqlurA#M9R@Jq*-dl{P8es@cgF1|w zZne5V1>X|G#dul5gWM%fz!{M&Wv7)h#+OIcc<&=zxUl!ehe3@uZ~gR#okJ+qZ?1CB z1XdpM$`1o~=JGFZAfCo0FUg!#Nx9df>0L#lv4LdLD~tKBOw+J=<_eF&-ao3WAeYlF z%WA4c^VvOEB=vrJnJ<+98;R?oo9uO``^8#DqORBmf^sK!3!uEoT8b3D!A-T=9)L$# z9V(UkEvRgVfze#BQQgAq0JGw>fF&ref(T%_E!*8vu-b{;{cx?})!lA*JYlj<$`5n~moVP$f@3Whb`48q#GZHcv_kKKYoegO9{cJL9p#H|LI?dJ+Wb zCkC6leWcEHRohwklr@2+}yO(AueOPzHuEEpVyA7ykQ($1F z<;RB>p$~-6#9*Q#cqEuYdLvM6y5PzIVLoHrN(av^XBr!b-rF>d}waQIUR03lGoxN&Dx= zn}Cq5*Fm8J#Ob`?%NTVoUVvUM?|O=&xLZwaN|2bm3$M5CC{{@24KxrDUEp~T>1K=& z{)_lWkd7VzXVN)AM$*)H0Q7{?T=J%4H@wb-Rk}RUfS6dZwE9-Ot47?|AHdIfAY9lo z^a9f}<+uDa1=&oRWR%4G^WjpYp${M0k|Vp4H*)Q1iqshLUByOKr5R7QXR(6h1azd| z_)o5<2>k2)FTo_7>Z9n)VeHGL>JI-c(W;`vJv4Bvh}>rf;sad~1L5IiJ#fN19i;4Q zI&Kk173qlrSXr+xw;o_9r^W)EARIGkC46>p{`5Cca{Dr0!pqUf{?H8+1(vTcP8+zm zq<$FRfXlgMgTY(%uc)PNx5$M1dLEAK+S9{8I03cy87htr6QqDFmeTDq9dAe}srLQ7 z?8+KBX~6Yt9iw>C84P$)olu^CXqSaWOXoOyiMRt)Wpc%bvo38iTfDT& z^)ah;x3l(( zJbO%y9u0YHJjT^*^+Z8T4FEc`urXzO0&B2sEV`RKH**Szb2|z@@sp!qogE$Fe?p_j zlQc{cVd5O>F)cQ9SvLbAHrfg+{ivJAHD9$z4Ohl@^!TVqYJsePB2<+T)HBgY47=j?)NdVfZQAaMNzE%V{U6; zU-p*$%$I^<09E=6e3n_inhq@IzoY#ZatK#h+>Oaj_Jg%P8C;lk zD1cciPB(A4<5f(|QAImyYWeaQRqpiToUQVxyAvI}LJm)U=zX(o#<#}Lxe{#^d?38? za%X2EuM8>`<=<$1leGn6}?rZuw11a&>Xh4yA} z@N4RB!7;B49#H3C_V@b_YFo*tSG`0A1E|sMHdjzbf64_Pik|}-_WAgD#_E`|^nW*( zY%K@s%r^-|l&a9aw>}~6W3Zz7YuMcAkZ{jI*MeT#rQO+weyiMAnzJ%eM$_h-jsG{t z5M;rCebpI-lHuT}bha%(9Pe=yafIbD7%#vnTBq}~8;O{l21TXA$ihOk{kt6$B($1N zLr`S}<-88rK|wTi8_En@zkl~yflQ%DfYn{HL`Bcv#?epydA~7T924A>4$6*E;N=#F z6AAA{KEll1^q)b~(f@qbF_+=vd%2-*95zVR=Yz#Rap4Y453MDzKKe2Y_R4y$9|)6k z)Y>kYn0)&RhVqd zyllX6WT&c<6ft2t%P%w{dFxB3dR-UQ zC#~|dGLoXNNNfe%HSYe+8RjQ07}Ka@pxpCDtmWx{eBA8pQcueLmxY*LY6%~xP=fm?{Bi$_#NPl!+hGjXjX~BO|>jKX$gIACA_*WbByPSv_ zp*z>vnuJPo=DSt*Z4{qve8!@65_nN&s1YZYXqAiy%NW>J;fR#!J9ux&?IiNTAl7b=bf;~ZP0-}y+e_o z&%e3Yi+CHUqEL?jCy|lqP`!#`Hq+-XxiJ2oE>^vVU?yaOX>>XV8(vW+z;*sU`3!N# z%PX_iz|CT;uP^^_^mti$TgG;d*HWXB0w5)0ujeoIAo6N}S>`=aZT)zIb(zC$J6b{b z(|&#elo_xQhBTiDcxp-_&-G$(+FC$NO6I93JxTlu3v{RfVRh?G3v2mZRBY;gMY=iPqr(eBZI_k@sAWmp=ck(Nc|2N0 ze33T2ZzUK*#T(hU%3GV|GPSuKp&ndxknnI&6upM3d^sVU4(VnIGiAD8n5g*`lwyz) zE6r|dX6Ce{+*}S(*1y>1Zc%HkS~=C)41T?ZwwVxXV4=UZ*miD5|My7Mbez-TI;6eD zx=D>%wC-_mfDHxKD!bpGC1B!VL>h`CiajZb=9)+6!DEQh?7AWq`zhN_j8Nb;G&V+* zRd|!A+bK%aoD#`4w-=f%>Dw;pTiG#kEnY@OAGAzUPnPy3g$k(op=Qjo3?dL3JRcRc zI^eX|e7TmJRwPKX-sX6VMgw$lx?D`Ycu<9e4*F{)3kMd!i-@8_F0TbaF9{PqP9}-n zt$d5QiVM#B{{vgPUFq%1&-u#Ewo^T4S?QzQx9-Kmb84*nyzWv6z&vuudJSHT{KlZ9|2_*&9>L~nz-c5GF z^Pf6RQ8;NFM^xpN=IqoLfmQ%m$mBIV3K#TE012fWHJl`P_7k=pz@r!nc)nlk;_D3i zEcYt-Aa_&hTZdYXl}7gDCjtVu>|6OViVq3@Mw$IihE)qw{2bZnaADr^HeB`xp?L`yKS+O|GY&PF$0!BM#wjT*&W&tBhqWLNe_h&Vm=~y;sICt!#DX)lC9V#pYOfI!?1f$&~8364LZIkuUKR#egs3 zBn=*D1-#`+3YD!vV&9?HVp}UX(o(g<1xxWD0%a9&D1rff#fxJVtqZ4wY|Spo`Rj^X z+7ML84Ra(W(i1v3CLML7MpDu!}Z=o(H0IYf&H z_LHWHNdS2wy(-6Is2XkfKD`Tif3PR&)POsntOx+hE z^LY;Edy|+f>qGuDd{ABnM$VI(6C_7PFO()s|4q*jV}wN43{jr$8jf3d;x#_`tAylu zK7#k7f-H}|U}BSW)Cx?baCbw?n=P+jtj0FObuZgt$^1Ys*_hAY`TI;`QaJ9Ll-Y2h zH@E}-7J99d;FS(k12OB?BK=Ffk>A1<8k2~wz z;fiu&(N10^8K8SkCG})%%7!5v@Y+umJe#cQZ!7$Zr`9+es7H z#s$7Iqn$ESTk(p7W&OCAKFv~Y=dRI46S$w@%vF+I_sR_hCIJ6sf@1KYA+z-3+=zRI zp;6_2lMco2_}&l@D4;Ct9N+({!e$1Tr@hk@%kU1HiVggC6FrHG-9Wlwj*H1W%c3k` z7VAYLdmvqa=D&-aAx{T*2#piraO{dpRt>sSp8gPe0#^jNYWi3y-YY4157A=7E)P;6 z=TQQwbt)AoxT870D)VNk%e5Aoh%V#ufBM#(=Wg2c)n&%9+)W7C{qer0Pv>Xg*xie6 zCN8VVNc@ijOLj5p)W5#e4tU-X+MewSj$fwB?>`nH?&Y--)qoEMYJ+3~Lr0-vbseJF~ywJG}0v-?yYa5lwQc)n zt@kXy@`s%FZ&qmvBQAfNSaF!9Km`PGF-v~j-IS{%GyH>Si&J5Ar#b817rq>P2T!+; z>DXf4`IRe`X(kxiVQQc!awChEQl8Hj{MX~-A~C2DTm{u0O?EKZxYGG_9YX+=hX(9B zZ2r_c!jg3S-e~toqDoAdZmY@tP7{=_7>`_9p3dPyU|cY!@8JGO0N`0$Gyhw3V4!hY zm;|&nH*cAA)bFI(tUjEC2_!#r2{>td?Jl+E6?^z9N$FPL%EwEm6^2tZZ4S(Sm|x-I z=Wf{TaA*G3ITs@QNwP>5$y(l6Q6aojMappL=dK`sG@SoI24}_xJoi?xzS_sunXOKV zllGxIleDUKSgQmzOHfn3(1X(PK0zKQbAGS{1Z1Mx@zZ(d+9CSMaztS6^zRcWvvOJ= zrD%)8Oikt&WiN(`AgJoo$LBb>3KU^3)l+6#+@jtM0WbhRMVFL%>0;XOYWYP_#)?g* z=s**+7>B<1OjC*A*1vGkcocP{Yt3S6*Ow5e?(I^(2M)Q&&U48TJ>m%Fu#9I`x)b;s zqbbTh9Ft;EoeOM!pjDceu~<~W@@9dlwMiWfoac)vaOeSe1YUl7=V6%2D>_CS@q0fr z=24QL+#&gi%ILBr$GG2^T5@Y zk--KiNtqqKko%(L!*gqr7>u-UUMm}heJNmi`NGh1knHEmVp-Yz2nl9b$E6u=&A0rx zcW%cMKy}8T-M6=Q(Cm%wnOa{15I z%{NF7%m~@e2IEb8HRb^&b#;;uIu=|xpNqwi1b8j2S9kXows1NX(WB>bzcTA3etQ5v zktcsL{~<@3A?5I7&PAtV{!8WGQ3w|wjlRCepPq2;M}1omfD}g0lgz1`@{0_h`{AOK zmKKy9>D&v=Tp94RL;#LA+OK+Hb%nL`^DWDtyrH3?jaMrLTmia7!+s|Fx~_gq%Y=#{ zmbNdCo^_xayTHN1te&6>_c8XNpFaHCOYW#D(vox@2 z-SBsRxLZZ6qVglQIz38h+}NXX^BLbshLha+i@GkZ(j9V&w%dP?28>x8?uN0}Zhc^% zl5O3B33nSJFoUPW?=kC!@JkaRR>em3_|+Dz`Npf6&_gYM{8T~JDr^$*C1Ra+y!zR^ z%swtEub#kNTe`aG!(xNkjiicsG6*P*rJV%K(N3mL%eJ!-`aZqQ{qPV1h}(4Qx3eSm zv0baIRe-76d0}kS>CR;P6C2fX?vQ@B;CvV*1?l+I#-a+!+S6mNY+CWuddqRXOOw@4 z<(n94JPsMD&27T7V(aGfQ0%OEYx9su9@UGV`9Cedc6MmEgy8jL>PE~&F4v>Asl$Wd zMNU)Gw`v*49&L{peM$(^fCu2ChJl%xS$Sz%=DBT}-_rn{a+A3JUQLs|39cF-iQLXe z5nDa4+Wxn9Nx~ApWYNo5iz+}fi@!PHw<{=W ztTy`YR)8lq3BdIz(5jeg!Bp!iD3gFH?Lr%#VPnnBb};*|Ib@HI0%8^HZVx9(fdf5D zX}!R+=gRfPsw-VDGNQ*QBiWLVhc9KemeHAel^26J1-7_v%DWkKu8fkY--C*DFgFP=E1?y z$X|)_8&3*@>VV!Ga_acy@`RjJi0_HUUl3q(Kh}aog)mWfB3`1AeGHZIUW%jYWVANQ zCVwY+W2(~xMFqQrRZ@AV{p(~GhTTOUycWZZfXcQio>sIPf;AJvS8;F z1VvY%@u^Sgr~L)6|BtY@=zw6(H)(ipry)3tD&qW{=%e&d0`4Ua?FTZq&Eep$7YtAS zpHIzQIZ(~20_6C47dOXrxQ}E79J^VUux^-ck3Db2hgGnEd*@i9%bI)mOrnndP<8t3 ztpPqA|4?6=f?+K-YU^?Onp@ps^-g*MSCLh+b@~L)k;iUV!8w9;)FsFfBH>)+4TWv`@-3S2SUNGNs94vN zdn+>ti@gix-X10D{z}5MA(S+th^Tqmavx%E{Cr7Wv+q@nNe$HiQ`ha z>|uU}aa(nIFhDS`@Dr3d^NUy=Zi?~Wi6**t)Q|-!K!E*`r{|9&l-`4gkXlb>)*75j zk8hCiGm+>`ZJI@+hyh^VB(w?itU4YoK%Z%_n(waCO^55u+Dn$5uNVL5v#7C^^R&4< z$COiT?-9F@G9=}s)=;zaXRp4EFK4^Xc>nrb){1vMR;z`KBV#YfF9{u?#KL(!@B|R5 zASLS*{bw(%87$O5pOUUjJO5v!!yi3Xs@5FgM8h$RfgywZYaWW&>NY9RkR@n<3KTvx z5J(5i+EB+v?_B4_B*q`_|2eu!^FNv}sP{0(` zpRA_n!4*rQe+iM-A&^y^5unyu8hUr4M0`E10t8M)+y8cvb(0;9k9_q#LSIWnsGhHL zSW$ef?Lu40wp?PVSm0a4E0gG)#^`GtD{MFgo%V$x$HIxfGRxd4R@)Z3{28xTcA3e1 zn)+`DeGK82qg7=Z!QtgTO7qVesa~v~a^>4l&prx0C&U8y3+I-o95YrA%6P|QF1-Wz z0xh)UQ!N+TvE)hheUltT$qgIr9x1#&Oq@@4(tHV}hgZH$30^D;^~97aa8nP+8Tb?N z;6UvfdIDF)Y7$B^gh!f`n+OfzDHVvTvGHL#X^%15_K`$yxmYQq^7jw2N6^^f9GAyM zl(I8jBnnigTu#efqyF4M8=cdz_lh$l$`%9A%>-K3O6P(@>uYU4(2xL+Ea!vW&~1HI zvatcS1SOl5PGH@h*Ze6joXY-Dt^{HM0#Nw2AH^xU5ZV%cTLp{+V={Avfez5m7fbRi zpRO)1kaeOG?>o&I9!tzKXT4fCxn|X}fZfbw36Fz$Pnll8(cc_e);d3?*1f{2LbZGu z?b0u;HCO|0{HyyAbm<%o7{5~3Dy+bc5}&6{#^*KPc1{&Hnf{k2;nrXX$A)? zwLzt?=Cmh=MOTK&gp_>^byw?HKE%$=@mIn1Wl)A9cN~x-(l>owjdG%on;o+YeB?E) z3xaEfQ@QafaT>e9#k8;dLpnVN1Vh1Ts1G=q;lKr6gFfT)ze*67z%E4LDxial;CLCW zZ{a84;+1dYJYZnsgw&%_puOkbX(S0I46n4p*G`2P>cNDEMf;&TbX2!7nx80k#EPd% zbu>mqovzw@qYhm8LK&^JKf98}bIru$=_9H6$)kezc(jfs2d~xx1QAuV zrsYflD}@#I0>^=Hr&dV}X9V`sY=4y)Thy;$6hCjwSXc}ElVIzkCfi-Gh&}zu5{O;~ zLU;-rU4~5=WTOSK!a5Xs<2Lu5w$GQvxV)_M+?By%6h3xj#-Unq`Srbq6qFEGZoR>_ z4z7?hN!)w|Z)(+%6DcBI(n=4q|6=UPL_o9c{BO$Tu`1paQ0poaC}T=hF%uR4!=qCV z3ep#@MsHAr_Rp$deMcl{(%#!`xmOMFPWGj?w*y3Bu^44u(KZn2(tr)cy+f3I86&uj z+WhM`@#fzfCb#}Leun=rdqu^vl6+E3$^FN_JzQt?-}zROuU!it+l?cVe@hlCw}&+y z?ylfNeH2ansRH&ESFj7XKeLbEX7BMHm3bGcfIKP$Q2N=t7E;>voI>dfrF`t)5fv`i zZ%#V;-@w$SZ_feTxwQ_#PChhr>|{h5+Q*}*`}A%ZYPn#R)pEr*oyZ$1tjvb93UL`x z>_o?=hQ7JVfX|etCo89(8=v{xfRXu~&9qeJgpO7ZRySR*_iQaKtuehfuyBdI1DS7; z>X&a4r65_i&_I}0=pE@BC7DeN`IVh-s&BD`aAeBg5{V5`e5nQ_SS3|Q0ZjU-8iPtgFwnuqn! zOOA_W^rp?bD0XWu=WmyldNt-%1l?AD)$aGo@8cCBK!fuAon{Q<8?H!VXY-8Oh@_)T zn6~&ea>BzZxfbo*jQzs3bszDtbR_@%f z(|lUKj@U$cZEmLzM?*<_@U)XtUH10#z3M)H1fFuhCwr`$ePk_s{J8fsBU7Y-b5G7r zDzHwC|S_pW)tAEW|Td?pA=;FezDvdPou~++jBKdu@TEUaI$8IFa&nE*d zV1H*vK)Fq4%D*kpr&a3qTN|ss?{3O%!ntCs(8P=&5kIX2<$@73dXUnkj^pR<#$io1 z3!T8L33=&t<2es@4Fitb{n}(mW+=W*INxBX9ftInZ{g`I`I+lciGotT)k&G@L)_C? zi2)dqLj_u}cK_LRc2la@tiN1H?dje@=?Uz23HBcTtE@q2llLFr3&%kK-R} z86>sv!bXl?sWGT~ zOmf^^b(=pqFM$LpGz3Y2xY>?{ldQO@!nrSebD2(X& zZX-7=SG$?Rw_{|I*f=crn~pHil1=vt;=E^DxSX-eSL!=tV(@ z2arA~Oq0azL7aL0yvPpl#awE?&SmQq4MfDxgJ0Z~llihy5j;zWQERI$E&7n4c~))6 z9G@q3vjmM1xdcjo7{S74o?EU+S{0^gd9;QojnWCvjqi=TvoUe&eERY(WX9ZoW^FCqBIhpaXe1oyBM^rs8GOVSxuREY_n3_zscVy~ z&tmgZv}Z?rpx^{aknU1lnSWT*6-rz8BsCL04sih6qxnS?_bO_i^T|k5sUw#Wv|0y^}2shBYmMX}?*;}{!OHU!~I z@24G@HE>p7dJXkjy-dH0+ZD8#O#WT_z=W6_LI88I?SYXb;TQ#Ac7ARE%~S4=HFLj+ zy!CW>W3aeMX^|iMRVRH1I8Em0pYlL|x^%nYRBFFh^)O>S?&<8mQ$*BLMu)5hUTLwE z+%)~rr9TOW+Bm<%%sCe|%3^0>;ow5Y{BxF}Ee@+x%Pu#%(B@3nYYtM8IYBjuX0#AE zqYY!&pu~!UL@0v95YFZ^wsGB!yIcB60&9Z%a%QtLb`)?((>2oQhd`Q+Kgw+}sER6l z6TrCXx$vu-2vB~xn%3S`9@M7GC@Qrsct_e0Qa^VQnFafZMQ$JToR6LKJrg!zk=tWV zZ~BWEFRUsYZCbrD@7YP_rw6t0<=Px&$lQaRL8LlG_*n2}eJm5rf5&~9+WOdSg;y-HME!A#)zLy6u9SMSeh zHeQG;!jslyf75&5+^$>0jyr#&YR2r&hcK5=T-vu~N%+|F&}wD>x>82ai~s?E!~_JI zEK6gAWY6niAIFQslgj3-Vz}*@KqDE+8PU>8|5g^q=L`qt4`TkYbfRn!$r>AHugla4 z?wT;42-_@irvwN_t28P|d`t1|_IZDM>YAB%lX5HaQnP8~t}?V1d-~0)8qXmGO@VM+ z>qox6O9{;wI|ZOelyMQ~3`gs5<;GBb?CH5#a>IX^XZVQlA?~psyU%TKHve1Y!R7mA z&(+21)(@ozKtNBTB{;iqncK)(4J9cNW|}Z1<=*vitOvn*Z{zN{82R0GEOBuHggqAY zHeyhH5IcM%VrL=_2U#e9Cf##vOjzJuih6YiTUA2QeJ@2O#jQpKMwK7r&Z-tJCfUcB zUTo#x8)6VY1}Q05uVS#Y1GD-^FmxGd+{c29kt4Z^_L0ot!`H1=YC}7QzEHB5hc(P% zU8jb)o1xe(Nh%V&-Bes3?M3?35xHqo5m%$g;p? z;=`_t@uPH9(8Q6OI*@)>LK-G9Y|);dOme0kiZ9p43k@KA`44#Tf*ao=85LN+p)TSq zs{pbxpCOqcRmLb6Hld6t;LX@ip=ibQ$A9F=?qZ|zE>865z@VV@BaN1)x4jHus832X~zmSkq28OsbwY6~y>Zn&O%j2SVJHNPvV zCi(Rc9{r%4CPD#3+g_|WcGE{ZNbtmz+1gj@8uL@rAvc1xt}QJ-cf8SlC*kJl-|ltd z1fX|IUDbKpVM}RRa_$f(5t58`aJH;`_2PI2zdQqlt3(P8kDGfjCZcmGbWvR$EYM2pqcoS#O6h4wbadDZ^P& ziE`e6o|YEQBb}hag#5kO=@KtXORO?oEbvR-&QwzVf)NEjaq)rmVO>!O=`8@a%=xR% zch|XsUv2PC=$z{GK$*cGY5KU0A`v(;(vQa{jX5OsgT78IGJfvppEVxPVV}1QyFwxIYRQ6pQc+9D0=R1{ybO0RFDi5_Fo=e_@yNK(}R6W_1XNKG@1rMG= zhabFoio{<<!?rWsc)uVxjE>X zXJs~p>(G>(@0%0VWnjg7a8?MyLZ4&y4H+l)#Zuc=jyu;DsQ!4rRNP9-1h#fc|J(Bz zq!UDqmPLW=+yK|s!v&OZTF)`b)yhe33s0KiauqSi&wmugB~z;>|5#T)@uRm|rcsh9 z>l@8l(T%+92>1%Ht)Qi(u!uPGdLqHg*0-fXz};&3lAtrMOQ`42Q8d0Pj;n*=mkJ$0 zIG=K)SHm`4^?sMpfnuv5oEkgN9n=16_I;jAbToED5lM7H@@Q5VS1O#2i&$3d>mNd_ zv4w|kl=1HtujH8u+CQA7B1cP=hOQ~vw+9dPl9u@*2MK{jiN~iPCHHMjE{@d~cg%?0 z0C5c%D#b|^cvbln5a}HLxU9UPC)~SiMo*l)($Qu8rnjV9W=ig zH3~3PI?kk~@kaHo1UKJa7bYrG@YlzLXhRRNF+WlbEpF%9tK;K_gJZp^fl~x}$@tl4 zXdMtCqLGaX+EXkMv-jiso~>FaGxH9qgtg!7H}5O}e^G5Sw0U;|T0yp($*jy%+L}J_ z28vb~F&@;4Q&~x#XJ|0CnD_@KuE<&Bgb{-uPj9#G9O0SP>W>hUoqwLghOWGO)AHCe z1>g}x!sGDinFsxoGRTXTewdPhEjIZUvR5j~wt+VJ`eWCg9cJs*%hY)omts_1WbSmC z#Nn5VuVJeNRN|v3V$I4_c0E3$MHI5l%SHiBrF6DcLG#QXBThf!??ZMp?xs)3^*X)1O6 z!v1w-nfv&EiM++7DHzFkP10N7Zb*MKC+W+48)@|Tn!d6R5qMdGNWL5S{LYfEY#uce zqKHN~`>@_Xx4^_oE$-}Gr@ttVY?q|{&B^XNUr6()>6m219G`^KcDtke5Q7j5AWtio zxFWa1dAhGTBz}CPVI(uKw#EbVhl{tOdw>4)cIV?ieLdEVbn{=VO)Oi#1cmDp5;Dk5 zZIN0i7^F!lakZtOGQJP&e3Wweu*q6YV+*wTf+l|iaQ|tEL+eour;AcX-a(E?RJy8{ z_wegkV)5v@xZ}ZUHq(&%{e*ymQE<;m{!(Bciaf?(McLYfU@C=x+Z|+G65BP=@W@bw zd2|Z^%%`N93w2S>mvI4}yC#A#p70XW?2OIoZ3h0Grj#)zk& z<{Z+&NyV=GL&wnO(p5A(u?vN98^cj)%a4O0L~UUvWyOIk@DNR#S->4}ap(d{I%}#a zh0LxKd@5gox?_Eha+V{5PhYkG>}T@^n|?6QGkk(wS;ksS$4M6s}yp0KKo~}mXMK5-|65K zI^_W2!v$VC7Rz*$Hh!GFjLOeTbVvBd$HzPk!l2FQ(^Lg&fjk~p2Q#)Wi2b#4er~aY zgL)c@M=#!Imz?!pT*8<0z=K3q!y_cc3m#Xxnf9_tEk!E<&vpEj=;*`idg|a(3QdPV zKJ_9wu%xaa;4Y-4gqmfmHdi2VfaZ`VO>~ni8mkA0>JYD3eeS9+7h`e={7zbM*O_c z

    ni4J6X|EM3 zi6Vkq);(j6%i*c4TJn1?oK%_yZcT1tB24Nq#aAicv(H1X!f0wwMUPxnYGQsi@3whf z!)t*-MeIqUtg6lDlI^3gyfm3E+T$>=F$7)a7d$Q@jD9i7^-(gA@NKLC705o4Ul|RH zwW?9|FbC@QGi72l4C=Ul+;r~8^qRVg@pUoe4>|H=O|vt#r|UC0m3d}E!-ZOgF{jvr zY{iS=V(abg(d$nYa&L4E6a$>qBwXE|J*)Xbg?3EN%UKXeOxI?N>2%`RO1439H8y-Q z|801*dr(m(wqg{7IkJU8j5-%P52CGRvqvUEpi2LR8lCs;6m0_~ zyPzm{w=x0m_J)Dbyz>05AGD6)_IY-N1jsM6#3zMV1Et(-qkS%6*lYZeszp(%8mpp` zk*-G$m1hiqtupIJwi>x9YcAia}-m)g}>xF@;Z zk83Kj9R7Dif?FOaB=pWXc4%@}ZsfL;+saCqZdIk3{Z}nsysR-i+&%<<*Z)}ZJ;jgt{IZ3={WZgG#G|DOlqE+X- z#WunI{oK78*p(7<8#Fnx*h3{}Q?0K8(2cL8N#QFe%g*rT^wmT6iLKA{rytQbkNIIY z%%LRwDu*=!|8D=D#+q^I6-m6ZWGsEn@Q}5Y=QM5L#1vgy&#sNH?}43+$L99b1}6_& zEWIh!K5OjIkOd4_k0G1(IgV{AtouXnhvBK`BwVOjf|>P{gm?I~QEtW;CGMja;7l;Z zWQe=0t}h`ap}cq~<{V`(P|NR}F_spW)dIpt`@zz2DauY=_t;PAi(QSL&)WNm+T~$_ zW6IRFNPO=Hm|Mz+=Vs*3Lmh1TD5UF{qHB0yda205!$!iLvVV+BzBeEDHq#JeR_*z_(%TPB1FZNt+XF^-e_C57(TcQ1=+S$@5DXC=Z5t|)yT zQ^nW=xm{bFJGLQ772xr^zI?C?&Om=UdL|O`bRgAdvBKv!;l7@AZ3Yb-P&Dshi5H=o zUw`V*4~~F=FCXSRZo5nbn$N@Oly}-pJ@$XV`>8>`hsrXr1-jtfZ>DOI)Go-G1`*Cj zc!lDLWfacXb2lV}__SyHs0exOw9l+Q9p4oKdNQuFKodPacG3{@NSYM!1|gh7kiL&E zCp^2U1$@3%Ht{&jddmbMDWZs6Q(BXJ{+lHYReR~#rJ#3$ z2N|g+p6Q8bB zf4dfiaGO1us#_&#S`v-5EBbj6t267|vi}s`sTj>}eRLXlkBAapI|n&wossnkKqRe0 z*3R36LawfVon2#NGxuK%FRa|&2P5x?3Bf%5OFcDwCf~8RWwY>NKVgq)Ji7}I0PH_x z-(X}t3$>#S*huM`hjPZVf6PqfcpvedibMx1R*>B#GVg=u9xz~IZDom7m2W#Uk6k8k zeP^*<;hIsOR(AJueBJQkZKtQ0ar%loPCB>phUGmgX5t>k=fz{u?~Su$$X+6mRH_=mv0R6zp(7WK$G!+dCQ`O_?$5S zqmG%w0ycKObW!%;CczKMR_UGw!B0EC!eVe)Q?$nHlW(m#+4{K35wJUH#HJ@zU&H(% zM28l0gRrd#HqX%+@;E0#*Vnz7cvXwo|9l38{p{s2x6OuBaY$4>>+7D4JDFkpW# z@i1Er)2DTRXC88j$McNF?N}4(Tfs+H?qqQu9+TyR<>&|I+0wePt6K;zd-tREmvtqa^{+kEBoVgou+ z<+yAi!{8HBPUht?Zy|L@Tg4yfJu_LAvy^Wd_vHw}(93dWvE|icRQI7XrjTcr^|#l= z#kSZq+IO>Y+g9zL+!++A%!M`6c}i4FOV!yk6OGKO{f5IO==LYCLnj=UpZ&4$1?qed zCW}!c*roymjj0*8D0meACL>E(>@ijF;mhU+_*Y=O^LqhZrH+568))3^a2U;=VL#!x zi1nQSO&uc5_dRLx-cP>MIM1z=RQ_{G3vHV5MIhSHa81Eej<*Qx&g9;p6hp+`4pkZ3 zTky78lYxNw8HSU+y2ZA4kzWzoIc(L;W4W3#=;kY=le0IV-%iGVPptaJNo4H=cbWYU zW2ca;tiz`g68~`1s7PS8U@?CSQ+Y#Ch{Bb?5pQeC@PhTRrH-)VLo-{4t$pgQ@qAXl zS`*Fr5He%{3N}UZo)j7cZUpal6c~nt?f(Unn#b!`qK(RGSnd_4e8~H4_gxvf;Nfwf4_j+xM?8qBU#?s*ts`!WA=)UA!%mdB+GA$u zJ(D6huJ?YUSkzgc_r9SkBw%~ERvd@r>GCv+2jp`k*oa?zR~NM@#4QSu zSbJKE)95(RFP9A2rYd@95p*=v#an7e7{We#3g9*TCOg-wKo>c|IRvdj4?>a^&QCJw$qi82X!|r1L{YN zzI5h?Dv=bIL_?+VU4g}Ue%7s(uRl1W5?3hY1gjUQW1+%;xT9dl&|Wkm`FLL@jc z;;prFHt(Xk^|p0NaDRX>%4$fO4W}{@Q)p=5b#LS{;A}Q<&5#*h*fb?zcvtAF2Ql17 z_d8*@*!v#yuC>5a_tTFUXj{xveznor&fBb1+qtr&=I!R~Ld3?FVy6b$`MoxUWJhFC zcS2EjSW$0Wk!wuKeuEQ#^yZpDoXx$uEU z*jFUptY^zqk+yxEr08LMOoCSAkag4q;MhZDocwi{1ueDrYhGl1T~0K)6*@VW-*3t# z5Mo;3%r8BiUaN$By7R2a{pk)-@l!Cs@D6VsHb4>OUF2qe7qjXs9b1lgtSBTSJ`%ft zAsMyuYP*gTq@#ncMeOqgzZ6UAYk+vM;V`kg@z5+YX6a2`6xje0_ z9_k$RB1r)Xb_115;cO?rat}%>WMMTmRl255uSrzXou3kQbxs?hhezh}jqNf_!Jyc4polYAD=A?s>5#v~y>W(pXnoY^`dcr$S00-(f^ zs8VOlqe3Hhb+#b)9Y_~`;jAmw#FUc5lvRU5rl#$Q-&&xg(~m>B#|HHEob^~E5$(Xl z{!gEFwUjGTwMw;=GgM0(*)w$U`m}}6znO4nj5Ens+8~;GCz-S=IhKtc`^%4e%$7C%>J$3)b79x z$&blV--7^~?!@lmR+%qQ>qO!pCn{h{9P%WI+S4|7o-U(^jO^uiojWiveTazvs|$eF7|`9miuZYp`qZ?8uVVtbKm6pK$f zgPLoJ7mBO_@x|q6aw+kurNp+yqp9I+zaEYC;s3%#IN_APfPEQRD^ERiE02Vox6Qsm z_p#u06pBXggJxOGZPegwO{q#q2MsQ`8s5@xOgm`??mvKgQ0x?7&}tXu)6N%7IyC3@ zy_JX}*tjdWVY!Y7`37{>Xl&MozkVB+1x66p$x!u`p{~1AOzOVhv%OkXOnqo2UFZ68 zZ_9$XSrFYKWHEDl+7D?$p>pMJ{I&BTe6)@1IG2B708KQ5o3%SI23lh8dD*G;ZK!>z zGmZr{?LC*-W3N;WdUeO6?#a3(iXh7D;U?=$1FaWX_^^%>iWI+lygReYJ(toqbDOlA zdcYtvyP4WV(gc^>{4urmr-~0m+*>0ckQ3s7@X-Fcg62LDP_egv+RwTAs(m%@n`L3( z-)H9H`xB7vtG7Ytc9gvjrM0w-8fO&EPaGURUEAHQs%wF)W>+^&btVDG2Yh{aDZB?3 zcsRNt`!hD0$nS(ggbp9g7qOYZV(O_q+_iq+hWs`F{w4D-cw6-gp_4PSFLLwm?1N`j zK++1$VttwKv>5ow{Vb*nquq8RbIKLD&K7iXrzr*Bn+Er^K0`~Vuc3q9E3QmM`M@_; zOhwFKaY;RA`hkd`%`aVpn5=9?BCo@=u)0Qn)J+cwZR&qJP)d(aot|V9SyZK0WKvyg zdDKo6FnVJa9H*`1Ug>5$cg*)CwIGw1>R&B?+ir#PlCnGtPlL(3lD{qC)e(3Mub>{q zyK`nAcP30n27PD@o1T~+^KBR90Bci$E`Xs)JL)Trjt^|gF4*zXK!7D~itti>Lx;e7VL9fd1mfydN_?zrMKwEDmez!Ty>!=$cQ|1b=u7Og z0%N;WyV#jsJAZe}#EL|>@r5csPv#e^2yFEd%7vpAqB7eLj}CN&0*^YI{Z$#bd9V;^ ze!~^5z?cB3D;{eFY1WuvvB{EyFbTQA2Nd_A3KO=WcYDbeOTs4{UE$6*#FfrLHD*aF zVni{*R^^87?r1e9u|8I;dQ3THToPG*RO%{Xjv9hZ-L|HUdsuzeo!8d~BYVa!P#rdO zzpaX&$V+g7u2(7jHeyFH*CVFmbUUgD7wx`JlUCA^*a9<@Y)b6Ny9>j>ZN}-MIN`_= z7Y17Qd>h&#QaHJhL>th`=r&j;fegV5TW`H%B5mGC(Og*{r+d0M^0CAwdTNW)Y~Oj# zON)R}==bhz@l4#QY{urC7*-Eqpy3qWFTgZbM6YGyZhMfIFpVHK%)T7(6{koe{V*b1(Xq@d$5INDwomuT>=9Vigiwsy;(Hn&^A(~ByYBHi%x zEBHjijD`+&p-&_%u)bLTn7?4cV<4=SgK zofJSv|0#av^&b}3pp8Kvw5Sl5!>^`joPNLg?yrUj?V+on)4o#IMf_Lm4|8=vIKjxG zByLH!EV;%xq5OYlJ<2v+015MKcKa!3RdKwe>`gYW+w$vQY$^(l&YQ%1%F4~*j7lyf zTXusn?na&AWO^TNV8;E>(P1*Yx!+AKKZY1;@v^4#?sqb2Y_&h$kf&lw&yrR;E10S~ z?yG6I)lC!Tp7?Aj%?Jy`0avnHtnECSpgFB%Lo*3tnz)U5-)XXMoQ-EVjLSw7x0h{5#H;rmCfr%n zIl06en0}8`JOVU+ITK5>=Gj@f($v~Sx z-c=>zU^l!3;U_}R58_a`W8v74olR(3i^zxcrrOAV?8`-h1kban-usuu(bOvleAt|l zEsPSXF&O>?IAIo+8&8rBA_F6U5`jqg&`=nZkNGB z8{6wwLRk}Z$c7zT7{+VS4&>>=88N`V6;_%3EBCDbW&U=$DHPtjDyKU4u;yxl*i&5# zm|dDfGT%%RY}9vjDRFfGeJ!f8Bl3V;p({UwuhgZ?Pi3xTLLN?g{0DN^H%K38sm3j!#VT9EZ_c)47&dS0wVj8O!;@IJ7vb)gd|HWo~O62L?@U$JDdP9a}Y1>40-vIMZWon7y3Bo*P`KL#%Lj`!$)l4`pz%a2ZjIknJ2;P!D3o;L$LPrrKtG4H__J?for>m^!#r4^#r zv`oZ>7Wn4-0vqS!GmEFn*5qZ3t@q{W_YO)GeW#)2pgUnyo_n=_TaS5?Do+o9;oDjF zb$XH+UgUh>l*~oA6Dl}5;fPRk39AKLV2=j%oOZjN^v%V~idryp-{oU@)7-R|0J=Ya zSdcEs5t0dl@YD^y3p|;4!)HP4@}a~Uk6|*`7xYk31lwk*Gq97q6q>lrN!g?9JvFX- zJgF#$pA%7z)Z6JB49n~t$Pa@WPvZ1Vkea~@gfcsjAcXH7!P9Bsm(4)zka-Y!uNO?} zP0s93L485R>V&5hsy~i$uT#{>8 zl`WR4Torx7y*}}#7Ex+JFzM4x}d}Se5z+9dKGN@03&{$9>>vnk)i_gjtWlZk0(KuUi(m#ca>nb zwaZa!lvh;aonBi_5ZeceWn3Gai9bW?&l+#O0*(O8@cOjaiEaL(8j~!0>@K53u)zMw zh;v&3#=^ww!x*3^$4qt0!wzuChjdj?9k>rx|9oZ)_6Jk;*!&)=B9_{S2s{?|-K#De zDnqp)sszFW^#oKCczrByt!*u9{a-_EvlEeJWsyTeL)esntyh8**`K+y#!IoOO}|pV ze$50eD=TA8)77@N)|TD6C>x3_8&dG?s;FqNROoPzbj+US4V;P>^P~nqTyh1vEN@pL zJ3L?SPdQ`@v{~NfM?yUT6RRDTQ&R$a6I_s-WzoRfcxaQ|M4@S+R2Sz0cgZ`dnflq| z%VX#+YLNfVf%*>}i|s-^UjraO)FAGsD`f?MEZ^K!LDw~nz>^->hp1KfIRlTxf!l(` z(=D0P;wWULHJ70msV(DUD=B_&Zq~esCwWeec<3`f|5)T=NHz8H*7iH99(nWffOHMe zzviKouKnl!aZ*7uq;${suChu)>>xqrF$k$#C$lz%n;$$qNhjKPCt}J2f(H^|x&_(Y zU0{k}_H|olnlAR7v6z9AVth8&rT=WDt^qCYcJ06qCorPyBD<%@{o&)^sPm-3=hX~r z*Y0S2KhCbfSMOniSww^Z~y)wR&E#fo|fbRRjrk6ci+A^YhQD=TsCLnx^w)xpQ z^M@^K@ip)7HjfQeGM!a4S-g40g14eO>Bz@_F!23NYt=)s{wbHn(_(20yx40>-Rb32 zTNp3$Eif~MP~g?`PYRgAun}Wh?-O5$Bs>T^v>)P)Mt6Vs%vJpTj_Af>oXfFUP(9lc z9_4DM1?7R_s&N|rCZ;T&kEslu+kxG>+b*Tq9ot5-b{BES?aTV(=L3sJ_v_ttuG2Fj zP-h}b`ysQshoyJrg+cQo=EyZyZl=5u)g;8;@8a^pr$bkiu7X%9*YsnvE_Sd-EKxF8 zmKX}4$enUndMdZ`&JgUOl%TCx+1n3H{0tNV;U2{zvxlNwCgkblz`@S!BHe!|%Z=!v z%i?SaOGVLd_mQy!>d}JMf|-u(YySRkgKU#sku=wQS&-ehnpx>Wp|Z|Wf@ z#bcWL9<$eU^*g(|u)s;@XTk6ABu_4ejs;sRh$V_y4#S{WFfkh7+h;9 zGOts33ToxoRMnk6`MJ?DQwVC4gz#JvUWwe9Ps___w+!THsv)Wo!mXz0t4_9lC*rWy zzK6I2Z%-CI9NQJqP)i(gxh^^EOBK;*7Gi95lrTC@!kmNe7(B(ADlEa2$DQXH_{S0# z|EA(HP{nwx`SUES2UdcOZ-Z|d5M}_C%px>a4#K10e3iF!Ik;t8@Z!1*!)i(@v2jA` zLMqtu(zLG3!|CBTH*#Q-L5tp%IL9y$yi>UB+Ocy7iYlekcQ$LkdUO&#LATiKzLCxI zam{PnTy8t|Sd1g?L4KBO=6f7o1;d_IAo^Uh>uN3|-*6>F#5> zbtWH0HZL&nZC#0&_HrgY$h!OF;1#f7Ra@<+b>+f~+=cu!>nY8cV#(fSjP77oM)1qU zBxM&z4>Op?c*$Sgx6>wF8!)|2`f(9UoAje0_F;58<0t8bUy1DoB)@u-U91d0lf`oG zbPQe3QaBMwSP3<4E z-!`YSB;+7b@LtNnPJ2X5;BAJD3x|g#70IPo;Fg)XnaMBSshF-GaHaA-m*~D~Wn2lN zms@@?cXL{6MJ8T?{WRwc_MwMET7FDurk+gcT0TVO-aIH1GPyV7liM^2##sZ+7B}8Q z(?5+WD%j*3sgGuO_p45HvizfQ>E42e$F~nUmZ>8l^A%>8i=O3%JOQI$>i&t{?FG_y z`oaO`2dBQhK1fU=cG$qP9JNt+FJ52R9ni=ZBD4)r*!Gca&zU#jR1sv8%bl3Oe&wuz z!xy0ndaFzAagrn^&rTwc&5_GNYYh97b2bLaPBSG9EQ*cG6}03FRR=xYvjpl5Ru@c!(*c2y3%URQJTXD+Sd(jM1=!s56>9 zc_CJt>0QiK0P{JkQ|JwaHQi1i^xAB~>ZBC4a0ZaHM3MN>Ow$pYhcM~)u`TD@ql`;) zSs`@hU8zDo?0b40*{4)JyH-K3D2H`EcqU*ny~vx+E(6P z3)yX}v4DaHaN%M+ayxW&ZsAYIXo^8u1JfrceyQlp-UP8b21~uSw@o9AV|i_Hrd4|u z4-J9%vrX70bN@wKW663=!y)n3FpW{N7!d#|0qcI%XUH+057AP z_1w-+gR0l_sTFTYlkQg41-Bxu=JVoO{g2Rt9z`Qp8z;9i)QK^o<98R1@24!vqTA(I zsmebv(|eAj29LQmksZyMx%sG>OrtTxw)0c9-uekrxIFL!nhcB+D?H{uQ-)aIf8^cJ zD2cf@Op;#J*60CH(J=C-cEe3pMlD=|HUyf>r9D0hzt625ACn^04faiDfC7H(!Iy&PyHPI~ingepXx%ut-=KRzYOB#YHIq^0XMZv<3-XB(27-Va9#-MM_) zs@%U-cQfXE1)noaAh=l8e-Zf8@OfrAwA`%xPuJVD9D~Z_AVSh{W73!UA>w7!3jTEy zxuT?J)1T!X)ix9i4u@x>!FG3J!Hn~kP7R~kHg*1-w-J%egd#+Z!xqcALexw3fEhUw zSrU0UCT96+!H&BWcJm=t2|g`}Pr@`eEv{e;$=af+giQTBHfo_4P2Y-LZtZ6n6sA*c z8IKOqfn~yCVu>6n)e6)0{`2284yVyBEPv)W#q~>U&O%k1ntnAQAiBnR%eW_1>ASXY^5AoP?q)$HoWVNDC zTq;`g-EqR;^OV#Q#~dVfLOGIz>&1xs2j6AgNA|qII-{@ozvf1v8q*5wVJjhasj}sc zBiqh*m^a-&@qBHH|K%4vSAFuT(EB`INiHKjK2r|N(vYez6_Lm)g}(u>G#Q zZ+yk)<1#aS6LZAiz%OSX>_~d|XTD9VR+qY=!T{Q5<+@dV_?m$V(W@^KPW+eO#tL#g z+t(#xX4bRn6TwNaADC1ln4cJWB06#$j?6WDs)M6H$7E8}an9_^c|0G|O%BMUO}E8L z4&dXDaPBR;k0@Ky`Pbu-+5|salroEGg5zkx+WpJD9R|Z5^8sp^^V!D$?_8>-d^rL= zfG3?+e6)c>HdhsUid6YH?de`@uFMv}gBvww{}_V2!l|mMrbE z%WM;xETflpkuSe`&QjD85VTz@d8U3B3S_`=P;>9)7fgPCMQZ{j1AZ7xAl~y}x|`8h z(B)@rOBK+O`7Ew$rExyLx~D?153ijR%j^7+umtp5T1l11F{&nS@n-k+)WWJA**^{- zm*=Tfm6AHB?T0G43BSz)h{_a~D7d(mke1{psWH~(aeFHDGTW)H{9Rm$eWzlfm5oXX z+r^5!@S->7eg1Zr`bU+`=ddPEpG*LWR(O>uKYmRikL8iC(<0g+Ty!0`z$ zk1i+Z+TgL2%YLoYQeqb`J^jpaf#2lYSY5}ia=*)x7fsW#^FC-BE3-nF9LFt85k> z8{TzH&*T>hy4um`y=* zmb9Jt_)TtL!VEB&{yJrAcTKb6uu#kCY!nu1Dow8FV~+9RNbPz4-^g8(a?Pg2ENfkZ zMZSh~F^A##`MEwo+2(Y^PHFJcZHf1Q150Q2?exfW~0ORur#0 zPmTok2!2{H;ddeZY(r0ZCr`;%!(Iw`@k`E4z(sapNBTo;dlf*7}-)fHE z+6@(QS(^>2R@uf0#z`9;G!SA$5O zN@28ewO>RM@s$Ol5#h)8Lv=2bYZolPpgx1iiBV^X^+wEof+q(+q?C%#aZl7FE&K- z^erPQGqRKQG2t&_ic=-aKljmyYIl$I&({N1Se}eLbqF(nPS@o8;%Ou?!$k$ihkd2x}KQqk+#J)8MPUbjv9Ee5d?wT~4} zZdMOL>+a97Q7z(^7HT%J)jCMOXDr#C28aGh7FJQM4dS6`YpLMC2fsgd{0jDPg6((* zqqHw0jGDz*&nCV$v6qll#y#3ZcHz&#a2Hg}SwT_P%Kqf0m~uLCrS|wbRj*^asGDxj zkv^}eh{lO}AAgL1MjKbVrF|k)#n~*iZ8Vt8uT@LY3Xg4oS%1#&*nUKN=Ig~5>xq5X zlI5FcPF(G98GccqW5?aCgVY~naMlw?N^wZrxF6W-Em1auJak7VO2*V6RW9>}vYdTR zvv#&jL>_{S0+>p%Ra?C_WWk7&92qQrVQ_Q|$jcY4@h7&k4tGnxLn{~AFeZdm+%$cb zTl~XgUaD%<>^eS2Ih1$jrJ07wCf7A6&fSB1|FEYxg)Rl$X=Pj84N%X;@bkU<&7x#$4>~KWL1g!R*UG zp>B0I$YBIFVKkTTNn%}IwcOHop#JPljoQ9Yrp6})df=g5i%c;YwLLsOb(rkupgGol z*}f_m4*fotMR7}0m+X_$vMoc{D0sD#<8L_#4zYZ0Sx)WUTi3p=keKwnrwQ!2ppRm$ zWnSmWcc?t7qT=B7w&dj~6PkO{hS!~ar8_Ub#2C+NWd)vjj#Q=+{kdHii$x((GUoN5 z>|AjUf!Mw^U58;~UB#YSAF5cXO7_phtvJuw;(|HF9H-B`uLiu=nUEXAI-Ss{MKr!& z=1n!3b6d>sNx^(mo7ImO4O&NF(F(OSE#?mG=wFBCn-&#%QMC9$(W=C8_58LG z>@4akc*DScMhGFvw6?jOrcK!wE0rSPrA&q~^ag~NwHm%&xjY|L#}*%BD+=rb_RiA- zG}Ij&4uP96`py~;Eluklsz{h5HZn?vc|?O>n)pcNI;-PrFACDz=f04yxR7U~b7u>e z;`SNkusQrpBvGe;iQW-MGLosF&{v*!@L`58L@KRkO`H>VRJiW|kM^f(s7LkBqS=I2 z9`X|5nu|I)U;BlgdrfAI(EcY2Xx zBGYy$_p44ad1!U4CHB-alEFF2$9WnBs0U^*eJ1ab3bfMMe;}Hg3+DWK7PLz%$2Sv7 zQ@B^6q$t`=D5x!<#Cdd|n}Nrf<=eplJd;Th zs1PGi?pd zqG3bw4r&>M!-le7rb6Lv1bobaY>komab!92>)4cjE9MI19C-g)#U3A}nu_$ooGVJ6 zV+?N1+~s@7-@`)UnIUdi`mk;q24H5754j&pslftlL028EGa0-;V%*^1 zsts&D(kU}pJ7(B){g}7Lw z&Jg{T)c`0;FO~Zf-IwTIH)FW)z8~VUhA%<+oxxVtwin#7n!cBfPDGC+7BR;_mFAInYFg)@t>(dG<^Sw&bO+(K+mg zW<&+H`UIUg)OVYCs};N^BKlgrf;sWvXToJO0!XJOKCevwkaXZITz-ulXc~#^RpUs! z(S`fT#ex0L@bszfoY(G6-P#JD*gS%y39Q$sH}23Rd*vs1S#73@ser+g3k?y6!i9@F zqSd5<9V}ahyr3XDNHHBXws#{9#Q-o0oS-mcmV;TqKNo&DGSgL5Lc9_dgU;C$HL&S7 z3@A8^Yp7Dn48G51kTmwQ&6}L{t8jlYwwNDA4P?iBAKCYfYypyu|a(&Fy!VY)t16SJDj;kKqHx}7!edSTp7N=I9oqi+ZnTg-}>Uc%U8J8O}OVpCzC zj9Kn73;NY3$|k&_ptkx};M_Ndz2b}7VgHwE$v9$gXT~deFS)fK@)G7AGsSNQMV-O@ z_zoJhnVcl>@Fg#7e7>jGr!Icf3gc!}o(io%hzUC>NX-G~j8>?5^H^n1l$iY#!UlKd z>NZjWFTDKsUVuLQpR4H=RJl2P7(#VlVyp)`lkUrBovgS=cf*o4vdXv| zP$|F_rdB_TAGN7be=`8L>JN!VGxp-_zDpm$XydPPY0uH7tAL_fV?ARa-I{5Go_NZT zS`7n(luBGcks{A>@L!_8*w*Y)7dp9RaH_GbYH zj5UGh?PBg6jmpOeRCDmjr(pKb6*rYX(u1^+RY z;3l`N=_G4b;5ddhew0Md?rTc3%IT%i6`|EP0CB*&DJxBdzBK`xb$n{#TI`{r_(xiu zQK`0gx^4jmX}qE0{HXt>zs76%4G*+w2AxlgmU2YZS_0gTJY)XT2CzA5#>n=dNI}Ur>Fa{vB(bWOw5+4ofp-VBxjiY zvkCvL0}fLK1!B^n6x^33i$fLz3HT;FuLi`Q*Zf=`LC)I*{ah`^K3#3{} zj03!0#2jtgR`m=e*otLk{y0(<_yeEp11Os}N<7w=1W8P$7uLkSFJef#vUX~vuay6x)+|LqYy<&NV0Pm z-}A)MIHd?d!+?QN#?$g??NJnIg@$YQtGmOezgL5d$8$#SJ$@?7Wf7VkibwB4-EUDw z)(J`=rNl@y(eN=J-lzyZhZMe-^D0c&aFSFS9@4aAzsXp1Oy&SGh0=-z{?3m?DP-?A_QVKZm$7sR zI1&N7QBs=_=^C zl=`d+wi+#iN!kwuU+K#cWR+j!W`4~VX-C%;DHHWD)eHfL&lIL+7o#ddot?blRG}DU z2t80k`ZvG`ItpY8rM2lVZN|1Ew-Ys6+-|Yb@YUO&7zujy&$U6n@T{cl&!!q7*m(Wu zD8(DR&t&e&B4T-aqvF+s1dcF*D}mn|b7-=Co4IK#&}Ck|_4O}~dcT;}Yv+;1+5vY` zI|vz+p#ys&v=H`*1Rg8OXdK!eZ8WjSVkt-#s7NECGZ zo0^%6vFREMOv$Vs@JFs@Ox-pQXp=yLOkrWb@Qb+@`-EIh9{b;LZ%YMj>vQBn7$x18 z$(G)(Bh0UPU)(r%tY?Eq;=iAyfs4CU20c$|yB*7)rF3 z2?rkX;SXisouMQtxMcU%$-kSbDJ5Nwk3767W1{47R)tLw68=qnCdzzg_LY<3@5ZU) zVuRjqK$>>D|H{G{^q-e#4)?49e4QKr*d^ouJ~WDdz8dvh#rCJ{m|SR+kK6~ZK`$yT zEdU6UBtV8Q-I^O>0c8+1cFZUO69%r0h>Qu8i>_*j7CMNjOPQYtIOr43(bAa+APVRV zcxVT-THP^dRCCc53WPZ9BsjRCmKN97czl_B#66UvU!W7hS|4khLuOlk*M{k6;gqWo zXjYKFJddV0sbcl1lI<*gv#>(U-7S%%*Khm`v~6z#73BW;)LL?axrlsCYiHt=mSYRfa&mroNb~BeX)jcLhCLo1U53#5kG2In}zeG7#x= zBdu-9^J9_?d1CZFprncPsngAAdMrn7{R5`Rfo6W{72SfHiDWmxc$SXGKasn&+P?rM zaWoCV(1r(!p>qsx#f1$kykh_pNBW9oQ3RKC45=TcdW>0ki+Z}|6lKQzmik0kj8U-l zFWTv4vvo|#a=x1Nn~X;1->H5nT+EIQhFz6LSz6DFL?n(1XKH9Ef=l%Pjy+T zbAiT8r<~zsbXi`)OqLk;tvGL*=qyP`e;t4!vbr^{ej}C_L=6uM0Oij4GEs{+jg@eN zJ3Hz;VpJ!quw3AH896e`ZgU;8e|9+UErXDi6=Jl`{m0z3vZUrG$0qKY^WaT4LP?Ra#p< zAJ%yK4{Rr-Fq4%`d$&f*Ir!Vyv zGXtBPxqYf%7)T~t+~D}|mOlU3c#Y+yNp_{oTHlrjz;qy_GJGDx&BejtbP6r$3lP~p z?c?U{Nb?E5Tf9cgw zCMGkKfzOS#_jwiL-mOYjv!I zr=dFO)V15c58e@&8D9UxFDImS=5p8C-}JeCHV-c5P}1}JW?vNYe)OAvYCJcKQty;A zMqa;_EGGY1j8*&jmU&Al7<*L`pQRmJ&Rmw`TBSWvNCDt6MB#mj5RE2X8iC)Ea3RL} zs-UVoWWq^POJH`%Q>xL2;gASW!!Ple{>!Ck&&u%Y+|gq`34tpePsE#W=m|WF>Yr$E z`5~=QrTImQESz6i2o)jz|4s@>;zRSaqKwG|Vd8 z{qigDMngiYeMq#Nx-sF0`y%+5L&IG2!erROL8g-?{ zxj1#(5wj;z-r^WFKO9a?=K)&4ncLKLQgC}#xi?|``}}|$pKfvHyVu#2M}&1L zRzzudlG9PN@>Wd#uWerR4}iL-cT+&KO^nBRgGOwzWaYMl`s$Sxv!uO`ln{l?LiI#0 zg-DyXmqAX<$UAt98#OXK$79E(A^>z5mvZ4&N!H`>#8xDo0s&n#VlcZMD7-Z!TbVm* z%$nY7NN%?9!YkgdM#jB~ zhgX7HrJJKrY@@Wv<9XDzt7pTz;fkVe7`{Th77!6SZ$fb>1Lz3*4}ip+Zd#%U7V&h| zjU`9QrYm_UIBAOq%^*~olf87yDARHECJXt*kxAr;6#!ft25}yeaPu7|35ccE;85TB z4>dOSSwfE9NfuK7u3T=inHlM+ZesQHSx}O?Y`8;TavDC1>AHTLF*H{lH{mcko_7#1gmReb#=`?`eIerSz$&ZP5^>LMFF;AEwI&N-Q>ap zAPcd)ZW^t}VA6=V3bYzhv>LPmAgO0$QtU!GgerYN5joOB`&3|>`QtjYQT)_e-J~eY z-2^b0GjRP0S>aUzcq#0iQqonOPl(<$2*GxXaCv-+b!+I3Ao zlXJ#$oy`%NF!`&vs<8_S;o-jn=Gvi6P$U4b++8-~Ig0HMOL#%XP8KcI%+uDtj|06j z7XXCKj7UK8e@ja3H-1*)@5ggSpi)nr1{XAa#)_*l;w}J5uFlE?vh!Z)blc4svozR5 z1y~~UM#m_vO0FzoaNl5o6Cu}+No!P-=7xVo7R)v#R{@>ixIeX<{wVlsQGS{v6HagPIcP?_1j?%Xe*AoV$B z{rns(5 zf)ZdO`2S3Wu=jF|ee;w8vh|MG#~N1e#ub?Ob3|^;g)82paXx7wAU@Ee@?kXI?>>~+ zL8W3^iq)v7nD&sr{1b|k=!rtV!Zvjb(vClGIkUNK(^6=`LXH#iN0AYCsFXBBvCW$W zsHu>i*{1F0x>3o>_hjSXv1>C>Vkc$GYcuqq(Z)%@F;}Sd5)-J=5NKDhbbAyLz!`${ z9h{zf;a16KmsuJ2FWNzSXhg#qHg0tOA3_i;i26obVBxJ|3kt!L!2K2z7oi+l`w!7e zP|pV$3$3W#D4LSD>rk1LGK8^lyw|Jnp8^NIiBGPiqBC`VUU9{d#(4tv=6_2EFA3B% z(6(MVr+MLm-UIq>xdkom_b>4R;ffe)`RCykWdNb<3s=dnfDfpqzl`KYVp`Kd`gCjo ze$%n}fA|d^{t&6>#oU)DEk`^)%|)xpdG0nZHApEA(oO+4B0)iD)M)vR>5Wul&<3Y8BrXn-;?p_J_3xu!!h+k-@_X=qU~rS%Rn{ztH5 zNNX_-XgQ`YSNG|FaG9aUTJPzed=nfT_INeaV^RnyZ&h%M0A5y=m_hdi5|Ude>wAnw z^~9$O`vRL_L|L@xwY{JvZCvFUm~cVq%@rh=GEx^$Qj=pV_`ev~{}ppnTun<$WZ$FZ z?TQIy!xf_>oF4F__(hHU>m2!&@Pd@hp==C;FQLu4lQFK^lTJieoThI1eyJ-5ZPNKh8@B|bn z)D?QS>~R|dwICdvm&Gx{N7g^9HVkyL>0%8e09IvBV`V35ZT}TI>@gXt7dV^9(2@03FR^ zY;F9`iVWDXno0w4`$ zXr9stq%H`Bic^8N6)ZoVTTCnMsB%Y9QmZ8N#!E!pSP}&$l?*i`hwZM-a1OU9)QD)6%?ZEF`+rVb5)IU&H>vfwbyg^Auyjf zd*d=d-mZv?OJaQGm|5SoyyrJ)7*L?R@xc+~CV zpZ3Bz;({iSVaQh{;59!de5Gy0#gt#|s*1&0bI?1}V&qu>+b}S(VS+t!LG6h#M(D!G zViK9^NC?&9@r~ad#4*D*w5ll$QNkvK-FcFmg5P+n))s&oz0d9yS*VG>4W&*xpr z0s$JB6MMLSYv;YS_0rsye+U8x`eCxS{D)FuoK-*6g^vces75G$d>0HT;iEWkMeb2fS43b%x6Yd2H;@xBx918l1pkeEj{XQ zt{%ry?^@!qE>@Rwc>8U%#FaBLCVH(|{k~G$HV>Ima1tjgBl8jboAWMd!Rx{qH3ndF zTnK&cf#Z35Y>9t<_aIXoAzM?iZZ_Nw2)J8j3)oR(T!5ac!firj&qZ5iW76?U2fOs2h-IQe2= z`iD+8??=`ZOGr zLG=SZB$OvSg_!*pS@)j0c~R1Hp@3r_Qd{^c0T;&3EfDD|bC>KMo29>#rDh|UsvKK4 z-i_Ji^KbZ-t=MYbLZ)FtVOg_ga=g2ITJPMw+}%GpOCDzbYaIR}+Va}M_k&hNp*(ML zJdJB`z0a{@rwbXHxTUo25tC_wL;b$$E=-3l!Wab}v8@6O2NSp$f|v?t#Zid-5JY?3 zEY@hb$-OyuJQ)E$C3u7yaDVqjILH_3MGS?1$at-3Sd&%{m!B|u1!2h&31*_c`$Z!d z6zDE;Bv=eA{Jsi%6+NQRkAkt(J1qo}sFc4vF? zx%#PlQ;%>%bfR}%eY5K)-=Gm*)#0_2)pCI>bvOr9LyT?I0N;WNzEbnF+s%Vg-J+4( zl((fE=GZJ>n@|F`LA!{8E^Z zA!iL7jlMz)@D5DQWw5^fRnBhzPL|~DM6x=!a5Oq-USnkissfEX4P;Lq-Da>>o%}eM zQoo$5TxdaqP3y!8+`3Q^7l#+);X!BEOt!j2W?$o7O6MqpR5hu8iYF%A*_x74Wa&fl zYi&qiGH$1UChS#4a>l#a**UKNGu1%XsN8-1i%N}ALVsJa7$QLN!^x#`<%BDc?Rv1X z6Up=X8>byR5y;TGk#{pAe-QIZBT`aDOD<%L+QD~!?%(d6!3&$v>I)Vpdi^PD1Sg&S zMF``a`W6lBv;MFoNfy@I&WW`NS=8NnuQOdoR@<7|f@@bFgO32+2-ZEg(wRG)AZH#5 zWABn+lzZGcvP5HAmrn5Bu8{zUD}%(X?n`mqCUk!(EXHCdRs#wDt&tAqg6%kh9!Ah- z>J`E&1Qlk7(xh)x24#CzM;J#T+xPs4{<}B{%CnAvD{3IY&GML-vJYa1&GIuB{OWnD z_DRe28z-Zd?z}MlAX-)sI~5F1S2+%Mp>4qXQ<);&D>9Q}e7 z*{6vU*O`WV?pe__y?UtGyTQ6#3&jxLe>j{;G+#&p!|8oK^&%V7-mft2eE0jhyFGYg zmCV;;uJt}O&jaAOT7RDEkimb=YDRX=IgKfD_u6z z;M3hKzOF9)ul-m<`N!Ko>hO>!p&Z1?4Ll0Nt+20`IZP^FJi}K~GX6ILy=V`kHKv_j zryIw7Yn1_yM|Z!jI{d@q2{GoC46)uSHd^W*!?Md{%G*4{drP@n3ZOYp^f}eveKT-# zRhd>}I`LZ<;nZn8_-ZitD&j*t1(Rb@pM1C109wN-$noO6N6nv&-7K-&`>U57?|$zt z{QW{BGwjw8=9>9^bX!F9f^@l=X}bcTipynj>A=*N9oOq)SMjIo!P{SRHO-5xQKoiFA`#Y!P2LYNaTvI3!yS5Lw{E5OnxhugmU5_#N5Q(|W?B>%B*Kk5^;C z=ML6(O=;dD_<6iNn8cZ7bw$@LQ|`t7(oO@b6^SDcMub&L52myn;bI(`9hDNa;;^y| zf4%&k(=^z$hW{g4h{lT%WJz_@A*Xf=Emb`BFFRp$6MA z(DU1~e#&#$Kszy0!rVL=WeyWqJ4b4u!Ty%*4vE_&T`x5ISw0a!X!#^z^oPV4@}y7j z<6RN?Zr76Ohqok>w6{&c|2QfECYr4bh3$g5^m>5oE>QCE4N!G(mc-R~>VIZ_?;tBw zs;Ma-GK>t#lY{=~w31owgvm@GUu*P~=6;9|QrxTa6$V~)N>RfQyO1o3E!3i?`wm?F ze6lasIM4OXjf!DW!kE?3?O?*LBhZuYMQ8!{Bfj6gFpfB&v!odEhad42CVZ0p>m5nlIrk|cq`Ca$ZKJ{O{%qRmD(~JJ?)!eZC;poukC*mGOzHIC2i_Y4!ZZTp5sF;X zLOz1UPSSCbyaaY>6e3ma#qZFKbDhclg|=*ztPk}Q z&e(mD`u)9+mch|IA{}Rg*W3DQIB=CatdE;g{Q{E$`@IcLB|=76sxHrk9#-cVI-K{% z4*=LH(EQw`?JZ6chz$D@>M;@Ro9n^kzp>YKit)uUpMVfOq?7Y3o1gv$s{_Eu!+wvg zVQ7f;w;x<)3$*ke7{I4S^%sPI>W*e-nYMM9`J~E@y$K$n<1Nv-IOs!Fs^7> zcH<=q5y6dPj?EfmHxJ%^+{g(CYeqqF!NkJqxMD?3?%YC2JA6hgykf^r!y%AX+=EFN zX|*rcl*G>Y1ihQ&z9-!t>m6dgH;+B-Hz=noLi}eP2sQUzq8)OWA37ArC`n7tIww~C zYB8oIcRwfB{{*qU!mh<>H_*&=|A)2a^{$(f-@p~HkaNjq<)9?xNvo{{Sou8OKyZ?6 zYKWnrOaMQ%?1E`R?rZvT%oMZZ0cEW-EbQ9k?CjEJTlba$MTk#Y2NDUZ{~o*qLK8rVFsqY`EW%>ceg zgn-b*ykWx9e-nk9!&N2Q0~kZ(+~AFotX7}X?p11YKo&o77w3rM>Of`IvRe2nFGDM` z6@|YNpPd6+82DI#!$xP|B$@A;NR5AQ0=-JPMa|@CFDWn$4c(w?`6fM7CP#s@>{1{e zR755*vG~oRPB>1g1QVh9#80>$8(jaX|BW}|Siir^roGi@y?;gpoOYlh;lV3ti{ zZked0HKs;AW<4&Fo0%&g)p90S`)3 zfhsQz0K~Jch`aeM(=Lw5&52;KTLlf@`+9pklH5=?-IAdOjuJ-~N;)a?{FlLnUj)(S z-F&kxRWd)vg9TKlEYKP<5AbRF3tB5zNo|a`S<+2CU>Y3&FBvl5fBM~_{Wl0XDP;5`%Sd2QmnKs|j+)aDH(2J!xacBO(T2 zHGde{TYi(_ye;G5XA3*6>LgLAA6zA((5qdq_Tj~D=cyfr^Obl5PJt(JIy_e-i#_lE zebo%o3Jl-Bw*5nKCT3`8tW5L*SI4uOY?3|L;#IVV?6$n?>5oH|tG!Fe`RHX@kFXVc zaY!TY{6>TUb+IzhB69Ozt!@F7@dC|zDnY*f9`y9G+tEf8?b6t{i!Ai!mgEf$pu{wC z&*u}_8qEX3!ky72N=c9^Izt22xA#T2MVS+WhgrejP3&n|!?_bQNB3Fq9&C zj{w_wa0nvV(*rY5dl z#&3wCTnZk%IJ=ZlL*;NWB)K8eR++*@2ej50?xP|H$#(A|QOru42h4>b~tw z#l#12kuZsIpy0|Sx;Z-MqJj1>6$m1g4oMj=_UO^($ILL!LrlrZU9~?g5#ULW6vQrv z(621%;31GP)ubjavDE#`3bn}5I0gqx*7LcriOd91A>mGSptkb&U-|0M|CA#2jmjN9 z+JGK-lI)w&Q89=IT2}E({sUK#1%vwjr?QH=^_TD6GrqJG(@iG@|uyk;3c$gcy&ePH&k#bNh56ezoDjOa}l_I1tV=@mIglT*I*3jl9( zdTl+uBA26$|{gUX<{i35^w8LlV zmVhnH@b4%l34ociMXkZ5-;A1=W97S(Bx2D(a|5V`MN9sxk7wE~GS@-+`X*e=HcGPV>TvPC#htJ6=&#WbBMrK<U z7^1zEuklsA@4GqdG;AN{ZApFdIPfKU=gB2EpN;w#RgN%*l%vSs}Hh5=&Cmnoq(ODTl^PjYz z+sy(@H#d2!qsGjM#jBAmi%crKIPvA1VkdTNC!XTu*x*Zx%=*CK(+U940dt~^)`R29 zZj0b5jBI3Lw5=o$F|5~RhAT&TFi&YY>P29m-PxK&3%}V^p`sD6%Yu#F{hhTpgD=0~ zL6B-TJV@LFa8tj3=WrC4YPpp?RkuROQTPa_n`9MEuIgM{ZPs*lK7Ge+!i~A7C=d_~ z-HD!-y<&Tm@P|ZXV|p_Cfei7ua>8ZniozC;W*7VDb*XV%g%ePsUz)}Y|2Q0hgm(vw znx)u2DI|sA|A~O4EX5A_Cu1aj%{U%UQAXFtKc(f}f+**carIQGH0~x=5d06(6I;mR z@LX;iKgo~dp!yG>FDoM_B6Mq19QMomavRbL{CM3)%quxLg|*+0O7!Q42tfJEM4q_T zf-xOZ5%ZoC&I6Y#0{eK|QxF$mHW`WjfI<|wJ9fP6w?1u9ycN>6tl3qp^Tj*=>0qTf zNFtqt>1b*b)v{AUmzr!^D;mbKI{&7Ehov0w_8xw%X#<@BC|ymxu46(Qsy^hqU0<67 zIFDWw8bFb#y$@hqW#Z@mHooi|;fuip+2|qJ=ZmA$T2qi2vlC+0R7^)zEj@ZMPl;ZY zQhQNgCqYm8v2O>S!g5B%qviJpsg>!uDEOIhRB!w`XBg^2S*AC(pOeRHBx$AjUjOOV zNkRot;(125TfLc}gZb*5e^V9gQ0uf~=_j`Wg5=4U97*UE_|1?>L(Wt2+~;` zE7+MuW;EbMra=0lHK*vpz=I`{bvHycZ?V_gdH&(77Qt!Pc}Hht#?JqX%w zf9MwJ0VI%3ICUtuhs^>INPU@EcN0_3!ZAVICFkW(4pr$QM{q2b<6nooTEmt5p-8T&H}8jcZ3vQ7T)*`Qi>bxJz^a zGHBVmwA-zpnQpx&OfB&BY@%6l)hDbGJvDu??UmD3zeXBH)9tySWsMXX%=;!}FK8RE zPmMkPv1_B%9-iroJ}i|f9nH57Po$=aP9b{2^tllLi{prfKFsZjuRfUiKrIGfjP!`o zaW=ZMmC6y`em{w5s{>#b{`Co4Fu*r}O{9lErXS=@Mn1*5>;97&@_`m$lajQjbqgjmnP`Vw zvDAS(eTeSGnoBOm3aw%wd3VgIgTdLb^0{NcxcjwGN zsaLr1R@cNackk0YMJWx+9u$!6&r~Bwc7IEN2MIA{)Q3fDYDwj28t!`abTG2N5}B_$ zvNJ<2^@Te|t%$tZin;x50qmtbQh@7As+U&f(bZ5#1M3 z*B0)N4B};i;oZy;Y1jH`I}(eJd^iNsP&ukP5*%b?ejy;45&wBQ8y69z_(At5CL(LV z)_dByY0#`(ov--VNOH!kX)W}|868dXumfPFf{=(pwB;S?Ht(<=VJ+t3K~O~9s$>iT;7u^x#AJy0QFB606X zW7bW|L!$=3%qbrby5|Y`+A~HS+#6Y6Bbx3GFWMzgFLvJ-epH#hg7k$gLN)LF#-Gk+ zV{-3&k&WPT_}0bjpx&HV|8^YCELuAJc+2E`Lzu0h-;Bb5L}Sx8M|s~dtmwo2?V6M6 zRbrDqQ1q#ZQ?m-B-M&A$8s2CECe!*A*l`Q?n=xyy=%!loKT8Q82%APd<19Z;Pnmo0 zCu3GQL0a}?(VVW=7AJVP;XtW0lQo1%m;H<*KQnCtzN%fAIRMjlRs7N1VT<=#wRzVo zazOw-bx6JBU-YL2BCt0R z7QWco)#0;hz*hX!bTTx(6c33ndpApcjw5#Yk;I}L`q8>G&N zA8Kk=niL>HOsV&XIr87%eYk#xNe6{Z`l>WZm} z4qKd8np_>ZsybqrH;0G-%SQiqiF7!8(w7mf`K#Ya@d=rXhajwBesbF2)CJzfcc*Pw zuPV*u$d~}7&5&PkE9_`G_igFwq@nQz&KrzC7!VqOw1+5i^O zpu3k(z`Pe_dn6j73{Vl3Q3+xj1}2>q8gJrJM-Wv|af+M@CYpFSC*`K(Y>w=TNAeG# z>oHPzmM{f*x)W{p`^4Kz@U=8LD#s%MsZr{MgaXn21(~I@Y#x%MKy&vdh^_w&*wYNJ zs85Z*V@1w754HS_vT)r410{KTmndIlR{F2KylGZH)tb+xxThu8&aZ1birK@Vz9`^+ zODF7)Y5nS6gp=PQp6LxD^-XBBkBb+oxRw^GWD6en<=uXJ!}7KF@pbfP!{|ub*Yd3L z6eCSIswuR00V9igv9XnQY-1DZ;Vhd;jV3Wy%BZ)1S4|_awJtW|~ z#wv(F4q0<+%^Eo}mt_oia5G2n*UeT_c@;)QCihdTkgHXzFTu^ePRDC`i=Zo&mrNpT zoe&6y|ETL+seLzT{M_SS&#e;Aiiakdm(vlKVRKE<^igD|#GwxaMoQm4#Y zI8Zx%Zl;#D=d{2?+RWp&NWU{+3*baCInHe$NVxc}PuH2>G;rRKOtGm5qoNEd6AI4?4j0LN{C2G3ns!RS}N7lg6?m|3W_@~c4Bd(=iX zD@)UURH56X7oIXr&I@!)pJ=K3Dt8>S#!bE|kM1}qBT>B@9ix7? z89iGOvV8uxQWz=Q28f6)6lN(lquZ^&;yB{tNSg<1XUhmKPUST~uZL0#E0vY;r6eu9 zUH$mTKwQUsCF62@ydw@>42mxm*#N8r;4dUEb`%M?iEsW9+ZT81rk!hjh4BV~V#n+S zyc!S*SEmV!!`W5b%<{>#Ntu7XiIkWa2X$4HL${GJ58Pm?kKvw#7S8GoQE`-_Ixx4p zGgq(ppXFMV^0R-*M`t}G7OekuXw|Ph?jvdjY9oQa=@m6Xb1uW_$?WH(5PCF)T(Q-V zf%(j_SwN83MR2A2_{{js{lU(`Ltqy>k_72HO4utIv#=K?s1K#PNu`y^^>_`r2*)fN zQ+H){sy6!3uzR49UBh=%g%Kx>rjUrygl(e~h?c29m>6eg^)o#lQ@5WmMZ>th^Zm0? z;!+dk!KikAp|nGjYE)y4k65d2U$&7P5o=(&C}_cuHj}t?x3zgC_k0~i{$(RFcl`m~ zU)B!ZZx|guX}ckkmq2W{0fJ}Od5L@Vc&m>lNkSG+8&JuK6)I2C$u|{^Z}!cEJp70p zzmJE5OpC)%-E`WBMx}W4%bH@4%9B3T`MV|H?xZs>wtd_ok{(|kk zTt|E*?OHqe^$rvqwq4sF{s+M@%M0>IGaA1cZrr=&Z3I-E1|q+Xdmhz#KFswQoOn>^ zAbZ%0Zj)v=%Y8_>=EO-Um9qCFdmAcbq||^4cw`8mZ05+}SW$RNAzFxFGrXOB8^yo{BE8s8JSBkI=Z34~ zsp)SgKgrh%8W;9C{Euo8ruspb>7md>hR)Qvj~bs$P7YnY@c-IeUJ%|`S(ae!j*0$Z zi*~q@^VLS4rvmS%M6zD)TMkzt*oc_;T7Jv1)K+xB(VNs!QraUeK~e;^RZ+a7;f61U z%GJLi+$2?uVRGnl!aL2K)z+ zjas)3kt8b(MG9T}FR1F_ zu+<^0*rk2GG9loTRO^6*9RNUJCMWq(KjO%ky$+O0x9?)Ek|Ta|Hq`@`=i!+j-k5ai=tx}Z)0sOa%6&@ zt~~$uvarrzc{#`9e8a*XAZ|T1cgO|g-9P)JDOs|s53;Q1t%aohd_{pZ^~GwJMPc4= znN+d@9q@%kfH4s^YSXRYe>gk~c=mQg8X3UnN@?Y_mvr8U#%mP&b9cKl?o~Ni7ULvb zO|i?lycLIQmjI{;gyHz%sU)>yKs{93fOdZ`PJeLr@j_x!d~wJOFSMw`Bp)Kz=iy z(0LYd*}oVQs)&LO2qL(@eBo8qpOe!ue?P6pgH2&X&%@Or_MtKTS=%>Dx>^@^vKI_> z={QHS)ce^Z@}KLRIL10K`}cOfI=ar(bR##PX` zfA7lG`yGsw4c;0q4`%L<%-C?jEfy?gsi`kEpcYqqALmqG)&AMTu$rSPy*Xn*dYi0` zzbwEY-FFTNOPTB^u}4aV#wlI|ga75!fz!Q#m_=@yOpE}++i#>EQMZlrImrCsfjMTO zw>Z&%x6v@N7jjF&3rEs{VP>BHIkx5<=OmCs(om|kwsv9l=1Zo)N@U{sLiBkJN$RLy z5>SfyFB$T@K(@@w^k&dHaXRp6ZE{$P45cGW03yiHp15mDl@s`dK6OZy!&?Q?4Lss1 z3f*Ve9Qnsd9ts$VWDajeM9hA#7|#JF$NLAGu`vJhdZtt|oO)2mAm2HH&$B#fe>c@E zztqAzUk_xp`AyalkHy&L59$7cPXuA}@Y$!+>KsZ8Mfktb1!}Un2~s^TF2Y)5H>B){ zqe8=&IjR2jOSK7^wz+&B_SAWaXRZ>@i!R?|`1CQ>6rOJ#&B`i8KVMBacC4G|^w#2e zSl_>#@N&G8&ua2wGDQ+(goWiNVs}TwpYxF|BvLq@-^g1)Y991>LUk3m3iKs z)%DfDmSu=zNw{X$v)sHN_Ge_-fz4;dJa5-MJnc)=$HFn1}`i~aYx?@ zm|80%{E?)+ORG&K5;w`p+lHGN$<mAXRm&ZeSo;DhykOa^KS{H;mb!hRs$F|l2 z9A&cqN6GF9QuFZe!W>;YN&4}I)W+Y2m30yZIP>p68J}tI|K8U-zP}zKQyBcALH~&> z6PHOx$PeDwu{j6*;kIgK1<7?nuz>g~mcX=&am++hocD*zGqS;nzgm330v*XEyA$(T zLa&gT(_7Od?yL)6x|{$mv-tu;q9I&a&2SBgQ4^~jE{J_D{Y6jjhe@af%yfy=v`Fz2 z&=xrbm|JY9Nen0TWjUD-YoL2=D-+CBcF0ILl{xZTOXz$S4Z9V=D_n@&?E2(<}4CNbh8To3xwSw`Z!<{ z&T#kTsC#*&hZcKxiRym8=Vq)2rqFX$6DSPsWA3?+VE|sM1KaipPsi)*0e~CH0+*G1 z^MCM!m0Zl7jU@8{f7<#{r~Uzz4oQhKAs+w`UM9;)RjzRBmx%P{a!O%4|9jp;`R`Y> z!u^R|8|9(nB1}j)WXrA}i1AQ0MZO3I65f1p0YSR|Ug-+(g52{nBzw%@qK&TMkcd<` zm!wCf_G-&l>tgRnG@ZflJR)=qYmUROYRepJ<5{h??0hfQU*+G4OZ`YiL)Gnk`#gc; z&0qK3?;Pqe>~YxcF6;Iv^Ug?doRIGZDH|v??KEYS?xt&yv*HrkpN0DR(NnwKyCwxi zkXD>yBds#Q)&dX$I+G7K)wz9R8-nY1uTrWX%c=vCD(@}f$ zUyq~n0SSWm^~B2f$j>=lvS@B%$rg6X{;IEyo(uXRvF)7yr#BnGkKM0{eTwfWBd5cG z|BCwkP?&=YM3vldtl=<@LrU7(y6w$vU!m&juflCPBS@?wnLGI>1WHO%b$X?Bo8JYh zq=3W>uk`@$)Mn|F7Q#hUQQlm$M$p;KS7x0Q;yq?*w~8ozLmiuKX*k3mB0>tN4_m4y z`4OeL(xNko=aUI~@WF;CS%YYXFhS6@JxUPfQ0*l7U&z20isU*~;FYy8c;nN}QQ_Z# zt!&(1OjkUqc2bhT1w!XtCR}2Ae*TXYbI)q$knMl4L1MK3l1Uoifd!Zr8;a}BW!_gH z&nLu6u^iyfR4;JSF&xvEtt|8HyJmg)rQ!0v;+b7UDOH%Y8U_dH>|j{eg6lm+ z)!R5{Y~^dcbL2mq+O=ORKCdk=+)!KYta0G^7&|{};xQB$|KHL&r@W z005!l81=S<&Mhnepf^}U&664_LBq}R$Eq*^fM$;5*z|oI06@L}=w_u6xn3GpF;g ztEtE2(=%41SBR#Em?*}gyl(*Ql=eK%jKMCxM&9jTBOVd=a0o0cG4U4RW~G_xb20^+ z58hGK%En+{Ot0|bnsy+mfTK7DF!Nt~+CH5UK~uf-W-&{89E*D#l3^d4n(g}{T6hwc zj0)P~Bz<(oPIRuPpg?)LoHfP{y<-kf+?9@C>&j+_^MykZ^R8I3>H|091-i)qoeMHA z>Wm}H>8(+Aqw=-Ma;b@AtruY&KgZr=PmAig8Qh9Dd-|t`V$8hnc7`fDLaQ#U$G4Xa8X6qt zDjGJ~Ksj6r&36e52G9+L)pQ3jUH?Pe(~(lh9l=BxM_F437ykL>slxmbi3siGzVfd$ zke3_&oC)dN73s<^JNA2#eX9}yZ)4tTBZdYkp14omaU`cZBW!ICG|4MzZKVdyW3=!r z@1}y&m&Gv&xuN~@Db|O+++CYaLZ8>Y#RK@wh zn(kJPg(`XY4>0L`FtTpIXmkYWQs%PSAcmAXwqZ9ZH%nqpVYbMER|0O-Ltt$QI$};r zfrxEdAgVGP|J&^7IDf$gLyJ#4nOuZ^{mfKldqK^9Ik4g`Q~l#+VxW#ztuVSXv=I0p z(Q}TR@;BXnznzUklp8-KgRbDYcS^0x@~B3E&XcGa0mkKUA(p@zSno_FyZzNcx0)`w zTC0)VVW$yKW$RK8SJMHvwh;ZNLg}i#_omzx>0J=1gvsYsj(vs-g?blXP=u`R+ue4QRij@4UUVR`%b&H|($zZgVKg(+%9 z`4GJ}i~oW^pT-NGdvj3*qYD2P0__`B{1XK@5yQT*mNYHl?(~_qt0_+(!eAq&$~|T^ z>+jj4T4OY}m$oarO}0TJr@#1>`?({HUJJ$8$_R3oX61TdJA>4#IzTC< zM2dmESX9KFX7Eiys|+miMqexroO)k&gZhOEhO%oqwZeo#C{a~Ypf)63#mgD@Zrh$# z`({%{ZvL{)JHf<~!AbR?IHBFbi6OT_udG-%e@~I)WM0K%P?U5(f;8}i1S;^I{yv%K zI>8if1SbHeR-d;N-ho^h(&(qoHX!cnpp9Qqzp121Z(WMqJz?|xary`NKRH_DLVB*;f%nT);GV}P{xS1E8>Ger zf%dDzV-IX8DRp{Rg(rvYN5LC2TGd2sKkKBJ=`xE!vkCHs7EtX!z8%|B+H(G`o?)xT zSu9Tq*+dMJ+NYmQyAHNDNZCHOPu55oqeatOv)-jw_3@`4-)wsK@?7$;|*U^RI>9xebGg1?jl~P2;C>ngu#^xeoSp592!LXthS} zwytq{4ff4ZbEk0AHbnK~4*ua9h1V%Lf-3yw2f6vwSbb!+1;|M$NmhR{306@+eU8kh z|9!j%ObPk|Cer}_JxGwpyqw)EI2<;uAHo- z8UXMN>Fsz%i}?(Bgg!Rb0{Mh)rXV8;K>Yj6>ncq|9(my+tLqK`;QjjdKuKmnZf5tt zyFq$q9d-ExQAjlb;esB{T3>6Qzapi7A4yOs)?E5b*_w0o7ogxbuGC;`bYwJ_#F{9Y zD;)!2~#%9|`aGuFd`5Im{NwLfBL0=gD2%v^`z^E2?sM}}91u*ilTBh{fHzHoMyu8r-H*fSPPNS$<9Phy@YYFY+qBmnC+;+PrahV&h)>`p+=g38 zS9U8f(*Z;C0f2%3#o<{Z`0pieEX?QLy z#~gL~NZUL(>dhqmmm>!UBaTDe>)2;a5#KMqFfZ}rCRa3bGIxx=P`s~7tALr;a5<~4 z7&1SqGI4CTjl(i}c9(9uk=n2aeaxHr- z?(qU2dQgy?AcT`A9 z`cOrNJXSN+KY>j*!Tyfyr{csGHA|Ge2ChpSabzZY4$P*UR^#ciNAC9#A?yw-4LFv; z#S(UoA;XZ+sK|6WJv{ZM^hrLT9yhAc=j=XKe#2-SzrU~AUc_UQqGKH*mL$V2ewP>t zMms|LK;Y_Adqoj(BtXs+0nQ#R6DxnSvdG)N^QGF(y=t9S=+cHMR}9RO2FNb>16Qbc(_H4Tz28Z*CaP*f_TSo zwN-z=SKg2&QQJQ5fIh;aY0+OUmTiGdiX#mO*|nnqTFniNx$ju&wNH&MMDe9pQ-PLS-fEh5Pm_UdB4%@M}8}83%dPL598~{H-ID_3S3TPl-j-EB`XrJKF{cJdc}QzKbCbbnCmPqFO>Q0;Hbi2S(Ud5x*FK0cQ%v0moIhbF4ZQ z?3mBZ!m+vwcu+hQN1O4I0@B_Ja`_G3BS&V;2HFQTd}@wSGWGirnDPxA+#M5gIjaW# zZ$7SROzC-Rw3%@N*wZ+}9|Q)C7jTI$irx|7ykLC0V>@3mh+g~4;D@J)c{73C5R9;t zEjm_Dh!9VGBOML1p{ZSrA z<^|>)1w@i@-L-$!q?fxO1rW%=qaw$P68cTJXwJ5;3(f9|o|XM95_}*0Ccat~=$Hs< z`rezgZ(dDUL9e2GL>#h>H+*4vFxJdws)V(@{lT=Mk8$~i3-Xy;r5V`gmgvj}_+W2q zP!!qZw>*TZBD?tRZ&NYTf=#5Z9~AA~k1xttMUErv>G$;9It}aE;bbA0MX%Do24PMq zK|c!-jYk9M$&Jvh7^%lU|CmpEEpHbK2%dFlHBd-;_mU?>HYDofbKI9;Oy`0GXIo($ zajtZ&W~U~NBsLGuluQC%;Zxjp;tu>Vobq(6#;VHZt?8I7;dEv{I@7)9#UFzR2gVuS z6HLqo)i-^Ve4{dR9hKyGE;Jlp+q9)HuQ&hcO$Iw1-8kR`6`k1un4$fLK7;uc!iRs$j@(Amg1w9xs%0?2fs9et=Mg? z#xn#bf2KECjsMYO&@%tH|12SWX8_NutRH&909KJr*&M-bdI$QOOr+&|_9FeK&IT^} z$vP)dXqMY<&5ThM4JX-(#A_k-viKpR_i0oaVW32FHA7A!Y zalWfxuT+{7!`Ns_F3f#6ufKQz(Xq1jZLZm5qwDk=1seMyJuy``G*&9qhSGA(bBOHsWEhx@4U3wj>a zGwE@!!!3uX#KU0~=6)e;6*eL=SMMW%#l$QLBjl=1rv{nos6;Lwk57e93X&@QP}<{f zI^1iTTy7t!<*cnxskatJ8|fHk!*ilUSjZ`x8mj^ZzFgE1?2mkw8TPW40y`8r&ifCX zCD%8y(N=}R!X|mSCA}PrErQ78({F}x=&i=(>kGzzIF(dM>%SwiaTM8JtapVQJ5){&b2W%M2_s)9{8CBp>S{XM zdP3NClG_4Iv@jclE{KeAD;n#u*Luv!UlKCDFTqm3;s@M;l?}Y*>U0)7HV#+sdU|>w zni|D;miCI>#6+?w{7KYOMUhFL&QhO|Fi2^M;uWbg9`?;VxJL`sgAKR4)?DQ^4>b&# zno}5z(5(^lrTx#h#*Y$f4~I?IWjU2WDCYeyPHw`)kG$0Q1@cU1Q>X=rQQyWyTxHRl za){_x+}vCBmRZ&(#U~_OJ`43oOg}6lNMY-|aL7(Wd?{#4a$%aJt5TrTl;?@3cZteN zBMP?K`&D!h*~bE0ld@xAjL0%1a6;aG**})o1v4E!q^r{?wcmz@;FUV>Yy}7N&ohQp zwCq1@JMd%SNkrFhfAzh7;nKg#ne;+ahNf4vNzG2sx^P1Niy#)M%3Evl6#{DQUqZzV zUu_Ms#8aBdZWy2_x+Me_i$C)n0Vb8^(s}YG;<^=l4;J|@-p9oxlR6hR2ZE+r&$&oT zQdlw8ATp_QGw>n9sodIYw1j0y0@01yt)ozbvjx1gu&fe+!OZbb9x zbr()RSB$KAh@+@f0a?0zbm13ffU#sF@h$lbATnurt3N_3tFC*0>yzs{i__=_eL zU6v=y#H=%+_1qHoHLQ~Zqv_E_)}t(8WQmjwS()|K(r_l$Z&sF9Ij5sG!^+Mfv94*+ zwI*jFAv(d@YFReJ&?=({xzaF)`!T1^I$yWP6lsRfg?M|OES(0m;v2dCpm21opS*eB;JD(9 z({)5qFR^Bg(k9}YLoO`KM7f2mu}I`snwm5;CBpKhWSJ`aJ8kTd6;+vE`ni{I2)0!u zHe7P6Ht#r?H~PlueHe)TJ2QsgTdkSA&2KQwIF{oqQgqarJ|-wEyo)WkNHUD3;*dT$ zQ|o9Rt(#e}IH=3#qdeK1G(4TREs<|Q8WhsxC|q0{BRESrYWJtBIjh&L%Cgg%Q5co? z4N3z$9vUs{rbu0AGxnl9!Mnp%dWKKn1;!U^?P>X<=t0PSKk+}3yOsM(MSab?Jk5Kg zA@()|Q(27ncEm75`S{Jk{d^*H@1S>LC};S~E<)2t?h9IkpOBh=kIPlEc> zK`he!;_?%CgTLO9C`6(QF<_)T7ahusd>i#3C(&E}{Wkl@0ihY5^C*S+haKPGmUr$W zZ7>W1SF&{U1fL2KU6xgsva!k=R`Oj=&wG<}EZX`eD|Wi}BpcJiPX)xb#b5Fz^8y+F6$=T{d|O|%M8(X?GmEf#W~ z<*=g}gVGlo^|C@Vv$?(m`nZ)tf9tG%DXeDo7JashM$a)_GPc7zua#lKzUjbk=)TdK z+`Q~trEZg1fG&lD9$HHoYqe0zRL6JVGT-D-%3$35 zA3<6%{|M{fu~j8IjE^7E2$=|a!K19}zjBN2RVO=TE` zsXytU^yu4}5u*h|6bTLFks{k*Xm)BO|J4PR_{itmVKI*|lV5(|0$;ae~JiH<W zzM^QE*pyRO4swIIh!QO?F*CG~!P;ef@7&gK(Pd3lC(M>9^vs0qdv@M%nSdh^H+Dk(OfqyUF+c*WA$;eiLV=>7jRk5_V$9T z=0+%Tr>Z?KR%=!V&kN=+za*1g zoWcrDv1*~!8P{xYn&;9j=il>g{^MliBx%GF#4UMTG~SsRD?VPo9FMAJdW#QLkuC~< zHUEe6YZv{}RC8Jh3*iEZ9}iJ#c-nXUM1CpopI^VkYzMZ%nedw$W7s-g@M5kbA%}=R zm8YoDvHJLm;&BJ(z`2~Q%Oxtl*jY^kDBv)AKMoV1EP9;;gI(wHg$F=Zdpyj2>BUF> ztQC4K!}p#*9j9|Wi~vbS0Gjw$Y%DYvf_B+=p9mQB2tRCHPCLH)w6~YudN5G=9D5;d+V8FCgwv#5eJV6ks-Hdz z-f}zFX9hoHCK!B-=SHCF5KJ!{>-*4yI-S?f?$Gj&pY?WyjTrG zWk9#_6MrXse|vElQCApqZN10hqHai_CFE)LKMb+{i4tV~Y6MT6Ux+a2+4r`iU`?6R z9LmA@D%*~QdMw^|ujOH+!y*!Vp=tmuG|k~DkqDup?3SFzHpmhtAV#w;kI<(5w8MC> zgx}cnFN%B1%42b2_wA*`>RfxR&bul(mZ@k$MKr0ff+=uRI5o85$D9EZ*hb~2h%1@a zH{0JIXs({OtGB7MD>+E0N;7mQrfIsT&h1)9~CkF9_wen#t_s^&~VLkfr%1K0P*m*?imzcZIg(sDurAh<0A^F}yiFHYqET-hf=) zi;rZ->adx*gT~wPZ_^_|ALsCFd9WD{%*F9@5d2>Ob|O>nC$!$XtK-lKr(Anwk&9SAzo zfF(ND5h*I*jz(^fcQ zza;cO+`W@uqy(wSD_Jq5%2M@_a6J2asU(8XBweb#{s^|tynJ*I_aJ*?sw}sc3jt{8!Wor)oQJ1r@`3Dkk@&>lq4(fUJE-!D7ss)7NjM({j`D5=M zBgX}OqUSok8FhDLOF1)q8|O7PntUUnmWPDe4YxLZU##0=&1dTv30n`FZYL4-@^X>s zl4h=j>InO9ybCsh!r9#%itK&QU1#~*UK@$2-Itfhl}UKw(TpNV8XMuu;h%D2(i|=C z3~%;DtwYo<1!)`?f1~P1G(>lFDbnE7Q%n$>(poJpd^=e5P+ooWX|Pp4j#R3}LPFY{ zMqJp5UI4;ub*G*8{O8Xqff3RVjf(Op;0elcotlyUW;L92<&FnZbs_C<(%@Q&#`0(x zN}r;K-B-z9UGuEax$McSG}>VFKihWt-G6vdaWP%;Qu+r{)A4bKcYfY@j;q!;?(%k! z<5q0%W;v$`c@izW+MPYAXwJY}X-<$dcyBvyDU;hXV=~^Ne2Mib{e`g|AHgR}XO%N5 z&c`dyteXsm)ehMDcOrnugXD`i=dB^<-J#PhhSMDeK49Az-Y6%LkQ}QEq4@7lA5-*$ zdW;e9?FcdJ`+P{-SxHs2?DAhfSiUH*{UT^Pq8ky1KlwdVDYf(>F>)^-J`+LV0yD*U z3z|nEU1>~?jBI{7f9q#Gvp-a$*OM(v;MjA2MT9537CL|@uzr?o@#S1xs@Aq$6-yAK%!&H-8rvxSTEARYgzhjK;NqN%b{OJ^Ym# z8jT&x_L~gk?lt);)nO=V)KbwW_uEksfrqmZNd-gBqK`l40v~g)&I}O&I=lAxhyKT= zh78&6x1MTOXUq0@h#L>>fJcvr+^6;dNcV|T@k#gowaic7Cj#xK{q^7i2KbkWikRy5 z{Q?@TE_kG74RB)=DEc$$gZeuu`Ssj63fBqp?;^XnGC7ywry@EoDYzARNp1AKuW1vg zdsBjM1lHPGH=~9=qb)jOmfYPu=7|@`m+?TkQG=h3lBOOqHKjdCPfF7v_lQ`r$x+d) zdwb(Aq73guDiS&_*sVDZee&HvN>aMk=wM6@mM;hQE(Pp8`cIm3rp%%@j_uM1nuOG& zpreJ?OJVQb-no>T`<1%Ud{t1M|Iw9dU`cCE=U1f8!epB6c*)Id{na+|Gx*iYbV>Or zIdU;1&b-LXtd3^0$uKt?UfMjyAMl%>ytL0huf^_C`;dVNr;5^Ss_3vYbd9EQdOM3H z5_K5M%sztSHS<*%NwB!y0K5yB0k5#b%<}WVd#a4Du;iIE8GoqBmzyC^c!gE*t`Cq@ z@hpfUlJ*VV{l+JP!Ga7?B6sTwLGBNJ^yBHeX~GKQ>0yHIHa7;~3a{9PE*GpdrAIUbm~BEmD}Sx!;R?$m6x1P|dR1WaxBf;0Pm~alj zTel6W2N%gldk&+(mFv_;sr8se<@VQr@9kS&hBBuZ0RC>jZ3VzuSq#W;R`pT7lWWWj zFn@EKySe6dgc0Pjs|?=^b><4PGz4~Dt=^ynv8)E1B?DYetl_8AsG$mcRbAdsZKPQk zYjn;}gT$!#J+LspM;|`a`K!!R(-|KOLebB?*T(*1*QV)seocykEbOf;q+|q`JwltE znw7}U4eIPynf4R+_|4R zp5FgvJDm^Q*0t_#y0jNKPtb37wcJgg>$!+b-b6(T!0B zxpW5>qBfeBQjidr2TvzaxA?K+4rNOp_ls{|JM=OlSBO~tG8?wHu=fnsPD_bdGMryv{%mD9RcL3NNrE7q23u)XyP*GwVfft(1aDiUB82soYn_M z+5~5<-KtvY$m9Lgj$SziIzf`gM%>F<# zQk&dth{o`{lIH_C#Kw$=od`fpxEd_~^(Q~E6@5b;DHGFD;4A1EJ(~7A$KCcpGgoO> z^hH9ZIbo~QoAtQB`UQrp2ETlP0mSpjvUgt;c?tzkt7}F`7tP^qREO1s>#;tU*5I`C zHeJS7ttv%igZ+O!X}A=o(Zpx3vC&94n4Z5<`^1g{3!dUj-N2S#G^%bX(75tSh&XF( zJ3&L6UGScy2{+UHLr6oMjj|RCmETr(ha1l2c<%KlqUw9DcrMw4)eV7OdH#3B8fYogk#pe=tB@}Ny%)4_Zf3TxosG1qH}#n4&^Vu~pOFn{%k z{TlWa)Y1Ffeg38c@j#5;vkx_{Yas#p51}r@aw_ANW5@)ywv9#BS%A-KJ^seki0;JX z>e$#%l1RD@lsjb~>_lYUMLa5b+dO4xQ=Ro{-jeCv+pOZRw9li_Q+Hn2i{{!co-d<9 z^!y$>zS}L2#b^h;_CWP=4sd~fd<-USL0shAL?BM5h!CWn>35D@UM;6jF=Iw^u8&=( zzBkmIo89_iL#2o_LBQq4V5u<({>|&Anv==sX=T?K7r?8fbN_$507C(L2N2*GcqmSI zvxBtDghS3{@i^D^sfiIT4ugGo1s;>0eRmr>q64JP6(V)ULwREZEc z-_L!=&b40XlfYl{Ms@05PpoMm6S6y0dfO??{Izy%>+kCMsj<+LG(e#K*rapK_R``| zf}+-_!fpx&aApvQ3&3as(dq zs9U2XQ<~jVT6D9r1U&4-7p3Kp73I<_QPbkOaU!YWQ&a3#{|C{H2B$OSjV?qZE(HP%+!U*}ffNenTzlqTaV zP1jkl?t1ETPJ6_z8DjTA`Q=M>;_=UQoP|1BGb3iw}al)Y$Ct$2&en!WKok165QHiZCCxOC9GV^zb zM8i|wv{0Fbn|xW7S;TkIQ5fO2I8g*JS$Cb={@q_Mnlk?CyOb^JTaS@bh?sBBr;kj* zvwEy>+^9DDBKAM`e?6RmzpOV-DA!&(#`Br^)Q(wat)O(PH78f5^ z&N{78asEvtJ1@k0EA$K_gpd(@CH6sL8m^V-W|3;Isizpu8O(sM+J&q znUO!mOZOy}P zDl7Nvc&OfAubLL$j;WT=%fl>JH^fC@F=e<)lR4{} zTeF~~CG8{|dT&1-%R;MLAi$?nky=eRb;nCE2u z?5DZH@?n)VT{m)7In!9Z%2c}VZWSa()~dIPc41Gmr8mM~ZbF=NQqzh3CIE}>Wl3BI z1mhE>KMV!p>0X=k5$sN88b9^Oz>jI;zmN&+SyFsiB3l(ZXm6n~J)yb@2rQDGVoz=xkQE49-Zng1HXmxve39^=jjskXehP|BVV~^ z^?6)34%{9;?buvVzXAT>{dKJ^4tc}Q4EX8MZ!#X`DQQ(9Z=a|}$Xff!KcACuJc{OY zT-)+q8nwzQ{S0?u^)<rk^#c|;&-|%vSb9V0}c^K^jyvq}a&ELCU%n<;~fqLrQ}n zopq^<5kG1WIp}Gw0(}hHB=H^Fy2JaBVQxKC8LcwMi=k@fWv0_KMc9t}$ z$Pdh|PX8vQ>x#q%_fk7zf75HG=VC9@E#=u-@hYGE5yF$_z|Zi^zUr5Jj4NVR24CQ8 ztqG_*cXKee60jN)2Nc}nZ@YIFL=_ZRJ9=g8r#JLdm)mM0O_h@Qbrw9ii`km>NnN?f8PGOfb-i;v6~XB}XMqTH-|{`PffRBeKJB7ViJbsmc#cpB zlL%~X1uO{F2q8QeTGD8yfeXm7<_#+6X_@j{zY~HQAQ9kf)cGpQKk|L3LP}MuWN@Iv zxU<%Y=~x*u#_k&80`@B^jXh^FbMOy8l#s)pjI- z8HnIS$Wy-`(EXm};qD3OU7|ty+V5$|^>o16xvSD6KT2sBET0hMib3K}PLgV2WsdF) zpVg&Gpi9inxn(igo>{Kpwg3GypR9F17Td!0S&i>49RqwF9P=FkV}r~S4dp!aDJTU@ zMu1$_BM_c-5yuhVQL-fRyga+pW@$hV`IQirMSx!taj{ zqcpV5r0}_GXVGbe#kdvUld#-26oAV`+iGuuJE*>3yV_pqahL)S6as;*$K;Gl(9OE7 zm5|&%yP0RVI>w`Js+#C^=NrY?R@rk+&a5QIFJPvERfz}Nxp`I#En7Y(zD$$DEK{DQ zbf3Trj-|352>aQUbDTRH3v?FNrVkmeVWAFkH}b>{e_=5lna;PVKug~B+_Jva*qUHD z-H_?_+ayaBpx{VmTSK4WLM+i@jaXRlCgaisKW)_ak)guyx7)8Ilj(U zo0^k_OSoao(;<`X8($z}`rALJC!L68hTN;Vxa<~tmor6YfqmP{n`K@dES{C>n`bpl zwt|bs7%f(i3}`)KWvJW2RS1uid2Hi^z}lQEjoW^Q65`}@GX|F!!3hU+xXZ+j#>jUF z6B9D-9=()CJr3;)O+G5+(Ql3BZu$Rc`s%o-y6@|elx7HNgh9Hy1XNPG8>AUZx+O&z zT97X39=c1qK|+S^k}m1+y?&qHd;glxoqJF0v(H-V#N9`X-|L_qS@7Yf;LoOw)*p8l zFL)6lEMda;FWpY48jYSVTBo^@JEv|J9p?mMgLKALoqHO*6?RW<`W<}RZ?Z|mPM<$r zs=BO-{q^jk!2A(lwo14AvEAX6Z2V87swyh5=S9^v=8cY&C2!6-Uzyn85iEA;AxI;j zZR3E1yol)#3DuN0?X%mhTfi#@ySPkxRr?MaSUTzsuGl9LDHNJMg2;jJ=b* zf2p;K1%z|`p&$JPIHi*%k(#@wbqDXR^^YB`$)4X%jBmoN9cRcs^5#IzFXr0mq#jw1 zhHUvAq3rO5*Ozy$tjCxGBfLB~)K_sKapNY3Qt#4eW+e&6^1ZgHZKu~)rQH)P#v(ZU`eXGRw*0_G zuhZ}X)_eBl7mVO2nD9ZPR_?xsx^gc7sY?G{P|{AX{S#>J#Kslx)A7ZJh0A7%)%&$a zgRzz-sTJ?@5fZTzRDQ9{g8j9Z*N&^7PJV`Y&`b8yE>Y^qDyF>m8p@h8L*ce!itme8 zMS0tzm2{bzf!kBTGKKdI#pIvKa~Q3j3q`H|A+0!_cCB$|HQjT+cN~8h6h8RWR(W%t z7W;RA`jn@b(MJ%Z`|;|Bq`v!)?k$sPH*Z(;pn{i)i8@a&m2nPl(hWE*2X7&JqLLWd z-o^Q0>OnR0C44NQ5*7;KlvDhgQ{g)~Qprm}M%}9zcs3kl9b;Ky<8~bL$*Ev z9!^ej1%kr?qCu_NHQo>p>FU{!mcE=*Z!5|P%O~>_wnW@0 zEtX$KQV`bQD(I~^PjP`^gywAw(W_g57S;{*47{P++W6LXo`rq%kwS0iAPkT(aujv> z$IF+o;~BR)=>ZbD=EvTw8C#=ob@-g2R9I}H4XxA8=d+PUg^YdV zt@CtBBKJS%WL;JCtR>)0QCP^h9!s4Yo)fWyS>}9J-Uz`|aq(!2mvxP8x;g)DWS?hg zU%bn+c=Ls)P{h;RNf#cbX;n7G$E_vhI88xnc4x`Io9ghLOca@^0}?;lkXla+aOj zwwg%;^XpC+qFF7n%;Q$`c$-?uUGfd7$vbQ|_s%c}hOh6L20!R2ZGS_ZY53wXsdgtb zo?l^{`v)9R8|_9>d=pco^(!$-q3F)XW8WOXz4!b@=fy=zvT?zseM;;xqE_kW7#}qT zlfp8WyrXNCmhyp1pUYw=r9*YE`KR<78G|HF(LfX=w|T*$@>*x4@-iNk#eAZ=YH9QL zMsbHvn4=SIiK#gbmLxw4pt&kZDKU+lJ&qt%M!>(4c!&re=TdSQYr&c4dY!nbrn4?Xb0t(+-n!W6OP#{w*U2Ho9> zuo=q>&DercqAZCRg@NxhZJ!OfP40n;|H-e{(Yg{g?+ofas!q+^+ z*;(YcADI506BCq!@q%}>FL-y|w?zowZfhs#B#7jWMRLGO&CC+_)8;+J148qU`Z%QT z2eCnkzcy1zQBdR?4-;CKUmI5wl2vXATq6_wsWi|gl>d55N;$8`Qg317Xt|{4!`=cR zVI1mk@VZr;Plg#{+t;R<+3k*u+OEWzIn5HuwEh7*p3ySC>`W0z{|C|qYOJ$&wB4xf)$+hHh=vgAoXJ`Y`yeti;(_ICm69)M7YH4 zFwUrq<-WkDdPX#?m6+2%|{LFqRo)nlpe=E?gCuTu-Q{IB@hXoYhT+5Td%Gq7AaN!@1-097LZ! zk9G@08W7KEv?1X%8%a#aJo^siU_z3!oBJlB$G0`bo!~4mKI+j!N~WeiqDDU|HIe(h zv0~o7;Opaf=-!uF$;&1RKFLJkFPcV?wd+4MU5M@SD!95WeyBy%8jTv_S&v9p!AH<4 zGK)hXSKzjlSO^YuauQXfqT&jY;=CcNJG!VV!@~BScVE>O|34hX}VC)3;MjS+&$OiDZ6HpHPL|CBph9%uHLHzhGGxN!Yh;%8&nBSKF!h#mr&pKGWTEJq;HN z>sRh7iB0|R8lrs~y^wlwf^p>^nfIt;kLSfh-UA9lU2@aFG1ppu+g^)oGoBzq*yrPJ!!10-1KPd%YQS@lG>{suot~jHfU>*&y~7B}$6Y4V;}B zs}7m`n@;%R&6{q0X6J%;;Z}iI^7LuaV-@_Y6s=bHZ|xv8-8tX4J1u2Ge`oub7iaF} zCq<>U7msP5;*jJSP0JZsFiIZt-cCZK+ik|j+Zf(eG#?0yrkKoh&AZg5V5loErm8JX zrctT3aYxygAY7(ObDXBH6*Jye4h<#Hj<5NDoE4ZV|4EAKh#I|ACx$cYggne@Zg&K6 z>#n1xqm$?v?1-^Th3D{4=rAs@>&&;yyyND;3-@R+VL+uTGWg4~{;4}LXuX2BkFRec zb(I(&^T3-w9o|(V>;3FPsP)~i+whSkxz-xkPcmomygomyR$--^<(@Np-Hgm5W#9+` z!C@k91(wvK1qOkhW34SlMla_TCRO3|+xx1=wKtbu7ZpUegT{3kVr&Oz8NW(Z%XjTH zKgJUF%!l%@I0=|Y3oz*rr^Z%%!HT|y7C}vU5Id=-r4g1NxcJoPX5lmz>D=mgh6A)U zU#bNXD4~7xO-K9^k{^y22nZ=on0j~IlwXw-#|hVr^vY~pDjo}QvO;VL<>vIqr(Q_P zY+u-$3-s?|503UHj7BVg?7bCdk&9+FW%7&}Y-?2*$L60syN`_6Kg+N)2wqwl3$3M> z^tbxDVegBsMP8d+bumTy;%mFFbzKE`Va@YBt`;Jv#Q4&JH`B7yVt1*hW8Dg13mZ zY@fESr!b!7hfpje8os{`;aZ^qOsOUPMg0A%hh79ynK-EdqMtG_%~*P0WVqi%KS*&T zzFoCFAfRNv;9TpsnKm_%HAO*^d$Slc)f#{4)iE#ZS_LArpRHiC$dmtpBV=HfuUN8g zwP6aKt(`BGa+z8EqgOUIUo5}KP-ALAs}iLwR<21xJpI+xICCNi(P6>hP|^pcbJ%tI zWUIDRkdehu$YXvxB2CRD&tlIt>!xQJ?3rLCL&#b-vfr8x?VkEL-z^ZHOmv{OG+eAr z|FK`IU=Yno*(gdyLvQN^dvK_lB$O4Ao@qe?N+aD!_`;6ETkAS+Rf?VD(^ibL8?78_ zxagVrdT6Uvi+vpTUZ@*W*5C8$T>-e>L4c)f;3D17!yq}tuWzI1XJ)Ezn~t7j3ARMf zkjw|V4VFz=VRWaJS}xs*{t+f%yakXYt&FIN?K6@EzwEg%hS+HN?hr|=DSjQVO4hl;aG0w{9Uzu(ntOc`$ zl1`O6Tw*Kq*Kd0qe3%Lkahed;dYGnpjH_7X!p#Bf)8HjBRR;C@%6bWb0H%wjk5Vow zpPAO1u}e$@YKbi9w0PtnBR2n>n*p7_}- zlTk9c{Yl7i_N9QP*Lz(wHNv=ka$Ia=QYL;gYR!}M z|JXxNboJt#I|fMJm&N+I3tR8vUoEA6IWhFy{NUK;l6(FF{J+ce)M1UkQV*9VkHRy= zf&ZL2bE{X03G&}HjBWVZx@a8FvXjRX$Inmde^+l)w}Tp3onzRYsDSQ&&ynNglrH+D zg~R@LLGcqDZr{n!Q~#F%cQXx)CetWgSuZ?x*JJFzXJ9_Gt%;KF7hgivj|uqx%gihn z-1POirycWV8S60Ozn5{)f6fm#NT^{`Ja8#z}j_ z#U5LBUF3f^bGbXa-hKgrtG?9J~J4?saQrH1*Lw~b|_6y34^ zaO9y<`IY$kQDGsGlmARuY#9(uJnPZ?86ee5BpVT_b;U8DQAL-A^O$ToxRBfG@W3n@ ziQpd{ZTo0BB2`2Q26J0>melg&OzoQT=E}Uz-Q%jVK?Y^FTVom6@7bV(+$xXoK9l=7 z#!M~Q1mDAL{q#-(b@0$RTV~%iceIX)4{0&$C<{J+$#NOSJvms8y7jw;H9zb7-v=1) z?fU{U@iMjOF5h$Qul1S)^;pE#@|6;9jWb3-X3GvENd>>o#KY6R02_9wLo(nrxs9)Bku1d$0h2k`l^f15>nuAE z)Bk$nSVvq?1-7>kupKfcVEan=xLm2Z}9}Nv(5^??{M`)<@Z|NYr#KoFr69> zGQ?hTQu^S1^)OmsyU%~_xXS(ZuAf3Sb9VVzOABFy`?nX8KK5l+@eP~lf70OggKYkD`^8T>l%Uv@h`tl}B^U(?k(vj9nI zbe^ob9FMk5l7SOwkA{Yfq;v<_^S?q5Q_h#Rv zAAgdph$}Kc?}qE$-j>Dr96ih`y0DFW``#^-4|K&6uH4%DpG%qdqq{4v_ungjuWlhV zaC-NPD*ydm_}!0HggF{k9Pz|qdw{m!+aRTq2cU;J62xaGXXMAS>mL7sU{iY8%G3Gh z7e6L|^M!<%|366abO{TrA^4fSrG=U${ttt`A+b*M{r|lHApkjqW_+n-9{xW>`i5og zyyHmRvn$mra_%lAl?gTKX|t-~1zw)apbOHg5$Z{bgdg zjCBrXFr+5?FLN_>FjG%-v4hrzRBwNz*Ve&*kT`@w_MM67a1B%W0D`ag)B67xDmXCA zRrvrDc_Lq79=UxaV_?_I$@pLDy>21I6}(06w_!w-^}@`*PjXSI6cCH%UWc@o|Ghl@ z+%n#E-%II*D zsF%nK%Ts#;g(3Jsuvx%**`dzo?1h!p%GBo=)VSLJu~Q)#sR`1vjLYxcC`?@34Cxim z>aGn<$64(4yrm6$V*Xbo4;p-Kka|q@5xGF;vuG8LBsNS$6$$$@0ekW{b}P<3M32QX zfB`hoVxg(LxbV&BwAC+%9qe2hp;d6lsk33jcHO2XzZA!)a$ymCwWu7hS;`;mUQ%*K zG)OmN=kCCcCVS{tb=EKBI43bY7ho;bS{*`K!5&CZZX`!ZDf+46^~Gk;ie>Rln z5ROOggy$Fzvj}C=dRoWO@JL7y5e;IEC826;m$8OVJQZ-b1JTw+7!3Lr-KU}4fNUFZ zot**QYWG@*McjgV{fR=9&A0<%arjifoH>$={&V@3uxp)gB~vyV zj*DCBWRrw9ik9C?v+bsRFRYBG(iXpr6eH>w53rJ}crz(L8Kp=Mfv2IsxrRWis9&V4M z%4gY?=0V)P`xlE*<+~?d!^~GN=E;qD|R86)nxDIcDF5v~67@r2-_%BJ`_;@q85ZTG76d%zB zzAyu9Mu<(5hcA8HZcf9u&&N=)mkO{zCw~!~WAgy99rNkFHOgpiC)$r|{f^Vs%+sgQ z?SA76{yx9$F{W?d`9^YjQR?7b>q7r090TRc(|~6ndFR}0YsOZqJtN-BHN_Pz6Qf^o zRYfF)7x==Vuo+#6Ts<%0!UmH}Zt%;nJsE(Ee;=?WR~pRfN_#GbX0hAp)0Pd(T(^7N zzVLk|eUNsk5aj|)yo=R#ql@9Nx->>?_i|Evb+9NSxsDp3<~@teJq(%yL4WvNuX@e) ze_y$wP-3AiP!oEPj$FCT;(eO?o7ex+Pv+!-69O^Y0MEBjZdRL#ZGd?I7>LkUw%$t( zqYBVEDUi77%dFDgcu?DOC>7_5Oc$@aR}>p9}1 zX4I%y0d2#&V*Zki5sK1U>g)WsY3|Q7*GgWQ0-98j_Sa^BTiS2)qN@n^-loq9K=g&0 zu{2ON(|uKB29%pFOuam^g>OhNIz?CU8?8$lxU5=a->@YM*PZlQS5`BOve%NWH@aFV z0tHl_9sUfmBgIW341@#jb|Zx_f~v{OXvotra)DUPoP)Q7*1|Fx^8vk_B@EEum>3N} zboV32!KokyvylK$-J+Wn#cV+3@#ov;Xh6~`Yf>Q0nrl{p0sw8RCHeRyH9yC)>uXoo z?c2Tz=Gk`=9LdY|D+J+pmT#`V1YiP(hbiityacry73u*D9EcGUz5SAYLm-v6B`SmJ zAFG)uas?M0Ff2y#eKCp_;OVX{D=C|$)}<;QKM;K->ifsNCvfYJ9j?(geGCI|Ed!HT zjJ+5Rcr1MYrJ9_VG&M(W`j_eSbHpZ`j_gwZ{Wbqw_fjxG>aFDg+iBXKa#t+~pcYsy zcY4S5?w%Eb$sDilS_J>tue)pEEoKl2#pWj^CO!o7@Caz!@R_w_+k_4dNduTOy~Oq! z6G8ag*P~wI&PO-QqBXCQ0_&KPcs3>CDO}wo(EZgv@~!UXvp6UOms62H(S=&;i2iYB z%f@wG?l1$v*+GD|Zoa4%)zR|xi>D1Uq1fah9cw&SSg7G`dlXIW^MIPOP?&`vOH?Hh zg#GZ0>87f?Yc4R5FxK;56jH_zE6#5#0bt)) zgFaWg`J;m_I-3-V6_1E>Fli?Ejr?0X0fTDrd*2q*VVt<=aNX$Oy;?UaopQQ<3=|{- zYwN4R^H}Kz2I59{puSO{>9L9Ox7y`&X)mNkONeuG)nFtA6=)=%U_eL^acY{vQe6fu9UdD3~$22h@_SGjQ9lBBS2rZ z%jZI(QcHMMZDguCrEH@Ai$CYB-ym2@fWixl%Au@}2zc~H&-#E6^ zOeE#Y0Pz8AC=l9$VS=gYsZC!YHI|*-8??8z%?tDc78BqJ*@ll$i`W_tQIO~_%~^4Y z#g|F#<(?YK`o?=lDl@nrRuf#Gu8QASER7Cx-t(1%*$dflu zI_T;Z@5Pj^+#PkRzogFAEg)B=HvX}PmUX2r&#qxw?Ocwp3;m;#I2O zMu>*44AvU|_X9}j39+@U+UJ*@PTXBjmMJ~0y%%K6@%+ck+X}CNtb(~$?8WvPd?!1~ z&+w_+`?_o!M2AJLL5C65TEY?(8*Xh=Wypet)3eRP7BoU8qKxB{!H3m`$4n%i`pFRD z@w|Sft~1%!$ySQ^tWJttRHe>H76(K1%XUazKBKbIB@t)$jzrI6YZ}yVg3}nC6R85l z0A{?YwVaHXul%?&H{0Q5D&`!6Yq69Md^-(NrXROJR6E#Z@@y*eW-0Juz=(wyQp9KG z64FkAo>_EItm^^tcr5OoAY(IJT4{8?ce`m#9AtoVrnEq{Yfqz0mS5ZZX}S7W$`1;IM1`K+^OgTDKNG3^VCJ?DFqS6n zQjJR{R#Ue5(4F%FwQ`_vEUWHHHtNq$cT}FswR?zF?%Lu%R}!ad)5?AW*NzX;n|7MT zK}Mu9QhbDIGi+@bs0V>Xdk%E&f)rthGpWmc`dn*j|L)ihzuV}>hr~JER~ar#k>6b> zX#10enCV>=;xDTHsc1Ha6gXoPdzyLQ0v(VgJ9?s* zk2elFY-=wrS<3(}r&AFWjnX0V0xy>JhIfscfF^&lK_Ey_k^lWWqO}TELYG#xqVw24 z#RGwu1H(J*ACi@osevMrqbXTI1-4NSnABA$VAO`f*6Z2_@X@IT`-6Cm>aYRC3XYFu z)Wu{0&}`<>R%Qq9FJL_C1M|#=(mN7i-{v0#skpKXGQ*;sg|1r&U~|mj=stjF0B?G?JmkUKjl{UQ;AgL){WvPzi7d2IX>c1naXLs^P`#c z))7}&G|Z3LptcL4XxYM70vXeP)XgC4Sw_sPN;@q7HvBmUP6=aDavyN>{o;FQx{80v9Je3b1sW(FWP-iNOmiY|DtT0aR-)KqEnJ*}3 zo@lX&Sf@l5hTuOw;4oZ@iN5mpVya&{{864)>G~+*>wkGSemukR!nfkGyYFb-eYJn= z%?d`EO;cXe0BVFPex}#3Gv-$E`IxWQr=!^_gH1CJson%>-fDMbHTPo^k!`OQu&WR- zLU*uP zS^uyepaZc^6ftZ1H{*vTP+?}Z!!CBj|4wD?cE%jD07k?NvGg{W=eMWN7u(6s9`9Oj_4Rl{$PkrS=kO%3F(EDOZ!KG4N~@5@57a2$danI)DpsD=F)X4hnj22$YxCyDXO)NUB zSQS6nYS@{F{q@>B#YxBR%j?IPXnxWi-Jp&vWI<=-%ig(FJ(8?ZZ8=Y zugJmNXDL$(v(c=&g8eL)FxkN!D*gLb=;a3cfp*O9xvP?9r7^?@0cKped0dfLzEEk- zd#(_x`{z&6E?HvJWLWF6FWuzfW#!SoIT4htg%&FX7146z9C2Vs8#sPRY0~BqA}yup zsc6*Tk*8^nfk<3}$taSmS16(T=y=9fI$x&*+0*Gfqa$Je!1|Tx&s<0*8(_rQj+=-f z1qq@Xb`qm87^=_>{^ru+D& zE~*TYJ#$-I&EL-EzM=2P&cj0pWpn(gJnE0X)X05D2T23r3?j6MLU9_$TDUb=!CKt( zkJf~0KrGJMS}XqhD%y^pDa#C%;8znqGAh2FvL8Gt3X-xHeaE42(U>45iir-3BOcoW zUQU%O+nzsfE;#g*m(l&JUXArEP^#ZEIY);cunnnVa1Nk!SPmk0xXu zQUTq&S4=ztMeY#csFJ%`N|k+rH4jh_GX(<~(8_?LH{oclWU4lNsqrujpA!>*o9& zVKGr*&T&56gppZ-IA$9fayPUz6cq;6AnG0&zS6h3k#_xXWyu@W(q<~|Hj+!<8LET~ zg?Bz|Pj`ATu7rECEWam9%ZwFSP3sl448H8$DN2$P+q=|wRNgu)!IIYG>*yVNBqsI- zB8r`Q&i%%V!5eijgT<6E4u2XcNu;N@Ztl3oEr>!uEs;EcYTj+#2;t+J4x*mHn`L_gmO< z39Myp9xPMQFC&1(`B^JKC0`@q_vx$L92#}Lq4k&kI25443?wtg20CgFk>p0CM~ZtB zTr3B@Iuz2-)jvsz2Ms3kNR7PqUdBpvG7(U)2m^G^HshVu`nPPfpQmn8QplZhbK`#q z0_p9|RR*7Y@|S&kfCJ?m1P|9&HY(k8i{cvoO>4=fd;$>hg@)yxPi|(e6!4iK@@EtK zE{qlIHl{yHQir-}Q$|I`x+>P^w*MvytkirXnm$Iupzjog8)7u6z|TM~9t=H;;XquZ z0w-&6aRQ81_pziboDKeh_T7j?c2eD?m@DGRqxVw1ukzyNecquS$jyK?P%JDDCMwFI z-&F+;<-Sf@$!-JSX_0$|GX@aZp;()h*PX+$S#bR+80_9d;6CSZwEohVmjB$r2&_S( zF^J(omzPso-Gwt&`W#`d7uF29Tx3eOKu*7wRaC*x$u2iY_$6-NZ24r_ix7RB5aQ!4 zm=v0sTT_@N%t4D?IDwU5W1@g&6L_^ZumwW5zQy+eN@vo%wCb`+)qQIZW)*bix`Wfb zEDoF-P1MjN8Od@6gE2?QSRI@Zm(yv<@`0b{%MB$ye$Iss@Y{Kw%Wf85?gtt8eb=9l zfsyL)@fgUKQake1479^Ua#9uEn+3$x*`NldhJ}X8zqbKGld&Y$A?UQiuRYZ``p-c4 zp7Fa)1^B>v%S4LR`uZN~<)2@sr(>|kaDsv-JC0tpY78!+ghQ`Sv*V2DFa6AB^HdJy z>q1F0ad2@~{$Afdb8Xvs_S1$;4GVy41VXGqFD8XaQFu(=+{~q{ntQBUmPU70D=aUr z)LbJLYR~2L6B+MO_byUQev6N=R9seA~6sFpl9wO zZq=ksh1U_4Lj4tp=t+Yr4E^>z|BbEY6$uteBl5BXp{?5sF!$J`YN%CDJ!e@o;7HTd z4Xkm_84yNOUQmIIt$^?Zu(_X0xdWIzCFLgv7_hu}VeVKO)vLD-Ju-j@%NLOB2pS+q zIyXF$$=~*vbo$}37z|D16xMq_Y&zwYkPZUo5)p_Q`RA@)m+?Y+`%tZ@*ax>UsGGnS z@Vt*A*Vw$zAI;1=GTp8cjCT>qfS>?wxt{B}^@`G!J8o35@p_ zN}YeR05>f%T#t2*cr*een~dz?x_R&!05fyF{0q_tB3D`i$FJo9mug<~ZLjf6AkCbA zoHzH@*Lh8le+It4N-;4kbDqK(Tf)42{+KLH!t}2Pdd3DuN1hujg|TXxAV~Kh4b>te zx$V{?X$Y`1DHu!(MQIQqBPG)kmCA~N72}OItj-@7(IBj(XoMjKlg}I7|Br&XfCV*? zSzca1CCL6;;WJP83xn;!Lah$=(G_I>*}a$PK*b7Y@#GM)G0A4esrL)Qq1iHfg$xBI z#bew5H7hE^7r5OG8p*cTj>KCaf*mZb`-<}1NPc|Y?HQ?sjW3Z^_Oji5P*MRan*tuN zB=?7t8qDpYn5%d59B-LrRbTATjd8Vs1CskJ2UOL>fRmXSEj9SjXaxgS#%p>g0MVbA zM0ewGq*^qTjpF||lSq1Dn;}(u8poy|8%L4=MIr-(gW+$R#2!Awo^2QVNaaZ#kQ?La zw|nIjcUS7sgn7DG#0psB#0p8pU_AZ3I%Y@2vA1L0TqpXC8}iW7ftl4))|PF8J!GiP zzJ@1Y;Twp&TiJ(2x;@_*C9HXQm($EtGxHW(QLt$5 zZX0N;mmqdp0D?eD?p6}3P~5wAL#VzlBMlPR*248B}5T7#cy!C%Bd!%*Wo83LhBW4HE^ zmXx*^0>lw>jmlwCSEqlp>t&xiMeS3-JteR(cL>l`HKndPaF26emXiz;3VQ9XUd$9I zNnPDoRF2sB{H(6E7Q$reluzL7fBev!Xx=^PXQUquHKMldD|F4P%34r-oT2A5s}3HDtE*SK3gI0+C`+XY)%I%-uSv9zPy3l%83)=01n6XH1w)btU1J z$*fPOiA<^d%BnTlz2uoaMDQLPbY=Z>Qe?W`;Q0&)eM?DYI7vStvW?Ao#+M)^t*-NU z%+Ahd{KY{HCn!4_ml#fn4(G-Z>g)>tuGn8rSHJxP=lE@=R-15ag1<=poyH1Tijqs8 zA|VT{jeyh}bwX_A*z+x_W8)Y0?iEl2QRM97#lfvAXH^M1;}%CGwEwiZdp8CS04T#~u+ zadxyP#8Gjayz5iA!~z}K{1%ZdMhg^iCfPFMH-QW2uULVv?c3H!Jskg-yjw3B|AmzP z4Lz@HZ%C-*5y!~_ml7U_f;)k-LfX*Shq+w1fcPT1f43|0b5u|-BIA0t(wG2ecUG5_ zB4&j;*WFCeOY$ARI?c0`2PoBhk!i8@QuDUoiq;X%9lUHYMxMGKa|q@mor@;*C8XO- z;ZhrQ+#=L}dIDo1Ak_GtcE=Ej=~UcBseI19P`Y528Ulkz=UJQea2&hXYAtrMcS4{; z9VjS070ET6aF3$N5X*OUW0wYWSvOthbYY)2$R;XJssVl0u1#V9QGO6PEc8zW7v+FG zMBE&px^$W^xhu7$wm$M%y&zyv=v8yfU+wOvz^bD2jYa?t#J*;PknaBIiqs&j&FnOfbt zQKIsEksK{rJMrv06F+lk^^sMbw(&fPl{~Qxq~ubD`KlZ5LPf}KNWr2 zmzFMthSDF^5?K|dV@$Tny@ZDqW1|J4tly&=#WU^389D8^N)3@Y2NU^BF9pmY zL?EU&mD7DIbyh*C<1jgRc*(IhtOrX^jCwIl94)Zhg9v^p{$;C209yw+kgWA@EawwA zh5t+BRRqPZ5UVXe)oAGgNoU8AfPTQ>pI^%nsyGws_RV6e$DR^G$xVHu_Ea4XN_EDs z)0B2D)^lQ!v!jfp?F!oc*5rah%y<2fA*-mYb;4Yz`f4IN8MpS;g_j$L_SNI9k${`0 z>|C$1Ium{U*DroosukF*uVmMM8q9$%8_NZuoCbTi)mL;%ZLH+yethO|MACgwzbKQF&J+J&@OUop3amj8Hd7<+`Ve$yP4ss`lKiRT3HOHv<7+ zpGTW{-Lp{@mOQ+Y{RfS;vN=zV%lqRZsl#`Dyo;^z_ZIeqzzV6*>+qD`lh5pPHQ(8d z7h6vKgL4*Q5v{MS>}>{;;QX|Fk)Ffbj~m8_g2g4v{wm)*^l#N-6yHx%U@-gZ1=+ro`<10qyplb4H(UVv0;;FJt?;^tyypt7iW$H5;^2EE8)J^r zw*s0C0g%tn;Zu&wjf5|h&0a=y0;GgdhcnZSqB`sf^o-rt^ zRe7P;XrZ;JH+r?USD|<~MzVo=#@|SlI8T2%%;(M_?OCSU%+n z;_3GdAcGuwRs#4GR1}Aeb~yB?He%A^1^#yEOm{^Mrt2llkG)C9`O1gOuI40DTQsT& zLx5BRNn%^?RF3gWXoYsvORVpAG7YjdNIc+Pbt{s^0$CQD3eM$U6Q{hoFyxjM8e8^# z$F&E3uycX+sl!q?v7O1U^5pbyG#D1ldqmDrqTw~bnbh8;AaKLtyC1PDh8r*9r0v0B zRwQ9`L7W~fQLgzR5zap+Tcq*f&!Sp_wCi(|7en%bS$HDhnd>d2JvnK>AK6HUoKIcH z0l?4Ta~z|8P1riANAe3Bf*(i4~39X(_<`_-h>N(|Dp;YaZA>p9Q^2u$#oe z1r5An-YbVb_}|(p{rMy#Vq9h=sC^K;GbiqL6l#0-rs~fN&>;xj|BRJHfn@~aWHqz6 zKmzS!8{+cFr$>uld6#=%Lr*?@ zFmYFc!g_NK=2GJDc|)H(kpYi;=1;e11RpUV3mIXXnV~QmWIFqq*=cK(_=fns0pXaL zf?Y2bcAqXrg6aDvjtViiDug3c@UjCZ@Wg{&H7Y#ZO2ze;ACpWm@`)>Ka2YK~&3b@1kMo(Na?acUdlct64S3$v zRJdFwjf+H*k5~S@x4gnq4R+pB4A~dyG28&jXjz3zd&X~7I}5qlXg=HFI& ztY^aLA%t+BAUYG1wZkUUMw%oKgaL=4YQ>taHZN;v6pvl zfZ6DKM+3Sk(3?IawbuPWG2afze*1L?MZqj*mZ`t<9Q|g&N)U$ZBq1*7C>yyUnMT`8 z2M~}D{+ZN>Ibkp+${L z6;75lQsZPONB(!b#Be&5Vj7@fj`lDkg^BVAU;Jg#FS-0#Q0adV&0(SG#5v*PoBE{4 zUkNUyK-b#7NeB(TKA59zj~eq( z(b}8oG@Y$V>Lo6p2IRZ4HZ3G6#H$te)6kvL=2>xok+BOD0m0Mlg z2t-K8X~UZ&p+L1+FhPzWMUkCz*gQo0^SqNLxrTJ8BtNRohR^TokeBl25!EZIp#bsF zZNNU=AMIR5Us!Fnxl@J>GN1c#SHky%4a!+1e2V3HO9y>q?QG?_k>2p?QGjKC8&o=W zJbGN58SGw0=e_gV{%H}bf?u1{;hsT{BmqqH zz%tY@7lu&8Id;r{db~`JHU9DV`*N|7!uvqz_S(nY=HRj_uck7r9T0@5+E{z5-|=__ zMsf-iC-ns@!EggiUVjj&UJPA~Qu?N0ibtfRoo_W8DXA;-wN|0!Op&nA&x?M;FW zGl$j(I-IU!xL;_HMaWFg;I7v%+R_D8*Tv{mut|wwrzeYNZ6Kvqu|SS zkAJoSs<;T)y>{rw$ja}okZz64%qRy)+G|oHC6)g7M<*67-yZ!X{&u|)cQ1!%)jhq5 zn$+(w9FVNoY&c)DGYX%S5C- z+IPDI`S08u-Du+(&#z=iAP|6BkjwwNTM(#^0&KiCsQ2oXlweHT{NMq_?xNs$G~Jh) zUe9a*0$xrXs>$azImaj6_*E5<8N}z-3+@(E!0p^d=YrYY7vj|k-%ambRtd(~Q#Lzi zG*Vd8)i8?_6^Yccw#Kx0-Yefx^}h0dX>Ze+lmLBHtvpg|HSbTNvOj|;Da91&8K~R7 zgNi7?fFsIdic{EQB-7uyew*@fF1#2uyt;X%GhwVGyoB1}f63!nLB8dA^Uc}(ozVSc z3mEr96g*H48NW};7|UQOm5Qq920ONFfQ9+fUgj#h*22xE7Q*PyNmxs#&NN|u_(@+- z*iGVcNxa3wH&2wkX0G)s=tQ>wQSUuif(1OR%jN@-iWTZ$xi{sid_1(`83&rUP4b$nrWZXJ_Mtb`! zomuWWlU_rA*K;?z zqsj=yJv2rF4EWKc5R4C`N){8Nevn_AkctUn`6jF{SPdL=Tcwf1ZO<`N)R@M@YxNZR zN=0wL1|X0?&3-vbB@tHcc)tTTIkKd-&?I>ku#STrr&VjLD&Q2LPvuX9a5>gdf*&n) z%x#nn)?x6Eimo59;)u@Va&H>4oB{-4h`^=xDOJ`6Ey0cwJx3n2W!A3IR+b^%I$UkK zePOMO7Su_fus$zE)lmArWVN7BGhBWf>}RdT|0vMC^|RkXK;2bV)uhcj_+RniYwvXu z35!4>Tj2S4iM{ zST-Z&@Y_^GUryRGG?_x!_6)sc==9gt4 z)qhxJ;zDyPw&{Hfz#DW;9i{4OP7lA^)@c50;1NI`8o<+?s^dp+kEy2db^zVth`P+8 z5zbzWaEhU|%EhDET=(A?>XGRWHxzt4qKPxDX~g52ZAj=k zDjX+Xjsspd?DQ8`5OX^?wgx5|n(tNC1oxV3vylsjUAtS{ ze5H=gT>hE5>YyXdUUZUMoucnlYs~a9NgN+A^Z6xoSoI`BhKcJ|%WD++1@m{z@$GaC z559nMsXZ-c9F>aQ6%0Vb1KoLAwTZt6TT7NIwREf{|9Ia2&N{8h?aDd z4Fz9?t%l%9szK1wI;@4KuyL{5!N-E-e%dg@{yZmYFv9wjKuz1^;4&FBvv0d|sGZ6RX+;kVr@(dhLr+Joq- z06l6R@Oq%Og0?<TtTXj*!Lir(_>brTQ;PjU;(;AqeH3){f zc81Dgf%!R?xS9@6-h#k6zM2QI@x+LEb6pC7!cs^eNJr8*Rv&*N%}QeMVCXp_U=1oI2_7VP;x4j}d zf~}>Ua)iQYm<54Og#8~{CrMuA1s=uN@TRG@NEHM#4> zg<0)5Kzc;P%FkPH7P-4bO0aC*H8ix)+?N9wDQNNN`J*rXLu-uASt+&HMD&S7esO#$ zzk}^0pCOYsB`vi`G}XX?`RO{C!%<|;{@1chtaOe(^{~PeeAIq-oQdS4wL+izcWv#9 z(UVj|Hw*4yKkMv=&x^A_fJ$I|3zv0XdOOH`5!Uz?oYG45A|1z_G1FsTth=zn8YNpk ze9vv}vGKQ8U9V={%&f@MVMVB?-M$ZRks(BV3LCnT*2FaV{VY;4j z-2j4FB)Jp~C|Rraqq&VH(p=?LXNbBPS@(t~bBQp_=`^!SVsU;#C~9ZbM?(4ZYA))75r9g90f2E~;jy@~cH0GmSx<*xa~=6N^HZ|)yzmOh za1@X$#Uaq8{y+0Jr-5S3fL8^oN{3>?uqq)eHZ}h9 zKic1&rtoUu8v(--13K$x$5O|1!egvy3`)TSpXi2gH7Z_}s6ytI-Q{qzSQ zVRCboM8vj|q84-q_&iZ7Ia1AnkA~Nxe%PI()?!&U)h$np3m0kK;63>G;Ya3xe2li0 z1S;QU=A{78jr|QF{VYji4Af?54x+wFQ)V)`GBt&nUx7F`k~~M00bvKk|JqN{bxD6* zMkvzmTQxiOBZ16upiG5J)952aPzeJ}t6SPknzXD^Cton8G6qfsuso1CA30ASrlrV& zZ85XBGK;1ca%CP0fQgWcyHGH3_EsscY&2xjgd)89*iJ<8_q>)e45zt91sB8={n~;J zD*&e;$yKIVTS?lUob*It@R@r9wPVMtlIyEi5`shM;;b(|9sz#>VUK&mu3Mo9w^sA zI51UMn6-8^#-RMM%YwrfwZpxfy;WT{6yQnVDBO~yHwggc2K{?@=-9ITIYCSu&!klR z5zU0%Y%{7F&o;7ok*mbaGScfv>Te>I|bzBG0 z*JQHk&$-#Lv{3xE`Dvul2FKm8Ryk!TGWGl4dZWtsnTgX^PxqI}5|#8tnU&*`_!(8f zmlQ$h>USioJ*Kw=ruWU-Pr&P#frWC!$Ewv>X5abS>5eS^lyxmmu>uNtE;d*$s%{A) z`O9(I#7naO&N=#d6kT%4_ta_Y?)rnM%~c0`6LI*Im!D`Kj>jCvMI$8?x&DZ-8c zTKbAner>*J?tsJl_KAoV8*R_(YP$bfBLSuWOQx+Bvj@c7TA&x^K}-BBde2|(5+pCmMx4FzXeMkDonEval#TO17 zKD9y3Kk!_9+NvTKIdfHx3jzY6&;lsey^)yM%_;1em#H2LYn9G{UbC$W?;j{eB@NIa znL&PRSJl0DY>%T>nzpM$IOS?e>(t*1KBW$Y^jEh+gZz>&v3jG&$g19JQqw+FGJ-*s z<|iYi@eVCW4&YHusU8eLO_414z;kmsd`eis$=*Mn;k$QSN=BQREi$*HOBzOX%1WD~ z_`g71XT`X>!u^gNB{jb{a<^=R7c{j;+;;H7g2@mhXr9s z=;|hjvsNwD{Z)7M4+ZiUXdORHLdSu#2KdNEa4LBY;9x-Jwc-uM-JXlo-r9}zOVl$x zo&Ud0f5~2_c3HI9{uP8J!vgSdkU0;ZDSX_gMd?24Lq?m4F3psAT%J^9KnJ<3>y;Z| zLy`Ha4~DEqsfl&^83yEMq;GD37Wb(ZlNk%YulUWwdbny>5t7O*TQVOAEmO9DJ0YAk z(Rq_L8?%m6ACvBH?F)mIaxE%#Y8Y^Y|8J(6zz$C2$Vdh3SFiU`wNk7aQm^*}8=DMN z^0ZlL{pXcF+^MsM+F%`5vWbH=LN#7{*yIGJl_vefguR5CU-W!X`ohPtSnu+5c3^&%z4iw z(}l*gSkP$kxW6C`$a%@|9DfKP#y|w5_C#=ai_dexc$)uf4frn2(!ECFLZj{KLP6&G zuN_S#1!(;dvYDtIf#m=f&fB($xJuDR%V)*IVLxUolWq*{zu2aRV?4BQG}IO-2-y zr8D|LP6x>}^V21*l`ksBfU*mchq`;mKy@o)wku|CN^Qk-19GSR%W$tw9fm3Aixjc~ znj9d|4r=+6i+FTH&0|)ytr^xF9~LM5%Rv)tQP93O4FJJFed^SX<%DasLxyz~hB{lh zhvuhHtAc=;fItFoCOY_gh)xTJ#i(e%0FH*oqNC!J8MT>n^u5w6ABUfZ2mk|vZ+yww zafu~HEqvOBTj-6vDRyie#kp&%5x;@?3JxgK9}HLnD4WfSE;5xlOwQsE8PCiwg;OR@ z@oY>Y(loQxC1|&a0`jetqM$|mEV6ZjBlW*TN9q+-=Oc15nRV^3+P!nQJZVT_C!^&f zh`)gVP&9&O!Mzu$%`vE*&Ku5zhh{;ulH;=kh zH`6Af<;)MBs8Dtz=C7t+w+(XpkSz!8*iOa12MACo#1`BH2HVbp31^Pk-443xA=0h|F>6_7*67vMh;1?q*P51NN z=-*vRCkV#vIZW)a4tzW;_gc@H=3fXa`H5he$V39Z4TlnnT z(sG%OQ$~R0{jS0uK+Pi@lu%!&NJf#-uf>lm()tvjSF&}i-}C(?DMXGdE2 zbhLlRX{YIGmc-d3C~}-`WyAPL&VGa*O;mHi*p zLJLo|AExamNJGpzo7Pzo(Xt3?qG%^{wV55bVkS*D@uivR0R!dYNy#MS|Ke2A*&@Xo zml-wf;E13JwTY3_L}?hOU<4in3($cIUdy`s=u9^5BE$hGTtqqi*NzO;{ zy8ZEy3C_9ikohRih&8|ap)&j@Jyha_*QCikYm*oir&V@CZbn2qiNN5IHtziHPt318 zt$=>@kZp^Db(Ar0?dO;yxH3 z-JeVrw8x?JZ0E*OZ%nkC0_Fxgg;)mc4y8YGGM@t^jPps;T3BU5c z($qTa2p~=MKEC=i!gQEHRc#A?cn0NBtx72_8qD&Si+qD(_SV?rM}`^`j;`bgh3f9k zr+vkXI2EcToam3+V$7iZI>3?8kR%QJ_K_r}=BR-%BIkRiQzs>`_9CR)0;dc~i$ee* zFQ_o9Ytbb8%3yU;SBY2Fo-&1*lBGla2aRh1+6yxJU3v*|oFTPpN~~RJ-X0>tAJ;T7d;L(< zcNiDq>iLg4pnnp_WRBy;Fa5NhS?}H9S>^brdbeG!!RK;p-Zy-LKZD0om$^+{3hu*% z%Kqf}4vnHVtEbM*X?wKwskCQ*m&aMNZTETa_=@u38+O<_G6)-b#O}n1Xz_px_GD(t z-%iVFw*V)n*DMSwb;oTjMB?EIgb8<5QX3>MHnRS`e&muXRuw9g}90${2V)#tSz=<`u2 zt_th^?~@L9W_m-Ji^W*h<{(NXoQkoCe55>@dS!XijfsxsP5Sj-2%5+C-+Hj)Mquql zq3s#)UPAIpW1aK^7;a!ey-hfffnfSLokn#tyu&=}y{_u5Me`vYc#Fg6zrg(dU*tS~ z+T&KQ$N<*_Ek@9xwAfe`_n;-*O^Qr3+m`(@H**gb;f=*a1cAIvOH0R71Bdd6Q(RcJ z(f}v22=%!W5TMTJEkCbtX3NV+jOr+9Ubj{XE&N9jDj=ctz#^4XI9ilKmCnFU_D0un z*5}PNeYo>LAZ!5%VF6_s;KTrcO8~FHU@n3!_r2vit#-R|4Q}T6k3qP&l#pNkWNqZr z#X9)Ba4!ZR6h9qFOJ3JCy}%cJZ**GgaJOIzp^vGIr%HKvB3{>rruHCiu1i9Tr=Rm7 zr51v_UZhvCg;+At?Z>5Cxsv|BwtdJ4t%YjG`TQle@6BXJW)E?~R)QEBDCi_0e;;NATF)(fLAwH;c!X$k>}Zi+^?5=gDu z)#_axZ_F0xL%7l8&2UJ%6{Y0R*@H%6|<6$s4fm+gO$2Q zkElE=K~E=O5+;3Q+%Bw=s#ZwO4q7CNIyNwss&MifXO`K$y8vWT!+iu)gEN&Us5^T5AR|Vke4<;ZCA2FR;9Hl=(#*I&{vbl zk@c1*0*q|~Dv&w-Hrj!h;k>7j5a2>i9K6R0xP41_1L*D{{9a7AOQf{{TZO4;ospot zV-9U`r4K{}aCFi2ErRGL6bEIg=Ug!rfAiL~6+k3o14bDR80C}bbdI3DEGcc_ckjjC zGU?yUcptvu%gD^71|G_w174gAyyoJen$w54#lL+p+KT6JbHLhI5@chk`@wGjiffdl ztE+@J*cEYvVMk*WOa(M6{X;<(M%O{mqOYdfft>HPb#I^F5$Xc^?zr-Q;ZPzGh%upm zClI3P%aKc;LR_YcxZM#J`8v?L3Gn}gc3||ej4)y)ZI+9gnNbJNHQc_EKcO-fJmEhe z8;gdTi!b+9EG#3ugVYm%s>4h{peam14MlNa6Bh32n^ri3o>p^e8Mh)$2LtgZ)Si7c zBhRlodcC8FaQh`|@#)%9$KO0^kCnfk(5?FW*x)*`&$rg{g(F8i@_S!l1WRL>`6436 zjD^s7kN@ksd#{vnh^^T%%ir4~%%PJPl$o8u8wQUg7gyT>n=c2#1nw zZMEc)K}oVHew%HVr11F~_AvoY{{Yf7alX)37|bEtFORV**B=!jAk6_sqk0lg)fwmz zu4;f`gK|x1u6`k5DZFmO*y&amS7g!7ubfvs_Ywf)F&8108cN@|6tnSwj8(*J9FJkA zviQ3@XBQ?)+-}yTL~$xm^NIQ&zWC-3WbR3-rB);6%hX=v^-=*|WzFFW>T7BDwjzw56cl87N2y@+ky4VT}et@HHROV0bQlPmT>`lNop{6>tY@1+3f zXUF6xu|5h7)w4v=97nQci}2bsjd7YaGDy@cYtBn{}s^(v?%0# zXMX`=iQ7%b_XvAJl0igR_23CjgP>$$O zlIX9)yvl?p9rtexEXDwvoZYc~XApw`f#k80k6v8y9JJ3!sbQu8GPt)!y_mkwn)QRizvNpO0YPJEU$$ zAzRWOdkP5!>Tv-dFv)@c!+ZR5IPD*}5lgOA9JYLMW-a;&*?~Lb(ixs)G;VcW%Hc6p zrLSY{hM!X~!fRvawjG>Z%@U0x4rnf;VoA8v+V6C>T2lT&PI@{F1lvauj~o4uUYc`1 zm-B)CrfBICjZFaxi6fJ&%ebC{bZSOFzivZ0u=;s_i*i`ip{*|rk7!U2t!?0=8Nvt4mPRFjj4%3>fRc)KXnB_$nyj} zgo(yKYaNQ2rG{GL&O}=gUGUfTp#44r-2^FSNYo6pQ+UVo%@KLhE?62+b3YUGkmQ21 z+3ldQ-%JFz3gQ!g`?_egGk-W$!|DPjD;`2jD{OWlll&%5BUx9oelYw)yk0DVHJp(m zN!?W235;xsE;*FUxT8qUb_WgjDNyJfwN_HJoG~jSze2A+Wh%H`zVNZ4_yD?VH4#uv!_|RKwuE}tN5!Q- z`^#=;7V+ags4k&gAv~?h>H+nRlr!I*1?wG%IDtWbeb&X|h-=-Ol0p+>R0aCmxHiv1 z3Mdk^-BH4Qx(Vjpz4#T%)w3pqr(^m**N%O-mmL=Y&($VkNv87kgC2Tn*8Ma+b;^OV zTvDw-KCi2N-*Y!$gTAf@yK{9rz9o-qiQ{p-=RAU^nUuH92)(!4bUAmxw5FKGURnsA z4}G65HhcBnZ0J9|&-b?JJ;V_lwi+$wG!)jyO?-?zeyJNgE?{v(CEa7V9%dvzNM1x~ z#9DC$KkTz4t_l`@T6Dby#dOfHNtye33I;d|;;jx^BO<~qM%WPF9}xJsJXf^Ul2}oU z#_<86ws&5%0=J-L>M*firZmIz{ShsEPTJuo-m0*)Ju%QIA9ln zW301e#Hg5tLXJo861l{99{Lp{~d!2gkazZ zj8SOM+K^4aJP`Z%UkO`21MP@TrQHL>Etv0#(3&z!gujcc-EuAlj$-n9UICR8Py2%R zlCv?9+jLn=KL&xi$S6rM{!d19RX31>qRnye3wLM41#1JZ|I>8w*Z4oVXw@)AZuunu ztVu)W(b$^ciSnPgwUvPp9`~9tRW_i;59twSKkX9}JFfHn15*V^Chl0MIY-xg^}Q!A z>8Fl=g04D}m7Z8fpMpNueEXAakEFS1ayzL4Tc6V*4@NV?j(sG<=9-;hd*zut&JImL zV16vxM)vbL^rXl4tiE4mD?$sXo)%`&c#2rR7nR!+0!qGKWi;+h-QVo(EdRMTw;P_r z&6UTzSWt$`8w@td{+gYlEe$$9ALcfEZP@DwS~q=P8+p^re-=M*z0-BPScA<{Cj0Rf z^%K#lgkXqer|;*=TO>sJ&w;nF?lk|0{$0;OibpZC*UFfB1MEyL~w3j+uzdastP z{l8-l@DpsKJ8OnUWhfIXy`*S{Pq-P@oH+2lNHQv8KDqRrW2|l3`()`p6zeG5R3h2R z_+&VBVfOM~wIdDZz$g)6Z&2Mw$4vs;Pe}VXgwP7Vbwyp_dw&Ht*e-XzOE$YCRn2n~#bETezdT+p}Wc%Y-&>N4~|&{nIGA zfL|k6B-A=hAUNg0$a{*`J~s)mt0liQ56M3$U5OdakeM`Vp0&PwtA}UsqSpA;8@|uQ zT&q(1IYh|Y{)yY!^V`Zb_3kKUHz7md_}GzM1UQwcxh~drPO;eSoAb zacWk`3X*8N$hAV3Tw&f8UkqedUn^(9YuO+5%Ta04A95Jep5Wqhh#ou*+m`PP*W$+e zo_I&CmhKcJmN)O*dR{!ly@d;RQ!8{$ussDaYV|rb0ewoi_nx4gkF<`yx@RM=auV1) zdAuRUjcPs~<$5+ftEKe+tK?DLfgu)P$ta0GJFGA$hF zl29AIwtJxD|HpgB+bOp&i`Nb11OCW!yU7S9AzX-$K#IG@dXQYOJN_8|$7pWbQL!IZ zwJ&u`sm%TK*<%g>>Vx8VGM4^$9f$_1RflBDh8Q$&xmb}ytm$y#KG1T#dUnWg-nkOi zl1Pu*$kP9~pO2(h4IyT)@Ks52tb&*xLb4CULFtqdeB)}S>;Yfy8_R> zXx4E8gZlx}BQ%L8u<{0VagZ=JW)FcXTJB{9wIt&A%d;nb;M->5Ijv*bm_Tau6m3Ky zHwC(nvl@Mf1p>WyS?;-xGqAs7Ot{2D)>OeSi=2>?8{MYch=uCUMq&q1cI9Ap)mQ`H z7NjS+aT%^}%Hr#w81#uFmg*R0HB5r9j|)%ax&#VklFxLMZ1dL-h*x2-eve;}av6#p zUA%cvg0Z{rIv=!zT$^aR>Df7>jPFFX|NHL6{h6;?ElgYFYnPMb=DjG^dNyz?it}H* zwO(>T={)5lB>ptU4MsX&QoO`zwhJ@&Nkot*EFv=6fGooFS8Ce+vgTr zs!3ewZ@Fc_IQoTc!@FL(-SNJ+bzO7wU29pkON5%g^ln_&zaL2XUL4CoVtEKaeJqU_ zg*nBZ(UMVt7>NpeI@j0#p2~$UmClty)V;}g{o$Q_&-Q)Ja$ZNyOKFL(GW4Fl={@vd zP4xuhYjwGs+R3cid}=npJUVfyCJ6xQra(|c`n|H10B&JO} z?IQ-mpt|BYZY{hwcw`68qI00JjZ0q4E-y8<4#zb?mA-CYm+e*xMhxj_>P zxb5HIg=NwI@I=-Fzw0uvX3HG-AE1*c#?vw6nyxp`>jb{Hg5p7(JNeVk7V%AOi#8tF z+_T=_JQ>sU0w1G2nrywu!|ax$4ys1ImBaB%HZiag-o+#M%7x!(MIyUYA0Ve+i_TcC znUh}}Rqs0Y<1|%@co}Zw$Vgvu@Mo&Ivf-1Aum<#$&Ql)gxIG@1TrFGGM%*%#?rDYj zF1Puf8tvMnH~x|lQ@m_G|9ro`jOlW7b-n-9^i}zGH{qCeb>Gc-)X5~YS1X5zX8@yo zan`bB_0|F?fJnxFqK`q#)(JG^;ewkpG_+~y5WMW93foB9!P+{T_kOA%OYL&R%5yg` zegL;0u}RzZSdUpwmTy%#2(mq%bF$k%fGBvr;)AemE%0crz325MFq+4|04x5PJa%3Q z?D-OCm;)3z2nfED@{A^D$jBwR?hox39e5}g&xYpXPYi=`KZ5B!4;*iJ-}?6A28Fh= zpZi=b_}p$}{Wznje&1O+3a);+Wbe8f++g8RXy{1Z9^>e>V(pO1yYs&E1FYQuSOtp~ z_W9iX0V?%;SNwo%@I2e6AQ#UFGU3S@zwBIn{mDQTLqk^i#CLrgxKv;MG}aB7x%VQAb#&RLs$)yJ1gT=rwN zy1>n{eEsV=`DIu2AGyx^v4Q$v_qEi#CL|lfXm5h%@837~b|_@Iudn$AHpk&m1|+?! z9w21-?w2+mkh-4cpBipU&)?y@9Pq&;TGoyK29o48YZFOE$w|FJKt^|l*; zF~y?n{dX3AGF|g4lUw|ixs}s%0JCiM7416;iUY7oRac2q`VbF^8`_%EpUYoPNc~-` zzsslm$*@X7-y{rq&6d_FrM+=88*rP4-rqc9^vMn1g?jui`k&-p8>ietv)w)1*lr^O zk2>7tR+4|-Y~&_pornxnw?C-pk`uh_p1-GbU0mPbZ`io-Uh5EaIQYEtz3+MX(&5!J zXKotLEcZ1A%o#p?O}eS+NI_jYOdy^2#}N|cSS**x%ZSfu8PnP$sOPeieV*!wG=_p6rO;o78g=P~^o!qbgg$3v0tYsy(>=4&6)`|u#U z-tz%wyvZ>{-Bm<+c(vgSZ(T^jXB5hoRx>^O^2@Y#RXP1W zCZSo*hw_bYC#(ng)d4*`C1>M#h@kC+PbhF=Y>-GK>$N7Hrz^ja;>J4g;pF08C4@SB zapc6pjT8+Qe-v=)*9boitSM0_^6dEEv&^&03QxzgbPn|Sq$j3q`L4&Gqb>Pww6m*5 zO6cg}L>CkPiBTdoRr>95+Hd{NgV0&^&j*~K+{S=AK|k;Ox~v#43}r7Q!}q?aBr4~< zbMkF1=jmnT*4O(%?(H&z@Ac=+ug;YBu?^q4$0s$r&L^?zt}8v>>#E!Pw?C8Z@6B&b zhg7Z$23gkhlPz6X$x?j@{ ztDrUx7YWjA8P>mTu8UZ?Zf}1U%TY7LUY|*YU-P}kNW*>$&B+RWW5ZWowi(WFD_eCU z|IWo$@%1;=O0@6k#`{RuQ@`HBQ}cS~ry<@(rs&Aa%;@&x^d9K1`OHe1yj}(Xc zt;6ie?tVjXa|f*zt@0FmUEgu@ikh>pMq6FA~#=V(lCV`6M!KyP7VU}nO>MrUtp7A7w% zhVbdj$7Ki-;=+m`5O^%`A%z8^Du_HX(ir#wZ73xs40`|g&h7Y>033m{7uRqC!f4;e z2Q29uA`o#2K_5vC_skO=4}F#X+qa2!v49aoORIju+DEA%B1jTMR|u( zD`G_qtiGtO9>`ee(}I@KfD@0P!ue-f@0w+>MzuvYI<@xt}HZ;+u6SuG~ zM1Oin+0iDok$j>cGOUG^c*Tg2_OKYh%e)9ult;uHWpI`iC)?bRX>;K^+(|flnI)*z zb(lT3dmFd-RW%4{$Nij`P}OC^L;jnN_(hfAa}rAsrooQsGjPweBE`#aje#{>lp}mn}jseqO^`TOrFqUl=3V3t82gyUGJQ&5*|yFg=*h^ zW!b-%pl9M>38PLvr#@=Vuofi!0&*_bP4tWW}EB%D&cci@G-~+8_a!w;>#Q5fzvls_b_(#T1}y5g%p+ z9~&x5(6J$9*Zw}>mDBz{96wY;RQtuqS?-em=zfou=26`ECeEs}}<_U>e03;}nLl*q=Cy*a$B33F2 z1KWC;TzkQQ^YY#w66_nVmriaoYx6fh0ldO?~WC-G7gw<{(a?_Re4BT@Wg z(yc{|9M+*@G~(>G|bJ#EAuS(lBmMMm|@Rv)-V+_9=llAx~?5*B#~ zJoglzH|Wr&lELp6aiFio^+!66VgIRV!}lOn#jO8=D{NH?N=^7qQt;YmJ}euixBRqu z0#4wtuGJJ;uSFvx2$UouY~IAsPEtxH#WCU$%HSrAmBmR7BacasjiC~*wU8}_;!S6w zHrWZ*+DGP}61_Q2Z%l_9vB#oBhNf-@75-4!FV;=#$r06`+5SxY8ia}>-Uy+%Yvd($ zD}chhqyYI7aCCkWMPd~Y$bNnrut^PDj>!Cq6F^s~P zphLryH7zAxHCzB8Sh<QZy*F-2&j(?0m|?86e<034grY(XS8%B)-m z51t}9M~)^G6f?{1#F=NjcLBpUWbFgi1J7pdz$?{#hy*-1#zhA4s z^Gh}FbGWWKY?!;z6}^a-$wgN5i&*``LRs~wi-o&s5~BwrvFn+bg<$ zj#g*ZJX8WX&i;)YmWV0+4^g7g-<<%;e&WMk>boV(zeDjP4xMg3zbOf236Jpc|BTe+Oos#5D7NLMp7C0K$btt=UENOA61+7PF1?chT zjI(EGnSNTU=nRdOU%M+r;nxt1uX)X}!qv*8(FXxV0v7F-0alndB4} zL?mR%=DIG9R$rdd)+1JoyJWh1FfRJ;rfk__dJ` zCJr9Xpl5hZ$GFt^^+#Y{c(C=np~82MVMRyTy1adU$uxLlCBmQld*Ep(0(6AL5@4iG zgtrg!lH)34yBjfpnq5)F@rm2d8&dh94TFZVu<-{c@a; z#5Sl(EQE3T9Ahm0MHDV7Oqh!8g2QGhMBMSBW; zNIE(&HXr~`fw0k%h%9vRDAc@@Qj%3JmQFpIb2lj9>FtvPTO>cD4Y%k@=1vCo;+J8R zBAZjFz-zV&ixmz_TJ?@pg{&k?+!@#P?<~1F!}A@w|DgS37|h{Yo-~69OQknV9W_(y z>M$KePMPpT%`^NpnBhTI^DI?QM^-xX)2L1GOV%oVoLVsOuWD{F5Rtkm`z{wYijP4Sbd=xF93(y>U-xu-L})vQvfNdI9Vf z9gXQ`)0LxrZ{2JR;sg{N0i4m*iJyw2YfvGNc+1i$^6}872_v|$q>%Ni3H%s&tm>~@ z-}ORLx4Bxktzc475ZQ0wLZ+jFI4zmjlMThnC)5=iUMm}mt%!m3B%ii~1Fu)8L=l-I z7KOB*n=%6OEQM#>bi<;YU9nMS{}mjzn8Klp{+UOUCB}@I`3}~I>f6i|-t>@fK$7r; z7=>j|msw$q2%fCC2W~q8#YyGVBF%?BZtoR(=#O8iM&MRh_{@k=%n%E~f*m1T2c z{j|1wr49S&5_J`s$Ii4XHb+=f-W*X$vx<&n~O6@AF0J1&ZAX98ql%+r#h>(!5C|@GL zPo;cwLO13l&V)*5q6z$Dot3%H3})$XA;uSe)b1g$DO3BAQbg5H7Grx%uniL5tHVrf z6l%Vzq~;+&bdNzr8HZc+xte77xRW}2I2a{Zk6a#!QuzQ&gXPJEGz8KjhhXEzW06TA zO&V=7PYhWwcuMK%9vV4wY$Y7V@T3J%r$f<6EK^iSqVY7paD0YQ!?lN1&Y;Aekk|Yr z%p_anDLWFM*ua;>L`{5RvBbbc$=?ab6&4S?WB}odO0kheOZ1r$haRGz1_u?__tQm~ zOiGlWBJDpu7jiGH69+cvFm3qUr*hZUvg3Zw^pJbv(h^*WM-itY+Xqh@msgVA3mh{R zCNHRP^j9bejZ=~#?v0KAX&)5%P0&GQ<&w6>bCs(A zL?~2TBBVIc5REiER)IhudQ~vCrEE17*1@BxSeB|}mlm!E&DW5tNhkq2Sa2%b#zS?N zIIe+kjBkH?efXYRq8`Rbe4Ec?=Kon=4MF*ju{t6{MnzF`&aYLIy7@O7^imE^h0+E3 ziAM2y4A?AC{$ixaYW6bwGM!{>L~_y)qyr=C`52SkK^~6kDhn-Om@paa0X~GQ8DHx7 z3}vI|!VQ9a-(Hp6N&fD5zpIm1Tq_We$V&@p(l?_@`_fCN5a$%igYXaLnpoz?Ixr$7zlsak`+>(&aTsAG3e_=J5l{{V}uN zSBD24WdG(eiLVDn)9L%{WXDt+BHMO4L&UP5i8h&G5|7JQ^tSlvmzvYuQgGLq^V>O2 zcXmP!uhFCo7(r5(Dzn{jm9U(oO4kF=s=fJ&` zXXt)yVy(H!X~ut!`QxVDVdQojMCai>0`|V_JD;lK71S5%X8L|r(p4JjrN>w5c|L*I zU-jcLAS@w==_<$L>@~y=Wm7tExkW1)?$x!Awuu1#v+eKq9{3##U)~e1JQV!-5rV6i z@D`-Z*Oi5&^UYcEw+4E@$!u)iQ(X+BA(Td}yYuuE&WpL1;f0Nd$hX?(U9+6;B}y#a zW^!NcSK1OLcs=AP*1}Udxlb?N&%Dp`xNpV9>7F`8YH!w75WDutPA)RM@+CU%w}yXx zp8y5pG46tYyEci`!dg-`0h4Yw!evXe79QnnL=BSXRTWi&$;nx z+fI9Ry?-4o+p^xPK0RG6&r|*)@O|T#y&-ftHv^jsFHOE`WHWU^z8qWGDau@Kht9k| z4z465%Q+7FEJAMLnMkN&&tLa5nX?T*KSSg=p1tt@#B(P2r;QlY?0h~x)g=woh1KCN zoKd#v4G!~ajMD6JP$Mm_bhRhjJ^ro1S2>YxDr>spLgR1f>c}pUC7#)ItyUxft!`;E zBrN~b%z{+abSmvXn4^+x>G^l2Y5B>dIRvZ_vn_6E7eh-3(Tq{E#1aC2<9%nzqdJb& zF9UU`>gBV{#!iZl`l1PL-ZSPIY-VVH_G~^9@9V)V{rm0t!kVXiW{2mka z_ilQodEIG)j3F@-!tpa4Bn`McVH}AOu9^J4?I_TFmaum+SZ;c+Ka%Zk^uZaylycLyqn+ zrarUiQjE+h*o!#pOd#XG=5fNofmdiCe#pzSoI&Mlk#~2i=Im~6H*Mzq(eytVpTK>t z@4KSbC&+6u{qkmu^|%UgJAdqMd0Ty5J@(hL+4li~Qa5~@--XT=&y%%szRn=%wL5C; zDqv;0%_$AqiV*%gu&7qKg}_|*7#mjWav3A| ze17x`C=}L9&v&WC%Z<_H3+9(qgV;+}AzdK2P2(tkBF2=$su(gBo~NE=)Z)PIrnshC zw49j@xrbIA>o^}v*gt!?S=ZU)?Xq{gJ@s;h=Jo!uNPFMmd`9(?YhT4d6yzn%d!NX| zZM2!mNTK)sw?QiS-U-6GwwI&zyugkrKLgdK->bT#VWUdycEmLEUPf3!_T{Ki>&(Mq z^*2t4&!meEXV&xf8y22p zKUaQ-Zu{kbZ!!O|CD+7^4V<#2-$vj5*M+3l&YuWIXN}5eRb%f z0~`IUq^c+@uL?`09xlzV2#XrulLbC(lw``e5+<+TkTA9sG`n}ux*M>0-C!9_Cn2={ zl>t4^2HHxA{X~?O4q4je&jY3VzU(Itr9_JM}JD=`JtH>j9IOZd-YKXYXTDom^QO-^1yjltX3A-m$rhf z=<76A?N3F_vbe(_IE{x_?EfBL#LQG`h|3eA_>o%l%ztr3&E&KmEYsIo@n1=4%j?ph z^|&Qwq1!B`pL*bQ)O$P6z;jlbO-5At1Mp z2degPjhqh+_eu1Nl=|E5xAu4X=UZ^>#l7FxO||~x)N==B5(h1}q14}>mag<{ekHm* z(^k4WEaN|~IUe^vyF&c*I%RTr<3S_&D-OEHcShH_9{zN)3IS53dl_6!IL{F-c)vWu z;y#^**Z(9U)V$`ylaBcA+&>4=MjdCg#gXhRn6g%dSHRb0)AY>xdb(}0SeasCc>5H9 z2hFzoPyLtl0xG^c`O+YX={L6~Ese9ly8gI5A1g?;J2vPhY(_8mIThy>(**%{k0r(0 zx!mbrhmg&So9M0kKj(g(E{(goLR)T^5~3cw_tsM%zqRc6{@vJg8BqN{Y<*=^T}_kj z!QI{6-7Po)f(Ca8?iSqL-JJxt;O@cQ-GjTk-$UN_o0&Cpd+~!UXYa1+s;8dr-Cf

    *+!?*k?s|Vdx^1B0Eo5s)!=&Y?hyd_>oF=~`x>&neE8KpZy!Z`1If^{dZnU$r zgc74-l&@Qe6qv7k$zJA~vP$mn4~6IpYegpK!8r@mO&r+*&gvzs*(|%0@%E!r_gyP6 zaVP-Cjw5mPV6jd`v-go2*g4k)Iqobd0A|FLT3`6k1CQe>B2F0O8cXtx98EKrFePQ(e%-Afwic8qqPr8%mww5xd8cOQWooDXrK*)D z*7TZ@qZn>yVa_j`f#s9Yj#jS4wI!^RcDys3JnMTF)Ua2MFUXgw_{}Sd=`o8xk+aQsqr!si3$x-Hhxj=#jXirb%iUlQLNDF@u1O{xKxb zr$o5T|0QHSux(e#=zXd>m~7^%Y54?$yOUz>;iCx|kNR}eUbn1GA^R>fE@}jg8x?>D zd%ywP3-3c_dDMVR7CggD)qyv%1CVh?!6nm|+hEjGZ!CY%#nkO=!Xsf?%$O-FtIqo{ z4P`=-dp#2&*IwtkS_0J79bQNB2(n*?OVey!UET1r%?OPIl>|Uy87}#GE#9t^c9H-D zeRFf}LzrHn3J9lXKWDP3^6)Us*^zVB12-6D$q=J7Xn$KfzqEr+y8|)p%woHGSKZu5 zin;bs*BaxS1bvw>00Me?R(SYF+s=>0cwS6Gev3u>23nwM*dRuH4MX?!fs;Zvk_!&4 z%?66O#O%(uSnG=x?mTP9*nr9yQaffl#-r>F&lIz4N3SUS^ z=)KpbzF5o}ML`L1EWLB1S4uYi%{hSlJy7l!5;c@uR5TQTSdFmdVur;_-i7;e&Ejq3 ztCUo0UQ6_+uv8wOQjun4N;umlOLTJsPTzgXaUJR2hM;Y)v%6Xe72M2?KYGeDdE}s-vn1 zp;Pcp=|wGC?Z0@j)p>53kj3S_<`^$oz>W9O!ry>Vmt9tO@XHyzQ_z3Q+;x}il)C{PEB8)fc8_uxZ~eZpncqC77sBQOwfJLO1(zhaPO`@?6$e?PsZNq2Fc`gc zGJt ze@w{NGyHI~$xWTGD79DO*#*l_E!sU*zFf1_Al(J;3I=U zcMWIB^nJ_1e63SxZgR+Z=AE5eqeNTlj%_(MTwPCBUI z*U2o6;}uNux5ZE@)2GUH!uUK?hdq+54lw~iYo6aS-uVFBzr-V4ejGdM{hgo;1ufaH zfu9zrmFy!cM#bUX0LYK3@-_ylauftoK-1-QVtTv6g~1CnYBUK{3G)#@khs+TpNC&? z-=DX8Yb7yZP5iaGIo=+iJY~3+G68TQ9mSejI-D5%kqP-_cHZS@Mx3JQm3XPVM z2KY`d-~rwRSe9CdktFx%bt>4{AX=s%NKa>rr^1%I>skEt&~WDXG^*sf+=lW=_5%IwfE=rCt0Yz8cQt>?16tZlzet# zU;no!Xzz_W3-2%>I|{)h$%~7a%Zrob-Nh5`f<}Sk-a02qruI9d*d8t>n>Tf`Z0-#b zS{%}}+ufZy(|ATv2DYoy=tA?Ojv&u3VB&|}^x1lBJvx?ftxKn-dA|Vfz zcQ^?z&CH4Ov>K8sH?Bh7zrjCpdb>8YEU5argE2|xDdoH7ovhnIRYvV7qM-Ptaj>L> z8PjVqwBy;RbDIy9dxRI&jI}78AAkD%m+Cobcq&?O?dwM<>SG*Ehf)m z)fr5hm;W_J^!9z<Uahn}HN8gf!J`;T`cgTD;?{k7Vz#Aq z;$!SnhYaP!xX7M)csv$yDaD))C#PW&B7VBQ6uxx5Wnq`oMLw9o;)}WRH}1u-1~F>~ z#o(CFdkPX=NIS0NDMeH?P-0(|=(>}R&BeDsn2X(RM_Qy?glhpZi0vMd??l<}_7A?P z0lQX(oO#NYPD1ifB5QM0=fXZ`K_W72=9@G3@mk*VMkZJK%za`i^o7>`+Gmg&{l1}6 zQRf9u>dY(3r+J;mumS20o{w%nu{;3vN^0zd+gex$`#yjMPSBz4*+hcXO$XnX;Wb38 zV)qrANsy5KI8xG!VM~VLw3@A*>Je$@G(WeOTJ;>Ay|Deo1@AtsiEZ_LWbOGY#(2m0 zto_cA8^#hF!5Y>V#SGZqlBF;1%s{w?!z2~YO&6TCq^t}M0I4M4s_Y6`#e4L2Yq@0m zU551b{}T4dJ`UTshN(;rFyJpnE<~e?{mLLz+fIl91?VfGH2?sB&(RX`KBVsbmiS+r zJdL=>rDSnIhkc1z{}6TNU1UZXM~IrOA)U&jr^Wv@903v3EIk4&H>FjFXIMYDW#8pR z%*7vM)54Sr)6V&);$&Ia^p%D^nKEJsQ_{H|_1MgXKk)Wp)sK<`|Bw$qg-?j(>-vWF z1!r65rj!NI460LYYUBDrfY`wg9tdP2%Q}*+n}@*{jEeMQ&rb9idSAeeyM3F+S32kM7dvNrmMh@6vHv=GIlWrGEY%&?lf&j;D*ce# zE%J@D^G|xdf?rX2rUDQy6jSv`(b{)Un*A@7n5YeUlS&4aiEOx_l~T4YSIEBzI_)>J zZU@(1g^TI4)8j@o@Z9tDV7LFZoxQhDJc;)E29A>uI9|^w5VNnbW+x8(^4e|__|gBT zBo17WkzS@b1Y-&M{e>sVkX88h_Xseco^0Y?k6i$ga;;Yt(~~I0VL{+9db($a`DyMs z(83!>b2Y!!>F(Ur?czAaAF%WMdg+xal$_juw18Usj3RP^2t;icO@MM~P0TU{RKt4p z0bN#S*S+W%1r=`DQ_o-l*2n+or!iO_pBTVX$?951KPbc-umJ#GXm%+60`OVct(DYW zu0o#F@y>G|W3nnM&uCFn(#kzI0z~tL9DNKMUHr>$vN~EvDebxXVf064dP^bYQK)vZ z<>M~jA+_Z}8Q7_7{)0D&eW@nGaMax8bZ;sXzgtL0>uLN;2 zT>${2yXpy)O)PY#?k?JO1sh2RxZ$;en;+YfZ$qtW2v|EG8VzeXWpy89V|)q1AbMebt^LenQ)aBP zZciA^LnZ_3qv)F6ZqM#JW^sg`dtJR3O~+)5!&to2z2QJ|*LV_vaQXk5Jkl$}Rz>FZ zTYV={E+TvpF2i*t1?Gc}ZHno)oJ@=#kJ7$lw;;$2zv+CifV`G$ zo&_37P1mu{xa1u-TlIsRo(B!h&1+Rhm*7T@)Z8;bP^8Yh$)u;(%$EZ+I}OSjH~eDI z(ruz5g=|upc&{M&JTO^Iqg_@#`ELG24m2@8>RcTI-jEf@MisUg`TzN+(4j+{G=_nf z$zpb?+P{BpV*?0zT3Wx3jDtV?nS#j>Pdnk&XVsyBkrwepz73tegEz%Q0d059xxzX= z2d%K8dG$q=pYnm(U~L%%!g1ep~az*K}U$tW!$ zqKMgP^_^(u7npZvDm=P31<`2l&5Y=2Eh#Y=On$KRP8ToS!w<|M46P2)o0->azlCB+ zsrE|-+kj-bFh`|Y%SGz9W68otb23lqs#a7wfEx{PhR;=@bN7@UcK1Ei2?C}3f1`SEr3*RrSNU0J>@7aL@< z8lcam&*dZ`ZpgV^KQuvtUV4T!kb)gded0>8}+kG{}1tNJ?~k zGRn#skljBOC{#_*d%hnYga7~+UeN|M$IBmi>rWrJB1HEzp_r1&e|qw-E&oY(>$tjd zLhgEQe|6&lc=47i+){xE2x2J^BH@W!^V%GHD8mN2MrHC@!NgH=Ghci=atVs{!B~~c zX+!+AC50JX2fh+09kczVG^gJ}^6Zu3-+3D;OdNkm2VBl{t}w&&>>eDz9R(%+AE8$b zBg~EB37)Jra$mTmpUAQ0oXj}+@|zPF7sOu_f*OPeX{`{54`p50g#L!%n9*x(6F0)x z&e4&1$n@RS%Hfr9_HQAT=K;&GN}fpDRVFR%gw(M+|Gw92K`B+RHpq21a*EC9eKMFB ze_S3U0KT3SxNsxf%oe)!v?$8lM=T!mj$4fIGDoLr5y3>+Pos!JE3l@R7{WiRu1FxR zuNnOQCKEol?gH1jbtpnqj3jngDDUVeBqM++7KE9JMyFv;U66EBxUSjhk_-pYUO}7o z%&CmCXpzWbh;Ur=@R)JRwi?1?D-`Y2w3p@wj;eY<3PfzAia$Oaqa!ZA|6s*6nj)H^ znsukgQ~5xCDi9N)XD(?&P@!IIU&MqZr%_cUwND=Klok5KNkk2oL}hX*P`v|!Jt9W< zEj1&B1OU|V7#vg5;cUXn1*@`e)>Z0+^5%g`uFH6CK@x$ou%fu`#bny%=;YjD^yEwO zjojWdYS^L)WN&YDIuSh5ywI?nTgQ?cte|xvCxU19JQ@Vb*BQQ_NQJB5(R*w2nFx>ogQSJ;BS zj=~|20cNCZ&>jRX zQO6pKW~!(L8C<%D*nqy0z&96EbA6Uiu_U%zi^0Z#R3W5T2gabPwV4Y@+$xGmbx0S& zHz6haHOG>vS#F#HF^LW|<0!^EfC~DB2a->f5GBB)H?flitlTT2xGNzHpZGA=9Lnxs z`AGQK)k6Eh{J|_S!>p~$s*hU9&e|WKh7^1)H-F-PCmTQpWL&tU~ zboV=7gIDR=W29WQe|Ut%FJHPOT%8>iPyuF8?*94|9c*yPORgyl^5~?~H00-S%b9{L zoq4)~>0Nrs%<1K6n^JEWyK_lMLOs9U0sRbf2GOUBfBf}+aKwh_hV@`(lwh*s(9-vP ztmKLYsHXz|N&%jpg?v4aq7wJ58gVOkl!x=K^OMMHCtRF}C@I;!auuM5dGf_MndT=< zF`ylHy^eH1J6%+PHg1tMHK;g>R{ z*yJ>>V^7ebe;a%gFdFK`OdEl^H^Ak! zFn*$q9Hth-q*6qEqUv0(EpwcekPe$6tn1Mzqtm%W-%=`TV_Go11@u)jE-NzYakN(j zxaz#$ynbnbp$kaCMf}}`SlAd)Id8E1gk#b2Xip1@@q(D7e-r_{E;aaMW_7grbc|TP zGw!|!)V;K)LIM6LR`#4%TKVd&-n<8{?TvI$PsAa3_Bg-I!AS}NL@xP8h;e@Y!2(pE z`mf{BkJe*m^A7tw=A7SU#>eJKVE!&Jm+uh6t(~!C;a}cZK+|Y)_*1bFmy>Sdc_#eq z=rXm%tUE2|;S@ijL-IB5$bqn2gS8mFl~{B|?UZ|u=X2OYDvLieZB#PiTc zk(UUH@NtBASgY4)?)YQGZBkE^5VzqbOT%JHqLrHeEXtUQSec9%A0d~% z$541>0H2Eof9Pc9(q8DVJ!W=2zy8aPBPHKZwLw!vDg)49sv0fQF+p-CS|V|?8$tqT zENL;2ptt#49%oOmxc2o^WD1-|oWcE+1P>jddt7p;a^+Ct`}YOf?}@Eq&^G=qM^QXJ zQQiP&=C%V}ui#8Gp)H@6`c1rQgC(CO9Jx!QfM)nlnxCLV4hGuoTI3=fmEG&u9L0W= zfxm)wyVgDLvLW7?*ddn(Z3mm?UN(jUSf#Bu2vcli)F#ZYVBL%_C-Cv<(DE=N_%r3c zUF-6|;UPD`dh1R1{C{qVpR-lF@o+#c_^;<+i#;+OF6K|5m83lwlA ze6&Zfn9$+9ruD&CNGC8mSx4AiSc*b0+!9@|lKTDpZdNvT?Z?x1DEa`9d}7fjMy+wJ z%|RG|xxB8Snr4Rw>DMQzU_En^|ICdsz{p5$()Ww_P35rZZWTe6_q)h(+Yana)XLrG zs~?gz8O*xBL#!@KCeq^##ZR9lco+mjF_D24Tr{Liv=k8UyYcZ+kILd^Au?vS5POY~ zkdhrG+$;2YT za-xuIhj`R`c+`=OVO-bkuoNno#QYGOx(XPh#eAbJ4wCN8J{W1XFW?b0YyrMj>G6~4}>_DQ9L--MDaFkHs zUc@BjB51J_DvLjxH0TP?mawxsyoxB3v++JSgpa64kPB)CJw2t5Z0EB(GSH=>NrAMxQ1O~62$(D6 z=}vvUKmGbE7)4eGahEp^rhBj*`y`edNQE`g^Y5H-B&iVa2(ExXph`k5<6H6z;nSTX z10~6rrWvg2Z*NrT?Q9ftq~A(X6z?gwBFS2*ZFRLQa6qJDvO?r!$~*&A9#?6U>(JIKd^ zVO%|lN(C2ZjR96PfocG~FTAT?E`OOZ@HUg9nB}E4@ap<|t>2cM1@OL5U;)emwS!oX z<@zJre5D-=-x-ocAuXH8k}@mfhCS{n?u#MXQmw^yI0HCH6-cj~2ST%e0u-|YQc{}7 zu#weQ4L7wnvEP2tSt-|KbfmwOXGK>(WT&6}f`QZ76kC_gh60w$^8p>$o4+4Bvyjlt zo3O9YH>*t&aNlu7s3?)|pntaZSc!dGegQ{z2>p4u<(a^^VnX$&rDR0K*_&nW85Vh+ z=_`-;`C#`)L@#-U7Gq7{;LCB_C|tm8a<2}*$sQH&b9>9mw+$)bw=0;q z&a!Q}`0pilz(R_C8%id zGTcZ%gXr&70R&wl78()^c0b0V0B{6lH1g?b^GFK0XKJw76I;CY$mR^=AXObrFdeDA zK#TmV@`EWl5__@X>O~66zto@EsnU?w{XCW-f6M?J$Tcsz4Y>n~0zwR4Qk%icn%{gn z!9)LOhUfo=wl?LJERFf;WD@^rPbJ}g@&?>5{$+LfkoA0NtMEqy`G6OiA?dEfZtDUM z*@niA9fOHdnvZ|vLlG7LDDos2;^|dsetIYke0&+@F!I}44!oJb&wZ<`J=%EQ zy1i+?ZP5Cqv0Jd&z+Q|S#O^eKDv;^|<+aQD+NScr5@@sX5A|YT_W{zsh#`Iuv2@u5 z0-2~Vl3a@-J@rYvlt?-61-OykOi_Z?B*p1dnOOO@1`4}r5*BAGp`jdlc+Q4vwEu zM!dhdG1}>zB9F&Bsae?GgFzwH5Icb_zM+S?KR-^+gi=zpt}o6-)|7SEL;XjGe^YQw z+TwhKrd|4!A+qCzh${uMJ>vT6g``~JI|C@|X@hdkdZA*7UXb0yAtd7`zluV5&muQM zCGU}ofdAnKr8O9y zg32j4xv;93Rq!+v!ptc!$_m)W)ZY;nP(aWr{$L9NbD%i^ogSkaH`BPf4kOIHYXc6B z7(M_1O(H8HsxEKNlGrV==+X@^git&y6rO6fM1mt4q&YX#O7(a|T2XLy&RF=}$NVFX zq)4fVZ2kLwfk<*Te@gtKr(=N#8Wp(qn(_Td)UdkAe>@s`JMotQ*kC>B_Z~lM7Xo+r zY+59Oo!66QF0j*HAU40qT!u2T^A0qPU?c_hDjqfQE%sl)!WE8WLInoXY>xi<8-(}M zlu1`KP!0jDXCy@C`@qX6*Y|JB@V)wPf$qKMDW_5}4`^$OV6V3{EUf^KyKt%cR3e2X zq1K1LqiW|);Pz9};ar{8kEGhb!fi&5egJ14T0pD@@e&d_tbOPTpJ^+W7-FgV{%jaH z)E0!%t*!oLRM{8R4-~}pu^jXw{P%^W$k*p>$yUhyok95$0QTxpl82SSt^o5j!<@ub zok+h-HV?1#CYS4>g0PW^i;3Yf<@o?{70Ut-p~;2f?hR1eFa1g_E!J4n zYO7F%=$O=LBYNAY09DZrln`7*pivIJpH?fEsoV?g<3_KG-7OAR&#W89K6~zG5X;|B;r( z7FzGi`jd$BI=~n1dMKi{uZ$(ce+7(SEy`;X^q6W1fGo0-iV`(q#=**RFtEt~6+jkp z0K3*yLouJ*^V!Kf8$Czp27`7Y(5<0i5#Z`6+k%jzjDr~|qa!K! zYx2m%bYbTQ^Wt`*zCuk<}<94yhvn(J?0PP`tHI#i3^(@e#LOU>B&xy^U>P5HG zoqx3eHR#sBaIml?pG_doj?q0IY+Vs0=m)G@)N6_ zwRFkEJ(uN|x>>goRE`iN*r@S*hmUjud*^Dgx@06b8L0V6Y_X>SU4MTXA< zzyWmATdXrw7y>K=Ht50WKZpS`orwtqd}bSrG>1A5|BO-{?r)Yi*ugcOmtF5_xou@F zM|yyw@uk1Z-#Sj_P}rIU`y;*Bpx#1$b+vlnee4HOd#d@q_Ry0!Q_$CS-O3vgELknLFjeD=)gEOqp6ymaI?qn+mO*Z4lN0jtSsa;A zIV%rjq2>zvE4J|;9f{>s=J{_jcu|iTVW?2Z`KEDf)N##)rd{e|dcLE0y_5`(&hQ<) zHNTF-(N(Y8Y-Eg%BobGoQMt{6yB#k(raux(hN?QXjLwTYtveZXQ#T2+A`BFyU)b?} zqK@MoZgLby%P#kL*X#u07^U$g85hKf%R45J*ZEE?kmDv=dI@z6NQg{T;U?nEirQ-v z91?P*mm(Hbbxldk9P$rxV-8vyy5w`FiG+vfH17Il`V0JB!PjrMTtuaXubWraCmOmZ zmCEDxF*kVqUQ)Lvy}uNz`=cvC1M91mb!-(p8PA6NNIsgCok*fewsCLEnEP=JbHGDk zS<6_GX>FhR_Y$ZbC#Bl9>tj48zs3CAr-kC&uDiz78idl2>DpsLj>9LL`A^_$uNIh& zFQ+dhL{?o_GE%G@;=J_8Vuh*wP;*j%!qCJ7p!!@2jX}m-=$tyWZgF0yC?OE%hm16w zD@^yRn!Uxe2)T8=!`}E%XYtQ5@v``StgwB1wRrs#C%EtZ$Md3caW~@3F^q)4*f@6@ z3N;IHqMQB>;6ZNNnTGxuL;l<8e`!V}`z-M5OBrs}T$IaM9Ck~F@+KAv4P6F+0?gzm}QV?iZUg&zkdF^u7%uT;DV+vIF2 zJu(k5rv+_ztzN(Wz^<-AN>y&%T-{BL&LaF@Zmt-#4V_8nlG;A1O~c!&J3Gr)+gk?X3|-Ov82Hpk2wJY)k>jSw!zdGsYU} zNs*H(onTwr7`~Rn|S(ILZ=~EgXr=zcZz`ap_;NTXl9G znsM$EYh-IUkHk9EN9DD>6{O&}gmT=#PNbG|-Hr1*GWrH|iYSYPA{%#|3U~iyAzqo% znGC@F`X(bvDAUKM%_l_EHyQnLeM+m9#`^QDezW(iQSTj(SAlQ}aKWbsld)+K4&U%~ z{`;5Z*;-QXH<+WG$Ik&d z{TCLLwjU*NuqZ2Sr5~`tk^M@d)-c}1A~!P<61kONW&ZQ9@0B}CDf>Lx@SAgpR7C#C zJ1fi2YKeJ`H}$6Re8v<{w0Y|$Mnr@TZR%MLslh1{YAXVZ3^#@HB^|}|C7@dlN8(iT zF~LYIdLELoz&tdp%3R(qFEPE9h6%9)5510flX8Qen`dE6*flF`*@*G$*G1lCyy;J) zKVkg;FnB~$6)d@QiD`a~=Oq$FtRptVb`n`vcf1?3*J^b&NIwl8qS7VER}wIFT=!o& zV2)y%X$iywHlfj8C&X{q^mDs=V=H378y{xw(zXJu8F648h=^nUu0=~rk#m!xHfF@6 zX>F!$WOrw$6Y@cGU=Bm|EGhAxA`ViiJdbgYXOq=bxWCuQW2Dl*WFKCb=zyFcZcXUrRDZmscqDz!_~Ezpk>0O+0ZL!sRFCF<{`394>JsX5$v_PS zMjxs__BrQUYVmjJ3iy(K6aD9VDZ(p7dj!gafj0=)9%tmrqnM_xJ~7h&VjxrO(-u>{ zR*Kbt2M3#AXL%^NoPMb9_Uq*9a&uOL{vt?`le&E>g8nDP6xXsgBWBam*vTq$3#;F{ zR@y+USb8B@EFLEZ>#^#UWf}1U%rK@lek6BEZW%6~k=$AEpL8#;LBI;bxE3W&9b^;M1>fqiPfBN)~(<7c}jAfhksf+XNiYFl+3Pn!D z#n~3ESRtF?SViX2S$*-5`0OHM0hf!IzrTPXi5qBs=AV}*g>kA%WF+M6SJ#y5DA>(X z8x|asjl)%qMH(l+HF`*Kl(@PM{UBL2#?}{7_uVblaDE2tY{C}2IJP3x>T-DAXXG#1 zg=_Y-G59>L4~^j)xlY<=I^UnvH*2t1h>KTh_3V(0xmrjP!*Q>*u!RdKaXLJ`?pzlt z@*jL1oZ$%o>w*dTWJ|L=uAWp@qZtWU;}-9Ao8fJOxDMjhq-u4tF{&dus?xpI0*Hea z4kt&A$xhWu<#msDJtcHA##S@fTTDKJBeLt)+0b>jDX1 z?D^B@k~Q7Phr&FWQCmU{574ZJQHSO2s>3*?H9M^8#27VWYvSH&HOUXO9V-bTg2myj zxT={1JG1iY9j6hRWLG#QNx| z&3ZFy=fb%an%RS8ahITD?BByEw)D>h8n6`BXiiS8IQUWhTTzas1-lYRl10^OI+zAA zlY$e<0`;g@{($c_Kf~EmHN+P5-s^A!<7o&P2UEY2#5!iF1?h@ykD;jz1TwN2NdRCC6(O&{=LiGL~GdyFc4q(a~S zSLwRJZRTkj@@v~BPG&~h#MPQ)!8FP(Yl_)2w=FU~J^5dG#7K8(M|ScJPt`|-Sdb}$ z3k}jPBn{HxRY0cJ#>OIz>3+6pBmS(rC}JE@X=2Czpy~#LE~Qzv?Gzq0vW{Zp9u=)* zQA3@67)RX_KRG=1>7%2x7&8}Q|B4ku_)!~y{>)3fq(pqPbQ|9B!cS|;FOFDM)K-PD zbJYqD8)cV<6OhPmeY4KR~V*3#-gH{ z&IgLfeO04EC?tU7NDY^E&Rwnf8!~En=U4nM6&`U1%oag(%Vg4X;qNES4z)^p^y2{* z7Wz`46jWR`-m)9{D*dlhdSA=ddd4_c1z*X#AUe9ai`7_LqhUG8P{bg19!r1ZKOEZq*;WT(R zCbG}1H|sga%@GdZcY_khYX)sL>SgHpLHu~7!sB-yMfoq)YWk_Kn%NG2`s17c$Bfh| z*XqxXmyt_9{^!2To~v~X;szAJPX6=HyMS>xpTU&JZg7G@mQ?52M?9$?b>Mq+>Vv%# z(ammd?{nK_M;~pV|Ml!E^z_%ZhfpGn_TvhAfea!!@Y^WQd&Q#`$5xx%R{_?m-wLn( z4?j-7xw$;H45|Ek_MLuzl6Lai{^rv^z1{e;mfS*^b;RxzE}hCTVg?zl%;y>nKWFf0 z%X94_Uvc1$I7o2$chT|ec8==}2`b?AeluVJbe%!3fD7|yFAuND6uzFjk)>*cmsay0 z?{N)3voNW#NjKZR>`U6j^m zZelG;(OW1G@tsSvl3iaq)Qp#ExbTKS>y#{B&-%kIUyXQ%)Z(;AE z5Q(K&cmB{KT&Lr!Fr--OM>YLIR>`vt8YQTecTAJTa$SPGX>uT*Qs>-DHy|f`PWYKY zRtTLy@C#qK{wy`n=QoPamKIsy4c2>-UakQgm*={Byq47Bn8b)}^N`Y4|C?j0!1rP4 zO=sMWv6ID0g%u<4bz<7;8zf}jK4m?xh=h*AzvnQFny2;s!1w!2B#}^9nHV;Ga;VZ7 z`X7k&3E^<7`ASt=jw~_jo3v2I_i9StUjOZtRg!suvY-gWIb6$#L3ZW=;hCcA_TY`= zcr6Wh$xw$aW#%TA1vDt*vXaE!kyT{#aTUF&{9;Cr0Q_ z$BLKXd)$TA`&GS~rzW63ZL&H!(uha}+D*QrMZDjAJ{XU0%xK3R7q(rZUpp9tCIw(D z_&ZzM{Yb3uca&Vaj`TLNY`J}VS2gIV0r=*A6u<2e6o1VJ9rv-cG4AWxH@9u{l%ccD zclJk(R&7@Su%Exa?R>@)|8~gr_@y4^*T-&Qt^W}MOV1t;hanW^)rAwd*~@6B{`;lR zBQ4ndRLiIv2WrRaOUDsDz|rSzmC|cPN(Lc54E5x z)gapb@f$tW7!cia-9wOT32>^Pf;0SP5w6;&cWCJ8^5}Uzhef-=+KFLFv5t}E0rWU~ z!j6`Ykg@;(Rj_%Ku71Ek6{UU?Jo+o3_}VWWzs_RxcFxHB^j5^;Z#nG%I@ISlhytmW z?+L18q~qcwQ?T19obk?s98Gm^Zv}_0W^X-yYv!k>Br`Sy6b3QH%D~- zSwlGVa_Ay>ZXssK*I8(7o#B6?r0!opa!m%sXwjW( zu#Up*xY+nuSc8pTinF}ZniF8gW?S5(8biXk3n>$hzE}TpTQC4oSeB&bI2}`Rn{SL4 ziVBUp6`EiyGCa)Hv`1IszxUj9%+~FDaW30)+Ba4)+7i&fLEBk7&|pO|Rw(4Q`3}E- zA#Q!euk9M4y&hs@;lC75ZCLs#e47?sv13uPTDA-fag7zEu&*`wdEzS5&67@ooP8UD z)b7(svOiO)X=m8|S$x{rfj&G(s^x4*gTOfJeUvpaG86<2Ced5E0w*{>x;iS~;^^4`5gw+4$n*h|r-53FBK(W%Q z!~R~Q$tJVs)@!xXkkUu}+XBoV$}!lwJuNN&+mX}Scl&8{Rmtj|9TKN5E>42w9j0rF&$z!r~F8{v-1LQ)Xx=o_(M<>p6(&@dt>lUfK^pL#s z3@E4E`QDf4`P|+|82kyI{a}`s?;H*&2*-32x&nL=RgYp^nd;W$iP84g`Kl+}y{t)m z*KR1_yKyr`|H}_xeGc#aZytm1;C)h`RS*dsPYtssr!40|5w@wFUdUx;97}teIiK%t zg$At0KEjFAF1v#k>il_v>7eoCPGtkXABSgo^ic1oZ&Rw&O%s_!hnb-+K<*P>BD5Ha z*pep7shXXAeg|LPED}6pCWvQ7X|G~nhzv!+9vd*6j-DbOb~fY{IimD6VcUJk_fNZ4 z@UEvmTa!WnYNOMajXlN|{y42w2jHwBqo?B9>csg!<06Yfrq5p3aHqkFmV|m(A#N?> z6EV@opJAYauv-PcRwzT#vUaJ2b-bud$Un5wx02{a;Nri-u43JujkA1}++STdc7%(o z2a@ParWa^ZStsbAYFH`*ye{i5L-a2BUT;to-Wr*^HmHOkAFT|$`GN*hS&$_oIcycq z$Evz0cxJ*05;}SgQ?m$Q@WZko;ZSaS3?~E~7t`l+vadA()4ibGp|H2Tkhi_Tt`n62 zn`;P_2d;K732(*tG$oRbE&4d6{o&~?-6_4xcN(hG!1Ym0B2T(Tz~`o!XR~fyC3(8d zi+~B7%MqW^bvm2uCFFBM@W>2<^)J2io7;}#Fmc;D8^XoIG5EVKRz%K+!}gb9#nsyt zdf$MO%PO3#Gyw>8maCUPp+gCfKgXhJ?L0ItcK32BUi^;(6v>JTZ0#Uv}QzatWEq|BvFutFP?vH9Ve;oOuZ4De0S+5REpMfVy zjRN26Uvs_AK1koLDWkqT=awf=U1qxvI;GM}vbEx5DJm}U2DxW06X+6-3&UeCkd?oael|o3{aeV zFd2*Id5pED-S&VgzjE-tZbySXJ(#bcYs=Hc&!{ic>5R5NirXW-O^c1nGIwBy>2-6~ z*Ep*Y&D?~U1c7c{En3Doc{zWgj2gE(nAWVeO<6aR1b0tW?Q(N9tS+vVMS7Ccax}JV z<#VT5wrz^xmP@3YkjbhiRY;Um$*KZaxZr}AQ;K9W%BU2Q)Qiire<;XM1Isy8B2^<* z%ONYEp#)$&KntWc&s7CECs8OYrm1}90mhOHnMuvAsEoGF+MZd*kjR<+F}dR<fa7-|uzt$MQV0GxyBgy?1oft5~a{C#qdnO}W0=N+c<$ z;6~6&EfVl~Zq;BTYXXii^&r5MfxGUo&t6IAM4(p0Hr5kHe>GYGNJH#e+3RsdnwBk# z-lq$BH&ai-+da+a+ansbNAhFw1H;j#yBFe-#dLt4Hy`n%$y$Jx`_T`J=Htc?!vz%g z>tmi}-#LAW+m2&|uvX{uxU5D?{EEXe#g)f1ua}4UjP2HKQ}0e3>V2|NoMqm;n`2Yu zFJpr*I}*!|*EZ!ItHoYiphCr#9R#UW*<0beTZ!ceO`5A(A^YarG8@Cz91M}2-HjbU z+i%0WPME?0=bzR3&@6%C?{|NG@_>yI3SZlko%d-mLbJuf0`M!$UgQ>P&+TtTvg~?g z;|lLjvCOxI45;4)zlfLyjyqF7^dCal?}zeeDbGicG_k}d!B6gp%qZl3chfhw8(E7e z?!;|JhQh`tf+yuCW(Va1eWu98t#f%h+N|g~ zgZD*KYMq!z@7@BS{^6Vkn&oi|F%)exv)}UB8TH*wQ}n$~0tPVo zdbb_YH19>d2uFnf_)hKDc7XjbchxF-kuZ6kv*UZ$x?%z%KQn)=PiBuwPs$MKbcBgM zOt?baXk=P5y$Bq@CyIk84p*10A8GAa6KwSri7`O#*BT*~IjA9C3`(=nOSQ#(&>vF= zlWH>!rR|GeSG}IK;6y$)>95Ds#QStW?ceppdHeUrV@p%GkfnK_zbm|NJ%!`q% zYx!Sds^7gTbbf^Z_t8UTfuAT(%GX&{clx8AUNulaq;SObW{ zL9TZE!74Hi>BI#J^V8E?!}H5_h6~mZ=h4<&g=QvQVDdMYxiL&r9>s*$>JjjHRwR#s z_Wr1z5BlQgXF^JJhx5M4)y2i25AhE1Uo_KfYicS#q|v}M7cMU+c*NH(3+YrT5*w#Le)@6;*>U0T%cLeT*Ag>8Ne!871U; zRp-wSS%dfhj;5cZPs=o++!Ab`GX-Uq=^z zkQWoFLcW$*FPzSXc(%jOM^@h85-+jx&Ch~z-fQ)%US)ub1^cvnfTQp5q0b5~Il?V?cILmt*<9VMh zd?A2@ILOV}MyB>@_wori{mA{M4!Izf=JvdLlG^)Q56d-zfBTC508RbVmVXZ%iudYu z+{@#deWuCXF{D80ksUzkwmhuaJhc5#@9g)O$ZYN!m@Iw@GaDxufNP0~^?3AA{Ea&X zzA&X*yc5>;WbMJgV{YM&FZpS|jS8;k;wJM(Xl-v%0D%l(hc=JwI! zE9=GT^|{G9IEPyorWRuhzyh`C1)}hC(axjuU}n9k_;IG+*%EtZXO<^*LTydMywwX& zneVg}ldluCzv;Cf!S#ZVyeVb)!9pte(0dX)M@Ledt~psw`mb8K7a$zjAI3A`9>vDz59y47Lx;o17CkF*qq5eRL- zAKRwPpOd4;1+vGgmnT<4c3`kc8<)3gE?-B{X?n4IZGJ!2UrkE#Fiw=9R6uTBQkIsyw-v4|Q|%r(y74kZ`|9;<3=e#Ummr|CU-l!IU@J!qc*%--qw9 z^+D9QHe!&~B<%|z?9@mN4%U!%0NR}E3|2^Nj*inHSU0r`jB%|RNo{1X{pz*c; z;%24weDtP#hydV4^)T5O-=UEs0@sta9ziO&&C+_inC>>Ikj64lvl7WN6y6hUs=M8R zx5Rzoz0=Y1}CH86YAA!9KgW<)G-Q&>m=Qi8|`ipOl0cRNfo8B+II#(7)*YO zjq~t2{4gv+?bxGkFLGq#)_mtIUvc1LT;aH8aAx270?jhuImukf^0Pc0GdJ(pM38tt zyK=uXi7jN}rAd=CuCFHA^6(^}_gLna<<(Z6-wKZ-achSB$>%272kF`AbW?!?h37QZ zo>kn_P=x(<$Wma6N2C{#gS&oe$S+nyJT*XeLAXu?m#F76!BO^s#I;K1-IF{vX&jSX z+NDr2-`X?>#fj;5-*g~GDw;Y`-F7j@Q`Y2ih3fCHw*Kc09ErW&o2*|dgCx(}KSiqQ zj=s9RWvV;USL0R{F3ow>-#O_j_O|AW|6=~86_~@W zEt34_}(Hz4Nj$!0@pIkPlCpV`jdfC;>$vXvK zS6$aJIS?M-@{8*OAuc{IB1wXgA)V^ix^P7+%cFc)8;#edbu*@QOLpm{P%)z9-h-tX z3r^CUw!dh1W8dtOs8L)E@6dZ5!T3#MFl=V?<@}tfZnB2x&tP=Ti0s5fN`DZtm6DJa z3-=5jaFLO6G8m_A*}gtldG~IOB1_oOFS+~)CqqFVbT$0W@A(8JEs(%<@j}b{aNh7z z?{1rl#P?|vyt9!~CvD$)a@I`avr-V-aG;2CQj$UlHhF{0HF^Ee`ZRodBf&0e+VO0} z`ZPE!A#@4Mnx}T(&IGsgBzxah=#zfpXxw5F+?_oc$;MSbn)PN zKkatAk-W(BWX2d`fl?;^EQTX~zbtlbhE=gGIzNy;jBn+IXFF2-72CpAFvn;FAZT%< zaXME!Gvq&0lJO1Wxz%3J_bLS3Qa74$QhzzR@-Q)&^puGsVSID+`>I2}+zhn0iNNm| z2sdNvdTlNs9|9SDToNIsZV}K}b~_sOUJJW6X+{N9FFVHN6g;10k2XEGwm7uievS!+ zUVxl|^d9@Qs=jAEmqodIz-}zdn_F25S!A9)g#jMeSy|#U(CWQuML{@I zmAWLUPcb)CFS{Uj$P4*l1C|_&+y5Avn-QYd*%(WaCV=cb>GVnbVm;XBy0zKw8Lv09 zVmHFVKqtWpxMJnRWT2u#9k+@8P(XXcB^ReG@8XhYCG2@=>ExohzWshb*3JRR1A$cR zt&+T3QJG3k?flGPvdK@|JR=Q{ykNwVpN_9hNYBgcHmpf+Y`e#3M~>RlBHN?Y=n*Df zE6K$z+;4e_ReZaHLur}Ul+@!Xy0MBB{}X({^tl`X4kVR_J?ErDZ==F>AV zhuhPr7_bqS^cWW(LYAHiclxmDnY^?5VC%V&3og6s>$b?KIN;l!M{2F#s7Cm7JDxWS za@ZW#Oi|3Lzi!{NZ#usQ7f`yL69RfO#ST)6Uvj1HV(p(7YiOSREU1Lg0H;5SPy9|~ zIDdr`o=o|)XnPtPuMj}P5h5>KixbIu~IFV|ujJgBbjgHtz?46R{nLQLav9cen_t#hCH-(+k%fWRdb5ST>my&>k+=a3-$nG? z$*tVVXbbe_Hun=HMW3`62`LAJY-!d^0m0q*Wc@~|5eeW~@G@%!X=oPXtC&8J5Pmup z7!|8o>2e!maBF?I5<%#znHl=@ys2)OVKK4qb>oIjm3%PdS>#Sb>}9T5ma(s2N-8kP zeZVL%xRyrNf6&pP`L2`m2!$o|rqf|?HL=0=CZNx9-g_ol2Z?#cHsC`PDCRv{8K^M! zO>ZbL8O+k1!!HCmK9iI=)}@$G`W6T3(5LyOg2@GZm@hk*ti5A){80eB(U_X7MKiab z80oqc=a||jMuEkJVCx~jGR!x->okb&N>G=M^ z?bh#s`m)PO^y=gDZ13}fDihE#KjmEkKz z)b_gR3Y^Q8ziWDYi=Kxj}KO-JaMg_QE6ak{su=c?#U`n7%O`y+3}7oaJGa8 z-Iemgs+y7xbVh1e4OItuN^P_a289M|WAeD6UfeDgL*0)4M0cRDq>-7NyFHz} zF~2b&vRA*^+t231nK?x&itbY}1w)8%lC9=_<5Ud!e@4R6>f}Ew5``U$GO%APsV0uppF9H2oaH%#IzWF<7Ky8fO06;hFfRhw# zvo4tzU;ww;V3_569G1QJm|5=k9G?jUekLf0;fj2V8Q*qFpL(bTwo{7Mrdc-NNG5AM(%EgT)PbR zZ?vAO-RyT#0FvRlm{fL0f0ng|5b5rj)A8s;{J zsL!Q@NNHtD=5+elfSsU9izzp9z3cVDR#B0sDFV0oYc-~R*`NB|6^SnTWes159P|`I zEXeij0``r7qD{mDZqbIzFSEVLWhFO>2t>7vSIV9S{B3`@G=jKk#GNQR?dHtSyt&c+ z&6U!~&~u}gURz|mvv}{cPFbR0lem5Dz-5nvLLN=@=Eh+I(q>fJW~9`I3AEu99CT6A z<>xK|@!-cq|KP+gbtXNR`&`4P`ngIaMRQWNboOg}4#o!d^LdS%ZWxyrOWhQb-}^j> zI_U4GOqeK(dS!on0+-l;x`gfp-GkeW3t z`=eIu9RVO4G}Z!BJ^GPU zXOmJF<-XzLY2*Dy&s7&gwy1{XUlBaga(&@8U1Yy&uPE5>`zf5h+Jx#MrV*87mXa1# ze%IX&HBnAcS4RIh?-376@B5M23{)qcty3hE)W^%>G5 zp3P9qtv`fs#$2uJM8tn%*tu#GNP(*!M-b~M8WI`^!&4K|0sJg_hGrhrvq@8Wgqyvz)O)L1z_nbw0s-{(G?EXsA*KN0=wK*!pDbZ0RPXdwg zxze0d>IOdHP8H^&C#tr2Uj@Po*#AsiRf&$Do<#y;%cK4vJOuRnv9Si0SG#EL#KAex zZ`+xZa(soTC(IK4ZbYA7JN(1hG6u`VPBORheHC22Xl1}WyQlvlM97e1Sl0l}%=W{A zQ7AXcS;aIWFF}gwa$dzuRDT(?7Fnk?KCPMxkvD;i49Zp);{=?>N)S1s+*x(yXW($- zS-9e?MP}8fpgTWt<<;HokzGMeT5QH>W-FO(Di%!ljv>;RAlNr8wC>`5a#j(I76yV< z=(lYp>}kvbaDml!1>)YivWaFlxkx+-jJV*5pEj@41UJ0jGrTL|F}X;1XOq3C{E9@a z?@wH9Y{u;`IR5<_X*p85DNG9jYf1Cs5$gnVr+H{I(Jv=u=omkf5Wd{N=QP#fNapeR z3O=jJ;lpQ7egQlE1kInn=Y&%{8cz!}bmidYsN+~0H%vTMjOOUVyJkyhT5NCaN|8$<#r5gl?X`eo-igbeN*mz!UHJ@a5tU)Dl$M32dY-Of=5287~&f z2WFJnQN0hv9Ynoi=(P9SdfCs7#>}8-B=*-XG=gOWE7y*7)iPLhuREG6=b4ZA>5h;P zG{KHx%$POo^G=;=)hR#R6r_F#)ddlRu+zeQS^sGiOX%>h`eV;%drE?lUpzQX+h)XR zir1oo0BT;l(C<2r-Q3la2EXBpIy}}TJW!)eW#r1Ilzq1m4o;6Az(Y|(EH`J7z!WH0 zK#mB-{L+`3<;(Ip)`Q7qZEioHg`G#q>9YnLx#lM#E=_%#+pl{%7ux&TXjG2B|7?S2 zKTKKj6ays|Bf)FSv-dmDv=EBEPi7&Ij|{-{ zt?M`&-PxtHlj~FwIwDwvH|x)r78cGYh+qS~T37OH-QZkdO8uS=m-e0M=T;#e4l^bk zUkJG%{nv`uyOcjMWvfiEkhjSF2Yy&;3`NMrJEu9rEAz!u!ag2!u_K!%g1L2rwuT%A z+fsf!G{QA;1BYsS+#>z)(`7QzJ47x3|oZVHKOFFog@gJtm;6d-PrWCA(gENGy3eJ7v@L4qXhw}i8*aEb( zO3$fV-JN)R3n4~IofN#wt8?)>LeRh|15n6n;yGd87^JFa-yk+VxiMRN3> zt3hCeRh_^o`=hg5A#+t@jdaZSATTEtrulGwLVKY(xzPaG&m?*|63P*2%p6H5&=UM_~uXlflFRN`q>9MY-q zd8~k5gb4G3gl~4{?ZHLBEk|r~Qob}Ea5fGo2&TG0S$k(|sRWTyC$}J=66JAmlop6k zYO@e|Ohf0ZWqf-(y%D)?$Tarel&bwCL@7I3Q1E@atg0)d_KeQ2vq0O7Fk&*s39UM< z*iQQw|2Bh8*Q)bwAh7|bH8}MTp&d)*Y-?@h%x=VzCdC|;W(iRmTve@o6-T6_hEs9t zD!=G7C&2>$2S4fB8&+5v&Ir+nWm>o`>Fv{axE7dhqKtDsnq+gz70^>W2Z9@rBAHD) zLgsL|c6+A}>v>w7*EOdhk2T%s3Zj~>ho}$Fh13?!+ZRZuV8EiSglxTd8*WM$Hi!rk zrm`$1ew`q4SGJOleGE->e)I5d;Ov{x0r6@Fjei7`TVUrG=)1~Sl9~wTOJ3((4bMhy z{OmpSNGboS1IVvMc)N{1=4JjtYSNs&HMh`gl@6y0NUsXoz(+C*?iReO-_lFOEbwJ_ z1EP^_SRtrUH9Ge9cHiG4{0tP7iVaVcmi~&mZ2Wp=it_5#bx_aH2Z&^Ycfk3s z`l_*-$_gxr6$v3GvmA0o5(;`$f2nh4cA|~ysn}J045#53L@w7YdIY4Otf$Q6M6Z*6scl zF@(c}uFw%7okpu5s5F)c?QBx#4FiTJz?J^y+X|=<8vMTFxHtP_K&lxh-C= zE1r&~3jaE(lo<(sHoTfYW}5Ns&$2a~lTPo(G^`o6IpeQpZ20HWN1jqq$8&as2i_hj z3MHyZ6cSC#^FB{5zZm~WrT5qI2mT)Ssu-~(-Nhc921_fk7|aV3H2Jzfi! z4$kukDnO2RTaUsdQdg8)5a9zPX>m*By(t8b>#f!xssf_M4@b;>x)Nz0nbH2e)jA2E zd6!h6sHO$B%%?9sSwaTWp#OVgiNH`gNBL|Vvu5Yha9RVK2o*6yYJ60}`}(1)p>#fD z&s@llruK$~_=}$(ebMla|tyj1Q z$_3-UuhO=Ct`&$#5Hnkp1daULEcB<*$MxfCoK~r#LTI28e9%Sy7dS9-=+$EzD;-^$ zuziIrJg`@UlLdQ``#A=X9)?U7aY8&k{;`}z4+5MC!9@*?sBlE@R%0Wt{k1`wBFpP2 z=XbUa%3K3qdv>li6;1IJ@K_0Sw3P_Tt6ry$HI$$t24Y1`Iq`VRo;DH)A_d08wR@;i zsBVBVixQHCvX+qrTt>|^o5e3`er(uNG&?U8;|54pH25FbE)ATd!>4>g|3T0oIfjR+ zx21Nl+@J_G?O!x-uJP+pN09u=?e?J#4A51z3h5WFs?wZSRn%}NF?U#2D?b_Ca};>1 zw2s8`ZL75C0(s-Bjy5K_tRQC;sAomO)MPRoecBQi&-?d~<7@F&1oo~ekDx>n-K1tp z8k^AnjRk1=vp+nKwco-w!>(vEM+x8F1J8w?OGQ(z@R`dQ12Lnc4Hz0a;JFdJcR^(_ z+5iN!1@Dnurj~1xKJz|Ki`=AHyEq$Z*qWVWaaDeGrU41me9QCe=~^2~kfYqsDrd_4 z(&6k$o*?4|OJ9$4fgjo{ifZ+fi^CfCnouDi*VpSUDRW*bcS#BzhpjD#?3io$;9=9+ zoBG0v`wcZHiW&g8)c^bml9^4T#fu790+U?ANxnpzK=NF=H z^;HaUf#xo%=&yfcghsD2dyRm6d4Jn{LTh#&-D4Lg&o-%T(%d_rfuG^T-D=x8>Jh;p zT$BBA>JzMu2+y_zTz%A5T(gmv-v4N+|oly}fun_&* z^+aP?xFh5>yI-?ILAYmjrj6L)`b9TsYLvg8f_HS>gG4$d+tn8s$66g639H;D3=RZ3 zYC;rWeQ5)>m%`;J_+pUEiWM(^Tj$~NhFt2H7Y%RYqVm&;qB!T;K4{xGK@#5D5Rsq? zhoC)tgj;3Ik2*C!a;J24UOp)FkSp8s!7!nz8>Vqlw&?t#CxG2(L2@8^dyR%jkFD1| zH?U$#i-_Ao{0)C;GP-IShHX-#k&p5B`7U9_nusp-F+!7C9(qljRh|nRJ{U8xqacvV zXJsJBCa&uoAbl%N^X3bfFvc0C6P9%TzVm1ONX z2HbCyFiiLAaZgxcxw%P~E}57x*Jw7ao~c-LIIcMoj!{9ZZ6%-x-=2@fZ)Y(ioYM8g zzD_#|g>g;c*yA}OjPiTpu8Z=3GLjS1 z$?txWK8gh48nIl=ZRx7%V)W%0OW>AA@E>!=wME1or!Mzes4IV1S3*RTMD^boqr>h1KLKQM^}dxj*&~slxlSvx_=+T7))SRkt-yJ^o=urG6b8^ z%{KWz!GqmSQ?fU_;ft+1cW`Zq`|3YIAdKK=&B%Nn4dX~?8}#h#7XJw)bR%p#3%N>H zCO=%Rz7dOmLWp*k_t8q9dGTirI3z0YKiHU5YJ$k-gly?@w86F@y8qx^6M|N8!7cAa z3r&=Ul>R5II8l=_j&3R@$!0?c{)!~YF}UvqTNM++Aq(&G3N{5{CtZHWsBgN41fBf7JQ^$Z- z^RBPgY}=7TFtq~lFz~dHfOOvo1q_IBUH}clWBg7%h=JI~Fy8*wbVjmRK7WLQRn(@% z)JUV)LV&MC@eIX$eB0nrjua#?P4s7tD8MKvaA=$wF|SEmuYtazXxE)FnvGOwHvd@FxTo) zx0DTKJy3b2+77UrIeby@snE;3LxpLrM??V8Y`h>`qMhOgIGwl^_c&50rD_z>D2O-< zUF3ZU6XraTSV=#0k5*O7g?vc)bnTByl5j1#4_UlAlOZ#I8D zMi?0raaaH?D|jVl(WFfC6x`(IV0wLmT6}o9FJSGQ0q_GX%HN%#>?kp$2_iTr3j)15 z3H^dhMxsMVI2YoPN7&UcltAMv{i5h{bVJuUxq&I<90%tzZ2L7vrpEfb`TSYH(%733 z{V(OLIR8#3-VQ(zD_rE(14IBrASfha{>+n+uV4!trA~^tMZ_7ED>Of0kRV*myZNBa z=Noj+JYUR-J!AJHavE-qn;1CuhSCa&f?PR=c<@lB?{|?E(lynNA*buOV?i!G-etR-VKIJe{bk=n6oou4_V_^ya&6ek zW?y;-sF=+)VAacV#6Yyc`tpHGWQ4IzBm)mGAO$WQ#t=BemkLuGYMts_^_bXH zvp&lOr8Zwf0X%cmQ6!OTx)lm-f5v8h4>bc~E2LyT4~p~(4Koy%HhZ|<25TsL zA)jwf_p8J5RBC;G0`VqRBwOh%Ob=DobCO2t&um*~KfovnMF8)|Rk2VaYPIOPO=KA*AYmZVQ)KueA*rLj#?MIzUgud$)(MMI z#Z5F2^xZHPQo|@PE1CHkux33$4R6}+s zvry}!%;q-x+y8{jDHmt41@=9$?GTcmEbg!H@HZ+Bx)Hiq3m$Piyny{aej>mSnp6tp ztCZp1JxsTaN~c$bT0}na{+;^Ft_^DQg=2e>zv4IeEex_iHvFKAvRzjFPN0h%;ul{5 zpE~S?edyO~<-L@^B{9gbeiVvbdQb(Ni7`u8+txo3g-L**IlOyv$yj4YV!()A;L_j% z{RI{BR=tVjoI&Sl_}r}Dx^SlTPgGuW37$j>p+Yv?us{58N`QtotKMd)J_fRzlCFH^ z;*1g&ZTL5ijUdQv85-Aul(A9~H^h}TbhuNov_@lFP?ov@ZsHdrwQzJBf(P)JJxS`f zxqpFRY9q43z^5lx(wre{Y5C=qvy~6m2Xo@9Ro^v9ln$2caz`NwjE4lu)f|@!j#v2o z7Lq~*aMtg_{p#kuZv5%6baQOjODg=}-pfOKm;7ko66Yq05dWfqzOWwhv@2$X0E!dw z{=UH9y)$PIk~V@5PbJG05bL0ZnE`2~Oq4EP?2QLt#O!;ibg25t- zF8GdSt=o`;>l^=7tfrBL>Pkse>oFO0Dyr4p*l&_-ItKNNYdYA$AX#@tHZw1REIln$ z?C+(*tcHkgr44hel!d>99@0E_A<0+zpY=)@6typwEsQ`1c0?yETxG!4Y6zKA#`&fb zdXT9<)DFWB4^J?P4)R|lg^>|I)mtuKvw^bpK$W5;N`6#YtQpKup(@1+v+NDVnpo4| zS%1RTN$uU&a_(mWOt|6UrOBY0NUsFJRP(P!1iTUd7Uj&A^r!1CJjL(L|B6rYcVeT> z4)$%jH(z`i(zs`vO@M;B_MX1$fmcX#0&=vZmEULmcmkdAEeM;s$iDL0lKwf~JWC72 z!bR~Rr8`S7$480;CyIEuVHMRlljFI;!oZO03roj(rif1AjA4ctR`gu<^T~8fSq7>i^L{B{_Gj?}1%dKv-09+jSTjYnb2P z{YZ{Uy+I3ry|neF)Z9;*NMkg4-0=bO8plr0W@hI18=bh+hjQy98W zz7Zn^*8U2dOmz{#5Xo@-T%oYo^`C-?O8Pli2JdjcEIwIqRUOz@_20<~qd7IYR69my zw1@6EGFJYF8)HJaQVl}3t+*n#Ad}}5uZ~$=&aXVi0Y+Va4+%*o_osRl^EG~$X3?;i zWc0c&=cWtQns3LKM`erO2{1fyhJza@f+`QnMeeF8wYDhEt5qPG2FGdt9Uw((iP1$1 z^P$suHRT^QZPzQA`^#59GXG=11yYD#?C@$IfOU*D*N)DB9aPTnxXp`y4xNgKpm2O5 zM?Qb(9xDiy8(z(J&FU|5*jCYk9V53k9d1z`9%ORA(wwnTtuwyGjn?WrXl?KhCq$BP zIAOpRNABp7;!s+y7T>d=={80N^1X+6&T>b;V9UHYy?~4RrpVgx6r^>3mrXjH{ zB3)A!fNy^v+Vq@`ff}OUWt{AS#NjA2i=@l?_pV{|?)RF+?{%^dPtcNJo@Ad@eJ}m) z6pj#%*K5;YfyTew07m8=cBx<152xHCm=KW!F6wu+QubomPnDE^NfhfU`sjA6HCXTjrDn_oDqD=ydZGfa}UFc=0K z)*`Y6;Vt>V&=#YN%xCF2dH}bd#Q)sgn8M%tZv)Nb^>yf}t>xc|WQ%}}WQ_iQct~J} zRlBjp+i1&J^`BAtjc}aN9I1mbaI&GZi1y#vpbEp&eHln;n^UcYZ;RG*E`x<*%r-Hn zL?fGz!~9u9nr!=a{0$6$vA5kEX$G_-3@f_f3~Mqx5E%fv3*noKdUuCmbDn5({<~>1 zSPZ5WD0j>5dl((#|Bo>go|3+ZKPAQb2EIK!Il`)7R(JuU~#Fb*J7f4vdA#W1OPNzaO~z}79;169@}{;ehyG- z51i1BK3&Sq`#&TietEh}_p9miHs4m@pusW4_j7#nasIz3NO9}sxOEYv@mV5t zDb=n>ouTMp?|%1>#KY0cl|}2tgW;2e;Y-xOL_MWj7_TmyT*T3VfB?0ArdtP=1qr*7 zA&0;Te4mL&YRI8x2BQDb^G%lTg}_TM&C|@u^P2tBG0k)G%bonnqu86)e0z9zZ*1PZI--t#1!>v89?i{l0 z7?>KpAj|a_06^PEX(U+wN&vx86lxB*XP@yTI@iLCdNsvGlgbt{l`W2+gQhcd8qFDI61>HaA4?7=~<$7{lk8C0%Y zl7+~yzN)6{zpO;{N?D##J`^of5(o$Ba`pLkgz9^IO%S9L002l|>ENVOna7)smV_J6 z$k_~{ECHaH1+A|HFWi`}NeD#rJf7|mOJZh%r37Y@wflUh6$KA84#uer@;ZvF8`X;2`V&9%e)b zq%o2Ii{|~_9 z>rs9`Pk|by-KpiHI}D154m zd6MK}r&+3AX}U2cJ}Y8QsAL{WrWY5w{0+MG z3J=etougl;&T3*jty-{jwl)TJSx}!1hRQzaV0-6f3Q1&Jc8i{$%QE3i8_;_2c=ob@ z@rmWT*CQpa_U`E0=0%__GvX>k7kq##T~5_=h&tb)Otttb#Zo#d7xVKsFc8QyYO9X| z06;%r3rCgz(61p3hYuex6xHukyF_QZr zes9jc=l?KHUsnhIMMY>hGj;vK{fNo9XVHz0*IEisOn*+-V7w(7&Izuf=r$sArS}+? z|FFY-da(KnFG@m~JRIb-0GiG!Hwi_wK;xripe_ye={T`lrZQ3aqm19`*r;P*{_26> zVr9E2J>p8r?5z<-q+k4lPrlQyIVaftiRdoPu!|O`UzIM2uCrD)$KTgs{U4o!wVLu> zPvtM!*za9NsAyU!4Ndt^Kuvot=+ zFxXNE+c8mhSX4s>7{&j}O@@PjcVSZOTb;4LthQP5ClmC9|?J$vadY z7gv{8@!`Tjn&4G8!BU6qBrJiz1rLtf-v=!e*nf##UAmfIN39b(`6&CH$@S%x)5L+8 z@BYN;-w&lLi|#Uv9F=o~dlcMu^vhqtK~m=GBA)}|L~x{4VC@CPr37E4*}rs4b;9IKpRWxbA%dO6It`^D|H3l zc6X=RqPOm0i_v9|!&5P)AuX?WEInltf=VFN;$+{H7(-u*lH@ z;3XoLM@i5O=P$Ib=w}I=G-V<7qR$Z&$Y;x7FMg);ZR@QlFS<*%|)z0^Y#_+-( zWAgA4%5MpU#!S9Ab%!pz00M3IdjSQl&h4a5U>HpeHV%{&s9`gcS(ZxByyxX68oT#< z>6~ui{BQwugKSxhHu9##7z{eJ^|P+mwk@1fQ~nfLk5%*e!%5BfZ>pe8wo!3XrRj>T zQa!e?1-4!xTd8!*NS@&d z&H?#01b94ky2^uVu2Gvl(2#W(r=Nm7nQ%YL94vcjJpiUfU_MKH3%fdyd}$IngMquO z?YnGV9_@t$v%6muUYpYuXfPl`Cs!<;@_DR<7F|KaBEYcJqTT(pc1nxh-`%B>+)=24Myp=Dr~)rS;!|V zPD4KVr^9-&4SoW;5mI56Lfgkgz^FNCE&cvlP>q=e5T*ab1^UkCOr{)R8?9pq`02^f zMWy(jW>DPL`Um;9>q2*$YZW%bPgd2aWv-qH-Inuy&7ez9nS;A17}F?ns}azSu77b7 zDx6Eilcbt*{w`_^5>@*Y63;m#n$@sm+-#zd9-**2(>>)>xFv{9KyutE9)GnUl0A5+ zZ*M2s*c8hiIKr++{>P{V?(H1lD!}plbLCY!#i-ByTXcqTwt<>)#u^=xIx0I6<@D5W zY^{e4LE)f-@ro513AD7X2UT)5&vv_;^^abM9}RJ2{fdEQ zTDs!9$cL4)f*w!C3@w&RzpRXNtg=qbSzZY{UCv=|{8m<6nwfU3?|v-Ys{UHfejcMg zS{_?hmQUG85{;}iTHffb+B!%>PphNr+iwEA7KlrjrE%>mrX)SV`P7EI+p#i`(fmav zkH?)4QdEK?vZMIg{viG$UKkj*pyxg`*V*h=Ef)+shffsW@>>&O%IH#Frh`Wd7v3H# zV`Rm*-=SR#3wNYadD%u2EM4yfK6!M5w;f02T>3{8lI8Mbc%X z>`tqwEvbXNotHfzOY6rHx4Dp1`ZS{XV#S|ZM{>xZgoC4=f)WDYnKD1PT%TqOaF1#B zHrDc{oc6^4e9(#Db=m5;u|lhqljzjBIV<22gA$6buV0Aaph3Ub-&Z@W)wL8T!E)>{ z?CPdF%CqL z-q+=*G^tJ->r+@a;WxiP5q{b`D(pyY{6`D0gtD;z=9pFKtE56ZF4hcLTMwMwl9$2F z=A$^@RpWh4w?aW;W{n`X!p>Y7rK1R5r1p-!V1mj(nHm@xwr~yhup)lzTtC3ccnKZS zMRiaNXeU$MxN+9rw{COL4cg(+Xm|4+WHb9-ENW__)!Mk+bhDHL(|3rs8+#G!)Jtj4 zv$e<{Qoul<-=F2smx-0${28L%h+RmSlw%{_ZINTXfC-Q{+)U-wU;~fbo#wv~{DXz3@YM30@vJ#F=oZOUYLX0CLKmQ=7kV7P zS;5}`Olbh%Y0S;&)!LmAt&nu0W}X+)+kG)VEBzDjWxpTw8V4^CJE!|&0Q1(zV^^0- z!{(%c6T=tj=yKI!^Xzp|h)6pr_g!2o(ks$okmgPaLchVgwv7=Z>>)@Hs5+@so?Fsf zZ4CU;g?@tDyd-KtBKA-hvJ)K0ahz*J@sw-lthA1GtCw;%nF_0tgfa$Y{HfZ#9UR*3 z`@`WL7s{kX-ye;#f{>+sdWYs(W~CPU$PC6~ zl64ZK(KV@bO8g(lpC>H!r-qd^d@ZCME5^ePgC$TR@BKi!K!)lY6jGuD%g%00EmD+r zaJG$ewIOi_o*9|-9)P0+tQ4Aa)p=1`ngPJ_6N+SI>+>aYt&KcsZHF*w!(75 z&8_z!UoL$Nva4}(Iv(a2)}$=Yy%xi_(J&x*ScLdB6pgdgMnt(6F5vj6f%S{Zr4#iK zLm=`207hMWO5-*F2AB?Av>eTxy-o6bz0Qnwd)tfVd!kf+{UM;%;0EltMNWmT-N&6(n`SS-u~D``EzrS*wf zVAyXF$bTvHr#L66DQEscAm>?HcQOeK$LrsEtN1%}z_TbpMDzp|?@>72jUFbsOl)!o zQiQ+45mWH0wP#jTGdd$=Gl06(Ii3+nPWcKKB~8e1yLwfp*NbnBcXF!ke1%|a4{fpp>PE=MRh@JGkLRq$^qNe`{lmh1$|=rM zk9RrenXwka2c&eSrLKn;`a(i1>UfKzc<|sRxw=M2j&XN-%wZnA*2r}Wmu0s1(Y3_} z#;lA&R;c^ofDZ-rLf|g~j#5HXTj3%|%h>n?NFJIWL^!<`N0?lKlfr-F7%xYYTmt!9 z>yr3Ma|Auk1AyBX;We$GYO}PU53IFOLU=^wab)41ReT3 zt*TkLYl?8WYN%S(za1As>`QUaV|8;pj`O*>Md^@rUJxt;vec^hb{S^AXhQe*2!N^}9 zEl+Wm0<=OYj+gU>wVNdcqEG&o^*_|waAI|-#5T891?ypBCC<&cp~&`kmsjNH8gGxL zYgfULYzCb@t%q|c76*wxv>I;i0KZnfZKyGQkk~_NHAH(b_UF4frOaxuR-L9Wy1CKw zjkHo8H}GVy8ZD$-g2>D(8qor5$=6|m6AqQ7fzJTlBbZ?OK&Ycn%s-+nZ^IdOCLDRai#O@R9s znYK!MsA|OQ&(@Rg#$~3`i2#xzbwX2nm0kx7!4?$&>eTPiJjLzxWB0@D3rENIde z#=e_Far_Y^RA2BWp>Tn0;`9Kc~UI-v= zBi`rbg+mSqQAMrK3k!b#9T9viIIf#JX5*Z$eT%xZ6ln#dGoZAMEB?aq-|j+FAv7ep z+dsIkOdYkPN2*{K1?hiKo4d(i#>4ts|7|g{FGb z%GVE2F+<%VU>t1!68RIgwyHW`G>c+a~O9B_D+d0uv( z3LwNX`>%C`;TgXcfp~5+<)@_=Ax{5dCp*UFG;!D4z8g4V4g`j-%Gib>)A%1DCtdW) zgNe5ht#wMaRX@_F`U<`z&H;q>-&PU1V;UDs$RYj&VAt8b>+$>TZ`1*?dXtfVcgGu^ zVyUUJu+>O{o%8$2px(>ZYOBCpU83%COrbEfp!S8m(dr)$AuG#$w|yqu@|MF)rXjZS zkdcru+!d623`hjT0k}dE`PV`MlQ_>}Z6|R5{Zx%+^;8zy)s7*cRLzt=6PI&* zu(3vJZ&Fq7@dKb-nExWM$ZJHtV_5`=1Kw4UffltP)Q_BBzcpMsJ+{Oft!NK92k=TS zxy^lI0pR`N`|y<_TL@WZ$Lk|@E_-u!f8xI**AUVe8J)S;{mpFQO2I7#M{#RJ0fFcu z=$CE854>+|$GFUc0hb1jui){0#f6^aQ`0_ED{4k{>+@4-Hp#%qP_sC30Vkb}APT7&C5 zE2Is+d2o&!!uMW_7kriAtu@=`T7c^=pB8?@R`hPYNh7G!h`_}&c+uOvR->2zex_gt z;WS-`Ahzv*)uzGnA8a@E$7`{Nas#U2*bAr^lr&T+RkY5RIW0l{mjQlN$m@H5ujxu` zSpZ-tg!cXFkuM}97k)YiZR!igDP=~Ra5h~37~zL4)Aj{#PrvEsYYM@SUu&fD0+Hji zv8gMd9gZkhfq`Nx4)B0In589qU7-p%4G=$rEbOk0H}vsApeTtsl$9xrB}K#Mi&XB| z92`1;|Fy;Gp3UDtwnLG2Ys|APj7Jz4$s_Aa+7%`F5IvqzZ zD>u*)I)dvmr@t6OQwWR6I)s)T7@v{;Tz^GRtlHMsTJAHpZ=g@@(8ds}J?|-P^o~;W z?$G@&A7g4C|06w#1&@xL(YjRVL6_xOr#S2%XblT%vFKf`2s{b)M(-BLk=pcB(#VZC z0mzU$6{k%d%8KpY00xX0J+j0p()4}F#?VJUPt;shO6Sx2QSw|femwtQS*S5U-G-KU zBXY930NDF?@s;iogoYXP_sYRiwEn0;Dbz>yllZrW87 zG$IT6!66|>J3=<;+b$C0nDtIC>y7eB?cy-!;UaZOb38}x6l2kO!a|0@aqg>G0k*Ke zEtE?xdf>X!6tAtW0UNw)azckMtuitQLkc8lZ%GEbc!iNtT434M;LcA@u|Q{?1+clJ zwuIK<(fXDZ?(^C=6ea?tT;AyPaErLwgpQ<0-C{MHdS~JMrlNswi!(;VQLSuB>?vk-_$cM$1J=eD{3!f_G$LmGe%{8v{F1)DDwN_N!S@ z7)A{hl+z+=>jnyqmIS4VPTmy!t6W=u;x(?0okS->oAP~1G+?7!`mZjZyXXW%)C+bY zG^Pu@qJYq3y7qni_uOd3iYt|fRQvX$K->?VtIEpjCpGgYXSJ=a+EMJ8ar)JW3XRkq zG_Rw0R_EDKx}o10cON;EN86;$_^vU$Jn*L-{?P5~07xp&+HC$lif*MTU*ZwpX`I1g zS``;#F)F?Ci<4g2Q;6WL6TaQ#(!*G!$XfNt=tq^+%p0{s{j(FodZ^BJ?xQ)JcVFf} zpwvE?ligU}#SUc7TWA}XJ^_=AZmSQ^D$FW$EneJv$W8?OP6jFhfWJ({o!TcfyJPsn z4*E>SO1|)L{L5}o?o?)N9-S?8B+R+y3%1zc4$xxR zpc5IXf7Q`ioms!4`k4ytjV_kVfc|f_L~C*v&<_| z7&yz^fSgL=A-uH;Gkb{c^S-HEQ|NfHRDS8AUq~oK4b@_>7meCTxb9Gl){$$ev37+K zUz4eUWdGvHHPYW1sEh23D5|%ym0B5UN0qtmsIb424M|^qIfUR6B9BbkhyJ&c)?d|G z_WKH}k=KB;?Mb^i@vu{tqiiubJW%%6o^jENEBHbR^d6)_3f^)~Pu|XHuBt;e8F;+) zljlEsQsAJUgF-c2-_br)>n+g~+ah@IcE-Ah1-I#83gFu3azOq716h6uUy4#Mm$=hw zON{INz)`JUqOKwB$V8IcB6VWis*Zpr`~ixiKt1E7TJ0gv-jDCdc8yKWQFY+rI{s%y zMg6z4_962f`Cg1x7OiI}Dm>OO=9PctqdDT&{LjSX4+D*%ArLUAc#hiPXN11XR7SoU zj0r7sIyNK!DonrukU8pbFYEdGzr0wB`sT>r@gJZ*{c2~XPMQ%^EeU~{&Um@eV zNGKpwa3h~h=)6zyAY>0DYZ4kuU96{oT;Z>ML^5~+Z@oQ@N9@vw>Xc697~CM2BR9Ri zhi}94#T3dn%$CHksTY6ac_COzN`0o}7pmpSV6B7s05C`Dny!`5T;!&GOxDFY^Cf7r zdahN9Ok}K9)_-CvY(0SjDQakWrlEYeW-2EmC8V6bmM&VAZTFYq1`yyeoee)Ao%GV{ za`N>LYl4Igoh?-^ay`Z%RIL3yCyRBRVj@G{L&CmeD+^T&33+els&Vro!qaLS`m>#b zmO2nLU#tOKU8?S}59eM)O0r=+JzoldaYgJuO)FFdBj`qc5qu01xPU$bHK1o^JY+L3 zg-RK^#bJLYB}*MbCFcAUqD*9*=Y;*6WoxPAowMz!lP#umPN)Ll&`~}TIvNyJ_-~cS zUePHtRNbs3jsH-xeZZxIU95H2;?edewryEfGse%GYF%tq)l=e2PMcp#w%TA{SH<29 zMN=#vxyJ%BTT{-l>nGS>3$pweiE0V(vFo%HIXz}1L0shPlclzGIgAS z3EXaxE>7P{!OMewiy+(YwfavxdM+VXvdlwOd8FJG+mp7&#=ui$mWDiUzS?shO$kCA zTHH|B=gOb%Ads+u(x>M!0#Pk4A^RU6ijYZ4kVc4EoqotFWY&BMmaNVAfzS#VuY_C% zE+`u|rT63$dhu8i)@d}3Y%jehqi?zh&x;wSd3*}8P~TDYCL^=Lw>OSlVhc!^8?0*Q zBZm|ZAS5zqA|f-ypOXDNkMvc982aSFE?a)IeHKJdDJ7aVFDTTVg*M+@Xi(o2&{|76w(GHLO*>iP|qJS|A;hRbh?Cjr59~Wp)!ZZ;J?jUr+f1Og9yFtaqAT6isGv9 zpt#Zo2ZA-Ac39u}SEUVZj_f7n){pP52lEALqYbm76b;h$x~j-a8)lZ< zuFsCb>&nZYULE(-ruE0;Ht>AQy_T`WJNF63z=^2d<%(CD@MrxM_5&fo6f7dY@C z2u}*RcEwK=+M9vzL6PIsbGKcFu=qKX0G+$M@d{wgKzLNCnX@s>u^pF$?YD&OXoT%~ z6L+&0x5au;7WOD|mfG?x{tNLL%nE;4j0XZ2;G+Xk z$0WlRwG{pv=BJW|1pbzJ7CC*I=kC1Lu7{{Wey@B;LgE&e^g*c=phVQ9&B4TV|E-en z6ENwx)UM|XnTP5Yg`U=2 z_@DWnSfidylCxTv_@BUAstdsgvXCd^WF8)91!x5R+V~qfqMj9yL-n=8~STpMK z1~?9uIMPZX#L@LrDfgA%{SYRp&0^%gnXQ)DTVNL!e_}9?=bZrulQP}Rw|b33`^E@4 z%9Q(y{=v950+;!M{)Zy~jgsh(-+fabx$}jG0W?V!Ka_~otT{RrJKxIuZ_E{Ut8LA@ zTgbl@G4bgxTu>0*qb*60c2kn3Q39u*X)DrzwDtJ+ohq#n+w3DnE5k!HCYnDdj4r1?Q_qOH_Aqs`(ng+fYh@-&|S zU2$hYo2A&>1L}r5$EZ&7s^Tgpx`t7Ecy-xc3{JGN+0b%8M4@DPhm8{B^7{FMrAB8v z>GE`BdxP4?XV4qB#pEI3T~K!yvkCUO4=Js=V9~bCc7 zdK~9=4`+ZhIWqnACiiku`J*kT)IPfmoTA2zev1)Sow^ zDoLq{A{StKfKKhJYArv;LJD=M=kx4&bT{(>hV_Y9r5~L;L;w>OG^ZyL#j(lA zVgZIbh0|p`R(XdLujuQGXGh|9R{m@Ly|d^lB}l4~6EexJ6(#w7Q787FB4ZBO*{+oF z-;5kuxbnuw^2CUBYGr&!;;dUU48uEZ?4LjCrZIZJcICiR)!o1jR3m}&dHLcM>w%{$ zD|KUisRY5txKw@x(=dH~$1-NN9AKfr{IvnKi)@Kp43`+k((bpHR0F~QNEaL^kWv{R z>D_0iSwau!LZ!cawJ=Cdv9jdRVwWVRTe`|r)i%_~^hÒ^DI!P!{!E;JFdsl+IZ z5Pe-aHn?|LyEyWn`iQW|VHR0WOtT68-nX!hMfZ!8RRtB{>2JU&gM1MvRm6m`m25$b znqRxVcF$W<;yC*6Sol8Fc#dZ5%l0;Y#yiH`Y(Nl}X&;g~ z^Fz^%{>Ngq?nrbsCKkg!fqa#atB(gFzQcobAs~)+dK}Y$72ExMe-VX3d;M0&1Wj_h zX>*c3cA!)Ptt)8b)mHIF#r!R?0)egI?c264GzX)x{*Q-5u9hk2`h)hUoDI+(YFCVt z1AWFtbqxyGD1hG!Ne&4`Q;5zD(xMhJ1%X5j)S9FEErDvZCQ|FeS~(4>?%$LnyR2fB z1C69`U;r}Z^ZdM-E1R@R<;JvelL*vv!TQ` z4#-f8S<#CF3c$Eqh8tVG-~rN0s!UlOr`o^{=S}ozPPGPYY0))rv6y&mrk70R+wd2` zCZIQ&;$+*R&L@raPl*O1CSvYD2EBStAEQVL?KAm5=c>;5+0w}|Pqwx?BnY$@JSoIJ z-KJa|M-R(e)aXkMu*7#XcHzeW6pK2!-7Cc6l~DSn+sO%K_wFnHMn$|!i(vos>H3hn zcR!D|a(Y;`J$@9U#W2`RTNdIzC0+bjV--QId42@#MTJl@b^)nvL*n z&+JTYsZ;SsL_q<{8~~TzT+SxdVC44g{TmCjg7fnNV26=|#e@VD=>Up-&Mf;VIRmpg z@$!>066k6YfM7J*H85ikR?HR$v zhTYL1*nj*+<&r^jbK{x)8K05s`731ySk%)CgAQW*)OB{2#WS=w&z zzCVA-1m2>Qh7t{uRNC|K+K^G;50IEwlS38S9-(rH1gqB9P_~^7HU|J&dGak*ZnyZT&F)BiFTHB0GY{IY*i?Z>N4E$E!Fm#(0_U%l%5S&+$>y z4uWb_-MC{~Sa-QgS6{5`uh0zWMUt9UxpHkkhc_8v`;_2XeKnR_;x@nHbB|ksYE(0K z8$ADu*?Oal59iK{V}3grM&Hq>Qc*b#B=Z_rorEB-E_=Ol#bP_eE0Z`=tUloWu-TE~{5 ze~+3Da1ox6zQ=H>tg>DhMbpgdOgy`{A$Yik#3Isye;`9lSXizKTS$EjkWm$zMw{0x1p+_Q7R zo>ZT?^TMvJHF=pj);lUlG)Y<*JB=i-M1zw3^Sss zSo@9c0!K$#x<(Y8$MiRJ6~lUONh}I&ZH>QjLe8;pY4T-a@{|fsa?NH%$v=NCsXNog z$2|Vd-P>s4p0KtRi)>S(M-?G0RLI}vwAK}79O$v=p09c;dmU%eyr*`VaVZJtn@2?iuSx}P9`(GLPA(gorJ76=S*&0QdYu7R^p zz?X5pApG^W6^Zy5MP{ldP`Uuo1mXY@%ohx~8n7pLU*ET5_yRKMz%{F1v+qB@dE$b( zYLo)t(*uE!EqhJGeiGJ!VDNZj&K;gjqx#o7iT4SYf`|9$%s|z;{kaAt+mS7XX9vXK zY>Ha_S~N=&RLMS5Y$z%T8g2uXR*Skjb4SVcVZ*5wJ%i9I?*?~g{ zdkSX*Hyd`XdL=8UlfSh^|9GM@%=)d=t$mkn)+yR_QD22`usp%jV~^L)`V^r%FSzBF!GH6bC%sIN^&2-xmB4ryh>A z;>DbV=<30{fT?Q=j9>Ax)$=F;IqzDW+Dr0fU?La`d=<80 z8zKRgVg{hR@|@O~sNzuGlo7H-uQK||wVNdOXE31B$=9pcH&PZs7W|}tDTtr_>|};_ z)JS1U8K$MH^*qQvSG5mu8Qidq;y@}ltfghA%Ss=_-2*f?Ag& z;iL{|7OuqgXbf3Y9;e6t2+&Yt5fE@2wt;K=fIwuXzvh6G1?@}elQ#ZZI&ij)55b)K z7Wy-T?#lUeO=!I#mU?Hu zI`OhPvF@|464>>b1yonQtMcpd5GSHd8_-vNISold1C8~KuD{-A-EYO|JpHNi3KX5I z*7@6za)J;hiGb-mYbORH(O;YuM|Mum3K>Bhs`=p>itL6v5^#i)z7C48p*(&KNNWhSperRwZp1Yo2zNyvot1#IP{;M4)*}A zvnxip$%!fOdXGpKEe3h?W5C@(md{-c;r)gm1Iee?;nIdv*|_zp+N?{{nuVBQDW!`X z5$pD!{7-93G&i9MF`duRHS3g~sw6k-asvvtB=)b1*J6)6cCVD7;M&=snDZ6A!KHK6 z17dC^caF`bz3ARUse2ng(bMGzEnxOG8=Hmk)a|QdfoU`OP@!-AvE83RpQB5khe(+e zH8!tcr(HG_6mF7``O&BK*R#W{*U+*uN*@(I!74k20~fEEaZa&91+q*Xdl=0rR73Li z)yCeV`%h5$<}(T-&xwT2OMPx0O?b|`AuY!o%~hFcpVVrNG6Zm82W_jxTF50Cf`l)w zrga>G58-26oo$cKN|r-g8>nP>RAk&7Q%^39mU*3_YZOotFjt(R7u|vi^Zq!iI0-`#f>8DGInU6{rjfZG{-b9NT z4$=wKE>N=v(%h!6#$3mrK~M}+QO`| z_ej^1lSh+Ql=*C6R`z{2P58$tVa3t!vF@FsJ4g>8kOiTgXUT{AZ@m_hyf+ut8#;RL z8wsCsbY2R4&Tr{ox!$i&5v9Y)@2V=kD}aiFLrK>mx#NuqHe{>KYv?dbGR^P`(e)Rf zM4Tqn*EVZCx8>Htwsd!v&UE2jBp|*C2p)Ft5Z$)ODhs=N$%so(+q3aPS9*7{PL!gd z8d5Gu=L%cbEB*ETH}Ft@Gbqdh%5(RcPfQ7!Pw|#R;fbYZPFH_uVwTU)w+cjvFy8VJV8>W5-8~6maQe#QvH=2J5SM6}EPErV7O@<*h%%OAG zvQXjgK<;=b{mu|@8g4o%uR2;*^!?21I;YeX89m}*PF{A$qK3$oA&^0^8B_Vb)!ek| zv8Z+=eb1f59Ue*{I!H#==j%G;!=ukGl+SjOPiV(;71#LS`g5er^ZMi13S}08firSN z?{~=|8Cqv>RUXA~TMM4hRt`_4lPxF2V_d}d1#n#%@&%P@Yz4Fl^+$ARY^OAv``cNV zt@w7);VGNxEdr~cUbCI z{lK=WcH_3Eb?-8{rxG`$rESU8&Yv8=uE9iVR9Al1=xhPY0i^%d6~U?t-P@1Oe17qH zmeF~f=YH7RoOgNIlbLCH-DZE?(RuAd%6OfP_BoO1xCUPLCFUoH%U}Og4c7QHu*GG6 zMv>zV&c3TW?r)+Iw{N6ek5M!o51GHOihba2=4@&=o9&OvW?Rk^B2Tyf#!P!l8Szriv5H&@GEvHCaR4I#El^ghIvgZ_Wj?FQ`!f9X z36t-cHfy`{$?K_o!soho;pOg`@b%@f_4VmoWSsw{==G>5>t%FjVNBfS?s}qiRk=0V z$4g-iZfj>pl|eO3fwE|Hfm>`DPBT9K#a&2`GxPh+_IxoR>@a|Zv{n$GdjeBQ4P_Z31k zq2cwrYoFUH?`<9LV~tb3=Sqi%@zcC$zMW2{m!=o?j)#pj9j{xTg%|eDovN1=>HRU! z&~{X%(pAiIzEo>Tfs&yzqADft$-+*T)~2kI0}Lum;eGdNK9B-s8UeZPgVjP z0`_eK@Q)aD#x+T}1L$ksUI2RnaDWUw+aG}B`+v(hs$V&SB>wKfTrl@>vO#d-T0 zf|#fffJs0=<_#i%2EYPne4HE=c!SiJ5D@~szWrpk7sUZvU~EOz901X7-`fi;fff;f zIq!nrs1ec7f;fIrTs^FT_0u+7L@AjfG6`%KGL6xS*k5e7mWCJ?d!C9EBh+y|%9R_x?B9<^V{-sOyL;_{+( z_x=S$;`gh7YPggt%*-!D_ckpp&EwR*nPsI!ykMGWr1tvx`5AcJc&Lzm%qB;kCOurl zFJOIfPAqtDWQZJn+5|nUbRuXYVL4?K6wB_Y=;%{$5JtE#1BqWnYP`Igz5PY_!XYmd z=#Wu}EM8tM(P)`oUH#tE`yGfeZEU=rWn_q|pmyc>g_D;z!@?|4ue6jtKrn}_m$9%S zHMNivhPbe_G{^ZD>PLd;sxzLd!fG*@ zl$1j6h$fP#d4NzcgmWgUu(i@Sn1 zh~2Dtq75u5O5IRjf7Q4GCh!r%qo%3pwqA<`-v9F6Go_}c#s)Zkr+mrkAC7TRGSqM_ zy^M&NnHg@x;5;0}U>!m{JRW1UMs1n|NV;xh6lWKgEHDt{yKm9CRE0L~=IkB)+uPgh z0m#fak=DyW=&*sUy}iA=!NI}N)~U}>HN&!7A;ZZ4efWQB8LW)|&ocg>W&Gc08G%8f z!z(2q(A(>O7c*En{`Z#g?mOWB$)JHq1EPqCFa+NI|HTX<&|A!KO+WH-^UP36dA;Sl zbw>Yaq#z(w^X@$j^xh9ZsA4BSyaPY{qpKLER<(&3?5Vl>2Z&R|f9G zpsi+;EeBlS|Mm_-!lQNnUUxUY0$zXf>cJDcDyShYOCLL(2BGl8Q!)Xbb~Y)EM<-4r zs%F<=n#oDMCmtD!u`yy6dM3Npj&yo$`HH3$FC>L~`Y7WE4;1rG{I&yboRrK3T-w)@ zhjYX_@hpzk%P*8!ECOZ=q3MPL3`XP6Y9jVdwZxA|Y7EWenHFc6muafzu6;_VJ7+R> z1Q$FQ3ElasaQA_9QHzi%5zfl#&F2s(AR5=Amk(|4<)+f?1hm!#rbcKu(~1R7<2R~4 zewC9Mrfp^1;!QbKf0ek=x~^5=>Um1qT8n#aA$ncf5#j8V*P}iqJmRuB5#e_~V0~Rv zsQ8dK$lh^pL-@M5zlpVxkj3|$r}Nrm7h!90HZk(@va;~Ye#mIO<7nFFSDW6*PwQa) z@o`^ zY_PA;zH*wistbN-JnvPUyO>Dc=&J~MLD(SrWI-;l7$#ewA#MgGWL5UJcphRC?IALk zE4{F;=_lRlD}{KjSGJyN!7wOH;qiTA<%a!y?EnIKEnE~Z%h2SIbj<$s9flJAgQk4UI~xc7)TbJR0^wga$#k`~1>o+3 z1iKd3%5Vdr+g+d-g_W{ zPF9CNgOON^FEam7-M|3R7;3yFsAswx=Vjw9Ydqh>F#atGVT9W|X~X3@NV6?OlCn=v zr3kC}V>~YPMO>HxSiE>xS^O;eX^W{9Te6y9%qQ@$66|~*ELgVaYR_FaXEm06W{_FD zabgFAB{u7B+EGw^O0M}Ky+W)qzeFZghV3Fe0+|GF_P6`@qC=X~QW|p+Qp>DUsbL|} zpYx`qw-nQIi%Y$*FiM$O$6{1(t5bsn=7o1NLoCbWyt1RZ(F#xO90@191+5`8e9r5P zY=3zdZcdGJ24EL!vX<$6K>rXW@$PGBRYz#o(VQupx91^%-=?dH0n6O1;4+156Mo&t3%G`^FeR6 zuW2uUfG%IcCz{Ld0*MvlF`+>K3lLZOHyS|s*1MC6GW*BJrmq=0jMH=~M@;HZGLm8~ zm@LZhCg~UKkI$@{u3CO3r+uy|W?)e9kW4Pv8ioc7-PnPUw`+uexH^-F>YNndn4N+iQx>NAX+(p84!YEm;=q8;m zZgXvhHNj@qJ3|h+cxy^h|L3g!Aodo!24AR}J=s?HreLhQOmyfrfIE&*Rh=`Tc)2>l=L3gvSCWdwNk^h1S^>`w-sT&?VSWBX`&&X zYRz|6ROqbt2g&5fYvbbEUIJz8Mwg9tz)BiD(VsJ2$ZgUU@~#AZq!Nz4WwIZvWUUST=D%95Mumqw9uFw-XS*yO-@P4gBs;kF`EWZv6qmgDvAS z!R`EpYFM{nCt^n-PYR)sZjL>Qq)u2bl_zfUhof~b;hn_+f;-IE>dOZ$)pQoCUUL^k-BQCTKt6CDopa7a|soL*;yX>U`@IWb;qbl$6;Go_Ya!2LeuD zVU2;Mw)!hb&?JfCEAtgHINNk`^%a9oWUPl}XDw=sKVpB_8$Y zAxjX7Ql#nCODB4A|9umDs*|Bm02z*``LyGLw*gEYmoGW{SzQk7!2p~64mk$`S@-za z$j>m|7vf_?Cc^KQ2A}4`P^sYw4Q-~=yFi9c>tmghhdR3@gSB%w9mG7bUaT%U6N%5Y zZX@467s$tm{n@=&xkd8&6PLwx+aocuJsdvxwCVABm^oM$|NSW^tY!t7DBDdPx_=B= zF#dxETy4Pdl=FZjD8ECf^1;Y{nc?13zTfArP5Ma*xp>`&R-lBe!nwzbz^^$pzvwaoPB(p~h?&aBDKBa(!9$ z`~>=W)d!m#gLTL*0sT(n0UcCF6dNW-M_rq%@qG$05T!XDq8k*jX=a7Y_K7GXeJUm; z#W8PgCm=@rq9;+WV!wHVelg-ET~*M1oK;5!RjouZe~YfSw`AGNPQS3!=sxH-Pa$n>)f~}EI5O@qff5W~1;PYluhrJzkS0(posTuagB2H>WXgUR* zD6;rXRd%d9ZF`ahCe9{C-K6`OBE6DU#*IUP9!U>o?vODa^^Kwj}mCRC-#HtnW(M zntDb3g8~T4S+NBqN8%)CLkR(B)U=^^Vtt~*iS;ExG%zT3f?~oAh8r9!18Pdtw0mdF zYknu~+81?g=%y=cTiE5f@LBob);B!6OA`vfl0ickwuy-Moa^Ig6s@Z#C(UNB z-S?avhwY{5?7PeSpjk|4x2}mH?8ibfYFKnAjzSlUQoc71d9Rj2&T$9Tzo&V8~p5^`6?D#uZrQ9-l*P9o&js9i^OKfku zk+Yp$ZRpb4j>d-jX3QP|Fzv-pE?fP(w7tCy*532ZIkKq*i|q~ zPSG@9$m?hE!1lh@zZP3~(dFk7nWvAqx^}u$v8!}ESJj77#UYpllgLy*!K2%6)n`H; zAAHob{_-FXEu_D;P#T(^MEzd#6J==pXo8SkBVI{}xL6npb%^*ozx)Ges+i9(MrvZo zXktR{`(iP$375}1h>{Awnp5cM5#>O?s!9*e^c(P9vgJ+aHZpgY(~nzj+Rg-uZrSaA!lST28i$&Od7Kp9Z) zAM!p5+F~)F$x;qhjxPy@bw7i$rxUA=SN4`?MS|p!4y-k+Q*2@F{rH8HEcQK$nN`|o zE|+u!e&$#hvl1SRzOjHZ$4)|G`MgU6_R{q|X@a4vYhTzv$K|6@7EzlQ#?pgeESbDG z_4e7Bs5bt)E*Q$pR9GW7M_0o>ic;AUvUEjN3VT;oIw~{}1VlcBF^C9SwE?FG&SQ3* znKOpZWCgxWPy4=D%Xl~jrL4A$5FJ!*)|%^KzwzOOjEUmhv1AxJMm=-6(~SLi+;q+C z+1kgwlU}>0m()JLhXGN-?sr)2w%NB@VoSZdw9$h)a~d{MMwXsvdRci$4D=m>%v!Q=jDsZSSAp*eil}*oxm0FeT-4!g?a|$?~_v#gtLy#88QU zC=v^heZ7*EL2ye^x|v1NFZmd_RdreB|0yixBMbpBoP9o%yVPHxHW@8vLQY1ChG zxF&A6FLz9zu(U`)zmG|6)2j?F(5*@Q49(O7UlM2Y%pfh};*AgbSWH@Z;>Zr&(9IG9 z>*kAwT99Xjig0SN4p<$^jO|it4n^r<%H%C_YT5GZhC|oSm1Bj*^i~-BBSLtaxAvBD z7>;Gd@^MzvI4#kz!Mh5j++Tj&6H3?XL3%%s9`ePe-Yb*(4ntFl0kCSurVjKaRz7@; zFPVS+zE0$Z=y@R7m1-9}BHd`tgjF|wek?*a9G67`_CX|?+*vgELe(?job z^TEt~*9U$0MhEFJN74QKSJ&MVX0I367t_Aj|LCsY{jsd;wnXMo+5L#<@WBJTy}#XJ zQSA0RvUCu9k)$koe0Vb+5jjBaZoLWq^d3`W)bC`IhPj$QK}6{|y}Y#Y+G9kjGOoDT zz5ZP7KFy8p+_Fnkj$xo0~Oo zKR=x8zxjOI9&2bqa|r|E6a5<0ZPn8SIH+i*`%-dlu5jY5KKdvedsi$%+yb6%#z zIjbX^FDdQ8(dng4-faW_QxFjrc_kpB;QZw`k$9WU%Q%SzTPv%MvjJ3QIRmGkbl8td zQ!1OV)h*=lZ|Q57Hl*^mCaVCML~;+Vivk7 zXcoe)d3H_Va@3<--XJHripldEr>4+#1t(pg=IB6y-`gpHyWr8CML|$x2~6Go3N03y z#U-(upL|3^!su1IApi4|VGi*0bMfgS;?mIjTKwK)>2mSOGym|Twi^yCxRCXxg#-2N zT+z?_tlBU+S2NSvv{eXRFO(h=Di10#8sWn7WFYI|&${L^Iaue@5>>XZN0yHnv9h;Z zDHv9$895p}b$sbEo;}QY>l~Zn8;c~i8C=H;j>Bu!4*D<9D+>@YCzDt-^>{xxq`S=> z(moMv5XcO_N|wD8IJILcko4SqR}5Rf+8g>b*5o&9I=zsqKxRv#KsN&>N10S@BF0Jp z97>VC2THZpiVduLN#)C-K+i;#i zzpeYop2DAf?(5U&boj(z2^vp<--UJXbv|8?e0#dz9*qj zV+*IEOmllI)RQu#fKb9vLpTW$om%#u(#G+WR z7ec!Vc|#ir-PG39-hQz{tBi3^c4_+MDhw_`xnkt4iuEY9-^NwOrrzvq8y4qNjt6+>$bv6DFUzW2)WMZouEAiIyNYrq5=V@>k!9k(AG~zw)22$5S6j zFLUhB#0a5cW+E02%oJ z(+EJni4YXtiuC*B!-Hqv#7TQ`z?J|eEquN2q2@=ulwr$uyI3QA zkwawzi=rfMnvY?F7S$5%8~k&$O%0myI9S#MBuZ>=g+7YCE#@Y%oMmCgC5v4MAEjl> z=ojUPIe8m;*m1Ehu>ARrZtXIXM2hZbE zN}Zzp6@xRsN6QHHWlTOSuFz$ziQ|09{gzu}AI-_38>>umef2K&?&_7o!d^z6z6F#b0G zVHr`j5yHKp@P1nYR81jl9h!xFY`u!1f{ynnv|I_$)OVlAmL%{v*-)G*=2hf9>ETZ% zXdSADRP1`CffM3$eI0;3Z#&E7Pa$YL6sLu&>OQRGj}@?*DnMPm-JP6^x#;vELr3R# z9y%WC^qn#_=sskr>9$c4Dtnf=s5Q(SL2?s#!#uB0_?UhqVwGJPkxMO4Zy4Lp&AOUz z&#?DAWr=hrf#YqEA?D-on3H$le(~2IFGM;137$cXPW<7x^!V%y+nEeUepHsHYyaHy z?ZKAk&bhm7KcE|3O_pSNUbq>(w-MXvq=~so63+O}0YW&AxWQkDi9m@01GMc<0>ytb zW?s{Akc~_sJhd_R<6vg#ErgTLd*+lUM)}i~?+q!bKU5Ovx!uI2=XG8O>q_V~tEhUt9;qP^K+kp-EtY>@_XltpY{TmUvYU3spo*hC`unAbxLp8 z5}Gp#Z|#VVy=7X8iv9JkZN+w-OGr6%0gf4 zMD8})h3D#yUp5CmhGaKLo6(X9LYYStoQi*w-)_Into6S+y(xy9uk}ejwQH(3FguCe zn-65JI2GlWN%q8om130@!jLWvpk+zmfg3l|js085z9u59!Wy)Y7cpy}qy~$~D(y&m z|A6c&6gZmisn#Y>J_bcg%tm#PX?8BTnp|0`oG3#be166IiA``E0x8XY6=%aN+C@!zq|^<&0|b*II`2#|@u9Ig3sr z%ddv#s`U^wEx*t59D>{G215l8wASlUubTJXcgNhZkb~j@e?IgL*!R zw4JBBx$emUspa+{zs2LB3E?;~f>;giKV|q-(X3ff{fx?`=k$6AbO8_Fy!rTW5O}!b zMOoK&m{B$4Sp0Yidpdjef>eam`gtsPcCNXWSJlj(O}X!yZQqnQoAmkGIK>1F=6xr~ zP9@>4%V{fQQLpbjdli;)2zI(wXT}>Xleh+;7+`Y<(S@#3t z0kjP`gYZ<#M2-^DMWd;)e6l;vB^sta=(>3oZLdizVVT%yG$`OuhkO95|v+$=qYkicW`>oAGpYd!`8aWZ#L(tJwWGa}CoTt}W+0lN9$q0Kw zXYeRd!~;Vz=aq+F^yrsR?i~kohSi6dz^rt6wh4M5{CnAC_VM=d7URc7oX0n>6F!}U zlhV4Oo}3VB=I2@zF$UsneWY zMjyNz@ft#?4><)zm&^N>LOI=S2Pm~YjjbGSeIEH$X}~=mo(m7dy1!Kq%ZQ`CsCFsS z{^Aw=jcb7v zKT-IR{UG>|Jruj)_^O%Gd2>zleyk-PX}RgS0sF87OuVGf^gG-o<9y#<$N?JP54I4p zY@LV_4hYoyzAJlO!koF!>x;^AA?dZB4K0%2^p?e$@F1{)m^k78K~b5(Gv6Q8aX4q0>GOGk6)nN+GCikg<99IV5sR zIZhzxT{AaPc)S^XYo-G}eQrLer~(WeoepUtyI;UNziW)@g5qxe>kIJl7Vv%$B%I;r zb$~O;fjD<|=kqH0n1Q-^d>I4jxZ>lmg}B_hB;0!8@J(?QyvKNp=Oa!Z{LJHsW@wjR zQJ}9K%;V%*y=8Y&m+AXrzw`3T#L#(1fp6(%(M6Zx5U<1M09n}iXYqDId3h1mjq82C z6C8~8MOkF4(=sGb)y9vr(}&lsoVNjK!bAR$*v$S_gN^?*$M-LHgxR~d9xBqWgK<%) z_I%p7M_Ne@S2J}U9a>&u105a|#>0 z2zE|4UX37v?4zHUY~p6=!94CEa$M%V4ZIr)`yzoP!Y}J^8k{_SCc1Df*54|pL>F#Z zZA^53u+^oZQ#GMxBE5rACs`)T@>xEdk;lt0uL2o_yv{B)gX7z?wL+-y>6}RuWz1=l zMvG=E)7ZKY$iNy5>QD{pV$q4;aGiEpsZ+*4lY+(B;^z>-a3u{LqJJwAM!(IgYZ(+o z3W>24fe<2Ri&4WbICifvvf4K2jFDEO2NWc7A-vLBYDg?fiU$NCPitazawvZ%?M^d$ z>2Wc_PHsR^^YC`xni|dfIq;Qp%WvzT5Xz{gyPJj!JG5>u^`P+Nu`1>LqO#AODQTXS z+AZ7Jgc&iLN3)9Wr{Ce;PKEz1W4GdU`=6ktXT1SVn8zje+0e9{8lTYER8;2L>yeJ< z;m4DZm2%;$I)bLXF8GR_BSL0w;L{if#3bI7fx3M_;wDk z;bC~`gnF4iE_qO7R6^@Pi#-QhE?NIz=bYN8m2HWh9P$+S7~=e6l;e>pJ(jB4YlDLF zNw{V`#7B9}rIYsVvFzComCt=aI_%=4&B9jVGw$HKv$+;qNgW=Uaa_6sHKo@Wo|0y_ z_Ll4#T`J3r)_2~i5pRgLhRMwQ9Wc;}LptHkcoNCDLN6=JQsKExG5o1h8CE5$7-*T+dxF^B%CxYCO~|9OQFSYEb1ImJ-rriqi&mtIy;`3dKBDWK7V7A65+DCsZ5!Tu^k3m)-GWU^-3Fu5 z*hbl8itwB*rclT)zP1VCk3T29;95+kO0!ueSx#o(&t?r5s!(G4gCX{s3qw!~|7O36%QgZaG?uBn%tUhm zi3bo>z*=4RAolB6evUw3#X4uE#x zi`{JaTjJoo`{dI!TsLKW-e~sxh|+yr_%6@rzOg5j>Aqm+aO!#Z7FNS|Y|6E*e;MDo zW*ftQ5VN22xuw44+gGha-F$r6c+?fPSLj8=U1aS5rdZweG1wQw?U$YS?SiiW_Ry8E znfLZZP|uIdpv9Z;Rsw9h|1ZJ|oV`LS#pS~bYR+pCs$Ta6*SWk~6a@2=x-9VZpvLd0 zae%JdZ`U^+(DR#HS+Yx30awf8t|ZoD?%tiyXRzA+9oFyR&CvI+`ibf0RivMn`x<1d zw?}LUJ-9`h)L8I~8zT+3a*NqXQgG(-H=*ceL*vkNX@o(9I35)RKvU(b!IFB`=S|nr zy4#H=;oByK7vM<{|KlQMYEMkyO$v2-@Ymm9b=pdbGS=M7uRFm3yi={OGoM~-5CGs| z`L~(tGRov2P^gg<&Cc85*U9du-b-KCt!Lqk`*tLHTzqN{D&;1v9PL*A$e$f5Mw`LyL zqzbQ51Wsee8#%2o2^fseMuz!K5wDX_%mEmY(>YXEyPULC7Zsf~HEg;TJKS8?%u|q< zGm{<{Nxhv(-O<-Ezx*V2B@8F`|3v}^Pb10`a8+`jVc4}K!1Y)K5V%?1`uy?k%oMep z=a$@1HN5U2_4$ze4&DHIpOv$f8B;7K)6??VSs}5fyo3ila{54;cC^7FJdMrbqLwTi zs*q=14lc1rj5-G__`HNP+D+*4GO4UE@*Ze%u=DX(mxaoJerhW1$Wj>`?whA_y zGYKbOqd|ULqL1Pq6AH{|WP$&3%do=1@b%U2E&b*tWmzX+*zb0=nr&};IyD6gO6 zGU}(bU@JI+@nLf8R?|(BgZ@i^tb9IE_r58w=vNjgnA){nRNsqJqPA^ahL)?F3`2OS zCQQ@Ag93q2#EYLtS%?dvo+^-E?{!fHhOd5eQ;4-IW_p}2bBm;7S&D1Rc`?NB zg&Q=Tr@V0@1-(wa+)jAARb}xnUpH?Ccw@R?0G7n!Vx;PLzw~0Avk&96nL4hU7 zd@NrkArRG4>Ctepx4+4E2Iv+6C0c^Iq?E=BwgI4JJmZ{*`q6+ic=9_tB8kP>;Kl=N z6YJ9?FwT#x<|->*me+nYq9Hfwd>e)nGxnw>S*xmGh>u>Lp+w7-2NfdoNZn@+}r2p_lMt8Ygiwz^d#}-Dtfbg>G$J9F!_SecOZ}L)7$Sx#*5UtO)PL7yvRl>AI9F( zps>_C^ObF@LOq3Z^QWgHHG&A;k8NH-1Qh<-r5xVLTig9)zJNx z!1MWVUYKgG25SQ%m{jg6Ndm!gX)SR=Z<7m;4|l&T%e#3@L9uQD>l@IFrmD zzBmS<(EyB4ur<7fgI$bOmi&>0Uh0D7q${kyd{E)!c0Hv|*b!1cIX>P>EEnH*9^x5BhQn!B@T=6)bRWaxq=f8tA=%==lGMu5 zd=N!GG~-{AJ_Q`5aFu+zVmLQ+#{jsmbAbF>1z*zHm#e_?qntL|=Mo+VHv?TyChnS_ z*=c+aWgAXy$fw~N4wYsZ)(?KA{+zO*YXoVhB!OuM90q#I04GL$#S`Bgo#h#GPf0d6 z+;}7!N!k&(auWQCFHi9Y2OiF%OX0v0S^n}!p}$i37tqR>$g_=3SU+`8%LhtVlM@lt zIZD9K7p`}*ueuSqD#zB0XGAS#+0!rF0eTGorbo0IeJKzpqNfaVj|tAG0D zQ(x1=`(vL0>_R}I{N4)~UWA%N61Kt6A@D2a)S$$Gu!+vFG4tF=Q0Ur-XhS!vWt|v;CS&2t4C|#dSPpkYUMyhFW3N&WvQ)}KLi%0|0*SnzqWHH_FZr)< zEnMVp$&GJev~XIS1f`_+{dN>=a8eB+Ls?)ytSoOdHP*C6U#-|Gfe~#Eoo8#1DKOcX z+?9ij_)jjQEmOPxgi;L~Bjyn4OK$WBuuIUp#4Vd4B+NfxOq`w_KP~?1Dj`~@bNwVx zz@-nPbCOlaU1!dG#S}96vLB(=;ySVuL1|qi9jo@&5#(Wnd4S*yVMp%HdcFEdttlNH z9qoUDS;%2pR4J*Flry$sAk`-b-QsmjIN|7a)Ju_;cH$Npb}Q|gSTQxcm$lBNzR_8y zY(-FtrJjAcnwga{rZaS5rg{S>T$XeO-=w31y{ce;`YVm!d^NUrD*HnoP@d&2n-QaY zbbBdR#0<72Ro(uT)7;Ne=~XD>btm7!?sQQ?{;gkRH#&GxQX4st7%ik zs^>kJg7^$PdyeR;^D7y@CeI3k)#9gRIj4&4?4Ki;Kn@OQx|^o#Z{J~J2ZA7P9i~Iq zU#F##t4g+KqQ*C1bB2Zl)*o$4@xcC3qfMxruUUr3U(Y8rx%H(u?c`Co7CPOJnc=8I1%Q~T}W1VCe%BdYRZq9#3uIbevzTY;xPW4 zO^-arr%Or{c`b6i&{z_8b{go?8$@cOZU7^GjRkO9v?cZ!MnDysJh`srVeQ4^RzA3L zp{2LnIQ!x%UZ2SKoBY>bbkXJHHcT4H@%M~b{Nr3Ey4!vwvz-ZF{5A%bZe$I-2{UL- zGPPmI%~_IDl3I&~=bcB%V#v{k=!}HHAY#rxnNj8wdu>>}?E&%&txg%L$PQ(zyFDC& zeb0)nEvs+I%(OICzT@P2ycjJJ8)OH}WM`kvJS|H#A*;x1)e*?BrP(3!-IcLWR0Tr` zOMkzN8;ciCGEmi*#Nv6ilIXZfhF_cV2_@9ZCGH*pb1z78be(=w+L&nLp#|+)Oo0U}EV^hJ)4hdX)eQ#-)M4-NbZ^e;2aCp zRQ6JKHnYbzr(N?e?9VAaEO$w{DiB6_e~y9_cc}Fd6=v9^vskn&1GipA+-)wU^ogqk<1i3zzA~ zDw`TmD-rU7j6kx(@o{TfPG=J|dZH(&qBI)Nu9nNzsY-F~d*w_Fm;tzlnyZY(&sNc~ zA=!oh&T5$a-I&89idO@$P($p&8av?ARISI4Zt;ET#_i1 z>F-$&nR)5Fa;35PDaxF-W#zs?w8j^M;T3Mt&rJFlnW%y&>f3ys@xLcjcY8^tGWUxq zd-*Kd%3ibjd12)PW{T)42&gz=@CED~C<_CpdcAZ4QG+8E^+9RyHjwefY#gO*?caM{ zIjiHEPo22V%B`{4YN}93HN`H7xKSh)MXE2M5HCuy)OjLgkU;xV)7Pj?+;t%b&7bFTz~o5u%58P zq}s_0Kh}{Qi+}SQ07R&I)#*~>vY5b*A$AquNRlCF$qL}?J?ARGA31dL63-SO5Km~O z3(hg=*)~`yYTSdFgkwydGhx!rUSGb=iEsMgdS6VjT=WC)G!B>6N}qT-(K9J>ruuFE z2cC=tk*0`49Cr@Zxw(RX!_x9?AFH5L)LkDniWEabl|M?{O&U7trT3!l<=o)RudN(b zvaY#GhK&O)O%pcnaFCcjVW4>C(mw?9em%`&RZ3(3p0b5X@4Y5B}9BenW zq1b{!-@?o~LT zAm-))jc$ITt8KYrZCYhk%|)}8R6u!HXG0St;{ z?lU{!W2Z4eQ-vv)ntr4s2J94VsS4vGz z{;@Q`x2_!nuUF&>)g85mJ7e2y+%sH?iCrX1q(_SVz>I>BJ7*R1vc$**DznELA_ftn zOdN7Sr|#eSDrqyZWpK+_Fvo-o_;)>J?mE#VDM_AMB&WR~zbULg06o_@y--wypx5^A zhx&8UJMS4EhRZQ!sj20^e-Q*NF+{xlYRt|P8jMYARcDH%Zn{vGP}iv*SfQ-K4|10& zQ2A`dGwBu``!&t$7@fDY_3&&6GA<&hx20~Q9Z@X%7Stjd&JoQZo;Yw%uCuqU=Bg)Gj@R13 z&}NJg-P71am)F0S!y)J`JG_PjEwQ!2`-0VS$eqzHx{2iH6=go40rOW$c_v}V*T{B2)z z6Y3b&t<*Fk&o5EBWX0*(C$hAPR=tuLY^Q)^-vd63D43KJZa$}4d}UW;9fF^X)H|tW zdh;bwoXI-M^ZGuz=-%uBcxfk9On~JX?4M($5@&Z)<3ne2k`Xch*3elwQAj}FY@bhbT3ti$sD&Z=Gy z13S8(hmR{bX+f&~eb^VXey0pen;u?O_y;DSbLemF)7RmpMlQ^RX=K6C)Ep33vz0lb zT|&5`jJ8m?US-Zlmfk1s>}39R;v9_p@BRHOHmrLyup^2ta=<}_WmDwL7#lk6pX((^2jgg< ze!Q;g))4xHlKxkk5tbk%8FZ6fL2=KU*=`U_RUZFWGYIELV`VcdBmdX(0O5c4zD6Xj z0@wj4heu@Al4Ac9_OAk#k>k1|Hafij(d5S)Y5gg7gmx}G1qCMiCpH<0JG6EiiXi%b zB>`bz2>3zY>HhqBMfTq#l*k7P;KXVLAwMG8UH|3UpBPkRDZbo$Y!%=BAJNx{%)RSO z>CAEX{r@qF7Eg}Z$Zr^)|L1;p=_)qGjXGzE53~Q4P}@yJ^Cda4l0A;d=Z~LQQ(MDYeK(e9TckCp*{=^` z)dJs+*s*42E|=TeBGb~Sf`L@*A3&^%P|EMW>~IqpFuAbDb34pUcm$TR8;)!R?Rd`s zL!kjkX_RA0Fr|49I#9` z=W#%Na&^ssk$&Lqki`ZAFK9H?(pW;_rC}$ z`}2raLGl_M909iBf@fxcxh9NZv&xqxy*=F;gHn8lpR;ZhN1qCIuTlqZ#d@&I(S~w(Gfl0jD{`vb!)d6UoIwqUo8r|>sRpyRX;y(STE{M?-Ut} z9y}=p=+gq7X+J7!-T?diRm0qS3@vB|^c;xVT7#Z}mIfeMU?+A+BzMtc!PY3AHJPb& zY*zFJPkLNj!d29i8{KA@v_JHPJ8c%vj@QJTK+Ldm)O|-Uxm}!57JpKY(7{^B7)=FE zC&s?bmutA*KP1roJ$X*8bkkkt?0ZaWmkvSfQU^to+4AfPQ9)UGvrhSOT&Yr8!ZMF; zdQY!j|n^qN@ICBz`MgT3Q6le31+hw`?#WuOru=m)sO#5bkUv`m_=0yXBOBdszJ5Hgnx{wVHLbN7D7Y)%&L**rx>Z~!*ln@cLmSZa{S?k1yxm+y?Q$>h+JUbC9xt)7StuQwkrQ>*SyD1g z`o~7P09X|jeHoD1V*F2KNwuxGfmRRJ!2kIIH2Az&+2|g-4}5i-P~SMG;!+JTwXXnW z=CW$xwzA>XjT~jS=w>SaX#NnvV`sXw4lzh#X|xe10&}6aeIQ#~ousALTNpG_QmZQX z7>}gMl~7yQ=d&k%(8$@p=p(!=vLtw?TT5T7#w9RUBrzLQ^t4*=x#m>Ga6otcfZ7a( z$+5C>ldVw>%+LO%1!tmyl-v+am!9GZCiFPbRUUb!wb)cCTD0ut%oTU?V+a+w(zZ)v zNtRu=U=0~YjR8l^*;!MIV<)2T#6dE;n1ae`kPzO20UM`0+AQLQh0 zM5~gLe(GK##+mofOkx|Xcy#O?c^v~avhw_cxU2@zl0~iSQG(G$;&d?D8^o~paQz_n z*N)v&i}Tr~%}r!Ey_~irS34z#SN2u!FT&b$Xls3`$40xv}*Oj&Kof9S~--f{aQ#%@>TvAG7f&sk3AlQ@3CCXw(JLzaP zAR@nPLF)UV>B!c-itbYZhDCIHHQvvO1AWWD()Wok>iQecsZVaaz3P@u%G{ zpphvbMW~o@)8IC*P{hCIs`;v2E&~p2yX#y~PIJft(L)$U-*MjJ_r2=0eGXXu*$_D? zrQ5rsktx3oU!;NcwIX?AzM1uln(b7sWruUQMlVK0adT1`?d1_skbI*}?m@L$1Hx_i zL3J)1!FySHjrw5q{GsyzJjdHGlpFPThCwxITV^l8l`jswcq0fDUBtOkuD3JU9 zxw4(iUKG#d1Hk^7FQIEznC^l`kM6yz(I8#ji!)y`a6OLrfCcM9csonj{8$yQ8LP&y z^tZ;x$r6uZJIns&?zsP#VFN%8!{~6CaRA~YW-K8lXARn+-Tp{tm0wQe43+$oU0-V( zf2Kp#)oSDU*bSM*P%#l26ka9v#X_u~GvJG5$_65Hzye}=kMvo1mAEqwDx=QV%`Y6$ z=b~RH^w-yq_~gF*!xn&O)HEDbAIu;m29;cx%4>p9P-aKb!oh=yj;;!#9M_MY6zlge zwnt}AMCA0qUun?M|&y!0*(e1 z0EMX~mf-Op95&tlzMRviQPKYkSHxcmgIqcD|9XlW&TgCFp4w{QBGFHb-7mtxW2=Py zKV04eQ26eQV~}E8z4oOaic&cIwf28t9M1HV(gD4d`@6WJenDZ2D+g`t8aeeS9Vw{^ zFO2j2^&rth{}=aXSZhm4;r#wUp?*?~X=?N}TQRZzhhL?2a%kRdpk&iT&BV0mm|Ad@ zO6dl3KR zi|saZ*C}GQM|TkJ=Jh17L~@x8#G*o~|6??DlFZ`tAaoe`Fz`M;zTVyH)B8a3$Rb@+ z^M2Eq)3vIRPOUSuT0qvA0z|FS35Y?d)N1l!8Ha+i=>Qb1LBOH?MM32H+ALs@DJ;`< zV1=<&%rf7RSZeMnDOutCt+lP=KA1utEIsA1(QS)wx^&zQ688vjd~wwBPLRG@ePn$O zY(-fhGoS0}nb@e}AIks-n;7G%^*q0$N~x2sX(}+iKN^gOOljE*-XFt0L|b+l1U2mi zY8qyFE5Obd9s*Oyh-ChZV<>16l;M=mEAHq1jrgRw)wvD5LFvnMaY&@Ccfz8_#awJt zy81Z-pKj?jS1v_Xk##@hNT#3r4{to29+r!iKxVJ?y^$wvSSRYM1+$90;yc%7m$~69gafOm zu$SSL8w4~5hwiZ(B1HHw0F--04vcxw5l#pW`^U_dTV$R(-3!m;BILyZqlVsTrG>n# zLg~xKx4t!Uq&4*vcsa3@wAg=XUha=XS3DgE{n?}&UDkk{+xdB$MGT-3(FAOH%EjN& zgGMly5%N*#a$uu4o|Az)5BMBm2j@n(Iw=>HiYq*z!GqPSG?b-{rF*2R3ME4US08#k zXu*~*Og$fmgvnraN!M7))l_wMd1Rkfcwd}c!r&Z>_@Fbt+G3&4FL3@>#2Lr7A@JNb zOWwHD{W#F=4oQK#p+KbuJgVe3Kg{t@1v|~V%4&I_XobdIFFTvg^k$eqQ$DSwh=r%g z8#ISGNCe1E{F(eb1N1yWJSl1!!(@hvbWd3Yf;m~@#$l(iFBRSkF&&hq9C5p6*BjtD zmZG>v;|2aFzts$i-2|l$6J8wFP1a?OIhwM%KoTEYQj-<2KFLEU4=){|PdR|k2(D8C zNq@~20E*t`W{M8hUoz&*6@pww z58=xSwCdlCnPd2xQGS*y^KNdE?y|MfP2v-9>>xod*hN&3NP~%XmB{b-#!Z=jcK?WQ zwf%48J35&5>{%Rt@{Z?Qq?nOmN3L<7g&M6xaWv^3KOoz|Tr+iIkIETfc#dgGGk=Me zlp|wzw>EW^ZOM`x7gt>y{TNt$>(X+VuInuWDF7qorvt`sjpj{hNNX@t>ed&#y_g#G zwZ;7d@2jQL^UY4RmQBqp78LR6twgPzT}*mHjnN~<0Njc@z|(%3v@WWBP(D#%eB{8l z&};O0w^f-I=s2E$#BqDTeyi%7?dMgGPYd7E6;k{-wYo)e!T^&4&$*$1+bPG=&>rV0 z6uP*!xR@9qC!ApWDKPxu``;s?JG}?PZf~g^^2zVFK4A>&?sdR7QM8oc*#>E4&;N9| zm}u@Kx%~P4(!3riMt`6bnr+3;e)d77i|4+Xuh<~-!a|X2{|5#Wmz>=;1uFotH*mh0 zu|t*D<(pBNC4Q8&Ug`Y~$WdK}%=CYj1p!Lqg{=ftfd&&1oJ2^3 ziP8a}@Sna_1)>ucL9}{(s`@94>gg9_2-YM@*htBjRmRZTAN`6yJ=_@BVg)jv9 zFn$Y;{4V+$)lCg-3{J$-FOQ5T4N?PYLSrEtR5!=yij_r*yY`0P;cUwZ(6moo>Yx=7 znXInGugx1r6ni1-UW3KgA-j8#=VzSP*Fz63c^+aMXo>q7T6Wv@!SY~vVj?-DD9(aX z{bE7LikQsRLr|_QHQc;I*&6TJ8{zDOF8o)Vu6a+bre5vx-XgUddenre>pyIRh7}3&$mNF30y>zkg;c)?VfndmymM#4%AO zyIskg?F|R>tXz9x$rxH%hf+!*iHE-6yE6E zxS(~})5W_c#&*&}al;N$GB7KCW4H-!-}F_DhnhU>6PVe)iuRdhvaE^w%BI_mMn@Kn zN&*pQXB=l7{{V${59RjZ1i#z8Cw)Cm$|zy~Y}GX^ep$s+f>B#P!cdK>BT+*lS1
    jNw3m7Kfr@x)E=yar+XG*Z?Jd!s9Edov(SY+q(4 z#y{Lm=<#AeEik!kV2_!@43NZ$kem=r-8xeN)mU7_OPQ z2%j#p)N611?gau(oH1qd;0my4GlXG;?|YX9zH>E%8nF;AgMx1xfn6Iu%TN{=7RkIe z%m1QGbY#c?spXK7D+L}%DLCODZQ5dD{NW&Rh>6LOOX;8Yiv6*kHs{D-kRk}83^uuy zT3e$94ZFnJd_Ngz!htkNfKtPfO*^=V)l$7rmAYMhm;*>*{ZrT>+~`skYNauodA8+J zRdIIzZ^4yJ_`pKmtG772k5ZWw4gNFrI@}IT{h}+o)yugh%qwy)WEa%81UO#ZbHiL3 z`k#n5AhbW5ot^3rs$cSo{71`BqE*Hq;ROCknC$H9qw$DHwfMJo?*D2x#h3n8FEw65 zl?ev!;y>ICJZ)w0Zd@>c)Wtu44gLG1#wVQB>vtCA#$ZK6weCkxh|7sA&PQyJ-U0Fd ziqzC8XSaPLxBJqlV&Z{gD{(+bmgq=z*R6BK6sp2DNAiztuWtBQ=xVcj*jz6!Zvz%> zM^r5~Tkn2Wglvoau+%A~SpElX|9}7&NflKcKPURrMX4-ECH5uY=bz6t8}=ssnTGae zeQ&FU2mzNC4}_xjkSW1~F#|+SUoMiH{!dNBvVZ$RN{MG?rIXfk-^_T)z}Fs=$zR1% z{dk~o`hSu_1`i(|BC@69 zl&cU-67rGUDDkx z-8GbiAPqxG=g<<;Eh*AScY}mvGuf+2SViy?O%*wpnh3_Bv{+X8yi^vrz&V(JcCR)OZh% zQ>bt58fdvfzxDb?CMYOL-Eo|hHhs7gZuSfJSzRLF{M+&az<>E_AL*MHUY4Xh1^{X| zESvFCnnVE7cbUE5Rj6%o_+y)ld@Z{_A};?a(g%it6D$prVG|%+J*hLej)$+W~1O2 zoEgHM59~Pi`DM{Y@9Scl3clH26f`O4MuJ}(`j)aL1 zYOfX!3o_u+OAc@pZ*HXj%~|+-E;G*qUz16qc%&$R){V0Ge0rkc;M(r2f)S+<8%~wk z;W2K^aiVw)_@nBs{{-y{bq=mg{A*p-);Zt4Nv?uI09&zuUa+K>9|=T>OMEEr%bu~2 zd;nq@nie^P@-+jEp#OBHpx|dL!3ILZrb3K>0F<(|uUAd#{Du{)>-u}-`+pKjDctdJ?mw8yvA6-SN2}z1A)3IB6=Y?jHd{T)}l%XO6U3jT+U^ann3) z!%ABYg6o=rG=TGxSmFHvDi>%IPe3aBvc9q8X+CHX^VR4&E}-azhxtk+xN)CskutLR z8$XqR)y(C{Ds$h zb@cq7rGRv&z=tt4{(;m{@ftl-1Y?Q5iodF(HkIl?%Cv>p3dB_0?tO{Gb^pE-HLmCQBjU z=GKZVV3gfCSzDmHioPOslK6w!NGg1Ki+YZ+FLe0yQj%*SCkZ~I*ICPA_{L2{|8;}& zUfmXQv@uY3{O!innLEc>jsi?d@bVd_s05{?)W*5F_xscU2RgHCqxbl}LjQJH+xOLn zg7j3l7Oyw@cFkk^3&7)+QZM2UXR4%k+p<=cE63y~IF-aohWWmX{ zaxP$zW~g0{JL$jNsmwNI4(%$`Mi(Bm8%E@PV8CPcpX=g5PqI#u9~p44DL@ShR-}T+ zbKz)c;>V3x0SLqDe{)Glp7_x}5GBzp4Wv+xl-;boV@dLkXZ@@F^QzCHfi%b1pGp0k z^4J6IwEq?tG%r?nUi$6BBC^Z35|aX+q+EpNRk9q4sh56AI$M$IovjuEEJH zQVwS|4CUT5zBmrxaeKFUp@fE~fQ9qfl&GjLzsu7*zZr-#LXAWRASb|vYcr1&+QEl@ zU;6%%GM^1+5|U0FcNP?8qf3a2BE%V;D#nci!h4fhdCQNMqzaGHz&? z4mvP4rVN#8(_0x_N^2yF-pHhOkt)e3rC=(m5-x@_Y85D%D$UmWRSx9_G0!YK1cq9# z1qiMYe^x{3jAp+5{4_B8sK{y1Ow8TilTMRLnvt}Prb2J8Jb$s%4`xW*b{St( zLOTYR@iDrlM+sqdwnS!g;Z5x%ep^*2ew7?Ulu2FY!Y`e;)~ZlkjKJq9L#AOFc|}af z-RM2+pb`FLGp7G+7k5L+?@y4QI2q3AG0}OOGt>DV9wU*6D3iz_b%O}&`mcSSn2v^l zK^+&Bn(4C*$`uZ3Au zs@iQLhRDXz$w)I`g3>@JEApfy(k7U4Q}c5%$+0p;yCOSm;jdaJXK*Re<$L|Y$6hU0 z%fo%;iAXxxqSL>=&5et8g2530pK!j4t=DkDk`O%G=v>!X4X-Zte z0zhusG_1!xLjJ;*v7CG>Y2_0d+lzz_6#~PJ~#bPs&M_NcT<{aDKy1mD&^2_TY9B&3S6l10Hz?_-7whwOWwj*VZ> zWkt;=iz$IBNP^tUGIcmWuiR2-jJI-d;9tAt5LTn8R0EgB2kr{HPjpS9_Ib_t> z`gOK(5?i+^#rU<$u!cTh|2Xz#@-w&kxWYy?h)pP~}eNUzjdHv6Vo@3#`3|Niz zSX6*rUk=11yXI_YvYMl;ZGobH1lJwt?P^*jmmr2Qr|J4(*f&4@l6;;IZx>r!lmv@4 zSFQuGYc9@;DIYxDv4K1H!yh|UKiH%RF5kSmX5RBTpFXrAV|@yGUb_of#vr5eov4s3 zgWHeGQ+?`Vd>R(|kXYLWV+XqJ*f7kXGORw!#6*5Afx{AUe7}UYmvfm-`#D0#TBH(> zXT>qihGXvocO0$?KYSaWa(^9XXn-q*gA1AyV;|Drt8;$t#JU3BP|H=R$kZRZfBK{ zV$yHh>)cR$c$Ub_33OAvx`B@SjQi-v*zx~m81OCuKRTjR&{&4Tq;EzmoYdY5!_WJ{ zxM9{Y>gYr^snEaG(fj;YbwXC=sNyJE6(OE1&1Vcd*Sucjrd${4bAnYK86kIMcw_tZGuW< z8GB9N*wKp0GwtGqHNIFvVS}D(C4>`flg)S!8MmNR6rqlfD`<*JR>q!Axm_ulAO0lQ z|G5?;JBtn$v(zue%uWaGb|5|RmN7C@x~%pSw)XD-)dKh)|7|52)hb>cS5_!;5nzie z(1r*M@6e}klw@B78qEj|?zz^M*w@2=CEWG~T+QB@U(S|)GY+%2(589_27Q9+U*HIx zs@JoS`Zkh*RFgd+1Pe>D&Lvd+nTyRMDW06&c1i1J+a4$LaB9Y;prCNiF#eoDFK>-;imSe@qy8h-d!+Tp zg-i|7BRX0SxTeDDSt?otL{D#88vGt2Eacaq$)b;aH#ntkB#Z;4NCKopTLk${MzAtNJ;h(-B!&yY0Q8(V1FH3^1W?^vm2?F z0Y|kr6n+jpe@Y;)z!D*5Eo=!mdyliRr@_08#{>aQ-@Z257P7V_>r5Cd1Y@|tlkHXJ=pUv{9QZSg{9}59HOLU zLHd3gxm!;I9=|_l(C|a{G+L?P* z5%v2tj=ld&ZHx54C;BnYq?x&VbGLJt+E3%aGYMUPc5frf#n>ZCq1)MVY(zslXcexfkfvpPSPPSC?{8d%%!);w{V!Y56R}%3mNxt0b^z?DdUnTA*9-JS=9OfpKVR9%*5m@p8##j>AKt ze*5273_sf#qIsn9%nQYT$5ml{=XEL)xOYww81V40@!{_9X-)6!tgG{SeFN_szWH+U zGtCC}@z0SjqAv4nTa@h6*I(x5Q#4;?!RV2LLKXb5gsA$Cfr)tO;_bKAr>7e64_~*> zTv7BFyGnE~Aqd&dHl_=_KG@)3SKFsyzs3(q*GJvTn8{9b^(OKCt%yNuo}%NT34xC% zYY)leokoFYVe1>d;keCK+7^3f>vtCsY<~jyu+B^O^7@R<{VVosG ze}!|BLB+4gIyX>ta&J@%~m*3vG8?6-^;)RXCwX7L%2! z6Xhkq?m&|z<1AkHHQqnCrINGX^jiE9Z2UImPQ(2DYSGcTwRejue&yU!JTDp${XP5t zim3Lr4n|@5<`CRQo#_(5h4cnAa@DVCaQh?(wNlaME9;JIbh)!nW*$= zQP`W{J1zt>MU+A^7!K5pp54QbImo}T>8b1vENO|}Mbxd!CS3ye;act=BFC(ihYIdp zYNo=Z<;U;3&vOHxV{MpOjJ%bqgbu@Z`wGdxiT=!YuS6=Rq84$Sp4L%{Dw=8h!RQUw+)K^)u@Z>%MP87$3l zrwR={*yRO*1|~n7A@KYaL_9@t`=qa{BqG6&^1$Vue8JA-06J;&ZDa=xV8TNonegMc zeu5a7@0Rd_Vt=9+Gy&IHEer>uRRtPmUciGgBDEKv^G67o4-r?Y*czAHOs!;KZ4@2e z5MiF`K6CYA{qXrltSdg|-tp1OFvaKb7$O$53r`2umUIs80g4@dgvY#lS7oFhd6JYn zE)>Csl%T4&R}O`2rR1A~>nlw0z#r&%^Gxu!waW8LGnLo2qLL{f%kfpcY#wsCxp7hB z6qJsN=BS-YmO{c0x1+eF3~`VKxwU$B1AM$(6KC6gGiQ~3dzvsn!_|nItzld#&^w_?4SxM2JP0iQcJ1LI3DfRjG2`Vip-xGi)QM<;`%RR|%4wmFk z%ZOkUR}J;SC?q>nC11E5mUvj%5*^xQ#!}#J_hCUi3Rm$;OvgR%cU-OsA3R&%jy6Y( zSI1@42$x6vg6VH`1w*U+bb%0J7yLWzi0;ubTy0r(lBg`Pn4Z-1{L3)bLX}5Eh2f(a zN2{N5Jj3~-5wJh9WQfArw{9vdLa-%mt?dPccv}5RjawvYk2XCHNtX?Ib4p@oj%})* z)4uh8`)NmP3D~z}Ers{*G|utz*}GK|aj0rU?~*i)0;BxMnozS}>6LVj<$L>pWg&YC zThDiAQ(N|YEvS_2f!8hlmJ1p|mTVTVddVe*8kE$#naRtNP9Q1p@9{fspyCkO{db2MN(nhm9?_*d) zw}hfU92cEBr+@rJEcO3ZrUU?nY({`?!RmcA zYm*!`;LAcOb+VdK9xRkbiLuOYF8Qg@5^{h1J6mRUTpQ&-t8Morx`$}B#kN7?2h06? zPVu0<-B_4mqpit z`5KP*Sy;fVH9gsU6`uz(M>KJoaVSlXD(_6kx*D80m{1&4h6`5mlDYVeetGSATTJbq z_e;DWkJq}nsyP?5D0e;JI5&&kMDDQyTP(Q<^e;l3wwjF5Z6F#416uKSBiDEW#nK-4flF3%13>$cKZU&}_UnNxNA;UlG z9@x$eeXa%77wfmSbs@0A%?m6_achPSNARwsgQwHRTZF=1P?X-%P1?cLnbAQ`FtJR7 z443mgK3knphRYcYf#g0BN7&jS)dT8@iH(_Likwf$C!c*BQ1A;dI|_K1UFW3 z2F)kn(H#V8e+*o*_sK;p0OgxEbI<4HxC#L5Y0Q&zwI;Tio$hGhFfBPMoR!B>Tri(#jD)g~o&G1z(RxIjw<*SB&HISZD`gvp> zcxQ=HrrwGG72CP{6ioZv_6v*=L}wo}3v3`|jcBM^Bo3R`Tc8c>_H`hVULj#18+p_5 zj^V{8~8yhvFPr74&c&w@>;QPvxjw*Pe;``y;&HkjFz^jm0^FFLwJzZewFMfZ( zW_tMJaB>z&hVWo++gs=MV;gIbO{X*OX~l*>$P!ar((B-O`@o*hB1jUO|O$^WwGW3$cwLu;ot=9(w6Vn${>FOx3k~)dPbx#QL>tJx6<|8+ymW{>j+>p{a+rN7(G4d>cf3gD%L&?UV3)s%8XA zga(qQ+@7kFG}HOyuW_2r*6E;~Sa?lFCRg-(*|X{w@Q@9rO(CZN#Ohz(<-3O@mVE;A znT=bEBrfyyT3@D}m?pny)MN`D=I5AnD&UhMU1ZLLwew~+lwZquH}N@R zO(wRsu30<^G4CRG_&G?k$a_SqB6(Xusqoihvj)RQKD`)SN!jG3tO=BjE- zza>K8Cx_10zJHE$8ZmTS|Nh#&^PKh@# z?XkpW4@5mw%hBMUZVI#o5_oEuxF(q=rfQDu$U0j7$M~k`^W)bga5s zqU5ggW7y=3-dyKf6`KWtNY;-<&F?r;_1hRg#5AovRh5ZjsRVUVU{HMOqRM34Is*;9 z6~AGTJ8AhhTKwElb!b+wFO;S{mw5yx@)#Z|^TwDmAgoKeZT;r<NWh8{c*Po)nDFZ>ZGgh}iw^4Yp8gT?5vdaA~;DmQlwW7+Acs%%um4 z_@$?oka){(TY0+|QT=@+MKzuL0905RC~YPG_|e znXq!KzZtqr2s^+CLKGq)rIT9T|7 zaFy;^3{kzEQOSI5@%@g%X#Op{Xnk}H#~P_xR%5{Oa?cf3{MzSu$o4C)&@iJH&iLwE z&HKX7nyk2A`<_FN73Yls_A6yX@quBAE>(ft609(KR=V$`<*+XUS~?R-O7cJh5ONlkH5!(-?>RqQy;@avBA@C2a0pg0>^w+i>ubvxk(YkDl20m7vKD>mixWqt~@*y%J zX;>C)`jG)+d`NQmZfBI2D28BZ1KE*%JftE0MNkVd`3z^lU)g_2g(Pgb9w{{9+=ziCCQ<#d&JL@uYmDI>mXCp3wBv+z_9Lata z)d`mF?^1|FVY4r9;G8}HZ}mO{fo4_RfkcSP3_t{@{Vw!1d{+!U)|VX2P?;Mj?8(sV z$9g1O?l3`O5pSRDd~v>>JdFt>w!a4@2m6{Z*JX4qQ$MiWM#5$AI3Ojo|Xv_R0cC|)-yzBah6&C1I3%q4NhD`2J`FQ z9`;_JftBU)s~i9Y<4@?R!CM;a8m;|GE+>V{;+)+rC{;+E1jR#UGFTMO-d->DXIi){ z*8JZLf6uw}eY>~SCwRNyJY3dL{TB;2CM{U zUqgIb<;Z(Tj8SRy+eMu}uR&#aVcD&ac}|zsCA4_7cSQ6oPUl4QTb0C6G^SV5%A(!P z+`)cvPCB+YF0^K}(>-al=TEgt8xnJSq6qm?J3k7k`D+qr&5NJ3mVe44?ba$xEe(%} z?^uZ({Z>aUf1mlYe@Z;@? zPDC~Sa(oEicXMbuaN%S6xa>w?ZdtD2djETcU{ogivHoNea5@}_FuNpfvxEFa@2YzoTr zTu4pquOsaN7QKz-ODFz4i2`zF5Ll2dY?6L_b~FWP2BfXrNLL+Y#F`r$5lv%RD2=b2?+5KbRV{X zNQ~;$?PL|@Ba-ejI~1|(g4EaaN}YLfsT)5<+4fb5EF?V&10gj8TuhGXVk4m9x(SDY z&ynF%!mWx6!N&07le7f=)&irJd`{x9C*wj`rS~}XR-w?BO#Ub z&IZ;ri!#1(@kjOoU6j@vn}}C<-1QzjacB*y@z;$v{r~0Cu(*4&4=l>G27uJu$NJnK zMf1slBSP6xDcZS(d2~RI$J*T0_BmAHt}^8FLMEpNDy#C*mUgyMg%=>^z0DdhTUoBl zoo^OspS$e0^W~<9Y6+zunew}^AQ3+tt7!6@eU$arPrmarWIEyiBNGhpYjNlPvK6-M zg{!Kmwr}whF?jeK^TyK~og>%;HlwpSYS*S-2U_)s=XbS#$+2YfFVU7k z{W;x1aeO`WQugpYAusf+tGS0-)`F=<&E3s)NK{ESKm&H?viiDA04ZZ?>$}kaKvILH*f9ENK7kj_~69pD~AOEYQQ9sCFfulMkDzwQZU^%n;%r*W?()9+qv9Tzzw$Fu6&JWwW;CyQB3-?u7Wj@7y z!3M4mIGh1b?yE&>OHr~3E^J3v%!C4`pkPZCKx(ql9K|thw$D(tZCP0U_fiOyPscVd zH;yY$DKlvGDluTeGq0Y{4waTnLN*9Y>er;?}0(L#9764U7VhnO0EWJ7bB^2V2Pg{M34mUfx{sqO>;l~J^Ox>R5wzk}fSY}Q)0!X7ltV+Sr> zyQ5g`4W7C%rZH2dLBA}^Egnc)z7pkvd5pc&2D53|N7HvzjCHf55H0tg(}apu(OQuz zyZT4^eUgJdtSZ#nUL-O9g_IeQHm^m8NrUf#$3SL(YRlJZe7U79Q2-8P#)>ElYcu)g zod${ytDZT5`eNs~mbeG~I%wD-0y^0wzt4yBxo|75*vx`a2MxuV$Smzcu zAE4uB+ZWrlO*zHBlIYiNPp0FD_RdOWX4h|g9h3#Ry)&!wszuKh04InfVA*PW;%Cb< zIKwdkG@x-teNL*-)rXX-tUcVZ{Ix}}iH!=xEo0~#!jx8XvS0?2}@CtZ#8#EmJ zte(G|Eqfg~$cIu6^KTv+l_DQc_g0qf_iB3sWM?>C?prf~oW5qm7Ef(*iDi`~+^`&{ zGYov|EbL+HR9&)i(ACPn@o;o(9%`&0^Y&(rX(; z|C+co*Yw+%C|2Xv84&>4){%J}5J)O^sHpJpn6DWLW-y|rHWVr@P`ZWB2Lh229F~~A zhN2zPX7th}d?j$2(~12qU3VLqL~AXK)BaI}R9jtVPo2KgEjb;uX(JaUIjm^;(;L1C ztAy@4`Lmn7?VinVD?zHlesx(F3<4P*Lop(4ZKIYl@xg+M3<2eph`9m@8+*rGt~^%G zqO5Khp`EjFQxVXd10iF)T9AkxBhd)Da)q2lv$YK06aAyFSjaSf zAy_I}CaYhuwzMNHw;Gj1cb1Fq)ao*8MP-aFCO_U z#r-xX8ptJiA7Ce*!D3t{ZT;bUb%DJn$E|O9^XE<-y2(n<9QWq3?B_hZ^^^}?+wUPw(kRroEH4tF2|!8TpmbEa*gH;AKR+YlHh;TENd5hi zI5Tuc^Q5Waa5+FN3vH70#ga@+=3cR|?7@XS=&=d9pru`$T|7rmU2L~n% z`|Z~Y-7CF}k>M;xi*-zy!lefPLG>B*@4UyapXer+`sr)^w@bAQQByk@DJg)8f!AOO zEy6V(F1)Ni-mU?0`1IlcEa90dCCkjx{_qog5&dp$ra^QFc<}U*8@FL|Aiam5!$IR~*Ex;p~Q==GlQn8Av- z7gu*tiTAA0slJ-Wi*3NKc!H_6Vt*VseIok$t^UpJE*D!i9tZ06_wo2@s#G5ALKw2) zuAilJzj6=)!b?egKfNG!$PXBh1gFK}5@wCEOQTVQL`-N9B`>4iZiu-hEO*q&n04^j z>(TC2-X+drSJFf~326~Y`$+kAIlWD>dLt8tK9nwrWnIzrsreqf(VO zBayr3zmZq@(Mg#oK+m+SpFpE#p!P?7SwZtu8Zd#2t>5fl@2FuzAf%3D=~BUs zDwc7HtdMeNJ@-OE@9jouHzZ*xagXvUrPYBIf)_oMf4Z|P6Z-{08MSrE1uI!HNRm$C z+N)URjnln#reAPg$+UpuR~5|o^Ous>o+Ch|pWwaoyML8Wv{g$lA~M#C3(+MeWzXn@ zAB2m^S{6BfReiBd^+D)z!F;5ad~3ho9Esjn z**1GQH-1gvgo+D_gvP41lqP5nz{EjoRgMe~Rhboo%;ZJL|K`s>Yk*3Wbt-%q>OlT(Ja}iz6kjwan#`J6D0!+ja8;(6jnR5O$X(n?oZ23; zTD(H!y(@%xn%B8#hXFH5_cC(M6b7(0ayw?JEj1M}6soJ+%0hE{p{$yj-xrNdG&w>T zLnIwBi%F}SUdFvdH(MHl?M2Q_BsvbsxM02iIKbdXx4pxp?T+ecRgG(Ih(O|uuf7Zv zpJ5Nnk5VxudZ zjw7L}EaWsN43PusKiK0psmotNRBP72BE6KtQtm(z`%Pc+rHlgF&jCh>W!j@KiU)SwgL%hU=GoS?PJofnI?T&vQ998q$a7Ex9zPnu#3k=u!_b1c1 zO4@hPitcHT`>q$u1+=scB@K>D)Qn}6C+azraF4^rnfy+)7s@J(BrofcM)z<0G+m||CDDO&T zatXo!rlQ))9Tc6o6u9-t6aZr@8o~S^UN*##RRA4JIC^W%dZ=pb30k}5I-(>Sc2s(G z8Hv7&P2=an|1<24o878|?tkDPif}om{azbIrl>Fc@5;h_uK35e9mamhHI1DknR_0_ zecK5!8JQdjZLZ8owDUqgdD543dR)O7d$6E5*^az9fS8 zFnW4{D#Ave&Nctj-E)&I@>`JvkJG>G3GrB_f0uN@fB9SQBXf^2tWyaF{4~i`b`}Yd z!O8;wK)q0*zD&)^Z(u#OSMV^Xrcrh9{872gn7wT>0#wHW6>;^Ws&a)zfGCPFV#LhC z#Eu1r-|QA1*|zM5BK#n25Dz1r?TFwmf25gF>7w`yrw#lh2w9Ve?ecc=E&KVP* zCjUXq%<`on;Wf@NA&4eTOlDbf8P}(t!&xkw9$h`bs_oiFqi6U4AdD9}A1^F~o9Vk0 zrfygeLE)zyA$pa1EgjX?cV(HmJ=GjyLQr#zmw)m`Y?K2}>l z)o03+XMp;y9#8VC6l!1+ue{H0WAmj8l#E@XpfRFa3o4`LM-^le&<-&9K-T=muE~ZwT%ocn$?Mf+ zn+Z$2(-$IXsR;>Q`A{JsA6GTtc^dF+hbwptZ0DKC&j4zK`Ej(0Vq<=J`MmB-%g@7P~^5@a^Lkj7kKFZ+Y=>!v#3<)So}v_X`d zkz)|>xX8GO1-Wfu@z497jPqw1HW_}`LvkL7(7L1%EC5D?EH)Ddg~_2lk2~=|0g51A zbG_G+8x}6px$RA*IzlQeNx$+kI$V8_K3{5c1uV!b-0!*j%3#5OzO0?a<|&Ks93K~)6E zggqRSoHf+k+rGP;a5-3KU30An=~ggtz2y?$RIWl_}!+ofwoYVDCc6Is%f)QJZE zO{+Ir1d)Q4mn8t)4JvQge1lLmiG}=-Cf52{O>C0B9gft<9v0Z-w9ac* zGd%gl|3PcEuAZC4!JGhPXhQiVr$#y$@7UgU)DiT$UcAUPbQ$s*!cBF^F+f=4PY)Ed&{M1l-|ws|wDh)-iAaU4_SJu~ zkby|4CbXdNNRq|?%As{~*QUuopob1a=$dSFyfo?PGp@DVa|s)YAh< z2j4n>z1ujiaXm`hl_$0bQ|25FTYiCgRI7E^%Z#VLI+RxjNrI0YSa4HZwo zspeS3NXmk#MOa18M;DTj$?4N%nxZtwzbGOEb&FK0 zvM)U`Ky@Vsf0Ks>sQZ$zshR@nxrY8~TC-UCS7Yv<5_z?%VNcQtUR%dNd5dvRbjfh8 z`zkWHUaLjGg^k4W$2VlMlkfP~1mu(6Z{yK@?mik%rRjPiGmb^a^bBfC(JFK;IT8Q-yQ;~JOl{_^~=6f;#Dn5_CJD7 zlgPRYE$vkNl_U!lDr{~HWexey65iB;k6MGe_hF8q&BmMQYI3XUo<5Rb$%H<)V? zhm@jTT*5qbltwPDhnU~8pooS+^L$M5~`Dn;()(c(k$sm;(I7@|}L9c&X1GPlC12fAqdN;ngn=!?q~ zW6FDJmQb=KAG)z{=*t_pRnzo%r>a?JRUau>Qr0MMG^(X0LGE&@_r#=RiVeLz-g%)e z&h|d#rUK7!YTSv832zY7oj8N99!j4or=za zF#W`meP zA7sLrd%$;fh_7##?{c6H_V17ImQUCCd>D4^RICjf?$d@&i8UXGQCmADEwx=%AC8-} zsP~YNd$khP$DTcW>S-PeKg35ZT>ytD!i_U07TV9xFa$usJ+G ze5z+xH;K9@SL8P4c*J^4{l+G}m}tfz_D!LtzZ=Z$unmDbIXkLS3XemgRMPw_y;;;f z+><7YF=6Ul1_&9xE@g@FC4N%j&5hBb!FXn+)ef3f=f!kCU;x{OhD*iXA znDC`yz_?QtqBg%)`93Ur4pNbCRQ6wRt)Bp6^3E z;BCA*XnZq1yow@a{K#+M;rxd7>b;@)jR#-NW>{`uNh}ru#VcapFAPQ*PwlD&L}^v; zArx;88NPF~7e(9Kl@}LORnfO=X%MXuD&1~r@=esT(0pd+!q1g6Vwl8pSB<4=6EwiS z7uvf>w+ye3ujin$b{k*(W!{&ZuHq5;OXmcx%czp$&T>ND)bu8HvEe5dt#$k1Iu+Mv|0G{f^3c`G0R;d8in`OBDUU+H94o7 z=1n)Lci3U*2bA8LQ%^K!(0mR*TX41Uc(HlqgJOpvxbchVi1}1cZ7JR#AxP{qQnNRJfR69T=VyL`LMVhOnt_l%x47-Pdk(SOD zZheFniqdkIVei}c&~UlYLI*nG`jYQPxxdJ#3@um!>HUF+IOFMBK7zF8McJdI<4A2VPO9kFuDSRXX)1{D{eRMuVee9Mt{QAg!8QM8@NxZ z#+92xnrmZER&ocbV5>;W>D;f3hUJQQ+*h{fu(Ao1NQgc``Z4>a5wBs;kyj*nR`fn1 z#xM+6EQT8gK*-0+h$Q8 z;~#HS65WfkOKV%W`98FF0EhRw1oN(-b4$Y{UEPFPtBv%rZ1yX)Vw9?~pR-v;%OV;a zjhjAc7Bv!T)N@orXa|gX*}`A*J^lu($CL)p%4Qu}$J#gfaDOow)2}XJ(;GW|`Xf-% zZ+%pJVw}_-?Yq?JuQY?Emw}Na=M0=wLPTFtCg^SU^2SZ%8{!G?{Ks0^2Ss0w2=f1b zJbeRnB+d8s#OB5u+qS*2jg6gbY;J7Zwz;u4wvCOsu`~bK_jkT;=Je_6TU9+hGgWoF z?|q(o7ydzIws>)6-+zz(71#66v2OBRYExVME5Go|x!aBmru?Bv| zIHzn&xE=BSqEeu$p90}EFUJBwz8?AS_QydY-YJ!kYi|fBf4q+(;T6so9)f-?G%vq3A$OxfqlIzBpV4S7<*|!&?J;^CJzX60=mIUz16xn^&d1&0 zMvJp9coXuZ)Di4B0fecDbb%U%Nu82vn;Ez3?fH}U2dJ;L5#g2~Vje!#qPzXO3okCR z1xiS#59oQ%vIF;^M*V@=INEV0twFY8VZ+YBw}sLRg9+qv{T2j)B83)AN}hmZpstmI z^{UVLykygwm9GM;Owsh(c$kjRqTtCX7Ua8%B^E;wf5$w&WoF! z*5qYteK;~Iqao4LjK((K2BD?0yZ(C`+0Uy{Ih|~9qD~#^(3WDXm6HbxJ!G$FsMCc9 zkQdoX-hwOpDI8?#I(cG}Dr$mp_H%Zddm6@Ju=h}@;ew0mHWIJEYCU}#1>+9Equ6|; zQkE)SLoPo^SW}c52jzogPh8=y;K-BkKf#q1aEiN}@ELJ(`|7@vkgSa~;f2Kr2|!hb zTdG|;AG;V$R@x{aNPL#~5bJ9S$3l@yFeRaioDLNFb5E}GQl?2?p$y!>9%Gf5^osh1?ZvHJ1f@+ZPzcp90xhKe+ zbE@lVBLZdHg)sVj+;IT_z(RYE&cex@l~(@Bxn2I*g@bmQ-k*7un(*-QClG?a+qW$V z3S=4u8KRpt$w2K}L56wprhHg3=BpMEJQ+@xWkB%w$A_g}N@>mD6^Ko{k~HGim<)2# zop*c8i4K;WR4JzGRkjkYx*=L=;#?71lbkFjX=6Dhe|UcIEvT5VrvJ04|Xgm_j@EkWiwqsXnEb)kk>! zkrn*Wi4JP7N332lBp42zoE2`x=m-)3o|%6aYvO~R@&Ev4Y?GjARudpr_C`kSnZ`H> zR2;l9KYVUiAU@9M9l@(h9ji#HmpaPp_;{6MnL#g((d}w%XOhMpks7hG$>=CItPpb9 z2kO1%P(ahH#F#-cx|8~&W_d$2qOkKq;@q}?JMl7VjQ6`~7Pt4Kbh82$>H0s~bgk`) zOn14F7s9c#*lsn00Uyo)+Gye4PzBo`3U zNPcGf6!S%*{5%FY?d6CU8t(U*M);BDf7#~kzt8mWIpojq`FZsKbOxf_Gc?x^V`YyA zK7t%u8+>U;MttXrAPiV^KDz87h&178`XctLKQjjX;dffZ<>iMDJZI#eCeSi2m)7rG zXkebly|IGeON)SDRsaIZozE4`4DyEQ&qz9|xm6vXZO^wxnV?(2Z^W~gSgAEZS@40F zK4lDlo3v{KF3&?q!?w^bHR7mjID7+B_AfxCW}jQn+b^9%|I`SXmv2EHLW?X`!qCmT z2$P-l3a2ARD^npCQo_=Hvy=*wuBDNI!Eo7rICbL8qQYjp>;)NJX{~Ll6ePq0)%hu< zM@OT2Ht5gLQJ@T6rTRz5U$&q54&S>sm3W|6?%N29CHDA!@f+7Me3Yw>tQMjQ1c*k! z;SWtwvunx~%WF-F`kV3KL_(W&}|m zcNty6vJskB^~S!UlaMX6sPzB?kmStW@xAPFGA5jKZ`!S*-LA}7F8*>`&XVc44L;{*iJq50u@vux4U5$?5e_lcTi zm*R}iD{-HNv(EfBF3&b$*>nyaX08@L7}XNE)iiBDJtoM>`C&007w#-# z0igso{zD&49@!U3SUY${@7L_gdCP0+cFzXdB?!ZV;k5z^1yKmP)8o8GiAm+UeG@;| zv{zBD@i$eX0ghhES+3@jf|kS@s<^vyTi|4xiPw_`Pug?A@cAYy7+^jeG6!U{Rmwdb z1VfwK-BWu?4gVMaAtD@0Y>)5JZnN#$X?=B}><=ND^7Y-fBHM5Crx{KMD6rdu005kj zw77`cV@q9aP{d7t(qZ_c&F3PU>UBSlGVx+G^C7Y@+^^}qtq8(=UnIcj^vQ+G%!U9+ zHQJOZquL2oR6mu&-18ZP3 zho7^pv(?KvhyW$5$2F$+y?^uO<@)`V&)+L+q4$AK=&1}i>HilrbqpNn$D#9~+^V8J zmsG{IARMBZe}l9KFy-1G__hP2>pjJGe9h~5Ub^U)l2nJw5hu6*P#{h9?K>(C4eE^ILL7q&Ohw?RfxtTeLyVsx1eKQLUtmB7Iw8)v z4({%Ta{sy=#h0cvR3m^&^??7)baCVFH$UbdLzDiy2(ViEoij>71mFk`_$;VZK8%5jUf|T0(3>LAsiNuV4KEIR@g_;{tuZ(6paH1qP^mJ)N$D_`H(?O8*_&|UxRm|) zm&u&>a61TIU1sM==RWta9p8HfwWm%iQ_@QUFU+neaXCpc{5icGx2;)X$si71(jxWU z{I!CWU>rsNu3CMH4xOq{=#j4X-CO9D^F=!?{HiN_{QVO6HsXJg*Za%knd#siSN@@y zL;icP5BO=^H1mPF^TX31N1gRc!K4L)T3qGGfNyUF5x}F~Kl`(a=3#>?oqU>tKuXW9 zW$~;y`D_tZ6(t;4*)#6V$c^Ghxqq|%q*l%+(kfl`#-loodH2nFD@i*t{RnBn-yN8-G&9d@oj9bN*;u~ot&@9d4=LdN1M)Hn zN)cm-JaThcSz5(LuS@sv^=L2a36zBV(*E;&S7Y2QcQ|yv zAMErw8@>J0-`-_f@cL&&+YD! zE6}2jvTMz84~o8ek9RYF%?X$C?FL~g=m(b7-7^yu}pftnO;ZtB1 z4fXMD)F#6C;DThWy2Ilr3RPaM>W<^@`Jre7;!@Zw(f1&O_YuFxx=$3~R@gLEPTVVS z(ct|KI5*goC;w(0nx+1-;a}f1WWCm3SMEQD(r9x&D3tsT^>Io{WQoW8R*q9rKT@S* z=leGexe%NDqZ3b;+_Juz8XgOkheOd1!*2isSvtQ${atsQxwJ~?X(U07pl_+JsVgRL zJ7wXjPp@&LC%rw-L8gJ;*@fM#nh{4VsZ2A>#HUaX2z3ajNQ-!*A(%o9Gn98cw1C1= zz}J3zUWm~q*_KY)b3kTYzXJTY_;fW!&^04V` zM5vS=1NsL8wZ*u)S|^{$XIjRs1duLdWUIJR%Ab51`1QvA{cDi_t*Ekl$+c!1rcE`A z{nH0_i%0ItnZ&ERv>bbr` ziHu#3Ut+qGAF47G$|H~_+PTL>*O4g zz76dZ>9s(loDm=)FX%xXHfPi+-D->6^w64MRA3UHo>d1!Simz$iA-=Ww9|d_n6k4}{& zQsa@(qvgHh-S|r&K)$70%HwsNz>*`M9Vj~)9(ep#uRj3)TDOD?f2bCLM`b`$>?-xL zo6>b|!qn(`D)f#3oUQwi^*^`*zGuyR4hp?}TFjhu3XOd3`M(L>^}PBEz3&1$-Y$DT z*FL7}K01NhMgErtI|fZoZ8Id=vN_~;4Nx$Tr8HV~-9IXmZx0^ob_@TG0y8OfpH=!* z-+*;Twzt5_(7NVZ3Wd})M~$0nLSCEUGRD{B1e^_&oY56(J%5KK6h6n`;hg>=HJ0In zaX*A}BG%?uttr{5pH@i40A?*4(kvaep5y6H7|KEukP@D{2_1Bntrv|4#sVkpP4r>K3Izu*-iN7D(c5?_|nkXJ%?;#AIb>WMRh6 z#pv+EB0@>w8xlO;zivp=)tykq-1 z?(FK6$4P`#`sA7lacgO*uBxi4_hGwAb7}GR3OlG5AMvwG;^4ZYQgH^0VHzL|027TT zwhV+!KrKd(005#vyenBueL?bvw?;W;KhrUQnf< zI_;f0*&Ed>EDuWjolq-<$}`Pj_u}4wsG`}*wB51GmD-UNa~)0$lV)Ad?)x1bHw(Ow z{l;eH$689aBou|yb`2<;pYMn3XG32jl29t8yXfE%A){dQ{vdXaM&ie{S|vXvB^`Bb#*8jdo+QO5@7}B8}MCeEj632-zrlD0^`~G)#%NyQ5i@|({a4 zSU2-P&&3YjU}o7Gbatbjrqo+;$YL&qo~tKK;4dIEk0oCqP9Y69%eHs(FLslQUv@%= zMS9}lytkL*u>^cXYwz8X#DUPLt3}oTVkxlLQi`k<+<4;9_y9=6020IiFfr1->P1C# zJmQvXhC<>$zjx9~QEniS-|0b#ZG`?@qV#Sd1+XKDi^9ssAKiF#>*!^-{nQ-tWtrp$qfNOvfrc!?SGfiU^y zVwb}wZQ~mK#y6%X5h2PkFFm|7(WId`Z-x;bG~Bt5eh$C$$480)$vsD0z9$LYDnm^I*bZuC#v20Q8`BvOLP%fCD0aAjXB4} zhrr2&6QRHYgMX8QjghApV~EBB;Gm_^#nH*bamb||DR4}sCX$=KJBm;;;8l7uhflVt zqYl{S|JAKuBr_lJ)y>cEUv7sL!cZSZE|`zE#c3=~2SYM6MgnC;${+uts>ZEMOGqNt zZAKi_PYe-X0!HJh_?a*W7s0me;Xb+bMc~_tKd03|u+Lh&IO-9H)WYbWxvuYVE9VhW zcSD}+_7GEIXVU57G}LPH=4BQs6ZG&|id#ONlU(Ub(gm&i)xWe_p~5oxbW^5MDJ_qg zTSUtZq@c+!Frp-Dniy&kz4z#S`&0z_Lkm@LBIz(|Sjc5**5XxUsE3tVzs|=anwJ>q zh|{E`!f^(M21}HOviHx!Hj>Z~cY_V8T9YS_hnDn*ig+O5Qtc_f){tm7n9lA7kOZkf z2TCeA%_?DQgs2ze7VM5F{k_QK;wmg3uZDUkHqN!JNX36#HIar>baeV!Z9KF{2PT{z zH&H6FG`aXiV`IJ|HY8$CYh&*#3x@c&g_ufATGgUvJd2?i?o5yJZP9t^WaV^s(>Lw( zNjyr8SJ>j=&YrNZ2#Ml&kU_#jkfEr= zq{gJE;Zo@7BFr4BaCci=n0kSb;wP?@gP*MuPz?+P)k7sM9^SKf1u@(_JS{RhSLk@ym1VT7IVC2RW*28~dhR&Z6lDSp({2GO@ zp>@OM$GX-)p+w)i8TCA3YAWsBp_KBju&BxoVGh4e{>dvE+4i$_8mW;wO=hW8=3kFy z?l`LHKQ|s6b+haufyA&fV{H+MeSxI+qkoqVmU z2OS~71tE>a)5~4CFPdoCHTse_8$Hxdw{2=Tpf>h1)X-j-qBy9#E{;M+>ipAE}i#hrJA= z9jnDazA-L8F*Krk9ID3PD-p?zQ)s}XA66T1iOsOCn5SlV<0d8vPbY>94*oq9$N|Pl z4A}tqlCEwPAq;NX(;%netz3z27^(hXw|*i~(l7QcN{*0)Zd4^`b>Dr}y_PmUN>)Y| zyx$-eYt7=m_xXLtz+GMZ!NB|Da*Oe`W{WvyAHAsf*TG*SFxWuJYA`}!a6B!*`2AQnA*;>Eq@>tFsg*&`=GgWi5h5_88J)u>8g+imG1vK-kqyG zcDqNVCYdIaYLahV&NW!K>;(wJDH*3$jne*DKt4twC0!o%B7`);wccyP+DiJ?{nM?{ zY+9GM@WlaRXDv7TZ_l<0DhYk0+HVB5=J*cWLQVM75+i2a9EpTwSKG^ZCmWrPVpC+9 zRP@l~(0&nf8ngH{Q#mu;jab?9G+g==j%gJhexx96(oqcdE|F8D(dT?Q*inxl0rX5$ z`7I4$Jg^|yK*_#c?l@)qWF6ti{Kde=U_?r|pcJoR(u-Eo=QBh=RyWn zDa82bAck93!dC1OI6Li4m>4aQ3$*4E2R@PJ4TSbxMyGNu;hz|4*BZBau|e`umeyqF$l-*K1K~ z7#M^?u`I#dmR$tY=^oCzan2GVxsT?V=RIjhbKTZXr$cwQO72)%wYVHHf#`8E2bYb_ zI+?eJ^W?xHA>ap*P;91$h)Vwx(BsrMf2%x#4Bh|rJw-bYB3fZ(%S(DUMe_(8@Oix) zHm%4^kYi|$>ic?ifW*iAy!^&jJannuda`wB1LpGUF}ME`?`OHgAK>?$bgz-w$M1$S zks)U%!?<5MsR;DAADR%@!Z;%S49Mrz-ewCCGbHrW`@MLLBTS^X|EX`#Y>xR7dayfp zNi^x_&qhpP;PN4GJOnpLhBOvRZl0P*K3FJgT#_kTPeOr!Gf7wh#a>7Gr7@sQ1PYZ&bI`eoK zhsVcU_A95+k2!s-f5*Ds-+cgle(NA!qWK##MjN+>!vxRMSu>lx;&fTYcZeYu{l_n-%D}J-s+RHLZ7d`OQCT<1p7I zi?g1HG@A*9jt#()&N}d_Q8CPS#K`BATj#8b@$r74S_LEIvzHauyM0$M_5q?V`87Vx z9hl8f>bKlYGXi3N zVb#2opH^mPWz{KMyV$1@nU`=5q}lhrz2B7#LQl%r1^dzoDRkVfouePS3AtbFUpET+ zy$T&~`r0jc2sWCXjzsADr{zNaox9BIojYH)U<5_Ro!0L0IX|?5gZ>)k?u&Pl?Rkw^ zLm@i|%L;>pn~cvsiFQNGCYv}pIi!*fv6`8jNJ6e<-oao3rVh9Nnw|8X-BeMW|7u1@FkEi z=X#vVH!*0_1$YU59~yC>-e#!aP=r2b61d}8KbhzKQL4*Pw=f8jf9Pi{eSp_SQLDfj z-zHIsY_~#(Lxq5rWre{E&)|qpMudiwGLA#74uyci88S4!g-t~)XmCQd5j~B91S6FS zCB~_i(?K^3C@xup9YYjU`aAJR^i)BLKul#(&H>{XlFn+_jU2Z9q ze!5*VON|G=?JnbH8=G)mjp@Ie#u(`^Po$x&GK3 zTd8v%w?O#*dA0#@{NXlP;;UO_ZVdHa&)TZf`j;MPqzJrY^0;xjFhCkPiL%z&Ug&hQ z#%E@rBwcU2?RF=8dG8(M1+cpg`vfe52jqv2^$s&7!gAl5c%`W~rG8p`y{j{ zCLG+T07pFA*{fZF*q95O0ilaZ zh&DGMCT3+Z<>N84-fyHFwa_M5Qu zrcTF4g5J42PqVEg&Dv=n_l4T0PnL(D{)k>j39TDD*Dg={TzvlZZ{x>TiW`q%%kG?c z8=lWyJGMSGZ@M&AHU|3s({WD>?^jp7f<6Uz66`H{6U(?PdskL8m)G6r5B~ga9030L zwo9^K`&;s=>kxPT{y*SrJuDW4-kR0g5OOJ=NLtTRTu>A?!@>T3Ty)BlebC_E?TG(#8lm0xvJwlxPn!YZMX+Ep#UV#JmuuZVh z;Bc>aU3)dJW+Ig+8m{erp9Ljs&}A+)Q6O-<`2&d&}{oed5^H?{%l?I+usWTWsYsFqqhGZ{+;dVl(Xe z^QP>HOMt8Ei&gTh_3lG&`!P{l&(>+eOyU;_$ABe0fJ&|BaLTgx{^D6WfYLk`Q-0SY zSc5H2p-jqmk_G>myHC!xsuoR8JJvQ#FRKJ~Or5s(5M6AP)W{q?uo|b1^*XljFynY+ z^2c&!M=U5nhY4Q+eS?G+uOWt`E*DNWF4&U9m+-aX#rO_{zUJI9JR*16A={jpf%)bo zKuo+iISCY6dI>7H3Ovbbd?xeAXgUQ#KO#w=O8ZYJ$OcmpR5@t2F9=2gqE$(zedjkr zp8JNwns{(ApAL$MF{}mh$K3Y#08$Tu?{TG8QTu+eSGafku=mLc?WKd)i*%X1@4;PH^>l-fSLlbCA00==^CD`g|>|75IIG-I9LKWfuJ5 zdD^gZ^Z^S0-Q)3@;jCc_bkv=A%gxDtK6TGx`mF@bV` z=TC?6y(vqfbYZ)^U)`=7&$@5~*T1xPqZZ;0zZ8^RTa)l(=PsF={DdZ*6)|~BJY)-+ z#L3P?g@iQODNDlUG~l%I8{qPqaV=vwU#x7XBo0flli(lrI~_${s$?~;;16#e6w{38 zPtn-<9#IusUL4IvZ^aw~{QwyrY|RQ8Y09n@5~Dz6!Gt>KzALB9AV@#k&0ibcC9YK( z{{z>FESLbXqOw)uM|$$T%>;^uqll<4jgEt%Dw&bY6vdHPR7B-HEM?^WL)DV)laHL zN*wWG(u&6vFALytZ!b=6-WR{lniuu?_+g3uuU?iT$QO;d_1ce3bp&~yo(SN7(jVB> zHOnd!UtHFjL7t5E5`>`mx5cl63Y}+Re4XH{EI>tf!EVa~Rq5{9EawTEq>fGI_l6ZL z{hL*X&J6Z*&hfiF@FPZ{+L!ytZ`aaL+aDgwu4yp}i^%?1^tU=W=`lkZX@{G=r!#dv zAJ0SEm25x!hZzVqTs-&obDnbip$C`Ye|@ABjdb~k`VR+!usjF1@12=HHxxU}`nhiT zkD~1TEGKyYT7+iMARh$b>ck=ZZzTH&FY0?S?IeO z9GfP+Awu)7Hd+W3off!;_l`x2T5znv0;FUr!((Ud+S;8IRQ(rKsN< zu`<>_d8sr-=K@XYIpz`D2-R?)es^(Yg%@GY!JhX_${_J6J<4aTO_oW`@eri)@nzy= zn3FbO;+dK$ACyyTlw<@kB}QloO951LoF#EotfCSl(j#!`liL|GpqdJfUYOCuSkWNA zh{3Wh=GJ#I-g3%lH=h(;`N9C3f!L?z)(gK|*MAaIC}IL4BH(Tuk-8imBapuG@w~WWRmX?yUUDu0WgpDNa2FGilBo5~oy~PY7P6!)g9yRpHK$H{~wayJ*(6yuC zUoKQX2k%q>W2hZFeR|)E-6TT!l0Z31He^*;JRI(LS=ZTP@|(c>HYyQ>UCd{;TKFB) z!x#f05%x8AJ5&^!1wFInJRTipiLoWPiRlWz4$N`PqBJKqv}Pk`>6h-xGTqVS_x6js z6eQm7ADvMrckUXDZ$5{O&whVG4SKAuvR%WjahI4C&xKCh+lDUv{kQ$o2qik3n-m}d zLNB|YPj{{vR#%?~MnH6ySz3qPl2d#81HuJ+U=8+Pzn2^AiL@FW!kx?gWh8Wk>n$1y zo9&Wf7u7H~iz;cDaM_nFBKtLgHv@z;&^`29*E!Qk-(-YEN#5M-M(dMVRjTjC!_TU> z7MbKph8czLDLcFG8WBhv%|c|#Q$I|xZZ2Q538>ODzOu{Pr5zX@y}_y&|C7Y^6!+{K)xL2289a1_{e87a!dOq{ ze6g6j&-?YI8@)S_zl>wQuJ^UzG;XIx{*teFA!7xe>Og1_?CHsLaBMRl7x$j4Fnn9pb;jI|9kRLfHDZL;%Z$e>)Ww{Lyr$LG(S8M!r6?x7z~ z1MTNT{%G~^r`qFBa77~HS^rt>-<^9Gd-3-BbhHShj3Zp1kbtQXdK+5x*Go3|^^j$N zOu+B(tYk#2gvxviA?eq*N|gKt;bai-lzN*BxMUp8Rk?6`|FA77j}a*8DpR|n<9JNP zdy|d+DCvI>XgL0xK$f|(aM~6Yn^BN_JIiRjSbBG4zuePdorZdVIZzeBHcYZsZl=O4 z#CSMqChH`$W{5$AAT>4*^I=iHCZ zy4*>Jw18Ljwzzz|^VEf}S?bMnE(7qketgs(@07E~dAkk{iY-i8(V4T5f0Z}G ziP-c<6mB{b@moe5O{##+j!+0yIxua5=n$FLan*m%-u(c}P`=9vLuKj-1v86GSB>78 zyHMD6t$Hr9UaXN}CSy!n;rQoCpPcM@lvJ#~D^@#CqqacsM+Z-_7Ms@qVLWQR{@PLV z54OON@caaT$d`fa0IFcr;)<7D;yB9WVVdyj265QN(o_Txov0@Bp07>axND>*ikX6i zwsH98NZfunzzUYnS^R-uWNAY(^3C{9E`c}lni<@M9--iw{469CKT;9|41XqS@5QPA zXGWU7;qNPE?gFc?99;2mDw#6B8o}^g(QkHhO@nfFxFC)+5?d$5y7X?)Dk@YIlxmP8^^1VV#DU#ybS@K7^+uu#j2g1RcD z;;|a0H(X=s2a`l1jlGcLD8I_$wwkI}+joYJTQ!<-BMna1;u&we8%>pDN2kOS(yA3h zN?y2#Z<}hT#iCov7N6*~R@ihy;%Byqx84Faep*2v(kZK;_d#M=3&yFLu$qTsCaI-1 zV~|filN@$p1g0-R;=oeY2e2c8j2YF&)Da?C{=CgEWn$t-7=i&999gM7#71Z8rnFjs zNuKjFzcJPYv6wJ=O|j>N`h66#O}11CqTF`+p^IrUK3;Y1ICXK@c*z4a(i1y1^y?U# z-6ejVY)W={Sm*gpT!j+Tbb=&yq9Er{^nzC0(y%oeN&_^&Pz%9&7Fzv*R0ZtfZ4tVt zDyo=9ilG@v@R|7PynJTU^E7;2(!8mnjXH_9CrJyE2C_8FPg3J(@sv!SYQ~zxgg*ta z6Pu)g0AlU>dnrnYc|&9=GU^y%C8r5L0>n$H3PdSwS~Fr;F;Z$YHAG7(v2kIgsp}(Q zC1{E?$Y@nP_TvAC1yC6)0prm828|?Tbv99%Foc&EvyRgJqX9*tAX6l23rlgif67;Td!4>mK%woxtx{IsXUu#c-;ZC4sR74f}R zv@uuVf0d1v0lsbDqBTMNzH-jl6Del5i`iv)gKV@n&{?vZp;oA}a<%lcF7#cMW;uFs%7ntTKriMDGXL)ZQA>osB0Os)IiY zXflPcR%m<3%s}{6AZk;bh--+OY$|0X1&PRrgd;MTy-dJf+>Re=M4L{TBx5CoGr26EIn$t`hx>{>r>m*I z7bz+gsro(G_6|%ll#y;!Y}qDi_A-e$W-WYL5BWG%H^90)l~r6DPYsv0HHb0i0d-%) zMrvl7yuBHd3gOgDHlH!NCMeFP7+R{j#@%&9Ez&+6DAwEUwg-UVo$?0a+U1r@|+@lPAIK32|HRbyZz5d}|EYcU}nY>Vjl z0zT<}q45QFPH1a!tB4V>R;Q)i#FwD3m$YnJGH~_Dh>dBgsuR_?h!Ww}0`TUX=_SEn zsfiR~jqIoM^FlSlVFRz`x*-_LOpEY}LjgJo!_kl{u$50};-*qDxFV?{rwm9=%JEU) z)X1d7XlgcXEQrz|Z%)veVk$IfK0ucsLa!Mjf(_0`){tuJ#(r;|)a;t{_}hq_ zjEymd&)K%pQEP=6dMe(aMJi`ojUJX{jbWe38~L%nsvn|sfLa1Tuh!fkDJBJqmaMXN zaD|^VU*!L-{Au@fTG>ol1;5Q=fsPEL*jPw7YBg9LjTT<2LQph5*pvnm%({mGhh9s* zLVW;A7!j;|Rjx#XCBv(1Us?mc*i)PXy~#>v!gBqm4St~)G8AW@hQX2+6zN;k-%9nh z)l3}As#LegKLx8pmMee(w&4Cn>XbZ1RGl2G73S$A)Z>UJOG1+1CH*i=YDp3XyP5SS zNzDt3W1n){ognE*EV^}_jtnLhHd1&N4DEB-j0BeDD(hMogb4(zwcR5hCT9>D!6Y@H z^j^k1_PHh5fGvM*Us@MiwS+xlzEY@u(4vxEMtDKWvyX#w#9|+!->?FW8m^E#KqUxq z8SylQn7Kkb;%7dh6fP_d$S;aWLjhCLj#_&9tz{rclu2J)@q9DF$M9k^@=S_{R+EC7 zbUYP>EZR~uTCf)}hSsU-B7uT?Bl;sBA3_h`SJnur>B1VGZ>a%u>*?EQxbiv(OX-wK zGBk&fF+*p}P2*Cb)ON~GQd(=eA?W6sx+5dlI3ii?JbM4C zT8f!u%0qo=X)8O`%&sR(0RP}qa2qym-5ZRdEHM4nq^Ru2Yr)|lJ{(`(FkI zRwzOWCEU+em2nO2RlT|uy{0+6Wo+1(gK~w?nx}C*tTu{1k|}NWEXF;p)#Pf)@=O>W zTL;txlC^kNYO~p0l^_UcmLztnGW0B)^eTQ^oFgZ@#G>Ce;{*b+)svNUESTB)W^7DjZx+BrfLc40MSK)J`rIk>&pS0#jRmEFX%*=>)YmvP;rHF3>3VtV|S}Lzr0g_HD=WN<)B;_pOf=(S-L~fdS+YZ zk^IBlPh1W*4z>5;#YJDp%FJbNAS5a&^5Wtme2#6Q7K_*h>@Iy95gXK(yTlL$0Dk1a zkWa~Ejc27S#`W)nj+OmrkBar|GR{gGS}gbfiDZH%+o|CxS#%1H7?nF5_6DE=>YpWz zBv>oPa;aLh{<{v@KBEM&f*DJlhCnK;tfPSt1ndXE^eHQ+GTsqPgK1y9S@!WiVHv(? z(KcYRrK_0UHDVqlU>q>=_s_3)A@LS>W7*pX{||1{O15)20-MdB4067^M2&G8iuhGgA*mfC0n0=hUuIQdp zWRE!xlw&MX_s8c&T`X|A*Do=7IlAe5Z-ol-b`*{uSNrK{IQcV%=0}AbGbqwv^I@i+ z6wZKT(q*F)Ol((DQr@c09_|^>)E@>L1J7&i(}*GMO%=d}kJ>KQ3uDiyI%V+FYD8bR zXmrdU6DJ!&y?;C#WX`T-7mZFlTvfN~+U;9&9kI~R^zWWG&JKnQ<)VB zQf|fT<_ez#CcDfvj+UW#>OQVJor(_`ayQSfpkNlld|3Uh-^l4)&jS;fs*S(TTdb_C zK^Tly8N(6j4Sf1<{^=SGZvN>kVQ>DO&E|RXVvdO^2BV$(xFLh?@2UY2y)5XYUk$WU zdJjZ=1fJUG4Bp)Yu02rG-{wRCo>8EH0v2rqf>9aRTMK+t-uFA(&Q9*%#Y3X~Ok*dK z9|(OlB!@fiPy-)6Kb1f}X?5Vau-|aM%@*2W@jXuPWttj&1Wg~yU=NQIzleu}a$%Ez{ zAMB`QdOiaLTnp(V9LTS@>aRQ;Z_`fdzRyV0c-!12OvRQU?HW^^1bw*?g_>Pc)T{e z>riSst@EWn1&x}K7v6B8vVE=UD3gZb+s`h|rY22*6w$o-N?@J)-uX`}HZTBN6U>!e z($m~8hqE84wsxh#oM3=&vXNlya^Wxm&qFS|4mbU?d$eldQLkX$3@$bTGFgmd*qH9h z26K<|3UzCD~<4~~PC-J{Z%yiZ`abrajqSH%N%pV``<+beqT$hGU6LFq=O8oWR78zI10sc!FA&kYD9QO3n_8#Xl6G zJoOiKi?`X_Ci^ZrbtyKH04GhsdD0NGJqUkY{0k?woe3dx{T{Kr9#fqTFMMo{^Z?wy zXsGx$d#bB7H8+@#1zyM01sav6W&5*r* zoYzpKcovNbn0?FK@TFaP8qJ#F+;lv>;r_YRkO9+I-=JNA zMfsU@Kv(DGU>1?&S8d_#VuA85(D#oO#Xgzyi)4ikT2X_2C%iVT@OqVNJ zh3Wtuq@|MD1^<>rx9F;SBwo&v=Ur$EP^Se!_$@hjgwWSTd?xh@{`jAYFcT4f68w}2 zV&lz{&A!$#VuhLV{ih{54R1*Ju&!J^|6BQOQF-pa#SxRT_Oc(bmi#*_KuMA-fn!D2 zvFMwY!Hna-^I|ibOig9*5X!?ALK8ArO2v#4O#WA~8c7BQ87EncM&Z$-B9e)kIg$MD zGr)}R5Ly6(f0lw#7pbRpjd5-Wr>Y_%r|Vp2T?ICB%`QL+aXq-Yx|)}FAujkdpS-UK z4qZIvPq(88+BK$Qrdwl_JAZk#2y~YJ-{cJCA^fOvn@cI!4*#G0| zoueafqHf_%CKF7IiEZ1q&50(qZ6_1kwl%Rav2Ap0+sW0}K{UMmN-$fKCR6PF)#c`5)#v}Hjz5FS$yp3bZlf3hRjUK)Pf z=yH5jl zOaa}$a*3;Xt)!+dT|wIp-;Vjvn5+&h1Yt_d42T6F=LeAU2JZ5q>FI^f9R*EetW`TQ zXmB31abR4e#cOqXJ?_J64M%6P<8>ZBhHq+#*T_^RQOQJ8Pi6CY{8K0N85vOGo2*JH zY4{)OnjYT-J{}cMuX1n~nY*v6j~v!)(@moAG&d$m)0-UmlW&=NE7S z{BXkXX>>X$sa4^A>~`BHG|RF1EDmkgn`0@rugjU|SFy`YY8kS-zh#@u&Ti1R%7pXL zq4w__d<8jDO`DHlOUhyRU5UaKzpakt02y7ewQ~s&zfES@q0VoJqLMciBjz-{C?|w$ zKD|M!a{VfFi(qx5B5n zU%2w}WKTuE0MW})&J%*<_XxM1c)poq_ryz{*QeA}ag&WU&&>R@*BZO-6`1`g-`3@2 ze%)#7JMr4l$I>Q*YTeT9Dg)b@?GE^79CBx-i-IbtEf$bnZ9>A$LFG{P#?s3|_^e)1iiY|oiB+s>ZPeD(H;yS#Jh&u^-I zf5XvTM*QGdxK5yWE)+BQx)b0ydyOl}gf#6zeh6s(%dTTf13#|$r4N~f3U;0Lg-kj^ zf^<~w6~slPngF4uUDFtBbC=^`{8jZ-)6}DEuTtxj@V7;!U4YvzaWhk3_Mw^z&#UD- zzuvszs49WKgWcrI*?!aUFZuLaes}JVzwCQW39Vh)ONN4$#kNJ;Yk_(!SHwOWP~YZ5jbELB zo7tbvH&3yXS$*H__)5=s*h^X4aC;-Z-iWX8F#dTS`hojA8yC@ob-ik8q1fYto zvWMAgIeAIV$Gy2|%@&o?|ET-sq)E_h&1tz>c}~M)b|iQrI#{n>=@l@!9~ zJR~hrlZTAPIcRfl{7LdXgf$5Qh30Z|v%v(X)3)8#(n5b2d*f{DYnFnZ8MezUTMo`F z_fE1?Kl9~#Yp|ZGSo@_3+|3Fo75GQezDfmi18-y|clscjyVcp~F*Q+H>rrfe-18{s zO+)vIT7)>dFx(Wvk3~6wmo;Pcj<96$x>pM(m|J=2QFCzH)0K+z5Rm3X zP3=m<#|Shb)4@t0?q+K7R?~4*&qm_vZyHXcfg&EL#gsZNy^7jXgfU^=TnaV~=WtYTzB} z46@+5gWcd37t_;NYTsLO-yqi0q(%Ia<8-&L-?8NqdxEQtudM^H3|8E2wAn^8AyH3(?d3qNjK<^ueWFX<>ar;unOIA2jl-e1DO| zvcDQ1_ka%GuqEczx(zTEb;4x7D{JAFhh*r-p>PbTjL_Y3;1gk}ogYe=B%mUmFWe zS2UHWTk2k>F&*|wp@K1p^Pb!9(l)xKW4~C<`bP83p2x74$`SDCA z@|BI@>ONhM;M`xd*txe!bh4s>re#RzqIc60BDmA+LIWTy7scYy438S@s6(YBq*(O(M=IR5Myu+sov>GIt< z-{>o`S%dd*gTk<$9K+t4GLgcdkAbDG;x+c9x!ixfD5{G1ffbOFy3y2magPAg_!Bd+ z$^6r$yg`E#q2-v_VJ2dWbUsMtmK;Ia=jbkfDPX~?#x_niiQjmH5g^%a^V0LGd<&1+ zSh8JM7Fh%r?ne{gX)x0m7z+uW{X;;q*vu~d{nz0&#d`w)fT6chq=7w&o5*P4^?79mgK{Qv{{1;1Jn<`t5Z~!QKj26o3 z9VHYNKa6(R`OMJcm`U$|)S8h^E-|V*1!9$u2)L@9UMIz=6S-YG>5a^(b0ALz7BqL~ z90Y_732;?wo_fHci-zE&{@M{j(^5P(HgJ9P;@4ef;eL>&H_~a1AqrRTmJ@}k#`iUp z;gmr?L?~fg$RMNCZMDxw5|7Baz5C3-WP6AOMBofODe<>f9P2eTjZ06Cje&1-V9den z^i@^C;&srN9@A|1iSY$rxu<#xv=RD4^zQ5kO$A&hhG)-rl*s3#wG=z~=z~^5M-|}{ zX5q_1eI0~c|tg>jpjb^cJyaWTY@$e|fzV1mlhcl9ckkkk`FBq(bx*LV=W^y;HFR;@`WO4vwbPnL1nJNF<~=n>w3Mqi zvz)0Ex~-gKithRbE1%sqJmcK=lm9x)k}`DihFBZ=OBk0{B9ekGC$J&D((>;nKSb71 z_d3cZFEJ2k?vK{F_OxB+A8cn)3Y2P7xg2*2a)Po6bY(2jyDjbS9&N_C7s$xisEf(f zsOOJeYb0R2MmkD{om{P*Ys~fR&9`pCcTPnfq$^}cS2n+=^_6f4M!i(6H##=JRcX%(Hd3Pi$CfkCI^4--!=@IZVw;)|B ztZeSzE?kSS{PsZXm6>0X^}1^=I!?l-!3Y2q4~gYS;`${lsvUp#Q=25Z4oCDTWuA4X zr7o15+=Pd3^8A;{rv7mh>rY0*Iy!Iq0c8|oz!f{ay7+loF#YYuvN3QMT)OtcpoW^* zSR_gokVY1U&=@knjsktFF~^EN&Cn*(x>5Js9b&^ztbTZ^c}GN^iqmP->ttCz(YzK(Mg!Ao4{TSG+Fu&6BMBPgQ#=wYhw%Bsg07c z?kvS-%!laqD<~$EAz4PVO=`uWK+jX2L8`TjdJx|_%Y#vxfUN&wIvb?ugK zT|s!ERn+5D5ET&r*E#f~6lQx-V}4%FAN#0niypidB+RKc~);#82w?!+Re< zI=2!L1l4?I7XO%~cGR%gMd(=}uWf6|Q+OUiJg5~RT6Ka8cSmRpAfe0D1@Zzadyt8} z6D}b%FiU2GVS?BGLJ&j{fEz1X$&>$Nj3#{Qn7KMnq#&>q{ZSV))0p+TTxcBvknC~L zpRr;SvjLqft~zXb2pZ`BX9hDN@f<5kpfKzcw;~6tGzPu=51j&D7eZ0Wp$+T_CV>JK zH&xKPpa8_gxl0Kq;f{oQ8Wl7*2-Ek!=cpN^hSOUJW{laR~{fFSuYzhk7&YP-$1I_Pv` z^*{gWtm{^tzBiB=jDtDCzj{!HhJZ_-^U-sao(?T16NC>CqC&)_BSvcA1$||wK)v5& zR0Se5HidTm{#)4h*`L+$G}~ENMSVd!^Xs6wTnykibJc17ha!6p#|cIHjb15-`1mTdUD|2BRhK7?z!PI9#5jT-nV)&nBAoA_p{RJTO~-jDWRLnXuK{A__nTY z4<5vIZ=$6@8I3h@jsn`rJqYZ_EBbOORH4h%TuU2l8xkkPaGzG8J_V-im?3 z@hObd@YSf$&1G?mLf3XT&F0T2OWc~+TX)5&jia<5Mj;!^YHpJkl4!Q`PNrZ~BFtA8 zSoxm^bW3Jc|1ovW3X@KffAPxfxAmX*uW=Jq_;Tk-{AzRbR`KF5z&CCDY=O(Wn@VYU zbr^Z9R$33j)`4W%>NL0~ZFj2zAf^R6^z zOuMQSp0_=ywCHs*$?^LUp0(5BZTYLi&j@{sBsfXN-Z^Job&eEzZTHc^po#2j`9elF z*Qvm2!OCbW;6}UO@~aw6G;Y_&W_tJI0dsfF-hj_3GK#!sSXQJ~Bz!wg*{?lHoqCS^ zVjz02e^cUB29ufGv_scIyx3K@$9z_cCplO*6`dYIVyIH6$*>rYcnSFRX7=q=qTq|@ z>PLd>cZPj*;Lq|Bb?643dq4y=8R#%BtL>XNil|KN4MSuTN5CBp$D9Jx3qNhnwOi z?*LnQ@tXhuPwAEeXstH4*T0C>QMXWK>b*j^{2_@hjPA6L-NO%?IP1&QO$$nA z98SU&QY~3p)ei7q`MqO0v!k69F{jCgcmLSiv$I8;pa)PonKUchgu81y;yHXl}^=qUUI7J4wtdnEF+#RH)^P-N0cegh($R$ za^+QZHohrQi{z+&wOoGU0CKU@&_q^Z$=G5iSlAxQbqF}6B)@N`Rf!D~(eI*Xov5uH zGB=Np>+R?zGi%hc!cI|OKC))73u>-b{KX@C7c~|~o34AYvgrZyEezxZ!K5-#wdLlE z#NSbA4A!J$%@3iccyb zVq?w3t_rb!;ve&13LEz|35{dCY&@}dKm~~AUg(Qkh+;9ctLNa<+H3JB!$SUQFeNV` zQF$OOu*>&${OTL1LNt-7#ru9;fT5QKr@yI!XUgiuGyJIZNw+t7pOwB$3f5|Lo)%s^ zHId2D)%eEQRJ1>EHmq}9&;5)19V9C5pF(L6`e*@DY*cDE&CYQO#~w9MW}^{7kBIy% zmG*S8>>kdKf2Wo_OS)WCmF^kWdOFF7ch-7aslNx9_FFD&h-(-m}mE8(==xiMxxM%xLRJzf-wZ%wj zv+whr;6aDOz%6lHB_K$m`^4qwJ}`EO?1f^2N`b&Nqg1eogqTx0Z>eRI0;hFmmCro#BwI3CqFT@OhxACqwWdrGorYX*qwFvQjKt zv{l?A@cM1MXl)FND=GP6^L*w9n%TX`9j!Iw;j!9`+Q%m&$xw8B8JMj1ZNMnQ8MpHJ zN?u4L`U5^EBbAHbzYHHPu2=A^r@6#Jz&-B6KDO-CtV`ZbU%IDQAZ!eq^?V^r_cs78 zmowbS1@-UP1Yzf6CGDk9ORF5p#MjhCi`FuSUsuhw?cdcAD?%?tRpD6UM&J2Zilu880Mbn$zRCLKU{bOpfI=}Xp%1!2F8pAzLu zNEOHhvUu!?GX&+M?4%9= zw7-cX-l<*O&m38T0oWSxO->g{R4%fQ<@Y$Z>x&{+6h9??!uysQ{Tn{3oclXI$Cqv2 z9@{XcsG+++ObS2q0H(%6#u|KT!17lVoH6yP8rGg|3{{9P>+B-R-dUVq{mMRibN~JG zFGsQWm1W4Bq8!t=Cj552uf^JvE13_C0m)j&-Zn>NNU()JCQH;XsbmTe4-sUGS!a3% z!ud6YRru|=88m*L$@3?gx%kqwitG;PW+WZERf{lNw|lCe(2RxYd0`2f%uoPB_SW6+ z!9Ot0xH{V3hSV0v+;$4E4JzY$F0;<4pJq&$jPL>krmtik)R;>JruF0@r*;$bl`>Wi zb2-L)rht=g&t=`6j@V@Bk%j;O2{aPtFRXd5WsFr=gyL8nSKdLFon6tLd*LOnBsR+2 zZ1|>6SGqf&m%H~5v&W+<%;JJ`MiZ_|y_C!O@zj#Hdp+Gk*8gc4fYaPQnZIo=Qg@Fr zN(qIc1vAC+=Q`D`6K``MLZ`)*<0`C9;+Ju6s~sZ~AOay5RH5v9r6JJ&Sa9-XKH4jq z48{BYq=Z*`I%!vkEr%I0o?iR$l~UNlu$wl-H&*w1GqsNn9DoG} z!XKU{uO7EZ-T-u2$@dy^Py!?_GopQ|^dO=MI6cod8p0Vwv*qEo`n?r3gK9%oCu~#K zymv;h42Ho$<^3-<9%xv#q71DXKsi~w$T>oIIA)&YZ*uK+?lZZ4c;;vBVbc<^gaP6R zhDi?w>1#sqKPXB=n_ud1edawV4N;V^%A#`0ZWlaKfjg}~lB z5e#o@qTKrX5QofgM72Pg7thf?zDEyJqnq{${c8UFlM3P?F{Cke>Jv=W_ zZ7SW>Fz97hB87pyD`x_lv+>Ci)rL}L#{~>O`E{R;UOspP=HE1Rj@4bl4jRS;RN%-NF$} zU1tyME)Y>_7&#voY}KCe`<*)#SSUFxQL!p*f=*u1KMzUP zC?|_q(ghmyCD9SM)wbt>_G6vDC7FD8tg=N+lbTJHO<2yoa!O^Lr4fVl7HFMoOpVoj zFuTzEw^CngB?)eatE$H5LuGLn8!8OA5eljn>^UC%umOzi8k9g@A4$h_vjsGr6kg;k zU3MBS9bU)fq) zl8RP8h22$UtLW7d6xWd|`G01lNtUHb_+b+&c`s~bEo#*Xp;mLy{?n&iiA28!4_}MY zLbCY=R`nBRvV`|%h2)YJp&;|o%ihG)llbIBUUS{S{hQ6%CZG_4|aN%s}pB4 zi7IA;?!KDl_@~|M(ueQ*!-N0$YEY*iiK{PWW}-LdM-AWRW|~sWCUIA#r+8 zxzjIFh#Yl_pJd9LBGv3HFRo4_#ZIv6-~h->Akf0e`W9N8Jix7cQ?k@EhbD(i*GJ_+ zAlE6^rSz^57~?l#k6jL)z>2bv-Y?=eM;`heFmSv?Wdv0&nTGkN`L^!VjC)pKGZ2t1(vS= zF6e1JTS3%KvRzwndzRmPh(T8!MH9mljB!_zl`QSYB8)Uu8{M&oWhGppTyQM7IeYm1 z)a%D*kzQ(nF3!NN--~IKFaRJe8I-cKaAaX~)`^n|lYqU*BY_bGMLH1OVk6vL&+GT*W7K&i|j-r`J=sQbSBBF;K6oy&KsSrNWiL!&D!af)DlTl#UPbFCriSfax6KWFkmFL z7{w1R;yLxbh$5Yd5S@r^{halxt=anVLbK`h#P-_-7^r6fy-YL)jVDGKFq(gKQ$?Hb zYV6v>t{>~_Ik&uUeGbmi(d04e;BRG?!)G)kk}4jPM=I$4Oi_1(-U`v{j#f-w3@3S+ zq9S5NqKhI$6!=WZ!haSkPQ(0iS5G8ud zbWXSEw(53Njs=Pt5rnm#rcYK@EyPM>lTtzs|8B5WApm(VOn|a0SC`1G|jFN}s+6PL^4dd7!&Ez9en39YGM zaAWe)baYqYZeR7?tq;rgY;3AKao(rR^!Bq_S+h*O5Jj;Q=e{=gVy2k051uk`q>vP$ z{s1gvBrZHMIP0%*3W8doq&kgAykR0=*;T)Sz-t2i=0lGk-kn}$=1f5pVg#%sT>uSt zqE<4f%l&6K|5z(=Grir~%hgGhA5`1*YA6i_m9OYDzt&T4K)6RD!efqdow389>h*bH z&ESW%XY=N!9gWv}_nF8~P1#GIFg|BHePy`n6Gl$;3gk@th*&R4LX9#Oj*Z20=#0zn~w$_{P ztdlrMo#3Vu@QbR!r-FciRA9Mu=A6Z_KzIf6dXmO6pzAn_oGmHz(j*bMcw{ZsYuN5? z4Tk|bKFvQynU{o5eEo59b(z?V^ZSqV_K&kdlnm8jsw7r9X>fSKj35n+i&PM5I{ePC zTRr8vt`d+lfQBMA^V`2`73bQa9Ca$KG@(Xw<`;X)|Nc!t2VLNp0cmDcSh%-Z{37$_ zBKIC-9-v^JD0M=TY@y$#Zpgo>TKcr7Afd1q`FMl++Vd{EIzP{FU_3sqSr~hM7S#Xk zYBT*KwdPZk|8k2Aelic+_W)g&-csh|z2ezgbDQFLMVZ!Hn7 zDB#p;jbpQ^YvSj!i8q;9KXL;6aeixQm_v;R4f}WY#=R>G@8eh->8rKOTGwVPg)=u0M&e++$*wfgciw$t{VNtlF#>xRecq;^b zq>=7k8!Qh-NjWZ64ZADRJHEcPNKT{V+qT|y`^PfC&aIYKB~nCN*Tbi@Q%A#Br1T3t z|MgGur6R^T?T;Gohb{ve&9?hdmJ0Q3rA0?^lkp1~KU1TLK7ZWQArxlktY|FbLSoCx zj>5zGxkc%QudH-8Yx>!Z3*egrqO8i&!cr4G@fSA{uQ>C!j1^07Unx5g9PN$rsII>W zb<$TENB6TbEnay@k1&;<(zzXyT;~y$GCHyRP40&_i3qOV83L;?f3I%Gb>t##smwFr z)}J0?YhbX{kAD$DHw0NPr>$oJ3L6rjX2@ z=A3{T%wM{pB{JXuL15cUMbo(hYGZB%q#84LI=8X*jSMmQfbWw6{p1um;J*NSbN~*Z z)v7PLoRx55=(w2da*`+T;Sto-_#y|S>C_q5b_E!t0?f}&-GXW7m2j%nkpO=g3E>36 z&yZF~|1$qI=Ss#i`@W^U@%E}6=OxGVCcNM~>tKe5_Z-LI+S3EfajN+ABr%wci{S0` zN`_R7AM@L-N;q*lQ~u#)KxPzG*EQCgSRz4i5ZTt0iD?vNb4&K&z6WoOxP3l|n#_NIID@!g#Uv#DDsh^d_57(KEJR(M6egm@oOUuz1oaAVAcW*p$AF0 za>+ZW!@uz*gemb33w#;A(AICXh?zYSexycGS8G>|-2c9skdchRmm>YqzV)(?%kj2i z->m&j&dyClUlfHXnAY36YnB_6$Vn|BR7$)w;n1;>Y?g#8D{ZT71wCzdQ3n6}5r&l4 z#?UkeVN#6v(-`yB%Egpt8TuO5+4~vG^b=MsWC8qTeAHTstcirS|6O{kWD@@9if4lu z@_lfqsDIoFtO;Bt#vOR#a>LBW4s318;Ryog5u=FQRZy%>oBi7Ki?ivrwKIp$lPgCj zvq@i97XT)6n22P^lLmE-vS`0dR4Mou3q?AR@Wg>@(3aV(-9Dt%1iNUjCtfq zE9o-XBu?+r^zyd;HtvPT5Z+kwkQsIg@x{9@rH6MvRX)FUJ^_}wbd@*Rj$clx z9D-fuFIQJr6|UZ{kMo>#X_`nztT(X5vumQ38Z1AlT$lm=@;?Y?%BszZ)jJcEd<{Ph zJkpsg7$OUFuo>8;E9njwBRvAztKL-okqVsu#MNed0AnuvYP=ro0E+IfD_i_c=Mvvh zRXWu&sdRy-aDr5E@L|gKZST#L3@AiM9~i=>N=s5;{;kk6nBM)CM;Xd$q-|-t2V}vj z^ggE-3d4?f^}A8uAZeum{@*&-Yu!C?0D`_Rb7R6;JLHeoH|!Ca%;MCegTzT5KYvUA z(T*8QIkq9Do|`(#=I=44m5ojEBZwc^NuAx>@%uz`2z{92@_srDts z>n)6fDi>p3gQPkT+3NOHMc?xe7$16o1go^c0l7;FqJ@1EundPZF$wKXF}SX04BuhE zV@YGne@cbnRt+b|_uGsXL8+i%FzE{4sv-!92`9R(we{ZWU@Z8o+v_RcnZ zzmW7+;B=r1AZs-D8vqz~!2xo1n~NvI0`ja)zU(YrG;m-D(T!R>XozHCxy9Oj$|ZH} zIuyy`A$C9Sn)&$t4mT;SqRdK2g`Gw#YbJ4TBq{z{9iSGOG%924SVnekMWMXuP3dw<3K zm6-SO%#ofurw&g;8U{BA=%4vzCk$=m>vU*t?NlmCKIW{?5wb~t!6aBWnHlHKm`s|$ zi`&$Q4v3n(l%qwjiD~Z(+JFyUm^u1$P$=7{ibQV85dtGm*Gx)OPlV-^FKf)Ge_E6f z1%oM(&V{u2)t&*25eM!UaZ8x!zm@o0u@5PUi$v_(6;*4S(*UN62#~?`&8u3vf|VV7Z~#$b+4ALckP?B&hAB8E z?=JUP+VDuF8kGv;LWXgmCsZ}nWy1?#Q1noMd#{cPN6zs^q* z{mD_@vCJd(+M%LKCUQi21miU)PQay_bR;2KN}90d?C0L8FN3PvU=Ct#TpG!rZYNOq zVT4K2OTQTx?!}4omh6iis;9oEI~(G|QR>i#U1FxDXXxV=b5U{nsXlFp-5=Oo*;toE zhG0bEXK^siaSgmd!I^SO2p3Y4@bS33)f*j{J9S++c3q5>DRCSZvQj+$^!vr&h0xNa zLD$&ht(X6&!8_UxZEPh!Mc&DUEn!jXpHl&* z>Kzf=PI;+@*eL`B!7Fxo=b$3~oC~XwEObP`eUs{0D#JJ7bQdjt?>aM#huPgFJ!!4F z%m@Ommt*VeSIY21(UEWpYzgg*=*=bASIWuox009fN`@&gfIgSrg@?mf!W0b+g&*PW8y^KAf$~A`O2k#Pjb#b10AY<^`SHI8WUnqEHntPS{DsFUx0wv(<~fCZHlg;5rTi4Qc<0DgWZ!&3~a<2ybvwnoy|-CdY2wP3r9 zUt~>)zvSQQ);<5#0UgAwb%Bj{Tl1P<2#z}qh?RdNydG!Up%7#zGM)cEB}I@$(v)~U zhSvCbu_Fiqfk+GQrwzuG*N-N6!P-%Sy4=($>?ckZrAWUd2- zQkOTC%%P?q*(Pzk01>pB8bIAlSjNk>`pHmU0F(LTFiOt(um^Q`Sw1E9NdxH7@ zkHoGwzL$;fRi$(}qJHsAmrO@X2u{$59m$($UP9HT=U^Pg3`_?17g=vf`i;d+MFgaobjO0 z>s#0Zm`4F5_n){5y?!CAA+&*bR_l*Z?l&1P>fhpP;e47OMge{&zjujSJ zB_dCnm};unse~bSaU0UVJ4J)zQIwnas!`>Ygnhby8&$ewxN3u<=1Dx$E!d61^~=Xv z!_O?f{?bmjqs6y?d+B#aIMWbzc05hq54Y0O=sMlQ{P?I*mOu+G4ZOIl`ti=bemA9f z<#=wj7uiI$#a7?yS=z_~^Y&VvpA}5+HV1IH*9f{EhS?NX8}qSvhwFTy0^|4`LR_>0 z>yBkxUSoB2iBA8NguT{>o0X+=r_0+tY#%wHVgEPr$4j#lLt_|yCOkK>Os~Ja%yQ8Y zOj*2KcTaX5rEJkcgTpGAb+r!^oJtNi{6~+IoW{@A0%^~{0B~8wutNIXk?+)(sWRW6 zkDVdHX$^R)%>XOUk1Z={v`-Gl7ata*>Rj`=^<{pkHfPBC*c}&w<=y6# z-l5kxE!4Oy)O3C1gu(|y;d$>cyiM z^}zhy$uE<6Y@YRP_(^`XH@1rWOT034!jWQcYq+~`!kGO}b+Yh!1l2IDZS8V3wX~i; z)~Bnx4-UI96u4J-nhaq8I;v`SlQ@UV7r8cW1Z~f+gYnX?wl}edPHxV}r*!OuNt&ex z{i|D#uR5?je)7H&uFotB#<}DV;|L+$J_IpS8Pz@D00)^38n-n{lhADBiOw=V)1>_l z=mh66+n;0L%}FWXfE5Z3o0TGujQ~xA5t8gOT*5dn&z=jdWibrCz2V2P!qGY_}@k$ ztk|*%=#>2*M3RB_QCnZ383<3EhK_ddd|!GOiq1y+{!WYa%LTGK`{6=F!2r=r5gjH{ zAMt}VX9Ow@S;^C)0Wn3&_^5w3k;$;On+no)?S))kLr#hdqqcL*%o3y2m6o2F(gX!b zl0bV5h`eRRZn0;gURz0{WC;2s;=yv0LNK2s@$|!&YGaidE)m+d2ZQ|F&r2#zr+j^;cgC+g ze!pu*2RIh|`&HXAH=L~m5iC_8O`INV6hH_8D;$-D7POa(CIWR?Dy?hw+#|7 zAd`X0mlPw7)m1jaL=-l7t8BXl#w2DHHdw!75Zrn4K=>mwtF*_OZUNcg4AjK0>g4*5dw?7APlpajd>4a)_!4-?u;rM;$`|=ilRT#Vd!+x z68xv+&=z>KQaYloI?x0p;r!C1{r2*s>B-B4uDTwtQM}*)#jO)im4PVV*-dqEqv`M> z`@qGfCcK71g0)6R$Dk;y^`97F7+R4RJ7F|fLRrEeA%bFqgtrB@o*9pW)bAlj+4D;* zHBgS0Wh}c?yru~NFipw_`0<;@4XxMO6C3M?8?s47`=`uYg>(k`nlSIxU_q)@9imqo zLYoFKhZ(ALfFc=uf5_Z{BiX^}ZZ?k=7{S&5NgJ7si%|Y`#u;9{fD%ufi4_|3|SPXq6o7R&p6-huIkVFZVFnz z;26*y*|9TP_|=puw%ZM759F^z_F7CvAR4D(0Oe})`{tG%;QxMGoE)M#t078JKpANH zdLlUI>~2_9A|smo-_Ti5a}`gaOa7OQdr*tnUmRPm&mS_(BN?sqfk)$-vur!H|IDJ)q` z!p(>@ylb)9m3o@T&Y<_8lCs-WeE%iqB0cNB5Jx&GmeL~6luXPYWb9q>6aAZl&_pU) zuiND*rT1Bqy^6hU|1s&FYXMmIP(ismqv?C)(obbW1<%!lyfN|d04MQky+ z)f6FRtm(gOU5WjW*m=&v@Jj%{p-!*Ob8N3#PXMWF4xtui==9X9`P#4uzifz(k- z?bWYLEhCp$vXkRf=l|gohT#3~qYI$Gby)P)zxQ1`<2XZ1Cg$5jTg82kjKFoT%MeSJ zRng!2a5Z);9*)PNY&w_ZoklAqk-Mffq)3&alD!Ug>rfz8xf87DUk5Dvw z8(GafVP&UE+Bu816YlF&3^K3Gi+4s+-DNAO z!CMzz^u)&~+VBwmue(-QKt;&olCjBvq(mtxXzTfad@OOnJ4wj&X^NqCy+f$-OR+YV z*{%OKBw+Uyz0T_^Ko^{-IPUHP*weE+qp8?fv|JR_jkY)*J6I{oFpO4J+$hm|z9-V+2 zGXr;3$wz)%Mx_l;euTC64?(e0j^>0B#X1R3GeOEkQm`2tzl|U_$ zAG};1fp1MpWbi=_poRH54(N7k8P8AruQXca*Yh+2*v~~D$}*lX<2kkT^a9$mU4a4O ze3A$|a1s(t>EH!Ri%tXyKTbAS3(8BPg_F z@{&@jd-x+k%!1qaRFBL~Y=-<-`YbiuthUOe$wrpH!%lt;t`8>nS_^F?JYm{DE)->s z6@1Ci;8J)Sr6w?;ozo`XLEbE24&({Xlg5VpZzp*@mY4F+*}QwZJm!&#SVbh)@vFXB zCzJ#}*;43IBKLz5NtSyI=+t=Uc28b|AnoZF$YIanZ)@!#&3yrgIeOPKvzZJ|q#fK$ zkY;T{ar-;}l?^_c(JZFJz^KTQvVJP~IY0dwk{YcMx0Y%G+T1GrR+BS_Q*X#OHJe-`z8SZ8{LoOkR6w4rL(WzNO*XB%J8COQ4342L_0>#+eLjL-d|J&G*UB+;-!yU42G_2a`lD9X zHQEsJYIEq&l{ zh{6A6Z(@5vPHy&z=l=3?aP)s@`UR&h1^gP~2s=UE#e+xCME9Iiu6r z_sOU}9Y|zN$xr1o$*j#s5y)RG4Eq>k;e=z%R!Xn0ZhZ}hU4P-;DNmL3I5y(uX;-R*Na=Q4iTW$ z^I`mFTIQ2bLAQzFY@)rplYu`-7~`&@qgn8ypymIh4>%&h`cO@Kp<4=GMH596d9vad z@?&amufD)bN``B<{(2I=Aq*%C9I7t-d&a_{t@y78 zxS66D=&G46;63N@pKi-F0sKJ#Coo4*?d#e@F#8G5&guWe0MY3T*yqZ9SE!Jan4lN`A7d~R(;e=#?Fk7&DMXTSDZqyLLhLMx z4&LEi7L0|@jU9+cBS3$pSCU1jn_%+neZF-90G<%aSyo!7f)*?Hq|7K_577(u*21SL zvSK0Ozc?T)0r~u%?#7Km&`UZ7>lY}1OGe{Iea-k~r<=UBR81PdIS7=y{iCXk--2UL zLf(M7;1*!IKs15>>#5JX(`?=`J;T@bBCpaa;nf*~W2j%k+anfB!8KkoOnVt!&I z6{6Xt&xpd3#?s%Z7-APeXb;+l*Q);UUdZ}`-Yv=<8ns8sS&Nv4;+UQO6Ks21Dum^n zi8_#7$j`!fGyBGJr$RVHBqQb^L=27J}e(j_n< zCbdkd5-6>|Y{!Hcw6dz$H52d9pb%FvG}iLS4vcWVt!$7&6(B zZ@w-#5pOpr8AQk`jFn9+-v^H zF`X?zxFP!xS{(Dsb%;ByJq>}CTE)-uNO_h;lLVBo6A3H@Qu&+;j+{$*misVvmZ-rB zZyE8$7kaIn8Kq^wiUcinml!rYvZa;T@+@(pNg4{Qc*%I)-X_RdpslybTM#Fk302%9 zwf(bYl&nG&0;KI$?|D#fzK)x7^hnt9m~%|u#igdny@?fbC3sisXqYWiBor6wBxFco zQqxvR3kT+I<1_puf%E|>*Ns0UY>jq8p=A{85CS1V$so5P(pmBcdFUm8FLe?b~~a%%3~T=>+?8& z%oB2R{7|Oq8k{qFFRK-;%+kHhqT6 zZz)TfTe~9Q9EH*?on@Zf8H5Kk50NBD5THT$5cQ148HG8Kn94*smw^>NmrW zHeA=bEMxVAL-maS9T77e9isWD=(al zb*<ZlzD!9q6#;F4bl_eoVxYlU-G<3&5sG z6%DjVbspUkN2IV&_(}!{fdDGh6>KMB4t6?Q|DZokpiH(0nOYSm_?`sCo#{E$WbKpj z9FM%+<$50?2E25z>jLja!{V8QK>gPj%_>gojX#T9#n!GN_PB36d%Y-#6cM#+q_Vxc zUgb2~l>9Cxcy$a$y;^I#UBJ|=?pK1dowv(3hO>`-P=wBAHt20rx>b4A#|b2z#HRxR z50WuU!Q@o*G|?1$H#{AXF6n`@iX!>FHVLwfg&en?#=ZsXbld+FWWiO>2t}JC#W6oJ z@R}>-uaAzqTqSRK>b*a0ijDLFWS{G$u)aNp`|hyp`O_-(20cWbaepS#_l)n-9_tay zn#!Dnt8lYrXJs3$L1+qkGc)Q0+|djLQlGND!^OjA}_jZ@s(N zx@zbEMsVgqcVRx#vV5dNLZmHGGQ zUk{GTEOHFalL`J9@LY1xBL0Wr1Jfxuj?m8~_Smg($4_w!13H z1gG&JT2K^cLn_2HHReE{iDul4As-qZ8+U)u^j~$BaL6Nxib(U2pfHhLhFR8SKqmwi z=ZrNeqlz`rBSDE&N)tDXPxQJ?uUhr3zHg%>t;MbA#6er)pzt|3ZgahxhaUd04-I~Wt z3ccU2%ZU$-?QJjsy_G(-;LQK3mko;Lo`$Qz*}Sh?@K_KC>|ERTx`17M`V7C*psVas z@>|p2F0@9kQ?G@Yb6$Xf-0>og!2_T(=emT0iZnJ}d{M=pV>}zqa>|7MlVzp5KaRyj za|{cN`KyWMnATKxt*QzgxhFT~B4jkiDtbyDseit`agB%&xF<=6_cme=-|&q!=esh$)qRd1H50F-Nh61t$#Ec< zS)3dj9!iE74%qRr;b}*06ezP6Os4kURM_T+Oh-JVp#spzIG#XI(Adr;BOG9LUEwD^ z*`HoATABtw#GxiE3Fe4|R=qF(?P_h*DUr%f5LS5AkP9#Tm#0^oeNi$Bp#b_i-R;#$ z;>A*FNs*Z35edz@vTMvdOb}&81P86X5I}6%=Hcz~p+K?t7ri{UBqr|X?L^MMR!zEJ zv{9N&7Kr4@o%n0{lR$*NtXBOsk$7~2>C@v1X5 zGR?Y}7(XM<%Bb}ru=!Y}NQRjv<3b)fYsjjT8VW2+nL)H9s&3R)Vsy_s=8Oxi^Ug}x zniU^ufMhiKySvm43qdd^a;>tV><8vc!yC!e-2#>b;y1)5%*JobpCxLwA>>jsYSxCC zw*)!MgPdVQb`&OUzt>7%s7{qEXwc*x{n7jd*I{}Xsu`eKb2c-8Y&GB%&l)e;jriKHU%ExplH7XI@9wCC)Vr}aO= z>n+7VLYRllMU*#8_WcrWnGK+nrICZQJ?(Ge}H*NBw+yPn0AQOJRgXV|L&hTY#^FOn} zGlIuxLtp=lD=ijA10MFz|0)@p#U^&r{vqzfW4&^HzRdaq+PP+3zCuZ9IQDm1Vr_hL z`XupqPX@y`i7$AOQ9FkbC_cvLEMy5rfOv@U*7xg&?Yc~X1^{3nan{5&!C8p_B)c1| zrO21cyWqJcya!{8;=;B8=M};1zm@4h_LJU>JGd3}rL4sj%~ReHejQhC5tyEJh&MqZ zlpC@lU7F`Kx|jq|MP9F4sRI~5P%^BB0$7J?XbK+lnwFjh!LD>C&a@cyhLa@Zc408s z>^ZPmkNGq7XB5bLPgVOJi)ZRL)^e)$R8{ISa~`*Snd3d;Mz-2=Emr&gR!G~PA=ZrA zwOvEgj47kbLn!Nj4k5V!U%+esaQ>5|Y*LYsm)Z5|&0uJHI1C-U3aSE~GCCT%{N~>b z>MLsOf4MU4Jd}hS#c*<30HO+}(72iGrwKGRlx#3NBO==sqWO;g40Q7S<--!)k7gl8 zwnZ&XiBr}EiXGjc?>Kw2FWVghB*SL_%xBCR75tCXOt&!N%J%B0uXN@g4Yfr*3>8?x z35J@Dpr&BpIVV!mW(R%M%-*r$Bs!iG3Gz za7M5G?o?G|)b_?8TGZohL~1Y*FqLp+N)E*akFD`>G|omlL6qb6{nnoA9ObsYiqv2< z@ksLG-WsN1)Zz&_Se zpn&bH@HKq<^ZkVQDJ+l1~h#8K* zc1>%{Zth0y`Y&_8ggAvYxX}TcB4H^-v>vh*-^p@9x`|&au&^6NvqOt}R70iVGRUrb z;6&VDGmLk|%o9<&ovz2ZpTkdphVjq&{yP|=DE!k5gZ&7@7%qP#Vhj*GkB}%5UfMCC zckp@r9y`Y0_eLQ`t&o6&@3@l2Bmyrh-s2xGs;CA~^nnk%%_#s8-#S}$2cRQVwk;?|BoLiL z?u;#uh-twd(B_I}}@agZ1SW8NN+ z#=z3dCF^~CSD?P3`~)#ivcKWX`1RuUXsVyk{d2-po9=kP%n-cpC7djJVoi15yo+aR zX*mtvh!YZBVyd?d7t(zyed6CcI~!pkhG&7`fen@$LK1Bh3UUya?-M$n(k>by05GZw z2fs-*@q9>=R+gsRAU+w;ZgNe89Zk&E#Kg|BV_J)n*yS^t^5c7FkaD5h=a*LkHnVdu zR5N-L*BmxyHAD#mke61Ls+TYcQ~e49i~L^#KsIVbNcRAsO-QhS9N^8q%1Qyi z|1CdyE7Kt-RZYcG#b1z6IGivR%6`mz`_ONmcY- zviwQ%gmw0SBL+H9FV4c#4+8g}j-OTX)Q;%L7Lr9rR77}uHae`^bauRhoYG%eMb9z0C8G z`<&3bdsd=Z1l6EzW&Ycdz4P;VZkzG*%ADv&R_HoZ!$8YpWTD2Aib$H!%gOGHj^SI= z*Cf%ShyKf*uJ$LRvNM(yr~GhmGZMLUeWGfa1Cw-)7%h38S5bMigRywU0m~~s!<>b| zA))_on&I6casvKre!R_(qJ_U3VCfIt4PZo0Et!p@dpVTj*U+5e9Ho2*D0uu@Zou95 z0`CI^T0g7o-KGc!8q@&CF#o1lhk@rzys^%+D%ky@y$t^Adk4{qSLRse4DJyrqH8j=^ELN=KBE`o8#^pAbP?0ZLWsqhCazITcWm z3~_q_JfwIM9`Y!xhoLD#KgXwt`_fo@YFS{xlfeN|48{?MM$2htB+FS5nf@01tx3<{ zMejG25Z4@76i(C!&IuFzyhNh1>CPL1tSisR!>0oUK(5ei9Rsmt+VosgpMmBq8fdF1o>ZyJ zzLqD=EJ`=Sz7vngYF2Rv9FAMo`qHAYF&6`s_4IIVs*FcbFwwul=lP(( z^K87#C1!$nFT2AqPzKoU=b9?*x0~OiKMdi9>EVjs6nOz9C_%JkKKtH|D}2i_Pu;mitaT*!W&gfcz;N zFheeFgcYU*{~OWV%(I{=IfDCqe2j%O9TAF9YPvq!+l(DwvE3~vCV&-IEcMFCAqUEp zGvtUvC%m5M@rv>T1*W>nPW{87QV*UC?FgF@Esd>J#t~D@tTQJ?jA(W_gwh7D5?<5w z02+Yy*fuc8{H;yJ5!#2=hCX|69;1GSo(3DrHD4nxqDPbV*6Z%g+)hYpautv)i8uBJMOKe%E2F z9VeW}x6$fzh1dH<)0Z`|Idgu0LrYhqEN>@6yx4t~Jz6WX6S19ESE^6eeZ8Op;p`n5 z7Tg<``e8QQY=|j}e|Gi|y&W*YhPxb3pD+zE1%$2ywV*;c&;HQbclHl`78b4D)QvHsA zfZn4o7EDkXhOL0>zg@3QM)6vb%_-V^Mbz_KTJ7@Ov)@3|6$ro3Pw?TEuVmpUG09l- zhfo1)qj2CmdaBz9D&^nlI5~X*UL;#evpFq?s-%`y$C9@9stZKK!`C3X2GDgZ;$ax( zkDOQ>-*swCY&Ld=g`Ca-ix!08#c5Ly#qDr9H!Ds>iX9&URBb0r$@*HwhLRXXgZ3p$ zqFVEtlrx7d)iG{q;X&gxYPh8$c-j1dq-MY`o~pKbG*mzp{-q{4IlE{q6#ZQ~s&$J( z{GqrQG_6?IBDcu{M!SP!nKf;xT}#rYJ@+y<*~T2NC?wpihE?!miy$fZtLG2!Bg)6o zd;h;3ESZ9G7rn&O6-D?M9C0ix-F0m#g`aT*0gOKB%6?L(i1Y8v^ry}DM7QqpiVQ*J z*eVP~rWPs3`I@};eM|)vyi#^7#4l^}Hup&+o=_D-`L_-;$4RBa@sbKFxqE(li2Sdb>$o-FsN$Gkuxzm^c6ECzl^1Iux2-9K zvt@Z!PmayQ0yXAl<;UKaIM_!?60oTNN;?R>*OvgN)v*~Dk11!ig}tlU($KQsb7~zB zQ%mdEL+juZZ~E8D>Z?qn5UIj8hDhwzF8RESfBS1TfvAljpmC=H1(8$T^>!!`MfK~w zSRLu;*y6z?i#{i5cw5=`lR-U4lg95i?ssEkn-IM88FlORZ#iVKPLUb%}a{ADpxhMuE_~GX9Lsy!uP1;5*@;a}OUuFbO`TC?oRW zB`I;saU4P_(7|_LN>^1?x;Q|r<{KU41y0P>MmnS3%aze`S91SSoV$z^%Ec9)Jyq zJ@%7*6f_0>f-4kzi#lUm5iVRY^OWP< zm?~pwtH0+@;@iz4s9+m@#jbnF3Dp~WGVJdQeDA3LJ%(j^sz1l~Z)v=ILF&uA5ZmuI z@%QP4b3tF|{B}bqJ1?j3OtN?=fKwM3t7!jkN8zCSZGUi}keBa8sDBQWmDEzZ!@H;z zbv@qE`j2|Fp+`T|u_Cgd{fh=;zlll_4LCMuuWpLyRlb8t@67?!Vl`|gOkM3L%4$aG zkZRRPIR?$l>XC>#xg(D!F)FzFQF{LzvUp43Xrpamer}qhLaOk5`5wLxIYZ@0GyKSP z;V9=dUUR-LgoMZ@bub+{HsN2k(wwBmP%kvufr6^GjXwT#<77gO2wZ? zKdYK)v|;N8r(@f}cCpH>)mk23iuHzY>zGDx6ZM9;_j9e5^{`+pnEmq&Crr~>UQY5< z#q*-gdxxyPIlZI5cW3elnH2TF&17m>bm^SY6QW=+}=K9<@i)PA$iR7-MqW9=MoGaE`Z^ zdzBYwyWu&SlvDt^%3UY~49E-cbu;Lf=W8DiHE$c-= zR=YW&gLH)fjQVFvyRmddleMlse%hdc1(hXu_`;w!r2ZewYUGX3IIA`rWB8XkB?N|V zmi`^AfoB9!#Vf&Q$Y4|x2$}e-ZC`|UlZNXjn~&j%*T8eh!PGLilK6u-Rp?;mI{%Vm za@~peD7I;|BTN<^fr_Y|!|6)#U39$WA7Eq+gTO^AX? z_{~TvU--B9t1&K44c+@@eC>*m`O#T)&L^}=tuv__y%PIaLQOq}I&A3-RWm>4QpBo= z>6DCw_s|TYC$9SU-)s?zQwJ3ERj2fKUZkKg&!+RB^>HrwXHS8(dj{;55ESz?iY%$r zrry5$!wmsE>K$0%dIrgi4@em&S=Lvo9BCf2hPJ>!{&%f=@8VuJ?9`goXv0FgQera& z51F&ya+qnGit!3hXR+hVAb=FdcHe}e$}XeM`Ny_ zV`HbCIkb1pV;c2*?x#9V+8g|@JAN`_qjyzExOCsXVlUd&eiCN;@owh=2Umxtl&kd= z(I~RHml0UevJC0jppw?z*BS0A&ISh?t9~!EbB3=ZlxnYk@=ZITmUqo$DyaU_T-6`b z-I3>YdGz&SRoMH|eP_eq(Z@s;WBK_Ms?Mm>OduD-CN^CvnEhUK!#2c1hSXC&!a_z7i)BnN9e|<)3qzquP0SqmG5l zP`-^qM!iin&94$o=_aBjTh4;9+O{tUGi6+yP3g#T?_~7Sy+>Tx2#`SVe9a+EGJrV{b z=DsvT+Vm#3*pXw(jB=gU4F;~ki<2ume^4Yr!bGR4ixn&G8)xX+blj)B(Z8@AOw*GV z+RK*iI$Z#&?i z2~siXP@LZ>tw*O9-T~L;WZ+^n&*@y_!0T1(nrPlYvzrd(o}0MRV`&^!fkkfC=;fT( zU&(8Jz?rK+(9`x?qSp8fx5%Zg|D^tNd`CZ!+yppd-FHxX1^|$~>|b2v%&q#(gkI@i zKo|KuXch6JiwfUyogoZFi-K#Oh!4xrkDaYdHu}BuLHzL7lXKvGW1}`!z>K#s__n^G z>-po+y`vAD2^!K~4etnkw#>TK`M5|M^QZQK_yMznF@DY%Mnwd4Dc)fA4;r8nybM&0QMi4F-{cosEhAIqvY?jR3WC zIwerev<=ufh4sR5eq@V#acPjN;p=npCb<{8si9`Jn+g)U4RcyuoqrWIk}#-%{_L(F zs*h-lqftP}q|lf|ZF;_9V1YK-(AA{nr)b8%5oJ%UU?HwN74eJa`{k*6{8(?MV9%s` zdma)x=c<%Nj%wa#gCk=YSIO})s2bN%8S)jn{n)O+q@EKJC-SJT{@obb_eZg zWX#nGW!eaCiV-QC?~Qa04@`ODA#dm`@EPpYmCT1$*44T{>JQXnRwM^DE_Z^a3i>gQ z&c3?|x74w&Y0YKm7qkJV!;@lweX;Ze#3$gpM^Vw%yXC$wFUWzfr&PvgQSGY()Vy8&`ZPV6e!44cI_RNio_tC!#JPhIdSENHNoO)ct#p^Cd}jr5aC^XQPC&(FG}#WU;2LN^7=E=6a7lnqd>fa7$FpONL zTX3P6f_>fv@rKY^y@xoS4215d?vjLnxuyN!q+$BkBz%)!pnhYw+g}F_uam5JSCP>{ zo*!SgJ!Ydty*F;rp`ormo`&K+K(rZ zL_#D5U9(-r-{5M%u5j8UzwX3^YNK9gBj^); zSjqr@mq_5`Ay_^0kCWCdd^|gy31M2q0bcN(=v+HQaGh3mqaurkpoRGAb1p*}^I?TQce?f@ z3vOg$oMRz;`Uqi3Z(22?So2wGl>G?2y?lle0AJCgt|C!h$X*cv9syxyI7!fn(SwXw zv48J4ntRWOq5%2RG90T}Sng7-o#0$z)seaT90S#H?w8kM%} z-h_3isNt5Bv{fxhm5QiK|6yv)*KK#;7CxBW0!5rxI2QEJc1Fc{bYNKM855pV$`Mpw zIc*VAP(sl{IK$1P9yj1|awZaVJ1XjPEk5nuW{rLAruu5HGB5WzD6GRohBzoB*DUsr zT?sv+&tb9gt-N#Kr4TfJGz)mQcrBykG66|3+xyyHW%TKzCmkaXg^VHm=C{g9t>A~f zaj(aX5x}PiFZf^b&WmQgBzy?4|CZ}@6(;#Q^$u_>8~kM4ksml*?lI|o6?iRu_xM0# zIvJeYFMM}#?;X7M5{Y+i>F=%YKnz5*!rjX+6#Rtv4{Rngk{h& zak@X#@Psq^D-G;~jzmWl3(X{A%JvA{jf2L|6-$U4I_Q6$tjOwryzdo5dTWP~E{mBl zlPQmB#htvcL}GBGz3B}0zB5NlHDgwIxJrbnyd`@cO+Yx<7M+?o+(bdYV6>i`{zlXM z53kP8ek6&-C8?z}B%(7%Dn^2D%D|K~UW%TK+M+k&6`$P^A@pC)dP^+U`K5xtg+eWp z|E!F`hsAMhrdr#K%5b7rLzd1+q8o8V2WKnV_@=4f22L}D2`EAr#E zc=LC8)N#aZy92lic1;$Eq6&>T*DkP8@UjbIIBC z7MGpOMDE8nORdk0MrBd6`O8lLsef~nVV>`bv+v5*+oJH>;c{i6X%;}vGH0bn-AOW> zVHxB<%V#_PK}XUArV;f`LG+l*q+@-(_3jTEkdL2z9`zD(yNgRtS_PL;J&K;ja0WGz zNd1U*ev9y21E&?eX)(}0>^g4ES{@P5)xFJA!Ah_CLh>8C3{0@{?H=M8bj{ejcxgxP zs(9bj6|p^KKNZ{zd-uH)c{5m3sJ5?8v-7sMb#G^iZGf-e&ys>Ju>3Vb!qi&>&pcOp zCp)`K9z!#;k$Uwq%3C^GEk~SGL zNp7;V>z>bzN!s{+&o|xAGzfZ7nYUC7^l;M0JICAUcmWT18%%LtTV9uIbjAwPcj z(FK9GLoF&sKC=@*r)_x!;hq-_l!n*KCF3(aALW%H_db7&d12l!{BQ4u(Z&z)7jY-C z8xWmUQO|3I3hBp3{jQCrwp1MH^LB}Q7IDyJ+VGsA+kXh zUXR}(^J-$Pg*;K;tYVHPjwNBHeQ(Z~%)ID|G*I6{O$g4lOoAsV@;6RB^2lx*g>@+7 zjO3v8fxg{Gn{!%>tm%zd*MNJ|A5WtSbz6nY5H{Ia$+MXZJP0_VLH>E#cIKYr3Y z?!2Qa6Dh3bPmv~tNUC5O3?TP9n4 z@~Ud}_B^d>^(HVtNEZ)~U`(X&(@r{vJ|;t5^QUHp?s=`IGy|aR7r-PyJ44-qOpc*m zQ?0K0)G>Rl!m8EOk7&lGX4*lAbDiBBUa2VdF=vq{y>f2ko*&wL`A!IDn_rqJzpTO2;r;-9nchz^?5Gf z-uWfHVfKC0^&J5B>#vAihm`1g;Rce5YM()z#sShhM+lioMR$y#A&BWhvgdlFUMu+N zhRo1)Q7G$9i;hJX4lrK(vIIANjsg%3SP?Xa1;{qMEWOBH*-xPc$$|d76E&IS%%@#_ ze0)_g8V4wMH3FNnreQ)F`sxm9050>^!A${u?3dgATa`RU_ctD718&%JVNjd0p1%v zpmBda*nc7HfTe#|(Appv+=2d4gmIIzb1W;H@I0U2fy2kKtMvG%w+1N!^+ zA8~hjKt-foujjbVd?4hWz1!~okeWH8roB+Ie4ac+Uc+A(X?cCu#et-t(Jnlr=bzo+ z12D<)i2oZNu>RLsb250Y$vp(r@BeJw2kHR7j!Bv-i*vwpso(!T77S{?%>+)D=6Y!k z=X~riea5x?;_PB?VVL=y!7anB6q@X)kBW{=7!RZn$+oW@lk@&6#+Wzfq!0rgnoozk z9MO8wDYa3b^>XWJrCh-g79TgNUhJu2|8w*xE0&8+!k{ha#2k;KjJrdVeiBg?^UKN% zSI;Or?)2=boid3k;TNho`wbpOK_`k1p4sYd2OjHm+=)mIk?DV5l0XL;?Mgfm#>N-n z?ycFIF{W#IW_QA&2|Ny;Tcr`IQ#hT{H@Y38X30yl1XB~e(B0P5OgNj__2P9K;T_|f z^y)Ng9FPC-MjX_nPH&%`yNhb;=?=86`D@iIRrw)B4aMT9l?$LfV&dyRFFf(@hN0-J z#JY@$AZXSsa3pD!cdD1$E={&rVXZOzLpEvm)M6ATsXv6@j=x7Q+NbP2Sh{EP;Px79 zvGSXXD{d2B*5v$DQ%&1~-+=6Wf7*Jgkdt{@(T$=_p@W%Z$!S$2>v{C^!!dcs7f98H z970#9xEyr10>f=s)1(iD^I&sMQhP9CP0|Gmp^=T?pcj#WVSw`c2;BG_oXe`daiX(R z@X5U-V7FAK=gtM79~8tMKKIR|X=*FpyYM4=ir}r{{rwAL^aUTNZ|*wo0a7d^vcTBy z!g2-L=lW?S2)xP~*cwr%LBd;UfY-N|1lnnQA5$Uq9w_=a``{HK12oCUx!pyxI?F`G3@vcNCiM-BWh&-(G_VM-L=a!`;8AT8`R8;`P|%% zM+SSI52g%wnkT88vD#f_+V)r!0UQ&1z7n0H1qU9wCpC8LJcW~PF1n`{i3&V6B=7y< zPyHt`VC*DvR_`5r))vyD?i<-m+FZa~PIlJw*iT3xr6%XJXGnGH9oTf`6dN-tLrM_k(yIv@UO&FdWT8FhRETE>buz@IZ3%zdj%&Azb zLsd(%i$(AmI$cl|P8o)+RcRjSD0CDC7(L{=#uFX4y8dLHsZ)J{yHBvNVbATz%GcEH zY8QN|R{TT#=<{pbN%Dhko%T=lx+(=wYkQS8(ry<*F94yJTz~7>8Gq5r4k>f8)visc ztxd~%jPhS+9XoAC4pl9dsFkT^ z-n|&~hm--qYLN>k#7;}t-l~mb#(L6?Cq!(u(ZD`|!pSC5);@Fmvght*XY<8J9m?g; z1h`LW(D$IJ=5t=v+a_f< zX<=wm$NRs1!K9vBy8hRJc@S)g1w6XG2TR@ihqG7DZKrS`Tb4$5Sg;ci)bMhxzuo6G zKbQ56c6kXB3eV~}x-*K?V8q{Y#AHaR#~0l0A+xi^)RN|km9@_m!(eE;Kd0KljiCM zlHy+bT!41oU;kOZ?c2d!nY3RJQBs+j?r+DGMCrluLM zD?_4GcQMkZkjVsHzp;G&mLj;7M|uvXibemOkN4ryw#knA?#m5*@V!k5;LQXWaCa4j zfYI})0)lyVY$h{lsQ%;iLH+9;$!i~?1>PE5X@BaVm0T!ZTT6YBHB`(hYz%72feW=d z0rvkx{pB;N<=y1H=ZlaZG1c%qKa3jqlnHh@euA>;y&7!rzfih*zn&v&<)lA09;zkq zCw~2I?t0U}n>SI6aMkGF`JntOn!UI$H)f{ zVK@mniq7Qn&l@Z}Ugk)-4*{s=1?C0VEt`+3zp{eGo_HGuB8#49ytZHdG`wW5Ty@aV z`P~WYut}i(B4E}@7MM<9cM>>g|Dwk!>UV~_b97fIxKp2N+WYiD=d~3yPZ!)>(1s39 zXq7KXk9b%%zK7I4gx<5h-JyAP zbd@i3{fZf_702C7F%)P18fo!e%-H8gA`TYCkN7aMhYHEHE|=2wus8bUNjSE2s}?{+ zzDZEoR6XbPwBxXfKM}7Z$kB$@JuckJO=I2!67kpY-V}LrbH|)Jj@}cG0sr|fiB7Pv zdpD}Ea2UgPwx`!>E}OqM@b$j^@zl}r0z$|tMcX2Ey}gh%(9a)q|M>XWetO|}acRAA z|JdIC_}>CKuIg{J+Ai5<+Lc4{y?OxodIRZaWInww|e;EnML7SN41)U9g&~pUvIku~*(W=U)I$=ZM&Qc`l!y z`d{*&t%2qQ-y)wxTHW`sSfg|rsFcbGZI$YSWA(1$`)@8f_m<()rRVs4K%abe<=>7% zH(bcSaWYnjr=J>S?wMaO;+L&Cz#wJ?N^cpoCSmSM?%X+(bw2lged?Hc>*jszvEMrb zpOxw`3-29jjh*hZz8~Lb)o=TZp(sB`Qvve*{GNUqLt?}{3cTL32JVJDk@olBJUV+9 z1~n#oZ{GmHKv@;vJ1AowQJs(LSMx_pletn+FSDoA%6vEg-_5_8ou)tNAtL^_Ka04H zL~k4VgXV}EETP|eRt$ailb|efW#f2V6C8 z2mtNTw&MlWJ{7QTA%u{aUQ0efoG7^5jO9#+=MH1zqDxYHO&Oj4NsE~Y__p|sBN)Zc z5IIp0%!sD}Q_1(!K$GTcviZzJweC5r`=s*or5R1P+|x`|m?yX1ErQ;nR!2NX`rnlU z`gpi0*%V(ly+VvaE!#8OQEBeNAPr|0fsEi@A4Ite#Gm0+sC?xF2oHqqj2g6;wOt!q zs4`BIIXUva53HH)NoZ-0ciuVf6r1uEhZxN_(BE>S1uMAf9O-l&1qBKg??sR;cr7^3 zt?V@lgT~v{`Yv1+aXXr-IoN~Vqc19ZU#>(v=A(-U@C{z0G_0>4@@9*$LT{hxgtn(nE+Lci8j|l zi%?&PV}Qlf-DU6DBa>4P zT_yuG%=k>8$3l`Y6mua+?rK(8@X7Dc-uv=l2-vs#QSf{=JVAE#ej~f1*=4@F#_9k% zyYdMx*OXS19%P2A)yxq7k#X)w$Jig1dG=Oa$;hu6{XmUAuTZ#}S~2y2eBQl+i)Y zpupySGCX0K_{*GJbpPzo{`pbfts`YLx6@|MRGL1WOIgg9LOlbS01wvpQS%l@Xcae? z$oEk&UEc7A`Q*pF$I$NUm+2SK+SD`n3}&l=|I=Z#Bw5{7m<5JF0L6C%J9EIV8=r4B zzkf#uPQM53@&WrT(8570nPUn5r6Q~AjRUGmrc-y0p@YxwcQD^^{h9p6ru4^y22IGi z@?6dASd*T5#9Np2)8>Rhx{z!`n7h+3vw7#k?`6d5VIQ+enoKW;v2>GRp{ke|6I4P; zt*@9k-cQy|dN$x|I^z9Q6m$Z6>v;8=D6NOv6_HTh%vf=8)mv0UG%J6Pnj%C+g5y{) zg0MioPajwG0I(S(Ivp5ZWtsV2+j>d6I4YW`;HeabO(lS{m_mXr`C^$ldh{XBQs$B@ zr4-uU3Zw;wB0uUb5nC85qbIM?#RRCVk( zZss%_$NFUR$A_~p5WZS1{@iE&^ciVFah90Vq2%Dj+;m!I-fpnvx~+k$C{Bkqv9)b& zg9>38)?IHE-BP8TkJouehL_=ExovsP2z7={nc;^fxxE8Ur#W1ThP+IkmHDPX6pSGX z3g0^0(|518O+4p<&$g+xQu-t@p@ibqDAq&b@s?}o+?RzWc1w+vnVy&CCt~{Z=+qqk z!>^ma51}g``y zk?ezBpb&X2Z9>Cc~vE}bMrtOyQ z^(bG@(bLU%L{|=ez(t}(H|cpXTb17#k6kOVR2WEPT^k(nkXT-wQd^!-yrxIg@m4ym zPQ6$h=&+a>aF(S3sG5xAl%^ge+ePn_I5A37FE)%yB=)5B)yjppF%|lU;MxJZm(e zMW8KQvC%Lxr&^wBsCp6c+}cDW|NT3g;;y|lVLaT4-%IgGuW3g`T}phq)`+sK1c)mo zfRODdC$ZZ+!f{PEe?2-Fd$>XO=6MWFm%6@`gocVX;4*{zgP7jn#P4jkpZ50MFOuDn z!*{q`Jn7^e;ln9NITJ;$W-(2Qcpn7P8nnzs$^Zx&&Ec16)$Hf>I&F3;f_~>c zwm;i_=hH6uWlRD#yWuh0q#XL(3a z`MJBK*9VDFrv3>YaJ@e@z)l^QBo2HDo7dJ^AFTy56&kWAn7v1~gb!H~JJ@RtlEz}t zrWfa8zo*g(j^m0@PK|7z&dasUv>zT#aK^Bzj9$dH;-5;8OPQydXF45MmHcDk)oAW` zGg@=%yn7{F!0GkO`i^T9ps}+@dmt>Zb6J!yy|4Z&%w{F5Qbex^I%J(zTDPy?|7EjqBBya^Gs+ zw+h1f`|^97tubG=QgU#c{(M|N*S5a|YLc-TBNGcici7Y>MZMMumB^-8Gqfr24dr>@ z+w+Fepqftgk8{&wqx;|P;;vH|DiS7yxtQ>CU9#1FE5}U61RY7`iqK=3Rqah&i>S-) zvuH>ixVcPltox)%XgDsSi!m;E$96QyIf`_>69tA0vx|eB`~YRoz5Z)9;!>7tBdpSa zwx3s3>Tc}yY>K}`q%^M8l5J2Lch+uH+C8yx034S>9hSqwF$V?;Hb&vYSe}hT*dN)6 zLj)2M&j#OfV;CR-DYOsHtR4h(%1LFCbv1r!em4HW8-9yUkiqXlxhTQ$$yUafxUW$m zLY-+!7MUitP_*MX#S ziFBP=l7AJPKwcEf*C052q4f57p1tX@<1DniM5cs6ww#bh9geQ*tu=Tr6EJaKW7pj? zqunF~icDBL-qvs;0$0!^wQlIgJOyW0hF1)hh9N@4?Re8WJ#^deEcD-l!0iX?kHAuN zc!WVy?DzB+E_~NVuZp?fL`>5yGW9uSu~3@rBpcAjFpxXcHsiCpgXd*!L<1+! zS3|(i!-HNNx!58!OdK`DIctJ&bvkWwt2W=nT+qs+BeA47=>3GVs;?9um5e}SM%2>I z9$U~GW0fY0cm-sl^+wk;W-n)ayyz}1Wft{%U=-Hqr<%UgfzIhZxxke2ok`JV>nv~W zPz6~^gSHA%@ftwJstg6l$ky=vkTY32;o%;|tuKr~XU+*}B`1D=FFbECgVf(dNSyM0 z^j-SJH@Bo~ojxb4az57fwx(V~p*-y7#tt%IN?(H(v}zXUNr(P2I;-kfZpn$Xc?1Si zyH!QdS+64AWEwW*EU&E;I8NSo^x4)JQV`kD zMHAJ9mZS)OPQ5u$fgSVAur>H|V5DzBsdvn3ASf4YgC1q%dW~4#{@cUF& zY~*}MXwFAM=fG)TnN+`xu;IWRbZa;=s90eoxfH3&n46(+m@4F33dD10B5SWNt-8&t z=d{5ZPNX=Dd_n9{Z*)M#MT+T?uI77~Df1<%{W^ z)4pb2mNEczp&=7w0uO$#VYGxdhgM1dhD{M3J6f!E3Cg*SlPo&($b^QKlPI<~nBle2 zp~lQ*f!|eX=ZjKt*C!Fdl-romNQb~*PLZdacF$F9>klXGS)|PeUUg^XLq2}%@~2e9 zYRm0t3={)}Kk;B5bl*yL1bx86RI>Y_`jY13)b*UZ6WNEdk7^}UuQg7S<%B|(Ww%EJ zF&^XPp+|pw{bg6~U687Ss>!74;ZZ-YSXXfBYlXhQDD7sUEhxB#zG~e69#Ee{0GwQK zb&}_{rwcl)jAdNAk>HHawXOc*#a%l!mR%6xE|`{z%u_7-Hmp%c6vOQ_na`4RiNOvv z4t9fga5Y0{Dv3+h&Ct97`To7eS~8*~N!l=0*FMm9R93@_{QxF!zoWS!v*&-d;M3~+`r|)!IK|E|ab>oZZ;X6|Wbx3|Y;^>P{){?hQ;Hs`*jGMQr`>FtKz9Ks?w-3E~pC^ zirC`Sn_&Rf-waQ!o(pK+u%ii3*Vl(Y0GSq5mb`1c>(W7Bf9$UIWG-UDs)VRm;ecGn>T5+^C69^beCaP%y>%kQ~lwU!m4*6L84&@LPf}f zf*%VvRc_Zj;NJD9^;paE4Ngkz{p<%z=^SVa z`Vt_)!F)AjpxS&r!`IU!fale*>Y%fsyP<~p_ZbN?BM-hesevlcR?t2gi1##T*!rpv z;BjT+A_JJAox%v0#~GU}Mt%6tMmwTe`lRZfu$1;+ivf;r+?phFKwnm_5Im{u{x#8# zJh~+tA5**0br3H6hbthd*Pz8%i8GXW{l6X~-;y1qrAbY zgaQs1BMx}4rnJq4UlMGD>yLB?G1ivSFkJU(e>PCfc_>Tl=D6Nh>xjhYYp}-XdypI{ zR-Sfl$TwbSw@*g)rK_(#2%hqUl$;c?yI?8PKVcuQ&3zleUpviXp0FC)(=iC)x4$Ve zIE3({D`YXHeW$!v&FV(j*O^!u^wyhOxwhy^*pW^7C>Fj@&Y6mbg@$vXt2{n3+r&a^ zWZ9dN+bm#`bD{OA+wSvfx1F?v^xvOH`DE4t-6}WmzY)x|M(|Y13M|W+!BH=WPhSsm zuT~X)Z~=5~B*=W=&Rb44a(Pc0@llJDMtJ)Av9@?I5;nMSe$0KMm!pXYkV<&%Ex0$d zgf>@Kso!BLZG~@sw-ei=h@wbY@@?Uh4FfP3)fH8ONPhqBq*w_Y?bv1l32CtFGSWiy zTxR+yJhOQIoM5FJ@`u@nwkm*Va!QT9u-lH|H_7q?rRS+>mHj3Z?q}t5-R{n#*aW&N zQf{WxOEZ&rHue_PlX2ijWYn1kC^j8AmN({mH4IL#ZC{wzikuWNhF7TI4c4-%Pq~}o zdL%5&pid)=^4e^s$#j>(;37rzicgn{o6AlN7-JGdaaUk3G~PQ6CuWx0uxbzWEX{P4 z%^!Vny{j4;(X{PstS?o~xY)CKE$0tSdl{2E23{%lB~NM%eHpI1QHOzetUj?vsrKcL z@6MQVJ;L!%*S+Ha81-!9+??m(Y7O0+B=szd+S^R_n&sUjBo1PLH%+AA>E0&vc~91U z(R86D03#2f$Ro>?rXn%}$*R@9TwmS<_Uj3fr^<~heZX6uN2v7Rb&k`sZZ<=1uYb0d%CFnr?Z%|F=>eoGNmTFydh(A+`jCQXJr{>d@ttG$9t8!B%3Y zHz;sszz2QF3|r*%-)uX1`lv&&Ps_}Xa5YXU4esScE~IrxLL4Y+`KtUHg=8vUc4T7p zU6S-&c}N$Mjd-zRs3nx;`o$+!Ji73aXkqE@hMk*48Ze?Mn_ZEI05QTU3`0wkL&Vw@ z-jHTS9`s?D^Rp_!@k5=&dJ_l&OUip&hD4i{+01Acv-tf-&UvVFanjhxlZRrdsR*qD zZ4&OpZlgLua!|;#D-w93j6z>?NHfxNzSYGRP}EWY{OGMqhhqLriUEQ^ZcjXM{vFN-lhy86Qr@ z;_n3dtghcNE(6mddw*WQ#5RZW*x00w{Iiw-wMHBOW3Gdq-uIdPllJ>G!@4|YwIR|> zttdQJiVH{w*JKNH-LDi0p1@3NvDqr;+U?9{X%*Qr9X~2GPn3jNQhDQ^*g0co>^{0_ zww9Li9kgAW0(Y!VbQ5LDwXog|v7~g{Evz_og(}J16_AKP*S`>{Ll%6>C3xz8_+#Gf z*{t({7%$zQCi33v;koT6Y=T0~e~D-R^sUjLOr^DUvA3TmvRO#{^8Kj7H?i&T(4~P@SSp6 z{uk9on`uIN0M0n!5_lu$kIdq5FSsr^dAk9 z2U~aJy^Y!;4byG;4^q%f&&)+bcPB6d(S-4%EL+5`n}fj9T3j*IUgCda@S(!Fk(&WXfaf*x@#wHh}lF zpPbd`%n|*2ryI=Ip0CcyKonX6!c;z+pOjwhv~YVkct~)u+s_3Os*MK+*5#`4U#a26 z#hiR2a`TpAi6y?VCii9Ojwjo$_3(*su%w8I)|&%LeeWsi;%@U}1-|Bx zry%{I0NBH8TdGM&hn^XeaBorp=W7`E1h}H$SZ|Wo9zR z1meNywPY{L27Vp76J%64CZ%D651l#Vd%cUO$Nx)y zQ#OR3C6^`=J}s=BGpFl>WLYf-1OjD}#;V{E-~2vJVmiLi-zjAJ&Q~{vu-sw7l;CGa z`)9WQ!X6%{jL4Kwpnq8@`XKruIMF(5N&NAqmBE6}coqv6df6`j^^dCbevmRH41H|M zzz3>4wcvccZfMv^mZyU5ni|XflfjKn=u{c=E!ov0%xzvgjuY4#AJ|$y zC*=sg^VjYg#fA`KDC<6i7X zfSs`7ou&iAVXU4g@?J5H4PXmsv3QtHM>;Na8~+03^y6F7ztF$e?{2d`*UAL&%WJNh z$))sS2_0%#w-Xnn8;AWxKUTcKbRxE2+O7x!2#zn`rg=-Gvbr#d_5Vs2Io0WXZ-Ibi z@?fuv$tw15U3s*we`);zcFY1LT~L0fSpyR)l9md1^hfPp$r52Tjyya8s(ab7CngkOo7|GiXZ zJft+nvaxQa7VU1=9v>$MPu3r_Mbz##>D2O76$APKV&n4!lV4C{XGq#y;`yL*BOH3O zyPrwObcCXc3kp9E7%rg8^O)DDm2a>v#hFz9B|jX$ zDFAsEjelA@@{Z)$s~Xdp+T+&#_zQZyL;zd0W3L#3IA$rI4c++OkUmR+U~6n@?RsTr zV`{@kYe?PA#Cuvm{+K59={cCuj$c6wQtutCCgs&mfN6Q{bf!e-?3rAnb*_4};y6Ox z?AhwK`;-M$nQ{$vc(Mtg8OJ{53Ik^!gNSMY=#tEdw{ndKb=k|-ZlZfL-h&H2y1er9c`8`Pt1ZL>3X z>B=&O5_Q7ZDjjT(@!`?l=B4zHUfR)*qk#5`FM^`0V!M?uUU9Bwmn3 zSWKA<<||;1L{{SM?AL1Vo8~2-?GS@MvoCNagWrP@$=XI%`f}F?nlhaK3+>juVJj=g zD@Hm5IHDf;twKNyMHeZqQI{X8ft;|t3$VR5TQIfRl|>Be(8DRDsnmq#N19DvlN+^> zgv+TWg@81$2Qu5_%EU??k!a7PYfm(0Y&>&mnflO(s7lRx`8eG3q<)~ggQimL@7>+A0bMlAua|QUpB2t zkfTw=c?}_}p&z%5WD#L$?{w!)!G18p6fktYzX|{GuWQ~wLEb^l-Zup-uMQ|JhSWwY z8bm+4(qo5@sP_)+SnW_$c0QdMA(H-hF#2ZvA9^IQ88r4~C$p;MThc12)Kr=d(S&&Exs`kC%NP8wHkq6HLhS`D^p@#pzP5ZaqJXuoG;R5G8=Jv)2?3i|p4J zPxb2w0net#X8;U+pXD&w>eY+5dcQhAQ`Pz}dCP(dFz3j+Ik3b)8p)4eF1Bz1fOI08 zuZFt9EF$s3}7JCc6vaA1Ko5E2N@R(j^fJwy?q(mC~W_jBx(HQqP; z(Du+HPdTAzoyp45-zonzM?yYS_qs_;{_0AeX5mmVWjPqjbSXMBTiK1NdtPRy%KbOm zC|V5dnXQs1d{KIFIJ`a+4I2|HKJ>@aOc15wV zf7sb@MelVGhJ0y#$>VTl3(KHk`J3}22mW#Wa=<#By|vkWF}Da6omytq&WlBf4eoM3 z>(t7dD)rcZC~u9)eT+#Ic4jFRkX>(~e+a-8rdO7U7NGf04t*RukbUN<`YF9p2A&CE zsqd?RW_#gIRuR-DsF?99!u=px1b|@fv1bR1^Ix6V3sh=LZgj@u@ZY=$a4UU0&NWzH zHEy9lS=gqV?WOnc46yI06d<7<+UDM8|Aj}2etI-Ku{|B zn_fd@+0~P8$deVX)ymSOV9#8I^^YW9ml%V0?idF!lXMSiJr_Nooedvps2f7ZOOvvL zucB;9TdA_v28cCwLY*_k@LFJ#K61^e*Q&4{;u?n{Qr&NnzI_v~Vr!M|hB$gyqmUMU?4EH@U z^FM5A25ya}NQtktofT4wMGS2So5KkE$TIbp8t%ms6L3Ox-C^aKR#zXn!_r!(JM^pB zdVU?o`B=jQ>wQouI;&26OYL_?jwGxh{C_ncHtKly!!ldzTJKL-Sj-nB%RH7zLReu^ z^vV#Q6%e1GRCvhW@EqU>Fp;wisE<696-ct(GBcrEvU`I?Z-VlzYL7igE~3YVY1h~e z`)`-0Y>CaTaqTzn`12Od`>W`Tg-+K$+5Q`q_SYh=GifAhI`M>}JqEyATrAjv2_B;om9^Y7cBD2Wo7q*&~pwW_|A`>V*rw-B3YS-VLCKxps4{RV(Ege?(nGn#7bCp`Z#`{b68it4&-=Uoc0H1I zfCWX9O5yL>0z7I2*aGRKFw}n;kIdWL9sG3q=4!_EQ1rL3PLHAgWf#GX!E5we|n z%+z!mLudbpf4>jF|B58@X6SuZTV-TUn9#)84`g#xS_IR{OVz-IUkkmeOXQQQ>^EB< z%E}L_Q`bN+rn9MrBL5dWnT#COA!>3Ad1L}(g~2+kzp0twy8k+9Q+q9H*fcgG7HsTn z`9E8gAp!fAPEmSXAN7^Sbms;s3&n>2I?dM{GsOr7JOxNnOLWL2h=hCGnB(8_4!wCH zqaeTE!lnLhT?3DURR?k}6SmR?;t5^EV7}rcWc9~ra zMg!U~O&i@9ld<$m1I6bjy#Jv*+ zHoFc!x2;3WeP?8#b&|i9=JJ}o*tqq&8WxQgU<+S8)zvq(QsalrF#d(Vc--HoEay62 z>gMHx7D!IzW2$1~;KUZ{>+)ge;@p49EbwZ!+iviwFxmd7r$x{1Kp5QK=)qkRq&L6% zJjX8j{_p0K4&CG$C&(NotHjSI0_GPrn%jtuqX^}BEDK%l{v;Aw^`cCO}jcEt5>x_^kQUqn8lxK@>`~Cg@ujw=R#Wq*v7r^VuWn>w)i3tbF?%|8lfR=FsftLe}QSIEafB0;9$8agmaXWdu6XD=U}EN&dN=uEsTYEyS5M zxtnCewGg$5@`<&-Tv2V%X4_xqSY|iBgqZ#7kF8$-N9bq2S3yIh=h5E1dqi?)gE!s3 z{2`U!mHv^}0d(l2F9Cv!&{@*kXauM4?@pc(xCO%_ulwjT#bCx?z1667*W&EAP9GV=?6OZ%rtZq{4W?Su4$Dco1x)38VkWX%e zQQK;sp7dYap`=URe8L5=IDlTt!c|4%NjW=Iqk2~j(Hsbd9;AoX9{5c`f+vpPLk1AE z&JNRv@7ZFqhkMmaL z!7Hom@1F^~LVRWd^78w3rO%OJhao~UHRoL05mI;||7}n=V^d=A^g-pe#9I+55%WeV!c|6?Z#G!WYI`^{FXzXbsWF|o+!rI;V0lOce1%=9gH z&yLDNI(~gS?1bk_;a2{!_9(qewmzf+>bzR*V9w()E3{gYLaU~sVsByeH@muJL;M9B zF`2@{b?6;74TV87P2kx!o`Mdj`Nzk`DDrK1w4kxHYpQo<*7e*i;GBUU#^@?0)CwmlMg{wCPWIX$f?!h2}7xc z3#>49CBLf+S<}j7;_e{}=mB>NQlPr;O%h1&x#>3FnL)v%KRO^(5TD%Wk}W`L@uOH7 zEgOb-fRvgB0&L7)Y8z$2p?`;T1_T#lG~9fb{7)pYzV-jt_B%fxk-Kh^LSzpb=o%i2 zBE#6yn-p)hCMG$b^qQQuCi1ze;>$u&diVzcZRmS)kXo40|d{ytNIj7H9XGW)YXFovGRT)V@7| z|C&&Jv_}&ChL8ebedVAjn-B_SHyxZKQ-j zoGl(ki&`iUvcdkqBSd_VYzV6N;a--E&uN^tf8GQTicBS+>2Et&V*&2lgNQ+UX*eAX3%BW25%&MUrUhVM^Y|LVeX$PYbhR)hQ3wf42Q zT3s(JTiq%guQm?#j^QJ;bjReZv%*8grZjNa6-gu&_Ytf+lM(hXbA{^!8d%35@7xNH zTy}7M_(8yfIP`G^k1Yf&qM}$-Jyy8hMII10MsNBt`zIl!i#BQQ@r%q)UA)Cv3The} znJ1o4zV{a|#pUJY(+kH{2APLgdb--CMn{|rmMwC+qQRt}vBXY6R}N{mSFv-uHRaN1 zsY6IsB^!q6EeMg$F)5WeQ)W7jb0mv$*Dqsi$wp*NL?deso;~ASVH$ccF z0xj#nWrs>f9L=4SJKi~?c4dXTJ7`jDnd8xme)9lC1NySOO<9Y+#Y1IgIhvSH7?4r$LLO# z!qz}R-8rB_V}s7Z!ko7#SMf(Dsg2DMWdT0<=b!CXlnd?_OoSa5Vd2k=OD9X(kaqtY zi*PZM9`ebmL$Me^kd2MNHfyOe^sQ8jue?6E_8gfr>gzMM)n|_78bv7f{QImEKV6Cn z^=EaRx-y5kCz~@^<Nm>|5n z>duEQdl31ygK^*~+DG@y=_~cBkAgz^5ZCgx8lSS(0lsS8cYl6u#h%e*Eo` zw(9`Lwsz`EvLh>J2OgFgWV@u-10aW-KT^p#>^L$(~Cr*Sjd#(`|*(gC=PX z-G~PFG%=4bSghmP>S{-7ScXhludbIrGgTvhSdK>JIhwyG)xa1=`5u*6{7uPsk!u!_ zzZBM|Z#PA^dYmBrONX`+{J1qt59L1MaS(L+Hsmu)WlG;*ekP52Mzx_OcrAHb4>b=! z8&VP`mZ3N3!=Dd$FHX|9rf?N%Ua_QhfNSI-2RIUdJH{zf?*o&Q_aknGdXdrdmyY~k z5v}VbjLWhU(A38PJR#Kwfv1ihzc4PD{{FQ!^AZfvjTn<&uN%Q`G9rwt(c|_t@sQ)? z`@8Zu`@B{i>FO4m8bz~bo);_CrqR{yDbU%qRx!Djrw@Z{570-2S^uIne8S}|?Y);K zsvvg$==r;UxXe;mA~_0j;MANIGdw{{UANR;F>9cQoqmiajt4mUHh?Eb6o^&u+@o7& zw<}RE@JYbO*a}OhvizhoYR|UlIPr7MFGN6w?h-pm(8K)@U?uSilVP2ayjfXPO|`Hd(DOjHG4L2|A6(w-v>s1Il_af)cEbfSG*v zAo+fFk{KnU++QEv)xEQR=R|{G0TxI@60jv!!Pp#`gOZH+0i~0GoHS~VjGoJ!VJ&LV z2Xp>i(a)b}*rM26zE}q52iOH8MUzs*|yF6~1%jF@Sq+j_H(j#xum zuN15Qwr~(aNzmY*c%qtd+-F_JaO#h z2=~dK8`bz;-%d(iPWw&KN7xdBr}na!d+Lv{w;@#B(+GvyRkK2HGi*l$2s0SH{Fbl0iur8>UXsrE4F`*c|Lc$+3hSf@vbRK3uXNOoCVMkE7#E&Ci!)0L=r_5 z#V}}tZb>$I(FgR>umlpKiFNvf;M`5PlHM4qahEmj&V2Evtdr5T0cjQ=~{J~;`^ZwF`3NFn=I74igTS7ZgVt^12l#eUK<|`$Pqb=n+D@+J%A1NwnZ0tGAb`6Jc zsb>)@b93|rkuq}@G*6AbgbvLoo4o$3nFHupQ}6^@xzr#!It^9v6p7Ie zqMk52yJ1wzryFx<+@rp`X&^ILbZrvicCY3)fJrBU_(bD(>Fd>Qy+~EZL+`G+tF5Az z4!)a*4-8VX2V8l0C+q9d>s-5CE=VtbFFOgf?H`>*^a%+?;KNYb1QFYZ-SPZmOazc~ zYi9i@$paAtBaQ>q)cwQT%Z5oX(}gaw*@$E4T3hDk5vN$}-f7mD4DF!X+EWGTp8AJP-CNlUCV4K0D#rpm+Q2=Zt(Yek4fx~$>^ie!9XcG zey7AU&<2o1W(U`9mNcSb)E;bhZDc-8W2(*%wc4YLuU764O;-s?C_eKx$**d2?Pz z84Y=406>VGEm&H)L8-mTO>bl1q}!~teZZ7~=?~*OV~L@g{h<8KhG-(hk;Tk*`x#ii zPo(?h1L0vAp~IJ7AGY-+Bd()C%TALr+)bI61X?Fm^1BNKo1ij6R76F_TO#OO{c<3^ za7i+|eJRAVuJiSFkZ02$)g43b7rCkI>N+w)P8au0LfQI;8DnEt%?~1lzBW=Vg6zfF zo+WV4s3maDLR%gmtsx_uoyYM)H0pVM&B9Xow1xx#7!r;p*GS(^)ACh5?EQJ~9M^_A z_+4Wxn&z={;5WUR=C5Cx`H;KyELnV3#T*2He>_`qS<7Y&+ZTf5BpZcl-~PA9F6y0R zIxcbPIrBsSfT~*MJmmP-M&$=a8P+APrp&o7cC@eHcaJuY@w>MA^dJ}b615Lq(>Yj9 z-n19vOV09&vl}+jkqjoC^d6m7>{;N0S%aK>h-vDyjVj7GhY0rYw`CK(yV{{`v zug`FojT?xPW==sBTw7Ix(Q*`g^ztgfEA$N(!k8M`^#wJWsh#d;9_GW+PMIH57L{Fy zbRldZUYEkcG5v;xUg61Agw;OZ3H&*A+o9Xw6KSSZ|5S0Yp5|^1OQFMe0;mV>AZ&(A zDtFTq(=zw!)i@-w43l#Rv`UUj>qCubS2Z1Msos1GDV07=*@K7vCU4(naiKs`^1_qW z;|&x=2PLhwO+R;XhVvo{=mKW9CYMF;C?1BNYB)6iUFOuu0HOGl(Ayf54~1t$%5F)h zIxTNpNSv}0j6`BEhkFDvgA+HS!b`l#{i^0l<5V(fv`#mq83)V%5Iw!W@Ny|E+cC11 zQ4^O^bCgmOW|qaKQVT|JH_fC}2pM8sH_w>>($CXkW;LaMO`TSyi9HDn-n`^iQ zr&s&EA0hxiSE1I7A>I;Mdv3w^{psft?>rG!T-ap(A?t6t^G?6w50Asfa`IxpYD{C&zudn`#)sh0rZ*h2 zPRK~IM0)%yz@m) zhyOg5{myx`*_o{}wFHIWKnHCgWEHI)=lCtv@G}FQ&dtcVNHP2K&Kz~y>(=5u0@1j2 z68h@F_w=1+Xg)J7LtdCRrUvg>pkvTb@c+*${p^EUmt`>uBpPDCAT{yyM zskDGAcwzMt{w+2ctB%u3nz9;}vKpzfnj&hvn3P&aF8`^V*0a3Qo4V;#lW*4Am5lj8 z=ul@>P$Xu;4ivyER`|e`%nNlhjIll!0jR{-u&}emAGe}|9(GiF@LU1h5kIN+_Xm>N zcL#E9%0)7xY*3Z@NB@LzL3u*MM0e`Q)YeUjx#CtCqJ6k&b#?y{FhEU=%45P6U1z%z zVQ5prlU(4c&J9f}o0kZRRI>Db@^*XqKwS98X0&Lk?A4n}R^Bgi6~91i%cP&u%`s zhd-G(TAA~@7fVZ}1g|iFqsD;&`q|dvw*@57M=TNIM#{ye$FapPh(Tr~lNatbLn*WM zjM1T?7HF*E}AyRfss~vgpU|YIL-A-%GTa9J2!atrEC4d#BYA z{LwCqZRS0jGe0zW{rth_a>vB94$W?%sbJu6DfGfPWzDvuw5q+oQj@CO>TH(fXYRoo zwWJIttin%!=9K{E74{NlEtA>-n(yYF72%wR20bPdG}BS-wM+9w&!3_ByS=4yt-e0j zyq5EW#u(f3ML@Leu=Y=sq2IT^MLZF0dhu;~lQ!+CrZC-ZZk9|3gwm{`o~mqKKIA}j^W(`!@+($);sMkiR5 zFLUZ@;Majg1G!=JgYX8)k{Ju1f^0kY5A~n!``NJXT7~aQI#BANsBRVB)(2(>R$hH7 zQBHI>!G~v!Kub!~t3&+l0Qw9GUM@>NQTwv`4Be z)w%s`$jaFQ$K+#o>10LewFNRuEhv`Mb}MWEmYHR2u;^A}jt#P+W_NDrKvosix6-Q$uD})Ik zDvoz|Fe<*|lSfo?W zryJ^3_#O?`R6%1R_2IVCaIG=TnN{||sx>UYum*?@0l3;;VdB-os7sHgOwH#v zaswzUpLw=oKads2?aru|fwya+`NT`G)^*C*;OCPkl%onL%+nWi-hw@a(`eFAtAHBM zvMIGCPmQXiR5s%%P0gy9gc>dM=#@n1s11dHCUhD8?J3agA>-y;_nDon3~V&j8nVc3 zrYf%%p8RdebpZh&G@a{6EI-nzr^TB6O^S1+%5I|w#|8I%+`1^C3LW78M{bZ?>RXgWqOc(}B#1-N2M%Gyp~q3MpW)=GJK$>T~cGfWP~Z zIJs+A!Dg25?}*s%aMiUgMO7u(BEX;L=N2dQYM?0%wLQlmleq&-3%FT$X=mPb!Ry_y z5hY=`{*G)yW9lZijax4*qZ2v#=vqe|S*t6T@C3rq|Dx(GpyFu4ZP7sj1cJLK5EuyV zE(sRg-QC@t0Kp}M5L|-0yC=9qaCetsaG%%t&$;j22dmf2>aLcluKHx}-Tig+szq95 zhpD0tM-5echndx{@-JmosA}oOc3w_twSSWr59qcCNJv+{&u#Q=qXNPQz?+GQ&-n}h zF;lUv5EPV?(YrMbD%xPCJ%sk01rNdLWjI!y)I?+eh^uKAfUNtQ3M@&ndZ(9=k?p#k zK%pPg6X^7!Vd2Vr`hO}lxP$|ZasG`kvkpID9NZ$1XrM9F+Ui?VD!WAU4L1*i?XyN) z5O=b!h(h|vsUMedjJ(E!<(S8MM8fFu-POuPMf^85u#8J#T`AMzEv2CL41wwD$})b! zKlr5@G|3)$V;#jJjP8W`|MOTi4`3!g1qwL8;N*+ST;`3bA~ z4Yu~8`6@JSw8&Nf(BM5ugZTkcF~Y-}?3CKBCKu>on#(J`HD4(?LPuskFqP*oFJ=vu z6FYMja9|LjBH;F7+mqf>;izK+b4>d~(ZQsqXQ-Mai}^aRndtzPR4cYV8vd5UW)R58hJFKL_OLN7_V<05Wf(j?E zKxU5Jb)1)txQ3Ye)HM>o=!4FHL3x8B$(}4EYNu}r>FJ0Q#|P}ZwRUMV_7IElx%>>@ zG%>9L+yPy$wN<)|{Q?llR%j(&Z-)TVqJ*3TR9i7Aj7Eu1I!Ag2xVS~#hwhb0 zW$J&$>XtD1FkZ!2%)1T*&{#4$6DF!3hV6XPNCXNr&_~?Z_6O%MAvAVYeV|qNGW{ug z6Ng{_`X8JpqrL?|qO`uFM5cBwhWkzhRv|6a>oqP30x$H*;NMDiWw~LIs#LbINA2El zL}>~G)n+5Q$B{Dj@UTZTF3j zKzAbA;&jt*FxWy@kvOZZEu^h@iJcR2jyeL3_fTUODujHIQDpeJpkh{v8>E1By-6Ok zSnJV(LlDr!QP#WcXVMOs{*tC5N;d`MuF<6Tg->sCubqac#YUVD;&OV_Idyc8^@qMn z5}A$~O{v##DQ4hEL*2F$no@17T?wYEW9%(E`+9eqEdtz@H|AB8tvhz(5un3YKGa7FJl?bK< z6=&J|NYyml@~;)9(D9w2DI&l-jmZ$ep2sb7Ntd9}o|Z&oYn4not2^tU^B-3jK;)*s z@+TtVl2wf-lL83AaP1Bem7x{%3Q}y^YzpE!2shgyVw_!Zgs}K@UYd+A870X2rW6E3 zIpU9;5&?}}tynpbnY`{}qi;t7hDRTqoUN5>?-*oPCBO=i@@WA)q%CL!Rq(gME7>M} z_(23pH`KCMucb!AD2_jqdI+iEqXWJ+Z?PeR?`y0*_=!gSh4@0|kAxxiv4@1}c9dBC8&Xa`S)1seliA*48+wzo~phe@)o{zAr zy+<;Q8Q9)r|Jnc>a)B=ZM*^#aZKK;&L89(=VtwIg9uwx=J%bF0}#09!0 zta2+A1zgE;Xs6ipN`mx-b!;J&7?W%f(;%g6t?oGv5>g{0tRlD^;ota@szr51-fWy& zVuoZHwS=cYlk^RE+`m}BJ>}$XS+ogGK^OX#a=}p?_$dP^NHv0~KsKM+=wJMf$H+`e zFeg|KPaDMCa6^n?;&G1a-0FNlgVB>`Pu55@w##z<$_~_^Y`1_**ulqc;duNKB%=cKbg`-mIGp#<|GFEJ9<;4l>i& zup>f_TCO50!T3@A=FKPg)Bi8Wiz=n4UX_?4fo%E0&%h&;z`bQ0 z_g_=a5Ca2M8g6HqhH8LzQz~D5`)%3_l=CoCa|hv*u=!t9@CT!@pg+ z*(F-n)U;E(&Rsw2sI6k>(D)Wi!*22cAd?@*8sFnTuWd$(QngKNfG})642pIo$zNQI|7#JjojB@T)%~8 zSmG}L8j(nqRTuDNiH-y)jrD7`S`ySko)A4oobd&I+0lWY0LnAVe;PIf-PVCG-P0-YFex76gndrU{x4C(2 zLsbw_y;=zk%EGMgUTagCnWht;Eb)Hkn*T2EUl5n68pNi^2tI+|F zc*@gf<&|lS#KW(TipGNkAkm7g=s?!*(WcvBNO52Ioj{{Cs z+5O>mzgq47olGk%W@^Z4wY4fV;}%aRkH&rDe>=Kc&QiR_%I|EzhQQ8o`|w|UGi?o` z^!W+b{W@n_JNU$nU@oeu=JoROO8MUL0?5%yhE!%2sH)vhFBCcgaU)pyLq=J;`l_ty z>KK?2^=m>!n(m!wWTC-aAkh#L8av6}r%xWX&5m}K0kMmJ(`LT!*?@xH34p02&8q(j zjgQjo%XUOYIT0q#`i;m_RW;rQ*`2bebM#N5St|h-PL``7SPai&CdEPUl6O;Y?3b&0NI#@FR6ol_@q}GH_cW{wi{*TVvag>g!bPyE!57Aj*!aBF)zs%#@-csgJ7HDu8 zWb`|*FEo9$8A;w7O5}QfT7`fd^o7X5T0mojm|yc`U`Z8>0Zw{y12h)M+ts*$ID?lT z4)fDP2<7Nc0CEAM_Zr(qlm$Pardc>??G0RRgtlsNQF`S`Y>A4|^?zICto;`WRjvsgt zLPswjcA|0`cI9>l!AuR{oGq#&g6WjQbd zFowIM@B@nKtT?!JYJFvh)4d0zR`Vv#fieH9e$XtfHafK_H4d=IXF8;nd6y}~k^5$p zob|@H${OCS)2Xo&M?lMWzx9hH&0ElZlGJjgt=@BJu#7Q_ABW}uuL3YGD_jEvFIHer zHf?(D+M#D3!Z(X5=yf;TRs8rB^!ymU6V{Y-vD7xVSZQT&If{Uwh5k>2);_c%rgzUp z!1IL1!32C8OU}%UUqRzoQ;jb0fW{0|5}QOJNN&k)BU-Lsv)_+A{aNq~U!fxy43{2PvQ+teRRk0VZM37l+B$ z#@!Z&)c`;|`RzN+NwlnN4HuvhQxDT?j#MV9nhING5n?t#5RF%-GZw&%-$VeCnL<1+ zMt)}*vq<@wPXJp*7@O5qZz4Yj@LFSrDPsl2`D(kLcrntSB4UkJ!F0gRgya-+N!I_v zAn|EOX)TIX<}KPMTvtnLh+-|>{}PzA^a3si0sBon^QDPvi*8~Dp1I3<#o?$6;)v}9 zt5)8RRYEa3gY7zg&Ozsh#GV@5|J7|A;a7$;QQZWvYkf+}y3+Ld2J{%)d5N?HU0fE3`r-Zh&}HkTI_lx-&G_kwIcv<7uM5#_RurTk9${icUk01RxxuGamafBR(#3osa1fR{1p9gnF~9KU}V z;uYW+$Ewzil9HJnU55uviiDgQ6+cYx+UTE*8tq&5za(;u$6j)5CtfBNzKO$*U5uEE zVY~W7f(L{y5it~Q3voQY4_{Ji>grq{LWxYnoIO0^f>v$FD&~d%Bj_+f@ZI=17VZ}p z!TbH5860Ynz*Byv0KM^JhdG6F)k_{s`;|>bjaeL?+q8cXXq8Q58S~DlNvmF%46su< zZ~l|j$py9op(a|>As)R%kB1h`_~1q_dI%9m3?~Ne2tY1) zChpQlHq45^)e=tN!Ro$D7ms%+!I-|H|A>k`FjEDnKpdmRX+0&Ee@{rt>;q zh`HN-3cB6Q+N+)Wq?IOLRKliBbNDW~I(#+6E#ljDP9lK+a06m9TTLrtmnG%gLHsq8 zYbmmv17~rV9iXUKwb8|A z6QDDR#%a{kPmH)Zjamc@2H$P6V;}Ka#Sn!jo5lRhkp{GSptF7B1=(|C{oV1RLxUdG zKr|$XtO`;szw7lPyqh(=1Awr7lH4tZkl=T^rOlhn!7hzWE!qG)*i_5R<0F%sIc_4d z{9Dgu9Aa_78E4@*{}VvWNab;XvH#`&2EZgS0L?+!Ru~XqL%{#M@XahY3g;~y5_ zLJUzNwT~`d1^z#Z{_Ij}q~WrkjAx_Ilecm3D{wixgV3#S+kLlFs)HW?BRc5ua-m#3 z`%l8>PW1kt62)<~z`7rk6~Onkr#uCO`sq*xx5^`en3|l&)5*V_0#1B60TZB0?sT($ zt^?sx5XIhiS1K36sC|==XyCjGNwk?nY*AHixMes+g$M@uQlNd$Ismxn7q|qv`E>^{ zWZsT!hvY3RwJL1fKM^YfF9zWV`Akr44o#~ez*m-KV5$bFZjMGr0v;O+>d#ewBK7*ZSs{t^R<1`=my>nVR5+xb!pZC*lmthyfe zD)V{=eNv~9Hh^*#UFOA%7Y_&}urG-%EQ-mw8}&BZ!iySnn`;aLJc-i6|IM`k5q#9i?zjX5w;()DU<8prCS@@8>C0)%Jv1!ZrOA9_TmJ0EPn}!%7!KH~ z17l`S+uDB-678*d7)le|WpdjMX-zBw%R#jf?IL&OZ}<9Z9)toYYS)&C-xko#Py z5JUi&r{4z8-|aN(VF}nWL$4s2yK4`sE$LPBfOyuP|DzHh$T7Eb5y{q-FG5u4?Lbeb z9V2AYqrm0_0L9=h9UT+SUEG2sb*AuJUfHWPkaXMSC2;u zr{RiBnA@}$Uy}gJSoQrd4N7V{O(|24TJ$y%Hc})Dv%PW@1fhLq+6sN((3b$s+Rt6# zDU>ZaLOF@g9PxKs!4kxZvSz^_Szd@D#FMt_+^MSyS*`|(0l&hoe(toWV9_b_1u;CJ ze^Puq5WcrSb_*y|<@L#%5X`%_0bT6Ga&=EjuQXeE8G?TA>epQ4>NcZVk>&#)-c>KC z$FY?!x0@`KEIfdheE_>c0COEGre$`GsZQ#_0HDn_-EmDVkuzUYM^0A&1(En3+C5r} zqg|10;$JxO%QeuI>2c#_uLr>9 zfi?U(o9nIIkE8Sqg(YNkY`*^aw zPKJCj0CX7WE`C5jB%Khc8k{68sKX8vDpN8#rCN}My#1&X$6>`^058z@TPz4^6opR}3#1ioRlp4W< zO2<{)9ykmmGpNiKR})9lXz*&`greE-oFCG4Z;3jQ@uk z==10Jkbb!XA-$hbpg4u+uo^XK= z^%+u=Fu$TZI+Cp!aNB;>7R4hgI4Ygglsf$IYJeizk_wYrfF37TnB#uJg6zY7zIkSp z`0!;SiAcZOWifv`aS@L)SH)=CRaumoOhW0Q8%dOf=ZW4<>uj*-sC14jExXI9j*>!#2b<-3P(bIi8M}VEsutt-OU0|2y7-Hx@ z=d<6%{98nB>(z_%%tXE+_(r{5A|K~%!sy*5qwIBUj9Lloht=P|ETeZ~xJAlPyPIDw z3OaKopY4QS?hfDY`=Q41ibCa-$+`w1uj0yAc)Zz7B9%^(6TzTe>?x}YRS_6v;P$2A z3KA^fI?(@FHT&_)px##K1y}Ds_DNiGLUPEGnOXJYCxiYoi@a*RaXv-;d4NcIrO8dK zekS4-B{l@k^n|FoL!eDq0+kNz#|L@I1_RC}nkLXS?Glo)vz@rek(P!v=K!9(G5MXZ zTS>J?ADu1KtkJT@1k}c*NBHq0e-QEo7|?w+j>x@=Cd+itwKB4a&YiTQT@-xc= zvnwv1dykeFG3dvpDa4ra!Tl2;oQ)9Y5$q4v?BA02viMISw}vHq7DwlVW8u_g_;0n}_Atfjxd0upw)uahuXMoyop+VyrCay@nrsc z%_3SEoUX)k;)4;wIW@SGp-x(aqTk!23XZv+aiZwj$f(f1TomLY@wCymqDaL0ap9{b z*_1LFPO4CR0DBK)q3%Lekt5Bu4J9Dz7qE@;rzHKE9!BZLFp!lw+1jhHkt+K70VwlY zV!Id9F+~WixyTZhvXgN=fV!dDlEv@NOCmWcI~PV%mB`>p^oeO-lIj&Pynny1Nx5o6)`Qhi(_;$yyb zt2q2YGR)ZEB#`p3_?U31&$WOdC(*Gc_ia{^GM##vG$U42czoTl_j$3-C&|?CVR?fu zs?NM6r6HkaU;X04nC@e*0+#Cqi5*qtVT-9-l+MO|pqj&li-H6+KTJX# zczj^FHgmkygtIN0hiSBlnDX!>kwCz*WdOvRR-2mUKT%i45_mrn2w8{uR8Jeirn4Wn z6k%6^FZbEohmlhtjLYNEech=!Fy$lWuaNdJw7=_)F zX5eM`%P8gxmdrv^BQ1gJueloLVkHBi3?B(&weo+CsGdx=q ziNn?rfd2x(AmwE=Cle|%WLcL?a29Ct5AYC<9Y1!?fR#u12!g0-a1~`~FJON8K>!;J z0=bF02?34(WJRwQ2?SbhLHtH}-Ty4|2fBYrqFd0HKb(Nwe*A}zf+peEjW}qFR5p91 zUx1B4sw1e~#;6g*kzFQ$?0xl>D?lyUpFLhy z>>5q1fST-i>w7Z%sphxQlgf86%F9^-?G{J0wtfa zl1E{hF!CqPJz;NNFPim=yYW)}q$&nA>t0t1d|$~L*@PhZ_mbAtgWyEhC0Cp&AH^2K zKcgIaZ|NwX$)Lf~k&Xg)QSI?)rsBPrNbxJAL0759y)JRY!ije$JATYjUwJ6xt+psC z22;nLMqEU8YA)0Ghxk~S40HI7Y7-y5-<-V-neL0kA#~iu7lNw!kZMwdK8BkZ7e+kS znkWd~GkW7k`=z;v4Qh5lp4I8`?ju& z^saPgR_74PF{{ca5Y2e2&Fy(x(Thz%(?vPCX}q?dR$B4G{skd3MJ=l;aRS-k9&9`! zd<^b|#W{53#=7ukU`Qx=mPr# z6`>5=a9zK447^Y7^nbD5u1gL)vJBjl6?u^oPG4xqfj2xlSR2ZWOUG2_lGKCp4WpxM z2@v?9?{Ed~=M8$TmF3ZY@_F zYJKg*eQ)xeQ8I94dI0?5%mVX&j12V4jra9g8u{drz>(&>pSPBH54#!`ek($28t;C$ zJ??k?{_TST-^Bf^Ao!9oe$ma_VR=dC(}O8DwYB?OW;yq<{azw46+xLH_Q$u-Ebl-+ zP7lhLeo9ZAXGzwF$ceyp5!fQjl;`uu?ZgSc8`AYP*wM}U^L_LLftUZ4$d9D;`@YCK zmW#06gX&BsawYF`+4nlg#65iL$l8NF)O75;`%G&0<#H>(^@H{E!kM2+SMscdMfV1N zji&FeS*WWBs^hPheujd#-7~h>mSMN=16-CU@9+k(Ql7_npPr-CPw?C3BmC^6U!X_H zgDR81jzt}6b9diWE@UNsKmXM%jzl=T(}oP|m1Q5dnJUxXB4P>1ei)@rEoje2{`juTj({)DXaC`8m-1=N5T-aj-*unhzi&DIG8qpG zg&t0}wO#}U&2m^M)J0Hg44WIW0p5{5C0)2+_1@q>1HwrhLH5L@qltP!il+-Kl z4x*PX%!K&z4%9`}X|gIYH3O>tzN2oN6?>lFp=gZw~r5qmT zv+LJ1RXUj}m*#@qu{Gvmr2-Y7a4JX@9TX`-!Eq&CDVZuiJ7nkh9!=LD54)iIl3ma1 zjj(gdr)S5&GsW787vq}{L%+w0s^>YLmkHR@Qs6yi7X)|P5tiBYsM&e0S+~X>04d%7 zpj%<4-i{hPKw0W(7CAtSJo2n%E~LEy8R~?K+qFsxw#z$WkVqCXNk9`%62JyZ+e&YW zk=+|e1-8qc5p@vCtkCVOPLoCA#;^RgZ1O~9Zjjc!@^BUZ+sZ97iJ^wq&>PcHyyzsUD6?ygxjMjw9V7AG}1MqtwX$b}K z%1=hYO0o!usQ*>~fA2sjWqJb#fII!S5CCgD9bL>=?9I)rjajVijV;Z&IhdUsEF+Z^ zq|i}G{_Tb?{aIWE1cDm@mLQaWDXctftqb@-GLe-M2f_aR=X4Y$0&8A7ebxptJdECd z3tSQd2H>dwr%0?<#!05P5&rD;K-c~_0zBROV#W_R?@^){X3%Gl2;VRp%{H1SD?dqB zsDJ!rGrK2YJNpT(K_~fpl+3XXzRn1hO#P<{jTI-jU}^DJ%F;^jmeYL$0#{PKFAWTC zl6R0Mie}n9*GDrsJS{q1_f~u-l#-phB(HhePxE4iC&u}qgK*D}zs5Fa3QD5WRUO-r z6gpDR;q{8jYfz8NN)qBX<++>VuN|rN#7hY6+>d7$W%5SylL+Ps8#z}c3#jauQ8Z_) zTzSxPk>cJJtdY??qx%G@dvsFA7oYuU_E$rfkVV+->=WKhnKn2Hkv4VLKfQrX)fVFjxx4?uNQ92= z)>8#pAicCttty>djaCQeCOMSM&jKEMjB&lwZm@WvH9- zd;(24TOF#cRFC)XX2pN&K+$4R+%bX;KmYzYnsiV#C@$_?LrsN+5=2E6e2Xc*rb#7A z5C56o(KQM$p{ZSE*iM0-DhMS`CBNNfOsarRYXmR2-9@7J%>a}E+K4Vu4?8#5e>zxE zY_t9p?4eG&3N*uaX| zz(OH|!`lEMRs`$d%%h_cPlCkQHsG1N-x7j0Y~0pad?n%?e7b+DvQ%{31xq`0QByx% zTM7xoAl^J8wRa-N%9wad$`|p)o}hN>UGkxz>Lvn_b(K=fYC!k(oj3^NL+l7zo#D~Q zTaZl6 zOh{Ob+yRc~q3m?AJURC`I13vb-bl8lF>%(Xt!b&Im2;z&W%~Art92h%`qBC2J2lvN z=xVPsVm3*RSU%VI`K8`T{O!Fatt(=?{9g81IeK5r377E~l7q-=+Bs(;T$&8r&_7jN zdKI3uDW4Q=o})t}h~z+DUgyKH;?>;uMP#-FXoqx}T5NKMt4%e&iDIVbw@8?6{?DOToQc?a`l`n^YwZnN z=@i76%zjr})*Mt%hiTgL6Hk6p9fT@Q18Og)3iJhdWD+t7d1^{$-nH(Gvb@Ac^cxRZ zOWPRuylx)%ts%{F_bL{gvUU5SHV_U3))yw*?Z{6d+Q_YkE%hKRUu1e|p4jCwf8*IK zM~Yh~Y{tWpe9hONM&3CvJh{rbZas&Dlp#ev96_9lLsLz4Y{%F%=lk_EUF{hOq7QZE zD=KE$=4VIw&n=GYU80Ia6i>G(Nv86e1=RP8&ZA-l$H9?y2YI(82B)&tYScKxv2#EF z=&k3|4*TcvNAsU1nk0S8@7LEcR1x~fb%d8eh)1CF4V?WZHz#sPU;tmP#rfOQgq(PJ z1C`18DOdWm`>^{HThPGS>T!2@R-m_I-M!zh<`*&v@f|uBGJNMjXSH6saw@3=c103APoY2XQ{AtJ zpc3EfxpoFcH}Rus|9KAfZCzW>{!s(fnymVy!#{s&%Ea0Y}VCPvDI=_hBHvidM?13vEpt829@1^wmjAN@CULd-3|z z-ZWIwnlxt}8#Fy9N^oCsej0rX)8-tC+i5^4IjXYU{K55gqPtgD^iNBw&W7JW#b&_~ z$s}IOn-U?K`oL|@K5tBVi@T=$HX}W@#OK9oiM2%ex6$Rq9}h%BVl7nkevDaOn7-=o zxE7!DRig=#C#U`19i@jZkw0o)<%TtBWC4_$rBbmgrL{;-Qjy!ivQ^oUwl`Oo@8c1G zryQSlhCETj%GS?b;5$5z4b;^;>S`a-9p!%n2`^q9s>ZJyHaSl`L+iyl2{Gqy)+&6< zYiq+AoCm2T{U%R)e#i29QakvV8;})_jjCQiQ4=jvYYO z+m#QLdZM=MRLcdWDg!15NFd$LVqUY}FW6Wf$7@^*uRtLjZ25{Z$v@#!fZe)aga*lU2Y)AuM=7J^c4yoH*UgNI#5bw?#Vxh6E@$uz`O^h2dQRn9*O zFCsO`gzl9n@$F(g>laSEj||(Id8Mtu?eTnY-VC)e%QYok$A(u|pI4jj|4>%iwWw?j zyn)ALZ{IagkjaWOuVwvg;gAwRO?|$(VU|mM7DOh>KzD$W^E&NGiSZ*GtjV$exhvCm zUhMYyAlx!-=?r$dGJ@n$wc64{hDI0xH|j*(0J1fo;nq+ct0X0BsMM!Qz(dYBf09&O zQ6SE}dD!s-&2qJtN@~tp4SUn(s`V--L>z6=Nzo77n#nT?HejY7$;b+R4bIDST5`#Z zW;<62;Tk(U!+(W&*I9Sa@+*pX$2#M}H#23Ct##yuI$+~3yz}Y|wCas(;+!N*4jnq+ zvA+2g)q!MlP*P82`{p?GySVpjE~DCG5(g^qUOySj`?Kas=ZS{7{tm7q5^8yLgCqKk z#UCj^c{CZO;aF6Sttk4kl8GPuH6ewLVEt&Svnn3%3dyDSmGktO+IJ%15(J&>B->*x z>IBdsc=+RY9gwh909OUgQ);Xl`Zl`iSJ@bd&LElmF?6tB1OG5*jg@(A! z@#%6C!b0HP7cmS$teE|5|D_)@bN%f%$a?d$H7UB=o_h?{hfAn`-oBHE1+ehn4oss` z-Z2H0BtM&|7#7&tEF`|Q5@F0CCYkK~W5Ywh>sMHbhnnv6`HS#l_LL{gx%i%JHvQ%0 zpko*j^+yz)N~z1K{Qz@}9C6)#Q(4#2^Utzz20_=eS1cjK zc!XAH@_9;EVGyMBbneeW$!|}!dYdev?R#~|zfl}nM4|n#6M-yS7_(3|0N1h)xxHs{ zeQDS?UexFAs()D!*o#}KYb%kzjN1yQ^zj}T5b}L97%_9=x{=?5vG_7L>*^umf;YV0 z_fbUPITWG!ri^Aj<7Rf~HY;#%^Nrutf@5~s0SBwfh4bkG8W`Pw>-%GTC+z2D2l2wq z6Gwce+uVd8Wy@Aapx{gQh)sp4iopI0YMaTFCaT;y| z`^?)&lHp|$y5^f_Tc9kCZm<%9=on!Y9uv#h!Pg2yzknG`3*NqHLoe8}!MdLY#{*aj zb3tfMqHVO2GQ(ZJf}EGxS%{Di9PpXR!Fa#gxv89g>+;D7QdXnEh#m)UL>@EFL(7FGlBadrX!u>~Az5djs{a}(*V-}l@U=)L#?qtvD z%)WpVQF?Ph4T;|2$X1+SmwKl_Er{grnZz^%G zfAi*}5P1#v?Z>X!d%4ZD+T)JNf2NT-+j_6BwMnxez=A_@`2!v$|1+B$$l4bww%X-+ z?cEZxU})2ONC@-l&3aRLmk}2GJQVMOoJ8q0wuRaGw04V33~Sh{Q=h60fwUZ6tQl0R zBP>6nlXIPcli8{a114mW1j;W)nzG4n=Px~AgeBCYk-S?oB`qP19bRX|h6-LQZ)}xO z_XO1txhW?9&}hYn@|l?Pj17p4b5N-fcT25UjPlnP*!S~8lsj=R*ulJQzB^teDXDt1N zYI~FtusRzeO}&KN3hnM}fA?st zEj@Z>kr`}jsk7kt{JE_>Hg81K-JL5)AXoF1Z7Pn49*UPHRXPJ`r%ypN?KvI$u>$5Y zHwkC?e3y?arKzdOVh9~>PK?*Byq2914)}B*)*Wl!O$jUcBqaeR&Rz;H$c}@EoMptX z2eirlru0<%;RIo6w%{-^gcQ$cBO>PUJfWbrB+*drlC9)1826ZBt|m6@8dh!hdu!eb z?$@^|+%MLM07-6NeAPmS=lrmIpV)X;C9HP6E9#@Z(oe3Z@21F4rZ1+tx5H<;k6W^w z*IAdCcjuenwdD>^&5b)sIU&Iwv>Y#Gr^}Ve{RL9rRp;C7f`N>Hk85Z8T5yo(!~B5-o1x3 z`sD^R?0FpcM_c^rcNvWcsjtaw^rOFu1OkUB2(Ki~QMh{w*&SKwqAT#JfDu7-_a}Kk zJ__Qrsi=}n0!+LR#k@+WZfn{=%mpk?u=+A}ULv&aSI&F6qN=!X-!;Fsd_NSHX<8*@ zJ+K|$o*%!^v>#?qiAhndyJLGhHe8eZvXQ?2v}rgHOF>q$@bJ@lxr+uz~1){spwYhTkZNFb6?7&mEyrKxcPFl}et4rq*p9;JP_P#ie z*QWas^<#K4$LxJ5P_3lE>%1uI^y^V^-C}Q!ofw5j``M4K`7W_YTh3N7cLFPenOyHx zvv=W~?z8*>npc6Af$?;|!n)x_e)d5z7)7XL5vP^ybN!rIo!wjQ$(#STf;m*@qa1Q-8ORtAzsWl|GhrFkJA2# ziYsU zn)II>z%zF7_RB4aQ+X4=z!@DZOgEayqp?agddBgvZp&GY_ zJlcHM1Z#6W0ec6+hK&77oA4^U9^QclTkdv*7kmawOfSRUcw3weokHPlp zA*R``ioDy!t5Efc=zzOj>p(;$=*!>vpB)?ag-4-K5s}jLuBnNiS@jhVF{ztE9yk@K z6@fQ46NDRUUI#JDQcGRshCM9aHIot{0sX^Pb@Hl_d9lFG+bL{?AGoMY-O?g6v)N(( zklwW8mO7mt+v#UN0OzN2*pEL{+~_dy?NVh^^|U4K2r;K7}kzY z<$Q`na&l=6CMFV5{)STY&6O4sQQe4Azq!Pah{`|X3K(62hSPp^SEBLmIDYvt&4hC} zwc56TPmd*BQK%?Fr&-7llQWnyCqPXdVAtkxND%3ExWq-Br;F)W#O~AnZ0&AE*-qL| z5h4|;xLv8=%D38DCiH-X1=mVP_bGG%jw+5=GY9`8+`ciIfdPt(%> z`j`Oq=p>2Gz0l_vQ;6RoVcsKu+?@Jo5I2H^fA-332H!@rb61MrET#*b(Y};!*8MH< z#0zw=Qz+<^VLhP!VC*~8*HW;^=NgdFrjuKJYkxj5!N>n$uI~-fMqIV%(zJ zC4}J2*VX}>_N*f2@Z^cD+bn^_{oGvB)A-|HVp?jH@(tCOVD<;UGz5` zXus9tOwegvT0K}8m?(I29Pj4^hz!7;`)}`f5Kym!Uropp6R);HmsL`ERm3vJ? zwo)yUFlhp;cDtomrG5s{ZJ{`aZeX?2c|_oU#KvqMtqxg zza3?9OD-=jKizx(_N~%FJ_5jySc1slKy>@hc(uY$J9Wm$0hfyymg}o-tnG%6S?SzU zZyXU538Am~9oZFAAfrSc{f=-(e-X;^Ftb@V%c(&-^8QbjXoU8Zu1AYq6RAGx0?sBLR2vjgBY^CA0|79^0L~`s{@m_Mi0I_yg|yk zTfEH%DYP6o?o(LpG)i?vb}_fz8r(Lg%isDZ2Y^>!x;ter6H+HUF~yc zfXr<+Z#$m<+><9GG5{=><*fdGPs94Omiv|zeXe}+4KxJK4-VP<&JLREkDMN5R%FfKcb*Do5B7uGz^z~1Hd=0Z6 zA$4W?HImELM80%h^B>x87B?0g-csvmQ$Cm`h#Wp>tUZ_!zbD0eE%XSz;j|sC;1X%6 zX#bXzODws5Ye*G9vy$jl!l+k?lD=K`J@@x~zLDC`a@~_2n4jqn4$r;ohVP~%J#I)1 zR4rKbF^eIqf#vu=^lKJR*MH=AkV*iZtk_ohhhb=fzC><-WIke(8W;3u1-I|fa2$dv zX+4HU1w`|Yk+bcemk|Qnoo+%3jzyw%CmSZZzh6UE+q~qJIC&FAJ|G9Z(_ZMpWV$zN zmVKV9TK5`TP&8Qo>u%)uQrl|VtE^8w{15hV#^b{%x!W+iLuR-y1_$h(tKe4|T-xo< zs`g{ZcwOBje?GFtjEzI>yx%Ts|57~pD^h**g;4|6Z}jtOCQ*KJ)h)QDgjKj^j**Ol zlJrBoE2wF!;<%WhB(2!s2+uQ+V3Hzn!v~@?`rFqPoAIYchO2)&Aacu4?+g{7&gRgcV8HOzTl@ zJ(>O@4Ecc`EqDj1aDLu77ty&zCBJR+l0b zW1)A(2)6>;H^>@YsuyG9Hg%wJQ1cW1I+dZ8q(cOqAISRS@ zOqe+mMTBS6cdT4u5=wl&9cS6So_~uVT2a<;JU7#7ynCT3H>qc+6p~N{l@MGsWpzEB zrxa?s^S&H;F%9tB=r%ZE$SbPrO!K+d6Z}0J`C%0Fcsi<_fHFaPt)Sm}Zay}|zYy=$X>YESho4g>hIu-HhOz#hhgJ%e`13xRxSMto~~LLMX{9RsmwIxoGQY|Bcjp z@?E9ZiHkvk)*KGbr~n^VpfDOGs`~VpJlen@-LoGPu+*Od29usLIM??4#ru^XI)nV$IlQ+GAM|wFQCsDy_R8YzNl)QbLOUn6c+>{3 z3^pGkhb{LO-GDN7;9U83gV|q#=A8SH_xbg))+|O^E~(nJtM=91v=2YJZ}5+} zlb8XtR~~0$GF$5frJ_H@pUSnj*CN*2hxUto$tcQ;eLvy6x&$+&>l@WBZlp6h*i5)NfWw&=f0iTFI zu8J!1zB;qoXG(j++hGF!Z%yriYDK{-37jJN7Dj@|#1Ly4p0>Z;xL4bAYO2p)P?qK3 zRM0YeZ@@x6rBOn4V3zVz`QQ`WU!Z_8Jxmw&*Ax>r=11%gD9YLFWv)Dz553ihEM`r5l?JCNwtxf7H$(;3OIUn_S^V;Ew zYM+=q$86pTzRrL#ycDY9`h%6S_Ks?%K@>5B@XdIiZPMn<=w9+h>;%4l!zl#WGxgLF z?~gPjY}>`3n&fq+f0A)3E)g0-#Og=-3;4sFDSV23@=T7%PEbqv*9W5?}I<^92@}fDj-(*)soN6H=k#3Wo^tH1+2^iF1fd{_1f40 zLfBftgHdvpEYmR*pTD`-AGizzEY9@iCk7{f ziaE_M8n#@SU}MrD&hDS|r(NBN78V1swM$>eJI>b6op>PhFXeV~2>+2qPqXJ79ecFj0GIs*h)mIYzUFGNG{V>@qtuzTzA>7kflW3 z#L!w|aYgjZ4Syhv*5338zJb9rI8V?`_^9HErw{*Vz6B;`Cb?`K))|6&PyYRlO!njfsA>6Ng>ysl_2o3VjZvck4sQ|&h_ zP*Rp=vPcT<;cFXck&iaJl&(0g3{#LtHuc2%)1@x+)B}58Yx9(NraC#;7S#h_KvFAP^KqwZfr?RJIGT8@&@j46de*b z$bZ@4kzSWp#u4wa+N*LPR^v=p^AMfJ!1+ER7&5YQwLIC=SH zWn?TCj-mxoA`2oQARPO8m^TUr!(wq;LEeKlx3?t=Cfyq3vElQ;YRbxMu6JynRxTr0 zgIO@Z4x)@}lqQ-~R5if+y*EbvFj4KOL6mi|C!3*R?5-%lw@h8THgr{ul*mEfG;q&x zrN0XUMAdki^FzGl zLptiS_ug6O$X3xS%hYP?gteYx+t&>zdc|MPyXj3N^;lW-*(?tI!gF2`)yL)=n{e=M zrJfUpM-^uZp?t)v9PY3a#bjQP;$g|@M3dwt zLm{`bV>G=u9^G7lOkmxQH~F33e30JctK~x$dolK;s6jxg)L#RlvG10x!?Zd2(&B3Q z!!RDn@9z55`mtkJT7Me|rVqW!a#Yb5=@QGp9a>p9$+7jEU3HZL?juq;zF6mUq-#4t z+3o&~((H%q9W!!;>EpgCX!`sd$rB;Cn3+E78{CLzC5Q8-D|_Hf8R~FAzBU%{xc7(q zVm$}80PdCNf%k3AE^y!6C!W&i(p>|O?Volt(Sq&@rmH^h`)0CpJ+yXQOy%4U6XA=i zk#RelJxLUZ0eMSWaFJ5Q58=MZk`&{Mi6xDrX37x5PPI7?9UBo#Cf&wVIAZ^$0p?jQ z_0QZT~ znEMqP^;1zOO-|HjcOETfezJiit{B+k5Y1G&nzi%WkJ912I6}zxOz#DEn~t^vDjg z*3{8qlj3tRXh9R#O5B<2Y)7W+Fr==;EabbA8EEl2>p-)n^P8oBu=V;_ZA-%wSF@=iRpD93aovcTYlXe54gk{PTm zqxBckXS>V49e?oLr~G8=XS*?&szJeZyHXnLWRd#dFxMcblzp?X%>c4^?O&*Ub;BOV zRxjV?K93c9`{g~(CvW&A9C2;#PLOy-iOzd&DT)vR>bJMd(%gT=j~F@@L@j85Vv9%PnVNYgw7G%>@2;V z*+@<_u%w=Y%2O@Eq~no&1|zwIYtViju(Zv?tIfivUne74UQppNZUh0mh^4@`09cq+XLwjnSR6O@yhB%wb8VQoYQ% zsjW$bGMG*I7QeFqbdYdg|8A>PfFNG60Vf;y6@b zl-D~Shc*xC?#<%_)sSH3|7whVZoa9XYG@P%klgkSm8{2anEG%cK2IoB;>r)>QK2Yz zQyAg-$Sgj@3yXpK5cEz+tLNhEzD5D{JC(rQ~bAhR9B{Oqe~o5HnRrBS(3JesglA0jC;Uk$2k zwHmvakIV39_xFt2>ACAcTga5Mznxs(zaz3EO;c%pxIBZZA;R!j97AWTN;{=(MxNzP zOR>mjmUx|=oyl%Eg@ig3H0>QnV>DKVW^|kEtka7)!#JD0GG0R^ty;{jii}>#?46Yz z-*{_01NV<%aBE@Z1=sfkGC-oo?@s+@AA6&>mul0PTiE?g`?o{gTfHS+KA-P1Gd^4f z!`XlN(w#e{?Q&bFfn||@GFSc!i_hO|J)v=7C7dZIXUEn{JHp_i|1BsW^R}pT){48a zxvA3_scS(J3}J1!4`>)^Xjm;cyY-Biby|5igJ|4JzCK$yv8LBf0q{^)OMUM_S51I$ zR%~!&!i|i^tOxejS@B19b0NRcL)yx;$KDZxm3+elC%6TV8e749O6Pst@pQ*|zsZ5Y zk sbMrx+JcROl9Vxi%EkMXre_gPxtzNn`S}j~dK{CjckUYWAj8pal2anYR04gz zQz|M_UPs9S-2p*Ej%|KTof`Aj(x2rHJ~!$;W}#wuEBv3i9O-Z-qeHEOfa?G~?OF6+ zKi13KWgDU^b3}c$-0dyXoh5wpH73ccpuSa;0(mrq$&SOig{Pbo-Hl>`L-@~vzia7@ zlhw+}jhd@@PH@e|Fe-@HX~q6~(?iTkN0vTv($mrCdvn2oM+17$T2wjCh|gAlzC=uV zR+EMPgPg>=((&${I7%wf^@FJb0RyVP*Ka24;U-hiQ<9U%Q99p5p^cO>VM>rBpZ3`X0t{?04lQTsn$Ct;X$Ab7fsJ5pur5Iy*9 z$WxizcDARSP`NbS&>}k?DE6Zpe85ON5&D8Np7LGJ>JHwdYlq)SC>w}}^4UElEvhj+B5L^pNLt2 zMUjAF8hey;D|%u)d`NMXZ=CyMk*J3)@STaER*P@93UL2ODROTO-t_qn3LIDp4fa+d zca+gCbNBKeKYkP_NXOKNbwT02(5E3SyB+K!5#p!W%N_e#J}x)DN>CMR)y(3vo)1|-Kb9)8IzaO=Mn?F(CxL&hl+Q^gRdGx{(0mfwTU6Z|{=30Kr|kqY zxnmC-G=>x@A$@Xo?9m3={1ka`_tyC{bkW{Rrfwl7Z7hDC$;gVCXYuB`upoUd{#2+PD z(2({H`3N1Se(eL;%(^~3vinpU?l|V!{Mf6|MvJO>zxbox{oxMA?A<;b3nm)K@Lwv8 z3RH}9ldcI#g!SzvRCxzPu;GUXGn+SCy!Gg)rpvzOmdFj3nd^p(o_(Evey{B014NWtyDNjy!VvWh{?3#XD?$C)3 zEcTUOe2PZm@5Cpko)FmD>BbhkLxnjYzz^a z<~9je^jEUYVRl1Kmf^V$`t1W2f5$%CTF>>he-d}qE8aEeR4EutR*45&%E=d z$Q@H)13KkQ10$?HSRcORac_}Ki#}J&f49~ji2~}EC}2ku%t;a=q4PByq2CeEeVTyi z9y9p-)l`$Jce>6%O*^d?7w+{BMh`Sw>0%D8XE3iYnw$AsU3yt_iT=7>YBF^_NC4~v zLKoW3wE=b3{J!?A!=KL()cMT%ix0HfrtGH8jV|PDL&M;;2_mp2oce(VlK<|ozR`yT zSD=}qpYVzH+ec=v)84$gU&NjARW`$6t2>{a&I8aXy+3nAMsh}!CE01|@$am?2jLY{ zz|Dz~|kf^ES!76I`w9tW{tU6rv8ZF_gPhao>c6!(!&~A1Z$9 z-62!*Y-CqJUxV~2Yx;VDWOCWN;EVHZ3QXLR-$OOGv*fe2NS({^k)AVfMe6l$IN@!P zMuD@wC97Erj30jB!UxC!3mnMwFiq{Dsz~DP_;8!?d{9PJreH7qvHMCD^Ela5N(^>T zaHdYKows>vx%YLuf29$n#c_FtA3>Yx(wm0TFl24C>W0ae7^L)O?-SS@CTaQh0I8~l zegP-L4r@Py)BCc@ufx0J5r!^*NNF`9j+!!}8>*vKW(*-kY-wQ*9fM^b`Hs}P1NbLO zFKW;?F2tj5OdB}t0Too~5v&6Va|z>&h*9WwO5|6t!3tksS%luhL=LF1`Lxf^l~+R+ z0Q>kx|BlIQ9sOLE+1{zEo5Y>4KEGkjRtKe*b~4QTL!C{!jrMxgBex4@p!qnqnz(p2 z?ZIfedi(Nd-KT0I>(CLM9!kf#6cvsGnTHAV#v!lsDhbgudWA&1C`OFm%DRrFQXt%h#H|e;&3^z_Fxw;Ut%r$Gy*)acLkd@*31h>=b zuq|}#aUH$;YXl(oJ50=&UliNkkUL-1wTdBqCzVZ=>JZ$#6GJk!dGFh;r@vKJqe1o2vX4v+L4jXykrsi;S2;ES&)4p)x5|ax z*iVu=SgvfwucUIK*%M#7*>R9&P3+W{YfA`AtQV5SWxS5rhVopVb))85YCxLT)tF!N zxUZb4f+WDZ6@hB`le-J`N*vAeBX6WOD^`?M>TjzM#x-;E9j0Pth@=YCBy+qxjU>*( z7*Ky(RFDZ$leXQgtS)2!`L^u(JD8;vYb{>$2`oheS~?jpnY6qpdKN^@eaUXlnnkP1(r#oqEba}``hWPZ+mG}FUI*VP!bX(Mg5Zj(_Bl!nC2s%cG!V5H{U<*o>6yqQP(58?HB_Y zF3CcCZsed(apcHq7b@?QmOye4gXgF-{^>=LP8tn;ftuQM5@gkpIA{fj##EoU(CdS2( zqSSPE{D_1#SL@onta&YUMKF99T3olSUsJvt`(X75MocQdTSXx%S<*OtbQec51$Cy3 zwj?j*9F%yKY6))bd)FdTbZy~5+kf~^g|T5ZAH~ldX(~~COKvjD@w*QFNtW0{`@FjU zTc2BGb4mJ|e$w)Eo2g~lVRfW{nFng$k^al=1V=l5v@B4@Ro)6@R_s9U53!jKtM}Kt zeN7yEch$b#OvWO(Ww;34)DWUZ5p9{6Hy?#={Nc8ClXTJVcnpJ4j%del__)stGXM3&Cugvi?EcwJ&Kj*4 z#L=9`+fh7c#~5QJSV%4r;3S_EAS{j}B|)yn%mLR#ivk;IzT7&(xje}-+E#?@VKM)6 zO5;ys&F&U=Be#{9OyLqV&-1t0Z0bQS#>pnfhB*1}DBRA?a5KU-OXif{Mn^uc8zHPd zno3{-M;GviyXK6 zO&AjMprcOu$6<*J zx6V^2uwSL>aYU`~7QN%;^d9=2_xo={v5lpt%U$de0vMb+y|#E|rsOmG{{448hr5JQ z{;1j&{lRc1-Fo{K*QO>~%q9<@uz){0L>iU6l_)rvuHFlF&RErn5!R<-`a#J8gF`M6 zDk4Bg`xeq)kEJ!&7M5VU#pRUvLH`FH|#GqOd&E&2O+2^>F>7! z(i2?xgmkR%R13pu%Y{@I3@P6LS$X8P&SB|bHdyFmri@D$=W<;W_!js)k>uztB zBMA0ze8+Lqr@cC z8o_+_UtEr3@;$04suE~Fyd*pG7hAp}Z7tdi&UY6ycUWB!80)YJ3l+5KSyw!_uA|dA zNl4yXhR>VX^cU(dEN>G$bpLkeGe_pk_JZ~lG=R!Lj0k_pB514)`8t0<(WL5M2qE0naAj*?-r-rP?Aw~@RL(p%;` zgt?)ZA-0&)%y9*u9+;4TmVG|8opG)r5W3bm^%r`mJC{VkR`B~CB#!b<_9QC~7x@S! zz+lC19L&<*WVw|Q6}9qYcHy?)FuPV!L{a{<#?E@Ro9qas)^u&A3)IdHKt21|(e@rU zb9O5i)77-3oCOW$6qkc+ctKO-`0ptie zQSr32&*EK~%o2X0VtF6u%J(3}M)eTZIbY$>v7kY$GW9DyBJ!XH{r%qP3?qVQCt-@)=a#7ls6<)W@4`7@Z~Q8% zz@pRf>q|kD?>0h_TQ#Y=a~vnSTd`JcZBjJ1#$E6Q)Ly>nPQ7xde()1&G|0m5B*<1%t#$-!$jQq6Ohl%N()DiYJrTxx-?XHG&t2^uh=o1xlO(xa! zA0Ot>R1r&u;a|r(&LBiW4-g-Looc%yfxo%Nqun*m z-*R#&SV&#Yvb}A%DdYq{rwiN#xN*q%^yFUjQFUk?gio9%eD|5n%CC~@!Pk68ECh|n~i^A(L&wr)Lbn`gMhUM~S^0BBHd zg5kx9kgfmi$eos*FRFXL}DMDRq%ns_sXzK~31PLJ@PtkCe9No_a!>p$*I5P`}VCq3G0?kr`7p%2K28~Tl?8#Q*Q6E3pK$t#mH zG8iqspJerAJ^*s`E8DLVHvFN~$1{3dLuG*COe+!bqX98P!1~{0;7~AE)S~y=D1y@H zY1`x+!RqM3|DPh?r`_m3Bv_23jDVs*W7;1G>`E$gqN+}J+VHDtw0}EX*19L_CAG%- zG2tm4uNyVe8ys6xGHnbT!}iy-PLJU=3;{11I=l{p3M?RAaNvC{rvv!BsBV1HZBcOf zZr#8Qmk741@wUON=kLG?^25x2yZ_+OOD}IcQ3m|OqjwK0gX&+&0w+?@%Da3gYq?Ap z7=z2$R3CE8mY`d9KK0S7xqP&O8sNaMutSepT`)uI315a;KM~lc$qaSxja7eO=BE}a z2x{6(sa3al!U{Q57w_yvF-NxQB+_P)6^@jS7~vwzSpEQrIGG_l<)U zaXCs3qzo46|25+8KFCtSz6`A(RRC?dxcJo83!E|h7%SHfNDAr`(fY3>)S(1uGz5+z z&48B)KN?a?`hR}-QqDj}w`(aDVvaW?x7KC{5K0kgth`B`fPV&?RAn7GaM#*79;Y{m zk|UrMrAB>@KW6!V5{L8rZ=1c5V^9XI#XQprBkWLuDY2|co&55bPQ5*Sh2$5%YjaLX zl>vtU#2z8PWBJ`zNcojaJ?5VESAnyD)$65-HkW1u>W)?G!T&F79^k`#L8nMcOgR+) z{h~V7W<#~eGa#K;15cZ)mx$0rqXkWX+PiT(71E~F?^1(;X6T2ccKkF68VVGC5LwT> zc+|_WQDUeqRY6?t>Qb5hG>s|ssYO{@i=TnX)%{z|)%bmal|fsRY;r#T14l8kgb7{5 z2MJrVH-?UOOd^&@y=}X#H@8N75LCbd_2NU8bQC7$m(*Jsh?>fHBGj8~EeiVP4z;!T z9)Yv{W3X@6wZWqfrm0dTbrwmTI{z;whyO~E#O>gUZ!~|toY}j*ZTm|N2iCPurbO

    mBxPgObOKeIQI7l^|F%=;)LH3r1dr>>zld4v&(RUqTkbpFQ{2QlcS0 zwZPvHbMD;uJ>|96w@P07YXgL(ZQbUzt1ezy4T20U1F|R^KGFPF1Kj5d6jOtQ9Di9+ z88s>EwoAux?jg;m^?Zqy>skUOrqQO;E_u)+((AB~rNDqlmc3!E8`UZKz-F#!DF2q~ z_V#e6Vqm-AjYt%*@bP2bq^tjN(*S(!5H)0FdM0|Ta^$t|UAaM0>}hpy_)eaO1p)9B zUnmF@nm81QQAFIWp$xkaHFDq5}!Ax3sEATp9E>VJ4z zmE!01G@ZULaiY*kB705|u+ce94(VDOl(t{SI8{CzLMF8?FE$$3m4UdgCVDEA*9xyds-Rrsyx93y z(wxeq6Crgo*^b$YoeYT0yaJ~@@3}380u8^dCjt16CK03czFXoseNOB$fO^9pIyXj%*b;b~_hC`c2g z?y|)kP^-7zSu;a^eh1pC!NjgX&|Afq$1W^|eK)p;8?zi*&9!9pFEAql>Ck8nClEF$Ibxbo z89Cq_J>f-ui1B;Sp)NAmXlPm6zA#(+kZ+2}E0#>CPb?*~mBIfK>6Qc4-A~`~B3{;z z;lETJl0&jX-pK--#_cz}$gaaaT{%w;AWQzo7P> z`C!G&qz1C+Z$pcImOLCfVmU*B1YNls=C@7tyo`Tje6*}~wl86)g;~Ogk0ruUi&2Rs&rHi(0pN3o&}MvIv~_2?0W8J^1|Y5zMrX2_ zDrz#;%)i2e&l8g&#bV^3$RL2|EdEQ_LdT+3r)O$3kZlA0nV=V5ftg@F>Se}OB!>_5C1EN0GcBOWj3(DKv1K9=W?u1a|U6CS+C90Fy)TX=;Dy=t+tN=$Xe zU$1O6EP}q8`ovKpU*;h*$1f_VyA;^!S%!~| z(Jy1rO3D^+^7do7=n){>kXn*|^G-s>_W}PDoy9FtQS>!KzM?cosqIxqDi`Ia$JPQ} zHcAbEON+r44q=Whn~(XSBY_)kiwHmt{2PQ7Wmr0PeuxUW!0_NU3WaNes{jZWPa$$=@9afzkfYeYh9If-LmQ_peIq1^yg^r%MghqLhtQH z0CLOw1o$4mue%R>?(M%;Hpe%dB`p(E1IQ)J+eM^Wr@SZVKc?YXhy%+lv&poYYQ_-KfBkmHi^isy~qkY@$djDMt znF_5cq>&Yt{fMqn`1Mox0(BwAf2sDOq#urXP6QJ@XGNq&cmP^GSCqRJ1CA61(K|)M zF**jBzZs=Q7G>Z!Q$D$C#21M$<{*mbX#fH7OdKV|#UvlTFv&PfRnj6<59Z%gNk!{T z7Iy2B4oDvKlyv_ zP#8$KZa}93o{8pRAKcs2up?5X1*lqW%!g~yDhH8HB_m`8!8l4>M3CV(K7(# z1>4%n+DhW;%DXAjL4`-ZRA#EC0O17h9sc{@X=(TO z+xkxSY+XATRZD3f*_{QQw@28=`JJ~jYc#mBPk=PcUg-I{g7xM;1obb5dnPk1dJjBU zr1+*9VSNW}sxjyJUW53-S2XnWD_*$k9rZWvmqJ=!kCmL^w=Tspt(un!>J#xdUc2bD z{RaJ}J3!R*1|{g*E4H-|6m%-Q&1r7E_9NZl@ljged(pwh?zLH-@{0#HzZztCDyqb_ zRfx_%Ki^!1CfJ8|{U#(7*416qLc=)|yVo0BbxAAt_uYHRL8GOXc*>zkpyFO5G*LV0 zAWG9Pm@0wyIG>%@r4lD0Ve2{HL``tT%xi!+W!mF3!ay=+U_cseh@FQmijRr_lUs)7 z>N;j%&-Eu%nH8S$4`N$-wshKPgJ*x}$E%d_?H=em3YnEJ67d}6VfoU$^`gw5RB@ur z=HN)~+0`|rF0uPxaacS(KsB46ZT(r`)MynSpuww81$)yEgn&9xMu7H->V=aV}Mn^VkhvmI*^KO^xTnCHMd{#b@*9G zcWgJiwc9o^Gd2nNT^PBNb8-JcEcNTQijJdT2`$%JXyEOFq52pD%;Vd>`hqZaiFeo1 z0A6ft#Bi4Nz!{sM_1ME4i2K~%b^sH!O8bdes28Jjee|9k_Q3hUN96A6++91y&(nI(OWReQAXZfARh_@szw>ogl5$pi`%@IuG>`knG&71?2*7tr#Qef}{) zN({@tv=KRHHQs|>;Hy-~fkx2CHIq5!=1`vf_vb4%N@^#|2Qp0v!4nk0DwLz0olcCV$e=@ScmM z&1(>iPNbPT8`@UAKbF|Hj7yp93FF2&?)~S8V$~Gm8a`sHJ3?^V~`0zB&Kg z6u!aKb(t82{8S=%hcm?exnYwOXptns?{G77^9=1kbu0FA{gHO|a>3ktSk_>0Z* zbHYq=9{pWr=X>!UzoL};E{As%O&IqBY2G_Mc7h2~3pj+s(yHNR@A_1yM9GYxZ~2$I ze|3MHb)-nqj!~cpix&&W+eSo;vN2LJ=|73*a)-1NxOwd`-=M<^2cj|iZ6#~!BU8LN z`G_}qEa2h4_SXXc+KqI+#kME*H3*qw1?*!)UCmhM^f=P6W0#Ep^3AY+ygHTgci;;c zU{_$OTCS$9<1xc>@+N{G2wn63x*Ilw^?a8F;DWjSr|XA}kJaY%nRA0^so{j?O4+V` zArWL3n`O_ZiTjM~9x$pkz&ywC_*#Epd<_=vDrbaCOsx-NUVrkfyF^OWjB5q~u9}|* z2W`&bl2iJCKe_9=+`v;u{Q-Nz!MfVWg$>}w!~}I&mp)nn1i@xJ;=ty{MtjvDa76(; zzlIo9n0si$AtG!UR9mos%~{oC_$)LL1{CiuM%Dmp!P&3`eNW$3?Ex*7DP`+!5tR~h z9Sm*WsBx4D6$6eVu{L3-YJI|j+e|Zurw|T4v3yjV_)3Gsh zXD%fs@{{nE{+(WJudL90ngTVnhlD)Cl7D0pBg?W ziz;A}Sbvh7=cR8wufbwT*Y?uurvG*_Q;vy7*N|pwXd}q$@!UC|%HovmQ(RWM{$7U2 zz)O9z4a>pwIb;Z71^3Xe#D$Pc4EiyV)DAC*b{%s7>?|UB#7(FsLXy6 zLvco0JsM64d3uX9d9R@~1*xK7PKy}*=KWfxKx9){YRV^8R8Dq(;cWJ@C8PZ`l>8_$ zs`BXaSHNK{UpBD9sYAa#e{ZUQA_*EB@j01RP1R#|=%>(4qBb=?KCNbqECk}eN!iKH zg0XVCE5vrLRP{5n<*-yWC0!ZWYfX&mUF`N~byljL$$AfB@w?_vYU3HnOektJ3Vny3 zgP46mVA-puH)2rFcQJ^G<1%)uDFqW7GQJt9kmuFsZKB4cs~Cl!4G505^Jd(i-MuXz z!Pk$2{*})y{tS5y+ew?A?BWhh_T!(}%0Dc8%9?vKMdIw+^K>UjQi z&hJCbQzsg>vaz?u9)6pQpq0^axRU>DgEHCCy@iv8XAkzv28l{}A7$d(R((vz zA&}){#WZ%>7 ztueBVlVU_ei(@|SR5tx@Ws=mx`oP&Kr#yE)>oh*&mxZ5Lu;AIy-G0H)$ zx>ZeGDoL^+I#!{O)wY?$w1mwuUXJAUWF>{1np`3_f2eXgh1~*oR?{<^sWc37lb?&?rq(d zrJT1}=FZQCpC9`9K;t~l8*z}T3?Y;Bi#p)?6lFT`x`#2>@$gHF+8g7w5QLoq=10!i zxz;_P48)^AiA@r4ZWQP@jnHSu2m9fLg}?2T{@SC14vO|T4h24T)8}XOz#`(jHNq!h z5vEiGI8!%$w?n4Z@@3Sbcb=*|zt<~ZfhT2VEYCU&Y}Xz|%B7Ho$*gN0u-#q|SqQb0 z_ZsB5sq?*n10eTCBfp}W(12J~^u;~yD;6L6dVTX^rcTNE zg!E391s=|1LtBqq>!i9|T|-$&_ZQ8uT56ohN>(6-aId)fN8lHpfRQS-(|=n$0NygS zWR?aQb`*bWtZ7-qj3GjY5c10t!O${l=zR_uem6AdI1aSyeaGkT&9iE|uW#!2tI{RC zR^^eEot>pp@+Q@mr7f#*C4TaBXgX^OHFQ}@mEfY?~k&};B+esdh&SmomS37fTVvv80sqWi7-uB7EC3c5L4{^^%G#8*8yX<%gSD8944!lU_ZCyR(5N6Ao}B zoE<~g_GYb}=AmwBYK8Cj(W>1g80&8XiRc{i;UjI$`$o`jcMXY)nLq!6^)Op)iMM!a ze|7Vh(ZwDTPcbu9W;Pt$WhiH2D0VNV|3_Fs7aQHK4Z2a7WwYu{MQme*ZfHV>50mY0 zs_uF|$rl7{`uEDK`8a~Rm2=f&L-40P7Dog8aXa;de#d_NPT+|Fmk)_0fLH}TC)5nEOnTn-GUE@8J?(!jIQ9A@^=tY+KWn< zFX=&9*2>d=YD-~+dx|@(1837T{2Qm`KIMKGX=R@a@yLH zy?0w!nEKu{PG8kg9;WbE$=b%+bWpy+88BAki~;mGlbuhAw&Zev;24AP78sWmQ&$B} z%Q^fjuQDeT8&v1&!QnUhu=9~R*XqSBaZ}#Yk1*d3L_r`l)0cJ4juj=fbF%Cqg-ruustKWJIkTC1d|4Wi zf48pB&1S?O&K{*v-HT*!2XQMKarA@DU%3dG$8fIzt6Q^KrylCWsamN?$fCEyj@**Zrxk=-shhR)sGDLm_O=>Q(2etIqa17{55?% zDGmx45g4uQhgl+O5T5qOmkW>X>-%+I({4C1@>&1Th6(Lmi^$q{6>a~sM}EE^b;TjbMlM|ZE9L$>#OusK|dpE^pMv%wirkHREp1#@q_oE(|hsIVE(X5118IcH?!)OMH>wMa;*X9`CUy~ z2D2K*+{QZnOb@JpiysXyrUk6M3rHeH&&qHbO-F^LklAx z@h09q^5v16?Rns&W{rb2;!h6EzpF^sT{lrZ>pIb&{-?L<*85?ai(|-LMjMbca zE57ezjNwg~mMiOadrIf9!U)|H7N@_``MSNX`Wd-1;fjLSN~XJeLP|uGpQIeMW?G~C zY=yr16;Fg@Ag+!&!fD{6MPG`l%IzDR?rirPx{%{yBv|Pu^81yM?X_#P9M3{NX^dd% zw37TNG$MeyNOA!ifj$O|oyjhpbqOD`;6zJSgcaHZlC;uDPWL~D4l-jfBX`6q6BBHb z|FmuH6X(ti;+CNxkp50Xe8sIV9_U#IlBUBHg6L#JBOrNxf_)j3@c(gFcd;5XwF*rG@ZZssqxg$;FAP{s{a`x1VNP zG3?2?eA2$TPT>_7=VqFTj!a$`-`#GU2#$TKUurakPfKz)`QeRM1aN-t!2@@0>DLjn za!inBnr*+SrCry6kFsy=CnaMWYpkA_xUH;=y1l)PigKA`1Mx;1fzAr-M!9L$ zHLC42l>5SYWqb$vev5>p;x!=>gcqztHgck}$0Mis;nIIOjqwsQM$?J)8$maD)L?AL z)b0GO7QT{1$Foxcr4fix!5*rK7BR!4A+MxkubP;KpCol5V{5Qtz;4o}HGyt2$Hg+& z=rGsNNLE)%*3?MWPSw`1$Vjai+ym*Qy0qq_CapEeMA4vr#E(Wo99BRaiOVMB<-#S1 zxsf4YrGmyyzBEX3W<~4f#RM8seH6=65i|P){0tQ`H8$r%%9v73%o+2SF&FT-Kvul| zoSQ^nR$Qg#`*N`W2b_k4x{QcPXY5|cWGKpf!vUs2Q73OW5m<0W&ymnMpVVBnsy8uzmS}Da?o@HDGaowWi0@Mw$!x!l)QQBw; z)|si+8fvME+1$IPmh$OJ>e|}s+6E2@#w<;ZJovFl5=Ef?(3oh=z;aIJmVEzKVLC+3 zz^m*a!AM_eG_*pfb~qYdEe4U2&>uA>{4!_t@|z8dAgUmiA02vdeE+O0aWyqEq;_U4co1^62Wj`^RaUO{AqOZK~9a5hx_Uj z886`_9VCJ%TO&ZLfq+M+5!+SJGxc!X z@NWAr^$MT3JPw7{@K$XjT_kLlcNIW z+1z%Omg-1@+R|GjjzqWKl2F{Iywi!+l8f5N{Fe;QDtwY=6%K-vYD5*}*|Y>1S(IR|a3P_ht^Bb>G7Ch6rlr!I`yE@(Rycth zqpbF=)aYEw=GcpK5%&ZkOJ6fgMRO-cl1ugQ7M`iXh+T(-La#)e)<>wrny|S@xQYv0JC4 zMwLSQSRvYW?64%da?K}nVycZxBG;qKRF#-{Sllb&=B`6ExDbpBjb5M0y7KTOk&aE- z>sCzWo@$hDJg&P#10+mFi9h7#-F`dW$qRbOHV~iAl7?iAvv9wZc)eE|d#r~>mk3jq zl?J5iQ!-35*G&V{{3C6=*y--DqD`)7i%|^(wTQLTC_CE6|wvh{3&txJvR|1gsKV z1g*hwC_^Xk<4ESl5 z4JpQDgEOl(*C!{&tgWybwFQk7z0MXP170bzmRH98NAsPksxo%9pDMJ?K8@riMMXFA#YJ zCY@~A;mTjxScn!3=K(j?d!y1k3cp69Ry7F!Vrz&5VUauTr`~AfEoXXZ{Zk$LP}88b zxEk*6b+O=R#ER~S25+S~TvV^`$~A{6>(;P_7vgfJ667K>SN}rD#Z_dwqZ|tZ5q14P zxWRBa!u5B40s#L#|F7I&9RHuV!Th`eF^3<%ju)o}TwuF)!0777$cS;Fij-NdcEIEc zcl^XLF)@-H(V-+Lf#rV*9tbcZ^N-kqAi=kA{w+F1u8Kg_)sxY|GF(;XlhSns_7Sr` z_y?$YD9$!Cu{SmG^?(L9{i=4~&F!Jgu*bVD>UO3l;{2(QYo)_~nGz>^u1%375D!_L zs2$uH-FcvC8Z(j9?}FB$v9a{izV;7QEp=+oDW8hwn4rA-^_7o*Mlc4kL|zFbtscCK zw6yXU#drb(7H5+FVM(aOP;P$uSCVuRjcs8_dQ_XbW{&UtuW30D^;hrHR)%GEg2)Jw z?)N96pS~6;RHDI5t;QcP+rGL$i%pBw58Si)zmqV)-PfLDl$krB=YuE@uFFlsh%q^m zl)P%PMHDi!H#G6jD7ERhr(7Z^C;kK;g%!;rg+_HiRs`2@y<49V^lF6rXE|gw@@lF= zxOPd(6o5i5<%cXZX$hoQC87~+Mg}E2gi2 zJ4xOK&eMl^0ooYLvcepGQuu+eeQ043MCDZ^0WXW3K2K6@@>9U2rbUzIecx)r8q1Ymtg=xUPnf zr91tUQFA8$7^dC$P*G2r%=I$hMUGY)>wpV$$>yrX#y$WNpT-uU#mS&o!c-MmRORAa zPc6R);fxq4!pQLqEp3}dc-e+Ciqk!MR|+ar3>xx8`$DSGG=&cni!53-3GsymnJz+$ zI4Aa|aaJ^*q7(@W=m8a#(3HrBT=F zc7P@dThJR7WxubsJVqXW$~p(fb7gi>kYtj*mLq29O5=?fafV+tQVC&wp7!`vdNwgn z=0rBE=kS)aQs47EzUdKTqbb zIx@yYH%t>0hfGrKm4`$LL$;Er%!H^t{|uCz>NeUaFAOK9ESqXtel&&wx%=jeg2L5Z ztZ!^uw6-b&{1zgjDaF!D4tSK9>$`Fy8zJZvQapAv*ipIvqBE?#4 z%~n>XGI~*dzGVBJjUUJ0n+pvo(NGYa6L42^Xi&kX$1nimR~1Nih9{VpeH%b2n~QvM zSE|-G;(L{V%=Ch?nY;|z@C*ZJtrF!0BC>Eh>kto|`aZdSue1it-}U^aIRgyeTX||( zy69F@z)-=BJo!aYy+Z$ahmDeV6YoC2CRqv`G(f|l)!!LfYJPj8)rRBdMUeW6QP{s| zotwxpRg*OKEo>VolwQd!Dv21-;Ah;6i+Q!LEllz{yXnynt108x>tVcp%o8w&cJ`c8wt6 z!^-5Lc}4XxEHX}Hhub=7DV24c3rcs>s;`r0Ra7L`-Oe zZvgC6L4wvX%|%8uDr`}wbVdTmNMUr;#PrDgdsT~i7?3pbdAe*{{o5L^RRbn98ns~@ zfA!)9bB;n>z5aFy=H~y_I-3`8bn_hHJiOSJ?LCsAp>a0H2)xAPpBl-5zJ6OH`TQmpu5VkBST3QcbHp65bFs0lNbm^f4%b8Uv`9xi+4Do?_OvI(7i zs;Y)Xmf9sou}N7+pPg%#*`?e~W_9xXUWrvmh(1?PKUrqQC7%mut|aM0|M*6;qJ?s+WRAB_$8>{HA?Fg#e3MOo57k9vmsdmPBfd-u=Kp5t%Lw z9{g)DXMvOBVm(0EkM+XG#isT#XYC8MytlUC+k$6)@9z2s%tA@{h@{&`RFz|cuB7u- z8w~QARKP7V2;L-;gq;_;P^&htssL=W9zLwl8K)eXoXzx3=xs-jaZ{ zKS3X7)5s9t0`ZI`$@^4jT9G&xnh@6&YgBWWZ9R~xZs77MNfs(2I6j+$$y>i*h5bUR zZGXEVsoeXFoEPxNm#OBCo}(GWkCMw1X{=6~M!ehz%%7oWd#b@?JpfqD- z3*hJH2~B@Zk?C0{70OaFVl9e2{vi%DtFUQ)&P?ymjb!aB)NX9nR}}ZP7(QfkVMYsE za>kkaj=iii-#h5ZXh8WJHf+!aQ3Ra$Z{tYm5q_#Mt$=)i7DimGR$P-;yvYm|dR>W? z3SZ1AF6~$j<|+n1RAmeFKDO>eB<_#j3_MI=q~FMnz+IJym7Q}IE}9hq2?gzxu-^*1 zGkG$!)AyxIV%X$dGv!XZ!Ii{o(aUdoL1@T;H{eSRhl;L}-U5h9$^i5;lo$m^{P@rZ zAFykQd@fLGFJKi<&5u;7GTlRngCh8tU_3)jZxa;vS!>@~L4r+f2Y{zPIupqPY&Mgnfbwi?mwCSTD z7+9k?+|$=)x4!&o$H=|J09jpys}j@shrajJDTnEP$Blj?>u^OwM`Vh7Jpit_qmhZzwtcX z$T#Ze`bkpPbE3u~=;wX}wDozoQ}e^V-E?xhX%fnHJu-Z!zBe*@s*27P2zY0dHFQ{c znGevocy!;^lq!2SdiSc#x_;aFq~5yVd`>5pLcw!=|2>FtvZ}8CXiaqGvV?#Ve zPQgwa0L$%N|1wq-Rv+<+{6K3wATBKz`vdD2ecX~+(c;QN2TK(hCsbJnX)EcZjt!Cp zDWz(*eSd2Yuh859F2Y(EyEJRr@U#+!+}SV{o0Oe61*I@*zEk=y`E3Z!=7?nR--+pv zXg<=R<7Rrsoy@;!V>4eZerJx6rGLccA5aRzqH!I&QiMRFVK~-&?!|g6R}rYWuk8DH z@V+sWG`7T}H** z(~E(M!Qqjk;N}?^YDW7zq3`2hufsTBN#kN*nFU+Qate3*G*>kH-9#2NmoMy3 zkkQ3${3ppn0dWG?uT{Ovm!V$*mXlY}()ye~pyoQuHi>q2l%lfPo3vik%Fu%I3B_?i z=cT<9)SZZLFIdNqP2SWBbUmL@7(VRnkM#KOA63jkZ2_0RPwRYdAO2lGY1$n1GjDnC zG$mOoe#y*^<@;SL4-Yc6KUx?~Mggk}uTdPHUqgm*rhu>Y=HO+lL9ofcznBrfbDmWnF;2{$LC7_3-#rLMLXZ-i_353rk&oQQn2y= zJO$>@v9{`ePhp}5%1_X+^3spyxR%OKFvQVbnvEBpP5(Y6%qR-rG7pLxcQ{SVSllZ9 zmoNvM@0ahP0tqLNdDi!~DH3E4#?j)=mq)E3d&}mNA>vZdR3MogONx# z^Na5Xfx-FrhF8Vau>juI*^^13x1Esg#?i-R4d>aqc4HV(pC^*!2((a^X{twl@-P(W zkPwBdCAgK>4UG7wcN=Y}ZO;AU&Dx&(+2gP0sY%~$zr(QGLGPcu&o4_Nnw$Oy6H?m} zU;LldJI}wi&)=@SX8qiT0tX2+Yet5&moXi^_l9FPeSU&V#$-L`_%@wuNwR}S!UH{? zj02v}5f&|z4SbBB_+bY|%n=N<)*pQK9WRjWy!JD2geLDi-=6)Qnn_JqU=4x5+Mgh| zBC^-l!S9A&PWugFGkkvBmzBN&<9}V1{`SoB;2;#nUPA_Ooprz7ey*Q8+X=!_2p4{? z$8z5dF^R+0`gs|+2?mB3UbU6V!Wo%}e$13?^7%yo9_-OVXSa0U^O%tdv|JKA#;>cw zH&*O7*;Al2V|XmT0=CzkcJ3xZdMl2v1Kj)1eb*ZF+b*`a>K#32}%ff3o}gdI<$S?^rSe-+z`djT${^B5mh!I4Bh~-GL|u2v{4J-wb{I(ovCK z1YnF^H-qLKyh>dQOX7c%-on~&M2N`3L@k?{{zmEwJoQM*j;o2czdghB;1CIeOJ2oX z{F`dkP|=rdg}$U~UC5J?`b(OQDcR22OJNXP!mqcwuHAJHL41nPqND=$yt`z+@;YB_ zoT6G5szTw%#I)Q8St=@I#e1VXLfsy@N*%b!X(uTQ9GC{wHwG-#`a}4UA$ibdXO+C$ zz%iGH8k(#yHcQanP7nVtscu#4q1WBzItFq4=>7w2-ExxU%(L5Bx83mhjs5lX_1=Sf zBZ|O4w1QXeU}pj;ik6l^gX|<%EIA~gs}qx$@~{!BE}-4zkagE@vKaE8d75Y_N)vu| zqzEDyIwErxQv;b0$pcKGnbSRFmeGy+n9tttzis~QoG4l!SE(tEp#%i01*zz0Rc$G- zj@#@}hx~<&9S@jiiS`N0) zcAA|x@kx9g{%kKB@<-Y#ZgiaN1R=Rz^WT)VNfO%X;$1KmAF-<+pZJ{;0Y|PD@4nuj zk=i!FcZwUn>p7b+L)!%H&-NU3ZR}6Fi2xldLfF0GDaWM@ht(fzK6$ zOJ9+D#yD|2FE=u6c|WHYr=C}u-a2zvT<0}CdURfnqoeRVKWDCm;tTUWE)AvJwvaJ% z{O4k+u>xPRG;stjn+umN5#L|q9Ithq!u-O6z$^`1`ZGoWJ2EIWInMo$bF&6dIR+1g zwchq~-~gK3pZ?$6b6g4>@0~{(y??Hsw#D)9-4O}B9k-Pn@1@HDzXsWn#eTG9)qZ+k zkOLMS^lq-AzS18S{eaESF*6!P7g~bePYGYo4vIQ3E1Q^02s_-+V`c%i?~X{a7!_)B z(&D~zVH^-|DT;;El62M%X4}nhWEvrE*h@dXW_EQSIkn#ki(0a`TPf&jPKSr9+ZDz6 ze6%T7Mxg#qOkn5n{#+Y_S#%IUFIHnI8RzxuD)z2PNvqhb zFzG&VesOc;cDBGH1dO(ccz>@Y03u4{LQMGx*!-iNsaWgoo>}OKF7sdp=NHZmB&9I~ zuY&=<2*QK}(~D-l8NmRAyF;TrPgBEkQ<7vG;%XF+2WQCVWRDNR%6NwTyFb}oUH)@| zI>-ay90os`guc!^&aHxXAc2lluId6SQ1TozeiN)hq9;#CHiDLu9(lSl6nyZJ@)Tgx zV`iLQ^)F|jd^%y@d#_l2_uc3KJR2>h$!UD;WC&&Zi)$LqRzA%3e2O^9Z_h+)Ivk>H z<%U4puc|S|99OMMoZ;*?*?7g`EPz~m?9`t@m=&lsK~<6 znrmgg@;33i>ls0B_Uy%e3K2TT;1@hS`H<^tSA~%^KKRs_91Wfrm zuO@!t+;4m-3>G>blQy@_$_4lb3{73B7`%3=Q+{N86N4#%l%o|hW|5=ip;%PII|J&q z*bTQmO#!>Bl8w(pP*WL7qQH$VR>wA_ZZkdHvEsD}R$lLb3{M*G9|?XcY$yVimRgNw z>J#A32pagHVQ!E4-cu8T#5wP01FJnXyhn1Cvr9!6?mB4Ssy0}z8( zWj^Yj(XXnai|2WbT3ezyoykZ*$nZ;A(hTwq|mE zhXTC31d=|Y`@j;5<_1P+p+Yv0#^q`@*|e;~1Coq9DZ{|(ihqmaj*%-G zJO$U88yMFOFmoqP+G0~A7YwL*DSR%=0m8umHtj&+UFvlpuFGEUtj$56!I3<9)1}J9 z6vJv}vq^f~>{19b?v3T_W|;vO0-)CWqQ&Qv>o%%t7TReS>FafT!}7_12$T)~s?Oc|p{#)1`=h)YqV3q-J|QXoZvN{WR+O)c^}G++_ftz#z|Ps7 zDEbtv9I`GJ7_3~r<9=6L+KkxOxrLxXWGtW)5#M!pV$$O4-55Z<`FfBdh5+W<=yKXs zmkM!cOFa4usKxylgF)Q;q(bO6;|6^1_>Ni2{-RF@jgl3y z50`KN*O+br;Erx)Q<5K`Fta|6OJdBBt=f{XWfIjsVcT7`NY>`kj^D50U`2**Fo4mR zQ<3F7P&7GCm};Pcs+zW6a_4GhOKQXtDZ$*VKcx~jIy4`yCo)~hW;M0W#7~|JRI|gO z*M)#2E%D0LPIQ4MrTPYP6Ka6?VmtTHG;m%;k;+*&nttY!G;!L>api~3*Ij=9t3Y=a zFomYv=GfqDSH-8`>obHliYVBB??VYI3@cGhXOmjQt~wyPg2*eZg)XP!4D-)@?RmI1 zEWq!6MEmR2rKeId2I!y8MaYyPOkKKvD8Ohv$cfj;{eIr{vcsW}a;t}LlU0o%O?NMjgtpfHM}8Y9 zE#U|cMiWxagH}@-kON$-8;gPzo&GJQ@W@|1IZUqT|J(rdC*H72b40*+$s?Sy(bnrc z@Mz2;E4>~e%!susxqMoEb4v}Tl@64K4R+z6bk!kx%!jtXY3}*E@@~qkOs3tKtkU6@ z`v>^dzCG*pRCMNu!d2c4BlPu$_3znO=8oba^+xbX4^ffy1A$|Yq`_a~I7EFL^< z9D)oj1p*3OJSK5JvH5tM-ygycx{=qx3G=#`uX50)Vm->n~5~YF% z@#S@dc$#Il?vWFT6qb7~DR69y@T%&~L~bpAB!d_3K3cXcfi;{SQ2q*Se1(U5 zOm~117jN-Fd4H>k6~Ybh0vXWIo2Q$o4A=7rd~5_nzsxqh7jTB&@r0>`Duc-L z2#-si4QCz|@`dU?%-(uK9yA&tbtC*PUO3|b)UDIPHco}rjbBL_h4eo5fP($~#BOi{TTCW~41B3#YwXdnZz>0x-ujqm42u?CsSgf2ymha>kY~ z4QMLhyQK?UaLgNM_3bUe(n}6S_L5T%ju^VNMiqsO2BNKt{_3A9_-%(6K|t`INn4CY zZyVRf3U-l`i;FA#{C~dF%0#5cNX13t0(;<6x1UlTaI}IqFP<^UzF_$r%r)VOE8I;YsEva=d36ScxBzTv>r*E0WgoZYs2{6hMb;pj`eR)UVFf70Wrui>M?~wulnMh*h0TVXkn| zSmO%V@0iF{e;_i_^}xhC6Km$QP}tbjnGW@2krY%t6dF=XCu4i}xTEA8^<8`U8BKJh z#)neds^<$(m2EGSMU%e(WYj+-VlS&oW!IYpCkX{6Ev(Tk#H%05YmoCn1fjp1J42;n z(`w2gOJ>ohgaKTq@nDCj2)0Bt=)uWJLAM7cGKpjR1=4_e7X%CqII0)AZHPuqcBN89 z` zP2$y%r30`skUm7Ld{y=q$uS_HlOL2_dEZ;v)^#~^Ze?lEnAFlOCTEqx22+9*QxL11 zPC=VcT|%`Db!5D=$!%%Tv1naZRR5CIZEC?=66rEtXEIvCqTQ(EsU#|Lm=GDXLur`* zwp5CoDLs?=6pR>AtWzqSp*NUV5@Yqa;cE;q0$!eZ{QQ|lo*)(~9|P&mYW>@8;N6`k zl9rlwoEM#1b>r7X+N{O;eW-oq&nhn>cr^CJMl&|ojt?htN+mn+w?yxTsg5?m|HBP7 zez6u+N3NZo4romaVB^RE7-AIc!V8dNsZfGFRElB2Tuxd%U->+t=`yu-q^i-04D+jF&*z!CF7Mr-ezO78u>xAnBvJM z2wZ-cV>*P{<3B@<`b$4$hlVW5anUMBp%2F>872Bu?9{ar$%zR_VWpz$FJ+BYT#8Ta zqneMBXwj^B6(t2_xw52en__4Jw7_wXbNuzvX1p5WhZDX%+H+d+(x~WWZ{hP`J!QJ; zrR}cBO|?p_lzKm`FS#>P{>7f=nv>M%a;I@lNJgHpj9_84sZbB~GyUaITEQ11k+@t< z%kjm=SnZc|uZ%*o-$s@+N>A&^yrZ>W*1V-I}9^b=sKmwvBl1;Q>l zW5_z9>vK2!m~&p!hT*aK#+Oi&Bc&ikh;@+{nK4FoSLsG(;_Xfq-NAQE&7$#qvhH*g z)6;{C9{YwRL?eCw!8Yso{8Q>7&hes384U&^o(ZwL)#S5@nR;xEPP%25D}xE@Rz^LQ zi-ERgkF7Q}Ge0zSQwqL=y)Iu}VxI~nku1uLotD&|!Wh_EPWJa~UHF0vit>Hc7yRp< zFT0`;cj+AMF3-=)X*NVKuWlIJ#>&cyP=|(|{>}66@Mb)&Rg*)gvAtOE>@hncIn2B@ zs2Y@!DkY_#Z81Z^f+tlPWH&A%7oCptBxjHQk>$wA0V-_5YC}P{Vq+N$_@Hu0l$us{ zs}z}eI)6}EP*5=EveG-UhFk@Do4~nJdrHSP(TMJJ;D`h&u`$LY4@C6<2dQIfs6sy7_G(6|gWDNifo^_d2ojgb)~T{wXOUMV^*E)(r0)fr#2 z%Upo+8ZBvT1_^cAnxGETUxd6zYN{~Ay2=E!Uh~o*3KagWC2$7!Yr-WajyY(h*SgD(O&3_7K&A-QYdf|aij-Vi>VbjerPb!y5OVJrD3kVo=z!`L>Yk>NXj4FTF04gBOWnETY_md-s%I$D)=UR!c4^^|;}%Tt*1KiO*Suq$x0g?)b-enX%5KR_8NGZWg@WeXz`;5bde1 z#(1mIGti5>p)ow8DpirN!Q!(J$F{-!>LR1>KA?MWDusC(GIi6ppGf^^tatmv);8TX zmq-(lwB5orMqD65U-M<6TfA|phdW{7sE(HS=^{g7wKE`A48NKSJsELbHs4JvwpDbl zb*IV{8Xbx7t}SiL-GHX&^mP|%X0TBN3J@ikwy73_vZWIdOQH^j%Xuab2=OhF1yd93 zmWaKGj?fqC2GDT3>NThf3uj;?3ltbVhl)T+hrUl9-K{~X(xvICx7L%bf3I>r`Q}~V zPxQBB4j$L(6YhiMZaE2D_Xk4XUlcvbkWnF`l_)o$kKJc0Xqw#88FU%RCbH21Ygq#p zeR~LckeP+sW?le~B-Idsoe(Jir43FY)o-@+*!UwG5@3MASv-WDzbyo8jB;Y+;I_+* z5uhcIppL2U_rhJBAynC}begcd^#&TOQ15%m%jK?yOV~Wt&aq~HuCR&IK@CVS$SXoF zKaU%p zZQh1rsP9w9>}!&_~54 z|I?n3etDzDr&BWXEXs*kY~8m*9LHW`!gp#Veus(B-8J!i5U|CG90^8FwSuy0;~Gu; zLhf?-s4{uQHWjrWUKtRru9>3%Vcwhq+Nwn=EM~(Xdb(@z;H!q?4VZBMzcPdN-Bim- zYD6FhRao5K;vZp2=3svh9h4s}H7#`v?17+8bojElz8}?82=G1J(4>na{uBdl&vuBu zG&`$e59KK^soYip5|>vKFUIS*))RTAwv@9<)UT_;R&`sn8?)q!v?=Vg0Kjg`BmJga z^?=fk*Y5)|ogE_fFN??eB#=s7ZfDgJ$En#l4q$?L%;W07?d{4{cBYQi0p0YTFfZMC z21c~%)r*?f_AH5WPB{dqNjw|+5%iCviulF3feMeIYqW08f1R#nEv0C_uB+YvgtAYj z-#^gS@fFg7q!$*bRa z!`}qE~qby7S1HdMyZ2Gv)twgP@b(mW3 zJ>S@f?T`Zc(m4_%q2u%5A+L&+|5~P1xU|j?tq;}qUxE{MfqzE}qOr8G>w@a??3Y?r zaBkONX@3jq#KYNgKTXVw3t+M$uFZKnNzAH5_V?b7m-=Lc%>yl#>>ZUuGLDnXFY}|! z7J&dE&{QRK9uJv%pX?O?|2MsJ8&Ud9jRN>L9=@NuN94$Wzxc_W$`BpsLWrsaQ|xaY zwfN_cGzk78?%+`6gJ`bFT(`$@0DQQi(9S=5;kn&y zCaS`9VnaOr4LF>5I${51lV-W!r0AIDlq^KX4^MnQ+O>%gAi+DZzp?7k<8FKi>*9nP ze~v$&BBsBmRXBG48+ZeFKk+$iG^y*Uo<1oG2zjS9qb%D)Dd{#Cr4a^$!0!MkmeFxB zVd_!FfwiQtqvg0B1xiY^6g^mq^d0!SHYdxy#>nXj!d}8`oJ)nnd#hq_1f1LN7HRaa zu;@+pPAZv^$IW-ssB%Mfq(B_Y4VKG!&c0^4UhMK(zmiDej+cVBGQCfuKubiuyW4WU zQAKV}`uPL+Bj0aeuu@AAZco@SLBf43F=EY6wuHA%ZnMm|y~$~7Qcc)Z+Y;>QmRi&i zis{1`7GN!|U|$$jQaG#QFbrEJiEo<#z}+8@Hgy-ijjTj4RCaoVAX9tBVgD(cq(QANCWI(R0?gz`Y>sE z&G6ol2(AtJy4oBi7to)6@zg8I31p0>=ld{b)MT7)B!c|kHGdGZXt5R4ogq2KwGzVi zKx;+?(jub;%e00&j6+G_DTqTHeoMww72)3xaFG8dRSA4LJj0=bpB4!B9-}*>U?d&5 z-74WHyN}A-M!qTvnGl9kYin53RB0as`93>H;lr5^@g%fqI^0CCi+DebWl#@Ytb^SV zh>8lF%ZuCx>#m7zl4Jzk)Vwc;k$}$+;o@M8SO{g3nDb{H9x-`V!;@Sgwp4m82bDrl z_C&4TwewCOo~W~qkerBeVxja%tFr<4uF$@m=K4bHKKOkwtP}!DMAY`ANUML(>pCmA zpqMIHV&jpYtCpPF#YpxM(|}qmM4~NO)TRMB=zu-tw}-}g3^LmzoO}EzbHinDXRt=a zUc<2|>aZ^YNPw@pXCoH#Iw3qVv)jV=r!o{b@75?=x-R>=anWYk+5$>c=4jD*4n}2Qb6U0*f8^1YBm21uA0% zGIRxw*F&x!B&6JOZUB}u`Sj^=dHDy|CcDhusfnQ?(wN>T)_!VxdxD`7kP`Tw8w;Ur ze)I{c6JFj(l!2Wrme2=Q?Em2W`TpE5&QWo(Sbke5-EDL`4_9(Kb*xbSI5m{LsDK@M-SGgqZcrF0M=kW zrPD3JSli}#gKd#}4E*E8+3tlDj_iVYn$WLWuQH zJz0m`?c#L7bM}XJDnS5&z55A7d^swsW1v;4t%0Ktw>0-pIi2|?aJxM!H*rtrDDe=Qo8VR0JT9qyyx z`Q3pT9mid%$G<66T~xNvQ*Az$4FnCgTWpX}KZ;yN$+Y$Su{7Gw=^FXCX%&Q`7HB8E zUtcf1XJlCMnonW<+9fBne~PrwZ+!{wZ;7yVGt;FGenwvl!;wz^&Q*n6>?8QmSa&{- zjk6XRdi^rT0%%iU1%@08SREq$7MX#SmHAn3_JVPs)%pniy~-3MYV1)sYbY5gmu@Lh zXUsb|Rl>6HmRcG+G+0hh6Xg@8%eCo)NsX1^+6vs3x0)fz(1Q!fkV7?$_z3mn%s`7} z4LJ)B+~c#vB0b895nd1tnB{>FTbo~aoL6CN!Q}h(OV}oZYN~S`1`xFULw_Z>vkBT3 z%3+ikrk?BHM2;Fr#e$aXv)ae^lj!BDWmR8L-@Mu9jPGsJA^P$3b&`y5#eF>pW1AaL zzQ%qK@*^t{O*Li?sxR(gk~rYz@~`i*;T}QgTGXLj)%M!GNZmKfO>cV&lk*Z_t!MYd z2K!CzTb*A`A@(2wc=QqUl6|yH2WP#Nh*1u2hyQApfNcDx-IVT2>(js*+#tdk9kyU| zapN|Hsf%(}YZ#nF(E!h1a|ti&@I@zt@+r5TgpUi+3KglzFw21KIH2p~;PCfN+hK?U z6hapn^V8IvCkLOxi`Z+%JWJd~*HHylmRa17Dk#O-ELO*}YvT4H50uAlp|{icRHj^W z`A&8x`-)k*i;yd+4K1_JtGAqaH~^}r`CKdB9b(G7tk%czm+nJ^(3Flb=vpQ3v)jed z)GdLv^!v};%RvNGy_-L$B+oXrn+BeiftD-gZD@pQXB%a5IZn36b7(Mlq^PjX?!Gpp zxUi5A(^T}jDIGbWHgdZk+8>$jj%AjZvqJ*IZm2Y{K}CKXVdvdlK&rsQ$$FMM z1i3hbP2fp7^Y&%iGG2It|KIO|ZyTLud?@XNeO9JhRz|yf<%n6!7eqMlQ~vH!H&dNB z0he72bbZxG!lK$n_C!nl9S1Y@Ov_hf`wA79jdFDg52G@{e4f=Jl>q5$kR?yq%kMi_r;4+4yQ@s$v! zm(2?{*}5Ke>oP2aG(ogJYe4{PEemw-*}kD&&gZ|@m%ErSAAg*R=70ZcyHGe7RqLEp zuQK=nBVyWJlN?6&A+Rnd^}&(-WHMZ_agn9TN@ds;{%MFb4J}+{uSW{9^HySJpcXt! z0JT)yN9$6FmUu|`JpQb0zbL(_Z*J9u8~b*>^&IDRy~?II^d0t`l@W|&5^?eYh31at zg6*?N^wF}NjvmA&{W+}H@dUQZNCesFVT{d}*qFs3&lajc$-(mYyKKnWUrD@HzBafn zk3cR|SvE&U{hoXhs#HAd3+bs#6?4#kl$&ZrRh64OaGT=rexe6K&f#Qjae0VRh**@T zN%A_m;`$(BI*y?H+s{yQtpe#HMhH#PN|jBuf{@OV_Sj=oHKCm(@eyop#ja<_vaWC9_X z62>z84)L8CpR~MA&r~p@v*%w>y)Wx&b%L$th+XzZ;NgCS7dbGtQ;~HQ`=kEsPNxT8 ze$=>re`}3q-|ApqOJ?fpQU#o!lhyE2BfC?P<;30PanKrU-L#e^37aW<=w|6S|7lt# zR+ZOsdUS#|+l$EOq6uW>>)g%@nQt}=TVNXHRc8ib2TAK_xQZ!`avL7KCE= z?BNo{pG?@>(jhrdu4A`@l>BN)VEp5A0(0y`js-_MdMza#)X--bu_ctJc*m*ud) z<){Ur^ncOzmO*tzO}pShg1bv_cMBdYNN@=5!QI`0yF+kycXxN!gF|qK5Q5v?dEf8O z)Sa67IaE<_&bB4Jp6=EC>~4K6-mgB3lXOhF+5+Fz_e| zUEaRd2upBszOzmAjlEXVQ-;-HV)8WnTK}Mm3P*`b(#MZ(17fC!zcQa+C)&K%5~c`rE%W!_R-Y8;JqT>9?kL~gwt<#Qh~=?T1c!$LEf zF_B4{n?Z8-!QrV$$Y=O9!$$FGV0|BpPaKmjQ>G8FJ`qWL6 zWB41)dq1eVFI&Svo}%@BFpH7tX*S`0XYvVP$kri*s5$v&EE1VPW^<(hL!mD+9 z@L_YFfdOrGWy*yezl z;SsQhT6l37@Ywf%%4N9bxUP*&lUucP_ne0`Jg0vB@H0j2mg5j#`B3m1=VjNBx`gT{ zAw#@ zYzDi5JA~ga9iuHStZl=`FJ)=f%AuJ8`sb;CJDVmGm{7v2Xg!N3{(#HZ>)!H4+}3Wa zEvHt=%yeCCPTbJaP6!`e6OwHUlXf6tPtEula62njddbg^Y&L1v>P2 zPkh(14WgwmpOdC?CK=3sRW>DaOQ;0IOw_VjsaXUHyT*ePMy9Xb32T+w?KuXB1I!}~ zd~bVVf80kkh>*_uZfg*)ic4H9Bq6F?oo!nE0p*%IKQ@}kY#|?tg*Asd;Y7Yp`hfqY zvmp)SiiIhZCHu1s}p;4;1`!_NBld?MQ$tZUH>3#D*J+d&{X0@9# zZOr-L!LD2#?Ux5evQ`cBv)Ytb#$qfs$VkVfr=$Bu@syg>aPjvVm3EBcthazFy7?dC zuk8r4G5W(1lY!uN#{5}CmT0~^^Qyiw9=jM%W$TXp>_AAHv+6&9tVeO1XV``2KpK!r zmy^p{AA9lfjhMKF5wGqVcUk>`<>^ADwb^i@46_o4q^B$Ty!O+iR)w)M`BJ zfk*yfj$x1Em#l$ve| z(T7yQ*~CVCxU2s2>1@|XNXY_8wPKOW8uEp@vZ3g+w78STIN{S z3yO-5aLk*8G2R951Kg_Rp%USbs^pP*P_fQS6COq#P;n*(YXon;NX;?8_ZNIC$ z%o2$o&i#gONQOi#fdmZeNS~)r@c|f|ixuK?&m=Z0=bQ+k*QYj{P?xR8(~67kdPUThRz~a8G26Nqrh|T}tXKCmV zhl3w1B=EZB27|I!et**b)%3!1-)&^Noe%9{X2dJP=l44NZH+?LMR+>qjn`$T_h~0M z^$%I3e3D46^3~fj%3@FVTf_3QZ}Zy%ORS9-QF5E<1tdtAoZHCMc81S7bWU6KC_GJW zp3g#?yusD=(301SvNZR^1)iM1#P}ApaP$4((;lSk`}-e@WTW>0x)z$;05R;kf|oxJ zo<#i`e3jT4`Von|7|k$#UL;R9R#(;!GyH@T+pqh}!*)z|OnIG6j(gRrtlp3u9Cm4+ za~}sU;OJv=FIozx$&n@y=?^M!;Q+}Oa(-xXJSe0YC%{^b@NTe<)BjuD#GY=Dma+Gf?4d7@Mkht|f1;jFSE2z4J5oZ&Q%B?i!RYx0 zHf^GW$?Nzeix%&5{=?Wm@5N*E-psJy4GYn?$G$@%kl;o;N^j+mc50f(@GkJjW2H8?0~+3N8M&(q{scoyjJr|a3c|a1_G{NcO`L{jzJPi$zTN(+v=gh?-fT+ems7dL zZb7-(2*VxK@w%}{UtW6U@g$rsNA&tdf#Ls=Y1mf;Bg10pV{cV}oj ziZ0(r_2uW1@Aelc_#vkNZLL84F;k^m^^&buH@ljb)+Yv5Pvw;z!*8yi z-t}1`m)0(;r^rogYXq*l^A9@epFN-w(ZHu6j z;$g#C_=^32pGAgx##k@W?GQapVa2i@;t%cTikuj!K!Z|LGfSvs(i&QR< zq+M(-KIrYeR>Wx^d@@+_7v}ID%uJ=0mW~_W&oD^6ZQhDrSEbz_M_E@Xy8IYp{t4Ns zdBRi!_Ae|470_UWDqg_#sXmn(gyZqOu#|h%QoRAA9C{q(Y%)7Ps7j7a?a}rxanpfA zNp}r8Eab}RQ8Ef57+sex{}!o6zDP9~%J}&E!A;*0ho5nI4&TX58nxu}g-eX8(Kr&c z${75(6gpdZ{_`(B&n5E~MFG0}fp(XtRTo9VUgH$KhI8|S8}YEox4iON_{ESP=0fkq z<>1Rk0)jHXQJ)NG5IE=3IZk(kv7{iWOVWsosmjEp*h=MdssY}m%eVPi^LIrun8|a? z1XVWOwq!_9l;1b@+@M!eZ4*XSQZ&Vla>MF+;Yv#o@%JxM@Gm|Oue2;~@I~$3A1-ww z<3N|F=8NVCEeP-T`eo0@+{0-F|5Tu!ht5^q+G*!_R-;BRL<4BjYa;56tR=6cc_|e zb&mI*-uS}-#zKh7f1RWomQ=ImUlj@B=E=#LkvOtwDKMZ$;K5Zb^n{{?do0*u> z-HNF*o)5t)&E!u)Qc+RiKM9pGnwb24#)MY1Xho9Bwm+@lEUf<=I8zd6x=z&@rX{bU zY>lPzpq8*&mCEX>?J_mHXwJZK=~Ty8h-Q}^F5+#h(_cYX4bGio>k~d-)3Vhi;iBmn z#e<+gL!xX!UHNNSQElN=QPtS5WLoc>QN3wj%k)781N5D$70^Cu~ zh1P;QC}yX5hEW@lH5Dy8m488jvKxq)AY4{$k)fl#I)5tfDSieAt_0)923ge=Z%wSV zy6maLg6%o1x$GyM`-ZUA4*_pcnR^dGNM0fsNM-d&nj1+uaDEtEj4tZxDrt{2lbD!# zIE`1;uqtlSq*OX5tv?c5dTX$0Noj6Hd$qh@VYbQ_ynUrG!=Agy)Fb42lpsnh$MjaD zZ&h}wsiG!YAf>SdZEBw4Xt2zo%ayPW8#YQ@Uu4s*h_C&A;Z}9P?884u8R^Sgz_1vr z*2UB%Suf$b6P9iQ$WJZS3MJtHUP%0yE%P{gt)*(lBm91xfsv(rcYDi%#Qa*u&?iJ9 zaA`az8pwUA$8->44=whD9Wvx8KFDBVe0<&uHLHP@==wwR6^jplwR=xd(0Lj1903tF z+q1Jv@4XNcE$mA1=SE2X-qLRc($doB98=G6bW5D37Zt8>N5ve?EI(ctf4)-q#C|}I z7DdAuXt#%I)zMeIEvH1OEs%)*;`~YE=5IN5lcNZS<~3=|eSq|(OpbK0t)9YKG(VYT zqgiUls2@nA`a;vDVFV)S+n8U%!_A!!^hs50lCr1xldHzTmazg~8Hx0J%r;pb(+4Y= z)}MNtFLLu?p-x#}yowRU_ScG<)<}1SHT5w)&4IRcxy{^tc6^OQ7xJ)G*syAa213)h zuf2D;icw_bxT(71HEn?gcxi)H@onibhyd^_(^FT3$YvO9;wwUJiG%>;B9RIv}Xl_|94TR%q6wgr6Krt%@PMjmE&$~iE zy%|MYyx{@`CadSuXg~D5yrSafdE&8Tz~rx^>nLAnpwAOuYC4o(Mu4%QnjM9#@D7L)KCMP64DHfS9Dgc#t(3aXy*XwIHV{wmmPf}daS7#)Oe;qe`b637aL-_u#bfNqAY z(D^PSEu9FtZtYsS1Yg2zHlJTmxh8O=-c44V&x`08;vORBV z68QwE^kzr={m0d&g9!`B`*POj-QzlkTi0EBU10jO%_!0~TWhEw5{Q-7{{D+v&f|}= zP9VTI49nFu3dvBMo7BIut{|2wu`W`R_R9xtF4jl$?y2|{32p8nFDnxrwykym*pBpl zP(Ix9=`z6U@pgXvQ{K#hUi!mOpNU`Js%A=bPS1n49(VW>34xToWJ*i&e?pJ5t{TzF zfn;eHMew^9wKlT#9|mY9Jx#v=;SG?6YL|4?7yTi@4@y&IlQo*@)edVK4IK?pRy2t~ z4EWQ4Wh0&`Yf6!4xTq5yq!&IDwocqugyyRKBmy+~Y59eD(Y7seGzv&QcYs*>vlXmE zkL1yI`s_8}UZA!Opc8#wqK$?$?QFYo5 z-%$Q3Y2x*L6;qRd0DoXAqDKOw5tWDwaCOs$s3KSs+yQQibn?;SLdOA}WGg6tU<7o| zmufQg9GQY8%4@yiC9|soMa1z-m-(q`WDiu5VjP5-JWQVT574Sj*#1d)=+Y<-Bhf?! z%17dQB7FLBKZ&Bsl2VVVMEpKAUEPmOg#g2&ofIul7(*T?G=9mE!CA^%{Z~;fxt-kd z%C|Hx&p|Tqe3lu`iWk!ADi9?agPBZv3Nj=8hcL2xl1cBC+rV2WdMnq@s@Q7a9f)ZH6KPDyW@Y6fON$Gs zL1@pJBT{EN57Dzml>z7PM|h$NEbXITJa$zvQuWjW1m-@zqQS>Quz-b8<$N8d4jdgB zog#)kA=gHSrHfX;{=t1<8Vu)RLulc(8FbRFT4NX&n{LnT%lNFt%)2{=5s;?5AY1ssj#CnVrND~{`+ zNa!t?URyPUG|HD?ibhqwDjct|tP1|NR}N@9JYOqHMJJr};`I7hUMt5OwEBXKRU2Q_ zW)r6LzjkMx%$xVHx@gqD0UW_fLk$w|DH^$b(E3JaO2v-Whz~Hc0Qjs9ljRL?y-Qad z)aD!DnSK)SDpUu!Kis{h8mD3OjQ`yEa~}t&>rrVhmX54U^e_pz)t4)jMz9)Us1ZQQeO8k;)8@77U)}BB;8D{ z{^vn!hCX_hW2eS#(kN%_hr=@mN0Ks2PPk4=H{n$207FIz4eM=b@2S?ETb2GS870t6Zn*|OJD2AZUmy8$Ac>}5QB668 zx{cE8m)7K=e{2!U&?WO8G-0jgelND|SI300ba zjOWGkjc%1x1d_)|XmwHN0g-JhQr(c-s>3D02Q?=owP!8S_Nd&$))&l-jOzM+<0PDn zv>&}wPv z393qgK)+rW>uJtmt?e+Tox=6Am&Ej6hVf#RIz@EYvcEn~GSwion*L$q`{$)_6`Za4 z*-@rXw=E1BTeW`bLyqWSOOJ_?&9!G?4W>;y6bb^nfUhluhP{kWeTJSP&>+#`rb2?> z-vEzqH&=k%FjVeqB$2&O%FI`J_K&HA*2pLGUrF&K9by<5wEJ5%8|?iwZ65gsnStyn@9Kjl^hnRx>SL|Q0pM+V3V?Me}j0UhHlZqQDtN*Aku6 zZvR#HaHw1kH6v&nH3wCU6$#2mpsxr(BLc-Y)zg-Xsw8l~)|ueb@`MqL>2Z}RKte5A zz~NJP*$&NN$u_}jAW1vzdb?f@q)WkytXDM|+t5cAeKf{r9oIJ=!YfU|1n5Zi{eM5! zx^r`EHR*-la%^oyWSz+fUSp*RS;zeO-%He z3zFsSSN}!MNYU&|hW;}=74zneEVKsJO&E0a>2*^iL%2Xy|3W& z)g;Y6`b0#CPi^{S=r3=@Zs(Wg_Dqrg;_7M4(bfZNd!$`d&5#t~mq?8vpP9t}a1YL+ z1pkZ2!yU<{NT!(~w%?sLc{r56)iz-xPN^U=U`!ezf8IF`?3haIaKpa)%q|#Cw1CYK zCevRcUos&~n%i#-^}BB;?_iR6uMj^&;9Io30sF*O|C-Ak~oG3(ZQ_qWB4&s&IX+TFz z`>*O8g$|Z2l#B=tD~XA>Ql}ZWwllE!B?P#b}wKhN0uIvM2T3dddc(OQWbD1 znZc2Kz2H7C+Y2EL9|B!QD~9SO-gZg+Xwq=tVm#y z!UkD{$~l!++$G;IuYMl#J<${e+4o?+y+r0fYm2m2=2b?aX(Dh%+BfhO18dxgXF2qP z(!r_=$x=?Ud$PkSa5`3Ww#(-q#MVTQ^3mHMj@>O{kkG$jWw&V zI+l9}+^S;4y3}TLyUu?5uVS-DlConk;;diqXpuVskOY`C)&mBias^h%seF4SJ zAX6c44v9(c6Ooh}$b#=50eV!k|4-|W-OwkDa=$wEW0t(Xx(-=lw`%Cl&(0pF{t6pT zf75Gd(w2ig#_l_pPJ$l4;=6fy!`YWZ;6`=V?U-%)hrT4GF+AoywJs|vn@z>?j9FcU z7$C)v167H$s`*{vQ^0=APvYLPcj|GodFc7?1qspsMC<)(Y>VJgl9R7L6ZC9&du!tK z{vG-JRsS|pMoYB&JfOGQ+v*=LRS^386;+wNA56Tmd6l{IVf4!DRjvqNLsv2D%Lp6y z)*Q70r>$Y3kVi-G%vSrIeCbdC*zT167NJF-R$SIU55R%EwrV!I%E0y7w;B5}S!fh+ z(4dExZndhxsmq_$y2opPjWt7OVNAGn%v-JE?z;XGHq=#Ld2R!`T(#nYY%{W6 z(wqcvsft6F-~x?0rMM%*%~gHLQZ6wG|M%IwIDj*uwRb$nVQLzI(ctPY0BQcyr(Lw2 z;MOoGb#{q0bXYNn#v!d*=9Ym&t)M}BfbmwB)Y}wbK^Y=m$Td*h9W09yCo(8vHRI4m z@;`yw)KMLVR0&5Omz5Ypx>*W0K$*IczPiA#A+GIb)NmpKGe}vh{!7hwt>%pv@ZKtNkMmyZw6K-dY_||CZ(P z;xWBJ+TAGSEkY~vb9CxdNjRvgb*!4&CRovCcK%KoO_ov9JVnipRYk|mjrxmQlSH10 z1unM;eWh!Ybnl&LSaUc_t+iEvma}R=o2F|di)3}BO5z6ZzY2f+_gigtV_9A^lr!o< zZBC|#FQ!0=KeKG7X(y0%!)WiZ#X-Q~p^loqNp%c5bi7+7-+3up9j~}4B109IMKHvp zL3pJ;gZQCr*hwfA>F0pP5Lqn)VIK|hb+MTRljpDWgQ?X)3Z`z{&TbVmkmhj9`-Zf* zBKsI=+frhV`P%KqjnyE!5oZ^-z+wyCk31v;b&X-)5QkL$GRMPh46??xZOHJyeAhA{ zy+@|%4A@-2DjSeKr;Ni*BayTSeV1WC+V9Q_!eu++`R$2WeycC3BSa2oSc%S=!R_h1 zQdtb)rxvZn9eqd+_l0~CZUZL!Q*A(Js`||GD}2BxmurE3voqO^`73A7=*ADFH5jV@ z=@B}I0xrQjdI5|DVPYXRjIlv@JSKjZ$uL#e1DtVFZJAlT$YQx;K`^N!@@?oXGusb% zO5`TaC{1HWDDv@hT2cwv{NLQ%+(+7Q@zmxn5!ep!Xo{yE?SH(TSVkCp&gksSWp~vtU}%zU>aVpJSryq&HN4SHXDN560%-hA`21ar{eb+kbgm|4ui@s?BK2%jD^x2P z(JsV@$UHN99*Jb2!X7gkNOPlnL%HedcQpoxHvRP&lUwLkL;VE@{1KMTXNIzg%qxZT z*)f09s2#1St>f0oy(5;@ZB1b8uE5C6YYes@a}aOt8uPX0O~HIPOJS<@rp(SxKvAnn zOjR{oHK2-9!j!WrFw<%JzTAbgN+eXSBi#~eeNUa{Cv>lBk`oGnvFQ0R+1Wjtwj@K8 z6AGyvU4kYd8OU#_r8WVqrZF%VCQfsMj7Y#HoeY$ zU(sPF=$rxXr=<2-yc%8{N%ANcuiZ&RiSgV)H}-A18Uf!QXY>>9&;ax@}0*dzF*7FvXo4A%i(f^9#P2nM)H zvkN-N?OH+xmksIv5>U-PH3cd}prY^&&UJyQKtORH=kmTbw5kVOfMke;!M8>ykCACE z?m%dg40de|izX=sq|%dwQ344OcE-xi3r-N}br@7y{9Ocaz}Tj}5FK_4(&qgsDwV}i zlmaEJ4k?=FH?sthTB-*A_iaZ}*Bnwf*h#I5gHY@kja7yQnEq-h{Y~TM+IdSrH2=*E zd7V-Fpu1KLo+df=JOR5!uz#hGMt_IceJItLG#YfgfcYXLFh^WT5giKnL6GXm`Xrc`elfO0^*WPh_c!PEYDL=Ka?uHk2gan%)Al=6c|}mC^YyD8nex zgY5#bdvLyKHB#Q?PiT?B0w-qAH}U8ba(3~<%b)XHwEsF@E@_NvKwy32d>|uPOd3#r zs2v0w*DN9h-~bLFQ(NaU!ay}@&bc|nsb97GkyA*21~7ocum~~{`jMy;yyIs|i8y}- zP@n*G@_-Ms#>7k!*7FiEj%d7;2fotOAV(DQfb2XBO`^6X1Ntc4X<$%9v_MrtZ02ww7QQ zSp#n19yrjK5rtl3hJ(K&QcUL!GXaA}%s_eb^L@iXky5wN%Wc+o@9B+!ujBg}HFoSfHBd;U#!x=R&Z5 zkU6Pa6-q-ZkI$*KDSAn4^27%kcUx zKpgaj>uY%l=2aUW!0D|?do)vvjcJ!=**}g4qDjMeW;2Ts@uCxn;Mp_OEueJ&spZQG z8Ta^?+fXVUi8bM6V3F0=0y;;+TLUWH1VFQsI&~ER6N7`mkUC809njkD!1$STB5~Sl z?Yz%#Kp2mcq>RzUg!SvX)#(sZ{|jO2fN4Q`&7gc3DM2aX4j(rmFjWa0K@+ph{d0w% z&);32ibYOQx`7ED4{doufd0RMXB1V&n9xZU7gF)(^6?ifQ9uL6t)R-dV|`y_8Qb1g zc>*d9XVG$ue_RH@5RD>qm5~8|H7fr9ga^ajfkSqcb93QCSf&3PHSnz^5?9rwt#m8~ zA=r}hG>tnWSq@t=C6XmRq8Z_Td&tPhxM2#CB%u(iR1GaMecB;y*h~R$(g7`a4#Cia zg6O3=6cgM3IC#A3UGWEtT_|q8oxcbh#&KJ*KQMQPN_ckYbG1quUpU!|?@F z{~7^B?Vtr@f42ZyTL431h$li4TEfHnL2yc+b~~XHdMZc~O$-C?3!a1dN5YRIUp}}; z?9evNW7xKa}1e)-lN1*CW~<6gc253#42VLtFOf;cXEj$4f{+kOD75~ zrh=8TdqWpRR?vpdA^d-sr5Ur@gH*!e27Jq7oiWt^eE@*0n*L4<-I1v1=>BvFr=xi6 zo}rk~B2l2m53?9aYQ}J~21xkgER_F79Gzo)aGwo98IRqVwuD4_P1AT^g(~j9YI>KD zzKWHcxT7Q-f}ET-BA-?^zKO%X(Ww3Zc?vI}IE|2a$&J|8)B*F%&fv)~I+;0`F7s>= zpaa5@^OFh}7DciRV~H(Koz00~c ze&^&)trQl>Y5#LQI{Ksd-|!DGaLn2(MTD0v|3Ej4T{DXa1j5q!R~sz&7wo(0u4OeK zWo=|@0R*-XA;7cPLb$&21!M`l>@$M=QUp&Qx2MvJt90A+4fYsDzPf8lB%~+A>)@!ftid^v>|9WH!eL@-1hW}O^gAwTGpvN0 z+#GEZ%(S_!+ny9^#xKu4Ep`~~T>?oCd@t6D8n!PN)ok82kJN3zhe^Y> zYh9*0)e~+u8UzjLdRNd8e@P`#$(i9dZZZaP!m70*1xucTs!U{eGCABNK4MMjl}~Xc z1DHI1$ZdCpufw-)Jx5?(p&a{WodE-a`ig>$t4HVyO|Jnh;vOn#44K1PN*jQef9A6S z>-&P~Ym;ktFJZ$Ck}X?KPDy5L-)PC#TaXt0nvF8`!+r0w`Uf;yR%Pn96sxeKz{21mNMr(yrjzg9ExA4&x`pKbwg*`^f0J^IA z0`_-}PKWcn`%&SV-$^Gj(Hxg8EKd)Y{h4(OEbZVCaRwFx#Y$OLW}U0)xkYO!)0lWe zLQL0u-N6{tFK_DAl8&yb=c0lXz1yWBP7b1<=W9rHZSl#4zwxBd82JA)mOXIh)v+N` ziuo9$D9sk@F%d%%o}sQrUtp+HeDAV;j&M6S3Cu1%4a#^OGCfC>mwz7ld-b981b@G? zqKvCn;9EjnZ=05zlhv%GCGw$UYEp;5SOU7#sU@V}#kY+1Kq|TuagLt>O>Ys*6k|U; zOuL7(9Hr}Vp6<&*a<3aF8ZK*o~j_{}9~P;JY$t^vG^N~Sdh-AcRs=2<;8IR{8z z>ep8Ia#hB|feU7j_kB4h0n}V;FhYJnTn^lZ7m3&YAq{bsF0`V{b|Gpu3biDkyTbN> z!e8Oiv#bUhCKd?VEVtj;-62${?YN`8WcSCEG9i+u4;DB5x>u^L#WejVZ|m>vR9TUx zl)+o?8FE5Zkbd(XfeIThlb74=RaHJi%b;KD$W8>wpYfcf>l?EcSvJ>wzte$KezY_d z?*)t6b(Atm?bId6u9BauIAvUUHh{14si8(N4rsM0Kiu2C{{BOEc}6Y~WRI8{{~b?s zRMfiaK1SF6_T%1!S-v1yDyao{gYe7O?NHP$KC>5RE97&b^Xy=kQ2`63DYr#k!c!+h z1K96p6;em}_)_8xM;SR?EUzO2LvM(iU^RA&&mh^CpA-7;JGsgUMK-2WhS&c5vv(IE zG3h;-f^*_FQV6k3QlmIhLL0YW3Zd!XU^%4~L*vkxZdBIaXIanRZ7qZc{{%;0R#1dM z1h8drgCh8>v&rr6k%?PgJ?}?_^C|IOe(4_jcClDqiPGqB)S8A#v8}&B$ z^!Q3KaVtXLwje>1YR`2A-#*^=7Q*2a7VixivXfy9BoLY+o2iH~FPuJJY|n~bQ95fA zjHj(6PPLhDFFgwa*t^-TD}v1opXMQXzljrNoIry&I|=^RI2~OrSgn ziE(C5Pr^E1lqTeBwp&Xjv>6cvf$}h~RlO+SKN^dUEuJtV%BZ^dH#BzUJSc8a z+Yl!_U$q^Jl4AEISZv##0HXP@pbEmYSuS&#`pq*D8C~U+_4bbl3bjqtwOu30&~;tg zNQh_c%?}tR*jy#-Bv`oh`SLEh`0>R0f5BQp*X=HtHQFtf(ILvrS!?SH4L7qlaNdqP z;zEx*A-p-S91)FxksMDK)=FuA1sK-o@!xUe5TDV+?KFZT*>oSxPk>Upcu8TJ#-MK^ zAQ%tp^M9Xh9wxJ)5kOyy_lt@E1#gJeS4HKupQ1Afm}Ssxz$QI?BYXgzY;=IN@h94a!U!|vm954!@_V)`zEso~Or8{~kj2>%+Oj1%(SZncm=|Du%eYG8ywxy|! zWv-3C#-8HL1y}jBnpUkc2bf0{#FBR+U@qk$OZB5#a38rE_Whj$EEZjrxiG? zQ1J?-0BlUB90*cDZVJu$>wJ)1GVV;H-R9&8THNU}HT)h_j`@U9c;R|TS zMo)9i{tuU`Dpb?OlKXu@jh1%z)A6Rp=57sgsaxgm7L}Tfmyg1~y^yufR8)bmSt73V zS@vflUi;tI!3P;A$K~Z)r6j%MwhXbVPo>M z^KXYlr?EIGw?4NaJ=plVFT*nvxPruvd~$iehq2vC{k42$ZpWv3x^}5=|Iq!aLH52$ zj|8jdyI59OcB4ZdTOg{m`1Nq*ZmGDci^3N6y_MX3Os}YJy{0!Wd)wKHC}IO zVft{~+I*^gR9>#7Ugu>r@so^a-bW~zOIFV_qrBV&n~8II6W`$=QxJ#6`e=<`D>q+W z)lS<}PKLAjR&i9-uvG*6H^E{7=KW#h`^#I=h_CPO)s`)tMnexhLo1J#$GfED4uaNP-us>KmsCT8^Pko*op^JNxe_|8yRQ`$6@Ka9TRtVzvZiKS1`7P!jFbt~H*l`QD~VUXNUCH&<{&YJ z1Qn>{+FeEPnSIky8)DuPmN?!nC>#kA1`IF!_Bwap=7lP*b{GZh3r^fwJ-w zCiWgeCsWVWKckv9YJxfWh6UOCDkJ!?rhm2qQAkMO@DmZ%@Bub2CrZh1j!_X7jsghJ zKy}VnGp)|qz+uB%>kV-vgEuQfdZn{>yFw8GRCC^iow051vp*}u__i_Hh;D>!yJ$d% z&}UCu{x%*|@bwv#Zu?m7E+}*?)Y^fH!zqw!(IWd^$TIZiFxh5I@b}{FOINXKmZhz& z&s&i~W#I(1JdAl;i%qYi9LkI58R5~gV7=Tzqc(L=fp)d&R2PK)cAr38?p){9LvB)5 zjr77PgJFGx@}HubM+Ly!J^x8A@YllBRLR>_(0~O(Fw5T%*_<+Juv_QWcjvK20?>My zfI#)9(3@3dp9n=!rx9$EwgnupIBTp2Q8c z?)&C&J3{LBkp6>q&x0kk`6UMR3Kwi5k|y!HXhjjI2APqwzMa} zd48mTnxq?@#9`KTHz-2@yvXrPm3);|q7Wj$zsQs5up58Sdo!RLDaeNtBu2pbppE}1N<0Vsx598Vz@aA*G8OR@g&hVb z`(k1H?`QhwCt&}5WkjG!LLh_=8u&~=cpILIqR&q&2}&m z-f22|r_GR%Vjk(}aI5{8u{d(iuP&H}`6#ns8e3Pr{}_DQ~_JCyrue&*t|?~CP$1Q^AG z7ipFgi~S+G2<+X@C!ZD4O2f~H)Af%U$5TYVBokjm8SB{Zh|k``o|V+};`-d)hayZ9 z2^F5v2njlgtKR0Q`$9lKF!3`a&$`Ny+os#9Z^)(x+64=5YNtb; ziNP+qN1{5*E&`QKx<`D=!EH+nsI$JqfVMVojN`1iV!OT(GCuQSaEv*%o#y`5V{OHH|GnohBs9hjdQfn8%bP_&yugLcz z3w5YpT>Pl}-bcu%tNQdHd(WolWoexxn_U`4>!%k*zUD~Nqq&WXhD$U% z2^z``nXV8fSO}ib*Ej!6RCI^K;Pt2dgRBM#LTIS7KWn!^bw&^GQG0D~J28r=Mrd9w zdtuJ4)Wdn~z>&|#x4$EvJ8?d0sn0y>{U0GnF?`~oKw$(9Jf5_*CiWNV48ieo%l*_u z)#z;=skwjp+2&*|=2|%WoJM|@d@XXEbqIh+M=VX2Q(Ql*g?oU{e{Ixm$E^-I_VG*X#R8OByFjwyr@?Ge7X?w0qy*YQI z6l3L{7rpLY>f|WjN6OXoR<{Dhk%I3&uF8pEtAV-xwF~n^HR7&b7h3{#5Qw=l+(O62 z$v-1!_%LR}hxUkNcZIW9z}cOd2lTSga#W-BtwzV|bt6_jIEll07~5$&2;UH505TYx zl~Mn=;XS&PR2dB$Mlb{+zhBXyl$3T-6CQ)GF&u*5 zHS^I&5UXXgguovd$N_P`OpfUvd?eh3IW7`H{F6f@B(SEzY9LmGR!wP}V9w^XIC$3q z?iW+xMka#|zMIhNL6p7U=5KY>rV8{Fj?rk!`=Qrfyd(=6()R=-IX~vB;ztg%?cW~v zS@2XvxzJ0 zyjQgnLwM(D>veU#rOG$;C0i=;G95;J6$89%*4EO8&JRx1LhD;khwCJJ#Z33e-S2%j zES(SAUt^n^Y_bH6Bo=M!ItbHk{*b!P=@@}&hThxj=Itj=H~y@o+x;A!=+z5k--_sk zkP8LvWjZMGa1+<2b{cIhjBPrEFPh2E8x2w)I+$)3stP^#P++I(zfYnNs>_T&z~R$N zI{bbxKKmA?73MRM@jfUJ<@&CDPNp0wl~2E3cte!bg%sj7h{bvBUh(T;^V6S+)$SWy zCMG5l9NGRG!99kzzmKdz9A+;T*CjJm9S7P{&LwK-U3oub7LE*Bs@m(Us~dUc0h&sP zhd7GtQIwN7ca(L)xRz-OofQt(chiOVAVWv&0`@x4eS;)7lN8g?iT39Pop~ywhHRU9 z74mr=X|NS{g5G~p4k8Iny7Ir$xU^>Ake?x|JRzRoc}-7 zM9uQh$6mS}={f4gg^T=+fhHmj3GI+Ku2crO_7xkhD&ScOJwP$#yNw)uW3wfP!=ox9 z&W4YzSl+L-a^WUn9e35fDriNqAbmY(2<|_M{)~2)kFO49K-%v5P*(qEI!?RG$*%j! zF1P7SUZ+bUX+qsz)omk%*4MWz+)RN^^_qfSbM_{)1Fbi%Ru%abTbRt+r1H)|zP&pK zrsstDU5r%S6BiOKSeK>s&JYXRhGv3n%*MAmeY#M>TD75vqN& z;ojTN0lQ$aL}^#?YNb}{))5(#NKxt_ThTy*g3!dojCE7L#L<62gNGo;5ECR52J4YG zMSk@DQpz4qDp?98iH05~RZ1y63U|AV1Cpi{8T3PwHpMWmKv8_h?9lT*8Cvhzhz?qS zj(1`RdoMVSUp2YvE{Dg}X@BnMx|ERVwxf(%q~K_`_WI#46O#q;04Mev0{RXL5{)zf ztL%!8?PA0a8ZQ6>lNACc4FpooA8^pDagi)Bl27C6qQ5VnXj`@y^6hEZTPD%DI|`Oj z|3R?aQ{7SSltHfXLsm>sM2zx08`SYNyg+jAQ<1j67Cm;%d_xjKL*hB}2tCEvxzmNR zFO#mt36mMgh;w6sq0La?V%*R5`PyXLdKG$pZjj72-$<_@MNv8v=QvV=5?>1xUDZN# znbor`D5UWqqJu_?hvr~K%uki2hX>}uw(5>A=wd3`v8^>k{3YYNNH8UgXCT$Yc`qet z7b%Q*fmcubz+mUmGUEkLT>z^uyoV&5J@%BxQ46;?vP5h zsdDMt^{=dbg2EUTe9%RX|35Ys^Q{5UF&S4aX=d^d7d0Z^bLB4s< zz2|{h}@f4=2GxT3r(jnUk)vw@(RL)}ds3UFc5EzWk%9N=fp} zK%NF=rx&aHHOE zGV#R4KP>C4rQ+7UJ}<=i<7_5_lN`xOm@r2p7wEQ-*^r(YP0dnjpUQ$58oj6`TVmy2 zDY$Y^P!YlGOXtd%$b`d%515q`O3<0CCRen)2ZSI5^4^~kNpcE0#+s0 zVC(t3^LwG?g|5fJvtCY@(Br|?CXdL`(aJz*Ro9z&zR+H*lj-wyn_TkB+tyf(sP&@V zWXRc!plEw=Ft3vJuO}qLMeHj$u^z<#lAb|N#T_m9tFiF-sr`4`Xtsb3nc@yQ?8e|iGB(`C{g7F|Szg@+8i%8rS>&f{AC7?shG zV}I^+kGMjTH>_=&YqkEMCp3LWq;xoHFWxYe!u0QfYZ0;rDA6KHHFh7zid*9#uUhgH zgCu-Fn4On!^DYr6+4*e;$pBRj0&AjWi`|2@J+n+th&}{_RYu#7|5g}%PWyG+j;>Kf z9ivta#(<7C)t>(8uh5|&vc-bXTUp{ef|9(o2<=%1gQ#7;(vR3?7Wu6_#Ebu(t~}D0 zD`|bv!yb{cwq^jGS#VDA4ILVJhE&`DaqJ`QKscil!x{#JY)XWR*yy_!KTzvR@lY`= z(mwp4POH?;Kw+Uyq5o8h^QR0yEF;x6B${<4tv9UN*6?r{X+#=P)><3p0dmr`nsC?F zdaARZeoYi!SxHyvPy}VJ3R>(i<#q7%)H>~Y06FC9XbRm&210YsDk>}as;VlhDgh4w zCTePu52#56<9hIjt`qf#39p`KFX)tAH%Zr8cK=nHhCF{S*@~WIOW>PDjQobvLo0PE zp4ZmMs*ELBWt%wnj!PgOFtndbsE29&tFKA`?RgN$Ku1Su`dp?PHrZ$=_OGEoOqc4! zHXB~pP#0Xnbf>yHtA(pAzYfN0#f*~@aEaAc*OnUdS;Rye_y64uu1g>a*`}&XsB>sC zuE#(z3`HAq{ed5E;x*I5!cvVU>`_$cY*_0YJ74ECArz{r*s3?x$mX4!=4_1q(~g~D$cJCp|bO)vC=BSAeuYS zacCzeEt3FEYI1NpmS;=2RkMh@f`9IYb4!Tf2<`fxFB9ynwZEzBQZ!I{F=&8Nh$Z;& z<9~kr!oX!%lw;sVS7Kn1qM5P9ld?0=yEz{rowmLQ%N z5x;<5W|B3o89yxH^BnX1ZUIM0pBV)?uW?GxB{$O-YiGB;gr`R6RrO5%>g7W3n(*S_ z_UlYJVa;+&wdPRX=`$}_t@SxYGEt^G+vAVj=Qaz3+;1=JlOlNzUB+IsZ5>mO-OQ5| zV7**+3oPR&Js zoRYv)r+fe7w|S-cm}O6H`^koB+|P`Q*TpG4-RVU*J5~GJuG-5$RNaU#+9sFAo+0ud zPwL{<_m#l`(&czRXZeDKLs$93wFpB36SSX3+BhpH>Gg847Sn4JP^6_$cDLS#b*;4j z?ynFDO-icK^8I;%|BM*k`66Jdu4WROOgATI`Z7IrmmR>2U&R4x);<4#0 zK?s4!#o8Byi1;=OA8|G51UIf(L-njVcn#;h~X@I08^oQ&V8i-8G_Ruk0X*G` zdW{Pfe2A3_%|CUe~8Fy4XTzt~j)&`vM1s(5bFr{%Ppg>L|M|`KtHROe` ztsMDJg1JEcxxq_I;$&Z74?ZuiSWb~>vsiz<^boK9Xbt5k?aQEVFdI^=&#Se3Ig*?C zXwG5G-?hIOD`wg)R(%l)PUJd!;?+HuzUcr%ts}Te9h0+A@YhUr(nNo23K!fgA-xej z9BsVqicdT`mB&s6nvLI^w>P; z(J+wCL8nVWld99Ar|ieu>SCJ`DTlkoS;e8EaVR1+a0q+!d1S)aM*Ml|;v&a1Ua$`v zUQEC1;s-BfY4vC6?_aZ2vKR{d%dVB6mSlm$cPqH52*@ zeI0^!eOx0N7xzEEM&H=!9r9YeI^BPXKRem5tf|IO6@H8CUTtxlBMA)j?|R;eoDK54 zbOT&=O_>HgW_leC6>J?JHI%6y*f1O^1A`fS#{pcFFzZY- z4L@lV3lvmB3|d@ABuWlco7sK5GKJB3iMsVrg)nMD7Wt6OKw8#`e48aJX@J<{O+!|e zHEOy3(^7L|Baf#$;??8xk!hB=%I=oeX*yAN=Bn819R=_wH9#z%%I-A4SSUFJ8z&?| zix{yAeZX$IR>+2&e)npNU)=Assd(Z%U8w@soYI`1@%?vV_z%QE%~BRJenORZg5ds3 zKA@s?NLT!m8o7Yuv7F&-i1xXQ?%H1LPxdz=Q0?%` zEhjYi=C*C>JWq^3z+-f0HD+H`?@3MRCf}Q!3tAdn5m!j`t&%CgtLIq-uc02gW6XZK z)^d6IoLm;n0rF<-aqlzWMRmuJlx;z`S&eboFuC|kmwa900duu~|M$|?IB1!lXtndQ zt6uH_=0kp)cX0Ls%@DT1AoYCZ+%jbk82s*kPt5U6d2%E{c|`mWG)B@neSey2T)$sZ zYfI?j`_SnKc>spijP4Z19; z@^EV5dV1dJ;}jQ+$V~LV&+5(t2d;|Oi10SpF9e(TAD#n#<@$RecRfunPH#Wm2iu+P z_g~50E_Q7%Gj>f0q7NDQ?D_U5^qft$r3XQ;p#W(y{ma)Fe&E?su+8KfhKq|gWO9qM z!(YVLAOvEd8}I2^;h%q-p>XNOfvF*R>7}z432_+`LRvPwocy5|2K|kE(DermSdJ)F zgatJI(3(dN?AIiobi1o&KKN~3lF~_dy$ab>rK|!8o$9yZ2aaYSF51+u={HA)=%a8H zz(0l)IGM@JDatcgSbsy4M^3rdk+IarHq^iY5{tm05=w`CKvYN*lMEq91t4>x(`d=F zWm3~Dmqy1^2z`3XjCokqkIT*eG#s=-50qS^2ZLus0Kd{8ll%8AY7Y5%>tA@kMBY(| zEq^%`Gv$5lxF_4WYbq&iB03d*;NnKTct3-P*sFH(?pX}ijH-kh<>y+EgFC*On?j;>V%-G6kIok*X5oqv0f)AxbmNc=RJ zM}^_bP`QBa?RUL8A3rj&vm@B9Qe^oKCI(Suryd;+2I-glwArfx%f{vU?z&83!}q*S zd4X>rZS3oB+msZc!=s*4ueQcM0kwCrx{jNPcE$}2Esme|E!DmSq!$I=uNTU7F9{zV z+yuf%t-l@@tuHI4FYVWA2@}K`zJK2Nm-5i-fl`v-k~1?CMBgTsZlGH&@z8-`%emtU zlip3(sZi**Au@K73{*|Uv@%#O)KkBw8^&{gw}F{$n4vnjc9F&`pG#$!)p_-@U)ho}`>7Z)sKqwMw%755|DY<;fVTmiyD?pXM(soIQ5N?Y9Ci zWu~f>3#=3XJrJsvE|8tgWbgcbC&OGWyKHsHy_T z=Yg;MeeeFN`*S?@AQOAZR}_C_k?8bt*Pp%KfXDx z3OASV@udd;*i5$ydr2z7W%woA)i@dIVr5`MeeG{k=l9yo3v>v8D@cBO#SMX-nnDv( zrM8^Cqd-u54jRJlvh0vA{Y>I@^HGnhBqfYu1F@dBwfASw@1cQnRRI@5fYIgf%HT6M zqmcl<#N?c94HT-hk(=rcGQ1ww*p-}Cli@b=*n;rz`O86N4TkC7U%`Zg_J{p) zK+o-z_y@@bphRE&Mjn*OrKx? zuxN#>%v8)Ur_Qf(jJ8<+eDW?2Ib`hoRd+7WhL(Qa@9U@`_GZeo=I$t?+&Gh}zst!+ z4RkZu`BKzpjTq4SeDWKSJ3C1wBE?Zr#~X#5;)Oc+B;cm)YJG_75;Y`#X?v*C>vi?5 zji_gYU(A1`01%=w@D|kVLw_-NB~cN==Nn&30)grIJAm$g%D!Jp_g#OVm{FYuZL4*hbV=E z@XK+6q#@w_hj70*+Bs%+Nfv#ag0htNDTC(Bk~o)NhO9*0H%!^v9*VAmylgyGFdZFc z1HI0MtOeSW{#IB<(lFi&pDj|3c$0?-clf`9TlC&Z9KsNg1W4-)*Wuv&3DZLYMH~2Y zo%JfgV`L=hC1rU7f;-f_0&eGuv6b7rgC6%N>g`vo$qk!*w?D^jcyrxPl~ivi0+!aK z-<-RwSJXHTe@|q$ygJ|9-FrPizwNqI&iuy~-B3q?fa=$pDsraP*xmIV-3Z0 zde0`kbZ6q8^sADmauc4A`LGPn<@q8}^VP?MK3HSs6y?xr!Oh%8RzJe2+SRln)*m9A z@i2?h;Ls8xn&1BjEK<;ob`ajYY=5e1In!UIdCQ{muBp9U&Cq~kaKQ+^c^JW$mGxU+ zpP(98vt(-A(EX{syRxiu8OF@cf0^a6o=ZXHbgfYEv|Gq$E_21dt;jWaM!)1N^vqtz zYycVS%H@&>yxM-Yk0U$0&2!bb6T;RkQ?H~u(gvaSwMyL^-!mVFSueQk;^EZg{T(sr z0jR6$z-dfNe~Qhrv10Y6J|V!E3rCVfe9-z529qf=Tk9HZ$*0Y?)PldABP5)lxP-3c z5_DJ(%~cxq;}%*%z3OLwx}dd0$Ru5fIIlop}m#q=cMFyK|nngW^tD&x9mDviQ_xgUu=iAq^RNIMqs~-cdc)!f1%=`p>tL;pd`l&T%p}devH~mz#Qm4duV$b>a zNM{gJ+a2@ktk&n|*Ut`3{KqxFz3c?;TEsFnTlAijC7$s-l&9MHt5MDFuxU{wKd~pG zP2ty_>Vr;=KtKsxMB81~+a$%Mx({<QLY~6%3SSfpaba?))G6w^IeTD z&P`PKFe5a1y|AR?0H^H5TPcAqCP!>^T&bpcmFa3v%WgbHrLV79wS4W*bqXyO%w;*5 zr;Gd+T=bc^VtBk#2FcdZ;j<}je2%QT<<()UPjgE@nIensCA9cy_3s< zgh}+oY1K}(pS~`WYAUWgH}TdsS)_sE(;8K5{I%hPF;?;FsVpN4U_s~eja;b5N4z6 zB3^jYT%?&X36-HRH-N*LspqF3Dr-_qJ27~hOTnl!C{nYNx>c%JT}-Ob0PW7!ks~^? z|2bN0XjW~>8gF#aQhT#s2CNhfY*6MT$6&5x9QQcwl=w`gY*o6YYOI)F%KUynwwX;S zvtnu!vabwzr)lsWsd@G@tyi%skl&M40gb~>jsj}r(vzeNU3SngWcpEYTd~AeNTb+H z6FI;yzuGUl0ns;FQuntg>OZ3_NhA5{7BgVt-a^y40S ztoJ<(pIH@l|B#^osGH2txT`!d=a{(|P;ip*rR1AU{^H^MIK-1esYAsDC|OveRcUvX z%mDuYG5An%^t3;mE^-YCG^Iu~Jz*q!{y+ttdzJK2lYVD4V%iCQV%O{ioXGk$I4;2Dz$DDmwe( zcO-&YsV8OIt$Xs*;%+T7TK@KHUK(rns7%%Kt*0yMogFH^A{OZx*+QpF?OqT|l&X#v z&mc@~F)M5w>RuQ1gb%k`1x4sb-fs|1*!;AZTFcg%vv#@%@LnQ8UH2q$ptmT8X}xV+$KE2A#!0V5yapL&Bx^;00cVux{$pyCsTyMi!YhkWZ8J>3B4DQ;zPhXfQg$0%ta56kFkC|~Kh zYsXN>k$Dn|3gyeHbVH>|Kl`|H8J8@onrU;35pH72`Sz%*vGcR|2OCh9XqJ@dTXDsJ zfn5pElXCs$+BuL_KiDm@T+Cn}S4{2Q4gju(F{F_g;P6KJ2>?{WE`q&~L zF!!6;>OQRQ(OMwoe{#VS_g`b2dVtP~5>7sF`YTVC&3kkUuTI4Hdx>KM*j+oJvn7l8 zbO~mi|02ePw9H`#0xp~V4P00+3~#5P$=t_WG&IQCEC09*ph0=N;R zeKm3k9`4nvTRSXo7EFg~a}QVRX>zH6hm%}seI=#piFtH1JFBxuVP@Cr`0EFA(>Oa+evrAh^RBz`Qt5>s4;EU;J z3Mb|Kp*txrpZ#`I)$wunBm2C$|sy__C5_3HTj8+fzQ=s69PIxKiurSluq4&s(tb|RV$C_`+|JAWZ72kwD6^oN%`Cg2~m;Zvg*$U3iJzE)Br&S;o3F$>-W}C+B8xoR|(IP0QF-cJD!K9be&f*okv<3r~ibo&8Zum5PnqX|5)m9fi5R z{+#HWSy-_P|D8-rOH-YRBTEd#*J`Hy5~Zo7E+?BlSQ_ryj(--DfGl>LvOaz724^#3B4QGg+i>vJGuYk^Btd z5DBukU+RQ1B#NiMW<^2+(Qt>`EEQNA05njeUo8DLDr_9#WNS^98B8v6veGj=u1wh2^U~ zwSQPL;gbEhF^ZMyF!WTN;ybL9Womqv-_1HAj;*cdt$pQ?GdI49^Bh#)i1$X~Ed2(8 zBf}lwd#(OqQFFaPIDJwrSQ9KB@^e(2GtqbP&t$=;>ny(h`jee<5y&C`fT`SR?1ADK zDZv}89tKp@4kx1|W98z+LLoC>c}OQhd+%`c#Ngg5l`g&#G8l7hJ-OHGK#z%17*`lFp!TI4b|0MB^vnKcKpz5h5f-l7F0YY+XXEa z#%P%I)|RrF7A5I4xbhC}Y{hg8W3OBku@IL@{TfOnRl6@%#>5fpKECCtE5$6fb3`pg zFBN%Z4y8J+U;LfH1t7$aw4Op%%3cD7;e0?SQzczwdq2`u8cbYMiQ=ZRy2yv!W@zbS zxgv~_tftUi>JwtVM=d5hggf+Rh1gmP|3P$6uL+lbke$b6BFT3f^X8VV$?{|lk$L3T z-d)RfeIX?CcFy*57>yOm`z!jm^2T91Q}pZ~pL-o?Mi(xCQsSsb`!vDY0HZQ&n+{sC zx304Rnsr4+fU8TH1IUm>qnuv4I`7<0YMd`}5eWl}x$7ApPE@T{dPAZ+aL9 z5RQiKlAXuf^#PZOR85mXRf`G{3jy$RHBp+!%t8z&OQF~$&+zx?k^xUwS}k%5>Rh^Y zs9qx^6n$O@Gt4d!;JCbaPO|<8*_w7z zAHp3jRZESar^S8e196Nk5L0lkEB*V`AeE2f1c8y=*QyV1fv7@1d&3#(cvu=Jd^5&m z{4#TV>AW;MB>?l&JkSnocR>KPztx3DIS1S{J#4{f!f${>ij@O?$jBi_%!GiM4;UK` zy1Uk!M*DsW`HzndhmRf~HX4Mqf1LvuT&RwxbijSO`P^dSW6m1l42G)sbp2#jL`S=t ziuZmBY;x@0Dj?&i1(f3#S^bu@HSq|1QEJ^?xf9Ik$%>mYECKA;td zTqzQ+@xPo2U$M0_|7m!t3G%%ek4{!~dT)nCDV|Ii;|tX}IM`vKnSe}jFF}r32%pWCLH$KTNbgrTnQBr^mwRH_ zh$A*7u_NBeX!z*=@YUhNzANL81T)abi-!Q`(Y5th5-)b)!F1ezxp0@q}F!36s%i_%Ot|EFx~S(=Y@0%m+gkZmVRAFUeEs zz2jGX?7PsII-Y-fGl*$vEWr=#0W0d#G)FGQ#V@JM5hK{P_4QfRuizpjCQsnsE7_y- z0n5Jlw0#D%WS6~{=394PiE?oNZqK|Qb6x4uYHeAG3Zjp_vP8D?omRmsU%a+H-n>#s zX9M39)>-za5iy}JWSwi9@brMAuc8s6qOOQi1?agrR>jn}vZ5D%H^Dw$4F!uKD*dJ>xYMi}GQk0IV>44s0 z5*RfX!K$O9plsx4_oFMcy_lPpe5@7UuI2{z^WB0PR`djoaw%hdQL~KQ9sW(|H^2hcz-+(R-}9}UrR;u)PRY*ck|5DNdTYW* zXc<0$VTTpyblEAW)Xc$s4Wx$^*Uw>`XW-3=D$d{CRm1;SY}gFz1D?K{!;&gm?4@#_ zsKnOZmE3x3&oyy@MQ%o4FN^2O3^OQ=x&OjA5Qb2H$O+stM$z8C&0X)mCTS|O#PG9} zCYR-HzEuctfJFIy-l=gEYWRPlE3b|1!5yLwV?pjiYZC0ikw*O=*V?MCsi-m&wS((R z6V{z>6yJpy3k#=o+S^yoGTCFy?KZoK>s7Q7K9D?Zcj?|b6OTHa*mpXj@?E>vvhZ3tqbK;2lk9^;0LGv6K{jJ^cf&|OH3m-dIbxhJG91hGknyDog zO@(k&vo4xU$hBG*hl%gz!eO49HB@Pm1LgpZE9Z03c@B3q;xtaNM~_rA7c5?EvW$H zBwTfTOeR4sN+DP09oDMH2v%{%f|idr?><-4Da00tdPm~6^Jj-7-e*fPXJ)nm&AyE( zpGGEnZw#2*?8WddBsdqWH`+j&=dR#Y!lT0L;4NNI^DmupqpD|OdIt9O>g@xcu%8@9 zWOMYJVCX89>*41}>p|)T&`gIpst5)=6|Af~f^^9w0WeS-!>_aYx)@W~{Wh|~oc3em zu@Rq`yz}VUEVuw!H? zL@XUODBdCNe~yBme5$+q`CaF_-^NxNk`5OLC4Vv^?GW8&SV{ z_5+wB@Vp$sW;V4jO4ihwx;6MN4^pBHsFUw|IR=$CfDecf$u z40E&XIL0OLUnH}QDDT0mb(`q#bK~Nq^l$q2lj~H%)@9haR)Eb+9%p5e1k9-tbMLrH zb$>dUZD@0MRUdJ?GlTVwUdLWVpDq<&kSP2V()V%z%Eb7?H|3={r-dn2vGuRHi=42; zzU&GG5PE7H$tXy+o9h|oqv-}0*A&OkXMaNHuj#1Ne?_^^eo<1)Xj<_Y2}IK@w5&*7 zZn$~4v^O+5df8qVz&1O3?GJy~@LyZP?Eh+W+N7WnX@)ss5@}Yg?(d$q1Giy?7G&^u zJh);E^V@lyf4*>`r5{6xCc7v%3ZV7i1gkc@&iB?Euc)wXsykH_IzmJTP<@$~37pG9 zNEH^>+J6}5W+#EAMv&Po;R*%n8(p4i^y`5H?=Y8*$1t8 z7r;H5gcU9ts9r3HVYmF?l3K+Oa8H3$ALlFRi@wl`r;D$gS)Zi)AHE_VYv4FPOC2|= zXJDKk$Wz}NCHd&{`hy&{xYEGk9@QEQKY`dRVK`j&r*a!rQ8%+Nkr7G+_2zVo)Su)r zrcY&cKi{{k+xem*h8nuLh4ISxrn6H#_9iL8Z*Hv`5+?Yc5Z;gkeT&Riq9u;0Mp8>r z^?BU{>Lke&PxB;;iIaT$Gj3F@Nr+Q{^{(c5Y~pk1m6J>Vi&0sb4sgM?Vm|)j0YYk46Ii($FHStB(m!d=Kwpz@`^j%%;q-fdJr( zvD7e?E})1f^sN-^p$26=#}p&uPW^u&Uk$LV&;9kMf?A(5i8fyF?{>mqVP=iqR!c`y zX@%6!W9nZ6t}Tt$nbEiV;?lb`-q=F-{h|(Wp_cjvR9bqMnqxnmx={8m+JV6_@pfO0 zTCL0C3U%&woCfpg;d8nO#Vcoad(znSz})}7i~>^JE{1MLNrK2HBS zm4-)Xe<@XMmK|bCw08kQy9PSuovI{gJdUJHSG^gTgPUJpD0Dk14c|+sBqMRX+k3f- z0l-lAi%0qyvg}SJs!p_~0TB_&adYAIWR_p|vBt%IEO*f3qD*c6JqTn@M<2V##_Fl4 zY79%Wd9j?M$r4A-#@7X%o+!Uj^j6->rD6-d8Sp+8>_QHl{L2;Av%a zSGhh-afJB~8JpsN(KJvS&RzDOT;1Xb`KxTOAPmb?jY*bQdv65)61f9h$E{d>)Y`0i z4+D3trS_HPJMqNcfnPq<7s*dQ{8UpL=KWcLy#bXg4+nbr=LZDRh5T^oo@Iskiy1ut z&57T9&q)BA7RBdPlKmVE-=OYZ#iS%Vcsq23orv{KO#!gs{g3xVBwM&K5@bd(J80A0 z9S@?%0F0$~QOUXzvS$-YJftoO;ziir3hrCH9Zg8cJHZRsK7~H`>wxf|qN=060RNepn&q9Wzord-Jcp{D^Q?nEAhw z^>mGKsKar@u2A7@jp0qn9(9p4)shtqmvn~IF3ymq;TM_}|WTNk$Yi^>e zn=Pq9yjH(&^VUkd4?=72bdk$gnUBGKU5Uc(J%56w0k>_Rw?~{_)Xt-a&uUNl=Z8$w z#XY)Vh~&%jIQKnSM7==cys?$l@$zo+)PbE760Eu5G?UeiF|XN{IIVomaFM3Jhqq$~ zHuPS$FQM=n$sRiEZOVgD+~^R=_Wq=L)g?Vw@b`Ns44eR%()}=3jWNB3gv4Lr;y z`b5U{Mqm^t8Z6ofk0AkbLUVkNTzX@;9ISC+p!8RZD<-!ZN#dzVZ%>hhO1wj2XeVm2 zuKTJK;&mUa*)Q%|+WMjxU%`)hUk1lDZIsPzu%iI2XSXl3w@D{5(NcGNty6>1`@jp*M^8Nxn3-k(VKAcaQ0+6RpA67bC*HU`N z@SnymuGkhCoRyPK(8Q+OPC#(0Q*X+Yz#?G{AAknSyifySLPhYQkmo;=z`+CuqsBCC z_r37W4J^zLy7+HpWATv6)yK`XgfsW`1}98b6Ji7YiyL$p*MwBhZ;YV!FsBTA!U=LR z;VsIsGgOX1ZFYL3TM>9K)-lQlu4fw`mqQYIxyll$Hs>Y9-m=E@C)UW0c-c0_#u7dK z)`a6dV#u7+)D#sh@3V$o1*7&%1~VO~Elj08ph${^sZ$AEaIF8-zA2FZzsqaM-cG?2 z-lolK)cmO!NYULIG=Svw<`gp@K>*}16kGm!cjP91W#etn9=hi$>yIiT<75(M_&WHf-}&?Tea}vD{`J^vhV+} z5>sf9fUIB>CdI|3K)1U!ertWh&x{lL$SkApLSR9x>ui1C^OMc#D&?6^1*fg!R8pk# z<4`l*^10vb{K-3$ZqI|7t>^B}K8k(<@t2jr{d?^2*toVr`2ynt$NAu?tSl|>%9v)h zF7KSuhdHVF<#=_zOcY7=A$HL)bkeSr`iN~WZ7zO2_|M6yU$R8B+ny#Sj zvbXV|H4uGh>}{MP{uUAt2+{xjx87V*>en@z@~obSzog&)`wM8JPZ_n8}x!BT*>tj9)Kb21W#>&|;@fs8K5dr$W|E8YQa_5*uMLbr^ zP&ch-+dm~Hbr0p<@JPD`V@L$~xrmomG6kllW+C{S5&-9B@Q%bFP#%zI`JrU6MybN`>k z@qM+5_Lq{cB3}mUc56yzoDU4sd0>)C1q+$i0-bjzT4TqWZ-7MLsR>y(4XxoCR zC8D1njk|prLlT;65IAf{2yJZgnyg?&p7{RYP7Lh8qW50EQT^tjW5Dk3G4AD;y1EbW zT4^j?Nm>eKJy9p9Q|WFpc9N1o-3Z%h1k!ykxonG7M9o>A53hZXa_dd@HRiuGwXBg6)w(u`Nnmky2+>8Vzqoh#_v%#_zi#mcQ3%x zq~Nt(9<1g6Q1q4H&~Zuu3AQAJewt_J9S-UHvNAy&>fxtw3@sM8@7g6gRWkiG4-RLi zWY^3-`qUa%e^cOEOuHVY7`>)`3YW-5YSl94PP???elAq!AXa|OtvihGb9;jR+47=juLDBk*&cb!klgEuQ|)G2(~@H9&kueD==&v#Qq0;;dKdm5Nz2h5WkOjUSLQV zC*x+Qvpt1v>+aZx?J2q8TndeT9K@;7Q$kLd6B9t`!^&c<5J7GSB4c%DnR2b;a z^Vi7A;vHkCdUHQk&c(dJo-}RxM8moN6eb(!rVJBrM537J;l}UMaR{7F1}A{sk$UVV zK?9rrVSR@FyWsi$UjP6@(@~}2rXQZmWY#V0lf>@8IW@Z1yMD7*w=fqsQ}_CvRd)NL zEMYub!!9f0oxf&uNvfk^Z&m`JhtEKizvO@9Y+9r4)#JV+|C0Zp8z7B~pnihyKJa_~ zE9^)=mdLTj4bbeO&M}Wbd6qBg9z~C|IqpzLhT|a76@JPjIgbG2Ke92*ZW$TT|2;7r zR3-hEz~#K{0q;w(sVPEMKbq*j6~gh8ag3W4g*1X=H%lFC*eFDi-c7tA|16tVS0wZj zIgv~&tKQZJpTh#E`H~28MwwHuS+k=aV@}T%;aAc~+ggSH<+6F4Pz@7e=0=?0J?RfP z9OGoSnT&)+@@Xgf5BQC<`f*^rvAs&K9XY8~MH&=eT*30n|Hl#W8#@uzvfs`yTmaYa z{}=MB81}!ark7rpTAiFcfBzVKj*XQ%ZiWN&)e^E1-~0=ve7V&xd~DbUzL}%w0!wGn z&=^WtRLu;$9BYs!Ew@kMH24N_Bc(+4HgO2xr!{z(RqBY%m_NxJ!VSkcA zSVw3A&E{Jd)Q(Av)##|?CkmfQf0xMl(nxIjy|^0EM>L{E@kV(IF|NzorB4L z<~}xwgU*A+ecqls(%=P-cPvfbY^UcM)a)g^VG5M3vMCl|I8(RY(O?@4DrCY-XVK#t zTK>eIrBUb98-O6;JN*DW{66ZVqZ2mQL_#F(WOnHqSLXY5dl`x|O~AkU`oy?VH4*!+ zoS&1@>&q*?5*S`jEKu>aNOnx4tI5CHynaG#|J!-9+zZP}BRO|a;`{+FO#U4-{D`@- zm@pBMZ}@1p9>cXu{n0S-{%~}^FAgXG+M96cxO1hyAxWml$Z#R{<)4gZGxAWXOWdVU z7J(w}|G#O$TGWY1mGjo!oc@pMn)Dw%N*p=I{voT9BbEK*AGq%EjTuB;M>^|y6Zi@9 zpLe)E`Bv+87zQJU375@4Pr+ol57b{IE?Lo5qSS8v0Sf%er5#0 zL9c6;utCy2*4`Vh@(Ego`^Ac6Z=e(->}y^KsmuCIAevouIy9V!(bmuujh zEsZrPf4%FjwRD<0bEOO0_qupQ3Ph)LjJUX-=RK!Uc=WV-`HImlPdf|PC zD=Ar_NoJyc#`}U?%ScK$%5wc%B*fjS7I-L@&NCNyeBJxw^>6M@8ypzBKV4N=e>#<` z9?dU>Ys96)2z!wa2bvQFWq+a5sr0SNKGD)Xsb`8=tWzrLOBbE|53bJ7=-=4Zw}3)z z(0f(&*!jV@Iz+pSsM@mWfPvp8WNkq)J2CS;R(9UeeP!wBFM=oKSzgunw40k}&ol>% zTeiEaX}W`!5Wt?zmCc0)@n4(H>|9AXr|ENZN1AN>Ni0UD${%-Z*&4f!cuMqnE-UJ0 z*dV~b0H@oZ20J$ZmikGY{{pM;{GzLr`~0FJxhv4(s!!26PS^x^`-t?;xf~Z@sRclT z{lxA5FL3!xwll9gjKd(Q4Rd_nqepH^`D%kU&9HuCioLJ70=6&HnxG&+=$Jo_P*{vb zweR$_dcDsUMos?`er-F8_A=wk7Kn)WKKT};e_%Ym zcaAxG|5thl_x?d#w@EG%2a?VRav=a9Lef0so zV02ewlG85u!EySlTdo-5{uHw2JPSgMQ=p?`lg@V2ckRCXXUhoKVc`xOVZDj0{o-e{ zr3Xw}-e#pTzN6hKk}3itb5<`}3t!Db52cZ4z3r0;<@5=H!6k81P&*pe!OoU$_I&ZC zH%B||Rx9)FE<5&k(HS*NaN8|9FNz_ zMTof@M|x6cYU5Ju2KP0X-ga~CXG+ubvWZ(D)ex;)BGsT>$jYGf=mD;xCv4_#`Mp2) z2K(uv8Z7+a*Y`WGU7!8Du$C!tJ|eP|5Qw3Ss5V*s`6t*7i?yVnW5lf`%KDjs+eJ!m zF(JSPX`cWv_H)Qwj#y==z7EsG=Ia+Oj6b{(leuA8h&w)Ehv8f6wT|<8jUKb5XK9C_ z?E8Z3J>t(Gf-(v(GyNiqAeK*Z&>Q{lg|aa_j02k+Z7 zfhA^^57N$m_t4h~v^A;*ApbmEBAnVQQ2Y=;Y<_fbdy zxwB&MC9)oecL!a%#Jn};5{QiLn0+ZMb{=0K_(XBIeyndiB--5c#@fzm74dGw_Gwis zaQayNO3~&-pU4>z5fFrrm$yd9S5C(!Cj{1l9&0Mib?eOt91isE_wx!lk;g531g!&^ zkO94y!bu`v#Wam$m*nI)Ab{C{y0czODCLRS>N%~M3R^F0`rLG-BgD3(38|2H@x7ba z+kUpQ8q#~eN3WXy{xV@($nMTU)M%kJro~^_1lq8|x^S4Eh|llK&dMfO%fyFkWauSG zzbl>msUYX{Y)H`JOzQ7q+~(45uKPMn#FnDXnjsYZEQ+v^p0 ze0wAV{Z?RzIr#B2l;0#*gvb@#Q7xk6UtqoWuZE#zIV4Q37yaRbeLt$Tz^1cyfB!#w zSdr;ft>%mj;IH!ygo4tHI!!@_uc#7rop;sfOVCt!wXb;d|4}_I!eGawKYnwK+TLn* zW;b{BcECIw^Gj&Nhg|=pZ&FilC?1FU@iL>Qnex%bslHF4En$rs>(zc(oPZgw9 zOq0)EX36(o2}))qpX`Xo#)r&wc}VcnTxn|su<2t?ZI*CV(f`=LmeoncPm9Y(mu?O- z-ymM0Ss$6rFjsNm%#Qb)4#d0z*2_EB)z=0)8H7cP2!nn`JgzAf+)uF=nX-4Rjwuv5 zr(}I&lF;nxEx!(Uh5G+=QxrKlL$8h&^lqDw1qhJ{ zR7JVc5>4LjE4O3Hu^Cvfo2!t+#s7z0I#6qz{P{v4UTe_^Z0(VrEudKdUMv zgjl`+PicGmGx5b5#CCl)myOK9eey(_&hh^GGRH-sNBV-I+IyQ!#jDN9AUEgMy2Jg( z`B!zUwm8W)$B~{ha%gL94K=CiFgTkKtktHXrT}IEG3Q6Yjkgz|o-W8RpK|<@D_vi-EzPXh}LXLBFpDvJ@I)8l!2?ySqFzh7hg*# zPdhzp@^wg01+9@G^|r5I#x}?#{HvT$={^%#L+u$cj+^ye*NRsgFK4A@!t2rQRC>4N zmN&rGo)(bvs8!Al&Qu}>zwGLsYQumn`e~dASy|`$reDH$^;YWyB*3m+ZU;O8>Iz1F zP_O!>#92OvsREms>BciY#573Ot!hFBhnhXlQ!MXOnm+G2wF4FVYdi_kO-VBn%UIMt0>AnIEB-4jI2(m!7j$Y_ztNMD_`#YNT@BzY9_ z7SuRwwBt+3UMLvZg+3mAxKLq#*Az>K|kLOZlJjTSs-EA+O(hd-aU^VhYF2c zGrK8=6VY!dr(+p{O;ZW13DC*tf;44oaf=da=Bo9;w-)n#pL^3~gh>{oo42kEXiGyc z;#D*FD31F&%bi~`Rd)m%?X1e^yHLTokeJ9`4iZJKo2QHQ7nf9=-9>F+XLeRITpcU2 z0kSNL_VMU`KuROp*GT#>m|Z_Oy=Nbw9ZwBgrN;iNDFeXsk!xq)ni*M{`g)?L^L$e> z&$9b?s$%4aQSqU7>c7iQ0p)qd=iT$mT_VTU{VUE-3Pm$SIdM8@04wC$NAWoL8Tads zDJ@y;6*gKi^Ismm)hC!L1*G%pC)Abac2Q!cNL^-63&u!( zOo>w6Lfbnyet)#vT5pgDi}G5v`Z(P|p5f)8soV@D#ATgSgBW6%;(gGc7A@#-`n{#O zBZC|@k6#eC!p=H`v$)CcIkq2barg*F_XmuEq*|gGhAlNr?AdCK8MW06Tqcx|OH!mE zqGYG@Ua{fTEs$}ghPH)tDJ*b=h_yPqv)JpNQ>~TY>8{IVu6S{HwYC_FkvJ@`%H#;6 z5IR<~Vy+>Rueu&_{@=BM5837aBGK0O?7CQu(uUv|!4+n$-R)_b+^k^(Lz1r8!HnWd z5{k8+CW|38SEEUtxjHMy`cZbI8zkvh*KSHeckZ2ov)ri1SNEGUh3of3KHS3Q;deKG zOJilcn%-dGOC;V$g^88<5^~5R`IVy0tZFh6i zf9ux;;GZaLTwn65`?}7>Ot#kAY(^JvJWpIhHqiN7Oj8=0$)CiP%K~2i#aAF8Xsr|h zTy9>o-ra{hy?{Ldg$&x7K&eb0i$gP|%zp#tNmML(>+5~?_HgHnN{NBba_jjQvd{952Peu+2(jR>%;O7UJBt^0YY-IfLqDli< z_PAmcZH#c^e$2rNHL?Kc@a*_>!*JBKnkQvCaHxlKI=aaE8kTs2`L5ljfEpdfc!a4i zcRLL|d_Pk^x5t7ZaMqXxg^PP{{1xbwX}x& z<;dvn^!<`>MAyCG=V%5^d!gD|I(P`u7s{^1Es+3=#>FWf!KD9ez<`8v!2!_G*kn%1 zCfDn0sxdr(r>hy#Lc{2H>|-Iz!*n$Ia&12`9xVkur(k?Pf~{PU!N`5vJ{~(QNN_`O zX=iYfqamDIJhr?dh00nRu}4X`fslHdNtQX*1E`VX8dW0Eh~IOA8CHW{R71CXXRlnt zGkr0u$q_=0yF?pvU|m_<)f_;zbqfbz++-yK`jU98ZBYn=t zUz2P1HZ*iWt`^}R*$MPZm`K|w0Ay~s5r%9*mAm$Rh;~SlB$`%dF6G7{iU?aRmnHnHqMFg7Q@ocTdnI zhdU{pCO2YV`wB`X$z`Qd#b6Q%TcvZ0Bbuhd2E#{woC08UuKnW4Q>*+~) zz~j=AxHP3vaDRY55K1Ass>ghX~-%K8^!AzvFh#9jcd;wM-Q)sZ~gV+4j<) z+lW~ybi?iXQN-5ShDS4B%_k49euf<1mpX#CKO?`YyEZ%R=F@&jCt)T+RZysfSR#5!+6SUn z0n=>oi|XtdHmm}+Cl{p8C`XFu_17PNg|?wR;kBSm9Zu6jx&4W}oEsWaBOREdyjkU- zLE`H0ZPY?=&|4eIvN*<)$qeTrM1boq+glgas#|UQ(D=`0%{9pQ-d=X8S`t)lxbclK z&pNPeC_3^YZ6KHTPLmCXq%$-}8PEyNL7p zyjs2cKGBZO7%i;T6zIu*jssLfDXhKHfE`ha4|zd&^{sw|CD&$=9c^*;SJXvi33-{< zVVbH9ccG7FgV{U{79fwmdwE@(_z8Wc`*p-nT}Gk%P`bjGCr;-3AX#q+jDcp2jqfpT z$S90L=05kF=~Op2Q>MYeqGdX#$Hc^m;1%ODgJAPVAFnMQ%ZgP!-aF^*-%yr> zFqDJqHROgr1)YBS7$WzZL=x!5-0K98)tJo-;AuWPV*Rj*MGVIvk1Ut*Fm{?0D1zd7 zr}<~%;l_0PZCl?Z8k?Bd8Bn^v)nsxTK9Vcwv>v4T_5Vjj7XMd8rb(7%ikR3+Aq^F> zSHDbXC?1|(QEFe9pa&FDD`lPg$;D7Ct^V|F6Xa8hU1iN?D5R^oL-rxj9bL&_2>P=3 z2NI|tK-mh`oS`$>Y#rV1&&P>h`~di$eN4tfygqWu%Wh@7-cT(Ob+cbj1l%*=u{xOm z4~p1-UYDrS+3zPw>%B7hCVuxg zeO133xLGL@Rv3xo=h7>u?uVMf)ZV2w3DRPnS@B6v)gKKeg9cD5oyKC;n~^RxXe0M$ zj4V*dla8!%bL=lX^$%}OSA!f5Cb#}fcmsNS7WRRa`!C_N44ZxRqs;X?OkwD#>3VUZ z8?!6N|3ZYvfb*F?qZlq%L-BnN@Y{4Yldq+!xvvyeWUiHF%^4HA{AKCU5!JkAuqADJ zQ{|`%c~!`*5lUUH!995IiurXmy+Zoe{RYt(E?A?R4i$;OFN4eVnK5;e{@slz+VKav zDvYg9hVk`QiR{g4-2HH)@*9ov88G)eJWxYNtrX-=%Hbh{e)Psu zTJQc>oeGX6WJmH(w2o1+L=50fjBB(Z4eHv_;{h_;n9et`rZE28& z^u-OZNl(JL9YltD@X4UYgjV$4$9cO#B@4onI*EiK2@0=gPo&fq=*0~w#f*TSENhLT zzn4wZtXGmChCVum^tWH8Yh`N9uisqKUq!-Zk#g78(j>w}n)qD*i1$#70U69ZPzjF~C20C7)kKC~QSH!L5lEXJ5>QLrRF;#I{zD@B@yABH8>7xM5P%XtWVl?Jy4B`IfK)({SqE(@%ywiPSUdfQCofL?HyAMr)%LRNO)@(H+t8T6jH{Y4F zwlWI)-O}NA7WcNpr5p{trFM9 z7Ao`5(v&m`@Uo;B-5{(9m!y!Sg!BvveGzPYgOTE8yv1X znzlN8kcHe|tr{_Zbu>ltTP7h?+tV10i?~9-BYZ728;6W}GEX#h4rH}gXABubl!<}X z=x^Dz%aH+r2qqxb5*?_vD@mi>M=DF+NXY$>iZyPDwb`yEG#!$K7~xo=Iq zW1dK#rgAj9a{15BNYU`sK;R03AS<>8647Zn-CrY|n{z)De>0ZM|5qbU`l}HyDoBoz zNPa4i#!ruLLzds8X#}U?yPQ?y@a;E1Bok216}Cr?V|V5YLPJJYO2y%UZ&v8=T*A>7 z_}SHIm&vAPQ%>Z?b9w!pEh+#pp2pI8muAZm03fFSTN71&+QgnL+2*8Opbr5Fs8JM# z3k_#)b@+^g|9Gwq(-hO)cAyZjuDLsV{=#d}m;b=4s+;E+ z>hz&}k4c{L6pz#W`8mO-w;$w^6Dbc@#hp6(Ker_Z|N&L(|HHX04cT%S$6Viy867;av6+h=ebk1<8*Aj?IK5`elkXZ=4aT%c)auMPPrl`<}U5VD0 z8r5hV%oARdpCTk25W&N%$EO|he-%wwOn+f$vW1|%uoz`yWPCOa%UYIP^@kipAq_Je zT?#+KiRi}3YQ)UOl%_h%g6$d53M7+{yP_YP-&Jzf4z#A~o7 zQWU!_9D)blqcs1#|@l6?xtfr#(w$lR`OG=wM z0WpR_5iz;Xipf!dWi)j%N1(du(ZUxjUESK>R$754W!8{l*c!L! zLLE{k^jf<^AqW_tv6e-(PAiw>l(NBbnH=loG{uqFC_`LW;PU#9`5L7FcsV(2S=#N- zQCGjoAPpdkY_Qlswmd!fNz|BndXO#5aO_WB2xa8oiV{-TW!S!b0#YTxn=Y3{(>MyZ z0$B?{rhjsI+W6xU`x^~`BBcE@TQZ95x|3|;xI3nDiHT&(X=5FCX6J~%t8A=T647$& z>X=hY(`=_H4Bh>ZS;88!D+@nU+oqud#9B`C2I8j(V$dlJ*S>UTErOJLqXEiazJF4I zLKiZ@C6$83gFe^ej@Q!siZK5{j-riCmGTm62_9hkW(TM@dwlGMk>~3!Xe!Gtm9SdS za2jFSZbhb{pJO5;{J1IPTPQv%7T_%M5Z@W}ROSg&{wZV>yPxQiMdeLo$Oa^%q>&Pazl3H;F*_FlQ@zXVh17U0O1hBppp#V<&mcGDmx_K z&ZjhjV03kT<9o6BtOE0gZFDk^lS!4^iKHCr$dm@#3QUZT+{=}by42#4=;$f0_KN7kR|+$ zpUSgQlSRYp^6To^P>3lBD0=&DlRy|_p}@6_*Pq<8BwqySgkXay3hKiNV z-hEHMGNvh1!ubCsK`scxARA553%E>pNp>wvBNmQ-#SL_wiy#n4+z-s!Nl#qC})#%6sND$@Bi*%VQIkUdyX zXWvfI&)XP8z*)bTlPVaYCR}YiXos(SJD>zCO+*(KgB31alD1f0RZgGv+QS79@_OQ? za9D~QLx}_Yj6;MIx2v|PkK`4;lu;Cye`mBqRBr_??K(5UX>f5_e0-7oa0ffHu41ZZ z`*jB=BNwdzi!L2$_V`Z%QC2A=AHVdj;J2mujn{{t+7x>$jk|9iw?5gW&(4}@tQ{ts zMJVYY03h##0q-W47nLFH8^H<{l>l%|)eJGUK1D*5L#iBKLig43l}{oArk9iU_U6ML zbZaoaJh?F@NnWsx8-Mo&6d*=}$t7oK%@&}fHWng&cKzJUfKBUlB5-#{T=FbmkIAy9 zAV3u&=#UMcgso?l=2G-AAn|902@*}x9%qsedRhPg>5<37rOQ%wQP@12wH8dCk8W8f zD`lxZ&pxYfJSSrb6q=(EsBu(8r;XY5aeOn4JCUAK47g0Jh&D~^MbR@^4q41LApqGo z_bcweW;_h&_$2PDCf|RwSeXa z7{aO;*w|CYt?8)m0~-6Y63q1L%6psW8xu@0sSG?(;fU{n9&NvvPA~fj5n33Po$t8g zJ=@wjUpeSVr+I$=A+9)1@wijr*LHUIL@o*}BBwO_W8JeLd=K!%7x@vVf<10e)&knJ(pzuAnGO3jgb5G%=A%V|VZ z>64INS7FeKnSk7pI+2o;Ys&F=K9mz*@*~fum5@dM?J}r(GgT`a`=S<;x7LaEk)l*J zM%FeFd&#!1;B)?C3EDsL@V5|^L^npvjXI~Ycr#7Q;ZG@XqhcWJav2h6T?|PNxeJRL z$R4e}+-vZ8Of#s-&aLSc zM+h#;O1MOG%@?dG`Q3UOp%)M}t@aDdnoGiGX3)yDL(S_#seB!!-Q4c$tKU(3@QB|o zJKcQUR#S=R>%~L;7OZy)>bw8Up4wJXNRemq|H_ zzS1c5+KxBFqIXi`$W7|Lrr@Mwn_V8e|!*!=znw~IsFF^{&)nk8EyHr?BI94aMRqu^@UAKOPrrG+8< z!hgAZ2U=1{BmuniO7RkBwx#lo?raXrfG0i&X(yAVlf=YOynqL6IMz~in8NT;d5!3r z0BF;hF|CE2eWpiD9fWT%Ginv2XoUPuV`BF=K~nQk=e!y7N2&VfA>Oy+-a@4NqTf|< z+;xLTk{-*j?uUp|HNa`OzK)P*#y_w`(NRMuoh?US@NgdSm#R+4 z8S5}3N;#~y-^|*_J=N_CPI_v|Kf`r>@)G1kNyl4ja&fA9Jfzc}y_~0~`ZB|oZy#LZ zdj!n0M>Ms8T&^{Sw~YTiff@@wAEU=4;pR!n5Z;)_<2tmZFK9Xn&aK{V@Xu@?z3dzu z(@>*;U7)@0D@c^zDNMvwt3f- zoUTHb*@)Eya9M$d&F%B>E>a#IhzzG497a2VYPtXzt9ysRuj|+=RBwMuwWnpGWM~;I ztrY5MpGG=~s)>4*oftZHuJ`8XlK@a6vwI(&qE({ zf#lzf3mTGiS~)Q9a|;3}7tVJTL&WgPNQ3aIL@KenNamQKlOR|aUP^Q{u$unw5~f_^)6t!evJUIpA1i>{V0G- zUu)pd`21i5?IzwtkB!EWAe%*MrO*f*?1Rf6j`BSWn7UZ!f$OPku2`@8^}M4Lo@5NX zn*etALjxLg`0l3se7@oI0=6}#&mx;UH(8pTSxn1_gpNa^tbGorvp?w@<)(;Sz1C#e zR%T>xN89=BIk9fsXCL8AM4$UH&R2uZ2fz%5ot356`@SAK zS}Z3t7Ow{DKIi2R(PP@OWD1`8Ax!!Lbfrcr*@5N{jN6&fXPvj>^DY?3VRw82P6z6~ zj&`H$)=?W3@2#KRIvYG;Fyyk9)Qo0R2oc1#JUA-C>5~&1487302wprdXLwUxZ_mym zd7pnnQ7YHsLCc_%+p6P@D0+oFW34p(={m2xXUtZVo^=Gu0fZXN^U?e8-0t3%$e!Sv z&aci2yVOMylge^`KOj{QT=?loKkh!}Q%!qSIDdpyhClzBOc3yemU}@}aDU+*N`E-R z(X&Vwt9W5Jli$X=Z$wD*zqdaB`c z&6|rIQRl-xPfj;Qp9!@_Sx8m-F3k3es#c*7!F6YriqJE`s*}lqS$(+o(t^htAV zeRU?-)Vz9M~==Axw&IO7gaUzb|N|atc8TP1X;OA(Hs< zhas+6%C=TT$T#B|coOKl0n|Z`+JvyfQ${fWVECy?o{B6_285DIL@_77(4vx{QgdfN zmboL5cgK`x7qqr7x2Z99=$SpjQTqVg!oRKo+ele||m5{DzD=@3;86>z9Z7^Fm6-Ts%zOxh%lGM~4P-Bll8bD9;bfA-*zulwz~ zaQF|h3g#o9H+jS>tKwLGwz9VVzk_4o$W;68}kPdZ?*r@o-~3H^S?EE+8qt zEeAw=A>|hDL!jos!~46-Vj+%^%e-6j9qH=L;N!db4^z#g+u5Zzc7bBYy;_g> z3$NZKMD{>Y@oRi&-kr>bq>J8iUge43iR=OVotaNLKs3)3DU zWA4SR9-!m7s6H(T#_R=`!#3vdj^?G0mFXY8@s%aO!*otAbL@J)&0)>NWv z!P~<}rks&ffZ0t7YADMo*HqU*phKqpcUf`TVS022q}V6xg6wX$TvN@!jcHSl>Fi@} zBhAW#(+#G_{VLp9cb&;lc~?&M~s}_zdNPSAuuHw?K zlo8M?YMThWK;5xN(OG>sA{ISM_nmwD_Bk`7umO+DB|=|s4${O}a>eo@vtHSOn?(y58pN!>#ms*k3LFi$8z_n0O-`07?6tvUz8)UwvJ>%(%m31Vx>dxwX zm({C**m7#~448_y<}8ag;hRmjd@P2p3OuH_rIrtiFeR@K3ub`M^mnsT^nJrMUsn^| zvhfVx-Vdj3K;3S}-0S7LE-$9@xg?I|rq^JJX4u_!<2N_n-#{ho~ya$hmzClNNLx%=!IC zl^L%&CvDz%tu?<%I&VyGS^-eIZiflS(raFts;9L!#KfGpkmSMP7cR9v`!*Yy=C^{v zVon!cxsCPDNPbS=fHM3|6}UICNcvp{qYqGi$TR`dx<2uZ1%_7>%wlp=*X?$!#_d+0 z{)*7GeZddr^mA7XOl$y*z?MP0Ht1n=JcN!Tu3LD}V^ z8>f`JZZ;%&cLEo4R8y69mYqk()1|aLw~e7c4uNZW_cSN^Zc?+u$rE;b&cN4WDl#z7 zl}o91u*8s#vBpg*#dOnjJ_W)#PnQwSahYCa(ItTMXC4~tw0jMbnhhwA23;TZ(G9{9)-ju(-uW6}RGUFBr8G$oTJ;EsQ zh{aUsrAjOD8poD2AR{Z2R6&$e+2PsaT)PsQD@unZf}O+t3#za^-72-*iwLnAW(~R;69}^0KW-p34>C?R})|00ZjjG7$p|bkyS?l zAaFSr2-{VjhIn9 zV$#E}C)vMI%Ll`6i2B~nw|%K~nF-aQZ+meQa)mWn4;PTf@WII;Gw=}{DOy(spu~q_ z+g%uxz44DPSvsMheT#dGVe?|yNXQi*dz)!EDDEyJT%#2a9oyei z8K$r$D9ea=HoY{yBVu2Jl6hMOq~cRIJN`l(FXBCz3s{kIc*5Jg+;4yLu1t%~{jRR> zGsq<2%S3|qN#MFPWaua|8>WB)Teuw3(s)M?vkD)Eu=H(o`JJ?o91hBANzQ|$Fn>>( z8?$it7Un3NLHII(b6rbyj*-is6&{X)5``yM*b*5z>Om-q&{+a`BsP$RZ95`{si5H0 z&N|6$k&!ybyF>qzUGwfcLyL^~fNyLER@|7pZ_gZGNUev9yv3+9|2b^<+QEQS=4DCo6T9?H7z`s*ZNQYqo-*Dy*u;TKxI{P50%@j@j;uiDK z%9vD*VcA(>Wl&ZfTJaj0vOpUEa!U2b(iT6mKYVef<2CWtS^jwS%X3!N+lAoMo}V~c zY%vJ%1qM;QP-INF(29r~o(nTj2~`?dno9{4bqt~>)=H_e+y*>s{NhJkQP)?}!&edd z3Zb4vDFx6%RT9be6ev9QgvdNYaDhWPY=ocx^cqb1v;JyfHR{20S;yl(j35*PH$Y~g zq)6+tXY*DqM{S|c3HHm}q4QD$Hz0(sbBXzvtq@y}MV)ptB|6m7B_5>FD@PhGG#fhG$2juyGyh zJWF;3pch!o!~e}BwL=${)2!OWhp03QuY}lGzdPX9x7GL;V-q2~;c$_plaVdrxDEj=9c zOG@wzEhuEV?Y-^>I?jw^o@g1*HA)bDS)@)>BLct@aYeCij|fYmez`p+rh^!E08s00 z96$JV%2lo2zQsoc?Z)iR%nhJWo=}3#DcXmtkqL2P9(n@Ed6fomWf}T7ac%{zKz8aJ_UrMY(jx=uvgbuKk zolxhg2qNoUedvzDq)bXWUuDrz1W6Y0QfFf-rDS}c`?Z*8K1M}^GXa@cq+Ni+s9qX+ zOi-Hjv*R3P@OAY1kPa=f`Q4Z|p!vLEHJ(x6;?G(1+xG3dfPDEm(C?yC^u6oE&92+y zQXf>A?s?t{_?1nrKi&S3dHwCg?=m{M_O(}13-uAtUs|CYyjRT~z573g{Na%9Ne2-q zx`;~@y`&gwBiadF+PMaQNDZGrmNIuX;Ue!{o@nf9P_t-K{V44qO`8)lpg-)-lD`cS z<0XHq9lb}W%n7CCHs@L!on3$}UQ9t%eEArT9d@9%YU9R;GnPGx$6 zsEMmI+pIN(&PE^Vy=AzH42`RMnSJn_z7ACE_v}9~_VRddNS~Wa%`H|I2#}W;LgBZv z?NwmV=1znpmzQeB;M z11AwZtRK-IHv3L|mGa%jA`ej;0KTNe<;AK*3<4Bopr8@|Hh?cu098y}=0h6*@b~o* z+~Q{EXu@b?YGP@~XlY|;Zpy*IU~g;wLs4E51rh)6*HEOsiYWmAkl@4JkYJ4o++tKW zk_7$(Ya}Bn26+Gb$muMO2e%;Df7NsX08j`1z9155Q3?L%Fu!}oX{JX8_F&^f_abWr z1G2?>qOg!o*f($d!C)DcARHLE264sKJ9nM$LI40Dw#@&l74bf zGcTXAR}aVmzV5dQ9*3i_0D*@RJUF@b5-}C*Oo&1uYEFp{Rh0t>Y&kBzJNPJFuD+79 zY(H*Rxi7T4UEGyU9=ubUgj%VK^IL-3sH?Pbr^AV}=54({GoB?86fUhI%>VFq?7G;q zY~HxPIXMLqqdd6s(CRJA3w~jpfGXU5X&{&uKwG6(A3lRW*^xY}?NeGkIQYeq*H!Z* z`T2?cm{kx%eYiC4alj!w0;RCxMlBCFco-#QcK)ChwQN;?qU$1>1vZW8jyM*0`1xh|*^Saz=LOcPC`X!)i~ zv!!-5hkGAM1i?R{k0~L%3>U=6Fg(_8E2(I^tj3##dL8}DXj{HPgg7`%1A?$WUopQv zPCvPR;wLsO{Ok~O-*4C~%nMa>x&J6DaL)$-b#{{$20?lhn&_U6KGc5at-tH_0xajh zM*&ncMDxhTM3wOfz5GK(b|kxHJf1>!xd%RmdJFA}cRLAdpw0-F9qL>jUo`8pqg6a4 zk9uB+;w`U@1SwDRhDyKoo&f&%J!faU25JK|ULKHaZ4f(A5IZRn@SbR%EYTdFLw>-S zrRYD2_I6yy2Ym22_=*kaXR>iAq+h4duZo@7{d_Yk@6jZrbxK<1@)oTT_2=f7CW|tK z-l~WL9b21=6jo9npOG-b2qOasW6%2g^tp^=OYO12o=j#|s4B)*T#%3c=OAGs6g~19 zDj2zTdfQgl%_snFlIgt>Nk$Q3NSBMthT!?KeYfD#)`n}3*yAP9B<1YXP1ZP9n)M;ncDeYUXHPSkW!0nTu&Rpm^ueATh_ z&jrKpETz$&Jcs!!?MRCx;O1UNwIVtw5ArfmyNuE=`R>scA?EHY>c!8RcgLU$$r&y2 zfc)x2a-Apo%2}_Y%I0+UZa-qc$8|@79rGj-_<+C91hGQjS1Ev*9#1?c=ZB{;T9W(K zG9~R}RjI^w$>2gWv~F*j4sYzP$~cBUv#ASYzlnnVthGrW(|EP}_tIF92I>{4j$_Jh zBl2)iWvnpbZN^wrwe;(4J0~vKuu4EQvCZYP&Xa4kAi65S2YKJsBjaKnn~5!SAg^ej zQ6I;$O+#ZSPdHA246EGdDovfNHRdKMK0i<4igNpEC*%D>{O;w z?CG#5eL_CV97CemCYL-&&(>)<@HkfTrgyzURv2e`a-eXUg@25DnI{??onmn)+#Kea zN#))!1L9TwSta^8M66Z#Oim~I$Aa%>H_BB0UR`} z6Pi8g#wcvP7!Kyw=RV$=u7~b8?8JUdQe=|0@2Z^K+nQUI0G4yx+S<5SwYbWWyZAjh z_147^Iv z-{JQN2f6~bIj1{5W)gQU0R&jB-QdSq@A%_oqBO=!zUzpv;_1aTB_)k0m3>DOV8LH- zdqT^pQ%aY}beiI()3{T)`Xrr`v8&-ilvYaH;ohSbB4QjYX&Q_(z}jbmJAK0^she&@ zKk;6 zn4^W&B6$2G5j_FRfO6%wrv8mzalb!Q<s)M$~hOaW@Qz(5% zB~m9)(6of7o6uXAG>nT(PxH74L~-DgbeH`j^+NuxlRzc7=}+_wQDdphN^HZ%G6P5K zySMk6-T1x}-Tkhr=Nrs*bIRy+h#^@dpyRe#%V`v9KlPq~Y_4vwEwgUu(neB8sO;hp9k)fF>*(PAq5+g-DHP9{V&b|h zM<-VYT7#O9@X>1JAkum79;qn!;7`o{Q zPw=FBsA!L~?&E?7W$(${U+$<2r(<>0VwFKlAZfePw6E?jd>+jo&BcD#e~-qOBgl|_>B{@$ zir|mI|Biy5uHcnkQhXN15}QRL8yZ`QS0@Wi))2pK3b!(>I*1b5<_c|SG--l2D8hnP zYGx+oG{5_gk99+$PtpD)Jf_>JC-=kW9r0?TVD^DunJa&22AnqjG+&O&@g##-Q1&3& zIO%Q8a_)HCWg#ceqQMjC?FC_5K{S(6a&zdBToa@NT+v}VW9LHS2RlD`;?E<~US>e- z(g`^5W`wPaEax%IQKaF28R}?RjEC{lsqTwU?BD2~BVNeH_I}ewXol}2I=b<~cLtNm zUYn?{iVS+M`ipiUE=DFl!xdWO49&A-PC;boq;$;b)PlMfURmx@LCD`T&Am!>UCm>f z$vN6irP^zw^2GR@&(6*TnTIs?-Q;Q{-v~&LSBz%Du1dDgR3EHvW{4Sh4i9mAND9Smn;>y6V!p zbzk|3O_`ofAbZz)_nB5_TDP zytMd#MCvFFo1}p0=Wh?#0BtPgLfpeRBVl*8noB@^ei`t0KB~HY*)RefxjNNcZ7E+fc@-5#=Q0Y~G$xE|_tRj2-W&p2cYJzcg*PfPm)ihEZOKqgLGl03ODpy^5%kl+PV znN7Qt0Z?anXyojG8oaq~TDgCD(~|()a;+Kkc|3^#t~zdbQY#8r9sWoh6;Ws>ZDf9U z^6m4wmlwNh2yW{e(D}=;Zos9`5r3-NC5sgEeP=rpn!!eP0FQyKk={J0$4!#-wh}Qs zzJ%FFG}08T#g@Slnd|t}3N1*3ldd(KzXG^0q~Ze@ZG~~Zdh1epNBU~5dfdxK2^jGK z;)|bp0wCTUWB!nt1S4w4X}!G2##C|;nI}AkfCqZN?VvZkiYYIFw*q^gDEwU@N-fH? z*sbOPhFLNQV>;dslcsBO)6xwlm{h!QmJ2Xv=Bu!r+IaY>vjm|pU))KFwjTOE!D?a) zJy4Ihc979_QZ2!TcXO8pcI{4VH&a=l)(`Id7$tvg;c8{wejY=#s*SmGI6&)`G8-j! zYNz$hsy2+UKajp$5Lbn#_M0cQuDQ!~Xo;TzJmqpTh+B(3U$&0?8wAEc9xs%&`jSy7 z6^*f2VmGYx1u_qLUV)#_2G*YO)o3trd5!Dac27mRC;55S7oem3PBTqvAj{Oj8cvNj zj~Ddi=SShYWH-wPwQ_d}H>)Py!Sju`;9yR`1N5ps&CMmXUFaN0YJiJF!(Q#o3zBvc^2RA$cI$1|s-7mzS{jZ;a>zYQ;XL?C)jhVVNR37;URw;#F!jwUZ1 zUI2(G!2(4~%(us_26Zk^wK?4S5{JLq-YAokY;X4C$FF%c%Xfk{ZsjdWjN~Y3@J`Ij zJW0ppmf)+?dIb~g3I)|;TF7}+`{{Q=yD{_Xhlh@%n3mguA`$1kKvW0zVV0vw8?`@i`7LcjSlxrTNp2Bc407W(k-y zgTtKE{I+-rA3saMU-ZDS!x-D#{P4_!wq3n^jPaXB*ksL_6A{oztogE zRWMoaFdb=q@kpQ89*zufDL5-EKo1hn7&_xgx_*NhSH#HWPpeciZ;>N;^r1S}{$MHD z>g}ZBpnLqs93Di+k4C1Uxw}-jdYiQ5xjV|+VEj05eu@(O>Oq1s5t_ikhX)vBkz6eF zHfa0c)A2WOwhUEitA(hAAYFMWNoeJdkaw*8{-q&F6tbK&O?3#q3xePMZx zysM$7MMrbW!zg{=qgwOVU+ucYZmC$`jxYK67!V=1*~s0DqDR^Qb9&frzcQqYM^W5UDBTlJ^0aSL-%O;N8Qk$< zOK6z>nN1(9)zWt?n3}Tn5WzNEJ0du!?q;E4!ZlD8Uxw&}UDV%_ouoE6*f3)Gqs~Y* zc!`i`RAWZlclY_yH5ukiX`b$W0O5uIpiD~Tz5aI6x+MZ|AstVVEiW_O+qOlhkXj*q z>N8MQZw)SbLkO_DOuu0}y|F#7JcvdZzZ<74!16)p*xrCR4wI{cA6!mQNQZL@GXR;) z;@q4CZe_m&w}^W)<@JWf=5%m7$lpi*c!0{I8srZ(>_Zq^gZMM{`X^%B%!d&5ye@A5 z%W!FCI{F&`1#G|dCkEuad;6Fs@^tJRue~cXQ|MIS@eA%Vi0Yoy=`BEt6vwty3!!6k z$p>3jGPXY>Zkmnu}xyzr3}3EM3YmGo5rO+-lJPd4SBbU;m}*L&>dEDvVcAG0PlV z7y}FQ4K0tT@5{W8cO1(~$LULkL?Bd`z10Z^i^a7N@P>I-|%}e1+>0fK~ zSZ&O^D3-)(f@+P$ZzjmCc5>|(ag?9M!HO*!>sZJl5C^JvwJ*|S2fm_2kQ7sXs(Vrv zC`}<8qZ9E>u93Q^-tskOIbkcEr^K;xT_2*`2@2)wx;m!8L&uaE=J%05%JmX9Wl*G} z!iF;2;wS9OhxFuln_S5gW(AdMUZo5PJuX+3uqrAlVzfqBDObXxzA(>z@pw(E3)BuU z5=G$mZE2nHrD#SI-JEQay1hZdtx!Kff-Qk<@713De=iNnl15>W;Rl6$(%Dq7IF?3Q zzdFVmC6DQOO8<9ACGtA(k2!>o(40K7=gvi&3N4c7XX4Z2TLUXt^mBKTB)J=h6sWkA zG;*fC&QS@*e~ZQN>=HZ`03%#|K%{ilMe4{P>f0{VM=&^zB!?a=pBk(L5hAljLm!xd zC?PcR^6ovp-NRg&%17H_>C**UXQuG{;vVPsv%yS#AyyDh*zAo<*94kx=uHXc=hSB(VeFBuH zU!aXW22LDswx6@$E_*w^oCr~od-d+8t+yAckvuVG$9OaJV(5)2)24lM>kvr)37b4Z zxKn)jo}JWpQ4w&|!{?IfK>#>?s^7oQgN}I3`7+#N;k=J5^muswAVJO@ICmIP=e}ao zzB54QSefzp;g8&e(re#*K3HuW|LjHThKp9E33QIr^f>BBJN1vuf#FM&=_Uoctdg*6 zeJGzg73NgIr-gX!C~3GRMfBTzrUFscw|OmPX>bKg^2FI-W0le==QO!+KJ&#o7;u*` zeoC(GyJMYT`BGcRr#W#wg*@{7YIO%Gt=10Y_od@%=U$SzKj@>$3!*+*=SM-s7Hus{ zAKi>_$;=VE1%5#dJ%*xJgW9eGu5dOuI1jZzoA?XqA+}ca)Ot873Z1L10(UouEq<-+Z&;8lWALV2>1JyK{(`i112#=4OBZqb)*p_I1tw1t`3wHcU6I!pu-TGeHcAb43A0ZRa zkZM#`WH!r6j>QLzT{2G2`FojF$WEZp?TBAQsR1864qQI?6vbe8g7wUROS=tM;z|_pby}W%-HyodQl{v6fEW6XFhnB|oBB)0!%MD(O_X{2lymN_$+SANFHMQh`)6$-`eGR<2htn3$qj!LGH*-$? z)(sy3o%-^?GVbQn`^I}e^Wv{tluRYX=ZXZQ%5Vr$OWRXBU{CoRmH7t&5B9P3iJu<- zdj#M5?Dj!uyTQ;(Zu!h-{a7Te*%VqbXJ?s$<+Y@1d7&TW=2Z_J*sX4jwEZ3Rk%N!9 zNKsn_WI(cqgj+ti&oWIL7e7XjZrtz!QVdgGF|ah(c+MWlJgz=o^;}Dvx!bsKqPr}K zw+iO1wC?@(-3tEBy8+5mC$k}?b1BKq)sx%!h(l$CUyMn4Za||y*x6KhJoCIc3|_P$ zU1B;*z84pfzC|s3IXgDZ^P!Xcj<2?0(uV`JkuK04@vTwVJ3hiwkD$qk2X1)_r*&v= z@!4P3vg2*<^jm~oSXWmljn|jE|GwE@q2XJ#4>)Op31Y8!1{Q z)hGCQ&@PqmFBdB@{ahdPUKO#0rQkX}jH{-<#jE>A{8#u8h01m=nBeL)FzSjV2_ve~ zJ4N&B|C;VQW3?%`nThLm+>Lp?!0YsW-SSOZYhtK6&V3vC_kI$F(iBXer2}VJ{Xs*@ zS(`ltAb*q#O1);FMri^ihx9-q!X_iyJ4!ya?d>+ZKL?(BxkRx#>YdFPmS7PK<0e-n znXu!cu3wTPdZoBuK@nKKiuF>&uBE0#ZH+t&ah&`LA4QB>^Yv2a2ywjOsHWJeLQ&Fr?vuRt-^~7sL3V;!h zGzvGq@e@g!nS2aMZWDz2PbJ^C3x|gBZND`tdtUwq3%d4N$w0W3S`qVOb!Bcxz_}}8 zWd-saQ22N(e4bxPYJ;?H7hhu5T&0vW-DycZ7I`}gy<%5YQ}m6OZJzBAT}-@?!Ky`& z!?A$jhb3t9+}tYgPf78KE9R=rU46HlNN{IKHk0xYXsgtt>Q2WU0+s=zyDSvTUVMM zH~_R>zBPB+mO%bBvO25suGmKl6t`0*RX875$~m#Abo{dMKR466`(_96B8Wgk+#Ce$o}&>Q>} z99(HYa=0x;&Ym#a8bVIQ^J-2p&RnF75JW9#a@~pJcsA5DHQC=nosMC+y0zgPPB>=n zH?%5nv#1SNzAMgfe3IWqs@UzFTi(6;&=8Gk?q*Llw*rfvMhwAW3u?J6qxG0)I-d=e z(c|pWmOCB`X9hRMtP$PQ`TCar=|loju3DU!Ses~USecmL|GE^wZyfxN6ZL~1vOU8~ zWqBaSgdpqtOdZbUgY5@n4d`RXARtNpJ7J#3(Z4y1Gb2e38J4N2Hf>X^AL|>W(SXl1MBVbQ6Fp{Bv zpCX$YIa6)|qq?1)b9x&) z;!N!HX+BLx$(s2?5Y`Xk{-R+y~RfvV`wlS;ZRwR zz80HAemfd=DZ9y}Xjp7UiZfC;vK0F;izq>SSvAgGU&zJe1}~g9yN~2kn<~ENw)u!Qw}WAhGsg~N zsuG$wRPqQE7m%;(P3h~|^u`ZYC`^~Yzod)cU-=A?*F!n$bXI9Jt6k$?VLTQ343;-* z1|#0qj1V>lg#!HjUOoQZGo&kXnG|x1MUKk8;ki&vuFkk}zS)W==$fmN}o?l)hV0^bYKS^Ri&COXa(O+6>8a=C1 zqcP~3Hto_Y8vUp0OE;<(L*l@@gjX2yP71EM-^xz+G^ojjvarfT*owb2k8P(pjD{r* z^Z(XPp@HYQv2ge2dDv^MlIBw)b8uS`Ff z+5;N`BFz}1Sf9vrt!ezOBau$V*RorYqM)>&gnJjQFbz{SvkT4mRzn&;&13iL5!ak} zZ(;1L_N%dNOhW+U&8}2o^W?~>N1e(nI z(NcelW-2ag?t1WT3}C^ube2i0QBJL8dz*}&2CfL56!};c*Rw<^w%U1%ND40vopr~Owl;q9vTA#B#L(76_ z9F*3~v%`Guz4mwwaEF>1;*f|3wYJT9!$(vvJ3kbb=ry z8%OriOT5)Y13Yrkm@FaN4Poo5TM7Q0-ujl8mFYsKJU7iXKq;SIeEtS>KvW~#hUvYL z8=l^Kpn@)uCBbp*mD88L2)L)KLQxzj@-%s#F$t<3Tiss!i!TJ zWu>jJkq|qXW$}m@KA&56vh&RcxAQ6mXWQkg-Sc^LE2HX23PXMRK~%JQfp0R?%MWw zld2vmN<*~5zOh9LWK$npa(BVvP>BgRVS^uwf?Z&oM&ilQjRUO`IZ7G0q{agZB`P+$ z(AkQMGuqEh@HKf`8@W^Xhhwgga@f*H(QtB%M_yI+s}J)AnHk|eP2F0xZ_3TD#}Ta6 z=5%)&(2f+GR#**LVn4na%C#6x*!kt9Ie!ETNh)rXSZ-+kFPG7Y^ssl-@%W~D@TfYD z*RSXWKxv|xs@NPE=}?Kb&z<;ou~(7Erp>1h3Jo>)Y-ItIZWci}>Q`ELSZSpU-jU?+ z02lA@#nW%OFvwDP{N~r2?oLfW!g!8U`yVj{njsgP^9Rq)RF{4yTKON5BmVFHgOi^p zzoN3)lWzV>EfXN|1@wTwIKDF{t(Dwys=3L_fDK9%fil$aeJ~2mPee5eN`H>AD-%qc zH=^a14A&5RhbGTB)J>Ofsdki^jz98Ma0Y8NYjwF*UuzKVp)Ka}*m6f&W8UDAjM@d& zqxP2+mhvsUpKD$mWho=ut?N8Na$PkdVr@H7TnwZYjP6la%qouKRLlEKCo`>rY z>LC^m_%dz0gG(kYZ95BdeuQy}8*m#E4;*IvMWj_+GeH_u-jT!Z;8|+BXTI1Sm(5_d zef}_@5p$e1J`@ccYm0K#tkj*XiD56U3g~je`2?!FW{ga;=Y6L|Ll#-AHao_Z*QS^< zF30ahpPtQI%^4g;x{l)go**}^U-Bq$<=~k@1l+jf5^OWQX3wV%+W+i;TN95qd)3|8 z0yjD2(Nmu~Q44mN2tp1xlm84nICFn@qVu;Ta>IzTQps>O;isUbi3N8}-81sa$O*FpL}k&8$H$T;tlx+%(KM?Ngt9vc89BZA znA!a}-WZlbDE5WPx%R6mp?FMD!m6A42UR$8Cli$~uzqc8|HdEoRvu_Zch#%yWR_AR zjX%g!i#;pV-uh*ftZERd%V55E?vT)^YB z-)0at->B12EvrFZT49`)V@H&4PtJdRD~lPs2p>PkGg^tm;_*I=LUb((K8)pHW}ob@ z9E(Q%g`xeA==UYoh4XiEchUY@K8Hju(*=FxkJ+l9V|-IXjGZb<)1ooAn>7#+_k3tf zod>Uud2F51ViXCOMz_@b9ay7bYgci6qaiIMm&z%n08d}Ia7d&Jg|iH?a{`|ao6hZ6 zMnT}+G*NvIxH5kY~k zzuDey-m(d>7#Xc3D*_u6UqvV%; ztz&bH3YW>~iR>m`O+mzCU@2F-ctUJ(Ubzx^ z{Lfz(eJU>PDn>PpXwooU<-!wd@Ch99>w}{;ze3EY+D#Wqymrv&=X>X$AJ{4CNTi$c zB!W777OK#`7tQ9j&Pz->JrfQ1+`KP@_Wmz7Eg^z!Y?Aw?82Y>+6nuL55s(ZttyYo# z=l;xBP0!9=969DAjJwWtM(y*f`T@(Xu~7Q0xRwMt|AUDh?`msn$849Z6@So>B+GyN zC+VGIz<3tV`}^NDcj%&;Dg-*BpNGEv+t~~}CP{NOu#=sq6*Ypm8vUm*&xz)`%u$+_ z)e!5SYjzYj_2&P1+jT7orsDH`6G``4`9BMbvWN19{m+cTdp?0RnriBnSG{WA{DagU zq>C}HU<4Dtu>Wgo5qX)E_VFHH{#hS78=BI8j1cP$1&YZ0&k}@L7K;Ya!j~k5a`lRW znxF!tQkvCpm4tdkdkWjc=?!SN6YTyx#EBQj?8;&B90VSpy zF-fx1vX2}9N5b;eSDbjrhRvT}qu08aafYG(cY)z52uk_ZVK3zb<3SIX(8}vdQ%xkT z!@af3&~5`bqDGtFnot8<*j&wzETaQ8_uV~@AMDP8c)K&~wm(JjSy0|j*(S{)t8wJc zIUiK2C3n-r)O?wPC{05!yJkm>MqmCE?iQp-YP86RKodz*DwfMzh`V6ZC&Fz#37XJvv9HI7&> z5c+{>v;V?gOvAmA@ulB{uG_6gNdZHvT?rhE<;Xye#A@uhPr7<~G_+h6a&h}$b=DlC zX^9TNIx;UNR4%1HJM5zZ0NV{&B^d#;?kRQlT#us)o;8cBg0`kk%ahv3B zJj=12tQcf+(r5DhA($v!`Jr^qvA@Ud4RGs%Fx+L>uNz|0u>q~RYlBN{an8!-R@%_D z!-r85I7du1yREL7!J;qQycM{aIeXHM_^%?gz;tm=0O^oXO+_gnxVshS&< zED)^L>mFVF_^F#fXFxxL&0feO?_-#-%aP*5`S^%NACipv^E*FP+lRna!}W@8UI^V; zL1=e}=0{!Jj!H`_fqwgWaT0aLA7=%$fE<-MX`%3s`9uMCaL!?L#!Z>9+?R)I&!L9? zE1$?GSKhw)yp@MpE(wL zpS-h5k4T&%?(WM%qX?(dyAY)kxD09JEsbXW@}?9@{-m&CHZRS-V$~WZ{Rdl+vw%9- zIoZx}sxR2#gf;_6eOw4#=ATP4>c`PmU~yR*!^+$z1I$(?M4MCrB8r2puF1)YIuB%U z(K1i0MjH-10H$Og6+o|0^(#Kg5yIS6K-z{=pqbOF^xs@|ewm+#aEr9aIFJGF8 z7pY^5tme$v6m)s?0Ar`dHappzLTK<+lzsuBKqiVBIr?18lnNA)*G;jsoWdqofa-^> z>kP?E`pQ1ehy%kde!)4^loky^)623x*~K6 zp@6s@D_Cs(fLD$R>N+l_!`;py*P;R z|Em>MPDSo5{Sx)v67-iJeHA+p?q4CU-wWS|Pk8^}X`SsK<@*1pjiAGCIxpQ7|9zDxrVj$#Y7g!NrM%Ofry{h>)b*?0;B$o~PGpQbhA_9;i^w!U9?V2`TF9P&gu;0THd# zR3$G4k`N{QnpNc=DvFDe<`oV7AKBo!zL7nf)3d1NWaxW3CQm@L>(}=gwH0#C!nwMSgd{*%P`zU21LS`hdE@F#DEVzw}#M%BvzwTyOg`T zyXlI>MJ<4(rRBvK4I~Ku8TKXa=32uhi$mM7v3JZhXSoKZ?b&EZto?WSq~%0c(`FHV zoV$GH`nI%w1arcQ#asHd$J^Yf;Q`znNI7sVrk;O?|4PQ~Os*`H=@Bj>8_FQvKy1m*HpWDF4rL@P? zQPXBl-&~dY>#5xa0+Sm>qWU_n`QE`yOIck|-}LX%9(eqe)CRV;G9Dq`?i-~qln1QcSOav;k-rvk2}QqS#l4if zU*kAtt_fHdbf48+ezi*^BZ_9hCY_6c6uq9bCfJQjP5u^zG4)&)0M38TsrZZPR`~P= zu*!dg%-6o08PlK8hTCDkg=?}AQH(HeHda6A#0AP?*`N;6;$g4AKp>-tc*iZH$}M>grGr?(eU*>RpLKtx^%i-d_Buo9*xA zwNUIg@f9=W{mwvGP(9l+NxtQ)^uD)(jP{ce^A<83gRe#Ql-?dZ{syyh7H9>P?cb%) zrHm?RYtuWHARBsqbdR>p!z~T9X0eUr9pl#IMqsh+`pTrk2M)R10vH$M*InNO7|Oj< zyXV$WJ7QzeF20?HF1NVZ|MsEAo>l8!DC|d6Xg1*Orj|3C`THF(qGZ%at+7>ccu9MS zq14V{i)h5GGc*zcTpJm4QY}VFoR5kAlV<)8ECo8)yZ)_|HC_rvX_i4>xiYR^7+C&f znrNLUmyFUaf$fh);RkdMUJL;h+LlE7B%YPg2F~pzgj}CXhl^? zW%y^7%hcx(J>v@tEqj!;G$C9+{V~CqiF|zwzx0fa#c<04+=PLVS=`FQS4LgwTtoyH z0s#7(cI?MH_E&3;1b~d$Y7<3S^|u27LzNY@+I}jEnWDDz$`s9kXF&|i@3VBfSbwa1 z&FYvZMtJ*UI9};RF9KJJAb%72R>ixVZB3{`*7f&2H6qK#U-wjxOx_hjH`n7~07Ds> zs4$=p>1-X$Txsin6eUERF0aXXAb|P|ukS3kba^~81AO5mAQ~0p&bhxrRt}x&Qxj2s z?r30iBCG=xzW!g9jk*kjUxPP0{w-FWM5{^EyE^YC@o;tJSSTKwPNemH;1Rk}Uk}N^ zne8NVjsnTw$`zk^)AX&udr!wYP=#ig$74jH*LjyZfX9{ZsOt0y0Bp(jm!N?TjCo`D z;h}Yhqg379C^NH`d3*uL(%Wn>`UYaS9a#EY`%)snbnZ7a&8o|2zfJF}E{mFt@0pX; zsnLD>>Y+!3r6|`ofMt6BcevbjeUfH>EI-?r?c8gC;{F#HOrja1i|Sx&D{OT&*MznL znc3Qfg?7`3w?`*kqX2Le#1vj_%|)8BM_U@KRJbDW3l6hAEwTS8rdR0H-t)gDi0O^V07JpPk*p$ z-*RUE!|)0pVgQ9DzF*iAhmyL)QE1W0L|XOUq z>OjEV7Y6FOj$p(B8|^GOQXHS9v(NmMdfoO51OgReJUoP2DD2UG*^!H`BAkBtVw5-e zfTO1j-svkED{nXHtnS`fEw!P4APU{&&ua>#nH+N_(!L1d?iVf^*Bb5$JoaO9y)kUQ z{HO;+`dtcf;R6kFs$-D$gR)#o>8g_mF~X&W6^x!M^x zI%~Zk%~|S~hYzech}UZWvdTcxTrC9JwU?-iqHn6vC-IjwEyO4>|A{Yq+5hF9+N$j9-ej&?0Nv_jdCdk`c5^*d`}pCl*tZ_ zsrVE^&1`D*y*{tmO*`9u6TV0Z}{MZPiCP3waHXY$lo0J=@f-l>?$)Ocwwc z0)NfkqpjYlg_|9V<4MP{R*eYtT;~&xWyiodmY7!RgdKQ7g{^zB6xKB4^O_uY@{VJz z$5K!@t6HsQ0w7rx=UU?KE(U@7 z?n#6LFYwjRR`y|l+nr@R_)08Nz+X<`r>E!a7<<2k{@r8$5OKpfJ>wC&tFL(@roC57 z_ImcaQK*-Lynw2kG6OtQ`BQD?rZ94$>hwYWhwebZx}UNsz!m2E+jmSF zmUYHD9Pip3C-4Cra>P64-0b>|0px;bt}vr%+J{nCc7Q(ltMQ~c!rddD)wCNiz%J>G z-|P&Bpyzvl6jNLBpp{{2=_?bQe_X?#3e;nI^FvslWfkG#M1ov` z5+$_zn+IM1BYJ?Yp|+F259LRjRUT_liTaobeF*(5IuK?;B=%9S4#~+NNgSz-;p#64 z#%8}M2w>1_0mJh3RU1xFYV%cr+75UCNb$#*9p{Jg_xta8`PxH`X1)s9hFE(L`o$MZ z!D_SYql|7?`f-AzpUy*Sm)MEbqLc09Nn=~oTC;~P4=F6;_vE&68 zDnJrTy%4kRR`~E}=KwHlJ%yFmV)RIo{YC*BjuJTqT%9p?(*YG^m~{0${p^F}z5l)D zQBDXDLxa{Eb>y`HN($SfBk|fc1Mv^Sn-KbHTDfX#7{l}5ZCpzJPo^^2GN(vW<@nJ_ z5LniGeP^8o`pMiRSJG35v2yoW@W#B960h#4;4`}DJu>ymVdD8p4#EyS@H7tFZ(i@Nq6+n_GrM>CJAF4rOa6kR$N?l zw7@L{>pRTz!EPTC2M=ZLPRnu@gUjFZ1a{YIzGgosgjP$9M>Q2D+Ce{v&BG$=e^$uM zXCD{<%35+G$#vOQYRnDrZI4>{0o*y$2lIxz3qF(24A5&|EwD11yEnpF+Iv%nY4?7F zvu1MOX7a}n_KFKP5T!BN;J3g4pmk^!z?6s?aHRQ(Ti&p50<=UOn3 z7H&LV0&hm`_gUW3t>ke^Iv0-_hzhmP@ja8j0`kEBh=8K*pGiYQ5bFUO0w-?H-b74CrMDM>Tuy4!vmhxOD{aR>Nf>u~DCvdc&o^29`x*I`W7H4$8L$ z8twT63`UEK2ZF#c!*`LLl?~_rQ8b5o@hQ5otLY=WJ&PA2@+xsi4v8FQf2a|La=BhJ zC-L7CN^IpQYHJ@R-3MByj20DsI|}?WYTPUiBic!ntxZ4@hozGH+-@+@+k(Vul$LNW zUY&lHrBBLyhxe1LG>(rTH!9ahW{y55`wFD>CMQjTa(sTlZHXmMUoh_CtR)b2QW;ae z&|GMHwkmBStUsY*vyy7$;i_DjOAc34tX6!Uy{p3 zAw!8Hy1Md}Q>i#*y^zf^#P@lUL;iSoY8^LL?nl3c<7i<9)2dZ1UZBhO1wLx!G*&E& zgK9t;7s!mw^rP$$!SYKa#DitYhEd%_fxg5mi#y@@%=~9m16tJoQq0CYe7g}j3?RBH zmA{y;qT+bELIJ2Dg_w*XtzV8P7~lcu3G{k5XYScJ`A3aW1X`z$N>}Q%DZ>db=3v-mYU$ZJeGVsa*{*>s0t(zu49X*VZnmXq`7 zk-wF0eL8B48N^@s^cAyfH;X>MFiu9ZSy%ANY;{%Go3gd2GGDPWQ|Q*2qPqPK%e2IU z)Q`3!;yX0OEg3~+F4-D8`c^&oDpucQogr2ZGIn;!Rz0&;N?C3)IK2W;5G&i}5o~@e z#mTs%fB!_UDV(iA!bv4#-jSXwx3P^n+R&#-{Y+W5-Eig7WG9vO@v_lDa6wTXWgoR_ zDONt|Ze|s7wNMUV0k6dll9J?>WpMr`l;gS>KmjqE+N>Y|jO(vU-G3S$&_XWuV|BzS z|KoEWzqX(_R-L0;{gc;URoGcD@(cwVdKLW;0xVF;SCKTBoV=WF13&WNKAb$iu+-}+ z^<>#Wb)-`W#9=890$_1}$a=>`=DJ!IaSQ!sQakw?Ju#*6Kj(ilIjjcUW%qkbiRp|_(N~5jU_|Q8>h$VA4 zT>gna@=ri_OS7Ikzpa25P_%B#$(6Lt<8ZZNPiHf+ z<0%z8v&o{HW2eXBXktIu9azxzn;7K#U6EtU&MXHTG;oanZC-y=#Mu%WoOip7gkcjaQL(uN&X`@hZCv zhN~y0VRk$w!&7y9Q2-$3+jMsQHwOPxN5oGLmKxgL;km@z&AcQz$en2bzQTvqBj)1~ z$}r&548+mfpsUSo-TK77N+(~gFVH)!DQWO95x`PZl&*PTdFa|4zxww}t~5!sG_C10 zQKfr*Cz@pQgq!sLs3@5y+`Ppuh`Ol%Mcg$^>7MngN9`@)(jav` zTh99CB|SnkLL+t3Q&On;av}>AtOYPH;Y%df<)iymA6)C(m{DlGtIl~Q2~z~<#3Njj zVSGJ?=2u-0AP5u+VRt}wBM!YDgOB^T&64hpIRIR(Z6Ex&uUmr1$%GO8XhI@)A+TzW zldBJa){vE9eRa8C)rEXSe)P8PDZKh^asHlMDNfjjjSrK|nmfrTe9bu8qZx^_NGu1b zukLVLb;Cz=UjiJ%ltXVevw@GQbRX#dPSB_wfb;u?sCnwuUkToK!p)C$(%AcTg30~?W zTjNOXl-6LgIPsH(pPEP*cEopv9lOV-!me}}zQz8m5QlW$0X7`y= z=O?!NdGn zkvzdiK*2azW(t(85tDuKH3p3*p<>_);P)lcmyfZPg~Lyo?~%iIjkA^6snc-3s+uB{ zGkKEwdDs00G`f7VK-?~^^@R>y$)q;0QxgmSKE=`Os_FDZWT9#{tDolHY^8C}S+(k( zpF!MytgWv)yez|~pu}^@C4__koBr#$1YX;z8;1PNjcSbyN1QB~epg5Cu|2emXjIWw z*(O6cA3+>z+ZWZ{XXPk&<+)u;(1hY1vlaJS9{|-mjjX-Bm>^0pV7jSm(WK?~3Mv-t_-U$+H{zfY8$CwwKnrU{TE1mg zds18P`#nlaC4pZ`zi&(i6|l$i1K)=ia_!RIgwYfDgitg+0K>q4eZSZ5`|o0}HEYexz09fo?C05MAIR<8>`%8s8hshJQ#EiFi(ldR0nQY} zYY-sdu}#VhR<%B@rqsS=fv_Lfknt7=b$eKEl4w5@IdKJb@wLSk^!$d(bz8?T5A~*| ztBP^oFWvsu7(^W+1=LQ7@pni8i&`){+TwaK6sCDz`)EiItxK)xqvqRV@CSKAJPKl# zQ@XDmrn4omLiT6fr9j8F!?s=H`XE>T^#I`sYb;v#U_2QqiW@w3pL(&;+mkUElo!Cqb>o3D=w@r<5v%8b09`8u8KQs1B zDOt7l^=vbe1jT%XO@cwhq_3HNd+Si1Mu_<<`PFcXEzeZ6Ik=aSUcQzN-j|n(rWg)5 zp(n|Ui2PR!du32s8S8)dM`zCKAEe}Exs{#8#g8^d3#FnsS0_~TtcZ-jOKH22E4AG& zQf=V^2A2WE^=>_UbXW{TFruVPnYjMp2E`oM>5O4GuH#5KSrSyo!?f zFWRIbUcHZUiIw%~G;MWPVk=kfX>AY%H}$XPn2_M$VY#|ed_&ZX3>NggkL8{k)wSVERZC`_ zp8r1+9?@5cbHae#uI)@Wm^U2?XhLj+C77;pP)xJ;ZSKfq`oN!HdVx|#eh+3a(}fHO zDC-jft~e=pt0;}^Xccca-ctq#D$lcz%H%+;Mdt`&_D(DyvH`bL%1l2-R$b6 zjj@ZIuF!e+pqQUkwN>FKiQIkt?@Kv?>pS;p23PXf#(sIR&x?32(5ue8-~FGmNHcCb z`JHa@G&Ki#O~t2z)kHRn6>{7v{f;l&{b41>VG%Ae$@W9<>G`IZjmGLkVQW=(6;YRt z5PO=%T{)COvzJQASZ;dyWgVKihArM4+G@?o*7uqtlnYV8hf z8;4fTYYCKd%)k%FdtIq~S}ui)%HO?h43gpHa=>q| zRFsOUKUCXMtlm5=#H!!Ycj1?D6fU$7#&1pF zvgi1u!=w825pT;85=4J(rqYe9!tD{G%SQ5Pi(uO%?3-HS_S_85W4e1^PWapen^YSS z{AzNdZ0R&=Mab)vtrgs1Tyv)I8sc2-o|9GmFg-7yV7^=tu6I|U3{!%VKDzS5)_7kdbx}^b0Gc6GywGI&_Q252-cELU zR{C+!C2h5ot@lv6!~kO0G-vy`q1+E`b1Q+6IX{CIAmL~I68s8a_cJ6=7$?b@ERJ1t zt1Q##IHi2l@0z>v*WbHkiP~Xim|9QSypl>KMMcFt>vRyzO2eJ&BR|`_N5u)sd0h9# zDv8|g+-lgfDZv8A7DPmx$f36jUI^M}ikrvihC(tqcf<>*r8pxzGdO0(i5uNs;`FLa z^0^?-5ck!L>T&mntM!(>ey+)Hcj_E?^go(?}Mc3_mzJ)?Y zWfRP4f9VK6I(@^PQcm`euI9uI{bb!l)p8saKHz*D0GoUH=bP20m;2B2zzD3jN!1^| zOrJ*pmuf%W9HkeqH!Y_2ZmcR_5&XESFS>72y2rcb#2)@67U`Ext{Qt8agx|4d%Y-> zn;CSrxoNT>b$tv9Ts%V^lNluyELTijqY+-&Gfrket%U5>B?TvA;de}F>t4j#hq+C* z=X7%^%EKyZ$w$dFZO&Vw3No)hzbH|P*`rsrH2=kG9Z@_O{(}C|D3nf91Gm{C-t`+@ zPwo8>Pah*Dd53g`#2{TP^X=uA#%{tkYp#&~?{h{V-^n3MNNJ zM(ee)WBkoTLIVBWT<{alCI>zX)jo#=0^Rece`+holwc$6xm+dc6iY@!m2Y;$`(i;^qcGB zAA-cM2LpVOg-PSOysxAO4sAI>nHMuyGy1K>A@Ayf654z(7u+sUjG)CgY{5VEWox(* zYppziS1w6J{plYmKFDG2O_(GQFT6avwG+V(qLqY12#4ShtM}J|+Shy~E7*kgd0h5&GM8*A{+^8J>E9+P|YjhJEm}*W&uP zJ9*q9=@ms6q;2pXgM`ded4hJZ2^ z;?^%+tk9+jW;GC^cW(N37+AIO`2LqBIW8Hma%;UtKiM|4#AeMsD6cjKH-uGv$Rg_H zp)arZB72tjq_m!kXPRWu>i z96m=Qau;~pZ^uezT8E5w;P&qWar79^T%xy;;-Jp7l z;WM@4`#yzcBrARu+S#bE)66DjKd6yDG=qyP0O1Qqw>p(xEBe54KI;@u1lL|3xX~9Pa-CntLu8$W1U*TKvpTlWt%Ecc6eE^JGlvdt)j{v1K3}5qUvTDgjihN%i4M`LCJRUI+@sLOs$BY{ zIg2koCg8g<;R8DO9^9HkarhJz#u@y5xgdFo;PZuv?rYe@788q%)5bU`aEBF*z=XOSeYtUe-ndD`G>6+hS8?@>{X06zBY2>E ziy*GfJuQ->m9Sl=f1w9IJn5mm*#U9z#aNn08=MMs4Cgy&iS6Cr%I{A-Kn7p&gYn$rv;C+-Sl@0>w!?hkav7R9Um%INX#x= zK-~2_>pwkwj!S9Smn@;KsO>@wZAcTT*1;ERwJTRw6vuhDzKipfY=KI8b1RpaTzfWG zHa_#zAte%}8VU!~(CO+cCObPd4>(Uso=@i7T4Zx+c{h$0vxc|q&DG)X@6AgD-qYum z_@Pf0Oa?Sh_)KsD%kFZy#tLr2uG6Nah~xGOUTha_Sq9H&a?+w5BE0LOo5xW=e<8!U zVZMziM8<{D26a8H{q3?P!`DVrkkd{NOFikyhrT75DRKLJ6fF?hhm3<}pCkJFOJ?R} zujO7@B;~Y)jnfwm`DwrzY&xPIi2H2^`SyR@$654}Xo-6#r%q_ZYvNRYd^s3sewu^r zI^ONP$cseiVdj-V*F)UjsOZ~*KlozqG-csuSFf5Sb(4XIr05DO_A6h-Sg4)WG8N3M zbbH4BxV!mO*p4*s&$3_Bml-tVN__CHu&qO^4UJiyryaV!$kRoCDqZL`(!W;uY=jhj zS-)x0`*0;(uJV0pxL8#_-R7iz*Mbj<2S{!Rm0JcAL9dTI)LsFnPgqq#@@>T6ZxXIf ztsH642;vS;1O5`lm{|$z5VNxxQNr7Z*RDR50#Pi=%F3hrO^^pLj^WyYD5T%9H%Z-C zN8@f=@T2l{o3I#xt4Xp5^dHvdokg20`v(uItx zrYr6VVzchu$p;K8@9h2gH)%AgPF63xae7L$YERxg@R+xgwZa4-AWC*Je!wE;S*~Qm z0a;0=?9W4Sh4Qcf7mu0>v*qjAQ(KMH3MG#%JHf+Kh#23}DNYlJ;7qoUe6gHCt>iLu zu_bmg$G9f3sqN~{4`*Y z9j+a6B+tkNh97cdTUV1sWjEp={BvBXQ8Q{=x0?~)#^U&5XJc&j=|beYsA;R8 z!l96isEkVZtVNTrX&G&EP$=E-@u=DAT!K#KK1Ln6A;~K!#Swg^3luasn%QK!$p=8t z{h!iIO=dGLjh1=l%3�vIcrSwzW8z%aBVR7N|WQ5A^LrJ0mmIVaL`#P-v5>u#5JV zD+`Ov@&%2lD(eq%Ui*LNlTGDFmP}f+Ggn=#cJ+h|i%GZrrUE?$+U?Viy$|jZ67Q9T zUiYoRBmwBJIr-$NVga?-xn!IrM@UTUG4ngZ8po~@$C^#-7sPY?Vth1@`RxT?SGOkY zzD^bQTsE-HNPXm#7LRIn8LAbw9(JjtbdEfECmu(|7WD_hIa10Gh3unC7P%5y=@U!9 zGJJfT9HGL`e@)EcJ%*RX2hi@JrOk5DP`~p0`z9Sq>+EqWCudLCL(9_RSuou^;oehl zS@{`VgflzT>On@AHy2DvF)!m|2#w%Eak?}MP+^ARegM9xa0Jig)DnbGjG!m^Ai2z1L*X@Y)R(9ge|Hh=3-CRcWQ8*<>3s z>oVpPxC^mV2?Tu+r5auG-9qOLq>%OFET>cQg+s~3Qzgq8xreSFTFI5vQe7N)pr3_` zAv2n6#MO_j=(`O?6y0sPFkTqy^bGO1u}8{?k9HyA+0xfVa6wn4OreA_PGn1 zu^n9JyAY9bXNeLAC~O4= zI!9>h$&c@k>Ik2yf4TKIq2Tcc(!|!0&%mejORBhj*Y9>X)#f1m?4KHy8RWfmAYmJ2 zd}XRN5>6*74J{%j>VT{J?r34Z*nA1t;a@*r!*{=^Ukd*7S)0M%n2cWp|8Yf%Sb3@=`~0lqlgdbm2I}awO>2{5_~BCENCge zZzb%4-!`wo8D`yQ;%2ieiY=uYf)v_M!EY}~zL_`}G}VY6HJ}%9o5-{V&Wl&XCkU*t zDEF?kj{T9jEHg5B#iTCf$P!m%W5}|&R&=G}138A0A93PWCj=mTE$JTE7t!4USUkz3 z^Ky?)AyZFrE@<|INgs9@9|x+mJ-zh|(d{yOjs-HUMtT4dQcdfOnc}7C{da`u1z%bl z7SXmHinu}Tt%~0J`QPR5;CeU@>hyS+JZp@LURD2haH!ef3T7oUHuY{x>*z;IAX9G` zKzz>q8^U@aci8r7dARd2&{@Y}=8 zSH594aO}0-3K^~tZ(lIJekgX0Ar2~n#p4{3VNFR#L!(aEW=6Xse_y#LU2c1-GdX$+ z+jEnqzodC%Xq2<+mg_*x!!mk*{Unt;4vW$69Q+ME)v_5ji8%@eEpi1{C4+f`Mfg)M zo{)2C9D&V)J9hiAXk)t%Z4P(9aA%PDB-})eJT@mre!hXr&RyK7oo#IGZ!UlUtJumy z&Okh|9;x=l)fvqP_SZBDOGNpz&t;HpeiU@CgM(yoG)apac@P`upnhc80kTm(MxZe) zx~7M=V|*V#n1O3Xasy6d^s4`vgeO>5yt*;cT`Osa4pO1Lb#BYA;$*dA=6@#N94KU8 zg)_0|-j>>1t5P73XNV$rJ4Y{ft6Q5b9`i$G;U|skC3}kVjo1}B{_Z#WZ0{5D&&IsE zys2X&QI|%n&nZQ|-GQ75>BuN8DNvj`=U z5EN=#+^lIi`*s-XP9;z`etXqZfX-~vU-%x`0>(b=+Ze5<+*d$hx34S)16 znCjKD$Y3`^nxj&-v0%CJAQWWzlBW=-(iVLg=tIcwb|=KgxsmLqeeOc8O;rxY>f5E! zq@&5vz?$IIx$G4`W|thHDkXts1^t<3i~DLRI#&&xGl*icZW7wBgt-uv2Jc6YtCZyg z$aPioSLj zt72myW)2UzFS=J|6l$~IwUx3bG8gq=)XcMdd&=7Uhg09Qo)wPb$D$7WkFNM1xA4_> z2}OEWu<1q`cuBJy69c_?Lo&q)DDZ)Jn%!gOX=q+ZfstQ!p+x+xuO4&n_c;b>NXk5?i1!<2Mr?mbqc-;j~`^MwV{&(31qNxsg1)uk~L%1CE zvDyAH7=Ojw8aJ`R5B{ID$?0i)I^w!7timmqnnh`RRG3wiVKcMC-;|l7JL9Cqxbp5M zrdQ{1@OybMYj*J27XKJBrvYi>a4-ej3CVY?bKPaLon$L2i09tNPG*O!)rXCj2=P}Pl>>?K(LJ8JWD1R zG1WT9^p52bq~QazPdJbMiHq!YLbJM8RpJlDZKTVM{0f#Jnc|Gy{T3B0qgdX;-S*s! zXn`uG;caQv{;UEg4LIivL*!@;B{@(@*Wz`t+jjOePmbiL2&%5iAGB~~;An`5fx<_l zZ-Nlr@9`*xT=tcW_HhPrdJ-=kz~toVH@YsehA`cO{X{XG-C#E$}ts9L7&Tho~Q@}cQT>`*{3tR(;< zB}(2Kt~2$g1xAzp%-rximL`3K8j9}AonlKl3igb0piJ_y^AjN#%}$f-R87mKmirKg zF$g~|rXyQ7%P28${8mCi@1zIng(n%vM=6{glHt2$hGpP08LZF6lxVt&u4RVp#dls9 zr?bn1eWsS57?!W{xF0Lvn_c*blZ8d-^S@*8C%5nBg+O};S@1hC=#k49Nd+c973bh1 zA4ULddZXSxs{;b-J;0#hiKMMOz4s6IdCBW~p#WEgyKa4K5*r zGAP^zq?~<;_Uo5;=wmIHDe%whx|tRi7=uHek_I^7FQ5*g!L4Kpl8WC~=p`PRHz|9I z2~*cO!ROL?k<(>;dYnyd8+5!$d>kRdLoh2y{V%yQV(ByD@Q}$&neUE6*^3hdwEhC` zKC%+)#d$(N_GtNOJtjhaMY>A$wwTy_9|SN$>zNiV<6&ro9tgp-!-Ttq^C&6YFs4W% z;Xj?!1qpO#3OO-oluo}Ahlwn==Ob}k=OUJDLe?g6Dmmg!7-o7;ug5^M08%(luq$0k zt|+PWS^0WTCSMb3w+d_{%Z%CqQ0j@7*bA$sAFf9a^Nc>04F~R5BXyBF53~z(q0AQD zIdRyo7roK1&bIWiT_+Q(C9sWmOj3unIMGwCyXi>bcWTv~2H8_VEc02k_w~?=RtTGianduu$no5bD&D40+ zy?AZZx}P6T7lvTmcutwmn!uU84ZSpuUM;o6T9wI}$886@81)@?w2`&!N8O~9;9d$=G6b8vE~cl zq?ln~e}zT?;6UB*?XG*?*VQQ!l;pjCe+LjJZ40TxIjnf^6-GeBpwWM9q@!)PKO_~) z_zF#5KKp$k=u-6hY^=`BDP_2IchLvoeb5vWZ1+k;BAc&{EH5B~vuxZc1A|aTi3Mb* z%leR`W_E1-0l+gSm+^-y*+r8mXwcgDKhg4UEjkM<+nd}ADCibC4X&$A>`6?#g!B$V z_~(a?W#_8kum!#O@SqtNOsyf5S?NgMsP7;#+;5CYFI6yRskWk=*ZRCu&ZeWMG^C;C zvG`9a^&29POYq`Mv)>fr#RZY6S0@wBL1+h=t6TK2w17Xw&BcujVSC?8n(w_T4Ynr_ zK-&|LWd=MZZeuzyFrk^pzRw2NwA_-(xvm5hxp<1Bbk73bUKix9%;v7iE z<~*|j9P~Gc>fm%Dk+ngP6XushJ(oZ5nnfVzCG)`QXyvix-X52w)$-mPXKjd`4XO!*3%I_w8@A;^F1(% zE?LuBp^Ov!ft@NbD5XU?)!}ij{rTrWWmZ=2g(I9lwpaAK?l3ZP#ckP_o-f`cQWfQJ zSKg3a*yNt7O{&O%vxka+%4}zilH#QnkLmA!gA%o5O7Gm~y%L74*eMm}D_^g&VY*ID zq>u0hKRO82>H2&Gnl0H-Vv>Y(20`t3ZJ9bIVr=CM(-$8rChv*%o4erf1+4ybQPI{r zJ@^0lN$J8reo~=tZ9s=_uTMB@i%25F!-Q8XXLO-n$NCu9#tl4AAJ8^6Zf!;4*3`gRVT~?$r$Fml+Ta6=ZF#?h_EIfi; zuBZD!xFPs$nB)OCJ8J?vvLPY7ez}uxJ&L9+O`EZATS5wm!2%a@uHTH(P)d6z?8fSL zgU?1Qa-aT&&mrB)AuqkFFA_@n_DBJ=GN88-Qt3yoS&p@eE9ZCiD(GmZI&kqWkM%n3e(HZtXZvmH}2O+azCyi;CI|?NH=rsI5w4yEM|6Ltlw{oSXE*D*P$AM>>U&^_Xeqnnr0qQSyp7DdcDivFq3|Mim}c)qIPGiwgzCWQN5+0x+f zx5@xfX9no}9)GjDR2ywMDCq&pHM@x_asIW++NYEEJGb`Ki_G%7;v}cbNk6}(Bj422 zEUnZmCtvL}_VtJ14o>r6;h3R0LBsn5zMoViJTF7XRlGQipbWT=CF7Nk?JrYHDw{$~ z=5Mj6r*C9-FOT|V*}uiju2m{~OAXgT9qKTjTi(~B#{+xLVEbkBmWhFX zndk=;@}f>F$r%>rX%IJ!%mzrQb9&Q8bw+)~^-!N|(N0H<^w1j$0er2WKXYkd_P!+e z9G|0`@FOYpb7H79MOsEoao&iU`Y0(*=l0U8ieub3A$5Tl&M64`hPqf4xvCE)X0o7mSZwOhYanLOgXhPOy%0D6g7Ns< zn!NTq-X3OQYhB%~`?jM~Piv!8`TmNwNpbR@PHvJ2ope8;309G%!S4GxXI1@J2R0Je z7vTY|MC~~X?ri(bVp7-_!`)`Y?b|^dMqfP+gAKbCPxz{*G9ob)#7;_DPg#U14PTKzQsG2H?yZW{DCi@Potn)BBw3#;Wg z9D*Lq+Vtn#sb*gH0bBYueg5JMvKW)vmLg<&ZAeG;l1btaCoc2+aYv4f+Yvfb`~qW- zB3DW@l&6ds@=85~+FpFiyPPg4&wVOfSh%;^;7!!J9o;r(nsB*aA#>6i^*<7iCqy_e zcnxe>dDGv0pK-x#`4Gcq+Qgmll+o}kBlBWv<&V)jtUcl&{qghheC^iFff0D}5HOLz zsiaV3rPY!INga+ORM+6x`z z?cOHT5G;y@cm`|lilN&F!m2DSJ*M|x9OFHes*QtCYdERe!)! zG5mBn2y9ZA(NY1NT7wwQes!?V7lB1e@B4nCHUAPT+S2qmTFu<+CI_0b-QPwqU~M`i zFu}`!w`eB!%%WoK`yZBxICxnY#2Jnf)=&@=baNF05%IN@f1h9j#88QWO{od&gQ;m5 zr{hf4=>|Zy;sNat>S;Cby;O-B5CYSm2eC)&e0;j&?@at+VXJ#6QUiWE@3^gJc&L)+ z)kRx=Jr|FCu;>%CTM~D%M zOKS+v{$jmdt=Y@vQ%P5Uvth9(=bsiEy-4C>+zXzsPYQr9^d0KDUQs?ngx_4Se)B)J z{$mjTL6#(N2D+@Y2d)mDULy(U+_2l-zI-g;ldce(7OCnZ=uC(PwH>R}O0ZO1bf$t_ z7ff>2E{}9R%>Ges6j`7rOd*8&Xt$Mxy|}oi?Yd8n++))}dUM(jGT@&y;hyf9 z_q9yc46ujU8@8G}eM0zW6*zq*#e#o}>tWh1?>Ilw%Ld;nd7Yp)K^bj9bGO!IwID(NsxYVzP#ZBnhLym4wp)%;6lSIFHx-q(BGG@c&w+K z;rhmRa5r&%DuN!}Cf_8^i28uw5AQ|`mN|sTe%y3E z^3S0p{*eibJ?Q2sXlJuMaUiS&6_pRhCQN@LuEp!*o&S)JnVzWdI$d(kvm9b9ZjzZ> zvV-{3oMg4mGJpSB$rp+^`{)BCmiS>4Yg$GYiF*0!aqvm27DHIXNwRxG%D$KXlQ2t* ze$CFN(EUl}`zk8QoRFf}lxZ(m?n51coCwdjH->mKzvJaU_10wy&eD{%zKPabXwU9& z^S=1r5m0Y&sx(`9`8Ck{0ZZqSUvJ)bhi6p2LK*0(!P#&Am>Ng1HCaKy(Z~*Ray7)p zodV9Uy$IbA8PF^hgG1%1G)NQ|+yskIh6F|_u}aDOER%J+TmU#Ci>(ydIsbC-V0cYc zZWemO&lFIM$Bc)Zb46uYBm`@N{|aNHUnCN`eHUit2@*{3rE2Lx73wO?y9A-veSBfg z^odFLTrU^usSxbKnkx63FvgR7nB603zAUnIr;30OklhEpJWWYT`RqjwB*yz_e2Gu+ zcY0QoDtZ0IJo_z?=WIW~XX|SR>pup61(=!lHp>>D)`ISIpdC|S7i;&59Pwv zU+Z1T4TBD<2r^}tSy(QL`ccykJEn|p-WP*ono7SFeXo!3)B(7W-Noc;HlksR-X9+I zen0bQnx-MQy1p^@1=q3YD0&^w8Jc`405@RnbGVFgao(6y7{Fmq6d`3QafA4C0 zA5@7zNd%0Z<&mwr+L9JnfBJ07JvR-0RwOqAVN$q6Y*)ah@l5unH|6Ny z3;f3kdR771g^qeS{@RM`L#E!u{8QXUSuWH8_icG^L_lzqIag>^l>l?Pt(C5l!|jna zf40vFcyuqVk^y$b-bpNEC*Nb&ueZM%D{oAUp=b~)Ja{yFD<7qhCnLz3u!~OXy!v5D zhF$qup`EJZbfzhQjqX+~i%fxYtP?;a;`EsE7QM0JePA_hIsrkAeeOkJewfucnVX!T z9zSsTO8{>EqVFMGfbQ6X&g7_J!J}t;rjg2u{xMnn1e*kTJKrDPp9~*iV0A}3-Y!3avXgw zZJ;rB6=l6E(s^~mwW>Znc<=vC7>7qrK8pecSyUo2D#71rqKAB#+@GdkVDYydbCX*7 z^sGDbz8=4z?=E>#J__)bWVPFBE95=RLI8J{Mcs|)eFGgz>*5-pDsj4%#FE7E|M*3& zo#r)X?|FAI3LZ#CdVn|HY_$+G0rp#Sv2N|}hq{Pv4f?+iasmn zO`ZqYgwoX|)|+G%Ovc7dw3fF?Hx$pX=vmEdx0cVaTnO4WJE;*L^t@52zYLBk1nY6j z;D?~EPpIdQrrFw!d1cADQk?M@hspLWp4-d-jP;0r|JZriq^UENVSbH=>y;f~vCvZnlg-&HLY*UWr;URmW18 zUCU;)eZbA;3U(R)&;;WeQ5AUTyQAQhn;>fE1XuRvgHAoX2eOO@c#}{F}^D`d74RU*yWo0ASLElR!k;&Jg9% zde$$yWRPahJHNfdB5fhwz&VqJUzF%go*qrgW4&>hYNq9mtP^Xt%L2gcD_(2gt#dJ~ z^PjuHw>Y#d&#B~coC7cwyr4z0E2wcTmzo!uCjIKfE~@>aO)$D8QdJxFNP{EdD6B=; zSNO|j^hLrRn<#N|>NZ@yrg-)j54R5gBNm>BzmbYpSAWXSKZE1y=ZzS-*~ynSO_%-Y z)7W#9rdD#kAWUu5J{tHtG&XL_JilD~`D+6%9kzD3k$Lv4`l4_AaGguP+vkM?Dzic1Q|h@rmM_mG+RbQ7b;pNE__?OnRcgKsvY4GHFyyf zLHpgyr3>h)^M#6Q*Yy<0ipR{gaHVn8Pxv8l7&jzvUs~eSOfie>~P$9I~V7Ezv5c?MnJN{i7a}(WB=w?o%-3CR& zRQr`8AFJ0v>?73ad{O2vOp{0GMVD9z1;)XOHn2HAqIr{t3UGviJQwnXwfP1By;Dt(n z_9c>>U|a*lI2~Xhky5S=VvyFFhZ3S=a`qbslW*cU6V5z(PTCye%B`Vaycr(lWOwOa z3LM~Tmb@(jDElVi)8~q_@D)?gnFpVZF6L|v6w_74XH5`2<>7lt)KbU8K0k4kjAKVK z{uU4}a|JL%@RQpeVbJ?nU!T4g+wr=dnr_!}@wEJTxf#;BU-)=+W5aF%is#8d)0?_3 z|4#~#I^aM531>+3zNk5`{H&&f?hp?jU+z`7*=r#iL2o~c;@Ucl`OFgT6y5c@ESetT zz0D|^wzaAEFg_;6bMLdHV$L6B?_ns(_z~6FEvc#DXi&ZTae%~4Q`1GEM=()H^pMG~ zh7S8Tno!)w38wEo1@3O*h<<%5Ty)Yu{?V}ON2}xJN7i~I9f$l8jZ=|T-(b$10N z{C_g5l?wBWfhVogISJ^86beVp^61#vmrt%4EjfR-iUlIwN6fe4q~S-hn+3azM(4nL&TqgSVQWIY!I*)xJ@3EAYyoNF|+{pU8c)d3r$cD*V zn){mz-~(yB3vw|E)xTL0^F5UddRHWb&&o1tV4~zLcUJyY_odfha{7~h%$9LDgEooOz59evRxQuba)N5%-{${ywzgV zQ>lL!6RTHTWg__X;a0R)-f07MIyj)Xrfz_~=d4W8Re+24`W`5i*Ym7uWy}dX#cW@n zX*}zNn+dn%LT94Hq+8}@%`RR7#vqXdfw#iSnv8t%#9P*iHq1WXy8_VWtjdX(CCE?Dm9wzk3L$zQl%A(JBNvV5iM5o_YryC&3bNgVHf8LsW2ABV2~m4U5v zrbHiE2;Ss$o28S_IA2nOat|4r2j-!N`yTb~r0RTaBq694N0DgvDWiFR`ycfKSwlW< z!qSt@_Asb17AMTY-H|EHIGsW1x#Z=P`Y!aOfx7oi3pa2UF!PLHlXb5|zat|WNS6O2>3Iv#WTPH} zCY=cCUjwRuUx>?)nx77_0G2({vPT*>=94iJ+Kn z_BOK}t-OB+qh)s&zXeb2T>PcAY@QL%d~7$zDA%l8C+)wWMv1}cfh=)5T-?S8>HUc) zR+1Vx$K6dMpu98(Di#m+eLVewp1DLZopU#6MU++yPg!N`yTNB~s3(y_PO3P+zyL>pKrgA8Qpst5a5Bmf?00FS{!+&uW@%SDjQ#$W;LOE4GA#M#Y%&L~l^ zYY`o!4~_eONj{i;02Qqc3(iOiV{ZyDb^|PsTgQyJTPj|Bg2vrCiq8BSuQ5Iu`-)dt z+l}M;PMl2-ZH`hp-DbT?fB&Os{ufU=tq5VYx0>Ul)d(HRXRl0$ZuXq7H)j{H7r%PY z3~Z(EBkqA*H|#^$npbePv0QV?VSMJP$#Q0`_s!Q12D0UV+9>zRDwBVRNEqjt&+4o) ztA;NF{3m34Y@Z5|g4Q!QWldglm&m#n%DE-t{Q+Uxt@MD2fr$AXNgI~DFEYsdHV8R) zU>f9$@@n4g#R1XJSGTMoW8rjr65Bx_?^|5=r~9VmRN=db*6hAkP)KKKwz_`vy*T)5 zYVe-iC*xa%L=SdDwTm?qW%*x*N2U)XRs;STWKYEwQZu{k*@Kt3$0_ohaxef?yj|DB zou4`&?os&HTi=V3Umqbmy0a3lg}>MynHEg!g1u-PQn!oS&#R@(!J6iGf3SE3B<+zh z94=PzZEn9MoCbQhGVU^QyzvfbB22E?x6`x}xWMIgMr8IkP^G(XTJgiv=iJ8N;0CvqpejIH2wCSV|eRv3Yw9+>jE*sv#k zScarMmt)D(XRM0Pt^31hop6BH9!L~O zC-X`EXm``SujCzfD`CDd<6vU$_viF;aj~-FdiyM~ZKSE|o)Wh>>Z{eu$lZX4GM-ZT z;m)>5f%Cqc*)IL-RZ+aU+1@y2bCo-HoNg%hTMo7ZFVDiyPj<;P(N`9a#E`xSuZEDS=f~&44wyLIopH3MxE?h?K z=nbP|&bE8DF~gQ^YGG66;SaYad*O8gNKBt)TkKv%n;zJ*vAn85)ukk;E7mPVQ2Kyi z^6GGMEc{zN^Q*ptRw=m-FRmm+WXmYt{V7)&5Hi%~sKyNKpPRuN4~KaVSAf)-avtSq zLzorw?)gCEI9wc`=%)E4oPHV%eZMNXh3AoFXzJQ1N1$XS2*f=LX_V}8=c~m7qJL*9 zgoJs&X;*o#X}8OX)1njaYax3?_NO$UzKApyg?6QP@zO+ioX56;nh_Hx`VY304qPUl zuOu+NDJAj+!hyx(YgzW9@^B%ygt?|Ok4@`TSHLuyN*_iEA2!K*mPfOudhF_zm1?J80hH0m4c@?H*p(0#pjbG~-~f(cClc^I|IC zbYQD>{Q8T5XX~Gbn=r{wuW6N1A(Xa=Hlx0VWyO^&a4fw4$9b!aPW_Q%{+l}rp8O%( zM;6D8zi0`jv1pPGx}s2@ay>YtM^#72gcsgykIzu+?y~Z-B=JeTwb79LP3?=dWMEL= zwah!iIrd6Ynl;W+dRX_%S5-2)Oi`aK59fd-33cDS-@`{x9r8ryMRanCcny}-om-*m zwoQlT)qOh;``}VKcOH#`r^T^vCvcn9a}h+8pfUqb2!?|=9(^u0c{qe)u25M8H}#^a zO0EF%43Q&tvYI!ehEtu1=mz+<6^AxycDPwNb@Yp`S7&3Evsx+!Rd;L=HmB z;tk`NrJYo$h8-c3>a_h=O+7!2M~f7j|5ZdsL4xH?kr6%g04@`>0+^RJUjN6j)*A57 zT_*YLnZl=PitGBKkY4~}`o>C=Hmos?DniG$b7TS-Mpn6?QS0g}{stB)g15p6HR_A& zk0)Id5d!sJEO({;JEr$=5KMh*f}dp*lmIBaY`5J2A0*qRi&oG{G^r_Aj{WHdPwSFl z$VTSphIP>@tEkv|&DA2O{x}h`0^X2;rfBV)XJ97sbSkkYgl~nPz^D+<2G~eVT61^| z>QY|;;6+ciEA5pSRR0flr2VE870asJnaIN8VNUbjn;q@f!MJ2_S48RKLm@es-E4h1 z;x({O&apuu@xrEEJb2&X->ngO0I>KyITKM*8LgZP?i@+sr2cyolBdW3g z27!3h3!m7{q9atDw}5fWCq$zI1H|?$$t_ah#$tOT`?5sU#H)L*>yJO}5ac=7(&+-d z-)r*jEuE?kg0m=npk+rigY0&4D));&J^oje6BNfNG%m+_+l6c|0)3DBrZMvYz9TeprWhM&N6y6t zSa~WKgSi^)TRLMZjOcmsmieBR2X8yPs{Xd7VHS_b8P7W_&}5d$DzyY4O@CEM6umb< zZQW$%({KxkUD>*~?COM+^7H;)OA?%S^lKLscuuqT8Rp2Q0FjX=PrMhkVhGwC2(O_+ zB$$*bJK!)3y_Fp*5qW$m4&)-ba6F6Zp`Y5|*ZWuO)-5S>I>!zRR(D>%<$&_JF>5J| z3r^PUZd1F1d)2#AC~y^(V+-(Ba+_{um&Y!L`EobZOczrxxgC}+AWW(=IHN#OBL~BD zV5zK@O&T2Kj?Gp;XZ;^zUl|ogvqd{N!7aGE1b26Lg1fuBy9al72?Te7ySuwXa0#w& zlJ9=^{&{b$H%u|Bo9Usurca$yr}p0G-R!VV@5SYRSo6Qm{qW~j*=%Mdt`*(U29VxT zU)h;glKj?m!za^NnSI0?`^H6sRRY0!!MdtMAOS4fuuQnFKk4}dL@EY=K`mcBbwO>1 zxclpIe-r~=&#Qo>fu$)Z&(gM!ltwE+%T-E;wG7FCQAG!zq`_IMlbZC@QByDyvIUJ1 z6Y7i&%o_bm2I5Na8f*Upg_H>82r(eIc zCch^qJh4k1Zk4Zjj;+AzjRKpd+ofVCIXV+dt-WrHq=>PYH$QVN{e5BqHV`sGUjOa6 zyC}p*37F;n9}X%h$^+jhXXuKj)FEMxV`S=@1oDvz>=mu=Bm2_G+Isg>ntNcQG<-9k zbCwo?l;$mvywOK7xxIsGb_MBHu$N!$bV%P3!|ZqL^4qZm2;tmiYj-`oO8ztY>n2hX8PCxf5$W6XV49xH+A5 zwljkrXBh|hEKfhxe>y5ltrl1T8C+y*t^rq|y|oI_1Eo7TO3kQoK%}A*+E9zfnbJtR zfaABhhPz`h{@sRIdCtn)xeHkXw>Vh?9HWeTPE_ESq9fWQ{hKJW-ieU6`u-k>(*fc( z{p|mBT|xJ-!sAo$q@S1Q`$Geim~PZh7OBq=>dFwKc_JmmS0a)82?-H)Swc3u1;6Ux*>Qzn=eiP_=5o zrrO8l+S(`168v3{74kjegj~Ug%mAgE)N@z|n^D=IGWL+dk)?szJHe3s5{k)2ErqY* z5Uk9lV=cqlSZA-||0YWmM-*sB*+ORpB7n~TkUjybRts?8#1hYAN6mzuC)!W}Yl)Brl(I%)Mh2!LN|x67%9x=Y ziY#QasBl5Ybu8qP24MZyuy9EU`m;%Bg5`+DwYM??L{5uNM_jI&#v+Qe9J454vd2GZ z|3?9{jP7Slk{YqeV~LwLON|2FE+RkU6DR-D{%%xgvK&mr2%#XQ;FeYSiuX$ZeL|{scWtc|Iqw-l8BrNn9J`qcg$buAwOJLl*8KW`5F@qR$ zl$fZA7U9)h=lz?cJX!3mYPybqC;M92y9iyh`iLeY-{>08d3+39(rWaG6BNKDwXi|W zV2Q3=R4}!7y4rFe=a1~I#%~lT6 zaRE7)H!8rD|2R554h9B+5lksDk~jsN0G2@@n(^ax7CHXi0M-&14YXO~5TIuCqR%gL zz6057|4a8mZWOteC9$AT#CVyKWsG+EZ&#H9Fgv$FzvCWYECT8IFN-?hs3T2;-UJl8 z(g1Z1<(&Yi?WV3*TmVLPoBpWJ_xP6Z+bBm)Nh*+j2l8k$kX)i=7TCeGPAEmFN8 zHXasC$aO&7`~k>*zaU_e1?NOABiw=-rlSkfP#ZIMKsV|FX|V|HAjM zWWM5sve-mRsuoLjo&gzY`6hs~==w@(a)ftQ@f@u*-w(u(xTx~Zb5us|AAUZ3@LyVQ zY+Y?|GiIukJJh~l7gNS`@+=9)v3zbWfbPoD?gK*7YEF$#x#$wA1#t+mWq?px@+u%U z{{;#NrMZCA-zi=KvHzISRCqcos|K~->!slMv(|VG$8iY^fuehdB* z*2st?YLSN<6Jo*I^ehr7ae9_#Sn;35XL3}5)s$T_%TpsaE66q025Vm7u|-s1Lg@fu z)8`x#*h0sRRJX18isBSIL#dC{ zn#8)Q^{N({sK{hFqH4W|O7w-@J?_PQ`ul(B=+XC#OK+>y+#OrT7fZgSoqsSu2TxiX zc0Y#ZQr=dTU6DweBY(Fmo^u}U-8DIN-7TFELeEP8(=3(&hW8h0ue$}9+uH$PuLC_@ zAPJmtNAMlE{!>0D_1aAw$GOWYsFO4=0HDJvcEV3&C9I0^s z<^|yv#mHnUce!G+A$N5$dhvbn08kgJljX zUDbeX(BG7L9~VC!_m6a!jtkL|kH1X)h!$8?W>e5rmYZ7^wK*ptrY-+$u$02Y!a?gL zL;uAj?F)a4^_#0}rQ0Q99U{(8!dAB>cX8lwSM{*paA;8hv8ct#pwhcF>{OLLMsN}V%`tybMi?1nPQDtuvND=$l#8z!%gl|~H z|Hh@B)l^8~%J4xQlD1zgCzQlKLuJFE#@T1SUrHi=lzII@DzpBYba2*sDC#K!l>m+> z+mMQrS>4OAjQNUMz_2QCPIUd>6f&zEfkco25H)*t8$1u>Di7EN?8}<9fTughb#vvp23v>GJ?&4Igi5WKP+g%I&6ubf`zgs4~as+HKg@{BufmW zM94TY9Eps8RSDw&j~umjR|1F<;Ces^aJcp!wnW1E!yhUoiGM4a2IfTA8x6!o!~Vcs zXA=Y;a5Af6qDPdCF|z-zG`)ZR(Pb)Hbflt{RBUCeCQdf?ZPe#$yv^DJB`~U>*lW0E zl!W1K#W~w9Qd(}*SM=!@DXLz!(!^X0l<3B}XR;5L(i1`oA$Z9%!NBtBm0w|aiDAAUb zj}{adxjWtJnl#q98RrnCCs*b5R@a~Zm&W1z7qUxBwcz=TDODV>Zz?7C)jdbONHt-~oq&pMxh|vLR26z4~;Y zUFavn8jhCC8AM3cA`$+f`=z6?$&p+)gv7p^f4$S~F&8Q4aIVU{dXo`#J)>x)LCwgK zF$w}+fd>s%!UvEQZ`o`~F9EL<8IJZ1N1a=5$Tv#^NXCYt{&z}}^obCDB;1H;g`?GC zw>DfNfK|Om)W%1o{}?P?8K`b;89+*Q7eHFpsS4rh@JkybZ1N6mx237y0I8_Vx=jdP z0Eo`_Rj)7pLr3^GBqXEIkR5^JU>6>l7o+%Q{TIl{7{z#kqXw`<(Zl6hV%~m{#BR$N zb)~8CG60`7U9{%cLmnB*TVr6e*#OhWiEw+u9sYkf!qQHN?mIJU!+fA_tnfnaUDa9^ zu*xga*V=OeG>%A#9d}(D{31rAAq(s_4D4@13oPwbTg3IoS$^3I=8zlWNm+opB-7?L zmOr$|?l#pBYtD@Jg5*BHP|I-%-iXnnP1q$c^PF4dOG6PDEkNrJWWrg@$IdRA7+5n# zpMRzz9?1JQf7|06Ji|eCX3TiDe_<xm~LdRB6O}Y8?GF5tqKE%V{GWL)QYAXXSRiZ2(6G- zWj1@`UKJ3D9n*tmyW6$^bX`w8zym=gM6x{pJue`Jr!%Sf3?8UB)s)EE2fNe#$=?D@ zQnr&09pW>Pvbs?~*qzOO2^qD4FK`0%o?sND%Kw>%GX3&3Vk&0qFfw291nj!=;;xO% zTCoA_-Mukrf^JxR@+ap0!~|f_iG8ess8~ zgcgMIBBr}ivWgRyo}jB0jp~d}dwIg}q{lnQ!?@2yx|gY$tC>gq<&f1uj#KW#R_o={ z#HE|=&xcM8=fz`Q!a2Vux$h&*IwIOFx#H{ii4ISQMeDaNdZnkg&DwsG)}7CAMeE}& zq@7)mKi1D)p_Hn&#Gg)-V;o^yO`$Yx^WPMt&yT!!IxD_WwecSeDt^zErfTl!;Jw7X zQ98)1UN_vr^4XwKww>hl)Ao4E*7C94Btd{p&h)9~f5T0+yU#@`Xde!t4Mq}zCX(un z;@Xpet$8aeeNFo`s37(gN5q<0H zh@FKqj3oBL=CXbh&_i6pTa!oY?=BA)$T^uI@w&6I+c$s+#U87yyN{e9x~vZnMc zfbHRux!Peh7#5`E`+G&foB*xb#&(KFEatB0$-0Q+K-0D`?OdjImP1d905A6%h`G)J z0vwdS=bRhUgXq&p3Qo5Q`*_4CZKgiIBE=Yw1#unzfi*2X3!cCL{U^DW${g48iGi9I0FBM9W4N_wf z$(Oy~m;ToIYHtx9&<-}QGb^H__tN>vA(#-O>CeRlQ$~D&Evo0zd_k_|Z=%;6u+b6!MYq@TX!TSp+5X^^h(D9l!kmb!c!oBjm^`mDZ7gOh2#Ys+oK_Bt>5Y>BVY6A?tb5($@PutITqb(SNR#C{ z559k~9hq?eE*uxTft(IxcXl@7Jyk5rNXaF0oe7zOKxhx9X4jYFS(eG-^VmR^1%V|J zz?muW2%lUvipe%$7`yi}G`u3{AuPRpp8L2WyA_^xzEV&1A_c}l9Yv9_?`zJNd>9YR z@`M*x5c~7b(iZDig5-}{scrNR$n}@o(puF;CE+advug0jA%&xfwwg*_Oa=jZBsYcyhCfiMTK9uD8C=1zsFK6t@Kxj8auU$b%5A9YpPrp zsK(v^6ve6Z@HRI1I^J8%L%ey4MfZPLY$2`1i= z969ZMz5uVc!atwHjfZv7zKy=nCkC6jL?nt4Frv}wz$?Y6E!^84nmanJ zaGKZo7KUoMwXkTB^Y@W5WBJ=~Xe_~fR}sP;#N5-uW`$DvW4=O3Vj=+z?|zGKcq!z= zIlR;LVPQ97?lIXq#YG;d?upqtHHBV?+&>@oCtAHOGiR*1Rp)*lI%qEOOcpy$?KGxx zd7Kwd65|j@7UWfAuM^)~IC&?LpEflj&NbZ|u)Q1OFZh=5enw=YZwxW#eOd$OXn9k+wWjSZ%!2dT}>-apP#&=AkmB*ec>9lvEf{)g;ki`;M(5 zezD@ONoYjU*iQ$O6tm-jTM+-wh3x;_jy!3seBbQd!!jAdTaNv%pZ4vcjfWGF`+eWM zY40!&_vmojrBSxf^rQ=np`)ABUXfUZ0zK|-glv>c=4(<#+p7Cp&~HFX6Xfu_0r9BR zc@63}-+QJkPtO{`uQ@EGKg($EcrZ}=T7|>ZR2b>fqc+R2p}M~t5L`(Ry3xka5J1T< z8VpArKJBFF3J*#y3c3H+e-QhUI3RpoazQ|>Ev0Cw2+VQ2Y2k$_0$E-=FLgplz;Hvp zR&hO-`6%G!x0_rjoD5#p>onZn9|ejgq-Gut==2m*j4{Y=)m?bH(>6D8g)LWBriwUr zSryl_VXQieB#p-4rhoo@c77bg#kMyGZba#WDWG@>%jk{^&=9_G6BdjOMIx3pQC5_B zsjS5C#H3D8F#@za4MwatAAACoXuGnVYXMb?pEFFGJLHfpey#VPHWmV!$)+ySZ9ke* zv}}(uKG}MOBimUM*RFRolx#Y%Id2XZ>-Y=?Eqmy0>RdQ~YmHb^Zza~4 zRE61=W-gs}{Fb;PYIJloOp!|ie-Kf|PBYm<4X}PAMFD^>v}&<6 zO|#vj`_Tac6#zzL1>J??ts$>b``KS@6+=HX7(;}@xS0msJA zmXa8Q2h$yk{^38zf1%n=RRBaryV!3%klDLD~_{P~lJr16)ycg|%<2CS_{ z@8!R4pO|zr#DcO=F zE(jhgtdaEsk%39+@99D#T7>;QynvK??wbh!&Z4<7zhL*fdD`D|LNeAMq@kwX$mPW5 z7=6R4>_d-{9T8(A!(kjWe$QBK0;{oG61zWN9X7w*Y-p+iNm(8NHAo>Pb zN!P4&;J{#R7QmQ(O&5$5#+Cf;8%v&sVnH2K&M=%>UM@RBJZP@Qc4H*!O~ zpIChbDIu=mg50^$|Au*TdRkUpee|T34eK=(V|#!03-Y9_GGukt{B=@xB>a^7+}D{- zV#tC_LiVb^j)YadGvCGZkf@R06BO6YMi>bnY(6hc!0T!x z2BL)=x5d6XO5+>}K{Fz?Cz`{lo5eK@>KAiHf@XOPdDJ4hn~>GRLhMc{Jc^UhhU>Otd(WDIH@n(@t_D%~JW?C> zg3Sl4%uSyyK^(u$j^l^mpYDvh_HpM0SboV&YoA|uIq82&E4?gnIW`2KI9*JP&Rws0 zbxx(%r!xH>Jq6)7UB+nfIyMGWm3u@1Wtof!5Cz^+r%d`{2?||3Q2|>V52Usk#y3qC zPSYhB%bPGSckWrHTW?cpicaTkg4`&|=Pr>eug}%>PXny;XmL2*1um!>EKZaUtXTxd z_0HMjMVWx*PHSo>il#cp%pXJJG}YVn940TlSbo_fZKhkc7dh7M`atEQ9Bn^7D{^?S zZ45hk!uT|p?#X+on}!-cp6P48h~U$`(o5TeCgX$>DjNT@Yvj6}_eN5bPbk@$Am**7 zmSX%4AOH+K-Y^?}$IU8MBr7U&byYg_kDJ-_6Xp6DQ08DIYKNt!HNyLY|So z3caTGPx5VXJKQdCQCteOGgF!wj$_0CO}ZL$vAW1Y;hpjS9h%5CiLnFc%qs5ISB3f+ zUxfgJF0ui(8UKz}2^pN5o&2VEWF{PE+p}9f*!~+3r2;>M1gi zxm+VhnD={k&hw5#KlSQgDs2HjFZ71DtfhyvC+cILs8WAh#?~)J|CW{Et*-M9(gJlB z+;vSDp^7UD8){cQYbQK9grr-k0ka$e)TFxqSeTQyhN{|I%%ug@jwMZfVqER8O6_Z? zo)0h!$h!B#H&YK_#^jKgOXkRCc(^+a- z=L^d6waSth1ohZaQFH9=!vLu{Xk5xGCPPVu9|Li}OW$jymSAR|Nf>D>ElgS1qmQsN z<~MHz%BupatLTvE6`3lsdj)wteThT;aE2T)PPpAIoiJrWwbKO=sH;kR0EOKj>+(We zwKKDver%11HXyijzM8c(BlFwN5pOv=lNTNR_0x}NTAbkgGtZb$9lMt$sd@lE|*m0Q#VYnEE%0|@PumQLx`Ly ztLtcRSf1K`Qq(jQ2xCI7>E-x21|Su$~~OGdhqWpL9_zw{F&3BAMK{ zpS?PEu95(~x<4^R-(qxkDd)TVF~5g?)Be&W4t^oltkhz1AYzD7mUBa83Z9C{^G3)J z0(3)wlBSCNpR^Y%%Uy34-`)70*EE3=s}1P-GCj{(zM~WY#joXktz=e%ynUd1==|21 znfj-ZKie$`JRL9qD)oa31i=H17Sh_8FbwZ=M*2bZpFb@2JWHJE0Npa1gDJ)dRZYbE zZ1-7Nd|=I^9+uy0LRVt9GSIf2r1^PNtd$u5H2mTU%c*)SaJ)<#Tf_<*i< zHy;al-sO3pkW>4y>C{ax3jViA48X6~gO2sjA{N;EknZdW6+hGXEM@#$FRnk2X#=$l zT8b7%F5|1J53&~tgMmnt&F@2)^75o7y$H2E1o?Ve;h2+LcDM}{#9=Ps!3us#yW;Yr>%{145Qe=Q^e6|X;m};R0F^b2Lx8ul)oY zCA->w#J#!v5oNd~c1g$S^OcfZM!BLhnLnoO7b>xv#5^TVf7 z0XbgQS7gr16c@T`P{*K#vy#L6^dD%lKi2Q%^eO__Cv(U8i{23Fy7Vl@WdxW`4(&oYN(7Q}aBUi*fv0PI4Q7^*AB9)b(nLaEL0@P1@$nA;dy+s>fG=>SC zK7rrC88?VYJttMz7$;TSd{Mi}#`h=T!=bz)KD1}sd8$X60M$$_1brPpxP2P@-zaXl zr3QZIaA(jz`9KlcVVF7C!6^Z%4F&i3zNbbcuqZfkbg{ea(MkK9T(|*48b=FMUb%0=^gW@8Dx9 z@f`VI*F4Qk*2YorFic4h?76lzn;vMhSld7qomf zretdCN6=Y>qhA*&m0;{3dduy@Dc5)@jzC6QyZHe{^07Nh@VzJPZIYT-XXS^ci0=WW zsHj@Iegnv2VeW`i;)*x>Xu?Z(JvU&_qb4`sSH2LZy-ECsa;W1dlL`ZQER##mNNJQk z#z!O62SdiFQOqi0_wT8Xl*mXUz@vRv@k_@8$m3o_A}04SZ2GFY5lN(}SSv9cVxMEO zphQR{5mm(pw)(9Isd5kh7rofHlruR#rWyw^I!nt;zS)lu~)kB@->Cxe+y$ zKAF=_M^7d{qJG?luNg)Z8~(r*M;-h;r>4J2NzR8EPA3-SY?DvF!K3%eDX%l*lOccn zMLi!B;-PRouxG$Hjo0^uxuovf_-MD+uX=(HhV1A;*s2Zwokm8;#L0oNamUynqV3)f!GC|z=! zlnrMUZjHT9q&~E#KBeJ%QsDVz{p2)2D_KgM zTUd2GZD{_9Hk?k@j$H0A18wns*6Jbb`t^4UNs8nYF;*>13Gluh;9p!FKe~NeXE6rq z1Lq{*>#lWw&lpw55Qa6jD-T5U%6{LlqLC=hGP&;Cl)5jCIef7AVPpy2C69+%#2LD& zzu5ggKNEM*OLsUV^{zMgG`BCWOj)_4#;925SNv%E-a_EF=#*b#{nPI2%1q$xOx^W< zybk{U=9v7oD(ttOG(%cdU=I!zq-1+^X8Nd8y!4{k1W{JSIy%y%4NleD9~v|~y0dxt zYh*H`6I}@zt1;So)ped^hYgb)Xw(-NZRG}{cHnHar-fBcw@_JV3gtj?D#^u@kg8A? z@*JSUQR{!2co{#cXG<0cV8p7u@?c`nwKkF=)qQ5d!`GyEbI-q#_mp_omWsM|WI;Uge)pcwUPg@rLT%cN(U{ zz`&sKCH9&o^>0QQrb(R-B@lmBBy>6w)>Kj_JdovTKrUv?&b87$#AmC=LtgYeuHQ<{ zhh1HruFQg|@(NNB@1W{?-|PmKXnADt+0aUNko8;ElC0(ped}o-dfRjvRZY-sHm>Z! z7OrqT>ME|gB0xdCjz*K%1J>)?Jr25srS;0gs>Wy2p%45C=^%USr*1`Zu`>RCPkxZ# zo|ETIAIEd~a;B~iLnSej+SIry&99eWNJW@yIIOzVXDzGf@$$xj1mmis_lD3y0{^^) zJZN0j%jWy#=iBI2ugxZ-RvwGproav(lFvu!Rs`d3LKyUH{9n2}dhx@mm>ss!^Z5#! zU|7Mvs!dT(cPgsZj9}h*&xE{UbvgrV+G#9*6`iQX=eAH%P$z8kg4qv~|5uXG{M0+VMIC%Rye+K+`e-~@5 z`6tI=kw(@`TLZA`>PY=)K8FCfeyFj3OfN!q1Ibla1w$6q4sA z!Vcz#qn~2aQeR-87&du7)N(#0gxDTVhab28EW4`8R$;90RP|jsz_05c{y9t_HXuS{ zX&|E=V^YyaG$QV^_pYQZ{Wij9=Nbf*FV;Xe`g&WKCTwpFoGo#6yFgF)c`&p#|L&i- zCO(*`Y?btwH;Ip(6dp%{fRO5WC1b9D6lUMRs9|{G% z+6jB%G#aM>;du8`nRQ<=5!^jXHEPmKk$u%d?cc4e-c1DY<*$$N{XEqfm4o`b+5%KD6SoX)d=>3)u&@G`0*vreML zaLLqsndd_RZ+H>J2aa%V_6tDD=MHy+*q;!|r@)EJqKKCj_&~rttK)4Q{NG{eo!_;g z5x)H-g&qKWNQ%mdR0-(^DoBHY!~EF+d=LQ~9+=lvzyN?h4IQ}0&Cb!7-p0h(!hqhw z#=y*km6^`o)+|CnP8=Qv`_EzUk`f|Hz*kgYqlAV8{>DA;DFD7e8cK_c06zZw~K(1RMYW6i6%(RF;USOfrx_HNYIo<(^^-f{np(B9I#ijb>zN zQnU^u2S-Nc0L6Lii8EYoCKOa4LZXI7c{PQDKNHRizzPp1G#>S0Ov?{x+`-%nw7@}? zH;!JrIG-C}TVHX-Z?}JVCGh3>_!#5$XN2r9^YnZcR8w1`K$+ZLSzi8?M@j8R&Jc_= z^_yqbhA~^N9^jvvl45%rN=rw#2?EF(F~;0rLl$b^u>I&^7!R;bBZSt?IYI{b)2Z|2 zmI~!hvwkk2sh*gSr2uSaXX9}Xs&5%X6Xh7Bfn`ph&)A?6^?UK;(3471|1=ob0TVb+ zCrgxs1#B-YEZ|sHnl8V-zUm~9!X}W;0Jk!si8?zvd@@UpNg7LFRTI=IYqaUipu_rX ztCwh!pd0tepaY=*_FvH3l(nlZm;`~9?CPJ~fH9ADvn(rpAYlz1=3p8JmA6X82`Ng1 zDWLoG^c3$vb0Lu^`0@GKbLHGMY^<@|Adt{KTkdEnG&HorR(+ryP(F6{`1r^ps(7=$ zzTS~|n}8^)2u-^TEb!|B=q{jiq&OyH3+mC=x3W5oOc^LCA&=i{(aT^XlPu6kk!{ni zvM>JB*4D=V{Pw;gmH6R>g@@-e$RGm=xVpKysk{*bepup2Qbt;ud&MVdQj`g?LPl;* z&ZptahpC^ygYy*#zu^?ln9~5Z6)2rmP#4$MUM6?!y;DunBSnZ)Pft#64%pe4nVq)G zSxlW;*IOeQT(Z%$V8KBJGbir9rkF@o!o$I}U!0x2R=BK9Z*6^)l$IX(I4GitPUl3C{6a&cqMmt9sdfppcFsklP* z)K*V#Yi&+HLo2A{xG+9G9-~%${KTH4)1nIXG4}KR?UlQ!w^6>)@H8>dE zSSc~E-wTns+7K5{ZdfnzYL0WKp5JMXqgUion)k_59(72&PmAQH51x7;z8~AB3sF8jq)clr zsj`KqvO>>OuB%41tKIikQ|?5TCfC7jj6AN}nLCBy7hzn**Si>-KJ2}ga`}%2DWv<) zX4x&`Q8I)MQ4!!p3H=rioEp-l9hAlCw+n(jcP?6!rUsyKUpMzaZU}}m!$6Xp6RszK zN<5sF`wgW(d824xb}e|ahra8OLC}S&q$Z8C1aR6aJq-woG}(M5ZklgiH;%K47VTux z^N|Wa>$*R_cQVEGd;O&LmPf%JPck^L^%gtzdMaszxqa~AI(rRN6lR38XL)=~c+hdZ zgU8TyUJ>1Tx(`i-0@gtxm}{n3GRqOzO3l>cJMUj_uKre+EUz= z)i5LGO>|!qi4hQpV|24Bx~Y)9Us#@)-@>YChovdiHdXW4Oou{fmykF{GM*V>*|$!X zAB-zKT!J~EU2hU{pn?@_dKDZnp>Nu>!_3SgTpwx*U*ltide(uHYmL7O=$ES`{VBM3h^U#|*WC;Y0iiy_TBE{-tKnN}&+5>x7z#pcXv&_#h#cNM zPL36+-4F^LEqyOIC|v6xFJj##oDN(tGFpxMrqOyRX1ji0rc`A?9hsS2z)^o#n~su{ zlp8i!c9-w-{2lDl`&Y!v%hLN@+0k!`3O4#DJICvC8#BK5+vhHxj`#eoiizx+eHk_s z#ZsTMmWhhd?d@E(rXh`)w8`;305X=S zUayAG0(rumrxT7d$M4%N9a|WPwDm{r-#ZM-%&w@+YYr=7MxBXx84;jES1}RcoNxW$ z-6Ltzm}HxyyDbb-E<7iP)M(>WeG&&${k6HHbyrb8K?@r#;K}pa4#EbfUzf3&=mFH;{`OBTG6^G<7 z*j%O)9EgnU+;nb^O)nR#s9~N!R8R0D=dxsO>p)2d%S3<>?-v^kKZWTL!)6{E(CG}$ zNVp)9*$P%G(@J%#m~JsE0n=3xYw~Yp0;hRVhUC(4NBiYO=E;4;5f$unLSVjkq~{P{ zgfa%4IB`H2)yS%ah$|8$5_d@3$w%n7y_A2%tq<8oDkrTPTs!F+qcu-?Ptry8Ff?7# z?g-!_Sm4T!ZJRjJ>^XL0ln}4Pv9xRB$ShgYga_RwS2dCcLZYHs(XeQV>$AxYxCwxQ zQa2KzCb|Y6q)omS>IXZdf6L zYVl7zpUP8;=q|&SBspe$AFvhs%(a+IROw=3k0h{y6cdoL7%CP`%XQ5HLacJ*(9^vTQfJ*;!Bz% z2ac_n$u6PRyQ!Sn$+#a1m8b%^Xc6dyWS&OZ=96L0m|IFZ<`XITfxtt?+(j=W9v=)P zi)+fR&I4b{4^CIK=fHytLU9YtyIYGcW`!FIBU2hKZg#ox(8c&8O&bZmsQCDB1l2wS zY4-@nZ9*)%L=*KV9!j{F-zOink}%)INOlPQp3zbh?)qcW(pgU_XX6hgoX}dS?1~x< zBh{@cS57{48;gOv?ghlQ@-fm6V1k%YD5V$088Euxf`uR^vYd%M`PYB#1kH)*Ds@bw zXGb@2#iXiEu60*RyiI}5_YbW{Elq1W{pO4LRDPUr*3VsC#t_I9JA|`j9C#&cvG%KY zrx@pBP*x@?xZDP;1~m5gdfz-V9jkw}oOYrpCf}eXF?}U`M)m$qM}bIn5c4N1ry_$B zfWByr)of1@IZb2bwyh^@S*a0cKYiy=AZDx*!`#$y4*e8vd_0+Qm1SQNx>KD}F>1t- zzG)e=TqIcnQH45)e7t+-^2OHoYI8vpALOicDzLc`|72EQu}so?{Us}w$r?Ab!cMI4%&7O z(8yOhOw56`JAYBa%)PdGLCHOx9Zm9Gav$7G50ZRb3wJ$sQIzjbA4b292ajt;A6XO+ z53fimj_^f%;?6tYZH*HypDW5T13x{h?oZ1wIpu)lAAl{82_{f-^jH79C&A>3s#KS# z&6!t4%8Rqf=q**IZDo^f+01m_Ucb1XxWmEA$PLZ9X1a(2-Rm2QY~MhWNC=L1$S9|- z&RcsF)!Rnx6HLtBr`UKH4ljQyaVp_NHk%wy6R!&F9n=;f!ioNh6?AOoubPu!bF1nXIxYalyOCm*nHKc2r$b$ zFD!c-$x>Ax?cuwj3EIDFwkEVC$w~-o%^vVIR;I6IvxJuJMru9QQ9y~9-jQYI_Fk7c zsp^evGvVqIXtqm`JD(eu8c;1JiYRSyFH5cN8D`l ze43&gyWX?EWu!QJxOW4eSpj(1htmjq&WYXAjDmwo)$r)l?oW)CVMTqc<)~j8@jR!Y zIx9c*&C!R*BW!uZL{R5h1{T_vqPQ`!cPA6^vY?@X@ji`*#^T-eROh$}Vs*PRmj)3>XQK7Yuz6U8oIn$g9|wqjiTmKNyB$k@3T&2Oa2~9b zb9PuOYnPtHRKXIv6Ec@r$f-7h;INKuoMfp#ee|V1?@V-qGztn;C~87(`L({v>aFiv z9#02ey)yYli)8YBKkpd(+9dZPLJv+%+dpvl2K zt|24bM(E`DLMF?J5ok2vMIGkD>lf#UCkGkKxo`1UkmY}-{Jh~<^G=I&vSIh#J00Ri zJefqZ$Zn9WwX>5mqJUYnWW7kr+4-bdfAgCkwb+#3!2XbNa59`Fla=gyTGL3VIHBP{ zKK6Ra_!ny$X*L-dsex=ws~?i^%cS_HY&O{ISGzR!+00`jJE)NarJXCy)z%r;qa{7j znUL)5w^9xaAjEjyxi3g}cwE#Q<$~1#mx-*E`V8gwfR;MF8{@hSUDe#gs)am>}l8Qp}RiY~@q0i$u_t}jw-@?F%!+dDqk~S)s z&v`|aKV1@mS-G3ak+LdhI0b^*_=|mbY^>6L4kphz#jkGSL$HW z0;wWatBIf>VFxU72cWGM<+$Usc2W+j6{9#P8{i%H2%cB=d`4@4ECCSKXXsb-BUkAX zG}*vf;W;+RcWWIcA+A-4BEoybZ+Mph^rhE6Gv`@;hFw=QR@qHQ$3tz(v?Rs7?Wiey z8(ilyJ4cB1>whg5;o&F>qi%Ol_~Db1$}3M(w-v2l`MpR$&O_IPqt->|3Wf8lRd>VV zuD~7$$thh<$KZ58b6RHp29kkZXqkc7h>}rz&)`gRu2d$}emhP%c~X?o-ne}4hWX^^ zJY_eo1}rp*g5{ijMfB_CY|Rk*f!}kxk;5< z2r)GW`s3Dq;m_qF72#4+RI@OjKeOPN8rEk|e8;K~h%<9UrYQ5rLHQ)@SmT$hJ2eRz zFD;OcIVa0PNjbS=jhcxUZ`4}PZ50!$P~9&TzsSFkleTr3;C}`Av>L+=*R!m= zgFCtv0ijT(Tp%0tSxu<(yWyma#aK2?5q`!{vVQa?oC1>;sj2;bz@xyIbV3+ zff98E15Qc!xWP-cU>W}Ut*c`zlD$>GC`WDlV`^+5m@u4;K8&lIF2MwDQPgw=Og3Ej zpH6V|MD{-_5VU!nE-?@}rtmUduSEU0-tf4~&0gr-ALJ1`j_aDO3D8uceUY7PV)}6L zN1mS6X(@bfGW?$3A;N5pa`@(d2lyS@ZQhkVMIG7k9w(M+!vZ)?Gu?bG@e4mFs(J4+ z>C!~`+h5y-kKJ;b8&zr@gLr ze`vdZOy7kiZgm#wfc2~bi}o(s?RstTJ?J>;2OmP&dLQlZyD<8gujFpkC_sS#p{xqbUT^5lio8Ef-GmOrAN~P`NmPY&x zUsUtAu;1&j_$!uIo6miQ@WZMm4RvY~l{)u~fnl6!ad<=n=(1!%$gD!L1ACah_RmD^ zuU`IB28hA2%P|pXulHHTP#5-+Yu{E~#Zt47_HoJ}#?-~$Klz%PHQxPp;I${ss7L6D z(7Qrx_xHcDNbXLQ_t%z&a4)D}`kY_GtD1@B9^%BJCV5d{H+f3!UB^_g&NNS~GQW10d8HQYpa95vSw`u4{Bb_TnNJB!XF!Fq6r{G);U^z4G@u7rvA1idgVj45d}Kv%gkRl%yWl#H zQ=92i^WIK-t9q)Yc%QjxsIF)UhefJ!vE9lK{@O28>|qE`90e*KuT+aB3a*5xcTHb< zmCnxR+l|m2#JkmUcRVTVstm(%H>l@rYzM461ODY_-O+2vn*OE?W;1 ze40s++&6rhD?n>rtEU=m>uD>JDX(@e`Jev}PhTC^X7{^Ye8AA5!`+4!cQ#4ucWWs!+}-`{_I!WuAACy7k&u&)^2(4sLc)%r zV#d<7Y=`}R0*d*!o1sE%2QQ0G?EWLyo#`4U51s5Q575{S3n4wCUO63toKUZ%Mfq6? z4U~TNt`8jfUx6Li8ReK#06Dp&;KgA!Y5T^5+Kcvc763RzF7g$g4dXk(ZLxMyr-E`x zVWPdCGAZ(TJT{7P)YG5Tiu1IAQj&62Fi=8eK?SE_QIMI!mKBsK=sP|RlC-(!K99xE zR^!eTFD3D$@%pXhOs?qU0xxJg!}~LReL;|jr_5@Y&R<+W`C>%yhN+3LX-%twyP;x8 zK-K%ebWc{wL}g{MSC##bm3ihEYiO;5tHV=#iO@j3w0GIzD6z*vvR0*D0yn$!L-L0z zfhbGO@%yMQL-=}VIC0gKSL<2^^_YL6B`*m2$I~69)rGuR`~> z^iwxA7l!L%0ioSuI0gnr{^p4s9<1bN9XV;S`GM8o-U^?{bwJaEft+a`?V+=+A{yfS zWO}DL>q+99^yr>d`7F%pWNKZ4}C-?|D_y|?qVm;sDP@@yWwQlQqC(wl6* znZ-hDP%0;F>gE;=%gkJ6B$OkhYdocChyL6FkMhr5o##17v=({|Kxk>msc*UHBV`{% zoWk|+T3!p=SY*g~I5m{kZn)4rz36D!3=4byGhM;H^tB7THfD72GEtHC{N|%vMF8~U z-V#GjhxzIeQ71aq%fwOP(y4~%VS3p7@kKq^dSfbT>P3CRGx5jAC&;&z+UPPzA-(Hw zphINqZ3v3LT@jPYVbufb?VVB1-DVI}U~23JtK>G4;g2k8XPo^x)uH&hR+p;q!1-wD zp-O(-AwIGj=57C-*2a+C^+U{0uUrctIX+HqFP=?qp=zEsCzHiH(j!6iDjj3a)g^d; zp7HC8gtw*X=b_sEZ#k`YdWjqJXVp8nvh?T1=cv7&uctk_U$e$6PkEH%%NppEU<@SO zeMOMU%(~(BA_?!%h)*LF{hriW0{SGygk@QX)YS*fNbDu;z@S6B;m>FA+`n=bwOXk> zs5_oWC-tG>BSTvqmW67b)89JKM`GKwXqNHxEQa@OP{ZY6+muE1d9_wzAamN$JR<5f z9dZzJroaMY^ZIHrQkl4`F&*iNk#>WG!)_BIT6O8hN+>lbzj4-a>1)Qb$<1Hed1M73 zpJxxOydlT1i>rpm8C;+a`Vqa9G7ZkyzdfpNS>|)wDZiNDSo6$wX^&_=cmxVg@KbaO z<$!1%r&j{>uZF=(32)wvt|MXd!fRm{sSG9syNDglIPjlUYQ-3x+dtp{4859yQ|3?Q zZ_ebgPFb+dMq=BlnH-ZgcP{b5WF^nem=FO02O`gvejbAMIa%W!TQ*X8k{RChkS&5ezjPG$Y$bo(tzLk z02X7#P?&tJA}`azdpw+}#ewpc;~z9DwOOiEsn?2>KHF6X<)DW(^m;e)LE@p7Z6xZ+ zoPZaz=jq^u4{_8!mVdq;i1~CHUaXwwL!BB=LOF`A(VM=c8s;T(l?}}oa8B_V$(4V{ zF9WT?9X58SS{f9WU+lRV`Y?oPoE7H1E;*U?aOjh&X^#$R4saT}6?`9I7*B)crue#+OL69Rq z+M1IY9%CaHOJMMU@Q`St;4TNQw7)(kZoN{hbDna8dkNZH3^7aL13w_ckta7ugG^>%rxiH!I1GYlxJpDu;b~ z4?>1xieYQpYV+?x%2p>Ods$JN(!K#Nkh^p~Ld>+e^~US-9DD7_KE6$RT6|rGF%vHU zA0)9z+$Cw*Lkko5Wdb?RL&{Nlg$r2Z(tYU_EN=^WK3Xg~4h}hvIjJ;Xy(w=vUri@z zI3G7Kr37BQ=@WB`oLrHbY?`uK{W~o8jc|fe!$zBEh5{f?PZdvSps4ZoNmBIHm&q&ngKh`2vzY`#K7Ag{G=I%(N$IJv`yn^<;T9}sPOp}Wyi` z3IGheJPJ{O&DK1XUk*D~PJ5NNS8pvcPjfdskUgHe_niPCX2F&Mc*&G*es+!$>l*cPRF8t4;Y>vnQqs2D9@E3 z<%L$m)|v}FyLQk#PuM8@^Yw^d$JI!{uFng(R7kN}@6<60YsW=ddhYJeRli%B4$;l# zo5MCmIkOFDkp>hyamI}PQ$x_~rk=PhX0}<1h9Z%ht1Y$+Pghy;?JoXoc`ihi=*)9C zsb*-%eC0Tb%c{7OC(>C!II2xs=H0lKqAbr|ZKwCPOC94yCX|}_T$3*8%94_5&a0!S zKOTSgeF~K#3Uz&vS4J`=2m4B(nH}=T_@0Atc{5z9Vb8q&l6^8|iHcPUeqkyAfaJ-Y zZp3Edfl^!vWMZgHDub&>bGFk*R^yNy-&7WNd+X}S{}#?36CTLcww)Qolz*P+ivB@J z0y0dW%6m|gBi107|9h|IQxRztfKml^4_WfVhqnkgGV_q&y~eMNZq+=K0EMFv6FG0W zeG}QF#!m%IThp4rh(qDuh}hb2`M4pa?UkGB=SjEy!-5nWBrFFjMGL>wVsa!8D(7CG zNWkerLlI0FHR(Ll9UwWeycX$ds9Oymi6t(+LF<6ubt>d5USB#j?qu(<&;i)nNv|F+ zl|%3iiW+%v*c0>uBDQ@GtgeM{0jEVT{^y-!fmQ(0vn1e38*89QtT%&yvtt?6q1*FQ zBOkoi<#i3w;~rnu5j^0Be;kYp>yTq%2fl+!t!IZRK*>1f?Vtz0}!b0)Ow!_Vkowl!b&l4 z-o4K`JioKk6a!8Egi>ao-3LERx0as>g*_22VLw)}JPEg zWcdK^z3h@T&~ZjW(UmcA1hvx(JnJSa^oNiX9BmPlL1S0#NQ^TY+9^8wZrbg%PHS3@ zzm*ty9fQ*Vn0Gh1m|*hGQUpWmrqEa6KpC9hsEIkOfDt7xEfcTR@u0 z0|v;w{b9R340Gk7Y>y3JP?_4G!JP;`A!}=P2(tGXGo-s3M@3i=gvzdOsdWB%duGot z0fovH#P~5mDVOVTiI*-LyQU1gAaqf-psnCMA0@Qt0N~HYU5?P?Y?PrZC%*+t; zBmQ~a%1C*Z+Qf7lp)IlgZt_j7BAY_J&v|P7o3Hfq+oK1g%LMFi*o>q46@4;MGdN95 z#C76%2ZR_ccpacT2wRJIaU$8XIX1=iGr6xQEkWnJfFGZ-)!0n#Yi(5Xo;b-1e%l>r0Rh-K;rN~uH5e8*Pl{< zNNmgSG$0yGsQ`v8>gJ;2Z6(M}bAbWopTL?6T5{}5ZWCWYClKr;z~O!Sf$Immn%cTCQRy zC^kJ?h{HffPXhN{?j>UWlig(wrlp$06JFjeo>{(IX#?a7H4A0(M&D45J5syC$Ut$* z2M!1niwAYafS1R%k1H2GBwsuhIbN1~2hNT(c*_aj=>?dU3q5DN$vgh!Ls|$G2cCkH zj6~6Mnr*KPp?{pT*c&G`=GrSDZ10q3uGdDmRpla-k*@^~w#~4>Y+FK%wYMcg>{+$* zU0L*~M-^mL;;$`{taIn(G5z-{54r}yuYR|S>jFOw3(_WR>5pUj3O>tbGm^hE3;FZ< z>kQ^PBT#<%3{~$gPf+0iNHRDm0Ntuh$IHfGo^W>^na-Pc!md2xfJiS%FqWeRYC~sKQ^EHZo|XwNq&Aw7gQ#PRveN}A zOrbJ0)R9EyDVPq4*9z)(+{frMXCgsqdIe5AbzdB|?XT8HLdF%AoK9jodP51{dFCg# zk5(|L>lP#yCd#Q7C}$9Ck|tW3DhXp*>N0tnD2ZvaP0MM={cH^p@;25-E%b1ViaAAv6WKrzGFK4g%8SEQ6dQv%S$RdG zzsFJC%LUkI;UijS^u!on0H5&FV#$jjVdrvE*4o`r93lg%vfaF{9e6`zsc7oV6KF9L zb%&CzXzyqqFVQ<`G!kB-&%&BN1 zaPpZWb*LB%A8nd1<$?122v744^AmHKKM@0snbCW1586e`T-Xu%y}%knulMFGRUCb= ztmOR|4Bn8!X*&)N5V|aZH793!Iz934HWIvPi1mNrgZ;o>PxepRkc`?+sK{($0B+eH zeP44ia%^~4-Sft>GI-&V!fB#+UQU}{ZuWuo` zIF^?3-N#3bmoB5{`=^QXi-|`HOaa?M0l{f3;aLQ5Pg@roA_n4J^>uXP)r_a;aJu&s znU?;ynC0!3;#ug?oPu5ICk<{ba59NPV3dqq4WJ`>YnoX{6UO?O zSxA_Jicb7noR=g%ujjk=Su5^U=xTlBy}_cU3u*lvzXG}77+S+-=3AYI7-$t#WL8!{ zw=6gY_OL3G@u__Rh6mS%W6Ai{3+G%*MCjm}0Ve+FK8z{*SnH|-h&^vn{PoDBq;3Y) zBAc%L!Gq+YPdu3o6QhLS3)x~}DTI+vZt$Y|P(<(Pe%K#9e5X;F<;-DvtUmz(Cu zsE)ejgiRWc)o>{Umi}Hio+*(3r$X4xQvO_aL=!jyv`V%bb4(Ly5eAJXrqv7sVKXzA zx$LfIAvFbKnHt#wc8i&14L);AN2`q|J<4J&3nVueWz>>C7#Xe^>L0f2USgjaJ{u56 z613jCPqcapaS5zDyS3F|1iuKPja;Dh=)lYoQ2G-GSuXO)jx0 z_>!?y2zi{`yc}j`W3dV@mA}gLJ6j&;$hWh2$RH$ZU=O58_8_e~bOh91QKk45y6sG` zEkgJo#&bk@RtrHbAB6lpu2Etj-f4H<`_Ucz<{y#kMQ@irD6gLURtEsSl^?>25Igj| zY(I$JDsEhkEPMLe)-zxQ8U<|beZ%BGVnBJ?3A?!laipO_*&at7SPTOu*JFJLqt?VDld!F%kR_eBwTe^nR`>(&iHOvhw zi3T&zwzr(83$@RpU;5`B`I1}}`n#;Df@ljm8!|s%uWc_pBpdq9Qixqd)3E72?U%V& zKgg~MUJp+gfYx@N?+e`8kfCH=-;6uNz=pWC`??7Hw`~YH&>KO3*9k*=z+nk^8Dju! z+c6{NGTG8`Gen|j?Id_nfOXQ*rmWmrhCblC_Mm;*XY@2P&oaJOOBWNXf0f4P!1t-@ z#+M^u+biBmiL8N`Vg1WCJ+R`cPNU|Bn>9^-b&Xr z==2+dAZ*8z)?1!q2{^;iCN94oSiQE!(aIkbq!(deQf;BHXW=y5tNgBQbpH{@j1c04BI(D0p} zXqR+_BqX$hX?JOR@6txy17ZXHu-a^OC~9zPvUcx0{i}Z9vWT_D2zbKd6c8qoo(O1w zq~jqlvS55)^*3<4PH{Ib#X9;?j8nz6;|gKb-%7UP#eCk2dro@s+ZsxFzHIQkd3fEM z+Y{B)BIf!6Ya6y4I6)*N)aNGysIDT=wnx z{Ip`?&UkOUs|lr6xJtL9AN<1ftJ)PMG2N|i=yos9a-bN?5#KqtNONt~WT6hC2u+(bP*1L#&GR1#gyqcGa zkBDl9J}hzHL#w^ZG5NV^6JMb4+j!wkUyG8^%l1vql*{R;y^Qx-V}Ki*B2RUT<)_0? z3Li#OH^IFEDv?i9um|*!mw!~awWmJlVrhJ)i~LH>yOX;Y*QF66;!8L* zkS&*$`&h3jB58In5kW=&ytlg)kUsa38qEmFXni~DJRDD%$P=|#HatK8wLGJy1o6uf z;oSRj0z5avDy@r*gL-E{wWa!*J@!=et@?pR?wPN*dqx6n%NoCB4NcwNwH$rw|MHH< z$%U}T3m(Pvq905JLH!|wOJqKw3U_#hHGVt8F4dwwVgG^qXwqO!ssd_r-R1Fsudwy5B3;)JGpA+4b~KR@M-xg!4WftzP&)`V2h8|oU!@Fx1O zLAXTZ;7Ly;O>B=TWvk)L)0d4%ZKT&FMI00Wk0smwgO$n~sNi_ZLtNo=vj+nFXWz}N zmZP)&NxZQuE6*-*?3S_Vgjlf`aE=rCA|3_=VXXipFkPo^d$={u-Y`GNs>$vq!O6!r^To6kw`rCe3^N~4-oL4n>L<>?KAZ~NvY87@t zbw_tcdUH|y-s9JXdT}Y*28JQgS(1oyLWQ`i&r~a&gI;dh)gc&}^}@!N13pdkl0)y5HF!oFm#Rm-_2IZ|XdNobKdMX5>0%jDy~e-jMQ$20MktYh zlyW1=rqFMUXiZ+at4Pd_gys5+lVV#_(ZT5emH`#Uytp)P(T=70t4l_U+ATLFW^_em zV9q=D9o=TUb1Mt^EYN8`H^JE+RoWh{q+N6zlO#XoYgRwd?~%BvOut`onsRBM?Sh{~ zeAtEDK}*@WO+80&Ew}{7KIwPc_78te_Vq(sj0R(RqOX{}7e61v&B8Lr)q=8x6X@Ry zdwX^f2MvlD^F`A%^xC9<7bqX?&8=HTwe&Dk&jdj~MIltDIP`!MRedEG0308fKs=}! zW>kltXZ#o>)04W>gRICOM+8~Yg(66$r5oNi>C|~aNohlSjP+ zBOh5#ce&kArv7^HPx08(r=>?pKV3Z#qf3uBs*}e(p1N>p0d(dhv=sszK0okN#uj_yzWM=!NO_ zpRoBVb|bbJ9f8-Zc%^<$Xn7`j=RwEg{$>p;PHLqNRt>7&Xg5e(Ed681-KMZy-Y*S7 zRZ6?Rfb!1XU-a??U00m-RYD!rPS#y{S!VDZjt{F-Ot1uOK)-)QZyp&!lI*SKem!yj zE?x|L(^0%xMCn;~krX9jZKokj-`2Y;yHk)lS(h7bwf-fsb zA>EGe`y$%`R!wup<`0d-wrpfwcgkY7#B++ZFKi1Mw=|R{azbOmgVB6b&ZY0j71Y2{ ztFUuQ%UXeAv29A7G}eJ9HH4$|ICYC|TV7tzZuF-VYP;#CJ`tY>Ye;0g8nRn7o39kK zF(Qh&joY#ZWL64?Ds}aI`7Fajn$Oxv-UP`;K_!dkEi%$C+0lreFSHR2;hWb2?Hx+)y#gCAb2oHABs(N zwuV} z6F#a=mJ_HumWk#j`-@&`T%*3P#!xBM;(Uv5?dFi{B&3AegE(J0l->A2JR-GL>>ZGb z01*j)hw6;uibjV^7DXUSj$w!kUr)|HY7badCV+{?dDr*(I5`uc#$li$xgr?vcDMG3 z0q$E3L}_$#+o#S;dablqo#n}Y`p$FBP$Vv2cw>oKITuH^jnO zAh^%*aQr*?e)LFWX7Q1mx(<@CUB91yMe5G<320>3Tz2=_>$lMUY;(0%R8KS+oX8H! zzWHzMJf*$m+PQ&k;RTk@OLKWThJY$f9bP_}w{GHaK*hvG_ely1v1xEkmv>c=j zPHf3T9nNJ8^$;S2u4bNtNd%lKkAaFtN4wOSY-e$g?wy!TlZ_SnQ1Ia>Z^|7rG*gCn z<*M)}|nnRzj`3|eCV-}{_n5@3bp%NrT{Sfis`WnX`h&YaZsG2|$*xro3gQb(S1c6Vca>H>u9DqR$ zYam8NO>MoU`S!JH-xv=S=jLZ}%+bvF2c+2|)qHE{4z#-otI)Qe)&@qSuhB9~y>8KH{fgdr~WHCR* z3?4-wq9P~%+;{6qPDHNlo#{+wL5?Wi%#)o@4hfH1CWe)*p$v4cv7)#&W6bSo)^N-s zNv;%yNz7fxI*+#9F|vR}AV9 zWS)->OWZ}^mayq0Ppxne%(5D|de%;B1mNOjq^doHUi`qrwMb3{5M4ChBd+u3N>t7j zGyndnn|XxxW-*ak&qfbr6=D_HreS2;EDnGQec<15r%a-(bRJZovQr5Lk-RcC3rZhV z9rQjs#fzd}BOHKKO^EXyw|}CNL8}O7k?}Cd%*xi79d$ffAhvQ;t&~$JiZ9K%zTi$N z+8W(2ayM$~Y-D1xwIcCcdV1#uU84l;{7fjsmitxds{RfY9Jj2n2WIm`9wzcin{A$b zjUuds@~7%@{>-L{&}({yFwL7>!INmAESGf-Cd#!AXzjHA0*=M`V1_g3RlL7KLm z5NhQwUO)hDaT<#@lDKOqRUORhmvcA-xe)7a!DJ` zXsZi;A5GvEdS&<1P}I@B=>a9cPj!~i$Y!o zNWN#Fxaheuf2K5?yfT*!+5v-wD2?Rmcf5w)t^{5DnZX^WeG}8O)ab2jTb;Cku%7|G zr_jhOl;=JKKSREepg2AD^yo~a3AKh}E;>LpUO+vua(Kuu~ z-M>him<{2{Ey=4DKWq*VQ3^qe_k1@i!rnYGy6Hfz+Dxp9J-CT18FQm*BjJnhH>!5g zd)%SgSYG%N*+>dmoFW>C=T z)5<%mfd==u8Q#%Uwfiae67r_AFdDf?aZ2o0h{16iA3IItlg)D&Xzk_3mk)FoV2OP2 zLE;?JuWsz}l7HjgAfQRWz7-rKK1nMRG4}iikCH=#I3E)6-}EV(O;{>Z>^#?}zpKG_ zrBV%;3us2XL3Q|Vj@Kre3PaR*@36wZ-H=1pf%5MK1d}U6%aCAeQd;xJGra1r{6a>- zC*&fF`)}*-A(wIXfOu%LE7`yIl&LDtYBY}izoT+H|FZ z%aW9=^@50x&)iD2*Gx$-L9|4Oufh^z`5#rKO*ks;U3kI$reIj@c~c4`{bIL+A_6s= zav*w|^mMqKePlPgB$)$~fyjK8+v%zPuResSy)m{3N^V+9%^H_R^);dUMbsu^Q z9Kb>3i6wcQB!y^DnzMY@u<@?`n@gu8K1k!z9e2#>L{a#_kUtwyu+pB>;$peY*%T$Z zfbnt4*ch^|(05fokrSAvtd3`}Q7zV=%1xX`nTIOi@VUPzfZ?rQRynVbW}p4?V&CZK z#{1QcxBe&RNeCOHeU?!XYzba$sS-EcXFn$zMXaWv{=Y_d_9a*8kov%F&g)_K5ho*x zNl#Nh)`%gQ{U(+ih5UMSD|}vC%@s3>7DAdXT6XJF?c`ja%JZ0oe|nysbfX&HyeG8G z&Zhm@S1OX;aCPYxu0aL}T;Yk`viw=jAN+2Ufl@41z)9#qt(Z9{Q*>vr|GS!2{zh3+ z9{kA_A*hb4sAT0E4i*7fiLc1jO>LUh*;27(*L-xl5}$+&Hx`sPm><0aArvWIRiqiE zNwg-E!b~zWqFB+QQKVM$<*k=FPoOzxbNWHMD2~0$!w~Bxe}2%%6Ng`mWf%G?j~gjZ zlrhY8syF;Vf-CJd>3w-M7tYODgSsEKufsN8DbFyCXIEVuE0?d{Uaf?+x370qRCt{p zu*@$#gPWHL16~7S#SSOu=4U8kGuNEc-3cB?yB|hfOoRujzQn4pSs83Gu&_Hw#RA7& zfjD2(fC-`Ar30XCcRl3*iFP|$0U5QboBPN%&9vF_8(ZggV2qYKZApb~*EV0@=OYG$ zVegDcV25BaVK}Qgp`3p2UakA*PfU-@I%SdjiWZV0+*{OQ^~D+nZBLs7u2-KGKDDsg zXGD+rtN!jGF8G=ir^-;YziYt3wu7u;#!o5+NNstE&p5fgC~OI^d0~6p>RipqsJ^m$ zZPIaGhmV!saiLk-^i*Yaood~U*`L@7&qRGV8bV8w@6|h}bMGnWYot6ck>rw6Qd?oG zYTlzDB2!2eUXU$3exPHl4sebCB=L1J8Lc6LwV?9HaeoSZX*#y zODtp^M&I3g(A_;TuWUf07TsK~q0R$Ub3y$%X;OBrUN*KvYe5Zl!02|AydJR3B$kl2 zogX}nPdsVL{(;u)@3-Fd8(@6=EboYh+9H%wx!~*2htME)JxcyfEHZ-jkhYpeS^_IV zo=vqLBEc=tI=dTmR}nUq9p z>COJ{8Jn_xpkViS3K$Ko+A`=%Vy5+1vXbe~h6-RB=Fv>t5tig%ondpyXd`U+l4I+| znu8HxcNaIvbfJ}>-!(2>*1#s`y%MBd{jSdG{DMv{8tyi`e`@5 z(YT@W(qutI@p!q|b1}#-=hY8s@^7u6yl<22Pk0%9n&>r{C!xPv6e9Qi6gaMEL`lY`9lfNdtRv~)kCENA4$leZFMdOkiVxR`Iv{}3)F6XycuC(WaK zNL-xd28!|J^->H4g@+xf&FM`%{OA3;EE5ts!vzE2ob=mb`QEkUM}Ic{Z6#bPs~?5x zR?jJQ5RVDiZTE)^Z?ypglRvZWad5J=w3En0ubPD+&)4x>U{H_E@6z_?4LxsvkDD(y zhmHdwq@LI+&fG;!*CD8s>Dt|n2YY;Olww81NER(FTqOfU*{lJ=CM4SRUiMa6Y!MLx zKXD@Bfg_XupJ6*a&AZwf8aXONmVPVfs-9_4c*)C?Z5*ZY@*+yaT$<4XyzI`n=K z#B+OuKg62AlkjO7Bsr%>*vtqPKXCwy72@?rDh zi+3)NMiGbupbzYv1&@feGIFaifmWvRho)hIg!S38>bHim4wutj3z)t)kh>N{>y@8X(!P1y|Hap!I(Yj()2+BzBMA)m3U5{VQ?p4 zz|<2rS)9R#_V2C0cU4mHz*DEg%mRhMbJmvM&0Sbwz+qO!>V@Jk_y;jE!^lQ-awSr3 z=&IWr3VoZy@PV<{MY5BgvY->%iS=FyG<8aABL1eIBb2;?z)?l(FG-EYQELuytz`*3 z<>^ZsPDVT3bB;Yh#);p%@m{@+!Lv#k6GOD4R=Rdue?w0sU+dxWlKm}#PfF3BPTh{M zfmaYC0a+~-UIG{hVd)?<0e-;23+j}lHc>`~F)}!XR}cqYLOr+cTT{tY1UBOLw-H^v ziA$Ca8tWc(B?~Hsq>S*x&KWGUr0V@Su37Pr~QE60D z=#^w-qBo^uc7Z`m>{o9Qs2Kzvmi1nh_7e9F@Ag<==>0>Z^y1g`Y=BZ@3p?A%tMtEc z6#JE$%<8-pA|oRQQ=m4j{eRPu#(_`u&}O`!h}aTw^qhik{=(89E~m+Bn~HsK_$-~M zk&TiH#&lm;|57Ls@`vtl^ewLhlV)B-Z52LYQsaMM6CUTTNA>YTfHNA)dVH`NAmTq< z8r&a5{2IP#qzNG21Zs{lj>d%m<^F+VY;I)D1qaO64HLuW4Q4gej2-wbaYLE3l&b15 zX?9&Lp}wy4!<~=OSCB_PPp}f<`6*{}rMhrKCRb8^nC;jzu1OH|`>M zIdjA_={zNl&#|Q)P=; zk`>aZo{x>P-VKubpbJwd@_qS<Ccq z?)~AG{tIv;e0Lesye&oGfxHMKDmueI{((gKb*Vlk@J#+PZz&#jG^v6qNFqEfm;|23 zm;3LVK|7*&QEy&Z$`jHMRN;3bx;dla{Z!DzB~+jvwR0dtQhxnT&pv7AC;dW+=L4u% z<~_oQ(&y$$4gXs*Whru;)PeXK3cVR<{Z9Ga35=1~g2&I~uRjbeFEmXu@u#DI#yryz zPRPu#5a??IeoJIF&eq)tgA-&WhqFD5J{2b)-c`Rlyhd;c4u=tI2wt9d z+q0x}h-HsNo6No1B%jUyL$2*1(O{PcJ2HdS_&&=oy>C4_OEER%r}0P2LG_`lpatQt zKR#yMkT)%Rz&}(2I6fA97ttc+&|H_!W5Y?LmXeDaM?}SwlZlDiZnz<^o!wzIsDcUf z8X~bYDEoR;#OF4yjQ(->y!-&!|F+6m!Y5{q7s=aQ{=1Ap9{QKep%id0avEnO6jR(7`vog0cHg2jOflQ z(=&v%IbK8QwyH#TT-Xv1pvBi_6K)<`!f^Amq@^Z&*RQ?`rvGwlvgaH#a%*mAyBR#H ze*;Zv_^k4{a|x>!>M1J$XAzi~CdR}2GZUp3UY&Q3okh#+qo%9~?9Z>e{vY z&Yj4nKSHV=b>_`;k(|9U)y82GQ#1JvWmNC;XT4UMa%oO@B5e;-w;G=i43sD~}RCBv>Q4m9`Y$rv4h zN5oC`{!D#zQhC26QKOrTadYeJG*DRc9AS;6U=NnoU^rK^?C0GqCQ*a@4qY3}7p-7C zU0tl(_t~i{E9|f%H{KlODRdGgkAN%iy zUh66!+hm+b2f>uv1(bbHZ!rn#;6{Pgj~*mS>TGFIyZpEy=DWIFLhk>gRE157HQzdx zY{&2ZBB$vXMJy$O=OY4jJUlGwqDN_dNrDk>ef%8ulDG5A=y4ma)Ag$8#rM<^^iJh# zzq}+}D6WJ;?|*@lcZbt*=atS#95_r|4Drm=bj)Y0cmf{@l({x^VP*>~EDq>2{xFqX zJ+f_-56kGTf_2u^w9=!7DV#2OlB`#MO&b6)e=wWn=kis$G=ibpHkZBIV&mY#KSRj< z3Nf%#IuN-D#53ZLp~vJF!ynet{x=RpiLJm-bp1y)poKoM$u2VxcNC3x=!qELpMQ}d-J1vPPn%@ab&sHY!TIAyc00HGI4&laN}NAf9*cq?YJ{Y z+MdbJ`5HI3 zMm9Xo=bPK*nwa}6KTE$eXdhWA;Qv;Ir^B_Q1 zuO+nwaOpmc1S+TzKI5~GS#Hy#>3)UA;Z=J%o!!U4Mlxs@0Eeu}b|U4(?v65{iTTbz z&XjAY`%v{ zNy3fjA!k3qXNv1vWBLC(RJhY(XSu@g!*Owl_l(KxEc7KPBVX-P}>2U+el$P)5>-$-fYGi>qpO-dc#fVBpSpR;+jtOb_q z|Co@cTU|m);f#;rK0aO_KhLnYon6X1J$74k+;>~>iMD$@B{~?&|D_dc33P&>j2S5Y z8r!hu>Y5?v-f09>Zr(Kc8IQ6FN0SoUKJNRJ6F23rCKS>$qt%YvW+*xQC=S!*9u_Ho zzzvc`$7c*LJ?^Qn|H7)`*sV!vFA=wS)2HFUwL?}cSBk$;P;Qh#(uD3;7+oXV--6#a zdQ05;pu=SQFDz9=a7*L|Cbk&>!C_=1`9tI7obVA>VB zbcpQ$a3|YoncKSZ=g+^(Vn&k(CJ+(mz#zmDseF*6qY>e|0G4Vs9sqm-2+Fw5YjxZ! z6zl`t*&%c`VxSvuaFiY=_y>hK6{>ezXm?7lBf{c-$E`8Pi#hnUSJ3mY1u&}h0T3OZ=_4;ud*35PBs6B+fKK7gXJZ+rw_#Gjy3Ct zh9J?ck2I|w6T)BziI|$8q!G{?hLfXaE2w#gn(|+G-_v_KX!>_SGLf_d+qXf+3j}v# z2E!dlfC9^w+uW1;<6z(^uJVPq!Qat(g8OvnZXTyY-{`3ouL6m#;jssXhgt33$Urpg zxyN+Y{j$(o;sm(~Id)bp*UGE^BK;sh5B0adM#F8lAc(RB75c{2RWGIL&<^)O)UC*Q zpqO0!aC@WPF))Fimw;W_UXlHrr z9tjFSaQ~iJ0?{34XrC6{EPZ}ekd281=Mk6pZrLEFG9qXj66GLypi7u{Q||rR`2>Yr z2V+*dzud~sILm5&A)xjtnc#FYO{I=J-t%hc`Sz&PU{!$ ztcq^%Pl=CHeb2?kIldoeZf=@67t1;ED)5Zv8)~51CO?#`&b7e}Ck`!Y>g@+80!zvb zeB055+sU`LFh@jGtGuqH17&`#dk#ZG|1V8HbW{}xP?c=Bh#-rkmfJ}y7DP=M#2y+y z;&45#9)77gZMic2<^HTBj?Si-6Q(T{JX4@7lBcNC2ruZ(m$MtmGA>E<}C#__9Z?QTsDP$iT0&|e9M zJt&!?d@tL#03u3+3uM&*!Wp+P{PQm1C1}LE+Vl;>*`PgrPh}MLpSGhFe*fE0k1PCl z-jaLzczOzNf!#bjV~PgB)CzAw@~1lb0B@C{GT4t#!d`&4a=m9p|2x!bp4~5`k!Mg9VEllP=_MOK2^y&ln zYfX}n!qRaMvV;U@D!np|teLAevr>${IM=lA_b6@>TAC{q(L1ki;c|3Hf#QdnrEfIX z9qIJuEC0hcL^7(fkfQ}=;l0<_d1~-pxJsY?vYQg@D}IKWhpNOzQ)SI+{y&e~L|G8H z+QVb7oz&P=Adjhp^G`nFDw)rWNeD}m8kf_LJj~E__&Dju;zR#GsrBaAGEDh+Nq9_2 z{OO604hDwsPM?^O=BU2rjv@b#qkkW<$Y4wK*?~#3KO<9fj5rwl!$8~!htIAb7M(TM zB?GDZjHyj4anE%BN>gyZ1QV>72YwDQDl8;r1O&#Z8ojdmkKIH>EH0KF1nU45%o{gv z^z*NI|1=dm8~}STOE|q2w*gukky)Tm)MCSFQ=lFn2Rrh=e1*iD?1Cv6vN;65N!eri zqordd^slJ>JMX`I)Z-dFu2cH%0)hO%0jL*u&;3Usu4KNN7Z(~FBgjXoxI47&Kfb;` z6t#~Gpyp4X^&O5_|8FD_Ug;A^ZoJe4;s0^l%_I?0@!$mXBl{3#ZNt8{`*6;&cjqXkvg|@t@2<(M$#= zaUjPuMM|1|UGPJGyJ?EhD$i&?Wt9)%pwoDPG7&Kf%O zpY(;xqniOjmtu2hvCz>^+w{8^7$5m5E-aCxy_b8DRE z>lQPm$?X4?A31^F(TuE;D=XyhQ|OabC0^LmN}$2{?`Gfgmk&XW zq3Zs3Oj?a>=D@LQrp&3q3huD?hT#&?kl_FC=V!3*bEyjeb zXp){s&kr#FA#M<(ki;jWaB+Qr1Nnbt=mW@+DHRO(7(thF=|8y|4U~wB2^9YL?}Lnj zApPmCi2sqFln;l;Y{azxPU^HSoFZVqMMP#6IUI#x-qlE@i}s2Hqv%2oa<$WH4ZPrT zMoT0GpD#`_>uuuyw%rQj8Ch~d<=2tLsIo)IiDmvwW~3sw5k`{}I&#wgR77=?&WgkY zs-sGly7=b5eJ^IgIfJtz6uLsB0jb!x_SS}o7=6{N$BcpU47>5xeXVm}{Xh3-N*sD& zTCCoc49&3YjtRVk#ZKn>s(R{wLlhHwwDHS2il>OeZ$}nIv*gjOZpFjPKCA1xpzGCC z;yA!WXaop!(SK07f z$op_Rz8^xFv7x|H_I`%-O12}iR6q|GW#anc0VA2no46iK*c?1?XQfdT zdZ_Xv#VLyKXpQo~xa)T960*FND+^(?fNRy~Rz*AOG4<%ug%79@j6Lky z!4@6SX}Ar0g0sZFOcF|8wiKn?+Ac%-WP>yvbnagLLQ^4u!JPEhe$0P1vM>Sem-cXF zCraUqYI?m40Pp<)d|8{CBEmRz8u|Q_BFK(Jm%Mvxb#wY+ATvT{Avierc|#az2sAUs ztqaSVJY;iI7)#n-$i9fZG8x~I0lom?GSU0m+%*ZK1$H!DTA9f4=V@W-&FQQB_z<`N z1y==+wMF3&oMq@b8d^$WyRkSHki}cpbfyCg9ckH{xLiK!<7b)r$>_$w=^C&YF9*#l z%lBTN7^!`Qrc~=}sV4<(1WqiK1rs@e`A)3nK)zsr%WZ6*WOq;x7;SNiIy{yx?mrWat%N$)9{;)7Jz8uGhs6KZ2nn?mbKJ=9 zL9!^j_0YDI=A>1NH*?Y%yV0XHY9IVRvE)>AKdGw^nA-sWmXW)>u8hRW5s5DhwIn&z;ZPT5YFc z2qz}8o)fzH!|eDd6&Nkf*6k&2UG_l?`_1#eiZy;d?EK7VMGM+8l$jf8h6jNm(4m9+}KxfJOvy2LCZp!KgSU1_XfElv@ zJGn~0l_bH0?Qq=waJ@B3kNEHGPOf;0vvjVNjI2NE+N#Cc>gwv6h2=Rr&o=Dx->;NH z1->??S`1@;5spEa99NyC47X@rEFU%)<@30sP=xC{g(gzhMkGEfyxDr9=6O-Fk*i1= zf15Vh!dXDfd@29=-2Zle{(9Md;#|5t8Pnf((f!ly_GEGWk;bbn-nu`Z?vt^W?4r(S z76JkS@$8Y2gG5FJs_#yR>e98pQTWSp`<=j>o!9O7b5r|66xG3R&l?4=zjx0WUgOK= z_xStkPg}Q7=a#0|#ee|)%LQnEdp)~aZfSvEH!r@{gOA`@Am11Y+rW%=)DVB6KhsZ(3y%Nl0Gx|fqv%Vq<*mSQ%s31tp< zpf(|AnM;^Iv6#4|L!$_Mco6?xqO{Fg>_;wox@F@C;+E(mBgZ}Q8_Sawo969jjwSDT`-<(>_T@kA%V_JR6j=OnEwCUEa8%>m=TMrSHaSjwkf4a|M8j{BqU7wEP0Dl2 z?sN8M4*r&x+x_$QtFtqn^Ru?b)jusIwiRO2K3~ef7=w#@Oe<=R_(~o&Kix?4EUHdr zuvox@vWSkdJ{Qd+8~i!5SN3h#bnkw6f0D8NhV|Fy+vUtwFR%Xf)x^J*!tr}4@bDmO z;GXMKIlr82s+P7?Eep4_KlqzApd}Hb?gv9*U{cRkW1QTFqoNL0SM%ew@AA`R4dmmp zu3YDgSgMI7@x14)7X338&}o>4o*mmz~Gz_Z!2Sa6G4 zTfg`&VI&g&x5CFoEzatbaHy^ZTf+>x6Aqw%%b3UrbzX0@J?$?3jy|Benoy*N$$t$W zYFqvbPZ?!XPaG4d^g971HyB(SsmA8;i#m;3Afz`qIh)GST{<^gmKM8?BFsUe>_azxh*By1Dn(|sx2PeqQsMVQ2?lac)$Gd!vE3k(g%#v^F z2o!HfH4ZjoTo>>KJWRmB_(8%}FbPl{5H3e)wN~>W&as;WSyoRR*w(~@mKXAaM&PVy^h)0uw(5GWsonBMh0RaX#xT5Wt z9;XIe8?aIboQ5Vj%x=oolMn6YbZ<{f6O$JHd>}k@OfMN!s1LEiwG>mdfI#yx&|DO~ zx3y_Lts(b23?P$*vq)7o>Z~msyU+5x7bE)Ev5~(|L7LQK;$?3TavHXj!^zgHQ5;~r zk~Dx*cDlFaC%UXCmp&n4LTFj4Ld)rU66XfbBCplcuU{s!j|};uEb`~R>+^bHo z$SJXYSp@nw?!1)A822ep zVM{{|9Vc5+q+o!Tlw1p~+P-ynV3-PTPSNw34U|O^(K0Vq*+0lGtCniVJpj&7us_nC)8dc2|AR|1~P z1?6)G{${7^-R&{uGY9UB`HMfRKW8sDJeA|+ezj`J%iU|ZLv2(_aONvD%?E5`THh2L z?(O90e&+zSsJ3PxPdam*maYG}lyI&Dv>7&v5XG~}xfvmW*QsRx&!_MEIf#*wQ41IH ziw)b0$LR8Ro7;kU1~p)y+F>RO)ClOlD~d?sBHUzy=R!&vhv|)rZhD7v0mk~%F=Rdb zsF#kQ{&P!?pDXyS?W^wAJF7gOH+Aj^B23s*Zz!YguQ#{BBD#)>w!iY}!9#T@q9}@| zUr1|;I7HS(GXF7>Lrt=p7pX8JyHRt*z|1U@4BB@Y(Yu~SjBJ1Gyg+n6ykEcnd%t!u z*(&oZ+W8+pjgbqQ3OVH7J0$-DNF&>YlBZK=w(rAJ!JRQ}{_6p>D;;-To;@acy5!si z))nvVBy{>6zNcG*i&w+L#=uinyf&)5)sWkkf|GM+&@TIj`VOob%I<8KAoJk#v$}30 zGWT*D5*_g`(W}=5`23_cYI*}QuG6UxyMyBPKilyfO+47MI=3(FR479OKCvD{vz!A608%3_=6gR6?*hFk2X)haq@U?nTxqW6^?7D6d6))}AGBZDn)x9(}1 zxd8t22(N0J*_W;)KdTrUq+U7Q$}W1!^fyhorU&Muho2*o#^3MBQG9b;y8T~I{1A99 zRSKkb;{h9jeXI@*Y7DH`DjLi<`666HG@Au>y~|(XR=wqVCz5~_C6RuHH@IZf%RzOy z@G|)+e;z_mwq@1q>IZfTWJjAS!`N|I4;`QR@5PLM-YtRzT4@-NToujNX2bd!8oERM z{fa~QBpj8_n*@eok2zKYgRjs1U8%lIpShmCS`9tSh@^I40QPy&Rk-Wk`ry0znU=Bu z>65e2V9d9VAAMi#-XZLjHDraN3nQHHTacHM!9^6>*Xh-PtQqOrhA<}+noJY z$Cp7;VFZVx?7OYq`{3a7kbbCW6eCY4@iDrJmvyN00zFSHb0WKbUox-%-bya235;t6;yNz^y^k0{-f@d%tXS>DfZY}H9nvZhFbq{eUIT7GXQ_ZHq^MFw`7j4MXoLM3HS&PNnBj&zeNbH#hJ8QnD&k(nF>GGh zQ%wCd8L?&QIG7Hw>7AQcTcK{6!`LR-jEkEZYUOez#O!pMHB!JcDZQpxJ64{!~Yh88FM{;(A_P72x(tT zOulpFIqu~eN}Ua6dx%!_0hWIx+WpG7O7_>i#B-Gr<&)reaBpp2boxMP4O!lkUtB*O zig{n5sq3?=4gJ-~hv&&pBFj{BJHkqN9)R^9;JRz>z#imCMIDjl+9x&1Mz%uVBDugoCw{hnFtu=JZcn6;n2(Cd7;N<984~neSB2Wh+Lj?F-!BBAR&P=SY=}ANwK4DZ7db2>^H~ma23@d^_NZGi|Q@LlZ~b+WUJxu zD(P9Zt(hlh{^W>f)y&?@9jL1)x4ec=D2#neF`bjT!gvl9dBn>!%*N0v%2|;`BWms@ zT;IyraKh>tljxJsDEA5%|x~wEO-606`nZmt@2<5?+Dp@ynPU8-MBy!aX!ZItF zxeVZ^idm*$)bzx+3yE!h&!I<|J30SG8+CTGyr1@3->;siB>zOOp59R~ zXBiA6{sz@STVMoU?4UFxSjmxgA2<}BJE^Q&qG!ki@@6`cdRuF~YLtYh#I5x`rper5 zQA)%RdO1ZRoa=Q#BY*~>^_)82w{aIEwhq973=Vs|R+%T=FbvOim!$Ye(`}Nm*i%zIf0L)xn&Cn?E~%rUjZA zj|?wALe&u^w&@GT#hQccAl6NCYhB->45&Py0;~M_JUPg<`UCp}@2V0TR&V>ksu+Nc z#tQfzgd}^b%|QzRvyoZDy|Nqn;7Kvln(%uZ7t}PpXogoG#0)$(1+GIV*yu(9 zS7RVfqA7_n$EJCcBL>e8AR@JY5tzI!;rEc^A6+wTp`od~;Pds;QHf=2Xmz?IghGVy z)*75;As$8b6PB*=U0-OXimg~N&tf9hcYLfZoOxvcQ{f5ee5h<1sVU)p2>LiFISRz^ z*m|V`%NOW!;lNJfHWlX{Y?2TT#}Kf&4$lSlS0_p|C3$PnXaduKi! z(oEyht9F)8ww>VIow`a~pVv}tUyV^7X12*=M+KLSzl++U3D~F=fLUkc!hO&3Kkl{5 z?tIQ~q$+NxOCcW%X)J_N%B$OaPD!#ViR1$Bu)W>?$gcM2_C}U zDJh_>En+=1ttQp90Ps6Wt|f~HqHm67JV2Og?n7+ru8beZ%5-6{ZPXJlx!Opa?@eqt zK#p2Ft?-L6)lAm>dE0IHkGq1`L)-^WKk?9a0fN)CRMp@s(a<#CP{~d?rq)0 zk2^Xq060$Y9>?%SqQg79S2bw~>@fxKRZu0eNIMvnkWAG90>c*H$m$cK?YW-UE`Mt! z6*aQz1>=GAmBVO%U=2D~BM7TQzj^T%cL%oZQQtMipS zBp{-p;2OoD3I3G2mFz`lxZyI_i$(WSg{y#L-uN*8ouze1i<6Uj(#*xo(ko*W6%_{a zZj;I)!_}{OrsRBU7*W~aSRra`jD>j-!YT<_0A_RYB=-0?O|#HWR#kZc0Cd^(4ZrzR zC8r>}1G+KkCABS^J%3slRVBmhGX^nZ_BNk+?*O5B=BX+P7$v-U3zudbSO!^ z7~8AL#f_{1T*&-JSiUE9M63C*1(6U@w-xCfd?UO$T4&*;n$n91b$3Z(k+wI+p9P(y zuIK`2=bh26VS8Z>qB=Zyqdq7Siv#;wgvHR^#1Z!|xH^!JR{R zqq#gO)Qw#yI&>&S(<2PU%F^yg&DD=9qQf75y z_7B==AGp&g>rzkE!1Vp>ZRApDtAZ1k%P2OdMbi=0BZ9WeE7AHE%Hd!+D%YcH*^MFn znEE7sF$Lw3Y_7l;)xU-BKm;y`0ak?w3%ZZ6b*!}5!m#;pr?TAQ;iBnd%lbH`nHs|w zqQUn_k4d14>?P3uyfqS{<5Yl@>xtrogN%}Kr$d6QgC$#LLy2;0GcWSoG}gJbvF-9@ zagghG5O!_w^W^#Iu{RzO96~AO5yIK86U@ZIl+!_STp3*w^NR*%j)DIrKrr=Y-2gw_ zJ0;@^0t7C;yTFy068&ls{;m56WQ>}o;C_inpdXUtHUePO@x^VSs$3m9Sx^O8({*4k zP>ykI6fGkQdjLkZ6g0}UZap^4ZwYv)A~pL}{APy^>Kyx@KurTbpL=2=O@kN(N)fzW zk$aU*bA>O775F6o@VIjm09Pe{!bL`oA#@+$+yAs64TRYEjQ-SjV6bbBr~z_VOx0`A z?kdh=wcM?C?nwcG@!)}teE=r38=7Z89I2iRM<3*1vqj6!Eg z5pYom^A)+t3~=kyW2Tx6>#@J%0P4KJ$S=J{ZZ`mRUn6oECa%|D3LBEzNaWAS4xz8e zC}ts>wLkBq)t75rP_!t35J}av{Zd=$A`EUnb~YtT>;JF~z{)OrlfFOH!CmWo@`8Vq zw+-g9IIz}Bal>ka9r?+laM?bkn4@}gBM}!E!F`7ZE%drx=~HRLU$9Da30zS<9Oq&Ozi%!JX`B}ofny^X7olSSk09J; zXq^(8oCMsBDa__2$7*OX;KvHZ1-^TaMU(Q3j}a{YBvbx@wpxG@)gkg=qsT&ZOE#fi z?r!D9POQD>27-YoxY~kUJe$5G2k5}3H4rV_bJ=zrO+UsBxLLYB^5-FrfPs_wg8 zX&La$ufAQ>SwgnCUj3%_yn2Vb9bb^pp%bf8u8s8R55s+N5Y-UfP@m)7zBmNQ_U}Yx zP+gqQ?&$9TzMgSpT3&m|0s!)}&d7m4a!6NhR2Sg%Fa;0~o9HnNn4T&}wAyn5Qdg)Bf{^@EW*^$LY_WDf9nEln`pf7E*%&f8wJ!Gow)0tYLvW+o zEhE?%)&0od%iss~*OlvG$cgEc;y-)vAxW>1eU#PV4pOHWMm@~H(*X|g3#mW1lwXu0 zcbF{L2lHIE`IlF?&7q)`r;&55?eG)$(`QYSpk+^C+YiDBDHH8`lVE5Bj$d+ZtbJe$ zCG>ZdK;=H#oSaCFm)YIEMyize_>pYZq4uB^jceT2dB<3X@6oPMY7(3cdx>4t06J!w z{W#s|4+es-)JiLW)=9z%!vDby`_++&O%iXMOPhgbx*fZG-4Cj0y8}w(5Sf&WCf$Z) zwp)oc^_#%05~^dHO59_LPmw^luJr6mF&ZP;_)5~AeY3Ik4bphut@$Uu;A4xz&KK+h6Z6+pW?2!mh zybVXo3}$|;ESgb}`=b$_G`;pXN|V{+);H=d$m-V0JYj2%#ftMHc7_7VdUr{)hZ_tH z3*x!)L)i)hE1Rr=jd4+m2Vf9fR+#Vv0w>>roahleG<3IT&U%(X79}q0xAzbrShi3e zzb>uuy7Ga-UCQz^9~#4YxgY22c97XB;>^4kFy)faJh_+3iKigpU9j zAT<{`NME`=$QXg$13sLv#9Q!IjP#}N&0yl$Hw86Hj4ej-xt7$NWm(b(absALjq?Ts z(XEH08Zse#$pENucx^7|_b?iOUt<<}m-b&$cz`wc_kokiUGs}k52PCPluRaaf*O3) zVdq+E{&e@SK?qI47%Q<2$=E}n9TOpYg2#6tQ=_~6C8wnu)-ps*Va43ZX2IY2T3s*r zNOs;Nub#}o1P?$oR@lgp8B8MLPS3C;@s4x z@I~iOAf=dKLVMrPywt2mRmjmq2}5MSF%{t9qEv6L>dY8miNd%>#v&=3PDX$@iCK%k zD!NB=XOyhAhLJT)OK6+`TqqXR1UhkkR1@RZgWe&z79VgGjF+`f87DGvkx4+BcZUBY zbdetjwVOZV!W3ZjrMM4xr-K(s5WdupMOOpjh7?#!^kuD@?3iuBbC`~mtWMIAARRc$o&>F*||`D6rL&Q@NerPKWnB^kg=5O~zC z$KW=O=M5MfSUYgS>FHLNf=x58jOeyraoDbW2vlZ}UP`rX!|TV0NFo;t2j`*wkv!sB z1O-wF1*-XBu}Q}eMQVh3W53Ylx}wHY(7lvO$GiHdG~hd>9kNB?I7+Ai zt$Qm(5RB`&*;_8P&41bVJ*4AJ^m3f>ISJvTrRZ_xX=vR*+tt3@xP5=&G$oBG>Z;GRTVW4g zrABNzBxkK!X{jHX`ei~a2~7 zxeHKA8nZedkawG2N&wF!Biy~oevTt=QENliF81ad&Db1zt0Dx8xA&g7+11!@RgH%Y z&%2L?fgoS-R?wwLrPGjgBhZgpp60i-sM%v|!H zHj@Oka31$IQ6->kMad8?NmnVPb~`McNl_Y3`Ma&UB3z3~A4^S_f4s%O9y=rlPq@g* zD4mh^>ql%6JGT3pC&6WbwcRu1rdWbWnkn+wtj|SJZFq*bdG&5E^;0TYY{IK~3R11} z@9gMr8CgVN=|2k%!%4Ika#5}=kBMh^9(+MIFN4EH*;8YnJ0>^*aMY<;0$$IB1j~ls zk1O~Og^>m!3PnK;#&geNgN(=0R(na5Ig7`$we!QzTNx7t8iAB4=W52#Q=uZTiu;_y z@`gi0M^3mOivGNFQAnqw&nATTA3znBRrQJ@=uyD{47xM$oJ)d}d`F zGnkbB<|1M-IImd+Tlp3>4^81~{beK)6d@^E-8c>~spU>mDO9vMjZK3s3FaG5G~%2F zHTI6>T239ZqAgiUVakL|#=Ko+seGI5qJB^Mxk|hSd?H_~j*eY7 z2*3Ee-;a|^{IsIScXsm%U-Sv9T6ro&FT|axEc2AYG7TAZ0I%kPt!%vqreI=9yi+zx z|CNaHm!%U@P#v5Jrqc1uo@#P`&G@~gS-BgKB@NOOXOX{1_c=Q?kkH6yOPZrUqDdo> zNTeuZCv=<}(M&F*5%sJB(BrYh9;Po@Et)ewIRorq0(Fxz5#3rj&&R{r;6QOit8hqc ztoQ>!8!G!JMkP*BJCDF=Gt2nrzqVRy04z)bN-l#1Y2!boB9O&ML#6Yh`BshEdjHt% zqCQIIBMFV_UK8df zWpB9<>BaH|n+s1V&Xfd8LoZ!0#l>1qvVgh-)e*eX3WXj`cSErE`KHpNEy6FUP*~Ja ztpJOmAg>;iaF+(Q!1^IbIshS&=x}6f$S`X)x0RfVV?oAezQrG|;5bb%7cpa2q-5?w zm3Fwh%Vq(WAb@U&YZ36Wq^pC9DmpiPe=t|3YDb!kCFueDDZ4SNJ@Ct~3`$~-Na27Z zyNO1ylZ6f?VFUu*P2B14Q%fm*PJpXTgT8C&@jHSr7M!r-%g;xO}%W;BI zKPeZIy6Xb^p3jjq8{3%NAsj3C)Tp4ATrwP1_B*6mDE#>y(wvHha`ZK6=0vs;n`H%v z8fhfKo_6KAVI_X5NeLmF#^3fz(g#V~p?QCwS9?AMyxd93#t_=Z}wi z2MV1IMLZlr~cpQx^u(R2u<#VE-?;Z0}68@7dz zE5%QlaT#hHY9=Wp#pC!w)vClHswO$=rE~4O+p8_JLH;=slfu%xe329_^2fDclrHvx5BATy7RN1Qic%EVD`?G zbZ<&R28oS9g{;iKD6B(DU21!be!M{i78R`+*<%meEa+^hCeSqAUAPNYeK&f+Mt;W+ zKG$PUg9}>;h&P{ zFKI}tynVl2Vjv8cVMbVeJk3jq@?_kd0TMo{t4O!hr~*f^FD>(&q)J(=8F@ynwEVS8 zftW%KMR4=asYIyok8wjRtG+he%bQ|bFl-*nleaNRt1 z5y!O7T3kk_Q{0C`0~b*5`mjw1Fe1jXCy?%dgPZQddrW4cS5m&b(ZvROH1$9`BD_{4@G6>{xoeBrhVPRb@q-bjfQ$|5anzByY zzw4v~tT91UXb6pjQC_+AFI26B&P9`J$-7tZRqo@4B-X6?&110QBCy<4d@2*!B@qjG z;@OE4rRc8;J=col+%}4)nR?u5i0VpYWpb(ZH)=cnW?Oen-FNfK+`aAYsqxzY!2LX2 zlcamaVYf8N00uIKJw%vfB(N-m;}nCd5Big`1@$el5lD}dlgY4ps-41_n}X1O7|3r<g9NSlAHKY#!eJUqF4r!09p%UFca-iwW}RPM z@%m~AvR|>Sx;^WP>i2#Hv!`xe8O@Yfp$I#vuO16srft-8i_H5Ygz02_i_b5oK<)&Z zN%rA!X#NMgCd1e^u4a3y{axNCP_#ss%lDQNvya}W$Z!570-IkT`qIe?@{_wJ@TOIh z>M&naF_0N}uv z(cNl^{;8b{`2_*?H%KnpJ%!{z+M*dCFR&fpyDre$m-|gFkc&$X5aVm3!b6M9I4f$| zp)vRD*;EC&h#f7oQap}cja8tpf7c8=c_8V@+r{bIOCICa%6OEFw^068!BU*x4-S!q zW3ZlAn$t|2*a&Pqs0p$5B7GNmz@!0zHBXUSqzRj(#`DKXdK-7YzpV#`n5}0VS3XUz zj@HTA6r;D@4yX>S^O|Llz27=5rAC>`I^xGps3bKCZ^Zn2B(0u0U+Af4XIlWv68`NN zw9^;+i`9o|is?InbOSnkWj$0XkAb(rj|@F-+`1|3eIMPVb_F0I)>&9GPZO(<2L!^W zjVc?As(y9VX1`S+<8e>Ib_^&A=2y(`4Qm#y+mLlN_Y4pDa8N@gCvDSM^-86@ctFcO zZl{du%_SBIruIYLWx?jhgP%!Hn^kTq$*PW}Wh$s=T}huRh9P_16x#5@evODwX?TZH zP?$)!kptOvKJ4#aP7e5i=G01RgpIX=zL6h8tnLFjtB6>&no$An6W_(B?%d<|{81i! z)o5!U_M%WT2lu3=bl_KITn-Vp)=#75H{XHj{`j77x}d(-28s2=PM$^5TGz**_o&L{ z&CJMvfr7%+9z-Am{SE|A4(%*b2G_=IguR1qkC0yAtb+%haP{)S0QoU z^`2~#>b+-`$Zo}Gas(;R-4a+ea914eS7mT*|C=ohWMeN@n9yJwRZ)Z6l@T=3jDrfL zo8~D_bCTF;#jsmM;5;mf<6^{%%V~R>;;DZL;c!^hc?90{I8&g9~7x{?s zv>YTuZr_w0{@&{(iI1E~h`i3$h48slJ38-ZDob&yORF$?-8q{y4oR|o>qRWh0XQ-B zSlJ%Ws>fP{UD$)7bLPozQ9kFV;WL`Aa7jvI5gZ;_0Q(n)bTFGJgzC`*4;dv%tL~tU zBHK1W;l#ewM?DKFw}i~KbU9Wv5n7{4TfkXl3q3&BRTIk%-)!PTsY3-~O6gMeO#KKm zUC5=;gn1=2_m;pf8krrY2QC31x{5c&8L%h!P`H_wy7r95-tHHu_P9%y-N#Y$*3yVZTx9?zt_7b6kempKg4DnG;V zV4+dVx4c=DTS{MinJ<;+pBhq_9Q&ir?kBZw5kQr=7T2i=zbHITnkf<2ceE!m* zroexW`{Vxy9^c~N;A-@1rWOBVxYsrI+d*Qa)u9$?88{KdnFEV{0wy`fg-DpC*vXC{Lr^R_j?}$38jHL9Lx&%R4md_Bk)p)5&2|FW}z( z?hlq2ZxM#`g})V2nVv*;HPkJFZ6% z=-|`W0d6U4+)`5H^NDF0p1a0}nm6Wd@q+t~I~|d`|1L5riuZhA_$McD`(g6wU+~_E zu|SDYso+Id>i|FI${hxLriZ(W$;k_3e8MU>0teo?3u_A>5AUJPCp|Y8`7fY9j@A}_ z&y1Qr)|1Mk0QspEVfAXEHD?ZnT`wFcz%+i>GK)0oLt#(^>~?QwNC2!qG}>f|dzt}drNmW2U7+8Ewu64GWPTwk<(7B~&+ z3~9k!oOrZ;G5X7lsW=b8$zo5RPEG}mcYU0q7MjPbo6zVi(GNjz^n+mBTT9^vf;;w+ zmTg=a+?6iv^Tq?MWl5#$)CuKP5EQhLpK!jgNZP?FKJw&Vu$8~_I@=1ZwebeBVQeXZ z*|$$zg@kZpQ2BrTgI>-Oy>2u3-DKCjWY0OC`83Qycn15*oG;5h{W=yPd9$0jZ|0rDrVgUslKo-aZ?@*_`ef#Ii<@njX zQG@;PAqGKx8K=i;zw4z2yGSog-B=1zjkqE9*Z}_^%f#>};mZje;oFa49&nylJwER3 zzwex`UnAF6F9GhlUl6=h+>O8OQmbXM`*z*!I(;-DM4yl+FETa2$X?zs@^iyGfh}|( zXVe;&W}JYH&k+_u3*Xl59OlL|*G?2!v<|kHU~E!S_ZIiV3l8%S%G_a1;k{u1845A} z`MlJrmV3V#ZTi*P^#j0pQ`vfxtNcAxzG2*E5SA(D#!VV>X37SVG0a_>l%$CW3p6H` zrN_z6V+%Y%*ZfG4!%B@%UbfNP5Yapq%zlwdg#qGNQeI7w9F`aMH`F783>G(GHx2QF zGLCT5#N2~218WczLKj36XUn-?A;k8L=m!-d7TzE*svK|l7=nKadsyV|?8^ap^X0&> zK$+o_VI4y9!d0E_@-Bk?i0;ZvPF@A(P#QBZo_FQ~}XU69zOl2A=!rj)T>tldYr zu%bQ4jRv1J#!$FYs1@&wR80L*eb(Gp#t&b=^_Aev!a>FV-1Jf-2XUEcWvFc7QpILC zn(hGJrt)55cs$t882;1j(r<{ExwM$QXlNwgQ!EU_jzl+W6=QKO5@9?Bk!Elx%V zvH>LXKZri=<}Ql@rG=W@FFcdV7F9pMgF2|f!2?i#BjV1849{{;vRFu8pjv+zK9-OWj z3X>od#TMckkwHTn4)S{f{}|%;K|i9|@q6#App%jgGh0Hb=%kf3k#rtfs58rj_Yic&yi*VvaKZlwNkGB znk7z=hAdQ>t|x$9X^7f&(?Vq`9wK$#dcbNMYXKgJMndz8Hw37@JxID#<_i zGxn=yX21PSsJHwUF;AIIHCd%m;Aq9sZ`wt+ALg(-E0}iO`a{y`M#dsPp10)Z%n%D2j`toC!^LKl zN^-QdVm)g7@f*9JUrHBBJ7cyKVoN9VwrSU6(iQF)*ZwecPFy&6l3m@L&L3;bty`LH zm82=d#7NtqX`KK2YEk>u zc7dEEd(EEf7QmZhTjfrmrQ`tl0^NTXY3f6-r1Yk zaka01N}bN?^U1W9a<%Owx3-QsD%@SI+i~gttyU{uF@+YJW1T%L(SY|JZrCQ=Vh@IEe*h`Ne zhbUdsG+ZAXrCTj8W-p_KOQv9VAvKR$6mMG$eottRVR?KxQJ|jM{BkSRq=T|PD^^Ke zG|H>jUPV{f@VJ(#VVKD*J;s9|e6+6S*AhtVOPeq&BO6PARz4~-U+E>y1WDS*%j98v z52}}{yp#G?(rEcxL^av2&H|UVZoSmdECuuD0CtYiqvls!Dd#~GL>?L_?__pR2ZS2> z_-?wuGCHmmWa6jW!$og;1NnN*Zldw>N!KxfCE(W3Fo7y=$>+(0Ho9fLcSQ%Ipw%l za{zBwc4Py}4TGdgSbNz!f!$!W$I7h}&NSDawypu!jn%uw`xz^#73cv(WD=9FvJfQw z4w|27Wz@ZYhBSpET{Yefocan945jVl4`#9eUV5kJ8Z@2~)Jsq2C1|rv)-5yT%!S$Y zRjZxE)5+^impKd}4Z7NlE$E~FJcuP8`h;BA*QhW4OfQj!q6{aI9-*JA$<(8(Mz?S) zoum{#n=3F)Yd=)@UYWNOm88Myd{RQ^IFvZ+e`EBU_+pORKzsmz6=msdhoWzmC1J*b zwU^?&Y=@&~{nNt<{5b|o&v*EyQZKQFnUEtghi2%4;HrK_dG36DtFZF$VtmW{yAPDZ zHF!RG-F}srVRT3aGD=XFA2u~K_%B+P4K4S;ZG3;AuCRPw)Y3^Zu2QI{Iz{k8#5s>A zCLXS8>|hRuQL0*u-sQA$gJ?7mudXX!Ben6@VA!=nz^(QQJ~&=?e-?Q2`+4{plX?0Y z)Bf4h^YHQK>eDFY=}jeF2E7HxzqGPW7PcO)oaSy=0$hCLQJ?KZy4B5qt@cmPC1xb^ za53-osoO4pm8g=q3B$G5-<&+EBX0;Gl8Cci4m0HmqsPypX z3ufmW+wthxuo%KyIx$Ye0f1riy1OWeEcWM@!UDrlGO-Bjam~IF2OXn-aIPCZEDoos z_%xnYB4=d~u$Hrozv6%_(N>Y`qAaCKODDk1;_}1@7T@CxuqizIyX(FIu!nIh6ilG5 zlBQ7l;fb-|=Kdi0eqki(i)A6LSFQxo$SHYqfW*KVMF8xl0JX0#9b-#h$TEvr-P%-I z3<1UxZ;5!ddSLFsnio+zJ2bpJ?tU$?k5+%dsPz;Qu1SS9YJjSc@6GbHeF6PehJ48< z9_$C8#+TV_SV;ZLR=V{VR<-BV5amw{DSqq+k(#z8i=%Mj7VCbb*5rUjz2Ke4p{P4$ z$uyQ8u_c-XN7*DL6zKPnJh9;9N*=Zt44cMM858FZx2`*kAYo4-K6?0F2xAJ*!$~N6 z0E|y6gt{I@VF+MrU%Z-;aKKkVVuXb@IN{Y}9b<;SCbWYQVM}?Fug7)-_`_R8IlAZM+qO}ypCkwj>g}jwo(B- z09rr{ud496x)^^R8GpWBe+~e+6zgwAgl~NuZIf&K=0KAUQRcm2f9>}Qb_7u8yCNy| zD|j~l$PT>P03rR;gj?l^6av6%K-QptKG!CNW_f^qZ@?+_K(Dr%@a1d5Hvt=4-h1{yAy&# zu;A{xxCSS|J-9>g5Zs+jaCf)G-Q9Ng+xK_t{&&Bsd$y+L%$zf`yH)ed^z=O4T@Kvi z9hgS?J8OLVVCSrgRURY<2u6{&7&P|mpAWk)DnK)Pt9;Y{vGmkEAl7ipJGhh};|+IN5DI3vHt8Bp(QmV! zVr<*Dry=0C9di334LwxA9ZoaoCYf1PvNAB2Ygi0(MBFsRrL7LLl!Et+3TNrS<&C1c za~&FexPBiWZUIi?#Tu|S+JYQ#dNpg79{Ky_^6CRP%fq*{vdx!mPxz4JB0!XC%4=_O zjT>&6^xf2iypRz1JJ>iTx|h1UBG< zR_(M8)~6dJv*VxEYwCAmW^6qxR_GeXRzJHnbEp6SY;u4S+-6H{JnN4WP0?*bVC?~X z@==xk?<9X(U$WR3%7s54eSZ1b-fK%x0uapmqpHUAE#Pn!wV4LE`^$ZoTi$uu}Xr9W3YZTILIYDhC{J$L5 zw`54V>1p8SgmPF%%Bdi%{n4lUx#pp&1xHMP8sL69;Wa+!ItFxkHQ7bzvlDxm09nF@ z3`^XBA#i-CzUTQ4Fva+fyF9O9srzQijl{wPRtLK-3wkb-fRKa!N{?mFf?>Pxkmzwi zV2t|lU*iDXF*vtMBFISy@Jj~CXg*ig00A)63+DyinhxVCqHO+*LduRhk|cA$0DMyQ z{`TDfKRCqVVVCL~Cwx2un!mHU!n3~!bK(w^(EsoTs6Z2Q(E3fi0>2G5>H|h8mB=>n z{PzyKrF;%P##~nK{{WdK#nEegT;o!M0Dq5ut8aFr0oD7z)xS2PvVQZ~%t-Bj9W!&j z`wyeFiPD;#Z=C=49KZU@RO)RlH5gw1srRsNNvQ_#KNx1wD20hZ$Z-CX7XH!~o5~@M zqr3eN$0+rE@UH=&9`*&sbS%ae9RCl{$gcnBRixpD)8`V;*ntkC-ioqgG2!c2$omb7 z1G`W5N6v@cdVeT7x>KGW>a}(3OUk0(T66k3xSxSqTkJj8FLs;PRZQAV0}(N9#^eO_X+lxB;MN| zd6{8lryA%f(%<4F@&PgvSB`WIJ@WlBxs9jp>^;90Fbs7q$M?%*0XFG4z{7V6rV(&81~#>J!!gBTItrE+G6{) zW1M5dd`ZBct~a!)K3~I@O1_XKN0BUc3R;3bxInCEx(n6g$M8FsFCX6;bUMh40FTVI17bx7(S7x&tufAVm!!P@UDY#4IvxB?%LRxO7| z1r4LrpFc(8Pm(AZGCk8y^md*8z)!qiIv0$}dSPk5D~@lcnY#&XO7{s)z6fF& z_mCu@Qxjhpnuo-aaBcTV>Fwt<1W!p>Z*NU_4d|LXTmK8BVcR?Akhbp?OepuHvnG$$ zekaheb@b44h7A*)q@8$Tf8&i$$+ySG_{y3#Xq?bjXBFE+JCSn18Qq<+miU@xp2y35 zVZjV*YD|_`d+~<7fNqJG(}NnkZ&Rrr&pXCzpi~kPk7ppe!E<-EmHN+hO*j6M9q4&4 zh$9{Sx!K&$eF^-jb!~4iu%d{&Sh?1pdNP1E%pZ#dHSPs%Sozu|#YKDN%<3Iu!yX*m zfd63rqZDcL8IGeq@$*T_(Uu0Qy3xxS=1PZogl+sSHQ7N*td8IA(;r?&Isz`x?V@C) zQY2*ZNt3^_&Ha>taUbn}{dU}Qp(tirjKcf1BVL|Ab5Q&@HuVwLfVNtSh^_VUKSHot zD|%5`=}&9tpa*5!X0>g`*aBOx+8+c*wuvgxCO^BMuw(335zzf8>{0-(w|x*7em;DF z5Wn`;KrVvLYF-CHH@kzdzXDLuq*D;&rA4}&Mer(!GP=B}eIbpu*iOF6`*|Ubc%>n8 z)_4m=vBJ}=uw|mNqgth1gHu%rQ;1Jbku0WUVZo z*x@Cn1k%ED+re2GK{R_!FB@lrPO)o|Sbm=xTO!>&s8aRCVEotW!!XjG;N}^PoFzY! z=XZsxbyDQjlbxR=dp@+9%l)R=TI_+8coVO~3c%!y95F=w#rpms!=6RXAKB*DTUKc` zvhLigwRh>9Brd+ku)Y&ZFm&W&_#oQz&ygaKLBGjeH8?Wh^$BI;FS^h zX_X`-SD^BZFMu6<=|IfV)YpeQp@4-O`Tm91ADJb4#(DHFnMgy)^y{%mU9-p+#+2Tjai3qdc77u_#40$|u;3s@fzRlq$TU805$xy?&RL?B@#UXDrO z$Cn!a-1C62?rVd?$I;WrQJ6&ODnaCwZuL+2Y6eh{QIW3xZ2Ch@=?&7`|0>`YHNf?O zXH5&f691RryLf=NvzsM{qm`wd8Hb&tnT-`6FT0DAO_Z979M)U1|C(Vb$V-2P=lJl% zi1wd6`~K`-Av{AdSCW$k!2bLE>MBcy*Py$|>$$^a>c0OHLMqFDYct~Af3vQ9R8@+Z zJiZypV7|yCe+WiAxjU80aCjUSZ?n2X1U(Wit{@`$VRy5Z1Isvh%}^9ADKkZuR_Zwx54(*^9E%<>8eoP!t9m6$|D<>9X7ZA*@E1qBWxnPQqu#}}{d|a6Uu$h}nAu^x~wnU@OGs}3B zJx(<3h)><;Cz{7Wr@-89*1z@U(^=-nWCaYs=KTCTxqX%O((CK1Q4$?S65TYsl#NE+ z-PIM4U3x^@REnXUq*GOE$Zmrc(d$&R$dZEAwEGe52P(jYm8e70u*QyC5~tI;;mKP` zNy)H9nUCYghgx=$feb+=f33=6I=m=rz~7UT6N)|k`DE(Q$LD9?RJ}wS@Lj7Rz}9RN^~VUym8qgE)gN2r=g37$#!_-0<{k@FH~w=js#~3@a@wI|y)9Cy<#i<$TS|%JTia0RJz|5#iy+_C1Buwm?xzkS;ssyLa8& zf+}Oy4FkQsy%x-osZ$j*ZL`t_1_$#iD=XKK0G%L^b2WN6S9o1rT^Z|W zX+%UszCqQ(`fQ+pvU(ETiY0eRrS^%Fi3xah)-=l?r1YpLF)@+2PIv6sMX=kh8vikY zaQEg(oR^>fT#q%aYt|Qr$j9UjsTEKBZ%6rm0V0d|mJV(v0PtV>{{kZK{{@JMaBw5i zq5bD}jy^Wl5}y741LFVV7U^5gX@F0TkxVM=VJ=`jH~P`)|SeJtkXo(l1j#se3I8kM*56* zU;MHm43bdMT5lgU@KqAdeWuS3yjVAAxi7ZOFVeiJsmM7#k61PZd08o3%w8 zj*0I}5wlwnx6O;+w6Y8?>{k$cy6-Y3mmi9iR+`hT(aTFvSC(0LFT5b@5|Hc9= z>4W4NPe&|Lqu+K5?D{2wR75%l_eDC+W98h2Jp%Q}ZWFYN*R%wbw&XNf4mX*A{)o0GZb#Qt3%<}Q4RZF>1Z?-(1RO~WaP~}Z#wM%2uH03C zzV&Ot?rTf}_c^4lB%S+iAyLWEfle%-%el?T>b6Vw^v0(A=OFStL)Q~u5PF3NVK~r^ z1~G&H5Z1UH2}nCv0%&rnC`L&an(I1IGk$f885Ls1GMK=bw+#{WYvDCdKn~EqwM|eK zkK$3~dO_fk_{o`UC4WDXTFD@P}qfE;m z7>ykP%YnQ!J#&}~N2)a~4c_bPe^TX}L^a#;ymmexW(if_SA0mFkB>TOQe1C5LE5UH zNj)f*S3z>Csp~M90U^-fs0*)^5De|7877*24P-|Am6CL+h|7ey)F-XBVWF6anTJ>P z6)AX$j#(iSfEW2`f0jV{hmb+MDX#0}ZX{;qex5)TCq&L_g zo1J8A(fYeBhWue|1FVA5iI^^M-Yn(%>sqg>_`_6@!CBL_cRLAjs%NyGpGsT{w)pLd zUtSmN0YGC=m*|tl0stUO1Ae6vNRUUx=tie$2$4*^jg2j(Rx%Zp~yTljTJ>^u9$p( z{ZINW=2vOcuSm^Cap<9p^$G188p;m%D>lt|%(#gZ8>0~#Fh|QEkIgJcj zo7+=}a`IhBruPahodin3QuJ`M^!9WzdT+Iw1F8lJsn=o_0%x6-YjEhjE>B3KGW+z; z%@vD1XM-VopUedjiFsYg z8^BinfD}>9^=l2hP}w<3c31u^_GCY?)5whB-<>+mt{-+XNdIMoO=jr%JeiLxp8p_Z zvUcfFBuz7w?WrWd)t|tqu2IJe=LWyQC1Y`0|LP>G;|NkV}$5m2#6`Kl`~C-_H7-)FY9rIWK*WrR-_cd zD&|-;uU0n=i?HkEMGBwOFjy=GM>j9DqKIX9UqaQnys-%cDeZu!;FG)#u zN-`qwK3Ab%{QS3G{lW3fEOhJZOJOLwKY7aj{~R9DGz*_GNm*pxppA8bEJ@0fx`1w-Y*r*JbmVWJ_9}hBdoXtf zN;0#WHD?mBlC1%do`x;DJQjGZF-olbK}HcsZ(c$Gpc&FYVjM4)Z?LBCo&A)Q@iV?T zOfQbik&mkGm~;gtlF5voc!=1Jfa{B8)O?%gW*^!C0X{v$Us6!bzRa@VI}<9`*Co$u3FAF#82;2CIs zHo#D!te3GhvG7Lf)~>gL1}t-}!vvh<>M@s&MjJul;R8BQH(wjl*j4%{<%(_zPC5hF zZ&3_@<(4*}Isf4RV+9`}3nH(7+^=-7p)iksZtYABCmxg-`kq33#J!4dWDS+eDcLzz zYFWREdyQ1QMpy?o#qne1%Z?hS>N}}eA*S~>BD%ldQs=XA+WjL8$+P8*>HC`{G@WC+ zkcB_a1*|HP2KG-$qc?<3ll38SwwZCys*0VJO|$~@@B9qegVNfVh-t`wM~d2Xytl$* zPY9dQBlL1kJ>ggwDT%?}Prj)?|EM*PvTTz&+c=Wh@fIsRz4X-BXLC)>uqm)2@)OpO zhBnGbsZLf>u4gq~zPg@KQc^)m^mU`-fRNH^q0}4B1q*AmUWIdBg6|6Wl9F~+2tZQQ zH}WKkGdel8M6^N(`albPIoVYrJ^6p~fokDSB_=`vQ5n*?oG6Z?C1aJ9J{rOVTo_sm zV@aW%Pd(%4A$?QPn!xnXrHVPh=@8c>=X^x$WSBx*4AZt?l!X|kxSi-shJJvAEOJMeA*zakrYH9SvS&dhaqwfb`)hgMs*2A+ z2k4<9j$T8rA?ytgfzJ*F>9S%UdkN!L>1Y}n83LxSBV&C-r?DEXj!o8cB%p4dFDli< znWC15LW@g#M0nl}`yGxiTJ-lbk;^R(wH>3zU2S$23CE|vb4KN|sOJ<`7sZ5+JC&{5 z%wPpaFWBVBas!e5gMZN&f4(~HXvD-g1_D}*)SDQN~Ww$-nmwj#oQp9 zB{rkc5CZufKNs7(dR2WPa89*AwwsltZhG1(ZXPa{l8oHM96cV=hTviv3sJlJKW%B^^j^*= zjLs+wiW$^84#eu^?;LGc#honGnt3@&Vs|WG?h9CPMF=NChkv_;rSVn`Vt!EZ$f3)s z3$SG*-reXpH}+glEs0~)^;k)wU5y`Ya?ha?73{nExzQb$`;-N!aFqMxz-vup(b{Zu zO^ogA%ET`07!|)`B7Pqmv^Ph5!8Yxqsa#9o#9n{dLf|Yv=&H{;uw!8IZ4u1c{)myT z132xFb01*Ue(%&}?`}*ua$q5om;@q7j3!{BDfw`Ym*`m(Jo{@l=TYG)JTVEO$0p>f zbyaw~q}xtPnPQrWTw4A6W#TuFZoxZJgWuDXH9mWR1-s0jHfC!b^-0CZo3ZP(R;`Tt zn7~ukbKZEtwEFoK5QpbKUIlAU!dDHs5uM5UDb^~ygIN|;_{y$5b)~wl#hxi@Ifoe; zk@!`a%4PC>oSDG*B)V`3VCMYowQ?T0=nzr8v89$B>Tk26@#VjS>LW9He959mE`piA z$>f<6D#4PZ?u!HtYQ7DUVoMelJT!|%XJomRyfTApE2)e5#5bCjnZK*^tSmyBa>fBx zcB>V_iWrs`aEl_iY9IomH?z`?C!KYrenFqI@V*r}uWfL~KT^d^G)a2({?GiSl(Fon=+?WmNBQDa4pi@b_n(Nb=h-CI zUqMydU&AI~b&kHH&1X`paM|o;jXz(Ftgm6R>nFZIi?TE6+Wluy!Pc`(n_MZq!cV5i zjJ39_xZg!pd8hkLKo==8Wo)?N{|$+Akzn|}kUf}5YEq20f4ftg4W{s>l8LL3x5WXR zhUxU6RGs;-3M8wf)hxYU`{uD$Sw_wZGg`fm39U+11fdnlh0mcE|8e)+Vi{V2u?6}3 zfLrAz+Et6@r}LIb&=DF>zJ5!!_+Ckoca{_Xl)TfBaxHix>NmMcw=^SKFQ6<{n&P}O zbClj#nDhQaot}5IL#WThgr)jH^aX~(QI=Qy|qE%Y&Z`2A2?MevM zKU*WsjWK`SmK+>-?hAZi>nbOxCW`jwt0eN&>^gWX$5DunssiH4 zGl?)IsV7#9yDuhFxDh5&bNu<3tU2!U=4c@%$sMFb!;Nqvk2vpa;3TQFQKmW1G72!v zCkE@HtTK^vxJa(1nSIWfZ>;>HPo97@=uY-w+K}{%T6E*WHdY^|x%S&AYdvX;CIh9_ z8DJ!B$r9;#CUy5;Sp)ucohY0SzMaInOi8%mXk*1q2NNifw+;^b{5!%{0X%+Zth=?7 z{R-TIBrjOmnSiuk+Vis7H7qnLjSKob*g{wxI8M`cN^Uyu6W+b+&y*ukNcs@3$KdOt z_I|{2KKaMO=VZ%;PlS+O)fMNrK)7Tz`d8gg0OSZ_^0ggO*tq_P@;AKM!Y98;k?>qP zMj_`@bp!g_P^@p&R*%EUJVuUV;D;j!^i|xzL{zXi!hD1O_dJUZQ(^Si#LvYzGHF#} zj@gl^f{7w0&CHIG9)I03Yh^t9lHLwt#iH9K496nmnHmOvGb}ED=BSxO?2cobk8L1@ zo0kkAkNV+^of>V~#dZGL#WJu8if`{|)=%>*16- z`DK|^E1d+l?NSN_y>9Mf7T$Q`jQVH7aVbSP^f??&bGbNOAeOfNt-UgLD3{>_Tgc=L zle-SNS4F)mS+350eP3r5lWHNZ)|BW0vIj>b#z`mvaH%mtQ&}K6I;JD`@z3iRnk-*p zyw6jQHShLuW@TdeXS{iQDp?O`Zaq#o5J7HLYsYLyj^4RCfDY>v?vS|i)H;g~sFXWE zR+*xfn@Sk9<==y@f~(q?Vcgi-BQw%>YMUKQH~m3c(bdy&Rj@p!H7J+rGqcGVL zJ~n*2z1j@*{1?jNb4YU=y=Ac9)mw2r^egL#h>0jIdA;ihjxG;g2}u_S?(Brv1LX5| z9_{*6H*Rxd9*~$5N&cpORSS*8DOY~*-@nT@vB(qNX8}(7-5^Zw=Lc>roe-_HZx2BX zecM8FZS;Nn-5h?C@D!$b3hkH1?0I+}aXX%_^X*zkCepzvX;h9)TOUs%~cZp_Q&-zt+oLKdBD zB?vmpFTkoso?~}9oo*&(MarP3Q*tL~&}a~VD+2_O$T zFO)BQL6i+sh3#bVV0%!y$bR7`4AT_6g!=H=jb=gbvXRKEjlB3L+MYrQ$PQ&ZXu(Wm)~JUp{Xt{&k(uAot!LIMy3peb;ESuLvnX*X z^q-hWj;oLsy!==45Iu*P67yX}=6;qnDnet0;bGuk(^qPDOwNXDX_PC)kVl=79_sP{ z^;`cH?NVovAlDMcx`|!u?Nw#A-Y=ehn#bB-ga>&t^#uZRPhS_^Vg_0FdJ}m!4TfY$ z)tso)mk1*>&6J|C5**rh@+4Y`NBFLru}-#a*7c9^c$LAx1S#Xp0_4x4yn>hM$_Y*@ z&lR57dq~QF)n>=!eD7+%sf3XZC@PpG6YXmAzU<;OLfu8h8T&1kVw)?NaKRs z{`tdaOkGQ_Ocz-G-~WV(UQ=%^~Qa8WU7?w za3dS~+?Ti0eRT&D@p2ZuI=L}^sZI#GR|1OYBOp$^PEdipNG?B3c7VON)?57V_!`gv zj@=JsEr_~&mr)iEc^~z(k#eBpaTwVB3nJpriP(X+f5~AGElVUVmaVTyx;1`!u?V6r zcVHN#AJbG^COU=ucpWjkxq=;bYGCuMHSR=CtOVfnazptw3_4H9(c9h~i=YYCl2#wi zU_C3To6H9L^@=Uf1%f%i?(?xlCPYjsyfV`0k`GMMA~c1Jpj_`Ro(GmInXq4g3u zhw8urs-MgTadu;j>VlA9Et=ske{DJk*=$xxhU`~Y-sP1W>ki=)2U)pmsH}$bqkWwD z%enF|p?+76jd27cYM#f4r@v=DhqQO)G`f+EeuFzko?7q;pGekj0!7K9?wTlS*^s`B zFm`$DDLYY50_%yh+uBry?v{OpKf7cjZFC$*zRz^;%N3<#nYfjgzEPv2dg*W_uFeD% zmb63V!%D{9Y~~ZvfQ1TA$d|xM8vDhj`fpK#)kHbiZm*{c?c(MkQc)U?$O?tYx(xc* z@38bDeh^HkbRShiXHKLB=<=H7ljdvJDNvMpZEclh3z?sTpdJ_L)!Dv((?Q?5m9|Gs zL}59qf$xNUPSPSw(N`b1XIYP%W`0T2UZJhpFKJ6Z_^MF!h&zGDc<(V*d7W2-|1tO+ zqGO83f17pZ==&<__9e%yUN<-MUC@gRgW>HC17(@sDSCwvZd`x&pansqYm=&3jsAEf8Fw=ps{ig1oc@hIP~#`=+Mi6; z9O}7@&!8a~u+06Kt3kN8G1M3)rDUr*S_? z|IK!P%HkW-*!A);z45j2V53jhVbSzaE~|VroHIzFLD7Z(+I*Pjr0RytaZ;Cp-A#D1 ztA%CBFW!`-CJyV~PJ4aBE9TxOkR~<~h(U`2Hfww!+cCqM(q}kdX~@U*1Ll^2sC(fW z)V|U^GE%8u+bD)BS%H**sy9P&G(M zOvC6Q$HKQ9=5x>OGt!QZbnw_eP?KH2J8aIeLpLE^oMP^X?7`E9xj#2)*yva#6wn4} z5F|6r#p4l;BOPKL3QshT9dNi;sf(!{9}^s^yr5C!g~vOK0?>`&;w}j{;pY5tl$+8- zYaF+>w;WAlE2&E7N3c|4_o2U;A!GXjT_Gc0IPJdeG!)$k^|s8KqQYU);)_}vtK}`@ zugDzb?ax2=yll7QIPSg`jRKu?Dt$aUSDHK#zW9pM<#~c4vgW&5Rm;=FGQ>{r^??rs z-?II8pIZC1NPkK~qs5T|M~>(9e!K=i6yhIyuyErJ+BpcE+uU%^f1&%>3l7;s)a+$Y~wq_n8;K)%HGU;KE%%Rbt7ox3&(xZe-2nsQO|7tFY@)hnNhQ=U|1f4NMgBYna>a~~T_e|@}t2s$yAQM2x9#pRnRvAs8USSVjmczz*re_3(vU*Gn5 zbs_Ji;Av4*d$|#sk8R?1I-36e<+@}r*AJ{=Tkg<)u`Of*`^RS@5je3t2!bDnx|n=y zhuJVpK$g(mYuavx=}YoVUWVP-+wPl{_VfI<*W6We{LWUC>(f-3qtOyxFA4K)(_xF^ z_V!T(lJD^d6TfCtp1e%wGz-mENfp*Z2D2XJkLlcA*!Q7jjBR~C6XSr$BkL7`RFu;x zOW}XMcd~2AgS5>pKY|@H-Mz~F4Yf|n0)LbUv{~m`%{bCUB~>o`$sec(e;Q3)W2xf6 z6K0Hya13ImGmwv~%p4i8%O|ugLvJ07jNz(@4$iF)908h@} zipWux!-LXk5~ypct4lM}AaBCA{!;|yip42O2TWh1Q@$!j#b_35N)zB}75>JP0c>Xh zaF__ow z@p>|sHvhI`o1U}InyD=1x6p5}ul^*H$!;a0U!pIN{wI)L+xc;(#bim)<>ngW9sw=_ zY#p5UPgyJGZSVR36wGb)$WT7i)=>}3l%T1;-VaLnuA(2DVFOz2`klLpPA0x9 z5j8=!>v|l>!5BKG<5}SG{s5K)ljjwdpq6c%sr`I5pGjh;uJagJO%U|O1llDh;Vx(~ ztIF>5a+({UGjSXMj~|o0SS8}*y!Ha2C0g_9@dG$OmuEnbOQ24r!PSgrXl+f}LzHqo{48Cl~_apf`od1*$dpywtxZJ(y*PsO7fLfa^nnmyaVwvc=L-+Dg zF9)!pyU}r~V_-k+EHjkLzZ{_cgCHp9rUIbFBj2qy|E5SqQK?Ub_nPcqIgV`JIc$ny z6#%dSe;c=RCo+bp+T{4`6bZa{3n1p`xVm^3MUuYukdHY~+A$e4yBF|a^pY2lO|TGn zckT`f0?W1dTU>2>`#(y!tc=|0Y?0e|uDu>s*-U8ubxe1HPb?;o(?C_o@fuvNJ^;I{ zryuASTrP`9EC*afPeKmac)mw~Bp$A*I=4)~La1Khn5HH25iO48Eo;fKQevH6ck^S8&m!Dn=Qb#6a z!>3<7EngZ4;$l;KMq8!OyIyH_&|&)_PAcbGLeNk*!y=Q_M8cKZJU%v%xuzP5HfCL; zLE0!v+qPbwLYT9>=JcDUz3C@gox_ItqElOxmiUIFlt{knza{B$hCG2Sg=2Yt&y zl`WL}A0lWkmOM@l62uNw!2ypH=7bloS8QdIR^WI3Jx$e-FI=Nn3ZES!Td_<{3FO2i6}XVfZY{i|M!%6E8nc=uNj)W@J52yQm=uyT{tI~t0_!gBX=5*NYBOdgqe-4!C&(uQ@|-%HC*CU8-(n>#faon(|7n zR;N*4Ch35|3ds_JKpmE=yG2^pghqmg%`Ix7qC2v${%DHeba@-$hhKZOMXz2i_^8!^ z(e&7eg}*<;i7V>v8Y6qxL){UbZzDQKoYiXnRA6x$Mlq)3<)NwM`q2y1u_Cs zqgO2SW%%}P(9p_l6t{i$-~82Zy}cEC5WQLT%Tu5Mpyq$m@Np$IH{u$%wxLXbwunrM z><7yaTSkcFBbL-8mv5<7JzbHym+T>Ic2~d`4H6kcmx~8?bu~q!{%_-mdsJer$b)BC zfX=i77r?5rC{De*%u3*qPqZ4_oYBh+p!G@I>+_W z;l@dlA##D=cnuG`6gXSw_tc0kqKa@BurdLeumRt6r`9}b$+4UpJy@Y|_)n%A@dwpi zH41Sc@LYZe3gmb&Ir|1qU%WTL z^)am};r!gOn3IvEDvKI6=R)oYGq&r^x|mqlz1doZ>H z&|^f9FwWog)%%c-GF}aQN2Tf3Wc1UOe8XQ6nrF%JrW}*YGi|7R;6{a}^B3b{ReDrj zw|MO?M*`=b?($;|?}QOpsypu#!i|IG{UrR~kYqiG>^iG-ozdn)=65dXt;b?VjUzxW zY^|5)cW!%EFF`IlTxAohF?B~aO6+ZCuH#d$j}VDY+!|3+4*oK&k&u-yV1OHxaME`i zY;t)M^tdHuoekvCO0f+bMqli-8_x`SIP>EZG*f9TAgvjy#1^w!{xKPFaggxwVcnH2 z9~LIU?|%@F1#YwGZENYe-qw(j7!C z-z7KgODiI&ES-8NnBGNHNZfJ29``mVJtq#%H$G2_`Vi+|P6(l@HR!`$g3K6s<$mL6 zN{>hD(`W`OB99aD>cnp9sfTtqEQp6j7usBOUW1-Gg(BJ!Y{4P%&Y%~b^w)C*_vVP^ zwi)iCG~2GNi46f`F7IYuqOrh|=0%d7?-|D#jb0S)kC%S#cjR~H2N(0>s=`7dv8U=j zDu2XuIch8eSdZrE?T_sD=V5P_D7(>=T$XEAYCnDwlYbM&5j*O&a|~e>@{i zGG=Mh(3ILe##(Dzh1d2pwQ`D6ct)$A&CvKoBg8?}dd^aIn?CvM5_r&T^(v35kU_mN zX5%hQCZ#0Xl$pAU4u6Q1S4f17eG-JCB|LKS{~CRa1WXB`i*1QIkmBOJog#o>*#vbQ=rXtx)?}G3Qg6?yiyN+Hi@`2Z^lcyrE zwWh8Jie+du$FlU~k(f=I9x--WK*59GJZXN{>1|B6|JwNLm4UJO;;tFESwlhv)_A{x zkIgkAZ$3w3#_Hp)VL?Xz_F?51TPMHi5f3HUK>SI2vq-@B>0D@H|1aik(C-T6AMB^? zUejk(ox5WfqThy~uN&3z39PN{HtRaR&~Jy}?iGc$KP8`)-!j8}B1RW519aw6=w0xc zezoZ-mjedb{13-^CC~sE5?8&TYzk`J2<5^|Iq0mOv(L@q28+_p<)2B&?d{?j>fdkW zn^7+yzo#_|=iC9&-C?a$q2|cbZCRW|q{slBb+bbU7j*(+r1rh>>K{Tk@=dOb9Xc!w zB`Ayb%REkPSV-OpIJg~W{Ikf*nP~M&J^p-CA}znG!xaJbWq$L+A4^P%C$;&s7Gr50 z->p*G-4VFy;&qJ5W|IE;xAu6gs3#P=oz8Eb3#HDcA~@aknsqMccIVa=?!qehqVe3$ zT8SPKwZ7K;yXQUwhsWETVM-6Ub2T>fe#462GjVb3ixdl@9lb!=c@EtguCevwJ=?Ce zss;eF{iJ|F{P8?l!X1jdiW;$T7q4M`x-Lw@AY|jbnn}S!V1s#`F*Eb3^K$W&w)o!R zjT)DS)Q?OoUQflFF;Esn$JxJOy_(R)poJOmoAIogm&^y@lwaM9uF`Tndzr3erqgb9 z(+Jz~H6PaboRdfOdJ&M2YU#D|JwoiVqeJI)7wX?RhG8w%Wj*@^0M7$XN;3z?eV?=Z z?gQrwYW%-pQ2KE{?YxobIy9PIIk4$+S}6s;qrhSM!&twXleqqCt`$`&b5>&k^1k(f zQ{rn{I{(9}V|0DX=r;vS%*P_r`)pV9P(Jq3dls8fi^;yNFIw#MHmWYowlC}Du{muM z`*C-lvpn3b&-?@H_vC5sqWkis`)V<&3|t%J9m2RaBoqW|y6q$E)<6M}Lb&n<^|fV+!S&7bO3r@bH_|2t9Wp zXa!|>&OO|+^|a_`cW$y5*Y1JS@N(KPBy{<-hfF=TB*($Qiz)WSV*H3*#{IJn8SMuf znvUY(>cvZE+%f2kW!bNF%|;|OyLX#q*V_T5?*kqKbzl$5Yb{sgk~uxG_wk9-f7=lT?_YZr}HIcAuqNFhM_vp+?aOdxbz_R{7ASwkJEP*GYL zAcbj*16HdNnwIbLN42>1;>#!LSuk%*z|Z9z)E|tZRBXfv$|+`WCdFQ+NN*ZBof`qHF>~k0`%HW8{C=vd0OS%8@{py}_Yhb6gHVUGo(0s^ z{Eakx$>KM<6=}))XC2JdJ0qB=@y#E@=vt&&=bOjX%?c;|41UqwH_9#?ZR~7ovv(F- z6%jTowuzSL*}kY|w^Xe^-hx37xi1snOyWa^foR@?8cpuXsgC)G9~TL0AtcA&fqeqp zckTZUE;?a#5iOmj=_J-D#iC{hvQ^0Uuh>FpyR!^jV`+{kHDC*#U|pbf^e+Hu9n&-c z(~LB_M)A5`cAIF~D&Ee)@$$uQBMqNlp7=`wps3wWUdOS$qANlzp|!W9zrX zfOqDm2}Rv*XOplvM*y5H8gh@&k{sr@us7D`W$oeQOrl!8GMdskXLldKSK{#ckgC7r zzKEbn@*$d+>2sk&l|C*wa-cHP637K8#&TuhXfc(Q!6ne5A^c7#Xs%+(V>lZxym0b#YO||YrH5bGLy3M zgGGPZzsCu=_w~q$Gus(U@OWb*tMeB_-xhAZ2I$ zLB)rXGl#~Hxg#jGvirPNX4)rc))9l1N?A|lw%L`0xq9-N$$DN^{0f$%RrDuEiPX)+ zKSho(ypYq+zAF~iUkDgn@Fz88nf`TDQE@s-N30`!2faMhz!rZ_(OTAES6k2oh#={? z&do(|G5@UKwrmV~L9E9$_>`j6WF)F3DB?HoJk-b)ty*GMahHOaymzs<<8OvM^4z0Y zPtAQ5B_^6&%;Rktzep#;`ce#}A5WnpU{Z`MjFitdy_U~QuChIf?mKt$`r@9GTajNb z7qBNH_dO!X149Q!QA_$@LO6?4zc5o@vGXb6&n%G1(XXxk%fZGKYPeYFE89VTOH=i zJjq=6o#V;`rYn{t=U5d`f4zO@Z=2GL;p`Gs4+a4BpL#D!n<&f4t;9{@Moda_uxiXk z2hQ}TpEdO3Uo)sTVpbYzaLDqh3mh=X_n98hO7iwNSAMAJlyWAcXgVbOW5pPXAi!F zVeEE#Ppn_H@f!#yT8XZQh)s;fI-gG0XNGYuYB(-^RJXLf`2DVIP^80pq^El(f8$Cx zRdt>+!p6R@{-8OzV}bj~7k8sm?h8PONbu~N*4e^u%7^okv8&L!-I>k z?BrQ~lw}2o*qcjndI*TE%%C@iVe?XCwA!UQK>AA_ghWGE5IN7uNYXtzb1#$L_rSB# z`8b1ES16;W))iGOq@uIdT(U?KC1$B7!m{kVwQrqs8)B|*+GlO;hL23PCyXYxLNqud zY$rn;8>XhsO7BsshbIXik6^+d+HCcouF!s@YBg--Y=Nfz7)2|c=(q}Sf2z)QmYCiS z9L-EjvCTl{LK00_lyX#X3uu$@J^)wLTA8TyX`3b(!!2BYs9IpmjuZ^BOJt0=eaLJH z<#L{-Es-9haCA>+f0CLZUhETBM~wF=%2OlQmo1#d?wmm zodvIp5wCApPv=r640ENbvBS{ijO|x8+b%KQUL>u!&Mh~GstcDqaJ6eNGh7eB#)=Fk zPus6J8ntz_WfpJsBt7O}Q{4nlsvn@g- zu8ZYx}rlAK~_6PVM8u1E)Wi-Vv@81gKFB&0Ft67HIp<1zcOOeW!YjMKABOv zz1j1fFZmPLW(B)B4gwz4qouY5Oz3pbdIh2XMXu(LbMrv~ti!0@PHgZJULns*;s=7_k&-^z{m( zz8Uk#(dH5Kk_1-sy&r6E^&6Y*%3Fx(CjxakE;I)5nH2~HI-!FgAigrkU2*?!sha^IF@<>+_t#=nNMYRE23ecxWREymS|fd zy78*7SGj`pGUvX_AfmFa>juSSWv)b~u8sT~7+$C5; z#DlxtU_;xA{}aCGH-Sf9Esy0kHx~%FX|@SAZgnE7TUhW+aq2X{#+I!xyuQ6)=CH;n z%bAmD+N5^vMCb}hJ}<_&73x{q z@(e55QPwDJ>dJgY=gh;e&;cVJM}5yu-GW{^o~H|5b(Dfp)0wF-hpSTe8J(}+_E&~w zY;VwNx5u=&i2(bvJM8MdOR&9AnIfmmvDFdQANBQmL*d7iF7gZ%bDeqSO`oWsj2`EA zzREGg60XPIMmhVvnHJ0N^oP zrf&ctHk11FF^%}$(#<*d53|+8R{2iS{nfD&Vmp(8wcK!#*DrkYu=#>DpYEMk?me{h zdx_u449{vkv@R!gU3}7Qs^dt~y|h+Oi3%0p9n+b@XtZ%)44scvjXpqh_DUo4&H!8f z^1nm~|IWnPufkyHOL^tC(^WYwn>Xt!V68sG=1I?CU5fj)YNk$upHuUQioNIl_ha{K z7Z%ZVHuj@2mSpMmczrXdGQ1l_5P2$$&HkK~&*Wi!LO#ko zKM_3^m6(W_%#%cmpN{quKhYq<|1B4k-&Z{+ih4nnzdeSH6>zct6|N%>GZ(iGe1OI< zrY^;Qm$=h+UEmJ4=<9e=sQ$YP_%_274$=LMr*bpGzsBG%#Ik$SYeT51YalTHiYS&H z=smgf#_aOatR?J!#gDV7IUs1#X>GJ$4etLg_37~5G2Zw<=f(Y3is9U)bN}dWuN=W^ za=l0TPu36{BFkt^&%wnutp96Eq_u5%jGhwz{J&}_aMvC!PTp$*7E=Gp5WI}A<$tx| zFLVzyzGKEvU`M=gPLmHivA6T zr-l-%Vyhs+>&TK=a0D=90K>ouw>iVa5rruWhnBjO^P-IN?d0iAL8W~(JiMye{Wo@> ztpP7<`Ag^XqXF>6A+(Q46t774$ z_{zO}cH>kHU`=>(c{yupFi4ZDDe%!CEI$#bo;1vC2bB$MHxJPtMc?*-F-3NMG6?hL zo{Wf?M7Ygg54}4A&OVenAYF7$1iKlB&Z!Rib$xh#kJ2Cj-GCSM{<|gq&Ep3)_SFtw zGWluJ*~ab#KQH^ISYIr=pUrJ^M{Gov^|QZzZuH%Kt0Lk6vO|U3s9dhCpw~|hE+nB)Zfh8H76|e zY_ltqvJn>Jt3$qFC15fXgn){icko?!L)2`^aaDR8bB$s?XhIAim(qkh*9>Z#^T*+J zI0u`lQZ&{v8u6V!`m5dZPeET^N^0n2sO0QINOTZWw7Uf1LIB9P^7Wz4_vWmxS_t4` zaBb&aPZn`Erv35TCFs`U9%_emjC;2*UEyf4qLZ|!YV7g-J#U{(pa`L$ZYW*Hlg7$F=HFT1{R@eI_4YOCZ{n2kL zOf&y0CkeSU*%!T}Y+71u8fP&q(+ zbKj-()9eh|asSCo_(^a013x)qJM`%&zd#Nzw|k7-P)x%^m%Z0_H@P=wd%dg@)tUYZ zaTndI^gbfMdPSb{{SS21<+ZH!B&3m2ME*lx+6dGl(;Iiq`KJHyjuFwT$OT!{7Z*#} zPilx>)>zQ{2N*01t-NnBh1UrSQ1(49wfP_D`AigWxI+jbzH40Ied*7b$bZY)6ELL6 zJid4vqp<2f=v4*a7lRXumJE0P4+;UTI$z!Dj6Qq)gs(n(Y4YII{43qiRb(r{>S&5i zgJp=!=MuF4pq%ST>qs-_<8VoYx;>mY+TA$E|5`O7#=0TT-pufpgclXF=U@274}xP8 z)Dzui{_oXr%L0BXF!T@4sOC9jL0q?H0KY(fe)9i=b!=o+fW3f1EjAz>)^m(rB9dA3 zziK~VjXNKOHeA)F$_&W}{<}zRQ9T6Kf@8n?`UN7hcClh}&YB8UWK8(?ts_(@D0 zSGO7?-!>buDm6-pjGY6@DXSdR-j3aHj_TWdasQEYIsk6@El;v`&S+dT#HhBn!|;pu3Ix8h zrmf10#qGvUEys+U$*wDwY*H}rHBu|X<9P}F|NjTwycebXL_j(@89>)ALnoZi?qJ@N z5$e+g)A(NB+kXR7)qh{vXNIyefs01kt*67w$tTDt*N4yUXLaCzjHznS&S|!icqsVe z`XVG*c7P0>uh+M)y!KHNLql)10@e>)$SM7)EMAO`T}P2#rExL7e`Ltd?O zEQZ_?w`RD6q;ZUBEQ%I3xIt&CUQlEWEuKF1f3PmKcSO>2%)GCSD+Sneo6Bwu&JpA(ti!vJCT$A>QPG9KFA2r%UfnKrwknp?P#}D>h zFb<}`nk|FYrT2h!uo=XRX)C#u3uJ9(UeH;7wHO1q_cK{|lYjU334Id}dsHge$E!vg z{UeP_Bx(&QO8>mfPYe0Uk8?V`v~mMN(Qoi$2f+1xN96U>%G;ymM1kXrqx1GVOr#k;mOjh8dLd8y(84AQV^K(w+19aIM`4fG5yuac;APTQ!=R>H~lwm zt}&k!;$&nZy5A-~Y}73;bEdMtw7|DKsr1|dmmud{mjql+F_5LihTgGdDAkKdECdf%QqhVQzjj!Dp73p1E6Hly*>(+&~WZ9lD|HPEG3*> z+76eD>x&=_gG;@!@q_5Z(LZCLiy=?$v+}Gjo))NZVC+nEco8{HTv?e7y-SXKY87T1 zKj1oSjalzC<+)phBtG1}w{LdIteX1@IOrc zW8;~RJxEj%bNM5mCOA$|LuvnW@M@YZl2K!)O96G5Az9>e;D24hGxf+i=ibRvYk5>d zauuW24b`+@(QruxjCG_1s1O;s5gUkB?t9~8*4M_{q9d(2RaAFc(*t{MEfD#G0b^|x zJHU#Tx?M(Us0pjwYkF#7;d${R@>2#QFJl zukFbfsg@}wD9l5i0+3>z>>hSX`_G5$e}yf@x%Xdi33iDqid+C{7`zft*n%?P1Asmk zORXD1qp)6VK)=7h*_5((f3&6+@aR8lzI{poTIdZJoq80BH?2%-a&GqjGJb{W$v(}p zFcn%69}W+njQJVupRfSl=Pe6%B209#Zp>n)uBTihqGmT6jmwv&rxW8A2bWgvd>Z@k z2;?MfjE&yH#H)VZJ0dP6?B7{Turh4$L;DxpW=CC?q0Nx@ApCqhE=NBn0M$v4OR=aj zZz&{P;vdObqEgyM-l1FxlvkE7!qR(N(P03`e zCK9l;#7d>u2kVRN}x};39>8J^1TNAYoxz+#xzE4IF4m~z?g8YNJJ0v47VArVifY6ZzE+*r}+!?sdSkG_mCqaJa&3Qk04g5#v*I{>NZE$Vb_n+9S0}mZdkmikCHSXxTAUtVm!oy~xp8X9&hAN~yjcgQ(;{V|^Si&8z zt@A2{ZK0*z9w7BPdm858%H(gg6)io<8Sh-Ho1u4=>cU8=KJqud$fMu6&^D#Lh`0kH ztu&m?ZpoZS$zAr>ub=~5w=5;we_{WDK>F3lGU;4`DUo}I{vi@bh}=Gn#<=__aILb- z2rC~t{eg^U^%v;qjk|d}HPHWEx9gXF-?bGXbw=6w7C8BMZi$IE7P82VT>0FaS|VE? zdM%T^kGbPxUC`J42)g@~)IgA7Nn$(L!i!XUXxu}L0jr@3AETEyV?j9Hu}764QM>^mp?=754r!kxdr+z`>t4(vBs(p z7U*I{YR(q?i(;);3wu+>`Kcj~V-y7))_dpduLmhbZT59|Jg()L849J*(@ARH?^pi)|ujZ2zIrsR`I$*7G1RP73bdsr?X@-)s96j&a;!xzj;Ly)icd26h zSWsrqv~xFXE9%yH)JJQJtz0VD{(=~{&wvo>^Q_4yaI^myc!6kP^kyv|#Z+kD)a?5PkH^M@j$)Oa;_ni6YzwrAo zw*J!c&9WP=w0en@Bng;0cvu7#vgXI{EYp}d z+SR;dG4hs*&ga_>6wjk=&pX1G<=^t!{r|+>j}JwkpGjzL_Ei4Yq)JyY3kMkZg(!ne zGwH4B>4!b@a7EI)Uo2x{VUDqEyHf_HECY>McrT}`qioCIVfAJmgUfeFF-7Af@!E~b4(LA4$}pKrp~Za56SmgKi?0|)f0CYdlM3UYf?T`59;Y9}WjX~}6a zI}ub8OEdndc0f{xff`vd?7P2YN9$jl|I8(M5&I4UUJhTb4!4$BJA*%UqZm8{pZ~c; z6Pg2PXj?5tSo+2 zz%@AWT#mUSriGP$PX?!=`;OpYu)#*CBEqAX3$AgX84Q)grbHQ9Fd`R}RN8T~`RZH> zc*D1B)~}kfW1Kv`dkm-1$Wt5Oze!DA)dCKsshYcEkLLO3De@hy`Fc}w=~;le+C4ca z-Ls+O1hqML=r+*37FxmAb^MVn(^6c|v00}67~z2A%QmOXhBAuZet2Br{r5^T{0p>7_Q>*g?svKXC%%b~z(8p1=w&M6vZRGc%Pi;imNzofj|N@8 zlXVYjYeTowUh2PdW1)dnTpG^Wu0nLL-_I8QzGKZ~ngnDRYXp0gxmo)(Hf8Xz8+7a^ zKB)8nW$0;z0k!c8Bq%SIOcf?Ts`*dmYA+n@ndRQv zZs<$XjbaMO_iko*Q<0OpRQlkkF}7{I-}}SI_^sXmL#A0KA%&a2qgsO=Zs1!CY(O}u z%?HyMB^FQqig9~oc5^kq=PQH=thez8c+Q$Y*EXDHM=72=Pu%*@w1Em^9i{EI4HM+I zd&ae@&ZK`Z?7{&q-*W~mGH#V8(OBe;bJkI>0Eg46WK*1v zU+x2=)6&?ttP-P)B%d@J#mB3Pjft9%Mi2F!Jf)};EU7=7aB%ByYS^c3kdUB3b3AJ- zem{#C`m&Yd2{fW3{rhkv6j5McQik_{ci?DKMNKwpF`sK$g z=}L|D+bP%?E&`0d1Tf)nom!Gl&tTov0=R@09tTZVctTtZzPT$=O-l%9un@<#CWNa(MbkU&Zw9V9Yxj1;^1Y zA}(`&5>`HzLX78Xu|`j;ym@H7QOdS{H7+*eFkQadGR+|MQ?ZQ-v9uQq3;=QeAfG5s zG5?30bDYE4oQuXUs`bSmJ4XXZUH9VMPrKD!DaY^n6;Kp_+)j7HU4yA$a-nLc~jbA#rn5*4{Nh~ESohS4~T6XnJk8_=gbBl z(eeSt5ghXdEMfzvY+`{ zQuo7R7Tzlv`nh~g+nk>An?Okz74$2Jskm8{iQXbQ;hor(pP${zZIlPAD%lr1$bpM4 z^0+f1`~@vD?qupG!k5>}V&??*t)SJ9{3Ka#Ihmj&D0E8cXBEdqQ;-E0M_fBrJYS50 zY$uy&5py;40;FT!N_Lo;QPhm*^rm?pChQ$V9#dfq<5I1PRqOptttiAAlSo3lamvUl zQ#M|Nr=cF={dhZEH(givZrRuHT}R#7>wf4DpHU>IuDDk_0s4xZi*1d7W4wp zO(bSrl<6wgX!^ICncQ}vKk|{;>FGYFZhL{Bp!L=+Pr-jKj#{;s1Gz$LwuR3VCPE>; z&6RYH3~c_PH2sVor{$KGl#Y$1JboQiW`C#%l))FTxomGMidYw4_0PlIDp+1GdKk4< zKddukV~I)>xN>xP2am+@qIy}0{&);{STEE3)nq|~W7u3C*io*S)F1Az@KW;Z?_c<| z@^0bt{UvJ-B|DBrx4QcHt$hZzuHmuBPEj~DxN?`ZS*56Aw>V0lY|$B(D0w@7C{l02 z>LRB_h;0!J3slBc{Y9~}DJfeKB(8l$AM;awMre+c3M_E{GfbmB{FV9IXKm_^U?Y&X zeB{0;n#jH^1Y_jP1nGqysmr#X1wls|;?i`_^KhJ5XU?vwr7s+SlpfS# zJoZaf#0OzLaA$n#!-D7Lu(qjOnj9IV*?bnPr@bnO6MK0Ze_E<2+3*k~=YRbO4mA?F z{PV0J68uRa*vhwwRK5uBPOfm%GN*iG7A@kw0Dv#`oZuzDk&8(J3aXV7y`yNk_cW~~ zoKvsVWujfs&c{BDoqe!r==Eu*SQIa0<^}iZzkd!q%CPkicehm^?2}QTjfTL!Tk@*ec*~gO% zO%R#BYHcy@7^`rw_l;L)6@JB$>!O=$75!R}5K~Ur=(hy3V9`_Dws7F{gNq`)V-pNX zfY4WY8q3Psa6I{aj&qTh-CuT6_m5Aa>gy|oB!d|RIUO7DhL!~~~s4!y4Q6B|oG<=yo$B15~< zh)!c41F6-%X(w9}4LBE%dgKHe0DPdUHRBW0*mPWEd&r@8H$(51sw-sr{Odg9=6Imx zz4LrO>=w7nSRUJc-*+3A<88*WCqi{Qz)0d+vy%AYLo#zTys}>eoGW@2R>-;!L&3=4 zuLHsBnkAAq5RUE9ye0rXjp-*kW!g zBRw6lmRo9#ZggLae8FKKX_n%|^sq`q5*F3Zc&sAO3w~rQN60t{PD@DWUYH#oqqcAC z-sc~4S^&-Z{*k9o)ElQQL#kz?jinzZh84|_YdK@vEQUd7Z{XM59)zZT*Z6M_Nk0KL z@0h*+fD;lBAiW7uJ*I%{vMsYcF>)J_I4Z@bt;SLm!MGaPZxu#Q17&db+^xqO)aum} zot}lGPJV>t<2RA$R1pb%pr6A?KV&dwhpTA4TsfYkcLXul;~F3wS`O(MC5rqEea$B< zL9Z{|XVzkQ5;iF9m+bQGp~0W3Nh##lzU~UTOFki0gPGhBs1YE^jE>5D0BZ2v5+etO zb%29z(tL~gH;G>;+|uf_W_yRW#*~X=C;VI`_u0h6h=}rKNi1bj&ja}=l~YHeZ$=-& z{+wOyaV!ej#m6RJ(Ba}J9s03~5o{PD5Avb}!!ICKWn}jz6-+QA)JgwHZ!{#QjK|N4 z^0_AS@DkY;6F+X~ytDI*bD7Rh6pVrPAN%t|W8p0Qt=WfJEEpf8w^Z3kOy<7M%I%*T zHTg?+Y0}oG$a84ZV?R&7Zz-%>Jl4Ebg4$5d-BOPTSvZv2E}6k?fJdqK{!lhj8KIJo%*k_Jh>zm$PiSL04CH5)5>sYAAuDl? z%JWQWaRShOQmRc(xny6PsG42ky;jwp62o{|vZy39$8phMlu&RoHxM@s8Smr3{PJfu^dI+^|Ew8_Axzg4j~~+YRyTA*CW;dl89O<92zZ(e0&dNq0{he=!G8k@!uH%&7-BAY+I$0HB{XR9@=jZ zr_AV^_;Gr)IV#T`dQ+*%Se}3%>Ji_7tqd88MknIL4nC(bsLPJ5Wdu|avP~QPGSra6 zOwU^4PSF?bQ-2^m;iIOVToRoqKU5N`5E0Bsy{dR^zplp;G(^s{uEudi6wV327Or$K zmfIVqHE~IkPRFCpq6W;LM%jqDPc1ba76m^63A_rsS%IJ*=aU}tz$45dW*%2I5iH|X z1A!A3V6`;-YY@PcmVv6%X*n$P{72Z^Ml`(QmC>Xh31~7|*Id(0bmTL`FvW;Cdpc** ze=dMH1uF;~;UI#=TLdZvDTkG9*F z@0#FnHJ1aO1&rfr=U%jEizKZf%`3~}QL(;6oW~bwWK7fZUe1s0eL&*Ah@*J)>DwLX z8d?w|EzSDPyIbu;H|ki;+yLQOLY*dk(bIcS*#041aZgXD^pc{E=lmSXV!X^AP|#xjLtBcxGXBBI~Za34IK3lvmJa#*)N9Z z_GC$8!;`V!_10XEV^shM2?4d#SV-99UJTK?aGDfexdHj5EV8mI=gWBsF5i}hQUZ@g zQ#kZaGU?JyT}Oh2GUDMhs|*3@PJp_jgfd276bPj%RX5c|a)Rs^&WXmG3dz(DI?~$w zWSpNFOFt2`&aOb)Ev0%l(Np1Q8teX$zDhl^Zn9Ur9eC$TFIjxEBM=GKn2sCIbJq~0 z=o=1cX3CHvdwv)(k4Ro6&44X9En2ZfW|t3%-sVh{e7}F`W>nlF`-)qoxHq!5D(@xC za@RWZtFq&bQut4wyvqzns!kBHkdBXsO5x@jU%1H|(0|1*{#0*11ABI2cv#`dRwte>Uc|59S+S1C8`O z;D~fDvz9!W-IU#`dD969Q%_T>S-(#TG2-6fVi81OdZfpHzQ1*OJe$oL1UNM&*5Feq z=<$xd2g|NCo5yN9M-7iyXEK*(Yc^olAJSi&1~P}NC&`dnAmcD8^DXeT~8 z{E{P->Y^pGO)`NpRuPFCP8;zOWf=%JPg(KIf99jNr`O5ll|h!Q6iv^X~8p^pPYxxd;zEB>Ui7WE!YX5 z_Y`8-la<{#vQM#}@DMXFD8F;CEuEhjBTdDsMNCOghf*9@xbSg^3f=txV>-Uy{lu%; z+C*p0M&KFZol1=MDbb&I3CXAwOsiw@&M>uzF#M_g*jm~W&~0E=Fy%B`azF%?HostH z4+6mlIxf*jqF(Jc4o`$hhF2k z2i#d;;Jx@09&Z($B0lp{tFWSBQ+e68J$Fl`_xQ5{E-3w z5m0vhB6Q&BsQ?e)@tA*QYi%L4Y_d~sC*;z@NYc7Huer19M0qanq5a2cb3KWj%5QAb zlf~jpc^=|@C73ok72bOfgamR|K@xi2u4~zc0g^H+pgStbA5GGX)kS)a+*%^3EVe3B zAIh>sabL_w1JnDV!M`7;39_tyx5Ys0oFP(;YlGk)?8eI}btaw`+E#KsUyy~Mpqf5R zJNYXKb{H-tQoZm8f!0YQFO`s_!SKjO+-nlfdHo`-qd!)``@9VF!mY9)5$atyVZI2n zh=+;iH(E9wou4lxN=Hv-j1wZwW=W2H8A-;sT0i(|ZP&%+3e_fWkyd1HZGNw3qs4uN z)lA)ym%!w>7+Y$kRG^`dXR_A9W9?7w+aRKUEKQ?|!8v}hTQ0hsr@^iJ^jgY(usPXrH0Mo{LsJIRSLp zgkH4hbrv+06CWS^mc*M(VffM3?P9HVU)6UrX^!g{U)ko z0mEAV)5pNjw?U)4h{q#q1g77*x4y3GPnjFZ8}8e+3#A9opPzqWU`t(&8z-HI%X$e& zyW2k@6l-@KWPW`t7=(XaIF;aoM9Q?fH9wE(k#|`g498+_HAV+f?kq&>DbpS6Ipoc| z=r=lZ`<)sY`GyYb7M@&#ns!zrDRBe6C9A%-b&1LpzvhqMuJM`p)_Hx{A=;BH9W8$z zlK7lcyW#An*d*k}QPB9i%NXgfZuo|j&-lr`BcR~&EdRE2m7zDI84v$%35?Yv3t36z?}#d3Fog#Hgx)8jF5f z{*XR*ziTtAh)UtmxzglhUN@>A<}0Uvkh0=TIgI#+*2|u!n6T5^9dAL1P^Qz*=}w64 zlKGNEaPtj)bY!u0u<60W_3|z00=LFdwu3DJ1>da7@1wZ8`gxrGd_{;7j@`p!Ny~Io z;tA_sv>w8Xv-HnRGw!KB)_BwUBE`#l34ov|vE)YV3++|N@7AX^Ais!qj&Qci-UI@p zc*C7r^LzQ!jmqdMB*MnmTpsx%bCg-X+|5noJN?kzL;RzPXw(fO9=B%VcMXtC*USBN z$l<++QXR`mX}W7Ejy}*=l~!1o0#AJ4Th?;7O;=RKady*Tufsw2mXJdZ@y^4mw!V5( zlS%QT>$$RcO*4T!$6&9O?(R$zE7&zjH}?&B1oId7$>$^EH7k_d!2=tvP*5)!*sRf9 zV2cS;YPg-jG@krh`6AFnDYlE5&;Y|8B?7xFTs|ln-gGZa@k5zyu!MaZO`)6~|1JZj z6dp0>a>mPLdMpNRgl;sWFzOMSLT0#TuANnM)%+gAwuow$Qx8E%@#8y%RDXF*xg?YFWjZ@nsSeB0j@p-Ap%kl*(z2gEK|HCKhlpW=MOgS)06ScW%D$P3 z(_}S&21_Bb@U@7DU-E$6@VzzJWRqOYGdDLIrncUD@v$RVwYqit(c@DL(jQuDRqBnU>2C5}ZoL%w9dJ%?k$yQgtB=SvA=ZoReJ6Oj zaL)p*t#n4oYnz2qFPHkt!d62m`)g^4SE*)HjV?Nv)q!PP_HzP1A6Z1z_hnKqSb(P2 zS04lbV8qRh3xgDpp31bweyfiMj(TDz@3)03#qrD#@YpOQg8&~dT{J0+l;-X5)96@? z^?QaYYG=Aal+XkWuhS>$vD&94h4=KT?s1#X<}=`P_Yw-CQakDi?r8_%7y=XFEVz<& z>q5xaqdYTORLHzSZWy}wa?sJMI7B|(1DdOE2g-DbnAcTRTJKGZ{{$XhjC| zhA{%c1r4Z0UusJ2o~D_HMjLqi6_xQFbO ztX&Em!|AOvPocto&#H+P1k!TPTE>JVHxE5&s)UnU&#B%bF-g~iqg-f8bK6`fz*D}R z#f;g3?&v4e55u}yM}&SUXl4hc!HM&YC}tz)A#IqK2xF`JYI9@l;7muahDH(*$Xp|i zSL1e^?Y^lCfagwUBeHNFH7HUyx?~7ff=Z!_H7pIQD)$aDR)PUZPDl{gMzZuJ zlBszJna(9lAy}AyJx(Jw3QzZU0>&j^{i-dWKU}`w84J9w1RFt(~opKX7xIoqa(%pjHArjZES| zuTc&xc5aVEuMe+15Yoj5ex)<32@>A$L>|u^(Dz^KF{C->G5}rq&C`ZSGSGhJM%qy5Yb!wqI)`a22@Lp!PB={J!v(Pb5f!+xt& z^Syk0KjX*yzBmq+9B4ZOSYbmu-$mS^Ncp7}G)b{OKh#4IoiLo}7VXd9;H=Pmg`WOI zt@W96A#|VJ02i%VGZ7m5ka4p%mGfzm9fDvA&lC^z^;_+xowgK1ry{@x03-E#LOpnO z?qklhAL-G0nq!iNj{uEZ+-CewkO8kQtvZAw=;qtc8~{L|rBVhM)v?nFeZvr#ky2|w zjdn9>q^6YG3`rsHSCKUf$~M~rL?k<4sgaHa^^w}Lc6Im6vrA2x*88K9f+8+iX~ ztiB5UqFaTMJsg`Y-pGJ<42{Z26 zY07R!rz4SzT7}z*93(>*5gQ;`x^bkA^Tx}~9`Kc9)W{U({+x6kns4hTKji=$0w;qs zWS<{mPzY1E-vaI&O&Xt;-_0!-6u2P(BK&+%JHK;ph>0(SQJ@yV&bsm9`11}+3;vX* zy|RPO2*dVCeBX70J7)*4eoESEpTDTG$vlq{hW&*97v2HM4A?HaG-i+7$wMr~)K~Cs zr83h)Ky{`Uf#@ZKh=rPlV?~F>#i*1a7LIC;yAGSu6_(O{n243ni3xeR?|2i4o4ETK zVXNE8QnXDA!+E|kBNUMXL}2KSB-DM6hUIs%bIP{rn$#LU$ty#R#|Nz|T&(1GIXZID zBG3973}=K9Tcj@BJU=m=S!67Rk!*csL8%hAhY{d}bikOzd%P{JoNa0^)%ZE9*KEPq zCy`9fxI%Ua59y&>5?1decZG0)0-#BtoyUu+cFy{~%_5n*)8n21g-3J4rtt#5CQVYKHtE+r z-cl1PKuSGEd@N-6BCkDv>2Cr7L+p#R8?-|Kr7}X%AlAl(FaOZrPQZrS!Z%trsA&ai zh0uI)28Jl%^U0cVHA}WoP4X2&(^(H%`|rD~zW-mFQF;@kcLGRnQBbOifPjD$DIzt}krwIlBE5qU2)!qi5J*Vw#`inlne)xLGvB>) z=Kgat*)v&d@4faaPx(D%ue4JDA=l8+%(59tW3Ko}qc@urnTsIUJ9ae|5h|53;sIWE zpY0FM8<$MO+m;$$_pXO~WzlcQ!xg|=9hDRVcx&Fj_oRNM=QY?JFuLYUUsx8IY@rAM zuOvoEjx`rI=Q_ou9&u?QG;QNP(GNb(5!);B8PuuXei3&D$iArIe#bA;y?B{zV__viG_bOC5Y9|cwRO&Ti^Bt zBPVL#Doq^UC|PHUa1r~XA?a)aKuehWQ&r8#f@F_k? zOp30Yx;|P83L=%u9g42Gtfv|eGCgAQeg5^^LD&3nKNNWB?XlS`g#VG_7k%2PX;7?5 z6s!GW`LpTz42+g(@0H51{06lk!MW?cx|cAIl?59FY^YYd`_BTO!dJNZ?6{AA zS?aMmv@le7#3U(wQpT*dZ-Gv%)OEv$LZfL>_|c?4PydKip95YlKi@6jXMg4>eyZ{9 z8w1^>p2aJpU8G020Koa>5AyBh$?2tr_Ki=WViloGgTX!Ys|-6g?o}#?j{YTCN4l>b zXT~q3NisQb_fP^WJydT90OyTc z#}`)73G?kIoW@s|&BUbZ(o6SL0=Me2JDb{K#G*g4A2LgrSFC9XD7_$bA`p7GU7qFM zW43>!o0_j_CUGO;It6#{v8)d#3Z7L7xWqrYBoKKmKT6fq;?E}JX=m{>!`O+PW8cGA z?K!SSS^mIB5{uaeOsKgz=6q`ZS6)+f0?LlPh%$6a^i!X{iuRDL^V|dXM=xs0e?QC2 z5Yvj5-hb*E+bVk~J?LM(0D9EYV4!2ImTTA^*V%2{4x-8s-mjDnOrEz;NVtG}(5(le zcNJQDm8=o_XMJBJ$_~qK%FK$l@1Tv0wzjs<0p8rp^678Xkq# z`u*uW8%u8rCQcDpPGwF9{Z~eXG`bVI=>yr%cZ&*N6peL5sDM?0W;#OXU3A=3tGK`v z7$kKLtWf(bbAyr+_T-0*n!p=&Db5Gg_pRDNXfZMStQ%VNGc`{zV z*vkCE11YE5CB0u(KzZsYrTE0XSyz+*v{sD;G7{JkwMKQ3g)%0 z9Ik)6p`U^%PZ!Htm8}DBGn$ljNID;nR1**)KX2yD zOneek*84l|A^S~br5jJ&pUSR)22HjP{}}dyY7qsX#BZw&c{9$s##{TZ=eFnEaT_7E zj6Zs;(1&>j&jtWbUOuQPvj)?9=1Rcv&{bHN-_V&C??-{@|g6lW$#Z-s38n;hLu^r4*}Yoz|pi`7gI__}tW^ zXv=8|nTtQ9%TJL7fPI#CVW8;!a#jXwTDq-V>=ShIElCQtz(@hSj9Go=IK(il+g9Hs z!3p+B$U}bPyqo^%Y5=wc47AfGqK-5glJo){%valNce1%D^6Jmc{iaZHdD@Q{6Pfsu z?ZCVz_6WuUdj3o*-z7D%X56glo1t{3SBZV9S@XEXm;GTiFT(dGqI%xNcjF_%hwU5y zFdAL57O{q-%!P=5vb;1`p>zFLg%^+`eN{+ zeY8*X9qWz+mvhD|FDl%Es$^GsKu2)eyH5&vO3>PeNpw;A%#L5}Rg35;K&zta^S2uz zq6p!_$*}}j^h{=ER2imW-c=QhPg?^GlA6MfAHhrCodHML6(yg+rWqw>CH6y58RWTO z)3Tc?AMa9WUwm*nhx#hNe)&?R2f2K!vZs9a$zF-@3CeL908HN&g+Ed%6{)rFVbc3x zsmF4^&_{%?gaS};m{V(yX1S%4AoUxJQwwc7R{!L^6=t83!)9MRKS~L_be{v$Z}z^w z3FX**%EVIZ*f{0ccjPX0jgR2lBw^XT&61@x^DesQt(AFx00@7*!$4o`1u>iU7d4-X^bQX>-y0ky_l2m9<0b zxU0=*JsYUifNYm`iytgseZEMP-hZ2>CB~0b6*$Gez&GkQ!<_B)_QZ*~$7I2Bh~j4*}Sk`*I)J|ncw>l+sB<$C8sAc0{~!EuHucDLQ?DRvhb*T zGR2cz`CLy+{`RCH+HOhyv1vRfn6OY`UV0p@o6bGxx@9Qk-Fg-rR~3hyecZy&kM`w^ zsUGZ`Bt^YAKb%<5-2|1f!m(9=8bs|LYHE)TEO|G<#HL%)Pb0Lzu%h+BFT)b5-hp@L zK@)S}DXYA>vSi_dBDsni>rU*HWe)d&Q*wD5!4z%bdB2@dmL(DQWZm8RNV{fzS0PL{_Lzav<}?8hliA5b5e zRT|4=Q=`|TcPH%=pTYkLdjZ;VO>tm!=GVNzjZY=u{m(l7W(B047q)m*bGTtt z+3R1O=;{dGqr`9;NvJxtzI6K4ZkG3a_$Wnd2$H0C`oJaM7GnqTzo4A<4KK)8*Pd@& z;jJDShvnvRk-D$FGz7A3UW;zxR}?>gejmL#xF~t)+bo!=C#|+H%rb=xVuif4f1BV; z@$XW2)4}P|FYzji@&LQLDgZDgk}4ideN8!z>N+$c=o2Eb3G2UYs5!>m^R z2{k^Ce|&jOB~f0@Rk$6>IG#RaLg^ztZVRnSq^}VE_>L zMlxdS@wzpWCiOf1pqD~_X>V1!`Hh&`)E1kBl{4u7zU8H@X4;m%HJ&)XS>iy0L?>38 zei`^53#6Jk*71+_Mof%UJVvEqm~W~teKKOT#PwF^DFXfYN!+oFbOph;xUQ;fh z(!hZlJ~g>2HbdR?)9%<%asbE+0N35n9b99(6zj&H>8C~>GNy$gJ0FDuKqG0Tc(l&^ zWa`YBSWu8($@y;4Q{Jv^hYXd<9oTHAq=SOO|Uvb{j7153$Dq}0ls=PG0 z=O(1orl5$Zf0Cz|&3Q_OZ3oONpQB_Q&@Z0u41rUK9FZ$^0Xx=JoRQ>GfPW#p8;%}+ z=4^3qeEg$4q8`hYY|f|rNiQo@Jf0)%Nmi!lRX|wvyfjC~{M&{mwBXn9j~ATT(>SCp z+$6T8t0uvy@AUIK*0?XVFT;1ZvGmSnt?urt$H#Mx>*rje1dYQ4xl&YGU)?vSB~Y$B z8e7Ye_SLj@hSE3JD0)0BUNHbC!11%qh4hhpvCZ>+Veec6oPEilpBMnH_m|78Ur!(B zqG}ii9Ss2R@yf{ImRv?War{A(yFn)+Q%fqx_^&d2?-}gR^5NxFO9M(*?B(N6rwY=y zEvnAe`i{K)tQR(=2c>db)9PoC_~~K^w^n{PS(RXIxb(#3l#sA&N1xCE^}F5G7)ole z;^nnE?knn<-3ZY6xd-weaFaruUO#fz3KX*C$)6>pMoYxJW$EhJ=dxVSI8p)f_vZxr zY#=I^Co3PV2{N1~b=&`CnzQBYROfWs-9Oc_$g+a%sC3+fChCl|E}K#&`cnQL2MJ<8 z_O2-QiWDE~G-!N+GS$i4662w~+39R^8T6U}!2Nka@=Mbom7*R>vhBZ8gs&SKSUUZ| z`I(B)qko08AbEA`xA>`s0rWhjOl~nY82z2EsxzoH(aYsk)c=-VeNXX6{GC}xo)c!* z2R=$ap_8Z5)BA1ndFj0R$Js3ZGW&za4rtuA`R6;QO@f&Pk4B`ZJ$+yBI}C@NuFER$ zDn(YvI>Uo?#mMMyFL~OuNmu819ug@)djS{_1pR}+>Xn(*A}0lKdQ9K0<9w*N8S+*5 z>puVOa

    tSHI}@@8Q$jwQ^vup92-Hv;}vJavE+$Yz3X_5P(PJf$xBzxKDPqS=E;@ zu)_4+5T)Q}i%J%DX|Ocld+F8%>N|SI6CMT>g0J8eG}&xm#~$6TnR(yTrFd!sWx$rw!cHmEp|ASBbwL_X3MQ=@!3~@-v^4QsBE`#Q|0TY4^sQ z$S)*^IO$x$Qnn}BJ@<>aXRXoYYtq-L|3fvVTfH?FkiQ}7nhh~m|2u6>H@{4@U!N6x zy!}9W!C&N*kbbLVMwWga14T1PQ�xt};g&bC5m|h=Mhej4b3AMzwL>ERN6*viqlW z=J?@f@oZdy0z*41u4sJ<%6{qYPUs86QKmB;P1gT`XHSAvDtk9Oqhvkr|9&B_s(d<>pK5<7ToGF4k2Vr6cYq89 z3|!~?%_-EE_hal~!5!e?f6kdX#It*Cv#xvn<@>NQuD^8WY(AYvm4S}A<@#s?BwTf!RZ!l@qT?u>eI>xY);`8X??r}>m%oT0NoNc)si zfN$yFGu)09!3^QAl^o$;L0%1~OmfE7o4)%>lrIFB`b`8X#@!Waa z^4(x=^Pd$f`3Z#3yvhy2Vcc1SCwSFK+vcrJFt7F2B)?9@spXdnV^RZ&Nk!-UZ^yQ- z@6^MQJlYZb_OUxr0U+OHL(g_gg|sXW9xUGk?Rlr+B(M!2tz%RCv@!6#^s|3ghw9>A zs;2rz)xh#1^+avzLH3Mn-x;epZd)WS2b;^r)d9cu<*Le6c^4~%*ue$oE;&?Rcz{(l z4fxi>q_$B`mu&3(rfUyq?gmM7qwO7|!1P$YK?cY3Pu`YY07JNO5*7?mzfQgIhmVKZ z)`dVnYx&?pu(EsowUdq?wOz&I>`YAm=2uRaF`XNxhU*G*omtEkJo-*s0Vl6gt8q8V zwlxj1N{IV?hBhj@)$=NKn(h*>hThHJ9Iut;lMZ_e=521bgE`1=UL_^uQ;oc*g7od*zJGkdz#aKZ-Vgc#%=}2rGV>X$Zdi1sdO~w#YK07?sxEu^=P;}iV{;E2rpGm) z@O6ocWo0hAw9W7Dix4$|uL(oWwHX@8r|G5lmiIv8bTdff&kbDEE$NE*4|*&|W)!PJ z4kE-65XMMXUfpY%C_D#tXw0iN@bazBOWb{ZHU8mej-vC&CHtzb@$tEI%Q4B(cGP3n zG%$CHtXyi@P1Xu4j2o4i7Hy zgt_)H-QP2(Ld+oE){1-eMwvC3Eqj^kN+1~Wy5>3hKhFm~;T{y*VJ-mue9fs%UaBmz zu}?pwo*y~)pDnO4v$)=W`%OE(qjbq#eOq#PkpGODB;|jePnri`7K~PDNQCe|_qA#I z+v(?^-hLwDw!?fXrsdDa(c5+1OB^%&EB^ENTxxQ(KHsf5l`w7Rt)qiDE2fvcKn?@E zIUfrwPF8-W{Bc@RX~Rsc@bgX9{Vh~}V>`nC3MPBAhVZO+(NsY96zTZ70 z#e+~CTV}|J9SIl6s(O;1P0O>-`lF4&2w$irjrS9`Esu^Y2`vhTNK4`Y`JfO&Wb*2D zf5Lehp8(Bb_3`r}>C0y1+%Es>JzVS@8_Q&ih(^=3=Bx=r&+~;WS9E(lJQvEHYhRld z!eh*<@$YG%l3rYFE{U-Z<(xDN_$p-KM_Azkb1JzDzh{bT%J*n`TUhO__aIgH? z!*pQ4E^3wgK6Jm5Op<9{nDQhy9MzJK;KAEH&D-fjFfeFP@A~8_XlL=|fck4SEphnM zgSxo#$h9lqL0MY9lJ)|YNVa`pu!KFac>1xy>&2n?*ded->xqG8?aka2NK<<6wS58h zuE#~A&yVNaF9m##Gg1JxR8@15FKbZ!Gsc)Zxkc$n>C$f>6O+A#`K0=FL(^F8mOQ2d zF1vrsv31;5_s{Fvx*Zd@yP2pnMLNmVe|>$n+3(>9_sg*t?cD}z{?-?tGwf;U#5Gc< z*8U9SsW@oQUKj$MF^{&Gm$u~m1LB|0-e{BCK!bD+jzHM2bINz z#`_L|Y3*SKw5`VSt9NFf*Em?on5Jf;rv@*)=&Ei?Y9ITdBh3L*`TmyRH8sERR!2v- zdA-=+=kkr|D;~=^3B@Tp`T|K1!9TVJAM&3HiJE1Y`7PfkRL9VdvddI`RL|F!*eQIH3=t6+ zv3;fR5Tc^5)lsSzw||dSefr(4*~+^4v|U4zpj*j8(FuLWs58>5*GNm^zs6ee-BIJ7Pve;2bo9J>!fzJPpB)s$BrLu< zcu>HVFUKOp%cozAbxtwNRm~fF$Xl!*GHMv#o}*iw;w4;RBz2Psv_7ZUedJw0ZK>+- zXw|G;mzStxy81aknL@=OI_fq-6@@R&A}v{x6p&SWR0KrmG=xyTv7tlW?Dsf(U5W|O zAKc7l6SD2MBjR`!j2q#-qtBfMF4}CKvJ)ej6i3d5?`1ZAK$90EktaGKyNO_A)6<=1 z_H5b{xQ!vB)N{U5NB6t;e?T2{MQhJ9nCa$am+o3tuJdnvX6$jGC!|tL1115eL`w{G z4N_&(8*BBYXd9hbwYnMdbBh{~r8|wD0WaA>CsDhag|@)jDd41|`q$Jrb7cZ7snDLM zkq-Qen(xT*UHB2DT6ua)CpN+P+-3D^-d3Tf2=V#(3VR#6Q=D~^12j6q=>N4JS&aW} zLS>f`JoPj9lgPwh)AQ#=v^e_pUwroS=E!~Tu;*>)Q+@I1%-=^p=Zm+%F1+pqYe1`| z!oGk;y7l8}*CMhnZuXxb8R5rzsJr|8@k`wcQ|1;KE_j7Q;{eyl1VPLum4K_Ubsc%2 z%>3xqg19GjTh5}aMgZ-5xGti<(%@*yR@pl>S1|dTY5Y9q$obpap)G+)Zn|_r?3r1V zo%$eWsM}c1?v~lHgT3&}l?my#@~W!dR}Q&jxc+_Mw{QFJ6+(aLxL@e<9;9QOhlMJ! z;VhD5h9o#N9}=2(2uRDPZ|_OGkPJW06!t6V$Sk4CY;fvYRD1iWN_${qP9mv+@6&!{ z0DQ42C;#G8T;|)?E_Z5>6{U^Gd2EK?n5Qo2mX7rea# z#Zkf2;GtEFKvq>Stm~l9X)5G5mV3c7f;I|yyQAaQ{1?6zFDYN%)fZj6awDOIC048c zHtnCMpJi#43tS5VSKDcOe1DDbFmNOco`0e^apU-bq4J)pORAagrX0lJoKNW`8>_uH zA>g=9{(%J>&MwD(j#~YsjH4!vB8d*+9AhMM@ZA#pD2hm2fQ4F+v|F+k)8E2nJrX-D zhU>`4;NBZr4@`Mr`nBKkTy!VR=bwE{zr#ND)5vi%AP=NJ6SCNf`WtDl ze7iqnb5-^;`cDK6L;T8tqAyFQDL;zxdLxTobq?{?2{r-StnL3^z}#p};uSXGo`X~k z(%M1&)tXz%$z&SwdB6T!-5-nW3i#<(YONmwt!xR~mZJwhjlGlfl{&n(5xNHZ;eUYL zCZ16CkhvHQk8j3@8x`3)3Qt=K+neZS%SOl;|W>&$s- zxmgS0yfd{doptNomN9QT@_ipU$$xT`A9cB5llsU1l7cl&`ZX~|hG%E14^jq~uBSL8 z6ce^xq=b$=o>T8!9L&Wq9)*_F9=>9^ZlK$ArHx=WbhR#$nAAQw*B*64;N>lB0xS4- zGH;{kmTvMGUV-$}FZe`#JjNo9kjQ?x4}o?JQ_M*0%sF&j5B*ZKF?f(C z{ouCQr{jGdf4QV3xx1A=#{ECT=ZN7?JkVvNL^7^O{zFmfum?mTQif&8UQDjk^47ja zwQ$e5AJyh8KOX+ZMJ;d|Z2dGW3LjlPN%fvqlTQ^^2)w7^zWZgtPd>#kf7LPO5@w)N zz~^;g+^34qEJF85BF{FjE;jA(2+P$Aw+Y7Y1K7}j&K}b#!G87Zgsm`+C+w4bnpM}{ zmgfx%LdBLGnsqB@1TCC26PU=KcdN*ID3VVqxk`ZfKLfV2a#H_Mj@jTC8*HD zS~}#R0`jC5iRtJMos%U(zF$!Ikm;G~@6P26bT3IzS^U#)4>-~)MpgTR; zQe5IK&*%=F(SF%$ku|aI{fA#>#pBV4GV0#$lBUZ643;#JeMXP%V1d@^K0;zf-6Wr~ zifcn!F^U=aA*s{h>WL8x0 zqGrpwn1vPUpjk*rp1sLb)_BY}EpS;;KB{!R`C5$mokusQ6{p_t@?1?p26EFjA8j=6 zMwYhh5T_)bktgCp_p4EX`_#}DWuHCVq4J(t7CDQ&1&1G_LON~{HsA{|(oajGR^ZMt z-Lif><#Hf&z}WfiYg)doH~5!qf^i(>1GN_)swUr%af6y7GQuMNQ4x0=^8WqXQT9PJ zpRV7iZ;qGI%`9YSSpq*wR^42BpDokDE|Xr%$Z*9cqp(Dmn(o*>CgrM&?<8L+X@zvu zPaM$+#nD<4SL28@IH|1X5P~d0oRCGDb%5>-u7nc&NCZ-De+bSm^u#FoIy}pcW+d5b z@AbN!ey<_}j!*L5n8Qno>fSqxPo9bW!@Khw7WqoR3`RwJCoj*G`|b{{Iz55gGn&0f z?M2FjhUEzjt~{?pw0yXuy^K=*J=x8s{($X_9U!-SXVxXnH$bOND zg_VtsjgFDy5z-V(?%#L!F$e9(NIy*u+r1gv;IH+kbeS9=P5?d(oj>L{rym!0sDB4`aI1ATJVDEi@+HQO3E{5DNlP1UL69S2hK84 zF<-rP_Z-VpD{4MZ*4wY*zntg4SKh*=JBSguW9=12bAg@X5+|47HKFS_ge9e@8Ia<{KDJE*Uvv7F#PqKh{&kun1sZSNy#anQqyvB z^YXtId@C%fsI024sjd4_-`dvR(b@H@`=6oVkgug?%y*wsTY0kZ-F|hR z^;jVWg4olc{T}P4ML8_6*Z&zF=FvMIh)x2;$=jH!;6q%Og!gALR z{SFfX*bToo{oaFnKJ~lvglbA;fuG<-)EKFXCVFNQ&yV_Kyrz9hYp?YMXQiX?}4Kl^Iy9mFn6n&U=GWA|- zItV7wSN9$&vwf7{iXv?R#yO2WXlN%jhOxarGL((fLomkL9)7RxPp#ZUI#fF~?_k}h z&5=K0amPDdI<$C+_T*5O+VVl46l9#<=XH_hjxYAczFlM51o)gJ#dei}cT;WrATwHy zhvcJk3m%|rZrg+(^8(K$A}GQMz)^Vh3`Y46v{7k2lu7M=Lngy;mq8d_Rgs zl8&-zS@lD$wFIIPg4Yfcq82qn7c=eqn^c&e8Z0)}){uc`o|oY*gl_gM+^5{S2Nn;A zxT7)1ot11F$1(>^EJLkKtfGcPp(DoFQCe98=Ua&D@U5Tyk>~~QQ7YXXSLgYy+b!TE z;Ep+2)KvB+1A#9Ea*DeHU~IoVn%bT2oJ`mzuE6p1%(G_G@G@|A7fu$_l}&+ib)&kb z+Vb}@KkD9}h1c(DRy1y)BRe5@BVHxE!#rxUzgFU{kEZudRY1COcLn1eKY~8RTGdl^ zfc5{g!-ATi7do7lwb^f#?ff)YX++VkVBJsa`M7jS{PYor_(Y8KKUqi>-XnDzf4F(w zNTXbV<%YB+CeG5_G;erq_>V|au3L}D%_B26qjAN6+||tUql)@4{)Qn*f(cA8ZC2ge zNBz&V=}UPokuFsF4`07KGUi{XP=-cC;JUk==RG?aQ zSWjEd$}u@9&>a!mbPHX{@Z-w~t$wk^q;>X1K>U%!q2=!*h!1!nNCbKcC0_Tpk^HWS zzMVyZWyr6NOr2B7UmU*X5@T^c3}i^&6uIgexKGV}2}kiqVyCwXH#L_Rpe)Qyrk&aM zX3WSyX@nfxEc7t>rTA0x!*{_hU-3d3jg8HXHShgP?S6z!1-*_gm}saebNPId)hvSS zVhj)E!1k<>fk}yysUwulp3ITIJtT-kslpqr&iaJnzj>VL`YVW<+v84LeXujOPjNh~ zPfZj4E1j{uSc&5w| z=XJ_Ci3`C}NQ_R~kKh0dE$&q<9LQrvnfYsUBxp!yG3ll)khOJZ z!eq9e?d>iZ2*}o$w8&b}3A3Qal7Y53yoyg2h6UZmd?1G7BWD?8(UD5 zQh+)$5jH^v7*GuxN8=EzCGI}n0E=iZ$47QpaBu|nr!4jaIC+XS^m7pRQhKbGB?u#2 zFS0~~MR>2pKqjT9JEl648w#gU_%ODSO&_Wez68O_44aeVTZU6eF%Njuw2MkX7HFj7ahnQ_-VqXL1Q`|gsu%X0f5^dD$rsYxK?W)Ehk z73&`&*-O2-HopoJtJ>L*hI^z0H4hRkrME^nvoh;pKN;!$ElD&z^T-&SmxTtFo_E|J z+=8GQl0!G+x@%BLLclQN141n%7W^JT4?on8E^Rk5tY?g<>fcln(QVw#nN~F0mf+WI zTQ-rMv3%G~fa2M8!f|APHcNvH#9W(|j1ZIAqCYgKMf5lL%_2UL0T<{Sc zf+ zH^$-CI$>OKKl{UPJDGN7xaF+NXBPUDNXI+zYq5V$sO^R|o@~WF6YA)nRG5$KJn==D zVPTQV<0b7`_N2k8y5u2;SW-a4{Wh-w`{3qdqliWcY!=S49Fr2et>`e{AhN?GSX1u# z0vGupSt5-s5uYqkU%l7WPTO>WFgG6Cs6IyqA~>3_R_|?ZKgTzrQOq4qg`8uS2Ol)r zq{j&5Mr$W2n`B^)UVfoPZxZi5J50LRo-D>7>nA)VT3Dfzg0Dc%B4irKKv+=l`4RV> zYw0bSt{m=rQjxgVpt{tw+<6cWn<~9qAUAg$*`bA;4DaHi?g+71H;ZE=s^SA!X0<(= z612UhMlGnwKv`nQ)bSnMHGDuJQ4vp>rw#5hPhy5&?3al0v4rmA9f~1gL@Jjzcrt)7 zGQbz2ArX-CqKcf0!D1L9E-im0+P-eKyu-P{uv3aKokihiG{)2!uTif2V0b(KoWoBp zzn@52qVvf&q|;ik8SEP3T#5^f=UvtNX)!zhOGiC>@RDapv4CqSnA%6fa4Q%!(IiB} zpaGu*LvyRb(40GVK_8=Gib=JGGo<1k%LdE*G-xY=&XHFD>k#EC*>bKBosl)Q7x0d7 z5?v0TIdWknarVrU0itj$G!imlL%O&Tkbo9}R6)CidzOn~GYvaWF0Zshs`FAfZikLV zr6k;KX1qWKisO-fKdfdfA{Q86g>s#ICdrX{Q%L8vdS#xB?BowgnJm=7@M%Jme(rUo zJ$6Kaq6t9`Pubbkft=!%MW8_Ek&Q`U_$+8x}5Aov5lh z=1;|5_LALYlO_W{i`NvgBBW7VNEgP}T=4cd5lePZ;OLT$XSw5~hmO}Qci15t9Qfi@ zI0vbX44hN+S)fI-IFsn!Yv04!reUwtC5r_8;K1icU*b2)>%tVbG5O>AJ3ZDs3!=m% zk(>VFy7$%JkNfV3>1_`<^#u!I|M=?|<4+cP==tYob~@kLXjatLHr9;$e5*Qvv|TSJ zmbV}wJ4W0DiH-5&od~#nM^j_M++?u&nCskotwd=2nQ3BqNmhGtR&w(!KAvznm>*xg zK+~v$)}aeH?rnEWNoWZWtDpHsC>HK)u`PvAk^UhAbcz(bk&KZPrgZW`ruv%vyC;!<_#WL;qJy{ePlda-!GH6&k}&uv_#{I2j?ykO3c!UKK7j z%O@jZlGAYcU9^H4>7+efB$=zT39TC7_H`}6@kvPgNVNp=+79{w5?|C%fEOQ=6WjJN z5g7M5k6hZ_A)xmAp!HP%p7>NeKM2N2GSX*TBI0Lwpu~#?LTzcc({j*g;b*2`rlVL?JQ)`PUGL~pO69jy+zyI!;qc& z)|bjbC%KB$AQ!}-YO-4BS=vE5nU<%kzgFNi7V2=UNZ|0=?wU14SD_;7IU*VZ2Fr}p0maJoyZ%&-v zdJapzyU(%;<;ymqepn|DgFUB8zXE z8Q#P$-`GFVXh=@uV_Aj@WHS;Flrp8CkQxTv6mF(O@w`E%iI$2<59A zT*hOHPclVD()zZK@26}k8}tYt(GsPWNoTRMv2#0<{FXIiijV^TwS%4LsfZ+-+zlg$ zLq)>UcAkhp1tiJ9cYGE4ibw@ceZ;Y1no)#zT~&tCc7CIa3;f6OKhujaJd2TFNoXI0 z-UmtH%uCmdiO7IPNFcIwGkO^a0WH1KGG6Ji;EFft6N*cUabRz2CnP%s+>^Wb8Pl{#u?l zdLcv2bb9)y&B@|eyv%WL?}uJv6ssZ)0&j-9`U5lDRN~Z1i;Nm8ba0z*(%bS_GxX}q zS}p&Fv8VC{vHH-j13C%fkIsf3t$t2_-G0-iYV8jeJcH)bNhK}aVX?9uZ%xwhS8bu$>ZBC=B@i7BTwZAjrNDHxA!4MVRWdQ5H{mwx7E;w? z2eh)KjanXs;z=&7ma9Eye!;yp09;cb{D6b6xxm_lKM_bsXY71S}*5&L9-(I2i8_i)hFX4kD`i?rwh z&W$_h^HBS*CdU6=SroougLuEO`G5?Jby@O^sY9#=)!7QK{#OG>zxtW(xa!c3lt{N? ztjGh4Wj_*{Z>eZ2z;8>{3SJ!Am&LrfkGw;;?{;pddlIzrMxRipuUbNUV5~%5%u2hM zRy+Ib+2LSqbgaL(PiFrXuYKn3kw+_Pf5@$&7S7-jHBJVcp_iSSg<|?R#omfxJrxBj zd&s~iIB|~*Y!)Zso4%PiqskdK=RFJPjBA?a-=#ytU1PX@NU)zeFLwJ$eN<4K>93Ik zcx+Z}b1FtcW0<(53+0|g`8RK9Cp${6S!;1$DzHsfhK^}+%z%$;szg(7d17kkGgERb z{KMNJwuvUMBt$odW~MfN!H*oVjHyN^>-fY@4)$ZApM(&15>!HKC{*d$tc7_ur2DK^ zfb<&oNm>>bqm8E_z+me9D%|!iiQZ8DQNcF}av#ls2p z0Wx40YG?`&SUR$*y4obD{B7EJ1x6K(>_B*+&aeK}x$qhx;FCBRXd(j?WjCO(xG-kC z^MWb31bw%Y_fAqbL;HoM{on!52?Y2QB6a^+5Q&2$0%>QWcz2$ghifv}FMx4kvouXa zAwNdQt}f;pp}Zk@bf5YaQ7FHg01ws~u^o1sT~oaAHK!Nks*vwwAQLqderMu2etu3Q z?hTfxro*y^!bIKToYr6yhM z$7_ostBD{Y4M53EDxORSXF<0EvNp%xnUH~&yZeln{1?!u@T(1p;1Wz2KK6DC)D{Qd z#b)7L&Vh$$+UL`%+ z^pk2TLGJaLXmoQM_3^S`c_PD+PVkq0@=bpN^#c*D-@HqecXt*wwNHF0v z4ZpL2Vj|7J=@aKtVo6ueZ`j}vH^=Y?PgBElg{@22rZJFPp@GC!NePO>DC z(an4#Xv{%zj@h#|MR(-dw2UU*g-|ExNtcym%3hu+n*Ue2g#co71tIF0{rai?5 zdrQK4BMfa61?hlLgX{%i!NWV_S1mX&ziGa%A0OmrP3zqo3GLx>2T5T1&{0yEgt6RG z!YrU6FAtC$tIhl|Awp`ezK#s3IhKhU82R-x9VHj}tK#bLMhm4Z?ObCi=mz+vHWjnk z*28s~m{}=!LnQ2!JrPloJmO;R{kZp7?b`O@{+I-rSDAf#?b7wSQ%;pVW3prVu-ON( z7G2l{)hY~XvjKAkyB{EgfksMcgZS0*dsWSBp?!JqkS65NpxHkA_c8yx<2x66;8Yg=}7^3NV+m;gM!iVS`x#j?hb~%01MyT%btL@c46$A!wzdI?qYh{0+oBf%^}^U9a5Vead4I=mm}ApVI)~eD66vE zw12H}<#6zgxgYyjs^0|b2YkshncBUi15FGWz>VNFuy@)yxUNN`gV(ReNj{mG?t$U* z)O!LzojeBr>9P!sY8I--G(~Qy7ya?qMRh)*AxhP>ZeI)Xwy!>Nzt;78umI(}M~jG& z?}|k_=}fMHT4$C69|?0R6UncABkAellphhtZ3^3wIlL~Z{CWU7muuyV?if-`- zMF)Q+1IfRm4{Z<;%D4Rs)GF{C1a16nw|lc-9zD?dGenCZv27lbx^s0}8nr!M;?Iwk z2y3P!ji4?`D2tezt-{beP@NxxQtwQlgWDyB^rbE=5cCX@m12MAEz~J40t7F}NJX7e z|B8PY8SxQ1LXSrhv@w0tej)Sv&77e_yfi1-RZXG&^QdUPkia48-!i^Ctl#ehm;WAw z_AYHB!W1RuYU=O-1bH(TE~Sph$ZA+jZSApr5}Z2}-9hYnW1@4|d=O#~UUvHL@PF+1wiwSB z7u3C!6S9)ke*L5AnxGl-O^Eno zA`}NBEEnp`Z`oL6kb!C+%ZjxV_Ac%CL=s8su-HLkaI=b5c5{E)e@jdc&!0`_5~Zkx z=+sq+B1$nH4!d=9qE4t>RJAZQ>3M%bzRsdfMDW`V@%bsF#(`#ef1~y+Mn%;H7tL+R-2sQD2<$A%CD*i)rUroxnZobjtTA81Z3u=Fmcdkm zjas0Y_9iyJAN1i$rhV4!D42PST4$$9S>B^Gw8+9HNW8YBQocpxA62}8F5bCp?p!}U zS+XfvXs;DjmYOM-tkbZx1xu@tQvQN1*eb`g{fzh5AsFr%fb5{54bzMmejH$zd2YJe zH}1%3FJuY>ozlV8j|ZzRNJNBQ#HeM;W3=O<#Oy|4QrwJmC%Jn5T}*8}jaggpl2Z8V zW|mR6W@u=ypNzbEyN44QxG=@JZCmU1L1(G8!36oHcu4ui8dt{nRzF5hH{zeAeS#ac zvF7%|yT&}5C1S}4g$?NB3XR8DPpoDNfMTXyhxuBx3kMDnlZzQvLeBK3id^G3*{Yt# z6L6m}5-&p`czDM+$DwIW23jLp(kz4>wdEHWE5BrTDP<>UydA=>e8oliI+n3Bgc_Z( z(%vogsi3X~gM3XCgNYjIO;&_%YyWDn1>L$n-pw?XW6ca;vQ(0?po<0fXf+RYYrXn* zdWo^A$(@Go_+O~%S62z+T7r~=@1zXP+ zoM3QYfK!(^guQa0+QDjugD>6PwEw!N`qBT zQixXh{(-YvTk4_x0l4$Zeho343&{`0PnJxN`q467#f($jUC7Fs^m)b${$H<4LRm~L zob{fq>2|>EYOd)BenQNe0ysDqX>gCI6o-2~l4$$`YfGZldf}Emy=Dfj%zPjtu>)Po z**;1|Ml?G>t5EImGo(Hy|AduJ%Zms7%=r4{o=4Sg=P$?+FjR-Eky@O`b^7HGBk(1LWA}5rPdeVU(gp&v@o+bT;Qi*O=ZFD0_ed6d9 zaf6+Gm?F2CAMi*J;^`1%hGh`r`L>;Gl!Yh7(?=TO<|n8eXqeWT3+8HnYWE7(e!gGcjT z9Xc=}^2@y5@zy{Ni)JqTs&^VQFw*azH9%a)lofmlegx9`mJ(X$vOjeP3iHP0_-i`f zTKrmHeP&1OQl=~zM4Ml|qx=;gLeOt zWMHAX&mV#-1ied02gdXM3mwYWo3O$4e|nv4q#_cREY>TJN{TNVhU1GnNPz!NX9|kd z0fUH8^h8TUBk3S*wJ<-Ks4Dx~5aB23ZeL9PiMy3n$4G%UYKPM`Glcd)m<}xIH;kqv z!ghQF#`eF7rfzTP&M!XLZbUTg4mgHXW01HEOiBk07?)m4%O8$oIA$Zt?z5d_~dOZ8KpNE*50S`x?ZuVN|`B{fOYuj$vRzs{X)Fpdl^l|c6f$`d_qN|Kpf;vm8AE?n%$Y((8I>+Qqz&U z|J7js-<1Em(a6(KKIQj+@%H9XO`UJsC~d7)DWalKK}ahoT7>+n3?dkt7kj-X8WDI$a^MP^9YtrH?b3RF@-hzf|zMTQ83q{<{BMrM-$F$oYELK21yB-wmV z-*b>9b zu+jLM&l^n%J$o$9#Ug%xU%a5o=1d*EkZ{!BSAps2{Ijykon2i zKzcq!NHTu#1iO>aOfJl$EH?Z2R-%I^eYT!jOG>fmFB-zsQ$3!09$nR&T%4PoTGiwC zwmf6V6!**gbx#*Pp0_k}>fRNO`6~bg73K5($*%`W-^cU}T#dBX>}7WM(jSCVCM2*} zNr*&YN&;p!^GB!SyiNMZya%>JlQ@;}*wEvndfN(&Z$0I?MarfXQH+ypqmt&*++O7a zXuQgF&*yXn`4J;~aZau)8wl*3tX7`Z?i&i=w{bnIX|DGU`Tt>jM!UenMwS6c$Y_Zh z&e-}HE$H!d?xE-pz68ZD7g*zs*T>G-K^%mwukrit$cVymOkFrVV7C~AyWy}c4^q4p#m_-UTn#QF7aF) z9aq1*8$fo}p&EpfvSQ;@&nvW9;k&UVGUmi0{@vY6!KO#DDGG(etNJN$a^9U8KYlgS z`6I*t`jH>E*QtV!HNPmF5@QF%%`enJc^(OziPO5N4v+GLjm9ToTJM6*)nth)byP?w?2lrl^Z%@c(vO$^RdZFkIM@MOS?|x z3x9FkKtJP9|EHH?UmjZ#&o_Bs+Ss|O7p!UU@aZ3)c{d-nnYgxbxMo{}hF4)9?hUHv zu*jL=g-;99zr7@FQF)eXjZ}%31Yu@r$ceP^sRbBf#YWo@bHTz-tY|IjDe8Ij`CU{q zs#$N(|6ku!RzF5NO4^;^lsuE#%1SM?BwsBAmF z;xa;eUN6QeFXL%GQIX$sM{)_UD+ArN7@x_3&b-t#%PiCnrRsbPxN@%yAsvvKAp3jW zqW=b{M#;ft8~%awgQp$$jX)SGJVPF;zR~k&<3;Vp=7x?|_8p?t(9=}0?-kupGsOEr z$@+M{pT}zp+xkn}j$d|?2PqToIsf||`VVyeydmR^@5P8Y(0@&Q=0_fcx8j9a&pvm( zx{zFkc^)&3Y8mnDA0@BqJ+D!+#$ibaAt}b^ByC#>>p?9>T*`-(|+G*myU z0M$=co7Vr|6>vpw|7R_*h!_S6x&QV3|NQy?%U93>`G+4J`H%&~B$-T?%Dd<`ptn2o z^W8n*k^lEzhBQnFIZDFZlVFH#k{_!ORP9_DUKW#g5NGgdg`PVt!dc+i zk(!TCy`ze!%dH+z++o1IDuL`Bv92o)Pz!^O#aU8#TQ%{V9DB!Mua#~hH_b#_3$M4a zJbPmZg^*wFbhC?K5QGGK982sMikaSo)J4PJf3m83k%P@x;-_062dfLv!J5eS4AxlH zaVd)9G&%}&QnOv!Saz3Ssp&;_SeUadGDr<`5OA+<=Kbfch8@qbt>~Qzte#c98g8a5 zvSW)|Eo_y*V&fRJhzdkF+?#ojDikSIQl%Q$ZqU%f;#xtAz5e9LZ`2^ZT==2+(carn&)R zBy$YJI$23^*uI9ri&}(CM`c&~`KfM0D^N}n#CLdPVOXL{60W#?hfA|S4c6qq7e4qA zahe&rJqs-E&9SX#obrY1?$-Mw;k;0n$(n?m3-3v0rE`s$J#Gy+(S#P&WUfY#ii)W zE3YLUARUqW(Z=&N*r0Gfry@vVoZRXO~G^s<< zx>T)+&@kP*mQIa&oNx)fJVBc+1qsYy&H^E$rD{K0$5}E*ALPS6qo6PVMCN!lwKLdR zbKnhQ9T1(o^G8By=sgKFnxpW7Pbj82BkU0<1q`FCA53UZ$Qk))kS{{C_qhp0ow<3t zXe&YOzu>fveY%xJ*XT}DX&TzoU5GOzKnriU~!pt^n$LzY{1XfV?S61P>ouf|&@yX%D5^a%)5r6;PN2*>An%I?WI zSUg&;NU=(^v#hHd0C#TLP%T;qN>=h22WOSmL}cqBu2cO6s7M7%80d?TRccR1?0~{m zkA*Eb&7F~_At~$Rc61`^!VAhP0FBvZo-O0e=}>CGmRgE#KStt=Nt>To40u3A85T~+ z0F##ZoS1H5!_ldv-@BoZkc9c-kFdN1PKnyNAg_nvsWYtcaZ3m zVdsHv!mw{16pg>96tLi?s<7AChTj%R*zq>UC%up3S37ibp}J|F+5n*7d!%7*wZ-aPs^0`53|Fggj4LGQ8X2 zGKd3bx-3Ce^IGl=e)qJg!tQc9;*Lx0**V-ByK_A1s zKLEONt#*6FV(IOrZ}@QQlNuwLKmFb=6~An{nR*N5ib#EYoUV?Wp0vV`;}jKzm1<|w z7{z=2&B8+t!RwEq-#HC&;Q}@WJg>VB2JUAGCOb*(;3Tt?N9rX2ZZbHi8Ej^ zHM!M>Z-?Hd3b<&M7lAxE$Rum5=;^`m4ZLeuQt&;DAnqrD)G*<)xXm>AmDGrkch~A< zIbSY&lY&q#iykZe|X3T1bu;w6-$P-_c*RG~Czz>EP?Z|K66r zG*UzLx4y0YvdkmVq68{WEW8Gl)#qG}AWGeodG!;h>gXFo_AWLNXGBNpR1ZWz)U=8B zR8eHC2exWg7!2_xtVuSdqGahY0-6q zM8U<%QhaGSuyJq(sA-9sW5ue+0*w9)e&ce6m$@Cc>r_2hnTf;&w1gKQ<$sk@1lFsQ zpw)JK!J}1C)(SFET$9@1JLh-nKyov&)p~p^xaR3}MDEH0UAqSq6?@Kx%cNn9N22)OdSk+VZhWPoaYTjndfi2BUz)*CK#V=&| zRAdof0oldlSi}X)w3j{0keL>2{Q>pUu416kycDk)T-9Sfv)>1^Q|#sY@C|EHzG;%* zZm6C%eBu#p+gQ4LRnP8xsOAiFi>}ZT{H~zZmVcg}IX`8GkGJi_&GA# zEgOR-HhoE#_gc$3>$j&>&hCBMVQMXvMxs4JASPeyi7g7@bFzpJw7Q@1g~>E2K#oSo z?w2sIl6V?p&`gTa%GlaEoFdGtVbkfOTlM}=zH0vyk=4|KSo4qk|Ke71Dv&D`-`aZm z$1nezFT}r62C0UKPQ%+8%NGUXBd55z@;Vk!Tei{PFXQd7sjpUgwTsXW`E%&d66D>qrw=FF4bYdek!%#8B5gmc8I1rqaT-aSd5b5RPiELcbAyd zHU-xmGGgymRzJsZ0MG`i*mhBei3{eg8E(wWRosa)=R;kox3qUKx5Qaz%DNLp89taL z+7@3z^{U=N=T}NbOo!Csw_q7dz`7;kCz}7EK`-)O*Jx)E=j8mG3?r+Y1dQK6Hc{9o z%F$WiR;J37J}+F@hSOBEPgv5e`4*jYzvwc=-D{vjIRqOi<@g3f8XkT?KMO83s z!rU`>R(ioF^1dZ;Ub4OFwHBLfOnc6LMg7aCls(a9S_-@Pue+^9ma5#}xfnR|l~QF5 zX0lSEn>MYtv(z|I75T5{j8spvk3JgsT`ZD6O^e>eaH4J@(90IAoaFWR15j*6Ty7GE zTB05Za8p=m2HfB>6Wz?ja+*DEE2q08WMxO;fkHeJ4tQNelqRNX8t^Ycg7i!3pxtDC z7fO>`J#hNK^VLqrRDfNy(5;(%^e%eB$<9GP!$;IDOQBld35L`p3hX)nz{%}YSs_xQ zPxkI;PF2honY?R6EJ)XB*S2J!T@Sok+3`!8d1HF%QSD}JnqNwpe6t;?UDgf}<257M zq%3RgSHlmp_KRH%Hzj2DgI>UXp{wH>O_^1`&AVlGnrVTg>x0%Q7`~-6JM%(q1b>ky zTFyAr??I`bHBHr89l8sZ18K+5PZ#40ty-8MWK(R7CN2aPJskP{6WmuiZIbP&U`t$& z!pm=I8r!psOrcn}n_$@jG0QHB#S9WFEJs>dtsw-q)pg zQLn}b@jH@N^)lUSf`#jHbQ@p2b9G-vh&^zi*Wun&r1EID*q=k5pdPY&NZZMv&H6(e zpJf9>caUda%{rS~HulGZ?aQF)!ulr=&K)5@z3f2Q3TxWotG7yZ%eS4;@uAD+b^~pN z>-)9&Ux{vL*jggI=>26i=>qjkPWSs5wF3Y%v>w*j5n4gC>94p=zS5!CZiiq^#-&RO zM-kc$^(Ks@-H+u!L${y&VEOn2H2;%kL}#;6Bs|uztFzap?OHf&mcObuW<@JV9D4{1 z%ZZNs%L8~7s)Y>u45i;$_V+lKlTsEHAErG3eTly2nliMI z#b<1c+$w4iYHD0igytzVuzz6pFNzT}0R@~B&YC*k?cgyRc2JNE?XTZ>+!PUpd$IDg z&X3hjF-E67?%H@iu?h;sAG*ke7v~Q^Cfc?2NC*9e1}Q9(a=+Um+lD-CO1GW2olt9Ay*yX-7T*ce zyDjiP2 zm7{(XXrBLeVGO+hT`SI+%i_&xj%2+C?=nBr>%4)6e6YJ48G)I7ct27okT6>FO6DL* zw{q6bZONpr~hNSBIDB5-uHk!EL7KG4jd+j@&bcGeIBx=$A z(cD|2jzomE?nr!vNprIF#=HZ5OTtFs6ujW#QBfa5U<$EXhuyWo#3u;>F7~>KukNHf zL@ABqqe%K0bMsc&Goq`n1HrvK;C))8PpJz@@^4^E%@w=ZDueh-0?miQI6J6$Z--2x z4g9D{2al=#7T8*c#Pg`1gqSs5yYCBm&UQ;%K{YT6b?JseYb~0RMJzx(=WQ&DE}rI| zK(sc|DX=eHHk3{=P|?q1^MSjkETSSIX>UK#rRRf&IzQrYadAlOP-GbF@%y3+WXMm5 zWS?UU)@%O!*a98W2R;14z1vu~@}5gXZddr4CJ7!+)K25QuvT~u6qsl$ohxum-0z*Q zYWoPK+Qn#k-PxyJ$drE+Mq43J7-etp!4scuvdtKP)deu;a3&6D=K+W+8nUM^NaiDo zvpu|VxuH|bo`L5FuJDVx5ozJH2~7|SERK1JLv4v_(fxV9DD}*X9JeEyZWOdD+Wb2i z@m#|I6xM4ImQVQ((RQZTO?%A|$d!O9zi!DBJu@}$>3y2g(@fPJrH^aAhvc4GAQ<@j z!_JXay>K$(OoC*51l~M7Rriw?fmvZIE9Pgu?gTQoXV?Fm%+3Fm`T6oceLmzg#L9&Kj@_zAbRSD&-X$A^y=`l(v=E*!$Kc$NDnv; z_6(?IahA}SJAjWjiMW0YIr@N`XP3Ez7ee6`q`Ay!m2)3creD?PT77y*X3~>1`JITkg%wbLS%X@ZcAt* z7nOwL+A-hOg@OZv%1JF@Galr?6SA>~al^(@JZ|Y2yru>L(n{x%0V3*jiPg1G@4se{ z`*}XtMfJ&+vV{}uhdDSEIEz&yA$A%ornRR&U;z#{{ZOYe{MhS=s~^WkSNU6y=fQ#k zC#dE81aLbnwU;yZQ@NU4?C={?F5t?I(xqC`M4 z;lrQnjtU}t4)ruV9fbNBd|_~VdItV5y{XUMM)s4WDhjh* zf)>Q*)yQ+IwDOt0?%=QEhD~EIR;ONCy!kM=uYb=(-jti=Z$?vz7*6#`p)1DsMW)%o z2_T(cdoy<>$*6v27Cury}3RkHw@Cqn7yonaOjdN$jW4tKwY?oQ!Y zhrko@Pz8#`hj3d-7eG$1A6t7+D!mM#B4oYtrwwJ$Rx%%n=9G{6g?Y1;q;5q zv^U@eKbP26TixdAHe=EzH20g##Sem?n49%K6lr!IM(Jgx*7 z$vPPnYR$?m;Z+%DMYvQHGFTC@mM@v7?JT(oX&j=jkrL%QSUZ7b@D5T$nXk%Aelfk6G*X?p%TMusJ_ zdY;XrzxDkv3iidej{3A!y@2x;)1{2qY?8?!vT6dSa&)moXxfF6V&_gCdT3F1|AO)63( zW8WqHL<~wwgHy|0nLWv%hElBBp1MKt5RR2;07PApzN-YoIb^jtizU`n57 zFR}vrU!H%}Mw|WXj~e5m;4qJ(nPjZihJ4vKLn<_IfjJz91Z4-?nAL{dHl4I{M#&_EqciloZU_FQ*S#X?yFDc!a( znKcF?7xv!SF3|X$*X}YXEPC2n`kLw#2U+*%z~UJ>4d}~tq6`o5Uoui0g%!LK^r}>= ze^)f`fZ2u*&3jtm&{^<={Y#ocI(GrAFl(L`9XK3)Q{2;yJT3TP>v!&~;l0jIX2;lq z`$`we4gx}!YONqSDU#+JNSbd4sx0|-QXo|GdakvW8J-%5v~#fa_8TZ2k~X5G<}Kkz z@hv-``H@7xoP0uWk+pVKln@qvdN%g5wK@`=h@WKl`r&yFtwaxcQ=`22nu}IrJ4aPQ zb0bB^D9#_*o4YrXGuSGx_}WqE^|gbmdMz-e*5)i$g{C^0m>jCECB|juZ?mKXQ%`qQ z?|PT204Sv1&E;uV6J??jGE`yQ`)w!UhaJr54;;g@h0VdKw1tQ7yADfUFB$yIhC$B` z8}UdTuk_Mvz68*f?IqRoF==f2!Lzzx{uOvKScNz|pmnNrOUMowDe@}l ztyB+)B_VQMPN1}q$g1_ad#Yf453RO<(8;ju9-T%xfi3-2{HxZpXY%-SRD5gR6alTx zXql|B0cqwQDyn!I3QxU|39nNRzY=1kP(#3D&Cdy0C}$bW_H4>NxUYt$`<^ht(UeT) zF^Ml!F9kLa&@V3uJx%AG&rag%zYni*dANM(i%*97T9QmkHK(U7we;$rf}L5De`NRv zxA&fPAAvW8<%Aq6j!*um4sdpACGksVDAB>DP~~l;G6*Ee=Ta1AADu=Rh&7z!IKj)9 z8}OQjKg8eO)ZhGx_;Cz5XM~;jaas&6^r8Z_hR*vG1~zF(cwbW(CA#OrlN|av5hmur!Hy!g!xYbuuuuu#}wiLapk)l{f}#@ z8*?;%A=3sdjuX&;UxWUhop)COE~z8WH|4{M#cOQ_Z2Us^miAJ^)qLKt|NjdEnK5R$ zcBCs-VfCLzhMknZK0UcR_md~J31uz)!`xDZV@ray#(Smn-oIc|Jxv#OB!<1^qOQ(;a9=}M zuo^vZ>6hoFx}^tIJ816OCEY#L#g8_4E?#(!Z)h*U3Y5P}NKV^&M{dXdIeA-1=zCB& zy)%wnUePsPoeG;7iOw+%s3K4LZ}xl9>v#2}h$To}tzt7Wcf>bEs_~8YIy{N~^n~Fe zz<2fV@9^s}?S^0OYNcx}xw|PPp+2#5$qWv&{~n)FqX*D!Br+{K;Vd@4t?--o4aiM1 z(587UA}knnuhz{JInT*g`D%uqQ5et3-&a3==0j*)@EgYw2^)0NrCFz)L04wv4P>~g zN8sOKu2oTlthL%--Y?mhRUK$Mqblc}mN6(+$S`B6vu_F-cxmEwrSQMBNva~v0g#za z3y~WVf{y|fp+~P{GX8mh`$|EjL9E$J%bGE@sxtLWO5y2%AbD4(g|#YCb^s65V{^94 z{>knGx$`zItfoUxhjV~dxGun2Si_52lHR51#gKQt8J`7$vrXaIi>Dabj{JxzZC1pp zUL);I!{+68>#Dx7XjlLdQL$o1lsD{9 zfp%#h$E@2%;+(Pw=s>n2O}d$5Nib0bj#wen~VMnZO{LjNPx9UL%ahqwla)nOvu71Lat=5OfzF|_q&2O11AYa_FafKy!I#i2COj~3Q)RvTXS2Z^jAgs-G3LU-jp zlGrChoaL(Z=yj@4-(F>2XG0Z)$RR2*?rkc1DOeX6`J!NKD!-(=BA_Jq5$w_3I@VZI z73%gZL5kNYDiVVP72cZ0VNHOK-b}a_`8dQ_GiOge)G=o6#P6PJO^F6l4XmiIz*mWbhMtnn1rF&*BEq9Oa~w` z4QO!$bi9s$``uME;9!_x;?3WkUo_(c(4<9sWirK7^+fzOkFc-a2ERhkj8x-J$#2cm ziI%-qS%1@BBDyasO`o{!AUJgWNgFMCNV?rwW?u5{F^HLYnJs|LT^hK8SH7->fL!8^ zeZd)5;!m1wB|{}Ooa#zTHA;n6>Xwg+)9oazzWNVZwqn+fuQ@q|bJn(k1|o}Pc`D=r zXeT{QD8o#$mrORn?Ig5kLM@gTxfy zrt?A~B}!xN2@oIbh7l;1a!4=nJ}Y$|$>?sFrObT*xRe?KCqmM^(f3+Jd_}h@5aDy0 zeMlJ)gaG07GarSafeL|pZ^@59P_+@!@w?SwGf62<($g$TwC4c?dwNlmyIpHKx7LY7ljn$ZB_@ zahj8$w~lR6(4V@nLY~-9SU7x%sLL<4*49#_EWrJV;lpU0*hZBjVOlZhgABLC9m>;C zd0qXg-g$Gk!~~_Iym)^iQR@aER?$E0ZD%WvlF|HLgTe=EJh~OfF)V9-_VYt0Tqp** zr_Lzp0hlvfN+moYX!uHE-Q;ad!8jd-6zII$E$|9g)(6`Zk>3~yQQ!=A#(Q}CCwSxH zKc2ZRT%m7%6K2VDc2O)hG?t*+x@;GMB_hJrcwk&{Vvcm@`ScMnF(zrxBbUf^m z=JZB#F)6h@y*1L~4hccrvFR|(I>XZBL(>IOaS+JU;TlNlP<0w!8iAtW&+DTfTssME z?{||QZnv;nG{V+V+PHWv(5Qiq_*jh-V?bgxgytmfns13^rKqiRBcLK*Tl>q1Q&uko z*J6gOplg+hgh0)wz|5@5Z-csv_zBlN;VW^u)ik+eO)?_l!hjZGdoO=(PDE2Vjgpq% z6JE_Am;RtH7)k2~bZ@$b(7Op<{p5Vj&mN$5DReZ}OfRgHy;Y+e`CKzZ4_LC6iGUAe z$XY2Jk;el|HAYA8YVwb}%+!_?pR(tgu=BfFgx=RjzhE^@Vab2VjnP25TV zC1OXu707s%7dfhHQ*!2)AHDC^!HKAFLX6T7fh zH+VnRMA}~{0vFuj78N8=M~GrFE3q<<3pvu++&-4>KxVx?*eBeP)Ct|YrXX0%QTBEJ zOYz>>C2glBc*TiYi@AP$#wEF{G5g4Z=mUrV?^=K6A0BzKARq^x1VaLLRRTMmuj&a8 zn7Q_j0|rF%B>_xZ)-EUY=@#OCdd8Y)+%1mw=6EZ-xdAbhL zhvHh;rX;8Q_UsVC)Uh;Ttk~&+Zm1G6zQ`L@1uU3Q*gDO;yHcjjnM^$^{$a&|Q9)KwwJ^XZ*nin?ihGrM8%YiS}D8q{DhLM+Zbod9g zHZy`$r6Hvd$yeb*21L1Beoz4js2x+@CPmtRzh@wYJv|W~9Eu6SLHSRp1%66AUB_tNYMkYpogB8I3#&(HjpuH3k93(`nomPT= zzDt_fn?(*3(=SqmrP5xl1mCgOkPo+G42AD2Bm2y+X7ZIF7S1&+U2T%FUKLvPEqgjH zuzLm?4q9+$xXxx*(gUzU!yTlbbq^(?ekL11VHzJv`x+lYAurzrLkL)m3cR!T7hVMc z2_7fAxToLB>Rx&n&Qa^9SgvDgD3`axf+|D)-1s8rj4Zb{Sx~_jXm)j~SW?cLVf-B+ zPsXnqzc|gr&=>8~S@_plApze(w7Gt$d`vg? zw87rhuq(h=Mk0s|5E@^P7a2-aR0ShU$FX_$P<*nc_94Ff!!qIDm+)Vr@C_Lvt0puL zS6f>;lcu9Z=7ndCO%Fij3vdh%tKB*5-CP`>JAO6aNhz5Cu_JRNLxt}sM5u!0(TCrY zc11;7-&&?+RnEilwG5(K4EJ~sZtheZ4tg8)w^SQ7{QJXT*$&k`w59%@w$1B|`w6c0 z$p>;(ZWg5`lB}YqC5ejGLgN<;2tYE&L)*w@cr&ei;S8R480%4^4itpl#3|!PINQoz z{ihQd@A{9X>Kjyau-xnwenX1!(Ne4^B5By)efIoN5uf;UTJG4HPn7>aY_9)o$#&ZU zvK=xd5p~p@6Y|tFt#>Kuger!5`fyFD;>?Hf>290y#J)r*@q8XLLk4w#(K?!Q^0f~h zhkiak`%{5!!PPd4ZK7tWgdn50u?&p5xRf*$LF(NUBR~LdiQ#YViWit8;Ga!)a?j@uv0AK-f@{@FTHdx0 zN7sagq+o_qEUaJk{u1gFp-h)7d0r+giH|1iN~48G?4-==W+dp{DPxGW=q;)@qF3YJ z$*=YX^eOyHs{Wv_52LB)UblGt>Z-UauK`>R&~m-P-||{9XQ!dO%^x0`q$+a%l=FI= zxF1*bo+fVvxUE>GlmyD!Ixy>FDQQ0VJMfUe+-zddE`|MlPbeSxrtkik_S|Q4_TH%^ zCtU+LbJAka9)*rg0u` zv`zDR_mKpeE_aG~Ojiuda$w8~$w**m5mLBCUO?CGv;F?fxjKN{6C>c^D!4S!|K8wd z3WIHe02^Hu%0Lz<5MOtI(oBJ?Hr6%y@w9K4sOPVh-z8{phCQ>sW6p?O*9LMMV>U!+%$CRDgi+x(NvJL^gbyGsk*?y_C zz9P`IqheM0r3|r*7~hqL8p~DKwsDJrjT5}(@x_R>=}px~%nfB z>LlE^EpYGF+-vPr-xTE^^N)RgbsfIDfaHz{EgEF`iWoWT9?B_dhv|4upqSf>3j5wN z5-)H_72&u_f$}9~L&DF*J3dN|!x+)yt~|na-{gy2&)3W=g+9nPEziCf52>+`b%E92 z(s>BFiL|E}b;U*qdw=#vo`CAynL%%MPu*HzwGfpRHA84SmG4ni2JvH9FK!ODdeJ{Q zY|IY~_c)jzcATyB`qkxon^#PW6fSEW`uhY8ya~(}tFl|3iubsZOt^e^nkr4Sn{6n= zNor&_Nm%GJu%tb$wYxUY?4N$l$#=%)>?cbWBDfXskX~}hwncg>hRFJjX)7;a-L~g% zS2y1p1k;ro^E~$Uk0;{H0`F5J$VUIAq(lEd`z@L+|49a9VL!y2J{o%5`wf2w$w_{r z4N(sUL6`_w*FmB;yXYy1>$AJW96U4dnuzIzcW+zv-1-?f^M-hXZ-llX5t~%^<#D8t?Y<^YhLAw1~TmK3%l7rLDz=y|7rWO=$e z9a8f{=^~0{4JSpYQzYa*A%EM&1j{y`+pT5fqB&ENMGXH6Jvj~VvCq?TL*GAd@|fLY zcZvV}oVUMR5>ZNPx%jn8+0I%A|3KQLS}srM5g4W}Ax%Pj;IvCc?1;*7UBR5sP#o4e zqQ{T;ip{YWHl`Jm4nUhZ)9i|A%oefyWTk?-car>|j|IAw`YIcs+S{fQ|0J_AB{9Dp zil{FhL_Qgau=qH)I3FZDIHG%6#T~@<(m+fJCIcqiT9byU00v7`0h{Hb|6#MXkL3n|vq{CfIt+T>?| zjt_2wHV|^1y!I2u&6}_eyL$m$JPx$9_+H7_F4~q?Pjodj{Uu&t#CyP8X&bHGwptoz0{k9;j2jMny zUfM1%4^(#qJ@8gWjePikuK)MS`yE}NN&--|jsFd4qwc;v^fi7uZlv&E{f`(i1GirN zS$w}V`v?UrwXoRa$kgcM*doGWs2AbVGmj0fL-p5)$9LH*+DR3_DFfU;fyjF?Sosar z#aIub>bO^r=4icC9j1uTpxDZIuipP{wB^MWP`CElgRb@XI-Fn;9jf>K$zSuNpW=5l z#*A4^%@YNnW8OCa?4_3UVJS1Q+IDU;yyPfX*MLqHC9PQtf=q?4f{R+@!k$v!T!q{h`}`ZxZsc{}7XXw%8^4tP-6juM>>Df!LXkXsVeJL*g$h)IX)W+A{$w zJXsQpsGpo{rFY_P6Qh;ro@anpVtO?>JEXJ5cveweJNU_}F&oP>9fhgHspE?fKbB^d zcfS5wc&3|O&OA%z)t;hHU$oMkEVF1=E8KR46OvNW0<8$aQ=w-|Wj`VEf3$$C=wAKD zX~EfKP>X2tL%VJ->GQYyxkVT}%r_DfkrOpn29_{eX7JI6>3`kOC>KcoA@94WwQe3P z=9h(;V3s=vlx{xPwiiOceahGDlMJM$wE=SmAn%&<%*9?S^1UueR`f6ud7Jc|cNV zB|q9R3JM^DzjCgefBfJRY^D0`NdjKCeclo*n%mr07}`>Gz@qSKZL~$N5jN9sg)}(( zZrSionj&!@(2#T6f?wAlRyZ~m!0FoeT1nmF#uA@fbQ-?;@b;?S9S4tA_r-U^%RT8$ zMzDXC6^D3XA)#(=JgA|ewV`gkq!K+|$rpO*mlma5aVXWbT{L)or|C%~9k z!W0x1nuF0M`=lu0m9DWzSm(#xx{|0}Z}*egYE=alae08$#bRVl{8OI(Lx;s1gXw3> z_^sVcBC>55-(gVtZUJHpOJpwUg zB+ZhdabMJI7*U1Kp%eX~>5>riVTQc4-Sa?OihsdFh&Y6pxXb0wTY{E?w=m7lp$W|q zdLCxSc+Nik0F~pE<%N&ScV#?`CY zMRjy(0+(xsTYe4%tMxan|5b3|u*eY%$B9WlI5j+Pc^xwk?YN&>qAEHyEG5y_eUj_$ z|6?0EOIg+Xsk*HVHj#;M!|!G4_{9#maS9smxo}N&ql4)<=$Jq}Oz|9G3IqJLX*+8) z4t*O=X@a-;9ho70nNInF*M$I%>4x-l^=79A`U7zE323@I5#^WP;FpMBCj@x30wGy0 zZ%eD?sk*zJF3DjuyOr6?iA?4w}kLTqD?w%l#EI7WVW;N;i(*OqL?W)%=Pc z^+|$Iq{9_MY#NOlV<~NZ zW}j-Mg3&LEfr%#x+jVsZuWov%YqN9J7b19;@k930-@;ZkC+Pii#dQ>Ndp?lZF{%Tc z?TXb#s+smU(}z^E@#7yUaGu-qCUNS71{?l^#lV~&o1wDarg$tqEHv;sxJ%8k1P{>L z+a9_NAjoot9mm0gqg2;HCEY+d223IYlR7b{+KL7@jijqY?ac368JS{tS!+9uGXN{X zC^?hF`xWVt?};!yT=xyYFbkh^M3En#5!#rd%4h2P4IT?>#~ZJ>ZeFmDa(Gi z^2+Yu(Wm0mf8BiETEDiQ3N4!C$U*R zYPYJF4}TFrSI}N0@HvI*$E8}AsEnp*ZZ1NJO*&>(ks0*ZZ#eQxE^ z7%LOgbY3)UyM~5JxysIBH8nE$uU1m%Wnr5?92VkCUM{$lawpViU>S%rhS#+WF9A+b z_D9&j-_qJb{aYF!MfvQ>wxR>h0wD6m4{7a{CO&SYQL!3*>@~(D6gYi!^S6Vvi=#-_d+X}Bup8QA9 zzPlwlDk^+Me5dF*OI$Fsswa2gp;+9*g`1rp=O=Gqp z($t_;J-19j{OcCb(QnjoR|ep1+oo6b^3sG-?bmpCC!0O%EN$Wy|1 z5$P=14;a;5jNohlfJTSq@$gz}U>*CBa)1&UO@6V+44`!7sjGo7%S zZtKxUhG`fAi%SHNtRDZXA^38$`DTif9DlFShPZT`H>Yr9hBE3rzEgXLR$YS{G9L>O zoC95HRjQNY9&FVG*d!hNO^fJi&4$Xj5rYBvVnfQW1TLCZydK?F%DWH=utG5X0v$fT ztD~TGgevy!!u+8bd7I%I2qlJnM|%j>Lv3H7Hzc$ueo6I}qsuirSs#~K9sKLCmF&xg_N1+*4K>;HfB9CwMh8L5frzn3VCdRm`B_0} zXU#hJ9dm;UyXLG)baHr!$KU;mJ-0A@>POl%Iz0c_7+wm}9htT80HdmW6$4-ksw4{We=g(Cj)k}0x---dc zSY|B_=w`ln2&Q!4Z{Nhwt#3%cgqlhRTdZKJiD<+vz2EvuX#N47u6d~Smh(PNvb07s zY(dM*2%>z;JN@K!eO3bsf9}lQL+XJacmT1n@nxpf>BP#5qu`P6&RrkDd{3JV^!9Tc zuE~;M{>?WY=Wr5;?SKxHk~}`TBp2uTu3vfvT$E{MNxa_p7j?*<9}y?>J;tyCZ;m|& zmGQIa$U+1N@o(N=!pLW|uSY)+mApS^aU(g5a{fUC{`w@>q>2h`B^gh4Q&Q?-mM0WtLGBg(6Me^b&&7m}ZC& z+2*zePV)Beyzq1=S8y5LcC}{EtkxwfKy~E&*Oa*y z$HV}94_(s|vN8H&jVb)T@GI4<#y`OTWl(7l$#avX-eG87i-J;P8XuhZA~M>Dy#X$d zNWZ9DDxjCB%PPWC9?xHUoY|oHvN6qq2IsEibT5qBfEwpFFh89Z@tDwf>_9{*ho|;! zO#J2h@G)hhNHh4_-gZAX=0z&*`SlRyQ80tRA2SwF|CxGHMB9*%ep((ZF%irne$bwx z>DTWG;wZ=Zpkx3oD~7Gx^x3yk4#^E)x;pYi_<-BSgNc7PgW;AdnjL9@QM-B@Zap+XDxY2-JI#mJ?AaLo z3i|j6S_nn}GGfjI(4bz-P!&yHD0+oAMmaxf6XG{$t*#^2Ow;$P+PwR+=auKYa4O|> z?3tD`tfO`j0wz6sdr@WrUTT#kb+1Y+BCJrUiXMFzmW>Wii>#^BjlN$u8T=Br0eU4= zt<(H86Y$NjU2JP|8@!J$_qtWi4sXovMeUtZ7oGyps`WhVvxHwerlKgSRO^AWC#ZH{ zfj${_VLO==3~67^!4cooBHP8ndZ{gMr>U& zl=y68^ny1|)mN(BE5qF02b*Y*_cI{DEcw{D8U8lxB3ocqt*Nr(+io|SyaF$$G;~;Y z?}(JEBc~Uwm8NA+Z#~66Be&YO?2$rZ@!YH!;sY&9hMwbpHH`HCY3OKxr;yDJe92rd zZx7fqSk)jN8WVad^0o~&f+#(vo7v4>&fD`vClt=w8p>R+qoOTmx!bhOku`xOExZ6< zE#-?y{DUyDueqg=CefEmI|EFfs~V~j%-UAGQ|oQI{C7Jf1|(LU&yPIL%T?#gYO2sE zEfOGs5m|Ca;kq!e_&Rc34}U`YCLZjbUq>*qnvbShdlgN{{>H9mmr^lBeLBs$ zn(fNOa=u+qMgob+^X)QBhX(pa`-{q1_FUYKb{YEjP(1>$__CYq=zqsm@rvitp6#Cp z4eVPye{rWYowmt=eUIDKW?<&8N+Uc`ZF$pgJ%rj;qH8%dNZfToO^tXF0j8bYZS4Zn zDlJ3#Uo9K1pB_K(qCXZ=otTn07F3mFw{ZO!RXe*t%>~AWI8iWHkj679`|9NM>#)s? z#h3DqVd}S2> zE@aOsO}q-vhQCNK)4WNMDsRQO30!dkj3oV|tD~|*8DKpav#OVx$KcC;PsqhH$3qJS zz)i{x3uppmbS6udp|u^Dl2=z$1SA}2FB5tc;Jgf?qRMfLkzS+x77f2`+TXAp&w2IF z;Wq~vVNki7d5w1G2>cE0kO+S_<=ff6W_}Dbpwvj)e!mgsh!x`Iz(QZ!EP?`e^B?HVNGRk->8nG zjKeS}IH0ts1aL%PMkxv*+YS*iRyySGSO5_-NQaPZ14ITggb_wiVxg!srT2`qh=`Fc zErA3GEhHh3LXtga`8;3V>zwyF?}zj0eDD%4f$U_jwby;$zsCPnc&C#K=tYLY$bSZ6 zZoGiQ$0t1-&J;FgAG?;Z<5CoNZ`^=*8=3Pt;CJjkS%)anxf^U0%f3n)cvKOChA~aM z2UiH{o^kaaDOWN{5pPN+s;u3HyS%ar+TmnGUzLXa#WK$k;yn@}S}0)T7^U!wZR+)}{Owq-nvcE&nOodk zEm#OIjCwKd^oLTLLrco4PQu_gwVawJ(RwAkGx}uF+m;Rdw9-zc_1alfIirQSNw)5t zLW$?5xHG((ipvo1Cob2D3-?;iOq>Cxf{!qfq80|~2R_z8X+`s?trvk1A92*q#pnnh z+=i!!PY_D=JGE)1cL8*F74r@@VCLW-zk`j;aT;7WgA1k4l^105z_v2Hf3~s@V{F_| z)uAJ(D&dRF?Gze^9s$9;2AG-Se^Oo;Ab%gVo9SVjB}p&vy_R#JMhx{=KCe*!fv+06 z>f7a~DYD`+9*}Huuc0fDhHQ53zcT!}qBMR9(4$JL$Xm$o zn+#=We|QX}okZE5tMg>VJ4t^t1@gg1oAh7}WSj24e3hq*T-J6GT! z*sXoyc7!E=rp)=5kM;E7r=Q!wknC1CL5n=P6g5mVib`ld(4Y~-=?I&ThC`?JG3xOk zzyWIW^Ym97BVCt0F#ym%W`&e0Mcs(f^36F(C5{de8dfAeV9YyR zc|~OP4|#7lsDK`YznIBD3}66gvIf7#JjNq>Q;Y+=oKL4-#XxU2r*U0sR~y#)sKkQ`N{mB4o4k1F(9xm-lqx+ z?UX+AQL(cH?jxDH8LLK_CS6m^%%GqRa?8sIXymlr|CTw8TZ0jol%siHbdCBUE9dT& zXQq!ui%UK17xF~G)kZJp9%l(8(5l>vL7-G4!@d`w>xYJI{NdHej4_BMMxU+^It*=f zeWf3kc)GVJQprbkg;*&XGwL-hFpW8c4yV6p;!n2@#3sk?DnU2Ufg(12F)q9FA$Xhg zfJzhEeQWcr67N9iCNtH(9zY!9n7@2}>sP+g^Gc}HxDkvzGtL$O5E`n`BGeK?|6N0# zo7%GWlNHYqoLhC)GQ_bW8NwA*;VhRp@HJriuTGl!O{o}y*#qD=1RZ{`Mh;6T!p6Zr$krt5H(Abn?S;C#g4E-PA>AUp z3FJ%>r=6NUInX7GXd+_zLiP?0$wxk;eweN*PhAar+lO^Z|1GY+=xbqlQuHm=Iq9`$ zAhgoLE0jjBV>zObP4%(*jV6N~+f|VW&!t`?S(BpR=d2ww&^b>H_u&B%RN$ zX%JsZ)kUBuw2yh8uty5heR_&Z(Xm}e&I}ab$EkQKn9|(q-g9ZlKX1g#0WcegRg+-JJY;|0;!Qg6Z zjOCMm*Bl(%>nH$N#jbT-XklDK1`;-$8<9$bzVMM)P*dG{z{i+9o7+4hC>PSfJ;$&1 zeH9@o`e!!JAU_B#=)-4OAG$e;Uc4AAt0$M{P}?kSTpD^FAk`}ey-Xn1neL_b=~9P~ zeOhGtOnQgc#lw)#BC%t`;|F+;av| zJxTlo-f_Qs^?4z4>f zsl*kTbhWF9t<*!Rd5wLG@IP5)ix^yFEK+}3@$VY5bYPwQBZtL4tH=REiq$~rtlpC0 z(VRVHRlP_TaDlqGp$iG4VanX?Oxng4LK=RRrvgshZb)`i*-4Sl0!JPvH?(MdQ+5b| z6wLRp1p5(I%AKU!K?8A4I`=K_`>W7>YgvVJ%bYvyGG5L#$esd*{cd}f>6@aeSkBk^ zVCxz6(hzT)coe93>XkMFQP2d&{yOdYz$DVs7b(b?=JLP;d#s4A71cA}n$^~xG@gCH zXch`}eG1k;7Hp}4(92x8w8|GH@Tlvolip03Ysx`;DIs-40$$OFLL93Thw->K- z6ZDzo0(R}BVnuLqNfuX=v%z>D?MvFIUle~Q7=>p1ejWd4KCutG%eyn$R56Ib>(-gVonm)rDJ;~Vg|-x5Bs8s%@J9|j$o8RBXnx8c;Ssuj42JeUuxMJ8L7vj z6BXG9wzH+w1K60pUZv)%4g+#{>z{BeUkm;z#w>B!;nj8S(e(E)C%f~d^5Sc6nJLRI z>wrzrtEOXBsnE*9$$^hMe!Ov{|3&7h0{T8w3$m^zmCG0VMW+>X&=*a@vmD!Lq3AzH z{G1{&(EQm0cJlDf8AMlPm0Dt4+gF0_39DArorhr{S_jwwtf_RUqD~=Q{{g$n5vzPS z-v80;v{Wc3?f8av|MGyvb*?K4FXlzcbMR?eZ^8X{9}SA!%$6m3)X)?IpGj%t%08c{ z9**PyR31hjg_%>MIcI?-Qya^9aIcT+>$yz5OqGL^;$_gMC+CI}P?M3F0DOWbEU*sh zf#~`$*9RFi2yyhuc_rE_kvRT2D;hQ~=u#DcXGqxt&Wfw6vN4Hh_#9G#^{=M&<<8_%`pp!#xCEJ|$* zafl+Wy`voH`>=r>dP1 z5?eP1*0sONSG_B}-I(L%>RvZkMfUi3EsR@lgLuQDTp&W9`dd1T=H z%~5}HgfARY-I*JcwuMG6nJMaBW6XwDe7!i342Qv)jJ<|C;|ms_sebi34F8As#7dx_ z5h4TPIiKIbGoj8US3aby%y7R}5G~qiK4do%1z+f^iW{V|Cso(>uV|>_sMh7Z3&nQ- zt}#fHm#+4u&1J<49__uBb6Hb*7NP=1?7>yKIMcX6bnIg+zX3G~>ovAMc=+3rxV`RV zNL^rzwHRQ|d!WFgS}U96zbDxtrpyW4?y2_7m&b^PlY>THJLBFXDg&|gYNOQ@y0>X3 z!B0kYRrBlS_Jn_nrv^pawV5f3J>Vaed^<+Yu5Kv$E!ySpbnt{3fJSyU4PbF-#WezW zz!gz=^1>q7UHSws)tau|;vX8>i0ujwCZaygvD>_w{V_9O!ha;2j|x;^r7*QY(3+#3 z!CA6%iQXQjU>d;l=0nE7-a)jJC9*CZ8#|gktWQbf7R6~Yz`cE;upZ11G1cW3)9&3D z_xiclU2m&_C(6HJ#uif0CG(n2p{JBJFW0M;Hg8jbuHQR5m^5X?EsGTEj*)?g9 zdk4rC_%%`5|E&5lC^qVGJ3A3A$KP1vCK;(Yhk>8P-(YcrKOsRu60wN)05KqUvi9~j z7+wjr%zyLU<)(5#lst92X$2G*fa(?P|Bg1KXl0lAr(k|6in2P|*eE1CsF=3^{_h3} zguTIbr$)Sdpot*%UHkk>E`9TiAUgQUhH^E*&iK=D&vBY#?E3H+LMj}9zh8H%-2a)( zeLTOM(|FN(K6dN^z2ZL=Wp6VsfL=K~=j0x$mBI$p)*C8-c%q!^)C}p&qcm5D-+Kn+ zXf%Enq+b|m+St#%FsoA0EkXf)aIYcqCGy#;k$oSd$%XIJHK%%udk^-K%!*VGdNzW3 zu6j7)m*9`=);>MMgh~Z@I1u_CbAa=OwDvVS$cvKX-CXTwaAz8-@M2jC9ugKiq-3u_ z;UK>_B(OB<#UWXyP76A6D4f1r_cB%S9@Q*fKvv>(MUfM<2Mvc5UV(^dFX;fWXy%RV`+wKC zvH|_V=&UcMcxt2*Sy_YH2nRuWO6LaQ*b3vF>s7`(za42<21j4RZCJj;X$qaQeOV)1B{eOdV1%VqMh2H^bpxp3U}772 zQ}P7dOwm{B3tH7%%(S0OhP+?Td z1z+gGo0=qx@!H7CS8Cbf-K8kUHE}Ln&0)c@DxunK8~VDL%pAvohMSs_4RzTg{+S zY~?pTIPJ1B#?*`G_fkp z4ZO+~zsjN}GF}Tkdp&?Qr}L z%_+ZqK;D_zMmL16!--`5TM>qA{j4MpAq)#@legB_9_YY7RZIBwxAWsoCL|H%`ApHWuRf2ZT91g}n=1 z6GXSMB^m>7Xmd?H*~dYg!G^@oz~C=Pvl#%Pb9%GAHX2u~WxAccVf7JN)3Z%;PI{Dc ze)<#4VRqX9q(#~>VRfIawt`yI!kI59?;+;)2bX}3sG2;aWjk8QM*6b|lyJgrBeQZ@ zphYX$;?br<5}ccPA_W$>nL^Ah?9w>zekCOZ)K=kR+T#VO%la1Teh+vagG$e$ z%CVM`G5XvXvr~DpZ(GhgP30E-)|iCb97ubX@NM{*OS6$)pXHvFlxvR1zx5c{7P0SW z;&i&|_40nKqs$2UBPPE=B7Jj^rU@L?EUQhJtI!v(Xj{f4%mifqdopj~-F7{@1#c0d zIWlYgME}g^jRKfJxaa8hlg>ZY2u~z4jfETH-nTn}O5hZgITS^mY8!GYfc1@dn zHz-_#LtCYpX*OwhI*DDul$C7BAf2>Hc)T7U{pB0zx)sq+7VWgAz?TwU-Mv4R_B(&0hV9BO=ZJTA8IH6;ID?ykN;Ahe3-FUeB zJZfKPXk|?BmbELvAg=g-o1@|JKla&Nc8S8iWR@a z2#TzW%1-vAFdV!Qc~L@KrKnf(yh^4ftA@Y@cyq#p5)I)=;h)qB$Crbqhx`A z)XDdu#Y5K>^q)w-mCJyPW_h`fQ}#gN(O~p*RjkWan(WL&nEZj>LfEb(%AzL(I;8!w zp`vT6mm`OBXrj2_;u3V4H1{0l=iP|8Z^ARhFC-hlw$>GiUAsxB;2=$4&8U<2qQxKu zNe&a@>W;~qRyHKgI?Pp_8Hy|CM{qit_>8P3cZh$%(W%YLloFOPxY|U!7;d%t(!U|q z43?g+B$;t2TLK5zLKi_|NK*l7*s|CnTTI7+T984x$l)DvP3Q<3s7hdv4P^ar@eUG)%#TAqcDO&(B2V?u`&AM zzyTh`!q`e!Dspc`T7gREkg%`~wQ1SBlk&rCo$e!IsM@^-hu57iO(_oM(KKtCbu6fX z4x-#xb2?eU4ViYCI+Cha()^rbM}b*O>91fe$LNAu=|%vj$k6$1Vo#W}O~t@?gXhI3 zm*aB0UVfeF0p$3)y1CVTxB~T#kkGWZfjTnLUMm^toQI(g$!8mq+!rKEdpQlZutp%E z+@C=l#*R$kIVBZrKAVE`kd@fz!7@N2t=V(AjMFjqh!PR>aNr9Z8!bjw8Q?{j5nQ9SE zxaCL#$!kWL6ND5aHKD#YBP58EtUt0cNdA&UyjIl-a<4#0SP+RI>nI?Z%MNg$`)=I~ zj)R3!{~{?{KYj?yo^YRZpQg8Hegm}Gtx%a}V#5`)M-zM}SCLw_W=^;2RmR-$R2_%J z5B*@69Ssk@g8KT4}-(K4#m7Ld#4^LKgc(pOKGsNVP+xmGHFMOw&Vd%3kif zRkQmPw#zofV);BsmJf#;s;I=3P(22je6QOR69 zgP<*lTQl;P2TrG^5yOrB;!g?kVEO=5f{2nHfKh){_u zDe&=u>lLaS9%1u_x~GF?Dqh;YQlPSceOBhFgMib=zMkjOyU>>S1QQt+qy z!s6_ECyMWO!eC0r82#QiVWwPpL5!y~=&`?VfP~cymcEQopmfaQdi0vU6`jnnRQSDp z&Ou6pm=ijgSwd_bFa_q zqrlChieD)o6QMY)R|>1ByIlOc`W+#rFSxOjeWcB3I7I(UT&6kjlDRtO326J+Epu7b zeAEPV$9CB0E{C>JcH~{v(rk{A$gma@s zKFRA?d^|0&5^Ub~JKhh)79@$h$(3zEzOA$XTraCTIl7<_3w>9I@xrF@FkM9La$;JO zc%R;y8G5yKYi|>4IR4KvLgURFx*wLoSSBJr{Y*tdY?R+3>p%(AXZ)c)|0^}RU!E?4 znqykMq{%?x5p2uxc2>G_&WnCbj+6En?!6F{bO{V+o0s))FsFcQ7w-7MNUA& zN1B`V$|eBvkl=RncosczM|HHNAIBoo)so-cT3>y`m2N}6OmY^sVs&L^6YvAFmdu|x zaln!oOk5VAuK8JtD@UfI;Q^aBa&K5L{%>$l83ALx9W4UZF9Z)KTI>F3j3T?wb+j*(X$N2&vCym91}CCT;0moZh=ynF9> z9qZL(V{_pm6dsXL`T<%?+A2C;DhzF={j|qe=#nwnh}$R>kHhgz7GxH@Z3W)u0bd`BA}V(B@Ci8m4|gJ}&rJtwAYB_siDQ4c*(puy zz8h@6Kiu|L3{xq?{hkCyN{j8}tHoLW6(FM4NvpilTE*7IZc}C9j3X=iv`O${ai}B* zh5ME=?PS*RHmFAR919Q$_3{b&h^2AG-39wZL9T)p9%T8+(OhwOf0!%kOn*V7LLypt zfL8+u_?g=G&05L&{ZjZdU?wK(J0((6CC|k*%i)4e2a|PzQ-x!(c$Ls zGEt53pA_VE@F~11qY=Wt?X~{yg^q2+>Uns%*`5c$c0FwN%ebszhbLYu(9|C&`?Hh# zc)u<~cUOzN5>zg&v>HG@b2R+x3x{V;;J0rbb!sTECwsJp=R z>$Vo6lb2i|!qYB?pmSGG7QhXh%_Nh#ia*gam}IFkh6Z%@c2!~_@* z>8e(~TKOAYi?q|XvU$JU2g^e%qAHh>S7#IUIp{9q6*y)~;n&ww&Ds>+0w<#O%daFl3|0$Kzr zIWR3;B0W6CVG*n@V=o5+=`r)*w#~9TR%0#x1s&@Ea5;!_^r%)GTWRme6>B4pR3BkmN`t}GT`gONb+FabM<)0`O3$SM^K~Xd(b#n`^zqNxdT>JTN47O> zXWV2V5Z-{hvThU2_4 zIXF=Kfsgb@=t$FoBK}=7(}N3KSHPwS22rTn$^#STNtW07%FbB=soD6aiqJn{Nd+oiP79KAj8r2wW7>jZP?gZm>q}sF=aX*7NIxG`0r)`6Rs~e)f(RbG!!X5 zA`|Y6o&hB<5V<@f{eQ zMA>=}1=Zd?>JfG0lZyszCkuyqKaX^Ur^#+GT&n@1)M~exDS;LI5mlCzjqARDn*8p* z7-3*R_le%bKwjG-Vw;N$iHkn7Do6_s3IfF+|1Z?y;9YzA`#8frkT@H}gFY)BB6fq? z0eA}H<)nJ~R5}o;*C(f#yOyUROjX`%NZI781R&anK|4Uo@nel%Pr&a}&>2$$j#I65 z#~MQYqSKinOUHth;a&TxHci^tXq-FUmrGGy&W0#5utAvv=!)K8>0EV=SDY$MNjXYJ ziEb1dNgF7K%kVP&ex}Sl=BKU(;wvAYxj}kd$z@Px23YT1hV{JXLpp+=M-e+=fEV=r z*KVgWT|^ekX{z#8YTQF)rRouJ%1pK5O^u@t@9+7YDK5w6L|^KGa5{CXvPN4r`BH$fyK;%xxQMQ& zAyJHj+eCAj)wUvF(}F`LY2?CLNu=&xTod#wG@BO&^j61+l1KDzTeA-UfdYnUy;BVe zqa^>(LSML(UU1{SCfqR zZ`nHw9!-Ds(10e+jEvwUG;P@(o)?JZ2!h8<*5F=8i4T{hUmA64L>6oTKy-5{s!VXU zCXHXwcy&<|aQ?#e{4yt0+NV>4?VPG8{-O>esVb-l+*Yc@8QfjxrR~ThY_cW_Ff$fb zJd`2NM(4bIKkDGZd8d|ukLrSvwd~!M+-uZmmTupTg(eQmyS=P+CG+Jq9V)|klm-8T zC75h_y z!!91oO?9PsYel^{EHY`$2o02oRVsD>MN!!`Dnq@?8l{_g5~a2VhXWYx{x?^iPu1veJxxA~K7&n42n3`Qrc8TH~!uRns? z>pJTORRAXG4F^iaT!t6FxQ;AA)ht;Att4$zo#r6wvbUIXipzmFG9q>KF*d*dk-2#R z*{ukDHQj_4=6&!(z98BSE^wJ6i!Yghk~{;e zzu(rll}0_kg~?{n$_87k0FCcQYk1u}Sw9t=N!h5ARTU5U!`%-<>g33b%{=G%WBklux5g6rQ9qeGD-pM6ygS(0W$~Bi~xF6 zx68MMO6S=GuPL%7(t%QMT7NAjA#Z%_8yEeq!-EUDRA#gVgQl~9h(BKP>o~S1%IY?B zk$#u(BX&E3YoXSB(|g`+QS2p`mUj{Zn9{6WPaasfh>Rs>Ku_+^phnSKk*!pLPtBK1 ztMv<_W8swg>F2+=m4<_Nr|zqYM}ClHHj}ps0f#UFO~VO4+HIOWUGmJnVdFkQ`m`HJ zCJb$6m$^5y)kqeD2x`{Pz!up$csJ$L0n00ai`8(<*^&7#0Z%oJWTgr-= zdP%&`-S^m<-@OvwK^x{+dqigU1rjGR|J}Zg)V5 zm790U*{P8!pvssGQVo=zlnp8NksMUdGF`CyyU}#oNehWXz4xQw8^%nQujtQ_p#GOn zHGl2_g^*RkDyn4+^-jkKr7%mhPC2XLH_SS~hKDCIyKqLXBiYl)N=)UJ(`qI!Nmj!4 zJQ2!SwDKuiUsiacETjFC%$Z$(2j5Un=KIU6#xw6?*5yY%XB_Q*QC%*wSs2bJ{DHc! zNc^ED9Z2F>-3L(?nle*(L81ZbJ+)Ds0XqaeaO25;4O~TsLUhtD(q{pn! zEY^cJM%(v(tgMj$WY9{R2`k{(+pc$mHW|b+TcTGilG?%e#5YYz4<~yq?0WhmpvZm$ z#xbeISY~lxhLk;)-8r-eUaXO4ytO7K%uoDmjC9u2)R!fzE>uW=NX@2?pke`&0I;?? zy?k6P1b=2VwxxWaGlOA0EI7RNACw1!GR5MrOjIE9sV|K!#ci061Oxj|k#23%G~z37 zxt*=(6K#}QPJg?&kjKtv;lMg&K4CL;mFt_9KC3+-o$J#g3>#0-C8dc|HL2znM?M@K z`8{>ST^2O3N9h^3C)SALXovjWp(s!Vy=#JG%nLnOJLUe^>jA@ehWrYiKupb#g;K9K zm_uCk6f(Y?!19|Xtn^MkxaBDIkUg5{(!$eDr}Ejd?de@{?D){tf;M0Gv(TX;!4)f|nVkEqwA*vm2gCA#$BLO1ULHy*P(u*` z3Me)td*oD8p#E zxyPBu%G94ZJ2dw}c-f;DoiA}0p9e{xaHCBDkFUwGgs~o&(U3sZ3YZ_=Tz698#Xc+p^$l}q5s5{Gz&{45z zg3AyOZjjz2MizISYtzhUG)@jFgQne&{<0+7p%1!`BizR&H)BwVO8-5Xnx)q=gopNC zcMb-X%Ft_9=pAAp9BY?dQuy}Ll_aKOa7;GfS1U60M5pW!qv6`J+PF}kdNxXcNyIl$ z-HV;}(3FiBpX2_TZ(^>#;(ptE=}V>&K>_mH{NSRfW~r3M7mWC*cz;;zX~MI7$6TZY zP=cSP3eHxi26bQ(*^Tg6X{_eGc&IFD{~uvI;btJ7)r}l9I)S5u_B$V*8!jAamtrrm zJJ6{#hEzKox8yTNy}rc7b7Mw@v^$HI$jaPOjj9Dk?Qs13XKR%s9~{w4lrS%=313M&gI6rlRBlpx2waI7&L0!8?yIJ_jRg5^eq}@Out_#noKrE2}YXVPkw_g5q!_v4bZQlUu z0d~78-z7z@1yvIZ%jBSdpQNaUJ4H^ZHk8c_Bc_Zh3r2WC7yCgqv->7hnF|9U48uZj z#gIJE4?QQ&S=oL1b}cbFFjtuo(qY_%G)?25OkRU}Y@#OdV~q9ZdY9{C1JQk@XzG4j zqH5}#;))=d^gb+V@=XskRm>B0ApEOgSz19Et2dq*CS(&0kt!MkaAVR{bG3Q1kr9K` zYv+8N;6jxo3tx*;?5@Ng5w1qTlT~0?j-iorMH^~XPln`T2~1_!+RvUWOjWFaOI?fv z_b*$kY|*BZvJc!#hH+87L-N=O_GRo<20mLg2TbsZ7ap)U(@RVHci_PSyn4$L7ZSJy zp8d5$4BnnSbw6u_m#|-X40WjCv=V>0*4HV^Hnz`bH0zfE zbp4R@Iv;!V#pCaRo1ClB@Y4QsANxz_3Hm4A0*1@R#QWG-4J^Cmv@7t=EkPnj5Plfy zQm?f-ETaZS3}1ucPWgOxL%)sV3CEnv6cvwp%eY#IO}YZY>|8o9N5Yj@pFh&vJ@e+W zuBH*ohCeylK=IoZOKxC@Eh~OO;Zx&QKlfXQRZ(IYQ^WMJX!KL{Ox+w}ruD!QP6gc1 z65htfO)aGEAH#|}e3Uu+yZ2m99kR3}@{n)u*nb8r%~T9-+Vx`I$gC}1>bHo`xrL^< z^a)C!P;^LvbgtN+kbKrN|Rja`WL5b zK9`W4%2VOhS;IBaSQ^)LFJ9WqV|(er4=kn>nHg+|S-$9g1_W)K5F2NKSSjn*Av0tH zDp$4d2<5#Zn=9Y7E^7eeoO7ivI>);XfSl>!R~Rq-I-?~)iu>cp{9wpyl7lcKk7zbj zyl8=1JSyr?UT6VHw*weMbWT{v+yK;KC(7GroF{CYbcd?U?kXQ)x^grh+5xnuaIXBb zdn@W2<-sgA|8`!%YBk^uH1CD~DddYkpEYQHuq%K2|DmS;Kh^yI_y7NY>jD11n*3s~ zt8$ISSXOt)b`S+mX69J*S%!I_cuT>SwlLe}sG}I9 zK5~6}Dl`r|hkG-z^OyJuY+f9D@j>bVOe9A${ZRL0#T`Op^eZJz#*Z=099NmY`<3y7 zy(2iwS^fW^km$nQ(<^wrsJq^M=>M9j8Q*jS4W5HD5-GxP)WEbME|E{S89&)~nq#Zrzbi{Ns z&^FWFRe>|JU02sme-Ea%TN_^dcTJ;T%ANz$18x7ViJG<1i0qUrnPo6a0IGr2#1w1A z7YUjcgqH`|Np))D&b4L$UZ&zyUWfs){I?dvo6@X=g3`IoE&l$KUJG$-e=vm!mqFHd34)e8pF&zyRvB=84qt{>eVF(DMw+Aq$K)$421KgHgky!(*_ z@XykNz00;4u78d!+*Pc6_MC~-^6m(oQc*ux<+vBsL-+OElWguU#~I&;y5mJouP$tDqb_n7n(w#G(hu;Xo@H?b?WVI*4H)qrCVuv zxxD8^y07SaQ$~U&?Gjw+l`qV?3vg|Ih&NDJ=DkIGwZI31&He-LICjLAO z4HD+kSVgLH=VOEJFOO-lTwTr|Rn0k_Uv@OwCBP09;UuavfI&8lf3m$OMZ*1&;>?Ef ztCy5KRuh3uy=6W!YL;2fM?s@(-wl})k$p`r0bC#@co0O%DT<>U7KV`{szVHO0TFr+ zJOxUOe}Yi0Iok(G!6AlK6rx!|gEeiQh?bk=+_JS{ZVL3%sG+z<8`JyQstZpFm|}Mb zkip4?ob2}kCDyB4=lh{{cH#EY) zY*gNaV{X}4th_HSM!GH*FfLxBy_1?-;^>V%AW=j80K6$EHHKoV8-EqmzZ0f25G~^9fs8j*3sLY z*ZQMqno?;!M?$12gM> zOrgKM7M;iu%LaMPQ+QJ{95)nMn%)6Im^O z@zT=O&kI%dFtctTju)?7UkI0U^PjRoN5dUDXcTF}lT^TgRs9wPu>5jb$AuM~P0%i+ zM~X80J4wOhj`<#cCA9iSYOCN^CXeZWI`MoOP!eRzddG7Lz)ZiqB`>O65y<9w2cqRO z>z)c7>y9Y`qT+f!IXGoD->i>@1@43XPfPD(H_jQE)T-WEI}o);JTde(zZ++YoEm^2!OFQCe_Kp9)FcN`_`ub&}BV5a?iTgP9kQC;^Lz<8`|x zR0Tu(MO*KmRydt03DO&De+bZ43(HR%ZOQW=<+koL#&{$CtV=9YTUN$n;%N&5sGTp&dC6t5>I5vo6PwejkZWlS2%%PhcPqg35YU zofk=s>GZK$vF!y1$`;RKOC}8EI>8_WqEFxor|;o^&Ng~^;8b_p3RCYP`);}7`q1@_ z$d+n30<0Vd@@^xc;1?oC`Yo}$T`XENK99)%+zFQex@S$?rFLyU7S2wR8v?TIs5P;a ztwDO%LxzSJ1~W8=JO)_4O@$C(_Kzed<)=ERW%Gt0(6^8Vi+^z36_?(TV;PR^|FneH z36$8AJAq3<+P`b=3I?#xIGrgca27?AOXEXgM}Njsmr$bF6G=3ba<_3ulP>{t zs)q&WAIZ@lOABUaO&BAVm#I$p6+eH`;2Drc6n*m~IOHpiDnJX#%I#6wN&cRUtPvX` zyhpy@=Ade*;>(a|>g(xhJ#Sd?^4~RKjB<*sS1<~7O~Y!^po(6lSx7886xM@LiVM%4 z$*exg+0sBMfI$3`z>d-wB>;aq1faWv$@kluH#ruWYK1Dy>?Y_N^ZrPC?j)(5Z|GH8 z>13lL?F$yiu#+}~^P;Qq1D z$7qr&P%AFAL#nKjsJoo??WHIQ@!ks+V>I)uBJDVRVbDtTDi?@rC{9Qbj{uQUfnE_BE7pLHG>Y(#V2-mgzF@jRu|6GK0AqCIY#_3|<^gUG zM&p^PBuuXFk-i8wRII(pVdI5t`jW z3jILIT`{JT@A{?z7XA$&DwQ5vq3!|-D8c(m6Z*Yni*?doCskfJz}QN#a8?BXGd=p1 zT{)LGnTd;!uMbIZa0|Caw0;>DS$tN4@f|I@ z?k(!pqK(yF;-+~maN|z~BS%Z9+|v(samAII7Ert~wYKrd`OJ@Bs3h7l>z2I+))Cbb zAw&MPc+lz+yc&4W z5FO)~n?VlmVq_#Kf9jgg)B+DFr%-=`o1RCM;Ra;QMk)($)d6QysR&H+`6e!oeRs?0j-YA^DS z1ktO(OOb1e%i%VU9w+>FYT*ZvfAC_~OgHOEV?E$geU!iUb_~Tgr5p0iKmt5wRE z^a*rN6HoH>>!%tg%ppZ69;|^*qC)N@nFclFA$9QOLA@<*@PGXi%3w>Eaw+F4G8cWE z4(jfDeKSbsj0zkA;Kd%IK=RjRx_A>9h|&LA`|OxI<@A4jpVNp1NS~XwU-R~uJIH=i zDj80a_yVQU>7dT8*YJoAK`ck9lrI!#I}sQ(o#1D0J}6MVEdax>N$_5Zyho3P8p$qy zC9Qn^_OCO?{ug`G|NYnhljF#-pTu_UntH&IfF5WLB_L}>YfTFJlVBwHp{%VVc%=n$oOCa3HX%!fzqmgw4#FWm7WcJv%^97GCuK9wpK@71!kMV zO}R$|#tIEMPMmgI#GsLpaGK3`JmEa`V5^;};Ng?w0-45|82(RF?Dc?^K}!I8U`wV@ zhH6cl8+3!_`IFUD)_FI?%JP^-)teQ~k$vOS=^{&LjgPEn2y;S;^PkMCDAqc~j<9`f z*~J#_ULzUaRk{&axi1n8{gkIgS0*JANL^_WZkrtpWw5R<4VTQ!lRpCOmpyKM1u8v}sDwur?MrA?o5t17R_ko@_`dHgp)U<+F1 z+ZXp)1zXfJXmul(&j0}CWw#%Yyrc#Ncx_@;xdaYkDgrZPCkvn)UpUO3tXXu#cm4qQS?mI?Uu zFlrpak5S?iJ=Vm{^Ew%lLGi30ChI|Gy~@bOjbM2k5yuTrV>gg{w6C#$!0wPSIM{-M z**gCOlFQ3L`t?-kXXDEF%uenT@OzJT`*{mvC26u)#o?j3yZ>O(lyh}ucy^m(!<)_x zf;yJZ1O4FBswYiWbI@i!=FC$Wb^o}i;9j^>PvyNkj%j#hh|h8QSk%nAF9D@{Wz`C2 z(gB%nWMD9tsCDd_ukUc<5hT{;`=BrjSlC|sb4vWd} zFG@3xk$!sm<5!P&aMP=Fo1tXC{WU^h&P51*74&9tC|DBxo2MjB@blQ=j;|JfK+rRB zf!FqvEL<}Q6a`xi4=q>qQa`!XB z>m0vMZ#GTEujGLll*Qr=%-=WAHJ~5#R{pdSeM)3k_ ztxZeVvr)Bu({mAr00ZqjA#Oa^x>1s}ql)T6 zaZrKX`E9rX91Qf#s7@!ijwbF3>iIAK(?_pfNA+;M#kPU)45;<39s#(3Yj<{T?-9lO zZY10pR60+>HqQ_Ot5df$$a@9RAp->xr~iw$Hw|m@T-$|hwOVT}6|A%fq{?JPV5uOA zkhD&S6r-Zdkfo?0AY?_x0LjxjfJh+)3KWn;1VqLtQ<$Ry#>fzvWlDfB$Ph9?29iAP zo3-|L9N+PM``z#UwSTB2CgI8b+{1O9*Lj`i2XgoPEZFq{B28n z0eyB?<8x2u^s3FCc{>`l8j~H>Dj!hnte;dx!u@G3F+>Z?3fM&g6_3IlZf|Il$HL9o zwqvA?}$e;k(a|MKxor@qN`m6zW5}H zm2H^t9Y?r_k!r14oV}a@Z_9L|knT_a%S_{#ogCyEm`FsB|abR?u9Oq{s7E1 zcTl0-sJ@sF4`v(Yl{~EvjokhR{Oj6fg3=Eo4;nWfv_{__@rgF2U}epxku$l>?i8@o z4@?b|3$&s$5NTrzKERl8lJ_~+FDee^!=|s`b^eBfiwFA6NKWzZz zwjc+8u9JpNFf64z8E_xd!jaP#+zj)kwl(|lr> zyN(Pc0dRb45b0Ug$gbA zL!w8dr$<-Dk8s}Bpi_;L%K~8Cy5>~poGhg3{pR=)tJq&uf2A$WgZ@fXat*3-MWf9V z*rm5cWE86nvE8eN#bp3XJvv#-Q2FKCvUeT?(9ZykP&nE_G%TF@0Xe?zK74fD%pO=@ zUD!lmmBs!l-ILSV6T6SLz+^gvID+>>&J@Szl#ZJC>C0s*&bPi}K;YOK-uaBr$m{@v zFJ9YVX=z$d(O^~Ke!P>7{d6Q`=?LWpg*x{3b*O&j)%}i)$eyZaej9rhI^<&hN(Phq z)Ts-XNN)i;{qqh*{^d&1uPLn{aMH0L!h%OT0Q>ZcAFnl1x6*M6@x9ZmFG*2m1Z#EY zi?|d3`i)O#3e84W>&dHKflhdW1#8r5*(k|YE&N&6c)%(=O6Kio0vc~d=tNUm!7xz7 zrUI@ZgcUctf)nsH;M1u#-^I&5Z4mmf<@?c!6H~SQM)iZs$f0mK;EyK!{2jk(Q0=73 z`4WWnw`f8aGhTTY>SctVZog4jva^cLlx3M;;#_!mR?b{j)6(DuH(%C6L#HDr5vtw% z$KQY`K2uH&Bm03oyaJ@QpF62&Rp8*cwUA4t%8}U7RV~X+Y0IF>IJe4qnC+HeoE>r( zYg+S+$yPDz4fH3%wLM2W@Vm#@vwLF~XGw1t)5Kfax=@{}%{f>?>3Nz|C@plti+JrV z$E&0@f=doZz^Bi214!Xv1&}WXVq&nNC$O;xWd)6p8!HKZ{0*=SQ%6pLnhi;xY*+~+ znpMOKSsY6K-yziS<|Crog*IU4^oix~$d zxL%*-Nk^UFin9PB;MgTg(T&Z?=oO-Eb11k8+V&UAVc?@c%K*0)*anwofG2mZ?t^0z zEr2gr>3i(4m+yO58hKUl8p?9hdPZ?=s@t4K-A%FRgQJ~1Z%3h~c9rAxZQ*^%M-d7m zMp^U82~9I4>&OefmeI9X9^8d=`au=2J7o;mRyVUUfP*iVSMGx3_Ra~m&Jt5Pq@^r? zL60nzj)ol z-gBbtY}2t2*}7ms@7(n8OZP8Qi`u}yVURcrN}M= ze-?jRR6dY}^pqPOc<9x+-8u1IMkxzB!)_^NJv(h2u1_^~#sRVD3tMn_vvdO|8RbwD zjMj&~2*8o|IcINJMD|={tKM-a9t^3GX2zp#0OUb;elu1fMgrTip>+Hu9ANGMA)cml z@4pE-t8Q4bH~X~VN4g5MbJrOT>pz{w~TSUZ8`GEOO{9y3}vd zKvLx+h>L$}s({%E^kH-|q1U3DHd$_dvDeDx_p3MQGo$-0=d%$?9HX4n^K5=FyE(T# zSJM<3ap@^LxQG%B1ca)eCLAcAsXD^J?;iPUc)AHP$)6qL?H>Xs(>K6J5db5?lBmOPc;8vYI+Q>G zW1b5wTGgVZOAGiY=`v>jiJaja)xa7HeBPFie%i^Wd#oK$XPjDyr|(yuWNHM7ztUd9 zdi6s_gR>$y-L#q(0XrXU=>Z${k>$t7+TO3sJ_ptpSGSEh8GA*)P6PN+dBl!j@Q=X# z4XuiM4cz0vC`s2_mrL(hZEiy_R;?~|X$&Xz`4J|dJ6@>YV$u9W)wZnbz4pFg47r`o z8|IBW5iV6{X{$quXB($54)m~556HiTsv|aBgSfh>@p7QzG-Vj(eOTQ_` z#GlR-luyN2eKYLs>Boz;tn)}6v`LI*23)5Ul3dN=!-|8;$}zuIrEb%8tW8{+uicDk zc*|^kNK@JMshkC%6N{k=;g|`KUdk4XZzHqu=TKU@E%YtZm*4y|<-IuhdUg0^}9O=Ty=zBFHXB`c<`nq+7i28UyAl(mrRYe-<6ravr zVpehUN(!el3=Mn9)?q1ln{k)UnIEXoc1Msyjz ze^zP+Ps0Y)V4R+n(GT$Z4)CiQBXI(te{i{z7ZVL+Hi0(p6z{hq@MbYyfX9~4BXor1 zJ&H8+`x{O-d&4}+!xRGAa+%~!o+q=Rh8Md@+m}27RbQE*bBgu?V?=<|2+VhRuN%ka zH=!mSbY5R@`sQx_{MsRBX{CpE+3`_Ld7=;F6+q8{{CAh`Wkz*V-9U|j_r=W1{Wadr zE#YGl2KN>ePQLP3E1MaJ(pBibq}4KBk=&=WhVy$|PchG0hVZ3V8TA$t5ZbG+5a$w_ z=!vkQro2XYw?|3+zTY~=d|%OX%DabaYbISCr}Bkl;mkNDAc`^Jm&k__qs@|STn*$h zw@gAIbb}L;=G|R&B=U$5n12@rj6m@#iY4pOZKNY?q@cMVNZU;PMZiW-(1x^;yVRFO zv?buPdk+@^AFUo*8Gc+_T_vfo9*rVfA;DFz;sf&$?Z18L~T* zBRKVgfyj4c=@Hb!-%uv@W&~gupujq~zM`TOF9=T-QUWt~=`rpK?2m66$>CZr@fxn> z3}?0Ak2IIcir(8;-KXue)>t_vPw~$x2A&K@p)OF-tHneeN9|6YV0Q$)slr}svNY+o zLkM1L{!-w)96w!|C_u=iAq&iyLXU+@-pwMrEq|A5m3&NXC4nm9T4FN>yiaImKo$ z?`F&9yRBW3yEV*QQFD7Ma(v67<)zh#dvN~MV<)u-WH^4 zZZw>`y+r9mwfh~LoVP}Q6BWwG#=&N>03*D2_;OC0SGfuA;b<#~Y_8|PAvAv*0= z#^}hQacKF<#X=8Ipkh7KB=c0KUEg_gEMj?9s>T-CNb}D>F#VfB-X0G-7XoPEfBqBz zB_b-NkmN?I1d%yzKF z(W;15PNJTYT9nW6B&f`mCacLuWV>2Ly-Ds|mdrg;g&jc+fE40p%Y!tZ>W5NxtrSIC zuMsQvA4e&&z|;+OnzrX1Cqm@rvNJlP-G^s`{u2L7A-uY^HO2YwWJ!1L$nlu%N1Tw* zYSnsh5e*5E==v&ul(;zrN7kyVPqmIiTe4xPGJMc!GO9Y~0T;njqDQDKvY#gU_iOZ7lkG-oUBwhuE?f2-uMGJN9NK~~RIkqHU)dVVLk^EmaDJd;OW z!MSbkS+m5m!u3j{E*2QgOkJmjceQule}dQadaKjU*L=)aBef(HvA%LLrk*1y7u$1j zovV5A_YZgStHf4qAEuqbrjYuPA|dmq(-+VW5MQco%GGB5_S;JqbYFZ-Em{*Ej%_S` zHel~b2qnmZ_oHfygo;suBWpmgZt`bf(w{Rhrl34K^NF`oI- z0O1qgs#nO7MLeCCm4YE!ttged+0f7SuExJ$q*#waRsw`%1Wk1Z#l{k62Sd4A8c9t9 zYNsV@tVC=2CYGKLEP*EDQ2dI+&waIC$s06tYuGW68XbUV0;1A9-pB5q8J>T^E|0no zqfJq(7eNZ@84(@-P#s*fRG*64Hm^ha0MzV!_YNd-me5-RZhL+p3n6ZfV!T-IFTr$W zk0sDHO+Z!GOe;aKG6Ndz%CEAG6r&!gGwQc;jc}r@8TGEdNjaSwQ>4`GRKkHPiKy-E zlNw7GXTLg%Qw<=ePCx!?4G}k0Nr?uSSBiO#*s(3?#H_@@_VqYnAlnv1w5DwbMGmWj8dZtF(%uReoIm=(6ZHIfkX-=I)%)8~u&1$#6(P zn0rnJ$hl6k#vxU01TbA1LJ`XX4UPMapNqzs!w1r)GcT29`_XPpHd0ms__T|vR8V|r zS=eB+%>mus5E~jr<*RJZs>B}PJT6axMoRVkl(ztbzx1fU`XdJ30z#T+t6vKEebY>4 z-G>J>OOO&7K~)|y!a~bI3LAXus<3crbIqovDXmC84eG06>;o{zK%?#KERW{ zey+9^@z8xC$l(&UX?b}gkT*_SHre2a1;Oyn*i*^2gT@q>ULNc*s;2B6T2Jb>e}p$s zG@l={E#g8gtHn|_-lX~514jkUHGc-bInIGxS01}dqs;X~)hEbjHJ;%QRjMU(n zK&QeH9N0f_P5nr=B$i{J-a4${w;LV;s;#05ia{Y=><1b0gzlbsWR48Rj@qM3d=~mN zpEj7H>lH*)4zzq` zS%}D;GPpe($pa-kmxKm}v50mTxqFmdY{JZvg(;ubDHrd8>a%GjDPQH^j$mfa1qFe* zFhExw2)f2QSt&JAUB4ZOR$CRbXVtuA&B)5t-?L^p2Y-*B(i%y9=Y;Gk#6>ow_h~)^ zTfl%WC@yMG!Y@fr=FNLqq-o^Lv=|VFhwC+<$GyFUX9Zvh-GE^{K=p0!R$Hokw+lUC*W;3S<|fY zTj<7Fzaav+<=;o;|J=i`jXTP}Gmga6z^gpXfJOXuVZOK_YcjK@5CMtV(fY;7B#3}S~(+^{!r2%gM!~b!@i;a z#TU0O%CieQ53==4R-RWnX=Vb~Dwzgq2uO(RMsHV0+p;esHzn|^`$P6{GaGFM>2bnF z&(D#GVl!5Ui;+*=bC^?~wge27D*2ix2SA$kw{Lqag8<&H+Xr|kxRxJ=(Z>PXH4~*t zvQpc7pMkaRXJ8aNK%>f#ZDku|ceFXfT$!>;VhRr85bD>3cmQHehTYf zIWi~A7c|AbmSi2+$u|=QkdVx#7!Q8I@rR%}7!gl!{G8P9%!A+56n<4bBV-@;y3j_d zHzj$Nkl$w`6H0tMHPl&02I-Ggnwj9ILWq+qgpXtPfqd-riut^8_S_^gmv9_V^7)@O zyePQ@z4}Fs`n2H`?L5F~De#;6`h$q>Kh`g@NA?9%u%i&;=RHbFo<$v#fs2T4r0k5! z1LpOrB)5R+ls#xb7``I%WvX{t0i(e)^CH@LM>Jmr_I-aZ21?|5z1~S1v*Gl9l*nNY zJm>q5`+iQL>?1*6UORT9%a~+^5d4G#3%N1dNK;^e`luUZyl1Esm|gi!BnbwNm-mze*#SjhhYsD_s=ACeuVE7w~10?KFVvzc$ad@_L;erg|^ z^hY|IOYTeY7<1B+kvek_H$kgg(9Bz);!q@$v1dkOk3Jkn)f+5xG#Qlz02oNd9bz}b zy2DNy;R?88)sOaT5{x`scXSv!MbrEoRbHoc*C$qih$g_{N`rPq2hB$w)Z_tSV=z>c zd_6Obc88VvOMsOJ)Pj#ons;;G(G@Ied3Q`l(Yrn?^3!&xKXwdXW9B0A5ZbV{x7wb; zsE?X%jEVnHY!L0ZG$cMq-lsrcU^){mkeu-8rBtS+6}a9)Q6OQdUJ;46gT8W#0SChk zIta5Ta(Vg|EyrRHi#HbrPkv}}FnIc8PryIZpezY#VJJ0LtsXJ3PbVtpEVN2L=668n z>=`Q+X+J-qSZMZ1c)h=Uwf^_|gAM=tr=EaU{^!rG|Csv9jG;w;dh+64%5wmH_5b<* zD(C%w+Y|mzA8(wdj2=d-@a>d1+$=H10*?Xo2D+IT9N9Zljo7M$7I~(bXsDVzc$*06 zB6lx=d3*zm!EjJwU0P?qQEeQjBNr(b4{@)jO}DB!9O=iPPaF)M*8_f8z)EawKkgG}kaj zZ0L3_sm(=WcbYGum%Od4ZZw5*bjOKCNvW-uWoy=)Kn*Es^bEbo|+;o1B~=u^Y5osE^QGx0LoBs>y)6Fg-JdImYgM6 zCMa73Y4KqwOf+~NU#&3me>P-)6$h3=9tc(nxy-RR6t&*r62B|?ce4wRWfg~HToiP7vEW5`WFN;sNBp63Tn>0nP{lS5s9+d+e zJG#a~trc0muxpL}kd7R(i(SO((;Ciw=visjdD#$~fSq|Ols^UK5c)-ynT)~HyawPL z0FEtf5@UiO)9$0|Ehn*#p0|T^b$cCU0n@oW;T4YJ%*^0)k_Gdw!bp`eWW`4tdPSL{ zpX2;|$Ax29ii)@Ne#(%xx*klv z{pkB^_qo3pas$1}nQ9kHI6Q{J{2VkG)L7blS#cdW3RparG6%=lKkJXr<&*{@ZdOq` zen&1H?9a^1hVFw%sLwc=x;UsfNF3q435tvlXCsPX`nExasf8+0fPJ_^r-%5@R*+Qi=2 zbeiU|9Q85cHZhI)mTs`YhtY5H5N$V$c96wBXMr|9EWTKAw}Xcm2KQr*H(hLv+Spu8 zXa*fbYSpMpauFD4WMl`kWFeqR2XdJ-IrIt$#)f4?M4SC)U2lnBHsU5UQ;A5h;^@Z* z>@TkCJ6{;af?CqJ)v`H=EfT%-PWzfA84;4RLTN{+887;MllW%Z)8V&5<1{cYyksfDvqOrk z0#!}?v%nNbtTA`bfH9*%sV>(>r65!-{#scj$5HX{kBY3BmQpjdk(aS0)h!2S*p>n% z0&%XgA8**Tbbc5>TFqyhWd=_Qt1wM$iJz0?6fM_(KH4{fL6m9Sq!+~&OFYTs)!laF zINWmXE^;0azE-GQo z5M2>_b||<4`RcKP%$ z*Cy%A@n(e3U_o6|bzf|CHaZs^m-P;zQ^rRwvcDq!3#B;>rd9YX`A0>9HO=^-QmFZ~ z;ZXAuax?bsgU%nLpT6KblWaQyXB;3B9Vn(xEKSEIF(+XM*!C<3kV3g^D4kUiX!v7O z8g|*@DwI8^0EuYDU4bqJtTVCFm>kK5$73$MKCvayK5Q0j%A1RB6e;^0O}KJZ3LCUE z0pVnv-x;AXjmPsfrA;=Ubgu)wz{b=~u$I-0unc%3#GFw=;}U)aHOlp9{r(|)7_A-H zaATJ9LW!%o)}Ilv7RNx0;MH~G2=cqtMCiWQM=kYc@9y&61#Mf(Pqii*E0OXnu&J2S z7Q-Hgo!sb_H%<7s#x2CkfIBrhO>mG^*|1&9xvsWvx>mA`1zUDTuY0w(0^gZ@^wL>A zdJU%;`M?l8y2P3;Y_A4;uj#u<>eVj||2hP=s)Hch_}ol|7N94g6{xB~;l;m=(uC6) zU&NN@4UZ0!N2t5wcpXZ6vwtPcfOHyj#eL4B9#|pMBFO3Y;!O>|mFzyf)BV_oeKtxw zAFVI}9TZM{htMlIEWPqZ9>&L~!LbN0kyqJ}3k-ugSDD|A&bREV>ZQTR8r{ry09hUU z3pgb|($LinL-1$HArRwk$`{4bpsCHJ2u*8=6KW!jtPN{D(4)iKN>}_fH+(cJgdzNk zLNy)S)ZYl2YuH)RoLZay+O6lUP`vR@eJ3v5Je72fE1Lvh^o(Y1vo}UMx5g;=Fl*r~OTeXzW{&U4fz@;v+ zZ3owZkyXi^7vyxpl0la2?%;*{`>E=^>z}eY9s3~f*om@RgCEsnY4Fx#lNUiR%|>tq zL9j_b*nB2ZVQm<6l>K`IQk~;63K%KOWSWW93a~OF8x%KC;02h6*xH}q>53GuHSD&SASKd8G7~aLD<~1N;GoMj{s1r z1bStrwnB`FXaD^nbnr{)qRgCWX4`f*TZo30g_9pU?e6dy7c_p_@Y=HoFnhODJiJ_d z9r`_}&Fj& z!%4NxS|VZZ&6aP$mraD&=M@$lbqh^nSR+$^7vDO>+4s5-8T3=5^OXVh&#iDP?22s!yML;S12>@VMxh8I4)A5<~cVbc=tz{#C` z&1r-(jP7<_8AoeKozPsDmRbj`PNtQxlr(PCkoq7`5CkTrC8RcVy68t{BWi+^n$mpK z=%^pj&DPXCDLYVhYu;^8wN)D`&aRym7wd}43vB4Odzz&0m7KHl`6vfR`q%pxlB|vc z4>~jp#VTy<>HZnfP#b6C>EIBHV6|CL*)O*v@lt@}y&K^zsjDG+Jx#611EYllAtA{P z)d@@IoN2>4GI}k8_*6j^ouD0W0%NjcR{=%#i>9o?-w~aF-)q}RM?5edS@aW#Ar?>D z-el6n|Fz+9B%=SZ7=6#ivn*s~H!*l*Feb)V;<&ew`FEkW(A}YsJV4&_{5hr7@Q3=I zCDf$$`|9cp1N6C;=1kYDC8Nxaq{qsus!=lD3pF&xfnzU#)d{xrx5!e&EJU2SM1G5^ zNv{S?#@bwKOfD7ut<#HL51{Lak(OC&U`fLPmz4~zHD$16Q4Bq>1bR+(QFlG+`mKs(fy#fU4kVu8Ee~<@iq<7d<7r>1kyNcg>)>;Xt=zBsR?UUm+4+7LU*<9> z5E1PUXn%J@)mZ$$8mKoQ>q`c!8MF3NDERTD2|~mImH?Wa^)5k&`a4WWZgi_MNR+F-;5wnCj?tRi3bSX@p?uxK(ie&2L(%H{Acl>@5@ z6)TNhCv>U&h*6IWt<{(ab!R_VSpWZVnZSrxw3=d+b1SEouC>-am;Rb-F zSE$c2Nr%xR5>1*<3N2$4amgIgUvL(@=*?YNffYM(Q`iLZ(aI)jFlLVZ-5-Gsja-t;7S7G$0(2)m^4|7f!FqTf$f0fpkfpik`lKOmg{cdv;Z zQl0(?NY#)5S${8SrLx~3uz;+U;V})^B?d!chcLu$)bu3sha&k>xRxfP#>P3Sn#c1| z67oU$xGl$g{N%{u2gPb+U3r^%h*!IAepO{g0MMB1=h#2`4aVmc_--27fl zb@(2U0wf&pMFLUnUnBOK5D(L&Z&$B=gTB4P+P=f(2#-`9v38>b>T^i&VanQt50LM( zFQJ&ZhW~s{EQ%k>ZMU#2QEriKSNSIaxV8+s#|baFQH2sCmbs zDZlyq5`243_B87$+o%;WD#QpeW1x&+tFoaG2r;ETx3bZx6(E0Z)NoZ43#7^{(-Zzt zd@~(X1zv#Huj(r8|6crCV4QZ+<;XFEX-OYecr*3+ipD^F5!8c@pek`Z$?CtGope<% z2Jev(%>#5J=HN1_2m1KkdRqGXl_Xc6jFDppmIUg?%Ss@{yKlq5ffazfkD2D^r<%zD zaS5bq^-4?7e>IIh)Vl@#sy<(n-?{EX?gT0uv+fu1H#1Q4wn!g{`}iBkS=7Wh0*3x* z4=TALFnczAB8NmV8xh`IM}#$NoI&J|K0&vg3ZvZ7Qk`XI$n0%O|9WMCHW|Rro;|y2 z;VA5Y%-}oKpBd2Nmeo$ik?{W1Q+I{0Kqd%Gk{Z}H_W;4t<`MbC-q;pj_fH#~hu~>| z&8yQ5rg2X-)Gnjcm~tBVw|~Ga3yzTLWLp?vxJ{(rz*xJ{nflA;kUq`Cy^hh_WCA84 zE=ZS((Hw_3=YXKW_d(FkusT7R#d56GhK# z3n1%ck6wU#2aS`LSK%epD+8Z?8=%MN1Im*a)nA_#m-u<%j))5mvbM;tQkES(0RJ(D zMiUr9x#}Hk&xnZI3x3!&w!xE*1!F;kg7bwq_=yU`ZgOPvo%X*Xb zsdIDxzsvnBXFo(jL_9H zO(+`u=mcO5W>cy|>f3VZf%K6m{N(6pAY!Cpl_jf@Yphi%gP4c*I1s~bJrIf9T_xRt zdM~UX&ol+{!gDn5KE@%^cv&oa461%(wTRi;Y<@P?x=A7wl2txqu|hBE(KPRt8K2k_`X<~{Whs&=wdjfJZ!P{yCb!e7}?v`wmSJ4E+Cmln&y?6d10xT?IU zcwmBq7X1~mHqICc4-RQp3*?C7Z<&%FV#OV4+b*|32?ppt;)un~u3#Oxm3xql#W$KF zB6Y2Z1_fG(PB{XCm2{(?RcEH<6ryU(DQKrk;JR#|Vk;T~mF9o^4uG;S&aZWf((gJ6 znmg!&eXz$6%J2nH{d3x3-*HL>rp@P^W(Ih;36gX-pcQ9?H~RR_N7WP| zP_CtW%P-htxI>C=t;-A-qosM};?)l=gUbU4BXa6y_3tUy7T|a|S{i5F}Ua+G;8cRj+mikhdY4+-ZE;K+!&{`}EvH&%?t8PrpX3p|3=RfoDQO`XAXZ_EgegDHo(-v1n0-vTc8tWsPGP`4Ce0HvG zRMoEmgG>xs;AR0-I4+)093^dC`wJyr^p{a=;V*m!uI^8f8xQ3PZv5Tgajr7g<0tMR zui6IU55QC}`98PXyg9Z@wGX6r-fy~v@VjRv z@*MyTww-#gdVE~#LRD`KdMWqP<>4=Y8q2J5J7_);oY4PsIriz^u+o9Kd?#1t=}6_6 zlJ*L!-CQ)a{p6cW`0)Ex!R}M(>fCLPlr!lw$zTVxF!|F;>|Wvx4^p>C_#m6afFMnD z8U=`Zevwn?FVw-6ViQ_Cjejq+aP=>Sg{^F-Qx#UES?DBb$ta2ZGbs}qt0{vn`0ljH zY|)hN`zLW+aMI6ZL(%6P81?h!dV{ZT-#!lo+IRH%FEv|E@h(*{n&OTbIp1^2>{KFx zLVdW6Q@n3I7PL=dCt|wJZBjA*;nN0^T)X)LveP*I!#<=ZVJ?4w7JR_+sc=-$l{il{ z6$*S6pSvH?UQjf>%ru&#-)lK0w(|x_iui<|kD08HwbuA|rau(XTy(OjabTrx84nC# za_CdF)YFj^NeTIL(fD9OaG425-4u9etQ}r-zc}p>I{DMNo%tNIr}0&7-#2_;c6ly7 z@B4-3X`V9c(+2BHR}ypHmN!*rpXC!7eO4x?b zN(y}$W0UyP4x9T#s8@GcP=4_H2k+yL&E3el;q!)GdC#wF-16OAiI0=@ZRo}6H+j}> z68nQn>66%Eu#1`VW4P2?zm3?4S1w<=m$w*#Uvxf69V;*JogmM#wpebeCZhA~NUb*a^i zj{Wi?=y5MUW7N5-7Gm!FG6|NH6S;55gRZmDr3g=Zj@Igzmt@~E?P()@r)L3bA-Jge zWr4X#t*ejxUc}9>P&B$J5A^o3EB3ws?Df8@=rWeMp570}PXc(s$wGaaL_b+{ ztEHYHTKbrZR{vVcSRN_>s|G`f^(Fv~KO~SY`Zfb>Vu9$TnMRc>q~)fJ7@{m9zJ`zD z8VW+8*DF%4x#vv{FaFv(S>mgTg;iW=sB;hO*m?V;&>{3CRBd)2Hjc`0&^cE%RKA>R zFd$qh4xUm%^ZDh`*kNwVaZQ%mQ~Y}Fjh+Fgt@$>3Dd~n~3oCzo*rNH(hnA&O|7E~X zCjE|$N_Dq4KgpFuShro>|9<+B>`_RIjCrEHy@~0c#!fzFHmsr_UJjviFr$sIwg+q! zs|VIAmHTcRU9fRRLs<@%4h=F-wY*PZwX}ele~02jDw?9b0#Q>DPg7B|wgp5oZ{fd~ zjjo`nFBO8ff@nW|gN5p6%S@jBHR0eo%1N>4#?9Rk!r+UHTbUc*zZ z=<2=-dzWIOcChM_QQ1Gd8LHzsp`@QIk%tuYHot>nWZDE~^Jvsvv}mT+le=KMMj74} zlh*m?%f{Wa4@d&;fHLJ{Ogl|+gY)^A0>bpx>|1q-2qsL%2;5!!Z`Ac0 zvwKTI}^jUWQrG2espN`lMFI0S<6m!myyCwP{-RW(ZomnD3jicxVK zSe1<;?zQZq`1S{zHQw<(Gx*Yk$sH%`Z!71h2A=72X{tj}mi-G_fmgLxAgT-nq>h%#fL`-=224}R}9s<^NT zvjc@SFn?o<*s>B8ra~!B$8LXCu1FS!cBvj5`9&L~ShK-hK*MM8nV9)fu#sga9`ciV ziDcCxQYy*0wc%dvAZH0)vo@@e^h@@dLBWf8m;OjXl_38o4}8a)#CURGgn8<4U< zvY??6+M4TEnAemi>lkm>uJr`@zwFB1dEvAFrnBL{`~NK*nx3W217-jy?LP4yMaNhq zEs%lP#a@Qk?H+(CgyBi90;bw*!D88_($|;*S~ttCXp}Tm1X>jn0=<#d32R=q7rK({}v& zAR7p-b9S#+!AS0D3sh^;IhSm1Js|=x;NEDZ?oVrltus4SHusw%{&WcH4vn#zvtxcA zlua$vhejBPfA%pSzV6fD)muw5!H)F%429hn48IDbiEM$amd%&Ts}QY2x?^7|9}T3x zxUpB{jd_{vsfhNsgnc*yVw!P&UY`rb?!x5f9Yf z_}#oQ$4P+^9QDdfh*?*(99BTD0b2ann{5mVhp8#WnFK8G+Vq6irchcqyn2TkY}dRi z22@I66s98zBF}>uqd>Jh5b7b`dwSNsmzaYT)cB8iKBY^?G#qB7-G)?&#Mci5K~2e9 zR0D>zJk3+^;3bV^;=>rUSh@vj`etI3$nCgdO6Uftdp#CvIY1q0gnb)bFARaZp`U3h zAyU*wdWLj~hUI*^<*Wp~G=2;|T?-#Gzm489OqNKmqzTrVnBnV$jqzd-R@VTB>IIPh zt+xnja`1*Z!HCRFAn6O!BPYu%&j=B3)30@NJ6zHTOuOoLj2MKMSO`1k>p4V*sB@(9M$b z%N(p;-X11Wjm0x_BXfy!9@kYgc^B@jPTQtT!ygqjGf$wl%vNBDC2knDgxjQ|7zp(WzF4r=_R~8+4nUL(+1wVL=8#Q-VkdxxQW;{MZvO zF?7Lk_$63{)#ZVjean{N9{f84zzV{XCGUYo%9H#rFkS$GNh|C$4oH849Dy`P(LI&M z){IGuxY4csHd;Frqn(bDi5gy&JY8_QGGa^%#(2X)85>jXnT`W=`e)!H|?JpV# z%l$hmqKEHWy)b%`fpHhKNt>Re+X*8EK>pq7oo4$pu_?v%W&ZfuM?j(EaX)K-pN&t3{B3!EOi6wOyXGv5PBr) zZ>^d+S3l8wt*_ly_uJul`N0B=L`pDhODzimR`AWW^%_R`*t#nA-oiH8-eAD6&!_O? zvP`C<-S1V$BmtFZ7ufG@X?JPjBaT~!_P2Ig-^SYZtDW$A-a)Cje?YpKi0;+%oLBG; zg)i1*rfV7sL^s>C<%};{T?RdmnNwTsbGlBR7p+s5J;qXfRJRR-MtshrW7|>` zR;^xt-NrMLH^ElpLm(IY5{loO)?HgAoj|8Fy{pF(A`j%CBEO)^r;Cv+f{bFy(a0np ztq;Qn^U=FkQam69?%gXxQB5GWwQmWvE9l07e-$TU6I+;#Dg-)a-R}X8BZi zD!)Bx)*V$5l-=G5a*!K7p5CAn7gNJxDzBA-7{5clx)miJNk(gddeY`RGmXmYBWzaR zCHHyvm(q;$j;f;K`P=>5d(=+7vn1E^O6$gZ7|Ze6;IT&L!{(E%WE=4p)ikk9Q)S&< z?7KhD08ph0B;Hzaa@`@ss1}hhH#*X^pJpX?D^mZs7QZa>^MUv^9A~YgCtPQ_?#RR= zos$m>PwdS5A`pj)yi)3*gC25qOLd?vnm@1N%?xEJ(683+SA!(C+R}gBqNzHq8)!Y& z*AG}4-Py_IHM&y3)12O6=`=1;oelBgv?ieTm=y7 z8_GkfLA?T7c7pn2bMEY^)A36xRH9~N!QMuExK-ZZm-#iAUfT9M_L>a?eGI&+hO_$6 zZ}4*c;E;po^xx0^nV&eFQC{lpVpHE6)q0tcHeJt1oyi@@mK7*%H% zbg%;VF6wr2c($79ERqY{Bzpn6g zr)o!=6{<@05F>izG~%4M=jbn03Vw36ks?9WEHqnQOa##j-Zd3PmCV7Ka-ci1Jj->) z(Jk#0T>VMBsq#HvLWfjk#KVt@gxvyVuA|xt{SApVcz`LK8oWF?~j0U(RGIz;Opajhc37|IwmV%8X-+2S`a_2FR)$ zE{zZY`%6Eu<%Qa*%*SsrJK7_VHe9s?@rY!6haWmmz43*pHqStFzkMn4f`-!wl;w60 z+z@|}O#-~&lYp+&?DMr5CTG+WuQaGGax;Vw^mc*7e z&d^VZxb`{GoOIOb z2p^@{>-hE>Qb)isjKW`jkF<}{VXfVy5sE#1Je?<#+;*RpH|;pLXzh+z?J}m!f{uW6 zRD8?lJ__{Inc^t}oi}T5azF_ae16zM7$qaQrjaLVlhRlkPZ=&IEO$I zFhr|(kht_%fGBpadpi7tutl>Gh%xsZC%g+wM4>6r2^C^-gUv^VOPgso#?>gB&!un&iao@GtmSNqsTU_7zfDs#bVR=;Gmnfq0 z-*`<$)$&<8Mp-v38H8^rMI>4f%YU~rpcjfEj}M6A>OoRv*>CS;N?oJB>Vr&aVVN1^ z>$k~M;i^iDK)?(cP&)&jb|prg;JB91hFJlZo^}ekJ}Bkz=ds%m8#xqVh*94%&1Z1g zCTermt+zdZRv%%A=F)eIHz!Rc*-lU>YHXQP%tTkvl-5IQc}#$@q+(@p7j<_O|0eu{ zJ@enGotB%}N~1jt?nNkwu22(Cq_G!8g<$2xUJ(T>+HGIvAiE*d^&D^WzU}f1%Bs!- z)JFu!;U18#Wl9Zc;?g$5JqiM03NSjNbt$X4*w*cvDYm2B89%urj^31I0r%=E_{z-4 z@p8&T*n9~7%JvU?n@I{{!EQMX=U;$vw9&M=>*`&uTrmGSr8>{C;{fz}Kxz{&2%WSz zJ~>-F5rY|C=(YN4A*6DA{^i(GR{S_N7OZAgaTs%C^tBh_w{YkSkZ4p56f)z&<9W|K z?%w7FUe(N5fOFO`Uvp~8YHiD>4eTel_1j3US(gUW$A6u|fyZv+=`?8K@fP@?IjEYi zzOmBi)rgs|L8WB2Z{kf7GG&5uCpF-Rc9$%{BGox7lFiuNay!UMb_XCmcY}C($ekdn zs26?RU{m|}K~hvKCvAIUb4-@*rn%}+AIrVv+fLa0I69lmezZ#1S#KglfH3uy-TLgd z*98G9w1zyl=CMN0h9+_`5}e^SaN0372outQXm^$vrKY^#t;&kvzq%j(-%E3@a}cW=`<|d;R}YoF}z-(6!BwISbDgTyH#wT8P-D` z_kQEv>fJ<}paK;~KSsOK=FpP*fAIF^QB9q1yRfZVYZarYU_nTg$%;T#5M{`=P6!m^ z$Sl+WnZ$@pVal#m8KjT`1u6&;5doQG1_?JNzIER9 zz3W@wI{%zMTrQ0W$=>_9@B6y1L6ax>I4m zkG*jo>8MLY{DKhGZT}Sl@p+6SJXrbf8l%xWdW_{~>Y)C-{h6bUSCY(5^c}&i5`o?4 zJhCyQe7pl>?NpN%&15$<%9+a*1d(U9W8(IYX{WIAnF};ra4BF-Mrqk7n z6Xd%y^+LG<6Zixg0$s${&o;LJ@7_1{B?i0}qpSb{RdHk^B;G$TXl5c#;J$v{pfFNw z8%#=yPs1|pxxlj6_Xe;YHxp5%T(I}G8#xfo1owTv!{H{J?C|Hm8Bg1+d+YOi@Stv-HnqjdO`~(1?ks~6oXzOe)z%n#Ngf0 znAx8_G*ibt8TQrKgOWj1=wQ(lKHVB=dH3HFM694 zy>;0M@&0W7P*I}9c{M%vyDNjSs*eOuu(AS_PTeYw(}|TOj@@DfNt@BOgat&*wB{`0!}T%V}vmdo&bD?K0z}&hiK(* zLlqQ;Aanc=({|KLlZkDN0L_Mm)S@RM6Mo;)QFOsE>JFyY!1b=pZjq#K-Hv+1@=AsVbX0pcxpMSsfcYd9c5!L zxUxj$wxQS#YD#6y&jxjmTI%9bQgU$m>C=D??v<)Rir5j2>2(|WXmr^9SlGVZxgFGa z8y(zqfXlXbB-rP+KS94=aGTS#s($Q`LKX^$EaZVI-+(hhi--b(PFq?}Mu_LC+3pxD zR&)ifJ0-t(6oLE5GlNf&!-J3Z#U|tddfY}?Lx&YD*HeZb8UD+X`05wwK3 zhZUx#VRM}}*NVU?cXdN&Fj`f^a(~f}m|vB>#2U5fqSL_48|ROlDvP~=71|}3>VbB( z)D!8hvy+#JJCDGe!S0^Wx7)3fPjWUq5Rc&(2qV0!PD=()w+R}t5;wxq5Fx(;&!K@^ zl88gc*G?;>mat6)bz#`()#=I7UCO^hsp1mv>kQCQqtSxMjQCgh2k*3SS!%g7$OH1F(;*i$?yd_Se;?v zuw)CJ$LzrHVa?iga<;NljEdkJDWkJVj0`5wDq@20guX{7aNx#R80V12Od z7xg7YcZ~_saECuu5U`2aw)7Rt_*zA-J9wgB!UmqixA0aQ4Rz&R$@^X~HewZP zJ6NR;F9Xh4SZrR@ck=E3M5KBmBYEgY(9lWNv5Vf)hE*f=XFY%gc4=!tT_h!+rLZ?M zMR&<37%e|626lrXlzr`P9x&<(y~g4nONlup|G{S*AMhiF8)it#kIfO#macR~8i@9{ zr`d)o%od({4Ri_DlP~y1kQSUDkwy?YT9N36=r{O>TGOTbfjL|j4*ZS#J;EH%m+y2| zSwe6~SJ>{)r7pZENAb}ULosnrr#A>|PAVeas_tnA9-YqRIF;;%Ax1^b$$obIr&<-D zh7^|BBbC7SSoawzc$OQj57c!6Q66!)=n`r-=8b*xN(N`_RQNVem28%lH8t?pz1^O? znC$gMPmqd&^y3Xlh}%%SvbIzgw}1rO?WsIQr#%NggyQn|;-ttMa!zrz?S9thVc$Il2$%kg+ODJu50|oDgqUI1(8Q6hvdIQ&53oKMjfD16|PQ zAnD-V6kEYmuXj!eXss`ot1>{%#Q+pu%J)M)RDm*Y4TCv1LU-WCXi}H_;l=;`m$k4D zAOg{IsQ_VUCI%ejpPo|w^Z)UBjeepg6E=h2*BROtlc|4y=RM*KiKaoBB@7YgOF$!Tdkp7!b^U6|E=wGev18f zjoy5ODz*eDtqwct(3Y%xIi(|H~!k|~O ziV4!LQ>sx|-39pXjRPOh1I>9Is(e+>bGOctS>h^p?M~TIF;!hw zFH&Lb&97R^@`>A@2fF^DInj2#@{}&!|tIMz1_U)RHp?oCc*m&cs4*3TlSjS1DqtM6#JK|w@xBtsY#L4eX>1^bfedXu7|h-j^@`_lFeFI z-Zkil;Nv*+e;Q5HuU>>NTCpuJ>Jg{hr+0tWREjG8zHqcCf%y4Y%cjy>3peo zM+i7o4$PJHFYL{PtiIO^MO2Y6u$Sd~1D^4i){D%Q6L4`&0|-}943?lDo0#WVEf4P%tO8s0h`dYH1rR{Mt4hO}2PUpmd`uaWw zDxR2#?TDWTCrSJ83%r?Y^RQUPqxN$9;F&)_I<%~;0`#~2gxe5f1-!sy;DRSk)q;4eB_wK6fI-W` z%?>LZI3Gtu4WzqtP^MYHxDZg_he}D2xkA2j_UjdOaDFsA! zL`{Is&&!d%X$ESlSFUDu*U_B&%(-ISy7Ax53CWrWyzH@iL09<}r^rQR!4)!G3Pu(M4XOPRrBL zN3{{&!TAqD$fOLH0SoN5Suan_E|3{^zn@11|CJ!4tou6&f>u~Q34y2nnUTiOo3uc3 zR*DVeqsYM>zS;tA-Xj?$M!$(=2&^%u9x#kWccGqCn+$l+p8IP7-DeSPgX+ldR%@mf zYyhyWGuEjp)M0|ekJiWVtax)?j!l&?f*y+y80)wSpC16MXHC~z7)b*@7lqy$rh zuJ~K}JoZD1({+gin};<4A$hq#8Y#Q~(!-9+u+x16jVsJk%e*ZWCQ|n@&p@Jtc+92~ z11@73n9^IpClE|i`v?bO*>Rj{he~u?^Mty+VPBoSK9=>mS>BI)&1^faW0+s&Ay13! zv)5Kh&T>KG6Afibk_6%oN2>&80{$!Hrt^@(A{pbPG3zTQ^om}PB%fmH?yXK|%uMM@ zN3Aw8Ykz!K_`SfWhEBDo>GKN4&A;HcmgTDFmeGKsxd79xJ`>+*WF0z_y*a|F2IQ2E z@W*a|{qw85{9^pViftwVt=Ma=k}qidcEnt^Z0(QfF0os3TsnQ4`mkU6CnAEGs)@V6 z?Eye%Nbgc?UhJwk<3qaQBpVmUO@^xZ+_RK$75LzNQl-D7X3Xpdbl$ic$s|X5p$PpUk8+cNpG27_|i;gu-&Ri*=vqD=Dt94 z+Ff07gZ|xx^r@sMUIro-iM+6`n2zr=r>*hk<`u5OK&JR@?evQAQ zsw}$)|MgkSD%Fq@cSfR>7EoK|%4T~Y-RoXG0E1c3?iq|VI790~ z9qDzWf)Q%hh{$AX`^CzI6ZQ`c!_a;KY1Z`pHT>z4n93uyT#IRQ4%t4yI*Dk^6=6Ue zd0BM#38sC6sM1ug_JLx_zM2f+FkRc;J;M0=9|AL@wU(7kF;N0PZkp}cs<11)-+KLE zKlh2Gko1y^}+_XDqmL`c87@v(slqjo)y8L6& zu61+yB|5Y$w}>pX&=~+P%d^X1YN~@eu(~p%R^bd)4Y*~?(%avVIwf6ar7v?emEbb? z14${a4c4`oP=`<>vy=_Oyz*D>u5wG4G`HK)P4Hu`FA0_vEBbx>*y6-1@6=^FkNwO;OESQ4???X;967$OLapo34R z=X?6BAEr?@uM*#U5e-r+Zbb#H*am)yhDQrn)51A*c+wgcS}YOyEkeE1vMk}I$z|Sy zV1w~(-haDslhb)3mm$j7Z?ku53G}+hR znnsnJ%6{dpuO_KnWQ1p)^jSmFFtU zg2W>{dKdT9k`>J9vnAY$rgdsT{0t6p8y&2=zabWMmH5MBxI&{xx0Q!uE!riWP&x=E z`d#ipP4d~O@R1F-YevPju=u7|9UW_jNe)SGhmh|n+3eYMqz`Gh`sZ>7W=DO?2a&{O zF_-qondYG4xlyO4H;T{|joeqAxFULRbHv}DDoZcU!PT@!b+9H7%Zvr&?fsM=U0Lt> zW#vq%NlWs8qK0R$4w^_{0E**GC)-?^#KtvfQ6GfbhfQ4bP1M@OA7wqeKc?<9Wz=oh zfvm68eIOwUzbSZ$2k3{cP&c0Ktrhr2B+8^?`{sE(MS3BNKOd)d1nH&@sa_ofq019|-0~G>AayrEZ+6AE9lHyEQx-Mc zrn@$mU)WbU8QwVH{;j$j_|zLCA(&fvnykvQ(TS|U_bu65tnXKPgX1jp?1IPqMMsLI zefdZ691hfBre)L~ z8}ZhKpxalA{?2`j;o&wLey=MyjPlm{Ws2SABPxD#38`N5F~mBeda#V$sv^x3OZ_!0 z`6$Mcl4&9tCXXr27FD$b<2Y@|#O4xM)9%1F%I*gt-hl8L*Z~I#Q0{m~iHQ(sJZMuR z{u1ZRyWmKon}=She8Hm2b$+GJ%|qhiCxgh2mW|ZO-2c~v=+X@>o}Uaq`US_^b;*BACbNM?4XG3|z)OnIOkKL;X#i%wyI@B-;41Ob)lg+s#bx zD1C#AOj};ex}@Df2K%QL%9T!<69F@n^+<0fqOKy@cyLIGUV4pr!{GW?UfbDCqnkg@ z`sGiL_5uMM=G=$^;T6MV4~0(5b|Dn^)hCKE-sqRdqF*A}H~mxLp%F)=hmZS`U<>}_ zJFlNqe<&e#E6aK;X<`H0X*j74`Zm%@l2oiA%sbobpd5<;AZWD(<{ufP@WP*DOPY)Q zpb^5}#rQ;%ATO0Uykn-@KR7Iax-@D4MFu|Tg(hF1w}dr@Hp^@*Is0OcMTBPFlcjOa z1Q)qEbl2Rjxl;k15OSGy5kRN_?UuQ;B6~ry`((?8OL3rg8xG~wMmOF0;bzK^1!7Vz za`quTTK<+g`Ilz4i^P^Lsgzu^1o}gDfb9BB-X-lF6bQ?9sFMb>MA0ODY2Bi zON=#kl;&r=F4YDF@aHEhC{4cgB+FN5%7g0x=jAO0Xn$)jy(<=IX7Fg{p2`nkD|(p^ z1w!j)G3&s6k_7QLHQK~R?~F_JU*{mz4UFZ_HOr1D2SqM?^kON^os?|z{UQHtc2GyT zC3bQ8kNjGO(7g+HAjF)8Tda-dl%s$1{@S7oH;Qv!TpoN{ue(m>jzhO$ZU$9x2QW7Q zp{v62xNa*O8YBHf*e$%u%Qehk2MV^#NWE`Tgvlv?iTosKaibrGH>rjc-Clqx4-E9; zl7(o_qlS2;O9<|TKS}NSka?=VQRh0qWf2O|3XedZ2X@^!C|DFd*(J^fSyvc4e84o{ zdo$iQLSk6DqhH{r2fukWM!{vaM6;!BEgr{(=yz)S=_d!A%Bih6CP&t7v!!*b^OuzW zK=`ho^Z68QRgoCAW<-|mCB!D!oG$hB!)*Rkch$vdDTCkNlcWlTELUi^|Y$4V;Uxw1dd)Bb)PLCzHJ)FMI{in4&SLYOWvrPSllHc#uK*xuCLH0 z2#32wdfr*QF>fbiz)P3hBs7};Csc)DhxRM4-CR=TP2`%~@Nfny>Df=;OcSX%RJ_+$ zLa&Awm|V8Wy{@0blU#>GgMO?qR~@+k24>!0@XlzXx0Q)jF7M3Z320&7!>nyHR_$p2 zdV9`@>BJZzK!!#%#=UFI-U|L;en)nh)QP@29A-V?wbXU7Ka>+(G`H>Q9b^48z>lYM zDqq3ZqQjvo=3Ci8uC*UY`i__O;80dFd-%VCEM z!V-NSA`k|>T7hVr@Kiq%n!%Kj5R-b+WG>|KJNB?@+fHtJXcx#$eh{-?)*Yt!5r63& z^sUlmciJy)%R98l$f`J(If_jPWOOxIj_$uF~*ZpLZuxQ`X4p_G{$OqsRuHVCAEoGGu zPPXw8ZdKZ3gMOE^!zS=ZZl!-icKIXFGs89FShJg@O;>K*Xv&fWG9Z6wovh%v>UkaW zp_leGbR1%X^@l_D!yk|3!(z#p(u0%o8+4q2#=je5o81>f+ucSzT}Ni?OCr?j#L))H z-n^?_SJj;R#fn%xY|ZOBVpo0bqdke+WjkF02D1m=@2l7XZ<5VAKGCs>2-32yA3)x@ ze5OhzMA<1Nn3PUVH6Y)DW{yskOk4~to_6^S#bt5?59;s)0DfI+94bJ;E*K`JFue>_a)h;c_`ED^Z}r4 z33Oc*_}@Rgv)ARF<;E&@>d7YnYH1PTn0|GLugtY{Q~*XNV9Xe)M8|cEo&>(6=?~{! zeSwC1NPvktQPvFa_6!)-#m0eQ&C$1$0yP4huF7|Dp^tZzCvn#W%f^0MY(->&53D?9((;{=A>7w@;fA6~I729wgz;z;hrquX4w28rx<3bdT zP>Mh1)N@X|mSIjL_p_UdvWz*sgb6)U))I1l7+1iABPD0ii09mKeXv|JIZ)2+5B-cV zG4yOdWa_Tuo^5T~FR1{DzWupU$Fp%zee~F#nv|o{a4L189Hk~hT^givMzPgDD=*nE zo&UzRgMGK}Z0ahcNybV3)D(LTh(ukoyTVtVm-gAI)sfTSZ{Bk%pU0_h#ayp24MW{s1P9Sx zg6yl7NIm72)s;p^aArAJ2U z<8C0yTsf&71eU&8efl(+TP?bE^i&6*pW8}nJ%P$a09wA4c} zg}-0fjL`*tqb*Gh$^WhyvN9Sk$JR`A=qhsFb3zp*Xz42~AGKjD5~ph7-3Dmbwju8X zo1a;ghox4J+DQNl3|da@v)i4e-dVkbh2TY4#}4FyyE0-@JJG6x#bTgLKRrd0pf=6E zNiUj!Yv#+lqKVt)mh2>`uV{e86VgLX2j)I6eS0*b2>GS7C4cGR0?W=l_tR`RXn|gR%f1f(9#3VkEmO$mn{^>(3s51d4X79TKZfOm|Rj)fJCkwSo)Z zj~xL@fU}?G%z>$u8(h*WR@t>vmj&nrs-WO9Ukt0uiq4DbT29z%I%4H_Un`c(6u%f> zWOi)y!2wk`PL=ZwJyRPmaWTSi9ElSJ<1ieNrL!gqC^(e{&+VyBef(zt$;<3l3RVWY zh+Ez5cmxrEpste_n3pqGI5&IWgIY6HXCKTPXWYh`n!~AZ z?m3wlG$_mu(w1TclO<3U@ZG$voFmn^8!08}TqF#*F|b>_AYgcB-R4}aoU>@pyWI>6 zvfGA0AOX%qd9ut)RxmBkCvua-W&g}Ttm}Ahr*vP*!|aSSz#H5!Ql z=x&yz5~=TDa_x$_vIrK88uu9gazsdrB8gTBNqYh26sj7n(v3G8)sN0e;Ml=gUC(VZ z4+3Mg;3DalwI{GiSs;pRq*4se@54-w-sUj3Bi`X9;8VF~@)0=e4q%1@m0q4XbI@hs znT(*RLS7ZlW;?tNR#@DN$kNqJ;UM~!TFDQnjOb0V5)l8caI8kC8T}H1lNtVVZe8ZA}RDocN!^vDOwl;ybBwT5|0t)jJr z*EYU)mlP13am!up8Q)5cW+_o`U`bl!{0?yRrhvxe%|8i5U zA8&w~XTwE@*Kh`OT_py-osxtKORyeosVpT~FB9QBU(y_@8jhn@33P0(ahi@8ji?uMah^{w7PYY}FSseIF|tYZ1Oeyprv^|=h%VPy^z}1&TlzTtq0vYA z2QEnE2UiVBLKHvyA-xWJ9Db6rwo1QSaw`PIdbCdMt)pvH$5eRR)1H|7ul!fAiGW&F z;x^{pDwSYGg^}Jwj5hufqE25wzo>fZC#`JKBdW5+P8gPfT(`_KHjl@iU>xP9ndKQF z9OtmR!b(Z>ov5Z;K?z;2L~rjo^o>wny~AWpsy3Y>E6(KZCAii5?ldbI9Gx z29yso5BHqg{b%BobNe~6e73VwJ_|tY?HJ8D^fvu|rjw9Y2i*Ir^$H9@H8zpLQDnNS z>Z#Jjr})f_F#TObNMRY+p(eEe_z|?g9o}an6Q_o3ra>AnbuKxQ#J5??&#zJ@t zv~gNyfc!3hK3W8V!X(- z$=G=F7RV`UIvQuO#}MTOt6_^p z?aAHV8*nzhVV07sgF_9Ko`G8(uie@k=voMB9C%v8-*{^)_x3BpN@#Eh8?}9=B2|t# zmsE-M(Nv7-{n}i-HoBE@us+k-yh&nO`dGH{;^$f8fn{p53Sc))HzO(>+LZU$JgQwl^%Ei`UHxiY#WnO`%J2 z-6bB)DR7JalK`Q&uJUVPp`={6AH8u->m2F1^3?D813n-(uGYV=%2j1Imh(+vraK0{1cuDbijzTs=zFQAi*8qfG;h>OYcPUow%XyhcTlTHg zAW>`4XooLAQK}Q`|HnUE*#cfj9omFYz|rTJxRdaG)DCc{{SU_R|39#I5!n&D707ic zey@SG@>ihLd+5YOcwe{sPlQCSxbn zVD^=UHu{$F7^}se%CH-+=n|S^6ZAz+Up<0B}Z#QIYt2OShE}Iua&n$JjM)qzR&LNV}-|!(wMfHOT(?+iv!t$ zHnRflom&H^^I{ZmOFiYFEMIXcCTwv9Pwa3vyKiIiLbl;l+QmO* z1s9I2l#91n3iQuPlbfk=4HR7&ub&;yj|WHfE?1hq#+&K4wbaMoW0V2XKf>#79-jMN z|12d!#h`Q2fUOU$1;P`RVWKR4Dm$>Nn4qIHd!6U#hS@V0Sm^D9W+L=cBGW4#vIw&- zH$cnb|5zNOCnUuo+hZ)M7r6v|tBBE2+zzkU^k1rKu&J8itT$MR-`d##<2I@fJZgq$ zO5>K_hZ#p3qjt(}DHN8j@xL^BBpGGB>Rfj}<;!Rd)elSbGFv1jD~~O5SmF15*ysfJ zarIe9cqHpXRaH&Wl)r(`uT0Cuq31s>n|%%+VspIvYvDw~Auv4Lw>cRR99AlG9%38C zMda`@Ze)A{&O`Hcu_%_=CII#>)@QN!8qE3ZGfx6C!#@$_zUrnLM-YC19p+gOe!+nE)zQ0a>JT+9&VAIpSV2}@Z z*(t8{vd+n5?KXzCaA3~oIpa$fCbT~5Tr)e4?+Ana zQTT6|3S^*K#a!{B(v8xnWba&RGqQXYyxDH%?|DWbfVNNx)sq)_xfPTmVa}EM-$79b zS6O*8EORx!l~WlN1!q+?2nL_Tq9tGq{HZ7#W3%6s7SW;EPw7!}VPWgZB(mT3h{Z~2 z@s>-1wb6G>_3K3((V%55=DJ`Ec-I6P^-&?JANps>k*^o zw96EvCu8JAG9jor4SE8iSdcBMmlT5-BULsbsl5ETo+R96uw#=g4!=OEn-y#R#brQF5XrMka!VoD0INw}M0sf=*WZk?g_XJH$Q{G);{);Y-qV^07#58c>%fJ-JXiN{>i5ijlt<%LWL@Go!lX2$4} zqo$+DNog;QDsvfXgf;wUfKv~lAu_o1Hk@I~1yqmJpYy#$G}4{4v!T(}IZ^~|3Z)|} z1=vMW!m`|kkGovo7b>7~N8$3)%&4jPsF?6@=9fi1C18EFIqRkKtL+a1RwQEe>02=X z;x4sCq>hh_$)%ucHnUX6MU9h%>l&ahLrn4rz}jbXDJ03?K#Wz+VX9U>A@si5Z@Ena z6&SiT7>MtkUmtC2%H|!F*tut}K$6=zhD2^uTRJUMdMGyMR6`R`+u*uNOy-q#<%r@+ zqr#w4SsjO>9@j7f{u|FdZ^ui)47K^7Qtas&sQW|Ou}T3{4FYLTDx(7&ZBY)36SUE5 zMEV=RH6~dPc{LS#%thomb{dV=$8_qfx$VaAL$n)4Ueb8yz%;E4JIAJ<7oKj%nWrjA zVNgmk`Xv5E3T`>|Io##Yq$)YkfWFnsSE^1USZkTyv#*(Nqcr0<04=_#;t~M>9YfCp z9_~Xn7jQbcB&9K{e_l(SQs$I?2O@$-8GSM5YNWLdK+Hd5e>PmE4Nbv++ zdmv!~#83ra(Je5D{C7@NlYMY!AbtGca#CcN*?1A%S}Aaiii;0BkU9eH1)>tG+{w>|TWgOX zp?$z^Sek}aWj3p!{t0)6?lHR%zQ4`e9b51|8G(vv`il2kn7>adzh|!!Bj1VXD5X*6 zSeI&i)y`2fOFH-YfYMC$9>KCI;C9khbJbop`>l5LnCc9ZyYy>)5J@_SZ~S943>A$^ zKS6q@<^7OdpLXJx*XL3nQTBOx7?4OlCC`6J z|M@=H}wlh9luo4B$-Z?Mm&M0=F6Y`!*&f zZ@ctZ59++opzx18?1-`fJ6RT;L`yr1(28j2TqWV^?EtOZ;RJnAnT@7?R;4sgz;$9u z2k+qFR>n^)4a^ezBEJ&lMt@zYD$w+#R|u(petFYaG7+8nbqsiLMk`S44S$$|O}bWO zc>jd8vQjF!Q~69!77-Y-I}zk|S%Nk%TKYI~#l(dy)12(~01o8wj&h!&#$FFMaqjNl zC+^x1up4KV+{VV|wBjYT(yftWdh)&C=dU$UM*6?-R~(q<5M`Q*#0xSU3uys;IzG}w zNvn+&>XSqt3doDmGDqnsZKNEaBw_~Oe|O*XLoa3qMD)(bFF*{C1N91!?m(cl;${v; z5eYL&Gr`aOriBbV7iVBFh~^CghzPOv&{)w{ zjzIb@Bm$h)j~2>0?Ag8d$xAanq;Aj%z?QO0y}N3b>v6Nno9K(@S7UIs2(5 zZD9VA4xkE(2@xn~kCJHz?}cZlIo<*Q%cD~LOW`H&V<_iV>Jf7x09Btzy1`cRd? z#z-SQI2cyrW(W1fj+E>x0gH_{82~wGpq!mc2chJl_pI!9<18msQ`^_Z z%dWi&7&YR<1>>_9I?G-#bQ)F54`Iv%GcuFH?6c@nBaC-ni_{r~HRxp0qLy5b6_>Yy z`XS&;0Uv~f4b8Bj6mnW1Uw(pV$&%L=` zH11S&6+RWv%&Oew?`6`!yb)|DRt)vO>vbSWJ}L)`lgEc2%z~4wefm6B0Itf)&gj;o zm3hlaH01LDG}pYEF~?#R!OlTU5e!!e4<%T zMyIN}%&rVxAF`wsed7i4DXL0`nd2HR-J~CO9b|)nFEg#?ZV5RdIv*V{EwI>-S;`1R z8TiodB0hoNelN;h-!i@MrJ*tBqkK-6d3mWK+_^nkU-6gLiCd4}6_b2{2kHZPhDi(Q z37UQdp#fHC^_F`R@16;@XzAx+nf*MtpB@YqNvu^Xyyb5h(6$jofVkQQ+Oe~q=@`5# z;a$*uJ;Wq9(222j!5f}{N;8(KJb91rNDu@JQm{F*2SbN zg2#a?8mbi_d}5$VKN!fD9Rb>SY+n(Qs^|KP$~H;mdBwm^bEWZ>gYw}@f$@n&B!|_w zu%~aHUFFzZM9wtvr?!E~I{k(zO?B;ar8^X>(F8;DiXkN&tP}6UKrO*ky7&Jx;W&7 zVIt~$-wOj32l$k}W*tMa=!P7y4=Y4$qgL;obBHnUEjqw2NE>dApoG@~_qQucn)3wj zE|nmglJ>k>hn^6M9Z9E2tmwZj81|cxbB);*rR->uI75EG(0}tqSYpA9@lfT0x0*<* zg%ZQ!Q;ypFSgy2bTx_L^F!%*8XCJwhw6dtU{1hQdX`*_9(Z@&HXtNwi574O4=3I4& z{(w!iVHdH^t(_Tl6eE2)=Y2M2i_D4by)NdSjL*J$anw52tRt$huqWO8UTMvX@Uidz zhEd&K%cs{6e#O%zKglX9LAIa6AZ3@Imz5A$g-&z_a#VrsCiT`XxCws4#1hD!UK;KN z5HI`>T??UiTjMq|hW=MJFVe~JyPaq=WjT`j!#o^g?XYjKhSB~UM%o@k!#%U-gU*qjO@V&o zgda}DnIr7ViD#%h$d|cJ#$nmD5qAW*jKEwx?; zR%b9(j_OoHFhPQr>Z1=0J;xkVrILL(Dql_nUynWE(k6+je7tkMJjviF@yU~9xB+Qedfj{PJvgV}O7Nu2hmcwFCqHn%`mq?ZUZen{h97!b) z_MYF+I!c;{*vY;fOieO;O%l77eF=NX?>04v%lEXK+8_IVZhmFoPWmIVk>Wti$v%j6RaJy-AS$%kDf#SZy0}Ar zz(-`$1Sz!U5M2U2&jNJs^T$Ao7AMUNpJBJSS>*fPHoek|^d3moq$5MKD;&MPKZp*W zVx~J16$kJw zamS!ZFOT8gmAKrX(iy3SW~Ol5eO#~Yz@b>0v!d$)$mB_hFKWG3QP7cyY_T$yg)y!3CD_PBE~B7PFD(@4D5p0^bN8* zJ&r+^h>?2|Fh$!1gkaXzNu;zfuy9Z0mgtighvT@SI^%@tmQy2Knuwg??bxey;rMYJ zbKrTMZA<|Tsc%*@W-;THmb>9wL^?@UX(|y+$cA3ue>!)ZEmqyQD$Jm*Q0H?u$RNtx z)thg4j{wU^I=pQZq!22WoZsd9?#v+nNhX1DhYrba4YtmJmQgIL+h}H(GVR;~H(M}! za)8uVeC@2z*WEY7m+fdgfw9gxW<$4L7`6qf;VYu`wHQy(Cr8dsQHa3??fz48954c( z&C8F>$KMfk4lSchZ_1T_b9~{xW;pC5XF%l34^;g5iI(0bjjE%K;`BxO*k;i0t&O~y zGR5bn&ebk@H9eb?EID1n8Fd2Bd8Y3ZIoPFxa;P;s`jGVNph<1FHR7fpEPy4Y$9Ovl z-<}%!{w8L;LId8?H+oFhRauM8WjIW8g|tT|FVeK3!xvlPxqd-FTV9g5WpW#Uuzc-AeB~C|3Fe|3M0m-aowv7Aq?>#I3A z@uj{QgVPfXo6qUIei6mh(gK#$&k6iJib{i!C|Wz}8@$IfdC(*+LeU9~5_l`|Z7K*7 zVuW!85eRJ*<3MX1u=#OPAYbn<85SrndBzAl`=9pweOzD$`R($No9k?mUR*^&G!y1TTAILwSDqc# zs}(wROmU%EXeuj9H7l}3V>8D*(=^k&mI$zPj{lQQdYfXpmD9vZkfK}_Iz@>DnyL^t zt;$t?$-@e+#NMFgVUY2q+vW;+Cvf}nuO8tPHu}3W8)sCoK8V4;Vyf3FaeF~*E z7`;zp*c-jiDV;vJ^$){XjCxqWnV)RezD0fj6!0#`2I^TLESJw9-C-IlQH};7h<2}- z8HZ>lTO?mR`a}G*Z@Pln;Ynx`o@~eb*qAoEv};N8@#n(^xa#F3<64JAE~$8|}J335^m>mVYEuQ5d>G3^C7b=c{8jmOeLv zB~QqmAi=^Z!cetLM2`w6u&F&0jL)K;RmYLXKibSGhXtKRD|FN3o8u)%|@>LKZ-1CA4PSoQB31@AYjq;5zWtDW8c`>z`K#Nj3M=edFaR%EzK)Gwary`j^4o!0Ddmt-C^~Zbq8o62OB9WKkqjxe zPetl6md>xc7xT;FKKZdxaysCD5%(TYO>f`2Xsn=sbWj9>(v%hz5NU~01VjWuq=O<#7wIh! zl@3A#1Ox=6gEWyQHPVbolP)#VJA@VjDZZ8cKj(~d?zrcT``*28Jom^(8Tpm9)-2!r z=3H|LCSJD`_$A8Z>`JN4M{&rxiCGAuzL3R15n-1LoWtkSzTVeb?T$y<5qv{RKbq8C zrptVPs9#Jopq%sprVF%$_e<3KY zTIe{8fEz$Po2#U4EUYe?9p4YnZ5-1gm|Z$ozIbm5LtOXZL9LVU67~dZ(DoIcnACK~ zclAWtRIjv4cg?<)x2HGCenzQjHi~pDDY-#t|Q7A0N&l_`lW zYai6KIyM|BI^FotLTrUPa6dw7a>fug|BX1gk7?8(qziU#Ft4pxKJ6vyQ^lgF)@&$T zdln)nPz?0t3eMQya&$DN6p%&p$grdt3AxyskOA$lgQ>moKkIicIydRQ4RjuFdI*kr zz&Km6u9|wcQm!*FA7?)2)3m-=T|pg7$1qn>_;`D(QI|q^p)EleC1RFQ340f}F!D<+*b^6)C#odT36CYnt+bJYv{cc{|6WOPj^0Wda=4G7wR> zlP5K!c+}z0oF@UCIXaal=G$l9EV3JmYW!-Hj1;33PP^Ia!vtchK zDvP33T)3C-kD5&e#DEzq?L$~eRc^vB5)JPCTCa-AV71q?PeQH0gc@|koZPoTBW9~H zPGr-pRYCvGjo(x#F%gFO1Z11`46q_46CI22LJ`2FQ&(wEDWY>6~M-QsGl}N9Wq6|G0VMj8m%Z)Hrn=N_)lT^x*CSbHNoX-e8T+8^6+wJJC`;&x_y2J=@tI+J} zBQAw2JZe4jQc|4f&U+bR>aDbwa8((tP&Tq|{5L;T#Cra4;;?wI2Wq0XvHHLcx6|Jk z9_JppyS*X!ecq?QddY3)HmOAR7wUelZtcMcC7I+4pcN&FLaqXpIfx2`3*rD&2>@M9 z#7tXd)fY@!Vh+auCbtL!1P2O#4-Jlr>?vF89mi5pYnaXXGNQph-*Q2*mH^S*AY zf3C9n*Hs#8n1=u1s{7#4KL6>_6wZYhfK1J-C=4LvBEqQj{?JY7og$JnVGFd_Ai+on zj#LiRv%o0?uxd|%`I1DnVAOrHQxL;|R#hP*s6dcj^J7U}hR|p*WD@zSF&I0U)-# z-3Y~0?>HL-%9C0!Iu)@g(mf7KTOXE&qD_q%72a74JRmqOz@AbTe6VX__zDxE9Gj)qf#Y1PfIc%63)nl-Z=Co69!2 zV;_V$cUIwWbNh!lKKQw&a*$@iJRU?00oM8Y(5I~xt~f1G0zAy$3+#32{GCx^Z?_jXwLhv>YN+l+(I7i1 zr*sbmKJen39XrEqe*DQoDB%WwcB=1ybn?z*MhnHi{VG;2LRME2vDh8kXrRDDH z3kdV-&F#_g@8fKZJGyvEOe${#BPw7Yle{yS@ta`z3>5leF(j%5|L@M<=^E3DQPHL| z(|eNq3(f2leXaeuBA)!$d&+lajH-vFWZv^32C+OtK(@@Iv<9UlWOSJ)Rz~i_yFsH1 zxrbI{NnM@}C^^dOA&B#0X6_7(CAXgOO6Mker5tw?8cC|5y7UZ~Yhe}&Wlt%|W|_NS z1|>gc5Yx4|8ZykcM8jnreJ>0)+~*61wljsep}>Nbn(WPyy50cd;oY%~*~O28%d*T|=GxFhK1_1O z#<24D^1==m(KOx{F0@_wT7(F=f4BY(Im(i=APH<==mZuW9!uKX1L&q#QT5QQ$xvuDQo_2e;qXK}T{! z?j8x_O>)&J-w>?SJ+$T1umyBchtNozdCxLA@Y&CG39_6wZ-!8yH7f8S`KIx)ezGMUj%df8W_kb zgm;C;z=kJmqrtVN_ipcp+WFOfE$E>VnvS+NJ3XNsZ}ouMJtW(G(h&t)+`;%#hn_A6 zp5IC@+cw9F#6O{Qh=0Umg4fCH#af?mE9p<_oLnlA8Itz&yaS&!d~=sgb=nu+r39k_ z7F;%)>k5|xp#unCcLKU{cW0%)SJ+8x)vh0`toN>t(JeP4gKl%%zN;2$e%VVIOmhwRfDb68Gpl5j ztb>Lt$3v175@6rg=u@Dnwn9LAdaCHgMehT!RIJg~hNsxof2S-8~nQiyY?Ffuk*phdOnw0P#FpLeppnE#?S!^LFQqYCX-OifT z8<>gTmrF-(?q8@u`*%>gee>-@@|Rt;!4BXXR5cVh(Dr&sw2Cr9Ck9c|F^`!renQ$d zj7F%Ac*3qh%dyj|M!?O;#JMEaD9KF+KwG`z?xsJ>^~=~EL!}3)q$h#eZ>d}t9+PF) zrE2h4m>f#6L*FO9#h#@mWqW(kB8|F_7xMgN>65*FO^e|mgV6JNQ$|@=f4l#@uhak$ z_4=jI0Qu&jbAy)`5Aubu7Js=vtV1RiivgW`3N~eYJv2dw#y#x-;p@m=p{S1{i+|djDDd zS1ZcNocPwm$zC#wnEgZdVD>S8FWIm1n7dxhfD9V8o|K431#Tu0dcuHgxvfX3YoIv!i9k6@B^uV+O_lIuY<>=GX+bskOzs zt|EUjMK=~GoZcW!c9<( zgc&dX_KP~W6_(6bIR;Ol{`5`2uEaTdE6ly^&Rrfpg+Z1bPX#tSWeFw)LscqmmILfD zS!y{0%KK`BLbnlLTnRX4-7+sY{>FG!vV_|W^bBnrRq7VXfXb~G!oY(4$-h!T6=GSks))iOJs0M`Xj zlF-|LteU6F;H|KjBSZtEEhezVg?g^zX`X50L?KR60sza{~($@UWN zPKlC*Mp<6MTl7Z4FE1U+h0YCLN7>qY@wkmm_*x*BKck|E56eNdT}^uiohNf-V*a#k zr01ln-qzEp+`Qb7I!fGzs4+nlOxj`22|H zFt!m#^)uN4N^V$(stp2^!8T}?uDM&6${LVPY_$1)7j&8X5>OWqphK9++!u4PXavUrkruDq===hUXU@Ig&lLm(C_g{DQoEW z?>e8H!5UDz`q!)EKMsnZuA7xr=x$dNa67PWE0;%yeL<@?-TAMQM2Xi>Cy-8yP#<^+^TG9Ir!8R)T^6?fT2$tPn*~`7^7vElrJ=VaY&AlPyGcsqlYaqm3yw+JfO!pA|<%!0=OttIg{(wJzh+gda_P$E}{2c{Xjs zfuvtW_KLkjvW}3S&YoBHa|v^^hjR?VFPb_sOxJ$}Dyv={+MN}*ZQQhS@C7+8zQH&6 zJo~MDZ<;9Hqlt-9YGt8&R6Ah0(WQ0x(8I4ZIlpbocmk`4*eu_H{lxh-MP@|~-uhoS zaOeNS^KgA^+oQV0z**)X2T|_oa^jQm3KUd%yKhK(#UeGqj!enY3%@+I9c#ii1L72B z!B$L^&X(vpGrngWD8vhU$ zy-7mn2R5|!SL2D9TinL@6HV!dRciew&*QB{atlqQsDacrhcLpUn3?fEQ?Vz8=4y7- zWm{ys{z9ZXBFq*X_Dm4|&|dSAmt;QsKg?$|a?H%Nl&&gOxPUgR>vdnw%~EBETeD0e zn=|SQshP|D_Wbl7J4jNfmPQmTPN zq;e5LUQ{jf^nRmAoAy%$jN$n&B4)Xb>QG7h=Z&C}w(2Cs<@?Kl5}y@vzxT2%dmTO~ zn=kwExxK>em)%q34I*v^#)iC!r$&_8fnE_!7y1y@Yjc&gwm$I94V$0QLmRS-e$eIs zg!-0k$llzblw|;&1{E90O^U(5x^Vm5e!>nm$c`Cs>PdWC%4=28#0&?IQ9j!a+rkz7 z+dIA)>%vA`LMb7ek+QmlHN=kv(6q;cHYGMh9MMRGEBPc0fWW_u3 zmrd`w1?1~hzt)}6f>UfeihcDpC<(Uyg(z>@3BwEMKNPm_GxAMXkz4?>`LMla+=+he z-Pm~MB>N{|kI@tKQ;01%v&+#hAtU~Jrpt5zB8oU)tmv=I1_;z-DOrGEFy4YRN9|}p zWsxCij6L^czKR1ikVT0EzlW&{PUv3UL;IU-C?{=aTWT1u*IRIslMmG|MlnFujFcFt zirJdbda$Xa8ApDLod*Uo-BWZ-Hfjk-tBWW}=7`k;BC0^UKm%i59nA-~$wC}kzK%ob z#ciObx2f}5B1uxIq;(^`7&+=(Mj+S^C4~S@n&Dt3P+JH7Y%djbnU}o?{Vu5>Fx$ow z=SregjVr5nM5xRMv!Xu|x<{7|*Vi$dP3>90(Teu$g^32OQ~SVv9t*cc12rl=RjmXv zI0U~aq_4%4k?f72C?G*}LkC!s>>2f@OxfU!(K=JbY#mYDMAe|ry`8(&@oPK}lXy|0 zT~w>XpZS>`1wPu}xq0+8=9kAZdN9r9n836iRXoo9Zn!`3~w$q}@wu8MVm)YJ3cNI9Ku*1+AXxdDG z0cF(=t~PF(1Z7i_#e3H!1h$g&$);)PEYl6a3$#$&_gw$wK#NV*ddh%{Fe z8|Vnv7$^_A_Ao?gKNyu8EupH7Q}^uXK5CTuIBLb{?uKt}U}{}kag)%fz)V1BDa8C`(9i98lKYHVA!@OoRxn+{^hA5h z_!`d~?;)zo)KEN4|C5z;*k)vtm4r^gxkqq%&nG~*QIh9nm~4!D0D z5CRR+ws^E!^)~3V7wd~QNS-RW2AsMO*ADMQL=K>PP?9uW$Z!8caA zQc`AS)(5D*<5e1>Z5kwvLuk;R8Q??7RS^i&L9h)cQ4`l$9Yn&}emV@P?{sb4kg~y% zSt&o2|6JLGU()72%s4WEy%;bTH|?0ZB@8x->!>JZ5Y_kizkXKYxBO%&3K=IqSzkRL3)V@{s`{%b8ABsRoe`3TlCR^zwFeRT&- zT7A_2=I6)`-THmLwhT@4=p;~HQRy&XoNqCsR>-YB+E2{krifLvefFw3ZZ z_VLiA4Huef#6pTE>ldgEP0e*PFFsW!W*yZ)i@fz4OZ z>jn6Ifdu$t$t4Kv=JlOA1Xa=ph?qU?}*zWV1LrcoK;$t!dy6Q{`T*quRF^4+Zu zmS#KV!5NB?UJpfd3xmOH0q6VTj%Yt6>+gwv9~qg=&Ej?8vJWm7o2` zsi%YvmSiq>%xLV$(aOy$=6$I1Tz(#MQ?fQ%Rifqr-dmM~z2;od#)q>DJKeRFmEvkl}{9X*QrenIbhMP){ zXAmqJ1eZ!PyU!>$dTKzGduL5z@7&jz8&INPTrEXq_HKC`LS#w{1a7$y^ZvD6l6W|7 z%}p1v1ro7`6VzW{x94!AO4PwVDWP+8CFA)HtKc?Oha^;@t>`~0F^hvH-{cbd8fhgd z5)V*cDQM!G@su}1DbRM`5k3R%J}_5{iQiu$DZQt9m!izKPG*)YZyj94=8YmIec>8$ zFBN`}jX>x2*~RTS4=_Sh;O9Nv@O_?|2pRtjK;1qYHS49;&5}wiji6z`)e8+ca7$w- zS4vx3spkhIbEdXB6xVRnSdl~dt^;P{A-K$PEIHB3%?h(WOG*e6ZNssxY@@PGu=aHL zVI`Cu=`GgzD3FgLE&}RVoHErW4uv9$-+M79Pf^iP)!BN6{xs#lc8}@@5=j$dLn|pE zjb-5y8pR zpQb#L^$`Sz?-@|CPzut^U1QEd`&dqyWfG$H(%o%eg#Wo64p0xN!w+RcO4ke_dw0h* zG>l?u!CCXfz;W$?%}v=;vf|4hHNb%*-eouO6JA?BFg^T!II>n?ph;&tpyMKG{1YOC zDuEBIA#}^N4!hkV=*IT|`#+4T8=Bkp$2RsnUD{9io?}C81KAA1z216v6!2!l!GXuV z#O1g6Z=r*GC=hVE6=ypY4oCedHMAN zz~;YVM<|;tbJSsen)CcpwJ8!kZ%)B_7Ngj-vh1r}4-gpCKl@m~iDMZ+Wi$xy+;np7 zw(o5PtfpdW)iI&#7v8%;msXN3~pa9*JxlvO7;>stMel2o0x9Jg!+7)2J|hc zGDpOGIaXP-rDp24t2mo5`RS4I0h9pRV%(wRYgT_USORAYI_=6k#7xcYyHT7KXU*XRyoO zAOkih82ST+A$3NULD5S0=MRRb7`FHGaXWH(L#6Rl*7}GiJ0+DwGR+(%2)RyD(r3ob z3BJN@9JuMx$>QbAEl`B|z76$^-!|Y@mH|MDs+yXn_;kRTOF`NJf`qodX&-_j(R6wr zfd0j@Dh-2MA42=oISXD#Uix_S|KR5Yn&RZSH5m}`FHij=drbkH$0u|tD-!a*`#Hc7 za)?Z`%u#jN5LuT~4k?}?!!b#x#2oyqLG{tTW0wqS^vSGL?EKo0(mCMS0%zncn@0a( zpuRw_Ze7nLNs|KxbEc@5@Ll%gE8|!(Ve=~yel4_0*2H10_U*4fT;~OHz%gS93uR%T5Y4zyezbmMPx0>C=JMuH4sgt?I zBs7TnX4kt?ac$|qe7N11FZ=Q$z^-}kqdYnSGo3`0JxF(7v(5V)3?dnEAq!a5SwNR9+Z!zfqx-yloTo5u?L0sN2y&Xp7n;tLu|09 z2UUJHVRc>SUjz(Ll4%XH{|>^v*yq}Du*b)1d(aztgbJTTbu~}Z<49Xr$$(dN(SvSu z@>?jfv@O;O1C)|3#2XZR$lIX_F2pU4SPWT+pEKST@9Q=)c7s-5`->NgwZiv;tRBJ_ z;Dla!koMZ`F-23)ZO)c~L9?K#qn%bZ|2`Q|dr;9tRbH;)_fWtF3xQ@ryp@j7W5A3? zKiA#O;PNrD-4}>?aEC4W%6ut}$$O>i+)*NWn+V(Ji2Hu4bUOoisP}|a3 zVi!mq1Ya+s5#GLT$6jeE&A*V#+v%BjG~wk?@mzH(c-2_gk7a_dT|d|a9ndETn)jkl zY8(x~Nllp^*8DRw1L?Qc9+UGsOtH|QSL zxd@<7nXlvW8M}pw#rJL+2fAsSGKjHz3sY)3PnubPI`DdJkHk*|c0&1Fs&yU6~C(uHl*KtmOjEDgmnA2R-Hww!3Q6|@K! zM}w~|a+9%27b-~U=2dPuf;Vy1nZIpV=>kx^|0L_7Rl1|Pv*{(ii#juC#_#C;%ozFm z;wrs_C&ckQP!k3An9(D~W2P+j2ze`V_kZv%es>G(LGe9DVibYWr23cQ$O3 zo%E!I&4q-kPi*S`cU~D@LuB3>9#f9^Z79JjiZ*DlH~sV>-p1k-_YTvqTjUHoLu0V1VseaVXak^Og6 zPy5*M(~y7txd5qxobYC*hd^i_F7Qil7dIQ2^HUr9$1r>6$F@(e-;jFo+%`h*o(9ut z9@=G0TAFJ5;HM1uNYkGL|Nk8zZUBCqwAR*8gZ!oa_pvcQ9{lFi3r!Pu2;@u~?Qgsx0W?bZXkS3{=GdIqEC0ylM9uxy$~j~v*&J0-Cqaa+iaRq?2Su-GN(@uwBy zL5_W1pJEQPAEa4dh*~vnhbA;DjAgZQU5$TrZZub$<>~SpR*}~nm+TIVuQKWV3ce|n zdUHdWashklvL@S$&BGq0_*8e?PWoc)VtVaj)21+s%4gnCmW%vKK5rjbT2f8Cz4z%J z77byaRrvPquP!di3CDM=c(0G`Mc)-EvMRT3U;6U)z3>;I-Ti%y%N&s^<;F@7$PacQ zAt5D+OP7cZxw-TCUiE2J9PnUKX`5@wL_^Eu-|}mOtB563&%Ama6oeHM7e}NeCqIT6hD#SeEb{jCJ%DRG zE-x>)K=Uh)eU^A#X}bRX^XJcxd6mS)wPmkg=W3Wx`S4hV=R|F7?NcA~>#52H4<77> zEic>0U|+wxlRJUMF8cH07rImZan&rggTuplilw8fVP`0#&bK(!V?#nhPV=e>u$(=A z{=5Oo?&?_`9i5INM~<++*EKX8f|+xv4ai&o)9}?@Pw!V$dU|@*-H7I24prwVWU}Q^ z$jp{cUcPR|?K+`?%F11OuGYmJY-(yMdoov0=EI_=V5E?jZ0zi*i)Om+RIn5~Cyu^i zg|OUW@laK5y`HCjLp4*6V}>DcWw6lQh2vdPlF{1A%#+i!mG)d6MmIn8tS zEQ`Od?>V8)I_}5Ql>G_&#&7TB{zHANc_ae(u zGcz+|M<9GkK6n`Y1%b_p+W1gh^tEf(93}%Zt$+6q4E#L<`3M$MAejD3O^w{ijEPG7 z_(XY!^ijh4I8fDHKZ=z1rpCRG6V0SKuDnGiyf#rusA;F=c)Fcy!bTeb)-}I21C=^O2;(Yl}?>-{3 z>C_*?>yh2lFP>eBwDx^>?J(BZ$!QI9gSUqf0!i(DHhu)M&>7n(K0G>l+1}n>Yi`Sj zUFhMnD`#K77g;Dg7ybR_OQX(Ej?*D92qazEzdF*yH2s{;fY1UzKR^6#Wc$n}1QHq+ z)>`tgh`C~SqGoz}`bBE@0uw}lD+(i+ot1SGVrj^XA8gdl>$9u=GuxdiCl`PD@@1W` z(^HN92;1NxwzZAP`f)}l=dpa_n0Jgu zo_-8Yhx#3_ z2A~+CUj>F1(Pe^LKwIM!_>=-CH(E}ms#`L%xm4| z<%}62AHRJ0G7*C0W>guFaU~PC5Yqx%TU#Z`$;mZ*(iE5Tx3llRjgQ|EUVuQBw&y#; zaD$7{N9QIt=U7=Y=^z|u&)VsUCAb;EOYs~sI_yJ3Lr{f>xKSrUm$fw) zXK-JC{}=noI?uEiBZvKsNh?`dSz%cI6)>{8x;nmV$#>UpJbdur0p?-ReatqZB7yqUQ;J zOiR3GQ)C_a6`3V~f-cU_bBZV2@pW<8B=z*tY5ZRIdZ?@0I~Exkx%LDbW8o$-`XnbW z?>ZbwywYqD$R7~>v|_ZuP;3Y*EG&#QH8W#h*qL^#g$c81~^+RT<83qMYBG>7dJjEudS_}HX7;p()$ZZ zQytnp$HvBT*4Nk1kByJZF)}i$$&*-*zp}Qr_M4rVp`L?6|7rrWua(<>{R74P6NS0o z{bY2W1qKTIIYdkSo?5BOqu2ixLY%k#)MH8qfzUqxQwSmd-$00~;Feeafe`K=Zt;SD z{I5ZXlZXEXA(EZ%8W^3$_O73Yah}!}&h9ttTRM4$^U$&W6F8gl$R-Ot@Knji1s-OhEV zcB6IYh~M8{3gz^Ex_br#i^|JLzk}`hmWhdpu3x`?d1d$g_?$n|(7M03cj^qE!Y*HG z_wW%23j|^TGk;1mMGM4Ie(-V5X;Ey4b3ysEE0D?;e~4a?PC1&d$@s{Zu&@>Osld zv**rj{pjuO#cyq$6KZv@o#56l+zq~+ZDNzodOE}n`9>x4w`Owio!o6@w>iz}*C!aL zBCRm1CbAYVq(6zouSK~|1_lNk@P|TdvR(CRwzjr8*D zqQp6YR+#x${8KM4LPuui1s8v+B&*8Dyu90QNE_odWe)d*1|4K!f`Wp$$w>?CP%B_c z2jb%5f)vtXoMB2*U{Q>#oklYt5ViaPoq&LV*CyH?pxevQtf? zf7vY?3kH@n_GVbcD8WK zlR!S$@pg){b8?#CKYRAK)=ArP7jD2Z=30mD?(Vuc$A!nlG(A4E zIX!(f4%jls)tW0KxdY3;&87BFKp^F#PLp{2=On`j(*9=I_oGVux+OynlLas3%07Jf zAkih1a7WiT0XX~Lzke6q@Sq&-p$ige%l^$<9ZZ_hlP6DH$ksHw@ zt8dj09zJ|{=Gjjm8lS~pu^f$!jqScMI5t)n;&3YZcEykO_NPZ7FB=*g!$d?x%!}^; z+phK~qM)Eagtefs8i4tg0+ z9@~j#qrdQCeXI&y-WJ2B7?@*v6nHo`t#i*l6%^cfWO!6X^Zlkiuv1415`DJkI^1}o zub+V26gMhG+AJT;Auc4}tv;_E-af-ad+bdKu8~K1ok_6GFJh0cB`=9TEcRi9+?3&Q z{!~*lf_6Byb3*>orGof|PLoc@G`hBkm^uDX7HeoYr!0jm6T znt=grocf~cpXHpLb=*3&y0S9!EN*>y*+e*2^CwUSkq-Q=Tes4d50)xwYvudT);cBTUuJS+W7FJ^WmN=gGMo9H+vL-vVP@L-98`( z+S)FT*bs+`jBsV2K8@v%teV8UtT6+MQEX99@Yd!Arp63a=Q?|P7uoHxe%i>$Nc7PQ z;3>xHy*KwOe3^9$gZu1kicKmOp8NS7)=(&v%^o?WQWWH^C+CqZjqT9?-WyL|w&F~_ z41v%-|1)nacjdqF#=GF2#s7HYyW6j9{+GS60EFg^eLk$Gc|YJ7!F}J9V$imYwan2h zczyPG+v&*DJVHlLdvU1gyFQu3qqtB+Y9FN$5v61W&Cpq?Z7bh-Ys zB8mD~WYY#!uv^ctFTd#C^KGq5X}0>H#8q=Qt_<2t}s782?O9&FJ;#2A8zOwffTDk`eR z$KRiBac=IcceSL)4*l^N>2v4KEo^LT*s7_i88^Ht&dxS?G4~^u351lDW$VZMF0zDY zGRAl0Sblx+I5Q!^(A2iw!QY=`cIworiW|IVYQ;&a3D%mLEW67CqE&C-zD+<;5AwYY z4HMX0(<&=HW&ubR1V-_gr>7^*+Y$SDQ;)t)??~$veFujXH95H&yVD{4M|{%11NNa7 z#K@LIgM&h&15a-13LU-r8vq1WW(I~G8Clux87Av%$z85)ZgnXiJ}7a5JGh`jA}2I8 zDLGkL7uP?2{AdV#g!szp>eGnTxw$!q#)bwJqY_ijoXpJoW43f50sATfC)vR=Y)myO zcK7vdos3Xxf%LMEc6CWeU%TdJVrG_VhvJ3$ofKdRdiDMLZLkRU4nR;nw{^1o^XC^N zfLx^Dfn*<~6-N=~q?nuFg*_FZz5~pRjJwM23teCG@ua<0^UuB_(`Z zEG&QWOG+rOQ``f25?Ov;(I< z0b(RUx^dB@sG~fumfjHvUenr1Qr)RazHWEGs+pOM=YZ&}`*Fpn%I8M5TeM|64hW*l zA)%pu0P&QF!C*$hrSWgy+PQjrqk#islDT%x?^x%o(Fsz_>znvvf8TU?-ZM7-%7<5q z2J5+l=2NVWX@2zM8{t6mFC0UJ$?!%#>Prfk&&i9ZLSr5ZX|I3ViI6!3;{#uMFb*C zN=u)^U04_x7;0dql}lvc!>}y`d6thC<>J19N$tfC78*DLQJ63@H5Ce9ePC$V8GuB- z{zpJ^avq%MoPEha;5+eZ>5S8Lv!%nmRRoBNL|)xXvALHbv;6q(-8YW@{`FU!%C7t~ z($gSZbPGGfcW45_`uB3-?QLzQM#aXgDL^VtkBd6dmZIr9%^>aL@$}rBoX)dMHqOrL z%$UDaQXaVV2JwcN{L3&n+wadnQq%iF-})w6$H( zNWXV@c<7>=u2h>>UVi^{wb3m|-I2CmIUpbhg5?HqsELRROT4B~7f{CUX^P%?%!wk& zlvAOPg^+hlmY%VwM#aUkMOy_P%)k8b!JNrOp!4U?Vdtra13d8Om5)grLZ3c;;sDOe z`%S0%k?6CKD~y7Z_1-R#@$mzOz*tN(*%%lM6oUYX699~v&y9d03yn>bvfz<*7%V7` zi8*uHLp8iv+rS{+22i2BKVk)~c1~UmQCWWB=^5=y#7_%7DBh4C2kd6hVqryvy9Dj) z8i9dL8(@*pceJ(T@F%}yWmyjaifaE|LPB9P;quZ41<#*JK0yt>I}3N0@>qh7oe5LD zr>Xf~7MO_ChFgq~KLDl@mJfCoxtSKy?;XnmQaF$y-mB)zCz;^XPl21d+Y1I=$y z2CVV7^KBO|UM$YlPP+Zn#^!x1LH@nwojYGRLC83LzzYmTSXt2XGZ)?ilXn)-vBx8T zkq2*8S9gd7zUi+iZ~>6<#YckD(gSz(^}n3zT?O0{RHQWQIm?9`9v&Wg*1&1x-%WNa ztFW$$j_#%aWc>9HPK`C76GQ_TK$I4@?D#MD=iYDNjQpi@k(jZv;&1|m`diW(#tfTh zvUYXd;sW;Wk5QRr@;C5ymw_3%&{HT2#3Q(;E?h+}@{bkZ`MLmX>(wiKAmSphy0pZ> zEAM8b8W5n&RNdQrCaC%CRbb*Zn9?8PV&a)=EbML z`z-=TT7=)ZC?wQI6PlqR=gd@%UD&_5t#vFE)i5>sX9uu=$*iobon~fc?T`G`Uo_8m zCM~k{g4G)A-*949J`zsN1WE@OV}quXCr|pO?Rl7fe$?EKMMKdV?GDrn^76i7Vh^`w{S^lG?m!nzqHBk*uJ_}#k)f-VB$;^IbY0OA|@`qrLy$_W3vP4ht!i%tW1 zI+%SM#4q;OOUl4vU4p}>9)EvxE+Q>JkslFAo&}~y>QTAz#m|iwsY$P2ALX--?-ABc z{II_49k>*6Yxe`q1_Am!uubIEjR#^0waA0*@UE`A(!b%XR(V-jD!y&utRY0-RC)J> z?y0WBBg(hJH~t5o$HT)TO!Ijv`2+KhNovTn(9o01Ag0F%5zcL{2k-o14_V>?#8L~0 zKvLvRHXSB2 zwv4R-sLP37~pD(~mr?rWsp`i$VToNfP{pN9QB$;?W0E87J4i1h_zQ;^% z-wrK*+!`tf{I&vklAi{!U(8@Vaj3r(RVygKZDC?SW`L;{=}lAI{{p;Ws@&V?=xBEk zl{NaCtw#J|E;X;6QE}?`UFbTuPrY$wH~5U~f8#@eA#v7=?`m#s^xw~8Sycf%azia9 zMt#Pu7E*nKH|7@*t1uLq=;~u{UwE7LdHOW>T2iO5YpppORS}tdSLDg*)2BUzg>%Jd zA3(<5q5V`>Z+8IZ`F#l_38F^gO8XAz@KNG}Nk-%31gHL5m z)W~TX0kJuzrn>r`y@Nv>;12*@%zuiW{7>IWixi~qiWJE==XNPM{fPn^SuIjX)AXTKTa#~k+w>0q9 ziPcqA5iNm{0*C1|8J?lP0^}M#g5yk~qzHgZ0uOhWe7`p_lC!z%#}bE_D2x&t6`4j{@Ez`cfQ8yd{_95MO&g%ZljjYvVkY&iu5g%F?y zxwOy9%F0uqNqf2LU(KZ=?&XVv41gVo8Xagq7Zw*+=jZ3o0X{|ywf-I$VpE5m_JEB4ZHr(xcw%jBPB*jh<|Q+TPVS{C$eu&|rQr>_FBSo1-fxqW?H3jn zxF$y%Fd)F+B$LTUL5j^*Mov!qn}oF&@Ozexeox&1OR#t5%$cp0mX`H~Krl(m^}s%i zCR{dmaB!HTQK{~>WvoCNoIzIav5ARE-e=gAwr|bjIR-j9CB->8YEJ}|cYRuId(%xk zhW~;YuI?EhS0n;U#7;cmE3d0Fod&St{2QQoJ_8>M3XFl{E^ny#SqUfvB;ey%rNqR> zzSpOL0Kad#HB1iWJYm!J=XmRtevr#K7UB9UNk^gnPL13nU{Yv+tHaE(C^y&812`AY z*AJgWJwAI`QnK4&s=+tONBdl8XsAn8cJ?G-*44AYPm#Ot@dXvud%&q|0@vDFjW3&5H z#Thn0ZtBopA~`9^7BVh(R0@E?skXYTuV258es1ts)}T!gfWH{khL4619{g+tAp7L3 z!DU57|9Af=m+q5*07{MMy${5~%*~OE%S;8KbLK<#ZF9tkU%lo?`oYiv2ksCOSi|U(bT8@@+e89*k{f6s|=*$Ucd;8?{ zv^3?@)yuDhgoU5>e~&(YEc_NAtSJyfB$Kmc6H?w3V1gqU5x}Co2!@KiQlyB6KF+}f zlAK{%7YTcN%Che;x!*yY_RFr)PYH1w%}-%FvG*$ngn-A(rR-^ndytFv%m1tN;?Fl& zTM`*W7|*A}>Y1Ikx3?Jqiy4V;I4AwA%UuSs{VNN&ldbyACV#ZmF)uH#nge^ExxWWk zz{RA6Hv_jfU;9~Sn;j%rc-kJj(@+>Xf|n_ITHazXyV{vYr>q zze_18O&qJf6$ofvHIOpPKHe*eKwu!h(^)7CKn-YNL$gEws3Fzj&x;##SD$=W!ZMXv zVW^kHo}rRIeBgaD^Yyp)#zgX&arP|KBcN5KrKMMiwGRyqDQ#sH9@Kgk8lXgHU3Hyl zdl2Z`v1l9qL=B`N4GHaEf6`NrwqA)VE8DzGRvNIYJfz+4cT>~xKW?=Ga&jY@nwsG{ zBJuJxC)@Mm$CWVWyDT)+G&AFN0x@b<^L#IC{ZwDg+GPE{9B_!hzeapk4q*B=@74^G zRQG1`0IyWja$Q(+aA>F_5};TJ-j|2x!IyJN!NI{kTiP^_Yb=o%UR>pWLu zPW6xQZv!9D1%bT0oqZJuM%szDb&}VT-*jgn5Iiq?RoMWu^8OnkcrXA&O7`R9z%4jes_=T~5ICnXs|3NrF(9ahzFy z1Z0Z~Xf6RzyjU>8^mNNWkcMFfI^X@daZil{dF$;IJMlgU{M~?>XCEOV!@}0-md63x zwYIUr5Ae1O69fX%mSVurt^=I11TK4EL%s*HADoX;S#4OOM%!lO*iez3^KrvvRwxM( zk?%||d*fk3A|hj_4r>Kzalui@&47SL2`A~-#US|8L7M!6MP>?saKj3K=mT~@b4NyA zo1LAtO@04G$X9ACDSuo@8&(QJ{OGAw-klwb6=Myc*4Fd;<~;!fICJ zYd8StTs&o|h>o5feqlku)^BAyRgNS4&^N-DY1hyqUiPRrXu0GBdUs%<4Ss zIe?V@%`GU<)K*u|O18u#+t_9*Wes0^5n?JK*|LrpCfSmh>|0C*$ueffGBeEL`ONRS?&Z0z z*YkSr=f3aP{m-N3RTyK=^Zb0?%W)j%`yes4h5!h!N$=?Pclr7D)XCK3_ItZCt)o;mnuI3*e84(XbG{}*+g0f;A?8BAYnNw<@IhTrj z(9_qaA>c4`3?HDPHX@rQ{+8Fc^-v073M59;K%MX-g64Vf&kDZzNw*NgQ#KCP*;IWU z`?&p{rM#w{pE6nTMnyFTmXPeg>1FGJ8~ySsyuyfbI9d*ML9gVv#-6Q zLwzgx0I?SL(dL9-sw99uvO!$;gF)PN?D)d^_cJSk1N~RicQorfGlJWn0(u~KE{hft zW%VuofWgx0wf%%T(0qOC?bY5T@>vPAL@FY1<9jxyLCA>*OANfW`t6XX zXVb9%WM_K=)@CD>Q|Uy+Fh7B%FEJ$kM-s5&&(8x)3qVE)sa_&(Lr{D^=&~br8k7pj z7XUQ)L#zn7x_f)43b(-7S6X{TJ_9zlBoT|JTo7kvZG~tr$KdPd@B=FtIA$|Jw1m32U!y=?AwS>yzbx6kOhgPjqYp} z2r4b=-m$sr!^B(`^8v+z!sIKO!QFfY4Y3x`z`FP#^dmE2+3jcOI3Z*dgyp#KfgUHG{MOZ_2hM2H+yf&svvyZ``LrR> z?3-Q%;qZ{c>OULL@9Ya|PdYLKBq%k2@fTKccv#RWz%|uvuhz$2$BXG)2kBu66jpfO z>2E2Y%*@Ps8}|MrCM70%05MA;;GFM+knJfWFOQZ5|2kI;|5IJ9S2i$U%@jUBXT9Gr ztK`S{xK>XJ|3hJ6nt`EVtMD;AGz0^*RMB|u9*@_65;0TM_l7+JrRgfjHJX}Z06}YN z&&$gj{#egUUe|pced74>?odF&a)kA=>%DuoKzk79?ctI5hwOac(^DSctoHz91F!h_ z@$1L(^57Fu6^9OPddT?Ih^qD;3kEdM`x__JPoC`V8W}MZt%hQIAB*agf>0oAK2JMc z(9+Q8D<~*P%G^p7cVk0~rN_v9hvD?ALPhV}S0a10KS!7@Ba>eJl4!L*c{I2g(m( zC*>}H_X~Pat@)z*M#90wOD{om8YywC3jpk}-vcx^x~-+9^QfNjZgFwu(<}sUm*1A{ zg0~=`#0;72jl7uC-vO#CP~2uly)P(83Df)>DWPaB)KQYUUKvbw-Tv!d?c|Yv)r)2` z0QSO#gV)$yd077nD9PUwL)ceIpqG@*2RI8ruz$SE%~b@zqJr=QXliJj0^KiO9aMac zEZDVj&}R!_(0d|qd9*wLb%DU|WLHbe5tg}Cp&n?ZK-)ZU5OmS1Cr*6h0{}A>6xw%* zBtQV)2SIZOI3}97g+*sl=^92zYrQi|wgjL%C=)^fCG@X^zOKNOXl%&Ywe`x;WFfKR zFAQJ8mR+LO_Qe5sC`O38Eti^4ru*Nh1dy;G;Yg@IL6lf95%U+>5P8*D&` zp}9Ld`{DuT(9GK_Eq#}aM{JZrS4Y&fv<6h+YmSbN&Oi1b9k%s6Zj43F@ED zF$roZvq=)c%lhY^dqzX!v%*eP{0t@Gww<+gUNwlhC?oZ3@MaB;XlZ%tWv78nnmtrO z9vILQ*PUH3{2{R-23Q3ZAxm?%=t`p$*g{H10Si__Q1tcdgLuH?7A`G4N&$PR3}DWe z0TllcAPQMvvz!K8R7j){t`_3+S)$d^(d~r{#=``#|E>>tEbe6V#OCI@1cPCF;6P7< zg315OGw}q&oeM%BPlz+LZMeC*rbYwQK=RMFb-?c*0?OWRh#({TW5T@l*D|^$} z85C2Pw#LuyTUlMD04TA<8^of84rdn^mvqosN0?o{tS5!%J%ukSz~c{qEw%eXNC;8# z@uyE~+SDKw5M=?}9pDer!0nmn*TNSRiZu)XG8M-WJp_d!C3oytnx*f23-m9Ypy%Jg zybEgKxY@;-{n$gtj(rtFwgDmO;O;&jHl0H92N_0`s1)+z#fwMaQ}h-i)K>97+k&@% z(2WM|q9pV1EnxzE^6Ia6P+R~Ats#|D?LK(4Pk81GjeygGLVCIR{nWB9eU;?mN5062GKcT7J8(!2?HT(r z*K5T;$APG1dkazzoGT%#dguW%B_-u@bE9%maWQ1OodgE(5vqb`@2(wF`WT_!`qzsK zuNa`Dud1l1i@RS>+U>W+_>gcVo_q;ZR51B!wFBU)pFi+7rN3YI;*Zu(Benj8h(*-p z%O8ZaNKHx=9FLX|GKt3D z!Ybp|K!gnDxM>1X_mDfKU>@)o918%E(u<>`%>n>%qNRZVJx)gR*-cqlSzOTqrNqp`8Bs)dHCi-@?Gaz))cDm$C7fbSfU~ zC|T;uSsahqc5x`E84Zp}>41_FT7>aQ{j%?-R3P}*6lwwR2d_-TfV!@=^*0>53Fx-a ziVu)u&s*+B@2RsAUh&UG6(EqGY*nW{d;Wa1`}_M1(b^{^Nq_(S*G|&=&6_v#ZgXc( z2ys?S!8ri$T-`(A3zvj2PDQ6!0k(t(1Rl1VBk$aiA_I?WXdHOLB>=`laukWKc{uUq++A&ZaH7k6CR-6gv}#+AskwP<4Pf232>$W* z@{$eD(&veQS84>bh63sF*5c}YV(5qG4k!MFO*ea&FN6laXB!*Eb1DH+=*?iWDI=he zgI|OH1XRthHj>|L4{T`di=^-{c1cJ8!Eg<@GDPuFbL64aQ$olHoElAl9tkm=p!}a8 zzZ8uCc)a9^J1YYO(^yC#Ioo*j&Wt!hWb8A+9WXX6Vkh=YojG>mM9&v!gRHvsvoEY( z8yy{;OQrUN#g|~Y8lC(IveCYOp>X&oj`sFOyF^!TPrQHGgKbR>;k^^TD|z%VNB@Sc z?Qm`5K=SQ@!%C?jRExx_tX5WU@6bSQr0>l6a5KI5}l^DGmWHdciFD zs4-By|4IdTY5d~i$7{kC=V-jSE1U-3 zMh;l2qvTfx%W@+4nfoKu*rK<#wwA`dcrm^Y z)Goq0A4HFZ>p2(e!T0Xp2OxwNxIaWlXjy~uC>cn#UE5tNfF|eQp+nuE4!m>6-TkHh z$K#V$AQy-31o%9-xhC-2KgZd(LuNIF5|Ll{{BOd7`wn-%JJ>b4TfoL>jaTCCWx%RJ zo__c+mp?W-8@mH&0(TfYK;K{axCJG5x8jA=bsS0@lb@jr0fYjokKxs_` z%Bj&aYx1BDKLcp_Qy_iF^jT`T>@c2@Y0~n6Bw&}sXz7?v^&)x9^MQCTb_RM;elnVUy?863)hTZNW zB7XrPgcU&Pe}Z;;%cwc}Ik|T$xamkCZd310#ASfzpGP90DDZ$(%b%6qU;PB_0W$0- z5fKKE#pn(>1s8t#a!x7K7Q_$bJo$Hx$DfG*DK9_eFBfa_oR+Wu?fdrw;n2*C4A-WW zr#h#P>@o2c5dpB;J0J(Y13F__07TpnUO0fuoO|;TXv1O_Xf(7sC|rR;Eg}(=qv=;# zzur4_(cw404mz;P7Kjx>rK6jt+3dh4;@|)Py!!E>pWln{*?hooeXtZZ6+rn31UUOn zq>N<0eCh6X`!)m6*o18#`G@>1FxQql;x2-~?TEo}cKn1;#416JTMX2xKrxa6CW^eu zdA-d~h!1hfi;KNZU4dRQmj8FcC*n>hvsM^MuJSVJ_A#3n1|ncr>Ze@JEf*?30Lbon zJ7lf|WIHQmcyARF;;PcRr?xoveA{{o3eXh)iP{h|N1c z@_k_weKC? z27;Aen(%9(Fjv5gxnh;RMV|gndu8BT@+P`}&z4Of`A>lJF%M{Ddq8t@Z`j*&w~%h? zC;>iwi}H6NEm~Do)pR@L+%5@_o5h6`=<*Di6eSiXgt%TNCryGrWGO;IG5%MBh{#VN zN*YevdD8E(_v?IN-U7^$1MHy?d;!Q<{+A^XMO6sGBWk`42cpX0p|xlG?7%5e1dX69 z5cGRbZUWrfM*wCm&Mh8Gsy_nQ;Ir4Sm+fGm&9zK_3Og=x?jblg1mSOeb3PKA2g(}E znNASbT!n=x4pIlQ=hMIpu&(-%LdsLp2({gL|Ciz4d8_?BjIp;1j!= zzDg>?K1PGaFe)z2fA+yXz&gJGJ2}h}6ra8BIuRh{nF3PH4}hKzgv2Qj{9)X^ST+LZJ)Ruq?(Y6iyn^mre*!{)X=-nu z1zi+qM!6Tx%@s#nI3oj8%5EG`!sj6I@B;8jA>b{|;-YG5Fok7hOi!n6P2ZI+g`+ma z$Z5MmdV5ZQxc2{aYXzahQ+djLlZfyk51#cO@6OaesdfLMi`&M~#xIdQmoJ)K6agf^ z$ZhaPWMfq1ya>n{!oT2SEBGtAT~u`IR?!_|V%xUw+OccbPQU<5?3Ugmv0G~Q&YgSY z_DIQqL@v8aQhuM@-hI-0W%mkSWYZS#Gh0Q)MMcH;O6-&XIs5Lz7zzrpvM8UfizTtoW*t8kE$8BQU#dqukPpH}>vU$^%Et|J)5x#5i z>@e_sk*!jq(uYo--6nJWj@V(Jy{DcezS*vFuB=hkvYVl*efQB*@f~vV`}QjwIjVN- z_z4|dJ^j-LhUYJsTr|C8cG>F2O>3K5wsy|G|G2wA-+8hWTTcoy%9y+;A z`s{VFJ3capPd(Yb_gvzevPN+gZA*si-ACO!%TAKe69y-UlScspH$&K;+ghUM)Q1L^S1Z<Mfg?_Z_tR2Kc~~$=yyA?K1hB|ByflS7 zWgN}M^GD*%M?=uiu9|p+{^DBF1B!qqa_cRzgNkSsV@NiWBeAlA4(=`HJ@&^ca(cxA z$*szxfzI?Ebs&94C#=)kkUKfh=2WZ5TH4 zi8BW0P}4^=$VbiVp%@7$2fKH@v%Npn>vOz1)c;zu_p%v;1?Bw7-rf(pfmW&O(c#*n zk7SIS`1zas9JPCFsGy#~31o_yangU)OE#|qD{z-WTN9jgP;9;QO-favl{s^FN^ytJ z?#zN=N`2izme-=}up+ZOHceF*)USjlzUb*E2xo&h+IkA0e@G%LCV`fx2a#rHcB+O@1Q%m#yc zM8O@4ZgUyG@o#PU`Idc}3trfntiZ!>u~oh_Df6wqL5XWnHtPEt#2-8nECMT|qDL1O zNh%ML16n@>myq(@rCLW)-?-)F@M2k?Zt4sCHszR@vR*cHC9Nf{X$pVzM14b9KE=tw zcJ#j7@|Zmsv=Ct+JC0zdKGwSKz>W*`%;Tt;5{V7O>Ud1C%crL!A9rjfR65o|A;Ij4C_8;5w3%Vmzm&8CeeF_a? z>|{M5;6&a@Q|vLOElH+&_}%nZqZRT<6>gnf#UakTTBIsRpL@m0L#;_!ad5?+BEgC8 z>N;wE>&ST(`^$y=fh0s~LtNj6$Zf=v;PFx)9O5ajvJOwv963`{2!?3F@AdxDCb@25f-6v^Va%h`m0_m_n;VWe zYI7Aj53YG@<^)1Q=s{KMrodB4tbKA!rZwShBbe)>9GhRAmQUF{^mJ%LWH+U5er*uK zM6oV%ZZb=o%Q%rOPV(}>%)F@$k;k2=HvtyCCM1oxa*AiCO+0@$cO$+bh{d+Sk_#OGQDkDmbUMWrW+(ojH7n^W z(YS|cAr0L;lpd{bKR&w_{aI21gA#~$Opsz&kDN@I63T-&!=1S2!`|*1d$4q~LQslk z4E|7S6v%LvxmKJWGPStb#=2HAqLRE|tZqqMdOHfUUxcbyHvP6eJ%+m6&P8zKkl`#~ z^@leF^V^S(>qKbk(-nZ2~r89$0d&QWWBz5-_(F#EM)(Exq-kXhoFW~bAqS0;KXk~ zoG1r5*+z3_W%FMS6)ID&}&pk_hc+BA*uPsMbOrHkycRshYb_2c8(wC@4p!amq>KrTTTi*C8Zyd!IM`Xl7&f19|Ud-AL9mkS@(o z^h=58k>a!Y2EW!LTg*wr;cW_HEn!Y`_6d@_^PC`=aSNaNB#TEQ{Z67_uwio8$htP` zC?}|Z2jgscXF-K%3#4&-$j~T%6oUSatw}=jL_ME#z*Jb9o16kFBm%Ns1GaxERFlDD zW#rC8yVi`CwcM|>Zq?@h1|3af5U%v%?x4kZwqd3>>o_TBs^WPxbwAxDDsEjVh=C zH>L@7^9uur9wji{yuxeAP``uV<)?gHnBf&YvGV=?v6593%-wlfhSl1O>5oUJXUeL55vJK`xxsxPwU$86Q z;vDN<2J>J|s(Q#Lc}{NhJ{6mHZH&SuDGZC;`f%1KKT1=Fw1CmFyl4_X7(mywTKwVB z6{^Pki9z1t@FzPYR3^sgt#Qs~Uoxe%Y)FwRNj9tc(8R85K#kyPZap!LpX_q3$OAkEsb z_uRr0t&R7JA)BwG#CACRR{gIlctyGT*^upqP9|m z!@I7P8-m`QmjBZcWD(6$)v>*oNDGVH{$)4bUaVk%JRuf7nXx!74rvWO{{a?L@~52F zNoIS_UtT7~LMkXtcem4CF@Hf~3)q(s)rM-YR!4!qMnmCul(jT57qmj|0>_i;6} z>x*7=O5-HISFybCUr^g;N7^EF?Y(x47@u!SMc&DE;EmF5qf>J1J~=byn^NJ&24SY# z61_79>bF{tWX&+gOr&XXD8c6bzsZkzHaVD(i8h{0K$AVk)+P5ACfTM(Co1%8!Jl%` znx&tnGnGqf-$^v9$h{7%^U91d;*-{fV4ti!?4;+*F$X$}>b>NWT+;Elxx zCeNQq6_6&$2$tYbHDl(PMv<5Ql)JwXI-Q!O$O$Fft@DI@1};#f#?lDEu?nVGBvI1s zPT??|Yrt!F;i~BKmTm6JJ)VK72*jBTwZ>X{cq#nQyuz&k*tKl+zKpKL^^0i>@S7bc z)^_rAe+#xU$76rdhgDG3129NFW_FbxJra@PoHK6&aVt-nUVNvnS`JCM88G+<@q{M| zPJP5WEW;+kuck7~crlmg=?O-QejA-ab7X9e6k)p{68@x3_my`wFe0)L5ztb+W%lRA z5$`O5&S=9@_1v~lABJfoJAhI}6iD{_m2SnL&6$v==sSIWkVv)>Z49JR!$kyft--no zDS2P{1T!LWf;_BvP0%eE?1o*}FzjE+B$!Qf1T4Q!{ytlcN;2g7PT&_v48pJ91i8`) zNwHz~k=ipX3Od2}XOI^=C2Od{TK@|!e7!o6*-OPWlcY_(_-~3kl zbMk(SCE2dN%HnS)rEZ6dq_JhG@Edlx1qx&E5<`g;uEB%kt3}Z0X;zMiU9+r|2Ssh1 z^ai_KYn_nih^<6f2I^`}B_lr4D_5~9mKJ#YQ*P}&)M`>0w-a?r&^xZy1D5nL(jfKF||Gx3eMZM>ZvIu}Oa$Xp;W#uf|S|MakXHh@#1oO!?oQyB%pp&d@#eBepG z3tV>x%qenXhF58X7Svkcc;Yn4Z#hR@1J97NThJwox;v@%>lm9`_G*^U{mca579h3p zs+2TWFoXZ`j{`G}*iDSKrqUQaM5TTV_Ai|CoRe-9m=S-vm}vg6Kr6*_FX~Un=C3%v zVnJt^BJkZ4PG(Cs;-EnJ4JJNzm)n?5l7=OJ(VNNgWGY?;BYCyIYBXV$eF}|2pdp44 zBNWDo6_gmp$b=ylv9ci|iNPTgE_Xk0Uh*oU38p;3x$y>=$A$mVR#pQy?_3%`zW}B< z4z!_^223D#!2HyLL;tbKxl!e4Ie5N@4xA-mvFewceg_Juho?W#f&yvh@8AltU3lq* z6_PghqSrQh`!MM8`mc#){y{Rz>?3%r__V5d3 zrN^s|fZOdEH3*#H5eGaP)MC2!YrfEA`oNA<0C%&OINmaFpD#?|)W5gAPbrgJnDEKp zb*s95A}$jV{vbx-6I4zJUM!IXU82Cg_G{lNE*4K{NM}GzdwDcVgyJ{_(=cz5>aH_; z*IaR5{=HN=3cz*AETKe*$ok#RgEqBR!xJR8E) zi+1*X!$}G=&|0Xn{|i57X|sk!@q!=2`#9~~bM69ZekRO}Y1*XlJhj3_?$xqK+Fxc3 z$7gU!M}XBsoC6VGMGwdB;rM>ZK(s()T46z2S!lgNuRGp7^+hF_>A5#HM69cpW||Uq z+0R3^VdZ(JKK50`-EC__?3wPL`qWpsTE4vCrAW@WG_eckt75V=Kxvb(q)epIY$y5V zUw{GGfe^i03B-Ywage%j6uWW0Aiej9blvVp-HZGt% zFi|ndyI*jW8}w3ZL!=%IrYt#*Kqowv=G>nI7L(7qPNgpM(-*L0wb4La&}}XkH&U9u z;us>3myaO1*uu_EC@LuohXw{o4lNXCs2kjY4wsUcz$i92M zUgNW{<9Tm8!LADX2!;bwdcw7bZgVDnsV6*V@-84{W+{xwQ$dsw0eX>CN8r;aS|c4C z1otw}m@|813ciQA)n>374`b;|Rn>n1!;qIKzeffA*kDd?lVLNy>}r}`;*pm4gtwtL z`n3GTi!}t@tXpzR78OCL=CY~)$nMI_(kPsAiND3pN!^(iV8%Sk(YLIQwd(P6A(U4x z-*t)E?{*P*9M}E6`C76xhhGlg-Odyf>>+b3G)PrEP>}{v^oL>m(NH{MF$ljf7-tKd zL(i^A?!!z{DdC6elEEbyvcBr)6>Onp`>|bS|L<(X#IV|!VATgFAu#00bR%3KTSE;7 ziNIwGcGH`c;Xl(_ywI~?R*nv@S9(=AL%Cd52?tk?tY5@tXdMH)^Zky3895H@bOsNw)j#!nNlqQi3s@MDnk+SiwP#vt^ji%HAc^)g*E0 z2{rVp`iZdVxKYjr`WO1B{^tfwK3<0u-Eg>%%2+LYYwy?u^Cr!X>YMG_f%QNPk2)P^ zdYUH9u>R)fEi8D!+DjYuo}q1(T87oRqPTNJG}R^w(gG0!+Y2JY!L=s-agt|z7tfnp zU(LmjTAk~|b|`p*B{0f%*MSQdD4H>2k_vgeN|OK6pb`_NcHv20U(W^i5{;WSfn=$* z)DM{RtQwBZWU)-M!ay3e4!2+-Ds4}@Jf|Nsu8XUSL<_fPX_StVmZmqE70hS{C zvQS{n$iCU&`uh92$^?pbmN7VK-1^3A0wpv0(`l%68R-_NXy0+b9F){VLK{GfM@sCP zSTh{;0?q(p*C?iI=w}CF_-(_|@Pm74`KbiNqnd<0p`o1fOzpOjmbP%-AxMj{{bfeP z8<^l=w=)I3OBuxrA34jj1eS;m`#4R^kef{0!t(1O+?O_nOT$xkb@^FFM^iAoBTm!W zYt${h!JUPZxpp9O7V%VYS_iQgZZL`=+^XmeJ^t&{3RCnu_wJ>`sbkp|oq|;}Fhrcy z$1!DUH_Iy=ji!dq9ZS%;Ha6OUX1z1%2m(2I0QcGRHzKM*t%^|}Ni+HI6Jtqfy(Z4n zt^TrjG{n!fYR&s-+xPB#%Khb?r7?zWu_O=V@GQtW~nfDX(+mk}|+g z`E!^#7rN*WmQFu3sz+HIEW)Tzp-&sO2>K}dpm22u`#)%^5(4?DTQ|-Y(Y;t?Em7<# z1EG%b_HJ6Czd(2-M1bOj6bVBXW6HltN^&BQYFGP`EPydsVA#ZshW*$cWpV!N%6cq$ zf)af=EVxJPyM6$D??>&>vhUr9&gsR{r!eTR>KaZE*U;Wm!MG(dvI-qTAgsHl;1sdc z7GB$PTO_+-HSA`P3mQ;0qME(A)r9!{T0Bu`_8&aXtF5CpT)Q9P3MPVUhdMF#5)`V4 z*6?H9P?v81j?)6F)45UGG=3VlW3}{VY08F(^D|F;ETl5Kz-vR~pnbyrB0b8_q+74A z>rpteVb|@V{#Pfn|KEQ8{Z!&%;IujYHf$#8(>(cr$&v5YBgR>+we%&O0X&l~#$5^< z5t;RryumC<&--ciAjvH3y&CV+5SE4J{w_dH(43vJ!2EiDRQW7luFWD5SdE*r3*Ah+ z7b0@_l<=)8;E9q&y@Bq8))>RBBDtF#a2EJ8dOG^Y= zI`md|gBs@qRc;g(V1^FdMQW;gv$o%p_@luPW7CY6gq@%CG+Tt6{oz(0!5pV}=Gaw; zSC=xwMmTiVT}EEGGuL_u6)M_IGzV?k^VnQ6z;JakURk!}k6oqA$%&@@UfyEugl8r} zpP@wICwVIUu;bK1`T>XgwS&V&3pxd^=20c-*#@b|x@j6Zqg)sMhM7+*V>EqE#2~rW z%QwMxFttFNMf6?`a>?E{S{0D6=CK?$!a$55S+#?q=O>{N*gcF3*@g^@geXmyezdNl z>mCQ2J|r&!ojr+%CqgNv#6%gI`(056k1?#tl_lvzBGEs zU^7Gxe$W$sj49a~CPvMgX>QkjnO{>4Y;Sp*Xbo$t;d1Pv#n-xf0M_;QYY?v(XxPm= z$xneF@pMw`uTm2GQfso9S#-u;d`tc6eZ2%>K#LON0DryEQUZzpYSmM6r!j zQJpy@@fF zdObR8kEqDLqz|Pdrr$2ErIR8W+z^$NX53~$mlP&xrWLhkl`PGv{oQe;ir7a~m#uF| zQRgjndOYW|rq`Uu*oA#io?0;o;Wk{)?|va;8M(Q&w@AaIe0Ba7NUdNs5VD_#C>$4j zM~G_BD(Blvi~SQMV65)eF2)D1u}`>2P~suE`aG+r1CEf-!R#2KJr%caZX~Rgw6#H_ zI}KSE-+AN~i|EP5qU#*)@-ezWu#qa^=L=oPTmX~tCK z0gPA+h4I{TJuma{Y~pNJZFWoSboOaLqD}nKhUam@xR&k|8R$$eFz=m&?(ACkBd`Jm zhks=EjAIgU0~ectwM11H2Er-;=n~0Iayw?S1%9la8Cv_Z)5BReB6-?ru41jI@PKtV zr?5pJf}yvjQTDnqN+V!CRA@A57o>@R4%CmTbR~qHxR&Yl#`asn$&4DwO&ptM+^&Y* zz$8Fw6(uomGXi}|_g5WQd9RVaNVA-ny0l0vtzY`#9#+L5v9cIxE#iQemd&o1s1Iyn zgymcPAfC_H&0W~zMNXf_6RUo&<9K_~6HYn1@i^ry>K~qdh@owQw1c~49)4@d=*@dC z@pPO06MRe5h!_jc#5I@hm{o`)h5MCmad20;Sz8{0quHki!iQ4&v>y}!Cp9a(G=aET z{-5Za@%G}pXiv~@P%89C^n>Pb{rtII-jg<- zCMi4$6u+n)T1CM*&k8{1Uf_laa3g{IEZhL-DUfW^NZ~)%w)y_CbLmWJc~vd<$nG0A zmyk3TV5A&)sylF^SlzOMP)+PvD4~HY-hbY>yw+4Om$K%0F-D}2pXKWE6kRqNNwD}x zO09c?V&Uqp&1FM+sv04z)HJt(AXFeNU>=$#SX?dMacpzNY;^)FY#@Nna=ODG!Orl> zi#=^_Xr=FI$G3VI9c|6*SR1q9e<(8%v5vi3Rb8DlqG*np2pgS<*S!!%33&w4^EHoP zx%9WDhdpY;vNIBvYwhfd;BM1)d#`N^#VYsY^dlu`@Zw09EHA0$lCfUl#6Hw=;M zG$%#*IU8Uj-yJrZuGv40c5kojaYV&~;i)y87G;rE;Qo3S4SK#;=Tf$k zHnO7kx*)*Z+&>y302UgJ4a&=EIF9K`Jpg2iaAj>=G9Xky4RYKx_g34?LInX?d9)pr z>?Ffdh(5b;_wSA`aK-Gdv6V2ym1R^{%pEs{3rPtq7R|aOFQ2M-MS&-#;r29>lvTxTJ)4cZ>t_Cm965A7V12(0o}8w_uRnJ zpQYI+jiJ&Ui+r98C+N}38L@c#p+IgUyIpeD%v*3St~0Mtl3 zy{b;pzS(zOPh${=NE6J3^_PTqyxwig+g)4LQcsRTtM=zb&e-4M_t)Y^PqInBZuX3h zHhJ!S*mU6G;jq4hsmsa#{Tcd~cT#y(oTa_3*8<>QgWfxY^$GT(sEO}48@n!r6d=m| zW?^-M7Ck@1Hblxx*`#p+&D|r|&+aN-HkXuMhM38x;MgA|pyrX6;w|v79#R&pCu~ij z@;@u!a=!l;r>14d08q&Nx6l8}*Z*Js1r&%79~~S@{5RK*q8NA+(A!y_``=(PC5cD4 zhxyPNj$tHCKQS*BP81(rA6T6UJBm6!mW)nw!cmbDf7S`9vy(_=6xo~m3swLiS68tL?}tH{cU#T0 zyoerD4;>_F#^F9(5-wW223G;W0ws|@Wc$%4Cay_@4mW5t)~uwnh5KY>na zzK!QkZkt&7RFmZCX`l&pSrZIH1fBf3ADfLOTgpxA;fFD#4q(IwF2`Tw!f*=%t!er7@px6e0G|(yN{@i^L!0j0ZAXV^eJGYNz85!4YW5%rH(I-vfHN@1T#NBu&}B@ zS}GM4z2MBP0>fxA(6WYE>Kbr(@{^k8GZmaC0E%RhsLu8fMiKA2*8$uE&KqhSk{dOc z=Z+O)Y7x++TQvz^Kxs@?w5S`ejm1SeNtY$?Pa$Xqi0H+sWvBEsm}K@810ZQZ<>**t z^g}4Fis%)O_%+el0^iXU&bF7ve2agO$?S*{Fs23xAua;^7G{6@rY5m7lg` zi?s&=CDq;JdkATmg&G@2b-vyir^2{@qWI>JJth3HaS#mHXDPlSpPtWhP?cE+)eQA0jxadl$q3%Qh9z z)qG{zfahLUU|Bpe*VMluXk@fKU!eusBUc$~_Y>`)?A)Yx6`b8^gZKx`Bh&Sxr19Pd z2w!*n0u7>V$vR6*z^_W2ZeVS) za9NI%t!joB^lBftcTtrP>m~?C8G8o1y+BL^oSmRcV(!i~DTI8X%XnnOs9ya*VKTm9 zQ5*?bw;czFz?R|^Pu5|;_xW*?M<(sdW~SbQKl^|1punR$T6(56TYm}he6qd}XnvW> zrOd;|(&V;m?f7<$(Am%q3O-Mh6s*KIykEyi-OFC{ezJQJu0e%25fB?XY@ziNhA?<(VP z*bbhh&07yFWN8Ia5te;=RX+S4L4ac7g6ll4>IhE%q&A=Phl}4@Yd{W@9m_!NdX|$& zJqER($^N~_4yn`UUaZuDA)w(87J6GqQZTef$isxXg|uP~`@;AAFnJ(Aqexb3iYvXnsc>D1YTyzJ2E{r4a8#7fssyy&8dU{57cCW@+D`}0iU8@8uGYGu|r;P^sIJzd}fc2_BQLj0^ zWM0oIs0SG+;M1DKA%iY4klf@odFH>e9$DyL;51S_>)tm6L{P!Yx|X2MGuxuQKz5+M zW6s3VlmrU{?7CjB;I`)NE2VowFC~Z76NbGsfzb}GO&u3p1NfoQ(Xcm%;>|Pz7i>TY z=HH2UG5Z9C?AINoQ|v>pFm=b$e!3-G9|8`Lo$e0yoYL=c3t&q(U=Rs>y>~SXR3tQq z!oq0GEv_Q*S+(YzDL?b{G(c(0=&AY*ly8mOwR*nOXv5mhC# zl5fp@HLLTFZir~zywA04kmhHrfagw>X;N+y;>TxsMm~a4fn6xjTQ`gj`lA-Y;ATk( zIQo+)f!V3XXsz5IT{M3@uSG$PPWOhJyW<)tJPXqtcgk=gI-SQqhsqAY(?R7Zb1@~C zXi5vj6Z;hDVEi$eSAk@CT37A)U$nITPkwD>|5lNemVsDfuM`?+yEiNn$d%qb|DSN; z{*ShIkiW2fX_Amu$q24WP1g9}wUJb21qrAvn+QKvQCg;vU)DQ$%eVu~a-87`DJJ`1 zZ>T=^T&NDQAAPv8io5%DwjW5BYo2ZnoVAJfq{*i5{dkV$&Vb@r#xt!*B?_)B@;NUG@q8xHvY!k^6-b30UefRN3sE;ku6eO3tFMhG z-xK+{T8qwv2y#u;iYwhREKki-LI*QXMSHs3D$BPh{(P6 zYlbOpcu(G6AOj-Uo?WZ$u(Mu8xG(B&?@K?ZLmHH-fy?DAhOFn=zlR(`IrM9k_$P3( z=H(lX^;ywx*?Fg^pciTTi@)+rL*($~Gpu4>2~a>{8{-V3l^DX zY$90wj^}Dx5#y;d{G%Q!b-0FtTg>)pCsWDcsVr6~rLK5qM~8(TrJWdmNiB_UX?<6t zja5^*hM=MjgaE7A%cX8qv1I=4FI~o$S0OXzNWgVm{*=QpZ&p5)95$6^sPzhen24Wu z#0}f6N=RM?dG^b^fs#sfPaxR7L_FWKX9{A_;ttfyx(Ry)+-8C6^L+klgaJJ8{;HBz zZ&S8-4=;23WH^`1LkpH|L`y<%rCBDo|L|MW1;q@$gEV#lpXICY7`exu-tXV8>&A_{ zb7#o}!rM_PPYgc#h6yxur^3=#FHPYV&vFO(>bobY7pso6cB(f$dLU5D+z=U4#b*VL zy|Ns32-2h6?L~25bzuU#{@AEhNAnxW*aDwGPo6eT6#mFKvCkpYoOvKANZ+tEC6B~b zS>x4`1r$L~O`=w)j~c&jRM&UO-N)32v>>wY6wl?S_j>k5s9O@&cJfDz^10 znQ*G1PyN=E`ALHGSLxI2>E_xdhR8eV9hyA+e*OTJm896`y2Q3jo-trpEm%z|)h!Wdam6IHh88V4@X%`=Z=jW14CyjQNb)sgv9rX7FB%aQ)G^W9yj z)h6Bw&2IIGFBMwgy?W?({)Lr-kb5-OIl;JS9I~a5yMt)tj+gX&0rV z&a9~lpg-?FE48kEN{%qT@GjY2Pn;h$3U%9FQi5ar${;nTn>W=7iVswtFSGh7QNcXe z%fI=-PUTopgP(?Ckh4#My40)6!e^)s+~!UNuBI50DDPls+cC~jq(#?2lxpi+pP7V< ztSALZjrEJ--VnCOqtrEr^Td?y>$i963%eJYH# zh8llvmx|Q^6RLDDOtm+_(mEts!2Bw}ebc$~j$p*zdii@$4U9san!%82lZHeg3lPuw z8=plL&v1{SS{fKs#D^grOsDF=j8oY>;O==AUQSNnnh_{l= zKR6J-&$9q-oq$rTqg6de*(Y8~75@}QnWHc`MNiPdW1p|H4VwY03t)~@CLU<#0f;IZ zv|%iY7s89P-8}KRA=4}F0cZO!@`}1psbRE9RUivYjs>x8bqTz5^hKXA<Z2TdaBq}efa>8D*;u0&9Xaoc6!0x^CY#qF;8=ZF|OJT z$=uaIF!1V=>F^h=uw>LJvUq$L**r5{^Q#(#TV*TC7iPcf`2X8A;X>hLY<5yK93<~P zDB=59IVtu5)@63kA>+K@WtLTi@T%@hRuDBXIEkF|4sb#|1<)ODeDp=@VP#NP$yobN zI0DfTk1Ok zO70(mvweMi&iO-coSv4hmTT)4dTY^3VT$AwsAlnI(AZG`AFq?}eYoVPr_KgY|ItrU zUMtIpT=ZUbEE4wbVn&0@wG-_$OMXXa^9sIYC^($r@(jd%5WB5F4^e*q)wIIIyf#;G zFxuE!(Y9aH>E?m}hNb~XSYWgOogRbV5>n5_B;dK$%=a}Rmy={=Nll@%Zpi`1q+|DE zhx8*yxTRyrH*^#@Ryq#%lQ1Vs%rA#{KA%PJ8}W8tQXX%5ws?$vKL-zQ7MxazNgev~ z8TE-z&H#rSe5!$UCwdOxYsa0VD*Y_R^AY|7JE-aGByc;dG?9TQQ>?ZHz0J$W7@Q~5;;89G+m*xx3Wo3MIG$}cWiG-8s3*ASslg!#>n7iNeO2LzleW2 zwgaf74Anhu_lGt)WL$71g$tX9>9|^&M3cY%0BAvcU4=darUFOO!TA~Lrg{WSn z$Ed&xfdu(SOG{>CUX)dlf^szJnFS9pikF(eK7uk_0^o1ovk< zA%jCJu2!|~Xq9XKWFlJ`Xz2NrOyWD{rbg~8sql3!51}PL$=()-==v$H->8Gmx&2P}($}bqI`z8yp}K9m0Q~bPk*eHe+iKN+cHm zRD>*6?^;p^ti%fuSWelfZ>T3*k<^8YrY%%Pu9`fQxkiQu1<74DgA3nX6_X==7IG0c zAY+>Po(5w86%#$o_Qy;YQWknk0Sp!kmC>8kmQqp57p=aSCTbm^yK{#Z!|q_}uV9hI?;YNVADlKXNjHWi` z*F6Q(vb7ITs?8%qMikrt9Rl@hhr!vaIH@y<)%|n<`=igNQLrwyw%4Y90e7*Q%#=3A zWG8JKKvz!UVOO(HU?q1mDjWmkq&%PA1)K7o%Z^k9syqBM@68|${E1T%#8*uWG{tEg z=F1eQt+uSOQnk53H0VM2a<3?Ei&1YH=_zQTl%1CJD=9D`6-g;`WOgTljzgkq@UN#y zzw}4*QnO&kl?;We0*!5B>r0d(&_nh-UzYSslWc9Crl72|BxI;2`SV2;%_@HMawx#& z7Zc>yB1wiLujL0TB$G=QTpGn5s&22da;D@(_7W?g@AcU?t+cu4|Iqb|fvA3yF=Z0vNA5cqtdf&|4jC{dVj;q0(^m3pKYG5N`+b!YpVDQ8B(uiA&gFdjbSG&1E~t0t6c#;cDSew~ z7YkW*Yry0gJ_+c{b;1lc(Q|21ER_|s8u+GEt(_)Zu*Gd9gycUdx9xcFnEhv}Trz(S z%rJ`)H8x-<>bj`A3w@Hm_xqoYvW9-Pw=?{m&A+2?pc)ZT(i97MlASzZp)N`FV}GR? z&sqY6Y924t7E;|4{Snr-R-V57rGt`sjKsJp>=tQDM|lZx@zBxtE}ep6wv%|(eG6I3HIi$jma5o*dwlb6ncC4 z;1{hXgj#KR+8M^?*=^f)sH&P2n^~~cj2e`8va@Q(hZH$LA+@d!PdXc@lNFFIj62$A zH5oT#Ysk2FAS_$Z7?eU=y#KM&N&I$M=QlP2dUnp?50!BW57p-L09{#~hhL0IV$u(u z)&%h`B2z&y%Bf#%SK&&|_8%)sDlpGUJ`dNlZ5ua-?~zJ^WtyA-Ng;_HoyNX*qo=pEsXJXvv=@V$~TI_8xrRF{DwTi3yx^Cb97X~tY+)DLuXN=tZe~b*K)aRccrw#mFf!;(G zwPN)O55}-I5xs2|pM1_n7A@mq01KYDVT{fO_N=wwlh);la~`A8{J$H-kRDUlGCs{O zmmg>%Tc|u&J8u6MG0;+VIuA#)w|Hr4jt=ap3k_0Y`_KRRqExeduhNKiRK2XZjq#eW zByb6WGdx`zu`^$BMVw@}wP*Nd%-yM*0%GsI!Wq-pO+kqjQISC=!)VoQKmC_VeRr2R@;*n|F&>i)+*Uc1H_CZN}Y6EeY|C znNMuyF#B%vn(0~q-A15Ov&pBO3t9_*_*jSDGz)E7P@_VFFt@8+4bTgm0@z12_>|iG zB6)Y!qo>})`bFPyJc+nLGgF#%(jIhWhTlQDU$lt4TgClV z$Vq84)f^qFFR}NbV1bt=PE(5fSDgSCsrG}D>7)R?fgE%Ms0iJ94kQv@_#a(;P@xlJ z_}Yv;=9t@tG#?ay7XbYL|cdNPy)w8Az176ST6 zbsU`G^hmst={ zTc+XU2^ISL)*^BmTIVy}yzmS*1ik9l{{BYFLNBYy*ZDdydFW>7$c_s6q+1ixZx!iv z8T#OlIht0^L_Qj`lejJu{#;rrbWp z)e2+(P23h`KhG`3v|D~pcPzu_i1*Mf9GFGq_nDg&_u&c79_BXkNu)I0SEa64I8CJfHPN zt9UjW8YvE;34bxMkg-|`(tnbYVPe>7iacaT?nALnBE(s#T#sD`hxqg;@;mA(Ayf`Y zfjim?GfKg{z{!^QW77pCUFH5IxepPyu9mTSdS!^~Q?i7hk(b8@^2`xd zHTqGozG~hk`B3|qu^q2#x`h%2q#Djb`c0^=y)$*i@6KqAPeY9?Vz6 z7&|^*nHriuRCy?Qa_NA@j8_7VYD3rQnw;@RW$MskiP$&|5&yTNu-{fUW1A;$XF<`d z9YB*NZ54@B1NgD%eLitdttDZVs2Z-qpOD>HV35pu%(Gt6UZc9a6b6r7jfl3LcWI+V z_mggRJTor&@CfXg`I$|C&0X%lNKm}3f`DA&md%4xj-+2zTT2E@=$xtwGbIMbDl{uc zMCsOIR&VVmHCsMs%~Ktp#@nk~Km(D*GCL7`4z!b=kW29lmiupR4Cuk5Y{+<1i?y+qax^u9=QE zONWqazidzFs3sM2M*TxPvpPd)4(5=BX2};6X7iF}*9vFBaQ|e6mENU$Pc%vjNl65( z$^aSSo7}LjHWqPKQ2L>NGU2KSoRAmyxlU|AXw`V2(PD)@_ZZk8tcOq-mSRvV{thc; z0o~kHH%FcS1aN6yFcJ?*@<%_aQE}y620(<*Y4lFYfFKmuUcd5|>*~NL{6{lhI4Vya z9u>D!8A_7{wd?4$#%!OkiX!wK16!2h4va(s3L0?B2E%`Uh&l*q!}xQu zZxY9G^FCfVpxLqrn#s1GpdgsQkD+l%*4Q}2A=U1k*efBWExjee?N$B z3ZR(>k+Bdsr^8f`#J2JzvOEk$Az#-<-Mf4o+TQ0Xb80g&U($1~p|)}fYM@aA9q}=` zU30(Kd=Sft-?7jX!=fn7HN&7HUt9g>uw7OUgjC}O&7sQ`@x%bt=YY(tiXQ{Jig@I! z?#RX1+$x$({7oV%{9L~pWp%q?eqKm}?M9PUJ`&%|qL=?+Eb2*W`!(-62eCVe9(~CL zs^8o|?NWF^Up2G1PWoPnIl$u@qPoG9HH!y)V6(J^$`QKVGgIP34?Gs@S|Z$6u_@-8 zAaL5#1+bQ_Ntr79gjf4{VFyJ3ZZ<_ddvCV zF0!f%w|iQ>E^^zo+JpR|J;KbyhA}}is5Vd5K-y4j6WbukuAnVDm^l4=Dk(-}cTY1| z0qJ{9ts?M28IW5|2w5%+3yqz52%gDs{q^=6~73$(z&T_Wf}7 zQE4POz7WydruPcW0QL`7%QPMJ`S74X0c!1x0`&78QVriNaiHivAsm`Qd$SsJ%SM&# z)P~a)e5{D*HNKR|Q-Hm2zHa$agOv5A(7boW{lFr-yT9(B33rxjZ+J1?-&vq*l=PeC zzF64DWTU7|{llr>5rV17D`_BvfYn@1u=iZ!@xY(#cD$2&^1Za?wVUpIUhOo?aZCy2 zju@HbNzuR6zsxx$&8<%4m-G0l9UU-B!g)7DxCP|Ngm1>ZW|%m}l1(~mrBR+`7&fA| z+zs}dLkl)4b_#9#a#K3{o7wDO|DPb*d>>RcrWt!uXXB{b>8~$MA_{d-Dj&C(8465f zd2^_SWBK8}=s3OlKB4T>3h|Hggl{o~x(uOt19k*oU0phxs-Z>Xhh>e;^h0HfNc4!a z+H}aXu{bVw{8E9PLOcofj?CcGmAh z+#z=gd>{ErqK+K;`+ktr2)>Oq)85s(d7XYA(a|Pxe=h85Qo2o?RrI7JUfxou|8fxp zNai?bYw|OKq1vW!mN4Sv>_%4x@I$ZT6>-Cyt4k29Iz_^+nw2TW9u%_A5WNw$~NSo_to)z(FH8)T3~(&XhFlcl7pJxi00!O?jq zo#>_VQy{Cp%d#xKHy(;Vo6pRULhT@0M|DQF_THnAuNUTiePC7h%_0YrN6tMnr`}Wf zi*fi?VWUJ$lrmabI(nU4YAS~Mom-;ygKycKskp|%pS>+I558F--E(*4OSnz^lr)MS zAON>S^EP+J@r_Z)Z`(|{XLAQxP3A|yvuY)*Y+a0Hs6v7%xFL#(#hac#L%hQk>EdPg z3&ds75%P{yT3EO#bwM*L#_ptyq1Ixz!0&`_#($Ds>hbTD`;}Dw!&o0mQ_jC_^0?wC zPm|FBmjkq1ZwNO$R*l)I7*FH-hotm>? z-h^AoAm7+oN|K$X4$)P6$@<7nttRM9K&RcY^DY{3 z+v0cra?&&7*t*lGI^8Qwlh2f$LrI>(rMMCS+D|Y zciWFBnS3YXypv(lJ_Yy6#g`uH76+Hf<2H?tjEuIb-tIh1rfG7gnZIj_fmsg3tR(62 zbxnc`x5yqa)O)OUzdKU{kb8VMGE|9_#{1nK_)4y`mG5tk49D=T+ZK!&kG2w!q-~7R zZ!EH!NQ!d$Al4f8IRa;pCPI7g^N9J&zNsO7UO<@J!Gcg1w!-6z!*0trOcM&1wGO+R ztU@+{Y_Uq~mFYOQi;2VwX)}3}cnb?t4ZYm?vAx#k znFFW#-;!`W$j+@R?%#j42!QrAo*vdRiPQk!kwyK|n`HPcE2RqK81Ohak4DUmc?ta9 z=8MU^CPnCbz#IUwGk65Lv4z4uz=dw+@Vh_AA!)v*MuS%EEnUK}ERck7B}JUvE8uPQ zBAc~(-)wo7Tr_WxWD?E0$Vf~DeC&(V+>nni8rY3_ z$ljz)@JboEo3ER)jNTUPjijD0Vux3ZYaYyd55_uMgm?Rr-mp0qg8J0rr2Wul&J4SJ z2De2dJ6<8r`*|w)UM~xDE45)upxWCCi++`w8zeD*91O259zZ|t4>y^ZUs?zh930j> zspJkg_t3ze5|kVu2onDkUpek56 zxwZ{!B)!80WmKsu-!m~Key4RGo(y2BBYO0OK)t0`Q z=$UYBq`m6sJUdGJ-CfoDLADx%E>J9Hc(shb)QL|49Us&RZ6M~_dF&&O8#g$=bpOn2 ze!!Y4kD#-jCkMY?sYrRBq_b`Qo($K4tLeOj=!fS2o)Q4e(GoFzeMq)%@?+i^jXGNy zw|A*7ww^nWXsgZOf@Gmv#_2ZN2JChw)-EB#gNf%iNWk;9)pVQc?b z{b$z_M-lC?w*oHD@u6M()Q?JTA>W)sb3>GE^R}!mt%_ z9zFk;XiKkEP`CEjfUfoUIy`>~8>02`@$-eGU*mSvM~|6IFOc}4W8T{j?4@RmAqg|S z%4&WyvV1_Mq=QZsC5#Gq=Yrdk*s_?x6C1-APs z;FXvj4feL_tg#XE$W9|(B0OekcB;KFg*5H51o2{M=J{u9FNbBiTIVdVq#kV)ZN`$h z>i9F0Hl^HkM;I}Ik{V!644Mu(T`K(*Rq%@mWX|yDbD;%gCxco{RzXX`0^COtlD(|CA^G*)OY*Vq8-nI0*NljAuFBQsI@PKKd8K6p5^gdm| zrz1us%h9C|Lo40s4SI-Qr8$RmZjoFwKOR_D*HTx! zeu=?BzG!Jyyg}1)MSFyd^pq-7)u&w-p+nh@y2n6FEO8nN4avc&6TK-4WVLhbp|ky? zE=@_~j`#bL*-E%P4|SnGsgu>5HTiFO`Y#<8rw`K4RtVpBF-hpwAws)O>4!zAd2q%= z4-R@vrtlPd5fzf?s+hUF{R8wi9=g8V5=T&i9_EO9e|=bJ0c)iWP#3Ug32~cA^!TN^ zgfChS?r}?xp(YPo_N{yi@K_)FHP#CF{54Smct>Cl8BR5$s*WzHHVngI^VoPlXr?3> z>(neOZFAq>O7VMeA0iE+CeygQ1vAi6@D!w4+csc10(U2NwENtXPf!_NQC9e4=g9@ckKs%iGL{cI1M^Bjg^W2wG8HQv+YnoT%>oOo6|jI@Oe}vhCe)LKU>t_wa1ex9QY1Bb_MV zn667tS8leeW86c)?@JoCBgrnjBP^4?Bm29x03liK$d(qf6E$fa4vC>O>(#jn@l3+# z*x@|X>n~a+shYRQQSnWq#h_cMgx1xYkCICytbXBh+CuzZ^$Hul<|aF`@XTb z9ED{u12mPH_7wT)Gj=)F1X#jHR&rjeVje4@AGn`zIfhw`*z+UfOhD z(`xOgEkKQ!#SPlb{D_#-k1_h@i)*OKZ3RGL*IeaqZ(Xd^gJ;`f4esX|j=M}yk$l$| z4Wg7um2=o$lm2;Mb~9|TRsKliB+&6VxI@V?0|V&kX#?E^5M(98nq%w6Q7CJmk}jYe z116FFDUFCzWllpHhSOnT8*_I{bEfF1w55&4=||+D)SM~Oo$~ZiB!Iy~PCp;Opel~Y zujBQ7yI4s4P9iYtA5+B+o8*;PH zqt0+m_0Ah#V^{L+4>$l`-wU68uatFy9$5ra-9M_uM+NrQ3^j6?)_N{BvVB*Ub%eQc z4u@=YWTh-CZPUXqC_EZ(7z>uH?b^*eT|tqv$%|b2My@FIYbpMsb(yg52)+O=XXxIV zr2f=?t91#G4q0&P>&5meqUV9$PV)$fHbnwcR($d6$22q~z5^T@W|g`oKpn+wFlMNC zY#}~-vQwU@ePeu)rLK9p!qx_60a${@5Cv#cQlo6t`ioWpvc{hwr@bWeIEBhbrD_M4 z=9X+=e}cxL?n5(XFA@!tsgYAG#oUKwMboeQ6F=<_~ud7Zihy)sAW#Ssn3Wuz|ppSNhKCo24eM*bxlLdfK!zI6WaeuQeCKhLj|NLUp?MhwBMdD zQg_-3*;oFpm!L>_TmR(8Iy_6R(Z|1V0}_#os=+S!+AC-)Wjkl2XM$wnJ6Hc)qjF3b z3sgd!^NO<0HeH?Z&ooC`I_AirJ(A{Wx6MxtK(V)={Kx^BT-Vq!s0fPcI^DaZ9smfAf!I|(QI#v4)} zZ6?y46H=MGC?8n>3w}jkOGcg7y}k5avX7c0SHi3?Qy@tEmk8IsK z^F=E^RUlD+M?g%QpQ(c?)h@pWJ?ixby}}Lo3M37c&XVrM!D%@DX@3BXoMdsxS_@zu z`-OUho(%<4^=KTCJYSm9VHNQ~Abe%l_#Jcm5L$eJNORBWSvr634uxdJN^23}VW0TG zxNlp@l6E_yo@6lstrsAKeI~1>UHZ;VI%nEBtGX;kAL^#!h%7D%>}0isE4tvn>y6hb zb~3{4LQB%J%gDU^05hby#_cDiXGrB`s4nx70L9tgnOX@SA9rKJ=a6mb;AfhIm*^WR zVuyA55wAMR6(Sc)D_)OnEgd-*0kA?4;~WDyyQBR<%W$5^rxW*&YWRJIPXH7j`V;Lw zR13BK2fKmXB>ywTM}~bifnNhB9?mAUljthZ0*KP<<{2+1TAAWFSNl4+4u)rB5&5@rWo4#N zkzGkrk&s25dp4>L>PM^3^Lf{SDKtY&Q=2A`Ze|P54WXt9hg^*}g1U!CA0%2m&g!Gkfz?ei&TX;$j5;4G0%>ffa3)-fmf$zkS?UEAc} z`RfflOj}scJz(jD^xxv7*nUbn1ClKP@L40Tk+HAz;ox7amy-{?jtCblK4K1-=Iwu< z-XXb@73Vp^?R?dO^MptEY?Nbrb8I7)8dD4fBxhjmVMLxwI2pG|#+q1Rwezkb=F)HL z+7iAusH0~y{_9iq78?ky1fa$qg3vW5*=c@h2Yns#fw=*8{^m3+JU+BM!rS?VJ-;|} z;uqQsHmu6VXm~gc3bCA@(@J=XCzq8{eSy7xm<-9mN1Knu03gU-b_kG}M zL)h^l%S#QJV<$zQnkZpsdGqCHyXeX}gHSd@Eac6%%r0m~2 z0uURU@XVkpomAm93Wj`V?)q@%N7`I~r|*FwdX^aX2Ty;T!y%K}039eva+`2SEY9~? zzx))qC{qm+Mtb62)}Xt8K^-q}8*}D+a%?!5jNgQZ7sJ68|L)^?oNQM8b{Le(7E+N~ zubTk-(Lo@l`c(Bk&Uo;m7gPee+j~^`bFo;7#+E(^3*F8MZ~maJJ^bkz^0v&=K>uD0 zCU5_YJc_+LEWU8eYm%@~bKwfsuowFy83z(DHuC}Tmvs6iqu<7l#2>#C{xF0gQ`XPy z@g41GNvaR;^2b+%;!OSBd zgTN0r7GC?6a!N?sKu$j?3leYR&!P6JPtde$cLj13W4%x!fR^P$7OmRs8 zMuddh&F3q)AqQ%Rh1+ZU#E+4l+#Skh`MIp349Z;6;A)U@^WM>}%YQo?i5Huhgb%Yg zZkfFC04*SLM^D|2``gfpCs)T#@{n(KZH#&YO+17agHV8snBN9yP!DDZOp_G~-w^aM z_77VHgbix*tLSfL82jK>&))0>#TgGgthnlYs_7K#h;=xh$;jSblu0H?%(Em%E8~lZ zt9g0yZfysarG`L@px0|w|}Zj`aZ>a%+= zKTj(QPXK7uau)GkCafKUsq#vAJ#h8}R`*XbhMS#=p*N0?M=W@mAGkZ>&*FGlh0H#< zN6Pk*Nm?~dt>c?yMwG9a1Mf*#vD=BLwG^XZ6P=Gam+lpD zOKM3LyewAQ@13&!C)SD9wYo63!gBUReF{+1Q9H&>hsAY<9?zw@_ew_gG@czG%wc$A zpp;eK$O@&d-K@(fLZ*zES+YL>I`ID#M*9C2I_mE(U~>arGuO-7{I?8L)`wbxj1}UZ}{&*i1kZYs(}Z{@Y%_b(Lhp z)>Y4xTFXwqowo7*@s(!_B3wptl?76IB^IMb10*mkO>8e*7Ye2vUED;dNv`SUO{(9; zfz@+m7$>Dq7^rPvnt=U-HGPLdKArbuhIJ|1k?G9&aZwQgBqlGmOL6Tg=m+(mu)Xw! zs155d_{U%^3b6Rn>+GmMVk<|A=To2VTL2C08zX+A4oNy~lP&u;x3g8p&<{=}K8Clv z>$4cdY%S3=ofshPIHt@Ce;E$aPSRRBL0Y9*2=6~Dy6b1g_rL6mf#74)vib*=CD~0} z-{wlwPEd1!*bqA^?jl-$ma?Zt#<+@D&YFBHYahznSRl|j+Sg%`er}OD-?Lfiaa2cl zyA0P(%P6#jEu~S%2k3Q#o8vY^NtX)^X(tQW^NMXAg{Q+_k_}bwC=$huXji@?o{tl! zPdFY>v@85A2BN=crQ|pBq<@oh3C!`32mRnB<%aqjfJcpC2#@KoWP}1 z_B#nP{C(z}`%GndH%=|!m2uft+1}2`B=18*WdO3CElh^^?X1>0FbWA3h3oncK$n7L zGbc=)t7}mCtvWloB=KJ9)ovk>7a2?AUJWHg6hSc)lU~gy%UcSLgyjAdKo;&x9$MN? z5qu2(6T2VolEu07f`wu|P)7q>6)BX9VeTGYA!vIgH=WA}%u9-WUd6As@!4>2w3;SQ|5{vX@jv6DUNvUK;TRq|Yz=9z6oVqj`M7`HWPItDr&fk}3OE z4VlIttEg^WE6$>Kt8KoTLDh7&vNyqNUaQo2VTNa?H?#5u;`6{Qq_TXU^=JM`5Gr^N z6DMo!M13d5I;hb!--ad`xWs3PY`PF1>+8DqA>tc~()^jt{M7ZvqO{( zn$VP{&BZE*-{^D;h@vRhV~T02KO zFP|6LB% zvKyQ6XTaqR(J)uVZ|`h9$8?x|o@D0^5(Inoj{X&EE&lw%<-hNnSlovnI{-;`C5Ett zGP+3Sl1#`qJM5cvLIqvXbMa8r)c(#UJh;FC*Y58Xq&kum20t(Yt$)lx%1@)9+ZBjentUQE&FT*PQ-9%;*NukdQG zt6xIsv0U(e_%|^pi$efd;-fSCO{KI}o!^!8QfcLlM$)xJN%jvxD%mq2%D-ao_$#tg zovbNe(baa6t?`G09&*V}M~5UfmHRc(QQeA1z8YSE#B(HXTkfh!-j1Frc3x=cTBY?x z1Qc?5o_AsA2^&ChDFnK=WFgt_@(Zs8KH7O-wy@a8D^jLNF12{O^ts4!k}Y-nFbFQw z#CV_xRQ))vZ4k5?mpg_VUot<@6#5(P2lr=&(J3eTE8^5*R8J&Y)sow!YlUekBy>6d zLtFZA#Xd1TaaWajGYdFka~6^dy6=F;WChplpxv^u{6X$RRBW=)?C%4@F@fdN$5-}> z)n0*73bPhKdFGxf1x;vN?G{1&`$=K;CO@uh2UCFh z4*Yoeg)}V@c!lNzxX(TVkYtje_H!jwg>1t?t%~Q+u&e36-*g##(}HbA#Lu`Wfb90- z<`#FG4cYR9VA%7(60Y|A^@vvB$au(QjRt!VH&+5!gsD^UjWo521M!ByZwUP@O-l*M zsnV9=+Z3B5o9Fp1V!ipsYm&_05o4BB3=`ZlMVfYIesEyP7tBe>&La3V6!`@Ci2822 zz9w@ux_SWXoO2<0u;O1}c}(_Awo7W67ZJD8Dk@jRuNiklA)A^K4IOEm1f9~Z#pZ0g zu78{L)1c=HtyiChNh*K;P=m@TiTto#U&}!6+rE*pS3Qdrp@gF$CcDzSaQ!P8&Zn~w zk!1UpIvbY0&nM;IpNO)~LrGxSB8^uZF9`)t$^nWqF+pY9K#hvUuqx=BjC9KyY~+10 z=~i}{^yCjKt#gHYS{iDoAF|!RI>9OC3SKrZ1!QhRa1UtjOFm$o%5!}CD(U8lJx(Ww zO7Rof_-w$^T<_fzzzHfD@pb^p1`;~4By!b1B~GBt-uYpC8d?=C4Mze=wQ)y*QB(*c z7x>lM^0ollP0_RWhd6@{hQQVQ#$=YBO15yclr+&05n*2NK0Ce_3;}JlYN?fiLi%zp zQALqUl4|ht=FiA?QY#ks)cCtzfvO+B1g6!4 zfLYXbtB3&3<6wnB4X9;^SQnP}x(@+eQr-#K&PRr`jcwT$JeBcv%2}W{YfQCL+fKOQ z3f(N%A^!;&VIEzAHj!IB2EeCv9X9JbiD(|Ad;m{8=*bwefdRFd577=m-BY6lyp>A( z_YJuF5-Y^qpXUQC;I!67m((v>XgjF!=%m`UVnwnJnbA9E;-7B)1A z^bN#Ga;JqNuwjo?u(pu<=GyYxJ5nbK>`i8HQI4X~v<;tc>^cpz4^)|+R{R)UXejl+ z!*{@e;DI^#NscJq64jQEN=*uglwWK{UibCG6Uqhi@`j&7}-rclmV3@3@Z(ZfaD`O?54L0$ll@@k&7|)~)NuI>Z9dVRr_|q&Kno zq^@w3N+)V+xN`ovbO}Qby+yZfi;FWDXOUC|_CN9z+4k6kfqu2_vo0e_Oxxd3qIe6m zHNhff+2L83@NmvsNKnxIRDHh82i`eumv3(y`iyy`J`=ZcXL9KMPa7kg28;5Jm$LSw zT9Gv`Glk+M|M;xZF4n@1n0&_$T9oJ2Z%%Z^TM+fWUea!HVSDYGGdI#%_=w<4;oj$U_7 z^Ds_uQjI>3lKcTq(1w=N9fhcY;tVUgt+6YjO0N1{31Fn{%x1Mink94y`OxjY$jV$e zDp={k0roLCW6vJpFbQH2P1sW>CED5RPD)8_n~9Ab&z@+CkR8LpdH;37&}I$c+&Xiq z%XT{H3 zfP-Bzt~Y;YRR!1 zAwy>e>XV1Fd6SxugDX1PuGuy<{qvP}U$l&}l=Rhstl9h58Xv+T(GL~%1}5;ACMOS^MnajB#6SY#tH!Db2cocG{}6%A+Y$J zyr)M<#*@P)-loZK5slH3&1wsJ%DkUxO7MrX-Pif|3j1Qd!DolY+qGM$D$hY1)ndEO z!d<<%_-b>vyE$No8N!X2GKa9P=Bf|^*x)LtB4v36e2v8yW!kXxT7#nETChDa;Uv_D zSzf#Mn;^_*!04L$7MG3v9ZGi zTtjM>up(Kv6O3(<%4RrM#@1F^O?&p9-@nlXWs%<9Qmk2GFKcio((Fw>xMJ~5Y7@WM ze3NHSeLISD%uiKxF-IhS#%@Zwda8PEwqdi?fu!?*$0MtESa+Jxjw0oyYU(|Fl8+ z&Y#Y+ZlHbz+0ySn8xyuCU4rWb)SEz2X?3IYW|CPMI1^3|U^YHmn|hv{D>Ku6w*5&~ zv4dwHvxlBV+3zaT<154|=Vf}WgpIZ+V{#zoC(WH?%{_D1JrNPbP!2Rsl3V`hyjA6n z^xEORXI-QjY%ZB)el4S=tcVW)#v}+-YA$t`8n4qOW=d~6?-jNYGI(eqOIQH91!@QQ ze3|;#kQx_AI?!NMGVhV)75}X9AaLRp2OF~S}D3!HP-9fxdLVG9oCEk z6Ob*aZJ#MS29umB$=JTB&3#tC-mU$!LFs+i@6Klv9Ee%Qao0_VIxHRNHx<~;AFI^1 zwwX7IcyBAqc>ep;@6S>Ic8J=aKn#NJJ z@m>UFV769}(T7`Fq=dBEIV+I=Zgi8dFWm0L;y=j^amiC-4_1K9jDBSWN~P5VwV^k_ z6rMO?sI;W{K&*2SUwA^_>eqnOT4^ufc(v7TWq1Hp8I0Lmyvvh2w^R@e> z&e#4wWnnu7hB_Wxv^Px9XL$&^J_=?Muq5GjtYTTqH1!(&tLR8NKzaAMWh)m#J104RIF(8+c2*=_p67WH+HMS8}9Y zy6!Jq)|$_Gg^okbmv!Z9uLYR4?wNho=#fR6%D8~+7FB-H3U7Tv-Y@WF?w0Bo@j-I4 z;c-6?MXO!hE?etH^b`$j@z7aI=QSXVp7;jrQWeD53emN zP`vqe)ri6K<|t{WfYj-L&*W{k)%|K5_80j{L*Rg4rBjn-3dXrR7vqhc$5bE<7a~%* z{lWtbsU=>vHdR{SCACg}HhVxfl#Z?Y+SgU@#f#3VqWJV_DJvs+ctR)2N4D;oO^b6| zAqs5DKHm8{iu}`~C7m1}q|xHt;1Um9M$yzhZl%d=c6|76lgdN3Ge?s}UOjesx0?k= zo|ge`33-IsR^Kz~~ zUP^OrOmtvx_Zn@Z{V(d?GpwofT_4r4jl&=c3JOAIhUSRCZ zBB+EU>wVYzJokM+_r35WufjQmZGZfCjTyfKV7xP{m97ungcC`6$?sQ7D<;JgN=#Zz~C=PqX`h9 z3%c`t*6P=+WI7#v;q{T(v-7kCXI=7nKfOuj2)lI<(j@#iY59P?X$7^Wd1|qsq8Fbx z5L^m6A}VQE(`K}ajSOVt$Pu_Z2BsCVK=T%o`Qxp>N-%C_iDa1XW&%Yt(Ccy9vMUpF z530y1ptgz_)0!wqUDh*K^LsewF{Jb?t{Q7D9iuOdF*}r}`gi5N*HCWPYl%&`GX-hQ z*Nx9*8e7(ouuE+z&5@$11Z>WVI~ms-5+rfJH|XWcvpYXvZYaL?5lAe4i0@Jg0el}y$wX{g7pwuu}nqyg(bn|(mrk$UPZ-{aMW7v3@OQ-@v+ zaIKQ|1zUfc?x7nsJZp=qKZgt;W`hk{3LC<)A;KX;Mu}&jW@nH!eLSTO#K5`HzLjwl zXo9f-_a1eZc2H0<_jsxi@7-$MUu=hsf#Rt9&<^woT%ZXVWLA~{n$O5*bg9b6wuJakh*-$A%sAp>JH%gg;!5tTk8nLt~~@)aF7PDX4KAq*}OXiNe&la>YU`Xm5qt>_6yZ#hlv&3$f90E56zLy4J`#_Lia|b1x)GuDky42ZCy6&Ab&q! zr}G#ew&{L@{hN;0CS-fF7>X6eDh|{@hf!|h3)8o6)W5BGX>=%H` zF*>0Zx&h!RGPN&H?h8L*T{$?>;CbokRbsB!>#vv|V2*F9nOQ!7D^c%p3AFtU>8#1N zS_!LT5r#e{pKC~RUy_LSPc_)U>Vdcle+GU8&6@mIdY{5{a%$X*^{b%|?0=ec-9t>N zmrA-f%^Opatcn&D$!fvpx)vmsE184R@5IiCC}He8Yr%%P|Mc5YXL}Z{{j8Cjh@~h| zjVOnNs3!J$!Y-M)z<-K)+Ztnzm@d?%KAOGpZb4&T9cL_9;dAR1ht7A5OI(sqsYAzv zIBv+$>ix*1z^S03$D|$;wuNQ6iU%j$cBFvhHG`~4T#CUafu1)bG-xVWkF_#H`kaKn zQQZM@uRusx5CJD^FCdu74oyK1+4tyqfbT60PpI4kF91xhdPz0r1hg}SQoUG7!Jg?4C))K*mfY)r0ZPXh{mwVxONH{H7)x%@Wq;QI z38;*5JsGY*>6p#&=regIJe6yq@OxM2Y<8`IbxBmcqF7$LI)jhH6Y+E2qs|UL*Y4t^ z`5sgZY+!(Oq>r{&JU#bO%~X-K-{;LS;O0@yt&)!kQB&iE3d`tw9PIo0A45%Ea^j}@ z3EPa|P`$InEHmIGbA8Mc$oA3O7qY2b)FgD*X2js$6lJsQ==*BXe6E4eqR4_07-5ed zF4gIf=cV7ChE7ZmRw{xH@=fSe7thE%cg@qZ^Y1_ke3t9L&4}bnj`1^%%X<}G-k#bQ zN1>4&^0G3*p}|W2upj^LRcVq{5LXkMT!BKzGd-I@PMBk2XFM|3^8l@m7e=$7KM^M83*6 zTbU3S?Z+EGR0{PQeyo4>RT@1Y&k#aQu`OQGWH8|oY%}G3Lg_knLAWKEDDBnXe=#WO z3IJ+9RShXovShrl=%RtcQ0a=9zTpJ>?zP^s(qN8iDYp5gk@y(BrF}QfeC-FKEO&2@ zg*9%ef6z*9jgpH~MUX9`;*I%5O+q6_n`rxGlYn_haJzLpo1XY1HO9hk$~?=}g4@$l zPYrRUTa&I5P6%4iIx^Eq_#sJC=8vB|WPuOHFY{41{4B&(tl1cN(E6?18y1@IGiiwe zaua!T0Hun})tDlhHAgb1zyhzX<0U`kb>m#uGxvR@bFDW%NgRJC%W}@Rkm2fzJ56*V ztvrcR1KfBctI&er`ttLbDtpnrZ=!CzaJsRnhzCVPW|n<~))ICKkCzF;nkYN=848>e z8eBpnw87fcv~;)_p?Yq_x8!Sk&}L^9w2Q>e0`UYKPctWt!@E}CT^{hwv1q*Fr#Wl_ zM(^X@Nb337V0EN(BO!6@Pd8hoN!_c_m?zToh(KdDhvq{asLv>IE7w5^5Ebbe4r-<-H}lM1G!v z5)ow4B2C8*N@oCR{l#Xu7g*g81S>i8mY{d-Yx0>evkbp%F5}XxC9GcDz3A|9BK` zvJQ@Ur|gViBfiCkY~SPLiI@m8cp1Nm@gFJ3o8Z$}Rc0fEeb;C8?MrQ&$khw*a+BR0 zAlr4(Ij@P?Blb_dR-l>RQFiC156u0t4BcBT_DWE>v`}h*_{`DdYp*Cu`D*2Fa3jiA&(iwCaz88&tCRy`hgM{XXsWUP z;=~(?%t>>@&&Z%_%JzLk&6J{j^Z+c0KfImqaOv7Le?wNFR144tA~9?t1wR->$!N)L z%im3&8C7M$$_lwwa0E)YPXY13lpH_{MTAGEr^a!XSJ77k!RRsb@UCsLyOv|k{sryp z0C72la`d1ooL1V}^Tb-nW7WsnH=gsWCKQQ6@qr87lTu*t>aLeB!`f)-?9oZ?7U}sk zV7|^o$m)9zhduc@M;A`$`^2`Q{6w5C0)saIy9FPgTm?2hb0=Em(Sz(-7#XDm3b(ui zgY?!-P>R*1A zmVj07?HI0GkmRsSa0{yN@MJhHDwBf)#UHuIK%}-bEhzGzHD7u$f$Iv`Wd0Bebw_z< z(k#j1CRf=pk0VfRQM9a;(!b78pqkK&CA_dt^H8-pKmAZ?@bsNATRAie<|u1b&KLTY zvHJsVaw_lo%Nyu)<14azjLolDA1I6Zef)Mm|2IL|3Hhe{GKU(}oY(3;6C6`W`6c<2 z9KG(f(7)wGe)aJ8xz0>P^;>Mhb8~K+ycCKAw9c(}eCrOF`z@Ew0eS=u3h8t=U;a8g z4d=Bh^#%+TkCwwUXWf{_{&R;=oBk6b=;hYU-g7%e)jcQ||>pccFBu z1N1!q6BtK11l4`@=4{kzLe^1JyAG9Epu54fe$?r{?Ym8``;5KjEWu^i+)w56d$26=Zo%ca(*Ck^$Vpgv7;2F6LaqKKb^mnvmtM;I=PS{tzW-5}qYIHyZ9StN(IH(f>Xe_xF{lrVNM}TvEQH}o z1&mUQ?KY+aR&ZIWY)fm`1Ao)}?!9C&(4hM?+R8xQ*dSu-OALvN9=4BUOtlnhSckmQ_Nf|(h#O9{|%(1`6>a4 z_HoD-h;sbKM{g!z4=Cu2nL)>ymO7_~Fu#}#W~j(1SQ*iIpnB`HwYB>BGyQpF)zut` zECU;qIcQYb7c5<%=6VrTX-e`j5=t0SVjyiGA1TMm^ahwR_t+hs4fsMIpM@bhvGgh^ zGXt#lFT=Xti=pkoFQV}sFyIUN|GnGOnJz-}Iz8l1;znJJ?>kf^Xy*)l-mY#^GJUg)FL#5ZJU}kZB63XkHSfvmZl)eu3um z!@<0j6JGL|-eY6>5in4|Fs*NOA6DcGci=3b^xHOuV6nvLHH6AhVg6a(2G<|w z$?=ltiDL@dwXi6VTpa%?QtWD+8NZ(WQ^DieuO1rEvo_CK7|jO_def z4SheyJOn&e9iJGk1uVk#JO3B=pY3PX{@3?DQO(eOL|1n7Qqf5C^)8na5x&Pc?zNsq z{_HTb>&Iv7b^o6^IWIsq&j0XdEhx>t+N|R)J0sP0GG6%}#TFp)!+bUO`l+V+A@ZN8 zPLFI(lEsEa?p@kA!D;&KYP&f}FCXj9 z1**9O?CpCoL-Y4YvNk(AB_*?w0(G_nnKu`b|QMx?68^l=sG#uxNn zQVVJm=@%Idrxi_U&e9Bu`nE74?9yvypd^2{xF~p>?*$)x9ViXlrFC2~nULCr=Pj3Y$R@Tsh_-)d<}OtS*gG zTeBOrAFi1sSt_>)@QgAbJB2vGroha>Gc$l5-Q%*pNO@vD!E1)3fwZI4Xd7vP0{Mwz?L|fj0F46DdwxEAtaLhL~-SS>^xs^qLcc|zuh*-&Y^oL zrw>_N3*=GZ*mJDK&jHUg3}j^rQ{{fyK%R`$-0EdSReS!cB-k#=NBIvatH)Vpo=KbD)QcE}Qlyftz88DSG9i$p8J0%-d93a@M zo@cqB5B3<*DW}XO_VwP6gF_6N3_&86!~Jb*NPgLEFw=zUJApUWlvU}nxYw};)9AWl#DOtrrS+sGaO`c< z4WUd2jhl+-l{`WlfKPnWl=KLa*V3M6TYyCN8vw_omY|s>ftgbFSWd_AKA2Y{&wOWv zPgtD%*%0Zdsi`kdR$Z)=exI5{XQASNk^rc-I=p;b&G~<1H@2pHq%(tIT{Jkn^&VCP zgEGbZ&n#3R($$~FmSQ$8MghRSE6S~PmVz(zmfPA0yC|dS74&z!rF{0QaST|e%%^Oo zj&cJ{)V=8;;e5X)Zp3hsE-6c#sYx|6Kl$g;vyDVsMpVBjMU!1{|qb>4RyP`l9 z^qvOEm=}A|w#tKXHv>lQ4*L~6g_s(jilkm|9e(AgrI4@{xN*Nl+)Cf{!`qHh5830% zPE9Q3Oe&Wx`yr!~$c_(NEok+1KSu>pxM0dKG(XF8Iz|Q)V;ZLSXKF=bTy7<(=_jQN zu1A~ksK?U_*}sbm#;^xsL%s^8sQuP0{Uy^x_Y1WH1@Ht_)k}KBWXUqlKNPtH8+6$p zgX?Eu;YEWilY(c?3jRBcNheTh|FdTCtiiiC3+Ldx`8cVHT@J6zKPW8rxlyjnN{;~r zSDch$e7;+0yYHNj!?+JTR>G|G@=!{_G!!04PSTV~et4mlbVRzg(7pP1DE;@d&83} zF)u{G8~#;kFMDD<=@mml*}9;ky9jboMvUZU9%r8@Q-7ZNQR4uFl|6ph@fvgKMPQU2 zVAGptRGnF}JQ6-({TQy!W8mEVqL9_11 z{w0$As0X@_qnszDw_;I=O8Fy=Y`zXpr2cP5q8gFB-7joA3UHP14 zfK!0{Hb1yHx=AXfaQQ4B)!gsq`)Js4-!T^{4wT?$()s78sX^@yiR?yrtSnCBemqnj zeen12Il(qCJgXBmWN;Eg2krMOcwwZ7)h0z>VYeHlQW#RL2#m;QA^oO^gXP4I3MhAZ z7Nl+|6l%n#VbH5X`Me{WGTIM)VhY9+1BtIO2N)*pRArj-(L6{}qk^@IOc6)A1>;%U zsi<0D)DFilc3Y_&x!{Oqq6GQTH4Q!!ak5k2qld`_UnG7gYC1|D0D8TdOQVFtnR6Eq zMt3m6CQufy1Hb2pLXO5dUm5j6g-cNT5AQ(C6GJ*(+I&<10|U%2pryP(ec0Qs#aBsV z!7@20;HSx|kq)7A zsx^5V!+a~uZ#*Q&IobOw%j|(*FFEdI%XoFYHoL5}qClfw|M^C@)g=R|TgzX6T zdU&>GQ08jLbNz%IygpJ*VE}DRhH9ZUe?BU5DE-EHA7{8oCCSFtq7-|putx=}(eQLN z0LvXHq&(rqn$=UGd1xF{8NRmLbKIdij?YQwMS<&=qgl?g?jRok*OFmaTyLK|c9MM+ zeVu{LQ7r%yeEh|S<5ROD(ZL_FU;$pgZGj05+z!wG(k=#X&o2GoIBPE9pz=OQE>Vrl za+N1m$67KCc2;C~)nU_0{pFfpQI=h7pV64{e+?Sd4@+-y(Z^ms`3|_rxf+a!4xaxs zP)bkGJNXVMTs9{@K*y=0+0AEMfp=~x62(He;ixNpR%);;Juq_Q1`Kz|7jqg0tQ}7} z=3XVM=F)E)QU&OwYaq(8pqoo~dQ&h247~|p(T1>Q^ouEYHS(?8>l0Q z^gLCTl9xY{-GG?v2@PGvZjOp~Tg{JX6zMN^-79g;(eG*TkSH9M}C=Y2O^% zOBa4s<#(&Wwm_jMsi0F_Iv~g9&7DDD(}%UXYoOHytkFnWK2egzd_U%^>M^&_UlQH#~G< z5Nfs+<{vQ37c@@0L)E7Dl#d-cb2T2>0=B1Up`zQp1@(>ca5kHJC%<5o3UmWa`{BQf zxZ>_}yPF>FdG*8pP}BcUHUIzp-~Zowfd8*1zv!E)JVPKhL6plBNd;|_=NpVW_h-MHiy^g z5T{wO4BsZ%3xlV#a?SfK!aY!PqF@UfnC)`RQ4CTaIX=CW>PJpQcr($9SGWo6IU<|) zF!hi_)RacXuRYV1cX5p|g-VKy8*7p^p)z~_3*&n`M{t&p5Bvw2Ko{(tUBT)`-}CM_ zs_4GSQEbP)E93pAC)>?`{j;Vk)U5^n0dArYPmbGDb}j1ID$pxcc{x9^aK9jZlnOW= z`4P-9V!s>3Tzc*O0ytvrj#IWGqM;#OgRFhA1TtI<2Y%o;(!njM>bZot*PC2fF#IfB z?(l^pU!*QP5jYG_&23g5hwd%YWlqSh`B?QQl&cE$hu%(eDxiZ`3}n4j0$=`vd~37h zr(RN6Sqbbu28quNfxUzOtUXW`KH4418Xd*VVP-y1-Ya*^AJy1$^kc3e+o*y{tyVF! z6!(EL7N7#}FY>IDUGTsBv!)h!$oVpoe(W{MKuorQ*=EZ7YH((@>FC(%?Q^K@(SmvZ ztZDR1*>`Amu=Src(eu{oQ5|w6vm8e8K{c?Nm|~^)EHR=4VdX)#Qteve`Ibze%T%1s z58aKgxZJFNOPZZfP`0qG+24QKYl+DA2PmXq@5<}RAEK*5`)sY5y8|Tbfb0>@Czw|D z)hyJ#TG%;@i4=i+7{O2dnIt`zAZWP*`lUzu<|6PAx;%F#RWE>(I>fKs?~bpQhk7w_0cD zSu^jIIPQ@3&0{}AP71`7wo6|~YW1}lU2zYl?|m8v{AbzWzGa(C*FRWG_Y^DLo?oIg zz1zcPROufrbKQ&Up$EF|N!AaRi3S+ca0P!oY)qIn)aPmxG|wpGq3zKxPYF(iHY?hB z6i|7G_LDR~m7YTIE_E)%$z!km`LiM!FQqs7w$kq`6TiV&^S8Exkd7d-Dzid~nR20P z4=+`uV>P0Ep&0~912V5jT4bq-b6-!Bo{qu4dXyGdD|%mM_zJ%>VI*i!uE143e$QvY z#ecJi67C z14W)J5)a}zOAWmWOrD1t)1;}8A@aCCmP8IEnhw9Bij;HXG#oqqwi#>GG^>J(f=1cC z8?z>(`e`l!9571oFo>L6Oe7x>gp(qvq56412)z%U0VT%YL8zA8ABG6Qq59QiylFy% z6=e}`Bsb2zZDY;c8tA89Lw1cZqz|xF7oQd|#qJOggOiG;az5~t7fnA~P0OeHf~P-= z;6`r)J!%hdnl~C`&ugiq4K?za*s_?Z#Qsv-VHU$-v+@=kd)wN400a^2aJWUOHKS-+T(l9uc$9 z5vWlFe*}?!Ci};S!)fT18TRN)tiaB%o!;toKl@KGmSYwKh$gJG=vLR%ly@{YL%JD+ zsUjz9Lkm<1j$&dqqzF8$t7}jgI9W5Tu%QHhW2zLBVZ`wQ&*9RW#am$9_F!+Vf~*^u zhB2XBM24E*Ch$fqmLtoZi=3Hc__0C1{C?AiN4J=NuNqh8p0abS2ADgAoO}Bq_$|?-5$qvr zEPzs#%!|{qq)7#Z9%GaQ(w$q08T88(#`0VVRLc-|G!_3ou=JD6EFNSupTZYY9F zd$`ZoprhdoA2x_Go|9C8_nr_v{ zz1|7T?n(3=+wjB8cztnBexEVAP7+96D(gvQ#sDf z_UeA3DF#+y@oY&#foCoj>F%a%Y|skbZKLZG`)E;_Ge_>sic*Q)k%QjzQno%?zq!!a zD6_2KhF&@(bt@hIvZ|eA1P_A_<_^HTz=#sCh&W!iXHr!#d{DUa!5M|~+0r20v9?Em zZ8f*(+H6Bw{3N$=r!XcOvFBXkm|C*(IVP5}G>G~s1mQ;L0JdTu#gUP3{}ZDz>jDeMocPrAbFxSwBl2$ zeF^YoHf5JWK0=ds#98>2x5r^hgc%d~XQ5=uhJK^^Mr1oxjsPpi!TdW&7yfaAmX6W!RWA_(|eLe#$Us@3a zl>Myaq*tl-n{wucA<(xFhDyG7+(XQ0&$Wm^4|IvJ+JO=~QU`D;Nc(5aJ^mp2`BX>B zNsM{%v}j^j?C8&U<`RZCeJY88QqEDW;;d9tMx-mioa#}5(H2t7r?P_id1D64;%d4x zcE!(MICK`I5yjj(1rGVjV+znhj_36%Z6$wAN7ab+k-5jd>vK^x>Ef%9aOUgjYPG0e z`TCzV;fxBhtdBnmb4pa3U(`EbyhB4Nz=4F7Hbecr=~9id<_Y5c zEvLmtg=H4+R#>p zlHl*ZR53=g&MDH4)0c)URfTzA_y<#xC$`ojuTVuqxmo+1?4GfLJa5?p|KKm=xC!5`xu@& zp-edh^?Sfey>9no=N|9Q)YcXP8+uT}Y2MxsJkWrH2)7uDf|OOY8T@u+<$UjQbXghH zlb6n$XCrI9fb@vB68C^V+o0Hx0bT%Olyxo;`Jv_^W}k!lb5&`$T+bte2RBr%y*0(g z3fRiu?e2r2zQ`sh*Atqs!o*DBG%*!l)3hdadr`<`cUUN-sI$tSYo0iI7p`2TJbBF_nDJHx01hFF;YL zblD0u7f?X)KU5jh?=PFLllD2Q@*@DpR*HtRD*>75F`(?sy}H$O?8KslOQ#torlf6%8X%yV$4K6@YNI#Szdux0}tyP#X9C?k|H`8nMukWor_tT z;3nl9=D+)v=TT+EZjwf0`Z(6KH62`lE1~+A77TQR`qaPXWAxcf@lkLY_xz_;pZq{ziJ12LL{iswjoF(xEN~QB*?LBW`mNrf- zN2!!A73Vq-7&M*WXKy_$P`xVv;MX*GFU8)YPGJVJt6xPc-Ru86>-4|aoBr<~|96ff zPCLZ5Z5q13k$@g(1|=YCg`~s@mXUxi8I{^qKa%i&q4mrJme=oo_X~w;`5pztK;{NaM&xmc_gPYz zoy&GVw=qCC?26>El-B*qovM7AKB@cY1?)FLU<+ElvMcGg3^uQ4Q0iD$&jJGGb&nqy zc}Wx8;!Gtf&H9D;bfvKY{8>q{z?m^Y#Y`fN<$&nDIX@Fs)w0HYs1nse|4!*F+)$l1 z$u${rB^vBpn#r6xo^1}A@S@R9AOr64v*+MavW>x~=dfuCwKk8P!vou~m& zEdAhwu;6}#b8prCyN+pCWvI__`dIXrb)N&u_RFY>6NE!Dov6TI4qnsgxv%d?j4e-l-|bQ zF#ani>B`{LHkpMp*^jMP_SsV_&R@Z{1cLm!7Y*}ZHbWcxjSScJbLsJMlu&=5G2v0n zjP2?LG5SMR$QV1ehQ5n52CY|a;2ct#m&nG=h<@V{)io!$Gnspg@RR8m&Lsoa#WR~4 zdT^HD#xCItaJQjAOAVz}Lp|zBV--6B)^8|Zs?EX=za(E)eq_;BA`wXS4!uojDZ8Tq zoa8xbM5sl*%0LTm*18TF^E7rEMk&9$?fB*)*igx+DoPXm&T1nqi({$9$YYOrsp`JH zQk^;ZDk&#qM$|u47*N+)_P{F6@njno-6h#xd*^O2TdQBJ}dD%Xh<32gIOE`JRU9{{}&8;Hzx#-&d*@eh$;JMpe!N57+|z(QyGw~rkLL6$O<#LE8#Wt}oRtb6 zKz7znDx#474A;0AbBj{MRRkBZkPf#t%H*L4vv%82V(EHfvJxd7h&84sa*fFCwW)_t zyqjgF+a5^Z0Lfb!94I*%Nka8m0qrD!BIc#J5Zx==AZZ7a|06ZsO0hV5Arn!{!jOsa z)4!Q2g*EctLYa8Vgd!+-FU^)vL6gVw4j-pNi}aKnYhPHWQUGy5IwX2`Aa#jQd3= zARNTR7LJ)_(Xi4W%8+#@wyj4#l%*NqW%AD&K(_@sUKz)z%0dl_$}sxl&nOY-=`(Hy z&!^NH{W#NdHt8eBap&RDAqR|hTD~fq)lpfMth(^akdATVAl08XC;iQk&o&P63zTG^ zCL4FXGtIJMFFZ#8fp9%9qZtnFc;U`j!#>t`-$Y{LD6Zx z$odn-= zejauqJHI7&R3%PdC{{4H`i=sFV=H9)YYsK51AO?x)io9tCbeXhzaqkqeYC#63=La2 z!%u_4oO}B^6sOoVchHg9Q?>N1gcI<7SF`sLgxIG{UpPnn0MO~f+hi{uOelH7z!5taXboY1VdHsl0yY6XonqrXyyTxX ze4lpdUaaiMRCT{$?H~_56d?ur(WJvWI1PhJj3Vb-P}bk1@Lf&WC7saUk$yV;hT*9$ ziZZ(7vDrE1nTIE&be@uufz-MAG9DUWY>uK7dYorlKoy@Q%?&5{fj+zxw6@=16qE{Z z@Z4N@nwu*{`?FRwEY@f60LwVH!hD$RmSmJ2a?jtS>NUMxL9f-{JrSYl$?CxCjkeGJ zL|B|9ept*9Zffa-J}EZl_=gsqril6Cd<%Vps zm#4bSD7kuM^FAaN<9RC@n$j-8@3uwuq#i`c45`J9M<-N`8Yg z9%W8^S1=!G=hW~ufP3UH<)^%DOU0ev+e4Z`v19b7mjJv{ewZ^u^x}MkW!rznBJmfd z1%A{Lii{GSjN z89$$!h=Nzz)WE+mq&XtuT&0ALm+vaWhvedz&Yyd0>d6L15h&%pV=p!);$8>BqopAn zmz+;8*lpyna~O_G9Gdh_B0Y|7U30&VdExG@y%uFl1Jl?7N*e^zR>R(}S)S_PkTS!l-!M=xHpVVEF?`IY< z{Ab!}g^bruMiIMnja&kOS@fArfq2tL`WOj$e*=Qu4Q~htB<*p@UbBeqIoq!I$RvAE z#fGXGkD39{2i?7Gq(F__Xvu~j;m-vEwjrI|C_JhF#avkq_vP$HzR~&SIzAqI<-luCKftlT$} zhj7;r9xIM2HwnuAMtu(BXp<-LTrK~o0>@7U=lYH7h>Dk}n8iO-6(H;c{>++8>NW48 zOqQ6P?X|SNbLo273~R5&d^SoRNG&1uyq+J-ZhYGMRMij_dG1wvZ~-|M7zkCqO4?U4 zQ(?oz>y7+5Jlz1BuzB3#1mN>}1=&i`NBUL`-hmbNFp9FZ!Mz|la`7Y4_BgN#{?^!M zU)27#m$Reny+hz++5&PE0WiXU6MdkKy~C2=_y!Ib^<1E7R0@{PE#RZYJlx(RIm0=M zfmH^0zD-~JG*g{=tQ?`^7+Q=|eECtjikp0j@;9PeJ7hRGD?lEZR8k@lmxHt(aHF>2 zJv-FWy*&FCL|yTQK;-b#J3oj9&)V_(rs-^MmWTkBk<#A;e#) zEOM=nAolr%PQZ7)pxXp2Ct0EP_-e0%Z#Y$Ir`1Nkb~nx(g&@R z3G{%gbvis4CrebEQB)OIEMWFJ#cxU#r47M(vP$(uE6(=MFn2KdgXHr?T6sj9Z`> z$@)B{a8@Z`VEvR^~a`80AXM z?0Y{VWgLvK{Jwc62Kus(E8Yu#S3w;4By@VZM6Vcs{w9Aq)4-sYWHss+o^Q-$^#N{5|#r7;! zNwN?1JwVTa{dcF%1!`qO%|MmD_t~rq{Z-zLw1`m=b^InALAv-%Bb$B$(vj)>O{u27 zC%R8*48QC-e~f;@B7`HpM6ER!fzn=iF=j5Qp)46OP?c2i@Ab%YclKMwne8cfOaAz9 zb=A1DG>+||jiCb1^K75TClHuJ|VH0J;2jSoO0V8nY zvTVtUrAD-AM{^tVf;3H)8v@n=LL1gZYb!4ZC`%w`_kLgqa{cd zId+7j3hvB*a@NIE@kzVv^Sqngf7EEZWlHW&jsz+n3`Bh-iEW^Vw;^K((@+o?AoF)T z|2`Lzy$gM@kaitMfrBxl@eiCuR&XZSGd!jE%BeJ;RiCg8a5ZlS12s@Sv0$eJ((})q)g_^#*gdmdKx=R=-1&^H$g`(P13_1jLj8 zFv9x>F66X$B}#JdnZ)lH8xwtG*QRgQcWJMeMGh_avhOq;BKltn40{$hq+J)suSjq? z_|)73W?HjEJ#V6QnzLt%@P!Lr8y^u1TYlLwGw|eACrbJ4L*OS)nZ(|;^2P%bPLu5R zxHq5YDc?~)(;7o4H~v}U_1p`r*aX)STnt7}9;YRR$6(&Yv-uu?pklmMrLq-H=RbNg z%?WHvMLkV2(s+0m{YoR~+Y=F&d;l%{pN|57T>(>}&sVL7M813e>wy{YZ2aHEizABx+n#Srl;M=alK56K>br5lEsc3|7bz@*0F<65k) z1G7PY3V)OFFKup4bNMS()YUs;AE$1ELBlH*UyF-an2*NRR$PIEjUj;~jhfnYs|2h? zJ0g}x3}PmuD{~%^l_zfxsQwj|i>4K?f=H|d#KJ={J zn?(oY5fhhxVf0)Q7!#qU`R(A!2P!W=E4V(ZhuPb<$8;}3k|R0u6wK2N)Vn?m{*vWUc) zezbsnfcjQxU7|GYcTj(`p!4oadci9H0HMC<^?-wCXjrHucrR2%7rH7p`ykKpGo!?J z(`2`PIFXB508WQK=bvbJJ=(?mASxT?PmE>#t&j3aY}UJPGD`!Cq>KPfE_)r;KuvD84sm*H< zKLa;A-=7AOnM>Hs0k=Fqllbs>j%=(@_fPJ0d5;C~Hcf&mtET0kSeXHXb|shE4P`8k z^cm#`sfs^Q+z5TFZIDl=#}&wRKFN_A%gK;>>!ixU)y1!djHv?R)ahs6t)dd9%E_?+ z^GY+z5jwY|9GMk4+BTh4(Zc1X*EVlj1@&4kQ|o3s1$Fw77mty z!7o{#J;BVM2gw!ST)npsf_oaHP!{5nR2t%-I*wnd>W!fUQ`xfwAQeCRfAIF^VNIUf zyRfZot+j3xt+WWl%49{LDu^;9bwps(s3=&R^$`4hb3FJnu8Cd#!uj_wc;0mj)#` za83as_^vR-w`l?hQa2$7^OKrM-E@-uA1E4TBXZetv$Jx6Gn~g| z$;e2Fx~J?qF!)Q3a!o!E&`l81JX!sc%kJaQ>2>e#QH=l+X(Lt6;=qNLgOm>V)m0&P zPz$65>TRVFm7VsKrLgTvx)Tdh+3M$gCL8IhZptFiH$6j*$)iDIZb&W$QUX%}I3#0+ zsgz;EQ=YFTo{+eucJz6PwqwtnMQu0K>(xJwusynT0AN926}rg<1O!zVCcFyBuKE)q ztkUb_2JbO98!_>4C$b!~#x+4cA8pqN_Oy}g+o)x~ma%49)0A2y;Xr*=;Byb=7?jQm zI%YkWWC8S~Dn+2+gm~0BwUw*_1`*MK%!($EmepcW2T`~BV8>judmS9! z;xp91;8M?+TLV}`GAgeQ`h*}q;bF`61|v0e#?Pj3#25At-==!y5tmjZ5-12WD@_*`K*Tx=Y-x|jf zYS2}dazQ9Z60`0yUuSt#$4d-?PfA~ucj`bhWtiY^I4(@e^wWb*juo_svc98MQ|XtK zfEPZCctqTZ4o808^_F~U9z21s%IU%(ssCc`fMBS#>v9c!^zg}WN@oba=4CXM=k&gr z@{PdxUX*z+#jplz<*^`qU*bRH|ev z9~}Ug_LoO{G%XO`uGR-U6yKKbhVd4_cFn*k6O9#?Zf8)HyXge!c4$-?GOKJu%#Svw z8_1GZW9Zz2z8J;JW&d7F+;p4ZX9}_Sq((C1*KDy3;d82VUrW*s)W#zNg_Mxkw3rBA zU~wOsgE4V|)}O}o+p*ABHHBYQ&+s}9yPj){sn?5fc}jklg^hpe?xM_{wWh`VzDm{S z{!oZ8b9kr)VISbJ(<=t^I$3j5*qlHMpyabZZg~Fm0`lUx0{3ylDeBLVr=_5;>gx|; zx_@84$R6?Mbnf;-f~VVPOwugwm>4c1vXQbgA`i^#<%y2hILY7RfiQfD??G4WGzO!= zGxL1v&(?Uh9QJ)LR~nA*aJAk>m9XLTejMLw4xaP)@vf&$aK{n^6dpHDo66WJa>`1)|wMzOQi9wV|_qW|Y&5wCkt z4KGT+{n77%OU!c{^f95r) zI24J+9W$fRNAHj0>NS^{%Jj+tNDL(T9_naD)rM`9ycM`()erV7|eCQm$LeIhEVN_8QH-#mQRv*D>jEZ|-tQl#&G$c4k-Y3PMquY@T zvCL4;QVQM37_PUF?-#gKFAXP}BVXA>!NK5N0b%xJ4okzZmZ9>6-kSGDbFDF)&IwTDd+uv+Y|mzA8+JPMi1lV#CA%o?<^_G zkVpV}LxsKoj_jQ&+8y%v7Di^3%}Kdrm{cYfSWO5O)yCz=>QtW=pMf$Va>FL_5bILluRf*C)S zQe%lLk~s$QWLSKr!4*4@*H`ey|E4H{qSHiw{qD}pZ=L$yfvw%QvI6tLW99|guB9W; z&4^uMv-EjTO1kuQAdiF_FO?&zz8U5-%{8SR#NA|#!HC1(W71ZRecS-c;Nk~E*iRZF$Ko(x%D_JyU8 z2f<3=1br+Pms@Xjf!&p4k#mJDnHQC3W1xyto0g$h@B5gcTNB5_&Cf|E>Sd?gl^q zTocg^ol{TOFrdLy2W6&U9xtWZaK$3#$b?;IhxV;aAUE$4t{z*$uGj7h`Ib}N3x^Ey z6lx{FvU|AkqTqB(yiQo8Zd3T$?@aXZQ3>R+BWny5D&b`dyVff1S73+CqZfTNs13I7 zdsdov{M`^8?=$n7CwUCzkc#sReKC!tdS#(85t6gg|@-KOLEX$3Omy4-$z zQ8{`P4F`C1zGI5k-_+Q3gZ=uHY{>c+z8)sue*E3FyAwAHC;VK?=n8uyG&G7r{}dVw zYK%<3EWZkl0)`Jo^ue)?pESnjvP=9hzf@5=Z(^4Y_Ge^dA$K7X>eESzaX?*M7@|Rs zSH*$F;H5i7Ib;n#s^L#+FuL&!b&|f6K&hs$#SF31gS{#zf*p^!*^@+n!6> z1N6trtDK>-MHKsQK@NqWN70#Ji5g~JmDC%ZMpZtP;68)}ky7ceD>OH_)B1Jqv39jn6TeB^~ zRl<%j8zht-If{H1N^q7I=eGyy=B8;xrg0mW(ntE{gu^WhRmj#2HhEI0HwL~=4-=l{ zi8_PzS&{FW1iz#{9)8W!NridgDo*B|9g=1i$ZO)B_$6EW=uCV+phIhrDaurF$ryQy zmrCYS3tSw!N18d)QlhWWcGWS;b|kGFZt+xG)lr?sak)o0o8GLkhX1t3~}o2y2EbtaJMki$FB z@u+hzPi#uC44H*Z`HLd&B3Ylc?u101+yO03Ae`*$d4{J$WwAW;s8h`+o$8<$SSR;0 zRK?gkBpuy|&}U@GxR70*8{u%Ye*cgqidXe(@SbHpm-$v*=}!+^i=|;kh>EEfD! z0&-X2t`NC(?Cx^gg=|^MPcb3s$gq-3*i;Otiy;p~PHuF};{<+Kn<(@VgF7`om3xp; z*|1f`uCBI^Q!8Bdfh{||*Qwe~N_?Ai^uk#-e$7`o@}9C_|xcl@@r(^H;naYT4yi^xDC~VkP!I!cb>Sc{Ag1dWzbrDf0 zsWK%OX!*ZgrEeRZZ`oJXOGU9YY8h`JvpV=EI3+(&Rwx>V&`)GT5aWK9&yS`e(_fTe zl&w!~aFeNIRaE7kdIh?rWW`JA?XFx293nn1R8+uC{Vh;=#b-8VPN7=y(y`|?Pq6V) z;tn289O_Jise+ec2|4Hk#Z(*hWm~5TSJGp64 zj~ou!j3UeLKW;d^!v)IDp{mFWJq2d{;idJ5MwX-{XMZ|DxpI@6iyPsRKt3H1BDbMvCqu;?<;bUkT<$ z6|Ej$zhApT@l};_=*7PW;ftnKlD1QR7^G5#$P0aiF=k9K`|l5_fG?@wXJm8eZCf49 z5UP(jl>E?Ucc=R}xAEhKmo7!X?A=s;|6=jage`LT1>ebisW}LL9_m#6}d=)IOC_4OFrN0vWH?m`ehI zLmPFA;+u%*Od%e`Mz+(Cz3h;MKT}p4P>?Q?_ z3`RwH2(9-v(*G)S<2hLsk_X7&KYK=L)%vc!X9+i@`mVYw?zs8neW)afN1@dcLOaQQGnbt0zD`5h}+Kfeaj}5RohosD9%uZ!G@*8>m-+`jTKZ6V`qR zhW|aOi{UfC5kj<$+N+*Kmx7E_ z1tAxtULSOKp7;FWGEgf18~Vh~{{zDL|L!%>L-NxffK-iWk~Q|mtW@@E`W28>(w#ZL zF3}tkScPDA<2X~;?}{W#p(@Js8dJN7Y8J~~7MKs^eCI=vr6be;9D%#yb8ll*j%;V%)jfMj=^ft*1=Wdd_FH3c=yUcGfP(jw8FS zlPa-62S?uZG~v7pNYr7+ut7MnqB<#896g^;cX}KVK_(pdB7V5`uQ7XdNr$PT*Q=NR zfe+elV%cebgcVaAw&wj5>9dM=r;FQp_ptA>E~YrUwxYBPbrkshwV~7}XOrDysyv(I z;ezrs%o>10Qi<_8CM!c{yID)=Ho^l3m2a3-*+2fefCkNpA7?)9&~C+y@(4V_7?csr zsk1ea=_1x$_Y8e5G&Wua6$J7eo2F>z;k&0s+!F5uf@N(I;kh^j~vtF z2>X0^zoa}{QEDpALp|sSuF{t!T>W>mlbZbb;2koid7wg@KDdnQK|Xx54oh!dN_22f zA31hliK}S5C<7_peH#W2tU%^{OfOp_MPCBMC4g%6G9&1};@}VUZbHAR&sXNZUH2ik zfy&0L(|O`A>9~0_tUEIC@E?dBzlnAPhW=;|E~(rvYc_2%JBFe^!uw@CBdlCw4r2GX z`v=(+MmXU`JC^Mb{nyF;>y-uS)HQb2?AcXAYhEX!kKU^OM3Wl3tgz7uNB5_ky3Kn5 zNDxet8ahnx0KwAq0r|w<=oSyBj~ncUP!8ng6=|9r-^a?_F71@4GAjAEA5n%Olb35_ zRv4zWg|E>-Tl0RKa{N<7gR1LPN9%3Ug^B3vua-+tS|ChY5H$GKAK4jF$1OEnjy9fp zLKXqGS@~onqH5YZDH%GX72nOU7M(CUl7otQfPmkS(2U7O{AQ$}i8|ui#ESIAP9u%3 z>XuoV-%Ij)k1O<+dEvs!h#k&ebzcOKWH zABa$VJrE{wvRuoeBidnlv$5$uPR@?y;STiaZ>Ea#>;%?#HoCRhv(CPoAw;Lo6*|9L zTB;sB+RNm%boC*-fnl3Cu^<+}$Ui#1-ei5swn7OxkqPVk4@Y1xaixr<&!H~5AQLiZ z+G)6#MJ^1SJ-HwI-Ya!3r4HE$4wZ{xYU+CNMWY{VAgw`fO0i0LT_!q^HWERc8Xfh+ zj5Mq=#5EG7i9C6baNp7wV%W_G!m+!nMB8!ic;)1oCO=kaw(`w~SWGG_lVM4~)o-lk z(_5Pj&Zd|&33)uS+gVVSEdwI-RdB#$o^-dVsVINR^2@Zxoa*FOmOi0Kf~6>X(OQlH`*0k3C7|zUD!h^ zza?thm?rRE^pA z@04>LmMxRb_(M=>{_!Rx%0ig`tdo{}^EOa<3xBW=bsoZLJqOi4o9&jJr{pkgKE0SM z_3RzNRTt9J;o)b9u)6^-J;U?vW7{27PAlF~2J$?I!bz%cHkbtd9maR4X0vHAOR6K=Td^x*K38#wH+R67jH&C-Pnz9* zPmCLnWDJ>Z#hqyF?j zF52`7<@C@_L8y;7>HXy&9H6~+lD@TbIvZC#;VbmDz+7q7XN|h47v15m*x}4aChTO8 zYxzC&3Tt{(>c#{e^jQ|+=TF?-6?2c^ ztpDkgZ@=59*Ww_JXH$2KM!WN;^=}#LoSmy1mG>)QkV*av6Pb_|j*SZ}ju5r3{fQGS zdWk7!=;!VOm-i=2bcXV{-hVYX+g9c{|1fdLwYGuu9hmARJug|%vIja1FXS3BH%t1a z5Axt`TKg*btT>*j8`Es5_MXVx?Nv7qee>k0WIJSo&8F|IT8yiltLm-6FXddgIQ%)N zvCPW0Lh}jtgvKAs(U13rlnl(}+c?lqhs(xf)E7wY7e&)sPrk}P55HUG?mm^K$k}2| zIg>V%1UsOi?jObir>Ab{VD2U%8_*;Hf;9eV91!93|D*`G7y3{x-`%ZA->Yp@2 zGx1KFDj&Xb;cbkHn3BLglRT+3p4RL_Z*z2Ki>B4yJ&K)xlYTA>iL|w%)z2HK555cv z`Wf-F?CkSeYBri?U8tfp#U9hPyJM5_R)+BpcAsdRW^Hp`P(A508P#R`nVj~cdmDgU z^Z5hf)4m#q-D4hw*#8bK_`vchx0YAPd|mLlh~JC2oc);gf+Ef`U3;$LPRlWYxf_5K z!3j@yeQ_aUt?{o6FC?tF=wwslz)IaR5e#6mE2e96Plr>4PsyM1#|PsBN_ClvCci^t z?dYP@d5%@^)DN~h^O^dOHHC1PwWs_P? z+u#zPTAdJfo~3lt>ymm^WL(Q^)h5a`uMMM;82opXX~GZNP4AMBUbSUz*}-q`y^A|G z=bh>8{;Hz#j%U}n(VMxa?lvYt$n(>$@=P3smIq~`N72Qw?t$I2GXim|69&}S8N{=e z3xW)q{bG{#_fc~e`&#Ab*zxE74}00^qjpub2z}?5iKwuQH1Uc& z=r9{uf^o5As;qu_LA;G_Nge4sJquY2?s@s~1^QX``d;KyPnH`QGQi zUhlh%A1^1q{J5d!@!bI86r>ky3>BwiDoz$%Z>gv8mp-K675^-uEe{pIsv%IK-2y@5 z4-3*o+tOhZ^TRLAG|C+i6-Qav5M>ebHG0&yp&%G}xgwe{aQQ{aio3E-miVfCVbwP{ z*sce)ej9X>XBGT6Qmua%)rm;A+F@HYRJNR>Ilx;f4w#l9^Z8|wKEo3&7RpS8i{Rzl zD|Jm~TXPV8Dbd@gg^@o#Y}owjealjc*D^4aV{ZCHq&Qg`oSYDbnY3Nr|BmxO{NP55 zn0}(Yy@~FX+L3fje^_2|c=<*JlQ7zdsyd_E(dw{Xb0^+xso-v$QBsxzL_>r0Q!Ve3 z87(a^^KVhyV~VD!FCc0vVkygO);2*T^BVn=-sk{LEwASsIC=ZsOB`z!VhY*J-?CKN zRCc*Yp9VO1zN=Y`v5=c_v;I+HnBQ@ofTWM&MxGM*osiU^+%{4iR3-MaTo&XAobITT`$q;R(y3|xutzENi{%zLA&%vH=5icJ2>VC zBkUn*MVseA0XB7#@Wp7vZ9IRb*JWbCY>hI!D=PKvAAdLQp1l{tofwcMe~4=q(sVJ_KL%(-jzh+**yF=Y>AyK=RxleFYsfsPZ-qUA8ZA`gg$oBaj zU)MymtdtoTsPpA$kK+lJ(QbLo(!pgRn(VF2 z1NXO;G35hKG$yF>LlH*(3o7Kbp?D)=$b3je_2NjWBSB7&^257F&Qx6oyO0{P$G~WW1*10iFu+aU0HTh{l=6Ia z@dTcId1ufvK`wJ)?ZoPI@+a_H-i#n4D@wd`!p}_&s@LswlijX&q1_9we^KP_==0|P znfqPJF`ZuTO8-rXGrxr2%<$T(By&mRM!Al3i`x#!W!;!RGSm=l?y>qft(58i4Y&Fr z>HL9(L{WgJL3R($w;Av7uIZxi!(e23o-bQ_%73@!p{b_fY0)M1ur-4l3WEY=cC<|y z*sD)c)&(;M^Cp$PrPBj9Wa$gtmqZU)=sU+z>ABAc+i^ac2CvL8n^q!1gUIr%j7q;B3fuFuI~zN0=%#%3OXyfP>+lU?v!@G`=wTYC z+6oxTz_^ba&XmQdMh$hd_~(peCKVdU(6`8n-w?eO5t_e1hTbFdfqN@jjZaVkPowtQ zfTtz@!P695SrNJ!rm9~2BwY@XMvu^`mr)qd22vJS1~N24U32(~@RIUqJ;&R%YaJl} zw_Vx)MaBBR>1_CaRIdMGpqUa6$)Pi;j_GTzEf?>2?~VddW)9A!LbPXE?FE4NSs8KGhR)knYovQJ4= zY%a-w9qHx_rK2wZec?ytn}MvB>6go^2(?qReP0S257J*BG_Y`i#-K;U|DXume@j{4L6J<5YZ!itP&6u348fb18)pgw6WSx0K%zKss&hTv{!WS9v_6vdIAAvKa#8N0%0R)}93 zKZc&JMUNQ-;WrJFg`!KT+_ffp=sICzycojj8gQsy0Q|S!BB;zJYGnstGCl*)7otv1 zl2o4IVP27MAcPgN2|=8#GBt1()WNE>9Oemw(Pc3)P1g2^ysu2IK+qUybwRk*P2 zjK3Ij8!n`Z)1QNJl~L)jABj7-P2md}>_ZOQ#IAAN0k8 z6@ef)%0^**HU9LSFao=5e^MURe!)5%E*0E_SabC;2n4rX6JKBueE{Jyo+22@BF?$7 z57oN%aRafRPEu^~Axb7nr1@t-YKzOkZykgDRJ>ZIgk5T7{CChWDOX1@GdD7qFz0+# zPL*`|zTVOHS%%ggY0bJdW2`1L=*Xgf?}{3@~NB z{WCtr_%KI=n>59@nOh|;7i$%y2P&Upl5bpHFAjd_i4$ts`!d;2eWb=02Ws{$8-+Tv zZw-JIgbPE`gN&3VdYz*^2Z2drAC50be*;E{nWLzkO6^dNiHas7Tl-B_wo6CfS_>y@ zSXGiV?uEaV^-B?^!79%;f@^`b_y#4=heXoMpQmtY0Naw!(r2=b6<^dvG1dJe6)D&> zV&G?()?frS-N}PPmjn4Y+ku)bQSwY3w4Y|5V4{ksNW!w-SM{uV=yT{j?8ZvGjPwi& zBK&<2zGbbD=FeF!+tx5~eW=>_g6o~gwAnnJ4185^hZYpB6!wumitht-k-q(WHk^|m~6_^$DD?MLYZCvKal z*%)74OH2Nq!VHx&J-l;4Y!B0c`GdOBT?zu@yF53iFzuhcd1 z5*{!e(^a>bt89xl>sQzi)!qD4e1AmLGBDk%KQmvT+oc{px-(rI#1G$W+Lk@OXnYZR z9y6vlTV{8i{F%R+s^mPA&5WXg(kNUkd1s#ymK7|{@snXitPVP4Xv?)oxqtp}=Cce; z^=F=Yn&g{eEsdiPoI=4Ao<5TYH7T`q^~#n36W&%=2!XBTL&c`}d%KcHI|42fHE*3( zY-b3a%zQvVivY90Me8-tw~GYtH133Bwi@bybd5@asV3|!@rLNBVr}54nj|24qbEfy zpS5|8Pbpn$r{#hhwM`MVsg5z^9~5oF(1_1`aBNGm)VS64&mbZ#=`+-Ld7Fe5h$kUF_mKB2b067=6vL?Z21*%m->Ra^rQWh ze_R@FWSsD?q{l5M_+R8gU+Jb;1utioU(-rct`anr-zf6*~qjuL%6r z;*}i}&7~EavSh)|y^t8CnQoF_r3zM!B}lXD`I+TY-6`z$#91d?xqnvsTfiXR?k;Z7 ziA$(q&}COjAja>MtZv2$Mw0L zy|Xb6Kg&!S?+}c}YXim_>GzvYwvtT+pI1`_rcIS~w|(CHaR!nqRRFwIVkK%rm{Ao{ z;N0j)(|)S4z_CcNXDx17?CFlMYnXN_M^8A+PB>u`j=Y_^UwC3?-sgV4xbRCQRy*)R z4vr~S)J215RjiqzOey}w+TCgZxz$Eq>lRJbsokLUSYJP2qj#IdTsVI{`B#1dC%vr1 z&EB-WH=^|-EtOMGOPa#f>qfBJvaM9-F7jb?y+;*UMO`xtg@ylnQ_5zLMEkhmdpoLJ zT=Qa4Yg4}^1fADY?5W{z6R)*hp7OLzO;I=t6)(#@oN`qo^$X=C>X;FAaw=)g&1Lj> zm6V-Stu2k0H}mwD7ZV_QAv&bsa)ooKvJ7-bmS-pId@GDB;~l(WSkq% zbnMarWq-}=_02wMsDvn5O?c`EArc(Zr)RN7y*!UhCIausgU+tq9`9cUa4a z9gMYKsDZ^U?k;vyiH^I^N}9IYE}A%DR=ad4v(OQchKpbxK1Y1#VJq z1Tp3w3-WV28KppBBk*F74-QxoA1f@LZ6EhVb^8=nyGjBvBYSU#$ug=;kR^kF@>cO* zQbI|zmo(64Dq#Pz+vb^p6?tapzBjy@r0)hDGcPK6jS~N93LI50>}oJu7^Gck{5$V; zx&1VeEU-h~!OGMD5kv=6t74k4rkes+V2kVjc`wAeh$8Fz)%%3EF$U8yMr`pf{EGP1 zh|sQ+?IVoeR~z?TscjinTf08tQGad36kS*z<$5OYbJ?$4rz2|FjP0WgZzEdZKPW{p zRDXuoZrQb7B#Jyfz>lp5P-WC_X``3BR`H?_(W8cBq?4}(k*7oDm4<%63>i?^0Z+S< zpoq6#i*F;Wz@?|2!mbZW8Tx7T7R*K_g?B@{Z<*>oxNI8nMdtO_JwU4u)51?w>=t~H zIGt!VNuelwN^PPhyZonB?wd%WuIUKNR~C2W?v7ypf_`U7|2MQ#aTFLURfpkT1VeO% zn|vgSKF=?Nl@oo5e{Iox>oODDjo_|kyBYLtm84Tvcih8$zyOB37jq>;q(v2!v}t`W z4Gf$HMn|L?Wi`jAb?X-tv(bqePl>f}MN_6B+N&mI%QC{p%P99zgCX=Qv)?UErzn^O z^W{`uuL6R#sj|&UP5ol!g2C6x)p^#P2auNoBGWi-@RXs&)NJu&6k&Lw*Z8Z28P?5=po6v&>P&HqDWvo=M5zt>krDV2m@>L=> zd6Ic6<=PR|E^)kJid|-S2W@vtkiW6`7G!#E`?J)sJ0Ys5=YQQ`TKn)`Vnj4Eb!%gD zRHoWzbJfA_MtjS)oG{%pI-At-U^Q@Oy)F*}Vd@L>_1SHy1_3LwhP7RDUa81JCUXcv zU#%^0+R>F5-IxQBP7DD~L3z$v6&Im@cHjTM2a3Bf)tVefoF-Yz-jqIqoA!7D$&|=C zs~{_)Q=N>H>VtNAz|c2_)=Oo4c62gB-FM`6Rfqcwm1r%6OUdCK$X{h*T|Gd z(c-W`#m5c$BR8}sRv)Uu`SbEPdv}C_YJ8&i2yvYV?7HZdg{9_2*y1egt5Tv^)Ae;S z)@nIf*ZEq3Opf)>#0^3e@#({_ zn?bv`p|)6ewpl;Jk4Kju*^FD+-#=h%xN?v4>={k2FW)|pkPw%GXW4K-ve?H9q{od# zbO{IQzShGBqF6BR`)uFWvDDJzXBc!IDO4{{=R7IHSbuH*df}CX7Ejxsd^J*#MZ81r z*I$z}CzF0VV(G$8G<(tFYCmfe0y7XI*shKua0{swucbdHiMMWN%~Vl1BsJyJMd zz|B@DNa6Q?l94BKGRvO8ttbcUvS1E#5 zz9qXu$qFc)TF=?`C)R{)YkoO(_e84@4@A%(oqY2;0=@GYTW1)VA?pq&@`2GWk?-ez zCik&2Dbp%jTg#x;YQZT3H++pMnA6BMqscFIE#_jP<_&o!yN^yr;ZycScV)x8IoZ|H zq+H3piUHbSm~hm(*-+6%Wq48sraE}bB$jiIjZ8HHA0wt}45cIgqAr_divAO#zYhf| zUE#F7?IN;l$y_}MoZ1Pu;fXO=0TF3BWVNVlin*^PomUu)E^^<@S<@XR<69^E)M&Ki zqD+yJDc)~&q1%m`%tGY{l*eA)f_BW{gy)?Fk8AxqbS{+e3cZHVFf3Zr&t~S zIt1JH^AD4L%6ct4$oFuEsMjN4)v}c{;oGH}in<=SvlPYl!I*Y>QbqJ}-I}}2HL*!a z*+iYxIiQ1kChww#?~KCsxD3A4KkRxebe~2}J3Y=)lQ`$+wEYzo@xJa$*6HJ2XVTOlp7g^E_PU6E`nXoV^c>UMp-rG zTF{4@ct{`P^;@+tDS&xnebG~;Fj z_NLn_qY=yG;aLxRq3(n2ygIztg)AH-=aomW889U&L`+=uoLpjtSeDb5hxDJGo-FxR z@mC0arI>JK0wQV*hDS<^dm3^3l{ztFYYsy^_<$~_(@)jyC`6QVjtc`3xhZ_CN}_$({tnps@6 zJjWGQ^kYQVo$?adX6dHSE7#_WbHLJt+Wc@!R&09u!H&bSUlG!>K?bEg7t`l8Oe(d( zDG%PV0_y|C?miQ{*R%Adx`K-ekE-tw!$ z5SGe<8N!uC83eH|3IbLF3#qXn;M5>d-ES41;_iMLlagZn#ha;BrYiKR$gifDM`vq4 z{3`rV#GqXwC4cxjep0mG0#S`%o*LA)=7Tss2~1R|*Zkjqot zV@c7cWP7~FBK&^9azgc}c`?~MhVW7+NmsPLEyXHCZoK@!v%gdDdDHo8;nZcvyVPNn ziIK; zos@^aR0i$#KRTDgwlCH|a1-TKC;O&r-&HGt8d6wlgI0jM|Ios4meWE~A0g z-&Y)CG9G~r;Y!)-l?0NPjQyn2YQOWc<Fmk`-^Jhmai%q4mWwWg48hSjfUl zxYy7(&*7N2Kmg~4YxR4LBy`H|T=;*VtVX;ca0A8?9@H-|yIx5IbYcZPKC(#Z>gq z%TCe@EBlcb=5$W){}gs2!fUzzCG2#3fd9BbdnsHQQw*I}hi(5a#+``fiao9kSFO_e zWvKDtrDE@>BaqUf5cz}U&r98gZ8-C_VS^Zb#WRYJ@F_t(E>nI&VTw0~jU%3%r+C_( zS2%V$aL#=c&by@KVx}@_de%mZ$a=A!2ECN=ge>Vir5r(2oj`wY40O0Vw3ziSk?pV2 z9=W|*D=*f-tT3b>He#74<^N3PQNT6BoB{^OMR&`@V3C!Lk$@ulB9`qg*mO@j(PZ~A zlTL!{!6Na3i_Wl0=JWj)Rz}Nn;5-W}CheiRdhGMB)8*J6EhtG{ zii#rLAS=iOd1#(8Hob?J-FX{asIu2pKi@B?y1aKs{5>H_==N@tuTSBKvn&{xLBOC3 zBJYvj^i}35vmd#16faQLxobB{kFL;FrL`g@*2cucLYhZW2A74aW1(VWi_?2~l%0vL z^de=DmwK{M#ZF3m;vZxkJYCX(8(#M#0aL&wEW`WpurjN=`{*A0WRlgNF?k$HcZ8w? zqNC=y1n{K+a^oQ|rU2u$^=bn3Dql$*AsSg$BUA~MY};B_HxM15C5`UVKYmL7aYG3wdEXN%kcWCALOFsen0hF)=#e2(vqw| zUpbnd8soE&>li=N%*pl1hWj=bIl~#$9pt1g^#D5cV+gK>tKWD&)qF!ZjbHk3BiV@l zzI^1FcxQ9#{X`-W7yUk!9Si5{>uB7Q@$s1UxFy(0+J*`ujGY^YR;07^9!@VZ|2w!t zOIzF3o$e~kiWca@XiRD4UaPJqWMP1Qzj!g%WYEOz^=w>gke{p0Ys%-G@UL=zS>XE| zQ&xSLvXgyn<NeHMH^m>wuN2`ROz@G3hn`%E^eobfBW_jX#tbQHvX`B*83G5l z`nq9pRE(a=qzD_Hf3B%npc6RizL>FF6P;vTlaN%rmY;!uE*l#vn8WrAUS~uRVr_4 zqE5m^tjN8wMSemTq}wH`=Er7zmi`q&Io!--u=1zq(H{)-m%!Dcf&{+uXi0MF&Th;U;$`ZryD86O=Bl1LPT1jsZSi zRpD-RTSD#WOu7$mKPUGne>PsT`N7ED>Tp6}-tFKfYMN8ODSrEcr#tpr@C>`zH%o_) z;-!^#eI-UQa$W|+K3(u(zeTalv3u0>V9Av~s2 zC9~47-;MFeR~`C3ix``fM{b#Km|3=j#J1*Whq6$U7FP-c;7jsm2}Z(?8L7`xU@~5! z9y2vP z`&|n@GIEcofGU0$T@$p9&RFS^wf5@W=z`5p--ZSGN76dBK1f}XPh9;Id1+Rrd}I~{ z6wPIXY5tz_YFEagGg)7Un^%EP=`eTH3+m5LbMu}=EU#ImlQHtW7E0OjuHTNBNLMX< zv0cU1LObE<)AT!il0Q%p!cva^3Th9KIzxMeF}X48%^7b}WfFxWX{75l*kj7P{5v(Z~6Ro#AZ3UAM>15ok%hi1bXkst!fo zxCjn?=X`#AbpMBYgjY?(a|3%5+SGPUTn+Mw7LjlaT4>aFoT#CWEYLFf$}RfWCYu`Q z1Wb6z`oNW>J3@780u`P7+&NQ2xSpI?R6XnCoPex@^7MeyqG zbi7WSZIj%sT|`?R#^v}$R8F()-|>u>Od4~35$_BKvH`D~^|EF$_@z%bQ^oO)GVNL& z{l~#0Dk>95z3VP9sN4$HtrMgbe`_68KD5M<*!EGcK+GLq+)@dDjJ&9}Jto!uCV82a z&2uVui;k9NuXn|tg;-3MStUwBz`|)@j|2w)gt2^TUIf=eb%P;QyIEMCs4yChXmxS^S38OH@ zwN|WsZ3C@)UF#cQ;1o_{9%})6XibP6vu1=hOz#{P8E$L4P_cZ%=8j${=9*uM1#^ED zcdj_P;z%{ebk2m`WaDR%Kr!HmuwX}C8r5}zWkVBH7-?7EmJ4kvn;;#gW!3Y&AnxWH z|MV#JRRwE>B1Z1lFLZB{TbJB?aphni=gw|0DQh&yeNNPd+Mk-L?&V==zHNVj@cQbO zC`bj@Yh*7l#Bn@>vr(u*#hg}?cPz@eW-+f=lab*Po`DfKLgHn0VHHqQ4Xz!pCDnf+ zn5STLZO2+<8{=I7dwZx4{=$N{OwAmg)bX?ajlQI@^9x`>I8&7)6B&LaKnV zBBUxv6-cZ~5h=!z8Bzyi5+gDt5VGpPB!vhRs31f|L_|PjmXL^m5fLJ@1V~K6AVWw( zAOlHO_v8DW^PTVP?>c8+`;YyHmzR>TvR2l5p8NjYzhP7lix`?_=tv97o_TqwY~3?F zuf#S$cU)^8A2=}n1-OPPREQGF$6Y_#d^Zm**90=8wGAeDwl_464^0c1!!~xI>0~B| zN)xd4gBZHqWBrjS)R&%)3YvI;B1U2N+@GB7>an|>!C3p1_!a=`)0zoOTI`ZT$d_1% zQ^=o`&gem(?I5YmJXO>rHFZ?xNY{K`oVXQcKC%J-x93=D=7h|BfHC~XbWaJbXDovv z`dY9bII&Uf^a}2-%`GofdlD&J7N4cD+}Ycl!IU4(edcARE3a7OVLKX?A+ID|OyNw0 z2}h~ZVn~UX%-}#$iT`sykI_S%+qEw{?caSYwAe+<#y0tl*y|M1k~S#Wv-8l^Cpp@z zNfHfp7yn_nPCK2!Zq7YNO^Zb6A3FF8hB`dxLG5}(k;oySpA0Nh6)cSl``nA-uDYZ{sHQ}rWib!ApN)S$_+MoN3 zOQOAYRG5Lw{Mym>^QuY3vowE51ITTgp%ML1B;#LX4o>j zD=zj8#i2Vo_~37$n`}S&IPPP;a$to(q>yfFF$aNf(%xTykPi7d@+NMje%@}ZZB|VU zvI_cQGpGa=wIm>6!57o4CtnJQyI>jP`zy>ZYHXytHebp z`)m&gT^0hMLiXtqw4#-R_S?yt6opSLSq$< zbZw5kF{zx`Gw*D(vR8u#%UQ&+Iq%uiE)3hCY%Kq-DuVqz<-N%YX))kd*NV@aj<>R} z5II=&NFP@AM_HMwe{+Ff{$Vc{3bAcyLsV;A^c#1INl!KMJFj7`x94=!^^UMe#v8jQ zX-;eRYekJEv|58ZSpI(Ptwr2=Ep3)s8l-P4LU89bJWKf?eOQB*Xsam}2}W2;`!irn zy9rmXyb%iH0pT^I4GI+_yofGxODWKJu*Qdi>tajyPBGn9o)j|IVD5#V$O( z*AH)MTFv~N|37tz?wwf438u;#2Z-mxJeZon$ab)}iUP)OayyvO_s_DPze}L+FiD}C zPT{Qs|92>SKJ3=f6EnXm34%uT0sE9;*X`3pa~wUba-W5}t4~hbCle^1Vx3?XeQ&|L z?=0@#C_Ui;;&0~X0$z1=vV9QWa$hsF5p8u<6A)Hx)%1AUJ>x3e-#b26rg1eG4W44G zguAn0JuS`NTS!axGp#Qe1mAzf`OTdyw)LHy-|l+17K))rw|WE!uNb6ztBuJUrPzdT zJ~AwbsNe3$ej^Dk1*Jm+LoOO`f3JD*I^vPHem`md)L;e8e7oV4Q5}KnU`h>k70Fee z@>E}1aIE{dW;hyvpf7DOua#J}AMuDl-uN^SJ4D$oNldm3_0w8Io2EL0!Xks2^Bi+5 zDdbi+_VZ)py2$#7My0*2a3}ddbVT-bWrpzAuwu{SomE$=u9jmDOUHOM(Lktx-KunN zhPQ)c_s>l_XA(f|HW)Ec9oumAhf8S#Hn3%x%*~$`zqpF|`7eW9cew*wULikQAxBhU z^Cq;V(M!yxLr5a2#Ef#?MV*?b09*-<>M4asS)SulV1Y#_nWrU9O^Q$E(zqvo_Dt=0 zkGx2ckcXooeNK0c@*APn{q2&|o!^y%QEP}{LY-_)KuEa8Mrx3} z_|LKpnr%{@<+hP5hT^I!ZPF^ z_z5sP+|r z%OaH`)!rc!-nbPbV8ddVD$fXYlpT?Rs6MNQ__f4??Sv6BC(Gj(OrXq>JsI%h>WtU`lhPNZRB!qK@<27A2 zc*QDY43R`xKX|noox0j2`Duronn>Ar(@bqdkq&mqOz}Ar!+2M?&(DP3AVtl-j?iKR z5xtu8m*%wvqxqH>z1@IHdivwHlT;=Fk?8l0)UWO_CSPEAz2ldt6pz7(&>zdKwfj$j zhI!&IXmc#;O-1rS_qXUo3Q}5dJ7>ex!B%8Yt+Q~*YIK+qtVF{4Bls%x8}XmK@96HI zjbnWWBke~0<~vUJMhL@-XEyj=wJ^&7{CKvo;u&;4HVRwGd!yVlW*10Pyq(CnwKpdf zx{6C=Af%XwMdrmxHEPQp5Xxh)+I5$A)4twg05@jDIACJM8yN_sU}Y9JUWDkAD}<3L8}R7oiRi$M0AyqMuSAl2ku8q$td8=55Y zD~6fPhCsPt?Yc|RQm|LT%_%>T&A}x_infTV)l*2V*YiYxk+i&OLV>AtHR3k?%xAnl zu`;0HMK9elGB%*J4KisD^#^!`#};V8P*W*|Qtkbv>oxYdpx&izvJcsxUlCN7TNV#$ zW~gc*4t=S#;oQZG4LQmXE;b0eLRol7`>2L@+t27cG6A;71wrAvpbrNgLJRU?jkhrE z59}cdlK6I5fWEPS-RQ~j@fez}Es55xS%@`H#ZUNl`0Bd#E~w*7aaAvBs2#P{@!OI& zDmS|a_viM#+gZL2TBDqHxo2!29cpM-+XugO|HM?tsmh}o&?y}muY*^CVm|Go4$1Kv zBuQ4P;lvI=BSwQFxe(rfHHJQ_0YrM!9P|m*-%KD)G|v8f0+ptVMw`ulR&Smrs25R5 znC&}?2*^*?S~sz}Vtn>EpJ5Xe!%db7UvDHPwnlN@@25qNL9Hd*j~OW$zLSwIPl>nM zVrrO~0naIXz)qdb+8BB%IM9bkcx%9$vOU-aT45UO!ICj}Z%U@*@YzVj@Lh9DA1NbkVr;a6CJWZSLJ=P1e9(l8ZKuqw~Sc^jkwCL9{2NsWtpa@R?QUBN zoh*Kr_4oJJ{o?9Q0=Q0Q##2~az^>tPRfKSLJvJ=}bM%q0)o@21Y3!4yma&L&oX14` z`n)Op`E`ftjNj4$5`E=Ug|Sb4 zzaHnnwyLzBC!uuaXcze(~vRqg!e#e|0n0P2)-Qn7W z5cawz%Ty4+TtM2ner-Dnc>Lm&D@lw>X(le^Lv3&9+@*UM(q(n>SFJ!de_l4ehjbhI zd(MWc@8}Qah5(5Mp@RxNkR-9mrPR-PtbKe46m{hppf~l9vg9MQAZD7g5JaNRJDn40 zPAYnwbZh7t(6{e|6^|11)?+S|TSX$SNx(w1UG0<^YL?eKM~AK-UtH5^g4YL~;-^e+ z6)o@j%rp5k(pIbzN9tIXn2sA{&XBbK^hX5LAT_=W{YJmFo; zOknQwB%n(_hVrnKH6NtdR|u-;m*`3;yTXJ9}O6yry;%8}>0 zc+|c)Mp?WF>b6!%U$lv9d_iH^LCCm?(faRM!gW_m^E$Ql9@c!E_;U%i68LUj(ag}Q zyigi><`^6a+!zE+epq05XV>EPQZr-IT5zQi66dxIfItF*rRKLGP3W#Rej zDJ=g25$~EAAitfPHK>ukNTsRVC=UgQ^~7Su!F7o{?$F{YY_I@XArDY;o&~wtX6#6Q z2-N#zCL`%LzhXG=poy)D*Zxn_c5(c2VIr0j)wu?9B^mI%a&4&;p-XmZ3 zOIa~A*;hi+c7QoWXgQT8iD-^lY+jPk3Cihs!ta1ZIIgPyD!~jC{2yqYh^lUcob_nGVWD+;cZOSd3EmKXU{*3?Z30L>?k@|1-qJT zlfD#4XNB|Fs(gEpI6XR16Zfwe_f$VWlstY?y^#sW`+gsT;Zkz%u?_6a%-hk)Hj2Cq z)hVbX?Pt(6rj^WW7*=K;p?A*_tSo6=_bX-;Jx6%q=(IEdFuWJ$F`P#mYwGk;PFU(MY8dIXwKdGi#mPL?tIc7 zP}ebA{PtH>RShgC#h1 z!WwewNe$Y2Fj$8_)`880>VBTjUO82;u1DA#5&N@f_bG*H&sT$zaP=>NaQE?T$A41r z*DJo8_bdXNHK#`Rjf+Q2+jvyV{Vwv2XF*H2WI(Md@f^lCE95v?5eZMl7!l9FdhC_6 z67Bs!MMZ-tRhzruis759OrHD16-)?5xj&C(pbJp2&@J+sv_c+xHKyTmXi~>B*_-Rf zdxjX#-ePh-Yu6m5t54(=4te;Z+8JC2s(04bJbLG%Iph7*?QJKv-c25NYdt|%O}DqJ zrU9tE5o0ie++fzrbCpii0QbI^riDAeZfvQ5V(4rS?R|~A|I=Tmq?vD{!;7AS8EQ%s zfFD5#+=f3!N**6@nAD^iLfUIF+t!gfx)W>e380tw7H0A*vzWwW42oFg#Vinwg0&8T zA0epMdNUT7Z+dKECzI{JM!7p>y7q?(nJ@FiN6byYcx1eZmFIaP=|o-iy$LDY1>Uti z6LzczGkl?YJG0LA#scnNnj=a({|8gjPrq0_xO|DK<^~UP2Q#eCNp&=vb~$AVpyp7( za#?~FVg`pKRwh~Y^M5@wimkyej3hZt8A7FL^sAFXoj>XBf>Fp-q7%O$3UHB(FHJ3F z$;+NPJSd23EJ_=`L}Es5hFy@R?L zTkB(85Txq&R%fZg7FaKx;EKs|7ePg92jVtY|CV?E5B0BVvzG>%PxoHcD)gQQgHdF4 z{}@NyiZj+6X^_JClDUzf9Ixo)D|83_x@++D?T<>iBP6GBm2GHw9pF6Uo@oMC~&yw}r;NtVz_6bx23`FswOsaL`6#^m!{@hhQHNX)E{bAE>MF30d!Q z{_^$^k0P+gfu}X<72Zg*y;l=i!h*sDh>cU_=_<^LlnR``fqK~V_r|BoW1G2qddblb zS*25m>+;i$+qLCg-tI#9-n*y$GHM$l1-l8Y!AlXRB>O9igZ#EC1Jj|vDR;M^-LFOp zoH*tru}*R#(Ih97^py7|jV;gjl6yC%K}}}&f~9y9&A+5Y@-pcz zygiT!#_(0$3}51Gai^V{$b9g44ev#9r=H zuLFC8^Z#wi{9pdYF5djZICJV(ToHLK1RlXu+-F@#aIUU}y>5hjP|{TqdGQ%r&T?rG z+=0*$t7&{700cvJWDUOc9c)EhenQH-u^?L0jNbt8v^Tcl0pXK=uVME*!%@vJ1(air zo`}De-V97|r;xKfPS@_Jy)TxMTc*woHsd9Ix#AYIj%SNR%%4czQ6fMl$FLHaRi~X# zp|bo53#o0)0lT>A1t<}!!KaeZLhM%J5g`HGjymoi$p_(GH-#1?k%;fm&pjdT?d2CIRh+K^1}Xz?p;2v@Lti-CV*<2`z}(*zDZizx z5ms=*-_j6d3qBTsy-hZK%4sQ?u~q0j<{quIsLL)CJ9{N9l|NGdh7AN`U1WY0lsQ3G zLrt}eJ<5mbGvr9g5|P^Gg}z~L`BpJhwqP{Dia(=jF72DyVs?xXt>v|iv9 zL)hdOm-$;|6)xQ%ivJ2H4_rPSY|+B>hd5~1K#{QcF47{_0ri%faXb8~m!2v)M+gy?p0iX*wIR zd+Q{FJ^gpzU7+6?AKeCo|0&~;m16*Cte{vY56`GTDWhlRMN3UNVKQg-(Mm1)fWx!ooLyuD_p^X{XdmxGhUZ;J+Fejt5 zxeS9LWkO4fJLRC%(*=ug;65Dpj7$B2Cr=sjWw?DkyK&51#!mM?gRCZe$W(f>Y>z;!b-0| zSyp3!>XH7-Lq8ddb~WQzM66w&0!CV4GvTE|oP?INsInIk&erxsh?!#?sH`+QW_&h= z92Ld;A~Dqf)@O^GX{P9<^FF|egb#jPwE%#)GcD2SBSXU~1*n?Qwt9q^5xR6m9rnur zk3Iyj_UU{EP5w6!W0eVc+NF;$yQg~9SVLbqhHVEL;_D|@#yVIDCVrMXd1WtQWR*>l%RChR{)BIjeChgVpEi)#eqNmk9{wA$>IP-+1J6B~bx-sI_}E z3qC#}CO>2xs1Rdcf0sbed_I$cAH#HOVpj}RZH5f;-QK^?~%v?aUike9nf z8m%LYvs0Qr_!sX@j6s4Bpv9-PV^jb@li3Bp!+pU16u~&3ra2w~HGtYIqk6XnG48yT zQ^w-VWzH2#-0-PDjon5foafIFg<$jX4i8go)N(|CTVB;wngkzt02ZSJk+t)F4=2!r zse#YB2g=r5)&R!Lhg9HN z{WV)R9g6nLMy@_c3pmo&dhsEmro_03mPj#i1`;Mf3{{KNonmv+Kg*IZX2!>5?Jw%U zo&7z?3JI<(_X#!_G_r!k^)u_Rx-)tmM#Eq{S*9BPP*K{#=O0G33-)XdVUO%tOd&<0 zM~c~Y8nH)ALSp3Z^dWFBP&GKsW>GHGT)iKT=mB=aiVU1KyHOYMI?4@uo!0@2g6!XH zT1WKH3QW8YtY(vFpggiwbIsG zYqtvoZ;WDxwZHPl=6|mZr78M}^?!0A5wVEO!?d@C_}hZojGxb^9iOpDwzU4Vu%LDt z8EX8HQ7ED3#4vJU2Pp%j)*! zFS=(f;qEXflrYY=<>tXLAmWC+Mlw()a7n!YWA{!A#r7HGtcIt=mzK6p^gP!L2j^MJ z!XAy-gd@{lYzBc_m+Jaxtp?1YXe0xOrd{(&Q!)$4iACZ!TPK5%w>8KI-m0I5hgsv$ z>zQ>zfzFNDaQ&RuHZG0E7{2Ja5Kw!HZAEA%BbBSI{ z)Fg{A&iqVmQH6zcWj-^WvD44noJR96dGuTI1Y{s}8*gg$Tc<23q7NGFuK9caao}9o zPZ0%^FG=p#?T?D#0%uCR2eV@w+-CGGEj&!YM#X_H#7U`n(VqplAx$0b^YhpgR>m=y zRm?)>Ybd@~f(`Qrlgwn#?G4OwDij6cF;||V|0)q`=Kj=F$18Cz4lL2E4l+?_L#&SY zh0}Ux7uO7@QjzKZB7+BqQ;rbm{AmRy>4v1J-cdVEg+hL{;(@6$IwX8+GRW<+1!Z2W z;!g6Cr8`||@VV0)IFKj0s3z1^&ZdOX6W9Jee9fMMTRk=JIXp6Bm?*DStS1edsl?LkMQ%V9KZUS{Wkz}c1RmVxqXtMW(bV;nzMZsYWl>wAwfeZNG zotFZUlI-B=mV3N1 zz^t}goNxg1K7(BIVAHH<(M}8`L)I{IZ>88CrJorV2I-FFhW5k_m6?44(q}ZkJo99q z&FV{BfE?5@j?H9(Q1XcD2c5SPY)7@@8f9=a0F@_1eYT5N4D| z%4YC-Y&vu)Bc10-#vDkWO{Yl=Ri^xef+d_N`Qb2@hg;nNv=*mc!= zW_7q?20UInHzlK5D{gsXCl$bfx-1Sm;ZQ@)RELcKS2RR3K=>AbDt%9gNVy+q<8eL3 zaJs3-Z(4^GtXU8?SmkKQoOW-_y{oJ;mSwW>sV=+D75)28WRgcq|+%m77 z57w3iw0H$1nfFfgT@f^9;$FFQINgPw<`X^jYXbkDSfKAz!|->@|J^i0OF{$CG%xL7 zM1gVQ4G5?uc-nVgZL6AqZIvCct>QpSr#4e`zMKU=2Pkj*BO)3GtH1&|YoT%q4^XQA zF5E2x(_*Jj;wAN&f0iA;P^8(pw5|G-Bf0y*DaTFAD#0F{#;~iXH2se@*>h7|qT?pF z$ML{Ua^-*h1Mauy;NQqC97-pAFh#yanJyV{#qeM~QNXFb^4%gvPowb;y6mC~un)^+ z0#q}8^9*bOe2aFA3Nr?qqZv`v!2RvqyumC5-=P)fGBO^$G-fA7;D$0;@`LO@=63X2 z((^3@<)wmH+Cr9U_l}^ory;owkL<0@2dA1$tHvfrCZ_#t|6`fPzFyMIlwpW-es2D% zgNlmcr)5VeF&azlJ&YNVWN*ZGq1{3vA{z7c6+YJ1c;Ug$LwJY3dC}*k<1=94%2R=8g5%{M}K|@{@35z9eJ3f`YI`AMs741G~*p*tW%yFUj zMtZx%IpJR6cEkn=xf$DFeXs1U_s09X)`SGolYTgwU=0f@Mjs#wumQXkN+I8=g}N!& zy)!Ke17=XK2E{L{omye6e;`2p(%C0Kv>~!YiIta2kSTNoCbg8Ps@`%1O*bm> z(`I>j{P=`#L`*w6=EJR|``@2u-G;?UPSV3w)8_$3aotMWg7n~s$ zt3#S&7TmEE^HeB&Cvv`1rS313@<373hWpcNvIVV5VADA5uW z*-=x1CQqA(0avWfb;I4eQw`Yg!1R*PwC7Li@sH%mwq*5g;)KjidLuU0?pP$@w!R(HEc6k zF?{PJr8P=n2-Boz1RGi7Q(S9ld_Q~-*h=meoJ%->{p{yG*u9jHA6h!4&^O4Ij(Clj zw(Q;;$8uA5oC29VX^F+n=Zn3Z&R@KmvR412Q>E!Sc=IW*RVs!2ZiXD4iqwUhk@v8l zfSLTt5G!``QW=<6HPoq)llZ;ml-}GY#gECClmYv*0zjf_O_L)|Q9EE#QluP(D$jns@EE~$cbmRD>A;$y@LFAU-u4jo5we5lGlcP-9o9zTMNg^?WfAE z&^-0LyK~_*O+p>;ycBFnOVHW(g_xFEJR| znW=V-PgHJJXc*2-usG-JLSx+F376D#RkFq;0FL+irUa#Ni2$p2pztO_^?UjNIVQfX z^KEP9Sfbc0vVp*lZlK0#3LGn>uI5f*0=ACwYL`o>EsXL?0j6l*10k55T?#E@7!2H# z$4boTlEH*AS&c=~WYf{1F_w&;g?H)JxC;Y?E_u+b@dlol1=lv}TJU*^8r!YVWh$Gd ztgw=cN0kFFZrqxe`pTQx#6;&IHFp&_uOenb&% zQ&*UW$FN!v-x9qi>HU@&(du?!lrXWB*rLT^r5I^KVKmI*V2-ou`|N-GELN=yk`IbC zXMD(FpWgdje;*Q~v4P+FtE`RJDNcVyLR1zhAYentGoIG-#~*ROAH=<9VHG3Gh1pZeB4bDPXb?Jq&x}mR|Aam6BC58(T(Bl zik*||4o~EKW^VPHN#}+bWS<&3f&rVV69KLShIG`ePS3vN82S|jgc*90rq;e-A(uM) zsbR&$9Pi$_9ep*7lpP zR%J|Zeg;DXn^FAPOxKSQ%sSM&46ZZkU0&(rp7nq3h{Nbb2LJk# z!}2%q4}b#R;Znyu2889RDY!FIe<{YrJRCOaUf?Cb2B|iwr+@w-aWWuN&1>_aG)RxM zVt%a87=BY5_9+O-dN!&70Ma*|ByOL)DSg@?-D7Hx_Q||=$Wd66;f{Jrz9t#3yBGS1 zl-u6}t=ORXig`G+aq}$4GK0P1=Nb=^Me<}L|EtiOAcAp0hg~eu7IfE z;*#qJu#jH~F-$ANYNWFLj;B3=^INiP=!<+ny>Xmm%AG&C;yU>^NniSG_d?vSYDmg5 z_HP&9^g6)%^msa|APqJoJ>-J0)nG&W)}L5NwVzL{1$Gktm=W|i^TUHxvy1GcXxjpp zp)a+_W(JPdQ3iaa!*eMuro~tPbMKEKYZE1ruFApU-gK0L$9J z!DEUh9>$qn<0;=v034;5*pHQafvttVyeHBki5q(6RHF(8-Mhu(K`?BF0#s~3c~Y7J z-ON(Lz0j?9JJn791{wd>#~`NUxlW?=qM;#G!BIa$(C2&ZP^kOmPp3l!;&_AX99}IY zTYjCCRG^<_3&?)27~RIM-(ENJjA11#XrT_ZKlAS?#bxSPHdf(5?k{l+HqGAe_rph& zZfKacp%~g^dwrL$DfCif0Z4=&2$)U8XNr^c4KD4!yCfU;+rMKt68IIQcaKdAvKYt> z_Gnv_-z3Hq0VqXV0G6Qn5xWU=^P<(@(1VU8mM}tDj#ec(|FaCzZ$J*C<-A_#@>um( zVPS2la9EL4)WmU?d+*#*IeFp>Qz?otghXn|?jZREVEc;6&S4xU&8*DlviA`>>lFCt z$Y>}?V9yYysQ2dFD?>Fi*ZT~&ujSm%LyDni;2ptDlg(JY4wKeCGXPSi1EtR(*+N^y z*g_8OpR;DJB);SUpJ%?TD8Y!-E%eJ{5^vUj4;OhcVs1zQT!%1-(Ayi z@2O;~QNcO%_-o~;g4yIGFEH(xL(ES5`LmU$;aw^41wDw@_6U26vJ3cf-KHs|At4^x zryA4~4LV1#+cv!}zSpI`FOQx1zEQS4l!3cT2_0s*ftUwoD1O6?S9FVZ{~E*!#1=vXg1-g@oR-;lVQ&|h&%<$taT@S~)_xKOp)6F|tj5l71{JZ!J4CP| z&7i)DdJ?jMSu5Xks2}HCp4;URAV34j?qeu8*bC0TSZpRjaIRWy-uOW`0S_#?MD|WO zBgmn@=|ta_lR8&4*Q1DO(%uyP)wrNEgZZ`~SLHso;bO z0_xItVAH+}wFZ<>H1ip_x4#|( zd?RHe?UR_29RN#*XTBb#6xOe}1+MuD_K`#R7vKhd%b4 zt|C?(cik(F9rkGwT*(XI4#Ohk*W-L%N=5HW&*b|xX$&9#$0vV;jbEC@%Qj^KAq}{@ zhgnjCHyKL6#knN?HXl@_3hfHUM+Q#2c#O7zZm}aVs0>uRjz#&~r{urH$y?_i6Xxa$ z)rTu`M$li+!H9NyX_oe%zfOh|#j4H7IAt>URSAXsZwMvRhDW=`t*kb0F^W3JY{a{K z;nmPuka`+i=IaI3URh zDu{~gs+eUDvtVeJDITv-p85Cd31}7kpKtT&?!^E5UHJcam(whh{y)9z6gV{TzZ_b- zc_Ix|rrvn%8qjhn(eSERqv|1GcZ-OpUxLB~N`Ge)l5_-dQBo*dj z2LP;kSc8SZjdat5rT(CqhCgWO&?MXe!(QOVbN+gk5I9K~Ja6%oB$<;nR8|4UDm zNM&)LD(&1cI^4BILvsM;*hH^mthUr?Bp1ZFr_>1)Z zm;O{QkF^K?^6fn<51BywYbS`T*+fZ|r_xrU(_*qos*|1DcIP+QW4)_Kc@_Y(OpV1J z5gj{#GJg8~TURn>pTU`*TKn4ul+(`b!}J=PKMy#(esss;{{JR_;y;6~{|l$$|M&ke zSG139R!8tsX=^8H|5=8Y`yL@^=WEzp@6nL!gn3Q70<<~DXD}F_AUB>dW(%VdjG36{ z`>_20b>83qOggQf;f#`F5@Vx))}`YUt?W{8I6!l$Bcy`g_CiRp-zyhrl`m^6pyLjT zt9#sE5D9OV$hi*ron1Lw4NgC@FF`4uO;mkOMdH(}>2)$wV9T?A;6@jbp390~aJHYx zKf*3Rf4*5cCQYa;As3i{$Yhjcq}^}IUqXBH>PkVxL1Xa2#qF|z))VVkf(}jntJIY`12kNyi#2P5Go=#RUvmleg#wg0UXZ=ftUF zdJDcKXTlfr)CL@g46MdMRLhQ3eg{q8Ih;fSfO)NWerWjZuwIi4C()+mZB1Sa#VMHg zWPP+xa=*)f=*wcNVPBI^9iIxE_;x9&UIPB2rO8C|M(t^5#aO9f@y$ht;{x~E0W0gj zjj??!!+vmY`J_1aS?#vQAx5SLPhmQN(S@xWUSo+fY)5KRqTE2AmnJyg%emLGE~>yl z8I`-@y4he(9Zcxz^>JoSl-R7cw|V44VD?!)peYNS_31PpDJsb(gtV=Xe#-bZvQ0Ps zIs~Fvs5#+syU{3uc;s0B{fVep(;*wgpYWC*(@ZrIMuDgIJMTHLQ-@?`3Y@5s%!1*T zD2`=?Mh-3$NHIHeMvdvTXbF1_yq7^zP;X762xB{7vueQu+hCUB8J=ji+R7eovkxRlc)4857%i`e$41mrzqR zkS}zA6&;hV7B7P8hP`76P&j);HfU8)c*(&yvDHC#<`K0)J6JX~=|J=mW*$Y8WI#bq z+r25GjmjTX7MNp;y2p8n?sgsZb@IYDiCc5RoGRx`t8q&K#!dkME^0R$%<$=&(oinH z7wy*AMsKB=Q7%A~;}uVd>%8+iC9JJ^u&n!?4%)m8SRbVptL|b)U~Qn&GrzX2*TCE~ zGW=v!@9bk>6-7_$#!P~1d=o5?HQ4AXr{1|p^c+2`j{O_^e#7`ok27+~o~rXzn_ZAq zDZ!tGJNs=qzYT%VlQJd=?)RUf7)c8%=6zT@GB0Y|Egndiw?&$b&z+y~rVB2eTOBpF9quF*2gMgpg}DF)@Xzp32n5>h zFH1e_fOSp7*0ql_M?5a7=g*~Lj|@hl_aZA<{26z!%~)p;vg_<^`EkgW=#1YAE*Hhn z<~dNot-}R5fctG#L@@N63j0zE4vV&h?AlKgGv5TQugjgEpY+X#6%w<^kAB2L(O%~@ zDw@3Oh1l8wcY40Zh-B5Pgl_&})~h+R6iSbZG9+I!cQ&bvMYmh0vzWlS=c(A56mbkV zG%mWtneQjF%~BYt>tu%;(wwU5oBE5@1+GnvK#stu{kS4sTXz~XZsE$1i@1*(Ub^Nz zD-EZoeRM38jyB1qDlRwH`vX&MaXb`;wp<(!5_bqO_Hxl~+bmFh1J-Ky27wn;@z7A1L%%xvLhuWwclog_a?*{ER zKAF<}SK*P0K-aji2|!6;)5$gCu(brwVt%7M<1W<&5*K(&yZ;lfrjZhzTmDgz=hUUi z7Bif*V?D>@Sh3z8m~d^14Kl@Vr^J_i2lL~XCEJ9tzWq=@P?X_y&IrkuJoN%fQMy$E zwq0EtO(zm@C%c#*a3^x~$VsU`x9CYx{3~t79Lhs(TR=Idu37ZmeAh>bY6WmhbXu8a z&u#?xydvK-Cnd$nSJ8TdA&%<`i|i-kG^H)P1wAtqau@sBkIQq-Gz3Xt&^6ow0JnJMS$($Fv3FE8C0 z0SS_$THa@MKeJG2_m=UUvKK<#vfow~mvTlL%MHG!OmwNuX1&YN#*Nn~mOlNnZ0HW7 z>)*frj|t4SMy0pZg3oGZuT-`)7i`Rs32YN0Q!gNA4LD_y7vmyrxuLukb@CS}8%zv^ z=;a~IRg1<}4o;_g7DB%ju+G3AdPFq`9`x;i_Ip=U;pS`QJQ=zZPxyVQ`_{~%aFac1 zlyWb$l5AQ3qOoe=%BA`NG{HVUhP#Fo)nP^Pc&NIV%8a*YUH~PX;R3XbVyW2=CFWGl zxEqePwUv!UrE6)YtFxC5xOe;o_1bG{e=cU+N=)#_Aw!utHW?MOHIeop0!JHX! zaLl(;%Tbs98>H9yKt3Wxd=3@m0LU%ajk{jD)-Zd?5Rx-Y_>i3N4^yw1m4f(<~A+5Qh2k zcZ}{8_>10=jCl;W)Ax|syZ$0?7}WR+jT~YKiPwWLoBA-@y+YRT8|%R%>sXu6`6y%F zgE6goNglSCGw!=uc=rH1A0>%k=xWRHzPNw6#POR5EdxstG3ED)TcsW&EIX{YQigud zi(%Y(bf@o^|BoP@{~EOOe=rZ17|@o|xeH{OgBe6+7-8izk7*=ed56zgMx~RF0Y#=| z`L>UdE+KV^;<${1LLkM2T%{-xLee!19*Vi4-H|#&s1bFk?@IXLXWYM1s0*DIuDCg; znja5^+iBOyM6Vq3**RuLy>rfrnM~zFsey-NC8J;oe`ArhrKvS_;z{N>h3_QYFW)>6 z7!%K^C>-K?f^_w>PRZcwFZ=F-{d@H08PH>*o_hz@F0pT1&AhOqsKnC>rogSiiSpmm z1jC=X=_~uk>ST^KZ)`sNvus~`viC&rq9-;M$@UriLt`BD8L`gkvA2)2{T}-&0OJilT{HivO2+;kd+g@i%;>bp$QP2eQl>*gljrCI`uMN zY7P`~X0B_?op{(heR=$~nkhr}YwbR-9{2|jO!2j3p@I7=C`V!BjP<~XdQG$4L)tk23XPR9vm-7!$7G0`7*iq07G;7jCo0Z2W`Y|XuS1eHw- zjuPoy>plVtlmyW%| z>A`AqU)or-7f*Tpc0I26WbI9yz!{?rXn#&R?WD~Lh%JGlza|V%P(N$+-U<#dSUZY9 zk!{RkdmCiOv~{vF5jjB@fyU?})qhz4$m|OFAH=-}P!wyoHadtB1SAP4l0iT~P)QO; zf+7+XkSu~o4w57@5+q4bkSs}1K(Zi67D~JBD>WNEpJg_Y?N%xaX}2vU&E7}+;AQd65ew9*jOLAx{Xmq z%{9rpQAe*^W+6eQxNr>%znX{DYR`og!ZXs`$7CyIE7Td3g)>THU$QPdP_Sz=_G23j}pUDrG z(3|3OmqE+=^UCrTv@4Gt8ID@g_f&pCy2{`1=j=D^B6kLX~^Sm>t=Np-r2Dk=y4`XwHo7-D5nP`Brbe0j+%~-iPluzfdIkA|1{sVb^)$ zvpAyIlJwy?^cN2EI~${Jt=kX%wYj$)x!jJ~->QfbW5-lSX``n}M$`!1?2qZk(VsKk zi^grbTXpI>B|0+H)CFy~>#~;=ZT|6_*q_FUFI?Rg!+c(qZo$<^gJSeW2P9zH-JT!2 zJ-8LPYzta&pg4!{Pi;JHj&$d0bs$W(+Qdw^8-6iwrSAGbZmB(S9STy=VPH9P@|3s6 z@sfqK{D@v0GnJ(9I@}VCS0!@ADQm2(6mZVk#{#vfmfe_^CNcq)eiucdF@jmq!Xasu zmE!@cIe4B-*1o=G6r;#Q2c#fCFxoL@g3tPEAC9^v%wgP`KJ$6V@xfC3!nGYm zVKOE4$YVB@6Vzx#nGl*}R9|s7DfI>sqqKQdZj{^fy6+?wE*{Xvx{?@($B%n^&$<^`D9O& zHtfSn!I>Hz*LPF>jdN?k4wd2F;ys#{3q=cdRhRj}`cH|{@{FW)GrAikA=-a+&iR1u z$HA_TR;2lQq4n|^^nF+cOP@FSF*KKg{e&ln_3;|*|Ubn;UlzO zQ|fS>I5oA>hjSnKqQKRtfK@nT_TSM5J@n{H2wLwKT!s^SccQ(_A3I_G>F{M$yF<+? zzv;vg<#C(TpKEK<+)8wZsd%F;Y~C|blh#Qam*GNj6h+q?v2J%)~NjMWii*lIUvno0-f1NZ{j8OO7OF__v1F z%3P~{YMEKup?%{-U=n&ZPc$1k?~cASEWT;qI49wmP{>~Nx%{|0+McuR$1kj0z2j|% zKgW!4@m2VWhSg=enM3W4agq)6t0%q7%iCiQZf;jOZ)zQV!RG4Iw=}&9c)Hr|w9_ zb2hb+Jh+x4va77RuawtlZEOYN!mIxWj?Hj^Svq%Gt-Nk@)As7`HOzz%Ju}p^269{v z^Y$b3Hdy=AMg~6JIQ$KP2FSWT{_r4OcsyVJNL6)Z+}@sO`#|*xN_~F;WbzV~<5A)x zr4oAux?;h#brf;GF5TFhPZ7*5RiAnRj#Wqh#9cDVR1A7(zuI10@`Sa*D_prHYGsqbp$_(rS5@&xV;=b>1~0l7}Uw9vwvquA$;Ms<7B*q9)$ z#tEv$O-zPvizVUufF#BO`?|&U6s(V2+FguUloZZ13WM3_Red%ib}XwRr?O!d`DxsW zN)_h;M$+hT|6=0Hn!;ed)vE;<%<0zRI(LKG^z^2wWTvU1naJ)Kk=wWit;nFmm!pZ8 zUE8_1-CVj&-Dx=LN{e?o!Jao}5~bpTwy~Z!y}DV^{XUz;GkvoIJ9pQp#I7>+s%)qn zS?V!U3VGHj$xV<(d4C#rPI!RcwQ5dfKH^C9dhVn!W2l6mS@5lfixOE=- zAyt@|sk{Ws`@OoiM-&vaBP!ro^ZPy{N_}fkzRW`j_*{~y@&@XX(>ptbXouUl`jxxJy(Or=L2QZcWGn<|*HC<2V_Y#{kO>vFj zX6&kVS2Er&>UkGJZj z7{zf|q}CNAYNk02G^#S={j$WEmX(L|O~X^yX5e1?)jfUM<(r^AgPF*FS)=6V4#^O^ z>v0P_AEZ-5z3+(H*a7otk@8yz^C;X;H!s)mR&N}7M3T9Y-sp%`yy>q$S#sy-9H4cPpld3 zq!I0?F<9O|ury~}h43FOjmRk95AmjpBb6rXH^r?bKrb3|IQ3qN$~(;Rfy45r!@%qm zmapTxd+5powCm<&l+#`+weZa&P;&y9e_-mc?V*Ltk&^dk4+h3bHuth7wnRVn7ewPI zt3sY^<(KXsA?YZF!(r?=Woq~$yYIy6fulO1@VcmhA!fI#XZ3dKpegL?kvFWOFSWJf zj4JTVC4VJv_T9#wNw-~zeZ9#&0R3}?UlcTC-UasDrpfjTw?#gx(P z{C1w z6I7U_#Bt}FgPi+AxDE{cN_EX)O8}QMPHZ}6X+`Bf1Q-aCNrfZNEwodf+l|w3jnDJV zU#`q}IO#D=NBtzx1a_n4s<&@t_%BC7u?@_Tpm~c?9RwxeOIK+45VMHfwcp=3|EBJU zgNY{EeBIsg_wY@mzxF3XON-HZH@JFecfbkVL|}Vucj-mqF0M@%!bwv^;)dFdO#d|) z%$Cs6gp*n*XL1&A3E+U62{DvfGvh-V4YyObfN!3& z-4pI6vInO>?y90YR?^F@Hqvx>E`TFkdJzs~=wFA@{19p3Zqc`|C~%XTgOhX|cv<(Y zF7o+=lg_$1GA)n(btJ5q?~(i1-ADXVf0wyr$5LL^Y15Byw_PfEw{m_Tnm_qU9FSd2p{kisUhMrFAZbAOLC#Wl%De3Ex zyD$3lX3CP_P~QmrSlD&9=!J`*y?fZ<=Dm>w3a7j$_{a4Q%l{dfz7&~dMPwFWk92lN&{*E5?X=i4%|Dq_ccBD9&d~YFhyv}0FkQ#??^sGmh-eCXJ^sf2- zk`w3NZ%NioOkedE<|9Go7V<;V{}?SBWVHO}qVq@iGpj)h|nVusVYos$yR1gxCTD)^*{<`?T|bzl zdpNoa++-D8CvXLNSkZsIJ!_KiTV${vSF;kDe!pAuryXl??}t8C<77x(3IFt2)PMY8MSVe?aU~~0p^%Lh ze(7rOXewa))YQ^gz|z*({Hf>-{%3aPA?m6MWM}D-kC7?fm45)QLa+%E5y1Zky?Hg@ zg}_8fK^}F2{Fhdf6%D^3es)*a357b>h-`QKa2Aeb!XI zw@}?Zg?C`_mY8pm?+%9rrNk+X%RJnIBTq|s{jGbRe~LKF&`dUAeYK?1#2iyEKK#Cc z_IkAM#i0*M6i*kzC^`Mkb6XtfTqjfi8E}gu>DH>$F>4F)mAh2W)(*QQqm!H_wo>LQ z=29x=YS%7P$QCgKQm`>ey1mwX^a!Wx>bghxFt@+Oti-*0Z)t8$^m26TqU*}=PPj5> zu2Hc`)BNYx@s~eyZ13$UTsa>qTdX6ALj9oT;NXztv>i3m-EsAT!N-I z685#Uw3uV!;xNxoaL1`)DNl-Z&d0TTU!e-Yl{n7cGgMc9EyF?)hK~x1j3l{p=gxNm zLPB;0fWz^fW|+A_+4S|MT5oJE9}f@D`qoyGW70c`#Ves~G-q$8mzS6KZ=A*M?|TWv zwa1j(PjtPDk0(mAOw{3{Rp|?OR2ccy=lD=S+&(sX+k&VN?4YiVwKdQjRkEt>E1<9yQXk zJTYZczJC7xEj+xu=;VY1V*#yT!MumLuI}y!(hA1K#l?n^Oj5%|e14^RE6qhkMaB%0 zyu3=nA|kZaqq6Ueh3L;zR8%~5GZ0CV($Li04q8~SjA-$Dd+)<&OUs-m!}{OOB+rR5 z3iDqB10N*{hU9|I9S_;coWK3%<;$068RS_gE?l~FNdseX{ep^$N-G{79(BB$mR7%j z0j+$W5GxGBS0{D#pRZC^la_RW!=+P8m;6U@ErGobshaQOHm@%gHr}e7t>AE?xcn6p7E` zuN)`)^Kawgw3ipBo}5Ky+GS|~^EhQ^XUB5uEd7NG6rS$xLnze2;h~Q(q=sLkKlj*OS`0u4D;e1$84Mqta<6tKy*F zk$7e$39nqKTU%RIoK7c8dG7A%yuSCL%_K1|_onyZ_Qj*0Em*}{M85KD3n&!F`Ln5Y zBqjbmJw2@T)b|Yyk6C4j{%lOQSU;QY$xu*==Um{QnwlEMLorIatqTybvaF3(L`}<-hAtYc6;FY zvo8fus1zyBvQS;Ul#42T9DkXZn530Mo2J%KsKB70hWv-Q&yqU-lA%~= zU)8Z^ynj!CdZb0Z{;NjmV~<7IpXtsdQPJotSFWghogA<6M4JcnQ!THKRgJ7Wn3eU4e$>muuE4%97G)vgH?3eMHA(s|(~zH5ZS#|Jsm%`KjLtNEv2XbYMa>v;J? zs67^$78DXX-?iOuL@FgEWxer$GDKe7AlhT)+24+YzH1WRgy$IcdHVwB8sN08u1#3~ zE;v40UibXk1yWy0rtZ@vx*FO`*Ok-K(~U3DmRR+Fl4%j|XK2aQF2vDG*bRN2#f@-V zT&0ndlbcLWPiK#x3%?|~E0K~qt$hFdLcCdLclU{(C0^Ij0}YK!*Xv44OFcs0|2T7o zHQ-NcG*>Poi82ih&5$xlJ@=I>VxjIKO;f%HR#jWit06GBzOpBErsU-3tC;I4KYcoz zbz0`9TeyJcU)^ipUXsxH1l=yy;q$b#T%i2eXi(ueE2=|^O8flz^XN-2I#Ss_A%~;= z4fG_-#>Pf|LPA10qu{aqr8^n-Uq?r8UH*$g&2P@O2TlB%3&*oeV}XLcnqJ^0t4` z;j2wKdp)Uhw70jH{rdImC(pykP!^EqMLD^+jt#?ScmL?+Kc7w%wq}wb=Ys&9o1LZM zjk)J;Z@-4^>LyeeTzURbO|5%4G&FSiNlS#GBj3=I%#R;Mq`mg9)f@USd51qO8LHOe z>2JAw`ErY%zCQKetx3lUfy-2iS#@=FL&amJH#Vv&D+hG>V)yWpWKDCulS)?pVxh5Jsz<12w$=iAQq(sd1GMLWAT(cY_AZP>!|IO#qYmktTs8dx{mBxbCOk-C?0-QC^m8ygon8k{Od z=^o^42i(cfHBF&B`_j=XOg4S+ZbHDl51UesGj}Kb&XC|Z8w8AMj}#%1w(akK&HZ4b zp`meJ`XL9Ea7UHAxw*NztnBwQ1pdYx4M8tojzI*6izX;W!%g{C(XgzrPIl_U#+`#~(O} zXsVFRWvENM=38{hiHYwIuvpjWDkK;_iN!$KUIi3lsT9k1k)=Vv;OqL+=g)Ur)6-e) zJ#kklWz#->yc3399VsugQsww%B`m4d0&+1e0_V)JERdR;A9W77P)kU?M(*IaTPUc2}O?i!H^1`RQJY~P`n5d`+;_Spk ztPV>9`Q*3R?)!guCCthBvG&Usmse8y`1)3kj=do*(>WV1yGI9Gt~OB?Ha4S77cLAc z5||h39A;)_ZW59+Rj=KB<_MYbgGu1__O`ukRB%K@t?{|F$;s%CG(Y(6=yX zz`u6}g(@Dh8Czd3iqi_g?yVIzpOR!!%kQ@u%YGqR`0m|1z7CF2Xk*a zA0O^SX2&Aa{>}9^44U?nCr|8;Oz>ohO3TZGOhVSz*F_YJzLjY{eE9I3SsN^kA|79g zQ*Yk9>Ad-Cc)0SV6><2Tk{?Y?Pfwvyr&l z@e3UZf<`(qFww@w#;(t@Gcwo%tU`Q!eJ{K9%x)cYlM>)>g;No+K3f_75?S0B!6@OA zsdox09F^ilvrpOCHy>-AlD!+h_5kwKsq9#{&6!q5`f!mms9U_+1zx5L2Qz5a1m&_z zO2JK2^vKuV;-mfj_+xvVz}jaX;~NR{ybtr-NKvYE<--@Z9%3kkv7Fn{i_n{KQ zJr$L!@AXclV+4LURv1`lLALw;bYrRsgNJ&Zo4a(={gM3b)>%i^*x;}*n=)kR+}+(3 z9Oeg$pG>G<#bf0Vu^C(^F|)F_C;!5e4ihCMDR~El3T~JTi-?GD%%;sLER3wD0)*%C z5E)5`SfgomSogI3NGycdi@V8`(bF?A?S5aQ`f9NHYN7c}L_u-!_44=c-)l;zo^%{3 zI{z*(jI*_R9UJ@bg&$DMgxda6TJKurJTd zWJYI9R#jCUM@L1qT@8;wvP>Mm;jq7gf{3UJg5ir7l<_4j3|#Z75z`S|$MIEmd7qz@;B>G6b8S@)(sLHXn4H(z|3v9U2+ z->kXw=f=iHtI=wRN4PRxHR}mfAcpfqr@c+x&IJj2Y|r;p*VoH1TYH;1_Xd$O*D6q) zK8;Fy@!~~6PR^BKn?FH;fz@y`S2Yh0k6N|{K$V})l8{8|Bt7f+XF8{+tv86578j?? zqE;3bbT7ZT+XlhF*}5(xBa=)g@aV|7QsJjq43zo$zxZa>(~Lx{>5zO9yURMPN6KtP z0pPRG9n%yY%$HPDi1qef=Zp?{q_2Oe4#28W>mO2rhWPk+9q+aA8gerdyYj}Bk#bRE z7TAU8iH(=n=$Fz`p{DNc!Z^~kzkfwyVII;RF~0S5Kjg$8d!VKeaGSL3lOMl=amP$*>kZ>zD;zp2LCu+O}Is zuj&7GHD*B})!6ObO0uiw`QH=GYy2ci=5HQl-p%&AaJunq=vjJ>Q)i!_msbxX3%}l6 zpd-6XlpcCD&BQnDeHt4N+j|zaP?p=7SD!9a6-i)m#++-WnC$H;l0C6Gr><|y9g=%p zUgoQ#6)ziS9r38BqW&x%WA`c-78YV((FxSv3bZ94CeFcrzZQnnP~8%<&dQvuthhRW zS2Y&`-zd%#hX-)nG`V)66j;hEq_J9Hmg0>r<#uCa>87vD;I;diAQ@&C`=`Zf53!YuQ!jEuzy?f)_7d{JXlk zYA!D?uT$-tmyx0IZ05%sGN6>Dg)8_TY!t!iq|vRJkG?)LPLGMv(lc+e^7O>&6B84c z++;Xc!HboPF}Zt}Vtb*F>&xrcuVXN{gDh7qtr#kYZTs*=-?B)al=tpUq8tL z!@%r8z(V2g+uVEyCPDQ8NcGGHL2*&hGb|t%erca0H!q{}xpf3Qj_j;EvJk#~4LU~IH@fx$&cs1L5Q1U{Y^q9Bs-?=&N6YH5+^h`-KG>Abn( z2K*xOKX|Jj7;dp z4G;YGY3(!E2)|qF_$OhlE~+{@Um4dW!(l$RA{iyhBI+Oi__lj+HSN+Zmd8B<1Dqba z%R`rGX=%IN{Nv@>jL}Ey4HK}wKd)J-arvNVD&7RXYin!!1?19OR#x_5?}GE0DRKJn zWkOiAhP9VUN|y%F2&m#$Las7-?#nZSyB2&%;(J{=MZ3i^cx|5^#{g zbH6t+@oBjX#f=lnohTfl#|*yuEJs@pUS=YqVjyS5U9ghBgV9^$$>I+CwK zL-pEBZ{!r!?9%-tW1*;d38&70_VLOuD6o^ZrywCADHqTyoj-ya*7AK&?VmF}3v|&j=p5srF3|dT(cq@WMm_C39m+&l6=z4d zY>=s_ZAKE(-ugNb9Sx1`G?}Tb?FxC_2@d-ac5Phby-9+cLUoZ2-<$b)i*jOWPRYeQ z9Vt+DBmg&*9OP$FqhIhez23hAD3S-5`J?*!dTHeEjV=!!JWzp*ao>6%PwYcs;mNsJ zg<860iL)ja{>B#;fR<0w@*B9Nm!zm39v<4OrAStMEH1u(woF?FRf*U5GZP3oEG$RB zp}L&*6w!A%Iv^OElOj8nF#F=&I|DL%miD%` z0o(EFgLSCqrN-Fv9G^aYIuFImHLU$MUibynHB$DmDp&i^=;%HzNEVZ1rWzW3c|ee8 z0ANfN)qq46_$HR$kY3p8S9V@R#JRK1a>4aV8XD22Acc1Sc*AbAMR5J4?7}k_mvHy} z^+^uRyj8IgP&fVOa!N{^_>i|N`1sVW!X!oBQ&JLLC;0sSy-7bvRC{k@Vsh$tugt#_ zcWH}r^RIT_`l~$uk-{JUT#%gV-MjI^kRp<*Wk^wf0H*FP9Bj?ek^N0k#aD#+j~<()TDq60=l@WHKy-Z2av~BO4oA-Up?)J5Nnb;~RFx;_u$O_n8JLbrn9rNx(O7GEae2p!V;4&;o+UffQ-NXnUJUSZU;6{2SRDy_btzb-VgVyX+nRh zuyYBVZ~2UVbx^C_?qsUeJ&mb1 zDVFCq_*(R{t&Jxi4z8x=I3HQUgfjGAk6v3^TT_22F0P22t4mLxOe%Dtduex}p4sbg zThXN@g0U**?OPsqe;qx&N@IYJEuf-h5su8M`#};GlaOek;=QD#q!fg)y)^%kavjMs ziHYJpot;+`Wz(Hu{NB8|zq-(ur46yB_F7~~Pd@y$UY&0XJOdtr zeE(k7y)l^b<-U88nA6|R@s2}0DVgBa|69$Yr>DP+)I8a&zFA|eyjOByAi)A~`Z|u? zi)$+ZTR*8^&eMai^c@&TqNw}k%-gQeekkZFwa-_E8GiLCUVD5aLDQsA7$4uiIx&&H zVtkd(<2!{>)~8SR942bLM}GbK)#m1}BP;vfz5kO|R#mSbQ9Zh7$R@o4?k>Kn8r@ZJ zO3ER)OHoa&+~BimtL~IJDTATm*b!j8{3q8g+$i#9t0aU}#>||`0_Xp`&?s^__gGGi zW$FZo@pkhkarq}&%$HhI|&2!rU=Y;=F4TVHvs~+7^ z-%#VZ_mN^r7Ift5in@r~Q;rp=vYQMMKVew~VUG44+$=3~?jYOKryp*_wO@9qFrdOo zcqJ%vJ~?~#tn=l|A9#=r#Mpbt>+Rc3R**g(x?MT=4CKqj&(H7S%b+078y86F9g?f7 zy*k@sc;&pHRzkwZQN}7{*8T==URPdLrfO+r6$SbM$i+;=L_~w~Y;O*^)(H;nv~+cI z&ePF}dIE!$7#kgZuMkcjGd2{jC3PDH?Yd=eW)Scl30fMOFG5^gEf)sLbs<56%~h7{ z?=R-B%P%=Z<+&SMLz2=Tng8KjGQ!vP-{FfF)<*VS`B+a4(voVSzP!c`UJrngr5z) z3te9)Bv}6a`(rJcqjXsK(=|Bd7#B=gytm`2PL- zO0^FR(n1yFhoP7&23A&9Gl-PxWL`)KtHBmrJ!4&6-H$~A*BZaok7R17sO0BmX39Td zk=k}^Fz-&$bsji@5iaW*8IjnBOhmnZz*t;asW%C*;!+qyo?Bm9cD4=_?&9i_wo;G~ zyg-km9(@(XM7egtQ4}p<~)L3pY$&a z3R1Ya*7>RA92JP0D#$@3#KoDTMnq5X11KDCtbG6V>(`;8YUc$7WPkwv*2z_;X=!S< zH2}yanAW%=A>sM;6!NZ6FVKt6$jN!5w1aCdtK$R}?O6abkFUfr zSDD%mfN}x|rV*3EYDZksetm zlF$Bp6KIS(0)}BX8B|4Xv$?rR3Myvkdi6y?vkoUA^ybg^P);_g)@nT?jqsm8e_noI z={9q6&;nXaa&SGAz1fN)l}&0eSm+y#oe&fjnX1bD{sctbw>Ja@+c|3eHb*+%ogA25AGx(+p%LUBw2VSvzvdaK?cEu7(>XE$fAKWUb1 zAuBYh!*TPNVG`cGV|X(4buJlK$0yG>u)h;XMGu0<6Vu3b5j?6W96MD{mWTYLJCV+D(-=F?w`F}up&&2M7qpVY`vSx(RdyeiAlthXtUilLQl8HlY|z2u zZ-7lE3}$YDl34d`_m|c;SRp6h!aPM z3hO0g9~BKt=_^o&gr}xAF8Z(JOR!D5vIAd!VSDHG2gn3r0vRu8`4E^2AY$n+V0ITg z)VJ^7+1N!y25!sCXEK(RuZDg%Db7ZrSorux@kYW}lpuH6KF55(UQ!aM_S-zz9+g>Yd6)UM^# zRVKjOLS!fu*p@tyXjcHI%)`etO^;N;{h)cAL}^O-YN&BalnN8tJ{vVqXoTV86q-7o?WeLxK|cWCI1>FH_n zr1dxOT36WWr{!X!6J7np*_a)hgnIPZT(i6}&uDGQBR3WQ}jIf`L|3dihBMK&PcI zOhUJIbunFLXK(mcxb?;QHxqN%DfBR`Jd^j8`b)i&X(t4m7aXa z&c3U3`}PM0v>FL5-`ATuRTa3ZYjEUs>!&?I!fO!WB+AUn(w~}+jczqPmq;6Ql3h^n z@MnL2XG`G<5SNLI9sc6DD&W2>`Jgcnqy9wQ<={h5zm3z8G7v8n1%)hBo%-(D#0jsB zTJTBl;2`%?JG&I$RCXt)tuWBPt_;>5MxPwXYEM=+ynX}eDYtT==?+uqj;~Yy4(nkv9b!SOt3n9H@1pj{94cr&_hxBnK%WVW=`(uCuSzvcpJcBjbA{fLr zchoPIR{{BI>+2IFMSWugO2m$mR#V^m+j&WDaGc^~7E(?GEHT(O?_*CtnK+-fDJgc~ z+MLAhmp-a?+o*u0Pc}$APY$m5OF7WAKr%v8_Elp}aQSlX_Y8ez0V+hxgEaV)tC62T zD6ahs!bBU}2#y$^g7O>$G2Ho>D^tM2&Mp=S0hxFF=TYCl%`Lb!ZM(%)_^9RvYuCte zpBg&(LYs@!*f@#)70lECK@EAq#AxQ{5(>0 za46<1K0gcSN=hdQ&?=MduijoZ@F2f>AiS;G*Vf7^kp>D$%i0qSS3p`*)6cO15&UPezZu^;%-aY*=1Na}l9SQ@ydS9B8%yP^9xz!Q!_1jzL*5kQ`E zaw|*iar4p1k1yQ02g1ph^76Xdd6tc=Z|)8T5K}XO`D?ENzh}&54zW$d*~Kjw0KcNW2Ifd+!2`~y~p@pnYL`bNk;Xd44M+lNh=%8%`pQ0s_a8&3?T4dRteQ2#jddqK$;2VyhV)UECm$eFarWhphBFZ%Uuw z%#sV9vlXOlYic?=dm4CsQZn?mtW2bMVBp~fvH`QcD4tyKb9|h?H|F?LZf=~IxOg+N z4Gj)Tf-RLd{(-_W4J;AGOQLp?jsQ(}pw?WyItB__L+i(nABT!+Hlh!O(?WQzT5m$0(nJzM`%Z&YSC z<^eWPwk8kn_3J%d!^7fd$^?A+UYrpsgj9f#&zq0r`T6*M<>chN$?97`RMJf-Rt*4( z8sn8ea=&VN|9QyfY>50+XmD_;Mvf+J%)O^D7Q$D!xqmt!qAVFH={S(7zZWlDs74r# zZ`4;AHvTvzkG<7o9}|=JV*s18e*ga64ylws{LYgft*!mf19NgL%RrvAH9CYgiuLvF zZBoKNTa7P3-Aw==!Z}|c^18)o?B&|rXEzx>v-nKY%ER#j7v*2dtEn$%d2=@&veR&Z zVbybRhn;Qgu^}x@O`V(~Qs;R{n>^GGc5MTYSr21#z*@z5kijtiD9s_Vc2wt}R27S3sfSVg5Xs_?)Kv9&T4qaT3i z4luzBETMl2`XT)WS$%B=>1k!oXvElYLDCmO*~uz(!x*H!+z{P$*%zPC=VAvwy{Va5 z;-sa>jT>#=u!_E>EN9i!816%W4Imnt#givaso*&@9-XJ6GU-l5pA-u04D<5y4{%5y z7#bQr`AMN>h+pZ8<3OX0ToFkV@K5I$*;L_113CIA`R!X%iNWy&gozU0nuvU?_weDz zGRV0`61*vJuws|_`Rznf;vh&<21~jJ21JO37na3;l5G=$tH6%9G%|V0^^_1oj1te6 zH4srWEsZ4=oZQ^aO~)9BrDD*W?|~Fw1d2j31j|kEqCA5Txf;>ulh2fegtX?auRn`~ z_`5%7xk|F$`|87oryg*#Jvh;u0GM392M|Y!lPn`b9-=d}oS2)L#fE@tKt4}!2>w1R zboREP-6iz7xw$p%K{7G|gF{vAl^rzt^g`Gf$}+4_n*$aFUf?4|_59HD74rSiYdzH% zl5^~x2g0+;JfDDrdURI`-q%# zLh8N#eDgJWOyln4-c3b(4MJLilq#fq%N>+#Sk zwecM?NAT5NAKby5T#=MZ5UjzTD;gh18;+M27HW6}1cF4uG#@;Oy6W(QTTrm1!#9tM zk^|0%ACXK#QgwWoFb9w!J@(D7f~m`DF_E(bKE}QZNTh4|At8#-!8qaPLj%W2Y?Q%E zPELMu=78E5153gca*V&oqa+(^>!ilD+e09uf1RfL1L=Zkv&!hvymKYA2_375iHV8h z#I8w6jZwv>LPXI_#V=rvHd^isx;NUxIWaOYGTNioD|qiY;l)D3|5cD*L3CEP99fWeR4FEoktKoTsgM{Aa7&J$!9({{U@DB`)n;#`DEwS-c86mU zfMcS8@*}@tUyaxRP>nvrz!FaFZ9-mP9`x~OLv%+;!|!X#&QOvEvh?8DA-dy*c$Y8FHYx|T_Ci7Cd>BbnoojaW)>n1cBDv2MC_M>QfRln zw>L2iKu%g+dK9dhKP`363%!zq2j9t&(;y`ygNEU+Ff-M}BT8zlu{RLO2!`e=s7Hu~ zrmvV?yHlh_jOU2asIhP57U0-45%N&X+~Vfp>HRKHOT+sx z;QMZ$wvdp}-9r8H)p%I064#5M8eRBDg-i7{)Yq3FJ+qDRwfmzFVLjz}lu2wt&dIhf zs;R3xR9QdJllJwiP9Fg6FxR)xk#?~ek+#kQ`QF*N4o!tzX)kaBKgqmaL0j2}eZ{3E z-?IetQ+oz7`6Tu<;9k zT@aiP*<<;B#+@4YH!CX;A^73?5X8`W2=FKxTD8qu%}SsrhlQ232XLUVv4usvXwj8v z4XDLlB%sg3#Wk*NZ?Eh<_FTA%w21sk&1ypcw=wpj1w@T7J_JT{1S9tRy5tv6zfYeQ zv*x-}BYl(kef(||l}E0Iw3>z@dNcmI`=L6V4KE<)<~QsLwIIAdJ=Sm+%FN8k(Vd!` z+Y3rfonQt9EK$^c{M`;LdSV0xPq#!iOw?ftU!mRWI1rzJmp3;Hlv<1cbXr$K=hVop z13JLrx4@Ra0r?ZmD&83A5aYH%*U$je1M!z0zPs(>pwHub;FFtzi6fKyF#qiLlizTa zf`O)HW^!t3A=H3%LtWhj4=1M*j+e5=)&N2~69nfDgDKgi(-xl9^3|TRK%uTdBZLO1 z^rJwh@kf;GUv~GMhKr8q!}0n^(Dy*kms3*{FoKP_j82B;VwtbKB~;i76lxvXVuS}D zdE|coF3aep3;BcTBVA_w6<^}{&!2C&(7w9;awSW&t)qj%Umz(l(X3(HPw3`liraQ5 z6v%3s&<<`4%$Np*2u)<-K$nqCFM{5%(B+jCdtLyp(4iLi2HtZN~O3|2mA3h_UA0V<@KlWTKfNH0~B<*$c zB6RMChL$2H1)7pC&@?D{M;~T!I=?5d3bh1gWAi;3M$+z^rr+!6=$B)!8cvo^_>7Qz zJ5h7Rhs2nZovq${46RY--*){kRIlGIp411QK;s1%^TH_9J85r^opL?ujU-t)xtjG^ z@ZA-VQT_oaf;vYq(z8G>dNzt*_E9hs6Xp%V0{q)I) zs&q1l(vQ#?f2^sYft`VT5z)KhJt1vv_byj2aiLzcs|lL25kRtXjzfOuC20oEn3)e_ zThPspm3LxJ1?eIE6!>^h{3l^NmcT~V2b&wKsjrX4uhSA@1V0_0sROY^zkK=9@Yqw9 zlniP!F=Byk&2`rW6NV!aSA2BTH1LqkK(b2_e`-;vQA8#6Um>~f{K76R3#nV+EEz~X zL&O(Q#H0oJ(P>V&*zh5%Cxa}`uiKi5Q9SN&>; z`oB(192@76m4! zmEnZ{>7C%`=hqIF;pFEZpMvU%^x`GdFoxAYWkigb-p=4x+>;7_9wp$x&)ZSeU^sco1ud98*`uES}7df##s9tNLXOrA0+< z&G1yhX<{|?T<9XL#@($Bn^yT-JbMNY@-&fFNxr<`Al)uADLJ^xe zQRCu+(M;D4JKrp|C{C|I>N2g=ocj0+&KmBbjGg;>0CX~r-w4L~AStTup+)hS0Nwk9&3fMU$ zYBDUyGU72agsL55`*cVmt4q-Oap8l%T=e3y$aUEy2EY^$HZdu{xKKriQfVtIrZ7(^ zw0|2l-ERAOZ`D0&%f6Y-3B9FX>1OfVR!hAS4Op3qf2u-MzYRT>XV3M0ydie3=~Pqr zQkychs)Ux6)VLb!-cUtsRQSg}wG*%+68Gea)~emc?>Xj-GtT_lwToN$>kyy%%;)~| z-Dhvb2)}Ut*=KzGb6YXOEy3Gn9sl|7|M;p;e&Lg!{P>17L$&>mz}WG`dHVEYdgBKE zY} zna*{V)$+{!>B8XU2oJsaUettX=VPowH`mTC>(#Yn?MQYn_`1Hovr~0M^i8XlO8N zWkd16U{}LhYuiTd zTa`LzE|0sWB7=!Y1#ITocN}J|g9KQcN@E|FPu4YExe?2$pxD+;&^W3FQ`M%t+=Pmn z2j_4$R568VIEkrqBPxunRw2Y7B9>9#I4Yvhk0_DEhx@lGNEpx*S~O4Xka0Uxzox+( zIyZS`pUS+)mcMMN^_JSY;nY+Ppa4KC6m*sK;BxuEfCd2No*BpifV6!DX5@^q z|2i?xvU>&}8T;H9{NTqwzxl==f8>&jYtKHG8R=7x>EGRuUwYZ4#~gp`?GN5*ibu9T zfQ`5&t!0LJcH$%x6qvPq_HKTyY)>a5LwIbxJF;T;B>d0tqr2l=H^{nRHjH~2(sQ6T zE>cM_)U$UgORI%pT7@wfwuT}il_Y7JCMxMtiAs`0QIaHSiLjNX98g3#DWxa_h?t0& zHESklxH*j0=36sA6-W~+^HnRQh_wcTND+fgIKys++6&geP40EQ0`+|5xTDj7u_ylIL<@`@0z}1%q~Fo+@Ik3R&leOifS) z(KW6B^AvoY3^GG7$y^!km9J7eCNR5DAoHLkAQcBfGZ+M~TCy=!7Nu=8s>8-D-ZWD( z_Atq!n~AA35ZgWp+h>>y%xy*~dA9CsYZR`sO-ck}V$-Uu&4^(mWE%;ED{JO+H6)*F zC~_4@3`5VRbs%3L5m|mDps#$6REHIiVZ5Ls)2NqPoosD7z@`;4(!*PGqgrl1CSeTCS=ftvo)XyT6kIm zs#TvZz178MH_RHgW>&)J&{>{o0C@1>$G&~jV=p=E<(FJ~>4z`9JlpTcbp1m^qth|3 zJ^94jA6!9}nCxVUnaT7KH)XbyZYEZ?qcTV(c9v!cC!8h@|B&M-R<(zA+Su3rXDM-#+9af%1gZa8)~TxwUcY??6S zXJe2E&Fl(hSxZrnl4oC`bpn`jW+EsPBQY4p#qhMU0yDs*6tfwVWM)8C#Q4(gx#;Y zYTZ*0r}y9a#0BTSe{kL3$WpDDas$%&9IcUz@WhH0Z0ArQ*Qu0!@H!$=PMPDXhygeH zOZ5py$iSnG*yUWs4?8){^QjjA*|B)|)d%sEWO`ql0e1mm64HmPT1k`f^a}U=;!qvrX0eV%H+&dMiuW zAzWJougqjXYpoetbEes>1mv1?&EmqOSZ7)@G?UACGvT$7m}!G_!r3;(2DD98C2cP= zb$-yEw<2c)#I1$Xde$_|>Nptkp*hZG$HV}vGSCmicBo*_*7cm-po~q5=@_dO8Zkh# zm|IM1>R)+nH;Y?9*FrFbDh1$z1+?w;5H1GtF+gj>h(g<<)o_$VhC>Zq6A_?=@0Dc0 zj%f@6DFuc$3UWizhBy`3`L41YZx%S1H33A5g=q}CFcGvUNr_o0vI)773Xm_v6gjL= zCt-7*>!DhPI#e@l=~bPlT9#$Gu4S2xGw|@6ft&8Rb4BA=G4-%%FYS4yG=Z(UT9$Kd zNM~6#v{6Z-2|!lP27oSt1`;5LQG!~5^82g)aqB}?+kf=4_dIFxGwWR-k~BmC?l@Zm zn&mA+16h{oJP%9t>pLHK&wI}Q@D*35LqmI<{KivmfACJYbt?Fovz;B;87i^S6e|!w zB21fKM2f&fiiiw}dt+)gBrcj5a40y3Z0*-_{R(%X3wWaUoMK5XAnqV?6#N$4Segaw z6DdUDgOZ(xkRnA&30o^tiBd|b#3(0B6>F_?KocoY4oZkJAR*+rvMbY^ieM^IEfq8h zPTy^kx69LP8rv$Kg)fbC4F+o_Myff{NHn@NM&}r%F^Z{6bIO!xPGtqf^K_x;?5n?0 zm&NRp6y^>p)q4w9KMHROp4l{?A#Bc>bG0{V4!~Z0wr3D}ht2*Fv7gm$8S|rCq zAy3zHHr%AY-6Axugz}ip6<(Uarq+T#7_X{dCo&M&T4woMt16J0z}$QfEthx09Ll~t=M<# zLyx%>XPOB|68-+Ehn9F+2spU z0DF$v!^pz&aT36y*fvU9+eH)z%6^z++1VImks`asYnV-mtqK_~4{F}cPDN+eh4rtij zRK%=^l**XdQZ^V~nJ;=|E>uWBg^r;Mx(TO$w#&UxniV6}oNDUQ7_HHrW0Xb;q#8<_ zDWk}Wu7ZoTC5y_%q0RmXxVj`Ihs_o=QUOJ(hWRdJ>6$amdCr;ESx%YeG^bj|inLP5 za?WxPIL~!v)|a%&cC}<_&7_z(SUM^CKwFF1-gDs}ltPwcYA)QjnIsD7G!NW_kgDLQ z0BxEU5@blSWr=GC^)s0zABeRI-Lp>YLB^& zvy0vfy18I{5atSehEo>tOm=?Ys=_TUkn3B*k>SEMJ0Z&OF0*L9jlgZbe+si3E>Q=> z4|W2*Z7)mPa33f!kwVUzEHBuZvB`iUJ206!gJvV*Lu6(f8VF$1P;JALPuEqx zEql3zNa#GMVW*-c(9;{oKD}vZGhv?&j4nhdgf8%y0a%YFkn_8>!oT9(g15R zdRGQUZQ7U*Z3;`JnfKl68E{5$1aB;A#&iPqcyvr#r3W_dlM|F8QbbA-ks`LNZI~N{ z4^^nv6OwV{!kapeo>c?B@lE9EIHYQ>dtdy)_VeQ~<$$(Bm`R9{s>#xILZnD35`7^X z9)$uY3LqrJpcF|?IoYab&DMU)%~2R|mRrI9owa>oT>xO##DTPJqf?ATBV{XLcjp+z z=+;OX%Dgp0N?-vWL@Hxxld$X`PmFTO>6@!I6+v#YcaP)+9oGG$SN3sf(?P4+yJH_%+TqgHjTtAsR33`4zU+wkkxt$ zxdUKUQvJrX3|6U2%&e5NRkP|)ndsVyfHDeFqev&pHHRymFvd6J7D-5JR$_Z09iFl* zAF7EoT-9K%Qrx5QSh=*4=eZGlhDs845cBL)&n$&tO zm!(ezu~9v+GM}ho)}#TYG_y0p12d4oOVFmANziB<)Q+nvZ8Y1=oPe3c8a!oAHFYKE z(nvHCcY=zxpSKC^Z4{iYE=(?Hupk>+GH72XZjCc&o-o@LtS?W>c*r&9%&Fo`Q%&iF zC?Q3Z6A_UPJ`K%KoN)rpOxg~u;ikeOTFRZ9!P#C23gh)-c8l1Y@X;{0l`o3XlC$M( zlvYq@Ey@?v5rvLGUE5W$930=2nA>nO`9Abcwv z1r`N5m+a9blCU?}mjym%5~;&-u?X1^WtA*un*qtwHbd5~Wi4D8ik0PUGp%&CW-c$@ zB+ZgOv=z>+WNd%hZ_3{i#u)dJxd6wt7F06|?Z;w4@*N=NnIn_ln@ZE1Z_gYq7P0w?!vl{1lJ~RZ| zxL|7s0PXS;OjJU3#>_nwa+-bWnM=NKrHOFP85bV8JI&lv>7gOGU0co$9Gnk^1+k8 zd%|}=_Og9U(0i_*ehM#MaoYaib+>%z4QJm30C>;hJ5Svoyy|PmzVk{6{hGdSEjpTh zdGQL_ zj^10FiIG}&+eL4_43{ps?8v=fzSR4Fc-%Q(k(5sV@(*8o0P))2fBd8yr+aBZ^wQlq)zrn@r76|udh~bmKKOy3NUR^2 z|Fd^IE3C)j)F))>A{)sInM5$7u*n+0{a=0mxp>e2oc=5X(OS=?(R0ncS5E)xl%#1JPE@+6Ip4>_X z^^tU3{}QH?{b0>G8{y2QO4K%9f(mg7%e>uZs-CuOq~YY=(l+_A%dJx|oUQ`Ff`awN zc5T8ayhuiA(X$X3rL}Dq!*AJTYcpwiS~6wL$RV^1W{@HXN&9*-@f)qURiM}^v!pJ2 zhrqyJAAI;%f4B!$#5cRkGyrXSzr@*jHgx}k5C8q2Yj6G2J;kO0 zfQ=hBnxD7+@t&~$1NW7Mb|K{1(Bmubdi=q^J#g#I2|$DdNMJRk2{<+Ty9g@j5PQF{bKk8F4<+Y?YwDzWBfN|80E24;NeXA57sFYf-v zkuzsp*MG<9`w{`9jDeb;P|13S5n>r$iu66Uu!>{87gt%brUKJrsX*=^N{C>#UYXW5 zvk*neJ>QyrHWm)t`qF)Yd#=CamUSOFZoDGk!mkdTexR$WbwoJ+s-=sL-Un-cJMYA~ zUps2x^aIHcKc1OB2d!Rm2|Oe_fmiP{=d!nA^^N1Q7TnPfrO=BC5rHh#UH)+6?+(M7>ji& z6FU=N7WIl7WD8a_zHh*>JHhR1u#KbuAW@VA1i_`iz=qr2`_Yg51ON`EG$De@@Biw@ zFUP-q{ty4U`bK3k(zQwYeK1{jV8gWW(mzxspjJ%|1^rBu`*tmAbghbzsjZz!dT%$sW?Ju6mp)A zykb4OP?oR|Rg75(WBzs8qQHMUG~R%-VS6ldaHdMr))CcYNn)%lNMY-?^At7#9E)qa zLM>4myKeagLS0QSmd*5{bpDNvl zvaHZpbrN>aGE52t*3g=aDx$EX+W5SA+<|wEeb&`ieaIzo^;I7_@4f%US|7LeKG(>h zm6>KEUMmgCHS&P4t%O~*S0V*q6)CWfA!+Zvt~>Po^hV7a@5j(uu04XGhmoy$@@cae zpsb3RNRe6cFh_$afau_vpL%WI5B{+h` zE0JV6X!*PG!&IH}l-50bCm%oSp#1;_rkwhbDXtN`X2CTHDIy+!&`Gbt_a9z+`T_gc ziLyE10PAjE{K?}#@x6~9Jx=SK_dcrcw>Mp>&9P+wtX=$pFPuxC{rjUIJYpX(c>TRU z{nfdjyBcSI>)!Q;zjW_X!|e5v)83AA{=ObB+S_EqsxF9y_Yf4_Sf5h+5VILTr5l#!CY?ha^h6B?55$H_gRP$Uw79SvRo31(VutReV{wH=Bj zVicp@bRej|z`BVYZWJ<+q9}0PEMUudm5MQy4OF zRb~F#f!^(8@-VE~cg6ck@i;aOI$Sv3`GrpNE!cJ=5VYB%Om(vZ25uQQ`L5lb(|5)D zO#JiTcZEs1?~3=$f8P}Vj$6OVClZFVs&?gfN4u$8D7*)O>;ZHX=y##WvFhk|_2R4( zo<3vNy16F;c>JjhPp;%A@8T!#=BMxFr|y4xlkHVxNm`K=p$TFmo+w*XrHFvR|C#r~ ze?9Dl|9aSh5w-3Y7alR`1xHSL;gORr{Pn|15z(4o zePHt8FP?n(izgp`(J$5#ky7h^bKa3JJ@Ckv9(d#j-}Ans&;9i}Qi|02n?LZfDM!70 z%26+$^8Z%Z!q}VuB*yF}7oyDRNZ2$XbprK7siQC(?wSJIuP-Kk0yDNw3Z zswg3sfAjSaC8U(1gp{I{%V!+$<^NrqD0=dL-*fJ3uKfqCx#zNj&O82~^Nyc#{_*Fn zTu+MDto-PduYB*?ul7#4pm)l9zju$KmAA~C`resSzjoUirSRl!=e_sxYkzsg!SiMv zJa5*)U;D#ar6^GZP@+gF{No3QUijK+7oIrn!V|yt581AskpIsZ>B%(26k90*?J@Bn z-1+q5WO|}(Jb z@4LeMy!^6xckT8Z@i_)##_;H|7(EuIp?rtw_iSm@yIXV|B}92Z@qHg8(woBe`?vP zW5(m2>kc^W=e@53(b``um^JsXuibZr=(5EWDmV#8)YxP{IUIQE-Cw7J-*W82S6zAY ze;>WCRL~Xwe(V(hF#QYtm%U;f^VESb@e&ogb0Kgait>+5>aQ3JEclIPRQ@wBC(x0Do^+!Q?(VU-OcmMfE z9llR-Q^;R#zZPeF>;TX@BHVoGYhN9H;m4iS)s=QLpta8OoV3oNl_EeXl@h1mgph!Y zfC>!ESug+qc-IY|ed8go`r<|Je&-MW{_XwyKY(|A>mAP_Jm=#3J_Udux$D1PcFn-M zK5@!80DrpXk7s`Ko_9QY?YU>Y{`}A5q|e=RHLgAH>>FPFleg~<;N~k& z@6NsWLzk`mni5lX001BWNklXdABwt=hlu*b0{No!z98eUH^8K(0u<`gV#>>6@zB)4v3aJI4Q+Bh7ZMb$ji`9 zSa%6EuK_ev1~f&zoGrbiUaT&P*45&89YVR^j3ZSY$wcLZ@v?~RvRLS3!Sc5AX>wm* z$u0qMxfZP;YqkfIy3NpD+Lj&CCIW9<208VNT@5ONHius;u$7KEw<>gIKoQw9RW$6m zX<)5cDcBjFYY0YHnxPnMm>_%jlsLd`|1tbZBtT>$19dCAMw$`P1 zXtwq^{RpzuyX0%}jIq8rfYx?IBZgv?ShHG6-T7!;qm@csk;0yvTEF%~vK~xR0(eX( zPY@BHjli{~BWx86t-yZ$eh6!z;i<2DX_)7`&&)0$sh ze9TM!_Wj?UIu!)q{n!2K?FY(-Mj)W~6F>OG%hz9f)Z4#z?|Y6rdLNngiungKaMwQ{ zdBcI@fXS!)>6a%za_eO?e$3|RaNwQS-E`7EzrEu4_uqcs8zvsW0RDR0HGJOZCIXr# z9d_=`=l$%o@13^4$>*0(pZR3~IQF6+UNq6x<|{7w@rPf$UssxRCCTIeJMY!~Nq3rz z0+1_Bl-Kf1BR8TrC;=3aVpf3Jaz>c`rM?gM><+*j@HzQE-v6%2m%kA&y8PCI_W>A> z|L#2(ePEfbsY9fLoOSjgMi)3f1?~#*EfA>4C{LGx60>DdOeGsNS zV^5&sSfpxjc`RdC8hZd$NqIo@UoHeQi#><&NW?mUy>(z4a=I#ssY zZyhi~`4VlLa}CHIg~m$k#ubq^R88LzwM*E6nud3gwzOcOBqZOi)p)ceVsZ}{*r`^d*- z^11)>=hJ7tfA^Y~A3e^xFoR*0L;#q_9kt-Pvrl~U(!+lDhDlg;$JGoz>-AT=g#L8@ zsgovx*&3a}%9JiAR==Gnl_UgG-AURF5NQq6G%JlvkpdDT)4>v=#CAM8r&8t=95Wc( zkBkWnUiIaRK7cc?zweN7c`>zJH6o2TTVZ6y!T(? z5BC2W<=rz+yyM~%bguc)+va~pPde75K%%;HeI&Rurs^cMpy66_cA-oyoc-&1F|308 zTM3ZTW`3hTEqFdRmBE3)oE-|ZTB5?^nG-SOoPD!%osgpx9)`Z-gCDno*eR3 z?ixy_BLJ&n4>84bob5b!b#-;6X_BU6Mvo5bxsm3E>Yk|B!rfh6)IBQg9zAN0y+~3? z$())3r8rea=GLU_S>m9=w%by2<*AtK#S8#SHgPEptwqRX0+5W^O^?}Q&ppP%t}qm0 zPJKTCz$7+)wu3*GCD;G(hfizuv{nFqx_+Vwmeum1P5DXBdx)MrnjhNeS9DzLHVf8r z4D711AY2Ix17IdhIr>8CeZ$vZcIUqzEM5;e>b>;F)0P}{+ngz)eHu661f2VsU%uwk zFW=|x>rVKOpW%cPna3S;%Bz1qr|(z4Uih;8gd`=UeGWeHRXF$eEB|fs6aZ`Q{qBv^ zPdR@d*6VJ*=;M6;rLP#zSiACjH{ykF8wXzJXSwVu(GoEBdC3{)UwHCQ|8m!9`^$mn zW8$zvqSsw~$GxwA-T`KhhPkf_pq!B?S#@GIRsabIM2S*eiYQmCnUu=N*06#~kSn%l ztSM1?DETbFV7=-~|NXfSF8J1@pS~Gm#pz~Md9SlmvvPJrwrfV)a6@2A@@~-d zMPWMpQFM^eut4HLoa6^C%Q&8LTEOcqIEd2-7(p()|DbQm7YsKf0lxBOh6FR@+I_k# zUa4BzhMYS}fl)I`+1~7F61H-`4GXhK`p~*3{&oK;Kko0J z{+id{_u$&6p03HNdVwx{L4p?~b0aCbt%cFuU0rEcnx@^OMwR=D$l}zf8^FJI7}edC zj_Oj~-QBzG0fK@yhhZrNv&$D?k z=?~98=EN6&(!}xpuix^D@eJ&J+utYoeY2>q`l9JKk&!J2OmDC_bREZ3%;;myzQ7`rLp&m-hSqP zz4fzKzVa46_cIgRRC(MHr~D`8-}cuNCR=K>^X1?S2f*keNU1~tq|!9$CQ`(#S?PPe z`uf>d003@$*U`Ya-@EorhY*=dKhs1JmcMPDJw12UIZNL3>vvvu$`}9o>~Z|+v*z@j z`sH~)`Q&>aIPj9=eM7r5Z#5Il>Wz#WEE^JVZ13uKAN)T6(EA_Xc-u3*NjU9xyqdefx4zx5yQ{xbmJp!q*}!E?Em zv+RHHHZKNR+v8$PX6l67B55_}NU{_nr7MicO#@OeGic_an3%1C%^>au*{DmtJauTP zpRb6*bisxeRn?r`Xx~@aKLFt@LIY8?F>SjX2ISqK0U9=8;Z6Odrx8mxi{6q-c|E&f z=<;3`AzB0hLZQ%0+ooaNXvz&~n_>6ckUN8=g0@ZD$sgElT_zbb{3s&IL11$Yu%~S~ z;EXMcgIEqFHNu5V1#Y|NpYJ&Bbr*f;;!T@|-gwIEpRw0|L$$)GAg&eyMNYZC>ifc& z(cKfCwf8GuG8I-i;OnxX31P8T%Mp(1-s8Cwo_qAM3LsJa+G9!;0HjJgm#PRFr{(fS zV0VZLBWGn68gi5GuI@D(hyM7N)i-|otLI#E{Vlf-nrOn0k)C_dgu8BE@w>r4m6V?Z zbpJCS`WFR8_rrSAernXi`r148e!&6H|NDCUb8Y^>eZTm~8xnfIVAf82BU7g+m?_sv>*;txOhvhg5U8B3Z#-vFXQED{gnt3SChH6%kE#V;1OVikbFH<8x$wiD zOPX_*>!D27vV17hwOkKndMMLbu4_4Gd0xwH5FK7c5+q+pusI}r<2*JiBv(0>pToq8 zuiDFB=WmOBsq+|wwTd6DA2_UjlEA?;ICvJV8!VX>+(D(ty#}r>tyXAKy2i!khChl9 zna;D?PGR^SXVH4KhRC%{QpmQZNuKkcSzNrm@q?Ku8kFSKRG%)whwAcLRGQ zYv4(+rk-TSN;!-=_ONFyx$XypfBEy1k3M1v#?i2!waG+{ zUH1!WB`h5p4bq-Ki5E_t(I=X5vXl6 zD@+?Ub}jr=z7;koirVg{mzz=2dsil7nZO4Rt_*Q8ql&iMK=bANcA{z`XSa$Xc3wQnfZA z-FiYURkxWxl*qn$oK4W~1hSo|n!f$zoewwmW6dvqQ+XR_7=;Q3e4STCUwG&Jk1W@Gg-v?s!P zNA@|g4y9ZIAWAqF!$X;lev`8(MR&OMER_ioy)8P)$QQL-SC^4GFt$>ckvI=LdItv8FbJ&9z*ci#5$d zEwg{KT<5vH8{2I&4WbI0kb)%JLdo>WxV0K;3u8)wvsB(z{XICGnF#V#Uba zMpR>xlSwr*Dctk7b@x8FUJe*HH!DDz*B;JeJ`1;sN@1yG0%@LIEjg`#Fn(E)OF}%Q z7NNk0lkY1VEp#kIUjNZG2vrV8_R1B1=1i#W)|$-)nMS7}`V7cV8@)Cag5W+%d227}DhS_o<+Pu!y}L6} zNf$GlQ*2cRq?~9CPKf}eZCnY1bK90iIpyy5M5alU$$C?!hiZCLme(?;+}B<)FEvv) z{uRgaLl>TV2(T%CqUc`Hfw>S@QMqAj$X>5$dD@ECnP!(~qYtRDy?;|{*hAj9F3v(O zJ0nH&>03rA$~0|-E!Pn>&KyY+?PSl4H!TUKE;*+Kbwz5<*{IOZLYAnDp1CAp2Wfhn zvP#;nXZm`+mkEveWZR_eE#&M*OdPliN3_!`WDbr%PO0)%;lilj1_o0f6;ZjNQ25QV ze!a9U>&vjl;f1wrVnQxkv`yg9%FLaW2C~As+w{fS9~>{V4Pq!|`-LKcUjsBBCFS-~ zP7PLOcINw@?D=;6176f8TO6xPbiT@+J)DBG*r^oOENrEQGc3F4Uf)K}v7m5j+6%%^ zD0gFWUr=4JpxLV8No7(amw%MgDV9x^o)kpSV*iy%K5MvnmP~F)l*}aeT{8gRhM}5U zbC|5KGF!80JGBh;tU4rc2^8L1DPk<_N92Zh8>z4LaM%f|fI``tExl<53vGj0=di~G zS&t@1tR07ICtb5}wx3oAfxCv4q?05yM}%cLG`gU=k<^&FH1aO{(U3->nV5))$(%80 z+!+i7P|iBjJd|Tojcd8yRLeIG<(9DR>;qc+8I=E@Yx}S_RQ#y-S$yMXVt%^hd^m~O zsOaUAO-s_b*0tQq-#Hsu9AZIWuNZ9xGsc9{eP`%^vr$jmCiP(MSf9Oymv_}?qn*4| z>*3p$v&9!sY~aSMX|i7@MnfLL#6*s%;%t))!k-Pw(iq!7&Tf1=4k5!n9(i_fJTxi?ej4j)Kh``G5 zt~kL;&sIZjlzK|pqgw2V<)tH0$y@@s&sHhE(&1a}f_*=cnXYBwBJ>ih2aiRUg)JHrkkshN+iNIzvz>Hw^pkXW1oO%9vA-hJqr>&1F{3j6_<UoytmPZCeA7_Av6gSDWwktK z<~(PUdkF*o|1y;XvngAj<%f#CR(NDn?w~p3SVUOD&NXt)na=ZEROQBowe2f~ z&e#GiMeWLg+YiPK!nReno+s>;@9?=Vm*l2~#uL zmaW?`YuIGZ11I)^l{vPWMT>5(ArVQMA#AN-G~{IS>onv5K<4gF5OU^3L_!&-U8}HF zjI$KXFX-5z(M{~kIp>8t?#V_NsC>vt{vpxA#$8rVi($Prk>{c;?knDn1tp@bBzf!8 zR=evXCC>IPO}|?ACY6*b6zU|-L0;Xr&Zc@@rdXr^Vh;9n7$MwF=)#1Blb!0wy6V7z zIg~rCXdMXBmgLz<*rBxTxnDb?XE|)c3-4xMmMaAZT`3U9MKE^O;knifMy@ri!JD?` z%9gaOJ2C4zwP#TJrV$IO3n4w7) zfqBmK$vW=ee&fFAO&nvV-5%@@<)= z3n6t-vnGz9ZkdhIxM66kv3ExnYqlyFcHN-KKwLt5L%-|uHj{OtRGTRJZV^`2@3s*=<#M zQ%~~JwLt4a)CDdJ+`^$8WZaI=L0whTcDQd|oK zH!#B+t2;;3aW+tx*Lb2WBBbVU!rFwhUAk4AU2-XSs_ZDKt>toR;cSq7P1>!&wtUu| z7;=dg;N(LBwA4P6^f31eWasM))ezywh z1#wYXODu3l+y`WAmC5G4QPLU}x#4CO&ej@^jbP7HVJ)(KphUOX3g;7~B+#$_O98p`rbId97HO+)!po3bZ2h% zLs?eK*ssOgPFF?P@GVw&;*zH-6gg6J!QR~0xUE_{>CzgxtT(XX=^$rrtnvE-+m*u_ z%gXQ{i$!l9GJ z{5wclRB~2~C>n|v_i&du+dc=fh)bw>`5O~+=bT+~Y{cnp&*-X#;wFLptFpk&ftR4u zA{B1~b`N%ew%Ls91hZF0TM>}ioXLr(BF`ZKEHYaR8Zu!dnCnP`FO`5?9<|tXq)5fPR54*y? z=0V;HeaR?YU=rEI>?qxGGD4#+<5PR~ho2Z|4sy;6AlE(x_b6=P!We3EJE1H+v+OT2 z3)Xgp+cC6VqBZW~i@`9Vv@bTCU7A!2sZ@25$`h3`k~A4oNiE50D#=xnQI;!nk1CWo zY1H1Us=*qyTtA)ZjkSE!Q1;YN{=}y2$&IxqH`O-QvY||8Sw58IS_iC%Vhc#a6na3= zv3%EPLD=PgEd3T^vn>%av{aFAsBp?=(2A$aqoC77HRR6b5w#kUo8(965~wC-0+^bR zdcj|N%+QFL!sR}nIk&b@oV57&ox*dlNXgc{5UFhL61$;F&hDhtrA*fa5z(P(Y<0!2 zudvF{jq@lHky)~B*aaGAsrU`r?kLsj3Aj|ffPB)nhJ&y^59|eYN84bS(c2I=%ObZN zf)?1LX&K~=`8V9vnG9oiY;D@uZbyP8b~A?{BRw;eqD*T=_Ea@DvN(mmEv?KOG}{Qx z_+_k}{d~k7^;RWSJ6fS4C39V8uM~6(oGn8`!zhXkSfcHE&2~lTAQNU=7sy?A!T|8E z5h!9Yf*W{qPfr zFcv>SkXeAAF(90Ul!SW*{7?T+F+UajNFaM1Bvg_lX*#Ma8I`2nY0{k}X`;H4Bvq6c zt(E!DYL(e619#=QuH{_I^DJlckmuGUn`IJHPPtg)b1Wob`(wg|99?`>@14Vd?oa3vFlHTV6ez7OIh5Zta49ESc+tR9 zfyE1XFR;B=2yn3&j`-^e?tl5YMZ+u+k-aclB`QtRQEA%Um5efktyEW{x|B*RTN5#p zIW$x=a?L}zuH`z*bWPji!?NIXGt1aMUyVkfHb#o(LUwi8T14Ecwb~7{IjHYv9i`Oy zOrT?QK6U6c^44|G6kEivbzN~w%1IrSrK7fMi?che$Oc}wq{nUcw7Ye-w^9$>3iH$! z1IFgeuR5F~b>zE6K*n26IsP@TdQE||0r=}RgHNnWrOTGz_=7Khb8~YL5fKp)5fQPO z_&RXHtXcK$vaQS6kANZkT_JTvL_|bHL_};egyx(jEq*FCXLeab>;ksgno&eVL_|bH zL=(u;dWo~G(HTIYF1?M76A=*+5fKp)+YSW3iwFQxG1ha(7(n(*MnptJL_|akBiw#J zhLNzHseaKIJ|ZF_A|fJU7+|c)N>=2>v&8MY$kq`N5fKp)!v(W|ZJs=Dr}EMs^4Kuz z001BWNklE~h=_=Y?Fz2{q2!oX`4gA1BO)RqA|i$x^@l#E@?iI2+heKY8g@iPL_|cy zu)#>s{_IhNR^nXeH6kJ+A|fJUnBX^I8%p*Pwil|ScpVWD5fKqF{4kf6T2Wgy^0XZ@ z6cG^-5fKsLK$XwREnCZOu1M7pTNwlMsR}cf3~ok5^9Qy?7Mmp4NlrWUUn)_@!OIw2 zGII;7cyqCp3(_26F^g#wDq!=wibT^^4BNP{5fN~_to(11|15t;L~K*^&z;!8C^xud zCQVz_MuJIru~wQ2g7-sro~;EhZBoA`~0*vX-UnM)FO zBABThwP^bGui-7MhmO#{@_zSx|H{bM z5hDf6;LsMFP>`?#eR!nnh^>#_#jDw4_2ORRyy%7j@26U&848b!ribdshAL2}ryLL; zGnWi{s;ra`-aOoJ3HrkV+p;wHwtn#ac)^A zJE8b$1nDvRUKT9MnI4TBD7M|3 zhHTG0mLWsyFHIHl88{o-{vUVrz(keW5I>{MT1eFgyBeE_kB)z-CJNPdxKAwP+1B%x zq_?vuiK|YCmLedPBylpdRbpd&gWRW4x*-@i8|geAONWxL`LFoQM|fE{M~s|2;Hp;< zMDaB_S;$z=p3&uHQ`ZNGvZPN6@Z0Lg&}WZI1Vd162_#9KTp~~>ir^tJ>o4%!5hee95yXu-f=E@}D=U-X4+Z5W$28KIV?J zt30RbkezcIS;gCdK4hqx4_lO6a>V;_CMfx%%%`n+Jw`9w??Nwy_wBd&=nv%sPRCpogzpdO`Ean;Vb!{sAWzXZfX4}XK6TFe=vszb}TV^xUTEK zWv*?;(t3SFS~Vz*GQ0e(_7roBji z`NcEQCh_8Gy96x3EPf>U%gv`?eX#Dga9hx#+I)NO#P{PK%)x1s$Yt}bT-?i6qBl)q zd<+)b3~LUgU&1bL8KCkGxCUbd!pX5Oj*r7o9#$a@j%oIMr8V)P5BaRAdrS<5r-_Lf zF=A^<;a!XjwIY^QqkXzhhU_i-6Ppi~a@4K~=`%L<&54`*y+xef^$*EuHO@$q+hA!a zG83HZ50(L;FjiJM=wMO9%sziR&7{WyM7Hi1o?lNxIThzQrU=RN;sk@1YL z2!l*+hkRTB7xFtLkji28J9>8XYD1$??}u^oq}pN$s7M4z9*a|}-5KHJqze_KG2qW6Q-cf-4V99=-RJ6?z@r#)FmzpFBT7)9uxD$gT2{|3DLaPmXDE_)P% z*BvI3+wnt(H1!sF9}iVjKHlC9(_Mzl?CKunCKX(b8l{CI9%9H=-ar`O_oR077dXQC_Z5xDbET zkYF+XF{ldH$$;NkFD_7od)b7b%J(2@Gg%9FL*10$xuJziN^qBeQv|w+o^p-s>L`pJ zxsKKwG8rE77fU*L3;1tDOT0zms)4I!v_9YFZ$PZi4u=_TT!Te8SeL9*WB z3M#kpFRniPrKQs$f`emuKj^`R?fCvzK8u=A)k0kzJvGR0)dokgiPq5j9fqriv2QR2M=D_P5#Ewo^028X zV$b@mC6Z)@A7N@alN*p|vg@(W!XR^n~9NE@Mz~(A_VI)i2 zhF>5Jx@8OjH6Q~9BVmt&k^0^tUf$UjqeAHk%!t;XrxHt^%Z%!hLnB!=y?>6#-~Xh} zzMdgC#ujWN%d({)CgvHhOwc&t&RV15LEA2UkU2(on))rSst4?CG+`<)?uqTJClt{n zQ_(*bp7s5`^+1i7-0z)CS9xq^Fx;yi83LmvlR4~7ODg+o!P5?%E{xY>oZ-|WNG#i5%B`1`NaZ`p~wZOeLg_UDmwT`FM z*zn)Z*9ti%WV`{_U**3K(Z35X1hIW6&;y)}37G~&=R(^Uj<%DV%9k1yHFoEZKp4(@ zFZ5@lw>Iew@P&Br)A-LzPD~DdY^)Z0z)Q`n5YPI`2RC>PE>H59j|fEj85tvy`DQ;S z+;}cC3@1cIa6J4vXENU)R#zM$r+?G`Vgq+X*TWoIewn?S!b>C&O6Rso{caCsH&%l9 zFxC2iNsL2xwD6YZHQLwbb8mcqhRe3p*r@zT6;M}`kY&6DID|*;7T3{|)F**89i@h( zEkwrzN`c)1SLXGzV#cnmtq1ePjSNQQZ|G-hu>?)W5m|etv&*29G#svVtt~pAUC6?# za-jIIb80W}@|PQ(ztDA50m&8WoDYZPm;B3(QTZz z8doQ2g|i}@=0H?NYXGCtY0>d#d%kJAapOX#ng=# zOu{R=oamZ!_5{jk)lQX_Q3ZRI~yNQ*C+KXSt_3Q%)H5e#=R|_n&#r z?@vo;zw66_mSTxYOaEcW=zF6agAu6fveL^6;X;2JxqLHV6L2`M`xv7PHsZZV{De@H z|0Dn{jmBjpJ7C;Y zWN?5|M!c8%L@5wQh58>4s->y7JC*B#66V01-`m9~Rg2%CzWPga*?CqhaQ zg%zLjUjvCX12mi=S^Iu&A+o8FBTefo>~mK(;_bt9NsQDzt5DBU0K2q=jA`)UP8exf z@Ng61{9m3#F>VQAn-|T7`8KH6Wd=z0N3*9Rgc$FlXR5;;DM2O`lmHM~xTR)&$-z~0 z#>jg|WXGXu*wXvK=lqLH5mnycKflwum038Ac~8O{*vTq(pVaPc{*uyZ;$Il1m$`2{ zQSiYLBG*i3XsUJ>@S*_w%}10}fR0BUsczHv8cS!lhg%8fH9UjMmCcK|wjj;E+Y4F^ zPo!%tj3D(NYItjEZGj~o0f_fdL^`x6ml=2kk)4?@f3K#m)VEABb0(TqVsYL3`cBS9 zDSrOo%RRH%No-F5JXCX@r3acqqa+6pR{wzuVFY1}FByw8Yw_@+M|=vZ6A-)t8%N%GK>d+)g3<&51=;8Wzs(g zwOcPlh}Ex^H4yoG1y>KJ_n|O8CeLTNZ`65E=JWZ{<@kS$C;|et1LUJ{?NXRZdwPCR zoIY2oNc_g!@=>yzXDs-cqQe1uUB?20RMo&BjX2AP5inb{?>8eR~ys=hElOGPE0b3vf7R~2^n4% zw5ha*JA8*nzqIcJ(rT@s9GQ`PyQsxw8@f}_G_DEGo@8q2bVEVBtRo}vKU|iSLPM)P zzHY%B@fozN2?Z%$e(QoqW%&HAA&Il4j}H+2ms_i6Me$I?^Yjen>~(N<;Z2qD&e#mV zL#qlX-U$77laL3IuD=s-pflEQ=AAdA{CNR~sv*V(o}44xSRc=iOE74^meWhuGXnSE z@la9n%#^cYG;BtD~?6k#FGLa(6899js8)o=^ ze1xLx4v6TPc;ex#JC-m~nNaQVR;I)WYeU?Db0MO|eYJxLp!rr#nSwskEA|+2QF?3S zWthSb(?wnjTG?zBsuA-oP|iLi+AO*YZy53L`5qWm1&%(vt=Uj4cLETvnqQ#xRBSj6 zkqwHkQbk;xB*;|H=1wKCCGwKiJi#&3gwW7#PAS zPEy0Na3{il`t z!Z@dv68hqu73{f5TP=9aTI$W5eSwW8>W=Z%fkv0Qx$?-I&avNxd?eA0d|qF^NiKBZ4BanhB=PVQC_ z0ZHCn^gCQVQSyaDSM&zbxVwutG;T~*)v6lXZ8(E6T_Pj|M8MIo3ysML9@_4BrPh;5 zWrXi_Nx}74Su$oPkzbf9u?to$jE}78TN|v|^X!3b#tw(p{__TsZru=}mkm<+wSVwU zBx6r19|iopjtH?^wyQG{r%ugPbLPlPtWKWhzsej*ynZWW{`>o`-Vt9#X%Ng{@xg;R zk2llJDhlP^4`WcOik!?`?1p>B%dg+NpifDg>fVV)o{gNWW-TV5H#Z%OM}B)mqzKjM z`)~icsIV5|fbbZxdRV^f)Hr?S0G%zTzdWSB+Nii1|9&+hf0|ml9JXoDGDG9&gSyxiu34%>jjOI28ZOfSDq1%|bjbx3T%CsTi$(KwP z_#J}p`DSLG6y5JYuEortM*rF^w>WR9%XU$NvOBg;*eUzE%~f94LGibGjc{M2a6k~{ zMy^#sxKygFO}(i|>lEZzrJ7|$DCDb2GpPCTusYwDMN1>I^^1Y0M^l?_Hr3RWv`=aV zrR0-<(P=Z=b}ZH`UCT3zA>+>2)b99I$@pCKY}mDOfbq!Qw#DtXsS$u>u!wK1N`SQc z#{8d5aif`zXEIe(FT^IsghqEON%h0~3?nIFzzipzH|p-9g4 zQ(W?c9&@9e`2pYdfH=M!zq72q(&_#{xP}p|YjLwCjKiV7mZ^cNnNyykj;YuT62bU! zLnr2U@`#f)mNWDIp!qcT#k^szG_>VYE2+Csv#gBe$zj;X-ow@PmG0jU3MS*t-5>w@ z(tWUV<6J24!|jxd<+x4&_x`XZk16~Onz3soaC zXv669_iua4FtP-#Eca3iT2LR#ibCJ+6K^^qL0TC8@E95 zQS(!%k)er-tYx$C9^9mryL-ze*=03x_c{XWK=mm|gw98~I5)=^={dRdoLN73#mG;Q z6A$It+qMZ^2W<95f0}y9x)%y<288Fbc!=JRAo{a=FWuBSzdbpm3VM~pQr*le zYq`H4Fl`?qSl2Q*L2I(qH|t_Ln~-3gKJ}Cu`E}hvpMbLgPX;sEXI7#V5nNEn-&uC{w1P^fF-_Iqz!!k*flt{AH-N&J>BU^RV>p5?X2CB_}WL6 zKB8iC>ds2I=e1+?x@;6br;v&iUW`-GR4-ete^fMqA8!VXE2V+ds&y^0ziB=3^A|z% zPaXoxD z&b0gS>*~`25ER}WJE~*{a<2oWiyCkcN?1XCT#G+*og}l6R~o5(=jCYin;Zd0lNmw} zmK~PM8%~3gO9BPzrTvkT*;F|ziTdPDHOez!cFjE5L_P2t2PU;`ft>8NKmEN*q1{T( z?;|^41S-3^1$lu>5e}|6NuO^t9pbDr!V++8Ba_*tdTFIpFP#y-m-EsPdVT7-a}5Xp zne)h2$e@=*t3V>jSU9ivwc785y6vym4wi(?vESac@~-lKQj*R?O6Y7?*q&FmEf66s ztqf%uI8&FN|6LotXrlMGI9u1*@@yfCAAu+D1zdR^K$is*DZ)jyw&E797kYi}o!SSG zQNuOKclJ(=OZ1rZPsSP(*P>F13j_l1J&RucoAUkW>~^K1;d@rVikn4J<@YmSDtf~O zt#oAWWc+i9Q$O)O(#nd8A!*9z(;7PuB|u|YYjcXTjh}7tX-bwaPS0*ugaVaWo5VN# zB)l0>!svPA&F+~qeu2y;V}W=;&CQyie4DrkZ6yh_2A}G;hb%f+&%qVTOXac%J`C+> zSQXhAIAC8d@c8r;*BM3cUmehtT<0U2=@Fsc(^|lTiKZT-vVFyYqTqCnHpku-s@txs zyBLPwtnFNQ!k0Iin$^{C875kzp24s{`j@uDymXROyQB+a4B$aHO38>XsuYP5RcASv zx*B`gIWUb;G7$>k_?ZrtqWimzr%)eNIC7!f3T_2QqRux+yhJlMzm@d3KY!BWWIg_K zZB8CBl4vXgea6&eVJst)G1Zt+JnVj>5~XJ2F`eb~12i_dHm5x+YULUhVTc7I27euC z)%y5T?>EB_H`=ky$1`=l)1ftK0ve&TmAdZ92SdpTH#&dZanQEx8DD|3ZlwVyf=Y?=A_cR6PwG2)LnYe8#yn&e|5s&jwI)6R!f0*lAujq}GP$s1uMhi z%2DbOg(Ry|BuX#c>rc^77vMJ&mFBg>=RYtxkotU@0?rz5xgCuhFHPb4VoLK;9dh?} zSh_V>wO(Px3uBFEX0I$%J*;KXty){&mQf$+kMZbVMnP5Te*1oV>pH~?*2X8$Q38?v zWU4h+-ZSRv;T0Bh0TzDzh3!AGm5aHUwf)tzUw8U0WKq$414lk7g29eQJbw62(waQ_ z(**1&@ZY)sTjmWQTmt=_{F8vV`@;8WOG%6)$E}VxlVvTR`1XHP0o?Q4xqm>4abZeN%BpHyNd<|dD&Y2c&NAdRPZvpw;-v5(Kue)1B>0l#bZJj5@T#z3?u zPAq|32QO@nbc;=~Z5i_fg6?NBO2;N%pfBaOktWa<)Wu?~Z=LqWV_Pye_xH>~DV!eNh3;sc6myuqOVB28 zXR$876 z`!n91OHc|NxNTwI&tnaw>gU@?(@KMn|X;9VrefPW2TLWn8^Z0q4bzZUWA2&oEW;5*ezUX z*F1XBY(rXMBlPMcz5xt{QLB-A>y;Pn#yY07-s=ALH|VVk8myr-#`m%XFQK%{mez;Ka8A*h&y| zk#KbnUn4H5a;OVtGkE62&8tD?Ot)n^yDa8`zdWYv(HE*IZL8FO%?C zD!YEMpMXSubFAFFm#XkY2o^qRag`RyCKIRCQ{-UPdqG~=-JMJBpbUE=_|6X?&)`2D zmRbmcx2$@oRk>xXBQuVRtacvFhyaNFTt6ELVRAzHPZfH%q)BAP+SIhS#$mk-wZ(r{ zVJoB-SX84mucPWBa0}_e@!oLHJK^y5h~++%i$Wm>}5A6I1ud zOVsVrtPcl^61IJHMTLr+dj^j+S9Z+MLBjJ#F3GU~{MJ;;TjZeI?Ix%@6O>qEJ2ahu z=f^}%XH15()nsvMsNv4&IrP%`u*0*BKeN0iCP1oiZ#JV<l{{xi(lep1 zJy8!X+W-oThvYF$UVJAkU_haWu`4d_;k+j};J0f%cV5^;T|l z*j;#;tl=;iNkO9aw-MT^e`&KQ_`Dgo^IYGv@91?wUq^P z93-{r>gx80a>xbERr0XU(@$OWHP@Yu3xP+Q1lb?uH{9LJ;z zS~hLmE(ibAuWwCa_^WwTG{O&B%^_eJ8Rg0n=IN7V(6lcPfdds6KXD!BH`w3{M^|FF zY$!0|AN}k+WXd#Wz%nT=fbIS9lw@U%nTtP1+wS}XY?d!0qsZbKKV`X_sBtZ+E8c^e2X6qLYXpPBk!|xsGQ?)$>KOtshIKpKkKUhBJb( zW`vsXjaZBFn(b0UgoLOCT)*{=&hF~Vva_^Jn^=}nR_QB|C+s`ERH^oEwMon^Q$ z{KMjpAe?z;L?IJ}Zwi;}l%s5ez<9 zmpLh7_ysj=dC$+g1D|O9945X;`dZ^@ufq?c`}rOo{Zj+>@9v&Xjk?wZG$vZN-mN3k z6MeL_1uTtS=FtQcr}3NJ)%(GD!iN(&89EGLn+_n54@;Cm9VPZ}hMlf*Y%1oNLL$zZ z##{UniIR{h^yz`m9;fjq}UfRde3zr z0ffvBGnGQ~oXYIvuM^_*1hbUM^8*qN9i@=mnNZ{dm5HPmh^@$z5g!B$d;kx<}}-nJCk0DbJW?&@6B?5VTQ zD;74ggrc86X>fxF)B&f$EI8dACRke$w}oBp+Akv zJ##xyC(W`*jiKrH=o`Bj{lS@I%(kJKGm)y*T^J`ULJL#5bQdix4%zKZ_opmZ>0c+P zMVXG_Qoz^SfOEl~r=$;Nd|ObynO^PXQwv7G;^zrbnJWf7Ke%f@<`-K%@D=BHHeTk4 zec4q&^9>Wf6x0q4S+Q*qX@H@gACusgSjTnhDV4d*sOkUcS$p&9Cf`&amjCAk`?*=24|Cd2Z~!hc~Dx-ynsI?g^=TXbrZZG%?K>RGXoC@iN{9V&Uy3yPBj{k+;4gt=lV?$oYLxs@lM20 zrJky1|9ejwFO!#Q%;NSd2ks_w8bQwwz#FxEG*k7CAF}n~L9(bBew6Kb1V^@};&;)A z86~@xz5Mpsy5_>2mX${Rg~%D^+#9&)9q@hZ7o9mvmbHie|MTlhy#U;nr^>cy z1?;hoT^bpLTEuR)q|ZIdG(Wp@(M&rbFgbUNL6rNRgnQmG;7A+f@}8-3-ufsG;9EX3 zE(^Yz(aEn`X4N%IAyqJesZ`RcOQm8!Gvf^y9rPIzHe-FXD+9%FTzl2C;<#y$o*CKo z$V#Qft%d01__(VCFVMw-V@bed^f&rlS8_;c=_@!h_(=)oq((2B3bdtmzS2?TsCcPi z*Dwyy+r(bI_qNT+9QKz(;Jj0?AitFaAxr3;fnrp*Usvq&qi<0O{UVq~hP1uWk9Vs9 zhOJjKXRj`?l$i*hPcR0(am8H6t24V)nt{T1=(m$*y#icCiQ?Ng6|3G3^<}C%7G+1# z&dkYXq`l)OIwy7IdyiGIlilnVX=<9vU=bVZ)!1AZ>-kmskpsmFq}|8CDh*WxX73_S~Dh;;7Uh-s>kZz2s?G2tR)I}NaH?q5bRdOEd zeS?6S#^}cFCys7Rzmr$n5fX-T${~QPHGf*2@$F_Z>Hy5OtNBX878v0OrAq@NbPzm| z@6e-Vr0HmzeZqtg^y=Doru2NG*cth0>DTNtt123}G%$AcA9Pp2(cdRh3DmMb`|sVw z6T4+o29sg>7!~Mg&D6F&YvG%10xl#0$8J)dL99+1|936?JdcFWr8o+lIWoJJn(;0( z47tLY>~ZLS1Y(kgwp80|BQLC5Ht+}4Y8t>3H_>fs4mx@Nx zt^0)JtPy5ZGfrMSx0QKGJ+QO2v%9ag{VKi=(Ae&Z+fwoEKw1ib8-^79(i`B;t0*2* zu>mUCS;<0mA@`?onO~UzO2q#*T8qT1^UK>GRb!2E%ZVJgwRhwy)GmFU}4aOANFm}-~T!fIVsX$AGvmKV9i*) z%5etVfm}7@;3`}x|9R?Au*sqpzq@~E&7A+XRIWvWmW$UzPZ|rTv$5I&8j@D#Se560 zRc0au79E`8&LLjj#Sxd6-sq=eR2UXB=U-4@R;z1^`T~3CI$?nfdb6vh+WHYa?PXfd zKNTK`DD1v}W`xeJ_HUmq7lqm4W4xK0)?An)(PkrG`h-YwE;&E`11~Pz8lukmzq^M;ssf zBu_dw4N92A%6O+Jo}UH0$JamwTT|+{`|`s2 z?W5ab3kaC@jP;?)m(RaCwlksrCdUsnpXYfnhi0n)?}C?W4w)<2Jys7zePs}|FHZ%A zWQ*B)HIc!;TmOj9S!8(X>Z95(+*rWqB3iE}i=o(Pxc*|}f^}sqy-2yw2+JJsk;GC|z zWzC!9I|Gqe+K`9l&b!G0o-I%s>L_FeWgUOh40_L-+_sf=dXe^vrEJWy|WoAAzE6m+Bs>R9Y3HR61NLB+xC5~WLPQue;-iLRZlFnE5iTpK~A2LA}0VQ_`j(11A)hO%6yMYhUq z)4``B${=^<@1aC7fe|29R@E5=c-to^5Z1riz=XFwA`LiZPL8^`V9q8 zP)X)oK{SJQLivWxwH+&NnB2=zcU9n7%gRnFyJJzi&(Nln|gvAUI*fRbIWpIk<|KHW zpj&0TINA+=D3J=}$karbR_Xfe}z<6?l4gEe173gFmXUrr+1& zRqMVWE6^Q-iWzTabjm<4cBC5t3SrDttc z4RA>64E7OlKl@gaTCytN&wJYj8c!PXkfcRMPwue#K|6uW5b}g0p~_*W#{olytR^!5L>5U_R1F>)zeT zuc$+MS2}cB84E zesQpo$(~Jire7+ z0IqNuGK^2{H@CeHH zb~&VL@koexe!f8hF7ORs8q~dg;@ff>hQ6j50r<2Vcaw|KTFX)TY#YGgcYoV%_1abS ziP(!P187Q{<=}nZ5Tw;@tU+6PcgYwoV)_kd-fC;jk)gPk!J=QwendBg2|BUV{?E`swsU z4?~8e8C#jkIpDNL}ED~Y1zc^ zLE=qYIiPgjPk7jmod|@RE`#lSB*k*mb=$@HpVN@Ki;;AXi=Y;ByaV*`bm@71ydr}0 z&FR13_U)0?i6ovoXbL~Lg23roo)fAZ4p~sDTs}? zV{^6q@(*{a=4IWZc}suPTMPpSF1+AzC{cMXphLB()AK0M(bMbid%;he+SXXhxs!}? z&2Nk`f_x+Uv+;?gWfliAjT+oaL3QJX(c=gBOX(1xz^O3l?Xo`F62090)Z0@Cz5S!k ztS}qZUVR6w*^cSN=Sq<;HEH3os4ZI#dGJSL%scVgB9`tvYU0iktV0})jPs&t4cFe0 zD7(=e5y0_Yrc}>Ywm8{@lMri$---1k(o&h@yng`3&NO3%24up%zYqOeOH&%}7!5{R z=cC?m0acS;4f$}bhetLAQ=q!0RG*$l7aw;>fa7!R?4bGEZ3?ACtxQHFnPXWJs-dJ4 z5`V%|^=Pv(>@H%OCmvO3g_Cydy%f#7pkWRtza|6|WjvF@TZMOsz)9yb~- z881l<78t8@sUli0R2vJSc^(82ep>5Nt_AL+=cLtmoF_U1ylI1xTGw{({-O>o>^&q) zg>C7Nw}fQ2*=YYLCXx3ijjwFzzZ@C`BVZ_BxGZ#xXPd{V3ebUpZTPH(T6e9Sa1lQx zE3inxWHn~LTZw=KPJ0VQ44?}W1LDiC9`G66$FS59EoD=pA6k-kfpVhD z@{qQ)`Rr8BX}a3PhQlP^A(zC>!E9vw9~1E81~v+guY>wS1pxOd@yIgPdk!unAN<0S zLat3rDe;F?TqD#9;9RNz=NkA&yKIT!nX4Y9J}7 ze{H_!4R;Z$WOm!cNOf9-tA2Oi)urG~#kHKv@8469&P@^n(;$0amtJ_@<~8qLAL1`Gx*n7Q+tgS^f)%&8mpngss~5 z-2StTNJSm|&+Jb=voq~Fd@}h{V*kF)$w#mXzL}QxF2}I!Rdi(xJg-4qcU4sq@XAi& zRGH2T(}N%&%E3SIl{_nmQJn??xA0SND2b=PV;K*?wc5=0dCyldo4m?tqpM~n3TDb0 z0H50s9elZXNN1QYFl-Gt&7I%qvQeOr03ZguSF-2IK<~w=`;Ip=PAZRP3@Eem9TpD> ze61M&8Boj6t1WnN0Dq=&|D(+vmoA;=sY*Sm&GU~CKx-0$9T*Ya3d<W;j;rSTMdAp}V=0D3V0gU4!D#5h(h=wNpCJyYrVETwc~trE``U{(xa?v)S5#h88~ znk5n^j`gj)!(%Q5Jo7t0^%mvP3a(awx7)@fuj$W3NVai$lE63Ai%w;1)TV3x*SM%2 z%@T64(Je(kxf^1D1tJt{j@Z$Y zV{}#Jhdil7UaIqyo~ItBzlz?gNg|=T0zyuZft7lO1^mZ)>gmI|0P6Je(%AnBnmgxG zD(tAqPo$`XKQ~4Vu?j-(C5>uSbRws1Ie?l6_Rs&=R-$JM)HAB)?5(gg5%$+%N0vNv!iX{J{`Cg>T_luC$!Z#?h z0w%^&b6f}bPPV845NARNnq_Fo7h8pZQD6NGt)h*Iikwq_hwO$ybJZl_O!VST4msy=Dk|e0Q6*JgN4E zV{=G5b`|x4zmts7%!9{B|M!(9A zQ6Z+}S~zbZe@o0G|0CH7EpCEPrhF!ii-AGqp(yi4#}{!l$XP3_I=xFK1m64YJp*u| zNxQ*~*LVtKv=MN$Blbu>(3r5~ZW7sR_@}D{_Z?fL2G$w<5gwb?Y3i0xtVfa1bRi>t zDb83}JvkA{N^^E`n@XcmAFlh>r>jxNxUhHEL#vGUccJ8&|D^bJv$2+TxR3e&;9hcm z&vT5ybFbY1m=kbmtyqQXOg;!P*=-S&-2sStPQQEQgdwo>&EA2-GhoikyxK%|RG-;t zy}s>t4>B4LplGa|6>7a&cYc39cqxv@uT{Kl4)o+MZmx!=HQ#eLHPCn-p$F+=A<*_L zMj$i>+_z3Foebizz}_*R1uYiO5M+!sMVQ?cL&EP^JC6cyhMlAOvh(wWs~_PwsP^&^ zM~42!Ptn^?5{UbMF~(J+KZ#Wk%SX8L_I*lHRAS{3#07{c2MQS%drA5nS>M%~QLAa? zP&#;6Kr>~$aVkQ%;lYm?##?wL7m!;QlArjwz)PX=yKJK{$Jp4ZDXGgIYavtP36JZ1 zfgm_+_!}RWnGq(7e9Yg&j;%*dqy_rG+_&8dz5OilOo?4&`4`&MXV{V;y+S$s>lJEU&D!YjFs2>oN>YqCeT=RhTTqz}$X(U!-IChb9aX3!15a1?5M zE1+5TSp)B^s%yc+9|Cd1ucpF|rFfdW+iK^Fi~I$Uf-~CjjsCr*nQ89w4fbDon_Ym2 zn_NqlnID~wN&T`Dqzg#3QT%U#8NE{IKd*j;1ul4i!p-kqjEq1h7hBdQM~A1X@T(yD zZa$omkU%;YSi2b~>e*{7Bi*s^MbCD{VW7)xDdUa9tG!yA5o#kkp(dlH!n`|OUie>G zZe_uwZ$zCHET%OOJCs!M<8bb{tNy zLZ#P+MnE3WADDR+YLi2ksKtOH!~_knn$%TnraApcMLcWpG<0_YTeLlI)gwj{0Y3ui(jOU zFgoxV{o;opNScC`aOK;lnV7IH&a3BAZ3K2!69V?Ina5_)eY|P+9f%L$`(s-J?|>>> zOV5>7!Qrl5FV`lXQwRlmyN68E!J)rj-t{W)J5Z}m_XVGWFm;Ao$i@Ex3i_yf%u|Be zKab7gu6Q;pu{_^dVvkXAcJKv>MZZG3v|)mTW20^T`@YTMXt1-DGycZJbs!e0v{jWb z>DO{+{+G%=vuaw{ws;EB*tZb~Lg-;wL+a5_GYPpHqMkJbvHfM~2K5E0%GU_yO;Jix z`y3VVi<^-fUxnB%$_!P;Y*>)Fd@T|@A#pa_AD}7n?*_>6HGpVdpr?gK*AyHup&baS zHyc@D!x)vpTxRrgc1NGm%eN=u>WHfv#QUcn+?83eV-fvm-KNGqpZ{(G46{icA+5q~^_GW{)az&}cg1eWMy z>m z^${+b%-A)?wsGl=cdUIoy;sVAIY_1|Mcepc)7W&T)?uzfW}bk+JVsC%0>x$^v{Y^m z5wLA!evS425%m>NZFJGr!J$ZzQoJ~Yq6Lb6xD zgZIn--zaVzg3QS;^>88rF-Inz=AREYpk~#Nlj-1_jWT}XLz{(#B^-cFRyKnDgdjTa zZ4lLo0}+(nX@oFxQ87Scq|DBY2k@ia4Ee4{aW!<7=pqB5V8}5((~gMLT;Kg#g6wR3 zu}=SgHg*}cgfQdR@K3C!|AJ<(!3M_NM)FSPJa>zMcZ!<`Bqw;Be4Y&?|JBfoX3X%* z=C2?2x4$|}?Vfi=0E2lplY`4b|7S(x7{>(MNx)2fIx)gGSz=ZfG}ZJfx{QJIj(+>J zLhm0Fbf{`*!Ox5TZC&)ZcsuzUm1?O{b)-ld(t3~GzIOavt-!nGcM$|C`68nQiv5QS+Gv7p!Y zKzsmTPX0$&jZEx43IK3S_mxrQ2Rh(K#PMQ8-i&LJz4gufT?X}!Jq8Y2xmHqy)u=9i zBpD;)El;S7Sf&gk!Z>plWNUJ+wAh>`{6Fo_*!q4pFU0y4n@>QZ_6Cg9|7%Njk3|?r z37_}93u`RMa$ekNf77KS6cruA#7c-JmamtGaGdDclcq6@AO4EL7O9^b3ZQ8(lTVG1 zo4?fXs!jM7XLMBUPXrkg{m!-)(RxGF_h4}YECxD4ImQ`wBLS`IxnDEkZ(=V?6JVX+ zr5SV@e=l_~5T#7`AY3CgGP^fokl7pfS&rBv34DVR+rCIU%J`;vAov>1jAz8V-YLeOQ`9;ZXXYJNmqyZ|7B23 z0GqnwcO|VndmYt*ZE_2Y0(b%7yd2$WP{{oYd28ke{x8;5+&2|+dyURYKU^ovH$s}T!TXhdmV#L??0A`lAmSRzu@^9Eb{C3 zuR~?Q-2-|dJk&Gnecu8W3Pxx;CU98ZHs@BD5Vtj(J+E^N6N4QE>b>dzazrwaxJDZr z{n`k3NZ%TZbdNRna!)WMPIwc0DB@YwD^vY3%#q*a-z3G(`cxmr&eoSja)j_XL;K&f zF3jwu(#ki~pI^=>6537haDMsUTbD)22E3mn5K01{E-ru_oR@)~sNp^EySitHG3Y^f zA(a&XFyT*CFM$6ncv)HOx!Yb0?5jLqpc8{Pi(L_ky%3GFnW6xu99NzPt>(JA$pJy& zH!+i`^@s@rKt{|-kD?t6JA!|QLE^n-f)s$DY_*=i-_-TZ7sdcUz1PTnTj9yS7W5k= zma&%x>;Zspu`1R80IxWM$!sbvptnb6$9WLW(1&Q+H^$iLh6_P)i3qGQzW>x0zeg<< z4Kw~1$vw93QSgcyiE;66Pw<;V;Fex%O?|9ebuQ$6VOt=2Xbo)v!%k(i?n;ma(nl?k53 z6PS?+w15gT6ufqc#)oCN8j%V`J_io$a<*>r-lD30^Lic3V`<(Ii6{1gIa|uEhDQK> zQhm7{d)iNY3J0CMAcQ`x8_>0njHmSoY`RjdHUbf1?cvVG?xmMo2sSuwp+L>PQn@46 zL|u)~*Zq}U0c%9b2v_M`Yb@d(_>Vo~%c(S?;a^*)&O2MWv8sK?k*nZUK0+5ECiO{~ zCkfQ!OBIk~sEWVzd}~Yd>Fj_ba(z6SdQEF419EoOf3H&y(me#U24pCgk3^_?dD=4W zl-u0rz#-h1A06WWDfl z`Xr`twVv7%n1NfakbBve#c5Q_m;d@>B$c^PBlz^D=3{w;?cqV}l6E5wItpy-)b8+> zVf{cq2Js!Kq@-_Y6OI&i*UKUy6W!OLKoQ}1Yl?hA0{%t(WLz0<;{m*Z6NY`Quh?#X z&sA021~zs>*<;0Qi$Jm^mG9+VP~rE{r{7jHJoNd9ZeYBdma9Kgn!sm)(GNGKJHnET zgBB14a4&{F0c`$c{$Iq>`(bxme4wiX&q&HZ%wEw*NFmSS$^S$*S=2VGmQ5{Q0J z7o`(egRpDk`vvA&)br_It+9{N*<%xaA58^Z?p2mKG~pe&4?>eAo2xy$ZD(>>4+fxW zLs-sQYW~c=24k<+;dE%M2(>!-nB!aXXkI3UN(1soU4m8rtHUGBe*&$Ga}k0pQQ$Es zqA|cRxe4uqRGN2?@FfeA5zOz0XJp39T`Quuw0scjX{~w3+gK32_kR>onX^BS0>cfX zoNpk#gUhB%!`^whED?r=f@gk=LNHiI4)>{pD&6O{pH4UX177*cP|Gv5U3b>{DwSU= z&XogL)N5PY&*y(`X!EYVn=Xnjw!|M+nUY87mWSD9)45(aF1DY20xqg$Pd1;+|LYq9 zD&5xx)VuE1Ms{gBrf)Z!4*qoZD%RMuLRnh1CVghkPrgriAAW*9()%KOVW+E~Hy5eL z9n>kQ{3aRe(OrD%JXkTi!OLB(Q(RfyQNoh%*;9;ilODDWyUFc8crUlUx~saGXlgjp zj3#jrvH=GPZ_7(!c*pH(nK{kRP5E6))O zAh3v!l(E3*#vS-%(GDw~F0n^I@Cq?yyi^fp@l7O!*b-TZ6KLg}qq`91H$%Xf|KZC{ z_`TL3cAc3g7@8Ekp5Iey)D>V$x?DxoaE9)5Uwgk{SXZ|iF$wWvO=_HZ%N)88Twk*R zPv(4?;e08E|FwpOa5&ZxAw`V_TaI^wmF@jI!q<(zUUoAaO2;9lXLsy=r zGHN+v_~(S|xd@H=vbYm7TVjqzE+_a}D0tjqG#-JVTzh_}+R;Q+NPr3g;-@see^~ih zrUf5?t`)@WE|3k`OEf}~IV3=D{+E7)H7e`A8~od_W^_g63IU!SmxK27Rulk01qQz; z#q`;LBf@Y6$Ba(%*_$DN8dCJklLuYcr!ztUsBt1#l7JsbT}FSa18@Q24rp)T_2w;Q z>XiQiOo)+Di3C_G4il%$7O(`fB0evHnel@_mfq)Fo0?|rzO0Eb${R|e|+hVtoJL&DoB=D>irE>ux66E*VfWbIl z4mv>xxbDYonUI9n^Ao{zXf1iTWX5`a$b9%h@rCn5O-@p_SDnBmAJu^e= zNWBxU^SrP&C4RqjtM4f_pcyz^xX)71zt$+LixFE2!)5V07DnPnJH0Izr)ehIczgdD zuZ!_x?!Yr=ciYkr>48h+QutrB1>vs7W;k^z|5F1*h}87-*%wLJxrVi-8J25g2Zvl( zz0;RIX@=KK7^Dhw4QzxOVW{gujq_8xCajN#g5R$@*zZuz@4NK|-Vk&HmtE%;WNE{9WUVZr=;MhiGi427iO`<$=+gE78<*LReb3!5FY;O3i5 zP)^DrNi-bBe6a%_-s=*vbo34GrG!Irj%~J42L{=|%@1OnCt29<&<;iRy8i^0 zuGBRI{F*V2efdig@DTXyCwBkGd$MizIW!RF^b#)yxp;Ow_`cAfli|l(JJ1y6e{*Yn zdk6HHkv%zEH8-w0J1Kogj(lyl^X^wbQOr|`aMZ3U3lv+&!znKb*GVKPj8OJECw2Zt zicEp*uRBVEa40hYdxUyKVXFGwcZ9Y^ngy(eI8-l^PSqaSNMmlu=Sq!vfu_>$Czh<| z_I8&n>etnTG%TzLy*pvyPZD0vpLwxcS~tJcIeF-AYTEo;D%HZ9SWZOWaKp$C5=K=1 zb7=H$8u45kw;9MAkU#IKwYAWf7PhlSM1NG`b^0N_Vq|3(h0W5IK30?zYxqur) z_`)M!#s^O}5vB895;tM%j!m8y*Xw?f15Q2c5{>yqD=%N#C(hOe32tun{rIJSZltKW zPPp(8WZ0H2MMp8Ly=Ds3Bw&eQh#o$ObvP2M*(wyKoxa~5A>j=jv>JS0u2wD0(t!Ny zm9b{gKnLa7$vp1C!V9h?^Hrq7#Z8g1n5c5|FM}`Vxb2=CDh}%)gM-Q&;F{XmzP@K0 z`zyH<{E?L+^tHy$=IEk zXROyt;P-ydJE=sF?m7s%Kotr0w0KR1$Mh)kH$ZX3kb5mb@cvg}ro)A_-kxQhtW-4N zbkBbSz#4T0oP&3I(l4ih*Ra5od9jCy&jmwyuM;+4!(!b57m;r_AF^QZ?RAX6TSRu! z=~bua997AAmY0q=XDY?U!~03^XCJTI2CsPvv2UYpAI{HmVyv?+I$9{T$gc{rip6)% zoSo1Js2Ml9iy@u&%=hm`Pg( z`A3quy|Km9l3dQXaCT$X>{5joT|{v6E#lg1s?1HDXORWe8HhMWVs3)Yv8#!e&Lg*f zBW*sHfk<<6Q9o?6mbGhaCK+2QUza3e=gCf!$fzn?NA@XiOZxI!37an8r#eX;Ha!33 z1a7;*=L;V1o#4MY{U6fc=i{#nM#|w-5UJvWlZybmXZRB~6!dbh3bK1jgFk|xvw{1Q zOu&=F282@KJQaID>$4I!tnp}IaToUByQ~SSw=OMsq5$ce)r{{uY?Ck$XSP!JmH{oj zHAe0Sm>mBAWonaSN?$4r^T8_O>!k81UcswI>iq;~3lX|seHqQOGX`{$WjR*GZ{dEN z0e6897w`oy(Z}6!>lef4qs^*we|_K`=&9pn1K#h}ugL$s z4Od=HS{(pDYC~*JmAM zgc0$7qFC?T(>y=_H}lJbfs zj!tMhH2jdZvupmLrlw!xYD*kqvw%&|OtXc{Fhr+?9~_p`el~IQ;$mfG&7ad97WVbd zA3|g`Io3Wg#xvhi z-Jy2J80Jq^x;>x60hSd{uiNdj(ZM9rO|jYA~1;a(6)ZQ={UBBGRb9CRSWL6l18QV`Jz+CR0f)q!OW7WL!8XL8kS6 zOz2V(T;L#6E0$Sa&QK3V9xxY9%gv{;?~O_kPm5jeaQJW{aQHcse`XSY%q2#Rlx7m9 zpqV4T*5P8tHYe3S!j)p8TF(DM@kt>Q2XFm%iKV}PE(xK)DbHI-UX8~@t>LZ##f}~E zO^8}Q)&kwJ7q|9TSAU{YNup)W?>h=b`n3C_mibJuJ^IF;Pa&A75;P%QUonwsh7>q& zzlYHv+eyCA(P0uwS z?Bu44h(h|rq7v}l;3a!RO0sX^+tF%87yqZ)!W)%d1-V>tN`3w=rOv=0m4&PLH3Buw zwB9t9iABqze=LH`21{?BMll+UDbKILroR}ro1K;KV;^JtYfha>pM-+464!vy>c)vV zVp+jLM}XlVw{e!sgbN1`JtTsFHv}C67tAGKLTc}v*~So5Ty(Z7W3nFeMHtX^&(hOJYq$-O^vXv2VTsmg*hT=k{^<*bFDR=H;xMr_{-C!S$$Y6zT=3l?8bTKix+7 z(##g$rqbq3KiP%F*kOO}e1%uK^vZo`#O7Fxxv)y0^yjQOt-9_2I0e!=%~3!$$w{r($UNT=(+(0O40r5MGd75DU7z6lIp~g z_@U9XsF`Gvq+{7o6iK6A98-KER7_N<7)80CePhyWVfY~-5lFN{fZ%W@96g$JatXLt00{koL_-=h`ZzGeYP|aRjIl`t;A${l$gqs8*&$M${O?bFlN<{xF3nKc z6pp424+fe4<=}|O84riRfl@|nRV{1}g01Zs{FnaDO9KZKX| zYrp2G6nW`R^v~x9nV6v=>&(25c~1PoI}I8kVNFVSwjs3Z<8QpsmCm^4zI%FBj920Q z@*7Lwf|)@XB0G*T<-ti)VGjQF3WsWBNGFyi)*`1Q%-142^=|X%A&Mhds{6U8q(BnMXA=@*grpWhlZKd zYeK}O?T7F}B~Y#2N{hO>C4^_hW}a0QVuKVsC#% zHIBBHHkAMkKw>KDQ!g56kSrSjiD@gRQEDUd{Cx4EX)sW%)9?I;UoG_aXx)?F1-Wq= ztBImK${W-Wbv14>aed41FGS)(fYY^K@b}LX&PW1fh7{JpD#Ilj+%iUX+3`Z)-Bqh&IikySCH-a`Q%mf8> zxjPa7J?BXTaIP;AmLw5etr}=p#vM&+uumNp|4mxdtE{YYP zIUhQQ=cQIve$dr01Rf>oA@eNs1YQ(`$lC_9>{(f(tEJ+=G}x0=Cd1@77M)%IChQoi-BdJ$I$(_m0|xp0q-= z>m<P&*Q(w60qp)qQdlF0)E4YIOHF2uK1#Cnsy6_jWRXptVt_ z(*j4loJ{VM?^=QDcT^M5-^%YjlvX>h*1h-x`g)^D5~(uh@!~>P7rUOvqv>5$-;TjV z4GgcLOkDTlIZMBuUsT`Lo$;)!bKr`-Tol(e1w5EOD0nf zFIDjlzPZb_HN0&GhBUHMCSY+jx##vfMMn>!qOKPY`J{@*#&=61sosl>C7L7rm#C zoS-_ZFP|6Mh|ns(KDLzOL!P>KpZokg_ zx#E*y5s9Uy{qAnRd*r1S^YUfFu$`Vw!{xIuph2q*Dz0;KA;C;9M@Z}za@c%OX#3gx z;`;Tealq@X^}uf5;ydtms7ciz6)GAjk}Tj2mz@5G*+!MxpB2*OQ#aqR6$CagQhW)K z`e>*Z?MQVlB%p^ZvW6Imoyjho6bBaGii)OkQ7M#|=JpMs6QM zS-swLw-m$uCk1o54r-Q8J0IgXwCkQC`6CP)?_Vs<-#5WW$GwbSPK_&jm<9KXj(qa? zR4DIZpN(I@SZ8f>I!*ra%IEEg?=mJL`D%{5`{veKoHl{62YsOR>t(x(TT0+j14k`F z*?V)VfswbCob}~ySp?LM``++wO5BS)=au>1#(jtglX1X?e0`HxRRJQ$hkWNtvnbgZ zpa*6)+7KF$LPikjY;zL$VPcfpbFH;*jqf}%i!*@dETVP#`5?bP!C}b+6=$4FAkzvJ z_m_DsS~vmuCiXfKj3aXOF;_Y^CD)|JL(6RCt1iQGfs)!+I)=h;b~T0CGzY|2ie`2h z+s`{omaj-Qg9HHt?_zV=DYPrqY}?a4Z81`$W>XUp2{4WHZSg})xKCZ&_;x?`%F1=V z3Bs{PL2VIQkHEM1ma1+0NkSqNEqK{PA_O(eo`4qBB!SZ89#K;Q-n!r|WSfTZcCtXP zGpn}e$mlqUwo2R3u)Ewo5ZWhY9C$;ecip7(XPB6n*stf=YO-~6h#9dDXgOQ56#L5XdtN!n^J*)u>_n&-kM{GCkE_;p0PW(9?5y7v6)2d04P6{@uxTiyTNY9DON_poU z4k9z;ib*QaQ8eO>Z|*F&n{VrD@^qx2QBgyqTzKLpyy<;#;LVybz&=^0<;0r_j|Zt@ z$_}@3tCAXS*z5^UOaiTX%t=rFD{6VV!IgOPL0sumLYu>a-hjaJRbEt__Ph%%k zM$kw~=QkEM{kOaLAz`xmNpb+$fi{n@rthvaEyq@@|K0gH+$qw}MAM7X?b*})O`#Gp zq#Nj%yZRk9gNgO#Pe(SO40YEllOe8%SAe1RlPA?#Cw{FVvdVW$=|YFkBDM*yqNb#w-SuwPWS|{S2`V-G7J~cJESpIs!h|nuiqusNlg(l?FC?N*i9wF2pKIwu z$muSTc&FDz!a~Y5`A_fcTIG;kZ=5K6O!TVC%6G75r!!_PEv@>}M(D#Un`}8no}E!0 ztrz0LeW=dji+O;Xo0ism|G~=!`}>1NMOPhkM$oTiYmBLK_C;;^%rZmnrVTJ35 zglSa9P}cMw-orvMPT-HNhhG81dl%~SUX;w(+KYg)?FH@HXgSSuAJ|zk(Ya_DD(jtl z8|;_|o8;x>Mwnyc(tEmPPu17h|1^AUb0e$S{I?b;@IF~%W5ut*YfXOD`s-t$VgBjO zYAXzMZ39Ycm+J9tJ50Ukw(H5i%o#>GB^joCM|U(VBhAYu7Pu@!GT!5Ox8530L-!wW zFHM#HJ`v%dX$-pH=YLER27BG>87hCLncje`a*}b2Dxdn8FEL_2r2dRGIuqA*U;QD| zwzbWlFPfYMGU~9tSkAlV5ZH&}7Hu-_NBY1gbX*Roxv`i79{!juGoh3jtL`H}L}9fX zi>bdekQ~ktM6v($v2~W((a-#LveMTmKx)5X=p^7g|216bX5B$UxX$qQ_FluxV=#%R$ia~6Z^t=FML{9NuIv~~Ym zCNZpwA^WWj+&OVs*n88cC%eF=(t@R^BzZVXcEUqM%UV3781o=w8m~Hm68S>f$T9T9 zep6~W7zQ!qI=h~6mmBLRXU16KDw!uN^OQ3|2^r$b#H8faO_IPzW+=||43NUaw;Mwb z&BR&8j>Naf3|Dn4Ep4`CmCJN;-qbMl_upXz0mvL%A{NlgWfG{yK2r~w>x8!f;S z>-$fXIGLmNLfi~F@80IyU%Z3!O-AbBJIgAzq4TluJuc}*QTklOjo?|%KF%5YsM zzuh8_0P`-*X)Stzs(w(&v)VskI%6>IW%9e;Su2lhLKls2@!ydh(T(4|lM|HSG1ve| zai0>Et7TE<yI=_zf0zLT7^K9rmgGA$9V0H+=B@Y^*!nx-OgvIm0IeA+1Uz|M$d6zvL zyv#aV7yVuI>U!v77Q6x+@leJ{VFw=1J$^^js!mUkI={e|ej?${ID?Lg^*?8;kK|Hh z5BAVpFd5lv_O3h9oxr%l*JE(QMfaEOP|(vLSO0(D8dGOzLEqEtD#_P?7kL`exK775 z;B<@K#d*~DMR%j);C4bJ|IY4cCiEfay@z1W`kr{=M}G2$3XQ$jV*-#@O}%228p{9F9A8tSCws@- zKRm<8@*mrm_`2GY9VS|g7@{#22FH{S(%gG4F)Lx;V+!91`z?N%pS)x(O@AL4DYU(P zB-o^xuHwQF7-9iheMgBAC8KsXu&jAwk+I1u`bvT_bw|d;EOgk!M*SBfU*;zX?$2){ zroJB8{#`N`LdOj)sZ;8_OI=nD=pW~(xb2GgDMZNJ?I6rvqpYv554)opL%6k^6#@^u zeU{XcAoMlL!aALI4jrEJ0Fnk-XM#>tUU8yo0z`Qs4jD-410G!4(9ed~6RQ0FceidQuihCvjVAPB-TX%#Fuoku17_;*9^FkxI>0fZ!HK7l zvB(aRt;WJM!<9`PoFjOH+OCU=`-*!eGbD~2C1U@Z*IKl38ui4nr#e|=lZUe1;?J#w zRnd)GDz++<15Y_>ABVg7MNdi>Ez7C-_8l_65gtCL75DvNe|w4z!)-dd2qJ<~uXC5{ z2HP?bCB=&XPZbIzPfJQKb*AzHXR}sw-vjqm-6rpyj@M$!!oQzqgLPpSs*AvfqmCvd zorM3aS7ZKizBUBz%ItS_YhZU8Eg+!#VqPF9zG)nOrP~2%UsA@#Vqp1k!~L<}{to7HT2|$-W5R<+|t~ z>H&`oQoMA+cQpcieP4&RkGrfVI#hXxm|vE~mx|Q3-^Pu3M)Z-r_gHiPG0u`VyXr0i zUE&2N_3X{vwe^Ug3fR=2WLEF2*hz%OkF2w1^w5R$Q5Dp^_B@;YS)({{3Ee!fYYk|B zIpG{N)x_y=^u93ai|^?U3!6R4#JCLZx${_Vz_OmVT*fX=-HXzexZb-$KFm>$8I zHjh{`@*E$9Srk3z^oEwAd65h6MMlV4s&P#xBCj;uEA_ria2tFmoF_`@pFfU~Tf!V( zomwJ{?&R&BNLsX>_Q! zDp6$Tk!n{0f7m0k0fB56BR=4r%RnSFsTs&h|6RU&9GbM4LyOUNOrt}ExEcm}`McG3 z-Hq`&brE$0`A-kIxl`{0ZLc44S0{RB)fF&)NlS_VeolXLE4Ad&b`9qZIlr^5ulo2`jv2uO?LngZrW)( zP|;Oga2A!Gz=#KrIEb}xzt+^f0SG)nsYNTZx!kv+zpRvNmn*ywamAS=RoNlWBNbN) zscBI?G*osp3aRO7X?&rosKnD;M6E=T0BIhWU{ znT>z<9zB_`Ftm}vcN)Kc(P#ha zk|=Z*WU_@yM=}K&6o>B{i_fBF-Q1dtBfXb!e`L`EV-!pm8X9zJmVN0v1{%mnhWUF1 zB-EJWf%vLNnn5@XV&Tn1m@vZ=@a=Z_YR`*f;^8u}dEeJhtwa`uYbFxY0cq4(= z^P#J4w&M3+?nC(n^qiRM%(3+b4x+23)WsuCn`>X)HdKAzopf!a2rpp7OV#}}jVIUF z7Ge>q@rk^{NZ1>&9*wh^(6CU{%&xN1)zJ@`Nh!X5OzLcBC(A>g2>{e|NUue#farV3 zK8aPoaCmD^I#SV-S8$MGqJ~I-E7E6O5#HTT5-c37i2v@V;BRi~#io-j)jWkAv3k}e z6IP(IsY4{waOgsTub)1+NNzO-o7HK3(w=y&Lg)!-2M_aIo?OZ zRaDKb1g8}YPnNTp3Nz(GmYCrMGginZ(aeOM;p4|>`Qgmtxo-d`-0#gqHNVgYE*}>@ z5fEz9?oH2}lI|1Yqc3HDvI(=Ir(PDoMWr4P* z=+F8EPDmhqwKt|t!u9m^7rluD4u7NGl9BVqiBCO&I+%2+Fc;SFAYS`iV1gY|3|!tv$c2` zbw_)Pf2yOB$*f*gi^~un+n>R7-3jLDBH8=mrW_J3U=vP+1erH*-YI_nd+d z8`Zc^%yxO$es-r`D~*W)$bxTX-~32_HN24O&`X#QQEIHeQe<0-9WB{gDAIq~`+iiYZ)Q0IOH-&m75PWUJRTnDjVR19B+wk~R`Ae6)qV$D zf#3Yqk5?^pihd(gCOVNm!ZfZdi7(|_lH*Hhup?<9XgGo|rGnOKeaa=jJUkW>9iA&Q zL5^*;5SHY4JmaVFA$BHs(1fYTWQu!?TuE}t=n-8>M5o97np^{QG=*oGJYSCmud1#l zS=b=4CYcBQmqd$lW|qYC07npM2)Bg+y#WB90*7yihA!#{ZE4AWdrf-b-Ew#=x&|;a z7>xyQdJL^3-OLOtyP^8Z>v0;e{?-`R;wx9rQrz}8Nh0`8nU#zbcXW0w>cf;c3L{30Yb)&l#O5b5y@7gUNzg{~s5C(id2SZ!46L57H=f zW=adH<{c%~8?iZZ>q3@}Rr#_a@WHcl$aHHd`^wBVI~psl)G(^^|mIX9_na z%66W+$d^*6g|op!o^^n{y8-W1hRsA#C$hzc%Ak^tZM1k<%Q};GUvQL`m%)b3#eRj= zpuKU}+yF@S|j_6vlLwI;v0oUM}FT%&UGZi*avW>Ou zSv2a(+6YQs5HqzJ8=^m$SAiamvG#Mccb=L+`(D9lv1XZnsSaHRzHE18Y*x%~xj60< zbbY{0(Khd{#7zp2BIw2(?oMr(aj5_BNAWOvm(=7+G(nv z7w!*^vge2qh)Yc&oCIo&Q2l;Ql**x;bAL@CI7sQdft(whNkF|Vm0PB zw|0nw7|l>B3X0#Z0y_Wpf9JnK(e1SQ@a9!G9Zq>-6C<;rKV6t)p<2m* zE!A;z%xRgL%x_*%u&}aA$ScSqE|XzUFV*B5Nsn|Q|57l$T2pZHR)v-hSW4X+V|`AS zy|2oa_e8ta@lReF;EC0PF1yj0Du^*LF{Au_m-hL8DqT%bsVLbAWjaZLG-3W@ zsMIwi4a?}l;QC-1SSV&-puqt=lC(T$8fAVV)vw{!>!RN>z4!ZI090T zW!Pd0ZI<8Ec%zVN)K$RJiGA-=O(Fk@2&-BzSROvAg3x8F*$qUwP<#Up1zh%P_I)59 zl1f|;WG|jlu<{3LH$?Asbk>Z%!Pgr4PS!7nUvf)-4bBr6=d)|~I9k+gvr-~4-gJXL ztb#0$PD{S4^Q!ji{O10I(7oa$6or2g^isU6VHQVxnfMBvBgvZk$^6~pB68eG>U4Zz3T zz9ap4Y2ul(M}hubt88io)11{yn5=c!9IZ{gw9swe`AZcq=t9&t;A8IeN~{KjXy1b#(c(=gES3AX}!hLR&{F|R+nkaZRUU|6&(AU z2i=gm3Z9ccAGlGh(O^DnuqqXNo^_g)gdL}A(BfORvqbeN`kM2c+IVS?caz2`x;X9J5;O7~Yz zA2**D#dL+5Gu!PaqEa^hdkO=tyBw%m?)!kK93%aq%X|P0>b!&VJkyqqZ!abj>twwn z{gK__qvy;ke@-u;XBwgJAoJ_TF>e8^Vj~MmP`eXF=bfrpbSr?fvDc`j?#G>9hVfbE zz6(iTQ^(-5hb+GG_aDcq4=f`mv;(01Y`Gq1THk${5e2z+WkOZ9O zEF0V&cF#DGb~pV$1$7y`KL8YT!vmy<{yKgH6(A=)? zGERbX^PDDUAtZN*wY46nzaE)bdJ);*Q)>gmi;fIGE#A+rve5D72%oc%5N487PGKC% z0$Y6|p4Dayg}^xIpGTttG|J6RYhY|@KBV`XQRmhl%W$KMUDnfpT6xRgjz6S2-EXW9 zYO|JF2Zc5{egWwODQhdk^5lGBlv{%%z`|LwENf)ODlwOe#634^#U^#wsHdV-&Eg4U zf)fcZtc741X-n@;UHRMSi#+{hdHs{xvyP*-q3*2k(b}=>c?R3_BoQ z*NU&aU>RH7o(?mh!S$mXSJcdd-Wf*v+DS5-GL#`e;B>hh38j@w{Lolrb$_E zUnGuQqFCP@WAAp|>XGqq=I>mwdEdra{ONf!j$wy^W`$?`1|^7Fy~RezL-bwdeAT4R z3%lY)rhsYN{T-_7W`r4i_l**gsEM7oR3KgV%jQ7`woK@Kx7UFsw1S%CXDw`uomc{<7XaPqS{K=4WDdEDhf5 zkQsmPH0@==p?CXNh$8pjAv{%Z=fv{wlv-_j=NQS|=!X;H`Jzq+j(1&z08;-w_H+HC zxU9qBcUJHbN-gK|TiEd7*_}66Ti{#3eP;BKV@_H^)J{K$#G3OGX=t2tsk7SIZGZV_ zD6=V7RsVJ_dmIMXjr%~#&jlVUJzM4uUQ~?5CV2qRSkD1>&}Dbi^5-{qu5g_1@#@Z0 z7dbB3Skb1ahVqC1v#9L}z)14Z@5@_UT$sQ0sk#|FZd^DN6)&*pc(FJ*T8*Irb9P!> zR<oL?I3SJV|{nV%8#0V9&rhttk7=d8B%tFQ9UR0P#)vA(!mp&BzC4c#lj+?hT(~NFCO~!p|mb0H7V}+p2s)E&R9tG-Bej zGMeL6(ofm!5cLj?4{xFyfZ!MspqNpUzj{sD&XP zooiPS_%Rq-W!-_a*)*-;Ik+@c)=;qqExHGPrpke{`MW}f<7t?Q*~#73n9N?$OU3(^ z<2drWi`)jLJQPqUisiVQTrV|4mhj8E+QwOktUD|}THzI{#w42PkQHo}!`urtb>Iw? z_Fu1hsKpV#?{UNsVc9&6xc=~8?`Q0(!AUOHG1AZxbcoJPV6qB%h z+c}q}0_SOxvt=Jf3>>vs$aGx@ zj7cHT`d(zUX%W#n&oB>+avburTaIQ>)gvjhN*XYI3j)Y4PJ?8&uS z@xvs{TSRtcQBu#QerOBrKK-_6z{P{AzS-VV0B|!_HB%+Epyk-Hr_*@h)J@)7lY*i` z{jiFsJOz&*HQA#v&3jz8{Q*9J(+;o0m=U!HgrMom$caO!u5dD8)Gj5ZU2O}kpV?sh z2xO$nF4FSK^QgU}R_I9{vnA21G-&15vxeTa>_HSo!wiBusEtbz%8rt1Rwq>$CFMIW zwC1j~(qx7tcQr0?R~4%yK$)qmlMWB{QQR&Cfx3r40+#*UK82_bAsskX&hPk%(kpoO zqA+81g~28;IN9u91rY}>zLcrowEL^wJ~mHYv!-bls{b79;dxQBi-lyRBDjmMyDjj( znC_AcmE4d$DHado(BseZ*va4`m$gbmcbt5?7zy6mV4n6IqzMN?eiN+hC5#2$M(4jb9^W6(^}rLDWsk`{{g?G4$W*p0JFneL%b&oE<)S7ixp zR#Y^g%i2oGthygX5lkE5h`NlSl`Eu}@3c@HYdE2PoKrn4s)R`0Z z3t!AAu8CQOFigGjyVUg0VLV4k+5>9ynso{_ElbQx!p8@-@El(GHNXC)1iG@*rFh*% zLRmD${K-94$C@#1*%+Okkt6{{$&Hmc#g@_5P#(4XCr#|v@mwNqzaOpr(%uka$;HG* z!|m%9T=J0+NCHBUO6l5?r}o}Z092(1{QfEn&);L12I+8(=69RW)IN_)@X8lIvcZGP z1q{4|Wg-!N=)X^hlzFf74pgmgcNF z^Yx?Kx%iWO;UCtB|0ax({mmhD_pKlry~^ySP3n$;;@jKR%RI>?pI7Bn&^@Q`n`P{y za!da0A62COv#g{PDl74LKo`F-GPQj1Sog_}#^=+l#R~U0s_mfJjywCh4h^Mh1+b=} zW{Ec}hZ50{GroFf46gWR;9{mDZEz2FTOQ0qF+e!vH0as-lx?59`ZwS$oQ<7ECrsf^ zsqzZ1EiAaHuT6NtfM76SoTqkI!iXT3PCn*wps^W{nHu zQ*nd8?)t8YMyrM(E$p|Zs(QLN9WFYh|2~XjOuRNj&J3klzM(@&DGA(7wU08BJre=s zY)s-!`SD zOFrW|9b|8(FSW*YQX)u(uguwBY4?8q>|3A(oD=h&k`qmIxfsr~G!gy|hKia;)x)d%UL<_D*_iTN9`7BD%jE=dVPm6aD-{I=mDjul@~7U00hm-p*R` z_?cP-XOX2>q*9Npal}hL?GP{XQk|cY;1NsHD%&@jo%dLg4_sniC+e*IrhISl_zJLf!4~H&$H<3icvp(F-#EC9!)dbU) z#vxp4+IR7JjKFE^oHwIO&uG8vaQ*;I9yo5eu}TgT$PB8kMEC+BUJ?K5Uuvw2&)DhL zEyfDUYG96<+*4Y@j{4{6SU;LYg|-?XfY+RGyz$vyq`Uh(Q5{7y{x(ipTpJHSFR=J( zs{3*>p_9%~tQDk9FD0Jq;v%D-d4F36cCUL^u$oc9p#zO7k?JSl# zW^Us?>mh$9GQibLe&v1O?O9zAYH;vYC_g74@=fLX!(-4`REw6{weoJ(SHqj((!@Ur z3)Hua!51Du-McpwD0~X>gy<-&oJ{aIie+>Td4HNO=FYMcsNphja4?K$=F^OAx!xX~zLDC+2nDce z6+142CdYJg9aWM>NN=YQX%WN5XIizoMyZjqv{2IVswfa{=( zP3AQ&4RVXm#rCP_va_b>GM2*{PO4Ihhzc~fy@$;5)La=fT!sR>Yc2U79_9pu6cx+t z*Wds1Pa%KlA}(yQ1<|OeVdB_kIWXSKpyldu>6Rt4fvIe)48n{(|Ao=P5UFRlJ+F=_Ni;g+qJnwX}>!THmZp%?T)T+-eYJ zfXlOFyiRNvA8lReM|_#K5#P5ketB2~(Hx`;b{Rmgsyh!_R04*Di6Zf5Sv!nguD;d` z48VxTV|L`2?O9x1I+Y4B=MXPEBH5(e&Jnly{y3UEhhxQl ztZYZ;%|~Ku4+(;YtdnqS(~1q}TvcjeX};ZCD765O5NhGM8$~|S{FOUegZjes*43^a zm|)1kSJ%S2_2rbq5_jEe(Ws**Zt~q;*F`QaEx})O?A}lnSQ#ghS+}c{>&2ff{l!D>kO18_d{-M2g7KL;J;y}y3GWT;T{dZ7pW1s#>yf&* z7-uLN=)}%RyVc33rnCH@ct!6m!c9!c^|D#Bl96V*MC5jsgz&!Qd@KZ~+W2idjtV=~ zhi@MbM3+1UI9gryAMw3onh$(Dj0u{QCuj<51<|DFJ9c|t?%4_1Ti-uBPhKS+^3J2Q zrm%+6b8?z0;$iyWAZ@vt8k2t!|3Y{yOcoxI<=Ow1GgiL0LOq&oA25D zj0qPKlVi&f+X!rF1cg{n6^TR27m=u@@Lpz|5AjNc)fd*BTu~+$HMT`#ZhJfltv>$7 zDAImmxox5TpuU$9-L5v57^)#0eBeb!0x&!C-wyjUt48X%j@EzL;czGoBOMEQcy78; z=^W2}oyB{2C%$H+MpvVNSpoa4=2o4*tci1+C4e<=QagtSdY9s3eh-d+5h|AXU}Sex z1Bn%FAZ}O77;3_g$5&$Fyj1MW%gMukGoGX{v9gPr)#V;*wbtj?t6qJPyk=EPV6+pc@XMQPq9i94&us&d|_eEzhP~@%~tt?!gd`x6E zcZBel-LNIr8TqPsBGz+^STC~#iPlZl?WsJ@jzUO`C>D73^LY`6IV^V_WC5;nL_be1 z{g}2BGPmmTrurd8y7iiqa!aIgUyIF(QwJP-`vlYC8?vUo4$j|;D}l99 zuq=z&C&tN$=zQlnS)xR@DCj75t_UJj>hj}fUaq!@T14(36cV1)8C`jPr)LXD9-OYm z-5#T1E8;5wiyj&^VKESK_xapyj4AZ`@*%zmsF(Y_Awfchxk3ov+&j8Ru?15om)Y(70S7(_Y9B zlNR(=T)=$KIl{76f``x9l2S(9?@PP*&5WL=R`dRl5qAsl#Me*`rT4y6e~1O0fNyFF z&})(-y0}J4nK+UMrY)4T_O$28f)^+P==CnlO$4vLpZEI_MZDS_J73SOF5vr>T|iQ5 zxH_KkVnDB#vZ@zLb3(?f=-!@x)^;>%kPaxZ{P6$R0^CgA?}r}*$n{*D&)8`?D@C_= zUypwhRg|@zd5evSrVC6|HL-%DusBW6x2gJ>RydghfwL?)8s*Gw)1$xSwe+??4=3un zt>Qp!A}Tx=?g26{?0`KiD*g83yE;3LXE-^}%Q0Ns7{6Owa)}D4esI6Q_orh$=p5YB zC80g%gLj@QF{e1pj5^LA-)N@3J5jw}yt^5mReqy*0!vSx$VP1!wgdfGp@Ov*4wDM0 zdi_ZN-5X*kia)2m1U^ouC3YeFDdJT%giY>Ua0!dnW__%38bMsYpM7m2d~qAUZf>+D z4)K~%6bwzc!4!uy+;;{M6UoIYTge_^493+Gq9PJS8_id!<_Mz@Wyv=svBhc78R z9hXuw#%zdvc&Oh{m%O<-}caEk>9>1F_ubC3kEYD-d*zR56slh zdtK0EmW}t9N5rX3c;{Tv<_l&$*&dg(XWxQUvHw8y1e_n_yS-g}JBC)BJ(+zB+uVw~ zosAfIm^ip7AbLedzBk;76Yk6=Ux=d&@rEiC=9`F1>Jk|52xA7z#IP~jv0FOsz+k{> zkb|zs8x--5vpZ*!f-JZIy7^6m$(CH%j>3U{Qb5HxJ^MdjD=9On+eb@MGoO#XL73NJd#ze!d0OKRUC&H&0g!8sk!4On)vl=>s4%N7Zo|s@%Ayfi^^#c{lyg5A zC){mrrdUDR?aU?oJUB=Wn}7oTMEBh%`j!(mafn^plUdZo#o(u^7=IE;Lo{f8zT8_)+*}p)ehou zT+uO_s5yQ7wPsr&ba`c}^83TtKrG4a{DWnD;raEx*X~!u#J$JUyZe&kpPCgzgmSlK z(^JW4k25V^aa~n}f4dL%<}MGDRNvtG`DBu&(=sv|)Vt}@^UWTv$TqA3DdH<=9VHKK=kt^I8;Fuhj0O{$|8ZnO1Q1f#9T%l!ua@|t1uN@jISv+XtsrkgDP zNU&pA8w%s8D%hc=$J^u}e9t631oooz@wY*t`geQsPkqXl5xIxOORzHFJUn@ZC*(h2 zIu3FZmkT$3)swxmL0!7>zVhmmdRP;LsqvcA%HOOUI@aQUuQ^WO0=}@Z(@s}F8wF3A z$~NsajDE3D-q}hhDhj-3Seq_t)5>SrmV+iUOTx<|dY~?|MUCr6BGw|V%s^1JW@47G zJWl@P0y`uPX!H97S2Hr*`-tL8SzR|}txZCT!(qrv!pLO)R9?Q{A=fY&|3=t2-*($= zf@DGng`bHNA_H2@#n(Tc9XZb~V0`{WgK2W-H_0^!FWsjZk0374`ooW?hezKVl3kp2 zP3)i7wtTX5NS{t6#}%aB{9A_%@LPg81`u@lH=EV>c_oK4Gl)oB&=Nec*4V*_JMQ?Z z@yLPmHuH) zx$-sE+Qsb@vNjtAxc{5QJe(lUcI$-X28 zhf*+SC`)=OQ5^EO;fuDP3>-*N)BF_c+uZBD#!cCP3walzn)m5!dKK1W!%Yl%d`Nh# zHh;5(iJxtL+Y!6&-nMAf-d{STI4ZqqSb`A)qhw4sdHgK5cN41Cz$EQN^rhwj*I(bW zB#4dezEG=OCMCy5LW26)k8Zd2oM?o-{G_JY1^qtJq%iPt8U!f08<~7JHG|8p6kgg) z@Be5=ttzV?Cd1j?=V8SrXQ!AJ3ApT1sMq5gu+n7FS@4lC*smPgVR|w9Y`(dIag)9B zmMP3he`1QQ)A&q0MxfS&@43>TocY7Hw%pIK(}-nnZLHlAZ;XH0cJ{;x&e^Sb&z;#x zhl#1odMg`5&&gwvaPTKw0@B8veD?n(8ty#FP9gLMehrFh+3y-0zj3}D+gj`S;Zo0? zcgda#N9B8|SuN0f6-EGhzR=O8i|i#6V>@5TfwLnGefj4e{N`0Oj1%_uk5T6DKfRp?P|U7 z4J40!k98W4*M9z*7whtZ9l}P^+rr%luf5eB-QiP`*LouUCTyC=HzSqX)8YAd8;L-K zI&o-=^||L$vB~*REFKe%(Wf71unxGh{`nnfH9|v%6cngGF**Sz*2l{rY?-3lF(`PR zbJ~zziRTTU*0~z7dFHs>{&x8__vv%(Q)9lBn~V(k8qDU%^z58y%hA^(VN*LeNcTKEZf-M7F$h^zO;ZP>hSp2IDB_9SNJ(+3qvuc z!B-t$Z^9gs<^O&DhsH{Xz(5yj(gnwte=61B`12mwXG{2|dGHT-CQUE7?i6FVkxLmw zq>|_h*6e(RU(-#gtAHh|>4@9xpG@fLy2J-iuy6c!6|!};9nsF1z#115_V53B`ylpP zxvguy@O_cDFD;WT9a~J7H?=PuBU$xszq+E2_W`NmuB8t@1}G@$;8`f{7} zU4`k=kb54zhmF^l&V1$VC^pYnHV#v`BmUZWUt>$M6gDzpW*q2QuHO41a5B2|v_a!x zl+SbDqQ)Lg64aa3HfR~->hmtA6=EP+{iZ7x()9~{ghMq%c7npg(#t_}RVp&oDTHM% z<3X?_JF5CK#@XW$@saoFK3aFjP^*~{#6_cw6#9#G2mjEwk&*1^Q}GxnydDA-zR7`B@HRU}g0y>lpB`WAIsbZ7zOiu(4NSf0*hX(u zW#R)dGpH?G;{V!0b?I1xgD)W~kKva8($>V7o{+^=#IzE8w`EnLX);Z@nwy5AMrj!d{6LUTFHr@7_6(@| zESnA%YwIW7h?j9s9g)KXH({ENjT5@N`)~H365}HceRKP{eW^=8{l&<(!rH87c@4*p(#E~5Ow(C+n*NIer>EDT_%kzZ04vTbyM@8@i(Pkvx!H7~{t2P(Aqy$Ga5 z7(cF_0RGC*!OK!!|1L&_7d1@V7k&$(!rqIZ0rbjbhN7ERQv`(}t!x8~-eKwG2Az?=Z*V2kp+6{ozqL8+u&~=ffLA)QO z+MzB~VXIYb_NB(whCaWdp7lm{D-?3IzE6eE-W$-C(J$RsnV`h;4grgwrb2Y6BwGYs zHR6z!)5v_GlrUCsh=wd>5pv1cjY|4lUQp0A+l^0`Kp+8c6e zzaW{pHL=QD2&-YUsjEPE=B}EE09cY0v=)u+ccy>!afGW&ZU0p_qaXlgP{h97 zS4ccNpZNo5s)bLq?H1*5QshzsG1`4j0vh+FNxlZ2_>HBP zyxSiPP+1cI^gj)>G^VRvPyrcFpig>jNA+UT@obLQVUH{ncHx(0p`F`pi~ZE|0lx1& zdefpSU$sa`A15w`R;`nx(Tqvb2b^8i3X=vNxr=gjB#r+5zAr`u!S_)SzHbm|b_XWTP?<;=iS3!S5;aQG?IZzI%r8P%&)}`dib$pifLxa}ZPI%$2(E_Z^uRef)Br}L*!QMIxMt$cGR7>rtaDXP{*!`Ig$RXX^pvJ3<=>z)v(5mY~%~LYmfM! zCAFiZo$29SKQso6OOyh+_-pdpiUw#uDDcA{@n@xBYj4G}ef{P5DYs+Y_-45)6V@(1 z-HI))i0y!kr&BiuArrRav0UijRzotDP1G{jhY~7|eh_6C*n`o!BX}{_< zMJqbdde5;X56e~3_B8yar(F`hN#q5AI+l(nI3LUeE<49D_7<{)tvq*m_eA!DC-p>n z{tiQ=)%`7mPIST$$b@MEHpuU$OytF`7TT)3j04|Sj9Xsn^toAf)O31>&sxn^OrB1L z#M9)P#!>n2p$!MscIZ^D1?z%tmba3DMlKIh(s!@%!f;m4BHIg7vZ8#ux>&lPpT@N@ z04kaT$Pd{gAL4sD?!&!meYi_RtYR6LAUnU~k~AwC3`GJ0U1-3leJsv}+X9M2u35@& z`c7eT{4!if4)K~^ji5lhiE+%fX|hf1ulQ(yWaK!X7t=rs`D(6D%0O^((Fw`Cgk3ez z0Mf3+wNhR*#L7=|^xrhv(@6+N-&-@hl2G1U<7vUI2>%_W_S zfAsA_xTq?jr&4jcT4oVFDp2DxdeHyWca3uP?r+;k?|8D7yQyLuk_0C6EOHX5mRrfS z18{&3UsHK^?4Uhp{x=8JGRGXzyRaEv>_}J)H6gsik=%BF*&tSbxv2Bu$-2T!XpPZO z&4&4sI_cEsWND^KmURR%bCAzFhkb;oH*4$W&|QiUo)UsmoFru(P)9htD>`6?_<87S z1dpF|n}eTj2JlLPsnQx60z6(QL!qsV<7_>qNfeS;;1lltTWJ=?;6|;lg###sTKUQ(Ml)O&4^j#Pk z?|qSIID69f?>$ckM5@JCa9{GxmqHUa;IKl!9>eJ z1qsWl`uhm`<7Gpm5Tys0wis1t)%(i(xgVeO$Re*zbQ}IYCnrg!By_(sfgXiz%%gI~ z0>-xFqwkroRoRkD=+6#~I+!OC_Y6TAKQpOQDSg58JxEa>8yWqKlBogW?b@oj`du~N z19f+YwLK!R=ft1^*~X$WL`7{Bm9^)MvX*k(e#-f74<2<)Hr5ezcmI`jFzR|3oRVim`?{)HkB!0mZRh)4 znQiKAvtndYx1-#@YDE}g^B_6MeFUsv`@cAsJFxK5fCHxbsz;G3CiJ>(gI2;^>cFlz zj_#c7$U#~87Jhfd4YspaeBe!P<|Tsq`pp*xw+PHz*TkW1ucC+TFQk(V1yp@sXJwXF zM5CltrDXgy0)X*^&KXfSf+`#h;@4MCX1f-Yw)Z^D2FI5Ydx|!&5WtE@0!(}A^}y5t zlX;CpEmUj0(aB8|AY|)2f*0ed`je_Av4n-Gi5V9UflP41FJS%W8CEMvL2Hel-8#xU zou!i+gyti%qZ1FIGyZuHUv1j2L#C(dxVosOi9(Z;Q}h>h8E0iXH`=IfmSk-<)l>lB zZKo@nSzLWh+Ye+l`%iJ)mTZ$;#v9xHomEVGT7r>+^B}}Rk$~?=Vo%mMCN3xUzn}?D z?fv2yc$D~~V#QK_+s%V|#0d!*D!;e*2Oh*yCviM1m9*>q!ah*^%GbbvJNhXWQWxlO zuoe{+b>MSjtfl_N{nEFXicv$+oipkq^8WZ2pakD%#ZWzvo2lG=FA|rUNd;d3g~=Vp zHm1s4j&@eK2Dci|*`Rt<6V>=D2utSO2bV)6X63jfrewzCFB=%tf!_1(Y!k=;QvPQ5 zhr>}+%8CB{(GBxh#$;XmiSVeuQF%x{8KilY_&r{tiG%-SLb$(yOa#d#5f<&%% zw;G+uc%PfPhTx}%P==h|&`(G{a<^6q4|Tp7VM`38UfAuR*mW05WUOVXC?twduFYP* zT$-?RtHWZeH!YSymN811Llnw~eC#=HFz66q_ZbiPoFa_UbJ5ALDncM*@^`ct7;Vcj zydEkY7Dxy& zQJ8SZNzLlKLutnlZ~jDI>#Z0pb6Fo*#(zjb_^1IZa^TH(JyhIZIigAkGjOViuxQzx zvnnj|xzr@xJJVLzLpm$_vtf&S5Q-wF?U2m&p@- zXX3}xC z+FNAP_{K0?_1QEt0hs&3R`x|vj-=lF6NUk)i>pcGB`{u#8hhK; zQ7GAgUXLElg)lC&$aDSi#Ovk{Y950dA-u6O967?aC4C3jBu>6Z^YzaLGQ z1ZT23Z#A|v5<6`@?Db*WezSot9pq5K9(sBTMlYioy?l|s-2uO%b4P)cnOn~9zOFeC zN?|o~w<%}Be;0yW88ke>dUYoren`e|-kkp;5H^hqGX+Y^2C{VmkBf0>|%!`Pe!|m|s5_Tm$h( zpQo-)QDkZFF>IDhZ5+uw^E)j0TYO@riEHM>k zz^taP(;B}?9V7ag_077b6Gk?zpla$Uj&>+a5qIyi=M{#y;p8Q95kG#qp4E^Fj|@@T zxwun*IR( z=LyD-)(p+oa>LavFYGTH2mS7hS5$p0!EyV<1@gfVb=LQh@Zy8JA1vL;>7av{+>isj z9Z^RGdg0dtm@;+hazy_zw@8OM%U@#Dt_8oHNf)UwczQH~f#^&fFUL0UWu z3H&uf2*=kqA_mZgGan3E6JTK+wcK|N#pKB_0br60X4LpFr3r<_g!x|g(nf@ySyV7B zL+&f*BV0v04zs2Wiw3a%8u}MrE0>D10_XU#Jskzv`EL`;J>0p9u39c}0oTf)#VoUn zP5B%*cl?J9t?Wwmk91sslnxa08E*>Xne|-y({j zT63FB|9XPn%43(VbK4_G(8Nyz12-lejYm3hOe;8Mf$rLYpriADs z1S7mfSVg?1ZHMu7<*Cf5opz%bb~v_O(900MxOsf}3~EoboyYd_^wHs|Yh1e-%O^GC zN-asqyoh0&;ki=6EJ?0R1it7z#d0%w0r}uwJ^nZ6wZDcsosBiRl5=VSDe(^nJo8xE zBh>f}f8WrjhF^{+%ip&7Z?IH%DIZ5K6S@;8z%-S59YQM<;tVwk$uaVlfZnF?a4G}s zfO)np&kiF{jL{nPe8ct^3B;$N{H+G2S~0U9PLV42$REO8o2{R-7#GEBq)O{#};MAEe4=D9Bm1ZQ5Vqf)2ytGCYnm-P zb43uc#m1&~`ruW9Ep*xav=PAs&~2}-ZTA_!v3ZAv6>aZ3J0>6#Waj?E;>G(Xo+Z6l z4(S{0J?XG>@V}g33P7$Bu|vnC7}zv{#j}4${stWEVXf+YhDf zf+FLQmGRHGz$2!Fbs1WfOYX1etHENKvlmTVQp84G^VnBcb1ZOdOV~v`$rVnr%2Gi6 zJ<61vaD6i*cCPyCk%C^)pYxmr0ic;mUK*~){t-`oYC{1Huw)ty)I?Fmj4q7V%v*Xr zO<^)4*QkXbF?im$c{y~J$md~x&e8@}gcT!OYAmn);k7Ma7_fa?#o2rPXgNKL8XgvC$m(o)AWvLefJL30+6dTdz&g_j}%OkGZ5!bnCCglRKmi8?`H{ z&_HKFm6{^AxTW($``r6Eg~EXB>FxhmOBZRgb^gUwyJwBkq~CUg^XfpFmePc~Q;qVG zzMdoKo7~IKdeq>UeqmkY@2Dbw!)nWJe&95Vww#Lsf^$b=mE6quZl^Y!f5LT!bq4Tj zGJ9#8x;K#f1wp-pGlU zr*7t5#Nb97$#Wzwo2_&L4LbBU71*n)s>+Tfyguho;Euzj!AgspjHZOKQ+H3t^>u43 zuBZJfUa!foU%a)bhsv<-aGYi~SOVCAyKb8cNcTawZWlL0vp$|4=kV1Z%`HC z#Fy#zHU8OUsQ60f)>vpK4+tP}9&?(()<5dxuW+43(*I4v)-J(32^b|I13kh5jN-~k z#M0_cg|h6&^+OEw>o9Xx^=%eIpx}5Lzj`fYvBf30PA4$2#Ctee_Y3(?7c_{n{@b1V zunf7^yAYJ~Ce%<_+$;XBA68S0^rj&UGso~WC39853J$6idnBhDo+@=-LtAy>)JIqa z5pm#+b{5)v3uU#sn?ef)^qq=E2L@gd1D+Z4WhCmHWi@z$bZoaYb%MY-y2HO^3>Xo|B6V5l))~EQXE1zqCp>+-o&6)p& zHkK3<$Hpc5&Pfn`YLam1$4{8ZQ(Mle8mwCwMZ)C@d^Jf4|JV;seYi(mZl>5QHXw;Y z>^&g$8);OqFVzH=N&}8Da!)%@4~Vvzt5CH%`sT+RkpDYG?6$9AhoAx1HJy63g(WO& zX62wpD3_t=6#)7BK4qW6PvVnBhfvxg3H>A>5rTqJK9UuIYYWv-{nB0yUW(bOZvWxuyi?JpDOZ)xnhz-w7bd5x*^-$6Gz_JN@%kw9mPXZ)EuPm*nC# z6D{nW#F^!J7)WBiIX4uM1Eakp@$rbH5?o z#55TajMXNuMpDx1J8qZd)uhs5Mg<248#3M*Hoe;&lQeAkRa&b<2!tl$pJe{ow_S}C z@#S6lqL|%$G6GM(;0w2sgo)sQm%R<<9?uy}UIx~*b;_TjJ#^x-xCU6fzz9JF2lWX8 zOgiXr>VEzfx^HPr!5C^<{CkfsRU0_x^ou5!{|7c;ZoFDM&cYKbJRf1flEDoqdF6&H zk%x{*>V-K&K-53?{i7l@jG0+y$^Is7o~TIoI+IsGcw3TNiketQ$89iG9DqBpSOL7# zzz;)E--BIOvl&6((dV97FJ8zP?Ctu3ZLQ7Y^u$;8<5Z~ov10I?Ol{n(0=V%k{_>77E;e0c8B&~0IK#&}gMUn*wR?g6VH%=;w zs)0B9cW4n8xsawf4z2~Ll*e1SauWhFt$wRI`y<`F^QyM(StUvAaHNQ)@!N)AaNcpuaf3g|v8{Sa|tM5^fWMfXvTKLndWo|Kg-j zs52?zEWFWS^^fXzClQYqf@Y~5>bWUqUp&QLclX*oY?FX-!?>VjE#01iR}e${u^Kn2 z5_NjaoiRPb?4-lSp?aIr;-_9BGsiq*5zU}7GpPb$GXm5l7PP*^*3s}fV%xszPX$j1 zsBW&@@IW)y;^8#zP?vQ43>uWYl&6xrRr%W1oo!pNk+?pQZ^gtoXfJ}qZ5HrzIj(6(m8I!|s{Dp4 z_k<4k2KbmzT@z--bxz)0SRk5|e)trDiZT<;kZa(q4+yGm+&4@~u0C89ymp3AQ-=!g*#&>U5HhxjQAH6#fg(9hY0uYc3# z%SH=vbEzX}}j_a*xyg?&m(jQB)wiSmi=K4>3*OxUTst?(D``MPxFi zF|`VL&LZ@CUw62q@H!Y%dTHNKMYCVfR4+QS=Eaw4O`f;QE)vusvF%~GFzoucr^faCo@0Uw)%k+#VGDWtuLL(hUQz^-b9uo^wMp7`>>Xj9r$6Qx%P9p+pH$e(-y%n&Gf^i zggzJ-IheC8>QxjX5*Yv)8t^%)w>6w+R9|?bnar+SWqk+H`8Oq{2(A`*4m(647*G(lr}jaH;D4l| z8(%lJeFa;PPr=~h@5aP*#NLC?H0%MzRxUPJaPjwG%Nu-kQG zp?&a}Choqj=gj|dwhrE6`mF4^`*a$Q#AGq@oFD&&7A}cxBjPDl(FED`m_FqsyYUPV zBxoLB;T(c(YAmV+ILY{@qVkac*d~+f-`SS;51+sEW4cJz$)r250hyoPVF$V#7 zaWfwOhqki{Ypdx3b%IkY6sJ%eic65E&>}gQ*3>?3|1( zRJbL_Qh&T_w^2a}h$~84Lk_x81#aa-e85&LiA`1&)6O2J8=iaDKi}rXxBfXa;IJ?q z-AK)59XG}rDksA>VO{BJG&_lC?zdojZ|^rCVsVKZKgjvCSV;2?FC(vYTj1t3-(Lm^ zV5fc?A!xi=KMTSE_~w3?rb)|xAxDg(jOxJXp1wN{5@G4STc@BdhL<>hhBO{OjO*Lc zTc`c*w?fo}?Z$qCF}sj|%*cxS75k^HdHkAywCK2=%-c(Vnp(wRIla~YS8U@N`gv=1GqlCqIi5cu2&vOrn*}B8( zNo-#9gsSP%t9+zo^<)3<@Euyt+RA^Y0m+=6hokcP1J8%Q65r+(eEj|Cx!`N{&aKJ_ z&kw}HF?Sj?KsIR!t}Pr*Xd@XLumF2Ma~7}J4fjxJ*f=r)zVBF;75M%{x{d~z8$!P6 zDN^{m{BTVnu1dcwD+7wz4s;^ZIS6_&2#8)3+U@lJ*y}N8t!$XZya0H+YtWN zKRF*FhlRdhr?}gOIgz*Qj0gw$>gcK7AqH<067LfzluTEHJ)KxMpQG~fzX>v!&wm8= zs$Wh7SLu)I1gd=gO;?6pbBy53YuNB{Z^FhWdP2=#zQfvM98O~Xm@`vWUEOJATMWiG zYuBl{e>@M!Ig*7Ycg3FrD9d>i&T{!wYWnT zPw3RwZz#{@E@G)#AyJ20qfwKF!JoFL{2J{R1*8mW9T)kH(kVkFm7S>VtF|4Q#Q_uK zH$12#4qp1ef7MB>8B4vs6E3aQUaR(yg%9Q_l*PdeFJD_;-+|0H4OypOYYF93Xypm+ z0T2TCQ6rf^fIR2e)30n)FYKd5AIuJfD_eD}VVkWbba0@o1}4G&p8NWTSjOV0(T;A&ZxCaBRh!-4+>ls+%DTULx(S8oZKP= zRM)HSH+#&c|B`uYq;RXt8;)X}PYw<&+4Fj>zRQoFFdj3|c5GnH7A9yOH+VR#pmW-I z9nNu30XR3YR)iJ6GusyjP>-E5R^c{WLN#-Lx&u9iyMh!7f_L^tL=;Ts>fOH}4QhD} zypNmpur@1M$>jMuv+=4^ymOV=900lM(*2kXzmvQ8IeId*V6#&zyk<;zp=6x_kY?HC zwwJ5(p=Ft_VyKDP%Fu`e0QmI!biX&%vvec1497xo`;4W5wYs!a}}fiE9h8w1NcJ&t8s3mxHEb5 zZ#-*)y`I0SzKTonQz}I^A1GfdP&fZI3?y*3znA|?8_jTXL%yd^BQRR4s0jG%>4Y5I zV!Sfe;?Y%SdzLhOq^sESyreHn&UY$co!8(#j!Orv_*UwC$fTaa>u6|?9gK+%0h0?!_`Y5G&pvZ5L`VXRV!9V4nPM5MntMRX7Hf#+{Cr0*hPwso735~;cjo29!_QJ3yHjItN_Eh?+Cl1&%%;p!SUxb01} z2&w{VgB~Y*dSHIEe*0oEvhw{HizCqokjZ{}-fFwW{;ST*N>aYX%z>?AsUBq9GlQ%C ziJxn=KL-r|rGNhR-IFgFfPLzJeWFMjL>#L(wwh^}mfyl^^>59O;n&u2xKCl-hE(xz z>rD;M;=u0QHzIPgSW`FKAMR*dVBh4!bod&5QM1B^ivcvb59pzk5@Hf?(*qZw1dNIc zB-W_qf$MUkBtOu91D+x{QVig$`i{oCKiS7Tr4cS5W`Bwu@k4&Ja13<%!QVa>FN>bc z{w5B21-{eHLXTI zgiwLRZ;J~RPpC@wnZtnItTAFUN@hcu4KweCO)~}y1ql=`4iic+Jvix}6VrSLu%jge zR7HN0s6RHmIab5M7$OExA|ge^0TJCthlocoE$Gih`S6JG%;`C{Ua2|EgAZ@%rp8Ug z7ed_}=@VN&rITQIeofNF$v2pc_B}y2IG*CaFvQx&7(~d|^TNF%BRU4oyz18n$M&(| zU9ABVu#<_Ndu;D;tXrL=qc&yFe6$eFWj6jQa&c|#FXm_PeK$y=4!W9_%@RlY`cZ>2T!2MHoF4pFSteWbjU(|j zv|7aK6PjBdB(rig3@If+q*2V_cS}gnKzDmLomMZa9#2f&IBk0i6-~aSFP8qXRcInT zWg84jmknHKx$podWVN!COCvV9dK1EIkr`Vjwe#DlGBMyJA!Sg$eWjOpK!-o;X;q6L z>g8XoE`2dKn)$>k;}`$SpHDZp&v@lu=kvi=@Fa`~%AOikpd>R2qDKVcz@21pwjMIB za89S<$XZx-o=^pS`lQw1?HBYHYZSj)Ux$Mut$+Z9=b++lx8IxcKX2MpE=pqA$eizn zI6EueU^@OTG$(^@8RxICz8+*-VX!kZRGa#X%rsF(9zZbTG}9a`B^{CwO7o z(s5udt}VodDFS{8am6hi0VUmxqmB{vW4?ejE;qy>;eUDnK19f{qgXzHo+TF|g-e=6 zOAbbT@xqoTcpyt(Mh^v2l%r?9Ox=LrvP#`>IWfX0{LjZ~2fxMsz@_Y}7Jf|Diy5;^ z3&un;L5qqbYQy1|AS}21@u^_qG25-2J+>;KOxSivh`^?l&F{V7IG6S2;S>+WIPh~3 z=I0QT7r*Cxrh&~=z!}sv8o*N@EJ4CSVT5(rRW3sbxe*%>T@*pRGeSxan#1&?@G6+p zV#m6f%sPI}xNX<$8ZGHk+`vJ+TqPD_y{qBc!eT-5PJ12p57!_N>_KKr4c(en9JqU( zhpe@!K_^?i>U4Dw(Jh?rkC<<}D00Op@OFb%n_5b5n*q8fbZLh*#v3lrRsU95Q%mDs zAB@Y+k6Sihe-AlLw681O%vsC{#6xoqwePX;((cKU`4olOd7QYISuG%(Emcqkv$!^4 zCPu%n>58r+_1s=jOdor}YY}oy*CQz1!ML^Nc?z z7-obh2*JH#Htyeou=?RaArMe7vwbapaDd3L$UF6C_Fmwj=g#ZOUel!AwLtuCD6w-# zX41bSH@wE!{T{k22!cI&hEessb-s&M_bqT@+sCxaL;lQf%>Shl*1Lo7vdr3SPA|#vbNY=p;W0={9PaLcKq|GEks z{KNY~!zq!P{6^cn;W7uP@;?8Z72jp^7hC|bBuX!_twS1S5+jeeIiPorh*>1;BjRG| z!_wCB>FYSAS{Q~;O0dZ%d4xq@jxjr#aBR&YdavJm3?>dcxefT1?zgGeLYKCK5T30 zS^bfyP1yOtHmQ1-JGbg?P|bdx{-wE8QewHmb1obHajI7hBx}P6Z{GZz~8Gt5lKxrclfXPAva_K+^Fo&^qHH0D%7hOZvZ|2Z=8GH8tDX9=B!2 zT~J@?6ZZW072(4g5ywIO4)u$ru7oIByj;T*lA;3-gho z`pb|!f9u3c^G(Dc{no1E$NRFH&5`tKNFeO4CeRwBwXgDTSa8w-O{2#a4Xb41N zHAnJ881C2U&=9gd`LPvk%Mfb7Gj9yONJx?g6mP)-)2}{CNd>o&7J10cG+Oq1kH8r0K zTi#kH{O5xc8+o3zg4gkUs2gzWbT=VG8A?uBOHSE~LS2qP=At@0lm$%h1u+#O0E5MW zBsIm)j0rm=2iNNpt)4Nj+46Y)>yu5DJfbbD4+nQ7mmBw+UcZ;Ki*RYf?RCU?-_lYB zF%G5E79h_!2_E4@1cGGJEaRi$J9zs)3Fpr7#(#t8i!Frb#*_s%ht%Tl+QIb?V;zL<8VX!RGDWf&Oj9wA3u}Y>x`B zc<7KLp41OVydN^2IUp$sv>deVFH%UMHHsSMf$F#lsVIKoJxBwymewlvZ@4Ik-+Z&j z4pY_U2~Q90tcWdwe&z)lvZf8|VR5l=8){~1)kCA%sM6IW-}6Xe62ov&o8)*tbk_7B zF>1up+He-uPr@FafCcPoXE=9PqCu3P^U8ri%0{0staq*yAO9K<;;Ur#l_f|@FtX56 zE0_`$3la1=($E!tmPw^;G{WyBJ>GWqZj4F{;TN3cL!~+)R&L%utH>z1X(ugE=mJ|# zmAFW>LyJg16DTTt`BKZ6>@OA`Y`ZHa77Wm7k}(%64<1LUm5BvOje#g5n4)?SOe!up zDuZdYsfaXvz{_d_O(Ch#7XN>PCjeSuZgCbRTi=sGiuny??qEp|}dC=!E+K zP6U5^uGxf?;qbpAY;&s_Q=H%XM`AAl(oGP>&;Xvjr9F~Jowq-4CZRV7t-DvpXO%d_ zgU|H|>Od4^xorgkv|5?$?gw8TZP1yZntqcg`0RC}v8=*F*TCf$21S~5TLp@ugqeJY z@=|#1YWO<+v1g8Q(mI>H#8Qbw1!FSxaorTD%Ijiz7#uozXXjwRg`CqQims_TFU9_F zIrupjB(0*!MFLIk-=eChAAZu(2_tG^QAVwQS9KK9Ze)XBf>AhHgi(EHihMBBA8(n@ zedtu)RUaotxrI~S9ej9+dKeHQU|d+UVXS)wqw8w;Dn7`S*DDTUBvY>C_`gSpVviZA z$598YFgr6!6d*7j1hl;W2We8I;t|t?kpU{9pe+D8b;cnBYLuMCTPY32`K&~3>bDZJ z)DWt0D2BX5Fd|EvMrtJSmSoel-wip(DuINpLt{uZ3vz37b4|@gi`OR5CnOkSlEVMq zf+&(_uS9pv+4uAn8C+hCH8;O-vd#<;uf<&j2o@sn)&k5I{oJktZxOw6U1T@f^4W*sT_{4Gb8t@dS{slt7Rl zv~~42w@=g^g#acylhosmiVdqX$3Gk!Y`)vzMYu@yEUW9w`N=f;!Gd_r(k;62WwP2w zN@X$cr>P+)9#l^ym3|!f@(}}m^q17!9p5wHppdjCSC8g-m>qvZ(V=aB4LV6Y`Z7M} zRVrwPeylGlB=`^q>ChioAgZ>9F}HAkeM2O17cC|NF#x+Lcp%nSlFjre#jx?GG5<`F z)ocL0CnOccj;yP={Z(Z6R31=Kn`@SC`!**`p=5xPiU4P$bBfxd?&quY6+PBK((~*G zORNQNIT?;C*@Y6*Jb|%xhEYNJU3(rvo-Q2tYI&!SLqEEx=~+y|@`*!SqXlX*1lVUHV`#Ykf{1z@fpwVt;37w%8Bww<70}hQv9}tu zl{9UghYT?A{e>kX*>(MJ3C{=>wO&h%TWJr5bqBr%0+-O3Du9MfX+212CWrDT`9baz zsjt3{55}cH@9pv1pij+zZw+SyP;bGYBytBCz%gQl5|bw2d~wl*viBiRQMEyqq5rmL zHp0E;<3U*d`coCk(=}@I^VRxGD#hZb8Ty%%o0S3`)@S!TN&$;Ip8MsONkadPpqU}F zS!ylEZO5FSjTx~YXTz`^^d7o`hJuYC9~)0LVLI`xo?D!LeBIXzZ@1Et7vpSNo-c1j zK4Ae8MC0E7HGW#q0K`4T!bp<7%zPj*=st!}1P*K|)(GA&UFF#cSHy>_1M{1jNJdmWtYZYkj55Jbcr z=%X;wKPL}<|1B`n%T*vOq`i7nxZnv8%xS*AV^w-EMhq2)Kfb%-n<4`ydyIFM+>nG*HV4haG12n#=Wq7|^I$($TG+5o8 zEY(7YR-$ir>J!JT7P0R8(vQALj)JoilBNTUtk}4ND!6|Y3{^3a-yugZVQCc2X+lIj zK9ff^iB-5-ZzEwEc7*dbkFZ320-GMLl&D2hHECEb6un(Fzm-}fduFnisEv~Y zg=R&gOJGo;nQmno^1NdTnvuQKH>i$$`x5x&_X||^mZaD3E(#TnNxGjz64aKTWwWawUa)Kn- zhmF=X*0**#!|dq&LJ@>`KCJJg`uzm;CY0xh78xM=bMidwNohs{k`Yi3y8#JUQ#b%n z)FVVSxnwAN2X9FSu2-6@awk=gFzVL$g&&`IMr@5yvqM#R7mjY3v zGz-2{F33R&R(Bi}DN8~&LrFy8w%rrTuhrSYnoV)FCd*79Z>%FFGeD!XV`<%E{ti(8+QXIq9!XYo-#aJ* zuQPaFU#46RqPACxPWR^Rzz_Me-)O+LK}OfZHkqo!zhuoKf-*0A){bwOwx<#_dbU-~ zE`5nreWQGbcH5D!zqo;iwkZ|^yw>;;+xKB1E*8c+9g+WPddgQbz9O3i`B+Zx<_xk( zPhKQ;dmH%aKoFs7+WKPJh)^MIL?%=%l#1Ud@gK4c_H!swg?46#DQQMO3cZU*GW$%* z@9W>76lA(U10{vb7kCTLVl4D%pbC~t=z$2HquDv`v&l15@>>`2G z{^v3>(J%at;@>?|{zf%U`T2QK`$pX3VDeo0kL1w2BpEqGdtaA= z{JS7&)lGIcVh;bMlon(Dpgj}-kP>hwevK)bN>OZNAsP+X&g!&=Zal3oTbH@C%AHM8!e)@OYk{*m5?}b3Bm$ z;-t`XS9e%;rM~^Z65xeCwd^zBk2eby&3lDWglNhr@xx>v783KXpMo`guMeDUHwrbu zql!dJ}TRVH0hmKK_D-FMpPJKHa4CfQXt*~2}apsMW67w%giW?{R`N^ODwE@F! ztDYw#H8%t2eBJ--;MFM&3UhnvoqyG%cx0+cMO+OV(&$s%ELi49=6be4EMkjamza$;#^eRye?2 zC$2BO6fK!>7!>`(9K0i6>T;RXszGC+%$JO}@cj=l??*NyY1>Su29Q)$1K9jy9WM)# zC3Rou2M{Hd++mhIDIJ3;S`n0GlbGLtN^p6##VK(C1%XyBmi7B7(~yks;2H(m-2A-o zLrX^-zK4egz}_5eCBd5`rPXqzePoB&aA#>T}(gz+C4pJ196%pni3jv$^Kqw=$Ti6L{Vq1`~d8-B^cP zS@nNsB874C9;Vs$j92(ZzWqc_KE;VGFc*4&l7W*=w!UZ4FKF7?OHs#aQ?lsfl)81xJB zNhKn~1KzDQ>0IH#U&g~_GO1QdK$PRoj7`$cVhMY4BJ=I@-xajA8Wd{Zh$rzXQUL<4 z7+G0ag}cZ}QrYGoMAv zNm_R!K&Y+ghbrIrB2#h+OcjZ#P2$Xci09iQg4a1@D0tFvItx68oTXR3h>7x3yA;oz zg2+yn>isu*dd@yRJQp9|*AL3~DlS8p zf0@M+D*~XpC#|QXRw&y~gY3SKQz0=pFRQNuvT=j5yb(PQAb|0+$mu*|Uf-I>RZP4n zi{HTY?rzQ_LJMmkToVIqTL6;AS$>rc8=8rZ0?%LI!B3bR-vT@%aYP?I?<&gTnVxx% zmWlp~-SiW6AM|+i{ouEA>gbwWeD%NDt4ZC2Y<^L;*f|i2BRLYe8w?q%>gf`^`1F#@ zd0f=;vQaG@c)z)Q#`#W@^az^KbNlilYiW?h79R`%v*li#EpmPFjz1=@zOwqpneLvpJXai{p9~@-jKVbQxGHam0A+c?2_(-Af(|tq1e+y}FYdpN zL;y6t=6Aq%h`rrd>};FPPc%V8zk_-E!ktD^vhCQD$mi1L0|{qNs;Rg|`!d>mjK~mP{H}wMquOI* z01x{?YX;)LQtk+ox0ppKfG3t2d(XqP^k$e2DX)35_`8y}>6XPZR{z(q0N~@oP0#Y& zi78Lv!ux+XBULFavHW*l|GuWO3%2Aam)qtI&^)k6a};t}K_MrTJr+t72(^Ky9bkc% z(`V*KVB_^SNMfg!!12VG{OpV1ZjntFTf6n?D#hL=?+B<^v%uv~YD(~m*D7DZ?k3j` z(yj&bX7~Bp#ewNrW_K6@paD8!jPkMCZo>hO`Q?6hQ4>Z&iCWaLXYBh=nyAZdVQ^dZ z41V`#Y8P0se#uUvBXBp`H2Jz6OX8NHB80vFGU=zIDnW{YpnUR|vhs3)8I~-@RuOm={#;|PI`+zp*wf%M{sL%GqN-Tp>%VWG@ z31+&>4^9%GwuPAX&M~wl@=pjA&m$>woWRy`iOa#@MAe_<4qIFd$9 zu}giSeIpvT;l?wq@4ka?i5-{B+j#6epwtO|F9}Rr3~e{f`bfrXWFPXaq2l5YS)PNG zwL!&SV^T6{sbq#xdQRX?`~6$~F9kE$gncR+}&OQPWL`C5fGDoG;7x5aBTqHbi6S~~m zVa$PEhRaacjBi0uAX|D@PtDV%$IgLOe8)c7SxRE}y4UhAa%g{&+hos-QCI)Ao=1{j z{?aqCrSoIH=SFj9YyYat)-_RXUtCSM;aO)_dCFw#-b^1aK{HJB{$X^ohfVd2r_j&0 zqbjh>T|%ee;X!$M-ETxs5L!LEtZUqTDGGxbHMEz?8t)wlBQmudc`B5-KVDe<4eIbT zn`DlBZdXK2=Rf+ZvUwtZHd_+#a3L&M;wGl@uJ{UX;^RC@xyhpogV&L@CgfJ@C3pJ7 z>P*+--9mcB`h!JtOC?j~m}t$T>CeSir|rdgH5}}Gf0u%d5Ozh+d@u1#0t)|H#1mEF z02A26$;n{8yZ<0}`pIBkMvkM|e4v3}lYfBrp2NFQ6;kd$bB=mrxy#StnyNyU>w}8S z-He-=^S5^iHcV!>8C~Q@J-30HMi{}u$c=)v8y&#;xoJ9 zi9({jEN|`o*FtS|oFA0Ui!>TIMLv}tIG1h|jcL5%tb}u; z{1s^2T2!IP!VGkdUu$m=dPcZ!r>DA(l}l9=?~HBp>(>c{pD{WiolBt z&w}=@e6PDX^6p;8p3hBIuYt*g&Y0!Py3A)^s~!28j%FJEba=RJ=vDJ^-=5g&_kgEb zDjj}Kh?NQl-0Oy{go$YHL+Kn^XDWL{ zQEWL+9*eUcc&#QoGz;pipvr@L0r;BUp#)&Zd2ZVUv9<*J5 zFg@Jo$9YM_JKg^LKy$J z%a16k=Y)ePmBnBWL4f-CV$y)Q6AuQ-7v_ljHGkqJV-RYx@%_+;e+2|~yxR8Y*pek@ z>*cr>(}I=px8D^}4_BzHv3a0OXteu#&#w9WCCm1__sp`mp|c^On-*F6%vt(FHYbyG zM*(4vf?Q3Mys8M|NdzAESA1k-^^G#$$~fq!B!1}3IXgq!#5-h=i1kP|bx+=6wu5t? zmYyWS--eO?E0nz&C%*1Ud-*#leEoe}N!>II*b75>0@mE3`Uf@{>E~|4DsLAb5JZd% zC-yQiNVL-tp(9GrM!CA0FI>d-FSNuS==UtYzVMNN;BoAS^s<$1oo`5Ww|5v66TjHU z{Ym}C zjf6|WeFe)dK8g_Iwf`NYD=icVRgYtdv%hx^aA2~2!GQQLYH zE9`|ObdBk!_R!ZQF8%o_HDHAeSK&AT2Hh~)372_pI1R$j{HKIHOHSzR{K0Rm9z7`Z zL3^G^4H4M1L7~MO0Gy{#dj?kUr0~9d^HySo?khd$K=UMyQ>}|W;yGE5C*Xp5!MnqlY?pE+BwTzWJA{hNAy+*W7NC~3Vzj${r6bFm z71bT5a!D={-Ig(W?1UQ*2%;IAc6gBh2UyOxL>+?2bdSg))k_~fk)QoQK~>vk9Zv!& z!tomxl#O8Et={$RBSj1yBP}_Way`eaQvW^?Eg&7r6KO-=VzZJWmB$vwj30ji>izqj zy4*t|0`ZG)Nn1A+gD*j-d~q}DAA@M||4bQzKpv3VZww?_eiSVpkVy{|%2WxZin}2@ zR86;c_9^5FGo2`#Gk$a~j*22bvzgnLEh#K-`-Pp5>GlUQ7z1MWbw3Cr8X615zj3lg zPu7!8v?7Cu%GdSJIu^B=hZ!sTW?*tp2AKrVCv#qFfaGsU+S|)6nsePNd{#^dB`D4^ zMt_wUQ;UH{`Li^5%(dU~%?yIC{J##QkC~*5(pe~9snc{>X!Dbg2yK+tDX4|bxrO#s zm?TYMGwyeNSTdK#uJuRD)OS zUib|vzG)p1BpU&JbeQA9^jxrDWO8@F@2mWrvws>I8jtS*Ri;Iho++8=iHg{l`IyxW z1nOuzzzOnI*R|RUvIJK?3~ybPzcRk7FnQDFxLD;vc_(n-&Lv|+>iQJlq9Y+hqx@wVGL|IZ}jVDAa<*F#& ztxR4i*ZOkux#JKaH#;xglBiT}_XdZ`D)0Qq2;X{lxfdiZ0Rh4VKD2&`BHfk1CZuQt zXOAUEprW~V2^YQi{~1*n!G-0>|IF7JXYLy;nVgdI!Fbg6zJz zUoop*lW?wxCE?E2enuET5Pi;O!#QwGa-qGCR?^6Uei6Zf`O0~JSe1(YI%Qwyu()y9 zg&NP>n8Ti*o!7RrIuGk^5mE^B4PDC2KD~DW45!V`aq*lt^0f~QbPYt~6BZ4>C(MS9 z#8*3o@$;@3p)=Xy^7BaWgn-@_}t&*E00 zwh(f)dSCxYDL5)ky=`%4RD*C@98S z{@3k*=-BcO5W32}A9h{zO^%S|Q>_Vbs*SVXPfd}8gcbg($brV4OqIBZvvf|c)}&8@ zDU|=?ne={Y*ndO&La_rJQ@$$z#f(ucuDkvlFCOL-50A!~*;CVulZX6w!X(?mq?#6s zyhix&uX0F>*D(>rpZ_}*RPt>JPre&%p=D~Z($S){{+Ar%LT}!AzKK}%HcDMWO)RI)WZ5`jDlWG$o=HKR% z%*w)M84>ZNm+@PUOC~o|xPPvq4V$iI?`w=x9)d01B>5&J-i4UU;0j5xSd|m5AQ85o zId{Y^oGqy6PIwu6MRxRQ!9RHIQkPzD?(~=RY0fDGy_eJA%Pv2j8?fsB5Y@z7k7tr1 z(?&!^Xw!!|D^p3HTKq#w<>+qPqM_^PpEu9$qn}$=10wyt>{f+)){K32$wG?UeIQc8&F5E3Exw5=FtgD2;u_+uXGajJHNLegm z_U6HZ>d?)~!ohkinOz6`4gz~BAG4eB6#@?l2hr8KtLeO8&eoyk`xmRb@s0i&xJni< zbGVm~gp=JZSAIZ0Q%Zfi65$=LU^EFB={tBzhXPXX+l<9)=i$jovoSLVV>)jbZCD$wNHB+Z zL@L9rR%S)BqA&I@=Z~yeFXuv5XG#E)<>$TXtx2QKZ&W8$dryl*fUIMtT{=wxAb^SR z_1_`=ZhYePNK`&OO~-3zWSQCMErlaCihxy}o$Gs!`YPXFEVFfBTSA`A4Z(`?(O+zq zY@UXlt=2P_1>WO}!eC!zjxqq@5l{WHFp6&q0x8nBzqMn=;q?qpWV*SV6? z@7Cd~>uyhQmV38{T(aNH<|fzm7rQ`jFS>th-L4b;2705%FJ?r~;7$#C_w4#`4B0)v zEHfY5A^Kz&-YG20XvE<8&ro_09Eu>*xs9r7wd>;*k47IKV5boCa>(}C-_C`up=EDU z729_Suj?0U;}BuB=BYOn#^q=o|KGd;Cr2kAlor+3yZ|Mu_{b2B-ldW z?LYfmkNZ1DVcB> ztDlnTExnE@Rqn64$Zd|x@9F?Hyl!(M2!ToYv6E(bD*Ha>zmB1_U!N{V9RuO>c3Ztw zkF3ki=GswaWP0VsGxvT4+ua_<+^AajpTM`%Qp`MtR@h3XCRjGw2>dWm=WS49H29{E~& zUS$sY*A%bt%ZySY{d5AT&z_pv^BiIP@KN4$5q*yoge`OetHGFf)@iDsJJfkiHv3t zD^a`EoA%y z?7R~-U61)=;Zd%=^3S#Y7dv{p3=9p5iIeM^>!%gIy*54M*4_TkF*Env?n(KU^_AY% zmWTxCm5SFXKMphtvV2aqAd4fhvjh$6AZLT-{e|KC(|hIuXH?XYf~QABfXeA2dGHYw zY^eM7?_&6BlpY}Us~+VX`*=Eq8QQV#}s8eG9N1`%+AJ41gM#>Osqz0V36 zV^qBRzL;;&6v!8xJN*^U4cw%$f|W+{R94(*9fAtS2yF^;^3_w*)O0q@_6AZdXlWV( z23dBW+D5Wj#rC?twkSt6b}(J);2V^Tr3x*Z1#?+cZ6qmJaGKwp1qzzq%T}5f@vXUt zl2r!3#~kx{P8A0iz{~pQzB|oFD{OJA!bo^oo^EAZs2zVWGwe0pfi&@|u(-pZ7; ztESwo)gC|NJNQ2Z4nQQ!<+h0|m3cD?NkYaTWU;11qYB84RKcOP^ZZ{!R_~OIlM>T+ z>D2#}IS313zyw=gkn=wc9txy(Nad_Q5@HlnT8QBPuO9#~-w+$y_XVR>9c27Z`_GsR zz2{Ywi2L-z`r>agdL`eK%$93g)mH~upxojIM)$c@-|+R-$$(WxEF}S|v~T;~2zr;Z$QJO+?VL}sRO+L96(hyG-ExD_ z=x>NRN5iU+#hq}X@KJuxe$eb`ZVsR8n@lwrzs0Oeaz!! zWMw9?RL^;@3fy|{k`oa z1-`&J9ab%cX6REZmGw{R4tRAJh_3%`&cDDhmTXmdW6IoYo5{RD@{_->YC-VhWX=J|I{qy|#CWjhB{~IqLbJDNZJ~T0Kd= z2HtctKk{ia5++C`{YF46jNA6p_HQ|@z*#_es>B1Y2c@z*_euQnTaA9HvM8@TCaOLw1>K7kBU$0ZGF3zX* z94-4rmqc(gR=qdY4+h`!LkX#i+~S%SFv=O#W4LEHdFL<eUNGhz7Dp6lNJxutS@@w4J!IU7Bb-(7( z9i|#{JSek*A)9XRWj=#KObWuz*UqV0sA_(j*U$ZlNPS$m>>|rss=Q&X$=v~Lb(XlD zlmTpc1KO?*-8ypq;P+e{&O7yFCU zM4R;@IPAk_s`K(jO6U#43;mC3_ z=+AkxIxEMj4>859>!;scn@swCBx5HmMOyw1UzJg5by&$#cVj0P{Kc=6Tm)(B zYQPR?CE?dIJPLK`xOQ~iiTy6CAYKK#&Ik!@6wg~KzYk!Z}COjA_O_*yh+*Ki?&Y^J%o}`eIl1TgTuD# z;?4&A7~iirN@Qlr##PTSp{J#uBx?QCA!hVsj>1*{$gB_qSQ2Wf_l+&)9v9Q5LGhVn0xy+vK)~SnVf~4;^oVKh^%{+`5TBgHp|Mu$$fS*OApH$wy zbn5mCo=F5Mf?4S8k$|vkcv#IBo%m^yu!`u}kCjq!1HU$_%CY=g$O-PlHB+h{Pc?KIZJXp@O; zn~iPTZj#1#-v963FZcVIIp^%X_QJECv!0a1Oh&|>6IZ^R$tGU6%uv$cdD@Vii||jK zP=MB>SZGK-dU}{NxjZ-g-x<(F?44|^MW#p?A2N;G85dB(`|J>zKYq{E8Tym&(?Xw0 zJl7greL^NF6nWBj+}K`1^27rCBZEWt?tS2AC^g*D3b|stN6gfbLeyZ=P&5f>F_OL@ zu3g}T*4k-}`pJB#BnXIU?p`mIIp?AAL$2R-$lfzJG;D|a!_Wfk`;(fq^uN`?moTqSoRH!o`z9;~ zy9_kPq?CZ!+nm(t*k7PQ;?`d(+-hCbM4JfYDv#Csp{adG%hW)GW?YY$h31}hXom`b zFyHO^QhR<({y}V>&}nd*E9d6^70aFyISY}VrdE9ja;PUIABhq}n3d{mOxZ&01Vg|O zOQDa?fxRWlU-x5}8-}{F&{AXBIZelGU>71)~JU=KB6qmJyD|kF<%dZi`8Qd|pe)g#?XM)l7wCBIKT&312 zU`MD~3)``q`0Qu#IRrmj`lQ8frf3tn9$o6VBSB$U6AW+rx;-XWUb_xO5Az>O%%&z2((e{ujvxm{n@bKE zh$vBmm^DFd$2Dghci7w<)SHdH8pf6)m|bi)s78pb(j=IGhW6DpO4ONk*dDV9{-NA$ z-1O?0(0D(3fo$UnYZ4oM9r7g7c&m1gi3sjlOcVC?Yj&_Xcn9QHu&|d;>+8j}uBXY> zeskl_x-z_wh50Ixbs;p`X)R0AI@9?HeT4T2mHg#3E8{5$(F($ir;BWQas%T1@8J-h z?Oa+7XRaONU=3BTP@ch4oQxb+e>WiY(ckGZx9`6KtQM%J9_VrdcqlLz?CAgbO&ln$m?j!V zD2}QJuJ&aonjaOP-*--_S~E)MjM6!eckVn>_Z-Vi|2wyzNdyFs{zYhwJ3}w~9_2{l z@)y5`6bpY$gv{!A_QpWRSx5)OW zV`4;)Hj`ZJz3rZN*;cJBFEI@BiCl=B+bkuNEXlA;E;7tSO?R^;XU7y3o<3oHsss4y zY3^lL086LehCdT;7ym@FQi~Ry_WhJ-Z4oE*Ne~?~!>lDAMX7{#_!{xEgI5ECq*CX% zw_glxG|X-`fj?E79&<(+S1i*6n#qe|Pt+P(@>`Oi)YZ!c>l&_O9zJmahf*Q`nS7}r zPMXEU)3=de)MzOJT;MAt-E!G=tHr*j<%9U)rxUjLsHTIxe%Z- zzxG%&of}Zw#_dJiU08bk4+^a`L8pzv1J2{@nO@gIGtFXJvf7%FyWD)*NvPuVB7YA& z4h0oZ>t=eSam(>SI{RMe<|i9JBfHg`!6Krw=0%=ttu}pTdpUK*PuL(hD?`P}{y#XK zwWi!|Cy-PA<1A1}i58=3M63Jw04@w%oMuB72Cim4pe18d&in*$#L@~6RZR2c>15Z% z2UM-FROoBbeO&rntMEfX9fr9111`>Qupl5y;SUSYH8I@iSLt;SzD;><>#pz1KaWZx zLMDm6Iu+dn&x_u%U)UZ2o<{cJ&HK@(4{(Armq|O9!?~?ye;{7`M-|WRLc^|?B{dL|K?SJ} zc~TaW2gSyEO-Gc?6?OX5#6rBKU?syP2F;S;1)4od#yD{|EtD!%9Xg!{49s4DzSav9 zPBczeyvi>lMX>-_#~bU4`$mlvjg*B@*9>6wMt5EDo|bNy^T)Kw#gZ+Cj3pVJOscwo zoGr3xZy!496o0ulv(Yzcm9G|?o=e&-2#mwxTN7fmqq zpa7c-XJ_nuQ0q`7%Q{&irqq?mG%%rbH_2E;ijXaaUbOx?n40&$Sd_2Pb5LUsLD{Ou*mzDE0`nvKE3*ZoK>Cnx}nb zbn?y9kO8e56I!9S>w3I#M+^W`hn_&Ds5+C=^6ym{)7Jw8(73wNdVuY4cqj52FNivh z>-w6d!8|7u~TbESFe zrY}Z!o8Rpphw?C`sOfX#eoJMrYAtpoTxoCJV=R%x-fsvJMiwa`(6I|kJ^ar3Y^B=k*IDD4)Bw>@8B#5acj1}L<9A4E!O`9d}#^YVZ8P6U@I&$;JYtF40H#0K>!G^19 zAZ0L~p`U1iMl(vpxiCWq67%q)TTzHOVi;o0oRbT>2X@|MOiPe|vlS=f3GjvRaqzb zbYy~SQ#7|@#{jcPLJ@asD@9>fEh=uarbmE3Cba@Dsetb^+-Om`F~KYN=k8`0ke!S~ zP=6C6w6ji(B16b|@Tl)|H}0VYB{F%Omiv6hSu2pO2S5XMnKM%UNs7&arz|GKE1vyL z7qNl4kAKJN$1za{Ql%o^atmVU{a1yoKjf5^ReKe~oK*YmOs4R=q^NEDjNs#1aTW}+vcj#Uv~VqKQzDvK{4m=QL{!W zAc#AAt1jcR&WA-417&Z+l3fK@f*pH-w*$Om{B2VjxzrmqVm5oy6FkPMcT^M$QHTEJ z$>~NbC6T`(DRc-d7}snGLr>&rD;f!y+>>25lhy7v?DZX?vK2vX2_j|KEfkyw z$kC9NQb=u~j82Rb_xc8@L0v;B{;%SP4VSK`(xMN+tH0i{)Ms3loX`6T zaRT-jgq6gT28C7s(0>Dv(AE}Q2t-4$YSECD(aP^l1s@_-R+Sz9Wl%;)b#_lYFSF1R z5{ZWJ);?-a?`Jr^P;5xk(Zr~>85OJxh|h42nuE-bIxRemeCih!rtsco)jTNEuS=u} zT~tFDK66gYVBwVmcVswI8@YDBK3~lIKQ2JEN7O<9U-lxGoE_8@0I+@2vuEuVZ4TQ} zomR!dSe0$2OL}*HairLJ8g|1_rDX0XeVe}`CA(@A@@L#{KWBcX72GCEesiy=5T>0Am5CwY*qZ6L;BL0P;rH9YfXg2zc}NU%uvckIaw2nXvG8U+`jARiR?2@f_*BR zcL=KoyW*rGC(htbuQh?(AIhOF13d&pPjFQxpDB(z)809sW7(z0DQ8H5Agi~7kox!A zUImtb&9mkJyJ@*&KPSorteokm5ULU$o75vKU+`B*(Cq|O>2(Uy zbImRn9_4>=umy~b@S4W-Qx{4*5~M56u(KZGHcAZF&`s|nXN>dQ9(p#YM4P)(wzMk} z;)d`VQ_7@fyh-gA-X8RL0csArf8~iUnv6KAlT~DyF$KhhnOiwE@tHnZ$w@XCM4Kn~ z?WS0qIY!3yI=qKhLr1z z-^MQI>Fi^HtPo8pmw$JG+tpJqbv0St;!?q}vy0KEvb~eNUcf^Db|pN)5+-c0NDUQ& zU6NfC>)njWs=buc5$9+wNC8XtrDs9FQ z`ByqagnTL{JFgxphIxFXNvX|Vd}T;-QPFHQ->$qGxI-H{JSQJjF!x_cK5;52V^7$A z*0n#I@Br?dBws!FxBPJIR$m?PZ1&KV4#Q)mab$0JA*&b;Msvmr9ZZUVu{FACLO7wU zjAiJ!*?vlPNy?}FzNC=>Z99fTAElbE#L*FXkdJP`ZVBPU@-A!MfZdy(E^c8AdXZ-pX4- zz+|445&JQo13SfE;HQZC#ykiagJ{AsQ67!r(%Uywz!^oD-!=oMr|kgCEN4T(NyxX^ z{JcSO1uxL-UnEwwC;sitN*;3T)ueau1N1Xq6jA$}&donQ#$k-Q@r`cvpTH;>J289NeO}K& z7VnA)w(H$rZ}MU4qssI1<nOk+56aoi3Nb;=2Jvw9!tdEfKHyjy_Go73au>^|CM+^U%y*%*>^uIa(?8t zzO0Wd==(hd#pc2$Te=fPMujv2lzol?j+RG1+|=Y*BeJ9=_0Dh&ao4Q)6-K*w<8;o= z;~}uI>dlv<7N!QPad&$HQ%dJ`%4UjlYlo3FpcHbm$^4RjpI-j!`vZ;sV2WHx#5X`r zU5zz|bKStC4O78`^6(~V<>!i(eI0E>HN8efNG^QogE|l=@p7K+;9tdi7W9#O-xJ{Q zymYF@lD(Wjkvw`LvJ>1~31I6YH{YP`CXBjkx_0$SW2XY-Ok$ijr{?A zN9q9K*4?aEOaMSe9H@J8Azt$M`?L-YAqk%2F1T+7UhivMR~x9+PIO0RL*Z%vB$iEffY(ZECiyyP$p3Weco-mREDOx7F=z- z;Zs>2uvbW%>x|Ybv}%}@#^7)60oFcuuUDDPw^cR2A(RUsC}c4TJ88vdGM`G;d{q%m zz=-L}_c2=BqeFm%A|M$gTc1cgsfIbxEL|Q1vKaX)9bLD-^F%4kzLV`aBlsDA^)bJF z_)*_QeB>EU35PSBR@P|c2N|~N23%ek7zSuoeUUn>pyca5hq-!l#vp9V6SSili$@(h zYbu9ai2_OVI%FgzXJh^=P^tLhnL8#v`cGY)r)0kwfT&_bpxar!tpX^FWt}yy2rX|)9Ngb*yqgx(OQ%@5{=dz!szgj=g~U0uQ5tCG1l=B zF5eyyH^2Zuez!zYarT!g4v;pt&IrwSLSO_rlQvJCNv9mX_vi5|t_4wm@?W07lfvj- zOe(k!RJ?I07mUi)3O&&VqK4PMx0;4`Yh^MAz1c+-?Or=ga73dWAN#yf`^;uA*~v*O z$73B5a?mB&+gaqa^+X|H z;R9)oj4mVIXC)y?N%AZa*isc-C`1m+Sv^t0yo9VUof=2;-;JFYO&UB}5+1&Z*<;t& zz1grWWdGTAZgBgbTI`-ZNw4}XKOU1}Txk>m!}v4kG*>=|Vd=p`Y&Pi8 z!%`|sc54eXAUvks#QfvD0Anp=)O?rEXBTp-S_GHrHB(zu5%ZCO1tLvtEz%u*P5c!jSKC7^&Km}Bi<>m}x4hbp1ZAQCO6oG_tMu8q*oqF%Gw7Gtr227*O>#)-BcT zR8NudH+GtqqwR28%PN~niQVO6n!A{i;Yoj$QMb7|XH){RbOhnq)F7 z_$izVsQ=|Ihx&&y^sUx?UXHdy@Y8#t9qq(zt!je^fK7`_mM{9(b@_z%RcsJ+h|^Ob zlf-#tjxR~tp>O-fQ@4yJk=FuI$=Ysrx|dK4T3@H$?tOG4aII7B%hPh_!ydIqtO=`d>g4@%fVq>07+4#0Ip0ZK^D6Y7ylskag$I=Zm9KT{qa?f z;oz_)sPAcZ-Vh#J{{aI-YBfr@Jd4avT8dW{_Y-W)(K0%(@Egoj-4lb>WbyXsS!mHGIFlu6B@A?`793qLAzU+1JC_BrM_3J@ zN7AFHp^3WLPhBA)yt0hd52^C>Ew($uw$eDvjvgMuIb3Ih{6o|lZ4kmzGX{Vfi@q~n zXh}Q*3gRDERU1h6W4Sy!)jS)0XoI^bhBq9Wo2b%;@Oin{1y$C-4D1Egy`r`Sil79F zt;ioBP8SFKT90k$Tq6%Fbof`Vr#K-kuS*%zYGQ}TS=)gix!i;6@joo;nTvPRiE;nA z4p8justgzND9$Fwk0b+CiC+X)D=j}hcTmmSD(c)Pt#fh=t%pduP)i|NQ=_4+BL$OU zxB<1=>!CMX6lW%F+%L|S$><8N$Kt!P4Ee^OdU(sHZZ^%6xR49BMix{1#B4-P;}wes zlbnpN`06Tj!9Q>C+=zewi`A<3e`#Eo@8M?=M1TTr_I?5iG*Czqq<(R6xA(K))+aB?(xLi>&?$lv&E*aArE`&Mf+X z`sESgtcZ`#G`}R`vN{C6-0_TWXzHPrmfCawjNwgE+2hHXRBzv?HFSZQqmFka`M3_| zABO%ja%$5yTj?=HOXjq*v9Y%+>GBmbX{{$bZsgKH)6jqKl?58j>hbh-bA6a5ca0%c zb&pBqu(Cqu&|j=`{~3Li%hKolZFK2lvxV_y^D&v*(CK(+=|cbj00j%*vpf&;B>$nz`GJ(~+t6EkK_-kf1up z_woDPl5{A~Zi=$YRKW<1QdWSAz1UwF2}~psrpoK@kH6A#51Wx|P_rk6gje8rx)e`v z-#^y)UwUZETt0-SG7u${Wmz?jr~XKZH5$^VuhTCW7fp&H6<2!s^I&F z%ata>yh!RU4N23GyyaE;Klj)eWhhMp%~@z2i*mA=g@3h5$aN}3#Ohr91F}~(RyHUh z!s(B^zlwNV+zlr)(yp@avX2C$S9q%nhyYC$0Y1^W+UnL{#-w!oH?;1UOW%ab>xt~V ziyZ_M8hn)58(QE_#2w#c{;q|NIQT#J2Qa$WbIT|5T!m9vctu}9xHQumKAyAs1c6Mn z7V2%A>kXBDY7ZM-U++F2Aq3VHv_>8Z0ZRfz@M$=>!+(A+JvZ?KHmD#6nCi1MsjjZc zWzoR}x=jfXu87X2@Mx7JM}4cE!wWgjtomLgy8@P&EZpj_`AE zngz0+WkfIl0KsZf{Y~Tczs}N3`=qQ<>Z#e9VOLMYX(*@Jmq|@@OFHZ2=zw4i9$Pan zg|R)3fSZ@^h83(@dG`l=yzq~dBme9vQZ;02KqMAun#?||7SUQDI4Vml_32TTjWmSe3ulY)5HeYSxhh+#i9H*Y%`m1!UOo zlT-{gY}n<$vCRNQ8zBIINNT#22*2Mk4|I%G2xWud!JlYhyYAY?G{fs>zgS}i;J+yF zGNN&G4KB23TaWk{Y4DO;FEe>1C85QaH5kB7-2G=(&apq=%vY^1{kao48bo0|N+{%Y zUib2;9(+vVUMicZ+HRK&_N>AeGLk7N`v<=CA`n>QyP%^FjR46{+hlj@;$zjlRxO}o z05N9v8Lg3})-LSG?|xHz;?E#UhtAHjv<0fRJw88~lp|{Ff-==mOt2%RYU8(vFL{(??hX(a$1353KHhKaI7em~ssYAG>v)!Nd~#BoqyqHFynWPUHhLSj zR9wqnG7$(z(4w9aU~)Pcgod)^+FGJ0`jy;6-z|ki(o@73&@AEJJ*h zI@B6Dz-k`L&Ot+RxN!quYK-OWk0j%5cjAF;s|*&uft{Fak<`i@oP|ka9U5stb=>Bq z6d(bQ6oxQqU(_p`fC`&$QCIW6-_}Y?L$rNYcBC?YflQGOt$@$BO+pfVGO1MN?h7b_ zn)7}4+{mEGj%k0g&S4o}Q$q<}BAiEtJ)AWJJu=MRyFHUwyWWB195S~tS+xKm?`whJ z5HA6&O0X(^8neTFYs9BtX7xt;*MhWb*Fy><`hr)bWz%MzerC9lhG0s(5D9k*wwe56 z;Z@Xfqo;(YpO#8-gSF0cdJ2D|1&S=5JtehwXK{tUy@u0WwJ~}u&s1!uez?LyjKRZ?oB%24bf2`$H>Tj$H&Cp7e_EQPgfG7mPn zym2(V-&ubSeM3|Ugt!&+UD)t7u}39VPdd^zc4TChnrc*r(*JmO`u#ykAp0D&uNZe) zAVOO6`KBCioX>-chh)X)d^2|G*HhXDDtL(i3VV{rk&v#yP{z!?@LE;XGjn*7?o6oHAcdq=VGSaxd~y+#!A4<0~G#xMHj^Z{xlYyW`=B0spEw}c9^IDs^hvpT|8dPQ#g@;kV+m;&j?<8lHWOa_-o!_nN zt$usp8k|$tI?GFqVH55e7w_%<(Z-M~fUI#gR4kPK-;t4fMOtQt@aGTr@Xg`kh&rpV zf5q{^_1Jf-3>Q9`*8eg%!%_zOMlIqibC_Gp6Ckf=2EuEl@@ljh<}_j+7Y77twA<~R zUqw1j1_sGeSXe3w`L=!d^)uu^-_R!WYFCpsdG5&|CB?Tapx_%VyG>ZtBQv-CF7#35 z-q%#2+Gm#P+~ypu(T7a#aPNP=WQuEU_EeP+kQ1Hlp-3Ru*%S^gptP@NwN%ie2LS5m z$-QwA?j-rSBP-*cW|rQ9nbzmp_(+ODs$~xYBRU3dW$J}xYOzx%8FYvlE#l)9|Rp8+Dg0Pdgm4C{F~t~T`mWf zezz=3M)-uozqs6q_}5sg^S};1qFNWhpSBmmqg1{uHogTE^Xh1M8Xm&CK9U;EtqrK7 zokf3#cvB7RUJb0rW!q7fk4*upY_+DYhP_ShXE`9?H)Gcg!Q?eNA)=w5I^@pQ=Ss9_ z2t$G8RtLdPJ`W_^l;;~xcLzhF5tS^!uBQVWfSUc=797`*qqqvF$I#H@#0TNFC_%`qHRljB1yO4)Q$EL8&1 zObDzBK;93-i;11V=ueF z;akF&ygbiPZCqVV-9z@~RfrKTTWSMg>=nm0I?Wd*TRBhMf9RhkD`Y=Q?`4O5SRz{m z0JK|ft4cEfI&gFKN?pY2V%3Lgax=zAtWh$sV}>b&dro4^@fME&s~2rX0v2mkCWa`C zor|KcXmm!(pz8;sJ7@LJg#(Ohh~1SGOn1#$FnQ@!j0IS58QYk#ujhpQS5``2O#H@k zmA@4S;nQ)FfsSK~!!f5ijUA+ibGm&=09``B*|Dibme#)=fk&imb~<-&m1#olH*Jgn z?YlR*seHviRS7sYCB@a<`^2v~WThzN@Jcq*Qswy0L;~YeFZ_lA&O4?;=-fE5k!R&x zN8HXAEoM3gnMd5KQv4w0)MiDKgZIQh0f$sgAu7aoVxTo&4F_RM|T{<8gH0_E5){rTg+S zce`i_wO&)e=x`(Gw}#wi^F@grVf&irqwY%iMJS?I%St1qRIV`YTu&ld#i#yo^#aom zZ~4i0=_$|oB)$@K-!yBv`nl#ZBcgwm^CD6*j88*ZgA;`X&jHNOgiw9HXxvtJUBp3i za}XRA!EX%YC&xYF;(`@t{pP=R$cz9F3W-mQLO*3Yaug`m`D zO@|f!0Lf(zndR4bvTI|V6xh42P~UTfQ`h-)(Gqjkxswkc<_&O+;}qzXt|>dS1q(+`asel7dMNht=L@dT}K z9H(^((2q?qymR6K#3|VyUt6>#B-ukhS=fk|Isz~xLaGD<1Rs|ml6qLKb%NJpa3m=Mr&Js`ARLHBoP@r4wb=QS_jo< z>vDLVLWJ(JeAntX0034!oi=4e2M=Cassc?#owxNePO34-3-&HUb!(+buTC|m>wF6h z3{pYC5e0H}_Cs?;R2K|{Z?F6@%9$diXPX-9`R-5v5B zV0N#`d&sa*bhp~`g8^*i+@AY*?HHYFJ9R~{TnmJ=)*g@pa-!w=><&fD4;vy=Np zX|Bu~wbd#EII1NqD3OVrr^fV06)y!>pUyCeB3_EW_IfLva%g7ryLhNsUphu#a@Kxe zRkhbSv|DS9{>CpXeJ3oea&WQVdpCP(4tUgy=Q%QtUdPMtQgW>+x7RN(c`xN}JA?ysXA?9JQpwDAI?-CnUEdmm!(H0`CFX-W z=5!bbjI$Ea>GAlf37z=}37~$@OgDGgEa@FWq)eYx*jd@gGDTSFp>(fK=CSGN5U4+M zhN!NN(*nI;E6=nTADS9-fIwyhPOCUF^@MW;Hu(u!v=}Jx8~V(van?6(euQueLw``y zy4g2^G+b59`#M%?914HiA4T^UHsA*9a+~L`!K^akg{%gN^8IyLQvXzjaE~zcwyJ8^ ztgt5PAX;aK`iAeb23(l!UJP+<%IwAnfrk{2Z$tl&3m|nw=sjEueB2@*wa=CrRM{kC zhz?7EG?{Vt1h||OVG5~u>%YqV3ON0+Z{MLSZWU~$#J4mtN0I03G$6SM1oEev?x`xt z&5J!C&BBsB2JiQAJxvp604E0r{~2TDJb5vE-7wAHxZn;|S(1_ zQ^w=rEQllRB4737eXICPsFH;}fU<^3kovZVHrWmw%pib}`4S9#?2&ELV>}Qj$k|~n zReyQUS2Ecw!MRjr1w6b2MkG#jN0B7kA8P}bNTcOTa49RRhF?s z=K#4+!5Kwclgez%J;oJVD!?27DDqJz&qvG=sJmQzUdvs7J8%B7zJwrWVAOkVs{t7N zO9y8ylU`{T6bSZ+9Z+Tlj-5ZW_7~t}0KGZj{W;}eBY#KY|CdfSczkFW@&9u^y2%zu zF8*4;FjIn19J3;tAh%pLe5?GVz&uo*+=IYQ*HCAr0h!Hrxar-%6wu&Ax0>4xwzq)A zJZyRYw~I2sW%bXeh_kfd>n3ql2@#7;gdA@ui3O`3i4I@)2!}&nd4#6MW>@%Z*{F1L zm$2{XkCH)Lk;*xB=GO>Ta#qAdG|~b2*Wa_)jSYkI)=~wvmm`<8L?)D~t{`q2&H-rj zbN3y{*XfM5V8X}{g*%+eRh6b48sEmdMw+eGTWR0Am9kZO?PbDj_R|}XAp9I!CB2ZL zMW4t>d9t_F=To|$kk7+az_8bUA)SU_95m~mpsLB@^`}7#*6dh~1a;WI_IHmu=@f8m zg9~?e;@q6oLPu%2p3g<&i7<(zZ<{lWNL+#_MAxF}teHL~$=RzUD&btpo8k@WFBL`WIHN($Q&G%FE%`=?Fs zth@2h>(X{}>1My!=fO2&f(+1;r6l-rl;-^%NMSD`SW;%=>k{LhZEi?BcG)q{Hj#Ui zl&QmoaoJ_U^a;U&eSK7W%l@kFX6x9JrKs7CaqRVi>&Y!Uo42=yi_K@2l@7dX1=fG= zd(YHVgVf~Nxjs9;gx`1hr@9(F_tuoo-{-g;%9_?Lg2WwOkJpspIhlxZHLSdJT3zOe zpiAhcxU+==LOv$*CW)b6s@N`=5e7W@hum#pgA)OP+XI?D78%k+x;CR)7qfG=qYj&# z`f{#!_4{4VrO0PR%>Pd2;e!F7Fb1D5AgO5!=AShAyo@s6w)E9cJ@-p}j@CKvW!ARt ziWvYAA*xct)0KUQ8?B}Y(j!0+APJToN{4;!>|(XG_6;|%|E7t?qSnvmUS31P?MqU74^tDUAs*c>tw_(-^JfYO}$ z+1bu5MluhFx|}pdG%c0P#59i<*Qj|2wmYsVfcde!kSLw7JM%q#heHE zV|W)#H+yvq!cT;CTEMy>0y;Y-E=`_2K=LiM~Tg}f-VQ4pj)cNoK{-mW)rcz=Qp_{f~5 za6yaYc7R3iS^F!+%7GX9{|9QXn6RHn>UkZ^vKnQ}APFlPF$_}dvNGid)lf{R;ll9HSzE8bdZPku-!&>9o z`R`UK7_!7tV>+;DQ?+YQkl4*TI@8OuL3B0qfK*881OfG8PM){JmKM8>zcwe_(4wPv z(o^2??eidVAYjZjZqwCI{;1q?^15lW?rDg`>?1l8GcTG_(JzINC->`RR{b=9PT{jJQ%7~!&<2kSLAASS6 zs%orL)owli54DMw*;TEm7n|UEN^ALEd}A zvKNsJ`46nA*;66MkrNY{10?+3{413~nt5^u53pKOwcsLW)^07e-H17ewf_`QO-exX8GFRh*9kalqabUVHJDKG;E@&yL_wqy8<#CCKbiFUWmFf%%e@aX zZur)&lv||+PV^C--|k2J_sb({px~+*0=li$QA*JAZ@yx>lAz+nW1u6>9HCQmbTX5T z>Qjkxcm9VdfL`zZaxN8r#JE>Cr$kPQn>D|b#jd~5V1-la>d=P8vJXjM#3vn}{sfR> z!UiXh$;u?4ndWm?jh-H9nv7_iUBLr98_=WZFY=f8btQ}#lPYZWSQ-DrL0;`ZmLmPX z$zbQfpJZVpGk81ilNa5t=(#2{Ff~7m^+8~hd*mPyG=t|a-Q5rOd7O|!v1*d(^e7se zKJQU6^ZfVJC|bH$X(dMAqrdRjq4mAp=J)!W96t==m$c4$|*=N7WjYv^K@`K9_uD3 zHdq9pu*VCN$FRoe8EjbrS>M0;8MT{L_uo^GD*oX)xIH#4o^RbVSb2J3$NWr5fq+*y zT%+1^0ss8kO6y4g`Z;<{Wz>)C@RySN7xta}G!4qcKO%UIx?`%B;Bw8Bq`)u$GJ7wH~57+clyh8%FBa71hqAbT%)r{nfBoMn*3M)&$%@Sync5(50lO zqqSw2-~M9fmb>-r>e)9ay$67XqBLFgcW;z6g`Ls7)hbfR1zTxrr zC}k?-;^2Q8P(D2SiE#?<5x?{`--y8g&Hx{xi@jBy6>`)`(GW1A%Okj&{*w3yY&@TU zm6(g-j~*I;7JiBdg5=>D|I6aW+xMVs6q6$+?B-t25BLE9UA|{}B#DG3Wo@vU9wh64 zpEqT+K8h}PujPXS{LrX1GxPCMkceCRU-abfD7PROmuEg4Bw+jLahRU@DgSw=QSYic zUnnzs$GqjfSa{Xl#FoUYqWNBOIJ4#f6`m*^orH z?tS@qDng=*gx_Zh8z-YrL-HNNE|PBTHdw(S&22T4`Z8d~Yi z6(qr8u9=6tZr+^HsG%s9U&rBf*^Gd|iV-UqU*9^C9`zW+HTIX&Y$K4dpoq$W;1PfS z6bf{+O8%6=pYd~3HBI5>vX&>UnxEkTaxjxz<5^Y?7g*S%CN<_1>X5A=E~*gvt@Twu zC#w#bq%GgWzIhAY1i^ySKu=)_n#Y!{x(iY<7!r#?OxIDLKtY=Gap%8|#MUuxv`+#g zBKu64JuGgT_=KV?D%r?$uR8r>|24+XBUn2&WEatHXU;gxR-cWsG}=Nq{VE^MIQZ=D zlLoVnSn1gAl_>5{R8Rd2^}3gBoG#=N^9=xaqlt$Z&n9$79n&1f<$rp_Zr|`%f;<2B z2WxVY$INoa=c?=F(C8Uz`#a{y6!Fu|la8{H{g*Ma$4I_2k`En!FNMb@sWw!Ab9vthf}EE+R`3gV7$Xv_R2{Q-NulLN=l3<1 z+|9jn>kD8ll)CVSuB4XR+N7W_EdL_C(_|uwvGcs?d`oxh+j~ncYX++nDUOr-8#L|n&;&=xcL*L9dIG1GQZon{~*m#GdGQF48uzE1So4P zWL7#{VuAiT<3&Pp|7Z_~wFY;cb34#s(IwQdz4R>-m1kMP>p}5+hw>2X_h9qEO!^G+ zV{zPmD%+|Jp&1scQ7*Z$aBds~SXo3Va!?_NdOSxqp-X$^oK!{;`ski3q8__8s;YVr z5bC2mFXL~fa9&dffriiNM723bD_Y%O5DOh4-+r6`;mcGll}54KoVHPE2=9_v`L!|0 zAgkjkrZehLtV)}?3F!LK?vGH2i7*TGjTr*~pfK-4WM33h{I+-14QQ})? zGNBG+`jJaJCut9ECTpU_MB`FLy3ftkJ1}EnVb9ZU4$eh$df958{J&?ftxzs2%f#6H z%x)F~g~Eo4JL7r44y#kxU?M$J(BbtNa4pZsjD`RSDUg8!v~dO8H)Gq+#orKzwMKp3gjD|wCH-8+{F->ou>k^V^Ft@*ulx=%O$VrpRq$tYiFySii9r_{|9akoxc1%{q_w zsN?7NK}~WPltg!a9zt)1HJ+X!;_7$ufY8|4Oh`?TM8N@w75zx?k(pCOv3bi2nk3`7`)DO< z_~rObvx+6oh;#=cTA+LQ`7p-Xp1Wlub8Y?)VK>5&OI5qz`5fQc z4;Oxs_X}J4BFoGTx|ou~vQwPZ2NmHX?}l3RnUy5R zB95!iIgBSq^Zx(ctXe`l&lu)i5H$Jng?CgxTTHk4EGfk5C^hIcZ^SEs%YtVM@N(t! zSzT?ld_qNn6z}Bdi|S~Ty5r>})SW+Yko!~W?h7ZlyI)O3u>)1P@5AJ1)R&=~t_O0r zcc|%TJJ?HjG?eKe3(-la@A9{ZfK4u5!-Dn+-IQ$lV; zwsAv_RswwHD5uou9sM_67kde{1q;;(?AW5dMFpMrBeGw~jqe}*mJPUoHq-!l-bb+? z!f3@M+Z33o%5AH(8)XkMH=qqaX;fR1M?yk>j;la>i&YJOVcbEs--j}#EQ&8OYkx?Y0*`_NS?f<@uY)g_|bTNfKZNJg^u8h{l} zAM}4{`U-HW@s6))}%MS~Z2cXumVT#E*$xR&BxBsgE5_rLzlwaH{M zv%8tyk^9U&=M0=$TAQZz@9*xtht`3pfiH+L)-*%nNFa_qDQIi+JfGndf(Fyg6KHh@ z47D7GSRgtqv;>j%|2u~p`}q@91_I^0L23#&*P z5+KP?rq<~Y!<_lz?D6N1Walsgh!+ve4n>G~(kX+N4_Q#2rr%&Zm^Go_C5apn3-O?D zEBE1InP5e*9SR_xjGdtlZTX+4kLxT8CL)XU+8;ct=+9!rm0!|C>}-d6=XA&Pjq94> z09XmD3SN0mcejo8ovT{AWrRtX^hWHW+dn@DmHW(QVtzd<4aT}e*qAxsTnNFAk~ozc zV$1=*Ew0DKHBHx8KTD*adv8WuNK}L-3Nbh(9M*SM zb*Od0Wn{)iI6rz)?z3CF&iuX1wvH&pUi%gF0O=G;Cc8l)3x+bwv6$d{bH?|TH0Xhx z-?iQ>zy&*opd2xnx9=Z(^Y6nsngE7=>woK}-UesOFo2(YPHU-Gh8y>Zixs+RFiq)~ z#v5-#Q=~|swI)m?4XP~0DWYZ?1)31A$vJB81q?$w50736hE!*9Nz{qFFB12o_sLQ( zMdw2-Qa6;ng(0A7JZ%^E_Sff9UjCW(<$45x)z-(wZ2sr)e=YsW<9QPVHm2=!UdM~D z2U8f*roGAXu(aXa+}w1Q<3!k$(Kw2!kh5gdd`iMZ$aB(B^K2D0&d1Y#}EB_ z-xUQuw*8Bm9oxTKye4jsHUlqc`^vTxyU3enQ6-9?ps% zF2yqTuKw<1?7p6HKayJRyl)hFda=sQtyDX`qdhRra#^MDUs!XSU6MaG-jSwbzyW0o zyer|16>_SQvC|L0<=>W97xt|c17*YH&h?>ZgJA*kyTRc<_f9uGw@xb|=8kPO+CbxD z()Mg{?RU+|7fvpGY__W@8hGihQM}`qVk&?Rf2)CTeUmj0Pw=k#zFVe zAbPqOLuxU19Q$cu1eCYPJ^Pu}LQ)nQp4WXOD&LYAf~6Sc$D(Ai8Fp;(-~T9nw0lRj z%ujzw*q>Mtf-<}4dTvG&d$!Mra1Mmjoixp^!-s(2@=YR!+P`_J-*eHS1vc0WQh~Sk z5z#ZHP||=Txo z_v=Jn1H;iZ^oC-~%aRJaOMg+_^C3`#ex4|n@-47XKuzpu^}RzUU#lhkBpXs0UbvGC z)HN0>odbNkb85B4nl1T)Bb<9Np6+7ttla4U19?*wAKt@@_A57X9iqvuVv65~InQET zNJXo`%!ewEpKd?OcYDFx{%->}lqyr%;z7C)#j8NyP(&q4Nb`U~wcT?VJ!4^jN(e9t zT&B$CAL6D-i{eq0HBiio*Myj>DLC0+pi(%d84>n`d=U`R|6|hNnDE{ah7iJR*~uf8 zLn0pcuoPi0BiJne%K&}dA&;DmiwGM^5hpnT2-ii1G=LOc>c~?N*CfnGb9EWhc&N^3w{TP%OKcLy++NG2OO7 z4-G*I_{eHn*;}A+*C5m2bLj0S7Nm0KhSnWN>m^AFArxKTYU3p!=75=iV|kjUVr>k> z(qMp0e6JVDZJoLb_!-T78G&O4YQ{zhl%5osEE+XwVrT?4*@-rWC#ZuxMXy}XJx~4X zUnUg$IMLR-Y6!7@91{2k`nPNJ1_}31z(KPAVVVSLI=GF7rURbMIr9{2#WBT$<27x| zDJ0u_Uvs0qUvygFGfcVnvkO@Kt>)WDpY@Ec54AcrGJrveTh5J){k7-tHdXtM7oW{L zR??1!angt-xw@7K_JM&yV~|z;!X{uEp%160+jQ@j(+&K=gae0;ynyR?e=)z(VI)99 z0>ate>4MCz-$BqA2_%gOp5E_FGcCDiSzp`{?D;!<>F*`A1e%H)1DzW`ZW8k2%lW*H zMh#y?!*)7)q2}JQAd8Ry|4hXYf0xQ;dwza)tVTmW46-!b022jo*ZK7M`wMHYlcr^K z3ElGJvB3cV8^E{wM%O00$Z045%$S-r>le3Q-!`!*P+f=f?%4LqFrrEhc)b6 ztd!#q;4sU$MT?hS++jnb#wQ*kO<1Rpn!X%nHujxhlSR|=H_Iv=!d}gDtL0X)3jzbp z_t0zt$AaFRVwdZ8paFozm{@kxw_QJ9SrS|k|7tWq+V^%x^=|auoi1q77t&m@$HZSB z*c#}t_`{}Xy?l!J*QOy9Ot=L=EKis2t{BaOpTj>q@>oksl?8n$2MT&OpmwKCdnXss z``%yQCk}FRPtYLpM^!6E9z?A>ect=@e)4i{?UwVm$mNZWJ4WzxH<#Py80-)v83I>9 z=HSf=#6l=)0$wiD(`7i=F@BWwJtu#GEAm*Jyv~nt#PDwYdk%!cx^j8pR?B&qPWLDi zTgANcJGhbo1Oh)`0myyE8n7Hs|NfkHeq+KA)vQma`0BlvP%YQTUX)ru%N#wgl`il?DI(8L9uREBbEQaK2CwI0c?st z(-@!Ed>yeH1x-Yrk}6j=S|X}6k-tvw`E>O7s!pv`jO@-CpUq6NZ6=!r9c}F-49>%4 z43p5y!y@48fntP%$XWx;a7P9z z_+v&p{;RyyFaVf2Y2bh1xZq3IgeZV=YY!wD1!3W^;AyW=i9I94>IwQHFMb70@C@<2 zf*r=ev{uPt`Y#P;KZk?z5;G(SfObj>r{^#$lEc9M@?VZmz27%TtW}OnAqPfHlwhzmt?^uI? zF#8!Mk6E6UaR5venD;TBIUbcAd?ILU$s`IYR~Tpu)L>2(i#R*w+q{I27&2;@4}#7R zd@Nr0xRBhzA`)d5UlLBuy_LiaHE-Q~~D6;Y)RzVTo9ZAu-nYBb5IEE!+`mIETa zG;^4QT!)==;~#*iG2@KP^_G!o_8@Q`C5KrKm;k=u4CUCZ*Xq^t^)qS`6bB7pe9kpq z3YS@VRz=VZNITz`W! zRWl2Y0u^jB1+;Ar{J^GjM@1)Z2Z=aLMgP7$;x{t zYdOXU#^=yIfzqC#xZp_T)NI30%4{?&v++$p5tJK*Y+)pcV+kcR3N{2F1zTZ8j?V6y_Oc zxTjG44Ph8UEh})oF%oHTCz49-NCav!gijbCJV7*PT#}#M%e<_0yLR{st_3ssHLOH& z%*n0=$9J9jT!^qA$R}=(>qS1X$7{PH3I&a0=tQAqb;$nBjv~Rt^uWwgfS5TY@J=ZB|M~n{oen=U;euJd_)h1q+Sk6 zpkZMlB_Fu$k4_K~rAQ-6NH6hpRM=e>4;B|ws(75?k;6*UgaatRB(&00uo_eVSWF_R z4)`!-N%rUuH!L4vzAXg${V5#V(~X>Jzo9hWCb0}iM8pPAgabGvqv&N!ADmADj~*BL z+25c4<+`NJPUpLCCtLLU`!4dX>@4}XyN+Mr3B&iK+s!GC5?bU`3XR^D-H;^4g%teh zP2MKuo%KSMw^7biy0ThGUt%6JvghUZZ~%!2e6u&J`WV@b#tEbEC;aTCxW7QJkdl{7 zIl)EQrQXF0xsecXD3V9T1Lm03Q(9c|&Txj1^3^NzTdDEl#+IX5Qa+(2j1)*jnui}M z1IqF<_9!7BImE01O5pf|r^5X*WJ z$}mg81g4U73b3@2KNUj{y&X__MhPitq!u>CN1@Ecxd;_ulZ#Cf;S+Dd^y;2|17rzp z3u1V<-Ue?)?+Eq(7KIlH?`?1_1r;aY{lk4fLiGI^MVj7=A*Ek=d-=)p&#p0K(H?!W zUOx}vN%%HWhip4*_+(wBE+=Fq6Vhh_3($-0%~X{gF_nE0<>}PBuLNLRko$I_Cwdy~ z!%cH$=xDj|?eFoAE#T_QiWIraxA!A%o0&VYgQh|f{GaiS*auI%O`temAefZ<+QCfz z;icl=haIs;clP07SM^g}!gk6N0tKHfCNbarO9cr#=51acXD@W!jT(SLDw+}+`_Pm< z4)781Tps#kPvjLJBu4wlT}y)ROY$iM>UNzb844O3aQz&5voVPFXs$xW*Ff@ymq1~0|1Ji!(5BWEO?4!Z#qlwBwPIK4erSryo zG2ey9ni@k{5g%8-U?PjMcsb0GWc(~s}!TA^YCsm9ZnOR z1aPk!r;xzJg|Ip7a#o4!Zv{7zG05Y7*8L1UR3m0pIfesA+tn3=f*d+llUM6r9al$D z>t2J1Z5gbS#Jq>tY5n~6UUgYez?_YwARqaj5ij!FOAox#c-reHGhs06HeoK>D$@Db zF$ggw>=u#TLiS_Hv@(7t(Np)>r&~?^!}yK>AK@|AyF2NAT^KW!sBc1RSF#iLE(N1g zV4g1>|6AbesCKPR6c+9e-9tnTAR!bkw&m;L++RE!{5GzSjf0EzgC0dDVx*mb+Y8#v z*Fo+4n5mT}`i~<%qN7nQ)qv8UzWbwLGUcZA8;1^_bme7howj0`xDQ@cYNFsioBbJ! zUsm((%O*UbuZ0v}tpU=~i1x{hq#kAD@bPYhjP4A-;8qzJYKyML`9^uAy15o=Mp>-^ zOj$(hA6Zb3Zy;1_U8vuUT>5kxZ$a>{OkoB(1`##SkasIx9UT*nT2S32b2@Kuc5$

    d#;*OO}CPxgZ%!TrfdhVcm#Mva)Q@jliWe}jcNZ<|&A|U}YKzPVd!PEn5e@Qg) zRcTx{I&mp51bZ>D=FOqQ*P$RXJ&!8N?$jU$HC?Ux75LFNzbw2ASQ1T3{N5F=KugS8 zCgmoaB85l<)wQk(xwd6@C-L>`iKah4tTIALB*W*t8Cr^YqnPx!->}-^H*UEv1ExsS zSc5hnZL|oMybjl7D^vAB-cMEZaZ@)0cb3?2Y5fa!%+Dh=+rRA3L1!$cDTS3Av|rDq=c|Pz+{x4UcMJii|%l$;G zaW5d83MN&TP5?1VB`J=$K}xPJrgjfkK_7g|o>C@>7ECic zj_{;u|9Ut|@Lalu7?<7@fX`gI!l^`6zGV^fqCehg5Bj_=TrHxyF*fhIlM3`YXO@$$ChhFv5-}>BQ&7gQSdCrGrn-(hVrs zw|l17*!%}%DpOR!mcqv{eW-`w^!qOgn^WpaGL-TD#s4yvA&bPY{uQ`P^j+s8NB7Cz z*s^9rFWiLoa^}xpGSrdKo406C830qR4{{J7jSJWu$zbNC3*-i$fS589uOcBw-)_7N z10sGZMH{zo0@<-XDcRXtekAiV8V0Jcx;_!uzZhy)f9QT-9VrmH&2hF;issIs!U!{Y zAj^O9B(@deUC<~e1`S;*?dvp!LF3h6>d>d7;t!X>EA5P1nazB&@Yz}FcQl))^A{)>?yDM~Wtami-)HpNrC!@06=c?1T6Y@|}euuNLX&6M5@_k-K z?22ZV-NcvX@o*?9I$3FOfsyEZf0A8ubXZtdTZRC6uMr0m8;#)94x>~_MdS~E7T~YM zl8nVI-YY8>z1||rO@T0hf-egcLibRY3oe45>#`Z|EZwB|O`@UJW5XZi($3NOc%%>a z4w^1B8$v_r_L(N!%w}Z%19=!KvdpUR_8|oFYbtK}k@Q`u^JYYdAgj{d zP?pY`v1;*rQ%F@y(A!s-EyybsiMA9Xr`l8n5A5r$3uXFiU{?OX)?jbQH`XZVsi*q@O_+Ys6M~_sJiae9R)wOVQ zZ;iLZ+3B%s$xWjf0GOeCzNEr?UtexQtDTBd)GM53t7{px1U0o8n$=!%aw$P}9|Fid z>0{lhSF*E2Iv@QfJXUR%tf;*R;pLb63+7q@X00c%GJ|I9>_>kOHrxJ=W|W*h&MS=V z)f^CBJk|Y=?39=>nlFE?`C?pIzmL@un)O#{z3TZwe;v`_F6r0$3~Z zFhpWCnhXyGo7~A+c8ZAGUi)FO(#LqF6E}UL>Dl>CNU9j^5@6t)78Xk}&U0DO{&?9t z5SsN^`K#wP&tyA!Vj8sy$LP85$EN<_sGHl&xXEU_wS3JO-9I^d{;eJ{ju#C%J8?+1 zr)^8*`v9bTs^0iV9a?v4iCTosKD}I^AmNXzAmcMXn%SR=6E|{tkaYhj2`=;wVu8IP zvI=X%b&P#`4dary*p4JU>id+>L@CAY5Mh{@aMg zjK#c*N)nO?a{3^vzJfyqmX@N#2!q9oX0iS^=ztr$sN6%A5_K^pSy zK1>3&wzphU6t75*HcpDNMnl!!Qm!?v8#(;XXM0>78IA&BN`C5k=bh6A{3rv~srdv7 zmH-P&Kt;Y^s8+!J$ML(;_#bgpj|fngVz2Q$7y?r9_+`gmj9&~c#Uag2M)lUNGDhP6 z#Q{vynYZ7fHal@Pk3!LlP2R6@{6^80w@kV9LxT-0AJIOOnQ8L9smHW zc9_vZpqpK!E_#TUYcGJGyU9OPYH6DaKyO^9&R|EH56N<9EnJ;ukpcd=di&%ncJDty z#YBzjwGTxcs432Ep+L%SSdHO%7#1{Eb^bbKz5Sd=*`x**)OTcfdy_-{BG)xpH?T@ z_Ro3t+{Ho#r+J#}c$D+!)os0x@5AxO>+JLaHo7%0kGp|q2TKp9XEEXYH?x}=!nP#3 z`Iak3o<4SxNb7I+AyMgWC+#=KrB6#^aOuVK>W0%z1PSd&@$CUbNvEki&Y@CtqawNP zb9g^bHJI?Z;6oOkU+=V#AYDg`BP@mPA^oQZ9$ga@2e|^>CYZ81VZLgX)UA;v2lDPccs?_x?;eT{XKt&rR`QQMN{zlP|Eii$)#d|N)*!v(rZt}B( z!(ZZy>xmfO=2)c779ZCru1j)Nb+0bX2me9u`YWNf7^tFQgpA9jfXNMljE=6iF6!^Q z%jR8btwh}e0#$efiyfFxG}(FRz(2iMlH{GLV2ytwV{%^_kCmrbn3g@wtG!rHJM{jXxuC7p-yapKif`3 za@LxCc-W$E?emPgp~6lz%;jW1K`0%})9iM?!yKjUrtPYt1fQ&?-#J0k=d7Jw$zCo5 z=w4_-4cu66Xn|2@`XLo+pNS)#i!4{H%MZ7zUM^tKWUBCVtv(uae)j-L z*Xz(u>)$tadgbnBPA))=&|(InA#@&sNxo;@+g2xySOxsTkYheYs>E*sEsoY^twlN5 z%&%q#p#$n}Ra#S2=gpo2KuUwPt}%UMs#|T~KS3T}(39jhwN!m>xH@6CoDXz-Rp(PI z8Kay>)b;tY=(*LaEUL`zylX+Nf| zo;S~Ak$tB!KmtH;#R|#h!_LL#D{OaZfdDEqIEUT4K2nl)7?zKV$$P)NIH}X-K$ILG zjl9)vnZo`j_kxtq(VXa&aYvB=?J!;*kv;Zg4(Ee6hBQ-b?)<9Nd9sIcJdaH0UBHLh ztPf$7aD){b$i8_er1)*>5FH8dh00?uL6Ng` z?`znLijNFH6g4?iE(|X_D?K8VA|TjOcEtzs8s$U00$f*kLZXRbD}ia60IsIU4MiP-V zl}zj1lv;7mJZR(kQac+T^?X*hp?EPiMi_P&hY;dPAs`T!eJ)j~jtZ85P%U#Z9M{}z z@(CWe@6Yb(hDQb6T^6E(T_z)@h&AIHE`}DZ$o*{_p{EtYkP4bgq^uH)^@oO%Fd|lv zFloVeIw}iXf+6LDK-v2hSQMK?(&3MvxP0)w*}RBj-7q6Z$5z6$-f4u<(!s@vOc8x| zcFKvw11Hn&69L#=D9|{7M&oDF1Kx_M2)onLP^AM6gkUTmMEQ*!NV{-94-(Jk_G(UTMaq6bv3G>S58$9J)l9QtygjwtMo^;+9SI^{q z;~+ea)Jmifh!c80Qm`7fL?5787r<5ZIf{ROr8=R!e~f&0F{XWrj;}cVYI3&2J++cn zF?-|&Wn33p>q-pIUUzPzX2gTsJsllTj*UjL2T(ValzUUg&WD5#@oW@b-NYOiQYEa#{z zQnpPRY<-n2){3lzacBP&M&D|EmQhR9_LWlM6))FDflK0rt!HDymtgGhGl1; zLp~0WxRA$Ps9hqZ8WvEjFx6_HJ!DKVG#3+JOM@$s7X1gm)ii>*s`OoKKAnIe?}qrG z!c+~@o_os7{O|j(C_7HbNXz$fIajSjSl!k?-58YU{xp^cKd4^vkk{QXQ?8@RrHwYWUsU`=LNuu zqzR<^-}E8*z-P0-@eCtkqcl|C3i@$pl!uRD`6pgXi(CbcbVDt?X77SOnmSz^)g90&Uw9^}T z`5O`ZS@v*sr4W{o{AOl^H@WH|K!iHL@IEjer5>jy7^$9#G8#R!Hu!{bEM}8RG1h8X z$(8^u?w4PE{3jG0A;v#HcCa84uT-K3>tjOY2`~Fean`RswNLn@hoscKq--)RB4UL= zMHL`ooJepHreP7T4D$~UsWUZxL!jaPp<-H?D^VePk1w?HsXF>vRfEATQz$-@6~6KQ zyG@dkzagGh_-Oi5)N=i2D3%PG`nlpO6xgq%>yNPb$aQaW%SUu!lnjDGQAQ3v6D4aB!GlU~e&K@T1&gsc`P zvPT}0jb{{Lg@9H8q6+J}FG#x@(NDUvoV^av27cT%^Tac{oTIr zdB5|Ydv?#=+1)vdc`&mx&#%>rNStT5XesG>pG{z*NrXLGc^w$fQuMQ102zNZqCRCy zX$)Z&7ga+}yfhIhWY;-TZ+OHi?Prx-%-%y}byJ~4R32oDA|b6X>oJ}-!u2Td*e2Z9 zB#)NWOnezT=GCnylT}oZQl7GU>GC*Cd$vK3(TONM*P`}ORsRKOp~U|3331D)Z ztpET@(&7qYRU(FgO0p1;aQ`wui3BjPwe5!vYFGSQus}I(_Kv1Zwq~Z5MogBrMiyq= zEQ~+xEPg2|NFu`F{W}d&T1rd>003(NE%q?rpq%DJX^=AwfHIbq6a#$z`{i^NCxUWd ze@bbC_8|5DTfma&knsOEiQhfrOwYqmZT|jaG80x>h{6cHq9;fACk?4q{}w9-tP+R6 z1_K-#Wa9z@wc6=yDzH%NM{dJ=D+WCdt$H~Fi=-pFWwMJNgI;2LfiZxbCc+? zlgqxzl#<+(^3tbqd&0-<+vECUr_)sD<992kf!z}Re)Xi(`OVnp7jd>gbl4d5 z(%KM*sG6l~lg&M?XR-dn@VH^WeRWf$+TPyV^5UlW=Jc}pGfY-NmlaQsv6mz) zT}vI7pYbc7c1tJrk7T3cjk`+%Rs8G?*n$s0*(}73zIhi|K1_chu>|b!Jl#bhlu$S) z49r>*R=RB(#A6=bRuT#}wsN;dzrP4jIELc!ESL-SEHDwI=*$3dqaUbR$~Y%_sr7l( z<2Q_S2+VX=0ToBv!pShS;}z6!^}TR(<1Ypp7#uP53K|kd145yXjOoZ-GdX2SEHmoN+wBIeoh>PoAJTa+8{2eW{NdoMCFe7+_9M<2LkO|^)| zep|~p142eO5k@&=CU&e!ew6^qzz@5TX1Rl+&_t4qa9|2rAdEkX6=)s=RdZHCLuQue3!&;^94jRq?m_Qo0@e8tS-E3b;rZGRra z#(F3@xA84N(R^$Lzpj0{=|TA;vOL- zVOQiK-R0E3Rf1W3g?6*S4j)z6%SnChb&uY6k&?0o2Cpt^P1|)NVZy{{kTCdwI#^sO z&sb*W^bfW(5qmiPuhxQ~d85LW5#ws_`L~e;C~*=Xcs)Ysp6GxO32*HQLLoB{fSWA} zg!RYN$eAsaaRHR~Q|&q_Nd%6DvN|d$t7)izip+@ISplqqTi&77voLfhmqz(vg10z{S5L!ibHF ziR?-V(~II5k~E-5=UI_r(Yny8&>D|KMu3wtgJvURm=ClB*HpOBqG zoypW@@q=iA8r)2@n9Vh9m`k8PC>OO_p)5iHjTX6V0xW4A0}xTxCPQkLw525vFApM_ zmzKbS5tkg1k3=Y>Sy5J${eok2QVOM&iBo@oD=Vxk(ir8HMpV}fG8rxxSGT8wgT_Fj zl_Ac742%#&L4XYU@b6Fx1U-1A9#8B_$w)Q<Z0jaOoVlMjo(VqWFpbASuop* zT%_1Z&`UVUN|X1%wg7UH+`UD8`-@-{Z6#{8F-@QHs3ePbiY*i#oMRQ$VjSW==J19~ zN)~b|kzM}tM5ZLk85yyoNOJ4v4WYnI#O z))?dBt@4|TaQCKx4^To0h7&-ZB(~HjDbkZ*>m{({0@G9A)aIk^qSh_Y-X{&mu0sw< zVZw@m!Upc*GA;}Vi=98?Ul91D5^P#cTEX{axd@rZ7dG9Kp~;v`P{D6r4wjEw2f>r- zmV+~g&EaRvP%Z6^pWL{k@U&zx*L6iB$nR`K2rQ-YZ&3i^?WUb3R%^xgs_H{? zgS|F6tju9|GSQSqYOtawrDveFSLoghh$lmfmpygPhyX)NfI#~p zG)<&-^7fb4FK28;caJ z$o_04XFR`fC9SwQYPZJyC?;9@AD*yM*19P!ZUipQpZxdJx4#CSdASA)Wkorp>~W>l zg-h?j40oxu0t5gS#wuzXUwI6z-J^P#8en|4+J98ADd*D;NMkMb#)H~o%c$-nwEqcS|- z;@b&Y^n{$WWWmgH{9Q>~5e!fw`WKjR74-HdD5YNE9K|BI^`!Efap3ZOxhkqdhY(^>@a#`N z19Oi$)zlet=L)lu8v|;Jq(n5=8lHHqPj)>QCQ7aR%lg6mc>xP54pL#id4BA=Mbkv* z+w7{lTL(iT)5-{`m=bI0Vpo*HFP*-*dI>E_J$;#vCjv7U%8h%1@mWTck3EtU4gGd+ zWeppp+~?ea^W8EE3okrmAhI-30gbNiVZ*@Da5yQ# z`0@iqb8#4B{~kCY|K2iNH8ZW8qNazdcoQqs&OH~7`)obnU!D%1|9IL;PIuMCFe=y*3>=NH5NZt=Tq%(g*qW#3LcQWd)@v`@ z+}AX?t$j`XYHz3gq)fK=p%_**aTOy-Fu@#V8aZJl4ZX^|U<7bm)-%_8=+h}EgbwXo zlz<*hH~p1*S^p%%oQtCi`))qRm+UiFqvlA2_TidkD_7r^olbc%VEtCItO9(6_S4^I zu2^0kvJQNlcJYE{re`@rpfdXO>uTct>0XG)`S7`ZLF{7 zZOD2Z7{SKJw(e^C``PSQ*TH~^%g)c^lyUEil2w9pq$x#&%^acIxuDf=jW*@%Y0RGh{3;&@uZ?J6gj9xZgVM_ zFZZ?d+ZW_NE6tMnwnWire`n2_fYy_`I`1;}%x z_+0&hGv26^@($1BEHB~lPVZ3?aR(JJF5FO4l+`+%<4H!IX0ycWOQ_i61Ro=;SOmFG zl2$3qw0~ACbiMB65d8Ol!$a?XkG2v|swj&6EB>Q|(M3K4h91M%I6+PxE?&N*Nt&lY z6Obwd^n4ykgw6?l?aL8 zj*zdzcIeUbcZHqp&O zHqe`(I!1CA{e@+%&L%N@^ap*>N_ah*&}2rdbh^&XCE>zT$+{o6XL>DMy+PW_v+{3`8d zARsK~#$%D?cs$m-6=~ehU%JM>-=3dnx@8#XIBsiRz;8aCbe>KgmtfXjMjK7O$9^0Z zN!xz%K5vvC@Tm;m^*p-9zF2#@`4(dhzp~nL@%m{ydUBgMr)X?$__=CQUH0)FQU2--3_F<@bPtR% zz(NwxOB`c%4~s^;6=9ZJ|DlFA3u-CuoIYTGw8;Ny1P8>}=qj_7l;qsHF>QLxZKN_? zWcco`9{DzUU5war_u0WiV)A@VLI3ubcr_SgZ_+8ErzOQ%x-?c~R{-4uDlfhEVTWX}?JZXpQAAVwW`apQ~j6}HJ&cadV3@xUpI|_S2Sz2nWSmwb;+)!O5}~j)z_R*F+IrM#9Z2VS+Y&%qnf`J5f0$k-lc#R>1xaw}k_IMy@xqC5qxbyp%99r%EY?_!F zeDF0Hk;&%XaF0}Dw z5wVT9Az3w>5@NbF@qKRnm67l9&A=e4Y|1QUPBWV2Z&qT;B4bI3A|m(GF~0rg%}vyp z7uwIm4hw)yl81Trn+buD@z&DEoY&O*ITex3s^(99s%7zdMf{%-U-?v=iWgiEeKL-I zm_1uRyM1qW7{Py)#M;Yd6#VWOA&&y)y%ou^frOp0X!n>-7pu?ybRXL?JcxF!rl%xLSNcQ`lqw-yDLVc`GUq1(r%5jnM{D6D zYMZHHj4rc;!sAe-Mkax*-UngqWYP)5YQOrkQuu)zKtK_S?29gO_fr>Nj>H==3ag9) zW|1)$&22pXk3cB`&)+hsR_%UIAD5M zFK$8t7nj5f9AF%%MmazD>{je+;^(4kYkQt|sDG4};x?doI|d%Wq_68fS<7#=I%-B* zHvyc24A#TRA`o7r7A2x%7MdT^CwN-zX7DO#8GG(F-1Jg=<%cc{bn&Gj57`j&54U>g ze19m(dsWbhOnO~if4p_FVDfyvZO=?Mulz8d&-QCRD)mF~*vhi|rm26s*RJ^BdFWqn z`WD;t`B9AQ@+bZA^yc>Sy}#8A`_SH_<1C7wg2*o2{qQ$@!{Jn5Lobl-J4@-0XNr{Z zE~7~ww`g+k4_?==(pRH!%y^Q#jfW&%kd}k8z+2+4a_p5fyZ^(mdn^y;*R?xMEj8k z+#@`ueg39XuZs2e-GMm)LavhuT>G~QMM>?}8$mq-q@1IW)|9>9avtw1<!6=a8jN&LOtX!lZ z{Au*Hp++N2-z!$g^e|Hzqo`^VqNPnJDIR$#Wa#!F!Ey^biw3`OY{f2yGEwJXi%~f0 z3nc_%Dmi|YEWgQpjfMH2B{23ci3pb!+u&syaO%(T4>GerRWPB+C|Qa)5=iv$g7^5s zgA!&`Xbv-F060R;;IDC&{9uAV@FY2voR*0*Me^p!R*WQQ!!Pseu@aFM)|(t;Y_c-( zpky>w1FI{ME|)v<@bG%N;prtWM*BL_YP(`8g72s#0cF-y+iY)7wgkXmk|0hO@t>#( zu8S=3vfJneeAm`(?cAw{-gsg1r>j5z;RHvXPmAI&Poe<{K~6DgBRdq+bG3FBTAPx0 z!)&71Kw$E4dh za(mqkO~o;n$SK1c|7h!5EBB!UTxdOgq^xduuDsh{R=`6R%($~t-BN6~ zH_h!%Ut4xD+RrGKiyM6o`dA)$?*#`ozZkF3!$EneWKA$@~g7$5vRUK1@6K`F+ z6V*xP_IDat6MYy5ikf^*>|Br6ns$7tZp>BgXN8+?BfVK1PRV8U%qZHfa%n)C`o12? z(9Xt7>g;)8B)`y&$D2QI7j;8&+3wcIO%BL=Tjg$__ty_(#RTtg>yoTLPcpmDfE=e* zIfspj{>V;NzJ`O^5O81umq1n5r-Gx`BtjzZyELL6MZe#;hAw(b@wQCvO|Fj7d_ns; zIvjuNGPI4wv*T5u?OqJdDCMOiATXDNXKG>ObRl0{R#m<9oBFhYnAn^Oxq zRpz>#?I=jG0=b7@?zn>q3=&XsatQVlN#zqyAdzKNi%@1qr31B>&a`p!-leI&U}`Yr z*shW^rxPrd$S!bb&vV=apN-q-O8iUhP3HwmV!*0H4-#FW1#^g-o02 zqK;o|kjsE{L;PA|7(<+S#J)$sPZjg8C%zGvuszbLQF4D_n9Z0W6AfWPAW@X4`^<|U zT5-dyMavO-B=9MYr!4IC2J;p_ow$E|3cSwR>Q!k3%E-HHJ+-aV2X3? zxz#Rfm4ZPya^&S{?_h*D1@SDWtn(Lf0lYcvRl5zYF0NizHoZ4T zXJWCluj`d>Q#!czE|g#TonALgY%jYp_qx0U48HAYiWk$q9Y9xqIA3wt9$i6wvZ&xh zj3Nt%fKlY{Qn+oZT|a6Hrt@8UFQ>NYzunGNcUehyyH)YD=l2q*X&F(&xplhVF;B%I zW(&NJe_nj<`q}Y);dc2TBU1axG{{3{Pj~V|z;cm3=XJ=Ev*zcU*??*JLpdRmS{RfYvtgPt#R+KkC!hVZtCAIOsqE zHHr;&O94(E&=`+{2aqjQ!K#@GhX$-m2Ar!4lf)u*Xy)p-L zo>N5ic1SuDu>!`p;JhE@fq`uYFbSu0zf!efNO}N)5k-1|Vh1DTV;Ub%B8M@0(7^3( zK!Xv98XAJUx9qIVYLl&oxkfst?MkDyMFv4EyZ4bi6h^5NL>&AjGe=45fhHvc?lZq+U{s@eX- z(T0F1!)o%piO?lypwZN^w+^&v_Dbccw1-Er9j%w`?Mp1DMaFiA4e>%}m&f~1`eO63 z-$aRUQu)U7&XtR1<2nVDf%h?!jXE8FR%}_TWOEf2i|ELO<)NN^N|MLwL-+lS6NUuU zXTYMq?!~?nQHOaPqRs2s`xK}5+j1yp=SyZr7p6#QHXYJSlR?8MLgqDuZMB47Qm3Szp};_RFKznmU~^{n4q z?6XJU$VzHNQuQVsmi`KdzV8va@QhSZMz_W43rs2WQ_4u(e!Q`iL@KHnm0h`jyEN~JlLB+L?+fH zMH^g>tiMi#+P#PJ@E$TxcgYrK>8<*99ZcAFtvGWZRwyjHhP0lvi`t$x*?l_BaT(Z+ zo*gVTzwBpXaJTq4xzsqVsieCmSX@;lgXq;<9D0b zcB|4;<;Y%Gyumm~4(r87^^v6J`sd=!S>sg%jZkm0wrui?ODt@tmzLIYUpQvTu zqS{2Sh(y*&9*88?jjH}_o(cB5gdxBBF5RzBo^j^A41;Y8%6;@n16D|4XU2`**ALjFlM8t~&qwysW`fc>X|3(z>3OMbsK2^7BgUbnWDH0>6_OS@p zgYoOQhCG~&6vLMvXWqxkE?bwE*(7xII@Pkxs3W@e@XJtzI!m4}CcYJwaBc-cr+nus zXz$XL+%&S)+AFDAVL2!YzE4v6az~1gSUWh62Z&mo?;~fHnExCamlW`N3rdsLMBqb& zLIv7Y92w~x0Q?P=U?G#*gr+Z%7hWJZTmnvX{N(j=iWUs?uuIC}fnNe$0t}Uuqsk}y zP!B72O3IH=7=mzc!@jCRoRqWpn`~Icks~B_I~ezmaVwaewA0i_2>&*s5U0DoAMUwt zP=h?5uNEH*RCCc)Wfu(?gfGGGnGY5@+Pyq_-*QwLWHu}RP=g48v4z6cK@fI+z}1sP zxbRYOP1Z-iJ;~7&GcdJO!Wco}Q5pTiV40x`iyV7T*QJkJRa5q4IM-y~wT^Ao=3`JI z#`Cyo?J~mK)aYVEWsxG3W+rS)Dcl}w_7BcN*1m3z{u|WYNK%a18-_GDAcfigly-GWERkXEOl zK0zT{y__aSrCsEOX9$-MLm_2wFmYw)R8Z$Yboj^MfN8(yU^v0D!){VQ&FK8t_Zgm0 z4V3xpj<0P|2F7QxLOvq6L=KR~b7t$kTyQ4_}5iozylGyhPo3qG6`fY3c1vh zP0g>IUIL|IEYtSrH<6Mt)x2?ZdS?ec#%D#~-JX)XfmD*L$EQDKAg!+<3ow02>Hbv{OjEVN;Ya`_O_BR+bhYy9wEJ7s8Qrj4kTcnRYIuhsXR zZ41jHm$2Hc;fwgXr{>iOaisJ`gwGHrDrA^I`}_p3 z(L}aLDq6cTeYTCLAk|oQPt2h(?hOnShGF2g7@mJWIl~DP2}V;3$0_i~4A04X3OZ>L zNA)K*n!}i!4vM|k5@qV1ObwkW`dS7p;|h13BoJV#hNhmvPs>v`GlYzy<{yU+7cDfu z96JpRL&Jj$1FHOps?b!rP0i)1`)dbr9&m!pDU&o~Tq~@i-p#JmQRQIOjKDx%os^ST zg9bzUmlzuSuaMHr2Ru|zMa_XIbwL%m;R!2gR0lW4kKa^$w^G?c1<*hPc9Ox3oR$KV zARlc5aYEs9ZmF{Smy9OjJc`@(N@(PEU*Afw_}=VR>EobA%p$Ir)#x=6H& z77)_)g^%yjTg~Y1%)HvdktUhputimuhMFj zq!k)!sJV%r6f^_bQiJex%j);~$2rs2{)`4n8O?GSBxG@`K_Oqa=!lk9)Smc=9uQe< z$k?(igyG$g5l>*3!4asm|LR>))x=k?idGNo;tNlO9k+O+ZjN3r;%G7-WsWIV_X>5T z>67xKj<2SX^s{VC;W>-61ZDy65!wz)C{=!`>|-BsA$n6?p4fRsrQzkg7O}si0ngKQ zGDYTpZFQm8heG~p0^o@nTP?g`8!$-B8;j=E>E|k`RhHgKDEYV^LFtOl=fTUX6ay)w z*^zMl`lD34b)X@L*p-rS^7`4C=F|1~=cQ=55A-r8c;58+Ow7hR@^?b7eLLMwMgNF1 z-6@PY1OV~X#pz8OfmZnnPyT9;;Eq?7shGATuVlf@c33RI=qy^pV4X9ul~odD@%L#~ za-z8_R>39}o;ZTXZud3~C80m>vG7w!#P?dmuG2uh2nC9D!Ak~Vtgt~e_B%t-}d(j zUn-~wP{ePs;R(Dw)|}+Z|Da6^p!O0VTSsTV^6WJI`43|3E@Zo(cs{8(g53Q1Uje!5 zL5O47QKBHeB8a7h0&ZQ-#}Pd{OZIOc37q4H1d*p|2EWF?orVf=O<-JW5|*UyV|LvK z#uKVv<)3y{aL-Z|fL?bG+`qg}v3XuUd*_zM6>+RwZC$YuX&h51a5kwm-x;QfJIw6h zhB_6iW!P)&b!SjG=KB}D#YI7&mq(5=nVESUeiu~#Bfdmiy43eh>_-Yb4#6^o)x+2m zeow20?{<&CF2eaV1R6)Lrsq2u1-%A=)VxOeMJCcb@l&5cp{YBVT(2>_uie1%tgdDj zWcG=_1dd%;;=j$6=zLBk@A0nJ5|Hox#pebGkM5PZTeh<=?N*lMQn^S#7s{yJ!g>89 z(VD@Q+RS*m?3|SPT0X=FD{*hD+kzD`P&nRkm6q|v`j4i`hDSzy{6=P8no6~cH>DM1RqE4e^ey|Kz zEg854*bAL6y|i05n{T3RzGXU^o*&OXFXk83rCjqb;;MwI8erC8X!3e@E6#Z_KCiJC z@<5jEwJW`9E~iT(D(=SE_ancG6$JUpmZ#B~P7WW@GW>K+{z^+t=ZW1G-lklNLSeSd8#hVZJvLnE}wG*kJ_jA3{O)1Nf%7CNB0ndow#c;-hAz*>^^*vLwcb zNxxwOn{m-I=;eUUsr~g)DPO^bX+<4E>b~Idh>qz(Rt%Wm-9C=Lt}#$}TJW^tK^D-t z+LTYKPz}9vqzS&tp`5E;l8b2L4_v*{l z+Q;|(I>kw*uC$WJlhGG1Y5;Ndboto0F4dzLx>RSEUCUVGivpGZ2lggCQ3-BO8ka8f zbdhK*p_jMYl%B)m8s=y7UH%+2CWxe9H&4yL2wBs{I#_vQiK@qd@b6CE9L*0#Edg;{ zOte-IspZnN#lj3Fj*aj_`bI2l)vof8%rlK?%esG{4Rs1hk~&Ux^h!78yRHBdlebpt zqf8c6I+|ts`9%ppjiXtus2#n5qn%dz{3l zAu42{W-9X>l)*}=N@U=v%t$Rih*qQ1(D@D%^<5KF!RxPELtaaQ}F_p`y!2tRe!s$3PklW*Qj!B{ce3IN9;&nT~ghJzwwMF zG-E3Wt#ma;Fo&ZpY*c1MxP9~0~BSp=2h zr~5qxbzP)g%PXmnXDHIAE>7;cK3sB%vjLEBc_6j!7bKIe1Rf_>E@Jr|Z0B@HoXJT! z06nj9PUG}jS+5sAM8@Q3gE$nM!mlJ@B?zEFrpj)LbemiIXkVz&bJF2R!P*W2b|yM z>4h4zt5jSNFON22_OBBODk}r@w=0@FdUEk5#*-Im=zK*0AmK5OB|>S&yH3j^p$uOK zzb;3s#v9ouIuxdg$g*$+Gq1cF2Y$!)ESjsk?W1e*`KUB0Rs)pNl~b<8e=7tBcQ=JLpqfcx5IY(me3&%Ig~tJVo{< zpi6nMaK7*_tT*sj@*o_&bW_lK3@gmK^}PRbwPTST^^MEo*!yvCyw}O`%BTY9u)W$0 z2e>($bm)7H5a>ifx5!?E7xH)>`jQA`d;7Z@oHEPFL8Wj&d=j@dy?0Tl?GFRMKGo~* z${VR$z^?l#=C{w?5T||@pM^=hlQo~}+wqJvz4UBPB*K^R7Pq&tT2Bcskritt!>Y=3Z}$4p zLFyFxadOZbvA=kTw*PUbm>$z~x!cpowFyvLbJu4?jm}hYyt@Otb}r38(#uIbLB_M^ zo=k%RSTl`NoVau<{ASt5<8F1wW8O`U45zj~V>e8DT_nS^%7u)VQ^i4P|I%Tf{QGyu zv8|0df~|{qFGB`~?`v2qU_p=3WGmZ&&_4v@_su${hmPJDtx1ATM z-{E9qPfs?YbwosPTn2FUP_X_7y8rWIEJqbDD}>fJHi>y^nm4tA1?0o=OD;sO2M%?T zbfvRoBAKC|Ddk?-4-TsQZ#&tmwmkkH#g8_pjxLvM+@<4ShY=AsJcVBY!*t$1-v9s} z3tl}&go{N)A&q8V#+35zTRFh41=HEAZ_M|<+Zjr0=so_|-(4oxc*c+cK2Qd1lepU3 z57=vaj`O?#Zbn_r6CHi9oLAgQ7DnzDm&D9XmU^r8XQyOMfJewc@umBGJxhHX6c0)3 z%D1*7TwZflTG`R?*@uhVSM{`GDG3sn={o^knEXQKQ4 z$DN>%u=aij@{GHCT47>e6zz|S>rnxtXGTp^AJAN9)IkMod zLv^9%KbUJElCh6RDqIZiwj_ZC}M%Z%s+nHJXz_mFV=x|><`SX>j^Xt^NY$E5kagMX|Pj4MBL)*t*X1BO>{wz2G+DCUN zZbj{zY{Yb0R|RU{t1Uls`syS7y{t0;U~{Jx?$VJ!jWKOT`a7Iz0D0O-T zSikvaq}@lFOS#D*#|ZB7KL$1nG$21}SJBQAA%KQYujF5tM=#+aX#r}kgYvOs=6v^} za9Ge*4<*GNxiba%oo1ixv_7X`$?SAAF}K;9v*%L7^cG_rj9=dl^`C9_>y|fIAA95{ z%N#Zj6dteSiY+`ZlDCr*T{l>Y&ngDJ*5+Gh&lNy?Ng<*83x9$NgS+&Abcx&Xk6X$8 z$s?6xS8QAEr^x%dqBr3kuz6?$2^%(|MWKp<#Zh(Oz86875!5+ zjd55o*G9uMP}1my;z{O`Q;|1qYl8DWj$Q<7N**(Wj}X~nl2)tROE)}rhn*p?=Da_8 zJt(-a&flb85uNvYm%q4G3Ea=LM@}`UXTC&kZm`rT&rL`;%3TCaLxPXCuV1<#rvndD z&?EUe2{uL%yPwWQdfIPKTg^7Ehy46wLz1CJFhv~K$<18Pw6Euj{q%28aeNdmpW27M zwws9wj`ewr_MW@yDi&kR+UxOkv`!`Iu>eU->3pcS~Z`JF_@98Z#ASKdZ1yr-pS9^Jdh6nIH^)#rf zew=*iD9;vj^mSqwF`fV`d@F6!MxSVy|7Ot>9)IHTfG_Ay!c~o4v)*(YkV z`%io2kd&{wKR(%M18TeuDWlHPAvRZK7wpnFLc%>`vsU)LjG{IXqlpN)MF>0Adel$s zyJPXOJD>NrSK)!;-9lXIjE~Q68Z^E|Y%+Xwv_|}chMopBSAeDyXbAH2Kp*+WpKcU? zPKU`1`itz=9=1sf4pNM0CjEaJTBu$ zX86n(-%U)%HuFGg6UDk~?7#M*YCh=;5`gDRTCMN&bS`G|_{X4|UgAX^6>~gd0$K=G z5#iJlkng#AsJhkIV^jXqSK|F#x7)N-vXifdi>_YJ8BGC7dcdvqyR=!B+MB8MhIc9z zU6J$(b0KXauWeSEEsi{V*L`G_$Cf?F6akmd)AS3@FLOi>fUD$v{ny?-gBbovG~*^qKJsq{8ES6@RtfZJ z>f`1Ud^F^%p$icFA5X{ELO!QMh#5b}ROv*K&g$x{1!+BO6mb1<6(`a(x~|SBDP$&O zt9c)qMA>u$(|rH7f()%VcEe)GN%K(W?du20?0HW<`u2@#*eAj zddGORBK*^}a{Aiyt``K&Ubc@cigK=;F7YP`(k?fltlxNOo4sGwM&%=VJ&O1F-bzlB z1BsfqWcaOx8$l0T$CZf>b^UgA`JDGLVew-K%Zp^m&p9urN5Hb!LamtW{2k&pM ziOlu!?Lyp2Ss@L3;0yCAqe=aMxKZ<8t>itwa!;e|1HJ*=(_}h;p&mzlU|jlYM1Z9>n_`8cosr;R-}^*#ia0xklM2z$Ccha;xuC85Ej-Y&N%UnNp{4#Kt&%7Ng9cg3Up5v58806mmzRn( z-6)kwJr{W-&l=3~Yagj79!UP493G6qNfL~bMn=*@87yCd6f%q9$e@ge*e5@`P2a%! zr*IR^CNMZU80Ez@=DV7-rA2;Js97UO=z6b%ggDdV+OdRDZr%vm<(F(tWuy0nhmgmt zQhAwU_b2%h(!j)O;En2G)7PQi$3bvzll0|M(ZtJVNVi!A_!G7ctACr+Qn z&KPs~&1r;Q+i}+bCzU5hv#nwgK2yQ`zXyT^Nis|sJYi0zm;YOJ2y3H`bS5_!=!n__9KfY-z19Yf7OnRluExCWgTAv9BM~#j^>au2A4+|)3*T)5} zV9H=xHiuDF8hsth^dRSe1&zP!@eNBf5_R{^28jhaCvv`;{_vPlY_r2DHaWzDI5b3zN7!{zBTiK#yL8j^p`v#ZEu|5yoEqL zXx8c>Ip}Vq0wD)JHCglc;rJh$k&S zYY$7Vtz5;}9JX2ibI0&M)!{GSdos{W2qg1+jF%d_+iy=K&|6eCP-~!iQ2HgXtttaX z4BS8Osuu6F77z5DwI+lvMTVON;z|SgR_kJ%tQ0qg+Pk3b;)l!nj7eh!HF$6tS!3kp zX4}(y<)!b3o~-7S81o2-29f;jkAzC%-KtMlK2yi_NH1n~$JHR!d?VO5|2~cn4g;Sl z1gPS`%$xqp@n6u#9DT=PP95N-#5rH!M|#OE4hZ;E-t`AG0FW42`Gkx`)Q08?i0R)W z8h!^)CV`9~H<(m>CJ!JG4tCD1zQ((c1%j|iQ*TT}={jxq10>5VWm@(T7*ZneAe+jl~ z@Ojs6R=eGK^cw#%Wjm|WV|rv#O_ zjkeJBpAI%zc4k*)K*iZtZ3ig2r!~I8;G4aR9n(2s-xKGB`TfM5w%+6;J-PHA#?Q<< z+!LJq%EZLuPF*glYvXsiG^5X2@HxQcwdlJ}Zk)l)zKzf#9X=~UCpvbwngK@VQCP<2 z$Z*4J_T2USSjIPG$pdI}6(p+Ha8GZMVy#O4Eh$_wNrNAFIgv1V$?`4FZk$Fu^_7PS z#YZ-zxnl9$T2oU$aMWzmBAcntk=MDDw}mUUteJ0b$LX|07i8byoIY;e8oH~GPv~?* zI;iRZ#B}Y1SIb~T1oDC}l>WKdz0@i29Ae2aseHHP1F{`}ExJU;?e$34d4N#BD`?P- zDacF6aQhr+Y^&=5+jBlKY)ML5X5{T!1(>urWa`iw;Fo8PE>acANBN;Edi9pMy)Aks zdh%tdxmPgUw?zL~+l_hLIW1XkT-IancUq}r%M{XB?WjrDt4lX(B5Q!ADj&nmzU2OC zcP)E})$P2>cFD`wxv}r)K;V8D4S6$`DjNxZ-*H1V7(F$fRIUe*SyVsPUaJ@Y^@;M# zH1d-A@)vU9scaQZ-nu*eK$2$A`eE09+AP1CZPHbbe#_#RrTMPhXh&YtrlOw=K1ZA0 zaEE{CQFl5l*&gHGa2hUonQ@@PG1{+@e)+K&rH-EcQikpGc;CZz`$B$=xbf|;T=W9|o+_>AG$`pigicvz3<49dl^&yxVl}SYCoaiH@{AcMo z!BNFhdq_zn1FWv-v!V6`bJ7vUBP6OT*e$~9<1Rp{XXPVr9(x=l_^5+u)r)z=~$L z%@=XDEFassoMpQ7A)#Z1R8XratgDpeTBkV0AB$d!-K|@G;*r!cj~-71ev!1g#@)JJ zez(9}mIDUlrhx97z5sHK#>pHh=QybVu@hDdc8P|6&T?DFQ0IBUjLQ5zA*3P9gWe5v zHT2BWxzjYNuhjxo&XapPy?o<%D_(cNgG%ESQU}Q+%Q9{%`2TNIz;IGok4G|=$C@-M z={lQEACzyKxhykvkPFD}pp1$@PRD(Z>AMD@1(*2(s4eq^JJq!y$Hr3$cyT3kx~B#S zG84HnWk!H4oaJo< zXAZ(mF+fUzA57$mV*c;jlJBP2LDTP3Uydj=F?98BZuw#2@gA2r(sO47Q}zOHBLH}i+kkT zpH-`~Csbn@VBNkCjWu%=3-mZ#bp~@9^!qwxwQ*v&_Qu67!%M{fwMG13x;Uy=^V~?q zI9O;Ba*rZ3OZXsJKsh*Tju+Fe7CFvTU}5Q>^TxDcsKG+eu8FgQ>8yRI$$`?}&)BZo zS^Q+RkPYjFwrlJ88E)q$iN09vB65;sP8OmO^1rbFuV2#-$#HL`()5=Ov~^CFkF;Oj z+S6UFj0oW(FS~Ml9`ig2#0P)YV{yi+B5NLCv{-ci2@60!$k1$Ib_TBuks#r)Wsyg^ z{TU`rF5m2X+Ujw%)aY;RQdr!B3YV!MDyyV&qfRm9+%FFwjjT=njey|iydGo9X@Tf# zqMQZTbViLOKEXPJE-pM4UV!uI|D)}!!rE%W2Or$srMOFRcL?t8F2!AnQ>?fKcXudK z+}&MDad#;0u=)1Cm%EpHK^~GPXL4rF%xm+``)i47JHVMd=l(?nI8v~x)w>|fO>dVT zW9H3MTId2tK{qbhra34tQ`+)wsgl!dTm<2Gz(G24S>9>E1E|6iBfvjoa*Dz^bvy`w zE8;rLJw}OGG;)h7cN4F5>)FqV2+zZ?RXQ&Rqj&IT=}gZXk9=}!Uoq>_kL|GQh_&{q;|ewe8TTciv=1HdOVD z0IzfZ?nXSa^I}?pMkZCh%eTW`zGQDJb4;3WcR`La3=>bRp$!DbK5<)$jp@mgt&Uqy z?TnSBHX?@9z@x0}ZJ8OcEvz8QaF=NIh>-umD03O4#O06{1@4P{$|sKZlSKHYRWCU?GOQV&5 zRymp?)lE+Z)s?oDtKPg%ys@9}5SO=|$4uGOy3f1+=y3Fgreg!ilQk_~_d`Q=EW(Jh zcr?fF1Xn!b#B>yFlq$j>rH@^{;AQ;$0nqffDbC`WnSXZlQbj8)XuP@dXfvqY{ZF&m z8yHzhHq}V`0G%vl!1U{5pnMiBHq z(t7klE@^;g>I`75E;jirPal+o(Iqvtm1`guvWqVTLQ!h>nTYaH0dIR{BS3LI9>$?; z%$(&JJfo0pa3^zP+Ss1S;?iJXl_oZ|4cXtUfR99fw*tre^IpI9?0&ZgK_?97ps17- zne?H0Dwi4knD=NLL9;eUMCnIniVU|Gs|SxcioKp9#;y7a%6+UbzMl7 zb^%ujQ35~~UmuHPoUzum*cjM4vD9tWCJ_3(Sv=7)%UTTs209aqaM$Sxdbm67ksGh9 zfBdB4oS?fBLs2?-+GL`ChA8v+N}qv)n|oD#bc}#B@Y z&6mt~;cmM^UfAZ#h)(Qn_+Wu7VJT#>I=W{ov@m8Oq1jcBg`rp{V#p}n(45OzBL6>n zN?%36DPxV*%^|;tT=E)=&(}-$622_6O?jrTiSY{x9{yhIUtj{q`hhJTWoP%Et+tT= zRk<$Rm$LWGr@4c`fWRrCG%EGl)wxq4u-Kg?1LuX{yuUo3chFY!cm;NFIt|y>pt(EH z?fA!cr@!9S0C9Xq5BB7jh0YbK{|xh9PSHDeAQg&tSy~$PVsM0gds#5{;%*PVeY@@B z9$-wSUxZwD9OV=BubgVo(__W!v}}X=v26}yq?ZPOHG>#@M8%Kx&u0E{kn`?CTJv+*u%2L`C z>Tz*K{wLYhmK0NGv-`%eB9zbo3D`1egUV|y{;@Ek&p~K< zHW%-tK$-qO&y2#%$aRK8|Myu%5v|W9(O%4#IgZfq+E@(Xng+3($QBM-7i~L(iT6NH z;{zh6qNCpu-+O2afTp7-voKHRqD(pSzr+_Dka+^e)t>+AT+no;zH{^&c?)`%it7(` zC?(o9ZSOhWoMHVNjiap@*^7MK<%xJ``-AJ{RcOBWrw;%d-!+93zJt&@l3+gyNZ8=I zy1nvyCkg1<8mQZ<-yYxy-`IC;qgeS2E%GBw5J~(m8A8-(C1l)2^rW4^>afy-^2buj zO#^ni76DF2-#ifnKr#2*L?Hp;Sa8^$_(FFZnC!e%8%cTOec)l^veV?s)!F**@aFgr zxyBSxWM}_wv0RVKsk&jEPxYB*&zaBC)n)c2*wu-d&Um{F)P@iueVvHL^J^{XaT713 zcboPuYv6lfvH8+rIuzC=@j}vR%Q3T!}V9Y2^bBA(Td>56~$3 z9Q-98;z60Y?#>W;i1c9uaXg4CpmjI~Jv~V9aLC?$7HJKEIZU6HbMvui8d}zja zZ@2luMfCB!coTJrWq6C}zMr)?yT%4qe6GKnW;~(u=xUV;egaPnVkK#98Pvi8XDuvNM~W zHn%sW!sia)47#{w5eSTGCNH-bXrKS5d4P*4j`i0^O}CEo|AeH>Y~cksXqj5cpK?1~ zE+N*IyCf8|VFpd?Lg@hUL~T^@l-~J)~`i16+(LPQdu9-%f#kab$yag!u#vWwz{c zegLPLO#pu(pS=)$xprxVY!wFBF`r_#y6yak)2|gA5(8%;EnIlk{q1C&b0^gPI}qS1 zE+seOF|k>l!|yDP003v++~4d|F=PWKdy}lW^_44E8K=zW*&~ZjyshHQZ?fmd+~g+K zB`M|PiaEgQ#$a29j2>cVGlXvE{t%xvpqbyl$xu{htzrcazgWGQZ7^G_`|=%*VJEeWow-Y;}mCjyKElrQ>fYV)6|OOu_oP2Vqy zqP=KS+cA8*yhN6K%h?~ewXHLJ{Yj>o2PNFDG87a21?U^No}hcdle8>7mmKPf-m}f; zp1^O0*JJIT059IN?KIQ;TO3fUOfcr@z-b*J_KJCM2;tbF!lX`NAgwYHJUS-~RzHP@ z99s;mj1IpNUeA?iGSc$!5*2X z$l1(+Yo2uJD2cu^%xcNsJ%_Fa=QcX8{k9=K0n%Y0l{kGkk*qf%WN~*@g@Ix8Wt?ha z|IOW!S zOT{UI3KTZ&ktYP=5`zDP1FvG+Ozk{MeX*u~fa@8>&I|Y-SN{euFWd61^p&d#)0 zeU1!WWIPB1hvgzm1FpZcv^u)%5AQI77o9#(!F+XP;)KzgUEXug<&9Dh0NY0YnR<$o5gTlgs9luj z34e{8ASrD&=KHVnVH|`cepcdvp_q~05;ny1Q^iZ)!QpmytcAA2)|Zy?NOB@-YOl`p zFwXFEK3A6#u9s#LSo>Qh=6n0aK%XtaQ=^6LdNcA+#X~Boq|K8>y9?k-Cd_51e0@Sx z0+Z}wCm}e*S`jotLek+}^TFtp>s3{>1AH0I9(PrcE@4#p+?z(a!iJ2(x`&%QN-;E%bFff55ByPf>RVq7uV2&M*+{ z!Vn|it&-^pNy-%;%2Tg(Bb4>4t4|&V{pZGUxOL8?fvW%0%5)fo$N~o7;}jHZNYt|) z>*miq?Uw`F+i;|R*VT-2pMc< z))?ISI*h+gw;X+KwsIrOyy&F8ojCkmIXEphgY?vf(Ns}w21@PwsBHI;TIey z$Ve)3_B#(ya700Ei9LKbkGvc>`-yUCV95H}_`~N=XfHdqqO&3qmxj5hrC^wxdC(s7 z|4bYo3DT=&n48J${>~7ny3ee%v#oyoiGj95fpUny4U@F zS{B(~Bmiw(O2V4L_QDJN4`Yt0Q#y>NHh8Xv)-bJ@gZrik+1$*AeMb~(v#*S{Jz3Iv z{MSy0LBb~r&4;DZf0;Y%hz(0~(qqHHPf49^WG3Jw`v(U&!KioJ&XIJLqix^wc<(aQ z@X@FAF_WF~uJKpvVunEhZV+eFy-bV!*w=am0X8DAji1?UW`%-(MKb$mkbIQApHx%|g38gT7xG;Td8qS&M zE8jQ5qat~30`XE!Zq^Je*n0yf$T7Z+fZri-3{DjGgl9jxjLqBBaiR zyZJi@rQ%AFEY+n0UCodJB26Nv(9n6HQFp^omPQgQRB{3do4rZmKQ{C@$VY)05vcvQ zfFbS4&icEL;_();#O7ua90W|u_UH^=u%Pvc%5bxRD^T>I^{wRr{E5W*Wv2axi0}jW zX7(MNS@;>(?R@#9A}=hoNOUdv_<|#!~XFAl}mryn_TnsmjR& zY&A^E&N@XZJIan$lx8mP6qLREC6+I9FKa6=D;LU?a`-(A%=^fc$*%pG&D3jI_QEG?TGE{991V&yqBV^tCOubkTwK+aF0~r2+ zq@_9VH=#KbUvsyr>7p9$4*zzR4Wn_cn6tM!RlChGdzDwVAE!pFL4EKOiUnIdjeV*a!Nq7IIFO$wS>StOfJKHc&siz@-@TlTug z@)u0@Q`uxT5c8GFce(J$M7iYz{jWEMn05o#r9_r{r+>O(-chKTZEOu%plW9yckLW= zt`82nZfUef_?NCHiWW(}QngT*9nTRkYn0Z|B54KwP!K!GFgqNgrDoPZpNbB+YOoiD4>bvtBZ@) zM`Y>o(ey8Z?b-Q?d9;+%k%Qz*^DIstIs*iubb!euEFt` zm}zSw)9w48w$$|G*HFq|+5;};X>NP-+V^(o+oQN&W(JD9Ytec@-ScTEv~tnq77)7- z^HRBQ`7gjXb^pM+`M9GF{zaw5wfFa_DsVk0GyiFW@X{HF?DX|m(hbDl162S( zr4j+ezhSnt$8N>Yd=Lbo8)Y}8nu;88!Hd0S4o@kAw@Dz2NSD-BE&o9g6kMYbx3vmh z8uAayS^CI$={tXSxn1)t!h^gmls~^!^(qK+eLe`vG%Wchnkaxps#UjbOT22i7aB|K zE6?0c`n83+3m(>M#L##wE+&ukpJ&Z24wrhL?X zVgYMDgNHsr%egU)w)YLW-)*oew;xtDf&+#!)y_DOEGZ zA35!{wb}r(zxSurc?Y_BD_x@`r9#CX+Pmn+ZMHANaim{_QPI!d^eq1;suY_neI2}kVs zE0i9rrpJ6s?mtJZ#CmwMW|V$^#-S`myj6eK?Q|r}=7ukA!a)&^(W>oqLNT04StGot z#OdVfO4e<@AWZRhk!>b&5S*KM%8*RO<9V*Q*(*ZLjJL4#Tc2qeEPDb!Z zQEE%?UM5~cU_{j@ak}K#s@%SrBKy7nk8!+Hw2{kDM)dIB5mB1>SxP}Cp6Pgbi;E2L z)Yh+f(hamCyP5gN-79}yvsQyJwn!Cbh#;BIw4!&7@|rRg*GRN0Z*ZB}{|3SE-hJhz zEt%$XV&e=)QdR45Kb}3YA&6%|lFB>?escQ7tSC)*?&ax1ovrELj^=H>)p(@r{gB~` ze!70Nk35fBMssfAj*!?1R(5U6H0S4WO6(WoTmuwM^TP_;FK>?E49bU60W;w3tSlgzUKQ?V|5Fp)9H^B3I9APd;`noUatt{rr4+npGu9{gmX_O?z8NejPvaeyeb}PQw7b=>Rnzi0WTCV$j8#>!_0u6DZdJ8>O?ivjc z!QPRHV|zxAoz*Y^RkS0Vn1rM4R90md>7y0+nPGI+nf-%t_+F z1I;4n`E$sZ!z-ODQZ~G!WX1uMQ5+loDsiqslA`M*frLBb=UDpnSE~IV&EtEqF044@ zgoM?MVIA;tlqx1BAY$Ou-7>?0Rl~FxFj!Nhpr?2=_N}-POD+rrnC!KbPLV7ds#Hhj zUs{rg`a4{`agU##*w+7adJF$H>B>#F=!zE`Y$JzBlyZ|$96LV*Y`GAoZFZ_jrxUJv zc&A_aptIum8oqhI%q53Kq&@7l;dURmqMXP2T2bSz{g7xu{&(p>cgqebY#eo=UBH8Z z4$<9%FPRzcUnHoSmxvkw2$hQc(^1Jm<7pJ&LA$6(H~32A@koZuN-^6-e~V!#Y&j&L z2<(9ivL@p8D?1z>{ta`e54q!vuizHHGIRhy_jlF|3lEP{Wq212`%Ble>^%KOu%~^} z@w>{L2d}xdg^m0tc~V!~X8n=2_{7VQ8SOer7T3<1YLK(oYHBg~EPHV)C;G))LnY9= zk+Q=6(Btjyjh>PF3J%bEcPbhC&iutLxO7Jvh$artY68(zq8eUnAEp_9dMP&7JbTDN z6AG8=6&YC}?CmHwA0$w$H6$qrcIV~t+`AZ4E5~l{V7v)wF^n5w(VLz&2h_pb5IoW4tnhfs%gwDqPxdn?|Urwq^lEjfGL44N-~p z2gU?bCcC+kDfDbw=r55k@1pKS9ilWv` z6y`N^ui=2&t)T(X!=g+uiCZ$y4 z*DEiE1=1-)c!5xnQr&&6FEdyGx9_wj0nssc*u8ui{)%;GX`QT$!}=ab4v!4fh=Kg znO_3cp!MTV+)s8Nbmdl6H}g~fTjJJ5#L(e_$WakuR-tZJQ^+pNL-qIRv5lBb6PVku zOY>__qf!WfprCeNbO3-A7CNF?3(t-4+VWxSvCUd1&G+uT2n%iC@oO1Q!c@g>Rr^=~Iu>1aNg*ZRyQ`Jy2v#VE9yY1Q1>^wtwHaFq@vxZDmz5u?&OUH+J< z|IN>N$4Ad=w^ozY<^)Na#!txSDErr*?mgl3U!UTO`F!!ck`7#vRl4M&&C*zQGGclM zI?zb`<jPhZ{YkkmUfO(KPol+(@9d2TvU{ip_-N{v_*5J zYO8;sb{CgVg4^mH>zsAdVi$gur%i0bjs=oeWu1u8}U@m5xug*?U_MO)Atjy*cPZE9yLsL%Iq_^A=Wq{F?#8)E+8kOV;s>X z{z1+#Wd+lnO*FpAC}i(>yibdoy$5q|aS02tcaxA_aJF1jv`rBwObN%b0FRf9VwI)p z&GBK99Bd?dH2i4LDl&=t+i?KCp>JyUQEz#RfRIwO65spW3=UJ-yZLB`I)^@Mg!jYY74ciBfPeoO%I(ym1WqsdNA{r|o9=bGSPXH5)=eju zzVEY3dS7p3@&Qax4*`fGa=y{gW2#Ow62)F)Fdqr&HWS#gR5W7bco-QwR8-Pk)PRK3 zLT1~cAa`c3hvFA8Pg<6|+gWa@0#}edZAouz*mLP}GJZRT7bQQlszZs0wPwFT3^4`z2Fh zhwB`zb5g4!%LKwkc!<>LW9kKHj8VYYCPU290=6Y^Jh8qY zI4R(jg~(2uc(cXbT})ecT_O`^A?oN*V*M98GAkuP}!irRx?E>NG_T~9d@i_4N4 z3f+f_a+HXgd^!A2wI^ink7Fs1f!aMNxmOmaZo}8hi7j$*x;hF4YuB(+BJCACX;Sm2~BGmW;2mlbo%L2tTGApT{T4{|+eFS_? zgbnlJul}lVSUy`Wk}#OwwEOaz0q*hbsDB&ASO0*5TR^LXowHtiNofukU+=s~vfuyP zEIhw!p9Mu)iC9_55akWTQKy1)59AT7n!K>a#)c_XTJklf=(!v-I`q6YZsGVJ-(g)N zo*!yE)|`5l9wDi5Wg1-3a+lQaUzPQp_FQd_@55x*4y>eVL!Gp|Pz^wFoSWirDW}-p z=_c{f{me_MZjIrK=R`G8yISB>&Py*uP~n!k8J1+7Q*M8C@p2NMst04lF0M$|)PpAv zr2QF2))|DJZ&bQY^I~1kSpmmUwV<2QYlhojr;gVTvY^d0GSOf4@O$l}F&;1bg&th3 zU`cq|j;Oo%%E+_%bhWbBVjxn(-~0}$N?q%jH3z<9tSIAQ%?ZUUSP;P7C{3n{8AnhloJ%826}tK3W4;hi#haxVi!hYzWTM0NVV5b`P^8Pv z+54GCP`afr8qg%D&L=ZIb}rdKDtanv$D*Vo7Ttkic?Lp%dU#0Ak2IeCHZZ9o#3K_! z-Jd~hexIQtMtmP4co;Ux!)3UEf+72;Yu?Z7jQ&Z;%Ck$8YbfGGYr^=G`Zwymw)>K2 z`(}H|j(HSm)}=H(wroS2LCrwxfh=DPY4JW_tQue=H5nc*N36|#t3MZ4{GrPMhk@Y! zt~x5+5+M^wCDMQMEyu*j#)9xG<0|Hv2Raxx2!V`%p%UjK9~Gni4po&uiAC}Yh^;Z- zq;jpM(vHrN%b!oOW8jrX<)y)!N9F*M9Qd*@2B)G{KtS2QSb@V)H9~vO9h*;1OAs_w zLPj;z_w)CZ?!47&kYrFMEX!jCY}nUGc$V(t{&mYf+I!r4nJ&6u1Oh`RplEf(BUR%5 zNV|P;TNd}ox+0w%drt$=C1&UswKp!}X^i`ShYe@U^b7}grgRr7Gu!gEh;pll6KHz& zAlX<Zffc z(KfNQ);ddCiaQaWtpC!YiS@at4}|RA?9Gl!HKkyr-fzJ-O0EzB*z=mHq6m74lZmuf>~$A?xid2^jI1DscxOeB;GtIjS0{ zT$}NxIN3C<5w{S}lRTdZd`iQx!TbZ>q!{O~iN%Rl<1td|K#dHVEPd@j5HIBE=AqUj z*+8Tk1wD7l;{7GuLIqumu;y-3=@f1nHYv0f(~HTI>M3IBBAxtCX(}0EL8D2T!9~__ zHMN3`RJF0|CnUwNyU2}YRVNCOn2I(yV@=*GvO?SpcaIWM`nLGQrI1a7s*$$wgFK&T z+IQK+v44;cX3ge0HDM0s84N#O==SjrM*SJ5=1;;!ssCoS%i`P$n5jQ7>PbkDVBc=pDBt1}ktXFdXdYPwsQ=GpKAf&y_l(Ykr`1UM(2)Q_q z*R-6da733VN889Atmx-_w~$3iZ1y2W33>UOTizZj1GZDc)QA1vukDQ5+x{v!Mg?JDOCWpGa?bODOqh;FcNV^W zW*QC8y~W^*TBCbm**epuz@(Z3-utjdl&R?%w^#L z3ub=JPGY+U9CWMT1#Cnnsm*5_<~}Rq^EbkeKh4$9zd8{|3*^}_e#;X%`6ErMeZ{-@ z(XX$3A*d0!;Q+4Jlw9r9=H{WWrIo4Ip%$pQkLU`9-;zmwz4PP|H}_(}z__=Evc7Op zlY;0)nIPeF>Qmp{x_D$lg9KpQ*|@9iA;hMcEWR$7Z~B%BbekA(0XnBPQA$1-d^<2B zsd6eaZ|z!01pWM6J(ku2y|GSdK;xnn$>%`-63NwAl5ikGxr!Favy8L&r^I^M0D%95)6E zUU93->~mqpBaO{zh$_Hj>^$RtcL61L^UuZ_31pD-E0-p1VSsHJKz1kz;>7SOR7%f= z3B+nRmijU{860G|N zXf2PrQ2FCwX-a$j^PF@dhm`ij+pWj4?(yAgA{A@o`pzzvR3+=|cO*~Tt*U@x#=vM$ zP>_->XjX0qxQh0ht4#l4nzv)01W-cJWOBW33n(XaTT9~Gs5}4a6_9Q5*7iHKD>LyM zh?zES?_j09xPtBG9=_$lsip) zgdo66t8-x}JF4%i<*?GdjosR1ETm|4<6&kQ-ny%18^=D?5=!3l{=du+K>ajQ+R~=; z6v*}4D4XDmUf@U9>t-8$^UE~fAx2Nrf<`cKF!BZ2qahnrJRqZ<<8owX<1xKb3ZnUb z_D-d(QQc46tv1W_lF4_w7AL-fA?7C230>4yw(D6>x#x*7?c9GnqMNl@*AV?iUO*8- zME$iS%{ZXMVYHWV}f2n@={zhCBE;gwPSkB&`a@rL4xArw*GdE5CP zvDN=L7bIRprAV0@=)ws`zFs5HM-!gNi#e~JrGi^v#8n*&4FXZ}{YRKZ^0$fuCFRoS z#nZbF4_@mKnfW(n-e*45qM%Cmov?WL0?#nk3TG?0Db2o3b`}J5s${b?6gP-2Lgh%z z@&*B^YCt5VwXzrsQ)X+FZbWtK-M7zUOJFznU|n{n`l!XvO?VyKja~Y^#4&zWF^Zkr z;`2Mne@)zo0-!C%{IO9bP`|!>rKj|mGNU%}xR9@(X!>k@YzqNgUnGtu6BPm4)xz5; zaE&>zRxW~SkR%$@>;XYm1&K=O{^-54&}r2f8J*xn^ySEOSE_D1iPImPlZ#=H-<=cEynw;n7+`~B+*16buY=yhd~~P91GEA|XFd1e z%ZpEwb#+C1+u+`>w=$W|;nrIk<6rkjEQ3=}*T(B#o)wb|*V&v-$6*Z?{NMV|Qjmtl zFRD||tg`RF3tbYhE31O!p*{(0Uxr)&fIrt&%uWV{>wZfmzZ!OY*L(nGE8NpHIZK61 zU2UG01BImTxVs&-xwkbmlB%hjo%Im6!`}>^V~36md)&2{1q&;$??}OXZM_=KC5M2Q zID~tltdN!SzRg9On!JJ=6!MMUMZw& znc=HLAQH~x2j5pIzs}PXZWfxM+8p#m4umX0Ilm>epUG++2^S=4O*AkQI?pHhnL#oIFDz z7IESsdi%III#9m^%K(dK-^U%(Uxxx37GDNSaZGu6AAZk9Z9YQG7k=|Q6R0ZvS-4hT z;P|Y^Mf`gFO7yW684s{M$L2o!4VTx!!{z&Ve}URH$}#g|IE4!M^Y3r;?g;Hxl(7Xa z0a-KB_HR6%&IdC)yg5Aqz61?nHI-bwp*wUC$J zb?pU@Z<>+EZA_&3;KL}$So}h0O{#hW;_B)HcDLT`d#%Y-{ddqyZU}ra<52IByL^sow&ClQfPzG+N~_57tu8&zr7wmQ}*_SMgP*h_m9K+zmYdNe>TvP>YBuElXgEA zz;r@j*p=GX*tOpe*8zG(0zM#hR-H>4YAm%bDxcNC2MJ8`x&RNKvRA%kSlw5jOq=bj zp}YZ>7uC%IczvxfkDDAGmQdhd{N1Q`Y2eP++qa4ZyZd_&UbmqPudUniwrC9$AAlt` zDD8Q3zwsDejTip)%4nfbTxoW{|QC{e7CNt9yP81=-3P|CUFGX zrJZfy&oRNLo2FFpK+t3Cjhz?OL##YS!U+cOUhE9Cz%;5j{5K7aj5#Y%PW5@IH!Pl8#g7*%@fn>Y| zsvARi7vEt5nqQqim*plHEcldx1r-#mfN*>hd=qpF@T&zAeh}FJnHgCS1oUvw$z?Xh zSDF$OCIVk%2#ky&>D;?d2n_UurwN3J2rTD!_y`#9DUn?=bZ0VFr9B`pA0tCP2kS)s z`4s8J)dlL^9zdZa3dn|nfc!E1BgiEVy4;1zB%1>@20jv>mdXSO9|UbJC{-*t!+sT? zafIXQGpD#P)K>9f^r}dGC4^|m%CdHHvO3B;B1IUH@i_LGKgpk!2T_eI!}nqLY4%!2 zyVZ3e=+&`OlBed3!+Tp;B^}R)Zsx<;N`ao6IvC*n^*)YfZ6K75y|A7s%bueUIah{6eP7|CF~#q zFWyS96}uy+vFLWGMM5W*2&&JYMGUk95J zkINBQ2-*S{Cm(vHy?l(h7BNNMWwqQT9h7V9ii}u*>$OM{ za2Fd8kpIHwn8DG#B(Dtj81ds@PL`ykXv((ozp}sq(Tj5w^`2zZbG9#lFg#mT3I-MZ`g7jFbOtCjCg>5!Z?1uXm32`E;oATd~Q-Z}<8m?29Rp*S2W%s;3iB-UgJi8_eDIn6~8 zs~)T#d<&g89Er6O!C9pP4WNj1pBtN!kKjZZ{K9z+1>w94o=Fs2yc-d6Z9gy53^E)4wue)JO=Sm)-qOUVc;5fjuOD(bE`h z=po02v?T{4xKI$}ziNW|fTjo{ukAx~Du5_wUfsQY5l+c|WYWn#ItZi{y6?rLu639I z-$wOi<~!u7aj3Uk>11gj&!F?@d6K@&Nl42K6s;F}cwF4%nE z7Y!0TE8;}=UOt1SA!5Wpr$x=jU<(xifw`%nkh$)>$V31!tE%NFs!8@Bp3s zD*-ftc{!VfSUAK!#IWvojC{d6!W>O8$qP5v zE1Oi)QSKR%NV+xY5g&3KVM$TEJ}X0l-}CWN_`eCGXM6~;RSB7oNr#rUdc(tMPrp_4^aPJco}jG;%j&ksXj@E%3bbuU=MYrJC? zDLn{~~ac`-%Ei6Fz6^ z4V3=7H2-Vh-?sF6MocVYB&)mnxhECYi8^cRLj^A=E?WgTH7R4Z=Qeq*6$O~#b4PJo zf9}s@>^pH;N`Pp+JQ-nCz+kKC-=nGDAJDo$15XdCy`LaPH|_AgrU}1CxvIw@WmYbF zeXr@-n0qgqL%e}$p&AhZmHoa=w}iB!gHIFuud_Git_x350x9)*pXX(aq)Z0?=*)OB>i1|E>7GlHu02n_AR?&AuXkRU1ENIfSOdWN@8frbx)`pEu;}ztT z7lINW66o&hZ0LR=%Db(BB4lrqY~rw%)}FY7B$=W@tYws=k2yIKmDvxgUfw^?p`WwP z$S%*;heD=ZOb@;)xk@V0y+diymC(O$lWYWusD*?A052b=#JMkg`24${P{2Kzt>7$8 zWH8hD|ACRd9p82{`T+p^_xFFrNVETc!$|vKOFn#dXUfVz%0NcsQ-nZAMg?svV=R8r zKG4DW*PARqC#j7W(qGw8yKt@Jp(^(HPe%n?%gg29uLmD6q86yix1#xjObn!+pC1?ucL5#@y_hPxAqU2v{R*@J{l1!5%7XF&f@c0`Eir5=x33}jUmhEPXVys`1NTzvSB+| zFEiUGom+pBkjGgPBC0vD8z|vRITbNgP*On?WsabxcdmVN&T#PoO4e^$V1= z%1O;3ubx?opdOyCn^_8Cr&3Iv2dOn6XH2Sr-@c%UE0h+?HR_hwtJ+v;j30_|P=<1j z1(O$RaM~ua_L`&uG+^&)oFU5Jcrz_pqfOAUB-o`vWKhsD$q=a~n*7MWEDoJle&7e1 z-{=9!q@|m>g&I?VN3^@O90;^6f8OO|GSQR2*U%Aj2vWpxkPQp)o+j-HtK4hv%TrNS z>X^~u%qc8}72>^1Cm@oMivnM`L*T{XDKLZ3GetcNmdT+L8Wr`NFv!qDA|oP2s}U68 zDT0^+)GI1L&|+gIkd56t221*Ap#jNc`S%8^=P6(@G?*ZQ$nuTBvl#t{B2GWh1oK4? zgSXKHHj!+qrxF$m0uz{^m5X4}vvRpTKmlnH=%bnQMbe7WLQba*1uy3vUm6YqP-Ug3 zIvoUOVumI<2p!5aPVo)sPap#w-rQlGTia{?6v#8wHfTfc8_TvkKc`Lrhfz>O&+)N{VQk4cO zoI|pR? zq*iMX7qsFl=y_NwIs)a2=4|P8(Ao42W~w>0a?}}>$rq}T!!?xbJt}Rzr9b4ZBTPn- z!^Knj5^6%HU(Y5JCax1&SDLr{=6y?jahbY3cw=?X^hX|2JewStwcxTmp+S4dH!5(C$Y z51O?lkPkPxXAL2*Dab#RrRNf$XU04Y)6 z1A|?N#+PAgk?b4vlzVbk7_VeQ8U(BC@i-Q@_o-Tw3~S-YuPe!>yol7%N?mj&DK6@) zNpf{qMbwN2_CXx-MzvpL@W~Ph78Djeg1hEGbbZ5KGpr~w%Mr!0Wjv99i%ndS)FJ%P z;}JSkZHo4oT^a4JUppPkq#YLamSZoQ#d?qsOk@gUB=IIzYRqOL@6WXmNo|%&}^gk-SVnC0VQF_6_LJG~_yo zj2z>P!LMi}%Lgb&#wq!Rf^nj$2L~xBeX~C#EIm~}?g~FUOrMrCqn=)fM($g;DLOi* z8W0-`JIy{JAaJ44>hb(>uo+Y^eJrkn$LFm;tJ7*83j}h9v4J^qFZLzvn3nu6n%+99t>*h44pNGHad(OpD{jTTxVsg1 z3tB8V6nA%bcP;KNL5jOOym>y~--|AJ2%w^(lC3c_tY=J7Mw?Cjf>M_!GLcL|-)kd-pmU_!F`}$21(Z9I z{xk6-gM?#FPT|j`%>Cg^O#E#IM3t1rNS^Il|BDV4g)w~_IiM(kJj_r^J*|#{u9M^l z;~#4w8GKw4^DvD{!Sjxot16cIfK4Z9+g%MLS@Ey>H%@T*?~q9Jb!9@6e8otSXiQ4z7BmFrg74~aDRhGEcq%>m^Uflqz`tt9j#&S=KOGRfvI%*nt7QPBRH&?g+Im`O2AvV#3fW{m!4UKPFu0bZ8cbOc=t8Pm{Q zU>XkgZ-N|bu6#TrUYu~>C;=9{GFr}G=DzFjt>687I8zeXQC~w2d$7^eU;`ne+uOgV zZJ5IY*n$k}3fjl+MKyr?7d2{+ijol=0|Ocfwm(QSjsr>>-Jhyb1959|F0K3erIe-X zYIeZj06OJuQmC0x&)clMVQX8oLOwngIUWPHfNI1P+T4sfy@=V^AzZ`b4Dm;sB*iy{ zzvsDi7`ku2irvVQ%uBAPCoj4MJ&tbzq%8jg`~ruV*-siEY()|d87$OZgQt9!FMeCs zDVwNM9-=CswEV4NOp=e#ifhXS5rewkmX5=HaraEGbI<%<=k5vp7G8qlP^w?|1hyIo zX;Eas??)%~f}i~DG-BGgABP%(k>QvL-h`)I3dNxV!UQ^YHiZ1t29l#l)_BI+58`8R zvAqYkCPnS;++{3^X5|e!+H2pKU=*dHF5Zm?yM8$Xr(K!_Qk?~;|soGFbmReXAgxJmv3ZP>LebiJ-BIR}r{Ni5GC zhqXe$v%NO8nC0PHowSIHAcW8ObaATH4t3i)0&a|=S86HB(P~DTQ{jl$r1YhG@u!Mo z{oLdbO^*>_RW^5tEncQX1>!7vv`SXCDNqU9DzRuJ!Eev=?cb4-zG-|;N3v!N z8X1@M2H<6Lz3vaM>$AIVzQ$HfE{mD;xj>jjeqSeE+-hylKL5{fh0KJ&mH4@&4gJgG zVLgc#9Rw})20JsL+s9nTfXl2Wt{(VhHWs*2_72#xcQ)o9VfpOC1>nb(@V`c?X_IU&u|$%7!WOfvE@qsnm`Nc$%H;>gRe7@X zVeqlYB37}?6}|zfVX%x-Xi{Us+B3g{&WEI2(+gbWLw0^b>kx#K?Iju+V;0!xGR~(5 z*@Z!C_hSWo`a`b;PcafeR!Aa-r~?m(B$Y+8dH0QRYsYdNLA&U9{pErW_INPa{9ask zGCI1oIUD$bO0;?1Z&x>Z!C_EeS63$>PWXUrs~VG-m&ED_|(T^Z=l?vbw@{o4*eCMya-*aFbw?< z{Y>84N^f{hJ*bI8=0MVd2xz1nTp&}_aMRiG;jGp4+SBxW>T9LX^9qWv?H2 z_JRhj`TZbq_ToX8(@wd0deuGIp85H^>pxqINpBzKY4hbyp^FUd*UcLid&6_y*G-1@ z0_+Jt-}9xzw7E*N<_MO_k>@EP1D&^Sfen_nyW%&#Vvy9C;WSF zBYGt_*MA938}&Lt4HUyYF%01Jn{xNfwlb^~(vL0bqz?T(j{Ln(+*Al#{d{~DQ*Sr8 zvfZm*KH1-8B&9FrorxmfK*QR1;6?BGM-@Px@rfi05%4{Dv8;W;Cm9g0?o+OvX zNf;hJ;OBj8jaLKj-8W3^9 zoG%1DI+~OuEE<&O^Z?BRD0n#!-HMpV!^owCkN9!k5Hh2K&R3V6N{^T5=I~*(-52;v zBt{Cb$mL6qo5;>GRd5*>TKHZgYnD^Og30DohoJWGm+XKdWFgox@N0i^*&Dnb&NZn^ z-iYAa1*PbQF@R##no@l1-=gn6SLHs4^uq1Vytz2jknaR*JVvNo*m7|lJbU_d0V{{WtN$u8 z-&az>irTLWEwm)Z`8F|4vxe=Hp$=~Ye4E_0Qw8lGw>Fzoq5hK9ye~?~-sM|ia|j=&rNEgD8{FcEr)3$`O38i)x}TQyUZ-!ti{xa!M&XZJ;C;NPk}ML229Ic zC+kgI_Y>Y$0+a2koe|;gT>)O3c1V4o-DkfN*rSgfhw{%~V5iW=P{9u;Cv#FMz+VAo zF?vnNJsTg-{fhO_{U5$>mx$oY_O+&c1|QtB_sddR9N!zMwHUC6_lx~z%iG8du3e|q ztDZ*oH?Q{(xIISQ`;ieef!E8|V&B%Q(+IT$FvE5uFbpY^RkrYCv;`GoP`#R>-NT@%JMd&CmToP&a#~+gWO}kgMeU z&P^nXB#xc_MqO{rUb)Fi)te`jnNar?8khptQ|DVImV)2MY&$q3)7~&IY#za&g)%D* zKe#bnAww1bl48>gNVt+a$@Ry{3MHfJ$=H#XmX>dXk1+*C7`$FL&+Nte$}}e=sH)*X zG(PlWmMHn@=}Vj7nmV>33P~$UFc~W4LGuYUdWr=FKkHTP%he(7_!2-8_wNs^2T@3b z+vZmJ+&kRX=$5-q_uFxAAt_7?8|9}71prwO6*(Y=DoN&yrWf53U)8*i0EUwPmPV2o z&MmlOkkqH4e0HtN?7_3#?C-czNKt&IK_-;p?kR4T!NSg@yx&=d61*$ic*M5M%g0_FE-*nQ9rke%T^?cE<&*O18*1UiB zGI6s=ryGIsT8k_!z6W)llsE}kjb7Eey;~PrXSJ2pR~$0A@Nv~Z?E!s<5q+;)zZ4|& zcs|+e9vitWlbD-LW_3T(=${&I^;~<#BK?R6GIcobTR5=yIT-|3`0ZRVXMemu<;C0i zoDDVvMCo|dXX9sooHYj8YIk-ydC>R`KaP|$kXU9JnXwb(c$F}-mWxN*89s-pq5oPiI zt=#6bKl{tZ__%<=2;)~Ze6Wd~R+q6kdQXpnB{^q+A<^UWV4*?g?YygnRd<&aj?r*Z zJ(G44qvVTx4mF<-#{DmLJDWoIZ#t9TiAzGZiPQn*k*57Z`9oWr(iR9mYDcJP-iE#O zqAtP{cbAVS`DshP=9R8BDb-{VlA8t1^&3Su6mLl{_{7g={T%c7L=k6Im2}_x>x0;m zfJ&G>|9D_tk~+4O28M@2(d#@sO}F$w9xG`2&Oe6}dhMXU!s6!-x_*|3gn3n?tm%$c zOEv(xzYA&RzxqQ(1_3b)p}Dj|&rW*!&4hhRd^c$em+lrTR>_4w2?-qbK#BS$TLFJi zf@NGMG)WKTvS`JSW-_@8eu8>>Qq;6!Z90G~ibww24>@||UaFK}DySf;LXVDw)I_J6 z^{O`5a6F(6<=4|HxzxKUKjLqlYjZ4{>*rRMqt|uQm7P!1S;S3$!`0eRyD#3M&JZF+ zpJhQhEM)k!ql-*c&v%&{P?yKWV1m`_vdZp5REL=k@cYingFTSu=9O?i%I9pm-j3wC z9iJ50*9KmPYWhBdkRJ(`?ZC$1Z6>FKPZ6fO-Q~V98BOuw^n+V9>&N0r1!AhNQ+M(C z+U;Wl3u)@I3TMF_oIZFjlEL7l`E+vAHX$aX7x^BAi0w5y8Qc5acq{*9bHl^LdVel! zMCTc05;og?_s~c$Rcka5`Hb2EtKxNs##zegaM*Q%f#v#Gi`y`y)ZDkMkb&CT_hZ(+ zsYre;sQSD!9A4N*-5kqP7BG zS#*z&Km(F&pg(uL_nSBa1+PwIJAltrYbvqJ*L4g6y7UA^6=B$Uu0_Y$(X&exP~T6> z>~+2p%M{$neW?nvZH~tILI2xvo`aY&>-MSzQ$beSRJ#@oQ?}2fAZ-ke%w|Sc@8P^y zyO-?L9R>=&F=(yO_3t`vym8A;H+d~< zi^bZsx}^xy)T2|~no^mUjteHtcHHeyM*!~#Z~L>}6m9}Ye$(xiR`J+Gbor=hoponoxgP?_T$g^>@9qDr)4(TA*o#M2knQn|U#a4X%5Q0*>tddUD`o2=bAZ+Q zL|>e}SSR_Qg1Gr~LQDE_5N~dw>uhH5YH?3X>i2pyJi$!DcY2L-vtP0D5uuZg>&Z;= zSg%Cyg~Rx$(Mx`Q%2)XbV0SLNcjmmQ*OF_N4RO7ng+W`J-5uZEDYI`5vLED)3cRnj z4;a*a)ng%Bh5J&=%Bhn@nT!-YC8figC+t5CqX^0JcwHxF-7E}`9o+3}u{R1PN%+Ms zHtFX)dmUZnLiDF@Q;IKHkZO#I{GEHpm=`>>g@u{kPA43Ved26|8MEysh?+9@O;+Gs zvv7KGDPRN_OQHa?ed6YL0?7zfD%EZ~=cn|=%Jqh-l)de)-KvY#3Eh{?b6<@H1`qd1 zJJSr`$*0UUa}Vvz#VT<`%Do_GW~sYxUfP8tiG;q~jt3!%iadV54p41V{&+fpCX1VN zKi)g~Tp7?Bjy9{r!%eaMG*&yV{lrf+aHH932`4TA4ed+^_lky!GMG#HOr%W>-4mGlv%MxC7Mmwue5a{d zzG7nFVQ+4+4g+ZAnR#{=Cv(^F<)-$ov%*D-?Qyy}g1PI^m%4|EWrEbtOtSPK=VW1L zG0*W1t$-u7S9vN8wtpVU`4k~ZnN5x!TUI^IQY6*fsceM4=vG^0Z=_5(v_u`FaY5-* zl`hNggp^05)KB)cN`E(*H!zX zESibZ-f&=x~j@7TDpY(XmTO4nA}JiB%X3ObPNobD6R3cfFyVjTqI^8lU2(p7Wce zpP1`t0$_|9esPOAW^L3aTKF`Cob%O;u=$~~bPUn2)Zyui_fw~~S5;b_#RGx;qvwWX zPyA+Ho+&MaD9udPbC})34H{O*w_Q!gWYkR2=Ce4nFWd2}k84;_>D!Tf`7x)XeNfI^ zF|Hb@t2wS2?69naq8gFV#t?59R|Am>UEtc9vpp%)pZTROqY|H=C$vcQcQH?bzJG3P zB|#abPTogx_>YZ@q7?84jfRZ<&(R!u`J^I!6I8w_q7?;W&ZN)~jg{x?`&^vQ4009~ zEmJT6IePh##3JN0U3?CP`Oyq?4Op}31QB}qa_&>RV)IXv2$I$j)1OTkK#P@SLh}{z z4)swcnicw}K|F&``4XOG((H?P-ot+2_VcXbE}oz=-Bk24Dh;GsB9lva!Q{nb0%=UE zp;%>Re5QOlK_p5 zAx_ThqL}kUBAmB0Be0v7J|jh>GT3v7Yt5C5k(9>nXrO>knA_y=j89Bl*g0PCk{H7T zVLHtTGXqa9iB$~aH8zrH?MpVJ0d*8Bl(^M_H?Fa?oxxoBpBn5X6Vnr=mCI7UorUch zenaAH7WQM&jI^+yG%P2=5nomQt>Ue5XNEuP#;JoqanjDdwo)r$>ZTkgFn!WfczrEf z`W~!|*l4MgMkD)TV2u$io`}PK{3&94F9H~m8ygmT3pLt(WwPSy0zfGNvUIb?XvSLOeN<9G}C?EHto)Lq3Qqebn;HpKvwj z9XcHh#UT{ha@L_X+a;h^fBfaKxwQ)DE21&1F}WEFj|)?wAYW}-x0 zYAlIq^KGu5c(S$bZjj3}y*WI!_iqsT(?ljTCEHcX9=@H8X(M?ilGi>-U|7%W4gqM3 zcWfF3+9-1#L%|dZ=N~2HlpWx|bkR;-T!}~N_7=uARclxH3PRTStQ72~i#WGsbcB@A z3@bB(8mAX@k?LAXc?r{xv1#^S2n9*dC7io`#=jC>>u|FHYyk`_B3i39zpVXdo@pc< z%x-Bz5o`73v@b7Tmdj-CF`e2EZxzeEQ!CYqlF+v^6$}~f$F1Pvo!YcabGrf>=IWbE zrsXVTjSPC8U*#%fRORXN9WZf-k7~Jk;=;)1|EBU3bTW(=saMZ;S(3+#DyPMX0&$V& z<_S$o^ycRmt!A~sm7&Tq^k0;U)Zr$`^4H}`IYi0ntWNA;` z%-OX$t+L~d3QR|AWRe&IX+Befe%MU0TTH}Z*w>%VEYR9gb}3-T1n!W>F@|Q4grwYJ zfbvaBe!E2yaJ0aF=}2PI(F9WS-HkpvmX03C6HO`_dG;{g$E`B;o6-wfo#kwXNjwlQ zuG;GSjy0-AIE7OcS9c9u)}Gk4x!KlAS~Pa5qmjZi#7vMVJx4OCJjVFhP=*66U(H>R zEBsg`DAC3cvqCT7{9$e$;Bc8e-|7E#?J|iddZVWAtA`5-@gBmMp46g26Xohk)o6X& zOH&d|jetcUI*rVWlGD4mDaF_H3OA#A!Dy0zwaz?@S0 zu?8vN8`EL=&!a@$aY%fYU6B^+A}2>JeU7a}9wbNTgjP6_P=1(o&|i}vkv!0a*^Av{ zaR2w$vHAFQ)C1NE#FvPL#H7=d^0rg0aKkq(kLjgi?d$OE96!}WB{7#?${ANfc_4dys<^{ zi~-KShsr2!Gh7rt1(O5{0duj>VRqB4k(vN1c05V2yt@V+IE*f?RQRmZn3sO@WvnLHJ*S`EKC zdydrRDo4oM`~@7<6}3YdF;JIyWp(Opfil&qA7#Y!@*!zcl!;i}RHDi}L68+WHx^l% zor+U7Z8iaU@hdgE^;9&6yi|y#vQ&}!=zNYG(tlnU!ZQJoQSlRVC#zJ_~avb)j-SG?_3lh)kcr}g$Y=fz{|6ZK~Oka(uxuV z$0*K32PunQONXJ^T^NsA@g-V1Inf0Ewn*bm6;s=r>j=K_Lv}6OpySulx49W2(+m{n2Urf4@=u*>kPSN_w%(-an|g%gO;b2mCV&< z=dcbP?l5W74I*HTpb&B)R=xx(*g)Cin4TD*>pqbgh~7y-3=`yd(Y3<6;iMwj5Q?Gypma-KX`Vb{#=C$HT)T-k=NDN^)q9ZnG@30o?|QgM>Ek+s8A#y>mW{xS z(rxpU^CPyt&6s6<3xiW+5uo^!H;Bh;gyVn6VXdRi`-C96_H*e-iOn`su;pYLVdjY~ z5`o9If$D7-?97-teE75}TP12Maq^Ik8jgSY!{>UU}Pma=5EN=;FhH`jm_*pTcQ@sg$0fFWQdTc+|Wu(ow$YHhr=}D|e zTdB8b&M@~HgUUH<{p0(VRwZg+&_I%;?YNyN+OGW^qRh3(0vwsGI$WiFhXWL*Md%h(WkYm8rNwNWXf(Iq4WTmZn|meDlq-)FCq`9B+rPCX3Nd!lkr&Abn3GRE!zR&PZzU8M8z_=fqLpnFf)b z^9e|lt!e=8=4FsI!g#zA1_}`IYfD(33~#wCdtx z*h=swH`SR|asnwj&DqW5C57Qkd;oOa`|`VI$LkfMgv~AEGd+anwOdfNF(sgi@oc=- z#nQFb?6}m6@gRo?3%%}9>rD|WVEWV`B7EOKp-+T|Vz^(1xxe?8^E?)38Ca&yNgG~- z0{zTnVZOt| zXLyCW*Z3NM~W)wDH zNa+1~KqKks!}lejQ0aSZt4QW>7e}7OAaOF zfy>le+2iB!Z=6Gdv$vE&x0lwE^S$Y16cQ+>LM1{qzm7(k=zy+TBE!Sk9aVOf=-)9% zH~~3_OYcTg(7PAi?Wj!bBM5G%x5t(DBNE8qps=M00-igJbeblG?wd3|#NUHDGLSj# zD%p6uEp`%ld)VVvSqH$jVIH-MGzb~OAn9hRq(?AB9%v8UMd z{o8o9*o~J2B2GD+Ti4dLNKd#p!*z1>+M@j}Whd6|$SJvaBL^#O(n+55{F9d9bVDAl zRW31y)N)z=s?cB7?T)b0#LnuEgkUnX5!5ezF_Tabks-!~5m$72!?de&qgd z$R>T$RrVdNTi3Z43FcY8@M+fDyPzlTk9qP-^ec5;6@iOIeiZ)T6Dx375WRiuZ z%ai@2G1}ZGq3XcTbwQ~I3P`Z#f}ZMUu91Clq`!Sx6gYq0u7p^ zkCiH9P|I)8-~D2Wp|se;g(&ec+rpvGH{NlJn;(MB+(I5fcTzl6%{O0`jp)9lW?bC6Xl9 zJlUZtFg`+lb>Jr3Pr}*Rdg{0VK}zkq_L=Y36|R6HA&02zF5)$5qG6P9(!1&Q{eCI} zBySB^XySG)i@0aMmqny(JG%23a+J&NhRaHxY`b3@l^2gl!K}OKorQ9WCSm@4IJwRm2wM4tR$^tU#$KQ1Y05E1Nt{zg=ItTA?@nJRnO^towcwGnP zHzFwjOkHjchl34$=+Wk<3FsmrcG)AnoK|7qW`L~&{mXjZXn(R!PfVm_&!|@Ka&rsl z8X12pCbVvbs%+nj?$-J;QnLorWqwfh4{q~zO#NV=J7P4In6^zU9HX8tc7+-p92!fuiX_^&S}UY;oQaTOyEIWo-_${zenZrQ6tpK^Wv>!zv7D}SB0OTd0yv%x%j z&~p?k++!L13LhjZ+x-j_5a6qkeNj&HB$eAHj^vuq%Dl05y68X0v&cIW$t5Q?i3;s{ zwrPD<#?rOo3NJino;6G|b~5|De`9++ID&F$@hFhRAhzD}J)upes{A6lFKjH|N3F2j z!t4&8$60M86xKGG850I0%I|eA0jvG!ON3Ab@>ISJ1%Vk;jVo}e%$n$y;xh!MqL|C$ z$#n631?txybG`2}$zlcG{2ib= z{I)bKMvc1|wppMEcqk*I8FsAx4=`>+lgSn$TPK|RCj9Rsptev8Xe%EFPo|OW0>O|- zJ*^K^y@WiQc2@P1dXVe$%r$T5z6i8Y9YGp#5yR0CLUsG_j?moy1DrHyt_qb)dGZKr z+W%{oC#jgacFRhI3F_CSqW&weRKiMu4&Q>b9fv74$?nYE;fh{=GA?aAe-bi!g41Po z@zG|to%grW&^juvZ|}FT;da}ZE16bizUjhvGtTN#1WpxS)ojZIlcxwQMZj*0b~0%? z?;^|l+FwCMoTC$J>wC2ik9YP3=DpV?(vOv^?87F#r@-4(}> zv>sp*|7=@H;l+a3{`y}5T$yA%_9Wlq&ODbO_uXMWF6NEJJ|VXhu%n;rd+~{AHQ{^v zkWbxh_m{y>#2~zbQ-j;l3`MUeNz@y6s8Nk6AW+0;m~}`K{09L^?BCo4sFB=`qQ(1h zrTge(KuFMIfadzubM9uz&icQ3nofBS0%v3!`1hecop`;7I)5~p>uopvX_ZKJFv8wD zV0i%xf~T?wX2>g5&yeRIRviO@s@#1s+#u#?_LP1;c!c=W-;nSD4OP3sMNvf4fe_}` zrvdfABsrhgSn#)@+j>rUq*RzlNIm7dhslBGW?IG47N!7dDAW73Ru#Js^<9JH-2=X>_6F{2H0_S$uK^ahwp{e5)DAZTr+O45|1$!o3&wMe+RQP3Y8? z>js?O47q-1kW^K=1R{cpw&LrDcB*r8%x3`M8K|KiU*EG)M~ETM?()1+K8&|Oosj^I z?*;)-FpNK$|f}8euLyLn3Q}`g9PcNXLYlx2T zpEsMQrI?qgiV%5B)tK@Tw+@F7`!>NBZTk77@b{Ms7A|Cyw~)^FN0uX>eQL*xMBkSf zaV!JvLzr(x{rJu@GZavzdQ?2i+roDta^F+Yl0Y5$Gi++=LAr@-rAlvfH*_JJfa&em zH9Id*)|1WrT~7r9R}~?z-?dt~hTx6cE8c|8QVoVNpDUe0bJvpKuSkC=fb29->YUPq zuh*lE=6BhMTw<(7nH|D z-Y`z~VD4&kK=#irzj`A)>j` zc%<1*0bo?2>(f>#X!LpJ20)2gF+110`x$ugbqnL)m<;4(LdS2Ov-L1NX?RzKm8+ya zapL~B3Tb!>f{y_PeBw!1;UGh$-%F-a`{C$FI}o)DcTO2xCC%=`Gl);C@moFUq;hKh zo$J!b%O#O(QeB4XbD#(Kqu_uW_1OxfU)O{_+x|H40lm7Xl1RZzRU8FTUnL&JlTN)4FKX-Kt+qo#}G<@>pIYZ8D z+)JF#Dfnp34%2|ptGxL}>HH>R$)asMP6wzP7BHP?4@WI^{)J^WpUUGZ!1L=wZ%IJV zXb#bD2J<*0SdE$zXhF~#<2vqT!pM?a(OWKqb3ZBO5*qQVh4Cn_H0KwBD@lt7658cn z3`yESw$LYW*^-+CHEJZU>P(JXqw#Du3JEDaQQ_Fe;a0$Wf(*rce-=`qm){jA`4!*| zBeO}|=+bLJr`N^M*$+YI_C0CENMLVwwMcXbBfw$AnALgs4k^Cq4S3}OyGUcyc--sc zZ~C;m(`;q08-ZU~MUP2f{X_BYeG>wN2VA=aPx+bJfs(t|V zzE!xaZQ_wb9LTS}$A1h{3&~Yyieh3yZte4*PgiF4;{<^PEBZ|g;a`-S$zrE1RFUZN zs5+7<<(dlU&84Cn}xCW=m3y$gpYh0hVWDWSjG{yn`lRPWYI$D*hgYaQNMtBhTbVrd2 zVL#$v)Z8)%zi(%uS_*4lFl(8S+K9WUuZ3SuxaslcYN<+P_NUpP(p6&qwC+CXmkR3^ za6H>Xa$0=bHG6AcI0B7zt0r4(Opcu{(@02RV}duTo6^72yn9zFS1t74CHHC<>M9z~ zgKF)f_2k+M-q~0$th2Tm3&bP?&^NKMP@f;gQ@ep zMiKzy$!gA4O8FAbZQXiXD^ER{toZssS-`C$4P=DlpGGF~e=wUFjB{2|BBIZ~$4ZB6j z9(wh#*zf!K6lgb51PtiM+d>YdiBGvzE+(scRA%@C8~S{+|33;!G!VTY3#Ue`RDvOR*y89;I^f{oZV|nZK$x8i zltPEPL=*{_9;f^f7mVJw@HK{qfJ><@U9hDDPP(Ehjs%DV-FpJ56OWDd$A5{~r`=(D z2k%E|`G|CK!Mg$$VnD4ARaF10oy2d z(`2(Rt$0^Z>=E5;Bab?=lDYVWz=z$LeVI;#ELWGuilk6O*k8K{_(QqCOI)I?T#3Y* z!_LHW&c>XX;FG52NoOYsc~DNIxqdv4fSM^)p+u>v?RwA-1TIlQ_nPoI&-2SbEA!8f zGyM0K9@#JK1+`z>uapsZoF|<-Q$7yq5mqC`ym^Q!^c}Z;?t*N!185U~VWaP+zqGVg zg26Br_0GLGl*z~O8+j;1J0#y+3Dc9lLl_j?9(v`GgHcbFX2b40(<9Vf_A-bCApB$ZZX$-6I*92zI}%$5h0;aOeCH>Il>+q0*EKvsp}CmQ-BZCQ`37T5IDDW z;f;8ldzyGxN(gPP`x=$n9R7HdRilq8ORI6n07j0clo-OIo#WY&n`s@l^XxG6sZvbI zpkgFFf-WK1R1tKI><5pdIJj1I3s+0>$6%QAyx#3cjWM9aT!v(6(dW_+h;$n*yCMzB z@i0tQhJck`@7|w~Xo>9J6tVzG_-b^L7)UMz6ngFI`03-wBKl7>n9F~sN+*c&^{K7D z9?3W@mEl24I#2GWe_A4rdrl{DoVN2E1L5_nX$McP5TRn7%}|#fe2pQivf%&w&m{A9 zR@;d@KPQRYNz8Ui=Ac@v^KGUb{@u3L@?^B_ls_ z_1RPYwO?Xn5ESaC<|8ML3`qbC@&1nSZT=V#(?jmjgA8&=dT+iQKM&GRd2U<^nS41X zjvXGJs;JrEhys`+0WZqQaixmXe`!$!M>NFcRHYDBzJ;40RubO-3kxvu2Ns(=9DJ53 zF^~}O>gz|gH8lkS`(^BvA{L&vm8ryw&7zW=AP$oU?is`=bW<`oh|~B-cShFsLlF00 z9~;S+Nn$rU9;0QL2ecCm$^r%QLVi^eRWW*eeSpZ^dea4&tmhAHtBtOTDnmcoMt0L# zjJ=s&0rp~%e8&USVd_A>=1!i&drT9XqAxYi27bDpS0+fqZqVP%XYr8JF^H9$DX>XP zQr>1H0I&*3Asv7p%I7=|@P@)PALwk-l5LXY>Xhcv98e^VN(Ya?iMrGC;%-a4!Jful zlH(cjvvRe<_nFN3jeD@!KNzrN@Z*VU$Qy`Z>8(cZsfA^d!`31iR&((v{TNO9c-ct7 zjiDL|7X@l<@r?0xmVNYFpH~sbR^kW$rq!VaXXgA)IX9W=t(lk;8$~_g^je{A`bJ?;c`DV%oei_qndm_x4SP zu|CuwZHpoJQZH_TBE!KnLr5W(e8x08yrGo$f5MZ&O9UaTEPl=cQmX)^mp$J9#vh3m z=fhX-gH=`r3Y+PvjPa&Uq2)9U>Za(`Qj+IqgQ=Gru8?uiJXV6t5z2>Hlq_BZjnaVy zl$`D)5l+Rguo+K7lIu-_Nru;}yhXIQ`P$w8X2%ZQw@VF`ZqkfIaX^g+(hEQravVoK zP*I^97sA{_bm&l($nOx>Qu|j=^fDzPM4A6){nQI87(Ay_MtP}#5KN5TT7vp*}D{Vxp)0$!se)G

    ;5B0=!aEwQt@>-^KwfG!&i;3gQ2M z7GSDa(S?}T=q>shh|2+0Vr1v*8+YV@aMJd_sX`T0uNPvQ0Q(aKxHsACr}NEY|Er0Z z{XbOvjD>^q3U!8|`TU$PQAaa<{W!<}0yhNweZvc1{hBK*0a=UR35C4dp#W@NER0&N zv#Xw>#n?nJ(hEcZuaA<0s|SBqSIv~kS_>SNSbp7pb)H){m+w{oO4+%|ne!ItmnxOK z$@ZAw3$gnj<`+Cq)hLt4Ft_DgJe*dHGOh+I&vE6;Uo_O)c{lV5K&6O-aZ~r%zXi`CW-k7TqdMQmbtsguX-Os*E(v06 ztq}SHZdpt^nmUs0w`T$X00x+686gYLVD_izCoD4vJ$wA|>E!Xt>g-g0-&Y3EZP?(2 z7X;Zyg;= z;h3ImezVIX5oZS3<6uL3v4e{^gr2`X6}z?}tTe@ni(9-0qXm?ObgAo&nBgrs1Ulp3(7i++52Wg z&6Poz?R*!DKK}na2zg;cqs;KRNLwq-`meWmp5G{RpErn8gv=rX>6(E}K2Gcy7${j? zUjX+$>3O*#?F8z?9Fv-CwXIpm&?+f9;&NrCY7=3N2}W3+E?%4N9Q%6nBD^g zLCtWJ`<0FRL}Ja`JIRQy_sg3~Yx_=!CJ*`+_i`QgbUo#?{VkF`Q{;mjBO@s%m4-o5 zMH;(%YnQkCJPO+6cAS~}#$67g){V=(&sH(6FsKac+YJemVb5~_41R!jkQY8AsZaiZRfYw?cEa)UPGdHhv`{360#34TssMY zP{C@{cfPNmoOdiZh#07jT7{S~f6Sth#Na?c=v7X~rm~FKsif8orUU@b<>pa@D+aA1 z%k?JBhZ56_6U@o=a!N`JL}mku(G~pPrXXlfNE;S?sw*lla@BWL7kz*Tg3%{V8oZmjSlbgdvUvT^GAZl%+Iz)_3}q3id9) zZuxh1ei^R8#-rL;CX6HBAAhT9WGmLrZB`H(b_Y3sN4vh>9LePI8x4KNY7va>>DnD8 zf=oF`XdP#DxWE@a0-xG&Q7oabdecdA?aI%s4b;Rqxl!|aA%4f~vO$TTNp~)D3HP6G z<$6XQg5@K+3gumD2NJiqs6aixgFj7@f&JI*K;aR`;`2bsIBq41agL~HI>P_$2FMH} zk1kT8HqQyP8|+?E*`Mv~)wst|zXFBq`&&KVDU(0ADe-Zz z)Ej500_9vmLo<+QqbBy-s?cdE+R~fpfY0xqFK&l^cDa0rywRv~=~l?0yK#&4d<$sR zyfcK1T9#=GUlY5wZ@Ao36BjH@xqt0AWt|F*RuD;+^moNYB>&GA2x|{YhA=IC`y|+qMTXtnUzmepAFuh7a(CQt@kufHCbZ}L zbySYuiHQk-?9NKnB_G6-OI4b^V=^gYO;h8SS=Yv#N zoXAL|GbM{cIqgE2K9e&U@3Nhjbouh;+bvX0@>#JE;f`z%3>y%QG1*6y8q$w-`;A;RySWi^Bp%392K;A&Fd#@5UU@`W?S5YBV0At?lql zD!@vphGJV!!gj~QNQjs*_I%D2_z4-)Rh`7lt)NuW&ZkpK9R5^C-B7lX`w{WF+QmaLZ*P-FRc{E`a-Ra}<*RoeN|AeO--%aQ*I6^4Qq_O`V;6hqI8)_b=le-g)f5q|W8kX?@yDG^louU2vI?Kj{>M8*f~Sr>Oag>$|KH z7nl{KLE86SeMrkjJDusp*kq~oK2({={YeT2W2_^t8}*^?TF4oV*^rQvOQ+dmc-edjuxB;OfiG?Yw^q=C$OxeY-h zKDlj&1jIvZ!}(bwMBzpPoXkW78T{QIH1Hda6IqMvzdCS6^O}qP;tCBSR-ku7g|jV` zaqCp&xT%P05j}x4KK=^aP5q+4(7HWirTCno<5sC$B;m&owq~PHPM-c7fVOuO`5I2P zH``0%y@)@@xAqy)6>-lnuUD`67NfRR`_@!{*5#Id&X41OaB^0LyK-aye%ao{+` zCA}o2J^!OieUrOX7<|YN8PkF3ZDAShM{9NlwF(0MFcL`@C8xEp9@`XbwmCxoB9-F) zu2!?ji#Utj0%K?}nKm{BF%YX)_04Bp%2vO0tb3SJa0358X16qFIcUlRt4 zhIj8IFHVACmQ>jp2#Lr4SsoEilDHic!67nk81pRp&?3e#bS)6_VR<*ToTN8eMzIy; zHv_)A=(8dJ<$Uz>acYB&v6=VerE#|%j*UPxf%hcz=p5aY zQpVJpAdrB#H09_PB(WIDL}Q+>X*PAP+hUXf*O~T`S>`-lzr`CL@7uSPB%^){Xj+%lqu*(q{;G1g z964`Wp&9`zKHI~JXIXEp0EzfMd&2wGWI3dN_L4dupB9$vsYQBnt)6Y|a$>25>8>gO z8BlK4KLQ;&z0Lg82lr;&{#Q4c>HN!Kxz0G^B`<3U!-wX=Jld02n%-Q;DMoEO@)YGJ z`b_)DCG$7nx-PHn!R0Gb_kCo(P%0mEo6x3NN4}3 zOl&G;1~!YoQo8KgM(D%+jKb1y8C_jj6Clr={P=j75@wCQnfkc2aPK1%l>Oc`9IZ{| z3-0-1*oMd4p8Q)~tnDa)ZzdRXdc@AD~Z!EG!BMH_Vx@H^02GN=;|(Hc)j zr5R25_1h<^Q7PMk=(9O&r0+S0FC&vvQx}kB>OC{VPk-3#U^ypannPIV)=Oym@JZnJ z?m=s~hD|14&PvHbnD&NMp$hx=!cg!T2wpsuaS%*VA|M`JK?Wp)g$0pGsnD#<~1ML!$q}urw2Oh zRBlf#b(CBt5hcII+smpCBE*6^KbmaO4 zev_=H{|estYwuA9dYXf;iN*r(G#oP_ijk2ii_Tmz^7_~Rz8|BlE7}{D6AH+{80ozu z%9b6?!6$HPB>C|@E-`_}VD(W-f$rUE+4^(%aCHhrXb6ELvrON?H+ghv+>eKo!=Qdz z|MonUj@Da$zpwRN;i@TyQT~KaGS|f`3c@YVU?7Jm^^?z_DXia7ac>hfEsvC~g%!SlB7_U~N|RyKhM10k@=6mTlT z?+pQ+tLv32`WL3rDrozF44%&%s~$$~F9$U>)JER;`o{A5qL+o^`&pK(i;d?*ps*co=swN0Q7`B?SENVy2Ijd0lO!g5Z%H;(Sk?wc2qyxSjr zTosZhzA{CXI$Bn9rykV&ZC<{prB*#%h06C%b&xBXGEILHH7jW*8;&NVCOl$q<7@z7B!=Ut)MUNH3h)b(zy_HVh7wdX8t+sOklF z7%YcT+jLJ(fEEfwV6tl#6ZZOs4fBy3+&{rNpeJAjnVGg6vE%!hLYBknS@OZ;wnHAr zHr^-yy~*Zc8tLQe*xnUxid%3d$%G~=9xQC%bu=-s9ET)jNfrqJ%vO%q>+#Xly>@RU zCE#621bccfl;c0_nbh%Z|_&91-`vD9~n%v6>8uD2bWra=<$Y%qjs zvuoa>RQ=jb35V27Mh{Y5rGZyZ36%*z4NtwU)%TUdB*#VbZPbZ&r zQc7%ebKMbt`Zgk|f%SZD4Py{J5Q~VDFcp}q_FJiPftDR+yCF8b4RhcB%GDzvtAivT zPF%NJ-Z&8%FaFT$%NBo7IP#ABz_~lic>$B6f{sflMqnTjln&G=E7VVkEYyn&>$X@k z9woxvcm(br@~8~ST}Hz1;sVo){ACzo59n1c?Ybznc^lq`(IzWDf5H$)#w|$&19YKe z#3a3J{oYoH2Kv_s`PeMqK?7rh^^Dq)MX&%*`e=Hept(#M&||dZhJAImn=k8>R5U!E zbQIba?CK)yg$*z%|gej zDU;Gx?$w%o$$1x!i*-tCM>Nh_h-c6|LCzuli$Ly+AQINXSh~Hdh{Pu zxr;A3o3>pKmmxWj2JrQvW$h@n0&5$^CcO?g&aWPg{+%)`MsncpDa98#)|)tqMoE!$ zlKbP?=s!MJ>jxl4HYt8>=#IgT#4vAPg0n8#QbeJoa}19s0Il6I6R1XOqmb@Y5kqeO z!TGf%E?3ra;8UseNXH`AoV^NX=X7gHwQ>oSFx%Q4*QCMNDBOm<|5~+bgjLMIyucy3 zt#wsMYgVky>8%~zDp4mD{G-Q3SI@jETfuorNEW989bRalGS(d!IRzH@WNrEHxM14? z&L?nX*8$b=Y;i(Uc&0bv=xX@=df{-*1){vHq5t^!>LuZ1g0xk>()24}JzOX?NkDwL znN9ce%|F5&&R$3#(7xcl#;`iAZsQ>U4h4%40$>bRt60{58u@9HZ`slbwXaucV8J*b zY;K3`#_QBQ@zxdV$Ptv-s;|IdAUpFJmi6-XNu`>&{ke89SoMK*yj;a(j7m#re74v8 zDsX#Xo3xOdApT~=;k!m`!4O6mnZl67N7-xUR=9HbZWO>XVj#hm- z2NpnZq~%$-r2)tz?YdgIlw=lz(AB;E8DUxz&vxM5z_xY@bZFd)191Gk+LV4K}=VKKd{_^8q?(VHZS~P*tR=Y z2X*vFqUn3PTmY4tM8M-Qm!rtzA!W^U?s9-JYSI+}i-my**Wg5W;Y;EnSz%mb`A3qT z8VoF2O}*qUVq!4hpktm`4xejNTE9>FQ6!eZ-jy9DPO#@};kt}?Nbj9-==D?({`s#9 z{<{!p4{X2%TUP{65#3T1EBsU<@ zYpUG5;#agDTpPIkS7Rdw%m0urySfzrIjv4gO zIiocNA}a>&wrl5TW6?-!iAD_$Vd1(e66o;OF3)?cQ>%_(0<>0kWqzgh7vkX3NH4Limc1B1DuuUHchqrd_Yv}aztn1Avrlna!W2?t5YR-en(eMV>_}D} zugzRq7Oo^UA@VF6Mw1+}ECZBaz#>C~T3o$f_%Cwr(`@*TS2!M9O~ykU{Drphru|yJ zeVUMg0>ibhJMwM26G>4@w!x%dCKV9o9&+TxVgZmx_)h`(^~@O~Qe33GLBT57g#8)h z*+m#wj|Zq8SNo~q0Ea9ug=JU2K6r){fSm&YvOymA+3Sdx(WV5Ve` z0-$>p>0r02T*zQ8BFevO9mJ5nE~}{Un(PY#uGIL)58F$N^>YMhmWjaKb@H>flmA(k zJzUp|KQEy&-bv7bkmNkZQJMuDbT(lj6j~ z5fju)x)5@XwoaR;1Ajoe|A5}#0@serdR38p9zS$49()n9YnlyncKhy z1FEc}xI`(=I{^zhM6V3922+CATI$U@hfT(sHUr&#!KHK=3vj3uy)$$Pv?G_uH2SPd z5bQaR1NZdpc~@`kqQMq5mtRnwZ^Z%y)J|gc$vH@FUh2$?Yn*ULyy-&gzH%)6msuu( zoZ8F_Xga8L3viRi{F&q9N9vgTDH=aOIU5BKxYU4+Af4*+Qa!E@aHw9p4_8ZvBQ2q3 zR+pbE0ZQsw;m9#tYW_FIHb}sA(JCs~A}fxwo@YU3C5Z~>cj2!vTT2~tI4PnYDxRDk ztinlBZU!8E=QdxEm(oZi+6r%LjiW}R%yXLRFfS-7?E5+op{zM^`&#$FyJL@0fOI}a z+E^d$q48bLJOVWCb2Rl&+RPLUOh;J4y{0wCdXq-l)p1JH6m!rC^`BRI?h{|kwa977 zM*J}z4cdN&yB%jMvTvxWIJoTQp2&FBCt%O8Tp^$xpWD4AkjX?fjQU|Ez)m8aQG>0u z)FuhyUe+l4ng$Oi5m5X^(yJc72~TLRyJ&^&J@4O7h50Gs8>$}saQSe19JX=xL#2kj zBF;!o!a%xl9FN=_?4{q_M`Mm(CP5Wt$ASgK!slzf!neK0L~8;)W)r@<_&39%Uez-rt08Uo8z@WwYMBa+Tuu^ICB1ZKcAX-|3 zAhp)~Dr$35d7^ zljG;<2$nb1mmlR@y*dtE%c~!y#?}r@x84!XN-LPCd4IAK=4Qo?#ioZ9r}a_4{O5ugp1hUe5Ob&$!-vQEM#R&xU6d6enRgq`$5@;D{XPW%%9Bj;Pwnat7gg|J!_^H`TYZn`+TPaPolNpnk z_lD;_Y_u)O5tD7Y8G_0?4I4D1T_)#Q*o3wD^T)1yIT;Y`F=2+1Nc5QhYIQ7p4)IrO z5%5!fYGA2s%SysZ#cz4F={k1CVItWd&+?ke#h6bRYYXJvPpxWp%wurIvb2Aasfc6duO5P>qEu z1>*5g!9{n-s!)&v#gi$%L}mk_zBOWqj*SX67E*Ow#;IX+y6y=Nh)a5YJl+p{+F^*aIvKtR#-xk^_MIc+o7Bq6#vE$Z_QNbDLjMaUZ32QlU`OnV^+`j`*!kB!*raH zBT5HuSDz||QA)Je5Mh73ee5LA_kw{!Mu>C0@vc>bVcIYDh-&_Fyv23s0 z7i*S(mwCTlJ|);&F+$DEtOc%o?JNTAT+DSoXQb8XaB4PFDEW5`=s7r)Gq?<{OId;B zqLZK{avd3=-tD{JMsX}mYE%aj2p1$2jS@Mi^I8O)VyjgbABum;qu7P@BKY|q3RG-+ zU(+7?1S%DQve_OUOy5#U^j-iwINL(|3HN%{qFAz;Sd#Nu){4#UdyqULNuKo+^+11Q zCVd*4dwUw79+YlG?5r)SbbC2!rW)v<$66{w&p_aGG7|`rWxTjtle1FtvWnBhbnL#} z9On$@jQ+dGVKMbyv-GPaw|NmkZb=P;&S;Vc6bDq0`}@$A%L5|8+Pi>-SSlgNP3HS? zzi@~*eZjZfbb$#dLYdO^BL$1a}2j7|imyf;Q=K!kdjTT|g+pRM>sWlk2$ETkFU_51Ci>m49R+_DRKh0iF3RtA{Ij)_?srv3jgvc~ z5CkbP2KlEQU-_Ab6Epzyxm6iNx2}Sx<}gd$0I~fCfklO)w(y(RR~?y}96}4L0rmLv zm$@{xJe8R=?^}2*a+_JuKfozBFx1j~8XCbW7C-kfUfk&!mX{pEClmD7@8gywZ`T1c zf0h>?1f^B77;sC5JIAj>G;K;Z0!GT;zX3MRFJKnia%4%86G=^7RMyf*G~6R~_QM8e zB#n0QR?0ng5o1)6Yh8UE<{voZN*5pwg?H+u`nt4*R-P_8RsteKPzD2n3fKzZ?j??> z#v7=ae*y(Jc5saa)t9hUP!T^Hnsoh+@%-yda+WSSSuMetc8L3KsafTba!N>N!0UNC3kq`@O7EB;i~dVO zfY--4exso#J0qav%Ck5YZyAwX#oEj%gYNiOQLBm>kAyQ`ZZ&Yfj}M9W=X*p~tJ}l1 zn;9T*RXEpiVq=MNjxZLnG4qY~8&m13s+BVY#G5n_%`vH#Jg3*tlP2CDav^2-IQsN5 zi0k0-qM2NmoAjTLv|#T&a>FPMVQG$X?UYlfmB2E2LbeuNzFSDA+*^7keRxOiGJPU( z24iZEshAuMuSBy?X*rm!DQZjyk#m%A#70?ao?LlDpL~NifJ$?9TKIjEYzLG z&I5h`md5`JiYqQ96AG($o+|$&Od7%_rl!sXq&tPM_`ZI>SWn*!O9M=3Dx;7?)P8X> z8K;n#nfXt%vUgFog$G+bpo?rW@vI1bT78|w0+l8d-+;%LnVO`>cOw| z<47ft)+t@ky|``!di+mc-q-amNfnqW_b;XWzbwdITt3}K?hIq~f?F)SK046+WY6P_ z*gU_a1glJ@L#4@qTr#Lpxq3{5dT)QxF>2^V`3OR++#s3??SC6 zZcb5$Vz76b004^r7s2pQE&cnP;9DR~6~2$r@`Fd0U(OxUvB??K;lDFX^u%yKX{KbB z;`9I9nOcAoUKZ`D0zp~C)Y)zcDq)S3LTE)T1WWGj^17RzI;0mrpdub08M+^GUKyiu zw4rUdyWA3H(z4Dlk(fE+E$6N6!?XIyKyd%HZ&G3LHw!~pW!6%hk!Rt=1$eGAp|9q; zSkkVX(M_j#I3I?xcAGvvtQXNLLyM9{%+VX+K;=qY2u!irwURa@2$4WR5L`bGY)`?y@#9?hLoAHjb7g?Ft|MLRs^6^|twXsdeX%%~n9waXVR9@F*hd$F{BPidzhLd*p-hMG$ zHKLz-XgZ5}N$csoCCG_r5H)m4>5$=lWqS&d#D^Y*!Oz`iAV8TVukb-ES~^`v&M&QK zUeXUZl=eg5Zn4_z@KpIKT=7j?MOh%~koGun5KBu-j$+`}JH~>U=y;wI%Twz)$qc*6 zwc-@<6R2S^t51f*ne?lwL8qH{>s&%LMUyaZ!oHs8eDBD{JY7C#ntDsZoAX1H;(yhB0;(S0 zn@d3Ml_=B~pn4)n+6^a$6$eMECOyI77!5`%y96@p;&#!U$F1*(lu{;~G3#8kKrU@l zT>(|ZHLHB6GeJE2?@W#OU#AB1BCJin9_ zEHNNOIIA^3;rp9TLwlD#TV;KJGMnfv6y*AK;V0@8h%GFmRgH=i0}U3AMcin}(a&xd zxi%}WB>BtU;M*{apFvI$Oaq?&Gq_^~%9vt>R|%voflVs>VamBi z9=0T~^YkXsjjx&5Nm@BNM6oA$ONEn6_*hUywPvN!h+w`O>mIvF^j_R$Vi?x4paA=dr9i?TA|vTe zHOvC@-b^kS(#Pk_na?{nr2%)aC>!2Io$h0$JJ7vgH`$MvFI)5FSQZ^67%((Qh+0~Tbk93?QCfY((g$|7vrm{#DW&p?qquEQF+98 zOU)JWs__5mFGZh#P=S5(lp|?dzsi$h`@OpeV+SLn=gz}d zneG!N-j>YAW^1xg)n|@fZ$z=)|5a9me=!y(N?w%^=Zgk6f=0@ZJMggRako6(*Tgk=i)AJ>k@P}S&5%AB{9{>PtNXJb z<_%c=zA5rxc7idik+8I%gK4}Zv{N_W;3r^QptgSH^C&5)+1h64O*>tkyR)W{^fFUM z0+taTHQGB{V@wOKS@#prqyY6xl7e_Ezibz6){l(L$A|)S6dnuKMzj(#SPpZ5=-)J5 z)Y7wedGR9}aqQ~j--gAZ-32p+wb)Lb$(kNFf7*6t_pc8LSvi=5)Adl~!3SR;mr6zg zyAYkEK{OG6&fM#Mh7%1tDfJ{f`^bux4jAH-5Xo^IT)py zYf59gL%U~WRm~PyV^R$vK{}&Fa$-cW;G}X(fWVh=?JtrpoHdwfPlVF4A%6CSNMpV! zkcOOcp6JR)!p+{d1U5TqZG!+E z=GT);Ev&E@(>P^g7mP&&k%O2R~0tWk_tAxbBgSABnQEHbyg;f^44Dscq?Ck#x zgRkGDe318)VH(O#RovmW^S&aV3FZy>+l!MKD?z1%7poV*9y<4i?dK@v-Y*4Wz-L=G z4h2XxW6b2uXG3HoaoDL|*f_q4CXARwW0xO6!dJ6+!zZ9Z+z>r*+I#rcu@kI~)S5ND zwwn8w)2`zPJvhNlgi;NaD4ec{B=elXZd$jA7}5?m}p)10q35Q<2eu zKq1?r?N)w|FYycuLj0Wh0h(hQQ1D(`Ehc5o?1p{a_GS)WT5A;z~dem!RV-^@7*k2N=-iCQl?pZ*@V1}8Pt@V`ht z2Y!Bk%P(%hAUeTcXjPC;>W^G7ZfTyWo&R^6{r=Rn1qpmk>}yqKSc>R8HNKJict|o!iy`R znC>>ubZVd7x%$a7Ga)|nc(g?TvQ-*Rtj~>w++wvaTJLSuvqo1l*-La%=vs;h@b@=+ z=>wihU%$MT*4r#LNEYaZfh)4luzbt5{pDz0U|Q+d(|db+BpUL42{;%6zVe<SG{6rN-wiy)HYq!dw6Y^_C#PWNH*e^qcZ<8@Lq#dARDIf!i2+UV8f zb*7hJxgx!JeH^1JKrwGO(!6{%KWzzM5gyX$jFjHoeC|K(%=bNk07MUphOP?p6bwS) zCm0x@@}rVwN&;*9!8Yw7$g_}l#(54gf0^fcb)>;lx9aUbD1SE#Ka6&MTqWJbYC9~Y zmbEw79pzU8Yuqsr@HYM}C57UZ}&o*4N#5HH({QkLRQXZbdABoYB zVHY`-tp$`mJJa6iu@^U}r3P_q*j4pp3vex}6ytsrP`j943OIt8>zC@QYNp!{ZJ%|$ zepkC=z8Sopa!m6=L7I@r-pA$E=j#6_j2rh%2w><>K$5-fTDHG_v^oz?K@zy{lm>em zxvskbr*Rv8HMdCQ*awVbEv#0B|1+?^n@UIFN(tOca!xw+vQ|Fhc+WcHH`Lo|up$j@ zY}PW+lY}Ib<{3D)Xc-TUuzm>@d1aX_%nJHd!CIL?8r`d9%Cl5%dgjCF2- zBx>7}s5o#mu6^%|jRBjL)n}W(o=qkMOp*Ipb|iOQuul?stGzH0_{=rm&y-vbGq1yX z+ZaH&2HF>Fkf2yG`h>k4XohP=rT4TrWbkXAcHP5gb6tz)p?_^W*&IH>{rZ($7=W59 z1gFc{k0scT31l(8t7n)u8H)LLli<*1e~bH~@1y^X)a^+#gfub+&leS&(&KEt$e^Y1rF*eYq>dA7Ev7}lx86UZ@Rc3pu>~}ZUzjjg<5i;(O=n>^2i)9KP z9S|Xsuj_k7sCYG+c8{Yr8J{Kc#@>O2rm5pe@9aIMYu*pfJN>maw0P$CJB*`M?;jN& z7k1GdXsDw-TZq?1xkw8%b?9$fWL~LEWlr<^bk+<(RHtyaZLRVGN zT&RHmqKlKbFCy&Yk*1MP{N~9mT}ynMY!kZEeY zgQam??m(W5JY;cIUPe+94y;wZ{gZc~660DaLr{j%SSvS)VS>iN@BFv25bMY3r?$=9 zLuaPitl4j}e9!Q8?SH>|F@kI|?Q`9h$B`R7v~ni)GwomEOg2tK0D&7HD>r?di@~R5 zMJ+eNKS|(!ajQ==)mS+Tw&gds+|*iZ1_eB#wS1a}}ocKWmXGSGmFbV297}G;_F6fOPuO+b5l+~HfN zoMv~!>CvGO>e;f(R&?IEgA4TQ4L$(Xb@GDO8P>klGqn5h!SLcEj&g1;&+gmBVDFM& z{C;<`h{R4<1gTA(v**v`@tcvwE5*x-kF)2aNxFO)IWzTElBFw|HqVdSBCd+@CYBdB zFiT*qAO9eWX297;sjgXXC(%-CkEN%A)KuHR{!P#8WUZFZ9f>fe9*?*2d>40&Z0N9J zJ13l1)rd@V(_OUF@hVrX=X{+3tBp!Sn*jY8k@Up29p&QP&R#A*5-;1ekKc=d8x;f2 zfUTo(NEQah!p+ntcs}!k;>)B@*h(>O}(#Lh~@3%Im zV^x8G7fC2wGa#GU3ht5KEF0OQS(@(S`W!aGnPRR3(4%v`XTyhU{vH&qwPUv)&~|lG zRS9(wY@B}DjcJjxEFxWIM~m;qdTRht@20L0VNL4C*~)^N>WaQ_s=Su#1~*O7 zhj_&~Nz`qGuwJuUcgT0Anv$=-AJ@Z@hNZt`Laz4FHtmwH3Xkhw4?^L+fS1?YeMy#*Zjb%0`&NMlp(sfdEh;=&yScnJO{bi}W`n zgXA96Wc~#t#BoKDfk%>;Sh`9SF_GX~T&GYBiU4O~s1eL~3?gYBF`jrwSg!b8L>`J% z3}|#?dhEh-)Dj$MATF6Qy|-%dbRb5)T0SS4a*zr+#o|JdLi$2>iVLGgv~+aT?hY3hNQFGJ_{sPVXwj$uCQQWTH^ z6`6u~TD8j~zt7lO^vPxiPwe0qBy3q&%8iCaXR)1CgJqk*USEOuxR0Xy&YvqWC>|&) zI=-*rMEi(%{kd|H>38cWXTVfTG}aRzPo#7|PHut|j#%a)l0M^_n!@ai+l~B(L?n%f zIdX!notAb92Q5Aq%t|%mA|6B@l#7BW4kdavLWGQ12#tGBha2pzs+QxNYAGgJ zAo|I&z2y&j^3@iS!?y}9a)gu>8cgawBB|@0NZ%Ncaah09AWP(pObR`&oT+60;=m^? zw^O*D63ojZO9~tO%Y1r-@1JmNK2?t3e5%%GW*Js)xM^Z}!}cDgE7xUyR|?srXZk+V zfCL2u=YodVDAkh1xPrxL5rRYk`0wg{dBPvT*&gTTVR_viySt|W>zArkR&&uRDVdf3 z<={l=p!%^oFhgyG0T>9X&cp~|9aIHog=#6fSJ~tJ*jNJmH*q5SAH`n_S^LOXC|!|C zR#d;L(=C#}Qq9-X()sd(F&R7pXViCOWb~Yq_D7d_mLzbkD7oTMo0iYG?AvmhR@=6@ zRvn25%@4y@?FP=*SmUuHPF5w?K@j~G0eg{G>`)hRSDE}n=pYyI{)~d&W%BLG_TJ@! z-VE{v2?Au;DRiWuKu2aWSZG%njB*hes32(Q62z6PSzJ_ugd!m2z1%BlxqvliK_SkL zj-IF_(i6p?N=m`a_res1LV{J5cB+5fYHL?wM#Yd#;Z5VvI9tt^H9ES&Y6xG@1|f~svgUjb7kMK`^KT4=csTPE_R zJQJs+nG|rhX`j2I70_h&@9PJ<=gCA59oDd()BQEebPmdqReNNU%;>Ew#`22Fs}n5j zR;1Wz)V{9FIUG^0(TcMDx1@Y9VP)w~36=i%mLG9*NU@oW9Y`cUKVQr-M}=Nl8CjG) zXHe`o{6|(H;*a?)qY?`RW>h8wI7Dr?@m2XG(G9!;L1j@}OjSfEa>&&AeDPq@izxR^ zNc&}%uZKfhL_mj#2XP#Ra)^tE{I6x(3wpI@1#m3MEa9QIc#J6_nzm=zcIi1p_J>nV zP6H9kQ$*$r^{bF~euuVmfvodiMn8?*6GB897__{&h|P?eOVY|o}un8nvim**-AZ1Ba)eZP{SuH&0JUrWCyE`?~a!rSAu zgKH`U)-6MWRyQ#w3Ojv*^^KClI4~jq#yR1iO1p#@sl@fCGRquC(JTSu3|P{OdKU_v z1!ITYvz+3&Mhx$HWznA{{lBY6k(E;$QHLYO!T|ul)PEWQNk=^3v~w~R3FQv2T{;V075B6 zb!1giLU*ZNVleu{h;g@(Rk?bhMDuafFhoS*$QvaVibX~pHLB#*TvT-6cCmN0DlQn` zitRQbTF_Bl=BHu!?#cc&u|r-(@4{!@Y)L8(U2Tw>0c0f=C2GYCgO%lA zV3GeTfV{{7yE6$~)u8~ue=8oO#KXbal*P`>)XIp(%Ff8bjE95S(cU6TSy37d`SX99 zp~=cfr~m*^kbOcqAVNb*T9aj6ARq9?a?%ojkN=kZuCioE36i6XHslxd!T(mMR0j0_ z&%EH7eWvH-i=)0E*xDfuU4AS9TR6;#1&aw~q=w2ICx*yudx4AvlBxil2mgpjp#abqOJPzz^HaaJTLtt2dn(dkBKwWC8u z;N6WSYx=7-OczkPNIfoWZ+5~iGXofp`!~~ zaj5fIal&xJaKVAvuSSwKqDFAmA%%e}>KdIzM|AMZfIvFiyZq<@05p`j2sq1B&$A|D zbQ@iE&Y6NVrandzb8L21^6F;LmX$rCVk#}@hxoSfh^256apA9f<6PQwl5au5Okd&X z?^*vaSj%(j0^qSRc|t2AMJRB|DBeU>=aCF)NWKw9AqG-aP*cl7lVL`Ev~*C(l6|Kl zQ~@qQ%SvDb07O)%m5Exlr~oU3>V0R2*#alwME)BMO0FWOMp_Bt8Nua#t9v04l@|nQ zAITOG4e>_R{Rj$MqZv6JdGot7O2S%*67|rqKcQi@0KpWJMXp?HgvdeUbb-*Y0C+e6 zJTz3Z;KaMr>Yhm1?Xc3-rq@W#dpy2&>RV6q`uh`8!0X~m75B)mr4?aVt--Beswk0q z8RKkmZ>$^7h#AfD(Qkzh{~|Wah#vw&)n+sIx7f5WYP=^u3!hL_zzz+=z{BE-fpOln ziV-CAB*AyCacH>a<}p$!GX!$V_&C%UW9^0-oO2qyEHYW-Z)p3{bJ7ugAdwlC7hFjs zAXFF(l%&xE!eB;*sP#RtBQ_I9XCkT(nS87vozmJnr;NfRt0BgTqLO!kP)M+_(9y#Q%BOG!UX$Kw0ELV>m6o*JDICBH z3{<3Mm}jc;l{aQ2uc>b^6{Y=KrZqfcV8RkIY$P=x5J%hwof1?(oD>TH_8KY&7W{d} z2@6=?7o1@>)8EeWcy~`yUw-(TB29Byn-nNgEr%NHxhx}*1REnEVcH;r7d%9PDU+1n zz1<%=moKql*5@NthG0T-8Zc1x*;4XlIzQg}cS9}>4mXS*eYJ>%mXyf8+CnP-!itdw zPG9AuAuyQZD~T$lsA!5cwIq~_2xkebRuFU`t~qu26TA{et>g&|*89(y0EXxtO`d$< zd*IF^g715vaQ?s7XdXmhG(`vPN>m@oiZJoHzF6$w^O1@|Wbs70by3hPrPAjWcGYGb zaXvnFWnX>AsYNuSEhX_ub%FFt&MNP&1lkfY=H(^e{(>D+Ni}ek+q~GwqW@rz4u4qFDx-Bx^zP26cLeYIGj9TN|^G*f3zvHqDpq8_D{d}+gkn*yGX02FQ7%U zaF_aLw4P~ug-=vDEVefkT#HaaZ*b&Smq+!lf96PKJ{Q#`Cf{Aw5E@!6HN;ai@*txZ z(bC1VKrdM4uW%o-tVA^st5@vJl!ii5g(|pTLL$jfOvO!#Cb9<$r~aQT7C2BV8#?-X z7NM@XUgyVFB8DPrksOmasT7i~o}Q}eDZk@U{WCjx$H`5ML&tST{dU*(0mK+Q5{XKa zvRE$CVb=2$U{&XLqhB8uCMMQrTAZYCWWG6vewV)ih|NJ zX3D!TYG`UXbWQ&GR&^cU#rkkujN%O3{5T|3|6=3#jn}x5*@{pMOB@OSt{6aM`H)^} zc^7fB%kLO=Xwj<1>yb#JdMfAI!bYQ44*q0SEmv?Do)QK8T!|IV5a~9f%6QJchbrpF z@_M&IB`3^c!zW#DXxejC*84c-rFcx)|{!SY5B~`1`OdFiulJdDq)FsE<&l$dGtSYZ@App)>WAgPNbkw-`w@ugC{p}{N4v;_5vUq>Xq}N6a_%~;B z`%--5IyTvxneeXPO@bfy>ohhw`JvXObI}iB_*gT(^XkqWfbOl~_v`+yiiLk-{FlR< zMV{Xa35Pd&XW4}8i`?dW%nERypwA^(S{uMCRg`MO>pxI2O19^56kOMu|+E{nSpB)Ge~yE_C8 z?z*_U1owCI``1(Ne(0*1-P!5szSZ~4Ik)fCu}rl(HL0uv)`GI{HrgD9nR{uG^V`w8UMTCHbT*4po@Gt`7_>g?f@eJ#9LSC1h|^VXL_u8Vsr{| z;1^M>@4|sr`OK&AM7sc~0&$BC5$T_)B@t!pDjQUWIWwQD>ey#7i-;60Gj}AQw z%7XQcF0VOx!JB!uNys1fcjaAP50K0CE*(@fE*otP?M@{=8C;qGL<7n}5h=1}jLJ`R zB=E#o%>D^>txwtN@0Uyf0Ux(*4a8iW)ARz>*#?Y$Q1JZ$BuC_1+aTISKqN`T{p9G;7Z#9@u*A3EHmjI#v3H>D6ca0iQqE%>BN}|; zlfBYa!Kep50J!pURLQNNAcN5l6yS@(g18$B&-qe|pWE0)n%x`U(*ZX3Deuyzy!-(` z`!!vbI=418Ra*){Oe-_YNC$5h3iPK9cnhhOwpF8{ML;$icmiWR{)wDa!roNMc0FI| z2L=LzsygB}I6j>L)(T#l5C+&c$Fqp%;E+u&$s->fo#@B3X{CKN3g(;Yt_{|y z8WAHzX=x7FWUR@^vx8CxLqV0M%ZnyqU{9voJa;Eyf0X0eG zRi#gDC%tOUN?Dxc!%;#QNApgZ>V}tb{hwa#1|c6NyHeJj?bNn9uq#^BUS|(ZX4VCC zZb_YiXi4^Yo!sK%!MNDmjv7+E z7Dt%IM^0~vORaZ@@s!=<>5UZ1SFRvwWDzATS68ndBT^b9m`nYS-{J6=@@|>py_X+P zUsL@sru0DxQ^TaefG-VAsN-&)jRXLLr7-)x77QB*$!Yz#gHKUOJCjT56> zwCx>^LqsQl(1d?7yHs!)?Yrfql<3?0z7P^Kee>S-@7MRaX6RqMTvY_R`E`|*ujjc` zpymkfaCH;+yc_O5wY7jys$MsCK`*B@=WJ61R~d-#6w>j2n_P5)nuwVWGo`<&p#Vx9 zQ5{$S`C|uO?@ZpUq@DZAPGK>eFnTc@L}`pTtVVL{7Po<2eBDD9N3nI(R`*!sedDi+ ziq1XDMNw>)Gd6!dF@y_*TTCn!%nrr}A%9x+PYBLxxVQ-tLCUE{us=esq_&cTIgf`Q z7;4WmRh3g7c%VTL{qY61Cb`eQ_A8`VVQIG}P9#Hq03HIm23c4rg}u<-W9UkoSfM`y z36(gR5>_(BCoG(njKZT7q1iqIxLn;1SMkqZ$Z+yx(#i2o-YQ&|h~ehv=lO0@1dmj$ ztgHZ1CW>;2`T2unl$7u_iB?!7I7DB4>^F|5z2+}3s>{kWuTD<08X92r)0EF1{CX^W zr^vrG)j`*Js>jyevr<^Q+sCPP(AZpE6YcAP@KQIX2^EX9OG z_BdI}Pdc^meN4ag3-v~jOLT<>u&KYlf6v{^1~G|FMkXb^xEjb2uDr=TC8b2m_GP11 zcb>UiJpcJ73xYztIBo(!<-9-cv*C4`&Qy23*{C08zMg=S^r78BZ>_)MPzk2U2gMNe zT$7V3_&uQr^Glc9;&W|0{L$qydL?knjxYR*8x(JDM-LI(v-LElq>GsxO{8bta}lkq z4CbsO+^ResJV%lxXWt)&Zoa)UpC0tc<2Rj`f1^ec@R*UzfHC*`JHnMkwf@q9s_$rf z;>&_AB{EWe$<*;KpE%*w-ulV}&X^zJXg}wLNa*ywmKQa3iJJ!lw$wsA(Y*o6Iw_1? zH0gBc5%&a%wPu^~ABS5fd+Z3e((M6RXi4n($G(O|1!eJyt7HtL6p;mY2&4_WAxBBu zl;X?Cl7*)$aA|bbVV=7)Az!WhL=fsZXJ>Lz8_g`KSQuuAl{wub~r*48J)7gy! z$;$XuYKTR}lriYy#UQpRapPwDM#!Bd;OP;pdFe4J!o-ANgC2C_d)KJSsA!5?~QoRRo>D$QAMRXPE>H}}Cq!=`xo<|b)*l<01buy~M$ zvNFRbmX~I<1aZ<{GH50t$+G(eo(~v%Ik~6BdgK`IPK;g-V3mav0sx)_8pA*_6gy0H z9aYKk8?PgcJ1P8PEN!eS*V(Q1gU|Evq?Ywzf)|5c!6Otu7L5N~uoZO(0$}$rzs=5j z(|4~Pmu=P4zoMplAY0Al&9Z_HpyTvz0dp@cE9iGe;t%T3(QB71|LWlj5$mDeGP=-l ziGL{t!RU8!;#Pr@;&WwqxhVj2A7f*CO;R;@v_f^n)n*Nx*>0cmTm3upF>>kYyF}=2 zFyh5^2l&wx#d4Iy)6+8f0b1a&R!?sNV>95$o z-}iBu)x5kxt#`i+>$kY!wH)2KT938ds=&}i-d*-MFPmlDUz}6Z3bKXpJ>9brD!U(! zu0(M7-M?RMxEtPNO)(^Cr(J?H*Y%^mNhw?C(EQEw7Q*(}DPLj(Vxro6Nd)Rw>g_?< z?|&ZgHDd|nR^i<2Dhp)0v_YvoK{i@9gkIn;oTw80qH#BwB1&X2tKzgCyal+zVWyLL_+dCbcT{6zH%TY}_Yow#gJ>P~{aFVW}j1yhgUwV4=;3CZ2jRtw1J5OIbHVqnBaOF zYEg9B?RKbTLc5O7-CA%ClD9#stCRf+PXR-YPoaHG)@Icg_st;rablmkt8!V1mN*pe z-EU+8zv&_Suwn3kynAbcW^;lY>&z@YHMOX&lWo`I*44f>Fh~NMKVdZjt z36;IXelmlSg0(+3j;@)Sv12EJ*|?wmUem&+`rqO%4)sj|-^~s$K}8M4>FdHo|K>+( zz&7geyQ=Ahtb8_#0hwH;x{~cQ4kBthjRt_3OxXt+Rxa7?DpO&?C7h!sPP{1xs{I ze)*D!pDIYay-%Y5f~%XE-r5dBTJw@PM+b6lA_0XTvQMYj=G7z1T@g4WQ*jrh9K~C! z(lnOi2IezUv86FET?~Uig{Eo7Q%HBo!Xe0F(2gtpl@=cyo4gb}IwX8i`I($6huBoc zUDg0KTUrBlyR;*;z|}^}&F(G%NC}yR4{XC5tw?N2VjF89sCvDOkWz^rUz|$XgtS?M zB!J;ZWE5To##LbDcZgufNQz=We~D0?1}NM0Sz)99b4gD3Fs}EtM&-E;>YCr>5&_*U zVp8(Y#0tCSP5a%Ee%tbU?OFMYwqa|~<8I8M`OY4Nskuu%MVuLKZenBQxN`h_N)RPw zgT5;PyiJn}_nS(gNoKZ#(vt1x(-bBh^>$C6*_G(AmtDUP%^tJ6XAU4^>-z~}3;oL_ zDy&^+wQlf!yewnKf>zu3`TJiub5m!5u+K7}hDx2f{L3Gy7{-&4bAXQr70A}{XFlI3o1`z}k`T1H^yM@qLUb#!Rp`rbHyn1eQ8(VL&eb=@ ziPUfT=z239wH9ed7Uw(TdiMtzw8dy%15S3aO;MyudYDMZRE#e7iJfn_?miX-m{oBGhfvO+ag1}VY8+k z8#2E!zd4t^8Wc#;*y4m=xr@hTu1HOTs|+TMQq6F^0#Ah}PrfLMxt;iqt4Isl)6)2R z7I)RVQjxNPTno(t$d^$e&Z_kQ@CsXYPvZUShZkBC?AEv5e@*CWU@8BfZYUiue`{2t z+l%T)7i|!y(n6k3{3Xc~O8f`75&7~mZ~Ta=RAq5OVuc!ix%JK<_(foE-RY{=*DrUL zc==HI{wZnQcjNqUUEu7mVTr=(c0rav`PB@{`Nz4y>Tv;~*3P8X+3huBPW@cTS+%O` z3#8ZEXf)I>6lv-CqRsa})e~mo715CrGvLPK`3Hk;fhLqgbJSRuGq`z>1zJH7`w^51 z>?mXTUOg*M+FWY)e3(>#*)EOvN~_+sK{Ck6{u+lrwZBY)bdWDo5|UN;xhD+|r`v5h zwE%eGuD=@r1QR}$&{V7i&r3U-(K+;1djjpZ#bc8Q7RoA=8r*pK1y#$6m)LI_x^KYL zKF6an4pLEGbDI9&SfoXZ$vAf-Nq5ju!kjvvwLJ27Qn1RXlof?B6xnc-@Y8kQ4t)=y z5+}&MVu`4Kr(BH314c$Nc-PsE9q79z__|#_2~&>tFzFUpHHul%O4$+EsGJtIoB5i% zWKcv58s$+$n8Z<3h}TQSQgGx>Ns%djLMW2Iu6SO`kLr%_GGFP_H`1c>E8>FwFWu3b}S%bY!%s@QQl zr~l^Dz?<`B*6o}Ey#N*fCg;_`bnw;7pY(d}kP7g;tQyYD&kr;nf7L@(qX{3%SNRC>ONsQk{!h=B&G=qA= zqePE_<`MErURah46>@M1sOJSOq7L5JD$bEgV?e~?=s>s#H$1CviUm@@eKd)Q87Ruy zprY4P{#vBZ)ufY-D1{I{v@JbQndmKZ)!d~x7dq{hSNq-bECdZp9hoDZp@`9xgK_U| zw@`x^0byEQDPr2Rfv8HvvfeBeFRqkos7RArE3QNjAw3Jj;%+_Yn`3QaF2#E{S{>QH za8fNEE=;UEqPUAKp7F^-D_z2VwOPo(qT{4Aak$d1f*dJvyppK_-ZmxA!h0MhNf}oY zbSt?#x}{uf5YV0cP10+GVex=wq7vj)4mmR>2RMP#|#eMEz?DbvvaxWBAESYwGjNdR?5Gc zcOdJ+K@nylv%R{AK^cbq3HOHiH(A&Q4GG4eMyArE3#GJSbE!4eZv}kMw_;^e64d z)8eK_ZD*6Ll%C!AUhbhAN)zz8l7`}S9U@rlDseEslnE1fQxyA+QzwJPKFaqkH{q9_ z$kMt>+42wN85P#7PfgP7qGvk=Ww|G|Lggjm_W3gDfLk9%4VzH2AJ^V>PdH;YWJDD_hKhuKSVWdkVtZw>CRB?{jqxlw@_;Z(XL=2eZeZ8+CVko z`1s6`XfA|8xf~{ba5Emm*G-m`)vh2D^!UG?Q ztI^{b3C+H6Igkr z2avieUeO~W%g#hD{A9;I7eb>JU0)Ev)!Rl(b9q-2A%fB9Mr!!K%nMxvtD!KPeqWNu zDsRf4Wz^hU5I;>E;REsYX@?d8U>zHV4x;WiB^~{v;(1gb%)Ua0G8%MVCQd@02=Pv? z0IsIwBP%?5-|#`x^xAYk+(^H5I01)|a$YHec$SM7vc33Hm|$?E zjP4y4cH&8lOr?VN9=vV-hzBz)d7k_G?6cY;jnev7t>11K?<97dN(*0}n~&I(F^7g^ z!QGY2zVxD?mbaN$pNZ`-!qX$k(D# zu$)uIka<2PH1{bqXd!++Ij~r|$qr^X#w=}qFF>AC7}2ctnuQ%h2uQa^Sjb^w!Rl-z zzufeY`>=)1|2tO^(i}_&u3wpM=jWFed{GeVs798vZaxd)n#EGHwCaLk2en30VcY3g z$7vNsqwSX+@1hr&?doHN{8VgZUEJ&3j^Y%`bnh%k-x`isMKI7=(38xVnFl?eup*LGYMWP~fDGFT^#nGGp_qiWR@DsfAE} zi6-ywl4iqWQhop82i|S%kek6ud53E)5La642R@m~O`2zWMC*H`rj_gxas})z(*KU(0$2`oA_{_VrhuMK z;42*ZL_z5~lw$o$l%Kw5vm1gt1_8`-S>|&7p8nqvU^UzwKsxzlE9m~fJ^b>s54wQtSp*Z#K|k8Q;!* zXtAxoJt`Gzg-J7eepf{`KH#a|t3e%C>9(%!s#;S>3{iyAUIG5pxus28bTU82#MrCr zwFoxDQ5X~DnUfced=zu3WLKB1a%@_C^F>KPgV{qRFnh7e=@S3$rO5PmP>7n1fQovh z+l2nY)!&z%rzPss<}l-7qystG`gDanw?*}t+adr+tE{QTOokhLO=TsbYTzLLj2xTK8JZp2@lj5vj zx}f%ZfTT)cb{g3m(wP`-#=mOUmI%?H+nNSB<0U#%L5zpT zCyeH!Mtp+bK=LG!Ec+m#Dkz*2QY0pQ zC)yF+1zhTVq>_c%A`xF?Xq2GHX9_D{85|Bj6LmD7iNQq0?@sJEq&q|1@Vh1cuqs$K zj;*?|GCr-MxrQJm5T(R4gtj0eC!@5&1~W$+$=&wE!K&q#?7##^%NB3Gt@!?eVmhkm zy?xAv`35^FUHQi9AHA9~!X0Ov^+Uk)L;SY^XnsTV*DWDO*q5n}d%;Jg>p&*#o?Bnb z1ImIddFmVk8hShwp@MHvUuAFnGacm37#*Xbw%Bo4_ayR7SpCmnH(Yi z5b5P|aZhRvoPEwlHgIgqOWtsByaN0^aG&RlQ|{Bz)GBQ%Sj4bOry(DpW1#n! zpv>m+$j@KR6=qgcWG6$2`L`2oR^}l7OR2~ST9ZheG6ti>ZQj;jvaU!AYWJZ|9-?Rg z$b1F|jbC^>U&D&OBCkh&shGYWEJaXEOWV}b_%lA~z$2t*Y5GWcKR$w)GMk!6NSdwq z=VzZ1OMHTCYMY~c_E!zV-}Y}q%$XAy2PRU@I7U5w4J$^O^ zZ&R-?@8%nwA8A~~@4Gp7l#$c2sc>YJ#s(;A6MhZ@6dtMvQfA3c=g8$6Z~fM6Gl#{e z)Fu$MQ;%kzo-3n%HL7ei?I)f9Tx8gl3PReb0sJ?%A~0$n&~ zOxO#T0DviCLUMCRR6b`rHZ3zP+@Hh&EVd11k>Y|g(<~gwz2!N4ZLS?sBg9;N9DdSj zGDA56hZVTrPXrg6u8T8ca$w!D2;ZWIGRV-g;4cZpZd3#N3E(BwmZE#d zQP>T4yNR2J^k3 zP`A#FiF$fJr&&0&>c=w=z=uc2z>g{4O;G=w`b0^<(>6BHJZAKFjJ|Kz5MrV%9UG$tLca^!Z3({rwes2@% zWZHJ`5JS(R?){pcE+8?{8`_|u!-QwL>X0&uPalchiUuiE05aQ1Gunz4$ewN(RM5+E zJ9LrC^M|EbD0#o^A(Dt4vqq3(-I!kK-S{)BKJB3ns79D8w`x)D^Q-XQZ$ZCA(!ii*uZMGlz+8i-!kjj9Y8Dq|3D%GkbRn;8>>=>1hp z%9=$(R(jhihr>Jx*=XyTFyK(nBcLw-ZHV$AX6$!4cnl0XUT)%v2n5e^B*ZL54{Pw< zdiZD-oh%4$JHCaaFm%yI(VUMSE)vS0+YaBktsy0@FVaPYO2|1A3N+}`>y9RGpr@Dl z`i0sbeuvrc^Cbh1zPF^pHv}TdGvPYvk(TQ?T*S zy^DHRy;Kw$zBY+Dgg>y4RbY1lw|lJ>Rp|ceCkwh0na4)>c3{b=Tc;Yj|88J?{7SGb z;17|2%XdLQb2Ul{CX}Z+Kx*XZ+?n@jitGc# zI&5V30tDcmRNma|K?NXm0^Ra0i^COgKPHQqB|8Q%$v($B4(f6XX?;3p`zp(3&h+n! zry+5>uDPy2Y`~Y8u50g?sF&%7aTPDgF5wrXg8--fCXoN_1vKi~*JmEb&be&w01MkA zhKCZp>HcLuW4Fj7d@}Ij>|a$ecYG$0>!$H-C$h|+VHK`dVBpv$#~77Im!8FWJ8;(w zuVUV}4gDMx!kv}24ja_8i^oHBzZVJfx0FAn?e7HcJX~I;_d+EQt$tH>Y(wLAf9UoC zil|jA{_w4JDT1B=AldSzQY*=6UHqOm9W{H{o=uDp!H0ri!TNGz50oWwsPPPKc*t#t zR*yy97U(ngaGI_Ci0yxoR`R~jq!2~y*xlCO29J4Xbh>63m~y||XrkuCu{0r2XX7Yc zSTovTCam>QM|$sodHo4}{bBjLZ4PO-Y_fMPJ$>}-8diT$*secxf<&y3kz9^qQ4CLX z3q2L!Xwy)&Dp8H(=z{Zsi_0*7`%ikU&0NrdrPX*PrLhrRakH;+>MnYz2^l9`rLUT9 zi{eSnDSJQ7e@N9RnK08ZqKpdyqrqgd*Mk8#~-u2%Jv}cM6 zMUgyNJZV;rQ8j4IWZi1x7O&q{)jXRZ6HJJoDZOomw@74P62l-4~ zkZDhUKY95C^AG;*Bn~_s(8j`Fh${$ad*zDDZOG%jOAdt-GpR3xhgwr6VnX;+ufxpO zhA4MEue;oFu#s2sYjXxevtE&qHaRD}U0=S^88ZwaEEJ9cqFrKSntGQC16fS&*+%CM zbr+_}Gv5&gpxr|tgE)qwqEc}FV6>Z72kp4@Lqg}$HDy~U475JwFzR*b*HCQ(TK-w~ zvYFG}_+5Rc)2^G@YqvWSlBb2%1i!e9L&w2dN0QGLta^j&dY+G2KGTXAAmRBa=w0HA zdSVuG&725|vg#Rp# zOs-Q+vWdy@lZIdky`$g3bm`l$Num28iY$n;OlPtPeV1q=Lr_81u5pV>iySVulv4&0 zew2OY9o?L5nP}ak3WkHkgp&rUsi7IT! z%X-6R^`C6bxBi5CR5LT;+HtR{;)zMQO%fbM&dhhCq{uVrIo_T1zZZW;m>3$M{!DS3 z$Kg_QsIX#&K|*~#(X(UKb*aL2nTr@(fP06}cd98{NvV3^n_WQxT+r?jDKW;RsdK~F zD~$N<&v`i7R+a;mSD^s2zi?kIMR4|x0enK>QtA7ioGO)~)65^f{Tyy}e$T&uMzVvV*?7BVl@y#-wBvum? z1UwG6ZpP7msX<(eH|#P5hoPn7QbGuc_4u7>9w)L5Ocg?9uoF=JdNuA7<1ek&V1C2y zFR9Ca{H+a(QA|#ij$7z^DO{SU#u3%n#6$I+{S)nHV+>I{nbhc13tK6Sx_lz*$uE%H z(VU|S>Wn?FvwX&*&-->4M-CMyueY|z=D3i@{fI=&J=yd2++R?flFjo~`@7t$z0NsF zUb4%!^VG>IUi@cT4(@PhBMwKcTYksxq|r@*sQ%tg>2eZ_Va1AxNz`zCei*gTYc2Vn zy1$7flQ_li0kWJ^$xlRl&pb{S42YlwYFO^GCeRVU{p#O_Lp@$J22*clo-3z_vKhKC;Fsz~Zj}^4@1^nA z4m$u~I5P5$*dyQc&DH25tflLus`|00>*o5W4xk^lMB(E>3y_`fM|6_#x#|1>5SJ@S z2A59(DgBc_LqBi4W2wzVt-FqEgX8l4!~0dYpFMxAr$|?Z$zl0nCvF4im7xjw?|wom z>c0BPDMb@4-{=VWXX<%#R-h_4J(O98{*)(FU1brMY|P?bRlD0Qw5MT)m4ZU0uhC*d zDafR$WkPErq=#wZ9WOeFal6<_RX=p!3uX>A+WeMSVt<24iQ&&1{9~fNm#du|YKtL0 zdH}FRFpbs6J1jOw5dqS0zY%*M>zchU{YkVX-?-*%@jsad9o?x>uMZp4JuJ3?DqsX{ zh9UWjWMgbZeYLEHYw-`NBdESp0Q#2RS9pWm8K)ha9XjyeB%c!seqFkw)5*W>2C zU#~Nf;4zacY`SX>yxv&Oyg)`buO5W3#HSn_i^GHgJG}(uF%wNau%lGH+2cy7kvv(E zEawVcYpTEnu_{DW4kCxl9oyW;??4V0*vlSi@uhPNbNWsUS=#KnjfjoOm$1E-$xEN6 zb$MF{w*$t=%6pjhk2YX%f(j_Qs3j z9Od@?=q1&IWh)`%^2VT2v)%b7_ekLD1&Eu2KzS>Xaq8XpZ>RbuG~gjIe4g~)LX&BV zHtS|+ofA}+R-x6isg?GLnd zIkM)uork*!4geHnnuL3<{dLUo;E&}Pl}T7)-f@N4D3aujEVVGW2m;MhBjY|nPnL40 zu;Ilj&t2VcmYd!}gLp7YMufRss>Qj5t^x}>|J7sVeaVV=P@COwi<*Vr7pGH_e|!_# z4|Naa)~I-?2s~E9J~8@6vZhi+sd-;QWTb83La#2vyw*>d8KqERo^I{y7rP81ow21U z^wn?irfqlY7+9a}GNI`i3*ZjGq(RjBM|)|RybioA#yAftg14YR42lxh)$MxJF7K|ctm3U;;miCFN*QvWD(-= z6bUpjv>102iM`5~Vom#lP5M$Ua!q-tdbn1PA^-5MZf(xh=)<6bdNqY2)K@tM%1Pi$RE zMLYYmf#F zROJjziZ4mMVwO8%5W-3eQpR731|e$)XGPQxz@%yZort~MsizM{+=5Xs4s2mH80t;b z2&FPBGGQzv<1YEKG|U}G>c3q3FDuKDh4N2Q*6p@ot$9og)QLtkxqPA2O1YS(0Y5MJ zCN5ah1!GNeEV(|$-@_B+k7>IN59-}MI1vF`KDImSr&DK^54P{>9>0Q_1lPZj5Axd` zRJ#0P+#0nz>PyKXN{GYQ@PA+97=v1N6yP>rrIBm&9&m`jRJi7!6Z~_O38U~tOHS-- zVRHGWGMvzP%Gq3yfN!u~r*&ncsUjOgv)F^QteQZmMNx|a-hdVb{SeIP%|6FWfN84t zjrOahgkMt$!+=(&3+6+*oXLcak3*1t%6K|-FMqJ!)2$NE647GlSg=`PVzMZB-W$DJ zb*dlHion%pM42+wc#3n7h29grBQtT+_GyzlzB}C*m#lr8=P1i`I@f40m^DUhVa$ld z*E0(#_#BM+q6i5?KsjII6S1&4;m!!qcyW4}9gY9;=C&AQZXSjH>kD^m{054)pnzj* zgw(Ou2w}FWpg3nAlBUE@tzX|8sZu#d%>v!VI>s8#ODa4K4s$?l1*R^OXMt(N?ly19 zEQrWf;FLV8nSF|*>@EIa>v{}rp%AzN#x(+`G6C&{Gyh1a4_tPiqxh6`gq zuY!I8DtvT7AG-gNCM;Q1Qw#1pBbORI6XahRewSn(UV#0iyXitZ!_J4`n@9U6A;rXg zj_&@2ZY%v<9v+^roz_GjFH6Bi<0sro!FJry^o`pnchd(0|G z@bIn}obsHHWX8wW0D6@>`8z7ewURsbPPgqg%^!TZ@(JGF<`4j5DL%3M-mfc~=%(qa z?f!kgDy&e{7rs=Nn+8(?l73llK6{U8S2TM+`-nGW(;+l7dfWV-MIF9Zz?7KvZo{kP zcU&rZn+u)&%jji1S9Q2>xu<}a&kjtiLIL;SDR%Z!AxE95J1ewwtWuK553&z|$EJEI z_HLC4m$7XI1>_;i=@CwyDKDl_Ee~qklh8IvGaJ;q%v;+0uzG*d$M&slFCQ|8wy#}n z`CF1TKJob{Cc^M5C5l5Lhv8=hxT)qlf_}bY2L@i1g?iP%32qroYECnT751^KIq)np zMPx&pFsxv`cZwxia-Iq5yd5iK;KjoAPt6I$WB$-EMEOzSVT&2~?-hB*2;D#pygAnX zDuV}rhm`B$6RtRI%GQ6b#a|RGVY~UFVzZU@zHU+W~CAx4rJyeR!$67 zX)*w0;93mV)`IU_VvhpA)2xsTPH<-+Td^;Q3Pt(yS22d%EA?yy=DYgaNJbamhWKc4|flU5=MVgRYx@Sj8 zECe|fgN1D!K5U*M?-wg~Wwu(Ay^rev%K{r0DHTp>uy-ev`Y=W=UJ!h_#~Fjh)V*oh zk7U#O(wT9H7Ip44SP-%9S2rxWIwV9ranO0u?$p(m<2NT^*(VkeJTu79eY!5xHS`j9 z+Nh9rj{dm;QIWpq1cIy~`tv{oEsc`BX@l^gZvG?meg=5$9u&#(#9Xq=Z=BltEZF^& z4GZWTJOT4WU&|p#)Vo3GOr!)+?p3h3FGlGnv+$8(QCyMMJ^7bJ^Z2<_PnG^S7V^2z z-;=cuQ3yD%g+{6h)a3EGTRZaf@cO@R2H@;G|7#cNI2%96zrV;e4Ofr}XM zVOC=i);(HxZ@uGIUy2Opn%e7jH|J7fybj=DJ3lmAu7PzGiccUf!4Gd>rYR7A=P1mQ zYJrth69er3#Eg2cobmetPd3}QibOf>gZ$qXM%J0?p#W#NF2iSL>sqZmGnLPqEY_=F zr^tY~igL*OPJq~aTJm;2Hs}|-zvP-!)5)NpY|7)8>vQTq6WuymdTFzv!uD(WV+V51 z%HwBV((3AoIC#?945FmUA{c;g7cUMDTqmqp0M2$b2r#8HtL%Zn^2n3S;JO6wQ%G84NbCZcG=U|h#NDW(h%&P zD6mA5nZtS9jTo_J@`9tr9Dsy@FliyOm{b^WT6}1q)lb>czy#f)yVuPamRsxk^}M?Y zk3}ncOY?W`{~?4*g80#>sAB2fY`QVbvk6AUR|ooL(+G-Di$k_0&z65Uf@#AcvC4i; zB;TLH*b{17x540qzu?!zx|ZJzPGsv@^oCR_*wU%Apeso~t@z8)-oVbjs)D7N+OoS= zhkOxk-EnRyFc_VW*wVTTDNVefW%t8oZZnyS=k|Fy(-2L?+_ey70aH@^6?X+qpj9K% z(TA{$|BD3xBM%)o?KNFgbzU?3-&Z!{U*>@Wg^wdxVeM|*f-(bfG~^FWNE|Z%2Je@e zg|#)>KNtz`b0Zx^L-0x&swv9}mh|*CJx=Qy!KF#rhA*!pmTX1i;B-ff!2_5HCk0pI z#(i=qtKGvgr?1&qnFONgw~q|PfGba?%1GsAnda@<_&QKo6PNSzs`}}azaVNe;0P?y zWsEHii*_5w7+cAksJ&fOy~=sz=QUYN)Ww3K9V7c}8e7!|If1+()Vssv87SMkdLvwc z-?-M&GaPyt=I|npb{KvJDa;|TUzibh?P5S1EeVWG7b`w5MC~px@%WLTqa$l$)f^9d*Gv8(+g|klyUz zuk;k((_yKmTlUjks2g7?qhBj%s}pxD^=Xi=2m}@w0E^Y#J5N(8Nx%?t6byXGNofVr z`4W}YnzYCjrY?i;;GJDe=gSl59h0|`ITOxuV>5nsx~*O1PJ#pmrziM1y0??+ib~OR zpG=Q+Jibq*(};l=owqCBkLBG8802<1z*$>K3eZ(@%n_;G{#efMq0rgGb*>mp#X$Zc zaFtt`t?BfC(N_lDa^Eb&5tJ(~azQ)usXc$Mfs!ED&sE*saDUC?E&p?K@XOuj>w}c# z$_{gdbxrw6zoL>BOmx3m!u5wxby$H|{_5Xo(Vp^{MADi-xwoYBMc*7QnPi48^4f}W zUJbkJzP?OqyYooG3S8qGSVR-e?9`kd633H`%4t_rgq3?fPMf#)tI>SHPDd>2+l!T7 zY`6Lg9KQ+*8v%H_yw~K_G%t!L=2jEVmKTyMC-z^SRecKS_a3%K-~1V@7OTsxNT2~* z*{oJ^!Gf2tTXAwH4ZFGxBvl`cvK}G)wtX;JJimF|b!Li&k5yj=^4vD78|R}HmB>g4 z47~3MGmIy`>H2w)e`DWUe)PD#VqIM%i~=^04qp>-?JB#mpMQZ;j5**YN-5^hyWov3 z5NQ5tL-_ZHtC%u&Ma8PyM0mWat_$8#k}Z_KpCCs&h~97Hw4q;H<`T|k8CN~49(Z_m z>3etoz6;y+@%X!|rs~3R|6IN#p`gIq@s`t3#z{_6m=T&4T`~s`2*T!pm4vGz<5t*qvedAyu zc10N9uo?`AK545Y<3J{i#puZ(18ltvv<~xP+=!k_CPhD-H%&_JX+vRXX8N~O^6P1^jiJ(dE35G!sJ`Vuj*k}o2rbHaA}DQmVF zr*-`zDAR{H#&?CPQzel}fw3V6Ucuus4iyT_un77D`<9aqHIB<2KA2*JsqCIJItJ&ZGfdzZ-XVa-HE~cf_*!UT3B20!c zPG{wTgju`s%9f!4ZLuUwf;LvzBe(O*Ecrue*n7?vp(?0}j`U(-`p;oFQ^H}R@l^5} zc?Oj<7#N11xz71EaZ8gyVT)n0B_p-{9&5P!?1UmNzyLA$i3Z14am)_1G#&8b z@dfQ~o0b)tx@Ux`$J29oYuNmAu7V#y#6gL#4|UA$=vr92(f;bM-`gf%Og<7c@L+yN+RErFSb=zcHWl*7oX4`W!aoLrITy;_zPDZ zqGAiWvT57$+}Y12nIqwE43NXXnId@1Fc`3xIredh%p@7R@ik-o+;;mp#o7WFKb48A z#ij~_fd)^9dKAY{l*2F|yFXWvGlXs(OtU(^Yl;P$9q=82i)umthfx}2mw0Ec2>oK> zyuQ*0NpTqsP0%Ox!qkYJYw5gT`(!jN0za|Y3EI;z(xHUl{WGFZ)SRT zU+XfGKkY{MxWpdR-Rz!fdm`au)uStV(<{T9(+3cwu1?(>udP!UYb2 zy&e|~^3O5o6uQ=|V6b6nk*nlW^dohmxQE|NOOe{iX;Ivu`^|HV4l zVWQ6hNBX=5$x<9m9!k+oJCKZ)n%i7tabPUO{u($3=U`1GCi!8agA?7!yq*-cLe2baTGE}KQQ3YbUxz})aXUBt>Q zrl!gHxrvgxRx{JHCZ5uGd*@095CtRHcP{+mCR6N4E`37~RUeirnOmX81cbQe1t?UN zRo8_7ASP%EnqdphH_GjxWzA`wR=;c%%MUUvm?&;P!Cc--D*b1$(A%_B`DelfI*jU@ z*W%+kS{k({*IaJwm9D95B^Nv?z|grB0U6H%0d;Fg3+x<6X5L}#Qs6=mSe4_i{eXg& zH&6MeeyYChovx%r+VfhUz9!pDJ7I3$Rm=XW-5+(d6)P`kU4~jF_*w^#eH}SvDR88e zE@qjpO5WuaK#y4CR+lO0d}o?8Mm7I&Wa*9fnMg&DZ}2GvHLFMNWyPl#YRrlJsey;I zxRk*;-xDj=bY(kMn^&DIagu<<8q%-q>whBvS?gZi>6&2<>W*qK<-rF0sPiQsodo*3 zu)-zLgoOsc_%_~OiXQ6gYw#NB`aQ%tw!MVgw)mLYC2mDY?kE=eAE{$<*7KoEGYLbP z$jwWlgn^pG&T;)+L41r$-hc+(-wI^%j8FMa;Mmi)Y5e#N0}%g`{bmKRCvXH|Pfsuw zw*x{_v?4te(y-o!Fu7MF!k==B6!dTk7$#B&JZS1a|!Hf>0nH-ZdbV4KrwSM(_ z^BXiPV&qcneo`g#yJ=mnPLbE_ikdD3N>icxaR^%9_Usf7RC=;8aq&-_=Xt8fzdBy0 zpJMz3*2DOwYeq6R5zui$t#ty{%j5oAC04IbQoOEp9#(<>WHPVvaxMrV%yl**x1R&#>U(@nQUy^wr$(G^ZhRVxHHqwJWo|u zb#+(w>4Ue<+tGXM93qj(NjtE=m&oMgf#RR{%gpSsiTA)AC=CWXxj&nwP;LnXh-`#z$g%6n`hSpYzM2UPZep;Zkqr=3=Yn#;0Pc<_V%T-h^xtOG0d&Te(}Y5*0xd{>3@r|_{vWA*aK-LtECVLqj{ z`XQ^A;XH-C^Z>S2R>tL01EL4NO}uGd&cL;Y^FsR1N(q5=0i2eFR;3cnPTi%&y)Ot_ zbe2Jn5u<*r3d#E^GK4e^uJRS)&#|Te=@iP=!1bRBav!=+*FkiF%UMk;rg;_N z0*LQ77g~fjUW*6i)ioSvvszOsnV&|M(=uo_E{WkG;}`uk5YJF}6-tnDWFzHHjF+rq zsk-y%?WHL`7D) z41IrI|9=6d{~)4zAv_m;%!`DzvUGgUOH>-jpDkz6o@^smmhmTJ@sY1X{g0T*99?ND z&(er6d{=%u5*|vzj{=LyoNKZ#<98Vs9{T(YY2LG>kxe(9o$u$Q+GY=dP9Iq6yU@-D zLAeD%S@In_5xevfXj{&p&kT!tq0CHfH66l{fxOGIzDlo)wtPNq^?vh7(!(U_gOQmY z;XqjQlZ_1vQ=@#c;z_xr6)p8oC#&^+h_#2U*{l$5(oAmVa5mHpxiY4$p2&VAFFWDK z-dDbR^_l6%_=e4neV8phR-37@Q#)Mf)xYv;7*36l**o8h%r+f;K0`QNe|MdSj0P(R zD0Q~arrY?ppwzN|wcSZ2E*!1>Oy#?rcZ2BSFC=jZ>o7q#TtUU|!KSmLa zrKJZx8{IA(l~v6*KKYArv5DgejgX`0qTx}Z%iwaTa8S>e)w*;6>@9hLQ338>wFnZm z*ajNQ+JVc$ur7M`{=_9xZ4lwKQR$X{z9_Nk>h?-w7ktI*#+xna>XKdb_~cTXpHE3E zy*NIpsNmj=Mbs;{n=IuyEIs5q%skA@1!YBJ-LtsXncQ3pQTGu~>h8-P-?j)S1Y8#+ z1Fvt`O$QLvHH??5Sm#dQTX|GasEgf%$16$L0ZguxohuE_&^uc}Yi0)kY>oAM-0Px6!P`GR}cW zlU;8`FYPWoncJXZg1`vAVk8bfRa5REk?~03v7W2<7YYNnGArXRtWt}2K$#vzY6iB^ znv!3~4b>+n7AM(r2@YHa{A_SHK%3*>eWwKoq4SZ0kP}C(tW3qkwSk@u0O0e?>w-W> zB`{i;wExE;456^iVKaoLmgM9i8H3g}eOe$q zU#FEPuf+yHS5RbS*37tUHu}&Z?J4Vh!f~hXj_v9p^a*$6q`ah*F!i}oGIeTNd_;{2 zN^Vrd`m7>Hh4y$w+3HS#$+-bx;hawb1>MkHGf$~W5+wa*3<)aajJ|2gi$3puHMA{E9(CkZ z$8fh7KVbb8hUA1Fo!v9epQ!O13C&t{^cUL0t`cgOPx$8YojWIp{ZB7#(L#my)m`zY z^Fr->yA?#J@_;JEwu2Nb?j*4E3%Gp~v8Uo)psg3DT`f$}nE)XOm{TM%Bly;`v-RfJop#(9c(nP2$*#SB#E7h5=XK=C)h7Eu9@aP~xT^E`|LUBu0Q9 zXY>P7QU^%$xm?9e$=Y1nM?tUGfzjT_vU(L*r~oO1&4Nw|ujFuj8Arid5hb2!ybH`w zjTh}1{sDTeQBM7FjSDh`;|B=GxS}Z(2QgvT+|?3mQS&t|53wT(*|5%LDWyaH#`?`; z<1BQ|1h;=L%e+p#U(|V*tv&vrBM{|tiMA2>t2en_7#w0?~c~;hstHssk89D|n zP9}ZcyUow($+LNTaL)KSrK|bZr1l(pB2PCGkK@m)4J$^qv#+c={D*)eVeb%!&|MN? ztPv^Ifw+(NrVZ%(W!nxC{d3eWJ4SU6xu4iBy-|i0&sBkC=+cCaIvqC{u0zp?j7}$B zlSaBN%+}9cWzQp%J4XJoRPs|VHH_>Pce$e9T9gx~2hyD=E0?|-9z6B4-uG>*ElLs< zrZ9sFj9#S@+(eD3To5Eki&}wI?nO}?Q@RVGi(i`N2<-%Ie5`YYIC)&q8JnD^M zvAW#p>nhmy+qEKyJ{$7IVU;S4qg);BcORkFfow9wC%F+o^wdod)lncBCI&91_L*o1;Up(7#uEn*zJNOtJ9s(t6s! z^=xC|_KU$#D~>tXd>6J~YEIVoT%FopgI8A(%Wd%^j5c;Yg^#kgjglNEJ4jp*>@%B-gvAQ%R?0PJ6|*{I%G2ua<}hl-h=(n9hlaP4#_P@DX`%f2 zD=$S0LGm?VHqg&TjHipgOT8##N3$W(yv9P0=>t&`QqaiM0!38cRE7qwc8^9Q|C8i8 z7v)Wk!#N(-PJ>>R;)Xk0w;nt4{*dxmZRF}P(gS%d> z`o?mLdt6&G8Wzs!Rm9;|k+DGt;btrBcLmHnFQSGsH~W!v5iAccGI)*j>7u~=;_=f5 zJNC|qGhHUvrDcuFz0BKA`W*D5i>QKxt}r2>KrppHFtb^HD)d1G()+nRqfs9@rSFY( zURU;4EZ9~-+U`r=b~AC>LkWSm?Umb0_XozMci%`;`_t~&+Gb75-H)P1jMvD8L=Y)s zKcltTQbLyUxV9Vm4})rjMRHreHfsg*)(zgc;ask_%&F*DzDaIB@am8w%So4Grzlx` z{_(aqKS6hbX#FNZyq{^B01+i`0Wqbs(vdE*d!$jqFK>@+Zvuzjrz07)&7=dePY+yz ziX1i$ z;!lR2+iJ5KUa{j4<&>1g^?usggx)grpxMLq*VvqdI)0P6unE^J0j@yKX+bHqev6CR zGLZHH!|Pu(IW5-sFc3$>KLqR^@5_NfMMrO~gI;>gobE*^%Cq;gOHO_topX=@-wT-M z3o8ffTd*>eEm^gf0MmA!wMgz1)MVStetepR&o*cjQ`5I&NaxdG-NiHF;!(DU*Q18w z66-9OjotAYJ%B`J2Yo?gru94g&2BJwfXs z6m5nM_u<=6D6MEN=C#vnWS81NlCq_xCpCIHyZ04!eJ=E=o4J4{U@KxJSk%v9aO!fC z`R;YQ*##6E7S@Fx4DrqQpBItb-|SoQdb3|#@LL1409B4_gl@a}+AhEAp^wLTF-1Yw z+bEgrmYQdXr*}$xtqx}-v)h4MyHX1~0{dI(1QL<~ZRyZ#GPe=&jmN$>%UD4_B~f+~ zmsc3A-zVCx{4E6@!>qI{*omg^u^kv4PLBJ(TxQz8V~yLdI9O3q?38Rdvvak>>N7w# z9ku)*GX7@VHzeQ4>0fKU5Cpz%zpZIn1UWEVu2rB&K`rj*N#o@tJD2p2Yi*BGYI+~O zmAH68%3uoAzaY;x=V{4$4ypF7A+&W~bw5)wNP81{wEkg@s*jgiq!JKFe8T%K+X`U& zx}m0FYgc>5vwxFePKlXzZ-D&m*f?-2=Uw`AuNzNIjX>c2;>D1&(bH}H&#d^V+~uXN zxAlT(g94Yw(x#4J+j%gr-}PIT!pHHk6XQE2ubllKYMDGe!c16`+12qdvov$OEp?IH zjrd8`EydZ^sxc7s0cYXo1l(QGW0q*A-~UWRqx?L*bZ~eK{;P}^QnohUw_uS&_>@0g zWbMYK=hNP^G?KZKI&S<~mhO8l9D&r>!8c>S zSIyyN32J6)OCnQoKKozC9ek`g`i@#WC;6&+$oxk|t0{7NdgR`Tyz)(j&kcs^#o&Vz z51=DX*xY+coLUs5p6D^xyB5DyJOD1KrQO%}q{qTJcs=--UstD_H>h`mBYSXED)eh_ zPcjwE0YZiaj~=T`RPR_pB9%6;ahLjj`&z{kP907hVX%64u?c+w*_`w)W7&?E=JmjE z2DKD%CqX@pFac)bFzP5L?DETsYXwwOl3#vYZOkPTh7$UR33D^-U5CxoR!H=Aq3((}VI|Z(Ssa9^ z*eJFV4cj3(pX@S;QNuNT^!2sb8_FJ&ScKXOu1vVumRfbyNK3<$>QBgCuc^S4_t!z=sGx2VQK7MDumQ!57f3}tp#-I_6h*`__JBfg=eKnNv(b^ zWoimG^AGdNTF9T8^I1&z@+Vjy+J|KCqAjgRXs5Cc6`zOd zZQAGoT?!(CU+>Xoju{KX6EiwQ(qLuib1!8pWJ}8PVA&wkzab3Ygbmsb;bgB zB$cM&cq-)bh7CNehZ@%q$c|wUHQatE-7m>S;R9AXN%b5W!lw`-x$bJ^cVtVCg`I@grvAjFA6) z*yWOkv6z$ker6WOgPBP8c*JQdsW~6#Vm@!l_|Co_2@rsN>o|c!?Rvl@enIGWDN)Pi zhbB}I1G=E=^c?v`X?jnmPoMRi9`aK@12H(FLMjs|kK{%l!eb&%#6_wcmKv>p308a* zz1|UwNHvMFUalv?jDJa!8QDcXQiiwA1||E85=lq_WtAjhzCa>E^wRJD z2v~TI{{2NR_pV$qNU(E^&2w%*#;n9)pw(E!o(}vQw{daNaZJ!w{+x{F3b(IT?|D+Q zYX3`9(nss(WxLGfzT}o7Rxw_iN3gqT{}Y{iJ=MW?qPzZnZvbV+HP!p>g~#={S0>iP zEqE$;uxN@j-09cn@UpRhlM+%XuEy@j*szpK@RH$r@$(DK8!Vo21#u2Bl6|Mf$TA$7 zo;-zX_;bdOFGA3xzv>$fJS9$OK$vMdmExj!$z?HLY2r=(YN~4pheBgkajrp$5)g>y zq>=tsq=B}x$KU@57Sy|Y*GX>oo}335We{awF_tw#E{kio?$$6Hyq&$j5Cee8j8;nz z`&w---+f-Ey+EN!rddg-{bhx$rsMdBRV{SiZ;2zXI=8`<}{H zZxcQCs?gw$*0$RgFx;)hJPV@XdHFsH`Wehl0f?0)V&AV@PYQ$@7HO6EO3AkiVp#~v z^6rjy@2svSmS#>V{VwhFPUq+54PS2V^rppK_SXLs^-T5)i5Pf}zA1xTL3SdztWGxc zyO(uf?Y4n^7Q5Q!#_h_sC~5y>^=30o%XMY* zp6JYJ^#g{NbWUn2Gw=G;`=*l-5npEoi9?MqvKhR z=#QIoPUuBEnYiqmdHy2r!%0LmtgFp8@B$16_kQuS^#^hAdXLbQW%Rq)*!M$Dtbg3& zbs}z^pFcmlcZ&V4;uZpl%u~?9p@niqbTDgCkl{)2KcX}=%HqugM;Iup>qVEZ=I ze1y854_B4_`xM%0hhhe6>;s9cEZNyy17EoSO#DsF)!*_F0$CJueoC=UJcs`jwvjDJh>G7nxT&P;Igz#sqHhY-eTGp2fl zyg-LR<25uG&7#_}a6sMlvi_oeK3A5`a&Bd-|8j3C_`0nJ z*5wwbh}PH}8O8u8cWatu3)@`xq-LEYKrJm^7hg1kS;c6Sl*}c+&jW1aRSfL~mgkvT z0t}%UudA&+OI8_@scJk5mxHL!y4K5oHej|xKwdPFdek?w6%0#H^Ar0+m=?bFS>v0~ z4j?^i`iASu#`8euR`Di*fxN1~zSrbg<~2RHr{0W;a!b$c(>>#d&=+fS`44nc<{P#D zZ2c8=11TU|&Cl-hPb49mTbdRJ%dwi%;m_BHbQvhUoQ-E@k3bwT$r4GgFElG$tX#=q zMdLd4F55@kkChYK1M>*hvI>QMy6lIUw^_9kdk%%DMNjn;IBS>_D|Nk|3@NSpS|4+! z)i?81W|ZK4H2SC{Kbx#RMr=Aw7t=$mMz_I~#%1(S6s!cha075oMi1(kf!G~)&sw)0 z&Qf2PT)VAv_>_qp)g>o)DzsAszj4RRP&_wu=>~E-?enCHaVG5BW7YYr{LaPr{A=GY z@M^RLSk_KXgx+vAC*PyB6j@?_`FG{5Y(*gqK>#S9tql>yV(-eQf36nGJnH$P7*f`mMP! z^&n`l#&}1B$dt$IEf+*n`A?11*_4{^ZN?upo%yHI$u8Y_T&(`(KV(tHc91%m7*MU9 zeNFj=Hmh4TQABEGI;mz+XNUa^sgW+A(nUU^2Kq)#)mdzqyXixr5v2U!d5BP%EdTgQ z#cDKIM;EP;+^(mE`%FVPW)ZZi6c4$4n#I|s%_Gwzkrt0WTNAVyYvX^2K?Lw|Y&UYyM3dD*>W(?=C$riCBG{vc`CM}tbqOQ{ESwM zz=-p|Zck|pCxow34A^B%kjOF8@0)g4U`v2p;s+7oP^Fs+o)#&HNL$3A5w}qpcL=6Ahq3=grnUJL8>j$_v zjqG3j&EB3bax2Y1(u=!J@*swe|4)g!ito@Yhh!olI+a#}0sD*@Gi^2o%L;2%$3wG! zdSONt0FkpcOrrA1kd1vH22x}HqU-R47X&f4``Kxv-)^=SoS$UytEr<8=*NBjDoa#`=YCN|7+2gbMf_J0wxCq*L86<<8#I{P>IP z$W~w^s=%FI??W>4VvPEpq#F(zIbQ%eIBa-ZIJmDYqQ>ooYPMRuk zvfk7mjpSRSoiBf}#j0&@_0VFo7rVF*TMy~mZeyZaD+G?SEGNZS3jsQtJeL82;fV11 zM9!+}PL9mcfld|Nc1ka0+1}3q;223sh{vqp(zV-}$96BN=-@NNXUUZU&4S=#LoH;} z*GifZR2NAMf90&=goQ`+13KBI;wp;C09j3j>awR*++&ZKzH{15!O9^c#-bSFyCr z84l-e`S(!=}YyuvI})=?t?y3 z*gHK~0R|#AvUl|P-}9gQ4Vw#j2M3#W?&_|-tw8uw`!bCmjFqJQb#x1-4F|Nblk~>* z^VdXzU+6=lHKT1MU}A9Ne`>78i*_9cLRnJ#jwZn%L2U4Dg~?f#j7HdJ;qd-Cb6b6U zw|ni7^AgCqu3b^2>dPu{wdzkKSCSFAE6T9yuPl0oE8ooe<-M`*$PPkZaG&WTIcILc7 z-j6hTeecSeU49Y)5G{0}ng%e6Ga#yqGW+98>|}eOal~^xF$yTD$?l*Z6z(legq9sjv$HFzmyQv_T`OC*5BHt}Z z@+K(1qm5(&jq!IZs?dMFN2yc$Bm`d3@`*ND`a&CBmtK1iK@y{71t)A%Q9nE3A>V`& z9A_bLYkpf8{P-g=6Qq3ciqof$;0MB+h2l)|<&v*YK`mN?4b8+|Dlho}j6yO5l2Jnq zB3Q1bA{S(~iu-uXLf{S|IB`!Tl_X<->MDKuM&@@X<=u2PD)IydDsR#*-KBxHS}^k` z{x}v&a6j-dK}0ighY@W;8bLc06AKL|l2*5}r%cZNINupk0xR8x&A`Y#&S}vNj&%zL zFwo6S{L%csIjJ-zz}^xSFQ# zl0h{NaT0;H9!(3)G}dP5dEUA-L>kw0eN9Jq3%V;u4;=a~)I-{bRMdq7)AHH+(fv`= zz5fF6NCVrnoXAlpjk2CB^#1A0u=Zu*`{*`r=LeD7g#by8p*dr{PllDzVh(7XQrQ=c zV-S8H=cBi8%t&Y%7R1)Gs~Nb1f9ym=u9ds`Ckny@`eL4q#J`n|Bt(Or zQEC_^94K9ZLA|njG*d^{@6G*<{BwcVN$3Dtyfook=$%qBeqo8+*tMwMnCE}h@F>Pn z%*GXs%*+zIjun>53Ye&s+9QPOiR5ygjqX47Riz$0@toRO$HxL>d=gQ^$ruZqBe5u+ zw7}&$`LHP71G@H3-T0;8S(m>KVVu-e#{Zhnk_Q6kbKKSMv$2PZObE>QxzM(P?Mw+i z`CslrGT-|69EG{yi8X;g*TRo(F*|);+VJIer<$;d$*9rweOACn-{^%0nsl%^$rnIF z|HgKh;P&TQsDMW~`kNb&T1B?H;-SMUxDbG-VKuTt$3qui zpyb)!sAt4s`R^IE{FjVkUR)zf))z97VZ4Y0M1p+Am~Bbkm0i2LbPqKpX(H3%Z5$%g zZ^zFyR3lYKGI(O&4OspSZalWgh7+ohTv<}grq@!0V2{8n?x9Q#ince#br zxF4%kKF#4eirRchVVDuvf|p{6+t2Oek?7+QMPOOH^F);&4OaH8%0V!VdTys65;#S& z|L(IZFr1;{`5R2PM;;C#qB#yLm-6D3xS-m&>UFdpudmPM41a^lO)N^2#_pDo4!*?h zT&_|Z_I2RG=R;bVzPoEC(SM;t&gOPs~pY2U3b)^ ze5Gj7i(GwOnRzKSJ>Aul*P52%GRH;NEAyN`3HY8}PDYA@5f)a1h6o$Z!ai)AQz5g` zp!znacS#VoBI&5C^3o#M=Rq?PE1157%VGsQfzVQmt%?q#+QH_PIG_l854_E;w~2K= zs<~O_anlOTw#7=3>y&IT_{X^c_)9_l{9lB^w)CmARh|gHDt>2DI`51LgB-^(FygBJ z<8*%d09C58=-*pigp1chee`Y0kHQ@t*YnTLM=(FNJtg@j zq;|Q9@mv9lTnUwI$5})%Ls~UA4DjRup@mqHj++css+$VWV-pQbyYaynr+!V}N~kx} zwwGr8=Bk{DzCh4B3iU@jqf)n3Q;pPIz*E7cx-edn?8^^LzxQQWRd%Iou!EtjVr9*2 z*=1y(bCNLL*+GLkMi@#S_x4b*Q>ERAmWxK>WwFwIE5hDSl*5G_Jlx>0ikHTaMnPO+ z&(aCOYqWI#{*^D;=!#BW0Io{p;Eq@ho&I5R(US1MSUgpfMWb zu&7G;$J6HN#CyetQx$EEr>RLHvLDNZny*=r|ozmyeS_wda6k(Yie<+HO zf6tc6mT^H-zMF($RyFHG=5cj<4u(ed8;aL^Ve~5I_>a8l*#iunRKi`N`Kp7Ymf^2o z5(Z1v`%OpgbJ-EtF~yoCmR}FxNl03zs+aq}^a$G3phy~>W+)_S;Kv3M!Bg?-6}XqR z+yi>uO@PFIWrh8SUT7SW@?^8C1HoP#ESZEh*8eZk$IbH!x^T-kVK`jxf%fEv`JF|<&`0$?&O+|}|cQyG4 z+W!rUk@|aKF{E$S?aV1x*dM#Qf|5S1M^Eh{0bv};1~;mfolX2Q8f~mbhv^}#W79ex zAheh>ofg<*eh;+e zP=vbwKzN}FonEe0OFMgkV0VHBA*bYKRa?_cjul3#@3YD7W0-_N(>t?TG~m?jR+&&V ze98QMg4;TdyWYgc;oxqoMCYRUd1Fu&BXED|FS^BEX>rHx1n=j4iW|gv-!2Tl>*vm_ zJfGCW7+4szV=}WIX2rsUJ={O{3S6TEpp19}B#2-RYI4D^bD*-bcT^aF$dQRkSxFi! zZ*ULB@LAMfU6sti?znjL*r4Sh07`i(ye+kybU2ViY9>f_lOkAXYt44Hog6j1;D`wT z4T(&rR68%jc=||l4#lwGIglHVRx~vU^ zFGDqbc&S<3QGWs7B&osKw%?e%Z503AwR(%*wO)U=oCos@oz4H325(?e{8Fb~JFu^S3x5Lx4Q8vY z5DOJWNw3dSHeXxRd3%Omr0qNBU=RkM=P@DNb4qzkf!>mAtZcz_R%Ql`zI5{A(aaG{ z<+>$`6IZy>tUYrow|WKow5A`R}{_M8;KOo5-S@pXok^tPV|{eq z@NNp6lqZH?Lv3ChxViK&jiM95a@+jc*p^MQ5sy)sss#>!!q@R3Z@>Xc+3Sr)1AG4z7t4X#`Gde#;(Ovz7j+6p=jW;rm>yi3fVnY)3;XYo zV`8?+FWW16PE~Sr)4F(Z`ItOqTg_Xcb5&Mlx6$Hqz=qw%Z)zDrZC$UI>STF_ zukieqJXJqOX_?kM>}zL>0B21*vdnP#hVwe73ibT6V+96c8I!Q{pE+M3`3ohWvvC|fh!$$>V4t`j(dj{=pKXuV;TW#()*pFw zUbwY|wi`Szed4@fBwLW)viHT3W9&a9f)~-$Fv69Ba+?l%|D~DlPWbhI{9pABc1w zoccn&3(vO29%EiSo1-MChta$+H}3a-8-V&TMM;JsNm@=eF+ZPoAu^%51d(1-kFCAY zP^jaCnaQ3DY;Suxz3X>&j3R%;?}>}xytpgV?1H7|jrej?v-JRm4qP~yn`9%IkN-ff z<3=|(TRGCA3EzLxlbINB1%bbnzA(UE)c@)rN86wa7Lhv)-dm0ia*;$AM}`FF(h?G0 z)nW;fWTRis9u*%*TJMc=Uv zHfC_$G5b>&go7OKn(x2-_a*-rSIhr|`qw!8*aRp(LP6ZiqcAu8=)uCgL~#EB8*i9U z6Wqd3JY4pNeEK%SV5_B%ADQmd(`kThfXnz7I0p?$JelV&L#0GT^e69vA;2McxR7zC z*LFmJiEeI6NaH^A2p|ay71-pBPkrLTVs+v=L|?4C1jh_GIoqEn9^9G+xVgAsySfo* z*-C#-{6W1744y^Xg7y!>ENTjg;o>c#K6l(tEvmDY#{U+YhXSP{^bH#djtsKgJl%ey zREF3V_VR7%qQaEi<0m{rg^Vs#tmtgmU^lx%ycT3vKW;J*pA0fOEVQfNcsiCX2bU9i zALrL7{U_dqi5*Ng=|K1$Icpk;GS7F5yiI;u7QSf)H@D8(TNReGVP~dGBZGyRr55T- z8v~7bBWbD9|-{*mzPxgk6p`5rwMjI<{*92!jzE7Mx>M75rhRa02c+DjRX;r zv~QQMqB@4F-sLH#?vZTx=iQC?ueoA`??1WL(h9R6^9@a+Vfkrk-o zX3P&L9wrHtBY|}9nczqWOQ-pf91laG<%jAAOWu3oN;jl zSOehjGb2Y6DtLl9_QI`y=^2tZAX5$q6BosY)r@sv!+Y?mBvQwUwsGzv-Ch3RBrMG~ zdINKk?9rL{o(&VpkLKr(9e+icg_h-|h;K}6Np2o;)+R#5x!kFX5)_M`LhIX=PQP63 zr=)%l*Ah%ivrB6*JR|JO^c^rV!zt8y_*UK>V$U9?0GuW&i*h|354MhS)82CbJPdfg{g? zyhQBuwy{qK*UF=!*QV&TZz#{misC}<-RWQ7^cmPOb1LZ&25H^m2$pi}Ux*HR_t#_w zfgd4ZUCpI5X%#bEtPd23fl794ase=ekJqj_uCmiBD3^u>!n0gW13%zR5XFom#08jw z0cPkJ*;8`(JrR4jXp_;_eY>&+xY9DaTQ3GA4kQ+ands5jlsV!86X?ij4F$PWtOB*b zFAAVU-9>L*G<%IU=l72uJkpylqDmr_*TXFX$}2px@<6?nFUc@6J8!Zy4A%kj9Y1E~ zO*KM9Pu}Ug+(&*clxd=yiin*Ej{P&ADBAZ8SJ!~~@n>&Dv7UF`psCCpTPCqnrD!iax#9=R*DMj;*}u$$p$px0h+@{Tf&*;P z){YJnTx`m4QGa@x6pS5z_rSr2G{~1hL(5OWIR>-sS_6q^{yIim(f}H!y_I5Ts55wyNEkh?J=u;nv)uxW#i}4n&74e64jt4p#GtOb_s+m}lQ+;+bZ8A%Vb*l@4b8NXCp$rt*sw zVZlmxx`XqjC2hA(b(R;3vdX6kH zG6sO}U1OtDg2(ChUo$uB{bt_91h1kC1%o$cf(-)|(!Icl2NSsLux53q@r{(T>!tYTPzGU#+e$;x?yEve1&iOC+T1xj<7ZR; zc{aO-)u--T_d%b+%C)F#%%At5p%EAkKbw2gV?<3Fs4Y!BfVor(`ILuBgT6xtt5UE< zku8?K|1NuUc`-ijcw1cg{u!XOv*4w+F1Gw*39#hf9m6%|U(O(hlLeYpofeM*)d~U@ zEY*vU``0qw4f9uv2sz<7QeAqdTo%$?^f=)c5Ln=QnT%>usjDkwC(h*kWx2Rrqy*3HbK0V$)$I>!XoMt8 zi75nq)mOG`ktZ+qwV{qo6!zE#B$E%)=8Rfz9rd+Y_5A3;^7Gm?sjN1BpKC3;c&T21 zwfAKN07T+K!IKT#Lm`9q2zoC6^N2bR?fu z`*l{Bb80jlJs0a#l}nzeV9(6FO?nApH~ipqi9nF( zLrL&Oo#u`J2Fm&rg6Lwj)q2>GxC@ZekJQs8$e9H`5W&19d_HU!EhlOpGeoKpkd%&obaTT6!#z{=? z8Y>|wc6<$2so@^ZCjuwjBYHz>TE@8=73J}q75XpFFeAuOY?vV&AIrk8erpXlR;l8& z9710Z}mxz1E$n%-GW3&uqZ_%#&7o(~sK~pA%ff7$RO`Uf-RjAFO5KhytT`%{`-iH)nI%xRQ#H)6p z57(AqkWy8H5A_CT0gwL$N7j&0%Tqv|QaqMd;L~heu8V^%4eU7%9A-o9hCvCF!V*Dd zMiJ)BbA-qe29AZ)*{2Q@i^5eUMG>PCLW-_rh#=$0lBIUBxYY6>>6vSJgmyzCGpCNy z(mb9ETCDW@|0~aUwxX3g#0==dNKyk&g&-l9i7EO7?`sq-!>5a`yuRx`!n>biOID<( zSg^j9QnOzt0J>ZB45G~+!o3R;*$}cJi4bn%HB?3Z_;o4A+>MCk${^+QWnbf?-A%1z z224s+05JohM^yNrGaDbGcGmxmil-1z}QexsP7*IGw$b)n3p4G`|@MUpcso zQr<=w8`>t~4mM^dzMZD=j**A{wA6N17rIku14Y$08%b--MFpvFYBA@HaEgnGC*@;g zm1~1~0Z}7XlJ^#+vd?LpT`?x-GJQv9N9SBMzw>(r*R0R@B{q3N6QU^d@LKFt)g?eA zo~CLpV&Grl;BNR3qn2sCR%F1>l{V(^zIh2QTy6V#wut*U0(;-~;(-CSc_mS{bf5Ai zyoe$@wed{OFAh-#Ow-NP)z*?~tuEAhPQ+D~-IOty2+1RK3{%u;TAeXPjFGwE_d|Z7 zi~bLQ*^htPbvPpM6imX{AwPl)lQFDk`6&vtMu;I6mUmJ5=z^wPs{DyzzEW@q5&rmJ ze7$8 zm~-gr>Rna4tE-Ul2M1@}Mw#A`=n1-|qBDrkQdc>;K?Gu{%$bX+R9#@F}{YdbQ>tpYD?Tg^c)NC}UsYb*jfmw3a>@dc@*Nh{>gIq&<6ofjr zD^ZDD%los#ZaLjLd1@(#7wGl9?x$=8>e-9e_17J;>5E9@+6zCaa9u6`=g}aMC31M- z@b|l_oa0m^kuzSA+JNvzF@a{SDs=>@Nzw@1dR6B4v)tN>pyka)sJ#x80IS7EtS2k* zW`pgFVDIHY{JZwa`uqLDEH~h{#h)^$`FH&rRDjtbZ z$K_-%bX7M9EL^-<@8rnoc^!_Xa_FrS?&*@+q2qrsqXQcn_0vr$F$yjFd5TCeA z|2}HJI^jV#1AC85T93UDw!K8Y^6qh$6HrF6?BW2K-CPn004lAE}3Rn0G z?w80U$mj+Ey-_QX$q;XnL6lRUMZ#LrM{a}xEnAtJ{LsvtCnM}=_7B4BE!}*vow34Z zu^BvcDE?qSc}TF?g77SjRp0CvOCN|*<%Xfdlo#kPZ0e);p_}cm1MhL1UgOMKUdT19 zv`7_h-T-z<3s6e}Krl>(E9Q z5bB#1F*H@GP*I z{`$d8Hde4dl8y35r1-36W}>^lr*!)@!Mr{H7(;f=HG5aM`@D)4q+zZD5+GjI=i3Eh zyli9?xUyT+?(ZKgZGMlmwsW5w-o!(@=s<%8t}9z_>^{Q59pd{Vv5Pg?8t63njhSvSz*B zkda6bA(21t)Oh{8&vqS4;a!PVu8NZbKGQteR~WP4?}ZzZ@Z;Y;!Sm!sr-4#D?b!&F zF2wN7!pWg{ke3rArTUX1B0WMsVi1K>M4~`~rVlW6b%dY1(o+H&Z-Kt7Ch=RLR_{;4 zRNOANQSx(LV8PMsnyQKwO_0lGJX~}unEdm;Z@d@(-rinEtIKLvKsGWxD{F*S%7Wtd zdRIq5Q_)R!t&o&SFVYnH8e({Qg7^qPXkqUyo3m_-mD3XOLpWN{N%O%p^CMwH4T@B- zz05ayXmu-c=ve~rQ=W#gIyi;DzTicBhA|aZn_b)E;_7W)=21t>nQ^lRXE;j*aoiA! z5;ON{4M=)NDga|Pd4;#Jsr_ZaYVkhO(V*M!B+kV!mN>b?V@5+}*u9o8eP_M(OJ9Gr zSp4>*WZd-`{3HTSVMMLB;pWi?f0Bi2pQCXX1;2c+%O6n2eN0`8>OpY7+Z(-iYPv*4 z%QsUv)mjkPR%eu4MAc;?uvBav>d57owOi^hUJ;N&Y;MW7!b|f2YM(a8dBCcD;xvFg zVElN1$5Yn)5cNUsA9>vQh4m-X5Fnb)8!B5aYsn`7{MvTPa30X*vfuzFGtU$D8&e_- zWr~wYbF;;Ja$}(0+ucvom#g2$sv>X#$oSkP;Jo)$jg7nBU-NLPUAAhsy6^Wxy00ww z=>e{LB~J6eo@bGhhh#W3!cT%uhtxzO59hGt2RG~otsemPbGK{H2YDSn%gLlr1CUbP zr5h7|x6*QO>;$Bg@#v&SjCb(0ER>dVZpU6fhqOj5C}|Ao;{>+M|0oz&{EaC1o$=Da zlSX{gG{rG(X@kN)n&l&mVR4(wSz*!Y25Vi==;+Q$V0`o>46|V}f;@Y`3W*}?7)ZZ2$*()d2)2?(odKYdQOy)hkjO8dsIPhg#ijy zR@9a~bdSh#ElfZo|lDq`40`%PnpS{CC3l~s#L&KNt#`n{#Y+#?SWSTT(evim| z$`#o}QBgwz|0Fp&`#0WhcXep#QL)E@1Gx3)KLtPkg~BJFH6%m0X8Rp|bBKYM!p;-TR$FBzJUsQX)jT`TD`c$Sg$ZL8a4 z{5}tOK0h30v%kK2bh+W(wRt|YCGV0iczV*C-4*C_k?itoGa)F8Ig|}ZH5yNiG2@Fx z)9Kmw7}S0`v+9hmBK2_6R{0jyhsM%z$!9hMUaaZedPZ_NS=86*`0jfi?sS0K4Z;B% z`^}6Tv@fPSvRY$wars^-@=?_tekZp6_TFW49(=kT+PGg`nmqkMETqiwz@hDSdKu;$ z>4>QA7^m5jwoaz?s=Tu0-FM3Vs8X65AH=r(W!dS|i{H$OzhWwmA1mER1j%ckS?~O> zCaQ2YmB4LxVWoj>J2Q%;&pX}J$-2((RxS%+0MU}!R5#$T%aTCuO?QgCotKkrRPRMLa)ffG<~(kVkQg(4~q}} zk;t;e4JscR1D?I2_l5sZFS@LxM&1KH0cR`)(Wv=28T2Tl8`H2I+SseRq{8X{c35$X zDUFvj?R`!|+x()RROrjP!XhRW?)YF`=|V-`3pi1d5VHwKH#_>>w3gX`PXzldfrpL& zHWE369KQ+(x!^?5WXh#DO`|SfDc-~yxo8<1v1P6bOj!d>Dz{FR`9@^s#*f>k(z{Hb zIPKj+4E1pKi~(VaRMSgn^Lgj<=NJ8D+14Z*D8RQ?oMz`e@NaRQF5%#a3?W!3QVikB z=+fh5epcwVx(c6@v{>)%Yp7tPRiBwBx{>2{C@A<)q3{HkMu3#Hp+J%0JWKCSI^}WG zv(qRaMV+c8?LF|y+aKNqLX1}_I|J`VQqa6A?CM75eLtSQ#hb8T>7z~ws_eec@1 zUTgd~6mSln*u%U8O!n@6xtb$#?)-UQ^7v6O zuG{Z2Iy2vC-LHT>CR5Z@;NC3al;E0mnxlpD#d~@VVw%t5^8%Btg4{Zk$8K~CaGY}7 z$38RG~gZZYHQ=^m}K696A_D50TMTji8*J>lor{X0(JA$9P|2?%PLzDqgnaBZ@tGr3r7wA-p+VnRt(Mkbt>s#4kT znRNAzfAVNP#tyoHhtt5yZ?(y3y&d9fl7^%wP;5Z~VStfVx#!SYrhuc@iPO;I>-tat zd2%8>K86~sB>pFSj8GW#&tn%p<&wiOWQ?ep#yks4g z4|?2uO@n*TCjC76qOM&8k5@!--vnHvU8FW%hRBfL0`eX&z7~FwjYiv?j}__Q3F3Nq zx->=(JWrNB$P=NFd}$NWfE2UT1RhP8O&xkXq3Akh-v283zIc-?lEqRQf8;f^7p)rL z;IXMM$eEAZK7hASw)W3OJP3$}LFe^>{ZZ%-$ zVYg_&i~NBNSu)*;71qnyPnV1C@@iYFilq{L|6nB6C06-M(EQ}rclcKY=;E~I=8Z$L=o#{N^(lcLttq~VGvR;14ks6@YgK;k@24)! zb=znaRJ5YC;xN`IiE298t%F7wv7h5<)V7wX)X~@1k6Umn54LEelu_3>;mO>XXmN@^ zqa3+F7lI}wm+VzM#Xuh<#h-#U;#{R7XH9lam>MygC76drj&F5JcQ#EWnHc4F&fohB z*t)bN^?Y{X4QhBae11`Jl0HdHe`e_@2-u*;k&zj`qdlh|f4hoieIl_To+lJUTj3Ul zFPKnS?;x8WbNqN==|z^Xsu0|@JWRa!ebr-<@d5~^nyBUg4kFoChe2k5vU(Ot1<~DF4Jmh2h80roxu`? z_k|ynebqHFYB+7?&aYngHp>4Q5YLP3y#DxbS1lx)@AH(N?{pM6T9+)?vXCk0A$U9< zuwg>7+9dGQR%k#V(CAzzULAL|s>yaTk>_PB*m{W%dlC`o1HA0{R^zhzQtqadk6PUY zp~7Fl2PZ9#Zyw|O8v9qKMw#9cs;`Z|H#oyRp4wcONvCdJt4!lhl~g-&rkpxqJHbyk z4tt*m=0xU}E^ce$M6qknSAz7Wr${m$%UE)O#Muy%MsU-={%sgFAkKM*9l7R>{pBqw z$VSTsH>kebQ)OB>tk#h>;JqalC(&Yscpg+Cpn)?}Ntt+T-&J8yyRfH5!c#zF72sD% zGm~To_lXT?FPv?Us}8N!bso{-+#QvPGJqc9`~WUK?|Gdor%p^G ziMEelyO?ksp>NhppBcESwE|%Z0>ze7zi053BzZ3II1*`xt2Ytiq1cpLTfHaRGA8HB zaYgJ>3wj^Z-CQ{tMjNV!nbgNu-nq}m%j^Z#tW2jq$Bw;1e(W;O@A|2GI>&eqW?b*u zS#@$UnECk%Y`5=uteq7Ks|-w8y%Y5n&^=>(wVwO>Y6T2jGsXR$A`_FuVBykSFWBEv z`50k;TJdX&p}sK6OJ^pIVMU$VOAGS-sT*=_NTj`_ADcV>3vK>a4a0_U@p;X{y-WN+-om+mi7s&k z4|2DYQuY~1opbu)3B+HR*hn#1Mp`EgKkj`=TM@3WcJ%UK{MH94H!Zj+;Bh^F;L&Q| zvXES-(hS5{zEuQx&9xWmQgN!)?{v|(W;iEamk5b^U0m)z5PxvIoo7dW)^NNn;WG2o z;1sOVZ`QS$mh0^%I+@C`hNki>vNm%(pdIZ~j`!E#|GYHa@e}sDaI_T2S<0i3p+NT^ zvq_n%ohX^A4f%Q%b$nHEJXRs6-E4w0gEH_NrN(V0gTZZGCwYfD5|7!040qi5>-Qo=Xw?&3tDV zG@FkMm$ctWWR)8iTNW*W^?SrkMgdYY@BlM!d}z!0CE|N#Rj%RS_B%J}=kfu=A9%4!xWDM4B(sq=|r z6~~C>l$E#k#_>`f{G>wLRy()S%;%7nkAG@f2!F6JOY2`PSI*DRTUk9DG>>IK*fLPf z`DW18(4MK~{;mL4E%hyEUQ;705*@fIpR1**yHH4{eyy3_^o{2`7mZ+lX4NA-lQQ;v zN}RIn-r{U2OoEsee^#7A<1%(j0rsb=a`s(5;`m`l;rOZA&*vdk&RuDQVcg{r=+^n4 zdI{Z+ZVUuGfH}Lt>wP8GEovy&6DqWXnCZp!;ws9<*+l#f(HnQF3=Iqgez{Cs8+0snFIcLU1x9Vrtk<+%1oUO!n zS(44{=I5)(ib|DGV1u8Q?-X%@Kkqm_LaD+rzT;!8C#0SoGZ^c1QDJl$@OqR|6DY?*psL{{svfxrf4Yj7}1d@$lmDjuWdREsPr_^_pmaEY**N8DL z$qXxR#km0bO=ylH$z+5En+^iyyJ&W^I&o4=*m1XHv*5^&NV%C| z!PA^K4P=acRAo2DmbG@E$=eiujNTLK%HJ}69@Nl$l zY&{fr9Cblc)9KabTm9UYB3|ds0&IWD4Y#)gU<=NtH$#Q_iF=_G;(v5^S;)EN4=m zGUR@&oZdL=(Pz*7U2^){&&BZF3e7UJs)-8a2y97NsY@f?>*!9wL3D;usSqibC8;tu zn@PJ5qquJ~I)-G;-=3JNpcKC1>BQN+lWe4^%kjZzc!ZdTEUa1xU>@pOM{L2Wc;Pbt zzg&Rc*;&hmZi|^@Fqs1?g;#}?U6C|xWJ-inGkiD;ZC^cDeD2u7`cUQ%qU9XOav+at z)(qBTAoz2I+`w#M__6|NSDGWY*Hp2!q9ajtiPSzTlNJ6vQyil2LfxhkQo z*G*Ff5Bc%5n;w&UZ^;`BHL_w+DijH7FTa*jFTYDA%lnwW1kBgbVj2JW$+-R7d5e%g z1BScm6M-#=3GC0K%+}c2&iu_--)7Yx!&;r^su;qCwm<#+_7%Sc$^^A;;SfqQ%6Gw2bRmcYE&4F589hEadn zY9;qUHY5SrQqM--lRCz7?ctrC$K&f#lV`oNXAq=`PpH<9QPa zzpK-%+A1`eVcS&;hl!FrpCC%a5)ZsS~=1U62qN4x|EX&Nd1RHIvyWy62*zph;+-D!;dbBHd} z;k>=%b*FlT@I4Wina?Qxm&9zBzc{$AaX90y)a1Q$7Y8jC+d?@~Y63pVterw1Qm=-=pMrnaSpG)v!{GTLRAFmXV)!QUSjl zUq|tBUrtD+Qr>NUl3<#Ys3QlQJq>FBhQi`8XKHDun=PhtUmPg??1$ohb43k<5`Pn^ z#vWOO-{NmAriB&q5_xB`YX(=l%krNwcAkbSPBl?I&?>b|@u&tt-Xd_taEB=ypIP9v zq^@o#l2UDaNam_d_no-XxADVEYb|plD)+@trn#%{w%aQWPlXJqRE{d7&Ws8n{OSp_ zDK-6~$&V+}!a?>NKj&SX;V!l#6dmFRx{{ z7l#N~X8}Uj5{zTNUw)@?0Dj_;9a_NJ+T{6g%`~a`_v4J8Kdg_P;o)=(fh;d8r^7Ac zluhbnra)RC>pr`6_LDQ4@dnkm9kMU=S96O+6^NqG8w$w2`_}nF6y6>gButqpu?;r0 z-8E&;c3=C=3GVt|@u<8#1YP)peaSdDYxUU(f@3aj3zk)&7CN7%i+i`^<5RQf(?ode z*y?WbYisIvu$cq7H+eX)IKIRQb-g^_Vnvwk0Ui3qhT>2(tJVab208I+m<>Bzqs~Fa zySPui2M%@RE9Q=8-icGCJ! z8sTR|rd}T~Kfo*r0Dr|$DluEXvAu6quqt8}8MYkF3`d9O@Y0=M(N2%82M%Z=Bz;T} zc70j84maC7*-WuQ?QrsAS$GG}R|8tQpP#&teJ}j-32JTYr`3saaiPb$eFLZ=H_#d9 z+%fW;c6hlhsDE{66(e!n&_gEonI>ys7JqY9MHjpLHEG>D!jA?Xsl&&=PD zpw5nR>yVFFu=@7`j@02V;3=r7!fmUMR3UwN=@6c*-w+NDhF0jQwz+qKpmn1OQ!_d< zU3KV$(|V$L;&;GF-U&BlhNsEafbWhwhl7do4D^VVO?3q?BXj2Q%?KEAtHmwd*5I(O zKqK#{mf+y!n)RdW(;?EtYxTJ!L%)kj*D74E=yf=fz`W4jHMI-NN7V3E+ZEBk3y=P) zO&r`sn~9rFkHgH|G?5oeH~q_GG*)on3@cXT7yS0yR$gdD8=;I4iu8H>!p zJ-D#=2RzQor=9Gkoj60WS+5Pku16MRy0Taq6tc@EA~L-el=yl~O-{2#JfHar<0GSv zgZb>8p}qC8A-iX=UPqP&7EUWPYALnYxX^mj`P40vXL_nhPta0SFT*Etit9BQjo_XyxAz61300X zj0x&@y(FGs(fyLVyUbrvv`taQ?=X@slhB}>v+rSjqA;O-t>b>25wZshk-9BjTD2H` zW*25}5wn~L=(6+KL37@!YzuY5diqf0mC7^#%a+NHsM>>sx80rfZyPh~Yio(Un{W4{ zpUxy_I;AR?Cn5<>svXDv{5ZKRg=)N_)p`cnq&p!9L**>9!-*Znw*ORZ746Q#v)cK! zEi3B2-j!XOX{u^KqQX~#wUO~Uw*EHWI53`8TWQA^w%FNxZHajxy?cC`^rUy!<)e6Pa#?&AcDH`e%GuQ1yC9w9{`(r}GWJ_HA_z7+#TNZi_Y z3P$p7`m+w6&`oczx7<{k{tBMt z9!3GNp~Ke|?9s6x4+?WEk72khDj82rjF)D~G`8G_gNw_(i9Mh0y=XSu1E`J*hRVl8&FG~%#6M7Gq(<;3!$1M$$(mV zu_C0B8IYA=5(NFe7zO?^UhYnaA!AMQtR6)&iS4ME^QqdiX8)qH^r)5*ZDEn=+iZ4q zXsdU2SVuh(!d*Ne}KlgdrEBD^S7VP3f{=3Ts4$$@b6##ob4V92NCyEY_ zd~px^~q76 z>EhWUaz6JY6n^BftK3r#vW4=O7CSo}9d-e7-`Jg8AzD742flr;VpU|@dYJo_R&!)h z*9OzJJ2q|#JWB1(wOCXxcWYdSd!UU4BOFM6b)mWb-M&(~`c)->c9TbCWBXzGy2FD` z&u(2smHaOmQE+XL3Qe$K$;9c!wd(zOS+Mo{Mc2 zURpPT*x4%aFcQzlr||GLPF?I0u@TeFnDLQ%9aNO;YK_X}SZhEB&6Q_%b`;o%ynppD zg=)yC>8;Au=&;3miRt~1EPl*uc zO*+bKp*GWPsYIW#?fvXv0j%glceC|FUqPJ#J4!3Wf>&8u{*Pm5*LaH(0q5}mD;kYZ zo5hf(cM!KgU#|enAA>6C+VPd6Izm@|3I#ri|zS)TSEX;TZd=&;MBnJd{a zDFhx@K2vrw^(ePC23-|3LaM&b47yhFG|5=8Te?qepAc)c+}%@o3F`^qKJPE!7V9$^ zLH-082KwtK*&DkoTx8g6{T$fd?|v`n=Jrc1@t7Vy&uTg;z-joL`ZlpSMBLhUt|B{x z5)Tz?KhzOBkz=aNqNE&@PnnE7pEcx57QXRjWcBkpX^g_>@1m6KOFBwyC#y2}Cdprv z)&-7Ue-$G~&(NHh*xO`<$4*h6UeMax;*Q*sLj@jasz zTOC#&o~GoKl2qw3U5t}92g1|7=jUl@B5XEEKA;6n@&0`I&y#pQi*S7wP^R<8!hIN! zvR#SkpTnJ87+YXDm79xF92Um&e`aE?{dv70ADsjbOU|^8pG#ZFe+VW6PEJp@n=yDf z{>H6|&59=p6yfn=A%FDTmX{e^p3b2H#Tf`{<@x6c>P+xNrYASQ@;WsXZxufcJy9*0`24vw243!prg z;`zgtPS&X2E-oAFcYL$f$ouX5^!P*YZ!W~#H~SrpFLY83AUKjKuN*3XF5bNw-ERD| zLI<2K()qD@GKZzAALycn_RL`Ur{_@IY%V_%sle(zyNJD#!XOM~2viHR0tZloABbl4i3dSR49@}}`nSb7URlbMt9 z0`!^_IXBO*ECB!(9K)H0wx*?`;(||N@K7AI$Fcd?RLxw)4sM?92w@V;%o00p%@;K+ zJV$Vx$?kXL&~khZ+fh`6x*d;3%$)@YbcTXaBRMpkj$k@M?bVp=TZs@kcyXz?`VDMe zc%y$|nEaXIyWeYRsRT0gxR*0jM!@gXEJq0~5``Ift$I7kFVhU~&SyHZVzya-T$@?s zG_jI2KPHkx*+jTELt9||J;ppgu8FL{-IyOL!LX$O)0S-AKfa0tOC9! zO^8{IOXy1%uL-`4kZn9zzVvoxU1FIlM~T-B`yq+P9Og(wQ4!oT5VjdTP@zoLa_i16 zmohz_9F}ev(RyDsZN?o*Mn|);t7TY1TOP>|w)lOpFMzDFM4p?RKX)CxQGnBzA85t_ z=k_dtz8=|8gVEm9-!N|F5Z$lHF?B5BW>b}W6LlgqxDYCqxR~)wy{s^TYf4qf+OP0P zj>;|aUIK>;c2#+m6+W}F$doiFaZ?{{B=SRK|M$N`D;}b0-k3Z6s^~M?>)6hp=R4Ya zdMdA&k!kY;WXTd`eN2HF4ZoG6+UX4GA1Qn^I@@<|zKAOM#N}kS+wW`8us-fU`OQvU z#)ePVcoGLu`U%}cW{*SlfAEJhzwBkIFHHf z$>gi|{Ftyjl48{u+jSVKm9mR5SVicbg{+I`tvfw%Y`<-6>_{lyC|p)h8B#fI!h2Q| z(eW}^!CS>YU!`+y8{uBe81J!GX}k4h8%KF?Bw2OjjQ=PsC)b^b%~*{xlKk{c90nfK zdcd0j0~vPy!X2XbGhEEnn{%fTC8}9$WfnUg)L$V9)XS&Jcj&*CoDbb79RrQ8BIO4GGgE;3;H-7_$Jng4ssKK+pfI z3cK(ee+_twZ~yQmq_=9HPZz+l$X$bLlBkd{Of`}tB-i4H<@?P{j86HV{Q+PI=``}@ zaOMm=IiYU&IQDZcqcLUvnZwYj_u4j&?`%0Jdh6nK-0&F9o#vTMO-LfPBl(N19Kyh( zEa|gstjgrF{(k@g57*W=c7{pHBpyHxgP~95E)-HEy-eH{+A>ArdHJW9>Ocq`%b?}x z48c@L4`gY^^AB114*ME?N@|Z-H#pirZ5<%Sg32&&&w6=+{yD!`e3J=Z5rCDutf#-b zlO0tI8}v7HFRWHObxa5zX zE8Xt=4@U78Yf%1ED_RH7YcoWz5U*cUb@*PP4@-x>X%RC-wSpS1_X9HE%pC6F-Y!WJ zQVKpn_Aw-3_yZF7zp2ARCzlc2F{ZDiz_-x|kS8AqM@YfRDux#qd z6zazum%Dqv$3HX4cx>)RSs!~xxK9wjmJdPvXo>JeM&#flw70$XRvqE@{CG&gkx}EX zaFdDrq!hy^kpsL79p=ND7EeB`0m3cxMl)A!E0c?A+maNvgfD?y!@n`DZ3)--*M3bt z*ldXQ7up&0{T(wm;c)HccfhrroNKDcR;(2$HBPcaA33@85t6vWh&m$m@HyVFa=`QI z?BIAYJ2Aw?`+Pa%exA^$89i4vZ@7(HRNyGWHK{ciH6Z_bk6}Xn6P8Yn@gWG z$t(9{ygoJ%y6^h@vOaOiE1hh#5ga4sGvV>(jCUy+Z|19z%wd${#wm$XMik%0fY!Mu z=Le$u3hiEUsaD=&e6Ngt#?ZJ`5jUKM;J&!p7&`JV-tA0GXwvu#c#8Sr$kb;x>r_f@ zehKX2g5rcmlwwqbu#{$J3Z?5AMqu`Mp8%=bgCP7rKkisOW&2jIa$j$f*YZ`93xOq9 z?_%U@neVDAVFUwD`G-;I&T8kB1>}PeA<8{#K5y0PZnX6pWf(kLImC?#s z6tqKiixcdX8+F#jT69L$4v^O=!|MFf6pL+D8u!_0g>_%)Abv=H6CGG289LY*AC9pC zRYyx(OQ*HW@hJ2Q4?W>m$k;+5zd+L_WvUg@GZ~$L7CVZ^neMrNygqkEuHIak{acLi z{~2pcmlYfyi+ImXU2pA<*!i#F_oUNm0`L?sL!Z6{x{3I zX7K$ZSjwfJPGBLQj!ktQ^)R90^A_?mO-1`#(z*~ugGdNt9g<1Hi|=($4v0xaZ$g@hkD(Oss_ zuKu8o1BYaPWrnm>_2_)M|A-}A|8^fHs=(1<}WmznDMN zD~;0@uxsKv=L*_G7}R|XZHV_{fV^*8DvyEk_tU)9&K;D*d z|8%7Waz@7|9XH#9B$J9A`2#8$HMKC2)uP)ynlJkWT(#MyY^BLuNz7x@ZTW{RS*iQD ze?G$kH$7eFX8yi$^{j^_s+mqR!FLecyyAW@P{f}jNtBY0tXH@Rg?Mba$QGtzsfcMGv;m`F zt%eHtaSAr8a~(i+NXLEO3lednIWme?%vDapuIi$R|F6yATzVQH76htsd`sWE|6$S? z9D)!!GT2%Jd=(kvCCz5DcaGKnIxz0scIl-&=iJ6#2Es2!g^b{zZ8ev2lEpxgFAyze zb=lxy$wO2!srz;2+zsxsIlfbeOu+HqawG?s^vT!P$i`YU`z)_TY9R>i8F~)k>glpj zc$OBv$7TqR@FqvAG89Q55YT=&iOgL$obzLy+xU*gy4r}{js`g%X`Rhv zW+6}De>CfVW^bcO7=NqcW@PL*i^CsYkFg%w?=sn+Tk8ZmuAI3R=+SefH}-kN`W$o5 z&6PRP0y)eIA#HxiLfr5fiF22>qNrcna3Q}X3>3%JMFaCU&#wo5l7XY*V$fSrKB2nY zw77TY3$%d$W?R0{Y&w@%u0Jc=vsDW|i!i?Z)P0-ly2_u*zqO91NFQ_FXx0?Mfp9Xr z7de|s$ZQb44OQRd0AT_`2=jeW;iD<@n3Vfbr{~N9D8XIis}zyPo($&>WE?_ZLKAZc zE@RgIVU(0B`rX6N5Gtl)ubXAyEaBZ5WFceWpTdg=+u{U75oQIqJWEqq@Xs3pyxjf$3Kx&!Fwe^7?~w*b5*O06edS-O%(W6f{& z?9N|bYsKy)T>|$vn#nV|0I}&6jnI-?JY?aRrA?4F>Ymbpfd#(8QBEJ8CnTU48 zMY*U$2Lwm`cAOqU%(w0SoPCA*}R=8PRaj`8R%XCg6>qZx3FwUrvwiK8mznwiwd}>O74C~V4hmC=Og2J8bfhhgO zHjo(`6#`#TO~r|oY$kj4Cp(1@BwTKzsgQ!( zwz9lC8yA^nT1ftpZ%gG8DjhHTMuuSwmh~f)2ZXCx$oB?-O4o%vWQA(3)dk#Y)3k~> zV)bekc#|K`nvn!iv+D2xA>zpTH4Au}bl689Gu_pB{O`!KokV?5L*qHDAt<3XRf0?5 z>fAf8EWpCda~7a_^0gqSb04|;E{p$Gx35rSY;7jF$9al=>ou_T?#{KjakN-OL5_Ei z?e8AKnB{oQ;UuzhWe;8{#3|l9_dc)8`s8*0V|P7edEmoW>XROu{aUiP|K1O?T{RZ7J`#ukHRD03Hvj2+6>g60^XW3mE;lyq$)Q?r%1l# zvMOZ+m0L^_>*Uhm(1&gwpmm=wY+ObC>7Q}boRihBZ8;SoJHJo)Zl`K zXjYn@bY_ZtCckTcb7hH1RmFzqe@sl}#(zzWaJ^Omud^tEar<>5Qq76~?zv4u3ZOIX4&H)-|*ZFV32M65kbP#SQ@eBHII%$GD9>;~TNAbPFst>x0QYjbA zVU=O3E`Lk)6${S5*`q>@`rqWqjKHb7|79g!$uaK)VoZjWBu26FDkoQ+!6{DVgdJPc zZzV}85J=NN28Lf}^mtg#d3x`33p2Qrd-Kqw9e~_JVK@@HyvwXO=rL z)+HiaR_6XM#MWYV7rQoJ93erWFZ_0)jNH|+%CY%hE`Y<9;Gzqe>-^2^`y0`+EO0=2 zdmn2S((8A*=$i|@5wpJ^*4%M!j`2}PJ6oO8s>7kLUF$k4=3@(L_u!^be=!*QI%*)g zM7;dR{*IiFD#=_G_4?jgdTH1FeGl|9TG#DI&LGfMoHZs37+BAMiq`i-BV}?V@gi>p z*Xl}9JO#4f)$Z~wOa8}A@A_0pnz8AA>GpAsH{{<{rlJ|@y^9Zx-h6N2FOnxpX)G^x z^_=Q3c(|eQ3cp^eHlTYpr^m%pQloOmMjXNjnHP=}8|CqPw*EqVtGq^(B_kzOxR5qP zHcF--#l>anP__n{BDbXr9uGBCwH75tJ$Cq|z;BZvwR3`YjJICFNrQ_=D z*~IVEL@?JT!t0c`I&%0faHk$YG9M+#r>pjBQW48fH974<0~pDCh}eN@i*E0nelIsY;|AVt+q;a;*+WMDe-~o&X`+lZHo$`>`(6=o`qW-v z2*AySeO)948P7FEm@qPTE^oTZ|J#<0bLTBLc$mU-)?WiIv9<4vXB%DSFG^gH z^b6Puf^?4 zVmQ48i{9evpHnMMoo10hv4W*`lA$~e_l^RgN^jMZ-lashOK1=@v;z4AcZ9} z#aQ;we+XhXSj+vJ#a|zSSyi*s7uCMvM1^nfLuE$chL11_#XZs`^Dqw7#t^)f?)~Fr z;g!~c*0&hX97rjQV+fm8HQEFYjG6scJ~O|G1-nlYCsEv1j$df%GQCZPaIZXk1^jsR zQp&HCY+KyC2?62HQ`G!#sYotJ7Rh)_k$&4fUSAFfH=93>-&66??@QOuh4{_+|I!-( zFp9>A?&-Te=ayVncem5i%h$WgUqoU|s1Tn}J7yPS8vZ3dD1NpdeAu&3E;uN{If)1E zH){hRn>C=SP)6c1@eT;Yxo^z(m$Jqs^3RHA`m_Gbd83+iF4=*j$v`Ol4oSz5LOBDa zAeQ~z&?s`8av(fr9;avYU$@QLpS^ElF?Sg`Dy;I(Yrf!8kaM4urSGWYQC*4RqIGp9 z|Bn%tg~=)@egzWpeyewGY}i*yNqX8Z)S^Qb%re!C(wKokhq~ag)KXdIsNPC=Uv!du zkIRj30Cw|?E*3Sklk7R#(;MYpLl|I4~R|*sW08fN&FvN63Xs|szC47f^lXF0=UyJ*~ z(~Mm+<*SR7zcI+O|3}i}b*QG)Bqp^ssJ=pN?uS7agevi)s`|V!S~k|u8cGu{^ehmZ z#H#x-6tZ!8zP*nz)dhjRD5{7X;!Lb)cT1J7R=+mEoDN77@qccej+kFU@ZrBA44?>x*|kjh6e;zk(EVSOm22ZHiab})}9~XIJu1b5#t`{vF%>*xg&kJWt1{6l5}^ zQobtH7B#X*BsJ1?K+1uYbDgf)xIhIDBe7YUn~AwcmO)^V8IJ$WFIRk2W#c4YzsdhF z`|({E6;x+&II6e* zF-+|~V^sH>2Yed!cVB;22HgRzH+;qs0)BOBNJcYYiy}$l4MAQEj0h2}8B8m%MK)7BF*_M8Gs+(Q#f3bj5H)-|&Lo*x zOf-d2Y0DqlMCXiNS#LB#7CD9O=9=#hHq&miyW2KzhIrpz3rz-U(vaA=a2#+Uy`E^9 zT4_~s5BW5NaP;a*QZf}6nf?Un_Zs-7XH}4K= zsH{Cm+*B7a?$?C4%~YdijG}!0{|riwz7d~zNAt+y^Qx;)Ulz2f`}g0_Z6HY_I_#^~ zCgj*(%KYz{;guF?S#HS}vWWZk=o@WyCA1y)r_zc!P>^(*=1Ty;bR)#~Xjy+9LUJH% zYP3O|q%bpP-Ac703cGV&O)gf{`K1vnJTf0k#9(@hC-lS?rZsE{dTd$DX{;wZX6A1N zB2321KRmmrt)@|ngPerA9Un>FUwS$D*&c^PHwc~mpw?q6Ayme;AtD5?TF}v5)M6|K6ftsnhThLfDRWlPC=oj_La?_qMH7 zgTw*y0{=PZoS7R_D%jr==978!(&}$3cJ|i~=CeTqevv!xwp)TB{}0&!Ex%02G`l-v zJN?F@0{G3LqWCrMGuTb0N~`5ms<#~4eyx!!{MX#?W*YTuw7!y+(lJHsIv%7VdnOCK z1M_aOv}Br9{$H9#upg11fC>(Sj1w!dg7lt}6v=!EGrq;S;q3(>YFx3PD?O0I=5wWU=(T?j3q%>I(gHPQK7ZEx5{2*2C@p$56@r zq~|BQ<3o7VQNy+b#f+q1eDyJ=!@siANNX?g;0!W%&LUT7zSnQUGSEITS0>h$4?FVI z(BJ$w8Kwqup@RsjH)62Qvwhz0oF2Y=BswcR;3~|yttR(SrpV7Hfa2oEmb)0`P@*oy zMi?UpJTUiJO@{9dvt2E407r2-BK|s>kbg*z-rqpj?chpIVWxKUm#F-nXziC!F_Oh^ z#4>YwP%=%hNZ~XMoop@iIUOY>hV!=9u#2_k>UMI+9Z+HrwCN3k z+#l{v7z&N|8GO#&brmHBJ_HrJe^I>h)yS0L;^7g{%0*54%EZkamY$f2X>?46rM>dJ zcV2s%YZT)A$ky&oKe}{Ci4OOyr5P%Q24Wxn?J~z8zk%{^l!oyKByP}5ehHf%Ye%=; z(0`joeFbTIKtccNJ2lO7Y|`&I0@ODnKGl~?e{Y+F+6btB!gmjU@K$)po@qH>CuPXxcW{O9e=c zWpHVjvO7XE=?Fhr8FYY6j%;Ejr@Ee4M5lV|x~IqbA}P~}8B9;Nwcwir(@M`X|EM+( z)nn;qKtZ`fKxVD$zu@_BIQy3Sc`UZ{!ykd2pMLUMkPU_d=a%>MG}o?%3{IWGqg4sa z#2uzaPwhx7WCjTS_@Z|EN#`2%AT6 zLmL9lK2Hw~sab1EqL1%=SjTljn49BpS?+vPRVV+8-f8>13XjIZ;q!d8zo5Q6ve4{` zYnZ`x2N}uwCV_uCUK9|!PEydQw%i9-%nmN-uJ|7i0T?{&-`{MFU!DTe$E{rdWt?%a z*>IiC9+XqM2@qzakoku6#KZ3XXP<`W!AmxSzt&dpxA=>y82W!zIw&QObMxG@GxgK% z`l7I?tOnBex)PdF-&h_}Y>>NeDl*)^t;TdUnNnJR6(7XXVbdIi5u*Wn*#8|)M{F11)qNAd>#PlSm zX2r?R3{iQdvcm0r$)|P8%Vpa~vC=ExSwSlJm!;AwJ=PP=;z8PvA}CF(Gdx- zH<+Fuh7BBp%P7I{=Cx5 zc1p7i8YUv0izm*pn-%L8`B_|77$N~)?g?p;mwM~ob_IKINbv7cCh>YqiAV0X-~kbj zBZJkfQXx&WZayFSJeY)yH+)drQW1yF@=wiu_}Mr`%p%oHA<;C^qZiR`aG_fRzVZ;N zx8TalG3{5M&~VjkI~w5l94oQaTDo(Hr{y=bb8#Nnetr1`7~=BP5J774%KRi{n}h07 zLdHwOgu!;C%i>^(Y7RxDJIVjvG$V722sr5S)U$5RY!M|JA@I;%wk3hsah4X?I2I`_ z*_jeZ+$H2gT>$ZO{Ruuy)Y?uSVE|3hs_WOFw<1~dIyyTdzm%mCDuDPIn?leSZIYb% zQ7(`eNE+|Hf=9s87cm+9BJV2L1?9a=w zqv4J%vLv(Py^meG7ZWj#rEvBZ6!dy~#VQ}AF2>YVglo>>_FAPI<_r9ZtOKJm-HI#{ zFwhr^BVx+zg?<3Pe0;(^rh8Vz-UHchtH4aolP*)V?Cvp2E$FygteQDMc||zHXtqmz zk1HaQ^$S^2f|I=&AEn;=EMe35hchHj*fa9Q$ zk7w{>@zn2kPjY*(-^7V%i1gZ9;+=Y07N~PyJPR-=fOc~yatUZ zJa$(ZEyf0tC<3R!R(NqIu0r#9$B0C}WsX3Avh0iM{)115F?Bi8Qo1{S_QBT`XQa_X zBt^VW1D|`b9YB@=I@8D$MNgyTVu)23B6F+PSUl>N*{qy7R*-extQ@i(iXE<^ps9lNjS2piM2mDyL z?_A8ea%Tb{qVce%TG4eS5qVFynWTgi+uCc~(EEXXdJs<(K~drL7e|WAVc8b!ty=Vd zaUHv9@0X}bQfp(EySpe4+Xwdb@+xqTi9g=Dbks_v>$B-$`>^&r=v=i_vTW*SHeK2E z-@CF4CoK{4>e_GDt&seD9TytUDZh7~&aa$(xb8hFtH^YFyM>i)YwNW0(X~{jsBk3? zoYPL0D4TI|bS5}c-b&4Y-F_29R5<_Db?7rU#VrgbUB#XNp9=s?Rrs3r@$=JvU@n`3 z`C|)J@nl8y7u(wB^cP>??txNGU#dO-1Pr#Odiy#LHHicA4u|?Nu0<+Gvj}_jN2ed- znzlqSmezy!qEi!q<$84;HIo|w$(ruvOC@vmaraQjUmy#4UP+;=!QK=DqBLe|-N(*a zeGfMkl$nJxzX0sh61CEa;#cPU4+hXa!1uRXAb|M&z&dz@0_XmPu zUWQ^pRH+CuCu#VD(1n{*?)+ZTa$jqTCOXoPTIxr?`Esu(h}~h?y<7(cw9qY^X?|42 zPxzZFe2sS4i3StK<+wPL;GLoZ;q0sc&s4km3LZKXm-q;EC^86WW1a=W@`1KBjG_k7 zOnSqdNFhSh$I{LoVhq-QJ58tn z9p*_`R=S2nMgdD7@P{x8pOTZ2A|?9&WcJ#>C`4{YGXY{Hf|4Kwks}yI1O!0BXnqLh zy7ZWcF7PS$@82zTOM;*aO*lDx44bqekTB`;JLri}`ChvM?HiYm6!|l|+V&N9G%IMiLtNNfT~N)fn_k z_Nzz_2$hLIIhpW1qu2p#=Fpy7&Q#3uY~`Y>ZmItuS( zO$WYWsz>I3c9tr)P->k}dU?5d5CM};?my;-JMQB4C6@o`fFD z(G6fp*jRM|ukWyhg8A#HJe}$~w#pcX{}vWuQV1U8AVe*r`u5*2vuP!TN0SKuQR9^I z;Qg@p_cWln?z(TXq4OFGmP2MKJ!JfwNL1WK_^F7*E~$A0ULKPApS@zse&!w;%EA;8 z43Mya8#myTY}HXp7Eu$czM?fXrH}^Rhx20HtqEGv-8@?jmHtB#IsqlHFTgxc5TyERTj8@d}1E5fERo2|%L)hr>oKZjJ_15ft+>pz?t6w`Q$evHmf}VG4$AoX_VN1!iImwX6IMAt6 z0f&*_muw%K(LdOuk7jEZKK{>vFrBLx=-gepR(V|o0qc6;hK@t{ldM0lUB8+ zsu>mQikgs#4-1Gox{wDfg+PXzV>?6yIasa1isKd@Fr|5W;Xf`H*&D)^52~OIUI5;1 zp`fee_>lZE_I4fxw&Ubl@k^HajHSwYv>xqSVN?{~=eDrCLe6H!fiW#?;2*H5=!Q^) z_(Ma}nW5_$PmhtQP@uoAQ^6yL^kr~?;Ox8iT1oCZDnM6TulFPQmBqOeHjwx>oFIj72?sSacpECIcoSPD7_n%A9PoO9{St~gQ<2xJ$qJIBL0YR(%^DHEcse%)Y4`ih z)ho}{TUe1>ii;i+U9OH|5>kCvyp%hv)W=Xi0YmonSmUVFUm?(QpW*OJbrvz(eOYu=N! z^{*vmZ=uB90-wC~S`jX;p8}6wCY1H=e8hh@G|((X@DMyw5XQ(!(sV&m5alSUDvXM9 z4Vsp2J#`;sf+jb)BhjfwRYkeu{NU&e!{s^tYbKzts+d-~=lvIGY9ng5OvN`MZE{M1 z$2g{^B4@I`#Uj!AFHYcbPG|F@w77a(ns!v8vEE%qS1T|F3YR1^s%clX7uZyzf zw`ixqsd)!vW}haP9mIenS@SLK$IHvt3-sPp@5vCtRy$wMXGnnh$4LVL{0G^E#9P_Q zse(rWZD}}7^zxozTIMyEO@cwnOgsNQ9WFgPj{&$GjJ+%`uFGrF*iEDBLhi@w;)E~J zW^{OX^A}&V&7xb9`|72;1RI%k8WmsC>_4bU-Zv)^%bW`zNV-=_%PX=sUgKEFQ_E9e z0kd&L{uBAJTlY+dPcSSfC=QB(!FI?aC{yl9drq-z*-S`#A~P5E?;lO$%a?^=xQi6e zK_f>jGr7~pvTGaNz3dMU@htqiSsW|Z2;Y$0TFg^JUVCH-;-xMrzIym9_Qq^zHJdxW zIhC?f5N)y9*}TuV+!2H(Aa%OTW6nH>@XKxSeNbun=JM}0MBCtF2tYq;u5`B5dQtm6 zskp8o;cBMPj}s-`pPs+1mAdhJc}du3uzNY90MO$I7mf#bdX}D)+pa6Ok;~s&jcJ~Z z@F-(mpL3t>*tvQ=BouDrLpAYPnVtrl(WJ6FrH>hMG!Ouy6!57(Dz_gUe1j*y4iIbl z*och96BT1sX>bF6a!Qvz?l5TaVPu|C{y9jslA7t!vTJdC{B+g2>8rdf3gT(GfXm$Y zhLtCGEsJ%3lfPjb^-jkGXjGWO(!!UKmoWfzcwYxq7^8C(ELrL@}vLhv?ha zie^~-CDjeCCPQ6ACnZv3hvkK2m$1TtUGJAURebM#nfrU9)0j~}-ZlnruHMbxxdh)2 z1b+!+$az?DJSo%ZDU_HWk$WJ6$p8&$6P|Pi7d+DMmKq&o7S0OPk!2}qC4l@ef@O3u z7JTR@N6&Kj~>v)8j^Gp z?Z0%KWaaU6HhF}b%W;qc{ZQ>c$!XV$aX1|>x)%ch$Xf)S?h5w@-I;G3#UaGp@FI1X zfibPr3T+Ar)fWQ@_!z%H7D1DY9KF@cP94tt=W3`U$o(q41P9DN;Io(_kjAE$g7qbo zA3n6i=ms4sr4GemmB)ulng%sfUQBTL{wT^<4Q7cJXoGe*OQ5nuMw#TmXUWV}O8uqj zn2yzmTXZAF#HJ8&fvP7J?F48@)XCg`bupkm=54XuY1=IX#9DhHN@Hnryc(#eJlbV( z-G_vNs3KOqPOO_N=rbPfsYdjFxAQ2gTz;-q9xCazcAoc#Fz9%Hwz{B%|LSdo)88BF z1RHP)Ty#}dF0as3sjs-z;=f&J-R`+h?N)ZV7>j}*N$qtnQm?L9?J-@#Lveo$fsw*` zI|RwAETyY@v&G(-K8&jgj0{t0t^mh;tK$|I6>(c`V4}t^6XyRv+bn0^5Osn3Ptt=6!H>w7-S?+QS5z z4;|z!w3p$a&Xph3OKzWgJx5M|wrcbsSU*_FF_CG#ja0{#q zxnwd}oUp;E(AEyi%M|?@C8amDmeq!8PnQaTJBqg&ZksNjLnsu68#qrlM0S~7`onj6 z1RcHBr)LHOp1Mnm_aHIz$MJ>2k>HQqkumM}1*KB2PGx}l8UkSfg zq5A7+6j@Tu|Gw+K34 zmG8I!tF7-g41vG7-LYA1KS#dHz~>-^xVkYwReRb}JNs@$rXq%|=-sc4_QY7qNi>m7TMgkad=O8u2I#wIdS1xy6Z(G*;_}7nZA!p=0*#P z(a?le^YNKNSR{t_>vHf|t8fVCv{f1QtMS=1ppwSAs#4w33kv`2IFHkX%F7QkGsS{$1k zzwTBo$8aGzuwasOPXTnS9vy(J|1!4>7)kVpkWXU^Bo2qXI1x1OfI<1E;d_-4B%}Z; z>3_&U7D}^^cnl(9=*6%C;lP{dCbp(ix5wKnq98Kl?$CSzB(V{w-ELoVTUy%5^td7_ zq+pw1omLY5_z%$6)o@r&%9#_vO~f8CWYFcRj-74$zc$E#l0|X=I7H>>^q2qO3MQhO zq*e674ylxwFC++m{@{d%Peq%6OyZrs_NS|9Fo6{pxJW@{kyIG4wi6#M&`o9GF(J18 zesIHo+FkUk=eq#*=0CYEgiN`oP^ZASU7`=+RcL!_9!IP=w-|dsZ$B2jYkLRmK_81v zg*y^P;Z!pb#tdtIA;V=c%o?py1HcH(1URuGVD3x(I>BV?7>*W5qGb|hQd&&Lmb>fa z;Nr2@?i>|#UnklUm2lDwvuojf{Mlm68?h>;IWn+oqrEJQd39bokyou_1OJmN?m@Q( z0(>>BS(`du{&o^EeXg*y{2>I;!|6r4 z_F~g^pnqw?4Oqrz;lzc;PC3O$7`CY@&S=?mDE}=)Iey`ZedQA29$K2_=>}cwNSUtT z-f#w+Dp7GzE*qN)h)Wgn#**WvKRx)1kzI<+Gp|bdV#W#2D>F_-WD}8jN>e0->@^op z<|di=vW)5)c|2HczGi-n=7n95rbPEOFWd0BGL2_5ReCD2Q*lvhsbp8Oqp<0L;-2Zs zJE2AKD0i)klExDHjsT0#R;x-Zk5R;dU}v)~5h?paNIk8m+bf6f&X4nY>)Pk3Qy8zc z*XK4W3aD>C*yOmZB)GHbU7$S$1LExoEdwx$gq9H#0~~pT(c9tCEc}f&Hse}OS@Dm? z*h_5pjgxV)_5gV}ok7Ds*_^oFN7_+hnnw(=w2Z!0&!f&gG6;@PcvTs7g96MAVo z=`16#;7&M~kV`_KFlHMLS1KN10_E;=&xee=TXh|5Yng4sQJF4M1MbA|waUHc>0D$e zoD2^SW@vew>@h4AVLR=pK1wEyH{A!WgUPBMd0>vA5@Q{&>XK3l3vCQsrcoISml%yz zp`x{9Utc2nQ3%fbX&xzmD@<_6aX+)HNBXY`L!3id__AW=d` zV8qnNmRIK(8EOH~127~0{<8HAn%A(48d?trv|%?ytVP;tO43;rPiO zCnX(O8e8+p4Y}UJyri;s+e8)jRF7X3E2Nnnv!XTn91AX$SZ_3Z5Sx%z9W#2~!vBhX z^GU!Fa5@Q8ObOz(;5^J;CG@%yIk<5xyVK6O;>OAK?oneMOY#V9a;4Kul&5Uz;C|%U zxHnJ!4$xNGv>GV;aM99x+aH&1yE3Dl$>IW0V!g%@@i+Spj%0=+J^rk8(W%T>Z`**B zWbho7eS978t!yoQNLyOPM4V%FJ>oAAHMbvZ7%upXffk>c-x(8RYU9P!NBTm}YK`CC zp20Rgo$k!TE%q{5)ZDHy(GJn{zPZ32&ysuSp!f1ORy&^{)ov6@iSWQ1mcpf&;FF>| z8dXm6ZK=m=D&VN-Ov0G0u_f0jQ%#~c@kVw$Q%g^;*>Xv*Q!h+S7prZrvb$h@Ierl4 zvAw~33+YP6&F=~(v3xhlnBN*cQU6Oj&ytI><45_VVAoF_qr#Ld*SK)JEW812+$<-+ zpa8_&PBg?m{-vPOAae?=Bf0Sk<(d*V(UX-4I`JV7X|bd88{ax#W8sSJqX&*>DM635 z>~;m$V$NT&xpR+HC$Z&ir_+cBe4rYFzrgG#j8kpOfRRmrKFHhuzfg2hr@zif`v3s{ z-v396F6RG76kR$VS?I&}pFJ6CLBbk{3ejVLO5(4i2UKuhg$v-_0g+hH#%M9-%8(&> zH)(`%A`oyH?$FM#?&M-3NqvDG5GX?s$lnEHp+tTfxp6&a)I7cxc6fQ#{9gO5;hJ)J zZHCiPdG7vO=e}C)T191XkK+1jtMPoYdE0iiu2?J1N$z_+F8~?<&4N(J%`v+gjn-iq zh3Og}FAOt4gC-6>Tam<+{ABXZ@2 zx`$*jb6hSeRSGkjn#Y;r_bkbzRV*yy$w3uKk~B6(u{p9`0xBZK^D|=VKFMasxSN`T z|C}Hohm^*}D`1$2got8V{tm(E>9)U1H*=2CF;1TS+c?|HdHv~&^XYk^?P|L|mw$c= zTU@aO|L*#G-6xFp^Kq$VLbX)s?%~R2qxEX7(QH%>=7Z^cn+GXL(Is+0^yrIdZS-2qRmXLzh-e$Wj!5{q2 z#F2sa=MrYJmB5l@=*5X33yhAkpK}zF&;p8~?in^FQbBz&MgTer2*m+9yoC;!P{>AB zVRCZyGddjZARIakW|q849(@S`%{}miHU<#tGY<$~CvY{OYK~W{)!2%xq=UhxOsVFK z7{RLOM@qqz;Sv=hMJz?wM|0-0DD|C4mDDsOwe&1`u6`wI8A#_EA~I+f{o9@ry}PT> zG_V|G3aAiU&oytVWBxi9jS0$7Y?i&ti)m8^+olMdA<`{G5VL@zjRB1@1H%z?1c2c2 z$l(6S$mGGqq^NkyIWflxybO@4l_6LumX8h|$CdVapq|AltA+Xo` zyQCZ@IiF~Qwi8p^r8Xal*JjB)L9hOjL1RQ;0eyCfn$fL^d+o7(uD}+ zFU{r{j27u%zCz;NuOm<~qTfqImBy6jt;##(lH^6;h>`BK%z{a z$y&XofsMDG>FoTvl%B33wM=n7m5_g4#c~cgEd8Tm8!TvihLmImPNmnFnDTm=E-dW= zgUU>cI3z@j%s?k$FH*jmlPv=MOoj6YZ{tZqI`$7r7|HUns0e_h$kb2bgoHG5bPDEE zI-Ee*3LhqE(m+U*aFPfeXr#dO@U*3RL{d}IzydQMvw9p(AdW}{I7&PuS`bhO9Fl-| z=?z%n62C-(9g{(=&BK0QF42u8AfNiMIHoqf3!@sUD5bM9If-o#_TvKF*$_;?1r`>$ z*bqRVABwoJmM5*DP%gby|F{!idRja4tae3^`1|=8>T!#QrrRVFPG?{bChg0n@{V%c zkiYzNoVq`;w#W~$(LqLP6-JtnBMj>z2=ji;6vmk1JK2Xe(BwP6vkuH1QeMoG@4iwE}l9pzMO*D=%GjJw2a#Dzs zWX}9Gu81p&tyu&Ks&K{v}P5dqJ{oViY6!_sH5r^7d2OzQ!#ze zP)D$_gu!pD!3G8YaaH6E7^V0!$6#!SZ-^||U&F@NU6;z??&-)AG5V8+Qv?8vuY#SF zI5}||R))H9nC#!BhIG>97)GYob5yJiOXX9szmA*?u0HI2$&QJ!cN&8Bk5(N}9cQ$$oA2|5TPS&#*M+Uqjc%k>>UzC*m$ z>E-i9k(NwDBVSEbHHFX>EMW&+;HUqF=Li7I$#3;}T#f?Z>$Xg@jX}^5J8SNh#o8<} zoQyiRMm()A8ggcbn4)@N>#O~_W!8q25`|~mW-vGlvs4&XtWe*y2+tH0T~CjK5>E_{ z6BhxAvrnU_EHEOFL3c$anrA&vRQYHi#wa=Pq?eYB#sa^p7$Ra!X?k)&>Ub^@bcLEk zIW|qFJlj{YOlfmJKQ_SL)DS+oLnm5Tas?~g&yKESVHq+-BHLtB|#FoJfEYHK03vcdKz4R9FqC3 zRIw;CTKX|B)OD885oueoyBw(CHlYXE|(9$ONO94ch8c*id%v{|d z>?>yk9pIhpKeu*1x^Hy7;pNOgo+xtYX|S>$HG(4Z^H8yQ!kV&Oc)CtxGkRq(wXi0} z;F*t%&zK=AsM|bcJxZMfeUf15I<23R!?vx?l0l@fDQt5Uq1J2dQ?h+Iy^@wktDAxggJS5avnX4pd(m%Gf-)x!^jy^K%+$0l^hgu8Qm2lm z^dwM%Kj~Jg#i@#t@KY?F@|s^%iFk>dH64sah@+FI?8$zH)9Esbn+D3D0n*)Yqi79M z(@7~>MH#m#2Np!ku#PbcP{^(=V#}hP6 zy&siJ9|Ti8>-PTC5cTpnPb`YaQzC(J{~2sp+13*kcnGf-=2oTiJlgNsr=OML82O_3 zWqvwm?L=eE1O+NlP#9SZA!rf^AfTDj)0%<Wqj*Uzz+|b-8bI(oC_QdObF@A2o3M zGQE2LjA!RF^JCNHWXb1HtM;2A<&oZ(&dXFBcAW$$pL+eXlFPQ8P=`|d+#a{3ggDh| zsC}%U(VXpiD2On22A!toU-`XPStCt$_X&MxE>oPZ6*hi0438d0p=O&)6; zSA4y1qVUixL|boXlX?(;5Qtdw65)rUL3t6ll(#;>(_R2acBa8ks`{m1nd+q)mJCag zvR#`G>uK2I><#8X;V+q^@ph^{o~G9Uf;wlYnafpUC(E@Onq}vzS@h{e!Q=_}ilY@) z8zTY?OlfEO-{E3`%}&MHtX$}*(s^m=O73Mb8p3oqTZd_vEc05G$urngaoEC+u|_v_ zE``RF4cn0QiV%`t&?Q!i9rqbe>30pYNrH`afFyu?X;MYpeB7siRnZ|4MUD1gOOqdw zcLIUwV`HjJWw%@Y>NsC1c2G$&OOU6kqHT#`!KJ~Vuj%>f95(3LkU|8sebouS#`+3f z?XO3gMk37jxJ-6agh?S1uHEk2(h40P6~8`Q^7K2sMCf#YJ-rk@K3s0VR;ZkF74&z;{sTj}hdQ=kKw!|P!wS43`a85*NH5B)N{*n59cLTc@-fCB3F4nf3=P!J(H*>slwc}sIFc-xR5I<+}4z2jUU#ZFIZn-YGaG`b5dzA}2 zdH3#Ix*aL&Zhj6YW*B{@5;fyLVc8wMwrYF4CP5{tb$8@VmeFd$CfU5Y%QUhuocu~i zm-5qonb+Wm;mu9e{yS->``I!}Go7x`VHLk+vbUs*gcoV~RM_;nuIbnW*KD)YvHyB+ zfwrVM>8JTLH@!b+cAz)gIV9?ps^hRr>fC)qbQd?PZ+b$XLg&mOeMCG+Q9LuzjG4}l zXESd~3#Y?uZK2T2O~+WmY?h@|rPXk3qCgJ%O8^^pF>85C4Cjj_=R3Bj)?Z=MdWVC! zB5CQLZ3$vqHN3(Njt6M&&JYh{0vPUZLT`DSc2m2-VeNX8=Nubt>ZOv(D= z+!}Bd%$!o?-&qI#IGzBcfuyk1TWCY5p@pNrsQaO_g)GXzi&$tY(7`*%1re|vV38BR zF1~TKd5jX?w?%|UxpmzaFudez`@ND~wUm~PDk><{+kN)G!^Byy)o+{$al1}XfBW`Z zsm(xc7aBuRQxgtPf%#{PnVg1$!_5(qHYCRmbSbQCm^0b}tcCw1-IX8JL&isIm@;BF zefL4H(>Atz7c8bUI7T$F5^{kMDR2SjTW7Y0hAM16IxoP!G5<G1RH%ofnO`=vG2)zMDp&u!rS=KbFb%+mYrohH>>I&Y`T$5+oR z{=I@8stioAgevHxqQ**{*CvJ*tVgcW*+Hx*A1laJisC2|a!7T+X?3TI6=4!%^Wxsp zHC?;WjZ&&Bw9%WNF3cVD{m)DSKSV?+#-~3yvSwYZCeNdIu6oOr-5t56rCE=7o33Sl z2$u> z-c6p1v3)-K;l(y_K0SXTemEXHW9U_DzpB*kwzl#;^{e60KG^0GN;v16GTsR&k(I?a7F$zLL*VG5v z6zlcOn~)JZ|)MzV)dTF)e zlWX<_~q+zlsiU08` zXn!Nu2_luQ@HUrIy-H2F0?XWESeeV&{gLOc7W-2@%A0O=&2eG6yY$UwgyUm!`G>F9 zotxeF+sy+t1`k8+(Qojd*IUI5xgYa2BMKsU$F`gc_t9;O!+(2_0WS{GnTq^P9(?e@AJ_JO3P*aLMfz9IyO1 zA+K})+sx~*>tsds$c0kk?!~w5eA=hAXz}>Ab=);j%HPI02R?@9;Yiq}q}uHZ7sS!^ zad*|DG1xuIe@Ek~W3d_%+0qNWePTOb%xk}txuT=C{QSbR-h4#MqxaWoXEyHb@ik2LiSs%>moV$Tb96+z z?lRJ$RmbD4cl+Jc{xO8e$MN>y^(yysNauXEOQL=&0ci!H>(ti!@nZ0tYhF{rayr;}51QfzOst(W(Z+<4J_{HA^9zkU0rGc4&;+OA`pifmzVI)D#`UiGvW zgp?{?G-16#!u#!ahgW=x7|!XHYW1(V4JcQXL}}C=X483p|A(uIRI@JFo!bc;Ee=1P z=b$(+?Jc@5IHST}W+@)K0wO!x)lr{))<_*^55}sf9)Fh91 z4L@My2mp6PvYqC`whr#Q+qwX^p3?K2J`nF-S6RAm-Q|4(v05S^){<|-xK+x&A9)BrQg{Y@8{imRYZ+i$qPpg zTeozj^OA06?t7zfT3x~C!hux}b%e?qRTJ^iNhP^oZ;uSA8%Z%4mV@v1 z&d;pBcHT6!W-_E}l%d!e+liniq)8y34+$|Ao$+b_4_U*I1Je=IIPuPk6t`oH673BZ zsX+vzbQRIb))@@x5?{&u0cntu@hLf13vpKSLbzxH{-%Tu1*7g)N5MGQjqEWyrZ_lP zO--zBno(0nrq~&|F7ZB|+HHDcoU+oh&Ky=b^EKJ<_9&e|TfT32oR!F~?-;jXx=pX$+=3*wuM17znI8aK;sl8m~yeY`UdI}$=N<)0)g0S)QvPL5F zZtE4snRQY7X!Va4mAsitmpw1ZhGea}m=liqIL;d3iNkTtz zf`j*?)ldS`*Ml{F-}b$|2qU>U9r%=Pms8P|(ug2Ew;G-pYGBqiYVvK!5I?a$u% z`N-C?xW=>`E@Q=h$ouwL<3mRdRayEjH%kx?LYsm7$7$tC*Ubgh`nKBE0^G@;3!TXo zC#<8!+Kiux)B4NO>HXY|^h@h_%M^XouMYj$99LNle~&N|f*3Pve&6Ucz1$oVbv<-6 z)IJ!z=iKHSUDLlD=OCq1>=*54o*x~Mur*7Vy)_-_ycalFxfwq^{8^dmuoib-ph^9` z)XfGEXs~U8HpRZ1a$&0^W`*-VED3x5gC^+w8k5zIhBNMp8kS5)8R@}>K1nyqKF8j^ z@QcPs|-(c!#6vZ#rF<{Mzm?aI> zLFx^}67rf+>``}E*^736VtHYHdBYoQ6>~`dQL;66g$3@8rkNL678VvYo6HIKeYdk?TOF`ol}0ftDF0WWBUZE}Wc+IP!t%0>x=GD`mC<4T;W` zDOFZi{((eTq8v?$yxx_i(?CS)HoNO%0GZ_>Da+*TLZbNA0gi)BYv#xW9b5}v&FEG_ z)%~{Lc5hhbB(3%+ks0O;z^sXvjc2mDNg#ZR9?N;!o~g8%yIjf2)_1R*K`!(Qq2 z)cafFET7ypGkGb8YS-r)Rj%KMDSgBw^41ANbm_i)E7OUGX> zF5YgLIQr^xna9Y;FI2e;q7Es}tyf;>C*5}+?YB`FuROVIb!J%OSq_S+RZ~r9GdO=P zv9{elE-{X?=Cq}n9*ljI66ULY?xGVrnkMAWZHQ?Kg=-geh7j7cT)4|kGK`a~*Haw! zS_ar?S86qAkX!<&U-gu_!h1otU9vk)fiTN96&`YKJOlEZMTZe zw&^c3I<>ObdrWYh)^E%nW!xH_&Di#5m#@uRt==c}vN)=w!`P>?Ty7<^<+!dYDel;7 z-v8=vG|HN%Q{p7U_&)7abDd&LbJV=D-u<%m+WHt}Pu0C0JQhEo`L@AY3v?`|r*)|T zo?&oT(wrn{WLV0xri8mR8VeewSCLWI_{nj95ybZppFwB8q|=IWo!Tpu^DP zJs(dq5sMAOU{ zZ;|O?n{#29$OpnzJw+V48U#$0 zlh?2JyvbdyirYHT{3>%bQtKMB|32ZiRQfx=9$dk_A3L^} z3T-Q)Y^u??5pcRo6m@p!wS7tyJFLLC%C8XeuGHw>FUffs)I=r1NZD`Rc-!-95csZnE@WLaCr@?os;Ivc5q`t=J$Ioi(x$f zX+c%GZ<)3Drx7>#_aCCu)T~Xb6CH9J{y&975i%Prmf6X&xv;VVge$LfbvtCg3WG=S74^IqNq%V0t9&qJaWh>@Az>pV>r6k$Q9a0N)JTgM^WrD|s0%b&-5NM>>hHIIaAw(`gZL2(Dg&{#~ zvW{taP?bdK1lx*BiC1DrO0wGIE1Z@Nk1?MmCld&{`&ZBS3+F4=H|F1Uf5p8@@z0WR z6x3ok!>>lGKZP~9{KwKEn7Dh!#8cgSA5PtPIIijHS$*F}eqHHGA#~}5K}`xMm|t}ppqB&CyTexe^l%RZs}~C zL}I3=NiyTiP^%JJH@G;PPO@wSi~h*3#5a_)5<|>;Qkg0?Jo82rbnJGzIBa)*Ui2|hpf>aD^mYwAxXcI9dz!yz&$ z79=m63JDP-3fGJRej zXwhrZxjPJ3Z<`d0&vP9PXfi18j8!(_^;o|vUVA#3ZF0;8IA z5SRtMe{&2Lasdgn7A@2lFd?tczLdG|b@5f288)h_7F24PuS>>?T1xPz8K#hxyTQQJ zHSO<+v_{EQOSM`M!{ULa>pvHXt9FAqzbHEXM?h41KuMvf*u zZb?RJ$|fT{pHhDv2%xn!B*oE`9%O78nD3t`t%<}~aDMfV$PWr;{sLrsp#q@(5XpxU zo|>SkWsmqd;uAP<@fE+riM^Rg30`4|T%>q6E-c1_02bFk|4>8JhQSQ_|1Zns+-h0h zp?p?kP-1Kv+J3ZF);?t|17S31SI#+y+lNaFA2SZw0U1=Jj1D_4WFuxg1j|&C;YUwF zyC1d3u#e+l9&Ck>{*9N+d1{K-$)#maBXqbOA?jOiDd$p}t?43~ zbqA2_;&5GAy>Z(=CfmkBW=;67rP0S9HB&2i#RlUOMJbCkvZVqsomB3|4ogJ!Z$sta z3Y%ywJ;^E;eBT>lM}#?JMC%>X@Iu35?o-*FG_9G)L@O*SjHjd(dI&04;=E`{Dv+ch zL=K2_bhX73o}CTD%TPt)6sz6vDG~5&bb%JSKSqofxr9ehtzGnvP#qJUW9FSjS}Vj- z^5%M^T4G1MRUQnG)>H%6@1b7*2Tj))W=RjM&saOQZQHhXY}>YNYsbcpJv;V}ZQI(h zbWrzU5;uvPqBF)_Ft9E+K6SZDn-s8&n^DP6F7Yi$t;3eFr;}%rAfBrjG#sXAs*4+suv1YZ>65uq zWgk3rY!S~!vTY0x#I7`tf-YT?uDDG5QJ-qfgm7fUiKSd)1s=-M687sczN@=xcfu1xxH*aj3_?g%b8 zVreehuN-poO$<{fORhC79P`ue&{SDjSXsChi_t&Tao>Yj`F5F#n$?c&qzU^_LzGY{ z4#wvA6vn=)^6To~MgkC3_Xy;s@yu)4$kb{%9;V$}mQma+=IB~tl5u`X#iHCi7$Q7r zXAC{reCQh;FQ*5s5MYvj8l{qYy(TWt~c;m#ylwtd* z#LXT_+@-{+z32-l0;ZXvXK>NFPBupvx0klx5kI-rJ!2`&6&!vwb{3At2 zrpX3wwAemL_e);;H7|P7FZU&ZEPPnJ2#HwdHW*ZUsUc??8Jqukp|ySQTTL5^_l#o> zdRg`ofgyD%r%*C(u#U+(Avh5@K=o=#sw`QeA(sZK3fj2*7}1jQQ9F98_f>ni(Y#%C zl{Yx9EXZ?}37Vf(m5qXxe*(e9YR*hz*K8;xZ2(iRQT-v~J7f z2&vM62{V6nUMEK)Ln_an?&%bbt!T%~MqaTwINfyhYgHs^qa@baRb!bkI7jaj~8cQ(f zRwK`aa#vlb>Y^Q2Gep4(vTI~FEj&dX+-l^>h_weyB_JIy8pN@i!9P&qu(;3yQmcEu z&*7@OYW**#GD`E;Cv3K?47Xhdf5PeA#S`?l&5m-m287yv8fZ38qY#0H10pm3T-C#@ zcjOuo+W#pweZ+I9!v%%m8$K=a@w!%TMY$D06<%W85)KI>iJWIv;Xv_pW;4&@sPy>6 zZ1MXQ@E|(@JGIbva_sIuP^kb^A^7c}zDcRMX}@sJxK@e}qhjmg#goF4%r zc)i>4bzO(c*YIp2+0+8jH%6j^Yb&7h*HO~v}=jb`7H%xywC(9dv*>!ySz_GGo)_D(~*eDrMG^MflTXNjEDM^n_ zaBep?$hY1$X`th3MCW(B`Wns&?&zD9;P4H0u$eH`cY0Q>*bw z@Vmw2&1gun3O1-Q_ktn=$9Cf%=A@QhqxUrU41G)>I#?9N|NVv7+Q3l=SPjkaK7CoM zn$)2_g|gk$!MlaTw9&3piDLoY`_>`OsA*kWYD0_0u#J&mJ);M{#Vqh=XI(k&*JbaX}->w?ySSR_IJSvtP;!plkj!5txjK;-FAN2279wu zy;IMKZJ(cn0@UnpNlXCMD==x4!{u|80QZW3kI~ap!wke_)bOSYV*UP7Z?6N~M2FX% z7+OtlE$}QCzrSHlnH6{5sdCxO4s^~EWcH3$kiW(@(-e^{K$X|2#=`vA4!^Bu9(cuiJ8A-|V70FD(?zq}6bvu{IBLY_8<8S7M| zkIzmud*nS9<7B7wEjI4{ckkO?>m2q^!mW|6v>@8qYr+(twK@!jJb}^cYc^vJ){`B# zFW2wW-Y*OG`p3e~uX<3_Rwhijzr2Y2rWFV8D_zT8iM>O0z7zKnZll$&SKLxGsjQNk zo!u4RIS{eb5$Y%Imys1<3b;N7`Y|8$U3`oZIhT|SXSoobGq_ps0P^hbCg>Agk0i`M zN{cDfwH5~7zVc4LCJns>UbsF^xE%vaHY;_j zNjMyxfN6HR#_wDMlTSgfz6@8JxeL48=@YJ-f9Cp0RM&?g5ODvT(6Rq8lEb`S>8ZnbtW=Pb@>HzcX|tNE_?aGXJ4?_@^}f=~&1 z(&IIX|0d|&=`AU#G71C6P(3Hkg?jz`8f>3PLnooI6?N#T*wFtj*tn8d8ay(q*OxTE zx80S}QquHRn09nnnYD6%GTbGc5!C6_aY-~SmuJ=m1vf2&0a!7VwBr@oVm);1Qtak~ zy`Q`>JOVPF$LWaPLzgqDbgPeQPM<-WpbP}O*4v-aC+UURf96as^EW27-ff8VsWgr~ zkCPM_$RFJvTI$?ABNA|bHXD7nUK)6~j?(Eq&cQz57XJm4`Sp_jYPl2;gr`&V^EtlP z?JJiN*Mhw2t@Z2Zd271&B3zip(1tsap1XEy%4MWCqQ`m57x9rZX6^fUrwnW@q?Uh% zV1_p=zpiZ;Q3Yyy=U}1t&1V>maof{WvMW|&+E04JQt@g0QC#TVJd?{%pZ}nG8UPC`F!6fjl?@6J z6UfZZAXN2$x^B4L+)8kx9~11;jjI0XrY|%UaCaS3NBTV!vh8o%axFXoy|-IFxOtfa zQebz&>On{s;IFlJ|4r+AU6t!s*Ew}^-w+bsmjTVe>Pxqm^|P1Rw$eu?344L@unbF( z4L74LEN$Klm|t&j9|O*48jmzrekGgVznrGrao8|aT$S8(hUy1uxK|8~=S{2#t?~oE zc&c#(;~jM?_0!9mgXCtQo>#NJ82DoM z#y=-nPYTr5)x4UZ%fhfSrtvg%?=*yX9zd+m;gFBP$LThvK*w`f0)@Z>rbkwcE~wU& z9zfeP65}l1=XZZ%t6{Olo2}bsL;Caao<2b6cL2T4`(IfXwU;H6Yp}$nrHlK$k34+9 zkMG=>6sKAoe8i5uTHrD=1G<~r=x%h~PP^j4`+e@uOW{L8d9P{dHmKL*(&!`>TOv%W|LAViU&esX^Yboni}Em+#E=^o<~nt>FaR ziof{mcIxly3mO@%YcSB>5%0TaYs9F1xu|8$JkJwgyc4@zt~k&GU&6WZTi*VUN0_u6 z*Q5n@G0l>MbKV}d7nhFPqe@&+JPP8yp!)yB$0mtu9JrY%{$P#*fs+zZkyAof#@v^y z$|GYAOwQket|E--?@ zl_av@63-Z%bGSz!`MB39cWmJ4!@!{8uzs+cBnvxMC1iAh15m_Bwl$XVxg2*3tolD> zcm`{Fgcu^RhMy;KH97u6e870t91+`~iiD<=izk&i$?`#MK1He3{v$cU$Nxc4YEb1t zJ0@G3?y;wAU%7yXpq1sz1TX3v&-@AmB_79JqEe*kFcP%U;5LGX@nm__aCohrFUQFk z-gN%wzVJf3WZjbg0OKOMHSdqGL5}9E5%Ezz5qXu`->SKu`?hlO$DQ_ zgNFt;vQ6kW6j*5K|Z$qs?tI(!L3gEIAt zZR2;M!Q|vn)h`U&>KzoDc$z${HTP4uY+ahcmB1BV7T$-&<~#rpA^zIG%HpWR$W-m7 z;7>xoaGNRYiP=3z3+;f@dM3dmPEi)yvayvB?!4-W|I*T?w9Vx%6tGftyp+oc_!1U^bUXHq0f8=Z=Yg<#5%N0Wfwi?bl?)9fYGmOEflvjz1hBjx`uxW z%tN$>CzGK!jBQ`q$1`~*f^-cAC*ul>WI=*1@qc&PB|xLjm@zE1y(E^=3YpF1q6cQEN z9^P@S&5sCL8*upr<$%dk=u9+Vwn7uPhZ=}xn%cMYH$Sk-wN$D5;mLkhGuhUNHPCqgWHJ7>;ij&oJU_eFh zIkZ~8iydcH`x2j($0>GEkWgf5OU=d4PQfgMx=f0Y`ZD&eotR4d4Dxvz;YUB(;|mpQGGmTFcjpncc8=olM z-!PuMRHW_3Lg4Ls2DY1k=ozph=&?23XgcoNOhnZ@mDQ+(5^5)whja7(d1$-1*C%XD zMA9qxnk~QB5OV6c?GWJk5sKWpm5*l?j{%Jo44$+%-=Ie%(|~;3jlBEmmKZRqbh|EDHF>P* zk9L*rvN9r^uz?HU>v4&#l?W~K$$$#|ON^Tr$e#aihGa2CqA4X4DISjJc&pHy@Uy>_ zR*zt8Z;oN8|M8ywRG8lKk(jBy=y`uSA7e~7&s9?><#pWMJte(4zQ6YCcyCi*?KPj^ zMkSbjbhopNvIci<2L}j)!y=PMR^(lZ=~y7NTkjY3vl76;(Z4ndk4M@qi>R@! zrL~wYRBZ&LaK8TKBpqn-W;_ft&paBnPtQCIPJmSIvZG~lBTo5iuPvs&9E^TJgcP`9 z^FcwN|BP4dh@R}~Te@dkv#y!+a<|aDot{CNo9AtfqxkZBGh&`!Z^h5!<}85!NV+KW z5ls2rnCg+aQ}U#7d|qBKpx5g8SrFZ!+vyUTotmwi zUaOpOQSzI*yu);<+;cB#M0HOf-wA+~ZjJL_^EWsgnTm%iiYvXAXmWUhK5CQB76}1G zL{8Kf*v$D@f$v{DF4IsuT~B+Qb$%~bpI^O|cFW~G5?f1!wkJIFtpU4-J0qLe`d9W2 z{jds0Chz9D6}~wn#(#N%0bhauZ1ltVD>isYLD&L>z5+}peE_E70-+-~5>luZJcTm@ z8a1&tHT4!|wYFp}=_-;%wytSza6p{Y{X2V+&=p0_&Zyd_8t&e(W^s^ydTzZ}oEwM3 zEgulGd?mfJ$!B*u``Lx^btsBD2p=k|P&N6uGSty+G+KQA;=l0tW!vd=xg@DljJJTO zW|c)(PI;tpBhH7}HDy9GoLPxBLY&M1z6=zZk-1 zpn3_xAp0)ZtKDe23IJeG11E6Q8R`QWwusCM7m1|gh#g0ptj%yV5(y^ELcp>$v!eJTSBpSbAhMSZ)O0`p!am31NL3@cRIzfzC}?&QmKQ2Z8oWVXZIxob!8x>A z@6YR~7+}azM!UW>E;PD+O5}!gD`EW*EOQLm#Grn!3*6;~M?cb>itOggW*}$FHeL@T z5cFG54-DT2Uhg^05%C2pJuqM~ZMm(%Re zyb0glFUL0x4NGnGf^X7EXGom3>^ zp=2%!ek62yICnFi-7=je-m6)>?UvD^4(y%!pGyxAey?MD26;CB;X}0SN(_a7hkA_# zwi>GMK|no2z&Mx$$$*C0L=kO$9QI`da1mCdG`;x;mET_}a!20KM21C$5X?zSwQC)uOT*)H z`nH^s3vAUoy)$rtlMjC}O2ZvPz>VDAK4;!iGd=ElbH}38u3y1Hv_;Uu!bAls(x1N; zD=P}NzWV{)O@QlEKE^q65ECZF zXsD&hYuwR)bKrG7HvMyVPtKI!g<5e&c7ugah$fs=X0<<%Q^XHy6gJvs_Bl6 z^&~4u$i8q`2rz0_RToX3dwxMwQGdZTSx7C6piKC*B+u?|llx}g+UpTq_Edc7^WNQe zGMA)V)AS6^Mjt3Dp5Obp{J0XXHz_sq?|Fx>=H~D-|9TzdLnQ2pP)-lBR`YG47?9P< z%@WXY-0edJFn#p&eaf>kxwhFV?CSE{>D6`jT?>-WDjOQ-Hqz`gbmc!-95)>L2e#pH zy`%4I`8=vqCzt#BRzWJwSD?gLTr0SmzVLT*f)cjkn@pvb!x>d8vx%IL*#ox$>?F8N?LCLSSMt%jXmyYkEnAL^C?U;f{nYMsR`xB^ zrZ2!df~OacE;=<_%MQARAyT}LF2EI1tXpjgpzTvmho{#k6+Leviw{l=5*lr>!zM>9 zlL~von6EupMi{}8U1DN1U=%(sH`pd0+`#rmKjnZK^yhBz0`lz$?`ww$Wxdd3J9^6|KAs29>*J(utt9IqFZwU z|1h83_2bfF#``MZq=&iEBW}3`xFOV=lcAIXQ=#w zZ68fOM~(<@;t1CvcjLG6d+(PA-Z0jMD}`Srm1ly$uy$NxC3m0bG4Qz};gsLMgtJhm z+f1PUgxQ$g+o$Bm}Lm(Myf;?3Tr_$?AGzJgz$8;^D3pR41I49~Ho3H0rP2x}r#zmd*4lqQsoSv1oB!zj{G518=2)6L zv`sy)+I)0eal=&hJ7Gq~&D}vP!fCPwz9ar3ZK(5}6txzM#>q2-ZjKL)8!%BN;a0>C z&t=!@Z3*t{iaAkp`?zWQOFIvnERH9R@AKh`R1SLF(t$vbo7dzXn)-htG*KvH!zWd7 z*Biv+WstJDq1*}cy33lmD;p^(t#K{Vi`-m3OF&ZqDxCvRq1TYtW%C?1+3P1~bs%(| zI~XeVwm@fC<`E>=rQXikiU=tV=dnldR|QfFjjjkd)T76fMp9#9Qnvny7O)PP6-QR< zzHa)B6~-@@f<6c0jB5|)PdkV50=HA6H&fqQsh@pST7aMDo(N?OR5|;Pi*N3Di-grf zfzvWpQ1a-<+76{A&La7fFmmU<6N|HFKmgjU_ILWc(n=50hEOa#{ZcRVa)cFxs7VWM z_o4{J6DRw<3#R5#T_yM&-VN=J3aPDWxw9e|&<5|FYTeFBsi*~qDK~W3zO!9#WU1fD z`8%OtqRy`jshE$Qp1;Y5=2g2}AD3l0i$(WxrUZEo(=+KVig``_bLtuvX(B9iyls1g}yM{xPWXsIZYZl44W9<3oHp^1+Z%?BtYg) z>}sG2eO_ZX1oAyUX*NsbS8{pTz%sW#sfb(Lim(X4@!+o&zJ%O0ld*OL^1{E2j||!> z`H2P-hfkvoOhW-6j#AL5hVN=@?|`C!7A&3?eU(O1m@t=YDI0Z97H*R%1U;&*D|^X zq!T-DD#ISUyMW*Jso{7D0PYN?EksL4{liud$8+gq3XX`p&}ww5Mk~3i%fyA#z$e8? z(FVBuH@(9%&@uaFSTt9N{k}wfzS?27*c+^)_kAgzG1vP99yE28agS^CT(bRzhfmMlIZqx`Zx?$OI`Lg?5tc25 zo~gj++~wgdYD>w3HDN##F)8Bi-VYiul?8sV6)XViMygb&!!hru25t}8%%E*Z4Xm83 z*l*;Fo}THR-#I)Oa>h83diA57+C}#Ab zWGw1-g!o*d*Ay_t-q`uUiOQAKoh)-na@mCk*F3H0vklS-zREj|;XJU|lr?6>WP-1d zFX#4+)nSP;Q~cHsM@VK1pker#*~S?h zg?sBPjjB%6t}+pV&)i9sE*j8Twy8|JJh^hGG$H_~+>cXb)pHUmJ)W3zWedIYdwSh> zRNyHY`{F$COmMs=4w?L!St`_U&Y3ERW*kgYlE-}0bJWt1w~%a*KpL*Ny~@L8qRuMW z=F7jbh<5|jF78#cvfwUgXs1;^ypI9=PJ0_IqZ*>46g`X1xTTR?V7jYKsr zY?=XP1$nJe)j^+__2E31n=;O~d1pJnb*U;40SD6U&vym&DTE1ZGHC)BR0T*s(vQl+ zSQ%5PHuB0`g48vihimnpUE|o^2dhm=6oX$Ho$R|Xuv#(KPLy!dvz^p~Q$*&<(Wanu zFor8B>6`QaDs=)DnnJMW=Trm-D$=+sbcGYBamkzZuI(eICX~OW%bfXD9f9;G;bxhR zWX5CjdOUxV9tY%>d+)D<3WGVE!SNguczp*N#(a18{AwKPS~WInEE-e!N`vL86iNm! z{yKpYCr4W%>KGh+E-8F6mgRV%y^XgGha=dYsuVPl~PZC%q~qF@;IZadZQF~<#?QD zg_zi7Dz~Fdh?y$x=~YC3i;m1ZQK(Ts!2=$VnaN!23Ldv^O3X42KY$i4w3Y@XhK%Sj zmtMVlv8OH8p51-5{tz>o%JYKO1{}gZD^T9tb61Bgma6hDZImXMv z9Cb|T*<}7R-q~#&7cE4lJattC~11ZkGht zK>JiJj(HKH@kw?-6zRpzQDRx<^d5ha9n-Cd|SRi z+msKKgQ)P?#5MD)YP^(Z(Bg&MaGxP5kdfySm&lVeoZnHAA7_@V8Nx$MiS}mZmvOQ* zWH+Dj;emD!HYVuuC6wXhq4ft~4s?x#?mCMIteuUu_RIE|-(LPSM+lu52H&To-`?j& zwE5}ptpYyt5(L|B+bYHHy}E55>Izd~R)%cRpW2lu%6=&Q7j`#en`+RRB)pJ7UBTjE z%Tx)sNO%8PAr98hZt5!||Mlx8cW98ZYl9f|<}j!0wgs@u-njNL4J&uLgf3Lq)LE;k z4DD&nAO}YJsD+{iU13GU1IzbUU>Q_crqW zDN>dUcw+*6>AsJbMHH|WJCD54<^2NIROeA7?MSFi2y}a_rLD$ZJxbux_5hQ z0a_6g?DC!ET6@iit;@P7P;R0$)gC~*Rhn=K-AfD6c#4F;`nAJ>1WoaLs8M?LnWy^l zJ`64E&ogvdcXykH)>SSBTD!TH6fYwnok2I=bMyxfu(FxedHO4&mo`Su#t)WcATW(* z&2!i=7V$mM4!X)bfsn6Q5kDc5i^8?g zbIFh>Aci>*io!lhCOeW0!5XaZg;)Cq{lz+|QXhhkf;N4@G#M1oo5}Wxx$^yac=6?b z=N8awa%W;Ro%6Tmja!?*#%uX(3hsd7%5NxlYh;t-DWV78-R_M0LmyzqyTX5Kbkn2M zZ7}+5g&3zl*K&~%7S^O8|4cUh58)hiLd>r@ha1pE!1!9hfJ%eU#dQvSwV(r6#|fy; zV=bIHJp(X#O56@)H&sSvExE0C!d-y?&861GfWDOCqoc)IUnsZmBB_8Y3$A5oYlm^1 zhLU?~W+?cmoA#j=AOrcbTrc~rx_kc$bZp81Yt0GRA{|SrMkaZrY#}O3glCTHJkJd+ z3RA5uTWo0OKJG1xO_a!VJkfjEbh~%R>XyM>!UZ(%An;xd0|=hJ0(?#g3B}zQK2GE? zpl4--;7CZalc}@|(f-wBHBXhOLAUA)TlqkQLw_N4ijTLpJFD4Q7-A z*9id0@4<|mm$MaLqyW9OYY|#oY(0`ps@?|OlYHt5$jMw=TieObTw`53c^|W25z;IQi`0IuSfi;*%A8Z;au4KM$EpuFF;O6>@=qV68UopW@@zq*@ zTSN>U94X8oAcMvFJhi3MmY}S)@-#85{k!xIzUR^#E=pc%#kuwb;f)F|MsqOf2Z7(& z`<0zXcSkz&%kQ~-AFm;kCdve~5-Vg8K%f!goYP%u9p_c71FFNouP)g5J7`HZ(a`UW`D<3&H%6GPk55|SlnI$SP;LoXyn?#ybGGEtU>QtcrSOyv5<-v1d! z70U&HL8UYO`73UO#K}BGskWq26(vK+`hXOGQjFBpNHsW>YQMOiRS~yDED7;|9Q;D1 zjEb(j5QxMNWtJy}A%FInHp%e|%`Y`fQdPs8ot5&Vqw))%;U$=#&@4>u1QH*4(&0r; z$(fd=4q|9gJ&lsjLMC?Z^fQf(QDXRgfU+1TwzV%q1eVtd8rVlU1Xh<|S*%WFZ+W$)!Sv11)$Ozd zjPekakFpRk3PurgwHZ8Mwb;F4wr10D0)^(U{nvB@L|*-O#}f`25JOkLLWJWN7^7f& zPqtD!CMaPsiVG!&3(x0<1oz7GpU)EAYQP`5$uu$Z8vE@P<}NV%575e$AdMB)dW@mTG~l&5AT8Zn!112Y zC`(BrhkA6=o103sLyJtg97csEp220i^Q#M7N5%ach0H30*(OER<%?GcMH^>M1oZo* zb~QjVl+;P3wsB^c|GPQAR`|T6jnTAJ!|wb0zWwqZO`hd4ua#t`btA#h=80zjT~S#? zEA#*N&D0;(vp~8u&ZcfjKKH+xVV+$Nyk&kHgv;|Bc8cjWj&%U^y?I z)T!WE0zyK(-tVThkOw>NxiG9-&l9V z-d)?;c=cUf_;d6~HuT@p9W1wi@F^_}VBnn!S!2w}d|J~hTuIAT=FPu#cw$rgzUYFD zKIbPiaoS^hRFX%i{Wd6?|0rHz9T_mLez922NV2scrMOkB_r2x)2&Xmm6aUNc!ckm* zZ?5TO-@pig_iSTn=jYz|GsBmF$z@1qkEXz9DHnb81E~0%8d<6Fuo6jR!YFY(OV``G ziU)#L-zo#(RF|KAb@n9}`!0jb$04A`Yj{AOGzKJCg<=QUydmt+=p<2)_*GMbq5vp0W5P;#0XvKspKqmZ zA92e_eBM@O(Ms1QTaJrY71V8ojA6HLJ>`;*>a4d91N=wkV+z z*gH>$LdF5%h_oPq$wq@90$dmtDtBX$6vy64={4>VqZ37ug=2sMCUc$ZBL#DEV9X99 zc>|7z+$U5}e6;Pv!VqhPvHCnAsJL3e>f2UdiymOSLXF)?JWg!Bw|PN)Zl|f}t(EFk zzwf$d1K%rO{lI?e^=0~UE%f~fx0rJ}9Rxa1&6VXLtP5)$sQOc(O^e*LlHHrJB``yo zm}CQxE|Y{J#xB5H)z!@A$R7*yi-s{SP{87s=PPh`j?Zej3&zcFcex#OkC}J6{w}e( z#%XiUbZf)&g9yBpm<2Up%{zCnz_m-OV_qSR z7l97Sk?3wJF||D?qhCfJBBh+w1^}RcYPAmUctwiYZXd6PCdEmL5yL+$T4&9QI6L1e zxhtM37K(XFX+4N#Y-Lnrj~qu7#VtXF)qQL8yym-~Rl%gHErA(e-jb7><`VD+#@B zq>5%ZnUhFbp4bq{Xo^Ef{>&Gz;hJB3W+e9UBjGA2XCP$2$D=Qno7Lm<8FjFSqb7+% zpZi5~)avyk*l{X*M4_sZJzATK_@IDAO?vy%V3;KfDSuqj>WyRsmqDtT@H1hlDE5tt zb(&R0SsJ@Z{Z0G@`hvoUk|+W08LT%O3Y6H}i%n6NSH_enjZB%2@hR=i(&xp?Mn zf-cK<&FoFQ!Bt>Z=ZV7SOKwYyf6oupXA*8AfA#wZ+q!TBbU=&gP6$A%`^+1xFGJo3 z+eC*VEp>8hz?!nXl(ND6Cxa#l6*mbicEkW$e^c(r3)Ph4=$;x=b`;WJB)bb<1d{Pn zb4@f$3|67J_DoESTW#L4z5rZx<^i-Ztkr~F2}+s<(CJUiD)LszS+r3!tg6L#%mmEl zxJ`y(Eo7arw##S3Vm$aF9Hf5k;OnCHm3ZVx#94HaX8ZO=(PaT(469O!*5qB2obiS(7Cn394DiqWd4;xxPG&M&snK33$X$Z2L02jE8~OxFgQ|*AyRvYmp}`{j42`} zDXs`@G*N7mA}N8TY2Ubspwd&RJ%VB5<7rysY~ZXDQdhsecpLQ5dMYc%DGd_>g@t<` zu7dJKOQ9&GE-9EeqSoWKB)_Z0_niB@amwM^S6=`G%-D!=m1;mXT(5S!-3%ZKAmmJ1F3?v0_;C?qM0Ea}ZzX z*YNk4cKP7i$YO_Vq=Q1`5HORe<^I;YA#Bo;PL=R zYizw)+cZwtGwf@xI-Gw*=w|!O3bo{)zAW5Rinm7*_Eii_T_;H&QU9^lKJ`wY zH0ZUKb|ldH0{i;vfVc>bA3r4hC=C%CMpH%@S1o%*8ybJI1_UC&9?X4e%pRfePhb?pGjNubv|e=OhRH;r03jMF(7F~LzY&te(qM& z08T#4qgo{%B`_``p^-`lmwor4g{X$d|AFao1PTzGoE#I34WbJvdLiMN6SN8g;VJJm zrgSoouW}U6T!L5Pvzo5q#nihNUeWo;ZvL)8MQ+>KUHR%0U@jI*0tb&;B|Qd@|fgA-MJ{ZmO@ zN3BIotupmPZm}PF95e#tpkWMvbWuE6-#uheDu+(sdNcKV0yiXpcWgB%EP?-_z|X}q z;PcY!z3~l{Bxwerm^(0K+Ji!*PJLlghk^MPI0!QS&8Eq>_76%JM3eO*jSLV<3i)xg z&`H*dKJPYDtQgzejaWonN5OvYc0PZ;-%bqL+|;z(2jIlET@&4cV+hgAIy7g%MUKg{ zSRnoz$i}PzO(4+BNu)#sHFKPNo9jQ!=XSpfb}D_l18&a=VIW1_*RyaA=-;l)AE&Kr zQb8Fv&@zIWJgIL)!O4=0W9j2}FTOFs&|sW2O)9A>FD3?geB=i+cozajbCn~V0&z4l zHH8oND}+=*S8Jnznl}pI%< z={=i%&Nr*f!*@Y;t@QM~FWKy_YsXuiY%&M`t5x*m#2N2&t0^*`^Q z2pzU{o)}xHqm$dhHGekO=qNVP{7t{WSR!8~Z9YHl_-o;+o-7a*4_OmPASly_fOFt=1OR_ggFU7hn{3Kn^Ev&JyNa4wkfqEsuOOLCvBcMdOYIlXVw zN)Yfc84Y&>X8jyziZ^B$YI9X{Li8o&JkcElcX6e65<%Fws*P-sKpXrn0R~B0riw3a zYI<3Qe&bx@$qjMYe>64F5^{uW=&wg6^*Skv7f6{k-?oAeaHZS*#pt83GB8R~9qmxM zYA@&oNW`{FhE_zzh1Vu7v8aQgXFoMY+Xy7rTE{H#%!W~&@2aR+Q`s^TwWU;a)QZYt z)jbgOD@cg3fa(pfS`-?Ww_{OGadvVP}p3hy8c_p3(<&SPgv5O5Wsh{)mw z05%XjnKOzjX{2*yh<6Tud)?RC4*#AmMi}p6F#SR|;{ktGQkH=suB4g0^z1c>gB+Jp zf=sWkeN>={F8UaWje#acJ>pJP?(i-?AaVA5sFsC#W)6KJV?e$|kfAn_Lk^JW7HoK- zVwGuDXSuM4El}9BbI|7UiicGsp2;QdBq2x+J+}^&JApZbgPO<%YT;>2LoL@At;)uc zoJ@w`(0>;nrz3B|k5ZLs6uKgjoG&Viql>7ja7;Z)(DM0QvAl+fhCfgUQi=DWrLFcC zGl7#x&J&8SO6gh=jQWVxgV>X0jgwFOPG zJ4y9s)DEg8U%7PDhA+1?gowgjJhPEELIo>HPHCxH;&?&S?3S3G2>`$w`7cEm4b;)c z;*2nC9v;0+D5-x0@*QzWnHj-RMM@NK5GRxh7XPZW`};7K4rkQ<)^j3-q?;?4=t_Vdr)uU2#!t@}J~FEK>noN~o7EhX};=!lxiS zpek9gc7f7S^sv;VLd3Up(5}w%pe*HIiT9K03l*5bM1%q`oQiijeH7?1mCf8elIu55 zbnT{?ubOIEjn2YBNUr@0H03BX$9L~fptB+cjT3Ld{MstT-)l{a>u_OV}Mai`hzFR-=rZ`x0$J;FaM2+^B)z&JIG%R=h zQ6>y_BJvGLGTN?FrYD}U&?b?)z0yjW2&ga@)cKkpX^@S0@=KxrdIv&n#1$H$tl&eD zM9Nws>~MMh!~IgP4`KR|d!YM1%Y913UPTfDpx1QVG&1QdsyLcHoBx3lU5!+z9p8>F z=9ku#SbWWwRZ&Cb+KX!r1hTgN8X|3ln+hc)p< zf5L-Q1*8{2i8MiJf;0t*A_&TtE+8O8rGo*H-Vzl7=>h@*LJ*`&uhODak=~^x5}Ndc z8c0ZX+~4lL?|%3FW8ZzA-JK^F^2}sr&N*}MIp_1acka#U)B^+5mhV#F)Bec}BJpd4 z;Kh(rr+|xJZ~kgIsa-zDynWu1h5h4;@2w~4Uq3bM5n6)Kuxq@4Yko)&cG=I^xa(U< zzPZJUn^<@H)z~1hqaWeU%8JQFB^RFCinCsR{-|CuKC}7pqoP)I`#-XhQj4O=Ag6cH_U1y?!YZe9M`?yxId!bgSl76ZYrO0+4{Be+JJ z8A0kx-jTwTmPYk2G%sr(7^GKcw@TYH#0nhF&o3m$!okmB^Kn7t=oDZ z8S#g4BUMaS);N*o#{70sZ82|&ZO7MA)m2lEGH5^WL65Jfg1~b@0`_u`L|hbk{t@0x z&kT%V4#&b&N`-tzi;Y!E8@&jkW!CQl`~6a@?E!#3zbwvVMg2*6B)h1AOT|K4i)fILqsJD?m2H9Z5U{CVbwl*gRq(mj0_`zhtRFbdaa)<0`p$tbK*;>*&K-YuSK%UG z6Q|65F^+8O_k*#GF8hU3C3e#Hm*X_EyffrRD9@l*>FaJyrYCkI-eDbX}ut0NsK%Wa`QCr(=V-9u!zM!k4}{5eS#?Letog$d2LEu4ig_= zn17^w@!fDM6LzLyr*9Xhe!I$C7)zv&OLL5+0l2P?r~gvLJ`tm{0)aNS_>KMszqhj` zN}gJ}5^k#(-_jc{2Oioy8oq5%zmPa4h?g zxUWm*8b_)!B>>N&6i_%ZO*1nSXEx8SJ+eB6yJySm$8AfvnaxPDNUC7&drr*<-f%U> z`J=1+fW`ZmS4tx$=l%DdwdU!DNwru-v`OfnDOm3}F6LJ8&dYaMUi72+^j@Khdm~!) zwCLS=#;p0-2ML;P;xwKPSG!l8?tHp@|B7j?na?cja<4+Xdbj0k`cod!^5+ID6;n8S z7$>+L5kqdT+qqNpG(NF7yL`tM7+vJ;M#-=Bi-sB*E;Co_L_lBNF-kKpFEv2JQhq4h zZQy0^FiPPU8k0INe_sK4>k5KTGs_%p&u%m4!z0rS5E5&1cI6tsQ9_>ARPiJUy3b z+Bdl-6#|ZMm;YqFo7L$#Np87eFk3GAK-?Phu!8$dDEp~=eU}USyk*yWs-zooycx_o zgCok?xGlEe_xCkhMZO6}_gyQ#Xz(rMed4%|OWMa!|LFWzIRFMLd&lAa1Cer1RfoG~ zJOksax$H0fA>xca4t1)(Ef+ZY#>WG-;e59s;t`j>)K)94IDdMRDQL;iWn_Gy?_cp% zi|Jiq&faZn&Ufb_GRtqY%PtTf*Mn~=!PKeE994N`;w#3PZ=yyXMZ_g(Frf7|jwEUL zh2Id{4*t+GWxUQW7iDzFznYWCvM%R%HvWs&G3Oh>WKJ5OCr34{m4m>b5gt0HJXj=P zs{H`>_$LcxtewRvgvDJ2M5!V)!gRU`Vm$W}#W+qwqNj$exjve(g?k1M8{$oL-7OqT zBuyC~6Ti2-ve)_N+x5w`lT)8zx6Wke^d)||={Bp>(}XcI!${uWGoH?NQu>qq{9&&v zojUxpz~S{?g+{Yuy1O>#L(b%Cz14brE4xtDXbgIhKI$s!U9ZuZ($dDLJuPDq-@8Aq zX00h2Km-i<2IjC*&4)Ub;v)PkD{&(R6pce&&zx-E=PGk4reRk4>8PNWTw zHxbe1yxd02mhQ=cyQO2?i6s$HCc!eNZO=^Ie$sH>%Qeg_wg{K+5H;wK7uwMH%w;&W zrCv4x!zn1!6CF)MtI2=$Zbt@w)2q*|UodJ)>duaK#F^?Mc&2&zt0z`qJlys=d7<3{ zI}%M)lRd%rY36*maN%;>OL^7t(b2h4uNxy?$~etapNy{My&uUBojZ`3?iznT!fJh} ziX0)gb=Mxz)fZn0VFiq$=6#PAD;O4%Y>|2Q=UY6AjWwj24_o!h&IMoswIh#Z36`sJ zVz$ARq`j%6g25~e!Rvya#|eC{m-1pKWwIY&Lb^}%?JY;cDF*{6{(c!lpPGMX# zeY)6HICkd43!`Nu@D1ze`S9Gg1|?$VQ>#?Rs+;<>mJ=`zWB%azJftcSngj{(+7b1@ z)PBk(!`w}|!>)HX(jR^~v)X%qE{E6aj)gVrSdEW-7r$Bs>*L{94TD#r+WNk`=zxInOhU|ST1uQ7+DlIF(P;YB21f>I#ZEk2zUl&K7lP6zvm&6bm=L9 zhCDA_1-yORp0FaYr&WMQ3>A4?DHh+e+0PIEt_c8wwtO6SV=!-RIEdb;e(bk2jn`<{#Z*|MXb33ggBk>~jb` zp;U4rE-yXFR9DxnS5A{}8NS_mbth>bKL6G3KJfdUx0tiLq)?#c)WksOT+;n0wi7hl zryO<6?MUeL*B3<|KX~H3NoR^yAswYvPqzbB?caqb>H1ka^Wv#bhtr*43@@F`YfG(A z_F{~;**k)smMYp9rzf{&PJZ})*#@oxx4m0*u;fIk<^>wrwm#`^&H)$YjwlxK#`opE z5^OOlI_z{DbnCwizJ=~4|5Kcol;aVtV*swc@}mDslbbp?ojm(zK7SB@Xw5WO&FmAz z!Kq_P95wsG@rcG}7XYzei}Ifw8yy*MrD;6$n5sxGJNh6Om!-Qh@FU{6aT}=?hP+Yf zn>d&Dz5Kbz(e5oyVePMpjEB!`j@AqS$tL$#Ho6PSZ?QP}o-mfbJV%Vm&PV#4hkMVK zVmfoi^g>oDHzFp6ejP9A$G)GKEN%5Jt(7p~Q&+XJQS)Qz@Ys28bnP4~Ww+}m{JAk^sg>U;Hjj!si|*qV3u_Ydwqd-P-ow>Zcc8OFVI-xnjl`zb64n|P=H zv$tf8kM>f{EQ9?YX1MyZJBq^XNcRWv3T+x@!wb1{p!1APqVwa!1IlXp_|Kfwo27J74c#Vn-fPnZh~gVu8w4)#-| z&dZ@E#kfp9N}Z!DG8&e?qq(S>x1OAV{Y5VO+8HR=O#Rck0(0Rq`hlk$)?oQkb#15=hsB>qU8LlKp4%+3;Noxmw<@{h~~ zkJFGjfn7?doulA&{Cul@MzaHK(zv%tlq6G+{Uh}rQtF>3-_R}_86HadmoK(fRD^Yz8HVyRa3l2G}Hao^45638qbxhrXl zz4%REH&O!MpPDayUCwudwDTk%Tj2f3vPvIgqP*8^I_%fpeb**W+_W$9AMvEFvp2uC zaJ`B4t%5x%A>%GiByT*rS$h1HW201QA{o3N%LRp5(=?o}Hj8#%f*lv`<3U?W7D3Fg;Ye2 zoP=l2gm8wRB|K`Vd02M!*CHQdLfK+88}|ABvS$+v(N%{D6x;}Ovg`Tdb(2r#zJl=K zv$>)3BdP7(aolYD8StLkWhg25q+n^)`ZwZ8*5}q|_Q>R0Hg7?{mZF zDuP#Zy89mYJP#Tj_*U%O3^DPL&)EiGWaMSlX*)bKt zQ#znKT$aubV6&VlhX<3+r!hu9d^1*FanbYry*J#r`vTCK0j+=mmVk{3_)OWy8?_xT z1Q%7}6!PB9ZR*GG#DdKD{i`sAV;)W2IUK6~g4C05!0(I|#6KD;$0LWBpu?1vLm*V@ zzFwUMN<}*oT+#g$AxhyJ@bdN>`Nxm@+_b=Dmw}i3*SunII**K>rm2E!FALHDkAVbT zI{vE+ag)4v*y#w@=zvp?urO8w@w%4M``sRVTIj828^~-?tM_YH<3}@DSO99ub_2DxGtIBS7B$xY!L)td= z-@FUc-vq40FT>_~^ygeQ=Z$EE-@MPb&bcrks1!At;}@wU<^ zN@5z`wAE{=2-`Bs8UB3cAP+DtK=55u)XA!>%`q^3-x!srgl&a}Ze){|`)$4Y<6UX$ zY(=p*9vT<72D{o;Y{k!q9_;#3E8`wO%8Sjo^U6*wpFDr%#&`O5m8jJtmVJBd<8G^D zi{wW4?~VG{$)ro(kGO1~G-t9R$ z6Gqp)$vycOxX`yR!^4f%x7s5xSc>UPK$8UvABS+H-j8wCc*Gg_N0qZ2!kqiq#gjP~_U1gy5-kx}9}u@Mg14DiSeURuv>5w=nJX z>*7tjfp?$M@~%q@g2OE`RciX`WDc6Yi!;`-+E&wQgiw_=<7{^3>e!GxeSf%_aGZ_B z??<-Y5;J~xMg!)Q7d*fl40&l6Fxt(Ovq}t24klCy0IMGp-kUJBlofYJOItf($Q~8j zk*SD~V8YyZCvXwjg!?53a~T3|1=%leRrQv|_1{8#UN;5&{dNUimIOGFnCI6nX9~PN zGu`0g;XGau528=|mNTETf6w14lq9KtXPlm}flS?Fx}16ZD6^^z-ah+5EJ{4d{F!MS z^{)6E_1bGyWt*?EeHI*&58r>UD7oUacE*^p>J{CaV$P*moN7*nWGT( zG3+}F%h0@3H{IEQP^`0c{o@r=)6>FYsvcu=hkfUhC|8+q8Zq3kt6PWLEu^_*IDoIM z`c$rR)68!?>_a@~?RT%kR&s;4|FAQ#@CUmQyJ@`cAjH8&%)x6nmSJi8cM12m#U1<* z@#$oy*B60BW2z;M z;oypQ9ZxOZe^@vVHujWD;LtJfxaWsJ&Xqt>rq}kTu7FKV`Jk!7vAcV?_MDJnyU*15Ywc_^7W>P@sSxEk%(+M0 ziI3$}%B-hp9e4Gt9UD1;i*ML3(nX0C>4Gz5Up5lkXVyKT)uuh>0kP^no9;=}=UWL{ zFS+l%0a>UauE>w8ksm?06;ih{mXhGC)Zo#Y&;Y-ZGG|z&4opAph#X2i%9_ z{wJ9Y1J+ev=>aBrzsT0wkTKuXPL#q@pMTpk(pBA{2>uK%i0VOT z^~nlf41XKDrdTBRz0ZZZYmj%xhf-Iz`1lnsUader9(swOWu#*`VBTZar9Gw1DSYc9 z=M$$uZMXv&y(u1d)+Uji~Pu~`oFQ}Z+(>Rhf zv#z_}8xthk;}dOP0N)pS7MR!bv|Rht+b7T2^>$V2w84qAHyr8^CzNqCZ}sf(Gmj4z zDX+Z-FKfJ5(EF7U`_(pt(BEP+?D3dO@q4`@+AV!OW5Y?e0MA*=N@_{k`40rO7k~7vcuZ)V7T~WUz>jABYEB>dP9#zn zq_HFu#qQzQ0xrJMeRDNm5C|mMcOWQ>f!AK0q#XB(wKRL8Uv73grtGo@g)3<)UjC-Scd-I&)p9K7i2c3ct*uX{P;qzlXU*nu((3#${$~Z;d70c+kZbZb&tM~Pkfk)N+TDt zo~1ox?eW!@3u(Lg_6be?iGP({{`L=hSp#0ai<@zg!Hzw;nP!PV^UjW3s%!`u(#iMz zI$r`!ed{*^Z|yjrDm&!r;iOI4&oSl~W+`ds$CB;TLTPiviHR*1xt@P*`iO@CVuyEf?{3I)W$KozOEl?&YnxGqBCNG-6wBT6uB>%;^Yi9BT^WSMTAdLOT zx|n*ol%3lNA0B9Y=9akMk@o%ei-EAKzdush)Jrz5tiKQJ1HkQ`wt-fe=Hu5!dbD(B z{_X%bVc^5#ql~lF0Pwf)fqVQsUf9dQ9qe76$hp9uI60^&$+|vwaH9UA{s!3Z-@SJi zprQGjI6ejd>I`rPpgnc!?+4uIzz;nWJv|*A{TW6^1}2s>EG*1tn3-A6aGT<9@CUW*z$qG9+EaA2f29V09ReN) z=s4&(h2?KEa2Y>g6ah!Iyh`}QB&u2YoyTMtFLv$ei`S>m@bdAW6A-^7A$j?VqLQ+T z>h&9Uw6yQ)=-#_;`oPTG;-RILoxOvjle3Gfm$#3vpMOAL=$o+ch_{hZiAnF1Q&K;q zrRU^+&dV<-EGn+5uBol7Z}{5S*51+C)%~OA=g8>T_{8L|sp)y#!s62M%AeIW!p`pA z{=p&f==iT*Gyv^?sP*48`n*Gly_WFNGv;U^p|D)G5z(Pv{K0I0u z01BMw%aLCurmW zFYgXGLq8E_@|xLSbarbKE>c{4;7lL*LqW8Wcf zdIvLS+LMQijx$$~r%o`+a?7KoaiQJ zwcXZ6*u7E+A368~VqhBCQO-CuwN~x=&hln#3ppmiy}?_*tR0n{-i)%rQ-N5hGbHv{ zA{KFBjX;#s#^=AR^XgGpEr&n58p!{>fI6=E+Tsq3-A%fL))!a{O`0U5TVAc z5e6tL{KO~e^8B7_8<8tmo3`stSWg3=m>k(jCyNf9OM;%5(B+~D(SB~t!n!Grtj zN+11Lx=-fzf5Xmeh)8V0@H>X#7<&9*l$E}FR<| zBx@2RBDTG?hBtgQKFw!*7e#hV8r%zxytG10(WVG&Bbb8CnurBX3#ZGaMJjJdL@BW{ z$ca@4B+T?y+CQTLTo!$YkZN=X6?mOq-sZtmAGwEO|APUtWMr*b1vTCD;x~%wI=yxS z;+NswY4y`}h%>=KLzL6lV8fwc{ZGV3wchv(ZhZKg5#i;sxWv;=C$mw6E{o-Cw$B>Z zgYTryOMIsS{Qf_u2h>*gZr-rot9!R;VGnES^e+kaCl1fE(f{(N0$r_V@kvDHjRaSL zkLhPWsbQ@w8;e|0uJb+1;Hg)b3?i9+_gX+s>EO->-puS@8Yq|t$DTVK`0kM&OhgSET5|y-Lp)I$BdcKeY znktFII0(bc>cQ^nG4fSvX9X-Ew(;(@e!f)7_Ez;HCs6Jv6r@$k-?S}D#*mrFIoduw zD{qVZp}D?!ns)clcXO_;a=V$e_z$!O_Lfsnt+z#C^!J99qQ%U)k${o4g~K3pOPnig zit*qPekHt>hpa%jNk)iN5VTt}Jv?PHF_qqxIvUtCt6!~y#Iw^tOCI?dagxA>W9+yo z^^L-hcl$%(nn3AT$GYw;UtV#Dg!zuqBcoc_G>IiRNs5wx&^)Fo-vy7EBWl_N9^-!M z*vBo&3Ww$DV|NA*lW|aHq@#==PNFkDE)X02jC|+usQ*_=*Fk#Tc#P@yMV&|BpZ>>EQplV=9gukm6JpY{h(fl!1J*@eImKVN=+mZ;ZOkD-~s zV9cwBJe(TFW#IV^%*xyQrqAYfuasI0scV;zjfq7I@ll8~_|E0rycvIGIkwdagm8VT z0cEU7FRj4GEWs}z$Xp?^bY{!ScPulJ3d~P-U3Slzng1cZU8-0PeQ}g9 z*M%Hz9XtW6U>>v&voDsgp79cz)CioPzyv5HrkAA-VV))te zibwL|78OWoYTX2M7UX6Oy4$G$FM`{JSKv_~>UFSJULMJTTjX$yQC zPZJt7`2sP#6Rb!XjNiC7?@eHwY3|w$?rL-nMjs-qj&j=|)k@153&?ONE7{aewkW3^ zUv4y{6h!i$`FYPFOW|h~GKf^$M7lvl;_gP0EZ2B7G%6aJG=%W?|M<2_?oa`rFSqJv zerNcR_jYCuqfd^31H%|9AgC12=wIEApu?L-!f}ub{;$uuKaMbJa0}9ta&A58*eJGk z-%fSieVDG(2{sxHF2dQOZ1Np^T-N4Ef=}^kmN5QD=3b8g_w2->kW)VkYVN4jHJ6aA z6d#VPQ3WsiKTWdWrIOqHwu4U)r@R^Zts z1wyX~3m0OqAzVr(ycq3JPIt(0WuKZ^&*9(F(p#2Bz_t#y2ItCi_MveCkao7%X-egn zRfKqw;bhH)D{kk!sQ{a;4Y_2+-BP__Fa@hJ=L+m0Imy;d!%$~KMzWfX#%bx=O_4*B z#O*#0W#xK@>5~09+alQcU_D}GfhA&y3Y^xEya4H_7veykU90O?Y7O;~=}>5{+_1cO zdRcCcvKbEQV!j^@1K`mQMME+z7ht7iLN+Gc%vrHDa{U=6-OFp4<4= z|Ea<`_TYd2%^-4XXu)91c`CpcY(UUDzFGHa9?N#KEY{9ND0{(YMmKaT02x3TKD)hj zgp@trQnw^TbPBQK4^VzZ{&sgqd{{O8ICP5qU#mW@3wv;3^rs#4`oLUaDP`Z-aB9V* zA8di}aDw!NI<58g{}so~c{suGifNnN@~8 zao*mmZQij!Y%8<&ox0a^a#PCCn{;IHQ|dw9>8{h_Us^~(6;V+~z3C>tI|_=BX;&l{ z(NME#Bv`q=Rdm9m%$uZtLvU!KZwOh6+7t|U$(G@Zb@hvcI+M_}{w5=aoJ3z4E^rZw zn8s(yD#uaU4#HYz-OYcOAIE;tfH&0#e<*N414`v*{q4S0`Xf714zk4YjkXd8vHb~I zg2`V)cDJJY7(L+y+h$mf;Ik9urRowPU}hlOZ1(Bq46CU{mGy@$@NyY~9bYmmmTWQ* zTarVN1I7tH@s^DDQ~;HsqhW(gAZ0GTNP*QBw&Gh$JQYCgN zrZdEMCRumtd+WE)9I~;kTNRK+t6UKh74^gJk2!nA*dK*_dK$xdcjedhnaNYlyM{!* zBEz8hpccPQ)>6Z~wH3>+cJ>w0iOhacs-Lt};}kK1#QMj_lSl%j?NCDzFWd6zAq=F6 zT+Lrt<@MgR{yE#^_gq`TuD8!A#o+Vh$GDu2<(F*@dbJ&bT$<}z3nGaU3%-@=hzq0Y zO250ud~Aa5HxRgc0>0GE$cz1YtM=pbkrS%1rPZwb5fQpTLchguP{vzE8IpZ2%pSbZ zOce@tAHEOHwLuh2eId|?hqYPYbt08E4W=pAdDjgpN1uuKYgjwOb02@Im|a?w37fG- zo^EDG2of3Z;`dUK@T{MgcFV{uS-}GvJNM%K?C#Xx>X%v?cNtt8dNdhrh-uQl_w#Uc z?$ECOP8A3$*xsL!%z3F!>OcyS8Rst`wzbBUh^0zF`tdjGQ#OXTAC+y$1?Ex#*6a9D zO1Lf>F9f4pN}8`Hrx->f_xJOuz^Y7Osb$d;5TFG5jOZg$mpe zgAv)}z}(NaNE--%krh|k4Uf->P=Rj&NMbs4zCc3&In={Pq3xvt9h1ezw}dSIb-Q?? z%V0QaPeB`upJ3P^D6PFWVoU}jl|ir~75J1WM`lc=0+G2C0k8Rj6P5(zZ*??TKQND* z=6{gNtq%@S(;9Cv&+3E7E`0TX=H(rER#x-^8*V_wQ!!$qpFN8;i4N%S<|Z)Uo}-AYQvvp79UL30KLTqtB7t{&Rdz2Aw$6IWO0mdK zEa5w;n$!)$QGtB34H!4t>4Xc{+MM3GTv_g%T3(=+gSo)FDa<#apuAF_`a-1_yEKj2 ze-%O!_xE^}?~m%V;?#(An{RqQ>cceb{slffqPoZ+x(iRBIJA4+;!lOuBt_e(S>x*> zWos~!Ux!Nf*40RZB8t}QmX7A6g5K$pT@%ovhQzo_No}M4CO@H(keS}>ZpZXc<*bdz zB%NvX&5XJuWP80&;DzpQY^VE!@(k&l59C)<>-Z*8>Jpzt3jI`xqVLk!nqu|D@=+L1 zKOWmJXK~@1o@gp`Gj9ZQe*1BenwHuWNpfELz&(qf7Bggp;L=+c;=h4m+^W2jRjrfO zdT0SpDau~=a!#7L9dPi*H%=AXXEA-_D0wv*G)>iZTc-6q?6ptLWb?0mc+jK9iIuwa z!%eSS4%5X|_nQ?n>;&t`8LgW^+JJJDWTC>}%Kg7ugqxcq4C}I%ak{@>b2}wkYCO$^`2gCA3Y#Cr?zBmhGN{zOXsL_6sD zmzFo1zw11I`hb;oG43X6mnDAW%h)l)e=lC)7II;|-2Acz+UCXGU{~bimZ!T*14DvKNFp)p4gz^J{?8iXIZnCQPi`KE$C7P${L z+bIu`fZN}JZ&R^3WzeGsKC=Vuwxrf zn5ji4^h~gJAqbQN>MHZ}&Ijh9UM1=|W!?M{d$1n+r5AQf;x$DY1e=Lz1<2n~a+E7y z#`ayoM={SttfT_ka)wmkI}40#2Eo4xen@aT|*A-vE(d8<@_C=7bHsBAW~oaPb=dweux&t#7ZklDdJw9}XhFzIy0A72hc zQkb5C4zQ4R+`0S;6?h|x>ptObfl>iFc_iThvWy*s@Hl>&SYmE0>u574mP99yx7FTzXX?*PcdxQog3aH7>oK_9fWU zg&Sr+TCV;DqOM!Y`Q__$>(e2|vS2mhr+LGuY4yhVH~UR+*Aa;wC$|6%X9vo9xtZ&_ z)OHBclIwLc&91z$Z4wME4yP;P#PgGmM0C z$Tq_Zh&r8t`L&)tESzMmR`1y0Uwb{zCV!5O!H?=NdY8tjK!Gbj3XCGJf+R|Jxqxfn zQte>qKDrjOj$j#6603-}r2J|K`jHd6km&PEq^`lti3;e%y4it_f^W+^(`1yw;}O4) zVxNP)thF)Unc5OK;xf{XKa43WUm8F|x6p*20I9koOLSCSJa=~OxO350AOt-q)3>r@ zFrEiPHLgVO>wC3jsZ~}J9Ft4^AN#vX^=7bMvrK(BQ5nYO13Twt9;iB+IS#Yf-Ce>6t*ui^AaaK#69~ms z`S@vzZ|PBwFt>yF-l%IU+G_U}Z$*CbC5Of@92L^e{3dKilzFSxex8s9{p4~@)QS7& zB-a2=Do~t+ns;p~AV%wt?Z+D4uWOEj>--}hQpHWeA4Rv`#BR$3pI%TIRo5n|t))&+ z)IX<)jcc6ux3J7)$o{e0kw`iAkXD(4blQM1HrO+yBv@xc(FW3)n&|Jk&`IGLh38i^ zW0$QSS^gL)?nA2#)^EFKvsM2okG3Z)m*lv45xqJzq{f~h_+7GYvML ze#z}fW!0z& z?S=&OcHshy*y* zIv<}WO#xGuR|!ah+0n{hnu|!Q2vM>sbj#2mN_=)<8_>^pz#UA%cPb)o#kckH#mFIX z`gB2@Lm%cZDS^%vgq4#c@6XBC7;FCvusx`unFm`%JzG4PbpZ}(rwB~S6*%w9(7XFu zYje#>q`6}ek7t4h58Tp-mrK?mY_j`3wJ^qYHQ7z?!lyf8)yQ&RPU2Nl*v2J3(yo`IV zPSZ&3HuJi9O1-UszL4dYrRwAnv#*JUsncq3f=EgCM9H(p1LGLP0 zKI-I(VcJ0sI-57Ysn%unSwmnXYqFisS5IoLJfr9+N&3TVt3?lGkj&-~kcS3qCrv=gHhjK? z&)iT$tU80jF=4pbGycSU6tO(MljaNZNv-I(FJmX%V0@cwN9{pI(0Bzfgw`%3T#CH_ z3552QWv=hu=|G)U=K|{=_N^d=y@huU%=+VdiF=p8DEcB~1o;V%YMwjvLmu!PMr>?T z0dPMaOX-{gW2KhPtqUiAwd7%)OKv%7YWHICV^_gM`5zXM*IXq}<<%wGIXE4t1*!SV zSZ`Z*3lw`%`t=W-n+Mf;^-0R^Q@e1=rk*zN*cHJtvM&QMs)!p`9Ba|J`*jpKylk@` zySDnXzU4W{njoD>9t{39{_!RRhFn~!6{eS@JmB^xI}-j_=4(S3S6@OrCb_Ds#WAYd z^v39&(Pwsvf*~3h%sJ%5XQL}6RG`H~BiZ3nc50~$Ehgugb*R8mA$r@a@e0dZM7swS z&>);p0hO(C3}v6qgS#pq{=ED8P6@Kg71W~Oz$W@+U6*Z(T)yu{DIuY^hJ}(H_)q3O zp00PFODJ4Dbe-d-=?K;#g2D0hX6$G4^v&(?avAs5iPXSno*IWUl_?KD-@V7@ahN)i ziLajzi)f2IvtU@2g`)(`6nT`_GMBc($NS#6C)E9xJJc-o-7`y%{eSl*F<4v}w zBs!rG`iSV?gpjz*`E8b8M^~K>dHc3Tdu7Fw{M{FNsQ}vNa6G_o^Ewp}gLa^{z=ZD) zajjn$?T89H-u@o{8o`IRcoy{v$ zxB!zzOjb&x*foS`Jv_x`WLpQXg4IG-d`@TzWKJSTSeXz**jfLQ`A4=lh~0$yJ1e?G zi;@7VHO=ycw|Oc1d>gz@t~jGs8_S{rjCJQh$em!%9>y%x^yTvjAvwn|Wq6g#=7HDJ zj613K1WQJAc6jh~u4EoumNOP7IrIsdbRDzpL1$Oj7lZ4eUS7yQNQopcF=W{W^T443 z(oHhT@8k@U0@Wd3YXuvmCTinwCj`598O;AqfWXv^TQY-hG=!D%T9!)D1D{E<2>NynKm3zCox_5Z$LnRRS(I3iTJ({6Ytc^qw#Mc&|4>{(3>o?f<7$CoStQ9c zdU(iLMq-zbkYBa2-?#ZN{_Pab0EFCnc`4Wphja+Q{+f0i6z$*j-P}<=SyPG+rN|H% zQa$sraty)R!~l8_+c#mkTp9<;rr}Frm{>da3`Do5@=~H?0%h+qOmB$RIVURg zVosDK&G=4vbS;XTEJvKg>FG9KIB8;w-8ZaXwUA$v;_LOux9U`Atja{Mxq&IVGm_Ik z`u2$WWzbi-!`N)sruURNv3WHXXA=}n)!>%z3&_>rR5uzN{=FSp7l-!2{5?is?>H{@ zAiffPp#0%&){AFJOC)Ij&UkvF8;VEWVZH@oH144x*mGdbFSHE%Yb{sVWy+a7>{RaE z@xAi!DjPQ||54d}xXGb~-fhq254eWpJpDdsw3|h$8-x+e$p0Lsn}G~6YoMOgAE9aQ zc+F9+J_{Srz_Q?MA5?&uYd$VM`_T;f!B}k&e{C#8KSX&~XLMNTbh+@WvF7IyRKP+U z2(i}Y(R&1*l*t6M`6keDCY)2(DcdhAm~VA`xx~3WW<-T zMY6Fw3LiTQJ%(l-lppXV>Nc0~qeDn7dWR6D!9(OUnD$c!Pco^%;>%zaDp2VMUSq_0 zeQA*BbQ5}rBHW`4BB3Bo);oY%?SM(L><`fQ+$EqXOeiu)Glfk-PM9#@9lnF1CKd>k;aP#1M4dIxH;1QeNIXjyf{zq6i|VdU1U1 zUHCe5xy>Jncq>YGtVYJ#EbBnRlvcN%<0!^TSsxV;;>Kw>-EM;ik>+`I4M_ETs{mjvSO(#CtPCHHG5R=VTAX$EmI7+x?MGVOGH#cNk z^$n~mDtGg3R5!vtQZ$zM_$9c_;->OsmK&<3wPha8*KzDvS@6ePLw?9d&*qBd=N6yQ z73&YpzZ}D$6F+8?didY>tnUCdioyq_oRK< zbsUR#9>JgK?FPKVX*BQigo2#XG+!s=EJ9^91#@vUku}I1-}Z23^||e}KLo6DftZ`8 z`iZbPY&#hH{TAfuFif88bW&W43=9vvCg99tNck=asGQ%)<>yLdbgCW|iuJ#I7XW?BEiCYbTh}TMz?dm?W|K zV61tF?1bYUB};jh_}kqcKN}yy+ETM!Xn1jExu2IYx%OP$hDX}^I@3(w%vMt&P0e2n zw6?Q7?M2Z=MnY%nslYH{vT!mLF^bx`L%v5@LQ~?wG;QxsD-QY981v{PWgwuH3cQa4 zkwgDIzFEV=E3Af;+ZL#OFy-452)(v~WC(U8eqTT`IwM4@@hh)nHf!DZ%W+X5j-+6> zD;{RgtR~r<@P{3oL{w)wHma2~ScQNnDqUj^Iq3bWF-ftw+f_yFMRfw z=n^_lOwIQ%07YX3@hEg7#e&zX-Rb$nx)0iY4x^36PZm;vwss@6SAlql9Qq>W5o9A8fyR5^DeK7v&gaygS$H{`P_0#z7g^ zjELZTqior0@kPkbZr2*`QKA*q5W39BUe`Utf7#y~lpf6L|7Eq@f7{=No||Uye|)BY zo&3KZ!Q^eQGr^)GpjDpuhv>OHtj=yXystIZ+@x>5>$MrBHM2YOiVDbFvANTU;_;r- z*ddVl<}*|9>itXW3MXSW*xjEknnmjzGd;O$rvoGsTo0-~Z&LwvoCCa{3Iq=^MiOBQ zP8~4bwRA*=(_dR|*Jw@V>?);9Eh@GeVE17`K92~Us7|z?^MUW_dE}Xg>Q?!vqJR-M zg+^q~+#S!_N&xk+U9ehd#PX8>N>tW*70pxUE?HB0or~%2`d;x?}gN7+BBL5#1 z)_hDIPRKfF!(mBm-%c-g^`J?PB=kw+q^UOG&-Pk_dzJ|M9(XnuiI}xW<2MKx|uf?Z% z{E$I#$2CY*M40`HG2Wm|uK?ST)p1DI=Sfnk)=maHX7w+99?x4@XxV_CIU6IuuZ#>8bK39)pQ!-^b_)^n(GQ0XU4wiYe!Y%D)8mivJZ&kqN$WvvhIF+^% z=-V9^KQ7nf!HC+M@^hO$7Z`Ro4mq}M%9=~0q`L!*cy7y8cL{xlHNkuC zBijB2yE3^A=650Obx*8~{j0T-jBa?}XnB8}nlf?{rxq4aSB`;a)EhCrWSiohn87LK zt_pNj&LdAh^f!@VnA@|_>h#_`D9U@U*JABUxOhZ4a2qdeWgr@KYodoYHWsT!%l7E- zGc&g@@kkHbpDCeCZbOz!gt&;E^H>fdqZYxZ|D-i6Z>{p^-32S08p01glNdPugCg$C zNhA}MN1Q8iife^+-8AZe}g$PI@VID#fhLDhCaUS~ackhi5p9tLtE~SMhm}ib+o0Is)>YjGU+MDDWzUwcmhOni|wSG&8I7`eO z(<*~UMi&9H>6y#9(Dxxco%hX77nFCJtS>qbFEfz1%ta5to$NF2j#wEU-gKM5=*5T7 zy#98jr$m8mp|$k!Jvza5`vqAXe9yE7IkkB631z%8({Hn1n_o8@Fp*!~nf6Zpw&zOF zMJg-eif13+34pJjm{qTGe4TFeaC{AN$FGlT%zE^PJnYvip}tMD3QlXi)Hm7VouRsh zjlP0eN4R6-%fWv^c(zVEwA%o8>7B}_e0LV<@P=a-}`T5nYM?!>;%-TD$l96ng_5pqWQz!903b%9BzQpHOoK3* zsa~Vh657xKm_V+Icc^=M+GQSA!}WYmP);D zbLIpPeU#CP`}P12U}S=Xp>NPc4!~RSmQ~kdKhoDJGELS@s0Ul#pUxI*L+5{s9f2KZ zq$jzK+r!dGmHF=cD=TVxTSNe)Wh#ru4j|(Ur}#rvm8lIKdoD}+`>uD})!FEXn|O94 zWB+SIch<#eui2S;6t>@HC~l@HddE@w2zM50u`2RI1wQl(!DZ(3K#cyoG@6koLA6nn z9Bm!IYuz_<6mEIuI)3KRaMO#03$D^)5L0eDWm&!1lUe-5Kj3kv;25J}x{&h%w?5*^ z%=-_AH$kQC`wP9hgJX<$7lY$B)~8<(zW-p20THn0(xuW>BgnOKjY0|3sH0WE=ma;1 z`J^HH#1i5|g&WfX6r*&%_XdrynxxZ}Ex$MrW~KPfp~{W%NkiVdhd9M>r$0gP0#gQ4i9%6ORy(dqeC*~JdQ6!#x4LFhs z7VINPrGCp$`TG|q2fbc8VAc@7W}AguG^QV*(P{C-Tn05_#NAnzlu3S(PA-AuMwl3e z#0Fp?31dp7Gn}mI5{F5vIG?P<*Gbx15|k5VuOvkH$+xIIK>t}6oNg^D%ks>6mM$g* z8YGTen-x9b4}hI}q!VPDIc~nAr4&Jcn9!_~zUxh|#fgPy?ZfUDH4Iv+~898zp_#fR~^btr1P zPwy_;{dqUltsMD&TDxx7)4Mv~ix+z?3lU;r-3?HU+ z2duY*xXuMcWs{R{XyEUN=F_-oec3P6)rVX-;6D@afKsN|Gv?F_HQ$N!<#Ax%XQ(5v z5h@~pTtb!unqf7>eh7^@o;Bl2Emf755btyHfr{qbeXQbFP?$tX4#3rk02T3lQUr*` zHUb)Mu)!`Njuq@{#hl6Y-M4Q&DHXMOQZu|Pg?IF7mr+Kb=tR|w{mv|q;vM1DY@&Ne z#&LKaHxk-vHmQ0awehx5qB{-ldpPL1kmlcMyQ{k$x!Br1Eo05`8S=2cB}6%SQN<;9 z*OpT*e-iF(XV+t%C8-nTVXQx8%s&F`aKjSMx)* z2lV*ftUPN@*`CG?s-YyAz&6J>h-3FWU1huFfa%!?#2x?@+Y0Iin@`icRS`SH9op5Z?I@zLxU}KEC`tXQ?^H^M9 z#8Akk`5h)^>m0TMB+6g+ZYYYo-xf3Kffot}=uZZqErbYog!ksCAyFq)cUN^<|F9e7 zz;&Q!u%WifPqmTj(MZ#8pn)xI)gCbe`8hJ3s@<;>7lg1V;>@hmvm6@yCRj)qnM86>FGVI=XC}o1h91uCoRyrzpmX z95gV;L`4gvKx(_>j<<&cZvJ}m!{1|l*S62R0HJ4Fa~ZAyyiJ>Hsh?FndB$iGIX`Xz z-|1S_81W7QAOvvd9w3@NF+0hIhQ_RsAQwodEFrR;)FANEN6l?M#tCkS@ zhdwSLWLxGT#lGM2&1_C&KhJZ$Yf8lMm{P!2#*^o{4UENe!5&g@k2*J(5Yr~`UF_!( z@44IODfh4?a7ngzSpr(VE5Z<@`!{X`=m1V>b#=w8`4XbEFaJII2U4$6J);!+s-+d* z@HMbhpYhbJafVMR>5U8PQv3o=R>cT$@($Ox-QslQ&_7HN{8UyI)z0u*KoB>^73r0x z8)yWjavUF!_ba;9NJ7TRstU=Y!Pi%-9};%FXiML7CE>9y*DJXfh<{x~2hP)kAm{+~ zm#=dwF_c=ET_n9WBugw3RJlYbi*_Yb1~FUCyLpS=yPxkJKZCh}yFv6{DWgo8UGlG^W6^ z>aDAV=HFoz$X%g@#1ff>+`DUzdna9^408{*V#NOd&80bnA@|N2g!eDp&hLZBkD1*_R>{&aS|{J10DoAPvCghx%UiKjx1@`q=^x4S(GhI#Fhc<4fUJd1CzP9 z{4nhp8B6xQ%8Y9#8g!cJgblg%7`aj>Lu!5tDV&8*DDk+8fOcr^`=rTpGflVQ0~0qH zny`L9rIw`4+*Rx2R+v@xV)kO+r{qa==hw54N@%d$f#gJ#BxUxwNwcNdvw4`S5hdcwy|V)k8A zRrS_TGdG`IZf@+EAGq4IwDnOf9PaG9V~EAwvC^>mn~TsCOBD6eoW8A^l_8{4H)QXw z$g~d$%7Z63s%HKPdOn^`PEsg%AwTTAWSEDJMsBp$$dKEG$cfk?Kip;cUper4>P zXvLiPJ;atK{N4X#yf*lwr(tES2)r2^4*Uzx0;updM%UVk@7p&8@YDA=$P@Lw5r0v&zQ`56}VOD1!I>zWxLIU$=ou9hNZ-}OxL^<-k zHFm>}MdDBO`3RWMy>cVvvDPrfoSs+!)mXHP&1_RjJW=wUz;-jfY5|utMhvkCZ z+ySgOm98YQmpO3c;iA>#kKy|q_nL02z7dr7>ZzZTU`t7ZMenotD@jPaVV~cbGgJ6z zO|J$MErRZaw#~01wv{HHy4yVaRP>OM0^|uY?K8rhDAZnpTSNMeZuEev@GXGyyDNz( zjC}X8G*qi{QWXrMVr)eSyoLBJ`9#&%V<|ewPRHqpKFE-cj|?(NQK<7B{AH$9Gy__* zjJdE6M7K58>YbCD+$EQc_IX9=>}+p%OZQK$p*pDd%U(k<0PA`FEMH{buZBWOLhbNX zq-`ckh#f3u6#P|<2$v4#Sdnz@=lNLvREcB#8qDx>Y^II4nC}+UD0-!|L5q9WtUr6= zlPZqVNgDu-F5{sONTwParN!_4y1BjPJga;>S#jwAE(xmAZn;u3W%$Dj}qUh(e>bwMY;K+@8XniFenGeA=A@iTX_ z7q3f`wFXa_RC-&;UntTsmBr472cd1_SXJVV0s_gsTxOi`>>%6XfGT+y)If1`9iUHc zin9(HTnEY_%kWZhaOE>lzHbWm<$CsWhR?es<4x_5{qVl7u0@ktXkCQ9#Nm9$ya7IH zF>uDG_Y*?MX^e(3JH~6a`kf(NJTa;-aZMfNTjWgYSOKoF-@*yI;lqXA4^5$!ckK<& z)T$rB@3bjMqq~Y@P}YPwkS*xpPXU}V4*1qVYU^Q$$Jj1+ripZ3e3V-2=bRr)0dEhS z_`hp5PcdP%8UkTKI9dcE!yzJh+qGe zfB#S;6E1}Mi=GKyxt(QSPLaen1R8$W|Vr)!Xwia|_1;1P_Q%p^8$d6XIewYQ=9+?No zU=Dy(PZ6JrhDk+!;vZS^0M7x^#=49N^adkPS4)mkZsx=gxn84^L?Q43Ou*{V9K{r9UVJB|ft^dB^OR(l{Kpx@*;3hwuIg{1&n0`)cyZpL)h= zmDIBLlq~mGbKys!^=~*=d!Qy7jI~IGn*03PmC56rorbqnMK{0MK5^xTZ+#1yfSw zsatl?vljWu=Gn$(!4e`|4&}%{YadiRkssnof=CDxJ?4&CwJZLmccOK z!T%;oQGAM0gFdo>QymHwLz1I(P;9ngKT?JP{?r7_?p_=ZQhWxlg`JV|&|B7*Va>~p z*tswMZ=MGgD2Wl>0M+=%@XNK8{iC(xrZuk0W#pFbpe^Br@?#uZqEx8#F*~Z(wh0DUNC!2o0#|EyX+sDoKqZwxV1(L*0mpj=~X zYXCu`y$AJB#y^Fd{s=w&@$Y|yp_(Fg$+6WPbW1|XAr=wOQ|O;~K`l;gWWIv6;kMY% zf~0TJabv2<54HK?+S4>NxRDL!c=*(RUL_-J-Dr>tRN zv*L~G(Pf2z1CU!j=3%7j^Q6VOv?atL-}VB*Cg?S-0AfGoF0MPNyiN8kaB`|bFGYwx ze2=x9pC)DqAw_H`15P>*%&vzCqzHG>lg;S4-Fcb<`D0~($xfYN0XL9W3mP#jlQVOD z*SF6GzY<7SNfP14$H7a86Txa9*eb#>_+W${C{J_1Svwy$1e^Yiq^h7mLysg7+}H|` z13R{oP^p&YT6UXfbx)CQZ6#8}Vru|ZDbC*gYa;qBqe`(TkowVAe2Gl_w7QMgZhaI~ zxRNJ@AYH(F2r7is`drV2lKY6ABo=eAyLedxyvLE$K8-LanfSquCTqJvb4L!(hRNu!CiEt$_ zc4GuSW#kF|hvLJ*c*T=}^1yMpPHk$iwNgm!!-2(n3=LC%VdxrI$U!8eZxvA=KW=#1 zjeXyojqaPrZCYaid71ND3Vg1c2OnXC0P@9n)d;tgD5jxRN?V$#T5*C>-&C8jB%T{2 z{pq0D(QO4LjPX+R8^&R zsVk-ad%BQZAAS?hA6`P(3m@0#`q8G$2~Ir$NCEnz>8c6xN-H5r4w*n>ZPwes0&Ai{ z=i|whX0mdj5FniY*-U`_-P^PP$1A-eOEv;%S7fHV(oC{shik#MIzb0p@*|E7psu!0 zfq;62$yQ@{>M6zvBGj90bggkfYtbew4W5ynHD7DDm-Ugj5raehayPr}8j?ZIbo-=o@23A(+-y-x zgU)X3nlWszNsh1PbN5^^&Ro^}GFg0mkJ4>P2tW>3iSTgw*mAGge4aGwMY zKT`o7B)XwPD>{($p()#Vu6|RvAid@QtTBX~(XP!CD@;#w)jE3 zT#d4X(9T-Wpk&)3eKg}a>Gu{v(!t8mkOPdE3qNTHsFus`(9 z{DUO?!_QT-s?pUZJe=Dgw!TUbh5DvjZWE68yt+uePfxmRR=u#(<3DK?c8*17f;IA~a^?YWC*rQqqU}T71 z07+sDK=AS99>hQYbJZ|eSY=9Hv~u9ecLxGB8!-HB`(B1e{wEGa+BS&gjjJhB1ql?0z?rOBG391_Ti?}HN&I#s=H_UrmjcKY$t;4 z4n(Bcm#b2PiYrUI!4uCZ=Vp&D^cIBS=FclHwwj#9R?_zLv37ynW8(AMG-`aoa0QLp zzI$eBm~Mkpgd5pnLD8#%kITJ#~L)G{)l}zt-2T* z6M+>(Oe)?K8Skuc-#N1GUU&77pN+Nm@taoyVSCZ+3gEwqh;yMC~(?!-z8pGjFM%kIj*f_abp#Z;@OpLUThB5AtWjdp{^LK2j?r7`!;#a`1Equ%V4U_Fm$6Zm*7dCGH5jwWIkujqVt4DFC?EFi}Qc-R{b?T(ob=O(sPYk7kh_5e5u8VPDF2a%A0ofyeL;Rcr zY4;VMoip4Qu;yIlzE)NB4sdfSJ>Hc(58vLA7d&kbhmdTMadz0q#1{b8EKJ=!j{Joi z?44g}GBq$D+omI4LY!m;wO$`|F72k6`N`thn_F;jCJJ>f9$ikI1meJr!lr@8QMD~9 zmzo@^s?%#_XUkc-WtEAcuGBgyX*+g~`PK_x&-SxbTm46J?BBWCWx~uQeHZ(ZkQ+Jg z=;6&Fn95x6+M5NInJFMu;hN=~a1~1k=>)@g@Px>jWK7=^(NLCd!YHGa)^yM18%T{l z8V&1OzbIq1o|E8zB1D~H7II!k3*4u0X^4!O9p)Xm2a-Xx#UiN{r?r=+5eYX$gGYC$jqOS zG3Y5DHZ(UH;NH4h7sLrau5@<ds_t7u&;Rm;!tc?6i8{r^}?p8Ae?G_isge8(WU80S;V|GcMXTTD}@WIMV?G! z)VOMcd;wp&4!9g6`?QBF`x)GSI@y`H*N4 zJ@7dw7J+iwTUEYw0(4{DGK6a5phYwEC(wYS20+h2g|ypGZ zC@jH6ks0fd!b~n4k9kR!oUsKlDrh#H?47IWw$e9a8IjV!!JH~`;*N|oXDL3kLAwebO)vxlr!U{rdxf`*Zt@H}cHzd2L=uFz|z zGs5vY?Y=EkQC@fWMxP))d;588)Mb_V8d%YKnW_hikL!F!k-0;6UGdihFR zkzMX~TTT2V|A@b_V|0%vug~^^wC!S4k01fmND_wVwXu4i9W8l;GYyF0@uwHUQ~OTW zpm0r*MOYtm=O2IvdJ*2o>XTdnd^_1Jx7eXiBig&!A5Aqg(ow1?4Y6xg6h8Zw`AA*x zC^JLVT9IXPDP^F6o@F-Nn5}q{=PmAqqWQW#imXk(KO(0T-=POmku}>H4FI4Lv`7ws zCdM60k7PVuhkzG$} zYN}WQr^Y%=XQ8}jI>+E~UInri9ec~l*Wj)Y-=HvPSbRs#qLcFpVNUJmc2$?KamlLv zjQ#|72VIj&YEUwLM+fB^osG|RVdAR1$lE8Ht2%>^A=)yF`SMeloSMqR`R`9GXjR{P zFrf9eiPOhyJq?ngaRyGd3EOKUkjoTLtU2hO$%7hWMVLC|79yI*Sko(cs8v1%(827; zy=EHc_qV@kr=3v@7piU})M11c_sjr8z4}O}X^V4J+G|o+h;N0JEyDlQ`E)H&B#9Sp zY|wAM$lPAo?mpksmBq2O6ctE}D#P~k9}F>_oFK$FW?Ng%RJrYe5LJYWoL6>SwR#LHJb z@c{@&0v38Ai8>Y*SJRg=a#dp^2uWs7ayy_}CO{&!Kai!mp!;$RgeWpl6D?X*pl3jA zjA#3e5P@IId?HK(qga5s&3Ni~HDDL_A=fa3wk7~RIjO7$5>oUl@O*=>Lqp*DTA)J( zx(m)fJp|A`By8bMc_ea%W20*E@{JDQ&@UlmHE8TP5h$QuZDGhC9o+6LHv|%55R3bp z!Fr+P{&Zp|+{`1#szX=HNxc4~ruZUs$CVid?-Ju;;tk`ks!}9=lcWPYib75G9#^t6 z1=Lpt!+Z5A$|N;-bhJL)Uyj-SX2BvtHU7ygx@|}?x2}dh%8>!CB>OS%Z6&eSqb$f} zBz|hn-QhHPY_VWf+S~T|^>X@k^Lcl!+}-Y?_U5*&_{8xTL#VI312%EoVeex1wLy&_TZeQQ=^FjUUgXe{; zZmuNhUC`D~u;Wq?G!76&WRtEX1noTfbL)#w2+(;+6fRGG6D*mR)#RJWEK)Jh)YbXO z1e_iCR4Paw2ptOp@zuYLFKBdYM$oc)53BS|by=IC#rJa`c0*D=ZXe|}_a#>{Oul6_ zh@laW=xB<_w~01hpcY*#C>0t1x^O_s=n+Hve=8>q14gAy8PuTv$Jd%9ae-BV*;XZj zG9Hrj-=zQ9!cP6g1Q7vPVTl|haCX7^@KFFKRnDktO{RK9qx4)pjAJ*V2d*AWeGnU8 z5HUG~Hy>O;SDma5pIAKeRsymy+rtAE@aG_`4!r@7mB*0lA%)Z_5WDo))>b?%F3r2j zpJ;ZaTRaA6kvDHV6G4dtFgx~jsPJJmXK(;jrT;gupQzSeNUqen1r6I#j{l)L>b`21 z2Dd_MK>y@N%KhmxJScAJ)L;s(raC!n^Fnd>hrZM~uH^J0SD{7*1r@gi3EMsg{SVNe zt0(}ikC1vd59rXqaOCMC+|{=h>jpeT z$v^IaI$?TJIR&as=>{&KK*EJ#5T<900vM&JsMTp7P1e6B#MLbd>Qy)Naq(T$d}W9q zZ?d-0>UA6&GbwB&WOD38SivZRYApg27kgiLOWo4Z7cuW zc^KICZT1*$%PJ8vp04!XJ2aY>6dw;9AhB0ByNb#SLz57jW^pUUo$~^dH z>aJgJIPw! zr|8^rn%W!-{65M*(buEzXHm<9Id_e({m>PmWmA^FAr3dx61LA&uU2M0{U~cT35v~? zF^x<;xADP9!>&=3#3Zd@hih_Hm!ob z(7GpTVEohzkMpgy=;EW+;-G~2%ir{Sx5*j7iuk0(&p@M)##E571tZj`)v`()cs+;R zII-Csm2H|VGtTJ?GG~5GUs(IWxu$&u`1)UN;C1*P1bPlZUSz~!iUePuLK529ipuyA z^XM`Yv#mRmgp)J;K%<5r?h2fA7J0`Nb0??0+TNTxz=%yvnw?yzDze_4T5>*#D@S|% z`1dMw5^U24s*C1m0O@|@F+pSpo_xg-XMIJKkO|*olCTSt0I(eV1-d8)V9}EUgKWhj z8wfFm5kX|(bC4foT?QZA0AjX;gII~~VoTvGofU66G>y~G_eCO3f zk7R2s!t^|^An5kBA6Z)!1l71 z2J=@3#QBbl3H+S_y6aC4&(6Ep*%YKkMH)^SSLeIQ3Tp>zgIj5e4Wnp__u2gw!Nj!X z3N$-$O57b9U(@h&+d~c6)r!m=SV>}w+_D=aQpZ^gLZ7!%E5qA?RU>h^nCCvBp)un= zv1k+jfN?bqqJHUkq@UiDt1mApkMkdfU}mU%tVZZGk%WbizQOGse;XKmt_u0{m{TEklY<<8X(KJ zgJl!tp;sONY2I(}Hh?NV5>3JiKR^OsCrzOvp}F0}P|#ux_?{)i_KXcBu-bOy+_ebs z$yW_zz%^y9JWzy@sSc18YsfkbK{o?je$QVP95MNq%L}0xjy7h!{B$u5v#LjK!+kzh z0$qK7!OjwJb@yjWG;hPLp%}4U9e!~m3a}B}nqXjq?7PGhY*XwyxkE|RAz=<_pg4@b z^J-MRx%0#RX%~N#pm!_1Q*OFyp@2Mjevr6LmlxtQCTzeZH1CAdr1yKlX5kkDeM(TcinX|l+I z_st!Jt?P!Hz@$O_2k@w3T_;Eh5zc=pWdBa^?Vw7=MJGn#FPPix#eWMV>VNN3@xZ(3jFrE=V!LUJu&8y9Dfsw_Y8q?V` z2rS30%sbe>r@KgUL!2sFP22rA4@=OM9jJAUq;s~#owmGF(?lLAwYNy3DIE4MA;N+X z;Tvs=Gnp6tLYK6|e8)4%GN0`$))$i&gF$n!(w#m(nbg5eW)!RmyT0 za~DAq*JFoMXQ`{brB#1X1Nue&mGC=m7qzlNWzs(-+O<_%Jdr$n2O>>G{>QYZY=Qe+ znB%^6_kJh$YzpFMp&F07D+PjH;vd=8c+UaKro)+jNEJiVWq}~R>@e^Au*{!7xlneD zY$9J>YG#F$xa)w@G%HP{0p8KTkl(hG8qR~CmL27yw?(AjvN!Iw zPVXFBYj@_G2<6my+Fx#oeyaSTy8~~ynzN()0T1le?67>YlC(YgRRp^=xoUUoF3U0qpwiL2pwuyB^kAhdR{+6de}FrD0{0I^)kulQ>}n5gFT+`KtH;WSvXk zP-np$yK}y9)96W|qCV|mqg~gZ~yeuo?JrcndffO zn`@=Ky$aHhe^M^Ek1Qo(Rn17zsW{qC5jx({i(){IHk2)x1naJ|I(rps#3C~K z+my?p+A$$Tv7H;u5T=7fW@s&XAduh;Kfu>xB^VIaWq6OpkJtnJbNc{x@mt15Xut-<%hzhnE4~M^ zGnHSUvFv5Td}$znZ4PSV|6;zBts-s=u>UPYhmz_}VsMyf^`~8dXK}~iW*o=Q@)2n1Bva64?aX2T^j|}p1;3IL&dxfJ8j=4s4 z=KLxCi17qMHiMZjK6@R?Pf@&?4MF>;MtNKzi%vpA)nHb*oj!kua2ABWeX1ZOBrgvp zN6ayMuz%8%yGnz_*A!VW(wqF5wTV|qku>;gJL4glDPy)9Blhb=59Fe>pf->d>H%Zp zd4JOMyN1xY{@*o(FQ8=!;RwE0Nt`GN$tNO3+K$+IYtvQaqBNxd z=2BA@Ld;*m%^{F~5fWmJCAwmgB+OG($Gbn&JJRA;9!S{>GfkMqKt`n!>LoYR2RVW& zSm@u+5K2`WMhm;hDvU8SK&7sO+{cXaQSgAHESjb%;xhdL`X?e+mpjXDSGCQ9fn+Xtlamt>yGli8=@)>@ zLz;^YYi5cTZoW(c{#_aJGP>F1SfcYadwz}KHKJ`$VXx#m`pe#@3~#SHjsw;l3;&q~ z9OWq(jIb8lbJ(u)%MLxD(~dUNRz1@>H`Jlm718QD%9q70D9yJ5l z4Q>Rxx-w0hrw?2FJlEEetkbd~@uPf?*nc*@?;oQ^S0c3&W-FU3L2IMs?@g2)e}{1I ze)%VvrBnQ$J1cK}!~9QWl@$12bXs1`$?c-5Ih?#oN?R#dDaWsn#XqelKr2-!<>Ve& zorWeUN^Z9wW~OS?e{ZP}$T22QJCmKIDZ_xBWzMj1E5aKEB~cD}(v(R^Fp(oghg~aR zPEG%f0l!D5TLhGTpq^`02$D<9Y=Yr0!bppzXb{i1tw6kTXc|4%CI`L|GIeGCOT8sf z>fh5DgyU6f84I&Oxbnwym4L3#KMNv}D^+f{Owj|%LTP>gaz4Vqb2 zCOIi0%!_+_Ly%sbX;as6V17%Qo1~20PF{HydT{%~2f15kr!6h<$V0651wD0+X}^KI zdw<0AsIl9qi~+P?30=4yWl_#ir-W0fp1+`V1594%Vm+}tQ2Y(@t4v% z-U@cT&E)T7u!5}I7k)nPHAVlblLZa(`n=@yopP>8>uEiq&kL>BtDg)!50s*sv_UFc z15}osH^d=l0e4uOGUSP0^pPW9X{8j?%1g_ON%n9no;Fdr1!?i#?dEW|Y0l_%3dft# zaw~+vM+W$r)VUka;EwPl7kpD~%My5QhX65qesz|A>&0*|tUYt&`+o4l9MZNES{x!f zbw%tr&QLPN$K)=rR$Hc#}oUz3E*J?u?5i zwPh{Qp!5YTUm2=cu-Kq`BVNCj3q+9sulqcRtI)*UX8>t!0ry|)YE?`mhkMRwBWfUxZX8bu8Z6ls2x{G2p{Sn9-aPhkUP@> zjO+d+Yw|71P`PS*J{&^;aJ8pmCtIAE?LDl)U$w|BOYv6_2?4mUyD^)b<@=qPK{Op`Vx*2py6WBO=& zX4<>o$}9W`vvS{jC8+NhV&NEw;wmt!$l4@3O?3kys>!0*`{5+bd5t!;D!ceX>pJ|f zM)34ImMdvcgYUH~r;fC_UvAwV6mZOX%4Z*ZbI;Ya)xX2-0I15f;@_sBVc+VIO3BOx8u{Xr{m5g&qAUvx&2byP#`$9V)=5O!EsT(YZTb!f19!ncsiB>e*r|@ z2Ip8nGh!GNM~hj%fHm)yeT}zh##KAGW2P2(HD{WT%GMS|lfg(omdTf1>3E|v5k1=? z#uiU1XSV;7`tJX?wOtDxj85;Af16Es_-1mDp8rwbJ%SG&9N*N>?VckTcK=9klf|-d zle98qRtS1%Zjw090mlfWiiGkq)hRiBXH6e?p_v8WyDug9NTG@&S#lv2tI6_BR-y+CCBWI*Dgp8be3&<; z1OSeK>)s&O3esGFH=Cp7F`z(nM8XfUK>I@NRq){igSNkX4P3Qk5UJP#SVt)ml=K;@ zAUC|HZ&}|p1j$pNFEdbCkAWw+RP{-F=@Vg&UwPf zWO_9?7iCc6Kh8x-pjthm(2d+$c`Xe7UT}XlNdjXzazrs-lDP0QP6}f{VQ23)aRY<* zy5UKQclC=wp6C=%pNril5+dtUot`u5uE*D0PEjz$3(ae_!nU@ScJ%amr=Z-Q(nb{) zbr!&d0|Illw*dz2UN)n>CQrLARg*9xv*|3~hZn|^tB4eJp9zK$(0NNY$r&8Q2WaZt zH=Ym9wNL+01^3LJnwoRGJ~-{05Z>KRwE@3tJAFb*ZaBDImA?*WL#eCkH@C8KJ4a)i zy0r*Y`|U|n735R5jKrznqaE8Kg1|2>6F^qNMBZxhKzJ}u`!Tbz=I}rZy}Br{%2BhI ze+4wqlqkf~FB9m#y^0Ke!F0rCmo#_O=-1=bJI2tGT5iw#jLOgdn zUQHSy?R*>c@gbAavudwA~?C6S^|g)c~pLg%)E=+9Um5&+Q0&IYXHGzSs|{nPOlzpR>BxPw9v zZY~T))yphc#N(Sfv<>`nqVa05x1Ow(F+w>G`uKc>O^VN!B@FkCM!^iuQ-2-$f(XIL z4>(7n#|(HB`CdGjNCkvn)xdik!m2?74j_qYVCRGBs%JnO2y1|}xOSODUhBq$jk6?a zLXXjU%778JcCpXf!&vwPKh+|WaHjY2g4P&XtSdK-oyd~Vz_6KnaA)X391)EluxlR` z>5vEX>Aw&X&j_<0_D|ew|D17SxbYNxBvDY@D9Kn`3C6m9(UKt%ct}zTJ`gJAajS7^ zMD&1-<@dD69(W;1sj51$#Da4*4+3e6SNsioiL-FJufDfYpfSEUD&J+PXvs+vS2bUH zq(}M@9{n}03V!5_9KgnNzU(A!-X*wajYT$u>5Dwlvfb9rIk-E$S@Y=o?uE2&vsrYx z%&$#;QHG)2kz>`#xe}98)Hbp+t^G)j&2Z`IX1$IAgZ-{4v##15s%bdHfdSG~dw_5O zdj{^aX`QAFa2-iU}s=hhpyqxhvP9EIJFmWXnx7BIjxJ zPMvGglcjqDaAoIa`dWTg@aLaoMRc$e2!!j3Ja72Z9> z+E+xzG^A#y%(oTu{p%VeT}IYBmXq4){2Lj~+Z`=>2dcl=x&T2podvjz4P^`Bpz?}# zy5aeFe={A6_AlE91MpxDPMTqF-&_9(d<}SsEdWL2*a1hUX>Kj&0Ii*9Q-JXd0gL>k zYC?zj)nO$?s=G|r<#HM6=5Xk{D#Z)aR%Hi~frM1&ta*Zx)%z;K&?rdDue3bU2Yy#L z+BmG+qZ=_B+>bQF6hw5ZWDxw0)4PbeyPiGCokaHBJcY{l5(DQRSQ0WB#&|OWX<5b03??A>DN({P`QJfv_D!W#UPPFFl^-y|@ixV3f^Z&U-*6 z;i3TbVe$HYvp04n5$UdhLr zA2W=5Maa!Ci@uW;@d;tJ5v3(0CR>DFy|Y;K=(+Zh?#1>6Xnnla<6?b|H{i{3GU;KW z6uxWv>hem`Nnw4-?ifG3Ma-4Bb5!R}kF(D2UzFT6f8Tc_BuGCR@~cs`7oiGq7qd~> z8Qy0OZJ-v$z2Biu_sy68{O#=3_rqMT_x$WC(6R&z73SwzDPfMd4{z)bgGXw z!mXf#Hzwu9O7XAAr8&{1gHto(t?2}2a(^Oa`DjYGSkM^ zi8Vr>rR=`{yk%4MA~CU`RS60X^>n3zZW{1*ab@Q}kB|QEq&-8|R<(p%)WUnJtIHpB zbaU(JU#5aLWxbEifBwP$>g5IBQMoZU3WO1BfFIoL!@|bZ%tqvlA5d}u83`i}J(o9K z^MK2P?nW?`%e zwnqsIZ~1**)Z!P*ob??)EW9%X-ZEMTD2snPf`@nhU+leiR8!sBFNz{o5D^ds0i{b< zn$(~O2neY38XH|eq}QNG7Z4Co5JE?4=s{YfOYa~x5Tv(+8b}Ct^6v6&-@VV?-*?A2 z#O`C~0*Wv;nqdFGr?{XJD@`PkV3)95b=G+Cr~e^|rgfkYXU_AiR^kbj3+!QV(} z6k*Rb4*>)}@wZ7Fahhf&m*RDb)wp+K#Yc9_hv(5NW~q4Ock~4(*P(5-?vs{)XC+9C zT10db1UBkkM7P#~ELexKYb%)od zeqLF9;?mwwaj@WHUpdeTf^7=Q!e~`-7U44lnW25e&l&6kCa1+&sQ8U!Fp-|9%F<)h ztF+En(dVzB;19nIXgwSf4H7-@=@W?XX0#Sx8DjhhZ4iZeNW#GQD&S%DP;!79xxCZ# zZSXpl7+)5K02+yYF}^Cd+0yW_S!V-@FcfaBbz^u^YW^*3S|D}<-6#bQ-xgrfsVuG- z+zKLIp{O;!UD$9>XoVA zCvGMQ+Uj(yzZDCcJ|z3R;YQsc4OyWAq}-?lnbz`&IFpaUhy1I8zA~CKE#GVSbn%ii=O8EWLJh)h1-4S!MQ&R*+AszMO)fOMaBJPCcIW#2mznoxl$A#uL$+D{kq-?vs>A^Z#9EZ z6O?w@M-1v6brfcek?JI;`P5WI-@;=Bv1@QcHOwU&l zi%+B@bx5`5-_;?XS^rRnRCoVNpKAa!3^E7(IlSLg?N1m0+Kg0x;3maZM~nC>zlBybCmaGhiC*wRmIkv4P`OGWK#422syyMD%c6S=o@_wPysE+S+Sqt~d*U^`tny zSA_@pm|J_iy}sF1Ys3AbK$i}gLXR}4Vxf(0M5ul4WVciFQprJLuee<;yeoPQf!)cI zwjZHxD8l>9C@1I+Sd_)7*7m_W!iB0Fop%r-YcsD^O!t73ld?a|9D-MJf?P0c!MrFP zaJFQ7W50!PJ=XXVAYC=N4*2%R3hJ4EAW@u;hL%xbl zr@JkrO1B!Veh?~}p?Re|8)L9m;H92C?&gE>mR2q42YHe&Nt}llL%hw`BP<4IX_5{%kvm=@i7mfz=vEx*u?S94I+^F5F`OAbL`bMslp zP^<@wj3#cyfO{jKxUu@g{6)B#*krmJ7=9;sKB$0>ggPHnOeQb(Jlgwz@!N^$6 z^&mUP*gAiHb&t_}ysd&nV+wdN%7oNCntEpd>Qy%UvSkfJs7&mLyNH}1os6DExB%c$ ztgXe4dY^MuJ`5IQ@6(cNHELU8U~Ew5Kf?l|4XKbcIX(xOi~Fp zaL0RCH2+f9^`?>%5xA)y2VwLHMXQ;^%bA9G29&ii6?mk+x7DqlI1Cx?3My%}$leWD) zalpA@9oOv(vB}qE7EOD8MF+2jLBwcfRI|uQ18J2n% z-I6z9lkGjHRIpY~cn_7puBJ5s0BF{H(m=dvQMQ}CM%5r~1Cjw^6*XZ(+)APkS0Zil z9*p)30BiHe!#z0I%>B@WBb#j63xpx!#z8FPAH`+e?(lc);u^_ooi?x1OU=FXKEPj85a#D0?W>=K5sz3h-g4rein#w&qoa< zWbBnAc5Q~9N3@5Fk}xlG#XwTz;(y4FTwsK;2&bJ!zXMs4idwTxtC}pHXSVFF6`0vZ zDxt7KHS*_h3XP21{?(`QtWB>Y%d7g>-b{K*2Q%z0A57Z7@vb=9x+DRRFOi=pdyvSI zW^a>Ky(_*UNGNj?0fzswS)q30$!`SdG5lEFe)^<%H4;Z1x_w&QyOt!oBjt*7cj;w~ z(Sgv7`K3j7T7g$ghj1YVdaK&N{Cee6$ zXBJMZYfwZ4KhbC!PCMoXdxY$p?KcZpS0%ib(c}jf`EEC`m~uhK9^!9IB>?ssdafEW zJ)!HyjVkhwau=xE2xTzeb0lrMiUIY{F``kf+wL?ZaC_A%AFW;W=KY3Y%j~_Cg4P(5 z7W)Z={QqB<+?{OTM8dmCs(_IE9=Byyt65Qz#;{dl07 zH3PaN;lUZx+1Y_Bsop46?dTXog;bq^m;<>es)Y^WyJZ`(A+aw39BqKB7wY$=D(iXV z42J%zFId)aycO&i5t3@Pv%_dtgsGyEnh?JOV0HK!Lnuf~1^eMMJC0a6M2-=98MyF- z2-IV~utC#B|S#;x3cu-F`9ap$EUgl=F4e za=eVjwA8!V!DiYCN;{UQ<;9o3Hh^-PNz*jJ*tJQMeB5oU!67rofjKb9sr_r20M~}* zHvo>~`~m=Z+f`xgcU~l)g|mv*Xd2-qFzr+jB&usz_WiJ6PZHC0Kq zf#KBf1rxNZhH_clAV{(QJ_m%q7ntPBzF{JQSs1agah#;00)sopy$8al&0@v~Ma{Q5 z2D7tUiTVe_5pp!0)I=YkfmP&(R1ruDR>SIShh$Y786dk1{N0wfUNiavJFW|v)tbII zB#y96w$gK0sR%P0?Vr$OC6+{%r{)0NCh&zb{d|+MOG{Yg{_xs|>=c)a7 z87d#ZPp-(cC)}&3#WBEbH@QET8KjMuZM}dm0cHH_>Z1(xbdc#IXD6Tif(U!AwEPL{ z!X`)7)*a1~H3Diq-(%L&nzgug9skgW7HFBlkOBOFA-*|Dhy~1lqZJ%#^`}zTU0vN%vkXaI5e#l=>m;ZuGncnmVE@kYt=19b}Il_Xo1TUoF z2P2l3PS6#tk~lv|v>U>)nWf$PS7an*26<-GpH9ev;dTd7Cy-SHoz*(kbb5Z_ z1hZcSMNQfa7o*k6UaY-$OS$ISgmuRl zY%t$AxqhsyEPn^edtLFB2 z$R~IT$fq@%&eU=!7brWYs-##mimm^&vrU?|V{n-miy5Xz{{@2hw6@cleSu%$w9l>qD0q@j*FTJ_Pgooxx3{=V9$=%ljY}v2DdmK z7@jxIHl4KlvHQAW%30RxkqcImR5lkMu}U#bCHw_5YQiqEW2b5ANe!^aTG9# ztK411i}Y@G8;W!rZpPu)r%JJ5@SuP!j`FzIdl!_cs*8@D?RguqFVSxV!C5-x7M|ga|D!2xGw8R1$u8&V9y1{@Vq~$^V-b& zp-X<48c3rlYoJl^e0iah#e^sM*exFJSQWZk2WSj^D;|I|_{q3pj-^>irL}r{sV#L!lRmAfxJdFmnLwHitH~yluoYy1Lv+tzfBd{Xc zy~La8hL$CG>BdnPkbrk>WOAlE!1zas-6EnvMCQEweNeZ3ed?dlaUyVX&Titg`~DWuH&8p11N4Odvz{myYS@3#72tF>*CQf9TZw zL&iO_z3v^rOGMFN*Z-RLSipnA4gMYVp5;V8@SA{?RO7M&Z3XkU&heN9%;>yfzVgJR zt*#X1dPC?sTBa6hm{Jlkm{xdwrp_}(S(NRgtr$O$G@3Yfh;GL z0Oe8Bkdm^aA_zLHlDi68x;Gs`yjlkygN^xI$#nMtbrLXJ)pf8EO~_nI_2~cUDeIqK z>^Wugf3~`L(B>g4X~qniQH-W)@OF@1y(SdfNOJ6uZjgTKJDct3cO8&r=i5FV=$Z( zP*cf)@#(#X%_5z*h2bj)2G$k|cp+i%^XU;DZkr9axOV|A%^wp2w#8}eGAXc|5;iqN zO%g0FiX81V)*}jb2ST>w+`vap343yTQ+Kh zPu&@tmTk^;#DwXtc?R#?$%fV6YIQi(8HRc>QH8fj{-aNuq!8)=*k2k8nguvjIOq>J zgpT^-oRZx{6v8RxBJjnNBSfpbr5-lvvPAHrk)|>jnv7i5M)*ZBYW#gM>LUD1qoElh zX_3Cv=XC7!wXx>GXxC2D&!9i3>EEZd>TlEf2eI~?g5YSI7%EQ&PUE$j81wyCdhBCK z4GjXGJ2g2d4`Fmw+B7^w2vG_HDHoD>2Ay+_?#pRcVcV@XzN0;z9M%LlomjEea?Ies z6C-Z`2GVhJFhgmel{joaDTLb}%*D}S={W_kCtDaN5d~H|Rygv;$KI(C7Q3nON-8nWf)8>uNyd1mvI(@el74@2yf{eMRtqy~W~CRjb5={Vnp{=~Sc6sl37T;vS)I%{TDQRo5*2Y0O__XQWHw$c10_ zg1F}6L0$s!(TwIW=Yw)={%pGSS_oEreLFQ-vfhora6}$)c7pTR zp^~(*QQM6)z__})WPk)5gF~=-G2C;KH%SDTtf%25wi?eV$Qv)ksb4sg`Cv@{>Nb_5 zw#_!O-;PmRaWr@Lv!X{LnHQk2)5A>>d%JkR?f44?!0;gP*?!Y21r}fGB;U6ps?Wn2S}4gB;C&8kG1yWdp}(FHQD9zbC>Ca4n#<+-uJ%?r}G@!;);q1C$c=3p)+H2 z(AaVH%={RIB%Sb@!9_Q~FE~d8OIT?1m*pEZtY>lP(k$$k8akbmq@Fv--aP}GPwGqB zj-2WaOyb8IoT@)~#!6{|Pn~(tQ?M%N^l9yx%Bp?A3za03KDkLBC-VuY7Vj6T7Jd)7 z;ZvQL?_YW9I6BE%T5M-er}%59{fN!g>0GN=wwUkP1L+7y7DC)(>LEExQ^=fX+U4s_vzTOe48?vwl)CDw?dP|dJff+H*i8N0r>;FTk1RVr%Owa=gz-6?8BpY}e5=|9Es#|rF%x`V0gZ=61+X+vkI2 z#htY$PU0FV+Ht4BhgwY9SN$3XJbJCo805wM?b9f$h%NlKK42N5YsL<;4zdo(Ai6Nu z)hHB6TAtMgRxgwa>p9A5^4;wyh7U5$&MHF1RK^v*=;=?&b3c85NoI zm;OwHxjFcv88}`SLM5Y#ftMTHI_%0Fvkck!gBQZUop(n?2%! zoFxc8MLDf6s@4k(e9Q@GXP*@-BA>3c^RSdqMD=UJ_LWkhzybX4TCiz1wg^@8Zf;6tzTii5;z#?7!a-KkNoizNWrL3 z;Kp?ZhR-4E>myMRC3*#j3Dn2%F1?U%EQw&xrPURZqr#uvmyMG<*JGi%rji9tsKz0N zKfMi^er?UVrA~wbAPb;#ZPGQrcgv>@h`Xs31ognTTdQYxNib1;QmfDbQ5DJ1fTqXG zs<~-34tX^43X7tyEVg>3ktX$C0>y$B>`!$)0;g~EL%{SL0gn@pLrJ`)Vp0SM>IT#)sA zH=*Am)^&hGb0_?K^$mo+jfaab`@jm^yR^?(O(=Fkf~wOrMUm`(q-zHXW?$yNWafcs zAEm^DZCxrjWrPQe&q5O4kc><`B&f`2l@k+=+v?;s3QDsGexb8@iXdPR-_mj*zI%T_ zU>fY`#MWddC_YkcH)Jp#p2%{phbSrJzqOm7iCu{%5|TVaMZG6&yjK=4N|5e(?4o`m zHT(HtR_>4z+tLLZqJU@B%0+pg6Wg}ft*+v;KS-+9QozC*C%Dy+C9nV=uIN_u=0TdS zCg%C>;{yiLp5ZoXBx9tu@S#jC`gX7?%tDt1hMX% zi%mrWA_1Pj#!cl*Zb}~iK z-}386?E*B2XNwIzHr{J2K@B8!ig>s_*&M@{_ik6wL4e_ zpf3SIeMgmM{n0K)_P>lL95maP`p-rGT$5$k(F8KWrb58{rHUTSpVc2DMD~B=tK_XP z>k5)!J3$7&?QGz6(P_Rvq5FcOV};->iBJf7YcqYB$c=#tLMFX79oE|#uZV7%n6#(gK>-G`0(blXElcK4`|7O@||2Wk!X$4Ekf#4Ri~FKoWbNn2^UvzsKXOoUSJElxp*r>eoJPzr0fX9WfH)PF=zLr7oJEz4RtkT)mQV8lks zF5B$5NvnOX)w&fS>m{F{&o&v*bpKwTu^l2GKhzE+o4QVkMi2il_FnPBqxq#!F#!wh z@~~)+D&~%SsKW4PqA{K!gQz#?M5SwMZ-U)Hq+B7jz>-b9V_z6VzX+{5$a{Fw6(k<^ z;VHz2O?Mx2;~G;XO$^!!id{jJ{mk$*(r24lQ)=tz=sZ~3AOI{QL?dHhfQ+Q)Q=x!r ziLb^5DVI`CX4tytbnfJ;WtKv4+)^YZ=@P8in!T78uk*9jg8%xiMFcr%R}mR@;#V*{-r1~ z-P~RRAoV1Ul6oLCwZdMv)HUlFef-j@YtND<2Oy>IRxs}OeiV+aM0%mNFN*I>jMmWB z``pHzd_&;0B;6<}`Gz|cEI^c?$JEI!2V2Cob$6D0hD?b;Nmm#E?hZ>|sVuuL?!3R5 zMY^0H_fIhfy~;xKNaAOsgV-1_i=OdYC-Hje-1R@bDC`ARGefDO^cw_f8WbJQa*y*} z+d~TW0`ONg0(41AvtcYzV~)_^v6JtJFkBFqV6@F3s*pd(7%AA=rE+9x3L^myz##ml zt}VoBon`5!6{Buq)`Dw%a~9@aPwHU7R=$E}vD@Tu*JkXQBEd(W7kEe`>=6)|>c%N^)mag{C3kJ0%pg4;cqfS)Tn}Ng7fACl zys|6eJ-X(sInsZprfNWFMNHk|?vRkPyE6*8IGh(AM}4tzIij++7%^e}15A6hQ0mCS z@^rqYF}7?DZY$ttZK%Gi?BIN&xU`Qy5AC_zCli8hAl^=<6bgW_R-55Mnh*CbEGcWSfwC;*7@iL23qgmst`IxWWu&I7`01!K`b~!46SG^iyG!c zlHYJzc^=FOutyC}_K;fwk>^_KKPMC=pYNn5sVO%_5KfQ47O84n=vx+G8-{ZHu%Aj` zJGpPW4DxyY$>yBud&DFBkFI&rRaol}w+K>GuI2&DV2>UIJ44b?XoT$u7{V5IfbrDv z4~MINkjefgoBgl;rG|?__5@fjK~~t!KeR)VpI0oIE4;B&lhDuB8kdCuyT)VzON! ze@(>x-yIh@pW$i>9G?n4afZsGAs!&=FEWnr?B1+R`3eyDU&a>Ix0gM$-2ZcKE%q%VT^|`LXZ}># zsfxIXezvB+iJZ$76NVL&L}5Ky)0#vUFtyD*|5R}*h_eQ4`u{EVw~_w81M(-*`|l12 zAA4i`c9y>vBzxKLV+3;m+(ux0E%;j$he@Ze6qbt2&2d}idR@nI zhrRUSvPt5_`6oqZW;Dmqzq>SQyKL;;YA}+(QFD3I6YvHx4mMy`zgotTJaE#5GDGg0`lDOGq4}dF412645vfh8Dxt z0>=D=^`MvJj4Z7l78iujMprEeHgA&babVJBC5cr3zpf!Mx{@>gh1Q$MraMudp?p?zx)S*V=!*g@p z-tO~>d%BGXtmvAIy@-7#zKMJXjrZmFPkqZ{z2egsSntC=EbjJ9U9FyldBAq7#h|Zoh0VYYFOS5;t7s5SQK$)VVAK0`PFDq%BIN2up z-;TgI3O_Q%ETK>`RN!Tnb|)Rm-fru*TXf>{qqje_2tUo4iu9@>IK8@Be!y20mqO?l zM$5BzbgBu=VJnZ@e@RS4TiRF2Uq$>r^bx;*(*tP5W}&|m0^~Ou5L+sJcq-;kgaCM( z-)Uetr&pc@a8th#0tg!T2O2QV1>U%N|2tY^lZf{th?y*tPT*K#%y87rj+0QU;Y&SD zt~pJ=s;VF4&iTx*4OaoiFc$b&!lpt)t$QZD6mXkYX1vkQu><$aV9V9Mw)S``p8&6G zc*!)cOV~Eccrj90wviuP+HkhN%m0&q>1RP0Ni{<*zJ7Un z+3HenhbWwG)EbGd))_g@k<-~dNjTse07qY}j3?H$nK2*|XI~d@99sI$h`S1XIB*2U>$y|Hu3y`Fbxdi}!aQe5RzXSDMP>xNmh zzZJu)CwcA&C~)lEt5U@)ezk#IkzvLJ6OU!MxhnL-kRXG}PXpo@yf`Q`N^GVhu06p8 zU8RpY39(qefIp{?zv&AdU-GO`DhWMnkpiL3qV7ebC^PEJ;K7LI~$wl7Qd z#_Yy!U+{)LIjrm1X{Or=pvVwk|$4!?+(gp8@N%HVrztUG2lMr-$@8`hN>-u4$ zt!Fs*FHr3tIP~-d8T8ywDyO^7?oX$xJu3hBkxu&e)d=Mujzp;+cj>4ajEy298|j{1 zFt%06mti6ph(ENGZCz6i{CRU}b;sfG{mhy_e?*XDy@;=2$ZKK$cJq>@p3xXz2qxUsj4%!}vq+9OlvwZpU~qK(-WJ&Fac=%%|e339aEct@Vm z?>DwSvd{s&pSoA1Mtm{LMO{bV5oB>)-yXhp;ogVm8G83l6(WlGlO3K+Q3l?5L78H# z7-N+h>hb&)8}FMy5G0X<^QaX+x4_`crr8xcq9hW|-%OtBH?ek(XnH zF<0-W%07ferB~BO$($>o>9p4N?a^vvMW#m2o=3>q- z?`aQ{-M`=0eCRkvDpmisX$ zzmYt~{cAKu*>#sDc&ZI2)BG$;rSrr($N9*TEA`e+d*t}5Bed<6)gm53#__DNQ zNk&O(x+(1q|LPget?nvGb{&7t+t+#`Y%FiGHBHWaTTOS}I7h!jeYxQ()7@422#LEk zb#~O-mtG&(NGyidQa?Xf`T&a@0%wUNc)j*gxz9biY8p+e zLr&|?ZJSiNwW3AEV8w)Iady1CiM1KJL>cq>+skSt=T&PibYqEcRHtssT)fzdD!#Hb z!Ar!_nLL;2cH%^G{TIr-F-2}Bw~^q9p7wx5eq3>SbXfJvf!1bIaq(h-2WQT7kFtM6 zKpEXRdFVZjCtddS*bb-YPuR&w7gl>}3w{Z|NO7RuKuGi7s)XbTYV(`8*O;xWy!|8lFi|ru6!(NKaC3S?>Oqv%MGZpS@bqhsE7W?S?vT&?hc-47hfJ@w zAz&vtJR~RkeXlv&#zUy2A|tyTOh!ii_r1o+{iWF-JIz3%f#X;uy)Rn2|L}XS7U9E> zDCBL&MCtHo(a+|%urG60*shuHB~ZQ;XT$?> zZfjxT3}{@6)MO-zWL zAN_=jo9tsz#S|x0yIaxXK`5PSkY@Nm7XQR?4F}&FWM7)Lj1t z`HOD*gcXsQJ?2!SGc#Ov<~LJOj7>Kly%%CLuy}I!lM1sLuASOdQs{>aJ;&4S`cW7>y|7lv0%(Fdc(I&SFh)}SqnKdj=E)w9} zGpPxi>#prwiPcY-d+RC5)>JYQLw7YHeDP4%Rj&&D3*{M$CD^3+zRlXM3*W-ER$@x% zX=o0HzRf#6@BaB@`>?aF`TKb`?jXvW{lTg$8KDs}q&v|DoG$l2P2yJ@)a%@?NA=Dw zVCr9f>3v^gp>o%8IdCtEbBho)hgOY$i9Ez;gwj@_8HmWvEad+VX@GB4mC zo|2Lrc%wn>oLr*7yg+<-%ERF+`Hc=OmY~_-%jXByr=OBJv$oKLS%$O!?76DUpCTFl z@Q&lvNZ+~JSD8B<@HgXUUTK}k!W6Zi6R?1|xOqyr9$ubqnSgNM9d;wge8vyXpd+dv zD1yUomLp`1w6fYV0nfu3%MOOf1qrw3);%hps%~>vObd~t%!)KF)ShMx;65d5cw+Gd z+54`S=GRyrga+@|q7}41>_^PU9>wvN;evjTwaIN! z%uGLpNzdE4n^cQGr;~5ATYW^7xRarcBdeb9$8*0K)T8y|@DEc6_3*gi_m1M#()&gV z)=5!~x3hr}c~=Yg&IFqx`ahn0=6!zVS%_G*_`^@r8E@(-5tMZ1Zcm?#@P7=U6!?${ zu6l4ymcj!15>hDsdQlCJ3FJPG!K@mzq#uq>IJeDa2h^>8DysStbmlvDx;gK&l0^D7 zR|*3G_HViq;bnyPvRyVwGD^tn&81W~2C7ZJ1sNxs?|D?*Wh#AGS2j&?7C|NS(AUT1Y0w z%uz<}mFHibEEKSD(_b~uNbVH*L6-l(oyh)x(dV!t)t{%`hmxyi#;R@I>SFlq+_MGV zo#*$mZ>b^fx0e503ox{H;3dxy7YEIbu?bCv5^0}^r@I}pQA97_O?kT{ ze!9a@oPT%|*6-$)L+D7m#-{)siZO&~YngB|pO^58@A*yzXXCL6nZC1c@7pE*szG|} zyZ_RPvuazEq-Ki8=3Qsxod4Q77SoM&YYT0XqRRTtc=>^!nDD2w?v-5|w_Zfh3q1*> z7jlA;SH8zk=tpT)!|3?Wm{U@mGdlyWli(t!IA`rUt+$|GI32eLZo^BK`pGwZDbCGW z+zC9Cw{Yjz=YePyKJ>|al0tk?cXw|Dmk=a)>Dk4rc0olSQoOqE1~6G}gqZW0e!$$k zuwkpZe&3hkv3k`F{M||6dPi>>SF&{DG!1f%axuY=k*I$6!b}z2A1)O7G@Mp#?#X3k ztG;O*3Bv`ev|78aly>#%s?REaS=~LS3?DB}HI3ah{$%FysuD3=Jg@A6%u5}4T{3F_ zysKk^nK{b2Zt}ty?7Mg(e9-km8y4-JA7#^6S$e^>fWnVv0Z2qUK;t* zv2IgP$oieC6Mf6Z%VVV)s80^w*j!BgP~&Zf~Qqm;FB7p5+WPlx#WBG!`pCuf=^~J=5@t{eSwlH}MzT0e5#q=Lr%=mcLqw}vdaT`&6q5#FS$n8!@J-mLL z`762kS-TUw58qViCEq>!mq!=goY%g6tbu~}V+*);&uHJrf$PpG-h0X9^lUwE&eAN% z`=547_UKwo#F)N0d*d&E-UT%ddO64^-*qU>i@+DO-NQ6k17RA;8S|CiFzx$5N9*S?ZMiZF(u|* z<-z>dCHv@5Z2Ttcqvf!`mYm6jQ%^TPI+Wd8y`698ILJx!l@<;ys9MJsEt0cVzF6~r zIRD@nF&)97uO+$o+TG|PojbQllAYRHgLxIboiffkVYj{*CmrJ)df9{FSj1k-?L-{VIil2vC+Gf!TIX(@a}W?u&{z2a$zXS`UL8E_&m`_%a#8t+ly z@z}tHSqtmi-~Q{T>vin|WHa{GK^x*?_x3(BYPVWyDI6af_~0uh#^Lsv@d*)pXfiY4 ztDsh{&c}f4N0-VQ9ioNRE=XK6dRy`9WAU%bpoTFK-uR%Zh!3%D4%%r z(jPZFt(lw*@qf5cU;U5>dJLXwfEy<=+hOo=!f&^z{(%bX?7!byZLN*V2F!oE{izZA z9QX8nmE}8cJ=T6yG2c|fJzLDyz^Z{45VCCThl>W+yKJ-P#LWM?Y&0>K?d6&>b-PaG?Cz3sgFM`jmd%}U?P^%EBOx`Q6K z>>NB3kRD9vGTd$C9M2;dqCy{td23ooOo&+Iawq$Z4clb6g&7Yd32?OPCq#!O!<8Cwki&vF=gA0?IznZLJn}u(V2nURc_gv=Ic>alFc@e^Dzpi7AQ5Swv6`AuNyGX z>dYNRB~i4zJm{+99(vraZFOtVYEE;?Fe_hGM6ZxV*Q!NX)A&Bs!)PCit%CTDsNw$X z*4y?9>RHj1qxkIsr^y_yk^)zKdntl{%Xfx+>s$V_{n^=OI?rFHC^tjyWL8@0#DDH$ z*0$=O2{tq`i6Uwc4F{g>b7e!jhkx0q4n)tn=pemkwJvObCdrvSEm$ueSq+?A>OCdG zx@AK7`D*sv`#N$P1r6Ngs47N;y;c!@K5~!OP*-!z!hDt2IMLzfn$PG|?yv+?ovTwy z*HeSK-Nt^mbha7i8#%L|iFcN7y)i=W-|I^Gn0waw+gA?zMy=J4(AomCl11`h9qXUD zgEqB-mj!;+!?cjn((eOY%T;B^5)8{sV7$-+AjSQ&m`9wg&J#RFMy5tiMn?BHG0)ZP znbtpOmA>?L+SLnFl1&lPYZPLn)05vkRGhx0KI%S3{;n~DM#Z@4sXr1vb}YBie=Q0I zD^A?r`DL<070Dm)xFhr1k875q;wx&n?LBdW;P+8yl_V)2hKPLlX_o{avhA&3BY%vE z`&e}GE4Gr(SylZy=OSZu>J9M=_~QBn9gOX`8Ui!@^MUBT5@%IOS7ynV`Mt-+pYTC% zb}mm`Op2y#!frCTl@dNi}fZNHLueK0W~G(7-!glo!v^}Sol~4bMyMSE#{LaFIft4&Fu;Qd~xT| z~hUNVU8=DXOVV0a(`JlcIldZtNGj=+Qh4ohEb2_-%v05#)sw?U-WWxjpN7c^>abH zXnd1NXmK<@CRJEUs*NS>*-)E+Tw-QDfw@m@u%k{SG-HERME3K&lH|4 z6})#8ibzA}DDcMQeJya@y!_dh>e>r!idW)@opkEuTYHi|?}u3-_A_gr2It3Q3`qH- z$bucQme@s?3FbTg7Ywy}R}3J!(ib=TUo2&g7j%x@q@;;tJmJi;B;%5W)RXABoLSXq zR(-$kYt5(LeM{3T6Sb^U2`2kc29qVJTE2u|tLV)o?$#VaUR0+TnSzd~?jsi{IX_#e zBpxpPM&=uI@a$&dy-Cu$ggk!U?oh>NyqRsZ(PAac%8J<`9K}((ZI@r#3Z3<|h>97k znNV!*n%hTK6mov%xCF4|Lv^OX0drmi*&WZ4w6>8A@@J9#XqVo@nEznRLi zK7%2I3m>s~Qf%Q@CX>^8z$ryvUlxd+Fxk>>tf$=o^{W}BqnxIS^3 zll?+AZsug%crTA3!(%3i+fVAxF%B^HQ$2m@+7z~Tj7G0s2=khPV}9n=^N*g)lBOZ; zZKv9lgI32UV^aLv?>^2LIbnS5&H-tH{yN96S+XGcG<@FT6BHxzRp&les}(KBlYUXLaE!^C>d*P!?+oiQ+{wx#{)XN3rg9-EX7L4|X%Vjtu^eP~y?){Vq@(Ce~R_WMjL zMzwa#&ZUl5EHgM8XK2|1YJLt~s?@5c^zM{VZ;9B_Z}UM0vD@ia=Up2ji^j3b()iiY zD32GqUHKv0Q_lpJ;CjvO7l#InSr8f9-3RhPFMGbN1TkF_@)W+nOWC~cg?T5*sJPl? z#`b}0^2EEKQ}BhWN2Qa!FrIaI%@8YnDO$zuU$aXYj^aY>9Wt~ZjaDi@#wm1spmg(Q z2sE?A-HN(;^K1OP=YG-U4{gsW2;Th7zbdXiYw|kQOucpb*{;LqySz_?>s&=BJxziH zF}IS9nuP2 z_6sM;*u{p(;+*}9h2~_w(V`-z%+GmC zU5Fx9?{`zvYQ_0iHR^!-*5g-iNlKLdX?FUrR>?Kq332(_{3PeG7%!YMy!H0(%{m6F zvz}@6V1VD+$R}^~a*!ux9F@)gApi7hv%U4J?^m6{PrM&KdjVXpB4Wq~vQ2nG%YaI9+s|d`d!WpR8a^uIJ1Y(hk_hL?*x_}D|~LYMkhk(BWHp8hQ5O3q>I?;cToDb z&e5gaJ|iD!QV8hsW(k7s^ac2{YDfE*5l6r0d57E=zLUisQ>}cwpyH{B$d0J|^ofbh zsM~-d&RZ?r%;COV^qtd5G-R~n{e`qax`3jI3wMv`;l3ehi!kIl_l z6#Jru5E;{Fl1m|VdBQiS>n>yTLa<{=R~Lq+sIF%ScW>bHC~0zUu6T;Q%4GbRru%^X zSpON_wv(RBLpkAx>bq*E*cf)G9TAD;9U zwhWXFAHAPkIH$QgUdVVRNG18liRXtMd^r-hPI`$vrQ-#a(haZPszkou%A~Hs1PtEq z3Ax4mpin7ps*sD3Vf=PUKHkpw{k!QgIs+b%`vib!KmTwn1i3iD)_r9#S8 z&U>FuiJq9*WxDgj!N0i+h##+uvN`O{evG&(sm*6dCKhO`q^U*wqbGp=da# zfBFuWexk=8f9&{kpMXE}v4kn5Yn6T({P@Kn_mLiqY|eb|;i3B{smNpJPy4Drkepf+ zRGzRN8=>j^f7(0qu%5R5?|(}ZnUy3eq`}ZUn^h#qP)Q+@BAPU*jv-`-O3^4YktkC# zRpv1zW62yDOA&`mJ!>Cd=U8jKd!Fm}_w(zz_I;oGzRqiX-k&wR*Rc2g?#LTOMVc~Q ztfGfK`#HWOa_XB|#(PtrCNAhXTskVG-eu0;+c&+xWc~K_mKNhz*&BO(?>+wK(%FM* z7OJm~njYQZ=Thwj!}3&>jN4z38Z}B{k^A9yS&K&;{u!%ZCN;^>YL#fPo||Wb(e}`} zd-YaJZQs>By0Kxyr-bDsNa9edF@5xRf6QDE_BeP>$%~^t-wMB}k%cP1l+_%vuhESx za#hGyp_52XVrGEnxS)W*U_H;!;E(`6VJ)k^T}ncGtBCwd|9}7Gkxwt3(^ptgC*5Rq zIoW;Zn8RbrZ-)8ShGnXoD;BKrJ0YF1Q^PfMRnx-|wKqcpzDGTX{`}mcE+V+<#^J1C z#d%NdH1+HCrR+OrKMzVgozd93O%MH)tLyIC9g@mTU$W!l7ww{(*&dZa-ceSz>rZDM z8T0(xu1SW&;$F^ton+@TEa&8#<@>W&EA?}^V5jf1aOwN>Y5QWGB~9wgk5${`{Lne% zWb?B0L1}s1v&{Exi)4}y6xcr*J^1p61yQoA?9a89Hc#7nKxuQYf#=igZB6Ab-ExuJ zkefDCeNW(ySsTU|+g+OL=k$JqtL`Mbz%r|fL2X`k8JQ8R_H9ew8H*n`r8-2)IwU=^ z+>@c@8ESdU;l$3h_RGr7smKnfzW(*|=O21m2g~z*^pw9j^4MCr#?Sp^{?dE5yV&_m z+jCu%+y;%4-(~Xl?%9yU@Gcu4%yZ4w3jR8E;Ll4FcL%^OdBy+xi#d`aQDVzKc30j3 z{vl2tGkm>-9(g-?YQTMU(h^#=Lnb{qdNF>J-km*na}&c3ugUo)A@!_FNtE>Sw~yBy~1wp+lVe*-3*6a%gIiUJ~P~BSig`@mI~HQ zk8Ybe#cY^VRHb-yrT)e6Shv`s728)Yb^P1;M%?t9Uq5a0R&1Ya+bUAG$!Yi(|gp#kBm` z_7nfM7^rqpd49LepUvwA*teS=l##kj`~8jbvYg&2N#~Om_EZVW$~)IRy1}-r@#qn! z4g312pPAh5$pvZEnxYbj!)!-AmBg#uYJK~`%@0`tEq&!?`LAd_?cC{$ z`vO;N*1!1vR!~gW-dD?dX|MPBTGr>_{o=*mIfic(Y82jB6seeWdt>piTZNHt)sXj3 z)8)OF*7+)ZAGh?feEj(*m*sXpv1?U(Lw#i4%b!Ey2d-Pa-}uy%^EU@PIV`#0%gf`5 z8-sf~XsSJnuAE((R~#?zZ-07O`uuap*R>9^%G&rkIA(nPpyK`4SI_*|!TtNdRmql% zJ$BYxSNzDd-)g^6aeag7`Ng{je(hm0!g_zQQm^={uDy2cPu^Q>H8eCqzU5QhRWG&& zDqTGAA^fq;l1o35Y-hNrZmQb2>T%fF`8)1S*12JNtxC8#&YNXlv+QbR(lb92v+O{b zWkAqB9rJ&!^4AoxaeYb9Eq#UMpRd)o?YjSm(r&NQ>yNG1>|f@yB0=Wr0mtX}t*sZ^ z2HmU)m)o46HEhBRGp`dfbRO4j{wpM8(6R96t^J0n^tqt_CNm;>XnR-3gIz~V>s)^2 zzMS$Jo49lZ{n)>!Z(sA~(_V@3y%W27yY(qcSvt&NRNA^MkG%Ye$*$g)yPBKs=@s2~ zux-h~(2<2#6*N@}mhQXUV5Tg)X0GqN7t)>X=!_V7Wkbli>>K^$ZfmrV=@xC`s#ohZ zcAs=f$(lCXf`$jp`P|Cg`u>cOL%LQjIr⁣indFzJERxaO?ibz&p{cwkR&i>Uw); z-fhDy&FQOlT|E(%xL~N-@;Uv2T({m^*?8y9OM|bGwrZc6zJDDw-1ACzQSQEKJ5SZJ z0n*Vk^g8Sq?R&*Cy@lq=1}%vz(I+$t^X>Ha+=D*?oeds^u4a`L`e7U6Z)PaO zB}r;pdCGq)xp#VzR;XY0oq4ebBh}_Fn{m5j#g;Z+A$xqzjV+yo ziJM}M`GKh0qFKe8HSSvGd#PAAEz*)2UiRqj?sT)wW&xYqxCAV_;%;DFTQgYC#b)!i zWCx%7wGEeElsB4QpV4t*%V+)GHFUc8eRY%hvXxH;uGnedZSC=FaGm3a)L5H)&(y0{ zUrp(gBfrcxX+`|;{5u`@Z(5*Sra4j3rlh|AHs`F;ANFZuV^jCPUOXy!{f?q9w>J)a zKW}zm{RoZc^F4RF>ZHm{H)<6(`mAx}Q1^}lwd&O^W4~{&6lDw#4;yCVe%JYkdy5Q1 z^N&5{(l3uF+Iu(Sq4WW1sUd}CZmX?T8y>sKC{4{c^lkprd$tn35z@2MdtFW4dMoBu zf>*1fmFr?lc4aLYV-VANyZqVDi7sA+Dw(CCZkhVw>PF#x?X9Oz6Lov=WO?rirX#Hz zwFZB^ICX8&g1iN?O7{o9y{%T5uycFA{I`CEQ+127&L)m?%Dd9fQ|8GERh_hXGM_5j z-g&ucvHXtYv9|&;%_b>^JSzNle)i`^mG`Iqoe?A?`;$}k-;Zy04;sDt@F;H8yWP5zx`;$aw@Qe*{l}7jy4s}n z>nYSxZx)7iiD>d(qWvK_wt|FEdKcUea#85`dd5x5niZ1 zBP2gi;pWFcQhl*p^~X;a^S`U#6!Dd+=ejQ=d@{%D`Z2s2;s@u|=XZtG|1^Tp51W6{ zMeT!er26Ixqwv4FC;!xUCB?(e*Wz42qdly>7cmrVWC%Nt$(YF&5hQ!Q^Ug?RvNuQB zFZ{k`^%KI^^kmh`@1)|xu6Nh==YczfuI6avgA@&0e&U=3LvhV@E26Z+nrlk@wi(mq zrzsjL|3p?oSBdghobq+&DCMxt?b{DsSw`p=9KE`XqG6kDFdw!8D_`}HQVwfP-SF68 zOj|vnXsG<=-e-q!d;hGWl*6$$Ty{g0K-Y13x2~sXIMNC#3+!Sg(Maj~gHjG_O{UD| z1J3()6GcPi8xO3kxd?meTFD-NP7-jG?5f_cQ9_$1ScskkSt8E!@s@R=l{s(Auj8Q#96ISAMp)3`zYom-?1rw07taANSlo^qHjo zOoL7RwgZjBVcLIZvd-_+Y4Kkt)8b*xrRMr3V*H3ZjYIJ+dgEecVeWw*w0P(e(dI49 zzQNpg`O`QYs`4XdS7Y&If6?M$)g81?ocg=R(^a=-5sgFfpKRwn5+-!M-A68=#Y3l< zcSt4sE6hD1p2p#DRrgk#i*rAoL5qh~_u5!Z3g;fOnZ}{`^?e?#)qulYe;X|xy2ap- zTBR>A_hq>>4hO7vf3MD1eD+CNJgmB1lWvFHB+;dNu_MmAh{mD#g)SSfc89soDyGC6 zLaX~)W^W|mZrW`0!xc0R2ka5qbV;0hQ#CCfR-IH~e9d!``*hB%PQIdWEPnTd&WpOh z+)F>v;-Os}E|T*RwtIPf+1wRd^!#&n#7p?~)iXEYZL z4We-deoYRiVp~XYDv1-3eRgK_$ zpU*f!<8ZuRl)n^(#lOBpi-*w{NDMZ|c;;0ahtZ{v*v8;#!lQ&158bBEi{fhB?pc*I z4&CO-YfF1P-haHL#lz@s&(3|sxu1AL<1o5}f9_jhyz}iIR!fVAZgXBfut*E``3qlZ z9J)VKN@ewI>nmFuLXY=c%*E9Jh!Z@X_0W>OM3Mqt8=s@Q)<;G7kUC zjKYnf*M&abv$+TCHX7Dc?ie2utQnyKt1e_bjYG3Kxxng36cL}mi7#@e#Y235Y1>x< zE}Rb1Rp&RC#-ZETO3F>Zxpxbv#X~%9)`*+J*#kdC`Yxw&XjYx(L|1qb@u8gfbL(jF z81G=YK8)ahak$GC8i#IE9oV!UFO9zMrNu+sHfn5#Zm`{lAE$9>R%QMcs+(3r1bUWC)Y@l-~3FJK@8KdYZ2bqQV;)!fv~5;_y;C zB7ZFR%!Eo5!^4g@HsgG+g(SYPE~Voq$I<%n9)A9*)#V9<&*b>w8yFteU+Z>#mkDmo z=P$XN(GR=sh=bl8eMo%XH0<)I_@*%YHwl&Ts|dc5>w8tFX&g=#XY=Ae2-`7!+@+UL z>P;cu-}mcq;n}ntYzL za9YccyXg{|fBLN{#QmmD?I^4*`P>h;rExe}xE`)<9Y@4(Arn$Nv>IE}+G>oW4t+Z9ASzd-6djusE` z6H3<>uOxUnmwWLP8iym!{6}biVS&W=`6WKIc!+m9^07o%n)10{52JDDmnO4bvQ#p&rj1Q&(ktku(m?s{aS6-V2EM zeO$wxSV@bA_}G?RO@yuJ0S@;{qHuHQb)$M2+TrouWg8_P<8ohTHwj0Myw^?5rEzFh z7n3^3jv_d}uFWBb8h`BOnpsz`SvNU!ElGY4NuFNUYF?p|H!^~Dm7eUlU<2W^IllT1 z!$ZS)dc-wZn&{`(wfn1R{diq1x8=>~DI`9BhVs0Qif<09Z=II;J7HTA&b58OcN&M; zpAOes-JYoD$Glog?LTYZ9O8TILmTu6&ikEvXBvlfr~P=G3tpfU^b+I02CX^7oeNZ_ z3hP>aeG{Zl+^}qT|I78uc?>vYW5AmsW`u_c3?k;vT4$ay+NIOc{k413}cgTen z5AkHTz3YX&^b!ttpGo7;tfw3{Ho;!sejY6z;t~qe+F-vMv53Z@Sy!BsYb$s?pZktA zw0MYHMb5MjAUMCa81nANP61Lo^P}`owC<=|b-F zxrPfqMT>{{<2c`9;kcQvy6)E~+yZ)i7xnUN!L9f{f1!dBk8v4y?-bnbjny;`&1%-; z^CrR#9)6CW*g%Vi_{_MQWx|@CpX0wZ(Ks}#;;GlFgmXha_nobE{`5Kvh;L}KDh;n| zUn$c#G^=g}qN3%n;f866@n2qN0dez(_WHt^>2j{yd@`bOXjaxgkIuk8pF5Nm5Ao|c z12^NfUF{eehh~*ychOPsI{v2S$jP*Lh)3K#Hda{M@#lsOvuGTe)tLGtad>@`6+(-L zxIyipQas*km(VygtGpH|9feNIpBIl_ON)ni$kAErg>$Q|T)ThFpmAtcr|wp~ks^Jb z_qx4Vw0Ma78)@GW#yh{Zdvt`xp;^U~&&CN}#}C*6=Vq4jBge|Lt5 zp5?Umtc_rK{E>50A4Wgq4=dNtnM3%sT>g1x3=dsP!c28dC$Ztv`W>tp{g8j0WtjBa z@o7GBJi|lZ%5CUeD%{%@mi9FN)}7H0d5g0#FJ?eKaxTL|=PF-v#zqe2-#VPp5BdEO zYggg?t(P-A^scd?XO9ZgJ^!ZL=5>sI$eXA?vJ-AE^Zmzq3&TVADqLGUO?V$fFh9Ef zAMa)KL*Cf!vg7YrkLG2LGd%RKrd~T=3Xj7GYc-npxX9>-{Of5YUxaf!;W&uq|Gr7{ z_;s419}gem@t^mY){lA1xlUTYPqXOwZ)+GH`d2^Q4xz$vmN0kGywz7mKjb&>`Ya>( zzi_XV=AX;-rTotT`rq?&6{~+Q_-KAxCowPfKg?ISsrmLN<44%t()ZWhBZc8%``670>ng1MQn>z;wS&`*D7T6!}>37A$xE<%-``U!^8S_9vysLIOE{o6Te-~ z=!gFOKx>7n(0};xxAHl|L;oEoxaR;#r$vog#5mRpB#l7$Gm@p88SS~ zUnyf?lrPaQoN>|p_v#QvKja(wc&G^LPvI6K&3oH3JnTQGmS`Om`ai#ZP;q7SL;hoV z*=y{dBfS|O_CE_FxyeHR-NETk31;*|{$NF+g7C=3HjcN6qIvv^T2#>CxZek5bp1)k z(fTnTbZn-a32A?R{?y;V@X-Hl(q|nK9<}1L*$Z7pXlKuZYa5KQal<_R-=Rf`j@^2^Re;t`M z!$V>{v5WV-%dPoa1NL#RJby`V(6Kg0LG z6d#6%{`oe)ohn|x4+s2&!0*Y82yk> z%{2QVJlDROtG|#>l$wkfGOqd@cv2iA1`cgv>rW8Ot?{R6yzpMI3#Vf!C;UC|k@ z|4y8zcq1cN{{@l|++cWEe-2g7PX+(y>wm^$F)tqfc>kc$BmQF@`C&!{ zL$>~;YZxB-_dV+mpCn-YYka5l8{k{ZIg+B!hJ@$mKj)UZl>Zq)|IYj<(=~~u8-}ys+QpU*Lxc@Bd#l(mH{Y-eUbK z?v#EbW7z*{-8_C`zG6DX8yG?TF5}WhU_RNC;i3MmhVN8Gu>Vi+X7Y#Q-|zL;BwT+> zgBc!<|B@{-U4N4P&+os^L{WS*^Iy)*gvVove%^oT;us$K-^(sz+`p3e7CLPE`)7#x z-{TMF->>0RU*Y^Ef#cJ%7#`+7CTv)Uu>R)#|Naq5zX6{A53PP-CbXXc*MDWsF+9va z?23z{uzp?HkImn-jMk6iryT9@MOgo@;`ogZ86L*pI_qa3p8qA@GWy~8xp#kkcv}*m zAHO5MFg)~6$)W*rc>F|5>rwk}Jbrh+U#g7v55wfdym%8|E*6tGB{TJYfLns*^|)^^LM*=WIWE_qc_7t{i#J7r-Yw#BG2+L`c<_V z{m{RBPsBc~hxt31Fg*0HJCCnhVf`V)8U3*S=Gg}33gf>MH+~Il7#`~Xd*0%Exc^R` z!03nmVL5l5Pjfv!)u>-=h?UhyHWf@a%G|zhMWhAIGou zUZy9!^1}PK^g$**^sh~ZdxyM&`o|P8JRHCBX2<{i#S*&yyowq9F#oe&$0Kq7=~>F~ zP=C|I9Y1jYe_Y1shyLMFSoyA;O1sdNvC8 zpM^)!>H2f|Lh(k%kbl0?I{){tXVCn6DSc}GFoF4Z*<}_a{I-`S=Rf;p86M`ZYhKK$o5p%f#&%XvUDgA~Pkng|bSuE~9wcZqO zfL|7kj+{9GkKesM3=iYqmC2ca?;p>qglknbht#q%fThs|8o`8DDB{hx_G z!$be-FwjL4x4*+6MnB}oyN*x7^QZh!CO-6^!+kvu;r;8lF$@p=$NJ{S*;v278>1h_ zuhj|8$9&(Z3=iXX(&@KRxc|?$->Yeie&|0d_Z|L$+fUJt;i3P`&~LdD>(`BB^uzeY z#qp8YKi)22co@HX`iQ+a|2>Nt{m_35?DY@e{O`sxJoFz++m%1C{V zznqN>595z83u_`Kg|Ka0|ei(n()@3m` z|9J%r5961{YrhrtPkjH^Jw@wp=FPw_m2P^bpSs<`T7x~ANo&=@mF<)^Ap~`)oU0Y`j3X)qY=3Mtr{8qFn-)Y*EGya zd}nwVKR0gka(w^m)K5k~^dH^8H?G3@37>zxydiadX%78of#Enc+TYLHM4)&F^SO+;~Ujy zEynxr>5~~A#%~{Mql3@yySdZ)@!N9oXD^(15BvX&xeO2er{ML?X7;bk!fE|DzG6q` z!?^v2{>AVxewo^ax%m9`$3jLw^q*@TWgGDR&u|UHL;rc6IK>$E{|RY~ei+|9BQqA~ z-#&xkVf;lSO!wpcU&$s$KlGoUej3B@{HM5=;i3PW4c_(z=ilcTqaVf(kC^oD*Lvvj z`|1S4!}u%JAFfe`=hvBqjDF}pm+ZG}sfGRj-BpH%{?kA8TU*?I@)eAJ7(d!~K^f*R zS28?|pWAzRS3LfgKVV594o-U(yZdzy2%3 z!}zXM8LM&r<9<;34e|STwlQY!@c2(@W%TF#Z>SIb$Fa?-46Hw2NzDJ6|C@>bT6SJ9 z%m;U6co;wVR95E>u>b3KXY@n=S(2;0p$7Kwn;AI&S-FgU z7~lUvK_%uj4l+E9uYN0fC-%RmhiU!z{kaQwG^XM9*E+-S(0@J{AIru1ElX+rIKJ)R zVgG*Iho1jGmoYqyAJW%xEI$9qyT#~-{*z!aFRc!?|I;T75B;ZmS=A(*zvvyKAI8t? z>-Fzf`{?`&>lq%#|4=>g0KWej*}&+B{&Vxuq3wA6e@J9Z&3^{ae}>-DSv;4F-&|wX zzizb=^Wyo>0LEW;CCv`kpT7#j!}xwObvMmO{2+ZceqU9FhyGK3$nlIj;qy5C>-sW0 z^q)@yUS#6u@6|2D{IBzKLjxE;sN=M9JparZ!SFDC;K{nZc>Z1J$moauV<%&&kLS+; z6Pfss@2F7Wf&0%~Plkv7wQ$gjV~(W$M;Ni~7aPdvhkVM?gl3)}X}5^x@%ukRB9#99 zv?+w_0op&($VSEjn`Zl=#EIq*RFn-3+uFX6@wxf{I5BKR>$MDeqPShRTipPK3?zDdV z{!J$Z(?xjya!rllq5n)+GxHlhe_Pd)){o=2m|2*E@4pu6F+7Z)c>SU-Zom5j8U4_I z%#DZDV?J#N!$becFW(f1=YQwnjD8ru|Ff_nod3qL3=iWMpV-n?*#D8A_hO#^J28dP z5B(=XX-+O2`l z&yPRI@X-I#cB(ew_cvPSG5R4d9h-Nlg3Mq1{bRE;3=jS5XvD^&IR7D~jDE;#I(A%w z`R`>kkKg~WNbJ+h@2?!cMeE1>l!5EVWB>m7gyEroeXsXjh4rhxWAsB_XUSw^;rTay z{NJxuk$Yi|Kt68*91mCKT4;0{Qie=_$52xv*vnS|H;_M@X&vTRphJT{a^JSI)5C0(t5S&c>Huc%J4A0 zRPNA`IDh@~jDF}}InI~TF<*O;;od;r!X9H|t+_?=n1$ z-_yQu4PO8Mc*f|5{35`s;l9i1RmSDdxrdKOA4GuU0bl dm z9>$L}HoA%RFYd+YhyL~Af!Qw157cCM=s!mcdcDHW-!y77`eA$-1C^h6{0}f?co=_K zXj~E2?`lQs$M0YCiElL>^PNX9JoKMUtry+J&!6A2rS;?ZnW=$6c>GFCWa2~rXzlxX zA0EG_CNVtpkJI|W{@B0&n#|~j@hxS|SK{?=)@+7{@iW3Rm4x4a;McF0LmB+2QP~*c>U0{ zh2f!o581ENaQmy~F#4f?Jl)dnp>TfPnVbJB_cJ^kziw7-BJl5b$QLsDVg3Dmy~-Sq z|FKsY9_ruJ@zHghzh60{ANq$@7p?i2*Qum={Qkq7r~5YG{d4sLMn9~-7p1eZ@$(n$ z-!MGXf3m(;3#`B2XGTBtFNd*nOoWfh@a_Mqk>TO^S5+LjMfmY27y>u4}M9KX*D^~>@6Kf!>} z59_aK{uU?fpNj@FJk)>hI;Kr;Yo+&kjaE^pAAcy9v1ddheon{QkoG()sJK z|5ar%`eFU8@SD)g?}xO>XLzVzE_hNi>({>L82!*c&h(gc1?T_j0>i`coAz1H6W{;K zyiDuI^`{_nJ>ec1fBgCB^*am?^*fmNY-aybQN`$o{_*l$rZirECRZ~&9KS*JwY%~C zKgU;$epr7eTYkAFJb#qI`ESN2CO#bhifP(exczb^EvWeif1gQCtEmC=bEU<+c>XYl z<5$LKVkzde<(T-e{tlLwlnU#ouH5>ox)l>2j(?-bJ2Ub4*XhEL2?Lg|LU$x zd^mp9*X)(V`S0k?#E13wZTZP*!uczo|8#XGJ{4;=}suANBe&&i{!C6CaL$_YM`Q&9uK26Cc*!xM}mUn`wU=CO#a$ zW1j4KkMrMQOUK9cx1e~Yg>e58wEt)(KJ>5JBc1hd{LD#Ad{}?=tUu&m*HXlzEu}QSpTYUMn4??cV7)WhIyO67#@z_Gcm!M zc>b4M#OR0hHzjCeJG}nyzlPzV{*h-7#W$lrjnNOse|*BBrWY zxtEmwX6nzTYKJ7=|NZ@u;i3Nfi#qJb{@+>B^3U^cBYo%}9wD!kaQ)qsVt6=yCHs1| z!{dLgteF3G{%wT6|McML(gflBE0|mVolszSsK4Iby9d^PuLq+a`iDhpZwK7}Q#2SJ zj$fztnU8V*chX|?!}@bpe&^6i*gtalFEM6#s6St^+Z3Gt$zhCs=pSnDGM3`}!>t(} zj$b*=(>?L~C#EAA{jmP}+oTMA3)}xMCx(amPrew?%<~^99*lnI9}+cZEpYug&ZK$# z{(|n)nF_-1ukic-_OlrMu>RtIp3xpd+TUJ}J%1h&!thZ4CaH^Ku>OK2jDF}JT5X4X z!tEas&G69wYKj!|@$-LXD{1|>{_@9#eVYXH_f2AWs6Suh;5n@S<2FV=^bgy$CKncv z_RHdaKkv{^hKJ+#R7dUXRKn+Sy!%0hhvWCwFwnvT*LuS5_w)Tfb{50K`fu;A^%H;pPcD?v5654!>9SeE_~*w@?h=NF z<8Q-}j%$SW=fB?*8c*y0v;JF&e*N_j?aN*$(Xj=YJIJLd{(pb{*Y*rC@8>ns$3xG@ z&tsOCxo)8UtZ}0y$fr#dL^2{d@^AJKr5wqrdM_;!jZP)GS&*W8*Cn^7x@n0Da=jz32ZX~}XN-nw#1G9m@M&cit7+Ih) zybn!id6v9MBwTcDthvRPVemgIB1(1;C&LgGF)#VvOV#Bfk#NzOgbv_~Fw&h9=p}BH z|7xT8GA^Cw%P@vz#I0!AUdK=*5-wVY@`%A)DkiXuf(aRQ^<6|F;iAh33+Kx)g=I9~ zM>iz$WtgEVRXz3Tsyyl9!bQt?oWvJl06WLXM=mLNsHmp#W&A&jpk;Vw@I{an59sH5 z&M9^MNE*ULm$7FvC(eD3|8T$j<_07^5;m z!lHY;Bu}sl7po|9eFN6H56zF3i$>$w=kUWHoF2mDx2siS{%mT_7nDn`(6XAu6 zF5}n~PzLO$&6m+M4U_@<>3Fl+mRQFKPf!Nzr)Gu2{541(!bRs2=MBn$b=rIx)jpsM z*iR?;OP~kTu{czR&m!?5)Hydm+|5FNKOZNiW`)%!?R1DoTVa>aM5MtOta<6FotCq&Rlh*B!0Ui@ z+Pt4$m*vYKU%&!={b=!A)#tM%M8c&+)*%1=DQx4*Fg1f)K`R&MYjBwEv(!bR> zE*bJu@<52ntn5-ZS&>M%=rRI3f-+#GKGd0}n64ud2^U?)Pi4Lg@<=bx(R_szTY)kR z{)ZLveBXGkLd@Vy*L;O&9RX#)p4xnc94P>0z#if~+fG(GLnIO|x>A?E;L9+Dxt#uX z!RGw}kx01cGEOd;z}E*Hxe8u#1+gncBH^OTc=8jJ0UcH1_{zj&;>f~9m$7xZBd-H? zRL`;5Nh#aOnK`-WGJIM&@nyh{TH?{Q&Ysk#aM5KL;7X|B>XTr1vV9RQx{UJS6L}r5e>^K&Yr2oL ziEzb=Axbct#tH4kx01cGHUWb88DZ$>5Um} z4~s;?MLX(T!%3VDvp)|m|2x&5{>pyUhz`$R@rDcSFr9+DjEl!;miRQL*CI9RH0H}Qk A$N&HU literal 0 HcmV?d00001 diff --git a/phreeqc3-doc/RELEASE.TXT b/phreeqc3-doc/RELEASE.TXT index 3012b298..902b52a6 100644 --- a/phreeqc3-doc/RELEASE.TXT +++ b/phreeqc3-doc/RELEASE.TXT @@ -1,4 +1,294 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + + ----------------- + August 27, 2024 + ----------------- + Added variable "viscos_DDL" in EDL("viscos_DDL", "surface_name") to give the + viscosity of a Donnan layer on a surface in BASIC. Note that the "surface_name" + should not contain an underscore "_", the Donnan properties are for the surface, + not for surface charge, thus use the surface name "Hfo", not "Hfo_w". If + "surface_name" is omitted, the viscosity is given for the first surface in the + alphabetical order. + + The viscosity of the Donnan layer on a surface is printed now in the output file. + + The viscosity calculation was adapted for high concentrations of neutral species + and gases. Viscosity parameters for CO2 were added using data from McBride et + al., 2015, JCED 60, 171-180. See example c:\phreeqc\viscosity\CO2.phr. + +Version 3.8.1: August 23, 2024 + + ----------------- + August 20, 2024 + ----------------- + PhreeqcRM (Python): Expanded documentation in BMI Python example notebook for + PHREEQC example 11 (ex11-advect.ipynb), courtesy of LimnoTech. + + ----------------- + August 14, 2024 + ----------------- + IPhreeqc: Pull request for modifications of class definition order and header file to + accommodate Clang 15 on Mac. + + ----------------- + August 13, 2024 + ----------------- + IPhreeqc: This resolves an issue when building shared libraries (DLLs) on Windows with + BUILD_SHARED_LIBS=ON and BUILD_TESTING=ON enabled in CMake. + + Sets BUILD_SHARED_LIBS=OFF when building the googletest framework. + Adds ctest-shared.cmake for testing shared library builds. + + It also resolves a build error that occurred when building shared libraries (DLLs) on + Windows using the Ninja generator. + + Adds the _WINDLL preprocessor definition for shared Windows builds. + + ----------------- + August 8, 2024 + ----------------- + PhreeqcRM (Python): Fixed one docstring. Added code to handle numpy arrays + in yamlphreeqc. + + ----------------- + July 11, 2024 + ----------------- + PHREEQC: Fixed a bug in the DUMP routines. Under some circumstances + erroneous output was dumped for a user number. In most cases, the + correct output was dumped following the erroneous output, which + caused the erroneous output to be ignored. + +Version 3.8.0: July 3, 2024 + + ----------------- + May 18, 2024 + ----------------- + DATABASES: + sit.dat was updated to version 12a (Aug 22, 2023) from www.thermochimie-tdb.com. + + Amm.dat, iso.dat, llnl.dat, minteq.dat, minteq.v4.dat, phreeqc.dat, + phreeqc_rates.dat, pitzer.dat. Tipping_Hurley.dat, and wateq4f.dat were + reformatted by using the lsp utility by David Kinniburgh from phreeplot.org. + + ----------------- + May 3, 2024 + ----------------- + PHREEQC: The -dw identifier of SOLUTION_SPECIES now has up to 7 items. + + -dw Dw(25C) dw_T a a2 visc a3 a_v_dif + + where, + Dw(25C)--Tracer diffusion coefficient for the species at 25 °C, m 2 /s. + dw_T--Temperature dependence for diffusion coefficient. + a--Debye-Hückel ion size. + a2--exponent. + Visc--Viscosity exponent. + a3--Ionic strength exponent. + A_v_dif--Exponent for (viscosity_0/viscosity). + + The diffusion coefficient is calculated as follows: + Dw = Dw(25C) * exp(dw_T / T - dw_T / 298.15) + ka = DH_B * a2 * I0.5/ (1 + a3) + av = (viscos_0/viscos)a_v_diff + ff = av * exp(-a * DH_A * z * I0.5 / (1 + ka)) + Dw = Dw * ff + Where T is temperature in Kelvin, DH_B is the Debye-Hückel B parameter, + I is ionic strength, viscos_0 is the viscosity of pure water at T, viscos is + the viscosity of the solution at T, DH_A is the Debye-Hückel A parameter, + and z is the charge on the species,the viscosity of the solution. + See Robinson and Stokes, 2002, Chpt 11 for examples. + The Dw and a_v_dif can be set in a USER_ program with + setdiff_c("name", Dw, a_v_dif), for example: + 10 print setdiff_c("H+", 9.31e-9, 1). + The diffusion coefficient of H+ is handled differently with + Falkenhagen equations. + + ----------------- + May 3, 2024 + ----------------- + PHREEQC: The ionic strength correction is for electromigration calculations + (Appelo, 2017, CCR 101, 102). The correction is applied when the 6th parameter + option is set to true for -multi_D in TRANSPORT: + + -multi_d true/false 1e-9 0.3 0.05 1.0 true/false # multicomponent diffusion + + true/false, multicomponent diffusion is used, + default tracer diffusion coefficient (used in case -dw is not defined for a species), + porosity (por = 0.3), + limiting porosity (0.05) below which diffusion stops, + exponent n (1.0) used in calculating the effect of tortuosity on the + porewater diffusion coefficient Dp = Dw * por^n, + true/false: correct Dw for ionic strength (false by default). + + ----------------- + May 3, 2024 + ----------------- + Database: Added new database phreeqc_rates.dat. The database augments + phreeqc.dat with rate parameters from Palandri and Kharaka (2004), + Sverdrup, Oelkers, Lampa, Belyazid, Kurz, and Akselsson (2019) (only + Albite and quartz), and Hermanska, Voigt, Marieni, Declercq, + and Oelkers (2023). Parameters are defined in data blocks + RATE_PARAMETERS_PK, RATE_PARAMETERS_SVD, and RATE_PARAMETERS_HERMANSKA. + All minerals with rate parameters have been added in a PHASES + data block. Example RATES definitions using the different RATE_PARAMETERS_ + parameters are provided for Albite and Quartz. + + ----------------- + April 27, 2024 + ----------------- + Databases: Added new keyword data block MEAN_GAMMAS. Each line + of the data block defines how to calculate the mean activity + coefficient for a salt with a series of pairs of + aqueous species and stoichiometric coefficient. Phreeqc.dat, + Amm.dat, pitzer.dat, and phreeqc_rates.dat have this data block. + + MEAN_GAMMAS + MgCl2 Mg+2 1 Cl 2 + + A new Basic function MEANG will calculate mean activity coefficients + for salts listed in the MEAN_GAMMAS data block. + + 10 g_MgCl2 = MEANG("MgCl2") + + + ----------------- + April 27, 2024 + ----------------- + PHREEQC: Added new keyword data blocks RATE_PARAMETERS_PK, RATE_PARAMETERS_SVD, + and RATE_PARAMETERS_HERMANSKA and Basic functions RATE_PK, RATE_SVD, and + RATE_HERMANSKA + + RATE_PARAMETERS_PK +# Acid Neutral Base +# log K E n(H+) log K E log K E n(OH-) +# ======== ======== ======== ======== ======== ======== ======== ======== +Quartz -30 0 0 -13.4 90.9 -30 0 0 # Table 4 +# Acid Neutral P_CO2 +# log K E n(H+) log K E log K E n(P_CO2) Table +# ======== ======== ======== ======== ======== ======== ======== ======== ======== +calcite -0.3 14.4 1 -5.81 23.5 -3.48 35.4 1 33 # specify Table number for P_CO2^n(P_CO2) +# Acid and Fe+3 Neutral and O2 Base +# log K E n(H+) n(Fe+3) log K E n(O2) log K E n(OH-) Table +# ======== ======== ======== ======== ======== ======== ======== ======== ======== ======== ======== +pyrite -7.52 56.9 -0.5 0.5 -4.55 56.9 0.5 -30 0 0 35 # specify Table number for Fe+3 and O2 + + Three rate equations from Palandri and Kharaka (2004) can be entered. Most minerals use + use the first form above with 8 parameters. Table 33 has a term for CO2 as in + the calcite example above; parameters from table 33 are identified with a 33 in the 9th + field following 8 parameters. Table 35 has additional terms and data from this table + is identified with 35 in field 11 following 10 rate parameters. The rates for the + the minerals listed in the data block can be calculated with the Basic function RATE_PK. + The calculated rate does not include factors for surface area or affinity. + + 10 rate = RATE_PK("Calcite") + + RATE_PARAMETERS_SVD +# Table 4: E's Table 3: H+-reaction H2O-reaction CO2-reaction Organic_acids OH--reaction Table 5 +# H+ H2O CO2 Org_acids OH- pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi # Num Mineral Formula +# ====== ====== ====== ========= ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ===== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ======= ====== +Albite 3350 2500 1680 1200 3100 14.6 0.5 0.4 0.4 0.4 0.5 16.8 0.15 4 0.15 200 3 900 16.05 0.6 14.7 0.5 5 15.4 0.3 0.1 12 0.5 5 3 900 # 1.6 Albite NaAlSi3O8 + + Rate parameters from Sverdrup, Oelkers, Lampa, Belyazid, Kurz, and Akselsson (2019) + can be specified with the RATE_PARAMETERS_SVD data block. A total of 31 parameters + are entered for each mineral. The rates for minerals minerals listed in the data + block can be calculated with the Basic function RATE_SVD. The calculated rate does + not include factors for surface area or affinity. + + 10 rate = RATE_SVD("Albite") + +RATE_PARAMETERS_HERMANSKA +# Acid mechanism Neutral mechanism Basic mechanism +# logk25 Aa Eaa n(H+) logk25 Ab Eab logk25 Ac Eac n(OH) # Formula +# ======== ========= ======== ======== ======== ========= ======== ======== ========= ======== ======== ========================================= +# Amphiboles +Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 0 0 0 0 + + Rate parameters from Hermanska, Voigt, Marieni, Declercq, and Oelkers (2023) can + be specified with the RATE_PARAMETERS_HERMANSKA data block. A total of 11 parameters + are entered for each mineral. The rates for minerals listed in the data block can + be calculated with the Basic function RATE_HERMANSKA. The calculated rate does not + include factors for surface area or affinity. + + 10 rate = RATE_HERMANSKA("Anthophyllite") + + + ----------------- + April 21, 2024 + ----------------- + PHREEQC: Added Basic functions GET$ and PUT$. They are are the same as + GET and PUT, except the first argument for PUT$ is a character string, + and GET$ returns a character string. You may use one or more indices as + needed to identify the value that is saved (PUT$) or retrieved (GET$). + + PUT$("MgCl2", 1, 1, 1) + x$ = GET$(1, 1, 1) + + ----------------- + April 19, 2024 + ----------------- + DATABASE: Kinec.v2.dat is a new llnl.dat style database from the + CarbFix2 and GECO projects that is included in new distributions of + PHREEQC. This database contains the parameters for calculating mineral + dissolution rates for primary and secondary silicate minerals using the + equations and parameters reported by Hermanska et al. (2022, 2023) + and dissolution rates for other non-silicate mineral systems using the + equations and parameters reported by Oelkers and Addassi (2024, in + preparation). + + ----------------- + April 15, 2024 + ----------------- + PHREEQC: Fixed a memory error with iso.dat because it uses H3O+ instead of + H+. The SC variable was uninitialized in that situation. + + DATABASES: Amm.dat, phreeqc.dat, and pitzer.dat were updated with + revisions to viscosity and specific conductance. + + PhreeqcRM and IPhreeqc: Fixed bug with the temperature grid for llnl. Some + internal testing and list generators used the default temperature of 25C, + which caused an error if the temperature grid did not span 25C. + + ----------------- + March 25, 2024 + ----------------- + DATABASES phreeqc.dat, Amm.dat, and pitzer.dat: The calculation of the + specific conductance can now be done with a Debye-Hückel-Onsager equation + that has both the electrophoretic and the relaxation term. (The standard + phreeqc calculation uses a simple electrophoretic term only.) For + individual ions, the equation can be multiplied with the viscosity ratio of + the solvent and the solution, and the ion-size a in the Debye-Hückel term + kappa_a can be made a function of the apparent molar volume of the ion. The + options are described and used in the databases. The additions extend the + applicability of the DHO equation to concentrations in the molar range, + reducing AARD (average of the absolute relative deviations) for SC and + transference numbers to less than 1% in many cases. For high KHCO3 + concentrations, the SCs indicate the presence of a KHCO3 complex that was + added to phreeqc.dat and Amm.dat. The AARD's are 0.18 % for NaCl, 0.48 % + for KCl, 0.51 % for MgCl2 and 0.89 % for CaCl2. More example files are + available at http://hydrochemistry.eu. + + PHREEQC Bug-fix: Option -density c[alculate] in SOLUTION_SPREAD was + corrected to give the iterated density of the solutions. + + PHREEQC: A new option has been added. The viscosity of the EDL + layer on SURFACE(s) can now be calculated and will then be used to + modify the diffusion coefficients. It is set by adding c(alculate) + after viscosity, for example, "-donnan 1e-8 viscosity calc". + + PHREEQC Bug-fix: Viscosity of the EDL layer on SURFACE(s), defined with, for + example, "-donnan 1e-8 viscosity 3", was omitted in Version 3.4.2. It is + now re-introduced in the calculations. + + PHREEQC Bug-fix: Basic now returns the contributions to the specific conductance + (t_sc("H+")) and the viscosity (f_visc("H+")) only when the species is present + in the solution. In previous versions a dummy value was returned when the + species was predefined, but absent in the actual solution calculation. + + PHREEQC Bug-fix: Limits for fugacity coefficients were set to be 0.01 < phi < 85 in + Peng-Robinson calculations. The limits were removed in version 3.7 (when calculating + H2S(g) solubilities). However, without the limits, all water turned into H2O(g) in some + cases and calculations failed. + ----------------- November 15, 2023 ----------------- @@ -27,7 +317,7 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ ----------------- June 1, 2023 ----------------- - Finalizing a Python version of PhreeqcRM that includes the BMI capabilities. + PhreeqcRM: Finalizing a Python version of PhreeqcRM that includes the BMI capabilities. Methods are documented in Python style and two test cases are available, one of which uses every Python method that is available. @@ -45,27 +335,26 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ viscosity of the solution when parameters are defined for the species with -viscosity. Actually, it gives the contribution of the species to the B and D terms in the Jones-Dole eqution, assuming that the A term is small. The fractional contribution can be negative, for - example f_visc("K+") is usually smaller than zero. + example f_visc("K+") is usually less than zero. - Bug-fix: High T/P water phi became too small. Now limit how small phi of water can be - so that gas phase has reasonable H2O(g). - Bug-fix: When -Vm parameters of SOLUTION_SPECIES were read after -viscosity parameters, the first viscosity parameter was set to 0. - Defined -analytical_expression and -gamma for Na2SO4, K2SO4 and MgSO4 and Mg(SO4)22- species in - PHREEQC.dat, fitting the activities from pitzer.dat from 0 - 200 °C, and the solubilities of + Defined -analytical_expression and -gamma for Na2SO4, K2SO4 and MgSO4 and Mg(SO4)2-2 species in + phreeqc.dat and Amm.dat, fitting the activities from pitzer.dat from 0-200 °C, and the solubilities of mirabilite/thenardite (Na2SO4), arcanite (K2SO4), and epsomite, hexahydrite, kieserite (MgSO4 - and new species Mg(SO4)22-). The parameters for calculating the apparent volume (-Vm) and the + and new species Mg(SO4)2-2). The parameters for calculating the apparent volume (-Vm) and the diffusion coefficients (-Dw) of the species were adapted using measured data of density and - conductance (SC). + conductance (SC). Example files are available at http://hydrochemistry.eu - Removed the NaCO3- species in PHREEQC.dat since they are not necessary for the calculation of - the specific conductance (SC) and their origin is unknown. Defined parameters in the - -analytical_expression, -gamma, -dw, -Vm and -viscosity for the NaHCO3 species in PHREEQC.dat, - using the data in Appelo, 2015, Appl. Geochem. 55, 62-71. (These data were used for defining - interaction parameters in pitzer.dat.) The parameters for the apparent volume (-Vm), the - diffusion coefficient (-Dw) and the viscosity of CO32- and HCO3- were adapted using measured + Removed the NaCO3- species in PHREEQC.dat since it is not necessary for the calculation of + the specific conductance (SC) and its origin is unknown. + + Defined parameters in the -analytical_expression, -gamma, -dw, -Vm and -viscosity for + the NaHCO3 species in phreeqc.dat and Amm.dat, using the data in Appelo, 2015, Appl. Geochem. + 55, 62-71. (These data were used for defining interaction parameters in + pitzer.dat.) The parameters for the apparent volume (-Vm), the diffusion + coefficient (-Dw) and the viscosity of CO3-2 and HCO3- were adapted using measured data of density, conductance and viscosity of binary solutions. The viscosity of the solution at P, T is now calculated and printed in the output file, and can @@ -79,14 +368,16 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ where eta is the viscosity of the solution (mPa s), eta0 is viscosity of pure water at the temperature and pressure of the solution, mi is the molality of species i, made dimensionless - by dividing by 1 molal, and zi is the absolute charge number. A is derived from Debye-Hückel + by dividing by 1 molal, and zi is the absolute charge number. A is derived from Debye-Hückel theory, and fan, B, D and n are coefficients that incorporate volume, ionic strength and - temperature effects. The coefficients are: + temperature effects. + + The coefficients are: B = b0 + b1 exp(-b2 tC) - where b0, b1, and b2 are coefficients, and tC is the temperature in ºC. The temperature is - limited to 200°C. + where b0, b1, and b2 are coefficients, and tC is the temperature in °C. The temperature is + limited to 200 °C. fan = (2 - tan * Van / VCl-) @@ -99,7 +390,8 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ n = ((1 + fI)^d3 + ((zi^2 + zi) / 2 * mi)^d3 / (2 + fI) - where fI averages ionic strength effects and d3 is a parameter. + where fI averages ionic strength effects and d3 is a coefficient. + The coefficients are fitted on measured viscosities of binary solutions and entered with item -viscosity under keyword SOLUTION_SPECIES, for example for H+: @@ -111,8 +403,10 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ When the solute concentrations are seawater-like or higher, the viscosity is different from pure water (see figure at). To obtain a valid model for natural waters with phreeqc.dat, the complexes of SO42- with the major cations were redefined, as noted above. - The A parameter in the Jones-Dole equation needs temperature dependent diffusion coefficients of the species, and therefore the parameters for calculating the I and T dependency of the diffusion coefficients (-dw parameters of SOLUTION_SPECIES) were refitted for SO42- and CO32- species. - Example files are in c:\phreeqc\viscosity. + The A parameter in the Jones-Dole equation needs temperature dependent diffusion coefficients + of the species, and therefore the parameters for calculating the I and T dependency of the + diffusion coefficients (-dw parameters of SOLUTION_SPECIES) were refitted for SO42- and CO32- + species. Example files are available at http://hydrochemistry.eu. Implicit calculations with option -fix_current will now account for changing concentrations in the boundary solutions of the column. @@ -138,18 +432,19 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ It will set Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc and Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |zi| * I 0.5 / (1 + DH_B * I 0.5 * 1e-10 / (1 + I 0.75))), - where viscos_0_25 is the viscosity of pure water at 25 °C, viscos_0_tc is the viscosity of pure - water at the temperature of the solution. DH_A and DH_B are Debye-Hückel parameters, + where viscos_0_25 is the viscosity of pure water at 25 °C, viscos_0_tc is the viscosity of pure + water at the temperature of the solution. DH_A and DH_B are Debye-Hückel parameters, retrievable with PHREEQC Basic. The temperature correction is always applied in multicomponent, diffusive transport and for calculating the viscosity. - The ionic strength correction is for electromigration calculations (Appelo, 2017, CCR 101, 102). The correction is applied when the option is set true in TRANSPORT, item -multi_D: + The ionic strength correction is for electromigration calculations (Appelo, 2017, CCR 101, 102). + The correction is applied when the option is set true in TRANSPORT, item -multi_D: -multi_d true 1e-9 0.3 0.05 1.0 true # multicomponent diffusion - # true/false, default tracer diffusion coefficient (Dw = 1e-9 m2/s) in water at 25 °C (used in + # true/false, default tracer diffusion coefficient (Dw = 1e-9 m2/s) in water at 25 °C (used in case -dw is not defined for a species), porosity (por = 0.3), limiting porosity (0.05) below which diffusion stops, exponent n (1.0) used in calculating the porewater diffusion coefficient Dp = Dw * por^n, true/false: correct Dw for ionic strength (false by default). @@ -558,9 +853,9 @@ DELTA_H_SPECIES("CaHCO3+") Delta H in KJ/mol. If an analytic expression Delta H is at reaction temperature, otherwise Delta H at 25C. -DH_A0(Na+") Debye-Huckel species-specific ion size parameter. +DH_A0(Na+") Debye-Hückel species-specific ion size parameter. -DH_BDOT("Na+") Debye-Huckel species-specific ionic strength coefficient. +DH_BDOT("Na+") Debye-Hückel species-specific ionic strength coefficient. EOL_NOTAB$ Omits the tab that is normally printed after EOL$. @@ -588,8 +883,8 @@ type$ , moles, 1) 0 sorted by 5th argument, 1, sorted by 3rd a March 10, 2021 ------------- PHREEQC: New Basic functions return (1) delta H of species, - (2) delta H of a phase, (3) Debye Huckel a0 (species-specific - ion size), and (4) Debye Huckel bdot (species-specific ion + (2) delta H of a phase, (3) Debye Hückel a0 (species-specific + ion size), and (4) Debye Hückel bdot (species-specific ion strength coefficient). DELTA_H_PHASE("Calcite") Delta H in KJ/mol. If an analytic expression exists, @@ -600,9 +895,9 @@ DELTA_H_SPECIES("CaHCO3+") Delta H in KJ/mol. If an analytic expression exists Delta H is at reaction temperature, otherwise Delta H at 25C. -DH_A0(Na+") Debye-Huckel species-specific ion size parameter. +DH_A0(Na+") Debye-Hückel species-specific ion size parameter. -DH_BDOT("Na+") Debye-Huckel species-specific ionic strength coefficient. +DH_BDOT("Na+") Debye-Hückel species-specific ionic strength coefficient. ------------- March 10, 2021 @@ -622,8 +917,8 @@ DH_BDOT("Na+") Debye-Huckel species-specific ionic strength coefficient. Busenberg (1982) used in pitzer.dat. Modified the -analytical_expression for dolomite in - phreeqc.dat and pitzer.dat, using data at 25°C from Hemingway - and Robie (1994) and 50-175°C from Bénézeth et al. (2018), GCA + phreeqc.dat and pitzer.dat, using data at 25 °C from Hemingway + and Robie (1994) and 50-175 °C from Bénézeth et al. (2018), GCA 224, 262-275. ------------- @@ -941,11 +1236,11 @@ Version 3.6.1: January 7, 2020 solution 0: MIX 0; 6 0. -- Thermal diffusion with the stagnant cells will be calculated when - temperatures differ by more than 0.1 oC. Multicomponent diffusion + temperatures differ by more than 0.1 °C. Multicomponent diffusion coefficients decrease with the viscosity of the solution, markedly affecting the results. File ex12b.phr in c:\phreeqc\exmpls compares traditional and multicomponent diffusive transport of heat and solutes - with temperatures changing from 0 to 25 oC. + with temperatures changing from 0 to 25 °C. TRANSPORT -implicit false/true 1 -30 @@ -1485,7 +1780,7 @@ Version 3.6.1: January 7, 2020 Eliminated prints of Total Carbon and Total CO2 in "Description of solution" when values are zero. - Pring and punch of cells in transport calculations with + Print and punch of cells in transport calculations with stagnant zones follows the order of the cell numbers. Enabled multicomponent diffusion among boundary and stagnant @@ -1569,7 +1864,7 @@ Version 3.4.0: November 9, 2017 (svn 12927) where the first number is the diffusion coeficient at 25 C, and the second number is a damping factor for the temperature correction, as proposed by Smolyakov, according to Anderko and Lencka, - 1997, Ind. Chem. Eng. Res. 36, 1932–1943: + 1997, Ind. Chem. Eng. Res. 36, 1932-1943: Dw(TK) = 9.31e-9 * exp(763 / TK - 763 / 298.15) * TK * 0.89 / (298.15 * viscos). @@ -1817,7 +2112,7 @@ Version 3.3.8: September 13, 2016 (svn 11728) This function identifies all of the kinetic reactants in the current KINETICS definition and returns the sum of moles of all kinetic reactants. Count is number of kinetic - reactants. Name$ contains the kinetic reactant names. Type$ is “kin”. Moles contains the + reactants. Name$ contains the kinetic reactant names. Type$ is "kin". Moles contains the moles of each kinetic reactant. The chemical formula used in the kinetic reaction can be determined by using a reaction name from Name$ as the first argument of the KINETICS_FORMULA$ Basic function. @@ -3028,11 +3323,11 @@ Version 3.0.0: February 1, 2013 reactions, the nonideal gas formulation of Peng and Robinson, and charting. All features of PHREEQC Version 3 are documented in U.S. Geological Survey - Techniques and Methods 6-A43, “Description of input + Techniques and Methods 6-A43, "Description of input and examples for PHREEQC Version 3--A computer program for speciation, batch-reaction, one- dimensional transport, and inverse geochemical - calculations”, available at + calculations", available at http://pubs.usgs.gov/tm/06/a43/. Features not previously documented include Pitzer and SIT aqueous models, CD-MUSIC surface complexation, isotopic @@ -3957,9 +4252,9 @@ Version 2.17.0: February 25, 2010 Changed the calculation of Specific Conductance (SC, uS/cm) to be for the actual temperature of the SOLUTION (in output and in BASIC function SC). - Previous versions calculated SC for 25 oC, whereas the + Previous versions calculated SC for 25 °C, whereas the complexation model is done at the actual temperature. - To obtain SC at 25 oC, use keyword REACTION_TEMPERATURE, + To obtain SC at 25 °C, use keyword REACTION_TEMPERATURE, for example: SOLUTION 1; K 1; Cl 1; -temp 99 @@ -4059,12 +4354,12 @@ Version 2.17.0: February 25, 2010 log(K) of an exchange-half reaction depends on the equivalent fraction on the exchanger: - log(K) = log_k + a_f * (1 - ß_i) + log(K) = log_k + a_f * (1 - x_i) where log_k is the log of the equilibrium constant when all the sites are occupied by ion i, a_f is an empirical coefficient, and - ß_i is the equivalent fraction of i. + x_i is the equivalent fraction of i. a_f can be defined in EXCHANGE_SPECIES with -gamma after the WATEQ Debye-Hueckel parameters. @@ -4075,7 +4370,7 @@ Version 2.17.0: February 25, 2010 -gamma 4.0 0.075 0.50 The association constant for NaX becomes: - log(K) = -0.5 + 0.50 * (1 - ß_Na) + log(K) = -0.5 + 0.50 * (1 - x_Na) -------- svn 3453 @@ -4163,7 +4458,7 @@ Version 2.17.0: February 25, 2010 phi(i) = phi(i,inf) + s(t)I^0.5 + beta(i)I where phi(i,inf) is the apparent molar volume of species i at - infinite dilution, s(t) is the Debije-Huckel limiting slope, beta(i) + infinite dilution, s(t) is the Debije-Hückel limiting slope, beta(i) is an empirical constant, and I is the ionic strength. s(t) is calculated as a function of temperature. Parameterizations of @@ -5262,7 +5557,7 @@ LLNL_AQUEOUS_MODEL_PARAMETERS--New keyword data block Added new keyword to make aqueous model similar to EQ3/6 and Geochemists Workbench when using llnl.dat as the database file. Values - of Debye-Huckel a and b and bdot (ionic strength + of Debye-Hückel a and b and bdot (ionic strength coefficient) are read at fixed temperatures. Linear interpolation occurs between temperatures. @@ -6783,7 +7078,7 @@ Version 2.3: Date: Tue January 2, 2001 Added new keyword to make aqueous model similar to LLNL and Geochemists Workbench when using llnl.dat as the database file. Values - of Debye-Huckel a and b and bdot (ionic strength + of Debye-Hückel a and b and bdot (ionic strength coefficient) are read at fixed temperatures. Linear interpolation occurs between temperatures. diff --git a/phreeqc3-examples/ex1.out b/phreeqc3-examples/ex1.out index be4a317d..1e5dee3b 100644 --- a/phreeqc3-examples/ex1.out +++ b/phreeqc3-examples/ex1.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -111,7 +112,7 @@ Initial solution 1. SEAWATER FROM NORDSTROM AND OTHERS (1979) N(-3) 1.724e-06 1.724e-06 N(5) 4.847e-06 4.847e-06 Na 4.854e-01 4.854e-01 - O(0) 4.377e-04 4.377e-04 Equilibrium with O2(g) + O(0) 4.381e-04 4.381e-04 Equilibrium with O2(g) S(6) 2.926e-02 2.926e-02 Si 7.382e-05 7.382e-05 U 1.437e-08 1.437e-08 @@ -120,15 +121,15 @@ Initial solution 1. SEAWATER FROM NORDSTROM AND OTHERS (1979) pH = 8.220 pe = 8.451 - Specific Conductance (µS/cm, 25°C) = 52731 - Density (g/cm³) = 1.02327 - Volume (L) = 1.01279 - Viscosity (mPa s) = 0.95702 + Specific Conductance (µS/cm, 25°C) = 52856 + Density (g/cm³) = 1.02328 + Volume (L) = 1.01278 + Viscosity (mPa s) = 0.96029 Activity of water = 0.981 - Ionic strength (mol/kgw) = 6.741e-01 + Ionic strength (mol/kgw) = 6.704e-01 Mass of water (kg) = 1.000e+00 - Total carbon (mol/kg) = 2.239e-03 - Total CO2 (mol/kg) = 2.239e-03 + Total carbon (mol/kg) = 2.238e-03 + Total CO2 (mol/kg) = 2.238e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 7.936e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 @@ -140,7 +141,7 @@ Initial solution 1. SEAWATER FROM NORDSTROM AND OTHERS (1979) Redox couple pe Eh (volts) - N(-3)/N(5) 4.6754 0.2766 + N(-3)/N(5) 4.6747 0.2765 O(-2)/O(0) 12.4061 0.7339 ----------------------------Distribution of species---------------------------- @@ -148,182 +149,184 @@ Initial solution 1. SEAWATER FROM NORDSTROM AND OTHERS (1979) Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.705e-06 1.647e-06 -5.568 -5.783 -0.215 -2.63 - H+ 7.983e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 - H2O 5.551e+01 9.806e-01 1.744 -0.009 0.000 18.07 -C(4) 2.239e-03 - HCO3- 1.572e-03 1.062e-03 -2.804 -2.974 -0.170 26.61 - MgHCO3+ 2.743e-04 1.725e-04 -3.562 -3.763 -0.201 5.82 - NaHCO3 1.700e-04 2.429e-04 -3.770 -3.615 0.155 28.00 - MgCO3 9.375e-05 1.095e-04 -4.028 -3.961 0.067 -17.09 - CaHCO3+ 4.751e-05 3.287e-05 -4.323 -4.483 -0.160 9.96 - CO3-2 3.972e-05 8.263e-06 -4.401 -5.083 -0.682 -0.40 - CaCO3 2.884e-05 3.369e-05 -4.540 -4.473 0.067 -14.60 - CO2 1.324e-05 1.467e-05 -4.878 -4.834 0.044 34.43 - UO2(CO3)3-4 1.262e-08 1.180e-10 -7.899 -9.928 -2.029 (0) - UO2(CO3)2-2 1.746e-09 5.430e-10 -8.758 -9.265 -0.507 (0) - MnCO3 2.699e-10 3.153e-10 -9.569 -9.501 0.067 (0) - MnHCO3+ 6.852e-11 4.545e-11 -10.164 -10.342 -0.178 (0) - UO2CO3 6.874e-12 8.028e-12 -11.163 -11.095 0.067 (0) - (CO2)2 3.382e-12 3.949e-12 -11.471 -11.403 0.067 68.87 - FeCO3 1.902e-20 2.222e-20 -19.721 -19.653 0.067 (0) - FeHCO3+ 1.593e-20 1.190e-20 -19.798 -19.924 -0.127 (0) + OH- 2.703e-06 1.647e-06 -5.568 -5.783 -0.215 -2.63 + H+ 7.981e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 + H2O 5.551e+01 9.806e-01 1.744 -0.008 0.000 18.07 +C(4) 2.238e-03 + HCO3- 1.541e-03 1.041e-03 -2.812 -2.983 -0.170 25.99 + MgHCO3+ 2.782e-04 1.751e-04 -3.556 -3.757 -0.201 5.82 + NaHCO3 2.252e-04 3.066e-04 -3.647 -3.513 0.134 31.73 + MgCO3 9.523e-05 1.111e-04 -4.021 -3.954 0.067 -17.09 + CO3-2 3.888e-05 8.103e-06 -4.410 -5.091 -0.681 -0.52 + CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 + CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 122.92 + CO2 1.299e-05 1.438e-05 -4.886 -4.842 0.044 34.43 + KHCO3 2.969e-06 3.013e-06 -5.527 -5.521 0.006 41.03 + UO2(CO3)3-4 1.259e-08 1.169e-10 -7.900 -9.932 -2.032 (0) + UO2(CO3)2-2 1.767e-09 5.484e-10 -8.753 -9.261 -0.508 (0) + MnCO3 2.690e-10 3.139e-10 -9.570 -9.503 0.067 (0) + MnHCO3+ 6.820e-11 4.526e-11 -10.166 -10.344 -0.178 (0) + UO2CO3 7.086e-12 8.269e-12 -11.150 -11.083 0.067 (0) + (CO2)2 3.254e-12 3.797e-12 -11.488 -11.421 0.067 68.87 + FeCO3 1.866e-20 2.177e-20 -19.729 -19.662 0.067 (0) + FeHCO3+ 1.562e-20 1.166e-20 -19.806 -19.933 -0.127 (0) Ca 1.066e-02 - Ca+2 9.706e-03 2.427e-03 -2.013 -2.615 -0.602 -16.70 - CaSO4 8.788e-04 1.026e-03 -3.056 -2.989 0.067 7.50 - CaHCO3+ 4.751e-05 3.287e-05 -4.323 -4.483 -0.160 9.96 - CaCO3 2.884e-05 3.369e-05 -4.540 -4.473 0.067 -14.60 - CaOH+ 8.777e-08 6.554e-08 -7.057 -7.183 -0.127 (0) - CaHSO4+ 5.444e-11 4.065e-11 -10.264 -10.391 -0.127 (0) + Ca+2 9.964e-03 2.493e-03 -2.002 -2.603 -0.602 -16.70 + CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 + CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 + CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 122.92 + CaOH+ 9.020e-08 6.732e-08 -7.045 -7.172 -0.127 (0) + CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) Cl 5.657e-01 - Cl- 5.657e-01 3.568e-01 -0.247 -0.448 -0.200 18.79 - MnCl+ 1.053e-09 6.982e-10 -8.978 -9.156 -0.178 -2.79 - HCl 3.826e-10 7.407e-10 -9.417 -9.130 0.287 (0) - MnCl2 9.313e-11 1.088e-10 -10.031 -9.964 0.067 85.89 - MnCl3- 1.612e-11 1.069e-11 -10.793 -10.971 -0.178 45.79 - FeCl+2 1.518e-18 2.939e-19 -17.819 -18.532 -0.713 (0) - FeCl2+ 7.062e-19 4.684e-19 -18.151 -18.329 -0.178 (0) - FeCl+ 7.393e-20 5.521e-20 -19.131 -19.258 -0.127 (0) - FeCl3 1.431e-20 1.671e-20 -19.844 -19.777 0.067 (0) -Fe(2) 6.471e-19 - Fe+2 4.889e-19 1.121e-19 -18.311 -18.950 -0.640 -20.71 - FeCl+ 7.393e-20 5.521e-20 -19.131 -19.258 -0.127 (0) - FeSO4 4.059e-20 4.740e-20 -19.392 -19.324 0.067 18.97 - FeCO3 1.902e-20 2.222e-20 -19.721 -19.653 0.067 (0) - FeHCO3+ 1.593e-20 1.190e-20 -19.798 -19.924 -0.127 (0) - FeOH+ 8.696e-21 5.768e-21 -20.061 -20.239 -0.178 (0) - Fe(OH)2 6.840e-24 7.989e-24 -23.165 -23.098 0.067 (0) - Fe(OH)3- 7.282e-26 4.830e-26 -25.138 -25.316 -0.178 (0) - FeHSO4+ 2.514e-27 1.877e-27 -26.600 -26.726 -0.127 (0) + Cl- 5.657e-01 3.570e-01 -0.247 -0.447 -0.200 18.79 + MnCl+ 1.069e-09 7.094e-10 -8.971 -9.149 -0.178 -2.79 + HCl 3.842e-10 7.411e-10 -9.415 -9.130 0.285 (0) + MnCl2 9.474e-11 1.106e-10 -10.023 -9.956 0.067 85.89 + MnCl3- 1.638e-11 1.087e-11 -10.786 -10.964 -0.178 45.78 + FeCl+2 1.515e-18 2.938e-19 -17.820 -18.532 -0.712 (0) + FeCl2+ 7.061e-19 4.686e-19 -18.151 -18.329 -0.178 (0) + FeCl+ 7.395e-20 5.520e-20 -19.131 -19.258 -0.127 (0) + FeCl3 1.434e-20 1.673e-20 -19.844 -19.777 0.067 (0) +Fe(2) 6.342e-19 + Fe+2 4.879e-19 1.120e-19 -18.312 -18.951 -0.639 -20.72 + FeCl+ 7.395e-20 5.520e-20 -19.131 -19.258 -0.127 (0) + FeSO4 2.937e-20 3.428e-20 -19.532 -19.465 0.067 18.97 + FeCO3 1.866e-20 2.177e-20 -19.729 -19.662 0.067 (0) + FeHCO3+ 1.562e-20 1.166e-20 -19.806 -19.933 -0.127 (0) + FeOH+ 8.686e-21 5.764e-21 -20.061 -20.239 -0.178 (0) + Fe(OH)2 6.842e-24 7.984e-24 -23.165 -23.098 0.067 (0) + Fe(OH)3- 7.275e-26 4.828e-26 -25.138 -25.316 -0.178 (0) + FeHSO4+ 1.819e-27 1.358e-27 -26.740 -26.867 -0.127 (0) Fe(3) 3.711e-08 - Fe(OH)3 2.771e-08 3.237e-08 -7.557 -7.490 0.067 (0) - Fe(OH)4- 7.113e-09 4.804e-09 -8.148 -8.318 -0.170 (0) - Fe(OH)2+ 2.286e-09 1.544e-09 -8.641 -8.811 -0.170 (0) - FeOH+2 1.480e-13 2.865e-14 -12.830 -13.543 -0.713 (0) - FeCl+2 1.518e-18 2.939e-19 -17.819 -18.532 -0.713 (0) - FeSO4+ 1.072e-18 7.111e-19 -17.970 -18.148 -0.178 (0) - FeCl2+ 7.062e-19 4.684e-19 -18.151 -18.329 -0.178 (0) - Fe+3 3.430e-19 2.727e-20 -18.465 -19.564 -1.100 (0) - Fe(SO4)2- 4.955e-20 3.700e-20 -19.305 -19.432 -0.127 (0) - FeCl3 1.431e-20 1.671e-20 -19.844 -19.777 0.067 (0) - Fe2(OH)2+4 2.362e-24 2.210e-26 -23.627 -25.656 -2.029 (0) - FeHSO4+2 3.689e-26 1.147e-26 -25.433 -25.940 -0.507 (0) - Fe3(OH)4+5 1.055e-29 7.127e-33 -28.977 -32.147 -3.170 (0) + Fe(OH)3 2.772e-08 3.235e-08 -7.557 -7.490 0.067 (0) + Fe(OH)4- 7.107e-09 4.802e-09 -8.148 -8.319 -0.170 (0) + Fe(OH)2+ 2.284e-09 1.543e-09 -8.641 -8.812 -0.170 (0) + FeOH+2 1.477e-13 2.863e-14 -12.831 -13.543 -0.712 (0) + FeCl+2 1.515e-18 2.938e-19 -17.820 -18.532 -0.712 (0) + FeSO4+ 7.749e-19 5.142e-19 -18.111 -18.289 -0.178 (0) + FeCl2+ 7.061e-19 4.686e-19 -18.151 -18.329 -0.178 (0) + Fe+3 3.421e-19 2.725e-20 -18.466 -19.565 -1.099 (0) + Fe(SO4)2- 2.594e-20 1.936e-20 -19.586 -19.713 -0.127 (0) + FeCl3 1.434e-20 1.673e-20 -19.844 -19.777 0.067 (0) + Fe2(OH)2+4 2.378e-24 2.207e-26 -23.624 -25.656 -2.032 (0) + FeHSO4+2 2.673e-26 8.297e-27 -25.573 -26.081 -0.508 (0) + Fe3(OH)4+5 1.066e-29 7.114e-33 -28.972 -32.148 -3.176 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.470 -44.402 0.067 28.61 + H2 0.000e+00 0.000e+00 -44.469 -44.402 0.067 28.61 K 1.058e-02 - K+ 1.043e-02 6.501e-03 -1.982 -2.187 -0.205 9.66 - KSO4- 1.471e-04 5.683e-05 -3.832 -4.245 -0.413 32.21 + K+ 1.039e-02 6.478e-03 -1.983 -2.189 -0.205 9.66 + KSO4- 1.873e-04 1.696e-04 -3.728 -3.770 -0.043 11.34 + KHCO3 2.969e-06 3.013e-06 -5.527 -5.521 0.006 41.03 Mg 5.507e-02 - Mg+2 4.811e-02 1.389e-02 -1.318 -1.857 -0.540 -20.41 - MgSO4 6.339e-03 8.646e-03 -2.198 -2.063 0.135 -0.83 - MgHCO3+ 2.743e-04 1.725e-04 -3.562 -3.763 -0.201 5.82 - Mg(SO4)2-2 2.394e-04 6.773e-05 -3.621 -4.169 -0.548 48.54 - MgCO3 9.375e-05 1.095e-04 -4.028 -3.961 0.067 -17.09 - MgOH+ 1.164e-05 8.204e-06 -4.934 -5.086 -0.152 (0) + Mg+2 4.979e-02 1.437e-02 -1.303 -1.842 -0.540 -20.42 + MgSO4 4.756e-03 6.476e-03 -2.323 -2.189 0.134 -7.92 + MgHCO3+ 2.782e-04 1.751e-04 -3.556 -3.757 -0.201 5.82 + Mg(SO4)2-2 1.296e-04 3.671e-05 -3.887 -4.435 -0.548 32.91 + MgCO3 9.523e-05 1.111e-04 -4.021 -3.954 0.067 -17.09 + MgOH+ 1.205e-05 8.493e-06 -4.919 -5.071 -0.152 (0) Mn(2) 3.773e-09 - Mn+2 2.095e-09 4.803e-10 -8.679 -9.318 -0.640 -16.36 - MnCl+ 1.053e-09 6.982e-10 -8.978 -9.156 -0.178 -2.79 - MnCO3 2.699e-10 3.153e-10 -9.569 -9.501 0.067 (0) - MnSO4 1.739e-10 2.031e-10 -9.760 -9.692 0.067 22.54 - MnCl2 9.313e-11 1.088e-10 -10.031 -9.964 0.067 85.89 - MnHCO3+ 6.852e-11 4.545e-11 -10.164 -10.342 -0.178 (0) - MnCl3- 1.612e-11 1.069e-11 -10.793 -10.971 -0.178 45.79 - MnOH+ 3.029e-12 2.009e-12 -11.519 -11.697 -0.178 (0) - Mn(OH)3- 4.946e-20 3.281e-20 -19.306 -19.484 -0.178 (0) - Mn(NO3)2 1.325e-20 1.548e-20 -19.878 -19.810 0.067 41.04 -Mn(3) 5.274e-26 - Mn+3 5.274e-26 4.193e-27 -25.278 -26.377 -1.100 (0) + Mn+2 2.125e-09 4.877e-10 -8.673 -9.312 -0.639 -16.37 + MnCl+ 1.069e-09 7.094e-10 -8.971 -9.149 -0.178 -2.79 + MnCO3 2.690e-10 3.139e-10 -9.570 -9.503 0.067 (0) + MnSO4 1.279e-10 1.493e-10 -9.893 -9.826 0.067 22.54 + MnCl2 9.474e-11 1.106e-10 -10.023 -9.956 0.067 85.89 + MnHCO3+ 6.820e-11 4.526e-11 -10.166 -10.344 -0.178 (0) + MnCl3- 1.638e-11 1.087e-11 -10.786 -10.964 -0.178 45.78 + MnOH+ 3.075e-12 2.040e-12 -11.512 -11.690 -0.178 (0) + Mn(OH)3- 5.021e-20 3.332e-20 -19.299 -19.477 -0.178 (0) + Mn(NO3)2 1.349e-20 1.574e-20 -19.870 -19.803 0.067 41.04 +Mn(3) 5.345e-26 + Mn+3 5.345e-26 4.258e-27 -25.272 -26.371 -1.099 (0) N(-3) 1.724e-06 - NH4+ 1.597e-06 8.981e-07 -5.797 -6.047 -0.250 18.44 - NH3 7.272e-08 8.494e-08 -7.138 -7.071 0.067 24.42 - NH4SO4- 5.343e-08 2.752e-08 -7.272 -7.560 -0.288 40.39 + NH4+ 1.618e-06 9.103e-07 -5.791 -6.041 -0.250 18.48 + NH3 7.378e-08 8.610e-08 -7.132 -7.065 0.067 24.42 + NH4SO4- 3.206e-08 2.000e-08 -7.494 -7.699 -0.205 18.66 N(5) 4.847e-06 - NO3- 4.847e-06 2.845e-06 -5.314 -5.546 -0.231 30.29 - Mn(NO3)2 1.325e-20 1.548e-20 -19.878 -19.810 0.067 41.04 + NO3- 4.847e-06 2.847e-06 -5.314 -5.546 -0.231 30.29 + Mn(NO3)2 1.349e-20 1.574e-20 -19.870 -19.803 0.067 41.04 Na 4.854e-01 - Na+ 4.769e-01 3.422e-01 -0.322 -0.466 -0.144 -0.50 - NaSO4- 8.339e-03 3.180e-03 -2.079 -2.498 -0.419 20.67 - NaHCO3 1.700e-04 2.429e-04 -3.770 -3.615 0.155 28.00 - NaOH 4.827e-17 5.637e-17 -16.316 -16.249 0.067 (0) -O(0) 4.377e-04 - O2 2.189e-04 2.556e-04 -3.660 -3.592 0.067 30.40 + Na+ 4.712e-01 3.381e-01 -0.327 -0.471 -0.144 -0.51 + NaSO4- 1.396e-02 9.473e-03 -1.855 -2.024 -0.168 8.22 + NaHCO3 2.252e-04 3.066e-04 -3.647 -3.513 0.134 31.73 + NaOH 4.773e-17 5.570e-17 -16.321 -16.254 0.067 (0) +O(0) 4.381e-04 + O2 2.190e-04 2.556e-04 -3.659 -3.592 0.067 30.40 S(6) 2.926e-02 - SO4-2 1.307e-02 2.378e-03 -1.884 -2.624 -0.740 17.77 - NaSO4- 8.339e-03 3.180e-03 -2.079 -2.498 -0.419 20.67 - MgSO4 6.339e-03 8.646e-03 -2.198 -2.063 0.135 -0.83 - CaSO4 8.788e-04 1.026e-03 -3.056 -2.989 0.067 7.50 - Mg(SO4)2-2 2.394e-04 6.773e-05 -3.621 -4.169 -0.548 48.54 - KSO4- 1.471e-04 5.683e-05 -3.832 -4.245 -0.413 32.21 - NH4SO4- 5.343e-08 2.752e-08 -7.272 -7.560 -0.288 40.39 - HSO4- 1.866e-09 1.393e-09 -8.729 -8.856 -0.127 40.96 - MnSO4 1.739e-10 2.031e-10 -9.760 -9.692 0.067 22.54 - CaHSO4+ 5.444e-11 4.065e-11 -10.264 -10.391 -0.127 (0) - FeSO4+ 1.072e-18 7.111e-19 -17.970 -18.148 -0.178 (0) - Fe(SO4)2- 4.955e-20 3.700e-20 -19.305 -19.432 -0.127 (0) - FeSO4 4.059e-20 4.740e-20 -19.392 -19.324 0.067 18.97 - FeHSO4+2 3.689e-26 1.147e-26 -25.433 -25.940 -0.507 (0) - FeHSO4+ 2.514e-27 1.877e-27 -26.600 -26.726 -0.127 (0) + NaSO4- 1.396e-02 9.473e-03 -1.855 -2.024 -0.168 8.22 + SO4-2 9.440e-03 1.721e-03 -2.025 -2.764 -0.739 38.42 + MgSO4 4.756e-03 6.476e-03 -2.323 -2.189 0.134 -7.92 + CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 + KSO4- 1.873e-04 1.696e-04 -3.728 -3.770 -0.043 11.34 + Mg(SO4)2-2 1.296e-04 3.671e-05 -3.887 -4.435 -0.548 32.91 + NH4SO4- 3.206e-08 2.000e-08 -7.494 -7.699 -0.205 18.66 + HSO4- 1.351e-09 1.008e-09 -8.869 -8.996 -0.127 40.96 + MnSO4 1.279e-10 1.493e-10 -9.893 -9.826 0.067 22.54 + CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) + FeSO4+ 7.749e-19 5.142e-19 -18.111 -18.289 -0.178 (0) + FeSO4 2.937e-20 3.428e-20 -19.532 -19.465 0.067 18.97 + Fe(SO4)2- 2.594e-20 1.936e-20 -19.586 -19.713 -0.127 (0) + FeHSO4+2 2.673e-26 8.297e-27 -25.573 -26.081 -0.508 (0) + FeHSO4+ 1.819e-27 1.358e-27 -26.740 -26.867 -0.127 (0) Si 7.382e-05 - H4SiO4 7.061e-05 8.247e-05 -4.151 -4.084 0.067 52.08 - H3SiO4- 3.209e-06 2.018e-06 -5.494 -5.695 -0.201 28.72 - H2SiO4-2 1.095e-10 2.278e-11 -9.961 -10.642 -0.682 (0) -U(4) 9.204e-22 - U(OH)5- 9.202e-22 6.872e-22 -21.036 -21.163 -0.127 (0) - U(OH)4 1.470e-25 1.716e-25 -24.833 -24.765 0.067 (0) - U+4 0.000e+00 0.000e+00 -47.044 -49.073 -2.029 (0) -U(5) 1.445e-18 - UO2+ 1.445e-18 1.079e-18 -17.840 -17.967 -0.127 (0) + H4SiO4 7.062e-05 8.241e-05 -4.151 -4.084 0.067 52.08 + H3SiO4- 3.205e-06 2.017e-06 -5.494 -5.695 -0.201 28.72 + H2SiO4-2 1.092e-10 2.276e-11 -9.962 -10.643 -0.681 (0) +U(4) 9.706e-22 + U(OH)5- 9.704e-22 7.243e-22 -21.013 -21.140 -0.127 (0) + U(OH)4 1.550e-25 1.809e-25 -24.810 -24.743 0.067 (0) + U+4 0.000e+00 0.000e+00 -47.018 -49.051 -2.032 (0) +U(5) 1.521e-18 + UO2+ 1.521e-18 1.135e-18 -17.818 -17.945 -0.127 (0) U(6) 1.437e-08 - UO2(CO3)3-4 1.262e-08 1.180e-10 -7.899 -9.928 -2.029 (0) - UO2(CO3)2-2 1.746e-09 5.430e-10 -8.758 -9.265 -0.507 (0) - UO2CO3 6.874e-12 8.028e-12 -11.163 -11.095 0.067 (0) - UO2OH+ 3.018e-14 2.254e-14 -13.520 -13.647 -0.127 (0) - UO2+2 2.696e-16 8.384e-17 -15.569 -16.077 -0.507 (0) - (UO2)2(OH)2+2 1.416e-21 4.405e-22 -20.849 -21.356 -0.507 (0) - (UO2)3(OH)5+ 2.059e-23 1.538e-23 -22.686 -22.813 -0.127 (0) + UO2(CO3)3-4 1.259e-08 1.169e-10 -7.900 -9.932 -2.032 (0) + UO2(CO3)2-2 1.767e-09 5.484e-10 -8.753 -9.261 -0.508 (0) + UO2CO3 7.086e-12 8.269e-12 -11.150 -11.083 0.067 (0) + UO2OH+ 3.172e-14 2.368e-14 -13.499 -13.626 -0.127 (0) + UO2+2 2.837e-16 8.807e-17 -15.547 -16.055 -0.508 (0) + (UO2)2(OH)2+2 1.566e-21 4.860e-22 -20.805 -21.313 -0.508 (0) + (UO2)3(OH)5+ 2.388e-23 1.782e-23 -22.622 -22.749 -0.127 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.96 -5.24 -4.28 CaSO4 - Aragonite 0.64 -7.70 -8.34 CaCO3 - Arcanite -5.12 -7.00 -1.88 K2SO4 - Calcite 0.78 -7.70 -8.48 CaCO3 + Anhydrite -1.09 -5.37 -4.28 CaSO4 + Aragonite 0.64 -7.69 -8.34 CaCO3 + Arcanite -5.26 -7.14 -1.88 K2SO4 + Calcite 0.79 -7.69 -8.48 CaCO3 Chalcedony -0.52 -4.07 -3.55 SiO2 - Chrysotile 3.37 35.57 32.20 Mg3Si2O5(OH)4 - CO2(g) -3.37 -4.83 -1.47 CO2 - Dolomite 2.45 -14.64 -17.08 CaMg(CO3)2 - Epsomite -2.80 -4.54 -1.74 MgSO4:7H2O + Chrysotile 3.41 35.62 32.20 Mg3Si2O5(OH)4 + CO2(g) -3.37 -4.84 -1.47 CO2 + Dolomite 2.46 -14.63 -17.08 CaMg(CO3)2 + Epsomite -2.93 -4.67 -1.74 MgSO4:7H2O Fe(OH)3(a) 0.18 5.07 4.89 Fe(OH)3 Goethite 6.08 5.08 -1.00 FeOOH - Gypsum -0.67 -5.26 -4.58 CaSO4:2H2O + Gypsum -0.80 -5.38 -4.58 CaSO4:2H2O H2(g) -41.30 -44.40 -3.10 H2 H2O(g) -1.51 -0.01 1.50 H2O - Halite -2.48 -0.91 1.57 NaCl - Hausmannite 1.55 62.58 61.03 Mn3O4 + Halite -2.49 -0.92 1.57 NaCl + Hausmannite 1.57 62.60 61.03 Mn3O4 Hematite 14.17 10.17 -4.01 Fe2O3 - Hexahydrite -2.97 -4.53 -1.57 MgSO4:6H2O - Jarosite-K -7.65 -16.86 -9.21 KFe3(SO4)2(OH)6 - Kieserite -3.33 -4.49 -1.16 MgSO4:H2O - Manganite 2.39 27.73 25.34 MnOOH - Melanterite -19.42 -21.63 -2.21 FeSO4:7H2O - Mirabilite -2.40 -3.64 -1.24 Na2SO4:10H2O - NH3(g) -8.87 -7.07 1.80 NH3 + Hexahydrite -3.09 -4.66 -1.57 MgSO4:6H2O + Jarosite-K -7.93 -17.14 -9.21 KFe3(SO4)2(OH)6 + Kieserite -3.45 -4.62 -1.16 MgSO4:H2O + Manganite 2.40 27.74 25.34 MnOOH + Melanterite -19.57 -21.77 -2.21 FeSO4:7H2O + Mirabilite -2.55 -3.79 -1.24 Na2SO4:10H2O + NH3(g) -8.86 -7.07 1.80 NH3 O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 - Pyrochroite -8.10 7.10 15.20 Mn(OH)2 + Pyrochroite -8.09 7.11 15.20 Mn(OH)2 Pyrolusite 6.97 48.35 41.38 MnO2:H2O Quartz -0.09 -4.07 -3.98 SiO2 Rhodochrosite -3.27 -14.40 -11.13 MnCO3 - Sepiolite 1.16 16.92 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -1.74 16.92 18.66 Mg2Si3O7.5OH:3H2O - Siderite -13.14 -24.03 -10.89 FeCO3 - SiO2(a) -1.35 -4.07 -2.71 SiO2 - Sylvite -3.53 -2.63 0.90 KCl - Talc 6.05 27.45 21.40 Mg3Si4O10(OH)2 - Thenardite -3.25 -3.56 -0.30 Na2SO4 - Uraninite -12.72 -16.21 -3.49 UO2 + Sepiolite 1.19 16.95 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -1.71 16.95 18.66 Mg2Si3O7.5OH:3H2O + Siderite -13.15 -24.04 -10.89 FeCO3 + SiO2(a) -1.36 -4.07 -2.71 SiO2 + Sylvite -3.54 -2.64 0.90 KCl + Talc 6.09 27.49 21.40 Mg3Si4O10(OH)2 + Thenardite -3.41 -3.71 -0.30 Na2SO4 + Uraninite -12.70 -16.19 -3.49 UO2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/phreeqc3-examples/ex10.out b/phreeqc3-examples/ex10.out index 14307fca..a4bf78c6 100644 --- a/phreeqc3-examples/ex10.out +++ b/phreeqc3-examples/ex10.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -117,21 +118,21 @@ Initial solution 1. ----------------------------Description of solution---------------------------- - pH = 7.969 Charge balance + pH = 7.963 Charge balance pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 676 + Specific Conductance (µS/cm, 25°C) = 701 Density (g/cm³) = 0.99755 - Volume (L) = 1.00309 - Viscosity (mPa s) = 0.89349 + Volume (L) = 1.00310 + Viscosity (mPa s) = 0.89435 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.105e-02 + Ionic strength (mol/kgw) = 1.134e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 7.864e-03 Total CO2 (mol/kg) = 7.864e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = -5.380e-15 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 8 + Electrical balance (eq) = 6.473e-12 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 7 Total H = 1.110200e+02 Total O = 5.552965e+01 @@ -140,39 +141,39 @@ Initial solution 1. Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.052e-06 9.419e-07 -5.978 -6.026 -0.048 -4.03 - H+ 1.180e-08 1.074e-08 -7.928 -7.969 -0.041 0.00 + OH- 1.039e-06 9.295e-07 -5.983 -6.032 -0.048 -4.03 + H+ 1.197e-08 1.089e-08 -7.922 -7.963 -0.041 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -75.159 -75.158 0.001 35.46 + CH4 0.000e+00 0.000e+00 -75.099 -75.098 0.001 35.46 C(4) 7.864e-03 - HCO3- 7.326e-03 6.602e-03 -2.135 -2.180 -0.045 24.66 - CaHCO3+ 2.211e-04 1.996e-04 -3.655 -3.700 -0.044 9.73 - CO2 1.592e-04 1.595e-04 -3.798 -3.797 0.001 34.43 - CaCO3 1.144e-04 1.147e-04 -3.941 -3.940 0.001 -14.60 - CO3-2 4.369e-05 2.882e-05 -4.360 -4.540 -0.181 -3.76 - (CO2)2 4.657e-10 4.669e-10 -9.332 -9.331 0.001 68.87 + HCO3- 7.466e-03 6.720e-03 -2.127 -2.173 -0.046 24.65 + CO2 1.643e-04 1.645e-04 -3.784 -3.784 0.001 34.43 + CaCO3 1.191e-04 1.194e-04 -3.924 -3.923 0.001 -14.60 + CaHCO3+ 7.058e-05 6.365e-05 -4.151 -4.196 -0.045 122.69 + CO3-2 4.409e-05 2.895e-05 -4.356 -4.538 -0.183 -3.64 + (CO2)2 4.956e-10 4.969e-10 -9.305 -9.304 0.001 68.87 Ca 3.932e-03 - Ca+2 3.596e-03 2.370e-03 -2.444 -2.625 -0.181 -17.91 - CaHCO3+ 2.211e-04 1.996e-04 -3.655 -3.700 -0.044 9.73 - CaCO3 1.144e-04 1.147e-04 -3.941 -3.940 0.001 -14.60 - CaOH+ 4.077e-08 3.661e-08 -7.390 -7.436 -0.047 (0) -H(0) 1.630e-27 - H2 8.150e-28 8.171e-28 -27.089 -27.088 0.001 28.61 -O(0) 1.245e-38 - O2 6.225e-39 6.241e-39 -38.206 -38.205 0.001 30.40 + Ca+2 3.742e-03 2.455e-03 -2.427 -2.610 -0.183 -17.91 + CaCO3 1.191e-04 1.194e-04 -3.924 -3.923 0.001 -14.60 + CaHCO3+ 7.058e-05 6.365e-05 -4.151 -4.196 -0.045 122.69 + CaOH+ 4.173e-08 3.742e-08 -7.380 -7.427 -0.047 (0) +H(0) 1.674e-27 + H2 8.369e-28 8.391e-28 -27.077 -27.076 0.001 28.61 +O(0) 1.181e-38 + O2 5.903e-39 5.918e-39 -38.229 -38.228 0.001 30.40 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Aragonite 1.17 -7.17 -8.34 CaCO3 - Calcite 1.31 -7.17 -8.48 CaCO3 - CH4(g) -72.36 -75.16 -2.80 CH4 - CO2(g) -2.33 -3.80 -1.47 CO2 - H2(g) -23.99 -27.09 -3.10 H2 + Aragonite 1.19 -7.15 -8.34 CaCO3 + Calcite 1.33 -7.15 -8.48 CaCO3 + CH4(g) -72.30 -75.10 -2.80 CH4 + CO2(g) -2.32 -3.78 -1.47 CO2 + H2(g) -23.98 -27.08 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -35.31 -38.20 -2.89 O2 + O2(g) -35.34 -38.23 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -191,62 +192,62 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Aragonite 0.00 -8.34 -8.34 1.000e+01 9.993e+00 -6.582e-03 -CO2(g) -0.01 -1.48 -1.47 1.000e+01 9.961e+00 -3.934e-02 +Aragonite 0.00 -8.34 -8.34 1.000e+01 9.994e+00 -5.997e-03 +CO2(g) -0.01 -1.48 -1.47 1.000e+01 9.961e+00 -3.875e-02 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.379e-02 5.378e-02 - Ca 1.051e-02 1.051e-02 + C 5.262e-02 5.261e-02 + Ca 9.930e-03 9.929e-03 ----------------------------Description of solution---------------------------- - pH = 6.064 Charge balance - pe = 11.821 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1713 - Density (g/cm³) = 0.99872 - Volume (L) = 1.00431 - Viscosity (mPa s) = 0.89762 + pH = 6.058 Charge balance + pe = 11.902 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 1708 + Density (g/cm³) = 0.99860 + Volume (L) = 1.00434 + Viscosity (mPa s) = 0.89962 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.901e-02 + Ionic strength (mol/kgw) = 2.900e-02 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 2.103e-02 - Total CO2 (mol/kg) = 5.379e-02 + Total alkalinity (eq/kg) = 1.986e-02 + Total CO2 (mol/kg) = 5.262e-02 Temperature (°C) = 25.00 - Electrical balance (eq) = 2.415e-12 + Electrical balance (eq) = 1.002e-11 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 10 Total H = 1.110200e+02 - Total O = 5.562807e+01 + Total O = 5.562514e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.847e-07 8.621e-07 -6.007 -6.064 -0.058 0.00 - OH- 1.386e-08 1.173e-08 -7.858 -7.931 -0.073 -3.95 + H+ 9.999e-07 8.753e-07 -6.000 -6.058 -0.058 0.00 + OH- 1.365e-08 1.155e-08 -7.865 -7.937 -0.073 -3.95 H2O 5.551e+01 9.989e-01 1.744 -0.000 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.181 -120.178 0.003 35.46 -C(4) 5.379e-02 + CH4 0.000e+00 0.000e+00 -120.774 -120.771 0.003 35.46 +C(4) 5.262e-02 CO2 3.273e-02 3.287e-02 -1.485 -1.483 0.002 34.43 - HCO3- 1.976e-02 1.694e-02 -1.704 -1.771 -0.067 24.77 - CaHCO3+ 1.257e-03 1.082e-03 -2.901 -2.966 -0.065 9.77 + HCO3- 1.946e-02 1.669e-02 -1.711 -1.778 -0.067 24.73 + CaHCO3+ 3.858e-04 3.321e-04 -3.414 -3.479 -0.065 122.73 (CO2)2 1.970e-05 1.984e-05 -4.705 -4.703 0.003 68.87 CaCO3 7.698e-06 7.750e-06 -5.114 -5.111 0.003 -14.60 - CO3-2 1.704e-06 9.217e-07 -5.769 -6.035 -0.267 -3.47 -Ca 1.051e-02 - Ca+2 9.251e-03 5.005e-03 -2.034 -2.301 -0.267 -17.74 - CaHCO3+ 1.257e-03 1.082e-03 -2.901 -2.966 -0.065 9.77 + CO3-2 1.652e-06 8.940e-07 -5.782 -6.049 -0.267 -3.39 +Ca 9.930e-03 + Ca+2 9.536e-03 5.160e-03 -2.021 -2.287 -0.267 -17.74 + CaHCO3+ 3.858e-04 3.321e-04 -3.414 -3.479 -0.065 122.73 CaCO3 7.698e-06 7.750e-06 -5.114 -5.111 0.003 -14.60 - CaOH+ 1.130e-09 9.625e-10 -8.947 -9.017 -0.070 (0) -H(0) 2.380e-39 - H2 1.190e-39 1.198e-39 -38.924 -38.922 0.003 28.61 -O(0) 5.758e-15 - O2 2.879e-15 2.898e-15 -14.541 -14.538 0.003 30.40 + CaOH+ 1.148e-09 9.773e-10 -8.940 -9.010 -0.070 (0) +H(0) 1.692e-39 + H2 8.460e-40 8.517e-40 -39.073 -39.070 0.003 28.61 +O(0) 1.139e-14 + O2 5.697e-15 5.735e-15 -14.244 -14.241 0.003 30.40 ------------------------------Saturation indices------------------------------- @@ -254,11 +255,11 @@ O(0) 5.758e-15 Aragonite 0.00 -8.34 -8.34 CaCO3 Calcite 0.14 -8.34 -8.48 CaCO3 - CH4(g) -117.38 -120.18 -2.80 CH4 + CH4(g) -117.97 -120.77 -2.80 CH4 CO2(g) -0.01 -1.48 -1.47 CO2 Pressure 1.0 atm, phi 0.995 - H2(g) -35.82 -38.92 -3.10 H2 + H2(g) -35.97 -39.07 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -11.65 -14.54 -2.89 O2 + O2(g) -11.35 -14.24 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -355,9 +356,9 @@ Reaction step number: 1 SrCO3 added: 1.0000e-05 Log Sigma pi: -8.3356e+00 XAragonite: 9.9996e-01 -XStrontianite: 4.2174e-05 -XCa: 9.9905e-01 -XSr: 9.5081e-04 +XStrontianite: 4.0997e-05 +XCa: 9.9899e-01 +XSr: 1.0068e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -368,9 +369,9 @@ Reaction step number: 2 SrCO3 added: 2.0000e-05 Log Sigma pi: -8.3352e+00 XAragonite: 9.9992e-01 -XStrontianite: 8.4457e-05 -XCa: 9.9810e-01 -XSr: 1.9009e-03 +XStrontianite: 8.2099e-05 +XCa: 9.9799e-01 +XSr: 2.0128e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -379,11 +380,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 3 SrCO3 added: 3.0000e-05 -Log Sigma pi: -8.3348e+00 -XAragonite: 9.9987e-01 -XStrontianite: 1.2685e-04 -XCa: 9.9715e-01 -XSr: 2.8504e-03 +Log Sigma pi: -8.3349e+00 +XAragonite: 9.9988e-01 +XStrontianite: 1.2331e-04 +XCa: 9.9698e-01 +XSr: 3.0181e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -393,10 +394,10 @@ Simulation number: 4 Reaction step number: 4 SrCO3 added: 4.0000e-05 Log Sigma pi: -8.3345e+00 -XAragonite: 9.9983e-01 -XStrontianite: 1.6936e-04 -XCa: 9.9620e-01 -XSr: 3.7992e-03 +XAragonite: 9.9984e-01 +XStrontianite: 1.6462e-04 +XCa: 9.9598e-01 +XSr: 4.0226e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -407,9 +408,9 @@ Reaction step number: 5 SrCO3 added: 5.0000e-05 Log Sigma pi: -8.3341e+00 XAragonite: 9.9979e-01 -XStrontianite: 2.1197e-04 -XCa: 9.9525e-01 -XSr: 4.7473e-03 +XStrontianite: 2.0605e-04 +XCa: 9.9497e-01 +XSr: 5.0263e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -420,9 +421,9 @@ Reaction step number: 6 SrCO3 added: 6.0000e-05 Log Sigma pi: -8.3337e+00 XAragonite: 9.9975e-01 -XStrontianite: 2.5470e-04 -XCa: 9.9431e-01 -XSr: 5.6947e-03 +XStrontianite: 2.4757e-04 +XCa: 9.9397e-01 +XSr: 6.0292e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -431,11 +432,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 7 SrCO3 added: 7.0000e-05 -Log Sigma pi: -8.3333e+00 -XAragonite: 9.9970e-01 -XStrontianite: 2.9754e-04 -XCa: 9.9336e-01 -XSr: 6.6414e-03 +Log Sigma pi: -8.3334e+00 +XAragonite: 9.9971e-01 +XStrontianite: 2.8921e-04 +XCa: 9.9297e-01 +XSr: 7.0313e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -444,11 +445,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 8 SrCO3 added: 8.0000e-05 -Log Sigma pi: -8.3329e+00 -XAragonite: 9.9966e-01 -XStrontianite: 3.4049e-04 -XCa: 9.9241e-01 -XSr: 7.5875e-03 +Log Sigma pi: -8.3330e+00 +XAragonite: 9.9967e-01 +XStrontianite: 3.3096e-04 +XCa: 9.9197e-01 +XSr: 8.0327e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -457,11 +458,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 9 SrCO3 added: 9.0000e-05 -Log Sigma pi: -8.3325e+00 -XAragonite: 9.9962e-01 -XStrontianite: 3.8355e-04 -XCa: 9.9147e-01 -XSr: 8.5329e-03 +Log Sigma pi: -8.3326e+00 +XAragonite: 9.9963e-01 +XStrontianite: 3.7281e-04 +XCa: 9.9097e-01 +XSr: 9.0333e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -470,11 +471,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 10 SrCO3 added: 1.0000e-04 -Log Sigma pi: -8.3321e+00 -XAragonite: 9.9957e-01 -XStrontianite: 4.2673e-04 -XCa: 9.9052e-01 -XSr: 9.4776e-03 +Log Sigma pi: -8.3322e+00 +XAragonite: 9.9959e-01 +XStrontianite: 4.1478e-04 +XCa: 9.8997e-01 +XSr: 1.0033e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -483,11 +484,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 11 SrCO3 added: 1.1000e-04 -Log Sigma pi: -8.3317e+00 -XAragonite: 9.9953e-01 -XStrontianite: 4.7002e-04 -XCa: 9.8958e-01 -XSr: 1.0422e-02 +Log Sigma pi: -8.3319e+00 +XAragonite: 9.9954e-01 +XStrontianite: 4.5685e-04 +XCa: 9.8897e-01 +XSr: 1.1032e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -496,11 +497,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 12 SrCO3 added: 1.2000e-04 -Log Sigma pi: -8.3314e+00 -XAragonite: 9.9949e-01 -XStrontianite: 5.1343e-04 -XCa: 9.8864e-01 -XSr: 1.1365e-02 +Log Sigma pi: -8.3315e+00 +XAragonite: 9.9950e-01 +XStrontianite: 4.9903e-04 +XCa: 9.8797e-01 +XSr: 1.2030e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -509,11 +510,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 13 SrCO3 added: 1.3000e-04 -Log Sigma pi: -8.3310e+00 -XAragonite: 9.9944e-01 -XStrontianite: 5.5695e-04 -XCa: 9.8769e-01 -XSr: 1.2308e-02 +Log Sigma pi: -8.3311e+00 +XAragonite: 9.9946e-01 +XStrontianite: 5.4133e-04 +XCa: 9.8697e-01 +XSr: 1.3028e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -522,11 +523,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 14 SrCO3 added: 1.4000e-04 -Log Sigma pi: -8.3306e+00 -XAragonite: 9.9940e-01 -XStrontianite: 6.0059e-04 -XCa: 9.8675e-01 -XSr: 1.3250e-02 +Log Sigma pi: -8.3307e+00 +XAragonite: 9.9942e-01 +XStrontianite: 5.8373e-04 +XCa: 9.8598e-01 +XSr: 1.4025e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -535,11 +536,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 15 SrCO3 added: 1.5000e-04 -Log Sigma pi: -8.3302e+00 -XAragonite: 9.9936e-01 -XStrontianite: 6.4434e-04 -XCa: 9.8581e-01 -XSr: 1.4191e-02 +Log Sigma pi: -8.3304e+00 +XAragonite: 9.9937e-01 +XStrontianite: 6.2625e-04 +XCa: 9.8498e-01 +XSr: 1.5021e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -548,11 +549,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 16 SrCO3 added: 1.6000e-04 -Log Sigma pi: -8.3298e+00 -XAragonite: 9.9931e-01 -XStrontianite: 6.8821e-04 -XCa: 9.8487e-01 -XSr: 1.5132e-02 +Log Sigma pi: -8.3300e+00 +XAragonite: 9.9933e-01 +XStrontianite: 6.6888e-04 +XCa: 9.8398e-01 +XSr: 1.6016e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -561,11 +562,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 17 SrCO3 added: 1.7000e-04 -Log Sigma pi: -8.3294e+00 -XAragonite: 9.9927e-01 -XStrontianite: 7.3220e-04 -XCa: 9.8393e-01 -XSr: 1.6072e-02 +Log Sigma pi: -8.3296e+00 +XAragonite: 9.9929e-01 +XStrontianite: 7.1162e-04 +XCa: 9.8299e-01 +XSr: 1.7010e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -574,11 +575,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 18 SrCO3 added: 1.8000e-04 -Log Sigma pi: -8.3290e+00 -XAragonite: 9.9922e-01 -XStrontianite: 7.7630e-04 -XCa: 9.8299e-01 -XSr: 1.7011e-02 +Log Sigma pi: -8.3292e+00 +XAragonite: 9.9925e-01 +XStrontianite: 7.5447e-04 +XCa: 9.8200e-01 +XSr: 1.8004e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -587,11 +588,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 19 SrCO3 added: 1.9000e-04 -Log Sigma pi: -8.3286e+00 -XAragonite: 9.9918e-01 -XStrontianite: 8.2052e-04 -XCa: 9.8205e-01 -XSr: 1.7950e-02 +Log Sigma pi: -8.3288e+00 +XAragonite: 9.9920e-01 +XStrontianite: 7.9744e-04 +XCa: 9.8100e-01 +XSr: 1.8997e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -600,11 +601,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 20 SrCO3 added: 2.0000e-04 -Log Sigma pi: -8.3283e+00 -XAragonite: 9.9914e-01 -XStrontianite: 8.6487e-04 -XCa: 9.8111e-01 -XSr: 1.8887e-02 +Log Sigma pi: -8.3285e+00 +XAragonite: 9.9916e-01 +XStrontianite: 8.4052e-04 +XCa: 9.8001e-01 +XSr: 1.9989e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -613,11 +614,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 21 SrCO3 added: 2.1000e-04 -Log Sigma pi: -8.3279e+00 -XAragonite: 9.9909e-01 -XStrontianite: 9.0932e-04 -XCa: 9.8018e-01 -XSr: 1.9825e-02 +Log Sigma pi: -8.3281e+00 +XAragonite: 9.9912e-01 +XStrontianite: 8.8372e-04 +XCa: 9.7902e-01 +XSr: 2.0980e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -626,11 +627,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 22 SrCO3 added: 2.2000e-04 -Log Sigma pi: -8.3275e+00 -XAragonite: 9.9905e-01 -XStrontianite: 9.5390e-04 -XCa: 9.7924e-01 -XSr: 2.0761e-02 +Log Sigma pi: -8.3277e+00 +XAragonite: 9.9907e-01 +XStrontianite: 9.2703e-04 +XCa: 9.7803e-01 +XSr: 2.1970e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -639,11 +640,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 23 SrCO3 added: 2.3000e-04 -Log Sigma pi: -8.3271e+00 -XAragonite: 9.9900e-01 -XStrontianite: 9.9860e-04 -XCa: 9.7830e-01 -XSr: 2.1697e-02 +Log Sigma pi: -8.3273e+00 +XAragonite: 9.9903e-01 +XStrontianite: 9.7045e-04 +XCa: 9.7704e-01 +XSr: 2.2960e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -652,11 +653,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 24 SrCO3 added: 2.4000e-04 -Log Sigma pi: -8.3267e+00 -XAragonite: 9.9896e-01 -XStrontianite: 1.0434e-03 -XCa: 9.7737e-01 -XSr: 2.2633e-02 +Log Sigma pi: -8.3270e+00 +XAragonite: 9.9899e-01 +XStrontianite: 1.0140e-03 +XCa: 9.7605e-01 +XSr: 2.3949e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -665,11 +666,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 25 SrCO3 added: 2.5000e-04 -Log Sigma pi: -8.3263e+00 -XAragonite: 9.9891e-01 -XStrontianite: 1.0884e-03 -XCa: 9.7643e-01 -XSr: 2.3567e-02 +Log Sigma pi: -8.3266e+00 +XAragonite: 9.9894e-01 +XStrontianite: 1.0577e-03 +XCa: 9.7506e-01 +XSr: 2.4937e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -678,11 +679,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 26 SrCO3 added: 2.6000e-04 -Log Sigma pi: -8.3259e+00 -XAragonite: 9.9887e-01 -XStrontianite: 1.1334e-03 -XCa: 9.7550e-01 -XSr: 2.4501e-02 +Log Sigma pi: -8.3262e+00 +XAragonite: 9.9890e-01 +XStrontianite: 1.1014e-03 +XCa: 9.7408e-01 +XSr: 2.5925e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -691,11 +692,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 27 SrCO3 added: 2.7000e-04 -Log Sigma pi: -8.3255e+00 -XAragonite: 9.9882e-01 -XStrontianite: 1.1786e-03 -XCa: 9.7457e-01 -XSr: 2.5434e-02 +Log Sigma pi: -8.3258e+00 +XAragonite: 9.9885e-01 +XStrontianite: 1.1453e-03 +XCa: 9.7309e-01 +XSr: 2.6911e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -704,11 +705,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 28 SrCO3 added: 2.8000e-04 -Log Sigma pi: -8.3252e+00 -XAragonite: 9.9878e-01 -XStrontianite: 1.2239e-03 -XCa: 9.7363e-01 -XSr: 2.6367e-02 +Log Sigma pi: -8.3254e+00 +XAragonite: 9.9881e-01 +XStrontianite: 1.1893e-03 +XCa: 9.7210e-01 +XSr: 2.7897e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -717,11 +718,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 29 SrCO3 added: 2.9000e-04 -Log Sigma pi: -8.3248e+00 -XAragonite: 9.9873e-01 -XStrontianite: 1.2693e-03 -XCa: 9.7270e-01 -XSr: 2.7299e-02 +Log Sigma pi: -8.3251e+00 +XAragonite: 9.9877e-01 +XStrontianite: 1.2335e-03 +XCa: 9.7112e-01 +XSr: 2.8882e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -730,11 +731,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 30 SrCO3 added: 3.0000e-04 -Log Sigma pi: -8.3244e+00 -XAragonite: 9.9869e-01 -XStrontianite: 1.3149e-03 -XCa: 9.7177e-01 -XSr: 2.8230e-02 +Log Sigma pi: -8.3247e+00 +XAragonite: 9.9872e-01 +XStrontianite: 1.2777e-03 +XCa: 9.7013e-01 +XSr: 2.9866e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -743,11 +744,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 31 SrCO3 added: 3.1000e-04 -Log Sigma pi: -8.3240e+00 -XAragonite: 9.9864e-01 -XStrontianite: 1.3606e-03 -XCa: 9.7084e-01 -XSr: 2.9160e-02 +Log Sigma pi: -8.3243e+00 +XAragonite: 9.9868e-01 +XStrontianite: 1.3221e-03 +XCa: 9.6915e-01 +XSr: 3.0850e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -756,11 +757,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 32 SrCO3 added: 3.2000e-04 -Log Sigma pi: -8.3236e+00 -XAragonite: 9.9859e-01 -XStrontianite: 1.4064e-03 -XCa: 9.6991e-01 -XSr: 3.0090e-02 +Log Sigma pi: -8.3239e+00 +XAragonite: 9.9863e-01 +XStrontianite: 1.3666e-03 +XCa: 9.6817e-01 +XSr: 3.1833e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -769,11 +770,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 33 SrCO3 added: 3.3000e-04 -Log Sigma pi: -8.3232e+00 -XAragonite: 9.9855e-01 -XStrontianite: 1.4523e-03 -XCa: 9.6898e-01 -XSr: 3.1019e-02 +Log Sigma pi: -8.3236e+00 +XAragonite: 9.9859e-01 +XStrontianite: 1.4112e-03 +XCa: 9.6719e-01 +XSr: 3.2815e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -782,11 +783,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 34 SrCO3 added: 3.4000e-04 -Log Sigma pi: -8.3228e+00 -XAragonite: 9.9850e-01 -XStrontianite: 1.4984e-03 -XCa: 9.6805e-01 -XSr: 3.1948e-02 +Log Sigma pi: -8.3232e+00 +XAragonite: 9.9854e-01 +XStrontianite: 1.4559e-03 +XCa: 9.6620e-01 +XSr: 3.3796e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -795,11 +796,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 35 SrCO3 added: 3.5000e-04 -Log Sigma pi: -8.3224e+00 -XAragonite: 9.9846e-01 -XStrontianite: 1.5445e-03 -XCa: 9.6712e-01 -XSr: 3.2876e-02 +Log Sigma pi: -8.3228e+00 +XAragonite: 9.9850e-01 +XStrontianite: 1.5007e-03 +XCa: 9.6522e-01 +XSr: 3.4776e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -808,11 +809,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 36 SrCO3 added: 3.6000e-04 -Log Sigma pi: -8.3220e+00 -XAragonite: 9.9841e-01 -XStrontianite: 1.5909e-03 -XCa: 9.6620e-01 -XSr: 3.3803e-02 +Log Sigma pi: -8.3224e+00 +XAragonite: 9.9845e-01 +XStrontianite: 1.5457e-03 +XCa: 9.6424e-01 +XSr: 3.5756e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -821,11 +822,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 37 SrCO3 added: 3.7000e-04 -Log Sigma pi: -8.3217e+00 -XAragonite: 9.9836e-01 -XStrontianite: 1.6373e-03 -XCa: 9.6527e-01 -XSr: 3.4729e-02 +Log Sigma pi: -8.3220e+00 +XAragonite: 9.9841e-01 +XStrontianite: 1.5908e-03 +XCa: 9.6327e-01 +XSr: 3.6735e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -834,11 +835,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 38 SrCO3 added: 3.8000e-04 -Log Sigma pi: -8.3213e+00 -XAragonite: 9.9832e-01 -XStrontianite: 1.6839e-03 -XCa: 9.6435e-01 -XSr: 3.5655e-02 +Log Sigma pi: -8.3217e+00 +XAragonite: 9.9836e-01 +XStrontianite: 1.6360e-03 +XCa: 9.6229e-01 +XSr: 3.7713e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -847,11 +848,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 39 SrCO3 added: 3.9000e-04 -Log Sigma pi: -8.3209e+00 -XAragonite: 9.9827e-01 -XStrontianite: 1.7305e-03 -XCa: 9.6342e-01 -XSr: 3.6580e-02 +Log Sigma pi: -8.3213e+00 +XAragonite: 9.9832e-01 +XStrontianite: 1.6814e-03 +XCa: 9.6131e-01 +XSr: 3.8690e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -860,11 +861,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 40 SrCO3 added: 4.0000e-04 -Log Sigma pi: -8.3205e+00 -XAragonite: 9.9822e-01 -XStrontianite: 1.7774e-03 -XCa: 9.6250e-01 -XSr: 3.7504e-02 +Log Sigma pi: -8.3209e+00 +XAragonite: 9.9827e-01 +XStrontianite: 1.7268e-03 +XCa: 9.6033e-01 +XSr: 3.9667e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -873,11 +874,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 41 SrCO3 added: 4.1000e-04 -Log Sigma pi: -8.3201e+00 -XAragonite: 9.9818e-01 -XStrontianite: 1.8243e-03 -XCa: 9.6157e-01 -XSr: 3.8428e-02 +Log Sigma pi: -8.3205e+00 +XAragonite: 9.9823e-01 +XStrontianite: 1.7724e-03 +XCa: 9.5936e-01 +XSr: 4.0643e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -886,11 +887,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 42 SrCO3 added: 4.2000e-04 -Log Sigma pi: -8.3197e+00 -XAragonite: 9.9813e-01 -XStrontianite: 1.8714e-03 -XCa: 9.6065e-01 -XSr: 3.9351e-02 +Log Sigma pi: -8.3201e+00 +XAragonite: 9.9818e-01 +XStrontianite: 1.8182e-03 +XCa: 9.5838e-01 +XSr: 4.1618e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -899,11 +900,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 43 SrCO3 added: 4.3000e-04 -Log Sigma pi: -8.3193e+00 -XAragonite: 9.9808e-01 -XStrontianite: 1.9186e-03 -XCa: 9.5973e-01 -XSr: 4.0274e-02 +Log Sigma pi: -8.3198e+00 +XAragonite: 9.9814e-01 +XStrontianite: 1.8640e-03 +XCa: 9.5741e-01 +XSr: 4.2592e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -912,11 +913,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 44 SrCO3 added: 4.4000e-04 -Log Sigma pi: -8.3189e+00 -XAragonite: 9.9803e-01 -XStrontianite: 1.9660e-03 -XCa: 9.5880e-01 -XSr: 4.1195e-02 +Log Sigma pi: -8.3194e+00 +XAragonite: 9.9809e-01 +XStrontianite: 1.9100e-03 +XCa: 9.5643e-01 +XSr: 4.3566e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -925,11 +926,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 45 SrCO3 added: 4.5000e-04 -Log Sigma pi: -8.3185e+00 -XAragonite: 9.9799e-01 -XStrontianite: 2.0134e-03 -XCa: 9.5788e-01 -XSr: 4.2117e-02 +Log Sigma pi: -8.3190e+00 +XAragonite: 9.9804e-01 +XStrontianite: 1.9561e-03 +XCa: 9.5546e-01 +XSr: 4.4538e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -938,11 +939,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 46 SrCO3 added: 4.6000e-04 -Log Sigma pi: -8.3182e+00 -XAragonite: 9.9794e-01 -XStrontianite: 2.0611e-03 -XCa: 9.5696e-01 -XSr: 4.3037e-02 +Log Sigma pi: -8.3186e+00 +XAragonite: 9.9800e-01 +XStrontianite: 2.0023e-03 +XCa: 9.5449e-01 +XSr: 4.5510e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -951,11 +952,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 47 SrCO3 added: 4.7000e-04 -Log Sigma pi: -8.3178e+00 -XAragonite: 9.9789e-01 -XStrontianite: 2.1088e-03 -XCa: 9.5604e-01 -XSr: 4.3957e-02 +Log Sigma pi: -8.3183e+00 +XAragonite: 9.9795e-01 +XStrontianite: 2.0486e-03 +XCa: 9.5352e-01 +XSr: 4.6481e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -964,11 +965,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 48 SrCO3 added: 4.8000e-04 -Log Sigma pi: -8.3174e+00 -XAragonite: 9.9784e-01 -XStrontianite: 2.1567e-03 -XCa: 9.5512e-01 -XSr: 4.4876e-02 +Log Sigma pi: -8.3179e+00 +XAragonite: 9.9790e-01 +XStrontianite: 2.0951e-03 +XCa: 9.5255e-01 +XSr: 4.7452e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -977,11 +978,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 49 SrCO3 added: 4.9000e-04 -Log Sigma pi: -8.3170e+00 -XAragonite: 9.9780e-01 -XStrontianite: 2.2047e-03 -XCa: 9.5421e-01 -XSr: 4.5794e-02 +Log Sigma pi: -8.3175e+00 +XAragonite: 9.9786e-01 +XStrontianite: 2.1417e-03 +XCa: 9.5158e-01 +XSr: 4.8422e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -990,11 +991,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 50 SrCO3 added: 5.0000e-04 -Log Sigma pi: -8.3166e+00 -XAragonite: 9.9775e-01 -XStrontianite: 2.2528e-03 -XCa: 9.5329e-01 -XSr: 4.6712e-02 +Log Sigma pi: -8.3171e+00 +XAragonite: 9.9781e-01 +XStrontianite: 2.1885e-03 +XCa: 9.5061e-01 +XSr: 4.9390e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1003,11 +1004,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 51 SrCO3 added: 5.1000e-04 -Log Sigma pi: -8.3162e+00 -XAragonite: 9.9770e-01 -XStrontianite: 2.3011e-03 -XCa: 9.5237e-01 -XSr: 4.7629e-02 +Log Sigma pi: -8.3167e+00 +XAragonite: 9.9776e-01 +XStrontianite: 2.2353e-03 +XCa: 9.4964e-01 +XSr: 5.0358e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1016,11 +1017,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 52 SrCO3 added: 5.2000e-04 -Log Sigma pi: -8.3158e+00 -XAragonite: 9.9765e-01 -XStrontianite: 2.3496e-03 -XCa: 9.5146e-01 -XSr: 4.8545e-02 +Log Sigma pi: -8.3164e+00 +XAragonite: 9.9772e-01 +XStrontianite: 2.2823e-03 +XCa: 9.4867e-01 +XSr: 5.1326e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1029,11 +1030,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 53 SrCO3 added: 5.3000e-04 -Log Sigma pi: -8.3154e+00 -XAragonite: 9.9760e-01 -XStrontianite: 2.3981e-03 -XCa: 9.5054e-01 -XSr: 4.9461e-02 +Log Sigma pi: -8.3160e+00 +XAragonite: 9.9767e-01 +XStrontianite: 2.3295e-03 +XCa: 9.4771e-01 +XSr: 5.2292e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1042,11 +1043,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 54 SrCO3 added: 5.4000e-04 -Log Sigma pi: -8.3150e+00 -XAragonite: 9.9755e-01 -XStrontianite: 2.4468e-03 -XCa: 9.4962e-01 -XSr: 5.0376e-02 +Log Sigma pi: -8.3156e+00 +XAragonite: 9.9762e-01 +XStrontianite: 2.3767e-03 +XCa: 9.4674e-01 +XSr: 5.3258e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1055,11 +1056,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 55 SrCO3 added: 5.5000e-04 -Log Sigma pi: -8.3146e+00 -XAragonite: 9.9750e-01 -XStrontianite: 2.4956e-03 -XCa: 9.4871e-01 -XSr: 5.1290e-02 +Log Sigma pi: -8.3152e+00 +XAragonite: 9.9758e-01 +XStrontianite: 2.4241e-03 +XCa: 9.4578e-01 +XSr: 5.4223e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1068,11 +1069,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 56 SrCO3 added: 5.6000e-04 -Log Sigma pi: -8.3143e+00 -XAragonite: 9.9746e-01 -XStrontianite: 2.5446e-03 -XCa: 9.4780e-01 -XSr: 5.2204e-02 +Log Sigma pi: -8.3148e+00 +XAragonite: 9.9753e-01 +XStrontianite: 2.4717e-03 +XCa: 9.4481e-01 +XSr: 5.5187e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1081,11 +1082,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 57 SrCO3 added: 5.7000e-04 -Log Sigma pi: -8.3139e+00 -XAragonite: 9.9741e-01 -XStrontianite: 2.5937e-03 -XCa: 9.4688e-01 -XSr: 5.3117e-02 +Log Sigma pi: -8.3145e+00 +XAragonite: 9.9748e-01 +XStrontianite: 2.5193e-03 +XCa: 9.4385e-01 +XSr: 5.6151e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1094,11 +1095,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 58 SrCO3 added: 5.8000e-04 -Log Sigma pi: -8.3135e+00 -XAragonite: 9.9736e-01 -XStrontianite: 2.6430e-03 -XCa: 9.4597e-01 -XSr: 5.4029e-02 +Log Sigma pi: -8.3141e+00 +XAragonite: 9.9743e-01 +XStrontianite: 2.5671e-03 +XCa: 9.4289e-01 +XSr: 5.7114e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1107,11 +1108,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 59 SrCO3 added: 5.9000e-04 -Log Sigma pi: -8.3131e+00 -XAragonite: 9.9731e-01 -XStrontianite: 2.6924e-03 -XCa: 9.4506e-01 -XSr: 5.4940e-02 +Log Sigma pi: -8.3137e+00 +XAragonite: 9.9738e-01 +XStrontianite: 2.6151e-03 +XCa: 9.4192e-01 +XSr: 5.8076e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1120,11 +1121,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 60 SrCO3 added: 6.0000e-04 -Log Sigma pi: -8.3127e+00 -XAragonite: 9.9726e-01 -XStrontianite: 2.7419e-03 -XCa: 9.4415e-01 -XSr: 5.5851e-02 +Log Sigma pi: -8.3133e+00 +XAragonite: 9.9734e-01 +XStrontianite: 2.6631e-03 +XCa: 9.4096e-01 +XSr: 5.9037e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1133,11 +1134,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 61 SrCO3 added: 6.1000e-04 -Log Sigma pi: -8.3123e+00 -XAragonite: 9.9721e-01 -XStrontianite: 2.7916e-03 -XCa: 9.4324e-01 -XSr: 5.6762e-02 +Log Sigma pi: -8.3129e+00 +XAragonite: 9.9729e-01 +XStrontianite: 2.7114e-03 +XCa: 9.4000e-01 +XSr: 5.9997e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1146,11 +1147,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 62 SrCO3 added: 6.2000e-04 -Log Sigma pi: -8.3119e+00 -XAragonite: 9.9716e-01 -XStrontianite: 2.8414e-03 -XCa: 9.4233e-01 -XSr: 5.7671e-02 +Log Sigma pi: -8.3126e+00 +XAragonite: 9.9724e-01 +XStrontianite: 2.7597e-03 +XCa: 9.3904e-01 +XSr: 6.0957e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1159,11 +1160,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 63 SrCO3 added: 6.3000e-04 -Log Sigma pi: -8.3115e+00 -XAragonite: 9.9711e-01 -XStrontianite: 2.8914e-03 -XCa: 9.4142e-01 -XSr: 5.8580e-02 +Log Sigma pi: -8.3122e+00 +XAragonite: 9.9719e-01 +XStrontianite: 2.8082e-03 +XCa: 9.3808e-01 +XSr: 6.1916e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1172,11 +1173,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 64 SrCO3 added: 6.4000e-04 -Log Sigma pi: -8.3111e+00 -XAragonite: 9.9706e-01 -XStrontianite: 2.9415e-03 -XCa: 9.4051e-01 -XSr: 5.9488e-02 +Log Sigma pi: -8.3118e+00 +XAragonite: 9.9714e-01 +XStrontianite: 2.8568e-03 +XCa: 9.3713e-01 +XSr: 6.2874e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1185,11 +1186,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 65 SrCO3 added: 6.5000e-04 -Log Sigma pi: -8.3107e+00 -XAragonite: 9.9701e-01 -XStrontianite: 2.9918e-03 -XCa: 9.3960e-01 -XSr: 6.0396e-02 +Log Sigma pi: -8.3114e+00 +XAragonite: 9.9709e-01 +XStrontianite: 2.9056e-03 +XCa: 9.3617e-01 +XSr: 6.3831e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1198,11 +1199,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 66 SrCO3 added: 6.6000e-04 -Log Sigma pi: -8.3104e+00 -XAragonite: 9.9696e-01 -XStrontianite: 3.0422e-03 -XCa: 9.3870e-01 -XSr: 6.1303e-02 +Log Sigma pi: -8.3110e+00 +XAragonite: 9.9705e-01 +XStrontianite: 2.9545e-03 +XCa: 9.3521e-01 +XSr: 6.4788e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1211,11 +1212,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 67 SrCO3 added: 6.7000e-04 -Log Sigma pi: -8.3100e+00 -XAragonite: 9.9691e-01 -XStrontianite: 3.0927e-03 -XCa: 9.3779e-01 -XSr: 6.2209e-02 +Log Sigma pi: -8.3106e+00 +XAragonite: 9.9700e-01 +XStrontianite: 3.0035e-03 +XCa: 9.3426e-01 +XSr: 6.5743e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1224,11 +1225,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 68 SrCO3 added: 6.8000e-04 -Log Sigma pi: -8.3096e+00 -XAragonite: 9.9686e-01 -XStrontianite: 3.1434e-03 -XCa: 9.3689e-01 -XSr: 6.3115e-02 +Log Sigma pi: -8.3103e+00 +XAragonite: 9.9695e-01 +XStrontianite: 3.0527e-03 +XCa: 9.3330e-01 +XSr: 6.6698e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1237,11 +1238,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 69 SrCO3 added: 6.9000e-04 -Log Sigma pi: -8.3092e+00 -XAragonite: 9.9681e-01 -XStrontianite: 3.1943e-03 -XCa: 9.3598e-01 -XSr: 6.4019e-02 +Log Sigma pi: -8.3099e+00 +XAragonite: 9.9690e-01 +XStrontianite: 3.1020e-03 +XCa: 9.3235e-01 +XSr: 6.7653e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1250,11 +1251,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 70 SrCO3 added: 7.0000e-04 -Log Sigma pi: -8.3088e+00 -XAragonite: 9.9675e-01 -XStrontianite: 3.2453e-03 -XCa: 9.3508e-01 -XSr: 6.4924e-02 +Log Sigma pi: -8.3095e+00 +XAragonite: 9.9685e-01 +XStrontianite: 3.1515e-03 +XCa: 9.3139e-01 +XSr: 6.8606e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1263,11 +1264,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 71 SrCO3 added: 7.1000e-04 -Log Sigma pi: -8.3084e+00 -XAragonite: 9.9670e-01 -XStrontianite: 3.2964e-03 -XCa: 9.3417e-01 -XSr: 6.5827e-02 +Log Sigma pi: -8.3091e+00 +XAragonite: 9.9680e-01 +XStrontianite: 3.2011e-03 +XCa: 9.3044e-01 +XSr: 6.9559e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1276,11 +1277,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 72 SrCO3 added: 7.2000e-04 -Log Sigma pi: -8.3080e+00 -XAragonite: 9.9665e-01 -XStrontianite: 3.3477e-03 -XCa: 9.3327e-01 -XSr: 6.6730e-02 +Log Sigma pi: -8.3087e+00 +XAragonite: 9.9675e-01 +XStrontianite: 3.2509e-03 +XCa: 9.2949e-01 +XSr: 7.0511e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1289,11 +1290,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 73 SrCO3 added: 7.3000e-04 -Log Sigma pi: -8.3076e+00 -XAragonite: 9.9660e-01 -XStrontianite: 3.3992e-03 -XCa: 9.3237e-01 -XSr: 6.7632e-02 +Log Sigma pi: -8.3084e+00 +XAragonite: 9.9670e-01 +XStrontianite: 3.3008e-03 +XCa: 9.2854e-01 +XSr: 7.1462e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1302,11 +1303,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 74 SrCO3 added: 7.4000e-04 -Log Sigma pi: -8.3072e+00 -XAragonite: 9.9655e-01 -XStrontianite: 3.4508e-03 -XCa: 9.3147e-01 -XSr: 6.8534e-02 +Log Sigma pi: -8.3080e+00 +XAragonite: 9.9665e-01 +XStrontianite: 3.3508e-03 +XCa: 9.2759e-01 +XSr: 7.2412e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1315,11 +1316,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 75 SrCO3 added: 7.5000e-04 -Log Sigma pi: -8.3068e+00 -XAragonite: 9.9650e-01 -XStrontianite: 3.5025e-03 -XCa: 9.3057e-01 -XSr: 6.9434e-02 +Log Sigma pi: -8.3076e+00 +XAragonite: 9.9660e-01 +XStrontianite: 3.4010e-03 +XCa: 9.2664e-01 +XSr: 7.3362e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1328,11 +1329,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 76 SrCO3 added: 7.6000e-04 -Log Sigma pi: -8.3064e+00 -XAragonite: 9.9645e-01 -XStrontianite: 3.5544e-03 -XCa: 9.2967e-01 -XSr: 7.0335e-02 +Log Sigma pi: -8.3072e+00 +XAragonite: 9.9655e-01 +XStrontianite: 3.4514e-03 +XCa: 9.2569e-01 +XSr: 7.4311e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1341,11 +1342,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 77 SrCO3 added: 7.7000e-04 -Log Sigma pi: -8.3061e+00 -XAragonite: 9.9639e-01 -XStrontianite: 3.6065e-03 -XCa: 9.2877e-01 -XSr: 7.1234e-02 +Log Sigma pi: -8.3068e+00 +XAragonite: 9.9650e-01 +XStrontianite: 3.5018e-03 +XCa: 9.2474e-01 +XSr: 7.5259e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1354,11 +1355,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 78 SrCO3 added: 7.8000e-04 -Log Sigma pi: -8.3057e+00 -XAragonite: 9.9634e-01 -XStrontianite: 3.6587e-03 -XCa: 9.2787e-01 -XSr: 7.2133e-02 +Log Sigma pi: -8.3065e+00 +XAragonite: 9.9645e-01 +XStrontianite: 3.5525e-03 +XCa: 9.2379e-01 +XSr: 7.6206e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1367,11 +1368,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 79 SrCO3 added: 7.9000e-04 -Log Sigma pi: -8.3053e+00 -XAragonite: 9.9629e-01 -XStrontianite: 3.7111e-03 -XCa: 9.2697e-01 -XSr: 7.3031e-02 +Log Sigma pi: -8.3061e+00 +XAragonite: 9.9640e-01 +XStrontianite: 3.6033e-03 +XCa: 9.2285e-01 +XSr: 7.7153e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1380,11 +1381,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 80 SrCO3 added: 8.0000e-04 -Log Sigma pi: -8.3049e+00 -XAragonite: 9.9624e-01 -XStrontianite: 3.7636e-03 -XCa: 9.2607e-01 -XSr: 7.3928e-02 +Log Sigma pi: -8.3057e+00 +XAragonite: 9.9635e-01 +XStrontianite: 3.6542e-03 +XCa: 9.2190e-01 +XSr: 7.8099e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1393,11 +1394,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 81 SrCO3 added: 8.1000e-04 -Log Sigma pi: -8.3045e+00 -XAragonite: 9.9618e-01 -XStrontianite: 3.8163e-03 -XCa: 9.2517e-01 -XSr: 7.4825e-02 +Log Sigma pi: -8.3053e+00 +XAragonite: 9.9629e-01 +XStrontianite: 3.7053e-03 +XCa: 9.2096e-01 +XSr: 7.9044e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1406,11 +1407,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 82 SrCO3 added: 8.2000e-04 -Log Sigma pi: -8.3041e+00 -XAragonite: 9.9613e-01 -XStrontianite: 3.8691e-03 -XCa: 9.2428e-01 -XSr: 7.5721e-02 +Log Sigma pi: -8.3049e+00 +XAragonite: 9.9624e-01 +XStrontianite: 3.7565e-03 +XCa: 9.2001e-01 +XSr: 7.9988e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1419,11 +1420,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 83 SrCO3 added: 8.3000e-04 -Log Sigma pi: -8.3037e+00 -XAragonite: 9.9608e-01 -XStrontianite: 3.9221e-03 -XCa: 9.2338e-01 -XSr: 7.6617e-02 +Log Sigma pi: -8.3045e+00 +XAragonite: 9.9619e-01 +XStrontianite: 3.8079e-03 +XCa: 9.1907e-01 +XSr: 8.0931e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1432,11 +1433,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 84 SrCO3 added: 8.4000e-04 -Log Sigma pi: -8.3033e+00 -XAragonite: 9.9602e-01 -XStrontianite: 3.9753e-03 -XCa: 9.2249e-01 -XSr: 7.7511e-02 +Log Sigma pi: -8.3042e+00 +XAragonite: 9.9614e-01 +XStrontianite: 3.8595e-03 +XCa: 9.1813e-01 +XSr: 8.1874e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1445,11 +1446,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 85 SrCO3 added: 8.5000e-04 -Log Sigma pi: -8.3029e+00 -XAragonite: 9.9597e-01 -XStrontianite: 4.0286e-03 -XCa: 9.2159e-01 -XSr: 7.8406e-02 +Log Sigma pi: -8.3038e+00 +XAragonite: 9.9609e-01 +XStrontianite: 3.9111e-03 +XCa: 9.1718e-01 +XSr: 8.2816e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1458,11 +1459,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 86 SrCO3 added: 8.6000e-04 -Log Sigma pi: -8.3025e+00 -XAragonite: 9.9592e-01 -XStrontianite: 4.0821e-03 -XCa: 9.2070e-01 -XSr: 7.9299e-02 +Log Sigma pi: -8.3034e+00 +XAragonite: 9.9604e-01 +XStrontianite: 3.9630e-03 +XCa: 9.1624e-01 +XSr: 8.3757e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1471,11 +1472,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 87 SrCO3 added: 8.7000e-04 -Log Sigma pi: -8.3021e+00 -XAragonite: 9.9586e-01 -XStrontianite: 4.1358e-03 -XCa: 9.1981e-01 -XSr: 8.0192e-02 +Log Sigma pi: -8.3030e+00 +XAragonite: 9.9599e-01 +XStrontianite: 4.0150e-03 +XCa: 9.1530e-01 +XSr: 8.4698e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1484,11 +1485,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 88 SrCO3 added: 8.8000e-04 -Log Sigma pi: -8.3017e+00 -XAragonite: 9.9581e-01 -XStrontianite: 4.1896e-03 -XCa: 9.1892e-01 -XSr: 8.1084e-02 +Log Sigma pi: -8.3026e+00 +XAragonite: 9.9593e-01 +XStrontianite: 4.0672e-03 +XCa: 9.1436e-01 +XSr: 8.5638e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1497,11 +1498,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 89 SrCO3 added: 8.9000e-04 -Log Sigma pi: -8.3014e+00 -XAragonite: 9.9576e-01 -XStrontianite: 4.2435e-03 -XCa: 9.1802e-01 -XSr: 8.1975e-02 +Log Sigma pi: -8.3023e+00 +XAragonite: 9.9588e-01 +XStrontianite: 4.1195e-03 +XCa: 9.1342e-01 +XSr: 8.6576e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1510,11 +1511,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 90 SrCO3 added: 9.0000e-04 -Log Sigma pi: -8.3010e+00 -XAragonite: 9.9570e-01 -XStrontianite: 4.2977e-03 -XCa: 9.1713e-01 -XSr: 8.2866e-02 +Log Sigma pi: -8.3019e+00 +XAragonite: 9.9583e-01 +XStrontianite: 4.1719e-03 +XCa: 9.1249e-01 +XSr: 8.7515e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1523,11 +1524,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 91 SrCO3 added: 9.1000e-04 -Log Sigma pi: -8.3006e+00 -XAragonite: 9.9565e-01 -XStrontianite: 4.3520e-03 -XCa: 9.1624e-01 -XSr: 8.3756e-02 +Log Sigma pi: -8.3015e+00 +XAragonite: 9.9578e-01 +XStrontianite: 4.2246e-03 +XCa: 9.1155e-01 +XSr: 8.8452e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1536,11 +1537,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 92 SrCO3 added: 9.2000e-04 -Log Sigma pi: -8.3002e+00 -XAragonite: 9.9559e-01 -XStrontianite: 4.4064e-03 -XCa: 9.1535e-01 -XSr: 8.4645e-02 +Log Sigma pi: -8.3011e+00 +XAragonite: 9.9572e-01 +XStrontianite: 4.2774e-03 +XCa: 9.1061e-01 +XSr: 8.9389e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1549,11 +1550,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 93 SrCO3 added: 9.3000e-04 -Log Sigma pi: -8.2998e+00 -XAragonite: 9.9554e-01 -XStrontianite: 4.4611e-03 -XCa: 9.1447e-01 -XSr: 8.5534e-02 +Log Sigma pi: -8.3007e+00 +XAragonite: 9.9567e-01 +XStrontianite: 4.3303e-03 +XCa: 9.0968e-01 +XSr: 9.0324e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1562,11 +1563,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 94 SrCO3 added: 9.4000e-04 -Log Sigma pi: -8.2994e+00 -XAragonite: 9.9548e-01 -XStrontianite: 4.5159e-03 -XCa: 9.1358e-01 -XSr: 8.6422e-02 +Log Sigma pi: -8.3003e+00 +XAragonite: 9.9562e-01 +XStrontianite: 4.3834e-03 +XCa: 9.0874e-01 +XSr: 9.1260e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1575,11 +1576,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 95 SrCO3 added: 9.5000e-04 -Log Sigma pi: -8.2990e+00 -XAragonite: 9.9543e-01 -XStrontianite: 4.5708e-03 -XCa: 9.1269e-01 -XSr: 8.7309e-02 +Log Sigma pi: -8.3000e+00 +XAragonite: 9.9556e-01 +XStrontianite: 4.4367e-03 +XCa: 9.0781e-01 +XSr: 9.2194e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1588,11 +1589,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 96 SrCO3 added: 9.6000e-04 -Log Sigma pi: -8.2986e+00 -XAragonite: 9.9537e-01 -XStrontianite: 4.6260e-03 -XCa: 9.1180e-01 -XSr: 8.8196e-02 +Log Sigma pi: -8.2996e+00 +XAragonite: 9.9551e-01 +XStrontianite: 4.4901e-03 +XCa: 9.0687e-01 +XSr: 9.3127e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1601,11 +1602,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 97 SrCO3 added: 9.7000e-04 -Log Sigma pi: -8.2982e+00 -XAragonite: 9.9532e-01 -XStrontianite: 4.6813e-03 -XCa: 9.1092e-01 -XSr: 8.9082e-02 +Log Sigma pi: -8.2992e+00 +XAragonite: 9.9546e-01 +XStrontianite: 4.5437e-03 +XCa: 9.0594e-01 +XSr: 9.4060e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1614,11 +1615,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 98 SrCO3 added: 9.8000e-04 -Log Sigma pi: -8.2978e+00 -XAragonite: 9.9526e-01 -XStrontianite: 4.7368e-03 -XCa: 9.1003e-01 -XSr: 8.9967e-02 +Log Sigma pi: -8.2988e+00 +XAragonite: 9.9540e-01 +XStrontianite: 4.5975e-03 +XCa: 9.0501e-01 +XSr: 9.4992e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1627,11 +1628,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 99 SrCO3 added: 9.9000e-04 -Log Sigma pi: -8.2974e+00 -XAragonite: 9.9521e-01 -XStrontianite: 4.7924e-03 -XCa: 9.0915e-01 -XSr: 9.0852e-02 +Log Sigma pi: -8.2984e+00 +XAragonite: 9.9535e-01 +XStrontianite: 4.6514e-03 +XCa: 9.0408e-01 +XSr: 9.5924e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1640,11 +1641,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 100 SrCO3 added: 1.0000e-03 -Log Sigma pi: -8.2974e+00 -XAragonite: 9.8284e-01 -XStrontianite: 1.7161e-02 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +Log Sigma pi: -8.2980e+00 +XAragonite: 9.9529e-01 +XStrontianite: 4.7055e-03 +XCa: 9.0315e-01 +XSr: 9.6854e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1653,11 +1654,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 101 SrCO3 added: 1.0100e-03 -Log Sigma pi: -8.2974e+00 -XAragonite: 9.6795e-01 -XStrontianite: 3.2055e-02 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +Log Sigma pi: -8.2977e+00 +XAragonite: 9.9524e-01 +XStrontianite: 4.7598e-03 +XCa: 9.0222e-01 +XSr: 9.7784e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1667,10 +1668,10 @@ Simulation number: 4 Reaction step number: 102 SrCO3 added: 1.0200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 9.5350e-01 -XStrontianite: 4.6504e-02 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 9.9210e-01 +XStrontianite: 7.9009e-03 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1680,10 +1681,10 @@ Simulation number: 4 Reaction step number: 103 SrCO3 added: 1.0300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 9.3947e-01 -XStrontianite: 6.0528e-02 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 9.7702e-01 +XStrontianite: 2.2983e-02 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1693,10 +1694,10 @@ Simulation number: 4 Reaction step number: 104 SrCO3 added: 1.0400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 9.2585e-01 -XStrontianite: 7.4146e-02 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 9.6239e-01 +XStrontianite: 3.7613e-02 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1706,10 +1707,10 @@ Simulation number: 4 Reaction step number: 105 SrCO3 added: 1.0500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 9.1263e-01 -XStrontianite: 8.7374e-02 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 9.4819e-01 +XStrontianite: 5.1812e-02 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1719,10 +1720,10 @@ Simulation number: 4 Reaction step number: 106 SrCO3 added: 1.0600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.9977e-01 -XStrontianite: 1.0023e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 9.3440e-01 +XStrontianite: 6.5598e-02 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1732,10 +1733,10 @@ Simulation number: 4 Reaction step number: 107 SrCO3 added: 1.0700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.8727e-01 -XStrontianite: 1.1273e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 9.2101e-01 +XStrontianite: 7.8988e-02 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1745,10 +1746,10 @@ Simulation number: 4 Reaction step number: 108 SrCO3 added: 1.0800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.7512e-01 -XStrontianite: 1.2488e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 9.0800e-01 +XStrontianite: 9.2000e-02 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1758,10 +1759,10 @@ Simulation number: 4 Reaction step number: 109 SrCO3 added: 1.0900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.6329e-01 -XStrontianite: 1.3671e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.9535e-01 +XStrontianite: 1.0465e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1771,10 +1772,10 @@ Simulation number: 4 Reaction step number: 110 SrCO3 added: 1.1000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.5178e-01 -XStrontianite: 1.4822e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.8305e-01 +XStrontianite: 1.1695e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1784,10 +1785,10 @@ Simulation number: 4 Reaction step number: 111 SrCO3 added: 1.1100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.4057e-01 -XStrontianite: 1.5943e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.7108e-01 +XStrontianite: 1.2892e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1797,10 +1798,10 @@ Simulation number: 4 Reaction step number: 112 SrCO3 added: 1.1200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.2965e-01 -XStrontianite: 1.7035e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.5943e-01 +XStrontianite: 1.4057e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1810,10 +1811,10 @@ Simulation number: 4 Reaction step number: 113 SrCO3 added: 1.1300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.1901e-01 -XStrontianite: 1.8099e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.4809e-01 +XStrontianite: 1.5191e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1823,10 +1824,10 @@ Simulation number: 4 Reaction step number: 114 SrCO3 added: 1.1400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.0864e-01 -XStrontianite: 1.9136e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.3704e-01 +XStrontianite: 1.6296e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1836,10 +1837,10 @@ Simulation number: 4 Reaction step number: 115 SrCO3 added: 1.1500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.9853e-01 -XStrontianite: 2.0147e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.2628e-01 +XStrontianite: 1.7372e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1849,10 +1850,10 @@ Simulation number: 4 Reaction step number: 116 SrCO3 added: 1.1600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.8867e-01 -XStrontianite: 2.1133e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.1579e-01 +XStrontianite: 1.8421e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1862,10 +1863,10 @@ Simulation number: 4 Reaction step number: 117 SrCO3 added: 1.1700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.7905e-01 -XStrontianite: 2.2095e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.0557e-01 +XStrontianite: 1.9443e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1875,10 +1876,10 @@ Simulation number: 4 Reaction step number: 118 SrCO3 added: 1.1800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.6967e-01 -XStrontianite: 2.3033e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.9560e-01 +XStrontianite: 2.0440e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1888,10 +1889,10 @@ Simulation number: 4 Reaction step number: 119 SrCO3 added: 1.1900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.6050e-01 -XStrontianite: 2.3950e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.8587e-01 +XStrontianite: 2.1413e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1901,10 +1902,10 @@ Simulation number: 4 Reaction step number: 120 SrCO3 added: 1.2000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.5155e-01 -XStrontianite: 2.4845e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.7637e-01 +XStrontianite: 2.2363e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1914,10 +1915,10 @@ Simulation number: 4 Reaction step number: 121 SrCO3 added: 1.2100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.4281e-01 -XStrontianite: 2.5719e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.6711e-01 +XStrontianite: 2.3289e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1927,10 +1928,10 @@ Simulation number: 4 Reaction step number: 122 SrCO3 added: 1.2200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.3428e-01 -XStrontianite: 2.6572e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.5806e-01 +XStrontianite: 2.4194e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1940,10 +1941,10 @@ Simulation number: 4 Reaction step number: 123 SrCO3 added: 1.2300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.2593e-01 -XStrontianite: 2.7407e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.4922e-01 +XStrontianite: 2.5078e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1953,10 +1954,10 @@ Simulation number: 4 Reaction step number: 124 SrCO3 added: 1.2400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.1777e-01 -XStrontianite: 2.8223e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.4059e-01 +XStrontianite: 2.5941e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1966,10 +1967,10 @@ Simulation number: 4 Reaction step number: 125 SrCO3 added: 1.2500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.0980e-01 -XStrontianite: 2.9020e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.3215e-01 +XStrontianite: 2.6785e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1979,10 +1980,10 @@ Simulation number: 4 Reaction step number: 126 SrCO3 added: 1.2600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.0200e-01 -XStrontianite: 2.9800e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.2390e-01 +XStrontianite: 2.7610e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1992,10 +1993,10 @@ Simulation number: 4 Reaction step number: 127 SrCO3 added: 1.2700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.9436e-01 -XStrontianite: 3.0564e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.1584e-01 +XStrontianite: 2.8416e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2005,10 +2006,10 @@ Simulation number: 4 Reaction step number: 128 SrCO3 added: 1.2800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.8690e-01 -XStrontianite: 3.1310e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.0796e-01 +XStrontianite: 2.9204e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2018,10 +2019,10 @@ Simulation number: 4 Reaction step number: 129 SrCO3 added: 1.2900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.7959e-01 -XStrontianite: 3.2041e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.0024e-01 +XStrontianite: 2.9976e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2031,10 +2032,10 @@ Simulation number: 4 Reaction step number: 130 SrCO3 added: 1.3000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.7243e-01 -XStrontianite: 3.2757e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.9270e-01 +XStrontianite: 3.0730e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2044,10 +2045,10 @@ Simulation number: 4 Reaction step number: 131 SrCO3 added: 1.3100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.6543e-01 -XStrontianite: 3.3457e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.8531e-01 +XStrontianite: 3.1469e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2057,10 +2058,10 @@ Simulation number: 4 Reaction step number: 132 SrCO3 added: 1.3200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.5857e-01 -XStrontianite: 3.4143e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.7808e-01 +XStrontianite: 3.2192e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2070,10 +2071,10 @@ Simulation number: 4 Reaction step number: 133 SrCO3 added: 1.3300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.5185e-01 -XStrontianite: 3.4815e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.7100e-01 +XStrontianite: 3.2900e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2083,10 +2084,10 @@ Simulation number: 4 Reaction step number: 134 SrCO3 added: 1.3400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.4526e-01 -XStrontianite: 3.5474e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.6407e-01 +XStrontianite: 3.3593e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2096,10 +2097,10 @@ Simulation number: 4 Reaction step number: 135 SrCO3 added: 1.3500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.3881e-01 -XStrontianite: 3.6119e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.5727e-01 +XStrontianite: 3.4273e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2109,10 +2110,10 @@ Simulation number: 4 Reaction step number: 136 SrCO3 added: 1.3600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.3248e-01 -XStrontianite: 3.6752e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.5062e-01 +XStrontianite: 3.4938e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2122,10 +2123,10 @@ Simulation number: 4 Reaction step number: 137 SrCO3 added: 1.3700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.2628e-01 -XStrontianite: 3.7372e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.4410e-01 +XStrontianite: 3.5590e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2135,10 +2136,10 @@ Simulation number: 4 Reaction step number: 138 SrCO3 added: 1.3800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.2020e-01 -XStrontianite: 3.7980e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.3771e-01 +XStrontianite: 3.6229e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2148,10 +2149,10 @@ Simulation number: 4 Reaction step number: 139 SrCO3 added: 1.3900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.1424e-01 -XStrontianite: 3.8576e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.3144e-01 +XStrontianite: 3.6856e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2161,10 +2162,10 @@ Simulation number: 4 Reaction step number: 140 SrCO3 added: 1.4000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.0839e-01 -XStrontianite: 3.9161e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.2530e-01 +XStrontianite: 3.7470e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2174,10 +2175,10 @@ Simulation number: 4 Reaction step number: 141 SrCO3 added: 1.4100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.0265e-01 -XStrontianite: 3.9735e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.1927e-01 +XStrontianite: 3.8073e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2187,10 +2188,10 @@ Simulation number: 4 Reaction step number: 142 SrCO3 added: 1.4200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.9701e-01 -XStrontianite: 4.0299e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.1336e-01 +XStrontianite: 3.8664e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2200,10 +2201,10 @@ Simulation number: 4 Reaction step number: 143 SrCO3 added: 1.4300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.9149e-01 -XStrontianite: 4.0851e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.0757e-01 +XStrontianite: 3.9243e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2213,10 +2214,10 @@ Simulation number: 4 Reaction step number: 144 SrCO3 added: 1.4400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.8606e-01 -XStrontianite: 4.1394e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.0188e-01 +XStrontianite: 3.9812e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2226,10 +2227,10 @@ Simulation number: 4 Reaction step number: 145 SrCO3 added: 1.4500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.8073e-01 -XStrontianite: 4.1927e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.9629e-01 +XStrontianite: 4.0371e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2239,10 +2240,10 @@ Simulation number: 4 Reaction step number: 146 SrCO3 added: 1.4600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.7550e-01 -XStrontianite: 4.2450e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.9081e-01 +XStrontianite: 4.0919e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2252,10 +2253,10 @@ Simulation number: 4 Reaction step number: 147 SrCO3 added: 1.4700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.7036e-01 -XStrontianite: 4.2964e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.8543e-01 +XStrontianite: 4.1457e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2265,10 +2266,10 @@ Simulation number: 4 Reaction step number: 148 SrCO3 added: 1.4800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.6531e-01 -XStrontianite: 4.3469e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.8014e-01 +XStrontianite: 4.1986e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2278,10 +2279,10 @@ Simulation number: 4 Reaction step number: 149 SrCO3 added: 1.4900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.6035e-01 -XStrontianite: 4.3965e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.7495e-01 +XStrontianite: 4.2505e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2291,10 +2292,10 @@ Simulation number: 4 Reaction step number: 150 SrCO3 added: 1.5000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.5548e-01 -XStrontianite: 4.4452e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.6986e-01 +XStrontianite: 4.3014e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2304,10 +2305,10 @@ Simulation number: 4 Reaction step number: 151 SrCO3 added: 1.5100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.5069e-01 -XStrontianite: 4.4931e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.6485e-01 +XStrontianite: 4.3515e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2317,10 +2318,10 @@ Simulation number: 4 Reaction step number: 152 SrCO3 added: 1.5200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.4598e-01 -XStrontianite: 4.5402e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.5993e-01 +XStrontianite: 4.4007e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2330,10 +2331,10 @@ Simulation number: 4 Reaction step number: 153 SrCO3 added: 1.5300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.4136e-01 -XStrontianite: 4.5864e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.5509e-01 +XStrontianite: 4.4491e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2343,10 +2344,10 @@ Simulation number: 4 Reaction step number: 154 SrCO3 added: 1.5400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.3681e-01 -XStrontianite: 4.6319e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.5034e-01 +XStrontianite: 4.4966e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2356,10 +2357,10 @@ Simulation number: 4 Reaction step number: 155 SrCO3 added: 1.5500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.3233e-01 -XStrontianite: 4.6767e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.4566e-01 +XStrontianite: 4.5434e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2369,10 +2370,10 @@ Simulation number: 4 Reaction step number: 156 SrCO3 added: 1.5600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.2793e-01 -XStrontianite: 4.7207e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.4107e-01 +XStrontianite: 4.5893e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2382,10 +2383,10 @@ Simulation number: 4 Reaction step number: 157 SrCO3 added: 1.5700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.2360e-01 -XStrontianite: 4.7640e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.3655e-01 +XStrontianite: 4.6345e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2395,10 +2396,10 @@ Simulation number: 4 Reaction step number: 158 SrCO3 added: 1.5800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.1935e-01 -XStrontianite: 4.8065e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.3211e-01 +XStrontianite: 4.6789e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2408,10 +2409,10 @@ Simulation number: 4 Reaction step number: 159 SrCO3 added: 1.5900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.1516e-01 -XStrontianite: 4.8484e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.2774e-01 +XStrontianite: 4.7226e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2421,10 +2422,10 @@ Simulation number: 4 Reaction step number: 160 SrCO3 added: 1.6000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.1104e-01 -XStrontianite: 4.8896e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.2344e-01 +XStrontianite: 4.7656e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2434,10 +2435,10 @@ Simulation number: 4 Reaction step number: 161 SrCO3 added: 1.6100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.0698e-01 -XStrontianite: 4.9302e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.1921e-01 +XStrontianite: 4.8079e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2447,10 +2448,10 @@ Simulation number: 4 Reaction step number: 162 SrCO3 added: 1.6200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.0299e-01 -XStrontianite: 4.9701e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.1505e-01 +XStrontianite: 4.8495e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2460,10 +2461,10 @@ Simulation number: 4 Reaction step number: 163 SrCO3 added: 1.6300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.9906e-01 -XStrontianite: 5.0094e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.1096e-01 +XStrontianite: 4.8904e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2473,10 +2474,10 @@ Simulation number: 4 Reaction step number: 164 SrCO3 added: 1.6400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.9519e-01 -XStrontianite: 5.0481e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.0693e-01 +XStrontianite: 4.9307e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2486,10 +2487,10 @@ Simulation number: 4 Reaction step number: 165 SrCO3 added: 1.6500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.9138e-01 -XStrontianite: 5.0862e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.0296e-01 +XStrontianite: 4.9704e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2499,10 +2500,10 @@ Simulation number: 4 Reaction step number: 166 SrCO3 added: 1.6600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.8763e-01 -XStrontianite: 5.1237e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.9906e-01 +XStrontianite: 5.0094e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2512,10 +2513,10 @@ Simulation number: 4 Reaction step number: 167 SrCO3 added: 1.6700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.8393e-01 -XStrontianite: 5.1607e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.9521e-01 +XStrontianite: 5.0479e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2525,10 +2526,10 @@ Simulation number: 4 Reaction step number: 168 SrCO3 added: 1.6800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.8030e-01 -XStrontianite: 5.1970e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.9142e-01 +XStrontianite: 5.0858e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2538,10 +2539,10 @@ Simulation number: 4 Reaction step number: 169 SrCO3 added: 1.6900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.7671e-01 -XStrontianite: 5.2329e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.8769e-01 +XStrontianite: 5.1231e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2551,10 +2552,10 @@ Simulation number: 4 Reaction step number: 170 SrCO3 added: 1.7000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.7318e-01 -XStrontianite: 5.2682e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.8402e-01 +XStrontianite: 5.1598e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2564,10 +2565,10 @@ Simulation number: 4 Reaction step number: 171 SrCO3 added: 1.7100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.6970e-01 -XStrontianite: 5.3030e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.8040e-01 +XStrontianite: 5.1960e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2577,10 +2578,10 @@ Simulation number: 4 Reaction step number: 172 SrCO3 added: 1.7200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.6627e-01 -XStrontianite: 5.3373e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.7684e-01 +XStrontianite: 5.2316e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2590,10 +2591,10 @@ Simulation number: 4 Reaction step number: 173 SrCO3 added: 1.7300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.6289e-01 -XStrontianite: 5.3711e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.7333e-01 +XStrontianite: 5.2667e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2603,10 +2604,10 @@ Simulation number: 4 Reaction step number: 174 SrCO3 added: 1.7400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.5956e-01 -XStrontianite: 5.4044e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.6987e-01 +XStrontianite: 5.3013e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2616,10 +2617,10 @@ Simulation number: 4 Reaction step number: 175 SrCO3 added: 1.7500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.5628e-01 -XStrontianite: 5.4372e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.6646e-01 +XStrontianite: 5.3354e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2629,10 +2630,10 @@ Simulation number: 4 Reaction step number: 176 SrCO3 added: 1.7600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.5304e-01 -XStrontianite: 5.4696e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.6310e-01 +XStrontianite: 5.3690e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2642,10 +2643,10 @@ Simulation number: 4 Reaction step number: 177 SrCO3 added: 1.7700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.4985e-01 -XStrontianite: 5.5015e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.5978e-01 +XStrontianite: 5.4022e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2655,10 +2656,10 @@ Simulation number: 4 Reaction step number: 178 SrCO3 added: 1.7800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.4671e-01 -XStrontianite: 5.5329e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.5652e-01 +XStrontianite: 5.4348e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2668,10 +2669,10 @@ Simulation number: 4 Reaction step number: 179 SrCO3 added: 1.7900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.4360e-01 -XStrontianite: 5.5640e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.5330e-01 +XStrontianite: 5.4670e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2681,10 +2682,10 @@ Simulation number: 4 Reaction step number: 180 SrCO3 added: 1.8000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.4054e-01 -XStrontianite: 5.5946e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.5012e-01 +XStrontianite: 5.4988e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2694,10 +2695,10 @@ Simulation number: 4 Reaction step number: 181 SrCO3 added: 1.8100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.3753e-01 -XStrontianite: 5.6247e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.4699e-01 +XStrontianite: 5.5301e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2707,10 +2708,10 @@ Simulation number: 4 Reaction step number: 182 SrCO3 added: 1.8200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.3455e-01 -XStrontianite: 5.6545e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.4390e-01 +XStrontianite: 5.5610e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2720,10 +2721,10 @@ Simulation number: 4 Reaction step number: 183 SrCO3 added: 1.8300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.3161e-01 -XStrontianite: 5.6839e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.4086e-01 +XStrontianite: 5.5914e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2733,10 +2734,10 @@ Simulation number: 4 Reaction step number: 184 SrCO3 added: 1.8400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.2872e-01 -XStrontianite: 5.7128e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.3786e-01 +XStrontianite: 5.6214e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2746,10 +2747,10 @@ Simulation number: 4 Reaction step number: 185 SrCO3 added: 1.8500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.2586e-01 -XStrontianite: 5.7414e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.3489e-01 +XStrontianite: 5.6511e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2759,10 +2760,10 @@ Simulation number: 4 Reaction step number: 186 SrCO3 added: 1.8600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.2304e-01 -XStrontianite: 5.7696e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.3197e-01 +XStrontianite: 5.6803e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2772,10 +2773,10 @@ Simulation number: 4 Reaction step number: 187 SrCO3 added: 1.8700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.2025e-01 -XStrontianite: 5.7975e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.2909e-01 +XStrontianite: 5.7091e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2785,10 +2786,10 @@ Simulation number: 4 Reaction step number: 188 SrCO3 added: 1.8800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.1751e-01 -XStrontianite: 5.8249e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.2624e-01 +XStrontianite: 5.7376e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2798,10 +2799,10 @@ Simulation number: 4 Reaction step number: 189 SrCO3 added: 1.8900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.1480e-01 -XStrontianite: 5.8520e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.2343e-01 +XStrontianite: 5.7657e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2811,10 +2812,10 @@ Simulation number: 4 Reaction step number: 190 SrCO3 added: 1.9000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.1212e-01 -XStrontianite: 5.8788e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.2066e-01 +XStrontianite: 5.7934e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2824,10 +2825,10 @@ Simulation number: 4 Reaction step number: 191 SrCO3 added: 1.9100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.0948e-01 -XStrontianite: 5.9052e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.1792e-01 +XStrontianite: 5.8208e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2837,10 +2838,10 @@ Simulation number: 4 Reaction step number: 192 SrCO3 added: 1.9200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.0687e-01 -XStrontianite: 5.9313e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.1522e-01 +XStrontianite: 5.8478e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2850,10 +2851,10 @@ Simulation number: 4 Reaction step number: 193 SrCO3 added: 1.9300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.0429e-01 -XStrontianite: 5.9571e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.1256e-01 +XStrontianite: 5.8744e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2863,10 +2864,10 @@ Simulation number: 4 Reaction step number: 194 SrCO3 added: 1.9400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.0175e-01 -XStrontianite: 5.9825e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.0993e-01 +XStrontianite: 5.9007e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2876,10 +2877,10 @@ Simulation number: 4 Reaction step number: 195 SrCO3 added: 1.9500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.9924e-01 -XStrontianite: 6.0076e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.0733e-01 +XStrontianite: 5.9267e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2889,10 +2890,10 @@ Simulation number: 4 Reaction step number: 196 SrCO3 added: 1.9600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.9676e-01 -XStrontianite: 6.0324e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.0476e-01 +XStrontianite: 5.9524e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2902,10 +2903,10 @@ Simulation number: 4 Reaction step number: 197 SrCO3 added: 1.9700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.9431e-01 -XStrontianite: 6.0569e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.0223e-01 +XStrontianite: 5.9777e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2915,10 +2916,10 @@ Simulation number: 4 Reaction step number: 198 SrCO3 added: 1.9800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.9189e-01 -XStrontianite: 6.0811e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.9973e-01 +XStrontianite: 6.0027e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2928,10 +2929,10 @@ Simulation number: 4 Reaction step number: 199 SrCO3 added: 1.9900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.8950e-01 -XStrontianite: 6.1050e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.9726e-01 +XStrontianite: 6.0274e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2941,10 +2942,10 @@ Simulation number: 4 Reaction step number: 200 SrCO3 added: 2.0000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.8714e-01 -XStrontianite: 6.1286e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.9482e-01 +XStrontianite: 6.0518e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2954,10 +2955,10 @@ Simulation number: 4 Reaction step number: 201 SrCO3 added: 2.0100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.8481e-01 -XStrontianite: 6.1519e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.9241e-01 +XStrontianite: 6.0759e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2967,10 +2968,10 @@ Simulation number: 4 Reaction step number: 202 SrCO3 added: 2.0200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.8250e-01 -XStrontianite: 6.1750e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.9003e-01 +XStrontianite: 6.0997e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2980,10 +2981,10 @@ Simulation number: 4 Reaction step number: 203 SrCO3 added: 2.0300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.8023e-01 -XStrontianite: 6.1977e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.8767e-01 +XStrontianite: 6.1233e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2993,10 +2994,10 @@ Simulation number: 4 Reaction step number: 204 SrCO3 added: 2.0400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.7798e-01 -XStrontianite: 6.2202e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.8535e-01 +XStrontianite: 6.1465e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3006,10 +3007,10 @@ Simulation number: 4 Reaction step number: 205 SrCO3 added: 2.0500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.7575e-01 -XStrontianite: 6.2425e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.8305e-01 +XStrontianite: 6.1695e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3019,10 +3020,10 @@ Simulation number: 4 Reaction step number: 206 SrCO3 added: 2.0600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.7356e-01 -XStrontianite: 6.2644e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.8078e-01 +XStrontianite: 6.1922e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3032,10 +3033,10 @@ Simulation number: 4 Reaction step number: 207 SrCO3 added: 2.0700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.7138e-01 -XStrontianite: 6.2862e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.7854e-01 +XStrontianite: 6.2146e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3045,10 +3046,10 @@ Simulation number: 4 Reaction step number: 208 SrCO3 added: 2.0800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.6924e-01 -XStrontianite: 6.3076e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.7632e-01 +XStrontianite: 6.2368e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3058,10 +3059,10 @@ Simulation number: 4 Reaction step number: 209 SrCO3 added: 2.0900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.6712e-01 -XStrontianite: 6.3288e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.7413e-01 +XStrontianite: 6.2587e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3071,10 +3072,10 @@ Simulation number: 4 Reaction step number: 210 SrCO3 added: 2.1000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.6502e-01 -XStrontianite: 6.3498e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.7197e-01 +XStrontianite: 6.2803e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3084,10 +3085,10 @@ Simulation number: 4 Reaction step number: 211 SrCO3 added: 2.1100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.6294e-01 -XStrontianite: 6.3706e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.6983e-01 +XStrontianite: 6.3017e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3097,10 +3098,10 @@ Simulation number: 4 Reaction step number: 212 SrCO3 added: 2.1200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.6089e-01 -XStrontianite: 6.3911e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.6771e-01 +XStrontianite: 6.3229e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3110,10 +3111,10 @@ Simulation number: 4 Reaction step number: 213 SrCO3 added: 2.1300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.5887e-01 -XStrontianite: 6.4113e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.6562e-01 +XStrontianite: 6.3438e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3123,10 +3124,10 @@ Simulation number: 4 Reaction step number: 214 SrCO3 added: 2.1400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.5686e-01 -XStrontianite: 6.4314e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.6355e-01 +XStrontianite: 6.3645e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3136,10 +3137,10 @@ Simulation number: 4 Reaction step number: 215 SrCO3 added: 2.1500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.5488e-01 -XStrontianite: 6.4512e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.6151e-01 +XStrontianite: 6.3849e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3149,10 +3150,10 @@ Simulation number: 4 Reaction step number: 216 SrCO3 added: 2.1600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.5292e-01 -XStrontianite: 6.4708e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.5948e-01 +XStrontianite: 6.4052e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3162,10 +3163,10 @@ Simulation number: 4 Reaction step number: 217 SrCO3 added: 2.1700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.5098e-01 -XStrontianite: 6.4902e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.5748e-01 +XStrontianite: 6.4252e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3175,10 +3176,10 @@ Simulation number: 4 Reaction step number: 218 SrCO3 added: 2.1800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.4906e-01 -XStrontianite: 6.5094e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.5551e-01 +XStrontianite: 6.4449e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3188,10 +3189,10 @@ Simulation number: 4 Reaction step number: 219 SrCO3 added: 2.1900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.4716e-01 -XStrontianite: 6.5284e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.5355e-01 +XStrontianite: 6.4645e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3201,10 +3202,10 @@ Simulation number: 4 Reaction step number: 220 SrCO3 added: 2.2000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.4529e-01 -XStrontianite: 6.5471e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.5162e-01 +XStrontianite: 6.4838e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3214,10 +3215,10 @@ Simulation number: 4 Reaction step number: 221 SrCO3 added: 2.2100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.4343e-01 -XStrontianite: 6.5657e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.4970e-01 +XStrontianite: 6.5030e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3227,10 +3228,10 @@ Simulation number: 4 Reaction step number: 222 SrCO3 added: 2.2200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.4159e-01 -XStrontianite: 6.5841e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.4781e-01 +XStrontianite: 6.5219e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3240,10 +3241,10 @@ Simulation number: 4 Reaction step number: 223 SrCO3 added: 2.2300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3978e-01 -XStrontianite: 6.6022e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.4594e-01 +XStrontianite: 6.5406e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3253,10 +3254,10 @@ Simulation number: 4 Reaction step number: 224 SrCO3 added: 2.2400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3798e-01 -XStrontianite: 6.6202e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.4409e-01 +XStrontianite: 6.5591e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3266,10 +3267,10 @@ Simulation number: 4 Reaction step number: 225 SrCO3 added: 2.2500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3620e-01 -XStrontianite: 6.6380e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.4225e-01 +XStrontianite: 6.5775e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3279,10 +3280,10 @@ Simulation number: 4 Reaction step number: 226 SrCO3 added: 2.2600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3444e-01 -XStrontianite: 6.6556e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.4044e-01 +XStrontianite: 6.5956e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3292,10 +3293,10 @@ Simulation number: 4 Reaction step number: 227 SrCO3 added: 2.2700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3270e-01 -XStrontianite: 6.6730e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.3865e-01 +XStrontianite: 6.6135e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3305,10 +3306,10 @@ Simulation number: 4 Reaction step number: 228 SrCO3 added: 2.2800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3097e-01 -XStrontianite: 6.6903e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.3687e-01 +XStrontianite: 6.6313e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3318,10 +3319,10 @@ Simulation number: 4 Reaction step number: 229 SrCO3 added: 2.2900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2927e-01 -XStrontianite: 6.7073e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.3512e-01 +XStrontianite: 6.6488e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3331,10 +3332,10 @@ Simulation number: 4 Reaction step number: 230 SrCO3 added: 2.3000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2758e-01 -XStrontianite: 6.7242e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.3338e-01 +XStrontianite: 6.6662e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3344,10 +3345,10 @@ Simulation number: 4 Reaction step number: 231 SrCO3 added: 2.3100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2591e-01 -XStrontianite: 6.7409e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.3166e-01 +XStrontianite: 6.6834e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3357,10 +3358,10 @@ Simulation number: 4 Reaction step number: 232 SrCO3 added: 2.3200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2425e-01 -XStrontianite: 6.7575e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.2995e-01 +XStrontianite: 6.7005e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3370,10 +3371,10 @@ Simulation number: 4 Reaction step number: 233 SrCO3 added: 2.3300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2261e-01 -XStrontianite: 6.7739e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.2827e-01 +XStrontianite: 6.7173e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3383,10 +3384,10 @@ Simulation number: 4 Reaction step number: 234 SrCO3 added: 2.3400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2099e-01 -XStrontianite: 6.7901e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.2660e-01 +XStrontianite: 6.7340e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3396,10 +3397,10 @@ Simulation number: 4 Reaction step number: 235 SrCO3 added: 2.3500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1939e-01 -XStrontianite: 6.8061e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.2495e-01 +XStrontianite: 6.7505e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3409,10 +3410,10 @@ Simulation number: 4 Reaction step number: 236 SrCO3 added: 2.3600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1780e-01 -XStrontianite: 6.8220e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.2331e-01 +XStrontianite: 6.7669e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3422,10 +3423,10 @@ Simulation number: 4 Reaction step number: 237 SrCO3 added: 2.3700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1623e-01 -XStrontianite: 6.8377e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.2170e-01 +XStrontianite: 6.7830e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3435,10 +3436,10 @@ Simulation number: 4 Reaction step number: 238 SrCO3 added: 2.3800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1467e-01 -XStrontianite: 6.8533e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.2009e-01 +XStrontianite: 6.7991e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3448,10 +3449,10 @@ Simulation number: 4 Reaction step number: 239 SrCO3 added: 2.3900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1313e-01 -XStrontianite: 6.8687e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.1851e-01 +XStrontianite: 6.8149e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3461,10 +3462,10 @@ Simulation number: 4 Reaction step number: 240 SrCO3 added: 2.4000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1160e-01 -XStrontianite: 6.8840e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.1694e-01 +XStrontianite: 6.8306e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3474,10 +3475,10 @@ Simulation number: 4 Reaction step number: 241 SrCO3 added: 2.4100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1009e-01 -XStrontianite: 6.8991e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.1538e-01 +XStrontianite: 6.8462e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3487,10 +3488,10 @@ Simulation number: 4 Reaction step number: 242 SrCO3 added: 2.4200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0859e-01 -XStrontianite: 6.9141e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.1384e-01 +XStrontianite: 6.8616e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3500,10 +3501,10 @@ Simulation number: 4 Reaction step number: 243 SrCO3 added: 2.4300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0710e-01 -XStrontianite: 6.9290e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.1232e-01 +XStrontianite: 6.8768e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3513,10 +3514,10 @@ Simulation number: 4 Reaction step number: 244 SrCO3 added: 2.4400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0563e-01 -XStrontianite: 6.9437e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.1081e-01 +XStrontianite: 6.8919e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3526,10 +3527,10 @@ Simulation number: 4 Reaction step number: 245 SrCO3 added: 2.4500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0418e-01 -XStrontianite: 6.9582e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.0931e-01 +XStrontianite: 6.9069e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3539,10 +3540,10 @@ Simulation number: 4 Reaction step number: 246 SrCO3 added: 2.4600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0274e-01 -XStrontianite: 6.9726e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.0783e-01 +XStrontianite: 6.9217e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3552,10 +3553,10 @@ Simulation number: 4 Reaction step number: 247 SrCO3 added: 2.4700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0131e-01 -XStrontianite: 6.9869e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.0636e-01 +XStrontianite: 6.9364e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3565,10 +3566,10 @@ Simulation number: 4 Reaction step number: 248 SrCO3 added: 2.4800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9989e-01 -XStrontianite: 7.0011e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.0491e-01 +XStrontianite: 6.9509e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3578,10 +3579,10 @@ Simulation number: 4 Reaction step number: 249 SrCO3 added: 2.4900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9849e-01 -XStrontianite: 7.0151e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.0347e-01 +XStrontianite: 6.9653e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3591,10 +3592,10 @@ Simulation number: 4 Reaction step number: 250 SrCO3 added: 2.5000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9710e-01 -XStrontianite: 7.0290e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.0204e-01 +XStrontianite: 6.9796e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3604,10 +3605,10 @@ Simulation number: 4 Reaction step number: 251 SrCO3 added: 2.5100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9573e-01 -XStrontianite: 7.0427e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.0063e-01 +XStrontianite: 6.9937e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3617,10 +3618,10 @@ Simulation number: 4 Reaction step number: 252 SrCO3 added: 2.5200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9437e-01 -XStrontianite: 7.0563e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.9923e-01 +XStrontianite: 7.0077e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3630,10 +3631,10 @@ Simulation number: 4 Reaction step number: 253 SrCO3 added: 2.5300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9302e-01 -XStrontianite: 7.0698e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.9784e-01 +XStrontianite: 7.0216e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3643,10 +3644,10 @@ Simulation number: 4 Reaction step number: 254 SrCO3 added: 2.5400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9168e-01 -XStrontianite: 7.0832e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.9647e-01 +XStrontianite: 7.0353e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3656,10 +3657,10 @@ Simulation number: 4 Reaction step number: 255 SrCO3 added: 2.5500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9035e-01 -XStrontianite: 7.0965e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.9511e-01 +XStrontianite: 7.0489e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3669,10 +3670,10 @@ Simulation number: 4 Reaction step number: 256 SrCO3 added: 2.5600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8904e-01 -XStrontianite: 7.1096e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.9376e-01 +XStrontianite: 7.0624e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3682,10 +3683,10 @@ Simulation number: 4 Reaction step number: 257 SrCO3 added: 2.5700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8774e-01 -XStrontianite: 7.1226e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.9242e-01 +XStrontianite: 7.0758e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3695,10 +3696,10 @@ Simulation number: 4 Reaction step number: 258 SrCO3 added: 2.5800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8645e-01 -XStrontianite: 7.1355e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.9110e-01 +XStrontianite: 7.0890e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3708,10 +3709,10 @@ Simulation number: 4 Reaction step number: 259 SrCO3 added: 2.5900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8517e-01 -XStrontianite: 7.1483e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.8978e-01 +XStrontianite: 7.1022e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3721,10 +3722,10 @@ Simulation number: 4 Reaction step number: 260 SrCO3 added: 2.6000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8390e-01 -XStrontianite: 7.1610e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.8848e-01 +XStrontianite: 7.1152e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3734,10 +3735,10 @@ Simulation number: 4 Reaction step number: 261 SrCO3 added: 2.6100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8264e-01 -XStrontianite: 7.1736e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.8719e-01 +XStrontianite: 7.1281e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3747,10 +3748,10 @@ Simulation number: 4 Reaction step number: 262 SrCO3 added: 2.6200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8140e-01 -XStrontianite: 7.1860e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.8592e-01 +XStrontianite: 7.1408e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3760,10 +3761,10 @@ Simulation number: 4 Reaction step number: 263 SrCO3 added: 2.6300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8016e-01 -XStrontianite: 7.1984e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.8465e-01 +XStrontianite: 7.1535e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3773,10 +3774,10 @@ Simulation number: 4 Reaction step number: 264 SrCO3 added: 2.6400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7894e-01 -XStrontianite: 7.2106e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.8340e-01 +XStrontianite: 7.1660e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3786,10 +3787,10 @@ Simulation number: 4 Reaction step number: 265 SrCO3 added: 2.6500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7773e-01 -XStrontianite: 7.2227e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.8215e-01 +XStrontianite: 7.1785e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3799,10 +3800,10 @@ Simulation number: 4 Reaction step number: 266 SrCO3 added: 2.6600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7652e-01 -XStrontianite: 7.2348e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.8092e-01 +XStrontianite: 7.1908e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3812,10 +3813,10 @@ Simulation number: 4 Reaction step number: 267 SrCO3 added: 2.6700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7533e-01 -XStrontianite: 7.2467e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7970e-01 +XStrontianite: 7.2030e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3825,10 +3826,10 @@ Simulation number: 4 Reaction step number: 268 SrCO3 added: 2.6800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7415e-01 -XStrontianite: 7.2585e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7848e-01 +XStrontianite: 7.2152e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3838,10 +3839,10 @@ Simulation number: 4 Reaction step number: 269 SrCO3 added: 2.6900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7298e-01 -XStrontianite: 7.2702e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7728e-01 +XStrontianite: 7.2272e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3851,10 +3852,10 @@ Simulation number: 4 Reaction step number: 270 SrCO3 added: 2.7000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7182e-01 -XStrontianite: 7.2818e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7609e-01 +XStrontianite: 7.2391e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3864,10 +3865,10 @@ Simulation number: 4 Reaction step number: 271 SrCO3 added: 2.7100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7067e-01 -XStrontianite: 7.2933e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7491e-01 +XStrontianite: 7.2509e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3877,10 +3878,10 @@ Simulation number: 4 Reaction step number: 272 SrCO3 added: 2.7200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6952e-01 -XStrontianite: 7.3048e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7374e-01 +XStrontianite: 7.2626e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3890,10 +3891,10 @@ Simulation number: 4 Reaction step number: 273 SrCO3 added: 2.7300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6839e-01 -XStrontianite: 7.3161e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7258e-01 +XStrontianite: 7.2742e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3903,10 +3904,10 @@ Simulation number: 4 Reaction step number: 274 SrCO3 added: 2.7400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6727e-01 -XStrontianite: 7.3273e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7143e-01 +XStrontianite: 7.2857e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3916,10 +3917,10 @@ Simulation number: 4 Reaction step number: 275 SrCO3 added: 2.7500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6615e-01 -XStrontianite: 7.3385e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7029e-01 +XStrontianite: 7.2971e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3929,10 +3930,10 @@ Simulation number: 4 Reaction step number: 276 SrCO3 added: 2.7600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6505e-01 -XStrontianite: 7.3495e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6915e-01 +XStrontianite: 7.3085e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3942,10 +3943,10 @@ Simulation number: 4 Reaction step number: 277 SrCO3 added: 2.7700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6395e-01 -XStrontianite: 7.3605e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6803e-01 +XStrontianite: 7.3197e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3955,10 +3956,10 @@ Simulation number: 4 Reaction step number: 278 SrCO3 added: 2.7800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6287e-01 -XStrontianite: 7.3713e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6692e-01 +XStrontianite: 7.3308e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3968,10 +3969,10 @@ Simulation number: 4 Reaction step number: 279 SrCO3 added: 2.7900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6179e-01 -XStrontianite: 7.3821e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6581e-01 +XStrontianite: 7.3419e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3981,10 +3982,10 @@ Simulation number: 4 Reaction step number: 280 SrCO3 added: 2.8000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6072e-01 -XStrontianite: 7.3928e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6472e-01 +XStrontianite: 7.3528e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3994,10 +3995,10 @@ Simulation number: 4 Reaction step number: 281 SrCO3 added: 2.8100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5966e-01 -XStrontianite: 7.4034e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6363e-01 +XStrontianite: 7.3637e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4007,10 +4008,10 @@ Simulation number: 4 Reaction step number: 282 SrCO3 added: 2.8200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5861e-01 -XStrontianite: 7.4139e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6256e-01 +XStrontianite: 7.3744e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4020,10 +4021,10 @@ Simulation number: 4 Reaction step number: 283 SrCO3 added: 2.8300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5757e-01 -XStrontianite: 7.4243e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6149e-01 +XStrontianite: 7.3851e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4033,10 +4034,10 @@ Simulation number: 4 Reaction step number: 284 SrCO3 added: 2.8400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5653e-01 -XStrontianite: 7.4347e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6043e-01 +XStrontianite: 7.3957e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4046,10 +4047,10 @@ Simulation number: 4 Reaction step number: 285 SrCO3 added: 2.8500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5551e-01 -XStrontianite: 7.4449e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5938e-01 +XStrontianite: 7.4062e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4059,10 +4060,10 @@ Simulation number: 4 Reaction step number: 286 SrCO3 added: 2.8600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5449e-01 -XStrontianite: 7.4551e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5833e-01 +XStrontianite: 7.4167e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4072,10 +4073,10 @@ Simulation number: 4 Reaction step number: 287 SrCO3 added: 2.8700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5348e-01 -XStrontianite: 7.4652e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5730e-01 +XStrontianite: 7.4270e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4085,10 +4086,10 @@ Simulation number: 4 Reaction step number: 288 SrCO3 added: 2.8800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5248e-01 -XStrontianite: 7.4752e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5627e-01 +XStrontianite: 7.4373e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4098,10 +4099,10 @@ Simulation number: 4 Reaction step number: 289 SrCO3 added: 2.8900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5148e-01 -XStrontianite: 7.4852e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5526e-01 +XStrontianite: 7.4474e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4111,10 +4112,10 @@ Simulation number: 4 Reaction step number: 290 SrCO3 added: 2.9000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5050e-01 -XStrontianite: 7.4950e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5425e-01 +XStrontianite: 7.4575e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4124,10 +4125,10 @@ Simulation number: 4 Reaction step number: 291 SrCO3 added: 2.9100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4952e-01 -XStrontianite: 7.5048e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5324e-01 +XStrontianite: 7.4676e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4137,10 +4138,10 @@ Simulation number: 4 Reaction step number: 292 SrCO3 added: 2.9200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4855e-01 -XStrontianite: 7.5145e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5225e-01 +XStrontianite: 7.4775e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4150,10 +4151,10 @@ Simulation number: 4 Reaction step number: 293 SrCO3 added: 2.9300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4758e-01 -XStrontianite: 7.5242e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5126e-01 +XStrontianite: 7.4874e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4163,10 +4164,10 @@ Simulation number: 4 Reaction step number: 294 SrCO3 added: 2.9400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4663e-01 -XStrontianite: 7.5337e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5029e-01 +XStrontianite: 7.4971e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4176,10 +4177,10 @@ Simulation number: 4 Reaction step number: 295 SrCO3 added: 2.9500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4568e-01 -XStrontianite: 7.5432e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4932e-01 +XStrontianite: 7.5068e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4189,10 +4190,10 @@ Simulation number: 4 Reaction step number: 296 SrCO3 added: 2.9600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4474e-01 -XStrontianite: 7.5526e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4835e-01 +XStrontianite: 7.5165e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4202,10 +4203,10 @@ Simulation number: 4 Reaction step number: 297 SrCO3 added: 2.9700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4380e-01 -XStrontianite: 7.5620e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4740e-01 +XStrontianite: 7.5260e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4215,10 +4216,10 @@ Simulation number: 4 Reaction step number: 298 SrCO3 added: 2.9800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4288e-01 -XStrontianite: 7.5712e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4645e-01 +XStrontianite: 7.5355e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4228,10 +4229,10 @@ Simulation number: 4 Reaction step number: 299 SrCO3 added: 2.9900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4196e-01 -XStrontianite: 7.5804e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4551e-01 +XStrontianite: 7.5449e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4241,10 +4242,10 @@ Simulation number: 4 Reaction step number: 300 SrCO3 added: 3.0000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4104e-01 -XStrontianite: 7.5896e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4457e-01 +XStrontianite: 7.5543e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4254,10 +4255,10 @@ Simulation number: 4 Reaction step number: 301 SrCO3 added: 3.0100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4014e-01 -XStrontianite: 7.5986e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4364e-01 +XStrontianite: 7.5636e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4267,10 +4268,10 @@ Simulation number: 4 Reaction step number: 302 SrCO3 added: 3.0200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3924e-01 -XStrontianite: 7.6076e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4272e-01 +XStrontianite: 7.5728e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4280,10 +4281,10 @@ Simulation number: 4 Reaction step number: 303 SrCO3 added: 3.0300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3835e-01 -XStrontianite: 7.6165e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4181e-01 +XStrontianite: 7.5819e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4293,10 +4294,10 @@ Simulation number: 4 Reaction step number: 304 SrCO3 added: 3.0400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3746e-01 -XStrontianite: 7.6254e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4090e-01 +XStrontianite: 7.5910e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4306,10 +4307,10 @@ Simulation number: 4 Reaction step number: 305 SrCO3 added: 3.0500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3658e-01 -XStrontianite: 7.6342e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4000e-01 +XStrontianite: 7.6000e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4319,10 +4320,10 @@ Simulation number: 4 Reaction step number: 306 SrCO3 added: 3.0600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3571e-01 -XStrontianite: 7.6429e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3911e-01 +XStrontianite: 7.6089e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4332,10 +4333,10 @@ Simulation number: 4 Reaction step number: 307 SrCO3 added: 3.0700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3484e-01 -XStrontianite: 7.6516e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3823e-01 +XStrontianite: 7.6177e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4345,10 +4346,10 @@ Simulation number: 4 Reaction step number: 308 SrCO3 added: 3.0800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3398e-01 -XStrontianite: 7.6602e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3735e-01 +XStrontianite: 7.6265e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4358,10 +4359,10 @@ Simulation number: 4 Reaction step number: 309 SrCO3 added: 3.0900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3313e-01 -XStrontianite: 7.6687e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3647e-01 +XStrontianite: 7.6353e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4371,10 +4372,10 @@ Simulation number: 4 Reaction step number: 310 SrCO3 added: 3.1000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3228e-01 -XStrontianite: 7.6772e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3561e-01 +XStrontianite: 7.6439e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4384,10 +4385,10 @@ Simulation number: 4 Reaction step number: 311 SrCO3 added: 3.1100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3144e-01 -XStrontianite: 7.6856e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3474e-01 +XStrontianite: 7.6526e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4397,10 +4398,10 @@ Simulation number: 4 Reaction step number: 312 SrCO3 added: 3.1200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3060e-01 -XStrontianite: 7.6940e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3389e-01 +XStrontianite: 7.6611e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4410,10 +4411,10 @@ Simulation number: 4 Reaction step number: 313 SrCO3 added: 3.1300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2977e-01 -XStrontianite: 7.7023e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3304e-01 +XStrontianite: 7.6696e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4423,10 +4424,10 @@ Simulation number: 4 Reaction step number: 314 SrCO3 added: 3.1400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2895e-01 -XStrontianite: 7.7105e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3220e-01 +XStrontianite: 7.6780e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4436,10 +4437,10 @@ Simulation number: 4 Reaction step number: 315 SrCO3 added: 3.1500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2813e-01 -XStrontianite: 7.7187e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3136e-01 +XStrontianite: 7.6864e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4449,10 +4450,10 @@ Simulation number: 4 Reaction step number: 316 SrCO3 added: 3.1600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2732e-01 -XStrontianite: 7.7268e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3053e-01 +XStrontianite: 7.6947e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4462,10 +4463,10 @@ Simulation number: 4 Reaction step number: 317 SrCO3 added: 3.1700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2651e-01 -XStrontianite: 7.7349e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2971e-01 +XStrontianite: 7.7029e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4475,10 +4476,10 @@ Simulation number: 4 Reaction step number: 318 SrCO3 added: 3.1800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2571e-01 -XStrontianite: 7.7429e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2889e-01 +XStrontianite: 7.7111e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4488,10 +4489,10 @@ Simulation number: 4 Reaction step number: 319 SrCO3 added: 3.1900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2492e-01 -XStrontianite: 7.7508e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2808e-01 +XStrontianite: 7.7192e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4501,10 +4502,10 @@ Simulation number: 4 Reaction step number: 320 SrCO3 added: 3.2000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2413e-01 -XStrontianite: 7.7587e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2727e-01 +XStrontianite: 7.7273e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4514,10 +4515,10 @@ Simulation number: 4 Reaction step number: 321 SrCO3 added: 3.2100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2334e-01 -XStrontianite: 7.7666e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2647e-01 +XStrontianite: 7.7353e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4527,10 +4528,10 @@ Simulation number: 4 Reaction step number: 322 SrCO3 added: 3.2200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2257e-01 -XStrontianite: 7.7743e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2568e-01 +XStrontianite: 7.7432e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4540,10 +4541,10 @@ Simulation number: 4 Reaction step number: 323 SrCO3 added: 3.2300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2179e-01 -XStrontianite: 7.7821e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2489e-01 +XStrontianite: 7.7511e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4553,10 +4554,10 @@ Simulation number: 4 Reaction step number: 324 SrCO3 added: 3.2400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2103e-01 -XStrontianite: 7.7897e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2410e-01 +XStrontianite: 7.7590e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4566,10 +4567,10 @@ Simulation number: 4 Reaction step number: 325 SrCO3 added: 3.2500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2026e-01 -XStrontianite: 7.7974e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2333e-01 +XStrontianite: 7.7667e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4579,10 +4580,10 @@ Simulation number: 4 Reaction step number: 326 SrCO3 added: 3.2600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1951e-01 -XStrontianite: 7.8049e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2255e-01 +XStrontianite: 7.7745e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4592,10 +4593,10 @@ Simulation number: 4 Reaction step number: 327 SrCO3 added: 3.2700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1876e-01 -XStrontianite: 7.8124e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2178e-01 +XStrontianite: 7.7822e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4605,10 +4606,10 @@ Simulation number: 4 Reaction step number: 328 SrCO3 added: 3.2800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1801e-01 -XStrontianite: 7.8199e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2102e-01 +XStrontianite: 7.7898e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4618,10 +4619,10 @@ Simulation number: 4 Reaction step number: 329 SrCO3 added: 3.2900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1727e-01 -XStrontianite: 7.8273e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2026e-01 +XStrontianite: 7.7974e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4631,10 +4632,10 @@ Simulation number: 4 Reaction step number: 330 SrCO3 added: 3.3000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1653e-01 -XStrontianite: 7.8347e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1951e-01 +XStrontianite: 7.8049e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4644,10 +4645,10 @@ Simulation number: 4 Reaction step number: 331 SrCO3 added: 3.3100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1580e-01 -XStrontianite: 7.8420e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1876e-01 +XStrontianite: 7.8124e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4657,10 +4658,10 @@ Simulation number: 4 Reaction step number: 332 SrCO3 added: 3.3200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1507e-01 -XStrontianite: 7.8493e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1802e-01 +XStrontianite: 7.8198e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4670,10 +4671,10 @@ Simulation number: 4 Reaction step number: 333 SrCO3 added: 3.3300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1435e-01 -XStrontianite: 7.8565e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1728e-01 +XStrontianite: 7.8272e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4683,10 +4684,10 @@ Simulation number: 4 Reaction step number: 334 SrCO3 added: 3.3400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1363e-01 -XStrontianite: 7.8637e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1655e-01 +XStrontianite: 7.8345e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4696,10 +4697,10 @@ Simulation number: 4 Reaction step number: 335 SrCO3 added: 3.3500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1292e-01 -XStrontianite: 7.8708e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1583e-01 +XStrontianite: 7.8417e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4709,10 +4710,10 @@ Simulation number: 4 Reaction step number: 336 SrCO3 added: 3.3600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1221e-01 -XStrontianite: 7.8779e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1510e-01 +XStrontianite: 7.8490e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4722,10 +4723,10 @@ Simulation number: 4 Reaction step number: 337 SrCO3 added: 3.3700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1151e-01 -XStrontianite: 7.8849e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1439e-01 +XStrontianite: 7.8561e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4735,10 +4736,10 @@ Simulation number: 4 Reaction step number: 338 SrCO3 added: 3.3800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1081e-01 -XStrontianite: 7.8919e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1367e-01 +XStrontianite: 7.8633e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4748,10 +4749,10 @@ Simulation number: 4 Reaction step number: 339 SrCO3 added: 3.3900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1012e-01 -XStrontianite: 7.8988e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1296e-01 +XStrontianite: 7.8704e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4761,10 +4762,10 @@ Simulation number: 4 Reaction step number: 340 SrCO3 added: 3.4000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0943e-01 -XStrontianite: 7.9057e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1226e-01 +XStrontianite: 7.8774e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4774,10 +4775,10 @@ Simulation number: 4 Reaction step number: 341 SrCO3 added: 3.4100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0875e-01 -XStrontianite: 7.9125e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1156e-01 +XStrontianite: 7.8844e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4787,10 +4788,10 @@ Simulation number: 4 Reaction step number: 342 SrCO3 added: 3.4200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0807e-01 -XStrontianite: 7.9193e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1087e-01 +XStrontianite: 7.8913e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4800,10 +4801,10 @@ Simulation number: 4 Reaction step number: 343 SrCO3 added: 3.4300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0739e-01 -XStrontianite: 7.9261e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1018e-01 +XStrontianite: 7.8982e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4813,10 +4814,10 @@ Simulation number: 4 Reaction step number: 344 SrCO3 added: 3.4400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0672e-01 -XStrontianite: 7.9328e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0949e-01 +XStrontianite: 7.9051e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4826,10 +4827,10 @@ Simulation number: 4 Reaction step number: 345 SrCO3 added: 3.4500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0605e-01 -XStrontianite: 7.9395e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0881e-01 +XStrontianite: 7.9119e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4839,10 +4840,10 @@ Simulation number: 4 Reaction step number: 346 SrCO3 added: 3.4600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0539e-01 -XStrontianite: 7.9461e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0814e-01 +XStrontianite: 7.9186e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4852,10 +4853,10 @@ Simulation number: 4 Reaction step number: 347 SrCO3 added: 3.4700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0473e-01 -XStrontianite: 7.9527e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0746e-01 +XStrontianite: 7.9254e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4865,10 +4866,10 @@ Simulation number: 4 Reaction step number: 348 SrCO3 added: 3.4800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0408e-01 -XStrontianite: 7.9592e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0680e-01 +XStrontianite: 7.9320e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4878,10 +4879,10 @@ Simulation number: 4 Reaction step number: 349 SrCO3 added: 3.4900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0343e-01 -XStrontianite: 7.9657e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0613e-01 +XStrontianite: 7.9387e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4891,10 +4892,10 @@ Simulation number: 4 Reaction step number: 350 SrCO3 added: 3.5000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0278e-01 -XStrontianite: 7.9722e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0548e-01 +XStrontianite: 7.9452e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4904,10 +4905,10 @@ Simulation number: 4 Reaction step number: 351 SrCO3 added: 3.5100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0214e-01 -XStrontianite: 7.9786e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0482e-01 +XStrontianite: 7.9518e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4917,10 +4918,10 @@ Simulation number: 4 Reaction step number: 352 SrCO3 added: 3.5200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0150e-01 -XStrontianite: 7.9850e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0417e-01 +XStrontianite: 7.9583e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4930,10 +4931,10 @@ Simulation number: 4 Reaction step number: 353 SrCO3 added: 3.5300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0087e-01 -XStrontianite: 7.9913e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0352e-01 +XStrontianite: 7.9648e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4943,10 +4944,10 @@ Simulation number: 4 Reaction step number: 354 SrCO3 added: 3.5400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0024e-01 -XStrontianite: 7.9976e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0288e-01 +XStrontianite: 7.9712e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4956,10 +4957,10 @@ Simulation number: 4 Reaction step number: 355 SrCO3 added: 3.5500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9961e-01 -XStrontianite: 8.0039e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0224e-01 +XStrontianite: 7.9776e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4969,10 +4970,10 @@ Simulation number: 4 Reaction step number: 356 SrCO3 added: 3.5600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9899e-01 -XStrontianite: 8.0101e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0161e-01 +XStrontianite: 7.9839e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4982,10 +4983,10 @@ Simulation number: 4 Reaction step number: 357 SrCO3 added: 3.5700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9837e-01 -XStrontianite: 8.0163e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0098e-01 +XStrontianite: 7.9902e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4995,10 +4996,10 @@ Simulation number: 4 Reaction step number: 358 SrCO3 added: 3.5800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9776e-01 -XStrontianite: 8.0224e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0035e-01 +XStrontianite: 7.9965e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5008,10 +5009,10 @@ Simulation number: 4 Reaction step number: 359 SrCO3 added: 3.5900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9715e-01 -XStrontianite: 8.0285e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9973e-01 +XStrontianite: 8.0027e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5021,10 +5022,10 @@ Simulation number: 4 Reaction step number: 360 SrCO3 added: 3.6000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9654e-01 -XStrontianite: 8.0346e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9911e-01 +XStrontianite: 8.0089e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5034,10 +5035,10 @@ Simulation number: 4 Reaction step number: 361 SrCO3 added: 3.6100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9594e-01 -XStrontianite: 8.0406e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9849e-01 +XStrontianite: 8.0151e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5047,10 +5048,10 @@ Simulation number: 4 Reaction step number: 362 SrCO3 added: 3.6200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9534e-01 -XStrontianite: 8.0466e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9788e-01 +XStrontianite: 8.0212e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5060,10 +5061,10 @@ Simulation number: 4 Reaction step number: 363 SrCO3 added: 3.6300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9474e-01 -XStrontianite: 8.0526e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9728e-01 +XStrontianite: 8.0272e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5073,10 +5074,10 @@ Simulation number: 4 Reaction step number: 364 SrCO3 added: 3.6400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9415e-01 -XStrontianite: 8.0585e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9667e-01 +XStrontianite: 8.0333e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5086,10 +5087,10 @@ Simulation number: 4 Reaction step number: 365 SrCO3 added: 3.6500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9356e-01 -XStrontianite: 8.0644e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9607e-01 +XStrontianite: 8.0393e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5099,10 +5100,10 @@ Simulation number: 4 Reaction step number: 366 SrCO3 added: 3.6600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9298e-01 -XStrontianite: 8.0702e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9548e-01 +XStrontianite: 8.0452e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5112,10 +5113,10 @@ Simulation number: 4 Reaction step number: 367 SrCO3 added: 3.6700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9240e-01 -XStrontianite: 8.0760e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9488e-01 +XStrontianite: 8.0512e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5125,10 +5126,10 @@ Simulation number: 4 Reaction step number: 368 SrCO3 added: 3.6800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9182e-01 -XStrontianite: 8.0818e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9429e-01 +XStrontianite: 8.0571e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5138,10 +5139,10 @@ Simulation number: 4 Reaction step number: 369 SrCO3 added: 3.6900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9125e-01 -XStrontianite: 8.0875e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9371e-01 +XStrontianite: 8.0629e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5151,10 +5152,10 @@ Simulation number: 4 Reaction step number: 370 SrCO3 added: 3.7000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9068e-01 -XStrontianite: 8.0932e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9313e-01 +XStrontianite: 8.0687e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5164,10 +5165,10 @@ Simulation number: 4 Reaction step number: 371 SrCO3 added: 3.7100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9011e-01 -XStrontianite: 8.0989e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9255e-01 +XStrontianite: 8.0745e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5177,10 +5178,10 @@ Simulation number: 4 Reaction step number: 372 SrCO3 added: 3.7200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8954e-01 -XStrontianite: 8.1046e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9197e-01 +XStrontianite: 8.0803e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5190,10 +5191,10 @@ Simulation number: 4 Reaction step number: 373 SrCO3 added: 3.7300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8898e-01 -XStrontianite: 8.1102e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9140e-01 +XStrontianite: 8.0860e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5203,10 +5204,10 @@ Simulation number: 4 Reaction step number: 374 SrCO3 added: 3.7400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8843e-01 -XStrontianite: 8.1157e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9083e-01 +XStrontianite: 8.0917e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5216,10 +5217,10 @@ Simulation number: 4 Reaction step number: 375 SrCO3 added: 3.7500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8787e-01 -XStrontianite: 8.1213e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9027e-01 +XStrontianite: 8.0973e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5229,10 +5230,10 @@ Simulation number: 4 Reaction step number: 376 SrCO3 added: 3.7600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8732e-01 -XStrontianite: 8.1268e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8971e-01 +XStrontianite: 8.1029e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5242,10 +5243,10 @@ Simulation number: 4 Reaction step number: 377 SrCO3 added: 3.7700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8677e-01 -XStrontianite: 8.1323e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8915e-01 +XStrontianite: 8.1085e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5255,10 +5256,10 @@ Simulation number: 4 Reaction step number: 378 SrCO3 added: 3.7800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8623e-01 -XStrontianite: 8.1377e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8859e-01 +XStrontianite: 8.1141e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5268,10 +5269,10 @@ Simulation number: 4 Reaction step number: 379 SrCO3 added: 3.7900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8569e-01 -XStrontianite: 8.1431e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8804e-01 +XStrontianite: 8.1196e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5281,10 +5282,10 @@ Simulation number: 4 Reaction step number: 380 SrCO3 added: 3.8000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8515e-01 -XStrontianite: 8.1485e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8749e-01 +XStrontianite: 8.1251e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5294,10 +5295,10 @@ Simulation number: 4 Reaction step number: 381 SrCO3 added: 3.8100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8461e-01 -XStrontianite: 8.1539e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8695e-01 +XStrontianite: 8.1305e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5307,10 +5308,10 @@ Simulation number: 4 Reaction step number: 382 SrCO3 added: 3.8200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8408e-01 -XStrontianite: 8.1592e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8640e-01 +XStrontianite: 8.1360e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5320,10 +5321,10 @@ Simulation number: 4 Reaction step number: 383 SrCO3 added: 3.8300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8355e-01 -XStrontianite: 8.1645e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8587e-01 +XStrontianite: 8.1413e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5333,10 +5334,10 @@ Simulation number: 4 Reaction step number: 384 SrCO3 added: 3.8400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8303e-01 -XStrontianite: 8.1697e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8533e-01 +XStrontianite: 8.1467e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5346,10 +5347,10 @@ Simulation number: 4 Reaction step number: 385 SrCO3 added: 3.8500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8250e-01 -XStrontianite: 8.1750e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8480e-01 +XStrontianite: 8.1520e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5359,10 +5360,10 @@ Simulation number: 4 Reaction step number: 386 SrCO3 added: 3.8600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8198e-01 -XStrontianite: 8.1802e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8427e-01 +XStrontianite: 8.1573e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5372,10 +5373,10 @@ Simulation number: 4 Reaction step number: 387 SrCO3 added: 3.8700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8147e-01 -XStrontianite: 8.1853e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8374e-01 +XStrontianite: 8.1626e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5385,10 +5386,10 @@ Simulation number: 4 Reaction step number: 388 SrCO3 added: 3.8800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8095e-01 -XStrontianite: 8.1905e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8322e-01 +XStrontianite: 8.1678e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5398,10 +5399,10 @@ Simulation number: 4 Reaction step number: 389 SrCO3 added: 3.8900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8044e-01 -XStrontianite: 8.1956e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8270e-01 +XStrontianite: 8.1730e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5411,10 +5412,10 @@ Simulation number: 4 Reaction step number: 390 SrCO3 added: 3.9000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7993e-01 -XStrontianite: 8.2007e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8218e-01 +XStrontianite: 8.1782e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5424,10 +5425,10 @@ Simulation number: 4 Reaction step number: 391 SrCO3 added: 3.9100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7943e-01 -XStrontianite: 8.2057e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8166e-01 +XStrontianite: 8.1834e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5437,10 +5438,10 @@ Simulation number: 4 Reaction step number: 392 SrCO3 added: 3.9200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7892e-01 -XStrontianite: 8.2108e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8115e-01 +XStrontianite: 8.1885e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5450,10 +5451,10 @@ Simulation number: 4 Reaction step number: 393 SrCO3 added: 3.9300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7842e-01 -XStrontianite: 8.2158e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8064e-01 +XStrontianite: 8.1936e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5463,10 +5464,10 @@ Simulation number: 4 Reaction step number: 394 SrCO3 added: 3.9400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7793e-01 -XStrontianite: 8.2207e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8013e-01 +XStrontianite: 8.1987e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5476,10 +5477,10 @@ Simulation number: 4 Reaction step number: 395 SrCO3 added: 3.9500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7743e-01 -XStrontianite: 8.2257e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7963e-01 +XStrontianite: 8.2037e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5489,10 +5490,10 @@ Simulation number: 4 Reaction step number: 396 SrCO3 added: 3.9600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7694e-01 -XStrontianite: 8.2306e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7913e-01 +XStrontianite: 8.2087e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5502,10 +5503,10 @@ Simulation number: 4 Reaction step number: 397 SrCO3 added: 3.9700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7645e-01 -XStrontianite: 8.2355e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7863e-01 +XStrontianite: 8.2137e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5515,10 +5516,10 @@ Simulation number: 4 Reaction step number: 398 SrCO3 added: 3.9800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7597e-01 -XStrontianite: 8.2403e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7814e-01 +XStrontianite: 8.2186e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5528,10 +5529,10 @@ Simulation number: 4 Reaction step number: 399 SrCO3 added: 3.9900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7548e-01 -XStrontianite: 8.2452e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7765e-01 +XStrontianite: 8.2235e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5541,10 +5542,10 @@ Simulation number: 4 Reaction step number: 400 SrCO3 added: 4.0000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7500e-01 -XStrontianite: 8.2500e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7716e-01 +XStrontianite: 8.2284e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5554,10 +5555,10 @@ Simulation number: 4 Reaction step number: 401 SrCO3 added: 4.0100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7452e-01 -XStrontianite: 8.2548e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7667e-01 +XStrontianite: 8.2333e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5567,10 +5568,10 @@ Simulation number: 4 Reaction step number: 402 SrCO3 added: 4.0200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7405e-01 -XStrontianite: 8.2595e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7618e-01 +XStrontianite: 8.2382e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5580,10 +5581,10 @@ Simulation number: 4 Reaction step number: 403 SrCO3 added: 4.0300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7358e-01 -XStrontianite: 8.2642e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7570e-01 +XStrontianite: 8.2430e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5593,10 +5594,10 @@ Simulation number: 4 Reaction step number: 404 SrCO3 added: 4.0400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7311e-01 -XStrontianite: 8.2689e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7522e-01 +XStrontianite: 8.2478e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5606,10 +5607,10 @@ Simulation number: 4 Reaction step number: 405 SrCO3 added: 4.0500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7264e-01 -XStrontianite: 8.2736e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7475e-01 +XStrontianite: 8.2525e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5619,10 +5620,10 @@ Simulation number: 4 Reaction step number: 406 SrCO3 added: 4.0600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7217e-01 -XStrontianite: 8.2783e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7427e-01 +XStrontianite: 8.2573e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5632,10 +5633,10 @@ Simulation number: 4 Reaction step number: 407 SrCO3 added: 4.0700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7171e-01 -XStrontianite: 8.2829e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7380e-01 +XStrontianite: 8.2620e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5645,10 +5646,10 @@ Simulation number: 4 Reaction step number: 408 SrCO3 added: 4.0800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7125e-01 -XStrontianite: 8.2875e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7333e-01 +XStrontianite: 8.2667e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5658,10 +5659,10 @@ Simulation number: 4 Reaction step number: 409 SrCO3 added: 4.0900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7079e-01 -XStrontianite: 8.2921e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7287e-01 +XStrontianite: 8.2713e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5671,10 +5672,10 @@ Simulation number: 4 Reaction step number: 410 SrCO3 added: 4.1000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7034e-01 -XStrontianite: 8.2966e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7240e-01 +XStrontianite: 8.2760e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5684,10 +5685,10 @@ Simulation number: 4 Reaction step number: 411 SrCO3 added: 4.1100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6988e-01 -XStrontianite: 8.3012e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7194e-01 +XStrontianite: 8.2806e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5697,10 +5698,10 @@ Simulation number: 4 Reaction step number: 412 SrCO3 added: 4.1200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6943e-01 -XStrontianite: 8.3057e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7148e-01 +XStrontianite: 8.2852e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5710,10 +5711,10 @@ Simulation number: 4 Reaction step number: 413 SrCO3 added: 4.1300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6898e-01 -XStrontianite: 8.3102e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7103e-01 +XStrontianite: 8.2897e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5723,10 +5724,10 @@ Simulation number: 4 Reaction step number: 414 SrCO3 added: 4.1400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6854e-01 -XStrontianite: 8.3146e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7057e-01 +XStrontianite: 8.2943e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5736,10 +5737,10 @@ Simulation number: 4 Reaction step number: 415 SrCO3 added: 4.1500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6809e-01 -XStrontianite: 8.3191e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7012e-01 +XStrontianite: 8.2988e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5749,10 +5750,10 @@ Simulation number: 4 Reaction step number: 416 SrCO3 added: 4.1600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6765e-01 -XStrontianite: 8.3235e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6967e-01 +XStrontianite: 8.3033e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5762,10 +5763,10 @@ Simulation number: 4 Reaction step number: 417 SrCO3 added: 4.1700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6721e-01 -XStrontianite: 8.3279e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6923e-01 +XStrontianite: 8.3077e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5775,10 +5776,10 @@ Simulation number: 4 Reaction step number: 418 SrCO3 added: 4.1800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6678e-01 -XStrontianite: 8.3322e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6878e-01 +XStrontianite: 8.3122e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5788,10 +5789,10 @@ Simulation number: 4 Reaction step number: 419 SrCO3 added: 4.1900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6634e-01 -XStrontianite: 8.3366e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6834e-01 +XStrontianite: 8.3166e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5801,10 +5802,10 @@ Simulation number: 4 Reaction step number: 420 SrCO3 added: 4.2000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6591e-01 -XStrontianite: 8.3409e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6790e-01 +XStrontianite: 8.3210e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5814,10 +5815,10 @@ Simulation number: 4 Reaction step number: 421 SrCO3 added: 4.2100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6548e-01 -XStrontianite: 8.3452e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6746e-01 +XStrontianite: 8.3254e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5827,10 +5828,10 @@ Simulation number: 4 Reaction step number: 422 SrCO3 added: 4.2200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6505e-01 -XStrontianite: 8.3495e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6703e-01 +XStrontianite: 8.3297e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5840,10 +5841,10 @@ Simulation number: 4 Reaction step number: 423 SrCO3 added: 4.2300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6463e-01 -XStrontianite: 8.3537e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6659e-01 +XStrontianite: 8.3341e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5853,10 +5854,10 @@ Simulation number: 4 Reaction step number: 424 SrCO3 added: 4.2400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6421e-01 -XStrontianite: 8.3579e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6616e-01 +XStrontianite: 8.3384e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5866,10 +5867,10 @@ Simulation number: 4 Reaction step number: 425 SrCO3 added: 4.2500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6378e-01 -XStrontianite: 8.3622e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6573e-01 +XStrontianite: 8.3427e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5879,10 +5880,10 @@ Simulation number: 4 Reaction step number: 426 SrCO3 added: 4.2600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6337e-01 -XStrontianite: 8.3663e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6531e-01 +XStrontianite: 8.3469e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5892,10 +5893,10 @@ Simulation number: 4 Reaction step number: 427 SrCO3 added: 4.2700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6295e-01 -XStrontianite: 8.3705e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6488e-01 +XStrontianite: 8.3512e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5905,10 +5906,10 @@ Simulation number: 4 Reaction step number: 428 SrCO3 added: 4.2800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6253e-01 -XStrontianite: 8.3747e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6446e-01 +XStrontianite: 8.3554e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5918,10 +5919,10 @@ Simulation number: 4 Reaction step number: 429 SrCO3 added: 4.2900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6212e-01 -XStrontianite: 8.3788e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6404e-01 +XStrontianite: 8.3596e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5931,10 +5932,10 @@ Simulation number: 4 Reaction step number: 430 SrCO3 added: 4.3000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6171e-01 -XStrontianite: 8.3829e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6362e-01 +XStrontianite: 8.3638e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5944,10 +5945,10 @@ Simulation number: 4 Reaction step number: 431 SrCO3 added: 4.3100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6130e-01 -XStrontianite: 8.3870e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6321e-01 +XStrontianite: 8.3679e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5957,10 +5958,10 @@ Simulation number: 4 Reaction step number: 432 SrCO3 added: 4.3200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6090e-01 -XStrontianite: 8.3910e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6280e-01 +XStrontianite: 8.3720e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5970,10 +5971,10 @@ Simulation number: 4 Reaction step number: 433 SrCO3 added: 4.3300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6049e-01 -XStrontianite: 8.3951e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6238e-01 +XStrontianite: 8.3762e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5983,10 +5984,10 @@ Simulation number: 4 Reaction step number: 434 SrCO3 added: 4.3400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6009e-01 -XStrontianite: 8.3991e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6198e-01 +XStrontianite: 8.3802e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5996,10 +5997,10 @@ Simulation number: 4 Reaction step number: 435 SrCO3 added: 4.3500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5969e-01 -XStrontianite: 8.4031e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6157e-01 +XStrontianite: 8.3843e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6009,10 +6010,10 @@ Simulation number: 4 Reaction step number: 436 SrCO3 added: 4.3600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5929e-01 -XStrontianite: 8.4071e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6116e-01 +XStrontianite: 8.3884e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6022,10 +6023,10 @@ Simulation number: 4 Reaction step number: 437 SrCO3 added: 4.3700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5890e-01 -XStrontianite: 8.4110e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6076e-01 +XStrontianite: 8.3924e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6035,10 +6036,10 @@ Simulation number: 4 Reaction step number: 438 SrCO3 added: 4.3800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5850e-01 -XStrontianite: 8.4150e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6036e-01 +XStrontianite: 8.3964e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6048,10 +6049,10 @@ Simulation number: 4 Reaction step number: 439 SrCO3 added: 4.3900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5811e-01 -XStrontianite: 8.4189e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5996e-01 +XStrontianite: 8.4004e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6061,10 +6062,10 @@ Simulation number: 4 Reaction step number: 440 SrCO3 added: 4.4000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5772e-01 -XStrontianite: 8.4228e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5956e-01 +XStrontianite: 8.4044e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6074,10 +6075,10 @@ Simulation number: 4 Reaction step number: 441 SrCO3 added: 4.4100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5733e-01 -XStrontianite: 8.4267e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5917e-01 +XStrontianite: 8.4083e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6087,10 +6088,10 @@ Simulation number: 4 Reaction step number: 442 SrCO3 added: 4.4200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5694e-01 -XStrontianite: 8.4306e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5877e-01 +XStrontianite: 8.4123e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6100,10 +6101,10 @@ Simulation number: 4 Reaction step number: 443 SrCO3 added: 4.4300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5656e-01 -XStrontianite: 8.4344e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5838e-01 +XStrontianite: 8.4162e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6113,10 +6114,10 @@ Simulation number: 4 Reaction step number: 444 SrCO3 added: 4.4400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5618e-01 -XStrontianite: 8.4382e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5799e-01 +XStrontianite: 8.4201e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6126,10 +6127,10 @@ Simulation number: 4 Reaction step number: 445 SrCO3 added: 4.4500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5579e-01 -XStrontianite: 8.4421e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5761e-01 +XStrontianite: 8.4239e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6139,10 +6140,10 @@ Simulation number: 4 Reaction step number: 446 SrCO3 added: 4.4600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5542e-01 -XStrontianite: 8.4458e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5722e-01 +XStrontianite: 8.4278e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6152,10 +6153,10 @@ Simulation number: 4 Reaction step number: 447 SrCO3 added: 4.4700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5504e-01 -XStrontianite: 8.4496e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5684e-01 +XStrontianite: 8.4316e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6165,10 +6166,10 @@ Simulation number: 4 Reaction step number: 448 SrCO3 added: 4.4800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5466e-01 -XStrontianite: 8.4534e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5645e-01 +XStrontianite: 8.4355e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6178,10 +6179,10 @@ Simulation number: 4 Reaction step number: 449 SrCO3 added: 4.4900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5429e-01 -XStrontianite: 8.4571e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5607e-01 +XStrontianite: 8.4393e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6191,10 +6192,10 @@ Simulation number: 4 Reaction step number: 450 SrCO3 added: 4.5000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5392e-01 -XStrontianite: 8.4608e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5570e-01 +XStrontianite: 8.4430e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6204,10 +6205,10 @@ Simulation number: 4 Reaction step number: 451 SrCO3 added: 4.5100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5355e-01 -XStrontianite: 8.4645e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5532e-01 +XStrontianite: 8.4468e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6217,10 +6218,10 @@ Simulation number: 4 Reaction step number: 452 SrCO3 added: 4.5200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5318e-01 -XStrontianite: 8.4682e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5495e-01 +XStrontianite: 8.4505e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6230,10 +6231,10 @@ Simulation number: 4 Reaction step number: 453 SrCO3 added: 4.5300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5281e-01 -XStrontianite: 8.4719e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5457e-01 +XStrontianite: 8.4543e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6243,10 +6244,10 @@ Simulation number: 4 Reaction step number: 454 SrCO3 added: 4.5400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5245e-01 -XStrontianite: 8.4755e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5420e-01 +XStrontianite: 8.4580e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6256,10 +6257,10 @@ Simulation number: 4 Reaction step number: 455 SrCO3 added: 4.5500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5209e-01 -XStrontianite: 8.4791e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5383e-01 +XStrontianite: 8.4617e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6269,10 +6270,10 @@ Simulation number: 4 Reaction step number: 456 SrCO3 added: 4.5600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5172e-01 -XStrontianite: 8.4828e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5347e-01 +XStrontianite: 8.4653e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6282,10 +6283,10 @@ Simulation number: 4 Reaction step number: 457 SrCO3 added: 4.5700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5136e-01 -XStrontianite: 8.4864e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5310e-01 +XStrontianite: 8.4690e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6295,10 +6296,10 @@ Simulation number: 4 Reaction step number: 458 SrCO3 added: 4.5800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5101e-01 -XStrontianite: 8.4899e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5274e-01 +XStrontianite: 8.4726e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6308,10 +6309,10 @@ Simulation number: 4 Reaction step number: 459 SrCO3 added: 4.5900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5065e-01 -XStrontianite: 8.4935e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5237e-01 +XStrontianite: 8.4763e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6321,10 +6322,10 @@ Simulation number: 4 Reaction step number: 460 SrCO3 added: 4.6000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5030e-01 -XStrontianite: 8.4970e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5201e-01 +XStrontianite: 8.4799e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6334,10 +6335,10 @@ Simulation number: 4 Reaction step number: 461 SrCO3 added: 4.6100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4994e-01 -XStrontianite: 8.5006e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5166e-01 +XStrontianite: 8.4834e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6347,10 +6348,10 @@ Simulation number: 4 Reaction step number: 462 SrCO3 added: 4.6200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4959e-01 -XStrontianite: 8.5041e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5130e-01 +XStrontianite: 8.4870e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6360,10 +6361,10 @@ Simulation number: 4 Reaction step number: 463 SrCO3 added: 4.6300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4924e-01 -XStrontianite: 8.5076e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5094e-01 +XStrontianite: 8.4906e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6373,10 +6374,10 @@ Simulation number: 4 Reaction step number: 464 SrCO3 added: 4.6400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4889e-01 -XStrontianite: 8.5111e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5059e-01 +XStrontianite: 8.4941e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6386,10 +6387,10 @@ Simulation number: 4 Reaction step number: 465 SrCO3 added: 4.6500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4855e-01 -XStrontianite: 8.5145e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5024e-01 +XStrontianite: 8.4976e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6399,10 +6400,10 @@ Simulation number: 4 Reaction step number: 466 SrCO3 added: 4.6600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4820e-01 -XStrontianite: 8.5180e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4989e-01 +XStrontianite: 8.5011e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6412,10 +6413,10 @@ Simulation number: 4 Reaction step number: 467 SrCO3 added: 4.6700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4786e-01 -XStrontianite: 8.5214e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4954e-01 +XStrontianite: 8.5046e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6425,10 +6426,10 @@ Simulation number: 4 Reaction step number: 468 SrCO3 added: 4.6800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4752e-01 -XStrontianite: 8.5248e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4919e-01 +XStrontianite: 8.5081e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6438,10 +6439,10 @@ Simulation number: 4 Reaction step number: 469 SrCO3 added: 4.6900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4718e-01 -XStrontianite: 8.5282e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4885e-01 +XStrontianite: 8.5115e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6451,10 +6452,10 @@ Simulation number: 4 Reaction step number: 470 SrCO3 added: 4.7000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4684e-01 -XStrontianite: 8.5316e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4850e-01 +XStrontianite: 8.5150e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6464,10 +6465,10 @@ Simulation number: 4 Reaction step number: 471 SrCO3 added: 4.7100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4650e-01 -XStrontianite: 8.5350e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4816e-01 +XStrontianite: 8.5184e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6477,10 +6478,10 @@ Simulation number: 4 Reaction step number: 472 SrCO3 added: 4.7200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4617e-01 -XStrontianite: 8.5383e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4782e-01 +XStrontianite: 8.5218e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6490,10 +6491,10 @@ Simulation number: 4 Reaction step number: 473 SrCO3 added: 4.7300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4584e-01 -XStrontianite: 8.5416e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4748e-01 +XStrontianite: 8.5252e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6503,10 +6504,10 @@ Simulation number: 4 Reaction step number: 474 SrCO3 added: 4.7400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4550e-01 -XStrontianite: 8.5450e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4714e-01 +XStrontianite: 8.5286e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6516,10 +6517,10 @@ Simulation number: 4 Reaction step number: 475 SrCO3 added: 4.7500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4517e-01 -XStrontianite: 8.5483e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4681e-01 +XStrontianite: 8.5319e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6529,10 +6530,10 @@ Simulation number: 4 Reaction step number: 476 SrCO3 added: 4.7600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4484e-01 -XStrontianite: 8.5516e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4647e-01 +XStrontianite: 8.5353e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6542,10 +6543,10 @@ Simulation number: 4 Reaction step number: 477 SrCO3 added: 4.7700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4452e-01 -XStrontianite: 8.5548e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4614e-01 +XStrontianite: 8.5386e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6555,10 +6556,10 @@ Simulation number: 4 Reaction step number: 478 SrCO3 added: 4.7800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4419e-01 -XStrontianite: 8.5581e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4581e-01 +XStrontianite: 8.5419e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6568,10 +6569,10 @@ Simulation number: 4 Reaction step number: 479 SrCO3 added: 4.7900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4386e-01 -XStrontianite: 8.5614e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4548e-01 +XStrontianite: 8.5452e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6581,10 +6582,10 @@ Simulation number: 4 Reaction step number: 480 SrCO3 added: 4.8000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4354e-01 -XStrontianite: 8.5646e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4515e-01 +XStrontianite: 8.5485e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6594,10 +6595,10 @@ Simulation number: 4 Reaction step number: 481 SrCO3 added: 4.8100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4322e-01 -XStrontianite: 8.5678e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4482e-01 +XStrontianite: 8.5518e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6607,10 +6608,10 @@ Simulation number: 4 Reaction step number: 482 SrCO3 added: 4.8200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4290e-01 -XStrontianite: 8.5710e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4450e-01 +XStrontianite: 8.5550e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6620,10 +6621,10 @@ Simulation number: 4 Reaction step number: 483 SrCO3 added: 4.8300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4258e-01 -XStrontianite: 8.5742e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4417e-01 +XStrontianite: 8.5583e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6633,10 +6634,10 @@ Simulation number: 4 Reaction step number: 484 SrCO3 added: 4.8400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4226e-01 -XStrontianite: 8.5774e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4385e-01 +XStrontianite: 8.5615e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6646,10 +6647,10 @@ Simulation number: 4 Reaction step number: 485 SrCO3 added: 4.8500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4211e-01 -XStrontianite: 8.5789e-01 -XCa: 9.0896e-01 -XSr: 9.1042e-02 +XAragonite: 1.4353e-01 +XStrontianite: 8.5647e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6658,11 +6659,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 486 SrCO3 added: 4.8600e-03 -Log Sigma pi: -8.2976e+00 -XAragonite: 1.4207e-01 -XStrontianite: 8.5793e-01 -XCa: 9.0893e-01 -XSr: 9.1074e-02 +Log Sigma pi: -8.2974e+00 +XAragonite: 1.4321e-01 +XStrontianite: 8.5679e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6671,11 +6672,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 487 SrCO3 added: 4.8700e-03 -Log Sigma pi: -8.2977e+00 -XAragonite: 1.4203e-01 -XStrontianite: 8.5797e-01 -XCa: 9.0889e-01 -XSr: 9.1106e-02 +Log Sigma pi: -8.2974e+00 +XAragonite: 1.4289e-01 +XStrontianite: 8.5711e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6684,11 +6685,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 488 SrCO3 added: 4.8800e-03 -Log Sigma pi: -8.2978e+00 -XAragonite: 1.4198e-01 -XStrontianite: 8.5802e-01 -XCa: 9.0886e-01 -XSr: 9.1138e-02 +Log Sigma pi: -8.2974e+00 +XAragonite: 1.4257e-01 +XStrontianite: 8.5743e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6697,11 +6698,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 489 SrCO3 added: 4.8900e-03 -Log Sigma pi: -8.2980e+00 -XAragonite: 1.4194e-01 -XStrontianite: 8.5806e-01 -XCa: 9.0883e-01 -XSr: 9.1170e-02 +Log Sigma pi: -8.2974e+00 +XAragonite: 1.4226e-01 +XStrontianite: 8.5774e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6710,11 +6711,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 490 SrCO3 added: 4.9000e-03 -Log Sigma pi: -8.2981e+00 -XAragonite: 1.4190e-01 -XStrontianite: 8.5810e-01 -XCa: 9.0880e-01 -XSr: 9.1202e-02 +Log Sigma pi: -8.2974e+00 +XAragonite: 1.4211e-01 +XStrontianite: 8.5789e-01 +XCa: 9.0145e-01 +XSr: 9.8548e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6723,11 +6724,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 491 SrCO3 added: 4.9100e-03 -Log Sigma pi: -8.2982e+00 -XAragonite: 1.4186e-01 -XStrontianite: 8.5814e-01 -XCa: 9.0877e-01 -XSr: 9.1234e-02 +Log Sigma pi: -8.2976e+00 +XAragonite: 1.4206e-01 +XStrontianite: 8.5794e-01 +XCa: 9.0142e-01 +XSr: 9.8584e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6736,11 +6737,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 492 SrCO3 added: 4.9200e-03 -Log Sigma pi: -8.2983e+00 -XAragonite: 1.4181e-01 -XStrontianite: 8.5819e-01 -XCa: 9.0873e-01 -XSr: 9.1266e-02 +Log Sigma pi: -8.2977e+00 +XAragonite: 1.4202e-01 +XStrontianite: 8.5798e-01 +XCa: 9.0138e-01 +XSr: 9.8620e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6749,11 +6750,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 493 SrCO3 added: 4.9300e-03 -Log Sigma pi: -8.2985e+00 -XAragonite: 1.4177e-01 -XStrontianite: 8.5823e-01 -XCa: 9.0870e-01 -XSr: 9.1298e-02 +Log Sigma pi: -8.2979e+00 +XAragonite: 1.4197e-01 +XStrontianite: 8.5803e-01 +XCa: 9.0134e-01 +XSr: 9.8656e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6762,11 +6763,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 494 SrCO3 added: 4.9400e-03 -Log Sigma pi: -8.2986e+00 -XAragonite: 1.4173e-01 -XStrontianite: 8.5827e-01 -XCa: 9.0867e-01 -XSr: 9.1330e-02 +Log Sigma pi: -8.2980e+00 +XAragonite: 1.4193e-01 +XStrontianite: 8.5807e-01 +XCa: 9.0131e-01 +XSr: 9.8692e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6775,11 +6776,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 495 SrCO3 added: 4.9500e-03 -Log Sigma pi: -8.2987e+00 -XAragonite: 1.4169e-01 -XStrontianite: 8.5831e-01 -XCa: 9.0864e-01 -XSr: 9.1362e-02 +Log Sigma pi: -8.2981e+00 +XAragonite: 1.4188e-01 +XStrontianite: 8.5812e-01 +XCa: 9.0127e-01 +XSr: 9.8728e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6788,11 +6789,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 496 SrCO3 added: 4.9600e-03 -Log Sigma pi: -8.2989e+00 -XAragonite: 1.4165e-01 -XStrontianite: 8.5835e-01 -XCa: 9.0861e-01 -XSr: 9.1394e-02 +Log Sigma pi: -8.2983e+00 +XAragonite: 1.4184e-01 +XStrontianite: 8.5816e-01 +XCa: 9.0124e-01 +XSr: 9.8764e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6801,11 +6802,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 497 SrCO3 added: 4.9700e-03 -Log Sigma pi: -8.2990e+00 -XAragonite: 1.4160e-01 -XStrontianite: 8.5840e-01 -XCa: 9.0857e-01 -XSr: 9.1426e-02 +Log Sigma pi: -8.2984e+00 +XAragonite: 1.4179e-01 +XStrontianite: 8.5821e-01 +XCa: 9.0120e-01 +XSr: 9.8800e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6814,11 +6815,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 498 SrCO3 added: 4.9800e-03 -Log Sigma pi: -8.2991e+00 -XAragonite: 1.4156e-01 -XStrontianite: 8.5844e-01 -XCa: 9.0854e-01 -XSr: 9.1458e-02 +Log Sigma pi: -8.2985e+00 +XAragonite: 1.4175e-01 +XStrontianite: 8.5825e-01 +XCa: 9.0116e-01 +XSr: 9.8836e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6827,11 +6828,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 499 SrCO3 added: 4.9900e-03 -Log Sigma pi: -8.2992e+00 -XAragonite: 1.4152e-01 -XStrontianite: 8.5848e-01 -XCa: 9.0851e-01 -XSr: 9.1490e-02 +Log Sigma pi: -8.2987e+00 +XAragonite: 1.4170e-01 +XStrontianite: 8.5830e-01 +XCa: 9.0113e-01 +XSr: 9.8872e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6840,11 +6841,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 500 SrCO3 added: 5.0000e-03 -Log Sigma pi: -8.2994e+00 -XAragonite: 1.4148e-01 -XStrontianite: 8.5852e-01 -XCa: 9.0848e-01 -XSr: 9.1522e-02 +Log Sigma pi: -8.2988e+00 +XAragonite: 1.4166e-01 +XStrontianite: 8.5834e-01 +XCa: 9.0109e-01 +XSr: 9.8908e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6859,11 +6860,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 1 SrCO3 added: 5.0000e-03 -Log Sigma pi: -8.2994e+00 -XAragonite: 1.4148e-01 -XStrontianite: 8.5852e-01 -XCa: 9.0848e-01 -XSr: 9.1522e-02 +Log Sigma pi: -8.2988e+00 +XAragonite: 1.4166e-01 +XStrontianite: 8.5834e-01 +XCa: 9.0109e-01 +XSr: 9.8908e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6872,11 +6873,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 2 SrCO3 added: 1.0000e-02 -Log Sigma pi: -8.3561e+00 -XAragonite: 1.2425e-01 -XStrontianite: 8.7575e-01 -XCa: 8.9342e-01 -XSr: 1.0658e-01 +Log Sigma pi: -8.3590e+00 +XAragonite: 1.2345e-01 +XStrontianite: 8.7655e-01 +XCa: 8.8423e-01 +XSr: 1.1577e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6885,11 +6886,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 3 SrCO3 added: 1.5000e-02 -Log Sigma pi: -8.4019e+00 -XAragonite: 1.1192e-01 -XStrontianite: 8.8808e-01 -XCa: 8.7973e-01 -XSr: 1.2027e-01 +Log Sigma pi: -8.4069e+00 +XAragonite: 1.1064e-01 +XStrontianite: 8.8936e-01 +XCa: 8.6904e-01 +XSr: 1.3096e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6898,22 +6899,9 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 4 SrCO3 added: 2.0000e-02 -Log Sigma pi: -8.4405e+00 -XAragonite: 1.0242e-01 -XStrontianite: 8.9758e-01 -XCa: 8.6700e-01 -XSr: 1.3300e-01 -Misc 1: 4.8032e-03 -Misc 2: 8.5786e-01 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 5 -SrCO3 added: 2.5000e-02 -Log Sigma pi: -8.4739e+00 -XAragonite: 9.4788e-02 -XStrontianite: 9.0521e-01 +Log Sigma pi: -8.4471e+00 +XAragonite: 1.0088e-01 +XStrontianite: 8.9912e-01 XCa: 8.5501e-01 XSr: 1.4499e-01 Misc 1: 4.8032e-03 @@ -6921,14 +6909,27 @@ Misc 2: 8.5786e-01 ----------------------------------User print----------------------------------- +Simulation number: 5 +Reaction step number: 5 +SrCO3 added: 2.5000e-02 +Log Sigma pi: -8.4816e+00 +XAragonite: 9.3095e-02 +XStrontianite: 9.0690e-01 +XCa: 8.4188e-01 +XSr: 1.5812e-01 +Misc 1: 4.8032e-03 +Misc 2: 8.5786e-01 + +----------------------------------User print----------------------------------- + Simulation number: 5 Reaction step number: 6 SrCO3 added: 3.0000e-02 -Log Sigma pi: -8.5033e+00 -XAragonite: 8.8454e-02 -XStrontianite: 9.1155e-01 -XCa: 8.4365e-01 -XSr: 1.5635e-01 +Log Sigma pi: -8.5119e+00 +XAragonite: 8.6674e-02 +XStrontianite: 9.1333e-01 +XCa: 8.2947e-01 +XSr: 1.7053e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6937,11 +6938,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 7 SrCO3 added: 3.5000e-02 -Log Sigma pi: -8.5296e+00 -XAragonite: 8.3084e-02 -XStrontianite: 9.1692e-01 -XCa: 8.3281e-01 -XSr: 1.6719e-01 +Log Sigma pi: -8.5389e+00 +XAragonite: 8.1255e-02 +XStrontianite: 9.1874e-01 +XCa: 8.1770e-01 +XSr: 1.8230e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6950,11 +6951,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 8 SrCO3 added: 4.0000e-02 -Log Sigma pi: -8.5534e+00 -XAragonite: 7.8452e-02 -XStrontianite: 9.2155e-01 -XCa: 8.2242e-01 -XSr: 1.7758e-01 +Log Sigma pi: -8.5632e+00 +XAragonite: 7.6600e-02 +XStrontianite: 9.2340e-01 +XCa: 8.0646e-01 +XSr: 1.9354e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6963,11 +6964,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 9 SrCO3 added: 4.5000e-02 -Log Sigma pi: -8.5751e+00 -XAragonite: 7.4402e-02 -XStrontianite: 9.2560e-01 -XCa: 8.1245e-01 -XSr: 1.8755e-01 +Log Sigma pi: -8.5853e+00 +XAragonite: 7.2542e-02 +XStrontianite: 9.2746e-01 +XCa: 7.9570e-01 +XSr: 2.0430e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6976,11 +6977,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 10 SrCO3 added: 5.0000e-02 -Log Sigma pi: -8.5949e+00 -XAragonite: 7.0821e-02 -XStrontianite: 9.2918e-01 -XCa: 8.0284e-01 -XSr: 1.9716e-01 +Log Sigma pi: -8.6055e+00 +XAragonite: 6.8965e-02 +XStrontianite: 9.3104e-01 +XCa: 7.8538e-01 +XSr: 2.1462e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6989,11 +6990,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 11 SrCO3 added: 5.5000e-02 -Log Sigma pi: -8.6133e+00 -XAragonite: 6.7625e-02 -XStrontianite: 9.3237e-01 -XCa: 7.9357e-01 -XSr: 2.0643e-01 +Log Sigma pi: -8.6242e+00 +XAragonite: 6.5780e-02 +XStrontianite: 9.3422e-01 +XCa: 7.7545e-01 +XSr: 2.2455e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7002,11 +7003,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 12 SrCO3 added: 6.0000e-02 -Log Sigma pi: -8.6303e+00 -XAragonite: 6.4751e-02 -XStrontianite: 9.3525e-01 -XCa: 7.8460e-01 -XSr: 2.1540e-01 +Log Sigma pi: -8.6414e+00 +XAragonite: 6.2922e-02 +XStrontianite: 9.3708e-01 +XCa: 7.6587e-01 +XSr: 2.3413e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7015,11 +7016,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 13 SrCO3 added: 6.5000e-02 -Log Sigma pi: -8.6462e+00 -XAragonite: 6.2147e-02 -XStrontianite: 9.3785e-01 -XCa: 7.7593e-01 -XSr: 2.2407e-01 +Log Sigma pi: -8.6575e+00 +XAragonite: 6.0338e-02 +XStrontianite: 9.3966e-01 +XCa: 7.5663e-01 +XSr: 2.4337e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7028,11 +7029,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 14 SrCO3 added: 7.0000e-02 -Log Sigma pi: -8.6610e+00 -XAragonite: 5.9776e-02 -XStrontianite: 9.4022e-01 -XCa: 7.6751e-01 -XSr: 2.3249e-01 +Log Sigma pi: -8.6725e+00 +XAragonite: 5.7989e-02 +XStrontianite: 9.4201e-01 +XCa: 7.4769e-01 +XSr: 2.5231e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7041,11 +7042,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 15 SrCO3 added: 7.5000e-02 -Log Sigma pi: -8.6750e+00 -XAragonite: 5.7604e-02 -XStrontianite: 9.4240e-01 -XCa: 7.5935e-01 -XSr: 2.4065e-01 +Log Sigma pi: -8.6866e+00 +XAragonite: 5.5841e-02 +XStrontianite: 9.4416e-01 +XCa: 7.3903e-01 +XSr: 2.6097e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7054,11 +7055,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 16 SrCO3 added: 8.0000e-02 -Log Sigma pi: -8.6881e+00 -XAragonite: 5.5606e-02 -XStrontianite: 9.4439e-01 -XCa: 7.5142e-01 -XSr: 2.4858e-01 +Log Sigma pi: -8.6998e+00 +XAragonite: 5.3868e-02 +XStrontianite: 9.4613e-01 +XCa: 7.3065e-01 +XSr: 2.6935e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7067,11 +7068,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 17 SrCO3 added: 8.5000e-02 -Log Sigma pi: -8.7005e+00 -XAragonite: 5.3761e-02 -XStrontianite: 9.4624e-01 -XCa: 7.4370e-01 -XSr: 2.5630e-01 +Log Sigma pi: -8.7122e+00 +XAragonite: 5.2047e-02 +XStrontianite: 9.4795e-01 +XCa: 7.2251e-01 +XSr: 2.7749e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7080,11 +7081,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 18 SrCO3 added: 9.0000e-02 -Log Sigma pi: -8.7122e+00 -XAragonite: 5.2050e-02 -XStrontianite: 9.4795e-01 -XCa: 7.3619e-01 -XSr: 2.6381e-01 +Log Sigma pi: -8.7240e+00 +XAragonite: 5.0361e-02 +XStrontianite: 9.4964e-01 +XCa: 7.1460e-01 +XSr: 2.8540e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7093,11 +7094,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 19 SrCO3 added: 9.5000e-02 -Log Sigma pi: -8.7234e+00 -XAragonite: 5.0457e-02 -XStrontianite: 9.4954e-01 -XCa: 7.2888e-01 -XSr: 2.7112e-01 +Log Sigma pi: -8.7352e+00 +XAragonite: 4.8794e-02 +XStrontianite: 9.5121e-01 +XCa: 7.0692e-01 +XSr: 2.9308e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7106,11 +7107,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 20 SrCO3 added: 1.0000e-01 -Log Sigma pi: -8.7339e+00 -XAragonite: 4.8972e-02 -XStrontianite: 9.5103e-01 -XCa: 7.2176e-01 -XSr: 2.7824e-01 +Log Sigma pi: -8.7458e+00 +XAragonite: 4.7333e-02 +XStrontianite: 9.5267e-01 +XCa: 6.9945e-01 +XSr: 3.0055e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7125,11 +7126,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 1 SrCO3 added: 1.0000e-01 -Log Sigma pi: -8.7339e+00 -XAragonite: 4.8972e-02 -XStrontianite: 9.5103e-01 -XCa: 7.2176e-01 -XSr: 2.7824e-01 +Log Sigma pi: -8.7458e+00 +XAragonite: 4.7333e-02 +XStrontianite: 9.5267e-01 +XCa: 6.9945e-01 +XSr: 3.0055e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7138,11 +7139,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 2 SrCO3 added: 2.0000e-01 -Log Sigma pi: -8.8751e+00 -XAragonite: 3.1476e-02 -XStrontianite: 9.6852e-01 -XCa: 6.0792e-01 -XSr: 3.9208e-01 +Log Sigma pi: -8.8865e+00 +XAragonite: 3.0238e-02 +XStrontianite: 9.6976e-01 +XCa: 5.8188e-01 +XSr: 4.1812e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7151,11 +7152,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 3 SrCO3 added: 3.0000e-01 -Log Sigma pi: -8.9520e+00 -XAragonite: 2.3569e-02 -XStrontianite: 9.7643e-01 -XCa: 5.2858e-01 -XSr: 4.7142e-01 +Log Sigma pi: -8.9624e+00 +XAragonite: 2.2575e-02 +XStrontianite: 9.7743e-01 +XCa: 5.0176e-01 +XSr: 4.9824e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7164,11 +7165,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 4 SrCO3 added: 4.0000e-01 -Log Sigma pi: -9.0019e+00 -XAragonite: 1.8957e-02 -XStrontianite: 9.8104e-01 -XCa: 4.6899e-01 -XSr: 5.3101e-01 +Log Sigma pi: -9.0114e+00 +XAragonite: 1.8122e-02 +XStrontianite: 9.8188e-01 +XCa: 4.4247e-01 +XSr: 5.5753e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7177,11 +7178,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 5 SrCO3 added: 5.0000e-01 -Log Sigma pi: -9.0375e+00 -XAragonite: 1.5904e-02 -XStrontianite: 9.8410e-01 -XCa: 4.2219e-01 -XSr: 5.7781e-01 +Log Sigma pi: -9.0462e+00 +XAragonite: 1.5184e-02 +XStrontianite: 9.8482e-01 +XCa: 3.9641e-01 +XSr: 6.0359e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7190,11 +7191,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 6 SrCO3 added: 6.0000e-01 -Log Sigma pi: -9.0643e+00 -XAragonite: 1.3723e-02 -XStrontianite: 9.8628e-01 -XCa: 3.8427e-01 -XSr: 6.1573e-01 +Log Sigma pi: -9.0724e+00 +XAragonite: 1.3087e-02 +XStrontianite: 9.8691e-01 +XCa: 3.5942e-01 +XSr: 6.4058e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7203,11 +7204,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 7 SrCO3 added: 7.0000e-01 -Log Sigma pi: -9.0854e+00 -XAragonite: 1.2081e-02 -XStrontianite: 9.8792e-01 -XCa: 3.5284e-01 -XSr: 6.4716e-01 +Log Sigma pi: -9.0929e+00 +XAragonite: 1.1512e-02 +XStrontianite: 9.8849e-01 +XCa: 3.2896e-01 +XSr: 6.7104e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7216,11 +7217,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 8 SrCO3 added: 8.0000e-01 -Log Sigma pi: -9.1024e+00 -XAragonite: 1.0798e-02 -XStrontianite: 9.8920e-01 -XCa: 3.2631e-01 -XSr: 6.7369e-01 +Log Sigma pi: -9.1094e+00 +XAragonite: 1.0282e-02 +XStrontianite: 9.8972e-01 +XCa: 3.0340e-01 +XSr: 6.9660e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7229,11 +7230,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 9 SrCO3 added: 9.0000e-01 -Log Sigma pi: -9.1165e+00 -XAragonite: 9.7659e-03 -XStrontianite: 9.9023e-01 -XCa: 3.0358e-01 -XSr: 6.9642e-01 +Log Sigma pi: -9.1231e+00 +XAragonite: 9.2937e-03 +XStrontianite: 9.9071e-01 +XCa: 2.8162e-01 +XSr: 7.1838e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7242,11 +7243,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 10 SrCO3 added: 1 -Log Sigma pi: -9.1284e+00 -XAragonite: 8.9171e-03 -XStrontianite: 9.9108e-01 -XCa: 2.8389e-01 -XSr: 7.1611e-01 +Log Sigma pi: -9.1345e+00 +XAragonite: 8.4817e-03 +XStrontianite: 9.9152e-01 +XCa: 2.6282e-01 +XSr: 7.3718e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7255,11 +7256,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 11 SrCO3 added: 1.1000e+00 -Log Sigma pi: -9.1385e+00 -XAragonite: 8.2062e-03 -XStrontianite: 9.9179e-01 -XCa: 2.6664e-01 -XSr: 7.3336e-01 +Log Sigma pi: -9.1443e+00 +XAragonite: 7.8020e-03 +XStrontianite: 9.9220e-01 +XCa: 2.4642e-01 +XSr: 7.5358e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7268,11 +7269,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 12 SrCO3 added: 1.2000e+00 -Log Sigma pi: -9.1472e+00 -XAragonite: 7.6017e-03 -XStrontianite: 9.9240e-01 -XCa: 2.5140e-01 -XSr: 7.4860e-01 +Log Sigma pi: -9.1528e+00 +XAragonite: 7.2245e-03 +XStrontianite: 9.9278e-01 +XCa: 2.3197e-01 +XSr: 7.6803e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7281,11 +7282,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 13 SrCO3 added: 1.3000e+00 -Log Sigma pi: -9.1549e+00 -XAragonite: 7.0811e-03 -XStrontianite: 9.9292e-01 -XCa: 2.3784e-01 -XSr: 7.6216e-01 +Log Sigma pi: -9.1601e+00 +XAragonite: 6.7275e-03 +XStrontianite: 9.9327e-01 +XCa: 2.1915e-01 +XSr: 7.8085e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7294,11 +7295,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 14 SrCO3 added: 1.4000e+00 -Log Sigma pi: -9.1616e+00 -XAragonite: 6.6281e-03 -XStrontianite: 9.9337e-01 -XCa: 2.2568e-01 -XSr: 7.7432e-01 +Log Sigma pi: -9.1666e+00 +XAragonite: 6.2951e-03 +XStrontianite: 9.9370e-01 +XCa: 2.0769e-01 +XSr: 7.9231e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7307,11 +7308,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 15 SrCO3 added: 1.5000e+00 -Log Sigma pi: -9.1676e+00 -XAragonite: 6.2301e-03 -XStrontianite: 9.9377e-01 -XCa: 2.1472e-01 -XSr: 7.8528e-01 +Log Sigma pi: -9.1724e+00 +XAragonite: 5.9155e-03 +XStrontianite: 9.9408e-01 +XCa: 1.9738e-01 +XSr: 8.0262e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7320,11 +7321,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 16 SrCO3 added: 1.6000e+00 -Log Sigma pi: -9.1730e+00 -XAragonite: 5.8776e-03 -XStrontianite: 9.9412e-01 -XCa: 2.0479e-01 -XSr: 7.9521e-01 +Log Sigma pi: -9.1775e+00 +XAragonite: 5.5795e-03 +XStrontianite: 9.9442e-01 +XCa: 1.8805e-01 +XSr: 8.1195e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7333,11 +7334,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 17 SrCO3 added: 1.7000e+00 -Log Sigma pi: -9.1778e+00 -XAragonite: 5.5632e-03 -XStrontianite: 9.9444e-01 -XCa: 1.9574e-01 -XSr: 8.0426e-01 +Log Sigma pi: -9.1822e+00 +XAragonite: 5.2798e-03 +XStrontianite: 9.9472e-01 +XCa: 1.7958e-01 +XSr: 8.2042e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7346,11 +7347,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 18 SrCO3 added: 1.8000e+00 -Log Sigma pi: -9.1822e+00 -XAragonite: 5.2810e-03 -XStrontianite: 9.9472e-01 -XCa: 1.8747e-01 -XSr: 8.1253e-01 +Log Sigma pi: -9.1864e+00 +XAragonite: 5.0109e-03 +XStrontianite: 9.9499e-01 +XCa: 1.7184e-01 +XSr: 8.2816e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7359,11 +7360,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 19 SrCO3 added: 1.9000e+00 -Log Sigma pi: -9.1861e+00 -XAragonite: 5.0263e-03 -XStrontianite: 9.9497e-01 -XCa: 1.7987e-01 -XSr: 8.2013e-01 +Log Sigma pi: -9.1902e+00 +XAragonite: 4.7683e-03 +XStrontianite: 9.9523e-01 +XCa: 1.6475e-01 +XSr: 8.3525e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7372,11 +7373,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 20 SrCO3 added: 2 -Log Sigma pi: -9.1898e+00 -XAragonite: 4.7951e-03 -XStrontianite: 9.9520e-01 -XCa: 1.7287e-01 -XSr: 8.2713e-01 +Log Sigma pi: -9.1937e+00 +XAragonite: 4.5482e-03 +XStrontianite: 9.9545e-01 +XCa: 1.5822e-01 +XSr: 8.4178e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7385,11 +7386,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 21 SrCO3 added: 2.1000e+00 -Log Sigma pi: -9.1931e+00 -XAragonite: 4.5844e-03 -XStrontianite: 9.9542e-01 -XCa: 1.6640e-01 -XSr: 8.3360e-01 +Log Sigma pi: -9.1969e+00 +XAragonite: 4.3477e-03 +XStrontianite: 9.9565e-01 +XCa: 1.5219e-01 +XSr: 8.4781e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7398,11 +7399,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 22 SrCO3 added: 2.2000e+00 -Log Sigma pi: -9.1962e+00 -XAragonite: 4.3916e-03 -XStrontianite: 9.9561e-01 -XCa: 1.6040e-01 -XSr: 8.3960e-01 +Log Sigma pi: -9.1998e+00 +XAragonite: 4.1641e-03 +XStrontianite: 9.9584e-01 +XCa: 1.4661e-01 +XSr: 8.5339e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7411,11 +7412,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 23 SrCO3 added: 2.3000e+00 -Log Sigma pi: -9.1990e+00 -XAragonite: 4.2144e-03 -XStrontianite: 9.9579e-01 -XCa: 1.5481e-01 -XSr: 8.4519e-01 +Log Sigma pi: -9.2025e+00 +XAragonite: 3.9956e-03 +XStrontianite: 9.9600e-01 +XCa: 1.4143e-01 +XSr: 8.5857e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7424,11 +7425,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 24 SrCO3 added: 2.4000e+00 -Log Sigma pi: -9.2016e+00 -XAragonite: 4.0510e-03 -XStrontianite: 9.9595e-01 -XCa: 1.4961e-01 -XSr: 8.5039e-01 +Log Sigma pi: -9.2050e+00 +XAragonite: 3.8402e-03 +XStrontianite: 9.9616e-01 +XCa: 1.3660e-01 +XSr: 8.6340e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7437,11 +7438,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 25 SrCO3 added: 2.5000e+00 -Log Sigma pi: -9.2040e+00 -XAragonite: 3.8999e-03 -XStrontianite: 9.9610e-01 -XCa: 1.4475e-01 -XSr: 8.5525e-01 +Log Sigma pi: -9.2073e+00 +XAragonite: 3.6964e-03 +XStrontianite: 9.9630e-01 +XCa: 1.3209e-01 +XSr: 8.6791e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7450,11 +7451,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 26 SrCO3 added: 2.6000e+00 -Log Sigma pi: -9.2063e+00 -XAragonite: 3.7597e-03 -XStrontianite: 9.9624e-01 -XCa: 1.4019e-01 -XSr: 8.5981e-01 +Log Sigma pi: -9.2095e+00 +XAragonite: 3.5631e-03 +XStrontianite: 9.9644e-01 +XCa: 1.2787e-01 +XSr: 8.7213e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7463,11 +7464,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 27 SrCO3 added: 2.7000e+00 -Log Sigma pi: -9.2084e+00 -XAragonite: 3.6292e-03 -XStrontianite: 9.9637e-01 -XCa: 1.3591e-01 -XSr: 8.6409e-01 +Log Sigma pi: -9.2115e+00 +XAragonite: 3.4392e-03 +XStrontianite: 9.9656e-01 +XCa: 1.2391e-01 +XSr: 8.7609e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7476,11 +7477,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 28 SrCO3 added: 2.8000e+00 -Log Sigma pi: -9.2104e+00 -XAragonite: 3.5076e-03 -XStrontianite: 9.9649e-01 -XCa: 1.3189e-01 -XSr: 8.6811e-01 +Log Sigma pi: -9.2134e+00 +XAragonite: 3.3235e-03 +XStrontianite: 9.9668e-01 +XCa: 1.2020e-01 +XSr: 8.7980e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7489,11 +7490,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 29 SrCO3 added: 2.9000e+00 -Log Sigma pi: -9.2123e+00 -XAragonite: 3.3939e-03 -XStrontianite: 9.9661e-01 -XCa: 1.2810e-01 -XSr: 8.7190e-01 +Log Sigma pi: -9.2152e+00 +XAragonite: 3.2155e-03 +XStrontianite: 9.9678e-01 +XCa: 1.1670e-01 +XSr: 8.8330e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7502,11 +7503,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 30 SrCO3 added: 3 -Log Sigma pi: -9.2140e+00 -XAragonite: 3.2873e-03 -XStrontianite: 9.9671e-01 -XCa: 1.2452e-01 -XSr: 8.7548e-01 +Log Sigma pi: -9.2169e+00 +XAragonite: 3.1142e-03 +XStrontianite: 9.9689e-01 +XCa: 1.1339e-01 +XSr: 8.8661e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7515,11 +7516,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 31 SrCO3 added: 3.1000e+00 -Log Sigma pi: -9.2157e+00 -XAragonite: 3.1873e-03 -XStrontianite: 9.9681e-01 -XCa: 1.2114e-01 -XSr: 8.7886e-01 +Log Sigma pi: -9.2185e+00 +XAragonite: 3.0192e-03 +XStrontianite: 9.9698e-01 +XCa: 1.1027e-01 +XSr: 8.8973e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7528,11 +7529,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 32 SrCO3 added: 3.2000e+00 -Log Sigma pi: -9.2172e+00 -XAragonite: 3.0931e-03 -XStrontianite: 9.9691e-01 -XCa: 1.1794e-01 -XSr: 8.8206e-01 +Log Sigma pi: -9.2199e+00 +XAragonite: 2.9298e-03 +XStrontianite: 9.9707e-01 +XCa: 1.0732e-01 +XSr: 8.9268e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7541,11 +7542,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 33 SrCO3 added: 3.3000e+00 -Log Sigma pi: -9.2187e+00 -XAragonite: 3.0044e-03 -XStrontianite: 9.9700e-01 -XCa: 1.1490e-01 -XSr: 8.8510e-01 +Log Sigma pi: -9.2213e+00 +XAragonite: 2.8456e-03 +XStrontianite: 9.9715e-01 +XCa: 1.0453e-01 +XSr: 8.9547e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7554,11 +7555,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 34 SrCO3 added: 3.4000e+00 -Log Sigma pi: -9.2201e+00 -XAragonite: 2.9207e-03 -XStrontianite: 9.9708e-01 -XCa: 1.1202e-01 -XSr: 8.8798e-01 +Log Sigma pi: -9.2227e+00 +XAragonite: 2.7661e-03 +XStrontianite: 9.9723e-01 +XCa: 1.0187e-01 +XSr: 8.9813e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7567,11 +7568,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 35 SrCO3 added: 3.5000e+00 -Log Sigma pi: -9.2214e+00 -XAragonite: 2.8415e-03 -XStrontianite: 9.9716e-01 -XCa: 1.0927e-01 -XSr: 8.9073e-01 +Log Sigma pi: -9.2239e+00 +XAragonite: 2.6909e-03 +XStrontianite: 9.9731e-01 +XCa: 9.9347e-02 +XSr: 9.0065e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7580,11 +7581,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 36 SrCO3 added: 3.6000e+00 -Log Sigma pi: -9.2227e+00 -XAragonite: 2.7665e-03 -XStrontianite: 9.9723e-01 -XCa: 1.0666e-01 -XSr: 8.9334e-01 +Log Sigma pi: -9.2251e+00 +XAragonite: 2.6197e-03 +XStrontianite: 9.9738e-01 +XCa: 9.6947e-02 +XSr: 9.0305e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7593,11 +7594,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 37 SrCO3 added: 3.7000e+00 -Log Sigma pi: -9.2239e+00 -XAragonite: 2.6954e-03 -XStrontianite: 9.9730e-01 -XCa: 1.0417e-01 -XSr: 8.9583e-01 +Log Sigma pi: -9.2263e+00 +XAragonite: 2.5522e-03 +XStrontianite: 9.9745e-01 +XCa: 9.4659e-02 +XSr: 9.0534e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7606,11 +7607,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 38 SrCO3 added: 3.8000e+00 -Log Sigma pi: -9.2250e+00 -XAragonite: 2.6278e-03 -XStrontianite: 9.9737e-01 -XCa: 1.0180e-01 -XSr: 8.9820e-01 +Log Sigma pi: -9.2273e+00 +XAragonite: 2.4881e-03 +XStrontianite: 9.9751e-01 +XCa: 9.2478e-02 +XSr: 9.0752e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7619,11 +7620,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 39 SrCO3 added: 3.9000e+00 -Log Sigma pi: -9.2261e+00 -XAragonite: 2.5636e-03 -XStrontianite: 9.9744e-01 -XCa: 9.9529e-02 -XSr: 9.0047e-01 +Log Sigma pi: -9.2284e+00 +XAragonite: 2.4271e-03 +XStrontianite: 9.9757e-01 +XCa: 9.0395e-02 +XSr: 9.0961e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7632,11 +7633,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 40 SrCO3 added: 4 -Log Sigma pi: -9.2271e+00 -XAragonite: 2.5024e-03 -XStrontianite: 9.9750e-01 -XCa: 9.7359e-02 -XSr: 9.0264e-01 +Log Sigma pi: -9.2294e+00 +XAragonite: 2.3690e-03 +XStrontianite: 9.9763e-01 +XCa: 8.8404e-02 +XSr: 9.1160e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7645,11 +7646,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 41 SrCO3 added: 4.1000e+00 -Log Sigma pi: -9.2281e+00 -XAragonite: 2.4441e-03 -XStrontianite: 9.9756e-01 -XCa: 9.5282e-02 -XSr: 9.0472e-01 +Log Sigma pi: -9.2303e+00 +XAragonite: 2.3137e-03 +XStrontianite: 9.9769e-01 +XCa: 8.6499e-02 +XSr: 9.1350e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7658,11 +7659,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 42 SrCO3 added: 4.2000e+00 -Log Sigma pi: -9.2290e+00 -XAragonite: 2.3884e-03 -XStrontianite: 9.9761e-01 -XCa: 9.3292e-02 -XSr: 9.0671e-01 +Log Sigma pi: -9.2312e+00 +XAragonite: 2.2609e-03 +XStrontianite: 9.9774e-01 +XCa: 8.4674e-02 +XSr: 9.1533e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7671,11 +7672,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 43 SrCO3 added: 4.3000e+00 -Log Sigma pi: -9.2299e+00 -XAragonite: 2.3353e-03 -XStrontianite: 9.9766e-01 -XCa: 9.1384e-02 -XSr: 9.0862e-01 +Log Sigma pi: -9.2320e+00 +XAragonite: 2.2105e-03 +XStrontianite: 9.9779e-01 +XCa: 8.2925e-02 +XSr: 9.1707e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7684,11 +7685,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 44 SrCO3 added: 4.4000e+00 -Log Sigma pi: -9.2308e+00 -XAragonite: 2.2844e-03 -XStrontianite: 9.9772e-01 -XCa: 8.9552e-02 -XSr: 9.1045e-01 +Log Sigma pi: -9.2329e+00 +XAragonite: 2.1623e-03 +XStrontianite: 9.9784e-01 +XCa: 8.1247e-02 +XSr: 9.1875e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7697,11 +7698,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 45 SrCO3 added: 4.5000e+00 -Log Sigma pi: -9.2316e+00 -XAragonite: 2.2358e-03 -XStrontianite: 9.9776e-01 -XCa: 8.7792e-02 -XSr: 9.1221e-01 +Log Sigma pi: -9.2337e+00 +XAragonite: 2.1161e-03 +XStrontianite: 9.9788e-01 +XCa: 7.9636e-02 +XSr: 9.2036e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7710,11 +7711,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 46 SrCO3 added: 4.6000e+00 -Log Sigma pi: -9.2324e+00 -XAragonite: 2.1891e-03 -XStrontianite: 9.9781e-01 -XCa: 8.6101e-02 -XSr: 9.1390e-01 +Log Sigma pi: -9.2344e+00 +XAragonite: 2.0719e-03 +XStrontianite: 9.9793e-01 +XCa: 7.8087e-02 +XSr: 9.2191e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7723,11 +7724,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 47 SrCO3 added: 4.7000e+00 -Log Sigma pi: -9.2332e+00 -XAragonite: 2.1444e-03 -XStrontianite: 9.9786e-01 -XCa: 8.4473e-02 -XSr: 9.1553e-01 +Log Sigma pi: -9.2351e+00 +XAragonite: 2.0294e-03 +XStrontianite: 9.9797e-01 +XCa: 7.6598e-02 +XSr: 9.2340e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7736,11 +7737,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 48 SrCO3 added: 4.8000e+00 -Log Sigma pi: -9.2339e+00 -XAragonite: 2.1014e-03 -XStrontianite: 9.9790e-01 -XCa: 8.2906e-02 -XSr: 9.1709e-01 +Log Sigma pi: -9.2358e+00 +XAragonite: 1.9887e-03 +XStrontianite: 9.9801e-01 +XCa: 7.5164e-02 +XSr: 9.2484e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7749,11 +7750,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 49 SrCO3 added: 4.9000e+00 -Log Sigma pi: -9.2346e+00 -XAragonite: 2.0602e-03 -XStrontianite: 9.9794e-01 -XCa: 8.1396e-02 -XSr: 9.1860e-01 +Log Sigma pi: -9.2365e+00 +XAragonite: 1.9496e-03 +XStrontianite: 9.9805e-01 +XCa: 7.3784e-02 +XSr: 9.2622e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7762,11 +7763,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 50 SrCO3 added: 5 -Log Sigma pi: -9.2353e+00 -XAragonite: 2.0205e-03 -XStrontianite: 9.9798e-01 -XCa: 7.9940e-02 -XSr: 9.2006e-01 +Log Sigma pi: -9.2371e+00 +XAragonite: 1.9120e-03 +XStrontianite: 9.9809e-01 +XCa: 7.2453e-02 +XSr: 9.2755e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7775,11 +7776,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 51 SrCO3 added: 5.1000e+00 -Log Sigma pi: -9.2359e+00 -XAragonite: 1.9824e-03 -XStrontianite: 9.9802e-01 -XCa: 7.8535e-02 -XSr: 9.2146e-01 +Log Sigma pi: -9.2378e+00 +XAragonite: 1.8758e-03 +XStrontianite: 9.9812e-01 +XCa: 7.1169e-02 +XSr: 9.2883e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7788,11 +7789,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 52 SrCO3 added: 5.2000e+00 -Log Sigma pi: -9.2366e+00 -XAragonite: 1.9456e-03 -XStrontianite: 9.9805e-01 -XCa: 7.7179e-02 -XSr: 9.2282e-01 +Log Sigma pi: -9.2384e+00 +XAragonite: 1.8410e-03 +XStrontianite: 9.9816e-01 +XCa: 6.9930e-02 +XSr: 9.3007e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7801,11 +7802,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 53 SrCO3 added: 5.3000e+00 -Log Sigma pi: -9.2372e+00 -XAragonite: 1.9102e-03 -XStrontianite: 9.9809e-01 -XCa: 7.5869e-02 -XSr: 9.2413e-01 +Log Sigma pi: -9.2389e+00 +XAragonite: 1.8074e-03 +XStrontianite: 9.9819e-01 +XCa: 6.8733e-02 +XSr: 9.3127e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7814,11 +7815,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 54 SrCO3 added: 5.4000e+00 -Log Sigma pi: -9.2378e+00 -XAragonite: 1.8761e-03 -XStrontianite: 9.9812e-01 -XCa: 7.4603e-02 -XSr: 9.2540e-01 +Log Sigma pi: -9.2395e+00 +XAragonite: 1.7751e-03 +XStrontianite: 9.9822e-01 +XCa: 6.7577e-02 +XSr: 9.3242e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7827,11 +7828,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 55 SrCO3 added: 5.5000e+00 -Log Sigma pi: -9.2383e+00 -XAragonite: 1.8432e-03 -XStrontianite: 9.9816e-01 -XCa: 7.3379e-02 -XSr: 9.2662e-01 +Log Sigma pi: -9.2400e+00 +XAragonite: 1.7439e-03 +XStrontianite: 9.9826e-01 +XCa: 6.6459e-02 +XSr: 9.3354e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7840,11 +7841,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 56 SrCO3 added: 5.6000e+00 -Log Sigma pi: -9.2389e+00 -XAragonite: 1.8114e-03 -XStrontianite: 9.9819e-01 -XCa: 7.2194e-02 -XSr: 9.2781e-01 +Log Sigma pi: -9.2406e+00 +XAragonite: 1.7137e-03 +XStrontianite: 9.9829e-01 +XCa: 6.5378e-02 +XSr: 9.3462e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7853,11 +7854,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 57 SrCO3 added: 5.7000e+00 -Log Sigma pi: -9.2394e+00 -XAragonite: 1.7806e-03 -XStrontianite: 9.9822e-01 -XCa: 7.1046e-02 -XSr: 9.2895e-01 +Log Sigma pi: -9.2411e+00 +XAragonite: 1.6846e-03 +XStrontianite: 9.9832e-01 +XCa: 6.4331e-02 +XSr: 9.3567e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7866,11 +7867,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 58 SrCO3 added: 5.8000e+00 -Log Sigma pi: -9.2399e+00 -XAragonite: 1.7509e-03 -XStrontianite: 9.9825e-01 -XCa: 6.9935e-02 -XSr: 9.3006e-01 +Log Sigma pi: -9.2415e+00 +XAragonite: 1.6565e-03 +XStrontianite: 9.9834e-01 +XCa: 6.3317e-02 +XSr: 9.3668e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7879,11 +7880,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 59 SrCO3 added: 5.9000e+00 -Log Sigma pi: -9.2404e+00 -XAragonite: 1.7222e-03 -XStrontianite: 9.9828e-01 -XCa: 6.8858e-02 -XSr: 9.3114e-01 +Log Sigma pi: -9.2420e+00 +XAragonite: 1.6293e-03 +XStrontianite: 9.9837e-01 +XCa: 6.2335e-02 +XSr: 9.3766e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7892,11 +7893,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 60 SrCO3 added: 6 -Log Sigma pi: -9.2409e+00 -XAragonite: 1.6944e-03 -XStrontianite: 9.9831e-01 -XCa: 6.7814e-02 -XSr: 9.3219e-01 +Log Sigma pi: -9.2425e+00 +XAragonite: 1.6029e-03 +XStrontianite: 9.9840e-01 +XCa: 6.1383e-02 +XSr: 9.3862e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7905,11 +7906,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 61 SrCO3 added: 6.1000e+00 -Log Sigma pi: -9.2414e+00 -XAragonite: 1.6675e-03 -XStrontianite: 9.9833e-01 -XCa: 6.6801e-02 -XSr: 9.3320e-01 +Log Sigma pi: -9.2429e+00 +XAragonite: 1.5774e-03 +XStrontianite: 9.9842e-01 +XCa: 6.0459e-02 +XSr: 9.3954e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7918,11 +7919,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 62 SrCO3 added: 6.2000e+00 -Log Sigma pi: -9.2418e+00 -XAragonite: 1.6415e-03 -XStrontianite: 9.9836e-01 -XCa: 6.5817e-02 -XSr: 9.3418e-01 +Log Sigma pi: -9.2433e+00 +XAragonite: 1.5527e-03 +XStrontianite: 9.9845e-01 +XCa: 5.9563e-02 +XSr: 9.4044e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7931,11 +7932,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 63 SrCO3 added: 6.3000e+00 -Log Sigma pi: -9.2422e+00 -XAragonite: 1.6162e-03 -XStrontianite: 9.9838e-01 -XCa: 6.4863e-02 -XSr: 9.3514e-01 +Log Sigma pi: -9.2438e+00 +XAragonite: 1.5288e-03 +XStrontianite: 9.9847e-01 +XCa: 5.8693e-02 +XSr: 9.4131e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7944,11 +7945,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 64 SrCO3 added: 6.4000e+00 -Log Sigma pi: -9.2427e+00 -XAragonite: 1.5917e-03 -XStrontianite: 9.9841e-01 -XCa: 6.3935e-02 -XSr: 9.3606e-01 +Log Sigma pi: -9.2442e+00 +XAragonite: 1.5056e-03 +XStrontianite: 9.9849e-01 +XCa: 5.7848e-02 +XSr: 9.4215e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7957,11 +7958,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 65 SrCO3 added: 6.5000e+00 -Log Sigma pi: -9.2431e+00 -XAragonite: 1.5680e-03 -XStrontianite: 9.9843e-01 -XCa: 6.3034e-02 -XSr: 9.3697e-01 +Log Sigma pi: -9.2446e+00 +XAragonite: 1.4831e-03 +XStrontianite: 9.9852e-01 +XCa: 5.7027e-02 +XSr: 9.4297e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7970,11 +7971,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 66 SrCO3 added: 6.6000e+00 -Log Sigma pi: -9.2435e+00 -XAragonite: 1.5449e-03 -XStrontianite: 9.9846e-01 -XCa: 6.2158e-02 -XSr: 9.3784e-01 +Log Sigma pi: -9.2449e+00 +XAragonite: 1.4612e-03 +XStrontianite: 9.9854e-01 +XCa: 5.6230e-02 +XSr: 9.4377e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7983,11 +7984,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 67 SrCO3 added: 6.7000e+00 -Log Sigma pi: -9.2439e+00 -XAragonite: 1.5225e-03 -XStrontianite: 9.9848e-01 -XCa: 6.1306e-02 -XSr: 9.3869e-01 +Log Sigma pi: -9.2453e+00 +XAragonite: 1.4400e-03 +XStrontianite: 9.9856e-01 +XCa: 5.5454e-02 +XSr: 9.4455e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7996,11 +7997,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 68 SrCO3 added: 6.8000e+00 -Log Sigma pi: -9.2442e+00 -XAragonite: 1.5007e-03 -XStrontianite: 9.9850e-01 -XCa: 6.0477e-02 -XSr: 9.3952e-01 +Log Sigma pi: -9.2457e+00 +XAragonite: 1.4194e-03 +XStrontianite: 9.9858e-01 +XCa: 5.4699e-02 +XSr: 9.4530e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8009,11 +8010,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 69 SrCO3 added: 6.9000e+00 -Log Sigma pi: -9.2446e+00 -XAragonite: 1.4796e-03 -XStrontianite: 9.9852e-01 -XCa: 5.9670e-02 -XSr: 9.4033e-01 +Log Sigma pi: -9.2460e+00 +XAragonite: 1.3994e-03 +XStrontianite: 9.9860e-01 +XCa: 5.3965e-02 +XSr: 9.4604e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8022,11 +8023,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 70 SrCO3 added: 7 -Log Sigma pi: -9.2450e+00 -XAragonite: 1.4591e-03 -XStrontianite: 9.9854e-01 -XCa: 5.8885e-02 -XSr: 9.4112e-01 +Log Sigma pi: -9.2464e+00 +XAragonite: 1.3799e-03 +XStrontianite: 9.9862e-01 +XCa: 5.3250e-02 +XSr: 9.4675e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8035,11 +8036,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 71 SrCO3 added: 7.1000e+00 -Log Sigma pi: -9.2453e+00 -XAragonite: 1.4391e-03 -XStrontianite: 9.9856e-01 -XCa: 5.8119e-02 -XSr: 9.4188e-01 +Log Sigma pi: -9.2467e+00 +XAragonite: 1.3610e-03 +XStrontianite: 9.9864e-01 +XCa: 5.2553e-02 +XSr: 9.4745e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8048,11 +8049,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 72 SrCO3 added: 7.2000e+00 -Log Sigma pi: -9.2457e+00 -XAragonite: 1.4196e-03 -XStrontianite: 9.9858e-01 -XCa: 5.7374e-02 -XSr: 9.4263e-01 +Log Sigma pi: -9.2470e+00 +XAragonite: 1.3426e-03 +XStrontianite: 9.9866e-01 +XCa: 5.1875e-02 +XSr: 9.4812e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8061,11 +8062,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 73 SrCO3 added: 7.3000e+00 -Log Sigma pi: -9.2460e+00 -XAragonite: 1.4007e-03 -XStrontianite: 9.9860e-01 -XCa: 5.6647e-02 -XSr: 9.4335e-01 +Log Sigma pi: -9.2473e+00 +XAragonite: 1.3247e-03 +XStrontianite: 9.9868e-01 +XCa: 5.1214e-02 +XSr: 9.4879e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8074,11 +8075,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 74 SrCO3 added: 7.4000e+00 -Log Sigma pi: -9.2463e+00 -XAragonite: 1.3823e-03 -XStrontianite: 9.9862e-01 -XCa: 5.5939e-02 -XSr: 9.4406e-01 +Log Sigma pi: -9.2476e+00 +XAragonite: 1.3072e-03 +XStrontianite: 9.9869e-01 +XCa: 5.0570e-02 +XSr: 9.4943e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8087,11 +8088,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 75 SrCO3 added: 7.5000e+00 -Log Sigma pi: -9.2466e+00 -XAragonite: 1.3643e-03 -XStrontianite: 9.9864e-01 -XCa: 5.5248e-02 -XSr: 9.4475e-01 +Log Sigma pi: -9.2479e+00 +XAragonite: 1.2902e-03 +XStrontianite: 9.9871e-01 +XCa: 4.9942e-02 +XSr: 9.5006e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8100,11 +8101,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 76 SrCO3 added: 7.6000e+00 -Log Sigma pi: -9.2469e+00 -XAragonite: 1.3468e-03 -XStrontianite: 9.9865e-01 -XCa: 5.4574e-02 -XSr: 9.4543e-01 +Log Sigma pi: -9.2482e+00 +XAragonite: 1.2737e-03 +XStrontianite: 9.9873e-01 +XCa: 4.9329e-02 +XSr: 9.5067e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8113,11 +8114,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 77 SrCO3 added: 7.7000e+00 -Log Sigma pi: -9.2472e+00 -XAragonite: 1.3298e-03 -XStrontianite: 9.9867e-01 -XCa: 5.3916e-02 -XSr: 9.4608e-01 +Log Sigma pi: -9.2485e+00 +XAragonite: 1.2575e-03 +XStrontianite: 9.9874e-01 +XCa: 4.8731e-02 +XSr: 9.5127e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8126,11 +8127,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 78 SrCO3 added: 7.8000e+00 -Log Sigma pi: -9.2475e+00 -XAragonite: 1.3131e-03 -XStrontianite: 9.9869e-01 -XCa: 5.3274e-02 -XSr: 9.4673e-01 +Log Sigma pi: -9.2488e+00 +XAragonite: 1.2418e-03 +XStrontianite: 9.9876e-01 +XCa: 4.8147e-02 +XSr: 9.5185e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8139,11 +8140,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 79 SrCO3 added: 7.9000e+00 -Log Sigma pi: -9.2478e+00 -XAragonite: 1.2969e-03 -XStrontianite: 9.9870e-01 -XCa: 5.2647e-02 -XSr: 9.4735e-01 +Log Sigma pi: -9.2490e+00 +XAragonite: 1.2264e-03 +XStrontianite: 9.9877e-01 +XCa: 4.7577e-02 +XSr: 9.5242e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8152,11 +8153,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 80 SrCO3 added: 8 -Log Sigma pi: -9.2481e+00 -XAragonite: 1.2811e-03 -XStrontianite: 9.9872e-01 -XCa: 5.2035e-02 -XSr: 9.4797e-01 +Log Sigma pi: -9.2493e+00 +XAragonite: 1.2114e-03 +XStrontianite: 9.9879e-01 +XCa: 4.7021e-02 +XSr: 9.5298e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8165,11 +8166,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 81 SrCO3 added: 8.1000e+00 -Log Sigma pi: -9.2484e+00 -XAragonite: 1.2657e-03 -XStrontianite: 9.9873e-01 -XCa: 5.1436e-02 -XSr: 9.4856e-01 +Log Sigma pi: -9.2496e+00 +XAragonite: 1.1968e-03 +XStrontianite: 9.9880e-01 +XCa: 4.6477e-02 +XSr: 9.5352e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8178,11 +8179,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 82 SrCO3 added: 8.2000e+00 -Log Sigma pi: -9.2486e+00 -XAragonite: 1.2506e-03 -XStrontianite: 9.9875e-01 -XCa: 5.0852e-02 -XSr: 9.4915e-01 +Log Sigma pi: -9.2498e+00 +XAragonite: 1.1826e-03 +XStrontianite: 9.9882e-01 +XCa: 4.5946e-02 +XSr: 9.5405e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8191,11 +8192,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 83 SrCO3 added: 8.3000e+00 -Log Sigma pi: -9.2489e+00 -XAragonite: 1.2359e-03 -XStrontianite: 9.9876e-01 -XCa: 5.0280e-02 -XSr: 9.4972e-01 +Log Sigma pi: -9.2501e+00 +XAragonite: 1.1686e-03 +XStrontianite: 9.9883e-01 +XCa: 4.5427e-02 +XSr: 9.5457e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8204,11 +8205,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 84 SrCO3 added: 8.4000e+00 -Log Sigma pi: -9.2491e+00 -XAragonite: 1.2215e-03 -XStrontianite: 9.9878e-01 -XCa: 4.9721e-02 -XSr: 9.5028e-01 +Log Sigma pi: -9.2503e+00 +XAragonite: 1.1550e-03 +XStrontianite: 9.9884e-01 +XCa: 4.4919e-02 +XSr: 9.5508e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8217,11 +8218,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 85 SrCO3 added: 8.5000e+00 -Log Sigma pi: -9.2494e+00 -XAragonite: 1.2075e-03 -XStrontianite: 9.9879e-01 -XCa: 4.9175e-02 -XSr: 9.5083e-01 +Log Sigma pi: -9.2505e+00 +XAragonite: 1.1418e-03 +XStrontianite: 9.9886e-01 +XCa: 4.4423e-02 +XSr: 9.5558e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8230,11 +8231,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 86 SrCO3 added: 8.6000e+00 -Log Sigma pi: -9.2496e+00 -XAragonite: 1.1938e-03 -XStrontianite: 9.9881e-01 -XCa: 4.8640e-02 -XSr: 9.5136e-01 +Log Sigma pi: -9.2508e+00 +XAragonite: 1.1288e-03 +XStrontianite: 9.9887e-01 +XCa: 4.3937e-02 +XSr: 9.5606e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8243,11 +8244,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 87 SrCO3 added: 8.7000e+00 -Log Sigma pi: -9.2499e+00 -XAragonite: 1.1804e-03 -XStrontianite: 9.9882e-01 -XCa: 4.8117e-02 -XSr: 9.5188e-01 +Log Sigma pi: -9.2510e+00 +XAragonite: 1.1161e-03 +XStrontianite: 9.9888e-01 +XCa: 4.3462e-02 +XSr: 9.5654e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8256,11 +8257,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 88 SrCO3 added: 8.8000e+00 -Log Sigma pi: -9.2501e+00 -XAragonite: 1.1673e-03 -XStrontianite: 9.9883e-01 -XCa: 4.7605e-02 -XSr: 9.5239e-01 +Log Sigma pi: -9.2512e+00 +XAragonite: 1.1037e-03 +XStrontianite: 9.9890e-01 +XCa: 4.2997e-02 +XSr: 9.5700e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8269,11 +8270,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 89 SrCO3 added: 8.9000e+00 -Log Sigma pi: -9.2503e+00 -XAragonite: 1.1544e-03 -XStrontianite: 9.9885e-01 -XCa: 4.7104e-02 -XSr: 9.5290e-01 +Log Sigma pi: -9.2514e+00 +XAragonite: 1.0915e-03 +XStrontianite: 9.9891e-01 +XCa: 4.2542e-02 +XSr: 9.5746e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8282,11 +8283,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 90 SrCO3 added: 9 -Log Sigma pi: -9.2505e+00 -XAragonite: 1.1419e-03 -XStrontianite: 9.9886e-01 -XCa: 4.6613e-02 -XSr: 9.5339e-01 +Log Sigma pi: -9.2516e+00 +XAragonite: 1.0796e-03 +XStrontianite: 9.9892e-01 +XCa: 4.2097e-02 +XSr: 9.5790e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8295,11 +8296,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 91 SrCO3 added: 9.1000e+00 -Log Sigma pi: -9.2507e+00 -XAragonite: 1.1296e-03 -XStrontianite: 9.9887e-01 -XCa: 4.6132e-02 -XSr: 9.5387e-01 +Log Sigma pi: -9.2518e+00 +XAragonite: 1.0680e-03 +XStrontianite: 9.9893e-01 +XCa: 4.1661e-02 +XSr: 9.5834e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8308,11 +8309,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 92 SrCO3 added: 9.2000e+00 -Log Sigma pi: -9.2510e+00 -XAragonite: 1.1176e-03 -XStrontianite: 9.9888e-01 -XCa: 4.5662e-02 -XSr: 9.5434e-01 +Log Sigma pi: -9.2520e+00 +XAragonite: 1.0566e-03 +XStrontianite: 9.9894e-01 +XCa: 4.1234e-02 +XSr: 9.5877e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8321,11 +8322,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 93 SrCO3 added: 9.3000e+00 -Log Sigma pi: -9.2512e+00 -XAragonite: 1.1058e-03 -XStrontianite: 9.9889e-01 -XCa: 4.5200e-02 -XSr: 9.5480e-01 +Log Sigma pi: -9.2522e+00 +XAragonite: 1.0455e-03 +XStrontianite: 9.9895e-01 +XCa: 4.0815e-02 +XSr: 9.5919e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8334,11 +8335,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 94 SrCO3 added: 9.4000e+00 -Log Sigma pi: -9.2514e+00 -XAragonite: 1.0943e-03 -XStrontianite: 9.9891e-01 -XCa: 4.4748e-02 -XSr: 9.5525e-01 +Log Sigma pi: -9.2524e+00 +XAragonite: 1.0346e-03 +XStrontianite: 9.9897e-01 +XCa: 4.0405e-02 +XSr: 9.5960e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8347,11 +8348,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 95 SrCO3 added: 9.5000e+00 -Log Sigma pi: -9.2516e+00 -XAragonite: 1.0830e-03 -XStrontianite: 9.9892e-01 -XCa: 4.4305e-02 -XSr: 9.5569e-01 +Log Sigma pi: -9.2526e+00 +XAragonite: 1.0239e-03 +XStrontianite: 9.9898e-01 +XCa: 4.0003e-02 +XSr: 9.6000e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8360,11 +8361,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 96 SrCO3 added: 9.6000e+00 -Log Sigma pi: -9.2518e+00 -XAragonite: 1.0720e-03 -XStrontianite: 9.9893e-01 -XCa: 4.3871e-02 -XSr: 9.5613e-01 +Log Sigma pi: -9.2528e+00 +XAragonite: 1.0135e-03 +XStrontianite: 9.9899e-01 +XCa: 3.9609e-02 +XSr: 9.6039e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8373,11 +8374,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 97 SrCO3 added: 9.7000e+00 -Log Sigma pi: -9.2519e+00 -XAragonite: 1.0612e-03 -XStrontianite: 9.9894e-01 -XCa: 4.3445e-02 -XSr: 9.5656e-01 +Log Sigma pi: -9.2530e+00 +XAragonite: 1.0032e-03 +XStrontianite: 9.9900e-01 +XCa: 3.9222e-02 +XSr: 9.6078e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8386,11 +8387,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 98 SrCO3 added: 9.8000e+00 -Log Sigma pi: -9.2521e+00 -XAragonite: 1.0506e-03 -XStrontianite: 9.9895e-01 -XCa: 4.3027e-02 -XSr: 9.5697e-01 +Log Sigma pi: -9.2531e+00 +XAragonite: 9.9320e-04 +XStrontianite: 9.9901e-01 +XCa: 3.8843e-02 +XSr: 9.6116e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8399,11 +8400,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 99 SrCO3 added: 9.9000e+00 -Log Sigma pi: -9.2523e+00 -XAragonite: 1.0402e-03 -XStrontianite: 9.9896e-01 -XCa: 4.2617e-02 -XSr: 9.5738e-01 +Log Sigma pi: -9.2533e+00 +XAragonite: 9.8336e-04 +XStrontianite: 9.9902e-01 +XCa: 3.8472e-02 +XSr: 9.6153e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8412,11 +8413,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 100 SrCO3 added: 10 -Log Sigma pi: -9.2525e+00 -XAragonite: 1.0300e-03 -XStrontianite: 9.9897e-01 -XCa: 4.2215e-02 -XSr: 9.5778e-01 +Log Sigma pi: -9.2535e+00 +XAragonite: 9.7371e-04 +XStrontianite: 9.9903e-01 +XCa: 3.8107e-02 +XSr: 9.6189e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 diff --git a/phreeqc3-examples/ex10.sel b/phreeqc3-examples/ex10.sel index 4d715b9c..447aec12 100644 --- a/phreeqc3-examples/ex10.sel +++ b/phreeqc3-examples/ex10.sel @@ -1,621 +1,621 @@ reaction lg_SigmaPi X_Arag X_Stront X_Ca_aq X_Sr_aq mol_Misc1 mol_Misc2 mol_Arag mol_Stront - 1.0000e-05 -8.3356e+00 9.9996e-01 4.2174e-05 9.9905e-01 9.5081e-04 1.0000e-10 1.0000e-10 6.5452e-06 2.7605e-10 - 2.0000e-05 -8.3352e+00 9.9992e-01 8.4457e-05 9.9810e-01 1.9009e-03 1.0000e-10 1.0000e-10 1.3088e-05 1.1055e-09 - 3.0000e-05 -8.3348e+00 9.9987e-01 1.2685e-04 9.9715e-01 2.8504e-03 1.0000e-10 1.0000e-10 1.9629e-05 2.4903e-09 - 4.0000e-05 -8.3345e+00 9.9983e-01 1.6936e-04 9.9620e-01 3.7992e-03 1.0000e-10 1.0000e-10 2.6168e-05 4.4324e-09 - 5.0000e-05 -8.3341e+00 9.9979e-01 2.1197e-04 9.9525e-01 4.7473e-03 1.0000e-10 1.0000e-10 3.2705e-05 6.9339e-09 - 6.0000e-05 -8.3337e+00 9.9975e-01 2.5470e-04 9.9431e-01 5.6947e-03 1.0000e-10 1.0000e-10 3.9239e-05 9.9967e-09 - 7.0000e-05 -8.3333e+00 9.9970e-01 2.9754e-04 9.9336e-01 6.6414e-03 1.0000e-10 1.0000e-10 4.5772e-05 1.3623e-08 - 8.0000e-05 -8.3329e+00 9.9966e-01 3.4049e-04 9.9241e-01 7.5875e-03 1.0000e-10 1.0000e-10 5.2302e-05 1.7814e-08 - 9.0000e-05 -8.3325e+00 9.9962e-01 3.8355e-04 9.9147e-01 8.5329e-03 1.0000e-10 1.0000e-10 5.8831e-05 2.2573e-08 - 1.0000e-04 -8.3321e+00 9.9957e-01 4.2673e-04 9.9052e-01 9.4776e-03 1.0000e-10 1.0000e-10 6.5357e-05 2.7902e-08 - 1.1000e-04 -8.3317e+00 9.9953e-01 4.7002e-04 9.8958e-01 1.0422e-02 1.0000e-10 1.0000e-10 7.1881e-05 3.3801e-08 - 1.2000e-04 -8.3314e+00 9.9949e-01 5.1343e-04 9.8864e-01 1.1365e-02 1.0000e-10 1.0000e-10 7.8402e-05 4.0275e-08 - 1.3000e-04 -8.3310e+00 9.9944e-01 5.5695e-04 9.8769e-01 1.2308e-02 1.0000e-10 1.0000e-10 8.4922e-05 4.7324e-08 - 1.4000e-04 -8.3306e+00 9.9940e-01 6.0059e-04 9.8675e-01 1.3250e-02 1.0000e-10 1.0000e-10 9.1440e-05 5.4951e-08 - 1.5000e-04 -8.3302e+00 9.9936e-01 6.4434e-04 9.8581e-01 1.4191e-02 1.0000e-10 1.0000e-10 9.7955e-05 6.3157e-08 - 1.6000e-04 -8.3298e+00 9.9931e-01 6.8821e-04 9.8487e-01 1.5132e-02 1.0000e-10 1.0000e-10 1.0447e-04 7.1946e-08 - 1.7000e-04 -8.3294e+00 9.9927e-01 7.3220e-04 9.8393e-01 1.6072e-02 1.0000e-10 1.0000e-10 1.1098e-04 8.1319e-08 - 1.8000e-04 -8.3290e+00 9.9922e-01 7.7630e-04 9.8299e-01 1.7011e-02 1.0000e-10 1.0000e-10 1.1749e-04 9.1278e-08 - 1.9000e-04 -8.3286e+00 9.9918e-01 8.2052e-04 9.8205e-01 1.7950e-02 1.0000e-10 1.0000e-10 1.2400e-04 1.0183e-07 - 2.0000e-04 -8.3283e+00 9.9914e-01 8.6487e-04 9.8111e-01 1.8887e-02 1.0000e-10 1.0000e-10 1.3050e-04 1.1296e-07 - 2.1000e-04 -8.3279e+00 9.9909e-01 9.0932e-04 9.8018e-01 1.9825e-02 1.0000e-10 1.0000e-10 1.3700e-04 1.2469e-07 - 2.2000e-04 -8.3275e+00 9.9905e-01 9.5390e-04 9.7924e-01 2.0761e-02 1.0000e-10 1.0000e-10 1.4350e-04 1.3702e-07 - 2.3000e-04 -8.3271e+00 9.9900e-01 9.9860e-04 9.7830e-01 2.1697e-02 1.0000e-10 1.0000e-10 1.5000e-04 1.4994e-07 - 2.4000e-04 -8.3267e+00 9.9896e-01 1.0434e-03 9.7737e-01 2.2633e-02 1.0000e-10 1.0000e-10 1.5650e-04 1.6346e-07 - 2.5000e-04 -8.3263e+00 9.9891e-01 1.0884e-03 9.7643e-01 2.3567e-02 1.0000e-10 1.0000e-10 1.6299e-04 1.7759e-07 - 2.6000e-04 -8.3259e+00 9.9887e-01 1.1334e-03 9.7550e-01 2.4501e-02 1.0000e-10 1.0000e-10 1.6948e-04 1.9232e-07 - 2.7000e-04 -8.3255e+00 9.9882e-01 1.1786e-03 9.7457e-01 2.5434e-02 1.0000e-10 1.0000e-10 1.7597e-04 2.0765e-07 - 2.8000e-04 -8.3252e+00 9.9878e-01 1.2239e-03 9.7363e-01 2.6367e-02 1.0000e-10 1.0000e-10 1.8246e-04 2.2359e-07 - 2.9000e-04 -8.3248e+00 9.9873e-01 1.2693e-03 9.7270e-01 2.7299e-02 1.0000e-10 1.0000e-10 1.8895e-04 2.4014e-07 - 3.0000e-04 -8.3244e+00 9.9869e-01 1.3149e-03 9.7177e-01 2.8230e-02 1.0000e-10 1.0000e-10 1.9543e-04 2.5731e-07 - 3.1000e-04 -8.3240e+00 9.9864e-01 1.3606e-03 9.7084e-01 2.9160e-02 1.0000e-10 1.0000e-10 2.0191e-04 2.7509e-07 - 3.2000e-04 -8.3236e+00 9.9859e-01 1.4064e-03 9.6991e-01 3.0090e-02 1.0000e-10 1.0000e-10 2.0839e-04 2.9349e-07 - 3.3000e-04 -8.3232e+00 9.9855e-01 1.4523e-03 9.6898e-01 3.1019e-02 1.0000e-10 1.0000e-10 2.1487e-04 3.1251e-07 - 3.4000e-04 -8.3228e+00 9.9850e-01 1.4984e-03 9.6805e-01 3.1948e-02 1.0000e-10 1.0000e-10 2.2134e-04 3.3215e-07 - 3.5000e-04 -8.3224e+00 9.9846e-01 1.5445e-03 9.6712e-01 3.2876e-02 1.0000e-10 1.0000e-10 2.2782e-04 3.5242e-07 - 3.6000e-04 -8.3220e+00 9.9841e-01 1.5909e-03 9.6620e-01 3.3803e-02 1.0000e-10 1.0000e-10 2.3429e-04 3.7331e-07 - 3.7000e-04 -8.3217e+00 9.9836e-01 1.6373e-03 9.6527e-01 3.4729e-02 1.0000e-10 1.0000e-10 2.4075e-04 3.9483e-07 - 3.8000e-04 -8.3213e+00 9.9832e-01 1.6839e-03 9.6435e-01 3.5655e-02 1.0000e-10 1.0000e-10 2.4722e-04 4.1699e-07 - 3.9000e-04 -8.3209e+00 9.9827e-01 1.7305e-03 9.6342e-01 3.6580e-02 1.0000e-10 1.0000e-10 2.5368e-04 4.3977e-07 - 4.0000e-04 -8.3205e+00 9.9822e-01 1.7774e-03 9.6250e-01 3.7504e-02 1.0000e-10 1.0000e-10 2.6015e-04 4.6320e-07 - 4.1000e-04 -8.3201e+00 9.9818e-01 1.8243e-03 9.6157e-01 3.8428e-02 1.0000e-10 1.0000e-10 2.6661e-04 4.8726e-07 - 4.2000e-04 -8.3197e+00 9.9813e-01 1.8714e-03 9.6065e-01 3.9351e-02 1.0000e-10 1.0000e-10 2.7306e-04 5.1197e-07 - 4.3000e-04 -8.3193e+00 9.9808e-01 1.9186e-03 9.5973e-01 4.0274e-02 1.0000e-10 1.0000e-10 2.7952e-04 5.3732e-07 - 4.4000e-04 -8.3189e+00 9.9803e-01 1.9660e-03 9.5880e-01 4.1195e-02 1.0000e-10 1.0000e-10 2.8597e-04 5.6332e-07 - 4.5000e-04 -8.3185e+00 9.9799e-01 2.0134e-03 9.5788e-01 4.2117e-02 1.0000e-10 1.0000e-10 2.9242e-04 5.8997e-07 - 4.6000e-04 -8.3182e+00 9.9794e-01 2.0611e-03 9.5696e-01 4.3037e-02 1.0000e-10 1.0000e-10 2.9887e-04 6.1726e-07 - 4.7000e-04 -8.3178e+00 9.9789e-01 2.1088e-03 9.5604e-01 4.3957e-02 1.0000e-10 1.0000e-10 3.0532e-04 6.4522e-07 - 4.8000e-04 -8.3174e+00 9.9784e-01 2.1567e-03 9.5512e-01 4.4876e-02 1.0000e-10 1.0000e-10 3.1176e-04 6.7383e-07 - 4.9000e-04 -8.3170e+00 9.9780e-01 2.2047e-03 9.5421e-01 4.5794e-02 1.0000e-10 1.0000e-10 3.1821e-04 7.0310e-07 - 5.0000e-04 -8.3166e+00 9.9775e-01 2.2528e-03 9.5329e-01 4.6712e-02 1.0000e-10 1.0000e-10 3.2465e-04 7.3303e-07 - 5.1000e-04 -8.3162e+00 9.9770e-01 2.3011e-03 9.5237e-01 4.7629e-02 1.0000e-10 1.0000e-10 3.3108e-04 7.6362e-07 - 5.2000e-04 -8.3158e+00 9.9765e-01 2.3496e-03 9.5146e-01 4.8545e-02 1.0000e-10 1.0000e-10 3.3752e-04 7.9489e-07 - 5.3000e-04 -8.3154e+00 9.9760e-01 2.3981e-03 9.5054e-01 4.9461e-02 1.0000e-10 1.0000e-10 3.4395e-04 8.2682e-07 - 5.4000e-04 -8.3150e+00 9.9755e-01 2.4468e-03 9.4962e-01 5.0376e-02 1.0000e-10 1.0000e-10 3.5038e-04 8.5943e-07 - 5.5000e-04 -8.3146e+00 9.9750e-01 2.4956e-03 9.4871e-01 5.1290e-02 1.0000e-10 1.0000e-10 3.5681e-04 8.9271e-07 - 5.6000e-04 -8.3143e+00 9.9746e-01 2.5446e-03 9.4780e-01 5.2204e-02 1.0000e-10 1.0000e-10 3.6324e-04 9.2667e-07 - 5.7000e-04 -8.3139e+00 9.9741e-01 2.5937e-03 9.4688e-01 5.3117e-02 1.0000e-10 1.0000e-10 3.6967e-04 9.6131e-07 - 5.8000e-04 -8.3135e+00 9.9736e-01 2.6430e-03 9.4597e-01 5.4029e-02 1.0000e-10 1.0000e-10 3.7609e-04 9.9663e-07 - 5.9000e-04 -8.3131e+00 9.9731e-01 2.6924e-03 9.4506e-01 5.4940e-02 1.0000e-10 1.0000e-10 3.8251e-04 1.0326e-06 - 6.0000e-04 -8.3127e+00 9.9726e-01 2.7419e-03 9.4415e-01 5.5851e-02 1.0000e-10 1.0000e-10 3.8893e-04 1.0693e-06 - 6.1000e-04 -8.3123e+00 9.9721e-01 2.7916e-03 9.4324e-01 5.6762e-02 1.0000e-10 1.0000e-10 3.9534e-04 1.1067e-06 - 6.2000e-04 -8.3119e+00 9.9716e-01 2.8414e-03 9.4233e-01 5.7671e-02 1.0000e-10 1.0000e-10 4.0176e-04 1.1448e-06 - 6.3000e-04 -8.3115e+00 9.9711e-01 2.8914e-03 9.4142e-01 5.8580e-02 1.0000e-10 1.0000e-10 4.0817e-04 1.1836e-06 - 6.4000e-04 -8.3111e+00 9.9706e-01 2.9415e-03 9.4051e-01 5.9488e-02 1.0000e-10 1.0000e-10 4.1458e-04 1.2231e-06 - 6.5000e-04 -8.3107e+00 9.9701e-01 2.9918e-03 9.3960e-01 6.0396e-02 1.0000e-10 1.0000e-10 4.2099e-04 1.2633e-06 - 6.6000e-04 -8.3104e+00 9.9696e-01 3.0422e-03 9.3870e-01 6.1303e-02 1.0000e-10 1.0000e-10 4.2739e-04 1.3042e-06 - 6.7000e-04 -8.3100e+00 9.9691e-01 3.0927e-03 9.3779e-01 6.2209e-02 1.0000e-10 1.0000e-10 4.3379e-04 1.3458e-06 - 6.8000e-04 -8.3096e+00 9.9686e-01 3.1434e-03 9.3689e-01 6.3115e-02 1.0000e-10 1.0000e-10 4.4019e-04 1.3881e-06 - 6.9000e-04 -8.3092e+00 9.9681e-01 3.1943e-03 9.3598e-01 6.4019e-02 1.0000e-10 1.0000e-10 4.4659e-04 1.4311e-06 - 7.0000e-04 -8.3088e+00 9.9675e-01 3.2453e-03 9.3508e-01 6.4924e-02 1.0000e-10 1.0000e-10 4.5299e-04 1.4749e-06 - 7.1000e-04 -8.3084e+00 9.9670e-01 3.2964e-03 9.3417e-01 6.5827e-02 1.0000e-10 1.0000e-10 4.5938e-04 1.5193e-06 - 7.2000e-04 -8.3080e+00 9.9665e-01 3.3477e-03 9.3327e-01 6.6730e-02 1.0000e-10 1.0000e-10 4.6578e-04 1.5645e-06 - 7.3000e-04 -8.3076e+00 9.9660e-01 3.3992e-03 9.3237e-01 6.7632e-02 1.0000e-10 1.0000e-10 4.7217e-04 1.6105e-06 - 7.4000e-04 -8.3072e+00 9.9655e-01 3.4508e-03 9.3147e-01 6.8534e-02 1.0000e-10 1.0000e-10 4.7855e-04 1.6571e-06 - 7.5000e-04 -8.3068e+00 9.9650e-01 3.5025e-03 9.3057e-01 6.9434e-02 1.0000e-10 1.0000e-10 4.8494e-04 1.7045e-06 - 7.6000e-04 -8.3064e+00 9.9645e-01 3.5544e-03 9.2967e-01 7.0335e-02 1.0000e-10 1.0000e-10 4.9132e-04 1.7526e-06 - 7.7000e-04 -8.3061e+00 9.9639e-01 3.6065e-03 9.2877e-01 7.1234e-02 1.0000e-10 1.0000e-10 4.9770e-04 1.8015e-06 - 7.8000e-04 -8.3057e+00 9.9634e-01 3.6587e-03 9.2787e-01 7.2133e-02 1.0000e-10 1.0000e-10 5.0408e-04 1.8511e-06 - 7.9000e-04 -8.3053e+00 9.9629e-01 3.7111e-03 9.2697e-01 7.3031e-02 1.0000e-10 1.0000e-10 5.1046e-04 1.9014e-06 - 8.0000e-04 -8.3049e+00 9.9624e-01 3.7636e-03 9.2607e-01 7.3928e-02 1.0000e-10 1.0000e-10 5.1683e-04 1.9525e-06 - 8.1000e-04 -8.3045e+00 9.9618e-01 3.8163e-03 9.2517e-01 7.4825e-02 1.0000e-10 1.0000e-10 5.2320e-04 2.0044e-06 - 8.2000e-04 -8.3041e+00 9.9613e-01 3.8691e-03 9.2428e-01 7.5721e-02 1.0000e-10 1.0000e-10 5.2957e-04 2.0570e-06 - 8.3000e-04 -8.3037e+00 9.9608e-01 3.9221e-03 9.2338e-01 7.6617e-02 1.0000e-10 1.0000e-10 5.3594e-04 2.1103e-06 - 8.4000e-04 -8.3033e+00 9.9602e-01 3.9753e-03 9.2249e-01 7.7511e-02 1.0000e-10 1.0000e-10 5.4231e-04 2.1644e-06 - 8.5000e-04 -8.3029e+00 9.9597e-01 4.0286e-03 9.2159e-01 7.8406e-02 1.0000e-10 1.0000e-10 5.4867e-04 2.2193e-06 - 8.6000e-04 -8.3025e+00 9.9592e-01 4.0821e-03 9.2070e-01 7.9299e-02 1.0000e-10 1.0000e-10 5.5503e-04 2.2750e-06 - 8.7000e-04 -8.3021e+00 9.9586e-01 4.1358e-03 9.1981e-01 8.0192e-02 1.0000e-10 1.0000e-10 5.6139e-04 2.3314e-06 - 8.8000e-04 -8.3017e+00 9.9581e-01 4.1896e-03 9.1892e-01 8.1084e-02 1.0000e-10 1.0000e-10 5.6775e-04 2.3886e-06 - 8.9000e-04 -8.3014e+00 9.9576e-01 4.2435e-03 9.1802e-01 8.1975e-02 1.0000e-10 1.0000e-10 5.7410e-04 2.4466e-06 - 9.0000e-04 -8.3010e+00 9.9570e-01 4.2977e-03 9.1713e-01 8.2866e-02 1.0000e-10 1.0000e-10 5.8045e-04 2.5054e-06 - 9.1000e-04 -8.3006e+00 9.9565e-01 4.3520e-03 9.1624e-01 8.3756e-02 1.0000e-10 1.0000e-10 5.8680e-04 2.5649e-06 - 9.2000e-04 -8.3002e+00 9.9559e-01 4.4064e-03 9.1535e-01 8.4645e-02 1.0000e-10 1.0000e-10 5.9315e-04 2.6253e-06 - 9.3000e-04 -8.2998e+00 9.9554e-01 4.4611e-03 9.1447e-01 8.5534e-02 1.0000e-10 1.0000e-10 5.9950e-04 2.6864e-06 - 9.4000e-04 -8.2994e+00 9.9548e-01 4.5159e-03 9.1358e-01 8.6422e-02 1.0000e-10 1.0000e-10 6.0584e-04 2.7483e-06 - 9.5000e-04 -8.2990e+00 9.9543e-01 4.5708e-03 9.1269e-01 8.7309e-02 1.0000e-10 1.0000e-10 6.1218e-04 2.8110e-06 - 9.6000e-04 -8.2986e+00 9.9537e-01 4.6260e-03 9.1180e-01 8.8196e-02 1.0000e-10 1.0000e-10 6.1852e-04 2.8746e-06 - 9.7000e-04 -8.2982e+00 9.9532e-01 4.6813e-03 9.1092e-01 8.9082e-02 1.0000e-10 1.0000e-10 6.2485e-04 2.9389e-06 - 9.8000e-04 -8.2978e+00 9.9526e-01 4.7368e-03 9.1003e-01 8.9967e-02 1.0000e-10 1.0000e-10 6.3119e-04 3.0040e-06 - 9.9000e-04 -8.2974e+00 9.9521e-01 4.7924e-03 9.0915e-01 9.0852e-02 1.0000e-10 1.0000e-10 6.3752e-04 3.0700e-06 - 1.0000e-03 -8.2974e+00 9.8284e-01 1.7161e-02 9.0898e-01 9.1023e-02 6.4048e-04 9.4144e-06 6.3874e-04 1.1153e-05 - 1.0100e-03 -8.2974e+00 9.6795e-01 3.2055e-02 9.0898e-01 9.1023e-02 6.3881e-04 2.1081e-05 6.3874e-04 2.1153e-05 - 1.0200e-03 -8.2974e+00 9.5350e-01 4.6504e-02 9.0898e-01 9.1023e-02 6.3715e-04 3.2747e-05 6.3874e-04 3.1153e-05 - 1.0300e-03 -8.2974e+00 9.3947e-01 6.0528e-02 9.0898e-01 9.1023e-02 6.3548e-04 4.4413e-05 6.3874e-04 4.1153e-05 - 1.0400e-03 -8.2974e+00 9.2585e-01 7.4146e-02 9.0898e-01 9.1023e-02 6.3382e-04 5.6079e-05 6.3874e-04 5.1153e-05 - 1.0500e-03 -8.2974e+00 9.1263e-01 8.7374e-02 9.0898e-01 9.1023e-02 6.3215e-04 6.7745e-05 6.3874e-04 6.1153e-05 - 1.0600e-03 -8.2974e+00 8.9977e-01 1.0023e-01 9.0898e-01 9.1023e-02 6.3048e-04 7.9412e-05 6.3874e-04 7.1153e-05 - 1.0700e-03 -8.2974e+00 8.8727e-01 1.1273e-01 9.0898e-01 9.1023e-02 6.2882e-04 9.1078e-05 6.3874e-04 8.1153e-05 - 1.0800e-03 -8.2974e+00 8.7512e-01 1.2488e-01 9.0898e-01 9.1023e-02 6.2715e-04 1.0274e-04 6.3874e-04 9.1153e-05 - 1.0900e-03 -8.2974e+00 8.6329e-01 1.3671e-01 9.0898e-01 9.1023e-02 6.2549e-04 1.1441e-04 6.3874e-04 1.0115e-04 - 1.1000e-03 -8.2974e+00 8.5178e-01 1.4822e-01 9.0898e-01 9.1023e-02 6.2382e-04 1.2608e-04 6.3874e-04 1.1115e-04 - 1.1100e-03 -8.2974e+00 8.4057e-01 1.5943e-01 9.0898e-01 9.1023e-02 6.2215e-04 1.3774e-04 6.3874e-04 1.2115e-04 - 1.1200e-03 -8.2974e+00 8.2965e-01 1.7035e-01 9.0898e-01 9.1023e-02 6.2049e-04 1.4941e-04 6.3874e-04 1.3115e-04 - 1.1300e-03 -8.2974e+00 8.1901e-01 1.8099e-01 9.0898e-01 9.1023e-02 6.1882e-04 1.6108e-04 6.3874e-04 1.4115e-04 - 1.1400e-03 -8.2974e+00 8.0864e-01 1.9136e-01 9.0898e-01 9.1023e-02 6.1715e-04 1.7274e-04 6.3874e-04 1.5115e-04 - 1.1500e-03 -8.2974e+00 7.9853e-01 2.0147e-01 9.0898e-01 9.1023e-02 6.1549e-04 1.8441e-04 6.3874e-04 1.6115e-04 - 1.1600e-03 -8.2974e+00 7.8867e-01 2.1133e-01 9.0898e-01 9.1023e-02 6.1382e-04 1.9607e-04 6.3874e-04 1.7115e-04 - 1.1700e-03 -8.2974e+00 7.7905e-01 2.2095e-01 9.0898e-01 9.1023e-02 6.1216e-04 2.0774e-04 6.3874e-04 1.8115e-04 - 1.1800e-03 -8.2974e+00 7.6967e-01 2.3033e-01 9.0898e-01 9.1023e-02 6.1049e-04 2.1941e-04 6.3874e-04 1.9115e-04 - 1.1900e-03 -8.2974e+00 7.6050e-01 2.3950e-01 9.0898e-01 9.1023e-02 6.0882e-04 2.3107e-04 6.3874e-04 2.0115e-04 - 1.2000e-03 -8.2974e+00 7.5155e-01 2.4845e-01 9.0898e-01 9.1023e-02 6.0716e-04 2.4274e-04 6.3874e-04 2.1115e-04 - 1.2100e-03 -8.2974e+00 7.4281e-01 2.5719e-01 9.0898e-01 9.1023e-02 6.0549e-04 2.5440e-04 6.3874e-04 2.2115e-04 - 1.2200e-03 -8.2974e+00 7.3428e-01 2.6572e-01 9.0898e-01 9.1023e-02 6.0382e-04 2.6607e-04 6.3874e-04 2.3115e-04 - 1.2300e-03 -8.2974e+00 7.2593e-01 2.7407e-01 9.0898e-01 9.1023e-02 6.0216e-04 2.7774e-04 6.3874e-04 2.4115e-04 - 1.2400e-03 -8.2974e+00 7.1777e-01 2.8223e-01 9.0898e-01 9.1023e-02 6.0049e-04 2.8940e-04 6.3874e-04 2.5115e-04 - 1.2500e-03 -8.2974e+00 7.0980e-01 2.9020e-01 9.0898e-01 9.1023e-02 5.9883e-04 3.0107e-04 6.3874e-04 2.6115e-04 - 1.2600e-03 -8.2974e+00 7.0200e-01 2.9800e-01 9.0898e-01 9.1023e-02 5.9716e-04 3.1274e-04 6.3874e-04 2.7115e-04 - 1.2700e-03 -8.2974e+00 6.9436e-01 3.0564e-01 9.0898e-01 9.1023e-02 5.9549e-04 3.2440e-04 6.3874e-04 2.8115e-04 - 1.2800e-03 -8.2974e+00 6.8690e-01 3.1310e-01 9.0898e-01 9.1023e-02 5.9383e-04 3.3607e-04 6.3874e-04 2.9115e-04 - 1.2900e-03 -8.2974e+00 6.7959e-01 3.2041e-01 9.0898e-01 9.1023e-02 5.9216e-04 3.4773e-04 6.3874e-04 3.0115e-04 - 1.3000e-03 -8.2974e+00 6.7243e-01 3.2757e-01 9.0898e-01 9.1023e-02 5.9049e-04 3.5940e-04 6.3874e-04 3.1115e-04 - 1.3100e-03 -8.2974e+00 6.6543e-01 3.3457e-01 9.0898e-01 9.1023e-02 5.8883e-04 3.7107e-04 6.3874e-04 3.2115e-04 - 1.3200e-03 -8.2974e+00 6.5857e-01 3.4143e-01 9.0898e-01 9.1023e-02 5.8716e-04 3.8273e-04 6.3874e-04 3.3115e-04 - 1.3300e-03 -8.2974e+00 6.5185e-01 3.4815e-01 9.0898e-01 9.1023e-02 5.8550e-04 3.9440e-04 6.3874e-04 3.4115e-04 - 1.3400e-03 -8.2974e+00 6.4526e-01 3.5474e-01 9.0898e-01 9.1023e-02 5.8383e-04 4.0607e-04 6.3874e-04 3.5115e-04 - 1.3500e-03 -8.2974e+00 6.3881e-01 3.6119e-01 9.0898e-01 9.1023e-02 5.8216e-04 4.1773e-04 6.3874e-04 3.6115e-04 - 1.3600e-03 -8.2974e+00 6.3248e-01 3.6752e-01 9.0898e-01 9.1023e-02 5.8050e-04 4.2940e-04 6.3874e-04 3.7115e-04 - 1.3700e-03 -8.2974e+00 6.2628e-01 3.7372e-01 9.0898e-01 9.1023e-02 5.7883e-04 4.4106e-04 6.3874e-04 3.8115e-04 - 1.3800e-03 -8.2974e+00 6.2020e-01 3.7980e-01 9.0898e-01 9.1023e-02 5.7717e-04 4.5273e-04 6.3874e-04 3.9115e-04 - 1.3900e-03 -8.2974e+00 6.1424e-01 3.8576e-01 9.0898e-01 9.1023e-02 5.7550e-04 4.6440e-04 6.3874e-04 4.0115e-04 - 1.4000e-03 -8.2974e+00 6.0839e-01 3.9161e-01 9.0898e-01 9.1023e-02 5.7383e-04 4.7606e-04 6.3874e-04 4.1115e-04 - 1.4100e-03 -8.2974e+00 6.0265e-01 3.9735e-01 9.0898e-01 9.1023e-02 5.7217e-04 4.8773e-04 6.3874e-04 4.2115e-04 - 1.4200e-03 -8.2974e+00 5.9701e-01 4.0299e-01 9.0898e-01 9.1023e-02 5.7050e-04 4.9939e-04 6.3874e-04 4.3115e-04 - 1.4300e-03 -8.2974e+00 5.9149e-01 4.0851e-01 9.0898e-01 9.1023e-02 5.6883e-04 5.1106e-04 6.3874e-04 4.4115e-04 - 1.4400e-03 -8.2974e+00 5.8606e-01 4.1394e-01 9.0898e-01 9.1023e-02 5.6717e-04 5.2273e-04 6.3874e-04 4.5115e-04 - 1.4500e-03 -8.2974e+00 5.8073e-01 4.1927e-01 9.0898e-01 9.1023e-02 5.6550e-04 5.3439e-04 6.3874e-04 4.6115e-04 - 1.4600e-03 -8.2974e+00 5.7550e-01 4.2450e-01 9.0898e-01 9.1023e-02 5.6384e-04 5.4606e-04 6.3874e-04 4.7115e-04 - 1.4700e-03 -8.2974e+00 5.7036e-01 4.2964e-01 9.0898e-01 9.1023e-02 5.6217e-04 5.5773e-04 6.3874e-04 4.8115e-04 - 1.4800e-03 -8.2974e+00 5.6531e-01 4.3469e-01 9.0898e-01 9.1023e-02 5.6050e-04 5.6939e-04 6.3874e-04 4.9115e-04 - 1.4900e-03 -8.2974e+00 5.6035e-01 4.3965e-01 9.0898e-01 9.1023e-02 5.5884e-04 5.8106e-04 6.3874e-04 5.0115e-04 - 1.5000e-03 -8.2974e+00 5.5548e-01 4.4452e-01 9.0898e-01 9.1023e-02 5.5717e-04 5.9272e-04 6.3874e-04 5.1115e-04 - 1.5100e-03 -8.2974e+00 5.5069e-01 4.4931e-01 9.0898e-01 9.1023e-02 5.5550e-04 6.0439e-04 6.3874e-04 5.2115e-04 - 1.5200e-03 -8.2974e+00 5.4598e-01 4.5402e-01 9.0898e-01 9.1023e-02 5.5384e-04 6.1606e-04 6.3874e-04 5.3115e-04 - 1.5300e-03 -8.2974e+00 5.4136e-01 4.5864e-01 9.0898e-01 9.1023e-02 5.5217e-04 6.2772e-04 6.3874e-04 5.4115e-04 - 1.5400e-03 -8.2974e+00 5.3681e-01 4.6319e-01 9.0898e-01 9.1023e-02 5.5051e-04 6.3939e-04 6.3874e-04 5.5115e-04 - 1.5500e-03 -8.2974e+00 5.3233e-01 4.6767e-01 9.0898e-01 9.1023e-02 5.4884e-04 6.5106e-04 6.3874e-04 5.6115e-04 - 1.5600e-03 -8.2974e+00 5.2793e-01 4.7207e-01 9.0898e-01 9.1023e-02 5.4717e-04 6.6272e-04 6.3874e-04 5.7115e-04 - 1.5700e-03 -8.2974e+00 5.2360e-01 4.7640e-01 9.0898e-01 9.1023e-02 5.4551e-04 6.7439e-04 6.3874e-04 5.8115e-04 - 1.5800e-03 -8.2974e+00 5.1935e-01 4.8065e-01 9.0898e-01 9.1023e-02 5.4384e-04 6.8605e-04 6.3874e-04 5.9115e-04 - 1.5900e-03 -8.2974e+00 5.1516e-01 4.8484e-01 9.0898e-01 9.1023e-02 5.4218e-04 6.9772e-04 6.3874e-04 6.0115e-04 - 1.6000e-03 -8.2974e+00 5.1104e-01 4.8896e-01 9.0898e-01 9.1023e-02 5.4051e-04 7.0939e-04 6.3874e-04 6.1115e-04 - 1.6100e-03 -8.2974e+00 5.0698e-01 4.9302e-01 9.0898e-01 9.1023e-02 5.3884e-04 7.2105e-04 6.3874e-04 6.2115e-04 - 1.6200e-03 -8.2974e+00 5.0299e-01 4.9701e-01 9.0898e-01 9.1023e-02 5.3718e-04 7.3272e-04 6.3874e-04 6.3115e-04 - 1.6300e-03 -8.2974e+00 4.9906e-01 5.0094e-01 9.0898e-01 9.1023e-02 5.3551e-04 7.4439e-04 6.3874e-04 6.4115e-04 - 1.6400e-03 -8.2974e+00 4.9519e-01 5.0481e-01 9.0898e-01 9.1023e-02 5.3384e-04 7.5605e-04 6.3874e-04 6.5115e-04 - 1.6500e-03 -8.2974e+00 4.9138e-01 5.0862e-01 9.0898e-01 9.1023e-02 5.3218e-04 7.6772e-04 6.3874e-04 6.6115e-04 - 1.6600e-03 -8.2974e+00 4.8763e-01 5.1237e-01 9.0898e-01 9.1023e-02 5.3051e-04 7.7938e-04 6.3874e-04 6.7115e-04 - 1.6700e-03 -8.2974e+00 4.8393e-01 5.1607e-01 9.0898e-01 9.1023e-02 5.2885e-04 7.9105e-04 6.3874e-04 6.8115e-04 - 1.6800e-03 -8.2974e+00 4.8030e-01 5.1970e-01 9.0898e-01 9.1023e-02 5.2718e-04 8.0272e-04 6.3874e-04 6.9115e-04 - 1.6900e-03 -8.2974e+00 4.7671e-01 5.2329e-01 9.0898e-01 9.1023e-02 5.2551e-04 8.1438e-04 6.3874e-04 7.0115e-04 - 1.7000e-03 -8.2974e+00 4.7318e-01 5.2682e-01 9.0898e-01 9.1023e-02 5.2385e-04 8.2605e-04 6.3874e-04 7.1115e-04 - 1.7100e-03 -8.2974e+00 4.6970e-01 5.3030e-01 9.0898e-01 9.1023e-02 5.2218e-04 8.3771e-04 6.3874e-04 7.2115e-04 - 1.7200e-03 -8.2974e+00 4.6627e-01 5.3373e-01 9.0898e-01 9.1023e-02 5.2051e-04 8.4938e-04 6.3874e-04 7.3115e-04 - 1.7300e-03 -8.2974e+00 4.6289e-01 5.3711e-01 9.0898e-01 9.1023e-02 5.1885e-04 8.6105e-04 6.3874e-04 7.4115e-04 - 1.7400e-03 -8.2974e+00 4.5956e-01 5.4044e-01 9.0898e-01 9.1023e-02 5.1718e-04 8.7271e-04 6.3874e-04 7.5115e-04 - 1.7500e-03 -8.2974e+00 4.5628e-01 5.4372e-01 9.0898e-01 9.1023e-02 5.1552e-04 8.8438e-04 6.3874e-04 7.6115e-04 - 1.7600e-03 -8.2974e+00 4.5304e-01 5.4696e-01 9.0898e-01 9.1023e-02 5.1385e-04 8.9605e-04 6.3874e-04 7.7115e-04 - 1.7700e-03 -8.2974e+00 4.4985e-01 5.5015e-01 9.0898e-01 9.1023e-02 5.1218e-04 9.0771e-04 6.3874e-04 7.8115e-04 - 1.7800e-03 -8.2974e+00 4.4671e-01 5.5329e-01 9.0898e-01 9.1023e-02 5.1052e-04 9.1938e-04 6.3874e-04 7.9115e-04 - 1.7900e-03 -8.2974e+00 4.4360e-01 5.5640e-01 9.0898e-01 9.1023e-02 5.0885e-04 9.3104e-04 6.3874e-04 8.0115e-04 - 1.8000e-03 -8.2974e+00 4.4054e-01 5.5946e-01 9.0898e-01 9.1023e-02 5.0718e-04 9.4271e-04 6.3874e-04 8.1115e-04 - 1.8100e-03 -8.2974e+00 4.3753e-01 5.6247e-01 9.0898e-01 9.1023e-02 5.0552e-04 9.5438e-04 6.3874e-04 8.2115e-04 - 1.8200e-03 -8.2974e+00 4.3455e-01 5.6545e-01 9.0898e-01 9.1023e-02 5.0385e-04 9.6604e-04 6.3874e-04 8.3115e-04 - 1.8300e-03 -8.2974e+00 4.3161e-01 5.6839e-01 9.0898e-01 9.1023e-02 5.0219e-04 9.7771e-04 6.3874e-04 8.4115e-04 - 1.8400e-03 -8.2974e+00 4.2872e-01 5.7128e-01 9.0898e-01 9.1023e-02 5.0052e-04 9.8938e-04 6.3874e-04 8.5115e-04 - 1.8500e-03 -8.2974e+00 4.2586e-01 5.7414e-01 9.0898e-01 9.1023e-02 4.9885e-04 1.0010e-03 6.3874e-04 8.6115e-04 - 1.8600e-03 -8.2974e+00 4.2304e-01 5.7696e-01 9.0898e-01 9.1023e-02 4.9719e-04 1.0127e-03 6.3874e-04 8.7115e-04 - 1.8700e-03 -8.2974e+00 4.2025e-01 5.7975e-01 9.0898e-01 9.1023e-02 4.9552e-04 1.0244e-03 6.3874e-04 8.8115e-04 - 1.8800e-03 -8.2974e+00 4.1751e-01 5.8249e-01 9.0898e-01 9.1023e-02 4.9386e-04 1.0360e-03 6.3874e-04 8.9115e-04 - 1.8900e-03 -8.2974e+00 4.1480e-01 5.8520e-01 9.0898e-01 9.1023e-02 4.9219e-04 1.0477e-03 6.3874e-04 9.0115e-04 - 1.9000e-03 -8.2974e+00 4.1212e-01 5.8788e-01 9.0898e-01 9.1023e-02 4.9052e-04 1.0594e-03 6.3874e-04 9.1115e-04 - 1.9100e-03 -8.2974e+00 4.0948e-01 5.9052e-01 9.0898e-01 9.1023e-02 4.8886e-04 1.0710e-03 6.3874e-04 9.2115e-04 - 1.9200e-03 -8.2974e+00 4.0687e-01 5.9313e-01 9.0898e-01 9.1023e-02 4.8719e-04 1.0827e-03 6.3874e-04 9.3115e-04 - 1.9300e-03 -8.2974e+00 4.0429e-01 5.9571e-01 9.0898e-01 9.1023e-02 4.8552e-04 1.0944e-03 6.3874e-04 9.4115e-04 - 1.9400e-03 -8.2974e+00 4.0175e-01 5.9825e-01 9.0898e-01 9.1023e-02 4.8386e-04 1.1060e-03 6.3874e-04 9.5115e-04 - 1.9500e-03 -8.2974e+00 3.9924e-01 6.0076e-01 9.0898e-01 9.1023e-02 4.8219e-04 1.1177e-03 6.3874e-04 9.6115e-04 - 1.9600e-03 -8.2974e+00 3.9676e-01 6.0324e-01 9.0898e-01 9.1023e-02 4.8053e-04 1.1294e-03 6.3874e-04 9.7115e-04 - 1.9700e-03 -8.2974e+00 3.9431e-01 6.0569e-01 9.0898e-01 9.1023e-02 4.7886e-04 1.1410e-03 6.3874e-04 9.8115e-04 - 1.9800e-03 -8.2974e+00 3.9189e-01 6.0811e-01 9.0898e-01 9.1023e-02 4.7719e-04 1.1527e-03 6.3874e-04 9.9115e-04 - 1.9900e-03 -8.2974e+00 3.8950e-01 6.1050e-01 9.0898e-01 9.1023e-02 4.7553e-04 1.1644e-03 6.3874e-04 1.0012e-03 - 2.0000e-03 -8.2974e+00 3.8714e-01 6.1286e-01 9.0898e-01 9.1023e-02 4.7386e-04 1.1760e-03 6.3874e-04 1.0112e-03 - 2.0100e-03 -8.2974e+00 3.8481e-01 6.1519e-01 9.0898e-01 9.1023e-02 4.7219e-04 1.1877e-03 6.3874e-04 1.0212e-03 - 2.0200e-03 -8.2974e+00 3.8250e-01 6.1750e-01 9.0898e-01 9.1023e-02 4.7053e-04 1.1994e-03 6.3874e-04 1.0312e-03 - 2.0300e-03 -8.2974e+00 3.8023e-01 6.1977e-01 9.0898e-01 9.1023e-02 4.6886e-04 1.2110e-03 6.3874e-04 1.0412e-03 - 2.0400e-03 -8.2974e+00 3.7798e-01 6.2202e-01 9.0898e-01 9.1023e-02 4.6720e-04 1.2227e-03 6.3874e-04 1.0512e-03 - 2.0500e-03 -8.2974e+00 3.7575e-01 6.2425e-01 9.0898e-01 9.1023e-02 4.6553e-04 1.2344e-03 6.3874e-04 1.0612e-03 - 2.0600e-03 -8.2974e+00 3.7356e-01 6.2644e-01 9.0898e-01 9.1023e-02 4.6386e-04 1.2460e-03 6.3874e-04 1.0712e-03 - 2.0700e-03 -8.2974e+00 3.7138e-01 6.2862e-01 9.0898e-01 9.1023e-02 4.6220e-04 1.2577e-03 6.3874e-04 1.0812e-03 - 2.0800e-03 -8.2974e+00 3.6924e-01 6.3076e-01 9.0898e-01 9.1023e-02 4.6053e-04 1.2694e-03 6.3874e-04 1.0912e-03 - 2.0900e-03 -8.2974e+00 3.6712e-01 6.3288e-01 9.0898e-01 9.1023e-02 4.5887e-04 1.2810e-03 6.3874e-04 1.1012e-03 - 2.1000e-03 -8.2974e+00 3.6502e-01 6.3498e-01 9.0898e-01 9.1023e-02 4.5720e-04 1.2927e-03 6.3874e-04 1.1112e-03 - 2.1100e-03 -8.2974e+00 3.6294e-01 6.3706e-01 9.0898e-01 9.1023e-02 4.5553e-04 1.3044e-03 6.3874e-04 1.1212e-03 - 2.1200e-03 -8.2974e+00 3.6089e-01 6.3911e-01 9.0898e-01 9.1023e-02 4.5387e-04 1.3160e-03 6.3874e-04 1.1312e-03 - 2.1300e-03 -8.2974e+00 3.5887e-01 6.4113e-01 9.0898e-01 9.1023e-02 4.5220e-04 1.3277e-03 6.3874e-04 1.1412e-03 - 2.1400e-03 -8.2974e+00 3.5686e-01 6.4314e-01 9.0898e-01 9.1023e-02 4.5053e-04 1.3394e-03 6.3874e-04 1.1512e-03 - 2.1500e-03 -8.2974e+00 3.5488e-01 6.4512e-01 9.0898e-01 9.1023e-02 4.4887e-04 1.3510e-03 6.3874e-04 1.1612e-03 - 2.1600e-03 -8.2974e+00 3.5292e-01 6.4708e-01 9.0898e-01 9.1023e-02 4.4720e-04 1.3627e-03 6.3874e-04 1.1712e-03 - 2.1700e-03 -8.2974e+00 3.5098e-01 6.4902e-01 9.0898e-01 9.1023e-02 4.4554e-04 1.3744e-03 6.3874e-04 1.1812e-03 - 2.1800e-03 -8.2974e+00 3.4906e-01 6.5094e-01 9.0898e-01 9.1023e-02 4.4387e-04 1.3860e-03 6.3874e-04 1.1912e-03 - 2.1900e-03 -8.2974e+00 3.4716e-01 6.5284e-01 9.0898e-01 9.1023e-02 4.4220e-04 1.3977e-03 6.3874e-04 1.2012e-03 - 2.2000e-03 -8.2974e+00 3.4529e-01 6.5471e-01 9.0898e-01 9.1023e-02 4.4054e-04 1.4094e-03 6.3874e-04 1.2112e-03 - 2.2100e-03 -8.2974e+00 3.4343e-01 6.5657e-01 9.0898e-01 9.1023e-02 4.3887e-04 1.4210e-03 6.3874e-04 1.2212e-03 - 2.2200e-03 -8.2974e+00 3.4159e-01 6.5841e-01 9.0898e-01 9.1023e-02 4.3720e-04 1.4327e-03 6.3874e-04 1.2312e-03 - 2.2300e-03 -8.2974e+00 3.3978e-01 6.6022e-01 9.0898e-01 9.1023e-02 4.3554e-04 1.4444e-03 6.3874e-04 1.2412e-03 - 2.2400e-03 -8.2974e+00 3.3798e-01 6.6202e-01 9.0898e-01 9.1023e-02 4.3387e-04 1.4560e-03 6.3874e-04 1.2512e-03 - 2.2500e-03 -8.2974e+00 3.3620e-01 6.6380e-01 9.0898e-01 9.1023e-02 4.3221e-04 1.4677e-03 6.3874e-04 1.2612e-03 - 2.2600e-03 -8.2974e+00 3.3444e-01 6.6556e-01 9.0898e-01 9.1023e-02 4.3054e-04 1.4794e-03 6.3874e-04 1.2712e-03 - 2.2700e-03 -8.2974e+00 3.3270e-01 6.6730e-01 9.0898e-01 9.1023e-02 4.2887e-04 1.4910e-03 6.3874e-04 1.2812e-03 - 2.2800e-03 -8.2974e+00 3.3097e-01 6.6903e-01 9.0898e-01 9.1023e-02 4.2721e-04 1.5027e-03 6.3874e-04 1.2912e-03 - 2.2900e-03 -8.2974e+00 3.2927e-01 6.7073e-01 9.0898e-01 9.1023e-02 4.2554e-04 1.5144e-03 6.3874e-04 1.3012e-03 - 2.3000e-03 -8.2974e+00 3.2758e-01 6.7242e-01 9.0898e-01 9.1023e-02 4.2387e-04 1.5260e-03 6.3874e-04 1.3112e-03 - 2.3100e-03 -8.2974e+00 3.2591e-01 6.7409e-01 9.0898e-01 9.1023e-02 4.2221e-04 1.5377e-03 6.3874e-04 1.3212e-03 - 2.3200e-03 -8.2974e+00 3.2425e-01 6.7575e-01 9.0898e-01 9.1023e-02 4.2054e-04 1.5494e-03 6.3874e-04 1.3312e-03 - 2.3300e-03 -8.2974e+00 3.2261e-01 6.7739e-01 9.0898e-01 9.1023e-02 4.1888e-04 1.5610e-03 6.3874e-04 1.3412e-03 - 2.3400e-03 -8.2974e+00 3.2099e-01 6.7901e-01 9.0898e-01 9.1023e-02 4.1721e-04 1.5727e-03 6.3874e-04 1.3512e-03 - 2.3500e-03 -8.2974e+00 3.1939e-01 6.8061e-01 9.0898e-01 9.1023e-02 4.1554e-04 1.5844e-03 6.3874e-04 1.3612e-03 - 2.3600e-03 -8.2974e+00 3.1780e-01 6.8220e-01 9.0898e-01 9.1023e-02 4.1388e-04 1.5960e-03 6.3874e-04 1.3712e-03 - 2.3700e-03 -8.2974e+00 3.1623e-01 6.8377e-01 9.0898e-01 9.1023e-02 4.1221e-04 1.6077e-03 6.3874e-04 1.3812e-03 - 2.3800e-03 -8.2974e+00 3.1467e-01 6.8533e-01 9.0898e-01 9.1023e-02 4.1055e-04 1.6194e-03 6.3874e-04 1.3912e-03 - 2.3900e-03 -8.2974e+00 3.1313e-01 6.8687e-01 9.0898e-01 9.1023e-02 4.0888e-04 1.6310e-03 6.3874e-04 1.4012e-03 - 2.4000e-03 -8.2974e+00 3.1160e-01 6.8840e-01 9.0898e-01 9.1023e-02 4.0721e-04 1.6427e-03 6.3874e-04 1.4112e-03 - 2.4100e-03 -8.2974e+00 3.1009e-01 6.8991e-01 9.0898e-01 9.1023e-02 4.0555e-04 1.6543e-03 6.3874e-04 1.4212e-03 - 2.4200e-03 -8.2974e+00 3.0859e-01 6.9141e-01 9.0898e-01 9.1023e-02 4.0388e-04 1.6660e-03 6.3874e-04 1.4312e-03 - 2.4300e-03 -8.2974e+00 3.0710e-01 6.9290e-01 9.0898e-01 9.1023e-02 4.0221e-04 1.6777e-03 6.3874e-04 1.4412e-03 - 2.4400e-03 -8.2974e+00 3.0563e-01 6.9437e-01 9.0898e-01 9.1023e-02 4.0055e-04 1.6893e-03 6.3874e-04 1.4512e-03 - 2.4500e-03 -8.2974e+00 3.0418e-01 6.9582e-01 9.0898e-01 9.1023e-02 3.9888e-04 1.7010e-03 6.3874e-04 1.4612e-03 - 2.4600e-03 -8.2974e+00 3.0274e-01 6.9726e-01 9.0898e-01 9.1023e-02 3.9722e-04 1.7127e-03 6.3874e-04 1.4712e-03 - 2.4700e-03 -8.2974e+00 3.0131e-01 6.9869e-01 9.0898e-01 9.1023e-02 3.9555e-04 1.7243e-03 6.3874e-04 1.4812e-03 - 2.4800e-03 -8.2974e+00 2.9989e-01 7.0011e-01 9.0898e-01 9.1023e-02 3.9388e-04 1.7360e-03 6.3874e-04 1.4912e-03 - 2.4900e-03 -8.2974e+00 2.9849e-01 7.0151e-01 9.0898e-01 9.1023e-02 3.9222e-04 1.7477e-03 6.3874e-04 1.5012e-03 - 2.5000e-03 -8.2974e+00 2.9710e-01 7.0290e-01 9.0898e-01 9.1023e-02 3.9055e-04 1.7593e-03 6.3874e-04 1.5112e-03 - 2.5100e-03 -8.2974e+00 2.9573e-01 7.0427e-01 9.0898e-01 9.1023e-02 3.8888e-04 1.7710e-03 6.3874e-04 1.5212e-03 - 2.5200e-03 -8.2974e+00 2.9437e-01 7.0563e-01 9.0898e-01 9.1023e-02 3.8722e-04 1.7827e-03 6.3874e-04 1.5312e-03 - 2.5300e-03 -8.2974e+00 2.9302e-01 7.0698e-01 9.0898e-01 9.1023e-02 3.8555e-04 1.7943e-03 6.3874e-04 1.5412e-03 - 2.5400e-03 -8.2974e+00 2.9168e-01 7.0832e-01 9.0898e-01 9.1023e-02 3.8389e-04 1.8060e-03 6.3874e-04 1.5512e-03 - 2.5500e-03 -8.2974e+00 2.9035e-01 7.0965e-01 9.0898e-01 9.1023e-02 3.8222e-04 1.8177e-03 6.3874e-04 1.5612e-03 - 2.5600e-03 -8.2974e+00 2.8904e-01 7.1096e-01 9.0898e-01 9.1023e-02 3.8055e-04 1.8293e-03 6.3874e-04 1.5712e-03 - 2.5700e-03 -8.2974e+00 2.8774e-01 7.1226e-01 9.0898e-01 9.1023e-02 3.7889e-04 1.8410e-03 6.3874e-04 1.5812e-03 - 2.5800e-03 -8.2974e+00 2.8645e-01 7.1355e-01 9.0898e-01 9.1023e-02 3.7722e-04 1.8527e-03 6.3874e-04 1.5912e-03 - 2.5900e-03 -8.2974e+00 2.8517e-01 7.1483e-01 9.0898e-01 9.1023e-02 3.7555e-04 1.8643e-03 6.3874e-04 1.6012e-03 - 2.6000e-03 -8.2974e+00 2.8390e-01 7.1610e-01 9.0898e-01 9.1023e-02 3.7389e-04 1.8760e-03 6.3874e-04 1.6112e-03 - 2.6100e-03 -8.2974e+00 2.8264e-01 7.1736e-01 9.0898e-01 9.1023e-02 3.7222e-04 1.8877e-03 6.3874e-04 1.6212e-03 - 2.6200e-03 -8.2974e+00 2.8140e-01 7.1860e-01 9.0898e-01 9.1023e-02 3.7056e-04 1.8993e-03 6.3874e-04 1.6312e-03 - 2.6300e-03 -8.2974e+00 2.8016e-01 7.1984e-01 9.0898e-01 9.1023e-02 3.6889e-04 1.9110e-03 6.3874e-04 1.6412e-03 - 2.6400e-03 -8.2974e+00 2.7894e-01 7.2106e-01 9.0898e-01 9.1023e-02 3.6722e-04 1.9227e-03 6.3874e-04 1.6512e-03 - 2.6500e-03 -8.2974e+00 2.7773e-01 7.2227e-01 9.0898e-01 9.1023e-02 3.6556e-04 1.9343e-03 6.3874e-04 1.6612e-03 - 2.6600e-03 -8.2974e+00 2.7652e-01 7.2348e-01 9.0898e-01 9.1023e-02 3.6389e-04 1.9460e-03 6.3874e-04 1.6712e-03 - 2.6700e-03 -8.2974e+00 2.7533e-01 7.2467e-01 9.0898e-01 9.1023e-02 3.6223e-04 1.9577e-03 6.3874e-04 1.6812e-03 - 2.6800e-03 -8.2974e+00 2.7415e-01 7.2585e-01 9.0898e-01 9.1023e-02 3.6056e-04 1.9693e-03 6.3874e-04 1.6912e-03 - 2.6900e-03 -8.2974e+00 2.7298e-01 7.2702e-01 9.0898e-01 9.1023e-02 3.5889e-04 1.9810e-03 6.3874e-04 1.7012e-03 - 2.7000e-03 -8.2974e+00 2.7182e-01 7.2818e-01 9.0898e-01 9.1023e-02 3.5723e-04 1.9927e-03 6.3874e-04 1.7112e-03 - 2.7100e-03 -8.2974e+00 2.7067e-01 7.2933e-01 9.0898e-01 9.1023e-02 3.5556e-04 2.0043e-03 6.3874e-04 1.7212e-03 - 2.7200e-03 -8.2974e+00 2.6952e-01 7.3048e-01 9.0898e-01 9.1023e-02 3.5389e-04 2.0160e-03 6.3874e-04 1.7312e-03 - 2.7300e-03 -8.2974e+00 2.6839e-01 7.3161e-01 9.0898e-01 9.1023e-02 3.5223e-04 2.0277e-03 6.3874e-04 1.7412e-03 - 2.7400e-03 -8.2974e+00 2.6727e-01 7.3273e-01 9.0898e-01 9.1023e-02 3.5056e-04 2.0393e-03 6.3874e-04 1.7512e-03 - 2.7500e-03 -8.2974e+00 2.6615e-01 7.3385e-01 9.0898e-01 9.1023e-02 3.4890e-04 2.0510e-03 6.3874e-04 1.7612e-03 - 2.7600e-03 -8.2974e+00 2.6505e-01 7.3495e-01 9.0898e-01 9.1023e-02 3.4723e-04 2.0627e-03 6.3874e-04 1.7712e-03 - 2.7700e-03 -8.2974e+00 2.6395e-01 7.3605e-01 9.0898e-01 9.1023e-02 3.4556e-04 2.0743e-03 6.3874e-04 1.7812e-03 - 2.7800e-03 -8.2974e+00 2.6287e-01 7.3713e-01 9.0898e-01 9.1023e-02 3.4390e-04 2.0860e-03 6.3874e-04 1.7912e-03 - 2.7900e-03 -8.2974e+00 2.6179e-01 7.3821e-01 9.0898e-01 9.1023e-02 3.4223e-04 2.0977e-03 6.3874e-04 1.8012e-03 - 2.8000e-03 -8.2974e+00 2.6072e-01 7.3928e-01 9.0898e-01 9.1023e-02 3.4056e-04 2.1093e-03 6.3874e-04 1.8112e-03 - 2.8100e-03 -8.2974e+00 2.5966e-01 7.4034e-01 9.0898e-01 9.1023e-02 3.3890e-04 2.1210e-03 6.3874e-04 1.8212e-03 - 2.8200e-03 -8.2974e+00 2.5861e-01 7.4139e-01 9.0898e-01 9.1023e-02 3.3723e-04 2.1327e-03 6.3874e-04 1.8312e-03 - 2.8300e-03 -8.2974e+00 2.5757e-01 7.4243e-01 9.0898e-01 9.1023e-02 3.3557e-04 2.1443e-03 6.3874e-04 1.8412e-03 - 2.8400e-03 -8.2974e+00 2.5653e-01 7.4347e-01 9.0898e-01 9.1023e-02 3.3390e-04 2.1560e-03 6.3874e-04 1.8512e-03 - 2.8500e-03 -8.2974e+00 2.5551e-01 7.4449e-01 9.0898e-01 9.1023e-02 3.3223e-04 2.1677e-03 6.3874e-04 1.8612e-03 - 2.8600e-03 -8.2974e+00 2.5449e-01 7.4551e-01 9.0898e-01 9.1023e-02 3.3057e-04 2.1793e-03 6.3874e-04 1.8712e-03 - 2.8700e-03 -8.2974e+00 2.5348e-01 7.4652e-01 9.0898e-01 9.1023e-02 3.2890e-04 2.1910e-03 6.3874e-04 1.8812e-03 - 2.8800e-03 -8.2974e+00 2.5248e-01 7.4752e-01 9.0898e-01 9.1023e-02 3.2724e-04 2.2027e-03 6.3874e-04 1.8912e-03 - 2.8900e-03 -8.2974e+00 2.5148e-01 7.4852e-01 9.0898e-01 9.1023e-02 3.2557e-04 2.2143e-03 6.3874e-04 1.9012e-03 - 2.9000e-03 -8.2974e+00 2.5050e-01 7.4950e-01 9.0898e-01 9.1023e-02 3.2390e-04 2.2260e-03 6.3874e-04 1.9112e-03 - 2.9100e-03 -8.2974e+00 2.4952e-01 7.5048e-01 9.0898e-01 9.1023e-02 3.2224e-04 2.2377e-03 6.3874e-04 1.9212e-03 - 2.9200e-03 -8.2974e+00 2.4855e-01 7.5145e-01 9.0898e-01 9.1023e-02 3.2057e-04 2.2493e-03 6.3874e-04 1.9312e-03 - 2.9300e-03 -8.2974e+00 2.4758e-01 7.5242e-01 9.0898e-01 9.1023e-02 3.1890e-04 2.2610e-03 6.3874e-04 1.9412e-03 - 2.9400e-03 -8.2974e+00 2.4663e-01 7.5337e-01 9.0898e-01 9.1023e-02 3.1724e-04 2.2727e-03 6.3874e-04 1.9512e-03 - 2.9500e-03 -8.2974e+00 2.4568e-01 7.5432e-01 9.0898e-01 9.1023e-02 3.1557e-04 2.2843e-03 6.3874e-04 1.9612e-03 - 2.9600e-03 -8.2974e+00 2.4474e-01 7.5526e-01 9.0898e-01 9.1023e-02 3.1391e-04 2.2960e-03 6.3874e-04 1.9712e-03 - 2.9700e-03 -8.2974e+00 2.4380e-01 7.5620e-01 9.0898e-01 9.1023e-02 3.1224e-04 2.3077e-03 6.3874e-04 1.9812e-03 - 2.9800e-03 -8.2974e+00 2.4288e-01 7.5712e-01 9.0898e-01 9.1023e-02 3.1057e-04 2.3193e-03 6.3874e-04 1.9912e-03 - 2.9900e-03 -8.2974e+00 2.4196e-01 7.5804e-01 9.0898e-01 9.1023e-02 3.0891e-04 2.3310e-03 6.3874e-04 2.0012e-03 - 3.0000e-03 -8.2974e+00 2.4104e-01 7.5896e-01 9.0898e-01 9.1023e-02 3.0724e-04 2.3427e-03 6.3874e-04 2.0112e-03 - 3.0100e-03 -8.2974e+00 2.4014e-01 7.5986e-01 9.0898e-01 9.1023e-02 3.0557e-04 2.3543e-03 6.3874e-04 2.0212e-03 - 3.0200e-03 -8.2974e+00 2.3924e-01 7.6076e-01 9.0898e-01 9.1023e-02 3.0391e-04 2.3660e-03 6.3874e-04 2.0312e-03 - 3.0300e-03 -8.2974e+00 2.3835e-01 7.6165e-01 9.0898e-01 9.1023e-02 3.0224e-04 2.3777e-03 6.3874e-04 2.0412e-03 - 3.0400e-03 -8.2974e+00 2.3746e-01 7.6254e-01 9.0898e-01 9.1023e-02 3.0058e-04 2.3893e-03 6.3874e-04 2.0512e-03 - 3.0500e-03 -8.2974e+00 2.3658e-01 7.6342e-01 9.0898e-01 9.1023e-02 2.9891e-04 2.4010e-03 6.3874e-04 2.0612e-03 - 3.0600e-03 -8.2974e+00 2.3571e-01 7.6429e-01 9.0898e-01 9.1023e-02 2.9724e-04 2.4127e-03 6.3874e-04 2.0712e-03 - 3.0700e-03 -8.2974e+00 2.3484e-01 7.6516e-01 9.0898e-01 9.1023e-02 2.9558e-04 2.4243e-03 6.3874e-04 2.0812e-03 - 3.0800e-03 -8.2974e+00 2.3398e-01 7.6602e-01 9.0898e-01 9.1023e-02 2.9391e-04 2.4360e-03 6.3874e-04 2.0912e-03 - 3.0900e-03 -8.2974e+00 2.3313e-01 7.6687e-01 9.0898e-01 9.1023e-02 2.9224e-04 2.4477e-03 6.3874e-04 2.1012e-03 - 3.1000e-03 -8.2974e+00 2.3228e-01 7.6772e-01 9.0898e-01 9.1023e-02 2.9058e-04 2.4593e-03 6.3874e-04 2.1112e-03 - 3.1100e-03 -8.2974e+00 2.3144e-01 7.6856e-01 9.0898e-01 9.1023e-02 2.8891e-04 2.4710e-03 6.3874e-04 2.1212e-03 - 3.1200e-03 -8.2974e+00 2.3060e-01 7.6940e-01 9.0898e-01 9.1023e-02 2.8725e-04 2.4826e-03 6.3874e-04 2.1312e-03 - 3.1300e-03 -8.2974e+00 2.2977e-01 7.7023e-01 9.0898e-01 9.1023e-02 2.8558e-04 2.4943e-03 6.3874e-04 2.1412e-03 - 3.1400e-03 -8.2974e+00 2.2895e-01 7.7105e-01 9.0898e-01 9.1023e-02 2.8391e-04 2.5060e-03 6.3874e-04 2.1512e-03 - 3.1500e-03 -8.2974e+00 2.2813e-01 7.7187e-01 9.0898e-01 9.1023e-02 2.8225e-04 2.5176e-03 6.3874e-04 2.1612e-03 - 3.1600e-03 -8.2974e+00 2.2732e-01 7.7268e-01 9.0898e-01 9.1023e-02 2.8058e-04 2.5293e-03 6.3874e-04 2.1712e-03 - 3.1700e-03 -8.2974e+00 2.2651e-01 7.7349e-01 9.0898e-01 9.1023e-02 2.7892e-04 2.5410e-03 6.3874e-04 2.1812e-03 - 3.1800e-03 -8.2974e+00 2.2571e-01 7.7429e-01 9.0898e-01 9.1023e-02 2.7725e-04 2.5526e-03 6.3874e-04 2.1912e-03 - 3.1900e-03 -8.2974e+00 2.2492e-01 7.7508e-01 9.0898e-01 9.1023e-02 2.7558e-04 2.5643e-03 6.3874e-04 2.2012e-03 - 3.2000e-03 -8.2974e+00 2.2413e-01 7.7587e-01 9.0898e-01 9.1023e-02 2.7392e-04 2.5760e-03 6.3874e-04 2.2112e-03 - 3.2100e-03 -8.2974e+00 2.2334e-01 7.7666e-01 9.0898e-01 9.1023e-02 2.7225e-04 2.5876e-03 6.3874e-04 2.2212e-03 - 3.2200e-03 -8.2974e+00 2.2257e-01 7.7743e-01 9.0898e-01 9.1023e-02 2.7058e-04 2.5993e-03 6.3874e-04 2.2312e-03 - 3.2300e-03 -8.2974e+00 2.2179e-01 7.7821e-01 9.0898e-01 9.1023e-02 2.6892e-04 2.6110e-03 6.3874e-04 2.2412e-03 - 3.2400e-03 -8.2974e+00 2.2103e-01 7.7897e-01 9.0898e-01 9.1023e-02 2.6725e-04 2.6226e-03 6.3874e-04 2.2512e-03 - 3.2500e-03 -8.2974e+00 2.2026e-01 7.7974e-01 9.0898e-01 9.1023e-02 2.6559e-04 2.6343e-03 6.3874e-04 2.2612e-03 - 3.2600e-03 -8.2974e+00 2.1951e-01 7.8049e-01 9.0898e-01 9.1023e-02 2.6392e-04 2.6460e-03 6.3874e-04 2.2712e-03 - 3.2700e-03 -8.2974e+00 2.1876e-01 7.8124e-01 9.0898e-01 9.1023e-02 2.6225e-04 2.6576e-03 6.3874e-04 2.2812e-03 - 3.2800e-03 -8.2974e+00 2.1801e-01 7.8199e-01 9.0898e-01 9.1023e-02 2.6059e-04 2.6693e-03 6.3874e-04 2.2912e-03 - 3.2900e-03 -8.2974e+00 2.1727e-01 7.8273e-01 9.0898e-01 9.1023e-02 2.5892e-04 2.6810e-03 6.3874e-04 2.3012e-03 - 3.3000e-03 -8.2974e+00 2.1653e-01 7.8347e-01 9.0898e-01 9.1023e-02 2.5725e-04 2.6926e-03 6.3874e-04 2.3112e-03 - 3.3100e-03 -8.2974e+00 2.1580e-01 7.8420e-01 9.0898e-01 9.1023e-02 2.5559e-04 2.7043e-03 6.3874e-04 2.3212e-03 - 3.3200e-03 -8.2974e+00 2.1507e-01 7.8493e-01 9.0898e-01 9.1023e-02 2.5392e-04 2.7160e-03 6.3874e-04 2.3312e-03 - 3.3300e-03 -8.2974e+00 2.1435e-01 7.8565e-01 9.0898e-01 9.1023e-02 2.5226e-04 2.7276e-03 6.3874e-04 2.3412e-03 - 3.3400e-03 -8.2974e+00 2.1363e-01 7.8637e-01 9.0898e-01 9.1023e-02 2.5059e-04 2.7393e-03 6.3874e-04 2.3512e-03 - 3.3500e-03 -8.2974e+00 2.1292e-01 7.8708e-01 9.0898e-01 9.1023e-02 2.4892e-04 2.7510e-03 6.3874e-04 2.3612e-03 - 3.3600e-03 -8.2974e+00 2.1221e-01 7.8779e-01 9.0898e-01 9.1023e-02 2.4726e-04 2.7626e-03 6.3874e-04 2.3712e-03 - 3.3700e-03 -8.2974e+00 2.1151e-01 7.8849e-01 9.0898e-01 9.1023e-02 2.4559e-04 2.7743e-03 6.3874e-04 2.3812e-03 - 3.3800e-03 -8.2974e+00 2.1081e-01 7.8919e-01 9.0898e-01 9.1023e-02 2.4392e-04 2.7860e-03 6.3874e-04 2.3912e-03 - 3.3900e-03 -8.2974e+00 2.1012e-01 7.8988e-01 9.0898e-01 9.1023e-02 2.4226e-04 2.7976e-03 6.3874e-04 2.4012e-03 - 3.4000e-03 -8.2974e+00 2.0943e-01 7.9057e-01 9.0898e-01 9.1023e-02 2.4059e-04 2.8093e-03 6.3874e-04 2.4112e-03 - 3.4100e-03 -8.2974e+00 2.0875e-01 7.9125e-01 9.0898e-01 9.1023e-02 2.3893e-04 2.8210e-03 6.3874e-04 2.4212e-03 - 3.4200e-03 -8.2974e+00 2.0807e-01 7.9193e-01 9.0898e-01 9.1023e-02 2.3726e-04 2.8326e-03 6.3874e-04 2.4312e-03 - 3.4300e-03 -8.2974e+00 2.0739e-01 7.9261e-01 9.0898e-01 9.1023e-02 2.3559e-04 2.8443e-03 6.3874e-04 2.4412e-03 - 3.4400e-03 -8.2974e+00 2.0672e-01 7.9328e-01 9.0898e-01 9.1023e-02 2.3393e-04 2.8560e-03 6.3874e-04 2.4512e-03 - 3.4500e-03 -8.2974e+00 2.0605e-01 7.9395e-01 9.0898e-01 9.1023e-02 2.3226e-04 2.8676e-03 6.3874e-04 2.4612e-03 - 3.4600e-03 -8.2974e+00 2.0539e-01 7.9461e-01 9.0898e-01 9.1023e-02 2.3060e-04 2.8793e-03 6.3874e-04 2.4712e-03 - 3.4700e-03 -8.2974e+00 2.0473e-01 7.9527e-01 9.0898e-01 9.1023e-02 2.2893e-04 2.8910e-03 6.3874e-04 2.4812e-03 - 3.4800e-03 -8.2974e+00 2.0408e-01 7.9592e-01 9.0898e-01 9.1023e-02 2.2726e-04 2.9026e-03 6.3874e-04 2.4912e-03 - 3.4900e-03 -8.2974e+00 2.0343e-01 7.9657e-01 9.0898e-01 9.1023e-02 2.2560e-04 2.9143e-03 6.3874e-04 2.5012e-03 - 3.5000e-03 -8.2974e+00 2.0278e-01 7.9722e-01 9.0898e-01 9.1023e-02 2.2393e-04 2.9260e-03 6.3874e-04 2.5112e-03 - 3.5100e-03 -8.2974e+00 2.0214e-01 7.9786e-01 9.0898e-01 9.1023e-02 2.2226e-04 2.9376e-03 6.3874e-04 2.5212e-03 - 3.5200e-03 -8.2974e+00 2.0150e-01 7.9850e-01 9.0898e-01 9.1023e-02 2.2060e-04 2.9493e-03 6.3874e-04 2.5312e-03 - 3.5300e-03 -8.2974e+00 2.0087e-01 7.9913e-01 9.0898e-01 9.1023e-02 2.1893e-04 2.9610e-03 6.3874e-04 2.5412e-03 - 3.5400e-03 -8.2974e+00 2.0024e-01 7.9976e-01 9.0898e-01 9.1023e-02 2.1727e-04 2.9726e-03 6.3874e-04 2.5512e-03 - 3.5500e-03 -8.2974e+00 1.9961e-01 8.0039e-01 9.0898e-01 9.1023e-02 2.1560e-04 2.9843e-03 6.3874e-04 2.5612e-03 - 3.5600e-03 -8.2974e+00 1.9899e-01 8.0101e-01 9.0898e-01 9.1023e-02 2.1393e-04 2.9960e-03 6.3874e-04 2.5712e-03 - 3.5700e-03 -8.2974e+00 1.9837e-01 8.0163e-01 9.0898e-01 9.1023e-02 2.1227e-04 3.0076e-03 6.3874e-04 2.5812e-03 - 3.5800e-03 -8.2974e+00 1.9776e-01 8.0224e-01 9.0898e-01 9.1023e-02 2.1060e-04 3.0193e-03 6.3874e-04 2.5912e-03 - 3.5900e-03 -8.2974e+00 1.9715e-01 8.0285e-01 9.0898e-01 9.1023e-02 2.0893e-04 3.0310e-03 6.3874e-04 2.6012e-03 - 3.6000e-03 -8.2974e+00 1.9654e-01 8.0346e-01 9.0898e-01 9.1023e-02 2.0727e-04 3.0426e-03 6.3874e-04 2.6112e-03 - 3.6100e-03 -8.2974e+00 1.9594e-01 8.0406e-01 9.0898e-01 9.1023e-02 2.0560e-04 3.0543e-03 6.3874e-04 2.6212e-03 - 3.6200e-03 -8.2974e+00 1.9534e-01 8.0466e-01 9.0898e-01 9.1023e-02 2.0394e-04 3.0660e-03 6.3874e-04 2.6312e-03 - 3.6300e-03 -8.2974e+00 1.9474e-01 8.0526e-01 9.0898e-01 9.1023e-02 2.0227e-04 3.0776e-03 6.3874e-04 2.6412e-03 - 3.6400e-03 -8.2974e+00 1.9415e-01 8.0585e-01 9.0898e-01 9.1023e-02 2.0060e-04 3.0893e-03 6.3874e-04 2.6512e-03 - 3.6500e-03 -8.2974e+00 1.9356e-01 8.0644e-01 9.0898e-01 9.1023e-02 1.9894e-04 3.1010e-03 6.3874e-04 2.6612e-03 - 3.6600e-03 -8.2974e+00 1.9298e-01 8.0702e-01 9.0898e-01 9.1023e-02 1.9727e-04 3.1126e-03 6.3874e-04 2.6712e-03 - 3.6700e-03 -8.2974e+00 1.9240e-01 8.0760e-01 9.0898e-01 9.1023e-02 1.9561e-04 3.1243e-03 6.3874e-04 2.6812e-03 - 3.6800e-03 -8.2974e+00 1.9182e-01 8.0818e-01 9.0898e-01 9.1023e-02 1.9394e-04 3.1360e-03 6.3874e-04 2.6912e-03 - 3.6900e-03 -8.2974e+00 1.9125e-01 8.0875e-01 9.0898e-01 9.1023e-02 1.9227e-04 3.1476e-03 6.3874e-04 2.7012e-03 - 3.7000e-03 -8.2974e+00 1.9068e-01 8.0932e-01 9.0898e-01 9.1023e-02 1.9061e-04 3.1593e-03 6.3874e-04 2.7112e-03 - 3.7100e-03 -8.2974e+00 1.9011e-01 8.0989e-01 9.0898e-01 9.1023e-02 1.8894e-04 3.1710e-03 6.3874e-04 2.7212e-03 - 3.7200e-03 -8.2974e+00 1.8954e-01 8.1046e-01 9.0898e-01 9.1023e-02 1.8727e-04 3.1826e-03 6.3874e-04 2.7312e-03 - 3.7300e-03 -8.2974e+00 1.8898e-01 8.1102e-01 9.0898e-01 9.1023e-02 1.8561e-04 3.1943e-03 6.3874e-04 2.7412e-03 - 3.7400e-03 -8.2974e+00 1.8843e-01 8.1157e-01 9.0898e-01 9.1023e-02 1.8394e-04 3.2060e-03 6.3874e-04 2.7512e-03 - 3.7500e-03 -8.2974e+00 1.8787e-01 8.1213e-01 9.0898e-01 9.1023e-02 1.8228e-04 3.2176e-03 6.3874e-04 2.7612e-03 - 3.7600e-03 -8.2974e+00 1.8732e-01 8.1268e-01 9.0898e-01 9.1023e-02 1.8061e-04 3.2293e-03 6.3874e-04 2.7712e-03 - 3.7700e-03 -8.2974e+00 1.8677e-01 8.1323e-01 9.0898e-01 9.1023e-02 1.7894e-04 3.2410e-03 6.3874e-04 2.7812e-03 - 3.7800e-03 -8.2974e+00 1.8623e-01 8.1377e-01 9.0898e-01 9.1023e-02 1.7728e-04 3.2526e-03 6.3874e-04 2.7912e-03 - 3.7900e-03 -8.2974e+00 1.8569e-01 8.1431e-01 9.0898e-01 9.1023e-02 1.7561e-04 3.2643e-03 6.3874e-04 2.8012e-03 - 3.8000e-03 -8.2974e+00 1.8515e-01 8.1485e-01 9.0898e-01 9.1023e-02 1.7394e-04 3.2760e-03 6.3874e-04 2.8112e-03 - 3.8100e-03 -8.2974e+00 1.8461e-01 8.1539e-01 9.0898e-01 9.1023e-02 1.7228e-04 3.2876e-03 6.3874e-04 2.8212e-03 - 3.8200e-03 -8.2974e+00 1.8408e-01 8.1592e-01 9.0898e-01 9.1023e-02 1.7061e-04 3.2993e-03 6.3874e-04 2.8312e-03 - 3.8300e-03 -8.2974e+00 1.8355e-01 8.1645e-01 9.0898e-01 9.1023e-02 1.6895e-04 3.3109e-03 6.3874e-04 2.8412e-03 - 3.8400e-03 -8.2974e+00 1.8303e-01 8.1697e-01 9.0898e-01 9.1023e-02 1.6728e-04 3.3226e-03 6.3874e-04 2.8512e-03 - 3.8500e-03 -8.2974e+00 1.8250e-01 8.1750e-01 9.0898e-01 9.1023e-02 1.6561e-04 3.3343e-03 6.3874e-04 2.8612e-03 - 3.8600e-03 -8.2974e+00 1.8198e-01 8.1802e-01 9.0898e-01 9.1023e-02 1.6395e-04 3.3459e-03 6.3874e-04 2.8712e-03 - 3.8700e-03 -8.2974e+00 1.8147e-01 8.1853e-01 9.0898e-01 9.1023e-02 1.6228e-04 3.3576e-03 6.3874e-04 2.8812e-03 - 3.8800e-03 -8.2974e+00 1.8095e-01 8.1905e-01 9.0898e-01 9.1023e-02 1.6061e-04 3.3693e-03 6.3874e-04 2.8912e-03 - 3.8900e-03 -8.2974e+00 1.8044e-01 8.1956e-01 9.0898e-01 9.1023e-02 1.5895e-04 3.3809e-03 6.3874e-04 2.9012e-03 - 3.9000e-03 -8.2974e+00 1.7993e-01 8.2007e-01 9.0898e-01 9.1023e-02 1.5728e-04 3.3926e-03 6.3874e-04 2.9112e-03 - 3.9100e-03 -8.2974e+00 1.7943e-01 8.2057e-01 9.0898e-01 9.1023e-02 1.5562e-04 3.4043e-03 6.3874e-04 2.9212e-03 - 3.9200e-03 -8.2974e+00 1.7892e-01 8.2108e-01 9.0898e-01 9.1023e-02 1.5395e-04 3.4159e-03 6.3874e-04 2.9312e-03 - 3.9300e-03 -8.2974e+00 1.7842e-01 8.2158e-01 9.0898e-01 9.1023e-02 1.5228e-04 3.4276e-03 6.3874e-04 2.9412e-03 - 3.9400e-03 -8.2974e+00 1.7793e-01 8.2207e-01 9.0898e-01 9.1023e-02 1.5062e-04 3.4393e-03 6.3874e-04 2.9512e-03 - 3.9500e-03 -8.2974e+00 1.7743e-01 8.2257e-01 9.0898e-01 9.1023e-02 1.4895e-04 3.4509e-03 6.3874e-04 2.9612e-03 - 3.9600e-03 -8.2974e+00 1.7694e-01 8.2306e-01 9.0898e-01 9.1023e-02 1.4729e-04 3.4626e-03 6.3874e-04 2.9712e-03 - 3.9700e-03 -8.2974e+00 1.7645e-01 8.2355e-01 9.0898e-01 9.1023e-02 1.4562e-04 3.4743e-03 6.3874e-04 2.9812e-03 - 3.9800e-03 -8.2974e+00 1.7597e-01 8.2403e-01 9.0898e-01 9.1023e-02 1.4395e-04 3.4859e-03 6.3874e-04 2.9912e-03 - 3.9900e-03 -8.2974e+00 1.7548e-01 8.2452e-01 9.0898e-01 9.1023e-02 1.4229e-04 3.4976e-03 6.3874e-04 3.0012e-03 - 4.0000e-03 -8.2974e+00 1.7500e-01 8.2500e-01 9.0898e-01 9.1023e-02 1.4062e-04 3.5093e-03 6.3874e-04 3.0112e-03 - 4.0100e-03 -8.2974e+00 1.7452e-01 8.2548e-01 9.0898e-01 9.1023e-02 1.3895e-04 3.5209e-03 6.3874e-04 3.0212e-03 - 4.0200e-03 -8.2974e+00 1.7405e-01 8.2595e-01 9.0898e-01 9.1023e-02 1.3729e-04 3.5326e-03 6.3874e-04 3.0312e-03 - 4.0300e-03 -8.2974e+00 1.7358e-01 8.2642e-01 9.0898e-01 9.1023e-02 1.3562e-04 3.5443e-03 6.3874e-04 3.0412e-03 - 4.0400e-03 -8.2974e+00 1.7311e-01 8.2689e-01 9.0898e-01 9.1023e-02 1.3396e-04 3.5559e-03 6.3874e-04 3.0512e-03 - 4.0500e-03 -8.2974e+00 1.7264e-01 8.2736e-01 9.0898e-01 9.1023e-02 1.3229e-04 3.5676e-03 6.3874e-04 3.0612e-03 - 4.0600e-03 -8.2974e+00 1.7217e-01 8.2783e-01 9.0898e-01 9.1023e-02 1.3062e-04 3.5793e-03 6.3874e-04 3.0712e-03 - 4.0700e-03 -8.2974e+00 1.7171e-01 8.2829e-01 9.0898e-01 9.1023e-02 1.2896e-04 3.5909e-03 6.3874e-04 3.0812e-03 - 4.0800e-03 -8.2974e+00 1.7125e-01 8.2875e-01 9.0898e-01 9.1023e-02 1.2729e-04 3.6026e-03 6.3874e-04 3.0912e-03 - 4.0900e-03 -8.2974e+00 1.7079e-01 8.2921e-01 9.0898e-01 9.1023e-02 1.2562e-04 3.6143e-03 6.3874e-04 3.1012e-03 - 4.1000e-03 -8.2974e+00 1.7034e-01 8.2966e-01 9.0898e-01 9.1023e-02 1.2396e-04 3.6259e-03 6.3874e-04 3.1112e-03 - 4.1100e-03 -8.2974e+00 1.6988e-01 8.3012e-01 9.0898e-01 9.1023e-02 1.2229e-04 3.6376e-03 6.3874e-04 3.1212e-03 - 4.1200e-03 -8.2974e+00 1.6943e-01 8.3057e-01 9.0898e-01 9.1023e-02 1.2063e-04 3.6493e-03 6.3874e-04 3.1312e-03 - 4.1300e-03 -8.2974e+00 1.6898e-01 8.3102e-01 9.0898e-01 9.1023e-02 1.1896e-04 3.6609e-03 6.3874e-04 3.1412e-03 - 4.1400e-03 -8.2974e+00 1.6854e-01 8.3146e-01 9.0898e-01 9.1023e-02 1.1729e-04 3.6726e-03 6.3874e-04 3.1512e-03 - 4.1500e-03 -8.2974e+00 1.6809e-01 8.3191e-01 9.0898e-01 9.1023e-02 1.1563e-04 3.6843e-03 6.3874e-04 3.1612e-03 - 4.1600e-03 -8.2974e+00 1.6765e-01 8.3235e-01 9.0898e-01 9.1023e-02 1.1396e-04 3.6959e-03 6.3874e-04 3.1712e-03 - 4.1700e-03 -8.2974e+00 1.6721e-01 8.3279e-01 9.0898e-01 9.1023e-02 1.1230e-04 3.7076e-03 6.3874e-04 3.1812e-03 - 4.1800e-03 -8.2974e+00 1.6678e-01 8.3322e-01 9.0898e-01 9.1023e-02 1.1063e-04 3.7193e-03 6.3874e-04 3.1912e-03 - 4.1900e-03 -8.2974e+00 1.6634e-01 8.3366e-01 9.0898e-01 9.1023e-02 1.0896e-04 3.7309e-03 6.3874e-04 3.2012e-03 - 4.2000e-03 -8.2974e+00 1.6591e-01 8.3409e-01 9.0898e-01 9.1023e-02 1.0730e-04 3.7426e-03 6.3874e-04 3.2112e-03 - 4.2100e-03 -8.2974e+00 1.6548e-01 8.3452e-01 9.0898e-01 9.1023e-02 1.0563e-04 3.7543e-03 6.3874e-04 3.2212e-03 - 4.2200e-03 -8.2974e+00 1.6505e-01 8.3495e-01 9.0898e-01 9.1023e-02 1.0396e-04 3.7659e-03 6.3874e-04 3.2312e-03 - 4.2300e-03 -8.2974e+00 1.6463e-01 8.3537e-01 9.0898e-01 9.1023e-02 1.0230e-04 3.7776e-03 6.3874e-04 3.2412e-03 - 4.2400e-03 -8.2974e+00 1.6421e-01 8.3579e-01 9.0898e-01 9.1023e-02 1.0063e-04 3.7893e-03 6.3874e-04 3.2512e-03 - 4.2500e-03 -8.2974e+00 1.6378e-01 8.3622e-01 9.0898e-01 9.1023e-02 9.8965e-05 3.8009e-03 6.3874e-04 3.2612e-03 - 4.2600e-03 -8.2974e+00 1.6337e-01 8.3663e-01 9.0898e-01 9.1023e-02 9.7299e-05 3.8126e-03 6.3874e-04 3.2712e-03 - 4.2700e-03 -8.2974e+00 1.6295e-01 8.3705e-01 9.0898e-01 9.1023e-02 9.5633e-05 3.8243e-03 6.3874e-04 3.2812e-03 - 4.2800e-03 -8.2974e+00 1.6253e-01 8.3747e-01 9.0898e-01 9.1023e-02 9.3967e-05 3.8359e-03 6.3874e-04 3.2912e-03 - 4.2900e-03 -8.2974e+00 1.6212e-01 8.3788e-01 9.0898e-01 9.1023e-02 9.2301e-05 3.8476e-03 6.3874e-04 3.3012e-03 - 4.3000e-03 -8.2974e+00 1.6171e-01 8.3829e-01 9.0898e-01 9.1023e-02 9.0634e-05 3.8593e-03 6.3874e-04 3.3112e-03 - 4.3100e-03 -8.2974e+00 1.6130e-01 8.3870e-01 9.0898e-01 9.1023e-02 8.8968e-05 3.8709e-03 6.3874e-04 3.3212e-03 - 4.3200e-03 -8.2974e+00 1.6090e-01 8.3910e-01 9.0898e-01 9.1023e-02 8.7302e-05 3.8826e-03 6.3874e-04 3.3312e-03 - 4.3300e-03 -8.2974e+00 1.6049e-01 8.3951e-01 9.0898e-01 9.1023e-02 8.5636e-05 3.8943e-03 6.3874e-04 3.3412e-03 - 4.3400e-03 -8.2974e+00 1.6009e-01 8.3991e-01 9.0898e-01 9.1023e-02 8.3970e-05 3.9059e-03 6.3874e-04 3.3512e-03 - 4.3500e-03 -8.2974e+00 1.5969e-01 8.4031e-01 9.0898e-01 9.1023e-02 8.2303e-05 3.9176e-03 6.3874e-04 3.3612e-03 - 4.3600e-03 -8.2974e+00 1.5929e-01 8.4071e-01 9.0898e-01 9.1023e-02 8.0637e-05 3.9293e-03 6.3874e-04 3.3712e-03 - 4.3700e-03 -8.2974e+00 1.5890e-01 8.4110e-01 9.0898e-01 9.1023e-02 7.8971e-05 3.9409e-03 6.3874e-04 3.3812e-03 - 4.3800e-03 -8.2974e+00 1.5850e-01 8.4150e-01 9.0898e-01 9.1023e-02 7.7305e-05 3.9526e-03 6.3874e-04 3.3912e-03 - 4.3900e-03 -8.2974e+00 1.5811e-01 8.4189e-01 9.0898e-01 9.1023e-02 7.5639e-05 3.9643e-03 6.3874e-04 3.4012e-03 - 4.4000e-03 -8.2974e+00 1.5772e-01 8.4228e-01 9.0898e-01 9.1023e-02 7.3972e-05 3.9759e-03 6.3874e-04 3.4112e-03 - 4.4100e-03 -8.2974e+00 1.5733e-01 8.4267e-01 9.0898e-01 9.1023e-02 7.2306e-05 3.9876e-03 6.3874e-04 3.4212e-03 - 4.4200e-03 -8.2974e+00 1.5694e-01 8.4306e-01 9.0898e-01 9.1023e-02 7.0640e-05 3.9993e-03 6.3874e-04 3.4312e-03 - 4.4300e-03 -8.2974e+00 1.5656e-01 8.4344e-01 9.0898e-01 9.1023e-02 6.8974e-05 4.0109e-03 6.3874e-04 3.4412e-03 - 4.4400e-03 -8.2974e+00 1.5618e-01 8.4382e-01 9.0898e-01 9.1023e-02 6.7308e-05 4.0226e-03 6.3874e-04 3.4512e-03 - 4.4500e-03 -8.2974e+00 1.5579e-01 8.4421e-01 9.0898e-01 9.1023e-02 6.5641e-05 4.0343e-03 6.3874e-04 3.4612e-03 - 4.4600e-03 -8.2974e+00 1.5542e-01 8.4458e-01 9.0898e-01 9.1023e-02 6.3975e-05 4.0459e-03 6.3874e-04 3.4712e-03 - 4.4700e-03 -8.2974e+00 1.5504e-01 8.4496e-01 9.0898e-01 9.1023e-02 6.2309e-05 4.0576e-03 6.3874e-04 3.4812e-03 - 4.4800e-03 -8.2974e+00 1.5466e-01 8.4534e-01 9.0898e-01 9.1023e-02 6.0643e-05 4.0693e-03 6.3874e-04 3.4912e-03 - 4.4900e-03 -8.2974e+00 1.5429e-01 8.4571e-01 9.0898e-01 9.1023e-02 5.8977e-05 4.0809e-03 6.3874e-04 3.5012e-03 - 4.5000e-03 -8.2974e+00 1.5392e-01 8.4608e-01 9.0898e-01 9.1023e-02 5.7310e-05 4.0926e-03 6.3874e-04 3.5112e-03 - 4.5100e-03 -8.2974e+00 1.5355e-01 8.4645e-01 9.0898e-01 9.1023e-02 5.5644e-05 4.1043e-03 6.3874e-04 3.5212e-03 - 4.5200e-03 -8.2974e+00 1.5318e-01 8.4682e-01 9.0898e-01 9.1023e-02 5.3978e-05 4.1159e-03 6.3874e-04 3.5312e-03 - 4.5300e-03 -8.2974e+00 1.5281e-01 8.4719e-01 9.0898e-01 9.1023e-02 5.2312e-05 4.1276e-03 6.3874e-04 3.5412e-03 - 4.5400e-03 -8.2974e+00 1.5245e-01 8.4755e-01 9.0898e-01 9.1023e-02 5.0646e-05 4.1392e-03 6.3874e-04 3.5512e-03 - 4.5500e-03 -8.2974e+00 1.5209e-01 8.4791e-01 9.0898e-01 9.1023e-02 4.8979e-05 4.1509e-03 6.3874e-04 3.5612e-03 - 4.5600e-03 -8.2974e+00 1.5172e-01 8.4828e-01 9.0898e-01 9.1023e-02 4.7313e-05 4.1626e-03 6.3874e-04 3.5712e-03 - 4.5700e-03 -8.2974e+00 1.5136e-01 8.4864e-01 9.0898e-01 9.1023e-02 4.5647e-05 4.1742e-03 6.3874e-04 3.5812e-03 - 4.5800e-03 -8.2974e+00 1.5101e-01 8.4899e-01 9.0898e-01 9.1023e-02 4.3981e-05 4.1859e-03 6.3874e-04 3.5912e-03 - 4.5900e-03 -8.2974e+00 1.5065e-01 8.4935e-01 9.0898e-01 9.1023e-02 4.2315e-05 4.1976e-03 6.3874e-04 3.6012e-03 - 4.6000e-03 -8.2974e+00 1.5030e-01 8.4970e-01 9.0898e-01 9.1023e-02 4.0648e-05 4.2092e-03 6.3874e-04 3.6112e-03 - 4.6100e-03 -8.2974e+00 1.4994e-01 8.5006e-01 9.0898e-01 9.1023e-02 3.8982e-05 4.2209e-03 6.3874e-04 3.6212e-03 - 4.6200e-03 -8.2974e+00 1.4959e-01 8.5041e-01 9.0898e-01 9.1023e-02 3.7316e-05 4.2326e-03 6.3874e-04 3.6312e-03 - 4.6300e-03 -8.2974e+00 1.4924e-01 8.5076e-01 9.0898e-01 9.1023e-02 3.5650e-05 4.2442e-03 6.3874e-04 3.6412e-03 - 4.6400e-03 -8.2974e+00 1.4889e-01 8.5111e-01 9.0898e-01 9.1023e-02 3.3984e-05 4.2559e-03 6.3874e-04 3.6512e-03 - 4.6500e-03 -8.2974e+00 1.4855e-01 8.5145e-01 9.0898e-01 9.1023e-02 3.2317e-05 4.2676e-03 6.3874e-04 3.6612e-03 - 4.6600e-03 -8.2974e+00 1.4820e-01 8.5180e-01 9.0898e-01 9.1023e-02 3.0651e-05 4.2792e-03 6.3874e-04 3.6712e-03 - 4.6700e-03 -8.2974e+00 1.4786e-01 8.5214e-01 9.0898e-01 9.1023e-02 2.8985e-05 4.2909e-03 6.3874e-04 3.6812e-03 - 4.6800e-03 -8.2974e+00 1.4752e-01 8.5248e-01 9.0898e-01 9.1023e-02 2.7319e-05 4.3026e-03 6.3874e-04 3.6912e-03 - 4.6900e-03 -8.2974e+00 1.4718e-01 8.5282e-01 9.0898e-01 9.1023e-02 2.5653e-05 4.3142e-03 6.3874e-04 3.7012e-03 - 4.7000e-03 -8.2974e+00 1.4684e-01 8.5316e-01 9.0898e-01 9.1023e-02 2.3986e-05 4.3259e-03 6.3874e-04 3.7112e-03 - 4.7100e-03 -8.2974e+00 1.4650e-01 8.5350e-01 9.0898e-01 9.1023e-02 2.2320e-05 4.3376e-03 6.3874e-04 3.7212e-03 - 4.7200e-03 -8.2974e+00 1.4617e-01 8.5383e-01 9.0898e-01 9.1023e-02 2.0654e-05 4.3492e-03 6.3874e-04 3.7312e-03 - 4.7300e-03 -8.2974e+00 1.4584e-01 8.5416e-01 9.0898e-01 9.1023e-02 1.8988e-05 4.3609e-03 6.3874e-04 3.7412e-03 - 4.7400e-03 -8.2974e+00 1.4550e-01 8.5450e-01 9.0898e-01 9.1023e-02 1.7321e-05 4.3726e-03 6.3874e-04 3.7512e-03 - 4.7500e-03 -8.2974e+00 1.4517e-01 8.5483e-01 9.0898e-01 9.1023e-02 1.5655e-05 4.3842e-03 6.3874e-04 3.7612e-03 - 4.7600e-03 -8.2974e+00 1.4484e-01 8.5516e-01 9.0898e-01 9.1023e-02 1.3989e-05 4.3959e-03 6.3874e-04 3.7712e-03 - 4.7700e-03 -8.2974e+00 1.4452e-01 8.5548e-01 9.0898e-01 9.1023e-02 1.2323e-05 4.4076e-03 6.3874e-04 3.7812e-03 - 4.7800e-03 -8.2974e+00 1.4419e-01 8.5581e-01 9.0898e-01 9.1023e-02 1.0657e-05 4.4192e-03 6.3874e-04 3.7912e-03 - 4.7900e-03 -8.2974e+00 1.4386e-01 8.5614e-01 9.0898e-01 9.1023e-02 8.9905e-06 4.4309e-03 6.3874e-04 3.8012e-03 - 4.8000e-03 -8.2974e+00 1.4354e-01 8.5646e-01 9.0898e-01 9.1023e-02 7.3243e-06 4.4426e-03 6.3874e-04 3.8112e-03 - 4.8100e-03 -8.2974e+00 1.4322e-01 8.5678e-01 9.0898e-01 9.1023e-02 5.6581e-06 4.4542e-03 6.3874e-04 3.8212e-03 - 4.8200e-03 -8.2974e+00 1.4290e-01 8.5710e-01 9.0898e-01 9.1023e-02 3.9919e-06 4.4659e-03 6.3874e-04 3.8312e-03 - 4.8300e-03 -8.2974e+00 1.4258e-01 8.5742e-01 9.0898e-01 9.1023e-02 2.3257e-06 4.4776e-03 6.3874e-04 3.8412e-03 - 4.8400e-03 -8.2974e+00 1.4226e-01 8.5774e-01 9.0898e-01 9.1023e-02 6.5947e-07 4.4892e-03 6.3874e-04 3.8512e-03 - 4.8500e-03 -8.2974e+00 1.4211e-01 8.5789e-01 9.0896e-01 9.1042e-02 1.0000e-10 1.0000e-10 6.3958e-04 3.8610e-03 - 4.8600e-03 -8.2976e+00 1.4207e-01 8.5793e-01 9.0893e-01 9.1074e-02 1.0000e-10 1.0000e-10 6.4098e-04 3.8708e-03 - 4.8700e-03 -8.2977e+00 1.4203e-01 8.5797e-01 9.0889e-01 9.1106e-02 1.0000e-10 1.0000e-10 6.4237e-04 3.8805e-03 - 4.8800e-03 -8.2978e+00 1.4198e-01 8.5802e-01 9.0886e-01 9.1138e-02 1.0000e-10 1.0000e-10 6.4376e-04 3.8903e-03 - 4.8900e-03 -8.2980e+00 1.4194e-01 8.5806e-01 9.0883e-01 9.1170e-02 1.0000e-10 1.0000e-10 6.4515e-04 3.9000e-03 - 4.9000e-03 -8.2981e+00 1.4190e-01 8.5810e-01 9.0880e-01 9.1202e-02 1.0000e-10 1.0000e-10 6.4654e-04 3.9098e-03 - 4.9100e-03 -8.2982e+00 1.4186e-01 8.5814e-01 9.0877e-01 9.1234e-02 1.0000e-10 1.0000e-10 6.4793e-04 3.9195e-03 - 4.9200e-03 -8.2983e+00 1.4181e-01 8.5819e-01 9.0873e-01 9.1266e-02 1.0000e-10 1.0000e-10 6.4932e-04 3.9293e-03 - 4.9300e-03 -8.2985e+00 1.4177e-01 8.5823e-01 9.0870e-01 9.1298e-02 1.0000e-10 1.0000e-10 6.5070e-04 3.9391e-03 - 4.9400e-03 -8.2986e+00 1.4173e-01 8.5827e-01 9.0867e-01 9.1330e-02 1.0000e-10 1.0000e-10 6.5209e-04 3.9488e-03 - 4.9500e-03 -8.2987e+00 1.4169e-01 8.5831e-01 9.0864e-01 9.1362e-02 1.0000e-10 1.0000e-10 6.5347e-04 3.9586e-03 - 4.9600e-03 -8.2989e+00 1.4165e-01 8.5835e-01 9.0861e-01 9.1394e-02 1.0000e-10 1.0000e-10 6.5486e-04 3.9683e-03 - 4.9700e-03 -8.2990e+00 1.4160e-01 8.5840e-01 9.0857e-01 9.1426e-02 1.0000e-10 1.0000e-10 6.5624e-04 3.9781e-03 - 4.9800e-03 -8.2991e+00 1.4156e-01 8.5844e-01 9.0854e-01 9.1458e-02 1.0000e-10 1.0000e-10 6.5762e-04 3.9878e-03 - 4.9900e-03 -8.2992e+00 1.4152e-01 8.5848e-01 9.0851e-01 9.1490e-02 1.0000e-10 1.0000e-10 6.5900e-04 3.9976e-03 - 5.0000e-03 -8.2994e+00 1.4148e-01 8.5852e-01 9.0848e-01 9.1522e-02 1.0000e-10 1.0000e-10 6.6038e-04 4.0074e-03 - 5.0000e-03 -8.2994e+00 1.4148e-01 8.5852e-01 9.0848e-01 9.1522e-02 1.0000e-10 1.0000e-10 6.6038e-04 4.0074e-03 - 1.0000e-02 -8.3561e+00 1.2425e-01 8.7575e-01 8.9342e-01 1.0658e-01 1.0000e-10 1.0000e-10 1.2622e-03 8.8963e-03 - 1.5000e-02 -8.4019e+00 1.1192e-01 8.8808e-01 8.7973e-01 1.2027e-01 1.0000e-10 1.0000e-10 1.7391e-03 1.3800e-02 - 2.0000e-02 -8.4405e+00 1.0242e-01 8.9758e-01 8.6700e-01 1.3300e-01 1.0000e-10 1.0000e-10 2.1356e-03 1.8715e-02 - 2.5000e-02 -8.4739e+00 9.4788e-02 9.0521e-01 8.5501e-01 1.4499e-01 1.0000e-10 1.0000e-10 2.4751e-03 2.3637e-02 - 3.0000e-02 -8.5033e+00 8.8454e-02 9.1155e-01 8.4365e-01 1.5635e-01 1.0000e-10 1.0000e-10 2.7719e-03 2.8565e-02 - 3.5000e-02 -8.5296e+00 8.3084e-02 9.1692e-01 8.3281e-01 1.6719e-01 1.0000e-10 1.0000e-10 3.0354e-03 3.3499e-02 - 4.0000e-02 -8.5534e+00 7.8452e-02 9.2155e-01 8.2242e-01 1.7758e-01 1.0000e-10 1.0000e-10 3.2721e-03 3.8436e-02 - 4.5000e-02 -8.5751e+00 7.4402e-02 9.2560e-01 8.1245e-01 1.8755e-01 1.0000e-10 1.0000e-10 3.4868e-03 4.3378e-02 - 5.0000e-02 -8.5949e+00 7.0821e-02 9.2918e-01 8.0284e-01 1.9716e-01 1.0000e-10 1.0000e-10 3.6831e-03 4.8323e-02 - 5.5000e-02 -8.6133e+00 6.7625e-02 9.3237e-01 7.9357e-01 2.0643e-01 1.0000e-10 1.0000e-10 3.8637e-03 5.3270e-02 - 6.0000e-02 -8.6303e+00 6.4751e-02 9.3525e-01 7.8460e-01 2.1540e-01 1.0000e-10 1.0000e-10 4.0308e-03 5.8220e-02 - 6.5000e-02 -8.6462e+00 6.2147e-02 9.3785e-01 7.7593e-01 2.2407e-01 1.0000e-10 1.0000e-10 4.1862e-03 6.3173e-02 - 7.0000e-02 -8.6610e+00 5.9776e-02 9.4022e-01 7.6751e-01 2.3249e-01 1.0000e-10 1.0000e-10 4.3313e-03 6.8127e-02 - 7.5000e-02 -8.6750e+00 5.7604e-02 9.4240e-01 7.5935e-01 2.4065e-01 1.0000e-10 1.0000e-10 4.4673e-03 7.3084e-02 - 8.0000e-02 -8.6881e+00 5.5606e-02 9.4439e-01 7.5142e-01 2.4858e-01 1.0000e-10 1.0000e-10 4.5952e-03 7.8042e-02 - 8.5000e-02 -8.7005e+00 5.3761e-02 9.4624e-01 7.4370e-01 2.5630e-01 1.0000e-10 1.0000e-10 4.7158e-03 8.3002e-02 - 9.0000e-02 -8.7122e+00 5.2050e-02 9.4795e-01 7.3619e-01 2.6381e-01 1.0000e-10 1.0000e-10 4.8298e-03 8.7963e-02 - 9.5000e-02 -8.7234e+00 5.0457e-02 9.4954e-01 7.2888e-01 2.7112e-01 1.0000e-10 1.0000e-10 4.9380e-03 9.2926e-02 - 1.0000e-01 -8.7339e+00 4.8972e-02 9.5103e-01 7.2176e-01 2.7824e-01 1.0000e-10 1.0000e-10 5.0407e-03 9.7890e-02 - 1.0000e-01 -8.7339e+00 4.8972e-02 9.5103e-01 7.2176e-01 2.7824e-01 1.0000e-10 1.0000e-10 5.0407e-03 9.7890e-02 - 2.0000e-01 -8.8751e+00 3.1476e-02 9.6852e-01 6.0792e-01 3.9208e-01 1.0000e-10 1.0000e-10 6.4139e-03 1.9736e-01 - 3.0000e-01 -8.9520e+00 2.3569e-02 9.7643e-01 5.2858e-01 4.7142e-01 1.0000e-10 1.0000e-10 7.1693e-03 2.9702e-01 - 4.0000e-01 -9.0019e+00 1.8957e-02 9.8104e-01 4.6899e-01 5.3101e-01 1.0000e-10 1.0000e-10 7.6669e-03 3.9678e-01 - 5.0000e-01 -9.0375e+00 1.5904e-02 9.8410e-01 4.2219e-01 5.7781e-01 1.0000e-10 1.0000e-10 8.0256e-03 4.9659e-01 - 6.0000e-01 -9.0643e+00 1.3723e-02 9.8628e-01 3.8427e-01 6.1573e-01 1.0000e-10 1.0000e-10 8.2990e-03 5.9645e-01 - 7.0000e-01 -9.0854e+00 1.2081e-02 9.8792e-01 3.5284e-01 6.4716e-01 1.0000e-10 1.0000e-10 8.5154e-03 6.9633e-01 - 8.0000e-01 -9.1024e+00 1.0798e-02 9.8920e-01 3.2631e-01 6.7369e-01 1.0000e-10 1.0000e-10 8.6916e-03 7.9624e-01 - 9.0000e-01 -9.1165e+00 9.7659e-03 9.9023e-01 3.0358e-01 6.9642e-01 1.0000e-10 1.0000e-10 8.8381e-03 8.9616e-01 - 1.0000e+00 -9.1284e+00 8.9171e-03 9.9108e-01 2.8389e-01 7.1611e-01 1.0000e-10 1.0000e-10 8.9621e-03 9.9609e-01 - 1.1000e+00 -9.1385e+00 8.2062e-03 9.9179e-01 2.6664e-01 7.3336e-01 1.0000e-10 1.0000e-10 9.0686e-03 1.0960e+00 - 1.2000e+00 -9.1472e+00 7.6017e-03 9.9240e-01 2.5140e-01 7.4860e-01 1.0000e-10 1.0000e-10 9.1610e-03 1.1960e+00 - 1.3000e+00 -9.1549e+00 7.0811e-03 9.9292e-01 2.3784e-01 7.6216e-01 1.0000e-10 1.0000e-10 9.2421e-03 1.2959e+00 - 1.4000e+00 -9.1616e+00 6.6281e-03 9.9337e-01 2.2568e-01 7.7432e-01 1.0000e-10 1.0000e-10 9.3138e-03 1.3959e+00 - 1.5000e+00 -9.1676e+00 6.2301e-03 9.9377e-01 2.1472e-01 7.8528e-01 1.0000e-10 1.0000e-10 9.3777e-03 1.4958e+00 - 1.6000e+00 -9.1730e+00 5.8776e-03 9.9412e-01 2.0479e-01 7.9521e-01 1.0000e-10 1.0000e-10 9.4351e-03 1.5958e+00 - 1.7000e+00 -9.1778e+00 5.5632e-03 9.9444e-01 1.9574e-01 8.0426e-01 1.0000e-10 1.0000e-10 9.4868e-03 1.6958e+00 - 1.8000e+00 -9.1822e+00 5.2810e-03 9.9472e-01 1.8747e-01 8.1253e-01 1.0000e-10 1.0000e-10 9.5338e-03 1.7958e+00 - 1.9000e+00 -9.1861e+00 5.0263e-03 9.9497e-01 1.7987e-01 8.2013e-01 1.0000e-10 1.0000e-10 9.5766e-03 1.8957e+00 - 2.0000e+00 -9.1898e+00 4.7951e-03 9.9520e-01 1.7287e-01 8.2713e-01 1.0000e-10 1.0000e-10 9.6157e-03 1.9957e+00 - 2.1000e+00 -9.1931e+00 4.5844e-03 9.9542e-01 1.6640e-01 8.3360e-01 1.0000e-10 1.0000e-10 9.6517e-03 2.0957e+00 - 2.2000e+00 -9.1962e+00 4.3916e-03 9.9561e-01 1.6040e-01 8.3960e-01 1.0000e-10 1.0000e-10 9.6849e-03 2.1957e+00 - 2.3000e+00 -9.1990e+00 4.2144e-03 9.9579e-01 1.5481e-01 8.4519e-01 1.0000e-10 1.0000e-10 9.7156e-03 2.2956e+00 - 2.4000e+00 -9.2016e+00 4.0510e-03 9.9595e-01 1.4961e-01 8.5039e-01 1.0000e-10 1.0000e-10 9.7441e-03 2.3956e+00 - 2.5000e+00 -9.2040e+00 3.8999e-03 9.9610e-01 1.4475e-01 8.5525e-01 1.0000e-10 1.0000e-10 9.7707e-03 2.4956e+00 - 2.6000e+00 -9.2063e+00 3.7597e-03 9.9624e-01 1.4019e-01 8.5981e-01 1.0000e-10 1.0000e-10 9.7954e-03 2.5956e+00 - 2.7000e+00 -9.2084e+00 3.6292e-03 9.9637e-01 1.3591e-01 8.6409e-01 1.0000e-10 1.0000e-10 9.8185e-03 2.6956e+00 - 2.8000e+00 -9.2104e+00 3.5076e-03 9.9649e-01 1.3189e-01 8.6811e-01 1.0000e-10 1.0000e-10 9.8402e-03 2.7956e+00 - 2.9000e+00 -9.2123e+00 3.3939e-03 9.9661e-01 1.2810e-01 8.7190e-01 1.0000e-10 1.0000e-10 9.8606e-03 2.8956e+00 - 3.0000e+00 -9.2140e+00 3.2873e-03 9.9671e-01 1.2452e-01 8.7548e-01 1.0000e-10 1.0000e-10 9.8797e-03 2.9955e+00 - 3.1000e+00 -9.2157e+00 3.1873e-03 9.9681e-01 1.2114e-01 8.7886e-01 1.0000e-10 1.0000e-10 9.8978e-03 3.0955e+00 - 3.2000e+00 -9.2172e+00 3.0931e-03 9.9691e-01 1.1794e-01 8.8206e-01 1.0000e-10 1.0000e-10 9.9148e-03 3.1955e+00 - 3.3000e+00 -9.2187e+00 3.0044e-03 9.9700e-01 1.1490e-01 8.8510e-01 1.0000e-10 1.0000e-10 9.9310e-03 3.2955e+00 - 3.4000e+00 -9.2201e+00 2.9207e-03 9.9708e-01 1.1202e-01 8.8798e-01 1.0000e-10 1.0000e-10 9.9462e-03 3.3955e+00 - 3.5000e+00 -9.2214e+00 2.8415e-03 9.9716e-01 1.0927e-01 8.9073e-01 1.0000e-10 1.0000e-10 9.9607e-03 3.4955e+00 - 3.6000e+00 -9.2227e+00 2.7665e-03 9.9723e-01 1.0666e-01 8.9334e-01 1.0000e-10 1.0000e-10 9.9745e-03 3.5955e+00 - 3.7000e+00 -9.2239e+00 2.6954e-03 9.9730e-01 1.0417e-01 8.9583e-01 1.0000e-10 1.0000e-10 9.9876e-03 3.6955e+00 - 3.8000e+00 -9.2250e+00 2.6278e-03 9.9737e-01 1.0180e-01 8.9820e-01 1.0000e-10 1.0000e-10 1.0000e-02 3.7955e+00 - 3.9000e+00 -9.2261e+00 2.5636e-03 9.9744e-01 9.9529e-02 9.0047e-01 1.0000e-10 1.0000e-10 1.0012e-02 3.8955e+00 - 4.0000e+00 -9.2271e+00 2.5024e-03 9.9750e-01 9.7359e-02 9.0264e-01 1.0000e-10 1.0000e-10 1.0023e-02 3.9955e+00 - 4.1000e+00 -9.2281e+00 2.4441e-03 9.9756e-01 9.5282e-02 9.0472e-01 1.0000e-10 1.0000e-10 1.0034e-02 4.0954e+00 - 4.2000e+00 -9.2290e+00 2.3884e-03 9.9761e-01 9.3292e-02 9.0671e-01 1.0000e-10 1.0000e-10 1.0045e-02 4.1954e+00 - 4.3000e+00 -9.2299e+00 2.3353e-03 9.9766e-01 9.1384e-02 9.0862e-01 1.0000e-10 1.0000e-10 1.0055e-02 4.2954e+00 - 4.4000e+00 -9.2308e+00 2.2844e-03 9.9772e-01 8.9552e-02 9.1045e-01 1.0000e-10 1.0000e-10 1.0064e-02 4.3954e+00 - 4.5000e+00 -9.2316e+00 2.2358e-03 9.9776e-01 8.7792e-02 9.1221e-01 1.0000e-10 1.0000e-10 1.0073e-02 4.4954e+00 - 4.6000e+00 -9.2324e+00 2.1891e-03 9.9781e-01 8.6101e-02 9.1390e-01 1.0000e-10 1.0000e-10 1.0082e-02 4.5954e+00 - 4.7000e+00 -9.2332e+00 2.1444e-03 9.9786e-01 8.4473e-02 9.1553e-01 1.0000e-10 1.0000e-10 1.0090e-02 4.6954e+00 - 4.8000e+00 -9.2339e+00 2.1014e-03 9.9790e-01 8.2906e-02 9.1709e-01 1.0000e-10 1.0000e-10 1.0098e-02 4.7954e+00 - 4.9000e+00 -9.2346e+00 2.0602e-03 9.9794e-01 8.1396e-02 9.1860e-01 1.0000e-10 1.0000e-10 1.0106e-02 4.8954e+00 - 5.0000e+00 -9.2353e+00 2.0205e-03 9.9798e-01 7.9940e-02 9.2006e-01 1.0000e-10 1.0000e-10 1.0114e-02 4.9954e+00 - 5.1000e+00 -9.2359e+00 1.9824e-03 9.9802e-01 7.8535e-02 9.2146e-01 1.0000e-10 1.0000e-10 1.0121e-02 5.0954e+00 - 5.2000e+00 -9.2366e+00 1.9456e-03 9.9805e-01 7.7179e-02 9.2282e-01 1.0000e-10 1.0000e-10 1.0128e-02 5.1954e+00 - 5.3000e+00 -9.2372e+00 1.9102e-03 9.9809e-01 7.5869e-02 9.2413e-01 1.0000e-10 1.0000e-10 1.0135e-02 5.2954e+00 - 5.4000e+00 -9.2378e+00 1.8761e-03 9.9812e-01 7.4603e-02 9.2540e-01 1.0000e-10 1.0000e-10 1.0141e-02 5.3954e+00 - 5.5000e+00 -9.2383e+00 1.8432e-03 9.9816e-01 7.3379e-02 9.2662e-01 1.0000e-10 1.0000e-10 1.0148e-02 5.4954e+00 - 5.6000e+00 -9.2389e+00 1.8114e-03 9.9819e-01 7.2194e-02 9.2781e-01 1.0000e-10 1.0000e-10 1.0154e-02 5.5954e+00 - 5.7000e+00 -9.2394e+00 1.7806e-03 9.9822e-01 7.1046e-02 9.2895e-01 1.0000e-10 1.0000e-10 1.0159e-02 5.6954e+00 - 5.8000e+00 -9.2399e+00 1.7509e-03 9.9825e-01 6.9935e-02 9.3006e-01 1.0000e-10 1.0000e-10 1.0165e-02 5.7954e+00 - 5.9000e+00 -9.2404e+00 1.7222e-03 9.9828e-01 6.8858e-02 9.3114e-01 1.0000e-10 1.0000e-10 1.0171e-02 5.8954e+00 - 6.0000e+00 -9.2409e+00 1.6944e-03 9.9831e-01 6.7814e-02 9.3219e-01 1.0000e-10 1.0000e-10 1.0176e-02 5.9954e+00 - 6.1000e+00 -9.2414e+00 1.6675e-03 9.9833e-01 6.6801e-02 9.3320e-01 1.0000e-10 1.0000e-10 1.0181e-02 6.0954e+00 - 6.2000e+00 -9.2418e+00 1.6415e-03 9.9836e-01 6.5817e-02 9.3418e-01 1.0000e-10 1.0000e-10 1.0186e-02 6.1954e+00 - 6.3000e+00 -9.2422e+00 1.6162e-03 9.9838e-01 6.4863e-02 9.3514e-01 1.0000e-10 1.0000e-10 1.0191e-02 6.2953e+00 - 6.4000e+00 -9.2427e+00 1.5917e-03 9.9841e-01 6.3935e-02 9.3606e-01 1.0000e-10 1.0000e-10 1.0196e-02 6.3953e+00 - 6.5000e+00 -9.2431e+00 1.5680e-03 9.9843e-01 6.3034e-02 9.3697e-01 1.0000e-10 1.0000e-10 1.0200e-02 6.4953e+00 - 6.6000e+00 -9.2435e+00 1.5449e-03 9.9846e-01 6.2158e-02 9.3784e-01 1.0000e-10 1.0000e-10 1.0205e-02 6.5953e+00 - 6.7000e+00 -9.2439e+00 1.5225e-03 9.9848e-01 6.1306e-02 9.3869e-01 1.0000e-10 1.0000e-10 1.0209e-02 6.6953e+00 - 6.8000e+00 -9.2442e+00 1.5007e-03 9.9850e-01 6.0477e-02 9.3952e-01 1.0000e-10 1.0000e-10 1.0213e-02 6.7953e+00 - 6.9000e+00 -9.2446e+00 1.4796e-03 9.9852e-01 5.9670e-02 9.4033e-01 1.0000e-10 1.0000e-10 1.0217e-02 6.8953e+00 - 7.0000e+00 -9.2450e+00 1.4591e-03 9.9854e-01 5.8885e-02 9.4112e-01 1.0000e-10 1.0000e-10 1.0221e-02 6.9953e+00 - 7.1000e+00 -9.2453e+00 1.4391e-03 9.9856e-01 5.8119e-02 9.4188e-01 1.0000e-10 1.0000e-10 1.0225e-02 7.0953e+00 - 7.2000e+00 -9.2457e+00 1.4196e-03 9.9858e-01 5.7374e-02 9.4263e-01 1.0000e-10 1.0000e-10 1.0229e-02 7.1953e+00 - 7.3000e+00 -9.2460e+00 1.4007e-03 9.9860e-01 5.6647e-02 9.4335e-01 1.0000e-10 1.0000e-10 1.0233e-02 7.2953e+00 - 7.4000e+00 -9.2463e+00 1.3823e-03 9.9862e-01 5.5939e-02 9.4406e-01 1.0000e-10 1.0000e-10 1.0236e-02 7.3953e+00 - 7.5000e+00 -9.2466e+00 1.3643e-03 9.9864e-01 5.5248e-02 9.4475e-01 1.0000e-10 1.0000e-10 1.0240e-02 7.4953e+00 - 7.6000e+00 -9.2469e+00 1.3468e-03 9.9865e-01 5.4574e-02 9.4543e-01 1.0000e-10 1.0000e-10 1.0243e-02 7.5953e+00 - 7.7000e+00 -9.2472e+00 1.3298e-03 9.9867e-01 5.3916e-02 9.4608e-01 1.0000e-10 1.0000e-10 1.0247e-02 7.6953e+00 - 7.8000e+00 -9.2475e+00 1.3131e-03 9.9869e-01 5.3274e-02 9.4673e-01 1.0000e-10 1.0000e-10 1.0250e-02 7.7953e+00 - 7.9000e+00 -9.2478e+00 1.2969e-03 9.9870e-01 5.2647e-02 9.4735e-01 1.0000e-10 1.0000e-10 1.0253e-02 7.8953e+00 - 8.0000e+00 -9.2481e+00 1.2811e-03 9.9872e-01 5.2035e-02 9.4797e-01 1.0000e-10 1.0000e-10 1.0256e-02 7.9953e+00 - 8.1000e+00 -9.2484e+00 1.2657e-03 9.9873e-01 5.1436e-02 9.4856e-01 1.0000e-10 1.0000e-10 1.0259e-02 8.0953e+00 - 8.2000e+00 -9.2486e+00 1.2506e-03 9.9875e-01 5.0852e-02 9.4915e-01 1.0000e-10 1.0000e-10 1.0262e-02 8.1953e+00 - 8.3000e+00 -9.2489e+00 1.2359e-03 9.9876e-01 5.0280e-02 9.4972e-01 1.0000e-10 1.0000e-10 1.0265e-02 8.2953e+00 - 8.4000e+00 -9.2491e+00 1.2215e-03 9.9878e-01 4.9721e-02 9.5028e-01 1.0000e-10 1.0000e-10 1.0268e-02 8.3953e+00 - 8.5000e+00 -9.2494e+00 1.2075e-03 9.9879e-01 4.9175e-02 9.5083e-01 1.0000e-10 1.0000e-10 1.0271e-02 8.4953e+00 - 8.6000e+00 -9.2496e+00 1.1938e-03 9.9881e-01 4.8640e-02 9.5136e-01 1.0000e-10 1.0000e-10 1.0273e-02 8.5953e+00 - 8.7000e+00 -9.2499e+00 1.1804e-03 9.9882e-01 4.8117e-02 9.5188e-01 1.0000e-10 1.0000e-10 1.0276e-02 8.6953e+00 - 8.8000e+00 -9.2501e+00 1.1673e-03 9.9883e-01 4.7605e-02 9.5239e-01 1.0000e-10 1.0000e-10 1.0278e-02 8.7953e+00 - 8.9000e+00 -9.2503e+00 1.1544e-03 9.9885e-01 4.7104e-02 9.5290e-01 1.0000e-10 1.0000e-10 1.0281e-02 8.8953e+00 - 9.0000e+00 -9.2505e+00 1.1419e-03 9.9886e-01 4.6613e-02 9.5339e-01 1.0000e-10 1.0000e-10 1.0283e-02 8.9953e+00 - 9.1000e+00 -9.2507e+00 1.1296e-03 9.9887e-01 4.6132e-02 9.5387e-01 1.0000e-10 1.0000e-10 1.0286e-02 9.0953e+00 - 9.2000e+00 -9.2510e+00 1.1176e-03 9.9888e-01 4.5662e-02 9.5434e-01 1.0000e-10 1.0000e-10 1.0288e-02 9.1953e+00 - 9.3000e+00 -9.2512e+00 1.1058e-03 9.9889e-01 4.5200e-02 9.5480e-01 1.0000e-10 1.0000e-10 1.0291e-02 9.2953e+00 - 9.4000e+00 -9.2514e+00 1.0943e-03 9.9891e-01 4.4748e-02 9.5525e-01 1.0000e-10 1.0000e-10 1.0293e-02 9.3953e+00 - 9.5000e+00 -9.2516e+00 1.0830e-03 9.9892e-01 4.4305e-02 9.5569e-01 1.0000e-10 1.0000e-10 1.0295e-02 9.4953e+00 - 9.6000e+00 -9.2518e+00 1.0720e-03 9.9893e-01 4.3871e-02 9.5613e-01 1.0000e-10 1.0000e-10 1.0297e-02 9.5953e+00 - 9.7000e+00 -9.2519e+00 1.0612e-03 9.9894e-01 4.3445e-02 9.5656e-01 1.0000e-10 1.0000e-10 1.0299e-02 9.6953e+00 - 9.8000e+00 -9.2521e+00 1.0506e-03 9.9895e-01 4.3027e-02 9.5697e-01 1.0000e-10 1.0000e-10 1.0301e-02 9.7953e+00 - 9.9000e+00 -9.2523e+00 1.0402e-03 9.9896e-01 4.2617e-02 9.5738e-01 1.0000e-10 1.0000e-10 1.0303e-02 9.8953e+00 - 1.0000e+01 -9.2525e+00 1.0300e-03 9.9897e-01 4.2215e-02 9.5778e-01 1.0000e-10 1.0000e-10 1.0305e-02 9.9953e+00 + 1.0000e-05 -8.3356e+00 9.9996e-01 4.0997e-05 9.9899e-01 1.0068e-03 1.0000e-10 1.0000e-10 6.4233e-06 2.6335e-10 + 2.0000e-05 -8.3352e+00 9.9992e-01 8.2099e-05 9.9799e-01 2.0128e-03 1.0000e-10 1.0000e-10 1.2844e-05 1.0546e-09 + 3.0000e-05 -8.3349e+00 9.9988e-01 1.2331e-04 9.9698e-01 3.0181e-03 1.0000e-10 1.0000e-10 1.9263e-05 2.3756e-09 + 4.0000e-05 -8.3345e+00 9.9984e-01 1.6462e-04 9.9598e-01 4.0226e-03 1.0000e-10 1.0000e-10 2.5680e-05 4.2283e-09 + 5.0000e-05 -8.3341e+00 9.9979e-01 2.0605e-04 9.9497e-01 5.0263e-03 1.0000e-10 1.0000e-10 3.2095e-05 6.6144e-09 + 6.0000e-05 -8.3337e+00 9.9975e-01 2.4757e-04 9.9397e-01 6.0292e-03 1.0000e-10 1.0000e-10 3.8508e-05 9.5359e-09 + 7.0000e-05 -8.3334e+00 9.9971e-01 2.8921e-04 9.9297e-01 7.0313e-03 1.0000e-10 1.0000e-10 4.4918e-05 1.2995e-08 + 8.0000e-05 -8.3330e+00 9.9967e-01 3.3096e-04 9.9197e-01 8.0327e-03 1.0000e-10 1.0000e-10 5.1326e-05 1.6993e-08 + 9.0000e-05 -8.3326e+00 9.9963e-01 3.7281e-04 9.9097e-01 9.0333e-03 1.0000e-10 1.0000e-10 5.7733e-05 2.1531e-08 + 1.0000e-04 -8.3322e+00 9.9959e-01 4.1478e-04 9.8997e-01 1.0033e-02 1.0000e-10 1.0000e-10 6.4137e-05 2.6613e-08 + 1.1000e-04 -8.3319e+00 9.9954e-01 4.5685e-04 9.8897e-01 1.1032e-02 1.0000e-10 1.0000e-10 7.0538e-05 3.2240e-08 + 1.2000e-04 -8.3315e+00 9.9950e-01 4.9903e-04 9.8797e-01 1.2030e-02 1.0000e-10 1.0000e-10 7.6938e-05 3.8414e-08 + 1.3000e-04 -8.3311e+00 9.9946e-01 5.4133e-04 9.8697e-01 1.3028e-02 1.0000e-10 1.0000e-10 8.3336e-05 4.5136e-08 + 1.4000e-04 -8.3307e+00 9.9942e-01 5.8373e-04 9.8598e-01 1.4025e-02 1.0000e-10 1.0000e-10 8.9731e-05 5.2409e-08 + 1.5000e-04 -8.3304e+00 9.9937e-01 6.2625e-04 9.8498e-01 1.5021e-02 1.0000e-10 1.0000e-10 9.6124e-05 6.0235e-08 + 1.6000e-04 -8.3300e+00 9.9933e-01 6.6888e-04 9.8398e-01 1.6016e-02 1.0000e-10 1.0000e-10 1.0252e-04 6.8616e-08 + 1.7000e-04 -8.3296e+00 9.9929e-01 7.1162e-04 9.8299e-01 1.7010e-02 1.0000e-10 1.0000e-10 1.0890e-04 7.7553e-08 + 1.8000e-04 -8.3292e+00 9.9925e-01 7.5447e-04 9.8200e-01 1.8004e-02 1.0000e-10 1.0000e-10 1.1529e-04 8.7050e-08 + 1.9000e-04 -8.3288e+00 9.9920e-01 7.9744e-04 9.8100e-01 1.8997e-02 1.0000e-10 1.0000e-10 1.2168e-04 9.7106e-08 + 2.0000e-04 -8.3285e+00 9.9916e-01 8.4052e-04 9.8001e-01 1.9989e-02 1.0000e-10 1.0000e-10 1.2806e-04 1.0773e-07 + 2.1000e-04 -8.3281e+00 9.9912e-01 8.8372e-04 9.7902e-01 2.0980e-02 1.0000e-10 1.0000e-10 1.3444e-04 1.1891e-07 + 2.2000e-04 -8.3277e+00 9.9907e-01 9.2703e-04 9.7803e-01 2.1970e-02 1.0000e-10 1.0000e-10 1.4082e-04 1.3066e-07 + 2.3000e-04 -8.3273e+00 9.9903e-01 9.7045e-04 9.7704e-01 2.2960e-02 1.0000e-10 1.0000e-10 1.4719e-04 1.4298e-07 + 2.4000e-04 -8.3270e+00 9.9899e-01 1.0140e-03 9.7605e-01 2.3949e-02 1.0000e-10 1.0000e-10 1.5357e-04 1.5587e-07 + 2.5000e-04 -8.3266e+00 9.9894e-01 1.0577e-03 9.7506e-01 2.4937e-02 1.0000e-10 1.0000e-10 1.5994e-04 1.6934e-07 + 2.6000e-04 -8.3262e+00 9.9890e-01 1.1014e-03 9.7408e-01 2.5925e-02 1.0000e-10 1.0000e-10 1.6631e-04 1.8338e-07 + 2.7000e-04 -8.3258e+00 9.9885e-01 1.1453e-03 9.7309e-01 2.6911e-02 1.0000e-10 1.0000e-10 1.7267e-04 1.9799e-07 + 2.8000e-04 -8.3254e+00 9.9881e-01 1.1893e-03 9.7210e-01 2.7897e-02 1.0000e-10 1.0000e-10 1.7904e-04 2.1319e-07 + 2.9000e-04 -8.3251e+00 9.9877e-01 1.2335e-03 9.7112e-01 2.8882e-02 1.0000e-10 1.0000e-10 1.8540e-04 2.2897e-07 + 3.0000e-04 -8.3247e+00 9.9872e-01 1.2777e-03 9.7013e-01 2.9866e-02 1.0000e-10 1.0000e-10 1.9176e-04 2.4533e-07 + 3.1000e-04 -8.3243e+00 9.9868e-01 1.3221e-03 9.6915e-01 3.0850e-02 1.0000e-10 1.0000e-10 1.9812e-04 2.6228e-07 + 3.2000e-04 -8.3239e+00 9.9863e-01 1.3666e-03 9.6817e-01 3.1833e-02 1.0000e-10 1.0000e-10 2.0448e-04 2.7981e-07 + 3.3000e-04 -8.3236e+00 9.9859e-01 1.4112e-03 9.6719e-01 3.2815e-02 1.0000e-10 1.0000e-10 2.1083e-04 2.9794e-07 + 3.4000e-04 -8.3232e+00 9.9854e-01 1.4559e-03 9.6620e-01 3.3796e-02 1.0000e-10 1.0000e-10 2.1718e-04 3.1666e-07 + 3.5000e-04 -8.3228e+00 9.9850e-01 1.5007e-03 9.6522e-01 3.4776e-02 1.0000e-10 1.0000e-10 2.2353e-04 3.3597e-07 + 3.6000e-04 -8.3224e+00 9.9845e-01 1.5457e-03 9.6424e-01 3.5756e-02 1.0000e-10 1.0000e-10 2.2988e-04 3.5588e-07 + 3.7000e-04 -8.3220e+00 9.9841e-01 1.5908e-03 9.6327e-01 3.6735e-02 1.0000e-10 1.0000e-10 2.3623e-04 3.7639e-07 + 3.8000e-04 -8.3217e+00 9.9836e-01 1.6360e-03 9.6229e-01 3.7713e-02 1.0000e-10 1.0000e-10 2.4257e-04 3.9750e-07 + 3.9000e-04 -8.3213e+00 9.9832e-01 1.6814e-03 9.6131e-01 3.8690e-02 1.0000e-10 1.0000e-10 2.4891e-04 4.1922e-07 + 4.0000e-04 -8.3209e+00 9.9827e-01 1.7268e-03 9.6033e-01 3.9667e-02 1.0000e-10 1.0000e-10 2.5525e-04 4.4154e-07 + 4.1000e-04 -8.3205e+00 9.9823e-01 1.7724e-03 9.5936e-01 4.0643e-02 1.0000e-10 1.0000e-10 2.6159e-04 4.6447e-07 + 4.2000e-04 -8.3201e+00 9.9818e-01 1.8182e-03 9.5838e-01 4.1618e-02 1.0000e-10 1.0000e-10 2.6792e-04 4.8801e-07 + 4.3000e-04 -8.3198e+00 9.9814e-01 1.8640e-03 9.5741e-01 4.2592e-02 1.0000e-10 1.0000e-10 2.7425e-04 5.1216e-07 + 4.4000e-04 -8.3194e+00 9.9809e-01 1.9100e-03 9.5643e-01 4.3566e-02 1.0000e-10 1.0000e-10 2.8058e-04 5.3693e-07 + 4.5000e-04 -8.3190e+00 9.9804e-01 1.9561e-03 9.5546e-01 4.4538e-02 1.0000e-10 1.0000e-10 2.8691e-04 5.6232e-07 + 4.6000e-04 -8.3186e+00 9.9800e-01 2.0023e-03 9.5449e-01 4.5510e-02 1.0000e-10 1.0000e-10 2.9324e-04 5.8832e-07 + 4.7000e-04 -8.3183e+00 9.9795e-01 2.0486e-03 9.5352e-01 4.6481e-02 1.0000e-10 1.0000e-10 2.9956e-04 6.1495e-07 + 4.8000e-04 -8.3179e+00 9.9790e-01 2.0951e-03 9.5255e-01 4.7452e-02 1.0000e-10 1.0000e-10 3.0588e-04 6.4221e-07 + 4.9000e-04 -8.3175e+00 9.9786e-01 2.1417e-03 9.5158e-01 4.8422e-02 1.0000e-10 1.0000e-10 3.1220e-04 6.7009e-07 + 5.0000e-04 -8.3171e+00 9.9781e-01 2.1885e-03 9.5061e-01 4.9390e-02 1.0000e-10 1.0000e-10 3.1852e-04 6.9860e-07 + 5.1000e-04 -8.3167e+00 9.9776e-01 2.2353e-03 9.4964e-01 5.0358e-02 1.0000e-10 1.0000e-10 3.2483e-04 7.2774e-07 + 5.2000e-04 -8.3164e+00 9.9772e-01 2.2823e-03 9.4867e-01 5.1326e-02 1.0000e-10 1.0000e-10 3.3115e-04 7.5752e-07 + 5.3000e-04 -8.3160e+00 9.9767e-01 2.3295e-03 9.4771e-01 5.2292e-02 1.0000e-10 1.0000e-10 3.3746e-04 7.8793e-07 + 5.4000e-04 -8.3156e+00 9.9762e-01 2.3767e-03 9.4674e-01 5.3258e-02 1.0000e-10 1.0000e-10 3.4377e-04 8.1899e-07 + 5.5000e-04 -8.3152e+00 9.9758e-01 2.4241e-03 9.4578e-01 5.4223e-02 1.0000e-10 1.0000e-10 3.5007e-04 8.5068e-07 + 5.6000e-04 -8.3148e+00 9.9753e-01 2.4717e-03 9.4481e-01 5.5187e-02 1.0000e-10 1.0000e-10 3.5638e-04 8.8302e-07 + 5.7000e-04 -8.3145e+00 9.9748e-01 2.5193e-03 9.4385e-01 5.6151e-02 1.0000e-10 1.0000e-10 3.6268e-04 9.1601e-07 + 5.8000e-04 -8.3141e+00 9.9743e-01 2.5671e-03 9.4289e-01 5.7114e-02 1.0000e-10 1.0000e-10 3.6898e-04 9.4965e-07 + 5.9000e-04 -8.3137e+00 9.9738e-01 2.6151e-03 9.4192e-01 5.8076e-02 1.0000e-10 1.0000e-10 3.7527e-04 9.8394e-07 + 6.0000e-04 -8.3133e+00 9.9734e-01 2.6631e-03 9.4096e-01 5.9037e-02 1.0000e-10 1.0000e-10 3.8157e-04 1.0189e-06 + 6.1000e-04 -8.3129e+00 9.9729e-01 2.7114e-03 9.4000e-01 5.9997e-02 1.0000e-10 1.0000e-10 3.8786e-04 1.0545e-06 + 6.2000e-04 -8.3126e+00 9.9724e-01 2.7597e-03 9.3904e-01 6.0957e-02 1.0000e-10 1.0000e-10 3.9415e-04 1.0908e-06 + 6.3000e-04 -8.3122e+00 9.9719e-01 2.8082e-03 9.3808e-01 6.1916e-02 1.0000e-10 1.0000e-10 4.0044e-04 1.1277e-06 + 6.4000e-04 -8.3118e+00 9.9714e-01 2.8568e-03 9.3713e-01 6.2874e-02 1.0000e-10 1.0000e-10 4.0673e-04 1.1653e-06 + 6.5000e-04 -8.3114e+00 9.9709e-01 2.9056e-03 9.3617e-01 6.3831e-02 1.0000e-10 1.0000e-10 4.1301e-04 1.2035e-06 + 6.6000e-04 -8.3110e+00 9.9705e-01 2.9545e-03 9.3521e-01 6.4788e-02 1.0000e-10 1.0000e-10 4.1929e-04 1.2425e-06 + 6.7000e-04 -8.3106e+00 9.9700e-01 3.0035e-03 9.3426e-01 6.5743e-02 1.0000e-10 1.0000e-10 4.2557e-04 1.2821e-06 + 6.8000e-04 -8.3103e+00 9.9695e-01 3.0527e-03 9.3330e-01 6.6698e-02 1.0000e-10 1.0000e-10 4.3185e-04 1.3223e-06 + 6.9000e-04 -8.3099e+00 9.9690e-01 3.1020e-03 9.3235e-01 6.7653e-02 1.0000e-10 1.0000e-10 4.3812e-04 1.3633e-06 + 7.0000e-04 -8.3095e+00 9.9685e-01 3.1515e-03 9.3139e-01 6.8606e-02 1.0000e-10 1.0000e-10 4.4440e-04 1.4049e-06 + 7.1000e-04 -8.3091e+00 9.9680e-01 3.2011e-03 9.3044e-01 6.9559e-02 1.0000e-10 1.0000e-10 4.5067e-04 1.4473e-06 + 7.2000e-04 -8.3087e+00 9.9675e-01 3.2509e-03 9.2949e-01 7.0511e-02 1.0000e-10 1.0000e-10 4.5693e-04 1.4903e-06 + 7.3000e-04 -8.3084e+00 9.9670e-01 3.3008e-03 9.2854e-01 7.1462e-02 1.0000e-10 1.0000e-10 4.6320e-04 1.5340e-06 + 7.4000e-04 -8.3080e+00 9.9665e-01 3.3508e-03 9.2759e-01 7.2412e-02 1.0000e-10 1.0000e-10 4.6946e-04 1.5784e-06 + 7.5000e-04 -8.3076e+00 9.9660e-01 3.4010e-03 9.2664e-01 7.3362e-02 1.0000e-10 1.0000e-10 4.7573e-04 1.6235e-06 + 7.6000e-04 -8.3072e+00 9.9655e-01 3.4514e-03 9.2569e-01 7.4311e-02 1.0000e-10 1.0000e-10 4.8198e-04 1.6693e-06 + 7.7000e-04 -8.3068e+00 9.9650e-01 3.5018e-03 9.2474e-01 7.5259e-02 1.0000e-10 1.0000e-10 4.8824e-04 1.7158e-06 + 7.8000e-04 -8.3065e+00 9.9645e-01 3.5525e-03 9.2379e-01 7.6206e-02 1.0000e-10 1.0000e-10 4.9450e-04 1.7630e-06 + 7.9000e-04 -8.3061e+00 9.9640e-01 3.6033e-03 9.2285e-01 7.7153e-02 1.0000e-10 1.0000e-10 5.0075e-04 1.8109e-06 + 8.0000e-04 -8.3057e+00 9.9635e-01 3.6542e-03 9.2190e-01 7.8099e-02 1.0000e-10 1.0000e-10 5.0700e-04 1.8595e-06 + 8.1000e-04 -8.3053e+00 9.9629e-01 3.7053e-03 9.2096e-01 7.9044e-02 1.0000e-10 1.0000e-10 5.1325e-04 1.9088e-06 + 8.2000e-04 -8.3049e+00 9.9624e-01 3.7565e-03 9.2001e-01 7.9988e-02 1.0000e-10 1.0000e-10 5.1949e-04 1.9588e-06 + 8.3000e-04 -8.3045e+00 9.9619e-01 3.8079e-03 9.1907e-01 8.0931e-02 1.0000e-10 1.0000e-10 5.2574e-04 2.0096e-06 + 8.4000e-04 -8.3042e+00 9.9614e-01 3.8595e-03 9.1813e-01 8.1874e-02 1.0000e-10 1.0000e-10 5.3198e-04 2.0611e-06 + 8.5000e-04 -8.3038e+00 9.9609e-01 3.9111e-03 9.1718e-01 8.2816e-02 1.0000e-10 1.0000e-10 5.3822e-04 2.1133e-06 + 8.6000e-04 -8.3034e+00 9.9604e-01 3.9630e-03 9.1624e-01 8.3757e-02 1.0000e-10 1.0000e-10 5.4445e-04 2.1663e-06 + 8.7000e-04 -8.3030e+00 9.9599e-01 4.0150e-03 9.1530e-01 8.4698e-02 1.0000e-10 1.0000e-10 5.5069e-04 2.2199e-06 + 8.8000e-04 -8.3026e+00 9.9593e-01 4.0672e-03 9.1436e-01 8.5638e-02 1.0000e-10 1.0000e-10 5.5692e-04 2.2743e-06 + 8.9000e-04 -8.3023e+00 9.9588e-01 4.1195e-03 9.1342e-01 8.6576e-02 1.0000e-10 1.0000e-10 5.6315e-04 2.3295e-06 + 9.0000e-04 -8.3019e+00 9.9583e-01 4.1719e-03 9.1249e-01 8.7515e-02 1.0000e-10 1.0000e-10 5.6938e-04 2.3854e-06 + 9.1000e-04 -8.3015e+00 9.9578e-01 4.2246e-03 9.1155e-01 8.8452e-02 1.0000e-10 1.0000e-10 5.7560e-04 2.4420e-06 + 9.2000e-04 -8.3011e+00 9.9572e-01 4.2774e-03 9.1061e-01 8.9389e-02 1.0000e-10 1.0000e-10 5.8183e-04 2.4994e-06 + 9.3000e-04 -8.3007e+00 9.9567e-01 4.3303e-03 9.0968e-01 9.0324e-02 1.0000e-10 1.0000e-10 5.8805e-04 2.5575e-06 + 9.4000e-04 -8.3003e+00 9.9562e-01 4.3834e-03 9.0874e-01 9.1260e-02 1.0000e-10 1.0000e-10 5.9427e-04 2.6164e-06 + 9.5000e-04 -8.3000e+00 9.9556e-01 4.4367e-03 9.0781e-01 9.2194e-02 1.0000e-10 1.0000e-10 6.0048e-04 2.6760e-06 + 9.6000e-04 -8.2996e+00 9.9551e-01 4.4901e-03 9.0687e-01 9.3127e-02 1.0000e-10 1.0000e-10 6.0670e-04 2.7364e-06 + 9.7000e-04 -8.2992e+00 9.9546e-01 4.5437e-03 9.0594e-01 9.4060e-02 1.0000e-10 1.0000e-10 6.1291e-04 2.7976e-06 + 9.8000e-04 -8.2988e+00 9.9540e-01 4.5975e-03 9.0501e-01 9.4992e-02 1.0000e-10 1.0000e-10 6.1912e-04 2.8595e-06 + 9.9000e-04 -8.2984e+00 9.9535e-01 4.6514e-03 9.0408e-01 9.5924e-02 1.0000e-10 1.0000e-10 6.2533e-04 2.9222e-06 + 1.0000e-03 -8.2980e+00 9.9529e-01 4.7055e-03 9.0315e-01 9.6854e-02 1.0000e-10 1.0000e-10 6.3153e-04 2.9857e-06 + 1.0100e-03 -8.2977e+00 9.9524e-01 4.7598e-03 9.0222e-01 9.7784e-02 1.0000e-10 1.0000e-10 6.3774e-04 3.0500e-06 + 1.0200e-03 -8.2974e+00 9.9210e-01 7.9009e-03 9.0147e-01 9.8526e-02 6.4545e-04 2.3524e-06 6.4269e-04 5.1183e-06 + 1.0300e-03 -8.2974e+00 9.7702e-01 2.2983e-02 9.0147e-01 9.8526e-02 6.4379e-04 1.4019e-05 6.4269e-04 1.5118e-05 + 1.0400e-03 -8.2974e+00 9.6239e-01 3.7613e-02 9.0147e-01 9.8526e-02 6.4212e-04 2.5685e-05 6.4269e-04 2.5118e-05 + 1.0500e-03 -8.2974e+00 9.4819e-01 5.1812e-02 9.0147e-01 9.8526e-02 6.4045e-04 3.7351e-05 6.4269e-04 3.5118e-05 + 1.0600e-03 -8.2974e+00 9.3440e-01 6.5598e-02 9.0147e-01 9.8526e-02 6.3879e-04 4.9017e-05 6.4269e-04 4.5118e-05 + 1.0700e-03 -8.2974e+00 9.2101e-01 7.8988e-02 9.0147e-01 9.8526e-02 6.3712e-04 6.0683e-05 6.4269e-04 5.5118e-05 + 1.0800e-03 -8.2974e+00 9.0800e-01 9.2000e-02 9.0147e-01 9.8526e-02 6.3545e-04 7.2350e-05 6.4269e-04 6.5118e-05 + 1.0900e-03 -8.2974e+00 8.9535e-01 1.0465e-01 9.0147e-01 9.8526e-02 6.3379e-04 8.4016e-05 6.4269e-04 7.5118e-05 + 1.1000e-03 -8.2974e+00 8.8305e-01 1.1695e-01 9.0147e-01 9.8526e-02 6.3212e-04 9.5682e-05 6.4269e-04 8.5118e-05 + 1.1100e-03 -8.2974e+00 8.7108e-01 1.2892e-01 9.0147e-01 9.8526e-02 6.3046e-04 1.0735e-04 6.4269e-04 9.5118e-05 + 1.1200e-03 -8.2974e+00 8.5943e-01 1.4057e-01 9.0147e-01 9.8526e-02 6.2879e-04 1.1901e-04 6.4269e-04 1.0512e-04 + 1.1300e-03 -8.2974e+00 8.4809e-01 1.5191e-01 9.0147e-01 9.8526e-02 6.2712e-04 1.3068e-04 6.4269e-04 1.1512e-04 + 1.1400e-03 -8.2974e+00 8.3704e-01 1.6296e-01 9.0147e-01 9.8526e-02 6.2546e-04 1.4235e-04 6.4269e-04 1.2512e-04 + 1.1500e-03 -8.2974e+00 8.2628e-01 1.7372e-01 9.0147e-01 9.8526e-02 6.2379e-04 1.5401e-04 6.4269e-04 1.3512e-04 + 1.1600e-03 -8.2974e+00 8.1579e-01 1.8421e-01 9.0147e-01 9.8526e-02 6.2212e-04 1.6568e-04 6.4269e-04 1.4512e-04 + 1.1700e-03 -8.2974e+00 8.0557e-01 1.9443e-01 9.0147e-01 9.8526e-02 6.2046e-04 1.7735e-04 6.4269e-04 1.5512e-04 + 1.1800e-03 -8.2974e+00 7.9560e-01 2.0440e-01 9.0147e-01 9.8526e-02 6.1879e-04 1.8901e-04 6.4269e-04 1.6512e-04 + 1.1900e-03 -8.2974e+00 7.8587e-01 2.1413e-01 9.0147e-01 9.8526e-02 6.1713e-04 2.0068e-04 6.4269e-04 1.7512e-04 + 1.2000e-03 -8.2974e+00 7.7637e-01 2.2363e-01 9.0147e-01 9.8526e-02 6.1546e-04 2.1234e-04 6.4269e-04 1.8512e-04 + 1.2100e-03 -8.2974e+00 7.6711e-01 2.3289e-01 9.0147e-01 9.8526e-02 6.1379e-04 2.2401e-04 6.4269e-04 1.9512e-04 + 1.2200e-03 -8.2974e+00 7.5806e-01 2.4194e-01 9.0147e-01 9.8526e-02 6.1213e-04 2.3568e-04 6.4269e-04 2.0512e-04 + 1.2300e-03 -8.2974e+00 7.4922e-01 2.5078e-01 9.0147e-01 9.8526e-02 6.1046e-04 2.4734e-04 6.4269e-04 2.1512e-04 + 1.2400e-03 -8.2974e+00 7.4059e-01 2.5941e-01 9.0147e-01 9.8526e-02 6.0880e-04 2.5901e-04 6.4269e-04 2.2512e-04 + 1.2500e-03 -8.2974e+00 7.3215e-01 2.6785e-01 9.0147e-01 9.8526e-02 6.0713e-04 2.7068e-04 6.4269e-04 2.3512e-04 + 1.2600e-03 -8.2974e+00 7.2390e-01 2.7610e-01 9.0147e-01 9.8526e-02 6.0546e-04 2.8234e-04 6.4269e-04 2.4512e-04 + 1.2700e-03 -8.2974e+00 7.1584e-01 2.8416e-01 9.0147e-01 9.8526e-02 6.0380e-04 2.9401e-04 6.4269e-04 2.5512e-04 + 1.2800e-03 -8.2974e+00 7.0796e-01 2.9204e-01 9.0147e-01 9.8526e-02 6.0213e-04 3.0567e-04 6.4269e-04 2.6512e-04 + 1.2900e-03 -8.2974e+00 7.0024e-01 2.9976e-01 9.0147e-01 9.8526e-02 6.0046e-04 3.1734e-04 6.4269e-04 2.7512e-04 + 1.3000e-03 -8.2974e+00 6.9270e-01 3.0730e-01 9.0147e-01 9.8526e-02 5.9880e-04 3.2901e-04 6.4269e-04 2.8512e-04 + 1.3100e-03 -8.2974e+00 6.8531e-01 3.1469e-01 9.0147e-01 9.8526e-02 5.9713e-04 3.4067e-04 6.4269e-04 2.9512e-04 + 1.3200e-03 -8.2974e+00 6.7808e-01 3.2192e-01 9.0147e-01 9.8526e-02 5.9547e-04 3.5234e-04 6.4269e-04 3.0512e-04 + 1.3300e-03 -8.2974e+00 6.7100e-01 3.2900e-01 9.0147e-01 9.8526e-02 5.9380e-04 3.6400e-04 6.4269e-04 3.1512e-04 + 1.3400e-03 -8.2974e+00 6.6407e-01 3.3593e-01 9.0147e-01 9.8526e-02 5.9213e-04 3.7567e-04 6.4269e-04 3.2512e-04 + 1.3500e-03 -8.2974e+00 6.5727e-01 3.4273e-01 9.0147e-01 9.8526e-02 5.9047e-04 3.8734e-04 6.4269e-04 3.3512e-04 + 1.3600e-03 -8.2974e+00 6.5062e-01 3.4938e-01 9.0147e-01 9.8526e-02 5.8880e-04 3.9900e-04 6.4269e-04 3.4512e-04 + 1.3700e-03 -8.2974e+00 6.4410e-01 3.5590e-01 9.0147e-01 9.8526e-02 5.8713e-04 4.1067e-04 6.4269e-04 3.5512e-04 + 1.3800e-03 -8.2974e+00 6.3771e-01 3.6229e-01 9.0147e-01 9.8526e-02 5.8547e-04 4.2234e-04 6.4269e-04 3.6512e-04 + 1.3900e-03 -8.2974e+00 6.3144e-01 3.6856e-01 9.0147e-01 9.8526e-02 5.8380e-04 4.3400e-04 6.4269e-04 3.7512e-04 + 1.4000e-03 -8.2974e+00 6.2530e-01 3.7470e-01 9.0147e-01 9.8526e-02 5.8214e-04 4.4567e-04 6.4269e-04 3.8512e-04 + 1.4100e-03 -8.2974e+00 6.1927e-01 3.8073e-01 9.0147e-01 9.8526e-02 5.8047e-04 4.5733e-04 6.4269e-04 3.9512e-04 + 1.4200e-03 -8.2974e+00 6.1336e-01 3.8664e-01 9.0147e-01 9.8526e-02 5.7880e-04 4.6900e-04 6.4269e-04 4.0512e-04 + 1.4300e-03 -8.2974e+00 6.0757e-01 3.9243e-01 9.0147e-01 9.8526e-02 5.7714e-04 4.8067e-04 6.4269e-04 4.1512e-04 + 1.4400e-03 -8.2974e+00 6.0188e-01 3.9812e-01 9.0147e-01 9.8526e-02 5.7547e-04 4.9233e-04 6.4269e-04 4.2512e-04 + 1.4500e-03 -8.2974e+00 5.9629e-01 4.0371e-01 9.0147e-01 9.8526e-02 5.7380e-04 5.0400e-04 6.4269e-04 4.3512e-04 + 1.4600e-03 -8.2974e+00 5.9081e-01 4.0919e-01 9.0147e-01 9.8526e-02 5.7214e-04 5.1567e-04 6.4269e-04 4.4512e-04 + 1.4700e-03 -8.2974e+00 5.8543e-01 4.1457e-01 9.0147e-01 9.8526e-02 5.7047e-04 5.2733e-04 6.4269e-04 4.5512e-04 + 1.4800e-03 -8.2974e+00 5.8014e-01 4.1986e-01 9.0147e-01 9.8526e-02 5.6881e-04 5.3900e-04 6.4269e-04 4.6512e-04 + 1.4900e-03 -8.2974e+00 5.7495e-01 4.2505e-01 9.0147e-01 9.8526e-02 5.6714e-04 5.5066e-04 6.4269e-04 4.7512e-04 + 1.5000e-03 -8.2974e+00 5.6986e-01 4.3014e-01 9.0147e-01 9.8526e-02 5.6547e-04 5.6233e-04 6.4269e-04 4.8512e-04 + 1.5100e-03 -8.2974e+00 5.6485e-01 4.3515e-01 9.0147e-01 9.8526e-02 5.6381e-04 5.7400e-04 6.4269e-04 4.9512e-04 + 1.5200e-03 -8.2974e+00 5.5993e-01 4.4007e-01 9.0147e-01 9.8526e-02 5.6214e-04 5.8566e-04 6.4269e-04 5.0512e-04 + 1.5300e-03 -8.2974e+00 5.5509e-01 4.4491e-01 9.0147e-01 9.8526e-02 5.6048e-04 5.9733e-04 6.4269e-04 5.1512e-04 + 1.5400e-03 -8.2974e+00 5.5034e-01 4.4966e-01 9.0147e-01 9.8526e-02 5.5881e-04 6.0899e-04 6.4269e-04 5.2512e-04 + 1.5500e-03 -8.2974e+00 5.4566e-01 4.5434e-01 9.0147e-01 9.8526e-02 5.5714e-04 6.2066e-04 6.4269e-04 5.3512e-04 + 1.5600e-03 -8.2974e+00 5.4107e-01 4.5893e-01 9.0147e-01 9.8526e-02 5.5548e-04 6.3233e-04 6.4269e-04 5.4512e-04 + 1.5700e-03 -8.2974e+00 5.3655e-01 4.6345e-01 9.0147e-01 9.8526e-02 5.5381e-04 6.4399e-04 6.4269e-04 5.5512e-04 + 1.5800e-03 -8.2974e+00 5.3211e-01 4.6789e-01 9.0147e-01 9.8526e-02 5.5214e-04 6.5566e-04 6.4269e-04 5.6512e-04 + 1.5900e-03 -8.2974e+00 5.2774e-01 4.7226e-01 9.0147e-01 9.8526e-02 5.5048e-04 6.6733e-04 6.4269e-04 5.7512e-04 + 1.6000e-03 -8.2974e+00 5.2344e-01 4.7656e-01 9.0147e-01 9.8526e-02 5.4881e-04 6.7899e-04 6.4269e-04 5.8512e-04 + 1.6100e-03 -8.2974e+00 5.1921e-01 4.8079e-01 9.0147e-01 9.8526e-02 5.4715e-04 6.9066e-04 6.4269e-04 5.9512e-04 + 1.6200e-03 -8.2974e+00 5.1505e-01 4.8495e-01 9.0147e-01 9.8526e-02 5.4548e-04 7.0232e-04 6.4269e-04 6.0512e-04 + 1.6300e-03 -8.2974e+00 5.1096e-01 4.8904e-01 9.0147e-01 9.8526e-02 5.4381e-04 7.1399e-04 6.4269e-04 6.1512e-04 + 1.6400e-03 -8.2974e+00 5.0693e-01 4.9307e-01 9.0147e-01 9.8526e-02 5.4215e-04 7.2566e-04 6.4269e-04 6.2512e-04 + 1.6500e-03 -8.2974e+00 5.0296e-01 4.9704e-01 9.0147e-01 9.8526e-02 5.4048e-04 7.3732e-04 6.4269e-04 6.3512e-04 + 1.6600e-03 -8.2974e+00 4.9906e-01 5.0094e-01 9.0147e-01 9.8526e-02 5.3881e-04 7.4899e-04 6.4269e-04 6.4512e-04 + 1.6700e-03 -8.2974e+00 4.9521e-01 5.0479e-01 9.0147e-01 9.8526e-02 5.3715e-04 7.6066e-04 6.4269e-04 6.5512e-04 + 1.6800e-03 -8.2974e+00 4.9142e-01 5.0858e-01 9.0147e-01 9.8526e-02 5.3548e-04 7.7232e-04 6.4269e-04 6.6512e-04 + 1.6900e-03 -8.2974e+00 4.8769e-01 5.1231e-01 9.0147e-01 9.8526e-02 5.3382e-04 7.8399e-04 6.4269e-04 6.7512e-04 + 1.7000e-03 -8.2974e+00 4.8402e-01 5.1598e-01 9.0147e-01 9.8526e-02 5.3215e-04 7.9565e-04 6.4269e-04 6.8512e-04 + 1.7100e-03 -8.2974e+00 4.8040e-01 5.1960e-01 9.0147e-01 9.8526e-02 5.3048e-04 8.0732e-04 6.4269e-04 6.9512e-04 + 1.7200e-03 -8.2974e+00 4.7684e-01 5.2316e-01 9.0147e-01 9.8526e-02 5.2882e-04 8.1899e-04 6.4269e-04 7.0512e-04 + 1.7300e-03 -8.2974e+00 4.7333e-01 5.2667e-01 9.0147e-01 9.8526e-02 5.2715e-04 8.3065e-04 6.4269e-04 7.1512e-04 + 1.7400e-03 -8.2974e+00 4.6987e-01 5.3013e-01 9.0147e-01 9.8526e-02 5.2549e-04 8.4232e-04 6.4269e-04 7.2512e-04 + 1.7500e-03 -8.2974e+00 4.6646e-01 5.3354e-01 9.0147e-01 9.8526e-02 5.2382e-04 8.5399e-04 6.4269e-04 7.3512e-04 + 1.7600e-03 -8.2974e+00 4.6310e-01 5.3690e-01 9.0147e-01 9.8526e-02 5.2215e-04 8.6565e-04 6.4269e-04 7.4512e-04 + 1.7700e-03 -8.2974e+00 4.5978e-01 5.4022e-01 9.0147e-01 9.8526e-02 5.2049e-04 8.7732e-04 6.4269e-04 7.5512e-04 + 1.7800e-03 -8.2974e+00 4.5652e-01 5.4348e-01 9.0147e-01 9.8526e-02 5.1882e-04 8.8898e-04 6.4269e-04 7.6512e-04 + 1.7900e-03 -8.2974e+00 4.5330e-01 5.4670e-01 9.0147e-01 9.8526e-02 5.1715e-04 9.0065e-04 6.4269e-04 7.7512e-04 + 1.8000e-03 -8.2974e+00 4.5012e-01 5.4988e-01 9.0147e-01 9.8526e-02 5.1549e-04 9.1232e-04 6.4269e-04 7.8512e-04 + 1.8100e-03 -8.2974e+00 4.4699e-01 5.5301e-01 9.0147e-01 9.8526e-02 5.1382e-04 9.2398e-04 6.4269e-04 7.9512e-04 + 1.8200e-03 -8.2974e+00 4.4390e-01 5.5610e-01 9.0147e-01 9.8526e-02 5.1216e-04 9.3565e-04 6.4269e-04 8.0512e-04 + 1.8300e-03 -8.2974e+00 4.4086e-01 5.5914e-01 9.0147e-01 9.8526e-02 5.1049e-04 9.4731e-04 6.4269e-04 8.1512e-04 + 1.8400e-03 -8.2974e+00 4.3786e-01 5.6214e-01 9.0147e-01 9.8526e-02 5.0882e-04 9.5898e-04 6.4269e-04 8.2512e-04 + 1.8500e-03 -8.2974e+00 4.3489e-01 5.6511e-01 9.0147e-01 9.8526e-02 5.0716e-04 9.7065e-04 6.4269e-04 8.3512e-04 + 1.8600e-03 -8.2974e+00 4.3197e-01 5.6803e-01 9.0147e-01 9.8526e-02 5.0549e-04 9.8231e-04 6.4269e-04 8.4512e-04 + 1.8700e-03 -8.2974e+00 4.2909e-01 5.7091e-01 9.0147e-01 9.8526e-02 5.0382e-04 9.9398e-04 6.4269e-04 8.5512e-04 + 1.8800e-03 -8.2974e+00 4.2624e-01 5.7376e-01 9.0147e-01 9.8526e-02 5.0216e-04 1.0056e-03 6.4269e-04 8.6512e-04 + 1.8900e-03 -8.2974e+00 4.2343e-01 5.7657e-01 9.0147e-01 9.8526e-02 5.0049e-04 1.0173e-03 6.4269e-04 8.7512e-04 + 1.9000e-03 -8.2974e+00 4.2066e-01 5.7934e-01 9.0147e-01 9.8526e-02 4.9883e-04 1.0290e-03 6.4269e-04 8.8512e-04 + 1.9100e-03 -8.2974e+00 4.1792e-01 5.8208e-01 9.0147e-01 9.8526e-02 4.9716e-04 1.0406e-03 6.4269e-04 8.9512e-04 + 1.9200e-03 -8.2974e+00 4.1522e-01 5.8478e-01 9.0147e-01 9.8526e-02 4.9549e-04 1.0523e-03 6.4269e-04 9.0512e-04 + 1.9300e-03 -8.2974e+00 4.1256e-01 5.8744e-01 9.0147e-01 9.8526e-02 4.9383e-04 1.0640e-03 6.4269e-04 9.1512e-04 + 1.9400e-03 -8.2974e+00 4.0993e-01 5.9007e-01 9.0147e-01 9.8526e-02 4.9216e-04 1.0756e-03 6.4269e-04 9.2512e-04 + 1.9500e-03 -8.2974e+00 4.0733e-01 5.9267e-01 9.0147e-01 9.8526e-02 4.9049e-04 1.0873e-03 6.4269e-04 9.3512e-04 + 1.9600e-03 -8.2974e+00 4.0476e-01 5.9524e-01 9.0147e-01 9.8526e-02 4.8883e-04 1.0990e-03 6.4269e-04 9.4512e-04 + 1.9700e-03 -8.2974e+00 4.0223e-01 5.9777e-01 9.0147e-01 9.8526e-02 4.8716e-04 1.1106e-03 6.4269e-04 9.5512e-04 + 1.9800e-03 -8.2974e+00 3.9973e-01 6.0027e-01 9.0147e-01 9.8526e-02 4.8550e-04 1.1223e-03 6.4269e-04 9.6512e-04 + 1.9900e-03 -8.2974e+00 3.9726e-01 6.0274e-01 9.0147e-01 9.8526e-02 4.8383e-04 1.1340e-03 6.4269e-04 9.7512e-04 + 2.0000e-03 -8.2974e+00 3.9482e-01 6.0518e-01 9.0147e-01 9.8526e-02 4.8216e-04 1.1456e-03 6.4269e-04 9.8512e-04 + 2.0100e-03 -8.2974e+00 3.9241e-01 6.0759e-01 9.0147e-01 9.8526e-02 4.8050e-04 1.1573e-03 6.4269e-04 9.9512e-04 + 2.0200e-03 -8.2974e+00 3.9003e-01 6.0997e-01 9.0147e-01 9.8526e-02 4.7883e-04 1.1690e-03 6.4269e-04 1.0051e-03 + 2.0300e-03 -8.2974e+00 3.8767e-01 6.1233e-01 9.0147e-01 9.8526e-02 4.7717e-04 1.1806e-03 6.4269e-04 1.0151e-03 + 2.0400e-03 -8.2974e+00 3.8535e-01 6.1465e-01 9.0147e-01 9.8526e-02 4.7550e-04 1.1923e-03 6.4269e-04 1.0251e-03 + 2.0500e-03 -8.2974e+00 3.8305e-01 6.1695e-01 9.0147e-01 9.8526e-02 4.7383e-04 1.2040e-03 6.4269e-04 1.0351e-03 + 2.0600e-03 -8.2974e+00 3.8078e-01 6.1922e-01 9.0147e-01 9.8526e-02 4.7217e-04 1.2156e-03 6.4269e-04 1.0451e-03 + 2.0700e-03 -8.2974e+00 3.7854e-01 6.2146e-01 9.0147e-01 9.8526e-02 4.7050e-04 1.2273e-03 6.4269e-04 1.0551e-03 + 2.0800e-03 -8.2974e+00 3.7632e-01 6.2368e-01 9.0147e-01 9.8526e-02 4.6883e-04 1.2390e-03 6.4269e-04 1.0651e-03 + 2.0900e-03 -8.2974e+00 3.7413e-01 6.2587e-01 9.0147e-01 9.8526e-02 4.6717e-04 1.2506e-03 6.4269e-04 1.0751e-03 + 2.1000e-03 -8.2974e+00 3.7197e-01 6.2803e-01 9.0147e-01 9.8526e-02 4.6550e-04 1.2623e-03 6.4269e-04 1.0851e-03 + 2.1100e-03 -8.2974e+00 3.6983e-01 6.3017e-01 9.0147e-01 9.8526e-02 4.6384e-04 1.2740e-03 6.4269e-04 1.0951e-03 + 2.1200e-03 -8.2974e+00 3.6771e-01 6.3229e-01 9.0147e-01 9.8526e-02 4.6217e-04 1.2856e-03 6.4269e-04 1.1051e-03 + 2.1300e-03 -8.2974e+00 3.6562e-01 6.3438e-01 9.0147e-01 9.8526e-02 4.6050e-04 1.2973e-03 6.4269e-04 1.1151e-03 + 2.1400e-03 -8.2974e+00 3.6355e-01 6.3645e-01 9.0147e-01 9.8526e-02 4.5884e-04 1.3090e-03 6.4269e-04 1.1251e-03 + 2.1500e-03 -8.2974e+00 3.6151e-01 6.3849e-01 9.0147e-01 9.8526e-02 4.5717e-04 1.3206e-03 6.4269e-04 1.1351e-03 + 2.1600e-03 -8.2974e+00 3.5948e-01 6.4052e-01 9.0147e-01 9.8526e-02 4.5550e-04 1.3323e-03 6.4269e-04 1.1451e-03 + 2.1700e-03 -8.2974e+00 3.5748e-01 6.4252e-01 9.0147e-01 9.8526e-02 4.5384e-04 1.3440e-03 6.4269e-04 1.1551e-03 + 2.1800e-03 -8.2974e+00 3.5551e-01 6.4449e-01 9.0147e-01 9.8526e-02 4.5217e-04 1.3556e-03 6.4269e-04 1.1651e-03 + 2.1900e-03 -8.2974e+00 3.5355e-01 6.4645e-01 9.0147e-01 9.8526e-02 4.5051e-04 1.3673e-03 6.4269e-04 1.1751e-03 + 2.2000e-03 -8.2974e+00 3.5162e-01 6.4838e-01 9.0147e-01 9.8526e-02 4.4884e-04 1.3790e-03 6.4269e-04 1.1851e-03 + 2.2100e-03 -8.2974e+00 3.4970e-01 6.5030e-01 9.0147e-01 9.8526e-02 4.4717e-04 1.3906e-03 6.4269e-04 1.1951e-03 + 2.2200e-03 -8.2974e+00 3.4781e-01 6.5219e-01 9.0147e-01 9.8526e-02 4.4551e-04 1.4023e-03 6.4269e-04 1.2051e-03 + 2.2300e-03 -8.2974e+00 3.4594e-01 6.5406e-01 9.0147e-01 9.8526e-02 4.4384e-04 1.4140e-03 6.4269e-04 1.2151e-03 + 2.2400e-03 -8.2974e+00 3.4409e-01 6.5591e-01 9.0147e-01 9.8526e-02 4.4217e-04 1.4256e-03 6.4269e-04 1.2251e-03 + 2.2500e-03 -8.2974e+00 3.4225e-01 6.5775e-01 9.0147e-01 9.8526e-02 4.4051e-04 1.4373e-03 6.4269e-04 1.2351e-03 + 2.2600e-03 -8.2974e+00 3.4044e-01 6.5956e-01 9.0147e-01 9.8526e-02 4.3884e-04 1.4490e-03 6.4269e-04 1.2451e-03 + 2.2700e-03 -8.2974e+00 3.3865e-01 6.6135e-01 9.0147e-01 9.8526e-02 4.3718e-04 1.4606e-03 6.4269e-04 1.2551e-03 + 2.2800e-03 -8.2974e+00 3.3687e-01 6.6313e-01 9.0147e-01 9.8526e-02 4.3551e-04 1.4723e-03 6.4269e-04 1.2651e-03 + 2.2900e-03 -8.2974e+00 3.3512e-01 6.6488e-01 9.0147e-01 9.8526e-02 4.3384e-04 1.4840e-03 6.4269e-04 1.2751e-03 + 2.3000e-03 -8.2974e+00 3.3338e-01 6.6662e-01 9.0147e-01 9.8526e-02 4.3218e-04 1.4956e-03 6.4269e-04 1.2851e-03 + 2.3100e-03 -8.2974e+00 3.3166e-01 6.6834e-01 9.0147e-01 9.8526e-02 4.3051e-04 1.5073e-03 6.4269e-04 1.2951e-03 + 2.3200e-03 -8.2974e+00 3.2995e-01 6.7005e-01 9.0147e-01 9.8526e-02 4.2885e-04 1.5190e-03 6.4269e-04 1.3051e-03 + 2.3300e-03 -8.2974e+00 3.2827e-01 6.7173e-01 9.0147e-01 9.8526e-02 4.2718e-04 1.5306e-03 6.4269e-04 1.3151e-03 + 2.3400e-03 -8.2974e+00 3.2660e-01 6.7340e-01 9.0147e-01 9.8526e-02 4.2551e-04 1.5423e-03 6.4269e-04 1.3251e-03 + 2.3500e-03 -8.2974e+00 3.2495e-01 6.7505e-01 9.0147e-01 9.8526e-02 4.2385e-04 1.5540e-03 6.4269e-04 1.3351e-03 + 2.3600e-03 -8.2974e+00 3.2331e-01 6.7669e-01 9.0147e-01 9.8526e-02 4.2218e-04 1.5656e-03 6.4269e-04 1.3451e-03 + 2.3700e-03 -8.2974e+00 3.2170e-01 6.7830e-01 9.0147e-01 9.8526e-02 4.2051e-04 1.5773e-03 6.4269e-04 1.3551e-03 + 2.3800e-03 -8.2974e+00 3.2009e-01 6.7991e-01 9.0147e-01 9.8526e-02 4.1885e-04 1.5890e-03 6.4269e-04 1.3651e-03 + 2.3900e-03 -8.2974e+00 3.1851e-01 6.8149e-01 9.0147e-01 9.8526e-02 4.1718e-04 1.6006e-03 6.4269e-04 1.3751e-03 + 2.4000e-03 -8.2974e+00 3.1694e-01 6.8306e-01 9.0147e-01 9.8526e-02 4.1552e-04 1.6123e-03 6.4269e-04 1.3851e-03 + 2.4100e-03 -8.2974e+00 3.1538e-01 6.8462e-01 9.0147e-01 9.8526e-02 4.1385e-04 1.6240e-03 6.4269e-04 1.3951e-03 + 2.4200e-03 -8.2974e+00 3.1384e-01 6.8616e-01 9.0147e-01 9.8526e-02 4.1218e-04 1.6356e-03 6.4269e-04 1.4051e-03 + 2.4300e-03 -8.2974e+00 3.1232e-01 6.8768e-01 9.0147e-01 9.8526e-02 4.1052e-04 1.6473e-03 6.4269e-04 1.4151e-03 + 2.4400e-03 -8.2974e+00 3.1081e-01 6.8919e-01 9.0147e-01 9.8526e-02 4.0885e-04 1.6590e-03 6.4269e-04 1.4251e-03 + 2.4500e-03 -8.2974e+00 3.0931e-01 6.9069e-01 9.0147e-01 9.8526e-02 4.0718e-04 1.6706e-03 6.4269e-04 1.4351e-03 + 2.4600e-03 -8.2974e+00 3.0783e-01 6.9217e-01 9.0147e-01 9.8526e-02 4.0552e-04 1.6823e-03 6.4269e-04 1.4451e-03 + 2.4700e-03 -8.2974e+00 3.0636e-01 6.9364e-01 9.0147e-01 9.8526e-02 4.0385e-04 1.6940e-03 6.4269e-04 1.4551e-03 + 2.4800e-03 -8.2974e+00 3.0491e-01 6.9509e-01 9.0147e-01 9.8526e-02 4.0219e-04 1.7056e-03 6.4269e-04 1.4651e-03 + 2.4900e-03 -8.2974e+00 3.0347e-01 6.9653e-01 9.0147e-01 9.8526e-02 4.0052e-04 1.7173e-03 6.4269e-04 1.4751e-03 + 2.5000e-03 -8.2974e+00 3.0204e-01 6.9796e-01 9.0147e-01 9.8526e-02 3.9885e-04 1.7290e-03 6.4269e-04 1.4851e-03 + 2.5100e-03 -8.2974e+00 3.0063e-01 6.9937e-01 9.0147e-01 9.8526e-02 3.9719e-04 1.7406e-03 6.4269e-04 1.4951e-03 + 2.5200e-03 -8.2974e+00 2.9923e-01 7.0077e-01 9.0147e-01 9.8526e-02 3.9552e-04 1.7523e-03 6.4269e-04 1.5051e-03 + 2.5300e-03 -8.2974e+00 2.9784e-01 7.0216e-01 9.0147e-01 9.8526e-02 3.9386e-04 1.7639e-03 6.4269e-04 1.5151e-03 + 2.5400e-03 -8.2974e+00 2.9647e-01 7.0353e-01 9.0147e-01 9.8526e-02 3.9219e-04 1.7756e-03 6.4269e-04 1.5251e-03 + 2.5500e-03 -8.2974e+00 2.9511e-01 7.0489e-01 9.0147e-01 9.8526e-02 3.9052e-04 1.7873e-03 6.4269e-04 1.5351e-03 + 2.5600e-03 -8.2974e+00 2.9376e-01 7.0624e-01 9.0147e-01 9.8526e-02 3.8886e-04 1.7989e-03 6.4269e-04 1.5451e-03 + 2.5700e-03 -8.2974e+00 2.9242e-01 7.0758e-01 9.0147e-01 9.8526e-02 3.8719e-04 1.8106e-03 6.4269e-04 1.5551e-03 + 2.5800e-03 -8.2974e+00 2.9110e-01 7.0890e-01 9.0147e-01 9.8526e-02 3.8552e-04 1.8223e-03 6.4269e-04 1.5651e-03 + 2.5900e-03 -8.2974e+00 2.8978e-01 7.1022e-01 9.0147e-01 9.8526e-02 3.8386e-04 1.8339e-03 6.4269e-04 1.5751e-03 + 2.6000e-03 -8.2974e+00 2.8848e-01 7.1152e-01 9.0147e-01 9.8526e-02 3.8219e-04 1.8456e-03 6.4269e-04 1.5851e-03 + 2.6100e-03 -8.2974e+00 2.8719e-01 7.1281e-01 9.0147e-01 9.8526e-02 3.8053e-04 1.8573e-03 6.4269e-04 1.5951e-03 + 2.6200e-03 -8.2974e+00 2.8592e-01 7.1408e-01 9.0147e-01 9.8526e-02 3.7886e-04 1.8689e-03 6.4269e-04 1.6051e-03 + 2.6300e-03 -8.2974e+00 2.8465e-01 7.1535e-01 9.0147e-01 9.8526e-02 3.7719e-04 1.8806e-03 6.4269e-04 1.6151e-03 + 2.6400e-03 -8.2974e+00 2.8340e-01 7.1660e-01 9.0147e-01 9.8526e-02 3.7553e-04 1.8923e-03 6.4269e-04 1.6251e-03 + 2.6500e-03 -8.2974e+00 2.8215e-01 7.1785e-01 9.0147e-01 9.8526e-02 3.7386e-04 1.9039e-03 6.4269e-04 1.6351e-03 + 2.6600e-03 -8.2974e+00 2.8092e-01 7.1908e-01 9.0147e-01 9.8526e-02 3.7219e-04 1.9156e-03 6.4269e-04 1.6451e-03 + 2.6700e-03 -8.2974e+00 2.7970e-01 7.2030e-01 9.0147e-01 9.8526e-02 3.7053e-04 1.9273e-03 6.4269e-04 1.6551e-03 + 2.6800e-03 -8.2974e+00 2.7848e-01 7.2152e-01 9.0147e-01 9.8526e-02 3.6886e-04 1.9389e-03 6.4269e-04 1.6651e-03 + 2.6900e-03 -8.2974e+00 2.7728e-01 7.2272e-01 9.0147e-01 9.8526e-02 3.6720e-04 1.9506e-03 6.4269e-04 1.6751e-03 + 2.7000e-03 -8.2974e+00 2.7609e-01 7.2391e-01 9.0147e-01 9.8526e-02 3.6553e-04 1.9623e-03 6.4269e-04 1.6851e-03 + 2.7100e-03 -8.2974e+00 2.7491e-01 7.2509e-01 9.0147e-01 9.8526e-02 3.6386e-04 1.9739e-03 6.4269e-04 1.6951e-03 + 2.7200e-03 -8.2974e+00 2.7374e-01 7.2626e-01 9.0147e-01 9.8526e-02 3.6220e-04 1.9856e-03 6.4269e-04 1.7051e-03 + 2.7300e-03 -8.2974e+00 2.7258e-01 7.2742e-01 9.0147e-01 9.8526e-02 3.6053e-04 1.9973e-03 6.4269e-04 1.7151e-03 + 2.7400e-03 -8.2974e+00 2.7143e-01 7.2857e-01 9.0147e-01 9.8526e-02 3.5886e-04 2.0089e-03 6.4269e-04 1.7251e-03 + 2.7500e-03 -8.2974e+00 2.7029e-01 7.2971e-01 9.0147e-01 9.8526e-02 3.5720e-04 2.0206e-03 6.4269e-04 1.7351e-03 + 2.7600e-03 -8.2974e+00 2.6915e-01 7.3085e-01 9.0147e-01 9.8526e-02 3.5553e-04 2.0323e-03 6.4269e-04 1.7451e-03 + 2.7700e-03 -8.2974e+00 2.6803e-01 7.3197e-01 9.0147e-01 9.8526e-02 3.5387e-04 2.0439e-03 6.4269e-04 1.7551e-03 + 2.7800e-03 -8.2974e+00 2.6692e-01 7.3308e-01 9.0147e-01 9.8526e-02 3.5220e-04 2.0556e-03 6.4269e-04 1.7651e-03 + 2.7900e-03 -8.2974e+00 2.6581e-01 7.3419e-01 9.0147e-01 9.8526e-02 3.5053e-04 2.0673e-03 6.4269e-04 1.7751e-03 + 2.8000e-03 -8.2974e+00 2.6472e-01 7.3528e-01 9.0147e-01 9.8526e-02 3.4887e-04 2.0789e-03 6.4269e-04 1.7851e-03 + 2.8100e-03 -8.2974e+00 2.6363e-01 7.3637e-01 9.0147e-01 9.8526e-02 3.4720e-04 2.0906e-03 6.4269e-04 1.7951e-03 + 2.8200e-03 -8.2974e+00 2.6256e-01 7.3744e-01 9.0147e-01 9.8526e-02 3.4554e-04 2.1023e-03 6.4269e-04 1.8051e-03 + 2.8300e-03 -8.2974e+00 2.6149e-01 7.3851e-01 9.0147e-01 9.8526e-02 3.4387e-04 2.1139e-03 6.4269e-04 1.8151e-03 + 2.8400e-03 -8.2974e+00 2.6043e-01 7.3957e-01 9.0147e-01 9.8526e-02 3.4220e-04 2.1256e-03 6.4269e-04 1.8251e-03 + 2.8500e-03 -8.2974e+00 2.5938e-01 7.4062e-01 9.0147e-01 9.8526e-02 3.4054e-04 2.1373e-03 6.4269e-04 1.8351e-03 + 2.8600e-03 -8.2974e+00 2.5833e-01 7.4167e-01 9.0147e-01 9.8526e-02 3.3887e-04 2.1489e-03 6.4269e-04 1.8451e-03 + 2.8700e-03 -8.2974e+00 2.5730e-01 7.4270e-01 9.0147e-01 9.8526e-02 3.3720e-04 2.1606e-03 6.4269e-04 1.8551e-03 + 2.8800e-03 -8.2974e+00 2.5627e-01 7.4373e-01 9.0147e-01 9.8526e-02 3.3554e-04 2.1723e-03 6.4269e-04 1.8651e-03 + 2.8900e-03 -8.2974e+00 2.5526e-01 7.4474e-01 9.0147e-01 9.8526e-02 3.3387e-04 2.1839e-03 6.4269e-04 1.8751e-03 + 2.9000e-03 -8.2974e+00 2.5425e-01 7.4575e-01 9.0147e-01 9.8526e-02 3.3221e-04 2.1956e-03 6.4269e-04 1.8851e-03 + 2.9100e-03 -8.2974e+00 2.5324e-01 7.4676e-01 9.0147e-01 9.8526e-02 3.3054e-04 2.2073e-03 6.4269e-04 1.8951e-03 + 2.9200e-03 -8.2974e+00 2.5225e-01 7.4775e-01 9.0147e-01 9.8526e-02 3.2887e-04 2.2189e-03 6.4269e-04 1.9051e-03 + 2.9300e-03 -8.2974e+00 2.5126e-01 7.4874e-01 9.0147e-01 9.8526e-02 3.2721e-04 2.2306e-03 6.4269e-04 1.9151e-03 + 2.9400e-03 -8.2974e+00 2.5029e-01 7.4971e-01 9.0147e-01 9.8526e-02 3.2554e-04 2.2423e-03 6.4269e-04 1.9251e-03 + 2.9500e-03 -8.2974e+00 2.4932e-01 7.5068e-01 9.0147e-01 9.8526e-02 3.2387e-04 2.2539e-03 6.4269e-04 1.9351e-03 + 2.9600e-03 -8.2974e+00 2.4835e-01 7.5165e-01 9.0147e-01 9.8526e-02 3.2221e-04 2.2656e-03 6.4269e-04 1.9451e-03 + 2.9700e-03 -8.2974e+00 2.4740e-01 7.5260e-01 9.0147e-01 9.8526e-02 3.2054e-04 2.2773e-03 6.4269e-04 1.9551e-03 + 2.9800e-03 -8.2974e+00 2.4645e-01 7.5355e-01 9.0147e-01 9.8526e-02 3.1888e-04 2.2889e-03 6.4269e-04 1.9651e-03 + 2.9900e-03 -8.2974e+00 2.4551e-01 7.5449e-01 9.0147e-01 9.8526e-02 3.1721e-04 2.3006e-03 6.4269e-04 1.9751e-03 + 3.0000e-03 -8.2974e+00 2.4457e-01 7.5543e-01 9.0147e-01 9.8526e-02 3.1554e-04 2.3123e-03 6.4269e-04 1.9851e-03 + 3.0100e-03 -8.2974e+00 2.4364e-01 7.5636e-01 9.0147e-01 9.8526e-02 3.1388e-04 2.3239e-03 6.4269e-04 1.9951e-03 + 3.0200e-03 -8.2974e+00 2.4272e-01 7.5728e-01 9.0147e-01 9.8526e-02 3.1221e-04 2.3356e-03 6.4269e-04 2.0051e-03 + 3.0300e-03 -8.2974e+00 2.4181e-01 7.5819e-01 9.0147e-01 9.8526e-02 3.1054e-04 2.3473e-03 6.4269e-04 2.0151e-03 + 3.0400e-03 -8.2974e+00 2.4090e-01 7.5910e-01 9.0147e-01 9.8526e-02 3.0888e-04 2.3589e-03 6.4269e-04 2.0251e-03 + 3.0500e-03 -8.2974e+00 2.4000e-01 7.6000e-01 9.0147e-01 9.8526e-02 3.0721e-04 2.3706e-03 6.4269e-04 2.0351e-03 + 3.0600e-03 -8.2974e+00 2.3911e-01 7.6089e-01 9.0147e-01 9.8526e-02 3.0555e-04 2.3823e-03 6.4269e-04 2.0451e-03 + 3.0700e-03 -8.2974e+00 2.3823e-01 7.6177e-01 9.0147e-01 9.8526e-02 3.0388e-04 2.3939e-03 6.4269e-04 2.0551e-03 + 3.0800e-03 -8.2974e+00 2.3735e-01 7.6265e-01 9.0147e-01 9.8526e-02 3.0221e-04 2.4056e-03 6.4269e-04 2.0651e-03 + 3.0900e-03 -8.2974e+00 2.3647e-01 7.6353e-01 9.0147e-01 9.8526e-02 3.0055e-04 2.4173e-03 6.4269e-04 2.0751e-03 + 3.1000e-03 -8.2974e+00 2.3561e-01 7.6439e-01 9.0147e-01 9.8526e-02 2.9888e-04 2.4289e-03 6.4269e-04 2.0851e-03 + 3.1100e-03 -8.2974e+00 2.3474e-01 7.6526e-01 9.0147e-01 9.8526e-02 2.9722e-04 2.4406e-03 6.4269e-04 2.0951e-03 + 3.1200e-03 -8.2974e+00 2.3389e-01 7.6611e-01 9.0147e-01 9.8526e-02 2.9555e-04 2.4523e-03 6.4269e-04 2.1051e-03 + 3.1300e-03 -8.2974e+00 2.3304e-01 7.6696e-01 9.0147e-01 9.8526e-02 2.9388e-04 2.4639e-03 6.4269e-04 2.1151e-03 + 3.1400e-03 -8.2974e+00 2.3220e-01 7.6780e-01 9.0147e-01 9.8526e-02 2.9222e-04 2.4756e-03 6.4269e-04 2.1251e-03 + 3.1500e-03 -8.2974e+00 2.3136e-01 7.6864e-01 9.0147e-01 9.8526e-02 2.9055e-04 2.4873e-03 6.4269e-04 2.1351e-03 + 3.1600e-03 -8.2974e+00 2.3053e-01 7.6947e-01 9.0147e-01 9.8526e-02 2.8888e-04 2.4989e-03 6.4269e-04 2.1451e-03 + 3.1700e-03 -8.2974e+00 2.2971e-01 7.7029e-01 9.0147e-01 9.8526e-02 2.8722e-04 2.5106e-03 6.4269e-04 2.1551e-03 + 3.1800e-03 -8.2974e+00 2.2889e-01 7.7111e-01 9.0147e-01 9.8526e-02 2.8555e-04 2.5223e-03 6.4269e-04 2.1651e-03 + 3.1900e-03 -8.2974e+00 2.2808e-01 7.7192e-01 9.0147e-01 9.8526e-02 2.8389e-04 2.5339e-03 6.4269e-04 2.1751e-03 + 3.2000e-03 -8.2974e+00 2.2727e-01 7.7273e-01 9.0147e-01 9.8526e-02 2.8222e-04 2.5456e-03 6.4269e-04 2.1851e-03 + 3.2100e-03 -8.2974e+00 2.2647e-01 7.7353e-01 9.0147e-01 9.8526e-02 2.8055e-04 2.5573e-03 6.4269e-04 2.1951e-03 + 3.2200e-03 -8.2974e+00 2.2568e-01 7.7432e-01 9.0147e-01 9.8526e-02 2.7889e-04 2.5689e-03 6.4269e-04 2.2051e-03 + 3.2300e-03 -8.2974e+00 2.2489e-01 7.7511e-01 9.0147e-01 9.8526e-02 2.7722e-04 2.5806e-03 6.4269e-04 2.2151e-03 + 3.2400e-03 -8.2974e+00 2.2410e-01 7.7590e-01 9.0147e-01 9.8526e-02 2.7555e-04 2.5922e-03 6.4269e-04 2.2251e-03 + 3.2500e-03 -8.2974e+00 2.2333e-01 7.7667e-01 9.0147e-01 9.8526e-02 2.7389e-04 2.6039e-03 6.4269e-04 2.2351e-03 + 3.2600e-03 -8.2974e+00 2.2255e-01 7.7745e-01 9.0147e-01 9.8526e-02 2.7222e-04 2.6156e-03 6.4269e-04 2.2451e-03 + 3.2700e-03 -8.2974e+00 2.2178e-01 7.7822e-01 9.0147e-01 9.8526e-02 2.7056e-04 2.6272e-03 6.4269e-04 2.2551e-03 + 3.2800e-03 -8.2974e+00 2.2102e-01 7.7898e-01 9.0147e-01 9.8526e-02 2.6889e-04 2.6389e-03 6.4269e-04 2.2651e-03 + 3.2900e-03 -8.2974e+00 2.2026e-01 7.7974e-01 9.0147e-01 9.8526e-02 2.6722e-04 2.6506e-03 6.4269e-04 2.2751e-03 + 3.3000e-03 -8.2974e+00 2.1951e-01 7.8049e-01 9.0147e-01 9.8526e-02 2.6556e-04 2.6622e-03 6.4269e-04 2.2851e-03 + 3.3100e-03 -8.2974e+00 2.1876e-01 7.8124e-01 9.0147e-01 9.8526e-02 2.6389e-04 2.6739e-03 6.4269e-04 2.2951e-03 + 3.3200e-03 -8.2974e+00 2.1802e-01 7.8198e-01 9.0147e-01 9.8526e-02 2.6223e-04 2.6856e-03 6.4269e-04 2.3051e-03 + 3.3300e-03 -8.2974e+00 2.1728e-01 7.8272e-01 9.0147e-01 9.8526e-02 2.6056e-04 2.6972e-03 6.4269e-04 2.3151e-03 + 3.3400e-03 -8.2974e+00 2.1655e-01 7.8345e-01 9.0147e-01 9.8526e-02 2.5889e-04 2.7089e-03 6.4269e-04 2.3251e-03 + 3.3500e-03 -8.2974e+00 2.1583e-01 7.8417e-01 9.0147e-01 9.8526e-02 2.5723e-04 2.7206e-03 6.4269e-04 2.3351e-03 + 3.3600e-03 -8.2974e+00 2.1510e-01 7.8490e-01 9.0147e-01 9.8526e-02 2.5556e-04 2.7322e-03 6.4269e-04 2.3451e-03 + 3.3700e-03 -8.2974e+00 2.1439e-01 7.8561e-01 9.0147e-01 9.8526e-02 2.5389e-04 2.7439e-03 6.4269e-04 2.3551e-03 + 3.3800e-03 -8.2974e+00 2.1367e-01 7.8633e-01 9.0147e-01 9.8526e-02 2.5223e-04 2.7556e-03 6.4269e-04 2.3651e-03 + 3.3900e-03 -8.2974e+00 2.1296e-01 7.8704e-01 9.0147e-01 9.8526e-02 2.5056e-04 2.7672e-03 6.4269e-04 2.3751e-03 + 3.4000e-03 -8.2974e+00 2.1226e-01 7.8774e-01 9.0147e-01 9.8526e-02 2.4890e-04 2.7789e-03 6.4269e-04 2.3851e-03 + 3.4100e-03 -8.2974e+00 2.1156e-01 7.8844e-01 9.0147e-01 9.8526e-02 2.4723e-04 2.7906e-03 6.4269e-04 2.3951e-03 + 3.4200e-03 -8.2974e+00 2.1087e-01 7.8913e-01 9.0147e-01 9.8526e-02 2.4556e-04 2.8022e-03 6.4269e-04 2.4051e-03 + 3.4300e-03 -8.2974e+00 2.1018e-01 7.8982e-01 9.0147e-01 9.8526e-02 2.4390e-04 2.8139e-03 6.4269e-04 2.4151e-03 + 3.4400e-03 -8.2974e+00 2.0949e-01 7.9051e-01 9.0147e-01 9.8526e-02 2.4223e-04 2.8256e-03 6.4269e-04 2.4251e-03 + 3.4500e-03 -8.2974e+00 2.0881e-01 7.9119e-01 9.0147e-01 9.8526e-02 2.4056e-04 2.8372e-03 6.4269e-04 2.4351e-03 + 3.4600e-03 -8.2974e+00 2.0814e-01 7.9186e-01 9.0147e-01 9.8526e-02 2.3890e-04 2.8489e-03 6.4269e-04 2.4451e-03 + 3.4700e-03 -8.2974e+00 2.0746e-01 7.9254e-01 9.0147e-01 9.8526e-02 2.3723e-04 2.8606e-03 6.4269e-04 2.4551e-03 + 3.4800e-03 -8.2974e+00 2.0680e-01 7.9320e-01 9.0147e-01 9.8526e-02 2.3557e-04 2.8722e-03 6.4269e-04 2.4651e-03 + 3.4900e-03 -8.2974e+00 2.0613e-01 7.9387e-01 9.0147e-01 9.8526e-02 2.3390e-04 2.8839e-03 6.4269e-04 2.4751e-03 + 3.5000e-03 -8.2974e+00 2.0548e-01 7.9452e-01 9.0147e-01 9.8526e-02 2.3223e-04 2.8956e-03 6.4269e-04 2.4851e-03 + 3.5100e-03 -8.2974e+00 2.0482e-01 7.9518e-01 9.0147e-01 9.8526e-02 2.3057e-04 2.9072e-03 6.4269e-04 2.4951e-03 + 3.5200e-03 -8.2974e+00 2.0417e-01 7.9583e-01 9.0147e-01 9.8526e-02 2.2890e-04 2.9189e-03 6.4269e-04 2.5051e-03 + 3.5300e-03 -8.2974e+00 2.0352e-01 7.9648e-01 9.0147e-01 9.8526e-02 2.2723e-04 2.9306e-03 6.4269e-04 2.5151e-03 + 3.5400e-03 -8.2974e+00 2.0288e-01 7.9712e-01 9.0147e-01 9.8526e-02 2.2557e-04 2.9422e-03 6.4269e-04 2.5251e-03 + 3.5500e-03 -8.2974e+00 2.0224e-01 7.9776e-01 9.0147e-01 9.8526e-02 2.2390e-04 2.9539e-03 6.4269e-04 2.5351e-03 + 3.5600e-03 -8.2974e+00 2.0161e-01 7.9839e-01 9.0147e-01 9.8526e-02 2.2224e-04 2.9656e-03 6.4269e-04 2.5451e-03 + 3.5700e-03 -8.2974e+00 2.0098e-01 7.9902e-01 9.0147e-01 9.8526e-02 2.2057e-04 2.9772e-03 6.4269e-04 2.5551e-03 + 3.5800e-03 -8.2974e+00 2.0035e-01 7.9965e-01 9.0147e-01 9.8526e-02 2.1890e-04 2.9889e-03 6.4269e-04 2.5651e-03 + 3.5900e-03 -8.2974e+00 1.9973e-01 8.0027e-01 9.0147e-01 9.8526e-02 2.1724e-04 3.0006e-03 6.4269e-04 2.5751e-03 + 3.6000e-03 -8.2974e+00 1.9911e-01 8.0089e-01 9.0147e-01 9.8526e-02 2.1557e-04 3.0122e-03 6.4269e-04 2.5851e-03 + 3.6100e-03 -8.2974e+00 1.9849e-01 8.0151e-01 9.0147e-01 9.8526e-02 2.1391e-04 3.0239e-03 6.4269e-04 2.5951e-03 + 3.6200e-03 -8.2974e+00 1.9788e-01 8.0212e-01 9.0147e-01 9.8526e-02 2.1224e-04 3.0356e-03 6.4269e-04 2.6051e-03 + 3.6300e-03 -8.2974e+00 1.9728e-01 8.0272e-01 9.0147e-01 9.8526e-02 2.1057e-04 3.0472e-03 6.4269e-04 2.6151e-03 + 3.6400e-03 -8.2974e+00 1.9667e-01 8.0333e-01 9.0147e-01 9.8526e-02 2.0891e-04 3.0589e-03 6.4269e-04 2.6251e-03 + 3.6500e-03 -8.2974e+00 1.9607e-01 8.0393e-01 9.0147e-01 9.8526e-02 2.0724e-04 3.0706e-03 6.4269e-04 2.6351e-03 + 3.6600e-03 -8.2974e+00 1.9548e-01 8.0452e-01 9.0147e-01 9.8526e-02 2.0557e-04 3.0822e-03 6.4269e-04 2.6451e-03 + 3.6700e-03 -8.2974e+00 1.9488e-01 8.0512e-01 9.0147e-01 9.8526e-02 2.0391e-04 3.0939e-03 6.4269e-04 2.6551e-03 + 3.6800e-03 -8.2974e+00 1.9429e-01 8.0571e-01 9.0147e-01 9.8526e-02 2.0224e-04 3.1056e-03 6.4269e-04 2.6651e-03 + 3.6900e-03 -8.2974e+00 1.9371e-01 8.0629e-01 9.0147e-01 9.8526e-02 2.0058e-04 3.1172e-03 6.4269e-04 2.6751e-03 + 3.7000e-03 -8.2974e+00 1.9313e-01 8.0687e-01 9.0147e-01 9.8526e-02 1.9891e-04 3.1289e-03 6.4269e-04 2.6851e-03 + 3.7100e-03 -8.2974e+00 1.9255e-01 8.0745e-01 9.0147e-01 9.8526e-02 1.9724e-04 3.1406e-03 6.4269e-04 2.6951e-03 + 3.7200e-03 -8.2974e+00 1.9197e-01 8.0803e-01 9.0147e-01 9.8526e-02 1.9558e-04 3.1522e-03 6.4269e-04 2.7051e-03 + 3.7300e-03 -8.2974e+00 1.9140e-01 8.0860e-01 9.0147e-01 9.8526e-02 1.9391e-04 3.1639e-03 6.4269e-04 2.7151e-03 + 3.7400e-03 -8.2974e+00 1.9083e-01 8.0917e-01 9.0147e-01 9.8526e-02 1.9224e-04 3.1756e-03 6.4269e-04 2.7251e-03 + 3.7500e-03 -8.2974e+00 1.9027e-01 8.0973e-01 9.0147e-01 9.8526e-02 1.9058e-04 3.1872e-03 6.4269e-04 2.7351e-03 + 3.7600e-03 -8.2974e+00 1.8971e-01 8.1029e-01 9.0147e-01 9.8526e-02 1.8891e-04 3.1989e-03 6.4269e-04 2.7451e-03 + 3.7700e-03 -8.2974e+00 1.8915e-01 8.1085e-01 9.0147e-01 9.8526e-02 1.8725e-04 3.2106e-03 6.4269e-04 2.7551e-03 + 3.7800e-03 -8.2974e+00 1.8859e-01 8.1141e-01 9.0147e-01 9.8526e-02 1.8558e-04 3.2222e-03 6.4269e-04 2.7651e-03 + 3.7900e-03 -8.2974e+00 1.8804e-01 8.1196e-01 9.0147e-01 9.8526e-02 1.8391e-04 3.2339e-03 6.4269e-04 2.7751e-03 + 3.8000e-03 -8.2974e+00 1.8749e-01 8.1251e-01 9.0147e-01 9.8526e-02 1.8225e-04 3.2456e-03 6.4269e-04 2.7851e-03 + 3.8100e-03 -8.2974e+00 1.8695e-01 8.1305e-01 9.0147e-01 9.8526e-02 1.8058e-04 3.2572e-03 6.4269e-04 2.7951e-03 + 3.8200e-03 -8.2974e+00 1.8640e-01 8.1360e-01 9.0147e-01 9.8526e-02 1.7891e-04 3.2689e-03 6.4269e-04 2.8051e-03 + 3.8300e-03 -8.2974e+00 1.8587e-01 8.1413e-01 9.0147e-01 9.8526e-02 1.7725e-04 3.2806e-03 6.4269e-04 2.8151e-03 + 3.8400e-03 -8.2974e+00 1.8533e-01 8.1467e-01 9.0147e-01 9.8526e-02 1.7558e-04 3.2922e-03 6.4269e-04 2.8251e-03 + 3.8500e-03 -8.2974e+00 1.8480e-01 8.1520e-01 9.0147e-01 9.8526e-02 1.7392e-04 3.3039e-03 6.4269e-04 2.8351e-03 + 3.8600e-03 -8.2974e+00 1.8427e-01 8.1573e-01 9.0147e-01 9.8526e-02 1.7225e-04 3.3156e-03 6.4269e-04 2.8451e-03 + 3.8700e-03 -8.2974e+00 1.8374e-01 8.1626e-01 9.0147e-01 9.8526e-02 1.7058e-04 3.3272e-03 6.4269e-04 2.8551e-03 + 3.8800e-03 -8.2974e+00 1.8322e-01 8.1678e-01 9.0147e-01 9.8526e-02 1.6892e-04 3.3389e-03 6.4269e-04 2.8651e-03 + 3.8900e-03 -8.2974e+00 1.8270e-01 8.1730e-01 9.0147e-01 9.8526e-02 1.6725e-04 3.3506e-03 6.4269e-04 2.8751e-03 + 3.9000e-03 -8.2974e+00 1.8218e-01 8.1782e-01 9.0147e-01 9.8526e-02 1.6559e-04 3.3622e-03 6.4269e-04 2.8851e-03 + 3.9100e-03 -8.2974e+00 1.8166e-01 8.1834e-01 9.0147e-01 9.8526e-02 1.6392e-04 3.3739e-03 6.4269e-04 2.8951e-03 + 3.9200e-03 -8.2974e+00 1.8115e-01 8.1885e-01 9.0147e-01 9.8526e-02 1.6225e-04 3.3856e-03 6.4269e-04 2.9051e-03 + 3.9300e-03 -8.2974e+00 1.8064e-01 8.1936e-01 9.0147e-01 9.8526e-02 1.6059e-04 3.3972e-03 6.4269e-04 2.9151e-03 + 3.9400e-03 -8.2974e+00 1.8013e-01 8.1987e-01 9.0147e-01 9.8526e-02 1.5892e-04 3.4089e-03 6.4269e-04 2.9251e-03 + 3.9500e-03 -8.2974e+00 1.7963e-01 8.2037e-01 9.0147e-01 9.8526e-02 1.5725e-04 3.4205e-03 6.4269e-04 2.9351e-03 + 3.9600e-03 -8.2974e+00 1.7913e-01 8.2087e-01 9.0147e-01 9.8526e-02 1.5559e-04 3.4322e-03 6.4269e-04 2.9451e-03 + 3.9700e-03 -8.2974e+00 1.7863e-01 8.2137e-01 9.0147e-01 9.8526e-02 1.5392e-04 3.4439e-03 6.4269e-04 2.9551e-03 + 3.9800e-03 -8.2974e+00 1.7814e-01 8.2186e-01 9.0147e-01 9.8526e-02 1.5226e-04 3.4555e-03 6.4269e-04 2.9651e-03 + 3.9900e-03 -8.2974e+00 1.7765e-01 8.2235e-01 9.0147e-01 9.8526e-02 1.5059e-04 3.4672e-03 6.4269e-04 2.9751e-03 + 4.0000e-03 -8.2974e+00 1.7716e-01 8.2284e-01 9.0147e-01 9.8526e-02 1.4892e-04 3.4789e-03 6.4269e-04 2.9851e-03 + 4.0100e-03 -8.2974e+00 1.7667e-01 8.2333e-01 9.0147e-01 9.8526e-02 1.4726e-04 3.4905e-03 6.4269e-04 2.9951e-03 + 4.0200e-03 -8.2974e+00 1.7618e-01 8.2382e-01 9.0147e-01 9.8526e-02 1.4559e-04 3.5022e-03 6.4269e-04 3.0051e-03 + 4.0300e-03 -8.2974e+00 1.7570e-01 8.2430e-01 9.0147e-01 9.8526e-02 1.4392e-04 3.5139e-03 6.4269e-04 3.0151e-03 + 4.0400e-03 -8.2974e+00 1.7522e-01 8.2478e-01 9.0147e-01 9.8526e-02 1.4226e-04 3.5255e-03 6.4269e-04 3.0251e-03 + 4.0500e-03 -8.2974e+00 1.7475e-01 8.2525e-01 9.0147e-01 9.8526e-02 1.4059e-04 3.5372e-03 6.4269e-04 3.0351e-03 + 4.0600e-03 -8.2974e+00 1.7427e-01 8.2573e-01 9.0147e-01 9.8526e-02 1.3893e-04 3.5489e-03 6.4269e-04 3.0451e-03 + 4.0700e-03 -8.2974e+00 1.7380e-01 8.2620e-01 9.0147e-01 9.8526e-02 1.3726e-04 3.5605e-03 6.4269e-04 3.0551e-03 + 4.0800e-03 -8.2974e+00 1.7333e-01 8.2667e-01 9.0147e-01 9.8526e-02 1.3559e-04 3.5722e-03 6.4269e-04 3.0651e-03 + 4.0900e-03 -8.2974e+00 1.7287e-01 8.2713e-01 9.0147e-01 9.8526e-02 1.3393e-04 3.5839e-03 6.4269e-04 3.0751e-03 + 4.1000e-03 -8.2974e+00 1.7240e-01 8.2760e-01 9.0147e-01 9.8526e-02 1.3226e-04 3.5955e-03 6.4269e-04 3.0851e-03 + 4.1100e-03 -8.2974e+00 1.7194e-01 8.2806e-01 9.0147e-01 9.8526e-02 1.3060e-04 3.6072e-03 6.4269e-04 3.0951e-03 + 4.1200e-03 -8.2974e+00 1.7148e-01 8.2852e-01 9.0147e-01 9.8526e-02 1.2893e-04 3.6189e-03 6.4269e-04 3.1051e-03 + 4.1300e-03 -8.2974e+00 1.7103e-01 8.2897e-01 9.0147e-01 9.8526e-02 1.2726e-04 3.6305e-03 6.4269e-04 3.1151e-03 + 4.1400e-03 -8.2974e+00 1.7057e-01 8.2943e-01 9.0147e-01 9.8526e-02 1.2560e-04 3.6422e-03 6.4269e-04 3.1251e-03 + 4.1500e-03 -8.2974e+00 1.7012e-01 8.2988e-01 9.0147e-01 9.8526e-02 1.2393e-04 3.6539e-03 6.4269e-04 3.1351e-03 + 4.1600e-03 -8.2974e+00 1.6967e-01 8.3033e-01 9.0147e-01 9.8526e-02 1.2226e-04 3.6655e-03 6.4269e-04 3.1451e-03 + 4.1700e-03 -8.2974e+00 1.6923e-01 8.3077e-01 9.0147e-01 9.8526e-02 1.2060e-04 3.6772e-03 6.4269e-04 3.1551e-03 + 4.1800e-03 -8.2974e+00 1.6878e-01 8.3122e-01 9.0147e-01 9.8526e-02 1.1893e-04 3.6889e-03 6.4269e-04 3.1651e-03 + 4.1900e-03 -8.2974e+00 1.6834e-01 8.3166e-01 9.0147e-01 9.8526e-02 1.1727e-04 3.7005e-03 6.4269e-04 3.1751e-03 + 4.2000e-03 -8.2974e+00 1.6790e-01 8.3210e-01 9.0147e-01 9.8526e-02 1.1560e-04 3.7122e-03 6.4269e-04 3.1851e-03 + 4.2100e-03 -8.2974e+00 1.6746e-01 8.3254e-01 9.0147e-01 9.8526e-02 1.1393e-04 3.7239e-03 6.4269e-04 3.1951e-03 + 4.2200e-03 -8.2974e+00 1.6703e-01 8.3297e-01 9.0147e-01 9.8526e-02 1.1227e-04 3.7355e-03 6.4269e-04 3.2051e-03 + 4.2300e-03 -8.2974e+00 1.6659e-01 8.3341e-01 9.0147e-01 9.8526e-02 1.1060e-04 3.7472e-03 6.4269e-04 3.2151e-03 + 4.2400e-03 -8.2974e+00 1.6616e-01 8.3384e-01 9.0147e-01 9.8526e-02 1.0893e-04 3.7589e-03 6.4269e-04 3.2251e-03 + 4.2500e-03 -8.2974e+00 1.6573e-01 8.3427e-01 9.0147e-01 9.8526e-02 1.0727e-04 3.7705e-03 6.4269e-04 3.2351e-03 + 4.2600e-03 -8.2974e+00 1.6531e-01 8.3469e-01 9.0147e-01 9.8526e-02 1.0560e-04 3.7822e-03 6.4269e-04 3.2451e-03 + 4.2700e-03 -8.2974e+00 1.6488e-01 8.3512e-01 9.0147e-01 9.8526e-02 1.0394e-04 3.7939e-03 6.4269e-04 3.2551e-03 + 4.2800e-03 -8.2974e+00 1.6446e-01 8.3554e-01 9.0147e-01 9.8526e-02 1.0227e-04 3.8055e-03 6.4269e-04 3.2651e-03 + 4.2900e-03 -8.2974e+00 1.6404e-01 8.3596e-01 9.0147e-01 9.8526e-02 1.0060e-04 3.8172e-03 6.4269e-04 3.2751e-03 + 4.3000e-03 -8.2974e+00 1.6362e-01 8.3638e-01 9.0147e-01 9.8526e-02 9.8937e-05 3.8289e-03 6.4269e-04 3.2851e-03 + 4.3100e-03 -8.2974e+00 1.6321e-01 8.3679e-01 9.0147e-01 9.8526e-02 9.7271e-05 3.8405e-03 6.4269e-04 3.2951e-03 + 4.3200e-03 -8.2974e+00 1.6280e-01 8.3720e-01 9.0147e-01 9.8526e-02 9.5605e-05 3.8522e-03 6.4269e-04 3.3051e-03 + 4.3300e-03 -8.2974e+00 1.6238e-01 8.3762e-01 9.0147e-01 9.8526e-02 9.3939e-05 3.8639e-03 6.4269e-04 3.3151e-03 + 4.3400e-03 -8.2974e+00 1.6198e-01 8.3802e-01 9.0147e-01 9.8526e-02 9.2272e-05 3.8755e-03 6.4269e-04 3.3251e-03 + 4.3500e-03 -8.2974e+00 1.6157e-01 8.3843e-01 9.0147e-01 9.8526e-02 9.0606e-05 3.8872e-03 6.4269e-04 3.3351e-03 + 4.3600e-03 -8.2974e+00 1.6116e-01 8.3884e-01 9.0147e-01 9.8526e-02 8.8940e-05 3.8989e-03 6.4269e-04 3.3451e-03 + 4.3700e-03 -8.2974e+00 1.6076e-01 8.3924e-01 9.0147e-01 9.8526e-02 8.7274e-05 3.9105e-03 6.4269e-04 3.3551e-03 + 4.3800e-03 -8.2974e+00 1.6036e-01 8.3964e-01 9.0147e-01 9.8526e-02 8.5608e-05 3.9222e-03 6.4269e-04 3.3651e-03 + 4.3900e-03 -8.2974e+00 1.5996e-01 8.4004e-01 9.0147e-01 9.8526e-02 8.3941e-05 3.9339e-03 6.4269e-04 3.3751e-03 + 4.4000e-03 -8.2974e+00 1.5956e-01 8.4044e-01 9.0147e-01 9.8526e-02 8.2275e-05 3.9455e-03 6.4269e-04 3.3851e-03 + 4.4100e-03 -8.2974e+00 1.5917e-01 8.4083e-01 9.0147e-01 9.8526e-02 8.0609e-05 3.9572e-03 6.4269e-04 3.3951e-03 + 4.4200e-03 -8.2974e+00 1.5877e-01 8.4123e-01 9.0147e-01 9.8526e-02 7.8943e-05 3.9689e-03 6.4269e-04 3.4051e-03 + 4.4300e-03 -8.2974e+00 1.5838e-01 8.4162e-01 9.0147e-01 9.8526e-02 7.7277e-05 3.9805e-03 6.4269e-04 3.4151e-03 + 4.4400e-03 -8.2974e+00 1.5799e-01 8.4201e-01 9.0147e-01 9.8526e-02 7.5610e-05 3.9922e-03 6.4269e-04 3.4251e-03 + 4.4500e-03 -8.2974e+00 1.5761e-01 8.4239e-01 9.0147e-01 9.8526e-02 7.3944e-05 4.0039e-03 6.4269e-04 3.4351e-03 + 4.4600e-03 -8.2974e+00 1.5722e-01 8.4278e-01 9.0147e-01 9.8526e-02 7.2278e-05 4.0155e-03 6.4269e-04 3.4451e-03 + 4.4700e-03 -8.2974e+00 1.5684e-01 8.4316e-01 9.0147e-01 9.8526e-02 7.0612e-05 4.0272e-03 6.4269e-04 3.4551e-03 + 4.4800e-03 -8.2974e+00 1.5645e-01 8.4355e-01 9.0147e-01 9.8526e-02 6.8946e-05 4.0389e-03 6.4269e-04 3.4651e-03 + 4.4900e-03 -8.2974e+00 1.5607e-01 8.4393e-01 9.0147e-01 9.8526e-02 6.7279e-05 4.0505e-03 6.4269e-04 3.4751e-03 + 4.5000e-03 -8.2974e+00 1.5570e-01 8.4430e-01 9.0147e-01 9.8526e-02 6.5613e-05 4.0622e-03 6.4269e-04 3.4851e-03 + 4.5100e-03 -8.2974e+00 1.5532e-01 8.4468e-01 9.0147e-01 9.8526e-02 6.3947e-05 4.0739e-03 6.4269e-04 3.4951e-03 + 4.5200e-03 -8.2974e+00 1.5495e-01 8.4505e-01 9.0147e-01 9.8526e-02 6.2281e-05 4.0855e-03 6.4269e-04 3.5051e-03 + 4.5300e-03 -8.2974e+00 1.5457e-01 8.4543e-01 9.0147e-01 9.8526e-02 6.0615e-05 4.0972e-03 6.4269e-04 3.5151e-03 + 4.5400e-03 -8.2974e+00 1.5420e-01 8.4580e-01 9.0147e-01 9.8526e-02 5.8948e-05 4.1089e-03 6.4269e-04 3.5251e-03 + 4.5500e-03 -8.2974e+00 1.5383e-01 8.4617e-01 9.0147e-01 9.8526e-02 5.7282e-05 4.1205e-03 6.4269e-04 3.5351e-03 + 4.5600e-03 -8.2974e+00 1.5347e-01 8.4653e-01 9.0147e-01 9.8526e-02 5.5616e-05 4.1322e-03 6.4269e-04 3.5451e-03 + 4.5700e-03 -8.2974e+00 1.5310e-01 8.4690e-01 9.0147e-01 9.8526e-02 5.3950e-05 4.1439e-03 6.4269e-04 3.5551e-03 + 4.5800e-03 -8.2974e+00 1.5274e-01 8.4726e-01 9.0147e-01 9.8526e-02 5.2284e-05 4.1555e-03 6.4269e-04 3.5651e-03 + 4.5900e-03 -8.2974e+00 1.5237e-01 8.4763e-01 9.0147e-01 9.8526e-02 5.0617e-05 4.1672e-03 6.4269e-04 3.5751e-03 + 4.6000e-03 -8.2974e+00 1.5201e-01 8.4799e-01 9.0147e-01 9.8526e-02 4.8951e-05 4.1789e-03 6.4269e-04 3.5851e-03 + 4.6100e-03 -8.2974e+00 1.5166e-01 8.4834e-01 9.0147e-01 9.8526e-02 4.7285e-05 4.1905e-03 6.4269e-04 3.5951e-03 + 4.6200e-03 -8.2974e+00 1.5130e-01 8.4870e-01 9.0147e-01 9.8526e-02 4.5619e-05 4.2022e-03 6.4269e-04 3.6051e-03 + 4.6300e-03 -8.2974e+00 1.5094e-01 8.4906e-01 9.0147e-01 9.8526e-02 4.3953e-05 4.2139e-03 6.4269e-04 3.6151e-03 + 4.6400e-03 -8.2974e+00 1.5059e-01 8.4941e-01 9.0147e-01 9.8526e-02 4.2286e-05 4.2255e-03 6.4269e-04 3.6251e-03 + 4.6500e-03 -8.2974e+00 1.5024e-01 8.4976e-01 9.0147e-01 9.8526e-02 4.0620e-05 4.2372e-03 6.4269e-04 3.6351e-03 + 4.6600e-03 -8.2974e+00 1.4989e-01 8.5011e-01 9.0147e-01 9.8526e-02 3.8954e-05 4.2488e-03 6.4269e-04 3.6451e-03 + 4.6700e-03 -8.2974e+00 1.4954e-01 8.5046e-01 9.0147e-01 9.8526e-02 3.7288e-05 4.2605e-03 6.4269e-04 3.6551e-03 + 4.6800e-03 -8.2974e+00 1.4919e-01 8.5081e-01 9.0147e-01 9.8526e-02 3.5622e-05 4.2722e-03 6.4269e-04 3.6651e-03 + 4.6900e-03 -8.2974e+00 1.4885e-01 8.5115e-01 9.0147e-01 9.8526e-02 3.3955e-05 4.2838e-03 6.4269e-04 3.6751e-03 + 4.7000e-03 -8.2974e+00 1.4850e-01 8.5150e-01 9.0147e-01 9.8526e-02 3.2289e-05 4.2955e-03 6.4269e-04 3.6851e-03 + 4.7100e-03 -8.2974e+00 1.4816e-01 8.5184e-01 9.0147e-01 9.8526e-02 3.0623e-05 4.3072e-03 6.4269e-04 3.6951e-03 + 4.7200e-03 -8.2974e+00 1.4782e-01 8.5218e-01 9.0147e-01 9.8526e-02 2.8957e-05 4.3188e-03 6.4269e-04 3.7051e-03 + 4.7300e-03 -8.2974e+00 1.4748e-01 8.5252e-01 9.0147e-01 9.8526e-02 2.7291e-05 4.3305e-03 6.4269e-04 3.7151e-03 + 4.7400e-03 -8.2974e+00 1.4714e-01 8.5286e-01 9.0147e-01 9.8526e-02 2.5624e-05 4.3422e-03 6.4269e-04 3.7251e-03 + 4.7500e-03 -8.2974e+00 1.4681e-01 8.5319e-01 9.0147e-01 9.8526e-02 2.3958e-05 4.3538e-03 6.4269e-04 3.7351e-03 + 4.7600e-03 -8.2974e+00 1.4647e-01 8.5353e-01 9.0147e-01 9.8526e-02 2.2292e-05 4.3655e-03 6.4269e-04 3.7451e-03 + 4.7700e-03 -8.2974e+00 1.4614e-01 8.5386e-01 9.0147e-01 9.8526e-02 2.0626e-05 4.3772e-03 6.4269e-04 3.7551e-03 + 4.7800e-03 -8.2974e+00 1.4581e-01 8.5419e-01 9.0147e-01 9.8526e-02 1.8960e-05 4.3888e-03 6.4269e-04 3.7651e-03 + 4.7900e-03 -8.2974e+00 1.4548e-01 8.5452e-01 9.0147e-01 9.8526e-02 1.7293e-05 4.4005e-03 6.4269e-04 3.7751e-03 + 4.8000e-03 -8.2974e+00 1.4515e-01 8.5485e-01 9.0147e-01 9.8526e-02 1.5627e-05 4.4122e-03 6.4269e-04 3.7851e-03 + 4.8100e-03 -8.2974e+00 1.4482e-01 8.5518e-01 9.0147e-01 9.8526e-02 1.3961e-05 4.4238e-03 6.4269e-04 3.7951e-03 + 4.8200e-03 -8.2974e+00 1.4450e-01 8.5550e-01 9.0147e-01 9.8526e-02 1.2295e-05 4.4355e-03 6.4269e-04 3.8051e-03 + 4.8300e-03 -8.2974e+00 1.4417e-01 8.5583e-01 9.0147e-01 9.8526e-02 1.0629e-05 4.4472e-03 6.4269e-04 3.8151e-03 + 4.8400e-03 -8.2974e+00 1.4385e-01 8.5615e-01 9.0147e-01 9.8526e-02 8.9624e-06 4.4588e-03 6.4269e-04 3.8251e-03 + 4.8500e-03 -8.2974e+00 1.4353e-01 8.5647e-01 9.0147e-01 9.8526e-02 7.2962e-06 4.4705e-03 6.4269e-04 3.8351e-03 + 4.8600e-03 -8.2974e+00 1.4321e-01 8.5679e-01 9.0147e-01 9.8526e-02 5.6300e-06 4.4822e-03 6.4269e-04 3.8451e-03 + 4.8700e-03 -8.2974e+00 1.4289e-01 8.5711e-01 9.0147e-01 9.8526e-02 3.9638e-06 4.4938e-03 6.4269e-04 3.8551e-03 + 4.8800e-03 -8.2974e+00 1.4257e-01 8.5743e-01 9.0147e-01 9.8526e-02 2.2976e-06 4.5055e-03 6.4269e-04 3.8651e-03 + 4.8900e-03 -8.2974e+00 1.4226e-01 8.5774e-01 9.0147e-01 9.8526e-02 6.3139e-07 4.5172e-03 6.4269e-04 3.8751e-03 + 4.9000e-03 -8.2974e+00 1.4211e-01 8.5789e-01 9.0145e-01 9.8548e-02 1.0000e-10 1.0000e-10 6.4354e-04 3.8850e-03 + 4.9100e-03 -8.2976e+00 1.4206e-01 8.5794e-01 9.0142e-01 9.8584e-02 1.0000e-10 1.0000e-10 6.4491e-04 3.8947e-03 + 4.9200e-03 -8.2977e+00 1.4202e-01 8.5798e-01 9.0138e-01 9.8620e-02 1.0000e-10 1.0000e-10 6.4629e-04 3.9044e-03 + 4.9300e-03 -8.2979e+00 1.4197e-01 8.5803e-01 9.0134e-01 9.8656e-02 1.0000e-10 1.0000e-10 6.4766e-04 3.9142e-03 + 4.9400e-03 -8.2980e+00 1.4193e-01 8.5807e-01 9.0131e-01 9.8692e-02 1.0000e-10 1.0000e-10 6.4903e-04 3.9239e-03 + 4.9500e-03 -8.2981e+00 1.4188e-01 8.5812e-01 9.0127e-01 9.8728e-02 1.0000e-10 1.0000e-10 6.5040e-04 3.9336e-03 + 4.9600e-03 -8.2983e+00 1.4184e-01 8.5816e-01 9.0124e-01 9.8764e-02 1.0000e-10 1.0000e-10 6.5177e-04 3.9434e-03 + 4.9700e-03 -8.2984e+00 1.4179e-01 8.5821e-01 9.0120e-01 9.8800e-02 1.0000e-10 1.0000e-10 6.5314e-04 3.9531e-03 + 4.9800e-03 -8.2985e+00 1.4175e-01 8.5825e-01 9.0116e-01 9.8836e-02 1.0000e-10 1.0000e-10 6.5450e-04 3.9629e-03 + 4.9900e-03 -8.2987e+00 1.4170e-01 8.5830e-01 9.0113e-01 9.8872e-02 1.0000e-10 1.0000e-10 6.5587e-04 3.9726e-03 + 5.0000e-03 -8.2988e+00 1.4166e-01 8.5834e-01 9.0109e-01 9.8908e-02 1.0000e-10 1.0000e-10 6.5724e-04 3.9823e-03 + 5.0000e-03 -8.2988e+00 1.4166e-01 8.5834e-01 9.0109e-01 9.8908e-02 1.0000e-10 1.0000e-10 6.5724e-04 3.9823e-03 + 1.0000e-02 -8.3590e+00 1.2345e-01 8.7655e-01 8.8423e-01 1.1577e-01 1.0000e-10 1.0000e-10 1.2483e-03 8.8635e-03 + 1.5000e-02 -8.4069e+00 1.1064e-01 8.8936e-01 8.6904e-01 1.3096e-01 1.0000e-10 1.0000e-10 1.7120e-03 1.3762e-02 + 2.0000e-02 -8.4471e+00 1.0088e-01 8.9912e-01 8.5501e-01 1.4499e-01 1.0000e-10 1.0000e-10 2.0950e-03 1.8672e-02 + 2.5000e-02 -8.4816e+00 9.3095e-02 9.0690e-01 8.4188e-01 1.5812e-01 1.0000e-10 1.0000e-10 2.4215e-03 2.3590e-02 + 3.0000e-02 -8.5119e+00 8.6674e-02 9.1333e-01 8.2947e-01 1.7053e-01 1.0000e-10 1.0000e-10 2.7061e-03 2.8515e-02 + 3.5000e-02 -8.5389e+00 8.1255e-02 9.1874e-01 8.1770e-01 1.8230e-01 1.0000e-10 1.0000e-10 2.9580e-03 3.3446e-02 + 4.0000e-02 -8.5632e+00 7.6600e-02 9.2340e-01 8.0646e-01 1.9354e-01 1.0000e-10 1.0000e-10 3.1839e-03 3.8381e-02 + 4.5000e-02 -8.5853e+00 7.2542e-02 9.2746e-01 7.9570e-01 2.0430e-01 1.0000e-10 1.0000e-10 3.3884e-03 4.3321e-02 + 5.0000e-02 -8.6055e+00 6.8965e-02 9.3104e-01 7.8538e-01 2.1462e-01 1.0000e-10 1.0000e-10 3.5750e-03 4.8264e-02 + 5.5000e-02 -8.6242e+00 6.5780e-02 9.3422e-01 7.7545e-01 2.2455e-01 1.0000e-10 1.0000e-10 3.7466e-03 5.3210e-02 + 6.0000e-02 -8.6414e+00 6.2922e-02 9.3708e-01 7.6587e-01 2.3413e-01 1.0000e-10 1.0000e-10 3.9052e-03 5.8159e-02 + 6.5000e-02 -8.6575e+00 6.0338e-02 9.3966e-01 7.5663e-01 2.4337e-01 1.0000e-10 1.0000e-10 4.0525e-03 6.3110e-02 + 7.0000e-02 -8.6725e+00 5.7989e-02 9.4201e-01 7.4769e-01 2.5231e-01 1.0000e-10 1.0000e-10 4.1899e-03 6.8063e-02 + 7.5000e-02 -8.6866e+00 5.5841e-02 9.4416e-01 7.3903e-01 2.6097e-01 1.0000e-10 1.0000e-10 4.3186e-03 7.3019e-02 + 8.0000e-02 -8.6998e+00 5.3868e-02 9.4613e-01 7.3065e-01 2.6935e-01 1.0000e-10 1.0000e-10 4.4395e-03 7.7976e-02 + 8.5000e-02 -8.7122e+00 5.2047e-02 9.4795e-01 7.2251e-01 2.7749e-01 1.0000e-10 1.0000e-10 4.5535e-03 8.2936e-02 + 9.0000e-02 -8.7240e+00 5.0361e-02 9.4964e-01 7.1460e-01 2.8540e-01 1.0000e-10 1.0000e-10 4.6613e-03 8.7896e-02 + 9.5000e-02 -8.7352e+00 4.8794e-02 9.5121e-01 7.0692e-01 2.9308e-01 1.0000e-10 1.0000e-10 4.7634e-03 9.2859e-02 + 1.0000e-01 -8.7458e+00 4.7333e-02 9.5267e-01 6.9945e-01 3.0055e-01 1.0000e-10 1.0000e-10 4.8603e-03 9.7822e-02 + 1.0000e-01 -8.7458e+00 4.7333e-02 9.5267e-01 6.9945e-01 3.0055e-01 1.0000e-10 1.0000e-10 4.8603e-03 9.7822e-02 + 2.0000e-01 -8.8865e+00 3.0238e-02 9.6976e-01 5.8188e-01 4.1812e-01 1.0000e-10 1.0000e-10 6.1516e-03 1.9729e-01 + 3.0000e-01 -8.9624e+00 2.2575e-02 9.7743e-01 5.0176e-01 4.9824e-01 1.0000e-10 1.0000e-10 6.8584e-03 2.9695e-01 + 4.0000e-01 -9.0114e+00 1.8122e-02 9.8188e-01 4.4247e-01 5.5753e-01 1.0000e-10 1.0000e-10 7.3222e-03 3.9672e-01 + 5.0000e-01 -9.0462e+00 1.5184e-02 9.8482e-01 3.9641e-01 6.0359e-01 1.0000e-10 1.0000e-10 7.6555e-03 4.9654e-01 + 6.0000e-01 -9.0724e+00 1.3087e-02 9.8691e-01 3.5942e-01 6.4058e-01 1.0000e-10 1.0000e-10 7.9088e-03 5.9640e-01 + 7.0000e-01 -9.0929e+00 1.1512e-02 9.8849e-01 3.2896e-01 6.7104e-01 1.0000e-10 1.0000e-10 8.1089e-03 6.9629e-01 + 8.0000e-01 -9.1094e+00 1.0282e-02 9.8972e-01 3.0340e-01 6.9660e-01 1.0000e-10 1.0000e-10 8.2714e-03 7.9620e-01 + 9.0000e-01 -9.1231e+00 9.2937e-03 9.9071e-01 2.8162e-01 7.1838e-01 1.0000e-10 1.0000e-10 8.4064e-03 8.9612e-01 + 1.0000e+00 -9.1345e+00 8.4817e-03 9.9152e-01 2.6282e-01 7.3718e-01 1.0000e-10 1.0000e-10 8.5204e-03 9.9605e-01 + 1.1000e+00 -9.1443e+00 7.8020e-03 9.9220e-01 2.4642e-01 7.5358e-01 1.0000e-10 1.0000e-10 8.6182e-03 1.0960e+00 + 1.2000e+00 -9.1528e+00 7.2245e-03 9.9278e-01 2.3197e-01 7.6803e-01 1.0000e-10 1.0000e-10 8.7029e-03 1.1959e+00 + 1.3000e+00 -9.1601e+00 6.7275e-03 9.9327e-01 2.1915e-01 7.8085e-01 1.0000e-10 1.0000e-10 8.7772e-03 1.2959e+00 + 1.4000e+00 -9.1666e+00 6.2951e-03 9.9370e-01 2.0769e-01 7.9231e-01 1.0000e-10 1.0000e-10 8.8428e-03 1.3959e+00 + 1.5000e+00 -9.1724e+00 5.9155e-03 9.9408e-01 1.9738e-01 8.0262e-01 1.0000e-10 1.0000e-10 8.9012e-03 1.4958e+00 + 1.6000e+00 -9.1775e+00 5.5795e-03 9.9442e-01 1.8805e-01 8.1195e-01 1.0000e-10 1.0000e-10 8.9536e-03 1.5958e+00 + 1.7000e+00 -9.1822e+00 5.2798e-03 9.9472e-01 1.7958e-01 8.2042e-01 1.0000e-10 1.0000e-10 9.0008e-03 1.6958e+00 + 1.8000e+00 -9.1864e+00 5.0109e-03 9.9499e-01 1.7184e-01 8.2816e-01 1.0000e-10 1.0000e-10 9.0436e-03 1.7957e+00 + 1.9000e+00 -9.1902e+00 4.7683e-03 9.9523e-01 1.6475e-01 8.3525e-01 1.0000e-10 1.0000e-10 9.0826e-03 1.8957e+00 + 2.0000e+00 -9.1937e+00 4.5482e-03 9.9545e-01 1.5822e-01 8.4178e-01 1.0000e-10 1.0000e-10 9.1183e-03 1.9957e+00 + 2.1000e+00 -9.1969e+00 4.3477e-03 9.9565e-01 1.5219e-01 8.4781e-01 1.0000e-10 1.0000e-10 9.1510e-03 2.0957e+00 + 2.2000e+00 -9.1998e+00 4.1641e-03 9.9584e-01 1.4661e-01 8.5339e-01 1.0000e-10 1.0000e-10 9.1812e-03 2.1957e+00 + 2.3000e+00 -9.2025e+00 3.9956e-03 9.9600e-01 1.4143e-01 8.5857e-01 1.0000e-10 1.0000e-10 9.2091e-03 2.2956e+00 + 2.4000e+00 -9.2050e+00 3.8402e-03 9.9616e-01 1.3660e-01 8.6340e-01 1.0000e-10 1.0000e-10 9.2350e-03 2.3956e+00 + 2.5000e+00 -9.2073e+00 3.6964e-03 9.9630e-01 1.3209e-01 8.6791e-01 1.0000e-10 1.0000e-10 9.2591e-03 2.4956e+00 + 2.6000e+00 -9.2095e+00 3.5631e-03 9.9644e-01 1.2787e-01 8.7213e-01 1.0000e-10 1.0000e-10 9.2815e-03 2.5956e+00 + 2.7000e+00 -9.2115e+00 3.4392e-03 9.9656e-01 1.2391e-01 8.7609e-01 1.0000e-10 1.0000e-10 9.3025e-03 2.6956e+00 + 2.8000e+00 -9.2134e+00 3.3235e-03 9.9668e-01 1.2020e-01 8.7980e-01 1.0000e-10 1.0000e-10 9.3222e-03 2.7956e+00 + 2.9000e+00 -9.2152e+00 3.2155e-03 9.9678e-01 1.1670e-01 8.8330e-01 1.0000e-10 1.0000e-10 9.3406e-03 2.8956e+00 + 3.0000e+00 -9.2169e+00 3.1142e-03 9.9689e-01 1.1339e-01 8.8661e-01 1.0000e-10 1.0000e-10 9.3580e-03 2.9955e+00 + 3.1000e+00 -9.2185e+00 3.0192e-03 9.9698e-01 1.1027e-01 8.8973e-01 1.0000e-10 1.0000e-10 9.3743e-03 3.0955e+00 + 3.2000e+00 -9.2199e+00 2.9298e-03 9.9707e-01 1.0732e-01 8.9268e-01 1.0000e-10 1.0000e-10 9.3898e-03 3.1955e+00 + 3.3000e+00 -9.2213e+00 2.8456e-03 9.9715e-01 1.0453e-01 8.9547e-01 1.0000e-10 1.0000e-10 9.4044e-03 3.2955e+00 + 3.4000e+00 -9.2227e+00 2.7661e-03 9.9723e-01 1.0187e-01 8.9813e-01 1.0000e-10 1.0000e-10 9.4182e-03 3.3955e+00 + 3.5000e+00 -9.2239e+00 2.6909e-03 9.9731e-01 9.9347e-02 9.0065e-01 1.0000e-10 1.0000e-10 9.4313e-03 3.4955e+00 + 3.6000e+00 -9.2251e+00 2.6197e-03 9.9738e-01 9.6947e-02 9.0305e-01 1.0000e-10 1.0000e-10 9.4438e-03 3.5955e+00 + 3.7000e+00 -9.2263e+00 2.5522e-03 9.9745e-01 9.4659e-02 9.0534e-01 1.0000e-10 1.0000e-10 9.4556e-03 3.6955e+00 + 3.8000e+00 -9.2273e+00 2.4881e-03 9.9751e-01 9.2478e-02 9.0752e-01 1.0000e-10 1.0000e-10 9.4669e-03 3.7955e+00 + 3.9000e+00 -9.2284e+00 2.4271e-03 9.9757e-01 9.0395e-02 9.0961e-01 1.0000e-10 1.0000e-10 9.4776e-03 3.8955e+00 + 4.0000e+00 -9.2294e+00 2.3690e-03 9.9763e-01 8.8404e-02 9.1160e-01 1.0000e-10 1.0000e-10 9.4879e-03 3.9955e+00 + 4.1000e+00 -9.2303e+00 2.3137e-03 9.9769e-01 8.6499e-02 9.1350e-01 1.0000e-10 1.0000e-10 9.4977e-03 4.0955e+00 + 4.2000e+00 -9.2312e+00 2.2609e-03 9.9774e-01 8.4674e-02 9.1533e-01 1.0000e-10 1.0000e-10 9.5071e-03 4.1954e+00 + 4.3000e+00 -9.2320e+00 2.2105e-03 9.9779e-01 8.2925e-02 9.1707e-01 1.0000e-10 1.0000e-10 9.5160e-03 4.2954e+00 + 4.4000e+00 -9.2329e+00 2.1623e-03 9.9784e-01 8.1247e-02 9.1875e-01 1.0000e-10 1.0000e-10 9.5246e-03 4.3954e+00 + 4.5000e+00 -9.2337e+00 2.1161e-03 9.9788e-01 7.9636e-02 9.2036e-01 1.0000e-10 1.0000e-10 9.5329e-03 4.4954e+00 + 4.6000e+00 -9.2344e+00 2.0719e-03 9.9793e-01 7.8087e-02 9.2191e-01 1.0000e-10 1.0000e-10 9.5408e-03 4.5954e+00 + 4.7000e+00 -9.2351e+00 2.0294e-03 9.9797e-01 7.6598e-02 9.2340e-01 1.0000e-10 1.0000e-10 9.5484e-03 4.6954e+00 + 4.8000e+00 -9.2358e+00 1.9887e-03 9.9801e-01 7.5164e-02 9.2484e-01 1.0000e-10 1.0000e-10 9.5557e-03 4.7954e+00 + 4.9000e+00 -9.2365e+00 1.9496e-03 9.9805e-01 7.3784e-02 9.2622e-01 1.0000e-10 1.0000e-10 9.5628e-03 4.8954e+00 + 5.0000e+00 -9.2371e+00 1.9120e-03 9.9809e-01 7.2453e-02 9.2755e-01 1.0000e-10 1.0000e-10 9.5695e-03 4.9954e+00 + 5.1000e+00 -9.2378e+00 1.8758e-03 9.9812e-01 7.1169e-02 9.2883e-01 1.0000e-10 1.0000e-10 9.5761e-03 5.0954e+00 + 5.2000e+00 -9.2384e+00 1.8410e-03 9.9816e-01 6.9930e-02 9.3007e-01 1.0000e-10 1.0000e-10 9.5823e-03 5.1954e+00 + 5.3000e+00 -9.2389e+00 1.8074e-03 9.9819e-01 6.8733e-02 9.3127e-01 1.0000e-10 1.0000e-10 9.5884e-03 5.2954e+00 + 5.4000e+00 -9.2395e+00 1.7751e-03 9.9822e-01 6.7577e-02 9.3242e-01 1.0000e-10 1.0000e-10 9.5943e-03 5.3954e+00 + 5.5000e+00 -9.2400e+00 1.7439e-03 9.9826e-01 6.6459e-02 9.3354e-01 1.0000e-10 1.0000e-10 9.5999e-03 5.4954e+00 + 5.6000e+00 -9.2406e+00 1.7137e-03 9.9829e-01 6.5378e-02 9.3462e-01 1.0000e-10 1.0000e-10 9.6054e-03 5.5954e+00 + 5.7000e+00 -9.2411e+00 1.6846e-03 9.9832e-01 6.4331e-02 9.3567e-01 1.0000e-10 1.0000e-10 9.6107e-03 5.6954e+00 + 5.8000e+00 -9.2415e+00 1.6565e-03 9.9834e-01 6.3317e-02 9.3668e-01 1.0000e-10 1.0000e-10 9.6158e-03 5.7954e+00 + 5.9000e+00 -9.2420e+00 1.6293e-03 9.9837e-01 6.2335e-02 9.3766e-01 1.0000e-10 1.0000e-10 9.6208e-03 5.8954e+00 + 6.0000e+00 -9.2425e+00 1.6029e-03 9.9840e-01 6.1383e-02 9.3862e-01 1.0000e-10 1.0000e-10 9.6256e-03 5.9954e+00 + 6.1000e+00 -9.2429e+00 1.5774e-03 9.9842e-01 6.0459e-02 9.3954e-01 1.0000e-10 1.0000e-10 9.6303e-03 6.0954e+00 + 6.2000e+00 -9.2433e+00 1.5527e-03 9.9845e-01 5.9563e-02 9.4044e-01 1.0000e-10 1.0000e-10 9.6348e-03 6.1954e+00 + 6.3000e+00 -9.2438e+00 1.5288e-03 9.9847e-01 5.8693e-02 9.4131e-01 1.0000e-10 1.0000e-10 9.6392e-03 6.2954e+00 + 6.4000e+00 -9.2442e+00 1.5056e-03 9.9849e-01 5.7848e-02 9.4215e-01 1.0000e-10 1.0000e-10 9.6434e-03 6.3954e+00 + 6.5000e+00 -9.2446e+00 1.4831e-03 9.9852e-01 5.7027e-02 9.4297e-01 1.0000e-10 1.0000e-10 9.6475e-03 6.4954e+00 + 6.6000e+00 -9.2449e+00 1.4612e-03 9.9854e-01 5.6230e-02 9.4377e-01 1.0000e-10 1.0000e-10 9.6515e-03 6.5954e+00 + 6.7000e+00 -9.2453e+00 1.4400e-03 9.9856e-01 5.5454e-02 9.4455e-01 1.0000e-10 1.0000e-10 9.6554e-03 6.6953e+00 + 6.8000e+00 -9.2457e+00 1.4194e-03 9.9858e-01 5.4699e-02 9.4530e-01 1.0000e-10 1.0000e-10 9.6592e-03 6.7953e+00 + 6.9000e+00 -9.2460e+00 1.3994e-03 9.9860e-01 5.3965e-02 9.4604e-01 1.0000e-10 1.0000e-10 9.6629e-03 6.8953e+00 + 7.0000e+00 -9.2464e+00 1.3799e-03 9.9862e-01 5.3250e-02 9.4675e-01 1.0000e-10 1.0000e-10 9.6665e-03 6.9953e+00 + 7.1000e+00 -9.2467e+00 1.3610e-03 9.9864e-01 5.2553e-02 9.4745e-01 1.0000e-10 1.0000e-10 9.6700e-03 7.0953e+00 + 7.2000e+00 -9.2470e+00 1.3426e-03 9.9866e-01 5.1875e-02 9.4812e-01 1.0000e-10 1.0000e-10 9.6734e-03 7.1953e+00 + 7.3000e+00 -9.2473e+00 1.3247e-03 9.9868e-01 5.1214e-02 9.4879e-01 1.0000e-10 1.0000e-10 9.6767e-03 7.2953e+00 + 7.4000e+00 -9.2476e+00 1.3072e-03 9.9869e-01 5.0570e-02 9.4943e-01 1.0000e-10 1.0000e-10 9.6799e-03 7.3953e+00 + 7.5000e+00 -9.2479e+00 1.2902e-03 9.9871e-01 4.9942e-02 9.5006e-01 1.0000e-10 1.0000e-10 9.6831e-03 7.4953e+00 + 7.6000e+00 -9.2482e+00 1.2737e-03 9.9873e-01 4.9329e-02 9.5067e-01 1.0000e-10 1.0000e-10 9.6861e-03 7.5953e+00 + 7.7000e+00 -9.2485e+00 1.2575e-03 9.9874e-01 4.8731e-02 9.5127e-01 1.0000e-10 1.0000e-10 9.6891e-03 7.6953e+00 + 7.8000e+00 -9.2488e+00 1.2418e-03 9.9876e-01 4.8147e-02 9.5185e-01 1.0000e-10 1.0000e-10 9.6920e-03 7.7953e+00 + 7.9000e+00 -9.2490e+00 1.2264e-03 9.9877e-01 4.7577e-02 9.5242e-01 1.0000e-10 1.0000e-10 9.6949e-03 7.8953e+00 + 8.0000e+00 -9.2493e+00 1.2114e-03 9.9879e-01 4.7021e-02 9.5298e-01 1.0000e-10 1.0000e-10 9.6977e-03 7.9953e+00 + 8.1000e+00 -9.2496e+00 1.1968e-03 9.9880e-01 4.6477e-02 9.5352e-01 1.0000e-10 1.0000e-10 9.7004e-03 8.0953e+00 + 8.2000e+00 -9.2498e+00 1.1826e-03 9.9882e-01 4.5946e-02 9.5405e-01 1.0000e-10 1.0000e-10 9.7030e-03 8.1953e+00 + 8.3000e+00 -9.2501e+00 1.1686e-03 9.9883e-01 4.5427e-02 9.5457e-01 1.0000e-10 1.0000e-10 9.7056e-03 8.2953e+00 + 8.4000e+00 -9.2503e+00 1.1550e-03 9.9884e-01 4.4919e-02 9.5508e-01 1.0000e-10 1.0000e-10 9.7081e-03 8.3953e+00 + 8.5000e+00 -9.2505e+00 1.1418e-03 9.9886e-01 4.4423e-02 9.5558e-01 1.0000e-10 1.0000e-10 9.7106e-03 8.4953e+00 + 8.6000e+00 -9.2508e+00 1.1288e-03 9.9887e-01 4.3937e-02 9.5606e-01 1.0000e-10 1.0000e-10 9.7130e-03 8.5953e+00 + 8.7000e+00 -9.2510e+00 1.1161e-03 9.9888e-01 4.3462e-02 9.5654e-01 1.0000e-10 1.0000e-10 9.7154e-03 8.6953e+00 + 8.8000e+00 -9.2512e+00 1.1037e-03 9.9890e-01 4.2997e-02 9.5700e-01 1.0000e-10 1.0000e-10 9.7177e-03 8.7953e+00 + 8.9000e+00 -9.2514e+00 1.0915e-03 9.9891e-01 4.2542e-02 9.5746e-01 1.0000e-10 1.0000e-10 9.7200e-03 8.8953e+00 + 9.0000e+00 -9.2516e+00 1.0796e-03 9.9892e-01 4.2097e-02 9.5790e-01 1.0000e-10 1.0000e-10 9.7222e-03 8.9953e+00 + 9.1000e+00 -9.2518e+00 1.0680e-03 9.9893e-01 4.1661e-02 9.5834e-01 1.0000e-10 1.0000e-10 9.7244e-03 9.0953e+00 + 9.2000e+00 -9.2520e+00 1.0566e-03 9.9894e-01 4.1234e-02 9.5877e-01 1.0000e-10 1.0000e-10 9.7265e-03 9.1953e+00 + 9.3000e+00 -9.2522e+00 1.0455e-03 9.9895e-01 4.0815e-02 9.5919e-01 1.0000e-10 1.0000e-10 9.7286e-03 9.2953e+00 + 9.4000e+00 -9.2524e+00 1.0346e-03 9.9897e-01 4.0405e-02 9.5960e-01 1.0000e-10 1.0000e-10 9.7306e-03 9.3953e+00 + 9.5000e+00 -9.2526e+00 1.0239e-03 9.9898e-01 4.0003e-02 9.6000e-01 1.0000e-10 1.0000e-10 9.7326e-03 9.4953e+00 + 9.6000e+00 -9.2528e+00 1.0135e-03 9.9899e-01 3.9609e-02 9.6039e-01 1.0000e-10 1.0000e-10 9.7346e-03 9.5953e+00 + 9.7000e+00 -9.2530e+00 1.0032e-03 9.9900e-01 3.9222e-02 9.6078e-01 1.0000e-10 1.0000e-10 9.7365e-03 9.6953e+00 + 9.8000e+00 -9.2531e+00 9.9320e-04 9.9901e-01 3.8843e-02 9.6116e-01 1.0000e-10 1.0000e-10 9.7384e-03 9.7953e+00 + 9.9000e+00 -9.2533e+00 9.8336e-04 9.9902e-01 3.8472e-02 9.6153e-01 1.0000e-10 1.0000e-10 9.7402e-03 9.8953e+00 + 1.0000e+01 -9.2535e+00 9.7371e-04 9.9903e-01 3.8107e-02 9.6189e-01 1.0000e-10 1.0000e-10 9.7420e-03 9.9953e+00 diff --git a/phreeqc3-examples/ex11.out b/phreeqc3-examples/ex11.out index b95f8075..c9b25c64 100644 --- a/phreeqc3-examples/ex11.out +++ b/phreeqc3-examples/ex11.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -59,16 +60,16 @@ Initial solution 0. CaCl2 pH = 6.995 Charge balance pe = 13.632 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 152 + Specific Conductance (µS/cm, 25°C) = 155 Density (g/cm³) = 0.99710 Volume (L) = 1.00298 Viscosity (mPa s) = 0.89067 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.800e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 2.687e-21 + Total alkalinity (eq/kg) = -1.854e-20 Temperature (°C) = 25.00 - Electrical balance (eq) = 4.260e-18 + Electrical balance (eq) = 2.979e-18 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 4 Total H = 1.110124e+02 @@ -125,9 +126,9 @@ Initial solution 1. Initial solution for column Activity of water = 1.000 Ionic strength (mol/kgw) = 1.200e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.247e-19 + Total alkalinity (eq/kg) = -1.017e-18 Temperature (°C) = 25.00 - Electrical balance (eq) = -9.243e-17 + Electrical balance (eq) = -9.088e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 3 (7 overall) Total H = 1.110124e+02 diff --git a/phreeqc3-examples/ex11trn.sel b/phreeqc3-examples/ex11trn.sel index 3b0c3ea9..c1c2d809 100644 --- a/phreeqc3-examples/ex11trn.sel +++ b/phreeqc3-examples/ex11trn.sel @@ -7,96 +7,96 @@ 5 1.000000000001e-03 0.000000000000e+00 2.000000000001e-04 0.000000000000e+00 1.375000000000e-01 6 1.000000000001e-03 0.000000000000e+00 2.000000000001e-04 0.000000000000e+00 1.625000000000e-01 7 1.000000000001e-03 0.000000000000e+00 2.000000000001e-04 0.000000000000e+00 1.875000000000e-01 - 8 1.000000000001e-03 3.099695935215e-22 2.000000000001e-04 0.000000000000e+00 2.125000000000e-01 - 9 1.000000000001e-03 1.500942119490e-17 2.000000000001e-04 0.000000000000e+00 2.375000000000e-01 - 10 1.000000000001e-03 6.337830597343e-15 2.000000000001e-04 0.000000000000e+00 2.625000000000e-01 + 8 1.000000000001e-03 3.099695935214e-22 2.000000000001e-04 0.000000000000e+00 2.125000000000e-01 + 9 1.000000000001e-03 1.500942119489e-17 2.000000000001e-04 0.000000000000e+00 2.375000000000e-01 + 10 1.000000000001e-03 6.337830597342e-15 2.000000000001e-04 0.000000000000e+00 2.625000000000e-01 11 1.000000000001e-03 4.494808745371e-13 2.000000000001e-04 0.000000000000e+00 2.875000000000e-01 - 12 1.000000000001e-03 1.148716249619e-11 2.000000000001e-04 0.000000000000e+00 3.125000000000e-01 - 13 1.000000000001e-03 1.502206823479e-10 2.000000000001e-04 0.000000000000e+00 3.375000000000e-01 + 12 1.000000000001e-03 1.148716249618e-11 2.000000000001e-04 0.000000000000e+00 3.125000000000e-01 + 13 1.000000000001e-03 1.502206823478e-10 2.000000000001e-04 0.000000000000e+00 3.375000000000e-01 14 1.000000000001e-03 1.222542814082e-09 2.000000000001e-04 0.000000000000e+00 3.625000000000e-01 - 15 1.000000000001e-03 6.992469594649e-09 2.000000000001e-04 0.000000000000e+00 3.875000000000e-01 - 16 1.000000000001e-03 3.048043444698e-08 2.000000000001e-04 0.000000000000e+00 4.125000000000e-01 - 17 1.000000000001e-03 1.071736887963e-07 2.000000000002e-04 0.000000000000e+00 4.375000000000e-01 + 15 1.000000000001e-03 6.992469594648e-09 2.000000000001e-04 0.000000000000e+00 3.875000000000e-01 + 16 1.000000000001e-03 3.048043444697e-08 2.000000000001e-04 0.000000000000e+00 4.125000000000e-01 + 17 1.000000000000e-03 1.071736887963e-07 2.000000000002e-04 0.000000000000e+00 4.375000000000e-01 18 1.000000000000e-03 3.167880513057e-07 2.000000000004e-04 0.000000000000e+00 4.625000000000e-01 - 19 9.999999999996e-04 8.119152414854e-07 2.000000000010e-04 0.000000000000e+00 4.875000000000e-01 + 19 9.999999999996e-04 8.119152414853e-07 2.000000000010e-04 0.000000000000e+00 4.875000000000e-01 20 9.999999999969e-04 1.847753785443e-06 2.000000000038e-04 0.000000000000e+00 5.125000000000e-01 - 21 9.999999999827e-04 3.804229077196e-06 2.000000000179e-04 0.000000000000e+00 5.375000000000e-01 - 22 9.999999999205e-04 7.191769368189e-06 2.000000000800e-04 0.000000000000e+00 5.625000000000e-01 + 21 9.999999999827e-04 3.804229077195e-06 2.000000000179e-04 0.000000000000e+00 5.375000000000e-01 + 22 9.999999999205e-04 7.191769368188e-06 2.000000000800e-04 0.000000000000e+00 5.625000000000e-01 23 9.999999996780e-04 1.263506022590e-05 2.000000003226e-04 0.000000000000e+00 5.875000000000e-01 24 9.999999988273e-04 2.083413717341e-05 2.000000011732e-04 0.000000000000e+00 6.125000000000e-01 - 25 9.999999961127e-04 3.250742767802e-05 2.000000038882e-04 0.000000000000e+00 6.375000000000e-01 - 26 9.999999881437e-04 4.832522920787e-05 2.000000118574e-04 0.000000000000e+00 6.625000000000e-01 - 27 9.999999664327e-04 6.884373212030e-05 2.000000335677e-04 0.000000000000e+00 6.875000000000e-01 - 28 9.999999111053e-04 9.444901160400e-05 2.000000888947e-04 0.000000000000e+00 7.125000000000e-01 - 29 9.999997783000e-04 1.253179893826e-04 2.000002216984e-04 0.000000000000e+00 7.375000000000e-01 + 25 9.999999961127e-04 3.250742767801e-05 2.000000038882e-04 0.000000000000e+00 6.375000000000e-01 + 26 9.999999881436e-04 4.832522920786e-05 2.000000118574e-04 0.000000000000e+00 6.625000000000e-01 + 27 9.999999664326e-04 6.884373212029e-05 2.000000335677e-04 0.000000000000e+00 6.875000000000e-01 + 28 9.999999111053e-04 9.444901160399e-05 2.000000888947e-04 0.000000000000e+00 7.125000000000e-01 + 29 9.999997782999e-04 1.253179893826e-04 2.000002216984e-04 0.000000000000e+00 7.375000000000e-01 30 9.999994762263e-04 1.614000573149e-04 2.000005237713e-04 0.000000000000e+00 7.625000000000e-01 - 31 9.999988216502e-04 2.024196971846e-04 2.000011783465e-04 0.000000000000e+00 7.875000000000e-01 - 32 9.999974639178e-04 2.478976466375e-04 2.000025360781e-04 0.000000000000e+00 8.125000000000e-01 - 33 9.999947567697e-04 2.971862880220e-04 2.000052432252e-04 0.000000000000e+00 8.375000000000e-01 - 34 9.999895484281e-04 3.495140484287e-04 2.000104515659e-04 0.000000000000e+00 8.625000000000e-01 - 35 9.999798465392e-04 4.040335770973e-04 2.000201534538e-04 0.000000000000e+00 8.875000000000e-01 - 36 9.999622949298e-04 4.598690859752e-04 2.000377050624e-04 0.000000000000e+00 9.125000000000e-01 - 37 9.999313715132e-04 5.161592448425e-04 2.000686284782e-04 0.000000000000e+00 9.375000000000e-01 - 38 9.998781779397e-04 5.720931802493e-04 2.001218220510e-04 0.000000000000e+00 9.625000000000e-01 - 39 9.997886375331e-04 6.269382550212e-04 2.002113624570e-04 0.000000000000e+00 9.875000000000e-01 - 40 9.996408433314e-04 6.800592808324e-04 2.003591566593e-04 0.000000000000e+00 1.012500000000e+00 - 41 9.994011963775e-04 7.309295762326e-04 2.005988036125e-04 0.000000000000e+00 1.037500000000e+00 - 42 9.990188398152e-04 7.791348087969e-04 2.009811601743e-04 0.000000000000e+00 1.062500000000e+00 - 43 9.984177243188e-04 8.243708674759e-04 2.015822756709e-04 0.000000000000e+00 1.087500000000e+00 - 44 9.974854440236e-04 8.664371340742e-04 2.025145559657e-04 0.000000000000e+00 1.112500000000e+00 - 45 9.960577965330e-04 9.052265038234e-04 2.039422034561e-04 0.000000000000e+00 1.137500000000e+00 - 46 9.938979448382e-04 9.407133877484e-04 2.061020551496e-04 0.000000000000e+00 1.162500000000e+00 - 47 9.906693148736e-04 9.729407531500e-04 2.093306851138e-04 0.000000000000e+00 1.187500000000e+00 - 48 9.859023902773e-04 1.002007055046e-03 2.140976097099e-04 0.000000000000e+00 1.212500000000e+00 - 49 9.789581361260e-04 1.028053705197e-03 2.210418638610e-04 0.000000000000e+00 1.237500000000e+00 - 50 9.689960048286e-04 1.051253532901e-03 2.310039951582e-04 0.000000000000e+00 1.262500000000e+00 - 51 9.549633447245e-04 1.071800523379e-03 2.450366552621e-04 0.000000000000e+00 1.287500000000e+00 - 52 9.356347670799e-04 1.089900980030e-03 2.643652329064e-04 0.000000000000e+00 1.312500000000e+00 - 53 9.097384638238e-04 1.105766147280e-03 2.902615361621e-04 0.000000000000e+00 1.337500000000e+00 - 54 8.761960899973e-04 1.119606249493e-03 3.238039099884e-04 0.000000000000e+00 1.362500000000e+00 - 55 8.344533301405e-04 1.131625845338e-03 3.655466698448e-04 0.000000000000e+00 1.387500000000e+00 - 56 7.847919650473e-04 1.142020362046e-03 4.152080349377e-04 0.000000000000e+00 1.412500000000e+00 - 57 7.284538372956e-04 1.150973656035e-03 4.715461626890e-04 3.531139650447e-28 1.437500000000e+00 - 58 6.674661295227e-04 1.158656441394e-03 5.325338704615e-04 4.216133178628e-26 1.462500000000e+00 - 59 6.042301758574e-04 1.165225432017e-03 5.957698241264e-04 2.112623929983e-24 1.487500000000e+00 - 60 5.410707042898e-04 1.170823053924e-03 6.589292956936e-04 9.154192241727e-23 1.512500000000e+00 - 61 4.799177066702e-04 1.175577598780e-03 7.200822933128e-04 3.514353871319e-21 1.537500000000e+00 - 62 4.221746364517e-04 1.179603706072e-03 7.778253635310e-04 1.207213754715e-19 1.562500000000e+00 - 63 3.687296865687e-04 1.183003078326e-03 8.312703134136e-04 3.694071268522e-18 1.587500000000e+00 - 64 3.200378094464e-04 1.185865350144e-03 8.799621905353e-04 1.035721724574e-16 1.612500000000e+00 - 65 2.762284431581e-04 1.188269047043e-03 9.237715568181e-04 2.657316487854e-15 1.637500000000e+00 - 66 2.371960440987e-04 1.190282583742e-03 9.628039557569e-04 6.272120679345e-14 1.662500000000e+00 - 67 2.026802660674e-04 1.191965263410e-03 9.973197311050e-04 1.404108206719e-12 1.687500000000e+00 - 68 1.723175379750e-04 1.193368249525e-03 1.027682402586e-03 2.970943178905e-11 1.712500000000e+00 - 69 1.456986526363e-04 1.194535490349e-03 1.054300174205e-03 5.865691832992e-10 1.737500000000e+00 - 70 1.223834694922e-04 1.195504582884e-03 1.077593516928e-03 1.150677988409e-08 1.762500000000e+00 - 71 1.019262303181e-04 1.196307568531e-03 1.097657241060e-03 2.082643005687e-07 1.787500000000e+00 - 72 8.381480436901e-05 1.196971656899e-03 1.109525476375e-03 3.329859617620e-06 1.812500000000e+00 - 73 6.668225222763e-05 1.197519877322e-03 1.024937206780e-03 5.419027048699e-05 1.837500000000e+00 - 74 5.053198367588e-05 1.197971659937e-03 7.350507107017e-04 2.072086528056e-04 1.862500000000e+00 - 75 3.879701357384e-05 1.198343349753e-03 5.356918142740e-04 3.127555860725e-04 1.887500000000e+00 - 76 3.007678322714e-05 1.198648658204e-03 4.021188008075e-04 3.839022079803e-04 1.912500000000e+00 - 77 2.344463549477e-05 1.198899057198e-03 3.068522371398e-04 4.348515636811e-04 1.937500000000e+00 - 78 1.834047972303e-05 1.199104120994e-03 2.366187847935e-04 4.725203677407e-04 1.962500000000e+00 - 79 1.438416333579e-05 1.199271821253e-03 1.838015689079e-04 5.009071338775e-04 1.987500000000e+00 - 80 1.130287552752e-05 1.199408780438e-03 1.435541337147e-04 5.225714953785e-04 2.012500000000e+00 - 81 8.894854154079e-06 1.199520488471e-03 1.125953626074e-04 5.392548916190e-04 2.037500000000e+00 - 82 7.008145850795e-06 1.199611487223e-03 8.861328635320e-05 5.521892838979e-04 2.062500000000e+00 - 83 5.526939767874e-06 1.199685527006e-03 6.993373977280e-05 5.622696602297e-04 2.087500000000e+00 - 84 4.362237388662e-06 1.199745698858e-03 5.532050326723e-05 5.701586296722e-04 2.112500000000e+00 - 85 3.445231625609e-06 1.199794545991e-03 4.384740222240e-05 5.763536830762e-04 2.137500000000e+00 - 86 2.722483623507e-06 1.199834157394e-03 3.481279241271e-05 5.812323619830e-04 2.162500000000e+00 - 87 2.152343734149e-06 1.199866246233e-03 2.768046312183e-05 5.850835965728e-04 2.187500000000e+00 - 88 1.702259901998e-06 1.199892215323e-03 2.203774543631e-05 5.881299973321e-04 2.212500000000e+00 - 89 1.346733078605e-06 1.199913211686e-03 1.756522033718e-05 5.905440232932e-04 2.237500000000e+00 - 90 1.065752199291e-06 1.199930171882e-03 1.401446577322e-05 5.924598910147e-04 2.262500000000e+00 - 91 8.435890597760e-07 1.199943859609e-03 1.119149963190e-05 5.939824556553e-04 2.287500000000e+00 - 92 6.678659094751e-07 1.199954896813e-03 8.944331673348e-06 5.951939012097e-04 2.312500000000e+00 - 93 5.288312745980e-07 1.199963789378e-03 7.153523668271e-06 5.961588225295e-04 2.337500000000e+00 - 94 4.187957414419e-07 1.199970948302e-03 5.724978921438e-06 5.969281126694e-04 2.362500000000e+00 - 95 3.316912256402e-07 1.199976707113e-03 4.584400974699e-06 5.975419539006e-04 2.387500000000e+00 - 96 2.627259549752e-07 1.199981336185e-03 3.673012861550e-06 5.980321305924e-04 2.412500000000e+00 - 97 2.081138874130e-07 1.199985054463e-03 2.944235324396e-06 5.984238253947e-04 2.437500000000e+00 - 98 1.648621779962e-07 1.199988039067e-03 2.361099157045e-06 5.987370193330e-04 2.462500000000e+00 - 99 1.306040218714e-07 1.199990433149e-03 1.894222604006e-06 5.989875866876e-04 2.487500000000e+00 - 100 1.034670378744e-07 1.199992352295e-03 1.520225735969e-06 5.991881536136e-04 2.512500000000e+00 + 31 9.999988216501e-04 2.024196971846e-04 2.000011783465e-04 0.000000000000e+00 7.875000000000e-01 + 32 9.999974639177e-04 2.478976466374e-04 2.000025360780e-04 0.000000000000e+00 8.125000000000e-01 + 33 9.999947567695e-04 2.971862880219e-04 2.000052432252e-04 0.000000000000e+00 8.375000000000e-01 + 34 9.999895484279e-04 3.495140484286e-04 2.000104515658e-04 0.000000000000e+00 8.625000000000e-01 + 35 9.999798465390e-04 4.040335770972e-04 2.000201534538e-04 0.000000000000e+00 8.875000000000e-01 + 36 9.999622949296e-04 4.598690859751e-04 2.000377050623e-04 0.000000000000e+00 9.125000000000e-01 + 37 9.999313715129e-04 5.161592448424e-04 2.000686284782e-04 0.000000000000e+00 9.375000000000e-01 + 38 9.998781779394e-04 5.720931802492e-04 2.001218220509e-04 0.000000000000e+00 9.625000000000e-01 + 39 9.997886375328e-04 6.269382550211e-04 2.002113624569e-04 0.000000000000e+00 9.875000000000e-01 + 40 9.996408433311e-04 6.800592808323e-04 2.003591566592e-04 0.000000000000e+00 1.012500000000e+00 + 41 9.994011963772e-04 7.309295762325e-04 2.005988036124e-04 0.000000000000e+00 1.037500000000e+00 + 42 9.990188398148e-04 7.791348087968e-04 2.009811601742e-04 0.000000000000e+00 1.062500000000e+00 + 43 9.984177243185e-04 8.243708674758e-04 2.015822756708e-04 0.000000000000e+00 1.087500000000e+00 + 44 9.974854440232e-04 8.664371340741e-04 2.025145559656e-04 0.000000000000e+00 1.112500000000e+00 + 45 9.960577965326e-04 9.052265038233e-04 2.039422034560e-04 0.000000000000e+00 1.137500000000e+00 + 46 9.938979448378e-04 9.407133877483e-04 2.061020551494e-04 0.000000000000e+00 1.162500000000e+00 + 47 9.906693148732e-04 9.729407531498e-04 2.093306851137e-04 0.000000000000e+00 1.187500000000e+00 + 48 9.859023902769e-04 1.002007055046e-03 2.140976097098e-04 0.000000000000e+00 1.212500000000e+00 + 49 9.789581361256e-04 1.028053705197e-03 2.210418638608e-04 0.000000000000e+00 1.237500000000e+00 + 50 9.689960048283e-04 1.051253532901e-03 2.310039951580e-04 0.000000000000e+00 1.262500000000e+00 + 51 9.549633447242e-04 1.071800523379e-03 2.450366552618e-04 0.000000000000e+00 1.287500000000e+00 + 52 9.356347670797e-04 1.089900980030e-03 2.643652329060e-04 0.000000000000e+00 1.312500000000e+00 + 53 9.097384638237e-04 1.105766147280e-03 2.902615361617e-04 0.000000000000e+00 1.337500000000e+00 + 54 8.761960899973e-04 1.119606249493e-03 3.238039099878e-04 0.000000000000e+00 1.362500000000e+00 + 55 8.344533301406e-04 1.131625845338e-03 3.655466698441e-04 0.000000000000e+00 1.387500000000e+00 + 56 7.847919650475e-04 1.142020362045e-03 4.152080349369e-04 0.000000000000e+00 1.412500000000e+00 + 57 7.284538372959e-04 1.150973656035e-03 4.715461626881e-04 3.531139650212e-28 1.437500000000e+00 + 58 6.674661295231e-04 1.158656441394e-03 5.325338704605e-04 4.216133178351e-26 1.462500000000e+00 + 59 6.042301758578e-04 1.165225432017e-03 5.957698241254e-04 2.112623929847e-24 1.487500000000e+00 + 60 5.410707042902e-04 1.170823053923e-03 6.589292956926e-04 9.154192241146e-23 1.512500000000e+00 + 61 4.799177066706e-04 1.175577598779e-03 7.200822933118e-04 3.514353871101e-21 1.537500000000e+00 + 62 4.221746364521e-04 1.179603706071e-03 7.778253635299e-04 1.207213754641e-19 1.562500000000e+00 + 63 3.687296865690e-04 1.183003078326e-03 8.312703134126e-04 3.694071268300e-18 1.587500000000e+00 + 64 3.200378094467e-04 1.185865350144e-03 8.799621905343e-04 1.035721724513e-16 1.612500000000e+00 + 65 2.762284431584e-04 1.188269047043e-03 9.237715568171e-04 2.657316487699e-15 1.637500000000e+00 + 66 2.371960440990e-04 1.190282583741e-03 9.628039557559e-04 6.272120678983e-14 1.662500000000e+00 + 67 2.026802660677e-04 1.191965263410e-03 9.973197311041e-04 1.404108206640e-12 1.687500000000e+00 + 68 1.723175379753e-04 1.193368249524e-03 1.027682402586e-03 2.970943178733e-11 1.712500000000e+00 + 69 1.456986526365e-04 1.194535490349e-03 1.054300174205e-03 5.865691832664e-10 1.737500000000e+00 + 70 1.223834694923e-04 1.195504582884e-03 1.077593516927e-03 1.150677988345e-08 1.762500000000e+00 + 71 1.019262303182e-04 1.196307568531e-03 1.097657241059e-03 2.082643005567e-07 1.787500000000e+00 + 72 8.381480436917e-05 1.196971656899e-03 1.109525476375e-03 3.329859617447e-06 1.812500000000e+00 + 73 6.668225222783e-05 1.197519877322e-03 1.024937206784e-03 5.419027048444e-05 1.837500000000e+00 + 74 5.053198367604e-05 1.197971659937e-03 7.350507107061e-04 2.072086528030e-04 1.862500000000e+00 + 75 3.879701357395e-05 1.198343349753e-03 5.356918142768e-04 3.127555860708e-04 1.887500000000e+00 + 76 3.007678322722e-05 1.198648658204e-03 4.021188008094e-04 3.839022079790e-04 1.912500000000e+00 + 77 2.344463549483e-05 1.198899057198e-03 3.068522371412e-04 4.348515636801e-04 1.937500000000e+00 + 78 1.834047972307e-05 1.199104120993e-03 2.366187847945e-04 4.725203677398e-04 1.962500000000e+00 + 79 1.438416333582e-05 1.199271821253e-03 1.838015689086e-04 5.009071338768e-04 1.987500000000e+00 + 80 1.130287552755e-05 1.199408780437e-03 1.435541337153e-04 5.225714953778e-04 2.012500000000e+00 + 81 8.894854154099e-06 1.199520488471e-03 1.125953626079e-04 5.392548916185e-04 2.037500000000e+00 + 82 7.008145850810e-06 1.199611487223e-03 8.861328635354e-05 5.521892838974e-04 2.062500000000e+00 + 83 5.526939767886e-06 1.199685527005e-03 6.993373977306e-05 5.622696602292e-04 2.087500000000e+00 + 84 4.362237388672e-06 1.199745698858e-03 5.532050326743e-05 5.701586296717e-04 2.112500000000e+00 + 85 3.445231625616e-06 1.199794545990e-03 4.384740222256e-05 5.763536830758e-04 2.137500000000e+00 + 86 2.722483623513e-06 1.199834157394e-03 3.481279241283e-05 5.812323619826e-04 2.162500000000e+00 + 87 2.152343734153e-06 1.199866246232e-03 2.768046312193e-05 5.850835965725e-04 2.187500000000e+00 + 88 1.702259902002e-06 1.199892215323e-03 2.203774543638e-05 5.881299973317e-04 2.212500000000e+00 + 89 1.346733078607e-06 1.199913211686e-03 1.756522033724e-05 5.905440232928e-04 2.237500000000e+00 + 90 1.065752199293e-06 1.199930171882e-03 1.401446577327e-05 5.924598910143e-04 2.262500000000e+00 + 91 8.435890597776e-07 1.199943859609e-03 1.119149963194e-05 5.939824556550e-04 2.287500000000e+00 + 92 6.678659094764e-07 1.199954896813e-03 8.944331673377e-06 5.951939012093e-04 2.312500000000e+00 + 93 5.288312745990e-07 1.199963789378e-03 7.153523668295e-06 5.961588225292e-04 2.337500000000e+00 + 94 4.187957414427e-07 1.199970948301e-03 5.724978921457e-06 5.969281126691e-04 2.362500000000e+00 + 95 3.316912256408e-07 1.199976707113e-03 4.584400974714e-06 5.975419539002e-04 2.387500000000e+00 + 96 2.627259549757e-07 1.199981336185e-03 3.673012861562e-06 5.980321305921e-04 2.412500000000e+00 + 97 2.081138874134e-07 1.199985054462e-03 2.944235324406e-06 5.984238253944e-04 2.437500000000e+00 + 98 1.648621779965e-07 1.199988039067e-03 2.361099157053e-06 5.987370193327e-04 2.462500000000e+00 + 99 1.306040218716e-07 1.199990433149e-03 1.894222604012e-06 5.989875866872e-04 2.487500000000e+00 + 100 1.034670378746e-07 1.199992352295e-03 1.520225735974e-06 5.991881536132e-04 2.512500000000e+00 diff --git a/phreeqc3-examples/ex12.out b/phreeqc3-examples/ex12.out index b7047e21..3ce78bc9 100644 --- a/phreeqc3-examples/ex12.out +++ b/phreeqc3-examples/ex12.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/phreeqc3-examples/ex12.sel b/phreeqc3-examples/ex12.sel index 3aeab6d2..5bafa096 100644 --- a/phreeqc3-examples/ex12.sel +++ b/phreeqc3-examples/ex12.sel @@ -2,7 +2,7 @@ -99 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 -99 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 -99 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0 2.400000000000e+01 2.400000000001e+01 0.000000000000e+00 2.400000000001e+01 + 0 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 0.166666 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 0.499999 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 0.833333 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 @@ -63,64 +63,64 @@ 19.1666 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.5 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.8333 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0 2.400000000000e+01 2.400000000001e+01 0.000000000000e+00 2.400000000001e+01 - 0.166666 2.173421535788e+01 2.173403615953e+01 2.265963837555e+00 2.269804797033e+01 - 0.499999 1.732877881413e+01 1.732819001088e+01 6.671809981450e+00 2.011807085413e+01 - 0.833333 1.328084086748e+01 1.327978568454e+01 1.072021430459e+01 1.760856603205e+01 - 1.16667 9.764795286473e+00 9.763307030588e+00 1.423669295684e+01 1.521227157407e+01 - 1.5 6.876991640216e+00 6.875215357914e+00 1.712478462909e+01 1.296595961052e+01 - 1.83333 4.633455928133e+00 4.631602980060e+00 1.936839700748e+01 1.089879733963e+01 - 2.16666 2.983966658034e+00 2.982242889576e+00 2.101775709911e+01 9.031344427785e+00 - 2.5 1.835677067050e+00 1.834226374349e+00 2.216577361581e+01 7.375229710913e+00 - 2.83333 1.078314727713e+00 1.077198297073e+00 2.292280169465e+01 5.933476222847e+00 - 3.16666 6.047305557783e-01 6.039382767912e-01 2.339606171644e+01 4.701379781822e+00 - 3.5 3.237709470080e-01 3.232490525631e-01 2.367675094204e+01 3.667800399955e+00 - 3.83333 1.655104664086e-01 1.651896628001e-01 2.383481033299e+01 2.816701882845e+00 - 4.16666 8.080257204240e-02 8.061777229747e-02 2.391938222449e+01 2.128773573946e+00 - 4.5 3.768568646672e-02 3.758557520673e-02 2.396241442239e+01 1.582986272154e+00 - 4.83333 1.679767756894e-02 1.674652868457e-02 2.398325346955e+01 1.157966472263e+00 - 5.16666 7.158752063679e-03 7.134045500772e-03 2.399286595323e+01 8.331126368302e-01 - 5.49999 2.918449214332e-03 2.907143229950e-03 2.399709285587e+01 5.894176946330e-01 - 5.83333 1.138722696040e-03 1.133812460283e-03 2.399886618691e+01 4.099979928623e-01 - 6.16666 4.254688736287e-04 4.234417524586e-04 2.399957655782e+01 2.803568840130e-01 - 6.49999 1.523139982618e-04 1.515173752174e-04 2.399984848234e+01 1.884293356575e-01 - 6.83333 5.227267557720e-05 5.197429168621e-05 2.399994802552e+01 1.244625136586e-01 - 7.16666 1.720732480116e-05 1.710067686707e-05 2.399998289920e+01 8.078763518550e-02 - 7.49999 5.436192373459e-06 5.399780020750e-06 2.399999460014e+01 5.153271367857e-02 - 7.83333 1.649130959657e-06 1.637243353855e-06 2.399999836271e+01 3.231654723820e-02 - 8.16666 4.806491381349e-07 4.769347036536e-07 2.399999952304e+01 1.995365519989e-02 - 8.49999 1.346725366297e-07 1.335606226395e-07 2.399999986642e+01 1.218958904341e-02 - 8.83332 3.634765898121e-08 3.602792250425e-08 2.399999996396e+01 7.477287156792e-03 - 9.16666 9.688623034758e-09 9.597781456181e-09 2.399999999040e+01 4.798487471579e-03 - 9.49999 3.521368975345e-09 3.486221174492e-09 2.399999999651e+01 3.529761278079e-03 - 9.83332 5.266906600210e-09 5.215747970469e-09 2.399999999478e+01 3.350250042338e-03 - 10.1667 1.826871464229e-08 1.810246493771e-08 2.399999998189e+01 4.187235209478e-03 - 10.5 6.734356349056e-08 6.676736728834e-08 2.399999993323e+01 6.195716015130e-03 - 10.8333 2.402639314420e-07 2.383343475330e-07 2.399999976165e+01 9.768664014259e-03 - 11.1667 8.242843018529e-07 8.180891310089e-07 2.399999918189e+01 1.557505013667e-02 - 11.5 2.716922549622e-06 2.697877300180e-06 2.399999730209e+01 2.462264894765e-02 - 11.8333 8.598959192629e-06 8.542946913497e-06 2.399999145700e+01 3.834165440595e-02 - 12.1667 2.611819663843e-05 2.596074280449e-05 2.399997403917e+01 5.868305693760e-02 - 12.5 7.608967015818e-05 7.566701745603e-05 2.399992433285e+01 8.822247450201e-02 - 12.8333 2.124941138159e-04 2.114118449121e-04 2.399978858796e+01 1.302558794738e-01 - 13.1667 5.685367828663e-04 5.658959587677e-04 2.399943410375e+01 1.888688939345e-01 - 13.5 1.456506511045e-03 1.450373187820e-03 2.399854962640e+01 2.689568433456e-01 - 13.8333 3.570772369452e-03 3.557230846963e-03 2.399644276858e+01 3.761696764504e-01 - 14.1667 8.372702446682e-03 8.344318209107e-03 2.399165568100e+01 5.167554989993e-01 - 14.5 1.876668623423e-02 1.871028306260e-02 2.398128971588e+01 6.972801618698e-01 - 14.8333 4.018855158439e-02 4.008246069530e-02 2.395991753791e+01 9.242091443387e-01 - 15.1667 8.218587185627e-02 8.199729506176e-02 2.391800270314e+01 1.203352315083e+00 - 15.5 1.604262488969e-01 1.601100284715e-01 2.383988996926e+01 1.539191520809e+00 - 15.8333 2.987859018573e-01 2.982865097096e-01 2.370171348749e+01 1.934133647612e+00 - 16.1667 5.307585250720e-01 5.300169112942e-01 2.346998308535e+01 2.387754908519e+00 - 16.5 8.989956902916e-01 8.979611508073e-01 2.310203884528e+01 2.896121734266e+00 - 16.8333 1.451582042996e+00 1.450226361452e+00 2.254977363414e+01 3.451285434102e+00 - 17.1666 2.233972730862e+00 2.232300602876e+00 2.176769939234e+01 4.041047732562e+00 - 17.5 3.276610346604e+00 3.274658958333e+00 2.072534103671e+01 4.649079608378e+00 - 17.8333 4.580032365347e+00 4.577856581120e+00 1.942214341402e+01 5.255445898757e+00 - 18.1666 6.101263069883e+00 6.098911107801e+00 1.790108888776e+01 5.837544906627e+00 - 18.5 7.746550873541e+00 7.744044086582e+00 1.625595590970e+01 6.371420572386e+00 - 18.8333 9.375124349924e+00 9.372456106636e+00 1.462754389061e+01 6.833351769771e+00 - 19.1666 1.081616435699e+01 1.081332243663e+01 1.318667756164e+01 7.201577340319e+00 - 19.5 1.189711477283e+01 1.189411416971e+01 1.210588582944e+01 7.457984760712e+00 - 19.8333 1.247718192302e+01 1.247408415261e+01 1.152591584704e+01 7.589581188890e+00 + 0 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 + 0.166666 2.173421535788e+01 2.173403615953e+01 2.265963837554e+00 2.269804797032e+01 + 0.499999 1.732877881413e+01 1.732819001087e+01 6.671809981447e+00 2.011807085412e+01 + 0.833333 1.328084086748e+01 1.327978568454e+01 1.072021430458e+01 1.760856603204e+01 + 1.16667 9.764795286473e+00 9.763307030585e+00 1.423669295683e+01 1.521227157407e+01 + 1.5 6.876991640216e+00 6.875215357913e+00 1.712478462908e+01 1.296595961051e+01 + 1.83333 4.633455928133e+00 4.631602980060e+00 1.936839700747e+01 1.089879733963e+01 + 2.16666 2.983966658034e+00 2.982242889576e+00 2.101775709910e+01 9.031344427781e+00 + 2.5 1.835677067050e+00 1.834226374349e+00 2.216577361580e+01 7.375229710910e+00 + 2.83333 1.078314727713e+00 1.077198297073e+00 2.292280169464e+01 5.933476222844e+00 + 3.16666 6.047305557783e-01 6.039382767914e-01 2.339606171644e+01 4.701379781820e+00 + 3.5 3.237709470080e-01 3.232490525632e-01 2.367675094204e+01 3.667800399953e+00 + 3.83333 1.655104664086e-01 1.651896628001e-01 2.383481033299e+01 2.816701882844e+00 + 4.16666 8.080257204240e-02 8.061777229753e-02 2.391938222449e+01 2.128773573946e+00 + 4.5 3.768568646672e-02 3.758557520676e-02 2.396241442239e+01 1.582986272153e+00 + 4.83333 1.679767756894e-02 1.674652868459e-02 2.398325346955e+01 1.157966472262e+00 + 5.16666 7.158752063679e-03 7.134045500782e-03 2.399286595322e+01 8.331126368298e-01 + 5.49999 2.918449214332e-03 2.907143229955e-03 2.399709285586e+01 5.894176946328e-01 + 5.83333 1.138722696040e-03 1.133812460285e-03 2.399886618691e+01 4.099979928622e-01 + 6.16666 4.254688736287e-04 4.234417524596e-04 2.399957655782e+01 2.803568840129e-01 + 6.49999 1.523139982618e-04 1.515173752178e-04 2.399984848233e+01 1.884293356574e-01 + 6.83333 5.227267557720e-05 5.197429168637e-05 2.399994802552e+01 1.244625136586e-01 + 7.16666 1.720732480116e-05 1.710067686712e-05 2.399998289920e+01 8.078763518547e-02 + 7.49999 5.436192373459e-06 5.399780020770e-06 2.399999460014e+01 5.153271367855e-02 + 7.83333 1.649130959657e-06 1.637243353861e-06 2.399999836271e+01 3.231654723819e-02 + 8.16666 4.806491381349e-07 4.769347036557e-07 2.399999952303e+01 1.995365519988e-02 + 8.49999 1.346725366297e-07 1.335606226401e-07 2.399999986642e+01 1.218958904340e-02 + 8.83332 3.634765898121e-08 3.602792250445e-08 2.399999996396e+01 7.477287156789e-03 + 9.16666 9.688623034758e-09 9.597781456237e-09 2.399999999039e+01 4.798487471577e-03 + 9.49999 3.521368975345e-09 3.486221174512e-09 2.399999999651e+01 3.529761278078e-03 + 9.83332 5.266906600210e-09 5.215747970494e-09 2.399999999478e+01 3.350250042338e-03 + 10.1667 1.826871464229e-08 1.810246493779e-08 2.399999998189e+01 4.187235209478e-03 + 10.5 6.734356349056e-08 6.676736728859e-08 2.399999993322e+01 6.195716015130e-03 + 10.8333 2.402639314420e-07 2.383343475339e-07 2.399999976165e+01 9.768664014259e-03 + 11.1667 8.242843018529e-07 8.180891310115e-07 2.399999918189e+01 1.557505013666e-02 + 11.5 2.716922549622e-06 2.697877300187e-06 2.399999730208e+01 2.462264894765e-02 + 11.8333 8.598959192629e-06 8.542946913518e-06 2.399999145699e+01 3.834165440595e-02 + 12.1667 2.611819663843e-05 2.596074280454e-05 2.399997403917e+01 5.868305693760e-02 + 12.5 7.608967015818e-05 7.566701745618e-05 2.399992433285e+01 8.822247450200e-02 + 12.8333 2.124941138159e-04 2.114118449125e-04 2.399978858795e+01 1.302558794738e-01 + 13.1667 5.685367828663e-04 5.658959587685e-04 2.399943410375e+01 1.888688939345e-01 + 13.5 1.456506511045e-03 1.450373187822e-03 2.399854962640e+01 2.689568433456e-01 + 13.8333 3.570772369452e-03 3.557230846966e-03 2.399644276858e+01 3.761696764504e-01 + 14.1667 8.372702446682e-03 8.344318209114e-03 2.399165568100e+01 5.167554989993e-01 + 14.5 1.876668623423e-02 1.871028306261e-02 2.398128971588e+01 6.972801618698e-01 + 14.8333 4.018855158439e-02 4.008246069532e-02 2.395991753791e+01 9.242091443386e-01 + 15.1667 8.218587185627e-02 8.199729506180e-02 2.391800270313e+01 1.203352315083e+00 + 15.5 1.604262488969e-01 1.601100284715e-01 2.383988996925e+01 1.539191520808e+00 + 15.8333 2.987859018573e-01 2.982865097097e-01 2.370171348749e+01 1.934133647612e+00 + 16.1667 5.307585250720e-01 5.300169112943e-01 2.346998308535e+01 2.387754908519e+00 + 16.5 8.989956902916e-01 8.979611508074e-01 2.310203884528e+01 2.896121734265e+00 + 16.8333 1.451582042996e+00 1.450226361452e+00 2.254977363414e+01 3.451285434101e+00 + 17.1666 2.233972730862e+00 2.232300602876e+00 2.176769939234e+01 4.041047732561e+00 + 17.5 3.276610346604e+00 3.274658958333e+00 2.072534103671e+01 4.649079608377e+00 + 17.8333 4.580032365347e+00 4.577856581120e+00 1.942214341402e+01 5.255445898756e+00 + 18.1666 6.101263069883e+00 6.098911107801e+00 1.790108888775e+01 5.837544906627e+00 + 18.5 7.746550873541e+00 7.744044086582e+00 1.625595590970e+01 6.371420572385e+00 + 18.8333 9.375124349924e+00 9.372456106636e+00 1.462754389061e+01 6.833351769770e+00 + 19.1666 1.081616435699e+01 1.081332243663e+01 1.318667756164e+01 7.201577340318e+00 + 19.5 1.189711477283e+01 1.189411416971e+01 1.210588582943e+01 7.457984760712e+00 + 19.8333 1.247718192302e+01 1.247408415261e+01 1.152591584704e+01 7.589581188889e+00 diff --git a/phreeqc3-examples/ex12a.out b/phreeqc3-examples/ex12a.out index a208c7c7..f8fc81e7 100644 --- a/phreeqc3-examples/ex12a.out +++ b/phreeqc3-examples/ex12a.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/phreeqc3-examples/ex12a.sel b/phreeqc3-examples/ex12a.sel index 737186d3..ed20e23d 100644 --- a/phreeqc3-examples/ex12a.sel +++ b/phreeqc3-examples/ex12a.sel @@ -1,5 +1,5 @@ dist_x temp Na_mmol K_mmol Cl_mmol error_Cl error_Na - 0 2.400000000000e+01 2.400000000001e+01 0.000000000000e+00 2.400000000001e+01 + 0 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 0.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 1.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 2.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 @@ -20,17 +20,17 @@ 17.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 18.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 19.5 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0 2.400000000000e+01 2.400000000001e+01 0.000000000000e+00 2.400000000001e+01 -2.401100845928e-11 -2.401057130896e-11 - 0.5 1.686181418415e+01 1.686133609178e+01 7.138663899854e+00 2.011377529319e+01 4.381717848272e-06 5.068336357383e-04 - 1.5 6.421492325960e+00 6.419558988193e+00 1.758044099841e+01 1.294968671941e+01 1.730376475858e-05 5.127073405275e-04 - 2.5 1.759908541854e+00 1.758534659760e+00 2.224146533044e+01 7.342808261289e+00 3.561257293223e-05 9.186006160917e-05 - 3.5 3.571924631562e-01 3.567054178267e-01 2.364329457694e+01 3.623408283677e+00 4.959925524357e-05 -3.682506955372e-05 - 4.5 5.490209781371e-02 5.479279662420e-02 2.394520720114e+01 1.538555967128e+00 5.006313596798e-05 -1.968447681420e-05 - 5.5 6.484238380348e-03 6.467124487003e-03 2.399353287476e+01 5.556625533108e-01 3.820767165765e-05 -4.051252484619e-06 - 6.5 5.926340095484e-04 5.906785140034e-04 2.399940932133e+01 1.684990632467e-01 2.262672987214e-05 -4.873052767781e-07 - 7.5 4.190926756604e-05 4.174299654829e-05 2.399995825704e+01 4.224784404202e-02 1.054699173426e-05 -3.900783491554e-08 - 8.5 2.276345750780e-06 2.265781717013e-06 2.399999773430e+01 8.664946370890e-03 3.823149392512e-06 -2.221207693064e-09 - 9.5 1.396593677778e-07 1.389123928276e-07 2.399999986118e+01 2.055609847092e-03 + 0 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 -2.400000337355e-11 -2.400000684299e-11 + 0.5 1.686181418415e+01 1.686133609177e+01 7.138663899854e+00 2.011377529319e+01 4.381717856952e-06 5.068336357464e-04 + 1.5 6.421492325960e+00 6.419558988189e+00 1.758044099840e+01 1.294968671940e+01 1.730376476416e-05 5.127073405313e-04 + 2.5 1.759908541854e+00 1.758534659759e+00 2.224146533044e+01 7.342808261286e+00 3.561257293540e-05 9.186006161037e-05 + 3.5 3.571924631562e-01 3.567054178264e-01 2.364329457693e+01 3.623408283676e+00 4.959925524514e-05 -3.682506955347e-05 + 4.5 5.490209781371e-02 5.479279662416e-02 2.394520720113e+01 1.538555967128e+00 5.006313596864e-05 -1.968447681416e-05 + 5.5 6.484238380348e-03 6.467124486998e-03 2.399353287476e+01 5.556625533105e-01 3.820767165789e-05 -4.051252484614e-06 + 6.5 5.926340095484e-04 5.906785140029e-04 2.399940932133e+01 1.684990632467e-01 2.262672987221e-05 -4.873052767777e-07 + 7.5 4.190926756604e-05 4.174299654826e-05 2.399995825704e+01 4.224784404200e-02 1.054699173428e-05 -3.900783491551e-08 + 8.5 2.276345750780e-06 2.265781717011e-06 2.399999773430e+01 8.664946370886e-03 3.823149392516e-06 -2.221207693063e-09 + 9.5 1.396593677778e-07 1.389123928275e-07 2.399999986118e+01 2.055609847092e-03 10.5 1.138869021831e-06 1.133447609651e-06 2.399999886664e+01 4.374443607422e-03 11.5 2.090811414205e-05 2.082226931298e-05 2.399997917780e+01 2.044715368546e-02 12.5 2.951795282278e-04 2.941575642002e-04 2.399970584241e+01 7.995922685932e-02 @@ -101,44 +101,44 @@ 19.1667 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.5 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.8333 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0.166667 2.173421305916e+01 2.173403386064e+01 2.265966136453e+00 2.269804666232e+01 - 0.5 1.732877230198e+01 1.732818349806e+01 6.671816494266e+00 2.011806700219e+01 9.000885020996e-08 3.998622945188e-05 - 0.833333 1.328083118787e+01 1.327977600374e+01 1.072022398538e+01 1.760855984596e+01 - 1.16667 9.764783869793e+00 9.763295612556e+00 1.423670437487e+01 1.521226338238e+01 - 1.5 6.876979954453e+00 6.875203671277e+00 1.712479631572e+01 1.296594983170e+01 1.040652464979e-06 5.706265744324e-05 - 1.83333 4.633445178532e+00 4.631592230631e+00 1.936840775690e+01 1.089878644682e+01 - 2.16667 2.983957613764e+00 2.982233846718e+00 2.101776614197e+01 9.031332911154e+00 - 2.5 1.835670035272e+00 1.834219344985e+00 2.216578064517e+01 7.375218041925e+00 3.202792296072e-06 1.617537638391e-05 - 2.83333 1.078309641703e+00 1.077193213981e+00 2.292280677774e+01 5.933464823770e+00 - 3.16667 6.047271172834e-01 6.039348411910e-01 2.339606515204e+01 4.701369003158e+00 - 3.5 3.237687663205e-01 3.232468743681e-01 2.367675312023e+01 3.667790507030e+00 5.217031890525e-06 -3.366526095183e-06 - 3.83333 1.655091653734e-01 1.651883636812e-01 2.383481163211e+01 2.816693051605e+00 - 4.16667 8.080184009388e-02 8.061704168694e-02 2.391938295510e+01 2.128765894912e+00 - 4.5 3.768529738011e-02 3.758518697828e-02 2.396241481061e+01 1.582979760725e+00 5.639342371762e-06 -2.476867168276e-06 - 4.83333 1.679748179371e-02 1.674633341903e-02 2.398325366481e+01 1.157961083143e+00 - 5.16667 7.158658672534e-03 7.133952391650e-03 2.399286604633e+01 8.331082803358e-01 - 5.5 2.918406916536e-03 2.907101078214e-03 2.399709289802e+01 5.894142528792e-01 4.455972089240e-06 -4.912290758305e-07 - 5.83333 1.138704483513e-03 1.133794318824e-03 2.399886620505e+01 4.099953343115e-01 - 6.16667 4.254614091982e-04 4.234343206141e-04 2.399957656525e+01 2.803548753978e-01 - 6.5 1.523110828883e-04 1.515144739609e-04 2.399984848524e+01 1.884278508359e-01 2.697942282987e-06 -4.814123673560e-08 - 6.83333 5.227158933236e-05 5.197321123251e-05 2.399994802660e+01 1.244614394111e-01 - 7.16667 1.720693831522e-05 1.710029263506e-05 2.399998289958e+01 8.078687428985e-02 - 7.5 5.436060934909e-06 5.399649415902e-06 2.399999460027e+01 5.153218579106e-02 1.262649985228e-06 -2.664487783145e-09 - 7.83333 1.649088195275e-06 1.637200882996e-06 2.399999836275e+01 3.231618817632e-02 - 8.16667 4.806358157844e-07 4.769214798039e-07 2.399999952305e+01 1.995341519605e-02 - 8.5 1.346685590700e-07 1.335566766313e-07 2.399999986642e+01 1.218943044883e-02 2.986653145740e-07 -8.898265268258e-11 - 8.83333 3.634651793240e-08 3.602679113547e-08 2.399999996396e+01 7.477181955867e-03 - 9.16667 9.688299803978e-09 9.597461159252e-09 2.399999999040e+01 4.798414843919e-03 - 9.5 3.521245209155e-09 3.486098607352e-09 2.399999999651e+01 3.529705336617e-03 - 9.83333 5.266729325119e-09 5.215572366277e-09 2.399999999478e+01 3.350197792357e-03 - 10.1667 1.826814042878e-08 1.810189577526e-08 2.399999998189e+01 4.187174719459e-03 + 0.166667 2.173421305916e+01 2.173403386063e+01 2.265966136452e+00 2.269804666231e+01 + 0.5 1.732877230198e+01 1.732818349806e+01 6.671816494265e+00 2.011806700218e+01 9.000885944563e-08 3.998622946029e-05 + 0.833333 1.328083118787e+01 1.327977600374e+01 1.072022398538e+01 1.760855984595e+01 + 1.16667 9.764783869793e+00 9.763295612551e+00 1.423670437487e+01 1.521226338238e+01 + 1.5 6.876979954453e+00 6.875203671273e+00 1.712479631572e+01 1.296594983169e+01 1.040652470946e-06 5.706265744742e-05 + 1.83333 4.633445178532e+00 4.631592230628e+00 1.936840775690e+01 1.089878644681e+01 + 2.16667 2.983957613764e+00 2.982233846716e+00 2.101776614197e+01 9.031332911150e+00 + 2.5 1.835670035272e+00 1.834219344984e+00 2.216578064517e+01 7.375218041922e+00 3.202792299459e-06 1.617537638526e-05 + 2.83333 1.078309641703e+00 1.077193213980e+00 2.292280677773e+01 5.933464823767e+00 + 3.16667 6.047271172834e-01 6.039348411906e-01 2.339606515204e+01 4.701369003156e+00 + 3.5 3.237687663205e-01 3.232468743679e-01 2.367675312023e+01 3.667790507028e+00 5.217031892205e-06 -3.366526094913e-06 + 3.83333 1.655091653734e-01 1.651883636811e-01 2.383481163211e+01 2.816693051604e+00 + 4.16667 8.080184009388e-02 8.061704168687e-02 2.391938295510e+01 2.128765894911e+00 + 4.5 3.768529738011e-02 3.758518697824e-02 2.396241481061e+01 1.582979760724e+00 5.639342372489e-06 -2.476867168243e-06 + 4.83333 1.679748179371e-02 1.674633341902e-02 2.398325366481e+01 1.157961083143e+00 + 5.16667 7.158658672534e-03 7.133952391643e-03 2.399286604633e+01 8.331082803354e-01 + 5.5 2.918406916536e-03 2.907101078212e-03 2.399709289802e+01 5.894142528789e-01 4.455972089510e-06 -4.912290758279e-07 + 5.83333 1.138704483513e-03 1.133794318823e-03 2.399886620505e+01 4.099953343114e-01 + 6.16667 4.254614091982e-04 4.234343206137e-04 2.399957656525e+01 2.803548753976e-01 + 6.5 1.523110828883e-04 1.515144739607e-04 2.399984848524e+01 1.884278508358e-01 2.697942283073e-06 -4.814123673546e-08 + 6.83333 5.227158933236e-05 5.197321123247e-05 2.399994802660e+01 1.244614394110e-01 + 7.16667 1.720693831522e-05 1.710029263504e-05 2.399998289958e+01 8.078687428981e-02 + 7.5 5.436060934909e-06 5.399649415897e-06 2.399999460027e+01 5.153218579103e-02 1.262649985251e-06 -2.664487783140e-09 + 7.83333 1.649088195275e-06 1.637200882995e-06 2.399999836275e+01 3.231618817631e-02 + 8.16667 4.806358157844e-07 4.769214798034e-07 2.399999952305e+01 1.995341519604e-02 + 8.5 1.346685590700e-07 1.335566766312e-07 2.399999986642e+01 1.218943044882e-02 2.986653145795e-07 -8.898265268245e-11 + 8.83333 3.634651793240e-08 3.602679113544e-08 2.399999996396e+01 7.477181955864e-03 + 9.16667 9.688299803978e-09 9.597461159243e-09 2.399999999040e+01 4.798414843917e-03 + 9.5 3.521245209155e-09 3.486098607350e-09 2.399999999651e+01 3.529705336616e-03 + 9.83333 5.266729325119e-09 5.215572366276e-09 2.399999999478e+01 3.350197792357e-03 + 10.1667 1.826814042878e-08 1.810189577525e-08 2.399999998189e+01 4.187174719459e-03 10.5 6.734157441183e-08 6.676539459885e-08 2.399999993322e+01 6.195634766519e-03 10.8333 2.402572726136e-07 2.383277400061e-07 2.399999976166e+01 9.768547401637e-03 - 11.1667 8.242629300769e-07 8.180679126565e-07 2.399999918191e+01 1.557488011882e-02 + 11.1667 8.242629300769e-07 8.180679126564e-07 2.399999918191e+01 1.557488011882e-02 11.5 2.716856871595e-06 2.697812059732e-06 2.399999730215e+01 2.462240289906e-02 11.8333 8.598766106045e-06 8.542755015542e-06 2.399999145719e+01 3.834130428025e-02 12.1667 2.611765408526e-05 2.596020332212e-05 2.399997403971e+01 5.868256892109e-02 - 12.5 7.608821445992e-05 7.566556929143e-05 2.399992433429e+01 8.822180939210e-02 + 12.5 7.608821445992e-05 7.566556929142e-05 2.399992433429e+01 8.822180939210e-02 12.8333 2.124903882618e-04 2.114081368791e-04 2.399978859166e+01 1.302549940497e-01 13.1667 5.685276979853e-04 5.658869124423e-04 2.399943411280e+01 1.888677435760e-01 13.5 1.456485427866e-03 1.450352184743e-03 2.399854964740e+01 2.689553860821e-01 diff --git a/phreeqc3-examples/ex13a.out b/phreeqc3-examples/ex13a.out index 687ebc49..566b957b 100644 --- a/phreeqc3-examples/ex13a.out +++ b/phreeqc3-examples/ex13a.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -141,7 +142,7 @@ Initial solution 1. pH = 7.000 pe = 13.622 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 140 + Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 Viscosity (mPa s) = 0.89011 @@ -227,7 +228,7 @@ X 1.000e-03 mol pH = 7.000 Charge balance pe = 13.622 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 140 + Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 Viscosity (mPa s) = 0.89011 @@ -255,7 +256,7 @@ H(0) 0.000e+00 K 1.000e-03 K+ 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 9.01 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.96 + NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.89 NH3 0.000e+00 0.000e+00 -65.158 -65.158 0.000 24.42 N(0) 1.351e-19 N2 6.757e-20 6.759e-20 -19.170 -19.170 0.000 29.29 diff --git a/phreeqc3-examples/ex13ac.out b/phreeqc3-examples/ex13ac.out index c1ffbb60..6d99ba6b 100644 --- a/phreeqc3-examples/ex13ac.out +++ b/phreeqc3-examples/ex13ac.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -141,7 +142,7 @@ Initial solution 1. pH = 7.000 pe = 13.622 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 140 + Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 Viscosity (mPa s) = 0.89011 @@ -227,7 +228,7 @@ X 1.000e-03 mol pH = 7.000 Charge balance pe = 13.622 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 140 + Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 Viscosity (mPa s) = 0.89011 @@ -255,7 +256,7 @@ H(0) 0.000e+00 K 1.000e-03 K+ 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 9.01 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.96 + NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.89 NH3 0.000e+00 0.000e+00 -65.158 -65.158 0.000 24.42 N(0) 1.351e-19 N2 6.757e-20 6.759e-20 -19.170 -19.170 0.000 29.29 diff --git a/phreeqc3-examples/ex13b.out b/phreeqc3-examples/ex13b.out index d3c45b2c..83257bbb 100644 --- a/phreeqc3-examples/ex13b.out +++ b/phreeqc3-examples/ex13b.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -141,7 +142,7 @@ Initial solution 1. pH = 7.000 pe = 13.622 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 140 + Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 Viscosity (mPa s) = 0.89011 @@ -227,7 +228,7 @@ X 1.000e-03 mol pH = 7.000 Charge balance pe = 13.622 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 140 + Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 Viscosity (mPa s) = 0.89011 @@ -255,7 +256,7 @@ H(0) 0.000e+00 K 1.000e-03 K+ 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 9.01 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.96 + NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.89 NH3 0.000e+00 0.000e+00 -65.158 -65.158 0.000 24.42 N(0) 1.351e-19 N2 6.757e-20 6.759e-20 -19.170 -19.170 0.000 29.29 diff --git a/phreeqc3-examples/ex13c.out b/phreeqc3-examples/ex13c.out index 5b39c4a4..5102e6e4 100644 --- a/phreeqc3-examples/ex13c.out +++ b/phreeqc3-examples/ex13c.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -141,7 +142,7 @@ Initial solution 1. pH = 7.000 pe = 13.622 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 140 + Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 Viscosity (mPa s) = 0.89011 @@ -227,7 +228,7 @@ X 1.000e-03 mol pH = 7.000 Charge balance pe = 13.622 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 140 + Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 Viscosity (mPa s) = 0.89011 @@ -255,7 +256,7 @@ H(0) 0.000e+00 K 1.000e-03 K+ 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 9.01 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.96 + NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.89 NH3 0.000e+00 0.000e+00 -65.158 -65.158 0.000 24.42 N(0) 1.351e-19 N2 6.757e-20 6.759e-20 -19.170 -19.170 0.000 29.29 diff --git a/phreeqc3-examples/ex14.out b/phreeqc3-examples/ex14.out index f83c0560..71a465f4 100644 --- a/phreeqc3-examples/ex14.out +++ b/phreeqc3-examples/ex14.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -87,21 +88,21 @@ Initial solution 1. Brine pH = 5.713 pe = 14.962 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 264118 - Density (g/cm³) = 1.21637 - Volume (L) = 1.13692 - Viscosity (mPa s) = 1.95530 + Specific Conductance (µS/cm, 25°C) = 243000 + Density (g/cm³) = 1.21629 + Volume (L) = 1.13700 + Viscosity (mPa s) = 1.95441 Activity of water = 0.785 - Ionic strength (mol/kgw) = 7.269e+00 + Ionic strength (mol/kgw) = 7.270e+00 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.725e-03 + Total alkalinity (eq/kg) = 3.608e-03 Total CO2 (mol/kg) = 3.960e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = -2.164e-15 + Electrical balance (eq) = -3.249e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 12 - Total H = 1.110162e+02 - Total O = 5.553686e+01 + Iterations = 14 + Total H = 1.110160e+02 + Total O = 5.553674e+01 ----------------------------Distribution of species---------------------------- @@ -113,83 +114,83 @@ Initial solution 1. Brine H2O 5.551e+01 7.846e-01 1.744 -0.105 0.000 18.07 As 2.500e-08 H2AsO4- 2.498e-08 1.374e-07 -7.602 -6.862 0.740 (0) - H3AsO4 8.668e-12 4.623e-11 -11.062 -10.335 0.727 (0) - HAsO4-2 8.510e-12 7.778e-09 -11.070 -8.109 2.961 (0) - AsO4-3 2.765e-21 1.270e-14 -20.558 -13.896 6.662 (0) + H3AsO4 8.669e-12 4.623e-11 -11.062 -10.335 0.727 (0) + HAsO4-2 8.507e-12 7.779e-09 -11.070 -8.109 2.961 (0) + AsO4-3 2.763e-21 1.270e-14 -20.559 -13.896 6.663 (0) C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -144.672 -143.945 0.727 35.46 + CH4 0.000e+00 0.000e+00 -144.496 -143.769 0.727 35.46 C(4) 3.960e-03 - CaHCO3+ 1.913e-03 1.159e-03 -2.718 -2.936 -0.218 10.08 - MgHCO3+ 1.571e-03 7.824e-04 -2.804 -3.107 -0.303 6.01 - CO2 2.346e-04 7.083e-04 -3.630 -3.150 0.480 34.43 - HCO3- 2.207e-04 1.276e-04 -3.656 -3.894 -0.238 36.42 - NaHCO3 1.947e-05 9.149e-04 -4.711 -3.039 1.672 28.00 - CaCO3 6.929e-07 3.695e-06 -6.159 -5.432 0.727 -14.60 - MgCO3 2.898e-07 1.545e-06 -6.538 -5.811 0.727 -17.09 - CO3-2 2.763e-08 3.091e-09 -7.559 -8.510 -0.951 9.50 - (CO2)2 1.727e-09 9.208e-09 -8.763 -8.036 0.727 68.87 + MgHCO3+ 2.344e-03 1.167e-03 -2.630 -2.933 -0.303 6.01 + CaHCO3+ 8.690e-04 5.263e-04 -3.061 -3.279 -0.218 123.05 + CO2 3.518e-04 1.062e-03 -3.454 -2.974 0.480 34.43 + HCO3- 3.309e-04 1.914e-04 -3.480 -3.718 -0.238 37.32 + NaHCO3 6.284e-05 1.787e-03 -4.202 -2.748 1.454 31.73 + CaCO3 1.041e-06 5.551e-06 -5.983 -5.256 0.727 -14.60 + MgCO3 4.324e-07 2.306e-06 -6.364 -5.637 0.727 -17.09 + CO3-2 4.143e-08 4.635e-09 -7.383 -8.334 -0.951 10.19 + (CO2)2 3.882e-09 2.070e-08 -8.411 -7.684 0.727 68.87 Ca 4.655e-01 - Ca+2 4.635e-01 7.115e-01 -0.334 -0.148 0.186 -13.79 - CaHCO3+ 1.913e-03 1.159e-03 -2.718 -2.936 -0.218 10.08 - CaSO4 1.076e-04 5.737e-04 -3.968 -3.241 0.727 7.50 - CaCO3 6.929e-07 3.695e-06 -6.159 -5.432 0.727 -14.60 - CaOH+ 8.702e-09 4.785e-08 -8.060 -7.320 0.740 (0) - CaHSO4+ 1.328e-09 7.302e-09 -8.877 -8.137 0.740 (0) + Ca+2 4.643e-01 7.129e-01 -0.333 -0.147 0.186 -13.79 + CaHCO3+ 8.690e-04 5.263e-04 -3.061 -3.279 -0.218 123.05 + CaSO4 3.227e-04 1.721e-03 -3.491 -2.764 0.727 7.50 + CaCO3 1.041e-06 5.551e-06 -5.983 -5.256 0.727 -14.60 + CaOH+ 8.717e-09 4.794e-08 -8.060 -7.319 0.740 (0) + CaHSO4+ 3.984e-09 2.191e-08 -8.400 -7.659 0.740 (0) Cl 6.642e+00 Cl- 6.642e+00 4.165e+00 0.822 0.620 -0.203 20.27 HCl 2.238e-09 2.778e-06 -8.650 -5.556 3.094 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -45.226 -44.499 0.727 28.61 Mg 1.609e-01 - Mg+2 1.593e-01 5.239e-01 -0.798 -0.281 0.517 -17.22 - MgHCO3+ 1.571e-03 7.824e-04 -2.804 -3.107 -0.303 6.01 - MgSO4 2.187e-05 6.220e-04 -4.660 -3.206 1.454 -0.83 - MgOH+ 1.231e-06 7.707e-07 -5.910 -6.113 -0.204 (0) - MgCO3 2.898e-07 1.545e-06 -6.538 -5.811 0.727 -17.09 - Mg(SO4)2-2 2.456e-08 9.289e-09 -7.610 -8.032 -0.422 60.47 + Mg+2 1.585e-01 5.213e-01 -0.800 -0.283 0.517 -17.22 + MgHCO3+ 2.344e-03 1.167e-03 -2.630 -2.933 -0.303 6.01 + MgSO4 6.515e-05 1.853e-03 -4.186 -2.732 1.454 -7.92 + MgOH+ 1.225e-06 7.669e-07 -5.912 -6.115 -0.204 (0) + MgCO3 4.324e-07 2.306e-06 -6.364 -5.637 0.727 -17.09 + Mg(SO4)2-2 2.191e-07 8.286e-08 -6.659 -7.082 -0.422 54.97 Na 5.402e+00 - Na+ 5.397e+00 1.072e+01 0.732 1.030 0.298 1.52 - NaSO4- 4.504e-03 1.899e-04 -2.346 -3.722 -1.375 44.00 - NaHCO3 1.947e-05 9.149e-04 -4.711 -3.039 1.672 28.00 + Na+ 5.398e+00 1.072e+01 0.732 1.030 0.298 1.52 + NaSO4- 4.063e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 + NaHCO3 6.284e-05 1.787e-03 -4.202 -2.748 1.454 31.73 NaOH 8.245e-19 4.397e-18 -18.084 -17.357 0.727 (0) -O(0) 9.586e-05 +O(0) 9.585e-05 O2 4.793e-05 2.556e-04 -4.319 -3.592 0.727 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -141.880 -141.153 0.727 36.27 - HS- 0.000e+00 0.000e+00 -142.046 -142.382 -0.335 23.12 - S-2 0.000e+00 0.000e+00 -148.573 -149.587 -1.013 (0) - (H2S)2 0.000e+00 0.000e+00 -284.311 -283.584 0.727 30.09 + H2S 0.000e+00 0.000e+00 -141.404 -140.677 0.727 36.27 + HS- 0.000e+00 0.000e+00 -141.570 -141.905 -0.335 23.12 + S-2 0.000e+00 0.000e+00 -148.097 -149.110 -1.013 (0) + (H2S)2 0.000e+00 0.000e+00 -283.359 -282.632 0.727 30.09 S(6) 4.725e-03 - NaSO4- 4.504e-03 1.899e-04 -2.346 -3.722 -1.375 44.00 - CaSO4 1.076e-04 5.737e-04 -3.968 -3.241 0.727 7.50 - SO4-2 9.132e-05 4.534e-06 -4.039 -5.344 -1.304 24.85 - MgSO4 2.187e-05 6.220e-04 -4.660 -3.206 1.454 -0.83 - Mg(SO4)2-2 2.456e-08 9.289e-09 -7.610 -8.032 -0.422 60.47 - CaHSO4+ 1.328e-09 7.302e-09 -8.877 -8.137 0.740 (0) - HSO4- 1.553e-10 8.536e-10 -9.809 -9.069 0.740 42.16 + NaSO4- 4.063e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 + CaSO4 3.227e-04 1.721e-03 -3.491 -2.764 0.727 7.50 + SO4-2 2.734e-04 1.358e-05 -3.563 -4.867 -1.304 85.83 + MgSO4 6.515e-05 1.853e-03 -4.186 -2.732 1.454 -7.92 + Mg(SO4)2-2 2.191e-07 8.286e-08 -6.659 -7.082 -0.422 54.97 + CaHSO4+ 3.984e-09 2.191e-08 -8.400 -7.659 0.740 (0) + HSO4- 4.648e-10 2.556e-09 -9.333 -8.592 0.740 42.16 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.21 -5.49 -4.28 CaSO4 - Aragonite -0.32 -8.66 -8.34 CaCO3 - Calcite -0.18 -8.66 -8.48 CaCO3 - CH4(g) -141.14 -143.95 -2.80 CH4 - CO2(g) -1.68 -3.15 -1.47 CO2 - Dolomite -0.36 -17.45 -17.08 CaMg(CO3)2 - Epsomite -4.62 -6.36 -1.74 MgSO4:7H2O - Gypsum -1.12 -5.70 -4.58 CaSO4:2H2O + Anhydrite -0.74 -5.01 -4.28 CaSO4 + Aragonite -0.14 -8.48 -8.34 CaCO3 + Calcite -0.00 -8.48 -8.48 CaCO3 + CH4(g) -140.97 -143.77 -2.80 CH4 + CO2(g) -1.51 -2.97 -1.47 CO2 + Dolomite -0.01 -17.10 -17.08 CaMg(CO3)2 + Epsomite -4.15 -5.89 -1.74 MgSO4:7H2O + Gypsum -0.64 -5.22 -4.58 CaSO4:2H2O H2(g) -41.40 -44.50 -3.10 H2 H2O(g) -1.61 -0.11 1.50 H2O - H2S(g) -140.16 -148.09 -7.94 H2S + H2S(g) -139.68 -147.62 -7.94 H2S Halite 0.08 1.65 1.57 NaCl - Hexahydrite -4.69 -6.26 -1.57 MgSO4:6H2O - Kieserite -4.57 -5.73 -1.16 MgSO4:H2O - Mirabilite -3.10 -4.34 -1.24 Na2SO4:10H2O + Hexahydrite -4.22 -5.78 -1.57 MgSO4:6H2O + Kieserite -4.09 -5.26 -1.16 MgSO4:H2O + Mirabilite -2.62 -3.86 -1.24 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 - Sulfur -104.69 -99.80 4.88 S - Thenardite -2.98 -3.28 -0.30 Na2SO4 + Sulfur -104.21 -99.33 4.88 S + Thenardite -2.51 -2.81 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -229,128 +230,128 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite 0.00 -8.48 -8.48 1.000e-01 1.049e-01 4.907e-03 -Dolomite 0.00 -17.08 -17.08 1.600e+00 1.598e+00 -2.489e-03 +Calcite 0.00 -8.48 -8.48 1.000e-01 1.065e-01 6.536e-03 +Dolomite 0.00 -17.08 -17.08 1.600e+00 1.597e+00 -3.272e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles As 2.500e-08 2.500e-08 - C 4.031e-03 4.031e-03 - Ca 4.631e-01 4.631e-01 + C 3.968e-03 3.968e-03 + Ca 4.622e-01 4.622e-01 Cl 6.642e+00 6.642e+00 - Mg 1.634e-01 1.634e-01 + Mg 1.642e-01 1.642e-01 Na 5.402e+00 5.402e+00 S 4.725e-03 4.725e-03 ----------------------------Description of solution---------------------------- - pH = 5.879 Charge balance - pe = 14.796 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 264107 - Density (g/cm³) = 1.21635 - Volume (L) = 1.13691 - Viscosity (mPa s) = 1.95565 + pH = 5.720 Charge balance + pe = 14.955 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 242937 + Density (g/cm³) = 1.21626 + Volume (L) = 1.13699 + Viscosity (mPa s) = 1.95490 Activity of water = 0.785 - Ionic strength (mol/kgw) = 7.269e+00 + Ionic strength (mol/kgw) = 7.270e+00 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.867e-03 - Total CO2 (mol/kg) = 4.031e-03 + Total alkalinity (eq/kg) = 3.625e-03 + Total CO2 (mol/kg) = 3.968e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 7.756e-13 + Electrical balance (eq) = 3.117e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110162e+02 - Total O = 5.553707e+01 + Iterations = 2 + Total H = 1.110160e+02 + Total O = 5.553677e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.882e-06 1.322e-06 -5.725 -5.879 -0.153 0.00 - OH- 1.300e-08 6.005e-09 -7.886 -8.221 -0.335 6.33 + H+ 2.712e-06 1.905e-06 -5.567 -5.720 -0.153 0.00 + OH- 9.023e-09 4.168e-09 -8.045 -8.380 -0.335 6.33 H2O 5.551e+01 7.846e-01 1.744 -0.105 0.000 18.07 As 2.500e-08 H2AsO4- 2.498e-08 1.374e-07 -7.602 -6.862 0.740 (0) - HAsO4-2 1.246e-11 1.139e-08 -10.904 -7.944 2.961 (0) - H3AsO4 5.919e-12 3.157e-11 -11.228 -10.501 0.727 (0) - AsO4-3 5.930e-21 2.724e-14 -20.227 -13.565 6.662 (0) + HAsO4-2 8.646e-12 7.906e-09 -11.063 -8.102 2.961 (0) + H3AsO4 8.529e-12 4.549e-11 -11.069 -10.342 0.727 (0) + AsO4-3 2.854e-21 1.312e-14 -20.545 -13.882 6.663 (0) C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -144.824 -144.097 0.727 35.46 -C(4) 4.031e-03 - CaHCO3+ 1.967e-03 1.191e-03 -2.706 -2.924 -0.218 10.08 - MgHCO3+ 1.648e-03 8.210e-04 -2.783 -3.086 -0.303 6.01 - HCO3- 2.281e-04 1.319e-04 -3.642 -3.880 -0.238 36.42 - CO2 1.656e-04 5.000e-04 -3.781 -3.301 0.480 34.43 - NaHCO3 2.013e-05 9.457e-04 -4.696 -3.024 1.672 28.00 + CH4 0.000e+00 0.000e+00 -144.506 -143.780 0.727 35.46 +C(4) 3.968e-03 + MgHCO3+ 2.375e-03 1.183e-03 -2.624 -2.927 -0.303 6.01 + CaHCO3+ 8.569e-04 5.189e-04 -3.067 -3.285 -0.218 123.05 + CO2 3.437e-04 1.038e-03 -3.464 -2.984 0.480 34.43 + HCO3- 3.286e-04 1.901e-04 -3.483 -3.721 -0.238 37.32 + NaHCO3 6.240e-05 1.775e-03 -4.205 -2.751 1.454 31.73 CaCO3 1.043e-06 5.563e-06 -5.982 -5.255 0.727 -14.60 MgCO3 4.453e-07 2.375e-06 -6.351 -5.624 0.727 -17.09 - CO3-2 4.182e-08 4.679e-09 -7.379 -8.330 -0.951 9.50 - (CO2)2 8.605e-10 4.588e-09 -9.065 -8.338 0.727 68.87 -Ca 4.631e-01 - Ca+2 4.610e-01 7.077e-01 -0.336 -0.150 0.186 -13.79 - CaHCO3+ 1.967e-03 1.191e-03 -2.706 -2.924 -0.218 10.08 - CaSO4 1.070e-04 5.707e-04 -3.971 -3.244 0.727 7.50 + CO3-2 4.181e-08 4.678e-09 -7.379 -8.330 -0.951 10.19 + (CO2)2 3.706e-09 1.976e-08 -8.431 -7.704 0.727 68.87 +Ca 4.622e-01 + Ca+2 4.611e-01 7.079e-01 -0.336 -0.150 0.186 -13.79 + CaHCO3+ 8.569e-04 5.189e-04 -3.067 -3.285 -0.218 123.05 + CaSO4 3.205e-04 1.709e-03 -3.494 -2.767 0.727 7.50 CaCO3 1.043e-06 5.563e-06 -5.982 -5.255 0.727 -14.60 - CaOH+ 1.267e-08 6.969e-08 -7.897 -7.157 0.740 (0) - CaHSO4+ 9.022e-10 4.961e-09 -9.045 -8.304 0.740 (0) + CaOH+ 8.798e-09 4.838e-08 -8.056 -7.315 0.740 (0) + CaHSO4+ 3.893e-09 2.141e-08 -8.410 -7.669 0.740 (0) Cl 6.642e+00 Cl- 6.642e+00 4.165e+00 0.822 0.620 -0.203 20.27 - HCl 1.529e-09 1.897e-06 -8.816 -5.722 3.094 (0) + HCl 2.202e-09 2.734e-06 -8.657 -5.563 3.094 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -45.226 -44.499 0.727 28.61 -Mg 1.634e-01 - Mg+2 1.617e-01 5.318e-01 -0.791 -0.274 0.517 -17.22 - MgHCO3+ 1.648e-03 8.210e-04 -2.783 -3.086 -0.303 6.01 - MgSO4 2.220e-05 6.314e-04 -4.654 -3.200 1.454 -0.83 - MgOH+ 1.831e-06 1.146e-06 -5.737 -5.941 -0.204 (0) +Mg 1.642e-01 + Mg+2 1.617e-01 5.320e-01 -0.791 -0.274 0.517 -17.22 + MgHCO3+ 2.375e-03 1.183e-03 -2.624 -2.927 -0.303 6.01 + MgSO4 6.650e-05 1.891e-03 -4.177 -2.723 1.454 -7.92 + MgOH+ 1.271e-06 7.954e-07 -5.896 -6.099 -0.204 (0) MgCO3 4.453e-07 2.375e-06 -6.351 -5.624 0.727 -17.09 - Mg(SO4)2-2 2.494e-08 9.431e-09 -7.603 -8.025 -0.422 60.47 + Mg(SO4)2-2 2.237e-07 8.458e-08 -6.650 -7.073 -0.422 54.97 Na 5.402e+00 - Na+ 5.397e+00 1.072e+01 0.732 1.030 0.298 1.52 - NaSO4- 4.504e-03 1.899e-04 -2.346 -3.721 -1.375 43.99 - NaHCO3 2.013e-05 9.457e-04 -4.696 -3.024 1.672 28.00 - NaOH 1.207e-18 6.438e-18 -17.918 -17.191 0.727 (0) -O(0) 9.586e-05 + Na+ 5.398e+00 1.072e+01 0.732 1.030 0.298 1.52 + NaSO4- 4.064e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 + NaHCO3 6.240e-05 1.775e-03 -4.205 -2.751 1.454 31.73 + NaOH 8.380e-19 4.469e-18 -18.077 -17.350 0.727 (0) +O(0) 9.585e-05 O2 4.793e-05 2.556e-04 -4.319 -3.592 0.727 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -142.211 -141.484 0.727 36.27 - HS- 0.000e+00 0.000e+00 -142.212 -142.547 -0.335 23.12 - S-2 0.000e+00 0.000e+00 -148.573 -149.587 -1.013 (0) - (H2S)2 0.000e+00 0.000e+00 -284.974 -284.247 0.727 30.09 + H2S 0.000e+00 0.000e+00 -141.418 -140.691 0.727 36.27 + HS- 0.000e+00 0.000e+00 -141.577 -141.912 -0.335 23.12 + S-2 0.000e+00 0.000e+00 -148.097 -149.110 -1.013 (0) + (H2S)2 0.000e+00 0.000e+00 -283.387 -282.660 0.727 30.09 S(6) 4.725e-03 - NaSO4- 4.504e-03 1.899e-04 -2.346 -3.721 -1.375 43.99 - CaSO4 1.070e-04 5.707e-04 -3.971 -3.244 0.727 7.50 - SO4-2 9.132e-05 4.534e-06 -4.039 -5.343 -1.304 24.85 - MgSO4 2.220e-05 6.314e-04 -4.654 -3.200 1.454 -0.83 - Mg(SO4)2-2 2.494e-08 9.431e-09 -7.603 -8.025 -0.422 60.47 - CaHSO4+ 9.022e-10 4.961e-09 -9.045 -8.304 0.740 (0) - HSO4- 1.060e-10 5.830e-10 -9.975 -9.234 0.740 42.16 + NaSO4- 4.064e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 + CaSO4 3.205e-04 1.709e-03 -3.494 -2.767 0.727 7.50 + SO4-2 2.735e-04 1.358e-05 -3.563 -4.867 -1.304 85.83 + MgSO4 6.650e-05 1.891e-03 -4.177 -2.723 1.454 -7.92 + Mg(SO4)2-2 2.237e-07 8.458e-08 -6.650 -7.073 -0.422 54.97 + CaHSO4+ 3.893e-09 2.141e-08 -8.410 -7.669 0.740 (0) + HSO4- 4.574e-10 2.515e-09 -9.340 -8.599 0.740 42.16 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.22 -5.49 -4.28 CaSO4 + Anhydrite -0.74 -5.02 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -141.29 -144.10 -2.80 CH4 - CO2(g) -1.83 -3.30 -1.47 CO2 + CH4(g) -140.98 -143.78 -2.80 CH4 + CO2(g) -1.52 -2.98 -1.47 CO2 Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 - Epsomite -4.62 -6.36 -1.74 MgSO4:7H2O - Gypsum -1.12 -5.70 -4.58 CaSO4:2H2O + Epsomite -4.14 -5.88 -1.74 MgSO4:7H2O + Gypsum -0.65 -5.23 -4.58 CaSO4:2H2O H2(g) -41.40 -44.50 -3.10 H2 H2O(g) -1.61 -0.11 1.50 H2O - H2S(g) -140.49 -148.43 -7.94 H2S + H2S(g) -139.70 -147.63 -7.94 H2S Halite 0.08 1.65 1.57 NaCl - Hexahydrite -4.68 -6.25 -1.57 MgSO4:6H2O - Kieserite -4.56 -5.72 -1.16 MgSO4:H2O - Mirabilite -3.10 -4.34 -1.24 Na2SO4:10H2O + Hexahydrite -4.21 -5.77 -1.57 MgSO4:6H2O + Kieserite -4.09 -5.25 -1.16 MgSO4:H2O + Mirabilite -2.62 -3.86 -1.24 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 - Sulfur -105.02 -100.14 4.88 S - Thenardite -2.98 -3.28 -0.30 Na2SO4 + Sulfur -104.22 -99.34 4.88 S + Thenardite -2.51 -2.81 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -396,11 +397,11 @@ Surface 1. Diffuse Double Layer Surface-Complexation Model Surf - 5.179e-02 Surface charge, eq - 2.776e-01 sigma, C/m² - 4.071e-02 psi, V - -1.584e+00 -F*psi/RT - 2.051e-01 exp(-F*psi/RT) + 5.630e-02 Surface charge, eq + 3.018e-01 sigma, C/m² + 4.360e-02 psi, V + -1.697e+00 -F*psi/RT + 1.832e-01 exp(-F*psi/RT) 6.000e+02 specific area, m²/g 1.800e+04 m² for 3.000e+01 g @@ -410,12 +411,12 @@ Surf Mole Log Species Moles Fraction Molality Molality - SurfOH2+ 5.673e-02 0.810 5.673e-02 -1.246 - SurfOH 1.073e-02 0.153 1.073e-02 -1.969 - SurfOHAsO4-3 1.289e-03 0.018 1.289e-03 -2.890 - SurfHAsO4- 1.028e-03 0.015 1.028e-03 -2.988 - SurfH2AsO4 1.759e-04 0.003 1.759e-04 -3.755 - SurfO- 4.649e-05 0.001 4.649e-05 -4.333 + SurfOH2+ 5.939e-02 0.848 5.939e-02 -1.226 + SurfOH 8.727e-03 0.125 8.727e-03 -2.059 + SurfHAsO4- 9.359e-04 0.013 9.359e-04 -3.029 + SurfOHAsO4-3 7.082e-04 0.010 7.082e-04 -3.150 + SurfH2AsO4 2.061e-04 0.003 2.061e-04 -3.686 + SurfO- 2.938e-05 0.000 2.938e-05 -4.532 ------------------ End of simulation. @@ -463,17 +464,17 @@ Initial solution 0. 20 x precipitation pH = 4.600 pe = 16.022 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 82 + Specific Conductance (µS/cm, 25°C) = 81 Density (g/cm³) = 0.99708 Volume (L) = 1.00298 - Viscosity (mPa s) = 0.89051 + Viscosity (mPa s) = 0.89050 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.037e-03 + Ionic strength (mol/kgw) = 1.036e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -2.630e-05 Total CO2 (mol/kg) = 1.096e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 7.501e-16 + Electrical balance (eq) = 1.978e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110125e+02 @@ -491,53 +492,53 @@ C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -145.553 -145.553 0.000 35.46 C(4) 1.096e-05 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 - HCO3- 1.975e-07 1.906e-07 -6.704 -6.720 -0.016 24.55 - CaHCO3+ 4.061e-10 3.919e-10 -9.391 -9.407 -0.015 9.67 - MgHCO3+ 6.871e-11 6.627e-11 -10.163 -10.179 -0.016 5.48 - NaHCO3 1.506e-11 1.507e-11 -10.822 -10.822 0.000 28.00 + HCO3- 1.975e-07 1.906e-07 -6.704 -6.720 -0.016 24.58 + CaHCO3+ 1.228e-10 1.185e-10 -9.911 -9.926 -0.015 122.64 + MgHCO3+ 6.872e-11 6.627e-11 -10.163 -10.179 -0.016 5.48 + NaHCO3 1.957e-11 1.958e-11 -10.708 -10.708 0.000 31.73 (CO2)2 2.126e-12 2.127e-12 -11.672 -11.672 0.000 68.87 - CO3-2 4.106e-13 3.558e-13 -12.387 -12.449 -0.062 -4.07 - CaCO3 9.631e-14 9.633e-14 -13.016 -13.016 0.000 -14.60 + CO3-2 4.105e-13 3.558e-13 -12.387 -12.449 -0.062 -3.93 + CaCO3 9.632e-14 9.634e-14 -13.016 -13.016 0.000 -14.60 MgCO3 1.009e-14 1.009e-14 -13.996 -13.996 0.000 -17.09 Ca 1.916e-04 Ca+2 1.860e-04 1.612e-04 -3.731 -3.793 -0.062 -18.14 - CaSO4 5.640e-06 5.642e-06 -5.249 -5.249 0.000 7.50 - CaHSO4+ 9.659e-10 9.315e-10 -9.015 -9.031 -0.016 (0) - CaHCO3+ 4.061e-10 3.919e-10 -9.391 -9.407 -0.015 9.67 + CaSO4 5.634e-06 5.635e-06 -5.249 -5.249 0.000 7.50 + CaHSO4+ 9.648e-10 9.304e-10 -9.016 -9.031 -0.016 (0) + CaHCO3+ 1.228e-10 1.185e-10 -9.911 -9.926 -0.015 122.64 CaOH+ 1.104e-12 1.065e-12 -11.957 -11.973 -0.016 (0) - CaCO3 9.631e-14 9.633e-14 -13.016 -13.016 0.000 -14.60 + CaCO3 9.632e-14 9.634e-14 -13.016 -13.016 0.000 -14.60 Cl 1.337e-04 Cl- 1.337e-04 1.289e-04 -3.874 -3.890 -0.016 18.08 HCl 1.114e-09 1.116e-09 -8.953 -8.952 0.000 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 Mg 3.580e-05 - Mg+2 3.426e-05 2.972e-05 -4.465 -4.527 -0.062 -21.82 - MgSO4 1.531e-06 1.532e-06 -5.815 -5.815 0.000 -0.83 - Mg(SO4)2-2 1.143e-09 9.931e-10 -8.942 -9.003 -0.061 34.98 - MgHCO3+ 6.871e-11 6.627e-11 -10.163 -10.179 -0.016 5.48 - MgOH+ 4.450e-12 4.295e-12 -11.352 -11.367 -0.015 (0) + Mg+2 3.427e-05 2.972e-05 -4.465 -4.527 -0.062 -21.82 + MgSO4 1.529e-06 1.530e-06 -5.816 -5.815 0.000 -7.92 + Mg(SO4)2-2 1.140e-09 9.908e-10 -8.943 -9.004 -0.061 -4.49 + MgHCO3+ 6.872e-11 6.627e-11 -10.163 -10.179 -0.016 5.48 + MgOH+ 4.450e-12 4.296e-12 -11.352 -11.367 -0.015 (0) MgCO3 1.009e-14 1.009e-14 -13.996 -13.996 0.000 -17.09 Na 1.227e-04 - Na+ 1.226e-04 1.182e-04 -3.912 -3.927 -0.016 -1.48 - NaSO4- 9.443e-08 9.092e-08 -7.025 -7.041 -0.016 14.54 - NaHCO3 1.506e-11 1.507e-11 -10.822 -10.822 0.000 28.00 - NaOH 4.763e-24 4.764e-24 -23.322 -23.322 0.000 (0) + Na+ 1.223e-04 1.179e-04 -3.913 -3.928 -0.016 -1.48 + NaSO4- 3.912e-07 3.775e-07 -6.408 -6.423 -0.016 -20.88 + NaHCO3 1.957e-11 1.958e-11 -10.708 -10.708 0.000 31.73 + NaOH 4.751e-24 4.753e-24 -23.323 -23.323 0.000 (0) O(0) 5.111e-04 O2 2.555e-04 2.556e-04 -3.593 -3.592 0.000 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -137.289 -137.289 0.000 36.27 - HS- 0.000e+00 0.000e+00 -139.615 -139.631 -0.016 20.60 - S-2 0.000e+00 0.000e+00 -147.887 -147.949 -0.062 (0) - (H2S)2 0.000e+00 0.000e+00 -275.857 -275.857 0.000 30.09 + H2S 0.000e+00 0.000e+00 -137.290 -137.290 0.000 36.27 + HS- 0.000e+00 0.000e+00 -139.616 -139.632 -0.016 20.60 + S-2 0.000e+00 0.000e+00 -147.887 -147.950 -0.062 (0) + (H2S)2 0.000e+00 0.000e+00 -275.858 -275.858 0.000 30.09 S(6) 2.351e-04 - SO4-2 2.273e-04 1.969e-04 -3.643 -3.706 -0.062 14.79 - CaSO4 5.640e-06 5.642e-06 -5.249 -5.249 0.000 7.50 - MgSO4 1.531e-06 1.532e-06 -5.815 -5.815 0.000 -0.83 - HSO4- 4.985e-07 4.808e-07 -6.302 -6.318 -0.016 40.28 - NaSO4- 9.443e-08 9.092e-08 -7.025 -7.041 -0.016 14.54 - Mg(SO4)2-2 1.143e-09 9.931e-10 -8.942 -9.003 -0.061 34.98 - CaHSO4+ 9.659e-10 9.315e-10 -9.015 -9.031 -0.016 (0) + SO4-2 2.270e-04 1.966e-04 -3.644 -3.706 -0.062 15.61 + CaSO4 5.634e-06 5.635e-06 -5.249 -5.249 0.000 7.50 + MgSO4 1.529e-06 1.530e-06 -5.816 -5.815 0.000 -7.92 + HSO4- 4.979e-07 4.802e-07 -6.303 -6.319 -0.016 40.28 + NaSO4- 3.912e-07 3.775e-07 -6.408 -6.423 -0.016 -20.88 + Mg(SO4)2-2 1.140e-09 9.908e-10 -8.943 -9.004 -0.061 -4.49 + CaHSO4+ 9.648e-10 9.304e-10 -9.016 -9.031 -0.016 (0) ------------------------------Saturation indices------------------------------- @@ -553,7 +554,7 @@ S(6) 2.351e-04 Gypsum -2.92 -7.50 -4.58 CaSO4:2H2O H2(g) -41.29 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -136.29 -144.23 -7.94 H2S + H2S(g) -136.30 -144.23 -7.94 H2S Halite -9.39 -7.82 1.57 NaCl Hexahydrite -6.67 -8.23 -1.57 MgSO4:6H2O Kieserite -7.07 -8.23 -1.16 MgSO4:H2O @@ -579,100 +580,100 @@ Using pure phase assemblage 0. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -1.50 -2.97 -1.47 1.000e+01 9.996e+00 -4.073e-03 -Calcite 0.00 -8.48 -8.48 1.000e-01 9.968e-02 -3.160e-04 -Dolomite 0.00 -17.08 -17.08 1.600e+00 1.599e+00 -1.366e-03 +CO2(g) -1.50 -2.97 -1.47 1.000e+01 9.996e+00 -4.032e-03 +Calcite 0.00 -8.48 -8.48 1.000e-01 9.974e-02 -2.569e-04 +Dolomite 0.00 -17.08 -17.08 1.600e+00 1.599e+00 -1.375e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 7.132e-03 7.132e-03 - Ca 1.874e-03 1.874e-03 + C 7.051e-03 7.051e-03 + Ca 1.824e-03 1.824e-03 Cl 1.337e-04 1.337e-04 - Mg 1.402e-03 1.402e-03 + Mg 1.411e-03 1.411e-03 Na 1.227e-04 1.227e-04 S 2.351e-04 2.351e-04 ----------------------------Description of solution---------------------------- - pH = 7.048 Charge balance - pe = 13.574 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 588 - Density (g/cm³) = 0.99747 + pH = 7.047 Charge balance + pe = 13.576 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 603 + Density (g/cm³) = 0.99746 Volume (L) = 1.00305 - Viscosity (mPa s) = 0.89326 + Viscosity (mPa s) = 0.89401 Activity of water = 1.000 Ionic strength (mol/kgw) = 9.649e-03 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 6.070e-03 - Total CO2 (mol/kg) = 7.132e-03 + Total alkalinity (eq/kg) = 5.989e-03 + Total CO2 (mol/kg) = 7.051e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 2.096e-15 + Electrical balance (eq) = 2.051e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110125e+02 - Total O = 5.552498e+01 + Total O = 5.552478e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.254e-07 1.130e-07 -6.902 -6.947 -0.045 -4.04 - H+ 9.790e-08 8.953e-08 -7.009 -7.048 -0.039 0.00 + OH- 1.250e-07 1.126e-07 -6.903 -6.948 -0.045 -4.04 + H+ 9.823e-08 8.983e-08 -7.008 -7.047 -0.039 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -143.556 -143.555 0.001 35.46 -C(4) 7.132e-03 - HCO3- 5.895e-03 5.344e-03 -2.229 -2.272 -0.043 24.65 +C(4) 7.051e-03 + HCO3- 5.875e-03 5.326e-03 -2.231 -2.274 -0.043 24.65 CO2 1.074e-03 1.076e-03 -2.969 -2.968 0.001 34.43 - CaHCO3+ 8.885e-05 8.066e-05 -4.051 -4.093 -0.042 9.72 - MgHCO3+ 6.157e-05 5.559e-05 -4.211 -4.255 -0.044 5.53 + MgHCO3+ 6.178e-05 5.578e-05 -4.209 -4.254 -0.044 5.53 + CaHCO3+ 2.695e-05 2.447e-05 -4.569 -4.611 -0.042 122.69 CaCO3 5.551e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CO3-2 4.146e-06 2.799e-06 -5.382 -5.553 -0.171 -3.79 + CO3-2 4.119e-06 2.780e-06 -5.385 -5.556 -0.171 -3.67 MgCO3 2.369e-06 2.375e-06 -5.625 -5.624 0.001 -17.09 - NaHCO3 3.930e-07 3.951e-07 -6.406 -6.403 0.002 28.00 + NaHCO3 5.094e-07 5.117e-07 -6.293 -6.291 0.002 31.73 (CO2)2 2.120e-08 2.125e-08 -7.674 -7.673 0.001 68.87 -Ca 1.874e-03 - Ca+2 1.754e-03 1.183e-03 -2.756 -2.927 -0.171 -17.93 - CaHCO3+ 8.885e-05 8.066e-05 -4.051 -4.093 -0.042 9.72 - CaSO4 2.555e-05 2.560e-05 -4.593 -4.592 0.001 7.50 +Ca 1.824e-03 + Ca+2 1.766e-03 1.191e-03 -2.753 -2.924 -0.171 -17.93 + CaHCO3+ 2.695e-05 2.447e-05 -4.569 -4.611 -0.042 122.69 + CaSO4 2.566e-05 2.572e-05 -4.591 -4.590 0.001 7.50 CaCO3 5.551e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CaOH+ 2.427e-09 2.193e-09 -8.615 -8.659 -0.044 (0) - CaHSO4+ 1.668e-11 1.507e-11 -10.778 -10.822 -0.044 (0) + CaOH+ 2.435e-09 2.200e-09 -8.613 -8.658 -0.044 (0) + CaHSO4+ 1.681e-11 1.519e-11 -10.774 -10.819 -0.044 (0) Cl 1.337e-04 Cl- 1.337e-04 1.206e-04 -3.874 -3.919 -0.045 18.14 - HCl 3.686e-12 3.721e-12 -11.433 -11.429 0.004 (0) + HCl 3.698e-12 3.733e-12 -11.432 -11.428 0.004 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.395 -44.394 0.001 28.61 -Mg 1.402e-03 - Mg+2 1.310e-03 8.890e-04 -2.883 -3.051 -0.168 -21.62 - MgHCO3+ 6.157e-05 5.559e-05 -4.211 -4.255 -0.044 5.53 - MgSO4 2.820e-05 2.833e-05 -4.550 -4.548 0.002 -0.83 +Mg 1.411e-03 + Mg+2 1.319e-03 8.951e-04 -2.880 -3.048 -0.168 -21.62 + MgHCO3+ 6.178e-05 5.578e-05 -4.209 -4.254 -0.044 5.53 + MgSO4 2.833e-05 2.845e-05 -4.548 -4.546 0.002 -7.92 MgCO3 2.369e-06 2.375e-06 -5.625 -5.624 0.001 -17.09 - MgOH+ 3.965e-08 3.605e-08 -7.402 -7.443 -0.041 (0) - Mg(SO4)2-2 1.653e-08 1.136e-08 -7.782 -7.945 -0.163 38.49 + MgOH+ 3.979e-08 3.617e-08 -7.400 -7.442 -0.041 (0) + Mg(SO4)2-2 1.656e-08 1.138e-08 -7.781 -7.944 -0.163 6.69 Na 1.227e-04 - Na+ 1.222e-04 1.106e-04 -3.913 -3.956 -0.043 -1.38 - NaHCO3 3.930e-07 3.951e-07 -6.406 -6.403 0.002 28.00 - NaSO4- 5.900e-08 5.257e-08 -7.229 -7.279 -0.050 14.84 - NaOH 1.247e-21 1.250e-21 -20.904 -20.903 0.001 (0) + Na+ 1.219e-04 1.103e-04 -3.914 -3.957 -0.043 -1.38 + NaHCO3 5.094e-07 5.117e-07 -6.293 -6.291 0.002 31.73 + NaSO4- 2.405e-07 2.180e-07 -6.619 -6.662 -0.043 -15.24 + NaOH 1.240e-21 1.243e-21 -20.907 -20.906 0.001 (0) O(0) 5.111e-04 O2 2.556e-04 2.561e-04 -3.593 -3.592 0.001 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -142.245 -142.290 -0.045 20.67 - H2S 0.000e+00 0.000e+00 -142.397 -142.396 0.001 36.27 - S-2 0.000e+00 0.000e+00 -147.987 -148.160 -0.173 (0) - (H2S)2 0.000e+00 0.000e+00 -286.071 -286.070 0.001 30.09 + HS- 0.000e+00 0.000e+00 -142.244 -142.289 -0.045 20.67 + H2S 0.000e+00 0.000e+00 -142.395 -142.394 0.001 36.27 + S-2 0.000e+00 0.000e+00 -147.988 -148.161 -0.173 (0) + (H2S)2 0.000e+00 0.000e+00 -286.067 -286.066 0.001 30.09 S(6) 2.351e-04 - SO4-2 1.812e-04 1.217e-04 -3.742 -3.915 -0.173 15.04 - MgSO4 2.820e-05 2.833e-05 -4.550 -4.548 0.002 -0.83 - CaSO4 2.555e-05 2.560e-05 -4.593 -4.592 0.001 7.50 - NaSO4- 5.900e-08 5.257e-08 -7.229 -7.279 -0.050 14.84 - Mg(SO4)2-2 1.653e-08 1.136e-08 -7.782 -7.945 -0.163 38.49 - HSO4- 1.173e-09 1.059e-09 -8.931 -8.975 -0.044 40.34 - CaHSO4+ 1.668e-11 1.507e-11 -10.778 -10.822 -0.044 (0) + SO4-2 1.808e-04 1.214e-04 -3.743 -3.916 -0.173 17.83 + MgSO4 2.833e-05 2.845e-05 -4.548 -4.546 0.002 -7.92 + CaSO4 2.566e-05 2.572e-05 -4.591 -4.590 0.001 7.50 + NaSO4- 2.405e-07 2.180e-07 -6.619 -6.662 -0.043 -15.24 + Mg(SO4)2-2 1.656e-08 1.138e-08 -7.781 -7.944 -0.163 6.69 + HSO4- 1.174e-09 1.060e-09 -8.930 -8.975 -0.044 40.34 + CaHSO4+ 1.681e-11 1.519e-11 -10.774 -10.819 -0.044 (0) ------------------------------Saturation indices------------------------------- @@ -684,14 +685,14 @@ S(6) 2.351e-04 CH4(g) -140.75 -143.56 -2.80 CH4 CO2(g) -1.50 -2.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 - Epsomite -5.23 -6.97 -1.74 MgSO4:7H2O + Epsomite -5.23 -6.96 -1.74 MgSO4:7H2O Gypsum -2.26 -6.84 -4.58 CaSO4:2H2O H2(g) -41.29 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -141.40 -149.34 -7.94 H2S - Halite -9.44 -7.87 1.57 NaCl - Hexahydrite -5.40 -6.97 -1.57 MgSO4:6H2O - Kieserite -5.80 -6.97 -1.16 MgSO4:H2O + Halite -9.45 -7.88 1.57 NaCl + Hexahydrite -5.40 -6.96 -1.57 MgSO4:6H2O + Kieserite -5.80 -6.96 -1.16 MgSO4:H2O Mirabilite -10.59 -11.83 -1.24 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 Sulfur -106.03 -101.15 4.88 S @@ -942,19 +943,19 @@ Using pure phase assemblage 1. Pure-phase assemblage after simulation 5. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite -0.00 -8.48 -8.48 0.000e+00 0 0.000e+00 -Dolomite 0.00 -17.08 -17.08 1.569e+00 1.569e+00 3.047e-07 +Calcite -0.01 -8.49 -8.48 0.000e+00 0 0.000e+00 +Dolomite 0.00 -17.08 -17.08 1.567e+00 1.567e+00 3.988e-07 ------------------------------Surface composition------------------------------ Diffuse Double Layer Surface-Complexation Model Surf - 2.274e-03 Surface charge, eq - 1.219e-02 sigma, C/m² - 4.736e-02 psi, V - -1.843e+00 -F*psi/RT - 1.583e-01 exp(-F*psi/RT) + 2.452e-03 Surface charge, eq + 1.314e-02 sigma, C/m² + 5.022e-02 psi, V + -1.955e+00 -F*psi/RT + 1.416e-01 exp(-F*psi/RT) 6.000e+02 specific area, m²/g 1.800e+04 m² for 3.000e+01 g @@ -964,12 +965,12 @@ Surf Mole Log Species Moles Fraction Molality Molality - SurfOH 4.969e-02 0.710 4.969e-02 -1.304 - SurfOH2+ 1.374e-02 0.196 1.374e-02 -1.862 - SurfO- 4.117e-03 0.059 4.117e-03 -2.385 - SurfOHAsO4-3 2.448e-03 0.035 2.448e-03 -2.611 - SurfHAsO4- 4.191e-06 0.000 4.191e-06 -5.378 - SurfH2AsO4 3.750e-08 0.000 3.750e-08 -7.426 + SurfOH 5.085e-02 0.726 5.086e-02 -1.294 + SurfOH2+ 1.263e-02 0.180 1.263e-02 -1.899 + SurfO- 4.692e-03 0.067 4.693e-03 -2.329 + SurfOHAsO4-3 1.826e-03 0.026 1.826e-03 -2.738 + SurfHAsO4- 2.521e-06 0.000 2.521e-06 -5.598 + SurfH2AsO4 2.025e-08 0.000 2.025e-08 -7.694 -----------------------------Exchange composition------------------------------ @@ -978,124 +979,124 @@ X 1.000e+00 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - CaX2 3.379e-01 6.758e-01 6.758e-01 -0.171 - MgX2 1.616e-01 3.232e-01 3.232e-01 -0.168 - NaX 9.585e-04 9.585e-04 9.585e-04 -0.043 + CaX2 3.368e-01 6.735e-01 6.735e-01 -0.171 + MgX2 1.628e-01 3.255e-01 3.255e-01 -0.168 + NaX 9.536e-04 9.536e-04 9.536e-04 -0.043 -----------------------------Solution composition------------------------------ Elements Molality Moles - As 3.503e-10 3.503e-10 - C 7.132e-03 7.131e-03 - Ca 1.862e-03 1.861e-03 + As 1.837e-10 1.837e-10 + C 7.050e-03 7.050e-03 + Ca 1.803e-03 1.803e-03 Cl 1.337e-04 1.337e-04 - Mg 1.414e-03 1.414e-03 + Mg 1.431e-03 1.431e-03 Na 1.227e-04 1.227e-04 S 2.351e-04 2.351e-04 ----------------------------Description of solution---------------------------- - pH = 7.048 Charge balance - pe = 13.574 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 588 - Density (g/cm³) = 0.99747 + pH = 7.046 Charge balance + pe = 13.576 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 602 + Density (g/cm³) = 0.99746 Volume (L) = 1.00305 - Viscosity (mPa s) = 0.89326 + Viscosity (mPa s) = 0.89401 Activity of water = 1.000 - Ionic strength (mol/kgw) = 9.647e-03 + Ionic strength (mol/kgw) = 9.645e-03 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 6.069e-03 - Total CO2 (mol/kg) = 7.132e-03 + Total alkalinity (eq/kg) = 5.987e-03 + Total CO2 (mol/kg) = 7.050e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.593e-09 + Electrical balance (eq) = 7.167e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 + Iterations = 11 Total H = 1.110125e+02 - Total O = 5.552498e+01 + Total O = 5.552477e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.253e-07 1.129e-07 -6.902 -6.947 -0.045 -4.04 - H+ 9.797e-08 8.960e-08 -7.009 -7.048 -0.039 0.00 + OH- 1.248e-07 1.125e-07 -6.904 -6.949 -0.045 -4.04 + H+ 9.833e-08 8.993e-08 -7.007 -7.046 -0.039 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 -As 3.503e-10 - HAsO4-2 2.186e-10 1.456e-10 -9.660 -9.837 -0.177 (0) - H2AsO4- 1.317e-10 1.190e-10 -9.880 -9.925 -0.044 (0) - AsO4-3 1.282e-14 5.138e-15 -13.892 -14.289 -0.397 (0) - H3AsO4 1.848e-15 1.852e-15 -14.733 -14.732 0.001 (0) +As 1.837e-10 + HAsO4-2 1.145e-10 7.625e-11 -9.941 -10.118 -0.177 (0) + H2AsO4- 6.923e-11 6.254e-11 -10.160 -10.204 -0.044 (0) + AsO4-3 6.692e-15 2.681e-15 -14.174 -14.572 -0.397 (0) + H3AsO4 9.752e-16 9.773e-16 -15.011 -15.010 0.001 (0) C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -143.556 -143.555 0.001 35.46 -C(4) 7.132e-03 - HCO3- 5.894e-03 5.343e-03 -2.230 -2.272 -0.043 24.65 - CO2 1.075e-03 1.076e-03 -2.969 -2.968 0.001 34.43 - CaHCO3+ 8.825e-05 8.012e-05 -4.054 -4.096 -0.042 9.72 - MgHCO3+ 6.207e-05 5.604e-05 -4.207 -4.251 -0.044 5.53 - CaCO3 5.510e-06 5.522e-06 -5.259 -5.258 0.001 -14.60 - CO3-2 4.143e-06 2.797e-06 -5.383 -5.553 -0.171 -3.79 - MgCO3 2.387e-06 2.392e-06 -5.622 -5.621 0.001 -17.09 - NaHCO3 3.930e-07 3.951e-07 -6.406 -6.403 0.002 28.00 - (CO2)2 2.122e-08 2.127e-08 -7.673 -7.672 0.001 68.87 -Ca 1.862e-03 - Ca+2 1.742e-03 1.175e-03 -2.759 -2.930 -0.171 -17.93 - CaHCO3+ 8.825e-05 8.012e-05 -4.054 -4.096 -0.042 9.72 - CaSO4 2.537e-05 2.543e-05 -4.596 -4.595 0.001 7.50 - CaCO3 5.510e-06 5.522e-06 -5.259 -5.258 0.001 -14.60 - CaOH+ 2.410e-09 2.177e-09 -8.618 -8.662 -0.044 (0) - CaHSO4+ 1.658e-11 1.498e-11 -10.780 -10.825 -0.044 (0) +C(4) 7.050e-03 + HCO3- 5.873e-03 5.324e-03 -2.231 -2.274 -0.043 24.65 + CO2 1.075e-03 1.077e-03 -2.969 -2.968 0.001 34.43 + MgHCO3+ 6.263e-05 5.655e-05 -4.203 -4.248 -0.044 5.53 + CaHCO3+ 2.664e-05 2.418e-05 -4.574 -4.616 -0.042 122.69 + CaCO3 5.481e-06 5.493e-06 -5.261 -5.260 0.001 -14.60 + CO3-2 4.113e-06 2.776e-06 -5.386 -5.557 -0.171 -3.67 + MgCO3 2.400e-06 2.405e-06 -5.620 -5.619 0.001 -17.09 + NaHCO3 5.093e-07 5.116e-07 -6.293 -6.291 0.002 31.73 + (CO2)2 2.123e-08 2.128e-08 -7.673 -7.672 0.001 68.87 +Ca 1.803e-03 + Ca+2 1.746e-03 1.178e-03 -2.758 -2.929 -0.171 -17.93 + CaHCO3+ 2.664e-05 2.418e-05 -4.574 -4.616 -0.042 122.69 + CaSO4 2.536e-05 2.542e-05 -4.596 -4.595 0.001 7.50 + CaCO3 5.481e-06 5.493e-06 -5.261 -5.260 0.001 -14.60 + CaOH+ 2.405e-09 2.173e-09 -8.619 -8.663 -0.044 (0) + CaHSO4+ 1.663e-11 1.502e-11 -10.779 -10.823 -0.044 (0) Cl 1.337e-04 Cl- 1.337e-04 1.206e-04 -3.874 -3.919 -0.045 18.14 - HCl 3.688e-12 3.723e-12 -11.433 -11.429 0.004 (0) + HCl 3.702e-12 3.737e-12 -11.432 -11.427 0.004 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.395 -44.394 0.001 28.61 -Mg 1.414e-03 - Mg+2 1.321e-03 8.965e-04 -2.879 -3.047 -0.168 -21.62 - MgHCO3+ 6.207e-05 5.604e-05 -4.207 -4.251 -0.044 5.53 - MgSO4 2.843e-05 2.856e-05 -4.546 -4.544 0.002 -0.83 - MgCO3 2.387e-06 2.392e-06 -5.622 -5.621 0.001 -17.09 - MgOH+ 3.996e-08 3.632e-08 -7.398 -7.440 -0.041 (0) - Mg(SO4)2-2 1.666e-08 1.144e-08 -7.778 -7.941 -0.163 38.49 +Mg 1.431e-03 + Mg+2 1.337e-03 9.078e-04 -2.874 -3.042 -0.168 -21.62 + MgHCO3+ 6.263e-05 5.655e-05 -4.203 -4.248 -0.044 5.53 + MgSO4 2.872e-05 2.885e-05 -4.542 -4.540 0.002 -7.92 + MgCO3 2.400e-06 2.405e-06 -5.620 -5.619 0.001 -17.09 + MgOH+ 4.031e-08 3.664e-08 -7.395 -7.436 -0.041 (0) + Mg(SO4)2-2 1.678e-08 1.153e-08 -7.775 -7.938 -0.163 6.68 Na 1.227e-04 - Na+ 1.222e-04 1.106e-04 -3.913 -3.956 -0.043 -1.38 - NaHCO3 3.930e-07 3.951e-07 -6.406 -6.403 0.002 28.00 - NaSO4- 5.899e-08 5.256e-08 -7.229 -7.279 -0.050 14.84 - NaOH 1.246e-21 1.249e-21 -20.904 -20.903 0.001 (0) + Na+ 1.220e-04 1.103e-04 -3.914 -3.957 -0.043 -1.38 + NaHCO3 5.093e-07 5.116e-07 -6.293 -6.291 0.002 31.73 + NaSO4- 2.404e-07 2.180e-07 -6.619 -6.662 -0.043 -15.24 + NaOH 1.239e-21 1.242e-21 -20.907 -20.906 0.001 (0) O(0) 5.111e-04 O2 2.556e-04 2.561e-04 -3.593 -3.592 0.001 30.40 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -142.244 -142.289 -0.045 20.67 - H2S 0.000e+00 0.000e+00 -142.396 -142.395 0.001 36.27 - S-2 0.000e+00 0.000e+00 -147.987 -148.160 -0.173 (0) - (H2S)2 0.000e+00 0.000e+00 -286.070 -286.069 0.001 30.09 + H2S 0.000e+00 0.000e+00 -142.394 -142.393 0.001 36.27 + S-2 0.000e+00 0.000e+00 -147.988 -148.161 -0.173 (0) + (H2S)2 0.000e+00 0.000e+00 -286.066 -286.065 0.001 30.09 S(6) 2.351e-04 - SO4-2 1.812e-04 1.217e-04 -3.742 -3.915 -0.173 15.04 - MgSO4 2.843e-05 2.856e-05 -4.546 -4.544 0.002 -0.83 - CaSO4 2.537e-05 2.543e-05 -4.596 -4.595 0.001 7.50 - NaSO4- 5.899e-08 5.256e-08 -7.229 -7.279 -0.050 14.84 - Mg(SO4)2-2 1.666e-08 1.144e-08 -7.778 -7.941 -0.163 38.49 - HSO4- 1.173e-09 1.060e-09 -8.931 -8.975 -0.044 40.34 - CaHSO4+ 1.658e-11 1.498e-11 -10.780 -10.825 -0.044 (0) + SO4-2 1.807e-04 1.214e-04 -3.743 -3.916 -0.173 17.83 + MgSO4 2.872e-05 2.885e-05 -4.542 -4.540 0.002 -7.92 + CaSO4 2.536e-05 2.542e-05 -4.596 -4.595 0.001 7.50 + NaSO4- 2.404e-07 2.180e-07 -6.619 -6.662 -0.043 -15.24 + Mg(SO4)2-2 1.678e-08 1.153e-08 -7.775 -7.938 -0.163 6.68 + HSO4- 1.175e-09 1.061e-09 -8.930 -8.974 -0.044 40.34 + CaHSO4+ 1.663e-11 1.502e-11 -10.779 -10.823 -0.044 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -2.57 -6.84 -4.28 CaSO4 - Aragonite -0.15 -8.48 -8.34 CaCO3 - Calcite -0.00 -8.48 -8.48 CaCO3 + Aragonite -0.15 -8.49 -8.34 CaCO3 + Calcite -0.01 -8.49 -8.48 CaCO3 CH4(g) -140.75 -143.55 -2.80 CH4 CO2(g) -1.50 -2.97 -1.47 CO2 Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 Epsomite -5.22 -6.96 -1.74 MgSO4:7H2O - Gypsum -2.26 -6.84 -4.58 CaSO4:2H2O + Gypsum -2.26 -6.85 -4.58 CaSO4:2H2O H2(g) -41.29 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -141.40 -149.34 -7.94 H2S - Halite -9.44 -7.87 1.57 NaCl - Hexahydrite -5.40 -6.96 -1.57 MgSO4:6H2O + Halite -9.45 -7.88 1.57 NaCl + Hexahydrite -5.39 -6.96 -1.57 MgSO4:6H2O Kieserite -5.80 -6.96 -1.16 MgSO4:H2O Mirabilite -10.59 -11.83 -1.24 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 diff --git a/phreeqc3-examples/ex14.sel b/phreeqc3-examples/ex14.sel index bbfcec5b..ee307064 100644 --- a/phreeqc3-examples/ex14.sel +++ b/phreeqc3-examples/ex14.sel @@ -1,202 +1,202 @@ step m_Ca m_Mg m_Na umol_As pH mmol_sorbedAs - 1 4.6308e-01 1.6339e-01 5.4020e+00 2.5000e-02 5.8786e+00 0.0000e+00 - 1 3.4327e-04 2.4766e-04 9.3588e-02 1.4981e-03 7.2249e+00 2.4922e+00 - 2 2.8134e-05 1.9155e-05 2.3251e-02 1.7865e-01 8.6678e+00 2.4920e+00 - 3 1.4944e-05 9.4043e-06 1.4415e-02 1.1859e+00 9.1722e+00 2.4908e+00 - 4 1.3035e-05 7.9897e-06 1.2375e-02 2.0059e+00 9.3149e+00 2.4888e+00 - 5 1.2625e-05 7.6873e-06 1.1591e-02 2.3392e+00 9.3565e+00 2.4865e+00 - 6 1.2652e-05 7.7097e-06 1.1203e-02 2.3871e+00 9.3613e+00 2.4841e+00 - 7 1.2855e-05 7.8626e-06 1.0972e-02 2.3063e+00 9.3510e+00 2.4818e+00 - 8 1.3141e-05 8.0776e-06 1.0812e-02 2.1765e+00 9.3343e+00 2.4796e+00 - 9 1.3473e-05 8.3263e-06 1.0686e-02 2.0333e+00 9.3149e+00 2.4776e+00 - 10 1.3833e-05 8.5963e-06 1.0578e-02 1.8915e+00 9.2945e+00 2.4757e+00 - 11 1.4214e-05 8.8822e-06 1.0481e-02 1.7565e+00 9.2738e+00 2.4739e+00 - 12 1.4614e-05 9.1817e-06 1.0391e-02 1.6301e+00 9.2531e+00 2.4723e+00 - 13 1.5031e-05 9.4944e-06 1.0306e-02 1.5127e+00 9.2325e+00 2.4708e+00 - 14 1.5466e-05 9.8202e-06 1.0226e-02 1.4036e+00 9.2119e+00 2.4694e+00 - 15 1.5919e-05 1.0160e-05 1.0151e-02 1.3025e+00 9.1915e+00 2.4681e+00 - 16 1.6391e-05 1.0514e-05 1.0078e-02 1.2086e+00 9.1712e+00 2.4669e+00 - 17 1.6884e-05 1.0884e-05 1.0009e-02 1.1215e+00 9.1510e+00 2.4658e+00 - 18 1.7399e-05 1.1270e-05 9.9436e-03 1.0406e+00 9.1309e+00 2.4647e+00 - 19 1.7937e-05 1.1673e-05 9.8806e-03 9.6530e-01 9.1108e+00 2.4638e+00 - 20 1.8500e-05 1.2095e-05 9.8202e-03 8.9530e-01 9.0907e+00 2.4629e+00 - 21 1.9088e-05 1.2536e-05 9.7623e-03 8.3017e-01 9.0707e+00 2.4620e+00 - 22 1.9705e-05 1.2999e-05 9.7066e-03 7.6955e-01 9.0507e+00 2.4613e+00 - 23 2.0352e-05 1.3483e-05 9.6531e-03 7.1311e-01 9.0306e+00 2.4605e+00 - 24 2.1030e-05 1.3992e-05 9.6016e-03 6.6055e-01 9.0106e+00 2.4599e+00 - 25 2.1742e-05 1.4526e-05 9.5519e-03 6.1160e-01 8.9904e+00 2.4593e+00 - 26 2.2490e-05 1.5086e-05 9.5040e-03 5.6601e-01 8.9703e+00 2.4587e+00 - 27 2.3276e-05 1.5676e-05 9.4577e-03 5.2355e-01 8.9501e+00 2.4582e+00 - 28 2.4103e-05 1.6296e-05 9.4129e-03 4.8400e-01 8.9297e+00 2.4577e+00 - 29 2.4975e-05 1.6950e-05 9.3695e-03 4.4718e-01 8.9094e+00 2.4573e+00 - 30 2.5893e-05 1.7638e-05 9.3274e-03 4.1289e-01 8.8889e+00 2.4568e+00 - 31 2.6861e-05 1.8364e-05 9.2866e-03 3.8098e-01 8.8683e+00 2.4565e+00 - 32 2.7883e-05 1.9130e-05 9.2469e-03 3.5129e-01 8.8475e+00 2.4561e+00 - 33 2.8962e-05 1.9940e-05 9.2083e-03 3.2367e-01 8.8267e+00 2.4558e+00 - 34 3.0104e-05 2.0795e-05 9.1706e-03 2.9799e-01 8.8057e+00 2.4555e+00 - 35 3.1311e-05 2.1701e-05 9.1338e-03 2.7413e-01 8.7845e+00 2.4552e+00 - 36 3.2589e-05 2.2659e-05 9.0978e-03 2.5196e-01 8.7632e+00 2.4550e+00 - 37 3.3944e-05 2.3675e-05 9.0625e-03 2.3138e-01 8.7417e+00 2.4547e+00 - 38 3.5381e-05 2.4752e-05 9.0279e-03 2.1228e-01 8.7200e+00 2.4545e+00 - 39 3.6906e-05 2.5896e-05 8.9938e-03 1.9457e-01 8.6982e+00 2.4543e+00 - 40 3.8527e-05 2.7111e-05 8.9603e-03 1.7817e-01 8.6761e+00 2.4541e+00 - 41 4.0250e-05 2.8404e-05 8.9271e-03 1.6297e-01 8.6538e+00 2.4540e+00 - 42 4.2085e-05 2.9779e-05 8.8942e-03 1.4892e-01 8.6313e+00 2.4538e+00 - 43 4.4039e-05 3.1245e-05 8.8616e-03 1.3593e-01 8.6085e+00 2.4537e+00 - 44 4.6123e-05 3.2808e-05 8.8292e-03 1.2393e-01 8.5856e+00 2.4536e+00 - 45 4.8348e-05 3.4476e-05 8.7967e-03 1.1285e-01 8.5623e+00 2.4535e+00 - 46 5.0725e-05 3.6258e-05 8.7643e-03 1.0265e-01 8.5388e+00 2.4534e+00 - 47 5.3267e-05 3.8165e-05 8.7317e-03 9.3246e-02 8.5150e+00 2.4533e+00 - 48 5.5988e-05 4.0205e-05 8.6989e-03 8.4599e-02 8.4910e+00 2.4532e+00 - 49 5.8905e-05 4.2392e-05 8.6657e-03 7.6655e-02 8.4666e+00 2.4531e+00 - 50 6.2033e-05 4.4738e-05 8.6320e-03 6.9364e-02 8.4420e+00 2.4530e+00 - 51 6.5393e-05 4.7257e-05 8.5977e-03 6.2681e-02 8.4170e+00 2.4530e+00 - 52 6.9004e-05 4.9965e-05 8.5627e-03 5.6563e-02 8.3917e+00 2.4529e+00 - 53 7.2890e-05 5.2879e-05 8.5268e-03 5.0970e-02 8.3661e+00 2.4529e+00 - 54 7.7076e-05 5.6019e-05 8.4899e-03 4.5865e-02 8.3401e+00 2.4528e+00 - 55 8.1590e-05 5.9404e-05 8.4518e-03 4.1211e-02 8.3138e+00 2.4528e+00 - 56 8.6463e-05 6.3058e-05 8.4123e-03 3.6975e-02 8.2872e+00 2.4527e+00 - 57 9.1728e-05 6.7006e-05 8.3712e-03 3.3125e-02 8.2602e+00 2.4527e+00 - 58 9.7424e-05 7.1277e-05 8.3283e-03 2.9633e-02 8.2328e+00 2.4527e+00 - 59 1.0359e-04 7.5902e-05 8.2834e-03 2.6469e-02 8.2051e+00 2.4526e+00 - 60 1.1028e-04 8.0915e-05 8.2362e-03 2.3609e-02 8.1769e+00 2.4526e+00 - 61 1.1753e-04 8.6353e-05 8.1864e-03 2.1027e-02 8.1485e+00 2.4526e+00 - 62 1.2540e-04 9.2259e-05 8.1338e-03 1.8701e-02 8.1196e+00 2.4526e+00 - 63 1.3396e-04 9.8677e-05 8.0781e-03 1.6609e-02 8.0904e+00 2.4526e+00 - 64 1.4327e-04 1.0566e-04 8.0188e-03 1.4732e-02 8.0608e+00 2.4526e+00 - 65 1.5340e-04 1.1326e-04 7.9557e-03 1.3050e-02 8.0308e+00 2.4525e+00 - 66 1.6443e-04 1.2153e-04 7.8884e-03 1.1547e-02 8.0006e+00 2.4525e+00 - 67 1.7646e-04 1.3055e-04 7.8163e-03 1.0206e-02 7.9700e+00 2.4525e+00 - 68 1.8956e-04 1.4037e-04 7.7391e-03 9.0127e-03 7.9391e+00 2.4525e+00 - 69 2.0385e-04 1.5109e-04 7.6564e-03 7.9523e-03 7.9079e+00 2.4525e+00 - 70 2.1943e-04 1.6277e-04 7.5675e-03 7.0121e-03 7.8764e+00 2.4525e+00 - 71 2.3641e-04 1.7551e-04 7.4721e-03 6.1803e-03 7.8448e+00 2.4525e+00 - 72 2.5491e-04 1.8938e-04 7.3695e-03 5.4460e-03 7.8129e+00 2.4525e+00 - 73 2.7506e-04 2.0449e-04 7.2594e-03 4.7990e-03 7.7810e+00 2.4525e+00 - 74 2.9698e-04 2.2093e-04 7.1411e-03 4.2301e-03 7.7490e+00 2.4525e+00 - 75 3.2079e-04 2.3879e-04 7.0142e-03 3.7309e-03 7.7170e+00 2.4525e+00 - 76 3.4663e-04 2.5817e-04 6.8783e-03 3.2935e-03 7.6850e+00 2.4525e+00 - 77 3.7460e-04 2.7915e-04 6.7329e-03 2.9111e-03 7.6532e+00 2.4525e+00 - 78 4.0481e-04 3.0180e-04 6.5777e-03 2.5772e-03 7.6216e+00 2.4525e+00 - 79 4.3735e-04 3.2620e-04 6.4126e-03 2.2861e-03 7.5903e+00 2.4525e+00 - 80 4.7228e-04 3.5239e-04 6.2375e-03 2.0328e-03 7.5594e+00 2.4525e+00 - 81 5.0964e-04 3.8040e-04 6.0523e-03 1.8125e-03 7.5290e+00 2.4525e+00 - 82 5.4942e-04 4.1023e-04 5.8574e-03 1.6212e-03 7.4993e+00 2.4525e+00 - 83 5.9159e-04 4.4185e-04 5.6532e-03 1.4552e-03 7.4702e+00 2.4525e+00 - 84 6.3606e-04 4.7519e-04 5.4403e-03 1.3112e-03 7.4419e+00 2.4525e+00 - 85 6.8269e-04 5.1015e-04 5.2195e-03 1.1863e-03 7.4144e+00 2.4524e+00 - 86 7.3129e-04 5.4658e-04 4.9919e-03 1.0781e-03 7.3880e+00 2.4524e+00 - 87 7.8148e-04 5.8445e-04 4.7587e-03 9.8433e-04 7.3626e+00 2.4524e+00 - 88 8.3234e-04 6.2418e-04 4.5208e-03 9.0282e-04 7.3382e+00 2.4524e+00 - 89 8.8427e-04 6.6480e-04 4.2805e-03 8.3217e-04 7.3150e+00 2.4524e+00 - 90 9.3689e-04 7.0600e-04 4.0393e-03 7.7092e-04 7.2930e+00 2.4524e+00 - 91 9.8982e-04 7.4749e-04 3.7990e-03 7.1779e-04 7.2722e+00 2.4524e+00 - 92 1.0426e-03 7.8893e-04 3.5610e-03 6.7168e-04 7.2528e+00 2.4524e+00 - 93 1.0950e-03 8.3003e-04 3.3272e-03 6.3161e-04 7.2345e+00 2.4524e+00 - 94 1.1465e-03 8.7047e-04 3.0990e-03 5.9677e-04 7.2175e+00 2.4524e+00 - 95 1.1967e-03 9.0999e-04 2.8778e-03 5.6644e-04 7.2018e+00 2.4524e+00 - 96 1.2455e-03 9.4832e-04 2.6648e-03 5.4001e-04 7.1872e+00 2.4524e+00 - 97 1.2924e-03 9.8524e-04 2.4609e-03 5.1695e-04 7.1738e+00 2.4524e+00 - 98 1.3373e-03 1.0206e-03 2.2671e-03 4.9681e-04 7.1614e+00 2.4524e+00 - 99 1.3800e-03 1.0542e-03 2.0838e-03 4.7920e-04 7.1502e+00 2.4524e+00 - 100 1.4204e-03 1.0859e-03 1.9114e-03 4.6379e-04 7.1398e+00 2.4524e+00 - 101 1.4583e-03 1.1157e-03 1.7502e-03 4.5028e-04 7.1305e+00 2.4524e+00 - 102 1.4938e-03 1.1436e-03 1.6001e-03 4.3843e-04 7.1219e+00 2.4524e+00 - 103 1.5268e-03 1.1696e-03 1.4610e-03 4.2803e-04 7.1142e+00 2.4524e+00 - 104 1.5574e-03 1.1936e-03 1.3326e-03 4.1889e-04 7.1072e+00 2.4524e+00 - 105 1.5857e-03 1.2158e-03 1.2145e-03 4.1085e-04 7.1009e+00 2.4524e+00 - 106 1.6116e-03 1.2361e-03 1.1063e-03 4.0378e-04 7.0953e+00 2.4524e+00 - 107 1.6354e-03 1.2547e-03 1.0075e-03 3.9755e-04 7.0902e+00 2.4524e+00 - 108 1.6572e-03 1.2717e-03 9.1753e-04 3.9205e-04 7.0856e+00 2.4524e+00 - 109 1.6770e-03 1.2872e-03 8.3580e-04 3.8721e-04 7.0815e+00 2.4524e+00 - 110 1.6949e-03 1.3012e-03 7.6174e-04 3.8293e-04 7.0778e+00 2.4524e+00 - 111 1.7112e-03 1.3139e-03 6.9479e-04 3.7915e-04 7.0745e+00 2.4524e+00 - 112 1.7260e-03 1.3253e-03 6.3437e-04 3.7582e-04 7.0715e+00 2.4524e+00 - 113 1.7393e-03 1.3356e-03 5.7995e-04 3.7287e-04 7.0689e+00 2.4524e+00 - 114 1.7513e-03 1.3449e-03 5.3101e-04 3.7026e-04 7.0665e+00 2.4524e+00 - 115 1.7621e-03 1.3532e-03 4.8706e-04 3.6796e-04 7.0644e+00 2.4524e+00 - 116 1.7719e-03 1.3606e-03 4.4765e-04 3.6592e-04 7.0626e+00 2.4524e+00 - 117 1.7806e-03 1.3673e-03 4.1234e-04 3.6411e-04 7.0609e+00 2.4524e+00 - 118 1.7884e-03 1.3732e-03 3.8074e-04 3.6251e-04 7.0594e+00 2.4524e+00 - 119 1.7955e-03 1.3785e-03 3.5249e-04 3.6110e-04 7.0581e+00 2.4524e+00 - 120 1.8018e-03 1.3833e-03 3.2725e-04 3.5985e-04 7.0569e+00 2.4524e+00 - 121 1.8074e-03 1.3875e-03 3.0472e-04 3.5874e-04 7.0559e+00 2.4524e+00 - 122 1.8125e-03 1.3912e-03 2.8462e-04 3.5776e-04 7.0549e+00 2.4524e+00 - 123 1.8170e-03 1.3945e-03 2.6670e-04 3.5689e-04 7.0541e+00 2.4524e+00 - 124 1.8211e-03 1.3975e-03 2.5074e-04 3.5611e-04 7.0534e+00 2.4524e+00 - 125 1.8247e-03 1.4001e-03 2.3651e-04 3.5543e-04 7.0527e+00 2.4524e+00 - 126 1.8279e-03 1.4024e-03 2.2385e-04 3.5483e-04 7.0521e+00 2.4524e+00 - 127 1.8308e-03 1.4044e-03 2.1258e-04 3.5429e-04 7.0516e+00 2.4524e+00 - 128 1.8334e-03 1.4062e-03 2.0256e-04 3.5382e-04 7.0512e+00 2.4524e+00 - 129 1.8358e-03 1.4078e-03 1.9364e-04 3.5339e-04 7.0507e+00 2.4524e+00 - 130 1.8378e-03 1.4092e-03 1.8571e-04 3.5302e-04 7.0504e+00 2.4524e+00 - 131 1.8397e-03 1.4104e-03 1.7866e-04 3.5269e-04 7.0501e+00 2.4524e+00 - 132 1.8414e-03 1.4115e-03 1.7239e-04 3.5240e-04 7.0498e+00 2.4524e+00 - 133 1.8429e-03 1.4125e-03 1.6682e-04 3.5214e-04 7.0495e+00 2.4524e+00 - 134 1.8443e-03 1.4133e-03 1.6187e-04 3.5191e-04 7.0493e+00 2.4524e+00 - 135 1.8455e-03 1.4140e-03 1.5748e-04 3.5171e-04 7.0491e+00 2.4524e+00 - 136 1.8466e-03 1.4146e-03 1.5357e-04 3.5153e-04 7.0489e+00 2.4524e+00 - 137 1.8476e-03 1.4152e-03 1.5011e-04 3.5137e-04 7.0488e+00 2.4524e+00 - 138 1.8485e-03 1.4156e-03 1.4703e-04 3.5123e-04 7.0486e+00 2.4524e+00 - 139 1.8493e-03 1.4160e-03 1.4429e-04 3.5110e-04 7.0485e+00 2.4524e+00 - 140 1.8500e-03 1.4164e-03 1.4186e-04 3.5099e-04 7.0484e+00 2.4524e+00 - 141 1.8507e-03 1.4166e-03 1.3971e-04 3.5090e-04 7.0483e+00 2.4524e+00 - 142 1.8513e-03 1.4169e-03 1.3779e-04 3.5081e-04 7.0482e+00 2.4524e+00 - 143 1.8518e-03 1.4171e-03 1.3609e-04 3.5074e-04 7.0482e+00 2.4524e+00 - 144 1.8524e-03 1.4172e-03 1.3459e-04 3.5067e-04 7.0481e+00 2.4524e+00 - 145 1.8528e-03 1.4174e-03 1.3325e-04 3.5061e-04 7.0480e+00 2.4524e+00 - 146 1.8532e-03 1.4175e-03 1.3206e-04 3.5056e-04 7.0480e+00 2.4524e+00 - 147 1.8536e-03 1.4176e-03 1.3100e-04 3.5051e-04 7.0479e+00 2.4524e+00 - 148 1.8540e-03 1.4176e-03 1.3007e-04 3.5047e-04 7.0479e+00 2.4524e+00 - 149 1.8543e-03 1.4176e-03 1.2924e-04 3.5044e-04 7.0479e+00 2.4524e+00 - 150 1.8546e-03 1.4177e-03 1.2850e-04 3.5041e-04 7.0478e+00 2.4524e+00 - 151 1.8549e-03 1.4177e-03 1.2784e-04 3.5038e-04 7.0478e+00 2.4524e+00 - 152 1.8552e-03 1.4177e-03 1.2726e-04 3.5036e-04 7.0478e+00 2.4524e+00 - 153 1.8555e-03 1.4176e-03 1.2675e-04 3.5033e-04 7.0478e+00 2.4524e+00 - 154 1.8557e-03 1.4176e-03 1.2629e-04 3.5032e-04 7.0478e+00 2.4524e+00 - 155 1.8559e-03 1.4176e-03 1.2588e-04 3.5030e-04 7.0477e+00 2.4524e+00 - 156 1.8561e-03 1.4175e-03 1.2552e-04 3.5029e-04 7.0477e+00 2.4524e+00 - 157 1.8563e-03 1.4175e-03 1.2520e-04 3.5028e-04 7.0477e+00 2.4524e+00 - 158 1.8565e-03 1.4174e-03 1.2492e-04 3.5027e-04 7.0477e+00 2.4524e+00 - 159 1.8567e-03 1.4173e-03 1.2467e-04 3.5026e-04 7.0477e+00 2.4524e+00 - 160 1.8569e-03 1.4173e-03 1.2444e-04 3.5025e-04 7.0477e+00 2.4524e+00 - 161 1.8571e-03 1.4172e-03 1.2425e-04 3.5025e-04 7.0477e+00 2.4524e+00 - 162 1.8572e-03 1.4171e-03 1.2407e-04 3.5024e-04 7.0477e+00 2.4524e+00 - 163 1.8574e-03 1.4170e-03 1.2391e-04 3.5024e-04 7.0477e+00 2.4524e+00 - 164 1.8575e-03 1.4169e-03 1.2377e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 165 1.8577e-03 1.4168e-03 1.2365e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 166 1.8578e-03 1.4168e-03 1.2354e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 167 1.8580e-03 1.4167e-03 1.2345e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 168 1.8581e-03 1.4166e-03 1.2336e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 169 1.8582e-03 1.4165e-03 1.2328e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 170 1.8583e-03 1.4164e-03 1.2322e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 171 1.8585e-03 1.4163e-03 1.2316e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 172 1.8586e-03 1.4162e-03 1.2310e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 173 1.8587e-03 1.4161e-03 1.2306e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 174 1.8588e-03 1.4160e-03 1.2301e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 175 1.8590e-03 1.4159e-03 1.2298e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 176 1.8591e-03 1.4158e-03 1.2294e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 177 1.8592e-03 1.4157e-03 1.2291e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 178 1.8593e-03 1.4156e-03 1.2289e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 179 1.8594e-03 1.4155e-03 1.2286e-04 3.5024e-04 7.0477e+00 2.4524e+00 - 180 1.8595e-03 1.4154e-03 1.2284e-04 3.5024e-04 7.0477e+00 2.4524e+00 - 181 1.8596e-03 1.4153e-03 1.2283e-04 3.5024e-04 7.0477e+00 2.4524e+00 - 182 1.8597e-03 1.4152e-03 1.2281e-04 3.5024e-04 7.0477e+00 2.4524e+00 - 183 1.8598e-03 1.4151e-03 1.2279e-04 3.5024e-04 7.0477e+00 2.4524e+00 - 184 1.8599e-03 1.4150e-03 1.2278e-04 3.5025e-04 7.0477e+00 2.4524e+00 - 185 1.8601e-03 1.4150e-03 1.2277e-04 3.5025e-04 7.0477e+00 2.4524e+00 - 186 1.8602e-03 1.4149e-03 1.2276e-04 3.5025e-04 7.0477e+00 2.4524e+00 - 187 1.8603e-03 1.4148e-03 1.2275e-04 3.5025e-04 7.0477e+00 2.4524e+00 - 188 1.8604e-03 1.4147e-03 1.2274e-04 3.5026e-04 7.0477e+00 2.4524e+00 - 189 1.8605e-03 1.4146e-03 1.2274e-04 3.5026e-04 7.0477e+00 2.4524e+00 - 190 1.8606e-03 1.4145e-03 1.2273e-04 3.5026e-04 7.0477e+00 2.4524e+00 - 191 1.8607e-03 1.4144e-03 1.2273e-04 3.5026e-04 7.0477e+00 2.4524e+00 - 192 1.8608e-03 1.4143e-03 1.2272e-04 3.5027e-04 7.0477e+00 2.4524e+00 - 193 1.8608e-03 1.4142e-03 1.2272e-04 3.5027e-04 7.0477e+00 2.4524e+00 - 194 1.8609e-03 1.4141e-03 1.2271e-04 3.5027e-04 7.0477e+00 2.4524e+00 - 195 1.8610e-03 1.4140e-03 1.2271e-04 3.5027e-04 7.0477e+00 2.4524e+00 - 196 1.8611e-03 1.4140e-03 1.2271e-04 3.5028e-04 7.0477e+00 2.4524e+00 - 197 1.8612e-03 1.4139e-03 1.2270e-04 3.5028e-04 7.0477e+00 2.4524e+00 - 198 1.8613e-03 1.4138e-03 1.2270e-04 3.5028e-04 7.0477e+00 2.4524e+00 - 199 1.8614e-03 1.4137e-03 1.2270e-04 3.5028e-04 7.0477e+00 2.4524e+00 - 200 1.8615e-03 1.4136e-03 1.2270e-04 3.5028e-04 7.0477e+00 2.4524e+00 + 1 4.6224e-01 1.6417e-01 5.4020e+00 2.5000e-02 5.7200e+00 0.0000e+00 + 1 3.4012e-04 2.8376e-04 9.8893e-02 6.9061e-04 7.1604e+00 1.8502e+00 + 2 2.8798e-05 2.0914e-05 2.4017e-02 7.7563e-02 8.6169e+00 1.8501e+00 + 3 1.4730e-05 9.6045e-06 1.4376e-02 6.0687e-01 9.1600e+00 1.8495e+00 + 4 1.2797e-05 8.0657e-06 1.2262e-02 1.0664e+00 9.3111e+00 1.8485e+00 + 5 1.2388e-05 7.7402e-06 1.1473e-02 1.2555e+00 9.3547e+00 1.8472e+00 + 6 1.2412e-05 7.7568e-06 1.1090e-02 1.2842e+00 9.3600e+00 1.8459e+00 + 7 1.2606e-05 7.9080e-06 1.0866e-02 1.2413e+00 9.3499e+00 1.8447e+00 + 8 1.2879e-05 8.1219e-06 1.0710e-02 1.1714e+00 9.3334e+00 1.8435e+00 + 9 1.3195e-05 8.3693e-06 1.0588e-02 1.0944e+00 9.3143e+00 1.8424e+00 + 10 1.3537e-05 8.6376e-06 1.0483e-02 1.0181e+00 9.2942e+00 1.8414e+00 + 11 1.3899e-05 8.9215e-06 1.0388e-02 9.4559e-01 9.2738e+00 1.8405e+00 + 12 1.4278e-05 9.2189e-06 1.0300e-02 8.7770e-01 9.2533e+00 1.8396e+00 + 13 1.4674e-05 9.5292e-06 1.0218e-02 8.1456e-01 9.2330e+00 1.8388e+00 + 14 1.5086e-05 9.8526e-06 1.0139e-02 7.5594e-01 9.2127e+00 1.8380e+00 + 15 1.5516e-05 1.0190e-05 1.0065e-02 7.0154e-01 9.1925e+00 1.8373e+00 + 16 1.5964e-05 1.0541e-05 9.9941e-03 6.5104e-01 9.1725e+00 1.8367e+00 + 17 1.6431e-05 1.0908e-05 9.9263e-03 6.0413e-01 9.1525e+00 1.8361e+00 + 18 1.6919e-05 1.1291e-05 9.8615e-03 5.6054e-01 9.1325e+00 1.8355e+00 + 19 1.7429e-05 1.1691e-05 9.7994e-03 5.2000e-01 9.1127e+00 1.8350e+00 + 20 1.7963e-05 1.2109e-05 9.7399e-03 4.8229e-01 9.0928e+00 1.8345e+00 + 21 1.8521e-05 1.2547e-05 9.6827e-03 4.4720e-01 9.0729e+00 1.8340e+00 + 22 1.9106e-05 1.3006e-05 9.6278e-03 4.1452e-01 9.0531e+00 1.8336e+00 + 23 1.9719e-05 1.3487e-05 9.5749e-03 3.8410e-01 9.0332e+00 1.8332e+00 + 24 2.0362e-05 1.3991e-05 9.5240e-03 3.5576e-01 9.0133e+00 1.8329e+00 + 25 2.1037e-05 1.4521e-05 9.4749e-03 3.2937e-01 8.9934e+00 1.8326e+00 + 26 2.1746e-05 1.5077e-05 9.4275e-03 3.0479e-01 8.9733e+00 1.8323e+00 + 27 2.2492e-05 1.5662e-05 9.3817e-03 2.8190e-01 8.9533e+00 1.8320e+00 + 28 2.3276e-05 1.6277e-05 9.3374e-03 2.6057e-01 8.9331e+00 1.8317e+00 + 29 2.4102e-05 1.6925e-05 9.2944e-03 2.4072e-01 8.9128e+00 1.8315e+00 + 30 2.4972e-05 1.7607e-05 9.2528e-03 2.2224e-01 8.8925e+00 1.8313e+00 + 31 2.5890e-05 1.8327e-05 9.2123e-03 2.0503e-01 8.8720e+00 1.8310e+00 + 32 2.6858e-05 1.9087e-05 9.1730e-03 1.8903e-01 8.8514e+00 1.8309e+00 + 33 2.7881e-05 1.9889e-05 9.1347e-03 1.7414e-01 8.8307e+00 1.8307e+00 + 34 2.8963e-05 2.0738e-05 9.0973e-03 1.6030e-01 8.8098e+00 1.8305e+00 + 35 3.0107e-05 2.1635e-05 9.0608e-03 1.4744e-01 8.7887e+00 1.8304e+00 + 36 3.1318e-05 2.2585e-05 9.0251e-03 1.3549e-01 8.7675e+00 1.8302e+00 + 37 3.2602e-05 2.3592e-05 8.9902e-03 1.2440e-01 8.7461e+00 1.8301e+00 + 38 3.3964e-05 2.4659e-05 8.9558e-03 1.1412e-01 8.7246e+00 1.8300e+00 + 39 3.5409e-05 2.5793e-05 8.9221e-03 1.0458e-01 8.7028e+00 1.8299e+00 + 40 3.6945e-05 2.6997e-05 8.8888e-03 9.5744e-02 8.6808e+00 1.8298e+00 + 41 3.8578e-05 2.8278e-05 8.8559e-03 8.7564e-02 8.6586e+00 1.8297e+00 + 42 4.0316e-05 2.9641e-05 8.8234e-03 7.9998e-02 8.6362e+00 1.8296e+00 + 43 4.2168e-05 3.1093e-05 8.7911e-03 7.3004e-02 8.6136e+00 1.8296e+00 + 44 4.4143e-05 3.2641e-05 8.7589e-03 6.6546e-02 8.5907e+00 1.8295e+00 + 45 4.6251e-05 3.4294e-05 8.7268e-03 6.0588e-02 8.5675e+00 1.8294e+00 + 46 4.8503e-05 3.6060e-05 8.6947e-03 5.5097e-02 8.5441e+00 1.8294e+00 + 47 5.0912e-05 3.7949e-05 8.6625e-03 5.0041e-02 8.5204e+00 1.8293e+00 + 48 5.3491e-05 3.9971e-05 8.6300e-03 4.5392e-02 8.4964e+00 1.8293e+00 + 49 5.6256e-05 4.2138e-05 8.5972e-03 4.1120e-02 8.4721e+00 1.8292e+00 + 50 5.9221e-05 4.4462e-05 8.5640e-03 3.7201e-02 8.4475e+00 1.8292e+00 + 51 6.2406e-05 4.6958e-05 8.5301e-03 3.3609e-02 8.4226e+00 1.8292e+00 + 52 6.5830e-05 4.9642e-05 8.4956e-03 3.0322e-02 8.3973e+00 1.8291e+00 + 53 6.9514e-05 5.2529e-05 8.4602e-03 2.7317e-02 8.3718e+00 1.8291e+00 + 54 7.3485e-05 5.5640e-05 8.4238e-03 2.4574e-02 8.3459e+00 1.8291e+00 + 55 7.7766e-05 5.8996e-05 8.3863e-03 2.2075e-02 8.3196e+00 1.8291e+00 + 56 8.2389e-05 6.2618e-05 8.3474e-03 1.9801e-02 8.2930e+00 1.8290e+00 + 57 8.7386e-05 6.6532e-05 8.3070e-03 1.7734e-02 8.2660e+00 1.8290e+00 + 58 9.2793e-05 7.0768e-05 8.2648e-03 1.5859e-02 8.2386e+00 1.8290e+00 + 59 9.8649e-05 7.5354e-05 8.2207e-03 1.4162e-02 8.2109e+00 1.8290e+00 + 60 1.0500e-04 8.0327e-05 8.1743e-03 1.2627e-02 8.1828e+00 1.8290e+00 + 61 1.1189e-04 8.5723e-05 8.1255e-03 1.1242e-02 8.1543e+00 1.8290e+00 + 62 1.1938e-04 9.1584e-05 8.0738e-03 9.9950e-03 8.1254e+00 1.8290e+00 + 63 1.2751e-04 9.7956e-05 8.0191e-03 8.8736e-03 8.0962e+00 1.8290e+00 + 64 1.3637e-04 1.0489e-04 7.9610e-03 7.8674e-03 8.0666e+00 1.8289e+00 + 65 1.4602e-04 1.1244e-04 7.8991e-03 6.9663e-03 8.0366e+00 1.8289e+00 + 66 1.5653e-04 1.2066e-04 7.8330e-03 6.1611e-03 8.0062e+00 1.8289e+00 + 67 1.6799e-04 1.2963e-04 7.7623e-03 5.4429e-03 7.9756e+00 1.8289e+00 + 68 1.8049e-04 1.3940e-04 7.6865e-03 4.8037e-03 7.9446e+00 1.8289e+00 + 69 1.9413e-04 1.5007e-04 7.6053e-03 4.2361e-03 7.9133e+00 1.8289e+00 + 70 2.0902e-04 1.6170e-04 7.5180e-03 3.7330e-03 7.8817e+00 1.8289e+00 + 71 2.2526e-04 1.7439e-04 7.4242e-03 3.2880e-03 7.8499e+00 1.8289e+00 + 72 2.4297e-04 1.8823e-04 7.3235e-03 2.8954e-03 7.8180e+00 1.8289e+00 + 73 2.6228e-04 2.0331e-04 7.2151e-03 2.5496e-03 7.7859e+00 1.8289e+00 + 74 2.8331e-04 2.1973e-04 7.0987e-03 2.2456e-03 7.7537e+00 1.8289e+00 + 75 3.0619e-04 2.3759e-04 6.9737e-03 1.9790e-03 7.7214e+00 1.8289e+00 + 76 3.3104e-04 2.5698e-04 6.8397e-03 1.7456e-03 7.6893e+00 1.8289e+00 + 77 3.5798e-04 2.7798e-04 6.6963e-03 1.5416e-03 7.6572e+00 1.8289e+00 + 78 3.8711e-04 3.0069e-04 6.5431e-03 1.3636e-03 7.6254e+00 1.8289e+00 + 79 4.1854e-04 3.2518e-04 6.3799e-03 1.2085e-03 7.5938e+00 1.8289e+00 + 80 4.5223e-04 3.5158e-04 6.2066e-03 1.0736e-03 7.5627e+00 1.8289e+00 + 81 4.8765e-04 3.8060e-04 6.0223e-03 9.5591e-04 7.5319e+00 1.8289e+00 + 82 5.2542e-04 4.1158e-04 5.8285e-03 8.5381e-04 7.5017e+00 1.8289e+00 + 83 5.6547e-04 4.4448e-04 5.6253e-03 7.6535e-04 7.4722e+00 1.8289e+00 + 84 6.0773e-04 4.7922e-04 5.4134e-03 6.8877e-04 7.4435e+00 1.8289e+00 + 85 6.5205e-04 5.1570e-04 5.1935e-03 6.2251e-04 7.4157e+00 1.8289e+00 + 86 6.9826e-04 5.5377e-04 4.9668e-03 5.6518e-04 7.3888e+00 1.8289e+00 + 87 7.4613e-04 5.9324e-04 4.7345e-03 5.1559e-04 7.3631e+00 1.8289e+00 + 88 7.9538e-04 6.3387e-04 4.4979e-03 4.7268e-04 7.3385e+00 1.8289e+00 + 89 8.4568e-04 6.7540e-04 4.2586e-03 4.3553e-04 7.3150e+00 1.8289e+00 + 90 8.9670e-04 7.1753e-04 4.0183e-03 4.0336e-04 7.2928e+00 1.8289e+00 + 91 9.4805e-04 7.5995e-04 3.7788e-03 3.7548e-04 7.2719e+00 1.8289e+00 + 92 9.9935e-04 8.0234e-04 3.5416e-03 3.5130e-04 7.2522e+00 1.8289e+00 + 93 1.0502e-03 8.4437e-04 3.3084e-03 3.3030e-04 7.2338e+00 1.8289e+00 + 94 1.1003e-03 8.8573e-04 3.0808e-03 3.1206e-04 7.2167e+00 1.8289e+00 + 95 1.1492e-03 9.2613e-04 2.8602e-03 2.9619e-04 7.2008e+00 1.8289e+00 + 96 1.1966e-03 9.6531e-04 2.6478e-03 2.8237e-04 7.1861e+00 1.8289e+00 + 97 1.2423e-03 1.0030e-03 2.4445e-03 2.7032e-04 7.1726e+00 1.8289e+00 + 98 1.2860e-03 1.0391e-03 2.2513e-03 2.5980e-04 7.1602e+00 1.8289e+00 + 99 1.3276e-03 1.0734e-03 2.0686e-03 2.5061e-04 7.1488e+00 1.8289e+00 + 100 1.3669e-03 1.1058e-03 1.8968e-03 2.4257e-04 7.1384e+00 1.8289e+00 + 101 1.4039e-03 1.1362e-03 1.7362e-03 2.3553e-04 7.1290e+00 1.8289e+00 + 102 1.4385e-03 1.1646e-03 1.5868e-03 2.2936e-04 7.1204e+00 1.8289e+00 + 103 1.4707e-03 1.1910e-03 1.4483e-03 2.2395e-04 7.1126e+00 1.8289e+00 + 104 1.5005e-03 1.2155e-03 1.3205e-03 2.1920e-04 7.1056e+00 1.8289e+00 + 105 1.5280e-03 1.2380e-03 1.2031e-03 2.1502e-04 7.0993e+00 1.8289e+00 + 106 1.5533e-03 1.2586e-03 1.0956e-03 2.1134e-04 7.0936e+00 1.8289e+00 + 107 1.5765e-03 1.2775e-03 9.9741e-04 2.0810e-04 7.0885e+00 1.8289e+00 + 108 1.5977e-03 1.2947e-03 9.0805e-04 2.0525e-04 7.0839e+00 1.8289e+00 + 109 1.6170e-03 1.3104e-03 8.2693e-04 2.0274e-04 7.0797e+00 1.8289e+00 + 110 1.6345e-03 1.3245e-03 7.5347e-04 2.0052e-04 7.0760e+00 1.8289e+00 + 111 1.6505e-03 1.3373e-03 6.8709e-04 1.9857e-04 7.0727e+00 1.8289e+00 + 112 1.6648e-03 1.3488e-03 6.2722e-04 1.9684e-04 7.0698e+00 1.8289e+00 + 113 1.6779e-03 1.3592e-03 5.7333e-04 1.9531e-04 7.0671e+00 1.8289e+00 + 114 1.6896e-03 1.3685e-03 5.2489e-04 1.9396e-04 7.0648e+00 1.8289e+00 + 115 1.7002e-03 1.3768e-03 4.8141e-04 1.9277e-04 7.0627e+00 1.8289e+00 + 116 1.7097e-03 1.3843e-03 4.4244e-04 1.9172e-04 7.0608e+00 1.8289e+00 + 117 1.7182e-03 1.3909e-03 4.0755e-04 1.9079e-04 7.0591e+00 1.8289e+00 + 118 1.7259e-03 1.3968e-03 3.7634e-04 1.8996e-04 7.0577e+00 1.8289e+00 + 119 1.7328e-03 1.4021e-03 3.4845e-04 1.8923e-04 7.0563e+00 1.8289e+00 + 120 1.7390e-03 1.4068e-03 3.2355e-04 1.8859e-04 7.0552e+00 1.8289e+00 + 121 1.7445e-03 1.4109e-03 3.0134e-04 1.8802e-04 7.0541e+00 1.8289e+00 + 122 1.7495e-03 1.4146e-03 2.8153e-04 1.8751e-04 7.0532e+00 1.8289e+00 + 123 1.7540e-03 1.4179e-03 2.6388e-04 1.8706e-04 7.0524e+00 1.8289e+00 + 124 1.7580e-03 1.4207e-03 2.4816e-04 1.8667e-04 7.0516e+00 1.8289e+00 + 125 1.7616e-03 1.4233e-03 2.3417e-04 1.8632e-04 7.0510e+00 1.8289e+00 + 126 1.7648e-03 1.4255e-03 2.2171e-04 1.8600e-04 7.0504e+00 1.8289e+00 + 127 1.7677e-03 1.4274e-03 2.1064e-04 1.8573e-04 7.0499e+00 1.8289e+00 + 128 1.7703e-03 1.4292e-03 2.0079e-04 1.8549e-04 7.0494e+00 1.8289e+00 + 129 1.7727e-03 1.4307e-03 1.9203e-04 1.8527e-04 7.0490e+00 1.8289e+00 + 130 1.7748e-03 1.4320e-03 1.8425e-04 1.8508e-04 7.0487e+00 1.8289e+00 + 131 1.7767e-03 1.4331e-03 1.7733e-04 1.8491e-04 7.0484e+00 1.8289e+00 + 132 1.7784e-03 1.4341e-03 1.7119e-04 1.8476e-04 7.0481e+00 1.8289e+00 + 133 1.7799e-03 1.4349e-03 1.6574e-04 1.8463e-04 7.0478e+00 1.8289e+00 + 134 1.7813e-03 1.4357e-03 1.6089e-04 1.8451e-04 7.0476e+00 1.8289e+00 + 135 1.7826e-03 1.4363e-03 1.5659e-04 1.8441e-04 7.0474e+00 1.8289e+00 + 136 1.7838e-03 1.4368e-03 1.5277e-04 1.8432e-04 7.0473e+00 1.8289e+00 + 137 1.7848e-03 1.4373e-03 1.4938e-04 1.8424e-04 7.0471e+00 1.8289e+00 + 138 1.7858e-03 1.4376e-03 1.4637e-04 1.8417e-04 7.0470e+00 1.8289e+00 + 139 1.7866e-03 1.4379e-03 1.4370e-04 1.8411e-04 7.0468e+00 1.8289e+00 + 140 1.7874e-03 1.4382e-03 1.4133e-04 1.8405e-04 7.0467e+00 1.8289e+00 + 141 1.7882e-03 1.4384e-03 1.3922e-04 1.8400e-04 7.0467e+00 1.8289e+00 + 142 1.7888e-03 1.4385e-03 1.3736e-04 1.8396e-04 7.0466e+00 1.8289e+00 + 143 1.7895e-03 1.4386e-03 1.3570e-04 1.8392e-04 7.0465e+00 1.8289e+00 + 144 1.7900e-03 1.4387e-03 1.3423e-04 1.8389e-04 7.0464e+00 1.8289e+00 + 145 1.7906e-03 1.4388e-03 1.3293e-04 1.8386e-04 7.0464e+00 1.8289e+00 + 146 1.7911e-03 1.4388e-03 1.3177e-04 1.8383e-04 7.0463e+00 1.8289e+00 + 147 1.7915e-03 1.4388e-03 1.3075e-04 1.8381e-04 7.0463e+00 1.8289e+00 + 148 1.7920e-03 1.4387e-03 1.2983e-04 1.8379e-04 7.0462e+00 1.8289e+00 + 149 1.7924e-03 1.4387e-03 1.2903e-04 1.8377e-04 7.0462e+00 1.8289e+00 + 150 1.7928e-03 1.4386e-03 1.2831e-04 1.8376e-04 7.0462e+00 1.8289e+00 + 151 1.7931e-03 1.4385e-03 1.2768e-04 1.8375e-04 7.0462e+00 1.8289e+00 + 152 1.7935e-03 1.4384e-03 1.2711e-04 1.8373e-04 7.0461e+00 1.8289e+00 + 153 1.7938e-03 1.4383e-03 1.2661e-04 1.8372e-04 7.0461e+00 1.8289e+00 + 154 1.7941e-03 1.4382e-03 1.2617e-04 1.8372e-04 7.0461e+00 1.8289e+00 + 155 1.7944e-03 1.4381e-03 1.2578e-04 1.8371e-04 7.0461e+00 1.8289e+00 + 156 1.7947e-03 1.4380e-03 1.2543e-04 1.8370e-04 7.0461e+00 1.8289e+00 + 157 1.7950e-03 1.4378e-03 1.2512e-04 1.8370e-04 7.0461e+00 1.8289e+00 + 158 1.7953e-03 1.4377e-03 1.2484e-04 1.8369e-04 7.0461e+00 1.8289e+00 + 159 1.7955e-03 1.4376e-03 1.2460e-04 1.8369e-04 7.0461e+00 1.8289e+00 + 160 1.7958e-03 1.4374e-03 1.2438e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 161 1.7960e-03 1.4372e-03 1.2419e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 162 1.7963e-03 1.4371e-03 1.2402e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 163 1.7965e-03 1.4369e-03 1.2387e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 164 1.7967e-03 1.4368e-03 1.2374e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 165 1.7970e-03 1.4366e-03 1.2362e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 166 1.7972e-03 1.4364e-03 1.2351e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 167 1.7974e-03 1.4363e-03 1.2342e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 168 1.7976e-03 1.4361e-03 1.2334e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 169 1.7978e-03 1.4359e-03 1.2326e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 170 1.7980e-03 1.4358e-03 1.2320e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 171 1.7982e-03 1.4356e-03 1.2314e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 172 1.7984e-03 1.4354e-03 1.2309e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 173 1.7986e-03 1.4353e-03 1.2304e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 174 1.7988e-03 1.4351e-03 1.2300e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 175 1.7990e-03 1.4349e-03 1.2297e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 176 1.7992e-03 1.4348e-03 1.2294e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 177 1.7993e-03 1.4346e-03 1.2291e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 178 1.7995e-03 1.4344e-03 1.2288e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 179 1.7997e-03 1.4343e-03 1.2286e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 180 1.7999e-03 1.4341e-03 1.2284e-04 1.8370e-04 7.0461e+00 1.8289e+00 + 181 1.8001e-03 1.4339e-03 1.2282e-04 1.8370e-04 7.0461e+00 1.8289e+00 + 182 1.8002e-03 1.4338e-03 1.2281e-04 1.8370e-04 7.0461e+00 1.8289e+00 + 183 1.8004e-03 1.4336e-03 1.2279e-04 1.8370e-04 7.0461e+00 1.8289e+00 + 184 1.8006e-03 1.4335e-03 1.2278e-04 1.8370e-04 7.0461e+00 1.8289e+00 + 185 1.8008e-03 1.4333e-03 1.2277e-04 1.8371e-04 7.0461e+00 1.8289e+00 + 186 1.8009e-03 1.4331e-03 1.2276e-04 1.8371e-04 7.0461e+00 1.8289e+00 + 187 1.8011e-03 1.4330e-03 1.2275e-04 1.8371e-04 7.0461e+00 1.8289e+00 + 188 1.8013e-03 1.4328e-03 1.2275e-04 1.8371e-04 7.0461e+00 1.8289e+00 + 189 1.8014e-03 1.4327e-03 1.2274e-04 1.8371e-04 7.0461e+00 1.8289e+00 + 190 1.8016e-03 1.4325e-03 1.2273e-04 1.8371e-04 7.0461e+00 1.8289e+00 + 191 1.8018e-03 1.4324e-03 1.2273e-04 1.8372e-04 7.0461e+00 1.8289e+00 + 192 1.8019e-03 1.4322e-03 1.2272e-04 1.8372e-04 7.0461e+00 1.8289e+00 + 193 1.8021e-03 1.4321e-03 1.2272e-04 1.8372e-04 7.0461e+00 1.8289e+00 + 194 1.8022e-03 1.4319e-03 1.2272e-04 1.8372e-04 7.0461e+00 1.8289e+00 + 195 1.8024e-03 1.4318e-03 1.2271e-04 1.8372e-04 7.0461e+00 1.8289e+00 + 196 1.8025e-03 1.4316e-03 1.2271e-04 1.8373e-04 7.0461e+00 1.8289e+00 + 197 1.8027e-03 1.4315e-03 1.2271e-04 1.8373e-04 7.0461e+00 1.8289e+00 + 198 1.8028e-03 1.4313e-03 1.2270e-04 1.8373e-04 7.0461e+00 1.8289e+00 + 199 1.8030e-03 1.4312e-03 1.2270e-04 1.8373e-04 7.0461e+00 1.8289e+00 + 200 1.8032e-03 1.4310e-03 1.2270e-04 1.8373e-04 7.0461e+00 1.8289e+00 diff --git a/phreeqc3-examples/ex16.out b/phreeqc3-examples/ex16.out index 3e9887f3..b6bac07b 100644 --- a/phreeqc3-examples/ex16.out +++ b/phreeqc3-examples/ex16.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -78,19 +79,19 @@ Initial solution 1. pH = 6.200 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 37 + Specific Conductance (µS/cm, 25°C) = 38 Density (g/cm³) = 0.99708 Volume (L) = 1.00300 - Viscosity (mPa s) = 0.89033 + Viscosity (mPa s) = 0.89038 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.852e-04 + Ionic strength (mol/kgw) = 4.855e-04 Mass of water (kg) = 1.000e+00 - Total carbon (mol/kg) = 7.825e-04 - Total CO2 (mol/kg) = 7.825e-04 + Total carbon (mol/kg) = 7.828e-04 + Total CO2 (mol/kg) = 7.828e-04 Temperature (°C) = 25.00 Electrical balance (eq) = 1.400e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.90 - Iterations = 7 + Iterations = 8 Total H = 1.110139e+02 Total O = 5.550924e+01 @@ -102,54 +103,56 @@ Initial solution 1. H+ 6.465e-07 6.310e-07 -6.189 -6.200 -0.011 0.00 OH- 1.645e-08 1.604e-08 -7.784 -7.795 -0.011 -4.12 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 -C(4) 7.825e-04 - CO2 4.540e-04 4.540e-04 -3.343 -3.343 0.000 34.43 - HCO3- 3.281e-04 3.200e-04 -3.484 -3.495 -0.011 24.54 - CaHCO3+ 2.940e-07 2.868e-07 -6.532 -6.542 -0.011 9.66 - MgHCO3+ 1.003e-07 9.779e-08 -6.999 -7.010 -0.011 5.47 - NaHCO3 2.795e-08 2.796e-08 -7.554 -7.554 0.000 28.00 - CO3-2 2.628e-08 2.379e-08 -7.580 -7.624 -0.043 -4.11 - (CO2)2 3.783e-09 3.783e-09 -8.422 -8.422 0.000 68.87 - CaCO3 2.806e-09 2.807e-09 -8.552 -8.552 0.000 -14.60 - MgCO3 5.927e-10 5.927e-10 -9.227 -9.227 0.000 -17.09 +C(4) 7.828e-04 + CO2 4.542e-04 4.543e-04 -3.343 -3.343 0.000 34.43 + HCO3- 3.283e-04 3.202e-04 -3.484 -3.495 -0.011 24.57 + MgHCO3+ 1.003e-07 9.784e-08 -6.999 -7.009 -0.011 5.47 + CaHCO3+ 8.916e-08 8.698e-08 -7.050 -7.061 -0.011 122.63 + NaHCO3 3.643e-08 3.643e-08 -7.439 -7.438 0.000 31.73 + CO3-2 2.629e-08 2.380e-08 -7.580 -7.623 -0.043 -3.97 + KHCO3 3.904e-09 3.904e-09 -8.408 -8.408 0.000 41.03 + (CO2)2 3.787e-09 3.788e-09 -8.422 -8.422 0.000 68.87 + CaCO3 2.815e-09 2.815e-09 -8.550 -8.550 0.000 -14.60 + MgCO3 5.930e-10 5.931e-10 -9.227 -9.227 0.000 -17.09 Ca 7.800e-05 - Ca+2 7.760e-05 7.023e-05 -4.110 -4.153 -0.043 -18.17 - CaHCO3+ 2.940e-07 2.868e-07 -6.532 -6.542 -0.011 9.66 - CaSO4 1.110e-07 1.110e-07 -6.955 -6.955 0.000 7.50 - CaCO3 2.806e-09 2.807e-09 -8.552 -8.552 0.000 -14.60 - CaOH+ 1.894e-11 1.847e-11 -10.723 -10.733 -0.011 (0) - CaHSO4+ 4.721e-13 4.604e-13 -12.326 -12.337 -0.011 (0) + Ca+2 7.780e-05 7.042e-05 -4.109 -4.152 -0.043 -18.17 + CaSO4 1.111e-07 1.111e-07 -6.954 -6.954 0.000 7.50 + CaHCO3+ 8.916e-08 8.698e-08 -7.050 -7.061 -0.011 122.63 + CaCO3 2.815e-09 2.815e-09 -8.550 -8.550 0.000 -14.60 + CaOH+ 1.899e-11 1.852e-11 -10.721 -10.732 -0.011 (0) + CaHSO4+ 4.725e-13 4.608e-13 -12.326 -12.337 -0.011 (0) Cl 1.400e-05 Cl- 1.400e-05 1.365e-05 -4.854 -4.865 -0.011 18.07 HCl 2.966e-12 2.967e-12 -11.528 -11.528 0.000 (0) H(0) 5.636e-24 H2 2.818e-24 2.818e-24 -23.550 -23.550 0.000 28.61 K 2.800e-05 - K+ 2.800e-05 2.730e-05 -4.553 -4.564 -0.011 9.00 - KSO4- 9.153e-10 8.919e-10 -9.038 -9.050 -0.011 17.32 + K+ 2.799e-05 2.730e-05 -4.553 -4.564 -0.011 9.00 + KHCO3 3.904e-09 3.904e-09 -8.408 -8.408 0.000 41.03 + KSO4- 3.777e-09 3.685e-09 -8.423 -8.434 -0.011 14.13 Mg 2.900e-05 Mg+2 2.884e-05 2.611e-05 -4.540 -4.583 -0.043 -21.86 - MgHCO3+ 1.003e-07 9.779e-08 -6.999 -7.010 -0.011 5.47 - MgSO4 6.076e-08 6.077e-08 -7.216 -7.216 0.000 -0.83 - MgCO3 5.927e-10 5.927e-10 -9.227 -9.227 0.000 -17.09 + MgHCO3+ 1.003e-07 9.784e-08 -6.999 -7.009 -0.011 5.47 + MgSO4 6.065e-08 6.066e-08 -7.217 -7.217 0.000 -7.92 + MgCO3 5.930e-10 5.931e-10 -9.227 -9.227 0.000 -17.09 MgOH+ 1.540e-10 1.503e-10 -9.812 -9.823 -0.011 (0) - Mg(SO4)2-2 1.963e-12 1.779e-12 -11.707 -11.750 -0.043 33.91 + Mg(SO4)2-2 1.956e-12 1.773e-12 -11.709 -11.751 -0.043 -8.04 Na 1.340e-04 - Na+ 1.340e-04 1.307e-04 -3.873 -3.884 -0.011 -1.49 - NaHCO3 2.795e-08 2.796e-08 -7.554 -7.554 0.000 28.00 - NaSO4- 4.656e-09 4.537e-09 -8.332 -8.343 -0.011 14.50 - NaOH 2.096e-22 2.096e-22 -21.679 -21.679 0.000 (0) + Na+ 1.339e-04 1.306e-04 -3.873 -3.884 -0.011 -1.49 + NaHCO3 3.643e-08 3.643e-08 -7.439 -7.438 0.000 31.73 + NaSO4- 1.934e-08 1.887e-08 -7.713 -7.724 -0.011 -22.22 + NaOH 2.095e-22 2.096e-22 -21.679 -21.679 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -45.280 -45.280 0.000 30.40 S(6) 1.000e-05 - SO4-2 9.823e-06 8.889e-06 -5.008 -5.051 -0.043 14.75 - CaSO4 1.110e-07 1.110e-07 -6.955 -6.955 0.000 7.50 - MgSO4 6.076e-08 6.077e-08 -7.216 -7.216 0.000 -0.83 - NaSO4- 4.656e-09 4.537e-09 -8.332 -8.343 -0.011 14.50 - KSO4- 9.153e-10 8.919e-10 -9.038 -9.050 -0.011 17.32 - HSO4- 5.592e-10 5.453e-10 -9.252 -9.263 -0.011 40.27 - Mg(SO4)2-2 1.963e-12 1.779e-12 -11.707 -11.750 -0.043 33.91 - CaHSO4+ 4.721e-13 4.604e-13 -12.326 -12.337 -0.011 (0) + SO4-2 9.805e-06 8.872e-06 -5.009 -5.052 -0.043 15.25 + CaSO4 1.111e-07 1.111e-07 -6.954 -6.954 0.000 7.50 + MgSO4 6.065e-08 6.066e-08 -7.217 -7.217 0.000 -7.92 + NaSO4- 1.934e-08 1.887e-08 -7.713 -7.724 -0.011 -22.22 + KSO4- 3.777e-09 3.685e-09 -8.423 -8.434 -0.011 14.13 + HSO4- 5.581e-10 5.443e-10 -9.253 -9.264 -0.011 40.27 + Mg(SO4)2-2 1.956e-12 1.773e-12 -11.709 -11.751 -0.043 -8.04 + CaHSO4+ 4.725e-13 4.608e-13 -12.326 -12.337 -0.011 (0) Si 2.730e-04 H4SiO4 2.729e-04 2.730e-04 -3.564 -3.564 0.000 52.08 H3SiO4- 6.542e-08 6.379e-08 -7.184 -7.195 -0.011 27.96 @@ -167,13 +170,13 @@ Si 2.730e-04 Chrysotile -15.88 16.32 32.20 Mg3Si2O5(OH)4 CO2(g) -1.87 -3.34 -1.47 CO2 Dolomite -6.90 -23.98 -17.08 CaMg(CO3)2 - Epsomite -7.90 -9.63 -1.74 MgSO4:7H2O + Epsomite -7.90 -9.64 -1.74 MgSO4:7H2O Gypsum -4.62 -9.20 -4.58 CaSO4:2H2O H2(g) -20.45 -23.55 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -10.32 -8.75 1.57 NaCl - Hexahydrite -8.07 -9.63 -1.57 MgSO4:6H2O - Kieserite -8.47 -9.63 -1.16 MgSO4:H2O + Hexahydrite -8.07 -9.64 -1.57 MgSO4:6H2O + Kieserite -8.47 -9.64 -1.16 MgSO4:H2O Mirabilite -11.58 -12.82 -1.24 Na2SO4:10H2O O2(g) -42.39 -45.28 -2.89 O2 Quartz 0.42 -3.56 -3.98 SiO2 @@ -206,19 +209,19 @@ Initial solution 2. pH = 6.800 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 95 + Specific Conductance (µS/cm, 25°C) = 97 Density (g/cm³) = 0.99712 Volume (L) = 1.00301 - Viscosity (mPa s) = 0.89066 + Viscosity (mPa s) = 0.89080 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.313e-03 + Ionic strength (mol/kgw) = 1.317e-03 Mass of water (kg) = 1.000e+00 - Total carbon (mol/kg) = 1.199e-03 - Total CO2 (mol/kg) = 1.199e-03 + Total carbon (mol/kg) = 1.200e-03 + Total CO2 (mol/kg) = 1.200e-03 Temperature (°C) = 25.00 Electrical balance (eq) = -1.400e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.73 - Iterations = 6 (13 overall) + Iterations = 6 (14 overall) Total H = 1.110150e+02 Total O = 5.551125e+01 @@ -228,80 +231,82 @@ Initial solution 2. Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.647e-07 1.585e-07 -6.783 -6.800 -0.017 0.00 - OH- 6.652e-08 6.386e-08 -7.177 -7.195 -0.018 -4.10 + OH- 6.653e-08 6.386e-08 -7.177 -7.195 -0.018 -4.10 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 -C(4) 1.199e-03 - HCO3- 8.907e-04 8.558e-04 -3.050 -3.068 -0.017 24.56 - CO2 3.049e-04 3.050e-04 -3.516 -3.516 0.000 34.43 - CaHCO3+ 2.484e-06 2.388e-06 -5.605 -5.622 -0.017 9.68 - MgHCO3+ 6.230e-07 5.982e-07 -6.205 -6.223 -0.018 5.48 - CO3-2 2.972e-07 2.532e-07 -6.527 -6.596 -0.069 -4.05 - NaHCO3 1.422e-07 1.423e-07 -6.847 -6.847 0.000 28.00 - CaCO3 9.300e-08 9.302e-08 -7.032 -7.031 0.000 -14.60 - MgCO3 1.443e-08 1.444e-08 -7.841 -7.841 0.000 -17.09 - (CO2)2 1.707e-09 1.707e-09 -8.768 -8.768 0.000 68.87 +C(4) 1.200e-03 + HCO3- 8.924e-04 8.574e-04 -3.049 -3.067 -0.017 24.58 + CO2 3.055e-04 3.055e-04 -3.515 -3.515 0.000 34.43 + CaHCO3+ 7.574e-07 7.279e-07 -6.121 -6.138 -0.017 122.64 + MgHCO3+ 6.241e-07 5.992e-07 -6.205 -6.222 -0.018 5.48 + CO3-2 2.978e-07 2.537e-07 -6.526 -6.596 -0.070 -3.92 + NaHCO3 1.855e-07 1.856e-07 -6.732 -6.731 0.000 31.73 + CaCO3 9.377e-08 9.380e-08 -7.028 -7.028 0.000 -14.60 + KHCO3 1.470e-08 1.470e-08 -7.833 -7.833 0.000 41.03 + MgCO3 1.446e-08 1.446e-08 -7.840 -7.840 0.000 -17.09 + (CO2)2 1.713e-09 1.713e-09 -8.766 -8.766 0.000 68.87 Ca 2.600e-04 - Ca+2 2.567e-04 2.187e-04 -3.591 -3.660 -0.070 -18.13 - CaHCO3+ 2.484e-06 2.388e-06 -5.605 -5.622 -0.017 9.68 - CaSO4 7.901e-07 7.903e-07 -6.102 -6.102 0.000 7.50 - CaCO3 9.300e-08 9.302e-08 -7.032 -7.031 0.000 -14.60 - CaOH+ 2.385e-10 2.290e-10 -9.623 -9.640 -0.018 (0) - CaHSO4+ 8.575e-13 8.234e-13 -12.067 -12.084 -0.018 (0) + Ca+2 2.584e-04 2.201e-04 -3.588 -3.657 -0.070 -18.13 + CaSO4 7.926e-07 7.928e-07 -6.101 -6.101 0.000 7.50 + CaHCO3+ 7.574e-07 7.279e-07 -6.121 -6.138 -0.017 122.64 + CaCO3 9.377e-08 9.380e-08 -7.028 -7.028 0.000 -14.60 + CaOH+ 2.400e-10 2.305e-10 -9.620 -9.637 -0.018 (0) + CaHSO4+ 8.602e-13 8.260e-13 -12.065 -12.083 -0.018 (0) Cl 3.000e-05 Cl- 3.000e-05 2.880e-05 -4.523 -4.541 -0.018 18.08 HCl 1.571e-12 1.573e-12 -11.804 -11.803 0.001 (0) H(0) 3.555e-25 H2 1.778e-25 1.778e-25 -24.750 -24.750 0.000 28.61 K 4.000e-05 - K+ 4.000e-05 3.840e-05 -4.398 -4.416 -0.018 9.01 - KSO4- 2.993e-09 2.869e-09 -8.524 -8.542 -0.018 18.43 + K+ 3.998e-05 3.838e-05 -4.398 -4.416 -0.018 9.01 + KHCO3 1.470e-08 1.470e-08 -7.833 -7.833 0.000 41.03 + KSO4- 1.230e-08 1.183e-08 -7.910 -7.927 -0.017 14.15 Mg 7.101e-05 - Mg+2 7.005e-05 5.974e-05 -4.155 -4.224 -0.069 -21.81 - MgHCO3+ 6.230e-07 5.982e-07 -6.205 -6.223 -0.018 5.48 - MgSO4 3.177e-07 3.179e-07 -6.498 -6.498 0.000 -0.83 - MgCO3 1.443e-08 1.444e-08 -7.841 -7.841 0.000 -17.09 - MgOH+ 1.424e-09 1.369e-09 -8.847 -8.864 -0.017 (0) - Mg(SO4)2-2 2.490e-11 2.128e-11 -10.604 -10.672 -0.068 35.32 + Mg+2 7.005e-05 5.973e-05 -4.155 -4.224 -0.069 -21.81 + MgHCO3+ 6.241e-07 5.992e-07 -6.205 -6.222 -0.018 5.48 + MgSO4 3.166e-07 3.168e-07 -6.499 -6.499 0.000 -7.92 + MgCO3 1.446e-08 1.446e-08 -7.840 -7.840 0.000 -17.09 + MgOH+ 1.424e-09 1.368e-09 -8.847 -8.864 -0.017 (0) + Mg(SO4)2-2 2.474e-11 2.114e-11 -10.607 -10.675 -0.068 -3.35 Na 2.590e-04 - Na+ 2.589e-04 2.486e-04 -3.587 -3.604 -0.018 -1.47 - NaHCO3 1.422e-07 1.423e-07 -6.847 -6.847 0.000 28.00 - NaSO4- 2.060e-08 1.974e-08 -7.686 -7.705 -0.018 14.55 - NaOH 1.587e-21 1.588e-21 -20.799 -20.799 0.000 (0) + Na+ 2.588e-04 2.485e-04 -3.587 -3.605 -0.018 -1.47 + NaHCO3 1.855e-07 1.856e-07 -6.732 -6.731 0.000 31.73 + NaSO4- 8.529e-08 8.195e-08 -7.069 -7.086 -0.017 -20.40 + NaOH 1.587e-21 1.587e-21 -20.800 -20.799 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -42.880 -42.880 0.000 30.40 S(6) 2.500e-05 - SO4-2 2.387e-05 2.032e-05 -4.622 -4.692 -0.070 14.81 - CaSO4 7.901e-07 7.903e-07 -6.102 -6.102 0.000 7.50 - MgSO4 3.177e-07 3.179e-07 -6.498 -6.498 0.000 -0.83 - NaSO4- 2.060e-08 1.974e-08 -7.686 -7.705 -0.018 14.55 - KSO4- 2.993e-09 2.869e-09 -8.524 -8.542 -0.018 18.43 - HSO4- 3.262e-10 3.132e-10 -9.487 -9.504 -0.018 40.28 - Mg(SO4)2-2 2.490e-11 2.128e-11 -10.604 -10.672 -0.068 35.32 - CaHSO4+ 8.575e-13 8.234e-13 -12.067 -12.084 -0.018 (0) + SO4-2 2.380e-05 2.026e-05 -4.624 -4.693 -0.070 15.76 + CaSO4 7.926e-07 7.928e-07 -6.101 -6.101 0.000 7.50 + MgSO4 3.166e-07 3.168e-07 -6.499 -6.499 0.000 -7.92 + NaSO4- 8.529e-08 8.195e-08 -7.069 -7.086 -0.017 -20.40 + KSO4- 1.230e-08 1.183e-08 -7.910 -7.927 -0.017 14.15 + HSO4- 3.251e-10 3.121e-10 -9.488 -9.506 -0.018 40.28 + Mg(SO4)2-2 2.474e-11 2.114e-11 -10.607 -10.675 -0.068 -3.35 + CaHSO4+ 8.602e-13 8.260e-13 -12.065 -12.083 -0.018 (0) Si 4.100e-04 H4SiO4 4.096e-04 4.098e-04 -3.388 -3.387 0.000 52.08 H3SiO4- 3.970e-07 3.812e-07 -6.401 -6.419 -0.018 27.98 - H2SiO4-2 1.920e-13 1.636e-13 -12.717 -12.786 -0.069 (0) + H2SiO4-2 1.920e-13 1.636e-13 -12.717 -12.786 -0.070 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -4.07 -8.35 -4.28 CaSO4 - Aragonite -1.92 -10.26 -8.34 CaCO3 - Arcanite -11.64 -13.52 -1.88 K2SO4 - Calcite -1.78 -10.26 -8.48 CaCO3 + Aragonite -1.92 -10.25 -8.34 CaCO3 + Arcanite -11.65 -13.53 -1.88 K2SO4 + Calcite -1.77 -10.25 -8.48 CaCO3 Chalcedony 0.16 -3.39 -3.55 SiO2 Chrysotile -10.85 21.35 32.20 Mg3Si2O5(OH)4 - CO2(g) -2.05 -3.52 -1.47 CO2 - Dolomite -3.99 -21.08 -17.08 CaMg(CO3)2 + CO2(g) -2.05 -3.51 -1.47 CO2 + Dolomite -3.99 -21.07 -17.08 CaMg(CO3)2 Epsomite -7.18 -8.92 -1.74 MgSO4:7H2O Gypsum -3.77 -8.35 -4.58 CaSO4:2H2O H2(g) -21.65 -24.75 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - Halite -9.71 -8.14 1.57 NaCl + Halite -9.72 -8.15 1.57 NaCl Hexahydrite -7.35 -8.92 -1.57 MgSO4:6H2O - Kieserite -7.75 -8.92 -1.16 MgSO4:H2O + Kieserite -7.76 -8.92 -1.16 MgSO4:H2O Mirabilite -10.66 -11.90 -1.24 Na2SO4:10H2O O2(g) -39.99 -42.88 -2.89 O2 Quartz 0.59 -3.39 -3.98 SiO2 @@ -328,7 +333,7 @@ Solution 1: Al 0.000e+00 + 0.000e+00 = 0.000e+00 Alkalinity 3.280e-04 + 8.200e-06 = 3.362e-04 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 - C(4) 7.825e-04 + 0.000e+00 = 7.825e-04 + C(4) 7.828e-04 + 0.000e+00 = 7.828e-04 Ca 7.800e-05 + -2.550e-06 = 7.545e-05 Cl 1.400e-05 + 0.000e+00 = 1.400e-05 H(0) 0.000e+00 + 0.000e+00 = 0.000e+00 @@ -347,7 +352,7 @@ Solution 2: Al 0.000e+00 + 0.000e+00 = 0.000e+00 Alkalinity 8.951e-04 + -1.480e-05 = 8.803e-04 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 - C(4) 1.199e-03 + 0.000e+00 = 1.199e-03 + C(4) 1.200e-03 + 0.000e+00 = 1.200e-03 Ca 2.600e-04 + 0.000e+00 = 2.600e-04 Cl 3.000e-05 + 0.000e+00 = 3.000e-05 H(0) 0.000e+00 + 0.000e+00 = 0.000e+00 @@ -364,12 +369,12 @@ Solution fractions: Minimum Maximum Solution 2 1.000e+00 1.000e+00 1.000e+00 Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 298 K, 1 atm) - Halite 1.600e-05 1.490e-05 1.710e-05 NaCl (-10.32, -9.71) + Halite 1.600e-05 1.490e-05 1.710e-05 NaCl (-10.32, -9.72) Gypsum 1.500e-05 1.413e-05 1.588e-05 CaSO4:2H2O ( -4.62, -3.77) Kaolinite -3.392e-05 -5.587e-05 -1.224e-05 Al2Si2O5(OH)4 ( , ) Ca-Montmorillon -8.090e-05 -1.100e-04 -5.154e-05 Ca0.165Al2.33Si3.67O10(OH ( , ) - CO2(g) 3.006e-04 2.363e-04 3.656e-04 CO2 ( -1.87, -2.05) - Calcite 1.161e-04 1.007e-04 1.309e-04 CaCO3 ( -3.30, -1.78) + CO2(g) 3.009e-04 2.365e-04 3.659e-04 CO2 ( -1.87, -2.05) + Calcite 1.161e-04 1.007e-04 1.309e-04 CaCO3 ( -3.30, -1.77) Biotite 1.370e-05 1.317e-05 1.370e-05 KMg3AlSi3O10(OH)2 ( , ) Plagioclase 1.758e-04 1.582e-04 1.935e-04 Na0.62Ca0.38Al1.38Si2.62O ( , ) @@ -390,7 +395,7 @@ Solution 1: Al 0.000e+00 + 0.000e+00 = 0.000e+00 Alkalinity 3.280e-04 + 8.200e-06 = 3.362e-04 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 - C(4) 7.825e-04 + 0.000e+00 = 7.825e-04 + C(4) 7.828e-04 + 0.000e+00 = 7.828e-04 Ca 7.800e-05 + -2.550e-06 = 7.545e-05 Cl 1.400e-05 + 0.000e+00 = 1.400e-05 H(0) 0.000e+00 + 0.000e+00 = 0.000e+00 @@ -409,7 +414,7 @@ Solution 2: Al 0.000e+00 + 0.000e+00 = 0.000e+00 Alkalinity 8.951e-04 + -1.480e-05 = 8.803e-04 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 - C(4) 1.199e-03 + 0.000e+00 = 1.199e-03 + C(4) 1.200e-03 + 0.000e+00 = 1.200e-03 Ca 2.600e-04 + 0.000e+00 = 2.600e-04 Cl 3.000e-05 + 0.000e+00 = 3.000e-05 H(0) 0.000e+00 + 0.000e+00 = 0.000e+00 @@ -426,11 +431,11 @@ Solution fractions: Minimum Maximum Solution 2 1.000e+00 1.000e+00 1.000e+00 Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 298 K, 1 atm) - Halite 1.600e-05 1.490e-05 1.710e-05 NaCl (-10.32, -9.71) + Halite 1.600e-05 1.490e-05 1.710e-05 NaCl (-10.32, -9.72) Gypsum 1.500e-05 1.413e-05 1.588e-05 CaSO4:2H2O ( -4.62, -3.77) Kaolinite -1.282e-04 -1.403e-04 -1.159e-04 Al2Si2O5(OH)4 ( , ) - CO2(g) 3.140e-04 2.490e-04 3.795e-04 CO2 ( -1.87, -2.05) - Calcite 1.028e-04 8.680e-05 1.182e-04 CaCO3 ( -3.30, -1.78) + CO2(g) 3.143e-04 2.493e-04 3.798e-04 CO2 ( -1.87, -2.05) + Calcite 1.028e-04 8.680e-05 1.182e-04 CaCO3 ( -3.30, -1.77) Chalcedony -1.084e-04 -1.473e-04 -6.906e-05 SiO2 ( -0.01, 0.16) Biotite 1.370e-05 1.317e-05 1.370e-05 KMg3AlSi3O10(OH)2 ( , ) Plagioclase 1.758e-04 1.582e-04 1.935e-04 Na0.62Ca0.38Al1.38Si2.62O ( , ) diff --git a/phreeqc3-examples/ex17.out b/phreeqc3-examples/ex17.out index 7665baae..261b7534 100644 --- a/phreeqc3-examples/ex17.out +++ b/phreeqc3-examples/ex17.out @@ -14,6 +14,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS END ------------------------------------ Reading input data for simulation 1. @@ -90,10 +91,10 @@ Initial solution 1. Black Sea water pH = 8.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 30482 - Density (g/cm³) = 1.01090 - Volume (L) = 1.00790 - Viscosity (mPa s) = 0.92638 + Specific Conductance (µS/cm, 25°C) = 29777 + Density (g/cm³) = 1.01091 + Volume (L) = 1.00789 + Viscosity (mPa s) = 0.92658 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.751e-01 Mass of water (kg) = 1.000e+00 @@ -138,8 +139,8 @@ Mg 2.807e-02 Na 2.544e-01 Na+ 2.544e-01 1.837e-01 -0.595 -0.736 -0.141 -0.74 S(6) 1.527e-02 - SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 18.12 - HSO4- 2.901e-09 1.985e-09 -8.537 -8.702 -0.165 40.79 + SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 17.45 + HSO4- 2.961e-09 2.026e-09 -8.529 -8.693 -0.165 40.79 ------------------------------Saturation indices------------------------------- @@ -212,14 +213,14 @@ Initial solution 2. Composition during halite precipitation pH = 5.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 189938 - Density (g/cm³) = 1.27454 - Volume (L) = 1.12971 - Viscosity (mPa s) = 3.68619 + Specific Conductance (µS/cm, 25°C) = 150248 + Density (g/cm³) = 1.27237 + Volume (L) = 1.13163 + Viscosity (mPa s) = 3.75438 Activity of water = 0.678 Ionic strength (mol/kgw) = 1.111e+01 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 7.522e-06 + Total alkalinity (eq/kg) = 7.463e-06 Total CO2 (mol/kg) = 6.950e-06 Temperature (°C) = 25.00 Electrical balance (eq) = 4.629e-02 @@ -258,8 +259,8 @@ Mg 2.354e+00 Na 2.720e+00 Na+ 2.720e+00 8.832e+00 0.435 0.946 0.511 2.22 S(6) 8.986e-01 - SO4-2 8.986e-01 2.396e-03 -0.046 -2.621 -2.574 28.39 - HSO4- 2.838e-06 2.282e-06 -5.547 -5.642 -0.095 42.44 + SO4-2 8.986e-01 2.396e-03 -0.046 -2.621 -2.574 30.53 + HSO4- 2.897e-06 2.329e-06 -5.538 -5.633 -0.095 42.44 ------------------------------Saturation indices------------------------------- @@ -324,7 +325,7 @@ Solution 2: Composition during halite precipitation Input Delta Input+Delta pH 5.000e+00 + 0.000e+00 = 5.000e+00 - Alkalinity 7.522e-06 + -1.880e-07 = 7.334e-06 + Alkalinity 7.463e-06 + -1.866e-07 = 7.277e-06 Br 3.785e-02 + 9.440e-04 = 3.880e-02 C(4) 6.950e-06 + 1.737e-07 = 7.123e-06 Ca 0.000e+00 + 0.000e+00 = 0.000e+00 diff --git a/phreeqc3-examples/ex17b.out b/phreeqc3-examples/ex17b.out index eddc464d..1d5ea13f 100644 --- a/phreeqc3-examples/ex17b.out +++ b/phreeqc3-examples/ex17b.out @@ -14,6 +14,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS END ------------------------------------ Reading input data for simulation 1. @@ -92,10 +93,10 @@ Initial solution 1. Black Sea water pH = 8.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 30482 - Density (g/cm³) = 1.01090 - Volume (L) = 1.00790 - Viscosity (mPa s) = 0.92638 + Specific Conductance (µS/cm, 25°C) = 29777 + Density (g/cm³) = 1.01091 + Volume (L) = 1.00789 + Viscosity (mPa s) = 0.92658 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.751e-01 Mass of water (kg) = 1.000e+00 @@ -140,8 +141,8 @@ Mg 2.807e-02 Na 2.544e-01 Na+ 2.544e-01 1.837e-01 -0.595 -0.736 -0.141 -0.74 S(6) 1.527e-02 - SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 18.12 - HSO4- 2.901e-09 1.985e-09 -8.537 -8.702 -0.165 40.79 + SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 17.45 + HSO4- 2.961e-09 2.026e-09 -8.529 -8.693 -0.165 40.79 ------------------------------Saturation indices------------------------------- @@ -255,10 +256,10 @@ Polyhalite -9.73 -23.47 -13.74 0.000e+00 0 0.000e+00 pH = 8.000 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 30482 - Density (g/cm³) = 1.01090 - Volume (L) = 1.00790 - Viscosity (mPa s) = 0.92638 + Specific Conductance (µS/cm, 25°C) = 29777 + Density (g/cm³) = 1.01091 + Volume (L) = 1.00789 + Viscosity (mPa s) = 0.92658 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.751e-01 Mass of water (kg) = 1.000e+00 @@ -303,8 +304,8 @@ Mg 2.807e-02 Na 2.544e-01 Na+ 2.544e-01 1.837e-01 -0.595 -0.736 -0.141 -0.74 S(6) 1.527e-02 - SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 18.12 - HSO4- 2.901e-09 1.985e-09 -8.537 -8.702 -0.165 40.79 + SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 17.45 + HSO4- 2.961e-09 2.026e-09 -8.529 -8.693 -0.165 40.79 ------------------------------Saturation indices------------------------------- @@ -414,10 +415,10 @@ Polyhalite -7.26 -21.00 -13.74 0.000e+00 0 0.000e+00 pH = 7.848 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 73783 - Density (g/cm³) = 1.03526 + Specific Conductance (µS/cm, 25°C) = 73063 + Density (g/cm³) = 1.03527 Volume (L) = 0.35767 - Viscosity (mPa s) = 0.99317 + Viscosity (mPa s) = 0.99372 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.065e+00 Mass of water (kg) = 3.514e-01 @@ -445,7 +446,7 @@ Polyhalite -7.26 -21.00 -13.74 0.000e+00 0 0.000e+00 Br 1.252e-03 Br- 1.252e-03 7.919e-04 -2.902 -3.101 -0.199 25.39 C(4) 6.589e-04 - HCO3- 6.116e-04 3.357e-04 -3.214 -3.474 -0.260 27.27 + HCO3- 6.116e-04 3.357e-04 -3.214 -3.474 -0.260 27.28 CO3-2 1.917e-05 1.083e-06 -4.717 -5.965 -1.248 0.59 MgCO3 1.884e-05 1.884e-05 -4.725 -4.725 0.000 -17.09 CO2 9.195e-06 1.076e-05 -5.036 -4.968 0.068 34.43 @@ -462,8 +463,8 @@ Mg 7.987e-02 Na 7.238e-01 Na+ 7.238e-01 5.140e-01 -0.140 -0.289 -0.149 -0.27 S(6) 4.345e-02 - SO4-2 4.345e-02 2.642e-03 -1.362 -2.578 -1.216 19.70 - HSO4- 5.845e-09 3.572e-09 -8.233 -8.447 -0.214 41.13 + SO4-2 4.345e-02 2.642e-03 -1.362 -2.578 -1.216 19.50 + HSO4- 5.966e-09 3.646e-09 -8.224 -8.438 -0.214 41.13 ------------------------------Saturation indices------------------------------- @@ -573,10 +574,10 @@ Polyhalite -6.70 -20.44 -13.74 0.000e+00 0 0.000e+00 pH = 7.793 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 88277 - Density (g/cm³) = 1.04463 + Specific Conductance (µS/cm, 25°C) = 88035 + Density (g/cm³) = 1.04464 Volume (L) = 0.28547 - Viscosity (mPa s) = 1.02147 + Viscosity (mPa s) = 1.02215 Activity of water = 0.965 Ionic strength (mol/kgw) = 1.340e+00 Mass of water (kg) = 2.794e-01 @@ -621,8 +622,8 @@ Mg 1.005e-01 Na 9.105e-01 Na+ 9.105e-01 6.552e-01 -0.041 -0.184 -0.143 -0.14 S(6) 5.466e-02 - SO4-2 5.466e-02 2.683e-03 -1.262 -2.571 -1.309 20.17 - HSO4- 6.924e-09 4.119e-09 -8.160 -8.385 -0.226 41.22 + SO4-2 5.466e-02 2.683e-03 -1.262 -2.571 -1.309 20.11 + HSO4- 7.066e-09 4.204e-09 -8.151 -8.376 -0.226 41.22 ------------------------------Saturation indices------------------------------- @@ -732,10 +733,10 @@ Polyhalite -5.93 -19.68 -13.74 0.000e+00 0 0.000e+00 pH = 7.710 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 110217 - Density (g/cm³) = 1.06017 + Specific Conductance (µS/cm, 25°C) = 111017 + Density (g/cm³) = 1.06016 Volume (L) = 0.21331 - Viscosity (mPa s) = 1.07209 + Viscosity (mPa s) = 1.07296 Activity of water = 0.952 Ionic strength (mol/kgw) = 1.805e+00 Mass of water (kg) = 2.073e-01 @@ -765,7 +766,7 @@ Br 2.123e-03 C(4) 5.530e-04 HCO3- 5.064e-04 2.392e-04 -3.295 -3.621 -0.326 28.42 MgCO3 2.004e-05 2.004e-05 -4.698 -4.698 0.000 -17.09 - CO3-2 1.833e-05 5.618e-07 -4.737 -6.250 -1.514 2.21 + CO3-2 1.833e-05 5.618e-07 -4.737 -6.250 -1.514 2.22 CO2 8.248e-06 1.076e-05 -5.084 -4.968 0.115 34.43 Ca 2.664e-02 Ca+2 2.664e-02 6.991e-03 -1.575 -2.155 -0.581 -16.03 @@ -780,8 +781,8 @@ Mg 1.354e-01 Na 1.227e+00 Na+ 1.227e+00 9.140e-01 0.089 -0.039 -0.128 0.06 S(6) 7.367e-02 - SO4-2 7.367e-02 2.673e-03 -1.133 -2.573 -1.440 20.87 - HSO4- 8.654e-09 4.964e-09 -8.063 -8.304 -0.241 41.36 + SO4-2 7.367e-02 2.673e-03 -1.133 -2.573 -1.440 21.01 + HSO4- 8.832e-09 5.066e-09 -8.054 -8.295 -0.241 41.36 ------------------------------Saturation indices------------------------------- @@ -891,10 +892,10 @@ Polyhalite -4.92 -18.67 -13.74 0.000e+00 0 0.000e+00 pH = 7.595 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 147344 - Density (g/cm³) = 1.09024 - Volume (L) = 0.14119 - Viscosity (mPa s) = 1.18521 + Specific Conductance (µS/cm, 25°C) = 149892 + Density (g/cm³) = 1.09018 + Volume (L) = 0.14120 + Viscosity (mPa s) = 1.18635 Activity of water = 0.923 Ionic strength (mol/kgw) = 2.742e+00 Mass of water (kg) = 1.352e-01 @@ -924,7 +925,7 @@ Br 3.255e-03 C(4) 4.882e-04 HCO3- 4.370e-04 1.778e-04 -3.360 -3.750 -0.390 29.65 MgCO3 2.558e-05 2.558e-05 -4.592 -4.592 0.000 -17.09 - CO3-2 1.848e-05 3.201e-07 -4.733 -6.495 -1.761 3.92 + CO3-2 1.848e-05 3.201e-07 -4.733 -6.495 -1.761 3.93 CO2 7.188e-06 1.076e-05 -5.143 -4.968 0.175 34.43 Ca 3.443e-02 Ca+2 3.443e-02 1.227e-02 -1.463 -1.911 -0.448 -15.60 @@ -939,8 +940,8 @@ Mg 2.076e-01 Na 1.881e+00 Na+ 1.881e+00 1.553e+00 0.274 0.191 -0.083 0.40 S(6) 1.067e-01 - SO4-2 1.067e-01 2.402e-03 -0.972 -2.619 -1.648 22.05 - HSO4- 1.074e-08 5.820e-09 -7.969 -8.235 -0.266 41.57 + SO4-2 1.067e-01 2.402e-03 -0.972 -2.619 -1.648 22.52 + HSO4- 1.096e-08 5.940e-09 -7.960 -8.226 -0.266 41.57 ------------------------------Saturation indices------------------------------- @@ -1050,10 +1051,10 @@ Polyhalite -4.70 -18.44 -13.74 0.000e+00 0 0.000e+00 pH = 7.573 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 161102 - Density (g/cm³) = 1.10245 - Volume (L) = 0.12316 - Viscosity (mPa s) = 1.23782 + Specific Conductance (µS/cm, 25°C) = 163822 + Density (g/cm³) = 1.10237 + Volume (L) = 0.12317 + Viscosity (mPa s) = 1.23905 Activity of water = 0.909 Ionic strength (mol/kgw) = 3.136e+00 Mass of water (kg) = 1.172e-01 @@ -1098,8 +1099,8 @@ Mg 2.396e-01 Na 2.171e+00 Na+ 2.171e+00 1.894e+00 0.337 0.277 -0.059 0.52 S(6) 1.162e-01 - SO4-2 1.162e-01 2.210e-03 -0.935 -2.656 -1.721 22.49 - HSO4- 1.060e-08 5.624e-09 -7.975 -8.250 -0.275 41.65 + SO4-2 1.162e-01 2.210e-03 -0.935 -2.656 -1.721 23.07 + HSO4- 1.081e-08 5.739e-09 -7.966 -8.241 -0.275 41.65 ------------------------------Saturation indices------------------------------- @@ -1209,10 +1210,10 @@ Polyhalite -4.40 -18.15 -13.74 0.000e+00 0 0.000e+00 pH = 7.546 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 177871 - Density (g/cm³) = 1.11861 - Volume (L) = 0.10514 - Viscosity (mPa s) = 1.31475 + Specific Conductance (µS/cm, 25°C) = 180062 + Density (g/cm³) = 1.11850 + Volume (L) = 0.10515 + Viscosity (mPa s) = 1.31607 Activity of water = 0.890 Ionic strength (mol/kgw) = 3.673e+00 Mass of water (kg) = 9.912e-02 @@ -1240,9 +1241,9 @@ Polyhalite -4.40 -18.15 -13.74 0.000e+00 0 0.000e+00 Br 4.441e-03 Br- 4.441e-03 3.024e-03 -2.353 -2.519 -0.167 25.96 C(4) 5.058e-04 - HCO3- 4.339e-04 1.533e-04 -3.363 -3.815 -0.452 30.72 + HCO3- 4.339e-04 1.533e-04 -3.363 -3.815 -0.452 30.73 MgCO3 4.351e-05 4.351e-05 -4.361 -4.361 0.000 -17.09 - CO3-2 2.218e-05 2.465e-07 -4.654 -6.608 -1.954 5.41 + CO3-2 2.218e-05 2.465e-07 -4.654 -6.608 -1.954 5.42 CO2 6.266e-06 1.076e-05 -5.203 -4.968 0.235 34.43 Ca 2.998e-02 Ca+2 2.998e-02 1.593e-02 -1.523 -1.798 -0.275 -15.20 @@ -1257,8 +1258,8 @@ Mg 2.832e-01 Na 2.566e+00 Na+ 2.566e+00 2.428e+00 0.409 0.385 -0.024 0.68 S(6) 1.287e-01 - SO4-2 1.287e-01 1.987e-03 -0.891 -2.702 -1.811 23.04 - HSO4- 1.044e-08 5.390e-09 -7.981 -8.268 -0.287 41.74 + SO4-2 1.287e-01 1.987e-03 -0.891 -2.702 -1.811 23.77 + HSO4- 1.065e-08 5.501e-09 -7.973 -8.260 -0.287 41.74 ------------------------------Saturation indices------------------------------- @@ -1368,10 +1369,10 @@ Polyhalite -4.00 -17.74 -13.74 0.000e+00 0 0.000e+00 pH = 7.508 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 198669 - Density (g/cm³) = 1.14104 - Volume (L) = 0.08715 - Viscosity (mPa s) = 1.43745 + Specific Conductance (µS/cm, 25°C) = 198454 + Density (g/cm³) = 1.14090 + Volume (L) = 0.08716 + Viscosity (mPa s) = 1.43886 Activity of water = 0.861 Ionic strength (mol/kgw) = 4.446e+00 Mass of water (kg) = 8.107e-02 @@ -1416,8 +1417,8 @@ Mg 3.463e-01 Na 3.138e+00 Na+ 3.138e+00 3.377e+00 0.497 0.529 0.032 0.88 S(6) 1.463e-01 - SO4-2 1.463e-01 1.730e-03 -0.835 -2.762 -1.927 23.76 - HSO4- 1.028e-08 5.113e-09 -7.988 -8.291 -0.303 41.85 + SO4-2 1.463e-01 1.730e-03 -0.835 -2.762 -1.927 24.69 + HSO4- 1.049e-08 5.218e-09 -7.979 -8.282 -0.303 41.85 ------------------------------Saturation indices------------------------------- @@ -1527,10 +1528,10 @@ Polyhalite -3.38 -17.12 -13.74 0.000e+00 0 0.000e+00 pH = 7.454 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 224762 - Density (g/cm³) = 1.17441 - Volume (L) = 0.06920 - Viscosity (mPa s) = 1.66148 + Specific Conductance (µS/cm, 25°C) = 217024 + Density (g/cm³) = 1.17419 + Volume (L) = 0.06922 + Viscosity (mPa s) = 1.66307 Activity of water = 0.811 Ionic strength (mol/kgw) = 5.663e+00 Mass of water (kg) = 6.302e-02 @@ -1575,8 +1576,8 @@ Mg 4.454e-01 Na 4.036e+00 Na+ 4.036e+00 5.442e+00 0.606 0.736 0.130 1.18 S(6) 1.742e-01 - SO4-2 1.742e-01 1.429e-03 -0.759 -2.845 -2.086 24.79 - HSO4- 1.023e-08 4.788e-09 -7.990 -8.320 -0.330 42.00 + SO4-2 1.742e-01 1.429e-03 -0.759 -2.845 -2.086 25.99 + HSO4- 1.044e-08 4.886e-09 -7.981 -8.311 -0.330 42.00 ------------------------------Saturation indices------------------------------- @@ -1686,10 +1687,10 @@ Polyhalite -2.55 -16.29 -13.74 0.000e+00 0 0.000e+00 pH = 7.359 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 249347 - Density (g/cm³) = 1.21449 - Volume (L) = 0.05087 - Viscosity (mPa s) = 2.02761 + Specific Conductance (µS/cm, 25°C) = 226248 + Density (g/cm³) = 1.21418 + Volume (L) = 0.05088 + Viscosity (mPa s) = 2.03087 Activity of water = 0.739 Ionic strength (mol/kgw) = 7.301e+00 Mass of water (kg) = 4.504e-02 @@ -1734,8 +1735,8 @@ Mg 6.232e-01 Na 5.118e+00 Na+ 5.118e+00 9.795e+00 0.709 0.991 0.282 1.53 S(6) 1.916e-01 - SO4-2 1.916e-01 1.013e-03 -0.718 -2.994 -2.277 26.00 - HSO4- 9.651e-09 4.224e-09 -8.015 -8.374 -0.359 42.17 + SO4-2 1.916e-01 1.013e-03 -0.718 -2.994 -2.277 27.52 + HSO4- 9.849e-09 4.310e-09 -8.007 -8.365 -0.359 42.17 ------------------------------Saturation indices------------------------------- @@ -1845,10 +1846,10 @@ Polyhalite -1.68 -15.43 -13.74 0.000e+00 0 0.000e+00 pH = 7.364 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 236925 - Density (g/cm³) = 1.22037 - Volume (L) = 0.03049 - Viscosity (mPa s) = 2.19147 + Specific Conductance (µS/cm, 25°C) = 214242 + Density (g/cm³) = 1.21997 + Volume (L) = 0.03050 + Viscosity (mPa s) = 2.19817 Activity of water = 0.729 Ionic strength (mol/kgw) = 7.901e+00 Mass of water (kg) = 2.709e-02 @@ -1893,8 +1894,8 @@ Mg 1.036e+00 Na 4.391e+00 Na+ 4.391e+00 9.485e+00 0.643 0.977 0.334 1.64 S(6) 2.312e-01 - SO4-2 2.312e-01 1.052e-03 -0.636 -2.978 -2.342 26.41 - HSO4- 8.284e-09 4.332e-09 -8.082 -8.363 -0.281 42.22 + SO4-2 2.312e-01 1.052e-03 -0.636 -2.978 -2.342 28.04 + HSO4- 8.454e-09 4.421e-09 -8.073 -8.354 -0.281 42.22 ------------------------------Saturation indices------------------------------- @@ -2004,10 +2005,10 @@ Polyhalite -1.34 -15.08 -13.74 0.000e+00 0 0.000e+00 pH = 7.367 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 231007 - Density (g/cm³) = 1.22383 - Volume (L) = 0.02540 - Viscosity (mPa s) = 2.29181 + Specific Conductance (µS/cm, 25°C) = 207916 + Density (g/cm³) = 1.22336 + Volume (L) = 0.02541 + Viscosity (mPa s) = 2.30055 Activity of water = 0.724 Ionic strength (mol/kgw) = 8.219e+00 Mass of water (kg) = 2.260e-02 @@ -2029,7 +2030,7 @@ Polyhalite -1.34 -15.08 -13.74 0.000e+00 0 0.000e+00 MacInnes Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.396e-06 1.704e-07 -5.855 -6.768 -0.913 7.52 + OH- 1.396e-06 1.704e-07 -5.855 -6.768 -0.913 7.53 H+ 3.969e-09 4.297e-08 -8.401 -7.367 1.035 0.00 H2O 5.551e+01 7.235e-01 1.744 -0.141 0.000 18.07 Br 1.947e-02 @@ -2052,8 +2053,8 @@ Mg 1.242e+00 Na 4.043e+00 Na+ 4.043e+00 9.316e+00 0.607 0.969 0.362 1.71 S(6) 2.554e-01 - SO4-2 2.554e-01 1.073e-03 -0.593 -2.969 -2.376 26.62 - HSO4- 7.711e-09 4.394e-09 -8.113 -8.357 -0.244 42.24 + SO4-2 2.554e-01 1.073e-03 -0.593 -2.969 -2.376 28.31 + HSO4- 7.870e-09 4.484e-09 -8.104 -8.348 -0.244 42.24 ------------------------------Saturation indices------------------------------- @@ -2139,7 +2140,7 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 1.326e-06 Calcite 0.00 -8.41 -8.41 3.446e-04 3.382e-04 -6.361e-06 Carnallite -2.67 1.76 4.42 0.000e+00 0 0.000e+00 Epsomite -0.81 -2.66 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 4.231e-03 4.522e-03 2.908e-04 +Glauberite -0.00 -5.35 -5.35 4.231e-03 4.522e-03 2.908e-04 Gypsum 0.00 -4.60 -4.60 1.036e-03 8.218e-04 -2.145e-04 Halite 0.00 1.58 1.58 1.545e-01 1.812e-01 2.664e-02 Hexahydrite -0.95 -2.52 -1.57 0.000e+00 0 0.000e+00 @@ -2163,10 +2164,10 @@ Polyhalite -0.87 -14.62 -13.74 0.000e+00 0 0.000e+00 pH = 7.371 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 222459 - Density (g/cm³) = 1.22975 - Volume (L) = 0.02032 - Viscosity (mPa s) = 2.47250 + Specific Conductance (µS/cm, 25°C) = 197853 + Density (g/cm³) = 1.22919 + Volume (L) = 0.02033 + Viscosity (mPa s) = 2.48495 Activity of water = 0.714 Ionic strength (mol/kgw) = 8.723e+00 Mass of water (kg) = 1.810e-02 @@ -2211,8 +2212,8 @@ Mg 1.550e+00 Na 3.544e+00 Na+ 3.544e+00 9.044e+00 0.550 0.956 0.407 1.80 S(6) 2.985e-01 - SO4-2 2.985e-01 1.109e-03 -0.525 -2.955 -2.430 26.96 - HSO4- 6.970e-09 4.496e-09 -8.157 -8.347 -0.190 42.28 + SO4-2 2.985e-01 1.109e-03 -0.525 -2.955 -2.430 28.72 + HSO4- 7.113e-09 4.588e-09 -8.148 -8.338 -0.190 42.28 ------------------------------Saturation indices------------------------------- @@ -2233,7 +2234,7 @@ S(6) 2.985e-01 Epsomite -0.81 -2.66 -1.85 MgSO4:7H2O Gaylussite -4.86 -14.28 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.82 -6.63 -3.80 NaK3(SO4)2 - Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 + Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 3.61 -25.75 -29.37 K2Ca5(SO4)6H2O Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O H2O(g) -1.65 -0.15 1.50 H2O @@ -2322,10 +2323,10 @@ Polyhalite -0.42 -14.16 -13.74 0.000e+00 0 0.000e+00 pH = 7.375 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 213703 - Density (g/cm³) = 1.23728 - Volume (L) = 0.01674 - Viscosity (mPa s) = 2.71674 + Specific Conductance (µS/cm, 25°C) = 186206 + Density (g/cm³) = 1.23656 + Volume (L) = 0.01675 + Viscosity (mPa s) = 2.73450 Activity of water = 0.702 Ionic strength (mol/kgw) = 9.307e+00 Mass of water (kg) = 1.493e-02 @@ -2347,7 +2348,7 @@ Polyhalite -0.42 -14.16 -13.74 0.000e+00 0 0.000e+00 MacInnes Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.254e-06 1.686e-07 -5.647 -6.773 -1.126 8.89 + OH- 2.254e-06 1.686e-07 -5.647 -6.773 -1.126 8.88 H+ 2.982e-09 4.214e-08 -8.525 -7.375 1.150 0.00 H2O 5.551e+01 7.019e-01 1.744 -0.154 0.000 18.07 Br 2.947e-02 @@ -2355,7 +2356,7 @@ Br 2.947e-02 C(4) 3.330e-03 MgCO3 2.432e-03 2.432e-03 -2.614 -2.614 0.000 -17.09 HCO3- 6.924e-04 8.164e-05 -3.160 -4.088 -0.928 35.90 - CO3-2 2.028e-04 8.870e-08 -3.693 -7.052 -3.359 12.52 + CO3-2 2.028e-04 8.870e-08 -3.693 -7.052 -3.359 12.51 CO2 3.191e-06 1.076e-05 -5.496 -4.968 0.528 34.43 Ca 7.467e-03 Ca+2 7.467e-03 4.427e-02 -2.127 -1.354 0.773 -13.02 @@ -2370,8 +2371,8 @@ Mg 1.880e+00 Na 3.045e+00 Na+ 3.045e+00 8.730e+00 0.484 0.941 0.457 1.91 S(6) 3.561e-01 - SO4-2 3.561e-01 1.150e-03 -0.448 -2.939 -2.491 27.32 - HSO4- 6.314e-09 4.618e-09 -8.200 -8.336 -0.136 42.32 + SO4-2 3.561e-01 1.150e-03 -0.448 -2.939 -2.491 29.18 + HSO4- 6.444e-09 4.713e-09 -8.191 -8.327 -0.136 42.32 ------------------------------Saturation indices------------------------------- @@ -2457,7 +2458,7 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.803e-07 Calcite 0.00 -8.41 -8.41 3.284e-04 3.238e-04 -4.588e-06 Carnallite -2.26 2.17 4.42 0.000e+00 0 0.000e+00 Epsomite -0.60 -2.45 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 4.552e-03 4.508e-03 -4.353e-05 +Glauberite -0.00 -5.35 -5.35 4.552e-03 4.508e-03 -4.353e-05 Gypsum 0.00 -4.60 -4.60 8.495e-04 9.107e-04 6.112e-05 Halite 0.00 1.58 1.58 1.998e-01 2.051e-01 5.274e-03 Hexahydrite -0.73 -2.29 -1.57 0.000e+00 0 0.000e+00 @@ -2481,10 +2482,10 @@ Polyhalite -0.26 -14.00 -13.74 0.000e+00 0 0.000e+00 pH = 7.377 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 210567 - Density (g/cm³) = 1.24041 - Volume (L) = 0.01573 - Viscosity (mPa s) = 2.82291 + Specific Conductance (µS/cm, 25°C) = 181678 + Density (g/cm³) = 1.23961 + Volume (L) = 0.01574 + Viscosity (mPa s) = 2.84317 Activity of water = 0.697 Ionic strength (mol/kgw) = 9.534e+00 Mass of water (kg) = 1.403e-02 @@ -2493,8 +2494,8 @@ Polyhalite -0.26 -14.00 -13.74 0.000e+00 0 0.000e+00 Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.18 - Iterations = 32 - Gamma iterations = 6 + Iterations = 9 + Gamma iterations = 3 Osmotic coefficient = 1.68139 Density of water = 0.99704 Total H = 1.557491e+00 @@ -2529,8 +2530,8 @@ Mg 2.001e+00 Na 2.871e+00 Na+ 2.871e+00 8.608e+00 0.458 0.935 0.477 1.95 S(6) 3.809e-01 - SO4-2 3.809e-01 1.167e-03 -0.419 -2.933 -2.514 27.46 - HSO4- 6.104e-09 4.667e-09 -8.214 -8.331 -0.117 42.34 + SO4-2 3.809e-01 1.167e-03 -0.419 -2.933 -2.514 29.36 + HSO4- 6.229e-09 4.763e-09 -8.206 -8.322 -0.117 42.34 ------------------------------Saturation indices------------------------------- @@ -2551,7 +2552,7 @@ S(6) 3.809e-01 Epsomite -0.60 -2.45 -1.85 MgSO4:7H2O Gaylussite -4.95 -14.37 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.37 -6.17 -3.80 NaK3(SO4)2 - Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 + Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 4.02 -25.35 -29.37 K2Ca5(SO4)6H2O Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O H2O(g) -1.66 -0.16 1.50 H2O @@ -2613,7 +2614,7 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.03 -4.28 -4.25 0.000e+00 0 0.000e+00 Bischofite -2.59 2.00 4.59 0.000e+00 0 0.000e+00 CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 5.638e-07 -Calcite 0.00 -8.41 -8.41 3.238e-04 3.178e-04 -6.007e-06 +Calcite -0.00 -8.41 -8.41 3.238e-04 3.178e-04 -6.007e-06 Carnallite -2.14 2.28 4.42 0.000e+00 0 0.000e+00 Epsomite -0.54 -2.39 -1.85 0.000e+00 0 0.000e+00 Glauberite 0.00 -5.35 -5.35 4.508e-03 4.428e-03 -8.034e-05 @@ -2640,10 +2641,10 @@ Polyhalite -0.08 -13.82 -13.74 0.000e+00 0 0.000e+00 pH = 7.379 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 207036 - Density (g/cm³) = 1.24421 - Volume (L) = 0.01471 - Viscosity (mPa s) = 2.95651 + Specific Conductance (µS/cm, 25°C) = 176353 + Density (g/cm³) = 1.24332 + Volume (L) = 0.01472 + Viscosity (mPa s) = 2.98015 Activity of water = 0.691 Ionic strength (mol/kgw) = 9.803e+00 Mass of water (kg) = 1.313e-02 @@ -2686,10 +2687,10 @@ Mg 2.139e+00 MgCO3 3.427e-03 3.427e-03 -2.465 -2.465 0.000 -17.09 MgOH+ 1.246e-03 1.170e-03 -2.905 -2.932 -0.027 (0) Na 2.680e+00 - Na+ 2.680e+00 8.467e+00 0.428 0.928 0.500 1.99 + Na+ 2.680e+00 8.467e+00 0.428 0.928 0.500 2.00 S(6) 4.118e-01 - SO4-2 4.118e-01 1.186e-03 -0.385 -2.926 -2.541 27.62 - HSO4- 5.883e-09 4.725e-09 -8.230 -8.326 -0.095 42.36 + SO4-2 4.118e-01 1.186e-03 -0.385 -2.926 -2.541 29.56 + HSO4- 6.004e-09 4.822e-09 -8.222 -8.317 -0.095 42.36 ------------------------------Saturation indices------------------------------- @@ -2703,7 +2704,7 @@ S(6) 4.118e-01 Bloedite -0.63 -2.98 -2.35 Na2Mg(SO4)2:4H2O Brucite -1.01 -11.89 -10.88 Mg(OH)2 Burkeite -6.57 -7.34 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 + Calcite -0.00 -8.41 -8.41 CaCO3 Carnallite -2.14 2.28 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Dolomite 3.29 -13.80 -17.09 CaMg(CO3)2 @@ -2799,10 +2800,10 @@ Polyhalite 0.00 -13.74 -13.74 0.000e+00 2.746e-04 2.746e-04 pH = 7.379 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 202501 - Density (g/cm³) = 1.24735 - Volume (L) = 0.01368 - Viscosity (mPa s) = 3.09874 + Specific Conductance (µS/cm, 25°C) = 170258 + Density (g/cm³) = 1.24638 + Volume (L) = 0.01369 + Viscosity (mPa s) = 3.12540 Activity of water = 0.686 Ionic strength (mol/kgw) = 1.005e+01 Mass of water (kg) = 1.221e-02 @@ -2811,8 +2812,8 @@ Polyhalite 0.00 -13.74 -13.74 0.000e+00 2.746e-04 2.746e-04 Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.32 - Iterations = 23 - Gamma iterations = 5 + Iterations = 9 + Gamma iterations = 3 Osmotic coefficient = 1.75312 Density of water = 0.99704 Total H = 1.355889e+00 @@ -2847,8 +2848,8 @@ Mg 2.276e+00 Na 2.509e+00 Na+ 2.509e+00 8.367e+00 0.399 0.923 0.523 2.04 S(6) 4.419e-01 - SO4-2 4.419e-01 1.196e-03 -0.355 -2.922 -2.568 27.77 - HSO4- 5.641e-09 4.763e-09 -8.249 -8.322 -0.074 42.37 + SO4-2 4.419e-01 1.196e-03 -0.355 -2.922 -2.568 29.75 + HSO4- 5.757e-09 4.861e-09 -8.240 -8.313 -0.074 42.37 ------------------------------Saturation indices------------------------------- @@ -2935,7 +2936,7 @@ Calcite 0.00 -8.41 -8.41 3.121e-04 3.058e-04 -6.308e-06 Carnallite -2.05 2.38 4.42 0.000e+00 0 0.000e+00 Epsomite -0.42 -2.27 -1.85 0.000e+00 0 0.000e+00 Glauberite -0.00 -5.35 -5.35 3.869e-03 3.038e-03 -8.316e-04 -Gypsum 0.00 -4.60 -4.60 1.036e-03 1.033e-03 -3.627e-06 +Gypsum -0.00 -4.60 -4.60 1.036e-03 1.033e-03 -3.627e-06 Halite 0.00 1.58 1.58 2.160e-01 2.218e-01 5.863e-03 Hexahydrite -0.54 -2.10 -1.57 0.000e+00 0 0.000e+00 Kieserite -1.00 -1.27 -0.27 0.000e+00 0 0.000e+00 @@ -2958,10 +2959,10 @@ Polyhalite 0.00 -13.74 -13.74 2.746e-04 7.008e-04 4.262e-04 pH = 7.378 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 196990 - Density (g/cm³) = 1.25038 - Volume (L) = 0.01263 - Viscosity (mPa s) = 3.26247 + Specific Conductance (µS/cm, 25°C) = 163252 + Density (g/cm³) = 1.24930 + Volume (L) = 0.01264 + Viscosity (mPa s) = 3.29229 Activity of water = 0.680 Ionic strength (mol/kgw) = 1.029e+01 Mass of water (kg) = 1.130e-02 @@ -3006,8 +3007,8 @@ Mg 2.423e+00 Na 2.341e+00 Na+ 2.341e+00 8.287e+00 0.369 0.918 0.549 2.08 S(6) 4.744e-01 - SO4-2 4.744e-01 1.200e-03 -0.324 -2.921 -2.597 27.91 - HSO4- 5.377e-09 4.790e-09 -8.269 -8.320 -0.050 42.39 + SO4-2 4.744e-01 1.200e-03 -0.324 -2.921 -2.597 29.93 + HSO4- 5.488e-09 4.888e-09 -8.261 -8.311 -0.050 42.39 ------------------------------Saturation indices------------------------------- @@ -3030,7 +3031,7 @@ S(6) 4.744e-01 Glaserite -2.40 -6.21 -3.80 NaK3(SO4)2 Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 4.10 -25.27 -29.37 K2Ca5(SO4)6H2O - Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O + Gypsum -0.00 -4.60 -4.60 CaSO4:2H2O H2O(g) -1.67 -0.17 1.50 H2O Halite 0.00 1.58 1.58 NaCl Hexahydrite -0.54 -2.10 -1.57 MgSO4:6H2O @@ -3093,7 +3094,7 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 3.369e-07 Calcite 0.00 -8.41 -8.41 3.058e-04 3.007e-04 -5.076e-06 Carnallite -2.03 2.40 4.42 0.000e+00 0 0.000e+00 Epsomite -0.38 -2.23 -1.85 0.000e+00 0 0.000e+00 -Glauberite -0.00 -5.35 -5.35 3.038e-03 2.540e-03 -4.976e-04 +Glauberite 0.00 -5.35 -5.35 3.038e-03 2.540e-03 -4.976e-04 Gypsum 0.00 -4.60 -4.60 1.033e-03 1.058e-03 2.566e-05 Halite 0.00 1.58 1.58 2.218e-01 2.253e-01 3.499e-03 Hexahydrite -0.49 -2.06 -1.57 0.000e+00 0 0.000e+00 @@ -3117,10 +3118,10 @@ Polyhalite 0.00 -13.74 -13.74 7.008e-04 9.425e-04 2.417e-04 pH = 7.377 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 193305 - Density (g/cm³) = 1.25269 - Volume (L) = 0.01200 - Viscosity (mPa s) = 3.38595 + Specific Conductance (µS/cm, 25°C) = 158442 + Density (g/cm³) = 1.25155 + Volume (L) = 0.01201 + Viscosity (mPa s) = 3.41850 Activity of water = 0.676 Ionic strength (mol/kgw) = 1.047e+01 Mass of water (kg) = 1.075e-02 @@ -3165,8 +3166,8 @@ Mg 2.524e+00 Na 2.227e+00 Na+ 2.227e+00 8.227e+00 0.348 0.915 0.567 2.11 S(6) 4.989e-01 - SO4-2 4.989e-01 1.203e-03 -0.302 -2.920 -2.618 28.02 - HSO4- 5.210e-09 4.811e-09 -8.283 -8.318 -0.035 42.40 + SO4-2 4.989e-01 1.203e-03 -0.302 -2.920 -2.618 30.06 + HSO4- 5.318e-09 4.910e-09 -8.274 -8.309 -0.035 42.40 ------------------------------Saturation indices------------------------------- @@ -3187,7 +3188,7 @@ S(6) 4.989e-01 Epsomite -0.38 -2.23 -1.85 MgSO4:7H2O Gaylussite -5.07 -14.49 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.50 -6.30 -3.80 NaK3(SO4)2 - Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 + Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 4.05 -25.31 -29.37 K2Ca5(SO4)6H2O Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O H2O(g) -1.67 -0.17 1.50 H2O @@ -3252,12 +3253,12 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 3.978e-07 Calcite 0.00 -8.41 -8.41 3.007e-04 2.942e-04 -6.456e-06 Carnallite -2.01 2.42 4.42 0.000e+00 0 0.000e+00 Epsomite -0.34 -2.19 -1.85 0.000e+00 0 0.000e+00 -Glauberite -0.00 -5.35 -5.35 2.540e-03 2.040e-03 -4.999e-04 +Glauberite 0.00 -5.35 -5.35 2.540e-03 2.040e-03 -4.999e-04 Gypsum 0.00 -4.60 -4.60 1.058e-03 1.112e-03 5.332e-05 Halite 0.00 1.58 1.58 2.253e-01 2.288e-01 3.484e-03 Hexahydrite -0.45 -2.01 -1.57 0.000e+00 0 0.000e+00 Kieserite -0.88 -1.15 -0.27 0.000e+00 0 0.000e+00 -Polyhalite -0.00 -13.74 -13.74 9.425e-04 1.172e-03 2.296e-04 +Polyhalite 0.00 -13.74 -13.74 9.425e-04 1.172e-03 2.296e-04 -----------------------------Solution composition------------------------------ @@ -3276,10 +3277,10 @@ Polyhalite -0.00 -13.74 -13.74 9.425e-04 1.172e-03 2.296e-04 pH = 7.376 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 189287 - Density (g/cm³) = 1.25552 - Volume (L) = 0.01138 - Viscosity (mPa s) = 3.53535 + Specific Conductance (µS/cm, 25°C) = 153077 + Density (g/cm³) = 1.25429 + Volume (L) = 0.01139 + Viscosity (mPa s) = 3.57162 Activity of water = 0.672 Ionic strength (mol/kgw) = 1.068e+01 Mass of water (kg) = 1.020e-02 @@ -3324,8 +3325,8 @@ Mg 2.638e+00 Na 2.104e+00 Na+ 2.104e+00 8.154e+00 0.323 0.911 0.588 2.15 S(6) 5.286e-01 - SO4-2 5.286e-01 1.207e-03 -0.277 -2.918 -2.641 28.14 - HSO4- 5.038e-09 4.837e-09 -8.298 -8.315 -0.018 42.41 + SO4-2 5.286e-01 1.207e-03 -0.277 -2.918 -2.641 30.21 + HSO4- 5.141e-09 4.936e-09 -8.289 -8.307 -0.018 42.41 ------------------------------Saturation indices------------------------------- @@ -3346,7 +3347,7 @@ S(6) 5.286e-01 Epsomite -0.34 -2.19 -1.85 MgSO4:7H2O Gaylussite -5.10 -14.52 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.61 -6.42 -3.80 NaK3(SO4)2 - Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 + Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 4.01 -25.36 -29.37 K2Ca5(SO4)6H2O Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O H2O(g) -1.68 -0.17 1.50 H2O @@ -3369,7 +3370,7 @@ S(6) 5.286e-01 Nesquehonite -0.48 -5.65 -5.17 MgCO3:3H2O Pentahydrite -0.56 -1.84 -1.28 MgSO4:5H2O Pirssonite -4.76 -14.00 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O + Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O Portlandite -9.73 -14.92 -5.19 Ca(OH)2 Schoenite -1.60 -5.93 -4.33 K2Mg(SO4)2:6H2O Sylvite -0.73 0.17 0.90 KCl @@ -3411,7 +3412,7 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.567e-07 Calcite 0.00 -8.41 -8.41 2.942e-04 2.856e-04 -8.634e-06 Carnallite -1.98 2.44 4.42 0.000e+00 0 0.000e+00 Epsomite -0.29 -2.14 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 2.040e-03 1.544e-03 -4.957e-04 +Glauberite -0.00 -5.35 -5.35 2.040e-03 1.544e-03 -4.957e-04 Gypsum -0.00 -4.60 -4.60 1.112e-03 0 -1.112e-03 Halite 0.00 1.58 1.58 2.288e-01 2.321e-01 3.235e-03 Hexahydrite -0.40 -1.96 -1.57 0.000e+00 0 0.000e+00 @@ -3435,10 +3436,10 @@ Polyhalite 0.00 -13.74 -13.74 1.172e-03 1.369e-03 1.969e-04 pH = 7.378 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 185142 - Density (g/cm³) = 1.25892 - Volume (L) = 0.01080 - Viscosity (mPa s) = 3.70710 + Specific Conductance (µS/cm, 25°C) = 147417 + Density (g/cm³) = 1.25755 + Volume (L) = 0.01081 + Viscosity (mPa s) = 3.74839 Activity of water = 0.667 Ionic strength (mol/kgw) = 1.091e+01 Mass of water (kg) = 9.689e-03 @@ -3447,7 +3448,7 @@ Polyhalite 0.00 -13.74 -13.74 1.172e-03 1.369e-03 1.969e-04 Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.60 - Iterations = 13 + Iterations = 11 Gamma iterations = 4 Osmotic coefficient = 1.89560 Density of water = 0.99704 @@ -3460,7 +3461,7 @@ Polyhalite 0.00 -13.74 -13.74 1.172e-03 1.369e-03 1.969e-04 MacInnes Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 4.322e-06 1.613e-07 -5.364 -6.792 -1.428 10.86 + OH- 4.322e-06 1.613e-07 -5.364 -6.792 -1.428 10.87 H+ 1.934e-09 4.184e-08 -8.713 -7.378 1.335 0.00 H2O 5.551e+01 6.665e-01 1.744 -0.176 0.000 18.07 Br 4.542e-02 @@ -3468,23 +3469,23 @@ Br 4.542e-02 C(4) 9.222e-03 MgCO3 7.372e-03 7.372e-03 -2.132 -2.132 0.000 -17.09 HCO3- 1.107e-03 7.810e-05 -2.956 -4.107 -1.151 37.14 - CO3-2 7.413e-04 8.547e-08 -3.130 -7.068 -3.938 14.21 + CO3-2 7.413e-04 8.547e-08 -3.130 -7.068 -3.938 14.22 CO2 2.728e-06 1.076e-05 -5.564 -4.968 0.596 34.43 Ca 4.617e-03 - Ca+2 4.617e-03 4.595e-02 -2.336 -1.338 0.998 -12.43 + Ca+2 4.617e-03 4.595e-02 -2.336 -1.338 0.998 -12.42 Cl 6.294e+00 Cl- 6.294e+00 4.724e+00 0.799 0.674 -0.125 20.69 K 2.293e-01 - K+ 2.293e-01 2.918e-01 -0.640 -0.535 0.105 14.24 + K+ 2.293e-01 2.918e-01 -0.640 -0.535 0.105 14.25 Mg 2.756e+00 - Mg+2 2.746e+00 1.018e+02 0.439 2.008 1.569 -15.68 + Mg+2 2.746e+00 1.018e+02 0.439 2.008 1.569 -15.67 MgCO3 7.372e-03 7.372e-03 -2.132 -2.132 0.000 -17.09 MgOH+ 2.160e-03 2.517e-03 -2.666 -2.599 0.067 (0) Na 1.983e+00 Na+ 1.983e+00 8.077e+00 0.297 0.907 0.610 2.18 S(6) 5.653e-01 - SO4-2 5.653e-01 1.220e-03 -0.248 -2.913 -2.666 28.27 - HSO4- 4.875e-09 4.864e-09 -8.312 -8.313 -0.001 42.42 + SO4-2 5.653e-01 1.220e-03 -0.248 -2.913 -2.666 30.38 + HSO4- 4.975e-09 4.964e-09 -8.303 -8.304 -0.001 42.42 ------------------------------Saturation indices------------------------------- @@ -3505,7 +3506,7 @@ S(6) 5.653e-01 Epsomite -0.29 -2.14 -1.85 MgSO4:7H2O Gaylussite -5.12 -14.54 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.72 -6.52 -3.80 NaK3(SO4)2 - Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 + Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 3.95 -25.42 -29.37 K2Ca5(SO4)6H2O Gypsum -0.00 -4.60 -4.60 CaSO4:2H2O H2O(g) -1.68 -0.18 1.50 H2O @@ -3570,7 +3571,7 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 6.284e-07 Calcite 0.00 -8.41 -8.41 2.856e-04 2.716e-04 -1.398e-05 Carnallite -1.96 2.46 4.42 0.000e+00 0 0.000e+00 Epsomite -0.23 -2.08 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 1.544e-03 9.450e-04 -5.993e-04 +Glauberite -0.00 -5.35 -5.35 1.544e-03 9.450e-04 -5.993e-04 Gypsum -0.01 -4.61 -4.60 0.000e+00 0 0.000e+00 Halite 0.00 1.58 1.58 2.321e-01 2.356e-01 3.547e-03 Hexahydrite -0.33 -1.90 -1.57 0.000e+00 0 0.000e+00 @@ -3594,10 +3595,10 @@ Polyhalite 0.00 -13.74 -13.74 1.369e-03 1.563e-03 1.942e-04 pH = 7.386 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 180044 - Density (g/cm³) = 1.26371 - Volume (L) = 0.01018 - Viscosity (mPa s) = 3.94431 + Specific Conductance (µS/cm, 25°C) = 140319 + Density (g/cm³) = 1.26219 + Volume (L) = 0.01020 + Viscosity (mPa s) = 3.99402 Activity of water = 0.660 Ionic strength (mol/kgw) = 1.122e+01 Mass of water (kg) = 9.142e-03 @@ -3619,7 +3620,7 @@ Polyhalite 0.00 -13.74 -13.74 1.369e-03 1.563e-03 1.942e-04 MacInnes Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 4.862e-06 1.623e-07 -5.313 -6.790 -1.476 11.24 + OH- 4.862e-06 1.623e-07 -5.313 -6.790 -1.476 11.25 H+ 1.765e-09 4.115e-08 -8.753 -7.386 1.368 0.00 H2O 5.551e+01 6.600e-01 1.744 -0.180 0.000 18.07 Br 4.814e-02 @@ -3642,8 +3643,8 @@ Mg 2.900e+00 Na 1.845e+00 Na+ 1.845e+00 7.984e+00 0.266 0.902 0.636 2.24 S(6) 6.200e-01 - SO4-2 6.200e-01 1.249e-03 -0.208 -2.903 -2.696 28.44 - HSO4- 4.695e-09 4.896e-09 -8.328 -8.310 0.018 42.44 + SO4-2 6.200e-01 1.249e-03 -0.208 -2.903 -2.696 30.60 + HSO4- 4.791e-09 4.997e-09 -8.320 -8.301 0.018 42.44 ------------------------------Saturation indices------------------------------- @@ -3664,7 +3665,7 @@ S(6) 6.200e-01 Epsomite -0.23 -2.08 -1.85 MgSO4:7H2O Gaylussite -5.14 -14.56 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.84 -6.65 -3.80 NaK3(SO4)2 - Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 + Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 3.87 -25.50 -29.37 K2Ca5(SO4)6H2O Gypsum -0.01 -4.61 -4.60 CaSO4:2H2O H2O(g) -1.68 -0.18 1.50 H2O @@ -3753,10 +3754,10 @@ Polyhalite 0.00 -13.74 -13.74 1.563e-03 1.740e-03 1.768e-04 pH = 7.394 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 174324 - Density (g/cm³) = 1.26978 - Volume (L) = 0.00957 - Viscosity (mPa s) = 4.24936 + Specific Conductance (µS/cm, 25°C) = 132216 + Density (g/cm³) = 1.26804 + Volume (L) = 0.00958 + Viscosity (mPa s) = 4.31212 Activity of water = 0.652 Ionic strength (mol/kgw) = 1.158e+01 Mass of water (kg) = 8.595e-03 @@ -3785,7 +3786,7 @@ Br 5.121e-02 Br- 5.121e-02 7.144e-02 -1.291 -1.146 0.145 26.54 C(4) 1.410e-02 MgCO3 1.149e-02 1.149e-02 -1.940 -1.940 0.000 -17.09 - HCO3- 1.399e-03 7.922e-05 -2.854 -4.101 -1.247 37.64 + HCO3- 1.399e-03 7.922e-05 -2.854 -4.101 -1.247 37.65 CO3-2 1.213e-03 8.990e-08 -2.916 -7.046 -4.130 14.91 CO2 2.533e-06 1.076e-05 -5.596 -4.968 0.628 34.43 Ca 3.676e-03 @@ -3801,8 +3802,8 @@ Mg 3.063e+00 Na 1.697e+00 Na+ 1.697e+00 7.876e+00 0.230 0.896 0.667 2.30 S(6) 6.901e-01 - SO4-2 6.901e-01 1.284e-03 -0.161 -2.892 -2.730 28.65 - HSO4- 4.512e-09 4.934e-09 -8.346 -8.307 0.039 42.46 + SO4-2 6.901e-01 1.284e-03 -0.161 -2.892 -2.730 30.86 + HSO4- 4.605e-09 5.036e-09 -8.337 -8.298 0.039 42.46 ------------------------------Saturation indices------------------------------- diff --git a/phreeqc3-examples/ex18.out b/phreeqc3-examples/ex18.out index e92ed683..dc9986e5 100644 --- a/phreeqc3-examples/ex18.out +++ b/phreeqc3-examples/ex18.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -117,18 +118,18 @@ Initial solution 1. Recharge number 3 pH = 7.550 pe = 0.000 - Specific Conductance (µS/cm, 10°C) = 271 + Specific Conductance (µS/cm, 10°C) = 278 Density (g/cm³) = 0.99999 Volume (L) = 1.00035 - Viscosity (mPa s) = 1.31276 + Viscosity (mPa s) = 1.31358 Activity of water = 1.000 - Ionic strength (mol/kgw) = 6.543e-03 + Ionic strength (mol/kgw) = 6.588e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 4.016e-03 + Total alkalinity (eq/kg) = 4.014e-03 Total CO2 (mol/kg) = 4.300e-03 Temperature (°C) = 9.90 - Electrical balance (eq) = 1.063e-04 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.24 + Electrical balance (eq) = 1.077e-04 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.25 Iterations = 8 Total H = 1.110164e+02 Total O = 5.551946e+01 @@ -142,93 +143,95 @@ Initial solution 1. Recharge number 3 H+ 3.038e-08 2.818e-08 -7.517 -7.550 -0.033 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.02 C(4) 4.300e-03 - HCO3- 3.929e-03 3.622e-03 -2.406 -2.441 -0.035 22.87 - CO2 2.971e-04 2.974e-04 -3.527 -3.527 0.000 33.66 - MgHCO3+ 3.094e-05 2.845e-05 -4.510 -4.546 -0.036 4.93 - CaHCO3+ 3.027e-05 2.794e-05 -4.519 -4.554 -0.035 8.96 - CO3-2 5.766e-06 4.167e-06 -5.239 -5.380 -0.141 -6.29 - CaCO3 4.730e-06 4.737e-06 -5.325 -5.324 0.001 -14.66 - MgCO3 2.204e-06 2.208e-06 -5.657 -5.656 0.001 -17.07 - FeHCO3+ 2.086e-07 1.919e-07 -6.681 -6.717 -0.036 (0) - FeCO3 5.288e-08 5.296e-08 -7.277 -7.276 0.001 (0) - NaHCO3 2.455e-08 2.463e-08 -7.610 -7.608 0.002 28.00 - (CO2)2 9.408e-10 9.423e-10 -9.026 -9.026 0.001 67.31 + HCO3- 3.951e-03 3.642e-03 -2.403 -2.439 -0.035 22.89 + CO2 2.987e-04 2.990e-04 -3.525 -3.524 0.000 33.66 + MgHCO3+ 3.108e-05 2.857e-05 -4.508 -4.544 -0.037 4.93 + CaHCO3+ 6.407e-06 5.913e-06 -5.193 -5.228 -0.035 121.93 + CO3-2 5.802e-06 4.190e-06 -5.236 -5.378 -0.141 -6.10 + CaCO3 4.848e-06 4.855e-06 -5.314 -5.314 0.001 -14.66 + MgCO3 2.214e-06 2.217e-06 -5.655 -5.654 0.001 -17.07 + FeHCO3+ 2.093e-07 1.925e-07 -6.679 -6.716 -0.036 (0) + FeCO3 5.305e-08 5.313e-08 -7.275 -7.275 0.001 (0) + NaHCO3 3.694e-08 3.705e-08 -7.433 -7.431 0.001 31.86 + KHCO3 2.302e-08 2.303e-08 -7.638 -7.638 0.000 40.92 + (CO2)2 9.509e-10 9.523e-10 -9.022 -9.021 0.001 67.31 Ca 1.200e-03 - Ca+2 1.152e-03 8.324e-04 -2.938 -3.080 -0.141 -18.31 - CaHCO3+ 3.027e-05 2.794e-05 -4.519 -4.554 -0.035 8.96 - CaSO4 1.277e-05 1.279e-05 -4.894 -4.893 0.001 6.78 - CaCO3 4.730e-06 4.737e-06 -5.325 -5.324 0.001 -14.66 - CaOH+ 5.328e-09 4.901e-09 -8.273 -8.310 -0.036 (0) - CaHSO4+ 2.133e-12 1.962e-12 -11.671 -11.707 -0.036 (0) + Ca+2 1.176e-03 8.486e-04 -2.930 -3.071 -0.142 -18.31 + CaSO4 1.298e-05 1.300e-05 -4.887 -4.886 0.001 6.78 + CaHCO3+ 6.407e-06 5.913e-06 -5.193 -5.228 -0.035 121.93 + CaCO3 4.848e-06 4.855e-06 -5.314 -5.314 0.001 -14.66 + CaOH+ 5.433e-09 4.996e-09 -8.265 -8.301 -0.036 (0) + CaHSO4+ 2.170e-12 1.995e-12 -11.664 -11.700 -0.036 (0) Cl 2.000e-05 Cl- 2.000e-05 1.838e-05 -4.699 -4.736 -0.037 17.40 - FeCl+ 1.461e-11 1.344e-11 -10.835 -10.872 -0.036 (0) - HCl 1.948e-13 1.960e-13 -12.711 -12.708 0.003 (0) + FeCl+ 1.458e-11 1.341e-11 -10.836 -10.873 -0.036 (0) + HCl 1.947e-13 1.960e-13 -12.711 -12.708 0.003 (0) Fe(2) 1.000e-06 - Fe+2 7.297e-07 5.298e-07 -6.137 -6.276 -0.139 -23.20 - FeHCO3+ 2.086e-07 1.919e-07 -6.681 -6.717 -0.036 (0) - FeCO3 5.288e-08 5.296e-08 -7.277 -7.276 0.001 (0) - FeSO4 6.846e-09 6.856e-09 -8.165 -8.164 0.001 39.09 - FeOH+ 1.965e-09 1.811e-09 -8.707 -8.742 -0.036 (0) - FeCl+ 1.461e-11 1.344e-11 -10.835 -10.872 -0.036 (0) - Fe(OH)2 1.369e-13 1.371e-13 -12.864 -12.863 0.001 (0) - FeHSO4+ 1.358e-15 1.249e-15 -14.867 -14.903 -0.036 (0) - Fe(OH)3- 1.678e-16 1.546e-16 -15.775 -15.811 -0.036 (0) + Fe+2 7.288e-07 5.286e-07 -6.137 -6.277 -0.139 -23.19 + FeHCO3+ 2.093e-07 1.925e-07 -6.679 -6.716 -0.036 (0) + FeCO3 5.305e-08 5.313e-08 -7.275 -7.275 0.001 (0) + FeSO4 6.814e-09 6.824e-09 -8.167 -8.166 0.001 39.09 + FeOH+ 1.962e-09 1.807e-09 -8.707 -8.743 -0.036 (0) + FeCl+ 1.458e-11 1.341e-11 -10.836 -10.873 -0.036 (0) + Fe(OH)2 1.366e-13 1.368e-13 -12.865 -12.864 0.001 (0) + FeHSO4+ 1.352e-15 1.243e-15 -14.869 -14.906 -0.036 (0) + Fe(OH)3- 1.674e-16 1.542e-16 -15.776 -15.812 -0.036 (0) H(0) 1.316e-18 - H2 6.579e-19 6.588e-19 -18.182 -18.181 0.001 28.63 + H2 6.578e-19 6.588e-19 -18.182 -18.181 0.001 28.63 K 2.000e-05 - K+ 1.999e-05 1.837e-05 -4.699 -4.736 -0.037 8.43 - KSO4- 9.288e-09 8.467e-09 -8.032 -8.072 -0.040 19.30 + K+ 1.995e-05 1.832e-05 -4.700 -4.737 -0.037 8.43 + KSO4- 2.822e-08 2.609e-08 -7.549 -7.584 -0.034 12.38 + KHCO3 2.302e-08 2.303e-08 -7.638 -7.638 0.000 40.92 Mg 1.010e-03 - Mg+2 9.648e-04 7.000e-04 -3.016 -3.155 -0.139 -21.10 - MgHCO3+ 3.094e-05 2.845e-05 -4.510 -4.546 -0.036 4.93 - MgSO4 1.203e-05 1.206e-05 -4.920 -4.918 0.001 -4.13 - MgCO3 2.204e-06 2.208e-06 -5.657 -5.656 0.001 -17.07 - MgOH+ 2.321e-08 2.144e-08 -7.634 -7.669 -0.034 (0) - Mg(SO4)2-2 7.112e-09 5.204e-09 -8.148 -8.284 -0.136 35.28 + Mg+2 9.647e-04 6.992e-04 -3.016 -3.155 -0.140 -21.10 + MgHCO3+ 3.108e-05 2.857e-05 -4.508 -4.544 -0.037 4.93 + MgSO4 1.198e-05 1.202e-05 -4.921 -4.920 0.001 -14.55 + MgCO3 2.214e-06 2.217e-06 -5.655 -5.654 0.001 -17.07 + MgOH+ 2.319e-08 2.142e-08 -7.635 -7.669 -0.034 (0) + Mg(SO4)2-2 7.075e-09 5.172e-09 -8.150 -8.286 -0.136 1.55 Na 2.000e-05 - Na+ 1.996e-05 1.838e-05 -4.700 -4.736 -0.036 -2.42 - NaHCO3 2.455e-08 2.463e-08 -7.610 -7.608 0.002 28.00 - NaSO4- 1.104e-08 1.006e-08 -7.957 -7.997 -0.040 13.45 - NaOH 1.899e-22 1.902e-22 -21.722 -21.721 0.001 (0) + Na+ 1.994e-05 1.835e-05 -4.700 -4.736 -0.036 -2.42 + NaHCO3 3.694e-08 3.705e-08 -7.433 -7.431 0.001 31.86 + NaSO4- 2.681e-08 2.471e-08 -7.572 -7.607 -0.035 -19.96 + NaOH 1.896e-22 1.898e-22 -21.722 -21.722 0.001 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -61.151 -61.151 0.001 28.94 S(6) 1.600e-04 - SO4-2 1.352e-04 9.734e-05 -3.869 -4.012 -0.143 11.93 - CaSO4 1.277e-05 1.279e-05 -4.894 -4.893 0.001 6.78 - MgSO4 1.203e-05 1.206e-05 -4.920 -4.918 0.001 -4.13 - NaSO4- 1.104e-08 1.006e-08 -7.957 -7.997 -0.040 13.45 - KSO4- 9.288e-09 8.467e-09 -8.032 -8.072 -0.040 19.30 - Mg(SO4)2-2 7.112e-09 5.204e-09 -8.148 -8.284 -0.136 35.28 - FeSO4 6.846e-09 6.856e-09 -8.165 -8.164 0.001 39.09 - HSO4- 2.132e-10 1.961e-10 -9.671 -9.708 -0.036 38.92 - CaHSO4+ 2.133e-12 1.962e-12 -11.671 -11.707 -0.036 (0) - FeHSO4+ 1.358e-15 1.249e-15 -14.867 -14.903 -0.036 (0) + SO4-2 1.350e-04 9.710e-05 -3.870 -4.013 -0.143 14.49 + CaSO4 1.298e-05 1.300e-05 -4.887 -4.886 0.001 6.78 + MgSO4 1.198e-05 1.202e-05 -4.921 -4.920 0.001 -14.55 + KSO4- 2.822e-08 2.609e-08 -7.549 -7.584 -0.034 12.38 + NaSO4- 2.681e-08 2.471e-08 -7.572 -7.607 -0.035 -19.96 + Mg(SO4)2-2 7.075e-09 5.172e-09 -8.150 -8.286 -0.136 1.55 + FeSO4 6.814e-09 6.824e-09 -8.167 -8.166 0.001 39.09 + HSO4- 2.127e-10 1.956e-10 -9.672 -9.709 -0.036 38.92 + CaHSO4+ 2.170e-12 1.995e-12 -11.664 -11.700 -0.036 (0) + FeHSO4+ 1.352e-15 1.243e-15 -14.869 -14.906 -0.036 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(283 K, 1 atm) - Anhydrite -2.97 -7.09 -4.12 CaSO4 - Aragonite -0.20 -8.46 -8.25 CaCO3 - Arcanite -11.37 -13.48 -2.11 K2SO4 - Calcite -0.06 -8.46 -8.40 CaCO3 - CH2O -33.73 -33.73 0.00 CH2O - CO2(g) -2.26 -3.53 -1.27 CO2 - Dolomite -0.11 -16.99 -16.88 CaMg(CO3)2 - Epsomite -5.33 -7.17 -1.83 MgSO4:7H2O - Gypsum -2.49 -7.09 -4.60 CaSO4:2H2O + Anhydrite -2.96 -7.08 -4.12 CaSO4 + Aragonite -0.19 -8.45 -8.25 CaCO3 + Arcanite -11.38 -13.49 -2.11 K2SO4 + Calcite -0.05 -8.45 -8.40 CaCO3 + CH2O -33.72 -33.72 0.00 CH2O + CO2(g) -2.26 -3.52 -1.27 CO2 + Dolomite -0.10 -16.98 -16.88 CaMg(CO3)2 + Epsomite -5.34 -7.17 -1.83 MgSO4:7H2O + Gypsum -2.49 -7.08 -4.60 CaSO4:2H2O H2(g) -15.13 -18.18 -3.05 H2 H2O(g) -1.91 -0.00 1.91 H2O Halite -11.03 -9.47 1.56 NaCl Hexahydrite -5.58 -7.17 -1.59 MgSO4:6H2O Kieserite -5.85 -7.17 -1.32 MgSO4:H2O Melanterite -7.88 -10.29 -2.41 FeSO4:7H2O - Mirabilite -11.51 -13.48 -1.97 Na2SO4:10H2O + Mirabilite -11.51 -13.49 -1.97 Na2SO4:10H2O O2(g) -58.39 -61.15 -2.76 O2 - Siderite -0.86 -11.66 -10.79 FeCO3 + Siderite -0.86 -11.65 -10.79 FeCO3 Sylvite -9.47 -9.47 0.00 KCl - Thenardite -13.25 -13.48 -0.23 Na2SO4 + Thenardite -13.26 -13.49 -0.23 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -253,138 +256,140 @@ Initial solution 2. Mysse pH = 6.610 pe = 0.000 - Specific Conductance (µS/cm, 63°C) = 9924 - Density (g/cm³) = 0.98525 - Volume (L) = 1.01937 - Viscosity (mPa s) = 0.45381 + Specific Conductance (µS/cm, 63°C) = 10507 + Density (g/cm³) = 0.98520 + Volume (L) = 1.01942 + Viscosity (mPa s) = 0.45606 Activity of water = 0.999 - Ionic strength (mol/kgw) = 7.390e-02 + Ionic strength (mol/kgw) = 7.101e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.286e-03 + Total alkalinity (eq/kg) = 5.294e-03 Total CO2 (mol/kg) = 6.870e-03 Temperature (°C) = 63.00 - Electrical balance (eq) = 3.215e-03 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 3.14 + Electrical balance (eq) = 3.207e-03 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 3.22 Iterations = 8 (16 overall) Total H = 1.110179e+02 - Total O = 5.560451e+01 + Total O = 5.560452e+01 ---------------------------------Redox couples--------------------------------- Redox couple pe Eh (volts) - S(-2)/S(6) -3.6464 -0.2432 + S(-2)/S(6) -3.6540 -0.2437 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 5.980e-07 4.607e-07 -6.223 -6.337 -0.113 -3.62 - H+ 2.965e-07 2.455e-07 -6.528 -6.610 -0.082 0.00 + OH- 5.957e-07 4.608e-07 -6.225 -6.337 -0.112 -3.63 + H+ 2.959e-07 2.455e-07 -6.529 -6.610 -0.081 0.00 H2O 5.551e+01 9.985e-01 1.744 -0.001 0.000 18.35 C(4) 6.870e-03 - HCO3- 4.610e-03 3.661e-03 -2.336 -2.436 -0.100 26.07 - CO2 1.753e-03 1.773e-03 -2.756 -2.751 0.005 36.36 - CaHCO3+ 2.375e-04 1.901e-04 -3.624 -3.721 -0.097 10.66 - NaHCO3 1.921e-04 1.997e-04 -3.717 -3.700 0.017 28.00 - MgHCO3+ 5.656e-05 4.396e-05 -4.247 -4.357 -0.109 6.11 - CaCO3 1.588e-05 1.616e-05 -4.799 -4.792 0.007 -14.51 - CO3-2 2.732e-06 1.086e-06 -5.563 -5.964 -0.401 -2.45 - MgCO3 1.396e-06 1.420e-06 -5.855 -5.848 0.007 -17.09 - (CO2)2 1.558e-07 1.585e-07 -6.807 -6.800 0.007 72.72 - FeHCO3+ 1.149e-08 9.014e-09 -7.940 -8.045 -0.105 (0) - FeCO3 6.308e-10 6.417e-10 -9.200 -9.193 0.007 (0) + HCO3- 4.575e-03 3.644e-03 -2.340 -2.438 -0.099 25.86 + CO2 1.746e-03 1.765e-03 -2.758 -2.753 0.005 36.36 + CaHCO3+ 2.772e-04 2.226e-04 -3.557 -3.653 -0.095 123.62 + NaHCO3 1.844e-04 1.905e-04 -3.734 -3.720 0.014 31.20 + MgHCO3+ 6.093e-05 4.753e-05 -4.215 -4.323 -0.108 6.10 + CaCO3 1.656e-05 1.683e-05 -4.781 -4.774 0.007 -14.51 + KHCO3 5.096e-06 5.104e-06 -5.293 -5.292 0.001 41.50 + CO3-2 2.687e-06 1.082e-06 -5.571 -5.966 -0.395 -2.58 + MgCO3 1.511e-06 1.536e-06 -5.821 -5.814 0.007 -17.09 + (CO2)2 1.545e-07 1.571e-07 -6.811 -6.804 0.007 72.72 + FeHCO3+ 1.153e-08 9.078e-09 -7.938 -8.042 -0.104 (0) + FeCO3 6.358e-10 6.462e-10 -9.197 -9.190 0.007 (0) Ca 1.128e-02 - Ca+2 7.562e-03 3.022e-03 -2.121 -2.520 -0.398 -17.56 - CaSO4 3.465e-03 3.524e-03 -2.460 -2.453 0.007 8.42 - CaHCO3+ 2.375e-04 1.901e-04 -3.624 -3.721 -0.097 10.66 - CaCO3 1.588e-05 1.616e-05 -4.799 -4.792 0.007 -14.51 - CaHSO4+ 1.436e-08 1.127e-08 -7.843 -7.948 -0.105 (0) - CaOH+ 2.600e-09 2.040e-09 -8.585 -8.690 -0.105 (0) + Ca+2 7.821e-03 3.163e-03 -2.107 -2.500 -0.393 -17.58 + CaSO4 3.165e-03 3.217e-03 -2.500 -2.492 0.007 8.42 + CaHCO3+ 2.772e-04 2.226e-04 -3.557 -3.653 -0.095 123.62 + CaCO3 1.656e-05 1.683e-05 -4.781 -4.774 0.007 -14.51 + CaHSO4+ 1.307e-08 1.029e-08 -7.884 -7.988 -0.104 (0) + CaOH+ 2.712e-09 2.135e-09 -8.567 -8.671 -0.104 (0) Cl 1.785e-02 - Cl- 1.785e-02 1.382e-02 -1.748 -1.859 -0.111 18.29 - HCl 8.590e-10 9.235e-10 -9.066 -9.035 0.031 (0) - FeCl+ 5.987e-10 4.698e-10 -9.223 -9.328 -0.105 (0) + Cl- 1.785e-02 1.388e-02 -1.748 -1.858 -0.109 18.29 + HCl 8.646e-10 9.269e-10 -9.063 -9.033 0.030 (0) + FeCl+ 6.061e-10 4.771e-10 -9.217 -9.321 -0.104 (0) Fe(2) 4.000e-07 - Fe(HS)2 2.817e-07 2.865e-07 -6.550 -6.543 0.007 (0) - Fe+2 5.993e-08 2.462e-08 -7.222 -7.609 -0.386 -19.94 - FeSO4 4.060e-08 4.130e-08 -7.391 -7.384 0.007 -6.81 - FeHCO3+ 1.149e-08 9.014e-09 -7.940 -8.045 -0.105 (0) - Fe(HS)3- 4.544e-09 3.566e-09 -8.343 -8.448 -0.105 (0) - FeCO3 6.308e-10 6.417e-10 -9.200 -9.193 0.007 (0) - FeCl+ 5.987e-10 4.698e-10 -9.223 -9.328 -0.105 (0) - FeOH+ 4.978e-10 3.930e-10 -9.303 -9.406 -0.103 (0) - Fe(OH)2 2.509e-13 2.552e-13 -12.601 -12.593 0.007 (0) - FeHSO4+ 1.170e-13 9.183e-14 -12.932 -13.037 -0.105 (0) - Fe(OH)3- 6.802e-17 5.370e-17 -16.167 -16.270 -0.103 (0) -H(0) 1.177e-09 - H2 5.885e-10 5.986e-10 -9.230 -9.223 0.007 28.58 + Fe(HS)2 2.863e-07 2.910e-07 -6.543 -6.536 0.007 (0) + Fe+2 5.995e-08 2.491e-08 -7.222 -7.604 -0.381 -19.95 + FeSO4 3.586e-08 3.645e-08 -7.445 -7.438 0.007 -6.81 + FeHCO3+ 1.153e-08 9.078e-09 -7.938 -8.042 -0.104 (0) + Fe(HS)3- 4.609e-09 3.629e-09 -8.336 -8.440 -0.104 (0) + FeCO3 6.358e-10 6.462e-10 -9.197 -9.190 0.007 (0) + FeCl+ 6.061e-10 4.771e-10 -9.217 -9.321 -0.104 (0) + FeOH+ 5.020e-10 3.976e-10 -9.299 -9.401 -0.101 (0) + Fe(OH)2 2.540e-13 2.582e-13 -12.595 -12.588 0.007 (0) + FeHSO4+ 1.030e-13 8.105e-14 -12.987 -13.091 -0.104 (0) + Fe(OH)3- 6.860e-17 5.434e-17 -16.164 -16.265 -0.101 (0) +H(0) 1.219e-09 + H2 6.097e-10 6.197e-10 -9.215 -9.208 0.007 28.58 K 2.540e-03 - K+ 2.503e-03 1.934e-03 -2.601 -2.714 -0.112 10.02 - KSO4- 3.662e-05 2.600e-05 -4.436 -4.585 -0.149 24.41 + K+ 2.339e-03 1.814e-03 -2.631 -2.741 -0.110 10.01 + KSO4- 1.955e-04 1.606e-04 -3.709 -3.794 -0.085 15.45 + KHCO3 5.096e-06 5.104e-06 -5.293 -5.292 0.001 41.50 Mg 4.540e-03 - MgSO4 2.578e-03 2.668e-03 -2.589 -2.574 0.015 2.94 - Mg+2 1.847e-03 7.643e-04 -2.733 -3.117 -0.383 -22.47 - MgHCO3+ 5.656e-05 4.396e-05 -4.247 -4.357 -0.109 6.11 - Mg(SO4)2-2 5.602e-05 2.438e-05 -4.252 -4.613 -0.361 50.17 - MgCO3 1.396e-06 1.420e-06 -5.855 -5.848 0.007 -17.09 - MgOH+ 2.939e-07 2.368e-07 -6.532 -6.626 -0.094 (0) + MgSO4 2.446e-03 2.528e-03 -2.611 -2.597 0.014 -0.04 + Mg+2 1.985e-03 8.301e-04 -2.702 -3.081 -0.379 -22.49 + MgHCO3+ 6.093e-05 4.753e-05 -4.215 -4.323 -0.108 6.10 + Mg(SO4)2-2 4.585e-05 2.015e-05 -4.339 -4.696 -0.357 26.88 + MgCO3 1.511e-06 1.536e-06 -5.821 -5.814 0.007 -17.09 + MgOH+ 3.184e-07 2.572e-07 -6.497 -6.590 -0.093 (0) Na 3.189e-02 - Na+ 3.123e-02 2.464e-02 -1.505 -1.608 -0.103 0.10 - NaSO4- 4.703e-04 3.335e-04 -3.328 -3.477 -0.149 16.08 - NaHCO3 1.921e-04 1.997e-04 -3.717 -3.700 0.017 28.00 - NaOH 1.116e-18 1.135e-18 -17.952 -17.945 0.007 (0) + Na+ 2.911e-02 2.304e-02 -1.536 -1.638 -0.102 0.09 + NaSO4- 2.599e-03 2.073e-03 -2.585 -2.683 -0.098 -3.67 + NaHCO3 1.844e-04 1.905e-04 -3.734 -3.720 0.014 31.20 + NaOH 1.044e-18 1.062e-18 -17.981 -17.974 0.007 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.066 -63.058 0.007 32.51 + O2 0.000e+00 0.000e+00 -63.096 -63.088 0.007 32.51 S(-2) 2.600e-04 - HS- 1.483e-04 1.143e-04 -3.829 -3.942 -0.113 21.39 - H2S 1.111e-04 1.130e-04 -3.954 -3.947 0.007 42.59 - Fe(HS)2 2.817e-07 2.865e-07 -6.550 -6.543 0.007 (0) - Fe(HS)3- 4.544e-09 3.566e-09 -8.343 -8.448 -0.105 (0) - S-2 1.456e-09 5.657e-10 -8.837 -9.247 -0.411 (0) - (H2S)2 1.345e-09 1.368e-09 -8.871 -8.864 0.007 27.88 + HS- 1.480e-04 1.145e-04 -3.830 -3.941 -0.112 21.38 + H2S 1.114e-04 1.132e-04 -3.953 -3.946 0.007 42.59 + Fe(HS)2 2.863e-07 2.910e-07 -6.543 -6.536 0.007 (0) + Fe(HS)3- 4.609e-09 3.629e-09 -8.336 -8.440 -0.104 (0) + S-2 1.440e-09 5.668e-10 -8.842 -9.247 -0.405 (0) + (H2S)2 1.351e-09 1.373e-09 -8.869 -8.862 0.007 27.88 S(6) 1.986e-02 - SO4-2 1.320e-02 5.093e-03 -1.880 -2.293 -0.414 16.79 - CaSO4 3.465e-03 3.524e-03 -2.460 -2.453 0.007 8.42 - MgSO4 2.578e-03 2.668e-03 -2.589 -2.574 0.015 2.94 - NaSO4- 4.703e-04 3.335e-04 -3.328 -3.477 -0.149 16.08 - Mg(SO4)2-2 5.602e-05 2.438e-05 -4.252 -4.613 -0.361 50.17 - KSO4- 3.662e-05 2.600e-05 -4.436 -4.585 -0.149 24.41 - HSO4- 3.953e-07 3.102e-07 -6.403 -6.508 -0.105 41.70 - FeSO4 4.060e-08 4.130e-08 -7.391 -7.384 0.007 -6.81 - CaHSO4+ 1.436e-08 1.127e-08 -7.843 -7.948 -0.105 (0) - FeHSO4+ 1.170e-13 9.183e-14 -12.932 -13.037 -0.105 (0) + SO4-2 1.136e-02 4.443e-03 -1.945 -2.352 -0.408 23.91 + CaSO4 3.165e-03 3.217e-03 -2.500 -2.492 0.007 8.42 + NaSO4- 2.599e-03 2.073e-03 -2.585 -2.683 -0.098 -3.67 + MgSO4 2.446e-03 2.528e-03 -2.611 -2.597 0.014 -0.04 + KSO4- 1.955e-04 1.606e-04 -3.709 -3.794 -0.085 15.45 + Mg(SO4)2-2 4.585e-05 2.015e-05 -4.339 -4.696 -0.357 26.88 + HSO4- 3.438e-07 2.706e-07 -6.464 -6.568 -0.104 41.70 + FeSO4 3.586e-08 3.645e-08 -7.445 -7.438 0.007 -6.81 + CaHSO4+ 1.307e-08 1.029e-08 -7.884 -7.988 -0.104 (0) + FeHSO4+ 1.030e-13 8.105e-14 -12.987 -13.091 -0.104 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(336 K, 1 atm) - Anhydrite -0.07 -4.81 -4.75 CaSO4 - Aragonite 0.19 -8.48 -8.67 CaCO3 - Arcanite -6.17 -7.72 -1.55 K2SO4 - Calcite 0.44 -8.48 -8.92 CaCO3 - CH2O -14.60 -14.60 0.00 CH2O + Anhydrite -0.11 -4.85 -4.75 CaSO4 + Aragonite 0.20 -8.47 -8.67 CaCO3 + Arcanite -6.28 -7.84 -1.55 K2SO4 + Calcite 0.46 -8.47 -8.92 CaCO3 + CH2O -14.58 -14.58 0.00 CH2O CO2(g) -0.95 -2.75 -1.80 CO2 - Dolomite 0.49 -17.56 -18.06 CaMg(CO3)2 - Epsomite -3.91 -5.41 -1.50 MgSO4:7H2O - FeS(ppt) -1.03 -4.94 -3.92 FeS - Gypsum -0.15 -4.81 -4.66 CaSO4:2H2O - H2(g) -6.08 -9.22 -3.14 H2 + Dolomite 0.54 -17.51 -18.06 CaMg(CO3)2 + Epsomite -3.94 -5.44 -1.50 MgSO4:7H2O + FeS(ppt) -1.02 -4.93 -3.92 FeS + Gypsum -0.19 -4.85 -4.66 CaSO4:2H2O + H2(g) -6.07 -9.21 -3.14 H2 H2O(g) -0.65 -0.00 0.65 H2O H2S(g) -2.63 -10.55 -7.92 H2S - Halite -5.06 -3.47 1.60 NaCl - Hexahydrite -3.90 -5.41 -1.51 MgSO4:6H2O - Kieserite -4.09 -5.41 -1.32 MgSO4:H2O - Mackinawite -0.29 -4.94 -4.65 FeS - Melanterite -8.05 -9.91 -1.85 FeSO4:7H2O - Mirabilite -5.46 -5.52 -0.06 Na2SO4:10H2O - O2(g) -59.99 -63.06 -3.07 O2 - Pyrite 7.98 -9.57 -17.54 FeS2 - Siderite -2.48 -13.57 -11.10 FeCO3 - Sulfur -2.11 1.98 4.09 S - Sylvite -4.57 -4.57 0.00 KCl - Thenardite -5.02 -5.51 -0.49 Na2SO4 + Halite -5.09 -3.50 1.60 NaCl + Hexahydrite -3.92 -5.44 -1.51 MgSO4:6H2O + Kieserite -4.11 -5.43 -1.32 MgSO4:H2O + Mackinawite -0.29 -4.93 -4.65 FeS + Melanterite -8.11 -9.96 -1.85 FeSO4:7H2O + Mirabilite -5.58 -5.63 -0.06 Na2SO4:10H2O + O2(g) -60.02 -63.09 -3.07 O2 + Pyrite 7.97 -9.57 -17.54 FeS2 + Siderite -2.47 -13.57 -11.10 FeCO3 + Sulfur -2.13 1.97 4.09 S + Sylvite -4.60 -4.60 0.00 KCl + Thenardite -5.14 -5.63 -0.49 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -399,7 +404,7 @@ Solution 1: Recharge number 3 Input Delta Input+Delta pH 7.550e+00 + 0.000e+00 = 7.550e+00 - Alkalinity 4.016e-03 + 1.063e-04 = 4.122e-03 + Alkalinity 4.014e-03 + 1.077e-04 = 4.122e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 C(4) 4.300e-03 + 0.000e+00 = 4.300e-03 Ca 1.200e-03 + 0.000e+00 = 1.200e-03 @@ -423,17 +428,17 @@ Solution 2: Mysse Input Delta Input+Delta pH 6.610e+00 + 0.000e+00 = 6.610e+00 - Alkalinity 5.286e-03 + 0.000e+00 = 5.286e-03 + Alkalinity 5.294e-03 + 0.000e+00 = 5.294e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 C(4) 6.870e-03 + 0.000e+00 = 6.870e-03 Ca 1.128e-02 + 0.000e+00 = 1.128e-02 Cl 1.785e-02 + 0.000e+00 = 1.785e-02 Fe(2) 4.000e-07 + 0.000e+00 = 4.000e-07 Fe(3) 0.000e+00 + 0.000e+00 = 0.000e+00 - H(0) 1.177e-09 + 0.000e+00 = 1.177e-09 + H(0) 1.219e-09 + 0.000e+00 = 1.219e-09 K 2.540e-03 + 0.000e+00 = 2.540e-03 Mg 4.540e-03 + 0.000e+00 = 4.540e-03 - Na 3.189e-02 + -1.229e-03 = 3.066e-02 + Na 3.189e-02 + -1.221e-03 = 3.067e-02 O(0) 0.000e+00 + 0.000e+00 = 0.000e+00 S(-2) 2.600e-04 + 0.000e+00 = 2.600e-04 S(6) 1.986e-02 + 9.930e-04 = 2.085e-02 @@ -446,8 +451,8 @@ Solution 2: Mysse Isotopic composition of phases: 13C Dolomite 3 + 0 = 3 13C Calcite -1.5 + 0 = -1.5 - 34S Anhydrite 13.5 + -0.715702 = 12.7843 - 13C CH2O -25 + 3.93546 = -21.0645 + 34S Anhydrite 13.5 + -0.70933 = 12.7907 + 13C CH2O -25 + 3.88835 = -21.1116 34S Pyrite -22 + 2 = -20 Solution fractions: Minimum Maximum @@ -455,24 +460,24 @@ Solution fractions: Minimum Maximum Solution 2 1.000e+00 1.000e+00 1.000e+00 Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 336 K, 1 atm) - Dolomite 1.120e-02 1.022e-02 1.194e-02 CaMg(CO3)2 ( 1.06, 0.49) - Calcite -2.404e-02 -2.597e-02 -2.113e-02 CaCO3 ( 0.46, 0.44) - Anhydrite 2.293e-02 2.037e-02 2.378e-02 CaSO4 ( -2.35, -0.07) - CH2O 4.222e-03 2.482e-03 5.808e-03 CH2O ( , ) - Goethite 9.867e-04 5.146e-04 1.418e-03 FeOOH ( , ) - Pyrite -9.873e-04 -1.417e-03 -5.163e-04 FeS2 ( , ) - MgX2 -7.665e-03 -8.591e-03 -6.972e-03 MgX2 ( , ) - NaX 1.533e-02 1.394e-02 1.718e-02 NaX ( , ) - Halite 1.531e-02 1.429e-02 1.633e-02 NaCl (-11.07, -5.06) - Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl ( -9.47, -4.57) + Dolomite 1.120e-02 1.022e-02 1.195e-02 CaMg(CO3)2 ( 1.07, 0.54) + Calcite -2.404e-02 -2.597e-02 -2.112e-02 CaCO3 ( 0.47, 0.46) + Anhydrite 2.292e-02 2.037e-02 2.378e-02 CaSO4 ( -2.34, -0.11) + CH2O 4.214e-03 2.473e-03 5.798e-03 CH2O ( , ) + Goethite 9.845e-04 5.123e-04 1.415e-03 FeOOH ( , ) + Pyrite -9.851e-04 -1.414e-03 -5.140e-04 FeS2 ( , ) + MgX2 -7.669e-03 -8.595e-03 -6.972e-03 MgX2 ( , ) + NaX 1.534e-02 1.394e-02 1.719e-02 NaX ( , ) + Halite 1.531e-02 1.429e-02 1.633e-02 NaCl (-11.07, -5.09) + Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl ( -9.47, -4.60) Redox mole transfers: - Fe(3) 9.867e-04 - H(0) -1.177e-09 - S(-2) -2.235e-03 + Fe(3) 9.845e-04 + H(0) -1.219e-09 + S(-2) -2.230e-03 -Sum of residuals (epsilons in documentation): 2.313e+00 -Sum of delta/uncertainty limit: 4.445e+00 +Sum of residuals (epsilons in documentation): 2.315e+00 +Sum of delta/uncertainty limit: 4.435e+00 Maximum fractional error in element concentration: 5.000e-02 Model contains minimum number of phases. @@ -483,7 +488,7 @@ Solution 1: Recharge number 3 Input Delta Input+Delta pH 7.550e+00 + 0.000e+00 = 7.550e+00 - Alkalinity 4.016e-03 + 1.063e-04 = 4.122e-03 + Alkalinity 4.014e-03 + 1.077e-04 = 4.122e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 C(4) 4.300e-03 + 0.000e+00 = 4.300e-03 Ca 1.200e-03 + 0.000e+00 = 1.200e-03 @@ -507,17 +512,17 @@ Solution 2: Mysse Input Delta Input+Delta pH 6.610e+00 + 0.000e+00 = 6.610e+00 - Alkalinity 5.286e-03 + 0.000e+00 = 5.286e-03 + Alkalinity 5.294e-03 + 0.000e+00 = 5.294e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 - C(4) 6.870e-03 + -3.426e-04 = 6.527e-03 + C(4) 6.870e-03 + -3.383e-04 = 6.532e-03 Ca 1.128e-02 + 0.000e+00 = 1.128e-02 Cl 1.785e-02 + 0.000e+00 = 1.785e-02 Fe(2) 4.000e-07 + 0.000e+00 = 4.000e-07 Fe(3) 0.000e+00 + 0.000e+00 = 0.000e+00 - H(0) 1.177e-09 + 0.000e+00 = 1.177e-09 + H(0) 1.219e-09 + 0.000e+00 = 1.219e-09 K 2.540e-03 + 0.000e+00 = 2.540e-03 Mg 4.540e-03 + 0.000e+00 = 4.540e-03 - Na 3.189e-02 + -1.229e-03 = 3.066e-02 + Na 3.189e-02 + -1.221e-03 = 3.067e-02 O(0) 0.000e+00 + 0.000e+00 = 0.000e+00 S(-2) 2.600e-04 + 0.000e+00 = 2.600e-04 S(6) 1.986e-02 + 9.930e-04 = 2.085e-02 @@ -530,7 +535,7 @@ Solution 2: Mysse Isotopic composition of phases: 13C Dolomite 3 + 2 = 5 13C Calcite -1.5 + -1 = -2.5 - 34S Anhydrite 13.5 + -0.146069 = 13.3539 + 34S Anhydrite 13.5 + -0.146689 = 13.3533 13C CH2O -25 + 5 = -20 34S Pyrite -22 + 2 = -20 @@ -539,24 +544,24 @@ Solution fractions: Minimum Maximum Solution 2 1.000e+00 1.000e+00 1.000e+00 Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 336 K, 1 atm) - Dolomite 5.446e-03 4.995e-03 5.842e-03 CaMg(CO3)2 ( 1.06, 0.49) - Calcite -1.215e-02 -1.337e-02 -1.066e-02 CaCO3 ( 0.46, 0.44) - Anhydrite 2.254e-02 2.037e-02 2.298e-02 CaSO4 ( -2.35, -0.07) - CH2O 3.488e-03 2.482e-03 4.301e-03 CH2O ( , ) - Goethite 7.909e-04 5.146e-04 1.016e-03 FeOOH ( , ) - Pyrite -7.915e-04 -1.015e-03 -5.163e-04 FeS2 ( , ) - Ca.75Mg.25X2 -7.665e-03 -8.591e-03 -6.972e-03 Ca.75Mg.25X2 ( , ) - NaX 1.533e-02 1.394e-02 1.718e-02 NaX ( , ) - Halite 1.531e-02 1.429e-02 1.633e-02 NaCl (-11.07, -5.06) - Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl ( -9.47, -4.57) + Dolomite 5.447e-03 4.995e-03 5.843e-03 CaMg(CO3)2 ( 1.07, 0.54) + Calcite -1.215e-02 -1.336e-02 -1.066e-02 CaCO3 ( 0.47, 0.46) + Anhydrite 2.254e-02 2.037e-02 2.298e-02 CaSO4 ( -2.34, -0.11) + CH2O 3.489e-03 2.473e-03 4.302e-03 CH2O ( , ) + Goethite 7.911e-04 5.123e-04 1.016e-03 FeOOH ( , ) + Pyrite -7.917e-04 -1.016e-03 -5.140e-04 FeS2 ( , ) + Ca.75Mg.25X2 -7.669e-03 -8.595e-03 -6.972e-03 Ca.75Mg.25X2 ( , ) + NaX 1.534e-02 1.394e-02 1.719e-02 NaX ( , ) + Halite 1.531e-02 1.429e-02 1.633e-02 NaCl (-11.07, -5.09) + Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl ( -9.47, -4.60) Redox mole transfers: - Fe(3) 7.909e-04 - H(0) -1.177e-09 + Fe(3) 7.911e-04 + H(0) -1.219e-09 S(-2) -1.843e-03 -Sum of residuals (epsilons in documentation): 3.321e+00 -Sum of delta/uncertainty limit: 7.370e+00 +Sum of residuals (epsilons in documentation): 3.311e+00 +Sum of delta/uncertainty limit: 7.361e+00 Maximum fractional error in element concentration: 5.000e-02 Model contains minimum number of phases. diff --git a/phreeqc3-examples/ex19.out b/phreeqc3-examples/ex19.out index 32b57c60..c2e5f346 100644 --- a/phreeqc3-examples/ex19.out +++ b/phreeqc3-examples/ex19.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/phreeqc3-examples/ex19b.out b/phreeqc3-examples/ex19b.out index effb8a87..b006a676 100644 --- a/phreeqc3-examples/ex19b.out +++ b/phreeqc3-examples/ex19b.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/phreeqc3-examples/ex2.out b/phreeqc3-examples/ex2.out index ef3ccc3c..84e5f510 100644 --- a/phreeqc3-examples/ex2.out +++ b/phreeqc3-examples/ex2.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -136,10 +137,10 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.855e-01 pH = 7.066 Charge balance pe = 10.745 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 2269 - Density (g/cm³) = 0.99907 - Volume (L) = 0.96736 - Viscosity (mPa s) = 0.89989 + Specific Conductance (µS/cm, 25°C) = 2485 + Density (g/cm³) = 0.99901 + Volume (L) = 0.96742 + Viscosity (mPa s) = 0.89855 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.174e-02 Mass of water (kg) = 9.645e-01 @@ -164,17 +165,17 @@ Ca 1.505e-02 CaSO4 4.611e-03 4.656e-03 -2.336 -2.332 0.004 7.50 CaOH+ 1.200e-08 9.980e-09 -7.921 -8.001 -0.080 (0) CaHSO4+ 3.161e-09 2.629e-09 -8.500 -8.580 -0.080 (0) -H(0) 3.354e-39 - H2 1.677e-39 1.693e-39 -38.776 -38.771 0.004 28.61 -O(0) 2.879e-15 - O2 1.439e-15 1.453e-15 -14.842 -14.838 0.004 30.40 +H(0) 3.347e-39 + H2 1.674e-39 1.690e-39 -38.776 -38.772 0.004 28.61 +O(0) 2.889e-15 + O2 1.445e-15 1.458e-15 -14.840 -14.836 0.004 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -118.112 -118.196 -0.084 20.77 - H2S 0.000e+00 0.000e+00 -118.325 -118.320 0.004 36.27 - S-2 0.000e+00 0.000e+00 -123.736 -124.048 -0.312 (0) - (H2S)2 0.000e+00 0.000e+00 -237.923 -237.919 0.004 30.09 + HS- 0.000e+00 0.000e+00 -118.115 -118.199 -0.084 20.77 + H2S 0.000e+00 0.000e+00 -118.328 -118.324 0.004 36.27 + S-2 0.000e+00 0.000e+00 -123.739 -124.051 -0.312 (0) + (H2S)2 0.000e+00 0.000e+00 -237.929 -237.925 0.004 30.09 S(6) 1.505e-02 - SO4-2 1.043e-02 5.067e-03 -1.982 -2.295 -0.314 15.44 + SO4-2 1.043e-02 5.067e-03 -1.982 -2.295 -0.314 21.14 CaSO4 4.611e-03 4.656e-03 -2.336 -2.332 0.004 7.50 HSO4- 5.088e-08 4.231e-08 -7.293 -7.374 -0.080 40.44 CaHSO4+ 3.161e-09 2.629e-09 -8.500 -8.580 -0.080 (0) @@ -187,8 +188,8 @@ S(6) 1.505e-02 Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O H2(g) -35.67 -38.77 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -117.33 -125.26 -7.94 H2S - O2(g) -11.95 -14.84 -2.89 O2 + H2S(g) -117.33 -125.27 -7.94 H2S + O2(g) -11.94 -14.84 -2.89 O2 Sulfur -87.58 -82.70 4.88 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -219,10 +220,10 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 pH = 7.052 Charge balance pe = 10.676 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 26°C) = 2320 - Density (g/cm³) = 0.99882 - Volume (L) = 0.96762 - Viscosity (mPa s) = 0.87981 + Specific Conductance (µS/cm, 26°C) = 2545 + Density (g/cm³) = 0.99876 + Volume (L) = 0.96768 + Viscosity (mPa s) = 0.87847 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.180e-02 Mass of water (kg) = 9.645e-01 @@ -257,7 +258,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -123.192 -123.505 -0.313 (0) (H2S)2 0.000e+00 0.000e+00 -236.857 -236.853 0.004 30.05 S(6) 1.509e-02 - SO4-2 1.045e-02 5.066e-03 -1.981 -2.295 -0.314 15.57 + SO4-2 1.045e-02 5.066e-03 -1.981 -2.295 -0.314 21.26 CaSO4 4.645e-03 4.690e-03 -2.333 -2.329 0.004 7.54 HSO4- 5.369e-08 4.462e-08 -7.270 -7.350 -0.080 40.50 CaHSO4+ 3.335e-09 2.772e-09 -8.477 -8.557 -0.080 (0) @@ -302,10 +303,10 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 pH = 7.039 Charge balance pe = 10.607 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 27°C) = 2370 - Density (g/cm³) = 0.99855 - Volume (L) = 0.96789 - Viscosity (mPa s) = 0.86044 + Specific Conductance (µS/cm, 27°C) = 2606 + Density (g/cm³) = 0.99849 + Volume (L) = 0.96794 + Viscosity (mPa s) = 0.85909 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.185e-02 Mass of water (kg) = 9.645e-01 @@ -340,7 +341,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -122.649 -122.963 -0.313 (0) (H2S)2 0.000e+00 0.000e+00 -235.792 -235.787 0.004 30.00 S(6) 1.514e-02 - SO4-2 1.046e-02 5.065e-03 -1.980 -2.295 -0.315 15.69 + SO4-2 1.046e-02 5.065e-03 -1.980 -2.295 -0.315 21.37 CaSO4 4.677e-03 4.722e-03 -2.330 -2.326 0.004 7.57 HSO4- 5.663e-08 4.705e-08 -7.247 -7.327 -0.080 40.57 CaHSO4+ 3.517e-09 2.922e-09 -8.454 -8.534 -0.080 (0) @@ -385,10 +386,10 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 pH = 7.025 Charge balance pe = 10.539 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 28°C) = 2420 - Density (g/cm³) = 0.99827 - Volume (L) = 0.96816 - Viscosity (mPa s) = 0.84175 + Specific Conductance (µS/cm, 28°C) = 2667 + Density (g/cm³) = 0.99821 + Volume (L) = 0.96822 + Viscosity (mPa s) = 0.84040 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.189e-02 Mass of water (kg) = 9.645e-01 @@ -413,17 +414,17 @@ Ca 1.518e-02 CaSO4 4.708e-03 4.754e-03 -2.327 -2.323 0.004 7.61 CaOH+ 1.094e-08 9.082e-09 -7.961 -8.042 -0.081 (0) CaHSO4+ 3.708e-09 3.080e-09 -8.431 -8.511 -0.081 (0) -H(0) 1.013e-38 - H2 5.063e-39 5.112e-39 -38.296 -38.291 0.004 28.60 -O(0) 2.870e-15 - O2 1.435e-15 1.449e-15 -14.843 -14.839 0.004 30.63 +H(0) 1.011e-38 + H2 5.056e-39 5.105e-39 -38.296 -38.292 0.004 28.60 +O(0) 2.877e-15 + O2 1.439e-15 1.452e-15 -14.842 -14.838 0.004 30.63 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -116.539 -116.624 -0.085 20.89 - H2S 0.000e+00 0.000e+00 -116.750 -116.745 0.004 36.98 - S-2 0.000e+00 0.000e+00 -122.114 -122.428 -0.314 (0) - (H2S)2 0.000e+00 0.000e+00 -234.741 -234.737 0.004 29.96 + HS- 0.000e+00 0.000e+00 -116.541 -116.626 -0.085 20.89 + H2S 0.000e+00 0.000e+00 -116.752 -116.748 0.004 36.98 + S-2 0.000e+00 0.000e+00 -122.116 -122.430 -0.314 (0) + (H2S)2 0.000e+00 0.000e+00 -234.746 -234.742 0.004 29.96 S(6) 1.518e-02 - SO4-2 1.047e-02 5.063e-03 -1.980 -2.296 -0.316 15.80 + SO4-2 1.047e-02 5.063e-03 -1.980 -2.296 -0.316 21.48 CaSO4 4.708e-03 4.754e-03 -2.327 -2.323 0.004 7.61 HSO4- 5.973e-08 4.961e-08 -7.224 -7.304 -0.081 40.63 CaHSO4+ 3.708e-09 3.080e-09 -8.431 -8.511 -0.081 (0) @@ -437,7 +438,7 @@ S(6) 1.518e-02 H2(g) -35.18 -38.29 -3.11 H2 H2O(g) -1.43 -0.00 1.43 H2O H2S(g) -115.72 -123.65 -7.93 H2S - O2(g) -11.93 -14.84 -2.91 O2 + O2(g) -11.92 -14.84 -2.91 O2 Sulfur -86.43 -81.62 4.81 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -468,10 +469,10 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 pH = 7.012 Charge balance pe = 10.472 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 29°C) = 2470 - Density (g/cm³) = 0.99799 - Volume (L) = 0.96844 - Viscosity (mPa s) = 0.82371 + Specific Conductance (µS/cm, 29°C) = 2727 + Density (g/cm³) = 0.99793 + Volume (L) = 0.96850 + Viscosity (mPa s) = 0.82236 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.193e-02 Mass of water (kg) = 9.645e-01 @@ -496,17 +497,17 @@ Ca 1.522e-02 CaSO4 4.738e-03 4.783e-03 -2.324 -2.320 0.004 7.64 CaOH+ 1.060e-08 8.803e-09 -7.975 -8.055 -0.081 (0) CaHSO4+ 3.908e-09 3.244e-09 -8.408 -8.489 -0.081 (0) -H(0) 1.451e-38 - H2 7.256e-39 7.326e-39 -38.139 -38.135 0.004 28.60 -O(0) 2.887e-15 - O2 1.444e-15 1.458e-15 -14.841 -14.836 0.004 30.70 +H(0) 1.452e-38 + H2 7.258e-39 7.329e-39 -38.139 -38.135 0.004 28.60 +O(0) 2.886e-15 + O2 1.443e-15 1.457e-15 -14.841 -14.837 0.004 30.70 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -116.028 -116.113 -0.085 20.93 - H2S 0.000e+00 0.000e+00 -116.238 -116.233 0.004 37.21 - S-2 0.000e+00 0.000e+00 -121.587 -121.901 -0.315 (0) - (H2S)2 0.000e+00 0.000e+00 -233.707 -233.703 0.004 29.91 + HS- 0.000e+00 0.000e+00 -116.027 -116.112 -0.085 20.93 + H2S 0.000e+00 0.000e+00 -116.237 -116.233 0.004 37.21 + S-2 0.000e+00 0.000e+00 -121.586 -121.901 -0.315 (0) + (H2S)2 0.000e+00 0.000e+00 -233.706 -233.702 0.004 29.91 S(6) 1.522e-02 - SO4-2 1.048e-02 5.060e-03 -1.980 -2.296 -0.316 15.91 + SO4-2 1.048e-02 5.060e-03 -1.980 -2.296 -0.316 21.58 CaSO4 4.738e-03 4.783e-03 -2.324 -2.320 0.004 7.64 HSO4- 6.298e-08 5.228e-08 -7.201 -7.282 -0.081 40.69 CaHSO4+ 3.908e-09 3.244e-09 -8.408 -8.489 -0.081 (0) @@ -517,11 +518,11 @@ S(6) 1.522e-02 Anhydrite -0.26 -4.58 -4.32 CaSO4 Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -35.03 -38.14 -3.11 H2 + H2(g) -35.03 -38.13 -3.11 H2 H2O(g) -1.40 -0.00 1.40 H2O H2S(g) -115.20 -123.12 -7.93 H2S O2(g) -11.92 -14.84 -2.92 O2 - Sulfur -86.06 -81.27 4.79 S + Sulfur -86.05 -81.27 4.79 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -551,10 +552,10 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 pH = 6.999 Charge balance pe = 10.404 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 30°C) = 2521 - Density (g/cm³) = 0.99769 - Volume (L) = 0.96874 - Viscosity (mPa s) = 0.80628 + Specific Conductance (µS/cm, 30°C) = 2788 + Density (g/cm³) = 0.99763 + Volume (L) = 0.96879 + Viscosity (mPa s) = 0.80493 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.196e-02 Mass of water (kg) = 9.645e-01 @@ -579,17 +580,17 @@ Ca 1.526e-02 CaSO4 4.766e-03 4.812e-03 -2.322 -2.318 0.004 7.68 CaOH+ 1.028e-08 8.533e-09 -7.988 -8.069 -0.081 (0) CaHSO4+ 4.117e-09 3.416e-09 -8.385 -8.466 -0.081 (0) -H(0) 2.086e-38 - H2 1.043e-38 1.053e-38 -37.982 -37.977 0.004 28.60 -O(0) 2.873e-15 - O2 1.436e-15 1.450e-15 -14.843 -14.839 0.004 30.77 +H(0) 2.087e-38 + H2 1.044e-38 1.054e-38 -37.981 -37.977 0.004 28.60 +O(0) 2.871e-15 + O2 1.436e-15 1.449e-15 -14.843 -14.839 0.004 30.77 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -115.511 -115.596 -0.085 20.97 + HS- 0.000e+00 0.000e+00 -115.510 -115.595 -0.085 20.97 H2S 0.000e+00 0.000e+00 -115.719 -115.715 0.004 37.42 - S-2 0.000e+00 0.000e+00 -121.054 -121.369 -0.315 (0) - (H2S)2 0.000e+00 0.000e+00 -232.660 -232.656 0.004 29.87 + S-2 0.000e+00 0.000e+00 -121.053 -121.368 -0.315 (0) + (H2S)2 0.000e+00 0.000e+00 -232.659 -232.655 0.004 29.87 S(6) 1.526e-02 - SO4-2 1.049e-02 5.056e-03 -1.979 -2.296 -0.317 16.01 + SO4-2 1.049e-02 5.056e-03 -1.979 -2.296 -0.317 21.68 CaSO4 4.766e-03 4.812e-03 -2.322 -2.318 0.004 7.68 HSO4- 6.639e-08 5.509e-08 -7.178 -7.259 -0.081 40.74 CaHSO4+ 4.117e-09 3.416e-09 -8.385 -8.466 -0.081 (0) @@ -634,10 +635,10 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 pH = 6.986 Charge balance pe = 10.338 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 31°C) = 2571 - Density (g/cm³) = 0.99739 - Volume (L) = 0.96904 - Viscosity (mPa s) = 0.78944 + Specific Conductance (µS/cm, 31°C) = 2849 + Density (g/cm³) = 0.99733 + Volume (L) = 0.96909 + Viscosity (mPa s) = 0.78810 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.198e-02 Mass of water (kg) = 9.645e-01 @@ -662,17 +663,17 @@ Ca 1.529e-02 CaSO4 4.792e-03 4.839e-03 -2.319 -2.315 0.004 7.71 CaOH+ 9.972e-09 8.273e-09 -8.001 -8.082 -0.081 (0) CaHSO4+ 4.335e-09 3.596e-09 -8.363 -8.444 -0.081 (0) -H(0) 2.976e-38 - H2 1.488e-38 1.503e-38 -37.827 -37.823 0.004 28.60 -O(0) 2.890e-15 - O2 1.445e-15 1.459e-15 -14.840 -14.836 0.004 30.84 +H(0) 2.975e-38 + H2 1.488e-38 1.502e-38 -37.827 -37.823 0.004 28.60 +O(0) 2.892e-15 + O2 1.446e-15 1.460e-15 -14.840 -14.836 0.004 30.84 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -115.007 -115.092 -0.085 21.00 - H2S 0.000e+00 0.000e+00 -115.214 -115.210 0.004 37.64 - S-2 0.000e+00 0.000e+00 -120.533 -120.849 -0.316 (0) - (H2S)2 0.000e+00 0.000e+00 -231.640 -231.635 0.004 29.82 + H2S 0.000e+00 0.000e+00 -115.215 -115.210 0.004 37.64 + S-2 0.000e+00 0.000e+00 -120.534 -120.850 -0.316 (0) + (H2S)2 0.000e+00 0.000e+00 -231.641 -231.636 0.004 29.82 S(6) 1.529e-02 - SO4-2 1.050e-02 5.052e-03 -1.979 -2.297 -0.318 16.11 + SO4-2 1.050e-02 5.052e-03 -1.979 -2.297 -0.318 21.77 CaSO4 4.792e-03 4.839e-03 -2.319 -2.315 0.004 7.71 HSO4- 6.997e-08 5.804e-08 -7.155 -7.236 -0.081 40.80 CaHSO4+ 4.335e-09 3.596e-09 -8.363 -8.444 -0.081 (0) @@ -717,10 +718,10 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 pH = 6.973 Charge balance pe = 10.271 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 32°C) = 2620 - Density (g/cm³) = 0.99708 - Volume (L) = 0.96935 - Viscosity (mPa s) = 0.77316 + Specific Conductance (µS/cm, 32°C) = 2910 + Density (g/cm³) = 0.99702 + Volume (L) = 0.96940 + Viscosity (mPa s) = 0.77182 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.200e-02 Mass of water (kg) = 9.645e-01 @@ -755,7 +756,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -120.006 -120.323 -0.316 (0) (H2S)2 0.000e+00 0.000e+00 -230.605 -230.601 0.004 29.78 S(6) 1.532e-02 - SO4-2 1.050e-02 5.047e-03 -1.979 -2.297 -0.318 16.19 + SO4-2 1.050e-02 5.047e-03 -1.979 -2.297 -0.318 21.85 CaSO4 4.818e-03 4.864e-03 -2.317 -2.313 0.004 7.74 HSO4- 7.372e-08 6.113e-08 -7.132 -7.214 -0.081 40.85 CaHSO4+ 4.563e-09 3.784e-09 -8.341 -8.422 -0.081 (0) @@ -800,10 +801,10 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 pH = 6.960 Charge balance pe = 10.206 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 33°C) = 2670 - Density (g/cm³) = 0.99675 - Volume (L) = 0.96966 - Viscosity (mPa s) = 0.75742 + Specific Conductance (µS/cm, 33°C) = 2971 + Density (g/cm³) = 0.99669 + Volume (L) = 0.96972 + Viscosity (mPa s) = 0.75608 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.201e-02 Mass of water (kg) = 9.645e-01 @@ -838,7 +839,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -119.493 -119.810 -0.317 (0) (H2S)2 0.000e+00 0.000e+00 -229.596 -229.592 0.004 29.73 S(6) 1.534e-02 - SO4-2 1.050e-02 5.042e-03 -1.979 -2.297 -0.319 16.27 + SO4-2 1.050e-02 5.042e-03 -1.979 -2.297 -0.319 21.92 CaSO4 4.841e-03 4.889e-03 -2.315 -2.311 0.004 7.77 HSO4- 7.765e-08 6.436e-08 -7.110 -7.191 -0.081 40.90 CaHSO4+ 4.801e-09 3.980e-09 -8.319 -8.400 -0.081 (0) @@ -882,11 +883,11 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 ----------------------------Description of solution---------------------------- pH = 6.947 Charge balance - pe = 10.140 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 34°C) = 2720 - Density (g/cm³) = 0.99642 - Volume (L) = 0.96999 - Viscosity (mPa s) = 0.74219 + pe = 10.139 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 34°C) = 3031 + Density (g/cm³) = 0.99636 + Volume (L) = 0.97005 + Viscosity (mPa s) = 0.74085 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.201e-02 Mass of water (kg) = 9.645e-01 @@ -911,17 +912,17 @@ Ca 1.537e-02 CaSO4 4.864e-03 4.911e-03 -2.313 -2.309 0.004 7.80 CaOH+ 9.105e-09 7.545e-09 -8.041 -8.122 -0.082 (0) CaHSO4+ 5.049e-09 4.184e-09 -8.297 -8.378 -0.082 (0) -H(0) 8.610e-38 - H2 4.305e-38 4.347e-38 -37.366 -37.362 0.004 28.60 -O(0) 2.881e-15 - O2 1.440e-15 1.454e-15 -14.842 -14.837 0.004 31.04 +H(0) 8.628e-38 + H2 4.314e-38 4.356e-38 -37.365 -37.361 0.004 28.60 +O(0) 2.869e-15 + O2 1.434e-15 1.448e-15 -14.843 -14.839 0.004 31.04 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -113.496 -113.582 -0.086 21.10 - H2S 0.000e+00 0.000e+00 -113.699 -113.695 0.004 38.25 - S-2 0.000e+00 0.000e+00 -118.976 -119.293 -0.318 (0) - (H2S)2 0.000e+00 0.000e+00 -228.581 -228.577 0.004 29.68 + HS- 0.000e+00 0.000e+00 -113.493 -113.579 -0.086 21.10 + H2S 0.000e+00 0.000e+00 -113.696 -113.692 0.004 38.25 + S-2 0.000e+00 0.000e+00 -118.972 -119.289 -0.318 (0) + (H2S)2 0.000e+00 0.000e+00 -228.574 -228.570 0.004 29.68 S(6) 1.537e-02 - SO4-2 1.050e-02 5.036e-03 -1.979 -2.298 -0.319 16.35 + SO4-2 1.050e-02 5.036e-03 -1.979 -2.298 -0.319 21.99 CaSO4 4.864e-03 4.911e-03 -2.313 -2.309 0.004 7.80 HSO4- 8.176e-08 6.775e-08 -7.087 -7.169 -0.082 40.95 CaHSO4+ 5.049e-09 4.184e-09 -8.297 -8.378 -0.082 (0) @@ -934,7 +935,7 @@ S(6) 1.537e-02 Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O H2(g) -34.24 -37.36 -3.12 H2 H2O(g) -1.28 -0.00 1.28 H2O - H2S(g) -112.61 -120.53 -7.92 H2S + H2S(g) -112.60 -120.53 -7.92 H2S O2(g) -11.89 -14.84 -2.95 O2 Sulfur -84.20 -79.52 4.68 S @@ -966,10 +967,10 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 pH = 6.935 Charge balance pe = 10.074 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 35°C) = 2769 - Density (g/cm³) = 0.99608 - Volume (L) = 0.97032 - Viscosity (mPa s) = 0.72744 + Specific Conductance (µS/cm, 35°C) = 3092 + Density (g/cm³) = 0.99603 + Volume (L) = 0.97038 + Viscosity (mPa s) = 0.72612 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.200e-02 Mass of water (kg) = 9.645e-01 @@ -995,16 +996,16 @@ Ca 1.539e-02 CaOH+ 8.836e-09 7.319e-09 -8.054 -8.136 -0.082 (0) CaHSO4+ 5.308e-09 4.397e-09 -8.275 -8.357 -0.082 (0) H(0) 1.222e-37 - H2 6.109e-38 6.168e-38 -37.214 -37.210 0.004 28.60 -O(0) 2.875e-15 - O2 1.437e-15 1.451e-15 -14.842 -14.838 0.004 31.10 + H2 6.111e-38 6.170e-38 -37.214 -37.210 0.004 28.60 +O(0) 2.873e-15 + O2 1.437e-15 1.451e-15 -14.843 -14.838 0.004 31.10 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -112.999 -113.085 -0.086 21.12 + HS- 0.000e+00 0.000e+00 -112.998 -113.084 -0.086 21.12 H2S 0.000e+00 0.000e+00 -113.200 -113.196 0.004 38.44 S-2 0.000e+00 0.000e+00 -118.462 -118.780 -0.318 (0) - (H2S)2 0.000e+00 0.000e+00 -227.574 -227.569 0.004 29.63 + (H2S)2 0.000e+00 0.000e+00 -227.572 -227.568 0.004 29.63 S(6) 1.539e-02 - SO4-2 1.050e-02 5.029e-03 -1.979 -2.299 -0.320 16.42 + SO4-2 1.050e-02 5.029e-03 -1.979 -2.299 -0.320 22.06 CaSO4 4.885e-03 4.932e-03 -2.311 -2.307 0.004 7.83 HSO4- 8.607e-08 7.130e-08 -7.065 -7.147 -0.082 40.99 CaHSO4+ 5.308e-09 4.397e-09 -8.275 -8.357 -0.082 (0) @@ -1048,19 +1049,19 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 ----------------------------Description of solution---------------------------- pH = 6.922 Charge balance - pe = 10.010 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 36°C) = 2818 - Density (g/cm³) = 0.99574 - Volume (L) = 0.97066 - Viscosity (mPa s) = 0.71317 + pe = 10.009 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 36°C) = 3153 + Density (g/cm³) = 0.99568 + Volume (L) = 0.97072 + Viscosity (mPa s) = 0.71185 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.199e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 36.00 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 16 + Iterations = 18 Total H = 1.070719e+02 Total O = 5.359535e+01 @@ -1077,17 +1078,17 @@ Ca 1.540e-02 CaSO4 4.905e-03 4.952e-03 -2.309 -2.305 0.004 7.86 CaOH+ 8.576e-09 7.102e-09 -8.067 -8.149 -0.082 (0) CaHSO4+ 5.578e-09 4.619e-09 -8.254 -8.335 -0.082 (0) -H(0) 1.728e-37 - H2 8.638e-38 8.722e-38 -37.064 -37.059 0.004 28.60 -O(0) 2.877e-15 - O2 1.438e-15 1.452e-15 -14.842 -14.838 0.004 31.16 +H(0) 1.729e-37 + H2 8.645e-38 8.729e-38 -37.063 -37.059 0.004 28.60 +O(0) 2.872e-15 + O2 1.436e-15 1.450e-15 -14.843 -14.839 0.004 31.16 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -112.507 -112.593 -0.086 21.15 - H2S 0.000e+00 0.000e+00 -112.707 -112.702 0.004 38.63 - S-2 0.000e+00 0.000e+00 -117.955 -118.273 -0.319 (0) - (H2S)2 0.000e+00 0.000e+00 -226.577 -226.573 0.004 29.58 + HS- 0.000e+00 0.000e+00 -112.505 -112.592 -0.086 21.15 + H2S 0.000e+00 0.000e+00 -112.705 -112.701 0.004 38.63 + S-2 0.000e+00 0.000e+00 -117.953 -118.272 -0.319 (0) + (H2S)2 0.000e+00 0.000e+00 -226.574 -226.570 0.004 29.58 S(6) 1.540e-02 - SO4-2 1.050e-02 5.021e-03 -1.979 -2.299 -0.320 16.48 + SO4-2 1.050e-02 5.021e-03 -1.979 -2.299 -0.320 22.12 CaSO4 4.905e-03 4.952e-03 -2.309 -2.305 0.004 7.86 HSO4- 9.058e-08 7.501e-08 -7.043 -7.125 -0.082 41.04 CaHSO4+ 5.578e-09 4.619e-09 -8.254 -8.335 -0.082 (0) @@ -1100,7 +1101,7 @@ S(6) 1.540e-02 Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O H2(g) -33.94 -37.06 -3.12 H2 H2O(g) -1.23 -0.00 1.23 H2O - H2S(g) -111.60 -119.52 -7.92 H2S + H2S(g) -111.59 -119.51 -7.92 H2S O2(g) -11.88 -14.84 -2.96 O2 Sulfur -83.47 -78.84 4.63 S @@ -1131,11 +1132,11 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 ----------------------------Description of solution---------------------------- pH = 6.910 Charge balance - pe = -1.777 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 37°C) = 2867 - Density (g/cm³) = 0.99538 - Volume (L) = 0.97101 - Viscosity (mPa s) = 0.69934 + pe = -1.778 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 37°C) = 3213 + Density (g/cm³) = 0.99532 + Volume (L) = 0.97107 + Viscosity (mPa s) = 0.69803 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.197e-02 Mass of water (kg) = 9.645e-01 @@ -1143,7 +1144,7 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 Temperature (°C) = 37.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 50 + Iterations = 46 Total H = 1.070719e+02 Total O = 5.359542e+01 @@ -1160,17 +1161,17 @@ Ca 1.541e-02 CaSO4 4.923e-03 4.971e-03 -2.308 -2.304 0.004 7.88 CaOH+ 8.325e-09 6.892e-09 -8.080 -8.162 -0.082 (0) CaHSO4+ 5.859e-09 4.850e-09 -8.232 -8.314 -0.082 (0) -H(0) 6.797e-14 - H2 3.398e-14 3.431e-14 -13.469 -13.465 0.004 28.60 +H(0) 6.798e-14 + H2 3.399e-14 3.432e-14 -13.469 -13.464 0.004 28.60 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -61.733 -61.728 0.004 31.22 -S(-2) 9.473e-19 - HS- 5.797e-19 4.752e-19 -18.237 -18.323 -0.086 21.17 - H2S 3.676e-19 3.712e-19 -18.435 -18.430 0.004 38.82 - S-2 2.142e-24 1.028e-24 -23.669 -23.988 -0.319 (0) - (H2S)2 9.464e-39 9.556e-39 -38.024 -38.020 0.004 29.53 + O2 0.000e+00 0.000e+00 -61.733 -61.729 0.004 31.22 +S(-2) 9.482e-19 + HS- 5.803e-19 4.757e-19 -18.236 -18.323 -0.086 21.17 + H2S 3.679e-19 3.715e-19 -18.434 -18.430 0.004 38.82 + S-2 2.144e-24 1.029e-24 -23.669 -23.988 -0.319 (0) + (H2S)2 9.483e-39 9.575e-39 -38.023 -38.019 0.004 29.53 S(6) 1.541e-02 - SO4-2 1.049e-02 5.013e-03 -1.979 -2.300 -0.321 16.54 + SO4-2 1.049e-02 5.013e-03 -1.979 -2.300 -0.321 22.17 CaSO4 4.923e-03 4.971e-03 -2.308 -2.304 0.004 7.88 HSO4- 9.530e-08 7.889e-08 -7.021 -7.103 -0.082 41.08 CaHSO4+ 5.859e-09 4.850e-09 -8.232 -8.314 -0.082 (0) @@ -1215,10 +1216,10 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 pH = 6.898 Charge balance pe = 9.881 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 38°C) = 2916 - Density (g/cm³) = 0.99502 - Volume (L) = 0.97137 - Viscosity (mPa s) = 0.68594 + Specific Conductance (µS/cm, 38°C) = 3273 + Density (g/cm³) = 0.99496 + Volume (L) = 0.97143 + Viscosity (mPa s) = 0.68464 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.194e-02 Mass of water (kg) = 9.645e-01 @@ -1243,17 +1244,17 @@ Ca 1.543e-02 CaSO4 4.940e-03 4.988e-03 -2.306 -2.302 0.004 7.91 CaOH+ 8.083e-09 6.689e-09 -8.092 -8.175 -0.082 (0) CaHSO4+ 6.152e-09 5.091e-09 -8.211 -8.293 -0.082 (0) -H(0) 3.435e-37 - H2 1.718e-37 1.734e-37 -36.765 -36.761 0.004 28.59 -O(0) 2.873e-15 - O2 1.436e-15 1.450e-15 -14.843 -14.839 0.004 31.28 +H(0) 3.434e-37 + H2 1.717e-37 1.734e-37 -36.765 -36.761 0.004 28.59 +O(0) 2.874e-15 + O2 1.437e-15 1.451e-15 -14.842 -14.838 0.004 31.28 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -111.531 -111.617 -0.086 21.19 - H2S 0.000e+00 0.000e+00 -111.727 -111.722 0.004 39.00 - S-2 0.000e+00 0.000e+00 -116.947 -117.267 -0.320 (0) - (H2S)2 0.000e+00 0.000e+00 -224.599 -224.595 0.004 29.47 + HS- 0.000e+00 0.000e+00 -111.531 -111.618 -0.086 21.19 + H2S 0.000e+00 0.000e+00 -111.727 -111.723 0.004 39.00 + S-2 0.000e+00 0.000e+00 -116.948 -117.268 -0.320 (0) + (H2S)2 0.000e+00 0.000e+00 -224.600 -224.596 0.004 29.47 S(6) 1.543e-02 - SO4-2 1.049e-02 5.005e-03 -1.979 -2.301 -0.321 16.59 + SO4-2 1.049e-02 5.005e-03 -1.979 -2.301 -0.321 22.22 CaSO4 4.940e-03 4.988e-03 -2.306 -2.302 0.004 7.91 HSO4- 1.002e-07 8.295e-08 -6.999 -7.081 -0.082 41.12 CaHSO4+ 6.152e-09 5.091e-09 -8.211 -8.293 -0.082 (0) @@ -1266,7 +1267,7 @@ S(6) 1.543e-02 Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O H2(g) -33.64 -36.76 -3.13 H2 H2O(g) -1.18 -0.00 1.18 H2O - H2S(g) -110.60 -118.51 -7.92 H2S + H2S(g) -110.60 -118.52 -7.92 H2S O2(g) -11.86 -14.84 -2.97 O2 Sulfur -82.76 -78.17 4.59 S @@ -1298,10 +1299,10 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 pH = 6.886 Charge balance pe = 9.848 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 39°C) = 2964 - Density (g/cm³) = 0.99465 - Volume (L) = 0.97173 - Viscosity (mPa s) = 0.67295 + Specific Conductance (µS/cm, 39°C) = 3333 + Density (g/cm³) = 0.99459 + Volume (L) = 0.97179 + Viscosity (mPa s) = 0.67166 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.191e-02 Mass of water (kg) = 9.645e-01 @@ -1336,7 +1337,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -116.693 -117.013 -0.320 (0) (H2S)2 0.000e+00 0.000e+00 -224.107 -224.103 0.004 29.42 S(6) 1.543e-02 - SO4-2 1.048e-02 4.995e-03 -1.980 -2.301 -0.322 16.63 + SO4-2 1.048e-02 4.995e-03 -1.980 -2.301 -0.322 22.26 CaSO4 4.955e-03 5.003e-03 -2.305 -2.301 0.004 7.94 HSO4- 1.054e-07 8.720e-08 -6.977 -7.060 -0.082 41.15 CaHSO4+ 6.456e-09 5.341e-09 -8.190 -8.272 -0.082 (0) @@ -1380,11 +1381,11 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 ----------------------------Description of solution---------------------------- pH = 6.874 Charge balance - pe = 9.755 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 40°C) = 3012 - Density (g/cm³) = 0.99427 - Volume (L) = 0.97211 - Viscosity (mPa s) = 0.66036 + pe = 9.754 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 40°C) = 3392 + Density (g/cm³) = 0.99421 + Volume (L) = 0.97216 + Viscosity (mPa s) = 0.65908 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.187e-02 Mass of water (kg) = 9.645e-01 @@ -1409,17 +1410,17 @@ Ca 1.544e-02 CaSO4 4.969e-03 5.017e-03 -2.304 -2.300 0.004 7.96 CaOH+ 7.624e-09 6.306e-09 -8.118 -8.200 -0.082 (0) CaHSO4+ 6.773e-09 5.602e-09 -8.169 -8.252 -0.082 (0) -H(0) 6.740e-37 - H2 3.370e-37 3.403e-37 -36.472 -36.468 0.004 28.59 -O(0) 2.896e-15 - O2 1.448e-15 1.462e-15 -14.839 -14.835 0.004 31.40 +H(0) 6.742e-37 + H2 3.371e-37 3.404e-37 -36.472 -36.468 0.004 28.59 +O(0) 2.894e-15 + O2 1.447e-15 1.461e-15 -14.840 -14.835 0.004 31.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -110.576 -110.662 -0.087 21.23 + HS- 0.000e+00 0.000e+00 -110.575 -110.662 -0.087 21.23 H2S 0.000e+00 0.000e+00 -110.767 -110.763 0.004 39.35 - S-2 0.000e+00 0.000e+00 -115.961 -116.282 -0.320 (0) - (H2S)2 0.000e+00 0.000e+00 -222.663 -222.659 0.004 29.37 + S-2 0.000e+00 0.000e+00 -115.961 -116.281 -0.320 (0) + (H2S)2 0.000e+00 0.000e+00 -222.662 -222.658 0.004 29.37 S(6) 1.544e-02 - SO4-2 1.047e-02 4.985e-03 -1.980 -2.302 -0.322 16.67 + SO4-2 1.047e-02 4.985e-03 -1.980 -2.302 -0.322 22.30 CaSO4 4.969e-03 5.017e-03 -2.304 -2.300 0.004 7.96 HSO4- 1.108e-07 9.163e-08 -6.956 -7.038 -0.082 41.19 CaHSO4+ 6.773e-09 5.602e-09 -8.169 -8.252 -0.082 (0) @@ -1434,7 +1435,7 @@ S(6) 1.544e-02 H2O(g) -1.14 -0.00 1.14 H2O H2S(g) -109.62 -117.54 -7.92 H2S O2(g) -11.85 -14.84 -2.98 O2 - Sulfur -82.06 -77.51 4.55 S + Sulfur -82.05 -77.51 4.55 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1464,10 +1465,10 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 pH = 6.862 Charge balance pe = 9.691 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 41°C) = 3060 - Density (g/cm³) = 0.99388 - Volume (L) = 0.97248 - Viscosity (mPa s) = 0.64814 + Specific Conductance (µS/cm, 41°C) = 3452 + Density (g/cm³) = 0.99382 + Volume (L) = 0.97254 + Viscosity (mPa s) = 0.64688 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.182e-02 Mass of water (kg) = 9.645e-01 @@ -1492,17 +1493,17 @@ Ca 1.544e-02 CaSO4 4.982e-03 5.030e-03 -2.303 -2.298 0.004 7.99 CaOH+ 7.407e-09 6.124e-09 -8.130 -8.213 -0.083 (0) CaHSO4+ 7.102e-09 5.872e-09 -8.149 -8.231 -0.083 (0) -H(0) 9.462e-37 - H2 4.731e-37 4.777e-37 -36.325 -36.321 0.004 28.59 -O(0) 2.876e-15 - O2 1.438e-15 1.452e-15 -14.842 -14.838 0.004 31.46 +H(0) 9.453e-37 + H2 4.727e-37 4.772e-37 -36.325 -36.321 0.004 28.59 +O(0) 2.881e-15 + O2 1.441e-15 1.455e-15 -14.841 -14.837 0.004 31.46 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -110.093 -110.180 -0.087 21.25 - H2S 0.000e+00 0.000e+00 -110.283 -110.279 0.004 39.52 - S-2 0.000e+00 0.000e+00 -115.464 -115.785 -0.321 (0) - (H2S)2 0.000e+00 0.000e+00 -221.686 -221.681 0.004 29.31 + HS- 0.000e+00 0.000e+00 -110.095 -110.182 -0.087 21.25 + H2S 0.000e+00 0.000e+00 -110.285 -110.280 0.004 39.52 + S-2 0.000e+00 0.000e+00 -115.465 -115.786 -0.321 (0) + (H2S)2 0.000e+00 0.000e+00 -221.689 -221.685 0.004 29.31 S(6) 1.544e-02 - SO4-2 1.046e-02 4.975e-03 -1.981 -2.303 -0.323 16.71 + SO4-2 1.046e-02 4.975e-03 -1.981 -2.303 -0.323 22.33 CaSO4 4.982e-03 5.030e-03 -2.303 -2.298 0.004 7.99 HSO4- 1.164e-07 9.626e-08 -6.934 -7.017 -0.083 41.22 CaHSO4+ 7.102e-09 5.872e-09 -8.149 -8.231 -0.083 (0) @@ -1547,10 +1548,10 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 pH = 6.850 Charge balance pe = 9.628 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 42°C) = 3108 - Density (g/cm³) = 0.99348 - Volume (L) = 0.97287 - Viscosity (mPa s) = 0.63629 + Specific Conductance (µS/cm, 42°C) = 3511 + Density (g/cm³) = 0.99343 + Volume (L) = 0.97293 + Viscosity (mPa s) = 0.63504 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.177e-02 Mass of water (kg) = 9.645e-01 @@ -1580,12 +1581,12 @@ H(0) 1.318e-36 O(0) 2.890e-15 O2 1.445e-15 1.459e-15 -14.840 -14.836 0.004 31.51 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -109.625 -109.712 -0.087 21.27 + HS- 0.000e+00 0.000e+00 -109.625 -109.712 -0.087 21.26 H2S 0.000e+00 0.000e+00 -109.812 -109.808 0.004 39.69 S-2 0.000e+00 0.000e+00 -114.980 -115.301 -0.321 (0) (H2S)2 0.000e+00 0.000e+00 -220.735 -220.731 0.004 29.26 S(6) 1.544e-02 - SO4-2 1.044e-02 4.964e-03 -1.981 -2.304 -0.323 16.74 + SO4-2 1.044e-02 4.964e-03 -1.981 -2.304 -0.323 22.35 CaSO4 4.993e-03 5.042e-03 -2.302 -2.297 0.004 8.01 HSO4- 1.223e-07 1.011e-07 -6.913 -6.995 -0.083 41.26 CaHSO4+ 7.443e-09 6.153e-09 -8.128 -8.211 -0.083 (0) @@ -1630,10 +1631,10 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 pH = 6.839 Charge balance pe = 9.566 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 43°C) = 3155 - Density (g/cm³) = 0.99308 - Volume (L) = 0.97326 - Viscosity (mPa s) = 0.62478 + Specific Conductance (µS/cm, 43°C) = 3570 + Density (g/cm³) = 0.99302 + Volume (L) = 0.97332 + Viscosity (mPa s) = 0.62355 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.171e-02 Mass of water (kg) = 9.645e-01 @@ -1658,17 +1659,17 @@ Ca 1.543e-02 CaSO4 5.003e-03 5.052e-03 -2.301 -2.297 0.004 8.04 CaHSO4+ 7.798e-09 6.445e-09 -8.108 -8.191 -0.083 (0) CaOH+ 6.994e-09 5.780e-09 -8.155 -8.238 -0.083 (0) -H(0) 1.839e-36 - H2 9.196e-37 9.285e-37 -36.036 -36.032 0.004 28.59 -O(0) 2.879e-15 - O2 1.439e-15 1.453e-15 -14.842 -14.838 0.004 31.57 +H(0) 1.840e-36 + H2 9.199e-37 9.288e-37 -36.036 -36.032 0.004 28.59 +O(0) 2.877e-15 + O2 1.439e-15 1.452e-15 -14.842 -14.838 0.004 31.57 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -109.151 -109.238 -0.087 21.28 H2S 0.000e+00 0.000e+00 -109.336 -109.332 0.004 39.86 - S-2 0.000e+00 0.000e+00 -114.491 -114.813 -0.322 (0) - (H2S)2 0.000e+00 0.000e+00 -219.775 -219.771 0.004 29.20 + S-2 0.000e+00 0.000e+00 -114.490 -114.812 -0.322 (0) + (H2S)2 0.000e+00 0.000e+00 -219.774 -219.770 0.004 29.20 S(6) 1.543e-02 - SO4-2 1.043e-02 4.952e-03 -1.982 -2.305 -0.323 16.77 + SO4-2 1.043e-02 4.952e-03 -1.982 -2.305 -0.323 22.38 CaSO4 5.003e-03 5.052e-03 -2.301 -2.297 0.004 8.04 HSO4- 1.284e-07 1.061e-07 -6.891 -6.974 -0.083 41.29 CaHSO4+ 7.798e-09 6.445e-09 -8.108 -8.191 -0.083 (0) @@ -1713,10 +1714,10 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 pH = 6.827 Charge balance pe = 9.503 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 44°C) = 3201 - Density (g/cm³) = 0.99267 - Volume (L) = 0.97367 - Viscosity (mPa s) = 0.61361 + Specific Conductance (µS/cm, 44°C) = 3628 + Density (g/cm³) = 0.99261 + Volume (L) = 0.97372 + Viscosity (mPa s) = 0.61239 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.165e-02 Mass of water (kg) = 9.645e-01 @@ -1741,17 +1742,17 @@ Ca 1.542e-02 CaSO4 5.012e-03 5.060e-03 -2.300 -2.296 0.004 8.06 CaHSO4+ 8.167e-09 6.747e-09 -8.088 -8.171 -0.083 (0) CaOH+ 6.799e-09 5.617e-09 -8.168 -8.250 -0.083 (0) -H(0) 2.558e-36 - H2 1.279e-36 1.292e-36 -35.893 -35.889 0.004 28.59 -O(0) 2.875e-15 - O2 1.438e-15 1.451e-15 -14.842 -14.838 0.004 31.62 +H(0) 2.560e-36 + H2 1.280e-36 1.292e-36 -35.893 -35.889 0.004 28.59 +O(0) 2.872e-15 + O2 1.436e-15 1.450e-15 -14.843 -14.839 0.004 31.62 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -108.683 -108.770 -0.087 21.29 - H2S 0.000e+00 0.000e+00 -108.866 -108.862 0.004 40.02 - S-2 0.000e+00 0.000e+00 -114.007 -114.330 -0.322 (0) - (H2S)2 0.000e+00 0.000e+00 -218.827 -218.822 0.004 29.14 + HS- 0.000e+00 0.000e+00 -108.682 -108.769 -0.087 21.29 + H2S 0.000e+00 0.000e+00 -108.865 -108.861 0.004 40.02 + S-2 0.000e+00 0.000e+00 -114.006 -114.329 -0.322 (0) + (H2S)2 0.000e+00 0.000e+00 -218.824 -218.820 0.004 29.14 S(6) 1.542e-02 - SO4-2 1.041e-02 4.940e-03 -1.982 -2.306 -0.324 16.79 + SO4-2 1.041e-02 4.940e-03 -1.982 -2.306 -0.324 22.39 CaSO4 5.012e-03 5.060e-03 -2.300 -2.296 0.004 8.06 HSO4- 1.348e-07 1.114e-07 -6.870 -6.953 -0.083 41.32 CaHSO4+ 8.167e-09 6.747e-09 -8.088 -8.171 -0.083 (0) @@ -1796,10 +1797,10 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.851e-01 pH = 6.816 Charge balance pe = 9.442 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 45°C) = 3248 - Density (g/cm³) = 0.99225 - Volume (L) = 0.97407 - Viscosity (mPa s) = 0.60276 + Specific Conductance (µS/cm, 45°C) = 3686 + Density (g/cm³) = 0.99220 + Volume (L) = 0.97413 + Viscosity (mPa s) = 0.60156 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.158e-02 Mass of water (kg) = 9.645e-01 @@ -1826,7 +1827,7 @@ Ca 1.541e-02 CaOH+ 6.610e-09 5.460e-09 -8.180 -8.263 -0.083 (0) H(0) 3.538e-36 H2 1.769e-36 1.786e-36 -35.752 -35.748 0.004 28.59 -O(0) 2.894e-15 +O(0) 2.893e-15 O2 1.447e-15 1.461e-15 -14.840 -14.835 0.004 31.67 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -108.225 -108.312 -0.087 21.30 @@ -1834,7 +1835,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -113.534 -113.856 -0.323 (0) (H2S)2 0.000e+00 0.000e+00 -217.897 -217.893 0.004 29.09 S(6) 1.541e-02 - SO4-2 1.040e-02 4.927e-03 -1.983 -2.307 -0.324 16.81 + SO4-2 1.040e-02 4.927e-03 -1.983 -2.307 -0.324 22.41 CaSO4 5.019e-03 5.068e-03 -2.299 -2.295 0.004 8.08 HSO4- 1.415e-07 1.169e-07 -6.849 -6.932 -0.083 41.35 CaHSO4+ 8.549e-09 7.061e-09 -8.068 -8.151 -0.083 (0) @@ -1879,10 +1880,10 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.851e-01 pH = 6.805 Charge balance pe = 9.381 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 46°C) = 3294 - Density (g/cm³) = 0.99183 - Volume (L) = 0.97449 - Viscosity (mPa s) = 0.59222 + Specific Conductance (µS/cm, 46°C) = 3744 + Density (g/cm³) = 0.99177 + Volume (L) = 0.97454 + Viscosity (mPa s) = 0.59103 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.151e-02 Mass of water (kg) = 9.645e-01 @@ -1907,17 +1908,17 @@ Ca 1.540e-02 CaSO4 5.025e-03 5.073e-03 -2.299 -2.295 0.004 8.11 CaHSO4+ 8.945e-09 7.386e-09 -8.048 -8.132 -0.083 (0) CaOH+ 6.428e-09 5.308e-09 -8.192 -8.275 -0.083 (0) -H(0) 4.904e-36 - H2 2.452e-36 2.475e-36 -35.611 -35.606 0.004 28.59 -O(0) 2.887e-15 - O2 1.444e-15 1.458e-15 -14.841 -14.836 0.004 31.72 +H(0) 4.905e-36 + H2 2.453e-36 2.476e-36 -35.610 -35.606 0.004 28.59 +O(0) 2.886e-15 + O2 1.443e-15 1.457e-15 -14.841 -14.837 0.004 31.72 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -107.762 -107.850 -0.087 21.31 - H2S 0.000e+00 0.000e+00 -107.940 -107.936 0.004 40.33 - S-2 0.000e+00 0.000e+00 -113.056 -113.379 -0.323 (0) - (H2S)2 0.000e+00 0.000e+00 -216.959 -216.955 0.004 29.03 + HS- 0.000e+00 0.000e+00 -107.762 -107.849 -0.087 21.31 + H2S 0.000e+00 0.000e+00 -107.939 -107.935 0.004 40.33 + S-2 0.000e+00 0.000e+00 -113.055 -113.378 -0.323 (0) + (H2S)2 0.000e+00 0.000e+00 -216.958 -216.954 0.004 29.03 S(6) 1.540e-02 - SO4-2 1.038e-02 4.914e-03 -1.984 -2.309 -0.325 16.82 + SO4-2 1.038e-02 4.914e-03 -1.984 -2.309 -0.325 22.42 CaSO4 5.025e-03 5.073e-03 -2.299 -2.295 0.004 8.11 HSO4- 1.485e-07 1.226e-07 -6.828 -6.912 -0.083 41.37 CaHSO4+ 8.945e-09 7.386e-09 -8.048 -8.132 -0.083 (0) @@ -1962,10 +1963,10 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.852e-01 pH = 6.794 Charge balance pe = 9.319 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 47°C) = 3339 - Density (g/cm³) = 0.99140 - Volume (L) = 0.97491 - Viscosity (mPa s) = 0.58198 + Specific Conductance (µS/cm, 47°C) = 3801 + Density (g/cm³) = 0.99134 + Volume (L) = 0.97497 + Viscosity (mPa s) = 0.58080 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.142e-02 Mass of water (kg) = 9.645e-01 @@ -1990,17 +1991,17 @@ Ca 1.539e-02 CaSO4 5.030e-03 5.078e-03 -2.298 -2.294 0.004 8.13 CaHSO4+ 9.355e-09 7.723e-09 -8.029 -8.112 -0.083 (0) CaOH+ 6.252e-09 5.162e-09 -8.204 -8.287 -0.083 (0) -H(0) 6.791e-36 - H2 3.396e-36 3.428e-36 -35.469 -35.465 0.004 28.59 -O(0) 2.874e-15 - O2 1.437e-15 1.451e-15 -14.843 -14.838 0.004 31.77 +H(0) 6.790e-36 + H2 3.395e-36 3.427e-36 -35.469 -35.465 0.004 28.59 +O(0) 2.875e-15 + O2 1.438e-15 1.451e-15 -14.842 -14.838 0.004 31.77 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -107.300 -107.388 -0.087 21.32 - H2S 0.000e+00 0.000e+00 -107.475 -107.471 0.004 40.48 - S-2 0.000e+00 0.000e+00 -112.579 -112.902 -0.323 (0) - (H2S)2 0.000e+00 0.000e+00 -216.022 -216.018 0.004 28.97 + HS- 0.000e+00 0.000e+00 -107.301 -107.388 -0.087 21.32 + H2S 0.000e+00 0.000e+00 -107.476 -107.472 0.004 40.48 + S-2 0.000e+00 0.000e+00 -112.579 -112.903 -0.323 (0) + (H2S)2 0.000e+00 0.000e+00 -216.023 -216.019 0.004 28.97 S(6) 1.539e-02 - SO4-2 1.036e-02 4.900e-03 -1.985 -2.310 -0.325 16.82 + SO4-2 1.036e-02 4.900e-03 -1.985 -2.310 -0.325 22.42 CaSO4 5.030e-03 5.078e-03 -2.298 -2.294 0.004 8.13 HSO4- 1.557e-07 1.286e-07 -6.808 -6.891 -0.083 41.40 CaHSO4+ 9.355e-09 7.723e-09 -8.029 -8.112 -0.083 (0) @@ -2011,11 +2012,11 @@ S(6) 1.539e-02 Anhydrite -0.07 -4.61 -4.54 CaSO4 Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O - H2(g) -32.33 -35.46 -3.13 H2 + H2(g) -32.33 -35.47 -3.13 H2 H2O(g) -0.98 -0.00 0.98 H2O H2S(g) -106.27 -114.18 -7.91 H2S O2(g) -11.82 -14.84 -3.02 O2 - Sulfur -79.65 -75.24 4.40 S + Sulfur -79.65 -75.25 4.40 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2044,11 +2045,11 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.852e-01 ----------------------------Description of solution---------------------------- pH = 6.783 Charge balance - pe = 9.288 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 48°C) = 3384 - Density (g/cm³) = 0.99096 - Volume (L) = 0.97534 - Viscosity (mPa s) = 0.57202 + pe = 9.215 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 48°C) = 3858 + Density (g/cm³) = 0.99090 + Volume (L) = 0.97540 + Viscosity (mPa s) = 0.57086 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.134e-02 Mass of water (kg) = 9.645e-01 @@ -2073,17 +2074,17 @@ Ca 1.537e-02 CaSO4 5.033e-03 5.081e-03 -2.298 -2.294 0.004 8.15 CaHSO4+ 9.781e-09 8.072e-09 -8.010 -8.093 -0.083 (0) CaOH+ 6.083e-09 5.020e-09 -8.216 -8.299 -0.083 (0) -H(0) 8.174e-36 - H2 4.087e-36 4.126e-36 -35.389 -35.384 0.004 28.59 -O(0) 3.771e-15 - O2 1.886e-15 1.904e-15 -14.725 -14.720 0.004 31.83 +H(0) 1.144e-35 + H2 5.722e-36 5.777e-36 -35.242 -35.238 0.004 28.59 +O(0) 1.924e-15 + O2 9.621e-16 9.713e-16 -15.017 -15.013 0.004 31.83 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -107.082 -107.169 -0.088 21.33 - H2S 0.000e+00 0.000e+00 -107.254 -107.250 0.004 40.63 - S-2 0.000e+00 0.000e+00 -112.345 -112.669 -0.324 (0) - (H2S)2 0.000e+00 0.000e+00 -215.572 -215.568 0.004 28.91 + HS- 0.000e+00 0.000e+00 -106.497 -106.585 -0.088 21.33 + H2S 0.000e+00 0.000e+00 -106.670 -106.665 0.004 40.63 + S-2 0.000e+00 0.000e+00 -111.760 -112.084 -0.324 (0) + (H2S)2 0.000e+00 0.000e+00 -214.403 -214.399 0.004 28.91 S(6) 1.537e-02 - SO4-2 1.033e-02 4.886e-03 -1.986 -2.311 -0.325 16.83 + SO4-2 1.033e-02 4.886e-03 -1.986 -2.311 -0.325 22.42 CaSO4 5.033e-03 5.081e-03 -2.298 -2.294 0.004 8.15 HSO4- 1.633e-07 1.348e-07 -6.787 -6.870 -0.083 41.42 CaHSO4+ 9.781e-09 8.072e-09 -8.010 -8.093 -0.083 (0) @@ -2094,11 +2095,11 @@ S(6) 1.537e-02 Anhydrite -0.06 -4.61 -4.55 CaSO4 Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O - H2(g) -32.25 -35.38 -3.14 H2 + H2(g) -32.10 -35.24 -3.14 H2 H2O(g) -0.96 -0.00 0.96 H2O - H2S(g) -106.04 -113.95 -7.91 H2S - O2(g) -11.70 -14.72 -3.02 O2 - Sulfur -79.49 -75.11 4.38 S + H2S(g) -105.45 -113.37 -7.91 H2S + O2(g) -11.99 -15.01 -3.02 O2 + Sulfur -79.05 -74.67 4.38 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2128,10 +2129,10 @@ Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 pH = 6.773 Charge balance pe = 9.197 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 49°C) = 3429 - Density (g/cm³) = 0.99051 - Volume (L) = 0.97578 - Viscosity (mPa s) = 0.56234 + Specific Conductance (µS/cm, 49°C) = 3914 + Density (g/cm³) = 0.99045 + Volume (L) = 0.97583 + Viscosity (mPa s) = 0.56120 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.125e-02 Mass of water (kg) = 9.645e-01 @@ -2157,16 +2158,16 @@ Ca 1.535e-02 CaHSO4+ 1.022e-08 8.434e-09 -7.991 -8.074 -0.083 (0) CaOH+ 5.919e-09 4.884e-09 -8.228 -8.311 -0.083 (0) H(0) 1.294e-35 - H2 6.471e-36 6.533e-36 -35.189 -35.185 0.004 28.59 -O(0) 2.849e-15 - O2 1.424e-15 1.438e-15 -14.846 -14.842 0.004 31.88 + H2 6.469e-36 6.531e-36 -35.189 -35.185 0.004 28.59 +O(0) 2.851e-15 + O2 1.425e-15 1.439e-15 -14.846 -14.842 0.004 31.88 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -106.386 -106.474 -0.088 21.33 + HS- 0.000e+00 0.000e+00 -106.387 -106.474 -0.088 21.33 H2S 0.000e+00 0.000e+00 -106.556 -106.552 0.004 40.78 - S-2 0.000e+00 0.000e+00 -111.634 -111.958 -0.324 (0) - (H2S)2 0.000e+00 0.000e+00 -214.168 -214.164 0.004 28.84 + S-2 0.000e+00 0.000e+00 -111.635 -111.959 -0.324 (0) + (H2S)2 0.000e+00 0.000e+00 -214.169 -214.165 0.004 28.84 S(6) 1.535e-02 - SO4-2 1.031e-02 4.872e-03 -1.987 -2.312 -0.326 16.83 + SO4-2 1.031e-02 4.872e-03 -1.987 -2.312 -0.326 22.42 CaSO4 5.035e-03 5.083e-03 -2.298 -2.294 0.004 8.17 HSO4- 1.711e-07 1.412e-07 -6.767 -6.850 -0.083 41.44 CaHSO4+ 1.022e-08 8.434e-09 -7.991 -8.074 -0.083 (0) @@ -2177,7 +2178,7 @@ S(6) 1.535e-02 Anhydrite -0.05 -4.62 -4.56 CaSO4 Gypsum 0.00 -4.62 -4.62 CaSO4:2H2O - H2(g) -32.05 -35.18 -3.14 H2 + H2(g) -32.05 -35.19 -3.14 H2 H2O(g) -0.94 -0.00 0.94 H2O H2S(g) -105.33 -113.25 -7.91 H2S O2(g) -11.82 -14.84 -3.03 O2 @@ -2211,18 +2212,18 @@ Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 pH = 6.762 Charge balance pe = -1.655 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 3473 - Density (g/cm³) = 0.99006 - Volume (L) = 0.97622 - Viscosity (mPa s) = 0.55292 + Specific Conductance (µS/cm, 50°C) = 3970 + Density (g/cm³) = 0.99000 + Volume (L) = 0.97627 + Viscosity (mPa s) = 0.55180 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.115e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 50.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 48 + Iterations = 44 Total H = 1.070716e+02 Total O = 5.359489e+01 @@ -2239,17 +2240,17 @@ Ca 1.532e-02 CaSO4 5.036e-03 5.084e-03 -2.298 -2.294 0.004 8.19 CaHSO4+ 1.068e-08 8.808e-09 -7.972 -8.055 -0.084 (0) CaOH+ 5.761e-09 4.752e-09 -8.240 -8.323 -0.084 (0) -H(0) 6.798e-14 - H2 3.399e-14 3.432e-14 -13.469 -13.465 0.004 28.59 +H(0) 6.797e-14 + H2 3.399e-14 3.431e-14 -13.469 -13.465 0.004 28.59 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -58.012 -58.007 0.004 31.92 -S(-2) 4.156e-20 - HS- 2.472e-20 2.020e-20 -19.607 -19.695 -0.088 21.34 - H2S 1.684e-20 1.700e-20 -19.774 -19.770 0.004 40.92 - S-2 1.446e-25 6.853e-26 -24.840 -25.164 -0.324 (0) + O2 0.000e+00 0.000e+00 -58.011 -58.007 0.004 31.92 +S(-2) 4.152e-20 + HS- 2.470e-20 2.018e-20 -19.607 -19.695 -0.088 21.34 + H2S 1.682e-20 1.698e-20 -19.774 -19.770 0.004 40.92 + S-2 1.445e-25 6.847e-26 -24.840 -25.164 -0.324 (0) (H2S)2 0.000e+00 0.000e+00 -40.597 -40.593 0.004 28.78 S(6) 1.532e-02 - SO4-2 1.029e-02 4.856e-03 -1.988 -2.314 -0.326 16.82 + SO4-2 1.029e-02 4.856e-03 -1.988 -2.314 -0.326 22.41 CaSO4 5.036e-03 5.084e-03 -2.298 -2.294 0.004 8.19 HSO4- 1.793e-07 1.479e-07 -6.746 -6.830 -0.084 41.46 CaHSO4+ 1.068e-08 8.808e-09 -7.972 -8.055 -0.084 (0) @@ -2264,7 +2265,7 @@ S(6) 1.532e-02 H2O(g) -0.92 -0.00 0.92 H2O H2S(g) -18.54 -26.46 -7.91 H2S O2(g) -54.98 -58.01 -3.03 O2 - Sulfur -13.90 -9.55 4.34 S + Sulfur -13.90 -9.56 4.34 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2293,19 +2294,19 @@ Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 ----------------------------Description of solution---------------------------- pH = 6.752 Charge balance - pe = 9.078 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 51°C) = 3517 - Density (g/cm³) = 0.98960 - Volume (L) = 0.97667 - Viscosity (mPa s) = 0.54376 + pe = -2.096 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 51°C) = 4025 + Density (g/cm³) = 0.98954 + Volume (L) = 0.97672 + Viscosity (mPa s) = 0.54265 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.105e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 51.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.208e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 + Iterations = 47 Total H = 1.070714e+02 Total O = 5.359474e+01 @@ -2322,17 +2323,17 @@ Ca 1.530e-02 CaSO4 5.036e-03 5.083e-03 -2.298 -2.294 0.004 8.21 CaHSO4+ 1.115e-08 9.194e-09 -7.953 -8.036 -0.084 (0) CaOH+ 5.608e-09 4.625e-09 -8.251 -8.335 -0.084 (0) -H(0) 2.423e-35 - H2 1.212e-35 1.223e-35 -34.917 -34.912 0.004 28.59 -O(0) 2.880e-15 - O2 1.440e-15 1.454e-15 -14.842 -14.838 0.004 31.97 -S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -105.501 -105.588 -0.088 21.34 - H2S 0.000e+00 0.000e+00 -105.665 -105.661 0.004 41.06 - S-2 0.000e+00 0.000e+00 -110.718 -111.043 -0.325 (0) - (H2S)2 0.000e+00 0.000e+00 -212.371 -212.367 0.004 28.72 +H(0) 5.384e-13 + H2 2.692e-13 2.718e-13 -12.570 -12.566 0.004 28.59 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -59.535 -59.531 0.004 31.97 +S(-2) 1.297e-16 + HS- 7.693e-17 6.285e-17 -16.114 -16.202 -0.088 21.34 + H2S 5.273e-17 5.323e-17 -16.278 -16.274 0.004 41.06 + S-2 4.659e-22 2.206e-22 -21.332 -21.656 -0.325 (0) + (H2S)2 2.524e-34 2.548e-34 -33.598 -33.594 0.004 28.72 S(6) 1.530e-02 - SO4-2 1.026e-02 4.841e-03 -1.989 -2.315 -0.326 16.81 + SO4-2 1.026e-02 4.841e-03 -1.989 -2.315 -0.326 22.40 CaSO4 5.036e-03 5.083e-03 -2.298 -2.294 0.004 8.21 HSO4- 1.879e-07 1.549e-07 -6.726 -6.810 -0.084 41.48 CaHSO4+ 1.115e-08 9.194e-09 -7.953 -8.036 -0.084 (0) @@ -2343,11 +2344,11 @@ S(6) 1.530e-02 Anhydrite -0.03 -4.62 -4.59 CaSO4 Gypsum 0.00 -4.62 -4.62 CaSO4:2H2O - H2(g) -31.78 -34.91 -3.14 H2 + H2(g) -9.43 -12.57 -3.14 H2 H2O(g) -0.89 -0.00 0.89 H2O - H2S(g) -104.43 -112.34 -7.91 H2S - O2(g) -11.80 -14.84 -3.03 O2 - Sulfur -78.32 -74.00 4.32 S + H2S(g) -15.04 -22.95 -7.91 H2S + O2(g) -56.50 -59.53 -3.03 O2 + Sulfur -11.28 -6.96 4.32 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2377,10 +2378,10 @@ Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 pH = 6.742 Charge balance pe = 9.047 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 52°C) = 3560 - Density (g/cm³) = 0.98913 - Volume (L) = 0.97712 - Viscosity (mPa s) = 0.53485 + Specific Conductance (µS/cm, 52°C) = 4079 + Density (g/cm³) = 0.98908 + Volume (L) = 0.97718 + Viscosity (mPa s) = 0.53376 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.094e-02 Mass of water (kg) = 9.645e-01 @@ -2405,17 +2406,17 @@ Ca 1.527e-02 CaSO4 5.034e-03 5.082e-03 -2.298 -2.294 0.004 8.23 CaHSO4+ 1.163e-08 9.594e-09 -7.934 -8.018 -0.084 (0) CaOH+ 5.460e-09 4.503e-09 -8.263 -8.347 -0.084 (0) -H(0) 2.901e-35 - H2 1.451e-35 1.464e-35 -34.838 -34.834 0.004 28.59 -O(0) 3.761e-15 - O2 1.880e-15 1.898e-15 -14.726 -14.722 0.004 32.02 +H(0) 2.900e-35 + H2 1.450e-35 1.464e-35 -34.839 -34.835 0.004 28.59 +O(0) 3.763e-15 + O2 1.882e-15 1.899e-15 -14.725 -14.721 0.004 32.02 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -105.289 -105.377 -0.088 21.34 - H2S 0.000e+00 0.000e+00 -105.450 -105.446 0.004 41.20 - S-2 0.000e+00 0.000e+00 -110.492 -110.817 -0.325 (0) - (H2S)2 0.000e+00 0.000e+00 -211.936 -211.932 0.004 28.65 + HS- 0.000e+00 0.000e+00 -105.290 -105.378 -0.088 21.34 + H2S 0.000e+00 0.000e+00 -105.451 -105.447 0.004 41.20 + S-2 0.000e+00 0.000e+00 -110.493 -110.818 -0.325 (0) + (H2S)2 0.000e+00 0.000e+00 -211.937 -211.933 0.004 28.65 S(6) 1.527e-02 - SO4-2 1.023e-02 4.825e-03 -1.990 -2.317 -0.327 16.80 + SO4-2 1.023e-02 4.825e-03 -1.990 -2.317 -0.327 22.38 CaSO4 5.034e-03 5.082e-03 -2.298 -2.294 0.004 8.23 HSO4- 1.967e-07 1.622e-07 -6.706 -6.790 -0.084 41.50 CaHSO4+ 1.163e-08 9.594e-09 -7.934 -8.018 -0.084 (0) @@ -2428,7 +2429,7 @@ S(6) 1.527e-02 Gypsum 0.00 -4.63 -4.63 CaSO4:2H2O H2(g) -31.70 -34.83 -3.14 H2 H2O(g) -0.87 -0.00 0.87 H2O - H2S(g) -104.20 -112.12 -7.91 H2S + H2S(g) -104.21 -112.12 -7.91 H2S O2(g) -11.68 -14.72 -3.04 O2 Sulfur -78.17 -73.87 4.30 S @@ -2460,10 +2461,10 @@ Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 pH = 6.732 Charge balance pe = 8.915 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 53°C) = 3602 - Density (g/cm³) = 0.98866 - Volume (L) = 0.97759 - Viscosity (mPa s) = 0.52617 + Specific Conductance (µS/cm, 53°C) = 4134 + Density (g/cm³) = 0.98860 + Volume (L) = 0.97764 + Viscosity (mPa s) = 0.52510 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.083e-02 Mass of water (kg) = 9.645e-01 @@ -2488,17 +2489,17 @@ Ca 1.524e-02 CaSO4 5.031e-03 5.078e-03 -2.298 -2.294 0.004 8.25 CaHSO4+ 1.214e-08 1.001e-08 -7.916 -8.000 -0.084 (0) CaOH+ 5.318e-09 4.384e-09 -8.274 -8.358 -0.084 (0) -H(0) 5.522e-35 - H2 2.761e-35 2.787e-35 -34.559 -34.555 0.004 28.59 -O(0) 1.936e-15 - O2 9.678e-16 9.770e-16 -15.014 -15.010 0.004 32.07 +H(0) 5.523e-35 + H2 2.761e-35 2.788e-35 -34.559 -34.555 0.004 28.59 +O(0) 1.935e-15 + O2 9.674e-16 9.766e-16 -15.014 -15.010 0.004 32.07 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -104.272 -104.360 -0.088 21.34 H2S 0.000e+00 0.000e+00 -104.430 -104.426 0.004 41.34 - S-2 0.000e+00 0.000e+00 -109.460 -109.785 -0.325 (0) - (H2S)2 0.000e+00 0.000e+00 -209.889 -209.885 0.004 28.59 + S-2 0.000e+00 0.000e+00 -109.459 -109.785 -0.325 (0) + (H2S)2 0.000e+00 0.000e+00 -209.888 -209.884 0.004 28.59 S(6) 1.524e-02 - SO4-2 1.021e-02 4.808e-03 -1.991 -2.318 -0.327 16.78 + SO4-2 1.021e-02 4.808e-03 -1.991 -2.318 -0.327 22.36 CaSO4 5.031e-03 5.078e-03 -2.298 -2.294 0.004 8.25 HSO4- 2.059e-07 1.698e-07 -6.686 -6.770 -0.084 41.52 CaHSO4+ 1.214e-08 1.001e-08 -7.916 -8.000 -0.084 (0) @@ -2543,18 +2544,18 @@ Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 pH = 6.722 Charge balance pe = -1.622 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 54°C) = 3644 - Density (g/cm³) = 0.98818 - Volume (L) = 0.97806 - Viscosity (mPa s) = 0.51773 + Specific Conductance (µS/cm, 54°C) = 4187 + Density (g/cm³) = 0.98812 + Volume (L) = 0.97811 + Viscosity (mPa s) = 0.51666 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.071e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 54.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 47 + Iterations = 53 Total H = 1.070711e+02 Total O = 5.359420e+01 @@ -2576,12 +2577,12 @@ H(0) 6.798e-14 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -56.926 -56.922 0.004 32.11 S(-2) 1.656e-20 - HS- 9.742e-21 7.955e-21 -20.011 -20.099 -0.088 21.34 - H2S 6.815e-21 6.879e-21 -20.167 -20.162 0.004 41.47 - S-2 6.549e-26 3.095e-26 -25.184 -25.509 -0.326 (0) - (H2S)2 0.000e+00 0.000e+00 -41.355 -41.350 0.004 28.52 + HS- 9.743e-21 7.956e-21 -20.011 -20.099 -0.088 21.34 + H2S 6.816e-21 6.880e-21 -20.166 -20.162 0.004 41.47 + S-2 6.550e-26 3.095e-26 -25.184 -25.509 -0.326 (0) + (H2S)2 0.000e+00 0.000e+00 -41.354 -41.350 0.004 28.52 S(6) 1.520e-02 - SO4-2 1.018e-02 4.791e-03 -1.992 -2.320 -0.327 16.76 + SO4-2 1.018e-02 4.791e-03 -1.992 -2.320 -0.327 22.34 CaSO4 5.027e-03 5.074e-03 -2.299 -2.295 0.004 8.27 HSO4- 2.155e-07 1.777e-07 -6.666 -6.750 -0.084 41.53 CaHSO4+ 1.266e-08 1.043e-08 -7.898 -7.982 -0.084 (0) @@ -2626,10 +2627,10 @@ Gypsum -0.01 -4.64 -4.63 1.000e+00 0 -1.000e+00 pH = 6.711 Charge balance pe = 8.832 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 55°C) = 3653 - Density (g/cm³) = 0.98767 - Volume (L) = 1.05111 - Viscosity (mPa s) = 0.50945 + Specific Conductance (µS/cm, 55°C) = 4201 + Density (g/cm³) = 0.98762 + Volume (L) = 1.05117 + Viscosity (mPa s) = 0.50842 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.020e-02 Mass of water (kg) = 1.036e+00 @@ -2654,17 +2655,17 @@ Ca 1.500e-02 CaSO4 4.953e-03 4.999e-03 -2.305 -2.301 0.004 8.29 CaHSO4+ 1.303e-08 1.074e-08 -7.885 -7.969 -0.084 (0) CaOH+ 5.000e-09 4.123e-09 -8.301 -8.385 -0.084 (0) -H(0) 8.743e-35 - H2 4.372e-35 4.412e-35 -34.359 -34.355 0.004 28.58 -O(0) 2.654e-15 - O2 1.327e-15 1.339e-15 -14.877 -14.873 0.004 32.16 +H(0) 8.750e-35 + H2 4.375e-35 4.416e-35 -34.359 -34.355 0.004 28.58 +O(0) 2.650e-15 + O2 1.325e-15 1.337e-15 -14.878 -14.874 0.004 32.16 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -103.677 -103.764 -0.088 21.34 - H2S 0.000e+00 0.000e+00 -103.828 -103.824 0.004 41.61 - S-2 0.000e+00 0.000e+00 -108.836 -109.160 -0.325 (0) - (H2S)2 0.000e+00 0.000e+00 -208.670 -208.666 0.004 28.46 + HS- 0.000e+00 0.000e+00 -103.675 -103.763 -0.088 21.34 + H2S 0.000e+00 0.000e+00 -103.826 -103.822 0.004 41.61 + S-2 0.000e+00 0.000e+00 -108.834 -109.159 -0.325 (0) + (H2S)2 0.000e+00 0.000e+00 -208.667 -208.663 0.004 28.46 S(6) 1.500e-02 - SO4-2 1.005e-02 4.742e-03 -1.998 -2.324 -0.326 16.73 + SO4-2 1.005e-02 4.742e-03 -1.998 -2.324 -0.326 22.28 CaSO4 4.953e-03 4.999e-03 -2.305 -2.301 0.004 8.29 HSO4- 2.242e-07 1.849e-07 -6.649 -6.733 -0.084 41.54 CaHSO4+ 1.303e-08 1.074e-08 -7.885 -7.969 -0.084 (0) @@ -2675,10 +2676,10 @@ S(6) 1.500e-02 Anhydrite 0.00 -4.64 -4.64 CaSO4 Gypsum -0.01 -4.64 -4.63 CaSO4:2H2O - H2(g) -31.22 -34.36 -3.14 H2 + H2(g) -31.22 -34.35 -3.14 H2 H2O(g) -0.81 -0.00 0.81 H2O - H2S(g) -102.56 -110.48 -7.92 H2S - O2(g) -11.82 -14.87 -3.05 O2 + H2S(g) -102.56 -110.47 -7.92 H2S + O2(g) -11.83 -14.87 -3.05 O2 Sulfur -76.98 -72.74 4.25 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -2708,11 +2709,11 @@ Gypsum -0.02 -4.65 -4.64 1.000e+00 0 -1.000e+00 ----------------------------Description of solution---------------------------- pH = 6.700 Charge balance - pe = 8.775 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 56°C) = 3641 - Density (g/cm³) = 0.98714 - Volume (L) = 1.05163 - Viscosity (mPa s) = 0.50137 + pe = 8.805 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 56°C) = 4190 + Density (g/cm³) = 0.98709 + Volume (L) = 1.05168 + Viscosity (mPa s) = 0.50037 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.946e-02 Mass of water (kg) = 1.036e+00 @@ -2737,17 +2738,17 @@ Ca 1.470e-02 CaSO4 4.838e-03 4.882e-03 -2.315 -2.311 0.004 8.31 CaHSO4+ 1.330e-08 1.098e-08 -7.876 -7.960 -0.083 (0) CaOH+ 4.799e-09 3.961e-09 -8.319 -8.402 -0.083 (0) -H(0) 1.190e-34 - H2 5.949e-35 6.003e-35 -34.226 -34.222 0.004 28.58 -O(0) 2.644e-15 - O2 1.322e-15 1.334e-15 -14.879 -14.875 0.004 32.20 +H(0) 1.034e-34 + H2 5.168e-35 5.215e-35 -34.287 -34.283 0.004 28.58 +O(0) 3.503e-15 + O2 1.752e-15 1.768e-15 -14.757 -14.753 0.004 32.20 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -103.245 -103.333 -0.087 21.34 - H2S 0.000e+00 0.000e+00 -103.391 -103.387 0.004 41.74 - S-2 0.000e+00 0.000e+00 -108.392 -108.715 -0.323 (0) - (H2S)2 0.000e+00 0.000e+00 -207.791 -207.787 0.004 28.39 + HS- 0.000e+00 0.000e+00 -103.490 -103.577 -0.087 21.34 + H2S 0.000e+00 0.000e+00 -103.636 -103.632 0.004 41.74 + S-2 0.000e+00 0.000e+00 -108.636 -108.959 -0.323 (0) + (H2S)2 0.000e+00 0.000e+00 -208.280 -208.276 0.004 28.39 S(6) 1.470e-02 - SO4-2 9.866e-03 4.672e-03 -2.006 -2.330 -0.325 16.69 + SO4-2 9.866e-03 4.672e-03 -2.006 -2.330 -0.325 22.21 CaSO4 4.838e-03 4.882e-03 -2.315 -2.311 0.004 8.31 HSO4- 2.323e-07 1.918e-07 -6.634 -6.717 -0.083 41.55 CaHSO4+ 1.330e-08 1.098e-08 -7.876 -7.960 -0.083 (0) @@ -2758,11 +2759,11 @@ S(6) 1.470e-02 Anhydrite 0.00 -4.65 -4.65 CaSO4 Gypsum -0.02 -4.65 -4.64 CaSO4:2H2O - H2(g) -31.08 -34.22 -3.14 H2 + H2(g) -31.14 -34.28 -3.14 H2 H2O(g) -0.79 -0.00 0.79 H2O - H2S(g) -102.12 -110.03 -7.92 H2S - O2(g) -11.82 -14.87 -3.05 O2 - Sulfur -76.66 -72.44 4.23 S + H2S(g) -102.36 -110.28 -7.92 H2S + O2(g) -11.70 -14.75 -3.05 O2 + Sulfur -76.85 -72.62 4.23 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2791,11 +2792,11 @@ Gypsum -0.03 -4.67 -4.64 1.000e+00 0 -1.000e+00 ----------------------------Description of solution---------------------------- pH = 6.690 Charge balance - pe = 8.718 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 57°C) = 3628 - Density (g/cm³) = 0.98661 - Volume (L) = 1.05215 - Viscosity (mPa s) = 0.49349 + pe = 8.748 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 57°C) = 4178 + Density (g/cm³) = 0.98656 + Volume (L) = 1.05221 + Viscosity (mPa s) = 0.49252 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.874e-02 Mass of water (kg) = 1.036e+00 @@ -2820,17 +2821,17 @@ Ca 1.441e-02 CaSO4 4.725e-03 4.767e-03 -2.326 -2.322 0.004 8.32 CaHSO4+ 1.357e-08 1.121e-08 -7.868 -7.950 -0.083 (0) CaOH+ 4.607e-09 3.806e-09 -8.337 -8.419 -0.083 (0) -H(0) 1.607e-34 - H2 8.034e-35 8.106e-35 -34.095 -34.091 0.004 28.58 -O(0) 2.663e-15 - O2 1.332e-15 1.343e-15 -14.876 -14.872 0.004 32.25 +H(0) 1.400e-34 + H2 7.001e-35 7.064e-35 -34.155 -34.151 0.004 28.58 +O(0) 3.507e-15 + O2 1.754e-15 1.769e-15 -14.756 -14.752 0.004 32.25 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -102.827 -102.913 -0.087 21.33 - H2S 0.000e+00 0.000e+00 -102.968 -102.964 0.004 41.86 - S-2 0.000e+00 0.000e+00 -107.961 -108.282 -0.321 (0) - (H2S)2 0.000e+00 0.000e+00 -206.937 -206.934 0.004 28.32 + HS- 0.000e+00 0.000e+00 -103.066 -103.153 -0.087 21.33 + H2S 0.000e+00 0.000e+00 -103.207 -103.203 0.004 41.86 + S-2 0.000e+00 0.000e+00 -108.200 -108.521 -0.321 (0) + (H2S)2 0.000e+00 0.000e+00 -207.416 -207.412 0.004 28.32 S(6) 1.441e-02 - SO4-2 9.684e-03 4.603e-03 -2.014 -2.337 -0.323 16.65 + SO4-2 9.684e-03 4.603e-03 -2.014 -2.337 -0.323 22.13 CaSO4 4.725e-03 4.767e-03 -2.326 -2.322 0.004 8.32 HSO4- 2.407e-07 1.989e-07 -6.619 -6.701 -0.083 41.56 CaHSO4+ 1.357e-08 1.121e-08 -7.868 -7.950 -0.083 (0) @@ -2841,11 +2842,11 @@ S(6) 1.441e-02 Anhydrite 0.00 -4.67 -4.67 CaSO4 Gypsum -0.03 -4.67 -4.64 CaSO4:2H2O - H2(g) -30.95 -34.09 -3.14 H2 + H2(g) -31.01 -34.15 -3.14 H2 H2O(g) -0.77 -0.00 0.77 H2O - H2S(g) -101.69 -109.60 -7.92 H2S - O2(g) -11.82 -14.87 -3.06 O2 - Sulfur -76.35 -72.15 4.21 S + H2S(g) -101.93 -109.84 -7.92 H2S + O2(g) -11.70 -14.75 -3.06 O2 + Sulfur -76.53 -72.33 4.21 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2875,10 +2876,10 @@ Gypsum -0.04 -4.68 -4.64 1.000e+00 0 -1.000e+00 pH = 6.679 Charge balance pe = 8.661 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 58°C) = 3614 - Density (g/cm³) = 0.98607 - Volume (L) = 1.05269 - Viscosity (mPa s) = 0.48582 + Specific Conductance (µS/cm, 58°C) = 4165 + Density (g/cm³) = 0.98602 + Volume (L) = 1.05274 + Viscosity (mPa s) = 0.48488 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.802e-02 Mass of water (kg) = 1.036e+00 @@ -2903,17 +2904,17 @@ Ca 1.412e-02 CaSO4 4.613e-03 4.654e-03 -2.336 -2.332 0.004 8.34 CaHSO4+ 1.384e-08 1.144e-08 -7.859 -7.941 -0.082 (0) CaOH+ 4.424e-09 3.658e-09 -8.354 -8.437 -0.082 (0) -H(0) 2.181e-34 - H2 1.091e-34 1.100e-34 -33.962 -33.959 0.004 28.58 -O(0) 2.646e-15 - O2 1.323e-15 1.334e-15 -14.878 -14.875 0.004 32.29 +H(0) 2.180e-34 + H2 1.090e-34 1.100e-34 -33.962 -33.959 0.004 28.58 +O(0) 2.648e-15 + O2 1.324e-15 1.335e-15 -14.878 -14.874 0.004 32.29 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -102.398 -102.485 -0.086 21.32 - H2S 0.000e+00 0.000e+00 -102.534 -102.531 0.004 41.99 - S-2 0.000e+00 0.000e+00 -107.520 -107.840 -0.320 (0) - (H2S)2 0.000e+00 0.000e+00 -206.065 -206.061 0.004 28.25 + HS- 0.000e+00 0.000e+00 -102.399 -102.485 -0.086 21.32 + H2S 0.000e+00 0.000e+00 -102.535 -102.531 0.004 41.99 + S-2 0.000e+00 0.000e+00 -107.521 -107.840 -0.320 (0) + (H2S)2 0.000e+00 0.000e+00 -206.066 -206.062 0.004 28.25 S(6) 1.412e-02 - SO4-2 9.504e-03 4.535e-03 -2.022 -2.343 -0.321 16.61 + SO4-2 9.504e-03 4.535e-03 -2.022 -2.343 -0.321 22.05 CaSO4 4.613e-03 4.654e-03 -2.336 -2.332 0.004 8.34 HSO4- 2.493e-07 2.061e-07 -6.603 -6.686 -0.082 41.57 CaHSO4+ 1.384e-08 1.144e-08 -7.859 -7.941 -0.082 (0) @@ -2958,10 +2959,10 @@ Gypsum -0.04 -4.69 -4.65 1.000e+00 0 -1.000e+00 pH = 6.669 Charge balance pe = 8.605 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 59°C) = 3599 - Density (g/cm³) = 0.98553 - Volume (L) = 1.05323 - Viscosity (mPa s) = 0.47834 + Specific Conductance (µS/cm, 59°C) = 4151 + Density (g/cm³) = 0.98548 + Volume (L) = 1.05328 + Viscosity (mPa s) = 0.47744 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.731e-02 Mass of water (kg) = 1.036e+00 @@ -2986,17 +2987,17 @@ Ca 1.383e-02 CaSO4 4.504e-03 4.543e-03 -2.346 -2.343 0.004 8.36 CaHSO4+ 1.411e-08 1.168e-08 -7.850 -7.932 -0.082 (0) CaOH+ 4.249e-09 3.517e-09 -8.372 -8.454 -0.082 (0) -H(0) 2.942e-34 - H2 1.471e-34 1.484e-34 -33.832 -33.829 0.004 28.58 -O(0) 2.652e-15 - O2 1.326e-15 1.338e-15 -14.877 -14.874 0.004 32.34 +H(0) 2.943e-34 + H2 1.472e-34 1.484e-34 -33.832 -33.828 0.004 28.58 +O(0) 2.651e-15 + O2 1.325e-15 1.337e-15 -14.878 -14.874 0.004 32.34 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -101.981 -102.067 -0.086 21.31 - H2S 0.000e+00 0.000e+00 -102.112 -102.108 0.004 42.11 + HS- 0.000e+00 0.000e+00 -101.980 -102.066 -0.086 21.31 + H2S 0.000e+00 0.000e+00 -102.111 -102.107 0.004 42.11 S-2 0.000e+00 0.000e+00 -107.090 -107.408 -0.318 (0) - (H2S)2 0.000e+00 0.000e+00 -205.213 -205.210 0.004 28.18 + (H2S)2 0.000e+00 0.000e+00 -205.212 -205.208 0.004 28.18 S(6) 1.383e-02 - SO4-2 9.328e-03 4.468e-03 -2.030 -2.350 -0.320 16.56 + SO4-2 9.328e-03 4.468e-03 -2.030 -2.350 -0.320 21.96 CaSO4 4.504e-03 4.543e-03 -2.346 -2.343 0.004 8.36 HSO4- 2.581e-07 2.137e-07 -6.588 -6.670 -0.082 41.58 CaHSO4+ 1.411e-08 1.168e-08 -7.850 -7.932 -0.082 (0) @@ -3009,7 +3010,7 @@ S(6) 1.383e-02 Gypsum -0.04 -4.69 -4.65 CaSO4:2H2O H2(g) -30.69 -33.83 -3.14 H2 H2O(g) -0.73 -0.00 0.73 H2O - H2S(g) -100.82 -108.74 -7.92 H2S + H2S(g) -100.82 -108.73 -7.92 H2S O2(g) -11.81 -14.87 -3.06 O2 Sulfur -75.73 -71.56 4.17 S @@ -3040,11 +3041,11 @@ Gypsum -0.05 -4.71 -4.65 1.000e+00 0 -1.000e+00 ----------------------------Description of solution---------------------------- pH = 6.658 Charge balance - pe = 8.548 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 60°C) = 3584 - Density (g/cm³) = 0.98498 - Volume (L) = 1.05377 - Viscosity (mPa s) = 0.47105 + pe = 8.549 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 60°C) = 4137 + Density (g/cm³) = 0.98493 + Volume (L) = 1.05382 + Viscosity (mPa s) = 0.47018 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.662e-02 Mass of water (kg) = 1.036e+00 @@ -3069,17 +3070,17 @@ Ca 1.355e-02 CaSO4 4.397e-03 4.434e-03 -2.357 -2.353 0.004 8.37 CaHSO4+ 1.439e-08 1.192e-08 -7.842 -7.924 -0.082 (0) CaOH+ 4.081e-09 3.382e-09 -8.389 -8.471 -0.082 (0) -H(0) 3.973e-34 - H2 1.986e-34 2.003e-34 -33.702 -33.698 0.004 28.58 -O(0) 2.644e-15 - O2 1.322e-15 1.333e-15 -14.879 -14.875 0.004 32.38 +H(0) 3.967e-34 + H2 1.983e-34 2.000e-34 -33.703 -33.699 0.004 28.58 +O(0) 2.652e-15 + O2 1.326e-15 1.337e-15 -14.877 -14.874 0.004 32.38 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -101.561 -101.646 -0.085 21.30 - H2S 0.000e+00 0.000e+00 -101.687 -101.683 0.004 42.24 - S-2 0.000e+00 0.000e+00 -106.658 -106.974 -0.317 (0) - (H2S)2 0.000e+00 0.000e+00 -204.357 -204.354 0.004 28.10 + HS- 0.000e+00 0.000e+00 -101.563 -101.649 -0.085 21.30 + H2S 0.000e+00 0.000e+00 -101.689 -101.686 0.004 42.24 + S-2 0.000e+00 0.000e+00 -106.660 -106.977 -0.317 (0) + (H2S)2 0.000e+00 0.000e+00 -204.362 -204.359 0.004 28.10 S(6) 1.355e-02 - SO4-2 9.154e-03 4.402e-03 -2.038 -2.356 -0.318 16.50 + SO4-2 9.154e-03 4.402e-03 -2.038 -2.356 -0.318 21.87 CaSO4 4.397e-03 4.434e-03 -2.357 -2.353 0.004 8.37 HSO4- 2.672e-07 2.214e-07 -6.573 -6.655 -0.082 41.58 CaHSO4+ 1.439e-08 1.192e-08 -7.842 -7.924 -0.082 (0) @@ -3092,8 +3093,8 @@ S(6) 1.355e-02 Gypsum -0.05 -4.71 -4.65 CaSO4:2H2O H2(g) -30.56 -33.70 -3.14 H2 H2O(g) -0.71 -0.00 0.71 H2O - H2S(g) -100.39 -108.30 -7.92 H2S - O2(g) -11.81 -14.88 -3.06 O2 + H2S(g) -100.39 -108.31 -7.92 H2S + O2(g) -11.81 -14.87 -3.06 O2 Sulfur -75.42 -71.27 4.15 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -3124,10 +3125,10 @@ Gypsum -0.06 -4.72 -4.66 1.000e+00 0 -1.000e+00 pH = 6.648 Charge balance pe = 8.493 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 61°C) = 3568 - Density (g/cm³) = 0.98442 - Volume (L) = 1.05433 - Viscosity (mPa s) = 0.46394 + Specific Conductance (µS/cm, 61°C) = 4121 + Density (g/cm³) = 0.98438 + Volume (L) = 1.05438 + Viscosity (mPa s) = 0.46310 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.594e-02 Mass of water (kg) = 1.036e+00 @@ -3152,17 +3153,17 @@ Ca 1.328e-02 CaSO4 4.291e-03 4.327e-03 -2.367 -2.364 0.004 8.39 CaHSO4+ 1.466e-08 1.216e-08 -7.834 -7.915 -0.081 (0) CaOH+ 3.922e-09 3.252e-09 -8.407 -8.488 -0.081 (0) -H(0) 5.318e-34 - H2 2.659e-34 2.681e-34 -33.575 -33.572 0.004 28.58 -O(0) 2.672e-15 - O2 1.336e-15 1.347e-15 -14.874 -14.871 0.004 32.42 +H(0) 5.333e-34 + H2 2.666e-34 2.688e-34 -33.574 -33.571 0.004 28.58 +O(0) 2.658e-15 + O2 1.329e-15 1.340e-15 -14.877 -14.873 0.004 32.42 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -101.156 -101.240 -0.085 21.29 - H2S 0.000e+00 0.000e+00 -101.276 -101.273 0.004 42.36 - S-2 0.000e+00 0.000e+00 -106.240 -106.555 -0.315 (0) - (H2S)2 0.000e+00 0.000e+00 -203.530 -203.527 0.004 28.03 + HS- 0.000e+00 0.000e+00 -101.151 -101.236 -0.085 21.29 + H2S 0.000e+00 0.000e+00 -101.271 -101.268 0.004 42.36 + S-2 0.000e+00 0.000e+00 -106.235 -106.550 -0.315 (0) + (H2S)2 0.000e+00 0.000e+00 -203.521 -203.517 0.004 28.03 S(6) 1.328e-02 - SO4-2 8.984e-03 4.336e-03 -2.047 -2.363 -0.316 16.45 + SO4-2 8.984e-03 4.336e-03 -2.047 -2.363 -0.316 21.78 CaSO4 4.291e-03 4.327e-03 -2.367 -2.364 0.004 8.39 HSO4- 2.766e-07 2.294e-07 -6.558 -6.639 -0.081 41.59 CaHSO4+ 1.466e-08 1.216e-08 -7.834 -7.915 -0.081 (0) @@ -3175,8 +3176,8 @@ S(6) 1.328e-02 Gypsum -0.06 -4.72 -4.66 CaSO4:2H2O H2(g) -30.43 -33.57 -3.14 H2 H2O(g) -0.69 -0.00 0.69 H2O - H2S(g) -99.97 -107.89 -7.92 H2S - O2(g) -11.80 -14.87 -3.07 O2 + H2S(g) -99.96 -107.88 -7.92 H2S + O2(g) -11.81 -14.87 -3.07 O2 Sulfur -75.12 -70.99 4.13 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -3206,11 +3207,11 @@ Gypsum -0.07 -4.73 -4.66 1.000e+00 0 -1.000e+00 ----------------------------Description of solution---------------------------- pH = 6.638 Charge balance - pe = 8.437 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 62°C) = 3552 - Density (g/cm³) = 0.98387 - Volume (L) = 1.05489 - Viscosity (mPa s) = 0.45701 + pe = 8.491 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 62°C) = 4105 + Density (g/cm³) = 0.98382 + Volume (L) = 1.05493 + Viscosity (mPa s) = 0.45620 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.526e-02 Mass of water (kg) = 1.036e+00 @@ -3235,17 +3236,17 @@ Ca 1.300e-02 CaSO4 4.188e-03 4.222e-03 -2.378 -2.375 0.004 8.41 CaHSO4+ 1.494e-08 1.240e-08 -7.826 -7.906 -0.081 (0) CaOH+ 3.769e-09 3.128e-09 -8.424 -8.505 -0.081 (0) -H(0) 7.178e-34 - H2 3.589e-34 3.618e-34 -33.445 -33.441 0.004 28.58 -O(0) 2.647e-15 - O2 1.323e-15 1.334e-15 -14.878 -14.875 0.004 32.47 +H(0) 5.591e-34 + H2 2.795e-34 2.818e-34 -33.554 -33.550 0.004 28.58 +O(0) 4.363e-15 + O2 2.181e-15 2.199e-15 -14.661 -14.658 0.004 32.47 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -100.735 -100.820 -0.084 21.28 - H2S 0.000e+00 0.000e+00 -100.851 -100.847 0.004 42.48 - S-2 0.000e+00 0.000e+00 -105.808 -106.121 -0.313 (0) - (H2S)2 0.000e+00 0.000e+00 -202.673 -202.670 0.004 27.96 + HS- 0.000e+00 0.000e+00 -101.169 -101.254 -0.084 21.28 + H2S 0.000e+00 0.000e+00 -101.285 -101.281 0.004 42.48 + S-2 0.000e+00 0.000e+00 -106.242 -106.555 -0.313 (0) + (H2S)2 0.000e+00 0.000e+00 -203.542 -203.538 0.004 27.96 S(6) 1.300e-02 - SO4-2 8.816e-03 4.271e-03 -2.055 -2.369 -0.315 16.39 + SO4-2 8.816e-03 4.271e-03 -2.055 -2.369 -0.315 21.69 CaSO4 4.188e-03 4.222e-03 -2.378 -2.375 0.004 8.41 HSO4- 2.862e-07 2.376e-07 -6.543 -6.624 -0.081 41.59 CaHSO4+ 1.494e-08 1.240e-08 -7.826 -7.906 -0.081 (0) @@ -3256,11 +3257,11 @@ S(6) 1.300e-02 Anhydrite 0.00 -4.73 -4.73 CaSO4 Gypsum -0.07 -4.73 -4.66 CaSO4:2H2O - H2(g) -30.30 -33.44 -3.14 H2 + H2(g) -30.41 -33.55 -3.14 H2 H2O(g) -0.67 -0.00 0.67 H2O - H2S(g) -99.54 -107.46 -7.92 H2S - O2(g) -11.80 -14.87 -3.07 O2 - Sulfur -74.81 -70.70 4.11 S + H2S(g) -99.97 -107.89 -7.92 H2S + O2(g) -11.59 -14.66 -3.07 O2 + Sulfur -75.14 -71.02 4.11 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3290,10 +3291,10 @@ Gypsum -0.08 -4.75 -4.66 1.000e+00 0 -1.000e+00 pH = 6.628 Charge balance pe = 8.383 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 63°C) = 3535 - Density (g/cm³) = 0.98330 - Volume (L) = 1.05545 - Viscosity (mPa s) = 0.45025 + Specific Conductance (µS/cm, 63°C) = 4087 + Density (g/cm³) = 0.98326 + Volume (L) = 1.05550 + Viscosity (mPa s) = 0.44947 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.460e-02 Mass of water (kg) = 1.036e+00 @@ -3324,11 +3325,11 @@ O(0) 2.681e-15 O2 1.340e-15 1.351e-15 -14.873 -14.869 0.003 32.51 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -100.337 -100.421 -0.084 21.27 - H2S 0.000e+00 0.000e+00 -100.447 -100.443 0.003 42.59 + H2S 0.000e+00 0.000e+00 -100.447 -100.444 0.003 42.59 S-2 0.000e+00 0.000e+00 -105.397 -105.709 -0.312 (0) - (H2S)2 0.000e+00 0.000e+00 -201.860 -201.857 0.003 27.88 + (H2S)2 0.000e+00 0.000e+00 -201.861 -201.857 0.003 27.88 S(6) 1.274e-02 - SO4-2 8.650e-03 4.207e-03 -2.063 -2.376 -0.313 16.33 + SO4-2 8.650e-03 4.207e-03 -2.063 -2.376 -0.313 21.59 CaSO4 4.086e-03 4.119e-03 -2.389 -2.385 0.003 8.42 HSO4- 2.961e-07 2.460e-07 -6.529 -6.609 -0.080 41.59 CaHSO4+ 1.522e-08 1.265e-08 -7.818 -7.898 -0.080 (0) @@ -3373,10 +3374,10 @@ Gypsum -0.09 -4.76 -4.67 1.000e+00 0 -1.000e+00 pH = 6.618 Charge balance pe = 8.328 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 64°C) = 3517 - Density (g/cm³) = 0.98273 - Volume (L) = 1.05603 - Viscosity (mPa s) = 0.44366 + Specific Conductance (µS/cm, 64°C) = 4069 + Density (g/cm³) = 0.98269 + Volume (L) = 1.05607 + Viscosity (mPa s) = 0.44290 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.395e-02 Mass of water (kg) = 1.036e+00 @@ -3411,7 +3412,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -104.977 -105.287 -0.310 (0) (H2S)2 0.000e+00 0.000e+00 -201.028 -201.025 0.003 27.81 S(6) 1.247e-02 - SO4-2 8.488e-03 4.143e-03 -2.071 -2.383 -0.311 16.26 + SO4-2 8.488e-03 4.143e-03 -2.071 -2.383 -0.311 21.50 CaSO4 3.986e-03 4.018e-03 -2.399 -2.396 0.003 8.44 HSO4- 3.062e-07 2.547e-07 -6.514 -6.594 -0.080 41.59 CaHSO4+ 1.550e-08 1.289e-08 -7.810 -7.890 -0.080 (0) @@ -3456,10 +3457,10 @@ Gypsum -0.10 -4.77 -4.67 1.000e+00 0 -1.000e+00 pH = 6.608 Charge balance pe = 8.273 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 65°C) = 3499 - Density (g/cm³) = 0.98216 - Volume (L) = 1.05661 - Viscosity (mPa s) = 0.43723 + Specific Conductance (µS/cm, 65°C) = 4051 + Density (g/cm³) = 0.98212 + Volume (L) = 1.05665 + Viscosity (mPa s) = 0.43649 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.331e-02 Mass of water (kg) = 1.036e+00 @@ -3484,17 +3485,17 @@ Ca 1.222e-02 CaSO4 3.888e-03 3.918e-03 -2.410 -2.407 0.003 8.45 CaHSO4+ 1.578e-08 1.314e-08 -7.802 -7.881 -0.080 (0) CaOH+ 3.350e-09 2.789e-09 -8.475 -8.555 -0.080 (0) -H(0) 1.712e-33 - H2 8.558e-34 8.624e-34 -33.068 -33.064 0.003 28.58 -O(0) 2.679e-15 - O2 1.339e-15 1.350e-15 -14.873 -14.870 0.003 32.59 +H(0) 1.710e-33 + H2 8.551e-34 8.617e-34 -33.068 -33.065 0.003 28.58 +O(0) 2.683e-15 + O2 1.342e-15 1.352e-15 -14.872 -14.869 0.003 32.59 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -99.525 -99.608 -0.083 21.24 - H2S 0.000e+00 0.000e+00 -99.624 -99.621 0.003 42.82 - S-2 0.000e+00 0.000e+00 -104.561 -104.869 -0.308 (0) - (H2S)2 0.000e+00 0.000e+00 -200.205 -200.201 0.003 27.73 + HS- 0.000e+00 0.000e+00 -99.527 -99.610 -0.083 21.24 + H2S 0.000e+00 0.000e+00 -99.626 -99.623 0.003 42.82 + S-2 0.000e+00 0.000e+00 -104.562 -104.871 -0.308 (0) + (H2S)2 0.000e+00 0.000e+00 -200.207 -200.204 0.003 27.73 S(6) 1.222e-02 - SO4-2 8.328e-03 4.080e-03 -2.079 -2.389 -0.310 16.19 + SO4-2 8.328e-03 4.080e-03 -2.079 -2.389 -0.310 21.40 CaSO4 3.888e-03 3.918e-03 -2.410 -2.407 0.003 8.45 HSO4- 3.167e-07 2.636e-07 -6.499 -6.579 -0.080 41.59 CaHSO4+ 1.578e-08 1.314e-08 -7.802 -7.881 -0.080 (0) @@ -3539,10 +3540,10 @@ Gypsum -0.11 -4.79 -4.67 1.000e+00 0 -1.000e+00 pH = 6.598 Charge balance pe = 8.218 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 66°C) = 3481 - Density (g/cm³) = 0.98158 - Volume (L) = 1.05720 - Viscosity (mPa s) = 0.43095 + Specific Conductance (µS/cm, 66°C) = 4031 + Density (g/cm³) = 0.98154 + Volume (L) = 1.05724 + Viscosity (mPa s) = 0.43024 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.268e-02 Mass of water (kg) = 1.036e+00 @@ -3577,7 +3578,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -104.146 -104.453 -0.307 (0) (H2S)2 0.000e+00 0.000e+00 -199.383 -199.380 0.003 27.65 S(6) 1.196e-02 - SO4-2 8.170e-03 4.018e-03 -2.088 -2.396 -0.308 16.11 + SO4-2 8.170e-03 4.018e-03 -2.088 -2.396 -0.308 21.29 CaSO4 3.793e-03 3.821e-03 -2.421 -2.418 0.003 8.47 HSO4- 3.274e-07 2.728e-07 -6.485 -6.564 -0.079 41.59 CaHSO4+ 1.606e-08 1.338e-08 -7.794 -7.873 -0.079 (0) @@ -3622,10 +3623,10 @@ Gypsum -0.12 -4.80 -4.68 1.000e+00 0 -1.000e+00 pH = 6.589 Charge balance pe = 8.164 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 67°C) = 3461 - Density (g/cm³) = 0.98099 - Volume (L) = 1.05779 - Viscosity (mPa s) = 0.42482 + Specific Conductance (µS/cm, 67°C) = 4011 + Density (g/cm³) = 0.98095 + Volume (L) = 1.05783 + Viscosity (mPa s) = 0.42414 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.206e-02 Mass of water (kg) = 1.036e+00 @@ -3660,7 +3661,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -103.737 -104.042 -0.305 (0) (H2S)2 0.000e+00 0.000e+00 -198.573 -198.570 0.003 27.57 S(6) 1.171e-02 - SO4-2 8.015e-03 3.957e-03 -2.096 -2.403 -0.307 16.04 + SO4-2 8.015e-03 3.957e-03 -2.096 -2.403 -0.307 21.19 CaSO4 3.699e-03 3.726e-03 -2.432 -2.429 0.003 8.48 HSO4- 3.384e-07 2.823e-07 -6.471 -6.549 -0.079 41.59 CaHSO4+ 1.635e-08 1.363e-08 -7.787 -7.865 -0.079 (0) @@ -3705,10 +3706,10 @@ Gypsum -0.13 -4.81 -4.68 1.000e+00 0 -1.000e+00 pH = 6.579 Charge balance pe = 8.110 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 68°C) = 3442 - Density (g/cm³) = 0.98040 - Volume (L) = 1.05839 - Viscosity (mPa s) = 0.41884 + Specific Conductance (µS/cm, 68°C) = 3990 + Density (g/cm³) = 0.98037 + Volume (L) = 1.05843 + Viscosity (mPa s) = 0.41818 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.145e-02 Mass of water (kg) = 1.036e+00 @@ -3733,17 +3734,17 @@ Ca 1.147e-02 CaSO4 3.606e-03 3.633e-03 -2.443 -2.440 0.003 8.50 CaHSO4+ 1.663e-08 1.388e-08 -7.779 -7.858 -0.078 (0) CaOH+ 2.984e-09 2.491e-09 -8.525 -8.604 -0.078 (0) -H(0) 4.045e-33 - H2 2.022e-33 2.037e-33 -32.694 -32.691 0.003 28.58 -O(0) 2.677e-15 - O2 1.338e-15 1.348e-15 -14.873 -14.870 0.003 32.71 +H(0) 4.040e-33 + H2 2.020e-33 2.035e-33 -32.695 -32.692 0.003 28.58 +O(0) 2.683e-15 + O2 1.342e-15 1.351e-15 -14.872 -14.869 0.003 32.71 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -98.327 -98.408 -0.082 21.19 - H2S 0.000e+00 0.000e+00 -98.409 -98.406 0.003 43.16 - S-2 0.000e+00 0.000e+00 -103.325 -103.629 -0.304 (0) - (H2S)2 0.000e+00 0.000e+00 -197.759 -197.755 0.003 27.49 + HS- 0.000e+00 0.000e+00 -98.329 -98.410 -0.082 21.19 + H2S 0.000e+00 0.000e+00 -98.411 -98.408 0.003 43.16 + S-2 0.000e+00 0.000e+00 -103.327 -103.631 -0.304 (0) + (H2S)2 0.000e+00 0.000e+00 -197.763 -197.760 0.003 27.49 S(6) 1.147e-02 - SO4-2 7.863e-03 3.896e-03 -2.104 -2.409 -0.305 15.96 + SO4-2 7.863e-03 3.896e-03 -2.104 -2.409 -0.305 21.08 CaSO4 3.606e-03 3.633e-03 -2.443 -2.440 0.003 8.50 HSO4- 3.498e-07 2.920e-07 -6.456 -6.535 -0.078 41.59 CaHSO4+ 1.663e-08 1.388e-08 -7.779 -7.858 -0.078 (0) @@ -3757,7 +3758,7 @@ S(6) 1.147e-02 H2(g) -29.55 -32.69 -3.14 H2 H2O(g) -0.55 -0.00 0.55 H2O H2S(g) -97.06 -104.99 -7.93 H2S - O2(g) -11.79 -14.87 -3.08 O2 + O2(g) -11.78 -14.87 -3.08 O2 Sulfur -73.03 -69.03 4.00 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -3788,10 +3789,10 @@ Gypsum -0.14 -4.83 -4.69 1.000e+00 0 -1.000e+00 pH = 6.570 Charge balance pe = 8.057 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 69°C) = 3422 - Density (g/cm³) = 0.97981 - Volume (L) = 1.05900 - Viscosity (mPa s) = 0.41299 + Specific Conductance (µS/cm, 69°C) = 3969 + Density (g/cm³) = 0.97977 + Volume (L) = 1.05904 + Viscosity (mPa s) = 0.41236 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.086e-02 Mass of water (kg) = 1.036e+00 @@ -3816,17 +3817,17 @@ Ca 1.123e-02 CaSO4 3.516e-03 3.541e-03 -2.454 -2.451 0.003 8.51 CaHSO4+ 1.692e-08 1.413e-08 -7.772 -7.850 -0.078 (0) CaOH+ 2.872e-09 2.400e-09 -8.542 -8.620 -0.078 (0) -H(0) 5.360e-33 - H2 2.680e-33 2.699e-33 -32.572 -32.569 0.003 28.58 -O(0) 2.685e-15 - O2 1.343e-15 1.352e-15 -14.872 -14.869 0.003 32.75 +H(0) 5.355e-33 + H2 2.678e-33 2.697e-33 -32.572 -32.569 0.003 28.58 +O(0) 2.690e-15 + O2 1.345e-15 1.355e-15 -14.871 -14.868 0.003 32.75 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -97.935 -98.016 -0.081 21.17 - H2S 0.000e+00 0.000e+00 -98.012 -98.009 0.003 43.27 - S-2 0.000e+00 0.000e+00 -102.922 -103.224 -0.302 (0) - (H2S)2 0.000e+00 0.000e+00 -196.959 -196.956 0.003 27.41 + HS- 0.000e+00 0.000e+00 -97.937 -98.018 -0.081 21.17 + H2S 0.000e+00 0.000e+00 -98.014 -98.010 0.003 43.27 + S-2 0.000e+00 0.000e+00 -102.923 -103.225 -0.302 (0) + (H2S)2 0.000e+00 0.000e+00 -196.962 -196.959 0.003 27.41 S(6) 1.123e-02 - SO4-2 7.714e-03 3.837e-03 -2.113 -2.416 -0.303 15.87 + SO4-2 7.714e-03 3.837e-03 -2.113 -2.416 -0.303 20.97 CaSO4 3.516e-03 3.541e-03 -2.454 -2.451 0.003 8.51 HSO4- 3.614e-07 3.019e-07 -6.442 -6.520 -0.078 41.58 CaHSO4+ 1.692e-08 1.413e-08 -7.772 -7.850 -0.078 (0) @@ -3871,10 +3872,10 @@ Gypsum -0.15 -4.84 -4.69 1.000e+00 0 -1.000e+00 pH = 6.561 Charge balance pe = 8.003 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 70°C) = 3401 - Density (g/cm³) = 0.97921 - Volume (L) = 1.05961 - Viscosity (mPa s) = 0.40729 + Specific Conductance (µS/cm, 70°C) = 3946 + Density (g/cm³) = 0.97917 + Volume (L) = 1.05965 + Viscosity (mPa s) = 0.40667 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.027e-02 Mass of water (kg) = 1.036e+00 @@ -3909,7 +3910,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -102.517 -102.818 -0.300 (0) (H2S)2 0.000e+00 0.000e+00 -196.159 -196.156 0.003 27.32 S(6) 1.099e-02 - SO4-2 7.567e-03 3.778e-03 -2.121 -2.423 -0.302 15.78 + SO4-2 7.567e-03 3.778e-03 -2.121 -2.423 -0.302 20.86 CaSO4 3.428e-03 3.452e-03 -2.465 -2.462 0.003 8.53 HSO4- 3.733e-07 3.122e-07 -6.428 -6.506 -0.078 41.58 CaHSO4+ 1.720e-08 1.438e-08 -7.764 -7.842 -0.078 (0) @@ -3954,18 +3955,18 @@ Gypsum -0.16 -4.85 -4.70 1.000e+00 0 -1.000e+00 pH = 6.552 Charge balance pe = 7.950 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 71°C) = 3380 - Density (g/cm³) = 0.97861 - Volume (L) = 1.06023 - Viscosity (mPa s) = 0.40171 + Specific Conductance (µS/cm, 71°C) = 3924 + Density (g/cm³) = 0.97857 + Volume (L) = 1.06027 + Viscosity (mPa s) = 0.40112 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.969e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 71.00 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 16 + Iterations = 14 Total H = 1.150124e+02 Total O = 5.755082e+01 @@ -3982,17 +3983,17 @@ Ca 1.076e-02 CaSO4 3.341e-03 3.364e-03 -2.476 -2.473 0.003 8.54 CaHSO4+ 1.748e-08 1.464e-08 -7.757 -7.835 -0.077 (0) CaOH+ 2.663e-09 2.229e-09 -8.575 -8.652 -0.077 (0) -H(0) 9.401e-33 - H2 4.700e-33 4.733e-33 -32.328 -32.325 0.003 28.58 -O(0) 2.683e-15 - O2 1.342e-15 1.351e-15 -14.872 -14.869 0.003 32.83 +H(0) 9.405e-33 + H2 4.703e-33 4.735e-33 -32.328 -32.325 0.003 28.58 +O(0) 2.681e-15 + O2 1.340e-15 1.349e-15 -14.873 -14.870 0.003 32.83 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -97.153 -97.233 -0.080 21.12 - H2S 0.000e+00 0.000e+00 -97.218 -97.215 0.003 43.48 - S-2 0.000e+00 0.000e+00 -102.115 -102.414 -0.299 (0) - (H2S)2 0.000e+00 0.000e+00 -195.362 -195.359 0.003 27.24 + HS- 0.000e+00 0.000e+00 -97.152 -97.232 -0.080 21.12 + H2S 0.000e+00 0.000e+00 -97.217 -97.215 0.003 43.48 + S-2 0.000e+00 0.000e+00 -102.114 -102.413 -0.299 (0) + (H2S)2 0.000e+00 0.000e+00 -195.361 -195.358 0.003 27.24 S(6) 1.076e-02 - SO4-2 7.422e-03 3.719e-03 -2.129 -2.430 -0.300 15.69 + SO4-2 7.422e-03 3.719e-03 -2.129 -2.430 -0.300 20.74 CaSO4 3.341e-03 3.364e-03 -2.476 -2.473 0.003 8.54 HSO4- 3.856e-07 3.227e-07 -6.414 -6.491 -0.077 41.57 CaHSO4+ 1.748e-08 1.464e-08 -7.757 -7.835 -0.077 (0) @@ -4037,10 +4038,10 @@ Gypsum -0.17 -4.87 -4.70 1.000e+00 0 -1.000e+00 pH = 6.543 Charge balance pe = 7.926 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 72°C) = 3359 - Density (g/cm³) = 0.97800 - Volume (L) = 1.06086 - Viscosity (mPa s) = 0.39627 + Specific Conductance (µS/cm, 72°C) = 3900 + Density (g/cm³) = 0.97796 + Volume (L) = 1.06090 + Viscosity (mPa s) = 0.39569 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.912e-02 Mass of water (kg) = 1.036e+00 @@ -4071,11 +4072,11 @@ O(0) 3.505e-15 O2 1.752e-15 1.764e-15 -14.756 -14.753 0.003 32.87 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -96.998 -97.077 -0.080 21.10 - H2S 0.000e+00 0.000e+00 -97.057 -97.055 0.003 43.59 + H2S 0.000e+00 0.000e+00 -97.057 -97.054 0.003 43.59 S-2 0.000e+00 0.000e+00 -101.948 -102.245 -0.297 (0) (H2S)2 0.000e+00 0.000e+00 -195.036 -195.033 0.003 27.16 S(6) 1.054e-02 - SO4-2 7.280e-03 3.662e-03 -2.138 -2.436 -0.298 15.60 + SO4-2 7.280e-03 3.662e-03 -2.138 -2.436 -0.298 20.63 CaSO4 3.256e-03 3.278e-03 -2.487 -2.484 0.003 8.55 HSO4- 3.981e-07 3.336e-07 -6.400 -6.477 -0.077 41.56 CaHSO4+ 1.777e-08 1.489e-08 -7.750 -7.827 -0.077 (0) @@ -4120,10 +4121,10 @@ Gypsum -0.18 -4.88 -4.70 1.000e+00 0 -1.000e+00 pH = 6.534 Charge balance pe = 7.873 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 73°C) = 3337 - Density (g/cm³) = 0.97738 - Volume (L) = 1.06149 - Viscosity (mPa s) = 0.39095 + Specific Conductance (µS/cm, 73°C) = 3876 + Density (g/cm³) = 0.97735 + Volume (L) = 1.06153 + Viscosity (mPa s) = 0.39039 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.856e-02 Mass of water (kg) = 1.036e+00 @@ -4148,17 +4149,17 @@ Ca 1.031e-02 CaSO4 3.173e-03 3.194e-03 -2.499 -2.496 0.003 8.57 CaHSO4+ 1.806e-08 1.514e-08 -7.743 -7.820 -0.076 (0) CaOH+ 2.471e-09 2.072e-09 -8.607 -8.684 -0.076 (0) -H(0) 1.433e-32 - H2 7.164e-33 7.211e-33 -32.145 -32.142 0.003 28.58 -O(0) 3.504e-15 - O2 1.752e-15 1.764e-15 -14.756 -14.754 0.003 32.91 +H(0) 1.432e-32 + H2 7.162e-33 7.209e-33 -32.145 -32.142 0.003 28.58 +O(0) 3.506e-15 + O2 1.753e-15 1.765e-15 -14.756 -14.753 0.003 32.91 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -96.613 -96.692 -0.079 21.08 H2S 0.000e+00 0.000e+00 -96.667 -96.664 0.003 43.69 - S-2 0.000e+00 0.000e+00 -101.551 -101.846 -0.296 (0) - (H2S)2 0.000e+00 0.000e+00 -194.250 -194.247 0.003 27.07 + S-2 0.000e+00 0.000e+00 -101.551 -101.847 -0.296 (0) + (H2S)2 0.000e+00 0.000e+00 -194.251 -194.248 0.003 27.07 S(6) 1.031e-02 - SO4-2 7.141e-03 3.605e-03 -2.146 -2.443 -0.297 15.50 + SO4-2 7.141e-03 3.605e-03 -2.146 -2.443 -0.297 20.51 CaSO4 3.173e-03 3.194e-03 -2.499 -2.496 0.003 8.57 HSO4- 4.110e-07 3.447e-07 -6.386 -6.463 -0.076 41.55 CaHSO4+ 1.806e-08 1.514e-08 -7.743 -7.820 -0.076 (0) @@ -4203,10 +4204,10 @@ Gypsum -0.18 -4.89 -4.71 1.000e+00 0 -1.000e+00 pH = 6.525 Charge balance pe = 7.790 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 74°C) = 3315 - Density (g/cm³) = 0.97677 - Volume (L) = 1.06213 - Viscosity (mPa s) = 0.38575 + Specific Conductance (µS/cm, 74°C) = 3852 + Density (g/cm³) = 0.97673 + Volume (L) = 1.06217 + Viscosity (mPa s) = 0.38521 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.802e-02 Mass of water (kg) = 1.036e+00 @@ -4231,17 +4232,17 @@ Ca 1.010e-02 CaSO4 3.092e-03 3.112e-03 -2.510 -2.507 0.003 8.58 CaHSO4+ 1.834e-08 1.540e-08 -7.737 -7.813 -0.076 (0) CaOH+ 2.381e-09 1.999e-09 -8.623 -8.699 -0.076 (0) -H(0) 2.167e-32 - H2 1.083e-32 1.090e-32 -31.965 -31.962 0.003 28.58 -O(0) 2.656e-15 - O2 1.328e-15 1.336e-15 -14.877 -14.874 0.003 32.95 +H(0) 2.168e-32 + H2 1.084e-32 1.091e-32 -31.965 -31.962 0.003 28.58 +O(0) 2.653e-15 + O2 1.326e-15 1.335e-15 -14.877 -14.875 0.003 32.95 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -95.989 -96.068 -0.079 21.05 - H2S 0.000e+00 0.000e+00 -96.037 -96.035 0.003 43.79 - S-2 0.000e+00 0.000e+00 -100.915 -101.209 -0.294 (0) - (H2S)2 0.000e+00 0.000e+00 -192.987 -192.984 0.003 26.98 + HS- 0.000e+00 0.000e+00 -95.988 -96.067 -0.079 21.05 + H2S 0.000e+00 0.000e+00 -96.036 -96.034 0.003 43.79 + S-2 0.000e+00 0.000e+00 -100.914 -101.208 -0.294 (0) + (H2S)2 0.000e+00 0.000e+00 -192.985 -192.982 0.003 26.98 S(6) 1.010e-02 - SO4-2 7.004e-03 3.549e-03 -2.155 -2.450 -0.295 15.40 + SO4-2 7.004e-03 3.549e-03 -2.155 -2.450 -0.295 20.38 CaSO4 3.092e-03 3.112e-03 -2.510 -2.507 0.003 8.58 HSO4- 4.242e-07 3.561e-07 -6.372 -6.448 -0.076 41.54 CaHSO4+ 1.834e-08 1.540e-08 -7.737 -7.813 -0.076 (0) @@ -4286,10 +4287,10 @@ Gypsum -0.19 -4.91 -4.71 1.000e+00 0 -1.000e+00 pH = 6.516 Charge balance pe = 7.738 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 3292 - Density (g/cm³) = 0.97614 - Volume (L) = 1.06278 - Viscosity (mPa s) = 0.38066 + Specific Conductance (µS/cm, 75°C) = 3827 + Density (g/cm³) = 0.97611 + Volume (L) = 1.06282 + Viscosity (mPa s) = 0.38014 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.748e-02 Mass of water (kg) = 1.036e+00 @@ -4314,17 +4315,17 @@ Ca 9.882e-03 CaSO4 3.012e-03 3.031e-03 -2.521 -2.518 0.003 8.59 CaHSO4+ 1.863e-08 1.565e-08 -7.730 -7.805 -0.076 (0) CaOH+ 2.295e-09 1.928e-09 -8.639 -8.715 -0.076 (0) -H(0) 2.852e-32 - H2 1.426e-32 1.435e-32 -31.846 -31.843 0.003 28.58 -O(0) 2.650e-15 - O2 1.325e-15 1.333e-15 -14.878 -14.875 0.003 32.99 +H(0) 2.849e-32 + H2 1.424e-32 1.433e-32 -31.846 -31.844 0.003 28.58 +O(0) 2.655e-15 + O2 1.327e-15 1.336e-15 -14.877 -14.874 0.003 32.99 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -95.607 -95.685 -0.078 21.03 - H2S 0.000e+00 0.000e+00 -95.649 -95.647 0.003 43.89 - S-2 0.000e+00 0.000e+00 -100.521 -100.813 -0.293 (0) - (H2S)2 0.000e+00 0.000e+00 -192.206 -192.204 0.003 26.89 + HS- 0.000e+00 0.000e+00 -95.609 -95.687 -0.078 21.03 + H2S 0.000e+00 0.000e+00 -95.651 -95.648 0.003 43.89 + S-2 0.000e+00 0.000e+00 -100.523 -100.815 -0.293 (0) + (H2S)2 0.000e+00 0.000e+00 -192.210 -192.207 0.003 26.89 S(6) 9.882e-03 - SO4-2 6.869e-03 3.493e-03 -2.163 -2.457 -0.294 15.29 + SO4-2 6.869e-03 3.493e-03 -2.163 -2.457 -0.294 20.26 CaSO4 3.012e-03 3.031e-03 -2.521 -2.518 0.003 8.59 HSO4- 4.377e-07 3.678e-07 -6.359 -6.434 -0.076 41.53 CaHSO4+ 1.863e-08 1.565e-08 -7.730 -7.805 -0.076 (0) @@ -4338,7 +4339,7 @@ S(6) 9.882e-03 H2(g) -28.71 -31.84 -3.13 H2 H2O(g) -0.42 -0.00 0.42 H2O H2S(g) -94.26 -102.20 -7.94 H2S - O2(g) -11.78 -14.88 -3.10 O2 + O2(g) -11.78 -14.87 -3.10 O2 Sulfur -71.02 -67.14 3.88 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. diff --git a/phreeqc3-examples/ex2.sel b/phreeqc3-examples/ex2.sel index 7ec7fa6f..46d6a684 100644 --- a/phreeqc3-examples/ex2.sel +++ b/phreeqc3-examples/ex2.sel @@ -1,53 +1,53 @@ sim state soln dist_x time step pH pe temp si_anhydrite si_gypsum 1 i_soln 1 -99 -99 -99 7 4 25.000 -999.9990 -999.9990 - 1 react 1 -99 0 1 7.06605 10.7446 25.000 -0.3045 0.0000 + 1 react 1 -99 0 1 7.06605 10.745 25.000 -0.3045 0.0000 1 react 1 -99 0 2 7.0524 10.6757 26.000 -0.2935 0.0000 1 react 1 -99 0 3 7.03885 10.6068 27.000 -0.2825 0.0000 - 1 react 1 -99 0 4 7.0254 10.5389 28.000 -0.2716 0.0000 - 1 react 1 -99 0 5 7.01206 10.472 29.000 -0.2608 0.0000 + 1 react 1 -99 0 4 7.0254 10.5392 28.000 -0.2716 0.0000 + 1 react 1 -99 0 5 7.01206 10.4719 29.000 -0.2608 0.0000 1 react 1 -99 0 6 6.99884 10.4042 30.000 -0.2500 0.0000 - 1 react 1 -99 0 7 6.98574 10.3381 31.000 -0.2392 0.0000 + 1 react 1 -99 0 7 6.98574 10.3382 31.000 -0.2392 0.0000 1 react 1 -99 0 8 6.97276 10.2711 32.000 -0.2285 0.0000 1 react 1 -99 0 9 6.95991 10.2057 33.000 -0.2179 0.0000 - 1 react 1 -99 0 10 6.94718 10.1398 34.000 -0.2073 0.0000 - 1 react 1 -99 0 11 6.93459 10.0744 35.000 -0.1967 0.0000 - 1 react 1 -99 0 12 6.92213 10.0096 36.000 -0.1862 0.0000 - 1 react 1 -99 0 13 6.90981 -1.77748 37.000 -0.1757 0.0000 - 1 react 1 -99 0 14 6.89762 9.88087 38.000 -0.1653 0.0000 + 1 react 1 -99 0 10 6.94718 10.1394 34.000 -0.2073 0.0000 + 1 react 1 -99 0 11 6.93459 10.0743 35.000 -0.1967 0.0000 + 1 react 1 -99 0 12 6.92213 10.0094 36.000 -0.1862 0.0000 + 1 react 1 -99 0 13 6.90981 -1.77753 37.000 -0.1757 0.0000 + 1 react 1 -99 0 14 6.89762 9.88094 38.000 -0.1653 0.0000 1 react 1 -99 0 15 6.88557 9.8475 39.000 -0.1549 0.0000 - 1 react 1 -99 0 16 6.87366 9.75454 40.000 -0.1445 0.0000 - 1 react 1 -99 0 17 6.86189 9.6907 41.000 -0.1342 0.0000 + 1 react 1 -99 0 16 6.87366 9.75448 40.000 -0.1445 0.0000 + 1 react 1 -99 0 17 6.86189 9.69091 41.000 -0.1342 0.0000 1 react 1 -99 0 18 6.85026 9.62849 42.000 -0.1239 0.0000 - 1 react 1 -99 0 19 6.83878 9.56563 43.000 -0.1137 0.0000 - 1 react 1 -99 0 20 6.82743 9.50339 44.000 -0.1035 0.0000 - 1 react 1 -99 0 21 6.81623 9.4423 45.000 -0.0934 0.0000 - 1 react 1 -99 0 22 6.80517 9.38059 46.000 -0.0833 0.0000 - 1 react 1 -99 0 23 6.79425 9.31892 47.000 -0.0732 0.0000 - 1 react 1 -99 0 24 6.78347 9.28758 48.000 -0.0632 0.0000 - 1 react 1 -99 0 25 6.77284 9.19657 49.000 -0.0532 0.0000 - 1 react 1 -99 0 26 6.76235 -1.65497 50.000 -0.0432 0.0000 - 1 react 1 -99 0 27 6.752 9.07753 51.000 -0.0333 0.0000 - 1 react 1 -99 0 28 6.7418 9.04685 52.000 -0.0234 0.0000 - 1 react 1 -99 0 29 6.73173 8.91536 53.000 -0.0136 0.0000 - 1 react 1 -99 0 30 6.72181 -1.62166 54.000 -0.0038 0.0000 - 1 react 1 -99 0 31 6.71125 8.83248 55.000 0.0000 -0.0060 - 1 react 1 -99 0 32 6.70039 8.7747 56.000 0.0000 -0.0157 - 1 react 1 -99 0 33 6.68965 8.71845 57.000 0.0000 -0.0254 - 1 react 1 -99 0 34 6.67903 8.66099 58.000 0.0000 -0.0350 - 1 react 1 -99 0 35 6.66853 8.60479 59.000 0.0000 -0.0446 - 1 react 1 -99 0 36 6.65815 8.54826 60.000 0.0000 -0.0542 - 1 react 1 -99 0 37 6.64789 8.4935 61.000 0.0000 -0.0638 - 1 react 1 -99 0 38 6.63774 8.43683 62.000 0.0000 -0.0733 - 1 react 1 -99 0 39 6.62771 8.38286 63.000 0.0000 -0.0828 + 1 react 1 -99 0 19 6.83878 9.56557 43.000 -0.1137 0.0000 + 1 react 1 -99 0 20 6.82743 9.50326 44.000 -0.1035 0.0000 + 1 react 1 -99 0 21 6.81623 9.44229 45.000 -0.0934 0.0000 + 1 react 1 -99 0 22 6.80517 9.38053 46.000 -0.0833 0.0000 + 1 react 1 -99 0 23 6.79425 9.31897 47.000 -0.0732 0.0000 + 1 react 1 -99 0 24 6.78347 9.21452 48.000 -0.0632 0.0000 + 1 react 1 -99 0 25 6.77284 9.19666 49.000 -0.0532 0.0000 + 1 react 1 -99 0 26 6.76235 -1.65493 50.000 -0.0432 0.0000 + 1 react 1 -99 0 27 6.752 -2.0958 51.000 -0.0333 0.0000 + 1 react 1 -99 0 28 6.7418 9.04692 52.000 -0.0234 0.0000 + 1 react 1 -99 0 29 6.73173 8.91531 53.000 -0.0136 0.0000 + 1 react 1 -99 0 30 6.72181 -1.62167 54.000 -0.0038 0.0000 + 1 react 1 -99 0 31 6.71125 8.8323 55.000 0.0000 -0.0060 + 1 react 1 -99 0 32 6.70039 8.80527 56.000 0.0000 -0.0157 + 1 react 1 -99 0 33 6.68965 8.74835 57.000 0.0000 -0.0254 + 1 react 1 -99 0 34 6.67903 8.66106 58.000 0.0000 -0.0350 + 1 react 1 -99 0 35 6.66853 8.60472 59.000 0.0000 -0.0446 + 1 react 1 -99 0 36 6.65815 8.54858 60.000 0.0000 -0.0542 + 1 react 1 -99 0 37 6.64789 8.49291 61.000 0.0000 -0.0638 + 1 react 1 -99 0 38 6.63774 8.4911 62.000 0.0000 -0.0733 + 1 react 1 -99 0 39 6.62771 8.38287 63.000 0.0000 -0.0828 1 react 1 -99 0 40 6.6178 8.32762 64.000 0.0000 -0.0922 - 1 react 1 -99 0 41 6.608 8.27289 65.000 0.0000 -0.1016 + 1 react 1 -99 0 41 6.608 8.27306 65.000 0.0000 -0.1016 1 react 1 -99 0 42 6.59833 8.21823 66.000 0.0000 -0.1110 1 react 1 -99 0 43 6.58876 8.16425 67.000 0.0000 -0.1204 - 1 react 1 -99 0 44 6.57931 8.10992 68.000 0.0000 -0.1297 - 1 react 1 -99 0 45 6.56998 8.05651 69.000 0.0000 -0.1390 + 1 react 1 -99 0 44 6.57931 8.11019 68.000 0.0000 -0.1297 + 1 react 1 -99 0 45 6.56998 8.0567 69.000 0.0000 -0.1390 1 react 1 -99 0 46 6.56075 8.00299 70.000 0.0000 -0.1483 - 1 react 1 -99 0 47 6.55165 7.94963 71.000 0.0000 -0.1575 - 1 react 1 -99 0 48 6.54265 7.92563 72.000 0.0000 -0.1667 - 1 react 1 -99 0 49 6.53376 7.87284 73.000 0.0000 -0.1758 - 1 react 1 -99 0 50 6.52499 7.79021 74.000 0.0000 -0.1850 - 1 react 1 -99 0 51 6.51633 7.73768 75.000 0.0000 -0.1941 + 1 react 1 -99 0 47 6.55165 7.94953 71.000 0.0000 -0.1575 + 1 react 1 -99 0 48 6.54265 7.92562 72.000 0.0000 -0.1667 + 1 react 1 -99 0 49 6.53376 7.8729 73.000 0.0000 -0.1758 + 1 react 1 -99 0 50 6.52499 7.79009 74.000 0.0000 -0.1850 + 1 react 1 -99 0 51 6.51633 7.73789 75.000 0.0000 -0.1941 diff --git a/phreeqc3-examples/ex20a.out b/phreeqc3-examples/ex20a.out index 629dc8c7..ce948b54 100644 --- a/phreeqc3-examples/ex20a.out +++ b/phreeqc3-examples/ex20a.out @@ -217,8 +217,8 @@ Calcite 2.54e-07 Isotope Ratio Ratio Input Units - R(D) 1.55760e-04 -1.3101e-11 permil - R(18O) 2.00520e-03 -3.9447e-07 permil + R(D) 1.55760e-04 -6.6613e-13 permil + R(18O) 2.00520e-03 -3.9446e-07 permil R(13C) 1.11802e-02 -0.00026756 permil R(D) H2O(l) 1.55760e-04 1.138e-05 permil R(18O) H2O(l) 2.00520e-03 -3.9132e-05 permil @@ -249,15 +249,15 @@ Alpha D OH-/H2O(l) 0.23812 -1435 -1435 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha D H3O+/H2O(l) 1.0417 40.82 40.82 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha D H2(aq)/H2O(l) 1 5.7732e-12 0 +Alpha D H2(aq)/H2O(l) 1 -2.2204e-12 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha D HCO3-/H2O(l) 1 2.2555e-09 0 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha D HCO3-/H2O(l) 1 2.2549e-09 0 +Alpha 18O HCO3-/H2O(l) 1 -2.1094e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 18O CO3-2/H2O(l) 1 -1.5554e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5561e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha D CH4(aq)/H2O(l) 1 -3.7507e-09 0 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.2188e-12 0 +Alpha D CH4(aq)/H2O(l) 1 -3.7301e-09 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 @@ -284,7 +284,7 @@ Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Temperature (°C) = 25.00 Electrical balance (eq) = 1.667e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 64 + Iterations = 94 Total H = 1.109971e+02 Total O = 5.540110e+01 @@ -296,18 +296,18 @@ Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 OH- 1.661e-06 1.575e-06 -5.780 -5.803 -0.023 (0) H3O+ 6.648e-09 6.328e-09 -8.177 -8.199 -0.021 0.00 H2O 5.556e+01 9.977e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.777e-27 - CH4 2.775e-27 2.777e-27 -26.557 -26.556 0.000 (0) - CH3D 1.729e-30 1.730e-30 -29.762 -29.762 0.000 (0) +C(-4) 2.760e-27 + CH4 2.758e-27 2.759e-27 -26.559 -26.559 0.000 (0) + CH3D 1.718e-30 1.719e-30 -29.765 -29.765 0.000 (0) C(4) 1.984e-03 HCO3- 1.916e-03 1.817e-03 -2.718 -2.741 -0.023 (0) CO2 2.597e-05 2.598e-05 -4.586 -4.585 0.000 (0) CO3-2 1.661e-05 1.344e-05 -4.780 -4.872 -0.092 (0) CaHCO3+ 5.917e-06 5.618e-06 -5.228 -5.250 -0.023 (0) CaCO3 5.466e-06 5.469e-06 -5.262 -5.262 0.000 (0) - HCO2[18O]- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) HCO[18O]O- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) HC[18O]O2- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) + HCO2[18O]- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) NaHCO3 1.340e-06 1.341e-06 -5.873 -5.873 0.000 (0) NaCO3- 3.463e-07 3.284e-07 -6.461 -6.484 -0.023 (0) DCO3- 2.985e-07 2.831e-07 -6.525 -6.548 -0.023 (0) @@ -315,14 +315,14 @@ C(4) 1.984e-03 CO2[18O]-2 9.993e-08 8.086e-08 -7.000 -7.092 -0.092 (0) CaCO2[18O] 3.288e-08 3.290e-08 -7.483 -7.483 0.000 (0) CaHCO2[18O]+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) - CaHCO[18O]O+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) CaHC[18O]O2+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) + CaHCO[18O]O+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) HCO[18O]2- 7.705e-09 7.307e-09 -8.113 -8.136 -0.023 (0) HC[18O]2O- 7.705e-09 7.307e-09 -8.113 -8.136 -0.023 (0) HC[18O]O[18O]- 7.705e-09 7.307e-09 -8.113 -8.136 -0.023 (0) + NaHC[18O]O2 2.687e-09 2.689e-09 -8.571 -8.570 0.000 (0) NaHCO2[18O] 2.687e-09 2.689e-09 -8.571 -8.570 0.000 (0) NaHCO[18O]O 2.687e-09 2.689e-09 -8.571 -8.570 0.000 (0) - NaHC[18O]O2 2.687e-09 2.689e-09 -8.571 -8.570 0.000 (0) NaCO2[18O]- 2.083e-09 1.976e-09 -8.681 -8.704 -0.023 (0) Ca 3.098e-04 Ca+2 2.982e-04 2.422e-04 -3.525 -3.616 -0.090 (0) @@ -332,21 +332,21 @@ Ca 3.098e-04 Ca[13C]O3 6.104e-08 6.107e-08 -7.214 -7.214 0.000 (0) CaCO2[18O] 3.288e-08 3.290e-08 -7.483 -7.483 0.000 (0) CaHCO2[18O]+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) - CaHCO[18O]O+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) CaHC[18O]O2+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) + CaHCO[18O]O+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) CaDCO3+ 9.216e-10 8.750e-10 -9.035 -9.058 -0.023 (0) Ca[13C]O2[18O] 3.672e-10 3.674e-10 -9.435 -9.435 0.000 (0) -D(0) 5.656e-19 - HD 5.655e-19 5.658e-19 -18.248 -18.247 0.000 (0) - D2 4.404e-23 4.406e-23 -22.356 -22.356 0.000 (0) +D(0) 5.647e-19 + HD 5.646e-19 5.649e-19 -18.248 -18.248 0.000 (0) + D2 4.397e-23 4.399e-23 -22.357 -22.357 0.000 (0) D(1) 1.734e-02 HDO 1.731e-02 3.108e-04 -1.762 -3.507 -1.746 (0) HD[18O] 3.470e-05 6.233e-07 -4.460 -6.205 -1.746 (0) D2O 1.348e-06 2.421e-08 -5.870 -7.616 -1.746 (0) DCO3- 2.985e-07 2.831e-07 -6.525 -6.548 -0.023 (0) -H(0) 3.632e-15 - H2 1.815e-15 1.816e-15 -14.741 -14.741 0.000 (0) - HD 5.655e-19 5.658e-19 -18.248 -18.247 0.000 (0) +H(0) 3.626e-15 + H2 1.812e-15 1.813e-15 -14.742 -14.742 0.000 (0) + HD 5.646e-19 5.649e-19 -18.248 -18.248 0.000 (0) Na 1.385e-03 Na+ 1.383e-03 1.312e-03 -2.859 -2.882 -0.023 (0) NaHCO3 1.340e-06 1.341e-06 -5.873 -5.873 0.000 (0) @@ -358,11 +358,11 @@ Na 1.385e-03 NaHC[18O]O2 2.687e-09 2.689e-09 -8.571 -8.570 0.000 (0) NaCO2[18O]- 2.083e-09 1.976e-09 -8.681 -8.704 -0.023 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.901 -62.900 0.000 (0) - O[18O] 0.000e+00 0.000e+00 -65.297 -65.297 0.000 (0) -[13C](-4) 3.079e-29 - [13C]H4 3.077e-29 3.078e-29 -28.512 -28.512 0.000 (0) - [13C]H3D 1.917e-32 1.918e-32 -31.717 -31.717 0.000 (0) + O2 0.000e+00 0.000e+00 -62.899 -62.899 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -65.296 -65.296 0.000 (0) +[13C](-4) 3.059e-29 + [13C]H4 3.057e-29 3.059e-29 -28.515 -28.514 0.000 (0) + [13C]H3D 1.905e-32 1.906e-32 -31.720 -31.720 0.000 (0) [13C](4) 2.218e-05 H[13C]O3- 2.143e-05 2.032e-05 -4.669 -4.692 -0.023 (0) [13C]O2 2.878e-07 2.880e-07 -6.541 -6.541 0.000 (0) @@ -370,20 +370,20 @@ O(0) 0.000e+00 CaH[13C]O3+ 6.616e-08 6.281e-08 -7.179 -7.202 -0.023 (0) Ca[13C]O3 6.104e-08 6.107e-08 -7.214 -7.214 0.000 (0) H[13C]O2[18O]- 4.296e-08 4.075e-08 -7.367 -7.390 -0.023 (0) - H[13C]O[18O]O- 4.296e-08 4.075e-08 -7.367 -7.390 -0.023 (0) H[13C][18O]O2- 4.296e-08 4.075e-08 -7.367 -7.390 -0.023 (0) + H[13C]O[18O]O- 4.296e-08 4.075e-08 -7.367 -7.390 -0.023 (0) NaH[13C]O3 1.499e-08 1.499e-08 -7.824 -7.824 0.000 (0) Na[13C]O3- 3.866e-09 3.667e-09 -8.413 -8.436 -0.023 (0) D[13C]O3- 3.337e-09 3.165e-09 -8.477 -8.500 -0.023 (0) [13C]O[18O] 1.203e-09 1.204e-09 -8.920 -8.920 0.000 (0) [13C]O2[18O]-2 1.116e-09 9.028e-10 -8.952 -9.044 -0.092 (0) Ca[13C]O2[18O] 3.672e-10 3.674e-10 -9.435 -9.435 0.000 (0) - CaH[13C]O2[18O]+ 1.327e-10 1.260e-10 -9.877 -9.900 -0.023 (0) - CaH[13C]O[18O]O+ 1.327e-10 1.260e-10 -9.877 -9.900 -0.023 (0) CaH[13C][18O]O2+ 1.327e-10 1.260e-10 -9.877 -9.900 -0.023 (0) - H[13C]O[18O]2- 8.615e-11 8.171e-11 -10.065 -10.088 -0.023 (0) + CaH[13C]O[18O]O+ 1.327e-10 1.260e-10 -9.877 -9.900 -0.023 (0) + CaH[13C]O2[18O]+ 1.327e-10 1.260e-10 -9.877 -9.900 -0.023 (0) H[13C][18O]2O- 8.615e-11 8.171e-11 -10.065 -10.088 -0.023 (0) H[13C][18O]O[18O]- 8.615e-11 8.171e-11 -10.065 -10.088 -0.023 (0) + H[13C]O[18O]2- 8.615e-11 8.171e-11 -10.065 -10.088 -0.023 (0) NaH[13C]O2[18O] 3.005e-11 3.007e-11 -10.522 -10.522 0.000 (0) NaH[13C]O[18O]O 3.005e-11 3.007e-11 -10.522 -10.522 0.000 (0) NaH[13C][18O]O2 3.005e-11 3.007e-11 -10.522 -10.522 0.000 (0) @@ -392,11 +392,11 @@ O(0) 0.000e+00 H2[18O] 1.114e-01 2.001e-03 -0.953 -2.699 -1.746 (0) HD[18O] 3.470e-05 6.233e-07 -4.460 -6.205 -1.746 (0) HCO2[18O]- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) - HCO[18O]O- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) HC[18O]O2- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) + HCO[18O]O- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -65.297 -65.297 0.000 (0) - [18O]2 0.000e+00 0.000e+00 -68.296 -68.296 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -65.296 -65.296 0.000 (0) + [18O]2 0.000e+00 0.000e+00 -68.295 -68.295 0.000 (0) ------------------------------Saturation indices------------------------------- @@ -407,10 +407,10 @@ O(0) 0.000e+00 [13C]H2D2(g) -32.49 -36.13 -3.64 [13C]H2D2 [13C]H3D(g) -28.86 -32.32 -3.46 [13C]H3D [13C]H4(g) -25.65 -28.51 -2.86 [13C]H4 - [13C]HD3(g) -36.47 -39.93 -3.46 [13C]HD3 + [13C]HD3(g) -36.48 -39.94 -3.46 [13C]HD3 [13C]O2(g) -5.07 -6.54 -1.47 [13C]O2 [13C]O[18O](g) -7.45 -9.24 -1.79 [13C]O[18O] - [18O]2(g) -66.01 -68.30 -2.29 [18O]2 + [18O]2(g) -66.00 -68.29 -2.29 [18O]2 C[18O]2(g) -8.48 -9.98 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.01 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -421,8 +421,8 @@ O(0) 0.000e+00 CaCO[18O]2(s) -4.90 2.80 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 CD4(g) -38.93 -41.79 -2.86 CD4 - CH2D2(g) -30.53 -34.17 -3.64 CH2D2 - CH3D(g) -26.90 -30.36 -3.46 CH3D + CH2D2(g) -30.54 -34.17 -3.64 CH2D2 + CH3D(g) -26.90 -30.37 -3.46 CH3D CH4(g) -23.70 -26.56 -2.86 CH4 CHD3(g) -34.52 -37.98 -3.46 CHD3 CO2(g) -3.12 -4.59 -1.47 CO2 @@ -437,7 +437,7 @@ O(0) 0.000e+00 HD[18O](g) -7.75 -6.51 1.25 HD[18O] HDO(g) -5.05 -3.81 1.24 HDO O2(g) -60.01 -62.90 -2.89 O2 - O[18O](g) -62.71 -65.60 -2.89 O[18O] + O[18O](g) -62.70 -65.60 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/phreeqc3-examples/ex20b.out b/phreeqc3-examples/ex20b.out index 70043349..ac7b8d00 100644 --- a/phreeqc3-examples/ex20b.out +++ b/phreeqc3-examples/ex20b.out @@ -354,14 +354,14 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 3.6713e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.3067e-10 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 6.8834e-12 0 -----------------------------Solution composition------------------------------ @@ -376,14 +376,14 @@ Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 ----------------------------Description of solution---------------------------- pH = 5.863 Charge balance - pe = 0.247 Adjusted to redox equilibrium + pe = 0.219 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 1.495e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 1.003e-03 Total CO2 (mol/kg) = 3.912e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.367e-14 + Electrical balance (eq) = 3.883e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 18 Total H = 1.110126e+02 @@ -397,44 +397,44 @@ Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 H3O+ 1.426e-06 1.369e-06 -5.846 -5.863 -0.018 0.00 OH- 7.606e-09 7.282e-09 -8.119 -8.138 -0.019 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.506e-28 - CH4 9.506e-28 9.510e-28 -27.022 -27.022 0.000 (0) +C(-4) 1.584e-27 + CH4 1.584e-27 1.584e-27 -26.800 -26.800 0.000 (0) C(4) 3.912e-03 CO2 2.907e-03 2.908e-03 -2.537 -2.536 0.000 (0) HCO3- 9.821e-04 9.406e-04 -3.008 -3.027 -0.019 (0) CO[18O] 1.209e-05 1.209e-05 -4.918 -4.918 0.000 (0) CaHCO3+ 5.241e-06 5.023e-06 -5.281 -5.299 -0.018 (0) - HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) - HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HC[18O]O2- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) CO3-2 3.822e-08 3.216e-08 -7.418 -7.493 -0.075 (0) CaCO3 2.260e-08 2.261e-08 -7.646 -7.646 0.000 (0) C[18O]2 1.257e-08 1.257e-08 -7.901 -7.901 0.000 (0) CaHCO2[18O]+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) - CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) CaHC[18O]O2+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) + CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) Ca 5.014e-04 Ca+2 4.961e-04 4.184e-04 -3.304 -3.378 -0.074 (0) CaHCO3+ 5.241e-06 5.023e-06 -5.281 -5.299 -0.018 (0) CaH[13C]O3+ 5.770e-08 5.530e-08 -7.239 -7.257 -0.018 (0) CaCO3 2.260e-08 2.261e-08 -7.646 -7.646 0.000 (0) CaHCO2[18O]+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) - CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) CaHC[18O]O2+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) -H(0) 8.541e-16 - H2 4.271e-16 4.272e-16 -15.370 -15.369 0.000 (0) + CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) +H(0) 9.704e-16 + H2 4.852e-16 4.854e-16 -15.314 -15.314 0.000 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -61.643 -61.643 0.000 (0) - O[18O] 0.000e+00 0.000e+00 -64.042 -64.042 0.000 (0) -[13C](-4) 1.038e-29 - [13C]H4 1.038e-29 1.038e-29 -28.984 -28.984 0.000 (0) + O2 0.000e+00 0.000e+00 -61.754 -61.754 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -64.153 -64.153 0.000 (0) +[13C](-4) 1.729e-29 + [13C]H4 1.729e-29 1.729e-29 -28.762 -28.762 0.000 (0) [13C](4) 4.280e-05 [13C]O2 3.173e-05 3.174e-05 -4.499 -4.498 0.000 (0) H[13C]O3- 1.081e-05 1.036e-05 -4.966 -4.985 -0.019 (0) [13C]O[18O] 1.319e-07 1.320e-07 -6.880 -6.879 0.000 (0) CaH[13C]O3+ 5.770e-08 5.530e-08 -7.239 -7.257 -0.018 (0) - H[13C]O2[18O]- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) H[13C]O[18O]O- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) + H[13C]O2[18O]- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) H[13C][18O]O2- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) [13C]O3-2 4.202e-10 3.535e-10 -9.377 -9.452 -0.075 (0) Ca[13C]O3 2.484e-10 2.485e-10 -9.605 -9.605 0.000 (0) @@ -442,52 +442,52 @@ O(0) 0.000e+00 CaH[13C]O2[18O]+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) CaH[13C]O[18O]O+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) CaH[13C][18O]O2+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) - H[13C]O[18O]2- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) H[13C][18O]2O- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) H[13C][18O]O[18O]- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) -[14C](-4) 9.824e-40 - [14C]H4 9.824e-40 9.828e-40 -39.008 -39.008 0.000 (0) + H[13C]O[18O]2- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) +[14C](-4) 1.637e-39 + [14C]H4 1.637e-39 1.638e-39 -38.786 -38.786 0.000 (0) [14C](4) 4.061e-15 [14C]O2 3.004e-15 3.005e-15 -14.522 -14.522 0.000 (0) H[14C]O3- 1.033e-15 9.890e-16 -14.986 -15.005 -0.019 (0) [14C]O[18O] 1.249e-17 1.250e-17 -16.903 -16.903 0.000 (0) CaH[14C]O3+ 5.511e-18 5.281e-18 -17.259 -17.277 -0.018 (0) - H[14C]O2[18O]- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) - H[14C]O[18O]O- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) H[14C][18O]O2- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) + H[14C]O[18O]O- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) + H[14C]O2[18O]- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) [14C]O3-2 4.008e-20 3.372e-20 -19.397 -19.472 -0.075 (0) Ca[14C]O3 2.369e-20 2.370e-20 -19.625 -19.625 0.000 (0) [14C][18O]2 1.299e-20 1.299e-20 -19.887 -19.886 0.000 (0) CaH[14C]O2[18O]+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) - CaH[14C]O[18O]O+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) CaH[14C][18O]O2+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) + CaH[14C]O[18O]O+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) H[14C]O[18O]2- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) - H[14C][18O]2O- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) H[14C][18O]O[18O]- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) + H[14C][18O]2O- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 1.209e-05 1.209e-05 -4.918 -4.918 0.000 (0) - HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HC[18O]O2- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) [13C]O[18O] 1.319e-07 1.320e-07 -6.880 -6.879 0.000 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -64.042 -64.042 0.000 (0) - [18O]2 0.000e+00 0.000e+00 -67.043 -67.043 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -64.153 -64.153 0.000 (0) + [18O]2 0.000e+00 0.000e+00 -67.154 -67.154 0.000 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.40 -9.90 -1.50 [13C][18O]2 - [13C]H4(g) -26.12 -28.98 -2.86 [13C]H4 + [13C]H4(g) -25.90 -28.76 -2.86 [13C]H4 [13C]O2(g) -3.03 -4.50 -1.47 [13C]O2 [13C]O[18O](g) -5.41 -7.20 -1.79 [13C]O[18O] [14C][18O]2(g) -18.42 -19.92 -1.50 [14C][18O]2 - [14C]H4(g) -36.15 -39.01 -2.86 [14C]H4 + [14C]H4(g) -35.93 -38.79 -2.86 [14C]H4 [14C]O2(g) -13.05 -14.52 -1.47 [14C]O2 [14C]O[18O](g) -15.44 -17.22 -1.79 [14C]O[18O] - [18O]2(g) -64.75 -67.04 -2.29 [18O]2 + [18O]2(g) -64.86 -67.15 -2.29 [18O]2 C[18O]2(g) -6.43 -7.94 -1.50 C[18O]2 Ca[13C][18O]3(s) -12.41 -4.25 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -6.56 1.15 7.71 Ca[13C]O2[18O] @@ -501,14 +501,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -4.60 3.11 7.71 CaCO2[18O] CaCO[18O]2(s) -7.29 0.41 7.70 CaCO[18O]2 Calcite -2.39 -10.87 -8.48 CaCO3 - CH4(g) -24.16 -27.02 -2.86 CH4 + CH4(g) -23.94 -26.80 -2.86 CH4 CO2(g) -1.07 -2.54 -1.47 CO2 CO[18O](g) -3.45 -5.24 -1.79 CO[18O] - H2(g) -12.22 -15.37 -3.15 H2 + H2(g) -12.16 -15.31 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -58.75 -61.64 -2.89 O2 - O[18O](g) -61.45 -64.34 -2.89 O[18O] + O2(g) -58.86 -61.75 -2.89 O2 + O[18O](g) -61.56 -64.45 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -617,10 +617,10 @@ Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.9496e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.9261e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 0 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.2212e-12 0 Alpha 14C CH4(aq)/CO2(aq) 0 -1000 0 -----------------------------Solution composition------------------------------ @@ -636,14 +636,14 @@ Alpha 14C CH4(aq)/CO2(aq) 0 -1000 0 ----------------------------Description of solution---------------------------- pH = 6.235 Charge balance - pe = 0.081 Adjusted to redox equilibrium + pe = 0.013 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 2.970e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 2.006e-03 Total CO2 (mol/kg) = 4.408e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.501e-14 + Electrical balance (eq) = 3.897e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 5 Total H = 1.110126e+02 @@ -657,101 +657,101 @@ Alpha 14C CH4(aq)/CO2(aq) 0 -1000 0 H3O+ 6.146e-07 5.816e-07 -6.211 -6.235 -0.024 0.00 OH- 1.821e-08 1.714e-08 -7.740 -7.766 -0.026 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.780e-29 - CH4 1.780e-29 1.781e-29 -28.750 -28.749 0.000 (0) +C(-4) 6.181e-29 + CH4 6.181e-29 6.185e-29 -28.209 -28.209 0.000 (0) C(4) 4.408e-03 CO2 2.414e-03 2.416e-03 -2.617 -2.617 0.000 (0) HCO3- 1.953e-03 1.840e-03 -2.709 -2.735 -0.026 (0) CaHCO3+ 1.936e-05 1.827e-05 -4.713 -4.738 -0.025 (0) CO[18O] 1.004e-05 1.005e-05 -4.998 -4.998 0.000 (0) - HCO2[18O]- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) + HCO2[18O]- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HC[18O]O2- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) CaCO3 1.934e-07 1.935e-07 -6.714 -6.713 0.000 (0) CO3-2 1.880e-07 1.481e-07 -6.726 -6.830 -0.104 (0) CaHCO2[18O]+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) - CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) CaHC[18O]O2+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) + CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) C[18O]2 1.044e-08 1.044e-08 -7.981 -7.981 0.000 (0) HCO[18O]2- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) - HC[18O]2O- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) HC[18O]O[18O]- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) + HC[18O]2O- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) Ca 1.003e-03 Ca+2 9.830e-04 7.781e-04 -3.007 -3.109 -0.102 (0) CaHCO3+ 1.936e-05 1.827e-05 -4.713 -4.738 -0.025 (0) CaH[13C]O3+ 2.134e-07 2.013e-07 -6.671 -6.696 -0.025 (0) CaCO3 1.934e-07 1.935e-07 -6.714 -6.713 0.000 (0) CaHCO2[18O]+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) - CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) CaHC[18O]O2+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) + CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) Ca[13C]O3 2.128e-09 2.130e-09 -8.672 -8.672 0.000 (0) CaCO2[18O] 1.158e-09 1.158e-09 -8.936 -8.936 0.000 (0) -H(0) 3.309e-16 - H2 1.654e-16 1.656e-16 -15.781 -15.781 0.000 (0) +H(0) 4.517e-16 + H2 2.258e-16 2.260e-16 -15.646 -15.646 0.000 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -60.820 -60.820 0.000 (0) - O[18O] 0.000e+00 0.000e+00 -63.219 -63.219 0.000 (0) -[13C](-4) 1.945e-31 - [13C]H4 1.945e-31 1.946e-31 -30.711 -30.711 0.000 (0) + O2 0.000e+00 0.000e+00 -61.090 -61.090 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -63.489 -63.489 0.000 (0) +[13C](-4) 6.753e-31 + [13C]H4 6.753e-31 6.758e-31 -30.170 -30.170 0.000 (0) [13C](4) 4.835e-05 [13C]O2 2.638e-05 2.639e-05 -4.579 -4.578 0.000 (0) H[13C]O3- 2.152e-05 2.027e-05 -4.667 -4.693 -0.026 (0) CaH[13C]O3+ 2.134e-07 2.013e-07 -6.671 -6.696 -0.025 (0) [13C]O[18O] 1.097e-07 1.098e-07 -6.960 -6.960 0.000 (0) H[13C]O2[18O]- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) - H[13C]O[18O]O- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) H[13C][18O]O2- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) + H[13C]O[18O]O- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) Ca[13C]O3 2.128e-09 2.130e-09 -8.672 -8.672 0.000 (0) [13C]O3-2 2.069e-09 1.629e-09 -8.684 -8.788 -0.104 (0) CaH[13C]O2[18O]+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) CaH[13C]O[18O]O+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) CaH[13C][18O]O2+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) [13C][18O]2 1.140e-10 1.141e-10 -9.943 -9.943 0.000 (0) - H[13C]O[18O]2- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) H[13C][18O]2O- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) H[13C][18O]O[18O]- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) + H[13C]O[18O]2- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -40.789 -40.788 0.000 (0) + [14C]H4 0.000e+00 0.000e+00 -40.248 -40.248 0.000 (0) [14C](4) 4.061e-15 [14C]O2 2.207e-15 2.208e-15 -14.656 -14.656 0.000 (0) H[14C]O3- 1.816e-15 1.711e-15 -14.741 -14.767 -0.026 (0) CaH[14C]O3+ 1.801e-17 1.699e-17 -16.745 -16.770 -0.025 (0) [14C]O[18O] 9.176e-18 9.182e-18 -17.037 -17.037 0.000 (0) - H[14C]O2[18O]- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) H[14C]O[18O]O- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) + H[14C]O2[18O]- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) H[14C][18O]O2- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) Ca[14C]O3 1.794e-19 1.795e-19 -18.746 -18.746 0.000 (0) [14C]O3-2 1.743e-19 1.373e-19 -18.759 -18.862 -0.104 (0) - CaH[14C]O2[18O]+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) CaH[14C]O[18O]O+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) + CaH[14C]O2[18O]+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) CaH[14C][18O]O2+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) [14C][18O]2 9.539e-21 9.545e-21 -20.021 -20.020 0.000 (0) - H[14C]O[18O]2- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) - H[14C][18O]2O- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) H[14C][18O]O[18O]- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) + H[14C][18O]2O- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) + H[14C]O[18O]2- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 1.004e-05 1.005e-05 -4.998 -4.998 0.000 (0) HCO2[18O]- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) - HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HC[18O]O2- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) + HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -63.219 -63.219 0.000 (0) - [18O]2 0.000e+00 0.000e+00 -66.220 -66.220 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -63.489 -63.489 0.000 (0) + [18O]2 0.000e+00 0.000e+00 -66.490 -66.490 0.000 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.48 -9.98 -1.50 [13C][18O]2 - [13C]H4(g) -27.85 -30.71 -2.86 [13C]H4 + [13C]H4(g) -27.31 -30.17 -2.86 [13C]H4 [13C]O2(g) -3.11 -4.58 -1.47 [13C]O2 [13C]O[18O](g) -5.49 -7.28 -1.79 [13C]O[18O] [14C][18O]2(g) -18.55 -20.06 -1.50 [14C][18O]2 - [14C]H4(g) -37.93 -40.79 -2.86 [14C]H4 + [14C]H4(g) -37.39 -40.25 -2.86 [14C]H4 [14C]O2(g) -13.19 -14.66 -1.47 [14C]O2 [14C]O[18O](g) -15.57 -17.36 -1.79 [14C]O[18O] - [18O]2(g) -63.93 -66.22 -2.29 [18O]2 + [18O]2(g) -64.20 -66.49 -2.29 [18O]2 C[18O]2(g) -6.51 -8.02 -1.50 C[18O]2 Ca[13C][18O]3(s) -11.48 -3.32 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -5.63 2.08 7.71 Ca[13C]O2[18O] @@ -765,14 +765,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -3.67 4.04 7.71 CaCO2[18O] CaCO[18O]2(s) -6.36 1.34 7.70 CaCO[18O]2 Calcite -1.46 -9.94 -8.48 CaCO3 - CH4(g) -25.89 -28.75 -2.86 CH4 + CH4(g) -25.35 -28.21 -2.86 CH4 CO2(g) -1.15 -2.62 -1.47 CO2 CO[18O](g) -3.53 -5.32 -1.79 CO[18O] - H2(g) -12.63 -15.78 -3.15 H2 + H2(g) -12.50 -15.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -57.93 -60.82 -2.89 O2 - O[18O](g) -60.63 -63.52 -2.89 O[18O] + O2(g) -58.20 -61.09 -2.89 O2 + O[18O](g) -60.90 -63.79 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -876,12 +876,12 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2373e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2795e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.9934e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8096e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 @@ -898,14 +898,14 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 ----------------------------Description of solution---------------------------- pH = 6.503 Charge balance - pe = 11.499 Adjusted to redox equilibrium + pe = 11.498 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 4.428e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 3.009e-03 Total CO2 (mol/kg) = 4.904e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.766e-13 + Electrical balance (eq) = 5.037e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 17 Total H = 1.110126e+02 @@ -920,22 +920,22 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 OH- 3.415e-08 3.176e-08 -7.467 -7.498 -0.032 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.333 -122.333 0.000 (0) + CH4 0.000e+00 0.000e+00 -122.330 -122.330 0.000 (0) C(4) 4.904e-03 HCO3- 2.915e-03 2.713e-03 -2.535 -2.567 -0.031 (0) CO2 1.921e-03 1.923e-03 -2.716 -2.716 0.000 (0) CaHCO3+ 4.102e-05 3.825e-05 -4.387 -4.417 -0.030 (0) CO[18O] 7.989e-06 7.997e-06 -5.097 -5.097 0.000 (0) HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) - HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) + HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) CaCO3 7.501e-07 7.509e-07 -6.125 -6.124 0.000 (0) CO3-2 5.390e-07 4.046e-07 -6.268 -6.393 -0.125 (0) CaHCO2[18O]+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHCO[18O]O+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHC[18O]O2+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) - HCO[18O]2- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) HC[18O]2O- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) + HCO[18O]2- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) HC[18O]O[18O]- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) C[18O]2 8.305e-09 8.314e-09 -8.081 -8.080 0.000 (0) Ca 1.504e-03 @@ -944,62 +944,62 @@ Ca 1.504e-03 CaCO3 7.501e-07 7.509e-07 -6.125 -6.124 0.000 (0) CaH[13C]O3+ 4.525e-07 4.219e-07 -6.344 -6.375 -0.030 (0) CaHCO2[18O]+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) - CaHCO[18O]O+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHC[18O]O2+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) + CaHCO[18O]O+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) Ca[13C]O3 8.262e-09 8.270e-09 -8.083 -8.082 0.000 (0) CaCO2[18O] 4.490e-09 4.494e-09 -8.348 -8.347 0.000 (0) -H(0) 1.407e-39 - H2 7.037e-40 7.044e-40 -39.153 -39.152 0.000 (0) -O(0) 1.679e-14 - O2 8.360e-15 8.369e-15 -14.078 -14.077 0.000 (0) - O[18O] 3.336e-17 3.339e-17 -16.477 -16.476 0.000 (0) +H(0) 1.410e-39 + H2 7.048e-40 7.055e-40 -39.152 -39.152 0.000 (0) +O(0) 1.673e-14 + O2 8.334e-15 8.342e-15 -14.079 -14.079 0.000 (0) + O[18O] 3.326e-17 3.329e-17 -16.478 -16.478 0.000 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.294 -124.294 0.000 (0) + [13C]H4 0.000e+00 0.000e+00 -124.292 -124.291 0.000 (0) [13C](4) 5.391e-05 H[13C]O3- 3.215e-05 2.993e-05 -4.493 -4.524 -0.031 (0) [13C]O2 2.101e-05 2.103e-05 -4.678 -4.677 0.000 (0) CaH[13C]O3+ 4.525e-07 4.219e-07 -6.344 -6.375 -0.030 (0) [13C]O[18O] 8.736e-08 8.745e-08 -7.059 -7.058 0.000 (0) H[13C]O2[18O]- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) - H[13C]O[18O]O- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) H[13C][18O]O2- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) + H[13C]O[18O]O- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) Ca[13C]O3 8.262e-09 8.270e-09 -8.083 -8.082 0.000 (0) [13C]O3-2 5.937e-09 4.456e-09 -8.226 -8.351 -0.125 (0) - CaH[13C]O2[18O]+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) CaH[13C]O[18O]O+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) CaH[13C][18O]O2+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) + CaH[13C]O2[18O]+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) H[13C]O[18O]2- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) H[13C][18O]2O- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) H[13C][18O]O[18O]- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) [13C][18O]2 9.082e-11 9.091e-11 -10.042 -10.041 0.000 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.420 -134.419 0.000 (0) + [14C]H4 0.000e+00 0.000e+00 -134.417 -134.416 0.000 (0) [14C](4) 4.061e-15 H[14C]O3- 2.430e-15 2.262e-15 -14.614 -14.645 -0.031 (0) [14C]O2 1.574e-15 1.576e-15 -14.803 -14.802 0.000 (0) CaH[14C]O3+ 3.420e-17 3.189e-17 -16.466 -16.496 -0.030 (0) [14C]O[18O] 6.547e-18 6.553e-18 -17.184 -17.184 0.000 (0) - H[14C]O2[18O]- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) H[14C]O[18O]O- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) + H[14C]O2[18O]- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) H[14C][18O]O2- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) Ca[14C]O3 6.236e-19 6.242e-19 -18.205 -18.205 0.000 (0) [14C]O3-2 4.481e-19 3.364e-19 -18.349 -18.473 -0.125 (0) CaH[14C]O2[18O]+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) - CaH[14C]O[18O]O+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) CaH[14C][18O]O2+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) + CaH[14C]O[18O]O+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) H[14C]O[18O]2- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) - H[14C][18O]2O- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) H[14C][18O]O[18O]- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) + H[14C][18O]2O- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) [14C][18O]2 6.806e-21 6.813e-21 -20.167 -20.167 0.000 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 7.989e-06 7.997e-06 -5.097 -5.097 0.000 (0) - HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) - HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) -[18O](0) 3.343e-17 - O[18O] 3.336e-17 3.339e-17 -16.477 -16.476 0.000 (0) - [18O]2 3.328e-20 3.331e-20 -19.478 -19.477 0.000 (0) + HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) + HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) +[18O](0) 3.332e-17 + O[18O] 3.326e-17 3.329e-17 -16.478 -16.478 0.000 (0) + [18O]2 3.318e-20 3.321e-20 -19.479 -19.479 0.000 (0) ------------------------------Saturation indices------------------------------- @@ -1033,7 +1033,7 @@ O(0) 1.679e-14 H2(g) -36.00 -39.15 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.18 -14.08 -2.89 O2 + O2(g) -11.19 -14.08 -2.89 O2 O[18O](g) -13.89 -16.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -1138,12 +1138,12 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2771e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 0 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -2.0204e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8202e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 @@ -1160,14 +1160,14 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 ----------------------------Description of solution---------------------------- pH = 6.750 Charge balance - pe = 11.241 Adjusted to redox equilibrium + pe = 11.210 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 5.871e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.012e-03 Total CO2 (mol/kg) = 5.400e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 4 Total H = 1.110126e+02 @@ -1182,22 +1182,22 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 OH- 6.090e-08 5.607e-08 -7.215 -7.251 -0.036 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.370 -122.369 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.123 -122.122 0.001 (0) C(4) 5.400e-03 HCO3- 3.868e-03 3.565e-03 -2.413 -2.448 -0.035 (0) CO2 1.430e-03 1.432e-03 -2.845 -2.844 0.001 (0) CaHCO3+ 6.931e-05 6.403e-05 -4.159 -4.194 -0.034 (0) HCO2[18O]- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) - HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) HC[18O]O2- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) + HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) CO[18O] 5.945e-06 5.953e-06 -5.226 -5.225 0.001 (0) CaCO3 2.216e-06 2.219e-06 -5.654 -5.654 0.001 (0) CO3-2 1.300e-06 9.385e-07 -5.886 -6.028 -0.142 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - HCO[18O]2- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) + CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) HC[18O]2O- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) + HCO[18O]2- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) HC[18O]O[18O]- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) CaCO2[18O] 1.326e-08 1.328e-08 -7.877 -7.877 0.001 (0) CO2[18O]-2 7.783e-09 5.618e-09 -8.109 -8.250 -0.142 (0) @@ -1208,30 +1208,30 @@ Ca 2.006e-03 CaCO3 2.216e-06 2.219e-06 -5.654 -5.654 0.001 (0) CaH[13C]O3+ 7.650e-07 7.067e-07 -6.116 -6.151 -0.034 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) + CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) Ca[13C]O3 2.442e-08 2.445e-08 -7.612 -7.612 0.001 (0) CaCO2[18O] 1.326e-08 1.328e-08 -7.877 -7.877 0.001 (0) -H(0) 1.483e-39 - H2 7.415e-40 7.425e-40 -39.130 -39.129 0.001 (0) -O(0) 1.510e-14 - O2 7.521e-15 7.531e-15 -14.124 -14.123 0.001 (0) - O[18O] 3.001e-17 3.005e-17 -16.523 -16.522 0.001 (0) +H(0) 1.710e-39 + H2 8.549e-40 8.560e-40 -39.068 -39.068 0.001 (0) +O(0) 1.136e-14 + O2 5.658e-15 5.666e-15 -14.247 -14.247 0.001 (0) + O[18O] 2.258e-17 2.261e-17 -16.646 -16.646 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.331 -124.330 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.084 -124.083 0.001 (0) [13C](4) 5.947e-05 H[13C]O3- 4.269e-05 3.935e-05 -4.370 -4.405 -0.035 (0) [13C]O2 1.564e-05 1.566e-05 -4.806 -4.805 0.001 (0) CaH[13C]O3+ 7.650e-07 7.067e-07 -6.116 -6.151 -0.034 (0) H[13C]O2[18O]- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) - H[13C]O[18O]O- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) H[13C][18O]O2- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) + H[13C]O[18O]O- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) [13C]O[18O] 6.505e-08 6.514e-08 -7.187 -7.186 0.001 (0) Ca[13C]O3 2.442e-08 2.445e-08 -7.612 -7.612 0.001 (0) [13C]O3-2 1.433e-08 1.034e-08 -7.844 -7.985 -0.142 (0) + CaH[13C][18O]O2+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) CaH[13C]O2[18O]+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) CaH[13C]O[18O]O+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) - CaH[13C][18O]O2+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) H[13C]O[18O]2- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) H[13C][18O]2O- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) H[13C][18O]O[18O]- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) @@ -1239,52 +1239,52 @@ O(0) 1.510e-14 [13C]O2[18O]-2 8.578e-11 6.191e-11 -10.067 -10.208 -0.142 (0) [13C][18O]2 6.763e-11 6.772e-11 -10.170 -10.169 0.001 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.499 -134.499 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.252 -134.251 0.001 (0) [14C](4) 4.061e-15 H[14C]O3- 2.922e-15 2.694e-15 -14.534 -14.570 -0.035 (0) [14C]O2 1.062e-15 1.063e-15 -14.974 -14.973 0.001 (0) CaH[14C]O3+ 5.236e-17 4.837e-17 -16.281 -16.315 -0.034 (0) - H[14C]O2[18O]- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) - H[14C]O[18O]O- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) H[14C][18O]O2- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) + H[14C]O[18O]O- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) + H[14C]O2[18O]- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) [14C]O[18O] 4.414e-18 4.420e-18 -17.355 -17.355 0.001 (0) Ca[14C]O3 1.669e-18 1.671e-18 -17.777 -17.777 0.001 (0) [14C]O3-2 9.796e-19 7.070e-19 -18.009 -18.151 -0.142 (0) CaH[14C]O2[18O]+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) - CaH[14C]O[18O]O+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) CaH[14C][18O]O2+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) - H[14C]O[18O]2- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) - H[14C][18O]2O- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + CaH[14C]O[18O]O+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) H[14C][18O]O[18O]- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + H[14C][18O]2O- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + H[14C]O[18O]2- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) Ca[14C]O2[18O] 9.991e-21 1.000e-20 -20.000 -20.000 0.001 (0) [14C]O2[18O]-2 5.863e-21 4.232e-21 -20.232 -20.373 -0.142 (0) [14C][18O]2 4.589e-21 4.595e-21 -20.338 -20.338 0.001 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) - HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) HC[18O]O2- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) + HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) CO[18O] 5.945e-06 5.953e-06 -5.226 -5.225 0.001 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) -[18O](0) 3.007e-17 - O[18O] 3.001e-17 3.005e-17 -16.523 -16.522 0.001 (0) - [18O]2 2.994e-20 2.998e-20 -19.524 -19.523 0.001 (0) +[18O](0) 2.262e-17 + O[18O] 2.258e-17 2.261e-17 -16.646 -16.646 0.001 (0) + [18O]2 2.252e-20 2.256e-20 -19.647 -19.647 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.70 -10.21 -1.50 [13C][18O]2 - [13C]H4(g) -121.47 -124.33 -2.86 [13C]H4 + [13C]H4(g) -121.22 -124.08 -2.86 [13C]H4 [13C]O2(g) -3.34 -4.81 -1.47 [13C]O2 [13C]O[18O](g) -5.72 -7.51 -1.79 [13C]O[18O] [14C][18O]2(g) -18.87 -20.37 -1.50 [14C][18O]2 - [14C]H4(g) -131.64 -134.50 -2.86 [14C]H4 + [14C]H4(g) -131.39 -134.25 -2.86 [14C]H4 [14C]O2(g) -13.50 -14.97 -1.47 [14C]O2 [14C]O[18O](g) -15.89 -17.67 -1.79 [14C]O[18O] - [18O]2(g) -17.23 -19.52 -2.29 [18O]2 + [18O]2(g) -17.36 -19.65 -2.29 [18O]2 C[18O]2(g) -6.74 -8.24 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.42 -2.26 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.57 3.14 7.71 Ca[13C]O2[18O] @@ -1298,14 +1298,14 @@ O(0) 1.510e-14 CaCO2[18O](s) -2.61 5.10 7.71 CaCO2[18O] CaCO[18O]2(s) -5.30 2.40 7.70 CaCO[18O]2 Calcite -0.40 -8.88 -8.48 CaCO3 - CH4(g) -119.51 -122.37 -2.86 CH4 + CH4(g) -119.26 -122.12 -2.86 CH4 CO2(g) -1.38 -2.84 -1.47 CO2 CO[18O](g) -3.76 -5.54 -1.79 CO[18O] - H2(g) -35.98 -39.13 -3.15 H2 + H2(g) -35.92 -39.07 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.23 -14.12 -2.89 O2 - O[18O](g) -13.93 -16.82 -2.89 O[18O] + O2(g) -11.35 -14.25 -2.89 O2 + O[18O](g) -14.05 -16.95 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1412,12 +1412,12 @@ Calcite 5.60e-05 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2738e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7115e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.653e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -1437,16 +1437,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.984 Adjusted to redox equilibrium + pe = 10.791 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.841e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 73 + Iterations = 77 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -1459,24 +1459,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.385 -122.384 0.001 (0) + CH4 0.000e+00 0.000e+00 -120.842 -120.842 0.001 (0) C(4) 5.841e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.976e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.802e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -1484,50 +1484,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.097e-06 1.006e-06 -5.960 -5.997 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.023e-08 6.033e-08 -7.220 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.609e-39 - H2 8.044e-40 8.057e-40 -39.095 -39.094 0.001 (0) -O(0) 1.282e-14 - O2 6.385e-15 6.396e-15 -14.195 -14.194 0.001 (0) - O[18O] 2.548e-17 2.552e-17 -16.594 -16.593 0.001 (0) +H(0) 3.910e-39 + H2 1.955e-39 1.958e-39 -38.709 -38.708 0.001 (0) +O(0) 2.171e-15 + O2 1.081e-15 1.083e-15 -14.966 -14.965 0.001 (0) + O[18O] 4.314e-18 4.321e-18 -17.365 -17.364 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.346 -124.345 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -122.803 -122.802 0.001 (0) [13C](4) 6.441e-05 H[13C]O3- 5.195e-05 4.753e-05 -4.284 -4.323 -0.039 (0) [13C]O2 1.090e-05 1.092e-05 -4.962 -4.962 0.001 (0) CaH[13C]O3+ 1.097e-06 1.006e-06 -5.960 -5.997 -0.037 (0) - H[13C]O2[18O]- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) - H[13C]O[18O]O- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) H[13C][18O]O2- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) + H[13C]O[18O]O- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) + H[13C]O2[18O]- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) Ca[13C]O3 6.023e-08 6.033e-08 -7.220 -7.219 0.001 (0) [13C]O[18O] 4.534e-08 4.542e-08 -7.343 -7.343 0.001 (0) [13C]O3-2 3.090e-08 2.164e-08 -7.510 -7.665 -0.155 (0) + CaH[13C][18O]O2+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) CaH[13C]O2[18O]+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) CaH[13C]O[18O]O+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) - CaH[13C][18O]O2+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) Ca[13C]O2[18O] 3.605e-10 3.611e-10 -9.443 -9.442 0.001 (0) - H[13C]O[18O]2- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) - H[13C][18O]2O- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) H[13C][18O]O[18O]- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) + H[13C][18O]2O- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) + H[13C]O[18O]2- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) [13C]O2[18O]-2 1.849e-10 1.295e-10 -9.733 -9.888 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.553 -134.552 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -133.011 -133.010 0.001 (0) [14C](4) 4.023e-15 H[14C]O3- 3.250e-15 2.973e-15 -14.488 -14.527 -0.039 (0) [14C]O2 6.762e-16 6.773e-16 -15.170 -15.169 0.001 (0) CaH[14C]O3+ 6.862e-17 6.295e-17 -16.164 -16.201 -0.037 (0) - H[14C]O2[18O]- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) - H[14C]O[18O]O- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) H[14C][18O]O2- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) + H[14C]O[18O]O- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) + H[14C]O2[18O]- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) Ca[14C]O3 3.762e-18 3.768e-18 -17.425 -17.424 0.001 (0) [14C]O[18O] 2.812e-18 2.816e-18 -17.551 -17.550 0.001 (0) [14C]O3-2 1.930e-18 1.352e-18 -17.715 -17.869 -0.155 (0) CaH[14C]O2[18O]+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) - CaH[14C]O[18O]O+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) CaH[14C][18O]O2+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) + CaH[14C]O[18O]O+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) Ca[14C]O2[18O] 2.252e-20 2.255e-20 -19.648 -19.647 0.001 (0) H[14C]O[18O]2- 1.294e-20 1.183e-20 -19.888 -19.927 -0.039 (0) H[14C][18O]2O- 1.294e-20 1.183e-20 -19.888 -19.927 -0.039 (0) @@ -1536,29 +1536,29 @@ O(0) 1.282e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.553e-17 - O[18O] 2.548e-17 2.552e-17 -16.594 -16.593 0.001 (0) - [18O]2 2.542e-20 2.546e-20 -19.595 -19.594 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 4.323e-18 + O[18O] 4.314e-18 4.321e-18 -17.365 -17.364 0.001 (0) + [18O]2 4.304e-21 4.311e-21 -20.366 -20.365 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.48 -124.34 -2.86 [13C]H4 + [13C]H4(g) -119.94 -122.80 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.07 -20.57 -1.50 [14C][18O]2 - [14C]H4(g) -131.69 -134.55 -2.86 [14C]H4 + [14C]H4(g) -130.15 -133.01 -2.86 [14C]H4 [14C]O2(g) -13.70 -15.17 -1.47 [14C]O2 [14C]O[18O](g) -16.08 -17.87 -1.79 [14C]O[18O] - [18O]2(g) -17.30 -19.59 -2.29 [18O]2 + [18O]2(g) -18.08 -20.37 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -1572,14 +1572,14 @@ O(0) 1.282e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.52 -122.38 -2.86 CH4 + CH4(g) -117.98 -120.84 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.94 -39.09 -3.15 H2 + H2(g) -35.56 -38.71 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.30 -14.19 -2.89 O2 - O[18O](g) -14.00 -16.89 -2.89 O[18O] + O2(g) -12.07 -14.97 -2.89 O2 + O[18O](g) -14.77 -17.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1603,6 +1603,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 12. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -1664,7 +1670,6 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99518e-03 -4.9969 permil R(18O) OH- 1.92121e-03 -41.884 permil R(18O) H3O+ 2.04132e-03 18.011 permil - R(18O) O2(aq) 1.99518e-03 -4.9969 permil R(13C) CO2(aq) 1.09594e-02 -19.751 permil R(14C) CO2(aq) 6.25457e-13 53.19 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil @@ -1674,6 +1679,8 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99518e-03 -4.9969 permil R(13C) CO3-2 1.10389e-02 -12.642 permil R(14C) CO3-2 6.34562e-13 53.964 pmc + R(13C) CH4(aq) 1.09594e-02 -19.751 permil + R(14C) CH4(aq) 6.25457e-13 53.19 pmc R(18O) Calcite 2.05262e-03 23.649 permil R(13C) Calcite 1.10766e-02 -9.2642 permil R(14C) Calcite 6.38911e-13 54.334 pmc @@ -1686,14 +1693,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2267e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7817e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7905e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.7431e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -4.885e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -1711,16 +1719,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.946 Adjusted to redox equilibrium + pe = -1.455 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.841e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 71 + Iterations = 133 (234 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -1732,14 +1740,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.078 -122.078 0.001 (0) +C(-4) 1.346e-23 + CH4 1.346e-23 1.348e-23 -22.871 -22.870 0.001 (0) C(4) 5.841e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -1748,9 +1756,9 @@ C(4) 5.841e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -1758,23 +1766,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.098e-06 1.007e-06 -5.959 -5.997 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.028e-08 6.038e-08 -7.220 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.919e-39 - H2 9.597e-40 9.612e-40 -39.018 -39.017 0.001 (0) -O(0) 9.008e-15 - O2 4.486e-15 4.493e-15 -14.348 -14.347 0.001 (0) - O[18O] 1.790e-17 1.793e-17 -16.747 -16.746 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.039 -124.038 0.001 (0) +H(0) 1.216e-14 + H2 6.081e-15 6.091e-15 -14.216 -14.215 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.952 -63.951 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.351 -66.350 0.001 (0) +[13C](-4) 1.475e-25 + [13C]H4 1.475e-25 1.477e-25 -24.831 -24.831 0.001 (0) [13C](4) 6.447e-05 H[13C]O3- 5.200e-05 4.757e-05 -4.284 -4.323 -0.039 (0) [13C]O2 1.091e-05 1.093e-05 -4.962 -4.961 0.001 (0) CaH[13C]O3+ 1.098e-06 1.007e-06 -5.959 -5.997 -0.037 (0) - H[13C]O2[18O]- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) H[13C]O[18O]O- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) + H[13C]O2[18O]- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) H[13C][18O]O2- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) Ca[13C]O3 6.028e-08 6.038e-08 -7.220 -7.219 0.001 (0) [13C]O[18O] 4.539e-08 4.546e-08 -7.343 -7.342 0.001 (0) @@ -1783,56 +1791,56 @@ O(0) 9.008e-15 CaH[13C]O[18O]O+ 2.191e-09 2.010e-09 -8.659 -8.697 -0.037 (0) CaH[13C][18O]O2+ 2.191e-09 2.010e-09 -8.659 -8.697 -0.037 (0) Ca[13C]O2[18O] 3.608e-10 3.614e-10 -9.443 -9.442 0.001 (0) - H[13C]O[18O]2- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) - H[13C][18O]2O- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) H[13C][18O]O[18O]- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) + H[13C][18O]2O- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) + H[13C]O[18O]2- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) [13C]O2[18O]-2 1.851e-10 1.297e-10 -9.733 -9.887 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.282 -134.281 0.001 (0) +[14C](-4) 8.417e-36 + [14C]H4 8.417e-36 8.431e-36 -35.075 -35.074 0.001 (0) [14C](4) 3.706e-15 H[14C]O3- 2.994e-15 2.739e-15 -14.524 -14.562 -0.039 (0) [14C]O2 6.229e-16 6.239e-16 -15.206 -15.205 0.001 (0) CaH[14C]O3+ 6.321e-17 5.799e-17 -16.199 -16.237 -0.037 (0) - H[14C]O2[18O]- 5.973e-18 5.464e-18 -17.224 -17.262 -0.039 (0) - H[14C]O[18O]O- 5.973e-18 5.464e-18 -17.224 -17.262 -0.039 (0) H[14C][18O]O2- 5.973e-18 5.464e-18 -17.224 -17.262 -0.039 (0) + H[14C]O[18O]O- 5.973e-18 5.464e-18 -17.224 -17.262 -0.039 (0) + H[14C]O2[18O]- 5.973e-18 5.464e-18 -17.224 -17.262 -0.039 (0) Ca[14C]O3 3.465e-18 3.471e-18 -17.460 -17.460 0.001 (0) [14C]O[18O] 2.590e-18 2.594e-18 -17.587 -17.586 0.001 (0) [14C]O3-2 1.778e-18 1.245e-18 -17.750 -17.905 -0.155 (0) CaH[14C]O2[18O]+ 1.261e-19 1.157e-19 -18.899 -18.937 -0.037 (0) - CaH[14C]O[18O]O+ 1.261e-19 1.157e-19 -18.899 -18.937 -0.037 (0) CaH[14C][18O]O2+ 1.261e-19 1.157e-19 -18.899 -18.937 -0.037 (0) + CaH[14C]O[18O]O+ 1.261e-19 1.157e-19 -18.899 -18.937 -0.037 (0) Ca[14C]O2[18O] 2.074e-20 2.078e-20 -19.683 -19.682 0.001 (0) - H[14C]O[18O]2- 1.192e-20 1.090e-20 -19.924 -19.962 -0.039 (0) H[14C][18O]2O- 1.192e-20 1.090e-20 -19.924 -19.962 -0.039 (0) H[14C][18O]O[18O]- 1.192e-20 1.090e-20 -19.924 -19.962 -0.039 (0) + H[14C]O[18O]2- 1.192e-20 1.090e-20 -19.924 -19.962 -0.039 (0) [14C]O2[18O]-2 1.064e-20 7.454e-21 -19.973 -20.128 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.794e-17 - O[18O] 1.790e-17 1.793e-17 -16.747 -16.746 0.001 (0) - [18O]2 1.786e-20 1.789e-20 -19.748 -19.747 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -66.351 -66.350 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.352 -69.351 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.18 -124.04 -2.86 [13C]H4 + [13C]H4(g) -21.97 -24.83 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.10 -20.60 -1.50 [14C][18O]2 - [14C]H4(g) -131.42 -134.28 -2.86 [14C]H4 + [14C]H4(g) -32.21 -35.07 -2.86 [14C]H4 [14C]O2(g) -13.74 -15.20 -1.47 [14C]O2 [14C]O[18O](g) -16.12 -17.90 -1.79 [14C]O[18O] - [18O]2(g) -17.46 -19.75 -2.29 [18O]2 + [18O]2(g) -67.06 -69.35 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -1846,14 +1854,14 @@ O(0) 9.008e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.22 -122.08 -2.86 CH4 + CH4(g) -20.01 -22.87 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.87 -39.02 -3.15 H2 + H2(g) -11.07 -14.22 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.46 -14.35 -2.89 O2 - O[18O](g) -14.16 -17.05 -2.89 O[18O] + O2(g) -61.06 -63.95 -2.89 O2 + O[18O](g) -63.76 -66.65 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1968,14 +1976,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.2157e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6691e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.542e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.5321e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 3.1086e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -1993,16 +2001,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.710 Adjusted to redox equilibrium + pe = -1.627 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 66 (167 overall) + Iterations = 79 (180 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -2014,25 +2022,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.477e-21 - CH4 1.477e-21 1.480e-21 -20.831 -20.830 0.001 (0) +C(-4) 3.178e-22 + CH4 3.178e-22 3.183e-22 -21.498 -21.497 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -2040,81 +2048,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.099e-06 1.008e-06 -5.959 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.034e-08 6.044e-08 -7.219 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.936e-14 - H2 1.968e-14 1.971e-14 -13.706 -13.705 0.001 (0) +H(0) 2.681e-14 + H2 1.340e-14 1.343e-14 -13.873 -13.872 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.972 -64.971 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.371 -67.370 0.001 (0) -[13C](-4) 1.620e-23 - [13C]H4 1.620e-23 1.623e-23 -22.790 -22.790 0.001 (0) + O2 0.000e+00 0.000e+00 -64.638 -64.638 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.037 -67.037 0.001 (0) +[13C](-4) 3.486e-24 + [13C]H4 3.486e-24 3.491e-24 -23.458 -23.457 0.001 (0) [13C](4) 6.453e-05 H[13C]O3- 5.205e-05 4.762e-05 -4.284 -4.322 -0.039 (0) [13C]O2 1.092e-05 1.094e-05 -4.962 -4.961 0.001 (0) CaH[13C]O3+ 1.099e-06 1.008e-06 -5.959 -5.996 -0.037 (0) H[13C]O2[18O]- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) - H[13C]O[18O]O- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) H[13C][18O]O2- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) + H[13C]O[18O]O- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) Ca[13C]O3 6.034e-08 6.044e-08 -7.219 -7.219 0.001 (0) [13C]O[18O] 4.543e-08 4.550e-08 -7.343 -7.342 0.001 (0) [13C]O3-2 3.095e-08 2.168e-08 -7.509 -7.664 -0.155 (0) - CaH[13C]O2[18O]+ 2.193e-09 2.012e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O[18O]O+ 2.193e-09 2.012e-09 -8.659 -8.696 -0.037 (0) CaH[13C][18O]O2+ 2.193e-09 2.012e-09 -8.659 -8.696 -0.037 (0) + CaH[13C]O2[18O]+ 2.193e-09 2.012e-09 -8.659 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.612e-10 3.618e-10 -9.442 -9.442 0.001 (0) - H[13C]O[18O]2- 2.072e-10 1.896e-10 -9.684 -9.722 -0.039 (0) - H[13C][18O]2O- 2.072e-10 1.896e-10 -9.684 -9.722 -0.039 (0) H[13C][18O]O[18O]- 2.072e-10 1.896e-10 -9.684 -9.722 -0.039 (0) + H[13C][18O]2O- 2.072e-10 1.896e-10 -9.684 -9.722 -0.039 (0) + H[13C]O[18O]2- 2.072e-10 1.896e-10 -9.684 -9.722 -0.039 (0) [13C]O2[18O]-2 1.853e-10 1.298e-10 -9.732 -9.887 -0.155 (0) -[14C](-4) 8.511e-34 - [14C]H4 8.511e-34 8.525e-34 -33.070 -33.069 0.001 (0) +[14C](-4) 1.831e-34 + [14C]H4 1.831e-34 1.834e-34 -33.737 -33.737 0.001 (0) [14C](4) 3.414e-15 H[14C]O3- 2.758e-15 2.523e-15 -14.559 -14.598 -0.039 (0) [14C]O2 5.738e-16 5.748e-16 -15.241 -15.241 0.001 (0) CaH[14C]O3+ 5.823e-17 5.342e-17 -16.235 -16.272 -0.037 (0) - H[14C]O2[18O]- 5.502e-18 5.034e-18 -17.259 -17.298 -0.039 (0) - H[14C]O[18O]O- 5.502e-18 5.034e-18 -17.259 -17.298 -0.039 (0) H[14C][18O]O2- 5.502e-18 5.034e-18 -17.259 -17.298 -0.039 (0) + H[14C]O[18O]O- 5.502e-18 5.034e-18 -17.259 -17.298 -0.039 (0) + H[14C]O2[18O]- 5.502e-18 5.034e-18 -17.259 -17.298 -0.039 (0) Ca[14C]O3 3.192e-18 3.198e-18 -17.496 -17.495 0.001 (0) [14C]O[18O] 2.386e-18 2.390e-18 -17.622 -17.622 0.001 (0) [14C]O3-2 1.638e-18 1.147e-18 -17.786 -17.940 -0.155 (0) CaH[14C]O2[18O]+ 1.162e-19 1.066e-19 -18.935 -18.972 -0.037 (0) - CaH[14C]O[18O]O+ 1.162e-19 1.066e-19 -18.935 -18.972 -0.037 (0) CaH[14C][18O]O2+ 1.162e-19 1.066e-19 -18.935 -18.972 -0.037 (0) + CaH[14C]O[18O]O+ 1.162e-19 1.066e-19 -18.935 -18.972 -0.037 (0) Ca[14C]O2[18O] 1.911e-20 1.914e-20 -19.719 -19.718 0.001 (0) + H[14C][18O]O[18O]- 1.098e-20 1.004e-20 -19.959 -19.998 -0.039 (0) H[14C]O[18O]2- 1.098e-20 1.004e-20 -19.959 -19.998 -0.039 (0) H[14C][18O]2O- 1.098e-20 1.004e-20 -19.959 -19.998 -0.039 (0) - H[14C][18O]O[18O]- 1.098e-20 1.004e-20 -19.959 -19.998 -0.039 (0) [14C]O2[18O]-2 9.802e-21 6.867e-21 -20.009 -20.163 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.371 -67.370 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.372 -70.371 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.037 -67.037 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.038 -70.038 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.93 -22.79 -2.86 [13C]H4 + [13C]H4(g) -20.60 -23.46 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.14 -20.64 -1.50 [14C][18O]2 - [14C]H4(g) -30.21 -33.07 -2.86 [14C]H4 + [14C]H4(g) -30.88 -33.74 -2.86 [14C]H4 [14C]O2(g) -13.77 -15.24 -1.47 [14C]O2 [14C]O[18O](g) -16.15 -17.94 -1.79 [14C]O[18O] - [18O]2(g) -68.08 -70.37 -2.29 [18O]2 + [18O]2(g) -67.75 -70.04 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -2128,14 +2136,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.97 -20.83 -2.86 CH4 + CH4(g) -18.64 -21.50 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.56 -13.71 -3.15 H2 + H2(g) -10.72 -13.87 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.08 -64.97 -2.89 O2 - O[18O](g) -64.78 -67.67 -2.89 O[18O] + O2(g) -61.75 -64.64 -2.89 O2 + O[18O](g) -64.45 -67.34 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2159,12 +2167,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 14. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -2250,14 +2252,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6441e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7215e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.992e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -2275,16 +2277,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.918 Adjusted to redox equilibrium + pe = -1.851 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 176 (277 overall) + Iterations = 80 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -2296,15 +2298,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.803e-20 - CH4 6.803e-20 6.814e-20 -19.167 -19.167 0.001 (0) +C(-4) 1.988e-20 + CH4 1.988e-20 1.991e-20 -19.702 -19.701 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) @@ -2312,9 +2314,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -2322,50 +2324,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.959 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.039e-08 6.049e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.025e-13 - H2 5.127e-14 5.136e-14 -13.290 -13.289 0.001 (0) +H(0) 7.540e-14 + H2 3.770e-14 3.776e-14 -13.424 -13.423 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.804 -65.803 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.203 -68.202 0.001 (0) -[13C](-4) 7.468e-22 - [13C]H4 7.468e-22 7.481e-22 -21.127 -21.126 0.001 (0) + O2 0.000e+00 0.000e+00 -65.537 -65.536 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.936 -67.935 0.001 (0) +[13C](-4) 2.182e-22 + [13C]H4 2.182e-22 2.186e-22 -21.661 -21.660 0.001 (0) [13C](4) 6.458e-05 H[13C]O3- 5.209e-05 4.766e-05 -4.283 -4.322 -0.039 (0) [13C]O2 1.093e-05 1.095e-05 -4.961 -4.961 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.959 -5.996 -0.037 (0) - H[13C]O2[18O]- 1.039e-07 9.508e-08 -6.983 -7.022 -0.039 (0) - H[13C]O[18O]O- 1.039e-07 9.508e-08 -6.983 -7.022 -0.039 (0) H[13C][18O]O2- 1.039e-07 9.508e-08 -6.983 -7.022 -0.039 (0) + H[13C]O[18O]O- 1.039e-07 9.508e-08 -6.983 -7.022 -0.039 (0) + H[13C]O2[18O]- 1.039e-07 9.508e-08 -6.983 -7.022 -0.039 (0) Ca[13C]O3 6.039e-08 6.049e-08 -7.219 -7.218 0.001 (0) [13C]O[18O] 4.546e-08 4.554e-08 -7.342 -7.342 0.001 (0) [13C]O3-2 3.098e-08 2.170e-08 -7.509 -7.664 -0.155 (0) + CaH[13C][18O]O2+ 2.195e-09 2.013e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O2[18O]+ 2.195e-09 2.013e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O[18O]O+ 2.195e-09 2.013e-09 -8.659 -8.696 -0.037 (0) - CaH[13C][18O]O2+ 2.195e-09 2.013e-09 -8.659 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.615e-10 3.620e-10 -9.442 -9.441 0.001 (0) - H[13C]O[18O]2- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) - H[13C][18O]2O- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) H[13C][18O]O[18O]- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) + H[13C][18O]2O- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) + H[13C]O[18O]2- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) [13C]O2[18O]-2 1.854e-10 1.299e-10 -9.732 -9.886 -0.155 (0) -[14C](-4) 3.611e-32 - [14C]H4 3.611e-32 3.617e-32 -31.442 -31.442 0.001 (0) +[14C](-4) 1.055e-32 + [14C]H4 1.055e-32 1.057e-32 -31.977 -31.976 0.001 (0) [14C](4) 3.145e-15 H[14C]O3- 2.541e-15 2.324e-15 -14.595 -14.634 -0.039 (0) [14C]O2 5.286e-16 5.295e-16 -15.277 -15.276 0.001 (0) CaH[14C]O3+ 5.365e-17 4.921e-17 -16.270 -16.308 -0.037 (0) - H[14C]O2[18O]- 5.069e-18 4.637e-18 -17.295 -17.334 -0.039 (0) - H[14C]O[18O]O- 5.069e-18 4.637e-18 -17.295 -17.334 -0.039 (0) H[14C][18O]O2- 5.069e-18 4.637e-18 -17.295 -17.334 -0.039 (0) + H[14C]O[18O]O- 5.069e-18 4.637e-18 -17.295 -17.334 -0.039 (0) + H[14C]O2[18O]- 5.069e-18 4.637e-18 -17.295 -17.334 -0.039 (0) Ca[14C]O3 2.941e-18 2.946e-18 -17.532 -17.531 0.001 (0) [14C]O[18O] 2.198e-18 2.202e-18 -17.658 -17.657 0.001 (0) [14C]O3-2 1.509e-18 1.057e-18 -17.821 -17.976 -0.155 (0) CaH[14C]O2[18O]+ 1.070e-19 9.819e-20 -18.970 -19.008 -0.037 (0) - CaH[14C]O[18O]O+ 1.070e-19 9.819e-20 -18.970 -19.008 -0.037 (0) CaH[14C][18O]O2+ 1.070e-19 9.819e-20 -18.970 -19.008 -0.037 (0) + CaH[14C]O[18O]O+ 1.070e-19 9.819e-20 -18.970 -19.008 -0.037 (0) Ca[14C]O2[18O] 1.760e-20 1.763e-20 -19.754 -19.754 0.001 (0) H[14C]O[18O]2- 1.011e-20 9.252e-21 -19.995 -20.034 -0.039 (0) H[14C][18O]2O- 1.011e-20 9.252e-21 -19.995 -20.034 -0.039 (0) @@ -2374,29 +2376,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.203 -68.202 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.204 -71.203 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.936 -67.935 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.937 -70.936 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.27 -21.13 -2.86 [13C]H4 + [13C]H4(g) -18.80 -21.66 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.17 -20.68 -1.50 [14C][18O]2 - [14C]H4(g) -28.58 -31.44 -2.86 [14C]H4 + [14C]H4(g) -29.12 -31.98 -2.86 [14C]H4 [14C]O2(g) -13.81 -15.28 -1.47 [14C]O2 [14C]O[18O](g) -16.19 -17.98 -1.79 [14C]O[18O] - [18O]2(g) -68.91 -71.20 -2.29 [18O]2 + [18O]2(g) -68.65 -70.94 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -2410,14 +2412,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.31 -19.17 -2.86 CH4 + CH4(g) -16.84 -19.70 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.14 -13.29 -3.15 H2 + H2(g) -10.27 -13.42 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.91 -65.80 -2.89 O2 - O[18O](g) -65.61 -68.50 -2.89 O[18O] + O2(g) -62.64 -65.54 -2.89 O2 + O[18O](g) -65.34 -68.24 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2526,14 +2528,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6498e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6854e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -2.8866e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.3307e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -2551,16 +2553,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.984 Adjusted to redox equilibrium + pe = -1.832 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.829e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 47 + Iterations = 58 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -2572,25 +2574,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.274e-19 - CH4 2.274e-19 2.277e-19 -18.643 -18.643 0.001 (0) +C(-4) 1.391e-20 + CH4 1.391e-20 1.393e-20 -19.857 -19.856 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -2598,23 +2600,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.101e-06 1.010e-06 -5.958 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.043e-08 6.053e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.387e-13 - H2 6.933e-14 6.944e-14 -13.159 -13.158 0.001 (0) +H(0) 6.896e-14 + H2 3.448e-14 3.453e-14 -13.462 -13.462 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.066 -66.065 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.465 -68.464 0.001 (0) -[13C](-4) 2.498e-21 - [13C]H4 2.498e-21 2.502e-21 -20.602 -20.602 0.001 (0) + O2 0.000e+00 0.000e+00 -65.459 -65.458 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.858 -67.857 0.001 (0) +[13C](-4) 1.528e-22 + [13C]H4 1.528e-22 1.531e-22 -21.816 -21.815 0.001 (0) [13C](4) 6.463e-05 H[13C]O3- 5.213e-05 4.769e-05 -4.283 -4.322 -0.039 (0) [13C]O2 1.094e-05 1.096e-05 -4.961 -4.960 0.001 (0) CaH[13C]O3+ 1.101e-06 1.010e-06 -5.958 -5.996 -0.037 (0) - H[13C]O2[18O]- 1.040e-07 9.515e-08 -6.983 -7.022 -0.039 (0) H[13C]O[18O]O- 1.040e-07 9.515e-08 -6.983 -7.022 -0.039 (0) + H[13C]O2[18O]- 1.040e-07 9.515e-08 -6.983 -7.022 -0.039 (0) H[13C][18O]O2- 1.040e-07 9.515e-08 -6.983 -7.022 -0.039 (0) Ca[13C]O3 6.043e-08 6.053e-08 -7.219 -7.218 0.001 (0) [13C]O[18O] 4.550e-08 4.557e-08 -7.342 -7.341 0.001 (0) @@ -2623,56 +2625,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.196e-09 2.015e-09 -8.658 -8.696 -0.037 (0) CaH[13C][18O]O2+ 2.196e-09 2.015e-09 -8.658 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.617e-10 3.623e-10 -9.442 -9.441 0.001 (0) - H[13C]O[18O]2- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) - H[13C][18O]2O- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) H[13C][18O]O[18O]- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) + H[13C][18O]2O- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) + H[13C]O[18O]2- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) [13C]O2[18O]-2 1.856e-10 1.300e-10 -9.732 -9.886 -0.155 (0) -[14C](-4) 1.112e-31 - [14C]H4 1.112e-31 1.114e-31 -30.954 -30.953 0.001 (0) +[14C](-4) 6.801e-33 + [14C]H4 6.801e-33 6.812e-33 -32.167 -32.167 0.001 (0) [14C](4) 2.897e-15 H[14C]O3- 2.340e-15 2.141e-15 -14.631 -14.669 -0.039 (0) [14C]O2 4.870e-16 4.878e-16 -15.312 -15.312 0.001 (0) CaH[14C]O3+ 4.942e-17 4.534e-17 -16.306 -16.344 -0.037 (0) - H[14C]O2[18O]- 4.670e-18 4.272e-18 -17.331 -17.369 -0.039 (0) - H[14C]O[18O]O- 4.670e-18 4.272e-18 -17.331 -17.369 -0.039 (0) H[14C][18O]O2- 4.670e-18 4.272e-18 -17.331 -17.369 -0.039 (0) + H[14C]O[18O]O- 4.670e-18 4.272e-18 -17.331 -17.369 -0.039 (0) + H[14C]O2[18O]- 4.670e-18 4.272e-18 -17.331 -17.369 -0.039 (0) Ca[14C]O3 2.709e-18 2.714e-18 -17.567 -17.566 0.001 (0) [14C]O[18O] 2.025e-18 2.028e-18 -17.694 -17.693 0.001 (0) [14C]O3-2 1.390e-18 9.736e-19 -17.857 -18.012 -0.155 (0) CaH[14C]O2[18O]+ 9.861e-20 9.045e-20 -19.006 -19.044 -0.037 (0) - CaH[14C]O[18O]O+ 9.861e-20 9.045e-20 -19.006 -19.044 -0.037 (0) CaH[14C][18O]O2+ 9.861e-20 9.045e-20 -19.006 -19.044 -0.037 (0) + CaH[14C]O[18O]O+ 9.861e-20 9.045e-20 -19.006 -19.044 -0.037 (0) Ca[14C]O2[18O] 1.622e-20 1.624e-20 -19.790 -19.789 0.001 (0) - H[14C]O[18O]2- 9.317e-21 8.523e-21 -20.031 -20.069 -0.039 (0) H[14C][18O]2O- 9.317e-21 8.523e-21 -20.031 -20.069 -0.039 (0) H[14C][18O]O[18O]- 9.317e-21 8.523e-21 -20.031 -20.069 -0.039 (0) + H[14C]O[18O]2- 9.317e-21 8.523e-21 -20.031 -20.069 -0.039 (0) [14C]O2[18O]-2 8.319e-21 5.828e-21 -20.080 -20.234 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.465 -68.464 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.466 -71.465 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.858 -67.857 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.859 -70.858 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.74 -20.60 -2.86 [13C]H4 + [13C]H4(g) -18.96 -21.82 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.21 -20.71 -1.50 [14C][18O]2 - [14C]H4(g) -28.09 -30.95 -2.86 [14C]H4 + [14C]H4(g) -29.31 -32.17 -2.86 [14C]H4 [14C]O2(g) -13.84 -15.31 -1.47 [14C]O2 [14C]O[18O](g) -16.22 -18.01 -1.79 [14C]O[18O] - [18O]2(g) -69.17 -71.47 -2.29 [18O]2 + [18O]2(g) -68.57 -70.86 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -2686,14 +2688,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.78 -18.64 -2.86 CH4 + CH4(g) -17.00 -19.86 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.01 -13.16 -3.15 H2 + H2(g) -10.31 -13.46 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.17 -66.06 -2.89 O2 - O[18O](g) -65.87 -68.77 -2.89 O[18O] + O2(g) -62.57 -65.46 -2.89 O2 + O[18O](g) -65.27 -68.16 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2802,14 +2804,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6473e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7835e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.2101e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.0214e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -2827,16 +2829,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.979 Adjusted to redox equilibrium + pe = -1.890 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.828e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 51 + Iterations = 53 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -2848,15 +2850,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.099e-19 - CH4 2.099e-19 2.102e-19 -18.678 -18.677 0.001 (0) +C(-4) 4.094e-20 + CH4 4.094e-20 4.101e-20 -19.388 -19.387 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) @@ -2864,9 +2866,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -2874,81 +2876,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.048e-08 6.057e-08 -7.218 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.359e-13 - H2 6.796e-14 6.807e-14 -13.168 -13.167 0.001 (0) +H(0) 9.032e-14 + H2 4.516e-14 4.524e-14 -13.345 -13.345 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.048 -66.048 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.447 -68.447 0.001 (0) -[13C](-4) 2.308e-21 - [13C]H4 2.308e-21 2.312e-21 -20.637 -20.636 0.001 (0) + O2 0.000e+00 0.000e+00 -65.693 -65.693 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.092 -68.092 0.001 (0) +[13C](-4) 4.501e-22 + [13C]H4 4.501e-22 4.509e-22 -21.347 -21.346 0.001 (0) [13C](4) 6.467e-05 H[13C]O3- 5.217e-05 4.772e-05 -4.283 -4.321 -0.039 (0) [13C]O2 1.095e-05 1.097e-05 -4.961 -4.960 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) H[13C]O2[18O]- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) H[13C][18O]O2- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) Ca[13C]O3 6.048e-08 6.057e-08 -7.218 -7.218 0.001 (0) [13C]O[18O] 4.553e-08 4.560e-08 -7.342 -7.341 0.001 (0) [13C]O3-2 3.102e-08 2.173e-08 -7.508 -7.663 -0.155 (0) - CaH[13C]O2[18O]+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) + CaH[13C]O2[18O]+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.620e-10 3.626e-10 -9.441 -9.441 0.001 (0) - H[13C]O[18O]2- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) - H[13C][18O]2O- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) + H[13C][18O]2O- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) [13C]O2[18O]-2 1.857e-10 1.301e-10 -9.731 -9.886 -0.155 (0) -[14C](-4) 9.456e-32 - [14C]H4 9.456e-32 9.471e-32 -31.024 -31.024 0.001 (0) +[14C](-4) 1.844e-32 + [14C]H4 1.844e-32 1.847e-32 -31.734 -31.733 0.001 (0) [14C](4) 2.669e-15 H[14C]O3- 2.156e-15 1.972e-15 -14.666 -14.705 -0.039 (0) [14C]O2 4.486e-16 4.494e-16 -15.348 -15.347 0.001 (0) CaH[14C]O3+ 4.553e-17 4.176e-17 -16.342 -16.379 -0.037 (0) - H[14C]O2[18O]- 4.302e-18 3.935e-18 -17.366 -17.405 -0.039 (0) - H[14C]O[18O]O- 4.302e-18 3.935e-18 -17.366 -17.405 -0.039 (0) H[14C][18O]O2- 4.302e-18 3.935e-18 -17.366 -17.405 -0.039 (0) + H[14C]O[18O]O- 4.302e-18 3.935e-18 -17.366 -17.405 -0.039 (0) + H[14C]O2[18O]- 4.302e-18 3.935e-18 -17.366 -17.405 -0.039 (0) Ca[14C]O3 2.496e-18 2.500e-18 -17.603 -17.602 0.001 (0) [14C]O[18O] 1.866e-18 1.869e-18 -17.729 -17.728 0.001 (0) [14C]O3-2 1.280e-18 8.969e-19 -17.893 -18.047 -0.155 (0) CaH[14C]O2[18O]+ 9.084e-20 8.333e-20 -19.042 -19.079 -0.037 (0) - CaH[14C]O[18O]O+ 9.084e-20 8.333e-20 -19.042 -19.079 -0.037 (0) CaH[14C][18O]O2+ 9.084e-20 8.333e-20 -19.042 -19.079 -0.037 (0) + CaH[14C]O[18O]O+ 9.084e-20 8.333e-20 -19.042 -19.079 -0.037 (0) Ca[14C]O2[18O] 1.494e-20 1.496e-20 -19.826 -19.825 0.001 (0) + H[14C][18O]O[18O]- 8.583e-21 7.852e-21 -20.066 -20.105 -0.039 (0) H[14C]O[18O]2- 8.583e-21 7.852e-21 -20.066 -20.105 -0.039 (0) H[14C][18O]2O- 8.583e-21 7.852e-21 -20.066 -20.105 -0.039 (0) - H[14C][18O]O[18O]- 8.583e-21 7.852e-21 -20.066 -20.105 -0.039 (0) [14C]O2[18O]-2 7.664e-21 5.369e-21 -20.116 -20.270 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.447 -68.447 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.448 -71.448 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.092 -68.092 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.093 -71.093 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.78 -20.64 -2.86 [13C]H4 + [13C]H4(g) -18.49 -21.35 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.24 -20.75 -1.50 [14C][18O]2 - [14C]H4(g) -28.16 -31.02 -2.86 [14C]H4 + [14C]H4(g) -28.87 -31.73 -2.86 [14C]H4 [14C]O2(g) -13.88 -15.35 -1.47 [14C]O2 [14C]O[18O](g) -16.26 -18.05 -1.79 [14C]O[18O] - [18O]2(g) -69.16 -71.45 -2.29 [18O]2 + [18O]2(g) -68.80 -71.09 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -2962,14 +2964,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.82 -18.68 -2.86 CH4 + CH4(g) -16.53 -19.39 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.02 -13.17 -3.15 H2 + H2(g) -10.19 -13.34 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.16 -66.05 -2.89 O2 - O[18O](g) -65.86 -68.75 -2.89 O[18O] + O2(g) -62.80 -65.69 -2.89 O2 + O[18O](g) -65.50 -68.39 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3078,14 +3080,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7083e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7113e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.5099e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.3434e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3101e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.885e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -3103,16 +3105,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.882 Adjusted to redox equilibrium + pe = -1.781 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.828e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 56 + Iterations = 86 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -3124,25 +3126,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.521e-20 - CH4 3.521e-20 3.527e-20 -19.453 -19.453 0.001 (0) +C(-4) 5.433e-21 + CH4 5.433e-21 5.442e-21 -20.265 -20.264 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -3150,50 +3152,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.051e-08 6.061e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.698e-14 - H2 4.349e-14 4.356e-14 -13.362 -13.361 0.001 (0) +H(0) 5.451e-14 + H2 2.726e-14 2.730e-14 -13.565 -13.564 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.661 -65.660 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.060 -68.059 0.001 (0) -[13C](-4) 3.874e-22 - [13C]H4 3.874e-22 3.881e-22 -21.412 -21.411 0.001 (0) + O2 0.000e+00 0.000e+00 -65.255 -65.254 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.654 -67.653 0.001 (0) +[13C](-4) 5.977e-23 + [13C]H4 5.977e-23 5.987e-23 -22.224 -22.223 0.001 (0) [13C](4) 6.471e-05 H[13C]O3- 5.220e-05 4.776e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.096e-05 1.097e-05 -4.960 -4.960 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.041e-07 9.528e-08 -6.982 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.041e-07 9.528e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.041e-07 9.528e-08 -6.982 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.041e-07 9.528e-08 -6.982 -7.021 -0.039 (0) + H[13C]O2[18O]- 1.041e-07 9.528e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.051e-08 6.061e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.556e-08 4.563e-08 -7.341 -7.341 0.001 (0) [13C]O3-2 3.104e-08 2.175e-08 -7.508 -7.663 -0.155 (0) + CaH[13C][18O]O2+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O2[18O]+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) - CaH[13C][18O]O2+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.622e-10 3.628e-10 -9.441 -9.440 0.001 (0) - H[13C]O[18O]2- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.858e-10 1.302e-10 -9.731 -9.886 -0.155 (0) -[14C](-4) 1.461e-32 - [14C]H4 1.461e-32 1.464e-32 -31.835 -31.835 0.001 (0) +[14C](-4) 2.255e-33 + [14C]H4 2.255e-33 2.258e-33 -32.647 -32.646 0.001 (0) [14C](4) 2.459e-15 H[14C]O3- 1.986e-15 1.817e-15 -14.702 -14.741 -0.039 (0) [14C]O2 4.133e-16 4.140e-16 -15.384 -15.383 0.001 (0) CaH[14C]O3+ 4.194e-17 3.847e-17 -16.377 -16.415 -0.037 (0) - H[14C]O2[18O]- 3.963e-18 3.625e-18 -17.402 -17.441 -0.039 (0) - H[14C]O[18O]O- 3.963e-18 3.625e-18 -17.402 -17.441 -0.039 (0) H[14C][18O]O2- 3.963e-18 3.625e-18 -17.402 -17.441 -0.039 (0) + H[14C]O[18O]O- 3.963e-18 3.625e-18 -17.402 -17.441 -0.039 (0) + H[14C]O2[18O]- 3.963e-18 3.625e-18 -17.402 -17.441 -0.039 (0) Ca[14C]O3 2.299e-18 2.303e-18 -17.638 -17.638 0.001 (0) [14C]O[18O] 1.719e-18 1.721e-18 -17.765 -17.764 0.001 (0) [14C]O3-2 1.179e-18 8.263e-19 -17.928 -18.083 -0.155 (0) CaH[14C]O2[18O]+ 8.368e-20 7.676e-20 -19.077 -19.115 -0.037 (0) - CaH[14C]O[18O]O+ 8.368e-20 7.676e-20 -19.077 -19.115 -0.037 (0) CaH[14C][18O]O2+ 8.368e-20 7.676e-20 -19.077 -19.115 -0.037 (0) + CaH[14C]O[18O]O+ 8.368e-20 7.676e-20 -19.077 -19.115 -0.037 (0) Ca[14C]O2[18O] 1.376e-20 1.379e-20 -19.861 -19.861 0.001 (0) H[14C]O[18O]2- 7.907e-21 7.233e-21 -20.102 -20.141 -0.039 (0) H[14C][18O]2O- 7.907e-21 7.233e-21 -20.102 -20.141 -0.039 (0) @@ -3202,29 +3204,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.060 -68.059 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.061 -71.060 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.654 -67.653 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.655 -70.654 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.55 -21.41 -2.86 [13C]H4 + [13C]H4(g) -19.36 -22.22 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.28 -20.78 -1.50 [14C][18O]2 - [14C]H4(g) -28.97 -31.83 -2.86 [14C]H4 + [14C]H4(g) -29.79 -32.65 -2.86 [14C]H4 [14C]O2(g) -13.91 -15.38 -1.47 [14C]O2 [14C]O[18O](g) -16.30 -18.08 -1.79 [14C]O[18O] - [18O]2(g) -68.77 -71.06 -2.29 [18O]2 + [18O]2(g) -68.36 -70.65 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -3238,14 +3240,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.59 -19.45 -2.86 CH4 + CH4(g) -17.40 -20.26 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.21 -13.36 -3.15 H2 + H2(g) -10.41 -13.56 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.77 -65.66 -2.89 O2 - O[18O](g) -65.47 -68.36 -2.89 O[18O] + O2(g) -62.36 -65.25 -2.89 O2 + O[18O](g) -65.06 -67.95 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3269,6 +3271,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 18. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -3354,14 +3362,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 +Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5409e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6107e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 9.992e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.2212e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.2212e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.843e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -3379,16 +3387,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.901 Adjusted to redox equilibrium + pe = -1.754 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.828e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 77 + Iterations = 99 (200 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -3400,14 +3408,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.008e-20 - CH4 5.008e-20 5.016e-20 -19.300 -19.300 0.001 (0) +C(-4) 3.311e-21 + CH4 3.311e-21 3.316e-21 -20.480 -20.479 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -3416,9 +3424,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -3426,23 +3434,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.055e-08 6.065e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.499e-14 - H2 4.749e-14 4.757e-14 -13.323 -13.323 0.001 (0) +H(0) 4.817e-14 + H2 2.408e-14 2.412e-14 -13.618 -13.618 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.737 -65.736 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.136 -68.135 0.001 (0) -[13C](-4) 5.513e-22 - [13C]H4 5.513e-22 5.522e-22 -21.259 -21.258 0.001 (0) + O2 0.000e+00 0.000e+00 -65.147 -65.147 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.546 -67.546 0.001 (0) +[13C](-4) 3.644e-23 + [13C]H4 3.644e-23 3.650e-23 -22.438 -22.438 0.001 (0) [13C](4) 6.475e-05 H[13C]O3- 5.223e-05 4.778e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.096e-05 1.098e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.042e-07 9.534e-08 -6.982 -7.021 -0.039 (0) H[13C]O[18O]O- 1.042e-07 9.534e-08 -6.982 -7.021 -0.039 (0) + H[13C]O2[18O]- 1.042e-07 9.534e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.042e-07 9.534e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.055e-08 6.065e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.559e-08 4.566e-08 -7.341 -7.340 0.001 (0) @@ -3451,56 +3459,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.201e-09 2.019e-09 -8.657 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.201e-09 2.019e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.624e-10 3.630e-10 -9.441 -9.440 0.001 (0) - H[13C]O[18O]2- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.859e-10 1.302e-10 -9.731 -9.885 -0.155 (0) -[14C](-4) 1.915e-32 - [14C]H4 1.915e-32 1.918e-32 -31.718 -31.717 0.001 (0) +[14C](-4) 1.266e-33 + [14C]H4 1.266e-33 1.268e-33 -32.898 -32.897 0.001 (0) [14C](4) 2.265e-15 H[14C]O3- 1.830e-15 1.674e-15 -14.738 -14.776 -0.039 (0) [14C]O2 3.807e-16 3.814e-16 -15.419 -15.419 0.001 (0) CaH[14C]O3+ 3.864e-17 3.544e-17 -16.413 -16.450 -0.037 (0) - H[14C]O2[18O]- 3.651e-18 3.340e-18 -17.438 -17.476 -0.039 (0) - H[14C]O[18O]O- 3.651e-18 3.340e-18 -17.438 -17.476 -0.039 (0) H[14C][18O]O2- 3.651e-18 3.340e-18 -17.438 -17.476 -0.039 (0) + H[14C]O[18O]O- 3.651e-18 3.340e-18 -17.438 -17.476 -0.039 (0) + H[14C]O2[18O]- 3.651e-18 3.340e-18 -17.438 -17.476 -0.039 (0) Ca[14C]O3 2.118e-18 2.122e-18 -17.674 -17.673 0.001 (0) [14C]O[18O] 1.583e-18 1.586e-18 -17.800 -17.800 0.001 (0) [14C]O3-2 1.087e-18 7.612e-19 -17.964 -18.118 -0.155 (0) CaH[14C]O2[18O]+ 7.709e-20 7.072e-20 -19.113 -19.150 -0.037 (0) - CaH[14C]O[18O]O+ 7.709e-20 7.072e-20 -19.113 -19.150 -0.037 (0) CaH[14C][18O]O2+ 7.709e-20 7.072e-20 -19.113 -19.150 -0.037 (0) + CaH[14C]O[18O]O+ 7.709e-20 7.072e-20 -19.113 -19.150 -0.037 (0) Ca[14C]O2[18O] 1.268e-20 1.270e-20 -19.897 -19.896 0.001 (0) - H[14C]O[18O]2- 7.284e-21 6.664e-21 -20.138 -20.176 -0.039 (0) H[14C][18O]2O- 7.284e-21 6.664e-21 -20.138 -20.176 -0.039 (0) H[14C][18O]O[18O]- 7.284e-21 6.664e-21 -20.138 -20.176 -0.039 (0) + H[14C]O[18O]2- 7.284e-21 6.664e-21 -20.138 -20.176 -0.039 (0) [14C]O2[18O]-2 6.504e-21 4.556e-21 -20.187 -20.341 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.136 -68.135 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.137 -71.137 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.546 -67.546 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.547 -70.547 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.40 -21.26 -2.86 [13C]H4 + [13C]H4(g) -19.58 -22.44 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.32 -20.82 -1.50 [14C][18O]2 - [14C]H4(g) -28.86 -31.72 -2.86 [14C]H4 + [14C]H4(g) -30.04 -32.90 -2.86 [14C]H4 [14C]O2(g) -13.95 -15.42 -1.47 [14C]O2 [14C]O[18O](g) -16.33 -18.12 -1.79 [14C]O[18O] - [18O]2(g) -68.85 -71.14 -2.29 [18O]2 + [18O]2(g) -68.26 -70.55 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -3514,14 +3522,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.44 -19.30 -2.86 CH4 + CH4(g) -17.62 -20.48 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.17 -13.32 -3.15 H2 + H2(g) -10.47 -13.62 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.84 -65.74 -2.89 O2 - O[18O](g) -65.54 -68.44 -2.89 O[18O] + O2(g) -62.25 -65.15 -2.89 O2 + O[18O](g) -64.95 -67.85 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3545,6 +3553,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 19. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -3630,14 +3644,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6324e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7043e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.1086e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.6629e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -3655,16 +3669,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.911 Adjusted to redox equilibrium + pe = -1.824 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.828e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 97 + Iterations = 98 (199 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -3676,25 +3690,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.028e-20 - CH4 6.028e-20 6.038e-20 -19.220 -19.219 0.001 (0) +C(-4) 1.204e-20 + CH4 1.204e-20 1.206e-20 -19.919 -19.919 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -3702,81 +3716,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.012e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.058e-08 6.068e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.950e-14 - H2 4.975e-14 4.983e-14 -13.303 -13.303 0.001 (0) +H(0) 6.651e-14 + H2 3.326e-14 3.331e-14 -13.478 -13.477 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.777 -65.777 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.176 -68.176 0.001 (0) -[13C](-4) 6.640e-22 - [13C]H4 6.640e-22 6.651e-22 -21.178 -21.177 0.001 (0) + O2 0.000e+00 0.000e+00 -65.428 -65.427 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.827 -67.826 0.001 (0) +[13C](-4) 1.326e-22 + [13C]H4 1.326e-22 1.328e-22 -21.878 -21.877 0.001 (0) [13C](4) 6.479e-05 H[13C]O3- 5.226e-05 4.781e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.012e-06 -5.957 -5.995 -0.037 (0) H[13C]O2[18O]- 1.043e-07 9.539e-08 -6.982 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.043e-07 9.539e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.043e-07 9.539e-08 -6.982 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.043e-07 9.539e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.058e-08 6.068e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.561e-08 4.568e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.108e-08 2.177e-08 -7.508 -7.662 -0.155 (0) - CaH[13C]O2[18O]+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) + CaH[13C]O2[18O]+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.626e-10 3.632e-10 -9.441 -9.440 0.001 (0) - H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.860e-10 1.303e-10 -9.730 -9.885 -0.155 (0) -[14C](-4) 2.123e-32 - [14C]H4 2.123e-32 2.127e-32 -31.673 -31.672 0.001 (0) +[14C](-4) 4.239e-33 + [14C]H4 4.239e-33 4.246e-33 -32.373 -32.372 0.001 (0) [14C](4) 2.087e-15 H[14C]O3- 1.686e-15 1.542e-15 -14.773 -14.812 -0.039 (0) [14C]O2 3.507e-16 3.513e-16 -15.455 -15.454 0.001 (0) CaH[14C]O3+ 3.559e-17 3.265e-17 -16.449 -16.486 -0.037 (0) - H[14C]O2[18O]- 3.363e-18 3.077e-18 -17.473 -17.512 -0.039 (0) - H[14C]O[18O]O- 3.363e-18 3.077e-18 -17.473 -17.512 -0.039 (0) H[14C][18O]O2- 3.363e-18 3.077e-18 -17.473 -17.512 -0.039 (0) + H[14C]O[18O]O- 3.363e-18 3.077e-18 -17.473 -17.512 -0.039 (0) + H[14C]O2[18O]- 3.363e-18 3.077e-18 -17.473 -17.512 -0.039 (0) Ca[14C]O3 1.951e-18 1.955e-18 -17.710 -17.709 0.001 (0) [14C]O[18O] 1.458e-18 1.461e-18 -17.836 -17.835 0.001 (0) [14C]O3-2 1.001e-18 7.012e-19 -18.000 -18.154 -0.155 (0) CaH[14C]O2[18O]+ 7.102e-20 6.515e-20 -19.149 -19.186 -0.037 (0) - CaH[14C]O[18O]O+ 7.102e-20 6.515e-20 -19.149 -19.186 -0.037 (0) CaH[14C][18O]O2+ 7.102e-20 6.515e-20 -19.149 -19.186 -0.037 (0) + CaH[14C]O[18O]O+ 7.102e-20 6.515e-20 -19.149 -19.186 -0.037 (0) Ca[14C]O2[18O] 1.168e-20 1.170e-20 -19.933 -19.932 0.001 (0) + H[14C][18O]O[18O]- 6.710e-21 6.139e-21 -20.173 -20.212 -0.039 (0) H[14C]O[18O]2- 6.710e-21 6.139e-21 -20.173 -20.212 -0.039 (0) H[14C][18O]2O- 6.710e-21 6.139e-21 -20.173 -20.212 -0.039 (0) - H[14C][18O]O[18O]- 6.710e-21 6.139e-21 -20.173 -20.212 -0.039 (0) [14C]O2[18O]-2 5.991e-21 4.197e-21 -20.222 -20.377 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.176 -68.176 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.177 -71.177 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.827 -67.826 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.828 -70.827 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.32 -21.18 -2.86 [13C]H4 + [13C]H4(g) -19.02 -21.88 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.35 -20.85 -1.50 [14C][18O]2 - [14C]H4(g) -28.81 -31.67 -2.86 [14C]H4 + [14C]H4(g) -29.51 -32.37 -2.86 [14C]H4 [14C]O2(g) -13.99 -15.45 -1.47 [14C]O2 [14C]O[18O](g) -16.37 -18.15 -1.79 [14C]O[18O] - [18O]2(g) -68.89 -71.18 -2.29 [18O]2 + [18O]2(g) -68.54 -70.83 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -3790,14 +3804,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.36 -19.22 -2.86 CH4 + CH4(g) -17.06 -19.92 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.15 -13.30 -3.15 H2 + H2(g) -10.33 -13.48 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.88 -65.78 -2.89 O2 - O[18O](g) -65.58 -68.48 -2.89 O[18O] + O2(g) -62.53 -65.43 -2.89 O2 + O[18O](g) -65.23 -68.13 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3912,14 +3926,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7133e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.65e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.9984e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.8541e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 6.8834e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -3937,16 +3951,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.943 Adjusted to redox equilibrium + pe = -1.903 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.828e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 93 (194 overall) + Iterations = 104 (205 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -3958,15 +3972,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.074e-19 - CH4 1.074e-19 1.076e-19 -18.969 -18.968 0.001 (0) +C(-4) 5.185e-20 + CH4 5.185e-20 5.194e-20 -19.285 -19.285 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -3974,9 +3988,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -3984,50 +3998,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.061e-08 6.071e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.149e-13 - H2 5.747e-14 5.757e-14 -13.241 -13.240 0.001 (0) +H(0) 9.582e-14 + H2 4.791e-14 4.799e-14 -13.320 -13.319 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.903 -65.902 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.302 -68.301 0.001 (0) -[13C](-4) 1.183e-21 - [13C]H4 1.183e-21 1.185e-21 -20.927 -20.926 0.001 (0) + O2 0.000e+00 0.000e+00 -65.745 -65.744 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.144 -68.143 0.001 (0) +[13C](-4) 5.714e-22 + [13C]H4 5.714e-22 5.723e-22 -21.243 -21.242 0.001 (0) [13C](4) 6.482e-05 H[13C]O3- 5.228e-05 4.783e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) H[13C][18O]O2- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) Ca[13C]O3 6.061e-08 6.071e-08 -7.217 -7.217 0.001 (0) [13C]O[18O] 4.563e-08 4.571e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.109e-08 2.178e-08 -7.507 -7.662 -0.155 (0) + CaH[13C][18O]O2+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.628e-10 3.634e-10 -9.440 -9.440 0.001 (0) - H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) - H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) [13C]O2[18O]-2 1.861e-10 1.304e-10 -9.730 -9.885 -0.155 (0) -[14C](-4) 3.485e-32 - [14C]H4 3.485e-32 3.490e-32 -31.458 -31.457 0.001 (0) +[14C](-4) 1.682e-32 + [14C]H4 1.682e-32 1.685e-32 -31.774 -31.773 0.001 (0) [14C](4) 1.922e-15 H[14C]O3- 1.553e-15 1.421e-15 -14.809 -14.848 -0.039 (0) [14C]O2 3.231e-16 3.236e-16 -15.491 -15.490 0.001 (0) CaH[14C]O3+ 3.279e-17 3.008e-17 -16.484 -16.522 -0.037 (0) - H[14C]O2[18O]- 3.098e-18 2.834e-18 -17.509 -17.548 -0.039 (0) - H[14C]O[18O]O- 3.098e-18 2.834e-18 -17.509 -17.548 -0.039 (0) H[14C][18O]O2- 3.098e-18 2.834e-18 -17.509 -17.548 -0.039 (0) + H[14C]O[18O]O- 3.098e-18 2.834e-18 -17.509 -17.548 -0.039 (0) + H[14C]O2[18O]- 3.098e-18 2.834e-18 -17.509 -17.548 -0.039 (0) Ca[14C]O3 1.798e-18 1.801e-18 -17.745 -17.745 0.001 (0) [14C]O[18O] 1.344e-18 1.346e-18 -17.872 -17.871 0.001 (0) [14C]O3-2 9.221e-19 6.460e-19 -18.035 -18.190 -0.155 (0) CaH[14C]O2[18O]+ 6.542e-20 6.002e-20 -19.184 -19.222 -0.037 (0) - CaH[14C]O[18O]O+ 6.542e-20 6.002e-20 -19.184 -19.222 -0.037 (0) CaH[14C][18O]O2+ 6.542e-20 6.002e-20 -19.184 -19.222 -0.037 (0) + CaH[14C]O[18O]O+ 6.542e-20 6.002e-20 -19.184 -19.222 -0.037 (0) Ca[14C]O2[18O] 1.076e-20 1.078e-20 -19.968 -19.967 0.001 (0) H[14C]O[18O]2- 6.181e-21 5.655e-21 -20.209 -20.248 -0.039 (0) H[14C][18O]2O- 6.181e-21 5.655e-21 -20.209 -20.248 -0.039 (0) @@ -4036,29 +4050,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.302 -68.301 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.303 -71.302 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.144 -68.143 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.145 -71.144 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.07 -20.93 -2.86 [13C]H4 + [13C]H4(g) -18.38 -21.24 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.39 -20.89 -1.50 [14C][18O]2 - [14C]H4(g) -28.60 -31.46 -2.86 [14C]H4 + [14C]H4(g) -28.91 -31.77 -2.86 [14C]H4 [14C]O2(g) -14.02 -15.49 -1.47 [14C]O2 [14C]O[18O](g) -16.40 -18.19 -1.79 [14C]O[18O] - [18O]2(g) -69.01 -71.30 -2.29 [18O]2 + [18O]2(g) -68.85 -71.14 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -4072,14 +4086,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.11 -18.97 -2.86 CH4 + CH4(g) -16.42 -19.28 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.09 -13.24 -3.15 H2 + H2(g) -10.17 -13.32 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.01 -65.90 -2.89 O2 - O[18O](g) -65.71 -68.60 -2.89 O[18O] + O2(g) -62.85 -65.74 -2.89 O2 + O[18O](g) -65.55 -68.44 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4103,6 +4117,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 21. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -4188,14 +4208,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6426e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.567e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 7.7716e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.9984e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -4213,16 +4233,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.923 Adjusted to redox equilibrium + pe = -1.728 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.844e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 44 + Iterations = 132 (233 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -4234,25 +4254,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 7.443e-20 - CH4 7.443e-20 7.455e-20 -19.128 -19.128 0.001 (0) +C(-4) 2.058e-21 + CH4 2.058e-21 2.062e-21 -20.687 -20.686 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -4260,23 +4280,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.064e-08 6.074e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.049e-13 - H2 5.244e-14 5.253e-14 -13.280 -13.280 0.001 (0) +H(0) 4.277e-14 + H2 2.138e-14 2.142e-14 -13.670 -13.669 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.823 -65.823 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.222 -68.222 0.001 (0) -[13C](-4) 8.206e-22 - [13C]H4 8.206e-22 8.219e-22 -21.086 -21.085 0.001 (0) + O2 0.000e+00 0.000e+00 -65.044 -65.043 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.443 -67.442 0.001 (0) +[13C](-4) 2.269e-23 + [13C]H4 2.269e-23 2.273e-23 -22.644 -22.643 0.001 (0) [13C](4) 6.485e-05 H[13C]O3- 5.231e-05 4.786e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) H[13C]O[18O]O- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.064e-08 6.074e-08 -7.217 -7.217 0.001 (0) [13C]O[18O] 4.565e-08 4.573e-08 -7.341 -7.340 0.001 (0) @@ -4285,56 +4305,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.630e-10 3.636e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.862e-10 1.304e-10 -9.730 -9.885 -0.155 (0) -[14C](-4) 2.225e-32 - [14C]H4 2.225e-32 2.228e-32 -31.653 -31.652 0.001 (0) +[14C](-4) 6.152e-34 + [14C]H4 6.152e-34 6.162e-34 -33.211 -33.210 0.001 (0) [14C](4) 1.771e-15 H[14C]O3- 1.431e-15 1.309e-15 -14.845 -14.883 -0.039 (0) [14C]O2 2.977e-16 2.981e-16 -15.526 -15.526 0.001 (0) CaH[14C]O3+ 3.021e-17 2.771e-17 -16.520 -16.557 -0.037 (0) - H[14C]O2[18O]- 2.854e-18 2.611e-18 -17.545 -17.583 -0.039 (0) - H[14C]O[18O]O- 2.854e-18 2.611e-18 -17.545 -17.583 -0.039 (0) H[14C][18O]O2- 2.854e-18 2.611e-18 -17.545 -17.583 -0.039 (0) + H[14C]O[18O]O- 2.854e-18 2.611e-18 -17.545 -17.583 -0.039 (0) + H[14C]O2[18O]- 2.854e-18 2.611e-18 -17.545 -17.583 -0.039 (0) Ca[14C]O3 1.656e-18 1.659e-18 -17.781 -17.780 0.001 (0) [14C]O[18O] 1.238e-18 1.240e-18 -17.907 -17.907 0.001 (0) [14C]O3-2 8.495e-19 5.951e-19 -18.071 -18.225 -0.155 (0) CaH[14C]O2[18O]+ 6.027e-20 5.529e-20 -19.220 -19.257 -0.037 (0) - CaH[14C]O[18O]O+ 6.027e-20 5.529e-20 -19.220 -19.257 -0.037 (0) CaH[14C][18O]O2+ 6.027e-20 5.529e-20 -19.220 -19.257 -0.037 (0) + CaH[14C]O[18O]O+ 6.027e-20 5.529e-20 -19.220 -19.257 -0.037 (0) Ca[14C]O2[18O] 9.912e-21 9.928e-21 -20.004 -20.003 0.001 (0) - H[14C]O[18O]2- 5.695e-21 5.210e-21 -20.245 -20.283 -0.039 (0) H[14C][18O]2O- 5.695e-21 5.210e-21 -20.245 -20.283 -0.039 (0) H[14C][18O]O[18O]- 5.695e-21 5.210e-21 -20.245 -20.283 -0.039 (0) + H[14C]O[18O]2- 5.695e-21 5.210e-21 -20.245 -20.283 -0.039 (0) [14C]O2[18O]-2 5.085e-21 3.562e-21 -20.294 -20.448 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.222 -68.222 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.223 -71.223 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.443 -67.442 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.444 -70.443 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.23 -21.09 -2.86 [13C]H4 + [13C]H4(g) -19.78 -22.64 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.42 -20.93 -1.50 [14C][18O]2 - [14C]H4(g) -28.79 -31.65 -2.86 [14C]H4 + [14C]H4(g) -30.35 -33.21 -2.86 [14C]H4 [14C]O2(g) -14.06 -15.53 -1.47 [14C]O2 [14C]O[18O](g) -16.44 -18.23 -1.79 [14C]O[18O] - [18O]2(g) -68.93 -71.22 -2.29 [18O]2 + [18O]2(g) -68.15 -70.44 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -4348,14 +4368,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.27 -19.13 -2.86 CH4 + CH4(g) -17.83 -20.69 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.13 -13.28 -3.15 H2 + H2(g) -10.52 -13.67 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.93 -65.82 -2.89 O2 - O[18O](g) -65.63 -68.52 -2.89 O[18O] + O2(g) -62.15 -65.04 -2.89 O2 + O[18O](g) -64.85 -67.74 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4446,6 +4466,7 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99518e-03 -4.9955 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil + R(18O) O2(aq) 1.99518e-03 -4.9955 permil R(13C) CO2(aq) 1.10294e-02 -13.486 permil R(14C) CO2(aq) 2.75358e-13 23.417 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil @@ -4455,8 +4476,6 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99518e-03 -4.9955 permil R(13C) CO3-2 1.11094e-02 -6.3315 permil R(14C) CO3-2 2.79366e-13 23.758 pmc - R(13C) CH4(aq) 1.10294e-02 -13.486 permil - R(14C) CH4(aq) 2.75358e-13 23.417 pmc R(18O) Calcite 2.05262e-03 23.651 permil R(13C) Calcite 1.11474e-02 -2.9325 permil R(14C) Calcite 2.81281e-13 23.921 pmc @@ -4469,15 +4488,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 +Alpha 18O O2(aq)/H2O(l) 1 -2.2684e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6652e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8585e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.2188e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -4495,16 +4513,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.837 Adjusted to redox equilibrium + pe = 10.737 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.844e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 90 (191 overall) + Iterations = 134 (235 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -4516,15 +4534,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.531e-20 - CH4 1.531e-20 1.533e-20 -19.815 -19.814 0.001 (0) +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -120.404 -120.403 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -4532,9 +4550,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -4542,81 +4560,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.067e-08 6.077e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.063e-14 - H2 3.531e-14 3.537e-14 -13.452 -13.451 0.001 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.480 -65.479 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.879 -67.878 0.001 (0) -[13C](-4) 1.688e-22 - [13C]H4 1.688e-22 1.691e-22 -21.773 -21.772 0.001 (0) +H(0) 5.032e-39 + H2 2.516e-39 2.520e-39 -38.599 -38.599 0.001 (0) +O(0) 1.311e-15 + O2 6.527e-16 6.537e-16 -15.185 -15.185 0.001 (0) + O[18O] 2.604e-18 2.609e-18 -17.584 -17.584 0.001 (0) +[13C](-4) 0.000e+00 + [13C]H4 0.000e+00 0.000e+00 -122.362 -122.361 0.001 (0) [13C](4) 6.488e-05 H[13C]O3- 5.233e-05 4.788e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) H[13C]O2[18O]- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.067e-08 6.077e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.567e-08 4.575e-08 -7.340 -7.340 0.001 (0) [13C]O3-2 3.112e-08 2.180e-08 -7.507 -7.662 -0.155 (0) - CaH[13C]O2[18O]+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) + CaH[13C]O2[18O]+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.631e-10 3.637e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) -[14C](-4) 4.215e-33 - [14C]H4 4.215e-33 4.222e-33 -32.375 -32.374 0.001 (0) +[14C](-4) 0.000e+00 + [14C]H4 0.000e+00 0.000e+00 -132.964 -132.963 0.001 (0) [14C](4) 1.631e-15 H[14C]O3- 1.318e-15 1.206e-15 -14.880 -14.919 -0.039 (0) [14C]O2 2.742e-16 2.747e-16 -15.562 -15.561 0.001 (0) CaH[14C]O3+ 2.783e-17 2.553e-17 -16.556 -16.593 -0.037 (0) - H[14C]O2[18O]- 2.629e-18 2.405e-18 -17.580 -17.619 -0.039 (0) - H[14C]O[18O]O- 2.629e-18 2.405e-18 -17.580 -17.619 -0.039 (0) H[14C][18O]O2- 2.629e-18 2.405e-18 -17.580 -17.619 -0.039 (0) + H[14C]O[18O]O- 2.629e-18 2.405e-18 -17.580 -17.619 -0.039 (0) + H[14C]O2[18O]- 2.629e-18 2.405e-18 -17.580 -17.619 -0.039 (0) Ca[14C]O3 1.526e-18 1.528e-18 -17.817 -17.816 0.001 (0) [14C]O[18O] 1.140e-18 1.142e-18 -17.943 -17.942 0.001 (0) [14C]O3-2 7.826e-19 5.482e-19 -18.106 -18.261 -0.155 (0) CaH[14C]O2[18O]+ 5.552e-20 5.093e-20 -19.256 -19.293 -0.037 (0) - CaH[14C]O[18O]O+ 5.552e-20 5.093e-20 -19.256 -19.293 -0.037 (0) CaH[14C][18O]O2+ 5.552e-20 5.093e-20 -19.256 -19.293 -0.037 (0) + CaH[14C]O[18O]O+ 5.552e-20 5.093e-20 -19.256 -19.293 -0.037 (0) Ca[14C]O2[18O] 9.131e-21 9.146e-21 -20.039 -20.039 0.001 (0) + H[14C][18O]O[18O]- 5.246e-21 4.799e-21 -20.280 -20.319 -0.039 (0) H[14C]O[18O]2- 5.246e-21 4.799e-21 -20.280 -20.319 -0.039 (0) H[14C][18O]2O- 5.246e-21 4.799e-21 -20.280 -20.319 -0.039 (0) - H[14C][18O]O[18O]- 5.246e-21 4.799e-21 -20.280 -20.319 -0.039 (0) [14C]O2[18O]-2 4.684e-21 3.282e-21 -20.329 -20.484 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.879 -67.878 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.880 -70.879 0.001 (0) +[18O](0) 2.610e-18 + O[18O] 2.604e-18 2.609e-18 -17.584 -17.584 0.001 (0) + [18O]2 2.598e-21 2.602e-21 -20.585 -20.585 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.91 -21.77 -2.86 [13C]H4 + [13C]H4(g) -119.50 -122.36 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.46 -20.96 -1.50 [14C][18O]2 - [14C]H4(g) -29.51 -32.37 -2.86 [14C]H4 + [14C]H4(g) -130.10 -132.96 -2.86 [14C]H4 [14C]O2(g) -14.09 -15.56 -1.47 [14C]O2 [14C]O[18O](g) -16.47 -18.26 -1.79 [14C]O[18O] - [18O]2(g) -68.59 -70.88 -2.29 [18O]2 + [18O]2(g) -18.29 -20.58 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -4630,14 +4648,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.95 -19.81 -2.86 CH4 + CH4(g) -117.54 -120.40 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.30 -13.45 -3.15 H2 + H2(g) -35.45 -38.60 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.59 -65.48 -2.89 O2 - O[18O](g) -65.29 -68.18 -2.89 O[18O] + O2(g) -12.29 -15.18 -2.89 O2 + O[18O](g) -14.99 -17.88 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4661,6 +4679,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 23. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -4746,14 +4770,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6596e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5774e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.7756e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.3767e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -4771,16 +4795,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.891 Adjusted to redox equilibrium + pe = -1.621 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.843e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 94 + Iterations = 92 (193 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -4792,25 +4816,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.135e-20 - CH4 4.135e-20 4.142e-20 -19.384 -19.383 0.001 (0) +C(-4) 2.835e-22 + CH4 2.835e-22 2.840e-22 -21.547 -21.547 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -4818,50 +4842,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.069e-08 6.079e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.055e-14 - H2 4.527e-14 4.535e-14 -13.344 -13.343 0.001 (0) +H(0) 2.606e-14 + H2 1.303e-14 1.305e-14 -13.885 -13.884 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.696 -65.695 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.095 -68.094 0.001 (0) -[13C](-4) 4.563e-22 - [13C]H4 4.563e-22 4.570e-22 -21.341 -21.340 0.001 (0) + O2 0.000e+00 0.000e+00 -64.614 -64.613 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.013 -67.012 0.001 (0) +[13C](-4) 3.128e-24 + [13C]H4 3.128e-24 3.133e-24 -23.505 -23.504 0.001 (0) [13C](4) 6.490e-05 H[13C]O3- 5.235e-05 4.789e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.044e-07 9.556e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-07 9.556e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.556e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.044e-07 9.556e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.044e-07 9.556e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.069e-08 6.079e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.569e-08 4.577e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.113e-08 2.181e-08 -7.507 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.633e-10 3.639e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) -[14C](-4) 1.049e-32 - [14C]H4 1.049e-32 1.051e-32 -31.979 -31.979 0.001 (0) +[14C](-4) 7.191e-35 + [14C]H4 7.191e-35 7.203e-35 -34.143 -34.142 0.001 (0) [14C](4) 1.503e-15 H[14C]O3- 1.214e-15 1.111e-15 -14.916 -14.954 -0.039 (0) [14C]O2 2.526e-16 2.530e-16 -15.598 -15.597 0.001 (0) CaH[14C]O3+ 2.564e-17 2.352e-17 -16.591 -16.629 -0.037 (0) - H[14C]O2[18O]- 2.422e-18 2.216e-18 -17.616 -17.654 -0.039 (0) - H[14C]O[18O]O- 2.422e-18 2.216e-18 -17.616 -17.654 -0.039 (0) H[14C][18O]O2- 2.422e-18 2.216e-18 -17.616 -17.654 -0.039 (0) + H[14C]O[18O]O- 2.422e-18 2.216e-18 -17.616 -17.654 -0.039 (0) + H[14C]O2[18O]- 2.422e-18 2.216e-18 -17.616 -17.654 -0.039 (0) Ca[14C]O3 1.405e-18 1.408e-18 -17.852 -17.851 0.001 (0) [14C]O[18O] 1.050e-18 1.052e-18 -17.979 -17.978 0.001 (0) [14C]O3-2 7.209e-19 5.051e-19 -18.142 -18.297 -0.155 (0) CaH[14C]O2[18O]+ 5.115e-20 4.692e-20 -19.291 -19.329 -0.037 (0) - CaH[14C]O[18O]O+ 5.115e-20 4.692e-20 -19.291 -19.329 -0.037 (0) CaH[14C][18O]O2+ 5.115e-20 4.692e-20 -19.291 -19.329 -0.037 (0) + CaH[14C]O[18O]O+ 5.115e-20 4.692e-20 -19.291 -19.329 -0.037 (0) Ca[14C]O2[18O] 8.412e-21 8.426e-21 -20.075 -20.074 0.001 (0) H[14C]O[18O]2- 4.833e-21 4.421e-21 -20.316 -20.354 -0.039 (0) H[14C][18O]2O- 4.833e-21 4.421e-21 -20.316 -20.354 -0.039 (0) @@ -4870,29 +4894,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.095 -68.094 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.096 -71.095 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.013 -67.012 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.014 -70.013 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.48 -21.34 -2.86 [13C]H4 + [13C]H4(g) -20.64 -23.50 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.49 -21.00 -1.50 [14C][18O]2 - [14C]H4(g) -29.12 -31.98 -2.86 [14C]H4 + [14C]H4(g) -31.28 -34.14 -2.86 [14C]H4 [14C]O2(g) -14.13 -15.60 -1.47 [14C]O2 [14C]O[18O](g) -16.51 -18.30 -1.79 [14C]O[18O] - [18O]2(g) -68.80 -71.09 -2.29 [18O]2 + [18O]2(g) -67.72 -70.01 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -4906,14 +4930,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.52 -19.38 -2.86 CH4 + CH4(g) -18.69 -21.55 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.19 -13.34 -3.15 H2 + H2(g) -10.73 -13.88 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.80 -65.69 -2.89 O2 - O[18O](g) -65.50 -68.39 -2.89 O[18O] + O2(g) -61.72 -64.61 -2.89 O2 + O[18O](g) -64.42 -67.31 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4937,12 +4961,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 24. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -5028,14 +5046,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7513e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.535e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 0 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -5053,16 +5071,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.767 Adjusted to redox equilibrium + pe = -1.735 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.843e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 98 (199 overall) + Iterations = 77 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -5074,14 +5092,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.221e-21 - CH4 4.221e-21 4.228e-21 -20.375 -20.374 0.001 (0) +C(-4) 2.331e-21 + CH4 2.331e-21 2.334e-21 -20.633 -20.632 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -5090,9 +5108,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -5100,23 +5118,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.071e-08 6.081e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.118e-14 - H2 2.559e-14 2.563e-14 -13.592 -13.591 0.001 (0) +H(0) 4.412e-14 + H2 2.206e-14 2.210e-14 -13.656 -13.656 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.200 -65.199 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.599 -67.598 0.001 (0) -[13C](-4) 4.659e-23 - [13C]H4 4.659e-23 4.667e-23 -22.332 -22.331 0.001 (0) + O2 0.000e+00 0.000e+00 -65.071 -65.070 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.470 -67.469 0.001 (0) +[13C](-4) 2.572e-23 + [13C]H4 2.572e-23 2.577e-23 -22.590 -22.589 0.001 (0) [13C](4) 6.493e-05 H[13C]O3- 5.237e-05 4.791e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) H[13C]O[18O]O- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.071e-08 6.081e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.571e-08 4.578e-08 -7.340 -7.339 0.001 (0) @@ -5125,56 +5143,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.634e-10 3.640e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.730 -9.884 -0.155 (0) -[14C](-4) 9.864e-34 - [14C]H4 9.864e-34 9.880e-34 -33.006 -33.005 0.001 (0) +[14C](-4) 5.446e-34 + [14C]H4 5.446e-34 5.455e-34 -33.264 -33.263 0.001 (0) [14C](4) 1.385e-15 H[14C]O3- 1.118e-15 1.023e-15 -14.951 -14.990 -0.039 (0) [14C]O2 2.327e-16 2.331e-16 -15.633 -15.632 0.001 (0) CaH[14C]O3+ 2.362e-17 2.166e-17 -16.627 -16.664 -0.037 (0) - H[14C]O2[18O]- 2.231e-18 2.041e-18 -17.651 -17.690 -0.039 (0) - H[14C]O[18O]O- 2.231e-18 2.041e-18 -17.651 -17.690 -0.039 (0) H[14C][18O]O2- 2.231e-18 2.041e-18 -17.651 -17.690 -0.039 (0) + H[14C]O[18O]O- 2.231e-18 2.041e-18 -17.651 -17.690 -0.039 (0) + H[14C]O2[18O]- 2.231e-18 2.041e-18 -17.651 -17.690 -0.039 (0) Ca[14C]O3 1.295e-18 1.297e-18 -17.888 -17.887 0.001 (0) [14C]O[18O] 9.677e-19 9.693e-19 -18.014 -18.014 0.001 (0) [14C]O3-2 6.641e-19 4.653e-19 -18.178 -18.332 -0.155 (0) CaH[14C]O2[18O]+ 4.712e-20 4.322e-20 -19.327 -19.364 -0.037 (0) - CaH[14C]O[18O]O+ 4.712e-20 4.322e-20 -19.327 -19.364 -0.037 (0) CaH[14C][18O]O2+ 4.712e-20 4.322e-20 -19.327 -19.364 -0.037 (0) + CaH[14C]O[18O]O+ 4.712e-20 4.322e-20 -19.327 -19.364 -0.037 (0) Ca[14C]O2[18O] 7.749e-21 7.762e-21 -20.111 -20.110 0.001 (0) - H[14C]O[18O]2- 4.452e-21 4.073e-21 -20.351 -20.390 -0.039 (0) H[14C][18O]2O- 4.452e-21 4.073e-21 -20.351 -20.390 -0.039 (0) H[14C][18O]O[18O]- 4.452e-21 4.073e-21 -20.351 -20.390 -0.039 (0) + H[14C]O[18O]2- 4.452e-21 4.073e-21 -20.351 -20.390 -0.039 (0) [14C]O2[18O]-2 3.975e-21 2.785e-21 -20.401 -20.555 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.599 -67.598 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.600 -70.599 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.470 -67.469 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.471 -70.470 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.47 -22.33 -2.86 [13C]H4 + [13C]H4(g) -19.73 -22.59 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.53 -21.03 -1.50 [14C][18O]2 - [14C]H4(g) -30.15 -33.01 -2.86 [14C]H4 + [14C]H4(g) -30.40 -33.26 -2.86 [14C]H4 [14C]O2(g) -14.16 -15.63 -1.47 [14C]O2 [14C]O[18O](g) -16.55 -18.33 -1.79 [14C]O[18O] - [18O]2(g) -68.31 -70.60 -2.29 [18O]2 + [18O]2(g) -68.18 -70.47 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -5188,14 +5206,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.51 -20.37 -2.86 CH4 + CH4(g) -17.77 -20.63 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.44 -13.59 -3.15 H2 + H2(g) -10.51 -13.66 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.31 -65.20 -2.89 O2 - O[18O](g) -65.01 -67.90 -2.89 O[18O] + O2(g) -62.18 -65.07 -2.89 O2 + O[18O](g) -64.88 -67.77 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5280,6 +5298,7 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99518e-03 -4.9951 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil + R(18O) O2(aq) 1.99518e-03 -4.9951 permil R(13C) CO2(aq) 1.10415e-02 -12.409 permil R(14C) CO2(aq) 2.15280e-13 18.308 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil @@ -5289,8 +5308,6 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99518e-03 -4.9951 permil R(13C) CO3-2 1.11215e-02 -5.2466 permil R(14C) CO3-2 2.18414e-13 18.574 pmc - R(13C) CH4(aq) 1.10415e-02 -12.409 permil - R(14C) CH4(aq) 2.15280e-13 18.308 pmc R(18O) Calcite 2.05263e-03 23.651 permil R(13C) Calcite 1.11596e-02 -1.8439 permil R(14C) Calcite 2.19911e-13 18.702 pmc @@ -5303,15 +5320,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 +Alpha 18O O2(aq)/H2O(l) 1 -2.2516e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6316e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.69e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 6.2172e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -5329,16 +5345,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.633 Adjusted to redox equilibrium + pe = 10.863 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.844e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 77 + Iterations = 95 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -5350,25 +5366,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.551e-22 - CH4 3.551e-22 3.556e-22 -21.450 -21.449 0.001 (0) +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -121.419 -121.419 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -5376,81 +5392,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.073e-08 6.083e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.756e-14 - H2 1.378e-14 1.380e-14 -13.861 -13.860 0.001 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.663 -64.662 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.062 -67.061 0.001 (0) -[13C](-4) 3.920e-24 - [13C]H4 3.920e-24 3.927e-24 -23.407 -23.406 0.001 (0) +H(0) 2.805e-39 + H2 1.402e-39 1.405e-39 -38.853 -38.852 0.001 (0) +O(0) 4.218e-15 + O2 2.101e-15 2.104e-15 -14.678 -14.677 0.001 (0) + O[18O] 8.383e-18 8.397e-18 -17.077 -17.076 0.001 (0) +[13C](-4) 0.000e+00 + [13C]H4 0.000e+00 0.000e+00 -123.376 -123.376 0.001 (0) [13C](4) 6.495e-05 H[13C]O3- 5.239e-05 4.793e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) H[13C]O2[18O]- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.073e-08 6.083e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.572e-08 4.580e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.115e-08 2.183e-08 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) + CaH[13C]O2[18O]+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.635e-10 3.641e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.306e-10 -9.729 -9.884 -0.155 (0) -[14C](-4) 7.644e-35 - [14C]H4 7.644e-35 7.656e-35 -34.117 -34.116 0.001 (0) +[14C](-4) 0.000e+00 + [14C]H4 0.000e+00 0.000e+00 -134.086 -134.086 0.001 (0) [14C](4) 1.275e-15 H[14C]O3- 1.030e-15 9.426e-16 -14.987 -15.026 -0.039 (0) [14C]O2 2.144e-16 2.147e-16 -15.669 -15.668 0.001 (0) CaH[14C]O3+ 2.176e-17 1.996e-17 -16.662 -16.700 -0.037 (0) - H[14C]O2[18O]- 2.056e-18 1.881e-18 -17.687 -17.726 -0.039 (0) - H[14C]O[18O]O- 2.056e-18 1.881e-18 -17.687 -17.726 -0.039 (0) H[14C][18O]O2- 2.056e-18 1.881e-18 -17.687 -17.726 -0.039 (0) + H[14C]O[18O]O- 2.056e-18 1.881e-18 -17.687 -17.726 -0.039 (0) + H[14C]O2[18O]- 2.056e-18 1.881e-18 -17.687 -17.726 -0.039 (0) Ca[14C]O3 1.193e-18 1.195e-18 -17.923 -17.923 0.001 (0) [14C]O[18O] 8.915e-19 8.929e-19 -18.050 -18.049 0.001 (0) [14C]O3-2 6.118e-19 4.286e-19 -18.213 -18.368 -0.155 (0) CaH[14C]O2[18O]+ 4.341e-20 3.982e-20 -19.362 -19.400 -0.037 (0) - CaH[14C]O[18O]O+ 4.341e-20 3.982e-20 -19.362 -19.400 -0.037 (0) CaH[14C][18O]O2+ 4.341e-20 3.982e-20 -19.362 -19.400 -0.037 (0) + CaH[14C]O[18O]O+ 4.341e-20 3.982e-20 -19.362 -19.400 -0.037 (0) Ca[14C]O2[18O] 7.139e-21 7.151e-21 -20.146 -20.146 0.001 (0) + H[14C][18O]O[18O]- 4.101e-21 3.752e-21 -20.387 -20.426 -0.039 (0) H[14C]O[18O]2- 4.101e-21 3.752e-21 -20.387 -20.426 -0.039 (0) H[14C][18O]2O- 4.101e-21 3.752e-21 -20.387 -20.426 -0.039 (0) - H[14C][18O]O[18O]- 4.101e-21 3.752e-21 -20.387 -20.426 -0.039 (0) [14C]O2[18O]-2 3.662e-21 2.566e-21 -20.436 -20.591 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.062 -67.061 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.063 -70.062 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 8.400e-18 + O[18O] 8.383e-18 8.397e-18 -17.077 -17.076 0.001 (0) + [18O]2 8.363e-21 8.377e-21 -20.078 -20.077 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -20.55 -23.41 -2.86 [13C]H4 + [13C]H4(g) -120.52 -123.38 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.56 -21.07 -1.50 [14C][18O]2 - [14C]H4(g) -31.26 -34.12 -2.86 [14C]H4 + [14C]H4(g) -131.23 -134.09 -2.86 [14C]H4 [14C]O2(g) -14.20 -15.67 -1.47 [14C]O2 [14C]O[18O](g) -16.58 -18.37 -1.79 [14C]O[18O] - [18O]2(g) -67.77 -70.06 -2.29 [18O]2 + [18O]2(g) -17.79 -20.08 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -5464,14 +5480,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.59 -21.45 -2.86 CH4 + CH4(g) -118.56 -121.42 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.71 -13.86 -3.15 H2 + H2(g) -35.70 -38.85 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.77 -64.66 -2.89 O2 - O[18O](g) -64.47 -67.36 -2.89 O[18O] + O2(g) -11.78 -14.68 -2.89 O2 + O[18O](g) -14.48 -17.38 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5495,6 +5511,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 26. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -5578,12 +5600,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2489e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2614e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7759e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.9051e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -5603,16 +5625,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.895 Adjusted to redox equilibrium + pe = 10.954 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.843e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 59 + Iterations = 92 (193 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -5625,14 +5647,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -121.670 -121.669 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.147 -122.147 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -5640,9 +5662,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -5650,50 +5672,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.428e-39 - H2 1.214e-39 1.216e-39 -38.916 -38.915 0.001 (0) -O(0) 5.627e-15 - O2 2.803e-15 2.807e-15 -14.552 -14.552 0.001 (0) - O[18O] 1.118e-17 1.120e-17 -16.951 -16.951 0.001 (0) +H(0) 1.845e-39 + H2 9.224e-40 9.239e-40 -39.035 -39.034 0.001 (0) +O(0) 9.751e-15 + O2 4.856e-15 4.864e-15 -14.314 -14.313 0.001 (0) + O[18O] 1.938e-17 1.941e-17 -16.713 -16.712 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -123.627 -123.626 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.104 -124.103 0.001 (0) [13C](4) 6.497e-05 H[13C]O3- 5.240e-05 4.794e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.565e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.565e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.565e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.565e-08 -6.981 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.565e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.574e-08 4.581e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.116e-08 2.183e-08 -7.506 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.636e-10 3.642e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.372 -134.372 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.850 -134.849 0.001 (0) [14C](4) 1.175e-15 H[14C]O3- 9.491e-16 8.683e-16 -15.023 -15.061 -0.039 (0) [14C]O2 1.975e-16 1.978e-16 -15.704 -15.704 0.001 (0) CaH[14C]O3+ 2.004e-17 1.839e-17 -16.698 -16.736 -0.037 (0) - H[14C]O2[18O]- 1.894e-18 1.732e-18 -17.723 -17.761 -0.039 (0) - H[14C]O[18O]O- 1.894e-18 1.732e-18 -17.723 -17.761 -0.039 (0) H[14C][18O]O2- 1.894e-18 1.732e-18 -17.723 -17.761 -0.039 (0) + H[14C]O[18O]O- 1.894e-18 1.732e-18 -17.723 -17.761 -0.039 (0) + H[14C]O2[18O]- 1.894e-18 1.732e-18 -17.723 -17.761 -0.039 (0) Ca[14C]O3 1.099e-18 1.101e-18 -17.959 -17.958 0.001 (0) [14C]O[18O] 8.212e-19 8.226e-19 -18.086 -18.085 0.001 (0) [14C]O3-2 5.636e-19 3.949e-19 -18.249 -18.404 -0.155 (0) CaH[14C]O2[18O]+ 3.999e-20 3.668e-20 -19.398 -19.436 -0.037 (0) - CaH[14C]O[18O]O+ 3.999e-20 3.668e-20 -19.398 -19.436 -0.037 (0) CaH[14C][18O]O2+ 3.999e-20 3.668e-20 -19.398 -19.436 -0.037 (0) + CaH[14C]O[18O]O+ 3.999e-20 3.668e-20 -19.398 -19.436 -0.037 (0) Ca[14C]O2[18O] 6.577e-21 6.587e-21 -20.182 -20.181 0.001 (0) H[14C]O[18O]2- 3.778e-21 3.457e-21 -20.423 -20.461 -0.039 (0) H[14C][18O]2O- 3.778e-21 3.457e-21 -20.423 -20.461 -0.039 (0) @@ -5702,29 +5724,29 @@ O(0) 5.627e-15 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.121e-17 - O[18O] 1.118e-17 1.120e-17 -16.951 -16.951 0.001 (0) - [18O]2 1.116e-20 1.117e-20 -19.952 -19.952 0.001 (0) +[18O](0) 1.942e-17 + O[18O] 1.938e-17 1.941e-17 -16.713 -16.712 0.001 (0) + [18O]2 1.933e-20 1.936e-20 -19.714 -19.713 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -120.77 -123.63 -2.86 [13C]H4 + [13C]H4(g) -121.24 -124.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.60 -21.10 -1.50 [14C][18O]2 - [14C]H4(g) -131.51 -134.37 -2.86 [14C]H4 + [14C]H4(g) -131.99 -134.85 -2.86 [14C]H4 [14C]O2(g) -14.24 -15.70 -1.47 [14C]O2 [14C]O[18O](g) -16.62 -18.40 -1.79 [14C]O[18O] - [18O]2(g) -17.66 -19.95 -2.29 [18O]2 + [18O]2(g) -17.42 -19.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -5738,14 +5760,14 @@ O(0) 5.627e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -118.81 -121.67 -2.86 CH4 + CH4(g) -119.29 -122.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.77 -38.92 -3.15 H2 + H2(g) -35.88 -39.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.66 -14.55 -2.89 O2 - O[18O](g) -14.36 -17.25 -2.89 O[18O] + O2(g) -11.42 -14.31 -2.89 O2 + O[18O](g) -14.12 -17.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5852,12 +5874,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2571e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.27e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7135e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7033e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -5877,16 +5899,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.019 Adjusted to redox equilibrium + pe = 10.999 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.843e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 87 + Iterations = 95 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -5899,24 +5921,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.665 -122.664 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.504 -122.503 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -5924,23 +5946,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.370e-39 - H2 6.848e-40 6.859e-40 -39.164 -39.164 0.001 (0) -O(0) 1.769e-14 - O2 8.810e-15 8.824e-15 -14.055 -14.054 0.001 (0) - O[18O] 3.515e-17 3.521e-17 -16.454 -16.453 0.001 (0) +H(0) 1.503e-39 + H2 7.513e-40 7.525e-40 -39.124 -39.123 0.001 (0) +O(0) 1.470e-14 + O2 7.320e-15 7.332e-15 -14.136 -14.135 0.001 (0) + O[18O] 2.921e-17 2.926e-17 -16.534 -16.534 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.621 -124.621 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.460 -124.460 0.001 (0) [13C](4) 6.499e-05 H[13C]O3- 5.242e-05 4.796e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) H[13C]O[18O]O- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.575e-08 4.582e-08 -7.340 -7.339 0.001 (0) @@ -5949,56 +5971,56 @@ O(0) 1.769e-14 CaH[13C]O[18O]O+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.637e-10 3.643e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.403 -135.402 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.242 -135.241 0.001 (0) [14C](4) 1.082e-15 H[14C]O3- 8.744e-16 7.999e-16 -15.058 -15.097 -0.039 (0) [14C]O2 1.819e-16 1.822e-16 -15.740 -15.739 0.001 (0) CaH[14C]O3+ 1.846e-17 1.694e-17 -16.734 -16.771 -0.037 (0) - H[14C]O2[18O]- 1.745e-18 1.596e-18 -17.758 -17.797 -0.039 (0) - H[14C]O[18O]O- 1.745e-18 1.596e-18 -17.758 -17.797 -0.039 (0) H[14C][18O]O2- 1.745e-18 1.596e-18 -17.758 -17.797 -0.039 (0) + H[14C]O[18O]O- 1.745e-18 1.596e-18 -17.758 -17.797 -0.039 (0) + H[14C]O2[18O]- 1.745e-18 1.596e-18 -17.758 -17.797 -0.039 (0) Ca[14C]O3 1.012e-18 1.014e-18 -17.995 -17.994 0.001 (0) [14C]O[18O] 7.565e-19 7.578e-19 -18.121 -18.120 0.001 (0) [14C]O3-2 5.192e-19 3.638e-19 -18.285 -18.439 -0.155 (0) CaH[14C]O2[18O]+ 3.684e-20 3.379e-20 -19.434 -19.471 -0.037 (0) - CaH[14C]O[18O]O+ 3.684e-20 3.379e-20 -19.434 -19.471 -0.037 (0) CaH[14C][18O]O2+ 3.684e-20 3.379e-20 -19.434 -19.471 -0.037 (0) + CaH[14C]O[18O]O+ 3.684e-20 3.379e-20 -19.434 -19.471 -0.037 (0) Ca[14C]O2[18O] 6.059e-21 6.068e-21 -20.218 -20.217 0.001 (0) - H[14C]O[18O]2- 3.481e-21 3.184e-21 -20.458 -20.497 -0.039 (0) H[14C][18O]2O- 3.481e-21 3.184e-21 -20.458 -20.497 -0.039 (0) H[14C][18O]O[18O]- 3.481e-21 3.184e-21 -20.458 -20.497 -0.039 (0) + H[14C]O[18O]2- 3.481e-21 3.184e-21 -20.458 -20.497 -0.039 (0) [14C]O2[18O]-2 3.108e-21 2.177e-21 -20.508 -20.662 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.522e-17 - O[18O] 3.515e-17 3.521e-17 -16.454 -16.453 0.001 (0) - [18O]2 3.507e-20 3.513e-20 -19.455 -19.454 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.927e-17 + O[18O] 2.921e-17 2.926e-17 -16.534 -16.534 0.001 (0) + [18O]2 2.914e-20 2.919e-20 -19.536 -19.535 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.76 -124.62 -2.86 [13C]H4 + [13C]H4(g) -121.60 -124.46 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.64 -21.14 -1.50 [14C][18O]2 - [14C]H4(g) -132.54 -135.40 -2.86 [14C]H4 + [14C]H4(g) -132.38 -135.24 -2.86 [14C]H4 [14C]O2(g) -14.27 -15.74 -1.47 [14C]O2 [14C]O[18O](g) -16.65 -18.44 -1.79 [14C]O[18O] - [18O]2(g) -17.16 -19.45 -2.29 [18O]2 + [18O]2(g) -17.24 -19.53 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -6012,14 +6034,14 @@ O(0) 1.769e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.80 -122.66 -2.86 CH4 + CH4(g) -119.64 -122.50 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.01 -39.16 -3.15 H2 + H2(g) -35.97 -39.12 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.16 -14.05 -2.89 O2 - O[18O](g) -13.86 -16.75 -2.89 O[18O] + O2(g) -11.24 -14.13 -2.89 O2 + O[18O](g) -13.94 -16.83 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6043,6 +6065,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 28. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -6126,12 +6154,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2639e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2777e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.72e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7817e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -6151,16 +6179,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.020 Adjusted to redox equilibrium + pe = 11.044 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.844e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 73 + Iterations = 78 (179 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -6173,14 +6201,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.673 -122.673 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.860 -122.859 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -6188,9 +6216,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -6198,81 +6226,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.363e-39 - H2 6.814e-40 6.825e-40 -39.167 -39.166 0.001 (0) -O(0) 1.787e-14 - O2 8.897e-15 8.912e-15 -14.051 -14.050 0.001 (0) - O[18O] 3.550e-17 3.556e-17 -16.450 -16.449 0.001 (0) +H(0) 1.224e-39 + H2 6.120e-40 6.130e-40 -39.213 -39.213 0.001 (0) +O(0) 2.215e-14 + O2 1.103e-14 1.105e-14 -13.957 -13.957 0.001 (0) + O[18O] 4.402e-17 4.409e-17 -16.356 -16.356 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.630 -124.629 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.817 -124.816 0.001 (0) [13C](4) 6.500e-05 H[13C]O3- 5.243e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.576e-08 4.584e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.118e-08 2.184e-08 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.447 -135.446 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.634 -135.633 0.001 (0) [14C](4) 9.972e-16 H[14C]O3- 8.055e-16 7.369e-16 -15.094 -15.133 -0.039 (0) [14C]O2 1.676e-16 1.679e-16 -15.776 -15.775 0.001 (0) CaH[14C]O3+ 1.701e-17 1.560e-17 -16.769 -16.807 -0.037 (0) - H[14C]O2[18O]- 1.607e-18 1.470e-18 -17.794 -17.833 -0.039 (0) - H[14C]O[18O]O- 1.607e-18 1.470e-18 -17.794 -17.833 -0.039 (0) H[14C][18O]O2- 1.607e-18 1.470e-18 -17.794 -17.833 -0.039 (0) + H[14C]O[18O]O- 1.607e-18 1.470e-18 -17.794 -17.833 -0.039 (0) + H[14C]O2[18O]- 1.607e-18 1.470e-18 -17.794 -17.833 -0.039 (0) Ca[14C]O3 9.325e-19 9.340e-19 -18.030 -18.030 0.001 (0) [14C]O[18O] 6.970e-19 6.981e-19 -18.157 -18.156 0.001 (0) [14C]O3-2 4.783e-19 3.351e-19 -18.320 -18.475 -0.155 (0) CaH[14C]O2[18O]+ 3.394e-20 3.113e-20 -19.469 -19.507 -0.037 (0) - CaH[14C]O[18O]O+ 3.394e-20 3.113e-20 -19.469 -19.507 -0.037 (0) CaH[14C][18O]O2+ 3.394e-20 3.113e-20 -19.469 -19.507 -0.037 (0) + CaH[14C]O[18O]O+ 3.394e-20 3.113e-20 -19.469 -19.507 -0.037 (0) Ca[14C]O2[18O] 5.581e-21 5.590e-21 -20.253 -20.253 0.001 (0) + H[14C][18O]O[18O]- 3.206e-21 2.934e-21 -20.494 -20.533 -0.039 (0) H[14C]O[18O]2- 3.206e-21 2.934e-21 -20.494 -20.533 -0.039 (0) H[14C][18O]2O- 3.206e-21 2.934e-21 -20.494 -20.533 -0.039 (0) - H[14C][18O]O[18O]- 3.206e-21 2.934e-21 -20.494 -20.533 -0.039 (0) [14C]O2[18O]-2 2.863e-21 2.006e-21 -20.543 -20.698 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.557e-17 - O[18O] 3.550e-17 3.556e-17 -16.450 -16.449 0.001 (0) - [18O]2 3.542e-20 3.548e-20 -19.451 -19.450 0.001 (0) +[18O](0) 4.411e-17 + O[18O] 4.402e-17 4.409e-17 -16.356 -16.356 0.001 (0) + [18O]2 4.391e-20 4.399e-20 -19.357 -19.357 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.77 -124.63 -2.86 [13C]H4 + [13C]H4(g) -121.96 -124.82 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.67 -21.18 -1.50 [14C][18O]2 - [14C]H4(g) -132.59 -135.45 -2.86 [14C]H4 + [14C]H4(g) -132.77 -135.63 -2.86 [14C]H4 [14C]O2(g) -14.31 -15.77 -1.47 [14C]O2 [14C]O[18O](g) -16.69 -18.48 -1.79 [14C]O[18O] - [18O]2(g) -17.16 -19.45 -2.29 [18O]2 + [18O]2(g) -17.07 -19.36 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -6286,14 +6314,14 @@ O(0) 1.787e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.81 -122.67 -2.86 CH4 + CH4(g) -120.00 -122.86 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.02 -39.17 -3.15 H2 + H2(g) -36.06 -39.21 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.16 -14.05 -2.89 O2 - O[18O](g) -13.86 -16.75 -2.89 O[18O] + O2(g) -11.06 -13.96 -2.89 O2 + O[18O](g) -13.76 -16.66 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6317,12 +6345,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 29. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -6406,12 +6428,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2684e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2504e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.663e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5867e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -6431,16 +6453,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.972 Adjusted to redox equilibrium + pe = 10.751 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.843e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 112 (213 overall) + Iterations = 70 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -6453,24 +6475,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.285 -122.284 0.001 (0) + CH4 0.000e+00 0.000e+00 -120.523 -120.522 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -6478,50 +6500,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.704e-39 - H2 8.522e-40 8.536e-40 -39.069 -39.069 0.001 (0) -O(0) 1.142e-14 - O2 5.689e-15 5.698e-15 -14.245 -14.244 0.001 (0) - O[18O] 2.270e-17 2.274e-17 -16.644 -16.643 0.001 (0) +H(0) 4.699e-39 + H2 2.349e-39 2.353e-39 -38.629 -38.628 0.001 (0) +O(0) 1.503e-15 + O2 7.485e-16 7.497e-16 -15.126 -15.125 0.001 (0) + O[18O] 2.987e-18 2.992e-18 -17.525 -17.524 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.241 -124.241 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -122.480 -122.479 0.001 (0) [13C](4) 6.502e-05 H[13C]O3- 5.244e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.577e-08 4.585e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.119e-08 2.185e-08 -7.506 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.094 -135.094 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -133.333 -133.332 0.001 (0) [14C](4) 9.186e-16 H[14C]O3- 7.420e-16 6.789e-16 -15.130 -15.168 -0.039 (0) [14C]O2 1.544e-16 1.547e-16 -15.811 -15.811 0.001 (0) CaH[14C]O3+ 1.567e-17 1.437e-17 -16.805 -16.842 -0.037 (0) - H[14C]O2[18O]- 1.481e-18 1.354e-18 -17.830 -17.868 -0.039 (0) - H[14C]O[18O]O- 1.481e-18 1.354e-18 -17.830 -17.868 -0.039 (0) H[14C][18O]O2- 1.481e-18 1.354e-18 -17.830 -17.868 -0.039 (0) + H[14C]O[18O]O- 1.481e-18 1.354e-18 -17.830 -17.868 -0.039 (0) + H[14C]O2[18O]- 1.481e-18 1.354e-18 -17.830 -17.868 -0.039 (0) Ca[14C]O3 8.590e-19 8.604e-19 -18.066 -18.065 0.001 (0) [14C]O[18O] 6.421e-19 6.431e-19 -18.192 -18.192 0.001 (0) [14C]O3-2 4.407e-19 3.087e-19 -18.356 -18.510 -0.155 (0) CaH[14C]O2[18O]+ 3.126e-20 2.868e-20 -19.505 -19.542 -0.037 (0) - CaH[14C]O[18O]O+ 3.126e-20 2.868e-20 -19.505 -19.542 -0.037 (0) CaH[14C][18O]O2+ 3.126e-20 2.868e-20 -19.505 -19.542 -0.037 (0) + CaH[14C]O[18O]O+ 3.126e-20 2.868e-20 -19.505 -19.542 -0.037 (0) Ca[14C]O2[18O] 5.142e-21 5.150e-21 -20.289 -20.288 0.001 (0) H[14C]O[18O]2- 2.954e-21 2.702e-21 -20.530 -20.568 -0.039 (0) H[14C][18O]2O- 2.954e-21 2.702e-21 -20.530 -20.568 -0.039 (0) @@ -6530,29 +6552,29 @@ O(0) 1.142e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.274e-17 - O[18O] 2.270e-17 2.274e-17 -16.644 -16.643 0.001 (0) - [18O]2 2.264e-20 2.268e-20 -19.645 -19.644 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.993e-18 + O[18O] 2.987e-18 2.992e-18 -17.525 -17.524 0.001 (0) + [18O]2 2.980e-21 2.984e-21 -20.526 -20.525 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.38 -124.24 -2.86 [13C]H4 + [13C]H4(g) -119.62 -122.48 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.71 -21.21 -1.50 [14C][18O]2 - [14C]H4(g) -132.23 -135.09 -2.86 [14C]H4 + [14C]H4(g) -130.47 -133.33 -2.86 [14C]H4 [14C]O2(g) -14.34 -15.81 -1.47 [14C]O2 [14C]O[18O](g) -16.72 -18.51 -1.79 [14C]O[18O] - [18O]2(g) -17.35 -19.64 -2.29 [18O]2 + [18O]2(g) -18.23 -20.53 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -6566,14 +6588,14 @@ O(0) 1.142e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.42 -122.28 -2.86 CH4 + CH4(g) -117.66 -120.52 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.92 -39.07 -3.15 H2 + H2(g) -35.48 -38.63 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.35 -14.24 -2.89 O2 - O[18O](g) -14.05 -16.94 -2.89 O[18O] + O2(g) -12.23 -15.13 -2.89 O2 + O[18O](g) -14.93 -17.83 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6658,6 +6680,7 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99519e-03 -4.9944 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil + R(18O) O2(aq) 1.99519e-03 -4.9944 permil R(13C) CO2(aq) 1.10560e-02 -11.109 permil R(14C) CO2(aq) 1.42838e-13 12.147 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil @@ -6667,8 +6690,6 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99519e-03 -4.9944 permil R(13C) CO3-2 1.11362e-02 -3.937 permil R(14C) CO3-2 1.44918e-13 12.324 pmc - R(13C) CH4(aq) 1.10560e-02 -11.109 permil - R(14C) CH4(aq) 1.42838e-13 12.147 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11743e-02 -0.52978 permil R(14C) Calcite 1.45911e-13 12.409 pmc @@ -6681,15 +6702,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 +Alpha 18O O2(aq)/H2O(l) 1 -2.2877e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7228e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7185e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 6.4393e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -6707,16 +6727,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.294 Adjusted to redox equilibrium + pe = 10.739 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.843e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 77 + Iterations = 74 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -6728,14 +6748,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.922e-25 - CH4 6.922e-25 6.933e-25 -24.160 -24.159 0.001 (0) +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -120.427 -120.426 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -6744,9 +6764,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -6754,23 +6774,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.792e-15 - H2 2.896e-15 2.901e-15 -14.538 -14.537 0.001 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.307 -63.307 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -65.706 -65.706 0.001 (0) -[13C](-4) 7.653e-27 - [13C]H4 7.653e-27 7.665e-27 -26.116 -26.115 0.001 (0) +H(0) 4.967e-39 + H2 2.483e-39 2.488e-39 -38.605 -38.604 0.001 (0) +O(0) 1.345e-15 + O2 6.699e-16 6.710e-16 -15.174 -15.173 0.001 (0) + O[18O] 2.673e-18 2.677e-18 -17.573 -17.572 0.001 (0) +[13C](-4) 0.000e+00 + [13C]H4 0.000e+00 0.000e+00 -122.383 -122.382 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.245e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.578e-08 4.586e-08 -7.339 -7.339 0.001 (0) @@ -6779,56 +6799,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 9.887e-38 - [14C]H4 9.887e-38 9.903e-38 -37.005 -37.004 0.001 (0) +[14C](-4) 0.000e+00 + [14C]H4 0.000e+00 0.000e+00 -133.272 -133.271 0.001 (0) [14C](4) 8.462e-16 H[14C]O3- 6.836e-16 6.254e-16 -15.165 -15.204 -0.039 (0) [14C]O2 1.422e-16 1.425e-16 -15.847 -15.846 0.001 (0) CaH[14C]O3+ 1.444e-17 1.324e-17 -16.841 -16.878 -0.037 (0) - H[14C]O2[18O]- 1.364e-18 1.248e-18 -17.865 -17.904 -0.039 (0) - H[14C]O[18O]O- 1.364e-18 1.248e-18 -17.865 -17.904 -0.039 (0) H[14C][18O]O2- 1.364e-18 1.248e-18 -17.865 -17.904 -0.039 (0) + H[14C]O[18O]O- 1.364e-18 1.248e-18 -17.865 -17.904 -0.039 (0) + H[14C]O2[18O]- 1.364e-18 1.248e-18 -17.865 -17.904 -0.039 (0) Ca[14C]O3 7.913e-19 7.926e-19 -18.102 -18.101 0.001 (0) [14C]O[18O] 5.915e-19 5.925e-19 -18.228 -18.227 0.001 (0) [14C]O3-2 4.059e-19 2.844e-19 -18.392 -18.546 -0.155 (0) CaH[14C]O2[18O]+ 2.880e-20 2.642e-20 -19.541 -19.578 -0.037 (0) - CaH[14C]O[18O]O+ 2.880e-20 2.642e-20 -19.541 -19.578 -0.037 (0) CaH[14C][18O]O2+ 2.880e-20 2.642e-20 -19.541 -19.578 -0.037 (0) + CaH[14C]O[18O]O+ 2.880e-20 2.642e-20 -19.541 -19.578 -0.037 (0) Ca[14C]O2[18O] 4.737e-21 4.744e-21 -20.325 -20.324 0.001 (0) - H[14C]O[18O]2- 2.721e-21 2.490e-21 -20.565 -20.604 -0.039 (0) H[14C][18O]2O- 2.721e-21 2.490e-21 -20.565 -20.604 -0.039 (0) H[14C][18O]O[18O]- 2.721e-21 2.490e-21 -20.565 -20.604 -0.039 (0) + H[14C]O[18O]2- 2.721e-21 2.490e-21 -20.565 -20.604 -0.039 (0) [14C]O2[18O]-2 2.430e-21 1.702e-21 -20.614 -20.769 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -65.706 -65.706 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -68.708 -68.707 0.001 (0) +[18O](0) 2.678e-18 + O[18O] 2.673e-18 2.677e-18 -17.573 -17.572 0.001 (0) + [18O]2 2.667e-21 2.671e-21 -20.574 -20.573 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -23.26 -26.12 -2.86 [13C]H4 + [13C]H4(g) -119.52 -122.38 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.74 -21.25 -1.50 [14C][18O]2 - [14C]H4(g) -34.14 -37.00 -2.86 [14C]H4 + [14C]H4(g) -130.41 -133.27 -2.86 [14C]H4 [14C]O2(g) -14.38 -15.85 -1.47 [14C]O2 [14C]O[18O](g) -16.76 -18.55 -1.79 [14C]O[18O] - [18O]2(g) -66.42 -68.71 -2.29 [18O]2 + [18O]2(g) -18.28 -20.57 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -6842,14 +6862,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -21.30 -24.16 -2.86 CH4 + CH4(g) -117.57 -120.43 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -11.39 -14.54 -3.15 H2 + H2(g) -35.45 -38.60 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -60.41 -63.31 -2.89 O2 - O[18O](g) -63.11 -66.01 -2.89 O[18O] + O2(g) -12.28 -15.17 -2.89 O2 + O[18O](g) -14.98 -17.87 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6873,12 +6893,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 31. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -6964,14 +6978,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5865e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5808e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.3275e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -7.1054e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.0325e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -6989,16 +7003,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.706 Adjusted to redox equilibrium + pe = -1.504 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.843e-13 + Electrical balance (eq) = 5.396e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 86 (187 overall) + Iterations = 77 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -7010,25 +7024,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.370e-21 - CH4 1.370e-21 1.373e-21 -20.863 -20.862 0.001 (0) +C(-4) 3.301e-23 + CH4 3.301e-23 3.306e-23 -22.481 -22.481 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -7036,81 +7050,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.863e-14 - H2 1.932e-14 1.935e-14 -13.714 -13.713 0.001 (0) +H(0) 1.522e-14 + H2 7.610e-15 7.622e-15 -14.119 -14.118 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.956 -64.955 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.355 -67.354 0.001 (0) -[13C](-4) 1.515e-23 - [13C]H4 1.515e-23 1.518e-23 -22.819 -22.819 0.001 (0) + O2 0.000e+00 0.000e+00 -64.147 -64.146 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.546 -66.545 0.001 (0) +[13C](-4) 3.650e-25 + [13C]H4 3.650e-25 3.656e-25 -24.438 -24.437 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.587e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.120e-08 2.186e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 1.803e-34 - [14C]H4 1.803e-34 1.806e-34 -33.744 -33.743 0.001 (0) +[14C](-4) 4.343e-36 + [14C]H4 4.343e-36 4.350e-36 -35.362 -35.361 0.001 (0) [14C](4) 7.796e-16 H[14C]O3- 6.297e-16 5.761e-16 -15.201 -15.239 -0.039 (0) [14C]O2 1.310e-16 1.313e-16 -15.883 -15.882 0.001 (0) CaH[14C]O3+ 1.330e-17 1.220e-17 -16.876 -16.914 -0.037 (0) - H[14C]O2[18O]- 1.256e-18 1.149e-18 -17.901 -17.939 -0.039 (0) - H[14C]O[18O]O- 1.256e-18 1.149e-18 -17.901 -17.939 -0.039 (0) H[14C][18O]O2- 1.256e-18 1.149e-18 -17.901 -17.939 -0.039 (0) + H[14C]O[18O]O- 1.256e-18 1.149e-18 -17.901 -17.939 -0.039 (0) + H[14C]O2[18O]- 1.256e-18 1.149e-18 -17.901 -17.939 -0.039 (0) Ca[14C]O3 7.290e-19 7.302e-19 -18.137 -18.137 0.001 (0) [14C]O[18O] 5.449e-19 5.458e-19 -18.264 -18.263 0.001 (0) [14C]O3-2 3.740e-19 2.620e-19 -18.427 -18.582 -0.155 (0) CaH[14C]O2[18O]+ 2.653e-20 2.434e-20 -19.576 -19.614 -0.037 (0) - CaH[14C]O[18O]O+ 2.653e-20 2.434e-20 -19.576 -19.614 -0.037 (0) CaH[14C][18O]O2+ 2.653e-20 2.434e-20 -19.576 -19.614 -0.037 (0) + CaH[14C]O[18O]O+ 2.653e-20 2.434e-20 -19.576 -19.614 -0.037 (0) Ca[14C]O2[18O] 4.364e-21 4.371e-21 -20.360 -20.359 0.001 (0) + H[14C][18O]O[18O]- 2.507e-21 2.293e-21 -20.601 -20.640 -0.039 (0) H[14C]O[18O]2- 2.507e-21 2.293e-21 -20.601 -20.640 -0.039 (0) H[14C][18O]2O- 2.507e-21 2.293e-21 -20.601 -20.640 -0.039 (0) - H[14C][18O]O[18O]- 2.507e-21 2.293e-21 -20.601 -20.640 -0.039 (0) [14C]O2[18O]-2 2.238e-21 1.568e-21 -20.650 -20.805 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.355 -67.354 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.356 -70.355 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.546 -66.545 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.547 -69.546 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.96 -22.82 -2.86 [13C]H4 + [13C]H4(g) -21.58 -24.44 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.78 -21.28 -1.50 [14C][18O]2 - [14C]H4(g) -30.88 -33.74 -2.86 [14C]H4 + [14C]H4(g) -32.50 -35.36 -2.86 [14C]H4 [14C]O2(g) -14.41 -15.88 -1.47 [14C]O2 [14C]O[18O](g) -16.79 -18.58 -1.79 [14C]O[18O] - [18O]2(g) -68.06 -70.36 -2.29 [18O]2 + [18O]2(g) -67.26 -69.55 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -7124,14 +7138,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.00 -20.86 -2.86 CH4 + CH4(g) -19.62 -22.48 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.56 -13.71 -3.15 H2 + H2(g) -10.97 -14.12 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.06 -64.96 -2.89 O2 - O[18O](g) -64.76 -67.66 -2.89 O[18O] + O2(g) -61.25 -64.15 -2.89 O2 + O[18O](g) -63.95 -66.85 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7240,14 +7254,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7131e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6409e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.0214e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.8541e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.3545e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -7265,16 +7279,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.821 Adjusted to redox equilibrium + pe = -1.474 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.843e-13 + Electrical balance (eq) = 5.396e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 92 + Iterations = 100 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -7286,15 +7300,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.143e-20 - CH4 1.143e-20 1.145e-20 -19.942 -19.941 0.001 (0) +C(-4) 1.896e-23 + CH4 1.896e-23 1.899e-23 -22.722 -22.721 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -7302,9 +7316,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -7312,50 +7326,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.566e-14 - H2 3.283e-14 3.288e-14 -13.484 -13.483 0.001 (0) +H(0) 1.325e-14 + H2 6.625e-15 6.636e-15 -14.179 -14.178 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.416 -65.416 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.815 -67.815 0.001 (0) -[13C](-4) 1.264e-22 - [13C]H4 1.264e-22 1.266e-22 -21.898 -21.897 0.001 (0) + O2 0.000e+00 0.000e+00 -64.026 -64.026 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.425 -66.425 0.001 (0) +[13C](-4) 2.097e-25 + [13C]H4 2.097e-25 2.101e-25 -24.678 -24.678 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.587e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.186e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 1.386e-33 - [14C]H4 1.386e-33 1.388e-33 -32.858 -32.858 0.001 (0) +[14C](-4) 2.299e-36 + [14C]H4 2.299e-36 2.303e-36 -35.639 -35.638 0.001 (0) [14C](4) 7.182e-16 H[14C]O3- 5.801e-16 5.307e-16 -15.236 -15.275 -0.039 (0) [14C]O2 1.207e-16 1.209e-16 -15.918 -15.918 0.001 (0) CaH[14C]O3+ 1.225e-17 1.124e-17 -16.912 -16.949 -0.037 (0) - H[14C]O2[18O]- 1.157e-18 1.059e-18 -17.936 -17.975 -0.039 (0) - H[14C]O[18O]O- 1.157e-18 1.059e-18 -17.936 -17.975 -0.039 (0) H[14C][18O]O2- 1.157e-18 1.059e-18 -17.936 -17.975 -0.039 (0) + H[14C]O[18O]O- 1.157e-18 1.059e-18 -17.936 -17.975 -0.039 (0) + H[14C]O2[18O]- 1.157e-18 1.059e-18 -17.936 -17.975 -0.039 (0) Ca[14C]O3 6.716e-19 6.727e-19 -18.173 -18.172 0.001 (0) [14C]O[18O] 5.020e-19 5.028e-19 -18.299 -18.299 0.001 (0) [14C]O3-2 3.445e-19 2.413e-19 -18.463 -18.617 -0.155 (0) CaH[14C]O2[18O]+ 2.444e-20 2.242e-20 -19.612 -19.649 -0.037 (0) - CaH[14C]O[18O]O+ 2.444e-20 2.242e-20 -19.612 -19.649 -0.037 (0) CaH[14C][18O]O2+ 2.444e-20 2.242e-20 -19.612 -19.649 -0.037 (0) + CaH[14C]O[18O]O+ 2.444e-20 2.242e-20 -19.612 -19.649 -0.037 (0) Ca[14C]O2[18O] 4.020e-21 4.026e-21 -20.396 -20.395 0.001 (0) H[14C]O[18O]2- 2.309e-21 2.113e-21 -20.637 -20.675 -0.039 (0) H[14C][18O]2O- 2.309e-21 2.113e-21 -20.637 -20.675 -0.039 (0) @@ -7364,29 +7378,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.815 -67.815 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.816 -70.816 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.425 -66.425 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.426 -69.426 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.04 -21.90 -2.86 [13C]H4 + [13C]H4(g) -21.82 -24.68 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.81 -21.32 -1.50 [14C][18O]2 - [14C]H4(g) -30.00 -32.86 -2.86 [14C]H4 + [14C]H4(g) -32.78 -35.64 -2.86 [14C]H4 [14C]O2(g) -14.45 -15.92 -1.47 [14C]O2 [14C]O[18O](g) -16.83 -18.62 -1.79 [14C]O[18O] - [18O]2(g) -68.53 -70.82 -2.29 [18O]2 + [18O]2(g) -67.14 -69.43 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -7400,14 +7414,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.08 -19.94 -2.86 CH4 + CH4(g) -19.86 -22.72 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.33 -13.48 -3.15 H2 + H2(g) -11.03 -14.18 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.52 -65.42 -2.89 O2 - O[18O](g) -65.22 -68.12 -2.89 O[18O] + O2(g) -61.13 -64.03 -2.89 O2 + O[18O](g) -63.83 -66.73 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7431,12 +7445,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 33. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -7522,14 +7530,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6374e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6317e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -9.2149e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.3291e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3101e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -5.5511e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -7547,16 +7555,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.829 Adjusted to redox equilibrium + pe = -1.842 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.296e-13 + Electrical balance (eq) = 5.396e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 51 (152 overall) + Iterations = 79 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -7568,25 +7576,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.310e-20 - CH4 1.310e-20 1.312e-20 -19.883 -19.882 0.001 (0) +C(-4) 1.673e-20 + CH4 1.673e-20 1.676e-20 -19.777 -19.776 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -7594,23 +7602,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.793e-14 - H2 3.397e-14 3.402e-14 -13.469 -13.468 0.001 (0) +H(0) 7.222e-14 + H2 3.611e-14 3.617e-14 -13.442 -13.442 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.446 -65.445 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.845 -67.844 0.001 (0) -[13C](-4) 1.449e-22 - [13C]H4 1.449e-22 1.452e-22 -21.839 -21.838 0.001 (0) + O2 0.000e+00 0.000e+00 -65.499 -65.498 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.898 -67.897 0.001 (0) +[13C](-4) 1.851e-22 + [13C]H4 1.851e-22 1.854e-22 -21.733 -21.732 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.248e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.588e-08 -7.339 -7.338 0.001 (0) @@ -7619,56 +7627,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 1.463e-33 - [14C]H4 1.463e-33 1.465e-33 -32.835 -32.834 0.001 (0) +[14C](-4) 1.868e-33 + [14C]H4 1.868e-33 1.871e-33 -32.729 -32.728 0.001 (0) [14C](4) 6.616e-16 H[14C]O3- 5.344e-16 4.889e-16 -15.272 -15.311 -0.039 (0) [14C]O2 1.112e-16 1.114e-16 -15.954 -15.953 0.001 (0) CaH[14C]O3+ 1.129e-17 1.035e-17 -16.947 -16.985 -0.037 (0) - H[14C]O2[18O]- 1.066e-18 9.755e-19 -17.972 -18.011 -0.039 (0) - H[14C]O[18O]O- 1.066e-18 9.755e-19 -17.972 -18.011 -0.039 (0) H[14C][18O]O2- 1.066e-18 9.755e-19 -17.972 -18.011 -0.039 (0) + H[14C]O[18O]O- 1.066e-18 9.755e-19 -17.972 -18.011 -0.039 (0) + H[14C]O2[18O]- 1.066e-18 9.755e-19 -17.972 -18.011 -0.039 (0) Ca[14C]O3 6.187e-19 6.197e-19 -18.209 -18.208 0.001 (0) [14C]O[18O] 4.624e-19 4.632e-19 -18.335 -18.334 0.001 (0) [14C]O3-2 3.174e-19 2.223e-19 -18.498 -18.653 -0.155 (0) CaH[14C]O2[18O]+ 2.252e-20 2.066e-20 -19.647 -19.685 -0.037 (0) - CaH[14C]O[18O]O+ 2.252e-20 2.066e-20 -19.647 -19.685 -0.037 (0) CaH[14C][18O]O2+ 2.252e-20 2.066e-20 -19.647 -19.685 -0.037 (0) + CaH[14C]O[18O]O+ 2.252e-20 2.066e-20 -19.647 -19.685 -0.037 (0) Ca[14C]O2[18O] 3.703e-21 3.709e-21 -20.431 -20.431 0.001 (0) - H[14C]O[18O]2- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) H[14C][18O]2O- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) H[14C][18O]O[18O]- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) + H[14C]O[18O]2- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) [14C]O2[18O]-2 1.900e-21 1.331e-21 -20.721 -20.876 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.845 -67.844 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.846 -70.845 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.898 -67.897 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.899 -70.898 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.98 -21.84 -2.86 [13C]H4 + [13C]H4(g) -18.87 -21.73 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.85 -21.35 -1.50 [14C][18O]2 - [14C]H4(g) -29.97 -32.83 -2.86 [14C]H4 + [14C]H4(g) -29.87 -32.73 -2.86 [14C]H4 [14C]O2(g) -14.48 -15.95 -1.47 [14C]O2 [14C]O[18O](g) -16.87 -18.65 -1.79 [14C]O[18O] - [18O]2(g) -68.56 -70.85 -2.29 [18O]2 + [18O]2(g) -68.61 -70.90 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -7682,14 +7690,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.02 -19.88 -2.86 CH4 + CH4(g) -16.92 -19.78 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.32 -13.47 -3.15 H2 + H2(g) -10.29 -13.44 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.55 -65.45 -2.89 O2 - O[18O](g) -65.25 -68.15 -2.89 O[18O] + O2(g) -62.61 -65.50 -2.89 O2 + O[18O](g) -65.31 -68.20 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7713,12 +7721,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 34. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -7804,14 +7806,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6239e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.512e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -8.4377e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.2546e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 9.77e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.7748e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -7829,16 +7831,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.784 Adjusted to redox equilibrium + pe = -1.823 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 118 (219 overall) + Iterations = 84 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -7850,15 +7852,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.806e-21 - CH4 5.806e-21 5.815e-21 -20.236 -20.235 0.001 (0) +C(-4) 1.175e-20 + CH4 1.175e-20 1.177e-20 -19.930 -19.929 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -7866,9 +7868,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -7876,81 +7878,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.543e-14 - H2 2.771e-14 2.776e-14 -13.557 -13.557 0.001 (0) +H(0) 6.611e-14 + H2 3.305e-14 3.311e-14 -13.481 -13.480 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.269 -65.269 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.668 -67.668 0.001 (0) -[13C](-4) 6.423e-23 - [13C]H4 6.423e-23 6.434e-23 -22.192 -22.192 0.001 (0) + O2 0.000e+00 0.000e+00 -65.422 -65.422 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.821 -67.821 0.001 (0) +[13C](-4) 1.300e-22 + [13C]H4 1.300e-22 1.302e-22 -21.886 -21.885 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 5.973e-34 - [14C]H4 5.973e-34 5.983e-34 -33.224 -33.223 0.001 (0) +[14C](-4) 1.208e-33 + [14C]H4 1.208e-33 1.210e-33 -32.918 -32.917 0.001 (0) [14C](4) 6.095e-16 H[14C]O3- 4.923e-16 4.504e-16 -15.308 -15.346 -0.039 (0) [14C]O2 1.024e-16 1.026e-16 -15.990 -15.989 0.001 (0) CaH[14C]O3+ 1.040e-17 9.537e-18 -16.983 -17.021 -0.037 (0) - H[14C]O2[18O]- 9.823e-19 8.987e-19 -18.008 -18.046 -0.039 (0) - H[14C]O[18O]O- 9.823e-19 8.987e-19 -18.008 -18.046 -0.039 (0) H[14C][18O]O2- 9.823e-19 8.987e-19 -18.008 -18.046 -0.039 (0) + H[14C]O[18O]O- 9.823e-19 8.987e-19 -18.008 -18.046 -0.039 (0) + H[14C]O2[18O]- 9.823e-19 8.987e-19 -18.008 -18.046 -0.039 (0) Ca[14C]O3 5.699e-19 5.709e-19 -18.244 -18.243 0.001 (0) [14C]O[18O] 4.260e-19 4.267e-19 -18.371 -18.370 0.001 (0) [14C]O3-2 2.924e-19 2.048e-19 -18.534 -18.689 -0.155 (0) CaH[14C]O2[18O]+ 2.074e-20 1.903e-20 -19.683 -19.721 -0.037 (0) - CaH[14C]O[18O]O+ 2.074e-20 1.903e-20 -19.683 -19.721 -0.037 (0) CaH[14C][18O]O2+ 2.074e-20 1.903e-20 -19.683 -19.721 -0.037 (0) + CaH[14C]O[18O]O+ 2.074e-20 1.903e-20 -19.683 -19.721 -0.037 (0) Ca[14C]O2[18O] 3.411e-21 3.417e-21 -20.467 -20.466 0.001 (0) + H[14C][18O]O[18O]- 1.960e-21 1.793e-21 -20.708 -20.746 -0.039 (0) H[14C]O[18O]2- 1.960e-21 1.793e-21 -20.708 -20.746 -0.039 (0) H[14C][18O]2O- 1.960e-21 1.793e-21 -20.708 -20.746 -0.039 (0) - H[14C][18O]O[18O]- 1.960e-21 1.793e-21 -20.708 -20.746 -0.039 (0) [14C]O2[18O]-2 1.750e-21 1.226e-21 -20.757 -20.912 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.668 -67.668 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.669 -70.669 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.821 -67.821 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.822 -70.822 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.33 -22.19 -2.86 [13C]H4 + [13C]H4(g) -19.03 -21.89 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.89 -21.39 -1.50 [14C][18O]2 - [14C]H4(g) -30.36 -33.22 -2.86 [14C]H4 + [14C]H4(g) -30.06 -32.92 -2.86 [14C]H4 [14C]O2(g) -14.52 -15.99 -1.47 [14C]O2 [14C]O[18O](g) -16.90 -18.69 -1.79 [14C]O[18O] - [18O]2(g) -68.38 -70.67 -2.29 [18O]2 + [18O]2(g) -68.53 -70.82 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -7964,14 +7966,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.38 -20.24 -2.86 CH4 + CH4(g) -17.07 -19.93 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.41 -13.56 -3.15 H2 + H2(g) -10.33 -13.48 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.38 -65.27 -2.89 O2 - O[18O](g) -65.08 -67.97 -2.89 O[18O] + O2(g) -62.53 -65.42 -2.89 O2 + O[18O](g) -65.23 -68.12 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8086,14 +8088,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6355e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5896e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.996e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1213e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.2212e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -8111,16 +8113,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.775 Adjusted to redox equilibrium + pe = -1.807 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 113 (214 overall) + Iterations = 67 (168 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -8132,25 +8134,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.840e-21 - CH4 4.840e-21 4.848e-21 -20.315 -20.314 0.001 (0) +C(-4) 8.738e-21 + CH4 8.738e-21 8.753e-21 -20.059 -20.058 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -8158,50 +8160,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.296e-14 - H2 2.648e-14 2.653e-14 -13.577 -13.576 0.001 (0) +H(0) 6.139e-14 + H2 3.070e-14 3.075e-14 -13.513 -13.512 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.230 -65.229 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.629 -67.628 0.001 (0) -[13C](-4) 5.356e-23 - [13C]H4 5.356e-23 5.365e-23 -22.271 -22.270 0.001 (0) + O2 0.000e+00 0.000e+00 -65.358 -65.357 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.757 -67.756 0.001 (0) +[13C](-4) 9.670e-23 + [13C]H4 9.670e-23 9.686e-23 -22.015 -22.014 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 4.587e-34 - [14C]H4 4.587e-34 4.595e-34 -33.338 -33.338 0.001 (0) +[14C](-4) 8.282e-34 + [14C]H4 8.282e-34 8.295e-34 -33.082 -33.081 0.001 (0) [14C](4) 5.615e-16 H[14C]O3- 4.536e-16 4.149e-16 -15.343 -15.382 -0.039 (0) [14C]O2 9.438e-17 9.453e-17 -16.025 -16.024 0.001 (0) CaH[14C]O3+ 9.578e-18 8.786e-18 -17.019 -17.056 -0.037 (0) - H[14C]O2[18O]- 9.049e-19 8.279e-19 -18.043 -18.082 -0.039 (0) - H[14C]O[18O]O- 9.049e-19 8.279e-19 -18.043 -18.082 -0.039 (0) H[14C][18O]O2- 9.049e-19 8.279e-19 -18.043 -18.082 -0.039 (0) + H[14C]O[18O]O- 9.049e-19 8.279e-19 -18.043 -18.082 -0.039 (0) + H[14C]O2[18O]- 9.049e-19 8.279e-19 -18.043 -18.082 -0.039 (0) Ca[14C]O3 5.250e-19 5.259e-19 -18.280 -18.279 0.001 (0) [14C]O[18O] 3.924e-19 3.931e-19 -18.406 -18.406 0.001 (0) [14C]O3-2 2.693e-19 1.887e-19 -18.570 -18.724 -0.155 (0) CaH[14C]O2[18O]+ 1.911e-20 1.753e-20 -19.719 -19.756 -0.037 (0) - CaH[14C]O[18O]O+ 1.911e-20 1.753e-20 -19.719 -19.756 -0.037 (0) CaH[14C][18O]O2+ 1.911e-20 1.753e-20 -19.719 -19.756 -0.037 (0) + CaH[14C]O[18O]O+ 1.911e-20 1.753e-20 -19.719 -19.756 -0.037 (0) Ca[14C]O2[18O] 3.143e-21 3.148e-21 -20.503 -20.502 0.001 (0) H[14C]O[18O]2- 1.805e-21 1.652e-21 -20.743 -20.782 -0.039 (0) H[14C][18O]2O- 1.805e-21 1.652e-21 -20.743 -20.782 -0.039 (0) @@ -8210,29 +8212,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.629 -67.628 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.630 -70.629 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.757 -67.756 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.758 -70.757 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.41 -22.27 -2.86 [13C]H4 + [13C]H4(g) -19.15 -22.01 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.92 -21.42 -1.50 [14C][18O]2 - [14C]H4(g) -30.48 -33.34 -2.86 [14C]H4 + [14C]H4(g) -30.22 -33.08 -2.86 [14C]H4 [14C]O2(g) -14.56 -16.02 -1.47 [14C]O2 [14C]O[18O](g) -16.94 -18.72 -1.79 [14C]O[18O] - [18O]2(g) -68.34 -70.63 -2.29 [18O]2 + [18O]2(g) -68.47 -70.76 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -8246,14 +8248,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.45 -20.31 -2.86 CH4 + CH4(g) -17.20 -20.06 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.43 -13.58 -3.15 H2 + H2(g) -10.36 -13.51 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.34 -65.23 -2.89 O2 - O[18O](g) -65.04 -67.93 -2.89 O[18O] + O2(g) -62.47 -65.36 -2.89 O2 + O[18O](g) -65.17 -68.06 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8344,7 +8346,6 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99519e-03 -4.9936 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil - R(18O) O2(aq) 1.99519e-03 -4.9936 permil R(13C) CO2(aq) 1.10672e-02 -10.111 permil R(14C) CO2(aq) 8.73076e-14 7.4248 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil @@ -8354,6 +8355,8 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99519e-03 -4.9936 permil R(13C) CO3-2 1.11474e-02 -2.9316 permil R(14C) CO3-2 8.85785e-14 7.5329 pmc + R(13C) CH4(aq) 1.10672e-02 -10.111 permil + R(14C) CH4(aq) 8.73076e-14 7.4248 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11856e-02 0.47905 permil R(14C) Calcite 8.91855e-14 7.5845 pmc @@ -8366,14 +8369,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2539e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.7716e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6162e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5654e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -9.1038e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -8391,16 +8395,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.740 Adjusted to redox equilibrium + pe = -1.759 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 81 (182 overall) + Iterations = 118 (219 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -8412,14 +8416,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.436 -120.435 0.001 (0) +C(-4) 3.600e-21 + CH4 3.600e-21 3.606e-21 -20.444 -20.443 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -8428,9 +8432,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -8438,23 +8442,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.942e-39 - H2 2.471e-39 2.475e-39 -38.607 -38.606 0.001 (0) -O(0) 1.359e-15 - O2 6.767e-16 6.779e-16 -15.170 -15.169 0.001 (0) - O[18O] 2.700e-18 2.705e-18 -17.569 -17.568 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -122.392 -122.391 0.001 (0) +H(0) 4.919e-14 + H2 2.459e-14 2.463e-14 -13.609 -13.608 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.166 -65.165 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.565 -67.564 0.001 (0) +[13C](-4) 3.985e-23 + [13C]H4 3.985e-23 3.991e-23 -22.400 -22.399 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) @@ -8463,56 +8467,56 @@ O(0) 1.359e-15 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -133.495 -133.494 0.001 (0) +[14C](-4) 3.143e-34 + [14C]H4 3.143e-34 3.149e-34 -33.503 -33.502 0.001 (0) [14C](4) 5.172e-16 H[14C]O3- 4.178e-16 3.823e-16 -15.379 -15.418 -0.039 (0) [14C]O2 8.694e-17 8.708e-17 -16.061 -16.060 0.001 (0) CaH[14C]O3+ 8.823e-18 8.094e-18 -17.054 -17.092 -0.037 (0) - H[14C]O2[18O]- 8.336e-19 7.627e-19 -18.079 -18.118 -0.039 (0) - H[14C]O[18O]O- 8.336e-19 7.627e-19 -18.079 -18.118 -0.039 (0) H[14C][18O]O2- 8.336e-19 7.627e-19 -18.079 -18.118 -0.039 (0) + H[14C]O[18O]O- 8.336e-19 7.627e-19 -18.079 -18.118 -0.039 (0) + H[14C]O2[18O]- 8.336e-19 7.627e-19 -18.079 -18.118 -0.039 (0) Ca[14C]O3 4.837e-19 4.845e-19 -18.315 -18.315 0.001 (0) [14C]O[18O] 3.615e-19 3.621e-19 -18.442 -18.441 0.001 (0) [14C]O3-2 2.481e-19 1.738e-19 -18.605 -18.760 -0.155 (0) CaH[14C]O2[18O]+ 1.760e-20 1.615e-20 -19.754 -19.792 -0.037 (0) - CaH[14C]O[18O]O+ 1.760e-20 1.615e-20 -19.754 -19.792 -0.037 (0) CaH[14C][18O]O2+ 1.760e-20 1.615e-20 -19.754 -19.792 -0.037 (0) + CaH[14C]O[18O]O+ 1.760e-20 1.615e-20 -19.754 -19.792 -0.037 (0) Ca[14C]O2[18O] 2.895e-21 2.900e-21 -20.538 -20.538 0.001 (0) - H[14C]O[18O]2- 1.663e-21 1.522e-21 -20.779 -20.818 -0.039 (0) H[14C][18O]2O- 1.663e-21 1.522e-21 -20.779 -20.818 -0.039 (0) H[14C][18O]O[18O]- 1.663e-21 1.522e-21 -20.779 -20.818 -0.039 (0) + H[14C]O[18O]2- 1.663e-21 1.522e-21 -20.779 -20.818 -0.039 (0) [14C]O2[18O]-2 1.485e-21 1.040e-21 -20.828 -20.983 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.706e-18 - O[18O] 2.700e-18 2.705e-18 -17.569 -17.568 0.001 (0) - [18O]2 2.694e-21 2.698e-21 -20.570 -20.569 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.565 -67.564 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.566 -70.565 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -119.53 -122.39 -2.86 [13C]H4 + [13C]H4(g) -19.54 -22.40 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.96 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -130.63 -133.49 -2.86 [14C]H4 + [14C]H4(g) -30.64 -33.50 -2.86 [14C]H4 [14C]O2(g) -14.59 -16.06 -1.47 [14C]O2 [14C]O[18O](g) -16.97 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -18.28 -20.57 -2.29 [18O]2 + [18O]2(g) -68.27 -70.56 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -8526,14 +8530,14 @@ O(0) 1.359e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -117.57 -120.43 -2.86 CH4 + CH4(g) -17.58 -20.44 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.46 -38.61 -3.15 H2 + H2(g) -10.46 -13.61 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -12.28 -15.17 -2.89 O2 - O[18O](g) -14.98 -17.87 -2.89 O[18O] + O2(g) -62.27 -65.16 -2.89 O2 + O[18O](g) -64.97 -67.86 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8645,11 +8649,11 @@ Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6684e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7498e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.8826e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -7.9936e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -8667,16 +8671,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.375 Adjusted to redox equilibrium + pe = -1.545 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 71 + Iterations = 95 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -8688,25 +8692,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.093e-24 - CH4 3.093e-24 3.099e-24 -23.510 -23.509 0.001 (0) +C(-4) 7.068e-23 + CH4 7.068e-23 7.079e-23 -22.151 -22.150 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -8714,81 +8718,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.421e-15 - H2 4.211e-15 4.218e-15 -14.376 -14.375 0.001 (0) +H(0) 1.841e-14 + H2 9.206e-15 9.221e-15 -14.036 -14.035 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.633 -63.632 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -66.032 -66.031 0.001 (0) -[13C](-4) 3.424e-26 - [13C]H4 3.424e-26 3.430e-26 -25.465 -25.465 0.001 (0) + O2 0.000e+00 0.000e+00 -64.312 -64.311 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.711 -66.710 0.001 (0) +[13C](-4) 7.823e-25 + [13C]H4 7.823e-25 7.836e-25 -24.107 -24.106 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 2.488e-37 - [14C]H4 2.488e-37 2.492e-37 -36.604 -36.603 0.001 (0) +[14C](-4) 5.685e-36 + [14C]H4 5.685e-36 5.694e-36 -35.245 -35.245 0.001 (0) [14C](4) 4.765e-16 H[14C]O3- 3.849e-16 3.521e-16 -15.415 -15.453 -0.039 (0) [14C]O2 8.009e-17 8.022e-17 -16.096 -16.096 0.001 (0) CaH[14C]O3+ 8.128e-18 7.456e-18 -17.090 -17.127 -0.037 (0) - H[14C]O2[18O]- 7.680e-19 7.026e-19 -18.115 -18.153 -0.039 (0) - H[14C]O[18O]O- 7.680e-19 7.026e-19 -18.115 -18.153 -0.039 (0) H[14C][18O]O2- 7.680e-19 7.026e-19 -18.115 -18.153 -0.039 (0) + H[14C]O[18O]O- 7.680e-19 7.026e-19 -18.115 -18.153 -0.039 (0) + H[14C]O2[18O]- 7.680e-19 7.026e-19 -18.115 -18.153 -0.039 (0) Ca[14C]O3 4.456e-19 4.463e-19 -18.351 -18.350 0.001 (0) [14C]O[18O] 3.330e-19 3.336e-19 -18.477 -18.477 0.001 (0) [14C]O3-2 2.286e-19 1.601e-19 -18.641 -18.796 -0.155 (0) CaH[14C]O2[18O]+ 1.622e-20 1.488e-20 -19.790 -19.827 -0.037 (0) - CaH[14C]O[18O]O+ 1.622e-20 1.488e-20 -19.790 -19.827 -0.037 (0) CaH[14C][18O]O2+ 1.622e-20 1.488e-20 -19.790 -19.827 -0.037 (0) + CaH[14C]O[18O]O+ 1.622e-20 1.488e-20 -19.790 -19.827 -0.037 (0) Ca[14C]O2[18O] 2.667e-21 2.671e-21 -20.574 -20.573 0.001 (0) + H[14C][18O]O[18O]- 1.532e-21 1.402e-21 -20.815 -20.853 -0.039 (0) H[14C]O[18O]2- 1.532e-21 1.402e-21 -20.815 -20.853 -0.039 (0) H[14C][18O]2O- 1.532e-21 1.402e-21 -20.815 -20.853 -0.039 (0) - H[14C][18O]O[18O]- 1.532e-21 1.402e-21 -20.815 -20.853 -0.039 (0) [14C]O2[18O]-2 1.368e-21 9.585e-22 -20.864 -21.018 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -66.032 -66.031 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -69.033 -69.032 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.711 -66.710 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.712 -69.711 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -22.60 -25.46 -2.86 [13C]H4 + [13C]H4(g) -21.25 -24.11 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.99 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -33.74 -36.60 -2.86 [14C]H4 + [14C]H4(g) -32.38 -35.24 -2.86 [14C]H4 [14C]O2(g) -14.63 -16.10 -1.47 [14C]O2 [14C]O[18O](g) -17.01 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -66.74 -69.03 -2.29 [18O]2 + [18O]2(g) -67.42 -69.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -8802,14 +8806,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -20.65 -23.51 -2.86 CH4 + CH4(g) -19.29 -22.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -11.22 -14.37 -3.15 H2 + H2(g) -10.89 -14.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -60.74 -63.63 -2.89 O2 - O[18O](g) -63.44 -66.33 -2.89 O[18O] + O2(g) -61.42 -64.31 -2.89 O2 + O[18O](g) -64.12 -67.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8916,12 +8920,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2675e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.245e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6194e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6309e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -8941,16 +8945,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.034 Adjusted to redox equilibrium + pe = 10.690 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.296e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 100 + Iterations = 98 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -8963,14 +8967,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.787 -122.786 0.001 (0) + CH4 0.000e+00 0.000e+00 -120.033 -120.032 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -8978,9 +8982,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -8988,50 +8992,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.089e-08 6.099e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.277e-39 - H2 6.384e-40 6.394e-40 -39.195 -39.194 0.001 (0) -O(0) 2.036e-14 - O2 1.014e-14 1.015e-14 -13.994 -13.993 0.001 (0) - O[18O] 4.045e-17 4.052e-17 -16.393 -16.392 0.001 (0) +H(0) 6.232e-39 + H2 3.116e-39 3.121e-39 -38.506 -38.506 0.001 (0) +O(0) 8.545e-16 + O2 4.255e-16 4.262e-16 -15.371 -15.370 0.001 (0) + O[18O] 1.698e-18 1.701e-18 -17.770 -17.769 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.742 -124.742 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -121.988 -121.988 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.089e-08 6.099e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.917 -135.916 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -133.163 -133.162 0.001 (0) [14C](4) 4.390e-16 H[14C]O3- 3.546e-16 3.244e-16 -15.450 -15.489 -0.039 (0) [14C]O2 7.378e-17 7.390e-17 -16.132 -16.131 0.001 (0) CaH[14C]O3+ 7.488e-18 6.869e-18 -17.126 -17.163 -0.037 (0) - H[14C]O2[18O]- 7.075e-19 6.473e-19 -18.150 -18.189 -0.039 (0) - H[14C]O[18O]O- 7.075e-19 6.473e-19 -18.150 -18.189 -0.039 (0) H[14C][18O]O2- 7.075e-19 6.473e-19 -18.150 -18.189 -0.039 (0) + H[14C]O[18O]O- 7.075e-19 6.473e-19 -18.150 -18.189 -0.039 (0) + H[14C]O2[18O]- 7.075e-19 6.473e-19 -18.150 -18.189 -0.039 (0) Ca[14C]O3 4.105e-19 4.112e-19 -18.387 -18.386 0.001 (0) [14C]O[18O] 3.068e-19 3.073e-19 -18.513 -18.512 0.001 (0) [14C]O3-2 2.106e-19 1.475e-19 -18.677 -18.831 -0.155 (0) CaH[14C]O2[18O]+ 1.494e-20 1.370e-20 -19.826 -19.863 -0.037 (0) - CaH[14C]O[18O]O+ 1.494e-20 1.370e-20 -19.826 -19.863 -0.037 (0) CaH[14C][18O]O2+ 1.494e-20 1.370e-20 -19.826 -19.863 -0.037 (0) + CaH[14C]O[18O]O+ 1.494e-20 1.370e-20 -19.826 -19.863 -0.037 (0) Ca[14C]O2[18O] 2.457e-21 2.461e-21 -20.610 -20.609 0.001 (0) H[14C]O[18O]2- 1.412e-21 1.291e-21 -20.850 -20.889 -0.039 (0) H[14C][18O]2O- 1.412e-21 1.291e-21 -20.850 -20.889 -0.039 (0) @@ -9040,29 +9044,29 @@ O(0) 2.036e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.053e-17 - O[18O] 4.045e-17 4.052e-17 -16.393 -16.392 0.001 (0) - [18O]2 4.035e-20 4.042e-20 -19.394 -19.393 0.001 (0) +[18O](0) 1.701e-18 + O[18O] 1.698e-18 1.701e-18 -17.770 -17.769 0.001 (0) + [18O]2 1.694e-21 1.697e-21 -20.771 -20.770 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.88 -124.74 -2.86 [13C]H4 + [13C]H4(g) -119.13 -121.99 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.03 -21.53 -1.50 [14C][18O]2 - [14C]H4(g) -133.06 -135.92 -2.86 [14C]H4 + [14C]H4(g) -130.30 -133.16 -2.86 [14C]H4 [14C]O2(g) -14.66 -16.13 -1.47 [14C]O2 [14C]O[18O](g) -17.04 -18.83 -1.79 [14C]O[18O] - [18O]2(g) -17.10 -19.39 -2.29 [18O]2 + [18O]2(g) -18.48 -20.77 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -9076,14 +9080,14 @@ O(0) 2.036e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.93 -122.79 -2.86 CH4 + CH4(g) -117.17 -120.03 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.04 -39.19 -3.15 H2 + H2(g) -35.36 -38.51 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.10 -13.99 -2.89 O2 - O[18O](g) -13.80 -16.69 -2.89 O[18O] + O2(g) -12.48 -15.37 -2.89 O2 + O[18O](g) -15.18 -18.07 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9107,6 +9111,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 39. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -9190,12 +9200,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.241e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2448e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.758e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6954e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -9215,16 +9225,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.084 Adjusted to redox equilibrium + pe = 10.980 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 70 + Iterations = 70 (171 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -9237,24 +9247,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.182 -123.181 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.356 -122.355 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -9262,23 +9272,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.089e-08 6.099e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.017e-39 - H2 5.084e-40 5.093e-40 -39.294 -39.293 0.001 (0) -O(0) 3.209e-14 - O2 1.598e-14 1.601e-14 -13.796 -13.796 0.001 (0) - O[18O] 6.377e-17 6.388e-17 -16.195 -16.195 0.001 (0) +H(0) 1.636e-39 + H2 8.182e-40 8.195e-40 -39.087 -39.086 0.001 (0) +O(0) 1.239e-14 + O2 6.172e-15 6.182e-15 -14.210 -14.209 0.001 (0) + O[18O] 2.463e-17 2.467e-17 -16.609 -16.608 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.138 -125.137 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.311 -124.311 0.001 (0) [13C](4) 6.512e-05 H[13C]O3- 5.253e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.588e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.588e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.588e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.588e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.089e-08 6.099e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.592e-08 -7.339 -7.338 0.001 (0) @@ -9287,56 +9297,56 @@ O(0) 3.209e-14 CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.645e-10 3.651e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.348 -136.347 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.521 -135.521 0.001 (0) [14C](4) 4.044e-16 H[14C]O3- 3.267e-16 2.989e-16 -15.486 -15.525 -0.039 (0) [14C]O2 6.797e-17 6.808e-17 -16.168 -16.167 0.001 (0) CaH[14C]O3+ 6.898e-18 6.328e-18 -17.161 -17.199 -0.037 (0) - H[14C]O2[18O]- 6.518e-19 5.963e-19 -18.186 -18.225 -0.039 (0) - H[14C]O[18O]O- 6.518e-19 5.963e-19 -18.186 -18.225 -0.039 (0) H[14C][18O]O2- 6.518e-19 5.963e-19 -18.186 -18.225 -0.039 (0) + H[14C]O[18O]O- 6.518e-19 5.963e-19 -18.186 -18.225 -0.039 (0) + H[14C]O2[18O]- 6.518e-19 5.963e-19 -18.186 -18.225 -0.039 (0) Ca[14C]O3 3.782e-19 3.788e-19 -18.422 -18.422 0.001 (0) [14C]O[18O] 2.826e-19 2.831e-19 -18.549 -18.548 0.001 (0) [14C]O3-2 1.940e-19 1.359e-19 -18.712 -18.867 -0.155 (0) CaH[14C]O2[18O]+ 1.376e-20 1.263e-20 -19.861 -19.899 -0.037 (0) - CaH[14C]O[18O]O+ 1.376e-20 1.263e-20 -19.861 -19.899 -0.037 (0) CaH[14C][18O]O2+ 1.376e-20 1.263e-20 -19.861 -19.899 -0.037 (0) + CaH[14C]O[18O]O+ 1.376e-20 1.263e-20 -19.861 -19.899 -0.037 (0) Ca[14C]O2[18O] 2.263e-21 2.267e-21 -20.645 -20.645 0.001 (0) - H[14C]O[18O]2- 1.300e-21 1.190e-21 -20.886 -20.925 -0.039 (0) H[14C][18O]2O- 1.300e-21 1.190e-21 -20.886 -20.925 -0.039 (0) H[14C][18O]O[18O]- 1.300e-21 1.190e-21 -20.886 -20.925 -0.039 (0) + H[14C]O[18O]2- 1.300e-21 1.190e-21 -20.886 -20.925 -0.039 (0) [14C]O2[18O]-2 1.161e-21 8.134e-22 -20.935 -21.090 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.390e-17 - O[18O] 6.377e-17 6.388e-17 -16.195 -16.195 0.001 (0) - [18O]2 6.362e-20 6.372e-20 -19.196 -19.196 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.468e-17 + O[18O] 2.463e-17 2.467e-17 -16.609 -16.608 0.001 (0) + [18O]2 2.457e-20 2.461e-20 -19.610 -19.609 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.28 -125.14 -2.86 [13C]H4 + [13C]H4(g) -121.45 -124.31 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.06 -21.57 -1.50 [14C][18O]2 - [14C]H4(g) -133.49 -136.35 -2.86 [14C]H4 + [14C]H4(g) -132.66 -135.52 -2.86 [14C]H4 [14C]O2(g) -14.70 -16.17 -1.47 [14C]O2 [14C]O[18O](g) -17.08 -18.87 -1.79 [14C]O[18O] - [18O]2(g) -16.91 -19.20 -2.29 [18O]2 + [18O]2(g) -17.32 -19.61 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -9350,14 +9360,14 @@ O(0) 3.209e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.32 -123.18 -2.86 CH4 + CH4(g) -119.49 -122.35 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.14 -39.29 -3.15 H2 + H2(g) -35.94 -39.09 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.90 -13.80 -2.89 O2 - O[18O](g) -13.60 -16.50 -2.89 O[18O] + O2(g) -11.32 -14.21 -2.89 O2 + O[18O](g) -14.02 -16.91 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9381,12 +9391,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 40. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -9448,7 +9452,6 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99519e-03 -4.993 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil - R(18O) O2(aq) 1.99519e-03 -4.993 permil R(13C) CO2(aq) 1.10721e-02 -9.6709 permil R(14C) CO2(aq) 6.28814e-14 5.3476 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil @@ -9458,6 +9461,8 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99519e-03 -4.993 permil R(13C) CO3-2 1.11524e-02 -2.4887 permil R(14C) CO3-2 6.37967e-14 5.4254 pmc + R(13C) CH4(aq) 1.10721e-02 -9.6709 permil + R(14C) CH4(aq) 6.28814e-14 5.3476 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11905e-02 0.92343 permil R(14C) Calcite 6.42339e-14 5.4626 pmc @@ -9470,14 +9475,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2811e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.753e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5644e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 6.2172e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.6653e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -9495,16 +9501,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.786 Adjusted to redox equilibrium + pe = -1.371 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 163 (264 overall) + Iterations = 83 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -9516,15 +9522,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.803 -120.802 0.001 (0) +C(-4) 2.861e-24 + CH4 2.861e-24 2.865e-24 -23.544 -23.543 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -9532,9 +9538,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -9542,81 +9548,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.090e-08 6.100e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.000e-39 - H2 2.000e-39 2.003e-39 -38.699 -38.698 0.001 (0) -O(0) 2.074e-15 - O2 1.033e-15 1.035e-15 -14.986 -14.985 0.001 (0) - O[18O] 4.122e-18 4.129e-18 -17.385 -17.384 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -122.759 -122.758 0.001 (0) +H(0) 8.258e-15 + H2 4.129e-15 4.136e-15 -14.384 -14.383 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.616 -63.615 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.015 -66.014 0.001 (0) +[13C](-4) 3.167e-26 + [13C]H4 3.167e-26 3.172e-26 -25.499 -25.499 0.001 (0) [13C](4) 6.513e-05 H[13C]O3- 5.253e-05 4.806e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.090e-08 6.100e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.585e-08 4.592e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.124e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.645e-10 3.651e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.004 -134.004 0.001 (0) +[14C](-4) 1.799e-37 + [14C]H4 1.799e-37 1.802e-37 -36.745 -36.744 0.001 (0) [14C](4) 3.725e-16 H[14C]O3- 3.009e-16 2.753e-16 -15.522 -15.560 -0.039 (0) [14C]O2 6.262e-17 6.272e-17 -16.203 -16.203 0.001 (0) CaH[14C]O3+ 6.355e-18 5.829e-18 -17.197 -17.234 -0.037 (0) - H[14C]O2[18O]- 6.004e-19 5.493e-19 -18.222 -18.260 -0.039 (0) - H[14C]O[18O]O- 6.004e-19 5.493e-19 -18.222 -18.260 -0.039 (0) H[14C][18O]O2- 6.004e-19 5.493e-19 -18.222 -18.260 -0.039 (0) + H[14C]O[18O]O- 6.004e-19 5.493e-19 -18.222 -18.260 -0.039 (0) + H[14C]O2[18O]- 6.004e-19 5.493e-19 -18.222 -18.260 -0.039 (0) Ca[14C]O3 3.484e-19 3.489e-19 -18.458 -18.457 0.001 (0) [14C]O[18O] 2.604e-19 2.608e-19 -18.584 -18.584 0.001 (0) [14C]O3-2 1.787e-19 1.252e-19 -18.748 -18.902 -0.155 (0) CaH[14C]O2[18O]+ 1.268e-20 1.163e-20 -19.897 -19.934 -0.037 (0) - CaH[14C]O[18O]O+ 1.268e-20 1.163e-20 -19.897 -19.934 -0.037 (0) CaH[14C][18O]O2+ 1.268e-20 1.163e-20 -19.897 -19.934 -0.037 (0) + CaH[14C]O[18O]O+ 1.268e-20 1.163e-20 -19.897 -19.934 -0.037 (0) Ca[14C]O2[18O] 2.085e-21 2.089e-21 -20.681 -20.680 0.001 (0) + H[14C][18O]O[18O]- 1.198e-21 1.096e-21 -20.922 -20.960 -0.039 (0) H[14C]O[18O]2- 1.198e-21 1.096e-21 -20.922 -20.960 -0.039 (0) H[14C][18O]2O- 1.198e-21 1.096e-21 -20.922 -20.960 -0.039 (0) - H[14C][18O]O[18O]- 1.198e-21 1.096e-21 -20.922 -20.960 -0.039 (0) [14C]O2[18O]-2 1.070e-21 7.493e-22 -20.971 -21.125 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.131e-18 - O[18O] 4.122e-18 4.129e-18 -17.385 -17.384 0.001 (0) - [18O]2 4.112e-21 4.119e-21 -20.386 -20.385 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -66.015 -66.014 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.016 -69.015 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -119.90 -122.76 -2.86 [13C]H4 + [13C]H4(g) -22.64 -25.50 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.10 -21.60 -1.50 [14C][18O]2 - [14C]H4(g) -131.14 -134.00 -2.86 [14C]H4 + [14C]H4(g) -33.88 -36.74 -2.86 [14C]H4 [14C]O2(g) -14.73 -16.20 -1.47 [14C]O2 [14C]O[18O](g) -17.12 -18.90 -1.79 [14C]O[18O] - [18O]2(g) -18.09 -20.39 -2.29 [18O]2 + [18O]2(g) -66.72 -69.01 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -9630,14 +9636,14 @@ O(0) 2.074e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -117.94 -120.80 -2.86 CH4 + CH4(g) -20.68 -23.54 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.55 -38.70 -3.15 H2 + H2(g) -11.23 -14.38 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -12.09 -14.99 -2.89 O2 - O[18O](g) -14.79 -17.69 -2.89 O[18O] + O2(g) -60.72 -63.61 -2.89 O2 + O[18O](g) -63.42 -66.31 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9661,12 +9667,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 41. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -9752,14 +9752,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7878e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6539e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.4988e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1324e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 3.7748e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.4409e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -9777,16 +9777,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.842 Adjusted to redox equilibrium + pe = -1.748 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 65 (166 overall) + Iterations = 100 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -9798,25 +9798,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.685e-20 - CH4 1.685e-20 1.687e-20 -19.774 -19.773 0.001 (0) +C(-4) 2.946e-21 + CH4 2.946e-21 2.951e-21 -20.531 -20.530 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -9824,50 +9824,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.090e-08 6.100e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.234e-14 - H2 3.617e-14 3.623e-14 -13.442 -13.441 0.001 (0) +H(0) 4.678e-14 + H2 2.339e-14 2.343e-14 -13.631 -13.630 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.501 -65.500 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.900 -67.899 0.001 (0) -[13C](-4) 1.865e-22 - [13C]H4 1.865e-22 1.868e-22 -21.729 -21.729 0.001 (0) + O2 0.000e+00 0.000e+00 -65.122 -65.121 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.521 -67.520 0.001 (0) +[13C](-4) 3.262e-23 + [13C]H4 3.262e-23 3.267e-23 -22.487 -22.486 0.001 (0) [13C](4) 6.513e-05 H[13C]O3- 5.253e-05 4.806e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.090e-08 6.100e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.585e-08 4.593e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.124e-08 2.189e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.645e-10 3.651e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 9.758e-34 - [14C]H4 9.758e-34 9.774e-34 -33.011 -33.010 0.001 (0) +[14C](-4) 1.706e-34 + [14C]H4 1.706e-34 1.709e-34 -33.768 -33.767 0.001 (0) [14C](4) 3.432e-16 H[14C]O3- 2.772e-16 2.536e-16 -15.557 -15.596 -0.039 (0) [14C]O2 5.768e-17 5.778e-17 -16.239 -16.238 0.001 (0) CaH[14C]O3+ 5.854e-18 5.370e-18 -17.233 -17.270 -0.037 (0) - H[14C]O2[18O]- 5.531e-19 5.060e-19 -18.257 -18.296 -0.039 (0) - H[14C]O[18O]O- 5.531e-19 5.060e-19 -18.257 -18.296 -0.039 (0) H[14C][18O]O2- 5.531e-19 5.060e-19 -18.257 -18.296 -0.039 (0) + H[14C]O[18O]O- 5.531e-19 5.060e-19 -18.257 -18.296 -0.039 (0) + H[14C]O2[18O]- 5.531e-19 5.060e-19 -18.257 -18.296 -0.039 (0) Ca[14C]O3 3.209e-19 3.215e-19 -18.494 -18.493 0.001 (0) [14C]O[18O] 2.399e-19 2.403e-19 -18.620 -18.619 0.001 (0) [14C]O3-2 1.646e-19 1.153e-19 -18.783 -18.938 -0.155 (0) CaH[14C]O2[18O]+ 1.168e-20 1.071e-20 -19.933 -19.970 -0.037 (0) - CaH[14C]O[18O]O+ 1.168e-20 1.071e-20 -19.933 -19.970 -0.037 (0) CaH[14C][18O]O2+ 1.168e-20 1.071e-20 -19.933 -19.970 -0.037 (0) + CaH[14C]O[18O]O+ 1.168e-20 1.071e-20 -19.933 -19.970 -0.037 (0) Ca[14C]O2[18O] 1.921e-21 1.924e-21 -20.716 -20.716 0.001 (0) H[14C]O[18O]2- 1.104e-21 1.010e-21 -20.957 -20.996 -0.039 (0) H[14C][18O]2O- 1.104e-21 1.010e-21 -20.957 -20.996 -0.039 (0) @@ -9876,29 +9876,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.900 -67.899 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.901 -70.900 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.521 -67.520 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.522 -70.521 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.87 -21.73 -2.86 [13C]H4 + [13C]H4(g) -19.63 -22.49 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.13 -21.64 -1.50 [14C][18O]2 - [14C]H4(g) -30.15 -33.01 -2.86 [14C]H4 + [14C]H4(g) -30.91 -33.77 -2.86 [14C]H4 [14C]O2(g) -14.77 -16.24 -1.47 [14C]O2 [14C]O[18O](g) -17.15 -18.94 -1.79 [14C]O[18O] - [18O]2(g) -68.61 -70.90 -2.29 [18O]2 + [18O]2(g) -68.23 -70.52 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -9912,14 +9912,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.91 -19.77 -2.86 CH4 + CH4(g) -17.67 -20.53 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.29 -13.44 -3.15 H2 + H2(g) -10.48 -13.63 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.61 -65.50 -2.89 O2 - O[18O](g) -65.31 -68.20 -2.89 O[18O] + O2(g) -62.23 -65.12 -2.89 O2 + O[18O](g) -64.93 -67.82 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9943,6 +9943,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 42. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -10028,14 +10034,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6321e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6174e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -9.992e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.4322e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3545e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 7.5495e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -10053,16 +10059,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.910 Adjusted to redox equilibrium + pe = -1.651 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 57 + Iterations = 90 (191 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -10074,14 +10080,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.915e-20 - CH4 5.915e-20 5.925e-20 -19.228 -19.227 0.001 (0) +C(-4) 4.946e-22 + CH4 4.946e-22 4.954e-22 -21.306 -21.305 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -10090,9 +10096,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -10100,23 +10106,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.091e-08 6.101e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.903e-14 - H2 4.951e-14 4.960e-14 -13.305 -13.305 0.001 (0) +H(0) 2.995e-14 + H2 1.497e-14 1.500e-14 -13.825 -13.824 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.773 -65.773 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.172 -68.172 0.001 (0) -[13C](-4) 6.551e-22 - [13C]H4 6.551e-22 6.561e-22 -21.184 -21.183 0.001 (0) + O2 0.000e+00 0.000e+00 -64.735 -64.734 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.133 -67.133 0.001 (0) +[13C](-4) 5.477e-24 + [13C]H4 5.477e-24 5.486e-24 -23.261 -23.261 0.001 (0) [13C](4) 6.514e-05 H[13C]O3- 5.254e-05 4.807e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.590e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.590e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.590e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.590e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.091e-08 6.101e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.586e-08 4.593e-08 -7.339 -7.338 0.001 (0) @@ -10125,56 +10131,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.646e-10 3.652e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 3.157e-33 - [14C]H4 3.157e-33 3.162e-33 -32.501 -32.500 0.001 (0) +[14C](-4) 2.640e-35 + [14C]H4 2.640e-35 2.644e-35 -34.578 -34.578 0.001 (0) [14C](4) 3.162e-16 H[14C]O3- 2.554e-16 2.336e-16 -15.593 -15.631 -0.039 (0) [14C]O2 5.314e-17 5.323e-17 -16.275 -16.274 0.001 (0) CaH[14C]O3+ 5.393e-18 4.947e-18 -17.268 -17.306 -0.037 (0) - H[14C]O2[18O]- 5.095e-19 4.662e-19 -18.293 -18.331 -0.039 (0) - H[14C]O[18O]O- 5.095e-19 4.662e-19 -18.293 -18.331 -0.039 (0) H[14C][18O]O2- 5.095e-19 4.662e-19 -18.293 -18.331 -0.039 (0) + H[14C]O[18O]O- 5.095e-19 4.662e-19 -18.293 -18.331 -0.039 (0) + H[14C]O2[18O]- 5.095e-19 4.662e-19 -18.293 -18.331 -0.039 (0) Ca[14C]O3 2.956e-19 2.961e-19 -18.529 -18.529 0.001 (0) [14C]O[18O] 2.210e-19 2.213e-19 -18.656 -18.655 0.001 (0) [14C]O3-2 1.517e-19 1.062e-19 -18.819 -18.974 -0.155 (0) CaH[14C]O2[18O]+ 1.076e-20 9.870e-21 -19.968 -20.006 -0.037 (0) - CaH[14C]O[18O]O+ 1.076e-20 9.870e-21 -19.968 -20.006 -0.037 (0) CaH[14C][18O]O2+ 1.076e-20 9.870e-21 -19.968 -20.006 -0.037 (0) + CaH[14C]O[18O]O+ 1.076e-20 9.870e-21 -19.968 -20.006 -0.037 (0) Ca[14C]O2[18O] 1.770e-21 1.773e-21 -20.752 -20.751 0.001 (0) - H[14C]O[18O]2- 1.017e-21 9.301e-22 -20.993 -21.031 -0.039 (0) H[14C][18O]2O- 1.017e-21 9.301e-22 -20.993 -21.031 -0.039 (0) H[14C][18O]O[18O]- 1.017e-21 9.301e-22 -20.993 -21.031 -0.039 (0) + H[14C]O[18O]2- 1.017e-21 9.301e-22 -20.993 -21.031 -0.039 (0) [14C]O2[18O]-2 9.078e-22 6.359e-22 -21.042 -21.197 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.172 -68.172 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.173 -71.173 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.133 -67.133 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.135 -70.134 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.32 -21.18 -2.86 [13C]H4 + [13C]H4(g) -20.40 -23.26 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.17 -21.67 -1.50 [14C][18O]2 - [14C]H4(g) -29.64 -32.50 -2.86 [14C]H4 + [14C]H4(g) -31.72 -34.58 -2.86 [14C]H4 [14C]O2(g) -14.81 -16.27 -1.47 [14C]O2 [14C]O[18O](g) -17.19 -18.97 -1.79 [14C]O[18O] - [18O]2(g) -68.88 -71.17 -2.29 [18O]2 + [18O]2(g) -67.84 -70.13 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -10188,14 +10194,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.37 -19.23 -2.86 CH4 + CH4(g) -18.45 -21.31 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.15 -13.30 -3.15 H2 + H2(g) -10.67 -13.82 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.88 -65.77 -2.89 O2 - O[18O](g) -65.58 -68.47 -2.89 O[18O] + O2(g) -61.84 -64.73 -2.89 O2 + O[18O](g) -64.54 -67.43 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10219,12 +10225,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 43. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -10310,14 +10310,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7408e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6641e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.4433e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -8.1046e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.3283e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -10335,16 +10335,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.907 Adjusted to redox equilibrium + pe = -1.804 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 96 (197 overall) + Iterations = 54 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -10356,25 +10356,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.580e-20 - CH4 5.580e-20 5.589e-20 -19.253 -19.253 0.001 (0) +C(-4) 8.270e-21 + CH4 8.270e-21 8.283e-21 -20.083 -20.082 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -10382,81 +10382,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.091e-08 6.101e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.759e-14 - H2 4.880e-14 4.888e-14 -13.312 -13.311 0.001 (0) +H(0) 6.055e-14 + H2 3.028e-14 3.033e-14 -13.519 -13.518 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.761 -65.760 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.160 -68.159 0.001 (0) -[13C](-4) 6.179e-22 - [13C]H4 6.179e-22 6.189e-22 -21.209 -21.208 0.001 (0) + O2 0.000e+00 0.000e+00 -65.346 -65.345 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.745 -67.744 0.001 (0) +[13C](-4) 9.158e-23 + [13C]H4 9.158e-23 9.174e-23 -22.038 -22.037 0.001 (0) [13C](4) 6.514e-05 H[13C]O3- 5.254e-05 4.807e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.591e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.591e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.591e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.591e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.091e-08 6.101e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.586e-08 4.593e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.125e-08 2.189e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.646e-10 3.652e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-10 1.914e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 2.743e-33 - [14C]H4 2.743e-33 2.748e-33 -32.562 -32.561 0.001 (0) +[14C](-4) 4.065e-34 + [14C]H4 4.065e-34 4.072e-34 -33.391 -33.390 0.001 (0) [14C](4) 2.913e-16 H[14C]O3- 2.353e-16 2.152e-16 -15.628 -15.667 -0.039 (0) [14C]O2 4.895e-17 4.904e-17 -16.310 -16.309 0.001 (0) CaH[14C]O3+ 4.968e-18 4.557e-18 -17.304 -17.341 -0.037 (0) - H[14C]O2[18O]- 4.694e-19 4.294e-19 -18.328 -18.367 -0.039 (0) - H[14C]O[18O]O- 4.694e-19 4.294e-19 -18.328 -18.367 -0.039 (0) H[14C][18O]O2- 4.694e-19 4.294e-19 -18.328 -18.367 -0.039 (0) + H[14C]O[18O]O- 4.694e-19 4.294e-19 -18.328 -18.367 -0.039 (0) + H[14C]O2[18O]- 4.694e-19 4.294e-19 -18.328 -18.367 -0.039 (0) Ca[14C]O3 2.724e-19 2.728e-19 -18.565 -18.564 0.001 (0) [14C]O[18O] 2.036e-19 2.039e-19 -18.691 -18.691 0.001 (0) [14C]O3-2 1.397e-19 9.788e-20 -18.855 -19.009 -0.155 (0) CaH[14C]O2[18O]+ 9.912e-21 9.093e-21 -20.004 -20.041 -0.037 (0) - CaH[14C]O[18O]O+ 9.912e-21 9.093e-21 -20.004 -20.041 -0.037 (0) CaH[14C][18O]O2+ 9.912e-21 9.093e-21 -20.004 -20.041 -0.037 (0) + CaH[14C]O[18O]O+ 9.912e-21 9.093e-21 -20.004 -20.041 -0.037 (0) Ca[14C]O2[18O] 1.630e-21 1.633e-21 -20.788 -20.787 0.001 (0) + H[14C][18O]O[18O]- 9.366e-22 8.568e-22 -21.028 -21.067 -0.039 (0) H[14C]O[18O]2- 9.366e-22 8.568e-22 -21.028 -21.067 -0.039 (0) H[14C][18O]2O- 9.366e-22 8.568e-22 -21.028 -21.067 -0.039 (0) - H[14C][18O]O[18O]- 9.366e-22 8.568e-22 -21.028 -21.067 -0.039 (0) [14C]O2[18O]-2 8.363e-22 5.858e-22 -21.078 -21.232 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.160 -68.159 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.161 -71.160 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.745 -67.744 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.746 -70.745 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.35 -21.21 -2.86 [13C]H4 + [13C]H4(g) -19.18 -22.04 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.21 -21.71 -1.50 [14C][18O]2 - [14C]H4(g) -29.70 -32.56 -2.86 [14C]H4 + [14C]H4(g) -30.53 -33.39 -2.86 [14C]H4 [14C]O2(g) -14.84 -16.31 -1.47 [14C]O2 [14C]O[18O](g) -17.22 -19.01 -1.79 [14C]O[18O] - [18O]2(g) -68.87 -71.16 -2.29 [18O]2 + [18O]2(g) -68.46 -70.75 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -10470,14 +10470,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.39 -19.25 -2.86 CH4 + CH4(g) -17.22 -20.08 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.16 -13.31 -3.15 H2 + H2(g) -10.37 -13.52 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.87 -65.76 -2.89 O2 - O[18O](g) -65.57 -68.46 -2.89 O[18O] + O2(g) -62.45 -65.35 -2.89 O2 + O[18O](g) -65.15 -68.05 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10501,12 +10501,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 44. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -10592,14 +10586,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6745e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.66e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.9968e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.2212e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 4.4409e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -10617,16 +10611,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.847 Adjusted to redox equilibrium + pe = -1.687 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 115 (216 overall) + Iterations = 51 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -10638,15 +10632,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.831e-20 - CH4 1.831e-20 1.834e-20 -19.737 -19.737 0.001 (0) +C(-4) 9.647e-22 + CH4 9.647e-22 9.663e-22 -21.016 -21.015 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -10654,9 +10648,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -10664,50 +10658,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.387e-14 - H2 3.693e-14 3.699e-14 -13.433 -13.432 0.001 (0) +H(0) 3.539e-14 + H2 1.769e-14 1.772e-14 -13.752 -13.751 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.519 -65.518 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.918 -67.917 0.001 (0) -[13C](-4) 2.028e-22 - [13C]H4 2.028e-22 2.032e-22 -21.693 -21.692 0.001 (0) + O2 0.000e+00 0.000e+00 -64.880 -64.879 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.279 -67.278 0.001 (0) +[13C](-4) 1.069e-23 + [13C]H4 1.069e-23 1.070e-23 -22.971 -22.971 0.001 (0) [13C](4) 6.515e-05 H[13C]O3- 5.255e-05 4.807e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.586e-08 4.594e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.125e-08 2.189e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.646e-10 3.652e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 8.294e-34 - [14C]H4 8.294e-34 8.308e-34 -33.081 -33.081 0.001 (0) +[14C](-4) 4.369e-35 + [14C]H4 4.369e-35 4.376e-35 -34.360 -34.359 0.001 (0) [14C](4) 2.683e-16 H[14C]O3- 2.167e-16 1.983e-16 -15.664 -15.703 -0.039 (0) [14C]O2 4.510e-17 4.517e-17 -16.346 -16.345 0.001 (0) CaH[14C]O3+ 4.577e-18 4.198e-18 -17.339 -17.377 -0.037 (0) - H[14C]O2[18O]- 4.324e-19 3.956e-19 -18.364 -18.403 -0.039 (0) - H[14C]O[18O]O- 4.324e-19 3.956e-19 -18.364 -18.403 -0.039 (0) H[14C][18O]O2- 4.324e-19 3.956e-19 -18.364 -18.403 -0.039 (0) + H[14C]O[18O]O- 4.324e-19 3.956e-19 -18.364 -18.403 -0.039 (0) + H[14C]O2[18O]- 4.324e-19 3.956e-19 -18.364 -18.403 -0.039 (0) Ca[14C]O3 2.509e-19 2.513e-19 -18.600 -18.600 0.001 (0) [14C]O[18O] 1.875e-19 1.878e-19 -18.727 -18.726 0.001 (0) [14C]O3-2 1.287e-19 9.017e-20 -18.890 -19.045 -0.155 (0) CaH[14C]O2[18O]+ 9.132e-21 8.377e-21 -20.039 -20.077 -0.037 (0) - CaH[14C]O[18O]O+ 9.132e-21 8.377e-21 -20.039 -20.077 -0.037 (0) CaH[14C][18O]O2+ 9.132e-21 8.377e-21 -20.039 -20.077 -0.037 (0) + CaH[14C]O[18O]O+ 9.132e-21 8.377e-21 -20.039 -20.077 -0.037 (0) Ca[14C]O2[18O] 1.502e-21 1.504e-21 -20.823 -20.823 0.001 (0) H[14C]O[18O]2- 8.628e-22 7.893e-22 -21.064 -21.103 -0.039 (0) H[14C][18O]2O- 8.628e-22 7.893e-22 -21.064 -21.103 -0.039 (0) @@ -10716,29 +10710,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.918 -67.917 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.919 -70.918 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.279 -67.278 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.280 -70.279 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.83 -21.69 -2.86 [13C]H4 + [13C]H4(g) -20.11 -22.97 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.24 -21.75 -1.50 [14C][18O]2 - [14C]H4(g) -30.22 -33.08 -2.86 [14C]H4 + [14C]H4(g) -31.50 -34.36 -2.86 [14C]H4 [14C]O2(g) -14.88 -16.35 -1.47 [14C]O2 [14C]O[18O](g) -17.26 -19.05 -1.79 [14C]O[18O] - [18O]2(g) -68.63 -70.92 -2.29 [18O]2 + [18O]2(g) -67.99 -70.28 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -10752,14 +10746,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.88 -19.74 -2.86 CH4 + CH4(g) -18.15 -21.01 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.28 -13.43 -3.15 H2 + H2(g) -10.60 -13.75 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.63 -65.52 -2.89 O2 - O[18O](g) -65.33 -68.22 -2.89 O[18O] + O2(g) -61.99 -64.88 -2.89 O2 + O[18O](g) -64.69 -67.58 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10783,6 +10777,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 45. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -10868,14 +10868,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6444e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5635e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.2212e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.2188e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.6613e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.7319e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -10893,16 +10893,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.882 Adjusted to redox equilibrium + pe = -1.736 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 49 + Iterations = 74 (175 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -10914,25 +10914,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.534e-20 - CH4 3.534e-20 3.540e-20 -19.452 -19.451 0.001 (0) +C(-4) 2.387e-21 + CH4 2.387e-21 2.391e-21 -20.622 -20.621 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -10940,23 +10940,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.706e-14 - H2 4.353e-14 4.360e-14 -13.361 -13.360 0.001 (0) +H(0) 4.438e-14 + H2 2.219e-14 2.223e-14 -13.654 -13.653 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.661 -65.661 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.060 -68.060 0.001 (0) -[13C](-4) 3.914e-22 - [13C]H4 3.914e-22 3.921e-22 -21.407 -21.407 0.001 (0) + O2 0.000e+00 0.000e+00 -65.076 -65.076 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.475 -67.475 0.001 (0) +[13C](-4) 2.644e-23 + [13C]H4 2.644e-23 2.648e-23 -22.578 -22.577 0.001 (0) [13C](4) 6.515e-05 H[13C]O3- 5.255e-05 4.808e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.587e-08 4.594e-08 -7.339 -7.338 0.001 (0) @@ -10965,56 +10965,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.646e-10 3.652e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 1.474e-33 - [14C]H4 1.474e-33 1.477e-33 -32.831 -32.831 0.001 (0) +[14C](-4) 9.959e-35 + [14C]H4 9.959e-35 9.975e-35 -34.002 -34.001 0.001 (0) [14C](4) 2.472e-16 H[14C]O3- 1.997e-16 1.827e-16 -15.700 -15.738 -0.039 (0) [14C]O2 4.155e-17 4.161e-17 -16.381 -16.381 0.001 (0) CaH[14C]O3+ 4.216e-18 3.868e-18 -17.375 -17.413 -0.037 (0) - H[14C]O2[18O]- 3.984e-19 3.645e-19 -18.400 -18.438 -0.039 (0) - H[14C]O[18O]O- 3.984e-19 3.645e-19 -18.400 -18.438 -0.039 (0) H[14C][18O]O2- 3.984e-19 3.645e-19 -18.400 -18.438 -0.039 (0) + H[14C]O[18O]O- 3.984e-19 3.645e-19 -18.400 -18.438 -0.039 (0) + H[14C]O2[18O]- 3.984e-19 3.645e-19 -18.400 -18.438 -0.039 (0) Ca[14C]O3 2.311e-19 2.315e-19 -18.636 -18.635 0.001 (0) [14C]O[18O] 1.728e-19 1.730e-19 -18.763 -18.762 0.001 (0) [14C]O3-2 1.186e-19 8.306e-20 -18.926 -19.081 -0.155 (0) CaH[14C]O2[18O]+ 8.412e-21 7.717e-21 -20.075 -20.113 -0.037 (0) - CaH[14C]O[18O]O+ 8.412e-21 7.717e-21 -20.075 -20.113 -0.037 (0) CaH[14C][18O]O2+ 8.412e-21 7.717e-21 -20.075 -20.113 -0.037 (0) + CaH[14C]O[18O]O+ 8.412e-21 7.717e-21 -20.075 -20.113 -0.037 (0) Ca[14C]O2[18O] 1.383e-21 1.386e-21 -20.859 -20.858 0.001 (0) - H[14C]O[18O]2- 7.948e-22 7.272e-22 -21.100 -21.138 -0.039 (0) H[14C][18O]2O- 7.948e-22 7.272e-22 -21.100 -21.138 -0.039 (0) H[14C][18O]O[18O]- 7.948e-22 7.272e-22 -21.100 -21.138 -0.039 (0) + H[14C]O[18O]2- 7.948e-22 7.272e-22 -21.100 -21.138 -0.039 (0) [14C]O2[18O]-2 7.097e-22 4.972e-22 -21.149 -21.303 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.060 -68.060 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.062 -71.061 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.475 -67.475 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.476 -70.476 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.55 -21.41 -2.86 [13C]H4 + [13C]H4(g) -19.72 -22.58 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.28 -21.78 -1.50 [14C][18O]2 - [14C]H4(g) -29.97 -32.83 -2.86 [14C]H4 + [14C]H4(g) -31.14 -34.00 -2.86 [14C]H4 [14C]O2(g) -14.91 -16.38 -1.47 [14C]O2 [14C]O[18O](g) -17.29 -19.08 -1.79 [14C]O[18O] - [18O]2(g) -68.77 -71.06 -2.29 [18O]2 + [18O]2(g) -68.19 -70.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -11028,14 +11028,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.59 -19.45 -2.86 CH4 + CH4(g) -17.76 -20.62 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.21 -13.36 -3.15 H2 + H2(g) -10.50 -13.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.77 -65.66 -2.89 O2 - O[18O](g) -65.47 -68.36 -2.89 O[18O] + O2(g) -62.18 -65.08 -2.89 O2 + O[18O](g) -64.88 -67.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11059,6 +11059,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 46. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -11144,14 +11150,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6011e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7528e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.9984e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.9968e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.176e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -11169,16 +11175,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.928 Adjusted to redox equilibrium + pe = -1.663 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 58 + Iterations = 141 (242 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -11190,15 +11196,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 8.216e-20 - CH4 8.216e-20 8.229e-20 -19.085 -19.085 0.001 (0) +C(-4) 6.150e-22 + CH4 6.150e-22 6.160e-22 -21.211 -21.210 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -11206,9 +11212,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -11216,81 +11222,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.075e-13 - H2 5.375e-14 5.384e-14 -13.270 -13.269 0.001 (0) +H(0) 3.162e-14 + H2 1.581e-14 1.584e-14 -13.801 -13.800 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.845 -65.844 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.244 -68.243 0.001 (0) -[13C](-4) 9.101e-22 - [13C]H4 9.101e-22 9.116e-22 -21.041 -21.040 0.001 (0) + O2 0.000e+00 0.000e+00 -64.782 -64.781 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.181 -67.180 0.001 (0) +[13C](-4) 6.812e-24 + [13C]H4 6.812e-24 6.824e-24 -23.167 -23.166 0.001 (0) [13C](4) 6.515e-05 H[13C]O3- 5.255e-05 4.808e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.587e-08 4.594e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.125e-08 2.189e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.647e-10 3.653e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 3.158e-33 - [14C]H4 3.158e-33 3.163e-33 -32.501 -32.500 0.001 (0) +[14C](-4) 2.364e-35 + [14C]H4 2.364e-35 2.368e-35 -34.626 -34.626 0.001 (0) [14C](4) 2.277e-16 H[14C]O3- 1.839e-16 1.683e-16 -15.735 -15.774 -0.039 (0) [14C]O2 3.827e-17 3.834e-17 -16.417 -16.416 0.001 (0) CaH[14C]O3+ 3.884e-18 3.563e-18 -17.411 -17.448 -0.037 (0) - H[14C]O2[18O]- 3.670e-19 3.357e-19 -18.435 -18.474 -0.039 (0) - H[14C]O[18O]O- 3.670e-19 3.357e-19 -18.435 -18.474 -0.039 (0) H[14C][18O]O2- 3.670e-19 3.357e-19 -18.435 -18.474 -0.039 (0) + H[14C]O[18O]O- 3.670e-19 3.357e-19 -18.435 -18.474 -0.039 (0) + H[14C]O2[18O]- 3.670e-19 3.357e-19 -18.435 -18.474 -0.039 (0) Ca[14C]O3 2.129e-19 2.133e-19 -18.672 -18.671 0.001 (0) [14C]O[18O] 1.592e-19 1.594e-19 -18.798 -18.797 0.001 (0) [14C]O3-2 1.092e-19 7.652e-20 -18.962 -19.116 -0.155 (0) CaH[14C]O2[18O]+ 7.750e-21 7.109e-21 -20.111 -20.148 -0.037 (0) - CaH[14C]O[18O]O+ 7.750e-21 7.109e-21 -20.111 -20.148 -0.037 (0) CaH[14C][18O]O2+ 7.750e-21 7.109e-21 -20.111 -20.148 -0.037 (0) + CaH[14C]O[18O]O+ 7.750e-21 7.109e-21 -20.111 -20.148 -0.037 (0) Ca[14C]O2[18O] 1.275e-21 1.277e-21 -20.895 -20.894 0.001 (0) + H[14C][18O]O[18O]- 7.322e-22 6.699e-22 -21.135 -21.174 -0.039 (0) H[14C]O[18O]2- 7.322e-22 6.699e-22 -21.135 -21.174 -0.039 (0) H[14C][18O]2O- 7.322e-22 6.699e-22 -21.135 -21.174 -0.039 (0) - H[14C][18O]O[18O]- 7.322e-22 6.699e-22 -21.135 -21.174 -0.039 (0) [14C]O2[18O]-2 6.538e-22 4.580e-22 -21.185 -21.339 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.244 -68.243 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.245 -71.244 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.181 -67.180 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.182 -70.181 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.18 -21.04 -2.86 [13C]H4 + [13C]H4(g) -20.31 -23.17 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.31 -21.82 -1.50 [14C][18O]2 - [14C]H4(g) -29.64 -32.50 -2.86 [14C]H4 + [14C]H4(g) -31.77 -34.63 -2.86 [14C]H4 [14C]O2(g) -14.95 -16.42 -1.47 [14C]O2 [14C]O[18O](g) -17.33 -19.12 -1.79 [14C]O[18O] - [18O]2(g) -68.95 -71.24 -2.29 [18O]2 + [18O]2(g) -67.89 -70.18 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -11304,14 +11310,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.22 -19.08 -2.86 CH4 + CH4(g) -18.35 -21.21 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.12 -13.27 -3.15 H2 + H2(g) -10.65 -13.80 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.95 -65.84 -2.89 O2 - O[18O](g) -65.65 -68.54 -2.89 O[18O] + O2(g) -61.89 -64.78 -2.89 O2 + O[18O](g) -64.59 -67.48 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11420,14 +11426,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6854e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6772e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 13C CH4(aq)/CO2(aq) 1 4.2188e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -11445,16 +11451,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.845 Adjusted to redox equilibrium + pe = -1.739 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.316e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 55 + Iterations = 85 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -11466,25 +11472,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.773e-20 - CH4 1.773e-20 1.775e-20 -19.751 -19.751 0.001 (0) +C(-4) 2.532e-21 + CH4 2.532e-21 2.536e-21 -20.597 -20.596 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -11492,50 +11498,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.327e-14 - H2 3.663e-14 3.669e-14 -13.436 -13.435 0.001 (0) +H(0) 4.504e-14 + H2 2.252e-14 2.256e-14 -13.647 -13.647 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.512 -65.511 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.911 -67.910 0.001 (0) -[13C](-4) 1.964e-22 - [13C]H4 1.964e-22 1.967e-22 -21.707 -21.706 0.001 (0) + O2 0.000e+00 0.000e+00 -65.089 -65.088 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.488 -67.487 0.001 (0) +[13C](-4) 2.805e-23 + [13C]H4 2.805e-23 2.810e-23 -22.552 -22.551 0.001 (0) [13C](4) 6.516e-05 H[13C]O3- 5.256e-05 4.808e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.587e-08 4.595e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.647e-10 3.653e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 6.276e-34 - [14C]H4 6.276e-34 6.286e-34 -33.202 -33.202 0.001 (0) +[14C](-4) 8.965e-35 + [14C]H4 8.965e-35 8.980e-35 -34.047 -34.047 0.001 (0) [14C](4) 2.098e-16 H[14C]O3- 1.694e-16 1.550e-16 -15.771 -15.810 -0.039 (0) [14C]O2 3.526e-17 3.532e-17 -16.453 -16.452 0.001 (0) CaH[14C]O3+ 3.578e-18 3.282e-18 -17.446 -17.484 -0.037 (0) - H[14C]O2[18O]- 3.381e-19 3.093e-19 -18.471 -18.510 -0.039 (0) - H[14C]O[18O]O- 3.381e-19 3.093e-19 -18.471 -18.510 -0.039 (0) H[14C][18O]O2- 3.381e-19 3.093e-19 -18.471 -18.510 -0.039 (0) + H[14C]O[18O]O- 3.381e-19 3.093e-19 -18.471 -18.510 -0.039 (0) + H[14C]O2[18O]- 3.381e-19 3.093e-19 -18.471 -18.510 -0.039 (0) Ca[14C]O3 1.962e-19 1.965e-19 -18.707 -18.707 0.001 (0) [14C]O[18O] 1.466e-19 1.469e-19 -18.834 -18.833 0.001 (0) [14C]O3-2 1.006e-19 7.049e-20 -18.997 -19.152 -0.155 (0) CaH[14C]O2[18O]+ 7.139e-21 6.549e-21 -20.146 -20.184 -0.037 (0) - CaH[14C]O[18O]O+ 7.139e-21 6.549e-21 -20.146 -20.184 -0.037 (0) CaH[14C][18O]O2+ 7.139e-21 6.549e-21 -20.146 -20.184 -0.037 (0) + CaH[14C]O[18O]O+ 7.139e-21 6.549e-21 -20.146 -20.184 -0.037 (0) Ca[14C]O2[18O] 1.174e-21 1.176e-21 -20.930 -20.930 0.001 (0) H[14C]O[18O]2- 6.745e-22 6.171e-22 -21.171 -21.210 -0.039 (0) H[14C][18O]2O- 6.745e-22 6.171e-22 -21.171 -21.210 -0.039 (0) @@ -11544,29 +11550,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.911 -67.910 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.912 -70.911 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.488 -67.487 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.489 -70.488 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.85 -21.71 -2.86 [13C]H4 + [13C]H4(g) -19.69 -22.55 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.35 -21.85 -1.50 [14C][18O]2 - [14C]H4(g) -30.34 -33.20 -2.86 [14C]H4 + [14C]H4(g) -31.19 -34.05 -2.86 [14C]H4 [14C]O2(g) -14.98 -16.45 -1.47 [14C]O2 [14C]O[18O](g) -17.36 -19.15 -1.79 [14C]O[18O] - [18O]2(g) -68.62 -70.91 -2.29 [18O]2 + [18O]2(g) -68.20 -70.49 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -11580,14 +11586,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.89 -19.75 -2.86 CH4 + CH4(g) -17.74 -20.60 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.29 -13.44 -3.15 H2 + H2(g) -10.50 -13.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.62 -65.51 -2.89 O2 - O[18O](g) -65.32 -68.21 -2.89 O[18O] + O2(g) -62.20 -65.09 -2.89 O2 + O[18O](g) -64.90 -67.79 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11611,12 +11617,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 48. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -11702,14 +11702,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6611e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.719e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.5527e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.7732e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 2.8866e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -7.5495e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -11727,16 +11727,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.895 Adjusted to redox equilibrium + pe = -1.898 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 65 (166 overall) + Iterations = 62 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -11748,14 +11748,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.432e-20 - CH4 4.432e-20 4.439e-20 -19.353 -19.353 0.001 (0) +C(-4) 4.671e-20 + CH4 4.671e-20 4.679e-20 -19.331 -19.330 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -11764,9 +11764,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -11774,23 +11774,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.213e-14 - H2 4.607e-14 4.614e-14 -13.337 -13.336 0.001 (0) +H(0) 9.335e-14 + H2 4.668e-14 4.675e-14 -13.331 -13.330 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.711 -65.710 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.110 -68.109 0.001 (0) -[13C](-4) 4.910e-22 - [13C]H4 4.910e-22 4.918e-22 -21.309 -21.308 0.001 (0) + O2 0.000e+00 0.000e+00 -65.722 -65.721 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.121 -68.120 0.001 (0) +[13C](-4) 5.175e-22 + [13C]H4 5.175e-22 5.184e-22 -21.286 -21.285 0.001 (0) [13C](4) 6.516e-05 H[13C]O3- 5.256e-05 4.808e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.587e-08 4.595e-08 -7.338 -7.338 0.001 (0) @@ -11799,56 +11799,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.647e-10 3.653e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 1.446e-33 - [14C]H4 1.446e-33 1.448e-33 -32.840 -32.839 0.001 (0) +[14C](-4) 1.524e-33 + [14C]H4 1.524e-33 1.526e-33 -32.817 -32.816 0.001 (0) [14C](4) 1.932e-16 H[14C]O3- 1.561e-16 1.428e-16 -15.807 -15.845 -0.039 (0) [14C]O2 3.248e-17 3.253e-17 -16.488 -16.488 0.001 (0) CaH[14C]O3+ 3.296e-18 3.024e-18 -17.482 -17.519 -0.037 (0) - H[14C]O2[18O]- 3.114e-19 2.849e-19 -18.507 -18.545 -0.039 (0) - H[14C]O[18O]O- 3.114e-19 2.849e-19 -18.507 -18.545 -0.039 (0) H[14C][18O]O2- 3.114e-19 2.849e-19 -18.507 -18.545 -0.039 (0) + H[14C]O[18O]O- 3.114e-19 2.849e-19 -18.507 -18.545 -0.039 (0) + H[14C]O2[18O]- 3.114e-19 2.849e-19 -18.507 -18.545 -0.039 (0) Ca[14C]O3 1.807e-19 1.810e-19 -18.743 -18.742 0.001 (0) [14C]O[18O] 1.351e-19 1.353e-19 -18.869 -18.869 0.001 (0) [14C]O3-2 9.270e-20 6.494e-20 -19.033 -19.187 -0.155 (0) CaH[14C]O2[18O]+ 6.577e-21 6.033e-21 -20.182 -20.219 -0.037 (0) - CaH[14C]O[18O]O+ 6.577e-21 6.033e-21 -20.182 -20.219 -0.037 (0) CaH[14C][18O]O2+ 6.577e-21 6.033e-21 -20.182 -20.219 -0.037 (0) + CaH[14C]O[18O]O+ 6.577e-21 6.033e-21 -20.182 -20.219 -0.037 (0) Ca[14C]O2[18O] 1.082e-21 1.083e-21 -20.966 -20.965 0.001 (0) - H[14C]O[18O]2- 6.214e-22 5.685e-22 -21.207 -21.245 -0.039 (0) H[14C][18O]2O- 6.214e-22 5.685e-22 -21.207 -21.245 -0.039 (0) H[14C][18O]O[18O]- 6.214e-22 5.685e-22 -21.207 -21.245 -0.039 (0) + H[14C]O[18O]2- 6.214e-22 5.685e-22 -21.207 -21.245 -0.039 (0) [14C]O2[18O]-2 5.549e-22 3.887e-22 -21.256 -21.410 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.110 -68.109 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.111 -71.110 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.121 -68.120 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.122 -71.121 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.45 -21.31 -2.86 [13C]H4 + [13C]H4(g) -18.43 -21.29 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.38 -21.89 -1.50 [14C][18O]2 - [14C]H4(g) -29.98 -32.84 -2.86 [14C]H4 + [14C]H4(g) -29.96 -32.82 -2.86 [14C]H4 [14C]O2(g) -15.02 -16.49 -1.47 [14C]O2 [14C]O[18O](g) -17.40 -19.19 -1.79 [14C]O[18O] - [18O]2(g) -68.82 -71.11 -2.29 [18O]2 + [18O]2(g) -68.83 -71.12 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -11862,14 +11862,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.49 -19.35 -2.86 CH4 + CH4(g) -16.47 -19.33 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.19 -13.34 -3.15 H2 + H2(g) -10.18 -13.33 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.82 -65.71 -2.89 O2 - O[18O](g) -65.52 -68.41 -2.89 O[18O] + O2(g) -62.83 -65.72 -2.89 O2 + O[18O](g) -65.53 -68.42 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11893,6 +11893,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 49. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -11978,14 +11984,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8272e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7465e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.6209e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 6.2172e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -12003,16 +12009,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.930 Adjusted to redox equilibrium + pe = -1.856 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 62 + Iterations = 120 (221 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -12024,25 +12030,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 8.431e-20 - CH4 8.431e-20 8.445e-20 -19.074 -19.073 0.001 (0) +C(-4) 2.172e-20 + CH4 2.172e-20 2.176e-20 -19.663 -19.662 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -12050,81 +12056,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.082e-13 - H2 5.410e-14 5.419e-14 -13.267 -13.266 0.001 (0) +H(0) 7.709e-14 + H2 3.854e-14 3.861e-14 -13.414 -13.413 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.850 -65.850 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.249 -68.249 0.001 (0) -[13C](-4) 9.341e-22 - [13C]H4 9.341e-22 9.356e-22 -21.030 -21.029 0.001 (0) + O2 0.000e+00 0.000e+00 -65.556 -65.555 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.955 -67.954 0.001 (0) +[13C](-4) 2.407e-22 + [13C]H4 2.407e-22 2.411e-22 -21.619 -21.618 0.001 (0) [13C](4) 6.516e-05 H[13C]O3- 5.256e-05 4.809e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.587e-08 4.595e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.031e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.647e-10 3.653e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.533e-33 - [14C]H4 2.533e-33 2.538e-33 -32.596 -32.596 0.001 (0) +[14C](-4) 6.528e-34 + [14C]H4 6.528e-34 6.538e-34 -33.185 -33.185 0.001 (0) [14C](4) 1.780e-16 H[14C]O3- 1.438e-16 1.316e-16 -15.842 -15.881 -0.039 (0) [14C]O2 2.992e-17 2.997e-17 -16.524 -16.523 0.001 (0) CaH[14C]O3+ 3.037e-18 2.786e-18 -17.518 -17.555 -0.037 (0) - H[14C]O2[18O]- 2.869e-19 2.625e-19 -18.542 -18.581 -0.039 (0) - H[14C]O[18O]O- 2.869e-19 2.625e-19 -18.542 -18.581 -0.039 (0) H[14C][18O]O2- 2.869e-19 2.625e-19 -18.542 -18.581 -0.039 (0) + H[14C]O[18O]O- 2.869e-19 2.625e-19 -18.542 -18.581 -0.039 (0) + H[14C]O2[18O]- 2.869e-19 2.625e-19 -18.542 -18.581 -0.039 (0) Ca[14C]O3 1.665e-19 1.667e-19 -18.779 -18.778 0.001 (0) [14C]O[18O] 1.244e-19 1.246e-19 -18.905 -18.904 0.001 (0) [14C]O3-2 8.540e-20 5.982e-20 -19.069 -19.223 -0.155 (0) CaH[14C]O2[18O]+ 6.059e-21 5.558e-21 -20.218 -20.255 -0.037 (0) - CaH[14C]O[18O]O+ 6.059e-21 5.558e-21 -20.218 -20.255 -0.037 (0) CaH[14C][18O]O2+ 6.059e-21 5.558e-21 -20.218 -20.255 -0.037 (0) + CaH[14C]O[18O]O+ 6.059e-21 5.558e-21 -20.218 -20.255 -0.037 (0) Ca[14C]O2[18O] 9.964e-22 9.981e-22 -21.002 -21.001 0.001 (0) + H[14C][18O]O[18O]- 5.724e-22 5.237e-22 -21.242 -21.281 -0.039 (0) H[14C]O[18O]2- 5.724e-22 5.237e-22 -21.242 -21.281 -0.039 (0) H[14C][18O]2O- 5.724e-22 5.237e-22 -21.242 -21.281 -0.039 (0) - H[14C][18O]O[18O]- 5.724e-22 5.237e-22 -21.242 -21.281 -0.039 (0) [14C]O2[18O]-2 5.111e-22 3.581e-22 -21.291 -21.446 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.249 -68.249 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.250 -71.250 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.955 -67.954 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.956 -70.955 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.17 -21.03 -2.86 [13C]H4 + [13C]H4(g) -18.76 -21.62 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.42 -21.92 -1.50 [14C][18O]2 - [14C]H4(g) -29.74 -32.60 -2.86 [14C]H4 + [14C]H4(g) -30.32 -33.18 -2.86 [14C]H4 [14C]O2(g) -15.05 -16.52 -1.47 [14C]O2 [14C]O[18O](g) -17.44 -19.22 -1.79 [14C]O[18O] - [18O]2(g) -68.96 -71.25 -2.29 [18O]2 + [18O]2(g) -68.66 -70.96 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -12138,14 +12144,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.21 -19.07 -2.86 CH4 + CH4(g) -16.80 -19.66 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.12 -13.27 -3.15 H2 + H2(g) -10.26 -13.41 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.96 -65.85 -2.89 O2 - O[18O](g) -65.66 -68.55 -2.89 O[18O] + O2(g) -62.66 -65.56 -2.89 O2 + O[18O](g) -65.36 -68.26 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12254,14 +12260,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6657e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7226e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.4544e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.6542e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 6.2172e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.9968e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -12279,16 +12285,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.851 Adjusted to redox equilibrium + pe = -1.653 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 51 + Iterations = 84 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -12300,15 +12306,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.973e-20 - CH4 1.973e-20 1.976e-20 -19.705 -19.704 0.001 (0) +C(-4) 5.161e-22 + CH4 5.161e-22 5.170e-22 -21.287 -21.287 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -12316,9 +12322,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -12326,50 +12332,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.526e-14 - H2 3.763e-14 3.769e-14 -13.424 -13.424 0.001 (0) +H(0) 3.027e-14 + H2 1.513e-14 1.516e-14 -13.820 -13.819 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.535 -65.534 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.934 -67.933 0.001 (0) -[13C](-4) 2.186e-22 - [13C]H4 2.186e-22 2.189e-22 -21.660 -21.660 0.001 (0) + O2 0.000e+00 0.000e+00 -64.744 -64.743 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.143 -67.142 0.001 (0) +[13C](-4) 5.718e-24 + [13C]H4 5.718e-24 5.728e-24 -23.243 -23.242 0.001 (0) [13C](4) 6.517e-05 H[13C]O3- 5.256e-05 4.809e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.588e-08 4.595e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.647e-10 3.653e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 5.461e-34 - [14C]H4 5.461e-34 5.470e-34 -33.263 -33.262 0.001 (0) +[14C](-4) 1.429e-35 + [14C]H4 1.429e-35 1.431e-35 -34.845 -34.844 0.001 (0) [14C](4) 1.640e-16 H[14C]O3- 1.325e-16 1.212e-16 -15.878 -15.917 -0.039 (0) [14C]O2 2.757e-17 2.761e-17 -16.560 -16.559 0.001 (0) CaH[14C]O3+ 2.797e-18 2.566e-18 -17.553 -17.591 -0.037 (0) - H[14C]O2[18O]- 2.643e-19 2.418e-19 -18.578 -18.617 -0.039 (0) - H[14C]O[18O]O- 2.643e-19 2.418e-19 -18.578 -18.617 -0.039 (0) H[14C][18O]O2- 2.643e-19 2.418e-19 -18.578 -18.617 -0.039 (0) + H[14C]O[18O]O- 2.643e-19 2.418e-19 -18.578 -18.617 -0.039 (0) + H[14C]O2[18O]- 2.643e-19 2.418e-19 -18.578 -18.617 -0.039 (0) Ca[14C]O3 1.534e-19 1.536e-19 -18.814 -18.814 0.001 (0) [14C]O[18O] 1.146e-19 1.148e-19 -18.941 -18.940 0.001 (0) [14C]O3-2 7.867e-20 5.511e-20 -19.104 -19.259 -0.155 (0) CaH[14C]O2[18O]+ 5.581e-21 5.120e-21 -20.253 -20.291 -0.037 (0) - CaH[14C]O[18O]O+ 5.581e-21 5.120e-21 -20.253 -20.291 -0.037 (0) CaH[14C][18O]O2+ 5.581e-21 5.120e-21 -20.253 -20.291 -0.037 (0) + CaH[14C]O[18O]O+ 5.581e-21 5.120e-21 -20.253 -20.291 -0.037 (0) Ca[14C]O2[18O] 9.179e-22 9.194e-22 -21.037 -21.036 0.001 (0) H[14C]O[18O]2- 5.274e-22 4.825e-22 -21.278 -21.317 -0.039 (0) H[14C][18O]2O- 5.274e-22 4.825e-22 -21.278 -21.317 -0.039 (0) @@ -12378,29 +12384,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.934 -67.933 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.935 -70.934 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.143 -67.142 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.144 -70.143 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.80 -21.66 -2.86 [13C]H4 + [13C]H4(g) -20.38 -23.24 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.46 -21.96 -1.50 [14C][18O]2 - [14C]H4(g) -30.40 -33.26 -2.86 [14C]H4 + [14C]H4(g) -31.98 -34.84 -2.86 [14C]H4 [14C]O2(g) -15.09 -16.56 -1.47 [14C]O2 [14C]O[18O](g) -17.47 -19.26 -1.79 [14C]O[18O] - [18O]2(g) -68.64 -70.93 -2.29 [18O]2 + [18O]2(g) -67.85 -70.14 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -12414,14 +12420,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.84 -19.70 -2.86 CH4 + CH4(g) -18.43 -21.29 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.27 -13.42 -3.15 H2 + H2(g) -10.67 -13.82 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.64 -65.53 -2.89 O2 - O[18O](g) -65.34 -68.23 -2.89 O[18O] + O2(g) -61.85 -64.74 -2.89 O2 + O[18O](g) -64.55 -67.44 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12445,6 +12451,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 51. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -12530,14 +12542,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6761e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7342e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -2.3315e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.0325e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.954e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.3323e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -12555,16 +12567,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.884 Adjusted to redox equilibrium + pe = -1.729 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 53 + Iterations = 130 (231 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -12576,25 +12588,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.605e-20 - CH4 3.605e-20 3.610e-20 -19.443 -19.442 0.001 (0) +C(-4) 2.072e-21 + CH4 2.072e-21 2.075e-21 -20.684 -20.683 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -12602,23 +12614,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.749e-14 - H2 4.375e-14 4.382e-14 -13.359 -13.358 0.001 (0) +H(0) 4.284e-14 + H2 2.142e-14 2.146e-14 -13.669 -13.668 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.666 -65.665 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.065 -68.064 0.001 (0) -[13C](-4) 3.994e-22 - [13C]H4 3.994e-22 4.000e-22 -21.399 -21.398 0.001 (0) + O2 0.000e+00 0.000e+00 -65.046 -65.045 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.445 -67.444 0.001 (0) +[13C](-4) 2.296e-23 + [13C]H4 2.296e-23 2.299e-23 -22.639 -22.638 0.001 (0) [13C](4) 6.517e-05 H[13C]O3- 5.257e-05 4.809e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.588e-08 4.595e-08 -7.338 -7.338 0.001 (0) @@ -12627,56 +12639,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 9.192e-34 - [14C]H4 9.192e-34 9.207e-34 -33.037 -33.036 0.001 (0) +[14C](-4) 5.284e-35 + [14C]H4 5.284e-35 5.293e-35 -34.277 -34.276 0.001 (0) [14C](4) 1.511e-16 H[14C]O3- 1.220e-16 1.117e-16 -15.913 -15.952 -0.039 (0) [14C]O2 2.539e-17 2.544e-17 -16.595 -16.595 0.001 (0) CaH[14C]O3+ 2.577e-18 2.364e-18 -17.589 -17.626 -0.037 (0) - H[14C]O2[18O]- 2.435e-19 2.228e-19 -18.614 -18.652 -0.039 (0) - H[14C]O[18O]O- 2.435e-19 2.228e-19 -18.614 -18.652 -0.039 (0) H[14C][18O]O2- 2.435e-19 2.228e-19 -18.614 -18.652 -0.039 (0) + H[14C]O[18O]O- 2.435e-19 2.228e-19 -18.614 -18.652 -0.039 (0) + H[14C]O2[18O]- 2.435e-19 2.228e-19 -18.614 -18.652 -0.039 (0) Ca[14C]O3 1.413e-19 1.415e-19 -18.850 -18.849 0.001 (0) [14C]O[18O] 1.056e-19 1.058e-19 -18.976 -18.976 0.001 (0) [14C]O3-2 7.247e-20 5.077e-20 -19.140 -19.294 -0.155 (0) CaH[14C]O2[18O]+ 5.142e-21 4.717e-21 -20.289 -20.326 -0.037 (0) - CaH[14C]O[18O]O+ 5.142e-21 4.717e-21 -20.289 -20.326 -0.037 (0) CaH[14C][18O]O2+ 5.142e-21 4.717e-21 -20.289 -20.326 -0.037 (0) + CaH[14C]O[18O]O+ 5.142e-21 4.717e-21 -20.289 -20.326 -0.037 (0) Ca[14C]O2[18O] 8.456e-22 8.470e-22 -21.073 -21.072 0.001 (0) - H[14C]O[18O]2- 4.858e-22 4.445e-22 -21.314 -21.352 -0.039 (0) H[14C][18O]2O- 4.858e-22 4.445e-22 -21.314 -21.352 -0.039 (0) H[14C][18O]O[18O]- 4.858e-22 4.445e-22 -21.314 -21.352 -0.039 (0) + H[14C]O[18O]2- 4.858e-22 4.445e-22 -21.314 -21.352 -0.039 (0) [14C]O2[18O]-2 4.338e-22 3.039e-22 -21.363 -21.517 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.065 -68.064 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.066 -71.065 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.445 -67.444 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.446 -70.445 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.54 -21.40 -2.86 [13C]H4 + [13C]H4(g) -19.78 -22.64 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.49 -21.99 -1.50 [14C][18O]2 - [14C]H4(g) -30.18 -33.04 -2.86 [14C]H4 + [14C]H4(g) -31.42 -34.28 -2.86 [14C]H4 [14C]O2(g) -15.13 -16.59 -1.47 [14C]O2 [14C]O[18O](g) -17.51 -19.29 -1.79 [14C]O[18O] - [18O]2(g) -68.77 -71.07 -2.29 [18O]2 + [18O]2(g) -68.15 -70.44 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -12690,14 +12702,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.58 -19.44 -2.86 CH4 + CH4(g) -17.82 -20.68 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.21 -13.36 -3.15 H2 + H2(g) -10.52 -13.67 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.77 -65.67 -2.89 O2 - O[18O](g) -65.47 -68.37 -2.89 O[18O] + O2(g) -62.15 -65.04 -2.89 O2 + O[18O](g) -64.85 -67.74 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12721,6 +12733,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 52. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -12806,14 +12824,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6332e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7574e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 6.8834e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 9.1038e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 2.8866e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -7.4385e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -12831,16 +12849,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.808 Adjusted to redox equilibrium + pe = -1.658 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 91 + Iterations = 69 (170 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -12852,15 +12870,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.033e-21 - CH4 9.033e-21 9.048e-21 -20.044 -20.043 0.001 (0) +C(-4) 5.618e-22 + CH4 5.618e-22 5.628e-22 -21.250 -21.250 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -12868,9 +12886,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -12878,81 +12896,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.190e-14 - H2 3.095e-14 3.100e-14 -13.509 -13.509 0.001 (0) +H(0) 3.091e-14 + H2 1.546e-14 1.548e-14 -13.811 -13.810 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.365 -65.365 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.764 -67.764 0.001 (0) -[13C](-4) 1.001e-22 - [13C]H4 1.001e-22 1.002e-22 -22.000 -21.999 0.001 (0) + O2 0.000e+00 0.000e+00 -64.762 -64.761 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.161 -67.160 0.001 (0) +[13C](-4) 6.225e-24 + [13C]H4 6.225e-24 6.235e-24 -23.206 -23.205 0.001 (0) [13C](4) 6.517e-05 H[13C]O3- 5.257e-05 4.809e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.588e-08 4.596e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.122e-34 - [14C]H4 2.122e-34 2.126e-34 -33.673 -33.673 0.001 (0) +[14C](-4) 1.320e-35 + [14C]H4 1.320e-35 1.322e-35 -34.879 -34.879 0.001 (0) [14C](4) 1.392e-16 H[14C]O3- 1.124e-16 1.029e-16 -15.949 -15.988 -0.039 (0) [14C]O2 2.339e-17 2.343e-17 -16.631 -16.630 0.001 (0) CaH[14C]O3+ 2.374e-18 2.178e-18 -17.625 -17.662 -0.037 (0) - H[14C]O2[18O]- 2.243e-19 2.052e-19 -18.649 -18.688 -0.039 (0) - H[14C]O[18O]O- 2.243e-19 2.052e-19 -18.649 -18.688 -0.039 (0) H[14C][18O]O2- 2.243e-19 2.052e-19 -18.649 -18.688 -0.039 (0) + H[14C]O[18O]O- 2.243e-19 2.052e-19 -18.649 -18.688 -0.039 (0) + H[14C]O2[18O]- 2.243e-19 2.052e-19 -18.649 -18.688 -0.039 (0) Ca[14C]O3 1.301e-19 1.304e-19 -18.886 -18.885 0.001 (0) [14C]O[18O] 9.728e-20 9.744e-20 -19.012 -19.011 0.001 (0) [14C]O3-2 6.676e-20 4.677e-20 -19.175 -19.330 -0.155 (0) CaH[14C]O2[18O]+ 4.737e-21 4.345e-21 -20.325 -20.362 -0.037 (0) - CaH[14C]O[18O]O+ 4.737e-21 4.345e-21 -20.325 -20.362 -0.037 (0) CaH[14C][18O]O2+ 4.737e-21 4.345e-21 -20.325 -20.362 -0.037 (0) + CaH[14C]O[18O]O+ 4.737e-21 4.345e-21 -20.325 -20.362 -0.037 (0) Ca[14C]O2[18O] 7.790e-22 7.803e-22 -21.108 -21.108 0.001 (0) + H[14C][18O]O[18O]- 4.475e-22 4.094e-22 -21.349 -21.388 -0.039 (0) H[14C]O[18O]2- 4.475e-22 4.094e-22 -21.349 -21.388 -0.039 (0) H[14C][18O]2O- 4.475e-22 4.094e-22 -21.349 -21.388 -0.039 (0) - H[14C][18O]O[18O]- 4.475e-22 4.094e-22 -21.349 -21.388 -0.039 (0) [14C]O2[18O]-2 3.996e-22 2.800e-22 -21.398 -21.553 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.764 -67.764 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.765 -70.765 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.161 -67.160 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.162 -70.161 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.14 -22.00 -2.86 [13C]H4 + [13C]H4(g) -20.35 -23.21 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.53 -22.03 -1.50 [14C][18O]2 - [14C]H4(g) -30.81 -33.67 -2.86 [14C]H4 + [14C]H4(g) -32.02 -34.88 -2.86 [14C]H4 [14C]O2(g) -15.16 -16.63 -1.47 [14C]O2 [14C]O[18O](g) -17.54 -19.33 -1.79 [14C]O[18O] - [18O]2(g) -68.47 -70.76 -2.29 [18O]2 + [18O]2(g) -67.87 -70.16 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -12966,14 +12984,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.18 -20.04 -2.86 CH4 + CH4(g) -18.39 -21.25 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.36 -13.51 -3.15 H2 + H2(g) -10.66 -13.81 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.47 -65.36 -2.89 O2 - O[18O](g) -65.17 -68.06 -2.89 O[18O] + O2(g) -61.87 -64.76 -2.89 O2 + O[18O](g) -64.57 -67.46 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12997,12 +13015,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 53. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13088,14 +13100,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5992e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5854e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.996e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1102e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 5.3291e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -5.107e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -13113,16 +13125,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.821 Adjusted to redox equilibrium + pe = -1.323 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 102 (203 overall) + Iterations = 65 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -13134,25 +13146,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.138e-20 - CH4 1.138e-20 1.140e-20 -19.944 -19.943 0.001 (0) +C(-4) 1.189e-24 + CH4 1.189e-24 1.191e-24 -23.925 -23.924 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -13160,50 +13172,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.559e-14 - H2 3.279e-14 3.285e-14 -13.484 -13.484 0.001 (0) +H(0) 6.630e-15 + H2 3.315e-15 3.321e-15 -14.480 -14.479 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.415 -65.415 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.814 -67.814 0.001 (0) -[13C](-4) 1.261e-22 - [13C]H4 1.261e-22 1.263e-22 -21.899 -21.899 0.001 (0) + O2 0.000e+00 0.000e+00 -63.425 -63.424 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -65.824 -65.823 0.001 (0) +[13C](-4) 1.317e-26 + [13C]H4 1.317e-26 1.319e-26 -25.880 -25.880 0.001 (0) [13C](4) 6.517e-05 H[13C]O3- 5.257e-05 4.809e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.588e-08 4.596e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.463e-34 - [14C]H4 2.463e-34 2.467e-34 -33.609 -33.608 0.001 (0) +[14C](-4) 2.572e-38 + [14C]H4 2.572e-38 2.577e-38 -37.590 -37.589 0.001 (0) [14C](4) 1.282e-16 H[14C]O3- 1.036e-16 9.475e-17 -15.985 -16.023 -0.039 (0) [14C]O2 2.155e-17 2.159e-17 -16.667 -16.666 0.001 (0) CaH[14C]O3+ 2.187e-18 2.006e-18 -17.660 -17.698 -0.037 (0) - H[14C]O2[18O]- 2.066e-19 1.891e-19 -18.685 -18.723 -0.039 (0) - H[14C]O[18O]O- 2.066e-19 1.891e-19 -18.685 -18.723 -0.039 (0) H[14C][18O]O2- 2.066e-19 1.891e-19 -18.685 -18.723 -0.039 (0) + H[14C]O[18O]O- 2.066e-19 1.891e-19 -18.685 -18.723 -0.039 (0) + H[14C]O2[18O]- 2.066e-19 1.891e-19 -18.685 -18.723 -0.039 (0) Ca[14C]O3 1.199e-19 1.201e-19 -18.921 -18.920 0.001 (0) [14C]O[18O] 8.962e-20 8.976e-20 -19.048 -19.047 0.001 (0) [14C]O3-2 6.150e-20 4.309e-20 -19.211 -19.366 -0.155 (0) CaH[14C]O2[18O]+ 4.364e-21 4.003e-21 -20.360 -20.398 -0.037 (0) - CaH[14C]O[18O]O+ 4.364e-21 4.003e-21 -20.360 -20.398 -0.037 (0) CaH[14C][18O]O2+ 4.364e-21 4.003e-21 -20.360 -20.398 -0.037 (0) + CaH[14C]O[18O]O+ 4.364e-21 4.003e-21 -20.360 -20.398 -0.037 (0) Ca[14C]O2[18O] 7.176e-22 7.188e-22 -21.144 -21.143 0.001 (0) H[14C]O[18O]2- 4.123e-22 3.772e-22 -21.385 -21.423 -0.039 (0) H[14C][18O]2O- 4.123e-22 3.772e-22 -21.385 -21.423 -0.039 (0) @@ -13212,29 +13224,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.814 -67.814 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.815 -70.815 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -65.824 -65.823 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -68.825 -68.824 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.04 -21.90 -2.86 [13C]H4 + [13C]H4(g) -23.02 -25.88 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.56 -22.07 -1.50 [14C][18O]2 - [14C]H4(g) -30.75 -33.61 -2.86 [14C]H4 + [14C]H4(g) -34.73 -37.59 -2.86 [14C]H4 [14C]O2(g) -15.20 -16.67 -1.47 [14C]O2 [14C]O[18O](g) -17.58 -19.37 -1.79 [14C]O[18O] - [18O]2(g) -68.52 -70.81 -2.29 [18O]2 + [18O]2(g) -66.53 -68.82 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -13248,14 +13260,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.08 -19.94 -2.86 CH4 + CH4(g) -21.06 -23.92 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.33 -13.48 -3.15 H2 + H2(g) -11.33 -14.48 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.52 -65.41 -2.89 O2 - O[18O](g) -65.22 -68.11 -2.89 O[18O] + O2(g) -60.53 -63.42 -2.89 O2 + O[18O](g) -63.23 -66.12 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13279,6 +13291,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 54. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13364,14 +13382,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7167e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.57e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.2212e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.2204e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -13389,16 +13407,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.862 Adjusted to redox equilibrium + pe = -1.682 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 98 + Iterations = 57 (158 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -13410,14 +13428,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.418e-20 - CH4 2.418e-20 2.422e-20 -19.617 -19.616 0.001 (0) +C(-4) 8.730e-22 + CH4 8.730e-22 8.745e-22 -21.059 -21.058 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -13426,9 +13444,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -13436,23 +13454,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.918e-14 - H2 3.959e-14 3.966e-14 -13.402 -13.402 0.001 (0) +H(0) 3.452e-14 + H2 1.726e-14 1.729e-14 -13.763 -13.762 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.579 -65.578 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.978 -67.977 0.001 (0) -[13C](-4) 2.679e-22 - [13C]H4 2.679e-22 2.684e-22 -21.572 -21.571 0.001 (0) + O2 0.000e+00 0.000e+00 -64.858 -64.857 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.257 -67.256 0.001 (0) +[13C](-4) 9.674e-24 + [13C]H4 9.674e-24 9.690e-24 -23.014 -23.014 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.257e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.588e-08 4.596e-08 -7.338 -7.338 0.001 (0) @@ -13461,56 +13479,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.821e-34 - [14C]H4 4.821e-34 4.829e-34 -33.317 -33.316 0.001 (0) +[14C](-4) 1.741e-35 + [14C]H4 1.741e-35 1.743e-35 -34.759 -34.759 0.001 (0) [14C](4) 1.181e-16 H[14C]O3- 9.541e-17 8.729e-17 -16.020 -16.059 -0.039 (0) [14C]O2 1.985e-17 1.989e-17 -16.702 -16.701 0.001 (0) CaH[14C]O3+ 2.015e-18 1.848e-18 -17.696 -17.733 -0.037 (0) - H[14C]O2[18O]- 1.904e-19 1.742e-19 -18.720 -18.759 -0.039 (0) - H[14C]O[18O]O- 1.904e-19 1.742e-19 -18.720 -18.759 -0.039 (0) H[14C][18O]O2- 1.904e-19 1.742e-19 -18.720 -18.759 -0.039 (0) + H[14C]O[18O]O- 1.904e-19 1.742e-19 -18.720 -18.759 -0.039 (0) + H[14C]O2[18O]- 1.904e-19 1.742e-19 -18.720 -18.759 -0.039 (0) Ca[14C]O3 1.105e-19 1.106e-19 -18.957 -18.956 0.001 (0) [14C]O[18O] 8.256e-20 8.269e-20 -19.083 -19.083 0.001 (0) [14C]O3-2 5.666e-20 3.969e-20 -19.247 -19.401 -0.155 (0) CaH[14C]O2[18O]+ 4.020e-21 3.688e-21 -20.396 -20.433 -0.037 (0) - CaH[14C]O[18O]O+ 4.020e-21 3.688e-21 -20.396 -20.433 -0.037 (0) CaH[14C][18O]O2+ 4.020e-21 3.688e-21 -20.396 -20.433 -0.037 (0) + CaH[14C]O[18O]O+ 4.020e-21 3.688e-21 -20.396 -20.433 -0.037 (0) Ca[14C]O2[18O] 6.611e-22 6.622e-22 -21.180 -21.179 0.001 (0) - H[14C]O[18O]2- 3.798e-22 3.475e-22 -21.420 -21.459 -0.039 (0) H[14C][18O]2O- 3.798e-22 3.475e-22 -21.420 -21.459 -0.039 (0) H[14C][18O]O[18O]- 3.798e-22 3.475e-22 -21.420 -21.459 -0.039 (0) + H[14C]O[18O]2- 3.798e-22 3.475e-22 -21.420 -21.459 -0.039 (0) [14C]O2[18O]-2 3.391e-22 2.376e-22 -21.470 -21.624 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.978 -67.977 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.979 -70.978 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.257 -67.256 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.258 -70.257 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.71 -21.57 -2.86 [13C]H4 + [13C]H4(g) -20.15 -23.01 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.60 -22.10 -1.50 [14C][18O]2 - [14C]H4(g) -30.46 -33.32 -2.86 [14C]H4 + [14C]H4(g) -31.90 -34.76 -2.86 [14C]H4 [14C]O2(g) -15.23 -16.70 -1.47 [14C]O2 [14C]O[18O](g) -17.61 -19.40 -1.79 [14C]O[18O] - [18O]2(g) -68.69 -70.98 -2.29 [18O]2 + [18O]2(g) -67.97 -70.26 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -13524,14 +13542,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.76 -19.62 -2.86 CH4 + CH4(g) -18.20 -21.06 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.25 -13.40 -3.15 H2 + H2(g) -10.61 -13.76 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.69 -65.58 -2.89 O2 - O[18O](g) -65.39 -68.28 -2.89 O[18O] + O2(g) -61.96 -64.86 -2.89 O2 + O[18O](g) -64.66 -67.56 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13555,6 +13573,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 55. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13640,14 +13664,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6732e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6622e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.992e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -13665,16 +13689,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.893 Adjusted to redox equilibrium + pe = -1.671 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 96 + Iterations = 90 (191 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -13686,25 +13710,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.323e-20 - CH4 4.323e-20 4.330e-20 -19.364 -19.363 0.001 (0) +C(-4) 7.222e-22 + CH4 7.222e-22 7.234e-22 -21.141 -21.141 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -13712,81 +13736,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.156e-14 - H2 4.578e-14 4.586e-14 -13.339 -13.339 0.001 (0) +H(0) 3.292e-14 + H2 1.646e-14 1.649e-14 -13.784 -13.783 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.705 -65.705 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.104 -68.104 0.001 (0) -[13C](-4) 4.791e-22 - [13C]H4 4.791e-22 4.799e-22 -21.320 -21.319 0.001 (0) + O2 0.000e+00 0.000e+00 -64.817 -64.816 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.216 -67.215 0.001 (0) +[13C](-4) 8.003e-24 + [13C]H4 8.003e-24 8.016e-24 -23.097 -23.096 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.257e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.588e-08 4.596e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 7.941e-34 - [14C]H4 7.941e-34 7.954e-34 -33.100 -33.099 0.001 (0) +[14C](-4) 1.326e-35 + [14C]H4 1.326e-35 1.329e-35 -34.877 -34.877 0.001 (0) [14C](4) 1.088e-16 H[14C]O3- 8.790e-17 8.041e-17 -16.056 -16.095 -0.039 (0) [14C]O2 1.829e-17 1.832e-17 -16.738 -16.737 0.001 (0) CaH[14C]O3+ 1.856e-18 1.703e-18 -17.731 -17.769 -0.037 (0) - H[14C]O2[18O]- 1.754e-19 1.604e-19 -18.756 -18.795 -0.039 (0) - H[14C]O[18O]O- 1.754e-19 1.604e-19 -18.756 -18.795 -0.039 (0) H[14C][18O]O2- 1.754e-19 1.604e-19 -18.756 -18.795 -0.039 (0) + H[14C]O[18O]O- 1.754e-19 1.604e-19 -18.756 -18.795 -0.039 (0) + H[14C]O2[18O]- 1.754e-19 1.604e-19 -18.756 -18.795 -0.039 (0) Ca[14C]O3 1.018e-19 1.019e-19 -18.992 -18.992 0.001 (0) [14C]O[18O] 7.605e-20 7.618e-20 -19.119 -19.118 0.001 (0) [14C]O3-2 5.220e-20 3.657e-20 -19.282 -19.437 -0.155 (0) CaH[14C]O2[18O]+ 3.703e-21 3.397e-21 -20.431 -20.469 -0.037 (0) - CaH[14C]O[18O]O+ 3.703e-21 3.397e-21 -20.431 -20.469 -0.037 (0) CaH[14C][18O]O2+ 3.703e-21 3.397e-21 -20.431 -20.469 -0.037 (0) + CaH[14C]O[18O]O+ 3.703e-21 3.397e-21 -20.431 -20.469 -0.037 (0) Ca[14C]O2[18O] 6.090e-22 6.100e-22 -21.215 -21.215 0.001 (0) + H[14C][18O]O[18O]- 3.499e-22 3.201e-22 -21.456 -21.495 -0.039 (0) H[14C]O[18O]2- 3.499e-22 3.201e-22 -21.456 -21.495 -0.039 (0) H[14C][18O]2O- 3.499e-22 3.201e-22 -21.456 -21.495 -0.039 (0) - H[14C][18O]O[18O]- 3.499e-22 3.201e-22 -21.456 -21.495 -0.039 (0) [14C]O2[18O]-2 3.124e-22 2.189e-22 -21.505 -21.660 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.104 -68.104 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.105 -71.105 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.216 -67.215 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.217 -70.216 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.46 -21.32 -2.86 [13C]H4 + [13C]H4(g) -20.24 -23.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.63 -22.14 -1.50 [14C][18O]2 - [14C]H4(g) -30.24 -33.10 -2.86 [14C]H4 + [14C]H4(g) -32.02 -34.88 -2.86 [14C]H4 [14C]O2(g) -15.27 -16.74 -1.47 [14C]O2 [14C]O[18O](g) -17.65 -19.44 -1.79 [14C]O[18O] - [18O]2(g) -68.81 -71.10 -2.29 [18O]2 + [18O]2(g) -67.93 -70.22 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -13800,14 +13824,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.50 -19.36 -2.86 CH4 + CH4(g) -18.28 -21.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.19 -13.34 -3.15 H2 + H2(g) -10.63 -13.78 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.81 -65.70 -2.89 O2 - O[18O](g) -65.51 -68.40 -2.89 O[18O] + O2(g) -61.92 -64.82 -2.89 O2 + O[18O](g) -64.62 -67.52 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13831,6 +13855,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 56. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13916,14 +13946,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6446e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7669e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.632e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.6431e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 7.3275e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -13941,16 +13971,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.993 Adjusted to redox equilibrium + pe = -1.881 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 79 + Iterations = 75 (176 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -13962,15 +13992,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.725e-19 - CH4 2.725e-19 2.730e-19 -18.565 -18.564 0.001 (0) +C(-4) 3.469e-20 + CH4 3.469e-20 3.475e-20 -19.460 -19.459 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -13978,9 +14008,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -13988,50 +14018,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.451e-13 - H2 7.254e-14 7.266e-14 -13.139 -13.139 0.001 (0) +H(0) 8.666e-14 + H2 4.333e-14 4.340e-14 -13.363 -13.362 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.105 -66.104 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.504 -68.503 0.001 (0) -[13C](-4) 3.020e-21 - [13C]H4 3.020e-21 3.025e-21 -20.520 -20.519 0.001 (0) + O2 0.000e+00 0.000e+00 -65.657 -65.657 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.056 -68.056 0.001 (0) +[13C](-4) 3.844e-22 + [13C]H4 3.844e-22 3.851e-22 -21.415 -21.414 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.257e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.596e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.190e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.611e-33 - [14C]H4 4.611e-33 4.619e-33 -32.336 -32.335 0.001 (0) +[14C](-4) 5.870e-34 + [14C]H4 5.870e-34 5.880e-34 -33.231 -33.231 0.001 (0) [14C](4) 1.002e-16 H[14C]O3- 8.097e-17 7.408e-17 -16.092 -16.130 -0.039 (0) [14C]O2 1.685e-17 1.688e-17 -16.773 -16.773 0.001 (0) CaH[14C]O3+ 1.710e-18 1.569e-18 -17.767 -17.805 -0.037 (0) - H[14C]O2[18O]- 1.616e-19 1.478e-19 -18.792 -18.830 -0.039 (0) - H[14C]O[18O]O- 1.616e-19 1.478e-19 -18.792 -18.830 -0.039 (0) H[14C][18O]O2- 1.616e-19 1.478e-19 -18.792 -18.830 -0.039 (0) + H[14C]O[18O]O- 1.616e-19 1.478e-19 -18.792 -18.830 -0.039 (0) + H[14C]O2[18O]- 1.616e-19 1.478e-19 -18.792 -18.830 -0.039 (0) Ca[14C]O3 9.374e-20 9.389e-20 -19.028 -19.027 0.001 (0) [14C]O[18O] 7.006e-20 7.018e-20 -19.155 -19.154 0.001 (0) [14C]O3-2 4.808e-20 3.369e-20 -19.318 -19.473 -0.155 (0) CaH[14C]O2[18O]+ 3.412e-21 3.129e-21 -20.467 -20.505 -0.037 (0) - CaH[14C]O[18O]O+ 3.412e-21 3.129e-21 -20.467 -20.505 -0.037 (0) CaH[14C][18O]O2+ 3.412e-21 3.129e-21 -20.467 -20.505 -0.037 (0) + CaH[14C]O[18O]O+ 3.412e-21 3.129e-21 -20.467 -20.505 -0.037 (0) Ca[14C]O2[18O] 5.611e-22 5.620e-22 -21.251 -21.250 0.001 (0) H[14C]O[18O]2- 3.223e-22 2.949e-22 -21.492 -21.530 -0.039 (0) H[14C][18O]2O- 3.223e-22 2.949e-22 -21.492 -21.530 -0.039 (0) @@ -14040,29 +14070,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.504 -68.503 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.505 -71.504 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.056 -68.056 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.058 -71.057 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.66 -20.52 -2.86 [13C]H4 + [13C]H4(g) -18.55 -21.41 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.67 -22.17 -1.50 [14C][18O]2 - [14C]H4(g) -29.48 -32.34 -2.86 [14C]H4 + [14C]H4(g) -30.37 -33.23 -2.86 [14C]H4 [14C]O2(g) -15.30 -16.77 -1.47 [14C]O2 [14C]O[18O](g) -17.69 -19.47 -1.79 [14C]O[18O] - [18O]2(g) -69.21 -71.50 -2.29 [18O]2 + [18O]2(g) -68.77 -71.06 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -14076,14 +14106,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.70 -18.56 -2.86 CH4 + CH4(g) -16.60 -19.46 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.99 -13.14 -3.15 H2 + H2(g) -10.21 -13.36 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.21 -66.10 -2.89 O2 - O[18O](g) -65.91 -68.80 -2.89 O[18O] + O2(g) -62.76 -65.66 -2.89 O2 + O[18O](g) -65.46 -68.36 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14192,14 +14222,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5483e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5987e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.7764e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.7748e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.3275e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.1086e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -14217,16 +14247,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.040 Adjusted to redox equilibrium + pe = -1.862 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 99 + Iterations = 52 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -14238,25 +14268,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.455e-19 - CH4 6.455e-19 6.466e-19 -18.190 -18.189 0.001 (0) +C(-4) 2.404e-20 + CH4 2.404e-20 2.408e-20 -19.619 -19.618 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -14264,23 +14294,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.800e-13 - H2 8.999e-14 9.014e-14 -13.046 -13.045 0.001 (0) +H(0) 7.907e-14 + H2 3.953e-14 3.960e-14 -13.403 -13.402 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.292 -66.292 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.691 -68.691 0.001 (0) -[13C](-4) 7.154e-21 - [13C]H4 7.154e-21 7.165e-21 -20.145 -20.145 0.001 (0) + O2 0.000e+00 0.000e+00 -65.578 -65.577 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.977 -67.976 0.001 (0) +[13C](-4) 2.664e-22 + [13C]H4 2.664e-22 2.668e-22 -21.575 -21.574 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.596e-08 -7.338 -7.338 0.001 (0) @@ -14289,56 +14319,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.006e-32 - [14C]H4 1.006e-32 1.008e-32 -31.997 -31.997 0.001 (0) +[14C](-4) 3.747e-34 + [14C]H4 3.747e-34 3.753e-34 -33.426 -33.426 0.001 (0) [14C](4) 9.234e-17 H[14C]O3- 7.459e-17 6.824e-17 -16.127 -16.166 -0.039 (0) [14C]O2 1.552e-17 1.555e-17 -16.809 -16.808 0.001 (0) CaH[14C]O3+ 1.575e-18 1.445e-18 -17.803 -17.840 -0.037 (0) - H[14C]O2[18O]- 1.488e-19 1.362e-19 -18.827 -18.866 -0.039 (0) - H[14C]O[18O]O- 1.488e-19 1.362e-19 -18.827 -18.866 -0.039 (0) H[14C][18O]O2- 1.488e-19 1.362e-19 -18.827 -18.866 -0.039 (0) + H[14C]O[18O]O- 1.488e-19 1.362e-19 -18.827 -18.866 -0.039 (0) + H[14C]O2[18O]- 1.488e-19 1.362e-19 -18.827 -18.866 -0.039 (0) Ca[14C]O3 8.635e-20 8.649e-20 -19.064 -19.063 0.001 (0) [14C]O[18O] 6.454e-20 6.465e-20 -19.190 -19.189 0.001 (0) [14C]O3-2 4.430e-20 3.103e-20 -19.354 -19.508 -0.155 (0) CaH[14C]O2[18O]+ 3.143e-21 2.883e-21 -20.503 -20.540 -0.037 (0) - CaH[14C]O[18O]O+ 3.143e-21 2.883e-21 -20.503 -20.540 -0.037 (0) CaH[14C][18O]O2+ 3.143e-21 2.883e-21 -20.503 -20.540 -0.037 (0) + CaH[14C]O[18O]O+ 3.143e-21 2.883e-21 -20.503 -20.540 -0.037 (0) Ca[14C]O2[18O] 5.169e-22 5.177e-22 -21.287 -21.286 0.001 (0) - H[14C]O[18O]2- 2.969e-22 2.717e-22 -21.527 -21.566 -0.039 (0) H[14C][18O]2O- 2.969e-22 2.717e-22 -21.527 -21.566 -0.039 (0) H[14C][18O]O[18O]- 2.969e-22 2.717e-22 -21.527 -21.566 -0.039 (0) + H[14C]O[18O]2- 2.969e-22 2.717e-22 -21.527 -21.566 -0.039 (0) [14C]O2[18O]-2 2.651e-22 1.857e-22 -21.577 -21.731 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.691 -68.691 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.692 -71.692 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.977 -67.976 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.978 -70.977 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.28 -20.14 -2.86 [13C]H4 + [13C]H4(g) -18.71 -21.57 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.70 -22.21 -1.50 [14C][18O]2 - [14C]H4(g) -29.14 -32.00 -2.86 [14C]H4 + [14C]H4(g) -30.57 -33.43 -2.86 [14C]H4 [14C]O2(g) -15.34 -16.81 -1.47 [14C]O2 [14C]O[18O](g) -17.72 -19.51 -1.79 [14C]O[18O] - [18O]2(g) -69.40 -71.69 -2.29 [18O]2 + [18O]2(g) -68.69 -70.98 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -14352,14 +14382,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.33 -18.19 -2.86 CH4 + CH4(g) -16.76 -19.62 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.90 -13.05 -3.15 H2 + H2(g) -10.25 -13.40 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.40 -66.29 -2.89 O2 - O[18O](g) -66.10 -68.99 -2.89 O[18O] + O2(g) -62.68 -65.58 -2.89 O2 + O[18O](g) -65.38 -68.28 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14383,6 +14413,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 58. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -14468,14 +14504,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5798e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5461e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.3299e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -8.3267e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.1435e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -14493,16 +14529,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.143 Adjusted to redox equilibrium + pe = -1.995 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 96 + Iterations = 57 (158 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -14514,15 +14550,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.282e-18 - CH4 4.282e-18 4.289e-18 -17.368 -17.368 0.001 (0) +C(-4) 2.793e-19 + CH4 2.793e-19 2.798e-19 -18.554 -18.553 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -14530,9 +14566,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -14540,81 +14576,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.889e-13 - H2 1.444e-13 1.447e-13 -12.840 -12.840 0.001 (0) +H(0) 1.460e-13 + H2 7.299e-14 7.311e-14 -13.137 -13.136 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.703 -66.702 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.102 -69.101 0.001 (0) -[13C](-4) 4.746e-20 - [13C]H4 4.746e-20 4.753e-20 -19.324 -19.323 0.001 (0) + O2 0.000e+00 0.000e+00 -66.110 -66.110 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.509 -68.509 0.001 (0) +[13C](-4) 3.095e-21 + [13C]H4 3.095e-21 3.101e-21 -20.509 -20.509 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.596e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.190e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 6.149e-32 - [14C]H4 6.149e-32 6.159e-32 -31.211 -31.210 0.001 (0) +[14C](-4) 4.011e-33 + [14C]H4 4.011e-33 4.018e-33 -32.397 -32.396 0.001 (0) [14C](4) 8.507e-17 H[14C]O3- 6.872e-17 6.287e-17 -16.163 -16.202 -0.039 (0) [14C]O2 1.430e-17 1.432e-17 -16.845 -16.844 0.001 (0) CaH[14C]O3+ 1.451e-18 1.331e-18 -17.838 -17.876 -0.037 (0) - H[14C]O2[18O]- 1.371e-19 1.254e-19 -18.863 -18.902 -0.039 (0) - H[14C]O[18O]O- 1.371e-19 1.254e-19 -18.863 -18.902 -0.039 (0) H[14C][18O]O2- 1.371e-19 1.254e-19 -18.863 -18.902 -0.039 (0) + H[14C]O[18O]O- 1.371e-19 1.254e-19 -18.863 -18.902 -0.039 (0) + H[14C]O2[18O]- 1.371e-19 1.254e-19 -18.863 -18.902 -0.039 (0) Ca[14C]O3 7.955e-20 7.968e-20 -19.099 -19.099 0.001 (0) [14C]O[18O] 5.946e-20 5.956e-20 -19.226 -19.225 0.001 (0) [14C]O3-2 4.081e-20 2.859e-20 -19.389 -19.544 -0.155 (0) CaH[14C]O2[18O]+ 2.895e-21 2.656e-21 -20.538 -20.576 -0.037 (0) - CaH[14C]O[18O]O+ 2.895e-21 2.656e-21 -20.538 -20.576 -0.037 (0) CaH[14C][18O]O2+ 2.895e-21 2.656e-21 -20.538 -20.576 -0.037 (0) + CaH[14C]O[18O]O+ 2.895e-21 2.656e-21 -20.538 -20.576 -0.037 (0) Ca[14C]O2[18O] 4.762e-22 4.769e-22 -21.322 -21.322 0.001 (0) + H[14C][18O]O[18O]- 2.736e-22 2.503e-22 -21.563 -21.602 -0.039 (0) H[14C]O[18O]2- 2.736e-22 2.503e-22 -21.563 -21.602 -0.039 (0) H[14C][18O]2O- 2.736e-22 2.503e-22 -21.563 -21.602 -0.039 (0) - H[14C][18O]O[18O]- 2.736e-22 2.503e-22 -21.563 -21.602 -0.039 (0) [14C]O2[18O]-2 2.443e-22 1.711e-22 -21.612 -21.767 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.102 -69.101 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.103 -72.103 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.509 -68.509 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.510 -71.510 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.46 -19.32 -2.86 [13C]H4 + [13C]H4(g) -17.65 -20.51 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.74 -22.24 -1.50 [14C][18O]2 - [14C]H4(g) -28.35 -31.21 -2.86 [14C]H4 + [14C]H4(g) -29.54 -32.40 -2.86 [14C]H4 [14C]O2(g) -15.38 -16.84 -1.47 [14C]O2 [14C]O[18O](g) -17.76 -19.54 -1.79 [14C]O[18O] - [18O]2(g) -69.81 -72.10 -2.29 [18O]2 + [18O]2(g) -69.22 -71.51 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -14628,14 +14664,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.51 -17.37 -2.86 CH4 + CH4(g) -15.69 -18.55 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.69 -12.84 -3.15 H2 + H2(g) -9.99 -13.14 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.81 -66.70 -2.89 O2 - O[18O](g) -66.51 -69.40 -2.89 O[18O] + O2(g) -63.22 -66.11 -2.89 O2 + O[18O](g) -65.92 -68.81 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14659,12 +14695,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 59. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -14750,14 +14780,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 6.6613e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6852e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6446e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.5543e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.1102e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -14775,16 +14805,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.193 Adjusted to redox equilibrium + pe = -2.042 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 113 (214 overall) + Iterations = 64 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -14796,25 +14826,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.078e-17 - CH4 1.078e-17 1.080e-17 -16.967 -16.967 0.001 (0) +C(-4) 6.713e-19 + CH4 6.713e-19 6.724e-19 -18.173 -18.172 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -14822,50 +14852,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.639e-13 - H2 1.819e-13 1.822e-13 -12.740 -12.739 0.001 (0) +H(0) 1.818e-13 + H2 9.088e-14 9.103e-14 -13.042 -13.041 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.904 -66.903 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.303 -69.302 0.001 (0) -[13C](-4) 1.195e-19 - [13C]H4 1.195e-19 1.197e-19 -18.923 -18.922 0.001 (0) + O2 0.000e+00 0.000e+00 -66.301 -66.300 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.700 -68.699 0.001 (0) +[13C](-4) 7.439e-21 + [13C]H4 7.439e-21 7.451e-21 -20.128 -20.128 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.596e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.190e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.426e-31 - [14C]H4 1.426e-31 1.428e-31 -30.846 -30.845 0.001 (0) +[14C](-4) 8.880e-33 + [14C]H4 8.880e-33 8.894e-33 -32.052 -32.051 0.001 (0) [14C](4) 7.837e-17 H[14C]O3- 6.330e-17 5.792e-17 -16.199 -16.237 -0.039 (0) [14C]O2 1.317e-17 1.319e-17 -16.880 -16.880 0.001 (0) CaH[14C]O3+ 1.337e-18 1.226e-18 -17.874 -17.911 -0.037 (0) - H[14C]O2[18O]- 1.263e-19 1.156e-19 -18.899 -18.937 -0.039 (0) - H[14C]O[18O]O- 1.263e-19 1.156e-19 -18.899 -18.937 -0.039 (0) H[14C][18O]O2- 1.263e-19 1.156e-19 -18.899 -18.937 -0.039 (0) + H[14C]O[18O]O- 1.263e-19 1.156e-19 -18.899 -18.937 -0.039 (0) + H[14C]O2[18O]- 1.263e-19 1.156e-19 -18.899 -18.937 -0.039 (0) Ca[14C]O3 7.328e-20 7.340e-20 -19.135 -19.134 0.001 (0) [14C]O[18O] 5.478e-20 5.487e-20 -19.261 -19.261 0.001 (0) [14C]O3-2 3.759e-20 2.634e-20 -19.425 -19.579 -0.155 (0) CaH[14C]O2[18O]+ 2.667e-21 2.447e-21 -20.574 -20.611 -0.037 (0) - CaH[14C]O[18O]O+ 2.667e-21 2.447e-21 -20.574 -20.611 -0.037 (0) CaH[14C][18O]O2+ 2.667e-21 2.447e-21 -20.574 -20.611 -0.037 (0) + CaH[14C]O[18O]O+ 2.667e-21 2.447e-21 -20.574 -20.611 -0.037 (0) Ca[14C]O2[18O] 4.386e-22 4.394e-22 -21.358 -21.357 0.001 (0) H[14C]O[18O]2- 2.520e-22 2.306e-22 -21.599 -21.637 -0.039 (0) H[14C][18O]2O- 2.520e-22 2.306e-22 -21.599 -21.637 -0.039 (0) @@ -14874,29 +14904,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.303 -69.302 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.304 -72.303 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.700 -68.699 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.701 -71.700 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.06 -18.92 -2.86 [13C]H4 + [13C]H4(g) -17.27 -20.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.78 -22.28 -1.50 [14C][18O]2 - [14C]H4(g) -27.99 -30.85 -2.86 [14C]H4 + [14C]H4(g) -29.19 -32.05 -2.86 [14C]H4 [14C]O2(g) -15.41 -16.88 -1.47 [14C]O2 [14C]O[18O](g) -17.79 -19.58 -1.79 [14C]O[18O] - [18O]2(g) -70.01 -72.30 -2.29 [18O]2 + [18O]2(g) -69.41 -71.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -14910,14 +14940,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.11 -16.97 -2.86 CH4 + CH4(g) -15.31 -18.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.59 -12.74 -3.15 H2 + H2(g) -9.89 -13.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.01 -66.90 -2.89 O2 - O[18O](g) -66.71 -69.60 -2.89 O[18O] + O2(g) -63.41 -66.30 -2.89 O2 + O[18O](g) -66.11 -69.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14941,12 +14971,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 60. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -15032,14 +15056,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7426e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.565e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.7748e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.4409e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.2434e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 5.9952e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -15057,16 +15081,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.201 Adjusted to redox equilibrium + pe = -2.059 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 128 (229 overall) + Iterations = 98 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -15078,14 +15102,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.246e-17 - CH4 1.246e-17 1.248e-17 -16.905 -16.904 0.001 (0) +C(-4) 9.176e-19 + CH4 9.176e-19 9.191e-19 -18.037 -18.037 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -15094,9 +15118,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -15104,23 +15128,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.772e-13 - H2 1.886e-13 1.889e-13 -12.724 -12.724 0.001 (0) +H(0) 1.965e-13 + H2 9.826e-14 9.843e-14 -13.008 -13.007 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.935 -66.934 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.334 -69.333 0.001 (0) -[13C](-4) 1.381e-19 - [13C]H4 1.381e-19 1.383e-19 -18.860 -18.859 0.001 (0) + O2 0.000e+00 0.000e+00 -66.369 -66.368 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.768 -68.767 0.001 (0) +[13C](-4) 1.017e-20 + [13C]H4 1.017e-20 1.019e-20 -19.993 -19.992 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) @@ -15129,56 +15153,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.518e-31 - [14C]H4 1.518e-31 1.521e-31 -30.819 -30.818 0.001 (0) +[14C](-4) 1.118e-32 + [14C]H4 1.118e-32 1.120e-32 -31.952 -31.951 0.001 (0) [14C](4) 7.219e-17 H[14C]O3- 5.832e-17 5.335e-17 -16.234 -16.273 -0.039 (0) [14C]O2 1.213e-17 1.215e-17 -16.916 -16.915 0.001 (0) CaH[14C]O3+ 1.231e-18 1.130e-18 -17.910 -17.947 -0.037 (0) - H[14C]O2[18O]- 1.164e-19 1.065e-19 -18.934 -18.973 -0.039 (0) - H[14C]O[18O]O- 1.164e-19 1.065e-19 -18.934 -18.973 -0.039 (0) H[14C][18O]O2- 1.164e-19 1.065e-19 -18.934 -18.973 -0.039 (0) + H[14C]O[18O]O- 1.164e-19 1.065e-19 -18.934 -18.973 -0.039 (0) + H[14C]O2[18O]- 1.164e-19 1.065e-19 -18.934 -18.973 -0.039 (0) Ca[14C]O3 6.751e-20 6.762e-20 -19.171 -19.170 0.001 (0) [14C]O[18O] 5.046e-20 5.054e-20 -19.297 -19.296 0.001 (0) [14C]O3-2 3.463e-20 2.426e-20 -19.461 -19.615 -0.155 (0) CaH[14C]O2[18O]+ 2.457e-21 2.254e-21 -20.610 -20.647 -0.037 (0) - CaH[14C]O[18O]O+ 2.457e-21 2.254e-21 -20.610 -20.647 -0.037 (0) CaH[14C][18O]O2+ 2.457e-21 2.254e-21 -20.610 -20.647 -0.037 (0) + CaH[14C]O[18O]O+ 2.457e-21 2.254e-21 -20.610 -20.647 -0.037 (0) Ca[14C]O2[18O] 4.041e-22 4.048e-22 -21.394 -21.393 0.001 (0) - H[14C]O[18O]2- 2.322e-22 2.124e-22 -21.634 -21.673 -0.039 (0) H[14C][18O]2O- 2.322e-22 2.124e-22 -21.634 -21.673 -0.039 (0) H[14C][18O]O[18O]- 2.322e-22 2.124e-22 -21.634 -21.673 -0.039 (0) + H[14C]O[18O]2- 2.322e-22 2.124e-22 -21.634 -21.673 -0.039 (0) [14C]O2[18O]-2 2.073e-22 1.452e-22 -21.683 -21.838 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.334 -69.333 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.335 -72.334 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.768 -68.767 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.769 -71.768 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.00 -18.86 -2.86 [13C]H4 + [13C]H4(g) -17.13 -19.99 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.81 -22.32 -1.50 [14C][18O]2 - [14C]H4(g) -27.96 -30.82 -2.86 [14C]H4 + [14C]H4(g) -29.09 -31.95 -2.86 [14C]H4 [14C]O2(g) -15.45 -16.92 -1.47 [14C]O2 [14C]O[18O](g) -17.83 -19.62 -1.79 [14C]O[18O] - [18O]2(g) -70.04 -72.33 -2.29 [18O]2 + [18O]2(g) -69.48 -71.77 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -15192,14 +15216,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.04 -16.90 -2.86 CH4 + CH4(g) -15.18 -18.04 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.57 -12.72 -3.15 H2 + H2(g) -9.86 -13.01 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.04 -66.93 -2.89 O2 - O[18O](g) -66.74 -69.63 -2.89 O[18O] + O2(g) -63.48 -66.37 -2.89 O2 + O[18O](g) -66.18 -69.07 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -15223,12 +15247,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 61. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -15314,14 +15332,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5726e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5291e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -8.1046e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -15339,16 +15357,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.198 Adjusted to redox equilibrium + pe = -2.038 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 97 (198 overall) + Iterations = 96 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -15360,25 +15378,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.184e-17 - CH4 1.184e-17 1.185e-17 -16.927 -16.926 0.001 (0) +C(-4) 6.172e-19 + CH4 6.172e-19 6.182e-19 -18.210 -18.209 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -15386,81 +15404,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.724e-13 - H2 1.862e-13 1.865e-13 -12.730 -12.729 0.001 (0) +H(0) 1.780e-13 + H2 8.899e-14 8.914e-14 -13.051 -13.050 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.924 -66.923 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.323 -69.322 0.001 (0) -[13C](-4) 1.312e-19 - [13C]H4 1.312e-19 1.314e-19 -18.882 -18.881 0.001 (0) + O2 0.000e+00 0.000e+00 -66.283 -66.282 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.682 -68.681 0.001 (0) +[13C](-4) 6.840e-21 + [13C]H4 6.840e-21 6.851e-21 -20.165 -20.164 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.329e-31 - [14C]H4 1.329e-31 1.331e-31 -30.877 -30.876 0.001 (0) +[14C](-4) 6.929e-33 + [14C]H4 6.929e-33 6.940e-33 -32.159 -32.159 0.001 (0) [14C](4) 6.651e-17 H[14C]O3- 5.372e-17 4.915e-17 -16.270 -16.308 -0.039 (0) [14C]O2 1.118e-17 1.120e-17 -16.952 -16.951 0.001 (0) CaH[14C]O3+ 1.134e-18 1.041e-18 -17.945 -17.983 -0.037 (0) - H[14C]O2[18O]- 1.072e-19 9.807e-20 -18.970 -19.008 -0.039 (0) - H[14C]O[18O]O- 1.072e-19 9.807e-20 -18.970 -19.008 -0.039 (0) H[14C][18O]O2- 1.072e-19 9.807e-20 -18.970 -19.008 -0.039 (0) + H[14C]O[18O]O- 1.072e-19 9.807e-20 -18.970 -19.008 -0.039 (0) + H[14C]O2[18O]- 1.072e-19 9.807e-20 -18.970 -19.008 -0.039 (0) Ca[14C]O3 6.219e-20 6.230e-20 -19.206 -19.206 0.001 (0) [14C]O[18O] 4.649e-20 4.656e-20 -19.333 -19.332 0.001 (0) [14C]O3-2 3.190e-20 2.235e-20 -19.496 -19.651 -0.155 (0) CaH[14C]O2[18O]+ 2.264e-21 2.076e-21 -20.645 -20.683 -0.037 (0) - CaH[14C]O[18O]O+ 2.264e-21 2.076e-21 -20.645 -20.683 -0.037 (0) CaH[14C][18O]O2+ 2.264e-21 2.076e-21 -20.645 -20.683 -0.037 (0) + CaH[14C]O[18O]O+ 2.264e-21 2.076e-21 -20.645 -20.683 -0.037 (0) Ca[14C]O2[18O] 3.723e-22 3.729e-22 -21.429 -21.428 0.001 (0) + H[14C][18O]O[18O]- 2.139e-22 1.957e-22 -21.670 -21.708 -0.039 (0) H[14C]O[18O]2- 2.139e-22 1.957e-22 -21.670 -21.708 -0.039 (0) H[14C][18O]2O- 2.139e-22 1.957e-22 -21.670 -21.708 -0.039 (0) - H[14C][18O]O[18O]- 2.139e-22 1.957e-22 -21.670 -21.708 -0.039 (0) [14C]O2[18O]-2 1.910e-22 1.338e-22 -21.719 -21.874 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.323 -69.322 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.324 -72.323 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.682 -68.681 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.683 -71.682 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.02 -18.88 -2.86 [13C]H4 + [13C]H4(g) -17.30 -20.16 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.85 -22.35 -1.50 [14C][18O]2 - [14C]H4(g) -28.02 -30.88 -2.86 [14C]H4 + [14C]H4(g) -29.30 -32.16 -2.86 [14C]H4 [14C]O2(g) -15.48 -16.95 -1.47 [14C]O2 [14C]O[18O](g) -17.86 -19.65 -1.79 [14C]O[18O] - [18O]2(g) -70.03 -72.32 -2.29 [18O]2 + [18O]2(g) -69.39 -71.68 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -15474,14 +15492,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.07 -16.93 -2.86 CH4 + CH4(g) -15.35 -18.21 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.58 -12.73 -3.15 H2 + H2(g) -9.90 -13.05 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.03 -66.92 -2.89 O2 - O[18O](g) -66.73 -69.62 -2.89 O[18O] + O2(g) -63.39 -66.28 -2.89 O2 + O[18O](g) -66.09 -68.98 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -15505,6 +15523,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 62. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -15590,14 +15614,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.623e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6459e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.521e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.1038e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -15615,16 +15639,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.200 Adjusted to redox equilibrium + pe = -2.004 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 77 + Iterations = 98 (199 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -15636,15 +15660,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.220e-17 - CH4 1.220e-17 1.222e-17 -16.914 -16.913 0.001 (0) +C(-4) 3.344e-19 + CH4 3.344e-19 3.349e-19 -18.476 -18.475 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -15652,9 +15676,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -15662,50 +15686,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.753e-13 - H2 1.876e-13 1.880e-13 -12.727 -12.726 0.001 (0) +H(0) 1.527e-13 + H2 7.635e-14 7.647e-14 -13.117 -13.117 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.931 -66.930 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.330 -69.329 0.001 (0) -[13C](-4) 1.352e-19 - [13C]H4 1.352e-19 1.354e-19 -18.869 -18.868 0.001 (0) + O2 0.000e+00 0.000e+00 -66.149 -66.149 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.548 -68.548 0.001 (0) +[13C](-4) 3.706e-21 + [13C]H4 3.706e-21 3.712e-21 -20.431 -20.430 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.262e-31 - [14C]H4 1.262e-31 1.264e-31 -30.899 -30.898 0.001 (0) +[14C](-4) 3.458e-33 + [14C]H4 3.458e-33 3.464e-33 -32.461 -32.460 0.001 (0) [14C](4) 6.127e-17 H[14C]O3- 4.949e-17 4.528e-17 -16.305 -16.344 -0.039 (0) [14C]O2 1.030e-17 1.032e-17 -16.987 -16.987 0.001 (0) CaH[14C]O3+ 1.045e-18 9.587e-19 -17.981 -18.018 -0.037 (0) - H[14C]O2[18O]- 9.875e-20 9.034e-20 -19.005 -19.044 -0.039 (0) - H[14C]O[18O]O- 9.875e-20 9.034e-20 -19.005 -19.044 -0.039 (0) H[14C][18O]O2- 9.875e-20 9.034e-20 -19.005 -19.044 -0.039 (0) + H[14C]O[18O]O- 9.875e-20 9.034e-20 -19.005 -19.044 -0.039 (0) + H[14C]O2[18O]- 9.875e-20 9.034e-20 -19.005 -19.044 -0.039 (0) Ca[14C]O3 5.729e-20 5.739e-20 -19.242 -19.241 0.001 (0) [14C]O[18O] 4.282e-20 4.289e-20 -19.368 -19.368 0.001 (0) [14C]O3-2 2.939e-20 2.059e-20 -19.532 -19.686 -0.155 (0) CaH[14C]O2[18O]+ 2.085e-21 1.913e-21 -20.681 -20.718 -0.037 (0) - CaH[14C]O[18O]O+ 2.085e-21 1.913e-21 -20.681 -20.718 -0.037 (0) CaH[14C][18O]O2+ 2.085e-21 1.913e-21 -20.681 -20.718 -0.037 (0) + CaH[14C]O[18O]O+ 2.085e-21 1.913e-21 -20.681 -20.718 -0.037 (0) Ca[14C]O2[18O] 3.429e-22 3.435e-22 -21.465 -21.464 0.001 (0) H[14C]O[18O]2- 1.970e-22 1.802e-22 -21.705 -21.744 -0.039 (0) H[14C][18O]2O- 1.970e-22 1.802e-22 -21.705 -21.744 -0.039 (0) @@ -15714,29 +15738,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.330 -69.329 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.331 -72.330 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.548 -68.548 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.550 -71.549 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.01 -18.87 -2.86 [13C]H4 + [13C]H4(g) -17.57 -20.43 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.88 -22.39 -1.50 [14C][18O]2 - [14C]H4(g) -28.04 -30.90 -2.86 [14C]H4 + [14C]H4(g) -29.60 -32.46 -2.86 [14C]H4 [14C]O2(g) -15.52 -16.99 -1.47 [14C]O2 [14C]O[18O](g) -17.90 -19.69 -1.79 [14C]O[18O] - [18O]2(g) -70.04 -72.33 -2.29 [18O]2 + [18O]2(g) -69.26 -71.55 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -15750,14 +15774,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.05 -16.91 -2.86 CH4 + CH4(g) -15.62 -18.48 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.58 -12.73 -3.15 H2 + H2(g) -9.97 -13.12 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.04 -66.93 -2.89 O2 - O[18O](g) -66.74 -69.63 -2.89 O[18O] + O2(g) -63.26 -66.15 -2.89 O2 + O[18O](g) -65.96 -68.85 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -15872,14 +15896,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6628e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5477e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1213e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.5543e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.885e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -15897,16 +15921,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.227 Adjusted to redox equilibrium + pe = -2.051 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 78 (179 overall) + Iterations = 118 (219 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -15918,25 +15942,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.004e-17 - CH4 2.004e-17 2.007e-17 -16.698 -16.697 0.001 (0) +C(-4) 7.807e-19 + CH4 7.807e-19 7.820e-19 -18.107 -18.107 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -15944,23 +15968,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.248e-13 - H2 2.124e-13 2.128e-13 -12.673 -12.672 0.001 (0) +H(0) 1.888e-13 + H2 9.438e-14 9.453e-14 -13.025 -13.024 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.038 -67.038 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.437 -69.437 0.001 (0) -[13C](-4) 2.221e-19 - [13C]H4 2.221e-19 2.224e-19 -18.653 -18.653 0.001 (0) + O2 0.000e+00 0.000e+00 -66.334 -66.333 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.733 -68.732 0.001 (0) +[13C](-4) 8.653e-21 + [13C]H4 8.653e-21 8.667e-21 -20.063 -20.062 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) @@ -15969,56 +15993,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.909e-31 - [14C]H4 1.909e-31 1.912e-31 -30.719 -30.718 0.001 (0) +[14C](-4) 7.438e-33 + [14C]H4 7.438e-33 7.451e-33 -32.129 -32.128 0.001 (0) [14C](4) 5.644e-17 H[14C]O3- 4.559e-17 4.171e-17 -16.341 -16.380 -0.039 (0) [14C]O2 9.487e-18 9.503e-18 -17.023 -17.022 0.001 (0) CaH[14C]O3+ 9.628e-19 8.832e-19 -18.016 -18.054 -0.037 (0) - H[14C]O2[18O]- 9.097e-20 8.322e-20 -19.041 -19.080 -0.039 (0) - H[14C]O[18O]O- 9.097e-20 8.322e-20 -19.041 -19.080 -0.039 (0) H[14C][18O]O2- 9.097e-20 8.322e-20 -19.041 -19.080 -0.039 (0) + H[14C]O[18O]O- 9.097e-20 8.322e-20 -19.041 -19.080 -0.039 (0) + H[14C]O2[18O]- 9.097e-20 8.322e-20 -19.041 -19.080 -0.039 (0) Ca[14C]O3 5.278e-20 5.287e-20 -19.278 -19.277 0.001 (0) [14C]O[18O] 3.945e-20 3.952e-20 -19.404 -19.403 0.001 (0) [14C]O3-2 2.708e-20 1.897e-20 -19.567 -19.722 -0.155 (0) CaH[14C]O2[18O]+ 1.921e-21 1.762e-21 -20.716 -20.754 -0.037 (0) - CaH[14C]O[18O]O+ 1.921e-21 1.762e-21 -20.716 -20.754 -0.037 (0) CaH[14C][18O]O2+ 1.921e-21 1.762e-21 -20.716 -20.754 -0.037 (0) + CaH[14C]O[18O]O+ 1.921e-21 1.762e-21 -20.716 -20.754 -0.037 (0) Ca[14C]O2[18O] 3.159e-22 3.164e-22 -21.500 -21.500 0.001 (0) - H[14C]O[18O]2- 1.815e-22 1.660e-22 -21.741 -21.780 -0.039 (0) H[14C][18O]2O- 1.815e-22 1.660e-22 -21.741 -21.780 -0.039 (0) H[14C][18O]O[18O]- 1.815e-22 1.660e-22 -21.741 -21.780 -0.039 (0) + H[14C]O[18O]2- 1.815e-22 1.660e-22 -21.741 -21.780 -0.039 (0) [14C]O2[18O]-2 1.621e-22 1.135e-22 -21.790 -21.945 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.437 -69.437 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.438 -72.438 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.733 -68.732 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.734 -71.733 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.79 -18.65 -2.86 [13C]H4 + [13C]H4(g) -17.20 -20.06 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.92 -22.42 -1.50 [14C][18O]2 - [14C]H4(g) -27.86 -30.72 -2.86 [14C]H4 + [14C]H4(g) -29.27 -32.13 -2.86 [14C]H4 [14C]O2(g) -15.55 -17.02 -1.47 [14C]O2 [14C]O[18O](g) -17.94 -19.72 -1.79 [14C]O[18O] - [18O]2(g) -70.15 -72.44 -2.29 [18O]2 + [18O]2(g) -69.44 -71.73 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -16032,14 +16056,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.84 -16.70 -2.86 CH4 + CH4(g) -15.25 -18.11 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.52 -12.67 -3.15 H2 + H2(g) -9.87 -13.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.15 -67.04 -2.89 O2 - O[18O](g) -66.85 -69.74 -2.89 O[18O] + O2(g) -63.44 -66.33 -2.89 O2 + O[18O](g) -66.14 -69.03 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -16148,14 +16172,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6089e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5606e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 8.2157e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 5.107e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 5.107e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -16173,16 +16197,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.256 Adjusted to redox equilibrium + pe = -2.145 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 51 + Iterations = 89 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -16194,15 +16218,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.407e-17 - CH4 3.407e-17 3.413e-17 -16.468 -16.467 0.001 (0) +C(-4) 4.479e-18 + CH4 4.479e-18 4.486e-18 -17.349 -17.348 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -16210,9 +16234,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -16220,81 +16244,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.851e-13 - H2 2.426e-13 2.430e-13 -12.615 -12.614 0.001 (0) +H(0) 2.921e-13 + H2 1.461e-13 1.463e-13 -12.835 -12.835 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.154 -67.153 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.553 -69.552 0.001 (0) -[13C](-4) 3.776e-19 - [13C]H4 3.776e-19 3.782e-19 -18.423 -18.422 0.001 (0) + O2 0.000e+00 0.000e+00 -66.713 -66.712 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.112 -69.111 0.001 (0) +[13C](-4) 4.964e-20 + [13C]H4 4.964e-20 4.972e-20 -19.304 -19.303 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.990e-31 - [14C]H4 2.990e-31 2.995e-31 -30.524 -30.524 0.001 (0) +[14C](-4) 3.931e-32 + [14C]H4 3.931e-32 3.938e-32 -31.405 -31.405 0.001 (0) [14C](4) 5.200e-17 H[14C]O3- 4.200e-17 3.843e-17 -16.377 -16.415 -0.039 (0) [14C]O2 8.740e-18 8.754e-18 -17.058 -17.058 0.001 (0) CaH[14C]O3+ 8.870e-19 8.136e-19 -18.052 -18.090 -0.037 (0) - H[14C]O2[18O]- 8.380e-20 7.667e-20 -19.077 -19.115 -0.039 (0) - H[14C]O[18O]O- 8.380e-20 7.667e-20 -19.077 -19.115 -0.039 (0) H[14C][18O]O2- 8.380e-20 7.667e-20 -19.077 -19.115 -0.039 (0) + H[14C]O[18O]O- 8.380e-20 7.667e-20 -19.077 -19.115 -0.039 (0) + H[14C]O2[18O]- 8.380e-20 7.667e-20 -19.077 -19.115 -0.039 (0) Ca[14C]O3 4.862e-20 4.870e-20 -19.313 -19.312 0.001 (0) [14C]O[18O] 3.634e-20 3.640e-20 -19.440 -19.439 0.001 (0) [14C]O3-2 2.494e-20 1.747e-20 -19.603 -19.758 -0.155 (0) CaH[14C]O2[18O]+ 1.770e-21 1.623e-21 -20.752 -20.790 -0.037 (0) - CaH[14C]O[18O]O+ 1.770e-21 1.623e-21 -20.752 -20.790 -0.037 (0) CaH[14C][18O]O2+ 1.770e-21 1.623e-21 -20.752 -20.790 -0.037 (0) + CaH[14C]O[18O]O+ 1.770e-21 1.623e-21 -20.752 -20.790 -0.037 (0) Ca[14C]O2[18O] 2.910e-22 2.915e-22 -21.536 -21.535 0.001 (0) + H[14C][18O]O[18O]- 1.672e-22 1.530e-22 -21.777 -21.815 -0.039 (0) H[14C]O[18O]2- 1.672e-22 1.530e-22 -21.777 -21.815 -0.039 (0) H[14C][18O]2O- 1.672e-22 1.530e-22 -21.777 -21.815 -0.039 (0) - H[14C][18O]O[18O]- 1.672e-22 1.530e-22 -21.777 -21.815 -0.039 (0) [14C]O2[18O]-2 1.493e-22 1.046e-22 -21.826 -21.981 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.553 -69.552 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.554 -72.553 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.112 -69.111 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.113 -72.112 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.56 -18.42 -2.86 [13C]H4 + [13C]H4(g) -16.44 -19.30 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.95 -22.46 -1.50 [14C][18O]2 - [14C]H4(g) -27.66 -30.52 -2.86 [14C]H4 + [14C]H4(g) -28.54 -31.40 -2.86 [14C]H4 [14C]O2(g) -15.59 -17.06 -1.47 [14C]O2 [14C]O[18O](g) -17.97 -19.76 -1.79 [14C]O[18O] - [18O]2(g) -70.26 -72.55 -2.29 [18O]2 + [18O]2(g) -69.82 -72.11 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -16308,14 +16332,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.61 -16.47 -2.86 CH4 + CH4(g) -14.49 -17.35 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.46 -12.61 -3.15 H2 + H2(g) -9.68 -12.83 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.26 -67.15 -2.89 O2 - O[18O](g) -66.96 -69.85 -2.89 O[18O] + O2(g) -63.82 -66.71 -2.89 O2 + O[18O](g) -66.52 -69.41 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -16430,14 +16454,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7167e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7349e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.5543e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -16455,16 +16479,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.217 Adjusted to redox equilibrium + pe = -2.029 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 119 (220 overall) + Iterations = 178 (279 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -16476,25 +16500,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.684e-17 - CH4 1.684e-17 1.687e-17 -16.774 -16.773 0.001 (0) +C(-4) 5.279e-19 + CH4 5.279e-19 5.287e-19 -18.277 -18.277 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -16502,50 +16526,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.068e-13 - H2 2.034e-13 2.037e-13 -12.692 -12.691 0.001 (0) +H(0) 1.712e-13 + H2 8.558e-14 8.572e-14 -13.068 -13.067 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.001 -67.000 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.400 -69.399 0.001 (0) -[13C](-4) 1.866e-19 - [13C]H4 1.866e-19 1.869e-19 -18.729 -18.728 0.001 (0) + O2 0.000e+00 0.000e+00 -66.249 -66.248 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.648 -68.647 0.001 (0) +[13C](-4) 5.850e-21 + [13C]H4 5.850e-21 5.860e-21 -20.233 -20.232 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.362e-31 - [14C]H4 1.362e-31 1.364e-31 -30.866 -30.865 0.001 (0) +[14C](-4) 4.268e-33 + [14C]H4 4.268e-33 4.275e-33 -32.370 -32.369 0.001 (0) [14C](4) 4.790e-17 H[14C]O3- 3.869e-17 3.540e-17 -16.412 -16.451 -0.039 (0) [14C]O2 8.051e-18 8.065e-18 -17.094 -17.093 0.001 (0) CaH[14C]O3+ 8.171e-19 7.495e-19 -18.088 -18.125 -0.037 (0) - H[14C]O2[18O]- 7.720e-20 7.063e-20 -19.112 -19.151 -0.039 (0) - H[14C]O[18O]O- 7.720e-20 7.063e-20 -19.112 -19.151 -0.039 (0) H[14C][18O]O2- 7.720e-20 7.063e-20 -19.112 -19.151 -0.039 (0) + H[14C]O[18O]O- 7.720e-20 7.063e-20 -19.112 -19.151 -0.039 (0) + H[14C]O2[18O]- 7.720e-20 7.063e-20 -19.112 -19.151 -0.039 (0) Ca[14C]O3 4.479e-20 4.487e-20 -19.349 -19.348 0.001 (0) [14C]O[18O] 3.348e-20 3.354e-20 -19.475 -19.475 0.001 (0) [14C]O3-2 2.298e-20 1.610e-20 -19.639 -19.793 -0.155 (0) CaH[14C]O2[18O]+ 1.630e-21 1.495e-21 -20.788 -20.825 -0.037 (0) - CaH[14C]O[18O]O+ 1.630e-21 1.495e-21 -20.788 -20.825 -0.037 (0) CaH[14C][18O]O2+ 1.630e-21 1.495e-21 -20.788 -20.825 -0.037 (0) + CaH[14C]O[18O]O+ 1.630e-21 1.495e-21 -20.788 -20.825 -0.037 (0) Ca[14C]O2[18O] 2.681e-22 2.686e-22 -21.572 -21.571 0.001 (0) H[14C]O[18O]2- 1.540e-22 1.409e-22 -21.812 -21.851 -0.039 (0) H[14C][18O]2O- 1.540e-22 1.409e-22 -21.812 -21.851 -0.039 (0) @@ -16554,29 +16578,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.400 -69.399 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.401 -72.400 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.648 -68.647 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.649 -71.648 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.87 -18.73 -2.86 [13C]H4 + [13C]H4(g) -17.37 -20.23 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.99 -22.49 -1.50 [14C][18O]2 - [14C]H4(g) -28.01 -30.87 -2.86 [14C]H4 + [14C]H4(g) -29.51 -32.37 -2.86 [14C]H4 [14C]O2(g) -15.62 -17.09 -1.47 [14C]O2 [14C]O[18O](g) -18.01 -19.79 -1.79 [14C]O[18O] - [18O]2(g) -70.11 -72.40 -2.29 [18O]2 + [18O]2(g) -69.36 -71.65 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -16590,14 +16614,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.91 -16.77 -2.86 CH4 + CH4(g) -15.42 -18.28 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.54 -12.69 -3.15 H2 + H2(g) -9.92 -13.07 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.11 -67.00 -2.89 O2 - O[18O](g) -66.81 -69.70 -2.89 O[18O] + O2(g) -63.36 -66.25 -2.89 O2 + O[18O](g) -66.06 -68.95 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -16712,14 +16736,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.785e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7299e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.3291e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -16737,16 +16761,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.218 Adjusted to redox equilibrium + pe = -2.064 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 59 (160 overall) + Iterations = 75 (176 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -16758,14 +16782,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.697e-17 - CH4 1.697e-17 1.699e-17 -16.770 -16.770 0.001 (0) +C(-4) 9.984e-19 + CH4 9.984e-19 1.000e-18 -18.001 -18.000 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -16774,9 +16798,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -16784,23 +16808,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.075e-13 - H2 2.038e-13 2.041e-13 -12.691 -12.690 0.001 (0) +H(0) 2.007e-13 + H2 1.004e-13 1.005e-13 -12.998 -12.998 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.002 -67.001 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.401 -69.400 0.001 (0) -[13C](-4) 1.880e-19 - [13C]H4 1.880e-19 1.883e-19 -18.726 -18.725 0.001 (0) + O2 0.000e+00 0.000e+00 -66.387 -66.386 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.786 -68.785 0.001 (0) +[13C](-4) 1.107e-20 + [13C]H4 1.107e-20 1.108e-20 -19.956 -19.955 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) @@ -16809,56 +16833,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.264e-31 - [14C]H4 1.264e-31 1.266e-31 -30.898 -30.898 0.001 (0) +[14C](-4) 7.436e-33 + [14C]H4 7.436e-33 7.449e-33 -32.129 -32.128 0.001 (0) [14C](4) 4.413e-17 H[14C]O3- 3.565e-17 3.261e-17 -16.448 -16.487 -0.039 (0) [14C]O2 7.417e-18 7.429e-18 -17.130 -17.129 0.001 (0) CaH[14C]O3+ 7.527e-19 6.905e-19 -18.123 -18.161 -0.037 (0) - H[14C]O2[18O]- 7.112e-20 6.507e-20 -19.148 -19.187 -0.039 (0) - H[14C]O[18O]O- 7.112e-20 6.507e-20 -19.148 -19.187 -0.039 (0) H[14C][18O]O2- 7.112e-20 6.507e-20 -19.148 -19.187 -0.039 (0) + H[14C]O[18O]O- 7.112e-20 6.507e-20 -19.148 -19.187 -0.039 (0) + H[14C]O2[18O]- 7.112e-20 6.507e-20 -19.148 -19.187 -0.039 (0) Ca[14C]O3 4.126e-20 4.133e-20 -19.384 -19.384 0.001 (0) [14C]O[18O] 3.084e-20 3.089e-20 -19.511 -19.510 0.001 (0) [14C]O3-2 2.117e-20 1.483e-20 -19.674 -19.829 -0.155 (0) CaH[14C]O2[18O]+ 1.502e-21 1.378e-21 -20.823 -20.861 -0.037 (0) - CaH[14C]O[18O]O+ 1.502e-21 1.378e-21 -20.823 -20.861 -0.037 (0) CaH[14C][18O]O2+ 1.502e-21 1.378e-21 -20.823 -20.861 -0.037 (0) + CaH[14C]O[18O]O+ 1.502e-21 1.378e-21 -20.823 -20.861 -0.037 (0) Ca[14C]O2[18O] 2.470e-22 2.474e-22 -21.607 -21.607 0.001 (0) - H[14C]O[18O]2- 1.419e-22 1.298e-22 -21.848 -21.887 -0.039 (0) H[14C][18O]2O- 1.419e-22 1.298e-22 -21.848 -21.887 -0.039 (0) H[14C][18O]O[18O]- 1.419e-22 1.298e-22 -21.848 -21.887 -0.039 (0) + H[14C]O[18O]2- 1.419e-22 1.298e-22 -21.848 -21.887 -0.039 (0) [14C]O2[18O]-2 1.267e-22 8.876e-23 -21.897 -22.052 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.401 -69.400 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.402 -72.401 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.786 -68.785 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.787 -71.786 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.87 -18.73 -2.86 [13C]H4 + [13C]H4(g) -17.10 -19.96 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.03 -22.53 -1.50 [14C][18O]2 - [14C]H4(g) -28.04 -30.90 -2.86 [14C]H4 + [14C]H4(g) -29.27 -32.13 -2.86 [14C]H4 [14C]O2(g) -15.66 -17.13 -1.47 [14C]O2 [14C]O[18O](g) -18.04 -19.83 -1.79 [14C]O[18O] - [18O]2(g) -70.11 -72.40 -2.29 [18O]2 + [18O]2(g) -69.50 -71.79 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -16872,14 +16896,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.91 -16.77 -2.86 CH4 + CH4(g) -15.14 -18.00 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.54 -12.69 -3.15 H2 + H2(g) -9.85 -13.00 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.11 -67.00 -2.89 O2 - O[18O](g) -66.81 -69.70 -2.89 O[18O] + O2(g) -63.49 -66.39 -2.89 O2 + O[18O](g) -66.19 -69.09 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -16903,6 +16927,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 67. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -16988,14 +17018,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6065e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7544e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.9944e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.521e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -17013,16 +17043,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.245 Adjusted to redox equilibrium + pe = -2.179 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 54 + Iterations = 127 (228 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -17034,25 +17064,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.803e-17 - CH4 2.803e-17 2.808e-17 -16.552 -16.552 0.001 (0) +C(-4) 8.337e-18 + CH4 8.337e-18 8.350e-18 -17.079 -17.078 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -17060,81 +17090,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.620e-13 - H2 2.310e-13 2.314e-13 -12.636 -12.636 0.001 (0) +H(0) 3.412e-13 + H2 1.706e-13 1.709e-13 -12.768 -12.767 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.111 -67.110 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.510 -69.509 0.001 (0) -[13C](-4) 3.107e-19 - [13C]H4 3.107e-19 3.112e-19 -18.508 -18.507 0.001 (0) + O2 0.000e+00 0.000e+00 -66.848 -66.847 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.247 -69.246 0.001 (0) +[13C](-4) 9.240e-20 + [13C]H4 9.240e-20 9.255e-20 -19.034 -19.034 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.924e-31 - [14C]H4 1.924e-31 1.927e-31 -30.716 -30.715 0.001 (0) +[14C](-4) 5.720e-32 + [14C]H4 5.720e-32 5.730e-32 -31.243 -31.242 0.001 (0) [14C](4) 4.065e-17 H[14C]O3- 3.284e-17 3.004e-17 -16.484 -16.522 -0.039 (0) [14C]O2 6.833e-18 6.844e-18 -17.165 -17.165 0.001 (0) CaH[14C]O3+ 6.934e-19 6.361e-19 -18.159 -18.196 -0.037 (0) - H[14C]O2[18O]- 6.552e-20 5.994e-20 -19.184 -19.222 -0.039 (0) - H[14C]O[18O]O- 6.552e-20 5.994e-20 -19.184 -19.222 -0.039 (0) H[14C][18O]O2- 6.552e-20 5.994e-20 -19.184 -19.222 -0.039 (0) + H[14C]O[18O]O- 6.552e-20 5.994e-20 -19.184 -19.222 -0.039 (0) + H[14C]O2[18O]- 6.552e-20 5.994e-20 -19.184 -19.222 -0.039 (0) Ca[14C]O3 3.801e-20 3.808e-20 -19.420 -19.419 0.001 (0) [14C]O[18O] 2.841e-20 2.846e-20 -19.546 -19.546 0.001 (0) [14C]O3-2 1.950e-20 1.366e-20 -19.710 -19.865 -0.155 (0) CaH[14C]O2[18O]+ 1.384e-21 1.269e-21 -20.859 -20.896 -0.037 (0) - CaH[14C]O[18O]O+ 1.384e-21 1.269e-21 -20.859 -20.896 -0.037 (0) CaH[14C][18O]O2+ 1.384e-21 1.269e-21 -20.859 -20.896 -0.037 (0) + CaH[14C]O[18O]O+ 1.384e-21 1.269e-21 -20.859 -20.896 -0.037 (0) Ca[14C]O2[18O] 2.275e-22 2.279e-22 -21.643 -21.642 0.001 (0) + H[14C][18O]O[18O]- 1.307e-22 1.196e-22 -21.884 -21.922 -0.039 (0) H[14C]O[18O]2- 1.307e-22 1.196e-22 -21.884 -21.922 -0.039 (0) H[14C][18O]2O- 1.307e-22 1.196e-22 -21.884 -21.922 -0.039 (0) - H[14C][18O]O[18O]- 1.307e-22 1.196e-22 -21.884 -21.922 -0.039 (0) [14C]O2[18O]-2 1.167e-22 8.177e-23 -21.933 -22.087 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.510 -69.509 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.511 -72.511 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.247 -69.246 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.248 -72.247 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.65 -18.51 -2.86 [13C]H4 + [13C]H4(g) -16.17 -19.03 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.06 -22.56 -1.50 [14C][18O]2 - [14C]H4(g) -27.86 -30.72 -2.86 [14C]H4 + [14C]H4(g) -28.38 -31.24 -2.86 [14C]H4 [14C]O2(g) -15.70 -17.16 -1.47 [14C]O2 [14C]O[18O](g) -18.08 -19.86 -1.79 [14C]O[18O] - [18O]2(g) -70.22 -72.51 -2.29 [18O]2 + [18O]2(g) -69.96 -72.25 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -17148,14 +17178,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.69 -16.55 -2.86 CH4 + CH4(g) -14.22 -17.08 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.49 -12.64 -3.15 H2 + H2(g) -9.62 -12.77 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.22 -67.11 -2.89 O2 - O[18O](g) -66.92 -69.81 -2.89 O[18O] + O2(g) -63.95 -66.85 -2.89 O2 + O[18O](g) -66.65 -69.55 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -17270,14 +17300,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5252e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6076e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 5.3291e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.3212e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -17295,16 +17325,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.243 Adjusted to redox equilibrium + pe = -2.211 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 128 (229 overall) + Iterations = 64 (165 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -17316,15 +17346,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.708e-17 - CH4 2.708e-17 2.712e-17 -16.567 -16.567 0.001 (0) +C(-4) 1.490e-17 + CH4 1.490e-17 1.493e-17 -16.827 -16.826 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -17332,9 +17362,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -17342,50 +17372,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.581e-13 - H2 2.290e-13 2.294e-13 -12.640 -12.639 0.001 (0) +H(0) 3.945e-13 + H2 1.973e-13 1.976e-13 -12.705 -12.704 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.104 -67.103 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.503 -69.502 0.001 (0) -[13C](-4) 3.001e-19 - [13C]H4 3.001e-19 3.006e-19 -18.523 -18.522 0.001 (0) + O2 0.000e+00 0.000e+00 -66.974 -66.973 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.373 -69.372 0.001 (0) +[13C](-4) 1.652e-19 + [13C]H4 1.652e-19 1.654e-19 -18.782 -18.781 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.712e-31 - [14C]H4 1.712e-31 1.714e-31 -30.767 -30.766 0.001 (0) +[14C](-4) 9.419e-32 + [14C]H4 9.419e-32 9.435e-32 -31.026 -31.025 0.001 (0) [14C](4) 3.745e-17 H[14C]O3- 3.025e-17 2.768e-17 -16.519 -16.558 -0.039 (0) [14C]O2 6.295e-18 6.305e-18 -17.201 -17.200 0.001 (0) CaH[14C]O3+ 6.388e-19 5.860e-19 -18.195 -18.232 -0.037 (0) - H[14C]O2[18O]- 6.036e-20 5.522e-20 -19.219 -19.258 -0.039 (0) - H[14C]O[18O]O- 6.036e-20 5.522e-20 -19.219 -19.258 -0.039 (0) H[14C][18O]O2- 6.036e-20 5.522e-20 -19.219 -19.258 -0.039 (0) + H[14C]O[18O]O- 6.036e-20 5.522e-20 -19.219 -19.258 -0.039 (0) + H[14C]O2[18O]- 6.036e-20 5.522e-20 -19.219 -19.258 -0.039 (0) Ca[14C]O3 3.502e-20 3.508e-20 -19.456 -19.455 0.001 (0) [14C]O[18O] 2.618e-20 2.622e-20 -19.582 -19.581 0.001 (0) [14C]O3-2 1.796e-20 1.258e-20 -19.746 -19.900 -0.155 (0) CaH[14C]O2[18O]+ 1.275e-21 1.169e-21 -20.895 -20.932 -0.037 (0) - CaH[14C]O[18O]O+ 1.275e-21 1.169e-21 -20.895 -20.932 -0.037 (0) CaH[14C][18O]O2+ 1.275e-21 1.169e-21 -20.895 -20.932 -0.037 (0) + CaH[14C]O[18O]O+ 1.275e-21 1.169e-21 -20.895 -20.932 -0.037 (0) Ca[14C]O2[18O] 2.096e-22 2.100e-22 -21.679 -21.678 0.001 (0) H[14C]O[18O]2- 1.204e-22 1.102e-22 -21.919 -21.958 -0.039 (0) H[14C][18O]2O- 1.204e-22 1.102e-22 -21.919 -21.958 -0.039 (0) @@ -17394,29 +17424,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.503 -69.502 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.504 -72.503 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.373 -69.372 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.374 -72.373 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.66 -18.52 -2.86 [13C]H4 + [13C]H4(g) -15.92 -18.78 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.10 -22.60 -1.50 [14C][18O]2 - [14C]H4(g) -27.91 -30.77 -2.86 [14C]H4 + [14C]H4(g) -28.17 -31.03 -2.86 [14C]H4 [14C]O2(g) -15.73 -17.20 -1.47 [14C]O2 [14C]O[18O](g) -18.11 -19.90 -1.79 [14C]O[18O] - [18O]2(g) -70.21 -72.50 -2.29 [18O]2 + [18O]2(g) -70.08 -72.37 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -17430,14 +17460,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.71 -16.57 -2.86 CH4 + CH4(g) -13.97 -16.83 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.49 -12.64 -3.15 H2 + H2(g) -9.55 -12.70 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.21 -67.10 -2.89 O2 - O[18O](g) -66.91 -69.80 -2.89 O[18O] + O2(g) -64.08 -66.97 -2.89 O2 + O[18O](g) -66.78 -69.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -17546,14 +17576,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6285e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6371e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 0 0 +Alpha 14C CH4(aq)/CO2(aq) 1 5.9952e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -17571,16 +17601,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.272 Adjusted to redox equilibrium + pe = -2.238 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 100 + Iterations = 99 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -17592,25 +17622,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.638e-17 - CH4 4.638e-17 4.646e-17 -16.334 -16.333 0.001 (0) +C(-4) 2.453e-17 + CH4 2.453e-17 2.457e-17 -16.610 -16.610 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -17618,23 +17648,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.240e-13 - H2 2.620e-13 2.624e-13 -12.582 -12.581 0.001 (0) +H(0) 4.469e-13 + H2 2.234e-13 2.238e-13 -12.651 -12.650 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.221 -67.220 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.620 -69.619 0.001 (0) -[13C](-4) 5.141e-19 - [13C]H4 5.141e-19 5.149e-19 -18.289 -18.288 0.001 (0) + O2 0.000e+00 0.000e+00 -67.082 -67.082 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.481 -69.480 0.001 (0) +[13C](-4) 2.719e-19 + [13C]H4 2.719e-19 2.723e-19 -18.566 -18.565 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) @@ -17643,56 +17673,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.701e-31 - [14C]H4 2.701e-31 2.705e-31 -30.568 -30.568 0.001 (0) +[14C](-4) 1.429e-31 + [14C]H4 1.429e-31 1.431e-31 -30.845 -30.844 0.001 (0) [14C](4) 3.450e-17 H[14C]O3- 2.787e-17 2.550e-17 -16.555 -16.594 -0.039 (0) [14C]O2 5.799e-18 5.808e-18 -17.237 -17.236 0.001 (0) CaH[14C]O3+ 5.885e-19 5.398e-19 -18.230 -18.268 -0.037 (0) - H[14C]O2[18O]- 5.560e-20 5.087e-20 -19.255 -19.294 -0.039 (0) - H[14C]O[18O]O- 5.560e-20 5.087e-20 -19.255 -19.294 -0.039 (0) H[14C][18O]O2- 5.560e-20 5.087e-20 -19.255 -19.294 -0.039 (0) + H[14C]O[18O]O- 5.560e-20 5.087e-20 -19.255 -19.294 -0.039 (0) + H[14C]O2[18O]- 5.560e-20 5.087e-20 -19.255 -19.294 -0.039 (0) Ca[14C]O3 3.226e-20 3.231e-20 -19.491 -19.491 0.001 (0) [14C]O[18O] 2.411e-20 2.415e-20 -19.618 -19.617 0.001 (0) [14C]O3-2 1.655e-20 1.159e-20 -19.781 -19.936 -0.155 (0) CaH[14C]O2[18O]+ 1.174e-21 1.077e-21 -20.930 -20.968 -0.037 (0) - CaH[14C]O[18O]O+ 1.174e-21 1.077e-21 -20.930 -20.968 -0.037 (0) CaH[14C][18O]O2+ 1.174e-21 1.077e-21 -20.930 -20.968 -0.037 (0) + CaH[14C]O[18O]O+ 1.174e-21 1.077e-21 -20.930 -20.968 -0.037 (0) Ca[14C]O2[18O] 1.931e-22 1.934e-22 -21.714 -21.714 0.001 (0) - H[14C]O[18O]2- 1.109e-22 1.015e-22 -21.955 -21.994 -0.039 (0) H[14C][18O]2O- 1.109e-22 1.015e-22 -21.955 -21.994 -0.039 (0) H[14C][18O]O[18O]- 1.109e-22 1.015e-22 -21.955 -21.994 -0.039 (0) + H[14C]O[18O]2- 1.109e-22 1.015e-22 -21.955 -21.994 -0.039 (0) [14C]O2[18O]-2 9.906e-23 6.939e-23 -22.004 -22.159 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.620 -69.619 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.621 -72.620 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.481 -69.480 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.482 -72.482 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.43 -18.29 -2.86 [13C]H4 + [13C]H4(g) -15.70 -18.56 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.13 -22.64 -1.50 [14C][18O]2 - [14C]H4(g) -27.71 -30.57 -2.86 [14C]H4 + [14C]H4(g) -27.98 -30.84 -2.86 [14C]H4 [14C]O2(g) -15.77 -17.24 -1.47 [14C]O2 [14C]O[18O](g) -18.15 -19.94 -1.79 [14C]O[18O] - [18O]2(g) -70.33 -72.62 -2.29 [18O]2 + [18O]2(g) -70.19 -72.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -17706,14 +17736,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.47 -16.33 -2.86 CH4 + CH4(g) -13.75 -16.61 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.43 -12.58 -3.15 H2 + H2(g) -9.50 -12.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.33 -67.22 -2.89 O2 - O[18O](g) -67.03 -69.92 -2.89 O[18O] + O2(g) -64.19 -67.08 -2.89 O2 + O[18O](g) -66.89 -69.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -17828,14 +17858,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6535e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7274e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.4211e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.2188e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.8834e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -9.1038e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -17853,16 +17883,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.275 Adjusted to redox equilibrium + pe = -2.242 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 78 (179 overall) + Iterations = 97 (198 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -17874,15 +17904,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.914e-17 - CH4 4.914e-17 4.923e-17 -16.309 -16.308 0.001 (0) +C(-4) 2.640e-17 + CH4 2.640e-17 2.644e-17 -16.578 -16.578 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -17890,9 +17920,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -17900,81 +17930,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.317e-13 - H2 2.658e-13 2.663e-13 -12.575 -12.575 0.001 (0) +H(0) 4.551e-13 + H2 2.276e-13 2.279e-13 -12.643 -12.642 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.233 -67.232 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.632 -69.631 0.001 (0) -[13C](-4) 5.447e-19 - [13C]H4 5.447e-19 5.456e-19 -18.264 -18.263 0.001 (0) + O2 0.000e+00 0.000e+00 -67.098 -67.097 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.497 -69.496 0.001 (0) +[13C](-4) 2.926e-19 + [13C]H4 2.926e-19 2.931e-19 -18.534 -18.533 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.636e-31 - [14C]H4 2.636e-31 2.641e-31 -30.579 -30.578 0.001 (0) +[14C](-4) 1.416e-31 + [14C]H4 1.416e-31 1.418e-31 -30.849 -30.848 0.001 (0) [14C](4) 3.178e-17 H[14C]O3- 2.567e-17 2.349e-17 -16.591 -16.629 -0.039 (0) [14C]O2 5.342e-18 5.351e-18 -17.272 -17.272 0.001 (0) CaH[14C]O3+ 5.421e-19 4.973e-19 -18.266 -18.303 -0.037 (0) - H[14C]O2[18O]- 5.122e-20 4.686e-20 -19.291 -19.329 -0.039 (0) - H[14C]O[18O]O- 5.122e-20 4.686e-20 -19.291 -19.329 -0.039 (0) H[14C][18O]O2- 5.122e-20 4.686e-20 -19.291 -19.329 -0.039 (0) + H[14C]O[18O]O- 5.122e-20 4.686e-20 -19.291 -19.329 -0.039 (0) + H[14C]O2[18O]- 5.122e-20 4.686e-20 -19.291 -19.329 -0.039 (0) Ca[14C]O3 2.972e-20 2.977e-20 -19.527 -19.526 0.001 (0) [14C]O[18O] 2.221e-20 2.225e-20 -19.653 -19.653 0.001 (0) [14C]O3-2 1.525e-20 1.068e-20 -19.817 -19.971 -0.155 (0) CaH[14C]O2[18O]+ 1.082e-21 9.922e-22 -20.966 -21.003 -0.037 (0) - CaH[14C]O[18O]O+ 1.082e-21 9.922e-22 -20.966 -21.003 -0.037 (0) CaH[14C][18O]O2+ 1.082e-21 9.922e-22 -20.966 -21.003 -0.037 (0) + CaH[14C]O[18O]O+ 1.082e-21 9.922e-22 -20.966 -21.003 -0.037 (0) Ca[14C]O2[18O] 1.779e-22 1.782e-22 -21.750 -21.749 0.001 (0) + H[14C][18O]O[18O]- 1.022e-22 9.350e-23 -21.991 -22.029 -0.039 (0) H[14C]O[18O]2- 1.022e-22 9.350e-23 -21.991 -22.029 -0.039 (0) H[14C][18O]2O- 1.022e-22 9.350e-23 -21.991 -22.029 -0.039 (0) - H[14C][18O]O[18O]- 1.022e-22 9.350e-23 -21.991 -22.029 -0.039 (0) [14C]O2[18O]-2 9.125e-23 6.393e-23 -22.040 -22.194 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.632 -69.631 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.633 -72.632 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.497 -69.496 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.498 -72.497 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.40 -18.26 -2.86 [13C]H4 + [13C]H4(g) -15.67 -18.53 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.17 -22.67 -1.50 [14C][18O]2 - [14C]H4(g) -27.72 -30.58 -2.86 [14C]H4 + [14C]H4(g) -27.99 -30.85 -2.86 [14C]H4 [14C]O2(g) -15.80 -17.27 -1.47 [14C]O2 [14C]O[18O](g) -18.18 -19.97 -1.79 [14C]O[18O] - [18O]2(g) -70.34 -72.63 -2.29 [18O]2 + [18O]2(g) -70.21 -72.50 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -17988,14 +18018,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.45 -16.31 -2.86 CH4 + CH4(g) -13.72 -16.58 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.42 -12.57 -3.15 H2 + H2(g) -9.49 -12.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.34 -67.23 -2.89 O2 - O[18O](g) -67.04 -69.93 -2.89 O[18O] + O2(g) -64.21 -67.10 -2.89 O2 + O[18O](g) -66.91 -69.80 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -18019,6 +18049,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 71. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -18104,14 +18140,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7574e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6915e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.5321e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3101e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -18129,16 +18165,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.265 Adjusted to redox equilibrium + pe = -2.215 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 76 + Iterations = 71 (172 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -18150,25 +18186,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.078e-17 - CH4 4.078e-17 4.085e-17 -16.390 -16.389 0.001 (0) +C(-4) 1.623e-17 + CH4 1.623e-17 1.626e-17 -16.790 -16.789 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -18176,50 +18212,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.074e-13 - H2 2.537e-13 2.541e-13 -12.596 -12.595 0.001 (0) +H(0) 4.031e-13 + H2 2.015e-13 2.019e-13 -12.696 -12.695 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.193 -67.192 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.592 -69.591 0.001 (0) -[13C](-4) 4.520e-19 - [13C]H4 4.520e-19 4.528e-19 -18.345 -18.344 0.001 (0) + O2 0.000e+00 0.000e+00 -66.993 -66.992 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.392 -69.391 0.001 (0) +[13C](-4) 1.799e-19 + [13C]H4 1.799e-19 1.802e-19 -18.745 -18.744 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.016e-31 - [14C]H4 2.016e-31 2.019e-31 -30.696 -30.695 0.001 (0) +[14C](-4) 8.022e-32 + [14C]H4 8.022e-32 8.035e-32 -31.096 -31.095 0.001 (0) [14C](4) 2.928e-17 H[14C]O3- 2.365e-17 2.164e-17 -16.626 -16.665 -0.039 (0) [14C]O2 4.921e-18 4.929e-18 -17.308 -17.307 0.001 (0) CaH[14C]O3+ 4.994e-19 4.581e-19 -18.302 -18.339 -0.037 (0) - H[14C]O2[18O]- 4.719e-20 4.317e-20 -19.326 -19.365 -0.039 (0) - H[14C]O[18O]O- 4.719e-20 4.317e-20 -19.326 -19.365 -0.039 (0) H[14C][18O]O2- 4.719e-20 4.317e-20 -19.326 -19.365 -0.039 (0) + H[14C]O[18O]O- 4.719e-20 4.317e-20 -19.326 -19.365 -0.039 (0) + H[14C]O2[18O]- 4.719e-20 4.317e-20 -19.326 -19.365 -0.039 (0) Ca[14C]O3 2.738e-20 2.742e-20 -19.563 -19.562 0.001 (0) [14C]O[18O] 2.046e-20 2.050e-20 -19.689 -19.688 0.001 (0) [14C]O3-2 1.404e-20 9.839e-21 -19.852 -20.007 -0.155 (0) CaH[14C]O2[18O]+ 9.964e-22 9.141e-22 -21.002 -21.039 -0.037 (0) - CaH[14C]O[18O]O+ 9.964e-22 9.141e-22 -21.002 -21.039 -0.037 (0) CaH[14C][18O]O2+ 9.964e-22 9.141e-22 -21.002 -21.039 -0.037 (0) + CaH[14C]O[18O]O+ 9.964e-22 9.141e-22 -21.002 -21.039 -0.037 (0) Ca[14C]O2[18O] 1.639e-22 1.641e-22 -21.785 -21.785 0.001 (0) H[14C]O[18O]2- 9.415e-23 8.613e-23 -22.026 -22.065 -0.039 (0) H[14C][18O]2O- 9.415e-23 8.613e-23 -22.026 -22.065 -0.039 (0) @@ -18228,29 +18264,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.592 -69.591 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.593 -72.592 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.392 -69.391 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.393 -72.392 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.48 -18.34 -2.86 [13C]H4 + [13C]H4(g) -15.88 -18.74 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.20 -22.71 -1.50 [14C][18O]2 - [14C]H4(g) -27.83 -30.69 -2.86 [14C]H4 + [14C]H4(g) -28.23 -31.09 -2.86 [14C]H4 [14C]O2(g) -15.84 -17.31 -1.47 [14C]O2 [14C]O[18O](g) -18.22 -20.01 -1.79 [14C]O[18O] - [18O]2(g) -70.30 -72.59 -2.29 [18O]2 + [18O]2(g) -70.10 -72.39 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -18264,14 +18300,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.53 -16.39 -2.86 CH4 + CH4(g) -13.93 -16.79 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.44 -12.59 -3.15 H2 + H2(g) -9.54 -12.69 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.30 -67.19 -2.89 O2 - O[18O](g) -67.00 -69.89 -2.89 O[18O] + O2(g) -64.10 -66.99 -2.89 O2 + O[18O](g) -66.80 -69.69 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -18386,14 +18422,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.4377e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6239e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5591e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -2.7756e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -9.992e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -18411,16 +18447,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.259 Adjusted to redox equilibrium + pe = -2.199 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 69 (170 overall) + Iterations = 151 (252 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -18432,14 +18468,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.600e-17 - CH4 3.600e-17 3.606e-17 -16.444 -16.443 0.001 (0) +C(-4) 1.198e-17 + CH4 1.198e-17 1.200e-17 -16.921 -16.921 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -18448,9 +18484,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -18458,23 +18494,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.919e-13 - H2 2.459e-13 2.463e-13 -12.609 -12.608 0.001 (0) +H(0) 3.736e-13 + H2 1.868e-13 1.871e-13 -12.729 -12.728 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.166 -67.165 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.565 -69.564 0.001 (0) -[13C](-4) 3.990e-19 - [13C]H4 3.990e-19 3.997e-19 -18.399 -18.398 0.001 (0) + O2 0.000e+00 0.000e+00 -66.927 -66.926 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.326 -69.325 0.001 (0) +[13C](-4) 1.328e-19 + [13C]H4 1.328e-19 1.330e-19 -18.877 -18.876 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) @@ -18483,56 +18519,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.639e-31 - [14C]H4 1.639e-31 1.642e-31 -30.785 -30.785 0.001 (0) +[14C](-4) 5.455e-32 + [14C]H4 5.455e-32 5.464e-32 -31.263 -31.262 0.001 (0) [14C](4) 2.697e-17 H[14C]O3- 2.179e-17 1.993e-17 -16.662 -16.700 -0.039 (0) [14C]O2 4.534e-18 4.541e-18 -17.344 -17.343 0.001 (0) CaH[14C]O3+ 4.601e-19 4.220e-19 -18.337 -18.375 -0.037 (0) - H[14C]O2[18O]- 4.347e-20 3.977e-20 -19.362 -19.400 -0.039 (0) - H[14C]O[18O]O- 4.347e-20 3.977e-20 -19.362 -19.400 -0.039 (0) H[14C][18O]O2- 4.347e-20 3.977e-20 -19.362 -19.400 -0.039 (0) + H[14C]O[18O]O- 4.347e-20 3.977e-20 -19.362 -19.400 -0.039 (0) + H[14C]O2[18O]- 4.347e-20 3.977e-20 -19.362 -19.400 -0.039 (0) Ca[14C]O3 2.522e-20 2.526e-20 -19.598 -19.598 0.001 (0) [14C]O[18O] 1.885e-20 1.888e-20 -19.725 -19.724 0.001 (0) [14C]O3-2 1.294e-20 9.064e-21 -19.888 -20.043 -0.155 (0) CaH[14C]O2[18O]+ 9.180e-22 8.421e-22 -21.037 -21.075 -0.037 (0) - CaH[14C]O[18O]O+ 9.180e-22 8.421e-22 -21.037 -21.075 -0.037 (0) CaH[14C][18O]O2+ 9.180e-22 8.421e-22 -21.037 -21.075 -0.037 (0) + CaH[14C]O[18O]O+ 9.180e-22 8.421e-22 -21.037 -21.075 -0.037 (0) Ca[14C]O2[18O] 1.510e-22 1.512e-22 -21.821 -21.820 0.001 (0) - H[14C]O[18O]2- 8.673e-23 7.935e-23 -22.062 -22.100 -0.039 (0) H[14C][18O]2O- 8.673e-23 7.935e-23 -22.062 -22.100 -0.039 (0) H[14C][18O]O[18O]- 8.673e-23 7.935e-23 -22.062 -22.100 -0.039 (0) + H[14C]O[18O]2- 8.673e-23 7.935e-23 -22.062 -22.100 -0.039 (0) [14C]O2[18O]-2 7.744e-23 5.425e-23 -22.111 -22.266 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.565 -69.564 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.566 -72.565 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.326 -69.325 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.327 -72.326 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.54 -18.40 -2.86 [13C]H4 + [13C]H4(g) -16.02 -18.88 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.24 -22.74 -1.50 [14C][18O]2 - [14C]H4(g) -27.92 -30.78 -2.86 [14C]H4 + [14C]H4(g) -28.40 -31.26 -2.86 [14C]H4 [14C]O2(g) -15.87 -17.34 -1.47 [14C]O2 [14C]O[18O](g) -18.26 -20.04 -1.79 [14C]O[18O] - [18O]2(g) -70.27 -72.56 -2.29 [18O]2 + [18O]2(g) -70.04 -72.33 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -18546,14 +18582,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.58 -16.44 -2.86 CH4 + CH4(g) -14.06 -16.92 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.46 -12.61 -3.15 H2 + H2(g) -9.58 -12.73 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.27 -67.16 -2.89 O2 - O[18O](g) -66.97 -69.86 -2.89 O[18O] + O2(g) -64.03 -66.93 -2.89 O2 + O[18O](g) -66.73 -69.63 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -18668,14 +18704,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 Alpha 18O CO3-2/H2O(l) 1 -1.5529e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -3.2196e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -9.77e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -18693,16 +18729,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.247 Adjusted to redox equilibrium + pe = -2.165 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 117 (218 overall) + Iterations = 98 (199 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -18714,25 +18750,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.910e-17 - CH4 2.910e-17 2.915e-17 -16.536 -16.535 0.001 (0) +C(-4) 6.407e-18 + CH4 6.407e-18 6.417e-18 -17.193 -17.193 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -18740,81 +18776,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.664e-13 - H2 2.332e-13 2.336e-13 -12.632 -12.632 0.001 (0) +H(0) 3.195e-13 + H2 1.597e-13 1.600e-13 -12.797 -12.796 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.119 -67.119 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.518 -69.518 0.001 (0) -[13C](-4) 3.226e-19 - [13C]H4 3.226e-19 3.231e-19 -18.491 -18.491 0.001 (0) + O2 0.000e+00 0.000e+00 -66.791 -66.790 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.190 -69.189 0.001 (0) +[13C](-4) 7.101e-20 + [13C]H4 7.101e-20 7.113e-20 -19.149 -19.148 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.221e-31 - [14C]H4 1.221e-31 1.223e-31 -30.913 -30.913 0.001 (0) +[14C](-4) 2.687e-32 + [14C]H4 2.687e-32 2.691e-32 -31.571 -31.570 0.001 (0) [14C](4) 2.485e-17 H[14C]O3- 2.007e-17 1.836e-17 -16.697 -16.736 -0.039 (0) [14C]O2 4.176e-18 4.183e-18 -17.379 -17.378 0.001 (0) CaH[14C]O3+ 4.238e-19 3.888e-19 -18.373 -18.410 -0.037 (0) - H[14C]O2[18O]- 4.005e-20 3.664e-20 -19.397 -19.436 -0.039 (0) - H[14C]O[18O]O- 4.005e-20 3.664e-20 -19.397 -19.436 -0.039 (0) H[14C][18O]O2- 4.005e-20 3.664e-20 -19.397 -19.436 -0.039 (0) + H[14C]O[18O]O- 4.005e-20 3.664e-20 -19.397 -19.436 -0.039 (0) + H[14C]O2[18O]- 4.005e-20 3.664e-20 -19.397 -19.436 -0.039 (0) Ca[14C]O3 2.324e-20 2.327e-20 -19.634 -19.633 0.001 (0) [14C]O[18O] 1.737e-20 1.740e-20 -19.760 -19.760 0.001 (0) [14C]O3-2 1.192e-20 8.350e-21 -19.924 -20.078 -0.155 (0) CaH[14C]O2[18O]+ 8.456e-22 7.757e-22 -21.073 -21.110 -0.037 (0) - CaH[14C]O[18O]O+ 8.456e-22 7.757e-22 -21.073 -21.110 -0.037 (0) CaH[14C][18O]O2+ 8.456e-22 7.757e-22 -21.073 -21.110 -0.037 (0) + CaH[14C]O[18O]O+ 8.456e-22 7.757e-22 -21.073 -21.110 -0.037 (0) Ca[14C]O2[18O] 1.391e-22 1.393e-22 -21.857 -21.856 0.001 (0) + H[14C][18O]O[18O]- 7.990e-23 7.310e-23 -22.097 -22.136 -0.039 (0) H[14C]O[18O]2- 7.990e-23 7.310e-23 -22.097 -22.136 -0.039 (0) H[14C][18O]2O- 7.990e-23 7.310e-23 -22.097 -22.136 -0.039 (0) - H[14C][18O]O[18O]- 7.990e-23 7.310e-23 -22.097 -22.136 -0.039 (0) [14C]O2[18O]-2 7.134e-23 4.998e-23 -22.147 -22.301 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.518 -69.518 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.519 -72.519 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.190 -69.189 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.191 -72.190 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.63 -18.49 -2.86 [13C]H4 + [13C]H4(g) -16.29 -19.15 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.27 -22.78 -1.50 [14C][18O]2 - [14C]H4(g) -28.05 -30.91 -2.86 [14C]H4 + [14C]H4(g) -28.71 -31.57 -2.86 [14C]H4 [14C]O2(g) -15.91 -17.38 -1.47 [14C]O2 [14C]O[18O](g) -18.29 -20.08 -1.79 [14C]O[18O] - [18O]2(g) -70.23 -72.52 -2.29 [18O]2 + [18O]2(g) -69.90 -72.19 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -18828,14 +18864,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.68 -16.54 -2.86 CH4 + CH4(g) -14.33 -17.19 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.48 -12.63 -3.15 H2 + H2(g) -9.65 -12.80 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.23 -67.12 -2.89 O2 - O[18O](g) -66.93 -69.82 -2.89 O[18O] + O2(g) -63.90 -66.79 -2.89 O2 + O[18O](g) -66.60 -69.49 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -18950,14 +18986,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7137e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6414e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -5.218e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.7319e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.2212e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -18975,16 +19011,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.273 Adjusted to redox equilibrium + pe = -2.176 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 128 (229 overall) + Iterations = 112 (213 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -18996,15 +19032,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.715e-17 - CH4 4.715e-17 4.723e-17 -16.326 -16.326 0.001 (0) +C(-4) 7.947e-18 + CH4 7.947e-18 7.960e-18 -17.100 -17.099 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -19012,9 +19048,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -19022,50 +19058,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.262e-13 - H2 2.631e-13 2.635e-13 -12.580 -12.579 0.001 (0) +H(0) 3.371e-13 + H2 1.686e-13 1.688e-13 -12.773 -12.772 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.224 -67.223 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.623 -69.622 0.001 (0) -[13C](-4) 5.227e-19 - [13C]H4 5.227e-19 5.235e-19 -18.282 -18.281 0.001 (0) + O2 0.000e+00 0.000e+00 -66.837 -66.837 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.236 -69.236 0.001 (0) +[13C](-4) 8.809e-20 + [13C]H4 8.809e-20 8.823e-20 -19.055 -19.054 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.822e-31 - [14C]H4 1.822e-31 1.825e-31 -30.739 -30.739 0.001 (0) +[14C](-4) 3.071e-32 + [14C]H4 3.071e-32 3.076e-32 -31.513 -31.512 0.001 (0) [14C](4) 2.289e-17 H[14C]O3- 1.849e-17 1.692e-17 -16.733 -16.772 -0.039 (0) [14C]O2 3.847e-18 3.854e-18 -17.415 -17.414 0.001 (0) CaH[14C]O3+ 3.905e-19 3.582e-19 -18.408 -18.446 -0.037 (0) - H[14C]O2[18O]- 3.689e-20 3.375e-20 -19.433 -19.472 -0.039 (0) - H[14C]O[18O]O- 3.689e-20 3.375e-20 -19.433 -19.472 -0.039 (0) H[14C][18O]O2- 3.689e-20 3.375e-20 -19.433 -19.472 -0.039 (0) + H[14C]O[18O]O- 3.689e-20 3.375e-20 -19.433 -19.472 -0.039 (0) + H[14C]O2[18O]- 3.689e-20 3.375e-20 -19.433 -19.472 -0.039 (0) Ca[14C]O3 2.140e-20 2.144e-20 -19.669 -19.669 0.001 (0) [14C]O[18O] 1.600e-20 1.603e-20 -19.796 -19.795 0.001 (0) [14C]O3-2 1.098e-20 7.692e-21 -19.959 -20.114 -0.155 (0) CaH[14C]O2[18O]+ 7.790e-22 7.146e-22 -21.108 -21.146 -0.037 (0) - CaH[14C]O[18O]O+ 7.790e-22 7.146e-22 -21.108 -21.146 -0.037 (0) CaH[14C][18O]O2+ 7.790e-22 7.146e-22 -21.108 -21.146 -0.037 (0) + CaH[14C]O[18O]O+ 7.790e-22 7.146e-22 -21.108 -21.146 -0.037 (0) Ca[14C]O2[18O] 1.281e-22 1.283e-22 -21.892 -21.892 0.001 (0) H[14C]O[18O]2- 7.361e-23 6.734e-23 -22.133 -22.172 -0.039 (0) H[14C][18O]2O- 7.361e-23 6.734e-23 -22.133 -22.172 -0.039 (0) @@ -19074,29 +19110,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.623 -69.622 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.624 -72.623 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.236 -69.236 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.238 -72.237 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.42 -18.28 -2.86 [13C]H4 + [13C]H4(g) -16.19 -19.05 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.31 -22.81 -1.50 [14C][18O]2 - [14C]H4(g) -27.88 -30.74 -2.86 [14C]H4 + [14C]H4(g) -28.65 -31.51 -2.86 [14C]H4 [14C]O2(g) -15.95 -17.41 -1.47 [14C]O2 [14C]O[18O](g) -18.33 -20.11 -1.79 [14C]O[18O] - [18O]2(g) -70.33 -72.62 -2.29 [18O]2 + [18O]2(g) -69.95 -72.24 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -19110,14 +19146,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.47 -16.33 -2.86 CH4 + CH4(g) -14.24 -17.10 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.43 -12.58 -3.15 H2 + H2(g) -9.62 -12.77 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.33 -67.22 -2.89 O2 - O[18O](g) -67.03 -69.92 -2.89 O[18O] + O2(g) -63.94 -66.84 -2.89 O2 + O[18O](g) -66.64 -69.54 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -19141,12 +19177,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 75. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -19232,14 +19262,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6207e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.584e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.2101e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.7764e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -8.8818e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.1102e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -19257,16 +19287,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.289 Adjusted to redox equilibrium + pe = -2.201 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 52 (153 overall) + Iterations = 73 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -19278,25 +19308,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.330e-17 - CH4 6.330e-17 6.341e-17 -16.199 -16.198 0.001 (0) +C(-4) 1.254e-17 + CH4 1.254e-17 1.256e-17 -16.902 -16.901 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -19304,23 +19334,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.664e-13 - H2 2.832e-13 2.837e-13 -12.548 -12.547 0.001 (0) +H(0) 3.779e-13 + H2 1.889e-13 1.892e-13 -12.724 -12.723 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.288 -67.287 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.687 -69.686 0.001 (0) -[13C](-4) 7.017e-19 - [13C]H4 7.017e-19 7.028e-19 -18.154 -18.153 0.001 (0) + O2 0.000e+00 0.000e+00 -66.937 -66.936 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.336 -69.335 0.001 (0) +[13C](-4) 1.390e-19 + [13C]H4 1.390e-19 1.392e-19 -18.857 -18.856 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) @@ -19329,56 +19359,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.253e-31 - [14C]H4 2.253e-31 2.257e-31 -30.647 -30.646 0.001 (0) +[14C](-4) 4.464e-32 + [14C]H4 4.464e-32 4.471e-32 -31.350 -31.350 0.001 (0) [14C](4) 2.109e-17 H[14C]O3- 1.703e-17 1.558e-17 -16.769 -16.807 -0.039 (0) [14C]O2 3.544e-18 3.550e-18 -17.450 -17.450 0.001 (0) CaH[14C]O3+ 3.597e-19 3.300e-19 -18.444 -18.482 -0.037 (0) - H[14C]O2[18O]- 3.399e-20 3.109e-20 -19.469 -19.507 -0.039 (0) - H[14C]O[18O]O- 3.399e-20 3.109e-20 -19.469 -19.507 -0.039 (0) H[14C][18O]O2- 3.399e-20 3.109e-20 -19.469 -19.507 -0.039 (0) + H[14C]O[18O]O- 3.399e-20 3.109e-20 -19.469 -19.507 -0.039 (0) + H[14C]O2[18O]- 3.399e-20 3.109e-20 -19.469 -19.507 -0.039 (0) Ca[14C]O3 1.972e-20 1.975e-20 -19.705 -19.704 0.001 (0) [14C]O[18O] 1.474e-20 1.476e-20 -19.832 -19.831 0.001 (0) [14C]O3-2 1.012e-20 7.086e-21 -19.995 -20.150 -0.155 (0) CaH[14C]O2[18O]+ 7.177e-22 6.583e-22 -21.144 -21.182 -0.037 (0) - CaH[14C]O[18O]O+ 7.177e-22 6.583e-22 -21.144 -21.182 -0.037 (0) CaH[14C][18O]O2+ 7.177e-22 6.583e-22 -21.144 -21.182 -0.037 (0) + CaH[14C]O[18O]O+ 7.177e-22 6.583e-22 -21.144 -21.182 -0.037 (0) Ca[14C]O2[18O] 1.180e-22 1.182e-22 -21.928 -21.927 0.001 (0) - H[14C]O[18O]2- 6.781e-23 6.204e-23 -22.169 -22.207 -0.039 (0) H[14C][18O]2O- 6.781e-23 6.204e-23 -22.169 -22.207 -0.039 (0) H[14C][18O]O[18O]- 6.781e-23 6.204e-23 -22.169 -22.207 -0.039 (0) + H[14C]O[18O]2- 6.781e-23 6.204e-23 -22.169 -22.207 -0.039 (0) [14C]O2[18O]-2 6.055e-23 4.242e-23 -22.218 -22.372 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.687 -69.686 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.688 -72.687 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.336 -69.335 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.337 -72.336 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.29 -18.15 -2.86 [13C]H4 + [13C]H4(g) -16.00 -18.86 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.35 -22.85 -1.50 [14C][18O]2 - [14C]H4(g) -27.79 -30.65 -2.86 [14C]H4 + [14C]H4(g) -28.49 -31.35 -2.86 [14C]H4 [14C]O2(g) -15.98 -17.45 -1.47 [14C]O2 [14C]O[18O](g) -18.36 -20.15 -1.79 [14C]O[18O] - [18O]2(g) -70.40 -72.69 -2.29 [18O]2 + [18O]2(g) -70.05 -72.34 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -19392,14 +19422,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.34 -16.20 -2.86 CH4 + CH4(g) -14.04 -16.90 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.40 -12.55 -3.15 H2 + H2(g) -9.57 -12.72 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.40 -67.29 -2.89 O2 - O[18O](g) -67.10 -69.99 -2.89 O[18O] + O2(g) -64.04 -66.94 -2.89 O2 + O[18O](g) -66.74 -69.64 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -19423,12 +19453,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 76. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -19514,14 +19538,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6571e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8248e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.1086e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.885e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -19539,16 +19563,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.300 Adjusted to redox equilibrium + pe = -2.202 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 107 (208 overall) + Iterations = 82 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -19560,15 +19584,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 7.700e-17 - CH4 7.700e-17 7.713e-17 -16.114 -16.113 0.001 (0) +C(-4) 1.269e-17 + CH4 1.269e-17 1.271e-17 -16.897 -16.896 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -19576,9 +19600,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -19586,81 +19610,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.948e-13 - H2 2.974e-13 2.979e-13 -12.527 -12.526 0.001 (0) +H(0) 3.790e-13 + H2 1.895e-13 1.898e-13 -12.722 -12.722 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.331 -67.330 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.730 -69.729 0.001 (0) -[13C](-4) 8.535e-19 - [13C]H4 8.535e-19 8.549e-19 -18.069 -18.068 0.001 (0) + O2 0.000e+00 0.000e+00 -66.939 -66.938 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.338 -69.337 0.001 (0) +[13C](-4) 1.406e-19 + [13C]H4 1.406e-19 1.409e-19 -18.852 -18.851 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.525e-31 - [14C]H4 2.525e-31 2.529e-31 -30.598 -30.597 0.001 (0) +[14C](-4) 4.160e-32 + [14C]H4 4.160e-32 4.167e-32 -31.381 -31.380 0.001 (0) [14C](4) 1.943e-17 H[14C]O3- 1.569e-17 1.436e-17 -16.804 -16.843 -0.039 (0) [14C]O2 3.265e-18 3.271e-18 -17.486 -17.485 0.001 (0) CaH[14C]O3+ 3.314e-19 3.040e-19 -18.480 -18.517 -0.037 (0) - H[14C]O2[18O]- 3.131e-20 2.864e-20 -19.504 -19.543 -0.039 (0) - H[14C]O[18O]O- 3.131e-20 2.864e-20 -19.504 -19.543 -0.039 (0) H[14C][18O]O2- 3.131e-20 2.864e-20 -19.504 -19.543 -0.039 (0) + H[14C]O[18O]O- 3.131e-20 2.864e-20 -19.504 -19.543 -0.039 (0) + H[14C]O2[18O]- 3.131e-20 2.864e-20 -19.504 -19.543 -0.039 (0) Ca[14C]O3 1.817e-20 1.820e-20 -19.741 -19.740 0.001 (0) [14C]O[18O] 1.358e-20 1.360e-20 -19.867 -19.866 0.001 (0) [14C]O3-2 9.319e-21 6.528e-21 -20.031 -20.185 -0.155 (0) CaH[14C]O2[18O]+ 6.611e-22 6.065e-22 -21.180 -21.217 -0.037 (0) - CaH[14C]O[18O]O+ 6.611e-22 6.065e-22 -21.180 -21.217 -0.037 (0) CaH[14C][18O]O2+ 6.611e-22 6.065e-22 -21.180 -21.217 -0.037 (0) + CaH[14C]O[18O]O+ 6.611e-22 6.065e-22 -21.180 -21.217 -0.037 (0) Ca[14C]O2[18O] 1.087e-22 1.089e-22 -21.964 -21.963 0.001 (0) + H[14C][18O]O[18O]- 6.247e-23 5.715e-23 -22.204 -22.243 -0.039 (0) H[14C]O[18O]2- 6.247e-23 5.715e-23 -22.204 -22.243 -0.039 (0) H[14C][18O]2O- 6.247e-23 5.715e-23 -22.204 -22.243 -0.039 (0) - H[14C][18O]O[18O]- 6.247e-23 5.715e-23 -22.204 -22.243 -0.039 (0) [14C]O2[18O]-2 5.578e-23 3.907e-23 -22.254 -22.408 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.730 -69.729 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.731 -72.730 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.338 -69.337 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.339 -72.338 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.21 -18.07 -2.86 [13C]H4 + [13C]H4(g) -15.99 -18.85 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.38 -22.89 -1.50 [14C][18O]2 - [14C]H4(g) -27.74 -30.60 -2.86 [14C]H4 + [14C]H4(g) -28.52 -31.38 -2.86 [14C]H4 [14C]O2(g) -16.02 -17.49 -1.47 [14C]O2 [14C]O[18O](g) -18.40 -20.19 -1.79 [14C]O[18O] - [18O]2(g) -70.44 -72.73 -2.29 [18O]2 + [18O]2(g) -70.05 -72.34 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -19674,14 +19698,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.25 -16.11 -2.86 CH4 + CH4(g) -14.04 -16.90 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.38 -12.53 -3.15 H2 + H2(g) -9.57 -12.72 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.44 -67.33 -2.89 O2 - O[18O](g) -67.14 -70.03 -2.89 O[18O] + O2(g) -64.05 -66.94 -2.89 O2 + O[18O](g) -66.75 -69.64 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -19796,14 +19820,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5545e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5835e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -8.1046e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.0214e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -4.4409e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -4.3299e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -19821,16 +19845,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.319 Adjusted to redox equilibrium + pe = -2.245 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 60 (161 overall) + Iterations = 104 (205 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -19842,25 +19866,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.091e-16 - CH4 1.091e-16 1.093e-16 -15.962 -15.962 0.001 (0) +C(-4) 2.810e-17 + CH4 2.810e-17 2.815e-17 -16.551 -16.551 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -19868,50 +19892,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.489e-13 - H2 3.245e-13 3.250e-13 -12.489 -12.488 0.001 (0) +H(0) 4.623e-13 + H2 2.312e-13 2.315e-13 -12.636 -12.635 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.406 -67.406 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.805 -69.805 0.001 (0) -[13C](-4) 1.209e-18 - [13C]H4 1.209e-18 1.211e-18 -17.918 -17.917 0.001 (0) + O2 0.000e+00 0.000e+00 -67.112 -67.111 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.511 -69.510 0.001 (0) +[13C](-4) 3.115e-19 + [13C]H4 3.115e-19 3.120e-19 -18.507 -18.506 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.295e-31 - [14C]H4 3.295e-31 3.300e-31 -30.482 -30.481 0.001 (0) +[14C](-4) 8.490e-32 + [14C]H4 8.490e-32 8.504e-32 -31.071 -31.070 0.001 (0) [14C](4) 1.790e-17 H[14C]O3- 1.446e-17 1.323e-17 -16.840 -16.879 -0.039 (0) [14C]O2 3.008e-18 3.013e-18 -17.522 -17.521 0.001 (0) CaH[14C]O3+ 3.053e-19 2.800e-19 -18.515 -18.553 -0.037 (0) - H[14C]O2[18O]- 2.884e-20 2.639e-20 -19.540 -19.579 -0.039 (0) - H[14C]O[18O]O- 2.884e-20 2.639e-20 -19.540 -19.579 -0.039 (0) H[14C][18O]O2- 2.884e-20 2.639e-20 -19.540 -19.579 -0.039 (0) + H[14C]O[18O]O- 2.884e-20 2.639e-20 -19.540 -19.579 -0.039 (0) + H[14C]O2[18O]- 2.884e-20 2.639e-20 -19.540 -19.579 -0.039 (0) Ca[14C]O3 1.673e-20 1.676e-20 -19.776 -19.776 0.001 (0) [14C]O[18O] 1.251e-20 1.253e-20 -19.903 -19.902 0.001 (0) [14C]O3-2 8.585e-21 6.014e-21 -20.066 -20.221 -0.155 (0) CaH[14C]O2[18O]+ 6.091e-22 5.587e-22 -21.215 -21.253 -0.037 (0) - CaH[14C]O[18O]O+ 6.091e-22 5.587e-22 -21.215 -21.253 -0.037 (0) CaH[14C][18O]O2+ 6.091e-22 5.587e-22 -21.215 -21.253 -0.037 (0) + CaH[14C]O[18O]O+ 6.091e-22 5.587e-22 -21.215 -21.253 -0.037 (0) Ca[14C]O2[18O] 1.002e-22 1.003e-22 -21.999 -21.999 0.001 (0) H[14C]O[18O]2- 5.755e-23 5.265e-23 -22.240 -22.279 -0.039 (0) H[14C][18O]2O- 5.755e-23 5.265e-23 -22.240 -22.279 -0.039 (0) @@ -19920,29 +19944,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.805 -69.805 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.806 -72.806 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.511 -69.510 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.512 -72.511 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.06 -17.92 -2.86 [13C]H4 + [13C]H4(g) -15.65 -18.51 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.42 -22.92 -1.50 [14C][18O]2 - [14C]H4(g) -27.62 -30.48 -2.86 [14C]H4 + [14C]H4(g) -28.21 -31.07 -2.86 [14C]H4 [14C]O2(g) -16.05 -17.52 -1.47 [14C]O2 [14C]O[18O](g) -18.43 -20.22 -1.79 [14C]O[18O] - [18O]2(g) -70.52 -72.81 -2.29 [18O]2 + [18O]2(g) -70.22 -72.51 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -19956,14 +19980,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.10 -15.96 -2.86 CH4 + CH4(g) -13.69 -16.55 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.34 -12.49 -3.15 H2 + H2(g) -9.49 -12.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.51 -67.41 -2.89 O2 - O[18O](g) -67.21 -70.11 -2.89 O[18O] + O2(g) -64.22 -67.11 -2.89 O2 + O[18O](g) -66.92 -69.81 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -19987,12 +20011,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 78. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -20078,14 +20096,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5581e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6689e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.3307e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -7.8826e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -20103,16 +20121,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.337 Adjusted to redox equilibrium + pe = -2.252 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 154 (255 overall) + Iterations = 84 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -20124,14 +20142,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.533e-16 - CH4 1.533e-16 1.535e-16 -15.814 -15.814 0.001 (0) +C(-4) 3.205e-17 + CH4 3.205e-17 3.210e-17 -16.494 -16.494 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -20140,9 +20158,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -20150,23 +20168,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.066e-13 - H2 3.533e-13 3.539e-13 -12.452 -12.451 0.001 (0) +H(0) 4.778e-13 + H2 2.389e-13 2.393e-13 -12.622 -12.621 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.480 -67.479 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.879 -69.878 0.001 (0) -[13C](-4) 1.699e-18 - [13C]H4 1.699e-18 1.702e-18 -17.770 -17.769 0.001 (0) + O2 0.000e+00 0.000e+00 -67.140 -67.140 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.539 -69.539 0.001 (0) +[13C](-4) 3.552e-19 + [13C]H4 3.552e-19 3.558e-19 -18.450 -18.449 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) @@ -20175,56 +20193,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.266e-31 - [14C]H4 4.266e-31 4.273e-31 -30.370 -30.369 0.001 (0) +[14C](-4) 8.917e-32 + [14C]H4 8.917e-32 8.932e-32 -31.050 -31.049 0.001 (0) [14C](4) 1.649e-17 H[14C]O3- 1.332e-17 1.218e-17 -16.876 -16.914 -0.039 (0) [14C]O2 2.771e-18 2.776e-18 -17.557 -17.557 0.001 (0) CaH[14C]O3+ 2.812e-19 2.580e-19 -18.551 -18.588 -0.037 (0) - H[14C]O2[18O]- 2.657e-20 2.431e-20 -19.576 -19.614 -0.039 (0) - H[14C]O[18O]O- 2.657e-20 2.431e-20 -19.576 -19.614 -0.039 (0) H[14C][18O]O2- 2.657e-20 2.431e-20 -19.576 -19.614 -0.039 (0) + H[14C]O[18O]O- 2.657e-20 2.431e-20 -19.576 -19.614 -0.039 (0) + H[14C]O2[18O]- 2.657e-20 2.431e-20 -19.576 -19.614 -0.039 (0) Ca[14C]O3 1.542e-20 1.544e-20 -19.812 -19.811 0.001 (0) [14C]O[18O] 1.152e-20 1.154e-20 -19.938 -19.938 0.001 (0) [14C]O3-2 7.908e-21 5.540e-21 -20.102 -20.256 -0.155 (0) CaH[14C]O2[18O]+ 5.611e-22 5.147e-22 -21.251 -21.288 -0.037 (0) - CaH[14C]O[18O]O+ 5.611e-22 5.147e-22 -21.251 -21.288 -0.037 (0) CaH[14C][18O]O2+ 5.611e-22 5.147e-22 -21.251 -21.288 -0.037 (0) + CaH[14C]O[18O]O+ 5.611e-22 5.147e-22 -21.251 -21.288 -0.037 (0) Ca[14C]O2[18O] 9.228e-23 9.243e-23 -22.035 -22.034 0.001 (0) - H[14C]O[18O]2- 5.301e-23 4.850e-23 -22.276 -22.314 -0.039 (0) H[14C][18O]2O- 5.301e-23 4.850e-23 -22.276 -22.314 -0.039 (0) H[14C][18O]O[18O]- 5.301e-23 4.850e-23 -22.276 -22.314 -0.039 (0) + H[14C]O[18O]2- 5.301e-23 4.850e-23 -22.276 -22.314 -0.039 (0) [14C]O2[18O]-2 4.734e-23 3.316e-23 -22.325 -22.479 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.879 -69.878 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.880 -72.879 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.539 -69.539 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.540 -72.540 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.91 -17.77 -2.86 [13C]H4 + [13C]H4(g) -15.59 -18.45 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.45 -22.96 -1.50 [14C][18O]2 - [14C]H4(g) -27.51 -30.37 -2.86 [14C]H4 + [14C]H4(g) -28.19 -31.05 -2.86 [14C]H4 [14C]O2(g) -16.09 -17.56 -1.47 [14C]O2 [14C]O[18O](g) -18.47 -20.26 -1.79 [14C]O[18O] - [18O]2(g) -70.59 -72.88 -2.29 [18O]2 + [18O]2(g) -70.25 -72.54 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -20238,14 +20256,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.95 -15.81 -2.86 CH4 + CH4(g) -13.63 -16.49 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.30 -12.45 -3.15 H2 + H2(g) -9.47 -12.62 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.59 -67.48 -2.89 O2 - O[18O](g) -67.29 -70.18 -2.89 O[18O] + O2(g) -64.25 -67.14 -2.89 O2 + O[18O](g) -66.95 -69.84 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -20360,14 +20378,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7081e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6559e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1546e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.2149e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -3.8858e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -20385,16 +20403,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.340 Adjusted to redox equilibrium + pe = -2.236 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.774e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 54 (155 overall) + Iterations = 52 (153 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -20406,25 +20424,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.629e-16 - CH4 1.629e-16 1.631e-16 -15.788 -15.787 0.001 (0) +C(-4) 2.384e-17 + CH4 2.384e-17 2.388e-17 -16.623 -16.622 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -20432,81 +20450,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.173e-13 - H2 3.587e-13 3.593e-13 -12.445 -12.445 0.001 (0) +H(0) 4.437e-13 + H2 2.219e-13 2.222e-13 -12.654 -12.653 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.493 -67.493 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.892 -69.892 0.001 (0) -[13C](-4) 1.805e-18 - [13C]H4 1.805e-18 1.808e-18 -17.743 -17.743 0.001 (0) + O2 0.000e+00 0.000e+00 -67.076 -67.075 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.475 -69.474 0.001 (0) +[13C](-4) 2.643e-19 + [13C]H4 2.643e-19 2.647e-19 -18.578 -18.577 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.175e-31 - [14C]H4 4.175e-31 4.182e-31 -30.379 -30.379 0.001 (0) +[14C](-4) 6.112e-32 + [14C]H4 6.112e-32 6.122e-32 -31.214 -31.213 0.001 (0) [14C](4) 1.519e-17 H[14C]O3- 1.227e-17 1.122e-17 -16.911 -16.950 -0.039 (0) [14C]O2 2.553e-18 2.557e-18 -17.593 -17.592 0.001 (0) CaH[14C]O3+ 2.591e-19 2.376e-19 -18.587 -18.624 -0.037 (0) - H[14C]O2[18O]- 2.448e-20 2.239e-20 -19.611 -19.650 -0.039 (0) - H[14C]O[18O]O- 2.448e-20 2.239e-20 -19.611 -19.650 -0.039 (0) H[14C][18O]O2- 2.448e-20 2.239e-20 -19.611 -19.650 -0.039 (0) + H[14C]O[18O]O- 2.448e-20 2.239e-20 -19.611 -19.650 -0.039 (0) + H[14C]O2[18O]- 2.448e-20 2.239e-20 -19.611 -19.650 -0.039 (0) Ca[14C]O3 1.420e-20 1.423e-20 -19.848 -19.847 0.001 (0) [14C]O[18O] 1.062e-20 1.063e-20 -19.974 -19.973 0.001 (0) [14C]O3-2 7.285e-21 5.104e-21 -20.138 -20.292 -0.155 (0) CaH[14C]O2[18O]+ 5.169e-22 4.742e-22 -21.287 -21.324 -0.037 (0) - CaH[14C]O[18O]O+ 5.169e-22 4.742e-22 -21.287 -21.324 -0.037 (0) CaH[14C][18O]O2+ 5.169e-22 4.742e-22 -21.287 -21.324 -0.037 (0) + CaH[14C]O[18O]O+ 5.169e-22 4.742e-22 -21.287 -21.324 -0.037 (0) Ca[14C]O2[18O] 8.501e-23 8.515e-23 -22.071 -22.070 0.001 (0) + H[14C][18O]O[18O]- 4.884e-23 4.468e-23 -22.311 -22.350 -0.039 (0) H[14C]O[18O]2- 4.884e-23 4.468e-23 -22.311 -22.350 -0.039 (0) H[14C][18O]2O- 4.884e-23 4.468e-23 -22.311 -22.350 -0.039 (0) - H[14C][18O]O[18O]- 4.884e-23 4.468e-23 -22.311 -22.350 -0.039 (0) [14C]O2[18O]-2 4.361e-23 3.055e-23 -22.360 -22.515 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.892 -69.892 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.893 -72.893 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.475 -69.474 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.476 -72.475 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.88 -17.74 -2.86 [13C]H4 + [13C]H4(g) -15.72 -18.58 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.49 -22.99 -1.50 [14C][18O]2 - [14C]H4(g) -27.52 -30.38 -2.86 [14C]H4 + [14C]H4(g) -28.35 -31.21 -2.86 [14C]H4 [14C]O2(g) -16.12 -17.59 -1.47 [14C]O2 [14C]O[18O](g) -18.51 -20.29 -1.79 [14C]O[18O] - [18O]2(g) -70.60 -72.89 -2.29 [18O]2 + [18O]2(g) -70.19 -72.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -20520,14 +20538,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.93 -15.79 -2.86 CH4 + CH4(g) -13.76 -16.62 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.29 -12.44 -3.15 H2 + H2(g) -9.50 -12.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.60 -67.49 -2.89 O2 - O[18O](g) -67.30 -70.19 -2.89 O[18O] + O2(g) -64.18 -67.08 -2.89 O2 + O[18O](g) -66.88 -69.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -20551,12 +20569,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 80. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -20642,14 +20654,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6467e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7558e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 6.4393e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.7208e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.1427e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -20667,16 +20679,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.340 Adjusted to redox equilibrium + pe = -2.219 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.774e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 78 (179 overall) + Iterations = 64 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -20688,15 +20700,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.621e-16 - CH4 1.621e-16 1.624e-16 -15.790 -15.789 0.001 (0) +C(-4) 1.737e-17 + CH4 1.737e-17 1.740e-17 -16.760 -16.759 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -20704,9 +20716,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -20714,50 +20726,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.165e-13 - H2 3.583e-13 3.588e-13 -12.446 -12.445 0.001 (0) +H(0) 4.100e-13 + H2 2.050e-13 2.053e-13 -12.688 -12.688 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.492 -67.492 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.891 -69.891 0.001 (0) -[13C](-4) 1.797e-18 - [13C]H4 1.797e-18 1.800e-18 -17.745 -17.745 0.001 (0) + O2 0.000e+00 0.000e+00 -67.007 -67.007 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.406 -69.406 0.001 (0) +[13C](-4) 1.926e-19 + [13C]H4 1.926e-19 1.929e-19 -18.715 -18.715 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.829e-31 - [14C]H4 3.829e-31 3.835e-31 -30.417 -30.416 0.001 (0) +[14C](-4) 4.103e-32 + [14C]H4 4.103e-32 4.110e-32 -31.387 -31.386 0.001 (0) [14C](4) 1.399e-17 H[14C]O3- 1.130e-17 1.034e-17 -16.947 -16.985 -0.039 (0) [14C]O2 2.352e-18 2.356e-18 -17.629 -17.628 0.001 (0) CaH[14C]O3+ 2.387e-19 2.189e-19 -18.622 -18.660 -0.037 (0) - H[14C]O2[18O]- 2.255e-20 2.063e-20 -19.647 -19.686 -0.039 (0) - H[14C]O[18O]O- 2.255e-20 2.063e-20 -19.647 -19.686 -0.039 (0) H[14C][18O]O2- 2.255e-20 2.063e-20 -19.647 -19.686 -0.039 (0) + H[14C]O[18O]O- 2.255e-20 2.063e-20 -19.647 -19.686 -0.039 (0) + H[14C]O2[18O]- 2.255e-20 2.063e-20 -19.647 -19.686 -0.039 (0) Ca[14C]O3 1.308e-20 1.310e-20 -19.883 -19.883 0.001 (0) [14C]O[18O] 9.779e-21 9.795e-21 -20.010 -20.009 0.001 (0) [14C]O3-2 6.711e-21 4.702e-21 -20.173 -20.328 -0.155 (0) CaH[14C]O2[18O]+ 4.762e-22 4.368e-22 -21.322 -21.360 -0.037 (0) - CaH[14C]O[18O]O+ 4.762e-22 4.368e-22 -21.322 -21.360 -0.037 (0) CaH[14C][18O]O2+ 4.762e-22 4.368e-22 -21.322 -21.360 -0.037 (0) + CaH[14C]O[18O]O+ 4.762e-22 4.368e-22 -21.322 -21.360 -0.037 (0) Ca[14C]O2[18O] 7.831e-23 7.844e-23 -22.106 -22.105 0.001 (0) H[14C]O[18O]2- 4.499e-23 4.116e-23 -22.347 -22.386 -0.039 (0) H[14C][18O]2O- 4.499e-23 4.116e-23 -22.347 -22.386 -0.039 (0) @@ -20766,29 +20778,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.891 -69.891 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.892 -72.892 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.406 -69.406 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.407 -72.407 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.88 -17.74 -2.86 [13C]H4 + [13C]H4(g) -15.85 -18.71 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.52 -23.03 -1.50 [14C][18O]2 - [14C]H4(g) -27.56 -30.42 -2.86 [14C]H4 + [14C]H4(g) -28.53 -31.39 -2.86 [14C]H4 [14C]O2(g) -16.16 -17.63 -1.47 [14C]O2 [14C]O[18O](g) -18.54 -20.33 -1.79 [14C]O[18O] - [18O]2(g) -70.60 -72.89 -2.29 [18O]2 + [18O]2(g) -70.12 -72.41 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -20802,14 +20814,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.93 -15.79 -2.86 CH4 + CH4(g) -13.90 -16.76 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.30 -12.45 -3.15 H2 + H2(g) -9.54 -12.69 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.60 -67.49 -2.89 O2 - O[18O](g) -67.30 -70.19 -2.89 O[18O] + O2(g) -64.11 -67.01 -2.89 O2 + O[18O](g) -66.81 -69.71 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -20904,7 +20916,7 @@ Calcite 5.00e-04 R(14C) CO2(aq) 2.17557e-15 0.18502 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9873 permil - R(13C) HCO3- 1.11808e-02 0.050964 permil + R(13C) HCO3- 1.11808e-02 0.050965 permil R(14C) HCO3- 2.21359e-15 0.18825 pmc R(18O) CO3-2 1.99520e-03 -4.9873 permil R(13C) CO3-2 1.11647e-02 -1.3842 permil @@ -20924,14 +20936,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7571e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.658e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.199e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.8208e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.2212e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -20949,16 +20961,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.333 Adjusted to redox equilibrium + pe = -2.194 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.774e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 118 (219 overall) + Iterations = 81 (182 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -20970,25 +20982,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.426e-16 - CH4 1.426e-16 1.429e-16 -15.846 -15.845 0.001 (0) +C(-4) 1.098e-17 + CH4 1.098e-17 1.100e-17 -16.959 -16.959 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -20996,23 +21008,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.939e-13 - H2 3.470e-13 3.475e-13 -12.460 -12.459 0.001 (0) +H(0) 3.655e-13 + H2 1.828e-13 1.831e-13 -12.738 -12.737 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.464 -67.464 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.863 -69.863 0.001 (0) -[13C](-4) 1.581e-18 - [13C]H4 1.581e-18 1.584e-18 -17.801 -17.800 0.001 (0) + O2 0.000e+00 0.000e+00 -66.908 -66.907 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.307 -69.306 0.001 (0) +[13C](-4) 1.217e-19 + [13C]H4 1.217e-19 1.219e-19 -18.915 -18.914 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) @@ -21021,56 +21033,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.103e-31 - [14C]H4 3.103e-31 3.108e-31 -30.508 -30.507 0.001 (0) +[14C](-4) 2.389e-32 + [14C]H4 2.389e-32 2.393e-32 -31.622 -31.621 0.001 (0) [14C](4) 1.289e-17 H[14C]O3- 1.041e-17 9.525e-18 -16.982 -17.021 -0.039 (0) [14C]O2 2.166e-18 2.170e-18 -17.664 -17.664 0.001 (0) CaH[14C]O3+ 2.199e-19 2.017e-19 -18.658 -18.695 -0.037 (0) - H[14C]O2[18O]- 2.077e-20 1.900e-20 -19.683 -19.721 -0.039 (0) - H[14C]O[18O]O- 2.077e-20 1.900e-20 -19.683 -19.721 -0.039 (0) H[14C][18O]O2- 2.077e-20 1.900e-20 -19.683 -19.721 -0.039 (0) + H[14C]O[18O]O- 2.077e-20 1.900e-20 -19.683 -19.721 -0.039 (0) + H[14C]O2[18O]- 2.077e-20 1.900e-20 -19.683 -19.721 -0.039 (0) Ca[14C]O3 1.205e-20 1.207e-20 -19.919 -19.918 0.001 (0) [14C]O[18O] 9.009e-21 9.023e-21 -20.045 -20.045 0.001 (0) [14C]O3-2 6.183e-21 4.331e-21 -20.209 -20.363 -0.155 (0) CaH[14C]O2[18O]+ 4.387e-22 4.024e-22 -21.358 -21.395 -0.037 (0) - CaH[14C]O[18O]O+ 4.387e-22 4.024e-22 -21.358 -21.395 -0.037 (0) CaH[14C][18O]O2+ 4.387e-22 4.024e-22 -21.358 -21.395 -0.037 (0) + CaH[14C]O[18O]O+ 4.387e-22 4.024e-22 -21.358 -21.395 -0.037 (0) Ca[14C]O2[18O] 7.214e-23 7.226e-23 -22.142 -22.141 0.001 (0) - H[14C]O[18O]2- 4.145e-23 3.792e-23 -22.383 -22.421 -0.039 (0) H[14C][18O]2O- 4.145e-23 3.792e-23 -22.383 -22.421 -0.039 (0) H[14C][18O]O[18O]- 4.145e-23 3.792e-23 -22.383 -22.421 -0.039 (0) + H[14C]O[18O]2- 4.145e-23 3.792e-23 -22.383 -22.421 -0.039 (0) [14C]O2[18O]-2 3.701e-23 2.593e-23 -22.432 -22.586 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.863 -69.863 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.865 -72.864 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.307 -69.306 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.308 -72.307 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.94 -17.80 -2.86 [13C]H4 + [13C]H4(g) -16.05 -18.91 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.56 -23.06 -1.50 [14C][18O]2 - [14C]H4(g) -27.65 -30.51 -2.86 [14C]H4 + [14C]H4(g) -28.76 -31.62 -2.86 [14C]H4 [14C]O2(g) -16.19 -17.66 -1.47 [14C]O2 [14C]O[18O](g) -18.58 -20.36 -1.79 [14C]O[18O] - [18O]2(g) -70.57 -72.86 -2.29 [18O]2 + [18O]2(g) -70.02 -72.31 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -21084,14 +21096,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.99 -15.85 -2.86 CH4 + CH4(g) -14.10 -16.96 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.31 -12.46 -3.15 H2 + H2(g) -9.59 -12.74 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.57 -67.46 -2.89 O2 - O[18O](g) -67.27 -70.16 -2.89 O[18O] + O2(g) -64.01 -66.91 -2.89 O2 + O[18O](g) -66.71 -69.61 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -21186,7 +21198,7 @@ Calcite 5.00e-04 R(14C) CO2(aq) 2.00420e-15 0.17044 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9872 permil - R(13C) HCO3- 1.11808e-02 0.054113 permil + R(13C) HCO3- 1.11808e-02 0.054114 permil R(14C) HCO3- 2.03922e-15 0.17342 pmc R(18O) CO3-2 1.99520e-03 -4.9872 permil R(13C) CO3-2 1.11648e-02 -1.3811 permil @@ -21206,14 +21218,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6768e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7755e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.992e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.0436e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -21231,16 +21243,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.335 Adjusted to redox equilibrium + pe = -2.179 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.774e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 111 (212 overall) + Iterations = 63 (164 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -21252,15 +21264,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.460e-16 - CH4 1.460e-16 1.463e-16 -15.836 -15.835 0.001 (0) +C(-4) 8.305e-18 + CH4 8.305e-18 8.319e-18 -17.081 -17.080 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -21268,9 +21280,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -21278,81 +21290,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.980e-13 - H2 3.490e-13 3.496e-13 -12.457 -12.456 0.001 (0) +H(0) 3.409e-13 + H2 1.704e-13 1.707e-13 -12.768 -12.768 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.470 -67.469 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.869 -69.868 0.001 (0) -[13C](-4) 1.619e-18 - [13C]H4 1.619e-18 1.621e-18 -17.791 -17.790 0.001 (0) + O2 0.000e+00 0.000e+00 -66.847 -66.846 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.246 -69.245 0.001 (0) +[13C](-4) 9.205e-20 + [13C]H4 9.205e-20 9.221e-20 -19.036 -19.035 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.927e-31 - [14C]H4 2.927e-31 2.932e-31 -30.534 -30.533 0.001 (0) +[14C](-4) 1.664e-32 + [14C]H4 1.664e-32 1.667e-32 -31.779 -31.778 0.001 (0) [14C](4) 1.187e-17 H[14C]O3- 9.591e-18 8.775e-18 -17.018 -17.057 -0.039 (0) [14C]O2 1.996e-18 1.999e-18 -17.700 -17.699 0.001 (0) CaH[14C]O3+ 2.025e-19 1.858e-19 -18.693 -18.731 -0.037 (0) - H[14C]O2[18O]- 1.914e-20 1.751e-20 -19.718 -19.757 -0.039 (0) - H[14C]O[18O]O- 1.914e-20 1.751e-20 -19.718 -19.757 -0.039 (0) H[14C][18O]O2- 1.914e-20 1.751e-20 -19.718 -19.757 -0.039 (0) + H[14C]O[18O]O- 1.914e-20 1.751e-20 -19.718 -19.757 -0.039 (0) + H[14C]O2[18O]- 1.914e-20 1.751e-20 -19.718 -19.757 -0.039 (0) Ca[14C]O3 1.110e-20 1.112e-20 -19.955 -19.954 0.001 (0) [14C]O[18O] 8.299e-21 8.313e-21 -20.081 -20.080 0.001 (0) [14C]O3-2 5.696e-21 3.990e-21 -20.244 -20.399 -0.155 (0) CaH[14C]O2[18O]+ 4.041e-22 3.707e-22 -21.394 -21.431 -0.037 (0) - CaH[14C]O[18O]O+ 4.041e-22 3.707e-22 -21.394 -21.431 -0.037 (0) CaH[14C][18O]O2+ 4.041e-22 3.707e-22 -21.394 -21.431 -0.037 (0) + CaH[14C]O[18O]O+ 4.041e-22 3.707e-22 -21.394 -21.431 -0.037 (0) Ca[14C]O2[18O] 6.646e-23 6.657e-23 -22.177 -22.177 0.001 (0) + H[14C][18O]O[18O]- 3.818e-23 3.493e-23 -22.418 -22.457 -0.039 (0) H[14C]O[18O]2- 3.818e-23 3.493e-23 -22.418 -22.457 -0.039 (0) H[14C][18O]2O- 3.818e-23 3.493e-23 -22.418 -22.457 -0.039 (0) - H[14C][18O]O[18O]- 3.818e-23 3.493e-23 -22.418 -22.457 -0.039 (0) [14C]O2[18O]-2 3.409e-23 2.388e-23 -22.467 -22.622 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.869 -69.868 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.870 -72.869 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.246 -69.245 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.247 -72.246 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.93 -17.79 -2.86 [13C]H4 + [13C]H4(g) -16.18 -19.04 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.60 -23.10 -1.50 [14C][18O]2 - [14C]H4(g) -27.67 -30.53 -2.86 [14C]H4 + [14C]H4(g) -28.92 -31.78 -2.86 [14C]H4 [14C]O2(g) -16.23 -17.70 -1.47 [14C]O2 [14C]O[18O](g) -18.61 -20.40 -1.79 [14C]O[18O] - [18O]2(g) -70.58 -72.87 -2.29 [18O]2 + [18O]2(g) -69.96 -72.25 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -21366,14 +21378,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.97 -15.83 -2.86 CH4 + CH4(g) -14.22 -17.08 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.31 -12.46 -3.15 H2 + H2(g) -9.62 -12.77 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.58 -67.47 -2.89 O2 - O[18O](g) -67.28 -70.17 -2.89 O[18O] + O2(g) -63.95 -66.85 -2.89 O2 + O[18O](g) -66.65 -69.55 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -21482,14 +21494,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6898e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7063e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.9984e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3989e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.2212e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -21507,16 +21519,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.349 Adjusted to redox equilibrium + pe = -2.209 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.835e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 59 + Iterations = 50 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -21528,25 +21540,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.918e-16 - CH4 1.918e-16 1.921e-16 -15.717 -15.716 0.001 (0) +C(-4) 1.444e-17 + CH4 1.444e-17 1.447e-17 -16.840 -16.840 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -21554,50 +21566,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.473e-13 - H2 3.736e-13 3.743e-13 -12.428 -12.427 0.001 (0) +H(0) 3.914e-13 + H2 1.957e-13 1.960e-13 -12.708 -12.708 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.529 -67.528 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.928 -69.927 0.001 (0) -[13C](-4) 2.126e-18 - [13C]H4 2.126e-18 2.130e-18 -17.672 -17.672 0.001 (0) + O2 0.000e+00 0.000e+00 -66.967 -66.966 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.366 -69.365 0.001 (0) +[13C](-4) 1.601e-19 + [13C]H4 1.601e-19 1.603e-19 -18.796 -18.795 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.542e-31 - [14C]H4 3.542e-31 3.547e-31 -30.451 -30.450 0.001 (0) +[14C](-4) 2.667e-32 + [14C]H4 2.667e-32 2.671e-32 -31.574 -31.573 0.001 (0) [14C](4) 1.094e-17 H[14C]O3- 8.836e-18 8.084e-18 -17.054 -17.092 -0.039 (0) [14C]O2 1.839e-18 1.842e-18 -17.736 -17.735 0.001 (0) CaH[14C]O3+ 1.866e-19 1.712e-19 -18.729 -18.767 -0.037 (0) - H[14C]O2[18O]- 1.763e-20 1.613e-20 -19.754 -19.792 -0.039 (0) - H[14C]O[18O]O- 1.763e-20 1.613e-20 -19.754 -19.792 -0.039 (0) H[14C][18O]O2- 1.763e-20 1.613e-20 -19.754 -19.792 -0.039 (0) + H[14C]O[18O]O- 1.763e-20 1.613e-20 -19.754 -19.792 -0.039 (0) + H[14C]O2[18O]- 1.763e-20 1.613e-20 -19.754 -19.792 -0.039 (0) Ca[14C]O3 1.023e-20 1.025e-20 -19.990 -19.989 0.001 (0) [14C]O[18O] 7.645e-21 7.658e-21 -20.117 -20.116 0.001 (0) [14C]O3-2 5.247e-21 3.676e-21 -20.280 -20.435 -0.155 (0) CaH[14C]O2[18O]+ 3.723e-22 3.415e-22 -21.429 -21.467 -0.037 (0) - CaH[14C]O[18O]O+ 3.723e-22 3.415e-22 -21.429 -21.467 -0.037 (0) CaH[14C][18O]O2+ 3.723e-22 3.415e-22 -21.429 -21.467 -0.037 (0) + CaH[14C]O[18O]O+ 3.723e-22 3.415e-22 -21.429 -21.467 -0.037 (0) Ca[14C]O2[18O] 6.122e-23 6.132e-23 -22.213 -22.212 0.001 (0) H[14C]O[18O]2- 3.517e-23 3.218e-23 -22.454 -22.492 -0.039 (0) H[14C][18O]2O- 3.517e-23 3.218e-23 -22.454 -22.492 -0.039 (0) @@ -21606,29 +21618,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.928 -69.927 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.929 -72.928 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.366 -69.365 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.367 -72.367 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.81 -17.67 -2.86 [13C]H4 + [13C]H4(g) -15.93 -18.79 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.63 -23.13 -1.50 [14C][18O]2 - [14C]H4(g) -27.59 -30.45 -2.86 [14C]H4 + [14C]H4(g) -28.71 -31.57 -2.86 [14C]H4 [14C]O2(g) -16.27 -17.73 -1.47 [14C]O2 [14C]O[18O](g) -18.65 -20.43 -1.79 [14C]O[18O] - [18O]2(g) -70.64 -72.93 -2.29 [18O]2 + [18O]2(g) -70.08 -72.37 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -21642,14 +21654,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.86 -15.72 -2.86 CH4 + CH4(g) -13.98 -16.84 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.28 -12.43 -3.15 H2 + H2(g) -9.56 -12.71 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.64 -67.53 -2.89 O2 - O[18O](g) -67.34 -70.23 -2.89 O[18O] + O2(g) -64.07 -66.97 -2.89 O2 + O[18O](g) -66.77 -69.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -21673,12 +21685,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 84. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -21764,14 +21770,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7969e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7585e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.2101e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 5.107e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 5.107e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -21789,16 +21795,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.340 Adjusted to redox equilibrium + pe = -2.164 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.835e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 111 (212 overall) + Iterations = 48 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -21810,14 +21816,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.604e-16 - CH4 1.604e-16 1.607e-16 -15.795 -15.794 0.001 (0) +C(-4) 6.357e-18 + CH4 6.357e-18 6.367e-18 -17.197 -17.196 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -21826,9 +21832,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -21836,23 +21842,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.146e-13 - H2 3.573e-13 3.579e-13 -12.447 -12.446 0.001 (0) +H(0) 3.188e-13 + H2 1.594e-13 1.597e-13 -12.797 -12.797 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.490 -67.489 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.889 -69.888 0.001 (0) -[13C](-4) 1.778e-18 - [13C]H4 1.778e-18 1.781e-18 -17.750 -17.749 0.001 (0) + O2 0.000e+00 0.000e+00 -66.789 -66.788 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.188 -69.187 0.001 (0) +[13C](-4) 7.046e-20 + [13C]H4 7.046e-20 7.057e-20 -19.152 -19.151 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) @@ -21861,56 +21867,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.729e-31 - [14C]H4 2.729e-31 2.733e-31 -30.564 -30.563 0.001 (0) +[14C](-4) 1.081e-32 + [14C]H4 1.081e-32 1.083e-32 -31.966 -31.965 0.001 (0) [14C](4) 1.008e-17 H[14C]O3- 8.140e-18 7.447e-18 -17.089 -17.128 -0.039 (0) [14C]O2 1.694e-18 1.697e-18 -17.771 -17.770 0.001 (0) CaH[14C]O3+ 1.719e-19 1.577e-19 -18.765 -18.802 -0.037 (0) - H[14C]O2[18O]- 1.624e-20 1.486e-20 -19.789 -19.828 -0.039 (0) - H[14C]O[18O]O- 1.624e-20 1.486e-20 -19.789 -19.828 -0.039 (0) H[14C][18O]O2- 1.624e-20 1.486e-20 -19.789 -19.828 -0.039 (0) + H[14C]O[18O]O- 1.624e-20 1.486e-20 -19.789 -19.828 -0.039 (0) + H[14C]O2[18O]- 1.624e-20 1.486e-20 -19.789 -19.828 -0.039 (0) Ca[14C]O3 9.423e-21 9.438e-21 -20.026 -20.025 0.001 (0) [14C]O[18O] 7.043e-21 7.055e-21 -20.152 -20.152 0.001 (0) [14C]O3-2 4.834e-21 3.386e-21 -20.316 -20.470 -0.155 (0) CaH[14C]O2[18O]+ 3.429e-22 3.146e-22 -21.465 -21.502 -0.037 (0) - CaH[14C]O[18O]O+ 3.429e-22 3.146e-22 -21.465 -21.502 -0.037 (0) CaH[14C][18O]O2+ 3.429e-22 3.146e-22 -21.465 -21.502 -0.037 (0) + CaH[14C]O[18O]O+ 3.429e-22 3.146e-22 -21.465 -21.502 -0.037 (0) Ca[14C]O2[18O] 5.640e-23 5.649e-23 -22.249 -22.248 0.001 (0) - H[14C]O[18O]2- 3.240e-23 2.964e-23 -22.489 -22.528 -0.039 (0) H[14C][18O]2O- 3.240e-23 2.964e-23 -22.489 -22.528 -0.039 (0) H[14C][18O]O[18O]- 3.240e-23 2.964e-23 -22.489 -22.528 -0.039 (0) + H[14C]O[18O]2- 3.240e-23 2.964e-23 -22.489 -22.528 -0.039 (0) [14C]O2[18O]-2 2.893e-23 2.027e-23 -22.539 -22.693 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.889 -69.888 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.890 -72.889 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.188 -69.187 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.189 -72.188 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.89 -17.75 -2.86 [13C]H4 + [13C]H4(g) -16.29 -19.15 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.67 -23.17 -1.50 [14C][18O]2 - [14C]H4(g) -27.70 -30.56 -2.86 [14C]H4 + [14C]H4(g) -29.11 -31.97 -2.86 [14C]H4 [14C]O2(g) -16.30 -17.77 -1.47 [14C]O2 [14C]O[18O](g) -18.68 -20.47 -1.79 [14C]O[18O] - [18O]2(g) -70.60 -72.89 -2.29 [18O]2 + [18O]2(g) -69.90 -72.19 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -21924,14 +21930,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.93 -15.79 -2.86 CH4 + CH4(g) -14.34 -17.20 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.30 -12.45 -3.15 H2 + H2(g) -9.65 -12.80 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.60 -67.49 -2.89 O2 - O[18O](g) -67.30 -70.19 -2.89 O[18O] + O2(g) -63.90 -66.79 -2.89 O2 + O[18O](g) -66.60 -69.49 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -22020,7 +22026,7 @@ Calcite 5.00e-04 R(14C) CO2(aq) 1.56690e-15 0.13325 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9868 permil - R(13C) HCO3- 1.11809e-02 0.062154 permil + R(13C) HCO3- 1.11809e-02 0.062153 permil R(14C) HCO3- 1.59429e-15 0.13558 pmc R(18O) CO3-2 1.99520e-03 -4.9868 permil R(13C) CO3-2 1.11648e-02 -1.373 permil @@ -22040,14 +22046,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5747e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5583e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 2.8866e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 5.107e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.3323e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -22065,16 +22071,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.339 Adjusted to redox equilibrium + pe = -2.173 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.392e-13 + Electrical balance (eq) = 5.835e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 73 + Iterations = 76 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -22086,25 +22092,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.575e-16 - CH4 1.575e-16 1.577e-16 -15.803 -15.802 0.001 (0) +C(-4) 7.435e-18 + CH4 7.435e-18 7.447e-18 -17.129 -17.128 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -22112,81 +22118,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.113e-13 - H2 3.557e-13 3.562e-13 -12.449 -12.448 0.001 (0) +H(0) 3.316e-13 + H2 1.658e-13 1.661e-13 -12.780 -12.780 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.486 -67.485 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.885 -69.884 0.001 (0) -[13C](-4) 1.746e-18 - [13C]H4 1.746e-18 1.748e-18 -17.758 -17.757 0.001 (0) + O2 0.000e+00 0.000e+00 -66.823 -66.822 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.222 -69.221 0.001 (0) +[13C](-4) 8.241e-20 + [13C]H4 8.241e-20 8.255e-20 -19.084 -19.083 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.467e-31 - [14C]H4 2.467e-31 2.472e-31 -30.608 -30.607 0.001 (0) +[14C](-4) 1.165e-32 + [14C]H4 1.165e-32 1.167e-32 -31.934 -31.933 0.001 (0) [14C](4) 9.283e-18 H[14C]O3- 7.499e-18 6.860e-18 -17.125 -17.164 -0.039 (0) [14C]O2 1.560e-18 1.563e-18 -17.807 -17.806 0.001 (0) CaH[14C]O3+ 1.583e-19 1.453e-19 -18.800 -18.838 -0.037 (0) - H[14C]O2[18O]- 1.496e-20 1.369e-20 -19.825 -19.864 -0.039 (0) - H[14C]O[18O]O- 1.496e-20 1.369e-20 -19.825 -19.864 -0.039 (0) H[14C][18O]O2- 1.496e-20 1.369e-20 -19.825 -19.864 -0.039 (0) + H[14C]O[18O]O- 1.496e-20 1.369e-20 -19.825 -19.864 -0.039 (0) + H[14C]O2[18O]- 1.496e-20 1.369e-20 -19.825 -19.864 -0.039 (0) Ca[14C]O3 8.681e-21 8.695e-21 -20.061 -20.061 0.001 (0) [14C]O[18O] 6.488e-21 6.499e-21 -20.188 -20.187 0.001 (0) [14C]O3-2 4.453e-21 3.120e-21 -20.351 -20.506 -0.155 (0) CaH[14C]O2[18O]+ 3.159e-22 2.898e-22 -21.500 -21.538 -0.037 (0) - CaH[14C]O[18O]O+ 3.159e-22 2.898e-22 -21.500 -21.538 -0.037 (0) CaH[14C][18O]O2+ 3.159e-22 2.898e-22 -21.500 -21.538 -0.037 (0) + CaH[14C]O[18O]O+ 3.159e-22 2.898e-22 -21.500 -21.538 -0.037 (0) Ca[14C]O2[18O] 5.196e-23 5.204e-23 -22.284 -22.284 0.001 (0) + H[14C][18O]O[18O]- 2.985e-23 2.731e-23 -22.525 -22.564 -0.039 (0) H[14C]O[18O]2- 2.985e-23 2.731e-23 -22.525 -22.564 -0.039 (0) H[14C][18O]2O- 2.985e-23 2.731e-23 -22.525 -22.564 -0.039 (0) - H[14C][18O]O[18O]- 2.985e-23 2.731e-23 -22.525 -22.564 -0.039 (0) [14C]O2[18O]-2 2.665e-23 1.867e-23 -22.574 -22.729 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.885 -69.884 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.886 -72.885 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.222 -69.221 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.223 -72.222 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.90 -17.76 -2.86 [13C]H4 + [13C]H4(g) -16.22 -19.08 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.70 -23.21 -1.50 [14C][18O]2 - [14C]H4(g) -27.75 -30.61 -2.86 [14C]H4 + [14C]H4(g) -29.07 -31.93 -2.86 [14C]H4 [14C]O2(g) -16.34 -17.81 -1.47 [14C]O2 [14C]O[18O](g) -18.72 -20.51 -1.79 [14C]O[18O] - [18O]2(g) -70.59 -72.89 -2.29 [18O]2 + [18O]2(g) -69.93 -72.22 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -22200,14 +22206,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.94 -15.80 -2.86 CH4 + CH4(g) -14.27 -17.13 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.30 -12.45 -3.15 H2 + H2(g) -9.63 -12.78 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.59 -67.49 -2.89 O2 - O[18O](g) -67.29 -70.19 -2.89 O[18O] + O2(g) -63.93 -66.82 -2.89 O2 + O[18O](g) -66.63 -69.52 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -22231,6 +22237,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 86. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -22316,14 +22328,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6341e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6543e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.843e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.5543e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.7748e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -22341,16 +22353,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.330 Adjusted to redox equilibrium + pe = -2.141 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.392e-13 + Electrical balance (eq) = 5.834e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 61 + Iterations = 125 (226 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -22362,15 +22374,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.340e-16 - CH4 1.340e-16 1.342e-16 -15.873 -15.872 0.001 (0) +C(-4) 4.115e-18 + CH4 4.115e-18 4.122e-18 -17.386 -17.385 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -22378,9 +22390,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -22388,50 +22400,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.832e-13 - H2 3.416e-13 3.422e-13 -12.466 -12.466 0.001 (0) +H(0) 2.860e-13 + H2 1.430e-13 1.432e-13 -12.845 -12.844 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.451 -67.450 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.850 -69.849 0.001 (0) -[13C](-4) 1.485e-18 - [13C]H4 1.485e-18 1.488e-18 -17.828 -17.827 0.001 (0) + O2 0.000e+00 0.000e+00 -66.695 -66.694 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.094 -69.093 0.001 (0) +[13C](-4) 4.561e-20 + [13C]H4 4.561e-20 4.569e-20 -19.341 -19.340 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.934e-31 - [14C]H4 1.934e-31 1.938e-31 -30.713 -30.713 0.001 (0) +[14C](-4) 5.940e-33 + [14C]H4 5.940e-33 5.950e-33 -32.226 -32.225 0.001 (0) [14C](4) 8.552e-18 H[14C]O3- 6.908e-18 6.320e-18 -17.161 -17.199 -0.039 (0) [14C]O2 1.437e-18 1.440e-18 -17.842 -17.842 0.001 (0) CaH[14C]O3+ 1.459e-19 1.338e-19 -18.836 -18.874 -0.037 (0) - H[14C]O2[18O]- 1.378e-20 1.261e-20 -19.861 -19.899 -0.039 (0) - H[14C]O[18O]O- 1.378e-20 1.261e-20 -19.861 -19.899 -0.039 (0) H[14C][18O]O2- 1.378e-20 1.261e-20 -19.861 -19.899 -0.039 (0) + H[14C]O[18O]O- 1.378e-20 1.261e-20 -19.861 -19.899 -0.039 (0) + H[14C]O2[18O]- 1.378e-20 1.261e-20 -19.861 -19.899 -0.039 (0) Ca[14C]O3 7.997e-21 8.010e-21 -20.097 -20.096 0.001 (0) [14C]O[18O] 5.977e-21 5.987e-21 -20.224 -20.223 0.001 (0) [14C]O3-2 4.102e-21 2.874e-21 -20.387 -20.542 -0.155 (0) CaH[14C]O2[18O]+ 2.910e-22 2.670e-22 -21.536 -21.574 -0.037 (0) - CaH[14C]O[18O]O+ 2.910e-22 2.670e-22 -21.536 -21.574 -0.037 (0) CaH[14C][18O]O2+ 2.910e-22 2.670e-22 -21.536 -21.574 -0.037 (0) + CaH[14C]O[18O]O+ 2.910e-22 2.670e-22 -21.536 -21.574 -0.037 (0) Ca[14C]O2[18O] 4.787e-23 4.794e-23 -22.320 -22.319 0.001 (0) H[14C]O[18O]2- 2.750e-23 2.516e-23 -22.561 -22.599 -0.039 (0) H[14C][18O]2O- 2.750e-23 2.516e-23 -22.561 -22.599 -0.039 (0) @@ -22440,29 +22452,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.850 -69.849 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.851 -72.850 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.094 -69.093 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.095 -72.094 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.97 -17.83 -2.86 [13C]H4 + [13C]H4(g) -16.48 -19.34 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.74 -23.24 -1.50 [14C][18O]2 - [14C]H4(g) -27.85 -30.71 -2.86 [14C]H4 + [14C]H4(g) -29.37 -32.23 -2.86 [14C]H4 [14C]O2(g) -16.37 -17.84 -1.47 [14C]O2 [14C]O[18O](g) -18.75 -20.54 -1.79 [14C]O[18O] - [18O]2(g) -70.56 -72.85 -2.29 [18O]2 + [18O]2(g) -69.80 -72.09 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -22476,14 +22488,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.01 -15.87 -2.86 CH4 + CH4(g) -14.52 -17.38 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.32 -12.47 -3.15 H2 + H2(g) -9.69 -12.84 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.56 -67.45 -2.89 O2 - O[18O](g) -67.26 -70.15 -2.89 O[18O] + O2(g) -63.80 -66.69 -2.89 O2 + O[18O](g) -66.50 -69.39 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -22592,14 +22604,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6013e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6886e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.5099e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.1086e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.1538e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -22617,16 +22629,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.319 Adjusted to redox equilibrium + pe = -2.093 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.392e-13 + Electrical balance (eq) = 5.834e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 91 + Iterations = 100 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -22638,25 +22650,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.107e-16 - CH4 1.107e-16 1.109e-16 -15.956 -15.955 0.001 (0) +C(-4) 1.714e-18 + CH4 1.714e-18 1.717e-18 -17.766 -17.765 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -22664,23 +22676,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.514e-13 - H2 3.257e-13 3.262e-13 -12.487 -12.486 0.001 (0) +H(0) 2.298e-13 + H2 1.149e-13 1.151e-13 -12.940 -12.939 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.409 -67.409 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.808 -69.808 0.001 (0) -[13C](-4) 1.227e-18 - [13C]H4 1.227e-18 1.229e-18 -17.911 -17.910 0.001 (0) + O2 0.000e+00 0.000e+00 -66.504 -66.504 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.903 -68.903 0.001 (0) +[13C](-4) 1.900e-20 + [13C]H4 1.900e-20 1.903e-20 -19.721 -19.721 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) @@ -22689,56 +22701,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.472e-31 - [14C]H4 1.472e-31 1.475e-31 -30.832 -30.831 0.001 (0) +[14C](-4) 2.279e-33 + [14C]H4 2.279e-33 2.283e-33 -32.642 -32.641 0.001 (0) [14C](4) 7.878e-18 H[14C]O3- 6.364e-18 5.822e-18 -17.196 -17.235 -0.039 (0) [14C]O2 1.324e-18 1.326e-18 -17.878 -17.877 0.001 (0) CaH[14C]O3+ 1.344e-19 1.233e-19 -18.872 -18.909 -0.037 (0) - H[14C]O2[18O]- 1.270e-20 1.162e-20 -19.896 -19.935 -0.039 (0) - H[14C]O[18O]O- 1.270e-20 1.162e-20 -19.896 -19.935 -0.039 (0) H[14C][18O]O2- 1.270e-20 1.162e-20 -19.896 -19.935 -0.039 (0) + H[14C]O[18O]O- 1.270e-20 1.162e-20 -19.896 -19.935 -0.039 (0) + H[14C]O2[18O]- 1.270e-20 1.162e-20 -19.896 -19.935 -0.039 (0) Ca[14C]O3 7.367e-21 7.379e-21 -20.133 -20.132 0.001 (0) [14C]O[18O] 5.506e-21 5.515e-21 -20.259 -20.258 0.001 (0) [14C]O3-2 3.779e-21 2.647e-21 -20.423 -20.577 -0.155 (0) CaH[14C]O2[18O]+ 2.681e-22 2.460e-22 -21.572 -21.609 -0.037 (0) - CaH[14C]O[18O]O+ 2.681e-22 2.460e-22 -21.572 -21.609 -0.037 (0) CaH[14C][18O]O2+ 2.681e-22 2.460e-22 -21.572 -21.609 -0.037 (0) + CaH[14C]O[18O]O+ 2.681e-22 2.460e-22 -21.572 -21.609 -0.037 (0) Ca[14C]O2[18O] 4.410e-23 4.417e-23 -22.356 -22.355 0.001 (0) - H[14C]O[18O]2- 2.533e-23 2.318e-23 -22.596 -22.635 -0.039 (0) H[14C][18O]2O- 2.533e-23 2.318e-23 -22.596 -22.635 -0.039 (0) H[14C][18O]O[18O]- 2.533e-23 2.318e-23 -22.596 -22.635 -0.039 (0) + H[14C]O[18O]2- 2.533e-23 2.318e-23 -22.596 -22.635 -0.039 (0) [14C]O2[18O]-2 2.262e-23 1.585e-23 -22.646 -22.800 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.808 -69.808 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.810 -72.809 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.903 -68.903 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.904 -71.904 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.05 -17.91 -2.86 [13C]H4 + [13C]H4(g) -16.86 -19.72 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.77 -23.28 -1.50 [14C][18O]2 - [14C]H4(g) -27.97 -30.83 -2.86 [14C]H4 + [14C]H4(g) -29.78 -32.64 -2.86 [14C]H4 [14C]O2(g) -16.41 -17.88 -1.47 [14C]O2 [14C]O[18O](g) -18.79 -20.58 -1.79 [14C]O[18O] - [18O]2(g) -70.52 -72.81 -2.29 [18O]2 + [18O]2(g) -69.61 -71.90 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -22752,14 +22764,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.10 -15.96 -2.86 CH4 + CH4(g) -14.91 -17.77 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.34 -12.49 -3.15 H2 + H2(g) -9.79 -12.94 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.52 -67.41 -2.89 O2 - O[18O](g) -67.22 -70.11 -2.89 O[18O] + O2(g) -63.61 -66.50 -2.89 O2 + O[18O](g) -66.31 -69.20 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -22868,14 +22880,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.4966e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6507e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.0214e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.6209e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.3283e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -22893,16 +22905,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.322 Adjusted to redox equilibrium + pe = -2.101 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.392e-13 + Electrical balance (eq) = 5.834e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 78 + Iterations = 80 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -22914,15 +22926,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.162e-16 - CH4 1.162e-16 1.164e-16 -15.935 -15.934 0.001 (0) +C(-4) 1.972e-18 + CH4 1.972e-18 1.975e-18 -17.705 -17.704 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -22930,9 +22942,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -22940,81 +22952,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.592e-13 - H2 3.296e-13 3.302e-13 -12.482 -12.481 0.001 (0) +H(0) 2.379e-13 + H2 1.190e-13 1.192e-13 -12.925 -12.924 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.420 -67.419 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.819 -69.818 0.001 (0) -[13C](-4) 1.288e-18 - [13C]H4 1.288e-18 1.290e-18 -17.890 -17.889 0.001 (0) + O2 0.000e+00 0.000e+00 -66.535 -66.534 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.934 -68.933 0.001 (0) +[13C](-4) 2.185e-20 + [13C]H4 2.185e-20 2.189e-20 -19.660 -19.660 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.423e-31 - [14C]H4 1.423e-31 1.426e-31 -30.847 -30.846 0.001 (0) +[14C](-4) 2.415e-33 + [14C]H4 2.415e-33 2.419e-33 -32.617 -32.616 0.001 (0) [14C](4) 7.257e-18 H[14C]O3- 5.862e-18 5.363e-18 -17.232 -17.271 -0.039 (0) [14C]O2 1.220e-18 1.222e-18 -17.914 -17.913 0.001 (0) CaH[14C]O3+ 1.238e-19 1.136e-19 -18.907 -18.945 -0.037 (0) - H[14C]O2[18O]- 1.170e-20 1.070e-20 -19.932 -19.971 -0.039 (0) - H[14C]O[18O]O- 1.170e-20 1.070e-20 -19.932 -19.971 -0.039 (0) H[14C][18O]O2- 1.170e-20 1.070e-20 -19.932 -19.971 -0.039 (0) + H[14C]O[18O]O- 1.170e-20 1.070e-20 -19.932 -19.971 -0.039 (0) + H[14C]O2[18O]- 1.170e-20 1.070e-20 -19.932 -19.971 -0.039 (0) Ca[14C]O3 6.787e-21 6.798e-21 -20.168 -20.168 0.001 (0) [14C]O[18O] 5.073e-21 5.081e-21 -20.295 -20.294 0.001 (0) [14C]O3-2 3.481e-21 2.439e-21 -20.458 -20.613 -0.155 (0) CaH[14C]O2[18O]+ 2.470e-22 2.266e-22 -21.607 -21.645 -0.037 (0) - CaH[14C]O[18O]O+ 2.470e-22 2.266e-22 -21.607 -21.645 -0.037 (0) CaH[14C][18O]O2+ 2.470e-22 2.266e-22 -21.607 -21.645 -0.037 (0) + CaH[14C]O[18O]O+ 2.470e-22 2.266e-22 -21.607 -21.645 -0.037 (0) Ca[14C]O2[18O] 4.062e-23 4.069e-23 -22.391 -22.391 0.001 (0) + H[14C][18O]O[18O]- 2.334e-23 2.135e-23 -22.632 -22.671 -0.039 (0) H[14C]O[18O]2- 2.334e-23 2.135e-23 -22.632 -22.671 -0.039 (0) H[14C][18O]2O- 2.334e-23 2.135e-23 -22.632 -22.671 -0.039 (0) - H[14C][18O]O[18O]- 2.334e-23 2.135e-23 -22.632 -22.671 -0.039 (0) [14C]O2[18O]-2 2.084e-23 1.460e-23 -22.681 -22.836 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.819 -69.818 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.820 -72.819 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.934 -68.933 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.935 -71.934 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.03 -17.89 -2.86 [13C]H4 + [13C]H4(g) -16.80 -19.66 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.81 -23.31 -1.50 [14C][18O]2 - [14C]H4(g) -27.99 -30.85 -2.86 [14C]H4 + [14C]H4(g) -29.76 -32.62 -2.86 [14C]H4 [14C]O2(g) -16.44 -17.91 -1.47 [14C]O2 [14C]O[18O](g) -18.83 -20.61 -1.79 [14C]O[18O] - [18O]2(g) -70.53 -72.82 -2.29 [18O]2 + [18O]2(g) -69.64 -71.93 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -23028,14 +23040,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.07 -15.93 -2.86 CH4 + CH4(g) -14.84 -17.70 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.33 -12.48 -3.15 H2 + H2(g) -9.77 -12.92 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.53 -67.42 -2.89 O2 - O[18O](g) -67.23 -70.12 -2.89 O[18O] + O2(g) -63.64 -66.53 -2.89 O2 + O[18O](g) -66.34 -69.23 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -23059,12 +23071,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 89. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -23130,7 +23136,7 @@ Calcite 5.00e-04 R(14C) CO2(aq) 1.12852e-15 0.095972 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9862 permil - R(13C) HCO3- 1.11810e-02 0.070221 permil + R(13C) HCO3- 1.11810e-02 0.07022 permil R(14C) HCO3- 1.14824e-15 0.097649 pmc R(18O) CO3-2 1.99520e-03 -4.9862 permil R(13C) CO3-2 1.11649e-02 -1.365 permil @@ -23150,14 +23156,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7502e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6666e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.0436e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.6431e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.2212e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.199e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -23175,16 +23181,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.337 Adjusted to redox equilibrium + pe = -2.117 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.425e-13 + Electrical balance (eq) = 5.834e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 53 (154 overall) + Iterations = 84 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -23196,25 +23202,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.517e-16 - CH4 1.517e-16 1.520e-16 -15.819 -15.818 0.001 (0) +C(-4) 2.636e-18 + CH4 2.636e-18 2.640e-18 -17.579 -17.578 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -23222,50 +23228,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.047e-13 - H2 3.524e-13 3.530e-13 -12.453 -12.452 0.001 (0) +H(0) 2.559e-13 + H2 1.279e-13 1.281e-13 -12.893 -12.892 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.478 -67.477 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.877 -69.876 0.001 (0) -[13C](-4) 1.682e-18 - [13C]H4 1.682e-18 1.685e-18 -17.774 -17.773 0.001 (0) + O2 0.000e+00 0.000e+00 -66.598 -66.597 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.997 -68.996 0.001 (0) +[13C](-4) 2.922e-20 + [13C]H4 2.922e-20 2.927e-20 -19.534 -19.534 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.712e-31 - [14C]H4 1.712e-31 1.715e-31 -30.766 -30.766 0.001 (0) +[14C](-4) 2.975e-33 + [14C]H4 2.975e-33 2.980e-33 -32.527 -32.526 0.001 (0) [14C](4) 6.686e-18 H[14C]O3- 5.401e-18 4.941e-18 -17.268 -17.306 -0.039 (0) [14C]O2 1.124e-18 1.126e-18 -17.949 -17.949 0.001 (0) CaH[14C]O3+ 1.140e-19 1.046e-19 -18.943 -18.980 -0.037 (0) - H[14C]O2[18O]- 1.078e-20 9.858e-21 -19.968 -20.006 -0.039 (0) - H[14C]O[18O]O- 1.078e-20 9.858e-21 -19.968 -20.006 -0.039 (0) H[14C][18O]O2- 1.078e-20 9.858e-21 -19.968 -20.006 -0.039 (0) + H[14C]O[18O]O- 1.078e-20 9.858e-21 -19.968 -20.006 -0.039 (0) + H[14C]O2[18O]- 1.078e-20 9.858e-21 -19.968 -20.006 -0.039 (0) Ca[14C]O3 6.252e-21 6.262e-21 -20.204 -20.203 0.001 (0) [14C]O[18O] 4.673e-21 4.681e-21 -20.330 -20.330 0.001 (0) [14C]O3-2 3.207e-21 2.247e-21 -20.494 -20.648 -0.155 (0) CaH[14C]O2[18O]+ 2.275e-22 2.087e-22 -21.643 -21.680 -0.037 (0) - CaH[14C]O[18O]O+ 2.275e-22 2.087e-22 -21.643 -21.680 -0.037 (0) CaH[14C][18O]O2+ 2.275e-22 2.087e-22 -21.643 -21.680 -0.037 (0) + CaH[14C]O[18O]O+ 2.275e-22 2.087e-22 -21.643 -21.680 -0.037 (0) Ca[14C]O2[18O] 3.742e-23 3.748e-23 -22.427 -22.426 0.001 (0) H[14C]O[18O]2- 2.150e-23 1.967e-23 -22.668 -22.706 -0.039 (0) H[14C][18O]2O- 2.150e-23 1.967e-23 -22.668 -22.706 -0.039 (0) @@ -23274,29 +23280,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.877 -69.876 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.878 -72.877 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.997 -68.996 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.998 -71.997 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.91 -17.77 -2.86 [13C]H4 + [13C]H4(g) -16.67 -19.53 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.85 -23.35 -1.50 [14C][18O]2 - [14C]H4(g) -27.91 -30.77 -2.86 [14C]H4 + [14C]H4(g) -29.67 -32.53 -2.86 [14C]H4 [14C]O2(g) -16.48 -17.95 -1.47 [14C]O2 [14C]O[18O](g) -18.86 -20.65 -1.79 [14C]O[18O] - [18O]2(g) -70.59 -72.88 -2.29 [18O]2 + [18O]2(g) -69.71 -72.00 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -23310,14 +23316,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.96 -15.82 -2.86 CH4 + CH4(g) -14.72 -17.58 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.30 -12.45 -3.15 H2 + H2(g) -9.74 -12.89 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.58 -67.48 -2.89 O2 - O[18O](g) -67.28 -70.18 -2.89 O[18O] + O2(g) -63.70 -66.60 -2.89 O2 + O[18O](g) -66.40 -69.30 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -23341,12 +23347,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 90. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -23412,7 +23412,7 @@ Calcite 5.00e-04 R(14C) CO2(aq) 1.03963e-15 0.088412 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9861 permil - R(13C) HCO3- 1.11810e-02 0.071858 permil + R(13C) HCO3- 1.11810e-02 0.071857 permil R(14C) HCO3- 1.05779e-15 0.089957 pmc R(18O) CO3-2 1.99520e-03 -4.9861 permil R(13C) CO3-2 1.11650e-02 -1.3633 permil @@ -23432,14 +23432,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.692e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.585e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -5.3291e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.1086e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -23457,16 +23457,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.315 Adjusted to redox equilibrium + pe = -2.079 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.424e-13 + Electrical balance (eq) = 5.834e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 122 (223 overall) + Iterations = 61 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -23478,14 +23478,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.020e-16 - CH4 1.020e-16 1.022e-16 -15.991 -15.991 0.001 (0) +C(-4) 1.314e-18 + CH4 1.314e-18 1.316e-18 -17.881 -17.881 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -23494,9 +23494,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -23504,23 +23504,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.381e-13 - H2 3.191e-13 3.196e-13 -12.496 -12.495 0.001 (0) +H(0) 2.150e-13 + H2 1.075e-13 1.077e-13 -12.969 -12.968 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.392 -67.391 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.791 -69.790 0.001 (0) -[13C](-4) 1.131e-18 - [13C]H4 1.131e-18 1.132e-18 -17.947 -17.946 0.001 (0) + O2 0.000e+00 0.000e+00 -66.447 -66.446 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.846 -68.845 0.001 (0) +[13C](-4) 1.457e-20 + [13C]H4 1.457e-20 1.459e-20 -19.837 -19.836 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) @@ -23529,56 +23529,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.060e-31 - [14C]H4 1.060e-31 1.062e-31 -30.975 -30.974 0.001 (0) +[14C](-4) 1.366e-33 + [14C]H4 1.366e-33 1.369e-33 -32.864 -32.864 0.001 (0) [14C](4) 6.159e-18 H[14C]O3- 4.975e-18 4.552e-18 -17.303 -17.342 -0.039 (0) [14C]O2 1.035e-18 1.037e-18 -17.985 -17.984 0.001 (0) CaH[14C]O3+ 1.051e-19 9.638e-20 -18.979 -19.016 -0.037 (0) - H[14C]O2[18O]- 9.927e-21 9.082e-21 -20.003 -20.042 -0.039 (0) - H[14C]O[18O]O- 9.927e-21 9.082e-21 -20.003 -20.042 -0.039 (0) H[14C][18O]O2- 9.927e-21 9.082e-21 -20.003 -20.042 -0.039 (0) + H[14C]O[18O]O- 9.927e-21 9.082e-21 -20.003 -20.042 -0.039 (0) + H[14C]O2[18O]- 9.927e-21 9.082e-21 -20.003 -20.042 -0.039 (0) Ca[14C]O3 5.759e-21 5.769e-21 -20.240 -20.239 0.001 (0) [14C]O[18O] 4.305e-21 4.312e-21 -20.366 -20.365 0.001 (0) [14C]O3-2 2.955e-21 2.070e-21 -20.530 -20.684 -0.155 (0) CaH[14C]O2[18O]+ 2.096e-22 1.923e-22 -21.679 -21.716 -0.037 (0) - CaH[14C]O[18O]O+ 2.096e-22 1.923e-22 -21.679 -21.716 -0.037 (0) CaH[14C][18O]O2+ 2.096e-22 1.923e-22 -21.679 -21.716 -0.037 (0) + CaH[14C]O[18O]O+ 2.096e-22 1.923e-22 -21.679 -21.716 -0.037 (0) Ca[14C]O2[18O] 3.447e-23 3.453e-23 -22.463 -22.462 0.001 (0) - H[14C]O[18O]2- 1.981e-23 1.812e-23 -22.703 -22.742 -0.039 (0) H[14C][18O]2O- 1.981e-23 1.812e-23 -22.703 -22.742 -0.039 (0) H[14C][18O]O[18O]- 1.981e-23 1.812e-23 -22.703 -22.742 -0.039 (0) + H[14C]O[18O]2- 1.981e-23 1.812e-23 -22.703 -22.742 -0.039 (0) [14C]O2[18O]-2 1.768e-23 1.239e-23 -22.752 -22.907 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.791 -69.790 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.792 -72.791 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.846 -68.845 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.847 -71.846 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.09 -17.95 -2.86 [13C]H4 + [13C]H4(g) -16.98 -19.84 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.88 -23.38 -1.50 [14C][18O]2 - [14C]H4(g) -28.11 -30.97 -2.86 [14C]H4 + [14C]H4(g) -30.00 -32.86 -2.86 [14C]H4 [14C]O2(g) -16.52 -17.98 -1.47 [14C]O2 [14C]O[18O](g) -18.90 -20.68 -1.79 [14C]O[18O] - [18O]2(g) -70.50 -72.79 -2.29 [18O]2 + [18O]2(g) -69.56 -71.85 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -23592,14 +23592,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.13 -15.99 -2.86 CH4 + CH4(g) -15.02 -17.88 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.35 -12.50 -3.15 H2 + H2(g) -9.82 -12.97 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.50 -67.39 -2.89 O2 - O[18O](g) -67.20 -70.09 -2.89 O[18O] + O2(g) -63.55 -66.45 -2.89 O2 + O[18O](g) -66.25 -69.15 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -23623,6 +23623,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 91. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -23708,14 +23714,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5146e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6089e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -8.2157e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 4.4409e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.2188e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -23733,16 +23739,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.333 Adjusted to redox equilibrium + pe = -2.096 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.424e-13 + Electrical balance (eq) = 5.834e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 92 + Iterations = 58 (159 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -23754,25 +23760,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.424e-16 - CH4 1.424e-16 1.426e-16 -15.847 -15.846 0.001 (0) +C(-4) 1.788e-18 + CH4 1.788e-18 1.791e-18 -17.748 -17.747 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -23780,81 +23786,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.936e-13 - H2 3.468e-13 3.474e-13 -12.460 -12.459 0.001 (0) +H(0) 2.322e-13 + H2 1.161e-13 1.163e-13 -12.935 -12.934 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.464 -67.463 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.863 -69.862 0.001 (0) -[13C](-4) 1.578e-18 - [13C]H4 1.578e-18 1.581e-18 -17.802 -17.801 0.001 (0) + O2 0.000e+00 0.000e+00 -66.514 -66.513 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.913 -68.912 0.001 (0) +[13C](-4) 1.982e-20 + [13C]H4 1.982e-20 1.985e-20 -19.703 -19.702 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.363e-31 - [14C]H4 1.363e-31 1.366e-31 -30.865 -30.865 0.001 (0) +[14C](-4) 1.713e-33 + [14C]H4 1.713e-33 1.715e-33 -32.766 -32.766 0.001 (0) [14C](4) 5.674e-18 H[14C]O3- 4.583e-18 4.193e-18 -17.339 -17.377 -0.039 (0) [14C]O2 9.537e-19 9.553e-19 -18.021 -18.020 0.001 (0) CaH[14C]O3+ 9.679e-20 8.878e-20 -19.014 -19.052 -0.037 (0) - H[14C]O2[18O]- 9.145e-21 8.366e-21 -20.039 -20.077 -0.039 (0) - H[14C]O[18O]O- 9.145e-21 8.366e-21 -20.039 -20.077 -0.039 (0) H[14C][18O]O2- 9.145e-21 8.366e-21 -20.039 -20.077 -0.039 (0) + H[14C]O[18O]O- 9.145e-21 8.366e-21 -20.039 -20.077 -0.039 (0) + H[14C]O2[18O]- 9.145e-21 8.366e-21 -20.039 -20.077 -0.039 (0) Ca[14C]O3 5.306e-21 5.315e-21 -20.275 -20.275 0.001 (0) [14C]O[18O] 3.966e-21 3.972e-21 -20.402 -20.401 0.001 (0) [14C]O3-2 2.722e-21 1.907e-21 -20.565 -20.720 -0.155 (0) CaH[14C]O2[18O]+ 1.931e-22 1.771e-22 -21.714 -21.752 -0.037 (0) - CaH[14C]O[18O]O+ 1.931e-22 1.771e-22 -21.714 -21.752 -0.037 (0) CaH[14C][18O]O2+ 1.931e-22 1.771e-22 -21.714 -21.752 -0.037 (0) + CaH[14C]O[18O]O+ 1.931e-22 1.771e-22 -21.714 -21.752 -0.037 (0) Ca[14C]O2[18O] 3.176e-23 3.181e-23 -22.498 -22.497 0.001 (0) + H[14C][18O]O[18O]- 1.825e-23 1.669e-23 -22.739 -22.777 -0.039 (0) H[14C]O[18O]2- 1.825e-23 1.669e-23 -22.739 -22.777 -0.039 (0) H[14C][18O]2O- 1.825e-23 1.669e-23 -22.739 -22.777 -0.039 (0) - H[14C][18O]O[18O]- 1.825e-23 1.669e-23 -22.739 -22.777 -0.039 (0) [14C]O2[18O]-2 1.629e-23 1.141e-23 -22.788 -22.943 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.863 -69.862 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.864 -72.863 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.913 -68.912 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.914 -71.913 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.94 -17.80 -2.86 [13C]H4 + [13C]H4(g) -16.84 -19.70 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.92 -23.42 -1.50 [14C][18O]2 - [14C]H4(g) -28.00 -30.86 -2.86 [14C]H4 + [14C]H4(g) -29.91 -32.77 -2.86 [14C]H4 [14C]O2(g) -16.55 -18.02 -1.47 [14C]O2 [14C]O[18O](g) -18.93 -20.72 -1.79 [14C]O[18O] - [18O]2(g) -70.57 -72.86 -2.29 [18O]2 + [18O]2(g) -69.62 -71.91 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -23868,14 +23874,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.99 -15.85 -2.86 CH4 + CH4(g) -14.89 -17.75 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.31 -12.46 -3.15 H2 + H2(g) -9.78 -12.93 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.57 -67.46 -2.89 O2 - O[18O](g) -67.27 -70.16 -2.89 O[18O] + O2(g) -63.62 -66.51 -2.89 O2 + O[18O](g) -66.32 -69.21 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -23899,12 +23905,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 92. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -23979,7 +23979,7 @@ Calcite 5.00e-04 R(14C) CH4(aq) 8.82289e-16 0.075032 pmc R(18O) Calcite 2.05264e-03 23.661 permil R(13C) Calcite 1.12032e-02 2.0556 permil - R(14C) Calcite 9.01268e-16 0.076646 pmc + R(14C) Calcite 9.01267e-16 0.076646 pmc --------------------------------Isotope Alphas--------------------------------- @@ -23990,14 +23990,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6337e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7676e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.3323e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 3.3307e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -4.996e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -24015,16 +24015,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.343 Adjusted to redox equilibrium + pe = -2.073 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.424e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 109 (210 overall) + Iterations = 55 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -24036,15 +24036,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.712e-16 - CH4 1.712e-16 1.715e-16 -15.767 -15.766 0.001 (0) +C(-4) 1.170e-18 + CH4 1.170e-18 1.172e-18 -17.932 -17.931 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -24052,9 +24052,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -24062,50 +24062,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.263e-13 - H2 3.632e-13 3.638e-13 -12.440 -12.439 0.001 (0) +H(0) 2.089e-13 + H2 1.044e-13 1.046e-13 -12.981 -12.980 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.504 -67.503 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.903 -69.902 0.001 (0) -[13C](-4) 1.898e-18 - [13C]H4 1.898e-18 1.901e-18 -17.722 -17.721 0.001 (0) + O2 0.000e+00 0.000e+00 -66.422 -66.421 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.821 -68.820 0.001 (0) +[13C](-4) 1.297e-20 + [13C]H4 1.297e-20 1.299e-20 -19.887 -19.886 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.510e-31 - [14C]H4 1.510e-31 1.513e-31 -30.821 -30.820 0.001 (0) +[14C](-4) 1.033e-33 + [14C]H4 1.033e-33 1.034e-33 -32.986 -32.985 0.001 (0) [14C](4) 5.227e-18 H[14C]O3- 4.222e-18 3.863e-18 -17.374 -17.413 -0.039 (0) [14C]O2 8.786e-19 8.800e-19 -18.056 -18.056 0.001 (0) CaH[14C]O3+ 8.916e-20 8.179e-20 -19.050 -19.087 -0.037 (0) - H[14C]O2[18O]- 8.424e-21 7.707e-21 -20.074 -20.113 -0.039 (0) - H[14C]O[18O]O- 8.424e-21 7.707e-21 -20.074 -20.113 -0.039 (0) H[14C][18O]O2- 8.424e-21 7.707e-21 -20.074 -20.113 -0.039 (0) + H[14C]O[18O]O- 8.424e-21 7.707e-21 -20.074 -20.113 -0.039 (0) + H[14C]O2[18O]- 8.424e-21 7.707e-21 -20.074 -20.113 -0.039 (0) Ca[14C]O3 4.888e-21 4.896e-21 -20.311 -20.310 0.001 (0) [14C]O[18O] 3.653e-21 3.659e-21 -20.437 -20.437 0.001 (0) [14C]O3-2 2.507e-21 1.757e-21 -20.601 -20.755 -0.155 (0) CaH[14C]O2[18O]+ 1.779e-22 1.632e-22 -21.750 -21.787 -0.037 (0) - CaH[14C]O[18O]O+ 1.779e-22 1.632e-22 -21.750 -21.787 -0.037 (0) CaH[14C][18O]O2+ 1.779e-22 1.632e-22 -21.750 -21.787 -0.037 (0) + CaH[14C]O[18O]O+ 1.779e-22 1.632e-22 -21.750 -21.787 -0.037 (0) Ca[14C]O2[18O] 2.926e-23 2.930e-23 -22.534 -22.533 0.001 (0) H[14C]O[18O]2- 1.681e-23 1.538e-23 -22.774 -22.813 -0.039 (0) H[14C][18O]2O- 1.681e-23 1.538e-23 -22.774 -22.813 -0.039 (0) @@ -24114,29 +24114,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.903 -69.902 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.904 -72.903 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.821 -68.820 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.822 -71.821 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.86 -17.72 -2.86 [13C]H4 + [13C]H4(g) -17.03 -19.89 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.95 -23.46 -1.50 [14C][18O]2 - [14C]H4(g) -27.96 -30.82 -2.86 [14C]H4 + [14C]H4(g) -30.13 -32.99 -2.86 [14C]H4 [14C]O2(g) -16.59 -18.06 -1.47 [14C]O2 [14C]O[18O](g) -18.97 -20.76 -1.79 [14C]O[18O] - [18O]2(g) -70.61 -72.90 -2.29 [18O]2 + [18O]2(g) -69.53 -71.82 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -24150,14 +24150,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.91 -15.77 -2.86 CH4 + CH4(g) -15.07 -17.93 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.29 -12.44 -3.15 H2 + H2(g) -9.83 -12.98 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.61 -67.50 -2.89 O2 - O[18O](g) -67.31 -70.20 -2.89 O[18O] + O2(g) -63.53 -66.42 -2.89 O2 + O[18O](g) -66.23 -69.12 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -24181,12 +24181,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 93. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -24272,14 +24266,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6092e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5781e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1324e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.9984e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -8.2157e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -24297,16 +24291,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.346 Adjusted to redox equilibrium + pe = -2.109 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.424e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 80 (181 overall) + Iterations = 64 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -24318,25 +24312,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.806e-16 - CH4 1.806e-16 1.809e-16 -15.743 -15.743 0.001 (0) +C(-4) 2.300e-18 + CH4 2.300e-18 2.303e-18 -17.638 -17.638 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -24344,23 +24338,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.361e-13 - H2 3.681e-13 3.687e-13 -12.434 -12.433 0.001 (0) +H(0) 2.473e-13 + H2 1.236e-13 1.238e-13 -12.908 -12.907 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.516 -67.515 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.915 -69.914 0.001 (0) -[13C](-4) 2.002e-18 - [13C]H4 2.002e-18 2.005e-18 -17.699 -17.698 0.001 (0) + O2 0.000e+00 0.000e+00 -66.568 -66.567 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.967 -68.966 0.001 (0) +[13C](-4) 2.549e-20 + [13C]H4 2.549e-20 2.553e-20 -19.594 -19.593 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) @@ -24369,56 +24363,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.468e-31 - [14C]H4 1.468e-31 1.471e-31 -30.833 -30.833 0.001 (0) +[14C](-4) 1.869e-33 + [14C]H4 1.869e-33 1.872e-33 -32.728 -32.728 0.001 (0) [14C](4) 4.815e-18 H[14C]O3- 3.890e-18 3.559e-18 -17.410 -17.449 -0.039 (0) [14C]O2 8.094e-19 8.107e-19 -18.092 -18.091 0.001 (0) CaH[14C]O3+ 8.214e-20 7.535e-20 -19.085 -19.123 -0.037 (0) - H[14C]O2[18O]- 7.761e-21 7.100e-21 -20.110 -20.149 -0.039 (0) - H[14C]O[18O]O- 7.761e-21 7.100e-21 -20.110 -20.149 -0.039 (0) H[14C][18O]O2- 7.761e-21 7.100e-21 -20.110 -20.149 -0.039 (0) + H[14C]O[18O]O- 7.761e-21 7.100e-21 -20.110 -20.149 -0.039 (0) + H[14C]O2[18O]- 7.761e-21 7.100e-21 -20.110 -20.149 -0.039 (0) Ca[14C]O3 4.503e-21 4.510e-21 -20.347 -20.346 0.001 (0) [14C]O[18O] 3.366e-21 3.371e-21 -20.473 -20.472 0.001 (0) [14C]O3-2 2.310e-21 1.618e-21 -20.636 -20.791 -0.155 (0) CaH[14C]O2[18O]+ 1.639e-22 1.503e-22 -21.785 -21.823 -0.037 (0) - CaH[14C]O[18O]O+ 1.639e-22 1.503e-22 -21.785 -21.823 -0.037 (0) CaH[14C][18O]O2+ 1.639e-22 1.503e-22 -21.785 -21.823 -0.037 (0) + CaH[14C]O[18O]O+ 1.639e-22 1.503e-22 -21.785 -21.823 -0.037 (0) Ca[14C]O2[18O] 2.695e-23 2.700e-23 -22.569 -22.569 0.001 (0) - H[14C]O[18O]2- 1.548e-23 1.417e-23 -22.810 -22.849 -0.039 (0) H[14C][18O]2O- 1.548e-23 1.417e-23 -22.810 -22.849 -0.039 (0) H[14C][18O]O[18O]- 1.548e-23 1.417e-23 -22.810 -22.849 -0.039 (0) + H[14C]O[18O]2- 1.548e-23 1.417e-23 -22.810 -22.849 -0.039 (0) [14C]O2[18O]-2 1.383e-23 9.686e-24 -22.859 -23.014 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.915 -69.914 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.916 -72.915 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.967 -68.966 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.968 -71.968 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.84 -17.70 -2.86 [13C]H4 + [13C]H4(g) -16.73 -19.59 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.99 -23.49 -1.50 [14C][18O]2 - [14C]H4(g) -27.97 -30.83 -2.86 [14C]H4 + [14C]H4(g) -29.87 -32.73 -2.86 [14C]H4 [14C]O2(g) -16.62 -18.09 -1.47 [14C]O2 [14C]O[18O](g) -19.00 -20.79 -1.79 [14C]O[18O] - [18O]2(g) -70.62 -72.92 -2.29 [18O]2 + [18O]2(g) -69.68 -71.97 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -24432,14 +24426,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.88 -15.74 -2.86 CH4 + CH4(g) -14.78 -17.64 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.28 -12.43 -3.15 H2 + H2(g) -9.76 -12.91 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.62 -67.52 -2.89 O2 - O[18O](g) -67.32 -70.22 -2.89 O[18O] + O2(g) -63.68 -66.57 -2.89 O2 + O[18O](g) -66.38 -69.27 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -24463,12 +24457,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 94. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -24534,7 +24522,7 @@ Calcite 5.00e-04 R(14C) CO2(aq) 7.48764e-16 0.063677 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9855 permil - R(13C) HCO3- 1.11811e-02 0.077218 permil + R(13C) HCO3- 1.11811e-02 0.077217 permil R(14C) HCO3- 7.61849e-16 0.064789 pmc R(18O) CO3-2 1.99520e-03 -4.9855 permil R(13C) CO3-2 1.11650e-02 -1.358 permil @@ -24554,14 +24542,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 +Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6176e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.653e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.9968e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1102e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 8.2157e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.4377e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -24579,16 +24567,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.344 Adjusted to redox equilibrium + pe = -2.118 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.424e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 118 (219 overall) + Iterations = 97 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -24600,15 +24588,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.741e-16 - CH4 1.741e-16 1.743e-16 -15.759 -15.759 0.001 (0) +C(-4) 2.727e-18 + CH4 2.727e-18 2.732e-18 -17.564 -17.564 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -24616,9 +24604,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -24626,81 +24614,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.294e-13 - H2 3.647e-13 3.653e-13 -12.438 -12.437 0.001 (0) +H(0) 2.580e-13 + H2 1.290e-13 1.292e-13 -12.889 -12.889 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.508 -67.507 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.907 -69.906 0.001 (0) -[13C](-4) 1.929e-18 - [13C]H4 1.929e-18 1.933e-18 -17.715 -17.714 0.001 (0) + O2 0.000e+00 0.000e+00 -66.605 -66.605 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.004 -69.004 0.001 (0) +[13C](-4) 3.023e-20 + [13C]H4 3.023e-20 3.028e-20 -19.520 -19.519 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.303e-31 - [14C]H4 1.303e-31 1.305e-31 -30.885 -30.884 0.001 (0) +[14C](-4) 2.042e-33 + [14C]H4 2.042e-33 2.046e-33 -32.690 -32.689 0.001 (0) [14C](4) 4.436e-18 H[14C]O3- 3.583e-18 3.278e-18 -17.446 -17.484 -0.039 (0) [14C]O2 7.456e-19 7.468e-19 -18.127 -18.127 0.001 (0) CaH[14C]O3+ 7.567e-20 6.941e-20 -19.121 -19.159 -0.037 (0) - H[14C]O2[18O]- 7.149e-21 6.541e-21 -20.146 -20.184 -0.039 (0) - H[14C]O[18O]O- 7.149e-21 6.541e-21 -20.146 -20.184 -0.039 (0) H[14C][18O]O2- 7.149e-21 6.541e-21 -20.146 -20.184 -0.039 (0) + H[14C]O[18O]O- 7.149e-21 6.541e-21 -20.146 -20.184 -0.039 (0) + H[14C]O2[18O]- 7.149e-21 6.541e-21 -20.146 -20.184 -0.039 (0) Ca[14C]O3 4.148e-21 4.155e-21 -20.382 -20.381 0.001 (0) [14C]O[18O] 3.100e-21 3.106e-21 -20.509 -20.508 0.001 (0) [14C]O3-2 2.128e-21 1.491e-21 -20.672 -20.827 -0.155 (0) CaH[14C]O2[18O]+ 1.510e-22 1.385e-22 -21.821 -21.859 -0.037 (0) - CaH[14C]O[18O]O+ 1.510e-22 1.385e-22 -21.821 -21.859 -0.037 (0) CaH[14C][18O]O2+ 1.510e-22 1.385e-22 -21.821 -21.859 -0.037 (0) + CaH[14C]O[18O]O+ 1.510e-22 1.385e-22 -21.821 -21.859 -0.037 (0) Ca[14C]O2[18O] 2.483e-23 2.487e-23 -22.605 -22.604 0.001 (0) + H[14C][18O]O[18O]- 1.426e-23 1.305e-23 -22.846 -22.884 -0.039 (0) H[14C]O[18O]2- 1.426e-23 1.305e-23 -22.846 -22.884 -0.039 (0) H[14C][18O]2O- 1.426e-23 1.305e-23 -22.846 -22.884 -0.039 (0) - H[14C][18O]O[18O]- 1.426e-23 1.305e-23 -22.846 -22.884 -0.039 (0) [14C]O2[18O]-2 1.274e-23 8.923e-24 -22.895 -23.049 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.907 -69.906 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.908 -72.907 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.004 -69.004 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.005 -72.005 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.85 -17.71 -2.86 [13C]H4 + [13C]H4(g) -16.66 -19.52 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.02 -23.53 -1.50 [14C][18O]2 - [14C]H4(g) -28.02 -30.88 -2.86 [14C]H4 + [14C]H4(g) -29.83 -32.69 -2.86 [14C]H4 [14C]O2(g) -16.66 -18.13 -1.47 [14C]O2 [14C]O[18O](g) -19.04 -20.83 -1.79 [14C]O[18O] - [18O]2(g) -70.62 -72.91 -2.29 [18O]2 + [18O]2(g) -69.71 -72.00 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -24714,14 +24702,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.90 -15.76 -2.86 CH4 + CH4(g) -14.70 -17.56 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.29 -12.44 -3.15 H2 + H2(g) -9.74 -12.89 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.61 -67.51 -2.89 O2 - O[18O](g) -67.31 -70.21 -2.89 O[18O] + O2(g) -63.71 -66.60 -2.89 O2 + O[18O](g) -66.41 -69.30 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -24836,14 +24824,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5629e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7333e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.6645e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.5321e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -24861,16 +24849,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.363 Adjusted to redox equilibrium + pe = -2.160 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.424e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 99 (200 overall) + Iterations = 82 (183 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -24882,25 +24870,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.476e-16 - CH4 2.476e-16 2.480e-16 -15.606 -15.606 0.001 (0) +C(-4) 5.816e-18 + CH4 5.816e-18 5.826e-18 -17.235 -17.235 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -24908,50 +24896,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.965e-13 - H2 3.982e-13 3.989e-13 -12.400 -12.399 0.001 (0) +H(0) 3.118e-13 + H2 1.559e-13 1.562e-13 -12.807 -12.806 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.584 -67.583 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.983 -69.982 0.001 (0) -[13C](-4) 2.744e-18 - [13C]H4 2.744e-18 2.749e-18 -17.562 -17.561 0.001 (0) + O2 0.000e+00 0.000e+00 -66.770 -66.769 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.169 -69.168 0.001 (0) +[13C](-4) 6.447e-20 + [13C]H4 6.447e-20 6.458e-20 -19.191 -19.190 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.708e-31 - [14C]H4 1.708e-31 1.710e-31 -30.768 -30.767 0.001 (0) +[14C](-4) 4.012e-33 + [14C]H4 4.012e-33 4.019e-33 -32.397 -32.396 0.001 (0) [14C](4) 4.087e-18 H[14C]O3- 3.301e-18 3.020e-18 -17.481 -17.520 -0.039 (0) [14C]O2 6.869e-19 6.880e-19 -18.163 -18.162 0.001 (0) CaH[14C]O3+ 6.971e-20 6.394e-20 -19.157 -19.194 -0.037 (0) - H[14C]O2[18O]- 6.586e-21 6.026e-21 -20.181 -20.220 -0.039 (0) - H[14C]O[18O]O- 6.586e-21 6.026e-21 -20.181 -20.220 -0.039 (0) H[14C][18O]O2- 6.586e-21 6.026e-21 -20.181 -20.220 -0.039 (0) + H[14C]O[18O]O- 6.586e-21 6.026e-21 -20.181 -20.220 -0.039 (0) + H[14C]O2[18O]- 6.586e-21 6.026e-21 -20.181 -20.220 -0.039 (0) Ca[14C]O3 3.821e-21 3.828e-21 -20.418 -20.417 0.001 (0) [14C]O[18O] 2.856e-21 2.861e-21 -20.544 -20.543 0.001 (0) [14C]O3-2 1.960e-21 1.373e-21 -20.708 -20.862 -0.155 (0) CaH[14C]O2[18O]+ 1.391e-22 1.276e-22 -21.857 -21.894 -0.037 (0) - CaH[14C]O[18O]O+ 1.391e-22 1.276e-22 -21.857 -21.894 -0.037 (0) CaH[14C][18O]O2+ 1.391e-22 1.276e-22 -21.857 -21.894 -0.037 (0) + CaH[14C]O[18O]O+ 1.391e-22 1.276e-22 -21.857 -21.894 -0.037 (0) Ca[14C]O2[18O] 2.287e-23 2.291e-23 -22.641 -22.640 0.001 (0) H[14C]O[18O]2- 1.314e-23 1.202e-23 -22.881 -22.920 -0.039 (0) H[14C][18O]2O- 1.314e-23 1.202e-23 -22.881 -22.920 -0.039 (0) @@ -24960,29 +24948,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.983 -69.982 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.984 -72.984 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.169 -69.168 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.170 -72.169 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.70 -17.56 -2.86 [13C]H4 + [13C]H4(g) -16.33 -19.19 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.06 -23.56 -1.50 [14C][18O]2 - [14C]H4(g) -27.91 -30.77 -2.86 [14C]H4 + [14C]H4(g) -29.54 -32.40 -2.86 [14C]H4 [14C]O2(g) -16.69 -18.16 -1.47 [14C]O2 [14C]O[18O](g) -19.08 -20.86 -1.79 [14C]O[18O] - [18O]2(g) -70.69 -72.98 -2.29 [18O]2 + [18O]2(g) -69.88 -72.17 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -24996,14 +24984,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.75 -15.61 -2.86 CH4 + CH4(g) -14.37 -17.23 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.25 -12.40 -3.15 H2 + H2(g) -9.66 -12.81 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.69 -67.58 -2.89 O2 - O[18O](g) -67.39 -70.28 -2.89 O[18O] + O2(g) -63.88 -66.77 -2.89 O2 + O[18O](g) -66.58 -69.47 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -25027,6 +25015,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 96. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -25112,14 +25106,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7717e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6745e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.2188e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.0436e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.8763e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -25137,16 +25131,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.357 Adjusted to redox equilibrium + pe = -2.144 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.429e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 64 + Iterations = 105 (206 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -25158,14 +25152,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.213e-16 - CH4 2.213e-16 2.217e-16 -15.655 -15.654 0.001 (0) +C(-4) 4.373e-18 + CH4 4.373e-18 4.380e-18 -17.359 -17.359 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -25174,9 +25168,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -25184,23 +25178,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.745e-13 - H2 3.872e-13 3.879e-13 -12.412 -12.411 0.001 (0) +H(0) 2.904e-13 + H2 1.452e-13 1.454e-13 -12.838 -12.837 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.560 -67.559 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.959 -69.958 0.001 (0) -[13C](-4) 2.453e-18 - [13C]H4 2.453e-18 2.457e-18 -17.610 -17.610 0.001 (0) + O2 0.000e+00 0.000e+00 -66.708 -66.707 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.107 -69.106 0.001 (0) +[13C](-4) 4.847e-20 + [13C]H4 4.847e-20 4.855e-20 -19.315 -19.314 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) @@ -25209,56 +25203,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.406e-31 - [14C]H4 1.406e-31 1.409e-31 -30.852 -30.851 0.001 (0) +[14C](-4) 2.779e-33 + [14C]H4 2.779e-33 2.783e-33 -32.556 -32.555 0.001 (0) [14C](4) 3.765e-18 H[14C]O3- 3.041e-18 2.782e-18 -17.517 -17.556 -0.039 (0) [14C]O2 6.328e-19 6.338e-19 -18.199 -18.198 0.001 (0) CaH[14C]O3+ 6.422e-20 5.891e-20 -19.192 -19.230 -0.037 (0) - H[14C]O2[18O]- 6.067e-21 5.551e-21 -20.217 -20.256 -0.039 (0) - H[14C]O[18O]O- 6.067e-21 5.551e-21 -20.217 -20.256 -0.039 (0) H[14C][18O]O2- 6.067e-21 5.551e-21 -20.217 -20.256 -0.039 (0) + H[14C]O[18O]O- 6.067e-21 5.551e-21 -20.217 -20.256 -0.039 (0) + H[14C]O2[18O]- 6.067e-21 5.551e-21 -20.217 -20.256 -0.039 (0) Ca[14C]O3 3.520e-21 3.526e-21 -20.453 -20.453 0.001 (0) [14C]O[18O] 2.631e-21 2.636e-21 -20.580 -20.579 0.001 (0) [14C]O3-2 1.806e-21 1.265e-21 -20.743 -20.898 -0.155 (0) CaH[14C]O2[18O]+ 1.281e-22 1.175e-22 -21.892 -21.930 -0.037 (0) - CaH[14C]O[18O]O+ 1.281e-22 1.175e-22 -21.892 -21.930 -0.037 (0) CaH[14C][18O]O2+ 1.281e-22 1.175e-22 -21.892 -21.930 -0.037 (0) + CaH[14C]O[18O]O+ 1.281e-22 1.175e-22 -21.892 -21.930 -0.037 (0) Ca[14C]O2[18O] 2.107e-23 2.111e-23 -22.676 -22.676 0.001 (0) - H[14C]O[18O]2- 1.211e-23 1.108e-23 -22.917 -22.956 -0.039 (0) H[14C][18O]2O- 1.211e-23 1.108e-23 -22.917 -22.956 -0.039 (0) H[14C][18O]O[18O]- 1.211e-23 1.108e-23 -22.917 -22.956 -0.039 (0) + H[14C]O[18O]2- 1.211e-23 1.108e-23 -22.917 -22.956 -0.039 (0) [14C]O2[18O]-2 1.081e-23 7.572e-24 -22.966 -23.121 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.959 -69.958 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.960 -72.959 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.107 -69.106 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.108 -72.107 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.75 -17.61 -2.86 [13C]H4 + [13C]H4(g) -16.45 -19.31 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.09 -23.60 -1.50 [14C][18O]2 - [14C]H4(g) -27.99 -30.85 -2.86 [14C]H4 + [14C]H4(g) -29.70 -32.56 -2.86 [14C]H4 [14C]O2(g) -16.73 -18.20 -1.47 [14C]O2 [14C]O[18O](g) -19.11 -20.90 -1.79 [14C]O[18O] - [18O]2(g) -70.67 -72.96 -2.29 [18O]2 + [18O]2(g) -69.82 -72.11 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -25272,14 +25266,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.79 -15.65 -2.86 CH4 + CH4(g) -14.50 -17.36 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.26 -12.41 -3.15 H2 + H2(g) -9.69 -12.84 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.67 -67.56 -2.89 O2 - O[18O](g) -67.37 -70.26 -2.89 O[18O] + O2(g) -63.81 -66.71 -2.89 O2 + O[18O](g) -66.51 -69.41 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -25388,14 +25382,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6959e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8087e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.5321e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 9.1038e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 3.9968e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -8.2157e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -25413,16 +25407,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.372 Adjusted to redox equilibrium + pe = -2.167 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.429e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 60 + Iterations = 98 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -25434,25 +25428,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.914e-16 - CH4 2.914e-16 2.918e-16 -15.536 -15.535 0.001 (0) +C(-4) 6.711e-18 + CH4 6.711e-18 6.722e-18 -17.173 -17.172 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -25460,81 +25454,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.296e-13 - H2 4.148e-13 4.155e-13 -12.382 -12.381 0.001 (0) +H(0) 3.232e-13 + H2 1.616e-13 1.619e-13 -12.792 -12.791 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.620 -67.619 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.019 -70.018 0.001 (0) -[13C](-4) 3.230e-18 - [13C]H4 3.230e-18 3.235e-18 -17.491 -17.490 0.001 (0) + O2 0.000e+00 0.000e+00 -66.801 -66.800 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.200 -69.199 0.001 (0) +[13C](-4) 7.439e-20 + [13C]H4 7.439e-20 7.451e-20 -19.128 -19.128 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.706e-31 - [14C]H4 1.706e-31 1.708e-31 -30.768 -30.767 0.001 (0) +[14C](-4) 3.929e-33 + [14C]H4 3.929e-33 3.935e-33 -32.406 -32.405 0.001 (0) [14C](4) 3.468e-18 H[14C]O3- 2.801e-18 2.563e-18 -17.553 -17.591 -0.039 (0) [14C]O2 5.829e-19 5.839e-19 -18.234 -18.234 0.001 (0) CaH[14C]O3+ 5.916e-20 5.427e-20 -19.228 -19.265 -0.037 (0) - H[14C]O2[18O]- 5.589e-21 5.114e-21 -20.253 -20.291 -0.039 (0) - H[14C]O[18O]O- 5.589e-21 5.114e-21 -20.253 -20.291 -0.039 (0) H[14C][18O]O2- 5.589e-21 5.114e-21 -20.253 -20.291 -0.039 (0) + H[14C]O[18O]O- 5.589e-21 5.114e-21 -20.253 -20.291 -0.039 (0) + H[14C]O2[18O]- 5.589e-21 5.114e-21 -20.253 -20.291 -0.039 (0) Ca[14C]O3 3.243e-21 3.248e-21 -20.489 -20.488 0.001 (0) [14C]O[18O] 2.424e-21 2.428e-21 -20.615 -20.615 0.001 (0) [14C]O3-2 1.664e-21 1.165e-21 -20.779 -20.934 -0.155 (0) CaH[14C]O2[18O]+ 1.180e-22 1.083e-22 -21.928 -21.965 -0.037 (0) - CaH[14C]O[18O]O+ 1.180e-22 1.083e-22 -21.928 -21.965 -0.037 (0) CaH[14C][18O]O2+ 1.180e-22 1.083e-22 -21.928 -21.965 -0.037 (0) + CaH[14C]O[18O]O+ 1.180e-22 1.083e-22 -21.928 -21.965 -0.037 (0) Ca[14C]O2[18O] 1.941e-23 1.944e-23 -22.712 -22.711 0.001 (0) + H[14C][18O]O[18O]- 1.115e-23 1.020e-23 -22.953 -22.991 -0.039 (0) H[14C]O[18O]2- 1.115e-23 1.020e-23 -22.953 -22.991 -0.039 (0) H[14C][18O]2O- 1.115e-23 1.020e-23 -22.953 -22.991 -0.039 (0) - H[14C][18O]O[18O]- 1.115e-23 1.020e-23 -22.953 -22.991 -0.039 (0) [14C]O2[18O]-2 9.958e-24 6.976e-24 -23.002 -23.156 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.019 -70.018 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.020 -73.019 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.200 -69.199 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.201 -72.200 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.63 -17.49 -2.86 [13C]H4 + [13C]H4(g) -16.27 -19.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.13 -23.63 -1.50 [14C][18O]2 - [14C]H4(g) -27.91 -30.77 -2.86 [14C]H4 + [14C]H4(g) -29.55 -32.41 -2.86 [14C]H4 [14C]O2(g) -16.77 -18.23 -1.47 [14C]O2 [14C]O[18O](g) -19.15 -20.93 -1.79 [14C]O[18O] - [18O]2(g) -70.73 -73.02 -2.29 [18O]2 + [18O]2(g) -69.91 -72.20 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -25548,14 +25542,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.67 -15.53 -2.86 CH4 + CH4(g) -14.31 -17.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.23 -12.38 -3.15 H2 + H2(g) -9.64 -12.79 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.73 -67.62 -2.89 O2 - O[18O](g) -67.43 -70.32 -2.89 O[18O] + O2(g) -63.91 -66.80 -2.89 O2 + O[18O](g) -66.61 -69.50 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -25585,6 +25579,12 @@ WARNING: Numerical method failed with this set of convergence parameters. WARNING: Trying reduced tolerance 1e-16 ... +WARNING: Maximum iterations exceeded, 200 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying increased tolerance 1e-14 ... + Using solution 1. Solution after simulation 98. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -25670,14 +25670,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6843e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6593e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -3.9968e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -8.8818e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.1427e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -25695,16 +25695,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.387 Adjusted to redox equilibrium + pe = -2.188 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 57 (158 overall) + Iterations = 115 (417 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -25716,15 +25716,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.806e-16 - CH4 3.806e-16 3.812e-16 -15.420 -15.419 0.001 (0) +C(-4) 9.738e-18 + CH4 9.738e-18 9.754e-18 -17.012 -17.011 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -25732,9 +25732,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -25742,50 +25742,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.869e-13 - H2 4.435e-13 4.442e-13 -12.353 -12.352 0.001 (0) +H(0) 3.547e-13 + H2 1.774e-13 1.777e-13 -12.751 -12.750 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.678 -67.677 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.077 -70.076 0.001 (0) -[13C](-4) 4.219e-18 - [13C]H4 4.219e-18 4.226e-18 -17.375 -17.374 0.001 (0) + O2 0.000e+00 0.000e+00 -66.882 -66.881 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.281 -69.280 0.001 (0) +[13C](-4) 1.079e-19 + [13C]H4 1.079e-19 1.081e-19 -18.967 -18.966 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.053e-31 - [14C]H4 2.053e-31 2.056e-31 -30.688 -30.687 0.001 (0) +[14C](-4) 5.252e-33 + [14C]H4 5.252e-33 5.260e-33 -32.280 -32.279 0.001 (0) [14C](4) 3.195e-18 H[14C]O3- 2.581e-18 2.361e-18 -17.588 -17.627 -0.039 (0) [14C]O2 5.370e-19 5.379e-19 -18.270 -18.269 0.001 (0) CaH[14C]O3+ 5.450e-20 4.999e-20 -19.264 -19.301 -0.037 (0) - H[14C]O2[18O]- 5.149e-21 4.711e-21 -20.288 -20.327 -0.039 (0) - H[14C]O[18O]O- 5.149e-21 4.711e-21 -20.288 -20.327 -0.039 (0) H[14C][18O]O2- 5.149e-21 4.711e-21 -20.288 -20.327 -0.039 (0) + H[14C]O[18O]O- 5.149e-21 4.711e-21 -20.288 -20.327 -0.039 (0) + H[14C]O2[18O]- 5.149e-21 4.711e-21 -20.288 -20.327 -0.039 (0) Ca[14C]O3 2.988e-21 2.992e-21 -20.525 -20.524 0.001 (0) [14C]O[18O] 2.233e-21 2.237e-21 -20.651 -20.650 0.001 (0) [14C]O3-2 1.533e-21 1.074e-21 -20.815 -20.969 -0.155 (0) CaH[14C]O2[18O]+ 1.087e-22 9.974e-23 -21.964 -22.001 -0.037 (0) - CaH[14C]O[18O]O+ 1.087e-22 9.974e-23 -21.964 -22.001 -0.037 (0) CaH[14C][18O]O2+ 1.087e-22 9.974e-23 -21.964 -22.001 -0.037 (0) + CaH[14C]O[18O]O+ 1.087e-22 9.974e-23 -21.964 -22.001 -0.037 (0) Ca[14C]O2[18O] 1.788e-23 1.791e-23 -22.748 -22.747 0.001 (0) H[14C]O[18O]2- 1.027e-23 9.399e-24 -22.988 -23.027 -0.039 (0) H[14C][18O]2O- 1.027e-23 9.399e-24 -22.988 -23.027 -0.039 (0) @@ -25794,29 +25794,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.077 -70.076 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.078 -73.077 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.281 -69.280 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.282 -72.281 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.51 -17.37 -2.86 [13C]H4 + [13C]H4(g) -16.11 -18.97 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.17 -23.67 -1.50 [14C][18O]2 - [14C]H4(g) -27.83 -30.69 -2.86 [14C]H4 + [14C]H4(g) -29.42 -32.28 -2.86 [14C]H4 [14C]O2(g) -16.80 -18.27 -1.47 [14C]O2 [14C]O[18O](g) -19.18 -20.97 -1.79 [14C]O[18O] - [18O]2(g) -70.79 -73.08 -2.29 [18O]2 + [18O]2(g) -69.99 -72.28 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -25830,14 +25830,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.56 -15.42 -2.86 CH4 + CH4(g) -14.15 -17.01 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.20 -12.35 -3.15 H2 + H2(g) -9.60 -12.75 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.78 -67.68 -2.89 O2 - O[18O](g) -67.48 -70.38 -2.89 O[18O] + O2(g) -63.99 -66.88 -2.89 O2 + O[18O](g) -66.69 -69.58 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -25861,6 +25861,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 99. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -25946,14 +25952,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6285e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5585e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.996e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1324e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.7764e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 0 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -25971,16 +25977,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.397 Adjusted to redox equilibrium + pe = -2.243 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 89 + Iterations = 112 (213 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -25992,25 +25998,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.625e-16 - CH4 4.625e-16 4.633e-16 -15.335 -15.334 0.001 (0) +C(-4) 2.686e-17 + CH4 2.686e-17 2.691e-17 -16.571 -16.570 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -26018,23 +26024,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.312e-13 - H2 4.656e-13 4.664e-13 -12.332 -12.331 0.001 (0) +H(0) 4.572e-13 + H2 2.286e-13 2.290e-13 -12.641 -12.640 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.720 -67.719 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.119 -70.118 0.001 (0) -[13C](-4) 5.127e-18 - [13C]H4 5.127e-18 5.135e-18 -17.290 -17.289 0.001 (0) + O2 0.000e+00 0.000e+00 -67.102 -67.101 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.501 -69.500 0.001 (0) +[13C](-4) 2.978e-19 + [13C]H4 2.978e-19 2.983e-19 -18.526 -18.525 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) @@ -26043,56 +26049,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.298e-31 - [14C]H4 2.298e-31 2.302e-31 -30.639 -30.638 0.001 (0) +[14C](-4) 1.335e-32 + [14C]H4 1.335e-32 1.337e-32 -31.875 -31.874 0.001 (0) [14C](4) 2.943e-18 H[14C]O3- 2.377e-18 2.175e-18 -17.624 -17.663 -0.039 (0) [14C]O2 4.947e-19 4.955e-19 -18.306 -18.305 0.001 (0) CaH[14C]O3+ 5.020e-20 4.605e-20 -19.299 -19.337 -0.037 (0) - H[14C]O2[18O]- 4.744e-21 4.340e-21 -20.324 -20.363 -0.039 (0) - H[14C]O[18O]O- 4.744e-21 4.340e-21 -20.324 -20.363 -0.039 (0) H[14C][18O]O2- 4.744e-21 4.340e-21 -20.324 -20.363 -0.039 (0) + H[14C]O[18O]O- 4.744e-21 4.340e-21 -20.324 -20.363 -0.039 (0) + H[14C]O2[18O]- 4.744e-21 4.340e-21 -20.324 -20.363 -0.039 (0) Ca[14C]O3 2.752e-21 2.757e-21 -20.560 -20.560 0.001 (0) [14C]O[18O] 2.057e-21 2.061e-21 -20.687 -20.686 0.001 (0) [14C]O3-2 1.412e-21 9.891e-22 -20.850 -21.005 -0.155 (0) CaH[14C]O2[18O]+ 1.002e-22 9.189e-23 -21.999 -22.037 -0.037 (0) - CaH[14C]O[18O]O+ 1.002e-22 9.189e-23 -21.999 -22.037 -0.037 (0) CaH[14C][18O]O2+ 1.002e-22 9.189e-23 -21.999 -22.037 -0.037 (0) + CaH[14C]O[18O]O+ 1.002e-22 9.189e-23 -21.999 -22.037 -0.037 (0) Ca[14C]O2[18O] 1.647e-23 1.650e-23 -22.783 -22.782 0.001 (0) - H[14C]O[18O]2- 9.464e-24 8.659e-24 -23.024 -23.063 -0.039 (0) H[14C][18O]2O- 9.464e-24 8.659e-24 -23.024 -23.063 -0.039 (0) H[14C][18O]O[18O]- 9.464e-24 8.659e-24 -23.024 -23.063 -0.039 (0) + H[14C]O[18O]2- 9.464e-24 8.659e-24 -23.024 -23.063 -0.039 (0) [14C]O2[18O]-2 8.451e-24 5.920e-24 -23.073 -23.228 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.119 -70.118 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.120 -73.119 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.501 -69.500 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.502 -72.501 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.43 -17.29 -2.86 [13C]H4 + [13C]H4(g) -15.67 -18.53 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.20 -23.70 -1.50 [14C][18O]2 - [14C]H4(g) -27.78 -30.64 -2.86 [14C]H4 + [14C]H4(g) -29.01 -31.87 -2.86 [14C]H4 [14C]O2(g) -16.84 -18.30 -1.47 [14C]O2 [14C]O[18O](g) -19.22 -21.00 -1.79 [14C]O[18O] - [18O]2(g) -70.83 -73.12 -2.29 [18O]2 + [18O]2(g) -70.21 -72.50 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -26106,14 +26112,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.47 -15.33 -2.86 CH4 + CH4(g) -13.71 -16.57 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.18 -12.33 -3.15 H2 + H2(g) -9.49 -12.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.83 -67.72 -2.89 O2 - O[18O](g) -67.53 -70.42 -2.89 O[18O] + O2(g) -64.21 -67.10 -2.89 O2 + O[18O](g) -66.91 -69.80 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -26137,12 +26143,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 100. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -26228,14 +26228,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6439e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6269e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 8.2157e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.6431e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -8.1046e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -26253,16 +26253,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.397 Adjusted to redox equilibrium + pe = -2.244 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 149 (250 overall) + Iterations = 63 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -26274,15 +26274,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.613e-16 - CH4 4.613e-16 4.621e-16 -15.336 -15.335 0.001 (0) +C(-4) 2.776e-17 + CH4 2.776e-17 2.781e-17 -16.557 -16.556 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -26290,9 +26290,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -26300,81 +26300,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.306e-13 - H2 4.653e-13 4.661e-13 -12.332 -12.332 0.001 (0) +H(0) 4.609e-13 + H2 2.305e-13 2.308e-13 -12.637 -12.637 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.719 -67.719 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.118 -70.118 0.001 (0) -[13C](-4) 5.114e-18 - [13C]H4 5.114e-18 5.122e-18 -17.291 -17.291 0.001 (0) + O2 0.000e+00 0.000e+00 -67.109 -67.108 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.508 -69.507 0.001 (0) +[13C](-4) 3.077e-19 + [13C]H4 3.077e-19 3.082e-19 -18.512 -18.511 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.111e-31 - [14C]H4 2.111e-31 2.115e-31 -30.675 -30.675 0.001 (0) +[14C](-4) 1.270e-32 + [14C]H4 1.270e-32 1.273e-32 -31.896 -31.895 0.001 (0) [14C](4) 2.711e-18 H[14C]O3- 2.190e-18 2.004e-18 -17.660 -17.698 -0.039 (0) [14C]O2 4.557e-19 4.565e-19 -18.341 -18.341 0.001 (0) CaH[14C]O3+ 4.625e-20 4.243e-20 -19.335 -19.372 -0.037 (0) - H[14C]O2[18O]- 4.370e-21 3.998e-21 -20.360 -20.398 -0.039 (0) - H[14C]O[18O]O- 4.370e-21 3.998e-21 -20.360 -20.398 -0.039 (0) H[14C][18O]O2- 4.370e-21 3.998e-21 -20.360 -20.398 -0.039 (0) + H[14C]O[18O]O- 4.370e-21 3.998e-21 -20.360 -20.398 -0.039 (0) + H[14C]O2[18O]- 4.370e-21 3.998e-21 -20.360 -20.398 -0.039 (0) Ca[14C]O3 2.535e-21 2.540e-21 -20.596 -20.595 0.001 (0) [14C]O[18O] 1.895e-21 1.898e-21 -20.722 -20.722 0.001 (0) [14C]O3-2 1.301e-21 9.112e-22 -20.886 -21.040 -0.155 (0) CaH[14C]O2[18O]+ 9.228e-23 8.465e-23 -22.035 -22.072 -0.037 (0) - CaH[14C]O[18O]O+ 9.228e-23 8.465e-23 -22.035 -22.072 -0.037 (0) CaH[14C][18O]O2+ 9.228e-23 8.465e-23 -22.035 -22.072 -0.037 (0) + CaH[14C]O[18O]O+ 9.228e-23 8.465e-23 -22.035 -22.072 -0.037 (0) Ca[14C]O2[18O] 1.518e-23 1.520e-23 -22.819 -22.818 0.001 (0) + H[14C][18O]O[18O]- 8.719e-24 7.977e-24 -23.060 -23.098 -0.039 (0) H[14C]O[18O]2- 8.719e-24 7.977e-24 -23.060 -23.098 -0.039 (0) H[14C][18O]2O- 8.719e-24 7.977e-24 -23.060 -23.098 -0.039 (0) - H[14C][18O]O[18O]- 8.719e-24 7.977e-24 -23.060 -23.098 -0.039 (0) [14C]O2[18O]-2 7.785e-24 5.454e-24 -23.109 -23.263 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.118 -70.118 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.119 -73.119 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.508 -69.507 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.509 -72.508 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.43 -17.29 -2.86 [13C]H4 + [13C]H4(g) -15.65 -18.51 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.24 -23.74 -1.50 [14C][18O]2 - [14C]H4(g) -27.81 -30.67 -2.86 [14C]H4 + [14C]H4(g) -29.04 -31.90 -2.86 [14C]H4 [14C]O2(g) -16.87 -18.34 -1.47 [14C]O2 [14C]O[18O](g) -19.25 -21.04 -1.79 [14C]O[18O] - [18O]2(g) -70.83 -73.12 -2.29 [18O]2 + [18O]2(g) -70.22 -72.51 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -26388,14 +26388,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.48 -15.34 -2.86 CH4 + CH4(g) -13.70 -16.56 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.18 -12.33 -3.15 H2 + H2(g) -9.49 -12.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.83 -67.72 -2.89 O2 - O[18O](g) -67.53 -70.42 -2.89 O[18O] + O2(g) -64.22 -67.11 -2.89 O2 + O[18O](g) -66.92 -69.81 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -26510,14 +26510,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6328e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6813e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -5.218e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.2212e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.885e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -26535,16 +26535,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.411 Adjusted to redox equilibrium + pe = -2.273 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 96 (197 overall) + Iterations = 115 (216 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -26556,25 +26556,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.956e-16 - CH4 5.956e-16 5.966e-16 -15.225 -15.224 0.001 (0) +C(-4) 4.735e-17 + CH4 4.735e-17 4.743e-17 -16.325 -16.324 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -26582,50 +26582,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.920e-13 - H2 4.960e-13 4.968e-13 -12.305 -12.304 0.001 (0) +H(0) 5.267e-13 + H2 2.634e-13 2.638e-13 -12.579 -12.579 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.775 -67.774 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.174 -70.173 0.001 (0) -[13C](-4) 6.602e-18 - [13C]H4 6.602e-18 6.613e-18 -17.180 -17.180 0.001 (0) + O2 0.000e+00 0.000e+00 -67.225 -67.224 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.624 -69.623 0.001 (0) +[13C](-4) 5.248e-19 + [13C]H4 5.248e-19 5.257e-19 -18.280 -18.279 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.511e-31 - [14C]H4 2.511e-31 2.515e-31 -30.600 -30.599 0.001 (0) +[14C](-4) 1.996e-32 + [14C]H4 1.996e-32 2.000e-32 -31.700 -31.699 0.001 (0) [14C](4) 2.498e-18 H[14C]O3- 2.018e-18 1.846e-18 -17.695 -17.734 -0.039 (0) [14C]O2 4.198e-19 4.205e-19 -18.377 -18.376 0.001 (0) CaH[14C]O3+ 4.261e-20 3.908e-20 -19.371 -19.408 -0.037 (0) - H[14C]O2[18O]- 4.026e-21 3.683e-21 -20.395 -20.434 -0.039 (0) - H[14C]O[18O]O- 4.026e-21 3.683e-21 -20.395 -20.434 -0.039 (0) H[14C][18O]O2- 4.026e-21 3.683e-21 -20.395 -20.434 -0.039 (0) + H[14C]O[18O]O- 4.026e-21 3.683e-21 -20.395 -20.434 -0.039 (0) + H[14C]O2[18O]- 4.026e-21 3.683e-21 -20.395 -20.434 -0.039 (0) Ca[14C]O3 2.336e-21 2.340e-21 -20.632 -20.631 0.001 (0) [14C]O[18O] 1.746e-21 1.749e-21 -20.758 -20.757 0.001 (0) [14C]O3-2 1.198e-21 8.394e-22 -20.921 -21.076 -0.155 (0) CaH[14C]O2[18O]+ 8.501e-23 7.798e-23 -22.071 -22.108 -0.037 (0) - CaH[14C]O[18O]O+ 8.501e-23 7.798e-23 -22.071 -22.108 -0.037 (0) CaH[14C][18O]O2+ 8.501e-23 7.798e-23 -22.071 -22.108 -0.037 (0) + CaH[14C]O[18O]O+ 8.501e-23 7.798e-23 -22.071 -22.108 -0.037 (0) Ca[14C]O2[18O] 1.398e-23 1.400e-23 -22.854 -22.854 0.001 (0) H[14C]O[18O]2- 8.032e-24 7.348e-24 -23.095 -23.134 -0.039 (0) H[14C][18O]2O- 8.032e-24 7.348e-24 -23.095 -23.134 -0.039 (0) @@ -26634,29 +26634,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.174 -70.173 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.175 -73.174 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.624 -69.623 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.625 -72.624 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.32 -17.18 -2.86 [13C]H4 + [13C]H4(g) -15.42 -18.28 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.27 -23.78 -1.50 [14C][18O]2 - [14C]H4(g) -27.74 -30.60 -2.86 [14C]H4 + [14C]H4(g) -28.84 -31.70 -2.86 [14C]H4 [14C]O2(g) -16.91 -18.38 -1.47 [14C]O2 [14C]O[18O](g) -19.29 -21.08 -1.79 [14C]O[18O] - [18O]2(g) -70.88 -73.17 -2.29 [18O]2 + [18O]2(g) -70.33 -72.62 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -26670,14 +26670,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.36 -15.22 -2.86 CH4 + CH4(g) -13.46 -16.32 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.15 -12.30 -3.15 H2 + H2(g) -9.43 -12.58 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.88 -67.77 -2.89 O2 - O[18O](g) -67.58 -70.47 -2.89 O[18O] + O2(g) -64.33 -67.22 -2.89 O2 + O[18O](g) -67.03 -69.92 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -26792,14 +26792,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7261e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.635e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -9.4369e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.1086e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 4.4409e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.0436e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -26817,16 +26817,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.436 Adjusted to redox equilibrium + pe = -2.309 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 160 (261 overall) + Iterations = 75 (176 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -26838,14 +26838,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.393e-16 - CH4 9.393e-16 9.409e-16 -15.027 -15.026 0.001 (0) +C(-4) 9.146e-17 + CH4 9.146e-17 9.161e-17 -16.039 -16.038 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -26854,9 +26854,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -26864,23 +26864,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.112e-12 - H2 5.558e-13 5.567e-13 -12.255 -12.254 0.001 (0) +H(0) 6.210e-13 + H2 3.105e-13 3.110e-13 -12.508 -12.507 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.874 -67.873 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.273 -70.272 0.001 (0) -[13C](-4) 1.041e-17 - [13C]H4 1.041e-17 1.043e-17 -16.982 -16.982 0.001 (0) + O2 0.000e+00 0.000e+00 -67.368 -67.367 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.767 -69.766 0.001 (0) +[13C](-4) 1.014e-18 + [13C]H4 1.014e-18 1.015e-18 -17.994 -17.993 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) @@ -26889,56 +26889,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.648e-31 - [14C]H4 3.648e-31 3.654e-31 -30.438 -30.437 0.001 (0) +[14C](-4) 3.552e-32 + [14C]H4 3.552e-32 3.558e-32 -31.449 -31.449 0.001 (0) [14C](4) 2.301e-18 H[14C]O3- 1.859e-18 1.701e-18 -17.731 -17.769 -0.039 (0) [14C]O2 3.868e-19 3.874e-19 -18.413 -18.412 0.001 (0) CaH[14C]O3+ 3.925e-20 3.601e-20 -19.406 -19.444 -0.037 (0) - H[14C]O2[18O]- 3.709e-21 3.393e-21 -20.431 -20.469 -0.039 (0) - H[14C]O[18O]O- 3.709e-21 3.393e-21 -20.431 -20.469 -0.039 (0) H[14C][18O]O2- 3.709e-21 3.393e-21 -20.431 -20.469 -0.039 (0) + H[14C]O[18O]O- 3.709e-21 3.393e-21 -20.431 -20.469 -0.039 (0) + H[14C]O2[18O]- 3.709e-21 3.393e-21 -20.431 -20.469 -0.039 (0) Ca[14C]O3 2.152e-21 2.155e-21 -20.667 -20.666 0.001 (0) [14C]O[18O] 1.608e-21 1.611e-21 -20.794 -20.793 0.001 (0) [14C]O3-2 1.104e-21 7.733e-22 -20.957 -21.112 -0.155 (0) CaH[14C]O2[18O]+ 7.831e-23 7.184e-23 -22.106 -22.144 -0.037 (0) - CaH[14C]O[18O]O+ 7.831e-23 7.184e-23 -22.106 -22.144 -0.037 (0) CaH[14C][18O]O2+ 7.831e-23 7.184e-23 -22.106 -22.144 -0.037 (0) + CaH[14C]O[18O]O+ 7.831e-23 7.184e-23 -22.106 -22.144 -0.037 (0) Ca[14C]O2[18O] 1.288e-23 1.290e-23 -22.890 -22.889 0.001 (0) - H[14C]O[18O]2- 7.399e-24 6.769e-24 -23.131 -23.169 -0.039 (0) H[14C][18O]2O- 7.399e-24 6.769e-24 -23.131 -23.169 -0.039 (0) H[14C][18O]O[18O]- 7.399e-24 6.769e-24 -23.131 -23.169 -0.039 (0) + H[14C]O[18O]2- 7.399e-24 6.769e-24 -23.131 -23.169 -0.039 (0) [14C]O2[18O]-2 6.607e-24 4.628e-24 -23.180 -23.335 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.273 -70.272 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.274 -73.273 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.767 -69.766 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.768 -72.767 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.12 -16.98 -2.86 [13C]H4 + [13C]H4(g) -15.13 -17.99 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.31 -23.81 -1.50 [14C][18O]2 - [14C]H4(g) -27.58 -30.44 -2.86 [14C]H4 + [14C]H4(g) -28.59 -31.45 -2.86 [14C]H4 [14C]O2(g) -16.94 -18.41 -1.47 [14C]O2 [14C]O[18O](g) -19.32 -21.11 -1.79 [14C]O[18O] - [18O]2(g) -70.98 -73.27 -2.29 [18O]2 + [18O]2(g) -70.48 -72.77 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -26952,14 +26952,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.17 -15.03 -2.86 CH4 + CH4(g) -13.18 -16.04 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.10 -12.25 -3.15 H2 + H2(g) -9.36 -12.51 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.98 -67.87 -2.89 O2 - O[18O](g) -67.68 -70.57 -2.89 O[18O] + O2(g) -64.47 -67.37 -2.89 O2 + O[18O](g) -67.17 -70.07 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -27074,14 +27074,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6498e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5581e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.9968e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.0103e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.954e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -27099,16 +27099,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.443 Adjusted to redox equilibrium + pe = -2.318 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 115 (216 overall) + Iterations = 125 (226 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -27120,25 +27120,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.078e-15 - CH4 1.078e-15 1.079e-15 -14.968 -14.967 0.001 (0) +C(-4) 1.086e-16 + CH4 1.086e-16 1.088e-16 -15.964 -15.964 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -27146,81 +27146,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.150e-12 - H2 5.752e-13 5.762e-13 -12.240 -12.239 0.001 (0) +H(0) 6.482e-13 + H2 3.241e-13 3.246e-13 -12.489 -12.489 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.904 -67.903 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.303 -70.302 0.001 (0) -[13C](-4) 1.194e-17 - [13C]H4 1.194e-17 1.196e-17 -16.923 -16.922 0.001 (0) + O2 0.000e+00 0.000e+00 -67.405 -67.405 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.804 -69.804 0.001 (0) +[13C](-4) 1.204e-18 + [13C]H4 1.204e-18 1.206e-18 -17.920 -17.919 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.856e-31 - [14C]H4 3.856e-31 3.862e-31 -30.414 -30.413 0.001 (0) +[14C](-4) 3.885e-32 + [14C]H4 3.885e-32 3.891e-32 -31.411 -31.410 0.001 (0) [14C](4) 2.120e-18 H[14C]O3- 1.712e-18 1.567e-18 -17.766 -17.805 -0.039 (0) [14C]O2 3.563e-19 3.569e-19 -18.448 -18.447 0.001 (0) CaH[14C]O3+ 3.616e-20 3.317e-20 -19.442 -19.479 -0.037 (0) - H[14C]O2[18O]- 3.416e-21 3.126e-21 -20.466 -20.505 -0.039 (0) - H[14C]O[18O]O- 3.416e-21 3.126e-21 -20.466 -20.505 -0.039 (0) H[14C][18O]O2- 3.416e-21 3.126e-21 -20.466 -20.505 -0.039 (0) + H[14C]O[18O]O- 3.416e-21 3.126e-21 -20.466 -20.505 -0.039 (0) + H[14C]O2[18O]- 3.416e-21 3.126e-21 -20.466 -20.505 -0.039 (0) Ca[14C]O3 1.982e-21 1.985e-21 -20.703 -20.702 0.001 (0) [14C]O[18O] 1.482e-21 1.484e-21 -20.829 -20.829 0.001 (0) [14C]O3-2 1.017e-21 7.124e-22 -20.993 -21.147 -0.155 (0) CaH[14C]O2[18O]+ 7.214e-23 6.618e-23 -22.142 -22.179 -0.037 (0) - CaH[14C]O[18O]O+ 7.214e-23 6.618e-23 -22.142 -22.179 -0.037 (0) CaH[14C][18O]O2+ 7.214e-23 6.618e-23 -22.142 -22.179 -0.037 (0) + CaH[14C]O[18O]O+ 7.214e-23 6.618e-23 -22.142 -22.179 -0.037 (0) Ca[14C]O2[18O] 1.186e-23 1.188e-23 -22.926 -22.925 0.001 (0) + H[14C][18O]O[18O]- 6.816e-24 6.236e-24 -23.166 -23.205 -0.039 (0) H[14C]O[18O]2- 6.816e-24 6.236e-24 -23.166 -23.205 -0.039 (0) H[14C][18O]2O- 6.816e-24 6.236e-24 -23.166 -23.205 -0.039 (0) - H[14C][18O]O[18O]- 6.816e-24 6.236e-24 -23.166 -23.205 -0.039 (0) [14C]O2[18O]-2 6.086e-24 4.264e-24 -23.216 -23.370 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.303 -70.302 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.304 -73.303 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.804 -69.804 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.805 -72.805 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.06 -16.92 -2.86 [13C]H4 + [13C]H4(g) -15.06 -17.92 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.34 -23.85 -1.50 [14C][18O]2 - [14C]H4(g) -27.55 -30.41 -2.86 [14C]H4 + [14C]H4(g) -28.55 -31.41 -2.86 [14C]H4 [14C]O2(g) -16.98 -18.45 -1.47 [14C]O2 [14C]O[18O](g) -19.36 -21.15 -1.79 [14C]O[18O] - [18O]2(g) -71.01 -73.30 -2.29 [18O]2 + [18O]2(g) -70.51 -72.80 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -27234,14 +27234,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.11 -14.97 -2.86 CH4 + CH4(g) -13.10 -15.96 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.09 -12.24 -3.15 H2 + H2(g) -9.34 -12.49 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -65.01 -67.90 -2.89 O2 - O[18O](g) -67.71 -70.60 -2.89 O[18O] + O2(g) -64.51 -67.40 -2.89 O2 + O[18O](g) -67.21 -70.10 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -27356,14 +27356,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6696e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5767e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.5321e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.4988e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.2164e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -27381,16 +27381,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.438 Adjusted to redox equilibrium + pe = -2.310 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 110 (211 overall) + Iterations = 112 (213 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -27402,15 +27402,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.892e-16 - CH4 9.892e-16 9.908e-16 -15.005 -15.004 0.001 (0) +C(-4) 9.291e-17 + CH4 9.291e-17 9.307e-17 -16.032 -16.031 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -27418,9 +27418,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -27428,50 +27428,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.126e-12 - H2 5.631e-13 5.640e-13 -12.249 -12.249 0.001 (0) +H(0) 6.234e-13 + H2 3.117e-13 3.122e-13 -12.506 -12.506 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.885 -67.884 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.284 -70.283 0.001 (0) -[13C](-4) 1.096e-17 - [13C]H4 1.096e-17 1.098e-17 -16.960 -16.959 0.001 (0) + O2 0.000e+00 0.000e+00 -67.371 -67.371 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.770 -69.770 0.001 (0) +[13C](-4) 1.030e-18 + [13C]H4 1.030e-18 1.032e-18 -17.987 -17.986 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.261e-31 - [14C]H4 3.261e-31 3.266e-31 -30.487 -30.486 0.001 (0) +[14C](-4) 3.063e-32 + [14C]H4 3.063e-32 3.068e-32 -31.514 -31.513 0.001 (0) [14C](4) 1.953e-18 H[14C]O3- 1.577e-18 1.443e-18 -17.802 -17.841 -0.039 (0) [14C]O2 3.282e-19 3.288e-19 -18.484 -18.483 0.001 (0) CaH[14C]O3+ 3.331e-20 3.056e-20 -19.477 -19.515 -0.037 (0) - H[14C]O2[18O]- 3.147e-21 2.879e-21 -20.502 -20.541 -0.039 (0) - H[14C]O[18O]O- 3.147e-21 2.879e-21 -20.502 -20.541 -0.039 (0) H[14C][18O]O2- 3.147e-21 2.879e-21 -20.502 -20.541 -0.039 (0) + H[14C]O[18O]O- 3.147e-21 2.879e-21 -20.502 -20.541 -0.039 (0) + H[14C]O2[18O]- 3.147e-21 2.879e-21 -20.502 -20.541 -0.039 (0) Ca[14C]O3 1.826e-21 1.829e-21 -20.738 -20.738 0.001 (0) [14C]O[18O] 1.365e-21 1.367e-21 -20.865 -20.864 0.001 (0) [14C]O3-2 9.368e-22 6.562e-22 -21.028 -21.183 -0.155 (0) CaH[14C]O2[18O]+ 6.646e-23 6.097e-23 -22.177 -22.215 -0.037 (0) - CaH[14C]O[18O]O+ 6.646e-23 6.097e-23 -22.177 -22.215 -0.037 (0) CaH[14C][18O]O2+ 6.646e-23 6.097e-23 -22.177 -22.215 -0.037 (0) + CaH[14C]O[18O]O+ 6.646e-23 6.097e-23 -22.177 -22.215 -0.037 (0) Ca[14C]O2[18O] 1.093e-23 1.095e-23 -22.961 -22.961 0.001 (0) H[14C]O[18O]2- 6.280e-24 5.745e-24 -23.202 -23.241 -0.039 (0) H[14C][18O]2O- 6.280e-24 5.745e-24 -23.202 -23.241 -0.039 (0) @@ -27480,29 +27480,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.284 -70.283 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.285 -73.284 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.770 -69.770 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.771 -72.771 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.10 -16.96 -2.86 [13C]H4 + [13C]H4(g) -15.13 -17.99 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.38 -23.88 -1.50 [14C][18O]2 - [14C]H4(g) -27.63 -30.49 -2.86 [14C]H4 + [14C]H4(g) -28.65 -31.51 -2.86 [14C]H4 [14C]O2(g) -17.01 -18.48 -1.47 [14C]O2 [14C]O[18O](g) -19.40 -21.18 -1.79 [14C]O[18O] - [18O]2(g) -70.99 -73.28 -2.29 [18O]2 + [18O]2(g) -70.48 -72.77 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -27516,14 +27516,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.14 -15.00 -2.86 CH4 + CH4(g) -13.17 -16.03 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.10 -12.25 -3.15 H2 + H2(g) -9.36 -12.51 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.99 -67.88 -2.89 O2 - O[18O](g) -67.69 -70.58 -2.89 O[18O] + O2(g) -64.48 -67.37 -2.89 O2 + O[18O](g) -67.18 -70.07 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -27547,12 +27547,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 105. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -27638,14 +27632,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6515e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7619e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 4.2188e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.2212e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 9.992e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.843e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -27663,16 +27657,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.448 Adjusted to redox equilibrium + pe = -2.327 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 111 (212 overall) + Iterations = 51 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -27684,25 +27678,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.179e-15 - CH4 1.179e-15 1.181e-15 -14.929 -14.928 0.001 (0) +C(-4) 1.279e-16 + CH4 1.279e-16 1.281e-16 -15.893 -15.892 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -27710,23 +27704,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.177e-12 - H2 5.883e-13 5.892e-13 -12.230 -12.230 0.001 (0) +H(0) 6.753e-13 + H2 3.376e-13 3.382e-13 -12.472 -12.471 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.923 -67.922 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.322 -70.321 0.001 (0) -[13C](-4) 1.307e-17 - [13C]H4 1.307e-17 1.309e-17 -16.884 -16.883 0.001 (0) + O2 0.000e+00 0.000e+00 -67.441 -67.440 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.840 -69.839 0.001 (0) +[13C](-4) 1.418e-18 + [13C]H4 1.418e-18 1.420e-18 -17.848 -17.848 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) @@ -27735,56 +27729,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.579e-31 - [14C]H4 3.579e-31 3.585e-31 -30.446 -30.446 0.001 (0) +[14C](-4) 3.884e-32 + [14C]H4 3.884e-32 3.891e-32 -31.411 -31.410 0.001 (0) [14C](4) 1.799e-18 H[14C]O3- 1.453e-18 1.329e-18 -17.838 -17.876 -0.039 (0) [14C]O2 3.024e-19 3.029e-19 -18.519 -18.519 0.001 (0) CaH[14C]O3+ 3.069e-20 2.815e-20 -19.513 -19.551 -0.037 (0) - H[14C]O2[18O]- 2.899e-21 2.653e-21 -20.538 -20.576 -0.039 (0) - H[14C]O[18O]O- 2.899e-21 2.653e-21 -20.538 -20.576 -0.039 (0) H[14C][18O]O2- 2.899e-21 2.653e-21 -20.538 -20.576 -0.039 (0) + H[14C]O[18O]O- 2.899e-21 2.653e-21 -20.538 -20.576 -0.039 (0) + H[14C]O2[18O]- 2.899e-21 2.653e-21 -20.538 -20.576 -0.039 (0) Ca[14C]O3 1.682e-21 1.685e-21 -20.774 -20.773 0.001 (0) [14C]O[18O] 1.257e-21 1.259e-21 -20.901 -20.900 0.001 (0) [14C]O3-2 8.630e-22 6.045e-22 -21.064 -21.219 -0.155 (0) CaH[14C]O2[18O]+ 6.123e-23 5.616e-23 -22.213 -22.251 -0.037 (0) - CaH[14C]O[18O]O+ 6.123e-23 5.616e-23 -22.213 -22.251 -0.037 (0) CaH[14C][18O]O2+ 6.123e-23 5.616e-23 -22.213 -22.251 -0.037 (0) + CaH[14C]O[18O]O+ 6.123e-23 5.616e-23 -22.213 -22.251 -0.037 (0) Ca[14C]O2[18O] 1.007e-23 1.009e-23 -22.997 -22.996 0.001 (0) - H[14C]O[18O]2- 5.785e-24 5.292e-24 -23.238 -23.276 -0.039 (0) H[14C][18O]2O- 5.785e-24 5.292e-24 -23.238 -23.276 -0.039 (0) H[14C][18O]O[18O]- 5.785e-24 5.292e-24 -23.238 -23.276 -0.039 (0) + H[14C]O[18O]2- 5.785e-24 5.292e-24 -23.238 -23.276 -0.039 (0) [14C]O2[18O]-2 5.165e-24 3.619e-24 -23.287 -23.441 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.322 -70.321 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.323 -73.322 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.840 -69.839 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.841 -72.840 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.02 -16.88 -2.86 [13C]H4 + [13C]H4(g) -14.99 -17.85 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.42 -23.92 -1.50 [14C][18O]2 - [14C]H4(g) -27.59 -30.45 -2.86 [14C]H4 + [14C]H4(g) -28.55 -31.41 -2.86 [14C]H4 [14C]O2(g) -17.05 -18.52 -1.47 [14C]O2 [14C]O[18O](g) -19.43 -21.22 -1.79 [14C]O[18O] - [18O]2(g) -71.03 -73.32 -2.29 [18O]2 + [18O]2(g) -70.55 -72.84 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -27798,14 +27792,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.07 -14.93 -2.86 CH4 + CH4(g) -13.03 -15.89 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.08 -12.23 -3.15 H2 + H2(g) -9.32 -12.47 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -65.03 -67.92 -2.89 O2 - O[18O](g) -67.73 -70.62 -2.89 O[18O] + O2(g) -64.55 -67.44 -2.89 O2 + O[18O](g) -67.25 -70.14 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -27829,12 +27823,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 106. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -27920,14 +27908,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7256e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7341e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.0214e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.2157e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -27945,16 +27933,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.455 Adjusted to redox equilibrium + pe = -2.337 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 103 (204 overall) + Iterations = 52 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -27966,15 +27954,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.355e-15 - CH4 1.355e-15 1.357e-15 -14.868 -14.867 0.001 (0) +C(-4) 1.521e-16 + CH4 1.521e-16 1.524e-16 -15.818 -15.817 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -27982,9 +27970,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -27992,81 +27980,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.218e-12 - H2 6.091e-13 6.101e-13 -12.215 -12.215 0.001 (0) +H(0) 7.052e-13 + H2 3.526e-13 3.532e-13 -12.453 -12.452 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.953 -67.953 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.352 -70.352 0.001 (0) -[13C](-4) 1.502e-17 - [13C]H4 1.502e-17 1.504e-17 -16.823 -16.823 0.001 (0) + O2 0.000e+00 0.000e+00 -67.478 -67.478 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.877 -69.877 0.001 (0) +[13C](-4) 1.686e-18 + [13C]H4 1.686e-18 1.689e-18 -17.773 -17.772 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.790e-31 - [14C]H4 3.790e-31 3.796e-31 -30.421 -30.421 0.001 (0) +[14C](-4) 4.256e-32 + [14C]H4 4.256e-32 4.263e-32 -31.371 -31.370 0.001 (0) [14C](4) 1.657e-18 H[14C]O3- 1.339e-18 1.225e-18 -17.873 -17.912 -0.039 (0) [14C]O2 2.786e-19 2.790e-19 -18.555 -18.554 0.001 (0) CaH[14C]O3+ 2.827e-20 2.593e-20 -19.549 -19.586 -0.037 (0) - H[14C]O2[18O]- 2.671e-21 2.444e-21 -20.573 -20.612 -0.039 (0) - H[14C]O[18O]O- 2.671e-21 2.444e-21 -20.573 -20.612 -0.039 (0) H[14C][18O]O2- 2.671e-21 2.444e-21 -20.573 -20.612 -0.039 (0) + H[14C]O[18O]O- 2.671e-21 2.444e-21 -20.573 -20.612 -0.039 (0) + H[14C]O2[18O]- 2.671e-21 2.444e-21 -20.573 -20.612 -0.039 (0) Ca[14C]O3 1.550e-21 1.552e-21 -20.810 -20.809 0.001 (0) [14C]O[18O] 1.158e-21 1.160e-21 -20.936 -20.935 0.001 (0) [14C]O3-2 7.950e-22 5.569e-22 -21.100 -21.254 -0.155 (0) CaH[14C]O2[18O]+ 5.640e-23 5.174e-23 -22.249 -22.286 -0.037 (0) - CaH[14C]O[18O]O+ 5.640e-23 5.174e-23 -22.249 -22.286 -0.037 (0) CaH[14C][18O]O2+ 5.640e-23 5.174e-23 -22.249 -22.286 -0.037 (0) + CaH[14C]O[18O]O+ 5.640e-23 5.174e-23 -22.249 -22.286 -0.037 (0) Ca[14C]O2[18O] 9.276e-24 9.291e-24 -23.033 -23.032 0.001 (0) + H[14C][18O]O[18O]- 5.329e-24 4.876e-24 -23.273 -23.312 -0.039 (0) H[14C]O[18O]2- 5.329e-24 4.876e-24 -23.273 -23.312 -0.039 (0) H[14C][18O]2O- 5.329e-24 4.876e-24 -23.273 -23.312 -0.039 (0) - H[14C][18O]O[18O]- 5.329e-24 4.876e-24 -23.273 -23.312 -0.039 (0) [14C]O2[18O]-2 4.758e-24 3.334e-24 -23.323 -23.477 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.352 -70.352 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.353 -73.353 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.877 -69.877 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.879 -72.878 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -13.96 -16.82 -2.86 [13C]H4 + [13C]H4(g) -14.91 -17.77 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.45 -23.95 -1.50 [14C][18O]2 - [14C]H4(g) -27.56 -30.42 -2.86 [14C]H4 + [14C]H4(g) -28.51 -31.37 -2.86 [14C]H4 [14C]O2(g) -17.09 -18.55 -1.47 [14C]O2 [14C]O[18O](g) -19.47 -21.25 -1.79 [14C]O[18O] - [18O]2(g) -71.06 -73.35 -2.29 [18O]2 + [18O]2(g) -70.59 -72.88 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -28080,14 +28068,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.01 -14.87 -2.86 CH4 + CH4(g) -12.96 -15.82 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.06 -12.21 -3.15 H2 + H2(g) -9.30 -12.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -65.06 -67.95 -2.89 O2 - O[18O](g) -67.76 -70.65 -2.89 O[18O] + O2(g) -64.59 -67.48 -2.89 O2 + O[18O](g) -67.29 -70.18 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -28353,14 +28341,14 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 3.6713e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.3067e-10 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 6.8834e-12 0 -----------------------------Solution composition------------------------------ @@ -28375,14 +28363,14 @@ Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 ----------------------------Description of solution---------------------------- pH = 5.863 Charge balance - pe = 0.247 Adjusted to redox equilibrium + pe = 0.219 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 1.495e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 1.003e-03 Total CO2 (mol/kg) = 3.912e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.367e-14 + Electrical balance (eq) = 3.883e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 18 Total H = 1.110126e+02 @@ -28396,44 +28384,44 @@ Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 H3O+ 1.426e-06 1.369e-06 -5.846 -5.863 -0.018 0.00 OH- 7.606e-09 7.282e-09 -8.119 -8.138 -0.019 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.506e-28 - CH4 9.506e-28 9.510e-28 -27.022 -27.022 0.000 (0) +C(-4) 1.584e-27 + CH4 1.584e-27 1.584e-27 -26.800 -26.800 0.000 (0) C(4) 3.912e-03 CO2 2.907e-03 2.908e-03 -2.537 -2.536 0.000 (0) HCO3- 9.821e-04 9.406e-04 -3.008 -3.027 -0.019 (0) CO[18O] 1.209e-05 1.209e-05 -4.918 -4.918 0.000 (0) CaHCO3+ 5.241e-06 5.023e-06 -5.281 -5.299 -0.018 (0) - HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) - HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HC[18O]O2- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) CO3-2 3.822e-08 3.216e-08 -7.418 -7.493 -0.075 (0) CaCO3 2.260e-08 2.261e-08 -7.646 -7.646 0.000 (0) C[18O]2 1.257e-08 1.257e-08 -7.901 -7.901 0.000 (0) CaHCO2[18O]+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) - CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) CaHC[18O]O2+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) + CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) Ca 5.014e-04 Ca+2 4.961e-04 4.184e-04 -3.304 -3.378 -0.074 (0) CaHCO3+ 5.241e-06 5.023e-06 -5.281 -5.299 -0.018 (0) CaH[13C]O3+ 5.770e-08 5.530e-08 -7.239 -7.257 -0.018 (0) CaCO3 2.260e-08 2.261e-08 -7.646 -7.646 0.000 (0) CaHCO2[18O]+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) - CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) CaHC[18O]O2+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) -H(0) 8.541e-16 - H2 4.271e-16 4.272e-16 -15.370 -15.369 0.000 (0) + CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) +H(0) 9.704e-16 + H2 4.852e-16 4.854e-16 -15.314 -15.314 0.000 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -61.643 -61.643 0.000 (0) - O[18O] 0.000e+00 0.000e+00 -64.042 -64.042 0.000 (0) -[13C](-4) 1.038e-29 - [13C]H4 1.038e-29 1.038e-29 -28.984 -28.984 0.000 (0) + O2 0.000e+00 0.000e+00 -61.754 -61.754 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -64.153 -64.153 0.000 (0) +[13C](-4) 1.729e-29 + [13C]H4 1.729e-29 1.729e-29 -28.762 -28.762 0.000 (0) [13C](4) 4.280e-05 [13C]O2 3.173e-05 3.174e-05 -4.499 -4.498 0.000 (0) H[13C]O3- 1.081e-05 1.036e-05 -4.966 -4.985 -0.019 (0) [13C]O[18O] 1.319e-07 1.320e-07 -6.880 -6.879 0.000 (0) CaH[13C]O3+ 5.770e-08 5.530e-08 -7.239 -7.257 -0.018 (0) - H[13C]O2[18O]- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) H[13C]O[18O]O- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) + H[13C]O2[18O]- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) H[13C][18O]O2- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) [13C]O3-2 4.202e-10 3.535e-10 -9.377 -9.452 -0.075 (0) Ca[13C]O3 2.484e-10 2.485e-10 -9.605 -9.605 0.000 (0) @@ -28441,52 +28429,52 @@ O(0) 0.000e+00 CaH[13C]O2[18O]+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) CaH[13C]O[18O]O+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) CaH[13C][18O]O2+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) - H[13C]O[18O]2- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) H[13C][18O]2O- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) H[13C][18O]O[18O]- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) -[14C](-4) 9.824e-40 - [14C]H4 9.824e-40 9.828e-40 -39.008 -39.008 0.000 (0) + H[13C]O[18O]2- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) +[14C](-4) 1.637e-39 + [14C]H4 1.637e-39 1.638e-39 -38.786 -38.786 0.000 (0) [14C](4) 4.061e-15 [14C]O2 3.004e-15 3.005e-15 -14.522 -14.522 0.000 (0) H[14C]O3- 1.033e-15 9.890e-16 -14.986 -15.005 -0.019 (0) [14C]O[18O] 1.249e-17 1.250e-17 -16.903 -16.903 0.000 (0) CaH[14C]O3+ 5.511e-18 5.281e-18 -17.259 -17.277 -0.018 (0) - H[14C]O2[18O]- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) - H[14C]O[18O]O- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) H[14C][18O]O2- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) + H[14C]O[18O]O- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) + H[14C]O2[18O]- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) [14C]O3-2 4.008e-20 3.372e-20 -19.397 -19.472 -0.075 (0) Ca[14C]O3 2.369e-20 2.370e-20 -19.625 -19.625 0.000 (0) [14C][18O]2 1.299e-20 1.299e-20 -19.887 -19.886 0.000 (0) CaH[14C]O2[18O]+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) - CaH[14C]O[18O]O+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) CaH[14C][18O]O2+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) + CaH[14C]O[18O]O+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) H[14C]O[18O]2- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) - H[14C][18O]2O- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) H[14C][18O]O[18O]- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) + H[14C][18O]2O- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 1.209e-05 1.209e-05 -4.918 -4.918 0.000 (0) - HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HC[18O]O2- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) [13C]O[18O] 1.319e-07 1.320e-07 -6.880 -6.879 0.000 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -64.042 -64.042 0.000 (0) - [18O]2 0.000e+00 0.000e+00 -67.043 -67.043 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -64.153 -64.153 0.000 (0) + [18O]2 0.000e+00 0.000e+00 -67.154 -67.154 0.000 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.40 -9.90 -1.50 [13C][18O]2 - [13C]H4(g) -26.12 -28.98 -2.86 [13C]H4 + [13C]H4(g) -25.90 -28.76 -2.86 [13C]H4 [13C]O2(g) -3.03 -4.50 -1.47 [13C]O2 [13C]O[18O](g) -5.41 -7.20 -1.79 [13C]O[18O] [14C][18O]2(g) -18.42 -19.92 -1.50 [14C][18O]2 - [14C]H4(g) -36.15 -39.01 -2.86 [14C]H4 + [14C]H4(g) -35.93 -38.79 -2.86 [14C]H4 [14C]O2(g) -13.05 -14.52 -1.47 [14C]O2 [14C]O[18O](g) -15.44 -17.22 -1.79 [14C]O[18O] - [18O]2(g) -64.75 -67.04 -2.29 [18O]2 + [18O]2(g) -64.86 -67.15 -2.29 [18O]2 C[18O]2(g) -6.43 -7.94 -1.50 C[18O]2 Ca[13C][18O]3(s) -12.41 -4.25 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -6.56 1.15 7.71 Ca[13C]O2[18O] @@ -28500,14 +28488,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -4.60 3.11 7.71 CaCO2[18O] CaCO[18O]2(s) -7.29 0.41 7.70 CaCO[18O]2 Calcite -2.39 -10.87 -8.48 CaCO3 - CH4(g) -24.16 -27.02 -2.86 CH4 + CH4(g) -23.94 -26.80 -2.86 CH4 CO2(g) -1.07 -2.54 -1.47 CO2 CO[18O](g) -3.45 -5.24 -1.79 CO[18O] - H2(g) -12.22 -15.37 -3.15 H2 + H2(g) -12.16 -15.31 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -58.75 -61.64 -2.89 O2 - O[18O](g) -61.45 -64.34 -2.89 O[18O] + O2(g) -58.86 -61.75 -2.89 O2 + O[18O](g) -61.56 -64.45 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -28599,10 +28587,10 @@ Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.9496e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.9261e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 0 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.2212e-12 0 Alpha 14C CH4(aq)/CO2(aq) 0 -1000 0 -----------------------------Solution composition------------------------------ @@ -28618,14 +28606,14 @@ Alpha 14C CH4(aq)/CO2(aq) 0 -1000 0 ----------------------------Description of solution---------------------------- pH = 6.235 Charge balance - pe = 0.081 Adjusted to redox equilibrium + pe = 0.013 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 2.970e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 2.006e-03 Total CO2 (mol/kg) = 4.408e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.501e-14 + Electrical balance (eq) = 3.897e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 5 Total H = 1.110126e+02 @@ -28639,101 +28627,101 @@ Alpha 14C CH4(aq)/CO2(aq) 0 -1000 0 H3O+ 6.146e-07 5.816e-07 -6.211 -6.235 -0.024 0.00 OH- 1.821e-08 1.714e-08 -7.740 -7.766 -0.026 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.780e-29 - CH4 1.780e-29 1.781e-29 -28.750 -28.749 0.000 (0) +C(-4) 6.181e-29 + CH4 6.181e-29 6.185e-29 -28.209 -28.209 0.000 (0) C(4) 4.408e-03 CO2 2.414e-03 2.416e-03 -2.617 -2.617 0.000 (0) HCO3- 1.953e-03 1.840e-03 -2.709 -2.735 -0.026 (0) CaHCO3+ 1.936e-05 1.827e-05 -4.713 -4.738 -0.025 (0) CO[18O] 1.004e-05 1.005e-05 -4.998 -4.998 0.000 (0) - HCO2[18O]- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) + HCO2[18O]- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HC[18O]O2- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) CaCO3 1.934e-07 1.935e-07 -6.714 -6.713 0.000 (0) CO3-2 1.880e-07 1.481e-07 -6.726 -6.830 -0.104 (0) CaHCO2[18O]+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) - CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) CaHC[18O]O2+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) + CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) C[18O]2 1.044e-08 1.044e-08 -7.981 -7.981 0.000 (0) HCO[18O]2- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) - HC[18O]2O- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) HC[18O]O[18O]- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) + HC[18O]2O- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) Ca 1.003e-03 Ca+2 9.830e-04 7.781e-04 -3.007 -3.109 -0.102 (0) CaHCO3+ 1.936e-05 1.827e-05 -4.713 -4.738 -0.025 (0) CaH[13C]O3+ 2.134e-07 2.013e-07 -6.671 -6.696 -0.025 (0) CaCO3 1.934e-07 1.935e-07 -6.714 -6.713 0.000 (0) CaHCO2[18O]+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) - CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) CaHC[18O]O2+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) + CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) Ca[13C]O3 2.128e-09 2.130e-09 -8.672 -8.672 0.000 (0) CaCO2[18O] 1.158e-09 1.158e-09 -8.936 -8.936 0.000 (0) -H(0) 3.309e-16 - H2 1.654e-16 1.656e-16 -15.781 -15.781 0.000 (0) +H(0) 4.517e-16 + H2 2.258e-16 2.260e-16 -15.646 -15.646 0.000 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -60.820 -60.820 0.000 (0) - O[18O] 0.000e+00 0.000e+00 -63.219 -63.219 0.000 (0) -[13C](-4) 1.945e-31 - [13C]H4 1.945e-31 1.946e-31 -30.711 -30.711 0.000 (0) + O2 0.000e+00 0.000e+00 -61.090 -61.090 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -63.489 -63.489 0.000 (0) +[13C](-4) 6.753e-31 + [13C]H4 6.753e-31 6.758e-31 -30.170 -30.170 0.000 (0) [13C](4) 4.835e-05 [13C]O2 2.638e-05 2.639e-05 -4.579 -4.578 0.000 (0) H[13C]O3- 2.152e-05 2.027e-05 -4.667 -4.693 -0.026 (0) CaH[13C]O3+ 2.134e-07 2.013e-07 -6.671 -6.696 -0.025 (0) [13C]O[18O] 1.097e-07 1.098e-07 -6.960 -6.960 0.000 (0) H[13C]O2[18O]- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) - H[13C]O[18O]O- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) H[13C][18O]O2- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) + H[13C]O[18O]O- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) Ca[13C]O3 2.128e-09 2.130e-09 -8.672 -8.672 0.000 (0) [13C]O3-2 2.069e-09 1.629e-09 -8.684 -8.788 -0.104 (0) CaH[13C]O2[18O]+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) CaH[13C]O[18O]O+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) CaH[13C][18O]O2+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) [13C][18O]2 1.140e-10 1.141e-10 -9.943 -9.943 0.000 (0) - H[13C]O[18O]2- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) H[13C][18O]2O- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) H[13C][18O]O[18O]- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) + H[13C]O[18O]2- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -40.789 -40.788 0.000 (0) + [14C]H4 0.000e+00 0.000e+00 -40.248 -40.248 0.000 (0) [14C](4) 4.061e-15 [14C]O2 2.207e-15 2.208e-15 -14.656 -14.656 0.000 (0) H[14C]O3- 1.816e-15 1.711e-15 -14.741 -14.767 -0.026 (0) CaH[14C]O3+ 1.801e-17 1.699e-17 -16.745 -16.770 -0.025 (0) [14C]O[18O] 9.176e-18 9.182e-18 -17.037 -17.037 0.000 (0) - H[14C]O2[18O]- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) H[14C]O[18O]O- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) + H[14C]O2[18O]- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) H[14C][18O]O2- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) Ca[14C]O3 1.794e-19 1.795e-19 -18.746 -18.746 0.000 (0) [14C]O3-2 1.743e-19 1.373e-19 -18.759 -18.862 -0.104 (0) - CaH[14C]O2[18O]+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) CaH[14C]O[18O]O+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) + CaH[14C]O2[18O]+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) CaH[14C][18O]O2+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) [14C][18O]2 9.539e-21 9.545e-21 -20.021 -20.020 0.000 (0) - H[14C]O[18O]2- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) - H[14C][18O]2O- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) H[14C][18O]O[18O]- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) + H[14C][18O]2O- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) + H[14C]O[18O]2- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 1.004e-05 1.005e-05 -4.998 -4.998 0.000 (0) HCO2[18O]- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) - HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HC[18O]O2- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) + HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -63.219 -63.219 0.000 (0) - [18O]2 0.000e+00 0.000e+00 -66.220 -66.220 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -63.489 -63.489 0.000 (0) + [18O]2 0.000e+00 0.000e+00 -66.490 -66.490 0.000 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.48 -9.98 -1.50 [13C][18O]2 - [13C]H4(g) -27.85 -30.71 -2.86 [13C]H4 + [13C]H4(g) -27.31 -30.17 -2.86 [13C]H4 [13C]O2(g) -3.11 -4.58 -1.47 [13C]O2 [13C]O[18O](g) -5.49 -7.28 -1.79 [13C]O[18O] [14C][18O]2(g) -18.55 -20.06 -1.50 [14C][18O]2 - [14C]H4(g) -37.93 -40.79 -2.86 [14C]H4 + [14C]H4(g) -37.39 -40.25 -2.86 [14C]H4 [14C]O2(g) -13.19 -14.66 -1.47 [14C]O2 [14C]O[18O](g) -15.57 -17.36 -1.79 [14C]O[18O] - [18O]2(g) -63.93 -66.22 -2.29 [18O]2 + [18O]2(g) -64.20 -66.49 -2.29 [18O]2 C[18O]2(g) -6.51 -8.02 -1.50 C[18O]2 Ca[13C][18O]3(s) -11.48 -3.32 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -5.63 2.08 7.71 Ca[13C]O2[18O] @@ -28747,14 +28735,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -3.67 4.04 7.71 CaCO2[18O] CaCO[18O]2(s) -6.36 1.34 7.70 CaCO[18O]2 Calcite -1.46 -9.94 -8.48 CaCO3 - CH4(g) -25.89 -28.75 -2.86 CH4 + CH4(g) -25.35 -28.21 -2.86 CH4 CO2(g) -1.15 -2.62 -1.47 CO2 CO[18O](g) -3.53 -5.32 -1.79 CO[18O] - H2(g) -12.63 -15.78 -3.15 H2 + H2(g) -12.50 -15.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -57.93 -60.82 -2.89 O2 - O[18O](g) -60.63 -63.52 -2.89 O[18O] + O2(g) -58.20 -61.09 -2.89 O2 + O[18O](g) -60.90 -63.79 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -28841,12 +28829,12 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2373e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2795e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.9934e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8096e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 @@ -28863,14 +28851,14 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 ----------------------------Description of solution---------------------------- pH = 6.503 Charge balance - pe = 11.499 Adjusted to redox equilibrium + pe = 11.498 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 4.428e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 3.009e-03 Total CO2 (mol/kg) = 4.904e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.766e-13 + Electrical balance (eq) = 5.037e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 17 Total H = 1.110126e+02 @@ -28885,22 +28873,22 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 OH- 3.415e-08 3.176e-08 -7.467 -7.498 -0.032 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.333 -122.333 0.000 (0) + CH4 0.000e+00 0.000e+00 -122.330 -122.330 0.000 (0) C(4) 4.904e-03 HCO3- 2.915e-03 2.713e-03 -2.535 -2.567 -0.031 (0) CO2 1.921e-03 1.923e-03 -2.716 -2.716 0.000 (0) CaHCO3+ 4.102e-05 3.825e-05 -4.387 -4.417 -0.030 (0) CO[18O] 7.989e-06 7.997e-06 -5.097 -5.097 0.000 (0) HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) - HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) + HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) CaCO3 7.501e-07 7.509e-07 -6.125 -6.124 0.000 (0) CO3-2 5.390e-07 4.046e-07 -6.268 -6.393 -0.125 (0) CaHCO2[18O]+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHCO[18O]O+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHC[18O]O2+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) - HCO[18O]2- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) HC[18O]2O- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) + HCO[18O]2- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) HC[18O]O[18O]- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) C[18O]2 8.305e-09 8.314e-09 -8.081 -8.080 0.000 (0) Ca 1.504e-03 @@ -28909,62 +28897,62 @@ Ca 1.504e-03 CaCO3 7.501e-07 7.509e-07 -6.125 -6.124 0.000 (0) CaH[13C]O3+ 4.525e-07 4.219e-07 -6.344 -6.375 -0.030 (0) CaHCO2[18O]+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) - CaHCO[18O]O+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHC[18O]O2+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) + CaHCO[18O]O+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) Ca[13C]O3 8.262e-09 8.270e-09 -8.083 -8.082 0.000 (0) CaCO2[18O] 4.490e-09 4.494e-09 -8.348 -8.347 0.000 (0) -H(0) 1.407e-39 - H2 7.037e-40 7.044e-40 -39.153 -39.152 0.000 (0) -O(0) 1.679e-14 - O2 8.360e-15 8.369e-15 -14.078 -14.077 0.000 (0) - O[18O] 3.336e-17 3.339e-17 -16.477 -16.476 0.000 (0) +H(0) 1.410e-39 + H2 7.048e-40 7.055e-40 -39.152 -39.152 0.000 (0) +O(0) 1.673e-14 + O2 8.334e-15 8.342e-15 -14.079 -14.079 0.000 (0) + O[18O] 3.326e-17 3.329e-17 -16.478 -16.478 0.000 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.294 -124.294 0.000 (0) + [13C]H4 0.000e+00 0.000e+00 -124.292 -124.291 0.000 (0) [13C](4) 5.391e-05 H[13C]O3- 3.215e-05 2.993e-05 -4.493 -4.524 -0.031 (0) [13C]O2 2.101e-05 2.103e-05 -4.678 -4.677 0.000 (0) CaH[13C]O3+ 4.525e-07 4.219e-07 -6.344 -6.375 -0.030 (0) [13C]O[18O] 8.736e-08 8.745e-08 -7.059 -7.058 0.000 (0) H[13C]O2[18O]- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) - H[13C]O[18O]O- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) H[13C][18O]O2- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) + H[13C]O[18O]O- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) Ca[13C]O3 8.262e-09 8.270e-09 -8.083 -8.082 0.000 (0) [13C]O3-2 5.937e-09 4.456e-09 -8.226 -8.351 -0.125 (0) - CaH[13C]O2[18O]+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) CaH[13C]O[18O]O+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) CaH[13C][18O]O2+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) + CaH[13C]O2[18O]+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) H[13C]O[18O]2- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) H[13C][18O]2O- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) H[13C][18O]O[18O]- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) [13C][18O]2 9.082e-11 9.091e-11 -10.042 -10.041 0.000 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.420 -134.419 0.000 (0) + [14C]H4 0.000e+00 0.000e+00 -134.417 -134.416 0.000 (0) [14C](4) 4.061e-15 H[14C]O3- 2.430e-15 2.262e-15 -14.614 -14.645 -0.031 (0) [14C]O2 1.574e-15 1.576e-15 -14.803 -14.802 0.000 (0) CaH[14C]O3+ 3.420e-17 3.189e-17 -16.466 -16.496 -0.030 (0) [14C]O[18O] 6.547e-18 6.553e-18 -17.184 -17.184 0.000 (0) - H[14C]O2[18O]- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) H[14C]O[18O]O- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) + H[14C]O2[18O]- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) H[14C][18O]O2- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) Ca[14C]O3 6.236e-19 6.242e-19 -18.205 -18.205 0.000 (0) [14C]O3-2 4.481e-19 3.364e-19 -18.349 -18.473 -0.125 (0) CaH[14C]O2[18O]+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) - CaH[14C]O[18O]O+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) CaH[14C][18O]O2+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) + CaH[14C]O[18O]O+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) H[14C]O[18O]2- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) - H[14C][18O]2O- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) H[14C][18O]O[18O]- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) + H[14C][18O]2O- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) [14C][18O]2 6.806e-21 6.813e-21 -20.167 -20.167 0.000 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 7.989e-06 7.997e-06 -5.097 -5.097 0.000 (0) - HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) - HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) -[18O](0) 3.343e-17 - O[18O] 3.336e-17 3.339e-17 -16.477 -16.476 0.000 (0) - [18O]2 3.328e-20 3.331e-20 -19.478 -19.477 0.000 (0) + HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) + HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) +[18O](0) 3.332e-17 + O[18O] 3.326e-17 3.329e-17 -16.478 -16.478 0.000 (0) + [18O]2 3.318e-20 3.321e-20 -19.479 -19.479 0.000 (0) ------------------------------Saturation indices------------------------------- @@ -28998,7 +28986,7 @@ O(0) 1.679e-14 H2(g) -36.00 -39.15 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.18 -14.08 -2.89 O2 + O2(g) -11.19 -14.08 -2.89 O2 O[18O](g) -13.89 -16.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -29086,12 +29074,12 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2771e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 0 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -2.0204e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8202e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 @@ -29108,14 +29096,14 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 ----------------------------Description of solution---------------------------- pH = 6.750 Charge balance - pe = 11.241 Adjusted to redox equilibrium + pe = 11.210 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 5.871e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.012e-03 Total CO2 (mol/kg) = 5.400e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 4 Total H = 1.110126e+02 @@ -29130,22 +29118,22 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 OH- 6.090e-08 5.607e-08 -7.215 -7.251 -0.036 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.370 -122.369 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.123 -122.122 0.001 (0) C(4) 5.400e-03 HCO3- 3.868e-03 3.565e-03 -2.413 -2.448 -0.035 (0) CO2 1.430e-03 1.432e-03 -2.845 -2.844 0.001 (0) CaHCO3+ 6.931e-05 6.403e-05 -4.159 -4.194 -0.034 (0) HCO2[18O]- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) - HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) HC[18O]O2- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) + HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) CO[18O] 5.945e-06 5.953e-06 -5.226 -5.225 0.001 (0) CaCO3 2.216e-06 2.219e-06 -5.654 -5.654 0.001 (0) CO3-2 1.300e-06 9.385e-07 -5.886 -6.028 -0.142 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - HCO[18O]2- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) + CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) HC[18O]2O- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) + HCO[18O]2- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) HC[18O]O[18O]- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) CaCO2[18O] 1.326e-08 1.328e-08 -7.877 -7.877 0.001 (0) CO2[18O]-2 7.783e-09 5.618e-09 -8.109 -8.250 -0.142 (0) @@ -29156,30 +29144,30 @@ Ca 2.006e-03 CaCO3 2.216e-06 2.219e-06 -5.654 -5.654 0.001 (0) CaH[13C]O3+ 7.650e-07 7.067e-07 -6.116 -6.151 -0.034 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) + CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) Ca[13C]O3 2.442e-08 2.445e-08 -7.612 -7.612 0.001 (0) CaCO2[18O] 1.326e-08 1.328e-08 -7.877 -7.877 0.001 (0) -H(0) 1.483e-39 - H2 7.415e-40 7.425e-40 -39.130 -39.129 0.001 (0) -O(0) 1.510e-14 - O2 7.521e-15 7.531e-15 -14.124 -14.123 0.001 (0) - O[18O] 3.001e-17 3.005e-17 -16.523 -16.522 0.001 (0) +H(0) 1.710e-39 + H2 8.549e-40 8.560e-40 -39.068 -39.068 0.001 (0) +O(0) 1.136e-14 + O2 5.658e-15 5.666e-15 -14.247 -14.247 0.001 (0) + O[18O] 2.258e-17 2.261e-17 -16.646 -16.646 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.331 -124.330 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.084 -124.083 0.001 (0) [13C](4) 5.947e-05 H[13C]O3- 4.269e-05 3.935e-05 -4.370 -4.405 -0.035 (0) [13C]O2 1.564e-05 1.566e-05 -4.806 -4.805 0.001 (0) CaH[13C]O3+ 7.650e-07 7.067e-07 -6.116 -6.151 -0.034 (0) H[13C]O2[18O]- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) - H[13C]O[18O]O- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) H[13C][18O]O2- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) + H[13C]O[18O]O- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) [13C]O[18O] 6.505e-08 6.514e-08 -7.187 -7.186 0.001 (0) Ca[13C]O3 2.442e-08 2.445e-08 -7.612 -7.612 0.001 (0) [13C]O3-2 1.433e-08 1.034e-08 -7.844 -7.985 -0.142 (0) + CaH[13C][18O]O2+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) CaH[13C]O2[18O]+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) CaH[13C]O[18O]O+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) - CaH[13C][18O]O2+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) H[13C]O[18O]2- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) H[13C][18O]2O- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) H[13C][18O]O[18O]- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) @@ -29187,52 +29175,52 @@ O(0) 1.510e-14 [13C]O2[18O]-2 8.578e-11 6.191e-11 -10.067 -10.208 -0.142 (0) [13C][18O]2 6.763e-11 6.772e-11 -10.170 -10.169 0.001 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.499 -134.499 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.252 -134.251 0.001 (0) [14C](4) 4.061e-15 H[14C]O3- 2.922e-15 2.694e-15 -14.534 -14.570 -0.035 (0) [14C]O2 1.062e-15 1.063e-15 -14.974 -14.973 0.001 (0) CaH[14C]O3+ 5.236e-17 4.837e-17 -16.281 -16.315 -0.034 (0) - H[14C]O2[18O]- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) - H[14C]O[18O]O- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) H[14C][18O]O2- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) + H[14C]O[18O]O- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) + H[14C]O2[18O]- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) [14C]O[18O] 4.414e-18 4.420e-18 -17.355 -17.355 0.001 (0) Ca[14C]O3 1.669e-18 1.671e-18 -17.777 -17.777 0.001 (0) [14C]O3-2 9.796e-19 7.070e-19 -18.009 -18.151 -0.142 (0) CaH[14C]O2[18O]+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) - CaH[14C]O[18O]O+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) CaH[14C][18O]O2+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) - H[14C]O[18O]2- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) - H[14C][18O]2O- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + CaH[14C]O[18O]O+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) H[14C][18O]O[18O]- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + H[14C][18O]2O- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + H[14C]O[18O]2- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) Ca[14C]O2[18O] 9.991e-21 1.000e-20 -20.000 -20.000 0.001 (0) [14C]O2[18O]-2 5.863e-21 4.232e-21 -20.232 -20.373 -0.142 (0) [14C][18O]2 4.589e-21 4.595e-21 -20.338 -20.338 0.001 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) - HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) HC[18O]O2- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) + HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) CO[18O] 5.945e-06 5.953e-06 -5.226 -5.225 0.001 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) -[18O](0) 3.007e-17 - O[18O] 3.001e-17 3.005e-17 -16.523 -16.522 0.001 (0) - [18O]2 2.994e-20 2.998e-20 -19.524 -19.523 0.001 (0) +[18O](0) 2.262e-17 + O[18O] 2.258e-17 2.261e-17 -16.646 -16.646 0.001 (0) + [18O]2 2.252e-20 2.256e-20 -19.647 -19.647 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.70 -10.21 -1.50 [13C][18O]2 - [13C]H4(g) -121.47 -124.33 -2.86 [13C]H4 + [13C]H4(g) -121.22 -124.08 -2.86 [13C]H4 [13C]O2(g) -3.34 -4.81 -1.47 [13C]O2 [13C]O[18O](g) -5.72 -7.51 -1.79 [13C]O[18O] [14C][18O]2(g) -18.87 -20.37 -1.50 [14C][18O]2 - [14C]H4(g) -131.64 -134.50 -2.86 [14C]H4 + [14C]H4(g) -131.39 -134.25 -2.86 [14C]H4 [14C]O2(g) -13.50 -14.97 -1.47 [14C]O2 [14C]O[18O](g) -15.89 -17.67 -1.79 [14C]O[18O] - [18O]2(g) -17.23 -19.52 -2.29 [18O]2 + [18O]2(g) -17.36 -19.65 -2.29 [18O]2 C[18O]2(g) -6.74 -8.24 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.42 -2.26 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.57 3.14 7.71 Ca[13C]O2[18O] @@ -29246,14 +29234,14 @@ O(0) 1.510e-14 CaCO2[18O](s) -2.61 5.10 7.71 CaCO2[18O] CaCO[18O]2(s) -5.30 2.40 7.70 CaCO[18O]2 Calcite -0.40 -8.88 -8.48 CaCO3 - CH4(g) -119.51 -122.37 -2.86 CH4 + CH4(g) -119.26 -122.12 -2.86 CH4 CO2(g) -1.38 -2.84 -1.47 CO2 CO[18O](g) -3.76 -5.54 -1.79 CO[18O] - H2(g) -35.98 -39.13 -3.15 H2 + H2(g) -35.92 -39.07 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.23 -14.12 -2.89 O2 - O[18O](g) -13.93 -16.82 -2.89 O[18O] + O2(g) -11.35 -14.25 -2.89 O2 + O[18O](g) -14.05 -16.95 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -29343,12 +29331,12 @@ Calcite 5.60e-05 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2455e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6868e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.653e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -29368,16 +29356,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.983 Adjusted to redox equilibrium + pe = 10.791 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.841e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 80 + Iterations = 77 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -29390,24 +29378,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.379 -122.378 0.001 (0) + CH4 0.000e+00 0.000e+00 -120.842 -120.842 0.001 (0) C(4) 5.841e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.976e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.802e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -29415,50 +29403,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.097e-06 1.006e-06 -5.960 -5.997 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.023e-08 6.033e-08 -7.220 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.614e-39 - H2 8.071e-40 8.085e-40 -39.093 -39.092 0.001 (0) -O(0) 1.273e-14 - O2 6.342e-15 6.352e-15 -14.198 -14.197 0.001 (0) - O[18O] 2.531e-17 2.535e-17 -16.597 -16.596 0.001 (0) +H(0) 3.910e-39 + H2 1.955e-39 1.958e-39 -38.709 -38.708 0.001 (0) +O(0) 2.171e-15 + O2 1.081e-15 1.083e-15 -14.966 -14.965 0.001 (0) + O[18O] 4.314e-18 4.321e-18 -17.365 -17.364 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.340 -124.339 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -122.803 -122.802 0.001 (0) [13C](4) 6.441e-05 H[13C]O3- 5.195e-05 4.753e-05 -4.284 -4.323 -0.039 (0) [13C]O2 1.090e-05 1.092e-05 -4.962 -4.962 0.001 (0) CaH[13C]O3+ 1.097e-06 1.006e-06 -5.960 -5.997 -0.037 (0) - H[13C]O2[18O]- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) - H[13C]O[18O]O- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) H[13C][18O]O2- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) + H[13C]O[18O]O- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) + H[13C]O2[18O]- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) Ca[13C]O3 6.023e-08 6.033e-08 -7.220 -7.219 0.001 (0) [13C]O[18O] 4.534e-08 4.542e-08 -7.343 -7.343 0.001 (0) [13C]O3-2 3.090e-08 2.164e-08 -7.510 -7.665 -0.155 (0) + CaH[13C][18O]O2+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) CaH[13C]O2[18O]+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) CaH[13C]O[18O]O+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) - CaH[13C][18O]O2+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) Ca[13C]O2[18O] 3.605e-10 3.611e-10 -9.443 -9.442 0.001 (0) - H[13C]O[18O]2- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) - H[13C][18O]2O- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) H[13C][18O]O[18O]- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) + H[13C][18O]2O- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) + H[13C]O[18O]2- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) [13C]O2[18O]-2 1.849e-10 1.295e-10 -9.733 -9.888 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.547 -134.547 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -133.011 -133.010 0.001 (0) [14C](4) 4.023e-15 H[14C]O3- 3.250e-15 2.973e-15 -14.488 -14.527 -0.039 (0) [14C]O2 6.762e-16 6.773e-16 -15.170 -15.169 0.001 (0) CaH[14C]O3+ 6.862e-17 6.295e-17 -16.164 -16.201 -0.037 (0) - H[14C]O2[18O]- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) - H[14C]O[18O]O- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) H[14C][18O]O2- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) + H[14C]O[18O]O- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) + H[14C]O2[18O]- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) Ca[14C]O3 3.762e-18 3.768e-18 -17.425 -17.424 0.001 (0) [14C]O[18O] 2.812e-18 2.816e-18 -17.551 -17.550 0.001 (0) [14C]O3-2 1.930e-18 1.352e-18 -17.715 -17.869 -0.155 (0) CaH[14C]O2[18O]+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) - CaH[14C]O[18O]O+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) CaH[14C][18O]O2+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) + CaH[14C]O[18O]O+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) Ca[14C]O2[18O] 2.252e-20 2.255e-20 -19.648 -19.647 0.001 (0) H[14C]O[18O]2- 1.294e-20 1.183e-20 -19.888 -19.927 -0.039 (0) H[14C][18O]2O- 1.294e-20 1.183e-20 -19.888 -19.927 -0.039 (0) @@ -29467,29 +29455,29 @@ O(0) 1.273e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.536e-17 - O[18O] 2.531e-17 2.535e-17 -16.597 -16.596 0.001 (0) - [18O]2 2.524e-20 2.529e-20 -19.598 -19.597 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 4.323e-18 + O[18O] 4.314e-18 4.321e-18 -17.365 -17.364 0.001 (0) + [18O]2 4.304e-21 4.311e-21 -20.366 -20.365 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.48 -124.34 -2.86 [13C]H4 + [13C]H4(g) -119.94 -122.80 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.07 -20.57 -1.50 [14C][18O]2 - [14C]H4(g) -131.69 -134.55 -2.86 [14C]H4 + [14C]H4(g) -130.15 -133.01 -2.86 [14C]H4 [14C]O2(g) -13.70 -15.17 -1.47 [14C]O2 [14C]O[18O](g) -16.08 -17.87 -1.79 [14C]O[18O] - [18O]2(g) -17.31 -19.60 -2.29 [18O]2 + [18O]2(g) -18.08 -20.37 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -29503,14 +29491,14 @@ O(0) 1.273e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.52 -122.38 -2.86 CH4 + CH4(g) -117.98 -120.84 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.94 -39.09 -3.15 H2 + H2(g) -35.56 -38.71 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.30 -14.20 -2.89 O2 - O[18O](g) -14.00 -16.90 -2.89 O[18O] + O2(g) -12.07 -14.97 -2.89 O2 + O[18O](g) -14.77 -17.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -29574,23 +29562,24 @@ Calcite 5.56e-04 R(18O) 1.99518e-03 -4.9954 permil R(13C) 1.10383e-02 -12.693 permil - R(14C) 6.34987e-13 54.001 pmc + R(14C) 6.34990e-13 54.001 pmc R(18O) H2O(l) 1.99518e-03 -4.9969 permil R(18O) OH- 1.92121e-03 -41.884 permil R(18O) H3O+ 2.04132e-03 18.011 permil - R(18O) O2(aq) 1.99518e-03 -4.9969 permil R(13C) CO2(aq) 1.09593e-02 -19.759 permil - R(14C) CO2(aq) 6.25925e-13 53.23 pmc + R(14C) CO2(aq) 6.25927e-13 53.23 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9969 permil R(13C) HCO3- 1.10546e-02 -11.231 permil - R(14C) HCO3- 6.36863e-13 54.16 pmc + R(14C) HCO3- 6.36865e-13 54.16 pmc R(18O) CO3-2 1.99518e-03 -4.9969 permil R(13C) CO3-2 1.10388e-02 -12.65 permil - R(14C) CO3-2 6.35036e-13 54.005 pmc + R(14C) CO3-2 6.35038e-13 54.005 pmc + R(13C) CH4(aq) 1.09593e-02 -19.759 permil + R(14C) CH4(aq) 6.25927e-13 53.23 pmc R(18O) Calcite 2.05262e-03 23.649 permil R(13C) Calcite 1.10765e-02 -9.2726 permil - R(14C) Calcite 6.39388e-13 54.375 pmc + R(14C) Calcite 6.39390e-13 54.375 pmc --------------------------------Isotope Alphas--------------------------------- @@ -29600,14 +29589,15 @@ Calcite 5.56e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2552e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5969e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.637e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.1324e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -29625,16 +29615,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.893 Adjusted to redox equilibrium + pe = -1.460 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.841e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 4.012e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 5 + Iterations = 19 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -29646,14 +29636,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -121.655 -121.655 0.001 (0) +C(-4) 1.483e-23 + CH4 1.483e-23 1.486e-23 -22.829 -22.828 0.001 (0) C(4) 5.841e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -29662,9 +29652,9 @@ C(4) 5.841e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -29672,23 +29662,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.098e-06 1.007e-06 -5.959 -5.997 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.028e-08 6.038e-08 -7.220 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.449e-39 - H2 1.224e-39 1.226e-39 -38.912 -38.911 0.001 (0) -O(0) 5.535e-15 - O2 2.756e-15 2.761e-15 -14.560 -14.559 0.001 (0) - O[18O] 1.100e-17 1.102e-17 -16.959 -16.958 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -123.616 -123.615 0.001 (0) +H(0) 1.246e-14 + H2 6.231e-15 6.241e-15 -14.205 -14.205 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.973 -63.972 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.372 -66.371 0.001 (0) +[13C](-4) 1.626e-25 + [13C]H4 1.626e-25 1.628e-25 -24.789 -24.788 0.001 (0) [13C](4) 6.447e-05 H[13C]O3- 5.200e-05 4.757e-05 -4.284 -4.323 -0.039 (0) [13C]O2 1.091e-05 1.093e-05 -4.962 -4.961 0.001 (0) CaH[13C]O3+ 1.098e-06 1.007e-06 -5.959 -5.997 -0.037 (0) - H[13C]O2[18O]- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) H[13C]O[18O]O- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) + H[13C]O2[18O]- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) H[13C][18O]O2- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) Ca[13C]O3 6.028e-08 6.038e-08 -7.220 -7.219 0.001 (0) [13C]O[18O] 4.539e-08 4.546e-08 -7.343 -7.342 0.001 (0) @@ -29697,56 +29687,56 @@ O(0) 5.535e-15 CaH[13C]O[18O]O+ 2.191e-09 2.010e-09 -8.659 -8.697 -0.037 (0) CaH[13C][18O]O2+ 2.191e-09 2.010e-09 -8.659 -8.697 -0.037 (0) Ca[13C]O2[18O] 3.608e-10 3.614e-10 -9.443 -9.442 0.001 (0) - H[13C]O[18O]2- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) - H[13C][18O]2O- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) H[13C][18O]O[18O]- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) + H[13C][18O]2O- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) + H[13C]O[18O]2- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) [13C]O2[18O]-2 1.851e-10 1.297e-10 -9.733 -9.887 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -133.859 -133.858 0.001 (0) +[14C](-4) 9.285e-36 + [14C]H4 9.285e-36 9.301e-36 -35.032 -35.031 0.001 (0) [14C](4) 3.709e-15 H[14C]O3- 2.996e-15 2.741e-15 -14.523 -14.562 -0.039 (0) [14C]O2 6.234e-16 6.244e-16 -15.205 -15.205 0.001 (0) CaH[14C]O3+ 6.326e-17 5.803e-17 -16.199 -16.236 -0.037 (0) - H[14C]O2[18O]- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) - H[14C]O[18O]O- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) H[14C][18O]O2- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) + H[14C]O[18O]O- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) + H[14C]O2[18O]- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) Ca[14C]O3 3.468e-18 3.474e-18 -17.460 -17.459 0.001 (0) [14C]O[18O] 2.592e-18 2.596e-18 -17.586 -17.586 0.001 (0) [14C]O3-2 1.779e-18 1.246e-18 -17.750 -17.904 -0.155 (0) CaH[14C]O2[18O]+ 1.262e-19 1.158e-19 -18.899 -18.936 -0.037 (0) - CaH[14C]O[18O]O+ 1.262e-19 1.158e-19 -18.899 -18.936 -0.037 (0) CaH[14C][18O]O2+ 1.262e-19 1.158e-19 -18.899 -18.936 -0.037 (0) + CaH[14C]O[18O]O+ 1.262e-19 1.158e-19 -18.899 -18.936 -0.037 (0) Ca[14C]O2[18O] 2.076e-20 2.079e-20 -19.683 -19.682 0.001 (0) - H[14C]O[18O]2- 1.193e-20 1.091e-20 -19.924 -19.962 -0.039 (0) H[14C][18O]2O- 1.193e-20 1.091e-20 -19.924 -19.962 -0.039 (0) H[14C][18O]O[18O]- 1.193e-20 1.091e-20 -19.924 -19.962 -0.039 (0) + H[14C]O[18O]2- 1.193e-20 1.091e-20 -19.924 -19.962 -0.039 (0) [14C]O2[18O]-2 1.065e-20 7.460e-21 -19.973 -20.127 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.102e-17 - O[18O] 1.100e-17 1.102e-17 -16.959 -16.958 0.001 (0) - [18O]2 1.097e-20 1.099e-20 -19.960 -19.959 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -66.372 -66.371 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.373 -69.372 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -120.75 -123.61 -2.86 [13C]H4 + [13C]H4(g) -21.93 -24.79 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.10 -20.60 -1.50 [14C][18O]2 - [14C]H4(g) -131.00 -133.86 -2.86 [14C]H4 + [14C]H4(g) -32.17 -35.03 -2.86 [14C]H4 [14C]O2(g) -13.74 -15.20 -1.47 [14C]O2 [14C]O[18O](g) -16.12 -17.90 -1.79 [14C]O[18O] - [18O]2(g) -17.67 -19.96 -2.29 [18O]2 + [18O]2(g) -67.08 -69.37 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -29760,14 +29750,14 @@ O(0) 5.535e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -118.79 -121.65 -2.86 CH4 + CH4(g) -19.97 -22.83 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.76 -38.91 -3.15 H2 + H2(g) -11.05 -14.20 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.67 -14.56 -2.89 O2 - O[18O](g) -14.37 -17.26 -2.89 O[18O] + O2(g) -61.08 -63.97 -2.89 O2 + O[18O](g) -63.78 -66.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -29831,23 +29821,23 @@ Calcite 1.06e-03 R(18O) 1.99518e-03 -4.9952 permil R(13C) 1.10474e-02 -11.877 permil - R(14C) 5.89002e-13 50.09 pmc + R(14C) 5.89005e-13 50.09 pmc R(18O) H2O(l) 1.99518e-03 -4.9968 permil R(18O) OH- 1.92121e-03 -41.884 permil R(18O) H3O+ 2.04132e-03 18.011 permil R(18O) O2(aq) 1.99518e-03 -4.9968 permil R(13C) CO2(aq) 1.09684e-02 -18.949 permil - R(14C) CO2(aq) 5.80595e-13 49.375 pmc + R(14C) CO2(aq) 5.80599e-13 49.375 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9968 permil R(13C) HCO3- 1.10638e-02 -10.413 permil - R(14C) HCO3- 5.90741e-13 50.238 pmc + R(14C) HCO3- 5.90745e-13 50.238 pmc R(18O) CO3-2 1.99518e-03 -4.9968 permil R(13C) CO3-2 1.10479e-02 -11.834 permil - R(14C) CO3-2 5.89047e-13 50.094 pmc + R(14C) CO3-2 5.89051e-13 50.094 pmc R(18O) Calcite 2.05262e-03 23.649 permil R(13C) Calcite 1.10857e-02 -8.4535 permil - R(14C) Calcite 5.93084e-13 50.437 pmc + R(14C) Calcite 5.93088e-13 50.437 pmc --------------------------------Isotope Alphas--------------------------------- @@ -29857,12 +29847,12 @@ Calcite 1.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2345e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2516e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6426e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6414e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -29882,16 +29872,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.211 Adjusted to redox equilibrium + pe = 10.997 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 4 + Iterations = 15 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -29904,24 +29894,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.198 -124.198 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.489 -122.488 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -29929,81 +29919,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.099e-06 1.008e-06 -5.959 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.033e-08 6.043e-08 -7.219 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.664e-40 - H2 2.832e-40 2.837e-40 -39.548 -39.547 0.001 (0) -O(0) 1.034e-13 - O2 5.150e-14 5.159e-14 -13.288 -13.287 0.001 (0) - O[18O] 2.055e-16 2.059e-16 -15.687 -15.686 0.001 (0) +H(0) 1.515e-39 + H2 7.576e-40 7.588e-40 -39.121 -39.120 0.001 (0) +O(0) 1.445e-14 + O2 7.198e-15 7.210e-15 -14.143 -14.142 0.001 (0) + O[18O] 2.872e-17 2.877e-17 -16.542 -16.541 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.158 -126.158 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.449 -124.448 0.001 (0) [13C](4) 6.452e-05 H[13C]O3- 5.204e-05 4.761e-05 -4.284 -4.322 -0.039 (0) [13C]O2 1.092e-05 1.094e-05 -4.962 -4.961 0.001 (0) CaH[13C]O3+ 1.099e-06 1.008e-06 -5.959 -5.996 -0.037 (0) H[13C]O2[18O]- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) - H[13C]O[18O]O- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) H[13C][18O]O2- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) + H[13C]O[18O]O- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) Ca[13C]O3 6.033e-08 6.043e-08 -7.219 -7.219 0.001 (0) [13C]O[18O] 4.542e-08 4.550e-08 -7.343 -7.342 0.001 (0) [13C]O3-2 3.095e-08 2.168e-08 -7.509 -7.664 -0.155 (0) - CaH[13C]O2[18O]+ 2.193e-09 2.011e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O[18O]O+ 2.193e-09 2.011e-09 -8.659 -8.696 -0.037 (0) CaH[13C][18O]O2+ 2.193e-09 2.011e-09 -8.659 -8.696 -0.037 (0) + CaH[13C]O2[18O]+ 2.193e-09 2.011e-09 -8.659 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.611e-10 3.617e-10 -9.442 -9.442 0.001 (0) - H[13C]O[18O]2- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) - H[13C][18O]2O- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) H[13C][18O]O[18O]- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) + H[13C][18O]2O- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) + H[13C]O[18O]2- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) [13C]O2[18O]-2 1.853e-10 1.298e-10 -9.732 -9.887 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.435 -136.434 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.725 -134.725 0.001 (0) [14C](4) 3.440e-15 H[14C]O3- 2.779e-15 2.542e-15 -14.556 -14.595 -0.039 (0) [14C]O2 5.782e-16 5.792e-16 -15.238 -15.237 0.001 (0) CaH[14C]O3+ 5.868e-17 5.383e-17 -16.232 -16.269 -0.037 (0) - H[14C]O2[18O]- 5.544e-18 5.072e-18 -17.256 -17.295 -0.039 (0) - H[14C]O[18O]O- 5.544e-18 5.072e-18 -17.256 -17.295 -0.039 (0) H[14C][18O]O2- 5.544e-18 5.072e-18 -17.256 -17.295 -0.039 (0) + H[14C]O[18O]O- 5.544e-18 5.072e-18 -17.256 -17.295 -0.039 (0) + H[14C]O2[18O]- 5.544e-18 5.072e-18 -17.256 -17.295 -0.039 (0) Ca[14C]O3 3.217e-18 3.222e-18 -17.493 -17.492 0.001 (0) [14C]O[18O] 2.404e-18 2.408e-18 -17.619 -17.618 0.001 (0) [14C]O3-2 1.650e-18 1.156e-18 -17.782 -17.937 -0.155 (0) CaH[14C]O2[18O]+ 1.171e-19 1.074e-19 -18.932 -18.969 -0.037 (0) - CaH[14C]O[18O]O+ 1.171e-19 1.074e-19 -18.932 -18.969 -0.037 (0) CaH[14C][18O]O2+ 1.171e-19 1.074e-19 -18.932 -18.969 -0.037 (0) + CaH[14C]O[18O]O+ 1.171e-19 1.074e-19 -18.932 -18.969 -0.037 (0) Ca[14C]O2[18O] 1.925e-20 1.929e-20 -19.715 -19.715 0.001 (0) + H[14C][18O]O[18O]- 1.106e-20 1.012e-20 -19.956 -19.995 -0.039 (0) H[14C]O[18O]2- 1.106e-20 1.012e-20 -19.956 -19.995 -0.039 (0) H[14C][18O]2O- 1.106e-20 1.012e-20 -19.956 -19.995 -0.039 (0) - H[14C][18O]O[18O]- 1.106e-20 1.012e-20 -19.956 -19.995 -0.039 (0) - [14C]O2[18O]-2 9.877e-21 6.919e-21 -20.005 -20.160 -0.155 (0) + [14C]O2[18O]-2 9.877e-21 6.920e-21 -20.005 -20.160 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.059e-16 - O[18O] 2.055e-16 2.059e-16 -15.687 -15.686 0.001 (0) - [18O]2 2.050e-19 2.054e-19 -18.688 -18.687 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.878e-17 + O[18O] 2.872e-17 2.877e-17 -16.542 -16.541 0.001 (0) + [18O]2 2.865e-20 2.870e-20 -19.543 -19.542 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.30 -126.16 -2.86 [13C]H4 + [13C]H4(g) -121.59 -124.45 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.13 -20.64 -1.50 [14C][18O]2 - [14C]H4(g) -133.57 -136.43 -2.86 [14C]H4 + [14C]H4(g) -131.86 -134.72 -2.86 [14C]H4 [14C]O2(g) -13.77 -15.24 -1.47 [14C]O2 [14C]O[18O](g) -16.15 -17.94 -1.79 [14C]O[18O] - [18O]2(g) -16.40 -18.69 -2.29 [18O]2 + [18O]2(g) -17.25 -19.54 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -30017,14 +30007,14 @@ O(0) 1.034e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.34 -124.20 -2.86 CH4 + CH4(g) -119.63 -122.49 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.40 -39.55 -3.15 H2 + H2(g) -35.97 -39.12 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.40 -13.29 -2.89 O2 - O[18O](g) -13.10 -15.99 -2.89 O[18O] + O2(g) -11.25 -14.14 -2.89 O2 + O[18O](g) -13.95 -16.84 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -30088,23 +30078,23 @@ Calcite 1.56e-03 R(18O) 1.99518e-03 -4.9951 permil R(13C) 1.10553e-02 -11.171 permil - R(14C) 5.49227e-13 46.707 pmc + R(14C) 5.49230e-13 46.708 pmc R(18O) H2O(l) 1.99518e-03 -4.9966 permil R(18O) OH- 1.92121e-03 -41.884 permil R(18O) H3O+ 2.04132e-03 18.011 permil R(18O) O2(aq) 1.99518e-03 -4.9966 permil R(13C) CO2(aq) 1.09762e-02 -18.247 permil - R(14C) CO2(aq) 5.41388e-13 46.041 pmc + R(14C) CO2(aq) 5.41392e-13 46.041 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9966 permil R(13C) HCO3- 1.10717e-02 -9.7061 permil - R(14C) HCO3- 5.50849e-13 46.845 pmc + R(14C) HCO3- 5.50853e-13 46.846 pmc R(18O) CO3-2 1.99518e-03 -4.9966 permil R(13C) CO3-2 1.10558e-02 -11.127 permil - R(14C) CO3-2 5.49269e-13 46.711 pmc + R(14C) CO3-2 5.49273e-13 46.711 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.10936e-02 -7.7446 permil - R(14C) Calcite 5.53033e-13 47.031 pmc + R(14C) Calcite 5.53037e-13 47.031 pmc --------------------------------Isotope Alphas--------------------------------- @@ -30114,12 +30104,12 @@ Calcite 1.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2702e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6112e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6221e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -30139,14 +30129,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.207 Adjusted to redox equilibrium + pe = 11.052 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 4 Total H = 1.110126e+02 @@ -30161,14 +30151,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.168 -124.167 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.926 -122.925 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) @@ -30176,9 +30166,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -30186,50 +30176,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.959 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.038e-08 6.048e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.764e-40 - H2 2.882e-40 2.887e-40 -39.540 -39.540 0.001 (0) -O(0) 9.987e-14 - O2 4.974e-14 4.982e-14 -13.303 -13.303 0.001 (0) - O[18O] 1.985e-16 1.988e-16 -15.702 -15.702 0.001 (0) +H(0) 1.178e-39 + H2 5.891e-40 5.900e-40 -39.230 -39.229 0.001 (0) +O(0) 2.391e-14 + O2 1.191e-14 1.193e-14 -13.924 -13.924 0.001 (0) + O[18O] 4.751e-17 4.759e-17 -16.323 -16.323 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.128 -126.127 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.886 -124.885 0.001 (0) [13C](4) 6.457e-05 H[13C]O3- 5.208e-05 4.765e-05 -4.283 -4.322 -0.039 (0) [13C]O2 1.093e-05 1.095e-05 -4.961 -4.961 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.959 -5.996 -0.037 (0) - H[13C]O2[18O]- 1.039e-07 9.506e-08 -6.983 -7.022 -0.039 (0) - H[13C]O[18O]O- 1.039e-07 9.506e-08 -6.983 -7.022 -0.039 (0) H[13C][18O]O2- 1.039e-07 9.506e-08 -6.983 -7.022 -0.039 (0) + H[13C]O[18O]O- 1.039e-07 9.506e-08 -6.983 -7.022 -0.039 (0) + H[13C]O2[18O]- 1.039e-07 9.506e-08 -6.983 -7.022 -0.039 (0) Ca[13C]O3 6.038e-08 6.048e-08 -7.219 -7.218 0.001 (0) [13C]O[18O] 4.545e-08 4.553e-08 -7.342 -7.342 0.001 (0) [13C]O3-2 3.097e-08 2.170e-08 -7.509 -7.664 -0.155 (0) + CaH[13C][18O]O2+ 2.194e-09 2.013e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O2[18O]+ 2.194e-09 2.013e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O[18O]O+ 2.194e-09 2.013e-09 -8.659 -8.696 -0.037 (0) - CaH[13C][18O]O2+ 2.194e-09 2.013e-09 -8.659 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.614e-10 3.620e-10 -9.442 -9.441 0.001 (0) - H[13C]O[18O]2- 2.073e-10 1.897e-10 -9.683 -9.722 -0.039 (0) - H[13C][18O]2O- 2.073e-10 1.897e-10 -9.683 -9.722 -0.039 (0) H[13C][18O]O[18O]- 2.073e-10 1.897e-10 -9.683 -9.722 -0.039 (0) + H[13C][18O]2O- 2.073e-10 1.897e-10 -9.683 -9.722 -0.039 (0) + H[13C]O[18O]2- 2.073e-10 1.897e-10 -9.683 -9.722 -0.039 (0) [13C]O2[18O]-2 1.854e-10 1.299e-10 -9.732 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.435 -136.434 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.193 -135.192 0.001 (0) [14C](4) 3.208e-15 H[14C]O3- 2.591e-15 2.371e-15 -14.587 -14.625 -0.039 (0) [14C]O2 5.392e-16 5.401e-16 -15.268 -15.268 0.001 (0) CaH[14C]O3+ 5.472e-17 5.019e-17 -16.262 -16.299 -0.037 (0) - H[14C]O2[18O]- 5.170e-18 4.730e-18 -17.287 -17.325 -0.039 (0) - H[14C]O[18O]O- 5.170e-18 4.730e-18 -17.287 -17.325 -0.039 (0) H[14C][18O]O2- 5.170e-18 4.730e-18 -17.287 -17.325 -0.039 (0) + H[14C]O[18O]O- 5.170e-18 4.730e-18 -17.287 -17.325 -0.039 (0) + H[14C]O2[18O]- 5.170e-18 4.730e-18 -17.287 -17.325 -0.039 (0) Ca[14C]O3 3.000e-18 3.005e-18 -17.523 -17.522 0.001 (0) [14C]O[18O] 2.242e-18 2.246e-18 -17.649 -17.649 0.001 (0) [14C]O3-2 1.539e-18 1.078e-18 -17.813 -17.967 -0.155 (0) CaH[14C]O2[18O]+ 1.092e-19 1.001e-19 -18.962 -18.999 -0.037 (0) - CaH[14C]O[18O]O+ 1.092e-19 1.001e-19 -18.962 -18.999 -0.037 (0) CaH[14C][18O]O2+ 1.092e-19 1.001e-19 -18.962 -18.999 -0.037 (0) + CaH[14C]O[18O]O+ 1.092e-19 1.001e-19 -18.962 -18.999 -0.037 (0) Ca[14C]O2[18O] 1.795e-20 1.798e-20 -19.746 -19.745 0.001 (0) H[14C]O[18O]2- 1.031e-20 9.437e-21 -19.987 -20.025 -0.039 (0) H[14C][18O]2O- 1.031e-20 9.437e-21 -19.987 -20.025 -0.039 (0) @@ -30238,29 +30228,29 @@ O(0) 9.987e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.989e-16 - O[18O] 1.985e-16 1.988e-16 -15.702 -15.702 0.001 (0) - [18O]2 1.980e-19 1.983e-19 -18.703 -18.703 0.001 (0) +[18O](0) 4.760e-17 + O[18O] 4.751e-17 4.759e-17 -16.323 -16.323 0.001 (0) + [18O]2 4.739e-20 4.747e-20 -19.324 -19.324 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.27 -126.13 -2.86 [13C]H4 + [13C]H4(g) -122.03 -124.89 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.16 -20.67 -1.50 [14C][18O]2 - [14C]H4(g) -133.57 -136.43 -2.86 [14C]H4 + [14C]H4(g) -132.33 -135.19 -2.86 [14C]H4 [14C]O2(g) -13.80 -15.27 -1.47 [14C]O2 [14C]O[18O](g) -16.18 -17.97 -1.79 [14C]O[18O] - [18O]2(g) -16.41 -18.70 -2.29 [18O]2 + [18O]2(g) -17.03 -19.32 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -30274,14 +30264,14 @@ O(0) 9.987e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.31 -124.17 -2.86 CH4 + CH4(g) -120.07 -122.93 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.39 -39.54 -3.15 H2 + H2(g) -36.08 -39.23 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.41 -13.30 -2.89 O2 - O[18O](g) -13.11 -16.00 -2.89 O[18O] + O2(g) -11.03 -13.92 -2.89 O2 + O[18O](g) -13.73 -16.62 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -30345,23 +30335,23 @@ Calcite 2.06e-03 R(18O) 1.99518e-03 -4.995 permil R(13C) 1.10622e-02 -10.553 permil - R(14C) 5.14484e-13 43.753 pmc + R(14C) 5.14487e-13 43.753 pmc R(18O) H2O(l) 1.99518e-03 -4.9965 permil R(18O) OH- 1.92121e-03 -41.884 permil R(18O) H3O+ 2.04132e-03 18.011 permil R(18O) O2(aq) 1.99518e-03 -4.9965 permil R(13C) CO2(aq) 1.09830e-02 -17.634 permil - R(14C) CO2(aq) 5.07141e-13 43.128 pmc + R(14C) CO2(aq) 5.07144e-13 43.129 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9965 permil R(13C) HCO3- 1.10786e-02 -9.0879 permil - R(14C) HCO3- 5.16004e-13 43.882 pmc + R(14C) HCO3- 5.16007e-13 43.882 pmc R(18O) CO3-2 1.99518e-03 -4.9965 permil R(13C) CO3-2 1.10627e-02 -10.51 permil - R(14C) CO3-2 5.14524e-13 43.756 pmc + R(14C) CO3-2 5.14527e-13 43.756 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11005e-02 -7.1253 permil - R(14C) Calcite 5.18050e-13 44.056 pmc + R(14C) Calcite 5.18053e-13 44.056 pmc --------------------------------Isotope Alphas--------------------------------- @@ -30371,12 +30361,12 @@ Calcite 2.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2489e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2647e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6954e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5002e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -30396,14 +30386,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.221 Adjusted to redox equilibrium + pe = 10.996 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -30418,24 +30408,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.281 -124.280 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.481 -122.480 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -30443,23 +30433,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.958 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.041e-08 6.051e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.403e-40 - H2 2.701e-40 2.706e-40 -39.568 -39.568 0.001 (0) -O(0) 1.137e-13 - O2 5.662e-14 5.671e-14 -13.247 -13.246 0.001 (0) - O[18O] 2.259e-16 2.263e-16 -15.646 -15.645 0.001 (0) +H(0) 1.522e-39 + H2 7.612e-40 7.625e-40 -39.118 -39.118 0.001 (0) +O(0) 1.432e-14 + O2 7.129e-15 7.141e-15 -14.147 -14.146 0.001 (0) + O[18O] 2.845e-17 2.850e-17 -16.546 -16.545 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.240 -126.239 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.440 -124.439 0.001 (0) [13C](4) 6.461e-05 H[13C]O3- 5.211e-05 4.768e-05 -4.283 -4.322 -0.039 (0) [13C]O2 1.094e-05 1.096e-05 -4.961 -4.960 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.958 -5.996 -0.037 (0) - H[13C]O2[18O]- 1.040e-07 9.512e-08 -6.983 -7.022 -0.039 (0) H[13C]O[18O]O- 1.040e-07 9.512e-08 -6.983 -7.022 -0.039 (0) + H[13C]O2[18O]- 1.040e-07 9.512e-08 -6.983 -7.022 -0.039 (0) H[13C][18O]O2- 1.040e-07 9.512e-08 -6.983 -7.022 -0.039 (0) Ca[13C]O3 6.041e-08 6.051e-08 -7.219 -7.218 0.001 (0) [13C]O[18O] 4.548e-08 4.556e-08 -7.342 -7.341 0.001 (0) @@ -30468,56 +30458,56 @@ O(0) 1.137e-13 CaH[13C]O[18O]O+ 2.196e-09 2.014e-09 -8.658 -8.696 -0.037 (0) CaH[13C][18O]O2+ 2.196e-09 2.014e-09 -8.658 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.616e-10 3.622e-10 -9.442 -9.441 0.001 (0) - H[13C]O[18O]2- 2.074e-10 1.898e-10 -9.683 -9.722 -0.039 (0) - H[13C][18O]2O- 2.074e-10 1.898e-10 -9.683 -9.722 -0.039 (0) H[13C][18O]O[18O]- 2.074e-10 1.898e-10 -9.683 -9.722 -0.039 (0) + H[13C][18O]2O- 2.074e-10 1.898e-10 -9.683 -9.722 -0.039 (0) + H[13C]O[18O]2- 2.074e-10 1.898e-10 -9.683 -9.722 -0.039 (0) [13C]O2[18O]-2 1.855e-10 1.300e-10 -9.732 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.575 -136.575 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.776 -134.775 0.001 (0) [14C](4) 3.005e-15 H[14C]O3- 2.427e-15 2.221e-15 -14.615 -14.654 -0.039 (0) [14C]O2 5.051e-16 5.059e-16 -15.297 -15.296 0.001 (0) CaH[14C]O3+ 5.126e-17 4.702e-17 -16.290 -16.328 -0.037 (0) - H[14C]O2[18O]- 4.843e-18 4.430e-18 -17.315 -17.354 -0.039 (0) - H[14C]O[18O]O- 4.843e-18 4.430e-18 -17.315 -17.354 -0.039 (0) - H[14C][18O]O2- 4.843e-18 4.430e-18 -17.315 -17.354 -0.039 (0) + H[14C][18O]O2- 4.843e-18 4.431e-18 -17.315 -17.354 -0.039 (0) + H[14C]O[18O]O- 4.843e-18 4.431e-18 -17.315 -17.354 -0.039 (0) + H[14C]O2[18O]- 4.843e-18 4.431e-18 -17.315 -17.354 -0.039 (0) Ca[14C]O3 2.810e-18 2.814e-18 -17.551 -17.551 0.001 (0) [14C]O[18O] 2.100e-18 2.104e-18 -17.678 -17.677 0.001 (0) [14C]O3-2 1.441e-18 1.010e-18 -17.841 -17.996 -0.155 (0) CaH[14C]O2[18O]+ 1.023e-19 9.381e-20 -18.990 -19.028 -0.037 (0) - CaH[14C]O[18O]O+ 1.023e-19 9.381e-20 -18.990 -19.028 -0.037 (0) CaH[14C][18O]O2+ 1.023e-19 9.381e-20 -18.990 -19.028 -0.037 (0) + CaH[14C]O[18O]O+ 1.023e-19 9.381e-20 -18.990 -19.028 -0.037 (0) Ca[14C]O2[18O] 1.682e-20 1.685e-20 -19.774 -19.774 0.001 (0) - H[14C]O[18O]2- 9.662e-21 8.840e-21 -20.015 -20.054 -0.039 (0) H[14C][18O]2O- 9.662e-21 8.840e-21 -20.015 -20.054 -0.039 (0) H[14C][18O]O[18O]- 9.662e-21 8.840e-21 -20.015 -20.054 -0.039 (0) + H[14C]O[18O]2- 9.662e-21 8.840e-21 -20.015 -20.054 -0.039 (0) [14C]O2[18O]-2 8.628e-21 6.044e-21 -20.064 -20.219 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.264e-16 - O[18O] 2.259e-16 2.263e-16 -15.646 -15.645 0.001 (0) - [18O]2 2.254e-19 2.257e-19 -18.647 -18.646 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.851e-17 + O[18O] 2.845e-17 2.850e-17 -16.546 -16.545 0.001 (0) + [18O]2 2.838e-20 2.843e-20 -19.547 -19.546 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.38 -126.24 -2.86 [13C]H4 + [13C]H4(g) -121.58 -124.44 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.19 -20.70 -1.50 [14C][18O]2 - [14C]H4(g) -133.71 -136.57 -2.86 [14C]H4 + [14C]H4(g) -131.91 -134.77 -2.86 [14C]H4 [14C]O2(g) -13.83 -15.30 -1.47 [14C]O2 [14C]O[18O](g) -16.21 -18.00 -1.79 [14C]O[18O] - [18O]2(g) -16.36 -18.65 -2.29 [18O]2 + [18O]2(g) -17.26 -19.55 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -30531,14 +30521,14 @@ O(0) 1.137e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.42 -124.28 -2.86 CH4 + CH4(g) -119.62 -122.48 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.42 -39.57 -3.15 H2 + H2(g) -35.97 -39.12 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.35 -13.25 -2.89 O2 - O[18O](g) -13.05 -15.95 -2.89 O[18O] + O2(g) -11.25 -14.15 -2.89 O2 + O[18O](g) -13.95 -16.85 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -30602,23 +30592,23 @@ Calcite 2.56e-03 R(18O) 1.99518e-03 -4.9948 permil R(13C) 1.10683e-02 -10.009 permil - R(14C) 4.83875e-13 41.15 pmc + R(14C) 4.83878e-13 41.15 pmc R(18O) H2O(l) 1.99518e-03 -4.9963 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.011 permil R(18O) O2(aq) 1.99518e-03 -4.9963 permil R(13C) CO2(aq) 1.09891e-02 -17.094 permil - R(14C) CO2(aq) 4.76969e-13 40.562 pmc + R(14C) CO2(aq) 4.76972e-13 40.563 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9963 permil R(13C) HCO3- 1.10847e-02 -8.5432 permil - R(14C) HCO3- 4.85304e-13 41.271 pmc + R(14C) HCO3- 4.85308e-13 41.272 pmc R(18O) CO3-2 1.99518e-03 -4.9963 permil R(13C) CO3-2 1.10688e-02 -9.966 permil - R(14C) CO3-2 4.83913e-13 41.153 pmc + R(14C) CO3-2 4.83916e-13 41.153 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11066e-02 -6.5794 permil - R(14C) Calcite 4.87229e-13 41.435 pmc + R(14C) Calcite 4.87232e-13 41.435 pmc --------------------------------Isotope Alphas--------------------------------- @@ -30628,12 +30618,12 @@ Calcite 2.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2714e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5706e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6498e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -30653,14 +30643,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.242 Adjusted to redox equilibrium + pe = 11.186 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -30675,14 +30665,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.447 -124.446 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.997 -123.996 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) @@ -30690,9 +30680,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -30700,81 +30690,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.101e-06 1.010e-06 -5.958 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.045e-08 6.055e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.909e-40 - H2 2.454e-40 2.459e-40 -39.610 -39.609 0.001 (0) -O(0) 1.377e-13 - O2 6.858e-14 6.869e-14 -13.164 -13.163 0.001 (0) - O[18O] 2.736e-16 2.741e-16 -15.563 -15.562 0.001 (0) +H(0) 6.360e-40 + H2 3.180e-40 3.185e-40 -39.498 -39.497 0.001 (0) +O(0) 8.203e-14 + O2 4.085e-14 4.092e-14 -13.389 -13.388 0.001 (0) + O[18O] 1.630e-16 1.633e-16 -15.788 -15.787 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.406 -126.405 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.956 -125.955 0.001 (0) [13C](4) 6.464e-05 H[13C]O3- 5.214e-05 4.770e-05 -4.283 -4.321 -0.039 (0) [13C]O2 1.094e-05 1.096e-05 -4.961 -4.960 0.001 (0) CaH[13C]O3+ 1.101e-06 1.010e-06 -5.958 -5.996 -0.037 (0) H[13C]O2[18O]- 1.040e-07 9.517e-08 -6.983 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.040e-07 9.517e-08 -6.983 -7.021 -0.039 (0) H[13C][18O]O2- 1.040e-07 9.517e-08 -6.983 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.040e-07 9.517e-08 -6.983 -7.021 -0.039 (0) Ca[13C]O3 6.045e-08 6.055e-08 -7.219 -7.218 0.001 (0) [13C]O[18O] 4.551e-08 4.558e-08 -7.342 -7.341 0.001 (0) [13C]O3-2 3.101e-08 2.172e-08 -7.509 -7.663 -0.155 (0) - CaH[13C]O2[18O]+ 2.197e-09 2.015e-09 -8.658 -8.696 -0.037 (0) CaH[13C]O[18O]O+ 2.197e-09 2.015e-09 -8.658 -8.696 -0.037 (0) CaH[13C][18O]O2+ 2.197e-09 2.015e-09 -8.658 -8.696 -0.037 (0) + CaH[13C]O2[18O]+ 2.197e-09 2.015e-09 -8.658 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.618e-10 3.624e-10 -9.442 -9.441 0.001 (0) - H[13C]O[18O]2- 2.076e-10 1.899e-10 -9.683 -9.721 -0.039 (0) - H[13C][18O]2O- 2.076e-10 1.899e-10 -9.683 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.076e-10 1.899e-10 -9.683 -9.721 -0.039 (0) + H[13C][18O]2O- 2.076e-10 1.899e-10 -9.683 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.076e-10 1.899e-10 -9.683 -9.721 -0.039 (0) [13C]O2[18O]-2 1.856e-10 1.300e-10 -9.731 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.769 -136.768 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.319 -136.318 0.001 (0) [14C](4) 2.826e-15 H[14C]O3- 2.283e-15 2.088e-15 -14.642 -14.680 -0.039 (0) [14C]O2 4.750e-16 4.758e-16 -15.323 -15.323 0.001 (0) CaH[14C]O3+ 4.821e-17 4.422e-17 -16.317 -16.354 -0.037 (0) - H[14C]O2[18O]- 4.555e-18 4.167e-18 -17.342 -17.380 -0.039 (0) - H[14C]O[18O]O- 4.555e-18 4.167e-18 -17.342 -17.380 -0.039 (0) H[14C][18O]O2- 4.555e-18 4.167e-18 -17.342 -17.380 -0.039 (0) + H[14C]O[18O]O- 4.555e-18 4.167e-18 -17.342 -17.380 -0.039 (0) + H[14C]O2[18O]- 4.555e-18 4.167e-18 -17.342 -17.380 -0.039 (0) Ca[14C]O3 2.643e-18 2.647e-18 -17.578 -17.577 0.001 (0) [14C]O[18O] 1.975e-18 1.978e-18 -17.704 -17.704 0.001 (0) [14C]O3-2 1.356e-18 9.497e-19 -17.868 -18.022 -0.155 (0) CaH[14C]O2[18O]+ 9.618e-20 8.823e-20 -19.017 -19.054 -0.037 (0) - CaH[14C]O[18O]O+ 9.618e-20 8.823e-20 -19.017 -19.054 -0.037 (0) CaH[14C][18O]O2+ 9.618e-20 8.823e-20 -19.017 -19.054 -0.037 (0) + CaH[14C]O[18O]O+ 9.618e-20 8.823e-20 -19.017 -19.054 -0.037 (0) Ca[14C]O2[18O] 1.582e-20 1.584e-20 -19.801 -19.800 0.001 (0) + H[14C][18O]O[18O]- 9.087e-21 8.314e-21 -20.042 -20.080 -0.039 (0) H[14C]O[18O]2- 9.087e-21 8.314e-21 -20.042 -20.080 -0.039 (0) H[14C][18O]2O- 9.087e-21 8.314e-21 -20.042 -20.080 -0.039 (0) - H[14C][18O]O[18O]- 9.087e-21 8.314e-21 -20.042 -20.080 -0.039 (0) [14C]O2[18O]-2 8.114e-21 5.684e-21 -20.091 -20.245 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.742e-16 - O[18O] 2.736e-16 2.741e-16 -15.563 -15.562 0.001 (0) - [18O]2 2.730e-19 2.734e-19 -18.564 -18.563 0.001 (0) +[18O](0) 1.633e-16 + O[18O] 1.630e-16 1.633e-16 -15.788 -15.787 0.001 (0) + [18O]2 1.626e-19 1.629e-19 -18.789 -18.788 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.55 -126.41 -2.86 [13C]H4 + [13C]H4(g) -123.10 -125.96 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.22 -20.72 -1.50 [14C][18O]2 - [14C]H4(g) -133.91 -136.77 -2.86 [14C]H4 + [14C]H4(g) -133.46 -136.32 -2.86 [14C]H4 [14C]O2(g) -13.85 -15.32 -1.47 [14C]O2 [14C]O[18O](g) -16.24 -18.02 -1.79 [14C]O[18O] - [18O]2(g) -16.27 -18.56 -2.29 [18O]2 + [18O]2(g) -16.50 -18.79 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -30788,14 +30778,14 @@ O(0) 1.377e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.59 -124.45 -2.86 CH4 + CH4(g) -121.14 -124.00 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.46 -39.61 -3.15 H2 + H2(g) -36.35 -39.50 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.27 -13.16 -2.89 O2 - O[18O](g) -12.97 -15.86 -2.89 O[18O] + O2(g) -10.50 -13.39 -2.89 O2 + O[18O](g) -13.20 -16.09 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -30859,23 +30849,23 @@ Calcite 3.06e-03 R(18O) 1.99518e-03 -4.9947 permil R(13C) 1.10737e-02 -9.5264 permil - R(14C) 4.56704e-13 38.839 pmc + R(14C) 4.56707e-13 38.839 pmc R(18O) H2O(l) 1.99518e-03 -4.9962 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9962 permil R(13C) CO2(aq) 1.09944e-02 -16.615 permil - R(14C) CO2(aq) 4.50186e-13 38.285 pmc + R(14C) CO2(aq) 4.50189e-13 38.285 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9962 permil R(13C) HCO3- 1.10901e-02 -8.0594 permil - R(14C) HCO3- 4.58053e-13 38.954 pmc + R(14C) HCO3- 4.58056e-13 38.954 pmc R(18O) CO3-2 1.99518e-03 -4.9962 permil R(13C) CO3-2 1.10742e-02 -9.4829 permil - R(14C) CO3-2 4.56739e-13 38.842 pmc + R(14C) CO3-2 4.56742e-13 38.842 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11121e-02 -6.0947 permil - R(14C) Calcite 4.59869e-13 39.108 pmc + R(14C) Calcite 4.59872e-13 39.109 pmc --------------------------------Isotope Alphas--------------------------------- @@ -30885,12 +30875,12 @@ Calcite 3.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2752e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2932e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6707e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6845e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -30910,14 +30900,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.233 Adjusted to redox equilibrium + pe = 11.170 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -30932,24 +30922,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.379 -124.378 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.869 -123.868 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -30957,50 +30947,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.048e-08 6.058e-08 -7.218 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.105e-40 - H2 2.553e-40 2.557e-40 -39.593 -39.592 0.001 (0) -O(0) 1.273e-13 - O2 6.341e-14 6.351e-14 -13.198 -13.197 0.001 (0) - O[18O] 2.530e-16 2.534e-16 -15.597 -15.596 0.001 (0) +H(0) 6.846e-40 + H2 3.423e-40 3.429e-40 -39.466 -39.465 0.001 (0) +O(0) 7.080e-14 + O2 3.526e-14 3.532e-14 -13.453 -13.452 0.001 (0) + O[18O] 1.407e-16 1.409e-16 -15.852 -15.851 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.338 -126.337 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.828 -125.827 0.001 (0) [13C](4) 6.467e-05 H[13C]O3- 5.217e-05 4.773e-05 -4.283 -4.321 -0.039 (0) [13C]O2 1.095e-05 1.097e-05 -4.961 -4.960 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) H[13C][18O]O2- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) + H[13C]O2[18O]- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) Ca[13C]O3 6.048e-08 6.058e-08 -7.218 -7.218 0.001 (0) [13C]O[18O] 4.553e-08 4.560e-08 -7.342 -7.341 0.001 (0) [13C]O3-2 3.102e-08 2.173e-08 -7.508 -7.663 -0.155 (0) + CaH[13C][18O]O2+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O2[18O]+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) - CaH[13C][18O]O2+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.620e-10 3.626e-10 -9.441 -9.441 0.001 (0) - H[13C]O[18O]2- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) - H[13C][18O]2O- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) + H[13C][18O]2O- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) [13C]O2[18O]-2 1.857e-10 1.301e-10 -9.731 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.726 -136.725 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.216 -136.215 0.001 (0) [14C](4) 2.667e-15 H[14C]O3- 2.155e-15 1.971e-15 -14.667 -14.705 -0.039 (0) [14C]O2 4.483e-16 4.491e-16 -15.348 -15.348 0.001 (0) CaH[14C]O3+ 4.550e-17 4.174e-17 -16.342 -16.379 -0.037 (0) - H[14C]O2[18O]- 4.299e-18 3.933e-18 -17.367 -17.405 -0.039 (0) - H[14C]O[18O]O- 4.299e-18 3.933e-18 -17.367 -17.405 -0.039 (0) H[14C][18O]O2- 4.299e-18 3.933e-18 -17.367 -17.405 -0.039 (0) + H[14C]O[18O]O- 4.299e-18 3.933e-18 -17.367 -17.405 -0.039 (0) + H[14C]O2[18O]- 4.299e-18 3.933e-18 -17.367 -17.405 -0.039 (0) Ca[14C]O3 2.494e-18 2.498e-18 -17.603 -17.602 0.001 (0) [14C]O[18O] 1.864e-18 1.867e-18 -17.729 -17.729 0.001 (0) [14C]O3-2 1.280e-18 8.964e-19 -17.893 -18.048 -0.155 (0) CaH[14C]O2[18O]+ 9.078e-20 8.327e-20 -19.042 -19.079 -0.037 (0) - CaH[14C]O[18O]O+ 9.078e-20 8.327e-20 -19.042 -19.079 -0.037 (0) CaH[14C][18O]O2+ 9.078e-20 8.327e-20 -19.042 -19.079 -0.037 (0) + CaH[14C]O[18O]O+ 9.078e-20 8.327e-20 -19.042 -19.079 -0.037 (0) Ca[14C]O2[18O] 1.493e-20 1.495e-20 -19.826 -19.825 0.001 (0) H[14C]O[18O]2- 8.577e-21 7.847e-21 -20.067 -20.105 -0.039 (0) H[14C][18O]2O- 8.577e-21 7.847e-21 -20.067 -20.105 -0.039 (0) @@ -31009,29 +30999,29 @@ O(0) 1.273e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.535e-16 - O[18O] 2.530e-16 2.534e-16 -15.597 -15.596 0.001 (0) - [18O]2 2.524e-19 2.528e-19 -18.598 -18.597 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.410e-16 + O[18O] 1.407e-16 1.409e-16 -15.852 -15.851 0.001 (0) + [18O]2 1.404e-19 1.406e-19 -18.853 -18.852 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.48 -126.34 -2.86 [13C]H4 + [13C]H4(g) -122.97 -125.83 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.24 -20.75 -1.50 [14C][18O]2 - [14C]H4(g) -133.86 -136.72 -2.86 [14C]H4 + [14C]H4(g) -133.36 -136.22 -2.86 [14C]H4 [14C]O2(g) -13.88 -15.35 -1.47 [14C]O2 [14C]O[18O](g) -16.26 -18.05 -1.79 [14C]O[18O] - [18O]2(g) -16.31 -18.60 -2.29 [18O]2 + [18O]2(g) -16.56 -18.85 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -31045,14 +31035,14 @@ O(0) 1.273e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.52 -124.38 -2.86 CH4 + CH4(g) -121.01 -123.87 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.44 -39.59 -3.15 H2 + H2(g) -36.31 -39.46 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.30 -13.20 -2.89 O2 - O[18O](g) -13.00 -15.90 -2.89 O[18O] + O2(g) -10.56 -13.45 -2.89 O2 + O[18O](g) -13.26 -16.15 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -31116,23 +31106,23 @@ Calcite 3.56e-03 R(18O) 1.99518e-03 -4.9946 permil R(13C) 1.10785e-02 -9.0946 permil - R(14C) 4.32422e-13 36.774 pmc + R(14C) 4.32425e-13 36.774 pmc R(18O) H2O(l) 1.99518e-03 -4.9961 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9961 permil R(13C) CO2(aq) 1.09992e-02 -16.186 permil - R(14C) CO2(aq) 4.26250e-13 36.249 pmc + R(14C) CO2(aq) 4.26253e-13 36.249 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9961 permil R(13C) HCO3- 1.10949e-02 -7.627 permil - R(14C) HCO3- 4.33699e-13 36.883 pmc + R(14C) HCO3- 4.33702e-13 36.883 pmc R(18O) CO3-2 1.99518e-03 -4.9961 permil R(13C) CO3-2 1.10790e-02 -9.0512 permil - R(14C) CO3-2 4.32455e-13 36.777 pmc + R(14C) CO3-2 4.32458e-13 36.777 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11169e-02 -5.6615 permil - R(14C) Calcite 4.35419e-13 37.029 pmc + R(14C) Calcite 4.35422e-13 37.029 pmc --------------------------------Isotope Alphas--------------------------------- @@ -31142,12 +31132,12 @@ Calcite 3.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2464e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2645e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.745e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6209e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -31167,14 +31157,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.219 Adjusted to redox equilibrium + pe = 11.187 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -31189,13 +31179,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.263 -124.262 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.012 -124.011 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -31204,9 +31194,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -31214,23 +31204,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.050e-08 6.060e-08 -7.218 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.459e-40 - H2 2.730e-40 2.734e-40 -39.564 -39.563 0.001 (0) -O(0) 1.113e-13 - O2 5.545e-14 5.554e-14 -13.256 -13.255 0.001 (0) - O[18O] 2.213e-16 2.216e-16 -15.655 -15.654 0.001 (0) +H(0) 6.308e-40 + H2 3.154e-40 3.159e-40 -39.501 -39.500 0.001 (0) +O(0) 8.341e-14 + O2 4.154e-14 4.161e-14 -13.382 -13.381 0.001 (0) + O[18O] 1.657e-16 1.660e-16 -15.781 -15.780 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.221 -126.220 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.970 -125.970 0.001 (0) [13C](4) 6.470e-05 H[13C]O3- 5.219e-05 4.775e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.095e-05 1.097e-05 -4.960 -4.960 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.041e-07 9.526e-08 -6.982 -7.021 -0.039 (0) H[13C]O[18O]O- 1.041e-07 9.526e-08 -6.982 -7.021 -0.039 (0) + H[13C]O2[18O]- 1.041e-07 9.526e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.041e-07 9.526e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.050e-08 6.060e-08 -7.218 -7.218 0.001 (0) [13C]O[18O] 4.555e-08 4.562e-08 -7.342 -7.341 0.001 (0) @@ -31239,56 +31229,56 @@ O(0) 1.113e-13 CaH[13C]O[18O]O+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.621e-10 3.627e-10 -9.441 -9.440 0.001 (0) - H[13C]O[18O]2- 2.077e-10 1.901e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.077e-10 1.901e-10 -9.682 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.077e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.077e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.077e-10 1.901e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.858e-10 1.301e-10 -9.731 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.633 -136.632 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.382 -136.381 0.001 (0) [14C](4) 2.525e-15 H[14C]O3- 2.040e-15 1.866e-15 -14.690 -14.729 -0.039 (0) [14C]O2 4.245e-16 4.252e-16 -15.372 -15.371 0.001 (0) CaH[14C]O3+ 4.308e-17 3.952e-17 -16.366 -16.403 -0.037 (0) - H[14C]O2[18O]- 4.070e-18 3.724e-18 -17.390 -17.429 -0.039 (0) - H[14C]O[18O]O- 4.070e-18 3.724e-18 -17.390 -17.429 -0.039 (0) H[14C][18O]O2- 4.070e-18 3.724e-18 -17.390 -17.429 -0.039 (0) - Ca[14C]O3 2.362e-18 2.365e-18 -17.627 -17.626 0.001 (0) + H[14C]O[18O]O- 4.070e-18 3.724e-18 -17.390 -17.429 -0.039 (0) + H[14C]O2[18O]- 4.070e-18 3.724e-18 -17.390 -17.429 -0.039 (0) + Ca[14C]O3 2.362e-18 2.366e-18 -17.627 -17.626 0.001 (0) [14C]O[18O] 1.765e-18 1.768e-18 -17.753 -17.753 0.001 (0) [14C]O3-2 1.211e-18 8.487e-19 -17.917 -18.071 -0.155 (0) CaH[14C]O2[18O]+ 8.595e-20 7.885e-20 -19.066 -19.103 -0.037 (0) - CaH[14C]O[18O]O+ 8.595e-20 7.885e-20 -19.066 -19.103 -0.037 (0) CaH[14C][18O]O2+ 8.595e-20 7.885e-20 -19.066 -19.103 -0.037 (0) + CaH[14C]O[18O]O+ 8.595e-20 7.885e-20 -19.066 -19.103 -0.037 (0) Ca[14C]O2[18O] 1.414e-20 1.416e-20 -19.850 -19.849 0.001 (0) - H[14C]O[18O]2- 8.121e-21 7.430e-21 -20.090 -20.129 -0.039 (0) H[14C][18O]2O- 8.121e-21 7.430e-21 -20.090 -20.129 -0.039 (0) H[14C][18O]O[18O]- 8.121e-21 7.430e-21 -20.090 -20.129 -0.039 (0) + H[14C]O[18O]2- 8.121e-21 7.430e-21 -20.090 -20.129 -0.039 (0) [14C]O2[18O]-2 7.251e-21 5.080e-21 -20.140 -20.294 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.217e-16 - O[18O] 2.213e-16 2.216e-16 -15.655 -15.654 0.001 (0) - [18O]2 2.207e-19 2.211e-19 -18.656 -18.655 0.001 (0) +[18O](0) 1.661e-16 + O[18O] 1.657e-16 1.660e-16 -15.781 -15.780 0.001 (0) + [18O]2 1.654e-19 1.656e-19 -18.782 -18.781 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.36 -126.22 -2.86 [13C]H4 + [13C]H4(g) -123.11 -125.97 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.27 -20.77 -1.50 [14C][18O]2 - [14C]H4(g) -133.77 -136.63 -2.86 [14C]H4 + [14C]H4(g) -133.52 -136.38 -2.86 [14C]H4 [14C]O2(g) -13.90 -15.37 -1.47 [14C]O2 [14C]O[18O](g) -16.28 -18.07 -1.79 [14C]O[18O] - [18O]2(g) -16.37 -18.66 -2.29 [18O]2 + [18O]2(g) -16.49 -18.78 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -31302,14 +31292,14 @@ O(0) 1.113e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.40 -124.26 -2.86 CH4 + CH4(g) -121.15 -124.01 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.41 -39.56 -3.15 H2 + H2(g) -36.35 -39.50 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.36 -13.26 -2.89 O2 - O[18O](g) -13.06 -15.96 -2.89 O[18O] + O2(g) -10.49 -13.38 -2.89 O2 + O[18O](g) -13.19 -16.08 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -31363,7 +31353,7 @@ Calcite 4.06e-03 Ca[13C]O[18O]2(s) 5.60e-10 6.93e-11 1.38e-07 Ca[13C][18O]3(s) 3.83e-13 4.74e-14 9.45e-11 Ca[14C]O3(s) 1.65e-15 1.26e-16 4.06e-13 - Ca[14C]O2[18O](s) 1.01e-17 7.78e-19 2.50e-15 + Ca[14C]O2[18O](s) 1.02e-17 7.78e-19 2.50e-15 Ca[14C]O[18O]2(s) 2.08e-20 1.60e-21 5.14e-18 Ca[14C][18O]3(s) 1.43e-23 1.09e-24 3.51e-21 @@ -31373,23 +31363,23 @@ Calcite 4.06e-03 R(18O) 1.99519e-03 -4.9944 permil R(13C) 1.10829e-02 -8.7063 permil - R(14C) 4.10592e-13 34.918 pmc + R(14C) 4.10595e-13 34.918 pmc R(18O) H2O(l) 1.99518e-03 -4.9959 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9959 permil R(13C) CO2(aq) 1.10035e-02 -15.801 permil - R(14C) CO2(aq) 4.04732e-13 34.419 pmc + R(14C) CO2(aq) 4.04734e-13 34.419 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9959 permil R(13C) HCO3- 1.10993e-02 -7.2382 permil - R(14C) HCO3- 4.11805e-13 35.021 pmc + R(14C) HCO3- 4.11807e-13 35.021 pmc R(18O) CO3-2 1.99518e-03 -4.9959 permil R(13C) CO3-2 1.10833e-02 -8.6629 permil - R(14C) CO3-2 4.10624e-13 34.92 pmc + R(14C) CO3-2 4.10626e-13 34.921 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11213e-02 -5.2719 permil - R(14C) Calcite 4.13438e-13 35.16 pmc + R(14C) Calcite 4.13440e-13 35.16 pmc --------------------------------Isotope Alphas--------------------------------- @@ -31399,12 +31389,12 @@ Calcite 4.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2669e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2532e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5905e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5379e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -31424,14 +31414,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.231 Adjusted to redox equilibrium + pe = 11.219 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -31446,24 +31436,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.361 -124.361 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.262 -124.261 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -31471,81 +31461,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.053e-08 6.062e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.157e-40 - H2 2.579e-40 2.583e-40 -39.589 -39.588 0.001 (0) -O(0) 1.248e-13 - O2 6.213e-14 6.224e-14 -13.207 -13.206 0.001 (0) - O[18O] 2.479e-16 2.483e-16 -15.606 -15.605 0.001 (0) +H(0) 5.462e-40 + H2 2.731e-40 2.736e-40 -39.564 -39.563 0.001 (0) +O(0) 1.112e-13 + O2 5.539e-14 5.548e-14 -13.257 -13.256 0.001 (0) + O[18O] 2.210e-16 2.214e-16 -15.656 -15.655 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.320 -126.319 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.220 -126.219 0.001 (0) [13C](4) 6.473e-05 H[13C]O3- 5.221e-05 4.776e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.096e-05 1.098e-05 -4.960 -4.960 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) H[13C]O2[18O]- 1.042e-07 9.530e-08 -6.982 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.042e-07 9.530e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.042e-07 9.530e-08 -6.982 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.042e-07 9.530e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.053e-08 6.062e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.557e-08 4.564e-08 -7.341 -7.341 0.001 (0) [13C]O3-2 3.105e-08 2.175e-08 -7.508 -7.663 -0.155 (0) - CaH[13C]O2[18O]+ 2.200e-09 2.018e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.200e-09 2.018e-09 -8.658 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.200e-09 2.018e-09 -8.658 -8.695 -0.037 (0) + CaH[13C]O2[18O]+ 2.200e-09 2.018e-09 -8.658 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.623e-10 3.629e-10 -9.441 -9.440 0.001 (0) - H[13C]O[18O]2- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.858e-10 1.302e-10 -9.731 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.754 -136.753 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.654 -136.654 0.001 (0) [14C](4) 2.398e-15 - H[14C]O3- 1.937e-15 1.772e-15 -14.713 -14.752 -0.039 (0) + H[14C]O3- 1.937e-15 1.772e-15 -14.713 -14.751 -0.039 (0) [14C]O2 4.031e-16 4.037e-16 -15.395 -15.394 0.001 (0) CaH[14C]O3+ 4.090e-17 3.752e-17 -16.388 -16.426 -0.037 (0) - H[14C]O2[18O]- 3.865e-18 3.536e-18 -17.413 -17.452 -0.039 (0) - H[14C]O[18O]O- 3.865e-18 3.536e-18 -17.413 -17.452 -0.039 (0) H[14C][18O]O2- 3.865e-18 3.536e-18 -17.413 -17.452 -0.039 (0) + H[14C]O[18O]O- 3.865e-18 3.536e-18 -17.413 -17.452 -0.039 (0) + H[14C]O2[18O]- 3.865e-18 3.536e-18 -17.413 -17.452 -0.039 (0) Ca[14C]O3 2.242e-18 2.246e-18 -17.649 -17.649 0.001 (0) [14C]O[18O] 1.676e-18 1.679e-18 -17.776 -17.775 0.001 (0) [14C]O3-2 1.150e-18 8.058e-19 -17.939 -18.094 -0.155 (0) CaH[14C]O2[18O]+ 8.161e-20 7.486e-20 -19.088 -19.126 -0.037 (0) - CaH[14C]O[18O]O+ 8.161e-20 7.486e-20 -19.088 -19.126 -0.037 (0) CaH[14C][18O]O2+ 8.161e-20 7.486e-20 -19.088 -19.126 -0.037 (0) + CaH[14C]O[18O]O+ 8.161e-20 7.486e-20 -19.088 -19.126 -0.037 (0) Ca[14C]O2[18O] 1.342e-20 1.344e-20 -19.872 -19.871 0.001 (0) - H[14C]O[18O]2- 7.711e-21 7.054e-21 -20.113 -20.152 -0.039 (0) - H[14C][18O]2O- 7.711e-21 7.054e-21 -20.113 -20.152 -0.039 (0) - H[14C][18O]O[18O]- 7.711e-21 7.054e-21 -20.113 -20.152 -0.039 (0) + H[14C][18O]O[18O]- 7.711e-21 7.055e-21 -20.113 -20.152 -0.039 (0) + H[14C]O[18O]2- 7.711e-21 7.055e-21 -20.113 -20.152 -0.039 (0) + H[14C][18O]2O- 7.711e-21 7.055e-21 -20.113 -20.152 -0.039 (0) [14C]O2[18O]-2 6.885e-21 4.823e-21 -20.162 -20.317 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.484e-16 - O[18O] 2.479e-16 2.483e-16 -15.606 -15.605 0.001 (0) - [18O]2 2.473e-19 2.477e-19 -18.607 -18.606 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.215e-16 + O[18O] 2.210e-16 2.214e-16 -15.656 -15.655 0.001 (0) + [18O]2 2.205e-19 2.209e-19 -18.657 -18.656 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.46 -126.32 -2.86 [13C]H4 + [13C]H4(g) -123.36 -126.22 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.29 -20.79 -1.50 [14C][18O]2 - [14C]H4(g) -133.89 -136.75 -2.86 [14C]H4 + [14C]H4(g) -133.79 -136.65 -2.86 [14C]H4 [14C]O2(g) -13.93 -15.39 -1.47 [14C]O2 [14C]O[18O](g) -16.31 -18.09 -1.79 [14C]O[18O] - [18O]2(g) -16.32 -18.61 -2.29 [18O]2 + [18O]2(g) -16.37 -18.66 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -31559,14 +31549,14 @@ O(0) 1.248e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.50 -124.36 -2.86 CH4 + CH4(g) -121.40 -124.26 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.44 -39.59 -3.15 H2 + H2(g) -36.41 -39.56 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.31 -13.21 -2.89 O2 - O[18O](g) -13.01 -15.91 -2.89 O[18O] + O2(g) -10.36 -13.26 -2.89 O2 + O[18O](g) -13.06 -15.96 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -31630,23 +31620,23 @@ Calcite 4.56e-03 R(18O) 1.99519e-03 -4.9943 permil R(13C) 1.10868e-02 -8.3553 permil - R(14C) 3.90860e-13 33.24 pmc + R(14C) 3.90862e-13 33.24 pmc R(18O) H2O(l) 1.99518e-03 -4.9958 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9958 permil R(13C) CO2(aq) 1.10074e-02 -15.452 permil - R(14C) CO2(aq) 3.85281e-13 32.765 pmc + R(14C) CO2(aq) 3.85284e-13 32.765 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9958 permil R(13C) HCO3- 1.11032e-02 -6.8866 permil - R(14C) HCO3- 3.92014e-13 33.338 pmc + R(14C) HCO3- 3.92017e-13 33.338 pmc R(18O) CO3-2 1.99518e-03 -4.9958 permil R(13C) CO3-2 1.10873e-02 -8.3119 permil - R(14C) CO3-2 3.90890e-13 33.242 pmc + R(14C) CO3-2 3.90893e-13 33.242 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11252e-02 -4.9196 permil - R(14C) Calcite 3.93569e-13 33.47 pmc + R(14C) Calcite 3.93571e-13 33.47 pmc --------------------------------Isotope Alphas--------------------------------- @@ -31656,12 +31646,12 @@ Calcite 4.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2405e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.258e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6779e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6883e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -31681,14 +31671,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.211 Adjusted to redox equilibrium + pe = 11.204 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -31703,14 +31693,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.201 -124.201 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.145 -124.144 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -31718,9 +31708,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -31728,50 +31718,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.055e-08 6.065e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.655e-40 - H2 2.828e-40 2.832e-40 -39.549 -39.548 0.001 (0) -O(0) 1.038e-13 - O2 5.167e-14 5.176e-14 -13.287 -13.286 0.001 (0) - O[18O] 2.062e-16 2.065e-16 -15.686 -15.685 0.001 (0) +H(0) 5.841e-40 + H2 2.920e-40 2.925e-40 -39.535 -39.534 0.001 (0) +O(0) 9.726e-14 + O2 4.844e-14 4.852e-14 -13.315 -13.314 0.001 (0) + O[18O] 1.933e-16 1.936e-16 -15.714 -15.713 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.160 -126.159 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.103 -126.103 0.001 (0) [13C](4) 6.475e-05 H[13C]O3- 5.223e-05 4.778e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.096e-05 1.098e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.042e-07 9.533e-08 -6.982 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.042e-07 9.533e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.042e-07 9.533e-08 -6.982 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.042e-07 9.533e-08 -6.982 -7.021 -0.039 (0) + H[13C]O2[18O]- 1.042e-07 9.533e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.055e-08 6.065e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.558e-08 4.566e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.106e-08 2.176e-08 -7.508 -7.662 -0.155 (0) + CaH[13C][18O]O2+ 2.200e-09 2.019e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O2[18O]+ 2.200e-09 2.019e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.200e-09 2.019e-09 -8.657 -8.695 -0.037 (0) - CaH[13C][18O]O2+ 2.200e-09 2.019e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.624e-10 3.630e-10 -9.441 -9.440 0.001 (0) - H[13C]O[18O]2- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.859e-10 1.302e-10 -9.731 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.615 -136.615 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.559 -136.559 0.001 (0) [14C](4) 2.283e-15 H[14C]O3- 1.844e-15 1.687e-15 -14.734 -14.773 -0.039 (0) [14C]O2 3.837e-16 3.843e-16 -15.416 -15.415 0.001 (0) CaH[14C]O3+ 3.894e-17 3.572e-17 -16.410 -16.447 -0.037 (0) - H[14C]O2[18O]- 3.679e-18 3.366e-18 -17.434 -17.473 -0.039 (0) - H[14C]O[18O]O- 3.679e-18 3.366e-18 -17.434 -17.473 -0.039 (0) H[14C][18O]O2- 3.679e-18 3.366e-18 -17.434 -17.473 -0.039 (0) + H[14C]O[18O]O- 3.679e-18 3.366e-18 -17.434 -17.473 -0.039 (0) + H[14C]O2[18O]- 3.679e-18 3.366e-18 -17.434 -17.473 -0.039 (0) Ca[14C]O3 2.135e-18 2.138e-18 -17.671 -17.670 0.001 (0) [14C]O[18O] 1.595e-18 1.598e-18 -17.797 -17.796 0.001 (0) [14C]O3-2 1.095e-18 7.671e-19 -17.961 -18.115 -0.155 (0) CaH[14C]O2[18O]+ 7.769e-20 7.127e-20 -19.110 -19.147 -0.037 (0) - CaH[14C]O[18O]O+ 7.769e-20 7.127e-20 -19.110 -19.147 -0.037 (0) CaH[14C][18O]O2+ 7.769e-20 7.127e-20 -19.110 -19.147 -0.037 (0) + CaH[14C]O[18O]O+ 7.769e-20 7.127e-20 -19.110 -19.147 -0.037 (0) Ca[14C]O2[18O] 1.278e-20 1.280e-20 -19.894 -19.893 0.001 (0) H[14C]O[18O]2- 7.340e-21 6.715e-21 -20.134 -20.173 -0.039 (0) H[14C][18O]2O- 7.340e-21 6.715e-21 -20.134 -20.173 -0.039 (0) @@ -31780,29 +31770,29 @@ O(0) 1.038e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.066e-16 - O[18O] 2.062e-16 2.065e-16 -15.686 -15.685 0.001 (0) - [18O]2 2.057e-19 2.060e-19 -18.687 -18.686 0.001 (0) +[18O](0) 1.937e-16 + O[18O] 1.933e-16 1.936e-16 -15.714 -15.713 0.001 (0) + [18O]2 1.928e-19 1.931e-19 -18.715 -18.714 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.30 -126.16 -2.86 [13C]H4 + [13C]H4(g) -123.24 -126.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.31 -20.82 -1.50 [14C][18O]2 - [14C]H4(g) -133.75 -136.61 -2.86 [14C]H4 + [14C]H4(g) -133.70 -136.56 -2.86 [14C]H4 [14C]O2(g) -13.95 -15.42 -1.47 [14C]O2 [14C]O[18O](g) -16.33 -18.12 -1.79 [14C]O[18O] - [18O]2(g) -16.40 -18.69 -2.29 [18O]2 + [18O]2(g) -16.42 -18.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -31816,14 +31806,14 @@ O(0) 1.038e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.34 -124.20 -2.86 CH4 + CH4(g) -121.28 -124.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.40 -39.55 -3.15 H2 + H2(g) -36.38 -39.53 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.39 -13.29 -2.89 O2 - O[18O](g) -13.09 -15.99 -2.89 O[18O] + O2(g) -10.42 -13.31 -2.89 O2 + O[18O](g) -13.12 -16.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -31887,23 +31877,23 @@ Calcite 5.06e-03 R(18O) 1.99519e-03 -4.9941 permil R(13C) 1.10904e-02 -8.0364 permil - R(14C) 3.72937e-13 31.715 pmc + R(14C) 3.72940e-13 31.716 pmc R(18O) H2O(l) 1.99518e-03 -4.9957 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9957 permil R(13C) CO2(aq) 1.10110e-02 -15.135 permil - R(14C) CO2(aq) 3.67615e-13 31.263 pmc + R(14C) CO2(aq) 3.67617e-13 31.263 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9957 permil R(13C) HCO3- 1.11068e-02 -6.5673 permil - R(14C) HCO3- 3.74039e-13 31.809 pmc + R(14C) HCO3- 3.74041e-13 31.809 pmc R(18O) CO3-2 1.99518e-03 -4.9957 permil R(13C) CO3-2 1.10908e-02 -7.993 permil - R(14C) CO3-2 3.72966e-13 31.718 pmc + R(14C) CO3-2 3.72969e-13 31.718 pmc R(18O) Calcite 2.05262e-03 23.651 permil R(13C) Calcite 1.11288e-02 -4.5996 permil - R(14C) Calcite 3.75522e-13 31.935 pmc + R(14C) Calcite 3.75525e-13 31.935 pmc --------------------------------Isotope Alphas--------------------------------- @@ -31913,12 +31903,12 @@ Calcite 5.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2669e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2523e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6164e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6979e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -31938,14 +31928,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.217 Adjusted to redox equilibrium + pe = 11.175 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -31960,24 +31950,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.249 -124.249 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.915 -123.914 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -31985,23 +31975,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.057e-08 6.067e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.500e-40 - H2 2.750e-40 2.755e-40 -39.561 -39.560 0.001 (0) -O(0) 1.097e-13 - O2 5.462e-14 5.471e-14 -13.263 -13.262 0.001 (0) - O[18O] 2.180e-16 2.183e-16 -15.662 -15.661 0.001 (0) +H(0) 6.668e-40 + H2 3.334e-40 3.339e-40 -39.477 -39.476 0.001 (0) +O(0) 7.464e-14 + O2 3.717e-14 3.723e-14 -13.430 -13.429 0.001 (0) + O[18O] 1.483e-16 1.486e-16 -15.829 -15.828 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.208 -126.207 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.873 -125.873 0.001 (0) [13C](4) 6.477e-05 H[13C]O3- 5.224e-05 4.780e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.097e-05 1.098e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.042e-07 9.536e-08 -6.982 -7.021 -0.039 (0) H[13C]O[18O]O- 1.042e-07 9.536e-08 -6.982 -7.021 -0.039 (0) + H[13C]O2[18O]- 1.042e-07 9.536e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.042e-07 9.536e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.057e-08 6.067e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.560e-08 4.567e-08 -7.341 -7.340 0.001 (0) @@ -32010,56 +32000,56 @@ O(0) 1.097e-13 CaH[13C]O[18O]O+ 2.201e-09 2.019e-09 -8.657 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.201e-09 2.019e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.625e-10 3.631e-10 -9.441 -9.440 0.001 (0) - H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.860e-10 1.303e-10 -9.731 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.684 -136.683 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.350 -136.349 0.001 (0) [14C](4) 2.178e-15 H[14C]O3- 1.759e-15 1.610e-15 -14.755 -14.793 -0.039 (0) [14C]O2 3.661e-16 3.667e-16 -15.436 -15.436 0.001 (0) CaH[14C]O3+ 3.715e-17 3.408e-17 -16.430 -16.467 -0.037 (0) - H[14C]O2[18O]- 3.510e-18 3.211e-18 -17.455 -17.493 -0.039 (0) - H[14C]O[18O]O- 3.510e-18 3.211e-18 -17.455 -17.493 -0.039 (0) H[14C][18O]O2- 3.510e-18 3.211e-18 -17.455 -17.493 -0.039 (0) + H[14C]O[18O]O- 3.510e-18 3.211e-18 -17.455 -17.493 -0.039 (0) + H[14C]O2[18O]- 3.510e-18 3.211e-18 -17.455 -17.493 -0.039 (0) Ca[14C]O3 2.037e-18 2.040e-18 -17.691 -17.690 0.001 (0) [14C]O[18O] 1.522e-18 1.525e-18 -17.817 -17.817 0.001 (0) [14C]O3-2 1.045e-18 7.319e-19 -17.981 -18.136 -0.155 (0) - CaH[14C]O2[18O]+ 7.413e-20 6.800e-20 -19.130 -19.168 -0.037 (0) - CaH[14C]O[18O]O+ 7.413e-20 6.800e-20 -19.130 -19.168 -0.037 (0) - CaH[14C][18O]O2+ 7.413e-20 6.800e-20 -19.130 -19.168 -0.037 (0) + CaH[14C]O2[18O]+ 7.413e-20 6.800e-20 -19.130 -19.167 -0.037 (0) + CaH[14C][18O]O2+ 7.413e-20 6.800e-20 -19.130 -19.167 -0.037 (0) + CaH[14C]O[18O]O+ 7.413e-20 6.800e-20 -19.130 -19.167 -0.037 (0) Ca[14C]O2[18O] 1.219e-20 1.221e-20 -19.914 -19.913 0.001 (0) - H[14C]O[18O]2- 7.004e-21 6.407e-21 -20.155 -20.193 -0.039 (0) - H[14C][18O]2O- 7.004e-21 6.407e-21 -20.155 -20.193 -0.039 (0) - H[14C][18O]O[18O]- 7.004e-21 6.407e-21 -20.155 -20.193 -0.039 (0) + H[14C][18O]2O- 7.004e-21 6.408e-21 -20.155 -20.193 -0.039 (0) + H[14C][18O]O[18O]- 7.004e-21 6.408e-21 -20.155 -20.193 -0.039 (0) + H[14C]O[18O]2- 7.004e-21 6.408e-21 -20.155 -20.193 -0.039 (0) [14C]O2[18O]-2 6.254e-21 4.381e-21 -20.204 -20.358 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.184e-16 - O[18O] 2.180e-16 2.183e-16 -15.662 -15.661 0.001 (0) - [18O]2 2.174e-19 2.178e-19 -18.663 -18.662 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.486e-16 + O[18O] 1.483e-16 1.486e-16 -15.829 -15.828 0.001 (0) + [18O]2 1.480e-19 1.482e-19 -18.830 -18.829 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.35 -126.21 -2.86 [13C]H4 + [13C]H4(g) -123.01 -125.87 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.33 -20.84 -1.50 [14C][18O]2 - [14C]H4(g) -133.82 -136.68 -2.86 [14C]H4 + [14C]H4(g) -133.49 -136.35 -2.86 [14C]H4 [14C]O2(g) -13.97 -15.44 -1.47 [14C]O2 [14C]O[18O](g) -16.35 -18.14 -1.79 [14C]O[18O] - [18O]2(g) -16.37 -18.66 -2.29 [18O]2 + [18O]2(g) -16.54 -18.83 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -32073,14 +32063,14 @@ O(0) 1.097e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.39 -124.25 -2.86 CH4 + CH4(g) -121.05 -123.91 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.41 -39.56 -3.15 H2 + H2(g) -36.33 -39.48 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.37 -13.26 -2.89 O2 - O[18O](g) -13.07 -15.96 -2.89 O[18O] + O2(g) -10.54 -13.43 -2.89 O2 + O[18O](g) -13.24 -16.13 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -32144,23 +32134,23 @@ Calcite 5.56e-03 R(18O) 1.99519e-03 -4.994 permil R(13C) 1.10936e-02 -7.7455 permil - R(14C) 3.56587e-13 30.325 pmc + R(14C) 3.56589e-13 30.325 pmc R(18O) H2O(l) 1.99518e-03 -4.9955 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9955 permil R(13C) CO2(aq) 1.10142e-02 -14.847 permil - R(14C) CO2(aq) 3.51497e-13 29.892 pmc + R(14C) CO2(aq) 3.51499e-13 29.892 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9955 permil R(13C) HCO3- 1.11100e-02 -6.2759 permil - R(14C) HCO3- 3.57640e-13 30.414 pmc + R(14C) HCO3- 3.57642e-13 30.415 pmc R(18O) CO3-2 1.99518e-03 -4.9955 permil R(13C) CO3-2 1.10941e-02 -7.702 permil - R(14C) CO3-2 3.56614e-13 30.327 pmc + R(14C) CO3-2 3.56616e-13 30.327 pmc R(18O) Calcite 2.05262e-03 23.651 permil R(13C) Calcite 1.11320e-02 -4.3077 permil - R(14C) Calcite 3.59058e-13 30.535 pmc + R(14C) Calcite 3.59060e-13 30.535 pmc --------------------------------Isotope Alphas--------------------------------- @@ -32170,12 +32160,12 @@ Calcite 5.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2466e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2647e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6591e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6028e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -32195,14 +32185,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.241 Adjusted to redox equilibrium + pe = 11.216 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -32217,14 +32207,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.437 -124.436 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.238 -124.237 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -32232,9 +32222,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -32242,81 +32232,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.012e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.058e-08 6.068e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.937e-40 - H2 2.468e-40 2.473e-40 -39.608 -39.607 0.001 (0) -O(0) 1.361e-13 - O2 6.780e-14 6.791e-14 -13.169 -13.168 0.001 (0) - O[18O] 2.706e-16 2.710e-16 -15.568 -15.567 0.001 (0) +H(0) 5.538e-40 + H2 2.769e-40 2.774e-40 -39.558 -39.557 0.001 (0) +O(0) 1.082e-13 + O2 5.388e-14 5.397e-14 -13.269 -13.268 0.001 (0) + O[18O] 2.150e-16 2.154e-16 -15.668 -15.667 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.395 -126.395 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.196 -126.195 0.001 (0) [13C](4) 6.479e-05 H[13C]O3- 5.226e-05 4.781e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.012e-06 -5.957 -5.995 -0.037 (0) H[13C]O2[18O]- 1.043e-07 9.539e-08 -6.982 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.043e-07 9.539e-08 -6.982 -7.020 -0.039 (0) H[13C][18O]O2- 1.043e-07 9.539e-08 -6.982 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.043e-07 9.539e-08 -6.982 -7.020 -0.039 (0) Ca[13C]O3 6.058e-08 6.068e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.561e-08 4.569e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.108e-08 2.177e-08 -7.508 -7.662 -0.155 (0) - CaH[13C]O2[18O]+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) + CaH[13C]O2[18O]+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.626e-10 3.632e-10 -9.441 -9.440 0.001 (0) - H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.860e-10 1.303e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.891 -136.891 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.692 -136.691 0.001 (0) [14C](4) 2.083e-15 H[14C]O3- 1.682e-15 1.539e-15 -14.774 -14.813 -0.039 (0) [14C]O2 3.500e-16 3.506e-16 -15.456 -15.455 0.001 (0) CaH[14C]O3+ 3.552e-17 3.259e-17 -16.449 -16.487 -0.037 (0) - H[14C]O2[18O]- 3.356e-18 3.071e-18 -17.474 -17.513 -0.039 (0) - H[14C]O[18O]O- 3.356e-18 3.071e-18 -17.474 -17.513 -0.039 (0) H[14C][18O]O2- 3.356e-18 3.071e-18 -17.474 -17.513 -0.039 (0) + H[14C]O[18O]O- 3.356e-18 3.071e-18 -17.474 -17.513 -0.039 (0) + H[14C]O2[18O]- 3.356e-18 3.071e-18 -17.474 -17.513 -0.039 (0) Ca[14C]O3 1.947e-18 1.951e-18 -17.711 -17.710 0.001 (0) [14C]O[18O] 1.456e-18 1.458e-18 -17.837 -17.836 0.001 (0) [14C]O3-2 9.990e-19 6.998e-19 -18.000 -18.155 -0.155 (0) - CaH[14C]O2[18O]+ 7.088e-20 6.502e-20 -19.150 -19.187 -0.037 (0) - CaH[14C]O[18O]O+ 7.088e-20 6.502e-20 -19.150 -19.187 -0.037 (0) - CaH[14C][18O]O2+ 7.088e-20 6.502e-20 -19.150 -19.187 -0.037 (0) + CaH[14C]O2[18O]+ 7.088e-20 6.502e-20 -19.149 -19.187 -0.037 (0) + CaH[14C][18O]O2+ 7.088e-20 6.502e-20 -19.149 -19.187 -0.037 (0) + CaH[14C]O[18O]O+ 7.088e-20 6.502e-20 -19.149 -19.187 -0.037 (0) Ca[14C]O2[18O] 1.166e-20 1.168e-20 -19.933 -19.933 0.001 (0) + H[14C][18O]O[18O]- 6.697e-21 6.127e-21 -20.174 -20.213 -0.039 (0) H[14C]O[18O]2- 6.697e-21 6.127e-21 -20.174 -20.213 -0.039 (0) H[14C][18O]2O- 6.697e-21 6.127e-21 -20.174 -20.213 -0.039 (0) - H[14C][18O]O[18O]- 6.697e-21 6.127e-21 -20.174 -20.213 -0.039 (0) [14C]O2[18O]-2 5.980e-21 4.189e-21 -20.223 -20.378 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.711e-16 - O[18O] 2.706e-16 2.710e-16 -15.568 -15.567 0.001 (0) - [18O]2 2.699e-19 2.703e-19 -18.569 -18.568 0.001 (0) +[18O](0) 2.154e-16 + O[18O] 2.150e-16 2.154e-16 -15.668 -15.667 0.001 (0) + [18O]2 2.145e-19 2.149e-19 -18.669 -18.668 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.53 -126.39 -2.86 [13C]H4 + [13C]H4(g) -123.33 -126.19 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.35 -20.86 -1.50 [14C][18O]2 - [14C]H4(g) -134.03 -136.89 -2.86 [14C]H4 + [14C]H4(g) -133.83 -136.69 -2.86 [14C]H4 [14C]O2(g) -13.99 -15.46 -1.47 [14C]O2 [14C]O[18O](g) -16.37 -18.16 -1.79 [14C]O[18O] - [18O]2(g) -16.28 -18.57 -2.29 [18O]2 + [18O]2(g) -16.38 -18.67 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -32330,14 +32320,14 @@ O(0) 1.361e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.58 -124.44 -2.86 CH4 + CH4(g) -121.38 -124.24 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.46 -39.61 -3.15 H2 + H2(g) -36.41 -39.56 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.28 -13.17 -2.89 O2 - O[18O](g) -12.98 -15.87 -2.89 O[18O] + O2(g) -10.38 -13.27 -2.89 O2 + O[18O](g) -13.08 -15.97 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -32401,23 +32391,23 @@ Calcite 6.06e-03 R(18O) 1.99519e-03 -4.9939 permil R(13C) 1.10966e-02 -7.4789 permil - R(14C) 3.41609e-13 29.051 pmc + R(14C) 3.41611e-13 29.051 pmc R(18O) H2O(l) 1.99518e-03 -4.9954 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9954 permil R(13C) CO2(aq) 1.10172e-02 -14.582 permil - R(14C) CO2(aq) 3.36734e-13 28.637 pmc + R(14C) CO2(aq) 3.36736e-13 28.637 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9954 permil R(13C) HCO3- 1.11130e-02 -6.0089 permil - R(14C) HCO3- 3.42618e-13 29.137 pmc + R(14C) HCO3- 3.42620e-13 29.137 pmc R(18O) CO3-2 1.99518e-03 -4.9954 permil R(13C) CO3-2 1.10971e-02 -7.4354 permil - R(14C) CO3-2 3.41636e-13 29.053 pmc + R(14C) CO3-2 3.41638e-13 29.054 pmc R(18O) Calcite 2.05262e-03 23.651 permil R(13C) Calcite 1.11350e-02 -4.0402 permil - R(14C) Calcite 3.43977e-13 29.253 pmc + R(14C) Calcite 3.43979e-13 29.253 pmc --------------------------------Isotope Alphas--------------------------------- @@ -32427,12 +32417,12 @@ Calcite 6.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2469e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2666e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7744e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5854e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -32452,14 +32442,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.269 Adjusted to redox equilibrium + pe = 11.206 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -32474,24 +32464,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.661 -124.661 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.156 -124.156 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -32499,50 +32489,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.060e-08 6.070e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.339e-40 - H2 2.170e-40 2.173e-40 -39.664 -39.663 0.001 (0) -O(0) 1.762e-13 - O2 8.777e-14 8.792e-14 -13.057 -13.056 0.001 (0) - O[18O] 3.502e-16 3.508e-16 -15.456 -15.455 0.001 (0) +H(0) 5.803e-40 + H2 2.901e-40 2.906e-40 -39.537 -39.537 0.001 (0) +O(0) 9.854e-14 + O2 4.907e-14 4.916e-14 -13.309 -13.308 0.001 (0) + O[18O] 1.958e-16 1.961e-16 -15.708 -15.707 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.619 -126.619 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.114 -126.114 0.001 (0) [13C](4) 6.481e-05 H[13C]O3- 5.227e-05 4.782e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.043e-07 9.541e-08 -6.982 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.043e-07 9.541e-08 -6.982 -7.020 -0.039 (0) H[13C][18O]O2- 1.043e-07 9.541e-08 -6.982 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.043e-07 9.541e-08 -6.982 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.043e-07 9.541e-08 -6.982 -7.020 -0.039 (0) Ca[13C]O3 6.060e-08 6.070e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.562e-08 4.570e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.109e-08 2.178e-08 -7.507 -7.662 -0.155 (0) + CaH[13C][18O]O2+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O2[18O]+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) - CaH[13C][18O]O2+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.627e-10 3.633e-10 -9.440 -9.440 0.001 (0) - H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) - H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) [13C]O2[18O]-2 1.861e-10 1.304e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.134 -137.133 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.629 -136.628 0.001 (0) [14C](4) 1.995e-15 H[14C]O3- 1.612e-15 1.474e-15 -14.793 -14.831 -0.039 (0) [14C]O2 3.353e-16 3.359e-16 -15.475 -15.474 0.001 (0) CaH[14C]O3+ 3.403e-17 3.122e-17 -16.468 -16.506 -0.037 (0) - H[14C]O2[18O]- 3.215e-18 2.942e-18 -17.493 -17.531 -0.039 (0) - H[14C]O[18O]O- 3.215e-18 2.942e-18 -17.493 -17.531 -0.039 (0) H[14C][18O]O2- 3.215e-18 2.942e-18 -17.493 -17.531 -0.039 (0) + H[14C]O[18O]O- 3.215e-18 2.942e-18 -17.493 -17.531 -0.039 (0) + H[14C]O2[18O]- 3.215e-18 2.942e-18 -17.493 -17.531 -0.039 (0) Ca[14C]O3 1.866e-18 1.869e-18 -17.729 -17.728 0.001 (0) [14C]O[18O] 1.394e-18 1.397e-18 -17.856 -17.855 0.001 (0) [14C]O3-2 9.570e-19 6.704e-19 -18.019 -18.174 -0.155 (0) CaH[14C]O2[18O]+ 6.790e-20 6.229e-20 -19.168 -19.206 -0.037 (0) - CaH[14C]O[18O]O+ 6.790e-20 6.229e-20 -19.168 -19.206 -0.037 (0) CaH[14C][18O]O2+ 6.790e-20 6.229e-20 -19.168 -19.206 -0.037 (0) + CaH[14C]O[18O]O+ 6.790e-20 6.229e-20 -19.168 -19.206 -0.037 (0) Ca[14C]O2[18O] 1.117e-20 1.119e-20 -19.952 -19.951 0.001 (0) H[14C]O[18O]2- 6.415e-21 5.869e-21 -20.193 -20.231 -0.039 (0) H[14C][18O]2O- 6.415e-21 5.869e-21 -20.193 -20.231 -0.039 (0) @@ -32551,29 +32541,29 @@ O(0) 1.762e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.509e-16 - O[18O] 3.502e-16 3.508e-16 -15.456 -15.455 0.001 (0) - [18O]2 3.494e-19 3.500e-19 -18.457 -18.456 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.962e-16 + O[18O] 1.958e-16 1.961e-16 -15.708 -15.707 0.001 (0) + [18O]2 1.954e-19 1.957e-19 -18.709 -18.708 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.76 -126.62 -2.86 [13C]H4 + [13C]H4(g) -123.25 -126.11 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.37 -20.87 -1.50 [14C][18O]2 - [14C]H4(g) -134.27 -137.13 -2.86 [14C]H4 + [14C]H4(g) -133.77 -136.63 -2.86 [14C]H4 [14C]O2(g) -14.01 -15.47 -1.47 [14C]O2 [14C]O[18O](g) -16.39 -18.17 -1.79 [14C]O[18O] - [18O]2(g) -16.17 -18.46 -2.29 [18O]2 + [18O]2(g) -16.42 -18.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -32587,14 +32577,14 @@ O(0) 1.762e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.80 -124.66 -2.86 CH4 + CH4(g) -121.30 -124.16 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.51 -39.66 -3.15 H2 + H2(g) -36.39 -39.54 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.16 -13.06 -2.89 O2 - O[18O](g) -12.86 -15.76 -2.89 O[18O] + O2(g) -10.42 -13.31 -2.89 O2 + O[18O](g) -13.12 -16.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -32658,23 +32648,23 @@ Calcite 6.56e-03 R(18O) 1.99519e-03 -4.9937 permil R(13C) 1.10993e-02 -7.2338 permil - R(14C) 3.27839e-13 27.88 pmc + R(14C) 3.27841e-13 27.88 pmc R(18O) H2O(l) 1.99518e-03 -4.9952 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.9952 permil R(13C) CO2(aq) 1.10199e-02 -14.339 permil - R(14C) CO2(aq) 3.23160e-13 27.482 pmc + R(14C) CO2(aq) 3.23162e-13 27.482 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9952 permil R(13C) HCO3- 1.11158e-02 -5.7634 permil - R(14C) HCO3- 3.28808e-13 27.963 pmc + R(14C) HCO3- 3.28810e-13 27.963 pmc R(18O) CO3-2 1.99518e-03 -4.9952 permil R(13C) CO3-2 1.10998e-02 -7.1903 permil - R(14C) CO3-2 3.27865e-13 27.882 pmc + R(14C) CO3-2 3.27867e-13 27.882 pmc R(18O) Calcite 2.05262e-03 23.651 permil R(13C) Calcite 1.11378e-02 -3.7942 permil - R(14C) Calcite 3.30111e-13 28.073 pmc + R(14C) Calcite 3.30114e-13 28.074 pmc --------------------------------Isotope Alphas--------------------------------- @@ -32684,12 +32674,12 @@ Calcite 6.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2711e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2251e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8168e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6954e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -32709,14 +32699,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.264 Adjusted to redox equilibrium + pe = 11.226 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -32731,13 +32721,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.621 -124.621 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.321 -124.321 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -32746,9 +32736,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -32756,23 +32746,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.061e-08 6.071e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.440e-40 - H2 2.220e-40 2.224e-40 -39.654 -39.653 0.001 (0) -O(0) 1.683e-13 - O2 8.381e-14 8.395e-14 -13.077 -13.076 0.001 (0) - O[18O] 3.344e-16 3.350e-16 -15.476 -15.475 0.001 (0) +H(0) 5.277e-40 + H2 2.638e-40 2.643e-40 -39.579 -39.578 0.001 (0) +O(0) 1.192e-13 + O2 5.935e-14 5.944e-14 -13.227 -13.226 0.001 (0) + O[18O] 2.368e-16 2.372e-16 -15.626 -15.625 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.579 -126.578 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.279 -126.279 0.001 (0) [13C](4) 6.482e-05 H[13C]O3- 5.229e-05 4.783e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) H[13C]O[18O]O- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) H[13C][18O]O2- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) Ca[13C]O3 6.061e-08 6.071e-08 -7.217 -7.217 0.001 (0) [13C]O[18O] 4.563e-08 4.571e-08 -7.341 -7.340 0.001 (0) @@ -32781,56 +32771,56 @@ O(0) 1.683e-13 CaH[13C]O[18O]O+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.628e-10 3.634e-10 -9.440 -9.440 0.001 (0) - H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) - H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) [13C]O2[18O]-2 1.861e-10 1.304e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.112 -137.111 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.812 -136.811 0.001 (0) [14C](4) 1.915e-15 H[14C]O3- 1.547e-15 1.415e-15 -14.811 -14.849 -0.039 (0) - [14C]O2 3.218e-16 3.223e-16 -15.492 -15.492 0.001 (0) + [14C]O2 3.218e-16 3.224e-16 -15.492 -15.492 0.001 (0) CaH[14C]O3+ 3.266e-17 2.996e-17 -16.486 -16.523 -0.037 (0) - H[14C]O2[18O]- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) - H[14C]O[18O]O- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) H[14C][18O]O2- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) + H[14C]O[18O]O- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) + H[14C]O2[18O]- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) Ca[14C]O3 1.790e-18 1.793e-18 -17.747 -17.746 0.001 (0) [14C]O[18O] 1.338e-18 1.340e-18 -17.873 -17.873 0.001 (0) [14C]O3-2 9.185e-19 6.434e-19 -18.037 -18.192 -0.155 (0) - CaH[14C]O2[18O]+ 6.516e-20 5.977e-20 -19.186 -19.223 -0.037 (0) - CaH[14C]O[18O]O+ 6.516e-20 5.977e-20 -19.186 -19.223 -0.037 (0) - CaH[14C][18O]O2+ 6.516e-20 5.977e-20 -19.186 -19.223 -0.037 (0) + CaH[14C]O2[18O]+ 6.516e-20 5.978e-20 -19.186 -19.223 -0.037 (0) + CaH[14C][18O]O2+ 6.516e-20 5.978e-20 -19.186 -19.223 -0.037 (0) + CaH[14C]O[18O]O+ 6.516e-20 5.978e-20 -19.186 -19.223 -0.037 (0) Ca[14C]O2[18O] 1.072e-20 1.073e-20 -19.970 -19.969 0.001 (0) - H[14C]O[18O]2- 6.157e-21 5.633e-21 -20.211 -20.249 -0.039 (0) H[14C][18O]2O- 6.157e-21 5.633e-21 -20.211 -20.249 -0.039 (0) H[14C][18O]O[18O]- 6.157e-21 5.633e-21 -20.211 -20.249 -0.039 (0) + H[14C]O[18O]2- 6.157e-21 5.633e-21 -20.211 -20.249 -0.039 (0) [14C]O2[18O]-2 5.497e-21 3.851e-21 -20.260 -20.414 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.351e-16 - O[18O] 3.344e-16 3.350e-16 -15.476 -15.475 0.001 (0) - [18O]2 3.336e-19 3.342e-19 -18.477 -18.476 0.001 (0) +[18O](0) 2.373e-16 + O[18O] 2.368e-16 2.372e-16 -15.626 -15.625 0.001 (0) + [18O]2 2.362e-19 2.366e-19 -18.627 -18.626 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.72 -126.58 -2.86 [13C]H4 + [13C]H4(g) -123.42 -126.28 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.39 -20.89 -1.50 [14C][18O]2 - [14C]H4(g) -134.25 -137.11 -2.86 [14C]H4 + [14C]H4(g) -133.95 -136.81 -2.86 [14C]H4 [14C]O2(g) -14.02 -15.49 -1.47 [14C]O2 [14C]O[18O](g) -16.40 -18.19 -1.79 [14C]O[18O] - [18O]2(g) -16.19 -18.48 -2.29 [18O]2 + [18O]2(g) -16.34 -18.63 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -32844,14 +32834,14 @@ O(0) 1.683e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.76 -124.62 -2.86 CH4 + CH4(g) -121.46 -124.32 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.50 -39.65 -3.15 H2 + H2(g) -36.43 -39.58 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.18 -13.08 -2.89 O2 - O[18O](g) -12.88 -15.78 -2.89 O[18O] + O2(g) -10.33 -13.23 -2.89 O2 + O[18O](g) -13.03 -15.93 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -32915,23 +32905,23 @@ Calcite 7.06e-03 R(18O) 1.99519e-03 -4.9936 permil R(13C) 1.11019e-02 -7.0076 permil - R(14C) 3.15136e-13 26.8 pmc + R(14C) 3.15138e-13 26.8 pmc R(18O) H2O(l) 1.99518e-03 -4.9951 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.9951 permil R(13C) CO2(aq) 1.10224e-02 -14.114 permil - R(14C) CO2(aq) 3.10639e-13 26.417 pmc + R(14C) CO2(aq) 3.10641e-13 26.418 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9951 permil R(13C) HCO3- 1.11183e-02 -5.537 permil - R(14C) HCO3- 3.16067e-13 26.879 pmc + R(14C) HCO3- 3.16069e-13 26.879 pmc R(18O) CO3-2 1.99518e-03 -4.9951 permil R(13C) CO3-2 1.11023e-02 -6.9641 permil - R(14C) CO3-2 3.15161e-13 26.802 pmc + R(14C) CO3-2 3.15163e-13 26.802 pmc R(18O) Calcite 2.05263e-03 23.651 permil R(13C) Calcite 1.11403e-02 -3.5673 permil - R(14C) Calcite 3.17321e-13 26.986 pmc + R(14C) Calcite 3.17323e-13 26.986 pmc --------------------------------Isotope Alphas--------------------------------- @@ -32941,12 +32931,12 @@ Calcite 7.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2721e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7503e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6972e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -32966,14 +32956,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.294 Adjusted to redox equilibrium + pe = 11.242 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -32988,24 +32978,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.863 -124.862 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.445 -124.445 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -33013,81 +33003,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.063e-08 6.073e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.864e-40 - H2 1.932e-40 1.935e-40 -39.714 -39.713 0.001 (0) -O(0) 2.223e-13 - O2 1.107e-13 1.109e-13 -12.956 -12.955 0.001 (0) - O[18O] 4.417e-16 4.424e-16 -15.355 -15.354 0.001 (0) +H(0) 4.914e-40 + H2 2.457e-40 2.461e-40 -39.610 -39.609 0.001 (0) +O(0) 1.374e-13 + O2 6.844e-14 6.856e-14 -13.165 -13.164 0.001 (0) + O[18O] 2.731e-16 2.736e-16 -15.564 -15.563 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.821 -126.820 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.403 -126.402 0.001 (0) [13C](4) 6.484e-05 H[13C]O3- 5.230e-05 4.785e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) H[13C]O2[18O]- 1.043e-07 9.546e-08 -6.982 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.043e-07 9.546e-08 -6.982 -7.020 -0.039 (0) H[13C][18O]O2- 1.043e-07 9.546e-08 -6.982 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.043e-07 9.546e-08 -6.982 -7.020 -0.039 (0) Ca[13C]O3 6.063e-08 6.073e-08 -7.217 -7.217 0.001 (0) [13C]O[18O] 4.564e-08 4.572e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.110e-08 2.179e-08 -7.507 -7.662 -0.155 (0) - CaH[13C]O2[18O]+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) + CaH[13C]O2[18O]+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.629e-10 3.635e-10 -9.440 -9.440 0.001 (0) - H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.682 -9.720 -0.039 (0) - H[13C][18O]2O- 2.082e-10 1.905e-10 -9.682 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.082e-10 1.905e-10 -9.682 -9.720 -0.039 (0) + H[13C][18O]2O- 2.082e-10 1.905e-10 -9.682 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.682 -9.720 -0.039 (0) [13C]O2[18O]-2 1.862e-10 1.304e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.371 -137.370 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.953 -136.952 0.001 (0) [14C](4) 1.840e-15 H[14C]O3- 1.487e-15 1.360e-15 -14.828 -14.866 -0.039 (0) - [14C]O2 3.093e-16 3.099e-16 -15.510 -15.509 0.001 (0) + [14C]O2 3.094e-16 3.099e-16 -15.510 -15.509 0.001 (0) CaH[14C]O3+ 3.139e-17 2.880e-17 -16.503 -16.541 -0.037 (0) - H[14C]O2[18O]- 2.966e-18 2.714e-18 -17.528 -17.566 -0.039 (0) - H[14C]O[18O]O- 2.966e-18 2.714e-18 -17.528 -17.566 -0.039 (0) H[14C][18O]O2- 2.966e-18 2.714e-18 -17.528 -17.566 -0.039 (0) + H[14C]O[18O]O- 2.966e-18 2.714e-18 -17.528 -17.566 -0.039 (0) + H[14C]O2[18O]- 2.966e-18 2.714e-18 -17.528 -17.566 -0.039 (0) Ca[14C]O3 1.721e-18 1.724e-18 -17.764 -17.763 0.001 (0) [14C]O[18O] 1.286e-18 1.288e-18 -17.891 -17.890 0.001 (0) [14C]O3-2 8.829e-19 6.185e-19 -18.054 -18.209 -0.155 (0) CaH[14C]O2[18O]+ 6.264e-20 5.746e-20 -19.203 -19.241 -0.037 (0) - CaH[14C]O[18O]O+ 6.264e-20 5.746e-20 -19.203 -19.241 -0.037 (0) CaH[14C][18O]O2+ 6.264e-20 5.746e-20 -19.203 -19.241 -0.037 (0) + CaH[14C]O[18O]O+ 6.264e-20 5.746e-20 -19.203 -19.241 -0.037 (0) Ca[14C]O2[18O] 1.030e-20 1.032e-20 -19.987 -19.986 0.001 (0) + H[14C][18O]O[18O]- 5.918e-21 5.414e-21 -20.228 -20.266 -0.039 (0) H[14C]O[18O]2- 5.918e-21 5.414e-21 -20.228 -20.266 -0.039 (0) H[14C][18O]2O- 5.918e-21 5.414e-21 -20.228 -20.266 -0.039 (0) - H[14C][18O]O[18O]- 5.918e-21 5.414e-21 -20.228 -20.266 -0.039 (0) [14C]O2[18O]-2 5.284e-21 3.702e-21 -20.277 -20.432 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.426e-16 - O[18O] 4.417e-16 4.424e-16 -15.355 -15.354 0.001 (0) - [18O]2 4.406e-19 4.413e-19 -18.356 -18.355 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.737e-16 + O[18O] 2.731e-16 2.736e-16 -15.564 -15.563 0.001 (0) + [18O]2 2.725e-19 2.729e-19 -18.565 -18.564 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.96 -126.82 -2.86 [13C]H4 + [13C]H4(g) -123.54 -126.40 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.41 -20.91 -1.50 [14C][18O]2 - [14C]H4(g) -134.51 -137.37 -2.86 [14C]H4 + [14C]H4(g) -134.09 -136.95 -2.86 [14C]H4 [14C]O2(g) -14.04 -15.51 -1.47 [14C]O2 [14C]O[18O](g) -16.42 -18.21 -1.79 [14C]O[18O] - [18O]2(g) -16.06 -18.36 -2.29 [18O]2 + [18O]2(g) -16.27 -18.56 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -33101,14 +33091,14 @@ O(0) 2.223e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.00 -124.86 -2.86 CH4 + CH4(g) -121.58 -124.44 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.56 -39.71 -3.15 H2 + H2(g) -36.46 -39.61 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.06 -12.96 -2.89 O2 - O[18O](g) -12.76 -15.66 -2.89 O[18O] + O2(g) -10.27 -13.16 -2.89 O2 + O[18O](g) -12.97 -15.86 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -33172,23 +33162,23 @@ Calcite 7.56e-03 R(18O) 1.99519e-03 -4.9934 permil R(13C) 1.11042e-02 -6.7983 permil - R(14C) 3.03381e-13 25.8 pmc + R(14C) 3.03383e-13 25.8 pmc R(18O) H2O(l) 1.99518e-03 -4.995 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.995 permil R(13C) CO2(aq) 1.10247e-02 -13.906 permil - R(14C) CO2(aq) 2.99051e-13 25.432 pmc + R(14C) CO2(aq) 2.99053e-13 25.432 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.995 permil R(13C) HCO3- 1.11206e-02 -5.3273 permil - R(14C) HCO3- 3.04277e-13 25.876 pmc + R(14C) HCO3- 3.04279e-13 25.877 pmc R(18O) CO3-2 1.99518e-03 -4.995 permil R(13C) CO3-2 1.11047e-02 -6.7548 permil - R(14C) CO3-2 3.03405e-13 25.802 pmc + R(14C) CO3-2 3.03407e-13 25.802 pmc R(18O) Calcite 2.05263e-03 23.651 permil R(13C) Calcite 1.11427e-02 -3.3572 permil - R(14C) Calcite 3.05484e-13 25.979 pmc + R(14C) Calcite 3.05486e-13 25.979 pmc --------------------------------Isotope Alphas--------------------------------- @@ -33198,12 +33188,12 @@ Calcite 7.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2589e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2775e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6561e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7398e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -33223,14 +33213,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.302 Adjusted to redox equilibrium + pe = 11.263 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -33245,14 +33235,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.924 -124.924 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.620 -124.619 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -33260,9 +33250,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -33270,50 +33260,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.064e-08 6.074e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.730e-40 - H2 1.865e-40 1.868e-40 -39.729 -39.729 0.001 (0) -O(0) 2.386e-13 - O2 1.188e-13 1.190e-13 -12.925 -12.924 0.001 (0) - O[18O] 4.741e-16 4.749e-16 -15.324 -15.323 0.001 (0) +H(0) 4.445e-40 + H2 2.222e-40 2.226e-40 -39.653 -39.652 0.001 (0) +O(0) 1.679e-13 + O2 8.364e-14 8.378e-14 -13.078 -13.077 0.001 (0) + O[18O] 3.338e-16 3.343e-16 -15.477 -15.476 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.882 -126.881 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.577 -126.576 0.001 (0) [13C](4) 6.485e-05 H[13C]O3- 5.231e-05 4.786e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.064e-08 6.074e-08 -7.217 -7.217 0.001 (0) [13C]O[18O] 4.565e-08 4.573e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.111e-08 2.179e-08 -7.507 -7.662 -0.155 (0) + CaH[13C][18O]O2+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.630e-10 3.636e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.862e-10 1.304e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.449 -137.448 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.144 -137.143 0.001 (0) [14C](4) 1.772e-15 H[14C]O3- 1.431e-15 1.309e-15 -14.844 -14.883 -0.039 (0) [14C]O2 2.978e-16 2.983e-16 -15.526 -15.525 0.001 (0) CaH[14C]O3+ 3.022e-17 2.772e-17 -16.520 -16.557 -0.037 (0) - H[14C]O2[18O]- 2.856e-18 2.612e-18 -17.544 -17.583 -0.039 (0) - H[14C]O[18O]O- 2.856e-18 2.612e-18 -17.544 -17.583 -0.039 (0) H[14C][18O]O2- 2.856e-18 2.612e-18 -17.544 -17.583 -0.039 (0) + H[14C]O[18O]O- 2.856e-18 2.612e-18 -17.544 -17.583 -0.039 (0) + H[14C]O2[18O]- 2.856e-18 2.612e-18 -17.544 -17.583 -0.039 (0) Ca[14C]O3 1.657e-18 1.660e-18 -17.781 -17.780 0.001 (0) [14C]O[18O] 1.238e-18 1.240e-18 -17.907 -17.906 0.001 (0) [14C]O3-2 8.499e-19 5.954e-19 -18.071 -18.225 -0.155 (0) CaH[14C]O2[18O]+ 6.030e-20 5.532e-20 -19.220 -19.257 -0.037 (0) - CaH[14C]O[18O]O+ 6.030e-20 5.532e-20 -19.220 -19.257 -0.037 (0) CaH[14C][18O]O2+ 6.030e-20 5.532e-20 -19.220 -19.257 -0.037 (0) + CaH[14C]O[18O]O+ 6.030e-20 5.532e-20 -19.220 -19.257 -0.037 (0) Ca[14C]O2[18O] 9.917e-21 9.933e-21 -20.004 -20.003 0.001 (0) H[14C]O[18O]2- 5.697e-21 5.212e-21 -20.244 -20.283 -0.039 (0) H[14C][18O]2O- 5.697e-21 5.212e-21 -20.244 -20.283 -0.039 (0) @@ -33322,29 +33312,29 @@ O(0) 2.386e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.750e-16 - O[18O] 4.741e-16 4.749e-16 -15.324 -15.323 0.001 (0) - [18O]2 4.729e-19 4.737e-19 -18.325 -18.324 0.001 (0) +[18O](0) 3.344e-16 + O[18O] 3.338e-16 3.343e-16 -15.477 -15.476 0.001 (0) + [18O]2 3.330e-19 3.335e-19 -18.478 -18.477 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.02 -126.88 -2.86 [13C]H4 + [13C]H4(g) -123.72 -126.58 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.42 -20.93 -1.50 [14C][18O]2 - [14C]H4(g) -134.59 -137.45 -2.86 [14C]H4 + [14C]H4(g) -134.28 -137.14 -2.86 [14C]H4 [14C]O2(g) -14.06 -15.53 -1.47 [14C]O2 [14C]O[18O](g) -16.44 -18.23 -1.79 [14C]O[18O] - [18O]2(g) -16.03 -18.32 -2.29 [18O]2 + [18O]2(g) -16.19 -18.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -33358,14 +33348,14 @@ O(0) 2.386e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.06 -124.92 -2.86 CH4 + CH4(g) -121.76 -124.62 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.58 -39.73 -3.15 H2 + H2(g) -36.50 -39.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.03 -12.92 -2.89 O2 - O[18O](g) -12.73 -15.62 -2.89 O[18O] + O2(g) -10.18 -13.08 -2.89 O2 + O[18O](g) -12.88 -15.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -33429,23 +33419,23 @@ Calcite 8.06e-03 R(18O) 1.99519e-03 -4.9933 permil R(13C) 1.11064e-02 -6.604 permil - R(14C) 2.92472e-13 24.872 pmc + R(14C) 2.92474e-13 24.873 pmc R(18O) H2O(l) 1.99518e-03 -4.9948 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.9948 permil R(13C) CO2(aq) 1.10269e-02 -13.713 permil - R(14C) CO2(aq) 2.88297e-13 24.517 pmc + R(14C) CO2(aq) 2.88299e-13 24.518 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9948 permil R(13C) HCO3- 1.11228e-02 -5.1328 permil - R(14C) HCO3- 2.93335e-13 24.946 pmc + R(14C) HCO3- 2.93337e-13 24.946 pmc R(18O) CO3-2 1.99518e-03 -4.9948 permil R(13C) CO3-2 1.11069e-02 -6.5605 permil - R(14C) CO3-2 2.92494e-13 24.874 pmc + R(14C) CO3-2 2.92496e-13 24.874 pmc R(18O) Calcite 2.05263e-03 23.651 permil R(13C) Calcite 1.11448e-02 -3.1623 permil - R(14C) Calcite 2.94499e-13 25.045 pmc + R(14C) Calcite 2.94501e-13 25.045 pmc --------------------------------Isotope Alphas--------------------------------- @@ -33455,12 +33445,12 @@ Calcite 8.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2575e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2434e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6124e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6931e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -33480,14 +33470,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.296 Adjusted to redox equilibrium + pe = 11.246 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -33502,24 +33492,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.882 -124.881 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.476 -124.476 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -33527,23 +33517,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.065e-08 6.075e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.822e-40 - H2 1.911e-40 1.914e-40 -39.719 -39.718 0.001 (0) -O(0) 2.271e-13 - O2 1.131e-13 1.133e-13 -12.946 -12.946 0.001 (0) - O[18O] 4.514e-16 4.521e-16 -15.345 -15.345 0.001 (0) +H(0) 4.827e-40 + H2 2.414e-40 2.418e-40 -39.617 -39.617 0.001 (0) +O(0) 1.424e-13 + O2 7.092e-14 7.104e-14 -13.149 -13.148 0.001 (0) + O[18O] 2.830e-16 2.835e-16 -15.548 -15.547 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.839 -126.839 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.434 -126.433 0.001 (0) [13C](4) 6.486e-05 H[13C]O3- 5.232e-05 4.786e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.044e-07 9.550e-08 -6.981 -7.020 -0.039 (0) H[13C]O[18O]O- 1.044e-07 9.550e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.044e-07 9.550e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.550e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.065e-08 6.075e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.566e-08 4.574e-08 -7.340 -7.340 0.001 (0) @@ -33552,56 +33542,56 @@ O(0) 2.271e-13 CaH[13C]O[18O]O+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.630e-10 3.636e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.083e-10 1.905e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.083e-10 1.905e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.083e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.083e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.083e-10 1.905e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.862e-10 1.305e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.422 -137.421 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.016 -137.016 0.001 (0) [14C](4) 1.708e-15 H[14C]O3- 1.380e-15 1.262e-15 -14.860 -14.899 -0.039 (0) [14C]O2 2.871e-16 2.876e-16 -15.542 -15.541 0.001 (0) CaH[14C]O3+ 2.914e-17 2.673e-17 -16.536 -16.573 -0.037 (0) - H[14C]O2[18O]- 2.753e-18 2.519e-18 -17.560 -17.599 -0.039 (0) - H[14C]O[18O]O- 2.753e-18 2.519e-18 -17.560 -17.599 -0.039 (0) H[14C][18O]O2- 2.753e-18 2.519e-18 -17.560 -17.599 -0.039 (0) + H[14C]O[18O]O- 2.753e-18 2.519e-18 -17.560 -17.599 -0.039 (0) + H[14C]O2[18O]- 2.753e-18 2.519e-18 -17.560 -17.599 -0.039 (0) Ca[14C]O3 1.597e-18 1.600e-18 -17.797 -17.796 0.001 (0) [14C]O[18O] 1.194e-18 1.196e-18 -17.923 -17.922 0.001 (0) [14C]O3-2 8.194e-19 5.740e-19 -18.087 -18.241 -0.155 (0) CaH[14C]O2[18O]+ 5.813e-20 5.333e-20 -19.236 -19.273 -0.037 (0) - CaH[14C]O[18O]O+ 5.813e-20 5.333e-20 -19.236 -19.273 -0.037 (0) CaH[14C][18O]O2+ 5.813e-20 5.333e-20 -19.236 -19.273 -0.037 (0) + CaH[14C]O[18O]O+ 5.813e-20 5.333e-20 -19.236 -19.273 -0.037 (0) Ca[14C]O2[18O] 9.560e-21 9.576e-21 -20.020 -20.019 0.001 (0) - H[14C]O[18O]2- 5.492e-21 5.025e-21 -20.260 -20.299 -0.039 (0) - H[14C][18O]2O- 5.492e-21 5.025e-21 -20.260 -20.299 -0.039 (0) - H[14C][18O]O[18O]- 5.492e-21 5.025e-21 -20.260 -20.299 -0.039 (0) + H[14C][18O]2O- 5.493e-21 5.025e-21 -20.260 -20.299 -0.039 (0) + H[14C][18O]O[18O]- 5.493e-21 5.025e-21 -20.260 -20.299 -0.039 (0) + H[14C]O[18O]2- 5.493e-21 5.025e-21 -20.260 -20.299 -0.039 (0) [14C]O2[18O]-2 4.904e-21 3.436e-21 -20.309 -20.464 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.523e-16 - O[18O] 4.514e-16 4.521e-16 -15.345 -15.345 0.001 (0) - [18O]2 4.503e-19 4.510e-19 -18.346 -18.346 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.836e-16 + O[18O] 2.830e-16 2.835e-16 -15.548 -15.547 0.001 (0) + [18O]2 2.823e-19 2.828e-19 -18.549 -18.549 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.98 -126.84 -2.86 [13C]H4 + [13C]H4(g) -123.57 -126.43 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.44 -20.94 -1.50 [14C][18O]2 - [14C]H4(g) -134.56 -137.42 -2.86 [14C]H4 + [14C]H4(g) -134.16 -137.02 -2.86 [14C]H4 [14C]O2(g) -14.07 -15.54 -1.47 [14C]O2 [14C]O[18O](g) -16.45 -18.24 -1.79 [14C]O[18O] - [18O]2(g) -16.06 -18.35 -2.29 [18O]2 + [18O]2(g) -16.26 -18.55 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -33615,14 +33605,14 @@ O(0) 2.271e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.02 -124.88 -2.86 CH4 + CH4(g) -121.62 -124.48 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.57 -39.72 -3.15 H2 + H2(g) -36.47 -39.62 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.05 -12.95 -2.89 O2 - O[18O](g) -12.75 -15.65 -2.89 O[18O] + O2(g) -10.26 -13.15 -2.89 O2 + O[18O](g) -12.96 -15.85 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -33686,23 +33676,23 @@ Calcite 8.56e-03 R(18O) 1.99519e-03 -4.9932 permil R(13C) 1.11084e-02 -6.4232 permil - R(14C) 2.82319e-13 24.009 pmc + R(14C) 2.82321e-13 24.009 pmc R(18O) H2O(l) 1.99518e-03 -4.9947 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.9947 permil R(13C) CO2(aq) 1.10289e-02 -13.534 permil - R(14C) CO2(aq) 2.78290e-13 23.666 pmc + R(14C) CO2(aq) 2.78292e-13 23.667 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9947 permil R(13C) HCO3- 1.11248e-02 -4.9517 permil - R(14C) HCO3- 2.83153e-13 24.08 pmc + R(14C) HCO3- 2.83155e-13 24.08 pmc R(18O) CO3-2 1.99518e-03 -4.9947 permil R(13C) CO3-2 1.11089e-02 -6.3797 permil - R(14C) CO3-2 2.82341e-13 24.011 pmc + R(14C) CO3-2 2.82343e-13 24.011 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11469e-02 -2.9809 permil - R(14C) Calcite 2.84276e-13 24.175 pmc + R(14C) Calcite 2.84278e-13 24.176 pmc --------------------------------Isotope Alphas--------------------------------- @@ -33712,12 +33702,12 @@ Calcite 8.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2502e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2675e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5609e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6435e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -33737,14 +33727,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.304 Adjusted to redox equilibrium + pe = 11.262 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -33759,14 +33749,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.943 -124.942 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.609 -124.609 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -33774,9 +33764,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -33784,81 +33774,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.066e-08 6.076e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.690e-40 - H2 1.845e-40 1.848e-40 -39.734 -39.733 0.001 (0) -O(0) 2.438e-13 - O2 1.214e-13 1.216e-13 -12.916 -12.915 0.001 (0) - O[18O] 4.844e-16 4.852e-16 -15.315 -15.314 0.001 (0) +H(0) 4.471e-40 + H2 2.236e-40 2.239e-40 -39.651 -39.650 0.001 (0) +O(0) 1.660e-13 + O2 8.267e-14 8.280e-14 -13.083 -13.082 0.001 (0) + O[18O] 3.299e-16 3.304e-16 -15.482 -15.481 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.901 -126.900 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.567 -126.566 0.001 (0) [13C](4) 6.487e-05 H[13C]O3- 5.233e-05 4.787e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) H[13C]O2[18O]- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.066e-08 6.076e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.567e-08 4.575e-08 -7.340 -7.340 0.001 (0) [13C]O3-2 3.112e-08 2.180e-08 -7.507 -7.662 -0.155 (0) - CaH[13C]O2[18O]+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) + CaH[13C]O2[18O]+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.631e-10 3.637e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.499 -137.498 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.165 -137.164 0.001 (0) [14C](4) 1.649e-15 H[14C]O3- 1.332e-15 1.218e-15 -14.876 -14.914 -0.039 (0) [14C]O2 2.771e-16 2.776e-16 -15.557 -15.557 0.001 (0) CaH[14C]O3+ 2.812e-17 2.580e-17 -16.551 -16.588 -0.037 (0) - H[14C]O2[18O]- 2.657e-18 2.431e-18 -17.576 -17.614 -0.039 (0) - H[14C]O[18O]O- 2.657e-18 2.431e-18 -17.576 -17.614 -0.039 (0) H[14C][18O]O2- 2.657e-18 2.431e-18 -17.576 -17.614 -0.039 (0) + H[14C]O[18O]O- 2.657e-18 2.431e-18 -17.576 -17.614 -0.039 (0) + H[14C]O2[18O]- 2.657e-18 2.431e-18 -17.576 -17.614 -0.039 (0) Ca[14C]O3 1.542e-18 1.544e-18 -17.812 -17.811 0.001 (0) [14C]O[18O] 1.152e-18 1.154e-18 -17.938 -17.938 0.001 (0) [14C]O3-2 7.909e-19 5.541e-19 -18.102 -18.256 -0.155 (0) - CaH[14C]O2[18O]+ 5.611e-20 5.147e-20 -19.251 -19.288 -0.037 (0) - CaH[14C]O[18O]O+ 5.611e-20 5.147e-20 -19.251 -19.288 -0.037 (0) - CaH[14C][18O]O2+ 5.611e-20 5.147e-20 -19.251 -19.288 -0.037 (0) + CaH[14C]O2[18O]+ 5.611e-20 5.148e-20 -19.251 -19.288 -0.037 (0) + CaH[14C][18O]O2+ 5.611e-20 5.148e-20 -19.251 -19.288 -0.037 (0) + CaH[14C]O[18O]O+ 5.611e-20 5.148e-20 -19.251 -19.288 -0.037 (0) Ca[14C]O2[18O] 9.229e-21 9.244e-21 -20.035 -20.034 0.001 (0) - H[14C]O[18O]2- 5.302e-21 4.850e-21 -20.276 -20.314 -0.039 (0) - H[14C][18O]2O- 5.302e-21 4.850e-21 -20.276 -20.314 -0.039 (0) - H[14C][18O]O[18O]- 5.302e-21 4.850e-21 -20.276 -20.314 -0.039 (0) + H[14C][18O]O[18O]- 5.302e-21 4.851e-21 -20.276 -20.314 -0.039 (0) + H[14C]O[18O]2- 5.302e-21 4.851e-21 -20.276 -20.314 -0.039 (0) + H[14C][18O]2O- 5.302e-21 4.851e-21 -20.276 -20.314 -0.039 (0) [14C]O2[18O]-2 4.734e-21 3.316e-21 -20.325 -20.479 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.854e-16 - O[18O] 4.844e-16 4.852e-16 -15.315 -15.314 0.001 (0) - [18O]2 4.832e-19 4.840e-19 -18.316 -18.315 0.001 (0) +[18O](0) 3.305e-16 + O[18O] 3.299e-16 3.304e-16 -15.482 -15.481 0.001 (0) + [18O]2 3.291e-19 3.296e-19 -18.483 -18.482 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.04 -126.90 -2.86 [13C]H4 + [13C]H4(g) -123.71 -126.57 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.45 -20.96 -1.50 [14C][18O]2 - [14C]H4(g) -134.64 -137.50 -2.86 [14C]H4 + [14C]H4(g) -134.30 -137.16 -2.86 [14C]H4 [14C]O2(g) -14.09 -15.56 -1.47 [14C]O2 [14C]O[18O](g) -16.47 -18.26 -1.79 [14C]O[18O] - [18O]2(g) -16.02 -18.32 -2.29 [18O]2 + [18O]2(g) -16.19 -18.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -33872,14 +33862,14 @@ O(0) 2.438e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.08 -124.94 -2.86 CH4 + CH4(g) -121.75 -124.61 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.58 -39.73 -3.15 H2 + H2(g) -36.50 -39.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.02 -12.92 -2.89 O2 - O[18O](g) -12.72 -15.62 -2.89 O[18O] + O2(g) -10.19 -13.08 -2.89 O2 + O[18O](g) -12.89 -15.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -33943,23 +33933,23 @@ Calcite 9.06e-03 R(18O) 1.99519e-03 -4.993 permil R(13C) 1.11103e-02 -6.2545 permil - R(14C) 2.72848e-13 23.204 pmc + R(14C) 2.72850e-13 23.204 pmc R(18O) H2O(l) 1.99518e-03 -4.9945 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.9945 permil R(13C) CO2(aq) 1.10308e-02 -13.366 permil - R(14C) CO2(aq) 2.68954e-13 22.872 pmc + R(14C) CO2(aq) 2.68956e-13 22.873 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9945 permil R(13C) HCO3- 1.11267e-02 -4.7828 permil - R(14C) HCO3- 2.73654e-13 23.272 pmc + R(14C) HCO3- 2.73656e-13 23.272 pmc R(18O) CO3-2 1.99518e-03 -4.9945 permil R(13C) CO3-2 1.11108e-02 -6.211 permil - R(14C) CO3-2 2.72869e-13 23.205 pmc + R(14C) CO3-2 2.72871e-13 23.206 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11488e-02 -2.8116 permil - R(14C) Calcite 2.74739e-13 23.364 pmc + R(14C) Calcite 2.74741e-13 23.365 pmc --------------------------------Isotope Alphas--------------------------------- @@ -33969,12 +33959,12 @@ Calcite 9.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2348e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2847e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7715e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.648e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -33994,14 +33984,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.315 Adjusted to redox equilibrium + pe = 11.270 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -34016,24 +34006,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.032 -125.031 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.669 -124.669 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -34041,50 +34031,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.067e-08 6.077e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.506e-40 - H2 1.753e-40 1.756e-40 -39.756 -39.755 0.001 (0) -O(0) 2.699e-13 - O2 1.344e-13 1.346e-13 -12.872 -12.871 0.001 (0) - O[18O] 5.363e-16 5.372e-16 -15.271 -15.270 0.001 (0) +H(0) 4.320e-40 + H2 2.160e-40 2.163e-40 -39.666 -39.665 0.001 (0) +O(0) 1.778e-13 + O2 8.857e-14 8.871e-14 -13.053 -13.052 0.001 (0) + O[18O] 3.534e-16 3.540e-16 -15.452 -15.451 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.989 -126.988 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.627 -126.626 0.001 (0) [13C](4) 6.489e-05 H[13C]O3- 5.234e-05 4.788e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.044e-07 9.553e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-07 9.553e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.553e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.044e-07 9.553e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.044e-07 9.553e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.067e-08 6.077e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.568e-08 4.575e-08 -7.340 -7.340 0.001 (0) [13C]O3-2 3.112e-08 2.180e-08 -7.507 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.632e-10 3.638e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.602 -137.601 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.240 -137.239 0.001 (0) [14C](4) 1.593e-15 H[14C]O3- 1.287e-15 1.178e-15 -14.890 -14.929 -0.039 (0) [14C]O2 2.678e-16 2.683e-16 -15.572 -15.571 0.001 (0) CaH[14C]O3+ 2.718e-17 2.493e-17 -16.566 -16.603 -0.037 (0) - H[14C]O2[18O]- 2.568e-18 2.350e-18 -17.590 -17.629 -0.039 (0) - H[14C]O[18O]O- 2.568e-18 2.350e-18 -17.590 -17.629 -0.039 (0) H[14C][18O]O2- 2.568e-18 2.350e-18 -17.590 -17.629 -0.039 (0) + H[14C]O[18O]O- 2.568e-18 2.350e-18 -17.590 -17.629 -0.039 (0) + H[14C]O2[18O]- 2.568e-18 2.350e-18 -17.590 -17.629 -0.039 (0) Ca[14C]O3 1.490e-18 1.493e-18 -17.827 -17.826 0.001 (0) [14C]O[18O] 1.114e-18 1.116e-18 -17.953 -17.953 0.001 (0) [14C]O3-2 7.644e-19 5.355e-19 -18.117 -18.271 -0.155 (0) CaH[14C]O2[18O]+ 5.423e-20 4.975e-20 -19.266 -19.303 -0.037 (0) - CaH[14C]O[18O]O+ 5.423e-20 4.975e-20 -19.266 -19.303 -0.037 (0) CaH[14C][18O]O2+ 5.423e-20 4.975e-20 -19.266 -19.303 -0.037 (0) + CaH[14C]O[18O]O+ 5.423e-20 4.975e-20 -19.266 -19.303 -0.037 (0) Ca[14C]O2[18O] 8.919e-21 8.934e-21 -20.050 -20.049 0.001 (0) H[14C]O[18O]2- 5.124e-21 4.688e-21 -20.290 -20.329 -0.039 (0) H[14C][18O]2O- 5.124e-21 4.688e-21 -20.290 -20.329 -0.039 (0) @@ -34093,29 +34083,29 @@ O(0) 2.699e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.374e-16 - O[18O] 5.363e-16 5.372e-16 -15.271 -15.270 0.001 (0) - [18O]2 5.350e-19 5.359e-19 -18.272 -18.271 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.541e-16 + O[18O] 3.534e-16 3.540e-16 -15.452 -15.451 0.001 (0) + [18O]2 3.526e-19 3.532e-19 -18.453 -18.452 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.13 -126.99 -2.86 [13C]H4 + [13C]H4(g) -123.77 -126.63 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.47 -20.97 -1.50 [14C][18O]2 - [14C]H4(g) -134.74 -137.60 -2.86 [14C]H4 + [14C]H4(g) -134.38 -137.24 -2.86 [14C]H4 [14C]O2(g) -14.10 -15.57 -1.47 [14C]O2 [14C]O[18O](g) -16.48 -18.27 -1.79 [14C]O[18O] - [18O]2(g) -15.98 -18.27 -2.29 [18O]2 + [18O]2(g) -16.16 -18.45 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -34129,14 +34119,14 @@ O(0) 2.699e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.17 -125.03 -2.86 CH4 + CH4(g) -121.81 -124.67 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.61 -39.76 -3.15 H2 + H2(g) -36.51 -39.66 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.98 -12.87 -2.89 O2 - O[18O](g) -12.68 -15.57 -2.89 O[18O] + O2(g) -10.16 -13.05 -2.89 O2 + O[18O](g) -12.86 -15.75 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -34200,23 +34190,23 @@ Calcite 9.56e-03 R(18O) 1.99519e-03 -4.9929 permil R(13C) 1.11120e-02 -6.0968 permil - R(14C) 2.63992e-13 22.45 pmc + R(14C) 2.63994e-13 22.451 pmc R(18O) H2O(l) 1.99519e-03 -4.9944 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99519e-03 -4.9944 permil R(13C) CO2(aq) 1.10325e-02 -13.21 permil - R(14C) CO2(aq) 2.60224e-13 22.13 pmc + R(14C) CO2(aq) 2.60226e-13 22.13 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99519e-03 -4.9944 permil R(13C) HCO3- 1.11285e-02 -4.6248 permil - R(14C) HCO3- 2.64772e-13 22.517 pmc + R(14C) HCO3- 2.64773e-13 22.517 pmc R(18O) CO3-2 1.99519e-03 -4.9944 permil R(13C) CO3-2 1.11125e-02 -6.0532 permil - R(14C) CO3-2 2.64012e-13 22.452 pmc + R(14C) CO3-2 2.64014e-13 22.452 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11505e-02 -2.6533 permil - R(14C) Calcite 2.65822e-13 22.606 pmc + R(14C) Calcite 2.65823e-13 22.606 pmc --------------------------------Isotope Alphas--------------------------------- @@ -34226,12 +34216,12 @@ Calcite 9.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2471e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2652e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5683e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7181e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -34251,14 +34241,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.316 Adjusted to redox equilibrium + pe = 11.263 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -34273,13 +34263,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.042 -125.041 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.614 -124.613 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -34288,9 +34278,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -34298,23 +34288,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.068e-08 6.078e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.486e-40 - H2 1.743e-40 1.746e-40 -39.759 -39.758 0.001 (0) -O(0) 2.731e-13 - O2 1.360e-13 1.362e-13 -12.867 -12.866 0.001 (0) - O[18O] 5.426e-16 5.435e-16 -15.265 -15.265 0.001 (0) +H(0) 4.459e-40 + H2 2.229e-40 2.233e-40 -39.652 -39.651 0.001 (0) +O(0) 1.669e-13 + O2 8.312e-14 8.326e-14 -13.080 -13.080 0.001 (0) + O[18O] 3.317e-16 3.322e-16 -15.479 -15.479 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.999 -126.998 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.571 -126.571 0.001 (0) [13C](4) 6.490e-05 H[13C]O3- 5.234e-05 4.789e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.100e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.044e-07 9.555e-08 -6.981 -7.020 -0.039 (0) H[13C]O[18O]O- 1.044e-07 9.555e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.044e-07 9.555e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.555e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.068e-08 6.078e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.569e-08 4.576e-08 -7.340 -7.340 0.001 (0) @@ -34323,56 +34313,56 @@ O(0) 2.731e-13 CaH[13C]O[18O]O+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.632e-10 3.638e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.084e-10 1.906e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.084e-10 1.906e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.084e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.084e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.084e-10 1.906e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.626 -137.626 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.199 -137.198 0.001 (0) [14C](4) 1.542e-15 H[14C]O3- 1.245e-15 1.139e-15 -14.905 -14.943 -0.039 (0) [14C]O2 2.591e-16 2.596e-16 -15.586 -15.586 0.001 (0) CaH[14C]O3+ 2.630e-17 2.412e-17 -16.580 -16.618 -0.037 (0) - H[14C]O2[18O]- 2.485e-18 2.273e-18 -17.605 -17.643 -0.039 (0) - H[14C]O[18O]O- 2.485e-18 2.273e-18 -17.605 -17.643 -0.039 (0) H[14C][18O]O2- 2.485e-18 2.273e-18 -17.605 -17.643 -0.039 (0) + H[14C]O[18O]O- 2.485e-18 2.273e-18 -17.605 -17.643 -0.039 (0) + H[14C]O2[18O]- 2.485e-18 2.273e-18 -17.605 -17.643 -0.039 (0) Ca[14C]O3 1.442e-18 1.444e-18 -17.841 -17.840 0.001 (0) [14C]O[18O] 1.078e-18 1.079e-18 -17.968 -17.967 0.001 (0) [14C]O3-2 7.396e-19 5.181e-19 -18.131 -18.286 -0.155 (0) CaH[14C]O2[18O]+ 5.247e-20 4.813e-20 -19.280 -19.318 -0.037 (0) - CaH[14C]O[18O]O+ 5.247e-20 4.813e-20 -19.280 -19.318 -0.037 (0) CaH[14C][18O]O2+ 5.247e-20 4.813e-20 -19.280 -19.318 -0.037 (0) + CaH[14C]O[18O]O+ 5.247e-20 4.813e-20 -19.280 -19.318 -0.037 (0) Ca[14C]O2[18O] 8.629e-21 8.644e-21 -20.064 -20.063 0.001 (0) - H[14C]O[18O]2- 4.958e-21 4.536e-21 -20.305 -20.343 -0.039 (0) H[14C][18O]2O- 4.958e-21 4.536e-21 -20.305 -20.343 -0.039 (0) H[14C][18O]O[18O]- 4.958e-21 4.536e-21 -20.305 -20.343 -0.039 (0) + H[14C]O[18O]2- 4.958e-21 4.536e-21 -20.305 -20.343 -0.039 (0) [14C]O2[18O]-2 4.427e-21 3.101e-21 -20.354 -20.508 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.437e-16 - O[18O] 5.426e-16 5.435e-16 -15.265 -15.265 0.001 (0) - [18O]2 5.413e-19 5.422e-19 -18.267 -18.266 0.001 (0) +[18O](0) 3.323e-16 + O[18O] 3.317e-16 3.322e-16 -15.479 -15.479 0.001 (0) + [18O]2 3.309e-19 3.314e-19 -18.480 -18.480 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.14 -127.00 -2.86 [13C]H4 + [13C]H4(g) -123.71 -126.57 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.48 -20.99 -1.50 [14C][18O]2 - [14C]H4(g) -134.77 -137.63 -2.86 [14C]H4 + [14C]H4(g) -134.34 -137.20 -2.86 [14C]H4 [14C]O2(g) -14.12 -15.59 -1.47 [14C]O2 [14C]O[18O](g) -16.50 -18.29 -1.79 [14C]O[18O] - [18O]2(g) -15.98 -18.27 -2.29 [18O]2 + [18O]2(g) -16.19 -18.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -34386,14 +34376,14 @@ O(0) 2.731e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.18 -125.04 -2.86 CH4 + CH4(g) -121.75 -124.61 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.61 -39.76 -3.15 H2 + H2(g) -36.50 -39.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.97 -12.87 -2.89 O2 - O[18O](g) -12.67 -15.57 -2.89 O[18O] + O2(g) -10.19 -13.08 -2.89 O2 + O[18O](g) -12.89 -15.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -34457,23 +34447,23 @@ Calcite 1.01e-02 R(18O) 1.99519e-03 -4.9927 permil R(13C) 1.11137e-02 -5.9489 permil - R(14C) 2.55692e-13 21.745 pmc + R(14C) 2.55694e-13 21.745 pmc R(18O) H2O(l) 1.99519e-03 -4.9943 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9943 permil R(13C) CO2(aq) 1.10342e-02 -13.063 permil - R(14C) CO2(aq) 2.52043e-13 21.434 pmc + R(14C) CO2(aq) 2.52045e-13 21.434 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9943 permil R(13C) HCO3- 1.11301e-02 -4.4767 permil - R(14C) HCO3- 2.56448e-13 21.809 pmc + R(14C) HCO3- 2.56449e-13 21.809 pmc R(18O) CO3-2 1.99519e-03 -4.9943 permil R(13C) CO3-2 1.11142e-02 -5.9054 permil - R(14C) CO3-2 2.55712e-13 21.746 pmc + R(14C) CO3-2 2.55714e-13 21.746 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11522e-02 -2.5049 permil - R(14C) Calcite 2.57465e-13 21.895 pmc + R(14C) Calcite 2.57466e-13 21.895 pmc --------------------------------Isotope Alphas--------------------------------- @@ -34483,12 +34473,12 @@ Calcite 1.01e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2393e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6993e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6444e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -34508,14 +34498,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.320 Adjusted to redox equilibrium + pe = 11.281 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -34530,24 +34520,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.070 -125.069 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.759 -124.758 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -34555,81 +34545,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.069e-08 6.079e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.430e-40 - H2 1.715e-40 1.718e-40 -39.766 -39.765 0.001 (0) -O(0) 2.821e-13 - O2 1.405e-13 1.407e-13 -12.852 -12.852 0.001 (0) - O[18O] 5.605e-16 5.614e-16 -15.251 -15.251 0.001 (0) +H(0) 4.103e-40 + H2 2.052e-40 2.055e-40 -39.688 -39.687 0.001 (0) +O(0) 1.971e-13 + O2 9.816e-14 9.832e-14 -13.008 -13.007 0.001 (0) + O[18O] 3.917e-16 3.923e-16 -15.407 -15.406 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.027 -127.026 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.716 -126.715 0.001 (0) [13C](4) 6.490e-05 H[13C]O3- 5.235e-05 4.790e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) H[13C]O2[18O]- 1.045e-07 9.556e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.556e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.556e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.556e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.069e-08 6.079e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.569e-08 4.577e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.113e-08 2.181e-08 -7.507 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) + CaH[13C]O2[18O]+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.633e-10 3.639e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.668 -137.668 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.357 -137.356 0.001 (0) [14C](4) 1.493e-15 H[14C]O3- 1.206e-15 1.104e-15 -14.919 -14.957 -0.039 (0) [14C]O2 2.510e-16 2.514e-16 -15.600 -15.600 0.001 (0) CaH[14C]O3+ 2.547e-17 2.337e-17 -16.594 -16.631 -0.037 (0) - H[14C]O2[18O]- 2.407e-18 2.202e-18 -17.619 -17.657 -0.039 (0) - H[14C]O[18O]O- 2.407e-18 2.202e-18 -17.619 -17.657 -0.039 (0) H[14C][18O]O2- 2.407e-18 2.202e-18 -17.619 -17.657 -0.039 (0) + H[14C]O[18O]O- 2.407e-18 2.202e-18 -17.619 -17.657 -0.039 (0) + H[14C]O2[18O]- 2.407e-18 2.202e-18 -17.619 -17.657 -0.039 (0) Ca[14C]O3 1.396e-18 1.399e-18 -17.855 -17.854 0.001 (0) [14C]O[18O] 1.044e-18 1.045e-18 -17.981 -17.981 0.001 (0) [14C]O3-2 7.163e-19 5.018e-19 -18.145 -18.299 -0.155 (0) CaH[14C]O2[18O]+ 5.082e-20 4.662e-20 -19.294 -19.331 -0.037 (0) - CaH[14C]O[18O]O+ 5.082e-20 4.662e-20 -19.294 -19.331 -0.037 (0) CaH[14C][18O]O2+ 5.082e-20 4.662e-20 -19.294 -19.331 -0.037 (0) + CaH[14C]O[18O]O+ 5.082e-20 4.662e-20 -19.294 -19.331 -0.037 (0) Ca[14C]O2[18O] 8.358e-21 8.372e-21 -20.078 -20.077 0.001 (0) + H[14C][18O]O[18O]- 4.802e-21 4.393e-21 -20.319 -20.357 -0.039 (0) H[14C]O[18O]2- 4.802e-21 4.393e-21 -20.319 -20.357 -0.039 (0) H[14C][18O]2O- 4.802e-21 4.393e-21 -20.319 -20.357 -0.039 (0) - H[14C][18O]O[18O]- 4.802e-21 4.393e-21 -20.319 -20.357 -0.039 (0) [14C]O2[18O]-2 4.288e-21 3.004e-21 -20.368 -20.522 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.616e-16 - O[18O] 5.605e-16 5.614e-16 -15.251 -15.251 0.001 (0) - [18O]2 5.592e-19 5.601e-19 -18.252 -18.252 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.925e-16 + O[18O] 3.917e-16 3.923e-16 -15.407 -15.406 0.001 (0) + [18O]2 3.908e-19 3.914e-19 -18.408 -18.407 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.17 -127.03 -2.86 [13C]H4 + [13C]H4(g) -123.86 -126.72 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.50 -21.00 -1.50 [14C][18O]2 - [14C]H4(g) -134.81 -137.67 -2.86 [14C]H4 + [14C]H4(g) -134.50 -137.36 -2.86 [14C]H4 [14C]O2(g) -14.13 -15.60 -1.47 [14C]O2 [14C]O[18O](g) -16.51 -18.30 -1.79 [14C]O[18O] - [18O]2(g) -15.96 -18.25 -2.29 [18O]2 + [18O]2(g) -16.12 -18.41 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -34643,14 +34633,14 @@ O(0) 2.821e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.21 -125.07 -2.86 CH4 + CH4(g) -121.90 -124.76 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.62 -39.77 -3.15 H2 + H2(g) -36.54 -39.69 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.96 -12.85 -2.89 O2 - O[18O](g) -12.66 -15.55 -2.89 O[18O] + O2(g) -10.11 -13.01 -2.89 O2 + O[18O](g) -12.82 -15.71 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -34714,23 +34704,23 @@ Calcite 1.06e-02 R(18O) 1.99519e-03 -4.9926 permil R(13C) 1.11152e-02 -5.8101 permil - R(14C) 2.47899e-13 21.082 pmc + R(14C) 2.47901e-13 21.082 pmc R(18O) H2O(l) 1.99519e-03 -4.9941 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9941 permil R(13C) CO2(aq) 1.10357e-02 -12.925 permil - R(14C) CO2(aq) 2.44361e-13 20.781 pmc + R(14C) CO2(aq) 2.44362e-13 20.781 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9941 permil R(13C) HCO3- 1.11317e-02 -4.3377 permil - R(14C) HCO3- 2.48631e-13 21.144 pmc + R(14C) HCO3- 2.48633e-13 21.144 pmc R(18O) CO3-2 1.99519e-03 -4.9941 permil R(13C) CO3-2 1.11157e-02 -5.7665 permil - R(14C) CO3-2 2.47918e-13 21.083 pmc + R(14C) CO3-2 2.47920e-13 21.084 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11538e-02 -2.3656 permil - R(14C) Calcite 2.49617e-13 21.228 pmc + R(14C) Calcite 2.49619e-13 21.228 pmc --------------------------------Isotope Alphas--------------------------------- @@ -34740,12 +34730,12 @@ Calcite 1.06e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2582e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2756e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7283e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6046e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -34765,14 +34755,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.317 Adjusted to redox equilibrium + pe = 11.273 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -34787,14 +34777,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.051 -125.051 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.699 -124.698 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -34802,9 +34792,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -34812,50 +34802,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.070e-08 6.080e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.467e-40 - H2 1.733e-40 1.736e-40 -39.761 -39.760 0.001 (0) -O(0) 2.761e-13 - O2 1.375e-13 1.377e-13 -12.862 -12.861 0.001 (0) - O[18O] 5.487e-16 5.496e-16 -15.261 -15.260 0.001 (0) +H(0) 4.246e-40 + H2 2.123e-40 2.126e-40 -39.673 -39.672 0.001 (0) +O(0) 1.841e-13 + O2 9.167e-14 9.182e-14 -13.038 -13.037 0.001 (0) + O[18O] 3.658e-16 3.664e-16 -15.437 -15.436 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.009 -127.008 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.656 -126.656 0.001 (0) [13C](4) 6.491e-05 H[13C]O3- 5.236e-05 4.790e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-07 9.557e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.557e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.557e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.557e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.045e-07 9.557e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.070e-08 6.080e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.570e-08 4.577e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.114e-08 2.181e-08 -7.507 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.633e-10 3.639e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.663 -137.663 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.311 -137.310 0.001 (0) [14C](4) 1.448e-15 H[14C]O3- 1.169e-15 1.070e-15 -14.932 -14.971 -0.039 (0) [14C]O2 2.433e-16 2.437e-16 -15.614 -15.613 0.001 (0) CaH[14C]O3+ 2.470e-17 2.265e-17 -16.607 -16.645 -0.037 (0) - H[14C]O2[18O]- 2.333e-18 2.135e-18 -17.632 -17.671 -0.039 (0) - H[14C]O[18O]O- 2.333e-18 2.135e-18 -17.632 -17.671 -0.039 (0) H[14C][18O]O2- 2.333e-18 2.135e-18 -17.632 -17.671 -0.039 (0) + H[14C]O[18O]O- 2.333e-18 2.135e-18 -17.632 -17.671 -0.039 (0) + H[14C]O2[18O]- 2.333e-18 2.135e-18 -17.632 -17.671 -0.039 (0) Ca[14C]O3 1.354e-18 1.356e-18 -17.868 -17.868 0.001 (0) [14C]O[18O] 1.012e-18 1.014e-18 -17.995 -17.994 0.001 (0) [14C]O3-2 6.945e-19 4.865e-19 -18.158 -18.313 -0.155 (0) CaH[14C]O2[18O]+ 4.927e-20 4.520e-20 -19.307 -19.345 -0.037 (0) - CaH[14C]O[18O]O+ 4.927e-20 4.520e-20 -19.307 -19.345 -0.037 (0) CaH[14C][18O]O2+ 4.927e-20 4.520e-20 -19.307 -19.345 -0.037 (0) + CaH[14C]O[18O]O+ 4.927e-20 4.520e-20 -19.307 -19.345 -0.037 (0) Ca[14C]O2[18O] 8.103e-21 8.117e-21 -20.091 -20.091 0.001 (0) H[14C]O[18O]2- 4.655e-21 4.259e-21 -20.332 -20.371 -0.039 (0) H[14C][18O]2O- 4.655e-21 4.259e-21 -20.332 -20.371 -0.039 (0) @@ -34864,29 +34854,29 @@ O(0) 2.761e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.498e-16 - O[18O] 5.487e-16 5.496e-16 -15.261 -15.260 0.001 (0) - [18O]2 5.473e-19 5.482e-19 -18.262 -18.261 0.001 (0) +[18O](0) 3.665e-16 + O[18O] 3.658e-16 3.664e-16 -15.437 -15.436 0.001 (0) + [18O]2 3.649e-19 3.655e-19 -18.438 -18.437 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.15 -127.01 -2.86 [13C]H4 + [13C]H4(g) -123.80 -126.66 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.51 -21.01 -1.50 [14C][18O]2 - [14C]H4(g) -134.80 -137.66 -2.86 [14C]H4 + [14C]H4(g) -134.45 -137.31 -2.86 [14C]H4 [14C]O2(g) -14.14 -15.61 -1.47 [14C]O2 [14C]O[18O](g) -16.53 -18.31 -1.79 [14C]O[18O] - [18O]2(g) -15.97 -18.26 -2.29 [18O]2 + [18O]2(g) -16.15 -18.44 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -34900,14 +34890,14 @@ O(0) 2.761e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.19 -125.05 -2.86 CH4 + CH4(g) -121.84 -124.70 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.61 -39.76 -3.15 H2 + H2(g) -36.52 -39.67 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.97 -12.86 -2.89 O2 - O[18O](g) -12.67 -15.56 -2.89 O[18O] + O2(g) -10.14 -13.04 -2.89 O2 + O[18O](g) -12.84 -15.74 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -34971,23 +34961,23 @@ Calcite 1.11e-02 R(18O) 1.99519e-03 -4.9925 permil R(13C) 1.11167e-02 -5.6794 permil - R(14C) 2.40566e-13 20.458 pmc + R(14C) 2.40568e-13 20.458 pmc R(18O) H2O(l) 1.99519e-03 -4.994 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.994 permil R(13C) CO2(aq) 1.10371e-02 -12.795 permil - R(14C) CO2(aq) 2.37133e-13 20.166 pmc + R(14C) CO2(aq) 2.37135e-13 20.166 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.994 permil R(13C) HCO3- 1.11332e-02 -4.2068 permil - R(14C) HCO3- 2.41277e-13 20.519 pmc + R(14C) HCO3- 2.41279e-13 20.519 pmc R(18O) CO3-2 1.99519e-03 -4.994 permil R(13C) CO3-2 1.11172e-02 -5.6359 permil - R(14C) CO3-2 2.40585e-13 20.46 pmc + R(14C) CO3-2 2.40587e-13 20.46 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11552e-02 -2.2345 permil - R(14C) Calcite 2.42234e-13 20.6 pmc + R(14C) Calcite 2.42235e-13 20.6 pmc --------------------------------Isotope Alphas--------------------------------- @@ -34997,12 +34987,12 @@ Calcite 1.11e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.226e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2758e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6491e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5935e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -35022,14 +35012,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.320 Adjusted to redox equilibrium + pe = 11.273 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -35044,24 +35034,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.074 -125.073 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.700 -124.699 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -35069,23 +35059,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.071e-08 6.081e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.422e-40 - H2 1.711e-40 1.714e-40 -39.767 -39.766 0.001 (0) -O(0) 2.834e-13 - O2 1.411e-13 1.414e-13 -12.850 -12.850 0.001 (0) - O[18O] 5.631e-16 5.641e-16 -15.249 -15.249 0.001 (0) +H(0) 4.245e-40 + H2 2.122e-40 2.126e-40 -39.673 -39.672 0.001 (0) +O(0) 1.842e-13 + O2 9.173e-14 9.188e-14 -13.038 -13.037 0.001 (0) + O[18O] 3.660e-16 3.666e-16 -15.436 -15.436 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.031 -127.030 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.657 -126.656 0.001 (0) [13C](4) 6.492e-05 H[13C]O3- 5.237e-05 4.791e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) H[13C]O[18O]O- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.071e-08 6.081e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.570e-08 4.578e-08 -7.340 -7.339 0.001 (0) @@ -35094,56 +35084,56 @@ O(0) 2.834e-13 CaH[13C]O[18O]O+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.634e-10 3.640e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.699 -137.698 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.325 -137.324 0.001 (0) [14C](4) 1.405e-15 H[14C]O3- 1.135e-15 1.038e-15 -14.945 -14.984 -0.039 (0) [14C]O2 2.361e-16 2.365e-16 -15.627 -15.626 0.001 (0) - CaH[14C]O3+ 2.396e-17 2.198e-17 -16.620 -16.658 -0.037 (0) - H[14C]O2[18O]- 2.264e-18 2.072e-18 -17.645 -17.684 -0.039 (0) - H[14C]O[18O]O- 2.264e-18 2.072e-18 -17.645 -17.684 -0.039 (0) + CaH[14C]O3+ 2.397e-17 2.198e-17 -16.620 -16.658 -0.037 (0) H[14C][18O]O2- 2.264e-18 2.072e-18 -17.645 -17.684 -0.039 (0) + H[14C]O[18O]O- 2.264e-18 2.072e-18 -17.645 -17.684 -0.039 (0) + H[14C]O2[18O]- 2.264e-18 2.072e-18 -17.645 -17.684 -0.039 (0) Ca[14C]O3 1.314e-18 1.316e-18 -17.881 -17.881 0.001 (0) [14C]O[18O] 9.820e-19 9.836e-19 -18.008 -18.007 0.001 (0) [14C]O3-2 6.739e-19 4.721e-19 -18.171 -18.326 -0.155 (0) CaH[14C]O2[18O]+ 4.781e-20 4.386e-20 -19.320 -19.358 -0.037 (0) - CaH[14C]O[18O]O+ 4.781e-20 4.386e-20 -19.320 -19.358 -0.037 (0) CaH[14C][18O]O2+ 4.781e-20 4.386e-20 -19.320 -19.358 -0.037 (0) + CaH[14C]O[18O]O+ 4.781e-20 4.386e-20 -19.320 -19.358 -0.037 (0) Ca[14C]O2[18O] 7.864e-21 7.877e-21 -20.104 -20.104 0.001 (0) - H[14C]O[18O]2- 4.518e-21 4.133e-21 -20.345 -20.384 -0.039 (0) H[14C][18O]2O- 4.518e-21 4.133e-21 -20.345 -20.384 -0.039 (0) H[14C][18O]O[18O]- 4.518e-21 4.133e-21 -20.345 -20.384 -0.039 (0) + H[14C]O[18O]2- 4.518e-21 4.133e-21 -20.345 -20.384 -0.039 (0) [14C]O2[18O]-2 4.034e-21 2.826e-21 -20.394 -20.549 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.643e-16 - O[18O] 5.631e-16 5.641e-16 -15.249 -15.249 0.001 (0) - [18O]2 5.618e-19 5.627e-19 -18.250 -18.250 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.667e-16 + O[18O] 3.660e-16 3.666e-16 -15.436 -15.436 0.001 (0) + [18O]2 3.651e-19 3.657e-19 -18.438 -18.437 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.17 -127.03 -2.86 [13C]H4 + [13C]H4(g) -123.80 -126.66 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.52 -21.03 -1.50 [14C][18O]2 - [14C]H4(g) -134.84 -137.70 -2.86 [14C]H4 + [14C]H4(g) -134.46 -137.32 -2.86 [14C]H4 [14C]O2(g) -14.16 -15.63 -1.47 [14C]O2 [14C]O[18O](g) -16.54 -18.33 -1.79 [14C]O[18O] - [18O]2(g) -15.96 -18.25 -2.29 [18O]2 + [18O]2(g) -16.15 -18.44 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -35157,14 +35147,14 @@ O(0) 2.834e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.21 -125.07 -2.86 CH4 + CH4(g) -121.84 -124.70 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.62 -39.77 -3.15 H2 + H2(g) -36.52 -39.67 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.96 -12.85 -2.89 O2 - O[18O](g) -12.66 -15.55 -2.89 O[18O] + O2(g) -10.14 -13.04 -2.89 O2 + O[18O](g) -12.84 -15.74 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -35228,23 +35218,23 @@ Calcite 1.16e-02 R(18O) 1.99519e-03 -4.9923 permil R(13C) 1.11181e-02 -5.5563 permil - R(14C) 2.33655e-13 19.871 pmc + R(14C) 2.33657e-13 19.871 pmc R(18O) H2O(l) 1.99519e-03 -4.9939 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9939 permil R(13C) CO2(aq) 1.10385e-02 -12.673 permil - R(14C) CO2(aq) 2.30320e-13 19.587 pmc + R(14C) CO2(aq) 2.30322e-13 19.587 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9939 permil R(13C) HCO3- 1.11345e-02 -4.0835 permil - R(14C) HCO3- 2.34345e-13 19.929 pmc + R(14C) HCO3- 2.34347e-13 19.929 pmc R(18O) CO3-2 1.99519e-03 -4.9939 permil R(13C) CO3-2 1.11186e-02 -5.5127 permil - R(14C) CO3-2 2.33673e-13 19.872 pmc + R(14C) CO3-2 2.33675e-13 19.872 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11566e-02 -2.1109 permil - R(14C) Calcite 2.35275e-13 20.008 pmc + R(14C) Calcite 2.35276e-13 20.008 pmc --------------------------------Isotope Alphas--------------------------------- @@ -35254,12 +35244,12 @@ Calcite 1.16e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2243e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2419e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.7724e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6718e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6163e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -35279,14 +35269,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.321 Adjusted to redox equilibrium + pe = 11.262 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -35301,14 +35291,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.082 -125.081 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.606 -124.606 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -35316,9 +35306,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -35326,81 +35316,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.072e-08 6.082e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.407e-40 - H2 1.703e-40 1.706e-40 -39.769 -39.768 0.001 (0) -O(0) 2.860e-13 - O2 1.424e-13 1.426e-13 -12.846 -12.846 0.001 (0) - O[18O] 5.683e-16 5.692e-16 -15.245 -15.245 0.001 (0) +H(0) 4.479e-40 + H2 2.239e-40 2.243e-40 -39.650 -39.649 0.001 (0) +O(0) 1.654e-13 + O2 8.238e-14 8.251e-14 -13.084 -13.083 0.001 (0) + O[18O] 3.287e-16 3.293e-16 -15.483 -15.482 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.039 -127.038 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.563 -126.563 0.001 (0) [13C](4) 6.493e-05 H[13C]O3- 5.237e-05 4.791e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) H[13C]O2[18O]- 1.045e-07 9.560e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.560e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.560e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.560e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.072e-08 6.082e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.571e-08 4.579e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.115e-08 2.182e-08 -7.507 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) + CaH[13C]O2[18O]+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.634e-10 3.640e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.719 -137.719 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.244 -137.243 0.001 (0) [14C](4) 1.365e-15 H[14C]O3- 1.102e-15 1.008e-15 -14.958 -14.996 -0.039 (0) [14C]O2 2.294e-16 2.297e-16 -15.639 -15.639 0.001 (0) CaH[14C]O3+ 2.328e-17 2.135e-17 -16.633 -16.671 -0.037 (0) - H[14C]O2[18O]- 2.199e-18 2.012e-18 -17.658 -17.696 -0.039 (0) - H[14C]O[18O]O- 2.199e-18 2.012e-18 -17.658 -17.696 -0.039 (0) H[14C][18O]O2- 2.199e-18 2.012e-18 -17.658 -17.696 -0.039 (0) + H[14C]O[18O]O- 2.199e-18 2.012e-18 -17.658 -17.696 -0.039 (0) + H[14C]O2[18O]- 2.199e-18 2.012e-18 -17.658 -17.696 -0.039 (0) Ca[14C]O3 1.276e-18 1.278e-18 -17.894 -17.893 0.001 (0) - [14C]O[18O] 9.537e-19 9.553e-19 -18.021 -18.020 0.001 (0) + [14C]O[18O] 9.538e-19 9.553e-19 -18.021 -18.020 0.001 (0) [14C]O3-2 6.546e-19 4.586e-19 -18.184 -18.339 -0.155 (0) CaH[14C]O2[18O]+ 4.644e-20 4.260e-20 -19.333 -19.371 -0.037 (0) - CaH[14C]O[18O]O+ 4.644e-20 4.260e-20 -19.333 -19.371 -0.037 (0) CaH[14C][18O]O2+ 4.644e-20 4.260e-20 -19.333 -19.371 -0.037 (0) + CaH[14C]O[18O]O+ 4.644e-20 4.260e-20 -19.333 -19.371 -0.037 (0) Ca[14C]O2[18O] 7.638e-21 7.650e-21 -20.117 -20.116 0.001 (0) + H[14C][18O]O[18O]- 4.388e-21 4.014e-21 -20.358 -20.396 -0.039 (0) H[14C]O[18O]2- 4.388e-21 4.014e-21 -20.358 -20.396 -0.039 (0) H[14C][18O]2O- 4.388e-21 4.014e-21 -20.358 -20.396 -0.039 (0) - H[14C][18O]O[18O]- 4.388e-21 4.014e-21 -20.358 -20.396 -0.039 (0) [14C]O2[18O]-2 3.918e-21 2.745e-21 -20.407 -20.561 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.694e-16 - O[18O] 5.683e-16 5.692e-16 -15.245 -15.245 0.001 (0) - [18O]2 5.669e-19 5.678e-19 -18.247 -18.246 0.001 (0) +[18O](0) 3.294e-16 + O[18O] 3.287e-16 3.293e-16 -15.483 -15.482 0.001 (0) + [18O]2 3.279e-19 3.285e-19 -18.484 -18.484 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.18 -127.04 -2.86 [13C]H4 + [13C]H4(g) -123.70 -126.56 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.54 -21.04 -1.50 [14C][18O]2 - [14C]H4(g) -134.86 -137.72 -2.86 [14C]H4 + [14C]H4(g) -134.38 -137.24 -2.86 [14C]H4 [14C]O2(g) -14.17 -15.64 -1.47 [14C]O2 [14C]O[18O](g) -16.55 -18.34 -1.79 [14C]O[18O] - [18O]2(g) -15.96 -18.25 -2.29 [18O]2 + [18O]2(g) -16.19 -18.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -35414,14 +35404,14 @@ O(0) 2.860e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.22 -125.08 -2.86 CH4 + CH4(g) -121.75 -124.61 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.62 -39.77 -3.15 H2 + H2(g) -36.50 -39.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.95 -12.85 -2.89 O2 - O[18O](g) -12.65 -15.55 -2.89 O[18O] + O2(g) -10.19 -13.08 -2.89 O2 + O[18O](g) -12.89 -15.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -35485,23 +35475,23 @@ Calcite 1.21e-02 R(18O) 1.99519e-03 -4.9922 permil R(13C) 1.11194e-02 -5.44 permil - R(14C) 2.27130e-13 19.316 pmc + R(14C) 2.27132e-13 19.316 pmc R(18O) H2O(l) 1.99519e-03 -4.9937 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9937 permil R(13C) CO2(aq) 1.10398e-02 -12.558 permil - R(14C) CO2(aq) 2.23888e-13 19.04 pmc + R(14C) CO2(aq) 2.23890e-13 19.04 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9937 permil R(13C) HCO3- 1.11358e-02 -3.967 permil - R(14C) HCO3- 2.27801e-13 19.373 pmc + R(14C) HCO3- 2.27802e-13 19.373 pmc R(18O) CO3-2 1.99519e-03 -4.9937 permil R(13C) CO3-2 1.11199e-02 -5.3964 permil - R(14C) CO3-2 2.27148e-13 19.317 pmc + R(14C) CO3-2 2.27149e-13 19.317 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11579e-02 -1.9942 permil - R(14C) Calcite 2.28704e-13 19.45 pmc + R(14C) Calcite 2.28706e-13 19.45 pmc --------------------------------Isotope Alphas--------------------------------- @@ -35511,12 +35501,12 @@ Calcite 1.21e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.253e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2723e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6643e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6119e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -35536,14 +35526,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.317 Adjusted to redox equilibrium + pe = 11.260 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -35558,24 +35548,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.049 -125.049 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.589 -124.588 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -35583,50 +35573,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.072e-08 6.082e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.471e-40 - H2 1.735e-40 1.738e-40 -39.761 -39.760 0.001 (0) -O(0) 2.755e-13 - O2 1.372e-13 1.374e-13 -12.863 -12.862 0.001 (0) - O[18O] 5.474e-16 5.483e-16 -15.262 -15.261 0.001 (0) +H(0) 4.525e-40 + H2 2.262e-40 2.266e-40 -39.645 -39.645 0.001 (0) +O(0) 1.621e-13 + O2 8.072e-14 8.085e-14 -13.093 -13.092 0.001 (0) + O[18O] 3.221e-16 3.226e-16 -15.492 -15.491 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.006 -127.006 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.546 -126.545 0.001 (0) [13C](4) 6.494e-05 H[13C]O3- 5.238e-05 4.792e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-07 9.561e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.561e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.561e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.561e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.045e-07 9.561e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.072e-08 6.082e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.572e-08 4.579e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.115e-08 2.182e-08 -7.507 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.635e-10 3.641e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.085e-10 1.908e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.699 -137.699 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.239 -137.238 0.001 (0) [14C](4) 1.326e-15 H[14C]O3- 1.071e-15 9.803e-16 -14.970 -15.009 -0.039 (0) [14C]O2 2.230e-16 2.233e-16 -15.652 -15.651 0.001 (0) CaH[14C]O3+ 2.263e-17 2.076e-17 -16.645 -16.683 -0.037 (0) - H[14C]O2[18O]- 2.138e-18 1.956e-18 -17.670 -17.709 -0.039 (0) - H[14C]O[18O]O- 2.138e-18 1.956e-18 -17.670 -17.709 -0.039 (0) H[14C][18O]O2- 2.138e-18 1.956e-18 -17.670 -17.709 -0.039 (0) + H[14C]O[18O]O- 2.138e-18 1.956e-18 -17.670 -17.709 -0.039 (0) + H[14C]O2[18O]- 2.138e-18 1.956e-18 -17.670 -17.709 -0.039 (0) Ca[14C]O3 1.240e-18 1.242e-18 -17.906 -17.906 0.001 (0) [14C]O[18O] 9.271e-19 9.286e-19 -18.033 -18.032 0.001 (0) [14C]O3-2 6.363e-19 4.458e-19 -18.196 -18.351 -0.155 (0) CaH[14C]O2[18O]+ 4.514e-20 4.141e-20 -19.345 -19.383 -0.037 (0) - CaH[14C]O[18O]O+ 4.514e-20 4.141e-20 -19.345 -19.383 -0.037 (0) CaH[14C][18O]O2+ 4.514e-20 4.141e-20 -19.345 -19.383 -0.037 (0) + CaH[14C]O[18O]O+ 4.514e-20 4.141e-20 -19.345 -19.383 -0.037 (0) Ca[14C]O2[18O] 7.424e-21 7.437e-21 -20.129 -20.129 0.001 (0) H[14C]O[18O]2- 4.265e-21 3.902e-21 -20.370 -20.409 -0.039 (0) H[14C][18O]2O- 4.265e-21 3.902e-21 -20.370 -20.409 -0.039 (0) @@ -35635,29 +35625,29 @@ O(0) 2.755e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.485e-16 - O[18O] 5.474e-16 5.483e-16 -15.262 -15.261 0.001 (0) - [18O]2 5.461e-19 5.470e-19 -18.263 -18.262 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.228e-16 + O[18O] 3.221e-16 3.226e-16 -15.492 -15.491 0.001 (0) + [18O]2 3.213e-19 3.219e-19 -18.493 -18.492 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.15 -127.01 -2.86 [13C]H4 + [13C]H4(g) -123.69 -126.55 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.55 -21.05 -1.50 [14C][18O]2 - [14C]H4(g) -134.84 -137.70 -2.86 [14C]H4 + [14C]H4(g) -134.38 -137.24 -2.86 [14C]H4 [14C]O2(g) -14.18 -15.65 -1.47 [14C]O2 [14C]O[18O](g) -16.56 -18.35 -1.79 [14C]O[18O] - [18O]2(g) -15.97 -18.26 -2.29 [18O]2 + [18O]2(g) -16.20 -18.49 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -35671,14 +35661,14 @@ O(0) 2.755e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.19 -125.05 -2.86 CH4 + CH4(g) -121.73 -124.59 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.61 -39.76 -3.15 H2 + H2(g) -36.49 -39.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.97 -12.86 -2.89 O2 - O[18O](g) -12.67 -15.56 -2.89 O[18O] + O2(g) -10.20 -13.09 -2.89 O2 + O[18O](g) -12.90 -15.79 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -35742,23 +35732,23 @@ Calcite 1.26e-02 R(18O) 1.99519e-03 -4.9921 permil R(13C) 1.11206e-02 -5.3301 permil - R(14C) 2.20960e-13 18.791 pmc + R(14C) 2.20961e-13 18.791 pmc R(18O) H2O(l) 1.99519e-03 -4.9936 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9936 permil R(13C) CO2(aq) 1.10410e-02 -12.448 permil - R(14C) CO2(aq) 2.17806e-13 18.523 pmc + R(14C) CO2(aq) 2.17807e-13 18.523 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9936 permil R(13C) HCO3- 1.11371e-02 -3.8569 permil - R(14C) HCO3- 2.21612e-13 18.846 pmc + R(14C) HCO3- 2.21614e-13 18.846 pmc R(18O) CO3-2 1.99519e-03 -4.9936 permil R(13C) CO3-2 1.11211e-02 -5.2865 permil - R(14C) CO3-2 2.20977e-13 18.792 pmc + R(14C) CO3-2 2.20978e-13 18.792 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11591e-02 -1.8839 permil - R(14C) Calcite 2.22491e-13 18.921 pmc + R(14C) Calcite 2.22492e-13 18.921 pmc --------------------------------Isotope Alphas--------------------------------- @@ -35768,12 +35758,12 @@ Calcite 1.26e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2486e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2669e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6257e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7769e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -35793,14 +35783,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.301 Adjusted to redox equilibrium + pe = 11.258 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -35815,13 +35805,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.919 -124.918 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.573 -124.572 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -35830,9 +35820,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -35840,23 +35830,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.073e-08 6.083e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.742e-40 - H2 1.871e-40 1.874e-40 -39.728 -39.727 0.001 (0) -O(0) 2.370e-13 - O2 1.180e-13 1.182e-13 -12.928 -12.927 0.001 (0) - O[18O] 4.710e-16 4.718e-16 -15.327 -15.326 0.001 (0) +H(0) 4.565e-40 + H2 2.283e-40 2.286e-40 -39.642 -39.641 0.001 (0) +O(0) 1.592e-13 + O2 7.929e-14 7.942e-14 -13.101 -13.100 0.001 (0) + O[18O] 3.164e-16 3.169e-16 -15.500 -15.499 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.876 -126.875 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.530 -126.529 0.001 (0) [13C](4) 6.494e-05 H[13C]O3- 5.238e-05 4.793e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) H[13C]O[18O]O- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.073e-08 6.083e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.572e-08 4.580e-08 -7.340 -7.339 0.001 (0) @@ -35865,56 +35855,56 @@ O(0) 2.370e-13 CaH[13C]O[18O]O+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.635e-10 3.641e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.581 -137.580 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.235 -137.234 0.001 (0) [14C](4) 1.290e-15 H[14C]O3- 1.042e-15 9.536e-16 -14.982 -15.021 -0.039 (0) [14C]O2 2.169e-16 2.173e-16 -15.664 -15.663 0.001 (0) CaH[14C]O3+ 2.201e-17 2.019e-17 -16.657 -16.695 -0.037 (0) - H[14C]O2[18O]- 2.080e-18 1.903e-18 -17.682 -17.721 -0.039 (0) - H[14C]O[18O]O- 2.080e-18 1.903e-18 -17.682 -17.721 -0.039 (0) H[14C][18O]O2- 2.080e-18 1.903e-18 -17.682 -17.721 -0.039 (0) + H[14C]O[18O]O- 2.080e-18 1.903e-18 -17.682 -17.721 -0.039 (0) + H[14C]O2[18O]- 2.080e-18 1.903e-18 -17.682 -17.721 -0.039 (0) Ca[14C]O3 1.207e-18 1.209e-18 -17.918 -17.918 0.001 (0) [14C]O[18O] 9.019e-19 9.034e-19 -18.045 -18.044 0.001 (0) [14C]O3-2 6.190e-19 4.336e-19 -18.208 -18.363 -0.155 (0) CaH[14C]O2[18O]+ 4.392e-20 4.029e-20 -19.357 -19.395 -0.037 (0) - CaH[14C]O[18O]O+ 4.392e-20 4.029e-20 -19.357 -19.395 -0.037 (0) CaH[14C][18O]O2+ 4.392e-20 4.029e-20 -19.357 -19.395 -0.037 (0) + CaH[14C]O[18O]O+ 4.392e-20 4.029e-20 -19.357 -19.395 -0.037 (0) Ca[14C]O2[18O] 7.223e-21 7.235e-21 -20.141 -20.141 0.001 (0) - H[14C]O[18O]2- 4.149e-21 3.796e-21 -20.382 -20.421 -0.039 (0) H[14C][18O]2O- 4.149e-21 3.796e-21 -20.382 -20.421 -0.039 (0) H[14C][18O]O[18O]- 4.149e-21 3.796e-21 -20.382 -20.421 -0.039 (0) + H[14C]O[18O]2- 4.149e-21 3.796e-21 -20.382 -20.421 -0.039 (0) [14C]O2[18O]-2 3.705e-21 2.596e-21 -20.431 -20.586 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.719e-16 - O[18O] 4.710e-16 4.718e-16 -15.327 -15.326 0.001 (0) - [18O]2 4.699e-19 4.706e-19 -18.328 -18.327 0.001 (0) +[18O](0) 3.170e-16 + O[18O] 3.164e-16 3.169e-16 -15.500 -15.499 0.001 (0) + [18O]2 3.156e-19 3.162e-19 -18.501 -18.500 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.02 -126.88 -2.86 [13C]H4 + [13C]H4(g) -123.67 -126.53 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.56 -21.06 -1.50 [14C][18O]2 - [14C]H4(g) -134.72 -137.58 -2.86 [14C]H4 + [14C]H4(g) -134.37 -137.23 -2.86 [14C]H4 [14C]O2(g) -14.19 -15.66 -1.47 [14C]O2 [14C]O[18O](g) -16.58 -18.36 -1.79 [14C]O[18O] - [18O]2(g) -16.04 -18.33 -2.29 [18O]2 + [18O]2(g) -16.21 -18.50 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -35928,14 +35918,14 @@ O(0) 2.370e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.06 -124.92 -2.86 CH4 + CH4(g) -121.71 -124.57 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.58 -39.73 -3.15 H2 + H2(g) -36.49 -39.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.03 -12.93 -2.89 O2 - O[18O](g) -12.73 -15.63 -2.89 O[18O] + O2(g) -10.21 -13.10 -2.89 O2 + O[18O](g) -12.91 -15.80 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -35999,23 +35989,23 @@ Calcite 1.31e-02 R(18O) 1.99519e-03 -4.9919 permil R(13C) 1.11218e-02 -5.2259 permil - R(14C) 2.15115e-13 18.294 pmc + R(14C) 2.15117e-13 18.294 pmc R(18O) H2O(l) 1.99519e-03 -4.9934 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9934 permil R(13C) CO2(aq) 1.10422e-02 -12.345 permil - R(14C) CO2(aq) 2.12045e-13 18.033 pmc + R(14C) CO2(aq) 2.12047e-13 18.033 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9934 permil R(13C) HCO3- 1.11382e-02 -3.7526 permil - R(14C) HCO3- 2.15751e-13 18.348 pmc + R(14C) HCO3- 2.15752e-13 18.348 pmc R(18O) CO3-2 1.99519e-03 -4.9934 permil R(13C) CO3-2 1.11223e-02 -5.1823 permil - R(14C) CO3-2 2.15132e-13 18.295 pmc + R(14C) CO3-2 2.15133e-13 18.295 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11603e-02 -1.7794 permil - R(14C) Calcite 2.16606e-13 18.421 pmc + R(14C) Calcite 2.16608e-13 18.421 pmc --------------------------------Isotope Alphas--------------------------------- @@ -36025,12 +36015,12 @@ Calcite 1.31e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2766e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2947e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7346e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6793e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -36050,14 +36040,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.300 Adjusted to redox equilibrium + pe = 11.228 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -36072,24 +36062,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.910 -124.909 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.336 -124.335 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -36097,81 +36087,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.074e-08 6.084e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.760e-40 - H2 1.880e-40 1.883e-40 -39.726 -39.725 0.001 (0) -O(0) 2.347e-13 - O2 1.169e-13 1.171e-13 -12.932 -12.932 0.001 (0) - O[18O] 4.663e-16 4.671e-16 -15.331 -15.331 0.001 (0) +H(0) 5.233e-40 + H2 2.617e-40 2.621e-40 -39.582 -39.582 0.001 (0) +O(0) 1.212e-13 + O2 6.035e-14 6.044e-14 -13.219 -13.219 0.001 (0) + O[18O] 2.408e-16 2.412e-16 -15.618 -15.618 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.867 -126.866 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.293 -126.292 0.001 (0) [13C](4) 6.495e-05 H[13C]O3- 5.239e-05 4.793e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) H[13C]O2[18O]- 1.045e-07 9.563e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.563e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.563e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.563e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.074e-08 6.084e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.573e-08 4.580e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.116e-08 2.183e-08 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) + CaH[13C]O2[18O]+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.635e-10 3.641e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.584 -137.583 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.010 -137.009 0.001 (0) [14C](4) 1.256e-15 H[14C]O3- 1.015e-15 9.284e-16 -14.994 -15.032 -0.039 (0) [14C]O2 2.112e-16 2.115e-16 -15.675 -15.675 0.001 (0) CaH[14C]O3+ 2.143e-17 1.966e-17 -16.669 -16.706 -0.037 (0) - H[14C]O2[18O]- 2.025e-18 1.852e-18 -17.694 -17.732 -0.039 (0) - H[14C]O[18O]O- 2.025e-18 1.852e-18 -17.694 -17.732 -0.039 (0) H[14C][18O]O2- 2.025e-18 1.852e-18 -17.694 -17.732 -0.039 (0) + H[14C]O[18O]O- 2.025e-18 1.852e-18 -17.694 -17.732 -0.039 (0) + H[14C]O2[18O]- 2.025e-18 1.852e-18 -17.694 -17.732 -0.039 (0) Ca[14C]O3 1.175e-18 1.177e-18 -17.930 -17.929 0.001 (0) [14C]O[18O] 8.781e-19 8.795e-19 -18.056 -18.056 0.001 (0) [14C]O3-2 6.026e-19 4.222e-19 -18.220 -18.375 -0.155 (0) CaH[14C]O2[18O]+ 4.276e-20 3.922e-20 -19.369 -19.406 -0.037 (0) - CaH[14C]O[18O]O+ 4.276e-20 3.922e-20 -19.369 -19.406 -0.037 (0) CaH[14C][18O]O2+ 4.276e-20 3.922e-20 -19.369 -19.406 -0.037 (0) + CaH[14C]O[18O]O+ 4.276e-20 3.922e-20 -19.369 -19.406 -0.037 (0) Ca[14C]O2[18O] 7.032e-21 7.043e-21 -20.153 -20.152 0.001 (0) + H[14C][18O]O[18O]- 4.040e-21 3.696e-21 -20.394 -20.432 -0.039 (0) H[14C]O[18O]2- 4.040e-21 3.696e-21 -20.394 -20.432 -0.039 (0) H[14C][18O]2O- 4.040e-21 3.696e-21 -20.394 -20.432 -0.039 (0) - H[14C][18O]O[18O]- 4.040e-21 3.696e-21 -20.394 -20.432 -0.039 (0) [14C]O2[18O]-2 3.607e-21 2.527e-21 -20.443 -20.597 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.673e-16 - O[18O] 4.663e-16 4.671e-16 -15.331 -15.331 0.001 (0) - [18O]2 4.652e-19 4.660e-19 -18.332 -18.332 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.413e-16 + O[18O] 2.408e-16 2.412e-16 -15.618 -15.618 0.001 (0) + [18O]2 2.402e-19 2.406e-19 -18.619 -18.619 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.01 -126.87 -2.86 [13C]H4 + [13C]H4(g) -123.43 -126.29 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.57 -21.07 -1.50 [14C][18O]2 - [14C]H4(g) -134.72 -137.58 -2.86 [14C]H4 + [14C]H4(g) -134.15 -137.01 -2.86 [14C]H4 [14C]O2(g) -14.21 -15.67 -1.47 [14C]O2 [14C]O[18O](g) -16.59 -18.37 -1.79 [14C]O[18O] - [18O]2(g) -16.04 -18.33 -2.29 [18O]2 + [18O]2(g) -16.33 -18.62 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -36185,14 +36175,14 @@ O(0) 2.347e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.05 -124.91 -2.86 CH4 + CH4(g) -121.48 -124.34 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.58 -39.73 -3.15 H2 + H2(g) -36.43 -39.58 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.04 -12.93 -2.89 O2 - O[18O](g) -12.74 -15.63 -2.89 O[18O] + O2(g) -10.33 -13.22 -2.89 O2 + O[18O](g) -13.03 -15.92 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -36247,7 +36237,7 @@ Calcite 1.36e-02 Ca[13C][18O]3(s) 1.29e-12 4.76e-14 9.49e-11 Ca[14C]O3(s) 2.81e-15 3.21e-17 2.07e-13 Ca[14C]O2[18O](s) 1.73e-17 1.98e-19 1.28e-15 - Ca[14C]O[18O]2(s) 3.55e-20 4.05e-22 2.62e-18 + Ca[14C]O[18O]2(s) 3.55e-20 4.06e-22 2.62e-18 Ca[14C][18O]3(s) 2.43e-23 2.77e-25 1.79e-21 --------------------------------Isotope Ratios--------------------------------- @@ -36256,23 +36246,23 @@ Calcite 1.36e-02 R(18O) 1.99519e-03 -4.9918 permil R(13C) 1.11229e-02 -5.1271 permil - R(14C) 2.09572e-13 17.822 pmc + R(14C) 2.09574e-13 17.823 pmc R(18O) H2O(l) 1.99519e-03 -4.9933 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9933 permil R(13C) CO2(aq) 1.10433e-02 -12.247 permil - R(14C) CO2(aq) 2.06581e-13 17.568 pmc + R(14C) CO2(aq) 2.06583e-13 17.568 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9933 permil R(13C) HCO3- 1.11394e-02 -3.6537 permil - R(14C) HCO3- 2.10191e-13 17.875 pmc + R(14C) HCO3- 2.10193e-13 17.875 pmc R(18O) CO3-2 1.99519e-03 -4.9933 permil R(13C) CO3-2 1.11234e-02 -5.0835 permil - R(14C) CO3-2 2.09588e-13 17.824 pmc + R(14C) CO3-2 2.09590e-13 17.824 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11614e-02 -1.6802 permil - R(14C) Calcite 2.11025e-13 17.946 pmc + R(14C) Calcite 2.11026e-13 17.946 pmc --------------------------------Isotope Alphas--------------------------------- @@ -36282,12 +36272,12 @@ Calcite 1.36e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2412e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2258e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6772e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7569e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -36307,14 +36297,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.291 Adjusted to redox equilibrium + pe = 11.203 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -36329,14 +36319,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.840 -124.839 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.132 -124.131 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -36344,9 +36334,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -36354,51 +36344,51 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.074e-08 6.084e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.916e-40 - H2 1.958e-40 1.961e-40 -39.708 -39.708 0.001 (0) -O(0) 2.164e-13 - O2 1.078e-13 1.080e-13 -12.967 -12.967 0.001 (0) - O[18O] 4.301e-16 4.308e-16 -15.366 -15.366 0.001 (0) +H(0) 5.886e-40 + H2 2.943e-40 2.948e-40 -39.531 -39.530 0.001 (0) +O(0) 9.578e-14 + O2 4.770e-14 4.778e-14 -13.321 -13.321 0.001 (0) + O[18O] 1.903e-16 1.907e-16 -15.720 -15.720 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.797 -126.796 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.089 -126.088 0.001 (0) [13C](4) 6.496e-05 H[13C]O3- 5.240e-05 4.793e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-07 9.564e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.564e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.564e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.564e-08 -6.981 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.045e-07 9.564e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.074e-08 6.084e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.573e-08 4.580e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.116e-08 2.183e-08 -7.506 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.636e-10 3.642e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.525 -137.524 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.817 -136.816 0.001 (0) [14C](4) 1.224e-15 H[14C]O3- 9.887e-16 9.045e-16 -15.005 -15.044 -0.039 (0) [14C]O2 2.057e-16 2.061e-16 -15.687 -15.686 0.001 (0) CaH[14C]O3+ 2.088e-17 1.915e-17 -16.680 -16.718 -0.037 (0) - H[14C]O2[18O]- 1.973e-18 1.805e-18 -17.705 -17.744 -0.039 (0) - H[14C]O[18O]O- 1.973e-18 1.805e-18 -17.705 -17.744 -0.039 (0) H[14C][18O]O2- 1.973e-18 1.805e-18 -17.705 -17.744 -0.039 (0) - Ca[14C]O3 1.144e-18 1.146e-18 -17.941 -17.941 0.001 (0) - [14C]O[18O] 8.554e-19 8.568e-19 -18.068 -18.067 0.001 (0) + H[14C]O[18O]O- 1.973e-18 1.805e-18 -17.705 -17.744 -0.039 (0) + H[14C]O2[18O]- 1.973e-18 1.805e-18 -17.705 -17.744 -0.039 (0) + Ca[14C]O3 1.145e-18 1.146e-18 -17.941 -17.941 0.001 (0) + [14C]O[18O] 8.554e-19 8.569e-19 -18.068 -18.067 0.001 (0) [14C]O3-2 5.871e-19 4.113e-19 -18.231 -18.386 -0.155 (0) CaH[14C]O2[18O]+ 4.165e-20 3.821e-20 -19.380 -19.418 -0.037 (0) - CaH[14C]O[18O]O+ 4.165e-20 3.821e-20 -19.380 -19.418 -0.037 (0) CaH[14C][18O]O2+ 4.165e-20 3.821e-20 -19.380 -19.418 -0.037 (0) - Ca[14C]O2[18O] 6.850e-21 6.862e-21 -20.164 -20.164 0.001 (0) + CaH[14C]O[18O]O+ 4.165e-20 3.821e-20 -19.380 -19.418 -0.037 (0) + Ca[14C]O2[18O] 6.851e-21 6.862e-21 -20.164 -20.164 0.001 (0) H[14C]O[18O]2- 3.936e-21 3.601e-21 -20.405 -20.444 -0.039 (0) H[14C][18O]2O- 3.936e-21 3.601e-21 -20.405 -20.444 -0.039 (0) H[14C][18O]O[18O]- 3.936e-21 3.601e-21 -20.405 -20.444 -0.039 (0) @@ -36406,29 +36396,29 @@ O(0) 2.164e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.310e-16 - O[18O] 4.301e-16 4.308e-16 -15.366 -15.366 0.001 (0) - [18O]2 4.291e-19 4.298e-19 -18.367 -18.367 0.001 (0) +[18O](0) 1.907e-16 + O[18O] 1.903e-16 1.907e-16 -15.720 -15.720 0.001 (0) + [18O]2 1.899e-19 1.902e-19 -18.722 -18.721 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.94 -126.80 -2.86 [13C]H4 + [13C]H4(g) -123.23 -126.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.58 -21.09 -1.50 [14C][18O]2 - [14C]H4(g) -134.66 -137.52 -2.86 [14C]H4 + [14C]H4(g) -133.96 -136.82 -2.86 [14C]H4 [14C]O2(g) -14.22 -15.69 -1.47 [14C]O2 [14C]O[18O](g) -16.60 -18.39 -1.79 [14C]O[18O] - [18O]2(g) -16.08 -18.37 -2.29 [18O]2 + [18O]2(g) -16.43 -18.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -36442,14 +36432,14 @@ O(0) 2.164e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.98 -124.84 -2.86 CH4 + CH4(g) -121.27 -124.13 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.56 -39.71 -3.15 H2 + H2(g) -36.38 -39.53 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.07 -12.97 -2.89 O2 - O[18O](g) -12.77 -15.67 -2.89 O[18O] + O2(g) -10.43 -13.32 -2.89 O2 + O[18O](g) -13.13 -16.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -36513,23 +36503,23 @@ Calcite 1.41e-02 R(18O) 1.99519e-03 -4.9916 permil R(13C) 1.11239e-02 -5.0333 permil - R(14C) 2.04308e-13 17.375 pmc + R(14C) 2.04309e-13 17.375 pmc R(18O) H2O(l) 1.99519e-03 -4.9932 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9932 permil R(13C) CO2(aq) 1.10443e-02 -12.154 permil - R(14C) CO2(aq) 2.01392e-13 17.127 pmc + R(14C) CO2(aq) 2.01393e-13 17.127 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9932 permil R(13C) HCO3- 1.11404e-02 -3.5597 permil - R(14C) HCO3- 2.04911e-13 17.426 pmc + R(14C) HCO3- 2.04913e-13 17.426 pmc R(18O) CO3-2 1.99519e-03 -4.9932 permil R(13C) CO3-2 1.11244e-02 -4.9897 permil - R(14C) CO3-2 2.04324e-13 17.376 pmc + R(14C) CO3-2 2.04325e-13 17.376 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11625e-02 -1.5861 permil - R(14C) Calcite 2.05724e-13 17.495 pmc + R(14C) Calcite 2.05725e-13 17.495 pmc --------------------------------Isotope Alphas--------------------------------- @@ -36539,12 +36529,12 @@ Calcite 1.41e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2704e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2564e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.717e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7297e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -36564,14 +36554,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.294 Adjusted to redox equilibrium + pe = 11.201 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -36586,24 +36576,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.862 -124.861 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.119 -124.119 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -36611,23 +36601,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.866e-40 - H2 1.933e-40 1.936e-40 -39.714 -39.713 0.001 (0) -O(0) 2.220e-13 - O2 1.106e-13 1.108e-13 -12.956 -12.956 0.001 (0) - O[18O] 4.412e-16 4.419e-16 -15.355 -15.355 0.001 (0) +H(0) 5.928e-40 + H2 2.964e-40 2.969e-40 -39.528 -39.527 0.001 (0) +O(0) 9.442e-14 + O2 4.702e-14 4.710e-14 -13.328 -13.327 0.001 (0) + O[18O] 1.876e-16 1.879e-16 -15.727 -15.726 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.819 -126.818 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.076 -126.075 0.001 (0) [13C](4) 6.496e-05 H[13C]O3- 5.240e-05 4.794e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-07 9.565e-08 -6.981 -7.019 -0.039 (0) H[13C]O[18O]O- 1.045e-07 9.565e-08 -6.981 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.045e-07 9.565e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.565e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.573e-08 4.581e-08 -7.340 -7.339 0.001 (0) @@ -36636,56 +36626,56 @@ O(0) 2.220e-13 CaH[13C]O[18O]O+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.636e-10 3.642e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.558 -137.557 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.815 -136.815 0.001 (0) [14C](4) 1.193e-15 H[14C]O3- 9.638e-16 8.818e-16 -15.016 -15.055 -0.039 (0) [14C]O2 2.006e-16 2.009e-16 -15.698 -15.697 0.001 (0) CaH[14C]O3+ 2.035e-17 1.867e-17 -16.691 -16.729 -0.037 (0) - H[14C]O2[18O]- 1.923e-18 1.759e-18 -17.716 -17.755 -0.039 (0) - H[14C]O[18O]O- 1.923e-18 1.759e-18 -17.716 -17.755 -0.039 (0) H[14C][18O]O2- 1.923e-18 1.759e-18 -17.716 -17.755 -0.039 (0) + H[14C]O[18O]O- 1.923e-18 1.759e-18 -17.716 -17.755 -0.039 (0) + H[14C]O2[18O]- 1.923e-18 1.759e-18 -17.716 -17.755 -0.039 (0) Ca[14C]O3 1.116e-18 1.118e-18 -17.952 -17.952 0.001 (0) [14C]O[18O] 8.340e-19 8.353e-19 -18.079 -18.078 0.001 (0) [14C]O3-2 5.724e-19 4.010e-19 -18.242 -18.397 -0.155 (0) CaH[14C]O2[18O]+ 4.061e-20 3.725e-20 -19.391 -19.429 -0.037 (0) - CaH[14C]O[18O]O+ 4.061e-20 3.725e-20 -19.391 -19.429 -0.037 (0) CaH[14C][18O]O2+ 4.061e-20 3.725e-20 -19.391 -19.429 -0.037 (0) + CaH[14C]O[18O]O+ 4.061e-20 3.725e-20 -19.391 -19.429 -0.037 (0) Ca[14C]O2[18O] 6.678e-21 6.689e-21 -20.175 -20.175 0.001 (0) - H[14C]O[18O]2- 3.837e-21 3.510e-21 -20.416 -20.455 -0.039 (0) H[14C][18O]2O- 3.837e-21 3.510e-21 -20.416 -20.455 -0.039 (0) H[14C][18O]O[18O]- 3.837e-21 3.510e-21 -20.416 -20.455 -0.039 (0) + H[14C]O[18O]2- 3.837e-21 3.510e-21 -20.416 -20.455 -0.039 (0) [14C]O2[18O]-2 3.426e-21 2.400e-21 -20.465 -20.620 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.421e-16 - O[18O] 4.412e-16 4.419e-16 -15.355 -15.355 0.001 (0) - [18O]2 4.402e-19 4.409e-19 -18.356 -18.356 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.880e-16 + O[18O] 1.876e-16 1.879e-16 -15.727 -15.726 0.001 (0) + [18O]2 1.872e-19 1.875e-19 -18.728 -18.727 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.96 -126.82 -2.86 [13C]H4 + [13C]H4(g) -123.22 -126.08 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.59 -21.10 -1.50 [14C][18O]2 - [14C]H4(g) -134.70 -137.56 -2.86 [14C]H4 + [14C]H4(g) -133.95 -136.81 -2.86 [14C]H4 [14C]O2(g) -14.23 -15.70 -1.47 [14C]O2 [14C]O[18O](g) -16.61 -18.40 -1.79 [14C]O[18O] - [18O]2(g) -16.07 -18.36 -2.29 [18O]2 + [18O]2(g) -16.44 -18.73 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -36699,14 +36689,14 @@ O(0) 2.220e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.00 -124.86 -2.86 CH4 + CH4(g) -121.26 -124.12 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.56 -39.71 -3.15 H2 + H2(g) -36.38 -39.53 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.06 -12.96 -2.89 O2 - O[18O](g) -12.76 -15.66 -2.89 O[18O] + O2(g) -10.43 -13.33 -2.89 O2 + O[18O](g) -13.13 -16.03 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -36770,23 +36760,23 @@ Calcite 1.46e-02 R(18O) 1.99519e-03 -4.9915 permil R(13C) 1.11249e-02 -4.944 permil - R(14C) 1.99301e-13 16.949 pmc + R(14C) 1.99303e-13 16.949 pmc R(18O) H2O(l) 1.99519e-03 -4.993 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.993 permil R(13C) CO2(aq) 1.10453e-02 -12.065 permil - R(14C) CO2(aq) 1.96457e-13 16.707 pmc + R(14C) CO2(aq) 1.96458e-13 16.707 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.993 permil R(13C) HCO3- 1.11414e-02 -3.4703 permil - R(14C) HCO3- 1.99890e-13 16.999 pmc + R(14C) HCO3- 1.99891e-13 16.999 pmc R(18O) CO3-2 1.99519e-03 -4.993 permil R(13C) CO3-2 1.11254e-02 -4.9004 permil - R(14C) CO3-2 1.99317e-13 16.95 pmc + R(14C) CO3-2 1.99318e-13 16.95 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11635e-02 -1.4965 permil - R(14C) Calcite 2.00683e-13 17.066 pmc + R(14C) Calcite 2.00684e-13 17.067 pmc --------------------------------Isotope Alphas--------------------------------- @@ -36796,12 +36786,12 @@ Calcite 1.46e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.3027e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2552e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7444e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6891e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -36821,14 +36811,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.291 Adjusted to redox equilibrium + pe = 11.140 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -36843,14 +36833,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.843 -124.842 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.634 -123.633 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -36858,9 +36848,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -36868,81 +36858,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.909e-40 - H2 1.954e-40 1.958e-40 -39.709 -39.708 0.001 (0) -O(0) 2.172e-13 - O2 1.082e-13 1.083e-13 -12.966 -12.965 0.001 (0) - O[18O] 4.316e-16 4.323e-16 -15.365 -15.364 0.001 (0) +H(0) 7.840e-40 + H2 3.920e-40 3.926e-40 -39.407 -39.406 0.001 (0) +O(0) 5.399e-14 + O2 2.689e-14 2.693e-14 -13.570 -13.570 0.001 (0) + O[18O] 1.073e-16 1.075e-16 -15.969 -15.969 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.800 -126.799 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.591 -125.590 0.001 (0) [13C](4) 6.497e-05 H[13C]O3- 5.240e-05 4.794e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.574e-08 4.581e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.116e-08 2.183e-08 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.208e-09 2.025e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.208e-09 2.025e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.208e-09 2.025e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.636e-10 3.642e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.550 -137.549 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.340 -136.340 0.001 (0) [14C](4) 1.164e-15 H[14C]O3- 9.402e-16 8.602e-16 -15.027 -15.065 -0.039 (0) [14C]O2 1.956e-16 1.960e-16 -15.709 -15.708 0.001 (0) CaH[14C]O3+ 1.985e-17 1.821e-17 -16.702 -16.740 -0.037 (0) - H[14C]O2[18O]- 1.876e-18 1.716e-18 -17.727 -17.765 -0.039 (0) - H[14C]O[18O]O- 1.876e-18 1.716e-18 -17.727 -17.765 -0.039 (0) H[14C][18O]O2- 1.876e-18 1.716e-18 -17.727 -17.765 -0.039 (0) + H[14C]O[18O]O- 1.876e-18 1.716e-18 -17.727 -17.765 -0.039 (0) + H[14C]O2[18O]- 1.876e-18 1.716e-18 -17.727 -17.765 -0.039 (0) Ca[14C]O3 1.088e-18 1.090e-18 -17.963 -17.962 0.001 (0) [14C]O[18O] 8.135e-19 8.149e-19 -18.090 -18.089 0.001 (0) [14C]O3-2 5.583e-19 3.911e-19 -18.253 -18.408 -0.155 (0) CaH[14C]O2[18O]+ 3.961e-20 3.634e-20 -19.402 -19.440 -0.037 (0) - CaH[14C]O[18O]O+ 3.961e-20 3.634e-20 -19.402 -19.440 -0.037 (0) CaH[14C][18O]O2+ 3.961e-20 3.634e-20 -19.402 -19.440 -0.037 (0) + CaH[14C]O[18O]O+ 3.961e-20 3.634e-20 -19.402 -19.440 -0.037 (0) Ca[14C]O2[18O] 6.515e-21 6.525e-21 -20.186 -20.185 0.001 (0) + H[14C][18O]O[18O]- 3.743e-21 3.424e-21 -20.427 -20.465 -0.039 (0) H[14C]O[18O]2- 3.743e-21 3.424e-21 -20.427 -20.465 -0.039 (0) H[14C][18O]2O- 3.743e-21 3.424e-21 -20.427 -20.465 -0.039 (0) - H[14C][18O]O[18O]- 3.743e-21 3.424e-21 -20.427 -20.465 -0.039 (0) [14C]O2[18O]-2 3.342e-21 2.341e-21 -20.476 -20.631 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.324e-16 - O[18O] 4.316e-16 4.323e-16 -15.365 -15.364 0.001 (0) - [18O]2 4.305e-19 4.312e-19 -18.366 -18.365 0.001 (0) +[18O](0) 1.075e-16 + O[18O] 1.073e-16 1.075e-16 -15.969 -15.969 0.001 (0) + [18O]2 1.070e-19 1.072e-19 -18.971 -18.970 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.94 -126.80 -2.86 [13C]H4 + [13C]H4(g) -122.73 -125.59 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.60 -21.11 -1.50 [14C][18O]2 - [14C]H4(g) -134.69 -137.55 -2.86 [14C]H4 + [14C]H4(g) -133.48 -136.34 -2.86 [14C]H4 [14C]O2(g) -14.24 -15.71 -1.47 [14C]O2 [14C]O[18O](g) -16.62 -18.41 -1.79 [14C]O[18O] - [18O]2(g) -16.07 -18.37 -2.29 [18O]2 + [18O]2(g) -16.68 -18.97 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -36956,14 +36946,14 @@ O(0) 2.172e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.98 -124.84 -2.86 CH4 + CH4(g) -120.77 -123.63 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.56 -39.71 -3.15 H2 + H2(g) -36.26 -39.41 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.07 -12.97 -2.89 O2 - O[18O](g) -12.77 -15.67 -2.89 O[18O] + O2(g) -10.68 -13.57 -2.89 O2 + O[18O](g) -13.38 -16.27 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -37027,23 +37017,23 @@ Calcite 1.51e-02 R(18O) 1.99519e-03 -4.9914 permil R(13C) 1.11259e-02 -4.8591 permil - R(14C) 1.94534e-13 16.544 pmc + R(14C) 1.94536e-13 16.544 pmc R(18O) H2O(l) 1.99519e-03 -4.9929 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9929 permil R(13C) CO2(aq) 1.10463e-02 -11.981 permil - R(14C) CO2(aq) 1.91758e-13 16.307 pmc + R(14C) CO2(aq) 1.91759e-13 16.308 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9929 permil R(13C) HCO3- 1.11424e-02 -3.3852 permil - R(14C) HCO3- 1.95109e-13 16.592 pmc + R(14C) HCO3- 1.95110e-13 16.593 pmc R(18O) CO3-2 1.99519e-03 -4.9929 permil R(13C) CO3-2 1.11264e-02 -4.8155 permil - R(14C) CO3-2 1.94549e-13 16.545 pmc + R(14C) CO3-2 1.94551e-13 16.545 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11644e-02 -1.4113 permil - R(14C) Calcite 1.95883e-13 16.658 pmc + R(14C) Calcite 1.95884e-13 16.658 pmc --------------------------------Isotope Alphas--------------------------------- @@ -37053,12 +37043,12 @@ Calcite 1.51e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2375e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2571e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.7716e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.75e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.833e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -37078,14 +37068,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.297 Adjusted to redox equilibrium + pe = 11.161 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -37100,24 +37090,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.887 -124.886 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.799 -123.798 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -37125,50 +37115,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.076e-08 6.086e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.810e-40 - H2 1.905e-40 1.908e-40 -39.720 -39.719 0.001 (0) -O(0) 2.285e-13 - O2 1.138e-13 1.140e-13 -12.944 -12.943 0.001 (0) - O[18O] 4.542e-16 4.549e-16 -15.343 -15.342 0.001 (0) +H(0) 7.129e-40 + H2 3.565e-40 3.570e-40 -39.448 -39.447 0.001 (0) +O(0) 6.529e-14 + O2 3.251e-14 3.257e-14 -13.488 -13.487 0.001 (0) + O[18O] 1.297e-16 1.300e-16 -15.887 -15.886 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.844 -126.843 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.756 -125.755 0.001 (0) [13C](4) 6.498e-05 H[13C]O3- 5.241e-05 4.795e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.076e-08 6.086e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.574e-08 4.582e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.117e-08 2.183e-08 -7.506 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.637e-10 3.643e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.604 -137.604 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.516 -136.515 0.001 (0) [14C](4) 1.136e-15 H[14C]O3- 9.177e-16 8.396e-16 -15.037 -15.076 -0.039 (0) [14C]O2 1.910e-16 1.913e-16 -15.719 -15.718 0.001 (0) CaH[14C]O3+ 1.938e-17 1.778e-17 -16.713 -16.750 -0.037 (0) - H[14C]O2[18O]- 1.831e-18 1.675e-18 -17.737 -17.776 -0.039 (0) - H[14C]O[18O]O- 1.831e-18 1.675e-18 -17.737 -17.776 -0.039 (0) H[14C][18O]O2- 1.831e-18 1.675e-18 -17.737 -17.776 -0.039 (0) + H[14C]O[18O]O- 1.831e-18 1.675e-18 -17.737 -17.776 -0.039 (0) + H[14C]O2[18O]- 1.831e-18 1.675e-18 -17.737 -17.776 -0.039 (0) Ca[14C]O3 1.062e-18 1.064e-18 -17.974 -17.973 0.001 (0) [14C]O[18O] 7.941e-19 7.954e-19 -18.100 -18.099 0.001 (0) [14C]O3-2 5.450e-19 3.818e-19 -18.264 -18.418 -0.155 (0) - CaH[14C]O2[18O]+ 3.866e-20 3.547e-20 -19.413 -19.450 -0.037 (0) - CaH[14C]O[18O]O+ 3.866e-20 3.547e-20 -19.413 -19.450 -0.037 (0) - CaH[14C][18O]O2+ 3.866e-20 3.547e-20 -19.413 -19.450 -0.037 (0) + CaH[14C]O2[18O]+ 3.867e-20 3.547e-20 -19.413 -19.450 -0.037 (0) + CaH[14C][18O]O2+ 3.867e-20 3.547e-20 -19.413 -19.450 -0.037 (0) + CaH[14C]O[18O]O+ 3.867e-20 3.547e-20 -19.413 -19.450 -0.037 (0) Ca[14C]O2[18O] 6.359e-21 6.369e-21 -20.197 -20.196 0.001 (0) H[14C]O[18O]2- 3.653e-21 3.342e-21 -20.437 -20.476 -0.039 (0) H[14C][18O]2O- 3.653e-21 3.342e-21 -20.437 -20.476 -0.039 (0) @@ -37177,29 +37167,29 @@ O(0) 2.285e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.551e-16 - O[18O] 4.542e-16 4.549e-16 -15.343 -15.342 0.001 (0) - [18O]2 4.531e-19 4.538e-19 -18.344 -18.343 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.300e-16 + O[18O] 1.297e-16 1.300e-16 -15.887 -15.886 0.001 (0) + [18O]2 1.294e-19 1.296e-19 -18.888 -18.887 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.98 -126.84 -2.86 [13C]H4 + [13C]H4(g) -122.89 -125.75 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.61 -21.12 -1.50 [14C][18O]2 - [14C]H4(g) -134.74 -137.60 -2.86 [14C]H4 + [14C]H4(g) -133.66 -136.52 -2.86 [14C]H4 [14C]O2(g) -14.25 -15.72 -1.47 [14C]O2 [14C]O[18O](g) -16.63 -18.42 -1.79 [14C]O[18O] - [18O]2(g) -16.05 -18.34 -2.29 [18O]2 + [18O]2(g) -16.60 -18.89 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -37213,14 +37203,14 @@ O(0) 2.285e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.03 -124.89 -2.86 CH4 + CH4(g) -120.94 -123.80 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.57 -39.72 -3.15 H2 + H2(g) -36.30 -39.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.05 -12.94 -2.89 O2 - O[18O](g) -12.75 -15.64 -2.89 O[18O] + O2(g) -10.59 -13.49 -2.89 O2 + O[18O](g) -13.29 -16.19 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -37284,23 +37274,23 @@ Calcite 1.56e-02 R(18O) 1.99519e-03 -4.9912 permil R(13C) 1.11268e-02 -4.7781 permil - R(14C) 1.89990e-13 16.157 pmc + R(14C) 1.89991e-13 16.157 pmc R(18O) H2O(l) 1.99519e-03 -4.9927 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9927 permil R(13C) CO2(aq) 1.10472e-02 -11.9 permil - R(14C) CO2(aq) 1.87278e-13 15.927 pmc + R(14C) CO2(aq) 1.87280e-13 15.927 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9927 permil R(13C) HCO3- 1.11433e-02 -3.3041 permil - R(14C) HCO3- 1.90551e-13 16.205 pmc + R(14C) HCO3- 1.90552e-13 16.205 pmc R(18O) CO3-2 1.99519e-03 -4.9927 permil R(13C) CO3-2 1.11273e-02 -4.7344 permil - R(14C) CO3-2 1.90005e-13 16.158 pmc + R(14C) CO3-2 1.90006e-13 16.159 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11653e-02 -1.33 permil - R(14C) Calcite 1.91307e-13 16.269 pmc + R(14C) Calcite 1.91308e-13 16.269 pmc --------------------------------Isotope Alphas--------------------------------- @@ -37310,12 +37300,12 @@ Calcite 1.56e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2743e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2605e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6824e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.562e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -37335,14 +37325,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.290 Adjusted to redox equilibrium + pe = 11.162 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -37357,13 +37347,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.834 -124.833 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.810 -123.810 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -37372,9 +37362,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -37382,23 +37372,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.076e-08 6.086e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.929e-40 - H2 1.965e-40 1.968e-40 -39.707 -39.706 0.001 (0) -O(0) 2.149e-13 - O2 1.070e-13 1.072e-13 -12.970 -12.970 0.001 (0) - O[18O] 4.272e-16 4.279e-16 -15.369 -15.369 0.001 (0) +H(0) 7.082e-40 + H2 3.541e-40 3.547e-40 -39.451 -39.450 0.001 (0) +O(0) 6.616e-14 + O2 3.295e-14 3.300e-14 -13.482 -13.481 0.001 (0) + O[18O] 1.315e-16 1.317e-16 -15.881 -15.880 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.791 -126.790 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.767 -125.766 0.001 (0) [13C](4) 6.498e-05 H[13C]O3- 5.241e-05 4.795e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.567e-08 -6.981 -7.019 -0.039 (0) H[13C]O[18O]O- 1.046e-07 9.567e-08 -6.981 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.567e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.567e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.076e-08 6.086e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.575e-08 4.582e-08 -7.340 -7.339 0.001 (0) @@ -37407,56 +37397,56 @@ O(0) 2.149e-13 CaH[13C]O[18O]O+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.637e-10 3.643e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.561 -137.561 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.538 -136.537 0.001 (0) [14C](4) 1.110e-15 H[14C]O3- 8.963e-16 8.200e-16 -15.048 -15.086 -0.039 (0) [14C]O2 1.865e-16 1.868e-16 -15.729 -15.729 0.001 (0) CaH[14C]O3+ 1.893e-17 1.736e-17 -16.723 -16.760 -0.037 (0) - H[14C]O2[18O]- 1.788e-18 1.636e-18 -17.748 -17.786 -0.039 (0) - H[14C]O[18O]O- 1.788e-18 1.636e-18 -17.748 -17.786 -0.039 (0) H[14C][18O]O2- 1.788e-18 1.636e-18 -17.748 -17.786 -0.039 (0) + H[14C]O[18O]O- 1.788e-18 1.636e-18 -17.748 -17.786 -0.039 (0) + H[14C]O2[18O]- 1.788e-18 1.636e-18 -17.748 -17.786 -0.039 (0) Ca[14C]O3 1.038e-18 1.039e-18 -17.984 -17.983 0.001 (0) [14C]O[18O] 7.755e-19 7.768e-19 -18.110 -18.110 0.001 (0) - [14C]O3-2 5.322e-19 3.729e-19 -18.274 -18.428 -0.155 (0) + [14C]O3-2 5.323e-19 3.729e-19 -18.274 -18.428 -0.155 (0) CaH[14C]O2[18O]+ 3.776e-20 3.464e-20 -19.423 -19.460 -0.037 (0) - CaH[14C]O[18O]O+ 3.776e-20 3.464e-20 -19.423 -19.460 -0.037 (0) CaH[14C][18O]O2+ 3.776e-20 3.464e-20 -19.423 -19.460 -0.037 (0) + CaH[14C]O[18O]O+ 3.776e-20 3.464e-20 -19.423 -19.460 -0.037 (0) Ca[14C]O2[18O] 6.210e-21 6.221e-21 -20.207 -20.206 0.001 (0) - H[14C]O[18O]2- 3.568e-21 3.264e-21 -20.448 -20.486 -0.039 (0) H[14C][18O]2O- 3.568e-21 3.264e-21 -20.448 -20.486 -0.039 (0) H[14C][18O]O[18O]- 3.568e-21 3.264e-21 -20.448 -20.486 -0.039 (0) + H[14C]O[18O]2- 3.568e-21 3.264e-21 -20.448 -20.486 -0.039 (0) [14C]O2[18O]-2 3.186e-21 2.232e-21 -20.497 -20.651 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.280e-16 - O[18O] 4.272e-16 4.279e-16 -15.369 -15.369 0.001 (0) - [18O]2 4.261e-19 4.268e-19 -18.370 -18.370 0.001 (0) +[18O](0) 1.317e-16 + O[18O] 1.315e-16 1.317e-16 -15.881 -15.880 0.001 (0) + [18O]2 1.312e-19 1.314e-19 -18.882 -18.881 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.93 -126.79 -2.86 [13C]H4 + [13C]H4(g) -122.91 -125.77 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.63 -21.13 -1.50 [14C][18O]2 - [14C]H4(g) -134.70 -137.56 -2.86 [14C]H4 + [14C]H4(g) -133.68 -136.54 -2.86 [14C]H4 [14C]O2(g) -14.26 -15.73 -1.47 [14C]O2 [14C]O[18O](g) -16.64 -18.43 -1.79 [14C]O[18O] - [18O]2(g) -16.08 -18.37 -2.29 [18O]2 + [18O]2(g) -16.59 -18.88 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -37470,14 +37460,14 @@ O(0) 2.149e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.97 -124.83 -2.86 CH4 + CH4(g) -120.95 -123.81 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.56 -39.71 -3.15 H2 + H2(g) -36.30 -39.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.08 -12.97 -2.89 O2 - O[18O](g) -12.78 -15.67 -2.89 O[18O] + O2(g) -10.59 -13.48 -2.89 O2 + O[18O](g) -13.29 -16.18 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -37541,23 +37531,23 @@ Calcite 1.61e-02 R(18O) 1.99519e-03 -4.9911 permil R(13C) 1.11276e-02 -4.7007 permil - R(14C) 1.85653e-13 15.788 pmc + R(14C) 1.85654e-13 15.788 pmc R(18O) H2O(l) 1.99519e-03 -4.9926 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9926 permil R(13C) CO2(aq) 1.10480e-02 -11.824 permil - R(14C) CO2(aq) 1.83003e-13 15.563 pmc + R(14C) CO2(aq) 1.83005e-13 15.563 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9926 permil R(13C) HCO3- 1.11441e-02 -3.2267 permil - R(14C) HCO3- 1.86202e-13 15.835 pmc + R(14C) HCO3- 1.86203e-13 15.835 pmc R(18O) CO3-2 1.99519e-03 -4.9926 permil R(13C) CO3-2 1.11281e-02 -4.6571 permil - R(14C) CO3-2 1.85667e-13 15.79 pmc + R(14C) CO3-2 1.85669e-13 15.79 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11662e-02 -1.2524 permil - R(14C) Calcite 1.86940e-13 15.898 pmc + R(14C) Calcite 1.86941e-13 15.898 pmc --------------------------------Isotope Alphas--------------------------------- @@ -37567,12 +37557,12 @@ Calcite 1.61e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2512e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2686e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.72e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6639e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -37592,14 +37582,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.295 Adjusted to redox equilibrium + pe = 11.186 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -37614,24 +37604,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.871 -124.871 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.003 -124.003 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -37639,81 +37629,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.845e-40 - H2 1.922e-40 1.926e-40 -39.716 -39.715 0.001 (0) -O(0) 2.245e-13 - O2 1.118e-13 1.120e-13 -12.952 -12.951 0.001 (0) - O[18O] 4.461e-16 4.468e-16 -15.351 -15.350 0.001 (0) +H(0) 6.338e-40 + H2 3.169e-40 3.174e-40 -39.499 -39.498 0.001 (0) +O(0) 8.262e-14 + O2 4.114e-14 4.121e-14 -13.386 -13.385 0.001 (0) + O[18O] 1.642e-16 1.645e-16 -15.785 -15.784 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.828 -126.827 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.960 -125.959 0.001 (0) [13C](4) 6.499e-05 H[13C]O3- 5.242e-05 4.796e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.575e-08 4.582e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.117e-08 2.184e-08 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.637e-10 3.643e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.609 -137.608 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.741 -136.740 0.001 (0) [14C](4) 1.084e-15 H[14C]O3- 8.758e-16 8.013e-16 -15.058 -15.096 -0.039 (0) [14C]O2 1.822e-16 1.825e-16 -15.739 -15.739 0.001 (0) CaH[14C]O3+ 1.849e-17 1.697e-17 -16.733 -16.770 -0.037 (0) - H[14C]O2[18O]- 1.747e-18 1.599e-18 -17.758 -17.796 -0.039 (0) - H[14C]O[18O]O- 1.747e-18 1.599e-18 -17.758 -17.796 -0.039 (0) H[14C][18O]O2- 1.747e-18 1.599e-18 -17.758 -17.796 -0.039 (0) + H[14C]O[18O]O- 1.747e-18 1.599e-18 -17.758 -17.796 -0.039 (0) + H[14C]O2[18O]- 1.747e-18 1.599e-18 -17.758 -17.796 -0.039 (0) Ca[14C]O3 1.014e-18 1.016e-18 -17.994 -17.993 0.001 (0) [14C]O[18O] 7.578e-19 7.591e-19 -18.120 -18.120 0.001 (0) [14C]O3-2 5.201e-19 3.644e-19 -18.284 -18.438 -0.155 (0) CaH[14C]O2[18O]+ 3.690e-20 3.385e-20 -19.433 -19.470 -0.037 (0) - CaH[14C]O[18O]O+ 3.690e-20 3.385e-20 -19.433 -19.470 -0.037 (0) CaH[14C][18O]O2+ 3.690e-20 3.385e-20 -19.433 -19.470 -0.037 (0) + CaH[14C]O[18O]O+ 3.690e-20 3.385e-20 -19.433 -19.470 -0.037 (0) Ca[14C]O2[18O] 6.069e-21 6.079e-21 -20.217 -20.216 0.001 (0) + H[14C][18O]O[18O]- 3.486e-21 3.190e-21 -20.458 -20.496 -0.039 (0) H[14C]O[18O]2- 3.486e-21 3.190e-21 -20.458 -20.496 -0.039 (0) H[14C][18O]2O- 3.486e-21 3.190e-21 -20.458 -20.496 -0.039 (0) - H[14C][18O]O[18O]- 3.486e-21 3.190e-21 -20.458 -20.496 -0.039 (0) [14C]O2[18O]-2 3.113e-21 2.181e-21 -20.507 -20.661 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.469e-16 - O[18O] 4.461e-16 4.468e-16 -15.351 -15.350 0.001 (0) - [18O]2 4.450e-19 4.457e-19 -18.352 -18.351 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.645e-16 + O[18O] 1.642e-16 1.645e-16 -15.785 -15.784 0.001 (0) + [18O]2 1.638e-19 1.641e-19 -18.786 -18.785 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.97 -126.83 -2.86 [13C]H4 + [13C]H4(g) -123.10 -125.96 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.64 -21.14 -1.50 [14C][18O]2 - [14C]H4(g) -134.75 -137.61 -2.86 [14C]H4 + [14C]H4(g) -133.88 -136.74 -2.86 [14C]H4 [14C]O2(g) -14.27 -15.74 -1.47 [14C]O2 [14C]O[18O](g) -16.65 -18.44 -1.79 [14C]O[18O] - [18O]2(g) -16.06 -18.35 -2.29 [18O]2 + [18O]2(g) -16.49 -18.79 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -37727,14 +37717,14 @@ O(0) 2.245e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.01 -124.87 -2.86 CH4 + CH4(g) -121.14 -124.00 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.57 -39.72 -3.15 H2 + H2(g) -36.35 -39.50 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.06 -12.95 -2.89 O2 - O[18O](g) -12.76 -15.65 -2.89 O[18O] + O2(g) -10.49 -13.38 -2.89 O2 + O[18O](g) -13.19 -16.08 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -37798,23 +37788,23 @@ Calcite 1.66e-02 R(18O) 1.99519e-03 -4.9909 permil R(13C) 1.11285e-02 -4.6269 permil - R(14C) 1.81510e-13 15.436 pmc + R(14C) 1.81511e-13 15.436 pmc R(18O) H2O(l) 1.99519e-03 -4.9925 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9925 permil R(13C) CO2(aq) 1.10488e-02 -11.75 permil - R(14C) CO2(aq) 1.78919e-13 15.216 pmc + R(14C) CO2(aq) 1.78920e-13 15.216 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9925 permil R(13C) HCO3- 1.11450e-02 -3.1527 permil - R(14C) HCO3- 1.82046e-13 15.482 pmc + R(14C) HCO3- 1.82047e-13 15.482 pmc R(18O) CO3-2 1.99519e-03 -4.9925 permil R(13C) CO3-2 1.11290e-02 -4.5833 permil - R(14C) CO3-2 1.81524e-13 15.437 pmc + R(14C) CO3-2 1.81525e-13 15.437 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11670e-02 -1.1783 permil - R(14C) Calcite 1.82768e-13 15.543 pmc + R(14C) Calcite 1.82769e-13 15.543 pmc --------------------------------Isotope Alphas--------------------------------- @@ -37824,12 +37814,12 @@ Calcite 1.66e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2639e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2816e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7805e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8633e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -37849,14 +37839,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.313 Adjusted to redox equilibrium + pe = 11.229 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -37871,14 +37861,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.015 -125.014 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.347 -124.347 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -37886,9 +37876,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -37896,50 +37886,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.541e-40 - H2 1.770e-40 1.773e-40 -39.752 -39.751 0.001 (0) -O(0) 2.647e-13 - O2 1.318e-13 1.320e-13 -12.880 -12.879 0.001 (0) - O[18O] 5.260e-16 5.268e-16 -15.279 -15.278 0.001 (0) +H(0) 5.199e-40 + H2 2.599e-40 2.604e-40 -39.585 -39.584 0.001 (0) +O(0) 1.228e-13 + O2 6.114e-14 6.124e-14 -13.214 -13.213 0.001 (0) + O[18O] 2.440e-16 2.444e-16 -15.613 -15.612 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.971 -126.971 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.304 -126.303 0.001 (0) [13C](4) 6.499e-05 H[13C]O3- 5.242e-05 4.796e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.569e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.569e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.569e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.569e-08 -6.981 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.569e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.575e-08 4.583e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.117e-08 2.184e-08 -7.506 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.762 -137.761 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.095 -137.094 0.001 (0) [14C](4) 1.060e-15 H[14C]O3- 8.563e-16 7.834e-16 -15.067 -15.106 -0.039 (0) [14C]O2 1.782e-16 1.785e-16 -15.749 -15.748 0.001 (0) CaH[14C]O3+ 1.808e-17 1.659e-17 -16.743 -16.780 -0.037 (0) - H[14C]O2[18O]- 1.708e-18 1.563e-18 -17.767 -17.806 -0.039 (0) - H[14C]O[18O]O- 1.708e-18 1.563e-18 -17.767 -17.806 -0.039 (0) H[14C][18O]O2- 1.708e-18 1.563e-18 -17.767 -17.806 -0.039 (0) + H[14C]O[18O]O- 1.708e-18 1.563e-18 -17.767 -17.806 -0.039 (0) + H[14C]O2[18O]- 1.708e-18 1.563e-18 -17.767 -17.806 -0.039 (0) Ca[14C]O3 9.912e-19 9.929e-19 -18.004 -18.003 0.001 (0) [14C]O[18O] 7.409e-19 7.421e-19 -18.130 -18.130 0.001 (0) [14C]O3-2 5.085e-19 3.562e-19 -18.294 -18.448 -0.155 (0) CaH[14C]O2[18O]+ 3.608e-20 3.309e-20 -19.443 -19.480 -0.037 (0) - CaH[14C]O[18O]O+ 3.608e-20 3.309e-20 -19.443 -19.480 -0.037 (0) CaH[14C][18O]O2+ 3.608e-20 3.309e-20 -19.443 -19.480 -0.037 (0) + CaH[14C]O[18O]O+ 3.608e-20 3.309e-20 -19.443 -19.480 -0.037 (0) Ca[14C]O2[18O] 5.933e-21 5.943e-21 -20.227 -20.226 0.001 (0) H[14C]O[18O]2- 3.409e-21 3.118e-21 -20.467 -20.506 -0.039 (0) H[14C][18O]2O- 3.409e-21 3.118e-21 -20.467 -20.506 -0.039 (0) @@ -37948,29 +37938,29 @@ O(0) 2.647e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.270e-16 - O[18O] 5.260e-16 5.268e-16 -15.279 -15.278 0.001 (0) - [18O]2 5.247e-19 5.256e-19 -18.280 -18.279 0.001 (0) +[18O](0) 2.445e-16 + O[18O] 2.440e-16 2.444e-16 -15.613 -15.612 0.001 (0) + [18O]2 2.434e-19 2.438e-19 -18.614 -18.613 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.11 -126.97 -2.86 [13C]H4 + [13C]H4(g) -123.44 -126.30 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.64 -21.15 -1.50 [14C][18O]2 - [14C]H4(g) -134.90 -137.76 -2.86 [14C]H4 + [14C]H4(g) -134.23 -137.09 -2.86 [14C]H4 [14C]O2(g) -14.28 -15.75 -1.47 [14C]O2 [14C]O[18O](g) -16.66 -18.45 -1.79 [14C]O[18O] - [18O]2(g) -15.99 -18.28 -2.29 [18O]2 + [18O]2(g) -16.32 -18.61 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -37984,14 +37974,14 @@ O(0) 2.647e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.15 -125.01 -2.86 CH4 + CH4(g) -121.49 -124.35 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.60 -39.75 -3.15 H2 + H2(g) -36.43 -39.58 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.99 -12.88 -2.89 O2 - O[18O](g) -12.69 -15.58 -2.89 O[18O] + O2(g) -10.32 -13.21 -2.89 O2 + O[18O](g) -13.02 -15.91 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -38055,23 +38045,23 @@ Calcite 1.71e-02 R(18O) 1.99519e-03 -4.9908 permil R(13C) 1.11293e-02 -4.5562 permil - R(14C) 1.77548e-13 15.099 pmc + R(14C) 1.77549e-13 15.099 pmc R(18O) H2O(l) 1.99519e-03 -4.9923 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9923 permil R(13C) CO2(aq) 1.10496e-02 -11.68 permil - R(14C) CO2(aq) 1.75013e-13 14.884 pmc + R(14C) CO2(aq) 1.75015e-13 14.884 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9923 permil R(13C) HCO3- 1.11457e-02 -3.0819 permil - R(14C) HCO3- 1.78072e-13 15.144 pmc + R(14C) HCO3- 1.78073e-13 15.144 pmc R(18O) CO3-2 1.99519e-03 -4.9923 permil R(13C) CO3-2 1.11297e-02 -4.5126 permil - R(14C) CO3-2 1.77561e-13 15.1 pmc + R(14C) CO3-2 1.77562e-13 15.1 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11678e-02 -1.1074 permil - R(14C) Calcite 1.78778e-13 15.204 pmc + R(14C) Calcite 1.78779e-13 15.204 pmc --------------------------------Isotope Alphas--------------------------------- @@ -38081,12 +38071,12 @@ Calcite 1.71e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2495e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2656e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.7716e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8121e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8223e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -38106,14 +38096,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.322 Adjusted to redox equilibrium + pe = 11.244 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -38128,24 +38118,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.091 -125.090 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.460 -124.459 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -38153,23 +38143,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.389e-40 - H2 1.695e-40 1.697e-40 -39.771 -39.770 0.001 (0) -O(0) 2.889e-13 - O2 1.439e-13 1.441e-13 -12.842 -12.841 0.001 (0) - O[18O] 5.741e-16 5.750e-16 -15.241 -15.240 0.001 (0) +H(0) 4.873e-40 + H2 2.436e-40 2.440e-40 -39.613 -39.613 0.001 (0) +O(0) 1.397e-13 + O2 6.959e-14 6.971e-14 -13.157 -13.157 0.001 (0) + O[18O] 2.777e-16 2.782e-16 -15.556 -15.556 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.047 -127.047 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.417 -126.416 0.001 (0) [13C](4) 6.499e-05 H[13C]O3- 5.242e-05 4.796e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.569e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.046e-07 9.569e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.569e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.569e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.576e-08 4.583e-08 -7.340 -7.339 0.001 (0) @@ -38178,56 +38168,56 @@ O(0) 2.889e-13 CaH[13C]O[18O]O+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.848 -137.847 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.217 -137.216 0.001 (0) [14C](4) 1.037e-15 H[14C]O3- 8.376e-16 7.663e-16 -15.077 -15.116 -0.039 (0) [14C]O2 1.743e-16 1.746e-16 -15.759 -15.758 0.001 (0) CaH[14C]O3+ 1.769e-17 1.622e-17 -16.752 -16.790 -0.037 (0) - H[14C]O2[18O]- 1.671e-18 1.529e-18 -17.777 -17.816 -0.039 (0) - H[14C]O[18O]O- 1.671e-18 1.529e-18 -17.777 -17.816 -0.039 (0) H[14C][18O]O2- 1.671e-18 1.529e-18 -17.777 -17.816 -0.039 (0) + H[14C]O[18O]O- 1.671e-18 1.529e-18 -17.777 -17.816 -0.039 (0) + H[14C]O2[18O]- 1.671e-18 1.529e-18 -17.777 -17.816 -0.039 (0) Ca[14C]O3 9.696e-19 9.712e-19 -18.013 -18.013 0.001 (0) [14C]O[18O] 7.247e-19 7.259e-19 -18.140 -18.139 0.001 (0) [14C]O3-2 4.974e-19 3.484e-19 -18.303 -18.458 -0.155 (0) CaH[14C]O2[18O]+ 3.529e-20 3.237e-20 -19.452 -19.490 -0.037 (0) - CaH[14C]O[18O]O+ 3.529e-20 3.237e-20 -19.452 -19.490 -0.037 (0) CaH[14C][18O]O2+ 3.529e-20 3.237e-20 -19.452 -19.490 -0.037 (0) + CaH[14C]O[18O]O+ 3.529e-20 3.237e-20 -19.452 -19.490 -0.037 (0) Ca[14C]O2[18O] 5.804e-21 5.813e-21 -20.236 -20.236 0.001 (0) - H[14C]O[18O]2- 3.334e-21 3.050e-21 -20.477 -20.516 -0.039 (0) H[14C][18O]2O- 3.334e-21 3.050e-21 -20.477 -20.516 -0.039 (0) H[14C][18O]O[18O]- 3.334e-21 3.050e-21 -20.477 -20.516 -0.039 (0) + H[14C]O[18O]2- 3.334e-21 3.050e-21 -20.477 -20.516 -0.039 (0) [14C]O2[18O]-2 2.977e-21 2.086e-21 -20.526 -20.681 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.752e-16 - O[18O] 5.741e-16 5.750e-16 -15.241 -15.240 0.001 (0) - [18O]2 5.727e-19 5.736e-19 -18.242 -18.241 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.783e-16 + O[18O] 2.777e-16 2.782e-16 -15.556 -15.556 0.001 (0) + [18O]2 2.770e-19 2.775e-19 -18.557 -18.557 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.19 -127.05 -2.86 [13C]H4 + [13C]H4(g) -123.56 -126.42 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.65 -21.16 -1.50 [14C][18O]2 - [14C]H4(g) -134.99 -137.85 -2.86 [14C]H4 + [14C]H4(g) -134.36 -137.22 -2.86 [14C]H4 [14C]O2(g) -14.29 -15.76 -1.47 [14C]O2 [14C]O[18O](g) -16.67 -18.46 -1.79 [14C]O[18O] - [18O]2(g) -15.95 -18.24 -2.29 [18O]2 + [18O]2(g) -16.27 -18.56 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -38241,14 +38231,14 @@ O(0) 2.889e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.23 -125.09 -2.86 CH4 + CH4(g) -121.60 -124.46 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.62 -39.77 -3.15 H2 + H2(g) -36.46 -39.61 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.95 -12.84 -2.89 O2 - O[18O](g) -12.65 -15.54 -2.89 O[18O] + O2(g) -10.26 -13.16 -2.89 O2 + O[18O](g) -12.96 -15.86 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -38312,23 +38302,23 @@ Calcite 1.76e-02 R(18O) 1.99519e-03 -4.9907 permil R(13C) 1.11300e-02 -4.4886 permil - R(14C) 1.73754e-13 14.776 pmc + R(14C) 1.73756e-13 14.777 pmc R(18O) H2O(l) 1.99519e-03 -4.9922 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9922 permil R(13C) CO2(aq) 1.10504e-02 -11.613 permil - R(14C) CO2(aq) 1.71275e-13 14.566 pmc + R(14C) CO2(aq) 1.71276e-13 14.566 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9922 permil R(13C) HCO3- 1.11465e-02 -3.0142 permil - R(14C) HCO3- 1.74268e-13 14.82 pmc + R(14C) HCO3- 1.74269e-13 14.82 pmc R(18O) CO3-2 1.99519e-03 -4.9922 permil R(13C) CO3-2 1.11305e-02 -4.445 permil - R(14C) CO3-2 1.73768e-13 14.778 pmc + R(14C) CO3-2 1.73769e-13 14.778 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11686e-02 -1.0395 permil - R(14C) Calcite 1.74959e-13 14.879 pmc + R(14C) Calcite 1.74960e-13 14.879 pmc --------------------------------Isotope Alphas--------------------------------- @@ -38338,12 +38328,12 @@ Calcite 1.76e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2727e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2564e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.7724e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6998e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.575e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -38363,14 +38353,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.319 Adjusted to redox equilibrium + pe = 11.231 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -38385,14 +38375,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.066 -125.066 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.360 -124.359 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -38400,9 +38390,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -38410,81 +38400,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.437e-40 - H2 1.718e-40 1.721e-40 -39.765 -39.764 0.001 (0) -O(0) 2.809e-13 - O2 1.399e-13 1.401e-13 -12.854 -12.853 0.001 (0) - O[18O] 5.582e-16 5.592e-16 -15.253 -15.252 0.001 (0) +H(0) 5.161e-40 + H2 2.580e-40 2.585e-40 -39.588 -39.588 0.001 (0) +O(0) 1.246e-13 + O2 6.205e-14 6.215e-14 -13.207 -13.207 0.001 (0) + O[18O] 2.476e-16 2.480e-16 -15.606 -15.606 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.023 -127.022 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.317 -126.316 0.001 (0) [13C](4) 6.500e-05 H[13C]O3- 5.243e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.576e-08 4.583e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.118e-08 2.184e-08 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.833 -137.832 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.126 -137.126 0.001 (0) [14C](4) 1.015e-15 H[14C]O3- 8.197e-16 7.499e-16 -15.086 -15.125 -0.039 (0) [14C]O2 1.706e-16 1.708e-16 -15.768 -15.767 0.001 (0) CaH[14C]O3+ 1.731e-17 1.588e-17 -16.762 -16.799 -0.037 (0) - H[14C]O2[18O]- 1.635e-18 1.496e-18 -17.786 -17.825 -0.039 (0) - H[14C]O[18O]O- 1.635e-18 1.496e-18 -17.786 -17.825 -0.039 (0) H[14C][18O]O2- 1.635e-18 1.496e-18 -17.786 -17.825 -0.039 (0) - Ca[14C]O3 9.489e-19 9.504e-19 -18.023 -18.022 0.001 (0) + H[14C]O[18O]O- 1.635e-18 1.496e-18 -17.786 -17.825 -0.039 (0) + H[14C]O2[18O]- 1.635e-18 1.496e-18 -17.786 -17.825 -0.039 (0) + Ca[14C]O3 9.489e-19 9.505e-19 -18.023 -18.022 0.001 (0) [14C]O[18O] 7.092e-19 7.104e-19 -18.149 -18.148 0.001 (0) [14C]O3-2 4.868e-19 3.410e-19 -18.313 -18.467 -0.155 (0) CaH[14C]O2[18O]+ 3.453e-20 3.168e-20 -19.462 -19.499 -0.037 (0) - CaH[14C]O[18O]O+ 3.453e-20 3.168e-20 -19.462 -19.499 -0.037 (0) CaH[14C][18O]O2+ 3.453e-20 3.168e-20 -19.462 -19.499 -0.037 (0) + CaH[14C]O[18O]O+ 3.453e-20 3.168e-20 -19.462 -19.499 -0.037 (0) Ca[14C]O2[18O] 5.680e-21 5.689e-21 -20.246 -20.245 0.001 (0) + H[14C][18O]O[18O]- 3.263e-21 2.985e-21 -20.486 -20.525 -0.039 (0) H[14C]O[18O]2- 3.263e-21 2.985e-21 -20.486 -20.525 -0.039 (0) H[14C][18O]2O- 3.263e-21 2.985e-21 -20.486 -20.525 -0.039 (0) - H[14C][18O]O[18O]- 3.263e-21 2.985e-21 -20.486 -20.525 -0.039 (0) [14C]O2[18O]-2 2.914e-21 2.041e-21 -20.536 -20.690 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.594e-16 - O[18O] 5.582e-16 5.592e-16 -15.253 -15.252 0.001 (0) - [18O]2 5.569e-19 5.578e-19 -18.254 -18.254 0.001 (0) +[18O](0) 2.481e-16 + O[18O] 2.476e-16 2.480e-16 -15.606 -15.606 0.001 (0) + [18O]2 2.470e-19 2.474e-19 -18.607 -18.607 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.16 -127.02 -2.86 [13C]H4 + [13C]H4(g) -123.46 -126.32 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.66 -21.17 -1.50 [14C][18O]2 - [14C]H4(g) -134.97 -137.83 -2.86 [14C]H4 + [14C]H4(g) -134.27 -137.13 -2.86 [14C]H4 [14C]O2(g) -14.30 -15.77 -1.47 [14C]O2 [14C]O[18O](g) -16.68 -18.47 -1.79 [14C]O[18O] - [18O]2(g) -15.96 -18.25 -2.29 [18O]2 + [18O]2(g) -16.32 -18.61 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -38498,14 +38488,14 @@ O(0) 2.809e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.21 -125.07 -2.86 CH4 + CH4(g) -121.50 -124.36 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.61 -39.76 -3.15 H2 + H2(g) -36.44 -39.59 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.96 -12.85 -2.89 O2 - O[18O](g) -12.66 -15.55 -2.89 O[18O] + O2(g) -10.31 -13.21 -2.89 O2 + O[18O](g) -13.01 -15.91 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -38569,23 +38559,23 @@ Calcite 1.81e-02 R(18O) 1.99519e-03 -4.9905 permil R(13C) 1.11307e-02 -4.4238 permil - R(14C) 1.70120e-13 14.467 pmc + R(14C) 1.70121e-13 14.467 pmc R(18O) H2O(l) 1.99519e-03 -4.9921 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9921 permil R(13C) CO2(aq) 1.10511e-02 -11.549 permil - R(14C) CO2(aq) 1.67692e-13 14.261 pmc + R(14C) CO2(aq) 1.67693e-13 14.261 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9921 permil R(13C) HCO3- 1.11472e-02 -2.9493 permil - R(14C) HCO3- 1.70623e-13 14.51 pmc + R(14C) HCO3- 1.70624e-13 14.51 pmc R(18O) CO3-2 1.99519e-03 -4.9921 permil R(13C) CO3-2 1.11312e-02 -4.3802 permil - R(14C) CO3-2 1.70133e-13 14.468 pmc + R(14C) CO3-2 1.70134e-13 14.469 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11693e-02 -0.9745 permil - R(14C) Calcite 1.71299e-13 14.568 pmc + R(14C) Calcite 1.71300e-13 14.568 pmc --------------------------------Isotope Alphas--------------------------------- @@ -38595,12 +38585,12 @@ Calcite 1.81e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2384e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6959e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7072e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -38620,14 +38610,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.328 Adjusted to redox equilibrium + pe = 11.227 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -38642,24 +38632,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.139 -125.138 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.331 -124.330 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -38667,50 +38657,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.297e-40 - H2 1.648e-40 1.651e-40 -39.783 -39.782 0.001 (0) -O(0) 3.053e-13 - O2 1.520e-13 1.523e-13 -12.818 -12.817 0.001 (0) - O[18O] 6.067e-16 6.077e-16 -15.217 -15.216 0.001 (0) +H(0) 5.248e-40 + H2 2.624e-40 2.628e-40 -39.581 -39.580 0.001 (0) +O(0) 1.205e-13 + O2 6.001e-14 6.011e-14 -13.222 -13.221 0.001 (0) + O[18O] 2.395e-16 2.398e-16 -15.621 -15.620 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.095 -127.095 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.288 -126.287 0.001 (0) [13C](4) 6.500e-05 H[13C]O3- 5.243e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.576e-08 4.584e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.118e-08 2.184e-08 -7.506 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.914 -137.913 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.107 -137.106 0.001 (0) [14C](4) 9.935e-16 H[14C]O3- 8.025e-16 7.342e-16 -15.096 -15.134 -0.039 (0) [14C]O2 1.670e-16 1.673e-16 -15.777 -15.777 0.001 (0) CaH[14C]O3+ 1.695e-17 1.555e-17 -16.771 -16.808 -0.037 (0) - H[14C]O2[18O]- 1.601e-18 1.465e-18 -17.796 -17.834 -0.039 (0) - H[14C]O[18O]O- 1.601e-18 1.465e-18 -17.796 -17.834 -0.039 (0) H[14C][18O]O2- 1.601e-18 1.465e-18 -17.796 -17.834 -0.039 (0) + H[14C]O[18O]O- 1.601e-18 1.465e-18 -17.796 -17.834 -0.039 (0) + H[14C]O2[18O]- 1.601e-18 1.465e-18 -17.796 -17.834 -0.039 (0) Ca[14C]O3 9.290e-19 9.306e-19 -18.032 -18.031 0.001 (0) [14C]O[18O] 6.944e-19 6.955e-19 -18.158 -18.158 0.001 (0) [14C]O3-2 4.766e-19 3.339e-19 -18.322 -18.476 -0.155 (0) CaH[14C]O2[18O]+ 3.381e-20 3.102e-20 -19.471 -19.508 -0.037 (0) - CaH[14C]O[18O]O+ 3.381e-20 3.102e-20 -19.471 -19.508 -0.037 (0) CaH[14C][18O]O2+ 3.381e-20 3.102e-20 -19.471 -19.508 -0.037 (0) + CaH[14C]O[18O]O+ 3.381e-20 3.102e-20 -19.471 -19.508 -0.037 (0) Ca[14C]O2[18O] 5.561e-21 5.570e-21 -20.255 -20.254 0.001 (0) H[14C]O[18O]2- 3.195e-21 2.923e-21 -20.496 -20.534 -0.039 (0) H[14C][18O]2O- 3.195e-21 2.923e-21 -20.496 -20.534 -0.039 (0) @@ -38719,29 +38709,29 @@ O(0) 3.053e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.079e-16 - O[18O] 6.067e-16 6.077e-16 -15.217 -15.216 0.001 (0) - [18O]2 6.052e-19 6.062e-19 -18.218 -18.217 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.399e-16 + O[18O] 2.395e-16 2.398e-16 -15.621 -15.620 0.001 (0) + [18O]2 2.389e-19 2.393e-19 -18.622 -18.621 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.23 -127.09 -2.86 [13C]H4 + [13C]H4(g) -123.43 -126.29 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.67 -21.18 -1.50 [14C][18O]2 - [14C]H4(g) -135.05 -137.91 -2.86 [14C]H4 + [14C]H4(g) -134.25 -137.11 -2.86 [14C]H4 [14C]O2(g) -14.31 -15.78 -1.47 [14C]O2 [14C]O[18O](g) -16.69 -18.48 -1.79 [14C]O[18O] - [18O]2(g) -15.93 -18.22 -2.29 [18O]2 + [18O]2(g) -16.33 -18.62 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -38755,14 +38745,14 @@ O(0) 3.053e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.28 -125.14 -2.86 CH4 + CH4(g) -121.47 -124.33 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.63 -39.78 -3.15 H2 + H2(g) -36.43 -39.58 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.92 -12.82 -2.89 O2 - O[18O](g) -12.62 -15.52 -2.89 O[18O] + O2(g) -10.33 -13.22 -2.89 O2 + O[18O](g) -13.03 -15.92 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -38826,23 +38816,23 @@ Calcite 1.86e-02 R(18O) 1.99519e-03 -4.9904 permil R(13C) 1.11314e-02 -4.3617 permil - R(14C) 1.66635e-13 14.171 pmc + R(14C) 1.66636e-13 14.171 pmc R(18O) H2O(l) 1.99519e-03 -4.9919 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9919 permil R(13C) CO2(aq) 1.10518e-02 -11.487 permil - R(14C) CO2(aq) 1.64256e-13 13.969 pmc + R(14C) CO2(aq) 1.64257e-13 13.969 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9919 permil R(13C) HCO3- 1.11479e-02 -2.8871 permil - R(14C) HCO3- 1.67127e-13 14.213 pmc + R(14C) HCO3- 1.67128e-13 14.213 pmc R(18O) CO3-2 1.99519e-03 -4.9919 permil R(13C) CO3-2 1.11319e-02 -4.318 permil - R(14C) CO3-2 1.66647e-13 14.172 pmc + R(14C) CO3-2 1.66648e-13 14.172 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11700e-02 -0.91214 permil - R(14C) Calcite 1.67789e-13 14.269 pmc + R(14C) Calcite 1.67791e-13 14.269 pmc --------------------------------Isotope Alphas--------------------------------- @@ -38852,12 +38842,12 @@ Calcite 1.86e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2343e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.251e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6414e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5861e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -38877,14 +38867,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.324 Adjusted to redox equilibrium + pe = 11.215 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -38899,13 +38889,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.102 -125.101 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.235 -124.234 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -38914,9 +38904,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -38924,23 +38914,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.367e-40 - H2 1.683e-40 1.686e-40 -39.774 -39.773 0.001 (0) -O(0) 2.927e-13 - O2 1.458e-13 1.460e-13 -12.836 -12.836 0.001 (0) - O[18O] 5.817e-16 5.826e-16 -15.235 -15.235 0.001 (0) +H(0) 5.547e-40 + H2 2.773e-40 2.778e-40 -39.557 -39.556 0.001 (0) +O(0) 1.078e-13 + O2 5.371e-14 5.380e-14 -13.270 -13.269 0.001 (0) + O[18O] 2.143e-16 2.147e-16 -15.669 -15.668 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.059 -127.058 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.191 -126.191 0.001 (0) [13C](4) 6.501e-05 H[13C]O3- 5.244e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.576e-08 4.584e-08 -7.339 -7.339 0.001 (0) @@ -38949,56 +38939,56 @@ O(0) 2.927e-13 CaH[13C]O[18O]O+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.308e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.887 -137.886 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.019 -137.019 0.001 (0) [14C](4) 9.731e-16 H[14C]O3- 7.861e-16 7.192e-16 -15.105 -15.143 -0.039 (0) [14C]O2 1.636e-16 1.638e-16 -15.786 -15.786 0.001 (0) CaH[14C]O3+ 1.660e-17 1.523e-17 -16.780 -16.817 -0.037 (0) - H[14C]O2[18O]- 1.568e-18 1.435e-18 -17.805 -17.843 -0.039 (0) - H[14C]O[18O]O- 1.568e-18 1.435e-18 -17.805 -17.843 -0.039 (0) H[14C][18O]O2- 1.568e-18 1.435e-18 -17.805 -17.843 -0.039 (0) + H[14C]O[18O]O- 1.568e-18 1.435e-18 -17.805 -17.843 -0.039 (0) + H[14C]O2[18O]- 1.568e-18 1.435e-18 -17.805 -17.843 -0.039 (0) Ca[14C]O3 9.100e-19 9.115e-19 -18.041 -18.040 0.001 (0) [14C]O[18O] 6.802e-19 6.813e-19 -18.167 -18.167 0.001 (0) [14C]O3-2 4.668e-19 3.270e-19 -18.331 -18.485 -0.155 (0) CaH[14C]O2[18O]+ 3.312e-20 3.038e-20 -19.480 -19.517 -0.037 (0) - CaH[14C]O[18O]O+ 3.312e-20 3.038e-20 -19.480 -19.517 -0.037 (0) CaH[14C][18O]O2+ 3.312e-20 3.038e-20 -19.480 -19.517 -0.037 (0) + CaH[14C]O[18O]O+ 3.312e-20 3.038e-20 -19.480 -19.517 -0.037 (0) Ca[14C]O2[18O] 5.447e-21 5.456e-21 -20.264 -20.263 0.001 (0) - H[14C]O[18O]2- 3.129e-21 2.863e-21 -20.505 -20.543 -0.039 (0) H[14C][18O]2O- 3.129e-21 2.863e-21 -20.505 -20.543 -0.039 (0) H[14C][18O]O[18O]- 3.129e-21 2.863e-21 -20.505 -20.543 -0.039 (0) + H[14C]O[18O]2- 3.129e-21 2.863e-21 -20.505 -20.543 -0.039 (0) [14C]O2[18O]-2 2.794e-21 1.957e-21 -20.554 -20.708 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.829e-16 - O[18O] 5.817e-16 5.826e-16 -15.235 -15.235 0.001 (0) - [18O]2 5.803e-19 5.812e-19 -18.236 -18.236 0.001 (0) +[18O](0) 2.148e-16 + O[18O] 2.143e-16 2.147e-16 -15.669 -15.668 0.001 (0) + [18O]2 2.138e-19 2.142e-19 -18.670 -18.669 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.20 -127.06 -2.86 [13C]H4 + [13C]H4(g) -123.33 -126.19 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.68 -21.19 -1.50 [14C][18O]2 - [14C]H4(g) -135.03 -137.89 -2.86 [14C]H4 + [14C]H4(g) -134.16 -137.02 -2.86 [14C]H4 [14C]O2(g) -14.32 -15.79 -1.47 [14C]O2 [14C]O[18O](g) -16.70 -18.49 -1.79 [14C]O[18O] - [18O]2(g) -15.95 -18.24 -2.29 [18O]2 + [18O]2(g) -16.38 -18.67 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -39012,14 +39002,14 @@ O(0) 2.927e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.24 -125.10 -2.86 CH4 + CH4(g) -121.37 -124.23 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.62 -39.77 -3.15 H2 + H2(g) -36.41 -39.56 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.94 -12.84 -2.89 O2 - O[18O](g) -12.64 -15.54 -2.89 O[18O] + O2(g) -10.38 -13.27 -2.89 O2 + O[18O](g) -13.08 -15.97 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -39083,23 +39073,23 @@ Calcite 1.91e-02 R(18O) 1.99519e-03 -4.9903 permil R(13C) 1.11321e-02 -4.302 permil - R(14C) 1.63289e-13 13.886 pmc + R(14C) 1.63290e-13 13.887 pmc R(18O) H2O(l) 1.99519e-03 -4.9918 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9918 permil R(13C) CO2(aq) 1.10524e-02 -11.428 permil - R(14C) CO2(aq) 1.60959e-13 13.688 pmc + R(14C) CO2(aq) 1.60960e-13 13.688 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9918 permil R(13C) HCO3- 1.11486e-02 -2.8273 permil - R(14C) HCO3- 1.63771e-13 13.927 pmc + R(14C) HCO3- 1.63772e-13 13.928 pmc R(18O) CO3-2 1.99519e-03 -4.9918 permil R(13C) CO3-2 1.11326e-02 -4.2584 permil - R(14C) CO3-2 1.63302e-13 13.888 pmc + R(14C) CO3-2 1.63303e-13 13.888 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11707e-02 -0.85228 permil - R(14C) Calcite 1.64421e-13 13.983 pmc + R(14C) Calcite 1.64422e-13 13.983 pmc --------------------------------Isotope Alphas--------------------------------- @@ -39109,12 +39099,12 @@ Calcite 1.91e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2714e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2558e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6787e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6929e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -39134,14 +39124,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.330 Adjusted to redox equilibrium + pe = 11.231 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -39156,24 +39146,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.152 -125.151 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.363 -124.362 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -39181,81 +39171,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.273e-40 - H2 1.636e-40 1.639e-40 -39.786 -39.785 0.001 (0) -O(0) 3.098e-13 - O2 1.543e-13 1.546e-13 -12.812 -12.811 0.001 (0) - O[18O] 6.158e-16 6.168e-16 -15.211 -15.210 0.001 (0) +H(0) 5.153e-40 + H2 2.576e-40 2.581e-40 -39.589 -39.588 0.001 (0) +O(0) 1.250e-13 + O2 6.224e-14 6.234e-14 -13.206 -13.205 0.001 (0) + O[18O] 2.484e-16 2.488e-16 -15.605 -15.604 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.108 -127.107 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.319 -126.319 0.001 (0) [13C](4) 6.501e-05 H[13C]O3- 5.244e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.577e-08 4.584e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.118e-08 2.185e-08 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.945 -137.944 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.156 -137.155 0.001 (0) [14C](4) 9.536e-16 H[14C]O3- 7.703e-16 7.047e-16 -15.113 -15.152 -0.039 (0) [14C]O2 1.603e-16 1.605e-16 -15.795 -15.794 0.001 (0) CaH[14C]O3+ 1.627e-17 1.492e-17 -16.789 -16.826 -0.037 (0) - H[14C]O2[18O]- 1.537e-18 1.406e-18 -17.813 -17.852 -0.039 (0) - H[14C]O[18O]O- 1.537e-18 1.406e-18 -17.813 -17.852 -0.039 (0) H[14C][18O]O2- 1.537e-18 1.406e-18 -17.813 -17.852 -0.039 (0) + H[14C]O[18O]O- 1.537e-18 1.406e-18 -17.813 -17.852 -0.039 (0) + H[14C]O2[18O]- 1.537e-18 1.406e-18 -17.813 -17.852 -0.039 (0) Ca[14C]O3 8.917e-19 8.932e-19 -18.050 -18.049 0.001 (0) [14C]O[18O] 6.665e-19 6.676e-19 -18.176 -18.175 0.001 (0) [14C]O3-2 4.574e-19 3.205e-19 -18.340 -18.494 -0.155 (0) CaH[14C]O2[18O]+ 3.245e-20 2.977e-20 -19.489 -19.526 -0.037 (0) - CaH[14C]O[18O]O+ 3.245e-20 2.977e-20 -19.489 -19.526 -0.037 (0) CaH[14C][18O]O2+ 3.245e-20 2.977e-20 -19.489 -19.526 -0.037 (0) + CaH[14C]O[18O]O+ 3.245e-20 2.977e-20 -19.489 -19.526 -0.037 (0) Ca[14C]O2[18O] 5.338e-21 5.346e-21 -20.273 -20.272 0.001 (0) + H[14C][18O]O[18O]- 3.066e-21 2.805e-21 -20.513 -20.552 -0.039 (0) H[14C]O[18O]2- 3.066e-21 2.805e-21 -20.513 -20.552 -0.039 (0) H[14C][18O]2O- 3.066e-21 2.805e-21 -20.513 -20.552 -0.039 (0) - H[14C][18O]O[18O]- 3.066e-21 2.805e-21 -20.513 -20.552 -0.039 (0) [14C]O2[18O]-2 2.738e-21 1.918e-21 -20.563 -20.717 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.170e-16 - O[18O] 6.158e-16 6.168e-16 -15.211 -15.210 0.001 (0) - [18O]2 6.143e-19 6.153e-19 -18.212 -18.211 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.489e-16 + O[18O] 2.484e-16 2.488e-16 -15.605 -15.604 0.001 (0) + [18O]2 2.478e-19 2.482e-19 -18.606 -18.605 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.25 -127.11 -2.86 [13C]H4 + [13C]H4(g) -123.46 -126.32 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.69 -21.19 -1.50 [14C][18O]2 - [14C]H4(g) -135.08 -137.94 -2.86 [14C]H4 + [14C]H4(g) -134.30 -137.16 -2.86 [14C]H4 [14C]O2(g) -14.33 -15.79 -1.47 [14C]O2 [14C]O[18O](g) -16.71 -18.49 -1.79 [14C]O[18O] - [18O]2(g) -15.92 -18.21 -2.29 [18O]2 + [18O]2(g) -16.31 -18.61 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -39269,14 +39259,14 @@ O(0) 3.098e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.29 -125.15 -2.86 CH4 + CH4(g) -121.50 -124.36 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.64 -39.79 -3.15 H2 + H2(g) -36.44 -39.59 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.92 -12.81 -2.89 O2 - O[18O](g) -12.62 -15.51 -2.89 O[18O] + O2(g) -10.31 -13.21 -2.89 O2 + O[18O](g) -13.01 -15.91 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -39340,23 +39330,23 @@ Calcite 1.96e-02 R(18O) 1.99519e-03 -4.9901 permil R(13C) 1.11327e-02 -4.2447 permil - R(14C) 1.60075e-13 13.613 pmc + R(14C) 1.60076e-13 13.613 pmc R(18O) H2O(l) 1.99519e-03 -4.9916 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9916 permil R(13C) CO2(aq) 1.10531e-02 -11.371 permil - R(14C) CO2(aq) 1.57791e-13 13.419 pmc + R(14C) CO2(aq) 1.57792e-13 13.419 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9916 permil R(13C) HCO3- 1.11492e-02 -2.7699 permil - R(14C) HCO3- 1.60548e-13 13.653 pmc + R(14C) HCO3- 1.60549e-13 13.653 pmc R(18O) CO3-2 1.99519e-03 -4.9916 permil R(13C) CO3-2 1.11332e-02 -4.2011 permil - R(14C) CO3-2 1.60088e-13 13.614 pmc + R(14C) CO3-2 1.60089e-13 13.614 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11713e-02 -0.79477 permil - R(14C) Calcite 1.61185e-13 13.707 pmc + R(14C) Calcite 1.61186e-13 13.708 pmc --------------------------------Isotope Alphas--------------------------------- @@ -39366,12 +39356,12 @@ Calcite 1.96e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2845e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2691e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7544e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6972e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -39391,14 +39381,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.328 Adjusted to redox equilibrium + pe = 11.214 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -39413,14 +39403,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.140 -125.139 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.225 -124.224 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -39428,9 +39418,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -39438,51 +39428,51 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.295e-40 - H2 1.647e-40 1.650e-40 -39.783 -39.782 0.001 (0) -O(0) 3.057e-13 - O2 1.522e-13 1.525e-13 -12.818 -12.817 0.001 (0) - O[18O] 6.074e-16 6.084e-16 -15.217 -15.216 0.001 (0) +H(0) 5.579e-40 + H2 2.790e-40 2.794e-40 -39.554 -39.554 0.001 (0) +O(0) 1.066e-13 + O2 5.309e-14 5.318e-14 -13.275 -13.274 0.001 (0) + O[18O] 2.118e-16 2.122e-16 -15.674 -15.673 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.096 -127.095 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.181 -126.181 0.001 (0) [13C](4) 6.501e-05 H[13C]O3- 5.244e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.577e-08 4.585e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.119e-08 2.185e-08 -7.506 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.942 -137.941 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.027 -137.026 0.001 (0) [14C](4) 9.348e-16 - H[14C]O3- 7.551e-16 6.909e-16 -15.122 -15.161 -0.039 (0) + H[14C]O3- 7.552e-16 6.909e-16 -15.122 -15.161 -0.039 (0) [14C]O2 1.571e-16 1.574e-16 -15.804 -15.803 0.001 (0) CaH[14C]O3+ 1.595e-17 1.463e-17 -16.797 -16.835 -0.037 (0) - H[14C]O2[18O]- 1.507e-18 1.378e-18 -17.822 -17.861 -0.039 (0) - H[14C]O[18O]O- 1.507e-18 1.378e-18 -17.822 -17.861 -0.039 (0) H[14C][18O]O2- 1.507e-18 1.378e-18 -17.822 -17.861 -0.039 (0) + H[14C]O[18O]O- 1.507e-18 1.378e-18 -17.822 -17.861 -0.039 (0) + H[14C]O2[18O]- 1.507e-18 1.378e-18 -17.822 -17.861 -0.039 (0) Ca[14C]O3 8.742e-19 8.756e-19 -18.058 -18.058 0.001 (0) [14C]O[18O] 6.534e-19 6.545e-19 -18.185 -18.184 0.001 (0) [14C]O3-2 4.484e-19 3.142e-19 -18.348 -18.503 -0.155 (0) CaH[14C]O2[18O]+ 3.182e-20 2.919e-20 -19.497 -19.535 -0.037 (0) - CaH[14C]O[18O]O+ 3.182e-20 2.919e-20 -19.497 -19.535 -0.037 (0) CaH[14C][18O]O2+ 3.182e-20 2.919e-20 -19.497 -19.535 -0.037 (0) - Ca[14C]O2[18O] 5.232e-21 5.241e-21 -20.281 -20.281 0.001 (0) + CaH[14C]O[18O]O+ 3.182e-20 2.919e-20 -19.497 -19.535 -0.037 (0) + Ca[14C]O2[18O] 5.233e-21 5.241e-21 -20.281 -20.281 0.001 (0) H[14C]O[18O]2- 3.006e-21 2.750e-21 -20.522 -20.561 -0.039 (0) H[14C][18O]2O- 3.006e-21 2.750e-21 -20.522 -20.561 -0.039 (0) H[14C][18O]O[18O]- 3.006e-21 2.750e-21 -20.522 -20.561 -0.039 (0) @@ -39490,29 +39480,29 @@ O(0) 3.057e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.086e-16 - O[18O] 6.074e-16 6.084e-16 -15.217 -15.216 0.001 (0) - [18O]2 6.060e-19 6.070e-19 -18.218 -18.217 0.001 (0) +[18O](0) 2.123e-16 + O[18O] 2.118e-16 2.122e-16 -15.674 -15.673 0.001 (0) + [18O]2 2.113e-19 2.117e-19 -18.675 -18.674 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.24 -127.10 -2.86 [13C]H4 + [13C]H4(g) -123.32 -126.18 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.70 -21.20 -1.50 [14C][18O]2 - [14C]H4(g) -135.08 -137.94 -2.86 [14C]H4 + [14C]H4(g) -134.17 -137.03 -2.86 [14C]H4 [14C]O2(g) -14.33 -15.80 -1.47 [14C]O2 [14C]O[18O](g) -16.72 -18.50 -1.79 [14C]O[18O] - [18O]2(g) -15.93 -18.22 -2.29 [18O]2 + [18O]2(g) -16.38 -18.67 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -39526,14 +39516,14 @@ O(0) 3.057e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.28 -125.14 -2.86 CH4 + CH4(g) -121.36 -124.22 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.63 -39.78 -3.15 H2 + H2(g) -36.40 -39.55 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.92 -12.82 -2.89 O2 - O[18O](g) -12.62 -15.52 -2.89 O[18O] + O2(g) -10.38 -13.27 -2.89 O2 + O[18O](g) -13.08 -15.97 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -39597,23 +39587,23 @@ Calcite 2.01e-02 R(18O) 1.99519e-03 -4.99 permil R(13C) 1.11334e-02 -4.1896 permil - R(14C) 1.56985e-13 13.35 pmc + R(14C) 1.56987e-13 13.35 pmc R(18O) H2O(l) 1.99519e-03 -4.9915 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9915 permil R(13C) CO2(aq) 1.10537e-02 -11.316 permil - R(14C) CO2(aq) 1.54745e-13 13.16 pmc + R(14C) CO2(aq) 1.54746e-13 13.16 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9915 permil R(13C) HCO3- 1.11498e-02 -2.7148 permil - R(14C) HCO3- 1.57449e-13 13.39 pmc + R(14C) HCO3- 1.57450e-13 13.39 pmc R(18O) CO3-2 1.99519e-03 -4.9915 permil R(13C) CO3-2 1.11338e-02 -4.146 permil - R(14C) CO3-2 1.56998e-13 13.351 pmc + R(14C) CO3-2 1.56999e-13 13.351 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11719e-02 -0.73948 permil - R(14C) Calcite 1.58074e-13 13.443 pmc + R(14C) Calcite 1.58075e-13 13.443 pmc --------------------------------Isotope Alphas--------------------------------- @@ -39623,12 +39613,12 @@ Calcite 2.01e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2752e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2593e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5427e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6922e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -39648,14 +39638,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.329 Adjusted to redox equilibrium + pe = 11.163 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.127e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -39670,24 +39660,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.146 -125.145 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.813 -123.812 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -39695,23 +39685,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.283e-40 - H2 1.641e-40 1.644e-40 -39.785 -39.784 0.001 (0) -O(0) 3.079e-13 - O2 1.533e-13 1.536e-13 -12.814 -12.814 0.001 (0) - O[18O] 6.119e-16 6.129e-16 -15.213 -15.213 0.001 (0) +H(0) 7.071e-40 + H2 3.535e-40 3.541e-40 -39.452 -39.451 0.001 (0) +O(0) 6.637e-14 + O2 3.305e-14 3.311e-14 -13.481 -13.480 0.001 (0) + O[18O] 1.319e-16 1.321e-16 -15.880 -15.879 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.103 -127.102 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.770 -125.769 0.001 (0) [13C](4) 6.502e-05 H[13C]O3- 5.244e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.577e-08 4.585e-08 -7.339 -7.339 0.001 (0) @@ -39720,56 +39710,56 @@ O(0) 3.079e-13 CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.956 -137.956 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.624 -136.623 0.001 (0) [14C](4) 9.168e-16 H[14C]O3- 7.406e-16 6.775e-16 -15.130 -15.169 -0.039 (0) [14C]O2 1.541e-16 1.544e-16 -15.812 -15.811 0.001 (0) CaH[14C]O3+ 1.564e-17 1.435e-17 -16.806 -16.843 -0.037 (0) - H[14C]O2[18O]- 1.478e-18 1.352e-18 -17.830 -17.869 -0.039 (0) - H[14C]O[18O]O- 1.478e-18 1.352e-18 -17.830 -17.869 -0.039 (0) H[14C][18O]O2- 1.478e-18 1.352e-18 -17.830 -17.869 -0.039 (0) + H[14C]O[18O]O- 1.478e-18 1.352e-18 -17.830 -17.869 -0.039 (0) + H[14C]O2[18O]- 1.478e-18 1.352e-18 -17.830 -17.869 -0.039 (0) Ca[14C]O3 8.573e-19 8.587e-19 -18.067 -18.066 0.001 (0) [14C]O[18O] 6.408e-19 6.418e-19 -18.193 -18.193 0.001 (0) [14C]O3-2 4.398e-19 3.081e-19 -18.357 -18.511 -0.155 (0) CaH[14C]O2[18O]+ 3.120e-20 2.862e-20 -19.506 -19.543 -0.037 (0) - CaH[14C]O[18O]O+ 3.120e-20 2.862e-20 -19.506 -19.543 -0.037 (0) CaH[14C][18O]O2+ 3.120e-20 2.862e-20 -19.506 -19.543 -0.037 (0) - Ca[14C]O2[18O] 5.131e-21 5.140e-21 -20.290 -20.289 0.001 (0) - H[14C]O[18O]2- 2.948e-21 2.697e-21 -20.530 -20.569 -0.039 (0) + CaH[14C]O[18O]O+ 3.120e-20 2.862e-20 -19.506 -19.543 -0.037 (0) + Ca[14C]O2[18O] 5.132e-21 5.140e-21 -20.290 -20.289 0.001 (0) H[14C][18O]2O- 2.948e-21 2.697e-21 -20.530 -20.569 -0.039 (0) H[14C][18O]O[18O]- 2.948e-21 2.697e-21 -20.530 -20.569 -0.039 (0) + H[14C]O[18O]2- 2.948e-21 2.697e-21 -20.530 -20.569 -0.039 (0) [14C]O2[18O]-2 2.632e-21 1.844e-21 -20.580 -20.734 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.131e-16 - O[18O] 6.119e-16 6.129e-16 -15.213 -15.213 0.001 (0) - [18O]2 6.104e-19 6.114e-19 -18.214 -18.214 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.322e-16 + O[18O] 1.319e-16 1.321e-16 -15.880 -15.879 0.001 (0) + [18O]2 1.316e-19 1.318e-19 -18.881 -18.880 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.24 -127.10 -2.86 [13C]H4 + [13C]H4(g) -122.91 -125.77 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.71 -21.21 -1.50 [14C][18O]2 - [14C]H4(g) -135.10 -137.96 -2.86 [14C]H4 + [14C]H4(g) -133.76 -136.62 -2.86 [14C]H4 [14C]O2(g) -14.34 -15.81 -1.47 [14C]O2 [14C]O[18O](g) -16.72 -18.51 -1.79 [14C]O[18O] - [18O]2(g) -15.92 -18.21 -2.29 [18O]2 + [18O]2(g) -16.59 -18.88 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -39783,14 +39773,14 @@ O(0) 3.079e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.29 -125.15 -2.86 CH4 + CH4(g) -120.95 -123.81 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.63 -39.78 -3.15 H2 + H2(g) -36.30 -39.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.92 -12.81 -2.89 O2 - O[18O](g) -12.62 -15.51 -2.89 O[18O] + O2(g) -10.59 -13.48 -2.89 O2 + O[18O](g) -13.29 -16.18 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -39854,23 +39844,23 @@ Calcite 2.06e-02 R(18O) 1.99519e-03 -4.9898 permil R(13C) 1.11340e-02 -4.1366 permil - R(14C) 1.54013e-13 13.098 pmc + R(14C) 1.54014e-13 13.098 pmc R(18O) H2O(l) 1.99519e-03 -4.9914 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.017 permil R(18O) O2(aq) 1.99519e-03 -4.9914 permil R(13C) CO2(aq) 1.10543e-02 -11.264 permil - R(14C) CO2(aq) 1.51815e-13 12.911 pmc + R(14C) CO2(aq) 1.51816e-13 12.911 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil R(18O) HCO3- 1.99519e-03 -4.9914 permil R(13C) HCO3- 1.11504e-02 -2.6617 permil - R(14C) HCO3- 1.54468e-13 13.136 pmc + R(14C) HCO3- 1.54469e-13 13.136 pmc R(18O) CO3-2 1.99519e-03 -4.9914 permil R(13C) CO3-2 1.11344e-02 -4.0929 permil - R(14C) CO3-2 1.54025e-13 13.099 pmc + R(14C) CO3-2 1.54026e-13 13.099 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11725e-02 -0.68629 permil - R(14C) Calcite 1.55080e-13 13.188 pmc + R(14C) Calcite 1.55081e-13 13.188 pmc --------------------------------Isotope Alphas--------------------------------- @@ -39880,12 +39870,12 @@ Calcite 2.06e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.241e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2267e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6863e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5661e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -39905,14 +39895,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.327 Adjusted to redox equilibrium + pe = 11.140 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.127e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -39927,14 +39917,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.131 -125.131 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.629 -123.628 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -39942,9 +39932,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -39952,81 +39942,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.311e-40 - H2 1.655e-40 1.658e-40 -39.781 -39.780 0.001 (0) -O(0) 3.027e-13 - O2 1.507e-13 1.510e-13 -12.822 -12.821 0.001 (0) - O[18O] 6.015e-16 6.025e-16 -15.221 -15.220 0.001 (0) +H(0) 7.864e-40 + H2 3.932e-40 3.938e-40 -39.405 -39.405 0.001 (0) +O(0) 5.366e-14 + O2 2.672e-14 2.677e-14 -13.573 -13.572 0.001 (0) + O[18O] 1.066e-16 1.068e-16 -15.972 -15.971 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.088 -127.087 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.585 -125.584 0.001 (0) [13C](4) 6.502e-05 H[13C]O3- 5.245e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.577e-08 4.585e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.119e-08 2.185e-08 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.950 -137.949 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.447 -136.447 0.001 (0) [14C](4) 8.994e-16 - H[14C]O3- 7.265e-16 6.647e-16 -15.139 -15.177 -0.039 (0) + H[14C]O3- 7.266e-16 6.647e-16 -15.139 -15.177 -0.039 (0) [14C]O2 1.512e-16 1.514e-16 -15.821 -15.820 0.001 (0) CaH[14C]O3+ 1.534e-17 1.407e-17 -16.814 -16.852 -0.037 (0) - H[14C]O2[18O]- 1.450e-18 1.326e-18 -17.839 -17.877 -0.039 (0) - H[14C]O[18O]O- 1.450e-18 1.326e-18 -17.839 -17.877 -0.039 (0) H[14C][18O]O2- 1.450e-18 1.326e-18 -17.839 -17.877 -0.039 (0) + H[14C]O[18O]O- 1.450e-18 1.326e-18 -17.839 -17.877 -0.039 (0) + H[14C]O2[18O]- 1.450e-18 1.326e-18 -17.839 -17.877 -0.039 (0) Ca[14C]O3 8.411e-19 8.425e-19 -18.075 -18.074 0.001 (0) [14C]O[18O] 6.287e-19 6.297e-19 -18.202 -18.201 0.001 (0) [14C]O3-2 4.315e-19 3.023e-19 -18.365 -18.520 -0.155 (0) CaH[14C]O2[18O]+ 3.061e-20 2.808e-20 -19.514 -19.552 -0.037 (0) - CaH[14C]O[18O]O+ 3.061e-20 2.808e-20 -19.514 -19.552 -0.037 (0) CaH[14C][18O]O2+ 3.061e-20 2.808e-20 -19.514 -19.552 -0.037 (0) + CaH[14C]O[18O]O+ 3.061e-20 2.808e-20 -19.514 -19.552 -0.037 (0) Ca[14C]O2[18O] 5.034e-21 5.043e-21 -20.298 -20.297 0.001 (0) + H[14C][18O]O[18O]- 2.892e-21 2.646e-21 -20.539 -20.577 -0.039 (0) H[14C]O[18O]2- 2.892e-21 2.646e-21 -20.539 -20.577 -0.039 (0) H[14C][18O]2O- 2.892e-21 2.646e-21 -20.539 -20.577 -0.039 (0) - H[14C][18O]O[18O]- 2.892e-21 2.646e-21 -20.539 -20.577 -0.039 (0) [14C]O2[18O]-2 2.583e-21 1.809e-21 -20.588 -20.743 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.027e-16 - O[18O] 6.015e-16 6.025e-16 -15.221 -15.220 0.001 (0) - [18O]2 6.001e-19 6.011e-19 -18.222 -18.221 0.001 (0) +[18O](0) 1.069e-16 + O[18O] 1.066e-16 1.068e-16 -15.972 -15.971 0.001 (0) + [18O]2 1.064e-19 1.066e-19 -18.973 -18.972 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.23 -127.09 -2.86 [13C]H4 + [13C]H4(g) -122.72 -125.58 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.72 -21.22 -1.50 [14C][18O]2 - [14C]H4(g) -135.09 -137.95 -2.86 [14C]H4 + [14C]H4(g) -133.59 -136.45 -2.86 [14C]H4 [14C]O2(g) -14.35 -15.82 -1.47 [14C]O2 [14C]O[18O](g) -16.73 -18.52 -1.79 [14C]O[18O] - [18O]2(g) -15.93 -18.22 -2.29 [18O]2 + [18O]2(g) -16.68 -18.97 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -40040,14 +40030,14 @@ O(0) 3.027e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.27 -125.13 -2.86 CH4 + CH4(g) -120.77 -123.63 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.63 -39.78 -3.15 H2 + H2(g) -36.25 -39.40 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.93 -12.82 -2.89 O2 - O[18O](g) -12.63 -15.52 -2.89 O[18O] + O2(g) -10.68 -13.57 -2.89 O2 + O[18O](g) -13.38 -16.27 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -40117,17 +40107,17 @@ Calcite 2.11e-02 R(18O) H3O+ 2.04133e-03 18.017 permil R(18O) O2(aq) 1.99519e-03 -4.9912 permil R(13C) CO2(aq) 1.10548e-02 -11.213 permil - R(14C) CO2(aq) 1.48993e-13 12.671 pmc + R(14C) CO2(aq) 1.48994e-13 12.671 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil R(18O) HCO3- 1.99519e-03 -4.9912 permil R(13C) HCO3- 1.11510e-02 -2.6105 permil - R(14C) HCO3- 1.51597e-13 12.892 pmc + R(14C) HCO3- 1.51598e-13 12.892 pmc R(18O) CO3-2 1.99519e-03 -4.9912 permil R(13C) CO3-2 1.11350e-02 -4.0419 permil - R(14C) CO3-2 1.51162e-13 12.855 pmc + R(14C) CO3-2 1.51163e-13 12.855 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11731e-02 -0.63507 permil - R(14C) Calcite 1.52198e-13 12.943 pmc + R(14C) Calcite 1.52199e-13 12.943 pmc --------------------------------Isotope Alphas--------------------------------- @@ -40137,12 +40127,12 @@ Calcite 2.11e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2512e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2358e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6798e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.625e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -40162,14 +40152,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.318 Adjusted to redox equilibrium + pe = 11.131 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.127e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -40184,24 +40174,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.055 -125.054 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.559 -123.559 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -40209,50 +40199,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.459e-40 - H2 1.730e-40 1.733e-40 -39.762 -39.761 0.001 (0) -O(0) 2.773e-13 - O2 1.381e-13 1.383e-13 -12.860 -12.859 0.001 (0) - O[18O] 5.510e-16 5.519e-16 -15.259 -15.258 0.001 (0) +H(0) 8.183e-40 + H2 4.092e-40 4.098e-40 -39.388 -39.387 0.001 (0) +O(0) 4.955e-14 + O2 2.468e-14 2.472e-14 -13.608 -13.607 0.001 (0) + O[18O] 9.847e-17 9.863e-17 -16.007 -16.006 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.011 -127.011 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.516 -125.515 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.245e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.574e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.574e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.574e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.574e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.574e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.578e-08 4.585e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.119e-08 2.185e-08 -7.506 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.882 -137.881 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.386 -136.385 0.001 (0) [14C](4) 8.827e-16 H[14C]O3- 7.130e-16 6.523e-16 -15.147 -15.186 -0.039 (0) [14C]O2 1.484e-16 1.486e-16 -15.829 -15.828 0.001 (0) CaH[14C]O3+ 1.506e-17 1.381e-17 -16.822 -16.860 -0.037 (0) - H[14C]O2[18O]- 1.423e-18 1.302e-18 -17.847 -17.886 -0.039 (0) - H[14C]O[18O]O- 1.423e-18 1.302e-18 -17.847 -17.886 -0.039 (0) H[14C][18O]O2- 1.423e-18 1.302e-18 -17.847 -17.886 -0.039 (0) + H[14C]O[18O]O- 1.423e-18 1.302e-18 -17.847 -17.886 -0.039 (0) + H[14C]O2[18O]- 1.423e-18 1.302e-18 -17.847 -17.886 -0.039 (0) Ca[14C]O3 8.254e-19 8.268e-19 -18.083 -18.083 0.001 (0) [14C]O[18O] 6.170e-19 6.180e-19 -18.210 -18.209 0.001 (0) [14C]O3-2 4.234e-19 2.966e-19 -18.373 -18.528 -0.155 (0) CaH[14C]O2[18O]+ 3.004e-20 2.756e-20 -19.522 -19.560 -0.037 (0) - CaH[14C]O[18O]O+ 3.004e-20 2.756e-20 -19.522 -19.560 -0.037 (0) CaH[14C][18O]O2+ 3.004e-20 2.756e-20 -19.522 -19.560 -0.037 (0) + CaH[14C]O[18O]O+ 3.004e-20 2.756e-20 -19.522 -19.560 -0.037 (0) Ca[14C]O2[18O] 4.941e-21 4.949e-21 -20.306 -20.305 0.001 (0) H[14C]O[18O]2- 2.838e-21 2.597e-21 -20.547 -20.586 -0.039 (0) H[14C][18O]2O- 2.838e-21 2.597e-21 -20.547 -20.586 -0.039 (0) @@ -40261,29 +40251,29 @@ O(0) 2.773e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.521e-16 - O[18O] 5.510e-16 5.519e-16 -15.259 -15.258 0.001 (0) - [18O]2 5.497e-19 5.506e-19 -18.260 -18.259 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 9.867e-17 + O[18O] 9.847e-17 9.863e-17 -16.007 -16.006 0.001 (0) + [18O]2 9.824e-20 9.840e-20 -19.008 -19.007 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.15 -127.01 -2.86 [13C]H4 + [13C]H4(g) -122.66 -125.52 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.72 -21.23 -1.50 [14C][18O]2 - [14C]H4(g) -135.02 -137.88 -2.86 [14C]H4 + [14C]H4(g) -133.53 -136.39 -2.86 [14C]H4 [14C]O2(g) -14.36 -15.83 -1.47 [14C]O2 [14C]O[18O](g) -16.74 -18.53 -1.79 [14C]O[18O] - [18O]2(g) -15.97 -18.26 -2.29 [18O]2 + [18O]2(g) -16.72 -19.01 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -40297,14 +40287,14 @@ O(0) 2.773e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.19 -125.05 -2.86 CH4 + CH4(g) -120.70 -123.56 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.61 -39.76 -3.15 H2 + H2(g) -36.24 -39.39 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.97 -12.86 -2.89 O2 - O[18O](g) -12.67 -15.56 -2.89 O[18O] + O2(g) -10.71 -13.61 -2.89 O2 + O[18O](g) -13.41 -16.31 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -40368,23 +40358,23 @@ Calcite 2.16e-02 R(18O) 1.99519e-03 -4.9896 permil R(13C) 1.11351e-02 -4.0364 permil - R(14C) 1.48393e-13 12.62 pmc + R(14C) 1.48394e-13 12.62 pmc R(18O) H2O(l) 1.99519e-03 -4.9911 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.017 permil R(18O) O2(aq) 1.99519e-03 -4.9911 permil R(13C) CO2(aq) 1.10554e-02 -11.164 permil - R(14C) CO2(aq) 1.46275e-13 12.44 pmc + R(14C) CO2(aq) 1.46276e-13 12.44 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil R(18O) HCO3- 1.99519e-03 -4.9911 permil R(13C) HCO3- 1.11516e-02 -2.5613 permil - R(14C) HCO3- 1.48831e-13 12.657 pmc + R(14C) HCO3- 1.48832e-13 12.657 pmc R(18O) CO3-2 1.99519e-03 -4.9911 permil R(13C) CO3-2 1.11356e-02 -3.9927 permil - R(14C) CO3-2 1.48404e-13 12.621 pmc + R(14C) CO3-2 1.48405e-13 12.621 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11737e-02 -0.58571 permil - R(14C) Calcite 1.49421e-13 12.707 pmc + R(14C) Calcite 1.49422e-13 12.707 pmc --------------------------------Isotope Alphas--------------------------------- @@ -40394,12 +40384,12 @@ Calcite 2.16e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2732e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2902e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6359e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7165e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -40419,14 +40409,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.320 Adjusted to redox equilibrium + pe = 11.091 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -40441,13 +40431,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.075 -125.074 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.244 -123.243 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -40456,9 +40446,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -40466,23 +40456,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.420e-40 - H2 1.710e-40 1.713e-40 -39.767 -39.766 0.001 (0) -O(0) 2.836e-13 - O2 1.412e-13 1.415e-13 -12.850 -12.849 0.001 (0) - O[18O] 5.636e-16 5.646e-16 -15.249 -15.248 0.001 (0) +H(0) 9.814e-40 + H2 4.907e-40 4.915e-40 -39.309 -39.308 0.001 (0) +O(0) 3.445e-14 + O2 1.716e-14 1.719e-14 -13.766 -13.765 0.001 (0) + O[18O] 6.846e-17 6.858e-17 -16.165 -16.164 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.031 -127.030 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.200 -125.199 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.245e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.574e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.574e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.574e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.574e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.578e-08 4.585e-08 -7.339 -7.339 0.001 (0) @@ -40491,56 +40481,56 @@ O(0) 2.836e-13 CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.910 -137.909 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.078 -136.078 0.001 (0) [14C](4) 8.666e-16 H[14C]O3- 7.000e-16 6.404e-16 -15.155 -15.194 -0.039 (0) [14C]O2 1.457e-16 1.459e-16 -15.837 -15.836 0.001 (0) CaH[14C]O3+ 1.478e-17 1.356e-17 -16.830 -16.868 -0.037 (0) - H[14C]O2[18O]- 1.397e-18 1.278e-18 -17.855 -17.894 -0.039 (0) - H[14C]O[18O]O- 1.397e-18 1.278e-18 -17.855 -17.894 -0.039 (0) H[14C][18O]O2- 1.397e-18 1.278e-18 -17.855 -17.894 -0.039 (0) + H[14C]O[18O]O- 1.397e-18 1.278e-18 -17.855 -17.894 -0.039 (0) + H[14C]O2[18O]- 1.397e-18 1.278e-18 -17.855 -17.894 -0.039 (0) Ca[14C]O3 8.104e-19 8.117e-19 -18.091 -18.091 0.001 (0) [14C]O[18O] 6.057e-19 6.067e-19 -18.218 -18.217 0.001 (0) [14C]O3-2 4.157e-19 2.912e-19 -18.381 -18.536 -0.155 (0) CaH[14C]O2[18O]+ 2.949e-20 2.706e-20 -19.530 -19.568 -0.037 (0) - CaH[14C]O[18O]O+ 2.949e-20 2.706e-20 -19.530 -19.568 -0.037 (0) CaH[14C][18O]O2+ 2.949e-20 2.706e-20 -19.530 -19.568 -0.037 (0) + CaH[14C]O[18O]O+ 2.949e-20 2.706e-20 -19.530 -19.568 -0.037 (0) Ca[14C]O2[18O] 4.851e-21 4.859e-21 -20.314 -20.313 0.001 (0) - H[14C]O[18O]2- 2.787e-21 2.549e-21 -20.555 -20.594 -0.039 (0) H[14C][18O]2O- 2.787e-21 2.549e-21 -20.555 -20.594 -0.039 (0) H[14C][18O]O[18O]- 2.787e-21 2.549e-21 -20.555 -20.594 -0.039 (0) + H[14C]O[18O]2- 2.787e-21 2.549e-21 -20.555 -20.594 -0.039 (0) [14C]O2[18O]-2 2.488e-21 1.743e-21 -20.604 -20.759 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.648e-16 - O[18O] 5.636e-16 5.646e-16 -15.249 -15.248 0.001 (0) - [18O]2 5.623e-19 5.632e-19 -18.250 -18.249 0.001 (0) +[18O](0) 6.860e-17 + O[18O] 6.846e-17 6.858e-17 -16.165 -16.164 0.001 (0) + [18O]2 6.830e-20 6.841e-20 -19.166 -19.165 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.17 -127.03 -2.86 [13C]H4 + [13C]H4(g) -122.34 -125.20 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.73 -21.24 -1.50 [14C][18O]2 - [14C]H4(g) -135.05 -137.91 -2.86 [14C]H4 + [14C]H4(g) -133.22 -136.08 -2.86 [14C]H4 [14C]O2(g) -14.37 -15.84 -1.47 [14C]O2 [14C]O[18O](g) -16.75 -18.54 -1.79 [14C]O[18O] - [18O]2(g) -15.96 -18.25 -2.29 [18O]2 + [18O]2(g) -16.87 -19.16 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -40554,14 +40544,14 @@ O(0) 2.836e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.21 -125.07 -2.86 CH4 + CH4(g) -120.38 -123.24 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.62 -39.77 -3.15 H2 + H2(g) -36.16 -39.31 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.96 -12.85 -2.89 O2 - O[18O](g) -12.66 -15.55 -2.89 O[18O] + O2(g) -10.87 -13.76 -2.89 O2 + O[18O](g) -13.57 -16.46 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -40625,23 +40615,23 @@ Calcite 2.21e-02 R(18O) 1.99520e-03 -4.9894 permil R(13C) 1.11356e-02 -3.9889 permil - R(14C) 1.45734e-13 12.394 pmc + R(14C) 1.45735e-13 12.394 pmc R(18O) H2O(l) 1.99519e-03 -4.9909 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.017 permil R(18O) O2(aq) 1.99519e-03 -4.9909 permil R(13C) CO2(aq) 1.10559e-02 -11.117 permil - R(14C) CO2(aq) 1.43654e-13 12.217 pmc + R(14C) CO2(aq) 1.43655e-13 12.217 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil R(18O) HCO3- 1.99519e-03 -4.9909 permil R(13C) HCO3- 1.11521e-02 -2.5138 permil - R(14C) HCO3- 1.46164e-13 12.43 pmc + R(14C) HCO3- 1.46165e-13 12.43 pmc R(18O) CO3-2 1.99519e-03 -4.9909 permil R(13C) CO3-2 1.11361e-02 -3.9453 permil - R(14C) CO3-2 1.45745e-13 12.394 pmc + R(14C) CO3-2 1.45746e-13 12.395 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11742e-02 -0.53813 permil - R(14C) Calcite 1.46744e-13 12.479 pmc + R(14C) Calcite 1.46745e-13 12.479 pmc --------------------------------Isotope Alphas--------------------------------- @@ -40651,12 +40641,12 @@ Calcite 2.21e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2405e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2589e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7378e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6137e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -40676,14 +40666,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.320 Adjusted to redox equilibrium + pe = 11.142 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.822e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -40698,24 +40688,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.071 -125.071 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.651 -123.651 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -40723,81 +40713,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.427e-40 - H2 1.713e-40 1.716e-40 -39.766 -39.765 0.001 (0) -O(0) 2.826e-13 - O2 1.407e-13 1.410e-13 -12.852 -12.851 0.001 (0) - O[18O] 5.615e-16 5.624e-16 -15.251 -15.250 0.001 (0) +H(0) 7.761e-40 + H2 3.880e-40 3.887e-40 -39.411 -39.410 0.001 (0) +O(0) 5.509e-14 + O2 2.744e-14 2.748e-14 -13.562 -13.561 0.001 (0) + O[18O] 1.095e-16 1.097e-16 -15.961 -15.960 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.028 -127.027 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.608 -125.607 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.245e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.578e-08 4.586e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.119e-08 2.185e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.914 -137.913 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.494 -136.493 0.001 (0) [14C](4) 8.511e-16 H[14C]O3- 6.875e-16 6.290e-16 -15.163 -15.201 -0.039 (0) [14C]O2 1.431e-16 1.433e-16 -15.845 -15.844 0.001 (0) CaH[14C]O3+ 1.452e-17 1.332e-17 -16.838 -16.876 -0.037 (0) - H[14C]O2[18O]- 1.372e-18 1.255e-18 -17.863 -17.901 -0.039 (0) - H[14C]O[18O]O- 1.372e-18 1.255e-18 -17.863 -17.901 -0.039 (0) H[14C][18O]O2- 1.372e-18 1.255e-18 -17.863 -17.901 -0.039 (0) + H[14C]O[18O]O- 1.372e-18 1.255e-18 -17.863 -17.901 -0.039 (0) + H[14C]O2[18O]- 1.372e-18 1.255e-18 -17.863 -17.901 -0.039 (0) Ca[14C]O3 7.959e-19 7.972e-19 -18.099 -18.098 0.001 (0) [14C]O[18O] 5.949e-19 5.958e-19 -18.226 -18.225 0.001 (0) [14C]O3-2 4.083e-19 2.860e-19 -18.389 -18.544 -0.155 (0) CaH[14C]O2[18O]+ 2.897e-20 2.657e-20 -19.538 -19.576 -0.037 (0) - CaH[14C]O[18O]O+ 2.897e-20 2.657e-20 -19.538 -19.576 -0.037 (0) CaH[14C][18O]O2+ 2.897e-20 2.657e-20 -19.538 -19.576 -0.037 (0) + CaH[14C]O[18O]O+ 2.897e-20 2.657e-20 -19.538 -19.576 -0.037 (0) Ca[14C]O2[18O] 4.764e-21 4.772e-21 -20.322 -20.321 0.001 (0) + H[14C][18O]O[18O]- 2.737e-21 2.504e-21 -20.563 -20.601 -0.039 (0) H[14C]O[18O]2- 2.737e-21 2.504e-21 -20.563 -20.601 -0.039 (0) H[14C][18O]2O- 2.737e-21 2.504e-21 -20.563 -20.601 -0.039 (0) - H[14C][18O]O[18O]- 2.737e-21 2.504e-21 -20.563 -20.601 -0.039 (0) [14C]O2[18O]-2 2.444e-21 1.712e-21 -20.612 -20.767 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.626e-16 - O[18O] 5.615e-16 5.624e-16 -15.251 -15.250 0.001 (0) - [18O]2 5.602e-19 5.611e-19 -18.252 -18.251 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.097e-16 + O[18O] 1.095e-16 1.097e-16 -15.961 -15.960 0.001 (0) + [18O]2 1.092e-19 1.094e-19 -18.962 -18.961 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.17 -127.03 -2.86 [13C]H4 + [13C]H4(g) -122.75 -125.61 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.74 -21.24 -1.50 [14C][18O]2 - [14C]H4(g) -135.05 -137.91 -2.86 [14C]H4 + [14C]H4(g) -133.63 -136.49 -2.86 [14C]H4 [14C]O2(g) -14.38 -15.84 -1.47 [14C]O2 [14C]O[18O](g) -16.76 -18.54 -1.79 [14C]O[18O] - [18O]2(g) -15.96 -18.25 -2.29 [18O]2 + [18O]2(g) -16.67 -18.96 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -40811,14 +40801,14 @@ O(0) 2.826e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.21 -125.07 -2.86 CH4 + CH4(g) -120.79 -123.65 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.62 -39.77 -3.15 H2 + H2(g) -36.26 -39.41 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.96 -12.85 -2.89 O2 - O[18O](g) -12.66 -15.55 -2.89 O[18O] + O2(g) -10.67 -13.56 -2.89 O2 + O[18O](g) -13.37 -16.26 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -40882,23 +40872,23 @@ Calcite 2.26e-02 R(18O) 1.99520e-03 -4.9893 permil R(13C) 1.11361e-02 -3.9432 permil - R(14C) 1.43168e-13 12.175 pmc + R(14C) 1.43169e-13 12.175 pmc R(18O) H2O(l) 1.99519e-03 -4.9908 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.017 permil R(18O) O2(aq) 1.99519e-03 -4.9908 permil R(13C) CO2(aq) 1.10564e-02 -11.072 permil - R(14C) CO2(aq) 1.41125e-13 12.002 pmc + R(14C) CO2(aq) 1.41126e-13 12.002 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil R(18O) HCO3- 1.99519e-03 -4.9908 permil R(13C) HCO3- 1.11526e-02 -2.468 permil - R(14C) HCO3- 1.43591e-13 12.211 pmc + R(14C) HCO3- 1.43592e-13 12.211 pmc R(18O) CO3-2 1.99519e-03 -4.9908 permil R(13C) CO3-2 1.11366e-02 -3.8995 permil - R(14C) CO3-2 1.43179e-13 12.176 pmc + R(14C) CO3-2 1.43180e-13 12.176 pmc R(18O) Calcite 2.05263e-03 23.656 permil R(13C) Calcite 1.11747e-02 -0.49222 permil - R(14C) Calcite 1.44161e-13 12.26 pmc + R(14C) Calcite 1.44162e-13 12.26 pmc --------------------------------Isotope Alphas--------------------------------- @@ -40908,12 +40898,12 @@ Calcite 2.26e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2712e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7017e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5783e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -40933,14 +40923,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.329 Adjusted to redox equilibrium + pe = 11.171 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.822e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -40955,14 +40945,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.141 -125.141 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.877 -123.876 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -40970,9 +40960,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -40980,50 +40970,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.292e-40 - H2 1.646e-40 1.649e-40 -39.784 -39.783 0.001 (0) -O(0) 3.062e-13 - O2 1.525e-13 1.527e-13 -12.817 -12.816 0.001 (0) - O[18O] 6.085e-16 6.095e-16 -15.216 -15.215 0.001 (0) +H(0) 6.815e-40 + H2 3.407e-40 3.413e-40 -39.468 -39.467 0.001 (0) +O(0) 7.145e-14 + O2 3.558e-14 3.564e-14 -13.449 -13.448 0.001 (0) + O[18O] 1.420e-16 1.422e-16 -15.848 -15.847 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.098 -127.097 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.834 -125.833 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.246e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.578e-08 4.586e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.120e-08 2.185e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.992 -137.991 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.728 -136.727 0.001 (0) [14C](4) 8.361e-16 H[14C]O3- 6.754e-16 6.179e-16 -15.170 -15.209 -0.039 (0) [14C]O2 1.405e-16 1.408e-16 -15.852 -15.852 0.001 (0) CaH[14C]O3+ 1.426e-17 1.308e-17 -16.846 -16.883 -0.037 (0) - H[14C]O2[18O]- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) - H[14C]O[18O]O- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) H[14C][18O]O2- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) - Ca[14C]O3 7.818e-19 7.831e-19 -18.107 -18.106 0.001 (0) - [14C]O[18O] 5.844e-19 5.853e-19 -18.233 -18.233 0.001 (0) + H[14C]O[18O]O- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) + H[14C]O2[18O]- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) + Ca[14C]O3 7.819e-19 7.831e-19 -18.107 -18.106 0.001 (0) + [14C]O[18O] 5.844e-19 5.854e-19 -18.233 -18.233 0.001 (0) [14C]O3-2 4.011e-19 2.810e-19 -18.397 -18.551 -0.155 (0) CaH[14C]O2[18O]+ 2.846e-20 2.610e-20 -19.546 -19.583 -0.037 (0) - CaH[14C]O[18O]O+ 2.846e-20 2.610e-20 -19.546 -19.583 -0.037 (0) CaH[14C][18O]O2+ 2.846e-20 2.610e-20 -19.546 -19.583 -0.037 (0) + CaH[14C]O[18O]O+ 2.846e-20 2.610e-20 -19.546 -19.583 -0.037 (0) Ca[14C]O2[18O] 4.680e-21 4.688e-21 -20.330 -20.329 0.001 (0) H[14C]O[18O]2- 2.689e-21 2.460e-21 -20.570 -20.609 -0.039 (0) H[14C][18O]2O- 2.689e-21 2.460e-21 -20.570 -20.609 -0.039 (0) @@ -41032,29 +41022,29 @@ O(0) 3.062e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.097e-16 - O[18O] 6.085e-16 6.095e-16 -15.216 -15.215 0.001 (0) - [18O]2 6.070e-19 6.080e-19 -18.217 -18.216 0.001 (0) +[18O](0) 1.423e-16 + O[18O] 1.420e-16 1.422e-16 -15.848 -15.847 0.001 (0) + [18O]2 1.416e-19 1.419e-19 -18.849 -18.848 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.24 -127.10 -2.86 [13C]H4 + [13C]H4(g) -122.97 -125.83 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.75 -21.25 -1.50 [14C][18O]2 - [14C]H4(g) -135.13 -137.99 -2.86 [14C]H4 + [14C]H4(g) -133.87 -136.73 -2.86 [14C]H4 [14C]O2(g) -14.38 -15.85 -1.47 [14C]O2 [14C]O[18O](g) -16.76 -18.55 -1.79 [14C]O[18O] - [18O]2(g) -15.93 -18.22 -2.29 [18O]2 + [18O]2(g) -16.56 -18.85 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -41068,14 +41058,14 @@ O(0) 3.062e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.28 -125.14 -2.86 CH4 + CH4(g) -121.02 -123.88 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.63 -39.78 -3.15 H2 + H2(g) -36.32 -39.47 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.92 -12.82 -2.89 O2 - O[18O](g) -12.62 -15.52 -2.89 O[18O] + O2(g) -10.56 -13.45 -2.89 O2 + O[18O](g) -13.26 -16.15 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -41139,23 +41129,23 @@ Calcite 2.31e-02 R(18O) 1.99520e-03 -4.9891 permil R(13C) 1.11366e-02 -3.899 permil - R(14C) 1.40692e-13 11.965 pmc + R(14C) 1.40693e-13 11.965 pmc R(18O) H2O(l) 1.99519e-03 -4.9907 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.017 permil R(18O) O2(aq) 1.99519e-03 -4.9907 permil R(13C) CO2(aq) 1.10569e-02 -11.028 permil - R(14C) CO2(aq) 1.38684e-13 11.794 pmc + R(14C) CO2(aq) 1.38685e-13 11.794 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil R(18O) HCO3- 1.99519e-03 -4.9907 permil R(13C) HCO3- 1.11531e-02 -2.4237 permil - R(14C) HCO3- 1.41107e-13 12 pmc + R(14C) HCO3- 1.41108e-13 12 pmc R(18O) CO3-2 1.99519e-03 -4.9907 permil R(13C) CO3-2 1.11371e-02 -3.8554 permil - R(14C) CO3-2 1.40703e-13 11.966 pmc + R(14C) CO3-2 1.40704e-13 11.966 pmc R(18O) Calcite 2.05263e-03 23.656 permil R(13C) Calcite 1.11752e-02 -0.44789 permil - R(14C) Calcite 1.41667e-13 12.048 pmc + R(14C) Calcite 1.41668e-13 12.048 pmc --------------------------------Isotope Alphas--------------------------------- @@ -41165,12 +41155,12 @@ Calcite 2.31e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2797e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2645e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7285e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7417e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -41190,14 +41180,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.327 Adjusted to redox equilibrium + pe = 11.165 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.822e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -41212,24 +41202,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.131 -125.130 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.831 -123.830 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -41237,23 +41227,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.311e-40 - H2 1.656e-40 1.658e-40 -39.781 -39.780 0.001 (0) -O(0) 3.027e-13 - O2 1.507e-13 1.510e-13 -12.822 -12.821 0.001 (0) - O[18O] 6.015e-16 6.025e-16 -15.221 -15.220 0.001 (0) +H(0) 6.998e-40 + H2 3.499e-40 3.505e-40 -39.456 -39.455 0.001 (0) +O(0) 6.776e-14 + O2 3.375e-14 3.380e-14 -13.472 -13.471 0.001 (0) + O[18O] 1.347e-16 1.349e-16 -15.871 -15.870 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.087 -127.087 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.788 -125.787 0.001 (0) [13C](4) 6.504e-05 H[13C]O3- 5.246e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.586e-08 -7.339 -7.339 0.001 (0) @@ -41262,56 +41252,56 @@ O(0) 3.027e-13 CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.989 -137.988 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.689 -136.688 0.001 (0) [14C](4) 8.216e-16 H[14C]O3- 6.637e-16 6.072e-16 -15.178 -15.217 -0.039 (0) [14C]O2 1.381e-16 1.383e-16 -15.860 -15.859 0.001 (0) CaH[14C]O3+ 1.402e-17 1.286e-17 -16.853 -16.891 -0.037 (0) - H[14C]O2[18O]- 1.324e-18 1.211e-18 -17.878 -17.917 -0.039 (0) - H[14C]O[18O]O- 1.324e-18 1.211e-18 -17.878 -17.917 -0.039 (0) H[14C][18O]O2- 1.324e-18 1.211e-18 -17.878 -17.917 -0.039 (0) + H[14C]O[18O]O- 1.324e-18 1.211e-18 -17.878 -17.917 -0.039 (0) + H[14C]O2[18O]- 1.324e-18 1.211e-18 -17.878 -17.917 -0.039 (0) Ca[14C]O3 7.683e-19 7.696e-19 -18.114 -18.114 0.001 (0) [14C]O[18O] 5.743e-19 5.752e-19 -18.241 -18.240 0.001 (0) [14C]O3-2 3.941e-19 2.761e-19 -18.404 -18.559 -0.155 (0) CaH[14C]O2[18O]+ 2.796e-20 2.565e-20 -19.553 -19.591 -0.037 (0) - CaH[14C]O[18O]O+ 2.796e-20 2.565e-20 -19.553 -19.591 -0.037 (0) CaH[14C][18O]O2+ 2.796e-20 2.565e-20 -19.553 -19.591 -0.037 (0) + CaH[14C]O[18O]O+ 2.796e-20 2.565e-20 -19.553 -19.591 -0.037 (0) Ca[14C]O2[18O] 4.599e-21 4.606e-21 -20.337 -20.337 0.001 (0) - H[14C]O[18O]2- 2.642e-21 2.417e-21 -20.578 -20.617 -0.039 (0) H[14C][18O]2O- 2.642e-21 2.417e-21 -20.578 -20.617 -0.039 (0) H[14C][18O]O[18O]- 2.642e-21 2.417e-21 -20.578 -20.617 -0.039 (0) + H[14C]O[18O]2- 2.642e-21 2.417e-21 -20.578 -20.617 -0.039 (0) [14C]O2[18O]-2 2.359e-21 1.653e-21 -20.627 -20.782 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.027e-16 - O[18O] 6.015e-16 6.025e-16 -15.221 -15.220 0.001 (0) - [18O]2 6.000e-19 6.010e-19 -18.222 -18.221 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.349e-16 + O[18O] 1.347e-16 1.349e-16 -15.871 -15.870 0.001 (0) + [18O]2 1.343e-19 1.346e-19 -18.872 -18.871 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.23 -127.09 -2.86 [13C]H4 + [13C]H4(g) -122.93 -125.79 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.76 -21.26 -1.50 [14C][18O]2 - [14C]H4(g) -135.13 -137.99 -2.86 [14C]H4 + [14C]H4(g) -133.83 -136.69 -2.86 [14C]H4 [14C]O2(g) -14.39 -15.86 -1.47 [14C]O2 [14C]O[18O](g) -16.77 -18.56 -1.79 [14C]O[18O] - [18O]2(g) -15.93 -18.22 -2.29 [18O]2 + [18O]2(g) -16.58 -18.87 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -41325,14 +41315,14 @@ O(0) 3.027e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.27 -125.13 -2.86 CH4 + CH4(g) -120.97 -123.83 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.63 -39.78 -3.15 H2 + H2(g) -36.31 -39.46 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.93 -12.82 -2.89 O2 - O[18O](g) -12.63 -15.52 -2.89 O[18O] + O2(g) -10.58 -13.47 -2.89 O2 + O[18O](g) -13.28 -16.17 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -41396,7 +41386,7 @@ Calcite 2.36e-02 R(18O) 1.99520e-03 -4.989 permil R(13C) 1.11371e-02 -3.8563 permil - R(14C) 1.38299e-13 11.761 pmc + R(14C) 1.38300e-13 11.761 pmc R(18O) H2O(l) 1.99519e-03 -4.9905 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.017 permil @@ -41406,13 +41396,13 @@ Calcite 2.36e-02 R(18O) CO2(aq) 2.07916e-03 36.883 permil R(18O) HCO3- 1.99519e-03 -4.9905 permil R(13C) HCO3- 1.11536e-02 -2.381 permil - R(14C) HCO3- 1.38708e-13 11.796 pmc + R(14C) HCO3- 1.38709e-13 11.796 pmc R(18O) CO3-2 1.99519e-03 -4.9905 permil R(13C) CO3-2 1.11376e-02 -3.8127 permil - R(14C) CO3-2 1.38310e-13 11.762 pmc + R(14C) CO3-2 1.38311e-13 11.762 pmc R(18O) Calcite 2.05263e-03 23.656 permil R(13C) Calcite 1.11757e-02 -0.40507 permil - R(14C) Calcite 1.39258e-13 11.843 pmc + R(14C) Calcite 1.39259e-13 11.843 pmc --------------------------------Isotope Alphas--------------------------------- @@ -41422,12 +41412,12 @@ Calcite 2.36e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2569e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2732e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6174e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6309e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -41447,14 +41437,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.326 Adjusted to redox equilibrium + pe = 11.180 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.822e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -41469,14 +41459,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.120 -125.119 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.954 -123.953 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -41484,9 +41474,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -41494,81 +41484,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.333e-40 - H2 1.667e-40 1.669e-40 -39.778 -39.777 0.001 (0) -O(0) 2.987e-13 - O2 1.487e-13 1.490e-13 -12.828 -12.827 0.001 (0) - O[18O] 5.935e-16 5.945e-16 -15.227 -15.226 0.001 (0) +H(0) 6.520e-40 + H2 3.260e-40 3.265e-40 -39.487 -39.486 0.001 (0) +O(0) 7.806e-14 + O2 3.887e-14 3.894e-14 -13.410 -13.410 0.001 (0) + O[18O] 1.551e-16 1.554e-16 -15.809 -15.809 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.076 -127.075 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.910 -125.910 0.001 (0) [13C](4) 6.504e-05 H[13C]O3- 5.246e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.586e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.120e-08 2.186e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.985 -137.984 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.819 -136.819 0.001 (0) [14C](4) 8.077e-16 H[14C]O3- 6.524e-16 5.969e-16 -15.185 -15.224 -0.039 (0) [14C]O2 1.358e-16 1.360e-16 -15.867 -15.867 0.001 (0) CaH[14C]O3+ 1.378e-17 1.264e-17 -16.861 -16.898 -0.037 (0) - H[14C]O2[18O]- 1.302e-18 1.191e-18 -17.885 -17.924 -0.039 (0) - H[14C]O[18O]O- 1.302e-18 1.191e-18 -17.885 -17.924 -0.039 (0) H[14C][18O]O2- 1.302e-18 1.191e-18 -17.885 -17.924 -0.039 (0) + H[14C]O[18O]O- 1.302e-18 1.191e-18 -17.885 -17.924 -0.039 (0) + H[14C]O2[18O]- 1.302e-18 1.191e-18 -17.885 -17.924 -0.039 (0) Ca[14C]O3 7.553e-19 7.565e-19 -18.122 -18.121 0.001 (0) [14C]O[18O] 5.645e-19 5.654e-19 -18.248 -18.248 0.001 (0) [14C]O3-2 3.874e-19 2.714e-19 -18.412 -18.566 -0.155 (0) CaH[14C]O2[18O]+ 2.749e-20 2.522e-20 -19.561 -19.598 -0.037 (0) - CaH[14C]O[18O]O+ 2.749e-20 2.522e-20 -19.561 -19.598 -0.037 (0) CaH[14C][18O]O2+ 2.749e-20 2.522e-20 -19.561 -19.598 -0.037 (0) + CaH[14C]O[18O]O+ 2.749e-20 2.522e-20 -19.561 -19.598 -0.037 (0) Ca[14C]O2[18O] 4.521e-21 4.528e-21 -20.345 -20.344 0.001 (0) + H[14C][18O]O[18O]- 2.597e-21 2.376e-21 -20.586 -20.624 -0.039 (0) H[14C]O[18O]2- 2.597e-21 2.376e-21 -20.586 -20.624 -0.039 (0) H[14C][18O]2O- 2.597e-21 2.376e-21 -20.586 -20.624 -0.039 (0) - H[14C][18O]O[18O]- 2.597e-21 2.376e-21 -20.586 -20.624 -0.039 (0) [14C]O2[18O]-2 2.319e-21 1.625e-21 -20.635 -20.789 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.947e-16 - O[18O] 5.935e-16 5.945e-16 -15.227 -15.226 0.001 (0) - [18O]2 5.921e-19 5.931e-19 -18.228 -18.227 0.001 (0) +[18O](0) 1.554e-16 + O[18O] 1.551e-16 1.554e-16 -15.809 -15.809 0.001 (0) + [18O]2 1.547e-19 1.550e-19 -18.810 -18.810 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.22 -127.08 -2.86 [13C]H4 + [13C]H4(g) -123.05 -125.91 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.76 -21.27 -1.50 [14C][18O]2 - [14C]H4(g) -135.12 -137.98 -2.86 [14C]H4 + [14C]H4(g) -133.96 -136.82 -2.86 [14C]H4 [14C]O2(g) -14.40 -15.87 -1.47 [14C]O2 [14C]O[18O](g) -16.78 -18.57 -1.79 [14C]O[18O] - [18O]2(g) -15.94 -18.23 -2.29 [18O]2 + [18O]2(g) -16.52 -18.81 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -41582,14 +41572,14 @@ O(0) 2.987e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.26 -125.12 -2.86 CH4 + CH4(g) -121.09 -123.95 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.63 -39.78 -3.15 H2 + H2(g) -36.34 -39.49 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.93 -12.83 -2.89 O2 - O[18O](g) -12.63 -15.53 -2.89 O[18O] + O2(g) -10.52 -13.41 -2.89 O2 + O[18O](g) -13.22 -16.11 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -41653,17 +41643,17 @@ Calcite 2.41e-02 R(18O) 1.99520e-03 -4.9889 permil R(13C) 1.11375e-02 -3.8151 permil - R(14C) 1.35987e-13 11.565 pmc + R(14C) 1.35988e-13 11.565 pmc R(18O) H2O(l) 1.99519e-03 -4.9904 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.018 permil R(18O) O2(aq) 1.99519e-03 -4.9904 permil R(13C) CO2(aq) 1.10578e-02 -10.944 permil - R(14C) CO2(aq) 1.34046e-13 11.4 pmc + R(14C) CO2(aq) 1.34047e-13 11.4 pmc R(18O) CO2(aq) 2.07916e-03 36.884 permil R(18O) HCO3- 1.99519e-03 -4.9904 permil R(13C) HCO3- 1.11540e-02 -2.3397 permil - R(14C) HCO3- 1.36389e-13 11.599 pmc + R(14C) HCO3- 1.36390e-13 11.599 pmc R(18O) CO3-2 1.99519e-03 -4.9904 permil R(13C) CO3-2 1.11380e-02 -3.7714 permil R(14C) CO3-2 1.35998e-13 11.566 pmc @@ -41679,12 +41669,12 @@ Calcite 2.41e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2464e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2301e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.57e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5804e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -41704,14 +41694,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.321 Adjusted to redox equilibrium + pe = 11.119 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -41726,24 +41716,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.082 -125.081 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.462 -123.462 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -41751,50 +41741,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.406e-40 - H2 1.703e-40 1.706e-40 -39.769 -39.768 0.001 (0) -O(0) 2.860e-13 - O2 1.424e-13 1.426e-13 -12.846 -12.846 0.001 (0) - O[18O] 5.683e-16 5.692e-16 -15.245 -15.245 0.001 (0) +H(0) 8.653e-40 + H2 4.326e-40 4.333e-40 -39.364 -39.363 0.001 (0) +O(0) 4.432e-14 + O2 2.207e-14 2.211e-14 -13.656 -13.655 0.001 (0) + O[18O] 8.808e-17 8.823e-17 -16.055 -16.054 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.038 -127.037 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.419 -125.418 0.001 (0) [13C](4) 6.504e-05 H[13C]O3- 5.246e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.586e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.120e-08 2.186e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.955 -137.954 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.335 -136.335 0.001 (0) [14C](4) 7.942e-16 H[14C]O3- 6.415e-16 5.869e-16 -15.193 -15.231 -0.039 (0) [14C]O2 1.335e-16 1.337e-16 -15.875 -15.874 0.001 (0) CaH[14C]O3+ 1.355e-17 1.243e-17 -16.868 -16.906 -0.037 (0) - H[14C]O2[18O]- 1.280e-18 1.171e-18 -17.893 -17.931 -0.039 (0) - H[14C]O[18O]O- 1.280e-18 1.171e-18 -17.893 -17.931 -0.039 (0) H[14C][18O]O2- 1.280e-18 1.171e-18 -17.893 -17.931 -0.039 (0) + H[14C]O[18O]O- 1.280e-18 1.171e-18 -17.893 -17.931 -0.039 (0) + H[14C]O2[18O]- 1.280e-18 1.171e-18 -17.893 -17.931 -0.039 (0) Ca[14C]O3 7.426e-19 7.439e-19 -18.129 -18.129 0.001 (0) [14C]O[18O] 5.551e-19 5.560e-19 -18.256 -18.255 0.001 (0) [14C]O3-2 3.810e-19 2.669e-19 -18.419 -18.574 -0.155 (0) CaH[14C]O2[18O]+ 2.703e-20 2.479e-20 -19.568 -19.606 -0.037 (0) - CaH[14C]O[18O]O+ 2.703e-20 2.479e-20 -19.568 -19.606 -0.037 (0) CaH[14C][18O]O2+ 2.703e-20 2.479e-20 -19.568 -19.606 -0.037 (0) + CaH[14C]O[18O]O+ 2.703e-20 2.479e-20 -19.568 -19.606 -0.037 (0) Ca[14C]O2[18O] 4.445e-21 4.452e-21 -20.352 -20.351 0.001 (0) H[14C]O[18O]2- 2.554e-21 2.336e-21 -20.593 -20.631 -0.039 (0) H[14C][18O]2O- 2.554e-21 2.336e-21 -20.593 -20.631 -0.039 (0) @@ -41803,29 +41793,29 @@ O(0) 2.860e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.694e-16 - O[18O] 5.683e-16 5.692e-16 -15.245 -15.245 0.001 (0) - [18O]2 5.669e-19 5.678e-19 -18.246 -18.246 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 8.826e-17 + O[18O] 8.808e-17 8.823e-17 -16.055 -16.054 0.001 (0) + [18O]2 8.787e-20 8.802e-20 -19.056 -19.055 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.18 -127.04 -2.86 [13C]H4 + [13C]H4(g) -122.56 -125.42 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.77 -21.27 -1.50 [14C][18O]2 - [14C]H4(g) -135.09 -137.95 -2.86 [14C]H4 + [14C]H4(g) -133.47 -136.33 -2.86 [14C]H4 [14C]O2(g) -14.41 -15.87 -1.47 [14C]O2 [14C]O[18O](g) -16.79 -18.57 -1.79 [14C]O[18O] - [18O]2(g) -15.96 -18.25 -2.29 [18O]2 + [18O]2(g) -16.77 -19.06 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -41839,14 +41829,14 @@ O(0) 2.860e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.22 -125.08 -2.86 CH4 + CH4(g) -120.60 -123.46 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.62 -39.77 -3.15 H2 + H2(g) -36.21 -39.36 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.95 -12.85 -2.89 O2 - O[18O](g) -12.65 -15.55 -2.89 O[18O] + O2(g) -10.76 -13.66 -2.89 O2 + O[18O](g) -13.46 -16.36 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -41910,23 +41900,23 @@ Calcite 2.46e-02 R(18O) 1.99520e-03 -4.9887 permil R(13C) 1.11380e-02 -3.7752 permil - R(14C) 1.33751e-13 11.374 pmc + R(14C) 1.33752e-13 11.375 pmc R(18O) H2O(l) 1.99519e-03 -4.9903 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.018 permil R(18O) O2(aq) 1.99519e-03 -4.9903 permil R(13C) CO2(aq) 1.10583e-02 -10.905 permil - R(14C) CO2(aq) 1.31842e-13 11.212 pmc + R(14C) CO2(aq) 1.31843e-13 11.212 pmc R(18O) CO2(aq) 2.07916e-03 36.884 permil R(18O) HCO3- 1.99519e-03 -4.9903 permil R(13C) HCO3- 1.11545e-02 -2.2998 permil - R(14C) HCO3- 1.34146e-13 11.408 pmc + R(14C) HCO3- 1.34147e-13 11.408 pmc R(18O) CO3-2 1.99519e-03 -4.9903 permil R(13C) CO3-2 1.11385e-02 -3.7315 permil - R(14C) CO3-2 1.33761e-13 11.375 pmc + R(14C) CO3-2 1.33762e-13 11.375 pmc R(18O) Calcite 2.05264e-03 23.656 permil R(13C) Calcite 1.11766e-02 -0.32366 permil - R(14C) Calcite 1.34678e-13 11.453 pmc + R(14C) Calcite 1.34679e-13 11.453 pmc --------------------------------Isotope Alphas--------------------------------- @@ -41936,12 +41926,12 @@ Calcite 2.46e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2834e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2669e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6622e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7435e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -41961,14 +41951,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.331 Adjusted to redox equilibrium + pe = 11.183 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.822e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -41983,13 +41973,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.162 -125.162 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.978 -123.978 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -41998,9 +41988,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -42008,23 +41998,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.252e-40 - H2 1.626e-40 1.629e-40 -39.789 -39.788 0.001 (0) -O(0) 3.137e-13 - O2 1.562e-13 1.565e-13 -12.806 -12.805 0.001 (0) - O[18O] 6.235e-16 6.245e-16 -15.205 -15.204 0.001 (0) +H(0) 6.429e-40 + H2 3.215e-40 3.220e-40 -39.493 -39.492 0.001 (0) +O(0) 8.028e-14 + O2 3.998e-14 4.004e-14 -13.398 -13.397 0.001 (0) + O[18O] 1.595e-16 1.598e-16 -15.797 -15.796 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.119 -127.118 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.935 -125.934 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.587e-08 -7.339 -7.339 0.001 (0) @@ -42033,56 +42023,56 @@ O(0) 3.137e-13 CaH[13C]O[18O]O+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.042 -138.042 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.858 -136.858 0.001 (0) [14C](4) 7.811e-16 H[14C]O3- 6.310e-16 5.772e-16 -15.200 -15.239 -0.039 (0) [14C]O2 1.313e-16 1.315e-16 -15.882 -15.881 0.001 (0) CaH[14C]O3+ 1.332e-17 1.222e-17 -16.875 -16.913 -0.037 (0) - H[14C]O2[18O]- 1.259e-18 1.152e-18 -17.900 -17.939 -0.039 (0) - H[14C]O[18O]O- 1.259e-18 1.152e-18 -17.900 -17.939 -0.039 (0) H[14C][18O]O2- 1.259e-18 1.152e-18 -17.900 -17.939 -0.039 (0) + H[14C]O[18O]O- 1.259e-18 1.152e-18 -17.900 -17.939 -0.039 (0) + H[14C]O2[18O]- 1.259e-18 1.152e-18 -17.900 -17.939 -0.039 (0) Ca[14C]O3 7.304e-19 7.316e-19 -18.136 -18.136 0.001 (0) [14C]O[18O] 5.459e-19 5.468e-19 -18.263 -18.262 0.001 (0) [14C]O3-2 3.747e-19 2.625e-19 -18.426 -18.581 -0.155 (0) CaH[14C]O2[18O]+ 2.658e-20 2.439e-20 -19.575 -19.613 -0.037 (0) - CaH[14C]O[18O]O+ 2.658e-20 2.439e-20 -19.575 -19.613 -0.037 (0) CaH[14C][18O]O2+ 2.658e-20 2.439e-20 -19.575 -19.613 -0.037 (0) + CaH[14C]O[18O]O+ 2.658e-20 2.439e-20 -19.575 -19.613 -0.037 (0) Ca[14C]O2[18O] 4.372e-21 4.379e-21 -20.359 -20.359 0.001 (0) - H[14C]O[18O]2- 2.512e-21 2.298e-21 -20.600 -20.639 -0.039 (0) H[14C][18O]2O- 2.512e-21 2.298e-21 -20.600 -20.639 -0.039 (0) H[14C][18O]O[18O]- 2.512e-21 2.298e-21 -20.600 -20.639 -0.039 (0) + H[14C]O[18O]2- 2.512e-21 2.298e-21 -20.600 -20.639 -0.039 (0) [14C]O2[18O]-2 2.243e-21 1.571e-21 -20.649 -20.804 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.247e-16 - O[18O] 6.235e-16 6.245e-16 -15.205 -15.204 0.001 (0) - [18O]2 6.220e-19 6.230e-19 -18.206 -18.206 0.001 (0) +[18O](0) 1.598e-16 + O[18O] 1.595e-16 1.598e-16 -15.797 -15.796 0.001 (0) + [18O]2 1.591e-19 1.594e-19 -18.798 -18.797 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.26 -127.12 -2.86 [13C]H4 + [13C]H4(g) -123.07 -125.93 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.78 -21.28 -1.50 [14C][18O]2 - [14C]H4(g) -135.18 -138.04 -2.86 [14C]H4 + [14C]H4(g) -134.00 -136.86 -2.86 [14C]H4 [14C]O2(g) -14.41 -15.88 -1.47 [14C]O2 [14C]O[18O](g) -16.79 -18.58 -1.79 [14C]O[18O] - [18O]2(g) -15.92 -18.21 -2.29 [18O]2 + [18O]2(g) -16.51 -18.80 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -42096,14 +42086,14 @@ O(0) 3.137e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.30 -125.16 -2.86 CH4 + CH4(g) -121.12 -123.98 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.64 -39.79 -3.15 H2 + H2(g) -36.34 -39.49 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.91 -12.81 -2.89 O2 - O[18O](g) -12.61 -15.51 -2.89 O[18O] + O2(g) -10.51 -13.40 -2.89 O2 + O[18O](g) -13.21 -16.10 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -42167,23 +42157,23 @@ Calcite 2.51e-02 R(18O) 1.99520e-03 -4.9886 permil R(13C) 1.11384e-02 -3.7366 permil - R(14C) 1.31587e-13 11.19 pmc + R(14C) 1.31588e-13 11.19 pmc R(18O) H2O(l) 1.99519e-03 -4.9901 permil R(18O) OH- 1.92123e-03 -41.877 permil R(18O) H3O+ 2.04133e-03 18.018 permil R(18O) O2(aq) 1.99519e-03 -4.9901 permil R(13C) CO2(aq) 1.10587e-02 -10.866 permil - R(14C) CO2(aq) 1.29709e-13 11.031 pmc + R(14C) CO2(aq) 1.29710e-13 11.031 pmc R(18O) CO2(aq) 2.07916e-03 36.884 permil R(18O) HCO3- 1.99519e-03 -4.9901 permil R(13C) HCO3- 1.11549e-02 -2.2611 permil - R(14C) HCO3- 1.31975e-13 11.223 pmc + R(14C) HCO3- 1.31976e-13 11.224 pmc R(18O) CO3-2 1.99519e-03 -4.9901 permil R(13C) CO3-2 1.11389e-02 -3.6929 permil - R(14C) CO3-2 1.31597e-13 11.191 pmc + R(14C) CO3-2 1.31598e-13 11.191 pmc R(18O) Calcite 2.05264e-03 23.656 permil R(13C) Calcite 1.11770e-02 -0.28493 permil - R(14C) Calcite 1.32499e-13 11.268 pmc + R(14C) Calcite 1.32500e-13 11.268 pmc --------------------------------Isotope Alphas--------------------------------- @@ -42193,12 +42183,12 @@ Calcite 2.51e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2371e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6366e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6487e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -42218,14 +42208,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.330 Adjusted to redox equilibrium + pe = 11.196 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -42240,24 +42230,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.154 -125.154 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.079 -124.079 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -42265,81 +42255,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.267e-40 - H2 1.634e-40 1.636e-40 -39.787 -39.786 0.001 (0) -O(0) 3.108e-13 - O2 1.548e-13 1.551e-13 -12.810 -12.810 0.001 (0) - O[18O] 6.177e-16 6.187e-16 -15.209 -15.209 0.001 (0) +H(0) 6.067e-40 + H2 3.033e-40 3.038e-40 -39.518 -39.517 0.001 (0) +O(0) 9.016e-14 + O2 4.490e-14 4.498e-14 -13.348 -13.347 0.001 (0) + O[18O] 1.792e-16 1.795e-16 -15.747 -15.746 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.111 -127.110 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.036 -126.035 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.587e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.120e-08 2.186e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.041 -138.041 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.966 -136.966 0.001 (0) [14C](4) 7.685e-16 H[14C]O3- 6.208e-16 5.679e-16 -15.207 -15.246 -0.039 (0) [14C]O2 1.292e-16 1.294e-16 -15.889 -15.888 0.001 (0) CaH[14C]O3+ 1.311e-17 1.202e-17 -16.882 -16.920 -0.037 (0) - H[14C]O2[18O]- 1.239e-18 1.133e-18 -17.907 -17.946 -0.039 (0) - H[14C]O[18O]O- 1.239e-18 1.133e-18 -17.907 -17.946 -0.039 (0) H[14C][18O]O2- 1.239e-18 1.133e-18 -17.907 -17.946 -0.039 (0) + H[14C]O[18O]O- 1.239e-18 1.133e-18 -17.907 -17.946 -0.039 (0) + H[14C]O2[18O]- 1.239e-18 1.133e-18 -17.907 -17.946 -0.039 (0) Ca[14C]O3 7.186e-19 7.198e-19 -18.144 -18.143 0.001 (0) [14C]O[18O] 5.371e-19 5.380e-19 -18.270 -18.269 0.001 (0) [14C]O3-2 3.686e-19 2.582e-19 -18.433 -18.588 -0.155 (0) CaH[14C]O2[18O]+ 2.615e-20 2.399e-20 -19.582 -19.620 -0.037 (0) - CaH[14C]O[18O]O+ 2.615e-20 2.399e-20 -19.582 -19.620 -0.037 (0) CaH[14C][18O]O2+ 2.615e-20 2.399e-20 -19.582 -19.620 -0.037 (0) + CaH[14C]O[18O]O+ 2.615e-20 2.399e-20 -19.582 -19.620 -0.037 (0) Ca[14C]O2[18O] 4.301e-21 4.308e-21 -20.366 -20.366 0.001 (0) + H[14C][18O]O[18O]- 2.471e-21 2.261e-21 -20.607 -20.646 -0.039 (0) H[14C]O[18O]2- 2.471e-21 2.261e-21 -20.607 -20.646 -0.039 (0) H[14C][18O]2O- 2.471e-21 2.261e-21 -20.607 -20.646 -0.039 (0) - H[14C][18O]O[18O]- 2.471e-21 2.261e-21 -20.607 -20.646 -0.039 (0) [14C]O2[18O]-2 2.206e-21 1.546e-21 -20.656 -20.811 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.189e-16 - O[18O] 6.177e-16 6.187e-16 -15.209 -15.209 0.001 (0) - [18O]2 6.162e-19 6.172e-19 -18.210 -18.210 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.795e-16 + O[18O] 1.792e-16 1.795e-16 -15.747 -15.746 0.001 (0) + [18O]2 1.787e-19 1.790e-19 -18.748 -18.747 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.25 -127.11 -2.86 [13C]H4 + [13C]H4(g) -123.17 -126.03 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.78 -21.29 -1.50 [14C][18O]2 - [14C]H4(g) -135.18 -138.04 -2.86 [14C]H4 + [14C]H4(g) -134.11 -136.97 -2.86 [14C]H4 [14C]O2(g) -14.42 -15.89 -1.47 [14C]O2 [14C]O[18O](g) -16.80 -18.59 -1.79 [14C]O[18O] - [18O]2(g) -15.92 -18.21 -2.29 [18O]2 + [18O]2(g) -16.46 -18.75 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -42353,14 +42343,14 @@ O(0) 3.108e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.29 -125.15 -2.86 CH4 + CH4(g) -121.22 -124.08 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.64 -39.79 -3.15 H2 + H2(g) -36.37 -39.52 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.92 -12.81 -2.89 O2 - O[18O](g) -12.62 -15.51 -2.89 O[18O] + O2(g) -10.45 -13.35 -2.89 O2 + O[18O](g) -13.15 -16.05 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -42424,7 +42414,7 @@ Calcite 2.56e-02 R(18O) 1.99520e-03 -4.9885 permil R(13C) 1.11388e-02 -3.6992 permil - R(14C) 1.29492e-13 11.012 pmc + R(14C) 1.29493e-13 11.012 pmc R(18O) H2O(l) 1.99519e-03 -4.99 permil R(18O) OH- 1.92123e-03 -41.877 permil R(18O) H3O+ 2.04133e-03 18.018 permil @@ -42434,13 +42424,13 @@ Calcite 2.56e-02 R(18O) CO2(aq) 2.07916e-03 36.884 permil R(18O) HCO3- 1.99519e-03 -4.99 permil R(13C) HCO3- 1.11553e-02 -2.2237 permil - R(14C) HCO3- 1.29874e-13 11.045 pmc + R(14C) HCO3- 1.29875e-13 11.045 pmc R(18O) CO3-2 1.99519e-03 -4.99 permil R(13C) CO3-2 1.11393e-02 -3.6556 permil - R(14C) CO3-2 1.29502e-13 11.013 pmc + R(14C) CO3-2 1.29503e-13 11.013 pmc R(18O) Calcite 2.05264e-03 23.656 permil R(13C) Calcite 1.11774e-02 -0.24743 permil - R(14C) Calcite 1.30389e-13 11.089 pmc + R(14C) Calcite 1.30390e-13 11.089 pmc --------------------------------Isotope Alphas--------------------------------- @@ -42450,12 +42440,12 @@ Calcite 2.56e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2421e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2582e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7139e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7258e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -42475,14 +42465,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.338 Adjusted to redox equilibrium + pe = 11.199 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -42497,14 +42487,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.218 -125.218 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.103 -124.102 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -42512,9 +42502,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -42522,50 +42512,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.149e-40 - H2 1.575e-40 1.577e-40 -39.803 -39.802 0.001 (0) -O(0) 3.346e-13 - O2 1.666e-13 1.669e-13 -12.778 -12.778 0.001 (0) - O[18O] 6.649e-16 6.660e-16 -15.177 -15.177 0.001 (0) +H(0) 5.985e-40 + H2 2.992e-40 2.997e-40 -39.524 -39.523 0.001 (0) +O(0) 9.265e-14 + O2 4.614e-14 4.622e-14 -13.336 -13.335 0.001 (0) + O[18O] 1.841e-16 1.844e-16 -15.735 -15.734 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.174 -127.174 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.059 -126.058 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.587e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.120e-08 2.186e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.112 -138.112 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.997 -136.996 0.001 (0) [14C](4) 7.562e-16 H[14C]O3- 6.109e-16 5.589e-16 -15.214 -15.253 -0.039 (0) [14C]O2 1.271e-16 1.273e-16 -15.896 -15.895 0.001 (0) CaH[14C]O3+ 1.290e-17 1.183e-17 -16.889 -16.927 -0.037 (0) - H[14C]O2[18O]- 1.219e-18 1.115e-18 -17.914 -17.953 -0.039 (0) - H[14C]O[18O]O- 1.219e-18 1.115e-18 -17.914 -17.953 -0.039 (0) H[14C][18O]O2- 1.219e-18 1.115e-18 -17.914 -17.953 -0.039 (0) + H[14C]O[18O]O- 1.219e-18 1.115e-18 -17.914 -17.953 -0.039 (0) + H[14C]O2[18O]- 1.219e-18 1.115e-18 -17.914 -17.953 -0.039 (0) Ca[14C]O3 7.072e-19 7.083e-19 -18.150 -18.150 0.001 (0) [14C]O[18O] 5.286e-19 5.294e-19 -18.277 -18.276 0.001 (0) [14C]O3-2 3.628e-19 2.541e-19 -18.440 -18.595 -0.155 (0) CaH[14C]O2[18O]+ 2.574e-20 2.361e-20 -19.589 -19.627 -0.037 (0) - CaH[14C]O[18O]O+ 2.574e-20 2.361e-20 -19.589 -19.627 -0.037 (0) CaH[14C][18O]O2+ 2.574e-20 2.361e-20 -19.589 -19.627 -0.037 (0) + CaH[14C]O[18O]O+ 2.574e-20 2.361e-20 -19.589 -19.627 -0.037 (0) Ca[14C]O2[18O] 4.233e-21 4.240e-21 -20.373 -20.373 0.001 (0) H[14C]O[18O]2- 2.432e-21 2.225e-21 -20.614 -20.653 -0.039 (0) H[14C][18O]2O- 2.432e-21 2.225e-21 -20.614 -20.653 -0.039 (0) @@ -42574,29 +42564,29 @@ O(0) 3.346e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.662e-16 - O[18O] 6.649e-16 6.660e-16 -15.177 -15.177 0.001 (0) - [18O]2 6.633e-19 6.644e-19 -18.178 -18.178 0.001 (0) +[18O](0) 1.845e-16 + O[18O] 1.841e-16 1.844e-16 -15.735 -15.734 0.001 (0) + [18O]2 1.837e-19 1.840e-19 -18.736 -18.735 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.31 -127.17 -2.86 [13C]H4 + [13C]H4(g) -123.20 -126.06 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.79 -21.30 -1.50 [14C][18O]2 - [14C]H4(g) -135.25 -138.11 -2.86 [14C]H4 + [14C]H4(g) -134.14 -137.00 -2.86 [14C]H4 [14C]O2(g) -14.43 -15.90 -1.47 [14C]O2 [14C]O[18O](g) -16.81 -18.60 -1.79 [14C]O[18O] - [18O]2(g) -15.89 -18.18 -2.29 [18O]2 + [18O]2(g) -16.44 -18.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -42610,14 +42600,14 @@ O(0) 3.346e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.36 -125.22 -2.86 CH4 + CH4(g) -121.24 -124.10 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.65 -39.80 -3.15 H2 + H2(g) -36.37 -39.52 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.89 -12.78 -2.89 O2 - O[18O](g) -12.59 -15.48 -2.89 O[18O] + O2(g) -10.44 -13.34 -2.89 O2 + O[18O](g) -13.14 -16.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -42681,23 +42671,23 @@ Calcite 2.61e-02 R(18O) 1.99520e-03 -4.9883 permil R(13C) 1.11392e-02 -3.663 permil - R(14C) 1.27462e-13 10.84 pmc + R(14C) 1.27463e-13 10.84 pmc R(18O) H2O(l) 1.99519e-03 -4.9898 permil R(18O) OH- 1.92123e-03 -41.877 permil R(18O) H3O+ 2.04133e-03 18.018 permil R(18O) O2(aq) 1.99519e-03 -4.9898 permil R(13C) CO2(aq) 1.10595e-02 -10.793 permil - R(14C) CO2(aq) 1.25643e-13 10.685 pmc + R(14C) CO2(aq) 1.25644e-13 10.685 pmc R(18O) CO2(aq) 2.07916e-03 36.884 permil R(18O) HCO3- 1.99519e-03 -4.9898 permil R(13C) HCO3- 1.11557e-02 -2.1874 permil - R(14C) HCO3- 1.27839e-13 10.872 pmc + R(14C) HCO3- 1.27840e-13 10.872 pmc R(18O) CO3-2 1.99519e-03 -4.9898 permil R(13C) CO3-2 1.11397e-02 -3.6194 permil - R(14C) CO3-2 1.27472e-13 10.841 pmc + R(14C) CO3-2 1.27473e-13 10.841 pmc R(18O) Calcite 2.05264e-03 23.657 permil R(13C) Calcite 1.11778e-02 -0.2111 permil - R(14C) Calcite 1.28346e-13 10.915 pmc + R(14C) Calcite 1.28347e-13 10.915 pmc --------------------------------Isotope Alphas--------------------------------- @@ -42707,12 +42697,12 @@ Calcite 2.61e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2623e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2475e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7748e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7224e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -42732,14 +42722,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.339 Adjusted to redox equilibrium + pe = 11.183 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -42754,24 +42744,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.222 -125.222 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.976 -123.976 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -42779,23 +42769,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.142e-40 - H2 1.571e-40 1.574e-40 -39.804 -39.803 0.001 (0) -O(0) 3.361e-13 - O2 1.674e-13 1.677e-13 -12.776 -12.776 0.001 (0) - O[18O] 6.680e-16 6.691e-16 -15.175 -15.175 0.001 (0) +H(0) 6.437e-40 + H2 3.219e-40 3.224e-40 -39.492 -39.492 0.001 (0) +O(0) 8.008e-14 + O2 3.988e-14 3.995e-14 -13.399 -13.399 0.001 (0) + O[18O] 1.591e-16 1.594e-16 -15.798 -15.798 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.179 -127.178 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.932 -125.932 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.587e-08 -7.339 -7.338 0.001 (0) @@ -42804,56 +42794,56 @@ O(0) 3.361e-13 CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.123 -138.122 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.877 -136.876 0.001 (0) [14C](4) 7.444e-16 H[14C]O3- 6.013e-16 5.501e-16 -15.221 -15.260 -0.039 (0) [14C]O2 1.251e-16 1.253e-16 -15.903 -15.902 0.001 (0) CaH[14C]O3+ 1.270e-17 1.165e-17 -16.896 -16.934 -0.037 (0) - H[14C]O2[18O]- 1.200e-18 1.098e-18 -17.921 -17.960 -0.039 (0) - H[14C]O[18O]O- 1.200e-18 1.098e-18 -17.921 -17.960 -0.039 (0) H[14C][18O]O2- 1.200e-18 1.098e-18 -17.921 -17.960 -0.039 (0) + H[14C]O[18O]O- 1.200e-18 1.098e-18 -17.921 -17.960 -0.039 (0) + H[14C]O2[18O]- 1.200e-18 1.098e-18 -17.921 -17.960 -0.039 (0) Ca[14C]O3 6.961e-19 6.972e-19 -18.157 -18.157 0.001 (0) [14C]O[18O] 5.203e-19 5.211e-19 -18.284 -18.283 0.001 (0) [14C]O3-2 3.571e-19 2.501e-19 -18.447 -18.602 -0.155 (0) CaH[14C]O2[18O]+ 2.533e-20 2.324e-20 -19.596 -19.634 -0.037 (0) - CaH[14C]O[18O]O+ 2.533e-20 2.324e-20 -19.596 -19.634 -0.037 (0) CaH[14C][18O]O2+ 2.533e-20 2.324e-20 -19.596 -19.634 -0.037 (0) + CaH[14C]O[18O]O+ 2.533e-20 2.324e-20 -19.596 -19.634 -0.037 (0) Ca[14C]O2[18O] 4.166e-21 4.173e-21 -20.380 -20.380 0.001 (0) - H[14C]O[18O]2- 2.394e-21 2.190e-21 -20.621 -20.660 -0.039 (0) H[14C][18O]2O- 2.394e-21 2.190e-21 -20.621 -20.660 -0.039 (0) H[14C][18O]O[18O]- 2.394e-21 2.190e-21 -20.621 -20.660 -0.039 (0) + H[14C]O[18O]2- 2.394e-21 2.190e-21 -20.621 -20.660 -0.039 (0) [14C]O2[18O]-2 2.137e-21 1.497e-21 -20.670 -20.825 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.693e-16 - O[18O] 6.680e-16 6.691e-16 -15.175 -15.175 0.001 (0) - [18O]2 6.664e-19 6.675e-19 -18.176 -18.176 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.595e-16 + O[18O] 1.591e-16 1.594e-16 -15.798 -15.798 0.001 (0) + [18O]2 1.588e-19 1.590e-19 -18.799 -18.799 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.32 -127.18 -2.86 [13C]H4 + [13C]H4(g) -123.07 -125.93 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.80 -21.30 -1.50 [14C][18O]2 - [14C]H4(g) -135.26 -138.12 -2.86 [14C]H4 + [14C]H4(g) -134.02 -136.88 -2.86 [14C]H4 [14C]O2(g) -14.43 -15.90 -1.47 [14C]O2 [14C]O[18O](g) -16.81 -18.60 -1.79 [14C]O[18O] - [18O]2(g) -15.89 -18.18 -2.29 [18O]2 + [18O]2(g) -16.51 -18.80 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -42867,14 +42857,14 @@ O(0) 3.361e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.36 -125.22 -2.86 CH4 + CH4(g) -121.12 -123.98 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.65 -39.80 -3.15 H2 + H2(g) -36.34 -39.49 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.88 -12.78 -2.89 O2 - O[18O](g) -12.58 -15.48 -2.89 O[18O] + O2(g) -10.51 -13.40 -2.89 O2 + O[18O](g) -13.21 -16.10 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -42930,7 +42920,7 @@ Calcite 2.66e-02 Ca[14C]O3(s) 3.30e-15 1.14e-17 1.24e-13 Ca[14C]O2[18O](s) 2.03e-17 7.01e-20 7.65e-16 Ca[14C]O[18O]2(s) 4.17e-20 1.44e-22 1.57e-18 - Ca[14C][18O]3(s) 2.85e-23 9.84e-26 1.07e-21 + Ca[14C][18O]3(s) 2.85e-23 9.85e-26 1.07e-21 --------------------------------Isotope Ratios--------------------------------- @@ -42944,17 +42934,17 @@ Calcite 2.66e-02 R(18O) H3O+ 2.04133e-03 18.018 permil R(18O) O2(aq) 1.99519e-03 -4.9897 permil R(13C) CO2(aq) 1.10599e-02 -10.759 permil - R(14C) CO2(aq) 1.23704e-13 10.52 pmc + R(14C) CO2(aq) 1.23705e-13 10.52 pmc R(18O) CO2(aq) 2.07916e-03 36.884 permil R(18O) HCO3- 1.99519e-03 -4.9897 permil R(13C) HCO3- 1.11561e-02 -2.1523 permil - R(14C) HCO3- 1.25866e-13 10.704 pmc + R(14C) HCO3- 1.25867e-13 10.704 pmc R(18O) CO3-2 1.99519e-03 -4.9897 permil R(13C) CO3-2 1.11401e-02 -3.5843 permil - R(14C) CO3-2 1.25505e-13 10.673 pmc + R(14C) CO3-2 1.25506e-13 10.673 pmc R(18O) Calcite 2.05264e-03 23.657 permil R(13C) Calcite 1.11782e-02 -0.1759 permil - R(14C) Calcite 1.26365e-13 10.746 pmc + R(14C) Calcite 1.26366e-13 10.746 pmc --------------------------------Isotope Alphas--------------------------------- @@ -42964,12 +42954,12 @@ Calcite 2.66e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.268e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2539e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7072e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7211e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -42989,14 +42979,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.319 Adjusted to redox equilibrium + pe = 11.067 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -43011,14 +43001,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.067 -125.066 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.049 -123.048 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -43026,9 +43016,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -43036,81 +43026,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.437e-40 - H2 1.718e-40 1.721e-40 -39.765 -39.764 0.001 (0) -O(0) 2.810e-13 - O2 1.399e-13 1.402e-13 -12.854 -12.853 0.001 (0) - O[18O] 5.584e-16 5.593e-16 -15.253 -15.252 0.001 (0) +H(0) 1.098e-39 + H2 5.489e-40 5.498e-40 -39.261 -39.260 0.001 (0) +O(0) 2.754e-14 + O2 1.371e-14 1.374e-14 -13.863 -13.862 0.001 (0) + O[18O] 5.472e-17 5.481e-17 -16.262 -16.261 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.023 -127.022 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.005 -125.005 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.587e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.186e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.974 -137.973 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.957 -135.956 0.001 (0) [14C](4) 7.329e-16 H[14C]O3- 5.920e-16 5.416e-16 -15.228 -15.266 -0.039 (0) [14C]O2 1.232e-16 1.234e-16 -15.909 -15.909 0.001 (0) CaH[14C]O3+ 1.250e-17 1.147e-17 -16.903 -16.941 -0.037 (0) - H[14C]O2[18O]- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) - H[14C]O[18O]O- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) H[14C][18O]O2- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) + H[14C]O[18O]O- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) + H[14C]O2[18O]- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) Ca[14C]O3 6.853e-19 6.865e-19 -18.164 -18.163 0.001 (0) - [14C]O[18O] 5.122e-19 5.131e-19 -18.291 -18.290 0.001 (0) + [14C]O[18O] 5.123e-19 5.131e-19 -18.291 -18.290 0.001 (0) [14C]O3-2 3.516e-19 2.463e-19 -18.454 -18.609 -0.155 (0) CaH[14C]O2[18O]+ 2.494e-20 2.288e-20 -19.603 -19.641 -0.037 (0) - CaH[14C]O[18O]O+ 2.494e-20 2.288e-20 -19.603 -19.641 -0.037 (0) CaH[14C][18O]O2+ 2.494e-20 2.288e-20 -19.603 -19.641 -0.037 (0) + CaH[14C]O[18O]O+ 2.494e-20 2.288e-20 -19.603 -19.641 -0.037 (0) Ca[14C]O2[18O] 4.102e-21 4.109e-21 -20.387 -20.386 0.001 (0) + H[14C][18O]O[18O]- 2.357e-21 2.156e-21 -20.628 -20.666 -0.039 (0) H[14C]O[18O]2- 2.357e-21 2.156e-21 -20.628 -20.666 -0.039 (0) H[14C][18O]2O- 2.357e-21 2.156e-21 -20.628 -20.666 -0.039 (0) - H[14C][18O]O[18O]- 2.357e-21 2.156e-21 -20.628 -20.666 -0.039 (0) [14C]O2[18O]-2 2.104e-21 1.474e-21 -20.677 -20.831 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.595e-16 - O[18O] 5.584e-16 5.593e-16 -15.253 -15.252 0.001 (0) - [18O]2 5.570e-19 5.579e-19 -18.254 -18.253 0.001 (0) +[18O](0) 5.483e-17 + O[18O] 5.472e-17 5.481e-17 -16.262 -16.261 0.001 (0) + [18O]2 5.459e-20 5.468e-20 -19.263 -19.262 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.16 -127.02 -2.86 [13C]H4 + [13C]H4(g) -122.14 -125.00 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.81 -21.31 -1.50 [14C][18O]2 - [14C]H4(g) -135.11 -137.97 -2.86 [14C]H4 + [14C]H4(g) -133.10 -135.96 -2.86 [14C]H4 [14C]O2(g) -14.44 -15.91 -1.47 [14C]O2 [14C]O[18O](g) -16.82 -18.61 -1.79 [14C]O[18O] - [18O]2(g) -15.96 -18.25 -2.29 [18O]2 + [18O]2(g) -16.97 -19.26 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -43124,14 +43114,14 @@ O(0) 2.810e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.21 -125.07 -2.86 CH4 + CH4(g) -120.19 -123.05 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.61 -39.76 -3.15 H2 + H2(g) -36.11 -39.26 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.96 -12.85 -2.89 O2 - O[18O](g) -12.66 -15.55 -2.89 O[18O] + O2(g) -10.97 -13.86 -2.89 O2 + O[18O](g) -13.67 -16.56 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -43208,10 +43198,10 @@ Calcite 2.71e-02 R(14C) HCO3- 1.23954e-13 10.541 pmc R(18O) CO3-2 1.99519e-03 -4.9896 permil R(13C) CO3-2 1.11405e-02 -3.5503 permil - R(14C) CO3-2 1.23598e-13 10.511 pmc + R(14C) CO3-2 1.23599e-13 10.511 pmc R(18O) Calcite 2.05264e-03 23.657 permil R(13C) Calcite 1.11786e-02 -0.14176 permil - R(14C) Calcite 1.24445e-13 10.583 pmc + R(14C) Calcite 1.24446e-13 10.583 pmc --------------------------------Isotope Alphas--------------------------------- @@ -43221,12 +43211,12 @@ Calcite 2.71e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2264e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.246e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6704e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5489e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -43240,20 +43230,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.506e-05 6.487e-05 - [14C] 7.217e-16 7.196e-16 + [14C] 7.218e-16 7.196e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.303 Adjusted to redox equilibrium + pe = 10.853 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -43268,24 +43258,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.937 -124.936 0.001 (0) + CH4 0.000e+00 0.000e+00 -121.334 -121.333 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -43293,50 +43283,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.703e-40 - H2 1.852e-40 1.855e-40 -39.732 -39.732 0.001 (0) -O(0) 2.419e-13 - O2 1.205e-13 1.207e-13 -12.919 -12.918 0.001 (0) - O[18O] 4.808e-16 4.816e-16 -15.318 -15.317 0.001 (0) +H(0) 2.946e-39 + H2 1.473e-39 1.475e-39 -38.832 -38.831 0.001 (0) +O(0) 3.823e-15 + O2 1.904e-15 1.907e-15 -14.720 -14.720 0.001 (0) + O[18O] 7.598e-18 7.611e-18 -17.119 -17.119 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.893 -126.892 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -123.290 -123.290 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.247e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.587e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.186e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.851 -137.850 0.001 (0) -[14C](4) 7.217e-16 + [14C]H4 0.000e+00 0.000e+00 -134.248 -134.248 0.001 (0) +[14C](4) 7.218e-16 H[14C]O3- 5.830e-16 5.334e-16 -15.234 -15.273 -0.039 (0) [14C]O2 1.213e-16 1.215e-16 -15.916 -15.915 0.001 (0) CaH[14C]O3+ 1.231e-17 1.129e-17 -16.910 -16.947 -0.037 (0) - H[14C]O2[18O]- 1.163e-18 1.064e-18 -17.934 -17.973 -0.039 (0) - H[14C]O[18O]O- 1.163e-18 1.064e-18 -17.934 -17.973 -0.039 (0) H[14C][18O]O2- 1.163e-18 1.064e-18 -17.934 -17.973 -0.039 (0) + H[14C]O[18O]O- 1.163e-18 1.064e-18 -17.934 -17.973 -0.039 (0) + H[14C]O2[18O]- 1.163e-18 1.064e-18 -17.934 -17.973 -0.039 (0) Ca[14C]O3 6.749e-19 6.760e-19 -18.171 -18.170 0.001 (0) [14C]O[18O] 5.045e-19 5.053e-19 -18.297 -18.296 0.001 (0) [14C]O3-2 3.462e-19 2.425e-19 -18.461 -18.615 -0.155 (0) CaH[14C]O2[18O]+ 2.456e-20 2.253e-20 -19.610 -19.647 -0.037 (0) - CaH[14C]O[18O]O+ 2.456e-20 2.253e-20 -19.610 -19.647 -0.037 (0) CaH[14C][18O]O2+ 2.456e-20 2.253e-20 -19.610 -19.647 -0.037 (0) + CaH[14C]O[18O]O+ 2.456e-20 2.253e-20 -19.610 -19.647 -0.037 (0) Ca[14C]O2[18O] 4.040e-21 4.046e-21 -20.394 -20.393 0.001 (0) H[14C]O[18O]2- 2.321e-21 2.123e-21 -20.634 -20.673 -0.039 (0) H[14C][18O]2O- 2.321e-21 2.123e-21 -20.634 -20.673 -0.039 (0) @@ -43345,29 +43335,29 @@ O(0) 2.419e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.817e-16 - O[18O] 4.808e-16 4.816e-16 -15.318 -15.317 0.001 (0) - [18O]2 4.796e-19 4.804e-19 -18.319 -18.318 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 7.613e-18 + O[18O] 7.598e-18 7.611e-18 -17.119 -17.119 0.001 (0) + [18O]2 7.580e-21 7.592e-21 -20.120 -20.120 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.03 -126.89 -2.86 [13C]H4 + [13C]H4(g) -120.43 -123.29 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.81 -21.32 -1.50 [14C][18O]2 - [14C]H4(g) -134.99 -137.85 -2.86 [14C]H4 + [14C]H4(g) -131.39 -134.25 -2.86 [14C]H4 [14C]O2(g) -14.45 -15.92 -1.47 [14C]O2 [14C]O[18O](g) -16.83 -18.62 -1.79 [14C]O[18O] - [18O]2(g) -16.03 -18.32 -2.29 [18O]2 + [18O]2(g) -17.83 -20.12 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -43381,14 +43371,14 @@ O(0) 2.419e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.08 -124.94 -2.86 CH4 + CH4(g) -118.47 -121.33 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.58 -39.73 -3.15 H2 + H2(g) -35.68 -38.83 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.03 -12.92 -2.89 O2 - O[18O](g) -12.73 -15.62 -2.89 O[18O] + O2(g) -11.83 -14.72 -2.89 O2 + O[18O](g) -14.53 -17.42 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -43458,17 +43448,17 @@ Calcite 2.76e-02 R(18O) H3O+ 2.04133e-03 18.018 permil R(18O) O2(aq) 1.99520e-03 -4.9894 permil R(13C) CO2(aq) 1.10607e-02 -10.692 permil - R(14C) CO2(aq) 1.20001e-13 10.205 pmc + R(14C) CO2(aq) 1.20002e-13 10.205 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil R(18O) HCO3- 1.99520e-03 -4.9894 permil R(13C) HCO3- 1.11569e-02 -2.0852 permil - R(14C) HCO3- 1.22098e-13 10.383 pmc + R(14C) HCO3- 1.22099e-13 10.384 pmc R(18O) CO3-2 1.99520e-03 -4.9894 permil R(13C) CO3-2 1.11409e-02 -3.5173 permil - R(14C) CO3-2 1.21748e-13 10.354 pmc + R(14C) CO3-2 1.21749e-13 10.354 pmc R(18O) Calcite 2.05264e-03 23.657 permil R(13C) Calcite 1.11790e-02 -0.10865 permil - R(14C) Calcite 1.22582e-13 10.425 pmc + R(14C) Calcite 1.22583e-13 10.425 pmc --------------------------------Isotope Alphas--------------------------------- @@ -43478,12 +43468,12 @@ Calcite 2.76e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2375e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2558e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5581e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6396e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -43503,14 +43493,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.297 Adjusted to redox equilibrium + pe = 11.471 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -43525,13 +43515,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.886 -124.886 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.284 -126.283 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -43540,9 +43530,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -43550,23 +43540,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.812e-40 - H2 1.906e-40 1.909e-40 -39.720 -39.719 0.001 (0) -O(0) 2.283e-13 - O2 1.137e-13 1.139e-13 -12.944 -12.944 0.001 (0) - O[18O] 4.537e-16 4.545e-16 -15.343 -15.342 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.069 -40.068 0.001 (0) +O(0) 1.141e-12 + O2 5.681e-13 5.691e-13 -12.246 -12.245 0.001 (0) + O[18O] 2.267e-15 2.271e-15 -14.645 -14.644 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.842 -126.842 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.240 -128.239 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.588e-08 -7.339 -7.338 0.001 (0) @@ -43575,56 +43565,56 @@ O(0) 2.283e-13 CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.807 -137.806 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.204 -139.204 0.001 (0) [14C](4) 7.109e-16 H[14C]O3- 5.743e-16 5.254e-16 -15.241 -15.280 -0.039 (0) [14C]O2 1.195e-16 1.197e-16 -15.923 -15.922 0.001 (0) CaH[14C]O3+ 1.213e-17 1.112e-17 -16.916 -16.954 -0.037 (0) - H[14C]O2[18O]- 1.146e-18 1.048e-18 -17.941 -17.980 -0.039 (0) - H[14C]O[18O]O- 1.146e-18 1.048e-18 -17.941 -17.980 -0.039 (0) H[14C][18O]O2- 1.146e-18 1.048e-18 -17.941 -17.980 -0.039 (0) + H[14C]O[18O]O- 1.146e-18 1.048e-18 -17.941 -17.980 -0.039 (0) + H[14C]O2[18O]- 1.146e-18 1.048e-18 -17.941 -17.980 -0.039 (0) Ca[14C]O3 6.648e-19 6.659e-19 -18.177 -18.177 0.001 (0) [14C]O[18O] 4.969e-19 4.977e-19 -18.304 -18.303 0.001 (0) [14C]O3-2 3.410e-19 2.389e-19 -18.467 -18.622 -0.155 (0) CaH[14C]O2[18O]+ 2.420e-20 2.220e-20 -19.616 -19.654 -0.037 (0) - CaH[14C]O[18O]O+ 2.420e-20 2.220e-20 -19.616 -19.654 -0.037 (0) CaH[14C][18O]O2+ 2.420e-20 2.220e-20 -19.616 -19.654 -0.037 (0) + CaH[14C]O[18O]O+ 2.420e-20 2.220e-20 -19.616 -19.654 -0.037 (0) Ca[14C]O2[18O] 3.979e-21 3.986e-21 -20.400 -20.399 0.001 (0) - H[14C]O[18O]2- 2.286e-21 2.092e-21 -20.641 -20.680 -0.039 (0) H[14C][18O]2O- 2.286e-21 2.092e-21 -20.641 -20.680 -0.039 (0) H[14C][18O]O[18O]- 2.286e-21 2.092e-21 -20.641 -20.680 -0.039 (0) + H[14C]O[18O]2- 2.286e-21 2.092e-21 -20.641 -20.680 -0.039 (0) [14C]O2[18O]-2 2.041e-21 1.430e-21 -20.690 -20.845 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.546e-16 - O[18O] 4.537e-16 4.545e-16 -15.343 -15.342 0.001 (0) - [18O]2 4.526e-19 4.534e-19 -18.344 -18.344 0.001 (0) +[18O](0) 2.272e-15 + O[18O] 2.267e-15 2.271e-15 -14.645 -14.644 0.001 (0) + [18O]2 2.262e-18 2.265e-18 -17.646 -17.645 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.98 -126.84 -2.86 [13C]H4 + [13C]H4(g) -125.38 -128.24 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.82 -21.32 -1.50 [14C][18O]2 - [14C]H4(g) -134.95 -137.81 -2.86 [14C]H4 + [14C]H4(g) -136.34 -139.20 -2.86 [14C]H4 [14C]O2(g) -14.45 -15.92 -1.47 [14C]O2 [14C]O[18O](g) -16.83 -18.62 -1.79 [14C]O[18O] - [18O]2(g) -16.05 -18.34 -2.29 [18O]2 + [18O]2(g) -15.35 -17.64 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -43638,14 +43628,14 @@ O(0) 2.283e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.03 -124.89 -2.86 CH4 + CH4(g) -123.42 -126.28 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.57 -39.72 -3.15 H2 + H2(g) -36.92 -40.07 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.05 -12.94 -2.89 O2 - O[18O](g) -12.75 -15.64 -2.89 O[18O] + O2(g) -9.35 -12.24 -2.89 O2 + O[18O](g) -12.05 -14.94 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -43709,13 +43699,13 @@ Calcite 2.81e-02 R(18O) 1.99520e-03 -4.9878 permil R(13C) 1.11407e-02 -3.5289 permil - R(14C) 1.19943e-13 10.2 pmc + R(14C) 1.19944e-13 10.2 pmc R(18O) H2O(l) 1.99520e-03 -4.9893 permil R(18O) OH- 1.92123e-03 -41.877 permil R(18O) H3O+ 2.04133e-03 18.019 permil R(18O) O2(aq) 1.99520e-03 -4.9893 permil R(13C) CO2(aq) 1.10610e-02 -10.66 permil - R(14C) CO2(aq) 1.18231e-13 10.055 pmc + R(14C) CO2(aq) 1.18232e-13 10.055 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil R(18O) HCO3- 1.99520e-03 -4.9893 permil R(13C) HCO3- 1.11572e-02 -2.0531 permil @@ -43735,12 +43725,12 @@ Calcite 2.81e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2675e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2532e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6709e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.685e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -43760,14 +43750,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.306 Adjusted to redox equilibrium + pe = 11.472 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -43782,24 +43772,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.963 -124.962 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.291 -126.290 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -43807,81 +43797,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.648e-40 - H2 1.824e-40 1.827e-40 -39.739 -39.738 0.001 (0) -O(0) 2.494e-13 - O2 1.242e-13 1.244e-13 -12.906 -12.905 0.001 (0) - O[18O] 4.956e-16 4.964e-16 -15.305 -15.304 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.071 -40.070 0.001 (0) +O(0) 1.150e-12 + O2 5.728e-13 5.738e-13 -12.242 -12.241 0.001 (0) + O[18O] 2.286e-15 2.290e-15 -14.641 -14.640 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.919 -126.918 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.247 -128.246 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.588e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.186e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.890 -137.890 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.218 -139.217 0.001 (0) [14C](4) 7.005e-16 H[14C]O3- 5.658e-16 5.177e-16 -15.247 -15.286 -0.039 (0) [14C]O2 1.177e-16 1.179e-16 -15.929 -15.928 0.001 (0) CaH[14C]O3+ 1.195e-17 1.096e-17 -16.923 -16.960 -0.037 (0) - H[14C]O2[18O]- 1.129e-18 1.033e-18 -17.947 -17.986 -0.039 (0) - H[14C]O[18O]O- 1.129e-18 1.033e-18 -17.947 -17.986 -0.039 (0) H[14C][18O]O2- 1.129e-18 1.033e-18 -17.947 -17.986 -0.039 (0) + H[14C]O[18O]O- 1.129e-18 1.033e-18 -17.947 -17.986 -0.039 (0) + H[14C]O2[18O]- 1.129e-18 1.033e-18 -17.947 -17.986 -0.039 (0) Ca[14C]O3 6.550e-19 6.561e-19 -18.184 -18.183 0.001 (0) [14C]O[18O] 4.896e-19 4.904e-19 -18.310 -18.309 0.001 (0) [14C]O3-2 3.360e-19 2.354e-19 -18.474 -18.628 -0.155 (0) CaH[14C]O2[18O]+ 2.384e-20 2.187e-20 -19.623 -19.660 -0.037 (0) - CaH[14C]O[18O]O+ 2.384e-20 2.187e-20 -19.623 -19.660 -0.037 (0) CaH[14C][18O]O2+ 2.384e-20 2.187e-20 -19.623 -19.660 -0.037 (0) + CaH[14C]O[18O]O+ 2.384e-20 2.187e-20 -19.623 -19.660 -0.037 (0) Ca[14C]O2[18O] 3.921e-21 3.927e-21 -20.407 -20.406 0.001 (0) + H[14C][18O]O[18O]- 2.252e-21 2.061e-21 -20.647 -20.686 -0.039 (0) H[14C]O[18O]2- 2.252e-21 2.061e-21 -20.647 -20.686 -0.039 (0) H[14C][18O]2O- 2.252e-21 2.061e-21 -20.647 -20.686 -0.039 (0) - H[14C][18O]O[18O]- 2.252e-21 2.061e-21 -20.647 -20.686 -0.039 (0) [14C]O2[18O]-2 2.011e-21 1.409e-21 -20.697 -20.851 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.966e-16 - O[18O] 4.956e-16 4.964e-16 -15.305 -15.304 0.001 (0) - [18O]2 4.944e-19 4.952e-19 -18.306 -18.305 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.290e-15 + O[18O] 2.286e-15 2.290e-15 -14.641 -14.640 0.001 (0) + [18O]2 2.280e-18 2.284e-18 -17.642 -17.641 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.06 -126.92 -2.86 [13C]H4 + [13C]H4(g) -125.39 -128.25 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.82 -21.33 -1.50 [14C][18O]2 - [14C]H4(g) -135.03 -137.89 -2.86 [14C]H4 + [14C]H4(g) -136.36 -139.22 -2.86 [14C]H4 [14C]O2(g) -14.46 -15.93 -1.47 [14C]O2 [14C]O[18O](g) -16.84 -18.63 -1.79 [14C]O[18O] - [18O]2(g) -16.01 -18.31 -2.29 [18O]2 + [18O]2(g) -15.35 -17.64 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -43895,14 +43885,14 @@ O(0) 2.494e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.10 -124.96 -2.86 CH4 + CH4(g) -123.43 -126.29 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.59 -39.74 -3.15 H2 + H2(g) -36.92 -40.07 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.01 -12.91 -2.89 O2 - O[18O](g) -12.71 -15.61 -2.89 O[18O] + O2(g) -9.35 -12.24 -2.89 O2 + O[18O](g) -12.05 -14.94 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -43966,23 +43956,23 @@ Calcite 2.86e-02 R(18O) 1.99520e-03 -4.9876 permil R(13C) 1.11411e-02 -3.4978 permil - R(14C) 1.18200e-13 10.052 pmc + R(14C) 1.18201e-13 10.052 pmc R(18O) H2O(l) 1.99520e-03 -4.9891 permil R(18O) OH- 1.92123e-03 -41.877 permil R(18O) H3O+ 2.04133e-03 18.019 permil R(18O) O2(aq) 1.99520e-03 -4.9891 permil R(13C) CO2(aq) 1.10614e-02 -10.629 permil - R(14C) CO2(aq) 1.16513e-13 9.9085 pmc + R(14C) CO2(aq) 1.16514e-13 9.9086 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil R(18O) HCO3- 1.99520e-03 -4.9891 permil R(13C) HCO3- 1.11576e-02 -2.022 permil - R(14C) HCO3- 1.18549e-13 10.082 pmc + R(14C) HCO3- 1.18550e-13 10.082 pmc R(18O) CO3-2 1.99520e-03 -4.9891 permil R(13C) CO3-2 1.11416e-02 -3.4541 permil - R(14C) CO3-2 1.18209e-13 10.053 pmc + R(14C) CO3-2 1.18210e-13 10.053 pmc R(18O) Calcite 2.05264e-03 23.657 permil - R(13C) Calcite 1.11797e-02 -0.045306 permil - R(14C) Calcite 1.19019e-13 10.122 pmc + R(13C) Calcite 1.11797e-02 -0.045305 permil + R(14C) Calcite 1.19020e-13 10.122 pmc --------------------------------Isotope Alphas--------------------------------- @@ -43992,12 +43982,12 @@ Calcite 2.86e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2525e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2382e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7006e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6469e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -44017,14 +44007,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.290 Adjusted to redox equilibrium + pe = 11.470 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -44039,14 +44029,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.835 -124.834 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.270 -126.269 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -44054,9 +44044,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -44064,50 +44054,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.927e-40 - H2 1.963e-40 1.967e-40 -39.707 -39.706 0.001 (0) -O(0) 2.152e-13 - O2 1.072e-13 1.073e-13 -12.970 -12.969 0.001 (0) - O[18O] 4.276e-16 4.283e-16 -15.369 -15.368 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.066 -40.065 0.001 (0) +O(0) 1.123e-12 + O2 5.593e-13 5.602e-13 -12.252 -12.252 0.001 (0) + O[18O] 2.232e-15 2.235e-15 -14.651 -14.651 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.791 -126.790 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.226 -128.225 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.588e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.186e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.768 -137.768 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.204 -139.203 0.001 (0) [14C](4) 6.903e-16 H[14C]O3- 5.576e-16 5.101e-16 -15.254 -15.292 -0.039 (0) [14C]O2 1.160e-16 1.162e-16 -15.935 -15.935 0.001 (0) CaH[14C]O3+ 1.177e-17 1.080e-17 -16.929 -16.967 -0.037 (0) - H[14C]O2[18O]- 1.113e-18 1.018e-18 -17.954 -17.992 -0.039 (0) - H[14C]O[18O]O- 1.113e-18 1.018e-18 -17.954 -17.992 -0.039 (0) H[14C][18O]O2- 1.113e-18 1.018e-18 -17.954 -17.992 -0.039 (0) + H[14C]O[18O]O- 1.113e-18 1.018e-18 -17.954 -17.992 -0.039 (0) + H[14C]O2[18O]- 1.113e-18 1.018e-18 -17.954 -17.992 -0.039 (0) Ca[14C]O3 6.455e-19 6.466e-19 -18.190 -18.189 0.001 (0) [14C]O[18O] 4.825e-19 4.833e-19 -18.317 -18.316 0.001 (0) [14C]O3-2 3.311e-19 2.320e-19 -18.480 -18.635 -0.155 (0) CaH[14C]O2[18O]+ 2.349e-20 2.155e-20 -19.629 -19.667 -0.037 (0) - CaH[14C]O[18O]O+ 2.349e-20 2.155e-20 -19.629 -19.667 -0.037 (0) CaH[14C][18O]O2+ 2.349e-20 2.155e-20 -19.629 -19.667 -0.037 (0) + CaH[14C]O[18O]O+ 2.349e-20 2.155e-20 -19.629 -19.667 -0.037 (0) Ca[14C]O2[18O] 3.864e-21 3.870e-21 -20.413 -20.412 0.001 (0) H[14C]O[18O]2- 2.220e-21 2.031e-21 -20.654 -20.692 -0.039 (0) H[14C][18O]2O- 2.220e-21 2.031e-21 -20.654 -20.692 -0.039 (0) @@ -44116,29 +44106,29 @@ O(0) 2.152e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.285e-16 - O[18O] 4.276e-16 4.283e-16 -15.369 -15.368 0.001 (0) - [18O]2 4.266e-19 4.273e-19 -18.370 -18.369 0.001 (0) +[18O](0) 2.236e-15 + O[18O] 2.232e-15 2.235e-15 -14.651 -14.651 0.001 (0) + [18O]2 2.226e-18 2.230e-18 -17.652 -17.652 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.93 -126.79 -2.86 [13C]H4 + [13C]H4(g) -125.37 -128.23 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.83 -21.33 -1.50 [14C][18O]2 - [14C]H4(g) -134.91 -137.77 -2.86 [14C]H4 + [14C]H4(g) -136.34 -139.20 -2.86 [14C]H4 [14C]O2(g) -14.47 -15.93 -1.47 [14C]O2 [14C]O[18O](g) -16.85 -18.63 -1.79 [14C]O[18O] - [18O]2(g) -16.08 -18.37 -2.29 [18O]2 + [18O]2(g) -15.36 -17.65 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -44152,14 +44142,14 @@ O(0) 2.152e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.97 -124.83 -2.86 CH4 + CH4(g) -123.41 -126.27 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.56 -39.71 -3.15 H2 + H2(g) -36.92 -40.07 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.08 -12.97 -2.89 O2 - O[18O](g) -12.78 -15.67 -2.89 O[18O] + O2(g) -9.36 -12.25 -2.89 O2 + O[18O](g) -12.06 -14.95 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -44223,23 +44213,23 @@ Calcite 2.91e-02 R(18O) 1.99520e-03 -4.9875 permil R(13C) 1.11414e-02 -3.4676 permil - R(14C) 1.16507e-13 9.908 pmc + R(14C) 1.16508e-13 9.9081 pmc R(18O) H2O(l) 1.99520e-03 -4.989 permil R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.019 permil R(18O) O2(aq) 1.99520e-03 -4.989 permil R(13C) CO2(aq) 1.10617e-02 -10.599 permil - R(14C) CO2(aq) 1.14844e-13 9.7666 pmc + R(14C) CO2(aq) 1.14845e-13 9.7667 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil R(18O) HCO3- 1.99520e-03 -4.989 permil R(13C) HCO3- 1.11579e-02 -1.9917 permil - R(14C) HCO3- 1.16851e-13 9.9373 pmc + R(14C) HCO3- 1.16852e-13 9.9373 pmc R(18O) CO3-2 1.99520e-03 -4.989 permil R(13C) CO3-2 1.11419e-02 -3.4239 permil - R(14C) CO3-2 1.16516e-13 9.9088 pmc + R(14C) CO3-2 1.16517e-13 9.9088 pmc R(18O) Calcite 2.05264e-03 23.657 permil - R(13C) Calcite 1.11800e-02 -0.014995 permil - R(14C) Calcite 1.17314e-13 9.9767 pmc + R(13C) Calcite 1.11800e-02 -0.014994 permil + R(14C) Calcite 1.17315e-13 9.9767 pmc --------------------------------Isotope Alphas--------------------------------- @@ -44249,12 +44239,12 @@ Calcite 2.91e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.26e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2455e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6845e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6968e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -44274,14 +44264,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.278 Adjusted to redox equilibrium + pe = 11.468 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -44296,24 +44286,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.738 -124.738 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.258 -126.257 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -44321,23 +44311,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.151e-40 - H2 2.076e-40 2.079e-40 -39.683 -39.682 0.001 (0) -O(0) 1.925e-13 - O2 9.589e-14 9.604e-14 -13.018 -13.018 0.001 (0) - O[18O] 3.826e-16 3.833e-16 -15.417 -15.417 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.063 -40.062 0.001 (0) +O(0) 1.107e-12 + O2 5.515e-13 5.524e-13 -12.258 -12.258 0.001 (0) + O[18O] 2.201e-15 2.204e-15 -14.657 -14.657 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.694 -126.694 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.214 -128.213 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.588e-08 -7.339 -7.338 0.001 (0) @@ -44346,56 +44336,56 @@ O(0) 1.925e-13 CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.678 -137.677 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.198 -139.197 0.001 (0) [14C](4) 6.804e-16 H[14C]O3- 5.496e-16 5.028e-16 -15.260 -15.299 -0.039 (0) [14C]O2 1.144e-16 1.146e-16 -15.942 -15.941 0.001 (0) CaH[14C]O3+ 1.161e-17 1.065e-17 -16.935 -16.973 -0.037 (0) - H[14C]O2[18O]- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) - H[14C]O[18O]O- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) H[14C][18O]O2- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) - Ca[14C]O3 6.362e-19 6.373e-19 -18.196 -18.196 0.001 (0) + H[14C]O[18O]O- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) + H[14C]O2[18O]- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) + Ca[14C]O3 6.363e-19 6.373e-19 -18.196 -18.196 0.001 (0) [14C]O[18O] 4.756e-19 4.763e-19 -18.323 -18.322 0.001 (0) [14C]O3-2 3.264e-19 2.286e-19 -18.486 -18.641 -0.155 (0) CaH[14C]O2[18O]+ 2.316e-20 2.124e-20 -19.635 -19.673 -0.037 (0) - CaH[14C]O[18O]O+ 2.316e-20 2.124e-20 -19.635 -19.673 -0.037 (0) CaH[14C][18O]O2+ 2.316e-20 2.124e-20 -19.635 -19.673 -0.037 (0) + CaH[14C]O[18O]O+ 2.316e-20 2.124e-20 -19.635 -19.673 -0.037 (0) Ca[14C]O2[18O] 3.808e-21 3.815e-21 -20.419 -20.419 0.001 (0) - H[14C]O[18O]2- 2.188e-21 2.002e-21 -20.660 -20.699 -0.039 (0) H[14C][18O]2O- 2.188e-21 2.002e-21 -20.660 -20.699 -0.039 (0) H[14C][18O]O[18O]- 2.188e-21 2.002e-21 -20.660 -20.699 -0.039 (0) + H[14C]O[18O]2- 2.188e-21 2.002e-21 -20.660 -20.699 -0.039 (0) [14C]O2[18O]-2 1.954e-21 1.369e-21 -20.709 -20.864 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.834e-16 - O[18O] 3.826e-16 3.833e-16 -15.417 -15.417 0.001 (0) - [18O]2 3.817e-19 3.823e-19 -18.418 -18.418 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.205e-15 + O[18O] 2.201e-15 2.204e-15 -14.657 -14.657 0.001 (0) + [18O]2 2.195e-18 2.199e-18 -17.658 -17.658 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.83 -126.69 -2.86 [13C]H4 + [13C]H4(g) -125.35 -128.21 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.84 -21.34 -1.50 [14C][18O]2 - [14C]H4(g) -134.82 -137.68 -2.86 [14C]H4 + [14C]H4(g) -136.34 -139.20 -2.86 [14C]H4 [14C]O2(g) -14.47 -15.94 -1.47 [14C]O2 [14C]O[18O](g) -16.85 -18.64 -1.79 [14C]O[18O] - [18O]2(g) -16.13 -18.42 -2.29 [18O]2 + [18O]2(g) -15.37 -17.66 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -44409,14 +44399,14 @@ O(0) 1.925e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.88 -124.74 -2.86 CH4 + CH4(g) -123.40 -126.26 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.53 -39.68 -3.15 H2 + H2(g) -36.91 -40.06 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.13 -13.02 -2.89 O2 - O[18O](g) -12.83 -15.72 -2.89 O[18O] + O2(g) -9.37 -12.26 -2.89 O2 + O[18O](g) -12.07 -14.96 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -44486,16 +44476,16 @@ Calcite 2.96e-02 R(18O) H3O+ 2.04133e-03 18.019 permil R(18O) O2(aq) 1.99520e-03 -4.9889 permil R(13C) CO2(aq) 1.10620e-02 -10.57 permil - R(14C) CO2(aq) 1.13222e-13 9.6287 pmc + R(14C) CO2(aq) 1.13223e-13 9.6287 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil R(18O) HCO3- 1.99520e-03 -4.9889 permil R(13C) HCO3- 1.11583e-02 -1.9623 permil - R(14C) HCO3- 1.15201e-13 9.7969 pmc + R(14C) HCO3- 1.15202e-13 9.797 pmc R(18O) CO3-2 1.99520e-03 -4.9889 permil R(13C) CO3-2 1.11422e-02 -3.3946 permil - R(14C) CO3-2 1.14870e-13 9.7688 pmc + R(14C) CO3-2 1.14871e-13 9.7689 pmc R(18O) Calcite 2.05264e-03 23.658 permil - R(13C) Calcite 1.11804e-02 0.014461 permil + R(13C) Calcite 1.11804e-02 0.014462 permil R(14C) Calcite 1.15658e-13 9.8358 pmc --------------------------------Isotope Alphas--------------------------------- @@ -44506,12 +44496,12 @@ Calcite 2.96e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2553e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2716e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7905e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6654e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -44531,14 +44521,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.274 Adjusted to redox equilibrium + pe = 11.469 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -44553,14 +44543,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.701 -124.700 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.263 -126.262 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -44568,9 +44558,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -44578,81 +44568,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.241e-40 - H2 2.121e-40 2.124e-40 -39.674 -39.673 0.001 (0) -O(0) 1.845e-13 - O2 9.188e-14 9.203e-14 -13.037 -13.036 0.001 (0) - O[18O] 3.666e-16 3.672e-16 -15.436 -15.435 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.064 -40.063 0.001 (0) +O(0) 1.114e-12 + O2 5.546e-13 5.555e-13 -12.256 -12.255 0.001 (0) + O[18O] 2.213e-15 2.217e-15 -14.655 -14.654 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.657 -126.657 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.219 -128.218 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.248e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.588e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.647 -137.646 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.209 -139.208 0.001 (0) [14C](4) 6.708e-16 - H[14C]O3- 5.418e-16 4.957e-16 -15.266 -15.305 -0.039 (0) + H[14C]O3- 5.419e-16 4.957e-16 -15.266 -15.305 -0.039 (0) [14C]O2 1.127e-16 1.129e-16 -15.948 -15.947 0.001 (0) CaH[14C]O3+ 1.144e-17 1.050e-17 -16.941 -16.979 -0.037 (0) - H[14C]O2[18O]- 1.081e-18 9.891e-19 -17.966 -18.005 -0.039 (0) - H[14C]O[18O]O- 1.081e-18 9.891e-19 -17.966 -18.005 -0.039 (0) H[14C][18O]O2- 1.081e-18 9.891e-19 -17.966 -18.005 -0.039 (0) + H[14C]O[18O]O- 1.081e-18 9.891e-19 -17.966 -18.005 -0.039 (0) + H[14C]O2[18O]- 1.081e-18 9.891e-19 -17.966 -18.005 -0.039 (0) Ca[14C]O3 6.273e-19 6.283e-19 -18.203 -18.202 0.001 (0) [14C]O[18O] 4.688e-19 4.696e-19 -18.329 -18.328 0.001 (0) [14C]O3-2 3.218e-19 2.254e-19 -18.492 -18.647 -0.155 (0) CaH[14C]O2[18O]+ 2.283e-20 2.094e-20 -19.642 -19.679 -0.037 (0) - CaH[14C]O[18O]O+ 2.283e-20 2.094e-20 -19.642 -19.679 -0.037 (0) CaH[14C][18O]O2+ 2.283e-20 2.094e-20 -19.642 -19.679 -0.037 (0) + CaH[14C]O[18O]O+ 2.283e-20 2.094e-20 -19.642 -19.679 -0.037 (0) Ca[14C]O2[18O] 3.755e-21 3.761e-21 -20.425 -20.425 0.001 (0) + H[14C][18O]O[18O]- 2.157e-21 1.973e-21 -20.666 -20.705 -0.039 (0) H[14C]O[18O]2- 2.157e-21 1.973e-21 -20.666 -20.705 -0.039 (0) H[14C][18O]2O- 2.157e-21 1.973e-21 -20.666 -20.705 -0.039 (0) - H[14C][18O]O[18O]- 2.157e-21 1.973e-21 -20.666 -20.705 -0.039 (0) [14C]O2[18O]-2 1.926e-21 1.349e-21 -20.715 -20.870 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.674e-16 - O[18O] 3.666e-16 3.672e-16 -15.436 -15.435 0.001 (0) - [18O]2 3.657e-19 3.663e-19 -18.437 -18.436 0.001 (0) +[18O](0) 2.217e-15 + O[18O] 2.213e-15 2.217e-15 -14.655 -14.654 0.001 (0) + [18O]2 2.208e-18 2.211e-18 -17.656 -17.655 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.80 -126.66 -2.86 [13C]H4 + [13C]H4(g) -125.36 -128.22 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.84 -21.35 -1.50 [14C][18O]2 - [14C]H4(g) -134.79 -137.65 -2.86 [14C]H4 + [14C]H4(g) -136.35 -139.21 -2.86 [14C]H4 [14C]O2(g) -14.48 -15.95 -1.47 [14C]O2 [14C]O[18O](g) -16.86 -18.65 -1.79 [14C]O[18O] - [18O]2(g) -16.15 -18.44 -2.29 [18O]2 + [18O]2(g) -15.37 -17.66 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -44666,14 +44656,14 @@ O(0) 1.845e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.84 -124.70 -2.86 CH4 + CH4(g) -123.40 -126.26 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.52 -39.67 -3.15 H2 + H2(g) -36.91 -40.06 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.14 -13.04 -2.89 O2 - O[18O](g) -12.84 -15.74 -2.89 O[18O] + O2(g) -9.36 -12.26 -2.89 O2 + O[18O](g) -12.06 -14.96 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -44737,7 +44727,7 @@ Calcite 3.01e-02 R(18O) 1.99520e-03 -4.9872 permil R(13C) 1.11421e-02 -3.4097 permil - R(14C) 1.13262e-13 9.632 pmc + R(14C) 1.13263e-13 9.6321 pmc R(18O) H2O(l) 1.99520e-03 -4.9887 permil R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.019 permil @@ -44747,13 +44737,13 @@ Calcite 3.01e-02 R(18O) CO2(aq) 2.07916e-03 36.885 permil R(18O) HCO3- 1.99520e-03 -4.9887 permil R(13C) HCO3- 1.11586e-02 -1.9337 permil - R(14C) HCO3- 1.13597e-13 9.6605 pmc + R(14C) HCO3- 1.13597e-13 9.6606 pmc R(18O) CO3-2 1.99520e-03 -4.9887 permil R(13C) CO3-2 1.11426e-02 -3.366 permil - R(14C) CO3-2 1.13271e-13 9.6328 pmc + R(14C) CO3-2 1.13272e-13 9.6329 pmc R(18O) Calcite 2.05264e-03 23.658 permil R(13C) Calcite 1.11807e-02 0.043097 permil - R(14C) Calcite 1.14047e-13 9.6988 pmc + R(14C) Calcite 1.14048e-13 9.6989 pmc --------------------------------Isotope Alphas--------------------------------- @@ -44763,12 +44753,12 @@ Calcite 3.01e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2732e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2908e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6476e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5935e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -44788,14 +44778,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.267 Adjusted to redox equilibrium + pe = 11.467 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -44810,24 +44800,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.646 -124.645 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.248 -126.247 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -44835,50 +44825,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.378e-40 - H2 2.189e-40 2.192e-40 -39.660 -39.659 0.001 (0) -O(0) 1.731e-13 - O2 8.623e-14 8.637e-14 -13.064 -13.064 0.001 (0) - O[18O] 3.441e-16 3.447e-16 -15.463 -15.463 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.060 -40.060 0.001 (0) +O(0) 1.095e-12 + O2 5.454e-13 5.463e-13 -12.263 -12.263 0.001 (0) + O[18O] 2.176e-15 2.180e-15 -14.662 -14.662 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.602 -126.601 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.204 -128.204 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.248e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.588e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.598 -137.597 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.200 -139.200 0.001 (0) [14C](4) 6.614e-16 H[14C]O3- 5.343e-16 4.888e-16 -15.272 -15.311 -0.039 (0) [14C]O2 1.112e-16 1.114e-16 -15.954 -15.953 0.001 (0) CaH[14C]O3+ 1.128e-17 1.035e-17 -16.948 -16.985 -0.037 (0) - H[14C]O2[18O]- 1.066e-18 9.753e-19 -17.972 -18.011 -0.039 (0) - H[14C]O[18O]O- 1.066e-18 9.753e-19 -17.972 -18.011 -0.039 (0) H[14C][18O]O2- 1.066e-18 9.753e-19 -17.972 -18.011 -0.039 (0) + H[14C]O[18O]O- 1.066e-18 9.753e-19 -17.972 -18.011 -0.039 (0) + H[14C]O2[18O]- 1.066e-18 9.753e-19 -17.972 -18.011 -0.039 (0) Ca[14C]O3 6.185e-19 6.195e-19 -18.209 -18.208 0.001 (0) [14C]O[18O] 4.623e-19 4.631e-19 -18.335 -18.334 0.001 (0) [14C]O3-2 3.173e-19 2.223e-19 -18.499 -18.653 -0.155 (0) CaH[14C]O2[18O]+ 2.251e-20 2.065e-20 -19.648 -19.685 -0.037 (0) - CaH[14C]O[18O]O+ 2.251e-20 2.065e-20 -19.648 -19.685 -0.037 (0) CaH[14C][18O]O2+ 2.251e-20 2.065e-20 -19.648 -19.685 -0.037 (0) + CaH[14C]O[18O]O+ 2.251e-20 2.065e-20 -19.648 -19.685 -0.037 (0) Ca[14C]O2[18O] 3.702e-21 3.708e-21 -20.432 -20.431 0.001 (0) H[14C]O[18O]2- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) H[14C][18O]2O- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) @@ -44887,29 +44877,29 @@ O(0) 1.731e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.448e-16 - O[18O] 3.441e-16 3.447e-16 -15.463 -15.463 0.001 (0) - [18O]2 3.433e-19 3.438e-19 -18.464 -18.464 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.181e-15 + O[18O] 2.176e-15 2.180e-15 -14.662 -14.662 0.001 (0) + [18O]2 2.171e-18 2.175e-18 -17.663 -17.663 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.74 -126.60 -2.86 [13C]H4 + [13C]H4(g) -125.34 -128.20 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.85 -21.35 -1.50 [14C][18O]2 - [14C]H4(g) -134.74 -137.60 -2.86 [14C]H4 + [14C]H4(g) -136.34 -139.20 -2.86 [14C]H4 [14C]O2(g) -14.48 -15.95 -1.47 [14C]O2 [14C]O[18O](g) -16.87 -18.65 -1.79 [14C]O[18O] - [18O]2(g) -16.17 -18.46 -2.29 [18O]2 + [18O]2(g) -15.37 -17.66 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -44923,14 +44913,14 @@ O(0) 1.731e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.79 -124.65 -2.86 CH4 + CH4(g) -123.39 -126.25 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.51 -39.66 -3.15 H2 + H2(g) -36.91 -40.06 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.17 -13.06 -2.89 O2 - O[18O](g) -12.87 -15.76 -2.89 O[18O] + O2(g) -9.37 -12.26 -2.89 O2 + O[18O](g) -12.07 -14.96 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -44994,23 +44984,23 @@ Calcite 3.06e-02 R(18O) 1.99520e-03 -4.9871 permil R(13C) 1.11424e-02 -3.382 permil - R(14C) 1.11706e-13 9.4998 pmc + R(14C) 1.11707e-13 9.4998 pmc R(18O) H2O(l) 1.99520e-03 -4.9886 permil R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.019 permil R(18O) O2(aq) 1.99520e-03 -4.9886 permil R(13C) CO2(aq) 1.10626e-02 -10.514 permil - R(14C) CO2(aq) 1.10112e-13 9.3642 pmc + R(14C) CO2(aq) 1.10113e-13 9.3642 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.9886 permil R(13C) HCO3- 1.11589e-02 -1.9059 permil - R(14C) HCO3- 1.12036e-13 9.5278 pmc + R(14C) HCO3- 1.12037e-13 9.5279 pmc R(18O) CO3-2 1.99520e-03 -4.9886 permil R(13C) CO3-2 1.11429e-02 -3.3383 permil - R(14C) CO3-2 1.11715e-13 9.5005 pmc + R(14C) CO3-2 1.11716e-13 9.5005 pmc R(18O) Calcite 2.05264e-03 23.658 permil - R(13C) Calcite 1.11810e-02 0.070946 permil - R(14C) Calcite 1.12481e-13 9.5656 pmc + R(13C) Calcite 1.11810e-02 0.070947 permil + R(14C) Calcite 1.12481e-13 9.5657 pmc --------------------------------Isotope Alphas--------------------------------- @@ -45020,12 +45010,12 @@ Calcite 3.06e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2807e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2643e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7109e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7243e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -45045,14 +45035,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.277 Adjusted to redox equilibrium + pe = 11.469 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -45067,13 +45057,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.728 -124.728 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.267 -126.267 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -45082,9 +45072,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -45092,23 +45082,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.175e-40 - H2 2.087e-40 2.091e-40 -39.680 -39.680 0.001 (0) -O(0) 1.904e-13 - O2 9.481e-14 9.497e-14 -13.023 -13.022 0.001 (0) - O[18O] 3.783e-16 3.790e-16 -15.422 -15.421 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.065 -40.064 0.001 (0) +O(0) 1.120e-12 + O2 5.575e-13 5.584e-13 -12.254 -12.253 0.001 (0) + O[18O] 2.225e-15 2.228e-15 -14.653 -14.652 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.685 -126.684 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.223 -128.223 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.588e-08 -7.339 -7.338 0.001 (0) @@ -45117,56 +45107,56 @@ O(0) 1.904e-13 CaH[13C]O[18O]O+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.687 -137.686 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.225 -139.225 0.001 (0) [14C](4) 6.524e-16 H[14C]O3- 5.270e-16 4.821e-16 -15.278 -15.317 -0.039 (0) [14C]O2 1.097e-16 1.098e-16 -15.960 -15.959 0.001 (0) CaH[14C]O3+ 1.113e-17 1.021e-17 -16.954 -16.991 -0.037 (0) - H[14C]O2[18O]- 1.051e-18 9.619e-19 -17.978 -18.017 -0.039 (0) - H[14C]O[18O]O- 1.051e-18 9.619e-19 -17.978 -18.017 -0.039 (0) H[14C][18O]O2- 1.051e-18 9.619e-19 -17.978 -18.017 -0.039 (0) + H[14C]O[18O]O- 1.051e-18 9.619e-19 -17.978 -18.017 -0.039 (0) + H[14C]O2[18O]- 1.051e-18 9.619e-19 -17.978 -18.017 -0.039 (0) Ca[14C]O3 6.100e-19 6.110e-19 -18.215 -18.214 0.001 (0) [14C]O[18O] 4.560e-19 4.567e-19 -18.341 -18.340 0.001 (0) [14C]O3-2 3.129e-19 2.192e-19 -18.505 -18.659 -0.155 (0) CaH[14C]O2[18O]+ 2.220e-20 2.037e-20 -19.654 -19.691 -0.037 (0) - CaH[14C]O[18O]O+ 2.220e-20 2.037e-20 -19.654 -19.691 -0.037 (0) CaH[14C][18O]O2+ 2.220e-20 2.037e-20 -19.654 -19.691 -0.037 (0) + CaH[14C]O[18O]O+ 2.220e-20 2.037e-20 -19.654 -19.691 -0.037 (0) Ca[14C]O2[18O] 3.651e-21 3.657e-21 -20.438 -20.437 0.001 (0) - H[14C]O[18O]2- 2.098e-21 1.919e-21 -20.678 -20.717 -0.039 (0) H[14C][18O]2O- 2.098e-21 1.919e-21 -20.678 -20.717 -0.039 (0) H[14C][18O]O[18O]- 2.098e-21 1.919e-21 -20.678 -20.717 -0.039 (0) + H[14C]O[18O]2- 2.098e-21 1.919e-21 -20.678 -20.717 -0.039 (0) [14C]O2[18O]-2 1.873e-21 1.312e-21 -20.727 -20.882 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.791e-16 - O[18O] 3.783e-16 3.790e-16 -15.422 -15.421 0.001 (0) - [18O]2 3.774e-19 3.780e-19 -18.423 -18.422 0.001 (0) +[18O](0) 2.229e-15 + O[18O] 2.225e-15 2.228e-15 -14.653 -14.652 0.001 (0) + [18O]2 2.219e-18 2.223e-18 -17.654 -17.653 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.82 -126.68 -2.86 [13C]H4 + [13C]H4(g) -125.36 -128.22 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.86 -21.36 -1.50 [14C][18O]2 - [14C]H4(g) -134.83 -137.69 -2.86 [14C]H4 + [14C]H4(g) -136.36 -139.22 -2.86 [14C]H4 [14C]O2(g) -14.49 -15.96 -1.47 [14C]O2 [14C]O[18O](g) -16.87 -18.66 -1.79 [14C]O[18O] - [18O]2(g) -16.13 -18.42 -2.29 [18O]2 + [18O]2(g) -15.36 -17.65 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -45180,14 +45170,14 @@ O(0) 1.904e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.87 -124.73 -2.86 CH4 + CH4(g) -123.41 -126.27 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.53 -39.68 -3.15 H2 + H2(g) -36.91 -40.06 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.13 -13.02 -2.89 O2 - O[18O](g) -12.83 -15.72 -2.89 O[18O] + O2(g) -9.36 -12.25 -2.89 O2 + O[18O](g) -12.06 -14.95 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -45251,23 +45241,23 @@ Calcite 3.11e-02 R(18O) 1.99520e-03 -4.9869 permil R(13C) 1.11427e-02 -3.355 permil - R(14C) 1.10193e-13 9.371 pmc + R(14C) 1.10194e-13 9.3711 pmc R(18O) H2O(l) 1.99520e-03 -4.9885 permil R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.019 permil R(18O) O2(aq) 1.99520e-03 -4.9885 permil R(13C) CO2(aq) 1.10629e-02 -10.488 permil - R(14C) CO2(aq) 1.08620e-13 9.2373 pmc + R(14C) CO2(aq) 1.08621e-13 9.2374 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.9885 permil R(13C) HCO3- 1.11592e-02 -1.8789 permil - R(14C) HCO3- 1.10518e-13 9.3987 pmc + R(14C) HCO3- 1.10519e-13 9.3988 pmc R(18O) CO3-2 1.99520e-03 -4.9885 permil R(13C) CO3-2 1.11432e-02 -3.3113 permil - R(14C) CO3-2 1.10201e-13 9.3718 pmc + R(14C) CO3-2 1.10202e-13 9.3718 pmc R(18O) Calcite 2.05264e-03 23.658 permil - R(13C) Calcite 1.11813e-02 0.098041 permil - R(14C) Calcite 1.10957e-13 9.436 pmc + R(13C) Calcite 1.11813e-02 0.098042 permil + R(14C) Calcite 1.10957e-13 9.4361 pmc --------------------------------Isotope Alphas--------------------------------- @@ -45277,12 +45267,12 @@ Calcite 3.11e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2471e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2308e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.675e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6884e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -45302,14 +45292,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.264 Adjusted to redox equilibrium + pe = 11.467 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -45324,24 +45314,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.625 -124.624 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.245 -126.244 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -45349,81 +45339,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.432e-40 - H2 2.216e-40 2.220e-40 -39.654 -39.654 0.001 (0) -O(0) 1.689e-13 - O2 8.412e-14 8.426e-14 -13.075 -13.074 0.001 (0) - O[18O] 3.357e-16 3.362e-16 -15.474 -15.473 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.059 -40.059 0.001 (0) +O(0) 1.091e-12 + O2 5.432e-13 5.441e-13 -12.265 -12.264 0.001 (0) + O[18O] 2.168e-15 2.171e-15 -14.664 -14.663 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.581 -126.580 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.201 -128.200 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.589 -137.588 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.209 -139.208 0.001 (0) [14C](4) 6.435e-16 H[14C]O3- 5.198e-16 4.756e-16 -15.284 -15.323 -0.039 (0) [14C]O2 1.082e-16 1.083e-16 -15.966 -15.965 0.001 (0) CaH[14C]O3+ 1.098e-17 1.007e-17 -16.960 -16.997 -0.037 (0) - H[14C]O2[18O]- 1.037e-18 9.489e-19 -17.984 -18.023 -0.039 (0) - H[14C]O[18O]O- 1.037e-18 9.489e-19 -17.984 -18.023 -0.039 (0) H[14C][18O]O2- 1.037e-18 9.489e-19 -17.984 -18.023 -0.039 (0) + H[14C]O[18O]O- 1.037e-18 9.489e-19 -17.984 -18.023 -0.039 (0) + H[14C]O2[18O]- 1.037e-18 9.489e-19 -17.984 -18.023 -0.039 (0) Ca[14C]O3 6.018e-19 6.028e-19 -18.221 -18.220 0.001 (0) [14C]O[18O] 4.498e-19 4.505e-19 -18.347 -18.346 0.001 (0) [14C]O3-2 3.087e-19 2.163e-19 -18.510 -18.665 -0.155 (0) CaH[14C]O2[18O]+ 2.190e-20 2.009e-20 -19.660 -19.697 -0.037 (0) - CaH[14C]O[18O]O+ 2.190e-20 2.009e-20 -19.660 -19.697 -0.037 (0) CaH[14C][18O]O2+ 2.190e-20 2.009e-20 -19.660 -19.697 -0.037 (0) + CaH[14C]O[18O]O+ 2.190e-20 2.009e-20 -19.660 -19.697 -0.037 (0) Ca[14C]O2[18O] 3.602e-21 3.608e-21 -20.443 -20.443 0.001 (0) + H[14C][18O]O[18O]- 2.069e-21 1.893e-21 -20.684 -20.723 -0.039 (0) H[14C]O[18O]2- 2.069e-21 1.893e-21 -20.684 -20.723 -0.039 (0) H[14C][18O]2O- 2.069e-21 1.893e-21 -20.684 -20.723 -0.039 (0) - H[14C][18O]O[18O]- 2.069e-21 1.893e-21 -20.684 -20.723 -0.039 (0) [14C]O2[18O]-2 1.848e-21 1.294e-21 -20.733 -20.888 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.363e-16 - O[18O] 3.357e-16 3.362e-16 -15.474 -15.473 0.001 (0) - [18O]2 3.349e-19 3.354e-19 -18.475 -18.474 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.172e-15 + O[18O] 2.168e-15 2.171e-15 -14.664 -14.663 0.001 (0) + [18O]2 2.162e-18 2.166e-18 -17.665 -17.664 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.72 -126.58 -2.86 [13C]H4 + [13C]H4(g) -125.34 -128.20 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.86 -21.37 -1.50 [14C][18O]2 - [14C]H4(g) -134.73 -137.59 -2.86 [14C]H4 + [14C]H4(g) -136.35 -139.21 -2.86 [14C]H4 [14C]O2(g) -14.50 -15.97 -1.47 [14C]O2 [14C]O[18O](g) -16.88 -18.67 -1.79 [14C]O[18O] - [18O]2(g) -16.18 -18.47 -2.29 [18O]2 + [18O]2(g) -15.37 -17.66 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -45437,14 +45427,14 @@ O(0) 1.689e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.76 -124.62 -2.86 CH4 + CH4(g) -123.38 -126.24 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.50 -39.65 -3.15 H2 + H2(g) -36.91 -40.06 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.18 -13.07 -2.89 O2 - O[18O](g) -12.88 -15.77 -2.89 O[18O] + O2(g) -9.37 -12.26 -2.89 O2 + O[18O](g) -12.07 -14.96 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -45508,23 +45498,23 @@ Calcite 3.16e-02 R(18O) 1.99520e-03 -4.9868 permil R(13C) 1.11430e-02 -3.3287 permil - R(14C) 1.08720e-13 9.2458 pmc + R(14C) 1.08721e-13 9.2458 pmc R(18O) H2O(l) 1.99520e-03 -4.9883 permil R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.9883 permil R(13C) CO2(aq) 1.10632e-02 -10.461 permil - R(14C) CO2(aq) 1.07168e-13 9.1138 pmc + R(14C) CO2(aq) 1.07169e-13 9.1139 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.9883 permil R(13C) HCO3- 1.11595e-02 -1.8526 permil - R(14C) HCO3- 1.09041e-13 9.2731 pmc + R(14C) HCO3- 1.09042e-13 9.2731 pmc R(18O) CO3-2 1.99520e-03 -4.9883 permil R(13C) CO3-2 1.11435e-02 -3.285 permil - R(14C) CO3-2 1.08728e-13 9.2465 pmc + R(14C) CO3-2 1.08729e-13 9.2466 pmc R(18O) Calcite 2.05264e-03 23.658 permil R(13C) Calcite 1.11816e-02 0.12441 permil - R(14C) Calcite 1.09473e-13 9.3099 pmc + R(14C) Calcite 1.09474e-13 9.3099 pmc --------------------------------Isotope Alphas--------------------------------- @@ -45534,12 +45524,12 @@ Calcite 3.16e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2705e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2534e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5177e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5287e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -45559,14 +45549,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.273 Adjusted to redox equilibrium + pe = 11.464 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -45581,14 +45571,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.697 -124.696 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.222 -126.221 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -45596,9 +45586,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -45606,50 +45596,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.251e-40 - H2 2.125e-40 2.129e-40 -39.673 -39.672 0.001 (0) -O(0) 1.836e-13 - O2 9.145e-14 9.160e-14 -13.039 -13.038 0.001 (0) - O[18O] 3.649e-16 3.655e-16 -15.438 -15.437 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.054 -40.053 0.001 (0) +O(0) 1.063e-12 + O2 5.292e-13 5.301e-13 -12.276 -12.276 0.001 (0) + O[18O] 2.112e-15 2.115e-15 -14.675 -14.675 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.653 -126.653 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.178 -128.177 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.667 -137.666 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.192 -139.191 0.001 (0) [14C](4) 6.349e-16 H[14C]O3- 5.129e-16 4.692e-16 -15.290 -15.329 -0.039 (0) [14C]O2 1.067e-16 1.069e-16 -15.972 -15.971 0.001 (0) CaH[14C]O3+ 1.083e-17 9.935e-18 -16.965 -17.003 -0.037 (0) - H[14C]O2[18O]- 1.023e-18 9.362e-19 -17.990 -18.029 -0.039 (0) - H[14C]O[18O]O- 1.023e-18 9.362e-19 -17.990 -18.029 -0.039 (0) H[14C][18O]O2- 1.023e-18 9.362e-19 -17.990 -18.029 -0.039 (0) + H[14C]O[18O]O- 1.023e-18 9.362e-19 -17.990 -18.029 -0.039 (0) + H[14C]O2[18O]- 1.023e-18 9.362e-19 -17.990 -18.029 -0.039 (0) Ca[14C]O3 5.937e-19 5.947e-19 -18.226 -18.226 0.001 (0) [14C]O[18O] 4.438e-19 4.445e-19 -18.353 -18.352 0.001 (0) [14C]O3-2 3.046e-19 2.134e-19 -18.516 -18.671 -0.155 (0) CaH[14C]O2[18O]+ 2.161e-20 1.982e-20 -19.665 -19.703 -0.037 (0) - CaH[14C]O[18O]O+ 2.161e-20 1.982e-20 -19.665 -19.703 -0.037 (0) CaH[14C][18O]O2+ 2.161e-20 1.982e-20 -19.665 -19.703 -0.037 (0) + CaH[14C]O[18O]O+ 2.161e-20 1.982e-20 -19.665 -19.703 -0.037 (0) Ca[14C]O2[18O] 3.554e-21 3.560e-21 -20.449 -20.449 0.001 (0) H[14C]O[18O]2- 2.042e-21 1.868e-21 -20.690 -20.729 -0.039 (0) H[14C][18O]2O- 2.042e-21 1.868e-21 -20.690 -20.729 -0.039 (0) @@ -45658,29 +45648,29 @@ O(0) 1.836e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.657e-16 - O[18O] 3.649e-16 3.655e-16 -15.438 -15.437 0.001 (0) - [18O]2 3.640e-19 3.646e-19 -18.439 -18.438 0.001 (0) +[18O](0) 2.116e-15 + O[18O] 2.112e-15 2.115e-15 -14.675 -14.675 0.001 (0) + [18O]2 2.107e-18 2.110e-18 -17.676 -17.676 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.79 -126.65 -2.86 [13C]H4 + [13C]H4(g) -125.32 -128.18 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.87 -21.37 -1.50 [14C][18O]2 - [14C]H4(g) -134.81 -137.67 -2.86 [14C]H4 + [14C]H4(g) -136.33 -139.19 -2.86 [14C]H4 [14C]O2(g) -14.50 -15.97 -1.47 [14C]O2 [14C]O[18O](g) -16.88 -18.67 -1.79 [14C]O[18O] - [18O]2(g) -16.15 -18.44 -2.29 [18O]2 + [18O]2(g) -15.39 -17.68 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -45694,14 +45684,14 @@ O(0) 1.836e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.84 -124.70 -2.86 CH4 + CH4(g) -123.36 -126.22 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.52 -39.67 -3.15 H2 + H2(g) -36.90 -40.05 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.15 -13.04 -2.89 O2 - O[18O](g) -12.85 -15.74 -2.89 O[18O] + O2(g) -9.38 -12.28 -2.89 O2 + O[18O](g) -12.08 -14.98 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -45765,23 +45755,23 @@ Calcite 3.21e-02 R(18O) 1.99520e-03 -4.9867 permil R(13C) 1.11433e-02 -3.3031 permil - R(14C) 1.07286e-13 9.1238 pmc + R(14C) 1.07287e-13 9.1239 pmc R(18O) H2O(l) 1.99520e-03 -4.9882 permil R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.9882 permil R(13C) CO2(aq) 1.10635e-02 -10.436 permil - R(14C) CO2(aq) 1.05755e-13 8.9936 pmc + R(14C) CO2(aq) 1.05755e-13 8.9937 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.9882 permil R(13C) HCO3- 1.11598e-02 -1.8269 permil R(14C) HCO3- 1.07603e-13 9.1508 pmc R(18O) CO3-2 1.99520e-03 -4.9882 permil R(13C) CO3-2 1.11438e-02 -3.2594 permil - R(14C) CO3-2 1.07294e-13 9.1245 pmc + R(14C) CO3-2 1.07295e-13 9.1246 pmc R(18O) Calcite 2.05264e-03 23.658 permil R(13C) Calcite 1.11819e-02 0.15009 permil - R(14C) Calcite 1.08029e-13 9.1871 pmc + R(14C) Calcite 1.08030e-13 9.1871 pmc --------------------------------Isotope Alphas--------------------------------- @@ -45791,12 +45781,12 @@ Calcite 3.21e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2532e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2684e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6904e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7013e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -45816,14 +45806,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.280 Adjusted to redox equilibrium + pe = 11.463 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -45838,24 +45828,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.754 -124.753 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.215 -126.214 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -45863,23 +45853,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.115e-40 - H2 2.057e-40 2.061e-40 -39.687 -39.686 0.001 (0) -O(0) 1.960e-13 - O2 9.761e-14 9.777e-14 -13.010 -13.010 0.001 (0) - O[18O] 3.895e-16 3.902e-16 -15.409 -15.409 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.052 -40.051 0.001 (0) +O(0) 1.054e-12 + O2 5.248e-13 5.256e-13 -12.280 -12.279 0.001 (0) + O[18O] 2.094e-15 2.097e-15 -14.679 -14.678 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.710 -126.709 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.171 -128.170 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.589e-08 -7.339 -7.338 0.001 (0) @@ -45888,56 +45878,56 @@ O(0) 1.960e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.729 -137.729 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.190 -139.190 0.001 (0) [14C](4) 6.265e-16 H[14C]O3- 5.061e-16 4.630e-16 -15.296 -15.334 -0.039 (0) [14C]O2 1.053e-16 1.055e-16 -15.978 -15.977 0.001 (0) CaH[14C]O3+ 1.069e-17 9.804e-18 -16.971 -17.009 -0.037 (0) - H[14C]O2[18O]- 1.010e-18 9.238e-19 -17.996 -18.034 -0.039 (0) - H[14C]O[18O]O- 1.010e-18 9.238e-19 -17.996 -18.034 -0.039 (0) H[14C][18O]O2- 1.010e-18 9.238e-19 -17.996 -18.034 -0.039 (0) + H[14C]O[18O]O- 1.010e-18 9.238e-19 -17.996 -18.034 -0.039 (0) + H[14C]O2[18O]- 1.010e-18 9.238e-19 -17.996 -18.034 -0.039 (0) Ca[14C]O3 5.859e-19 5.869e-19 -18.232 -18.231 0.001 (0) [14C]O[18O] 4.379e-19 4.386e-19 -18.359 -18.358 0.001 (0) [14C]O3-2 3.006e-19 2.106e-19 -18.522 -18.677 -0.155 (0) CaH[14C]O2[18O]+ 2.132e-20 1.956e-20 -19.671 -19.709 -0.037 (0) - CaH[14C]O[18O]O+ 2.132e-20 1.956e-20 -19.671 -19.709 -0.037 (0) CaH[14C][18O]O2+ 2.132e-20 1.956e-20 -19.671 -19.709 -0.037 (0) + CaH[14C]O[18O]O+ 2.132e-20 1.956e-20 -19.671 -19.709 -0.037 (0) Ca[14C]O2[18O] 3.507e-21 3.513e-21 -20.455 -20.454 0.001 (0) - H[14C]O[18O]2- 2.015e-21 1.843e-21 -20.696 -20.734 -0.039 (0) H[14C][18O]2O- 2.015e-21 1.843e-21 -20.696 -20.734 -0.039 (0) H[14C][18O]O[18O]- 2.015e-21 1.843e-21 -20.696 -20.734 -0.039 (0) + H[14C]O[18O]2- 2.015e-21 1.843e-21 -20.696 -20.734 -0.039 (0) [14C]O2[18O]-2 1.799e-21 1.260e-21 -20.745 -20.900 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.903e-16 - O[18O] 3.895e-16 3.902e-16 -15.409 -15.409 0.001 (0) - [18O]2 3.886e-19 3.892e-19 -18.411 -18.410 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.098e-15 + O[18O] 2.094e-15 2.097e-15 -14.679 -14.678 0.001 (0) + [18O]2 2.089e-18 2.092e-18 -17.680 -17.679 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.85 -126.71 -2.86 [13C]H4 + [13C]H4(g) -125.31 -128.17 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.87 -21.38 -1.50 [14C][18O]2 - [14C]H4(g) -134.87 -137.73 -2.86 [14C]H4 + [14C]H4(g) -136.33 -139.19 -2.86 [14C]H4 [14C]O2(g) -14.51 -15.98 -1.47 [14C]O2 [14C]O[18O](g) -16.89 -18.68 -1.79 [14C]O[18O] - [18O]2(g) -16.12 -18.41 -2.29 [18O]2 + [18O]2(g) -15.39 -17.68 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -45951,14 +45941,14 @@ O(0) 1.960e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.89 -124.75 -2.86 CH4 + CH4(g) -123.35 -126.21 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.54 -39.69 -3.15 H2 + H2(g) -36.90 -40.05 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.12 -13.01 -2.89 O2 - O[18O](g) -12.82 -15.71 -2.89 O[18O] + O2(g) -9.39 -12.28 -2.89 O2 + O[18O](g) -12.09 -14.98 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -46022,23 +46012,23 @@ Calcite 3.26e-02 R(18O) 1.99520e-03 -4.9865 permil R(13C) 1.11435e-02 -3.2782 permil - R(14C) 1.05889e-13 9.005 pmc + R(14C) 1.05890e-13 9.0051 pmc R(18O) H2O(l) 1.99520e-03 -4.988 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.988 permil R(13C) CO2(aq) 1.10638e-02 -10.411 permil - R(14C) CO2(aq) 1.04378e-13 8.8765 pmc + R(14C) CO2(aq) 1.04378e-13 8.8766 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.988 permil R(13C) HCO3- 1.11601e-02 -1.802 permil - R(14C) HCO3- 1.06202e-13 9.0316 pmc + R(14C) HCO3- 1.06202e-13 9.0317 pmc R(18O) CO3-2 1.99520e-03 -4.988 permil R(13C) CO3-2 1.11440e-02 -3.2345 permil - R(14C) CO3-2 1.05897e-13 9.0057 pmc + R(14C) CO3-2 1.05898e-13 9.0058 pmc R(18O) Calcite 2.05264e-03 23.658 permil R(13C) Calcite 1.11822e-02 0.1751 permil - R(14C) Calcite 1.06623e-13 9.0674 pmc + R(14C) Calcite 1.06624e-13 9.0675 pmc --------------------------------Isotope Alphas--------------------------------- @@ -46048,12 +46038,12 @@ Calcite 3.26e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.261e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.243e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5572e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -46073,14 +46063,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.288 Adjusted to redox equilibrium + pe = 11.461 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -46095,14 +46085,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.815 -124.814 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.197 -126.196 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -46110,9 +46100,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -46120,81 +46110,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.972e-40 - H2 1.986e-40 1.989e-40 -39.702 -39.701 0.001 (0) -O(0) 2.103e-13 - O2 1.048e-13 1.049e-13 -12.980 -12.979 0.001 (0) - O[18O] 4.180e-16 4.187e-16 -15.379 -15.378 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.047 -40.047 0.001 (0) +O(0) 1.032e-12 + O2 5.141e-13 5.150e-13 -12.289 -12.288 0.001 (0) + O[18O] 2.052e-15 2.055e-15 -14.688 -14.687 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.771 -126.770 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.153 -128.152 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.796 -137.796 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.178 -139.178 0.001 (0) [14C](4) 6.184e-16 H[14C]O3- 4.995e-16 4.570e-16 -15.301 -15.340 -0.039 (0) [14C]O2 1.039e-16 1.041e-16 -15.983 -15.983 0.001 (0) CaH[14C]O3+ 1.055e-17 9.676e-18 -16.977 -17.014 -0.037 (0) - H[14C]O2[18O]- 9.966e-19 9.118e-19 -18.001 -18.040 -0.039 (0) - H[14C]O[18O]O- 9.966e-19 9.118e-19 -18.001 -18.040 -0.039 (0) - H[14C][18O]O2- 9.966e-19 9.118e-19 -18.001 -18.040 -0.039 (0) + H[14C][18O]O2- 9.967e-19 9.118e-19 -18.001 -18.040 -0.039 (0) + H[14C]O[18O]O- 9.967e-19 9.118e-19 -18.001 -18.040 -0.039 (0) + H[14C]O2[18O]- 9.967e-19 9.118e-19 -18.001 -18.040 -0.039 (0) Ca[14C]O3 5.783e-19 5.792e-19 -18.238 -18.237 0.001 (0) [14C]O[18O] 4.322e-19 4.329e-19 -18.364 -18.364 0.001 (0) [14C]O3-2 2.966e-19 2.078e-19 -18.528 -18.682 -0.155 (0) CaH[14C]O2[18O]+ 2.105e-20 1.931e-20 -19.677 -19.714 -0.037 (0) - CaH[14C]O[18O]O+ 2.105e-20 1.931e-20 -19.677 -19.714 -0.037 (0) CaH[14C][18O]O2+ 2.105e-20 1.931e-20 -19.677 -19.714 -0.037 (0) + CaH[14C]O[18O]O+ 2.105e-20 1.931e-20 -19.677 -19.714 -0.037 (0) Ca[14C]O2[18O] 3.461e-21 3.467e-21 -20.461 -20.460 0.001 (0) + H[14C][18O]O[18O]- 1.989e-21 1.819e-21 -20.701 -20.740 -0.039 (0) H[14C]O[18O]2- 1.989e-21 1.819e-21 -20.701 -20.740 -0.039 (0) H[14C][18O]2O- 1.989e-21 1.819e-21 -20.701 -20.740 -0.039 (0) - H[14C][18O]O[18O]- 1.989e-21 1.819e-21 -20.701 -20.740 -0.039 (0) [14C]O2[18O]-2 1.776e-21 1.244e-21 -20.751 -20.905 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.188e-16 - O[18O] 4.180e-16 4.187e-16 -15.379 -15.378 0.001 (0) - [18O]2 4.170e-19 4.177e-19 -18.380 -18.379 0.001 (0) +[18O](0) 2.056e-15 + O[18O] 2.052e-15 2.055e-15 -14.688 -14.687 0.001 (0) + [18O]2 2.047e-18 2.050e-18 -17.689 -17.688 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.91 -126.77 -2.86 [13C]H4 + [13C]H4(g) -125.29 -128.15 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.88 -21.38 -1.50 [14C][18O]2 - [14C]H4(g) -134.94 -137.80 -2.86 [14C]H4 + [14C]H4(g) -136.32 -139.18 -2.86 [14C]H4 [14C]O2(g) -14.51 -15.98 -1.47 [14C]O2 [14C]O[18O](g) -16.90 -18.68 -1.79 [14C]O[18O] - [18O]2(g) -16.09 -18.38 -2.29 [18O]2 + [18O]2(g) -15.40 -17.69 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -46208,14 +46198,14 @@ O(0) 2.103e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.95 -124.81 -2.86 CH4 + CH4(g) -123.34 -126.20 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.55 -39.70 -3.15 H2 + H2(g) -36.90 -40.05 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.09 -12.98 -2.89 O2 - O[18O](g) -12.79 -15.68 -2.89 O[18O] + O2(g) -9.40 -12.29 -2.89 O2 + O[18O](g) -12.10 -14.99 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -46279,23 +46269,23 @@ Calcite 3.31e-02 R(18O) 1.99520e-03 -4.9864 permil R(13C) 1.11438e-02 -3.2539 permil - R(14C) 1.04528e-13 8.8893 pmc + R(14C) 1.04529e-13 8.8894 pmc R(18O) H2O(l) 1.99520e-03 -4.9879 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.9879 permil R(13C) CO2(aq) 1.10641e-02 -10.387 permil - R(14C) CO2(aq) 1.03036e-13 8.7624 pmc + R(14C) CO2(aq) 1.03037e-13 8.7625 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.9879 permil R(13C) HCO3- 1.11603e-02 -1.7777 permil - R(14C) HCO3- 1.04837e-13 8.9156 pmc + R(14C) HCO3- 1.04838e-13 8.9156 pmc R(18O) CO3-2 1.99520e-03 -4.9879 permil R(13C) CO3-2 1.11443e-02 -3.2102 permil - R(14C) CO3-2 1.04536e-13 8.89 pmc + R(14C) CO3-2 1.04537e-13 8.89 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11824e-02 0.19946 permil - R(14C) Calcite 1.05253e-13 8.9509 pmc + R(14C) Calcite 1.05253e-13 8.951 pmc --------------------------------Isotope Alphas--------------------------------- @@ -46305,12 +46295,12 @@ Calcite 3.31e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.263e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2439e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7794e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.584e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -46330,14 +46320,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.288 Adjusted to redox equilibrium + pe = 11.458 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -46352,24 +46342,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.812 -124.811 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.178 -126.177 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -46377,50 +46367,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.979e-40 - H2 1.989e-40 1.993e-40 -39.701 -39.701 0.001 (0) -O(0) 2.096e-13 - O2 1.044e-13 1.046e-13 -12.981 -12.981 0.001 (0) - O[18O] 4.166e-16 4.173e-16 -15.380 -15.380 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.043 -40.042 0.001 (0) +O(0) 1.010e-12 + O2 5.031e-13 5.039e-13 -12.298 -12.298 0.001 (0) + O[18O] 2.007e-15 2.011e-15 -14.697 -14.697 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.768 -126.768 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.134 -128.133 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.799 -137.798 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.165 -139.164 0.001 (0) [14C](4) 6.104e-16 H[14C]O3- 4.931e-16 4.511e-16 -15.307 -15.346 -0.039 (0) [14C]O2 1.026e-16 1.028e-16 -15.989 -15.988 0.001 (0) CaH[14C]O3+ 1.041e-17 9.552e-18 -16.982 -17.020 -0.037 (0) - H[14C]O2[18O]- 9.838e-19 9.001e-19 -18.007 -18.046 -0.039 (0) - H[14C]O[18O]O- 9.838e-19 9.001e-19 -18.007 -18.046 -0.039 (0) H[14C][18O]O2- 9.838e-19 9.001e-19 -18.007 -18.046 -0.039 (0) + H[14C]O[18O]O- 9.838e-19 9.001e-19 -18.007 -18.046 -0.039 (0) + H[14C]O2[18O]- 9.838e-19 9.001e-19 -18.007 -18.046 -0.039 (0) Ca[14C]O3 5.708e-19 5.718e-19 -18.243 -18.243 0.001 (0) [14C]O[18O] 4.267e-19 4.274e-19 -18.370 -18.369 0.001 (0) [14C]O3-2 2.928e-19 2.051e-19 -18.533 -18.688 -0.155 (0) CaH[14C]O2[18O]+ 2.078e-20 1.906e-20 -19.682 -19.720 -0.037 (0) - CaH[14C]O[18O]O+ 2.078e-20 1.906e-20 -19.682 -19.720 -0.037 (0) CaH[14C][18O]O2+ 2.078e-20 1.906e-20 -19.682 -19.720 -0.037 (0) + CaH[14C]O[18O]O+ 2.078e-20 1.906e-20 -19.682 -19.720 -0.037 (0) Ca[14C]O2[18O] 3.417e-21 3.422e-21 -20.466 -20.466 0.001 (0) H[14C]O[18O]2- 1.963e-21 1.796e-21 -20.707 -20.746 -0.039 (0) H[14C][18O]2O- 1.963e-21 1.796e-21 -20.707 -20.746 -0.039 (0) @@ -46429,29 +46419,29 @@ O(0) 2.096e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.174e-16 - O[18O] 4.166e-16 4.173e-16 -15.380 -15.380 0.001 (0) - [18O]2 4.156e-19 4.163e-19 -18.381 -18.381 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.011e-15 + O[18O] 2.007e-15 2.011e-15 -14.697 -14.697 0.001 (0) + [18O]2 2.003e-18 2.006e-18 -17.698 -17.698 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.91 -126.77 -2.86 [13C]H4 + [13C]H4(g) -125.27 -128.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.88 -21.39 -1.50 [14C][18O]2 - [14C]H4(g) -134.94 -137.80 -2.86 [14C]H4 + [14C]H4(g) -136.30 -139.16 -2.86 [14C]H4 [14C]O2(g) -14.52 -15.99 -1.47 [14C]O2 [14C]O[18O](g) -16.90 -18.69 -1.79 [14C]O[18O] - [18O]2(g) -16.09 -18.38 -2.29 [18O]2 + [18O]2(g) -15.41 -17.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -46465,14 +46455,14 @@ O(0) 2.096e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.95 -124.81 -2.86 CH4 + CH4(g) -123.32 -126.18 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.55 -39.70 -3.15 H2 + H2(g) -36.89 -40.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.09 -12.98 -2.89 O2 - O[18O](g) -12.79 -15.68 -2.89 O[18O] + O2(g) -9.41 -12.30 -2.89 O2 + O[18O](g) -12.11 -15.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -46536,23 +46526,23 @@ Calcite 3.36e-02 R(18O) 1.99520e-03 -4.9862 permil R(13C) 1.11441e-02 -3.2302 permil - R(14C) 1.03202e-13 8.7765 pmc + R(14C) 1.03202e-13 8.7766 pmc R(18O) H2O(l) 1.99520e-03 -4.9878 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.9878 permil R(13C) CO2(aq) 1.10643e-02 -10.364 permil - R(14C) CO2(aq) 1.01729e-13 8.6512 pmc + R(14C) CO2(aq) 1.01730e-13 8.6513 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.9878 permil R(13C) HCO3- 1.11606e-02 -1.754 permil - R(14C) HCO3- 1.03507e-13 8.8024 pmc + R(14C) HCO3- 1.03507e-13 8.8025 pmc R(18O) CO3-2 1.99520e-03 -4.9878 permil R(13C) CO3-2 1.11446e-02 -3.1865 permil R(14C) CO3-2 1.03210e-13 8.7772 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11827e-02 0.22321 permil - R(14C) Calcite 1.03917e-13 8.8373 pmc + R(14C) Calcite 1.03918e-13 8.8374 pmc --------------------------------Isotope Alphas--------------------------------- @@ -46562,12 +46552,12 @@ Calcite 3.36e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.226e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2723e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5852e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.4578e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -46587,14 +46577,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.278 Adjusted to redox equilibrium + pe = 11.458 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -46609,13 +46599,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.733 -124.732 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.174 -126.174 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -46624,9 +46614,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -46634,23 +46624,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.165e-40 - H2 2.082e-40 2.086e-40 -39.681 -39.681 0.001 (0) -O(0) 1.913e-13 - O2 9.527e-14 9.543e-14 -13.021 -13.020 0.001 (0) - O[18O] 3.802e-16 3.808e-16 -15.420 -15.419 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.042 -40.041 0.001 (0) +O(0) 1.006e-12 + O2 5.010e-13 5.018e-13 -12.300 -12.299 0.001 (0) + O[18O] 1.999e-15 2.003e-15 -14.699 -14.698 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.689 -126.688 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.130 -128.130 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.803e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.589e-08 -7.339 -7.338 0.001 (0) @@ -46659,56 +46649,56 @@ O(0) 1.913e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.725 -137.725 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.167 -139.166 0.001 (0) [14C](4) 6.027e-16 H[14C]O3- 4.868e-16 4.454e-16 -15.313 -15.351 -0.039 (0) [14C]O2 1.013e-16 1.015e-16 -15.994 -15.994 0.001 (0) CaH[14C]O3+ 1.028e-17 9.431e-18 -16.988 -17.025 -0.037 (0) - H[14C]O2[18O]- 9.714e-19 8.887e-19 -18.013 -18.051 -0.039 (0) - H[14C]O[18O]O- 9.714e-19 8.887e-19 -18.013 -18.051 -0.039 (0) H[14C][18O]O2- 9.714e-19 8.887e-19 -18.013 -18.051 -0.039 (0) + H[14C]O[18O]O- 9.714e-19 8.887e-19 -18.013 -18.051 -0.039 (0) + H[14C]O2[18O]- 9.714e-19 8.887e-19 -18.013 -18.051 -0.039 (0) Ca[14C]O3 5.636e-19 5.645e-19 -18.249 -18.248 0.001 (0) [14C]O[18O] 4.212e-19 4.219e-19 -18.375 -18.375 0.001 (0) [14C]O3-2 2.891e-19 2.025e-19 -18.539 -18.693 -0.155 (0) CaH[14C]O2[18O]+ 2.051e-20 1.882e-20 -19.688 -19.725 -0.037 (0) - CaH[14C]O[18O]O+ 2.051e-20 1.882e-20 -19.688 -19.725 -0.037 (0) CaH[14C][18O]O2+ 2.051e-20 1.882e-20 -19.688 -19.725 -0.037 (0) + CaH[14C]O[18O]O+ 2.051e-20 1.882e-20 -19.688 -19.725 -0.037 (0) Ca[14C]O2[18O] 3.373e-21 3.379e-21 -20.472 -20.471 0.001 (0) - H[14C]O[18O]2- 1.938e-21 1.773e-21 -20.713 -20.751 -0.039 (0) H[14C][18O]2O- 1.938e-21 1.773e-21 -20.713 -20.751 -0.039 (0) H[14C][18O]O[18O]- 1.938e-21 1.773e-21 -20.713 -20.751 -0.039 (0) - [14C]O2[18O]-2 1.730e-21 1.212e-21 -20.762 -20.916 -0.155 (0) + H[14C]O[18O]2- 1.938e-21 1.773e-21 -20.713 -20.751 -0.039 (0) + [14C]O2[18O]-2 1.731e-21 1.212e-21 -20.762 -20.916 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.809e-16 - O[18O] 3.802e-16 3.808e-16 -15.420 -15.419 0.001 (0) - [18O]2 3.793e-19 3.799e-19 -18.421 -18.420 0.001 (0) +[18O](0) 2.003e-15 + O[18O] 1.999e-15 2.003e-15 -14.699 -14.698 0.001 (0) + [18O]2 1.994e-18 1.998e-18 -17.700 -17.699 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.83 -126.69 -2.86 [13C]H4 + [13C]H4(g) -125.27 -128.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.89 -21.39 -1.50 [14C][18O]2 - [14C]H4(g) -134.86 -137.72 -2.86 [14C]H4 + [14C]H4(g) -136.31 -139.17 -2.86 [14C]H4 [14C]O2(g) -14.52 -15.99 -1.47 [14C]O2 [14C]O[18O](g) -16.91 -18.69 -1.79 [14C]O[18O] - [18O]2(g) -16.13 -18.42 -2.29 [18O]2 + [18O]2(g) -15.41 -17.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -46722,14 +46712,14 @@ O(0) 1.913e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.87 -124.73 -2.86 CH4 + CH4(g) -123.31 -126.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.53 -39.68 -3.15 H2 + H2(g) -36.89 -40.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.13 -13.02 -2.89 O2 - O[18O](g) -12.83 -15.72 -2.89 O[18O] + O2(g) -9.41 -12.30 -2.89 O2 + O[18O](g) -12.11 -15.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -46793,23 +46783,23 @@ Calcite 3.41e-02 R(18O) 1.99520e-03 -4.9861 permil R(13C) 1.11443e-02 -3.2072 permil - R(14C) 1.01909e-13 8.6665 pmc + R(14C) 1.01909e-13 8.6666 pmc R(18O) H2O(l) 1.99520e-03 -4.9876 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.9876 permil R(13C) CO2(aq) 1.10646e-02 -10.341 permil - R(14C) CO2(aq) 1.00454e-13 8.5428 pmc + R(14C) CO2(aq) 1.00455e-13 8.5429 pmc R(18O) CO2(aq) 2.07916e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9876 permil R(13C) HCO3- 1.11608e-02 -1.7309 permil - R(14C) HCO3- 1.02210e-13 8.6921 pmc + R(14C) HCO3- 1.02210e-13 8.6922 pmc R(18O) CO3-2 1.99520e-03 -4.9876 permil R(13C) CO3-2 1.11448e-02 -3.1635 permil - R(14C) CO3-2 1.01917e-13 8.6672 pmc + R(14C) CO3-2 1.01917e-13 8.6673 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11830e-02 0.24636 permil - R(14C) Calcite 1.02615e-13 8.7266 pmc + R(14C) Calcite 1.02616e-13 8.7267 pmc --------------------------------Isotope Alphas--------------------------------- @@ -46819,12 +46809,12 @@ Calcite 3.41e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2482e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2292e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.4329e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.648e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -46844,14 +46834,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.276 Adjusted to redox equilibrium + pe = 11.458 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -46866,24 +46856,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.720 -124.719 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.172 -126.171 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -46891,81 +46881,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.196e-40 - H2 2.098e-40 2.102e-40 -39.678 -39.677 0.001 (0) -O(0) 1.884e-13 - O2 9.385e-14 9.400e-14 -13.028 -13.027 0.001 (0) - O[18O] 3.745e-16 3.751e-16 -15.427 -15.426 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.041 -40.041 0.001 (0) +O(0) 1.003e-12 + O2 4.996e-13 5.005e-13 -12.301 -12.301 0.001 (0) + O[18O] 1.994e-15 1.997e-15 -14.700 -14.700 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.676 -126.675 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.128 -128.127 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.718 -137.717 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.170 -139.169 0.001 (0) [14C](4) 5.951e-16 H[14C]O3- 4.807e-16 4.398e-16 -15.318 -15.357 -0.039 (0) [14C]O2 1.000e-16 1.002e-16 -16.000 -15.999 0.001 (0) CaH[14C]O3+ 1.015e-17 9.313e-18 -16.993 -17.031 -0.037 (0) - H[14C]O2[18O]- 9.592e-19 8.775e-19 -18.018 -18.057 -0.039 (0) - H[14C]O[18O]O- 9.592e-19 8.775e-19 -18.018 -18.057 -0.039 (0) H[14C][18O]O2- 9.592e-19 8.775e-19 -18.018 -18.057 -0.039 (0) + H[14C]O[18O]O- 9.592e-19 8.775e-19 -18.018 -18.057 -0.039 (0) + H[14C]O2[18O]- 9.592e-19 8.775e-19 -18.018 -18.057 -0.039 (0) Ca[14C]O3 5.565e-19 5.574e-19 -18.255 -18.254 0.001 (0) [14C]O[18O] 4.160e-19 4.167e-19 -18.381 -18.380 0.001 (0) [14C]O3-2 2.855e-19 2.000e-19 -18.544 -18.699 -0.155 (0) CaH[14C]O2[18O]+ 2.025e-20 1.858e-20 -19.693 -19.731 -0.037 (0) - CaH[14C]O[18O]O+ 2.025e-20 1.858e-20 -19.693 -19.731 -0.037 (0) CaH[14C][18O]O2+ 2.025e-20 1.858e-20 -19.693 -19.731 -0.037 (0) + CaH[14C]O[18O]O+ 2.025e-20 1.858e-20 -19.693 -19.731 -0.037 (0) Ca[14C]O2[18O] 3.331e-21 3.337e-21 -20.477 -20.477 0.001 (0) + H[14C][18O]O[18O]- 1.914e-21 1.751e-21 -20.718 -20.757 -0.039 (0) H[14C]O[18O]2- 1.914e-21 1.751e-21 -20.718 -20.757 -0.039 (0) H[14C][18O]2O- 1.914e-21 1.751e-21 -20.718 -20.757 -0.039 (0) - H[14C][18O]O[18O]- 1.914e-21 1.751e-21 -20.718 -20.757 -0.039 (0) [14C]O2[18O]-2 1.709e-21 1.197e-21 -20.767 -20.922 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.752e-16 - O[18O] 3.745e-16 3.751e-16 -15.427 -15.426 0.001 (0) - [18O]2 3.736e-19 3.742e-19 -18.428 -18.427 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.998e-15 + O[18O] 1.994e-15 1.997e-15 -14.700 -14.700 0.001 (0) + [18O]2 1.989e-18 1.992e-18 -17.701 -17.701 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.81 -126.67 -2.86 [13C]H4 + [13C]H4(g) -125.27 -128.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.90 -21.40 -1.50 [14C][18O]2 - [14C]H4(g) -134.86 -137.72 -2.86 [14C]H4 + [14C]H4(g) -136.31 -139.17 -2.86 [14C]H4 [14C]O2(g) -14.53 -16.00 -1.47 [14C]O2 [14C]O[18O](g) -16.91 -18.70 -1.79 [14C]O[18O] - [18O]2(g) -16.14 -18.43 -2.29 [18O]2 + [18O]2(g) -15.41 -17.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -46979,14 +46969,14 @@ O(0) 1.884e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.86 -124.72 -2.86 CH4 + CH4(g) -123.31 -126.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.53 -39.68 -3.15 H2 + H2(g) -36.89 -40.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.13 -13.03 -2.89 O2 - O[18O](g) -12.83 -15.73 -2.89 O[18O] + O2(g) -9.41 -12.30 -2.89 O2 + O[18O](g) -12.11 -15.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -47056,17 +47046,17 @@ Calcite 3.46e-02 R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.9875 permil R(13C) CO2(aq) 1.10648e-02 -10.318 permil - R(14C) CO2(aq) 9.92111e-14 8.4371 pmc + R(14C) CO2(aq) 9.92117e-14 8.4372 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9875 permil R(13C) HCO3- 1.11611e-02 -1.7083 permil R(14C) HCO3- 1.00945e-13 8.5846 pmc R(18O) CO3-2 1.99520e-03 -4.9875 permil R(13C) CO3-2 1.11451e-02 -3.141 permil - R(14C) CO3-2 1.00655e-13 8.5599 pmc + R(14C) CO3-2 1.00656e-13 8.56 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11832e-02 0.26894 permil - R(14C) Calcite 1.01345e-13 8.6186 pmc + R(14C) Calcite 1.01346e-13 8.6187 pmc --------------------------------Isotope Alphas--------------------------------- @@ -47076,12 +47066,12 @@ Calcite 3.46e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2657e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2466e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.577e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7233e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -47101,14 +47091,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.282 Adjusted to redox equilibrium + pe = 11.461 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -47123,14 +47113,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.766 -124.765 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.199 -126.198 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -47138,9 +47128,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -47148,50 +47138,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.086e-40 - H2 2.043e-40 2.046e-40 -39.690 -39.689 0.001 (0) -O(0) 1.988e-13 - O2 9.901e-14 9.917e-14 -13.004 -13.004 0.001 (0) - O[18O] 3.951e-16 3.957e-16 -15.403 -15.403 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.048 -40.047 0.001 (0) +O(0) 1.035e-12 + O2 5.155e-13 5.163e-13 -12.288 -12.287 0.001 (0) + O[18O] 2.057e-15 2.060e-15 -14.687 -14.686 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.722 -126.721 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.155 -128.154 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.769 -137.769 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.203 -139.202 0.001 (0) [14C](4) 5.878e-16 H[14C]O3- 4.748e-16 4.344e-16 -15.323 -15.362 -0.039 (0) - [14C]O2 9.879e-17 9.896e-17 -16.005 -16.005 0.001 (0) + [14C]O2 9.880e-17 9.896e-17 -16.005 -16.005 0.001 (0) CaH[14C]O3+ 1.003e-17 9.197e-18 -16.999 -17.036 -0.037 (0) - H[14C]O2[18O]- 9.473e-19 8.667e-19 -18.024 -18.062 -0.039 (0) - H[14C]O[18O]O- 9.473e-19 8.667e-19 -18.024 -18.062 -0.039 (0) H[14C][18O]O2- 9.473e-19 8.667e-19 -18.024 -18.062 -0.039 (0) + H[14C]O[18O]O- 9.473e-19 8.667e-19 -18.024 -18.062 -0.039 (0) + H[14C]O2[18O]- 9.473e-19 8.667e-19 -18.024 -18.062 -0.039 (0) Ca[14C]O3 5.496e-19 5.505e-19 -18.260 -18.259 0.001 (0) [14C]O[18O] 4.108e-19 4.115e-19 -18.386 -18.386 0.001 (0) [14C]O3-2 2.820e-19 1.975e-19 -18.550 -18.704 -0.155 (0) CaH[14C]O2[18O]+ 2.000e-20 1.835e-20 -19.699 -19.736 -0.037 (0) - CaH[14C]O[18O]O+ 2.000e-20 1.835e-20 -19.699 -19.736 -0.037 (0) CaH[14C][18O]O2+ 2.000e-20 1.835e-20 -19.699 -19.736 -0.037 (0) + CaH[14C]O[18O]O+ 2.000e-20 1.835e-20 -19.699 -19.736 -0.037 (0) Ca[14C]O2[18O] 3.290e-21 3.295e-21 -20.483 -20.482 0.001 (0) H[14C]O[18O]2- 1.890e-21 1.729e-21 -20.724 -20.762 -0.039 (0) H[14C][18O]2O- 1.890e-21 1.729e-21 -20.724 -20.762 -0.039 (0) @@ -47200,29 +47190,29 @@ O(0) 1.988e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.959e-16 - O[18O] 3.951e-16 3.957e-16 -15.403 -15.403 0.001 (0) - [18O]2 3.941e-19 3.948e-19 -18.404 -18.404 0.001 (0) +[18O](0) 2.061e-15 + O[18O] 2.057e-15 2.060e-15 -14.687 -14.686 0.001 (0) + [18O]2 2.052e-18 2.055e-18 -17.688 -17.687 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.86 -126.72 -2.86 [13C]H4 + [13C]H4(g) -125.29 -128.15 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.90 -21.40 -1.50 [14C][18O]2 - [14C]H4(g) -134.91 -137.77 -2.86 [14C]H4 + [14C]H4(g) -136.34 -139.20 -2.86 [14C]H4 [14C]O2(g) -14.54 -16.00 -1.47 [14C]O2 [14C]O[18O](g) -16.92 -18.70 -1.79 [14C]O[18O] - [18O]2(g) -16.11 -18.40 -2.29 [18O]2 + [18O]2(g) -15.40 -17.69 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -47236,14 +47226,14 @@ O(0) 1.988e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.91 -124.77 -2.86 CH4 + CH4(g) -123.34 -126.20 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.54 -39.69 -3.15 H2 + H2(g) -36.90 -40.05 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.11 -13.00 -2.89 O2 - O[18O](g) -12.81 -15.70 -2.89 O[18O] + O2(g) -9.39 -12.29 -2.89 O2 + O[18O](g) -12.09 -14.99 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -47307,23 +47297,23 @@ Calcite 3.51e-02 R(18O) 1.99520e-03 -4.9858 permil R(13C) 1.11448e-02 -3.1627 permil - R(14C) 9.94173e-14 8.4547 pmc + R(14C) 9.94179e-14 8.4547 pmc R(18O) H2O(l) 1.99520e-03 -4.9873 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9873 permil R(13C) CO2(aq) 1.10651e-02 -10.297 permil - R(14C) CO2(aq) 9.79984e-14 8.334 pmc + R(14C) CO2(aq) 9.79990e-14 8.334 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9873 permil R(13C) HCO3- 1.11613e-02 -1.6863 permil - R(14C) HCO3- 9.97109e-14 8.4796 pmc + R(14C) HCO3- 9.97116e-14 8.4797 pmc R(18O) CO3-2 1.99520e-03 -4.9873 permil R(13C) CO3-2 1.11453e-02 -3.119 permil - R(14C) CO3-2 9.94249e-14 8.4553 pmc + R(14C) CO3-2 9.94256e-14 8.4554 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11835e-02 0.29097 permil - R(14C) Calcite 1.00106e-13 8.5133 pmc + R(14C) Calcite 1.00107e-13 8.5133 pmc --------------------------------Isotope Alphas--------------------------------- @@ -47333,12 +47323,12 @@ Calcite 3.51e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2469e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2934e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.798e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6028e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -47358,14 +47348,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.265 Adjusted to redox equilibrium + pe = 11.457 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -47380,24 +47370,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.632 -124.632 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.169 -126.168 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -47405,23 +47395,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.412e-40 - H2 2.206e-40 2.210e-40 -39.656 -39.656 0.001 (0) -O(0) 1.704e-13 - O2 8.488e-14 8.502e-14 -13.071 -13.070 0.001 (0) - O[18O] 3.387e-16 3.393e-16 -15.470 -15.469 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.040 -40.040 0.001 (0) +O(0) 9.995e-13 + O2 4.978e-13 4.986e-13 -12.303 -12.302 0.001 (0) + O[18O] 1.986e-15 1.990e-15 -14.702 -14.701 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.588 -126.588 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.125 -128.124 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.589e-08 -7.339 -7.338 0.001 (0) @@ -47430,56 +47420,56 @@ O(0) 1.704e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.641 -137.640 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.178 -139.177 0.001 (0) [14C](4) 5.806e-16 H[14C]O3- 4.690e-16 4.291e-16 -15.329 -15.367 -0.039 (0) [14C]O2 9.759e-17 9.775e-17 -16.011 -16.010 0.001 (0) CaH[14C]O3+ 9.904e-18 9.085e-18 -17.004 -17.042 -0.037 (0) - H[14C]O2[18O]- 9.357e-19 8.561e-19 -18.029 -18.067 -0.039 (0) - H[14C]O[18O]O- 9.357e-19 8.561e-19 -18.029 -18.067 -0.039 (0) H[14C][18O]O2- 9.357e-19 8.561e-19 -18.029 -18.067 -0.039 (0) + H[14C]O[18O]O- 9.357e-19 8.561e-19 -18.029 -18.067 -0.039 (0) + H[14C]O2[18O]- 9.357e-19 8.561e-19 -18.029 -18.067 -0.039 (0) Ca[14C]O3 5.429e-19 5.438e-19 -18.265 -18.265 0.001 (0) [14C]O[18O] 4.058e-19 4.065e-19 -18.392 -18.391 0.001 (0) [14C]O3-2 2.785e-19 1.951e-19 -18.555 -18.710 -0.155 (0) CaH[14C]O2[18O]+ 1.976e-20 1.813e-20 -19.704 -19.742 -0.037 (0) - CaH[14C]O[18O]O+ 1.976e-20 1.813e-20 -19.704 -19.742 -0.037 (0) CaH[14C][18O]O2+ 1.976e-20 1.813e-20 -19.704 -19.742 -0.037 (0) + CaH[14C]O[18O]O+ 1.976e-20 1.813e-20 -19.704 -19.742 -0.037 (0) Ca[14C]O2[18O] 3.250e-21 3.255e-21 -20.488 -20.487 0.001 (0) - H[14C]O[18O]2- 1.867e-21 1.708e-21 -20.729 -20.768 -0.039 (0) H[14C][18O]2O- 1.867e-21 1.708e-21 -20.729 -20.768 -0.039 (0) H[14C][18O]O[18O]- 1.867e-21 1.708e-21 -20.729 -20.768 -0.039 (0) + H[14C]O[18O]2- 1.867e-21 1.708e-21 -20.729 -20.768 -0.039 (0) [14C]O2[18O]-2 1.667e-21 1.168e-21 -20.778 -20.933 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.394e-16 - O[18O] 3.387e-16 3.393e-16 -15.470 -15.469 0.001 (0) - [18O]2 3.379e-19 3.384e-19 -18.471 -18.471 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.990e-15 + O[18O] 1.986e-15 1.990e-15 -14.702 -14.701 0.001 (0) + [18O]2 1.981e-18 1.985e-18 -17.703 -17.702 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.73 -126.59 -2.86 [13C]H4 + [13C]H4(g) -125.26 -128.12 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.91 -21.41 -1.50 [14C][18O]2 - [14C]H4(g) -134.78 -137.64 -2.86 [14C]H4 + [14C]H4(g) -136.32 -139.18 -2.86 [14C]H4 [14C]O2(g) -14.54 -16.01 -1.47 [14C]O2 [14C]O[18O](g) -16.92 -18.71 -1.79 [14C]O[18O] - [18O]2(g) -16.18 -18.47 -2.29 [18O]2 + [18O]2(g) -15.41 -17.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -47493,14 +47483,14 @@ O(0) 1.704e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.77 -124.63 -2.86 CH4 + CH4(g) -123.31 -126.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.51 -39.66 -3.15 H2 + H2(g) -36.89 -40.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.18 -13.07 -2.89 O2 - O[18O](g) -12.88 -15.77 -2.89 O[18O] + O2(g) -9.41 -12.30 -2.89 O2 + O[18O](g) -12.11 -15.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -47564,23 +47554,23 @@ Calcite 3.56e-02 R(18O) 1.99520e-03 -4.9857 permil R(13C) 1.11451e-02 -3.1413 permil - R(14C) 9.82167e-14 8.3526 pmc + R(14C) 9.82173e-14 8.3526 pmc R(18O) H2O(l) 1.99520e-03 -4.9872 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04134e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9872 permil R(13C) CO2(aq) 1.10653e-02 -10.275 permil - R(14C) CO2(aq) 9.68149e-14 8.2333 pmc + R(14C) CO2(aq) 9.68155e-14 8.2334 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9872 permil R(13C) HCO3- 1.11616e-02 -1.6649 permil - R(14C) HCO3- 9.85068e-14 8.3772 pmc + R(14C) HCO3- 9.85074e-14 8.3773 pmc R(18O) CO3-2 1.99520e-03 -4.9872 permil R(13C) CO3-2 1.11456e-02 -3.0976 permil - R(14C) CO3-2 9.82243e-14 8.3532 pmc + R(14C) CO3-2 9.82249e-14 8.3533 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11837e-02 0.31246 permil - R(14C) Calcite 9.88974e-14 8.4104 pmc + R(14C) Calcite 9.88980e-14 8.4105 pmc --------------------------------Isotope Alphas--------------------------------- @@ -47590,12 +47580,12 @@ Calcite 3.56e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2893e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2716e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.803e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8134e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -47615,14 +47605,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.262 Adjusted to redox equilibrium + pe = 11.455 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -47637,14 +47627,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.605 -124.604 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.152 -126.151 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -47652,9 +47642,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -47662,81 +47652,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.483e-40 - H2 2.242e-40 2.245e-40 -39.649 -39.649 0.001 (0) -O(0) 1.651e-13 - O2 8.222e-14 8.235e-14 -13.085 -13.084 0.001 (0) - O[18O] 3.281e-16 3.286e-16 -15.484 -15.483 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.036 -40.035 0.001 (0) +O(0) 9.800e-13 + O2 4.881e-13 4.889e-13 -12.312 -12.311 0.001 (0) + O[18O] 1.948e-15 1.951e-15 -14.711 -14.710 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.561 -126.560 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.108 -128.107 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.619 -137.618 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.166 -139.165 0.001 (0) [14C](4) 5.736e-16 H[14C]O3- 4.633e-16 4.239e-16 -15.334 -15.373 -0.039 (0) [14C]O2 9.641e-17 9.657e-17 -16.016 -16.015 0.001 (0) CaH[14C]O3+ 9.784e-18 8.975e-18 -17.009 -17.047 -0.037 (0) - H[14C]O2[18O]- 9.244e-19 8.457e-19 -18.034 -18.073 -0.039 (0) - H[14C]O[18O]O- 9.244e-19 8.457e-19 -18.034 -18.073 -0.039 (0) H[14C][18O]O2- 9.244e-19 8.457e-19 -18.034 -18.073 -0.039 (0) + H[14C]O[18O]O- 9.244e-19 8.457e-19 -18.034 -18.073 -0.039 (0) + H[14C]O2[18O]- 9.244e-19 8.457e-19 -18.034 -18.073 -0.039 (0) Ca[14C]O3 5.364e-19 5.372e-19 -18.271 -18.270 0.001 (0) [14C]O[18O] 4.009e-19 4.016e-19 -18.397 -18.396 0.001 (0) [14C]O3-2 2.751e-19 1.928e-19 -18.560 -18.715 -0.155 (0) CaH[14C]O2[18O]+ 1.952e-20 1.791e-20 -19.709 -19.747 -0.037 (0) - CaH[14C]O[18O]O+ 1.952e-20 1.791e-20 -19.709 -19.747 -0.037 (0) CaH[14C][18O]O2+ 1.952e-20 1.791e-20 -19.709 -19.747 -0.037 (0) + CaH[14C]O[18O]O+ 1.952e-20 1.791e-20 -19.709 -19.747 -0.037 (0) Ca[14C]O2[18O] 3.210e-21 3.216e-21 -20.493 -20.493 0.001 (0) + H[14C][18O]O[18O]- 1.844e-21 1.687e-21 -20.734 -20.773 -0.039 (0) H[14C]O[18O]2- 1.844e-21 1.687e-21 -20.734 -20.773 -0.039 (0) H[14C][18O]2O- 1.844e-21 1.687e-21 -20.734 -20.773 -0.039 (0) - H[14C][18O]O[18O]- 1.844e-21 1.687e-21 -20.734 -20.773 -0.039 (0) [14C]O2[18O]-2 1.647e-21 1.154e-21 -20.783 -20.938 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.287e-16 - O[18O] 3.281e-16 3.286e-16 -15.484 -15.483 0.001 (0) - [18O]2 3.273e-19 3.278e-19 -18.485 -18.484 0.001 (0) +[18O](0) 1.951e-15 + O[18O] 1.948e-15 1.951e-15 -14.711 -14.710 0.001 (0) + [18O]2 1.943e-18 1.946e-18 -17.712 -17.711 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.70 -126.56 -2.86 [13C]H4 + [13C]H4(g) -125.25 -128.11 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.91 -21.42 -1.50 [14C][18O]2 - [14C]H4(g) -134.76 -137.62 -2.86 [14C]H4 + [14C]H4(g) -136.31 -139.17 -2.86 [14C]H4 [14C]O2(g) -14.55 -16.02 -1.47 [14C]O2 [14C]O[18O](g) -16.93 -18.72 -1.79 [14C]O[18O] - [18O]2(g) -16.19 -18.48 -2.29 [18O]2 + [18O]2(g) -15.42 -17.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -47750,14 +47740,14 @@ O(0) 1.651e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.74 -124.60 -2.86 CH4 + CH4(g) -123.29 -126.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.50 -39.65 -3.15 H2 + H2(g) -36.89 -40.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.19 -13.08 -2.89 O2 - O[18O](g) -12.89 -15.78 -2.89 O[18O] + O2(g) -9.42 -12.31 -2.89 O2 + O[18O](g) -12.12 -15.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -47821,23 +47811,23 @@ Calcite 3.61e-02 R(18O) 1.99520e-03 -4.9856 permil R(13C) 1.11453e-02 -3.1204 permil - R(14C) 9.70448e-14 8.2529 pmc + R(14C) 9.70454e-14 8.2529 pmc R(18O) H2O(l) 1.99520e-03 -4.9871 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04134e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9871 permil R(13C) CO2(aq) 1.10656e-02 -10.255 permil - R(14C) CO2(aq) 9.56597e-14 8.1351 pmc + R(14C) CO2(aq) 9.56603e-14 8.1352 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9871 permil R(13C) HCO3- 1.11618e-02 -1.644 permil - R(14C) HCO3- 9.73314e-14 8.2773 pmc + R(14C) HCO3- 9.73320e-14 8.2773 pmc R(18O) CO3-2 1.99520e-03 -4.9871 permil R(13C) CO3-2 1.11458e-02 -3.0767 permil - R(14C) CO3-2 9.70523e-14 8.2535 pmc + R(14C) CO3-2 9.70529e-14 8.2536 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11839e-02 0.33345 permil - R(14C) Calcite 9.77174e-14 8.3101 pmc + R(14C) Calcite 9.77180e-14 8.3101 pmc --------------------------------Isotope Alphas--------------------------------- @@ -47847,12 +47837,12 @@ Calcite 3.61e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2639e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2795e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5761e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7241e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -47872,14 +47862,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.267 Adjusted to redox equilibrium + pe = 11.454 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -47894,24 +47884,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.651 -124.650 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.141 -126.140 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -47919,50 +47909,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.366e-40 - H2 2.183e-40 2.187e-40 -39.661 -39.660 0.001 (0) -O(0) 1.740e-13 - O2 8.668e-14 8.682e-14 -13.062 -13.061 0.001 (0) - O[18O] 3.459e-16 3.464e-16 -15.461 -15.460 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.033 -40.033 0.001 (0) +O(0) 9.677e-13 + O2 4.819e-13 4.827e-13 -12.317 -12.316 0.001 (0) + O[18O] 1.923e-15 1.926e-15 -14.716 -14.715 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.607 -126.606 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.097 -128.096 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.670 -137.669 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.160 -139.159 0.001 (0) [14C](4) 5.667e-16 H[14C]O3- 4.578e-16 4.188e-16 -15.339 -15.378 -0.039 (0) - [14C]O2 9.526e-17 9.541e-17 -16.021 -16.020 0.001 (0) + [14C]O2 9.526e-17 9.542e-17 -16.021 -16.020 0.001 (0) CaH[14C]O3+ 9.667e-18 8.868e-18 -17.015 -17.052 -0.037 (0) - H[14C]O2[18O]- 9.134e-19 8.356e-19 -18.039 -18.078 -0.039 (0) - H[14C]O[18O]O- 9.134e-19 8.356e-19 -18.039 -18.078 -0.039 (0) H[14C][18O]O2- 9.134e-19 8.356e-19 -18.039 -18.078 -0.039 (0) + H[14C]O[18O]O- 9.134e-19 8.356e-19 -18.039 -18.078 -0.039 (0) + H[14C]O2[18O]- 9.134e-19 8.356e-19 -18.039 -18.078 -0.039 (0) Ca[14C]O3 5.300e-19 5.308e-19 -18.276 -18.275 0.001 (0) [14C]O[18O] 3.961e-19 3.968e-19 -18.402 -18.401 0.001 (0) [14C]O3-2 2.719e-19 1.905e-19 -18.566 -18.720 -0.155 (0) CaH[14C]O2[18O]+ 1.929e-20 1.769e-20 -19.715 -19.752 -0.037 (0) - CaH[14C]O[18O]O+ 1.929e-20 1.769e-20 -19.715 -19.752 -0.037 (0) CaH[14C][18O]O2+ 1.929e-20 1.769e-20 -19.715 -19.752 -0.037 (0) + CaH[14C]O[18O]O+ 1.929e-20 1.769e-20 -19.715 -19.752 -0.037 (0) Ca[14C]O2[18O] 3.172e-21 3.177e-21 -20.499 -20.498 0.001 (0) H[14C]O[18O]2- 1.822e-21 1.667e-21 -20.739 -20.778 -0.039 (0) H[14C][18O]2O- 1.822e-21 1.667e-21 -20.739 -20.778 -0.039 (0) @@ -47971,29 +47961,29 @@ O(0) 1.740e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.466e-16 - O[18O] 3.459e-16 3.464e-16 -15.461 -15.460 0.001 (0) - [18O]2 3.450e-19 3.456e-19 -18.462 -18.461 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.927e-15 + O[18O] 1.923e-15 1.926e-15 -14.716 -14.715 0.001 (0) + [18O]2 1.918e-18 1.922e-18 -17.717 -17.716 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.75 -126.61 -2.86 [13C]H4 + [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.92 -21.42 -1.50 [14C][18O]2 - [14C]H4(g) -134.81 -137.67 -2.86 [14C]H4 + [14C]H4(g) -136.30 -139.16 -2.86 [14C]H4 [14C]O2(g) -14.55 -16.02 -1.47 [14C]O2 [14C]O[18O](g) -16.93 -18.72 -1.79 [14C]O[18O] - [18O]2(g) -16.17 -18.46 -2.29 [18O]2 + [18O]2(g) -15.43 -17.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -48007,14 +47997,14 @@ O(0) 1.740e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.79 -124.65 -2.86 CH4 + CH4(g) -123.28 -126.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.51 -39.66 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.17 -13.06 -2.89 O2 - O[18O](g) -12.87 -15.76 -2.89 O[18O] + O2(g) -9.42 -12.32 -2.89 O2 + O[18O](g) -12.12 -15.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -48078,23 +48068,23 @@ Calcite 3.66e-02 R(18O) 1.99520e-03 -4.9854 permil R(13C) 1.11455e-02 -3.1 permil - R(14C) 9.59005e-14 8.1556 pmc + R(14C) 9.59011e-14 8.1556 pmc R(18O) H2O(l) 1.99520e-03 -4.9869 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9869 permil R(13C) CO2(aq) 1.10658e-02 -10.234 permil - R(14C) CO2(aq) 9.45318e-14 8.0392 pmc + R(14C) CO2(aq) 9.45324e-14 8.0392 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9869 permil R(13C) HCO3- 1.11620e-02 -1.6235 permil - R(14C) HCO3- 9.61838e-14 8.1797 pmc + R(14C) HCO3- 9.61844e-14 8.1797 pmc R(18O) CO3-2 1.99520e-03 -4.9869 permil R(13C) CO3-2 1.11460e-02 -3.0563 permil - R(14C) CO3-2 9.59079e-14 8.1562 pmc + R(14C) CO3-2 9.59085e-14 8.1563 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11842e-02 0.35394 permil - R(14C) Calcite 9.65651e-14 8.2121 pmc + R(14C) Calcite 9.65658e-14 8.2122 pmc --------------------------------Isotope Alphas--------------------------------- @@ -48104,12 +48094,12 @@ Calcite 3.66e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2373e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2523e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7204e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -48123,20 +48113,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.509e-05 6.490e-05 - [14C] 5.600e-16 5.584e-16 + [14C] 5.601e-16 5.584e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.237 Adjusted to redox equilibrium + pe = 11.451 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -48151,13 +48141,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.405 -124.404 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.121 -126.120 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -48166,9 +48156,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -48176,23 +48166,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.029e-40 - H2 2.515e-40 2.519e-40 -39.600 -39.599 0.001 (0) -O(0) 1.312e-13 - O2 6.534e-14 6.544e-14 -13.185 -13.184 0.001 (0) - O[18O] 2.607e-16 2.612e-16 -15.584 -15.583 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.029 -40.028 0.001 (0) +O(0) 9.460e-13 + O2 4.711e-13 4.719e-13 -12.327 -12.326 0.001 (0) + O[18O] 1.880e-15 1.883e-15 -14.726 -14.725 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.361 -126.360 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.077 -128.076 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) @@ -48201,56 +48191,56 @@ O(0) 1.312e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.429 -137.429 0.001 (0) -[14C](4) 5.600e-16 + [14C]H4 0.000e+00 0.000e+00 -139.145 -139.145 0.001 (0) +[14C](4) 5.601e-16 H[14C]O3- 4.524e-16 4.139e-16 -15.344 -15.383 -0.039 (0) [14C]O2 9.414e-17 9.429e-17 -16.026 -16.026 0.001 (0) - CaH[14C]O3+ 9.553e-18 8.763e-18 -17.020 -17.057 -0.037 (0) - H[14C]O2[18O]- 9.026e-19 8.258e-19 -18.044 -18.083 -0.039 (0) - H[14C]O[18O]O- 9.026e-19 8.258e-19 -18.044 -18.083 -0.039 (0) + CaH[14C]O3+ 9.553e-18 8.764e-18 -17.020 -17.057 -0.037 (0) H[14C][18O]O2- 9.026e-19 8.258e-19 -18.044 -18.083 -0.039 (0) + H[14C]O[18O]O- 9.026e-19 8.258e-19 -18.044 -18.083 -0.039 (0) + H[14C]O2[18O]- 9.026e-19 8.258e-19 -18.044 -18.083 -0.039 (0) Ca[14C]O3 5.237e-19 5.246e-19 -18.281 -18.280 0.001 (0) [14C]O[18O] 3.914e-19 3.921e-19 -18.407 -18.407 0.001 (0) [14C]O3-2 2.687e-19 1.882e-19 -18.571 -18.725 -0.155 (0) - CaH[14C]O2[18O]+ 1.906e-20 1.748e-20 -19.720 -19.757 -0.037 (0) - CaH[14C]O[18O]O+ 1.906e-20 1.748e-20 -19.720 -19.757 -0.037 (0) - CaH[14C][18O]O2+ 1.906e-20 1.748e-20 -19.720 -19.757 -0.037 (0) + CaH[14C]O2[18O]+ 1.906e-20 1.749e-20 -19.720 -19.757 -0.037 (0) + CaH[14C][18O]O2+ 1.906e-20 1.749e-20 -19.720 -19.757 -0.037 (0) + CaH[14C]O[18O]O+ 1.906e-20 1.749e-20 -19.720 -19.757 -0.037 (0) Ca[14C]O2[18O] 3.135e-21 3.140e-21 -20.504 -20.503 0.001 (0) - H[14C]O[18O]2- 1.801e-21 1.648e-21 -20.745 -20.783 -0.039 (0) H[14C][18O]2O- 1.801e-21 1.648e-21 -20.745 -20.783 -0.039 (0) H[14C][18O]O[18O]- 1.801e-21 1.648e-21 -20.745 -20.783 -0.039 (0) + H[14C]O[18O]2- 1.801e-21 1.648e-21 -20.745 -20.783 -0.039 (0) [14C]O2[18O]-2 1.608e-21 1.127e-21 -20.794 -20.948 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.612e-16 - O[18O] 2.607e-16 2.612e-16 -15.584 -15.583 0.001 (0) - [18O]2 2.601e-19 2.605e-19 -18.585 -18.584 0.001 (0) +[18O](0) 1.884e-15 + O[18O] 1.880e-15 1.883e-15 -14.726 -14.725 0.001 (0) + [18O]2 1.875e-18 1.879e-18 -17.727 -17.726 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.50 -126.36 -2.86 [13C]H4 + [13C]H4(g) -125.22 -128.08 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.92 -21.43 -1.50 [14C][18O]2 - [14C]H4(g) -134.57 -137.43 -2.86 [14C]H4 + [14C]H4(g) -136.28 -139.14 -2.86 [14C]H4 [14C]O2(g) -14.56 -16.03 -1.47 [14C]O2 [14C]O[18O](g) -16.94 -18.73 -1.79 [14C]O[18O] - [18O]2(g) -16.29 -18.58 -2.29 [18O]2 + [18O]2(g) -15.44 -17.73 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -48264,14 +48254,14 @@ O(0) 1.312e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.54 -124.40 -2.86 CH4 + CH4(g) -123.26 -126.12 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.45 -39.60 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.29 -13.18 -2.89 O2 - O[18O](g) -12.99 -15.88 -2.89 O[18O] + O2(g) -9.43 -12.33 -2.89 O2 + O[18O](g) -12.13 -15.03 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -48327,7 +48317,7 @@ Calcite 3.71e-02 Ca[14C]O3(s) 3.48e-15 6.47e-18 9.38e-14 Ca[14C]O2[18O](s) 2.14e-17 3.98e-20 5.78e-16 Ca[14C]O[18O]2(s) 4.39e-20 8.18e-23 1.19e-18 - Ca[14C][18O]3(s) 3.01e-23 5.59e-26 8.11e-22 + Ca[14C][18O]3(s) 3.01e-23 5.60e-26 8.11e-22 --------------------------------Isotope Ratios--------------------------------- @@ -48335,23 +48325,23 @@ Calcite 3.71e-02 R(18O) 1.99520e-03 -4.9853 permil R(13C) 1.11458e-02 -3.08 permil - R(14C) 9.47829e-14 8.0605 pmc + R(14C) 9.47835e-14 8.0606 pmc R(18O) H2O(l) 1.99520e-03 -4.9868 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9868 permil R(13C) CO2(aq) 1.10660e-02 -10.215 permil - R(14C) CO2(aq) 9.34301e-14 7.9455 pmc + R(14C) CO2(aq) 9.34307e-14 7.9455 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9868 permil R(13C) HCO3- 1.11623e-02 -1.6035 permil - R(14C) HCO3- 9.50628e-14 8.0843 pmc + R(14C) HCO3- 9.50635e-14 8.0844 pmc R(18O) CO3-2 1.99520e-03 -4.9868 permil R(13C) CO3-2 1.11463e-02 -3.0363 permil - R(14C) CO3-2 9.47902e-14 8.0612 pmc + R(14C) CO3-2 9.47908e-14 8.0612 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11844e-02 0.37395 permil - R(14C) Calcite 9.54398e-14 8.1164 pmc + R(14C) Calcite 9.54404e-14 8.1165 pmc --------------------------------Isotope Alphas--------------------------------- @@ -48361,12 +48351,12 @@ Calcite 3.71e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2734e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2558e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7387e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7508e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -48386,14 +48376,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.233 Adjusted to redox equilibrium + pe = 11.451 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -48408,24 +48398,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.378 -124.377 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.117 -126.117 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -48433,81 +48423,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.109e-40 - H2 2.555e-40 2.559e-40 -39.593 -39.592 0.001 (0) -O(0) 1.271e-13 - O2 6.331e-14 6.341e-14 -13.199 -13.198 0.001 (0) - O[18O] 2.526e-16 2.530e-16 -15.598 -15.597 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.028 -40.027 0.001 (0) +O(0) 9.420e-13 + O2 4.691e-13 4.699e-13 -12.329 -12.328 0.001 (0) + O[18O] 1.872e-15 1.875e-15 -14.728 -14.727 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.334 -126.333 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.073 -128.073 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.583e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.583e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.583e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.407 -137.406 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.147 -139.146 0.001 (0) [14C](4) 5.535e-16 H[14C]O3- 4.471e-16 4.091e-16 -15.350 -15.388 -0.039 (0) [14C]O2 9.304e-17 9.319e-17 -16.031 -16.031 0.001 (0) CaH[14C]O3+ 9.442e-18 8.661e-18 -17.025 -17.062 -0.037 (0) - H[14C]O2[18O]- 8.921e-19 8.162e-19 -18.050 -18.088 -0.039 (0) - H[14C]O[18O]O- 8.921e-19 8.162e-19 -18.050 -18.088 -0.039 (0) H[14C][18O]O2- 8.921e-19 8.162e-19 -18.050 -18.088 -0.039 (0) + H[14C]O[18O]O- 8.921e-19 8.162e-19 -18.050 -18.088 -0.039 (0) + H[14C]O2[18O]- 8.921e-19 8.162e-19 -18.050 -18.088 -0.039 (0) Ca[14C]O3 5.176e-19 5.185e-19 -18.286 -18.285 0.001 (0) [14C]O[18O] 3.869e-19 3.875e-19 -18.412 -18.412 0.001 (0) [14C]O3-2 2.655e-19 1.860e-19 -18.576 -18.730 -0.155 (0) CaH[14C]O2[18O]+ 1.884e-20 1.728e-20 -19.725 -19.762 -0.037 (0) - CaH[14C]O[18O]O+ 1.884e-20 1.728e-20 -19.725 -19.762 -0.037 (0) CaH[14C][18O]O2+ 1.884e-20 1.728e-20 -19.725 -19.762 -0.037 (0) + CaH[14C]O[18O]O+ 1.884e-20 1.728e-20 -19.725 -19.762 -0.037 (0) Ca[14C]O2[18O] 3.098e-21 3.103e-21 -20.509 -20.508 0.001 (0) + H[14C][18O]O[18O]- 1.780e-21 1.628e-21 -20.750 -20.788 -0.039 (0) H[14C]O[18O]2- 1.780e-21 1.628e-21 -20.750 -20.788 -0.039 (0) H[14C][18O]2O- 1.780e-21 1.628e-21 -20.750 -20.788 -0.039 (0) - H[14C][18O]O[18O]- 1.780e-21 1.628e-21 -20.750 -20.788 -0.039 (0) [14C]O2[18O]-2 1.589e-21 1.113e-21 -20.799 -20.953 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.531e-16 - O[18O] 2.526e-16 2.530e-16 -15.598 -15.597 0.001 (0) - [18O]2 2.520e-19 2.524e-19 -18.599 -18.598 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.876e-15 + O[18O] 1.872e-15 1.875e-15 -14.728 -14.727 0.001 (0) + [18O]2 1.867e-18 1.871e-18 -17.729 -17.728 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.47 -126.33 -2.86 [13C]H4 + [13C]H4(g) -125.21 -128.07 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.93 -21.43 -1.50 [14C][18O]2 - [14C]H4(g) -134.55 -137.41 -2.86 [14C]H4 + [14C]H4(g) -136.29 -139.15 -2.86 [14C]H4 [14C]O2(g) -14.56 -16.03 -1.47 [14C]O2 [14C]O[18O](g) -16.94 -18.73 -1.79 [14C]O[18O] - [18O]2(g) -16.31 -18.60 -2.29 [18O]2 + [18O]2(g) -15.44 -17.73 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -48521,14 +48511,14 @@ O(0) 1.271e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.52 -124.38 -2.86 CH4 + CH4(g) -123.26 -126.12 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.44 -39.59 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.31 -13.20 -2.89 O2 - O[18O](g) -13.01 -15.90 -2.89 O[18O] + O2(g) -9.44 -12.33 -2.89 O2 + O[18O](g) -12.14 -15.03 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -48592,23 +48582,23 @@ Calcite 3.76e-02 R(18O) 1.99520e-03 -4.9851 permil R(13C) 1.11460e-02 -3.0605 permil - R(14C) 9.36910e-14 7.9677 pmc + R(14C) 9.36916e-14 7.9677 pmc R(18O) H2O(l) 1.99520e-03 -4.9867 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9867 permil R(13C) CO2(aq) 1.10662e-02 -10.195 permil - R(14C) CO2(aq) 9.23538e-14 7.854 pmc + R(14C) CO2(aq) 9.23544e-14 7.854 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9867 permil R(13C) HCO3- 1.11625e-02 -1.584 permil - R(14C) HCO3- 9.39678e-14 7.9912 pmc + R(14C) HCO3- 9.39684e-14 7.9913 pmc R(18O) CO3-2 1.99520e-03 -4.9867 permil R(13C) CO3-2 1.11465e-02 -3.0168 permil - R(14C) CO3-2 9.36982e-14 7.9683 pmc + R(14C) CO3-2 9.36988e-14 7.9683 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11846e-02 0.3935 permil - R(14C) Calcite 9.43404e-14 8.0229 pmc + R(14C) Calcite 9.43410e-14 8.023 pmc --------------------------------Isotope Alphas--------------------------------- @@ -48618,12 +48608,12 @@ Calcite 3.76e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2782e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2278e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6941e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7045e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -48637,20 +48627,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.509e-05 6.490e-05 - [14C] 5.471e-16 5.455e-16 + [14C] 5.471e-16 5.456e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.195 Adjusted to redox equilibrium + pe = 11.448 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -48665,14 +48655,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.071 -124.071 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.095 -126.094 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -48680,9 +48670,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -48690,50 +48680,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.094e-40 - H2 3.047e-40 3.052e-40 -39.516 -39.515 0.001 (0) -O(0) 8.935e-14 - O2 4.450e-14 4.457e-14 -13.352 -13.351 0.001 (0) - O[18O] 1.776e-16 1.779e-16 -15.751 -15.750 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.022 -40.021 0.001 (0) +O(0) 9.183e-13 + O2 4.573e-13 4.581e-13 -12.340 -12.339 0.001 (0) + O[18O] 1.825e-15 1.828e-15 -14.739 -14.738 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.027 -126.027 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.051 -128.050 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.106 -137.105 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.130 -139.129 0.001 (0) [14C](4) 5.471e-16 H[14C]O3- 4.420e-16 4.044e-16 -15.355 -15.393 -0.039 (0) [14C]O2 9.197e-17 9.212e-17 -16.036 -16.036 0.001 (0) CaH[14C]O3+ 9.333e-18 8.562e-18 -17.030 -17.067 -0.037 (0) - H[14C]O2[18O]- 8.818e-19 8.068e-19 -18.055 -18.093 -0.039 (0) - H[14C]O[18O]O- 8.818e-19 8.068e-19 -18.055 -18.093 -0.039 (0) H[14C][18O]O2- 8.818e-19 8.068e-19 -18.055 -18.093 -0.039 (0) + H[14C]O[18O]O- 8.818e-19 8.068e-19 -18.055 -18.093 -0.039 (0) + H[14C]O2[18O]- 8.818e-19 8.068e-19 -18.055 -18.093 -0.039 (0) Ca[14C]O3 5.116e-19 5.125e-19 -18.291 -18.290 0.001 (0) [14C]O[18O] 3.824e-19 3.831e-19 -18.417 -18.417 0.001 (0) [14C]O3-2 2.625e-19 1.839e-19 -18.581 -18.735 -0.155 (0) CaH[14C]O2[18O]+ 1.862e-20 1.708e-20 -19.730 -19.767 -0.037 (0) - CaH[14C]O[18O]O+ 1.862e-20 1.708e-20 -19.730 -19.767 -0.037 (0) CaH[14C][18O]O2+ 1.862e-20 1.708e-20 -19.730 -19.767 -0.037 (0) + CaH[14C]O[18O]O+ 1.862e-20 1.708e-20 -19.730 -19.767 -0.037 (0) Ca[14C]O2[18O] 3.063e-21 3.068e-21 -20.514 -20.513 0.001 (0) H[14C]O[18O]2- 1.759e-21 1.610e-21 -20.755 -20.793 -0.039 (0) H[14C][18O]2O- 1.759e-21 1.610e-21 -20.755 -20.793 -0.039 (0) @@ -48742,29 +48732,29 @@ O(0) 8.935e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.779e-16 - O[18O] 1.776e-16 1.779e-16 -15.751 -15.750 0.001 (0) - [18O]2 1.771e-19 1.774e-19 -18.752 -18.751 0.001 (0) +[18O](0) 1.829e-15 + O[18O] 1.825e-15 1.828e-15 -14.739 -14.738 0.001 (0) + [18O]2 1.821e-18 1.824e-18 -17.740 -17.739 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.17 -126.03 -2.86 [13C]H4 + [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.93 -21.44 -1.50 [14C][18O]2 - [14C]H4(g) -134.25 -137.11 -2.86 [14C]H4 + [14C]H4(g) -136.27 -139.13 -2.86 [14C]H4 [14C]O2(g) -14.57 -16.04 -1.47 [14C]O2 [14C]O[18O](g) -16.95 -18.74 -1.79 [14C]O[18O] - [18O]2(g) -16.46 -18.75 -2.29 [18O]2 + [18O]2(g) -15.45 -17.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -48778,14 +48768,14 @@ O(0) 8.935e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.21 -124.07 -2.86 CH4 + CH4(g) -123.23 -126.09 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.37 -39.52 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.46 -13.35 -2.89 O2 - O[18O](g) -13.16 -16.05 -2.89 O[18O] + O2(g) -9.45 -12.34 -2.89 O2 + O[18O](g) -12.15 -15.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -48849,23 +48839,23 @@ Calcite 3.81e-02 R(18O) 1.99520e-03 -4.985 permil R(13C) 1.11462e-02 -3.0415 permil - R(14C) 9.26240e-14 7.8769 pmc + R(14C) 9.26246e-14 7.877 pmc R(18O) H2O(l) 1.99520e-03 -4.9865 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9865 permil R(13C) CO2(aq) 1.10664e-02 -10.176 permil - R(14C) CO2(aq) 9.13021e-14 7.7645 pmc + R(14C) CO2(aq) 9.13027e-14 7.7646 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9865 permil R(13C) HCO3- 1.11627e-02 -1.565 permil - R(14C) HCO3- 9.28976e-14 7.9002 pmc + R(14C) HCO3- 9.28982e-14 7.9003 pmc R(18O) CO3-2 1.99520e-03 -4.9865 permil R(13C) CO3-2 1.11467e-02 -2.9978 permil - R(14C) CO3-2 9.26312e-14 7.8776 pmc + R(14C) CO3-2 9.26318e-14 7.8776 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11848e-02 0.4126 permil - R(14C) Calcite 9.32660e-14 7.9315 pmc + R(14C) Calcite 9.32666e-14 7.9316 pmc --------------------------------Isotope Alphas--------------------------------- @@ -48875,12 +48865,12 @@ Calcite 3.81e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2484e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2958e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7013e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7794e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -48900,14 +48890,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.192 Adjusted to redox equilibrium + pe = 11.448 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -48922,24 +48912,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.047 -124.047 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.100 -126.099 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -48947,23 +48937,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.180e-40 - H2 3.090e-40 3.095e-40 -39.510 -39.509 0.001 (0) -O(0) 8.690e-14 - O2 4.328e-14 4.335e-14 -13.364 -13.363 0.001 (0) - O[18O] 1.727e-16 1.730e-16 -15.763 -15.762 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.023 -40.022 0.001 (0) +O(0) 9.231e-13 + O2 4.597e-13 4.605e-13 -12.337 -12.337 0.001 (0) + O[18O] 1.835e-15 1.838e-15 -14.736 -14.736 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.003 -126.003 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.056 -128.055 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) @@ -48972,56 +48962,56 @@ O(0) 8.690e-14 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.087 -137.086 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.139 -139.139 0.001 (0) [14C](4) 5.409e-16 H[14C]O3- 4.369e-16 3.997e-16 -15.360 -15.398 -0.039 (0) [14C]O2 9.092e-17 9.107e-17 -16.041 -16.041 0.001 (0) CaH[14C]O3+ 9.227e-18 8.464e-18 -17.035 -17.072 -0.037 (0) - H[14C]O2[18O]- 8.718e-19 7.976e-19 -18.060 -18.098 -0.039 (0) - H[14C]O[18O]O- 8.718e-19 7.976e-19 -18.060 -18.098 -0.039 (0) H[14C][18O]O2- 8.718e-19 7.976e-19 -18.060 -18.098 -0.039 (0) + H[14C]O[18O]O- 8.718e-19 7.976e-19 -18.060 -18.098 -0.039 (0) + H[14C]O2[18O]- 8.718e-19 7.976e-19 -18.060 -18.098 -0.039 (0) Ca[14C]O3 5.058e-19 5.067e-19 -18.296 -18.295 0.001 (0) [14C]O[18O] 3.781e-19 3.787e-19 -18.422 -18.422 0.001 (0) [14C]O3-2 2.595e-19 1.818e-19 -18.586 -18.740 -0.155 (0) CaH[14C]O2[18O]+ 1.841e-20 1.689e-20 -19.735 -19.772 -0.037 (0) - CaH[14C]O[18O]O+ 1.841e-20 1.689e-20 -19.735 -19.772 -0.037 (0) CaH[14C][18O]O2+ 1.841e-20 1.689e-20 -19.735 -19.772 -0.037 (0) + CaH[14C]O[18O]O+ 1.841e-20 1.689e-20 -19.735 -19.772 -0.037 (0) Ca[14C]O2[18O] 3.028e-21 3.033e-21 -20.519 -20.518 0.001 (0) - H[14C]O[18O]2- 1.739e-21 1.591e-21 -20.760 -20.798 -0.039 (0) H[14C][18O]2O- 1.739e-21 1.591e-21 -20.760 -20.798 -0.039 (0) H[14C][18O]O[18O]- 1.739e-21 1.591e-21 -20.760 -20.798 -0.039 (0) + H[14C]O[18O]2- 1.739e-21 1.591e-21 -20.760 -20.798 -0.039 (0) [14C]O2[18O]-2 1.553e-21 1.088e-21 -20.809 -20.963 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.730e-16 - O[18O] 1.727e-16 1.730e-16 -15.763 -15.762 0.001 (0) - [18O]2 1.723e-19 1.726e-19 -18.764 -18.763 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.838e-15 + O[18O] 1.835e-15 1.838e-15 -14.736 -14.736 0.001 (0) + [18O]2 1.830e-18 1.833e-18 -17.738 -17.737 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.14 -126.00 -2.86 [13C]H4 + [13C]H4(g) -125.20 -128.06 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.94 -21.44 -1.50 [14C][18O]2 - [14C]H4(g) -134.23 -137.09 -2.86 [14C]H4 + [14C]H4(g) -136.28 -139.14 -2.86 [14C]H4 [14C]O2(g) -14.57 -16.04 -1.47 [14C]O2 [14C]O[18O](g) -16.95 -18.74 -1.79 [14C]O[18O] - [18O]2(g) -16.47 -18.76 -2.29 [18O]2 + [18O]2(g) -15.45 -17.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -49035,14 +49025,14 @@ O(0) 8.690e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.19 -124.05 -2.86 CH4 + CH4(g) -123.24 -126.10 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.36 -39.51 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.47 -13.36 -2.89 O2 - O[18O](g) -13.17 -16.06 -2.89 O[18O] + O2(g) -9.44 -12.34 -2.89 O2 + O[18O](g) -12.14 -15.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -49106,23 +49096,23 @@ Calcite 3.86e-02 R(18O) 1.99520e-03 -4.9849 permil R(13C) 1.11464e-02 -3.0229 permil - R(14C) 9.15811e-14 7.7882 pmc + R(14C) 9.15817e-14 7.7883 pmc R(18O) H2O(l) 1.99520e-03 -4.9864 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.022 permil R(18O) O2(aq) 1.99520e-03 -4.9864 permil R(13C) CO2(aq) 1.10666e-02 -10.158 permil - R(14C) CO2(aq) 9.02740e-14 7.6771 pmc + R(14C) CO2(aq) 9.02746e-14 7.6771 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9864 permil R(13C) HCO3- 1.11629e-02 -1.5463 permil - R(14C) HCO3- 9.18516e-14 7.8113 pmc + R(14C) HCO3- 9.18522e-14 7.8113 pmc R(18O) CO3-2 1.99520e-03 -4.9864 permil R(13C) CO3-2 1.11469e-02 -2.9792 permil - R(14C) CO3-2 9.15881e-14 7.7888 pmc + R(14C) CO3-2 9.15887e-14 7.7889 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11850e-02 0.43128 permil - R(14C) Calcite 9.22158e-14 7.8422 pmc + R(14C) Calcite 9.22164e-14 7.8423 pmc --------------------------------Isotope Alphas--------------------------------- @@ -49132,12 +49122,12 @@ Calcite 3.86e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.253e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2342e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6167e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.763e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -49157,14 +49147,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.177 Adjusted to redox equilibrium + pe = 11.449 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -49179,14 +49169,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.928 -123.928 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.103 -126.102 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -49194,9 +49184,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -49204,81 +49194,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.617e-40 - H2 3.308e-40 3.314e-40 -39.480 -39.480 0.001 (0) -O(0) 7.579e-14 - O2 3.774e-14 3.781e-14 -13.423 -13.422 0.001 (0) - O[18O] 1.506e-16 1.509e-16 -15.822 -15.821 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.024 -40.023 0.001 (0) +O(0) 9.264e-13 + O2 4.614e-13 4.621e-13 -12.336 -12.335 0.001 (0) + O[18O] 1.841e-15 1.844e-15 -14.735 -14.734 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.884 -125.884 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.059 -128.058 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.973 -136.972 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.147 -139.147 0.001 (0) [14C](4) 5.348e-16 H[14C]O3- 4.320e-16 3.952e-16 -15.364 -15.403 -0.039 (0) [14C]O2 8.990e-17 9.004e-17 -16.046 -16.046 0.001 (0) CaH[14C]O3+ 9.123e-18 8.369e-18 -17.040 -17.077 -0.037 (0) - H[14C]O2[18O]- 8.620e-19 7.886e-19 -18.065 -18.103 -0.039 (0) - H[14C]O[18O]O- 8.620e-19 7.886e-19 -18.065 -18.103 -0.039 (0) H[14C][18O]O2- 8.620e-19 7.886e-19 -18.065 -18.103 -0.039 (0) + H[14C]O[18O]O- 8.620e-19 7.886e-19 -18.065 -18.103 -0.039 (0) + H[14C]O2[18O]- 8.620e-19 7.886e-19 -18.065 -18.103 -0.039 (0) Ca[14C]O3 5.001e-19 5.009e-19 -18.301 -18.300 0.001 (0) [14C]O[18O] 3.738e-19 3.744e-19 -18.427 -18.427 0.001 (0) [14C]O3-2 2.566e-19 1.797e-19 -18.591 -18.745 -0.155 (0) CaH[14C]O2[18O]+ 1.820e-20 1.670e-20 -19.740 -19.777 -0.037 (0) - CaH[14C]O[18O]O+ 1.820e-20 1.670e-20 -19.740 -19.777 -0.037 (0) CaH[14C][18O]O2+ 1.820e-20 1.670e-20 -19.740 -19.777 -0.037 (0) + CaH[14C]O[18O]O+ 1.820e-20 1.670e-20 -19.740 -19.777 -0.037 (0) Ca[14C]O2[18O] 2.994e-21 2.998e-21 -20.524 -20.523 0.001 (0) + H[14C][18O]O[18O]- 1.720e-21 1.573e-21 -20.765 -20.803 -0.039 (0) H[14C]O[18O]2- 1.720e-21 1.573e-21 -20.765 -20.803 -0.039 (0) H[14C][18O]2O- 1.720e-21 1.573e-21 -20.765 -20.803 -0.039 (0) - H[14C][18O]O[18O]- 1.720e-21 1.573e-21 -20.765 -20.803 -0.039 (0) [14C]O2[18O]-2 1.536e-21 1.076e-21 -20.814 -20.968 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.509e-16 - O[18O] 1.506e-16 1.509e-16 -15.822 -15.821 0.001 (0) - [18O]2 1.503e-19 1.505e-19 -18.823 -18.822 0.001 (0) +[18O](0) 1.845e-15 + O[18O] 1.841e-15 1.844e-15 -14.735 -14.734 0.001 (0) + [18O]2 1.837e-18 1.840e-18 -17.736 -17.735 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.02 -125.88 -2.86 [13C]H4 + [13C]H4(g) -125.20 -128.06 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.94 -21.45 -1.50 [14C][18O]2 - [14C]H4(g) -134.11 -136.97 -2.86 [14C]H4 + [14C]H4(g) -136.29 -139.15 -2.86 [14C]H4 [14C]O2(g) -14.58 -16.05 -1.47 [14C]O2 [14C]O[18O](g) -16.96 -18.75 -1.79 [14C]O[18O] - [18O]2(g) -16.53 -18.82 -2.29 [18O]2 + [18O]2(g) -15.44 -17.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -49292,14 +49282,14 @@ O(0) 7.579e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.07 -123.93 -2.86 CH4 + CH4(g) -123.24 -126.10 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.33 -39.48 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.53 -13.42 -2.89 O2 - O[18O](g) -13.23 -16.12 -2.89 O[18O] + O2(g) -9.44 -12.34 -2.89 O2 + O[18O](g) -12.14 -15.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -49363,23 +49353,23 @@ Calcite 3.91e-02 R(18O) 1.99520e-03 -4.9847 permil R(13C) 1.11466e-02 -3.0047 permil - R(14C) 9.05613e-14 7.7015 pmc + R(14C) 9.05619e-14 7.7016 pmc R(18O) H2O(l) 1.99520e-03 -4.9862 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.022 permil R(18O) O2(aq) 1.99520e-03 -4.9862 permil R(13C) CO2(aq) 1.10668e-02 -10.14 permil - R(14C) CO2(aq) 8.92688e-14 7.5916 pmc + R(14C) CO2(aq) 8.92694e-14 7.5917 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9862 permil R(13C) HCO3- 1.11631e-02 -1.5281 permil - R(14C) HCO3- 9.08288e-14 7.7243 pmc + R(14C) HCO3- 9.08294e-14 7.7243 pmc R(18O) CO3-2 1.99520e-03 -4.9862 permil R(13C) CO3-2 1.11471e-02 -2.961 permil - R(14C) CO3-2 9.05683e-14 7.7021 pmc + R(14C) CO3-2 9.05689e-14 7.7022 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11852e-02 0.44954 permil - R(14C) Calcite 9.11890e-14 7.7549 pmc + R(14C) Calcite 9.11896e-14 7.755 pmc --------------------------------Isotope Alphas--------------------------------- @@ -49389,12 +49379,12 @@ Calcite 3.91e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2575e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2394e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6303e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7767e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -49414,14 +49404,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.205 Adjusted to redox equilibrium + pe = 11.451 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -49436,24 +49426,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.148 -124.147 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.123 -126.122 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -49461,50 +49451,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.831e-40 - H2 2.915e-40 2.920e-40 -39.535 -39.535 0.001 (0) -O(0) 9.760e-14 - O2 4.861e-14 4.869e-14 -13.313 -13.313 0.001 (0) - O[18O] 1.940e-16 1.943e-16 -15.712 -15.712 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.029 -40.028 0.001 (0) +O(0) 9.480e-13 + O2 4.721e-13 4.729e-13 -12.326 -12.325 0.001 (0) + O[18O] 1.884e-15 1.887e-15 -14.725 -14.724 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.104 -126.103 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.079 -128.078 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.187e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.197 -137.197 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.172 -139.171 0.001 (0) [14C](4) 5.289e-16 H[14C]O3- 4.272e-16 3.908e-16 -15.369 -15.408 -0.039 (0) [14C]O2 8.889e-17 8.904e-17 -16.051 -16.050 0.001 (0) CaH[14C]O3+ 9.021e-18 8.276e-18 -17.045 -17.082 -0.037 (0) - H[14C]O2[18O]- 8.524e-19 7.798e-19 -18.069 -18.108 -0.039 (0) - H[14C]O[18O]O- 8.524e-19 7.798e-19 -18.069 -18.108 -0.039 (0) H[14C][18O]O2- 8.524e-19 7.798e-19 -18.069 -18.108 -0.039 (0) + H[14C]O[18O]O- 8.524e-19 7.798e-19 -18.069 -18.108 -0.039 (0) + H[14C]O2[18O]- 8.524e-19 7.798e-19 -18.069 -18.108 -0.039 (0) Ca[14C]O3 4.946e-19 4.954e-19 -18.306 -18.305 0.001 (0) [14C]O[18O] 3.697e-19 3.703e-19 -18.432 -18.431 0.001 (0) [14C]O3-2 2.537e-19 1.777e-19 -18.596 -18.750 -0.155 (0) CaH[14C]O2[18O]+ 1.800e-20 1.651e-20 -19.745 -19.782 -0.037 (0) - CaH[14C]O[18O]O+ 1.800e-20 1.651e-20 -19.745 -19.782 -0.037 (0) CaH[14C][18O]O2+ 1.800e-20 1.651e-20 -19.745 -19.782 -0.037 (0) + CaH[14C]O[18O]O+ 1.800e-20 1.651e-20 -19.745 -19.782 -0.037 (0) Ca[14C]O2[18O] 2.960e-21 2.965e-21 -20.529 -20.528 0.001 (0) H[14C]O[18O]2- 1.701e-21 1.556e-21 -20.769 -20.808 -0.039 (0) H[14C][18O]2O- 1.701e-21 1.556e-21 -20.769 -20.808 -0.039 (0) @@ -49513,29 +49503,29 @@ O(0) 9.760e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.943e-16 - O[18O] 1.940e-16 1.943e-16 -15.712 -15.712 0.001 (0) - [18O]2 1.935e-19 1.938e-19 -18.713 -18.713 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.888e-15 + O[18O] 1.884e-15 1.887e-15 -14.725 -14.724 0.001 (0) + [18O]2 1.879e-18 1.883e-18 -17.726 -17.725 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.24 -126.10 -2.86 [13C]H4 + [13C]H4(g) -125.22 -128.08 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.95 -21.45 -1.50 [14C][18O]2 - [14C]H4(g) -134.34 -137.20 -2.86 [14C]H4 + [14C]H4(g) -136.31 -139.17 -2.86 [14C]H4 [14C]O2(g) -14.58 -16.05 -1.47 [14C]O2 [14C]O[18O](g) -16.96 -18.75 -1.79 [14C]O[18O] - [18O]2(g) -16.42 -18.71 -2.29 [18O]2 + [18O]2(g) -15.43 -17.73 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -49549,14 +49539,14 @@ O(0) 9.760e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.29 -124.15 -2.86 CH4 + CH4(g) -123.26 -126.12 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.38 -39.53 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.42 -13.31 -2.89 O2 - O[18O](g) -13.12 -16.01 -2.89 O[18O] + O2(g) -9.43 -12.33 -2.89 O2 + O[18O](g) -12.13 -15.03 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -49620,23 +49610,23 @@ Calcite 3.96e-02 R(18O) 1.99520e-03 -4.9846 permil R(13C) 1.11468e-02 -2.9869 permil - R(14C) 8.95640e-14 7.6167 pmc + R(14C) 8.95646e-14 7.6168 pmc R(18O) H2O(l) 1.99520e-03 -4.9861 permil R(18O) OH- 1.92124e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.022 permil R(18O) O2(aq) 1.99520e-03 -4.9861 permil R(13C) CO2(aq) 1.10670e-02 -10.122 permil - R(14C) CO2(aq) 8.82858e-14 7.508 pmc + R(14C) CO2(aq) 8.82863e-14 7.5081 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9861 permil R(13C) HCO3- 1.11633e-02 -1.5103 permil - R(14C) HCO3- 8.98286e-14 7.6392 pmc + R(14C) HCO3- 8.98292e-14 7.6393 pmc R(18O) CO3-2 1.99520e-03 -4.9861 permil R(13C) CO3-2 1.11473e-02 -2.9432 permil - R(14C) CO3-2 8.95709e-14 7.6173 pmc + R(14C) CO3-2 8.95715e-14 7.6174 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11854e-02 0.4674 permil - R(14C) Calcite 9.01848e-14 7.6695 pmc + R(14C) Calcite 9.01854e-14 7.6696 pmc --------------------------------Isotope Alphas--------------------------------- @@ -49646,12 +49636,12 @@ Calcite 3.96e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2653e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2464e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5974e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6083e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -49671,14 +49661,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.208 Adjusted to redox equilibrium + pe = 11.453 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -49693,13 +49683,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.174 -124.173 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.132 -126.131 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -49708,9 +49698,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -49718,23 +49708,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.744e-40 - H2 2.872e-40 2.877e-40 -39.542 -39.541 0.001 (0) -O(0) 1.006e-13 - O2 5.008e-14 5.017e-14 -13.300 -13.300 0.001 (0) - O[18O] 1.999e-16 2.002e-16 -15.699 -15.699 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.031 -40.031 0.001 (0) +O(0) 9.582e-13 + O2 4.772e-13 4.780e-13 -12.321 -12.321 0.001 (0) + O[18O] 1.904e-15 1.907e-15 -14.720 -14.720 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.130 -126.129 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.088 -128.087 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) @@ -49743,56 +49733,56 @@ O(0) 1.006e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.228 -137.228 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.186 -139.186 0.001 (0) [14C](4) 5.230e-16 H[14C]O3- 4.225e-16 3.865e-16 -15.374 -15.413 -0.039 (0) [14C]O2 8.792e-17 8.806e-17 -16.056 -16.055 0.001 (0) CaH[14C]O3+ 8.922e-18 8.184e-18 -17.050 -17.087 -0.037 (0) - H[14C]O2[18O]- 8.430e-19 7.712e-19 -18.074 -18.113 -0.039 (0) - H[14C]O[18O]O- 8.430e-19 7.712e-19 -18.074 -18.113 -0.039 (0) H[14C][18O]O2- 8.430e-19 7.712e-19 -18.074 -18.113 -0.039 (0) + H[14C]O[18O]O- 8.430e-19 7.712e-19 -18.074 -18.113 -0.039 (0) + H[14C]O2[18O]- 8.430e-19 7.712e-19 -18.074 -18.113 -0.039 (0) Ca[14C]O3 4.891e-19 4.899e-19 -18.311 -18.310 0.001 (0) [14C]O[18O] 3.656e-19 3.662e-19 -18.437 -18.436 0.001 (0) [14C]O3-2 2.509e-19 1.758e-19 -18.600 -18.755 -0.155 (0) CaH[14C]O2[18O]+ 1.780e-20 1.633e-20 -19.750 -19.787 -0.037 (0) - CaH[14C]O[18O]O+ 1.780e-20 1.633e-20 -19.750 -19.787 -0.037 (0) CaH[14C][18O]O2+ 1.780e-20 1.633e-20 -19.750 -19.787 -0.037 (0) + CaH[14C]O[18O]O+ 1.780e-20 1.633e-20 -19.750 -19.787 -0.037 (0) Ca[14C]O2[18O] 2.928e-21 2.932e-21 -20.533 -20.533 0.001 (0) - H[14C]O[18O]2- 1.682e-21 1.539e-21 -20.774 -20.813 -0.039 (0) H[14C][18O]2O- 1.682e-21 1.539e-21 -20.774 -20.813 -0.039 (0) H[14C][18O]O[18O]- 1.682e-21 1.539e-21 -20.774 -20.813 -0.039 (0) + H[14C]O[18O]2- 1.682e-21 1.539e-21 -20.774 -20.813 -0.039 (0) [14C]O2[18O]-2 1.502e-21 1.052e-21 -20.823 -20.978 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.003e-16 - O[18O] 1.999e-16 2.002e-16 -15.699 -15.699 0.001 (0) - [18O]2 1.994e-19 1.997e-19 -18.700 -18.700 0.001 (0) +[18O](0) 1.908e-15 + O[18O] 1.904e-15 1.907e-15 -14.720 -14.720 0.001 (0) + [18O]2 1.900e-18 1.903e-18 -17.721 -17.721 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.27 -126.13 -2.86 [13C]H4 + [13C]H4(g) -125.23 -128.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.95 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -134.37 -137.23 -2.86 [14C]H4 + [14C]H4(g) -136.33 -139.19 -2.86 [14C]H4 [14C]O2(g) -14.59 -16.06 -1.47 [14C]O2 [14C]O[18O](g) -16.97 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -16.41 -18.70 -2.29 [18O]2 + [18O]2(g) -15.43 -17.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -49806,14 +49796,14 @@ O(0) 1.006e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.31 -124.17 -2.86 CH4 + CH4(g) -123.27 -126.13 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.39 -39.54 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.41 -13.30 -2.89 O2 - O[18O](g) -13.11 -16.00 -2.89 O[18O] + O2(g) -9.43 -12.32 -2.89 O2 + O[18O](g) -12.13 -15.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -49877,23 +49867,23 @@ Calcite 4.01e-02 R(18O) 1.99521e-03 -4.9844 permil R(13C) 1.11470e-02 -2.9695 permil - R(14C) 8.85885e-14 7.5338 pmc + R(14C) 8.85891e-14 7.5338 pmc R(18O) H2O(l) 1.99520e-03 -4.986 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil R(18O) O2(aq) 1.99520e-03 -4.986 permil R(13C) CO2(aq) 1.10672e-02 -10.105 permil - R(14C) CO2(aq) 8.73241e-14 7.4262 pmc + R(14C) CO2(aq) 8.73247e-14 7.4263 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.986 permil R(13C) HCO3- 1.11635e-02 -1.4928 permil - R(14C) HCO3- 8.88502e-14 7.556 pmc + R(14C) HCO3- 8.88507e-14 7.5561 pmc R(18O) CO3-2 1.99520e-03 -4.986 permil R(13C) CO3-2 1.11475e-02 -2.9258 permil - R(14C) CO3-2 8.85953e-14 7.5343 pmc + R(14C) CO3-2 8.85959e-14 7.5344 pmc R(18O) Calcite 2.05264e-03 23.661 permil R(13C) Calcite 1.11856e-02 0.48487 permil - R(14C) Calcite 8.92025e-14 7.586 pmc + R(14C) Calcite 8.92030e-14 7.586 pmc --------------------------------Isotope Alphas--------------------------------- @@ -49903,12 +49893,12 @@ Calcite 4.01e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2757e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2569e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6439e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6513e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -49928,14 +49918,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.144 Adjusted to redox equilibrium + pe = 11.448 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -49950,24 +49940,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.660 -123.659 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.097 -126.096 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -49975,81 +49965,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.722e-40 - H2 3.861e-40 3.867e-40 -39.413 -39.413 0.001 (0) -O(0) 5.565e-14 - O2 2.771e-14 2.776e-14 -13.557 -13.557 0.001 (0) - O[18O] 1.106e-16 1.108e-16 -15.956 -15.956 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.022 -40.022 0.001 (0) +O(0) 9.198e-13 + O2 4.581e-13 4.588e-13 -12.339 -12.338 0.001 (0) + O[18O] 1.828e-15 1.831e-15 -14.738 -14.737 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.616 -125.615 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.053 -128.052 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.719 -136.718 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.155 -139.155 0.001 (0) [14C](4) 5.173e-16 H[14C]O3- 4.179e-16 3.823e-16 -15.379 -15.418 -0.039 (0) [14C]O2 8.696e-17 8.710e-17 -16.061 -16.060 0.001 (0) CaH[14C]O3+ 8.825e-18 8.095e-18 -17.054 -17.092 -0.037 (0) - H[14C]O2[18O]- 8.338e-19 7.628e-19 -18.079 -18.118 -0.039 (0) - H[14C]O[18O]O- 8.338e-19 7.628e-19 -18.079 -18.118 -0.039 (0) H[14C][18O]O2- 8.338e-19 7.628e-19 -18.079 -18.118 -0.039 (0) + H[14C]O[18O]O- 8.338e-19 7.628e-19 -18.079 -18.118 -0.039 (0) + H[14C]O2[18O]- 8.338e-19 7.628e-19 -18.079 -18.118 -0.039 (0) Ca[14C]O3 4.838e-19 4.846e-19 -18.315 -18.315 0.001 (0) [14C]O[18O] 3.616e-19 3.622e-19 -18.442 -18.441 0.001 (0) [14C]O3-2 2.482e-19 1.739e-19 -18.605 -18.760 -0.155 (0) CaH[14C]O2[18O]+ 1.761e-20 1.615e-20 -19.754 -19.792 -0.037 (0) - CaH[14C]O[18O]O+ 1.761e-20 1.615e-20 -19.754 -19.792 -0.037 (0) CaH[14C][18O]O2+ 1.761e-20 1.615e-20 -19.754 -19.792 -0.037 (0) + CaH[14C]O[18O]O+ 1.761e-20 1.615e-20 -19.754 -19.792 -0.037 (0) Ca[14C]O2[18O] 2.896e-21 2.900e-21 -20.538 -20.538 0.001 (0) + H[14C][18O]O[18O]- 1.664e-21 1.522e-21 -20.779 -20.818 -0.039 (0) H[14C]O[18O]2- 1.664e-21 1.522e-21 -20.779 -20.818 -0.039 (0) H[14C][18O]2O- 1.664e-21 1.522e-21 -20.779 -20.818 -0.039 (0) - H[14C][18O]O[18O]- 1.664e-21 1.522e-21 -20.779 -20.818 -0.039 (0) [14C]O2[18O]-2 1.485e-21 1.041e-21 -20.828 -20.983 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.108e-16 - O[18O] 1.106e-16 1.108e-16 -15.956 -15.956 0.001 (0) - [18O]2 1.103e-19 1.105e-19 -18.957 -18.957 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.832e-15 + O[18O] 1.828e-15 1.831e-15 -14.738 -14.737 0.001 (0) + [18O]2 1.824e-18 1.827e-18 -17.739 -17.738 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.76 -125.62 -2.86 [13C]H4 + [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.96 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -133.86 -136.72 -2.86 [14C]H4 + [14C]H4(g) -136.29 -139.15 -2.86 [14C]H4 [14C]O2(g) -14.59 -16.06 -1.47 [14C]O2 [14C]O[18O](g) -16.97 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -16.67 -18.96 -2.29 [18O]2 + [18O]2(g) -15.45 -17.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -50063,14 +50053,14 @@ O(0) 5.565e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.80 -123.66 -2.86 CH4 + CH4(g) -123.24 -126.10 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.26 -39.41 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.66 -13.56 -2.89 O2 - O[18O](g) -13.36 -16.26 -2.89 O[18O] + O2(g) -9.45 -12.34 -2.89 O2 + O[18O](g) -12.15 -15.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -50134,23 +50124,23 @@ Calcite 4.06e-02 R(18O) 1.99521e-03 -4.9843 permil R(13C) 1.11472e-02 -2.9524 permil - R(14C) 8.76340e-14 7.4526 pmc + R(14C) 8.76345e-14 7.4526 pmc R(18O) H2O(l) 1.99520e-03 -4.9858 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil R(18O) O2(aq) 1.99520e-03 -4.9858 permil R(13C) CO2(aq) 1.10674e-02 -10.088 permil - R(14C) CO2(aq) 8.63832e-14 7.3462 pmc + R(14C) CO2(aq) 8.63838e-14 7.3463 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9858 permil R(13C) HCO3- 1.11637e-02 -1.4758 permil - R(14C) HCO3- 8.78928e-14 7.4746 pmc + R(14C) HCO3- 8.78934e-14 7.4746 pmc R(18O) CO3-2 1.99520e-03 -4.9858 permil R(13C) CO3-2 1.11477e-02 -2.9087 permil - R(14C) CO3-2 8.76407e-14 7.4532 pmc + R(14C) CO3-2 8.76413e-14 7.4532 pmc R(18O) Calcite 2.05264e-03 23.661 permil R(13C) Calcite 1.11858e-02 0.50196 permil - R(14C) Calcite 8.82413e-14 7.5042 pmc + R(14C) Calcite 8.82419e-14 7.5043 pmc --------------------------------Isotope Alphas--------------------------------- @@ -50160,12 +50150,12 @@ Calcite 4.06e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2569e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2373e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6868e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6954e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -50185,14 +50175,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.121 Adjusted to redox equilibrium + pe = 11.449 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -50207,14 +50197,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.483 -123.483 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.101 -126.100 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -50222,9 +50212,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -50232,50 +50222,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.549e-40 - H2 4.275e-40 4.282e-40 -39.369 -39.368 0.001 (0) -O(0) 4.540e-14 - O2 2.261e-14 2.265e-14 -13.646 -13.645 0.001 (0) - O[18O] 9.023e-17 9.038e-17 -16.045 -16.044 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.023 -40.023 0.001 (0) +O(0) 9.243e-13 + O2 4.603e-13 4.611e-13 -12.337 -12.336 0.001 (0) + O[18O] 1.837e-15 1.840e-15 -14.736 -14.735 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.439 -125.439 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.057 -128.056 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.547 -136.546 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.164 -139.164 0.001 (0) [14C](4) 5.118e-16 H[14C]O3- 4.134e-16 3.782e-16 -15.384 -15.422 -0.039 (0) [14C]O2 8.602e-17 8.616e-17 -16.065 -16.065 0.001 (0) CaH[14C]O3+ 8.730e-18 8.008e-18 -17.059 -17.096 -0.037 (0) - H[14C]O2[18O]- 8.248e-19 7.546e-19 -18.084 -18.122 -0.039 (0) - H[14C]O[18O]O- 8.248e-19 7.546e-19 -18.084 -18.122 -0.039 (0) H[14C][18O]O2- 8.248e-19 7.546e-19 -18.084 -18.122 -0.039 (0) + H[14C]O[18O]O- 8.248e-19 7.546e-19 -18.084 -18.122 -0.039 (0) + H[14C]O2[18O]- 8.248e-19 7.546e-19 -18.084 -18.122 -0.039 (0) Ca[14C]O3 4.786e-19 4.794e-19 -18.320 -18.319 0.001 (0) [14C]O[18O] 3.577e-19 3.583e-19 -18.446 -18.446 0.001 (0) [14C]O3-2 2.455e-19 1.720e-19 -18.610 -18.765 -0.155 (0) CaH[14C]O2[18O]+ 1.742e-20 1.598e-20 -19.759 -19.796 -0.037 (0) - CaH[14C]O[18O]O+ 1.742e-20 1.598e-20 -19.759 -19.796 -0.037 (0) CaH[14C][18O]O2+ 1.742e-20 1.598e-20 -19.759 -19.796 -0.037 (0) + CaH[14C]O[18O]O+ 1.742e-20 1.598e-20 -19.759 -19.796 -0.037 (0) Ca[14C]O2[18O] 2.865e-21 2.869e-21 -20.543 -20.542 0.001 (0) H[14C]O[18O]2- 1.646e-21 1.506e-21 -20.784 -20.822 -0.039 (0) H[14C][18O]2O- 1.646e-21 1.506e-21 -20.784 -20.822 -0.039 (0) @@ -50284,29 +50274,29 @@ O(0) 4.540e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 9.041e-17 - O[18O] 9.023e-17 9.038e-17 -16.045 -16.044 0.001 (0) - [18O]2 9.001e-20 9.016e-20 -19.046 -19.045 0.001 (0) +[18O](0) 1.841e-15 + O[18O] 1.837e-15 1.840e-15 -14.736 -14.735 0.001 (0) + [18O]2 1.833e-18 1.836e-18 -17.737 -17.736 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.58 -125.44 -2.86 [13C]H4 + [13C]H4(g) -125.20 -128.06 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.96 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -133.69 -136.55 -2.86 [14C]H4 + [14C]H4(g) -136.30 -139.16 -2.86 [14C]H4 [14C]O2(g) -14.60 -16.06 -1.47 [14C]O2 [14C]O[18O](g) -16.98 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -16.75 -19.04 -2.29 [18O]2 + [18O]2(g) -15.45 -17.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -50320,14 +50310,14 @@ O(0) 4.540e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.62 -123.48 -2.86 CH4 + CH4(g) -123.24 -126.10 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.22 -39.37 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.75 -13.64 -2.89 O2 - O[18O](g) -13.45 -16.34 -2.89 O[18O] + O2(g) -9.44 -12.34 -2.89 O2 + O[18O](g) -12.14 -15.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -50391,23 +50381,23 @@ Calcite 4.11e-02 R(18O) 1.99521e-03 -4.9842 permil R(13C) 1.11474e-02 -2.9358 permil - R(14C) 8.66998e-14 7.3731 pmc + R(14C) 8.67003e-14 7.3732 pmc R(18O) H2O(l) 1.99520e-03 -4.9857 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil R(18O) O2(aq) 1.99520e-03 -4.9857 permil R(13C) CO2(aq) 1.10676e-02 -10.071 permil - R(14C) CO2(aq) 8.54624e-14 7.2679 pmc + R(14C) CO2(aq) 8.54629e-14 7.2679 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9857 permil R(13C) HCO3- 1.11639e-02 -1.4591 permil - R(14C) HCO3- 8.69559e-14 7.3949 pmc + R(14C) HCO3- 8.69564e-14 7.395 pmc R(18O) CO3-2 1.99520e-03 -4.9857 permil R(13C) CO3-2 1.11479e-02 -2.8921 permil - R(14C) CO3-2 8.67065e-14 7.3737 pmc + R(14C) CO3-2 8.67070e-14 7.3738 pmc R(18O) Calcite 2.05264e-03 23.661 permil R(13C) Calcite 1.11860e-02 0.51869 permil - R(14C) Calcite 8.73007e-14 7.4242 pmc + R(14C) Calcite 8.73012e-14 7.4243 pmc --------------------------------Isotope Alphas--------------------------------- @@ -50417,12 +50407,12 @@ Calcite 4.11e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2414e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.7716e-12 0 +Alpha 18O HCO3-/H2O(l) 1 0 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6523e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5259e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -50442,14 +50432,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.129 Adjusted to redox equilibrium + pe = 11.447 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -50464,24 +50454,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.546 -123.545 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.091 -126.090 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -50489,23 +50479,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.248e-40 - H2 4.124e-40 4.131e-40 -39.385 -39.384 0.001 (0) -O(0) 4.878e-14 - O2 2.429e-14 2.433e-14 -13.614 -13.614 0.001 (0) - O[18O] 9.695e-17 9.711e-17 -16.013 -16.013 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.021 -40.020 0.001 (0) +O(0) 9.134e-13 + O2 4.549e-13 4.556e-13 -12.342 -12.341 0.001 (0) + O[18O] 1.815e-15 1.818e-15 -14.741 -14.740 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.502 -125.501 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.046 -128.046 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) @@ -50514,56 +50504,56 @@ O(0) 4.878e-14 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.614 -136.613 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.159 -139.158 0.001 (0) [14C](4) 5.063e-16 H[14C]O3- 4.090e-16 3.742e-16 -15.388 -15.427 -0.039 (0) [14C]O2 8.510e-17 8.524e-17 -16.070 -16.069 0.001 (0) CaH[14C]O3+ 8.637e-18 7.923e-18 -17.064 -17.101 -0.037 (0) - H[14C]O2[18O]- 8.160e-19 7.466e-19 -18.088 -18.127 -0.039 (0) - H[14C]O[18O]O- 8.160e-19 7.466e-19 -18.088 -18.127 -0.039 (0) H[14C][18O]O2- 8.160e-19 7.466e-19 -18.088 -18.127 -0.039 (0) + H[14C]O[18O]O- 8.160e-19 7.466e-19 -18.088 -18.127 -0.039 (0) + H[14C]O2[18O]- 8.160e-19 7.466e-19 -18.088 -18.127 -0.039 (0) Ca[14C]O3 4.735e-19 4.742e-19 -18.325 -18.324 0.001 (0) [14C]O[18O] 3.539e-19 3.545e-19 -18.451 -18.450 0.001 (0) - [14C]O3-2 2.429e-19 1.701e-19 -18.615 -18.769 -0.155 (0) + [14C]O3-2 2.429e-19 1.702e-19 -18.615 -18.769 -0.155 (0) CaH[14C]O2[18O]+ 1.723e-20 1.581e-20 -19.764 -19.801 -0.037 (0) - CaH[14C]O[18O]O+ 1.723e-20 1.581e-20 -19.764 -19.801 -0.037 (0) CaH[14C][18O]O2+ 1.723e-20 1.581e-20 -19.764 -19.801 -0.037 (0) + CaH[14C]O[18O]O+ 1.723e-20 1.581e-20 -19.764 -19.801 -0.037 (0) Ca[14C]O2[18O] 2.834e-21 2.839e-21 -20.548 -20.547 0.001 (0) - H[14C]O[18O]2- 1.628e-21 1.490e-21 -20.788 -20.827 -0.039 (0) H[14C][18O]2O- 1.628e-21 1.490e-21 -20.788 -20.827 -0.039 (0) H[14C][18O]O[18O]- 1.628e-21 1.490e-21 -20.788 -20.827 -0.039 (0) + H[14C]O[18O]2- 1.628e-21 1.490e-21 -20.788 -20.827 -0.039 (0) [14C]O2[18O]-2 1.454e-21 1.018e-21 -20.837 -20.992 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 9.714e-17 - O[18O] 9.695e-17 9.711e-17 -16.013 -16.013 0.001 (0) - [18O]2 9.671e-20 9.687e-20 -19.015 -19.014 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.819e-15 + O[18O] 1.815e-15 1.818e-15 -14.741 -14.740 0.001 (0) + [18O]2 1.811e-18 1.814e-18 -17.742 -17.741 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.64 -125.50 -2.86 [13C]H4 + [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.97 -21.47 -1.50 [14C][18O]2 - [14C]H4(g) -133.75 -136.61 -2.86 [14C]H4 + [14C]H4(g) -136.30 -139.16 -2.86 [14C]H4 [14C]O2(g) -14.60 -16.07 -1.47 [14C]O2 [14C]O[18O](g) -16.98 -18.77 -1.79 [14C]O[18O] - [18O]2(g) -16.72 -19.01 -2.29 [18O]2 + [18O]2(g) -15.45 -17.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -50577,14 +50567,14 @@ O(0) 4.878e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.69 -123.55 -2.86 CH4 + CH4(g) -123.23 -126.09 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.23 -39.38 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.72 -13.61 -2.89 O2 - O[18O](g) -13.42 -16.31 -2.89 O[18O] + O2(g) -9.45 -12.34 -2.89 O2 + O[18O](g) -12.15 -15.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -50648,23 +50638,23 @@ Calcite 4.16e-02 R(18O) 1.99521e-03 -4.984 permil R(13C) 1.11476e-02 -2.9195 permil - R(14C) 8.57853e-14 7.2954 pmc + R(14C) 8.57859e-14 7.2954 pmc R(18O) H2O(l) 1.99520e-03 -4.9856 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil R(18O) O2(aq) 1.99520e-03 -4.9856 permil R(13C) CO2(aq) 1.10678e-02 -10.055 permil - R(14C) CO2(aq) 8.45609e-14 7.1912 pmc + R(14C) CO2(aq) 8.45615e-14 7.1913 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9856 permil R(13C) HCO3- 1.11641e-02 -1.4427 permil - R(14C) HCO3- 8.60387e-14 7.3169 pmc + R(14C) HCO3- 8.60392e-14 7.317 pmc R(18O) CO3-2 1.99520e-03 -4.9856 permil R(13C) CO3-2 1.11480e-02 -2.8758 permil - R(14C) CO3-2 8.57919e-14 7.2959 pmc + R(14C) CO3-2 8.57925e-14 7.296 pmc R(18O) Calcite 2.05264e-03 23.661 permil R(13C) Calcite 1.11862e-02 0.53506 permil - R(14C) Calcite 8.63799e-14 7.3459 pmc + R(14C) Calcite 8.63804e-14 7.346 pmc --------------------------------Isotope Alphas--------------------------------- @@ -50674,12 +50664,12 @@ Calcite 4.16e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2623e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2432e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6659e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6761e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -50699,14 +50689,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.095 Adjusted to redox equilibrium + pe = 11.447 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -50721,14 +50711,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.275 -123.275 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.092 -126.091 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -50736,9 +50726,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -50746,81 +50736,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.636e-40 - H2 4.818e-40 4.826e-40 -39.317 -39.316 0.001 (0) -O(0) 3.574e-14 - O2 1.780e-14 1.783e-14 -13.750 -13.749 0.001 (0) - O[18O] 7.102e-17 7.114e-17 -16.149 -16.148 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.021 -40.020 0.001 (0) +O(0) 9.146e-13 + O2 4.555e-13 4.562e-13 -12.342 -12.341 0.001 (0) + O[18O] 1.817e-15 1.820e-15 -14.741 -14.740 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.231 -125.231 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.048 -128.047 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.348 -136.348 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.164 -139.164 0.001 (0) [14C](4) 5.010e-16 H[14C]O3- 4.047e-16 3.702e-16 -15.393 -15.432 -0.039 (0) [14C]O2 8.421e-17 8.434e-17 -16.075 -16.074 0.001 (0) CaH[14C]O3+ 8.546e-18 7.839e-18 -17.068 -17.106 -0.037 (0) - H[14C]O2[18O]- 8.074e-19 7.387e-19 -18.093 -18.132 -0.039 (0) - H[14C]O[18O]O- 8.074e-19 7.387e-19 -18.093 -18.132 -0.039 (0) H[14C][18O]O2- 8.074e-19 7.387e-19 -18.093 -18.132 -0.039 (0) + H[14C]O[18O]O- 8.074e-19 7.387e-19 -18.093 -18.132 -0.039 (0) + H[14C]O2[18O]- 8.074e-19 7.387e-19 -18.093 -18.132 -0.039 (0) Ca[14C]O3 4.685e-19 4.692e-19 -18.329 -18.329 0.001 (0) [14C]O[18O] 3.502e-19 3.507e-19 -18.456 -18.455 0.001 (0) [14C]O3-2 2.403e-19 1.684e-19 -18.619 -18.774 -0.155 (0) CaH[14C]O2[18O]+ 1.705e-20 1.564e-20 -19.768 -19.806 -0.037 (0) - CaH[14C]O[18O]O+ 1.705e-20 1.564e-20 -19.768 -19.806 -0.037 (0) CaH[14C][18O]O2+ 1.705e-20 1.564e-20 -19.768 -19.806 -0.037 (0) + CaH[14C]O[18O]O+ 1.705e-20 1.564e-20 -19.768 -19.806 -0.037 (0) Ca[14C]O2[18O] 2.804e-21 2.809e-21 -20.552 -20.551 0.001 (0) + H[14C][18O]O[18O]- 1.611e-21 1.474e-21 -20.793 -20.832 -0.039 (0) H[14C]O[18O]2- 1.611e-21 1.474e-21 -20.793 -20.832 -0.039 (0) H[14C][18O]2O- 1.611e-21 1.474e-21 -20.793 -20.832 -0.039 (0) - H[14C][18O]O[18O]- 1.611e-21 1.474e-21 -20.793 -20.832 -0.039 (0) [14C]O2[18O]-2 1.438e-21 1.008e-21 -20.842 -20.997 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 7.116e-17 - O[18O] 7.102e-17 7.114e-17 -16.149 -16.148 0.001 (0) - [18O]2 7.085e-20 7.097e-20 -19.150 -19.149 0.001 (0) +[18O](0) 1.821e-15 + O[18O] 1.817e-15 1.820e-15 -14.741 -14.740 0.001 (0) + [18O]2 1.813e-18 1.816e-18 -17.742 -17.741 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.37 -125.23 -2.86 [13C]H4 + [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.97 -21.47 -1.50 [14C][18O]2 - [14C]H4(g) -133.49 -136.35 -2.86 [14C]H4 + [14C]H4(g) -136.30 -139.16 -2.86 [14C]H4 [14C]O2(g) -14.61 -16.07 -1.47 [14C]O2 [14C]O[18O](g) -16.99 -18.77 -1.79 [14C]O[18O] - [18O]2(g) -16.86 -19.15 -2.29 [18O]2 + [18O]2(g) -15.45 -17.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -50834,14 +50824,14 @@ O(0) 3.574e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.41 -123.27 -2.86 CH4 + CH4(g) -123.23 -126.09 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.17 -39.32 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.86 -13.75 -2.89 O2 - O[18O](g) -13.56 -16.45 -2.89 O[18O] + O2(g) -9.45 -12.34 -2.89 O2 + O[18O](g) -12.15 -15.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -50905,23 +50895,23 @@ Calcite 4.21e-02 R(18O) 1.99521e-03 -4.9839 permil R(13C) 1.11477e-02 -2.9035 permil - R(14C) 8.48899e-14 7.2192 pmc + R(14C) 8.48905e-14 7.2193 pmc R(18O) H2O(l) 1.99520e-03 -4.9854 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.023 permil R(18O) O2(aq) 1.99520e-03 -4.9854 permil R(13C) CO2(aq) 1.10680e-02 -10.039 permil - R(14C) CO2(aq) 8.36783e-14 7.1162 pmc + R(14C) CO2(aq) 8.36789e-14 7.1162 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9854 permil R(13C) HCO3- 1.11642e-02 -1.4267 permil - R(14C) HCO3- 8.51407e-14 7.2405 pmc + R(14C) HCO3- 8.51412e-14 7.2406 pmc R(18O) CO3-2 1.99520e-03 -4.9854 permil R(13C) CO3-2 1.11482e-02 -2.8598 permil - R(14C) CO3-2 8.48965e-14 7.2198 pmc + R(14C) CO3-2 8.48970e-14 7.2198 pmc R(18O) Calcite 2.05265e-03 23.661 permil R(13C) Calcite 1.11864e-02 0.5511 permil - R(14C) Calcite 8.54783e-14 7.2693 pmc + R(14C) Calcite 8.54788e-14 7.2693 pmc --------------------------------Isotope Alphas--------------------------------- @@ -50931,12 +50921,12 @@ Calcite 4.21e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2546e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2689e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6509e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6604e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -50956,14 +50946,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.029 Adjusted to redox equilibrium + pe = 11.446 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -50978,24 +50968,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.741 -122.740 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.076 -126.075 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -51003,50 +50993,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.311e-39 - H2 6.555e-40 6.565e-40 -39.183 -39.183 0.001 (0) -O(0) 1.931e-14 - O2 9.616e-15 9.632e-15 -14.017 -14.016 0.001 (0) - O[18O] 3.837e-17 3.843e-17 -16.416 -16.415 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.017 -40.017 0.001 (0) +O(0) 8.982e-13 + O2 4.473e-13 4.480e-13 -12.349 -12.349 0.001 (0) + O[18O] 1.785e-15 1.788e-15 -14.748 -14.748 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.697 -124.696 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.032 -128.031 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.818 -135.817 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.153 -139.153 0.001 (0) [14C](4) 4.957e-16 H[14C]O3- 4.005e-16 3.664e-16 -15.397 -15.436 -0.039 (0) - [14C]O2 8.333e-17 8.346e-17 -16.079 -16.079 0.001 (0) + [14C]O2 8.333e-17 8.346e-17 -16.079 -16.078 0.001 (0) CaH[14C]O3+ 8.456e-18 7.757e-18 -17.073 -17.110 -0.037 (0) - H[14C]O2[18O]- 7.990e-19 7.310e-19 -18.097 -18.136 -0.039 (0) - H[14C]O[18O]O- 7.990e-19 7.310e-19 -18.097 -18.136 -0.039 (0) H[14C][18O]O2- 7.990e-19 7.310e-19 -18.097 -18.136 -0.039 (0) + H[14C]O[18O]O- 7.990e-19 7.310e-19 -18.097 -18.136 -0.039 (0) + H[14C]O2[18O]- 7.990e-19 7.310e-19 -18.097 -18.136 -0.039 (0) Ca[14C]O3 4.636e-19 4.643e-19 -18.334 -18.333 0.001 (0) [14C]O[18O] 3.465e-19 3.471e-19 -18.460 -18.460 0.001 (0) [14C]O3-2 2.378e-19 1.666e-19 -18.624 -18.778 -0.155 (0) CaH[14C]O2[18O]+ 1.687e-20 1.548e-20 -19.773 -19.810 -0.037 (0) - CaH[14C]O[18O]O+ 1.687e-20 1.548e-20 -19.773 -19.810 -0.037 (0) CaH[14C][18O]O2+ 1.687e-20 1.548e-20 -19.773 -19.810 -0.037 (0) + CaH[14C]O[18O]O+ 1.687e-20 1.548e-20 -19.773 -19.810 -0.037 (0) Ca[14C]O2[18O] 2.775e-21 2.779e-21 -20.557 -20.556 0.001 (0) H[14C]O[18O]2- 1.594e-21 1.458e-21 -20.797 -20.836 -0.039 (0) H[14C][18O]2O- 1.594e-21 1.458e-21 -20.797 -20.836 -0.039 (0) @@ -51055,29 +51045,29 @@ O(0) 1.931e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.845e-17 - O[18O] 3.837e-17 3.843e-17 -16.416 -16.415 0.001 (0) - [18O]2 3.828e-20 3.834e-20 -19.417 -19.416 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.788e-15 + O[18O] 1.785e-15 1.788e-15 -14.748 -14.748 0.001 (0) + [18O]2 1.781e-18 1.784e-18 -17.749 -17.749 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.84 -124.70 -2.86 [13C]H4 + [13C]H4(g) -125.17 -128.03 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.97 -21.48 -1.50 [14C][18O]2 - [14C]H4(g) -132.96 -135.82 -2.86 [14C]H4 + [14C]H4(g) -136.29 -139.15 -2.86 [14C]H4 [14C]O2(g) -14.61 -16.08 -1.47 [14C]O2 [14C]O[18O](g) -16.99 -18.78 -1.79 [14C]O[18O] - [18O]2(g) -17.13 -19.42 -2.29 [18O]2 + [18O]2(g) -15.46 -17.75 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -51091,14 +51081,14 @@ O(0) 1.931e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.88 -122.74 -2.86 CH4 + CH4(g) -123.22 -126.08 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.03 -39.18 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.12 -14.02 -2.89 O2 - O[18O](g) -13.82 -16.72 -2.89 O[18O] + O2(g) -9.46 -12.35 -2.89 O2 + O[18O](g) -12.16 -15.05 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -51162,23 +51152,23 @@ Calcite 4.26e-02 R(18O) 1.99521e-03 -4.9838 permil R(13C) 1.11479e-02 -2.8878 permil - R(14C) 8.40130e-14 7.1446 pmc + R(14C) 8.40136e-14 7.1447 pmc R(18O) H2O(l) 1.99520e-03 -4.9853 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.023 permil R(18O) O2(aq) 1.99520e-03 -4.9853 permil R(13C) CO2(aq) 1.10681e-02 -10.024 permil - R(14C) CO2(aq) 8.28140e-14 7.0427 pmc + R(14C) CO2(aq) 8.28145e-14 7.0427 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9853 permil R(13C) HCO3- 1.11644e-02 -1.4111 permil - R(14C) HCO3- 8.42612e-14 7.1658 pmc + R(14C) HCO3- 8.42617e-14 7.1658 pmc R(18O) CO3-2 1.99520e-03 -4.9853 permil R(13C) CO3-2 1.11484e-02 -2.8441 permil - R(14C) CO3-2 8.40195e-14 7.1452 pmc + R(14C) CO3-2 8.40201e-14 7.1452 pmc R(18O) Calcite 2.05265e-03 23.661 permil R(13C) Calcite 1.11865e-02 0.5668 permil - R(14C) Calcite 8.45953e-14 7.1942 pmc + R(14C) Calcite 8.45958e-14 7.1942 pmc --------------------------------Isotope Alphas--------------------------------- @@ -51188,12 +51178,12 @@ Calcite 4.26e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2206e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2684e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6671e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.61e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -51213,14 +51203,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.142 Adjusted to redox equilibrium + pe = 11.449 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -51235,13 +51225,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.649 -123.649 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.103 -126.103 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -51250,9 +51240,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -51260,23 +51250,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.770e-40 - H2 3.885e-40 3.891e-40 -39.411 -39.410 0.001 (0) -O(0) 5.497e-14 - O2 2.738e-14 2.742e-14 -13.563 -13.562 0.001 (0) - O[18O] 1.092e-16 1.094e-16 -15.962 -15.961 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.024 -40.023 0.001 (0) +O(0) 9.269e-13 + O2 4.616e-13 4.624e-13 -12.336 -12.335 0.001 (0) + O[18O] 1.842e-15 1.845e-15 -14.735 -14.734 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.605 -125.605 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.059 -128.059 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) @@ -51285,56 +51275,56 @@ O(0) 5.497e-14 CaH[13C]O[18O]O+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.731 -136.731 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.185 -139.185 0.001 (0) [14C](4) 4.906e-16 H[14C]O3- 3.963e-16 3.626e-16 -15.402 -15.441 -0.039 (0) [14C]O2 8.247e-17 8.260e-17 -16.084 -16.083 0.001 (0) CaH[14C]O3+ 8.369e-18 7.677e-18 -17.077 -17.115 -0.037 (0) - H[14C]O2[18O]- 7.907e-19 7.234e-19 -18.102 -18.141 -0.039 (0) - H[14C]O[18O]O- 7.907e-19 7.234e-19 -18.102 -18.141 -0.039 (0) H[14C][18O]O2- 7.907e-19 7.234e-19 -18.102 -18.141 -0.039 (0) - Ca[14C]O3 4.588e-19 4.595e-19 -18.338 -18.338 0.001 (0) + H[14C]O[18O]O- 7.907e-19 7.234e-19 -18.102 -18.141 -0.039 (0) + H[14C]O2[18O]- 7.907e-19 7.234e-19 -18.102 -18.141 -0.039 (0) + Ca[14C]O3 4.588e-19 4.596e-19 -18.338 -18.338 0.001 (0) [14C]O[18O] 3.429e-19 3.435e-19 -18.465 -18.464 0.001 (0) [14C]O3-2 2.354e-19 1.649e-19 -18.628 -18.783 -0.155 (0) CaH[14C]O2[18O]+ 1.670e-20 1.532e-20 -19.777 -19.815 -0.037 (0) - CaH[14C]O[18O]O+ 1.670e-20 1.532e-20 -19.777 -19.815 -0.037 (0) CaH[14C][18O]O2+ 1.670e-20 1.532e-20 -19.777 -19.815 -0.037 (0) + CaH[14C]O[18O]O+ 1.670e-20 1.532e-20 -19.777 -19.815 -0.037 (0) Ca[14C]O2[18O] 2.746e-21 2.751e-21 -20.561 -20.561 0.001 (0) - H[14C]O[18O]2- 1.578e-21 1.443e-21 -20.802 -20.841 -0.039 (0) H[14C][18O]2O- 1.578e-21 1.443e-21 -20.802 -20.841 -0.039 (0) H[14C][18O]O[18O]- 1.578e-21 1.443e-21 -20.802 -20.841 -0.039 (0) + H[14C]O[18O]2- 1.578e-21 1.443e-21 -20.802 -20.841 -0.039 (0) [14C]O2[18O]-2 1.409e-21 9.869e-22 -20.851 -21.006 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.095e-16 - O[18O] 1.092e-16 1.094e-16 -15.962 -15.961 0.001 (0) - [18O]2 1.090e-19 1.092e-19 -18.963 -18.962 0.001 (0) +[18O](0) 1.846e-15 + O[18O] 1.842e-15 1.845e-15 -14.735 -14.734 0.001 (0) + [18O]2 1.838e-18 1.841e-18 -17.736 -17.735 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.74 -125.60 -2.86 [13C]H4 + [13C]H4(g) -125.20 -128.06 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.98 -21.48 -1.50 [14C][18O]2 - [14C]H4(g) -133.87 -136.73 -2.86 [14C]H4 + [14C]H4(g) -136.32 -139.18 -2.86 [14C]H4 [14C]O2(g) -14.61 -16.08 -1.47 [14C]O2 [14C]O[18O](g) -17.00 -18.78 -1.79 [14C]O[18O] - [18O]2(g) -16.67 -18.96 -2.29 [18O]2 + [18O]2(g) -15.44 -17.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -51348,14 +51338,14 @@ O(0) 5.497e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.79 -123.65 -2.86 CH4 + CH4(g) -123.24 -126.10 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.26 -39.41 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.67 -13.56 -2.89 O2 - O[18O](g) -13.37 -16.26 -2.89 O[18O] + O2(g) -9.44 -12.33 -2.89 O2 + O[18O](g) -12.14 -15.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -51419,23 +51409,23 @@ Calcite 4.31e-02 R(18O) 1.99521e-03 -4.9836 permil R(13C) 1.11481e-02 -2.8725 permil - R(14C) 8.31541e-14 7.0716 pmc + R(14C) 8.31546e-14 7.0716 pmc R(18O) H2O(l) 1.99520e-03 -4.9851 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.023 permil R(18O) O2(aq) 1.99520e-03 -4.9851 permil R(13C) CO2(aq) 1.10683e-02 -10.009 permil - R(14C) CO2(aq) 8.19673e-14 6.9707 pmc + R(14C) CO2(aq) 8.19678e-14 6.9707 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9851 permil R(13C) HCO3- 1.11646e-02 -1.3957 permil - R(14C) HCO3- 8.33997e-14 7.0925 pmc + R(14C) HCO3- 8.34002e-14 7.0925 pmc R(18O) CO3-2 1.99520e-03 -4.9851 permil R(13C) CO3-2 1.11486e-02 -2.8288 permil - R(14C) CO3-2 8.31605e-14 7.0721 pmc + R(14C) CO3-2 8.31610e-14 7.0722 pmc R(18O) Calcite 2.05265e-03 23.661 permil R(13C) Calcite 1.11867e-02 0.58218 permil - R(14C) Calcite 8.37304e-14 7.1206 pmc + R(14C) Calcite 8.37309e-14 7.1207 pmc --------------------------------Isotope Alphas--------------------------------- @@ -51445,12 +51435,12 @@ Calcite 4.31e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2582e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2721e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7061e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6482e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -51470,14 +51460,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.171 Adjusted to redox equilibrium + pe = 11.454 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -51492,24 +51482,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.876 -123.876 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.144 -126.144 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -51517,81 +51507,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.818e-40 - H2 3.409e-40 3.415e-40 -39.467 -39.467 0.001 (0) -O(0) 7.138e-14 - O2 3.555e-14 3.561e-14 -13.449 -13.448 0.001 (0) - O[18O] 1.419e-16 1.421e-16 -15.848 -15.847 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.034 -40.034 0.001 (0) +O(0) 9.718e-13 + O2 4.840e-13 4.848e-13 -12.315 -12.314 0.001 (0) + O[18O] 1.931e-15 1.934e-15 -14.714 -14.713 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.832 -125.832 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.100 -128.100 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.963 -136.962 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.231 -139.230 0.001 (0) [14C](4) 4.856e-16 H[14C]O3- 3.923e-16 3.589e-16 -15.406 -15.445 -0.039 (0) [14C]O2 8.162e-17 8.176e-17 -16.088 -16.087 0.001 (0) - CaH[14C]O3+ 8.283e-18 7.599e-18 -17.082 -17.119 -0.037 (0) - H[14C]O2[18O]- 7.827e-19 7.160e-19 -18.106 -18.145 -0.039 (0) - H[14C]O[18O]O- 7.827e-19 7.160e-19 -18.106 -18.145 -0.039 (0) + CaH[14C]O3+ 8.284e-18 7.599e-18 -17.082 -17.119 -0.037 (0) H[14C][18O]O2- 7.827e-19 7.160e-19 -18.106 -18.145 -0.039 (0) - Ca[14C]O3 4.541e-19 4.548e-19 -18.343 -18.342 0.001 (0) + H[14C]O[18O]O- 7.827e-19 7.160e-19 -18.106 -18.145 -0.039 (0) + H[14C]O2[18O]- 7.827e-19 7.160e-19 -18.106 -18.145 -0.039 (0) + Ca[14C]O3 4.541e-19 4.549e-19 -18.343 -18.342 0.001 (0) [14C]O[18O] 3.394e-19 3.400e-19 -18.469 -18.469 0.001 (0) [14C]O3-2 2.329e-19 1.632e-19 -18.633 -18.787 -0.155 (0) CaH[14C]O2[18O]+ 1.653e-20 1.516e-20 -19.782 -19.819 -0.037 (0) - CaH[14C]O[18O]O+ 1.653e-20 1.516e-20 -19.782 -19.819 -0.037 (0) CaH[14C][18O]O2+ 1.653e-20 1.516e-20 -19.782 -19.819 -0.037 (0) + CaH[14C]O[18O]O+ 1.653e-20 1.516e-20 -19.782 -19.819 -0.037 (0) Ca[14C]O2[18O] 2.718e-21 2.723e-21 -20.566 -20.565 0.001 (0) + H[14C][18O]O[18O]- 1.562e-21 1.429e-21 -20.806 -20.845 -0.039 (0) H[14C]O[18O]2- 1.562e-21 1.429e-21 -20.806 -20.845 -0.039 (0) H[14C][18O]2O- 1.562e-21 1.429e-21 -20.806 -20.845 -0.039 (0) - H[14C][18O]O[18O]- 1.562e-21 1.429e-21 -20.806 -20.845 -0.039 (0) [14C]O2[18O]-2 1.394e-21 9.768e-22 -20.856 -21.010 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.421e-16 - O[18O] 1.419e-16 1.421e-16 -15.848 -15.847 0.001 (0) - [18O]2 1.415e-19 1.417e-19 -18.849 -18.848 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.935e-15 + O[18O] 1.931e-15 1.934e-15 -14.714 -14.713 0.001 (0) + [18O]2 1.927e-18 1.930e-18 -17.715 -17.714 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.97 -125.83 -2.86 [13C]H4 + [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.98 -21.49 -1.50 [14C][18O]2 - [14C]H4(g) -134.10 -136.96 -2.86 [14C]H4 + [14C]H4(g) -136.37 -139.23 -2.86 [14C]H4 [14C]O2(g) -14.62 -16.09 -1.47 [14C]O2 [14C]O[18O](g) -17.00 -18.79 -1.79 [14C]O[18O] - [18O]2(g) -16.56 -18.85 -2.29 [18O]2 + [18O]2(g) -15.42 -17.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -51605,14 +51595,14 @@ O(0) 7.138e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.02 -123.88 -2.86 CH4 + CH4(g) -123.28 -126.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.32 -39.47 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.56 -13.45 -2.89 O2 - O[18O](g) -13.26 -16.15 -2.89 O[18O] + O2(g) -9.42 -12.31 -2.89 O2 + O[18O](g) -12.12 -15.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -51667,7 +51657,7 @@ Calcite 4.36e-02 Ca[13C][18O]3(s) 4.14e-12 4.76e-14 9.51e-11 Ca[14C]O3(s) 3.55e-15 4.87e-18 8.15e-14 Ca[14C]O2[18O](s) 2.18e-17 3.00e-20 5.02e-16 - Ca[14C]O[18O]2(s) 4.48e-20 6.16e-23 1.03e-18 + Ca[14C]O[18O]2(s) 4.49e-20 6.16e-23 1.03e-18 Ca[14C][18O]3(s) 3.07e-23 4.21e-26 7.05e-22 --------------------------------Isotope Ratios--------------------------------- @@ -51676,23 +51666,23 @@ Calcite 4.36e-02 R(18O) 1.99521e-03 -4.9835 permil R(13C) 1.11483e-02 -2.8575 permil - R(14C) 8.23125e-14 7 pmc + R(14C) 8.23130e-14 7.0001 pmc R(18O) H2O(l) 1.99520e-03 -4.985 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.023 permil R(18O) O2(aq) 1.99520e-03 -4.985 permil R(13C) CO2(aq) 1.10685e-02 -9.9936 permil - R(14C) CO2(aq) 8.11377e-14 6.9001 pmc + R(14C) CO2(aq) 8.11382e-14 6.9002 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.985 permil R(13C) HCO3- 1.11648e-02 -1.3807 permil - R(14C) HCO3- 8.25556e-14 7.0207 pmc + R(14C) HCO3- 8.25562e-14 7.0208 pmc R(18O) CO3-2 1.99520e-03 -4.985 permil R(13C) CO3-2 1.11487e-02 -2.8138 permil - R(14C) CO3-2 8.23189e-14 7.0006 pmc + R(14C) CO3-2 8.23194e-14 7.0006 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11869e-02 0.59725 permil - R(14C) Calcite 8.28830e-14 7.0485 pmc + R(14C) Calcite 8.28835e-14 7.0486 pmc --------------------------------Isotope Alphas--------------------------------- @@ -51702,12 +51692,12 @@ Calcite 4.36e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.236e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2206e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5554e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6365e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -51727,14 +51717,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.174 Adjusted to redox equilibrium + pe = 11.454 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -51749,14 +51739,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.907 -123.906 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.147 -126.146 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -51764,9 +51754,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -51774,50 +51764,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.700e-40 - H2 3.350e-40 3.356e-40 -39.475 -39.474 0.001 (0) -O(0) 7.391e-14 - O2 3.681e-14 3.687e-14 -13.434 -13.433 0.001 (0) - O[18O] 1.469e-16 1.471e-16 -15.833 -15.832 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.035 -40.034 0.001 (0) +O(0) 9.745e-13 + O2 4.853e-13 4.861e-13 -12.314 -12.313 0.001 (0) + O[18O] 1.937e-15 1.940e-15 -14.713 -14.712 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.863 -125.862 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.103 -128.102 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.997 -136.997 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.238 -139.237 0.001 (0) [14C](4) 4.807e-16 H[14C]O3- 3.883e-16 3.552e-16 -15.411 -15.449 -0.039 (0) [14C]O2 8.080e-17 8.093e-17 -16.093 -16.092 0.001 (0) CaH[14C]O3+ 8.200e-18 7.522e-18 -17.086 -17.124 -0.037 (0) - H[14C]O2[18O]- 7.747e-19 7.088e-19 -18.111 -18.149 -0.039 (0) - H[14C]O[18O]O- 7.747e-19 7.088e-19 -18.111 -18.149 -0.039 (0) H[14C][18O]O2- 7.747e-19 7.088e-19 -18.111 -18.149 -0.039 (0) + H[14C]O[18O]O- 7.747e-19 7.088e-19 -18.111 -18.149 -0.039 (0) + H[14C]O2[18O]- 7.747e-19 7.088e-19 -18.111 -18.149 -0.039 (0) Ca[14C]O3 4.495e-19 4.502e-19 -18.347 -18.347 0.001 (0) [14C]O[18O] 3.360e-19 3.365e-19 -18.474 -18.473 0.001 (0) [14C]O3-2 2.306e-19 1.615e-19 -18.637 -18.792 -0.155 (0) CaH[14C]O2[18O]+ 1.636e-20 1.501e-20 -19.786 -19.824 -0.037 (0) - CaH[14C]O[18O]O+ 1.636e-20 1.501e-20 -19.786 -19.824 -0.037 (0) CaH[14C][18O]O2+ 1.636e-20 1.501e-20 -19.786 -19.824 -0.037 (0) + CaH[14C]O[18O]O+ 1.636e-20 1.501e-20 -19.786 -19.824 -0.037 (0) Ca[14C]O2[18O] 2.691e-21 2.695e-21 -20.570 -20.569 0.001 (0) H[14C]O[18O]2- 1.546e-21 1.414e-21 -20.811 -20.849 -0.039 (0) H[14C][18O]2O- 1.546e-21 1.414e-21 -20.811 -20.849 -0.039 (0) @@ -51826,29 +51816,29 @@ O(0) 7.391e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.472e-16 - O[18O] 1.469e-16 1.471e-16 -15.833 -15.832 0.001 (0) - [18O]2 1.465e-19 1.468e-19 -18.834 -18.833 0.001 (0) +[18O](0) 1.940e-15 + O[18O] 1.937e-15 1.940e-15 -14.713 -14.712 0.001 (0) + [18O]2 1.932e-18 1.935e-18 -17.714 -17.713 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.00 -125.86 -2.86 [13C]H4 + [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.99 -21.49 -1.50 [14C][18O]2 - [14C]H4(g) -134.14 -137.00 -2.86 [14C]H4 + [14C]H4(g) -136.38 -139.24 -2.86 [14C]H4 [14C]O2(g) -14.62 -16.09 -1.47 [14C]O2 [14C]O[18O](g) -17.00 -18.79 -1.79 [14C]O[18O] - [18O]2(g) -16.54 -18.83 -2.29 [18O]2 + [18O]2(g) -15.42 -17.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -51862,14 +51852,14 @@ O(0) 7.391e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.05 -123.91 -2.86 CH4 + CH4(g) -123.29 -126.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.32 -39.47 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.54 -13.43 -2.89 O2 - O[18O](g) -13.24 -16.13 -2.89 O[18O] + O2(g) -9.42 -12.31 -2.89 O2 + O[18O](g) -12.12 -15.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -51933,23 +51923,23 @@ Calcite 4.41e-02 R(18O) 1.99521e-03 -4.9833 permil R(13C) 1.11484e-02 -2.8428 permil - R(14C) 8.14878e-14 6.9299 pmc + R(14C) 8.14883e-14 6.9299 pmc R(18O) H2O(l) 1.99520e-03 -4.9849 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.023 permil R(18O) O2(aq) 1.99520e-03 -4.9849 permil R(13C) CO2(aq) 1.10686e-02 -9.979 permil - R(14C) CO2(aq) 8.03248e-14 6.831 pmc + R(14C) CO2(aq) 8.03253e-14 6.831 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9849 permil R(13C) HCO3- 1.11649e-02 -1.3659 permil - R(14C) HCO3- 8.17285e-14 6.9504 pmc + R(14C) HCO3- 8.17290e-14 6.9504 pmc R(18O) CO3-2 1.99520e-03 -4.9849 permil R(13C) CO3-2 1.11489e-02 -2.7991 permil - R(14C) CO3-2 8.14941e-14 6.9304 pmc + R(14C) CO3-2 8.14946e-14 6.9305 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11870e-02 0.61202 permil - R(14C) Calcite 8.20526e-14 6.9779 pmc + R(14C) Calcite 8.20531e-14 6.978 pmc --------------------------------Isotope Alphas--------------------------------- @@ -51959,12 +51949,12 @@ Calcite 4.41e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2564e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2405e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6205e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.771e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -51984,14 +51974,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.128 Adjusted to redox equilibrium + pe = 11.454 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -52006,24 +51996,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.535 -123.534 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.143 -126.142 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -52031,23 +52021,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.298e-40 - H2 4.149e-40 4.156e-40 -39.382 -39.381 0.001 (0) -O(0) 4.819e-14 - O2 2.400e-14 2.404e-14 -13.620 -13.619 0.001 (0) - O[18O] 9.577e-17 9.593e-17 -16.019 -16.018 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.034 -40.033 0.001 (0) +O(0) 9.700e-13 + O2 4.831e-13 4.839e-13 -12.316 -12.315 0.001 (0) + O[18O] 1.928e-15 1.931e-15 -14.715 -14.714 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.491 -125.490 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.099 -128.098 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) @@ -52056,56 +52046,56 @@ O(0) 4.819e-14 CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.630 -136.630 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.238 -139.237 0.001 (0) [14C](4) 4.759e-16 H[14C]O3- 3.844e-16 3.517e-16 -15.415 -15.454 -0.039 (0) [14C]O2 7.999e-17 8.012e-17 -16.097 -16.096 0.001 (0) - CaH[14C]O3+ 8.117e-18 7.446e-18 -17.091 -17.128 -0.037 (0) - H[14C]O2[18O]- 7.670e-19 7.017e-19 -18.115 -18.154 -0.039 (0) - H[14C]O[18O]O- 7.670e-19 7.017e-19 -18.115 -18.154 -0.039 (0) + CaH[14C]O3+ 8.118e-18 7.446e-18 -17.091 -17.128 -0.037 (0) H[14C][18O]O2- 7.670e-19 7.017e-19 -18.115 -18.154 -0.039 (0) + H[14C]O[18O]O- 7.670e-19 7.017e-19 -18.115 -18.154 -0.039 (0) + H[14C]O2[18O]- 7.670e-19 7.017e-19 -18.115 -18.154 -0.039 (0) Ca[14C]O3 4.450e-19 4.457e-19 -18.352 -18.351 0.001 (0) [14C]O[18O] 3.326e-19 3.332e-19 -18.478 -18.477 0.001 (0) [14C]O3-2 2.283e-19 1.599e-19 -18.642 -18.796 -0.155 (0) CaH[14C]O2[18O]+ 1.620e-20 1.486e-20 -19.791 -19.828 -0.037 (0) - CaH[14C]O[18O]O+ 1.620e-20 1.486e-20 -19.791 -19.828 -0.037 (0) CaH[14C][18O]O2+ 1.620e-20 1.486e-20 -19.791 -19.828 -0.037 (0) + CaH[14C]O[18O]O+ 1.620e-20 1.486e-20 -19.791 -19.828 -0.037 (0) Ca[14C]O2[18O] 2.664e-21 2.668e-21 -20.575 -20.574 0.001 (0) - H[14C]O[18O]2- 1.530e-21 1.400e-21 -20.815 -20.854 -0.039 (0) H[14C][18O]2O- 1.530e-21 1.400e-21 -20.815 -20.854 -0.039 (0) H[14C][18O]O[18O]- 1.530e-21 1.400e-21 -20.815 -20.854 -0.039 (0) + H[14C]O[18O]2- 1.530e-21 1.400e-21 -20.815 -20.854 -0.039 (0) [14C]O2[18O]-2 1.366e-21 9.572e-22 -20.864 -21.019 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 9.596e-17 - O[18O] 9.577e-17 9.593e-17 -16.019 -16.018 0.001 (0) - [18O]2 9.554e-20 9.570e-20 -19.020 -19.019 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.931e-15 + O[18O] 1.928e-15 1.931e-15 -14.715 -14.714 0.001 (0) + [18O]2 1.923e-18 1.926e-18 -17.716 -17.715 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.63 -125.49 -2.86 [13C]H4 + [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.99 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -133.77 -136.63 -2.86 [14C]H4 + [14C]H4(g) -136.38 -139.24 -2.86 [14C]H4 [14C]O2(g) -14.63 -16.10 -1.47 [14C]O2 [14C]O[18O](g) -17.01 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -16.73 -19.02 -2.29 [18O]2 + [18O]2(g) -15.43 -17.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -52119,14 +52109,14 @@ O(0) 4.819e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.67 -123.53 -2.86 CH4 + CH4(g) -123.28 -126.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.23 -39.38 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.73 -13.62 -2.89 O2 - O[18O](g) -13.43 -16.32 -2.89 O[18O] + O2(g) -9.42 -12.32 -2.89 O2 + O[18O](g) -12.12 -15.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -52190,23 +52180,23 @@ Calcite 4.46e-02 R(18O) 1.99521e-03 -4.9832 permil R(13C) 1.11486e-02 -2.8283 permil - R(14C) 8.06795e-14 6.8612 pmc + R(14C) 8.06800e-14 6.8612 pmc R(18O) H2O(l) 1.99520e-03 -4.9847 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.023 permil R(18O) O2(aq) 1.99520e-03 -4.9847 permil R(13C) CO2(aq) 1.10688e-02 -9.9647 permil - R(14C) CO2(aq) 7.95280e-14 6.7632 pmc + R(14C) CO2(aq) 7.95285e-14 6.7633 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99520e-03 -4.9847 permil R(13C) HCO3- 1.11651e-02 -1.3515 permil - R(14C) HCO3- 8.09178e-14 6.8814 pmc + R(14C) HCO3- 8.09183e-14 6.8815 pmc R(18O) CO3-2 1.99520e-03 -4.9847 permil R(13C) CO3-2 1.11491e-02 -2.7846 permil - R(14C) CO3-2 8.06857e-14 6.8617 pmc + R(14C) CO3-2 8.06862e-14 6.8617 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11872e-02 0.6265 permil - R(14C) Calcite 8.12386e-14 6.9087 pmc + R(14C) Calcite 8.12391e-14 6.9088 pmc --------------------------------Isotope Alphas--------------------------------- @@ -52216,12 +52206,12 @@ Calcite 4.46e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2834e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2682e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6822e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.56e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -52241,14 +52231,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.131 Adjusted to redox equilibrium + pe = 11.453 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -52263,14 +52253,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.558 -123.557 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.138 -126.137 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -52278,9 +52268,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -52288,81 +52278,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.190e-40 - H2 4.095e-40 4.102e-40 -39.388 -39.387 0.001 (0) -O(0) 4.948e-14 - O2 2.464e-14 2.468e-14 -13.608 -13.608 0.001 (0) - O[18O] 9.832e-17 9.848e-17 -16.007 -16.007 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.033 -40.032 0.001 (0) +O(0) 9.643e-13 + O2 4.802e-13 4.810e-13 -12.319 -12.318 0.001 (0) + O[18O] 1.916e-15 1.919e-15 -14.718 -14.717 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.514 -125.513 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.094 -128.093 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.657 -136.657 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.237 -139.236 0.001 (0) [14C](4) 4.712e-16 H[14C]O3- 3.806e-16 3.482e-16 -15.420 -15.458 -0.039 (0) [14C]O2 7.919e-17 7.932e-17 -16.101 -16.101 0.001 (0) CaH[14C]O3+ 8.037e-18 7.373e-18 -17.095 -17.132 -0.037 (0) - H[14C]O2[18O]- 7.594e-19 6.947e-19 -18.120 -18.158 -0.039 (0) - H[14C]O[18O]O- 7.594e-19 6.947e-19 -18.120 -18.158 -0.039 (0) H[14C][18O]O2- 7.594e-19 6.947e-19 -18.120 -18.158 -0.039 (0) + H[14C]O[18O]O- 7.594e-19 6.947e-19 -18.120 -18.158 -0.039 (0) + H[14C]O2[18O]- 7.594e-19 6.947e-19 -18.120 -18.158 -0.039 (0) Ca[14C]O3 4.406e-19 4.413e-19 -18.356 -18.355 0.001 (0) [14C]O[18O] 3.293e-19 3.299e-19 -18.482 -18.482 0.001 (0) [14C]O3-2 2.260e-19 1.583e-19 -18.646 -18.800 -0.155 (0) CaH[14C]O2[18O]+ 1.604e-20 1.471e-20 -19.795 -19.832 -0.037 (0) - CaH[14C]O[18O]O+ 1.604e-20 1.471e-20 -19.795 -19.832 -0.037 (0) CaH[14C][18O]O2+ 1.604e-20 1.471e-20 -19.795 -19.832 -0.037 (0) + CaH[14C]O[18O]O+ 1.604e-20 1.471e-20 -19.795 -19.832 -0.037 (0) Ca[14C]O2[18O] 2.637e-21 2.642e-21 -20.579 -20.578 0.001 (0) + H[14C][18O]O[18O]- 1.515e-21 1.386e-21 -20.820 -20.858 -0.039 (0) H[14C]O[18O]2- 1.515e-21 1.386e-21 -20.820 -20.858 -0.039 (0) H[14C][18O]2O- 1.515e-21 1.386e-21 -20.820 -20.858 -0.039 (0) - H[14C][18O]O[18O]- 1.515e-21 1.386e-21 -20.820 -20.858 -0.039 (0) [14C]O2[18O]-2 1.353e-21 9.477e-22 -20.869 -21.023 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 9.852e-17 - O[18O] 9.832e-17 9.848e-17 -16.007 -16.007 0.001 (0) - [18O]2 9.809e-20 9.825e-20 -19.008 -19.008 0.001 (0) +[18O](0) 1.920e-15 + O[18O] 1.916e-15 1.919e-15 -14.718 -14.717 0.001 (0) + [18O]2 1.912e-18 1.915e-18 -17.719 -17.718 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.65 -125.51 -2.86 [13C]H4 + [13C]H4(g) -125.23 -128.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.00 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -133.80 -136.66 -2.86 [14C]H4 + [14C]H4(g) -136.38 -139.24 -2.86 [14C]H4 [14C]O2(g) -14.63 -16.10 -1.47 [14C]O2 [14C]O[18O](g) -17.01 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -16.72 -19.01 -2.29 [18O]2 + [18O]2(g) -15.43 -17.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -52376,14 +52366,14 @@ O(0) 4.948e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.70 -123.56 -2.86 CH4 + CH4(g) -123.28 -126.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.24 -39.39 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.72 -13.61 -2.89 O2 - O[18O](g) -13.42 -16.31 -2.89 O[18O] + O2(g) -9.43 -12.32 -2.89 O2 + O[18O](g) -12.13 -15.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -52447,23 +52437,23 @@ Calcite 4.51e-02 R(18O) 1.99521e-03 -4.9831 permil R(13C) 1.11487e-02 -2.8142 permil - R(14C) 7.98870e-14 6.7938 pmc + R(14C) 7.98875e-14 6.7938 pmc R(18O) H2O(l) 1.99520e-03 -4.9846 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.023 permil R(18O) O2(aq) 1.99520e-03 -4.9846 permil R(13C) CO2(aq) 1.10690e-02 -9.9506 permil - R(14C) CO2(aq) 7.87468e-14 6.6968 pmc + R(14C) CO2(aq) 7.87473e-14 6.6968 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99520e-03 -4.9846 permil R(13C) HCO3- 1.11652e-02 -1.3373 permil - R(14C) HCO3- 8.01230e-14 6.8138 pmc + R(14C) HCO3- 8.01235e-14 6.8139 pmc R(18O) CO3-2 1.99520e-03 -4.9846 permil R(13C) CO3-2 1.11492e-02 -2.7705 permil - R(14C) CO3-2 7.98932e-14 6.7943 pmc + R(14C) CO3-2 7.98937e-14 6.7943 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11874e-02 0.64069 permil - R(14C) Calcite 8.04407e-14 6.8408 pmc + R(14C) Calcite 8.04412e-14 6.8409 pmc --------------------------------Isotope Alphas--------------------------------- @@ -52473,12 +52463,12 @@ Calcite 4.51e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2546e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2399e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7424e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7556e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -52498,14 +52488,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.129 Adjusted to redox equilibrium + pe = 11.453 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -52520,24 +52510,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.546 -123.546 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.137 -126.136 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -52545,81 +52535,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.245e-40 - H2 4.123e-40 4.129e-40 -39.385 -39.384 0.001 (0) -O(0) 4.881e-14 - O2 2.431e-14 2.435e-14 -13.614 -13.614 0.001 (0) - O[18O] 9.700e-17 9.716e-17 -16.013 -16.013 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.033 -40.032 0.001 (0) +O(0) 9.637e-13 + O2 4.799e-13 4.807e-13 -12.319 -12.318 0.001 (0) + O[18O] 1.915e-15 1.918e-15 -14.718 -14.717 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.502 -125.501 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.093 -128.092 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.650 -136.649 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.241 -139.240 0.001 (0) [14C](4) 4.665e-16 H[14C]O3- 3.769e-16 3.448e-16 -15.424 -15.462 -0.039 (0) [14C]O2 7.842e-17 7.855e-17 -16.106 -16.105 0.001 (0) CaH[14C]O3+ 7.958e-18 7.300e-18 -17.099 -17.137 -0.037 (0) - H[14C]O2[18O]- 7.519e-19 6.879e-19 -18.124 -18.162 -0.039 (0) - H[14C]O[18O]O- 7.519e-19 6.879e-19 -18.124 -18.162 -0.039 (0) H[14C][18O]O2- 7.519e-19 6.879e-19 -18.124 -18.162 -0.039 (0) + H[14C]O[18O]O- 7.519e-19 6.879e-19 -18.124 -18.162 -0.039 (0) + H[14C]O2[18O]- 7.519e-19 6.879e-19 -18.124 -18.162 -0.039 (0) Ca[14C]O3 4.363e-19 4.370e-19 -18.360 -18.360 0.001 (0) [14C]O[18O] 3.261e-19 3.266e-19 -18.487 -18.486 0.001 (0) [14C]O3-2 2.238e-19 1.568e-19 -18.650 -18.805 -0.155 (0) CaH[14C]O2[18O]+ 1.588e-20 1.457e-20 -19.799 -19.837 -0.037 (0) - CaH[14C]O[18O]O+ 1.588e-20 1.457e-20 -19.799 -19.837 -0.037 (0) CaH[14C][18O]O2+ 1.588e-20 1.457e-20 -19.799 -19.837 -0.037 (0) + CaH[14C]O[18O]O+ 1.588e-20 1.457e-20 -19.799 -19.837 -0.037 (0) Ca[14C]O2[18O] 2.611e-21 2.616e-21 -20.583 -20.582 0.001 (0) - H[14C]O[18O]2- 1.500e-21 1.372e-21 -20.824 -20.862 -0.039 (0) - H[14C][18O]2O- 1.500e-21 1.372e-21 -20.824 -20.862 -0.039 (0) - H[14C][18O]O[18O]- 1.500e-21 1.372e-21 -20.824 -20.862 -0.039 (0) + H[14C]O[18O]2- 1.500e-21 1.373e-21 -20.824 -20.862 -0.039 (0) + H[14C][18O]2O- 1.500e-21 1.373e-21 -20.824 -20.862 -0.039 (0) + H[14C][18O]O[18O]- 1.500e-21 1.373e-21 -20.824 -20.862 -0.039 (0) [14C]O2[18O]-2 1.340e-21 9.384e-22 -20.873 -21.028 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 9.719e-17 - O[18O] 9.700e-17 9.716e-17 -16.013 -16.013 0.001 (0) - [18O]2 9.676e-20 9.692e-20 -19.014 -19.014 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.919e-15 + O[18O] 1.915e-15 1.918e-15 -14.718 -14.717 0.001 (0) + [18O]2 1.911e-18 1.914e-18 -17.719 -17.718 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.64 -125.50 -2.86 [13C]H4 + [13C]H4(g) -125.23 -128.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.00 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -133.79 -136.65 -2.86 [14C]H4 + [14C]H4(g) -136.38 -139.24 -2.86 [14C]H4 [14C]O2(g) -14.64 -16.10 -1.47 [14C]O2 [14C]O[18O](g) -17.02 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -16.72 -19.01 -2.29 [18O]2 + [18O]2(g) -15.43 -17.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -52633,14 +52623,14 @@ O(0) 4.881e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.69 -123.55 -2.86 CH4 + CH4(g) -123.28 -126.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.23 -39.38 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.72 -13.61 -2.89 O2 - O[18O](g) -13.42 -16.31 -2.89 O[18O] + O2(g) -9.43 -12.32 -2.89 O2 + O[18O](g) -12.13 -15.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -52704,23 +52694,23 @@ Calcite 4.56e-02 R(18O) 1.99521e-03 -4.9829 permil R(13C) 1.11489e-02 -2.8003 permil - R(14C) 7.91100e-14 6.7277 pmc + R(14C) 7.91105e-14 6.7277 pmc R(18O) H2O(l) 1.99521e-03 -4.9844 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.024 permil R(18O) O2(aq) 1.99521e-03 -4.9844 permil R(13C) CO2(aq) 1.10691e-02 -9.9369 permil - R(14C) CO2(aq) 7.79809e-14 6.6317 pmc + R(14C) CO2(aq) 7.79814e-14 6.6317 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99521e-03 -4.9844 permil R(13C) HCO3- 1.11654e-02 -1.3234 permil - R(14C) HCO3- 7.93436e-14 6.7476 pmc + R(14C) HCO3- 7.93441e-14 6.7476 pmc R(18O) CO3-2 1.99521e-03 -4.9844 permil R(13C) CO3-2 1.11494e-02 -2.7566 permil - R(14C) CO3-2 7.91161e-14 6.7282 pmc + R(14C) CO3-2 7.91166e-14 6.7282 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11875e-02 0.6546 permil - R(14C) Calcite 7.96582e-14 6.7743 pmc + R(14C) Calcite 7.96587e-14 6.7743 pmc --------------------------------Isotope Alphas--------------------------------- @@ -52730,12 +52720,12 @@ Calcite 4.56e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.236e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2219e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6528e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6663e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -52755,14 +52745,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.164 Adjusted to redox equilibrium + pe = 11.454 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -52777,13 +52767,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.821 -123.820 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.147 -126.146 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -52792,9 +52782,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -52802,23 +52792,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.039e-40 - H2 3.520e-40 3.525e-40 -39.454 -39.453 0.001 (0) -O(0) 6.697e-14 - O2 3.335e-14 3.341e-14 -13.477 -13.476 0.001 (0) - O[18O] 1.331e-16 1.333e-16 -15.876 -15.875 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.035 -40.034 0.001 (0) +O(0) 9.746e-13 + O2 4.854e-13 4.862e-13 -12.314 -12.313 0.001 (0) + O[18O] 1.937e-15 1.940e-15 -14.713 -14.712 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.777 -125.776 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.103 -128.102 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) @@ -52827,56 +52817,56 @@ O(0) 6.697e-14 CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.929 -136.928 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.255 -139.254 0.001 (0) [14C](4) 4.620e-16 H[14C]O3- 3.732e-16 3.414e-16 -15.428 -15.467 -0.039 (0) [14C]O2 7.765e-17 7.778e-17 -16.110 -16.109 0.001 (0) CaH[14C]O3+ 7.881e-18 7.229e-18 -17.103 -17.141 -0.037 (0) - H[14C]O2[18O]- 7.446e-19 6.812e-19 -18.128 -18.167 -0.039 (0) - H[14C]O[18O]O- 7.446e-19 6.812e-19 -18.128 -18.167 -0.039 (0) H[14C][18O]O2- 7.446e-19 6.812e-19 -18.128 -18.167 -0.039 (0) + H[14C]O[18O]O- 7.446e-19 6.812e-19 -18.128 -18.167 -0.039 (0) + H[14C]O2[18O]- 7.446e-19 6.812e-19 -18.128 -18.167 -0.039 (0) Ca[14C]O3 4.320e-19 4.327e-19 -18.364 -18.364 0.001 (0) [14C]O[18O] 3.229e-19 3.234e-19 -18.491 -18.490 0.001 (0) [14C]O3-2 2.216e-19 1.553e-19 -18.654 -18.809 -0.155 (0) CaH[14C]O2[18O]+ 1.572e-20 1.442e-20 -19.803 -19.841 -0.037 (0) - CaH[14C]O[18O]O+ 1.572e-20 1.442e-20 -19.803 -19.841 -0.037 (0) CaH[14C][18O]O2+ 1.572e-20 1.442e-20 -19.803 -19.841 -0.037 (0) + CaH[14C]O[18O]O+ 1.572e-20 1.442e-20 -19.803 -19.841 -0.037 (0) Ca[14C]O2[18O] 2.586e-21 2.590e-21 -20.587 -20.587 0.001 (0) - H[14C]O[18O]2- 1.486e-21 1.359e-21 -20.828 -20.867 -0.039 (0) H[14C][18O]2O- 1.486e-21 1.359e-21 -20.828 -20.867 -0.039 (0) H[14C][18O]O[18O]- 1.486e-21 1.359e-21 -20.828 -20.867 -0.039 (0) + H[14C]O[18O]2- 1.486e-21 1.359e-21 -20.828 -20.867 -0.039 (0) [14C]O2[18O]-2 1.327e-21 9.293e-22 -20.877 -21.032 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.333e-16 - O[18O] 1.331e-16 1.333e-16 -15.876 -15.875 0.001 (0) - [18O]2 1.328e-19 1.330e-19 -18.877 -18.876 0.001 (0) +[18O](0) 1.941e-15 + O[18O] 1.937e-15 1.940e-15 -14.713 -14.712 0.001 (0) + [18O]2 1.932e-18 1.935e-18 -17.714 -17.713 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.92 -125.78 -2.86 [13C]H4 + [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.01 -21.51 -1.50 [14C][18O]2 - [14C]H4(g) -134.07 -136.93 -2.86 [14C]H4 + [14C]H4(g) -136.39 -139.25 -2.86 [14C]H4 [14C]O2(g) -14.64 -16.11 -1.47 [14C]O2 [14C]O[18O](g) -17.02 -18.81 -1.79 [14C]O[18O] - [18O]2(g) -16.59 -18.88 -2.29 [18O]2 + [18O]2(g) -15.42 -17.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -52890,14 +52880,14 @@ O(0) 6.697e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.96 -123.82 -2.86 CH4 + CH4(g) -123.29 -126.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.30 -39.45 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.58 -13.48 -2.89 O2 - O[18O](g) -13.28 -16.18 -2.89 O[18O] + O2(g) -9.42 -12.31 -2.89 O2 + O[18O](g) -12.12 -15.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -52961,23 +52951,23 @@ Calcite 4.61e-02 R(18O) 1.99521e-03 -4.9828 permil R(13C) 1.11490e-02 -2.7867 permil - R(14C) 7.83479e-14 6.6629 pmc + R(14C) 7.83484e-14 6.6629 pmc R(18O) H2O(l) 1.99521e-03 -4.9843 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.024 permil R(18O) O2(aq) 1.99521e-03 -4.9843 permil R(13C) CO2(aq) 1.10693e-02 -9.9234 permil - R(14C) CO2(aq) 7.72297e-14 6.5678 pmc + R(14C) CO2(aq) 7.72302e-14 6.5678 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99521e-03 -4.9843 permil R(13C) HCO3- 1.11656e-02 -1.3098 permil - R(14C) HCO3- 7.85793e-14 6.6826 pmc + R(14C) HCO3- 7.85798e-14 6.6826 pmc R(18O) CO3-2 1.99521e-03 -4.9843 permil R(13C) CO3-2 1.11495e-02 -2.743 permil - R(14C) CO3-2 7.83539e-14 6.6634 pmc + R(14C) CO3-2 7.83544e-14 6.6634 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11877e-02 0.66825 permil - R(14C) Calcite 7.88909e-14 6.709 pmc + R(14C) Calcite 7.88914e-14 6.7091 pmc --------------------------------Isotope Alphas--------------------------------- @@ -52987,12 +52977,12 @@ Calcite 4.61e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.261e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2466e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5463e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.697e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -53012,14 +53002,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.219 Adjusted to redox equilibrium + pe = 11.454 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -53034,24 +53024,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.260 -124.260 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.147 -126.146 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -53059,81 +53049,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.466e-40 - H2 2.733e-40 2.738e-40 -39.563 -39.563 0.001 (0) -O(0) 1.110e-13 - O2 5.530e-14 5.540e-14 -13.257 -13.257 0.001 (0) - O[18O] 2.207e-16 2.210e-16 -15.656 -15.656 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.035 -40.034 0.001 (0) +O(0) 9.749e-13 + O2 4.855e-13 4.863e-13 -12.314 -12.313 0.001 (0) + O[18O] 1.937e-15 1.941e-15 -14.713 -14.712 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.216 -126.215 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.103 -128.102 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.372 -137.372 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.259 -139.259 0.001 (0) [14C](4) 4.575e-16 H[14C]O3- 3.696e-16 3.381e-16 -15.432 -15.471 -0.039 (0) [14C]O2 7.691e-17 7.703e-17 -16.114 -16.113 0.001 (0) - CaH[14C]O3+ 7.805e-18 7.159e-18 -17.108 -17.145 -0.037 (0) - H[14C]O2[18O]- 7.374e-19 6.746e-19 -18.132 -18.171 -0.039 (0) - H[14C]O[18O]O- 7.374e-19 6.746e-19 -18.132 -18.171 -0.039 (0) + CaH[14C]O3+ 7.805e-18 7.160e-18 -17.108 -17.145 -0.037 (0) H[14C][18O]O2- 7.374e-19 6.746e-19 -18.132 -18.171 -0.039 (0) + H[14C]O[18O]O- 7.374e-19 6.746e-19 -18.132 -18.171 -0.039 (0) + H[14C]O2[18O]- 7.374e-19 6.746e-19 -18.132 -18.171 -0.039 (0) Ca[14C]O3 4.279e-19 4.286e-19 -18.369 -18.368 0.001 (0) [14C]O[18O] 3.198e-19 3.203e-19 -18.495 -18.494 0.001 (0) [14C]O3-2 2.195e-19 1.538e-19 -18.659 -18.813 -0.155 (0) CaH[14C]O2[18O]+ 1.557e-20 1.428e-20 -19.808 -19.845 -0.037 (0) - CaH[14C]O[18O]O+ 1.557e-20 1.428e-20 -19.808 -19.845 -0.037 (0) CaH[14C][18O]O2+ 1.557e-20 1.428e-20 -19.808 -19.845 -0.037 (0) + CaH[14C]O[18O]O+ 1.557e-20 1.428e-20 -19.808 -19.845 -0.037 (0) Ca[14C]O2[18O] 2.561e-21 2.565e-21 -20.592 -20.591 0.001 (0) + H[14C][18O]O[18O]- 1.471e-21 1.346e-21 -20.832 -20.871 -0.039 (0) H[14C]O[18O]2- 1.471e-21 1.346e-21 -20.832 -20.871 -0.039 (0) H[14C][18O]2O- 1.471e-21 1.346e-21 -20.832 -20.871 -0.039 (0) - H[14C][18O]O[18O]- 1.471e-21 1.346e-21 -20.832 -20.871 -0.039 (0) [14C]O2[18O]-2 1.314e-21 9.203e-22 -20.881 -21.036 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.211e-16 - O[18O] 2.207e-16 2.210e-16 -15.656 -15.656 0.001 (0) - [18O]2 2.202e-19 2.205e-19 -18.657 -18.657 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.941e-15 + O[18O] 1.937e-15 1.941e-15 -14.713 -14.712 0.001 (0) + [18O]2 1.933e-18 1.936e-18 -17.714 -17.713 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.36 -126.22 -2.86 [13C]H4 + [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.01 -21.51 -1.50 [14C][18O]2 - [14C]H4(g) -134.51 -137.37 -2.86 [14C]H4 + [14C]H4(g) -136.40 -139.26 -2.86 [14C]H4 [14C]O2(g) -14.64 -16.11 -1.47 [14C]O2 [14C]O[18O](g) -17.03 -18.81 -1.79 [14C]O[18O] - [18O]2(g) -16.37 -18.66 -2.29 [18O]2 + [18O]2(g) -15.42 -17.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -53147,14 +53137,14 @@ O(0) 1.110e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.40 -124.26 -2.86 CH4 + CH4(g) -123.29 -126.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.41 -39.56 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.36 -13.26 -2.89 O2 - O[18O](g) -13.06 -15.96 -2.89 O[18O] + O2(g) -9.42 -12.31 -2.89 O2 + O[18O](g) -12.12 -15.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -53218,23 +53208,23 @@ Calcite 4.66e-02 R(18O) 1.99521e-03 -4.9827 permil R(13C) 1.11492e-02 -2.7734 permil - R(14C) 7.76003e-14 6.5993 pmc + R(14C) 7.76008e-14 6.5993 pmc R(18O) H2O(l) 1.99521e-03 -4.9842 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.024 permil R(18O) O2(aq) 1.99521e-03 -4.9842 permil R(13C) CO2(aq) 1.10694e-02 -9.9101 permil - R(14C) CO2(aq) 7.64928e-14 6.5051 pmc + R(14C) CO2(aq) 7.64933e-14 6.5052 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99521e-03 -4.9842 permil R(13C) HCO3- 1.11657e-02 -1.2964 permil - R(14C) HCO3- 7.78295e-14 6.6188 pmc + R(14C) HCO3- 7.78300e-14 6.6188 pmc R(18O) CO3-2 1.99521e-03 -4.9842 permil R(13C) CO3-2 1.11497e-02 -2.7297 permil - R(14C) CO3-2 7.76063e-14 6.5998 pmc + R(14C) CO3-2 7.76068e-14 6.5998 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11878e-02 0.68164 permil - R(14C) Calcite 7.81382e-14 6.645 pmc + R(14C) Calcite 7.81387e-14 6.6451 pmc --------------------------------Isotope Alphas--------------------------------- @@ -53244,12 +53234,12 @@ Calcite 4.66e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2632e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2795e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6187e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6317e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -53269,14 +53259,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.245 Adjusted to redox equilibrium + pe = 11.458 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -53291,14 +53281,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.471 -124.470 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.175 -126.174 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -53306,9 +53296,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -53316,50 +53306,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.842e-40 - H2 2.421e-40 2.425e-40 -39.616 -39.615 0.001 (0) -O(0) 1.415e-13 - O2 7.049e-14 7.060e-14 -13.152 -13.151 0.001 (0) - O[18O] 2.813e-16 2.817e-16 -15.551 -15.550 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.042 -40.041 0.001 (0) +O(0) 1.006e-12 + O2 5.012e-13 5.020e-13 -12.300 -12.299 0.001 (0) + O[18O] 2.000e-15 2.003e-15 -14.699 -14.698 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.427 -126.426 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.131 -128.130 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.587 -137.587 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.291 -139.290 0.001 (0) [14C](4) 4.532e-16 H[14C]O3- 3.661e-16 3.349e-16 -15.436 -15.475 -0.039 (0) [14C]O2 7.617e-17 7.630e-17 -16.118 -16.117 0.001 (0) CaH[14C]O3+ 7.730e-18 7.091e-18 -17.112 -17.149 -0.037 (0) - H[14C]O2[18O]- 7.304e-19 6.682e-19 -18.136 -18.175 -0.039 (0) - H[14C]O[18O]O- 7.304e-19 6.682e-19 -18.136 -18.175 -0.039 (0) H[14C][18O]O2- 7.304e-19 6.682e-19 -18.136 -18.175 -0.039 (0) + H[14C]O[18O]O- 7.304e-19 6.682e-19 -18.136 -18.175 -0.039 (0) + H[14C]O2[18O]- 7.304e-19 6.682e-19 -18.136 -18.175 -0.039 (0) Ca[14C]O3 4.238e-19 4.245e-19 -18.373 -18.372 0.001 (0) [14C]O[18O] 3.167e-19 3.173e-19 -18.499 -18.499 0.001 (0) [14C]O3-2 2.174e-19 1.523e-19 -18.663 -18.817 -0.155 (0) CaH[14C]O2[18O]+ 1.542e-20 1.415e-20 -19.812 -19.849 -0.037 (0) - CaH[14C]O[18O]O+ 1.542e-20 1.415e-20 -19.812 -19.849 -0.037 (0) CaH[14C][18O]O2+ 1.542e-20 1.415e-20 -19.812 -19.849 -0.037 (0) + CaH[14C]O[18O]O+ 1.542e-20 1.415e-20 -19.812 -19.849 -0.037 (0) Ca[14C]O2[18O] 2.537e-21 2.541e-21 -20.596 -20.595 0.001 (0) H[14C]O[18O]2- 1.457e-21 1.333e-21 -20.836 -20.875 -0.039 (0) H[14C][18O]2O- 1.457e-21 1.333e-21 -20.836 -20.875 -0.039 (0) @@ -53368,29 +53358,29 @@ O(0) 1.415e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.818e-16 - O[18O] 2.813e-16 2.817e-16 -15.551 -15.550 0.001 (0) - [18O]2 2.806e-19 2.811e-19 -18.552 -18.551 0.001 (0) +[18O](0) 2.004e-15 + O[18O] 2.000e-15 2.003e-15 -14.699 -14.698 0.001 (0) + [18O]2 1.995e-18 1.998e-18 -17.700 -17.699 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.57 -126.43 -2.86 [13C]H4 + [13C]H4(g) -125.27 -128.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.01 -21.52 -1.50 [14C][18O]2 - [14C]H4(g) -134.73 -137.59 -2.86 [14C]H4 + [14C]H4(g) -136.43 -139.29 -2.86 [14C]H4 [14C]O2(g) -14.65 -16.12 -1.47 [14C]O2 [14C]O[18O](g) -17.03 -18.82 -1.79 [14C]O[18O] - [18O]2(g) -16.26 -18.55 -2.29 [18O]2 + [18O]2(g) -15.41 -17.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -53404,14 +53394,14 @@ O(0) 1.415e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.61 -124.47 -2.86 CH4 + CH4(g) -123.31 -126.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.47 -39.62 -3.15 H2 + H2(g) -36.89 -40.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.26 -13.15 -2.89 O2 - O[18O](g) -12.96 -15.85 -2.89 O[18O] + O2(g) -9.41 -12.30 -2.89 O2 + O[18O](g) -12.11 -15.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -53475,23 +53465,23 @@ Calcite 4.71e-02 R(18O) 1.99521e-03 -4.9825 permil R(13C) 1.11493e-02 -2.7603 permil - R(14C) 7.68669e-14 6.5369 pmc + R(14C) 7.68674e-14 6.537 pmc R(18O) H2O(l) 1.99521e-03 -4.984 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.024 permil R(18O) O2(aq) 1.99521e-03 -4.984 permil R(13C) CO2(aq) 1.10695e-02 -9.8971 permil - R(14C) CO2(aq) 7.57699e-14 6.4436 pmc + R(14C) CO2(aq) 7.57704e-14 6.4437 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99521e-03 -4.984 permil R(13C) HCO3- 1.11659e-02 -1.2833 permil - R(14C) HCO3- 7.70940e-14 6.5562 pmc + R(14C) HCO3- 7.70945e-14 6.5563 pmc R(18O) CO3-2 1.99521e-03 -4.984 permil R(13C) CO3-2 1.11498e-02 -2.7166 permil - R(14C) CO3-2 7.68729e-14 6.5374 pmc + R(14C) CO3-2 7.68734e-14 6.5375 pmc R(18O) Calcite 2.05265e-03 23.663 permil R(13C) Calcite 1.11880e-02 0.69477 permil - R(14C) Calcite 7.73997e-14 6.5822 pmc + R(14C) Calcite 7.74002e-14 6.5823 pmc --------------------------------Isotope Alphas--------------------------------- @@ -53501,12 +53491,12 @@ Calcite 4.71e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2444e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2297e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8665e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7443e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -53526,14 +53516,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.218 Adjusted to redox equilibrium + pe = 11.453 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -53548,24 +53538,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.259 -124.259 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.135 -126.135 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -53573,23 +53563,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.469e-40 - H2 2.735e-40 2.739e-40 -39.563 -39.562 0.001 (0) -O(0) 1.109e-13 - O2 5.525e-14 5.534e-14 -13.258 -13.257 0.001 (0) - O[18O] 2.205e-16 2.208e-16 -15.657 -15.656 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.032 -40.031 0.001 (0) +O(0) 9.617e-13 + O2 4.789e-13 4.797e-13 -12.320 -12.319 0.001 (0) + O[18O] 1.911e-15 1.914e-15 -14.719 -14.718 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.215 -126.215 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.091 -128.090 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) @@ -53598,56 +53588,56 @@ O(0) 1.109e-13 CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.380 -137.379 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.256 -139.255 0.001 (0) [14C](4) 4.489e-16 H[14C]O3- 3.626e-16 3.317e-16 -15.441 -15.479 -0.039 (0) [14C]O2 7.545e-17 7.558e-17 -16.122 -16.122 0.001 (0) CaH[14C]O3+ 7.657e-18 7.024e-18 -17.116 -17.153 -0.037 (0) - H[14C]O2[18O]- 7.235e-19 6.619e-19 -18.141 -18.179 -0.039 (0) - H[14C]O[18O]O- 7.235e-19 6.619e-19 -18.141 -18.179 -0.039 (0) H[14C][18O]O2- 7.235e-19 6.619e-19 -18.141 -18.179 -0.039 (0) + H[14C]O[18O]O- 7.235e-19 6.619e-19 -18.141 -18.179 -0.039 (0) + H[14C]O2[18O]- 7.235e-19 6.619e-19 -18.141 -18.179 -0.039 (0) Ca[14C]O3 4.198e-19 4.205e-19 -18.377 -18.376 0.001 (0) [14C]O[18O] 3.138e-19 3.143e-19 -18.503 -18.503 0.001 (0) [14C]O3-2 2.153e-19 1.509e-19 -18.667 -18.821 -0.155 (0) CaH[14C]O2[18O]+ 1.528e-20 1.401e-20 -19.816 -19.853 -0.037 (0) - CaH[14C]O[18O]O+ 1.528e-20 1.401e-20 -19.816 -19.853 -0.037 (0) CaH[14C][18O]O2+ 1.528e-20 1.401e-20 -19.816 -19.853 -0.037 (0) + CaH[14C]O[18O]O+ 1.528e-20 1.401e-20 -19.816 -19.853 -0.037 (0) Ca[14C]O2[18O] 2.513e-21 2.517e-21 -20.600 -20.599 0.001 (0) - H[14C]O[18O]2- 1.443e-21 1.321e-21 -20.841 -20.879 -0.039 (0) - H[14C][18O]2O- 1.443e-21 1.321e-21 -20.841 -20.879 -0.039 (0) - H[14C][18O]O[18O]- 1.443e-21 1.321e-21 -20.841 -20.879 -0.039 (0) + H[14C][18O]2O- 1.444e-21 1.321e-21 -20.841 -20.879 -0.039 (0) + H[14C][18O]O[18O]- 1.444e-21 1.321e-21 -20.841 -20.879 -0.039 (0) + H[14C]O[18O]2- 1.444e-21 1.321e-21 -20.841 -20.879 -0.039 (0) [14C]O2[18O]-2 1.289e-21 9.029e-22 -20.890 -21.044 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.209e-16 - O[18O] 2.205e-16 2.208e-16 -15.657 -15.656 0.001 (0) - [18O]2 2.199e-19 2.203e-19 -18.658 -18.657 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.915e-15 + O[18O] 1.911e-15 1.914e-15 -14.719 -14.718 0.001 (0) + [18O]2 1.907e-18 1.910e-18 -17.720 -17.719 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.35 -126.21 -2.86 [13C]H4 + [13C]H4(g) -125.23 -128.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.02 -21.52 -1.50 [14C][18O]2 - [14C]H4(g) -134.52 -137.38 -2.86 [14C]H4 + [14C]H4(g) -136.40 -139.26 -2.86 [14C]H4 [14C]O2(g) -14.65 -16.12 -1.47 [14C]O2 [14C]O[18O](g) -17.03 -18.82 -1.79 [14C]O[18O] - [18O]2(g) -16.37 -18.66 -2.29 [18O]2 + [18O]2(g) -15.43 -17.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -53661,14 +53651,14 @@ O(0) 1.109e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.40 -124.26 -2.86 CH4 + CH4(g) -123.27 -126.13 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.41 -39.56 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.36 -13.26 -2.89 O2 - O[18O](g) -13.06 -15.96 -2.89 O[18O] + O2(g) -9.43 -12.32 -2.89 O2 + O[18O](g) -12.13 -15.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -53732,23 +53722,23 @@ Calcite 4.76e-02 R(18O) 1.99521e-03 -4.9824 permil R(13C) 1.11495e-02 -2.7474 permil - R(14C) 7.61473e-14 6.4757 pmc + R(14C) 7.61478e-14 6.4758 pmc R(18O) H2O(l) 1.99521e-03 -4.9839 permil R(18O) OH- 1.92124e-03 -41.871 permil R(18O) H3O+ 2.04134e-03 18.024 permil R(18O) O2(aq) 1.99521e-03 -4.9839 permil R(13C) CO2(aq) 1.10697e-02 -9.8844 permil - R(14C) CO2(aq) 7.50605e-14 6.3833 pmc + R(14C) CO2(aq) 7.50609e-14 6.3833 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99521e-03 -4.9839 permil R(13C) HCO3- 1.11660e-02 -1.2705 permil - R(14C) HCO3- 7.63722e-14 6.4949 pmc + R(14C) HCO3- 7.63727e-14 6.4949 pmc R(18O) CO3-2 1.99521e-03 -4.9839 permil R(13C) CO3-2 1.11500e-02 -2.7037 permil - R(14C) CO3-2 7.61531e-14 6.4762 pmc + R(14C) CO3-2 7.61536e-14 6.4763 pmc R(18O) Calcite 2.05265e-03 23.663 permil R(13C) Calcite 1.11881e-02 0.70766 permil - R(14C) Calcite 7.66750e-14 6.5206 pmc + R(14C) Calcite 7.66755e-14 6.5206 pmc --------------------------------Isotope Alphas--------------------------------- @@ -53758,12 +53748,12 @@ Calcite 4.76e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2703e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2555e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6696e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6828e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -53783,14 +53773,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.264 Adjusted to redox equilibrium + pe = 11.456 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -53805,14 +53795,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.621 -124.620 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.160 -126.160 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -53820,9 +53810,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -53830,81 +53820,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.099e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.442e-40 - H2 2.221e-40 2.225e-40 -39.653 -39.653 0.001 (0) -O(0) 1.682e-13 - O2 8.375e-14 8.388e-14 -13.077 -13.076 0.001 (0) - O[18O] 3.342e-16 3.347e-16 -15.476 -15.475 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.038 -40.038 0.001 (0) +O(0) 9.897e-13 + O2 4.929e-13 4.937e-13 -12.307 -12.307 0.001 (0) + O[18O] 1.967e-15 1.970e-15 -14.706 -14.706 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.577 -126.576 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.116 -128.115 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.099e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.745 -137.745 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.285 -139.284 0.001 (0) [14C](4) 4.447e-16 H[14C]O3- 3.592e-16 3.286e-16 -15.445 -15.483 -0.039 (0) [14C]O2 7.475e-17 7.487e-17 -16.126 -16.126 0.001 (0) - CaH[14C]O3+ 7.585e-18 6.958e-18 -17.120 -17.157 -0.037 (0) - H[14C]O2[18O]- 7.167e-19 6.557e-19 -18.145 -18.183 -0.039 (0) - H[14C]O[18O]O- 7.167e-19 6.557e-19 -18.145 -18.183 -0.039 (0) + CaH[14C]O3+ 7.586e-18 6.958e-18 -17.120 -17.157 -0.037 (0) H[14C][18O]O2- 7.167e-19 6.557e-19 -18.145 -18.183 -0.039 (0) + H[14C]O[18O]O- 7.167e-19 6.557e-19 -18.145 -18.183 -0.039 (0) + H[14C]O2[18O]- 7.167e-19 6.557e-19 -18.145 -18.183 -0.039 (0) Ca[14C]O3 4.158e-19 4.165e-19 -18.381 -18.380 0.001 (0) [14C]O[18O] 3.108e-19 3.113e-19 -18.507 -18.507 0.001 (0) [14C]O3-2 2.133e-19 1.494e-19 -18.671 -18.826 -0.155 (0) CaH[14C]O2[18O]+ 1.513e-20 1.388e-20 -19.820 -19.858 -0.037 (0) - CaH[14C]O[18O]O+ 1.513e-20 1.388e-20 -19.820 -19.858 -0.037 (0) CaH[14C][18O]O2+ 1.513e-20 1.388e-20 -19.820 -19.858 -0.037 (0) + CaH[14C]O[18O]O+ 1.513e-20 1.388e-20 -19.820 -19.858 -0.037 (0) Ca[14C]O2[18O] 2.489e-21 2.493e-21 -20.604 -20.603 0.001 (0) + H[14C][18O]O[18O]- 1.430e-21 1.308e-21 -20.845 -20.883 -0.039 (0) H[14C]O[18O]2- 1.430e-21 1.308e-21 -20.845 -20.883 -0.039 (0) H[14C][18O]2O- 1.430e-21 1.308e-21 -20.845 -20.883 -0.039 (0) - H[14C][18O]O[18O]- 1.430e-21 1.308e-21 -20.845 -20.883 -0.039 (0) [14C]O2[18O]-2 1.277e-21 8.945e-22 -20.894 -21.048 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.348e-16 - O[18O] 3.342e-16 3.347e-16 -15.476 -15.475 0.001 (0) - [18O]2 3.334e-19 3.339e-19 -18.477 -18.476 0.001 (0) +[18O](0) 1.971e-15 + O[18O] 1.967e-15 1.970e-15 -14.706 -14.706 0.001 (0) + [18O]2 1.962e-18 1.965e-18 -17.707 -17.707 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.72 -126.58 -2.86 [13C]H4 + [13C]H4(g) -125.26 -128.12 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.02 -21.53 -1.50 [14C][18O]2 - [14C]H4(g) -134.88 -137.74 -2.86 [14C]H4 + [14C]H4(g) -136.42 -139.28 -2.86 [14C]H4 [14C]O2(g) -14.66 -16.13 -1.47 [14C]O2 [14C]O[18O](g) -17.04 -18.83 -1.79 [14C]O[18O] - [18O]2(g) -16.19 -18.48 -2.29 [18O]2 + [18O]2(g) -15.42 -17.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -53918,14 +53908,14 @@ O(0) 1.682e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.76 -124.62 -2.86 CH4 + CH4(g) -123.30 -126.16 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.50 -39.65 -3.15 H2 + H2(g) -36.89 -40.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.18 -13.08 -2.89 O2 - O[18O](g) -12.88 -15.78 -2.89 O[18O] + O2(g) -9.41 -12.31 -2.89 O2 + O[18O](g) -12.11 -15.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/phreeqc3-examples/ex21 b/phreeqc3-examples/ex21 index 28d33213..e255d814 100644 --- a/phreeqc3-examples/ex21 +++ b/phreeqc3-examples/ex21 @@ -1,6 +1,9 @@ +#DATABASE ../database/phreeqc.dat TITLE Diffusion through Opalinus Clay in a radial diffusion cell, Appelo, Van Loon and Wersin, 2010, GCA 74, 1201 +# NEW: viscosity effects in solution and Donnan EDL, (and, possibly correct co-ion in Donnan layer to the DLVO values) + +KNOBS; -tol 1e-16; -diagonal_scale true -KNOBS; -tol 1e-16 SOLUTION_MASTER_SPECIES # element species alk gfw_formula element_gfw Hto Hto 0.0 20 20 @@ -8,14 +11,14 @@ SOLUTION_MASTER_SPECIES Cl_tr Cl_tr- 0.0 36 36 Cs Cs+ 0.0 132.905 132.905 SOLUTION_SPECIES - Hto = Hto; log_k 0; -gamma 1e6 0; -dw 2.236e-9 - # Na_tr+ = Na_tr+; log_k 0; -gamma 4.0 0.075; -dw 1.33e-9; -erm_ddl 1.23 - # Cl_tr- = Cl_tr-; log_k 0; -gamma 3.5 0.015; -dw 1.31e-9 # dw = dw(water) / 1.55 = 2.03e-9 / 1.55 - # Cs+ = Cs+; log_k 0; -gamma 3.5 0.015; -dw 2.07e-9; -erm_ddl 1.23 -# adapted for the harmonic mean calc's in version 3.4.2 - Na_tr+ = Na_tr+; log_k 0; -gamma 4.0 0.075; -dw 1.33e-9; -erm_ddl 1.6 - Cl_tr- = Cl_tr-; log_k 0; -gamma 3.5 0.015; -dw 1.18e-9 # dw = dw(water) / 1.72 = 2.03e-9 / 1.72 - Cs+ = Cs+; log_k 0; -gamma 3.5 0.015; -dw 2.07e-9; -erm_ddl 1.6 +# start with finding tortuosity from HTO + Hto = Hto; log_k 0; -gamma 1e5 0; -dw 2.3e-9 0 0 0 0 0 0.5 # diffusion coefficient is multiplied by (viscos_0 /viscos)^0.5, the viscosity of the DDL is calculated. +# estimate f_free and f_DL_charge, increase tortuosity + Cl_tr- = Cl_tr-; log_k 0; -gamma 3.5 0.015; -dw 1.35e-9 0 0 0 0 0 0.5 # increase tortuosity for anions: 2.03e-9 / 1.35e-9 = 1.5 +# use erm_ddl to fit Na + Na_tr+ = Na_tr+; log_k 0; -gamma 4.0 0.075; -dw 1.33e-9 0 0 0 0 0 0.5 ; -erm_ddl 1.3 +# use interlayer diffusion to fit Cs + Cs+ = Cs+; log_k 0; -gamma 3.5 0.015; -dw 2.07e-9 0 0 0 0 0 0.5 ; -erm_ddl 1.3 SURFACE_MASTER_SPECIES Su_fes Su_fes- # Frayed Edge Sites Su_ii Su_ii- # Type II sites of intermediate strength @@ -49,7 +52,7 @@ SOLUTION 3 tracer solution pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 -# uncomment tracer concentrations and kg water 1 by 1... +# uncomment tracer concentrations and kg water 1 by 1... (the experimental water volumes are different) Hto 1.14e-6; -water 0.2 # Cl_tr 2.505e-2; -water 0.502 # Cs 1; Na_tr 1.87e-7; -water 1.02 @@ -78,8 +81,10 @@ USER_PUNCH 130 rho_b_eps = 2.7 * (1 - por_clay) / por_clay # clay bulk density / porosity / (kg/L) # 140 CEC = 0.12 * rho_b_eps # CEC / (eq/L porewater) # adapted for the harmonic mean calc's in version 3.4.2 -140 CEC = 0.09 * rho_b_eps # CEC / (eq/L porewater) +140 CEC = 0.12 * rho_b_eps # CEC / (eq/L porewater) 150 A_por = 37e3 * rho_b_eps # pore surface area / (m²/L porewater) +151 correct_$ = ' false' +# 152 correct_$ = ' true' # if 'true' correct the co-ion concentrations in the Donnan volume 160 DIM tracer$(4), exp_time(4), scale_y1$(4), scale_y2$(4), profile_y1$(4), profile_y2$(4) 170 DATA 'Hto', 'Cl_tr', 'Na_tr', 'Cs' @@ -105,16 +110,15 @@ USER_PUNCH 360 nfilt1 = 1 # number of cells in filter 1 370 nfilt2 = 1 # number of cells in filter 2 380 nclay = 11 # number of clay cells -390 f_free = 0.117 # fraction of free pore water (0.01 - 1) -400 f_DL_charge = 0.45 # fraction of CEC charge in electrical double layer -410 tort_n = -0.99 # exponent in Archie's law, -1.045 without filters +390 f_free = 0.11 # fraction of free pore water (0.01 - 1) +400 f_DL_charge = 0.48 # fraction of CEC charge in electrical double layer +# 400 f_free = 0.2 : f_DL_charge = 0.5 # higher f_free ===> higher f_DL_charge, found from Cl- and Na+ +410 tort_n = -1.00 # exponent in Archie's law, found from HTO 420 G_clay = por_clay^tort_n # geometrical factor -430 interlayer_D$ = 'false' # 'true' or 'false' for interlayer diffusion -# 440 G_IL = 700 # geometrical factor for clay interlayers - # adapted for the harmonic mean calc's in version 3.4.2 -440 G_IL = 1300 # geometrical factor for clay interlayers +430 interlayer_D$ = 'true' # 'true' or 'false' for interlayer diffusion +440 G_IL = 1300 # geometrical factor for clay interlayers... the initial rise of Cs suggests stagnant water, see Appelo et al for the calculation 450 punch_time = 60 * 60 * 6 # punch time / seconds -460 profile$ = 'true' # 'true' or 'false' for c/x profile visualization +460 profile$ = 'false' # 'true' or 'false' for c/x profile visualization 470 IF nfilt1 = 0 THEN thickn_filter1 = 0 480 IF nfilt2 = 0 THEN thickn_filter2 = 0 @@ -165,7 +169,7 @@ USER_PUNCH 900 punch nl$ + ' Su_ ' + TRIM(STR$(f_DL_charge * CEC * V_water)) + STR$(A_por) + ' ' + STR$(V_water) 910 punch nl$ + ' Su_ii ' + TRIM(STR$(7.88e-4 * rho_b_eps * V_water)) 920 punch nl$ + ' Su_fes ' + TRIM(STR$(7.4e-5 * rho_b_eps * V_water)) -930 IF f_free < 1 THEN punch nl$ + ' -Donnan ' + TRIM(STR$((1 - f_free) * 1e-3 / A_por)) +930 IF f_free < 1 THEN punch nl$ + ' -Donnan ' + TRIM(STR$((1 - f_free) * 1e-3 / A_por)) + ' viscosity calc' + ' correct ' + correct_$ 940 punch nl$ + 'EXCHANGE ' + num$ + ' -equil ' + num$ 950 punch nl$ + ' X ' + TRIM(STR$((1 - f_DL_charge) * CEC * V_water)) + nl$ 960 r1 = r1 + x diff --git a/phreeqc3-examples/ex21.out b/phreeqc3-examples/ex21.out index b97d6ce4..339f19af 100644 --- a/phreeqc3-examples/ex21.out +++ b/phreeqc3-examples/ex21.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -22,6 +23,7 @@ Reading input data for simulation 1. TITLE Diffusion through Opalinus Clay in a radial diffusion cell, Appelo, Van Loon and Wersin, 2010, GCA 74, 1201 KNOBS tolerance 1e-16 + diagonal_scale true SOLUTION_MASTER_SPECIES Hto Hto 0.0 20 20 Na_tr Na_tr+ 0.0 22 22 @@ -30,22 +32,22 @@ Reading input data for simulation 1. SOLUTION_SPECIES Hto = Hto log_k 0 - gamma 1e6 0 - dw 2.236e-9 - Na_tr+ = Na_tr+ - log_k 0 - gamma 4.0 0.075 - dw 1.33e-9 - erm_ddl 1.6 + gamma 1e5 0 + dw 2.3e-9 0 0 0 0 0 0.5 # diffusion coefficient is multiplied by (viscos_0 /viscos)^0.5, the viscosity of the DDL is calculated. Cl_tr- = Cl_tr- log_k 0 gamma 3.5 0.015 - dw 1.18e-9 # dw = dw(water) / 1.72 = 2.03e-9 / 1.72 + dw 1.35e-9 0 0 0 0 0 0.5 # increase tortuosity for anions: 2.03e-9 / 1.35e-9 = 1.5 + Na_tr+ = Na_tr+ + log_k 0 + gamma 4.0 0.075 + dw 1.33e-9 0 0 0 0 0 0.5 + erm_ddl 1.3 Cs+ = Cs+ log_k 0 gamma 3.5 0.015 - dw 2.07e-9 - erm_ddl 1.6 + dw 2.07e-9 0 0 0 0 0 0.5 + erm_ddl 1.3 SURFACE_MASTER_SPECIES Su_fes Su_fes- # Frayed Edge Sites Su_ii Su_ii- # Type II sites of intermediate strength @@ -107,7 +109,7 @@ Initial solution 0. column with only cell 1, two boundary solutions 0 and 2. pH = 7.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 123 + Specific Conductance (µS/cm, 25°C) = 122 Density (g/cm³) = 0.99708 Volume (L) = 1.00298 Viscosity (mPa s) = 0.89026 @@ -197,8 +199,9 @@ Reading input data for simulation 2. 110 thickn_clay = r_ext - r_int # clay thickness / m 120 por_clay = 0.159 130 rho_b_eps = 2.7 * (1 - por_clay) / por_clay # clay bulk density / porosity / (kg/L) - 140 CEC = 0.09 * rho_b_eps # CEC / (eq/L porewater) + 140 CEC = 0.12 * rho_b_eps # CEC / (eq/L porewater) 150 A_por = 37e3 * rho_b_eps # pore surface area / (m²/L porewater) + 151 correct_$ = ' false' 160 DIM tracer$(4), exp_time(4), scale_y1$(4), scale_y2$(4), profile_y1$(4), profile_y2$(4) 170 DATA 'Hto', 'Cl_tr', 'Na_tr', 'Cs' 180 READ tracer$(1), tracer$(2), tracer$(3), tracer$(4) @@ -216,14 +219,14 @@ Reading input data for simulation 2. 360 nfilt1 = 1 # number of cells in filter 1 370 nfilt2 = 1 # number of cells in filter 2 380 nclay = 11 # number of clay cells - 390 f_free = 0.117 # fraction of free pore water (0.01 - 1) - 400 f_DL_charge = 0.45 # fraction of CEC charge in electrical double layer - 410 tort_n = -0.99 # exponent in Archie's law, -1.045 without filters + 390 f_free = 0.11 # fraction of free pore water (0.01 - 1) + 400 f_DL_charge = 0.48 # fraction of CEC charge in electrical double layer + 410 tort_n = -1.00 # exponent in Archie's law, found from HTO 420 G_clay = por_clay^tort_n # geometrical factor - 430 interlayer_D$ = 'false' # 'true' or 'false' for interlayer diffusion - 440 G_IL = 1300 # geometrical factor for clay interlayers + 430 interlayer_D$ = 'true' # 'true' or 'false' for interlayer diffusion + 440 G_IL = 1300 # geometrical factor for clay interlayers... the initial rise of Cs suggests stagnant water, see Appelo et al for the calculation 450 punch_time = 60 * 60 * 6 # punch time / seconds - 460 profile$ = 'true' # 'true' or 'false' for c/x profile visualization + 460 profile$ = 'false' # 'true' or 'false' for c/x profile visualization 470 IF nfilt1 = 0 THEN thickn_filter1 = 0 480 IF nfilt2 = 0 THEN thickn_filter2 = 0 490 IF tot("Hto") > 1e-10 THEN tracer = 1 ELSE IF tot("Cl_tr") > 1e-10 THEN tracer = 2 ELSE tracer = 3 @@ -264,7 +267,7 @@ Reading input data for simulation 2. 900 punch nl$ + ' Su_ ' + TRIM(STR$(f_DL_charge * CEC * V_water)) + STR$(A_por) + ' ' + STR$(V_water) 910 punch nl$ + ' Su_ii ' + TRIM(STR$(7.88e-4 * rho_b_eps * V_water)) 920 punch nl$ + ' Su_fes ' + TRIM(STR$(7.4e-5 * rho_b_eps * V_water)) - 930 IF f_free < 1 THEN punch nl$ + ' -Donnan ' + TRIM(STR$((1 - f_free) * 1e-3 / A_por)) + 930 IF f_free < 1 THEN punch nl$ + ' -Donnan ' + TRIM(STR$((1 - f_free) * 1e-3 / A_por)) + ' viscosity calc' + ' correct ' + correct_$ 940 punch nl$ + 'EXCHANGE ' + num$ + ' -equil ' + num$ 950 punch nl$ + ' X ' + TRIM(STR$((1 - f_DL_charge) * CEC * V_water)) + nl$ 960 r1 = r1 + x @@ -433,12 +436,12 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. pH = 7.600 pe = 13.120 Equilibrium with O2(g) - Specific Conductance (µS/cm, 23°C) = 28957 + Specific Conductance (µS/cm, 23°C) = 29068 Density (g/cm³) = 1.01168 - Volume (L) = 0.20146 - Viscosity (mPa s) = 0.96825 + Volume (L) = 0.20147 + Viscosity (mPa s) = 0.96935 Activity of water = 0.990 - Ionic strength (mol/kgw) = 3.653e-01 + Ionic strength (mol/kgw) = 3.633e-01 Mass of water (kg) = 2.000e-01 Total carbon (mol/kg) = 4.811e-04 Total CO2 (mol/kg) = 4.811e-04 @@ -454,92 +457,94 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 5.191e-07 3.419e-07 -6.285 -6.466 -0.181 -3.26 - H+ 3.238e-08 2.512e-08 -7.490 -7.600 -0.110 0.00 + OH- 5.188e-07 3.419e-07 -6.285 -6.466 -0.181 -3.26 + H+ 3.237e-08 2.512e-08 -7.490 -7.600 -0.110 0.00 H2O 5.551e+01 9.899e-01 1.744 -0.004 0.000 18.06 C(4) 4.811e-04 - HCO3- 3.809e-04 2.707e-04 -3.419 -3.568 -0.148 25.73 - CaHCO3+ 3.057e-05 2.214e-05 -4.515 -4.655 -0.140 9.84 - NaHCO3 2.383e-05 2.891e-05 -4.623 -4.539 0.084 28.00 - MgHCO3+ 2.149e-05 1.449e-05 -4.668 -4.839 -0.171 5.70 - CO2 1.499e-05 1.585e-05 -4.824 -4.800 0.024 34.33 - CaCO3 4.767e-06 5.185e-06 -5.322 -5.285 0.037 -14.61 - MgCO3 1.903e-06 2.070e-06 -5.721 -5.684 0.037 -17.09 - CO3-2 1.901e-06 4.849e-07 -5.721 -6.314 -0.593 -1.67 - SrHCO3+ 6.993e-07 4.970e-07 -6.155 -6.304 -0.148 (0) - SrCO3 3.448e-08 3.750e-08 -7.462 -7.426 0.037 -14.14 - (CO2)2 3.964e-12 4.312e-12 -11.402 -11.365 0.037 68.67 + HCO3- 3.911e-04 2.781e-04 -3.408 -3.556 -0.148 25.30 + NaHCO3 3.292e-05 3.892e-05 -4.483 -4.410 0.073 31.75 + MgHCO3+ 2.266e-05 1.528e-05 -4.645 -4.816 -0.171 5.70 + CO2 1.541e-05 1.628e-05 -4.812 -4.788 0.024 34.33 + CaHCO3+ 9.133e-06 6.615e-06 -5.039 -5.179 -0.140 122.80 + CaCO3 4.998e-06 5.434e-06 -5.301 -5.265 0.036 -14.61 + MgCO3 2.008e-06 2.184e-06 -5.697 -5.661 0.036 -17.09 + CO3-2 1.949e-06 4.981e-07 -5.710 -6.303 -0.593 -1.75 + SrHCO3+ 7.330e-07 5.211e-07 -6.135 -6.283 -0.148 (0) + KHCO3 1.261e-07 1.271e-07 -6.899 -6.896 0.003 41.01 + SrCO3 3.617e-08 3.932e-08 -7.442 -7.405 0.036 -14.14 + (CO2)2 4.185e-12 4.551e-12 -11.378 -11.342 0.036 68.67 Ca 2.580e-02 - Ca+2 2.384e-02 6.616e-03 -1.623 -2.179 -0.557 -17.02 - CaSO4 1.923e-03 2.092e-03 -2.716 -2.679 0.037 7.42 - CaHCO3+ 3.057e-05 2.214e-05 -4.515 -4.655 -0.140 9.84 - CaCO3 4.767e-06 5.185e-06 -5.322 -5.285 0.037 -14.61 - CaOH+ 5.916e-08 4.327e-08 -7.228 -7.364 -0.136 (0) - CaHSO4+ 4.591e-10 3.358e-10 -9.338 -9.474 -0.136 (0) + Ca+2 2.429e-02 6.749e-03 -1.615 -2.171 -0.556 -17.03 + CaSO4 1.496e-03 1.626e-03 -2.825 -2.789 0.036 7.42 + CaHCO3+ 9.133e-06 6.615e-06 -5.039 -5.179 -0.140 122.80 + CaCO3 4.998e-06 5.434e-06 -5.301 -5.265 0.036 -14.61 + CaOH+ 6.034e-08 4.414e-08 -7.219 -7.355 -0.136 (0) + CaHSO4+ 3.568e-10 2.610e-10 -9.448 -9.583 -0.136 (0) Cl 3.000e-01 - Cl- 3.000e-01 2.017e-01 -0.523 -0.695 -0.172 18.53 - HCl 1.235e-09 1.767e-09 -8.908 -8.753 0.155 (0) + Cl- 3.000e-01 2.018e-01 -0.523 -0.695 -0.172 18.53 + HCl 1.239e-09 1.768e-09 -8.907 -8.752 0.155 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.617 -44.580 0.037 28.61 + H2 0.000e+00 0.000e+00 -44.617 -44.580 0.036 28.61 Hto 1.140e-09 Hto 1.140e-09 1.140e-09 -8.943 -8.943 0.000 (0) K 1.610e-03 - K+ 1.595e-03 1.064e-03 -2.797 -2.973 -0.176 9.40 - KSO4- 1.464e-05 7.267e-06 -4.834 -5.139 -0.304 29.98 + K+ 1.584e-03 1.057e-03 -2.800 -2.976 -0.176 9.40 + KSO4- 2.634e-05 2.195e-05 -4.579 -4.659 -0.079 13.22 + KHCO3 1.261e-07 1.271e-07 -6.899 -6.896 0.003 41.01 Mg 1.690e-02 - Mg+2 1.509e-02 4.612e-03 -1.821 -2.336 -0.515 -20.64 - MgSO4 1.750e-03 2.071e-03 -2.757 -2.684 0.073 -1.17 - Mg(SO4)2-2 4.016e-05 1.278e-05 -4.396 -4.894 -0.497 46.11 - MgHCO3+ 2.149e-05 1.449e-05 -4.668 -4.839 -0.171 5.70 - MgCO3 1.903e-06 2.070e-06 -5.721 -5.684 0.037 -17.09 - MgOH+ 7.495e-07 5.502e-07 -6.125 -6.259 -0.134 (0) + Mg+2 1.548e-02 4.737e-03 -1.810 -2.325 -0.514 -20.64 + MgSO4 1.371e-03 1.620e-03 -2.863 -2.790 0.073 -8.62 + Mg(SO4)2-2 2.392e-05 7.620e-06 -4.621 -5.118 -0.497 27.97 + MgHCO3+ 2.266e-05 1.528e-05 -4.645 -4.816 -0.171 5.70 + MgCO3 2.008e-06 2.184e-06 -5.697 -5.661 0.036 -17.09 + MgOH+ 7.694e-07 5.651e-07 -6.114 -6.248 -0.134 (0) Na 2.400e-01 - Na+ 2.374e-01 1.721e-01 -0.624 -0.764 -0.140 -0.85 - NaSO4- 2.562e-03 1.263e-03 -2.591 -2.899 -0.307 18.52 - NaHCO3 2.383e-05 2.891e-05 -4.623 -4.539 0.084 28.00 - NaOH 5.408e-18 5.883e-18 -17.267 -17.230 0.037 (0) -O(0) 2.437e-04 - O2 1.218e-04 1.325e-04 -3.914 -3.878 0.037 30.24 + Na+ 2.347e-01 1.701e-01 -0.629 -0.769 -0.140 -0.85 + NaSO4- 5.251e-03 3.746e-03 -2.280 -2.426 -0.147 2.97 + NaHCO3 3.292e-05 3.892e-05 -4.483 -4.410 0.073 31.75 + NaOH 5.351e-18 5.818e-18 -17.272 -17.235 0.036 (0) +O(0) 2.438e-04 + O2 1.219e-04 1.325e-04 -3.914 -3.878 0.036 30.24 S(6) 1.410e-02 - SO4-2 7.729e-03 1.805e-03 -2.112 -2.743 -0.632 16.64 - NaSO4- 2.562e-03 1.263e-03 -2.591 -2.899 -0.307 18.52 - CaSO4 1.923e-03 2.092e-03 -2.716 -2.679 0.037 7.42 - MgSO4 1.750e-03 2.071e-03 -2.757 -2.684 0.073 -1.17 - SrSO4 4.061e-05 4.418e-05 -4.391 -4.355 0.037 24.16 - Mg(SO4)2-2 4.016e-05 1.278e-05 -4.396 -4.894 -0.497 46.11 - KSO4- 1.464e-05 7.267e-06 -4.834 -5.139 -0.304 29.98 - HSO4- 5.771e-09 4.222e-09 -8.239 -8.374 -0.136 40.64 - CaHSO4+ 4.591e-10 3.358e-10 -9.338 -9.474 -0.136 (0) + SO4-2 5.877e-03 1.376e-03 -2.231 -2.862 -0.631 32.29 + NaSO4- 5.251e-03 3.746e-03 -2.280 -2.426 -0.147 2.97 + CaSO4 1.496e-03 1.626e-03 -2.825 -2.789 0.036 7.42 + MgSO4 1.371e-03 1.620e-03 -2.863 -2.790 0.073 -8.62 + SrSO4 3.160e-05 3.436e-05 -4.500 -4.464 0.036 24.16 + KSO4- 2.634e-05 2.195e-05 -4.579 -4.659 -0.079 13.22 + Mg(SO4)2-2 2.392e-05 7.620e-06 -4.621 -5.118 -0.497 27.97 + HSO4- 4.398e-09 3.217e-09 -8.357 -8.493 -0.136 40.64 + CaHSO4+ 3.568e-10 2.610e-10 -9.448 -9.583 -0.136 (0) Sr 5.050e-04 - Sr+2 4.637e-04 1.285e-04 -3.334 -3.891 -0.557 -16.73 - SrSO4 4.061e-05 4.418e-05 -4.391 -4.355 0.037 24.16 - SrHCO3+ 6.993e-07 4.970e-07 -6.155 -6.304 -0.148 (0) - SrCO3 3.448e-08 3.750e-08 -7.462 -7.426 0.037 -14.14 - SrOH+ 3.705e-10 2.598e-10 -9.431 -9.585 -0.154 (0) + Sr+2 4.726e-04 1.312e-04 -3.325 -3.882 -0.557 -16.74 + SrSO4 3.160e-05 3.436e-05 -4.500 -4.464 0.036 24.16 + SrHCO3+ 7.330e-07 5.211e-07 -6.135 -6.283 -0.148 (0) + SrCO3 3.617e-08 3.932e-08 -7.442 -7.405 0.036 -14.14 + SrOH+ 3.780e-10 2.652e-10 -9.422 -9.576 -0.154 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(296 K, 1 atm) - Anhydrite -0.67 -4.92 -4.26 CaSO4 - Aragonite -0.17 -8.49 -8.32 CaCO3 - Arcanite -6.78 -8.69 -1.91 K2SO4 - Calcite -0.03 -8.49 -8.47 CaCO3 - Celestite 0.01 -6.63 -6.65 SrSO4 - CO2(g) -3.36 -4.80 -1.44 CO2 - Dolomite -0.09 -17.14 -17.05 CaMg(CO3)2 - Epsomite -3.36 -5.11 -1.75 MgSO4:7H2O - Gypsum -0.35 -4.93 -4.58 CaSO4:2H2O + Anhydrite -0.78 -5.03 -4.26 CaSO4 + Aragonite -0.15 -8.47 -8.32 CaCO3 + Arcanite -6.91 -8.81 -1.91 K2SO4 + Calcite -0.01 -8.47 -8.47 CaCO3 + Celestite -0.10 -6.74 -6.65 SrSO4 + CO2(g) -3.34 -4.79 -1.44 CO2 + Dolomite -0.05 -17.10 -17.05 CaMg(CO3)2 + Epsomite -3.47 -5.22 -1.75 MgSO4:7H2O + Gypsum -0.46 -5.04 -4.58 CaSO4:2H2O H2(g) -41.48 -44.58 -3.10 H2 H2O(g) -1.56 -0.00 1.55 H2O Halite -3.03 -1.46 1.57 NaCl - Hexahydrite -3.54 -5.11 -1.57 MgSO4:6H2O - Kieserite -3.91 -5.08 -1.17 MgSO4:H2O - Mirabilite -2.99 -4.32 -1.33 Na2SO4:10H2O + Hexahydrite -3.64 -5.21 -1.57 MgSO4:6H2O + Kieserite -4.02 -5.19 -1.17 MgSO4:H2O + Mirabilite -3.12 -4.44 -1.33 Na2SO4:10H2O O2(g) -1.00 -3.88 -2.88 O2 Pressure 0.1 atm, phi 1.000 - Strontianite -0.94 -10.21 -9.27 SrCO3 + Strontianite -0.92 -10.18 -9.27 SrCO3 Sylvite -4.56 -3.67 0.89 KCl - Thenardite -3.98 -4.27 -0.29 Na2SO4 + Thenardite -4.11 -4.40 -0.29 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -574,7 +579,7 @@ Reading input data for simulation 3. Fe(2) 0.0 Alkalinity 0.476 SOLUTION 5 - water 7.7322e-05 + water 7.2695e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -589,15 +594,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 5 equilibrate 5 - Su_ 3.8224e-04 5.2840e+05 6.6087e-04 + Su_ 5.4363e-04 5.2840e+05 6.6087e-04 Su_ii 7.4371e-06 Su_fes 6.9841e-07 - donnan 1.6711e-09 + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 5 equilibrate 5 - X 4.6718e-04 + X 5.8893e-04 SOLUTION 6 - water 9.5113e-05 + water 8.9423e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -612,15 +617,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 6 equilibrate 6 - Su_ 4.7019e-04 5.2840e+05 8.1293e-04 + Su_ 6.6871e-04 5.2840e+05 8.1293e-04 Su_ii 9.1484e-06 Su_fes 8.5911e-07 - donnan 1.6711e-09 + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 6 equilibrate 6 - X 5.7468e-04 + X 7.2444e-04 SOLUTION 7 - water 1.1291e-04 + water 1.0615e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -635,15 +640,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 7 equilibrate 7 - Su_ 5.5814e-04 5.2840e+05 9.6500e-04 + Su_ 7.9380e-04 5.2840e+05 9.6500e-04 Su_ii 1.0860e-05 Su_fes 1.0198e-06 - donnan 1.6711e-09 + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 7 equilibrate 7 - X 6.8218e-04 + X 8.5995e-04 SOLUTION 8 - water 1.3070e-04 + water 1.2288e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -658,15 +663,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 8 equilibrate 8 - Su_ 6.4610e-04 5.2840e+05 1.1171e-03 + Su_ 9.1889e-04 5.2840e+05 1.1171e-03 Su_ii 1.2571e-05 Su_fes 1.1805e-06 - donnan 1.6711e-09 + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 8 equilibrate 8 - X 7.8967e-04 + X 9.9547e-04 SOLUTION 9 - water 1.4849e-04 + water 1.3960e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -681,15 +686,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 9 equilibrate 9 - Su_ 7.3405e-04 5.2840e+05 1.2691e-03 + Su_ 1.0440e-03 5.2840e+05 1.2691e-03 Su_ii 1.4282e-05 Su_fes 1.3412e-06 - donnan 1.6711e-09 + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 9 equilibrate 9 - X 8.9717e-04 + X 1.1310e-03 SOLUTION 10 - water 1.6628e-04 + water 1.5633e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -704,15 +709,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 10 equilibrate 10 - Su_ 8.2200e-04 5.2840e+05 1.4212e-03 + Su_ 1.1691e-03 5.2840e+05 1.4212e-03 Su_ii 1.5994e-05 Su_fes 1.5019e-06 - donnan 1.6711e-09 + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 10 equilibrate 10 - X 1.0047e-03 + X 1.2665e-03 SOLUTION 11 - water 1.8407e-04 + water 1.7306e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -727,15 +732,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 11 equilibrate 11 - Su_ 9.0996e-04 5.2840e+05 1.5733e-03 + Su_ 1.2942e-03 5.2840e+05 1.5733e-03 Su_ii 1.7705e-05 Su_fes 1.6626e-06 - donnan 1.6711e-09 + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 11 equilibrate 11 - X 1.1122e-03 + X 1.4020e-03 SOLUTION 12 - water 2.0186e-04 + water 1.8979e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -750,15 +755,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 12 equilibrate 12 - Su_ 9.9791e-04 5.2840e+05 1.7253e-03 + Su_ 1.4192e-03 5.2840e+05 1.7253e-03 Su_ii 1.9416e-05 Su_fes 1.8233e-06 - donnan 1.6711e-09 + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 12 equilibrate 12 - X 1.2197e-03 + X 1.5375e-03 SOLUTION 13 - water 2.1966e-04 + water 2.0651e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -773,15 +778,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 13 equilibrate 13 - Su_ 1.0859e-03 5.2840e+05 1.8774e-03 + Su_ 1.5443e-03 5.2840e+05 1.8774e-03 Su_ii 2.1127e-05 Su_fes 1.9840e-06 - donnan 1.6711e-09 + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 13 equilibrate 13 - X 1.3272e-03 + X 1.6730e-03 SOLUTION 14 - water 2.3745e-04 + water 2.2324e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -796,15 +801,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 14 equilibrate 14 - Su_ 1.1738e-03 5.2840e+05 2.0295e-03 + Su_ 1.6694e-03 5.2840e+05 2.0295e-03 Su_ii 2.2839e-05 Su_fes 2.1448e-06 - donnan 1.6711e-09 + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 14 equilibrate 14 - X 1.4347e-03 + X 1.8085e-03 SOLUTION 15 - water 2.5524e-04 + water 2.3997e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -819,13 +824,13 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 15 equilibrate 15 - Su_ 1.2618e-03 5.2840e+05 2.1815e-03 + Su_ 1.7945e-03 5.2840e+05 2.1815e-03 Su_ii 2.4550e-05 Su_fes 2.3055e-06 - donnan 1.6711e-09 + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 15 equilibrate 15 - X 1.5422e-03 + X 1.9441e-03 SOLUTION 16 water 5.0266e-03 pH 7.6 @@ -874,29 +879,29 @@ Reading input data for simulation 3. MIX 3 4 6.6932e-04 MIX 4 - 5 1.9640e-04 + 5 1.9357e-04 MIX 5 - 6 1.5725e-04 + 6 1.5439e-04 MIX 6 - 7 1.8971e-04 + 7 1.8625e-04 MIX 7 - 8 2.2216e-04 + 8 2.1811e-04 MIX 8 - 9 2.5461e-04 + 9 2.4997e-04 MIX 9 - 10 2.8706e-04 + 10 2.8183e-04 MIX 10 - 11 3.1951e-04 + 11 3.1369e-04 MIX 11 - 12 3.5196e-04 + 12 3.4555e-04 MIX 12 - 13 3.8441e-04 + 13 3.7741e-04 MIX 13 - 14 4.1686e-04 + 14 4.0927e-04 MIX 14 - 15 4.4931e-04 + 15 4.4113e-04 MIX 15 - 16 7.7653e-04 + 16 7.6509e-04 MIX 16 17 4.2533e-03 END @@ -908,8 +913,8 @@ Reading input data for simulation 3. bcond 1 2 stagnant 15 timest 1.5429e+03 - multi_d true 2.5000e-09 1.5900e-01 0.0 9.9000e-01 - interlayer_d false 0.001 0.0 1300 + multi_d true 2.5000e-09 1.5900e-01 0.0 1 + interlayer_d true 0.001 0.0 1300 punch_frequency 14 punch_cells 17 USER_GRAPH 1 Example 21 @@ -928,245 +933,9 @@ WARNING: No porosities were read; used the value 1.59e-01 from -multi_D. 50 plot_xy days - dt / (2 * 3600 * 24), (a - get(2)) / dt / 8.2988e-03, color = Green, symbol = None 60 put(a, 2) 70 plot_xy days, equi("A_Hto"), y_axis = 2, color = Red, symbol = None - END + END WARNING: Calculating transport: 1 (mobile) cells, 1120 shifts, 1 mixruns... -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-17 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-15 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-17 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-15 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-17 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-15 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-17 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-15 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-17 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-15 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-17 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-15 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-17 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-15 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-17 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-15 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - - TRANSPORT - shifts 0 - punch_frequency 2 - punch_cells 3-17 - USER_GRAPH 1 -WARNING: No porosities were read; used the value 1.59e-01 from -multi_D. - -detach - USER_GRAPH 5 Example 21 - -chart_title "Hto Concentration Profile: Filter1 | Clay | Filter2" - -axis_scale x_axis 0 2.2220e+01 - -axis_scale y_axis 0 1.2e-9 - -axis_scale sy_axis 0 1.2e-9 - -axis_titles "DISTANCE, IN MILLIMETERS" "FREE PORE-WATER MOLALITY" "TOTAL MOLALITY" - -headings Hto_free Hto_tot - -plot_concentration_vs x - -initial_solutions true - 10 IF cell_no = 3 THEN xval = 0 ELSE xval = get(14) - 20 IF (1 = 0 OR cell_no > 4) THEN GOTO 60 - 30 IF (cell_no = 4) THEN xval = xval + 0.5 * 1.8000e-03 - 40 IF (cell_no > 4 AND cell_no < 5) THEN xval = xval + 1.8000e-03 - 50 GOTO 200 - 60 IF (cell_no = 5) THEN xval = xval + 0.5 * 1.8000e-03 + 0.5 * 1.7109e-03 - 70 IF (cell_no > 5 AND cell_no < 16) THEN xval = xval + 1.7109e-03 ELSE GOTO 90 - 80 GOTO 200 - 90 IF (cell_no = 16) THEN xval = xval + 0.5 * 1.7109e-03 + 0.5 * 1.6000e-03 - 100 IF (cell_no > 16 AND cell_no <= 16) THEN xval = xval + 1.6000e-03 - 110 IF (cell_no = 17) THEN xval = xval + 0.5 * 1.6000e-03 - 200 y1 = TOT("Hto") - 210 plot_xy xval * 1e3, y1, color = Blue, symbol = Plus - 220 IF cell_no = 3 THEN put(y1, 15) - 230 IF (cell_no < 5 OR cell_no > 15) THEN GOTO 400 - 240 y2 = SYS("Hto") / (tot("water") + edl("water")) - 250 REM y2 = y2 / 1.4281e+01# conc / kg solid - 260 plot_xy xval * 1e3, y2, symbol = Circle, y_axis = 2 - 270 IF (cell_no > 6) THEN GOTO 400 - 280 IF 1 THEN plot_xy 1.8000e+00, get(15), color = Black, symbol = None - 290 IF 1 THEN plot_xy 2.0620e+01, get(15), color = Black, symbol = None - 300 put(0, 15) - 400 put(xval, 14) - END -WARNING: -Calculating transport: 1 (mobile) cells, 0 shifts, 1 mixruns... - - END diff --git a/phreeqc3-examples/ex22.out b/phreeqc3-examples/ex22.out index f5e62278..baa2a407 100644 --- a/phreeqc3-examples/ex22.out +++ b/phreeqc3-examples/ex22.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -243,11 +244,11 @@ H2O(g) -1.45 3.586e-02 0.878 1.285e-03 1.587e-03 3.014e-04 ----------------------------Description of solution---------------------------- pH = 3.368 Charge balance - pe = 14.674 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 171 + pe = 14.672 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 165 Density (g/cm³) = 1.00156 Volume (L) = 1.01670 - Viscosity (mPa s) = 0.89000 + Viscosity (mPa s) = 0.89006 Activity of water = 0.993 Ionic strength (mol/kgw) = 4.384e-04 Mass of water (kg) = 1.000e+00 @@ -270,22 +271,22 @@ H2O(g) -1.45 3.586e-02 0.878 1.285e-03 1.587e-03 3.014e-04 OH- 2.430e-11 2.372e-11 -10.614 -10.625 -0.010 -4.07 H2O 5.551e+01 9.930e-01 1.744 -0.003 0.000 18.06 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.338 -120.338 0.000 35.47 + CH4 0.000e+00 0.000e+00 -120.321 -120.321 0.000 35.47 C(4) 4.161e-01 CO2 4.095e-01 4.096e-01 -0.388 -0.388 0.000 34.43 (CO2)2 3.079e-03 3.079e-03 -2.512 -2.512 0.000 68.85 - HCO3- 4.384e-04 4.282e-04 -3.358 -3.368 -0.010 24.55 - CO3-2 5.227e-11 4.755e-11 -10.282 -10.323 -0.041 -4.00 -H(0) 1.149e-39 - H2 5.743e-40 5.743e-40 -39.241 -39.241 0.000 28.60 -O(0) 2.429e-14 - O2 1.214e-14 1.214e-14 -13.916 -13.916 0.000 30.38 + HCO3- 4.384e-04 4.282e-04 -3.358 -3.368 -0.010 24.61 + CO3-2 5.227e-11 4.754e-11 -10.282 -10.323 -0.041 -3.86 +H(0) 1.160e-39 + H2 5.798e-40 5.798e-40 -39.237 -39.237 0.000 28.60 +O(0) 2.383e-14 + O2 1.191e-14 1.192e-14 -13.924 -13.924 0.000 30.38 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 13 atm) - CH4(g) -117.53 -120.34 -2.81 CH4 + CH4(g) -117.51 -120.32 -2.81 CH4 CO2(g) 1.09 -0.39 -1.48 CO2 Pressure 13.2 atm, phi 0.928 H2(g) -36.13 -39.24 -3.11 H2 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.878 @@ -337,13 +338,13 @@ H2O(g) -1.38 4.125e-02 0.766 1.587e-03 1.998e-03 4.108e-04 ----------------------------Description of solution---------------------------- pH = 3.241 Charge balance - pe = 14.739 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 231 + pe = 14.793 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 218 Density (g/cm³) = 1.00523 Volume (L) = 1.02762 - Viscosity (mPa s) = 0.88987 + Viscosity (mPa s) = 0.88995 Activity of water = 0.987 - Ionic strength (mol/kgw) = 5.902e-04 + Ionic strength (mol/kgw) = 5.901e-04 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 7.506e-01 @@ -360,30 +361,30 @@ H2O(g) -1.38 4.125e-02 0.766 1.587e-03 1.998e-03 4.108e-04 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.902e-04 5.747e-04 -3.229 -3.241 -0.012 0.00 - OH- 1.828e-11 1.779e-11 -10.738 -10.750 -0.012 -4.02 + H+ 5.901e-04 5.746e-04 -3.229 -3.241 -0.012 0.00 + OH- 1.829e-11 1.779e-11 -10.738 -10.750 -0.012 -4.02 H2O 5.551e+01 9.874e-01 1.744 -0.006 0.000 18.05 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.592 -119.592 0.000 35.49 + CH4 0.000e+00 0.000e+00 -120.022 -120.022 0.000 35.49 C(4) 7.506e-01 CO2 7.304e-01 7.304e-01 -0.136 -0.136 0.000 34.42 (CO2)2 9.792e-03 9.794e-03 -2.009 -2.009 0.000 68.84 - HCO3- 5.902e-04 5.742e-04 -3.229 -3.241 -0.012 24.57 - CO3-2 5.381e-11 4.824e-11 -10.269 -10.317 -0.047 -3.87 -H(0) 1.508e-39 - H2 7.538e-40 7.539e-40 -39.123 -39.123 0.000 28.59 -O(0) 1.357e-14 - O2 6.786e-15 6.787e-15 -14.168 -14.168 0.000 30.36 + HCO3- 5.901e-04 5.742e-04 -3.229 -3.241 -0.012 24.66 + CO3-2 5.380e-11 4.823e-11 -10.269 -10.317 -0.047 -3.73 +H(0) 1.177e-39 + H2 5.884e-40 5.885e-40 -39.230 -39.230 0.000 28.59 +O(0) 2.227e-14 + O2 1.114e-14 1.114e-14 -13.953 -13.953 0.000 30.36 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 26 atm) - CH4(g) -116.77 -119.59 -2.82 CH4 + CH4(g) -117.20 -120.02 -2.82 CH4 CO2(g) 1.35 -0.14 -1.48 CO2 Pressure 25.8 atm, phi 0.862 - H2(g) -36.01 -39.12 -3.11 H2 + H2(g) -36.12 -39.23 -3.11 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.0 atm, phi 0.766 - O2(g) -11.26 -14.17 -2.91 O2 + O2(g) -11.05 -13.95 -2.91 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -431,11 +432,11 @@ H2O(g) -1.32 4.764e-02 0.666 1.998e-03 2.555e-03 5.569e-04 ----------------------------Description of solution---------------------------- pH = 3.178 Charge balance - pe = 2.399 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 267 + pe = 14.865 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 248 Density (g/cm³) = 1.00802 Volume (L) = 1.03574 - Viscosity (mPa s) = 0.88974 + Viscosity (mPa s) = 0.88983 Activity of water = 0.983 Ionic strength (mol/kgw) = 6.833e-04 Mass of water (kg) = 9.999e-01 @@ -445,7 +446,7 @@ H2O(g) -1.32 4.764e-02 0.666 1.998e-03 2.555e-03 5.569e-04 Pressure (atm) = 37.31 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 + Iterations = 28 Total H = 1.110073e+02 Total O = 5.750746e+01 @@ -454,30 +455,30 @@ H2O(g) -1.32 4.764e-02 0.666 1.998e-03 2.555e-03 5.569e-04 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.833e-04 6.642e-04 -3.165 -3.178 -0.012 0.00 + H+ 6.833e-04 6.641e-04 -3.165 -3.178 -0.012 0.00 OH- 1.595e-11 1.548e-11 -10.797 -10.810 -0.013 -3.98 H2O 5.551e+01 9.832e-01 1.744 -0.007 0.000 18.04 -C(-4) 5.646e-21 - CH4 5.646e-21 5.647e-21 -20.248 -20.248 0.000 35.51 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.972 -119.972 0.000 35.51 C(4) 1.002e+00 CO2 9.669e-01 9.670e-01 -0.015 -0.015 0.000 34.42 (CO2)2 1.716e-02 1.717e-02 -1.765 -1.765 0.000 68.83 - HCO3- 6.833e-04 6.636e-04 -3.165 -3.178 -0.013 24.59 - CO3-2 5.495e-11 4.887e-11 -10.260 -10.311 -0.051 -3.76 -H(0) 9.525e-15 - H2 4.763e-15 4.763e-15 -14.322 -14.322 0.000 28.59 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.784 -63.784 0.000 30.35 + HCO3- 6.833e-04 6.636e-04 -3.165 -3.178 -0.013 24.70 + CO3-2 5.494e-11 4.887e-11 -10.260 -10.311 -0.051 -3.61 +H(0) 1.117e-39 + H2 5.584e-40 5.585e-40 -39.253 -39.253 0.000 28.59 +O(0) 2.393e-14 + O2 1.197e-14 1.197e-14 -13.922 -13.922 0.000 30.35 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 37 atm) - CH4(g) -17.42 -20.25 -2.82 CH4 + CH4(g) -117.15 -119.97 -2.82 CH4 CO2(g) 1.48 -0.01 -1.49 CO2 Pressure 37.3 atm, phi 0.803 - H2(g) -11.20 -14.32 -3.12 H2 + H2(g) -36.13 -39.25 -3.12 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.0 atm, phi 0.666 - O2(g) -60.87 -63.78 -2.91 O2 + O2(g) -11.01 -13.92 -2.91 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -525,13 +526,13 @@ H2O(g) -1.26 5.498e-02 0.580 2.555e-03 3.300e-03 7.455e-04 ----------------------------Description of solution---------------------------- pH = 3.142 Charge balance - pe = 2.323 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 290 + pe = 14.877 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 267 Density (g/cm³) = 1.01002 Volume (L) = 1.04130 - Viscosity (mPa s) = 0.88964 + Viscosity (mPa s) = 0.88973 Activity of water = 0.980 - Ionic strength (mol/kgw) = 7.423e-04 + Ionic strength (mol/kgw) = 7.422e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.177e+00 @@ -548,30 +549,30 @@ H2O(g) -1.26 5.498e-02 0.580 2.555e-03 3.300e-03 7.455e-04 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.423e-04 7.207e-04 -3.129 -3.142 -0.013 0.00 + H+ 7.422e-04 7.206e-04 -3.129 -3.142 -0.013 0.00 OH- 1.480e-11 1.435e-11 -10.830 -10.843 -0.013 -3.94 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.03 -C(-4) 5.128e-20 - CH4 5.128e-20 5.129e-20 -19.290 -19.290 0.000 35.52 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.727 -119.727 0.000 35.52 C(4) 1.177e+00 CO2 1.129e+00 1.129e+00 0.053 0.053 0.000 34.41 (CO2)2 2.341e-02 2.341e-02 -1.631 -1.631 0.000 68.82 - HCO3- 7.423e-04 7.201e-04 -3.129 -3.143 -0.013 24.61 - CO3-2 5.582e-11 4.942e-11 -10.253 -10.306 -0.053 -3.66 -H(0) 1.576e-14 - H2 7.881e-15 7.882e-15 -14.103 -14.103 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.233 -64.233 0.000 30.33 + HCO3- 7.422e-04 7.200e-04 -3.129 -3.143 -0.013 24.73 + CO3-2 5.582e-11 4.942e-11 -10.253 -10.306 -0.053 -3.52 +H(0) 1.226e-39 + H2 6.128e-40 6.130e-40 -39.213 -39.213 0.000 28.58 +O(0) 1.936e-14 + O2 9.678e-15 9.679e-15 -14.014 -14.014 0.000 30.33 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 47 atm) - CH4(g) -16.46 -19.29 -2.83 CH4 + CH4(g) -116.90 -119.73 -2.83 CH4 CO2(g) 1.55 0.05 -1.50 CO2 Pressure 47.0 atm, phi 0.753 - H2(g) -10.98 -14.10 -3.12 H2 + H2(g) -36.09 -39.21 -3.12 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.1 atm, phi 0.580 - O2(g) -61.32 -64.23 -2.92 O2 + O2(g) -11.10 -14.01 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -619,13 +620,13 @@ H2O(g) -1.20 6.307e-02 0.507 3.300e-03 4.278e-03 9.775e-04 ----------------------------Description of solution---------------------------- pH = 3.122 Charge balance - pe = 2.189 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 304 + pe = 14.890 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 278 Density (g/cm³) = 1.01134 Volume (L) = 1.04476 - Viscosity (mPa s) = 0.88955 + Viscosity (mPa s) = 0.88965 Activity of water = 0.979 - Ionic strength (mol/kgw) = 7.784e-04 + Ionic strength (mol/kgw) = 7.783e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.288e+00 @@ -642,30 +643,30 @@ H2O(g) -1.20 6.307e-02 0.507 3.300e-03 4.278e-03 9.775e-04 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.784e-04 7.553e-04 -3.109 -3.122 -0.013 0.00 - OH- 1.420e-11 1.376e-11 -10.848 -10.861 -0.014 -3.91 + H+ 7.783e-04 7.552e-04 -3.109 -3.122 -0.013 0.00 + OH- 1.421e-11 1.376e-11 -10.848 -10.861 -0.014 -3.91 H2O 5.551e+01 9.786e-01 1.744 -0.009 0.000 18.03 -C(-4) 9.496e-19 - CH4 9.496e-19 9.498e-19 -18.022 -18.022 0.000 35.53 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.630 -119.630 0.000 35.53 C(4) 1.288e+00 CO2 1.232e+00 1.232e+00 0.090 0.091 0.000 34.41 (CO2)2 2.784e-02 2.785e-02 -1.555 -1.555 0.000 68.82 - HCO3- 7.784e-04 7.546e-04 -3.109 -3.122 -0.014 24.62 - CO3-2 5.646e-11 4.985e-11 -10.248 -10.302 -0.054 -3.59 -H(0) 3.177e-14 - H2 1.589e-14 1.589e-14 -13.799 -13.799 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.850 -64.850 0.000 30.32 + HCO3- 7.783e-04 7.545e-04 -3.109 -3.122 -0.014 24.76 + CO3-2 5.646e-11 4.985e-11 -10.248 -10.302 -0.054 -3.44 +H(0) 1.260e-39 + H2 6.298e-40 6.299e-40 -39.201 -39.201 0.000 28.58 +O(0) 1.797e-14 + O2 8.983e-15 8.984e-15 -14.047 -14.047 0.000 30.32 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 55 atm) - CH4(g) -15.19 -18.02 -2.84 CH4 + CH4(g) -116.79 -119.63 -2.84 CH4 CO2(g) 1.59 0.09 -1.50 CO2 Pressure 54.7 atm, phi 0.713 - H2(g) -10.67 -13.80 -3.13 H2 + H2(g) -36.07 -39.20 -3.13 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.1 atm, phi 0.507 - O2(g) -61.93 -64.85 -2.92 O2 + O2(g) -11.13 -14.05 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -713,13 +714,13 @@ H2O(g) -1.15 7.157e-02 0.448 4.278e-03 5.528e-03 1.251e-03 ----------------------------Description of solution---------------------------- pH = 3.111 Charge balance - pe = 2.270 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 313 + pe = 14.943 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 284 Density (g/cm³) = 1.01215 Volume (L) = 1.04668 - Viscosity (mPa s) = 0.88949 + Viscosity (mPa s) = 0.88959 Activity of water = 0.978 - Ionic strength (mol/kgw) = 7.990e-04 + Ionic strength (mol/kgw) = 7.989e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.352e+00 @@ -736,30 +737,30 @@ H2O(g) -1.15 7.157e-02 0.448 4.278e-03 5.528e-03 1.251e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.990e-04 7.750e-04 -3.097 -3.111 -0.013 0.00 - OH- 1.390e-11 1.346e-11 -10.857 -10.871 -0.014 -3.89 + H+ 7.989e-04 7.748e-04 -3.098 -3.111 -0.013 0.00 + OH- 1.390e-11 1.347e-11 -10.857 -10.871 -0.014 -3.89 H2O 5.551e+01 9.775e-01 1.744 -0.010 0.000 18.02 -C(-4) 2.711e-19 - CH4 2.711e-19 2.712e-19 -18.567 -18.567 0.000 35.54 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.948 -119.948 0.000 35.54 C(4) 1.352e+00 CO2 1.290e+00 1.290e+00 0.111 0.111 0.000 34.40 (CO2)2 3.055e-02 3.055e-02 -1.515 -1.515 0.000 68.81 - HCO3- 7.990e-04 7.742e-04 -3.097 -3.111 -0.014 24.62 - CO3-2 5.690e-11 5.016e-11 -10.245 -10.300 -0.055 -3.54 -H(0) 2.285e-14 - H2 1.142e-14 1.143e-14 -13.942 -13.942 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.570 -64.570 0.000 30.31 + HCO3- 7.989e-04 7.741e-04 -3.098 -3.111 -0.014 24.77 + CO3-2 5.690e-11 5.016e-11 -10.245 -10.300 -0.055 -3.39 +H(0) 1.032e-39 + H2 5.158e-40 5.159e-40 -39.288 -39.287 0.000 28.58 +O(0) 2.643e-14 + O2 1.321e-14 1.322e-14 -13.879 -13.879 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 60 atm) - CH4(g) -15.73 -18.57 -2.84 CH4 + CH4(g) -117.11 -119.95 -2.84 CH4 CO2(g) 1.62 0.11 -1.50 CO2 Pressure 60.2 atm, phi 0.685 - H2(g) -10.81 -13.94 -3.13 H2 + H2(g) -36.16 -39.29 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.448 - O2(g) -61.65 -64.57 -2.92 O2 + O2(g) -10.95 -13.88 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -807,13 +808,13 @@ H2O(g) -1.10 8.014e-02 0.401 5.528e-03 7.089e-03 1.561e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 2.328 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 317 + pe = 14.977 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 287 Density (g/cm³) = 1.01257 Volume (L) = 1.04759 - Viscosity (mPa s) = 0.88945 + Viscosity (mPa s) = 0.88955 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.094e-04 + Ionic strength (mol/kgw) = 8.092e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.384e+00 @@ -830,30 +831,30 @@ H2O(g) -1.10 8.014e-02 0.401 5.528e-03 7.089e-03 1.561e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.094e-04 7.849e-04 -3.092 -3.105 -0.013 0.00 + H+ 8.092e-04 7.847e-04 -3.092 -3.105 -0.013 0.00 OH- 1.376e-11 1.333e-11 -10.861 -10.875 -0.014 -3.88 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 -C(-4) 1.054e-19 - CH4 1.054e-19 1.055e-19 -18.977 -18.977 0.000 35.54 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -120.171 -120.171 0.000 35.54 C(4) 1.384e+00 CO2 1.319e+00 1.319e+00 0.120 0.120 0.000 34.40 (CO2)2 3.193e-02 3.194e-02 -1.496 -1.496 0.000 68.81 - HCO3- 8.094e-04 7.841e-04 -3.092 -3.106 -0.014 24.63 - CO3-2 5.715e-11 5.035e-11 -10.243 -10.298 -0.055 -3.51 -H(0) 1.789e-14 - H2 8.945e-15 8.947e-15 -14.048 -14.048 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.361 -64.361 0.000 30.31 + HCO3- 8.092e-04 7.839e-04 -3.092 -3.106 -0.014 24.78 + CO3-2 5.716e-11 5.035e-11 -10.243 -10.298 -0.055 -3.36 +H(0) 8.998e-40 + H2 4.499e-40 4.500e-40 -39.347 -39.347 0.000 28.58 +O(0) 3.445e-14 + O2 1.723e-14 1.723e-14 -13.764 -13.764 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 64 atm) - CH4(g) -16.14 -18.98 -2.84 CH4 + CH4(g) -117.33 -120.17 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 63.5 atm, phi 0.667 - H2(g) -10.92 -14.05 -3.13 H2 + H2(g) -36.21 -39.35 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.401 - O2(g) -61.43 -64.36 -2.93 O2 + O2(g) -10.84 -13.76 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -901,15 +902,15 @@ H2O(g) -1.05 8.845e-02 0.364 7.089e-03 8.995e-03 1.905e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 2.504 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 318 + pe = 14.980 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 289 Density (g/cm³) = 1.01273 Volume (L) = 1.04788 - Viscosity (mPa s) = 0.88943 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.132e-04 + Ionic strength (mol/kgw) = 8.131e-04 Mass of water (kg) = 9.998e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.395e+00 Temperature (°C) = 25.00 Pressure (atm) = 65.04 @@ -924,30 +925,30 @@ H2O(g) -1.05 8.845e-02 0.364 7.089e-03 8.995e-03 1.905e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.132e-04 7.886e-04 -3.090 -3.103 -0.013 0.00 - OH- 1.371e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 + H+ 8.131e-04 7.884e-04 -3.090 -3.103 -0.013 0.00 + OH- 1.372e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 -C(-4) 4.274e-21 - CH4 4.274e-21 4.275e-21 -20.369 -20.369 0.000 35.54 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -120.173 -120.173 0.000 35.54 C(4) 1.395e+00 CO2 1.329e+00 1.330e+00 0.124 0.124 0.000 34.40 (CO2)2 3.244e-02 3.245e-02 -1.489 -1.489 0.000 68.81 - HCO3- 8.132e-04 7.878e-04 -3.090 -3.104 -0.014 24.63 - CO3-2 5.727e-11 5.043e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 8.001e-15 - H2 4.001e-15 4.001e-15 -14.398 -14.398 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.663 -63.663 0.000 30.31 + HCO3- 8.131e-04 7.876e-04 -3.090 -3.104 -0.014 24.79 + CO3-2 5.727e-11 5.043e-11 -10.242 -10.297 -0.055 -3.35 +H(0) 8.956e-40 + H2 4.478e-40 4.479e-40 -39.349 -39.349 0.000 28.58 +O(0) 3.466e-14 + O2 1.733e-14 1.733e-14 -13.761 -13.761 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -17.53 -20.37 -2.84 CH4 + CH4(g) -117.33 -120.17 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.658 - H2(g) -11.26 -14.40 -3.13 H2 + H2(g) -36.22 -39.35 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.364 - O2(g) -60.74 -63.66 -2.93 O2 + O2(g) -10.83 -13.76 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -995,21 +996,21 @@ H2O(g) -1.02 9.646e-02 0.334 8.995e-03 1.127e-02 2.272e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 2.558 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 318 + pe = 14.928 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 289 Density (g/cm³) = 1.01275 Volume (L) = 1.04787 - Viscosity (mPa s) = 0.88943 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.136e-04 + Ionic strength (mol/kgw) = 8.134e-04 Mass of water (kg) = 9.998e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.396e+00 Temperature (°C) = 25.00 Pressure (atm) = 65.20 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 39 + Iterations = 44 Total H = 1.109899e+02 Total O = 5.828669e+01 @@ -1018,30 +1019,30 @@ H2O(g) -1.02 9.646e-02 0.334 8.995e-03 1.127e-02 2.272e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.136e-04 7.889e-04 -3.090 -3.103 -0.013 0.00 - OH- 1.371e-11 1.327e-11 -10.863 -10.877 -0.014 -3.87 + H+ 8.134e-04 7.888e-04 -3.090 -3.103 -0.013 0.00 + OH- 1.371e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 -C(-4) 1.609e-21 - CH4 1.609e-21 1.610e-21 -20.793 -20.793 0.000 35.54 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.759 -119.759 0.000 35.54 C(4) 1.396e+00 CO2 1.330e+00 1.331e+00 0.124 0.124 0.000 34.40 (CO2)2 3.249e-02 3.250e-02 -1.488 -1.488 0.000 68.81 - HCO3- 8.136e-04 7.881e-04 -3.090 -3.103 -0.014 24.63 - CO3-2 5.728e-11 5.044e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 6.266e-15 - H2 3.133e-15 3.134e-15 -14.504 -14.504 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.451 -63.451 0.000 30.31 + HCO3- 8.134e-04 7.880e-04 -3.090 -3.103 -0.014 24.79 + CO3-2 5.728e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 +H(0) 1.136e-39 + H2 5.681e-40 5.682e-40 -39.246 -39.245 0.000 28.58 +O(0) 2.152e-14 + O2 1.076e-14 1.076e-14 -13.968 -13.968 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -17.95 -20.79 -2.84 CH4 + CH4(g) -116.92 -119.76 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -11.37 -14.50 -3.13 H2 + H2(g) -36.11 -39.25 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.334 - O2(g) -60.52 -63.45 -2.93 O2 + O2(g) -11.04 -13.97 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1089,21 +1090,21 @@ H2O(g) -0.98 1.051e-01 0.306 1.127e-02 1.389e-02 2.628e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 14.740 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 318 + pe = 14.901 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 289 Density (g/cm³) = 1.01275 Volume (L) = 1.04780 - Viscosity (mPa s) = 0.88943 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.134e-04 + Ionic strength (mol/kgw) = 8.133e-04 Mass of water (kg) = 9.997e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.396e+00 Temperature (°C) = 25.00 Pressure (atm) = 65.19 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 56 + Iterations = 43 Total H = 1.109846e+02 Total O = 5.828280e+01 @@ -1112,30 +1113,30 @@ H2O(g) -0.98 1.051e-01 0.306 1.127e-02 1.389e-02 2.628e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.134e-04 7.888e-04 -3.090 -3.103 -0.013 0.00 + H+ 8.133e-04 7.886e-04 -3.090 -3.103 -0.013 0.00 OH- 1.371e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -118.250 -118.250 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.538 -119.538 0.000 35.54 C(4) 1.396e+00 CO2 1.330e+00 1.330e+00 0.124 0.124 0.000 34.40 (CO2)2 3.246e-02 3.247e-02 -1.489 -1.489 0.000 68.81 - HCO3- 8.134e-04 7.880e-04 -3.090 -3.103 -0.014 24.63 - CO3-2 5.728e-11 5.044e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 2.709e-39 - H2 1.355e-39 1.355e-39 -38.868 -38.868 0.000 28.58 -O(0) 3.786e-15 - O2 1.893e-15 1.893e-15 -14.723 -14.723 0.000 30.31 + HCO3- 8.133e-04 7.878e-04 -3.090 -3.104 -0.014 24.79 + CO3-2 5.728e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 +H(0) 1.291e-39 + H2 6.453e-40 6.454e-40 -39.190 -39.190 0.000 28.58 +O(0) 1.668e-14 + O2 8.341e-15 8.343e-15 -14.079 -14.079 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -115.41 -118.25 -2.84 CH4 + CH4(g) -116.70 -119.54 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -35.73 -38.87 -3.13 H2 + H2(g) -36.06 -39.19 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.306 - O2(g) -11.80 -14.72 -2.93 O2 + O2(g) -11.15 -14.08 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1183,21 +1184,21 @@ H2O(g) -0.94 1.145e-01 0.281 1.389e-02 1.691e-02 3.018e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 14.912 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 318 + pe = 14.638 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 289 Density (g/cm³) = 1.01273 Volume (L) = 1.04770 - Viscosity (mPa s) = 0.88943 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.130e-04 + Ionic strength (mol/kgw) = 8.129e-04 Mass of water (kg) = 9.997e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.394e+00 Temperature (°C) = 25.00 Pressure (atm) = 65.17 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 46 + Iterations = 47 Total H = 1.109786e+02 Total O = 5.827687e+01 @@ -1206,30 +1207,30 @@ H2O(g) -0.94 1.145e-01 0.281 1.389e-02 1.691e-02 3.018e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.130e-04 7.884e-04 -3.090 -3.103 -0.013 0.00 + H+ 8.129e-04 7.882e-04 -3.090 -3.103 -0.013 0.00 OH- 1.372e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.630 -119.630 0.000 35.54 + CH4 0.000e+00 0.000e+00 -117.437 -117.437 0.000 35.54 C(4) 1.394e+00 CO2 1.329e+00 1.329e+00 0.123 0.123 0.000 34.40 (CO2)2 3.240e-02 3.241e-02 -1.489 -1.489 0.000 68.81 - HCO3- 8.130e-04 7.876e-04 -3.090 -3.104 -0.014 24.63 - CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 1.224e-39 - H2 6.122e-40 6.123e-40 -39.213 -39.213 0.000 28.58 -O(0) 1.854e-14 - O2 9.269e-15 9.271e-15 -14.033 -14.033 0.000 30.31 + HCO3- 8.129e-04 7.875e-04 -3.090 -3.104 -0.014 24.79 + CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 +H(0) 4.327e-39 + H2 2.163e-39 2.164e-39 -38.665 -38.665 0.000 28.58 +O(0) 1.484e-15 + O2 7.422e-16 7.423e-16 -15.129 -15.129 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -116.79 -119.63 -2.84 CH4 + CH4(g) -114.59 -117.44 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -36.08 -39.21 -3.13 H2 + H2(g) -35.53 -38.66 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.281 - O2(g) -11.11 -14.03 -2.93 O2 + O2(g) -12.20 -15.13 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1277,13 +1278,13 @@ H2O(g) -0.90 1.248e-01 0.258 1.691e-02 2.036e-02 3.449e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 14.963 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 318 + pe = 2.312 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 288 Density (g/cm³) = 1.01271 Volume (L) = 1.04756 - Viscosity (mPa s) = 0.88943 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.125e-04 + Ionic strength (mol/kgw) = 8.123e-04 Mass of water (kg) = 9.996e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.392e+00 @@ -1291,7 +1292,7 @@ H2O(g) -0.90 1.248e-01 0.258 1.691e-02 2.036e-02 3.449e-03 Pressure (atm) = 65.15 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 46 + Iterations = 58 Total H = 1.109717e+02 Total O = 5.826914e+01 @@ -1300,30 +1301,30 @@ H2O(g) -0.90 1.248e-01 0.258 1.691e-02 2.036e-02 3.449e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.125e-04 7.878e-04 -3.090 -3.104 -0.013 0.00 + H+ 8.123e-04 7.877e-04 -3.090 -3.104 -0.013 0.00 OH- 1.373e-11 1.329e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.042 -120.042 0.000 35.54 +C(-4) 1.454e-19 + CH4 1.454e-19 1.455e-19 -18.837 -18.837 0.000 35.54 C(4) 1.392e+00 CO2 1.327e+00 1.327e+00 0.123 0.123 0.000 34.40 (CO2)2 3.231e-02 3.232e-02 -1.491 -1.491 0.000 68.81 - HCO3- 8.125e-04 7.871e-04 -3.090 -3.104 -0.014 24.63 - CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 9.664e-40 - H2 4.832e-40 4.833e-40 -39.316 -39.316 0.000 28.58 -O(0) 2.976e-14 - O2 1.488e-14 1.488e-14 -13.827 -13.827 0.000 30.31 + HCO3- 8.123e-04 7.869e-04 -3.090 -3.104 -0.014 24.79 + CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 +H(0) 1.933e-14 + H2 9.667e-15 9.669e-15 -14.015 -14.015 0.000 28.58 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.430 -64.430 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.20 -120.04 -2.84 CH4 + CH4(g) -15.99 -18.84 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.656 - H2(g) -36.18 -39.32 -3.13 H2 + H2(g) -10.88 -14.01 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.258 - O2(g) -10.90 -13.83 -2.93 O2 + O2(g) -61.50 -64.43 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1371,13 +1372,13 @@ H2O(g) -0.87 1.359e-01 0.237 2.036e-02 2.428e-02 3.919e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 14.958 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 318 + pe = 14.806 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 288 Density (g/cm³) = 1.01269 Volume (L) = 1.04741 - Viscosity (mPa s) = 0.88943 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.118e-04 + Ionic strength (mol/kgw) = 8.116e-04 Mass of water (kg) = 9.995e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.390e+00 @@ -1385,7 +1386,7 @@ H2O(g) -0.87 1.359e-01 0.237 2.036e-02 2.428e-02 3.919e-03 Pressure (atm) = 65.14 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 45 + Iterations = 60 Total H = 1.109639e+02 Total O = 5.826024e+01 @@ -1394,30 +1395,30 @@ H2O(g) -0.87 1.359e-01 0.237 2.036e-02 2.428e-02 3.919e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.118e-04 7.872e-04 -3.091 -3.104 -0.013 0.00 - OH- 1.374e-11 1.330e-11 -10.862 -10.876 -0.014 -3.87 + H+ 8.116e-04 7.870e-04 -3.091 -3.104 -0.013 0.00 + OH- 1.374e-11 1.331e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.006 -120.006 0.000 35.54 + CH4 0.000e+00 0.000e+00 -118.793 -118.793 0.000 35.54 C(4) 1.390e+00 CO2 1.325e+00 1.325e+00 0.122 0.122 0.000 34.40 (CO2)2 3.221e-02 3.221e-02 -1.492 -1.492 0.000 68.81 - HCO3- 8.118e-04 7.864e-04 -3.091 -3.104 -0.014 24.63 - CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 9.870e-40 - H2 4.935e-40 4.936e-40 -39.307 -39.307 0.000 28.58 -O(0) 2.853e-14 - O2 1.427e-14 1.427e-14 -13.846 -13.846 0.000 30.31 + HCO3- 8.116e-04 7.863e-04 -3.091 -3.104 -0.014 24.79 + CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 +H(0) 1.984e-39 + H2 9.922e-40 9.923e-40 -39.003 -39.003 0.000 28.58 +O(0) 7.060e-15 + O2 3.530e-15 3.531e-15 -14.452 -14.452 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.16 -120.01 -2.84 CH4 + CH4(g) -115.95 -118.79 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.655 - H2(g) -36.17 -39.31 -3.13 H2 + H2(g) -35.87 -39.00 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.237 - O2(g) -10.92 -13.85 -2.93 O2 + O2(g) -11.53 -14.45 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1465,13 +1466,13 @@ H2O(g) -0.83 1.479e-01 0.218 2.428e-02 2.871e-02 4.427e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 14.991 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 317 + pe = 14.718 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 288 Density (g/cm³) = 1.01267 Volume (L) = 1.04724 - Viscosity (mPa s) = 0.88943 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.112e-04 + Ionic strength (mol/kgw) = 8.110e-04 Mass of water (kg) = 9.995e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.387e+00 @@ -1488,30 +1489,30 @@ H2O(g) -0.83 1.479e-01 0.218 2.428e-02 2.871e-02 4.427e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.112e-04 7.866e-04 -3.091 -3.104 -0.013 0.00 - OH- 1.375e-11 1.331e-11 -10.862 -10.876 -0.014 -3.87 + H+ 8.110e-04 7.864e-04 -3.091 -3.104 -0.013 0.00 + OH- 1.375e-11 1.332e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.273 -120.273 0.000 35.54 + CH4 0.000e+00 0.000e+00 -118.092 -118.092 0.000 35.54 C(4) 1.387e+00 CO2 1.322e+00 1.323e+00 0.121 0.121 0.000 34.40 (CO2)2 3.210e-02 3.211e-02 -1.493 -1.493 0.000 68.81 - HCO3- 8.112e-04 7.858e-04 -3.091 -3.105 -0.014 24.63 - CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 8.470e-40 - H2 4.235e-40 4.236e-40 -39.373 -39.373 0.000 28.58 -O(0) 3.876e-14 - O2 1.938e-14 1.938e-14 -13.713 -13.713 0.000 30.31 + HCO3- 8.110e-04 7.856e-04 -3.091 -3.105 -0.014 24.79 + CO3-2 5.726e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 +H(0) 2.972e-39 + H2 1.486e-39 1.486e-39 -38.828 -38.828 0.000 28.58 +O(0) 3.147e-15 + O2 1.573e-15 1.574e-15 -14.803 -14.803 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.43 -120.27 -2.84 CH4 + CH4(g) -115.25 -118.09 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.655 - H2(g) -36.24 -39.37 -3.13 H2 + H2(g) -35.69 -38.83 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.218 - O2(g) -10.79 -13.71 -2.93 O2 + O2(g) -11.88 -14.80 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1559,13 +1560,13 @@ H2O(g) -0.79 1.606e-01 0.200 2.871e-02 3.368e-02 4.970e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 14.960 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 317 + pe = 14.909 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 288 Density (g/cm³) = 1.01265 Volume (L) = 1.04709 - Viscosity (mPa s) = 0.88943 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.106e-04 + Ionic strength (mol/kgw) = 8.105e-04 Mass of water (kg) = 9.994e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.386e+00 @@ -1582,30 +1583,30 @@ H2O(g) -0.79 1.606e-01 0.200 2.871e-02 3.368e-02 4.970e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.106e-04 7.861e-04 -3.091 -3.105 -0.013 0.00 + H+ 8.105e-04 7.859e-04 -3.091 -3.105 -0.013 0.00 OH- 1.376e-11 1.332e-11 -10.861 -10.875 -0.014 -3.87 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.031 -120.031 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.621 -119.621 0.000 35.54 C(4) 1.386e+00 CO2 1.321e+00 1.321e+00 0.121 0.121 0.000 34.40 (CO2)2 3.202e-02 3.203e-02 -1.495 -1.494 0.000 68.81 - HCO3- 8.106e-04 7.853e-04 -3.091 -3.105 -0.014 24.63 - CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 9.736e-40 - H2 4.868e-40 4.869e-40 -39.313 -39.313 0.000 28.58 -O(0) 2.933e-14 - O2 1.466e-14 1.467e-14 -13.834 -13.834 0.000 30.31 + HCO3- 8.105e-04 7.852e-04 -3.091 -3.105 -0.014 24.79 + CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.35 +H(0) 1.233e-39 + H2 6.164e-40 6.165e-40 -39.210 -39.210 0.000 28.58 +O(0) 1.829e-14 + O2 9.147e-15 9.149e-15 -14.039 -14.039 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.19 -120.03 -2.84 CH4 + CH4(g) -116.78 -119.62 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 64.9 atm, phi 0.654 - H2(g) -36.18 -39.31 -3.13 H2 + H2(g) -36.08 -39.21 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.200 - O2(g) -10.91 -13.83 -2.93 O2 + O2(g) -11.11 -14.04 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1653,13 +1654,13 @@ H2O(g) -0.76 1.742e-01 0.185 3.368e-02 3.922e-02 5.546e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 14.925 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 317 + pe = 14.952 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 288 Density (g/cm³) = 1.01265 - Volume (L) = 1.04695 - Viscosity (mPa s) = 0.88943 + Volume (L) = 1.04696 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.104e-04 + Ionic strength (mol/kgw) = 8.102e-04 Mass of water (kg) = 9.993e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.385e+00 @@ -1676,30 +1677,30 @@ H2O(g) -0.76 1.742e-01 0.185 3.368e-02 3.922e-02 5.546e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.104e-04 7.859e-04 -3.091 -3.105 -0.013 0.00 - OH- 1.376e-11 1.333e-11 -10.861 -10.875 -0.014 -3.87 + H+ 8.102e-04 7.857e-04 -3.091 -3.105 -0.013 0.00 + OH- 1.377e-11 1.333e-11 -10.861 -10.875 -0.014 -3.87 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.745 -119.744 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.965 -119.965 0.000 35.54 C(4) 1.385e+00 CO2 1.320e+00 1.320e+00 0.121 0.121 0.000 34.40 (CO2)2 3.198e-02 3.199e-02 -1.495 -1.495 0.000 68.81 - HCO3- 8.104e-04 7.851e-04 -3.091 -3.105 -0.014 24.63 - CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 1.148e-39 - H2 5.742e-40 5.744e-40 -39.241 -39.241 0.000 28.58 -O(0) 2.108e-14 - O2 1.054e-14 1.054e-14 -13.977 -13.977 0.000 30.31 + HCO3- 8.102e-04 7.849e-04 -3.091 -3.105 -0.014 24.79 + CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.35 +H(0) 1.012e-39 + H2 5.058e-40 5.059e-40 -39.296 -39.296 0.000 28.58 +O(0) 2.717e-14 + O2 1.359e-14 1.359e-14 -13.867 -13.867 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -116.90 -119.74 -2.84 CH4 + CH4(g) -117.12 -119.96 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 64.9 atm, phi 0.654 - H2(g) -36.11 -39.24 -3.13 H2 + H2(g) -36.16 -39.30 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.185 - O2(g) -11.05 -13.98 -2.93 O2 + O2(g) -10.94 -13.87 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1747,13 +1748,13 @@ H2O(g) -0.69 2.026e-01 0.159 3.922e-02 4.502e-02 5.801e-03 ----------------------------Description of solution---------------------------- pH = 3.102 Charge balance - pe = 14.876 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 319 + pe = 14.961 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 290 Density (g/cm³) = 1.01297 Volume (L) = 1.04694 - Viscosity (mPa s) = 0.88937 + Viscosity (mPa s) = 0.88947 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.156e-04 + Ionic strength (mol/kgw) = 8.154e-04 Mass of water (kg) = 9.992e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.395e+00 @@ -1770,30 +1771,30 @@ H2O(g) -0.69 2.026e-01 0.159 3.922e-02 4.502e-02 5.801e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.156e-04 7.909e-04 -3.089 -3.102 -0.013 0.00 - OH- 1.374e-11 1.330e-11 -10.862 -10.876 -0.014 -3.86 + H+ 8.154e-04 7.907e-04 -3.089 -3.102 -0.013 0.00 + OH- 1.374e-11 1.331e-11 -10.862 -10.876 -0.014 -3.86 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.01 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.338 -119.338 0.000 35.55 + CH4 0.000e+00 0.000e+00 -120.015 -120.014 0.000 35.55 C(4) 1.395e+00 CO2 1.329e+00 1.329e+00 0.124 0.124 0.000 34.40 (CO2)2 3.242e-02 3.243e-02 -1.489 -1.489 0.000 68.80 - HCO3- 8.156e-04 7.901e-04 -3.089 -3.102 -0.014 24.64 - CO3-2 5.762e-11 5.074e-11 -10.239 -10.295 -0.055 -3.45 -H(0) 1.443e-39 - H2 7.215e-40 7.216e-40 -39.142 -39.142 0.000 28.57 -O(0) 1.320e-14 - O2 6.601e-15 6.602e-15 -14.180 -14.180 0.000 30.30 + HCO3- 8.154e-04 7.899e-04 -3.089 -3.102 -0.014 24.81 + CO3-2 5.762e-11 5.074e-11 -10.239 -10.295 -0.055 -3.30 +H(0) 9.773e-40 + H2 4.886e-40 4.887e-40 -39.311 -39.311 0.000 28.57 +O(0) 2.878e-14 + O2 1.439e-14 1.439e-14 -13.842 -13.842 0.000 30.30 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 70 atm) - CH4(g) -116.49 -119.34 -2.85 CH4 + CH4(g) -117.17 -120.01 -2.85 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 70.2 atm, phi 0.613 - H2(g) -36.01 -39.14 -3.14 H2 + H2(g) -36.17 -39.31 -3.14 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.159 - O2(g) -11.25 -14.18 -2.93 O2 + O2(g) -10.91 -13.84 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1841,13 +1842,13 @@ H2O(g) -0.61 2.464e-01 0.132 4.502e-02 5.114e-02 6.118e-03 ----------------------------Description of solution---------------------------- pH = 3.097 Charge balance - pe = 14.946 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 323 + pe = 14.914 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 293 Density (g/cm³) = 1.01354 Volume (L) = 1.04694 - Viscosity (mPa s) = 0.88926 + Viscosity (mPa s) = 0.88936 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.247e-04 + Ionic strength (mol/kgw) = 8.244e-04 Mass of water (kg) = 9.991e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.411e+00 @@ -1864,30 +1865,30 @@ H2O(g) -0.61 2.464e-01 0.132 4.502e-02 5.114e-02 6.118e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.247e-04 7.995e-04 -3.084 -3.097 -0.013 0.00 + H+ 8.244e-04 7.993e-04 -3.084 -3.097 -0.013 0.00 OH- 1.371e-11 1.327e-11 -10.863 -10.877 -0.014 -3.82 H2O 5.551e+01 9.766e-01 1.744 -0.010 0.000 18.01 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.859 -119.859 0.000 35.56 + CH4 0.000e+00 0.000e+00 -119.602 -119.602 0.000 35.56 C(4) 1.411e+00 CO2 1.344e+00 1.344e+00 0.128 0.128 0.000 34.40 (CO2)2 3.314e-02 3.315e-02 -1.480 -1.480 0.000 68.79 - HCO3- 8.247e-04 7.987e-04 -3.084 -3.098 -0.014 24.65 - CO3-2 5.829e-11 5.130e-11 -10.234 -10.290 -0.056 -3.36 -H(0) 1.058e-39 - H2 5.289e-40 5.290e-40 -39.277 -39.277 0.000 28.57 -O(0) 2.406e-14 - O2 1.203e-14 1.203e-14 -13.920 -13.920 0.000 30.29 + HCO3- 8.244e-04 7.985e-04 -3.084 -3.098 -0.014 24.84 + CO3-2 5.830e-11 5.130e-11 -10.234 -10.290 -0.056 -3.21 +H(0) 1.226e-39 + H2 6.131e-40 6.132e-40 -39.212 -39.212 0.000 28.57 +O(0) 1.790e-14 + O2 8.949e-15 8.951e-15 -14.048 -14.048 0.000 30.29 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 80 atm) - CH4(g) -117.01 -119.86 -2.85 CH4 + CH4(g) -116.75 -119.60 -2.85 CH4 CO2(g) 1.64 0.13 -1.52 CO2 Pressure 79.9 atm, phi 0.552 - H2(g) -36.14 -39.28 -3.14 H2 + H2(g) -36.07 -39.21 -3.14 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.132 - O2(g) -10.98 -13.92 -2.93 O2 + O2(g) -11.11 -14.05 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1935,13 +1936,13 @@ H2O(g) -0.51 3.084e-01 0.107 5.114e-02 5.758e-02 6.433e-03 ----------------------------Description of solution---------------------------- pH = 3.091 Charge balance - pe = 14.965 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 328 + pe = 14.977 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 297 Density (g/cm³) = 1.01434 Volume (L) = 1.04689 - Viscosity (mPa s) = 0.88911 + Viscosity (mPa s) = 0.88921 Activity of water = 0.976 - Ionic strength (mol/kgw) = 8.371e-04 + Ionic strength (mol/kgw) = 8.368e-04 Mass of water (kg) = 9.989e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.432e+00 @@ -1958,30 +1959,30 @@ H2O(g) -0.51 3.084e-01 0.107 5.114e-02 5.758e-02 6.433e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.371e-04 8.115e-04 -3.077 -3.091 -0.014 0.00 - OH- 1.367e-11 1.323e-11 -10.864 -10.878 -0.014 -3.77 + H+ 8.368e-04 8.111e-04 -3.077 -3.091 -0.014 0.00 + OH- 1.368e-11 1.324e-11 -10.864 -10.878 -0.014 -3.77 H2O 5.551e+01 9.762e-01 1.744 -0.010 0.000 17.99 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.965 -119.965 0.000 35.58 + CH4 0.000e+00 0.000e+00 -120.056 -120.056 0.000 35.58 C(4) 1.432e+00 CO2 1.363e+00 1.363e+00 0.134 0.134 0.000 34.39 (CO2)2 3.408e-02 3.409e-02 -1.467 -1.467 0.000 68.78 - HCO3- 8.371e-04 8.106e-04 -3.077 -3.091 -0.014 24.67 - CO3-2 5.927e-11 5.212e-11 -10.227 -10.283 -0.056 -3.23 -H(0) 9.805e-40 - H2 4.902e-40 4.903e-40 -39.310 -39.310 0.000 28.56 -O(0) 2.715e-14 - O2 1.358e-14 1.358e-14 -13.867 -13.867 0.000 30.26 + HCO3- 8.368e-04 8.103e-04 -3.077 -3.091 -0.014 24.89 + CO3-2 5.929e-11 5.213e-11 -10.227 -10.283 -0.056 -3.08 +H(0) 9.303e-40 + H2 4.651e-40 4.652e-40 -39.332 -39.332 0.000 28.56 +O(0) 3.016e-14 + O2 1.508e-14 1.508e-14 -13.822 -13.821 0.000 30.26 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 94 atm) - CH4(g) -117.10 -119.96 -2.86 CH4 + CH4(g) -117.20 -120.06 -2.86 CH4 CO2(g) 1.66 0.13 -1.53 CO2 Pressure 94.1 atm, phi 0.485 - H2(g) -36.16 -39.31 -3.15 H2 + H2(g) -36.18 -39.33 -3.15 H2 H2O(g) -1.48 -0.01 1.47 H2O Pressure 0.3 atm, phi 0.107 - O2(g) -10.92 -13.87 -2.94 O2 + O2(g) -10.88 -13.82 -2.94 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2028,14 +2029,14 @@ H2O(g) -0.40 3.942e-01 0.085 5.758e-02 6.425e-02 6.677e-03 ----------------------------Description of solution---------------------------- - pH = 3.082 Charge balance - pe = 15.021 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 334 + pH = 3.083 Charge balance + pe = 14.941 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 303 Density (g/cm³) = 1.01543 Volume (L) = 1.04675 - Viscosity (mPa s) = 0.88890 + Viscosity (mPa s) = 0.88900 Activity of water = 0.976 - Ionic strength (mol/kgw) = 8.537e-04 + Ionic strength (mol/kgw) = 8.532e-04 Mass of water (kg) = 9.988e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.457e+00 @@ -2043,7 +2044,7 @@ H2O(g) -0.40 3.942e-01 0.085 5.758e-02 6.425e-02 6.677e-03 Pressure (atm) = 114.16 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 62 + Iterations = 61 Total H = 1.108839e+02 Total O = 5.835300e+01 @@ -2052,30 +2053,30 @@ H2O(g) -0.40 3.942e-01 0.085 5.758e-02 6.425e-02 6.677e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.537e-04 8.273e-04 -3.069 -3.082 -0.014 0.00 - OH- 1.364e-11 1.320e-11 -10.865 -10.879 -0.014 -3.70 + H+ 8.532e-04 8.268e-04 -3.069 -3.083 -0.014 0.00 + OH- 1.365e-11 1.321e-11 -10.865 -10.879 -0.014 -3.70 H2O 5.551e+01 9.758e-01 1.744 -0.011 0.000 17.98 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.347 -120.347 0.000 35.61 + CH4 0.000e+00 0.000e+00 -119.713 -119.713 0.000 35.61 C(4) 1.457e+00 CO2 1.386e+00 1.386e+00 0.142 0.142 0.000 34.38 (CO2)2 3.526e-02 3.526e-02 -1.453 -1.453 0.000 68.76 - HCO3- 8.537e-04 8.264e-04 -3.069 -3.083 -0.014 24.69 - CO3-2 6.065e-11 5.326e-11 -10.217 -10.274 -0.056 -3.06 -H(0) 7.714e-40 - H2 3.857e-40 3.858e-40 -39.414 -39.414 0.000 28.55 -O(0) 4.206e-14 - O2 2.103e-14 2.103e-14 -13.677 -13.677 0.000 30.24 + HCO3- 8.532e-04 8.259e-04 -3.069 -3.083 -0.014 24.95 + CO3-2 6.067e-11 5.329e-11 -10.217 -10.273 -0.056 -2.90 +H(0) 1.111e-39 + H2 5.555e-40 5.556e-40 -39.255 -39.255 0.000 28.55 +O(0) 2.028e-14 + O2 1.014e-14 1.014e-14 -13.994 -13.994 0.000 30.24 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 114 atm) - CH4(g) -117.47 -120.35 -2.87 CH4 + CH4(g) -116.84 -119.71 -2.87 CH4 CO2(g) 1.68 0.14 -1.54 CO2 Pressure 113.8 atm, phi 0.420 - H2(g) -36.26 -39.41 -3.16 H2 + H2(g) -36.10 -39.26 -3.16 H2 H2O(g) -1.48 -0.01 1.47 H2O Pressure 0.4 atm, phi 0.085 - O2(g) -10.72 -13.68 -2.95 O2 + O2(g) -11.04 -13.99 -2.95 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2123,13 +2124,13 @@ H2O(g) -0.29 5.106e-01 0.066 6.425e-02 7.108e-02 6.829e-03 ----------------------------Description of solution---------------------------- pH = 3.072 Charge balance - pe = 15.060 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 343 + pe = 14.978 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 311 Density (g/cm³) = 1.01684 Volume (L) = 1.04648 - Viscosity (mPa s) = 0.88865 + Viscosity (mPa s) = 0.88875 Activity of water = 0.975 - Ionic strength (mol/kgw) = 8.750e-04 + Ionic strength (mol/kgw) = 8.742e-04 Mass of water (kg) = 9.987e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.488e+00 @@ -2146,30 +2147,30 @@ H2O(g) -0.29 5.106e-01 0.066 6.425e-02 7.108e-02 6.829e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.750e-04 8.477e-04 -3.058 -3.072 -0.014 0.00 - OH- 1.362e-11 1.317e-11 -10.866 -10.880 -0.014 -3.61 + H+ 8.742e-04 8.470e-04 -3.058 -3.072 -0.014 0.00 + OH- 1.363e-11 1.318e-11 -10.866 -10.880 -0.014 -3.61 H2O 5.551e+01 9.753e-01 1.744 -0.011 0.000 17.96 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.580 -120.580 0.000 35.64 + CH4 0.000e+00 0.000e+00 -119.928 -119.928 0.000 35.64 C(4) 1.488e+00 CO2 1.413e+00 1.414e+00 0.150 0.150 0.000 34.37 (CO2)2 3.667e-02 3.668e-02 -1.436 -1.436 0.000 68.73 - HCO3- 8.750e-04 8.468e-04 -3.058 -3.072 -0.014 24.73 - CO3-2 6.251e-11 5.483e-11 -10.204 -10.261 -0.057 -2.83 -H(0) 6.571e-40 - H2 3.285e-40 3.286e-40 -39.483 -39.483 0.000 28.54 -O(0) 5.476e-14 - O2 2.738e-14 2.739e-14 -13.563 -13.562 0.000 30.20 + HCO3- 8.742e-04 8.461e-04 -3.058 -3.073 -0.014 25.03 + CO3-2 6.256e-11 5.487e-11 -10.204 -10.261 -0.057 -2.66 +H(0) 9.564e-40 + H2 4.782e-40 4.783e-40 -39.320 -39.320 0.000 28.54 +O(0) 2.585e-14 + O2 1.292e-14 1.293e-14 -13.889 -13.889 0.000 30.20 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 141 atm) - CH4(g) -117.69 -120.58 -2.89 CH4 + CH4(g) -117.04 -119.93 -2.89 CH4 CO2(g) 1.70 0.15 -1.55 CO2 Pressure 140.2 atm, phi 0.361 - H2(g) -36.31 -39.48 -3.17 H2 + H2(g) -36.15 -39.32 -3.17 H2 H2O(g) -1.47 -0.01 1.46 H2O Pressure 0.5 atm, phi 0.066 - O2(g) -10.60 -13.56 -2.97 O2 + O2(g) -10.92 -13.89 -2.97 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2224,21 +2225,21 @@ H2O(g) -0.18 6.655e-01 0.052 7.108e-02 7.795e-02 6.869e-03 ----------------------------Description of solution---------------------------- pH = 3.059 Charge balance - pe = 16.076 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 353 + pe = 15.552 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 320 Density (g/cm³) = 1.01866 Volume (L) = 1.04600 - Viscosity (mPa s) = 0.88835 + Viscosity (mPa s) = 0.88844 Activity of water = 0.975 - Ionic strength (mol/kgw) = 9.022e-04 + Ionic strength (mol/kgw) = 9.010e-04 Mass of water (kg) = 9.986e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.523e+00 Temperature (°C) = 25.00 Pressure (atm) = 175.50 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 40 (141 overall) + Iterations = 48 (149 overall) Total H = 1.108565e+02 Total O = 5.846928e+01 @@ -2247,30 +2248,30 @@ H2O(g) -0.18 6.655e-01 0.052 7.108e-02 7.795e-02 6.869e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.022e-04 8.736e-04 -3.045 -3.059 -0.014 0.00 - OH- 1.361e-11 1.316e-11 -10.866 -10.881 -0.015 -3.49 + H+ 9.010e-04 8.725e-04 -3.045 -3.059 -0.014 0.00 + OH- 1.363e-11 1.317e-11 -10.866 -10.880 -0.015 -3.49 H2O 5.551e+01 9.748e-01 1.744 -0.011 0.000 17.93 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.619 -128.619 0.000 35.68 + CH4 0.000e+00 0.000e+00 -124.435 -124.435 0.000 35.68 C(4) 1.523e+00 CO2 1.445e+00 1.445e+00 0.160 0.160 0.000 34.35 (CO2)2 3.833e-02 3.834e-02 -1.416 -1.416 0.000 68.70 - HCO3- 9.022e-04 8.727e-04 -3.045 -3.059 -0.014 24.77 - CO3-2 6.500e-11 5.692e-11 -10.187 -10.245 -0.058 -2.53 + HCO3- 9.010e-04 8.715e-04 -3.045 -3.060 -0.014 25.14 + CO3-2 6.509e-11 5.700e-11 -10.186 -10.244 -0.058 -2.36 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.508 -41.507 0.000 28.53 -O(0) 5.684e-10 - O2 2.842e-10 2.842e-10 -9.546 -9.546 0.000 30.15 + H2 0.000e+00 0.000e+00 -40.461 -40.461 0.000 28.53 +O(0) 4.595e-12 + O2 2.298e-12 2.298e-12 -11.639 -11.639 0.000 30.15 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 176 atm) - CH4(g) -125.71 -128.62 -2.91 CH4 + CH4(g) -121.52 -124.43 -2.91 CH4 CO2(g) 1.73 0.16 -1.57 CO2 Pressure 174.8 atm, phi 0.310 - H2(g) -38.32 -41.51 -3.19 H2 + H2(g) -37.27 -40.46 -3.19 H2 H2O(g) -1.46 -0.01 1.45 H2O Pressure 0.7 atm, phi 0.052 - O2(g) -6.56 -9.55 -2.99 O2 + O2(g) -8.65 -11.64 -2.99 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2324,54 +2325,54 @@ H2O(g) -0.06 8.678e-01 0.041 7.795e-02 8.472e-02 6.772e-03 ----------------------------Description of solution---------------------------- - pH = 3.043 Charge balance - pe = 16.091 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 367 + pH = 3.044 Charge balance + pe = 16.115 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 333 Density (g/cm³) = 1.02093 Volume (L) = 1.04525 - Viscosity (mPa s) = 0.88802 + Viscosity (mPa s) = 0.88812 Activity of water = 0.974 - Ionic strength (mol/kgw) = 9.364e-04 + Ionic strength (mol/kgw) = 9.345e-04 Mass of water (kg) = 9.985e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.562e+00 Temperature (°C) = 25.00 Pressure (atm) = 220.47 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 (136 overall) + Iterations = 38 (139 overall) Total H = 1.108430e+02 - Total O = 5.854161e+01 + Total O = 5.854160e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.364e-04 9.063e-04 -3.029 -3.043 -0.014 0.00 - OH- 1.362e-11 1.316e-11 -10.866 -10.881 -0.015 -3.34 + H+ 9.345e-04 9.045e-04 -3.029 -3.044 -0.014 0.00 + OH- 1.365e-11 1.319e-11 -10.865 -10.880 -0.015 -3.34 H2O 5.551e+01 9.741e-01 1.744 -0.011 0.000 17.89 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.630 -128.630 0.000 35.73 + CH4 0.000e+00 0.000e+00 -128.831 -128.831 0.000 35.73 C(4) 1.562e+00 CO2 1.481e+00 1.481e+00 0.171 0.171 0.000 34.33 (CO2)2 4.026e-02 4.027e-02 -1.395 -1.395 0.000 68.66 - HCO3- 9.364e-04 9.053e-04 -3.029 -3.043 -0.015 24.82 - CO3-2 6.829e-11 5.967e-11 -10.166 -10.224 -0.059 -2.16 + HCO3- 9.345e-04 9.035e-04 -3.029 -3.044 -0.015 25.28 + CO3-2 6.845e-11 5.982e-11 -10.165 -10.223 -0.059 -1.98 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.528 -41.528 0.000 28.51 -O(0) 5.685e-10 - O2 2.842e-10 2.843e-10 -9.546 -9.546 0.000 30.09 + H2 0.000e+00 0.000e+00 -41.579 -41.578 0.000 28.51 +O(0) 7.163e-10 + O2 3.582e-10 3.582e-10 -9.446 -9.446 0.000 30.09 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 220 atm) - CH4(g) -125.69 -128.63 -2.94 CH4 + CH4(g) -125.89 -128.83 -2.94 CH4 CO2(g) 1.77 0.17 -1.60 CO2 Pressure 219.6 atm, phi 0.270 - H2(g) -38.32 -41.53 -3.21 H2 + H2(g) -38.37 -41.58 -3.21 H2 H2O(g) -1.44 -0.01 1.43 H2O Pressure 0.9 atm, phi 0.041 - O2(g) -6.54 -9.55 -3.01 O2 + O2(g) -6.44 -9.45 -3.01 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2425,54 +2426,54 @@ H2O(g) 0.05 1.127e+00 0.033 8.472e-02 9.124e-02 6.514e-03 ----------------------------Description of solution---------------------------- - pH = 3.023 Charge balance - pe = 16.109 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 384 + pH = 3.025 Charge balance + pe = 16.133 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 349 Density (g/cm³) = 1.02376 Volume (L) = 1.04415 - Viscosity (mPa s) = 0.88771 + Viscosity (mPa s) = 0.88780 Activity of water = 0.973 - Ionic strength (mol/kgw) = 9.794e-04 + Ionic strength (mol/kgw) = 9.763e-04 Mass of water (kg) = 9.983e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.607e+00 Temperature (°C) = 25.00 Pressure (atm) = 277.89 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.108300e+02 - Total O = 5.862319e+01 + Total O = 5.862318e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.794e-04 9.474e-04 -3.009 -3.023 -0.014 0.00 - OH- 1.366e-11 1.319e-11 -10.865 -10.880 -0.015 -3.15 + H+ 9.763e-04 9.444e-04 -3.010 -3.025 -0.014 0.00 + OH- 1.370e-11 1.323e-11 -10.863 -10.878 -0.015 -3.15 H2O 5.551e+01 9.734e-01 1.744 -0.012 0.000 17.85 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.646 -128.646 0.000 35.80 + CH4 0.000e+00 0.000e+00 -128.847 -128.846 0.000 35.80 C(4) 1.607e+00 CO2 1.521e+00 1.521e+00 0.182 0.182 0.000 34.30 (CO2)2 4.246e-02 4.247e-02 -1.372 -1.372 0.000 68.61 - HCO3- 9.794e-04 9.463e-04 -3.009 -3.024 -0.015 24.89 - CO3-2 7.261e-11 6.329e-11 -10.139 -10.199 -0.060 -1.70 + HCO3- 9.763e-04 9.433e-04 -3.010 -3.025 -0.015 25.45 + CO3-2 7.290e-11 6.355e-11 -10.137 -10.197 -0.060 -1.51 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.555 -41.555 0.000 28.48 -O(0) 5.685e-10 - O2 2.843e-10 2.843e-10 -9.546 -9.546 0.000 30.02 + H2 0.000e+00 0.000e+00 -41.605 -41.605 0.000 28.48 +O(0) 7.164e-10 + O2 3.582e-10 3.583e-10 -9.446 -9.446 0.000 30.02 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 278 atm) - CH4(g) -125.67 -128.65 -2.98 CH4 + CH4(g) -125.87 -128.85 -2.98 CH4 CO2(g) 1.82 0.18 -1.64 CO2 Pressure 276.8 atm, phi 0.238 - H2(g) -38.31 -41.55 -3.24 H2 + H2(g) -38.36 -41.60 -3.24 H2 H2O(g) -1.43 -0.01 1.42 H2O Pressure 1.1 atm, phi 0.033 - O2(g) -6.51 -9.55 -3.04 O2 + O2(g) -6.41 -9.45 -3.04 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2526,54 +2527,54 @@ H2O(g) 0.16 1.455e+00 0.027 9.124e-02 9.730e-02 6.064e-03 ----------------------------Description of solution---------------------------- - pH = 3.000 Charge balance - pe = 16.130 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 405 + pH = 3.003 Charge balance + pe = 16.153 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 368 Density (g/cm³) = 1.02723 Volume (L) = 1.04258 - Viscosity (mPa s) = 0.88747 + Viscosity (mPa s) = 0.88755 Activity of water = 0.973 - Ionic strength (mol/kgw) = 1.033e-03 + Ionic strength (mol/kgw) = 1.028e-03 Mass of water (kg) = 9.982e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.655e+00 Temperature (°C) = 25.00 Pressure (atm) = 350.70 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 (136 overall) + Iterations = 36 (137 overall) Total H = 1.108178e+02 - Total O = 5.871355e+01 + Total O = 5.871354e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.033e-03 9.990e-04 -2.986 -3.000 -0.015 0.00 - OH- 1.373e-11 1.325e-11 -10.862 -10.878 -0.016 -2.93 + H+ 1.028e-03 9.942e-04 -2.988 -3.003 -0.015 0.00 + OH- 1.380e-11 1.332e-11 -10.860 -10.876 -0.016 -2.93 H2O 5.551e+01 9.726e-01 1.744 -0.012 0.000 17.79 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.668 -128.668 0.000 35.87 + CH4 0.000e+00 0.000e+00 -128.869 -128.869 0.000 35.87 C(4) 1.655e+00 CO2 1.564e+00 1.565e+00 0.194 0.194 0.000 34.27 (CO2)2 4.492e-02 4.493e-02 -1.348 -1.347 0.000 68.54 - HCO3- 1.033e-03 9.978e-04 -2.986 -3.001 -0.015 24.98 - CO3-2 7.829e-11 6.803e-11 -10.106 -10.167 -0.061 -1.13 + HCO3- 1.028e-03 9.930e-04 -2.988 -3.003 -0.015 25.66 + CO3-2 7.880e-11 6.850e-11 -10.103 -10.164 -0.061 -0.93 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.588 -41.588 0.000 28.46 -O(0) 5.686e-10 - O2 2.843e-10 2.844e-10 -9.546 -9.546 0.000 29.93 + H2 0.000e+00 0.000e+00 -41.638 -41.638 0.000 28.46 +O(0) 7.165e-10 + O2 3.583e-10 3.583e-10 -9.446 -9.446 0.000 29.93 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 351 atm) - CH4(g) -125.64 -128.67 -3.02 CH4 + CH4(g) -125.84 -128.87 -3.02 CH4 CO2(g) 1.88 0.19 -1.68 CO2 Pressure 349.2 atm, phi 0.215 - H2(g) -38.31 -41.59 -3.28 H2 + H2(g) -38.36 -41.64 -3.28 H2 H2O(g) -1.40 -0.01 1.39 H2O Pressure 1.5 atm, phi 0.027 - O2(g) -6.47 -9.55 -3.08 O2 + O2(g) -6.37 -9.45 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2627,54 +2628,54 @@ H2O(g) 0.27 1.863e+00 0.023 9.730e-02 1.027e-01 5.386e-03 ----------------------------Description of solution---------------------------- - pH = 2.973 Charge balance - pe = 16.156 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 432 + pH = 2.976 Charge balance + pe = 16.178 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 393 Density (g/cm³) = 1.03147 - Volume (L) = 1.04040 - Viscosity (mPa s) = 0.88743 + Volume (L) = 1.04041 + Viscosity (mPa s) = 0.88750 Activity of water = 0.972 - Ionic strength (mol/kgw) = 1.102e-03 + Ionic strength (mol/kgw) = 1.094e-03 Mass of water (kg) = 9.981e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.707e+00 Temperature (°C) = 25.00 Pressure (atm) = 442.66 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.108071e+02 - Total O = 5.881181e+01 + Total O = 5.881180e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.102e-03 1.064e-03 -2.958 -2.973 -0.015 0.00 - OH- 1.385e-11 1.335e-11 -10.858 -10.874 -0.016 -2.66 + H+ 1.094e-03 1.056e-03 -2.961 -2.976 -0.015 0.00 + OH- 1.395e-11 1.345e-11 -10.855 -10.871 -0.016 -2.66 H2O 5.551e+01 9.718e-01 1.744 -0.012 0.000 17.73 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.699 -128.699 0.000 35.96 + CH4 0.000e+00 0.000e+00 -128.900 -128.899 0.000 35.96 C(4) 1.707e+00 CO2 1.611e+00 1.611e+00 0.207 0.207 0.000 34.23 (CO2)2 4.764e-02 4.765e-02 -1.322 -1.322 0.000 68.46 - HCO3- 1.102e-03 1.063e-03 -2.958 -2.974 -0.016 25.08 - CO3-2 8.579e-11 7.426e-11 -10.067 -10.129 -0.063 -0.45 + HCO3- 1.094e-03 1.055e-03 -2.961 -2.977 -0.016 25.91 + CO3-2 8.669e-11 7.509e-11 -10.062 -10.124 -0.062 -0.24 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.630 -41.630 0.000 28.42 -O(0) 5.686e-10 - O2 2.843e-10 2.844e-10 -9.546 -9.546 0.000 29.83 + H2 0.000e+00 0.000e+00 -41.680 -41.680 0.000 28.42 +O(0) 7.166e-10 + O2 3.583e-10 3.584e-10 -9.446 -9.446 0.000 29.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 443 atm) - CH4(g) -125.61 -128.70 -3.08 CH4 + CH4(g) -125.82 -128.90 -3.08 CH4 CO2(g) 1.94 0.21 -1.74 CO2 Pressure 440.8 atm, phi 0.199 - H2(g) -38.31 -41.63 -3.32 H2 + H2(g) -38.36 -41.68 -3.32 H2 H2O(g) -1.38 -0.01 1.36 H2O Pressure 1.9 atm, phi 0.023 - O2(g) -6.42 -9.55 -3.13 O2 + O2(g) -6.32 -9.45 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2711,7 +2712,7 @@ Reaction 1. Total pressure: 558.75 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 3.95e-02 liters/mole - P * Vm / RT: 0.90094 (Compressibility Factor Z) + P * Vm / RT: 0.90095 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -2728,54 +2729,54 @@ H2O(g) 0.37 2.361e+00 0.019 1.027e-01 1.071e-01 4.442e-03 ----------------------------Description of solution---------------------------- - pH = 2.940 Charge balance - pe = 16.186 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 466 + pH = 2.945 Charge balance + pe = 16.206 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 425 Density (g/cm³) = 1.03663 Volume (L) = 1.03747 - Viscosity (mPa s) = 0.88778 + Viscosity (mPa s) = 0.88783 Activity of water = 0.971 - Ionic strength (mol/kgw) = 1.189e-03 + Ionic strength (mol/kgw) = 1.176e-03 Mass of water (kg) = 9.980e-01 - Total alkalinity (eq/kg) = 1.214e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.762e+00 Temperature (°C) = 25.00 Pressure (atm) = 558.75 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 32 (133 overall) + Iterations = 37 (138 overall) Total H = 1.107982e+02 - Total O = 5.891647e+01 + Total O = 5.891645e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.189e-03 1.147e-03 -2.925 -2.940 -0.016 0.00 - OH- 1.403e-11 1.350e-11 -10.853 -10.870 -0.016 -2.33 + H+ 1.176e-03 1.135e-03 -2.930 -2.945 -0.015 0.00 + OH- 1.418e-11 1.366e-11 -10.848 -10.865 -0.016 -2.33 H2O 5.551e+01 9.709e-01 1.744 -0.013 0.000 17.64 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.741 -128.741 0.000 36.07 + CH4 0.000e+00 0.000e+00 -128.942 -128.941 0.000 36.07 C(4) 1.762e+00 CO2 1.660e+00 1.660e+00 0.220 0.220 0.000 34.18 (CO2)2 5.057e-02 5.059e-02 -1.296 -1.296 0.000 68.35 - HCO3- 1.189e-03 1.146e-03 -2.925 -2.941 -0.016 25.21 - CO3-2 9.577e-11 8.253e-11 -10.019 -10.083 -0.065 0.35 + HCO3- 1.176e-03 1.133e-03 -2.930 -2.946 -0.016 26.21 + CO3-2 9.737e-11 8.398e-11 -10.012 -10.076 -0.064 0.59 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.683 -41.683 0.000 28.38 -O(0) 5.687e-10 - O2 2.843e-10 2.844e-10 -9.546 -9.546 0.000 29.70 + H2 0.000e+00 0.000e+00 -41.733 -41.733 0.000 28.38 +O(0) 7.167e-10 + O2 3.583e-10 3.584e-10 -9.446 -9.446 0.000 29.70 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 559 atm) - CH4(g) -125.58 -128.74 -3.16 CH4 + CH4(g) -125.78 -128.94 -3.16 CH4 CO2(g) 2.03 0.22 -1.81 CO2 Pressure 556.4 atm, phi 0.191 - H2(g) -38.30 -41.68 -3.38 H2 + H2(g) -38.35 -41.73 -3.38 H2 H2O(g) -1.34 -0.01 1.33 H2O Pressure 2.4 atm, phi 0.019 - O2(g) -6.36 -9.55 -3.19 O2 + O2(g) -6.26 -9.45 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2931,11 +2932,11 @@ H2O(g) -0.85 1.400e-01 0.872 4.591e-03 5.717e-03 1.126e-03 ----------------------------Description of solution---------------------------- pH = 3.402 Charge balance - pe = 12.494 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 207 + pe = 12.495 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 205 Density (g/cm³) = 0.99137 Volume (L) = 1.02222 - Viscosity (mPa s) = 0.54697 + Viscosity (mPa s) = 0.54698 Activity of water = 0.995 Ionic strength (mol/kgw) = 4.059e-04 Mass of water (kg) = 9.999e-01 @@ -2958,16 +2959,16 @@ H2O(g) -0.85 1.400e-01 0.872 4.591e-03 5.717e-03 1.126e-03 OH- 1.426e-10 1.392e-10 -9.846 -9.856 -0.011 -3.83 H2O 5.551e+01 9.948e-01 1.744 -0.002 0.000 18.22 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -106.546 -106.546 0.000 37.34 + CH4 0.000e+00 0.000e+00 -106.551 -106.551 0.000 37.34 C(4) 3.070e-01 CO2 2.998e-01 2.998e-01 -0.523 -0.523 0.000 35.64 (CO2)2 3.375e-03 3.375e-03 -2.472 -2.472 0.000 71.28 - HCO3- 4.059e-04 3.963e-04 -3.392 -3.402 -0.010 25.63 - CO3-2 7.490e-11 6.807e-11 -10.126 -10.167 -0.042 -3.03 -H(0) 1.787e-35 - H2 8.933e-36 8.934e-36 -35.049 -35.049 0.000 28.58 -O(0) 2.783e-15 - O2 1.391e-15 1.391e-15 -14.857 -14.857 0.000 31.89 + HCO3- 4.059e-04 3.963e-04 -3.392 -3.402 -0.010 25.62 + CO3-2 7.490e-11 6.807e-11 -10.126 -10.167 -0.042 -3.09 +H(0) 1.781e-35 + H2 8.907e-36 8.908e-36 -35.050 -35.050 0.000 28.58 +O(0) 2.799e-15 + O2 1.399e-15 1.400e-15 -14.854 -14.854 0.000 31.89 ------------------------------Saturation indices------------------------------- @@ -2977,7 +2978,7 @@ O(0) 2.783e-15 CO2(g) 1.20 -0.52 -1.72 CO2 Pressure 17.0 atm, phi 0.928 H2(g) -31.91 -35.05 -3.14 H2 H2O(g) -0.91 -0.00 0.91 H2O Pressure 0.1 atm, phi 0.872 - O2(g) -11.82 -14.86 -3.04 O2 + O2(g) -11.82 -14.85 -3.04 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3026,11 +3027,11 @@ H2O(g) -0.79 1.615e-01 0.761 5.717e-03 7.178e-03 1.461e-03 ----------------------------Description of solution---------------------------- pH = 3.277 Charge balance - pe = 2.576 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 277 + pe = 2.454 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 270 Density (g/cm³) = 0.99409 Volume (L) = 1.03007 - Viscosity (mPa s) = 0.54733 + Viscosity (mPa s) = 0.54734 Activity of water = 0.991 Ionic strength (mol/kgw) = 5.432e-04 Mass of water (kg) = 9.999e-01 @@ -3040,7 +3041,7 @@ H2O(g) -0.79 1.615e-01 0.761 5.717e-03 7.178e-03 1.461e-03 Pressure (atm) = 32.84 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 38 + Iterations = 35 Total H = 1.109981e+02 Total O = 5.659456e+01 @@ -3052,27 +3053,27 @@ H2O(g) -0.79 1.615e-01 0.761 5.717e-03 7.178e-03 1.461e-03 H+ 5.432e-04 5.288e-04 -3.265 -3.277 -0.012 0.00 OH- 1.083e-10 1.053e-10 -9.965 -9.978 -0.012 -3.84 H2O 5.551e+01 9.909e-01 1.744 -0.004 0.000 18.21 -C(-4) 1.084e-26 - CH4 1.084e-26 1.084e-26 -25.965 -25.965 0.000 37.35 +C(-4) 1.040e-25 + CH4 1.040e-25 1.040e-25 -24.983 -24.983 0.000 37.35 C(4) 5.478e-01 CO2 5.265e-01 5.265e-01 -0.279 -0.279 0.000 35.62 (CO2)2 1.041e-02 1.041e-02 -1.983 -1.983 0.000 71.25 - HCO3- 5.432e-04 5.285e-04 -3.265 -3.277 -0.012 25.66 - CO3-2 7.725e-11 6.921e-11 -10.112 -10.160 -0.048 -2.85 -H(0) 2.140e-15 - H2 1.070e-15 1.070e-15 -14.971 -14.971 0.000 28.57 + HCO3- 5.432e-04 5.284e-04 -3.265 -3.277 -0.012 25.68 + CO3-2 7.726e-11 6.922e-11 -10.112 -10.160 -0.048 -2.93 +H(0) 3.765e-15 + H2 1.883e-15 1.883e-15 -14.725 -14.725 0.000 28.57 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -55.030 -55.030 0.000 31.85 + O2 0.000e+00 0.000e+00 -55.521 -55.521 0.000 31.85 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 33 atm) - CH4(g) -22.99 -25.96 -2.98 CH4 + CH4(g) -22.00 -24.98 -2.98 CH4 CO2(g) 1.45 -0.28 -1.73 CO2 Pressure 32.7 atm, phi 0.864 - H2(g) -11.82 -14.97 -3.15 H2 + H2(g) -11.57 -14.73 -3.15 H2 H2O(g) -0.91 -0.00 0.91 H2O Pressure 0.2 atm, phi 0.761 - O2(g) -51.98 -55.03 -3.05 O2 + O2(g) -52.47 -55.52 -3.05 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3121,11 +3122,11 @@ H2O(g) -0.73 1.861e-01 0.665 7.178e-03 9.044e-03 1.866e-03 ----------------------------Description of solution---------------------------- pH = 3.215 Charge balance - pe = 2.255 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 320 + pe = 2.643 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 308 Density (g/cm³) = 0.99620 Volume (L) = 1.03584 - Viscosity (mPa s) = 0.54764 + Viscosity (mPa s) = 0.54765 Activity of water = 0.988 Ionic strength (mol/kgw) = 6.276e-04 Mass of water (kg) = 9.998e-01 @@ -3145,29 +3146,29 @@ H2O(g) -0.73 1.861e-01 0.665 7.178e-03 9.044e-03 1.866e-03 Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.276e-04 6.099e-04 -3.202 -3.215 -0.012 0.00 - OH- 9.490e-11 9.211e-11 -10.023 -10.036 -0.013 -3.86 + OH- 9.491e-11 9.211e-11 -10.023 -10.036 -0.013 -3.86 H2O 5.551e+01 9.879e-01 1.744 -0.005 0.000 18.20 -C(-4) 1.625e-23 - CH4 1.625e-23 1.625e-23 -22.789 -22.789 0.000 37.36 +C(-4) 1.291e-26 + CH4 1.291e-26 1.291e-26 -25.889 -25.889 0.000 37.36 C(4) 7.286e-01 CO2 6.920e-01 6.921e-01 -0.160 -0.160 0.000 35.61 (CO2)2 1.798e-02 1.798e-02 -1.745 -1.745 0.000 71.22 - HCO3- 6.276e-04 6.094e-04 -3.202 -3.215 -0.013 25.69 - CO3-2 7.902e-11 7.024e-11 -10.102 -10.153 -0.051 -2.70 -H(0) 1.229e-14 - H2 6.145e-15 6.146e-15 -14.211 -14.211 0.000 28.57 + HCO3- 6.276e-04 6.094e-04 -3.202 -3.215 -0.013 25.74 + CO3-2 7.904e-11 7.026e-11 -10.102 -10.153 -0.051 -2.79 +H(0) 2.063e-15 + H2 1.032e-15 1.032e-15 -14.986 -14.986 0.000 28.57 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -56.563 -56.563 0.000 31.82 + O2 0.000e+00 0.000e+00 -55.013 -55.013 0.000 31.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 47 atm) - CH4(g) -19.80 -22.79 -2.99 CH4 + CH4(g) -22.90 -25.89 -2.99 CH4 CO2(g) 1.58 -0.16 -1.74 CO2 Pressure 46.7 atm, phi 0.809 - H2(g) -11.05 -14.21 -3.16 H2 + H2(g) -11.83 -14.99 -3.16 H2 H2O(g) -0.91 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.665 - O2(g) -53.51 -56.56 -3.05 O2 + O2(g) -51.96 -55.01 -3.05 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3216,21 +3217,21 @@ H2O(g) -0.67 2.136e-01 0.583 9.044e-03 1.139e-02 2.342e-03 ----------------------------Description of solution---------------------------- pH = 3.178 Charge balance - pe = 2.294 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 348 + pe = 12.681 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 333 Density (g/cm³) = 0.99780 Volume (L) = 1.03988 - Viscosity (mPa s) = 0.54790 + Viscosity (mPa s) = 0.54791 Activity of water = 0.986 Ionic strength (mol/kgw) = 6.831e-04 Mass of water (kg) = 9.998e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 8.589e-01 Temperature (°C) = 50.00 Pressure (atm) = 59.15 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 + Iterations = 30 Total H = 1.109897e+02 Total O = 5.721235e+01 @@ -3239,30 +3240,30 @@ H2O(g) -0.67 2.136e-01 0.583 9.044e-03 1.139e-02 2.342e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.831e-04 6.631e-04 -3.166 -3.178 -0.013 0.00 - OH- 8.811e-11 8.541e-11 -10.055 -10.069 -0.014 -3.87 + H+ 6.831e-04 6.630e-04 -3.166 -3.178 -0.013 0.00 + OH- 8.811e-11 8.541e-11 -10.055 -10.068 -0.014 -3.87 H2O 5.551e+01 9.858e-01 1.744 -0.006 0.000 18.19 -C(-4) 1.791e-23 - CH4 1.791e-23 1.791e-23 -22.747 -22.747 0.000 37.37 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -105.840 -105.840 0.000 37.37 C(4) 8.589e-01 CO2 8.091e-01 8.092e-01 -0.092 -0.092 0.000 35.60 (CO2)2 2.458e-02 2.458e-02 -1.609 -1.609 0.000 71.19 - HCO3- 6.831e-04 6.625e-04 -3.166 -3.179 -0.013 25.71 - CO3-2 8.042e-11 7.115e-11 -10.095 -10.148 -0.053 -2.57 -H(0) 1.199e-14 - H2 5.996e-15 5.997e-15 -14.222 -14.222 0.000 28.56 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -56.554 -56.554 0.000 31.79 + HCO3- 6.831e-04 6.625e-04 -3.166 -3.179 -0.013 25.79 + CO3-2 8.045e-11 7.117e-11 -10.094 -10.148 -0.053 -2.68 +H(0) 2.022e-35 + H2 1.011e-35 1.011e-35 -34.995 -34.995 0.000 28.56 +O(0) 1.963e-15 + O2 9.815e-16 9.816e-16 -15.008 -15.008 0.000 31.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 59 atm) - CH4(g) -19.75 -22.75 -2.99 CH4 + CH4(g) -102.84 -105.84 -2.99 CH4 CO2(g) 1.65 -0.09 -1.74 CO2 Pressure 58.9 atm, phi 0.763 - H2(g) -11.06 -14.22 -3.16 H2 + H2(g) -31.83 -35.00 -3.16 H2 H2O(g) -0.90 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.583 - O2(g) -53.49 -56.55 -3.06 O2 + O2(g) -11.95 -15.01 -3.06 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3311,15 +3312,15 @@ H2O(g) -0.61 2.437e-01 0.514 1.139e-02 1.427e-02 2.881e-03 ----------------------------Description of solution---------------------------- pH = 3.156 Charge balance - pe = 2.084 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 367 + pe = 12.723 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 349 Density (g/cm³) = 0.99898 Volume (L) = 1.04261 - Viscosity (mPa s) = 0.54812 + Viscosity (mPa s) = 0.54813 Activity of water = 0.984 - Ionic strength (mol/kgw) = 7.203e-04 + Ionic strength (mol/kgw) = 7.202e-04 Mass of water (kg) = 9.997e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 9.501e-01 Temperature (°C) = 50.00 Pressure (atm) = 69.44 @@ -3334,30 +3335,30 @@ H2O(g) -0.61 2.437e-01 0.514 1.139e-02 1.427e-02 2.881e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.203e-04 6.987e-04 -3.142 -3.156 -0.013 0.00 - OH- 8.428e-11 8.163e-11 -10.074 -10.088 -0.014 -3.88 + H+ 7.202e-04 6.986e-04 -3.143 -3.156 -0.013 0.00 + OH- 8.429e-11 8.164e-11 -10.074 -10.088 -0.014 -3.88 H2O 5.551e+01 9.843e-01 1.744 -0.007 0.000 18.18 -C(-4) 1.408e-21 - CH4 1.408e-21 1.408e-21 -20.851 -20.851 0.000 37.37 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -105.961 -105.961 0.000 37.37 C(4) 9.501e-01 CO2 8.899e-01 8.900e-01 -0.051 -0.051 0.000 35.58 (CO2)2 2.973e-02 2.974e-02 -1.527 -1.527 0.000 71.17 - HCO3- 7.203e-04 6.980e-04 -3.142 -3.156 -0.014 25.73 - CO3-2 8.154e-11 7.191e-11 -10.089 -10.143 -0.055 -2.47 -H(0) 3.459e-14 - H2 1.729e-14 1.730e-14 -13.762 -13.762 0.000 28.55 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.485 -57.485 0.000 31.77 + HCO3- 7.202e-04 6.979e-04 -3.143 -3.156 -0.014 25.83 + CO3-2 8.158e-11 7.195e-11 -10.088 -10.143 -0.055 -2.58 +H(0) 1.826e-35 + H2 9.132e-36 9.134e-36 -35.039 -35.039 0.000 28.55 +O(0) 2.350e-15 + O2 1.175e-15 1.175e-15 -14.930 -14.930 0.000 31.77 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 69 atm) - CH4(g) -17.85 -20.85 -3.00 CH4 + CH4(g) -102.96 -105.96 -3.00 CH4 CO2(g) 1.70 -0.05 -1.75 CO2 Pressure 69.2 atm, phi 0.724 - H2(g) -10.59 -13.76 -3.17 H2 + H2(g) -31.87 -35.04 -3.17 H2 H2O(g) -0.90 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.514 - O2(g) -54.42 -57.48 -3.07 O2 + O2(g) -11.86 -14.93 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3406,15 +3407,15 @@ H2O(g) -0.56 2.762e-01 0.456 1.427e-02 1.774e-02 3.477e-03 ----------------------------Description of solution---------------------------- pH = 3.141 Charge balance - pe = 1.995 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 380 + pe = 12.654 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 359 Density (g/cm³) = 0.99985 Volume (L) = 1.04438 - Viscosity (mPa s) = 0.54830 + Viscosity (mPa s) = 0.54831 Activity of water = 0.983 - Ionic strength (mol/kgw) = 7.455e-04 + Ionic strength (mol/kgw) = 7.453e-04 Mass of water (kg) = 9.997e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.013e+00 Temperature (°C) = 50.00 Pressure (atm) = 77.91 @@ -3429,30 +3430,30 @@ H2O(g) -0.56 2.762e-01 0.456 1.427e-02 1.774e-02 3.477e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.455e-04 7.228e-04 -3.128 -3.141 -0.013 0.00 - OH- 8.201e-11 7.939e-11 -10.086 -10.100 -0.014 -3.89 + H+ 7.453e-04 7.226e-04 -3.128 -3.141 -0.013 0.00 + OH- 8.202e-11 7.941e-11 -10.086 -10.100 -0.014 -3.89 H2O 5.551e+01 9.833e-01 1.744 -0.007 0.000 18.17 -C(-4) 1.000e-20 - CH4 1.000e-20 1.000e-20 -20.000 -20.000 0.000 37.38 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -105.271 -105.271 0.000 37.38 C(4) 1.013e+00 CO2 9.448e-01 9.449e-01 -0.025 -0.025 0.000 35.58 (CO2)2 3.351e-02 3.352e-02 -1.475 -1.475 0.000 71.15 - HCO3- 7.455e-04 7.221e-04 -3.128 -3.141 -0.014 25.74 - CO3-2 8.242e-11 7.255e-11 -10.084 -10.139 -0.055 -2.38 -H(0) 5.526e-14 - H2 2.763e-14 2.763e-14 -13.559 -13.559 0.000 28.55 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.900 -57.900 0.000 31.75 + HCO3- 7.453e-04 7.219e-04 -3.128 -3.142 -0.014 25.86 + CO3-2 8.247e-11 7.259e-11 -10.084 -10.139 -0.055 -2.50 +H(0) 2.659e-35 + H2 1.330e-35 1.330e-35 -34.876 -34.876 0.000 28.55 +O(0) 1.088e-15 + O2 5.440e-16 5.441e-16 -15.264 -15.264 0.000 31.75 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 78 atm) - CH4(g) -16.99 -20.00 -3.01 CH4 + CH4(g) -102.26 -105.27 -3.01 CH4 CO2(g) 1.73 -0.02 -1.76 CO2 Pressure 77.6 atm, phi 0.693 - H2(g) -10.39 -13.56 -3.17 H2 + H2(g) -31.70 -34.88 -3.17 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.456 - O2(g) -54.83 -57.90 -3.07 O2 + O2(g) -12.19 -15.26 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3501,21 +3502,21 @@ H2O(g) -0.51 3.107e-01 0.407 1.774e-02 2.186e-02 4.119e-03 ----------------------------Description of solution---------------------------- pH = 3.131 Charge balance - pe = 1.992 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 389 + pe = 2.402 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 367 Density (g/cm³) = 1.00049 Volume (L) = 1.04551 - Viscosity (mPa s) = 0.54845 + Viscosity (mPa s) = 0.54846 Activity of water = 0.983 - Ionic strength (mol/kgw) = 7.627e-04 + Ionic strength (mol/kgw) = 7.626e-04 Mass of water (kg) = 9.996e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.055e+00 Temperature (°C) = 50.00 Pressure (atm) = 84.81 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 + Iterations = 43 Total H = 1.109687e+02 Total O = 5.759384e+01 @@ -3524,30 +3525,30 @@ H2O(g) -0.51 3.107e-01 0.407 1.774e-02 2.186e-02 4.119e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.627e-04 7.393e-04 -3.118 -3.131 -0.014 0.00 - OH- 8.061e-11 7.801e-11 -10.094 -10.108 -0.014 -3.90 + H+ 7.626e-04 7.391e-04 -3.118 -3.131 -0.014 0.00 + OH- 8.063e-11 7.803e-11 -10.094 -10.108 -0.014 -3.90 H2O 5.551e+01 9.827e-01 1.744 -0.008 0.000 18.17 -C(-4) 1.303e-20 - CH4 1.303e-20 1.303e-20 -19.885 -19.885 0.000 37.38 +C(-4) 6.907e-24 + CH4 6.907e-24 6.908e-24 -23.161 -23.161 0.000 37.38 C(4) 1.055e+00 CO2 9.820e-01 9.821e-01 -0.008 -0.008 0.000 35.57 (CO2)2 3.620e-02 3.621e-02 -1.441 -1.441 0.000 71.14 - HCO3- 7.627e-04 7.385e-04 -3.118 -3.132 -0.014 25.76 - CO3-2 8.312e-11 7.306e-11 -10.080 -10.136 -0.056 -2.31 -H(0) 5.816e-14 - H2 2.908e-14 2.909e-14 -13.536 -13.536 0.000 28.55 + HCO3- 7.626e-04 7.384e-04 -3.118 -3.132 -0.014 25.88 + CO3-2 8.319e-11 7.312e-11 -10.080 -10.136 -0.056 -2.44 +H(0) 8.826e-15 + H2 4.413e-15 4.414e-15 -14.355 -14.355 0.000 28.55 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.951 -57.951 0.000 31.74 + O2 0.000e+00 0.000e+00 -56.313 -56.313 0.000 31.74 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 85 atm) - CH4(g) -16.87 -19.89 -3.01 CH4 + CH4(g) -20.15 -23.16 -3.01 CH4 CO2(g) 1.75 -0.01 -1.76 CO2 Pressure 84.5 atm, phi 0.668 - H2(g) -10.36 -13.54 -3.18 H2 + H2(g) -11.18 -14.36 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.407 - O2(g) -54.88 -57.95 -3.07 O2 + O2(g) -53.24 -56.31 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3595,22 +3596,22 @@ H2O(g) -0.46 3.475e-01 0.365 2.186e-02 2.666e-02 4.799e-03 ----------------------------Description of solution---------------------------- - pH = 3.124 Charge balance - pe = 2.495 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 395 + pH = 3.125 Charge balance + pe = 12.650 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 372 Density (g/cm³) = 1.00098 Volume (L) = 1.04621 - Viscosity (mPa s) = 0.54857 + Viscosity (mPa s) = 0.54858 Activity of water = 0.982 - Ionic strength (mol/kgw) = 7.749e-04 + Ionic strength (mol/kgw) = 7.747e-04 Mass of water (kg) = 9.995e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.085e+00 Temperature (°C) = 50.00 Pressure (atm) = 90.49 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 + Iterations = 54 Total H = 1.109591e+02 Total O = 5.764790e+01 @@ -3619,30 +3620,30 @@ H2O(g) -0.46 3.475e-01 0.365 2.186e-02 2.666e-02 4.799e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.749e-04 7.509e-04 -3.111 -3.124 -0.014 0.00 - OH- 7.972e-11 7.713e-11 -10.098 -10.113 -0.014 -3.90 + H+ 7.747e-04 7.507e-04 -3.111 -3.125 -0.014 0.00 + OH- 7.974e-11 7.715e-11 -10.098 -10.113 -0.014 -3.90 H2O 5.551e+01 9.822e-01 1.744 -0.008 0.000 18.16 -C(-4) 1.431e-24 - CH4 1.431e-24 1.431e-24 -23.844 -23.844 0.000 37.38 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -105.082 -105.082 0.000 37.38 C(4) 1.085e+00 CO2 1.008e+00 1.008e+00 0.003 0.003 0.000 35.56 (CO2)2 3.812e-02 3.813e-02 -1.419 -1.419 0.000 71.12 - HCO3- 7.749e-04 7.502e-04 -3.111 -3.125 -0.014 25.77 - CO3-2 8.369e-11 7.349e-11 -10.077 -10.134 -0.056 -2.26 -H(0) 5.891e-15 - H2 2.945e-15 2.946e-15 -14.531 -14.531 0.000 28.54 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -55.967 -55.967 0.000 31.72 + HCO3- 7.747e-04 7.500e-04 -3.111 -3.125 -0.014 25.90 + CO3-2 8.376e-11 7.356e-11 -10.077 -10.133 -0.056 -2.39 +H(0) 2.889e-35 + H2 1.445e-35 1.445e-35 -34.840 -34.840 0.000 28.54 +O(0) 8.968e-16 + O2 4.484e-16 4.485e-16 -15.348 -15.348 0.000 31.72 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 90 atm) - CH4(g) -20.83 -23.84 -3.01 CH4 + CH4(g) -102.07 -105.08 -3.01 CH4 CO2(g) 1.77 0.00 -1.76 CO2 Pressure 90.1 atm, phi 0.648 - H2(g) -11.35 -14.53 -3.18 H2 + H2(g) -31.66 -34.84 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.365 - O2(g) -52.89 -55.97 -3.08 O2 + O2(g) -12.27 -15.35 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3690,22 +3691,22 @@ H2O(g) -0.41 3.869e-01 0.329 2.666e-02 3.217e-02 5.510e-03 ----------------------------Description of solution---------------------------- - pH = 3.119 Charge balance - pe = 12.633 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 399 + pH = 3.120 Charge balance + pe = 12.901 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 376 Density (g/cm³) = 1.00135 Volume (L) = 1.04665 - Viscosity (mPa s) = 0.54867 + Viscosity (mPa s) = 0.54868 Activity of water = 0.982 - Ionic strength (mol/kgw) = 7.840e-04 + Ionic strength (mol/kgw) = 7.838e-04 Mass of water (kg) = 9.994e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.106e+00 Temperature (°C) = 50.00 Pressure (atm) = 95.32 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 45 + Iterations = 34 Total H = 1.109481e+02 Total O = 5.768491e+01 @@ -3714,30 +3715,30 @@ H2O(g) -0.41 3.869e-01 0.329 2.666e-02 3.217e-02 5.510e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.840e-04 7.596e-04 -3.106 -3.119 -0.014 0.00 - OH- 7.912e-11 7.653e-11 -10.102 -10.116 -0.014 -3.91 + H+ 7.838e-04 7.594e-04 -3.106 -3.120 -0.014 0.00 + OH- 7.914e-11 7.655e-11 -10.102 -10.116 -0.014 -3.91 H2O 5.551e+01 9.819e-01 1.744 -0.008 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -104.901 -104.901 0.000 37.39 + CH4 0.000e+00 0.000e+00 -107.050 -107.050 0.000 37.39 C(4) 1.106e+00 CO2 1.026e+00 1.026e+00 0.011 0.011 0.000 35.56 (CO2)2 3.954e-02 3.955e-02 -1.403 -1.403 0.000 71.11 - HCO3- 7.840e-04 7.588e-04 -3.106 -3.120 -0.014 25.77 - CO3-2 8.416e-11 7.386e-11 -10.075 -10.132 -0.057 -2.21 -H(0) 3.180e-35 - H2 1.590e-35 1.590e-35 -34.799 -34.799 0.000 28.54 -O(0) 7.327e-16 - O2 3.664e-16 3.664e-16 -15.436 -15.436 0.000 31.71 + HCO3- 7.838e-04 7.586e-04 -3.106 -3.120 -0.014 25.92 + CO3-2 8.424e-11 7.393e-11 -10.074 -10.131 -0.057 -2.34 +H(0) 9.229e-36 + H2 4.615e-36 4.615e-36 -35.336 -35.336 0.000 28.54 +O(0) 8.699e-15 + O2 4.350e-15 4.351e-15 -14.362 -14.361 0.000 31.71 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 95 atm) - CH4(g) -101.88 -104.90 -3.02 CH4 + CH4(g) -104.03 -107.05 -3.02 CH4 CO2(g) 1.78 0.01 -1.77 CO2 Pressure 94.9 atm, phi 0.630 - H2(g) -31.62 -34.80 -3.18 H2 + H2(g) -32.16 -35.34 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.4 atm, phi 0.329 - O2(g) -12.36 -15.44 -3.08 O2 + O2(g) -11.28 -14.36 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3785,22 +3786,22 @@ H2O(g) -0.37 4.298e-01 0.297 3.217e-02 3.841e-02 6.243e-03 ----------------------------Description of solution---------------------------- - pH = 3.115 Charge balance - pe = 12.589 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 403 + pH = 3.116 Charge balance + pe = 12.991 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 379 Density (g/cm³) = 1.00168 Volume (L) = 1.04693 Viscosity (mPa s) = 0.54877 Activity of water = 0.982 - Ionic strength (mol/kgw) = 7.913e-04 + Ionic strength (mol/kgw) = 7.911e-04 Mass of water (kg) = 9.993e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.123e+00 Temperature (°C) = 50.00 Pressure (atm) = 99.75 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 38 + Iterations = 34 Total H = 1.109356e+02 Total O = 5.771184e+01 @@ -3809,30 +3810,30 @@ H2O(g) -0.37 4.298e-01 0.297 3.217e-02 3.841e-02 6.243e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.913e-04 7.666e-04 -3.102 -3.115 -0.014 0.00 - OH- 7.867e-11 7.609e-11 -10.104 -10.119 -0.014 -3.91 + H+ 7.911e-04 7.664e-04 -3.102 -3.116 -0.014 0.00 + OH- 7.869e-11 7.611e-11 -10.104 -10.119 -0.014 -3.91 H2O 5.551e+01 9.816e-01 1.744 -0.008 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -104.514 -104.514 0.000 37.39 + CH4 0.000e+00 0.000e+00 -107.730 -107.730 0.000 37.39 C(4) 1.123e+00 CO2 1.041e+00 1.041e+00 0.017 0.017 0.000 35.55 (CO2)2 4.066e-02 4.067e-02 -1.391 -1.391 0.000 71.10 - HCO3- 7.913e-04 7.658e-04 -3.102 -3.116 -0.014 25.78 - CO3-2 8.459e-11 7.419e-11 -10.073 -10.130 -0.057 -2.16 -H(0) 3.946e-35 - H2 1.973e-35 1.973e-35 -34.705 -34.705 0.000 28.54 -O(0) 4.714e-16 - O2 2.357e-16 2.358e-16 -15.628 -15.628 0.000 31.70 + HCO3- 7.911e-04 7.656e-04 -3.102 -3.116 -0.014 25.94 + CO3-2 8.468e-11 7.427e-11 -10.072 -10.129 -0.057 -2.30 +H(0) 6.199e-36 + H2 3.100e-36 3.100e-36 -35.509 -35.509 0.000 28.54 +O(0) 1.910e-14 + O2 9.552e-15 9.553e-15 -14.020 -14.020 0.000 31.70 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 100 atm) - CH4(g) -101.49 -104.51 -3.02 CH4 + CH4(g) -104.71 -107.73 -3.02 CH4 CO2(g) 1.79 0.02 -1.77 CO2 Pressure 99.3 atm, phi 0.615 - H2(g) -31.52 -34.70 -3.18 H2 + H2(g) -32.33 -35.51 -3.18 H2 H2O(g) -0.89 -0.01 0.89 H2O Pressure 0.4 atm, phi 0.297 - O2(g) -12.55 -15.63 -3.08 O2 + O2(g) -10.94 -14.02 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3881,13 +3882,13 @@ H2O(g) -0.32 4.775e-01 0.268 3.841e-02 4.540e-02 6.987e-03 ----------------------------Description of solution---------------------------- pH = 3.112 Charge balance - pe = 2.168 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 406 + pe = 12.971 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 382 Density (g/cm³) = 1.00199 Volume (L) = 1.04712 - Viscosity (mPa s) = 0.54886 + Viscosity (mPa s) = 0.54887 Activity of water = 0.981 - Ionic strength (mol/kgw) = 7.979e-04 + Ionic strength (mol/kgw) = 7.977e-04 Mass of water (kg) = 9.992e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.137e+00 @@ -3895,7 +3896,7 @@ H2O(g) -0.32 4.775e-01 0.268 3.841e-02 4.540e-02 6.987e-03 Pressure (atm) = 104.21 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 42 + Iterations = 34 Total H = 1.109216e+02 Total O = 5.773357e+01 @@ -3904,30 +3905,30 @@ H2O(g) -0.32 4.775e-01 0.268 3.841e-02 4.540e-02 6.987e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.979e-04 7.729e-04 -3.098 -3.112 -0.014 0.00 - OH- 7.831e-11 7.573e-11 -10.106 -10.121 -0.015 -3.92 + H+ 7.977e-04 7.726e-04 -3.098 -3.112 -0.014 0.00 + OH- 7.834e-11 7.576e-11 -10.106 -10.121 -0.015 -3.92 H2O 5.551e+01 9.814e-01 1.744 -0.008 0.000 18.15 -C(-4) 7.726e-22 - CH4 7.726e-22 7.728e-22 -21.112 -21.112 0.000 37.39 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -107.544 -107.544 0.000 37.39 C(4) 1.137e+00 CO2 1.053e+00 1.053e+00 0.023 0.023 0.000 35.55 (CO2)2 4.165e-02 4.166e-02 -1.380 -1.380 0.000 71.09 - HCO3- 7.979e-04 7.721e-04 -3.098 -3.112 -0.014 25.79 - CO3-2 8.501e-11 7.453e-11 -10.071 -10.128 -0.057 -2.12 -H(0) 2.780e-14 - H2 1.390e-14 1.390e-14 -13.857 -13.857 0.000 28.54 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.327 -57.327 0.000 31.69 + HCO3- 7.977e-04 7.718e-04 -3.098 -3.112 -0.014 25.96 + CO3-2 8.511e-11 7.462e-11 -10.070 -10.127 -0.057 -2.26 +H(0) 6.854e-36 + H2 3.427e-36 3.428e-36 -35.465 -35.465 0.000 28.54 +O(0) 1.548e-14 + O2 7.742e-15 7.744e-15 -14.111 -14.111 0.000 31.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 104 atm) - CH4(g) -18.09 -21.11 -3.02 CH4 + CH4(g) -104.52 -107.54 -3.02 CH4 CO2(g) 1.79 0.02 -1.77 CO2 Pressure 103.7 atm, phi 0.599 - H2(g) -10.67 -13.86 -3.18 H2 + H2(g) -32.28 -35.47 -3.18 H2 H2O(g) -0.89 -0.01 0.89 H2O Pressure 0.5 atm, phi 0.268 - O2(g) -54.24 -57.33 -3.08 O2 + O2(g) -11.03 -14.11 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3975,14 +3976,14 @@ H2O(g) -0.27 5.320e-01 0.241 4.540e-02 5.313e-02 7.732e-03 ----------------------------Description of solution---------------------------- - pH = 3.108 Charge balance - pe = 2.138 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 409 + pH = 3.109 Charge balance + pe = 12.832 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 385 Density (g/cm³) = 1.00231 Volume (L) = 1.04725 Viscosity (mPa s) = 0.54897 Activity of water = 0.981 - Ionic strength (mol/kgw) = 8.045e-04 + Ionic strength (mol/kgw) = 8.043e-04 Mass of water (kg) = 9.990e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.151e+00 @@ -3990,7 +3991,7 @@ H2O(g) -0.27 5.320e-01 0.241 4.540e-02 5.313e-02 7.732e-03 Pressure (atm) = 109.16 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 33 + Iterations = 37 Total H = 1.109062e+02 Total O = 5.775348e+01 @@ -3999,30 +4000,30 @@ H2O(g) -0.27 5.320e-01 0.241 4.540e-02 5.313e-02 7.732e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.045e-04 7.792e-04 -3.094 -3.108 -0.014 0.00 - OH- 7.799e-11 7.541e-11 -10.108 -10.123 -0.015 -3.92 + H+ 8.043e-04 7.789e-04 -3.095 -3.109 -0.014 0.00 + OH- 7.802e-11 7.544e-11 -10.108 -10.122 -0.015 -3.92 H2O 5.551e+01 9.811e-01 1.744 -0.008 0.000 18.15 -C(-4) 1.432e-21 - CH4 1.432e-21 1.433e-21 -20.844 -20.844 0.000 37.39 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -106.401 -106.401 0.000 37.39 C(4) 1.151e+00 CO2 1.065e+00 1.065e+00 0.027 0.028 0.000 35.54 (CO2)2 4.261e-02 4.262e-02 -1.371 -1.370 0.000 71.08 - HCO3- 8.045e-04 7.784e-04 -3.094 -3.109 -0.014 25.80 - CO3-2 8.549e-11 7.491e-11 -10.068 -10.125 -0.057 -2.07 -H(0) 3.223e-14 - H2 1.611e-14 1.612e-14 -13.793 -13.793 0.000 28.54 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.460 -57.460 0.000 31.68 + HCO3- 8.043e-04 7.781e-04 -3.095 -3.109 -0.014 25.97 + CO3-2 8.560e-11 7.500e-11 -10.068 -10.125 -0.057 -2.22 +H(0) 1.315e-35 + H2 6.574e-36 6.575e-36 -35.182 -35.182 0.000 28.54 +O(0) 4.165e-15 + O2 2.083e-15 2.083e-15 -14.681 -14.681 0.000 31.68 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 109 atm) - CH4(g) -17.82 -20.84 -3.03 CH4 + CH4(g) -103.38 -106.40 -3.03 CH4 CO2(g) 1.80 0.03 -1.77 CO2 Pressure 108.6 atm, phi 0.583 - H2(g) -10.61 -13.79 -3.19 H2 + H2(g) -32.00 -35.18 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.5 atm, phi 0.241 - O2(g) -54.37 -57.46 -3.09 O2 + O2(g) -11.60 -14.68 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4070,22 +4071,22 @@ H2O(g) -0.22 5.960e-01 0.216 5.313e-02 6.160e-02 8.464e-03 ----------------------------Description of solution---------------------------- - pH = 3.104 Charge balance - pe = 2.119 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 413 + pH = 3.105 Charge balance + pe = 12.852 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 388 Density (g/cm³) = 1.00268 Volume (L) = 1.04734 - Viscosity (mPa s) = 0.54909 + Viscosity (mPa s) = 0.54910 Activity of water = 0.981 - Ionic strength (mol/kgw) = 8.118e-04 + Ionic strength (mol/kgw) = 8.115e-04 Mass of water (kg) = 9.989e-01 - Total alkalinity (eq/kg) = 1.221e-09 + Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.166e+00 Temperature (°C) = 50.00 Pressure (atm) = 115.10 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 + Iterations = 29 Total H = 1.108892e+02 Total O = 5.777398e+01 @@ -4094,30 +4095,30 @@ H2O(g) -0.22 5.960e-01 0.216 5.313e-02 6.160e-02 8.464e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.118e-04 7.861e-04 -3.091 -3.104 -0.014 0.00 - OH- 7.768e-11 7.510e-11 -10.110 -10.124 -0.015 -3.93 + H+ 8.115e-04 7.858e-04 -3.091 -3.105 -0.014 0.00 + OH- 7.771e-11 7.513e-11 -10.110 -10.124 -0.015 -3.93 H2O 5.551e+01 9.809e-01 1.744 -0.008 0.000 18.14 -C(-4) 2.169e-21 - CH4 2.169e-21 2.169e-21 -20.664 -20.664 0.000 37.40 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -106.526 -106.526 0.000 37.40 C(4) 1.166e+00 CO2 1.078e+00 1.078e+00 0.033 0.033 0.000 35.54 (CO2)2 4.362e-02 4.363e-02 -1.360 -1.360 0.000 71.07 - HCO3- 8.118e-04 7.853e-04 -3.091 -3.105 -0.014 25.81 - CO3-2 8.605e-11 7.536e-11 -10.065 -10.123 -0.058 -2.01 -H(0) 3.549e-14 - H2 1.774e-14 1.775e-14 -13.751 -13.751 0.000 28.53 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.549 -57.549 0.000 31.67 + HCO3- 8.115e-04 7.850e-04 -3.091 -3.105 -0.014 25.99 + CO3-2 8.617e-11 7.547e-11 -10.065 -10.122 -0.058 -2.16 +H(0) 1.215e-35 + H2 6.074e-36 6.075e-36 -35.217 -35.216 0.000 28.53 +O(0) 4.819e-15 + O2 2.410e-15 2.410e-15 -14.618 -14.618 0.000 31.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 115 atm) - CH4(g) -17.63 -20.66 -3.03 CH4 + CH4(g) -103.50 -106.53 -3.03 CH4 CO2(g) 1.81 0.03 -1.78 CO2 Pressure 114.5 atm, phi 0.564 - H2(g) -10.56 -13.75 -3.19 H2 + H2(g) -32.03 -35.22 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.6 atm, phi 0.216 - O2(g) -54.46 -57.55 -3.09 O2 + O2(g) -11.53 -14.62 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4166,19 +4167,19 @@ H2O(g) -0.17 6.730e-01 0.192 6.160e-02 7.077e-02 9.169e-03 ----------------------------Description of solution---------------------------- pH = 3.100 Charge balance - pe = 2.015 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 417 + pe = 12.941 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 391 Density (g/cm³) = 1.00313 Volume (L) = 1.04741 - Viscosity (mPa s) = 0.54925 + Viscosity (mPa s) = 0.54926 Activity of water = 0.981 - Ionic strength (mol/kgw) = 8.202e-04 + Ionic strength (mol/kgw) = 8.198e-04 Mass of water (kg) = 9.987e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.182e+00 Temperature (°C) = 50.00 Pressure (atm) = 122.58 - Electrical balance (eq) = -1.219e-09 + Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 Total H = 1.108709e+02 @@ -4189,30 +4190,30 @@ H2O(g) -0.17 6.730e-01 0.192 6.160e-02 7.077e-02 9.169e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.202e-04 7.942e-04 -3.086 -3.100 -0.014 0.00 - OH- 7.736e-11 7.479e-11 -10.111 -10.126 -0.015 -3.93 + H+ 8.198e-04 7.938e-04 -3.086 -3.100 -0.014 0.00 + OH- 7.740e-11 7.482e-11 -10.111 -10.126 -0.015 -3.93 H2O 5.551e+01 9.806e-01 1.744 -0.008 0.000 18.14 -C(-4) 1.613e-20 - CH4 1.613e-20 1.613e-20 -19.792 -19.792 0.000 37.40 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -107.201 -107.201 0.000 37.40 C(4) 1.182e+00 CO2 1.092e+00 1.092e+00 0.038 0.038 0.000 35.53 (CO2)2 4.476e-02 4.477e-02 -1.349 -1.349 0.000 71.05 - HCO3- 8.202e-04 7.933e-04 -3.086 -3.101 -0.014 25.82 - CO3-2 8.675e-11 7.593e-11 -10.062 -10.120 -0.058 -1.94 -H(0) 5.809e-14 - H2 2.905e-14 2.905e-14 -13.537 -13.537 0.000 28.53 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.984 -57.984 0.000 31.65 + HCO3- 8.198e-04 7.930e-04 -3.086 -3.101 -0.014 26.02 + CO3-2 8.689e-11 7.606e-11 -10.061 -10.119 -0.058 -2.10 +H(0) 8.166e-36 + H2 4.083e-36 4.084e-36 -35.389 -35.389 0.000 28.53 +O(0) 1.051e-14 + O2 5.253e-15 5.254e-15 -14.280 -14.280 0.000 31.65 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 123 atm) - CH4(g) -16.76 -19.79 -3.03 CH4 + CH4(g) -104.17 -107.20 -3.03 CH4 CO2(g) 1.82 0.04 -1.78 CO2 Pressure 121.9 atm, phi 0.542 - H2(g) -10.34 -13.54 -3.19 H2 + H2(g) -32.20 -35.39 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.7 atm, phi 0.192 - O2(g) -54.89 -57.98 -3.09 O2 + O2(g) -11.19 -14.28 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4261,19 +4262,19 @@ H2O(g) -0.12 7.673e-01 0.170 7.077e-02 8.060e-02 9.828e-03 ----------------------------Description of solution---------------------------- pH = 3.095 Charge balance - pe = 1.945 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 422 + pe = 13.004 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 396 Density (g/cm³) = 1.00368 Volume (L) = 1.04745 Viscosity (mPa s) = 0.54946 Activity of water = 0.980 - Ionic strength (mol/kgw) = 8.302e-04 + Ionic strength (mol/kgw) = 8.298e-04 Mass of water (kg) = 9.985e-01 - Total alkalinity (eq/kg) = 1.221e-09 + Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.201e+00 Temperature (°C) = 50.00 Pressure (atm) = 132.16 - Electrical balance (eq) = -1.219e-09 + Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 22 Total H = 1.108512e+02 @@ -4284,30 +4285,30 @@ H2O(g) -0.12 7.673e-01 0.170 7.077e-02 8.060e-02 9.828e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.302e-04 8.037e-04 -3.081 -3.095 -0.014 0.00 - OH- 7.705e-11 7.447e-11 -10.113 -10.128 -0.015 -3.94 + H+ 8.298e-04 8.033e-04 -3.081 -3.095 -0.014 0.00 + OH- 7.709e-11 7.451e-11 -10.113 -10.128 -0.015 -3.94 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.13 -C(-4) 6.483e-20 - CH4 6.483e-20 6.484e-20 -19.188 -19.188 0.000 37.41 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -107.663 -107.662 0.000 37.41 C(4) 1.201e+00 CO2 1.108e+00 1.108e+00 0.044 0.044 0.000 35.52 (CO2)2 4.606e-02 4.607e-02 -1.337 -1.337 0.000 71.03 - HCO3- 8.302e-04 8.029e-04 -3.081 -3.095 -0.015 25.84 - CO3-2 8.766e-11 7.667e-11 -10.057 -10.115 -0.058 -1.85 -H(0) 8.139e-14 - H2 4.070e-14 4.070e-14 -13.390 -13.390 0.000 28.53 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -58.285 -58.285 0.000 31.63 + HCO3- 8.298e-04 8.024e-04 -3.081 -3.096 -0.015 26.06 + CO3-2 8.782e-11 7.681e-11 -10.056 -10.115 -0.058 -2.01 +H(0) 6.194e-36 + H2 3.097e-36 3.098e-36 -35.509 -35.509 0.000 28.53 +O(0) 1.790e-14 + O2 8.951e-15 8.953e-15 -14.048 -14.048 0.000 31.63 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 132 atm) - CH4(g) -16.15 -19.19 -3.04 CH4 + CH4(g) -104.62 -107.66 -3.04 CH4 CO2(g) 1.83 0.04 -1.79 CO2 Pressure 131.4 atm, phi 0.516 - H2(g) -10.19 -13.39 -3.20 H2 + H2(g) -32.31 -35.51 -3.20 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.8 atm, phi 0.170 - O2(g) -55.19 -58.29 -3.10 O2 + O2(g) -10.95 -14.05 -3.10 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4356,19 +4357,19 @@ H2O(g) -0.05 8.845e-01 0.148 8.060e-02 9.102e-02 1.042e-02 ----------------------------Description of solution---------------------------- pH = 3.089 Charge balance - pe = 1.987 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 428 + pe = 13.053 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 401 Density (g/cm³) = 1.00438 - Volume (L) = 1.04744 + Volume (L) = 1.04745 Viscosity (mPa s) = 0.54972 Activity of water = 0.980 - Ionic strength (mol/kgw) = 8.423e-04 + Ionic strength (mol/kgw) = 8.417e-04 Mass of water (kg) = 9.983e-01 - Total alkalinity (eq/kg) = 1.221e-09 + Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.221e+00 Temperature (°C) = 50.00 Pressure (atm) = 144.52 - Electrical balance (eq) = -1.219e-09 + Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 44 Total H = 1.108304e+02 @@ -4379,30 +4380,30 @@ H2O(g) -0.05 8.845e-01 0.148 8.060e-02 9.102e-02 1.042e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.423e-04 8.152e-04 -3.075 -3.089 -0.014 0.00 - OH- 7.674e-11 7.415e-11 -10.115 -10.130 -0.015 -3.96 + H+ 8.417e-04 8.147e-04 -3.075 -3.089 -0.014 0.00 + OH- 7.679e-11 7.420e-11 -10.115 -10.130 -0.015 -3.96 H2O 5.551e+01 9.800e-01 1.744 -0.009 0.000 18.12 -C(-4) 3.329e-20 - CH4 3.329e-20 3.330e-20 -19.478 -19.478 0.000 37.41 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -108.005 -108.005 0.000 37.41 C(4) 1.221e+00 CO2 1.125e+00 1.126e+00 0.051 0.051 0.000 35.50 (CO2)2 4.756e-02 4.757e-02 -1.323 -1.323 0.000 71.01 - HCO3- 8.423e-04 8.144e-04 -3.075 -3.089 -0.015 25.86 - CO3-2 8.882e-11 7.762e-11 -10.051 -10.110 -0.059 -1.73 -H(0) 6.801e-14 - H2 3.401e-14 3.401e-14 -13.468 -13.468 0.000 28.52 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -58.140 -58.140 0.000 31.61 + HCO3- 8.417e-04 8.138e-04 -3.075 -3.089 -0.015 26.10 + CO3-2 8.902e-11 7.780e-11 -10.051 -10.109 -0.059 -1.91 +H(0) 5.019e-36 + H2 2.510e-36 2.510e-36 -35.600 -35.600 0.000 28.52 +O(0) 2.659e-14 + O2 1.330e-14 1.330e-14 -13.876 -13.876 0.000 31.61 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 145 atm) - CH4(g) -16.43 -19.48 -3.05 CH4 + CH4(g) -104.96 -108.01 -3.05 CH4 CO2(g) 1.85 0.05 -1.79 CO2 Pressure 143.6 atm, phi 0.488 - H2(g) -10.26 -13.47 -3.20 H2 + H2(g) -32.40 -35.60 -3.20 H2 H2O(g) -0.88 -0.01 0.87 H2O Pressure 0.9 atm, phi 0.148 - O2(g) -55.04 -58.14 -3.10 O2 + O2(g) -10.77 -13.88 -3.10 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4450,22 +4451,22 @@ H2O(g) 0.01 1.031e+00 0.129 9.102e-02 1.020e-01 1.094e-02 ----------------------------Description of solution---------------------------- - pH = 3.081 Charge balance - pe = 1.979 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 435 + pH = 3.082 Charge balance + pe = 12.930 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 408 Density (g/cm³) = 1.00524 Volume (L) = 1.04738 Viscosity (mPa s) = 0.55006 Activity of water = 0.980 - Ionic strength (mol/kgw) = 8.568e-04 + Ionic strength (mol/kgw) = 8.561e-04 Mass of water (kg) = 9.981e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.245e+00 Temperature (°C) = 50.00 Pressure (atm) = 160.38 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 42 + Iterations = 43 Total H = 1.108085e+02 Total O = 5.789024e+01 @@ -4474,30 +4475,30 @@ H2O(g) 0.01 1.031e+00 0.129 9.102e-02 1.020e-01 1.094e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.568e-04 8.291e-04 -3.067 -3.081 -0.014 0.00 - OH- 7.645e-11 7.385e-11 -10.117 -10.132 -0.015 -3.97 + H+ 8.561e-04 8.285e-04 -3.067 -3.082 -0.014 0.00 + OH- 7.651e-11 7.391e-11 -10.116 -10.131 -0.015 -3.97 H2O 5.551e+01 9.797e-01 1.744 -0.009 0.000 18.11 -C(-4) 4.372e-20 - CH4 4.372e-20 4.373e-20 -19.359 -19.359 0.000 37.42 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -106.970 -106.970 0.000 37.42 C(4) 1.245e+00 CO2 1.146e+00 1.146e+00 0.059 0.059 0.000 35.49 (CO2)2 4.929e-02 4.930e-02 -1.307 -1.307 0.000 70.97 - HCO3- 8.568e-04 8.282e-04 -3.067 -3.082 -0.015 25.88 - CO3-2 9.032e-11 7.885e-11 -10.044 -10.103 -0.059 -1.58 -H(0) 7.165e-14 - H2 3.582e-14 3.583e-14 -13.446 -13.446 0.000 28.51 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -58.199 -58.199 0.000 31.58 + HCO3- 8.561e-04 8.276e-04 -3.067 -3.082 -0.015 26.16 + CO3-2 9.056e-11 7.907e-11 -10.043 -10.102 -0.059 -1.77 +H(0) 8.964e-36 + H2 4.482e-36 4.483e-36 -35.349 -35.348 0.000 28.51 +O(0) 8.076e-15 + O2 4.038e-15 4.039e-15 -14.394 -14.394 0.000 31.58 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 160 atm) - CH4(g) -16.30 -19.36 -3.06 CH4 + CH4(g) -103.91 -106.97 -3.06 CH4 CO2(g) 1.86 0.06 -1.80 CO2 Pressure 159.3 atm, phi 0.457 - H2(g) -10.23 -13.45 -3.21 H2 + H2(g) -32.14 -35.35 -3.21 H2 H2O(g) -0.88 -0.01 0.87 H2O Pressure 1.0 atm, phi 0.129 - O2(g) -55.09 -58.20 -3.11 O2 + O2(g) -11.28 -14.39 -3.11 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4546,21 +4547,21 @@ H2O(g) 0.08 1.215e+00 0.111 1.020e-01 1.133e-01 1.134e-02 ----------------------------Description of solution---------------------------- pH = 3.073 Charge balance - pe = 1.992 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 444 + pe = 12.959 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 416 Density (g/cm³) = 1.00631 Volume (L) = 1.04724 - Viscosity (mPa s) = 0.55050 + Viscosity (mPa s) = 0.55049 Activity of water = 0.979 - Ionic strength (mol/kgw) = 8.744e-04 + Ionic strength (mol/kgw) = 8.735e-04 Mass of water (kg) = 9.979e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.272e+00 Temperature (°C) = 50.00 Pressure (atm) = 180.60 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 55 + Iterations = 56 Total H = 1.107858e+02 Total O = 5.793238e+01 @@ -4569,30 +4570,30 @@ H2O(g) 0.08 1.215e+00 0.111 1.020e-01 1.133e-01 1.134e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.744e-04 8.460e-04 -3.058 -3.073 -0.014 0.00 - OH- 7.619e-11 7.358e-11 -10.118 -10.133 -0.015 -3.99 + H+ 8.735e-04 8.451e-04 -3.059 -3.073 -0.014 0.00 + OH- 7.627e-11 7.366e-11 -10.118 -10.133 -0.015 -3.99 H2O 5.551e+01 9.792e-01 1.744 -0.009 0.000 18.09 -C(-4) 4.061e-20 - CH4 4.061e-20 4.062e-20 -19.391 -19.391 0.000 37.43 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -107.134 -107.134 0.000 37.43 C(4) 1.272e+00 CO2 1.169e+00 1.169e+00 0.068 0.068 0.000 35.47 (CO2)2 5.130e-02 5.131e-02 -1.290 -1.290 0.000 70.93 - HCO3- 8.744e-04 8.450e-04 -3.058 -3.073 -0.015 25.92 - CO3-2 9.224e-11 8.043e-11 -10.035 -10.095 -0.059 -1.39 -H(0) 6.898e-14 - H2 3.449e-14 3.449e-14 -13.462 -13.462 0.000 28.51 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -58.184 -58.184 0.000 31.53 + HCO3- 8.735e-04 8.441e-04 -3.059 -3.074 -0.015 26.23 + CO3-2 9.255e-11 8.072e-11 -10.034 -10.093 -0.059 -1.59 +H(0) 7.998e-36 + H2 3.999e-36 4.000e-36 -35.398 -35.398 0.000 28.51 +O(0) 9.740e-15 + O2 4.870e-15 4.871e-15 -14.312 -14.312 0.000 31.53 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 181 atm) - CH4(g) -16.32 -19.39 -3.07 CH4 + CH4(g) -104.06 -107.13 -3.07 CH4 CO2(g) 1.88 0.07 -1.82 CO2 Pressure 179.4 atm, phi 0.426 - H2(g) -10.24 -13.46 -3.22 H2 + H2(g) -32.18 -35.40 -3.22 H2 H2O(g) -0.87 -0.01 0.86 H2O Pressure 1.2 atm, phi 0.111 - O2(g) -55.06 -58.18 -3.12 O2 + O2(g) -11.19 -14.31 -3.12 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4640,54 +4641,54 @@ H2O(g) 0.16 1.445e+00 0.095 1.133e-01 1.249e-01 1.161e-02 ----------------------------Description of solution---------------------------- - pH = 3.062 Charge balance - pe = 2.109 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 454 + pH = 3.063 Charge balance + pe = 13.006 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 425 Density (g/cm³) = 1.00763 Volume (L) = 1.04697 - Viscosity (mPa s) = 0.55105 + Viscosity (mPa s) = 0.55104 Activity of water = 0.979 - Ionic strength (mol/kgw) = 8.957e-04 + Ionic strength (mol/kgw) = 8.944e-04 Mass of water (kg) = 9.977e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.303e+00 Temperature (°C) = 50.00 Pressure (atm) = 206.19 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 65 Total H = 1.107626e+02 - Total O = 5.798100e+01 + Total O = 5.798099e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.957e-04 8.662e-04 -3.048 -3.062 -0.015 0.00 - OH- 7.600e-11 7.337e-11 -10.119 -10.134 -0.015 -4.02 + H+ 8.944e-04 8.650e-04 -3.048 -3.063 -0.015 0.00 + OH- 7.611e-11 7.347e-11 -10.119 -10.134 -0.015 -4.02 H2O 5.551e+01 9.787e-01 1.744 -0.009 0.000 18.07 -C(-4) 5.623e-21 - CH4 5.623e-21 5.624e-21 -20.250 -20.250 0.000 37.44 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -107.434 -107.434 0.000 37.44 C(4) 1.303e+00 CO2 1.195e+00 1.195e+00 0.077 0.077 0.000 35.44 (CO2)2 5.359e-02 5.360e-02 -1.271 -1.271 0.000 70.88 - HCO3- 8.957e-04 8.653e-04 -3.048 -3.063 -0.015 25.96 - CO3-2 9.469e-11 8.246e-11 -10.024 -10.084 -0.060 -1.15 -H(0) 4.108e-14 - H2 2.054e-14 2.054e-14 -13.687 -13.687 0.000 28.49 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.756 -57.756 0.000 31.48 + HCO3- 8.944e-04 8.641e-04 -3.048 -3.063 -0.015 26.32 + CO3-2 9.511e-11 8.283e-11 -10.022 -10.082 -0.060 -1.38 +H(0) 6.572e-36 + H2 3.286e-36 3.287e-36 -35.483 -35.483 0.000 28.49 +O(0) 1.370e-14 + O2 6.852e-15 6.853e-15 -14.164 -14.164 0.000 31.48 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 206 atm) - CH4(g) -17.16 -20.25 -3.09 CH4 + CH4(g) -104.35 -107.43 -3.09 CH4 CO2(g) 1.91 0.08 -1.83 CO2 Pressure 204.7 atm, phi 0.394 - H2(g) -10.46 -13.69 -3.23 H2 + H2(g) -32.25 -35.48 -3.23 H2 H2O(g) -0.86 -0.01 0.86 H2O Pressure 1.4 atm, phi 0.095 - O2(g) -54.62 -57.76 -3.14 O2 + O2(g) -11.03 -14.16 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4735,22 +4736,22 @@ H2O(g) 0.24 1.731e+00 0.081 1.249e-01 1.366e-01 1.171e-02 ----------------------------Description of solution---------------------------- - pH = 3.050 Charge balance - pe = 2.269 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 466 + pH = 3.051 Charge balance + pe = 13.077 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 437 Density (g/cm³) = 1.00924 Volume (L) = 1.04656 - Viscosity (mPa s) = 0.55176 + Viscosity (mPa s) = 0.55174 Activity of water = 0.978 - Ionic strength (mol/kgw) = 9.213e-04 + Ionic strength (mol/kgw) = 9.196e-04 Mass of water (kg) = 9.975e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.337e+00 Temperature (°C) = 50.00 Pressure (atm) = 238.31 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 74 + Iterations = 75 Total H = 1.107392e+02 Total O = 5.803656e+01 @@ -4759,30 +4760,30 @@ H2O(g) 0.24 1.731e+00 0.081 1.249e-01 1.366e-01 1.171e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.213e-04 8.907e-04 -3.036 -3.050 -0.015 0.00 - OH- 7.591e-11 7.326e-11 -10.120 -10.135 -0.015 -4.04 + H+ 9.196e-04 8.890e-04 -3.036 -3.051 -0.015 0.00 + OH- 7.605e-11 7.339e-11 -10.119 -10.134 -0.015 -4.04 H2O 5.551e+01 9.782e-01 1.744 -0.010 0.000 18.05 -C(-4) 3.585e-22 - CH4 3.585e-22 3.586e-22 -21.445 -21.445 0.000 37.46 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -107.915 -107.915 0.000 37.46 C(4) 1.337e+00 CO2 1.223e+00 1.224e+00 0.088 0.088 0.000 35.41 (CO2)2 5.620e-02 5.621e-02 -1.250 -1.250 0.000 70.81 - HCO3- 9.213e-04 8.897e-04 -3.036 -3.051 -0.015 26.01 - CO3-2 9.780e-11 8.502e-11 -10.010 -10.070 -0.061 -0.86 -H(0) 2.005e-14 - H2 1.003e-14 1.003e-14 -13.999 -13.999 0.000 28.48 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.161 -57.161 0.000 31.42 + HCO3- 9.196e-04 8.880e-04 -3.036 -3.052 -0.015 26.43 + CO3-2 9.837e-11 8.553e-11 -10.007 -10.068 -0.061 -1.11 +H(0) 4.838e-36 + H2 2.419e-36 2.419e-36 -35.616 -35.616 0.000 28.48 +O(0) 2.372e-14 + O2 1.186e-14 1.186e-14 -13.926 -13.926 0.000 31.42 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 238 atm) - CH4(g) -18.34 -21.45 -3.10 CH4 + CH4(g) -104.81 -107.92 -3.10 CH4 CO2(g) 1.94 0.09 -1.85 CO2 Pressure 236.6 atm, phi 0.365 - H2(g) -10.75 -14.00 -3.25 H2 + H2(g) -32.37 -35.62 -3.25 H2 H2O(g) -0.86 -0.01 0.85 H2O Pressure 1.7 atm, phi 0.081 - O2(g) -54.01 -57.16 -3.15 O2 + O2(g) -10.77 -13.93 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4830,20 +4831,20 @@ H2O(g) 0.32 2.086e+00 0.069 1.366e-01 1.482e-01 1.162e-02 ----------------------------Description of solution---------------------------- - pH = 3.036 Charge balance - pe = 2.093 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 481 + pH = 3.037 Charge balance + pe = 13.058 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 451 Density (g/cm³) = 1.01120 Volume (L) = 1.04594 - Viscosity (mPa s) = 0.55265 + Viscosity (mPa s) = 0.55262 Activity of water = 0.978 - Ionic strength (mol/kgw) = 9.522e-04 + Ionic strength (mol/kgw) = 9.498e-04 Mass of water (kg) = 9.973e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.374e+00 Temperature (°C) = 50.00 Pressure (atm) = 278.39 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 86 Total H = 1.107160e+02 @@ -4854,30 +4855,30 @@ H2O(g) 0.32 2.086e+00 0.069 1.366e-01 1.482e-01 1.162e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.522e-04 9.202e-04 -3.021 -3.036 -0.015 0.00 - OH- 7.597e-11 7.328e-11 -10.119 -10.135 -0.016 -4.08 + H+ 9.498e-04 9.178e-04 -3.022 -3.037 -0.015 0.00 + OH- 7.616e-11 7.346e-11 -10.118 -10.134 -0.016 -4.08 H2O 5.551e+01 9.776e-01 1.744 -0.010 0.000 18.02 -C(-4) 1.157e-20 - CH4 1.157e-20 1.158e-20 -19.936 -19.936 0.000 37.48 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -107.667 -107.667 0.000 37.48 C(4) 1.374e+00 CO2 1.255e+00 1.255e+00 0.099 0.099 0.000 35.37 (CO2)2 5.915e-02 5.916e-02 -1.228 -1.228 0.000 70.73 - HCO3- 9.522e-04 9.191e-04 -3.021 -3.037 -0.015 26.08 - CO3-2 1.017e-10 8.828e-11 -9.993 -10.054 -0.062 -0.51 -H(0) 4.614e-14 - H2 2.307e-14 2.308e-14 -13.637 -13.637 0.000 28.46 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.919 -57.919 0.000 31.34 + HCO3- 9.498e-04 9.167e-04 -3.022 -3.038 -0.015 26.56 + CO3-2 1.025e-10 8.898e-11 -9.989 -10.051 -0.062 -0.79 +H(0) 5.390e-36 + H2 2.695e-36 2.695e-36 -35.569 -35.569 0.000 28.46 +O(0) 1.765e-14 + O2 8.823e-15 8.825e-15 -14.054 -14.054 0.000 31.34 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 278 atm) - CH4(g) -16.81 -19.94 -3.13 CH4 + CH4(g) -104.54 -107.67 -3.13 CH4 CO2(g) 1.97 0.10 -1.87 CO2 Pressure 276.3 atm, phi 0.338 - H2(g) -10.37 -13.64 -3.27 H2 + H2(g) -32.30 -35.57 -3.27 H2 H2O(g) -0.84 -0.01 0.83 H2O Pressure 2.1 atm, phi 0.069 - O2(g) -54.75 -57.92 -3.17 O2 + O2(g) -10.88 -14.05 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4891,18 +4892,6 @@ WARNING: Numerical method failed with this set of convergence parameters. WARNING: Trying smaller step size, pe step size 10, 5 ... -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-14 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -4944,54 +4933,54 @@ H2O(g) 0.40 2.523e+00 0.059 1.482e-01 1.595e-01 1.130e-02 ----------------------------Description of solution---------------------------- - pH = 3.020 Charge balance - pe = 1.050 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 499 + pH = 3.021 Charge balance + pe = 14.519 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 467 Density (g/cm³) = 1.01357 Volume (L) = 1.04507 - Viscosity (mPa s) = 0.55377 + Viscosity (mPa s) = 0.55373 Activity of water = 0.977 - Ionic strength (mol/kgw) = 9.895e-04 + Ionic strength (mol/kgw) = 9.860e-04 Mass of water (kg) = 9.971e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.416e+00 Temperature (°C) = 50.00 Pressure (atm) = 328.12 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 39 (542 overall) + Iterations = 43 (144 overall) Total H = 1.106934e+02 - Total O = 5.816997e+01 + Total O = 5.816996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.895e-04 9.557e-04 -3.005 -3.020 -0.015 0.00 - OH- 7.624e-11 7.349e-11 -10.118 -10.134 -0.016 -4.12 + H+ 9.860e-04 9.524e-04 -3.006 -3.021 -0.015 0.00 + OH- 7.650e-11 7.375e-11 -10.116 -10.132 -0.016 -4.12 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 17.98 -C(-4) 3.320e-12 - CH4 3.320e-12 3.321e-12 -11.479 -11.479 0.000 37.50 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.243 -119.243 0.000 37.50 C(4) 1.416e+00 CO2 1.290e+00 1.290e+00 0.111 0.111 0.000 35.32 (CO2)2 6.246e-02 6.248e-02 -1.204 -1.204 0.000 70.63 - HCO3- 9.895e-04 9.545e-04 -3.005 -3.020 -0.016 26.15 - CO3-2 1.067e-10 9.238e-11 -9.972 -10.034 -0.063 -0.08 -H(0) 5.756e-12 - H2 2.878e-12 2.879e-12 -11.541 -11.541 0.000 28.45 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.154 -62.154 0.000 31.25 + HCO3- 9.860e-04 9.512e-04 -3.006 -3.022 -0.016 26.72 + CO3-2 1.078e-10 9.339e-11 -9.967 -10.030 -0.062 -0.39 +H(0) 6.592e-39 + H2 3.296e-39 3.297e-39 -38.482 -38.482 0.000 28.45 +O(0) 1.069e-08 + O2 5.344e-09 5.345e-09 -8.272 -8.272 0.000 31.25 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 328 atm) - CH4(g) -8.32 -11.48 -3.16 CH4 + CH4(g) -116.08 -119.24 -3.16 CH4 CO2(g) 2.01 0.11 -1.90 CO2 Pressure 325.6 atm, phi 0.315 - H2(g) -8.25 -11.54 -3.29 H2 + H2(g) -35.19 -38.48 -3.29 H2 H2O(g) -0.83 -0.01 0.82 H2O Pressure 2.5 atm, phi 0.059 - O2(g) -58.96 -62.15 -3.20 O2 + O2(g) -5.07 -8.27 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5046,22 +5035,22 @@ H2O(g) 0.48 3.055e+00 0.050 1.595e-01 1.702e-01 1.071e-02 ----------------------------Description of solution---------------------------- - pH = 3.001 Charge balance - pe = 1.065 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 520 + pH = 3.003 Charge balance + pe = 14.536 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 488 Density (g/cm³) = 1.01643 Volume (L) = 1.04387 - Viscosity (mPa s) = 0.55518 + Viscosity (mPa s) = 0.55513 Activity of water = 0.976 - Ionic strength (mol/kgw) = 1.035e-03 + Ionic strength (mol/kgw) = 1.030e-03 Mass of water (kg) = 9.969e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.461e+00 Temperature (°C) = 50.00 Pressure (atm) = 389.62 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 (137 overall) + Iterations = 35 (136 overall) Total H = 1.106719e+02 Total O = 5.824829e+01 @@ -5070,30 +5059,30 @@ H2O(g) 0.48 3.055e+00 0.050 1.595e-01 1.702e-01 1.071e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.035e-03 9.987e-04 -2.985 -3.001 -0.015 0.00 - OH- 7.679e-11 7.398e-11 -10.115 -10.131 -0.016 -4.17 + H+ 1.030e-03 9.938e-04 -2.987 -3.003 -0.015 0.00 + OH- 7.716e-11 7.434e-11 -10.113 -10.129 -0.016 -4.17 H2O 5.551e+01 9.763e-01 1.744 -0.010 0.000 17.94 -C(-4) 3.353e-12 - CH4 3.353e-12 3.354e-12 -11.475 -11.474 0.000 37.52 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.260 -119.260 0.000 37.52 C(4) 1.461e+00 CO2 1.327e+00 1.328e+00 0.123 0.123 0.000 35.26 (CO2)2 6.615e-02 6.616e-02 -1.179 -1.179 0.000 70.51 - HCO3- 1.035e-03 9.974e-04 -2.985 -3.001 -0.016 26.25 - CO3-2 1.130e-10 9.757e-11 -9.947 -10.011 -0.064 0.44 -H(0) 5.483e-12 - H2 2.741e-12 2.742e-12 -11.562 -11.562 0.000 28.42 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.165 -62.165 0.000 31.14 + HCO3- 1.030e-03 9.926e-04 -2.987 -3.003 -0.016 26.91 + CO3-2 1.147e-10 9.905e-11 -9.941 -10.004 -0.064 0.08 +H(0) 6.203e-39 + H2 3.102e-39 3.102e-39 -38.508 -38.508 0.000 28.42 +O(0) 1.069e-08 + O2 5.345e-09 5.346e-09 -8.272 -8.272 0.000 31.14 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 390 atm) - CH4(g) -8.28 -11.47 -3.20 CH4 + CH4(g) -116.06 -119.26 -3.20 CH4 CO2(g) 2.06 0.12 -1.94 CO2 Pressure 386.6 atm, phi 0.296 - H2(g) -8.24 -11.56 -3.32 H2 + H2(g) -35.19 -38.51 -3.32 H2 H2O(g) -0.81 -0.01 0.80 H2O Pressure 3.1 atm, phi 0.050 - O2(g) -58.94 -62.16 -3.23 O2 + O2(g) -5.04 -8.27 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5148,54 +5137,54 @@ H2O(g) 0.57 3.696e+00 0.044 1.702e-01 1.801e-01 9.820e-03 ----------------------------Description of solution---------------------------- - pH = 2.978 Charge balance - pe = 1.082 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 546 + pH = 2.981 Charge balance + pe = 14.556 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 512 Density (g/cm³) = 1.01986 Volume (L) = 1.04226 - Viscosity (mPa s) = 0.55696 + Viscosity (mPa s) = 0.55689 Activity of water = 0.976 - Ionic strength (mol/kgw) = 1.090e-03 + Ionic strength (mol/kgw) = 1.082e-03 Mass of water (kg) = 9.967e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.509e+00 Temperature (°C) = 50.00 Pressure (atm) = 465.50 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.106523e+02 - Total O = 5.833443e+01 + Total O = 5.833442e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.090e-03 1.051e-03 -2.963 -2.978 -0.016 0.00 - OH- 7.774e-11 7.483e-11 -10.109 -10.126 -0.017 -4.22 + H+ 1.082e-03 1.044e-03 -2.966 -2.981 -0.016 0.00 + OH- 7.827e-11 7.534e-11 -10.106 -10.123 -0.017 -4.22 H2O 5.551e+01 9.755e-01 1.744 -0.011 0.000 17.88 -C(-4) 3.393e-12 - CH4 3.393e-12 3.394e-12 -11.469 -11.469 0.000 37.55 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.283 -119.283 0.000 37.55 C(4) 1.509e+00 CO2 1.368e+00 1.368e+00 0.136 0.136 0.000 35.18 (CO2)2 7.022e-02 7.023e-02 -1.154 -1.153 0.000 70.37 - HCO3- 1.090e-03 1.050e-03 -2.963 -2.979 -0.016 26.36 - CO3-2 1.210e-10 1.041e-10 -9.917 -9.982 -0.065 1.04 -H(0) 5.171e-12 - H2 2.586e-12 2.586e-12 -11.587 -11.587 0.000 28.39 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.179 -62.179 0.000 31.01 + HCO3- 1.082e-03 1.042e-03 -2.966 -2.982 -0.016 27.14 + CO3-2 1.235e-10 1.063e-10 -9.909 -9.973 -0.065 0.64 +H(0) 5.756e-39 + H2 2.878e-39 2.879e-39 -38.541 -38.541 0.000 28.39 +O(0) 1.069e-08 + O2 5.346e-09 5.347e-09 -8.272 -8.272 0.000 31.01 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 466 atm) - CH4(g) -8.22 -11.47 -3.25 CH4 + CH4(g) -116.04 -119.28 -3.25 CH4 CO2(g) 2.11 0.14 -1.98 CO2 Pressure 461.8 atm, phi 0.282 - H2(g) -8.23 -11.59 -3.35 H2 + H2(g) -35.19 -38.54 -3.35 H2 H2O(g) -0.79 -0.01 0.78 H2O Pressure 3.7 atm, phi 0.044 - O2(g) -58.91 -62.18 -3.27 O2 + O2(g) -5.01 -8.27 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5230,7 +5219,7 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 559.08 atmospheres (Peng-Robinson calculation) +Total pressure: 559.09 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.23e-02 liters/mole P * Vm / RT: 0.89211 (Compressibility Factor Z) @@ -5240,7 +5229,7 @@ Total pressure: 559.08 atmospheres (Peng-Robinson calculation) Component log P P phi Initial Final Delta CO2(g) 2.74 5.546e+02 0.274 2.250e+01 2.344e+01 9.489e-01 -H2O(g) 0.65 4.462e+00 0.039 1.801e-01 1.886e-01 8.574e-03 +H2O(g) 0.65 4.463e+00 0.039 1.801e-01 1.886e-01 8.575e-03 -----------------------------Solution composition------------------------------ @@ -5250,54 +5239,54 @@ H2O(g) 0.65 4.462e+00 0.039 1.801e-01 1.886e-01 8.574e-03 ----------------------------Description of solution---------------------------- - pH = 2.953 Charge balance - pe = 1.102 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 578 - Density (g/cm³) = 1.02396 - Volume (L) = 1.04013 - Viscosity (mPa s) = 0.55922 + pH = 2.957 Charge balance + pe = 14.579 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 542 + Density (g/cm³) = 1.02395 + Volume (L) = 1.04014 + Viscosity (mPa s) = 0.55913 Activity of water = 0.975 - Ionic strength (mol/kgw) = 1.157e-03 + Ionic strength (mol/kgw) = 1.146e-03 Mass of water (kg) = 9.966e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.561e+00 Temperature (°C) = 50.00 - Pressure (atm) = 559.08 - Electrical balance (eq) = -1.213e-09 + Pressure (atm) = 559.09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.106352e+02 - Total O = 5.842815e+01 + Total O = 5.842814e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.157e-03 1.115e-03 -2.937 -2.953 -0.016 0.00 - OH- 7.922e-11 7.618e-11 -10.101 -10.118 -0.017 -4.28 + H+ 1.146e-03 1.104e-03 -2.941 -2.957 -0.016 0.00 + OH- 7.998e-11 7.693e-11 -10.097 -10.114 -0.017 -4.28 H2O 5.551e+01 9.747e-01 1.744 -0.011 0.000 17.82 -C(-4) 3.438e-12 - CH4 3.438e-12 3.439e-12 -11.464 -11.464 0.000 37.58 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.314 -119.314 0.000 37.58 C(4) 1.561e+00 CO2 1.410e+00 1.410e+00 0.149 0.149 0.000 35.10 (CO2)2 7.466e-02 7.468e-02 -1.127 -1.127 0.000 70.20 - HCO3- 1.157e-03 1.113e-03 -2.937 -2.953 -0.017 26.49 - CO3-2 1.311e-10 1.125e-10 -9.882 -9.949 -0.067 1.76 -H(0) 4.818e-12 - H2 2.409e-12 2.410e-12 -11.618 -11.618 0.000 28.36 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.197 -62.197 0.000 30.85 + HCO3- 1.146e-03 1.103e-03 -2.941 -2.958 -0.017 27.41 + CO3-2 1.349e-10 1.158e-10 -9.870 -9.936 -0.066 1.29 +H(0) 5.251e-39 + H2 2.626e-39 2.626e-39 -38.581 -38.581 0.000 28.36 +O(0) 1.069e-08 + O2 5.347e-09 5.348e-09 -8.272 -8.272 0.000 30.85 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 559 atm) - CH4(g) -8.16 -11.46 -3.30 CH4 + CH4(g) -116.01 -119.31 -3.30 CH4 CO2(g) 2.18 0.15 -2.03 CO2 Pressure 554.6 atm, phi 0.274 - H2(g) -8.22 -11.62 -3.40 H2 + H2(g) -35.19 -38.58 -3.40 H2 H2O(g) -0.76 -0.01 0.75 H2O Pressure 4.5 atm, phi 0.039 - O2(g) -58.88 -62.20 -3.31 O2 + O2(g) -4.96 -8.27 -3.31 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5352,54 +5341,54 @@ H2O(g) 0.73 5.366e+00 0.035 1.886e-01 1.956e-01 6.925e-03 ----------------------------Description of solution---------------------------- - pH = 2.923 Charge balance - pe = 1.124 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 616 + pH = 2.929 Charge balance + pe = 14.605 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 579 Density (g/cm³) = 1.02885 Volume (L) = 1.03737 - Viscosity (mPa s) = 0.56211 + Viscosity (mPa s) = 0.56199 Activity of water = 0.974 - Ionic strength (mol/kgw) = 1.240e-03 + Ionic strength (mol/kgw) = 1.223e-03 Mass of water (kg) = 9.965e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.615e+00 Temperature (°C) = 50.00 Pressure (atm) = 674.65 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.106213e+02 - Total O = 5.852889e+01 + Total O = 5.852887e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.240e-03 1.194e-03 -2.907 -2.923 -0.016 0.00 - OH- 8.146e-11 7.825e-11 -10.089 -10.107 -0.017 -4.35 + H+ 1.223e-03 1.178e-03 -2.913 -2.929 -0.016 0.00 + OH- 8.256e-11 7.933e-11 -10.083 -10.101 -0.017 -4.35 H2O 5.551e+01 9.739e-01 1.744 -0.011 0.000 17.74 -C(-4) 3.488e-12 - CH4 3.488e-12 3.489e-12 -11.457 -11.457 0.000 37.61 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.355 -119.355 0.000 37.61 C(4) 1.615e+00 CO2 1.455e+00 1.455e+00 0.163 0.163 0.000 35.00 (CO2)2 7.945e-02 7.947e-02 -1.100 -1.100 0.000 69.99 - HCO3- 1.240e-03 1.192e-03 -2.907 -2.924 -0.017 26.65 - CO3-2 1.441e-10 1.231e-10 -9.841 -9.910 -0.068 2.59 -H(0) 4.421e-12 - H2 2.211e-12 2.211e-12 -11.655 -11.655 0.000 28.33 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.221 -62.220 0.000 30.67 + HCO3- 1.223e-03 1.176e-03 -2.913 -2.930 -0.017 27.73 + CO3-2 1.500e-10 1.283e-10 -9.824 -9.892 -0.068 2.06 +H(0) 4.690e-39 + H2 2.345e-39 2.346e-39 -38.630 -38.630 0.000 28.33 +O(0) 1.069e-08 + O2 5.347e-09 5.349e-09 -8.272 -8.272 0.000 30.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 675 atm) - CH4(g) -8.08 -11.46 -3.37 CH4 + CH4(g) -115.98 -119.35 -3.37 CH4 CO2(g) 2.26 0.16 -2.10 CO2 Pressure 669.3 atm, phi 0.272 - H2(g) -8.21 -11.66 -3.45 H2 + H2(g) -35.18 -38.63 -3.45 H2 H2O(g) -0.73 -0.01 0.72 H2O Pressure 5.4 atm, phi 0.035 - O2(g) -58.85 -62.22 -3.37 O2 + O2(g) -4.90 -8.27 -3.37 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5434,7 +5423,7 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 817.85 atmospheres (Peng-Robinson calculation) +Total pressure: 817.86 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 3.92e-02 liters/mole P * Vm / RT: 1.20781 (Compressibility Factor Z) @@ -5443,7 +5432,7 @@ Total pressure: 817.85 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.91 8.114e+02 0.278 2.439e+01 2.534e+01 9.442e-01 +CO2(g) 2.91 8.114e+02 0.278 2.439e+01 2.534e+01 9.443e-01 H2O(g) 0.81 6.418e+00 0.032 1.956e-01 2.004e-01 4.813e-03 -----------------------------Solution composition------------------------------ @@ -5454,54 +5443,54 @@ H2O(g) 0.81 6.418e+00 0.032 1.956e-01 2.004e-01 4.813e-03 ----------------------------Description of solution---------------------------- - pH = 2.888 Charge balance - pe = 1.148 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 663 - Density (g/cm³) = 1.03469 - Volume (L) = 1.03380 - Viscosity (mPa s) = 0.56583 + pH = 2.897 Charge balance + pe = 14.634 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 623 + Density (g/cm³) = 1.03468 + Volume (L) = 1.03381 + Viscosity (mPa s) = 0.56567 Activity of water = 0.973 - Ionic strength (mol/kgw) = 1.344e-03 + Ionic strength (mol/kgw) = 1.318e-03 Mass of water (kg) = 9.964e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.671e+00 Temperature (°C) = 50.00 - Pressure (atm) = 817.85 - Electrical balance (eq) = -1.213e-09 + Pressure (atm) = 817.86 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.106117e+02 - Total O = 5.863558e+01 + Total O = 5.863555e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.344e-03 1.293e-03 -2.872 -2.888 -0.017 0.00 - OH- 8.475e-11 8.130e-11 -10.072 -10.090 -0.018 -4.42 + H+ 1.318e-03 1.268e-03 -2.880 -2.897 -0.017 0.00 + OH- 8.639e-11 8.290e-11 -10.064 -10.081 -0.018 -4.43 H2O 5.551e+01 9.730e-01 1.744 -0.012 0.000 17.64 -C(-4) 3.540e-12 - CH4 3.540e-12 3.541e-12 -11.451 -11.451 0.000 37.65 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.408 -119.408 0.000 37.65 C(4) 1.671e+00 CO2 1.501e+00 1.501e+00 0.176 0.176 0.000 34.88 (CO2)2 8.454e-02 8.456e-02 -1.073 -1.073 0.000 69.76 - HCO3- 1.344e-03 1.291e-03 -2.872 -2.889 -0.018 26.83 - CO3-2 1.610e-10 1.368e-10 -9.793 -9.864 -0.071 3.56 -H(0) 3.980e-12 - H2 1.990e-12 1.991e-12 -11.701 -11.701 0.000 28.28 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.250 -62.250 0.000 30.47 + HCO3- 1.318e-03 1.266e-03 -2.880 -2.898 -0.017 28.09 + CO3-2 1.703e-10 1.450e-10 -9.769 -9.839 -0.070 2.95 +H(0) 4.080e-39 + H2 2.040e-39 2.041e-39 -38.690 -38.690 0.000 28.28 +O(0) 1.070e-08 + O2 5.348e-09 5.349e-09 -8.272 -8.272 0.000 30.47 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 818 atm) - CH4(g) -7.99 -11.45 -3.46 CH4 + CH4(g) -115.94 -119.41 -3.46 CH4 CO2(g) 2.35 0.18 -2.18 CO2 Pressure 811.4 atm, phi 0.278 - H2(g) -8.19 -11.70 -3.51 H2 + H2(g) -35.18 -38.69 -3.51 H2 H2O(g) -0.69 -0.01 0.68 H2O Pressure 6.4 atm, phi 0.032 - O2(g) -58.81 -62.25 -3.44 O2 + O2(g) -4.83 -8.27 -3.44 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5657,11 +5646,11 @@ H2O(g) -0.36 4.356e-01 0.874 1.332e-02 1.642e-02 3.100e-03 ----------------------------Description of solution---------------------------- pH = 3.465 Charge balance - pe = 10.794 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 217 + pe = 10.797 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 215 Density (g/cm³) = 0.97762 Volume (L) = 1.03384 - Viscosity (mPa s) = 0.37807 + Viscosity (mPa s) = 0.37804 Activity of water = 0.996 Ionic strength (mol/kgw) = 3.505e-04 Mass of water (kg) = 9.997e-01 @@ -5680,30 +5669,30 @@ H2O(g) -0.36 4.356e-01 0.874 1.332e-02 1.642e-02 3.100e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 3.505e-04 3.425e-04 -3.455 -3.465 -0.010 0.00 + H+ 3.505e-04 3.426e-04 -3.455 -3.465 -0.010 0.00 OH- 6.206e-10 6.060e-10 -9.207 -9.218 -0.010 -4.53 H2O 5.551e+01 9.958e-01 1.744 -0.002 0.000 18.46 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.500 -96.500 0.000 39.08 + CH4 0.000e+00 0.000e+00 -96.527 -96.527 0.000 39.08 C(4) 2.500e-01 CO2 2.422e-01 2.422e-01 -0.616 -0.616 0.000 37.04 (CO2)2 3.732e-03 3.732e-03 -2.428 -2.428 0.000 74.08 - HCO3- 3.505e-04 3.424e-04 -3.455 -3.466 -0.010 25.37 - CO3-2 8.397e-11 7.644e-11 -10.076 -10.117 -0.041 -4.45 -H(0) 2.746e-32 - H2 1.373e-32 1.373e-32 -31.862 -31.862 0.000 28.57 -O(0) 2.786e-15 - O2 1.393e-15 1.393e-15 -14.856 -14.856 0.000 32.93 + HCO3- 3.505e-04 3.424e-04 -3.455 -3.465 -0.010 25.25 + CO3-2 8.398e-11 7.645e-11 -10.076 -10.117 -0.041 -4.80 +H(0) 2.704e-32 + H2 1.352e-32 1.352e-32 -31.869 -31.869 0.000 28.57 +O(0) 2.875e-15 + O2 1.437e-15 1.437e-15 -14.842 -14.842 0.000 32.93 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 20 atm) - CH4(g) -93.48 -96.50 -3.02 CH4 + CH4(g) -93.50 -96.53 -3.02 CH4 CO2(g) 1.27 -0.62 -1.88 CO2 Pressure 19.9 atm, phi 0.933 - H2(g) -28.72 -31.86 -3.14 H2 + H2(g) -28.73 -31.87 -3.14 H2 H2O(g) -0.42 -0.00 0.42 H2O Pressure 0.4 atm, phi 0.874 - O2(g) -11.75 -14.86 -3.11 O2 + O2(g) -11.73 -14.84 -3.11 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5752,21 +5741,21 @@ H2O(g) -0.30 4.993e-01 0.769 1.642e-02 2.026e-02 3.838e-03 ----------------------------Description of solution---------------------------- pH = 3.339 Charge balance - pe = 11.044 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 290 + pe = 2.019 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 285 Density (g/cm³) = 0.97995 Volume (L) = 1.04028 - Viscosity (mPa s) = 0.37860 + Viscosity (mPa s) = 0.37856 Activity of water = 0.993 Ionic strength (mol/kgw) = 4.703e-04 Mass of water (kg) = 9.996e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 4.496e-01 Temperature (°C) = 75.00 Pressure (atm) = 38.71 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 + Iterations = 35 Total H = 1.109719e+02 Total O = 5.638485e+01 @@ -5776,29 +5765,29 @@ H2O(g) -0.30 4.993e-01 0.769 1.642e-02 2.026e-02 3.838e-03 Species Molality Activity Molality Activity Gamma cm³/mol H+ 4.703e-04 4.580e-04 -3.328 -3.339 -0.011 0.00 - OH- 4.713e-10 4.585e-10 -9.327 -9.339 -0.012 -4.59 + OH- 4.712e-10 4.585e-10 -9.327 -9.339 -0.012 -4.59 H2O 5.551e+01 9.925e-01 1.744 -0.003 0.000 18.45 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.254 -97.254 0.000 39.07 +C(-4) 8.775e-26 + CH4 8.775e-26 8.775e-26 -25.057 -25.057 0.000 39.07 C(4) 4.496e-01 CO2 4.260e-01 4.261e-01 -0.371 -0.371 0.000 37.01 (CO2)2 1.155e-02 1.155e-02 -1.937 -1.937 0.000 74.01 - HCO3- 4.703e-04 4.577e-04 -3.328 -3.339 -0.012 25.42 - CO3-2 8.679e-11 7.788e-11 -10.062 -10.109 -0.047 -4.22 -H(0) 1.524e-32 - H2 7.619e-33 7.619e-33 -32.118 -32.118 0.000 28.56 -O(0) 8.689e-15 - O2 4.345e-15 4.345e-15 -14.362 -14.362 0.000 32.88 + HCO3- 4.703e-04 4.577e-04 -3.328 -3.339 -0.012 25.34 + CO3-2 8.682e-11 7.791e-11 -10.061 -10.108 -0.047 -4.59 +H(0) 1.707e-14 + H2 8.536e-15 8.537e-15 -14.069 -14.069 0.000 28.56 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.461 -50.461 0.000 32.88 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 39 atm) - CH4(g) -94.22 -97.25 -3.04 CH4 + CH4(g) -22.02 -25.06 -3.04 CH4 CO2(g) 1.52 -0.37 -1.89 CO2 Pressure 38.2 atm, phi 0.875 - H2(g) -28.97 -32.12 -3.15 H2 + H2(g) -10.92 -14.07 -3.15 H2 H2O(g) -0.42 -0.00 0.41 H2O Pressure 0.5 atm, phi 0.769 - O2(g) -11.25 -14.36 -3.12 O2 + O2(g) -47.34 -50.46 -3.12 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5847,15 +5836,15 @@ H2O(g) -0.24 5.707e-01 0.679 2.026e-02 2.494e-02 4.679e-03 ----------------------------Description of solution---------------------------- pH = 3.275 Charge balance - pe = 11.156 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 337 + pe = 1.995 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 327 Density (g/cm³) = 0.98185 Volume (L) = 1.04514 - Viscosity (mPa s) = 0.37908 + Viscosity (mPa s) = 0.37903 Activity of water = 0.990 - Ionic strength (mol/kgw) = 5.461e-04 + Ionic strength (mol/kgw) = 5.462e-04 Mass of water (kg) = 9.995e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 6.050e-01 Temperature (°C) = 75.00 Pressure (atm) = 55.38 @@ -5873,27 +5862,27 @@ H2O(g) -0.24 5.707e-01 0.679 2.026e-02 2.494e-02 4.679e-03 H+ 5.461e-04 5.309e-04 -3.263 -3.275 -0.012 0.00 OH- 4.119e-10 3.999e-10 -9.385 -9.398 -0.013 -4.64 H2O 5.551e+01 9.901e-01 1.744 -0.004 0.000 18.43 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.526 -97.525 0.000 39.07 +C(-4) 5.788e-25 + CH4 5.788e-25 5.789e-25 -24.237 -24.237 0.000 39.07 C(4) 6.050e-01 CO2 5.640e-01 5.640e-01 -0.249 -0.249 0.000 36.98 (CO2)2 2.024e-02 2.024e-02 -1.694 -1.694 0.000 73.95 - HCO3- 5.461e-04 5.305e-04 -3.263 -3.275 -0.013 25.47 - CO3-2 8.897e-11 7.921e-11 -10.051 -10.101 -0.050 -4.01 -H(0) 1.200e-32 - H2 6.002e-33 6.003e-33 -32.222 -32.222 0.000 28.55 -O(0) 1.351e-14 - O2 6.753e-15 6.754e-15 -14.171 -14.170 0.000 32.83 + HCO3- 5.462e-04 5.305e-04 -3.263 -3.275 -0.013 25.42 + CO3-2 8.903e-11 7.926e-11 -10.050 -10.101 -0.050 -4.41 +H(0) 2.520e-14 + H2 1.260e-14 1.260e-14 -13.900 -13.900 0.000 28.55 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.815 -50.815 0.000 32.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 55 atm) - CH4(g) -94.48 -97.53 -3.05 CH4 + CH4(g) -21.19 -24.24 -3.05 CH4 CO2(g) 1.66 -0.25 -1.90 CO2 Pressure 54.8 atm, phi 0.825 - H2(g) -29.07 -32.22 -3.16 H2 + H2(g) -10.74 -13.90 -3.16 H2 H2O(g) -0.41 -0.00 0.41 H2O Pressure 0.6 atm, phi 0.679 - O2(g) -11.05 -14.17 -3.13 O2 + O2(g) -47.69 -50.81 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5942,15 +5931,15 @@ H2O(g) -0.19 6.497e-01 0.601 2.494e-02 3.056e-02 5.615e-03 ----------------------------Description of solution---------------------------- pH = 3.236 Charge balance - pe = 11.195 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 369 + pe = 2.005 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 356 Density (g/cm³) = 0.98339 Volume (L) = 1.04871 - Viscosity (mPa s) = 0.37950 + Viscosity (mPa s) = 0.37944 Activity of water = 0.988 Ionic strength (mol/kgw) = 5.986e-04 Mass of water (kg) = 9.994e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 7.238e-01 Temperature (°C) = 75.00 Pressure (atm) = 70.32 @@ -5968,27 +5957,27 @@ H2O(g) -0.19 6.497e-01 0.601 2.494e-02 3.056e-02 5.615e-03 H+ 5.986e-04 5.812e-04 -3.223 -3.236 -0.013 0.00 OH- 3.806e-10 3.691e-10 -9.419 -9.433 -0.013 -4.69 H2O 5.551e+01 9.882e-01 1.744 -0.005 0.000 18.42 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.456 -97.456 0.000 39.07 +C(-4) 1.164e-24 + CH4 1.164e-24 1.164e-24 -23.934 -23.934 0.000 39.07 C(4) 7.238e-01 CO2 6.667e-01 6.667e-01 -0.176 -0.176 0.000 36.95 (CO2)2 2.828e-02 2.829e-02 -1.548 -1.548 0.000 73.90 - HCO3- 5.986e-04 5.807e-04 -3.223 -3.236 -0.013 25.51 - CO3-2 9.078e-11 8.041e-11 -10.042 -10.095 -0.053 -3.83 -H(0) 1.185e-32 - H2 5.925e-33 5.926e-33 -32.227 -32.227 0.000 28.54 -O(0) 1.343e-14 - O2 6.714e-15 6.715e-15 -14.173 -14.173 0.000 32.79 + HCO3- 5.986e-04 5.807e-04 -3.223 -3.236 -0.013 25.49 + CO3-2 9.086e-11 8.049e-11 -10.042 -10.094 -0.053 -4.25 +H(0) 2.847e-14 + H2 1.423e-14 1.424e-14 -13.847 -13.847 0.000 28.54 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.934 -50.934 0.000 32.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 70 atm) - CH4(g) -94.40 -97.46 -3.05 CH4 + CH4(g) -20.88 -23.93 -3.05 CH4 CO2(g) 1.74 -0.18 -1.91 CO2 Pressure 69.7 atm, phi 0.782 - H2(g) -29.06 -32.23 -3.16 H2 + H2(g) -10.68 -13.85 -3.16 H2 H2O(g) -0.41 -0.01 0.40 H2O Pressure 0.6 atm, phi 0.601 - O2(g) -11.04 -14.17 -3.13 O2 + O2(g) -47.80 -50.93 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6037,13 +6026,13 @@ H2O(g) -0.13 7.364e-01 0.534 3.056e-02 3.718e-02 6.627e-03 ----------------------------Description of solution---------------------------- pH = 3.209 Charge balance - pe = 11.161 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 392 + pe = 1.984 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 376 Density (g/cm³) = 0.98464 Volume (L) = 1.05128 - Viscosity (mPa s) = 0.37987 + Viscosity (mPa s) = 0.37980 Activity of water = 0.987 - Ionic strength (mol/kgw) = 6.365e-04 + Ionic strength (mol/kgw) = 6.364e-04 Mass of water (kg) = 9.993e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 8.142e-01 @@ -6051,7 +6040,7 @@ H2O(g) -0.13 7.364e-01 0.534 3.056e-02 3.718e-02 6.627e-03 Pressure (atm) = 83.65 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 + Iterations = 20 Total H = 1.109381e+02 Total O = 5.709630e+01 @@ -6060,30 +6049,30 @@ H2O(g) -0.13 7.364e-01 0.534 3.056e-02 3.718e-02 6.627e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.365e-04 6.175e-04 -3.196 -3.209 -0.013 0.00 + H+ 6.364e-04 6.174e-04 -3.196 -3.209 -0.013 0.00 OH- 3.620e-10 3.507e-10 -9.441 -9.455 -0.014 -4.73 H2O 5.551e+01 9.867e-01 1.744 -0.006 0.000 18.41 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.935 -96.935 0.000 39.07 +C(-4) 3.073e-24 + CH4 3.073e-24 3.073e-24 -23.512 -23.512 0.000 39.07 C(4) 8.142e-01 CO2 7.432e-01 7.433e-01 -0.129 -0.129 0.000 36.92 (CO2)2 3.515e-02 3.516e-02 -1.454 -1.454 0.000 73.85 - HCO3- 6.365e-04 6.169e-04 -3.196 -3.210 -0.014 25.54 - CO3-2 9.231e-11 8.148e-11 -10.035 -10.089 -0.054 -3.68 -H(0) 1.543e-32 - H2 7.713e-33 7.715e-33 -32.113 -32.113 0.000 28.54 -O(0) 7.708e-15 - O2 3.854e-15 3.855e-15 -14.414 -14.414 0.000 32.75 + HCO3- 6.364e-04 6.169e-04 -3.196 -3.210 -0.014 25.55 + CO3-2 9.243e-11 8.159e-11 -10.034 -10.088 -0.054 -4.11 +H(0) 3.498e-14 + H2 1.749e-14 1.749e-14 -13.757 -13.757 0.000 28.54 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.125 -51.125 0.000 32.75 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 84 atm) - CH4(g) -93.87 -96.93 -3.06 CH4 + CH4(g) -20.45 -23.51 -3.06 CH4 CO2(g) 1.79 -0.13 -1.92 CO2 Pressure 82.9 atm, phi 0.746 - H2(g) -28.94 -32.11 -3.17 H2 + H2(g) -10.59 -13.76 -3.17 H2 H2O(g) -0.41 -0.01 0.40 H2O Pressure 0.7 atm, phi 0.534 - O2(g) -11.27 -14.41 -3.14 O2 + O2(g) -47.99 -51.13 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6132,11 +6121,11 @@ H2O(g) -0.08 8.308e-01 0.476 3.718e-02 4.488e-02 7.699e-03 ----------------------------Description of solution---------------------------- pH = 3.191 Charge balance - pe = 11.265 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 409 + pe = 1.945 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 391 Density (g/cm³) = 0.98568 Volume (L) = 1.05312 - Viscosity (mPa s) = 0.38019 + Viscosity (mPa s) = 0.38013 Activity of water = 0.986 Ionic strength (mol/kgw) = 6.648e-04 Mass of water (kg) = 9.992e-01 @@ -6155,30 +6144,30 @@ H2O(g) -0.08 8.308e-01 0.476 3.718e-02 4.488e-02 7.699e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.648e-04 6.446e-04 -3.177 -3.191 -0.013 0.00 + H+ 6.648e-04 6.445e-04 -3.177 -3.191 -0.013 0.00 OH- 3.500e-10 3.389e-10 -9.456 -9.470 -0.014 -4.77 H2O 5.551e+01 9.857e-01 1.744 -0.006 0.000 18.40 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.585 -97.585 0.000 39.06 +C(-4) 9.441e-24 + CH4 9.441e-24 9.442e-24 -23.025 -23.025 0.000 39.06 C(4) 8.833e-01 CO2 8.010e-01 8.010e-01 -0.096 -0.096 0.000 36.90 (CO2)2 4.082e-02 4.083e-02 -1.389 -1.389 0.000 73.80 - HCO3- 6.648e-04 6.440e-04 -3.177 -3.191 -0.014 25.57 - CO3-2 9.364e-11 8.245e-11 -10.029 -10.084 -0.055 -3.54 -H(0) 1.032e-32 - H2 5.162e-33 5.163e-33 -32.287 -32.287 0.000 28.53 -O(0) 1.680e-14 - O2 8.400e-15 8.401e-15 -14.076 -14.076 0.000 32.72 + HCO3- 6.648e-04 6.439e-04 -3.177 -3.191 -0.014 25.60 + CO3-2 9.379e-11 8.258e-11 -10.028 -10.083 -0.055 -3.99 +H(0) 4.508e-14 + H2 2.254e-14 2.254e-14 -13.647 -13.647 0.000 28.53 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.356 -51.356 0.000 32.72 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 96 atm) - CH4(g) -94.52 -97.59 -3.07 CH4 + CH4(g) -19.96 -23.02 -3.07 CH4 CO2(g) 1.83 -0.10 -1.93 CO2 Pressure 94.7 atm, phi 0.714 - H2(g) -29.11 -32.29 -3.17 H2 + H2(g) -10.47 -13.65 -3.17 H2 H2O(g) -0.40 -0.01 0.40 H2O Pressure 0.8 atm, phi 0.476 - O2(g) -10.93 -14.08 -3.15 O2 + O2(g) -48.21 -51.36 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6227,15 +6216,15 @@ H2O(g) -0.03 9.337e-01 0.426 4.488e-02 5.370e-02 8.815e-03 ----------------------------Description of solution---------------------------- pH = 3.177 Charge balance - pe = 11.228 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 422 + pe = 1.879 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 402 Density (g/cm³) = 0.98654 Volume (L) = 1.05442 - Viscosity (mPa s) = 0.38049 + Viscosity (mPa s) = 0.38042 Activity of water = 0.985 - Ionic strength (mol/kgw) = 6.868e-04 + Ionic strength (mol/kgw) = 6.867e-04 Mass of water (kg) = 9.990e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 9.370e-01 Temperature (°C) = 75.00 Pressure (atm) = 106.37 @@ -6250,30 +6239,30 @@ H2O(g) -0.03 9.337e-01 0.426 4.488e-02 5.370e-02 8.815e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.868e-04 6.656e-04 -3.163 -3.177 -0.014 0.00 + H+ 6.867e-04 6.655e-04 -3.163 -3.177 -0.014 0.00 OH- 3.419e-10 3.308e-10 -9.466 -9.480 -0.014 -4.81 H2O 5.551e+01 9.848e-01 1.744 -0.007 0.000 18.39 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.164 -97.164 0.000 39.06 +C(-4) 4.230e-23 + CH4 4.230e-23 4.231e-23 -22.374 -22.374 0.000 39.06 C(4) 9.370e-01 CO2 8.454e-01 8.455e-01 -0.073 -0.073 0.000 36.88 (CO2)2 4.548e-02 4.549e-02 -1.342 -1.342 0.000 73.77 - HCO3- 6.868e-04 6.650e-04 -3.163 -3.177 -0.014 25.60 - CO3-2 9.483e-11 8.333e-11 -10.023 -10.079 -0.056 -3.41 -H(0) 1.288e-32 - H2 6.442e-33 6.443e-33 -32.191 -32.191 0.000 28.53 -O(0) 1.056e-14 - O2 5.278e-15 5.279e-15 -14.278 -14.277 0.000 32.69 + HCO3- 6.867e-04 6.649e-04 -3.163 -3.177 -0.014 25.65 + CO3-2 9.501e-11 8.349e-11 -10.022 -10.078 -0.056 -3.88 +H(0) 6.421e-14 + H2 3.211e-14 3.211e-14 -13.493 -13.493 0.000 28.53 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.673 -51.673 0.000 32.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 106 atm) - CH4(g) -94.09 -97.16 -3.08 CH4 + CH4(g) -19.30 -22.37 -3.08 CH4 CO2(g) 1.86 -0.07 -1.93 CO2 Pressure 105.4 atm, phi 0.687 - H2(g) -29.01 -32.19 -3.18 H2 + H2(g) -10.31 -13.49 -3.18 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 0.9 atm, phi 0.426 - O2(g) -11.13 -14.28 -3.15 O2 + O2(g) -48.52 -51.67 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6322,13 +6311,13 @@ H2O(g) 0.02 1.046e+00 0.383 5.370e-02 6.365e-02 9.958e-03 ----------------------------Description of solution---------------------------- pH = 3.166 Charge balance - pe = 11.077 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 432 + pe = 1.968 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 411 Density (g/cm³) = 0.98730 Volume (L) = 1.05534 - Viscosity (mPa s) = 0.38077 + Viscosity (mPa s) = 0.38069 Activity of water = 0.984 - Ionic strength (mol/kgw) = 7.046e-04 + Ionic strength (mol/kgw) = 7.045e-04 Mass of water (kg) = 9.988e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 9.802e-01 @@ -6336,7 +6325,7 @@ H2O(g) 0.02 1.046e+00 0.383 5.370e-02 6.365e-02 9.958e-03 Pressure (atm) = 116.43 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 + Iterations = 26 Total H = 1.108851e+02 Total O = 5.740062e+01 @@ -6345,30 +6334,30 @@ H2O(g) 0.02 1.046e+00 0.383 5.370e-02 6.365e-02 9.958e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.046e-04 6.826e-04 -3.152 -3.166 -0.014 0.00 - OH- 3.360e-10 3.250e-10 -9.474 -9.488 -0.014 -4.84 + H+ 7.045e-04 6.825e-04 -3.152 -3.166 -0.014 0.00 + OH- 3.360e-10 3.251e-10 -9.474 -9.488 -0.014 -4.84 H2O 5.551e+01 9.842e-01 1.744 -0.007 0.000 18.38 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -95.851 -95.851 0.000 39.06 +C(-4) 1.039e-23 + CH4 1.039e-23 1.039e-23 -22.983 -22.983 0.000 39.06 C(4) 9.802e-01 CO2 8.807e-01 8.808e-01 -0.055 -0.055 0.000 36.87 (CO2)2 4.936e-02 4.937e-02 -1.307 -1.307 0.000 73.73 - HCO3- 7.046e-04 6.820e-04 -3.152 -3.166 -0.014 25.62 - CO3-2 9.591e-11 8.415e-11 -10.018 -10.075 -0.057 -3.30 -H(0) 2.697e-32 - H2 1.348e-32 1.349e-32 -31.870 -31.870 0.000 28.52 -O(0) 2.362e-15 - O2 1.181e-15 1.181e-15 -14.928 -14.928 0.000 32.67 + HCO3- 7.045e-04 6.819e-04 -3.152 -3.166 -0.014 25.70 + CO3-2 9.612e-11 8.434e-11 -10.017 -10.074 -0.057 -3.78 +H(0) 4.444e-14 + H2 2.222e-14 2.222e-14 -13.653 -13.653 0.000 28.52 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.362 -51.362 0.000 32.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 116 atm) - CH4(g) -92.77 -95.85 -3.08 CH4 + CH4(g) -19.90 -22.98 -3.08 CH4 CO2(g) 1.88 -0.06 -1.94 CO2 Pressure 115.4 atm, phi 0.662 - H2(g) -28.69 -31.87 -3.18 H2 + H2(g) -10.47 -13.65 -3.18 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 1.0 atm, phi 0.383 - O2(g) -11.77 -14.93 -3.16 O2 + O2(g) -48.21 -51.36 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6417,13 +6406,13 @@ H2O(g) 0.07 1.170e+00 0.344 6.365e-02 7.477e-02 1.111e-02 ----------------------------Description of solution---------------------------- pH = 3.157 Charge balance - pe = 11.159 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 441 + pe = 2.153 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 419 Density (g/cm³) = 0.98799 Volume (L) = 1.05600 - Viscosity (mPa s) = 0.38103 + Viscosity (mPa s) = 0.38095 Activity of water = 0.984 - Ionic strength (mol/kgw) = 7.198e-04 + Ionic strength (mol/kgw) = 7.197e-04 Mass of water (kg) = 9.986e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.016e+00 @@ -6440,30 +6429,30 @@ H2O(g) 0.07 1.170e+00 0.344 6.365e-02 7.477e-02 1.111e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.198e-04 6.971e-04 -3.143 -3.157 -0.014 0.00 - OH- 3.316e-10 3.206e-10 -9.479 -9.494 -0.015 -4.87 + H+ 7.197e-04 6.970e-04 -3.143 -3.157 -0.014 0.00 + OH- 3.316e-10 3.207e-10 -9.479 -9.494 -0.015 -4.87 H2O 5.551e+01 9.836e-01 1.744 -0.007 0.000 18.38 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.431 -96.431 0.000 39.06 +C(-4) 4.141e-25 + CH4 4.141e-25 4.141e-25 -24.383 -24.383 0.000 39.06 C(4) 1.016e+00 CO2 9.101e-01 9.102e-01 -0.041 -0.041 0.000 36.85 (CO2)2 5.270e-02 5.271e-02 -1.278 -1.278 0.000 73.70 - HCO3- 7.198e-04 6.965e-04 -3.143 -3.157 -0.014 25.64 - CO3-2 9.693e-11 8.495e-11 -10.014 -10.071 -0.057 -3.19 -H(0) 1.903e-32 - H2 9.513e-33 9.515e-33 -32.022 -32.022 0.000 28.52 -O(0) 4.655e-15 - O2 2.328e-15 2.328e-15 -14.633 -14.633 0.000 32.64 + HCO3- 7.197e-04 6.963e-04 -3.143 -3.157 -0.014 25.74 + CO3-2 9.718e-11 8.517e-11 -10.012 -10.070 -0.057 -3.68 +H(0) 1.956e-14 + H2 9.781e-15 9.783e-15 -14.010 -14.010 0.000 28.52 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.657 -50.657 0.000 32.64 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 126 atm) - CH4(g) -93.34 -96.43 -3.09 CH4 + CH4(g) -21.30 -24.38 -3.09 CH4 CO2(g) 1.90 -0.04 -1.94 CO2 Pressure 124.9 atm, phi 0.640 - H2(g) -28.83 -32.02 -3.19 H2 + H2(g) -10.82 -14.01 -3.19 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 1.2 atm, phi 0.344 - O2(g) -11.47 -14.63 -3.16 O2 + O2(g) -47.50 -50.66 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6512,13 +6501,13 @@ H2O(g) 0.12 1.308e+00 0.310 7.477e-02 8.703e-02 1.226e-02 ----------------------------Description of solution---------------------------- pH = 3.149 Charge balance - pe = 11.245 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 449 + pe = 2.246 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 426 Density (g/cm³) = 0.98864 Volume (L) = 1.05647 - Viscosity (mPa s) = 0.38130 + Viscosity (mPa s) = 0.38121 Activity of water = 0.983 - Ionic strength (mol/kgw) = 7.335e-04 + Ionic strength (mol/kgw) = 7.333e-04 Mass of water (kg) = 9.984e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.048e+00 @@ -6535,30 +6524,30 @@ H2O(g) 0.12 1.308e+00 0.310 7.477e-02 8.703e-02 1.226e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.335e-04 7.102e-04 -3.135 -3.149 -0.014 0.00 - OH- 3.280e-10 3.171e-10 -9.484 -9.499 -0.015 -4.90 + H+ 7.333e-04 7.100e-04 -3.135 -3.149 -0.014 0.00 + OH- 3.281e-10 3.172e-10 -9.484 -9.499 -0.015 -4.90 H2O 5.551e+01 9.831e-01 1.744 -0.007 0.000 18.37 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.045 -97.045 0.000 39.06 +C(-4) 8.872e-26 + CH4 8.872e-26 8.874e-26 -25.052 -25.052 0.000 39.06 C(4) 1.048e+00 CO2 9.357e-01 9.358e-01 -0.029 -0.029 0.000 36.83 (CO2)2 5.571e-02 5.572e-02 -1.254 -1.254 0.000 73.66 - HCO3- 7.335e-04 7.095e-04 -3.135 -3.149 -0.014 25.67 - CO3-2 9.796e-11 8.575e-11 -10.009 -10.067 -0.058 -3.08 -H(0) 1.318e-32 - H2 6.592e-33 6.593e-33 -32.181 -32.181 0.000 28.51 -O(0) 9.514e-15 - O2 4.757e-15 4.758e-15 -14.323 -14.323 0.000 32.62 + HCO3- 7.333e-04 7.093e-04 -3.135 -3.149 -0.014 25.78 + CO3-2 9.824e-11 8.600e-11 -10.008 -10.065 -0.058 -3.59 +H(0) 1.313e-14 + H2 6.565e-15 6.566e-15 -14.183 -14.183 0.000 28.51 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.319 -50.319 0.000 32.62 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 136 atm) - CH4(g) -93.95 -97.04 -3.09 CH4 + CH4(g) -21.96 -25.05 -3.09 CH4 CO2(g) 1.92 -0.03 -1.95 CO2 Pressure 134.5 atm, phi 0.618 - H2(g) -28.99 -32.18 -3.19 H2 + H2(g) -10.99 -14.18 -3.19 H2 H2O(g) -0.39 -0.01 0.39 H2O Pressure 1.3 atm, phi 0.310 - O2(g) -11.16 -14.32 -3.16 O2 + O2(g) -47.15 -50.32 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6607,21 +6596,21 @@ H2O(g) 0.17 1.463e+00 0.278 8.703e-02 1.004e-01 1.338e-02 ----------------------------Description of solution---------------------------- pH = 3.141 Charge balance - pe = 2.150 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 457 + pe = 2.060 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 433 Density (g/cm³) = 0.98930 Volume (L) = 1.05681 - Viscosity (mPa s) = 0.38157 + Viscosity (mPa s) = 0.38149 Activity of water = 0.983 - Ionic strength (mol/kgw) = 7.465e-04 + Ionic strength (mol/kgw) = 7.462e-04 Mass of water (kg) = 9.982e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.077e+00 Temperature (°C) = 75.00 Pressure (atm) = 146.06 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 32 + Iterations = 22 Total H = 1.108116e+02 Total O = 5.755578e+01 @@ -6630,30 +6619,30 @@ H2O(g) 0.17 1.463e+00 0.278 8.703e-02 1.004e-01 1.338e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.465e-04 7.226e-04 -3.127 -3.141 -0.014 0.00 - OH- 3.251e-10 3.142e-10 -9.488 -9.503 -0.015 -4.94 + H+ 7.462e-04 7.224e-04 -3.127 -3.141 -0.014 0.00 + OH- 3.252e-10 3.143e-10 -9.488 -9.503 -0.015 -4.94 H2O 5.551e+01 9.827e-01 1.744 -0.008 0.000 18.36 -C(-4) 6.055e-25 - CH4 6.055e-25 6.057e-25 -24.218 -24.218 0.000 39.05 +C(-4) 3.179e-24 + CH4 3.179e-24 3.180e-24 -23.498 -23.498 0.000 39.05 C(4) 1.077e+00 CO2 9.591e-01 9.592e-01 -0.018 -0.018 0.000 36.81 (CO2)2 5.854e-02 5.855e-02 -1.233 -1.232 0.000 73.63 - HCO3- 7.465e-04 7.219e-04 -3.127 -3.142 -0.015 25.69 - CO3-2 9.903e-11 8.660e-11 -10.004 -10.063 -0.058 -2.97 -H(0) 2.095e-14 - H2 1.047e-14 1.048e-14 -13.980 -13.980 0.000 28.51 + HCO3- 7.462e-04 7.216e-04 -3.127 -3.142 -0.015 25.82 + CO3-2 9.935e-11 8.688e-11 -10.003 -10.061 -0.058 -3.49 +H(0) 3.171e-14 + H2 1.585e-14 1.586e-14 -13.800 -13.800 0.000 28.51 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.733 -50.733 0.000 32.59 + O2 0.000e+00 0.000e+00 -51.093 -51.093 0.000 32.59 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 146 atm) - CH4(g) -21.12 -24.22 -3.10 CH4 + CH4(g) -20.40 -23.50 -3.10 CH4 CO2(g) 1.94 -0.02 -1.95 CO2 Pressure 144.6 atm, phi 0.598 - H2(g) -10.78 -13.98 -3.20 H2 + H2(g) -10.60 -13.80 -3.20 H2 H2O(g) -0.39 -0.01 0.38 H2O Pressure 1.5 atm, phi 0.278 - O2(g) -47.56 -50.73 -3.17 O2 + O2(g) -47.92 -51.09 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6702,15 +6691,15 @@ H2O(g) 0.21 1.640e+00 0.250 1.004e-01 1.149e-01 1.446e-02 ----------------------------Description of solution---------------------------- pH = 3.134 Charge balance - pe = 2.173 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 465 + pe = 1.950 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 440 Density (g/cm³) = 0.98999 Volume (L) = 1.05704 - Viscosity (mPa s) = 0.38188 + Viscosity (mPa s) = 0.38179 Activity of water = 0.982 - Ionic strength (mol/kgw) = 7.595e-04 + Ionic strength (mol/kgw) = 7.592e-04 Mass of water (kg) = 9.979e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.105e+00 Temperature (°C) = 75.00 Pressure (atm) = 157.24 @@ -6725,30 +6714,30 @@ H2O(g) 0.21 1.640e+00 0.250 1.004e-01 1.149e-01 1.446e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.595e-04 7.350e-04 -3.119 -3.134 -0.014 0.00 - OH- 3.225e-10 3.116e-10 -9.491 -9.506 -0.015 -4.97 + H+ 7.591e-04 7.347e-04 -3.120 -3.134 -0.014 0.00 + OH- 3.226e-10 3.117e-10 -9.491 -9.506 -0.015 -4.97 H2O 5.551e+01 9.822e-01 1.744 -0.008 0.000 18.35 -C(-4) 4.549e-25 - CH4 4.549e-25 4.549e-25 -24.342 -24.342 0.000 39.05 +C(-4) 2.777e-23 + CH4 2.777e-23 2.777e-23 -22.556 -22.556 0.000 39.05 C(4) 1.105e+00 CO2 9.817e-01 9.818e-01 -0.008 -0.008 0.000 36.79 (CO2)2 6.132e-02 6.133e-02 -1.212 -1.212 0.000 73.59 - HCO3- 7.595e-04 7.342e-04 -3.119 -3.134 -0.015 25.72 - CO3-2 1.002e-10 8.752e-11 -9.999 -10.058 -0.059 -2.84 -H(0) 1.924e-14 - H2 9.621e-15 9.623e-15 -14.017 -14.017 0.000 28.50 + HCO3- 7.592e-04 7.339e-04 -3.120 -3.134 -0.015 25.87 + CO3-2 1.006e-10 8.786e-11 -9.998 -10.056 -0.059 -3.38 +H(0) 5.378e-14 + H2 2.689e-14 2.690e-14 -13.570 -13.570 0.000 28.50 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.669 -50.669 0.000 32.56 + O2 0.000e+00 0.000e+00 -51.562 -51.562 0.000 32.56 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 157 atm) - CH4(g) -21.24 -24.34 -3.11 CH4 + CH4(g) -19.45 -22.56 -3.11 CH4 CO2(g) 1.95 -0.01 -1.96 CO2 Pressure 155.6 atm, phi 0.577 - H2(g) -10.82 -14.02 -3.20 H2 + H2(g) -10.37 -13.57 -3.20 H2 H2O(g) -0.39 -0.01 0.38 H2O Pressure 1.6 atm, phi 0.250 - O2(g) -47.49 -50.67 -3.18 O2 + O2(g) -48.39 -51.56 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6797,53 +6786,53 @@ H2O(g) 0.27 1.845e+00 0.224 1.149e-01 1.303e-01 1.547e-02 ----------------------------Description of solution---------------------------- pH = 3.126 Charge balance - pe = 2.127 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 472 + pe = 1.990 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 447 Density (g/cm³) = 0.99075 Volume (L) = 1.05719 - Viscosity (mPa s) = 0.38222 + Viscosity (mPa s) = 0.38213 Activity of water = 0.982 - Ionic strength (mol/kgw) = 7.730e-04 + Ionic strength (mol/kgw) = 7.726e-04 Mass of water (kg) = 9.976e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.133e+00 Temperature (°C) = 75.00 Pressure (atm) = 169.89 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.107517e+02 - Total O = 5.763696e+01 + Total O = 5.763695e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.730e-04 7.479e-04 -3.112 -3.126 -0.014 0.00 - OH- 3.202e-10 3.093e-10 -9.495 -9.510 -0.015 -5.01 + H+ 7.726e-04 7.475e-04 -3.112 -3.126 -0.014 0.00 + OH- 3.204e-10 3.095e-10 -9.494 -9.509 -0.015 -5.01 H2O 5.551e+01 9.818e-01 1.744 -0.008 0.000 18.34 -C(-4) 1.231e-24 - CH4 1.231e-24 1.231e-24 -23.910 -23.910 0.000 39.05 +C(-4) 1.540e-23 + CH4 1.540e-23 1.540e-23 -22.812 -22.812 0.000 39.05 C(4) 1.133e+00 CO2 1.004e+00 1.004e+00 0.002 0.002 0.000 36.77 (CO2)2 6.416e-02 6.417e-02 -1.193 -1.193 0.000 73.54 - HCO3- 7.730e-04 7.471e-04 -3.112 -3.127 -0.015 25.75 - CO3-2 1.015e-10 8.858e-11 -9.994 -10.053 -0.059 -2.70 -H(0) 2.433e-14 - H2 1.217e-14 1.217e-14 -13.915 -13.915 0.000 28.50 + HCO3- 7.726e-04 7.468e-04 -3.112 -3.127 -0.015 25.92 + CO3-2 1.019e-10 8.896e-11 -9.992 -10.051 -0.059 -3.26 +H(0) 4.576e-14 + H2 2.288e-14 2.288e-14 -13.641 -13.640 0.000 28.50 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.883 -50.883 0.000 32.53 + O2 0.000e+00 0.000e+00 -51.432 -51.432 0.000 32.53 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 170 atm) - CH4(g) -20.80 -23.91 -3.11 CH4 + CH4(g) -19.70 -22.81 -3.11 CH4 CO2(g) 1.97 0.00 -1.97 CO2 Pressure 168.0 atm, phi 0.555 - H2(g) -10.71 -13.91 -3.21 H2 + H2(g) -10.43 -13.64 -3.21 H2 H2O(g) -0.38 -0.01 0.38 H2O Pressure 1.8 atm, phi 0.224 - O2(g) -47.70 -50.88 -3.18 O2 + O2(g) -48.25 -51.43 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6893,12 +6882,12 @@ H2O(g) 0.32 2.085e+00 0.200 1.303e-01 1.467e-01 1.639e-02 pH = 3.118 Charge balance pe = 2.109 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 481 + Specific Conductance (µS/cm, 75°C) = 454 Density (g/cm³) = 0.99159 Volume (L) = 1.05726 - Viscosity (mPa s) = 0.38262 + Viscosity (mPa s) = 0.38252 Activity of water = 0.981 - Ionic strength (mol/kgw) = 7.876e-04 + Ionic strength (mol/kgw) = 7.871e-04 Mass of water (kg) = 9.973e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.162e+00 @@ -6915,20 +6904,20 @@ H2O(g) 0.32 2.085e+00 0.200 1.303e-01 1.467e-01 1.639e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.876e-04 7.619e-04 -3.104 -3.118 -0.014 0.00 - OH- 3.182e-10 3.072e-10 -9.497 -9.513 -0.015 -5.05 + H+ 7.871e-04 7.614e-04 -3.104 -3.118 -0.014 0.00 + OH- 3.184e-10 3.074e-10 -9.497 -9.512 -0.015 -5.05 H2O 5.551e+01 9.814e-01 1.744 -0.008 0.000 18.33 -C(-4) 1.999e-24 - CH4 1.999e-24 1.999e-24 -23.699 -23.699 0.000 39.05 +C(-4) 1.984e-24 + CH4 1.984e-24 1.984e-24 -23.703 -23.702 0.000 39.05 C(4) 1.162e+00 CO2 1.027e+00 1.027e+00 0.012 0.012 0.000 36.75 (CO2)2 6.714e-02 6.716e-02 -1.173 -1.173 0.000 73.49 - HCO3- 7.876e-04 7.611e-04 -3.104 -3.119 -0.015 25.78 - CO3-2 1.030e-10 8.981e-11 -9.987 -10.047 -0.060 -2.54 -H(0) 2.704e-14 - H2 1.352e-14 1.352e-14 -13.869 -13.869 0.000 28.49 + HCO3- 7.871e-04 7.606e-04 -3.104 -3.119 -0.015 25.99 + CO3-2 1.035e-10 9.026e-11 -9.985 -10.045 -0.060 -3.12 +H(0) 2.699e-14 + H2 1.350e-14 1.350e-14 -13.870 -13.870 0.000 28.49 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.987 -50.987 0.000 32.49 + O2 0.000e+00 0.000e+00 -50.986 -50.986 0.000 32.49 ------------------------------Saturation indices------------------------------- @@ -6986,22 +6975,22 @@ H2O(g) 0.37 2.368e+00 0.178 1.467e-01 1.639e-01 1.719e-02 ----------------------------Description of solution---------------------------- - pH = 3.109 Charge balance - pe = 2.165 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 490 + pH = 3.110 Charge balance + pe = 2.181 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 462 Density (g/cm³) = 0.99256 Volume (L) = 1.05726 - Viscosity (mPa s) = 0.38309 + Viscosity (mPa s) = 0.38298 Activity of water = 0.981 - Ionic strength (mol/kgw) = 8.038e-04 + Ionic strength (mol/kgw) = 8.031e-04 Mass of water (kg) = 9.970e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.193e+00 Temperature (°C) = 75.00 Pressure (atm) = 201.89 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 + Iterations = 30 Total H = 1.106846e+02 Total O = 5.772096e+01 @@ -7010,30 +6999,30 @@ H2O(g) 0.37 2.368e+00 0.178 1.467e-01 1.639e-01 1.719e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.038e-04 7.773e-04 -3.095 -3.109 -0.015 0.00 - OH- 3.163e-10 3.054e-10 -9.500 -9.515 -0.015 -5.11 + H+ 8.031e-04 7.766e-04 -3.095 -3.110 -0.015 0.00 + OH- 3.166e-10 3.056e-10 -9.499 -9.515 -0.015 -5.11 H2O 5.551e+01 9.809e-01 1.744 -0.008 0.000 18.32 -C(-4) 8.347e-25 - CH4 8.347e-25 8.349e-25 -24.078 -24.078 0.000 39.04 +C(-4) 6.179e-25 + CH4 6.179e-25 6.180e-25 -24.209 -24.209 0.000 39.04 C(4) 1.193e+00 CO2 1.051e+00 1.052e+00 0.022 0.022 0.000 36.72 (CO2)2 7.034e-02 7.035e-02 -1.153 -1.153 0.000 73.43 - HCO3- 8.038e-04 7.764e-04 -3.095 -3.110 -0.015 25.82 - CO3-2 1.048e-10 9.127e-11 -9.980 -10.040 -0.060 -2.36 -H(0) 2.137e-14 - H2 1.068e-14 1.069e-14 -13.971 -13.971 0.000 28.49 + HCO3- 8.031e-04 7.758e-04 -3.095 -3.110 -0.015 26.06 + CO3-2 1.054e-10 9.180e-11 -9.977 -10.037 -0.060 -2.95 +H(0) 1.982e-14 + H2 9.909e-15 9.911e-15 -14.004 -14.004 0.000 28.49 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.797 -50.797 0.000 32.45 + O2 0.000e+00 0.000e+00 -50.731 -50.731 0.000 32.45 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 202 atm) - CH4(g) -20.95 -24.08 -3.13 CH4 + CH4(g) -21.08 -24.21 -3.13 CH4 CO2(g) 2.01 0.02 -1.99 CO2 Pressure 199.5 atm, phi 0.510 - H2(g) -10.75 -13.97 -3.22 H2 + H2(g) -10.78 -14.00 -3.22 H2 H2O(g) -0.38 -0.01 0.37 H2O Pressure 2.4 atm, phi 0.178 - O2(g) -47.60 -50.80 -3.20 O2 + O2(g) -47.53 -50.73 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7082,19 +7071,19 @@ H2O(g) 0.43 2.704e+00 0.158 1.639e-01 1.818e-01 1.784e-02 ----------------------------Description of solution---------------------------- pH = 3.100 Charge balance - pe = 2.388 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 500 + pe = 2.157 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 472 Density (g/cm³) = 0.99369 Volume (L) = 1.05716 - Viscosity (mPa s) = 0.38364 + Viscosity (mPa s) = 0.38353 Activity of water = 0.980 - Ionic strength (mol/kgw) = 8.219e-04 + Ionic strength (mol/kgw) = 8.210e-04 Mass of water (kg) = 9.967e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.226e+00 Temperature (°C) = 75.00 Pressure (atm) = 222.54 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 52 Total H = 1.106489e+02 @@ -7105,30 +7094,30 @@ H2O(g) 0.43 2.704e+00 0.158 1.639e-01 1.818e-01 1.784e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.219e-04 7.945e-04 -3.085 -3.100 -0.015 0.00 - OH- 3.148e-10 3.038e-10 -9.502 -9.517 -0.015 -5.17 + H+ 8.210e-04 7.937e-04 -3.086 -3.100 -0.015 0.00 + OH- 3.151e-10 3.041e-10 -9.502 -9.517 -0.015 -5.17 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.30 -C(-4) 1.620e-26 - CH4 1.620e-26 1.620e-26 -25.791 -25.790 0.000 39.04 +C(-4) 1.149e-24 + CH4 1.149e-24 1.149e-24 -23.940 -23.940 0.000 39.04 C(4) 1.226e+00 CO2 1.077e+00 1.077e+00 0.032 0.032 0.000 36.68 (CO2)2 7.382e-02 7.383e-02 -1.132 -1.132 0.000 73.37 - HCO3- 8.219e-04 7.937e-04 -3.085 -3.100 -0.015 25.87 - CO3-2 1.070e-10 9.302e-11 -9.971 -10.031 -0.061 -2.14 -H(0) 7.819e-15 - H2 3.909e-15 3.910e-15 -14.408 -14.408 0.000 28.48 + HCO3- 8.210e-04 7.928e-04 -3.086 -3.101 -0.015 26.14 + CO3-2 1.077e-10 9.367e-11 -9.968 -10.028 -0.061 -2.76 +H(0) 2.269e-14 + H2 1.134e-14 1.135e-14 -13.945 -13.945 0.000 28.48 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -49.940 -49.940 0.000 32.40 + O2 0.000e+00 0.000e+00 -50.866 -50.866 0.000 32.40 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 223 atm) - CH4(g) -22.65 -25.79 -3.14 CH4 + CH4(g) -20.80 -23.94 -3.14 CH4 CO2(g) 2.03 0.03 -2.00 CO2 Pressure 219.8 atm, phi 0.487 - H2(g) -11.18 -14.41 -3.23 H2 + H2(g) -10.72 -13.95 -3.23 H2 H2O(g) -0.37 -0.01 0.36 H2O Pressure 2.7 atm, phi 0.158 - O2(g) -46.73 -49.94 -3.21 O2 + O2(g) -47.66 -50.87 -3.21 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7176,22 +7165,22 @@ H2O(g) 0.49 3.103e+00 0.140 1.818e-01 2.001e-01 1.830e-02 ----------------------------Description of solution---------------------------- - pH = 3.089 Charge balance - pe = 2.277 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 512 + pH = 3.090 Charge balance + pe = 2.124 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 482 Density (g/cm³) = 0.99500 Volume (L) = 1.05696 - Viscosity (mPa s) = 0.38431 + Viscosity (mPa s) = 0.38420 Activity of water = 0.980 - Ionic strength (mol/kgw) = 8.425e-04 + Ionic strength (mol/kgw) = 8.413e-04 Mass of water (kg) = 9.964e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.261e+00 Temperature (°C) = 75.00 Pressure (atm) = 247.32 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 59 + Iterations = 60 Total H = 1.106123e+02 Total O = 5.781815e+01 @@ -7200,30 +7189,30 @@ H2O(g) 0.49 3.103e+00 0.140 1.818e-01 2.001e-01 1.830e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.425e-04 8.142e-04 -3.074 -3.089 -0.015 0.00 - OH- 3.136e-10 3.025e-10 -9.504 -9.519 -0.016 -5.24 + H+ 8.413e-04 8.131e-04 -3.075 -3.090 -0.015 0.00 + OH- 3.140e-10 3.030e-10 -9.503 -9.519 -0.016 -5.24 H2O 5.551e+01 9.799e-01 1.744 -0.009 0.000 18.28 -C(-4) 1.512e-25 - CH4 1.512e-25 1.512e-25 -24.820 -24.820 0.000 39.03 +C(-4) 2.508e-24 + CH4 2.508e-24 2.509e-24 -23.601 -23.601 0.000 39.03 C(4) 1.261e+00 CO2 1.104e+00 1.105e+00 0.043 0.043 0.000 36.64 (CO2)2 7.762e-02 7.764e-02 -1.110 -1.110 0.000 73.28 - HCO3- 8.425e-04 8.133e-04 -3.074 -3.090 -0.015 25.93 - CO3-2 1.096e-10 9.514e-11 -9.960 -10.022 -0.061 -1.88 -H(0) 1.336e-14 - H2 6.679e-15 6.681e-15 -14.175 -14.175 0.000 28.47 + HCO3- 8.413e-04 8.122e-04 -3.075 -3.090 -0.015 26.24 + CO3-2 1.105e-10 9.594e-11 -9.957 -10.018 -0.061 -2.53 +H(0) 2.696e-14 + H2 1.348e-14 1.348e-14 -13.870 -13.870 0.000 28.47 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.426 -50.426 0.000 32.34 + O2 0.000e+00 0.000e+00 -51.036 -51.036 0.000 32.34 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 247 atm) - CH4(g) -21.66 -24.82 -3.16 CH4 + CH4(g) -20.44 -23.60 -3.16 CH4 CO2(g) 2.05 0.04 -2.01 CO2 Pressure 244.2 atm, phi 0.464 - H2(g) -10.94 -14.18 -3.24 H2 + H2(g) -10.63 -13.87 -3.24 H2 H2O(g) -0.36 -0.01 0.35 H2O Pressure 3.1 atm, phi 0.140 - O2(g) -47.21 -50.43 -3.22 O2 + O2(g) -47.82 -51.04 -3.22 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7271,20 +7260,20 @@ H2O(g) 0.55 3.579e+00 0.123 2.001e-01 2.186e-01 1.854e-02 ----------------------------Description of solution---------------------------- - pH = 3.077 Charge balance - pe = 2.243 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 525 + pH = 3.078 Charge balance + pe = 2.151 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 495 Density (g/cm³) = 0.99654 Volume (L) = 1.05664 - Viscosity (mPa s) = 0.38512 + Viscosity (mPa s) = 0.38499 Activity of water = 0.979 - Ionic strength (mol/kgw) = 8.662e-04 + Ionic strength (mol/kgw) = 8.646e-04 Mass of water (kg) = 9.960e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.298e+00 Temperature (°C) = 75.00 Pressure (atm) = 277.14 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 67 Total H = 1.105752e+02 @@ -7295,30 +7284,30 @@ H2O(g) 0.55 3.579e+00 0.123 2.001e-01 2.186e-01 1.854e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.662e-04 8.368e-04 -3.062 -3.077 -0.015 0.00 - OH- 3.129e-10 3.017e-10 -9.505 -9.520 -0.016 -5.33 + H+ 8.646e-04 8.353e-04 -3.063 -3.078 -0.015 0.00 + OH- 3.134e-10 3.023e-10 -9.504 -9.520 -0.016 -5.33 H2O 5.551e+01 9.793e-01 1.744 -0.009 0.000 18.26 -C(-4) 3.510e-25 - CH4 3.510e-25 3.510e-25 -24.455 -24.455 0.000 39.03 +C(-4) 1.866e-24 + CH4 1.866e-24 1.866e-24 -23.729 -23.729 0.000 39.03 C(4) 1.298e+00 CO2 1.134e+00 1.134e+00 0.055 0.055 0.000 36.59 (CO2)2 8.181e-02 8.183e-02 -1.087 -1.087 0.000 73.19 - HCO3- 8.662e-04 8.358e-04 -3.062 -3.078 -0.016 25.99 - CO3-2 1.127e-10 9.771e-11 -9.948 -10.010 -0.062 -1.57 -H(0) 1.606e-14 - H2 8.030e-15 8.032e-15 -14.095 -14.095 0.000 28.45 + HCO3- 8.646e-04 8.343e-04 -3.063 -3.079 -0.015 26.36 + CO3-2 1.139e-10 9.872e-11 -9.944 -10.006 -0.062 -2.26 +H(0) 2.439e-14 + H2 1.219e-14 1.220e-14 -13.914 -13.914 0.000 28.45 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.610 -50.610 0.000 32.27 + O2 0.000e+00 0.000e+00 -50.973 -50.973 0.000 32.27 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 277 atm) - CH4(g) -21.28 -24.45 -3.18 CH4 + CH4(g) -20.55 -23.73 -3.18 CH4 CO2(g) 2.08 0.05 -2.03 CO2 Pressure 273.6 atm, phi 0.441 - H2(g) -10.84 -14.10 -3.25 H2 + H2(g) -10.66 -13.91 -3.25 H2 H2O(g) -0.36 -0.01 0.35 H2O Pressure 3.6 atm, phi 0.123 - O2(g) -47.38 -50.61 -3.23 O2 + O2(g) -47.74 -50.97 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7366,22 +7355,22 @@ H2O(g) 0.62 4.146e+00 0.109 2.186e-01 2.371e-01 1.851e-02 ----------------------------Description of solution---------------------------- - pH = 3.064 Charge balance - pe = 2.155 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 541 + pH = 3.065 Charge balance + pe = 2.230 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 509 Density (g/cm³) = 0.99835 Volume (L) = 1.05616 - Viscosity (mPa s) = 0.38609 + Viscosity (mPa s) = 0.38595 Activity of water = 0.979 - Ionic strength (mol/kgw) = 8.935e-04 + Ionic strength (mol/kgw) = 8.914e-04 Mass of water (kg) = 9.957e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.339e+00 Temperature (°C) = 75.00 Pressure (atm) = 313.08 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 75 + Iterations = 76 Total H = 1.105382e+02 Total O = 5.793600e+01 @@ -7390,30 +7379,30 @@ H2O(g) 0.62 4.146e+00 0.109 2.186e-01 2.371e-01 1.851e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.935e-04 8.628e-04 -3.049 -3.064 -0.015 0.00 - OH- 3.128e-10 3.015e-10 -9.505 -9.521 -0.016 -5.43 + H+ 8.914e-04 8.608e-04 -3.050 -3.065 -0.015 0.00 + OH- 3.135e-10 3.022e-10 -9.504 -9.520 -0.016 -5.43 H2O 5.551e+01 9.787e-01 1.744 -0.009 0.000 18.23 -C(-4) 2.221e-24 - CH4 2.221e-24 2.221e-24 -23.654 -23.653 0.000 39.02 +C(-4) 5.452e-25 + CH4 5.452e-25 5.453e-25 -24.263 -24.263 0.000 39.02 C(4) 1.339e+00 CO2 1.165e+00 1.166e+00 0.066 0.067 0.000 36.53 (CO2)2 8.643e-02 8.645e-02 -1.063 -1.063 0.000 73.07 - HCO3- 8.935e-04 8.618e-04 -3.049 -3.065 -0.016 26.07 - CO3-2 1.165e-10 1.008e-10 -9.934 -9.996 -0.063 -1.21 -H(0) 2.471e-14 - H2 1.235e-14 1.236e-14 -13.908 -13.908 0.000 28.44 + HCO3- 8.914e-04 8.598e-04 -3.050 -3.066 -0.016 26.50 + CO3-2 1.180e-10 1.021e-10 -9.928 -9.991 -0.063 -1.94 +H(0) 1.739e-14 + H2 8.695e-15 8.697e-15 -14.061 -14.061 0.000 28.44 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.013 -51.013 0.000 32.18 + O2 0.000e+00 0.000e+00 -50.708 -50.708 0.000 32.18 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 313 atm) - CH4(g) -20.46 -23.65 -3.20 CH4 + CH4(g) -21.07 -24.26 -3.20 CH4 CO2(g) 2.11 0.07 -2.05 CO2 Pressure 308.9 atm, phi 0.420 - H2(g) -10.64 -13.91 -3.27 H2 + H2(g) -10.79 -14.06 -3.27 H2 H2O(g) -0.35 -0.01 0.34 H2O Pressure 4.1 atm, phi 0.109 - O2(g) -47.76 -51.01 -3.25 O2 + O2(g) -47.46 -50.71 -3.25 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7461,60 +7450,67 @@ H2O(g) 0.68 4.819e+00 0.096 2.371e-01 2.553e-01 1.819e-02 ----------------------------Description of solution---------------------------- - pH = 3.049 Charge balance - pe = 2.101 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 558 + pH = 3.050 Charge balance + pe = 2.295 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 525 Density (g/cm³) = 1.00048 Volume (L) = 1.05549 - Viscosity (mPa s) = 0.38726 + Viscosity (mPa s) = 0.38711 Activity of water = 0.978 - Ionic strength (mol/kgw) = 9.254e-04 + Ionic strength (mol/kgw) = 9.224e-04 Mass of water (kg) = 9.954e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.383e+00 Temperature (°C) = 75.00 Pressure (atm) = 356.38 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 84 + Iterations = 86 Total H = 1.105018e+02 - Total O = 5.800455e+01 + Total O = 5.800454e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.254e-04 8.931e-04 -3.034 -3.049 -0.015 0.00 - OH- 3.135e-10 3.020e-10 -9.504 -9.520 -0.016 -5.54 + H+ 9.224e-04 8.903e-04 -3.035 -3.050 -0.015 0.00 + OH- 3.144e-10 3.029e-10 -9.502 -9.519 -0.016 -5.54 H2O 5.551e+01 9.780e-01 1.744 -0.010 0.000 18.20 -C(-4) 7.616e-24 - CH4 7.616e-24 7.618e-24 -23.118 -23.118 0.000 39.01 +C(-4) 2.089e-25 + CH4 2.089e-25 2.090e-25 -24.680 -24.680 0.000 39.01 C(4) 1.383e+00 CO2 1.199e+00 1.199e+00 0.079 0.079 0.000 36.47 (CO2)2 9.152e-02 9.154e-02 -1.038 -1.038 0.000 72.93 - HCO3- 9.254e-04 8.920e-04 -3.034 -3.050 -0.016 26.16 - CO3-2 1.212e-10 1.047e-10 -9.916 -9.980 -0.064 -0.79 -H(0) 3.244e-14 - H2 1.622e-14 1.622e-14 -13.790 -13.790 0.000 28.42 + HCO3- 9.224e-04 8.892e-04 -3.035 -3.051 -0.016 26.67 + CO3-2 1.231e-10 1.064e-10 -9.910 -9.973 -0.064 -1.57 +H(0) 1.320e-14 + H2 6.602e-15 6.603e-15 -14.180 -14.180 0.000 28.42 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.285 -51.285 0.000 32.08 + O2 0.000e+00 0.000e+00 -50.504 -50.504 0.000 32.08 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 356 atm) - CH4(g) -19.89 -23.12 -3.22 CH4 + CH4(g) -21.46 -24.68 -3.22 CH4 CO2(g) 2.15 0.08 -2.07 CO2 Pressure 351.6 atm, phi 0.401 - H2(g) -10.50 -13.79 -3.29 H2 + H2(g) -10.89 -14.18 -3.29 H2 H2O(g) -0.33 -0.01 0.32 H2O Pressure 4.8 atm, phi 0.096 - O2(g) -48.01 -51.28 -3.27 O2 + O2(g) -47.23 -50.50 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. Reaction step 22. +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + Using solution 1. Using gas phase 1. Using temperature 3. @@ -7556,22 +7552,22 @@ H2O(g) 0.75 5.616e+00 0.085 2.553e-01 2.728e-01 1.752e-02 ----------------------------Description of solution---------------------------- - pH = 3.032 Charge balance - pe = 2.336 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 578 + pH = 3.034 Charge balance + pe = 12.341 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 544 Density (g/cm³) = 1.00298 Volume (L) = 1.05459 - Viscosity (mPa s) = 0.38867 + Viscosity (mPa s) = 0.38850 Activity of water = 0.977 - Ionic strength (mol/kgw) = 9.626e-04 + Ionic strength (mol/kgw) = 9.585e-04 Mass of water (kg) = 9.951e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.431e+00 Temperature (°C) = 75.00 Pressure (atm) = 408.56 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 95 + Iterations = 122 (223 overall) Total H = 1.104668e+02 Total O = 5.808036e+01 @@ -7580,30 +7576,30 @@ H2O(g) 0.75 5.616e+00 0.085 2.553e-01 2.728e-01 1.752e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.626e-04 9.286e-04 -3.017 -3.032 -0.016 0.00 - OH- 3.153e-10 3.035e-10 -9.501 -9.518 -0.016 -5.68 + H+ 9.585e-04 9.247e-04 -3.018 -3.034 -0.016 0.00 + OH- 3.166e-10 3.048e-10 -9.500 -9.516 -0.016 -5.68 H2O 5.551e+01 9.773e-01 1.744 -0.010 0.000 18.16 -C(-4) 1.331e-25 - CH4 1.331e-25 1.332e-25 -24.876 -24.876 0.000 39.00 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -104.932 -104.932 0.000 39.00 C(4) 1.431e+00 CO2 1.235e+00 1.236e+00 0.092 0.092 0.000 36.39 (CO2)2 9.711e-02 9.713e-02 -1.013 -1.013 0.000 72.77 - HCO3- 9.626e-04 9.274e-04 -3.017 -3.033 -0.016 26.27 - CO3-2 1.269e-10 1.093e-10 -9.897 -9.961 -0.065 -0.29 -H(0) 1.131e-14 - H2 5.657e-15 5.659e-15 -14.247 -14.247 0.000 28.40 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.412 -50.412 0.000 31.97 + HCO3- 9.585e-04 9.235e-04 -3.018 -3.035 -0.016 26.86 + CO3-2 1.295e-10 1.116e-10 -9.888 -9.952 -0.065 -1.13 +H(0) 1.096e-34 + H2 5.478e-35 5.479e-35 -34.261 -34.261 0.000 28.40 +O(0) 8.268e-11 + O2 4.134e-11 4.135e-11 -10.384 -10.384 0.000 31.97 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 409 atm) - CH4(g) -21.62 -24.88 -3.25 CH4 + CH4(g) -101.68 -104.93 -3.25 CH4 CO2(g) 2.19 0.09 -2.10 CO2 Pressure 402.9 atm, phi 0.385 - H2(g) -10.94 -14.25 -3.31 H2 + H2(g) -30.95 -34.26 -3.31 H2 H2O(g) -0.32 -0.01 0.31 H2O Pressure 5.6 atm, phi 0.085 - O2(g) -47.12 -50.41 -3.30 O2 + O2(g) -7.09 -10.38 -3.30 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7658,54 +7654,54 @@ H2O(g) 0.82 6.552e+00 0.076 2.728e-01 2.893e-01 1.646e-02 ----------------------------Description of solution---------------------------- - pH = 3.013 Charge balance - pe = 2.768 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 602 + pH = 3.016 Charge balance + pe = 12.359 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 567 Density (g/cm³) = 1.00591 Volume (L) = 1.05341 - Viscosity (mPa s) = 0.39037 + Viscosity (mPa s) = 0.39018 Activity of water = 0.977 - Ionic strength (mol/kgw) = 1.006e-03 + Ionic strength (mol/kgw) = 1.001e-03 Mass of water (kg) = 9.948e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.481e+00 Temperature (°C) = 75.00 Pressure (atm) = 471.44 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 146 (247 overall) + Iterations = 35 (136 overall) Total H = 1.104339e+02 - Total O = 5.816399e+01 + Total O = 5.816398e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.006e-03 9.702e-04 -2.997 -3.013 -0.016 0.00 - OH- 3.185e-10 3.065e-10 -9.497 -9.514 -0.017 -5.84 + H+ 1.001e-03 9.647e-04 -3.000 -3.016 -0.016 0.00 + OH- 3.203e-10 3.082e-10 -9.494 -9.511 -0.017 -5.84 H2O 5.551e+01 9.766e-01 1.744 -0.010 0.000 18.11 -C(-4) 6.275e-29 - CH4 6.275e-29 6.276e-29 -28.202 -28.202 0.000 38.98 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -104.948 -104.948 0.000 38.98 C(4) 1.481e+00 CO2 1.274e+00 1.274e+00 0.105 0.105 0.000 36.29 (CO2)2 1.032e-01 1.033e-01 -0.986 -0.986 0.000 72.58 - HCO3- 1.006e-03 9.689e-04 -2.997 -3.014 -0.016 26.40 - CO3-2 1.339e-10 1.150e-10 -9.873 -9.939 -0.066 0.29 -H(0) 1.588e-15 - H2 7.938e-16 7.940e-16 -15.100 -15.100 0.000 28.38 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -48.756 -48.756 0.000 31.83 + HCO3- 1.001e-03 9.634e-04 -3.000 -3.016 -0.016 27.09 + CO3-2 1.374e-10 1.181e-10 -9.862 -9.928 -0.066 -0.62 +H(0) 1.034e-34 + H2 5.169e-35 5.170e-35 -34.287 -34.286 0.000 28.38 +O(0) 8.270e-11 + O2 4.135e-11 4.136e-11 -10.384 -10.383 0.000 31.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 471 atm) - CH4(g) -24.91 -28.20 -3.29 CH4 + CH4(g) -101.66 -104.95 -3.29 CH4 CO2(g) 2.24 0.11 -2.13 CO2 Pressure 464.9 atm, phi 0.372 - H2(g) -11.76 -15.10 -3.34 H2 + H2(g) -30.95 -34.29 -3.34 H2 H2O(g) -0.30 -0.01 0.29 H2O Pressure 6.6 atm, phi 0.076 - O2(g) -45.43 -48.76 -3.33 O2 + O2(g) -7.06 -10.38 -3.33 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7760,54 +7756,54 @@ H2O(g) 0.88 7.646e+00 0.068 2.893e-01 3.042e-01 1.496e-02 ----------------------------Description of solution---------------------------- - pH = 2.992 Charge balance - pe = 12.662 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 630 + pH = 2.995 Charge balance + pe = 12.378 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 593 Density (g/cm³) = 1.00936 Volume (L) = 1.05188 - Viscosity (mPa s) = 0.39243 + Viscosity (mPa s) = 0.39221 Activity of water = 0.976 - Ionic strength (mol/kgw) = 1.058e-03 + Ionic strength (mol/kgw) = 1.050e-03 Mass of water (kg) = 9.945e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.535e+00 Temperature (°C) = 75.00 Pressure (atm) = 547.25 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 101 (202 overall) + Iterations = 36 (137 overall) Total H = 1.104039e+02 - Total O = 5.825587e+01 + Total O = 5.825586e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.058e-03 1.019e-03 -2.975 -2.992 -0.016 0.00 - OH- 3.238e-10 3.113e-10 -9.490 -9.507 -0.017 -6.01 + H+ 1.050e-03 1.012e-03 -2.979 -2.995 -0.016 0.00 + OH- 3.262e-10 3.137e-10 -9.486 -9.504 -0.017 -6.01 H2O 5.551e+01 9.757e-01 1.744 -0.011 0.000 18.05 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.213 -107.213 0.000 38.96 + CH4 0.000e+00 0.000e+00 -104.969 -104.969 0.000 38.96 C(4) 1.535e+00 CO2 1.314e+00 1.315e+00 0.119 0.119 0.000 36.18 (CO2)2 1.099e-01 1.100e-01 -0.959 -0.959 0.000 72.36 - HCO3- 1.058e-03 1.018e-03 -2.975 -2.992 -0.017 26.54 - CO3-2 1.425e-10 1.221e-10 -9.846 -9.913 -0.067 0.96 -H(0) 2.649e-35 - H2 1.325e-35 1.325e-35 -34.878 -34.878 0.000 28.36 -O(0) 1.096e-09 - O2 5.480e-10 5.482e-10 -9.261 -9.261 0.000 31.68 + HCO3- 1.050e-03 1.010e-03 -2.979 -2.996 -0.017 27.35 + CO3-2 1.474e-10 1.263e-10 -9.832 -9.899 -0.067 -0.02 +H(0) 9.645e-35 + H2 4.822e-35 4.824e-35 -34.317 -34.317 0.000 28.36 +O(0) 8.270e-11 + O2 4.135e-11 4.136e-11 -10.383 -10.383 0.000 31.68 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 547 atm) - CH4(g) -103.88 -107.21 -3.34 CH4 + CH4(g) -101.63 -104.97 -3.34 CH4 CO2(g) 2.29 0.12 -2.17 CO2 Pressure 539.6 atm, phi 0.364 - H2(g) -31.51 -34.88 -3.37 H2 + H2(g) -30.95 -34.32 -3.37 H2 H2O(g) -0.28 -0.01 0.27 H2O Pressure 7.6 atm, phi 0.068 - O2(g) -5.90 -9.26 -3.36 O2 + O2(g) -7.02 -10.38 -3.36 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7862,54 +7858,54 @@ H2O(g) 0.95 8.913e+00 0.062 3.042e-01 3.172e-01 1.297e-02 ----------------------------Description of solution---------------------------- - pH = 2.967 Charge balance - pe = 12.685 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 662 + pH = 2.972 Charge balance + pe = 12.400 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 624 Density (g/cm³) = 1.01339 Volume (L) = 1.04992 - Viscosity (mPa s) = 0.39492 + Viscosity (mPa s) = 0.39467 Activity of water = 0.975 - Ionic strength (mol/kgw) = 1.120e-03 + Ionic strength (mol/kgw) = 1.108e-03 Mass of water (kg) = 9.943e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.593e+00 Temperature (°C) = 75.00 Pressure (atm) = 638.75 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.103780e+02 - Total O = 5.835631e+01 + Total O = 5.835630e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.120e-03 1.078e-03 -2.951 -2.967 -0.017 0.00 - OH- 3.317e-10 3.186e-10 -9.479 -9.497 -0.018 -6.22 + H+ 1.108e-03 1.067e-03 -2.955 -2.972 -0.016 0.00 + OH- 3.351e-10 3.220e-10 -9.475 -9.492 -0.017 -6.22 H2O 5.551e+01 9.749e-01 1.744 -0.011 0.000 17.99 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.241 -107.241 0.000 38.94 + CH4 0.000e+00 0.000e+00 -104.996 -104.996 0.000 38.94 C(4) 1.593e+00 CO2 1.357e+00 1.357e+00 0.133 0.133 0.000 36.05 (CO2)2 1.172e-01 1.173e-01 -0.931 -0.931 0.000 72.11 - HCO3- 1.120e-03 1.076e-03 -2.951 -2.968 -0.017 26.72 - CO3-2 1.531e-10 1.307e-10 -9.815 -9.884 -0.069 1.73 -H(0) 2.437e-35 - H2 1.218e-35 1.219e-35 -34.914 -34.914 0.000 28.33 -O(0) 1.096e-09 - O2 5.482e-10 5.483e-10 -9.261 -9.261 0.000 31.50 + HCO3- 1.108e-03 1.065e-03 -2.955 -2.973 -0.017 27.65 + CO3-2 1.600e-10 1.367e-10 -9.796 -9.864 -0.068 0.66 +H(0) 8.872e-35 + H2 4.436e-35 4.437e-35 -34.353 -34.353 0.000 28.33 +O(0) 8.272e-11 + O2 4.136e-11 4.137e-11 -10.383 -10.383 0.000 31.50 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 639 atm) - CH4(g) -103.85 -107.24 -3.39 CH4 + CH4(g) -101.61 -105.00 -3.39 CH4 CO2(g) 2.36 0.13 -2.22 CO2 Pressure 629.8 atm, phi 0.360 - H2(g) -31.51 -34.91 -3.41 H2 + H2(g) -30.95 -34.35 -3.41 H2 H2O(g) -0.26 -0.01 0.25 H2O Pressure 8.9 atm, phi 0.062 - O2(g) -5.86 -9.26 -3.40 O2 + O2(g) -6.98 -10.38 -3.40 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7964,54 +7960,54 @@ H2O(g) 1.02 1.037e+01 0.057 3.172e-01 3.276e-01 1.043e-02 ----------------------------Description of solution---------------------------- - pH = 2.940 Charge balance - pe = 12.710 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 700 + pH = 2.946 Charge balance + pe = 12.424 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 660 Density (g/cm³) = 1.01812 Volume (L) = 1.04745 - Viscosity (mPa s) = 0.39795 + Viscosity (mPa s) = 0.39767 Activity of water = 0.974 - Ionic strength (mol/kgw) = 1.194e-03 + Ionic strength (mol/kgw) = 1.177e-03 Mass of water (kg) = 9.941e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.653e+00 Temperature (°C) = 75.00 Pressure (atm) = 749.41 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 (137 overall) + Iterations = 33 (134 overall) Total H = 1.103572e+02 - Total O = 5.846545e+01 + Total O = 5.846543e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.194e-03 1.148e-03 -2.923 -2.940 -0.017 0.00 - OH- 3.434e-10 3.295e-10 -9.464 -9.482 -0.018 -6.44 + H+ 1.177e-03 1.132e-03 -2.929 -2.946 -0.017 0.00 + OH- 3.482e-10 3.342e-10 -9.458 -9.476 -0.018 -6.45 H2O 5.551e+01 9.740e-01 1.744 -0.011 0.000 17.91 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.277 -107.277 0.000 38.91 + CH4 0.000e+00 0.000e+00 -105.032 -105.032 0.000 38.91 C(4) 1.653e+00 CO2 1.402e+00 1.402e+00 0.147 0.147 0.000 35.91 (CO2)2 1.251e-01 1.251e-01 -0.903 -0.903 0.000 71.82 - HCO3- 1.194e-03 1.147e-03 -2.923 -2.941 -0.018 26.91 - CO3-2 1.663e-10 1.414e-10 -9.779 -9.849 -0.070 2.61 -H(0) 2.204e-35 - H2 1.102e-35 1.102e-35 -34.958 -34.958 0.000 28.29 -O(0) 1.097e-09 - O2 5.483e-10 5.484e-10 -9.261 -9.261 0.000 31.30 + HCO3- 1.177e-03 1.131e-03 -2.929 -2.947 -0.017 27.99 + CO3-2 1.762e-10 1.500e-10 -9.754 -9.824 -0.070 1.44 +H(0) 8.024e-35 + H2 4.012e-35 4.013e-35 -34.397 -34.397 0.000 28.29 +O(0) 8.272e-11 + O2 4.136e-11 4.137e-11 -10.383 -10.383 0.000 31.30 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 749 atm) - CH4(g) -103.82 -107.28 -3.46 CH4 + CH4(g) -101.58 -105.03 -3.46 CH4 CO2(g) 2.43 0.15 -2.28 CO2 Pressure 739.0 atm, phi 0.363 - H2(g) -31.50 -34.96 -3.45 H2 + H2(g) -30.94 -34.40 -3.45 H2 H2O(g) -0.23 -0.01 0.22 H2O Pressure 10.4 atm, phi 0.057 - O2(g) -5.81 -9.26 -3.45 O2 + O2(g) -6.93 -10.38 -3.45 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8055,7 +8051,7 @@ Total pressure: 883.67 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.94 8.716e+02 0.375 2.336e+01 2.429e+01 9.375e-01 +CO2(g) 2.94 8.717e+02 0.375 2.336e+01 2.429e+01 9.375e-01 H2O(g) 1.08 1.202e+01 0.053 3.276e-01 3.349e-01 7.291e-03 -----------------------------Solution composition------------------------------ @@ -8066,54 +8062,54 @@ H2O(g) 1.08 1.202e+01 0.053 3.276e-01 3.349e-01 7.291e-03 ----------------------------Description of solution---------------------------- - pH = 2.909 Charge balance - pe = 12.739 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 746 + pH = 2.917 Charge balance + pe = 12.450 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 704 Density (g/cm³) = 1.02365 Volume (L) = 1.04435 - Viscosity (mPa s) = 0.40166 + Viscosity (mPa s) = 0.40132 Activity of water = 0.973 - Ionic strength (mol/kgw) = 1.284e-03 + Ionic strength (mol/kgw) = 1.259e-03 Mass of water (kg) = 9.939e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.716e+00 Temperature (°C) = 75.00 Pressure (atm) = 883.67 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.103426e+02 - Total O = 5.858316e+01 + Total O = 5.858312e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.284e-03 1.234e-03 -2.891 -2.909 -0.017 0.00 - OH- 3.604e-10 3.454e-10 -9.443 -9.462 -0.018 -6.70 + H+ 1.259e-03 1.210e-03 -2.900 -2.917 -0.017 0.00 + OH- 3.673e-10 3.521e-10 -9.435 -9.453 -0.018 -6.70 H2O 5.551e+01 9.731e-01 1.744 -0.012 0.000 17.82 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.322 -107.322 0.000 38.88 + CH4 0.000e+00 0.000e+00 -105.078 -105.077 0.000 38.88 C(4) 1.716e+00 CO2 1.448e+00 1.448e+00 0.161 0.161 0.000 35.74 (CO2)2 1.335e-01 1.335e-01 -0.875 -0.875 0.000 71.48 - HCO3- 1.284e-03 1.232e-03 -2.891 -2.910 -0.018 27.14 - CO3-2 1.828e-10 1.548e-10 -9.738 -9.810 -0.072 3.61 -H(0) 1.952e-35 - H2 9.759e-36 9.762e-36 -35.011 -35.010 0.000 28.26 -O(0) 1.097e-09 - O2 5.483e-10 5.485e-10 -9.261 -9.261 0.000 31.07 + HCO3- 1.259e-03 1.208e-03 -2.900 -2.918 -0.018 28.38 + CO3-2 1.974e-10 1.673e-10 -9.705 -9.776 -0.072 2.33 +H(0) 7.106e-35 + H2 3.553e-35 3.554e-35 -34.449 -34.449 0.000 28.26 +O(0) 8.273e-11 + O2 4.137e-11 4.138e-11 -10.383 -10.383 0.000 31.07 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 884 atm) - CH4(g) -103.79 -107.32 -3.53 CH4 - CO2(g) 2.51 0.16 -2.35 CO2 Pressure 871.6 atm, phi 0.375 - H2(g) -31.50 -35.01 -3.51 H2 + CH4(g) -101.54 -105.08 -3.53 CH4 + CO2(g) 2.51 0.16 -2.35 CO2 Pressure 871.7 atm, phi 0.375 + H2(g) -30.94 -34.45 -3.51 H2 H2O(g) -0.20 -0.01 0.18 H2O Pressure 12.0 atm, phi 0.053 - O2(g) -5.75 -9.26 -3.52 O2 + O2(g) -6.87 -10.38 -3.52 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8168,54 +8164,54 @@ H2O(g) 1.14 1.386e+01 0.051 3.349e-01 3.384e-01 3.493e-03 ----------------------------Description of solution---------------------------- - pH = 2.874 Charge balance - pe = 12.772 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 801 + pH = 2.885 Charge balance + pe = 12.480 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 756 Density (g/cm³) = 1.03011 Volume (L) = 1.04050 - Viscosity (mPa s) = 0.40620 + Viscosity (mPa s) = 0.40581 Activity of water = 0.972 - Ionic strength (mol/kgw) = 1.394e-03 + Ionic strength (mol/kgw) = 1.357e-03 Mass of water (kg) = 9.939e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.781e+00 Temperature (°C) = 75.00 Pressure (atm) = 1047.32 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 (137 overall) + Iterations = 34 (135 overall) Total H = 1.103356e+02 - Total O = 5.870894e+01 + Total O = 5.870889e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.394e-03 1.338e-03 -2.856 -2.874 -0.018 0.00 - OH- 3.850e-10 3.684e-10 -9.415 -9.434 -0.019 -6.98 + H+ 1.357e-03 1.303e-03 -2.867 -2.885 -0.018 0.00 + OH- 3.950e-10 3.783e-10 -9.403 -9.422 -0.019 -6.98 H2O 5.551e+01 9.721e-01 1.744 -0.012 0.000 17.72 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.381 -107.381 0.000 38.84 + CH4 0.000e+00 0.000e+00 -105.136 -105.136 0.000 38.84 C(4) 1.781e+00 CO2 1.495e+00 1.496e+00 0.175 0.175 0.000 35.55 (CO2)2 1.423e-01 1.424e-01 -0.847 -0.847 0.000 71.10 - HCO3- 1.394e-03 1.336e-03 -2.856 -2.874 -0.019 27.39 - CO3-2 2.036e-10 1.715e-10 -9.691 -9.766 -0.075 4.74 -H(0) 1.684e-35 - H2 8.422e-36 8.424e-36 -35.075 -35.074 0.000 28.21 -O(0) 1.097e-09 - O2 5.484e-10 5.486e-10 -9.261 -9.261 0.000 30.82 + HCO3- 1.357e-03 1.301e-03 -2.867 -2.886 -0.018 28.83 + CO3-2 2.254e-10 1.903e-10 -9.647 -9.721 -0.074 3.34 +H(0) 6.132e-35 + H2 3.066e-35 3.067e-35 -34.513 -34.513 0.000 28.21 +O(0) 8.274e-11 + O2 4.137e-11 4.138e-11 -10.383 -10.383 0.000 30.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 1047 atm) - CH4(g) -103.75 -107.38 -3.63 CH4 + CH4(g) -101.50 -105.14 -3.63 CH4 CO2(g) 2.61 0.17 -2.44 CO2 Pressure 1033.5 atm, phi 0.398 - H2(g) -31.49 -35.07 -3.58 H2 + H2(g) -30.93 -34.51 -3.58 H2 H2O(g) -0.15 -0.01 0.14 H2O Pressure 13.9 atm, phi 0.051 - O2(g) -5.67 -9.26 -3.59 O2 + O2(g) -6.79 -10.38 -3.59 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8371,11 +8367,11 @@ H2O(g) 0.06 1.139e+00 0.877 3.285e-02 3.984e-02 6.990e-03 ----------------------------Description of solution---------------------------- pH = 3.544 Charge balance - pe = 9.307 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 209 + pe = 9.305 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 206 Density (g/cm³) = 0.96086 Volume (L) = 1.05014 - Viscosity (mPa s) = 0.28235 + Viscosity (mPa s) = 0.28228 Activity of water = 0.996 Ionic strength (mol/kgw) = 2.920e-04 Mass of water (kg) = 9.993e-01 @@ -8398,26 +8394,26 @@ H2O(g) 0.06 1.139e+00 0.877 3.285e-02 3.984e-02 6.990e-03 OH- 2.101e-09 2.053e-09 -8.678 -8.688 -0.010 -6.03 H2O 5.551e+01 9.963e-01 1.744 -0.002 0.000 18.78 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.998 -87.998 0.000 41.03 + CH4 0.000e+00 0.000e+00 -87.982 -87.982 0.000 41.03 C(4) 2.218e-01 CO2 2.131e-01 2.131e-01 -0.671 -0.671 0.000 38.83 (CO2)2 4.215e-03 4.215e-03 -2.375 -2.375 0.000 77.65 - HCO3- 2.920e-04 2.854e-04 -3.535 -3.545 -0.010 24.09 - CO3-2 7.842e-11 7.157e-11 -10.106 -10.145 -0.040 -7.90 -H(0) 1.512e-29 - H2 7.558e-30 7.559e-30 -29.122 -29.122 0.000 28.56 -O(0) 3.044e-15 - O2 1.522e-15 1.522e-15 -14.818 -14.818 0.000 33.82 + HCO3- 2.920e-04 2.854e-04 -3.535 -3.545 -0.010 23.81 + CO3-2 7.845e-11 7.159e-11 -10.105 -10.145 -0.040 -8.64 +H(0) 1.525e-29 + H2 7.627e-30 7.628e-30 -29.118 -29.118 0.000 28.56 +O(0) 2.989e-15 + O2 1.494e-15 1.494e-15 -14.826 -14.826 0.000 33.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 23 atm) - CH4(g) -84.98 -88.00 -3.02 CH4 + CH4(g) -84.96 -87.98 -3.02 CH4 CO2(g) 1.32 -0.67 -1.99 CO2 Pressure 22.3 atm, phi 0.939 H2(g) -26.01 -29.12 -3.11 H2 H2O(g) -0.00 -0.00 -0.00 H2O Pressure 1.1 atm, phi 0.877 - O2(g) -11.69 -14.82 -3.13 O2 + O2(g) -11.70 -14.83 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8466,13 +8462,13 @@ H2O(g) 0.11 1.294e+00 0.779 3.984e-02 4.816e-02 8.320e-03 ----------------------------Description of solution---------------------------- pH = 3.416 Charge balance - pe = 1.885 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 281 + pe = 2.060 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 273 Density (g/cm³) = 0.96303 Volume (L) = 1.05598 - Viscosity (mPa s) = 0.28297 + Viscosity (mPa s) = 0.28288 Activity of water = 0.993 - Ionic strength (mol/kgw) = 3.940e-04 + Ionic strength (mol/kgw) = 3.941e-04 Mass of water (kg) = 9.991e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 4.049e-01 @@ -8480,7 +8476,7 @@ H2O(g) 0.11 1.294e+00 0.779 3.984e-02 4.816e-02 8.320e-03 Pressure (atm) = 44.15 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 + Iterations = 33 Total H = 1.109161e+02 Total O = 5.626718e+01 @@ -8489,30 +8485,30 @@ H2O(g) 0.11 1.294e+00 0.779 3.984e-02 4.816e-02 8.320e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 3.940e-04 3.840e-04 -3.404 -3.416 -0.011 0.00 - OH- 1.590e-09 1.548e-09 -8.799 -8.810 -0.012 -6.11 + H+ 3.941e-04 3.841e-04 -3.404 -3.416 -0.011 0.00 + OH- 1.589e-09 1.547e-09 -8.799 -8.810 -0.012 -6.11 H2O 5.551e+01 9.933e-01 1.744 -0.003 0.000 18.76 -C(-4) 4.444e-28 - CH4 4.444e-28 4.444e-28 -27.352 -27.352 0.000 41.01 +C(-4) 1.776e-29 + CH4 1.776e-29 1.776e-29 -28.751 -28.751 0.000 41.01 C(4) 4.049e-01 CO2 3.780e-01 3.780e-01 -0.423 -0.422 0.000 38.77 (CO2)2 1.326e-02 1.326e-02 -1.877 -1.877 0.000 77.53 - HCO3- 3.940e-04 3.838e-04 -3.404 -3.416 -0.011 24.18 - CO3-2 8.124e-11 7.310e-11 -10.090 -10.136 -0.046 -7.58 -H(0) 1.872e-14 - H2 9.362e-15 9.363e-15 -14.029 -14.029 0.000 28.55 + HCO3- 3.941e-04 3.838e-04 -3.404 -3.416 -0.011 23.93 + CO3-2 8.130e-11 7.316e-11 -10.090 -10.136 -0.046 -8.35 +H(0) 8.372e-15 + H2 4.186e-15 4.186e-15 -14.378 -14.378 0.000 28.55 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.022 -45.022 0.000 33.76 + O2 0.000e+00 0.000e+00 -44.323 -44.323 0.000 33.76 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 44 atm) - CH4(g) -24.32 -27.35 -3.03 CH4 + CH4(g) -25.72 -28.75 -3.03 CH4 CO2(g) 1.58 -0.42 -2.00 CO2 Pressure 42.9 atm, phi 0.888 - H2(g) -10.91 -14.03 -3.12 H2 + H2(g) -11.26 -14.38 -3.12 H2 H2O(g) 0.00 -0.00 -0.01 H2O Pressure 1.3 atm, phi 0.779 - O2(g) -41.89 -45.02 -3.14 O2 + O2(g) -41.19 -44.32 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8561,21 +8557,21 @@ H2O(g) 0.17 1.465e+00 0.695 4.816e-02 5.795e-02 9.787e-03 ----------------------------Description of solution---------------------------- pH = 3.348 Charge balance - pe = 1.949 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 328 + pe = 9.623 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 316 Density (g/cm³) = 0.96489 Volume (L) = 1.06054 - Viscosity (mPa s) = 0.28353 + Viscosity (mPa s) = 0.28342 Activity of water = 0.991 - Ionic strength (mol/kgw) = 4.609e-04 + Ionic strength (mol/kgw) = 4.610e-04 Mass of water (kg) = 9.989e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 5.538e-01 Temperature (°C) = 100.00 Pressure (atm) = 63.31 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 + Iterations = 31 Total H = 1.108965e+02 Total O = 5.655464e+01 @@ -8584,30 +8580,30 @@ H2O(g) 0.17 1.465e+00 0.695 4.816e-02 5.795e-02 9.787e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 4.609e-04 4.483e-04 -3.336 -3.348 -0.012 0.00 - OH- 1.383e-09 1.343e-09 -8.859 -8.872 -0.013 -6.19 + H+ 4.610e-04 4.484e-04 -3.336 -3.348 -0.012 0.00 + OH- 1.382e-09 1.343e-09 -8.859 -8.872 -0.013 -6.19 H2O 5.551e+01 9.910e-01 1.744 -0.004 0.000 18.74 -C(-4) 6.246e-28 - CH4 6.246e-28 6.246e-28 -27.204 -27.204 0.000 40.98 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -88.598 -88.598 0.000 40.98 C(4) 5.538e-01 CO2 5.058e-01 5.059e-01 -0.296 -0.296 0.000 38.71 (CO2)2 2.375e-02 2.375e-02 -1.624 -1.624 0.000 77.42 - HCO3- 4.609e-04 4.480e-04 -3.336 -3.349 -0.012 24.25 - CO3-2 8.350e-11 7.453e-11 -10.078 -10.128 -0.049 -7.29 -H(0) 1.871e-14 - H2 9.357e-15 9.358e-15 -14.029 -14.029 0.000 28.54 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.038 -45.038 0.000 33.69 + HCO3- 4.610e-04 4.481e-04 -3.336 -3.349 -0.012 24.05 + CO3-2 8.360e-11 7.462e-11 -10.078 -10.127 -0.049 -8.10 +H(0) 8.388e-30 + H2 4.194e-30 4.195e-30 -29.377 -29.377 0.000 28.54 +O(0) 9.122e-15 + O2 4.561e-15 4.562e-15 -14.341 -14.341 0.000 33.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 63 atm) - CH4(g) -24.16 -27.20 -3.04 CH4 + CH4(g) -85.56 -88.60 -3.04 CH4 CO2(g) 1.72 -0.30 -2.01 CO2 Pressure 61.8 atm, phi 0.844 - H2(g) -10.90 -14.03 -3.13 H2 + H2(g) -26.25 -29.38 -3.13 H2 H2O(g) 0.01 -0.00 -0.01 H2O Pressure 1.5 atm, phi 0.695 - O2(g) -41.89 -45.04 -3.14 O2 + O2(g) -11.20 -14.34 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8656,21 +8652,21 @@ H2O(g) 0.22 1.653e+00 0.621 5.795e-02 6.931e-02 1.136e-02 ----------------------------Description of solution---------------------------- pH = 3.306 Charge balance - pe = 2.091 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 362 + pe = 9.528 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 346 Density (g/cm³) = 0.96649 Volume (L) = 1.06404 - Viscosity (mPa s) = 0.28404 + Viscosity (mPa s) = 0.28391 Activity of water = 0.989 - Ionic strength (mol/kgw) = 5.092e-04 + Ionic strength (mol/kgw) = 5.093e-04 Mass of water (kg) = 9.987e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 6.740e-01 Temperature (°C) = 100.00 Pressure (atm) = 81.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 + Iterations = 27 Total H = 1.108738e+02 Total O = 5.678324e+01 @@ -8679,30 +8675,30 @@ H2O(g) 0.22 1.653e+00 0.621 5.795e-02 6.931e-02 1.136e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.092e-04 4.947e-04 -3.293 -3.306 -0.013 0.00 + H+ 5.093e-04 4.948e-04 -3.293 -3.306 -0.013 0.00 OH- 1.271e-09 1.233e-09 -8.896 -8.909 -0.013 -6.27 H2O 5.551e+01 9.891e-01 1.744 -0.005 0.000 18.72 -C(-4) 1.164e-28 - CH4 1.164e-28 1.164e-28 -27.934 -27.934 0.000 40.96 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -87.422 -87.422 0.000 40.96 C(4) 6.740e-01 CO2 6.055e-01 6.055e-01 -0.218 -0.218 0.000 38.66 (CO2)2 3.402e-02 3.403e-02 -1.468 -1.468 0.000 77.32 - HCO3- 5.092e-04 4.943e-04 -3.293 -3.306 -0.013 24.32 - CO3-2 8.545e-11 7.586e-11 -10.068 -10.120 -0.052 -7.04 -H(0) 1.162e-14 - H2 5.810e-15 5.811e-15 -14.236 -14.236 0.000 28.53 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -44.639 -44.639 0.000 33.64 + HCO3- 5.093e-04 4.944e-04 -3.293 -3.306 -0.013 24.15 + CO3-2 8.560e-11 7.599e-11 -10.068 -10.119 -0.052 -7.87 +H(0) 1.560e-29 + H2 7.802e-30 7.803e-30 -29.108 -29.108 0.000 28.53 +O(0) 2.547e-15 + O2 1.274e-15 1.274e-15 -14.895 -14.895 0.000 33.64 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 81 atm) - CH4(g) -24.88 -27.93 -3.05 CH4 + CH4(g) -84.37 -87.42 -3.05 CH4 CO2(g) 1.81 -0.22 -2.02 CO2 Pressure 79.3 atm, phi 0.805 - H2(g) -11.10 -14.24 -3.13 H2 + H2(g) -25.97 -29.11 -3.13 H2 H2O(g) 0.01 -0.00 -0.02 H2O Pressure 1.7 atm, phi 0.621 - O2(g) -41.49 -44.64 -3.15 O2 + O2(g) -11.74 -14.89 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8751,21 +8747,21 @@ H2O(g) 0.27 1.859e+00 0.557 6.931e-02 8.231e-02 1.301e-02 ----------------------------Description of solution---------------------------- pH = 3.276 Charge balance - pe = 2.195 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 387 + pe = 2.016 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 369 Density (g/cm³) = 0.96788 Volume (L) = 1.06668 - Viscosity (mPa s) = 0.28451 + Viscosity (mPa s) = 0.28436 Activity of water = 0.988 - Ionic strength (mol/kgw) = 5.461e-04 + Ionic strength (mol/kgw) = 5.462e-04 Mass of water (kg) = 9.985e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 7.714e-01 Temperature (°C) = 100.00 Pressure (atm) = 97.41 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 + Iterations = 31 Total H = 1.108478e+02 Total O = 5.696443e+01 @@ -8774,30 +8770,30 @@ H2O(g) 0.27 1.859e+00 0.557 6.931e-02 8.231e-02 1.301e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.461e-04 5.300e-04 -3.263 -3.276 -0.013 0.00 + H+ 5.462e-04 5.301e-04 -3.263 -3.276 -0.013 0.00 OH- 1.202e-09 1.165e-09 -8.920 -8.934 -0.014 -6.33 H2O 5.551e+01 9.876e-01 1.744 -0.005 0.000 18.71 -C(-4) 3.337e-29 - CH4 3.337e-29 3.338e-29 -28.477 -28.477 0.000 40.94 +C(-4) 8.959e-28 + CH4 8.959e-28 8.960e-28 -27.048 -27.048 0.000 40.94 C(4) 7.714e-01 CO2 6.840e-01 6.841e-01 -0.165 -0.165 0.000 38.62 (CO2)2 4.343e-02 4.343e-02 -1.362 -1.362 0.000 77.23 - HCO3- 5.461e-04 5.295e-04 -3.263 -3.276 -0.013 24.38 - CO3-2 8.718e-11 7.710e-11 -10.060 -10.113 -0.053 -6.80 -H(0) 8.159e-15 - H2 4.079e-15 4.080e-15 -14.389 -14.389 0.000 28.52 + HCO3- 5.462e-04 5.296e-04 -3.263 -3.276 -0.013 24.24 + CO3-2 8.739e-11 7.727e-11 -10.059 -10.112 -0.053 -7.66 +H(0) 1.857e-14 + H2 9.286e-15 9.287e-15 -14.032 -14.032 0.000 28.52 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -44.345 -44.345 0.000 33.58 + O2 0.000e+00 0.000e+00 -45.060 -45.060 0.000 33.58 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 97 atm) - CH4(g) -25.42 -28.48 -3.06 CH4 + CH4(g) -23.99 -27.05 -3.06 CH4 CO2(g) 1.87 -0.16 -2.03 CO2 Pressure 95.5 atm, phi 0.771 - H2(g) -11.25 -14.39 -3.14 H2 + H2(g) -10.89 -14.03 -3.14 H2 H2O(g) 0.02 -0.01 -0.02 H2O Pressure 1.9 atm, phi 0.557 - O2(g) -41.18 -44.35 -3.16 O2 + O2(g) -41.90 -45.06 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8846,53 +8842,53 @@ H2O(g) 0.32 2.085e+00 0.501 8.231e-02 9.701e-02 1.470e-02 ----------------------------Description of solution---------------------------- pH = 3.253 Charge balance - pe = 2.035 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 408 + pe = 1.941 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 386 Density (g/cm³) = 0.96910 Volume (L) = 1.06867 - Viscosity (mPa s) = 0.28494 + Viscosity (mPa s) = 0.28479 Activity of water = 0.986 - Ionic strength (mol/kgw) = 5.754e-04 + Ionic strength (mol/kgw) = 5.755e-04 Mass of water (kg) = 9.982e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 8.512e-01 Temperature (°C) = 100.00 Pressure (atm) = 112.79 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.108184e+02 - Total O = 5.710869e+01 + Total O = 5.710870e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.754e-04 5.580e-04 -3.240 -3.253 -0.013 0.00 + H+ 5.755e-04 5.581e-04 -3.240 -3.253 -0.013 0.00 OH- 1.155e-09 1.119e-09 -8.937 -8.951 -0.014 -6.40 H2O 5.551e+01 9.864e-01 1.744 -0.006 0.000 18.70 -C(-4) 1.028e-27 - CH4 1.028e-27 1.028e-27 -26.988 -26.988 0.000 40.93 +C(-4) 5.827e-27 + CH4 5.827e-27 5.827e-27 -26.235 -26.235 0.000 40.93 C(4) 8.512e-01 CO2 7.471e-01 7.471e-01 -0.127 -0.127 0.000 38.57 (CO2)2 5.180e-02 5.181e-02 -1.286 -1.286 0.000 77.15 - HCO3- 5.754e-04 5.575e-04 -3.240 -3.254 -0.014 24.43 - CO3-2 8.877e-11 7.826e-11 -10.052 -10.106 -0.055 -6.59 -H(0) 1.862e-14 - H2 9.308e-15 9.309e-15 -14.031 -14.031 0.000 28.52 + HCO3- 5.755e-04 5.576e-04 -3.240 -3.254 -0.014 24.33 + CO3-2 8.902e-11 7.849e-11 -10.050 -10.105 -0.055 -7.47 +H(0) 2.872e-14 + H2 1.436e-14 1.436e-14 -13.843 -13.843 0.000 28.52 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.075 -45.075 0.000 33.54 + O2 0.000e+00 0.000e+00 -45.451 -45.451 0.000 33.54 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 113 atm) - CH4(g) -23.92 -26.99 -3.07 CH4 + CH4(g) -23.17 -26.23 -3.07 CH4 CO2(g) 1.91 -0.13 -2.04 CO2 Pressure 110.7 atm, phi 0.741 - H2(g) -10.89 -14.03 -3.15 H2 + H2(g) -10.70 -13.84 -3.15 H2 H2O(g) 0.02 -0.01 -0.02 H2O Pressure 2.1 atm, phi 0.501 - O2(g) -41.91 -45.07 -3.17 O2 + O2(g) -42.28 -45.45 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8941,21 +8937,21 @@ H2O(g) 0.37 2.333e+00 0.451 9.701e-02 1.134e-01 1.641e-02 ----------------------------Description of solution---------------------------- pH = 3.236 Charge balance - pe = 2.091 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 424 + pe = 1.889 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 400 Density (g/cm³) = 0.97021 Volume (L) = 1.07015 - Viscosity (mPa s) = 0.28535 + Viscosity (mPa s) = 0.28519 Activity of water = 0.985 - Ionic strength (mol/kgw) = 5.996e-04 + Ionic strength (mol/kgw) = 5.997e-04 Mass of water (kg) = 9.979e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 9.180e-01 Temperature (°C) = 100.00 Pressure (atm) = 127.46 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 + Iterations = 24 Total H = 1.107856e+02 Total O = 5.722497e+01 @@ -8964,30 +8960,30 @@ H2O(g) 0.37 2.333e+00 0.451 9.701e-02 1.134e-01 1.641e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.996e-04 5.812e-04 -3.222 -3.236 -0.014 0.00 - OH- 1.123e-09 1.087e-09 -8.950 -8.964 -0.014 -6.46 + H+ 5.997e-04 5.813e-04 -3.222 -3.236 -0.014 0.00 + OH- 1.122e-09 1.086e-09 -8.950 -8.964 -0.014 -6.46 H2O 5.551e+01 9.854e-01 1.744 -0.006 0.000 18.68 -C(-4) 5.296e-28 - CH4 5.296e-28 5.297e-28 -27.276 -27.276 0.000 40.91 +C(-4) 2.189e-26 + CH4 2.189e-26 2.190e-26 -25.660 -25.660 0.000 40.91 C(4) 9.180e-01 CO2 7.989e-01 7.990e-01 -0.098 -0.097 0.000 38.53 (CO2)2 5.924e-02 5.925e-02 -1.227 -1.227 0.000 77.07 - HCO3- 5.996e-04 5.807e-04 -3.222 -3.236 -0.014 24.48 - CO3-2 9.025e-11 7.938e-11 -10.045 -10.100 -0.056 -6.38 -H(0) 1.536e-14 - H2 7.682e-15 7.683e-15 -14.115 -14.114 0.000 28.51 + HCO3- 5.997e-04 5.807e-04 -3.222 -3.236 -0.014 24.41 + CO3-2 9.057e-11 7.966e-11 -10.043 -10.099 -0.056 -7.29 +H(0) 3.896e-14 + H2 1.948e-14 1.948e-14 -13.710 -13.710 0.000 28.51 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -44.920 -44.920 0.000 33.49 + O2 0.000e+00 0.000e+00 -45.728 -45.728 0.000 33.49 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 127 atm) - CH4(g) -24.20 -27.28 -3.08 CH4 + CH4(g) -22.58 -25.66 -3.08 CH4 CO2(g) 1.95 -0.10 -2.05 CO2 Pressure 125.1 atm, phi 0.714 - H2(g) -10.96 -14.11 -3.15 H2 + H2(g) -10.56 -13.71 -3.15 H2 H2O(g) 0.02 -0.01 -0.03 H2O Pressure 2.3 atm, phi 0.451 - O2(g) -41.75 -44.92 -3.17 O2 + O2(g) -42.55 -45.73 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9036,21 +9032,21 @@ H2O(g) 0.42 2.605e+00 0.407 1.134e-01 1.315e-01 1.811e-02 ----------------------------Description of solution---------------------------- pH = 3.221 Charge balance - pe = 2.134 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 438 + pe = 1.824 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 413 Density (g/cm³) = 0.97124 Volume (L) = 1.07126 - Viscosity (mPa s) = 0.28575 + Viscosity (mPa s) = 0.28558 Activity of water = 0.985 - Ionic strength (mol/kgw) = 6.204e-04 + Ionic strength (mol/kgw) = 6.205e-04 Mass of water (kg) = 9.976e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 9.752e-01 Temperature (°C) = 100.00 Pressure (atm) = 141.77 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 + Iterations = 24 Total H = 1.107494e+02 Total O = 5.732053e+01 @@ -9059,30 +9055,30 @@ H2O(g) 0.42 2.605e+00 0.407 1.134e-01 1.315e-01 1.811e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.204e-04 6.011e-04 -3.207 -3.221 -0.014 0.00 + H+ 6.205e-04 6.012e-04 -3.207 -3.221 -0.014 0.00 OH- 1.098e-09 1.062e-09 -8.959 -8.974 -0.014 -6.51 H2O 5.551e+01 9.845e-01 1.744 -0.007 0.000 18.67 -C(-4) 3.275e-28 - CH4 3.275e-28 3.275e-28 -27.485 -27.485 0.000 40.89 +C(-4) 9.904e-26 + CH4 9.904e-26 9.905e-26 -25.004 -25.004 0.000 40.89 C(4) 9.752e-01 CO2 8.428e-01 8.429e-01 -0.074 -0.074 0.000 38.49 (CO2)2 6.592e-02 6.593e-02 -1.181 -1.181 0.000 76.99 - HCO3- 6.204e-04 6.006e-04 -3.207 -3.221 -0.014 24.53 - CO3-2 9.168e-11 8.048e-11 -10.038 -10.094 -0.057 -6.19 -H(0) 1.332e-14 - H2 6.661e-15 6.662e-15 -14.176 -14.176 0.000 28.50 + HCO3- 6.205e-04 6.006e-04 -3.207 -3.221 -0.014 24.49 + CO3-2 9.206e-11 8.081e-11 -10.036 -10.093 -0.057 -7.11 +H(0) 5.556e-14 + H2 2.778e-14 2.778e-14 -13.556 -13.556 0.000 28.50 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -44.807 -44.807 0.000 33.45 + O2 0.000e+00 0.000e+00 -46.048 -46.048 0.000 33.45 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 142 atm) - CH4(g) -24.40 -27.48 -3.09 CH4 + CH4(g) -21.92 -25.00 -3.09 CH4 CO2(g) 1.98 -0.07 -2.06 CO2 Pressure 139.2 atm, phi 0.689 - H2(g) -11.02 -14.18 -3.16 H2 + H2(g) -10.40 -13.56 -3.16 H2 H2O(g) 0.03 -0.01 -0.03 H2O Pressure 2.6 atm, phi 0.407 - O2(g) -41.63 -44.81 -3.18 O2 + O2(g) -42.87 -46.05 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9131,19 +9127,19 @@ H2O(g) 0.46 2.906e+00 0.368 1.315e-01 1.513e-01 1.977e-02 ----------------------------Description of solution---------------------------- pH = 3.208 Charge balance - pe = 1.940 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 451 + pe = 1.845 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 423 Density (g/cm³) = 0.97222 Volume (L) = 1.07208 - Viscosity (mPa s) = 0.28615 + Viscosity (mPa s) = 0.28597 Activity of water = 0.984 - Ionic strength (mol/kgw) = 6.391e-04 + Ionic strength (mol/kgw) = 6.392e-04 Mass of water (kg) = 9.973e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.026e+00 Temperature (°C) = 100.00 Pressure (atm) = 156.12 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.107098e+02 @@ -9154,30 +9150,30 @@ H2O(g) 0.46 2.906e+00 0.368 1.315e-01 1.513e-01 1.977e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.391e-04 6.190e-04 -3.194 -3.208 -0.014 0.00 + H+ 6.392e-04 6.190e-04 -3.194 -3.208 -0.014 0.00 OH- 1.079e-09 1.043e-09 -8.967 -8.982 -0.015 -6.57 H2O 5.551e+01 9.838e-01 1.744 -0.007 0.000 18.66 -C(-4) 1.514e-26 - CH4 1.514e-26 1.514e-26 -25.820 -25.820 0.000 40.88 +C(-4) 8.725e-26 + CH4 8.725e-26 8.726e-26 -25.059 -25.059 0.000 40.88 C(4) 1.026e+00 CO2 8.812e-01 8.812e-01 -0.055 -0.055 0.000 38.46 (CO2)2 7.207e-02 7.208e-02 -1.142 -1.142 0.000 76.91 - HCO3- 6.391e-04 6.184e-04 -3.194 -3.209 -0.014 24.58 - CO3-2 9.310e-11 8.159e-11 -10.031 -10.088 -0.057 -5.99 -H(0) 3.404e-14 - H2 1.702e-14 1.702e-14 -13.769 -13.769 0.000 28.50 + HCO3- 6.392e-04 6.184e-04 -3.194 -3.209 -0.014 24.57 + CO3-2 9.355e-11 8.197e-11 -10.029 -10.086 -0.057 -6.94 +H(0) 5.275e-14 + H2 2.637e-14 2.638e-14 -13.579 -13.579 0.000 28.50 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.634 -45.634 0.000 33.40 + O2 0.000e+00 0.000e+00 -46.014 -46.014 0.000 33.40 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 156 atm) - CH4(g) -22.73 -25.82 -3.09 CH4 + CH4(g) -21.96 -25.06 -3.09 CH4 CO2(g) 2.01 -0.05 -2.06 CO2 Pressure 153.2 atm, phi 0.666 - H2(g) -10.61 -13.77 -3.16 H2 + H2(g) -10.42 -13.58 -3.16 H2 H2O(g) 0.03 -0.01 -0.04 H2O Pressure 2.9 atm, phi 0.368 - O2(g) -42.45 -45.63 -3.19 O2 + O2(g) -42.83 -46.01 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9226,15 +9222,15 @@ H2O(g) 0.51 3.242e+00 0.332 1.513e-01 1.727e-01 2.137e-02 ----------------------------Description of solution---------------------------- pH = 3.197 Charge balance - pe = 1.967 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 462 + pe = 1.796 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 434 Density (g/cm³) = 0.97320 Volume (L) = 1.07268 - Viscosity (mPa s) = 0.28656 + Viscosity (mPa s) = 0.28637 Activity of water = 0.983 Ionic strength (mol/kgw) = 6.566e-04 Mass of water (kg) = 9.969e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.072e+00 Temperature (°C) = 100.00 Pressure (atm) = 170.91 @@ -9252,27 +9248,27 @@ H2O(g) 0.51 3.242e+00 0.332 1.513e-01 1.727e-01 2.137e-02 H+ 6.566e-04 6.356e-04 -3.183 -3.197 -0.014 0.00 OH- 1.063e-09 1.028e-09 -8.973 -8.988 -0.015 -6.63 H2O 5.551e+01 9.831e-01 1.744 -0.007 0.000 18.64 -C(-4) 1.176e-26 - CH4 1.176e-26 1.176e-26 -25.930 -25.930 0.000 40.86 +C(-4) 2.742e-25 + CH4 2.742e-25 2.743e-25 -24.562 -24.562 0.000 40.86 C(4) 1.072e+00 CO2 9.159e-01 9.160e-01 -0.038 -0.038 0.000 38.42 (CO2)2 7.786e-02 7.787e-02 -1.109 -1.109 0.000 76.83 - HCO3- 6.566e-04 6.350e-04 -3.183 -3.197 -0.015 24.63 - CO3-2 9.456e-11 8.273e-11 -10.024 -10.082 -0.058 -5.79 -H(0) 3.136e-14 - H2 1.568e-14 1.568e-14 -13.805 -13.805 0.000 28.49 + HCO3- 6.566e-04 6.350e-04 -3.183 -3.197 -0.015 24.65 + CO3-2 9.508e-11 8.318e-11 -10.022 -10.080 -0.058 -6.76 +H(0) 6.891e-14 + H2 3.446e-14 3.446e-14 -13.463 -13.463 0.000 28.49 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.574 -45.574 0.000 33.36 + O2 0.000e+00 0.000e+00 -46.258 -46.258 0.000 33.36 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 171 atm) - CH4(g) -22.83 -25.93 -3.10 CH4 + CH4(g) -21.46 -24.56 -3.10 CH4 CO2(g) 2.03 -0.04 -2.07 CO2 Pressure 167.7 atm, phi 0.645 - H2(g) -10.64 -13.80 -3.17 H2 + H2(g) -10.29 -13.46 -3.17 H2 H2O(g) 0.03 -0.01 -0.04 H2O Pressure 3.2 atm, phi 0.332 - O2(g) -42.38 -45.57 -3.20 O2 + O2(g) -43.06 -46.26 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9321,21 +9317,21 @@ H2O(g) 0.56 3.618e+00 0.300 1.727e-01 1.955e-01 2.287e-02 ----------------------------Description of solution---------------------------- pH = 3.186 Charge balance - pe = 1.927 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 474 + pe = 1.849 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 443 Density (g/cm³) = 0.97420 Volume (L) = 1.07311 - Viscosity (mPa s) = 0.28699 + Viscosity (mPa s) = 0.28679 Activity of water = 0.982 - Ionic strength (mol/kgw) = 6.735e-04 + Ionic strength (mol/kgw) = 6.734e-04 Mass of water (kg) = 9.965e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.116e+00 Temperature (°C) = 100.00 Pressure (atm) = 186.59 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 + Iterations = 28 Total H = 1.106214e+02 Total O = 5.753479e+01 @@ -9344,30 +9340,30 @@ H2O(g) 0.56 3.618e+00 0.300 1.727e-01 1.955e-01 2.287e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.735e-04 6.518e-04 -3.172 -3.186 -0.014 0.00 + H+ 6.734e-04 6.517e-04 -3.172 -3.186 -0.014 0.00 OH- 1.051e-09 1.015e-09 -8.979 -8.993 -0.015 -6.69 H2O 5.551e+01 9.824e-01 1.744 -0.008 0.000 18.63 -C(-4) 3.048e-26 - CH4 3.048e-26 3.049e-26 -25.516 -25.516 0.000 40.84 +C(-4) 1.283e-25 + CH4 1.283e-25 1.283e-25 -24.892 -24.892 0.000 40.84 C(4) 1.116e+00 CO2 9.484e-01 9.485e-01 -0.023 -0.023 0.000 38.38 (CO2)2 8.348e-02 8.349e-02 -1.078 -1.078 0.000 76.75 - HCO3- 6.735e-04 6.511e-04 -3.172 -3.186 -0.015 24.69 - CO3-2 9.609e-11 8.395e-11 -10.017 -10.076 -0.059 -5.58 -H(0) 3.906e-14 - H2 1.953e-14 1.953e-14 -13.709 -13.709 0.000 28.48 + HCO3- 6.734e-04 6.511e-04 -3.172 -3.186 -0.015 24.73 + CO3-2 9.670e-11 8.448e-11 -10.015 -10.073 -0.059 -6.58 +H(0) 5.594e-14 + H2 2.797e-14 2.798e-14 -13.553 -13.553 0.000 28.48 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.777 -45.777 0.000 33.31 + O2 0.000e+00 0.000e+00 -46.089 -46.089 0.000 33.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 187 atm) - CH4(g) -22.40 -25.52 -3.11 CH4 + CH4(g) -21.78 -24.89 -3.11 CH4 CO2(g) 2.06 -0.02 -2.08 CO2 Pressure 183.0 atm, phi 0.624 - H2(g) -10.53 -13.71 -3.18 H2 + H2(g) -10.38 -13.55 -3.18 H2 H2O(g) 0.04 -0.01 -0.04 H2O Pressure 3.6 atm, phi 0.300 - O2(g) -42.57 -45.78 -3.20 O2 + O2(g) -42.89 -46.09 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9416,19 +9412,19 @@ H2O(g) 0.61 4.045e+00 0.271 1.955e-01 2.198e-01 2.424e-02 ----------------------------Description of solution---------------------------- pH = 3.175 Charge balance - pe = 2.045 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 485 + pe = 1.832 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 453 Density (g/cm³) = 0.97525 Volume (L) = 1.07339 - Viscosity (mPa s) = 0.28746 + Viscosity (mPa s) = 0.28725 Activity of water = 0.982 - Ionic strength (mol/kgw) = 6.905e-04 + Ionic strength (mol/kgw) = 6.903e-04 Mass of water (kg) = 9.960e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.158e+00 Temperature (°C) = 100.00 Pressure (atm) = 203.65 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 29 Total H = 1.105729e+02 @@ -9439,30 +9435,30 @@ H2O(g) 0.61 4.045e+00 0.271 1.955e-01 2.198e-01 2.424e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.905e-04 6.680e-04 -3.161 -3.175 -0.014 0.00 - OH- 1.040e-09 1.004e-09 -8.983 -8.998 -0.015 -6.75 + H+ 6.903e-04 6.678e-04 -3.161 -3.175 -0.014 0.00 + OH- 1.040e-09 1.005e-09 -8.983 -8.998 -0.015 -6.75 H2O 5.551e+01 9.818e-01 1.744 -0.008 0.000 18.62 -C(-4) 4.229e-27 - CH4 4.229e-27 4.230e-27 -26.374 -26.374 0.000 40.82 +C(-4) 2.155e-25 + CH4 2.155e-25 2.156e-25 -24.666 -24.666 0.000 40.82 C(4) 1.158e+00 CO2 9.797e-01 9.798e-01 -0.009 -0.009 0.000 38.33 (CO2)2 8.908e-02 8.909e-02 -1.050 -1.050 0.000 76.66 - HCO3- 6.905e-04 6.673e-04 -3.161 -3.176 -0.015 24.74 - CO3-2 9.776e-11 8.528e-11 -10.010 -10.069 -0.059 -5.36 -H(0) 2.340e-14 - H2 1.170e-14 1.170e-14 -13.932 -13.932 0.000 28.48 + HCO3- 6.903e-04 6.671e-04 -3.161 -3.176 -0.015 24.82 + CO3-2 9.847e-11 8.590e-11 -10.007 -10.066 -0.059 -6.38 +H(0) 6.252e-14 + H2 3.126e-14 3.126e-14 -13.505 -13.505 0.000 28.48 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.345 -45.345 0.000 33.26 + O2 0.000e+00 0.000e+00 -46.199 -46.199 0.000 33.26 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 204 atm) - CH4(g) -23.25 -26.37 -3.12 CH4 + CH4(g) -21.54 -24.67 -3.12 CH4 CO2(g) 2.08 -0.01 -2.09 CO2 Pressure 199.6 atm, phi 0.603 - H2(g) -10.75 -13.93 -3.18 H2 + H2(g) -10.32 -13.50 -3.18 H2 H2O(g) 0.04 -0.01 -0.05 H2O Pressure 4.0 atm, phi 0.271 - O2(g) -42.13 -45.35 -3.21 O2 + O2(g) -42.99 -46.20 -3.21 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9511,21 +9507,21 @@ H2O(g) 0.66 4.530e+00 0.245 2.198e-01 2.452e-01 2.545e-02 ----------------------------Description of solution---------------------------- pH = 3.165 Charge balance - pe = 9.644 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 496 + pe = 1.850 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 463 Density (g/cm³) = 0.97639 Volume (L) = 1.07355 - Viscosity (mPa s) = 0.28797 + Viscosity (mPa s) = 0.28776 Activity of water = 0.981 - Ionic strength (mol/kgw) = 7.080e-04 + Ionic strength (mol/kgw) = 7.077e-04 Mass of water (kg) = 9.956e-01 - Total alkalinity (eq/kg) = 1.213e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.201e+00 Temperature (°C) = 100.00 Pressure (atm) = 222.60 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 + Iterations = 30 Total H = 1.105220e+02 Total O = 5.765197e+01 @@ -9534,30 +9530,30 @@ H2O(g) 0.66 4.530e+00 0.245 2.198e-01 2.452e-01 2.545e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.080e-04 6.847e-04 -3.150 -3.165 -0.015 0.00 - OH- 1.031e-09 9.951e-10 -8.987 -9.002 -0.015 -6.83 + H+ 7.077e-04 6.844e-04 -3.150 -3.165 -0.015 0.00 + OH- 1.031e-09 9.955e-10 -8.987 -9.002 -0.015 -6.83 H2O 5.551e+01 9.812e-01 1.744 -0.008 0.000 18.60 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.076 -87.076 0.000 40.80 +C(-4) 1.890e-25 + CH4 1.890e-25 1.890e-25 -24.724 -24.724 0.000 40.80 C(4) 1.201e+00 CO2 1.011e+00 1.011e+00 0.005 0.005 0.000 38.28 (CO2)2 9.478e-02 9.480e-02 -1.023 -1.023 0.000 76.56 - HCO3- 7.080e-04 6.840e-04 -3.150 -3.165 -0.015 24.81 - CO3-2 9.961e-11 8.677e-11 -10.002 -10.062 -0.060 -5.12 -H(0) 1.532e-29 - H2 7.659e-30 7.661e-30 -29.116 -29.116 0.000 28.47 -O(0) 2.037e-15 - O2 1.019e-15 1.019e-15 -14.992 -14.992 0.000 33.21 + HCO3- 7.077e-04 6.837e-04 -3.150 -3.165 -0.015 24.92 + CO3-2 1.004e-10 8.750e-11 -9.998 -10.058 -0.060 -6.16 +H(0) 5.932e-14 + H2 2.966e-14 2.967e-14 -13.528 -13.528 0.000 28.47 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -46.168 -46.168 0.000 33.21 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 223 atm) - CH4(g) -83.94 -87.08 -3.13 CH4 + CH4(g) -21.59 -24.72 -3.13 CH4 CO2(g) 2.10 0.00 -2.10 CO2 Pressure 218.1 atm, phi 0.583 - H2(g) -25.93 -29.12 -3.19 H2 + H2(g) -10.34 -13.53 -3.19 H2 H2O(g) 0.05 -0.01 -0.05 H2O Pressure 4.5 atm, phi 0.245 - O2(g) -11.77 -14.99 -3.22 O2 + O2(g) -42.95 -46.17 -3.22 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9605,22 +9601,22 @@ H2O(g) 0.71 5.087e+00 0.221 2.452e-01 2.717e-01 2.646e-02 ----------------------------Description of solution---------------------------- - pH = 3.153 Charge balance - pe = 2.372 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 508 + pH = 3.154 Charge balance + pe = 1.840 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 474 Density (g/cm³) = 0.97763 Volume (L) = 1.07359 - Viscosity (mPa s) = 0.28856 + Viscosity (mPa s) = 0.28833 Activity of water = 0.981 - Ionic strength (mol/kgw) = 7.266e-04 + Ionic strength (mol/kgw) = 7.261e-04 Mass of water (kg) = 9.951e-01 - Total alkalinity (eq/kg) = 1.214e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.244e+00 Temperature (°C) = 100.00 Pressure (atm) = 244.02 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 38 + Iterations = 37 Total H = 1.104690e+02 Total O = 5.770992e+01 @@ -9629,30 +9625,30 @@ H2O(g) 0.71 5.087e+00 0.221 2.452e-01 2.717e-01 2.646e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.266e-04 7.024e-04 -3.139 -3.153 -0.015 0.00 - OH- 1.023e-09 9.872e-10 -8.990 -9.006 -0.015 -6.91 + H+ 7.261e-04 7.020e-04 -3.139 -3.154 -0.015 0.00 + OH- 1.024e-09 9.879e-10 -8.990 -9.005 -0.015 -6.91 H2O 5.551e+01 9.806e-01 1.744 -0.009 0.000 18.58 -C(-4) 1.564e-29 - CH4 1.564e-29 1.564e-29 -28.806 -28.806 0.000 40.78 +C(-4) 2.769e-25 + CH4 2.769e-25 2.769e-25 -24.558 -24.558 0.000 40.78 C(4) 1.244e+00 CO2 1.042e+00 1.042e+00 0.018 0.018 0.000 38.23 (CO2)2 1.007e-01 1.007e-01 -0.997 -0.997 0.000 76.46 - HCO3- 7.266e-04 7.016e-04 -3.139 -3.154 -0.015 24.88 - CO3-2 1.017e-10 8.846e-11 -9.993 -10.053 -0.061 -4.84 -H(0) 5.542e-15 - H2 2.771e-15 2.771e-15 -14.557 -14.557 0.000 28.46 + HCO3- 7.261e-04 7.012e-04 -3.139 -3.154 -0.015 25.03 + CO3-2 1.027e-10 8.933e-11 -9.988 -10.049 -0.061 -5.92 +H(0) 6.392e-14 + H2 3.196e-14 3.197e-14 -13.495 -13.495 0.000 28.46 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -44.125 -44.125 0.000 33.15 + O2 0.000e+00 0.000e+00 -46.249 -46.249 0.000 33.15 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 244 atm) - CH4(g) -25.66 -28.81 -3.14 CH4 + CH4(g) -21.41 -24.56 -3.14 CH4 CO2(g) 2.13 0.02 -2.11 CO2 Pressure 238.9 atm, phi 0.563 - H2(g) -11.36 -14.56 -3.20 H2 + H2(g) -10.30 -13.50 -3.20 H2 H2O(g) 0.05 -0.01 -0.06 H2O Pressure 5.1 atm, phi 0.221 - O2(g) -40.90 -44.13 -3.23 O2 + O2(g) -43.02 -46.25 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9701,21 +9697,21 @@ H2O(g) 0.76 5.727e+00 0.199 2.717e-01 2.989e-01 2.722e-02 ----------------------------Description of solution---------------------------- pH = 3.142 Charge balance - pe = 10.120 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 521 - Density (g/cm³) = 0.97903 + pe = 1.755 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 485 + Density (g/cm³) = 0.97902 Volume (L) = 1.07352 - Viscosity (mPa s) = 0.28922 + Viscosity (mPa s) = 0.28899 Activity of water = 0.980 - Ionic strength (mol/kgw) = 7.466e-04 + Ionic strength (mol/kgw) = 7.459e-04 Mass of water (kg) = 9.946e-01 - Total alkalinity (eq/kg) = 1.214e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.288e+00 Temperature (°C) = 100.00 Pressure (atm) = 268.56 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 46 + Iterations = 43 Total H = 1.104146e+02 Total O = 5.776968e+01 @@ -9724,30 +9720,30 @@ H2O(g) 0.76 5.727e+00 0.199 2.717e-01 2.989e-01 2.722e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.466e-04 7.215e-04 -3.127 -3.142 -0.015 0.00 - OH- 1.017e-09 9.809e-10 -8.993 -9.008 -0.016 -7.00 + H+ 7.459e-04 7.209e-04 -3.127 -3.142 -0.015 0.00 + OH- 1.018e-09 9.817e-10 -8.992 -9.008 -0.016 -7.00 H2O 5.551e+01 9.799e-01 1.744 -0.009 0.000 18.56 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -90.702 -90.702 0.000 40.75 +C(-4) 1.641e-24 + CH4 1.641e-24 1.641e-24 -23.785 -23.785 0.000 40.75 C(4) 1.288e+00 CO2 1.073e+00 1.074e+00 0.031 0.031 0.000 38.17 (CO2)2 1.070e-01 1.070e-01 -0.971 -0.971 0.000 76.33 - HCO3- 7.466e-04 7.207e-04 -3.127 -3.142 -0.015 24.95 - CO3-2 1.041e-10 9.041e-11 -9.983 -10.044 -0.061 -4.53 -H(0) 1.819e-30 - H2 9.095e-31 9.097e-31 -30.041 -30.041 0.000 28.45 -O(0) 1.332e-13 - O2 6.659e-14 6.660e-14 -13.177 -13.177 0.000 33.08 + HCO3- 7.459e-04 7.201e-04 -3.127 -3.143 -0.015 25.15 + CO3-2 1.053e-10 9.145e-11 -9.978 -10.039 -0.061 -5.65 +H(0) 9.751e-14 + H2 4.875e-14 4.876e-14 -13.312 -13.312 0.000 28.45 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -46.635 -46.635 0.000 33.08 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 269 atm) - CH4(g) -87.54 -90.70 -3.16 CH4 + CH4(g) -20.63 -23.78 -3.16 CH4 CO2(g) 2.15 0.03 -2.12 CO2 Pressure 262.8 atm, phi 0.544 - H2(g) -26.83 -30.04 -3.21 H2 + H2(g) -10.10 -13.31 -3.21 H2 H2O(g) 0.06 -0.01 -0.07 H2O Pressure 5.7 atm, phi 0.199 - O2(g) -9.94 -13.18 -3.24 O2 + O2(g) -43.39 -46.63 -3.24 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9795,20 +9791,20 @@ H2O(g) 0.81 6.466e+00 0.179 2.989e-01 3.266e-01 2.770e-02 ----------------------------Description of solution---------------------------- - pH = 3.129 Charge balance - pe = 10.141 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 535 + pH = 3.130 Charge balance + pe = 1.795 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 497 Density (g/cm³) = 0.98059 Volume (L) = 1.07333 - Viscosity (mPa s) = 0.28999 + Viscosity (mPa s) = 0.28974 Activity of water = 0.979 - Ionic strength (mol/kgw) = 7.685e-04 + Ionic strength (mol/kgw) = 7.676e-04 Mass of water (kg) = 9.941e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.334e+00 Temperature (°C) = 100.00 Pressure (atm) = 296.94 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 63 Total H = 1.103592e+02 @@ -9819,30 +9815,30 @@ H2O(g) 0.81 6.466e+00 0.179 2.989e-01 3.266e-01 2.770e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.685e-04 7.424e-04 -3.114 -3.129 -0.015 0.00 - OH- 1.012e-09 9.761e-10 -8.995 -9.010 -0.016 -7.10 + H+ 7.676e-04 7.415e-04 -3.115 -3.130 -0.015 0.00 + OH- 1.013e-09 9.773e-10 -8.994 -9.010 -0.016 -7.10 H2O 5.551e+01 9.792e-01 1.744 -0.009 0.000 18.54 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -90.769 -90.769 0.000 40.72 +C(-4) 9.754e-25 + CH4 9.754e-25 9.756e-25 -24.011 -24.011 0.000 40.72 C(4) 1.334e+00 CO2 1.106e+00 1.107e+00 0.044 0.044 0.000 38.10 (CO2)2 1.136e-01 1.136e-01 -0.945 -0.944 0.000 76.19 - HCO3- 7.685e-04 7.416e-04 -3.114 -3.130 -0.016 25.04 - CO3-2 1.069e-10 9.267e-11 -9.971 -10.033 -0.062 -4.18 -H(0) 1.707e-30 - H2 8.536e-31 8.537e-31 -30.069 -30.069 0.000 28.44 -O(0) 1.439e-13 - O2 7.193e-14 7.194e-14 -13.143 -13.143 0.000 33.00 + HCO3- 7.676e-04 7.407e-04 -3.115 -3.130 -0.015 25.29 + CO3-2 1.084e-10 9.394e-11 -9.965 -10.027 -0.062 -5.34 +H(0) 8.350e-14 + H2 4.175e-14 4.176e-14 -13.379 -13.379 0.000 28.44 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -46.522 -46.522 0.000 33.00 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 297 atm) - CH4(g) -87.59 -90.77 -3.18 CH4 + CH4(g) -20.84 -24.01 -3.18 CH4 CO2(g) 2.18 0.04 -2.14 CO2 Pressure 290.5 atm, phi 0.525 - H2(g) -26.85 -30.07 -3.22 H2 + H2(g) -10.16 -13.38 -3.22 H2 H2O(g) 0.06 -0.01 -0.07 H2O Pressure 6.5 atm, phi 0.179 - O2(g) -9.89 -13.14 -3.25 O2 + O2(g) -43.27 -46.52 -3.25 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9890,22 +9886,22 @@ H2O(g) 0.86 7.319e+00 0.161 3.266e-01 3.544e-01 2.783e-02 ----------------------------Description of solution---------------------------- - pH = 3.116 Charge balance - pe = 10.147 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 550 + pH = 3.117 Charge balance + pe = 1.787 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 511 Density (g/cm³) = 0.98238 Volume (L) = 1.07300 - Viscosity (mPa s) = 0.29088 + Viscosity (mPa s) = 0.29062 Activity of water = 0.979 - Ionic strength (mol/kgw) = 7.929e-04 + Ionic strength (mol/kgw) = 7.916e-04 Mass of water (kg) = 9.936e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.383e+00 Temperature (°C) = 100.00 Pressure (atm) = 329.97 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 69 + Iterations = 70 Total H = 1.103035e+02 Total O = 5.790005e+01 @@ -9914,30 +9910,30 @@ H2O(g) 0.86 7.319e+00 0.161 3.266e-01 3.544e-01 2.783e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.929e-04 7.657e-04 -3.101 -3.116 -0.015 0.00 - OH- 1.010e-09 9.733e-10 -8.996 -9.012 -0.016 -7.21 + H+ 7.916e-04 7.644e-04 -3.101 -3.117 -0.015 0.00 + OH- 1.011e-09 9.749e-10 -8.995 -9.011 -0.016 -7.21 H2O 5.551e+01 9.785e-01 1.744 -0.009 0.000 18.51 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -90.720 -90.720 0.000 40.69 +C(-4) 1.444e-24 + CH4 1.444e-24 1.444e-24 -23.840 -23.840 0.000 40.69 C(4) 1.383e+00 CO2 1.141e+00 1.141e+00 0.057 0.057 0.000 38.02 (CO2)2 1.208e-01 1.208e-01 -0.918 -0.918 0.000 76.03 - HCO3- 7.929e-04 7.648e-04 -3.101 -3.116 -0.016 25.15 - CO3-2 1.102e-10 9.534e-11 -9.958 -10.021 -0.063 -3.79 -H(0) 1.708e-30 - H2 8.538e-31 8.540e-31 -30.069 -30.069 0.000 28.43 -O(0) 1.357e-13 - O2 6.785e-14 6.786e-14 -13.168 -13.168 0.000 32.91 + HCO3- 7.916e-04 7.635e-04 -3.101 -3.117 -0.016 25.46 + CO3-2 1.120e-10 9.689e-11 -9.951 -10.014 -0.063 -4.98 +H(0) 8.958e-14 + H2 4.479e-14 4.480e-14 -13.349 -13.349 0.000 28.43 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -46.608 -46.608 0.000 32.91 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 330 atm) - CH4(g) -87.53 -90.72 -3.19 CH4 + CH4(g) -20.65 -23.84 -3.19 CH4 CO2(g) 2.21 0.06 -2.16 CO2 Pressure 322.7 atm, phi 0.507 - H2(g) -26.84 -30.07 -3.23 H2 + H2(g) -10.12 -13.35 -3.23 H2 H2O(g) 0.07 -0.01 -0.08 H2O Pressure 7.3 atm, phi 0.161 - O2(g) -9.90 -13.17 -3.27 O2 + O2(g) -43.34 -46.61 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9985,22 +9981,22 @@ H2O(g) 0.92 8.305e+00 0.145 3.544e-01 3.820e-01 2.758e-02 ----------------------------Description of solution---------------------------- - pH = 3.101 Charge balance - pe = 10.166 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 567 + pH = 3.102 Charge balance + pe = 1.799 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 526 Density (g/cm³) = 0.98441 Volume (L) = 1.07253 - Viscosity (mPa s) = 0.29192 + Viscosity (mPa s) = 0.29164 Activity of water = 0.978 - Ionic strength (mol/kgw) = 8.203e-04 + Ionic strength (mol/kgw) = 8.184e-04 Mass of water (kg) = 9.931e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.434e+00 Temperature (°C) = 100.00 Pressure (atm) = 368.63 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 76 + Iterations = 77 Total H = 1.102484e+02 Total O = 5.797304e+01 @@ -10009,30 +10005,30 @@ H2O(g) 0.92 8.305e+00 0.145 3.544e-01 3.820e-01 2.758e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.203e-04 7.917e-04 -3.086 -3.101 -0.015 0.00 - OH- 1.010e-09 9.727e-10 -8.996 -9.012 -0.016 -7.34 + H+ 8.184e-04 7.899e-04 -3.087 -3.102 -0.015 0.00 + OH- 1.012e-09 9.749e-10 -8.995 -9.011 -0.016 -7.34 H2O 5.551e+01 9.778e-01 1.744 -0.010 0.000 18.48 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -90.756 -90.756 0.000 40.65 +C(-4) 1.481e-24 + CH4 1.481e-24 1.481e-24 -23.830 -23.830 0.000 40.65 C(4) 1.434e+00 CO2 1.177e+00 1.177e+00 0.071 0.071 0.000 37.92 (CO2)2 1.285e-01 1.285e-01 -0.891 -0.891 0.000 75.85 - HCO3- 8.203e-04 7.908e-04 -3.086 -3.102 -0.016 25.26 - CO3-2 1.140e-10 9.848e-11 -9.943 -10.007 -0.064 -3.33 -H(0) 1.620e-30 - H2 8.102e-31 8.104e-31 -30.091 -30.091 0.000 28.41 -O(0) 1.409e-13 - O2 7.044e-14 7.045e-14 -13.152 -13.152 0.000 32.81 + HCO3- 8.184e-04 7.890e-04 -3.087 -3.103 -0.016 25.64 + CO3-2 1.163e-10 1.004e-10 -9.935 -9.998 -0.064 -4.58 +H(0) 8.736e-14 + H2 4.368e-14 4.369e-14 -13.360 -13.360 0.000 28.41 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -46.615 -46.615 0.000 32.81 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 369 atm) - CH4(g) -87.54 -90.76 -3.22 CH4 + CH4(g) -20.61 -23.83 -3.22 CH4 CO2(g) 2.25 0.07 -2.18 CO2 Pressure 360.3 atm, phi 0.491 - H2(g) -26.84 -30.09 -3.25 H2 + H2(g) -10.11 -13.36 -3.25 H2 H2O(g) 0.08 -0.01 -0.09 H2O Pressure 8.3 atm, phi 0.145 - O2(g) -9.87 -13.15 -3.29 O2 + O2(g) -43.33 -46.62 -3.29 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10080,22 +10076,22 @@ H2O(g) 0.98 9.442e+00 0.131 3.820e-01 4.089e-01 2.690e-02 ----------------------------Description of solution---------------------------- - pH = 3.086 Charge balance - pe = 10.175 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 586 + pH = 3.087 Charge balance + pe = 1.822 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 544 Density (g/cm³) = 0.98675 Volume (L) = 1.07187 - Viscosity (mPa s) = 0.29313 + Viscosity (mPa s) = 0.29284 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.513e-04 + Ionic strength (mol/kgw) = 8.487e-04 Mass of water (kg) = 9.926e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.489e+00 Temperature (°C) = 100.00 Pressure (atm) = 414.00 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 84 + Iterations = 85 Total H = 1.101946e+02 Total O = 5.805267e+01 @@ -10104,30 +10100,30 @@ H2O(g) 0.98 9.442e+00 0.131 3.820e-01 4.089e-01 2.690e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.513e-04 8.212e-04 -3.070 -3.086 -0.016 0.00 - OH- 1.013e-09 9.751e-10 -8.994 -9.011 -0.016 -7.50 + H+ 8.487e-04 8.187e-04 -3.071 -3.087 -0.016 0.00 + OH- 1.016e-09 9.781e-10 -8.993 -9.010 -0.016 -7.50 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.44 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -90.714 -90.714 0.000 40.60 +C(-4) 1.248e-24 + CH4 1.248e-24 1.248e-24 -23.904 -23.904 0.000 40.60 C(4) 1.489e+00 CO2 1.214e+00 1.214e+00 0.084 0.084 0.000 37.82 (CO2)2 1.368e-01 1.369e-01 -0.864 -0.864 0.000 75.64 - HCO3- 8.513e-04 8.202e-04 -3.070 -3.086 -0.016 25.40 - CO3-2 1.186e-10 1.022e-10 -9.926 -9.991 -0.065 -2.81 -H(0) 1.603e-30 - H2 8.014e-31 8.015e-31 -30.096 -30.096 0.000 28.40 -O(0) 1.331e-13 - O2 6.656e-14 6.658e-14 -13.177 -13.177 0.000 32.69 + HCO3- 8.487e-04 8.177e-04 -3.071 -3.087 -0.016 25.85 + CO3-2 1.214e-10 1.047e-10 -9.916 -9.980 -0.065 -4.12 +H(0) 8.078e-14 + H2 4.039e-14 4.040e-14 -13.394 -13.394 0.000 28.40 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -46.582 -46.582 0.000 32.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 414 atm) - CH4(g) -87.47 -90.71 -3.24 CH4 + CH4(g) -20.66 -23.90 -3.24 CH4 CO2(g) 2.29 0.08 -2.20 CO2 Pressure 404.6 atm, phi 0.477 - H2(g) -26.83 -30.10 -3.27 H2 + H2(g) -10.13 -13.39 -3.27 H2 H2O(g) 0.09 -0.01 -0.10 H2O Pressure 9.4 atm, phi 0.131 - O2(g) -9.87 -13.18 -3.31 O2 + O2(g) -43.28 -46.58 -3.31 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10175,22 +10171,22 @@ H2O(g) 1.03 1.075e+01 0.119 4.089e-01 4.347e-01 2.572e-02 ----------------------------Description of solution---------------------------- - pH = 3.068 Charge balance - pe = 10.188 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 607 - Density (g/cm³) = 0.98943 + pH = 3.070 Charge balance + pe = 1.820 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 563 + Density (g/cm³) = 0.98942 Volume (L) = 1.07102 - Viscosity (mPa s) = 0.29456 + Viscosity (mPa s) = 0.29424 Activity of water = 0.976 - Ionic strength (mol/kgw) = 8.866e-04 + Ionic strength (mol/kgw) = 8.829e-04 Mass of water (kg) = 9.922e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.546e+00 Temperature (°C) = 100.00 Pressure (atm) = 467.40 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 93 + Iterations = 95 Total H = 1.101431e+02 Total O = 5.813993e+01 @@ -10199,30 +10195,30 @@ H2O(g) 1.03 1.075e+01 0.119 4.089e-01 4.347e-01 2.572e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.866e-04 8.548e-04 -3.052 -3.068 -0.016 0.00 - OH- 1.020e-09 9.812e-10 -8.992 -9.008 -0.017 -7.67 + H+ 8.829e-04 8.513e-04 -3.054 -3.070 -0.016 0.00 + OH- 1.024e-09 9.852e-10 -8.990 -9.006 -0.017 -7.67 H2O 5.551e+01 9.762e-01 1.744 -0.010 0.000 18.40 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -90.699 -90.699 0.000 40.55 +C(-4) 1.728e-24 + CH4 1.728e-24 1.728e-24 -23.762 -23.762 0.000 40.55 C(4) 1.546e+00 CO2 1.254e+00 1.254e+00 0.098 0.098 0.000 37.70 (CO2)2 1.459e-01 1.459e-01 -0.836 -0.836 0.000 75.40 - HCO3- 8.866e-04 8.537e-04 -3.052 -3.069 -0.016 25.55 - CO3-2 1.240e-10 1.066e-10 -9.906 -9.972 -0.066 -2.21 -H(0) 1.552e-30 - H2 7.762e-31 7.763e-31 -30.110 -30.110 0.000 28.38 -O(0) 1.294e-13 - O2 6.471e-14 6.472e-14 -13.189 -13.189 0.000 32.56 + HCO3- 8.829e-04 8.503e-04 -3.054 -3.070 -0.016 26.09 + CO3-2 1.277e-10 1.098e-10 -9.894 -9.959 -0.066 -3.59 +H(0) 8.416e-14 + H2 4.208e-14 4.209e-14 -13.376 -13.376 0.000 28.38 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -46.657 -46.657 0.000 32.56 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 467 atm) - CH4(g) -87.43 -90.70 -3.27 CH4 + CH4(g) -20.49 -23.76 -3.27 CH4 CO2(g) 2.33 0.10 -2.23 CO2 Pressure 456.6 atm, phi 0.465 - H2(g) -26.82 -30.11 -3.29 H2 + H2(g) -10.09 -13.38 -3.29 H2 H2O(g) 0.11 -0.01 -0.12 H2O Pressure 10.7 atm, phi 0.119 - O2(g) -9.86 -13.19 -3.33 O2 + O2(g) -43.33 -46.66 -3.33 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10277,54 +10273,54 @@ H2O(g) 1.09 1.225e+01 0.108 4.347e-01 4.587e-01 2.401e-02 ----------------------------Description of solution---------------------------- - pH = 3.049 Charge balance - pe = 11.402 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 631 - Density (g/cm³) = 0.99251 + pH = 3.051 Charge balance + pe = 1.790 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 586 + Density (g/cm³) = 0.99250 Volume (L) = 1.06991 - Viscosity (mPa s) = 0.29623 + Viscosity (mPa s) = 0.29588 Activity of water = 0.975 - Ionic strength (mol/kgw) = 9.272e-04 + Ionic strength (mol/kgw) = 9.220e-04 Mass of water (kg) = 9.917e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.607e+00 Temperature (°C) = 100.00 Pressure (atm) = 530.35 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 41 (142 overall) + Iterations = 38 (139 overall) Total H = 1.100951e+02 - Total O = 5.823577e+01 + Total O = 5.823576e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.272e-04 8.934e-04 -3.033 -3.049 -0.016 0.00 - OH- 1.032e-09 9.921e-10 -8.986 -9.003 -0.017 -7.86 + H+ 9.220e-04 8.885e-04 -3.035 -3.051 -0.016 0.00 + OH- 1.037e-09 9.976e-10 -8.984 -9.001 -0.017 -7.86 H2O 5.551e+01 9.753e-01 1.744 -0.011 0.000 18.35 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -100.276 -100.276 0.000 40.49 +C(-4) 4.003e-24 + CH4 4.003e-24 4.004e-24 -23.398 -23.397 0.000 40.49 C(4) 1.607e+00 CO2 1.295e+00 1.295e+00 0.112 0.112 0.000 37.56 (CO2)2 1.557e-01 1.557e-01 -0.808 -0.808 0.000 75.12 - HCO3- 9.272e-04 8.922e-04 -3.033 -3.050 -0.017 25.73 - CO3-2 1.305e-10 1.119e-10 -9.884 -9.951 -0.067 -1.54 -H(0) 5.978e-33 - H2 2.989e-33 2.990e-33 -32.524 -32.524 0.000 28.35 -O(0) 7.833e-09 - O2 3.916e-09 3.917e-09 -8.407 -8.407 0.000 32.41 + HCO3- 9.220e-04 8.873e-04 -3.035 -3.052 -0.017 26.36 + CO3-2 1.353e-10 1.160e-10 -9.869 -9.935 -0.067 -2.99 +H(0) 9.914e-14 + H2 4.957e-14 4.958e-14 -13.305 -13.305 0.000 28.35 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -46.846 -46.846 0.000 32.41 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 530 atm) - CH4(g) -96.97 -100.28 -3.31 CH4 + CH4(g) -20.09 -23.40 -3.31 CH4 CO2(g) 2.37 0.11 -2.26 CO2 Pressure 518.1 atm, phi 0.456 - H2(g) -29.21 -32.52 -3.31 H2 + H2(g) -9.99 -13.30 -3.31 H2 H2O(g) 0.12 -0.01 -0.13 H2O Pressure 12.2 atm, phi 0.108 - O2(g) -5.05 -8.41 -3.36 O2 + O2(g) -43.49 -46.85 -3.36 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10379,54 +10375,54 @@ H2O(g) 1.14 1.395e+01 0.099 4.587e-01 4.804e-01 2.170e-02 ----------------------------Description of solution---------------------------- - pH = 3.028 Charge balance - pe = 11.422 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 659 + pH = 3.031 Charge balance + pe = 1.764 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 611 Density (g/cm³) = 0.99605 Volume (L) = 1.06852 - Viscosity (mPa s) = 0.29820 + Viscosity (mPa s) = 0.29782 Activity of water = 0.974 - Ionic strength (mol/kgw) = 9.741e-04 + Ionic strength (mol/kgw) = 9.668e-04 Mass of water (kg) = 9.913e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.214e-09 Total CO2 (mol/kg) = 1.672e+00 Temperature (°C) = 100.00 Pressure (atm) = 604.71 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 (136 overall) + Iterations = 139 (240 overall) Total H = 1.100517e+02 - Total O = 5.834106e+01 + Total O = 5.834105e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.741e-04 9.379e-04 -3.011 -3.028 -0.016 0.00 - OH- 1.050e-09 1.009e-09 -8.979 -8.996 -0.017 -8.07 + H+ 9.668e-04 9.310e-04 -3.015 -3.031 -0.016 0.00 + OH- 1.058e-09 1.017e-09 -8.975 -8.993 -0.017 -8.07 H2O 5.551e+01 9.744e-01 1.744 -0.011 0.000 18.29 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -100.295 -100.295 0.000 40.42 +C(-4) 8.886e-24 + CH4 8.886e-24 8.888e-24 -23.051 -23.051 0.000 40.42 C(4) 1.672e+00 CO2 1.339e+00 1.339e+00 0.127 0.127 0.000 37.41 (CO2)2 1.663e-01 1.663e-01 -0.779 -0.779 0.000 74.81 - HCO3- 9.741e-04 9.366e-04 -3.011 -3.028 -0.017 25.93 - CO3-2 1.383e-10 1.182e-10 -9.859 -9.927 -0.068 -0.77 -H(0) 5.609e-33 - H2 2.804e-33 2.805e-33 -32.552 -32.552 0.000 28.33 -O(0) 7.836e-09 - O2 3.918e-09 3.919e-09 -8.407 -8.407 0.000 32.23 + HCO3- 9.668e-04 9.298e-04 -3.015 -3.032 -0.017 26.67 + CO3-2 1.446e-10 1.237e-10 -9.840 -9.908 -0.068 -2.30 +H(0) 1.147e-13 + H2 5.737e-14 5.738e-14 -13.241 -13.241 0.000 28.33 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -47.029 -47.029 0.000 32.23 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 605 atm) - CH4(g) -96.94 -100.29 -3.35 CH4 + CH4(g) -19.70 -23.05 -3.35 CH4 CO2(g) 2.43 0.13 -2.30 CO2 Pressure 590.8 atm, phi 0.452 - H2(g) -29.21 -32.55 -3.34 H2 + H2(g) -9.90 -13.24 -3.34 H2 H2O(g) 0.14 -0.01 -0.15 H2O Pressure 14.0 atm, phi 0.099 - O2(g) -5.02 -8.41 -3.39 O2 + O2(g) -43.64 -47.03 -3.39 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10481,54 +10477,54 @@ H2O(g) 1.20 1.588e+01 0.091 4.804e-01 4.991e-01 1.875e-02 ----------------------------Description of solution---------------------------- - pH = 3.005 Charge balance - pe = 11.444 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 690 + pH = 3.009 Charge balance + pe = 11.341 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 640 Density (g/cm³) = 1.00012 Volume (L) = 1.06679 - Viscosity (mPa s) = 0.30053 + Viscosity (mPa s) = 0.30011 Activity of water = 0.973 - Ionic strength (mol/kgw) = 1.029e-03 + Ionic strength (mol/kgw) = 1.018e-03 Mass of water (kg) = 9.910e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.740e+00 Temperature (°C) = 100.00 Pressure (atm) = 692.70 - Electrical balance (eq) = -1.206e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 (137 overall) + Iterations = 65 (166 overall) Total H = 1.100142e+02 - Total O = 5.845662e+01 + Total O = 5.845661e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.029e-03 9.897e-04 -2.988 -3.005 -0.017 0.00 - OH- 1.078e-09 1.035e-09 -8.967 -8.985 -0.018 -8.32 + H+ 1.018e-03 9.800e-04 -2.992 -3.009 -0.017 0.00 + OH- 1.089e-09 1.045e-09 -8.963 -8.981 -0.018 -8.32 H2O 5.551e+01 9.734e-01 1.744 -0.012 0.000 18.23 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -100.318 -100.318 0.000 40.34 + CH4 0.000e+00 0.000e+00 -99.529 -99.529 0.000 40.34 C(4) 1.740e+00 CO2 1.384e+00 1.384e+00 0.141 0.141 0.000 37.23 (CO2)2 1.778e-01 1.778e-01 -0.750 -0.750 0.000 74.46 - HCO3- 1.029e-03 9.883e-04 -2.988 -3.005 -0.017 26.15 - CO3-2 1.477e-10 1.258e-10 -9.831 -9.900 -0.069 0.10 -H(0) 5.203e-33 - H2 2.602e-33 2.602e-33 -32.585 -32.585 0.000 28.30 -O(0) 7.839e-09 - O2 3.919e-09 3.920e-09 -8.407 -8.407 0.000 32.04 + HCO3- 1.018e-03 9.786e-04 -2.992 -3.009 -0.017 27.02 + CO3-2 1.561e-10 1.331e-10 -9.807 -9.876 -0.069 -1.53 +H(0) 8.197e-33 + H2 4.099e-33 4.100e-33 -32.387 -32.387 0.000 28.30 +O(0) 3.158e-09 + O2 1.579e-09 1.580e-09 -8.802 -8.801 0.000 32.04 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 693 atm) - CH4(g) -96.92 -100.32 -3.40 CH4 + CH4(g) -96.13 -99.53 -3.40 CH4 CO2(g) 2.49 0.14 -2.34 CO2 Pressure 676.8 atm, phi 0.452 - H2(g) -29.21 -32.58 -3.38 H2 + H2(g) -29.01 -32.39 -3.38 H2 H2O(g) 0.16 -0.01 -0.17 H2O Pressure 15.9 atm, phi 0.091 - O2(g) -4.98 -8.41 -3.43 O2 + O2(g) -5.37 -8.80 -3.43 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10583,54 +10579,54 @@ H2O(g) 1.26 1.804e+01 0.085 4.991e-01 5.142e-01 1.511e-02 ----------------------------Description of solution---------------------------- - pH = 2.979 Charge balance - pe = 11.469 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 727 + pH = 2.984 Charge balance + pe = 11.364 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 674 Density (g/cm³) = 1.00480 Volume (L) = 1.06465 - Viscosity (mPa s) = 0.30328 + Viscosity (mPa s) = 0.30281 Activity of water = 0.972 - Ionic strength (mol/kgw) = 1.092e-03 + Ionic strength (mol/kgw) = 1.078e-03 Mass of water (kg) = 9.907e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.812e+00 Temperature (°C) = 100.00 Pressure (atm) = 797.06 - Electrical balance (eq) = -1.206e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 33 (134 overall) + Iterations = 36 (137 overall) Total H = 1.099840e+02 - Total O = 5.858320e+01 + Total O = 5.858319e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.092e-03 1.050e-03 -2.962 -2.979 -0.017 0.00 - OH- 1.118e-09 1.072e-09 -8.952 -8.970 -0.018 -8.59 + H+ 1.078e-03 1.036e-03 -2.967 -2.984 -0.017 0.00 + OH- 1.132e-09 1.086e-09 -8.946 -8.964 -0.018 -8.59 H2O 5.551e+01 9.724e-01 1.744 -0.012 0.000 18.15 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -100.349 -100.348 0.000 40.25 + CH4 0.000e+00 0.000e+00 -99.559 -99.559 0.000 40.25 C(4) 1.812e+00 CO2 1.431e+00 1.431e+00 0.156 0.156 0.000 37.03 (CO2)2 1.901e-01 1.902e-01 -0.721 -0.721 0.000 74.06 - HCO3- 1.092e-03 1.049e-03 -2.962 -2.979 -0.018 26.40 - CO3-2 1.589e-10 1.350e-10 -9.799 -9.870 -0.071 1.07 -H(0) 4.763e-33 - H2 2.381e-33 2.382e-33 -32.623 -32.623 0.000 28.27 -O(0) 7.841e-09 - O2 3.920e-09 3.921e-09 -8.407 -8.407 0.000 31.83 + HCO3- 1.078e-03 1.035e-03 -2.967 -2.985 -0.018 27.42 + CO3-2 1.706e-10 1.450e-10 -9.768 -9.839 -0.071 -0.67 +H(0) 7.503e-33 + H2 3.751e-33 3.752e-33 -32.426 -32.426 0.000 28.27 +O(0) 3.159e-09 + O2 1.580e-09 1.580e-09 -8.801 -8.801 0.000 31.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 797 atm) - CH4(g) -96.89 -100.35 -3.46 CH4 + CH4(g) -96.10 -99.56 -3.46 CH4 CO2(g) 2.55 0.16 -2.40 CO2 Pressure 779.0 atm, phi 0.459 - H2(g) -29.20 -32.62 -3.42 H2 + H2(g) -29.01 -32.43 -3.42 H2 H2O(g) 0.19 -0.01 -0.20 H2O Pressure 18.0 atm, phi 0.085 - O2(g) -4.93 -8.41 -3.47 O2 + O2(g) -5.33 -8.80 -3.47 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10685,54 +10681,54 @@ H2O(g) 1.31 2.044e+01 0.081 5.142e-01 5.250e-01 1.075e-02 ----------------------------Description of solution---------------------------- - pH = 2.950 Charge balance - pe = 11.495 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 768 + pH = 2.958 Charge balance + pe = 11.389 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 713 Density (g/cm³) = 1.01017 Volume (L) = 1.06205 - Viscosity (mPa s) = 0.30654 + Viscosity (mPa s) = 0.30601 Activity of water = 0.971 - Ionic strength (mol/kgw) = 1.168e-03 + Ionic strength (mol/kgw) = 1.147e-03 Mass of water (kg) = 9.905e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.888e+00 Temperature (°C) = 100.00 Pressure (atm) = 921.15 - Electrical balance (eq) = -1.206e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 (136 overall) + Iterations = 44 (145 overall) Total H = 1.099625e+02 - Total O = 5.872143e+01 + Total O = 5.872141e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.168e-03 1.122e-03 -2.933 -2.950 -0.018 0.00 - OH- 1.174e-09 1.124e-09 -8.930 -8.949 -0.019 -8.89 + H+ 1.147e-03 1.102e-03 -2.940 -2.958 -0.017 0.00 + OH- 1.194e-09 1.144e-09 -8.923 -8.941 -0.018 -8.89 H2O 5.551e+01 9.713e-01 1.744 -0.013 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -100.386 -100.386 0.000 40.15 + CH4 0.000e+00 0.000e+00 -99.597 -99.597 0.000 40.15 C(4) 1.888e+00 CO2 1.480e+00 1.480e+00 0.170 0.170 0.000 36.81 (CO2)2 2.033e-01 2.034e-01 -0.692 -0.692 0.000 73.62 - HCO3- 1.168e-03 1.120e-03 -2.933 -2.951 -0.018 26.69 - CO3-2 1.726e-10 1.460e-10 -9.763 -9.836 -0.073 2.15 -H(0) 4.289e-33 - H2 2.145e-33 2.145e-33 -32.669 -32.669 0.000 28.24 -O(0) 7.842e-09 - O2 3.921e-09 3.922e-09 -8.407 -8.406 0.000 31.59 + HCO3- 1.147e-03 1.100e-03 -2.940 -2.958 -0.018 27.86 + CO3-2 1.888e-10 1.599e-10 -9.724 -9.796 -0.072 0.29 +H(0) 6.757e-33 + H2 3.379e-33 3.379e-33 -32.471 -32.471 0.000 28.24 +O(0) 3.160e-09 + O2 1.580e-09 1.580e-09 -8.801 -8.801 0.000 31.59 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 921 atm) - CH4(g) -96.86 -100.39 -3.53 CH4 + CH4(g) -96.07 -99.60 -3.53 CH4 CO2(g) 2.63 0.17 -2.46 CO2 Pressure 900.7 atm, phi 0.474 - H2(g) -29.20 -32.67 -3.47 H2 + H2(g) -29.00 -32.47 -3.47 H2 H2O(g) 0.22 -0.01 -0.23 H2O Pressure 20.4 atm, phi 0.081 - O2(g) -4.88 -8.41 -3.53 O2 + O2(g) -5.27 -8.80 -3.53 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10787,54 +10783,54 @@ H2O(g) 1.36 2.308e+01 0.078 5.250e-01 5.306e-01 5.633e-03 ----------------------------Description of solution---------------------------- - pH = 2.918 Charge balance - pe = 11.525 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 817 + pH = 2.929 Charge balance + pe = 11.416 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 758 Density (g/cm³) = 1.01630 Volume (L) = 1.05892 - Viscosity (mPa s) = 0.31039 + Viscosity (mPa s) = 0.30979 Activity of water = 0.970 - Ionic strength (mol/kgw) = 1.258e-03 + Ionic strength (mol/kgw) = 1.228e-03 Mass of water (kg) = 9.904e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.967e+00 Temperature (°C) = 100.00 Pressure (atm) = 1069.23 - Electrical balance (eq) = -1.206e-09 + Electrical balance (eq) = -1.205e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 37 (138 overall) Total H = 1.099512e+02 - Total O = 5.887177e+01 + Total O = 5.887174e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.257e-03 1.207e-03 -2.900 -2.918 -0.018 0.00 - OH- 1.253e-09 1.199e-09 -8.902 -8.921 -0.019 -9.21 + H+ 1.228e-03 1.179e-03 -2.911 -2.929 -0.018 0.00 + OH- 1.282e-09 1.227e-09 -8.892 -8.911 -0.019 -9.21 H2O 5.551e+01 9.702e-01 1.744 -0.013 0.000 17.97 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -100.434 -100.434 0.000 40.04 + CH4 0.000e+00 0.000e+00 -99.644 -99.644 0.000 40.04 C(4) 1.967e+00 CO2 1.531e+00 1.531e+00 0.185 0.185 0.000 36.56 (CO2)2 2.175e-01 2.175e-01 -0.663 -0.662 0.000 73.13 - HCO3- 1.257e-03 1.205e-03 -2.900 -2.919 -0.019 27.00 - CO3-2 1.893e-10 1.594e-10 -9.723 -9.798 -0.075 3.35 -H(0) 3.788e-33 - H2 1.894e-33 1.894e-33 -32.723 -32.723 0.000 28.20 -O(0) 7.843e-09 - O2 3.922e-09 3.923e-09 -8.407 -8.406 0.000 31.32 + HCO3- 1.228e-03 1.177e-03 -2.911 -2.929 -0.018 28.34 + CO3-2 2.122e-10 1.790e-10 -9.673 -9.747 -0.074 1.36 +H(0) 5.967e-33 + H2 2.984e-33 2.985e-33 -32.525 -32.525 0.000 28.20 +O(0) 3.160e-09 + O2 1.580e-09 1.581e-09 -8.801 -8.801 0.000 31.32 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 1069 atm) - CH4(g) -96.82 -100.43 -3.61 CH4 + CH4(g) -96.03 -99.64 -3.61 CH4 CO2(g) 2.72 0.18 -2.53 CO2 Pressure 1046.2 atm, phi 0.500 - H2(g) -29.19 -32.72 -3.53 H2 + H2(g) -29.00 -32.53 -3.53 H2 H2O(g) 0.25 -0.01 -0.27 H2O Pressure 23.1 atm, phi 0.078 - O2(g) -4.82 -8.41 -3.59 O2 + O2(g) -5.21 -8.80 -3.59 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10872,14 +10868,14 @@ Reaction 1. Total pressure: 1246.74 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 3.92e-02 liters/mole - P * Vm / RT: 1.59662 (Compressibility Factor Z) + P * Vm / RT: 1.59663 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta CO2(g) 3.09 1.221e+03 0.541 2.405e+01 2.497e+01 9.188e-01 -H2O(g) 1.41 2.593e+01 0.076 5.306e-01 5.304e-01 -2.392e-04 +H2O(g) 1.41 2.593e+01 0.076 5.306e-01 5.304e-01 -2.391e-04 -----------------------------Solution composition------------------------------ @@ -10889,54 +10885,54 @@ H2O(g) 1.41 2.593e+01 0.076 5.306e-01 5.304e-01 -2.392e-04 ----------------------------Description of solution---------------------------- - pH = 2.883 Charge balance - pe = 11.557 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 874 + pH = 2.897 Charge balance + pe = 11.445 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 810 Density (g/cm³) = 1.02323 Volume (L) = 1.05524 - Viscosity (mPa s) = 0.31493 + Viscosity (mPa s) = 0.31423 Activity of water = 0.969 - Ionic strength (mol/kgw) = 1.365e-03 + Ionic strength (mol/kgw) = 1.323e-03 Mass of water (kg) = 9.904e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 2.049e+00 Temperature (°C) = 100.00 Pressure (atm) = 1246.74 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.205e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 49 (150 overall) + Iterations = 42 (143 overall) Total H = 1.099517e+02 - Total O = 5.903441e+01 + Total O = 5.903436e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.365e-03 1.308e-03 -2.865 -2.883 -0.018 0.00 - OH- 1.366e-09 1.306e-09 -8.864 -8.884 -0.020 -9.57 + H+ 1.323e-03 1.268e-03 -2.879 -2.897 -0.018 0.00 + OH- 1.409e-09 1.347e-09 -8.851 -8.871 -0.019 -9.57 H2O 5.551e+01 9.691e-01 1.744 -0.014 0.000 17.86 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -100.492 -100.492 0.000 39.91 + CH4 0.000e+00 0.000e+00 -99.703 -99.703 0.000 39.91 C(4) 2.049e+00 CO2 1.583e+00 1.583e+00 0.199 0.199 0.000 36.29 (CO2)2 2.325e-01 2.326e-01 -0.634 -0.633 0.000 72.59 - HCO3- 1.365e-03 1.306e-03 -2.865 -2.884 -0.019 27.35 - CO3-2 2.098e-10 1.757e-10 -9.678 -9.755 -0.077 4.67 -H(0) 3.266e-33 - H2 1.633e-33 1.634e-33 -32.787 -32.787 0.000 28.16 -O(0) 7.843e-09 - O2 3.922e-09 3.923e-09 -8.407 -8.406 0.000 31.03 + HCO3- 1.323e-03 1.266e-03 -2.879 -2.898 -0.019 28.88 + CO3-2 2.428e-10 2.039e-10 -9.615 -9.691 -0.076 2.54 +H(0) 5.145e-33 + H2 2.573e-33 2.573e-33 -32.590 -32.589 0.000 28.16 +O(0) 3.160e-09 + O2 1.580e-09 1.581e-09 -8.801 -8.801 0.000 31.03 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 1247 atm) - CH4(g) -96.78 -100.49 -3.71 CH4 + CH4(g) -95.99 -99.70 -3.71 CH4 CO2(g) 2.82 0.20 -2.62 CO2 Pressure 1220.8 atm, phi 0.541 - H2(g) -29.19 -32.79 -3.60 H2 + H2(g) -28.99 -32.59 -3.60 H2 H2O(g) 0.30 -0.01 -0.31 H2O Pressure 25.9 atm, phi 0.076 - O2(g) -4.74 -8.41 -3.66 O2 + O2(g) -5.14 -8.80 -3.66 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/phreeqc3-examples/ex2b.out b/phreeqc3-examples/ex2b.out index 404c0e87..2d9eb972 100644 --- a/phreeqc3-examples/ex2b.out +++ b/phreeqc3-examples/ex2b.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/phreeqc3-examples/ex3.out b/phreeqc3-examples/ex3.out index 2f170f84..902dd6ec 100644 --- a/phreeqc3-examples/ex3.out +++ b/phreeqc3-examples/ex3.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -103,62 +104,62 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -2.00 -3.47 -1.47 1.000e+01 9.998e+00 -1.976e-03 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.998e+00 -1.645e-03 +CO2(g) -2.00 -3.47 -1.47 1.000e+01 9.998e+00 -1.953e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.998e+00 -1.623e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.622e-03 3.621e-03 - Ca 1.645e-03 1.645e-03 + C 3.576e-03 3.576e-03 + Ca 1.623e-03 1.623e-03 ----------------------------Description of solution---------------------------- - pH = 7.297 Charge balance - pe = -1.575 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 304 + pH = 7.295 Charge balance + pe = -1.573 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 307 Density (g/cm³) = 0.99726 Volume (L) = 1.00300 - Viscosity (mPa s) = 0.89187 + Viscosity (mPa s) = 0.89219 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.826e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.291e-03 - Total CO2 (mol/kg) = 3.622e-03 + Total alkalinity (eq/kg) = 3.245e-03 + Total CO2 (mol/kg) = 3.576e-03 Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 Total H = 1.110124e+02 - Total O = 5.551511e+01 + Total O = 5.551499e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.162e-07 2.005e-07 -6.665 -6.698 -0.033 -4.07 - H+ 5.402e-08 5.048e-08 -7.267 -7.297 -0.029 0.00 + OH- 2.154e-07 1.998e-07 -6.667 -6.699 -0.033 -4.07 + H+ 5.421e-08 5.066e-08 -7.266 -7.295 -0.029 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 -C(-4) 1.404e-25 - CH4 1.404e-25 1.406e-25 -24.853 -24.852 0.000 35.46 -C(4) 3.622e-03 - HCO3- 3.223e-03 2.998e-03 -2.492 -2.523 -0.032 24.60 +C(-4) 1.394e-25 + CH4 1.394e-25 1.396e-25 -24.856 -24.855 0.000 35.46 +C(4) 3.576e-03 + HCO3- 3.212e-03 2.987e-03 -2.493 -2.525 -0.032 24.62 CO2 3.400e-04 3.403e-04 -3.469 -3.468 0.000 34.43 - CaHCO3+ 4.886e-05 4.548e-05 -4.311 -4.342 -0.031 9.70 + CaHCO3+ 1.483e-05 1.380e-05 -4.829 -4.860 -0.031 122.67 CaCO3 5.557e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CO3-2 3.723e-06 2.785e-06 -5.429 -5.555 -0.126 -3.91 + CO3-2 3.697e-06 2.765e-06 -5.432 -5.558 -0.126 -3.79 (CO2)2 2.123e-09 2.125e-09 -8.673 -8.673 0.000 68.87 -Ca 1.645e-03 - Ca+2 1.591e-03 1.189e-03 -2.798 -2.925 -0.126 -18.02 - CaHCO3+ 4.886e-05 4.548e-05 -4.311 -4.342 -0.031 9.70 +Ca 1.623e-03 + Ca+2 1.602e-03 1.198e-03 -2.795 -2.922 -0.126 -18.02 + CaHCO3+ 1.483e-05 1.380e-05 -4.829 -4.860 -0.031 122.67 CaCO3 5.557e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaOH+ 4.212e-09 3.909e-09 -8.376 -8.408 -0.032 (0) -H(0) 5.093e-15 - H2 2.547e-15 2.549e-15 -14.594 -14.594 0.000 28.61 + CaOH+ 4.227e-09 3.923e-09 -8.374 -8.406 -0.032 (0) +H(0) 5.084e-15 + H2 2.542e-15 2.545e-15 -14.595 -14.594 0.000 28.61 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.193 -63.193 0.000 30.40 + O2 0.000e+00 0.000e+00 -63.192 -63.191 0.000 30.40 ------------------------------Saturation indices------------------------------- @@ -166,7 +167,7 @@ O(0) 0.000e+00 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -22.05 -24.85 -2.80 CH4 + CH4(g) -22.05 -24.86 -2.80 CH4 CO2(g) -2.00 -3.47 -1.47 CO2 Pressure 0.0 atm, phi 1.000 H2(g) -11.49 -14.59 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O @@ -228,15 +229,15 @@ Initial solution 2. Seawater pH = 8.220 pe = 8.451 - Specific Conductance (µS/cm, 25°C) = 52731 - Density (g/cm³) = 1.02327 - Volume (L) = 1.01279 - Viscosity (mPa s) = 0.95702 + Specific Conductance (µS/cm, 25°C) = 52856 + Density (g/cm³) = 1.02328 + Volume (L) = 1.01278 + Viscosity (mPa s) = 0.96029 Activity of water = 0.981 - Ionic strength (mol/kgw) = 6.741e-01 + Ionic strength (mol/kgw) = 6.704e-01 Mass of water (kg) = 1.000e+00 - Total carbon (mol/kg) = 2.240e-03 - Total CO2 (mol/kg) = 2.240e-03 + Total carbon (mol/kg) = 2.238e-03 + Total CO2 (mol/kg) = 2.238e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 7.967e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 @@ -249,90 +250,92 @@ Initial solution 2. Seawater Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.705e-06 1.647e-06 -5.568 -5.783 -0.215 -2.63 - H+ 7.983e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 - H2O 5.551e+01 9.806e-01 1.744 -0.009 0.000 18.07 -C(4) 2.240e-03 - HCO3- 1.572e-03 1.062e-03 -2.803 -2.974 -0.170 26.61 - MgHCO3+ 2.743e-04 1.725e-04 -3.562 -3.763 -0.201 5.82 - NaHCO3 1.700e-04 2.430e-04 -3.770 -3.614 0.155 28.00 - MgCO3 9.375e-05 1.095e-04 -4.028 -3.961 0.067 -17.09 - CaHCO3+ 4.751e-05 3.288e-05 -4.323 -4.483 -0.160 9.96 - CO3-2 3.973e-05 8.264e-06 -4.401 -5.083 -0.682 -0.40 - CaCO3 2.885e-05 3.369e-05 -4.540 -4.472 0.067 -14.60 - CO2 1.324e-05 1.467e-05 -4.878 -4.834 0.044 34.43 - (CO2)2 3.382e-12 3.950e-12 -11.471 -11.403 0.067 68.87 + OH- 2.703e-06 1.647e-06 -5.568 -5.783 -0.215 -2.63 + H+ 7.981e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 + H2O 5.551e+01 9.806e-01 1.744 -0.008 0.000 18.07 +C(4) 2.238e-03 + HCO3- 1.541e-03 1.041e-03 -2.812 -2.982 -0.170 25.99 + MgHCO3+ 2.783e-04 1.751e-04 -3.556 -3.757 -0.201 5.82 + NaHCO3 2.252e-04 3.066e-04 -3.647 -3.513 0.134 31.73 + MgCO3 9.524e-05 1.111e-04 -4.021 -3.954 0.067 -17.09 + CO3-2 3.889e-05 8.104e-06 -4.410 -5.091 -0.681 -0.52 + CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 + CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 122.92 + CO2 1.299e-05 1.438e-05 -4.886 -4.842 0.044 34.43 + KHCO3 2.970e-06 3.013e-06 -5.527 -5.521 0.006 41.03 + (CO2)2 3.254e-12 3.798e-12 -11.488 -11.420 0.067 68.87 Ca 1.066e-02 - Ca+2 9.706e-03 2.427e-03 -2.013 -2.615 -0.602 -16.70 - CaSO4 8.788e-04 1.026e-03 -3.056 -2.989 0.067 7.50 - CaHCO3+ 4.751e-05 3.288e-05 -4.323 -4.483 -0.160 9.96 - CaCO3 2.885e-05 3.369e-05 -4.540 -4.472 0.067 -14.60 - CaOH+ 8.777e-08 6.554e-08 -7.057 -7.183 -0.127 (0) - CaHSO4+ 5.444e-11 4.065e-11 -10.264 -10.391 -0.127 (0) + Ca+2 9.964e-03 2.493e-03 -2.002 -2.603 -0.602 -16.70 + CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 + CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 + CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 122.92 + CaOH+ 9.020e-08 6.732e-08 -7.045 -7.172 -0.127 (0) + CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) Cl 5.657e-01 - Cl- 5.657e-01 3.568e-01 -0.247 -0.448 -0.200 18.79 - HCl 3.826e-10 7.407e-10 -9.417 -9.130 0.287 (0) -H(0) 5.516e-37 - H2 2.758e-37 3.221e-37 -36.559 -36.492 0.067 28.61 + Cl- 5.657e-01 3.570e-01 -0.247 -0.447 -0.200 18.79 + HCl 3.842e-10 7.411e-10 -9.415 -9.130 0.285 (0) +H(0) 5.521e-37 + H2 2.760e-37 3.221e-37 -36.559 -36.492 0.067 28.61 K 1.058e-02 - K+ 1.043e-02 6.501e-03 -1.982 -2.187 -0.205 9.66 - KSO4- 1.471e-04 5.683e-05 -3.832 -4.245 -0.413 32.21 + K+ 1.039e-02 6.478e-03 -1.983 -2.189 -0.205 9.66 + KSO4- 1.873e-04 1.696e-04 -3.728 -3.770 -0.043 11.34 + KHCO3 2.970e-06 3.013e-06 -5.527 -5.521 0.006 41.03 Mg 5.507e-02 - Mg+2 4.811e-02 1.389e-02 -1.318 -1.857 -0.540 -20.41 - MgSO4 6.339e-03 8.646e-03 -2.198 -2.063 0.135 -0.83 - MgHCO3+ 2.743e-04 1.725e-04 -3.562 -3.763 -0.201 5.82 - Mg(SO4)2-2 2.394e-04 6.773e-05 -3.621 -4.169 -0.548 48.54 - MgCO3 9.375e-05 1.095e-04 -4.028 -3.961 0.067 -17.09 - MgOH+ 1.164e-05 8.204e-06 -4.934 -5.086 -0.152 (0) + Mg+2 4.979e-02 1.437e-02 -1.303 -1.842 -0.540 -20.42 + MgSO4 4.756e-03 6.476e-03 -2.323 -2.189 0.134 -7.92 + MgHCO3+ 2.783e-04 1.751e-04 -3.556 -3.757 -0.201 5.82 + Mg(SO4)2-2 1.296e-04 3.671e-05 -3.887 -4.435 -0.548 32.91 + MgCO3 9.524e-05 1.111e-04 -4.021 -3.954 0.067 -17.09 + MgOH+ 1.205e-05 8.493e-06 -4.919 -5.071 -0.152 (0) Na 4.854e-01 - Na+ 4.769e-01 3.422e-01 -0.322 -0.466 -0.144 -0.50 - NaSO4- 8.339e-03 3.180e-03 -2.079 -2.498 -0.419 20.67 - NaHCO3 1.700e-04 2.430e-04 -3.770 -3.614 0.155 28.00 - NaOH 4.827e-17 5.637e-17 -16.316 -16.249 0.067 (0) -O(0) 6.616e-20 - O2 3.308e-20 3.863e-20 -19.480 -19.413 0.067 30.40 + Na+ 4.712e-01 3.381e-01 -0.327 -0.471 -0.144 -0.51 + NaSO4- 1.396e-02 9.473e-03 -1.855 -2.024 -0.168 8.22 + NaHCO3 2.252e-04 3.066e-04 -3.647 -3.513 0.134 31.73 + NaOH 4.773e-17 5.570e-17 -16.321 -16.254 0.067 (0) +O(0) 6.622e-20 + O2 3.311e-20 3.864e-20 -19.480 -19.413 0.067 30.40 S(6) 2.926e-02 - SO4-2 1.307e-02 2.378e-03 -1.884 -2.624 -0.740 17.77 - NaSO4- 8.339e-03 3.180e-03 -2.079 -2.498 -0.419 20.67 - MgSO4 6.339e-03 8.646e-03 -2.198 -2.063 0.135 -0.83 - CaSO4 8.788e-04 1.026e-03 -3.056 -2.989 0.067 7.50 - Mg(SO4)2-2 2.394e-04 6.773e-05 -3.621 -4.169 -0.548 48.54 - KSO4- 1.471e-04 5.683e-05 -3.832 -4.245 -0.413 32.21 - HSO4- 1.866e-09 1.393e-09 -8.729 -8.856 -0.127 40.96 - CaHSO4+ 5.444e-11 4.065e-11 -10.264 -10.391 -0.127 (0) + NaSO4- 1.396e-02 9.473e-03 -1.855 -2.024 -0.168 8.22 + SO4-2 9.440e-03 1.721e-03 -2.025 -2.764 -0.739 38.42 + MgSO4 4.756e-03 6.476e-03 -2.323 -2.189 0.134 -7.92 + CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 + KSO4- 1.873e-04 1.696e-04 -3.728 -3.770 -0.043 11.34 + Mg(SO4)2-2 1.296e-04 3.671e-05 -3.887 -4.435 -0.548 32.91 + HSO4- 1.351e-09 1.008e-09 -8.869 -8.996 -0.127 40.96 + CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) Si 7.382e-05 - H4SiO4 7.061e-05 8.247e-05 -4.151 -4.084 0.067 52.08 - H3SiO4- 3.209e-06 2.018e-06 -5.494 -5.695 -0.201 28.72 - H2SiO4-2 1.095e-10 2.278e-11 -9.961 -10.642 -0.682 (0) + H4SiO4 7.062e-05 8.241e-05 -4.151 -4.084 0.067 52.08 + H3SiO4- 3.205e-06 2.017e-06 -5.494 -5.695 -0.201 28.72 + H2SiO4-2 1.092e-10 2.276e-11 -9.962 -10.643 -0.681 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.96 -5.24 -4.28 CaSO4 - Aragonite 0.64 -7.70 -8.34 CaCO3 - Arcanite -5.12 -7.00 -1.88 K2SO4 - Calcite 0.78 -7.70 -8.48 CaCO3 + Anhydrite -1.09 -5.37 -4.28 CaSO4 + Aragonite 0.64 -7.69 -8.34 CaCO3 + Arcanite -5.26 -7.14 -1.88 K2SO4 + Calcite 0.79 -7.69 -8.48 CaCO3 Chalcedony -0.52 -4.07 -3.55 SiO2 - Chrysotile 3.37 35.57 32.20 Mg3Si2O5(OH)4 - CO2(g) -3.37 -4.83 -1.47 CO2 - Dolomite 2.45 -14.64 -17.08 CaMg(CO3)2 - Epsomite -2.80 -4.54 -1.74 MgSO4:7H2O - Gypsum -0.67 -5.26 -4.58 CaSO4:2H2O + Chrysotile 3.41 35.62 32.20 Mg3Si2O5(OH)4 + CO2(g) -3.37 -4.84 -1.47 CO2 + Dolomite 2.46 -14.63 -17.08 CaMg(CO3)2 + Epsomite -2.93 -4.67 -1.74 MgSO4:7H2O + Gypsum -0.80 -5.38 -4.58 CaSO4:2H2O H2(g) -33.39 -36.49 -3.10 H2 H2O(g) -1.51 -0.01 1.50 H2O - Halite -2.48 -0.91 1.57 NaCl - Hexahydrite -2.97 -4.53 -1.57 MgSO4:6H2O - Kieserite -3.33 -4.49 -1.16 MgSO4:H2O - Mirabilite -2.40 -3.64 -1.24 Na2SO4:10H2O + Halite -2.49 -0.92 1.57 NaCl + Hexahydrite -3.09 -4.66 -1.57 MgSO4:6H2O + Kieserite -3.45 -4.62 -1.16 MgSO4:H2O + Mirabilite -2.55 -3.79 -1.24 Na2SO4:10H2O O2(g) -16.52 -19.41 -2.89 O2 Quartz -0.09 -4.07 -3.98 SiO2 - Sepiolite 1.16 16.92 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -1.74 16.92 18.66 Mg2Si3O7.5OH:3H2O - SiO2(a) -1.35 -4.07 -2.71 SiO2 - Sylvite -3.53 -2.63 0.90 KCl - Talc 6.05 27.45 21.40 Mg3Si4O10(OH)2 - Thenardite -3.25 -3.56 -0.30 Na2SO4 + Sepiolite 1.19 16.95 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -1.71 16.95 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -1.36 -4.07 -2.71 SiO2 + Sylvite -3.54 -2.64 0.90 KCl + Talc 6.09 27.49 21.40 Mg3Si4O10(OH)2 + Thenardite -3.41 -3.71 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -374,8 +377,8 @@ Mixture 1. Elements Molality Moles - C 3.207e-03 3.207e-03 - Ca 4.350e-03 4.350e-03 + C 3.175e-03 3.175e-03 + Ca 4.334e-03 4.334e-03 Cl 1.697e-01 1.697e-01 K 3.173e-03 3.173e-03 Mg 1.652e-02 1.652e-02 @@ -385,123 +388,125 @@ Mixture 1. ----------------------------Description of solution---------------------------- - pH = 7.332 Charge balance - pe = 10.251 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 18410 + pH = 7.327 Charge balance + pe = 10.559 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 18310 Density (g/cm³) = 1.00526 - Volume (L) = 1.00580 - Viscosity (mPa s) = 0.91134 + Volume (L) = 1.00578 + Viscosity (mPa s) = 0.91373 Activity of water = 0.994 - Ionic strength (mol/kgw) = 2.085e-01 + Ionic strength (mol/kgw) = 2.068e-01 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.026e-03 - Total CO2 (mol/kg) = 3.207e-03 + Total alkalinity (eq/kg) = 2.994e-03 + Total CO2 (mol/kg) = 3.175e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 2.390e-04 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.06 - Iterations = 14 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 + Iterations = 16 Total H = 1.110131e+02 - Total O = 5.554965e+01 + Total O = 5.554957e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.070e-07 2.160e-07 -6.513 -6.666 -0.153 -3.48 - H+ 5.852e-08 4.658e-08 -7.233 -7.332 -0.099 0.00 + OH- 3.031e-07 2.134e-07 -6.518 -6.671 -0.152 -3.48 + H+ 5.921e-08 4.715e-08 -7.228 -7.327 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.973 -119.952 0.021 35.46 -C(4) 3.207e-03 - HCO3- 2.657e-03 1.976e-03 -2.576 -2.704 -0.129 25.45 - CO2 2.017e-04 2.082e-04 -3.695 -3.682 0.014 34.43 - MgHCO3+ 1.592e-04 1.139e-04 -3.798 -3.944 -0.146 5.72 - NaHCO3 1.274e-04 1.422e-04 -3.895 -3.847 0.048 28.00 - CaHCO3+ 4.217e-05 3.180e-05 -4.375 -4.498 -0.123 9.88 - MgCO3 8.913e-06 9.351e-06 -5.050 -5.029 0.021 -17.09 - CO3-2 6.506e-06 1.989e-06 -5.187 -5.701 -0.515 -2.16 - CaCO3 4.019e-06 4.216e-06 -5.396 -5.375 0.021 -14.60 - (CO2)2 7.580e-10 7.953e-10 -9.120 -9.099 0.021 68.87 -Ca 4.350e-03 - Ca+2 3.970e-03 1.262e-03 -2.401 -2.899 -0.498 -17.20 - CaSO4 3.335e-04 3.499e-04 -3.477 -3.456 0.021 7.50 - CaHCO3+ 4.217e-05 3.180e-05 -4.375 -4.498 -0.123 9.88 - CaCO3 4.019e-06 4.216e-06 -5.396 -5.375 0.021 -14.60 - CaOH+ 6.000e-09 4.469e-09 -8.222 -8.350 -0.128 (0) - CaHSO4+ 1.439e-10 1.071e-10 -9.842 -9.970 -0.128 (0) + CH4 0.000e+00 0.000e+00 -122.395 -122.374 0.021 35.46 +C(4) 3.175e-03 + HCO3- 2.615e-03 1.945e-03 -2.583 -2.711 -0.128 25.15 + CO2 2.010e-04 2.074e-04 -3.697 -3.683 0.014 34.43 + NaHCO3 1.640e-04 1.804e-04 -3.785 -3.744 0.041 31.73 + MgHCO3+ 1.611e-04 1.153e-04 -3.793 -3.938 -0.145 5.72 + CaHCO3+ 1.284e-05 9.686e-06 -4.892 -5.014 -0.122 122.85 + MgCO3 8.919e-06 9.354e-06 -5.050 -5.029 0.021 -17.09 + CO3-2 6.313e-06 1.935e-06 -5.200 -5.713 -0.514 -2.19 + CaCO3 4.001e-06 4.196e-06 -5.398 -5.377 0.021 -14.60 + KHCO3 1.915e-06 1.924e-06 -5.718 -5.716 0.002 41.03 + (CO2)2 7.531e-10 7.898e-10 -9.123 -9.102 0.021 68.87 +Ca 4.334e-03 + Ca+2 4.054e-03 1.291e-03 -2.392 -2.889 -0.497 -17.20 + CaSO4 2.639e-04 2.767e-04 -3.579 -3.558 0.021 7.50 + CaHCO3+ 1.284e-05 9.686e-06 -4.892 -5.014 -0.122 122.85 + CaCO3 4.001e-06 4.196e-06 -5.398 -5.377 0.021 -14.60 + CaOH+ 6.063e-09 4.517e-09 -8.217 -8.345 -0.128 (0) + CaHSO4+ 1.151e-10 8.576e-11 -9.939 -10.067 -0.128 (0) Cl 1.697e-01 - Cl- 1.697e-01 1.209e-01 -0.770 -0.917 -0.147 18.47 - HCl 1.582e-09 1.940e-09 -8.801 -8.712 0.089 (0) -H(0) 9.199e-39 - H2 4.600e-39 4.826e-39 -38.337 -38.316 0.021 28.61 + Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.46 + HCl 1.605e-09 1.965e-09 -8.795 -8.707 0.088 (0) +H(0) 2.284e-39 + H2 1.142e-39 1.198e-39 -38.942 -38.922 0.021 28.61 K 3.173e-03 - K+ 3.152e-03 2.233e-03 -2.501 -2.651 -0.150 9.35 - KSO4- 2.180e-05 1.280e-05 -4.662 -4.893 -0.231 28.29 + K+ 3.122e-03 2.214e-03 -2.506 -2.655 -0.149 9.35 + KSO4- 4.986e-05 4.061e-05 -4.302 -4.391 -0.089 14.03 + KHCO3 1.915e-06 1.924e-06 -5.718 -5.716 0.002 41.03 Mg 1.652e-02 - Mg+2 1.450e-02 4.926e-03 -1.839 -2.307 -0.469 -20.91 - MgSO4 1.827e-03 2.012e-03 -2.738 -2.696 0.042 -0.83 - MgHCO3+ 1.592e-04 1.139e-04 -3.798 -3.944 -0.146 5.72 - Mg(SO4)2-2 2.876e-05 1.033e-05 -4.541 -4.986 -0.445 44.98 - MgCO3 8.913e-06 9.351e-06 -5.050 -5.029 0.021 -17.09 - MgOH+ 5.008e-07 3.817e-07 -6.300 -6.418 -0.118 (0) + Mg+2 1.488e-02 5.065e-03 -1.827 -2.295 -0.468 -20.91 + MgSO4 1.454e-03 1.599e-03 -2.838 -2.796 0.041 -7.92 + MgHCO3+ 1.611e-04 1.153e-04 -3.793 -3.938 -0.145 5.72 + Mg(SO4)2-2 1.764e-05 6.349e-06 -4.754 -5.197 -0.444 24.64 + MgCO3 8.919e-06 9.354e-06 -5.050 -5.029 0.021 -17.09 + MgOH+ 5.085e-07 3.878e-07 -6.294 -6.411 -0.118 (0) Na 1.456e-01 - Na+ 1.444e-01 1.077e-01 -0.841 -0.968 -0.127 -0.92 - NaSO4- 1.121e-03 6.560e-04 -2.950 -3.183 -0.233 17.35 - NaHCO3 1.274e-04 1.422e-04 -3.895 -3.847 0.048 28.00 - NaOH 2.217e-18 2.326e-18 -17.654 -17.633 0.021 (0) -O(0) 3.372e-16 - O2 1.686e-16 1.769e-16 -15.773 -15.752 0.021 30.40 + Na+ 1.427e-01 1.065e-01 -0.846 -0.973 -0.127 -0.92 + NaSO4- 2.801e-03 2.089e-03 -2.553 -2.680 -0.127 -0.72 + NaHCO3 1.640e-04 1.804e-04 -3.785 -3.744 0.041 31.73 + NaOH 2.166e-18 2.272e-18 -17.664 -17.644 0.021 (0) +O(0) 5.475e-15 + O2 2.738e-15 2.871e-15 -14.563 -14.542 0.021 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -116.991 -117.144 -0.153 21.00 - H2S 0.000e+00 0.000e+00 -117.555 -117.534 0.021 36.27 - S-2 0.000e+00 0.000e+00 -122.198 -122.730 -0.532 (0) - (H2S)2 0.000e+00 0.000e+00 -236.368 -236.347 0.021 30.09 + HS- 0.000e+00 0.000e+00 -119.519 -119.672 -0.152 21.00 + H2S 0.000e+00 0.000e+00 -120.077 -120.056 0.021 36.27 + S-2 0.000e+00 0.000e+00 -124.732 -125.263 -0.531 (0) + (H2S)2 0.000e+00 0.000e+00 -241.412 -241.391 0.021 30.09 S(6) 8.777e-03 - SO4-2 5.416e-03 1.560e-03 -2.266 -2.807 -0.541 16.39 - MgSO4 1.827e-03 2.012e-03 -2.738 -2.696 0.042 -0.83 - NaSO4- 1.121e-03 6.560e-04 -2.950 -3.183 -0.233 17.35 - CaSO4 3.335e-04 3.499e-04 -3.477 -3.456 0.021 7.50 - Mg(SO4)2-2 2.876e-05 1.033e-05 -4.541 -4.986 -0.445 44.98 - KSO4- 2.180e-05 1.280e-05 -4.662 -4.893 -0.231 28.29 - HSO4- 9.484e-09 7.063e-09 -8.023 -8.151 -0.128 40.66 - CaHSO4+ 1.439e-10 1.071e-10 -9.842 -9.970 -0.128 (0) + SO4-2 4.174e-03 1.206e-03 -2.379 -2.919 -0.539 28.42 + NaSO4- 2.801e-03 2.089e-03 -2.553 -2.680 -0.127 -0.72 + MgSO4 1.454e-03 1.599e-03 -2.838 -2.796 0.041 -7.92 + CaSO4 2.639e-04 2.767e-04 -3.579 -3.558 0.021 7.50 + KSO4- 4.986e-05 4.061e-05 -4.302 -4.391 -0.089 14.03 + Mg(SO4)2-2 1.764e-05 6.349e-06 -4.754 -5.197 -0.444 24.64 + HSO4- 7.416e-09 5.526e-09 -8.130 -8.258 -0.128 40.66 + CaHSO4+ 1.151e-10 8.576e-11 -9.939 -10.067 -0.128 (0) Si 2.215e-05 - H4SiO4 2.205e-05 2.313e-05 -4.657 -4.636 0.021 52.08 - H3SiO4- 1.024e-07 7.322e-08 -6.990 -7.135 -0.146 28.37 - H2SiO4-2 3.497e-13 1.069e-13 -12.456 -12.971 -0.515 (0) + H4SiO4 2.205e-05 2.312e-05 -4.657 -4.636 0.021 52.08 + H3SiO4- 1.010e-07 7.231e-08 -6.996 -7.141 -0.145 28.37 + H2SiO4-2 3.404e-13 1.043e-13 -12.468 -12.982 -0.514 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.43 -5.71 -4.28 CaSO4 - Aragonite -0.26 -8.60 -8.34 CaCO3 - Arcanite -6.23 -8.11 -1.88 K2SO4 + Anhydrite -1.53 -5.81 -4.28 CaSO4 + Aragonite -0.27 -8.60 -8.34 CaCO3 + Arcanite -6.35 -8.23 -1.88 K2SO4 Calcite -0.12 -8.60 -8.48 CaCO3 - CH4(g) -117.15 -119.95 -2.80 CH4 + CH4(g) -119.57 -122.37 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 - Chrysotile -4.41 27.79 32.20 Mg3Si2O5(OH)4 + Chrysotile -4.40 27.80 32.20 Mg3Si2O5(OH)4 CO2(g) -2.21 -3.68 -1.47 CO2 Dolomite 0.47 -16.61 -17.08 CaMg(CO3)2 - Epsomite -3.39 -5.13 -1.74 MgSO4:7H2O - Gypsum -1.13 -5.71 -4.58 CaSO4:2H2O - H2(g) -35.22 -38.32 -3.10 H2 + Epsomite -3.49 -5.23 -1.74 MgSO4:7H2O + Gypsum -1.23 -5.81 -4.58 CaSO4:2H2O + H2(g) -35.82 -38.92 -3.10 H2 H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -116.54 -124.48 -7.94 H2S + H2S(g) -119.06 -127.00 -7.94 H2S Halite -3.46 -1.89 1.57 NaCl - Hexahydrite -3.56 -5.13 -1.57 MgSO4:6H2O - Kieserite -3.96 -5.12 -1.16 MgSO4:H2O - Mirabilite -3.53 -4.77 -1.24 Na2SO4:10H2O - O2(g) -12.86 -15.75 -2.89 O2 + Hexahydrite -3.66 -5.23 -1.57 MgSO4:6H2O + Kieserite -4.06 -5.22 -1.16 MgSO4:H2O + Mirabilite -3.65 -4.89 -1.24 Na2SO4:10H2O + O2(g) -11.65 -14.54 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 Sepiolite -4.95 10.81 15.76 Mg2Si3O7.5OH:3H2O Sepiolite(d) -7.85 10.81 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -87.25 -82.37 4.88 S + Sulfur -89.17 -84.28 4.88 S Sylvite -4.47 -3.57 0.90 KCl Talc -2.86 18.54 21.40 Mg3Si4O10(OH)2 - Thenardite -4.44 -4.74 -0.30 Na2SO4 + Thenardite -4.56 -4.86 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -540,141 +545,143 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite 0.00 -8.48 -8.48 1.000e+01 9.985e+00 -1.538e-02 -Dolomite 0.00 -17.08 -17.08 1.000e+01 1.001e+01 7.764e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.985e+00 -1.541e-02 +Dolomite 0.00 -17.08 -17.08 1.000e+01 1.001e+01 7.786e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.056e-03 3.056e-03 + C 3.016e-03 3.016e-03 Ca 1.196e-02 1.196e-02 Cl 1.697e-01 1.697e-01 K 3.173e-03 3.173e-03 - Mg 8.756e-03 8.756e-03 + Mg 8.734e-03 8.734e-03 Na 1.456e-01 1.456e-01 S 8.777e-03 8.777e-03 Si 2.215e-05 2.215e-05 ----------------------------Description of solution---------------------------- - pH = 7.057 Charge balance - pe = 10.649 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 18495 + pH = 7.047 Charge balance + pe = 10.927 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 18479 Density (g/cm³) = 1.00533 Volume (L) = 1.00583 - Viscosity (mPa s) = 0.91039 + Viscosity (mPa s) = 0.91249 Activity of water = 0.994 - Ionic strength (mol/kgw) = 2.089e-01 + Ionic strength (mol/kgw) = 2.071e-01 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 2.723e-03 - Total CO2 (mol/kg) = 3.056e-03 + Total alkalinity (eq/kg) = 2.677e-03 + Total CO2 (mol/kg) = 3.016e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 2.390e-04 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.06 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 Iterations = 5 Total H = 1.110131e+02 - Total O = 5.554920e+01 + Total O = 5.554910e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.631e-07 1.147e-07 -6.788 -6.940 -0.153 -3.48 - H+ 1.102e-07 8.770e-08 -6.958 -7.057 -0.099 0.00 + OH- 1.593e-07 1.121e-07 -6.798 -6.950 -0.152 -3.48 + H+ 1.127e-07 8.972e-08 -6.948 -7.047 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.722 -120.701 0.021 35.46 -C(4) 3.056e-03 - HCO3- 2.405e-03 1.788e-03 -2.619 -2.748 -0.129 25.45 - CO2 3.436e-04 3.547e-04 -3.464 -3.450 0.014 34.43 - NaHCO3 1.152e-04 1.287e-04 -3.938 -3.890 0.048 28.00 - CaHCO3+ 1.048e-04 7.901e-05 -3.980 -4.102 -0.123 9.88 - MgHCO3+ 7.615e-05 5.445e-05 -4.118 -4.264 -0.146 5.72 - CaCO3 5.302e-06 5.563e-06 -5.276 -5.255 0.021 -14.60 - CO3-2 3.130e-06 9.562e-07 -5.505 -6.019 -0.515 -2.15 - MgCO3 2.263e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 - (CO2)2 2.201e-09 2.309e-09 -8.657 -8.637 0.021 68.87 + CH4 0.000e+00 0.000e+00 -122.863 -122.842 0.021 35.46 +C(4) 3.016e-03 + HCO3- 2.394e-03 1.781e-03 -2.621 -2.749 -0.128 25.15 + CO2 3.502e-04 3.614e-04 -3.456 -3.442 0.014 34.43 + NaHCO3 1.500e-04 1.650e-04 -3.824 -3.782 0.041 31.73 + MgHCO3+ 7.783e-05 5.571e-05 -4.109 -4.254 -0.145 5.72 + CaHCO3+ 3.239e-05 2.444e-05 -4.490 -4.612 -0.122 122.85 + CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 + CO3-2 3.038e-06 9.308e-07 -5.517 -6.031 -0.514 -2.19 + MgCO3 2.264e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 + KHCO3 1.752e-06 1.760e-06 -5.756 -5.754 0.002 41.03 + (CO2)2 2.285e-09 2.397e-09 -8.641 -8.620 0.021 68.87 Ca 1.196e-02 - Ca+2 1.090e-02 3.463e-03 -1.962 -2.461 -0.498 -17.20 - CaSO4 9.480e-04 9.947e-04 -3.023 -3.002 0.021 7.50 - CaHCO3+ 1.048e-04 7.901e-05 -3.980 -4.102 -0.123 9.88 - CaCO3 5.302e-06 5.563e-06 -5.276 -5.255 0.021 -14.60 - CaOH+ 8.748e-09 6.515e-09 -8.058 -8.186 -0.128 (0) - CaHSO4+ 7.700e-10 5.734e-10 -9.113 -9.242 -0.128 (0) + Ca+2 1.118e-02 3.558e-03 -1.952 -2.449 -0.497 -17.20 + CaSO4 7.475e-04 7.840e-04 -3.126 -3.106 0.021 7.50 + CaHCO3+ 3.239e-05 2.444e-05 -4.490 -4.612 -0.122 122.85 + CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 + CaOH+ 8.781e-09 6.542e-09 -8.056 -8.184 -0.128 (0) + CaHSO4+ 6.206e-10 4.624e-10 -9.207 -9.335 -0.128 (0) Cl 1.697e-01 - Cl- 1.697e-01 1.209e-01 -0.770 -0.918 -0.147 18.47 - HCl 2.976e-09 3.652e-09 -8.526 -8.437 0.089 (0) -H(0) 5.232e-39 - H2 2.616e-39 2.745e-39 -38.582 -38.561 0.021 28.61 + Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.47 + HCl 3.053e-09 3.740e-09 -8.515 -8.427 0.088 (0) +H(0) 1.519e-39 + H2 7.594e-40 7.965e-40 -39.120 -39.099 0.021 28.61 K 3.173e-03 - K+ 3.151e-03 2.232e-03 -2.502 -2.651 -0.150 9.35 - KSO4- 2.258e-05 1.325e-05 -4.646 -4.878 -0.231 28.30 -Mg 8.756e-03 - Mg+2 7.661e-03 2.602e-03 -2.116 -2.585 -0.469 -20.91 - MgSO4 9.996e-04 1.101e-03 -3.000 -2.958 0.042 -0.83 - MgHCO3+ 7.615e-05 5.445e-05 -4.118 -4.264 -0.146 5.72 - Mg(SO4)2-2 1.631e-05 5.855e-06 -4.788 -5.232 -0.445 44.98 - MgCO3 2.263e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 - MgOH+ 1.405e-07 1.071e-07 -6.852 -6.970 -0.118 (0) + K+ 3.120e-03 2.213e-03 -2.506 -2.655 -0.149 9.35 + KSO4- 5.122e-05 4.172e-05 -4.291 -4.380 -0.089 14.03 + KHCO3 1.752e-06 1.760e-06 -5.756 -5.754 0.002 41.03 +Mg 8.734e-03 + Mg+2 7.855e-03 2.674e-03 -2.105 -2.573 -0.468 -20.91 + MgSO4 7.885e-04 8.675e-04 -3.103 -3.062 0.041 -7.92 + MgHCO3+ 7.783e-05 5.571e-05 -4.109 -4.254 -0.145 5.72 + Mg(SO4)2-2 9.841e-06 3.541e-06 -5.007 -5.451 -0.444 24.65 + MgCO3 2.264e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 + MgOH+ 1.410e-07 1.076e-07 -6.851 -6.968 -0.118 (0) Na 1.456e-01 - Na+ 1.443e-01 1.076e-01 -0.841 -0.968 -0.127 -0.92 - NaSO4- 1.162e-03 6.792e-04 -2.935 -3.168 -0.233 17.35 - NaHCO3 1.152e-04 1.287e-04 -3.938 -3.890 0.048 28.00 - NaOH 1.177e-18 1.235e-18 -17.929 -17.908 0.021 (0) -O(0) 1.042e-15 - O2 5.211e-16 5.468e-16 -15.283 -15.262 0.021 30.40 + Na+ 1.426e-01 1.064e-01 -0.846 -0.973 -0.127 -0.92 + NaSO4- 2.878e-03 2.146e-03 -2.541 -2.668 -0.127 -0.71 + NaHCO3 1.500e-04 1.650e-04 -3.824 -3.782 0.041 31.73 + NaOH 1.138e-18 1.193e-18 -17.944 -17.923 0.021 (0) +O(0) 1.238e-14 + O2 6.191e-15 6.493e-15 -14.208 -14.188 0.021 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -117.682 -117.834 -0.153 21.00 - H2S 0.000e+00 0.000e+00 -117.971 -117.950 0.021 36.27 - S-2 0.000e+00 0.000e+00 -123.163 -123.695 -0.533 (0) - (H2S)2 0.000e+00 0.000e+00 -237.199 -237.178 0.021 30.09 + HS- 0.000e+00 0.000e+00 -119.936 -120.089 -0.152 21.00 + H2S 0.000e+00 0.000e+00 -120.215 -120.194 0.021 36.27 + S-2 0.000e+00 0.000e+00 -125.428 -125.960 -0.531 (0) + (H2S)2 0.000e+00 0.000e+00 -241.688 -241.667 0.021 30.09 S(6) 8.777e-03 - SO4-2 5.613e-03 1.615e-03 -2.251 -2.792 -0.541 16.39 - NaSO4- 1.162e-03 6.792e-04 -2.935 -3.168 -0.233 17.35 - MgSO4 9.996e-04 1.101e-03 -3.000 -2.958 0.042 -0.83 - CaSO4 9.480e-04 9.947e-04 -3.023 -3.002 0.021 7.50 - KSO4- 2.258e-05 1.325e-05 -4.646 -4.878 -0.231 28.30 - Mg(SO4)2-2 1.631e-05 5.855e-06 -4.788 -5.232 -0.445 44.98 - HSO4- 1.849e-08 1.377e-08 -7.733 -7.861 -0.128 40.66 - CaHSO4+ 7.700e-10 5.734e-10 -9.113 -9.242 -0.128 (0) + SO4-2 4.293e-03 1.239e-03 -2.367 -2.907 -0.540 28.43 + NaSO4- 2.878e-03 2.146e-03 -2.541 -2.668 -0.127 -0.71 + MgSO4 7.885e-04 8.675e-04 -3.103 -3.062 0.041 -7.92 + CaSO4 7.475e-04 7.840e-04 -3.126 -3.106 0.021 7.50 + KSO4- 5.122e-05 4.172e-05 -4.291 -4.380 -0.089 14.03 + Mg(SO4)2-2 9.841e-06 3.541e-06 -5.007 -5.451 -0.444 24.65 + HSO4- 1.451e-08 1.081e-08 -7.838 -7.966 -0.128 40.66 + CaHSO4+ 6.206e-10 4.624e-10 -9.207 -9.335 -0.128 (0) Si 2.215e-05 - H4SiO4 2.209e-05 2.318e-05 -4.656 -4.635 0.021 52.08 - H3SiO4- 5.450e-08 3.897e-08 -7.264 -7.409 -0.146 28.38 - H2SiO4-2 9.894e-14 3.023e-14 -13.005 -13.520 -0.515 (0) + H4SiO4 2.209e-05 2.317e-05 -4.656 -4.635 0.021 52.08 + H3SiO4- 5.321e-08 3.808e-08 -7.274 -7.419 -0.145 28.37 + H2SiO4-2 9.424e-14 2.887e-14 -13.026 -13.540 -0.514 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.97 -5.25 -4.28 CaSO4 + Anhydrite -1.08 -5.36 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 - Arcanite -6.21 -8.09 -1.88 K2SO4 + Arcanite -6.34 -8.22 -1.88 K2SO4 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -117.90 -120.70 -2.80 CH4 + CH4(g) -120.04 -122.84 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 - Chrysotile -6.89 25.32 32.20 Mg3Si2O5(OH)4 - CO2(g) -1.98 -3.45 -1.47 CO2 + Chrysotile -6.91 25.29 32.20 Mg3Si2O5(OH)4 + CO2(g) -1.97 -3.44 -1.47 CO2 Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 - Epsomite -3.66 -5.39 -1.74 MgSO4:7H2O - Gypsum -0.68 -5.26 -4.58 CaSO4:2H2O - H2(g) -35.46 -38.56 -3.10 H2 + Epsomite -3.76 -5.50 -1.74 MgSO4:7H2O + Gypsum -0.78 -5.36 -4.58 CaSO4:2H2O + H2(g) -36.00 -39.10 -3.10 H2 H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -116.96 -124.89 -7.94 H2S + H2S(g) -119.20 -127.14 -7.94 H2S Halite -3.46 -1.89 1.57 NaCl - Hexahydrite -3.83 -5.39 -1.57 MgSO4:6H2O - Kieserite -4.22 -5.38 -1.16 MgSO4:H2O - Mirabilite -3.51 -4.75 -1.24 Na2SO4:10H2O - O2(g) -12.37 -15.26 -2.89 O2 + Hexahydrite -3.93 -5.50 -1.57 MgSO4:6H2O + Kieserite -4.32 -5.48 -1.16 MgSO4:H2O + Mirabilite -3.64 -4.88 -1.24 Na2SO4:10H2O + O2(g) -11.30 -14.19 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 - Sepiolite -6.60 9.16 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -9.50 9.16 18.66 Mg2Si3O7.5OH:3H2O + Sepiolite -6.62 9.14 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -9.52 9.14 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -87.42 -82.54 4.88 S + Sulfur -89.13 -84.25 4.88 S Sylvite -4.47 -3.57 0.90 KCl - Talc -5.34 16.06 21.40 Mg3Si4O10(OH)2 - Thenardite -4.43 -4.73 -0.30 Na2SO4 + Talc -5.36 16.03 21.40 Mg3Si4O10(OH)2 + Thenardite -4.55 -4.85 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -712,14 +719,14 @@ Using pure phase assemblage 2. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.542e-05 +Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.587e-05 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.252e-03 3.252e-03 - Ca 4.396e-03 4.395e-03 + C 3.221e-03 3.220e-03 + Ca 4.380e-03 4.380e-03 Cl 1.697e-01 1.697e-01 K 3.173e-03 3.173e-03 Mg 1.652e-02 1.652e-02 @@ -729,123 +736,125 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.542e-05 ----------------------------Description of solution---------------------------- - pH = 7.437 Charge balance - pe = 10.272 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 18414 - Density (g/cm³) = 1.00526 - Volume (L) = 1.00579 - Viscosity (mPa s) = 0.91136 + pH = 7.433 Charge balance + pe = 10.542 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 18315 + Density (g/cm³) = 1.00527 + Volume (L) = 1.00578 + Viscosity (mPa s) = 0.91380 Activity of water = 0.994 - Ionic strength (mol/kgw) = 2.086e-01 + Ionic strength (mol/kgw) = 2.069e-01 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.116e-03 - Total CO2 (mol/kg) = 3.252e-03 + Total alkalinity (eq/kg) = 3.085e-03 + Total CO2 (mol/kg) = 3.221e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 2.390e-04 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.06 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 Iterations = 3 Total H = 1.110131e+02 - Total O = 5.554979e+01 + Total O = 5.554971e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.910e-07 2.751e-07 -6.408 -6.561 -0.153 -3.48 - H+ 4.596e-08 3.658e-08 -7.338 -7.437 -0.099 0.00 + OH- 3.874e-07 2.728e-07 -6.412 -6.564 -0.152 -3.48 + H+ 4.632e-08 3.688e-08 -7.334 -7.433 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -121.070 -121.050 0.021 35.46 -C(4) 3.252e-03 - HCO3- 2.727e-03 2.027e-03 -2.564 -2.693 -0.129 25.45 - MgHCO3+ 1.633e-04 1.168e-04 -3.787 -3.933 -0.146 5.72 - CO2 1.625e-04 1.677e-04 -3.789 -3.775 0.014 34.43 - NaHCO3 1.307e-04 1.460e-04 -3.884 -3.836 0.048 28.00 - CaHCO3+ 4.370e-05 3.296e-05 -4.359 -4.482 -0.123 9.88 - MgCO3 1.164e-05 1.221e-05 -4.934 -4.913 0.021 -17.09 - CO3-2 8.503e-06 2.599e-06 -5.070 -5.585 -0.515 -2.16 - CaCO3 5.302e-06 5.563e-06 -5.276 -5.255 0.021 -14.60 - (CO2)2 4.923e-10 5.165e-10 -9.308 -9.287 0.021 68.87 -Ca 4.396e-03 - Ca+2 4.010e-03 1.274e-03 -2.397 -2.895 -0.498 -17.20 - CaSO4 3.367e-04 3.532e-04 -3.473 -3.452 0.021 7.50 - CaHCO3+ 4.370e-05 3.296e-05 -4.359 -4.482 -0.123 9.88 - CaCO3 5.302e-06 5.563e-06 -5.276 -5.255 0.021 -14.60 - CaOH+ 7.715e-09 5.746e-09 -8.113 -8.241 -0.128 (0) - CaHSO4+ 1.140e-10 8.493e-11 -9.943 -10.071 -0.128 (0) + CH4 0.000e+00 0.000e+00 -123.201 -123.180 0.021 35.46 +C(4) 3.221e-03 + HCO3- 2.685e-03 1.998e-03 -2.571 -2.699 -0.128 25.15 + NaHCO3 1.684e-04 1.852e-04 -3.774 -3.732 0.041 31.73 + MgHCO3+ 1.653e-04 1.183e-04 -3.782 -3.927 -0.145 5.72 + CO2 1.615e-04 1.666e-04 -3.792 -3.778 0.014 34.43 + CaHCO3+ 1.332e-05 1.005e-05 -4.876 -4.998 -0.122 122.85 + MgCO3 1.170e-05 1.227e-05 -4.932 -4.911 0.021 -17.09 + CO3-2 8.287e-06 2.540e-06 -5.082 -5.595 -0.514 -2.19 + CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 + KHCO3 1.967e-06 1.975e-06 -5.706 -5.704 0.002 41.03 + (CO2)2 4.860e-10 5.097e-10 -9.313 -9.293 0.021 68.87 +Ca 4.380e-03 + Ca+2 4.095e-03 1.304e-03 -2.388 -2.885 -0.497 -17.20 + CaSO4 2.664e-04 2.794e-04 -3.574 -3.554 0.021 7.50 + CaHCO3+ 1.332e-05 1.005e-05 -4.876 -4.998 -0.122 122.85 + CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 + CaOH+ 7.828e-09 5.832e-09 -8.106 -8.234 -0.128 (0) + CaHSO4+ 9.093e-11 6.775e-11 -10.041 -10.169 -0.128 (0) Cl 1.697e-01 - Cl- 1.697e-01 1.209e-01 -0.770 -0.918 -0.147 18.47 - HCl 1.242e-09 1.524e-09 -8.906 -8.817 0.089 (0) -H(0) 5.161e-39 - H2 2.581e-39 2.708e-39 -38.588 -38.567 0.021 28.61 + Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.47 + HCl 1.255e-09 1.538e-09 -8.901 -8.813 0.088 (0) +H(0) 1.517e-39 + H2 7.584e-40 7.954e-40 -39.120 -39.099 0.021 28.61 K 3.173e-03 - K+ 3.152e-03 2.233e-03 -2.501 -2.651 -0.150 9.35 - KSO4- 2.179e-05 1.280e-05 -4.662 -4.893 -0.231 28.29 + K+ 3.122e-03 2.214e-03 -2.506 -2.655 -0.149 9.35 + KSO4- 4.984e-05 4.060e-05 -4.302 -4.392 -0.089 14.03 + KHCO3 1.967e-06 1.975e-06 -5.706 -5.704 0.002 41.03 Mg 1.652e-02 - Mg+2 1.449e-02 4.924e-03 -1.839 -2.308 -0.469 -20.91 - MgSO4 1.826e-03 2.010e-03 -2.739 -2.697 0.042 -0.83 - MgHCO3+ 1.633e-04 1.168e-04 -3.787 -3.933 -0.146 5.72 - Mg(SO4)2-2 2.873e-05 1.032e-05 -4.542 -4.986 -0.445 44.98 - MgCO3 1.164e-05 1.221e-05 -4.934 -4.913 0.021 -17.09 - MgOH+ 6.374e-07 4.858e-07 -6.196 -6.314 -0.118 (0) + Mg+2 1.487e-02 5.063e-03 -1.828 -2.296 -0.468 -20.91 + MgSO4 1.452e-03 1.598e-03 -2.838 -2.797 0.041 -7.92 + MgHCO3+ 1.653e-04 1.183e-04 -3.782 -3.927 -0.145 5.72 + Mg(SO4)2-2 1.762e-05 6.342e-06 -4.754 -5.198 -0.444 24.64 + MgCO3 1.170e-05 1.227e-05 -4.932 -4.911 0.021 -17.09 + MgOH+ 6.496e-07 4.954e-07 -6.187 -6.305 -0.118 (0) Na 1.456e-01 - Na+ 1.444e-01 1.077e-01 -0.841 -0.968 -0.127 -0.92 - NaSO4- 1.121e-03 6.558e-04 -2.950 -3.183 -0.233 17.35 - NaHCO3 1.307e-04 1.460e-04 -3.884 -3.836 0.048 28.00 - NaOH 2.823e-18 2.962e-18 -17.549 -17.528 0.021 (0) -O(0) 1.071e-15 - O2 5.356e-16 5.619e-16 -15.271 -15.250 0.021 30.40 + Na+ 1.427e-01 1.064e-01 -0.846 -0.973 -0.127 -0.92 + NaSO4- 2.800e-03 2.088e-03 -2.553 -2.680 -0.127 -0.72 + NaHCO3 1.684e-04 1.852e-04 -3.774 -3.732 0.041 31.73 + NaOH 2.769e-18 2.904e-18 -17.558 -17.537 0.021 (0) +O(0) 1.242e-14 + O2 6.209e-15 6.512e-15 -14.207 -14.186 0.021 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -118.101 -118.253 -0.153 21.00 - H2S 0.000e+00 0.000e+00 -118.769 -118.748 0.021 36.27 - S-2 0.000e+00 0.000e+00 -123.202 -123.734 -0.532 (0) - (H2S)2 0.000e+00 0.000e+00 -238.796 -238.775 0.021 30.09 + HS- 0.000e+00 0.000e+00 -120.337 -120.489 -0.152 21.00 + H2S 0.000e+00 0.000e+00 -121.002 -120.981 0.021 36.27 + S-2 0.000e+00 0.000e+00 -125.443 -125.974 -0.531 (0) + (H2S)2 0.000e+00 0.000e+00 -243.261 -243.240 0.021 30.09 S(6) 8.777e-03 - SO4-2 5.415e-03 1.559e-03 -2.266 -2.807 -0.541 16.39 - MgSO4 1.826e-03 2.010e-03 -2.739 -2.697 0.042 -0.83 - NaSO4- 1.121e-03 6.558e-04 -2.950 -3.183 -0.233 17.35 - CaSO4 3.367e-04 3.532e-04 -3.473 -3.452 0.021 7.50 - Mg(SO4)2-2 2.873e-05 1.032e-05 -4.542 -4.986 -0.445 44.98 - KSO4- 2.179e-05 1.280e-05 -4.662 -4.893 -0.231 28.29 - HSO4- 7.445e-09 5.545e-09 -8.128 -8.256 -0.128 40.66 - CaHSO4+ 1.140e-10 8.493e-11 -9.943 -10.071 -0.128 (0) + SO4-2 4.174e-03 1.205e-03 -2.379 -2.919 -0.539 28.43 + NaSO4- 2.800e-03 2.088e-03 -2.553 -2.680 -0.127 -0.72 + MgSO4 1.452e-03 1.598e-03 -2.838 -2.797 0.041 -7.92 + CaSO4 2.664e-04 2.794e-04 -3.574 -3.554 0.021 7.50 + KSO4- 4.984e-05 4.060e-05 -4.302 -4.392 -0.089 14.03 + Mg(SO4)2-2 1.762e-05 6.342e-06 -4.754 -5.198 -0.444 24.64 + HSO4- 5.801e-09 4.322e-09 -8.237 -8.364 -0.128 40.66 + CaHSO4+ 9.093e-11 6.775e-11 -10.041 -10.169 -0.128 (0) Si 2.215e-05 - H4SiO4 2.202e-05 2.310e-05 -4.657 -4.636 0.021 52.08 - H3SiO4- 1.302e-07 9.311e-08 -6.885 -7.031 -0.146 28.37 - H2SiO4-2 5.664e-13 1.732e-13 -12.247 -12.762 -0.515 (0) + H4SiO4 2.202e-05 2.309e-05 -4.657 -4.637 0.021 52.08 + H3SiO4- 1.290e-07 9.232e-08 -6.890 -7.035 -0.145 28.37 + H2SiO4-2 5.555e-13 1.703e-13 -12.255 -12.769 -0.514 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.42 -5.70 -4.28 CaSO4 + Anhydrite -1.53 -5.80 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 - Arcanite -6.23 -8.11 -1.88 K2SO4 + Arcanite -6.35 -8.23 -1.88 K2SO4 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -118.25 -121.05 -2.80 CH4 + CH4(g) -120.38 -123.18 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 - Chrysotile -3.78 28.42 32.20 Mg3Si2O5(OH)4 + Chrysotile -3.76 28.44 32.20 Mg3Si2O5(OH)4 CO2(g) -2.31 -3.78 -1.47 CO2 Dolomite 0.71 -16.37 -17.08 CaMg(CO3)2 - Epsomite -3.39 -5.13 -1.74 MgSO4:7H2O - Gypsum -1.12 -5.71 -4.58 CaSO4:2H2O - H2(g) -35.47 -38.57 -3.10 H2 + Epsomite -3.49 -5.23 -1.74 MgSO4:7H2O + Gypsum -1.23 -5.81 -4.58 CaSO4:2H2O + H2(g) -36.00 -39.10 -3.10 H2 H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -117.75 -125.69 -7.94 H2S + H2S(g) -119.99 -127.92 -7.94 H2S Halite -3.46 -1.89 1.57 NaCl - Hexahydrite -3.56 -5.13 -1.57 MgSO4:6H2O - Kieserite -3.96 -5.12 -1.16 MgSO4:H2O - Mirabilite -3.53 -4.77 -1.24 Na2SO4:10H2O - O2(g) -12.36 -15.25 -2.89 O2 + Hexahydrite -3.66 -5.23 -1.57 MgSO4:6H2O + Kieserite -4.06 -5.22 -1.16 MgSO4:H2O + Mirabilite -3.65 -4.89 -1.24 Na2SO4:10H2O + O2(g) -11.29 -14.19 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 - Sepiolite -4.54 11.22 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -7.44 11.22 18.66 Mg2Si3O7.5OH:3H2O + Sepiolite -4.53 11.23 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -7.43 11.23 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -88.21 -83.33 4.88 S + Sulfur -89.91 -85.03 4.88 S Sylvite -4.47 -3.57 0.90 KCl - Talc -2.24 19.16 21.40 Mg3Si4O10(OH)2 - Thenardite -4.44 -4.74 -0.30 Na2SO4 + Talc -2.22 19.18 21.40 Mg3Si4O10(OH)2 + Thenardite -4.56 -4.86 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/phreeqc3-examples/ex4.out b/phreeqc3-examples/ex4.out index e14c097e..f72a7446 100644 --- a/phreeqc3-examples/ex4.out +++ b/phreeqc3-examples/ex4.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -68,7 +69,7 @@ Initial solution 1. Precipitation from Central Oklahoma pH = 4.500 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 17 + Specific Conductance (µS/cm, 25°C) = 15 Density (g/cm³) = 0.99705 Volume (L) = 1.00297 Viscosity (mPa s) = 0.89009 @@ -100,18 +101,19 @@ Initial solution 1. Precipitation from Central Oklahoma H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 C(4) 1.091e-05 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 - HCO3- 1.530e-07 1.513e-07 -6.815 -6.820 -0.005 24.52 - CaHCO3+ 1.787e-11 1.767e-11 -10.748 -10.753 -0.005 9.65 + HCO3- 1.530e-07 1.513e-07 -6.815 -6.820 -0.005 24.56 + CaHCO3+ 5.402e-12 5.344e-12 -11.267 -11.272 -0.005 122.62 MgHCO3+ 3.022e-12 2.989e-12 -11.520 -11.524 -0.005 5.46 (CO2)2 2.125e-12 2.125e-12 -11.673 -11.673 0.000 68.87 - NaHCO3 6.138e-13 6.138e-13 -12.212 -12.212 0.000 28.00 - CO3-2 2.344e-13 2.244e-13 -12.630 -12.649 -0.019 -4.16 + NaHCO3 7.995e-13 7.995e-13 -12.097 -12.097 0.000 31.73 + CO3-2 2.344e-13 2.244e-13 -12.630 -12.649 -0.019 -4.02 + KHCO3 6.155e-14 6.155e-14 -13.211 -13.211 0.000 41.03 CaCO3 3.451e-15 3.451e-15 -14.462 -14.462 0.000 -14.60 MgCO3 3.616e-16 3.616e-16 -15.442 -15.442 0.000 -17.09 Ca 9.581e-06 Ca+2 9.560e-06 9.153e-06 -5.020 -5.038 -0.019 -18.22 CaSO4 2.098e-08 2.098e-08 -7.678 -7.678 0.000 7.50 - CaHCO3+ 1.787e-11 1.767e-11 -10.748 -10.753 -0.005 9.65 + CaHCO3+ 5.402e-12 5.344e-12 -11.267 -11.272 -0.005 122.62 CaHSO4+ 4.409e-12 4.361e-12 -11.356 -11.360 -0.005 (0) CaOH+ 4.856e-14 4.804e-14 -13.314 -13.318 -0.005 (0) CaCO3 3.451e-15 3.451e-15 -14.462 -14.462 0.000 -14.60 @@ -121,38 +123,39 @@ Cl 6.657e-06 H(0) 1.416e-20 H2 7.079e-21 7.079e-21 -20.150 -20.150 0.000 28.61 K 9.207e-07 - K+ 9.206e-07 9.106e-07 -6.036 -6.041 -0.005 8.99 - KSO4- 4.362e-11 4.314e-11 -10.360 -10.365 -0.005 15.81 + K+ 9.205e-07 9.105e-07 -6.036 -6.041 -0.005 8.99 + KSO4- 1.805e-10 1.786e-10 -9.744 -9.748 -0.005 14.12 + KHCO3 6.155e-14 6.155e-14 -13.211 -13.211 0.000 41.03 Mg 1.769e-06 Mg+2 1.763e-06 1.688e-06 -5.754 -5.773 -0.019 -21.90 - MgSO4 5.697e-09 5.697e-09 -8.244 -8.244 0.000 -0.83 + MgSO4 5.697e-09 5.697e-09 -8.244 -8.244 0.000 -7.92 MgHCO3+ 3.022e-12 2.989e-12 -11.520 -11.524 -0.005 5.46 - Mg(SO4)2-2 2.526e-13 2.419e-13 -12.598 -12.616 -0.019 31.70 + Mg(SO4)2-2 2.525e-13 2.419e-13 -12.598 -12.616 -0.019 -15.61 MgOH+ 1.959e-13 1.938e-13 -12.708 -12.713 -0.005 (0) MgCO3 3.616e-16 3.616e-16 -15.442 -15.442 0.000 -17.09 N(-3) 1.485e-05 - NH4+ 1.485e-05 1.469e-05 -4.828 -4.833 -0.005 17.94 - NH4SO4- 2.465e-09 2.439e-09 -8.608 -8.613 -0.005 38.17 + NH4+ 1.485e-05 1.469e-05 -4.828 -4.833 -0.005 17.87 + NH4SO4- 2.442e-09 2.416e-09 -8.612 -8.617 -0.005 -13.83 NH3 2.646e-10 2.646e-10 -9.577 -9.577 0.000 24.42 N(5) 1.692e-05 NO3- 1.692e-05 1.674e-05 -4.772 -4.776 -0.005 29.47 Na 6.133e-06 - Na+ 6.133e-06 6.066e-06 -5.212 -5.217 -0.005 -1.51 - NaSO4- 3.089e-10 3.055e-10 -9.510 -9.515 -0.005 14.46 - NaHCO3 6.138e-13 6.138e-13 -12.212 -12.212 0.000 28.00 - NaOH 1.942e-25 1.942e-25 -24.712 -24.712 0.000 (0) + Na+ 6.132e-06 6.065e-06 -5.212 -5.217 -0.005 -1.51 + NaSO4- 1.287e-09 1.273e-09 -8.891 -8.895 -0.005 -24.48 + NaHCO3 7.995e-13 7.995e-13 -12.097 -12.097 0.000 31.73 + NaOH 1.941e-25 1.941e-25 -24.712 -24.712 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -52.080 -52.080 0.000 30.40 S(6) 1.353e-05 - SO4-2 1.346e-05 1.289e-05 -4.871 -4.890 -0.019 14.70 - HSO4- 4.007e-08 3.963e-08 -7.397 -7.402 -0.005 40.26 + SO4-2 1.346e-05 1.289e-05 -4.871 -4.890 -0.019 14.77 + HSO4- 4.006e-08 3.963e-08 -7.397 -7.402 -0.005 40.26 CaSO4 2.098e-08 2.098e-08 -7.678 -7.678 0.000 7.50 - MgSO4 5.697e-09 5.697e-09 -8.244 -8.244 0.000 -0.83 - NH4SO4- 2.465e-09 2.439e-09 -8.608 -8.613 -0.005 38.17 - NaSO4- 3.089e-10 3.055e-10 -9.510 -9.515 -0.005 14.46 - KSO4- 4.362e-11 4.314e-11 -10.360 -10.365 -0.005 15.81 + MgSO4 5.697e-09 5.697e-09 -8.244 -8.244 0.000 -7.92 + NH4SO4- 2.442e-09 2.416e-09 -8.612 -8.617 -0.005 -13.83 + NaSO4- 1.287e-09 1.273e-09 -8.891 -8.895 -0.005 -24.48 + KSO4- 1.805e-10 1.786e-10 -9.744 -9.748 -0.005 14.12 CaHSO4+ 4.409e-12 4.361e-12 -11.356 -11.360 -0.005 (0) - Mg(SO4)2-2 2.526e-13 2.419e-13 -12.598 -12.616 -0.019 31.70 + Mg(SO4)2-2 2.525e-13 2.419e-13 -12.598 -12.616 -0.019 -15.61 ------------------------------Saturation indices------------------------------- @@ -220,18 +223,18 @@ Reaction 1. pH = 3.148 Charge balance pe = 16.529 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 345 + Specific Conductance (µS/cm, 25°C) = 292 Density (g/cm³) = 0.99709 Volume (L) = 0.05017 Viscosity (mPa s) = 0.89045 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.530e-03 + Ionic strength (mol/kgw) = 1.529e-03 Mass of water (kg) = 5.002e-02 Total alkalinity (eq/kg) = -7.555e-04 Total CO2 (mol/kg) = 2.182e-04 Temperature (°C) = 25.00 Electrical balance (eq) = 2.581e-05 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 24.28 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 24.29 Iterations = 32 Total H = 5.552525e+00 Total O = 2.776344e+00 @@ -248,19 +251,20 @@ C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -136.694 -136.693 0.000 35.46 C(4) 2.182e-04 CO2 2.180e-04 2.181e-04 -3.661 -3.661 0.000 34.43 - HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.56 + HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.59 (CO2)2 8.728e-10 8.731e-10 -9.059 -9.059 0.000 68.87 - CaHCO3+ 2.842e-10 2.723e-10 -9.546 -9.565 -0.019 9.68 + CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 122.64 MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 - NaHCO3 1.070e-11 1.071e-11 -10.971 -10.970 0.000 28.00 - CO3-2 1.070e-14 9.007e-15 -13.971 -14.045 -0.075 -4.04 + NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 + KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 + CO3-2 1.069e-14 9.006e-15 -13.971 -14.045 -0.075 -3.90 CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 Ca 1.916e-04 Ca+2 1.857e-04 1.564e-04 -3.731 -3.806 -0.075 -18.12 - CaSO4 5.800e-06 5.802e-06 -5.237 -5.236 0.000 7.50 - CaHSO4+ 2.831e-08 2.710e-08 -7.548 -7.567 -0.019 (0) - CaHCO3+ 2.842e-10 2.723e-10 -9.546 -9.565 -0.019 9.68 + CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 + CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) + CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 122.64 CaOH+ 3.814e-14 3.651e-14 -13.419 -13.438 -0.019 (0) CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 Cl 1.331e-04 @@ -269,18 +273,19 @@ Cl 1.331e-04 H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.506 -42.506 0.000 28.61 K 1.841e-05 - K+ 1.839e-05 1.760e-05 -4.735 -4.754 -0.019 9.02 - KSO4- 1.413e-08 1.350e-08 -7.850 -7.870 -0.020 18.61 + K+ 1.835e-05 1.756e-05 -4.736 -4.755 -0.019 9.02 + KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 + KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 Mg 3.536e-05 - Mg+2 3.380e-05 2.849e-05 -4.471 -4.545 -0.074 -21.80 - MgSO4 1.556e-06 1.557e-06 -5.808 -5.808 0.000 -0.83 - Mg(SO4)2-2 1.266e-09 1.070e-09 -8.898 -8.971 -0.073 35.55 + Mg+2 3.381e-05 2.850e-05 -4.471 -4.545 -0.074 -21.80 + MgSO4 1.554e-06 1.555e-06 -5.809 -5.808 0.000 -7.92 + Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 MgOH+ 1.519e-13 1.456e-13 -12.819 -12.837 -0.018 (0) MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.97 - NH4SO4- 0.000e+00 0.000e+00 -51.008 -51.027 -0.019 38.20 + NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.90 + NH4SO4- 0.000e+00 0.000e+00 -51.013 -51.032 -0.019 -9.55 NH3 0.000e+00 0.000e+00 -54.553 -54.553 0.000 24.42 N(0) 4.751e-04 N2 2.375e-04 2.376e-04 -3.624 -3.624 0.000 29.29 @@ -289,27 +294,27 @@ N(3) 2.623e-15 N(5) 1.601e-04 NO3- 1.601e-04 1.532e-04 -3.796 -3.815 -0.019 29.50 Na 1.226e-04 - Na+ 1.225e-04 1.173e-04 -3.912 -3.931 -0.019 -1.47 - NaSO4- 1.001e-07 9.563e-08 -6.999 -7.019 -0.020 14.56 - NaHCO3 1.070e-11 1.071e-11 -10.971 -10.970 0.000 28.00 - NaOH 1.670e-25 1.671e-25 -24.777 -24.777 0.000 (0) + Na+ 1.222e-04 1.170e-04 -3.913 -3.932 -0.019 -1.47 + NaSO4- 4.143e-07 3.969e-07 -6.383 -6.401 -0.019 -20.09 + NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 + NaOH 1.666e-25 1.667e-25 -24.778 -24.778 0.000 (0) O(0) 8.552e-08 - O2 4.276e-08 4.277e-08 -7.369 -7.369 0.000 30.40 + O2 4.276e-08 4.278e-08 -7.369 -7.369 0.000 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -126.808 -126.808 0.000 36.27 - HS- 0.000e+00 0.000e+00 -130.582 -130.601 -0.019 20.61 - S-2 0.000e+00 0.000e+00 -140.296 -140.371 -0.075 (0) - (H2S)2 0.000e+00 0.000e+00 -254.894 -254.894 0.000 30.09 + H2S 0.000e+00 0.000e+00 -126.809 -126.808 0.000 36.27 + HS- 0.000e+00 0.000e+00 -130.583 -130.602 -0.019 20.61 + S-2 0.000e+00 0.000e+00 -140.297 -140.372 -0.075 (0) + (H2S)2 0.000e+00 0.000e+00 -254.895 -254.895 0.000 30.09 S(6) 2.706e-04 - SO4-2 2.480e-04 2.086e-04 -3.606 -3.681 -0.075 14.82 - HSO4- 1.506e-05 1.442e-05 -4.822 -4.841 -0.019 40.28 - CaSO4 5.800e-06 5.802e-06 -5.237 -5.236 0.000 7.50 - MgSO4 1.556e-06 1.557e-06 -5.808 -5.808 0.000 -0.83 - NaSO4- 1.001e-07 9.563e-08 -6.999 -7.019 -0.020 14.56 - CaHSO4+ 2.831e-08 2.710e-08 -7.548 -7.567 -0.019 (0) - KSO4- 1.413e-08 1.350e-08 -7.850 -7.870 -0.020 18.61 - Mg(SO4)2-2 1.266e-09 1.070e-09 -8.898 -8.971 -0.073 35.55 - NH4SO4- 0.000e+00 0.000e+00 -51.008 -51.027 -0.019 38.20 + SO4-2 2.477e-04 2.084e-04 -3.606 -3.681 -0.075 15.86 + HSO4- 1.504e-05 1.440e-05 -4.823 -4.842 -0.019 40.28 + CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 + MgSO4 1.554e-06 1.555e-06 -5.809 -5.808 0.000 -7.92 + NaSO4- 4.143e-07 3.969e-07 -6.383 -6.401 -0.019 -20.09 + KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 + CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) + Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 + NH4SO4- 0.000e+00 0.000e+00 -51.013 -51.032 -0.019 -9.55 ------------------------------Saturation indices------------------------------- @@ -389,18 +394,18 @@ Mixture 1. pH = 3.148 Charge balance pe = 16.529 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 345 + Specific Conductance (µS/cm, 25°C) = 292 Density (g/cm³) = 0.99709 Volume (L) = 1.00332 Viscosity (mPa s) = 0.89045 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.530e-03 + Ionic strength (mol/kgw) = 1.529e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -7.555e-04 Total CO2 (mol/kg) = 2.182e-04 Temperature (°C) = 25.00 Electrical balance (eq) = 5.162e-04 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 24.28 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 24.29 Iterations = 0 Total H = 1.110505e+02 Total O = 5.552687e+01 @@ -417,19 +422,20 @@ C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -136.694 -136.693 0.000 35.46 C(4) 2.182e-04 CO2 2.180e-04 2.181e-04 -3.661 -3.661 0.000 34.43 - HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.56 + HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.59 (CO2)2 8.728e-10 8.731e-10 -9.059 -9.059 0.000 68.87 - CaHCO3+ 2.842e-10 2.723e-10 -9.546 -9.565 -0.019 9.68 + CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 122.64 MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 - NaHCO3 1.070e-11 1.071e-11 -10.971 -10.970 0.000 28.00 - CO3-2 1.070e-14 9.007e-15 -13.971 -14.045 -0.075 -4.04 + NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 + KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 + CO3-2 1.069e-14 9.006e-15 -13.971 -14.045 -0.075 -3.90 CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 Ca 1.916e-04 Ca+2 1.857e-04 1.564e-04 -3.731 -3.806 -0.075 -18.12 - CaSO4 5.800e-06 5.802e-06 -5.237 -5.236 0.000 7.50 - CaHSO4+ 2.831e-08 2.710e-08 -7.548 -7.567 -0.019 (0) - CaHCO3+ 2.842e-10 2.723e-10 -9.546 -9.565 -0.019 9.68 + CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 + CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) + CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 122.64 CaOH+ 3.814e-14 3.651e-14 -13.419 -13.438 -0.019 (0) CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 Cl 1.331e-04 @@ -438,18 +444,19 @@ Cl 1.331e-04 H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.506 -42.506 0.000 28.61 K 1.841e-05 - K+ 1.839e-05 1.760e-05 -4.735 -4.754 -0.019 9.02 - KSO4- 1.413e-08 1.350e-08 -7.850 -7.870 -0.020 18.61 + K+ 1.835e-05 1.756e-05 -4.736 -4.755 -0.019 9.02 + KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 + KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 Mg 3.536e-05 - Mg+2 3.380e-05 2.849e-05 -4.471 -4.545 -0.074 -21.80 - MgSO4 1.556e-06 1.557e-06 -5.808 -5.808 0.000 -0.83 - Mg(SO4)2-2 1.266e-09 1.070e-09 -8.898 -8.971 -0.073 35.55 + Mg+2 3.381e-05 2.850e-05 -4.471 -4.545 -0.074 -21.80 + MgSO4 1.554e-06 1.555e-06 -5.809 -5.808 0.000 -7.92 + Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 MgOH+ 1.519e-13 1.456e-13 -12.819 -12.837 -0.018 (0) MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.97 - NH4SO4- 0.000e+00 0.000e+00 -51.008 -51.027 -0.019 38.20 + NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.90 + NH4SO4- 0.000e+00 0.000e+00 -51.013 -51.032 -0.019 -9.55 NH3 0.000e+00 0.000e+00 -54.553 -54.553 0.000 24.42 N(0) 4.751e-04 N2 2.375e-04 2.376e-04 -3.624 -3.624 0.000 29.29 @@ -458,27 +465,27 @@ N(3) 2.623e-15 N(5) 1.601e-04 NO3- 1.601e-04 1.532e-04 -3.796 -3.815 -0.019 29.50 Na 1.226e-04 - Na+ 1.225e-04 1.173e-04 -3.912 -3.931 -0.019 -1.47 - NaSO4- 1.001e-07 9.563e-08 -6.999 -7.019 -0.020 14.56 - NaHCO3 1.070e-11 1.071e-11 -10.971 -10.970 0.000 28.00 - NaOH 1.670e-25 1.671e-25 -24.777 -24.777 0.000 (0) + Na+ 1.222e-04 1.170e-04 -3.913 -3.932 -0.019 -1.47 + NaSO4- 4.143e-07 3.969e-07 -6.383 -6.401 -0.019 -20.09 + NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 + NaOH 1.666e-25 1.667e-25 -24.778 -24.778 0.000 (0) O(0) 8.552e-08 - O2 4.276e-08 4.277e-08 -7.369 -7.369 0.000 30.40 + O2 4.276e-08 4.278e-08 -7.369 -7.369 0.000 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -126.808 -126.808 0.000 36.27 - HS- 0.000e+00 0.000e+00 -130.582 -130.601 -0.019 20.61 - S-2 0.000e+00 0.000e+00 -140.296 -140.371 -0.075 (0) - (H2S)2 0.000e+00 0.000e+00 -254.894 -254.894 0.000 30.09 + H2S 0.000e+00 0.000e+00 -126.809 -126.808 0.000 36.27 + HS- 0.000e+00 0.000e+00 -130.583 -130.602 -0.019 20.61 + S-2 0.000e+00 0.000e+00 -140.297 -140.372 -0.075 (0) + (H2S)2 0.000e+00 0.000e+00 -254.895 -254.895 0.000 30.09 S(6) 2.706e-04 - SO4-2 2.480e-04 2.086e-04 -3.606 -3.681 -0.075 14.82 - HSO4- 1.506e-05 1.442e-05 -4.822 -4.841 -0.019 40.28 - CaSO4 5.800e-06 5.802e-06 -5.237 -5.236 0.000 7.50 - MgSO4 1.556e-06 1.557e-06 -5.808 -5.808 0.000 -0.83 - NaSO4- 1.001e-07 9.563e-08 -6.999 -7.019 -0.020 14.56 - CaHSO4+ 2.831e-08 2.710e-08 -7.548 -7.567 -0.019 (0) - KSO4- 1.413e-08 1.350e-08 -7.850 -7.870 -0.020 18.61 - Mg(SO4)2-2 1.266e-09 1.070e-09 -8.898 -8.971 -0.073 35.55 - NH4SO4- 0.000e+00 0.000e+00 -51.008 -51.027 -0.019 38.20 + SO4-2 2.477e-04 2.084e-04 -3.606 -3.681 -0.075 15.86 + HSO4- 1.504e-05 1.440e-05 -4.823 -4.842 -0.019 40.28 + CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 + MgSO4 1.554e-06 1.555e-06 -5.809 -5.808 0.000 -7.92 + NaSO4- 4.143e-07 3.969e-07 -6.383 -6.401 -0.019 -20.09 + KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 + CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) + Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 + NH4SO4- 0.000e+00 0.000e+00 -51.013 -51.032 -0.019 -9.55 ------------------------------Saturation indices------------------------------- diff --git a/phreeqc3-examples/ex5.out b/phreeqc3-examples/ex5.out index 4bb27369..7c0c909f 100644 --- a/phreeqc3-examples/ex5.out +++ b/phreeqc3-examples/ex5.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -142,110 +143,110 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 -4.869e-04 -Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.933e-04 -Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.096e-08 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 -4.846e-04 +Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.910e-04 +Goethite -0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.089e-08 Gypsum -6.13 -10.71 -4.58 0.000e+00 0 0.000e+00 -Pyrite 0.00 -18.48 -18.48 1.000e+01 1.000e+01 -3.144e-08 +Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -3.140e-08 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 9.802e-04 9.802e-04 - Ca 4.933e-04 4.933e-04 - Fe 2.048e-08 2.048e-08 - S 6.287e-08 6.287e-08 + C 9.756e-04 9.756e-04 + Ca 4.910e-04 4.910e-04 + Fe 2.051e-08 2.051e-08 + S 6.280e-08 6.280e-08 ----------------------------Description of solution---------------------------- pH = 8.279 Charge balance - pe = -4.943 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 95 + pe = -4.942 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 96 Density (g/cm³) = 0.99711 Volume (L) = 1.00297 - Viscosity (mPa s) = 0.89082 + Viscosity (mPa s) = 0.89093 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.463e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 9.866e-04 - Total CO2 (mol/kg) = 9.801e-04 + Total alkalinity (eq/kg) = 9.820e-04 + Total CO2 (mol/kg) = 9.756e-04 Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 Total H = 1.110124e+02 - Total O = 5.550867e+01 + Total O = 5.550866e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.010e-06 1.925e-06 -5.697 -5.716 -0.019 -4.10 - H+ 5.475e-09 5.258e-09 -8.262 -8.279 -0.018 0.00 + OH- 2.007e-06 1.923e-06 -5.697 -5.716 -0.019 -4.10 + H+ 5.481e-09 5.264e-09 -8.261 -8.279 -0.018 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 -C(-4) 5.384e-08 - CH4 5.384e-08 5.386e-08 -7.269 -7.269 0.000 35.46 -C(4) 9.801e-04 - HCO3- 9.493e-04 9.102e-04 -3.023 -3.041 -0.018 24.56 +C(-4) 5.377e-08 + CH4 5.377e-08 5.379e-08 -7.269 -7.269 0.000 35.46 +C(4) 9.756e-04 + HCO3- 9.482e-04 9.091e-04 -3.023 -3.041 -0.018 24.58 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 - CO3-2 9.605e-06 8.118e-06 -5.017 -5.091 -0.073 -4.04 + CO3-2 9.583e-06 8.099e-06 -5.019 -5.092 -0.073 -3.91 CaCO3 5.561e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 4.939e-06 4.737e-06 -5.306 -5.324 -0.018 9.68 - FeCO3 2.598e-09 2.599e-09 -8.585 -8.585 0.000 (0) - FeHCO3+ 1.268e-09 1.215e-09 -8.897 -8.916 -0.019 (0) + CaHCO3+ 1.495e-06 1.434e-06 -5.825 -5.843 -0.018 122.64 + FeCO3 2.597e-09 2.598e-09 -8.585 -8.585 0.000 (0) + FeHCO3+ 1.269e-09 1.216e-09 -8.897 -8.915 -0.019 (0) (CO2)2 2.125e-12 2.125e-12 -11.673 -11.673 0.000 68.87 -Ca 4.933e-04 - Ca+2 4.828e-04 4.079e-04 -3.316 -3.389 -0.073 -18.12 +Ca 4.910e-04 + Ca+2 4.840e-04 4.089e-04 -3.315 -3.388 -0.073 -18.12 CaCO3 5.561e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 4.939e-06 4.737e-06 -5.306 -5.324 -0.018 9.68 - CaOH+ 1.344e-08 1.288e-08 -7.872 -7.890 -0.019 (0) - CaSO4 3.483e-09 3.484e-09 -8.458 -8.458 0.000 7.50 - CaHSO4+ 1.257e-16 1.204e-16 -15.901 -15.919 -0.019 (0) -Fe(2) 2.048e-08 - Fe+2 1.577e-08 1.335e-08 -7.802 -7.875 -0.073 -22.11 - FeCO3 2.598e-09 2.599e-09 -8.585 -8.585 0.000 (0) - FeHCO3+ 1.268e-09 1.215e-09 -8.897 -8.916 -0.019 (0) - FeOH+ 8.372e-10 8.026e-10 -9.077 -9.096 -0.018 (0) - Fe(OH)2 1.299e-12 1.299e-12 -11.887 -11.886 0.000 (0) - FeSO4 1.139e-13 1.140e-13 -12.943 -12.943 0.000 18.97 - Fe(OH)3- 9.575e-15 9.179e-15 -14.019 -14.037 -0.018 (0) - Fe(HS)2 6.282e-17 6.285e-17 -16.202 -16.202 0.000 (0) - FeHSO4+ 4.111e-21 3.939e-21 -20.386 -20.405 -0.019 (0) - Fe(HS)3- 1.642e-23 1.573e-23 -22.785 -22.803 -0.019 (0) -Fe(3) 3.369e-14 + CaHCO3+ 1.495e-06 1.434e-06 -5.825 -5.843 -0.018 122.64 + CaOH+ 1.345e-08 1.289e-08 -7.871 -7.890 -0.019 (0) + CaSO4 3.487e-09 3.488e-09 -8.458 -8.457 0.000 7.50 + CaHSO4+ 1.260e-16 1.207e-16 -15.900 -15.918 -0.019 (0) +Fe(2) 2.051e-08 + Fe+2 1.581e-08 1.337e-08 -7.801 -7.874 -0.073 -22.11 + FeCO3 2.597e-09 2.598e-09 -8.585 -8.585 0.000 (0) + FeHCO3+ 1.269e-09 1.216e-09 -8.897 -8.915 -0.019 (0) + FeOH+ 8.381e-10 8.034e-10 -9.077 -9.095 -0.018 (0) + Fe(OH)2 1.298e-12 1.299e-12 -11.887 -11.886 0.000 (0) + FeSO4 1.141e-13 1.141e-13 -12.943 -12.943 0.000 18.97 + Fe(OH)3- 9.563e-15 9.167e-15 -14.019 -14.038 -0.018 (0) + Fe(HS)2 6.281e-17 6.283e-17 -16.202 -16.202 0.000 (0) + FeHSO4+ 4.120e-21 3.948e-21 -20.385 -20.404 -0.019 (0) + Fe(HS)3- 1.639e-23 1.571e-23 -22.785 -22.804 -0.019 (0) +Fe(3) 3.368e-14 Fe(OH)3 2.753e-14 2.754e-14 -13.560 -13.560 0.000 (0) - Fe(OH)4- 4.982e-15 4.777e-15 -14.303 -14.321 -0.018 (0) - Fe(OH)2+ 1.172e-15 1.124e-15 -14.931 -14.949 -0.018 (0) - FeOH+2 2.114e-20 1.785e-20 -19.675 -19.748 -0.073 (0) - Fe+3 2.091e-26 1.454e-26 -25.680 -25.837 -0.158 (0) - FeSO4+ 7.987e-30 7.656e-30 -29.098 -29.116 -0.018 (0) - Fe(SO4)2- 8.396e-36 8.045e-36 -35.076 -35.094 -0.019 (0) - FeHSO4+2 1.279e-37 1.078e-37 -36.893 -36.967 -0.074 (0) - Fe2(OH)2+4 1.700e-38 8.577e-39 -37.770 -38.067 -0.297 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -50.232 -50.696 -0.464 (0) -H(0) 3.007e-10 - H2 1.504e-10 1.504e-10 -9.823 -9.823 0.000 28.61 + Fe(OH)4- 4.976e-15 4.771e-15 -14.303 -14.321 -0.018 (0) + Fe(OH)2+ 1.174e-15 1.125e-15 -14.930 -14.949 -0.018 (0) + FeOH+2 2.119e-20 1.789e-20 -19.674 -19.747 -0.073 (0) + Fe+3 2.098e-26 1.459e-26 -25.678 -25.836 -0.158 (0) + FeSO4+ 8.005e-30 7.674e-30 -29.097 -29.115 -0.018 (0) + Fe(SO4)2- 8.405e-36 8.054e-36 -35.075 -35.094 -0.019 (0) + FeHSO4+2 1.284e-37 1.082e-37 -36.892 -36.966 -0.074 (0) + Fe2(OH)2+4 1.708e-38 8.618e-39 -37.768 -38.065 -0.297 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -50.229 -50.693 -0.464 (0) +H(0) 3.006e-10 + H2 1.503e-10 1.504e-10 -9.823 -9.823 0.000 28.61 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -72.735 -72.735 0.000 30.40 -S(-2) 2.505e-09 - HS- 2.400e-09 2.299e-09 -8.620 -8.639 -0.019 20.61 + O2 0.000e+00 0.000e+00 -72.734 -72.734 0.000 30.40 +S(-2) 2.502e-09 + HS- 2.397e-09 2.296e-09 -8.620 -8.639 -0.019 20.61 H2S 1.056e-10 1.057e-10 -9.976 -9.976 0.000 36.27 - S-2 6.253e-14 5.280e-14 -13.204 -13.277 -0.073 (0) - Fe(HS)2 6.282e-17 6.285e-17 -16.202 -16.202 0.000 (0) - (H2S)2 5.883e-22 5.885e-22 -21.230 -21.230 0.000 30.09 - Fe(HS)3- 1.642e-23 1.573e-23 -22.785 -22.803 -0.019 (0) -S(6) 6.037e-08 - SO4-2 5.688e-08 4.803e-08 -7.245 -7.319 -0.073 14.81 - CaSO4 3.483e-09 3.484e-09 -8.458 -8.458 0.000 7.50 - FeSO4 1.139e-13 1.140e-13 -12.943 -12.943 0.000 18.97 - HSO4- 2.563e-14 2.455e-14 -13.591 -13.610 -0.019 40.28 - CaHSO4+ 1.257e-16 1.204e-16 -15.901 -15.919 -0.019 (0) - FeHSO4+ 4.111e-21 3.939e-21 -20.386 -20.405 -0.019 (0) - FeSO4+ 7.987e-30 7.656e-30 -29.098 -29.116 -0.018 (0) - Fe(SO4)2- 8.396e-36 8.045e-36 -35.076 -35.094 -0.019 (0) - FeHSO4+2 1.279e-37 1.078e-37 -36.893 -36.967 -0.074 (0) + S-2 6.237e-14 5.267e-14 -13.205 -13.278 -0.073 (0) + Fe(HS)2 6.281e-17 6.283e-17 -16.202 -16.202 0.000 (0) + (H2S)2 5.882e-22 5.884e-22 -21.230 -21.230 0.000 30.09 + Fe(HS)3- 1.639e-23 1.571e-23 -22.785 -22.804 -0.019 (0) +S(6) 6.030e-08 + SO4-2 5.681e-08 4.797e-08 -7.246 -7.319 -0.073 15.83 + CaSO4 3.487e-09 3.488e-09 -8.458 -8.457 0.000 7.50 + FeSO4 1.141e-13 1.141e-13 -12.943 -12.943 0.000 18.97 + HSO4- 2.562e-14 2.455e-14 -13.591 -13.610 -0.019 40.28 + CaHSO4+ 1.260e-16 1.207e-16 -15.900 -15.918 -0.019 (0) + FeHSO4+ 4.120e-21 3.948e-21 -20.385 -20.404 -0.019 (0) + FeSO4+ 8.005e-30 7.674e-30 -29.097 -29.115 -0.018 (0) + Fe(SO4)2- 8.405e-36 8.054e-36 -35.075 -35.094 -0.019 (0) + FeHSO4+2 1.284e-37 1.082e-37 -36.892 -36.966 -0.074 (0) ------------------------------Saturation indices------------------------------- @@ -258,7 +259,7 @@ S(6) 6.037e-08 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -4.32 -8.23 -3.92 FeS - Goethite 0.00 -1.00 -1.00 FeOOH + Goethite -0.00 -1.00 -1.00 FeOOH Gypsum -6.13 -10.71 -4.58 CaSO4:2H2O H2(g) -6.72 -9.82 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O @@ -267,7 +268,7 @@ S(6) 6.037e-08 Mackinawite -3.59 -8.23 -4.65 FeS Melanterite -12.98 -15.19 -2.21 FeSO4:7H2O O2(g) -69.84 -72.73 -2.89 O2 - Pyrite 0.00 -18.48 -18.48 FeS2 + Pyrite -0.00 -18.48 -18.48 FeS2 Siderite -2.08 -12.97 -10.89 FeCO3 Sulfur -8.19 -3.30 4.88 S @@ -301,9 +302,9 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 1.426e-04 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.999e+00 -9.268e-04 -Goethite -0.00 -1.00 -1.00 1.000e+01 1.000e+01 2.667e-04 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 1.452e-04 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.999e+00 -9.242e-04 +Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 2.667e-04 Gypsum -2.01 -6.60 -4.58 0.000e+00 0 0.000e+00 Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -2.667e-04 @@ -311,119 +312,119 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -2.667e-04 Elements Molality Moles - C 7.843e-04 7.843e-04 - Ca 9.269e-04 9.268e-04 + C 7.789e-04 7.789e-04 + Ca 9.242e-04 9.242e-04 Cl 5.000e-04 5.000e-04 - Fe 9.963e-09 9.963e-09 + Fe 9.984e-09 9.984e-09 Na 5.000e-04 5.000e-04 S 5.333e-04 5.333e-04 ----------------------------Description of solution---------------------------- pH = 8.170 Charge balance - pe = -4.286 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 254 + pe = -4.285 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 271 Density (g/cm³) = 0.99719 Volume (L) = 1.00298 - Viscosity (mPa s) = 0.89122 + Viscosity (mPa s) = 0.89164 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.608e-03 + Ionic strength (mol/kgw) = 3.605e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 7.870e-04 - Total CO2 (mol/kg) = 7.843e-04 + Total alkalinity (eq/kg) = 7.817e-04 + Total CO2 (mol/kg) = 7.789e-04 Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.110122e+02 - Total O = 5.551018e+01 + Total O = 5.551017e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.600e-06 1.498e-06 -5.796 -5.825 -0.029 -4.08 - H+ 7.174e-09 6.757e-09 -8.144 -8.170 -0.026 0.00 + OH- 1.598e-06 1.496e-06 -5.796 -5.825 -0.029 -4.08 + H+ 7.182e-09 6.764e-09 -8.144 -8.170 -0.026 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 -C(-4) 2.208e-12 - CH4 2.208e-12 2.210e-12 -11.656 -11.656 0.000 35.46 -C(4) 7.843e-04 - HCO3- 7.549e-04 7.083e-04 -3.122 -3.150 -0.028 24.59 +C(-4) 2.213e-12 + CH4 2.213e-12 2.215e-12 -11.655 -11.655 0.000 35.46 +C(4) 7.789e-04 + HCO3- 7.540e-04 7.075e-04 -3.123 -3.150 -0.028 24.61 CO2 1.075e-05 1.076e-05 -4.968 -4.968 0.000 34.43 - CaHCO3+ 6.484e-06 6.087e-06 -5.188 -5.216 -0.027 9.69 - CO3-2 6.344e-06 4.916e-06 -5.198 -5.308 -0.111 -3.95 + CO3-2 6.329e-06 4.905e-06 -5.199 -5.309 -0.111 -3.82 CaCO3 5.559e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - NaHCO3 2.211e-07 2.215e-07 -6.655 -6.655 0.001 28.00 - FeCO3 7.346e-10 7.352e-10 -9.134 -9.134 0.000 (0) - FeHCO3+ 4.714e-10 4.416e-10 -9.327 -9.355 -0.028 (0) + CaHCO3+ 1.962e-06 1.842e-06 -5.707 -5.735 -0.027 122.66 + NaHCO3 2.864e-07 2.869e-07 -6.543 -6.542 0.001 31.73 + FeCO3 7.348e-10 7.354e-10 -9.134 -9.133 0.000 (0) + FeHCO3+ 4.720e-10 4.422e-10 -9.326 -9.354 -0.028 (0) (CO2)2 2.124e-12 2.125e-12 -11.673 -11.673 0.000 68.87 -Ca 9.269e-04 - Ca+2 8.697e-04 6.736e-04 -3.061 -3.172 -0.111 -18.05 - CaSO4 4.511e-05 4.515e-05 -4.346 -4.345 0.000 7.50 - CaHCO3+ 6.484e-06 6.087e-06 -5.188 -5.216 -0.027 9.69 +Ca 9.242e-04 + Ca+2 8.716e-04 6.752e-04 -3.060 -3.171 -0.111 -18.05 + CaSO4 4.502e-05 4.506e-05 -4.347 -4.346 0.000 7.50 CaCO3 5.559e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaOH+ 1.766e-08 1.654e-08 -7.753 -7.781 -0.028 (0) - CaHSO4+ 2.141e-12 2.005e-12 -11.669 -11.698 -0.028 (0) + CaHCO3+ 1.962e-06 1.842e-06 -5.707 -5.735 -0.027 122.66 + CaOH+ 1.768e-08 1.656e-08 -7.753 -7.781 -0.028 (0) + CaHSO4+ 2.139e-12 2.003e-12 -11.670 -11.698 -0.028 (0) Cl 5.000e-04 Cl- 5.000e-04 4.682e-04 -3.301 -3.330 -0.029 18.10 - FeCl+ 4.301e-12 4.029e-12 -11.366 -11.395 -0.028 (0) - HCl 1.086e-12 1.090e-12 -11.964 -11.963 0.002 (0) - FeCl+2 5.639e-28 4.362e-28 -27.249 -27.360 -0.112 (0) - FeCl2+ 9.728e-31 9.123e-31 -30.012 -30.040 -0.028 (0) - FeCl3 4.268e-35 4.272e-35 -34.370 -34.369 0.000 (0) -Fe(2) 9.963e-09 - Fe+2 8.024e-09 6.234e-09 -8.096 -8.205 -0.110 -22.04 - FeCO3 7.346e-10 7.352e-10 -9.134 -9.134 0.000 (0) - FeHCO3+ 4.714e-10 4.416e-10 -9.327 -9.355 -0.028 (0) - FeSO4 4.176e-10 4.179e-10 -9.379 -9.379 0.000 18.97 - FeOH+ 3.111e-10 2.918e-10 -9.507 -9.535 -0.028 (0) - FeCl+ 4.301e-12 4.029e-12 -11.366 -11.395 -0.028 (0) - Fe(OH)2 3.672e-13 3.675e-13 -12.435 -12.435 0.000 (0) - Fe(OH)3- 2.155e-15 2.021e-15 -14.667 -14.694 -0.028 (0) - FeHSO4+ 1.981e-17 1.856e-17 -16.703 -16.731 -0.028 (0) - Fe(HS)2 5.026e-18 5.030e-18 -17.299 -17.298 0.000 (0) - Fe(HS)3- 5.563e-25 5.211e-25 -24.255 -24.283 -0.028 (0) + FeCl+ 4.312e-12 4.040e-12 -11.365 -11.394 -0.028 (0) + HCl 1.087e-12 1.091e-12 -11.964 -11.962 0.002 (0) + FeCl+2 5.659e-28 4.377e-28 -27.247 -27.359 -0.111 (0) + FeCl2+ 9.762e-31 9.155e-31 -30.010 -30.038 -0.028 (0) + FeCl3 4.283e-35 4.287e-35 -34.368 -34.368 0.000 (0) +Fe(2) 9.984e-09 + Fe+2 8.044e-09 6.251e-09 -8.095 -8.204 -0.110 -22.04 + FeCO3 7.348e-10 7.354e-10 -9.134 -9.133 0.000 (0) + FeHCO3+ 4.720e-10 4.422e-10 -9.326 -9.354 -0.028 (0) + FeSO4 4.168e-10 4.171e-10 -9.380 -9.380 0.000 18.97 + FeOH+ 3.116e-10 2.922e-10 -9.506 -9.534 -0.028 (0) + FeCl+ 4.312e-12 4.040e-12 -11.365 -11.394 -0.028 (0) + Fe(OH)2 3.673e-13 3.676e-13 -12.435 -12.435 0.000 (0) + Fe(OH)3- 2.153e-15 2.019e-15 -14.667 -14.695 -0.028 (0) + FeHSO4+ 1.980e-17 1.855e-17 -16.703 -16.732 -0.028 (0) + Fe(HS)2 5.029e-18 5.033e-18 -17.299 -17.298 0.000 (0) + Fe(HS)3- 5.560e-25 5.209e-25 -24.255 -24.283 -0.028 (0) Fe(3) 3.302e-14 Fe(OH)3 2.752e-14 2.754e-14 -13.560 -13.560 0.000 (0) - Fe(OH)4- 3.962e-15 3.717e-15 -14.402 -14.430 -0.028 (0) - Fe(OH)2+ 1.540e-15 1.445e-15 -14.813 -14.840 -0.028 (0) - FeOH+2 3.811e-20 2.948e-20 -19.419 -19.531 -0.112 (0) - FeSO4+ 1.360e-25 1.275e-25 -24.867 -24.894 -0.028 (0) - Fe+3 5.289e-26 3.085e-26 -25.277 -25.511 -0.234 (0) - Fe(SO4)2- 1.122e-27 1.051e-27 -26.950 -26.978 -0.028 (0) - FeCl+2 5.639e-28 4.362e-28 -27.249 -27.360 -0.112 (0) - FeCl2+ 9.728e-31 9.123e-31 -30.012 -30.040 -0.028 (0) + Fe(OH)4- 3.957e-15 3.713e-15 -14.403 -14.430 -0.028 (0) + Fe(OH)2+ 1.541e-15 1.446e-15 -14.812 -14.840 -0.028 (0) + FeOH+2 3.819e-20 2.955e-20 -19.418 -19.530 -0.111 (0) + FeSO4+ 1.358e-25 1.274e-25 -24.867 -24.895 -0.028 (0) + Fe+3 5.307e-26 3.096e-26 -25.275 -25.509 -0.234 (0) + Fe(SO4)2- 1.116e-27 1.046e-27 -26.952 -26.981 -0.028 (0) + FeCl+2 5.659e-28 4.377e-28 -27.247 -27.359 -0.111 (0) + FeCl2+ 9.762e-31 9.155e-31 -30.010 -30.038 -0.028 (0) FeHSO4+2 2.995e-33 2.307e-33 -32.524 -32.637 -0.113 (0) - FeCl3 4.268e-35 4.272e-35 -34.370 -34.369 0.000 (0) - Fe2(OH)2+4 6.646e-38 2.339e-38 -37.177 -37.631 -0.454 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -49.443 -50.151 -0.709 (0) -H(0) 2.406e-11 - H2 1.203e-11 1.204e-11 -10.920 -10.919 0.000 28.61 + FeCl3 4.283e-35 4.287e-35 -34.368 -34.368 0.000 (0) + Fe2(OH)2+4 6.674e-38 2.350e-38 -37.176 -37.629 -0.453 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -49.440 -50.149 -0.708 (0) +H(0) 2.407e-11 + H2 1.204e-11 1.205e-11 -10.920 -10.919 0.000 28.61 Na 5.000e-04 - Na+ 4.990e-04 4.678e-04 -3.302 -3.330 -0.028 -1.44 - NaSO4- 7.392e-07 6.889e-07 -6.131 -6.162 -0.031 14.65 - NaHCO3 2.211e-07 2.215e-07 -6.655 -6.655 0.001 28.00 - NaOH 7.002e-20 7.008e-20 -19.155 -19.154 0.000 (0) + Na+ 4.967e-04 4.656e-04 -3.304 -3.332 -0.028 -1.44 + NaSO4- 3.031e-06 2.845e-06 -5.518 -5.546 -0.028 -18.09 + NaHCO3 2.864e-07 2.869e-07 -6.543 -6.542 0.001 31.73 + NaOH 6.961e-20 6.967e-20 -19.157 -19.157 0.000 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -70.542 -70.541 0.000 30.40 -S(-2) 1.073e-09 - HS- 1.016e-09 9.515e-10 -8.993 -9.022 -0.029 20.63 - H2S 5.616e-11 5.621e-11 -10.251 -10.250 0.000 36.27 - S-2 2.199e-14 1.701e-14 -13.658 -13.769 -0.112 (0) - Fe(HS)2 5.026e-18 5.030e-18 -17.299 -17.298 0.000 (0) - (H2S)2 1.663e-22 1.665e-22 -21.779 -21.779 0.000 30.09 - Fe(HS)3- 5.563e-25 5.211e-25 -24.255 -24.283 -0.028 (0) + O2 0.000e+00 0.000e+00 -70.542 -70.542 0.000 30.40 +S(-2) 1.071e-09 + HS- 1.015e-09 9.505e-10 -8.993 -9.022 -0.029 20.63 + H2S 5.617e-11 5.622e-11 -10.251 -10.250 0.000 36.27 + S-2 2.194e-14 1.697e-14 -13.659 -13.770 -0.111 (0) + Fe(HS)2 5.029e-18 5.033e-18 -17.299 -17.298 0.000 (0) + (H2S)2 1.664e-22 1.665e-22 -21.779 -21.779 0.000 30.09 + Fe(HS)3- 5.560e-25 5.209e-25 -24.255 -24.283 -0.028 (0) S(6) 5.333e-04 - SO4-2 4.875e-04 3.769e-04 -3.312 -3.424 -0.112 14.90 - CaSO4 4.511e-05 4.515e-05 -4.346 -4.345 0.000 7.50 - NaSO4- 7.392e-07 6.889e-07 -6.131 -6.162 -0.031 14.65 - FeSO4 4.176e-10 4.179e-10 -9.379 -9.379 0.000 18.97 - HSO4- 2.643e-10 2.476e-10 -9.578 -9.606 -0.028 40.30 - CaHSO4+ 2.141e-12 2.005e-12 -11.669 -11.698 -0.028 (0) - FeHSO4+ 1.981e-17 1.856e-17 -16.703 -16.731 -0.028 (0) - FeSO4+ 1.360e-25 1.275e-25 -24.867 -24.894 -0.028 (0) - Fe(SO4)2- 1.122e-27 1.051e-27 -26.950 -26.978 -0.028 (0) + SO4-2 4.853e-04 3.753e-04 -3.314 -3.426 -0.112 16.58 + CaSO4 4.502e-05 4.506e-05 -4.347 -4.346 0.000 7.50 + NaSO4- 3.031e-06 2.845e-06 -5.518 -5.546 -0.028 -18.09 + FeSO4 4.168e-10 4.171e-10 -9.380 -9.380 0.000 18.97 + HSO4- 2.635e-10 2.468e-10 -9.579 -9.608 -0.028 40.30 + CaHSO4+ 2.139e-12 2.003e-12 -11.670 -11.698 -0.028 (0) + FeHSO4+ 1.980e-17 1.855e-17 -16.703 -16.732 -0.028 (0) + FeSO4+ 1.358e-25 1.274e-25 -24.867 -24.895 -0.028 (0) + Fe(SO4)2- 1.116e-27 1.046e-27 -26.952 -26.981 -0.028 (0) FeHSO4+2 2.995e-33 2.307e-33 -32.524 -32.637 -0.113 (0) ------------------------------Saturation indices------------------------------- @@ -433,11 +434,11 @@ S(6) 5.333e-04 Anhydrite -2.32 -6.60 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -8.85 -11.66 -2.80 CH4 + CH4(g) -8.85 -11.65 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -5.14 -9.06 -3.92 FeS - Goethite -0.00 -1.00 -1.00 FeOOH + Goethite 0.00 -1.00 -1.00 FeOOH Gypsum -2.01 -6.60 -4.58 CaSO4:2H2O H2(g) -7.82 -10.92 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O @@ -446,12 +447,12 @@ S(6) 5.333e-04 Hematite 2.01 -2.00 -4.01 Fe2O3 Mackinawite -4.41 -9.06 -4.65 FeS Melanterite -9.42 -11.63 -2.21 FeSO4:7H2O - Mirabilite -8.84 -10.08 -1.24 Na2SO4:10H2O + Mirabilite -8.85 -10.09 -1.24 Na2SO4:10H2O O2(g) -67.65 -70.54 -2.89 O2 Pyrite -0.00 -18.48 -18.48 FeS2 Siderite -2.62 -13.51 -10.89 FeCO3 Sulfur -7.36 -2.48 4.88 S - Thenardite -9.78 -10.08 -0.30 Na2SO4 + Thenardite -9.79 -10.09 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -483,157 +484,157 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.396e-03 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.997e+00 -2.936e-03 -Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.333e-03 -Gypsum -1.05 -5.63 -4.58 0.000e+00 0 0.000e+00 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.401e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.997e+00 -2.932e-03 +Goethite -0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.333e-03 +Gypsum -1.05 -5.64 -4.58 0.000e+00 0 0.000e+00 Pyrite 0.00 -18.48 -18.48 1.000e+01 9.999e+00 -1.333e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.395e-04 5.395e-04 - Ca 2.936e-03 2.936e-03 + C 5.312e-04 5.312e-04 + Ca 2.932e-03 2.932e-03 Cl 2.500e-03 2.500e-03 - Fe 2.149e-08 2.149e-08 + Fe 2.155e-08 2.155e-08 Na 2.500e-03 2.500e-03 S 2.667e-03 2.667e-03 ----------------------------Description of solution---------------------------- - pH = 7.980 Charge balance + pH = 7.979 Charge balance pe = -3.966 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 863 - Density (g/cm³) = 0.99755 + Specific Conductance (µS/cm, 25°C) = 913 + Density (g/cm³) = 0.99754 Volume (L) = 1.00300 - Viscosity (mPa s) = 0.89264 + Viscosity (mPa s) = 0.89302 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.225e-02 + Ionic strength (mol/kgw) = 1.219e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.386e-04 - Total CO2 (mol/kg) = 5.395e-04 + Total alkalinity (eq/kg) = 5.303e-04 + Total CO2 (mol/kg) = 5.312e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = -1.151e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 + Iterations = 26 Total H = 1.110111e+02 - Total O = 5.551757e+01 + Total O = 5.551754e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.083e-06 9.654e-07 -5.965 -6.015 -0.050 -4.02 - H+ 1.156e-08 1.048e-08 -7.937 -7.980 -0.043 0.00 + OH- 1.081e-06 9.635e-07 -5.966 -6.016 -0.050 -4.02 + H+ 1.158e-08 1.050e-08 -7.936 -7.979 -0.042 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 -C(-4) 2.067e-13 - CH4 2.067e-13 2.073e-13 -12.685 -12.683 0.001 35.46 -C(4) 5.395e-04 - HCO3- 5.089e-04 4.565e-04 -3.293 -3.341 -0.047 24.67 +C(-4) 2.093e-13 + CH4 2.093e-13 2.099e-13 -12.679 -12.678 0.001 35.46 +C(4) 5.312e-04 + HCO3- 5.077e-04 4.556e-04 -3.294 -3.341 -0.047 24.66 CO2 1.074e-05 1.076e-05 -4.969 -4.968 0.001 34.43 - CaHCO3+ 1.051e-05 9.443e-06 -4.979 -5.025 -0.046 9.73 - CaCO3 5.547e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CO3-2 3.154e-06 2.042e-06 -5.501 -5.690 -0.189 -3.73 - NaHCO3 6.745e-07 6.789e-07 -6.171 -6.168 0.003 28.00 - FeHCO3+ 5.705e-10 5.097e-10 -9.244 -9.293 -0.049 (0) - FeCO3 5.454e-10 5.470e-10 -9.263 -9.262 0.001 (0) + CaCO3 5.548e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 + CaHCO3+ 3.182e-06 2.861e-06 -5.497 -5.543 -0.046 122.70 + CO3-2 3.139e-06 2.034e-06 -5.503 -5.692 -0.188 -3.63 + NaHCO3 8.629e-07 8.678e-07 -6.064 -6.062 0.002 31.73 + FeHCO3+ 5.724e-10 5.115e-10 -9.242 -9.291 -0.049 (0) + FeCO3 5.463e-10 5.478e-10 -9.263 -9.261 0.001 (0) (CO2)2 2.119e-12 2.125e-12 -11.674 -11.673 0.001 68.87 -Ca 2.936e-03 - Ca+2 2.506e-03 1.621e-03 -2.601 -2.790 -0.189 -17.90 - CaSO4 4.140e-04 4.152e-04 -3.383 -3.382 0.001 7.50 - CaHCO3+ 1.051e-05 9.443e-06 -4.979 -5.025 -0.046 9.73 - CaCO3 5.547e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CaOH+ 2.873e-08 2.567e-08 -7.542 -7.591 -0.049 (0) - CaHSO4+ 3.202e-11 2.861e-11 -10.495 -10.544 -0.049 (0) +Ca 2.932e-03 + Ca+2 2.514e-03 1.628e-03 -2.600 -2.788 -0.189 -17.90 + CaSO4 4.092e-04 4.104e-04 -3.388 -3.387 0.001 7.50 + CaCO3 5.548e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 + CaHCO3+ 3.182e-06 2.861e-06 -5.497 -5.543 -0.046 122.70 + CaOH+ 2.878e-08 2.572e-08 -7.541 -7.590 -0.049 (0) + CaHSO4+ 3.171e-11 2.833e-11 -10.499 -10.548 -0.049 (0) Cl 2.500e-03 Cl- 2.500e-03 2.230e-03 -2.602 -2.652 -0.050 18.15 - FeCl+ 3.846e-11 3.436e-11 -10.415 -10.464 -0.049 (0) - HCl 7.956e-12 8.052e-12 -11.099 -11.094 0.005 (0) - FeCl+2 1.205e-26 7.758e-27 -25.919 -26.110 -0.191 (0) - FeCl2+ 8.626e-29 7.728e-29 -28.064 -28.112 -0.048 (0) - FeCl3 1.718e-32 1.723e-32 -31.765 -31.764 0.001 (0) -Fe(2) 2.149e-08 - Fe+2 1.711e-08 1.116e-08 -7.767 -7.952 -0.185 -21.90 - FeSO4 2.851e-09 2.859e-09 -8.545 -8.544 0.001 18.97 - FeHCO3+ 5.705e-10 5.097e-10 -9.244 -9.293 -0.049 (0) - FeCO3 5.454e-10 5.470e-10 -9.263 -9.262 0.001 (0) - FeOH+ 3.759e-10 3.367e-10 -9.425 -9.473 -0.048 (0) - FeCl+ 3.846e-11 3.436e-11 -10.415 -10.464 -0.049 (0) - Fe(OH)2 2.726e-13 2.734e-13 -12.564 -12.563 0.001 (0) - Fe(OH)3- 1.082e-15 9.689e-16 -14.966 -15.014 -0.048 (0) - FeHSO4+ 2.205e-16 1.970e-16 -15.657 -15.706 -0.049 (0) - Fe(HS)2 2.775e-18 2.783e-18 -17.557 -17.555 0.001 (0) - Fe(HS)3- 1.794e-25 1.603e-25 -24.746 -24.795 -0.049 (0) + FeCl+ 3.868e-11 3.457e-11 -10.412 -10.461 -0.049 (0) + HCl 7.975e-12 8.070e-12 -11.098 -11.093 0.005 (0) + FeCl+2 1.211e-26 7.808e-27 -25.917 -26.107 -0.191 (0) + FeCl2+ 8.682e-29 7.779e-29 -28.061 -28.109 -0.048 (0) + FeCl3 1.730e-32 1.735e-32 -31.762 -31.761 0.001 (0) +Fe(2) 2.155e-08 + Fe+2 1.719e-08 1.123e-08 -7.765 -7.950 -0.185 -21.90 + FeSO4 2.822e-09 2.830e-09 -8.549 -8.548 0.001 18.97 + FeHCO3+ 5.724e-10 5.115e-10 -9.242 -9.291 -0.049 (0) + FeCO3 5.463e-10 5.478e-10 -9.263 -9.261 0.001 (0) + FeOH+ 3.772e-10 3.380e-10 -9.423 -9.471 -0.048 (0) + FeCl+ 3.868e-11 3.457e-11 -10.412 -10.461 -0.049 (0) + Fe(OH)2 2.730e-13 2.738e-13 -12.564 -12.563 0.001 (0) + Fe(OH)3- 1.081e-15 9.684e-16 -14.966 -15.014 -0.048 (0) + FeHSO4+ 2.186e-16 1.954e-16 -15.660 -15.709 -0.049 (0) + Fe(HS)2 2.784e-18 2.792e-18 -17.555 -17.554 0.001 (0) + Fe(HS)3- 1.797e-25 1.606e-25 -24.745 -24.794 -0.049 (0) Fe(3) 3.263e-14 Fe(OH)3 2.746e-14 2.754e-14 -13.561 -13.560 0.001 (0) - Fe(OH)4- 2.670e-15 2.396e-15 -14.573 -14.621 -0.047 (0) - Fe(OH)2+ 2.498e-15 2.241e-15 -14.602 -14.650 -0.047 (0) - FeOH+2 1.102e-19 7.095e-20 -18.958 -19.149 -0.191 (0) - FeSO4+ 2.031e-24 1.819e-24 -23.692 -23.740 -0.048 (0) - Fe+3 2.782e-25 1.152e-25 -24.556 -24.939 -0.383 (0) - Fe(SO4)2- 6.414e-26 5.731e-26 -25.193 -25.242 -0.049 (0) - FeCl+2 1.205e-26 7.758e-27 -25.919 -26.110 -0.191 (0) - FeCl2+ 8.626e-29 7.728e-29 -28.064 -28.112 -0.048 (0) - FeHSO4+2 8.015e-32 5.106e-32 -31.096 -31.292 -0.196 (0) - FeCl3 1.718e-32 1.723e-32 -31.765 -31.764 0.001 (0) - Fe2(OH)2+4 8.227e-37 1.355e-37 -36.085 -36.868 -0.783 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -47.974 -49.198 -1.224 (0) -H(0) 1.329e-11 - H2 6.643e-12 6.661e-12 -11.178 -11.176 0.001 28.61 + Fe(OH)4- 2.664e-15 2.391e-15 -14.574 -14.621 -0.047 (0) + Fe(OH)2+ 2.503e-15 2.246e-15 -14.602 -14.649 -0.047 (0) + FeOH+2 1.105e-19 7.124e-20 -18.957 -19.147 -0.191 (0) + FeSO4+ 2.011e-24 1.802e-24 -23.697 -23.744 -0.048 (0) + Fe+3 2.794e-25 1.159e-25 -24.554 -24.936 -0.382 (0) + Fe(SO4)2- 6.252e-26 5.587e-26 -25.204 -25.253 -0.049 (0) + FeCl+2 1.211e-26 7.808e-27 -25.917 -26.107 -0.191 (0) + FeCl2+ 8.682e-29 7.779e-29 -28.061 -28.109 -0.048 (0) + FeHSO4+2 7.946e-32 5.067e-32 -31.100 -31.295 -0.195 (0) + FeCl3 1.730e-32 1.735e-32 -31.762 -31.761 0.001 (0) + Fe2(OH)2+4 8.262e-37 1.366e-37 -36.083 -36.865 -0.782 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -47.972 -49.193 -1.221 (0) +H(0) 1.333e-11 + H2 6.663e-12 6.682e-12 -11.176 -11.175 0.001 28.61 Na 2.500e-03 - Na+ 2.485e-03 2.224e-03 -2.605 -2.653 -0.048 -1.36 - NaSO4- 1.425e-05 1.251e-05 -4.846 -4.903 -0.056 14.91 - NaHCO3 6.745e-07 6.789e-07 -6.171 -6.168 0.003 28.00 - NaOH 2.141e-19 2.147e-19 -18.669 -18.668 0.001 (0) + Na+ 2.443e-03 2.187e-03 -2.612 -2.660 -0.048 -1.36 + NaSO4- 5.622e-05 5.046e-05 -4.250 -4.297 -0.047 -14.46 + NaHCO3 8.629e-07 8.678e-07 -6.064 -6.062 0.002 31.73 + NaOH 2.101e-19 2.107e-19 -18.678 -18.676 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -70.029 -70.027 0.001 30.40 -S(-2) 6.419e-10 - HS- 5.935e-10 5.289e-10 -9.227 -9.277 -0.050 20.68 - H2S 4.834e-11 4.847e-11 -10.316 -10.315 0.001 36.27 - S-2 9.463e-15 6.094e-15 -14.024 -14.215 -0.191 (0) - Fe(HS)2 2.775e-18 2.783e-18 -17.557 -17.555 0.001 (0) - (H2S)2 1.235e-22 1.238e-22 -21.908 -21.907 0.001 30.09 - Fe(HS)3- 1.794e-25 1.603e-25 -24.746 -24.795 -0.049 (0) + O2 0.000e+00 0.000e+00 -70.031 -70.030 0.001 30.40 +S(-2) 6.410e-10 + HS- 5.926e-10 5.282e-10 -9.227 -9.277 -0.050 20.68 + H2S 4.837e-11 4.851e-11 -10.315 -10.314 0.001 36.27 + S-2 9.422e-15 6.074e-15 -14.026 -14.217 -0.191 (0) + Fe(HS)2 2.784e-18 2.792e-18 -17.555 -17.554 0.001 (0) + (H2S)2 1.237e-22 1.240e-22 -21.908 -21.907 0.001 30.09 + Fe(HS)3- 1.797e-25 1.606e-25 -24.745 -24.794 -0.049 (0) S(6) 2.667e-03 - SO4-2 2.238e-03 1.440e-03 -2.650 -2.842 -0.192 15.09 - CaSO4 4.140e-04 4.152e-04 -3.383 -3.382 0.001 7.50 - NaSO4- 1.425e-05 1.251e-05 -4.846 -4.903 -0.056 14.91 - FeSO4 2.851e-09 2.859e-09 -8.545 -8.544 0.001 18.97 - HSO4- 1.643e-09 1.467e-09 -8.784 -8.833 -0.049 40.35 - CaHSO4+ 3.202e-11 2.861e-11 -10.495 -10.544 -0.049 (0) - FeHSO4+ 2.205e-16 1.970e-16 -15.657 -15.706 -0.049 (0) - FeSO4+ 2.031e-24 1.819e-24 -23.692 -23.740 -0.048 (0) - Fe(SO4)2- 6.414e-26 5.731e-26 -25.193 -25.242 -0.049 (0) - FeHSO4+2 8.015e-32 5.106e-32 -31.096 -31.292 -0.196 (0) + SO4-2 2.201e-03 1.417e-03 -2.657 -2.848 -0.191 18.23 + CaSO4 4.092e-04 4.104e-04 -3.388 -3.387 0.001 7.50 + NaSO4- 5.622e-05 5.046e-05 -4.250 -4.297 -0.047 -14.46 + FeSO4 2.822e-09 2.830e-09 -8.549 -8.548 0.001 18.97 + HSO4- 1.620e-09 1.447e-09 -8.791 -8.839 -0.049 40.35 + CaHSO4+ 3.171e-11 2.833e-11 -10.499 -10.548 -0.049 (0) + FeHSO4+ 2.186e-16 1.954e-16 -15.660 -15.709 -0.049 (0) + FeSO4+ 2.011e-24 1.802e-24 -23.697 -23.744 -0.048 (0) + Fe(SO4)2- 6.252e-26 5.587e-26 -25.204 -25.253 -0.049 (0) + FeHSO4+2 7.946e-32 5.067e-32 -31.100 -31.295 -0.195 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.35 -5.63 -4.28 CaSO4 + Anhydrite -1.36 -5.64 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 CH4(g) -9.88 -12.68 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -5.33 -9.25 -3.92 FeS - Goethite 0.00 -1.00 -1.00 FeOOH - Gypsum -1.05 -5.63 -4.58 CaSO4:2H2O - H2(g) -8.08 -11.18 -3.10 H2 + Goethite -0.00 -1.00 -1.00 FeOOH + Gypsum -1.05 -5.64 -4.58 CaSO4:2H2O + H2(g) -8.07 -11.18 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -9.32 -17.26 -7.94 H2S - Halite -6.87 -5.30 1.57 NaCl + Halite -6.88 -5.31 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 Mackinawite -4.60 -9.25 -4.65 FeS - Melanterite -8.59 -10.79 -2.21 FeSO4:7H2O - Mirabilite -6.91 -8.15 -1.24 Na2SO4:10H2O - O2(g) -67.13 -70.03 -2.89 O2 + Melanterite -8.59 -10.80 -2.21 FeSO4:7H2O + Mirabilite -6.93 -8.17 -1.24 Na2SO4:10H2O + O2(g) -67.14 -70.03 -2.89 O2 Pyrite 0.00 -18.48 -18.48 FeS2 Siderite -2.75 -13.64 -10.89 FeCO3 Sulfur -7.17 -2.29 4.88 S - Thenardite -7.85 -8.15 -0.30 Na2SO4 + Thenardite -7.87 -8.17 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -665,157 +666,157 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.001e+01 5.107e-03 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.994e+00 -5.558e-03 -Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 2.667e-03 -Gypsum -0.63 -5.22 -4.58 0.000e+00 0 0.000e+00 -Pyrite 0.00 -18.48 -18.48 1.000e+01 9.997e+00 -2.667e-03 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.001e+01 5.112e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.994e+00 -5.552e-03 +Goethite -0.00 -1.00 -1.00 1.000e+01 1.000e+01 2.667e-03 +Gypsum -0.64 -5.22 -4.58 0.000e+00 0 0.000e+00 +Pyrite -0.00 -18.48 -18.48 1.000e+01 9.997e+00 -2.667e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 4.511e-04 4.511e-04 - Ca 5.558e-03 5.558e-03 + C 4.402e-04 4.402e-04 + Ca 5.553e-03 5.552e-03 Cl 5.000e-03 5.000e-03 - Fe 3.488e-08 3.488e-08 + Fe 3.499e-08 3.499e-08 Na 5.000e-03 5.000e-03 S 5.333e-03 5.333e-03 ----------------------------Description of solution---------------------------- - pH = 7.881 Charge balance + pH = 7.879 Charge balance pe = -3.812 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1564 - Density (g/cm³) = 0.99801 - Volume (L) = 1.00303 - Viscosity (mPa s) = 0.89416 + Specific Conductance (µS/cm, 25°C) = 1657 + Density (g/cm³) = 0.99799 + Volume (L) = 1.00304 + Viscosity (mPa s) = 0.89443 Activity of water = 1.000 - Ionic strength (mol/kgw) = 2.256e-02 + Ionic strength (mol/kgw) = 2.237e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 4.491e-04 - Total CO2 (mol/kg) = 4.511e-04 + Total alkalinity (eq/kg) = 4.382e-04 + Total CO2 (mol/kg) = 4.402e-04 Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 Total H = 1.110098e+02 - Total O = 5.552734e+01 + Total O = 5.552732e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 8.939e-07 7.690e-07 -6.049 -6.114 -0.065 -3.97 - H+ 1.487e-08 1.316e-08 -7.828 -7.881 -0.053 0.00 + OH- 8.902e-07 7.663e-07 -6.051 -6.116 -0.065 -3.97 + H+ 1.491e-08 1.320e-08 -7.826 -7.879 -0.053 0.00 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.07 -C(-4) 7.410e-14 - CH4 7.410e-14 7.448e-14 -13.130 -13.128 0.002 35.46 -C(4) 4.511e-04 - HCO3- 4.180e-04 3.636e-04 -3.379 -3.439 -0.060 24.74 - CaHCO3+ 1.358e-05 1.185e-05 -4.867 -4.926 -0.059 9.76 +C(-4) 7.558e-14 + CH4 7.558e-14 7.597e-14 -13.122 -13.119 0.002 35.46 +C(4) 4.402e-04 + HCO3- 4.163e-04 3.623e-04 -3.381 -3.441 -0.060 24.70 CO2 1.072e-05 1.076e-05 -4.970 -4.968 0.001 34.43 - CaCO3 5.534e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 - CO3-2 2.263e-06 1.296e-06 -5.645 -5.887 -0.242 -3.56 - NaHCO3 1.031e-06 1.044e-06 -5.987 -5.981 0.005 28.00 - FeHCO3+ 6.511e-10 5.630e-10 -9.186 -9.250 -0.063 (0) - FeCO3 4.789e-10 4.814e-10 -9.320 -9.318 0.002 (0) + CaCO3 5.535e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 + CaHCO3+ 4.119e-06 3.596e-06 -5.385 -5.444 -0.059 122.72 + CO3-2 2.242e-06 1.287e-06 -5.649 -5.890 -0.241 -3.47 + NaHCO3 1.305e-06 1.319e-06 -5.884 -5.880 0.004 31.73 + FeHCO3+ 6.547e-10 5.664e-10 -9.184 -9.247 -0.063 (0) + FeCO3 4.801e-10 4.825e-10 -9.319 -9.316 0.002 (0) (CO2)2 2.114e-12 2.125e-12 -11.675 -11.673 0.002 68.87 -Ca 5.558e-03 - Ca+2 4.461e-03 2.555e-03 -2.351 -2.593 -0.242 -17.79 - CaSO4 1.078e-03 1.083e-03 -2.967 -2.965 0.002 7.50 - CaHCO3+ 1.358e-05 1.185e-05 -4.867 -4.926 -0.059 9.76 - CaCO3 5.534e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 - CaOH+ 3.726e-08 3.222e-08 -7.429 -7.492 -0.063 (0) - CaHSO4+ 1.084e-10 9.369e-11 -9.965 -10.028 -0.063 (0) +Ca 5.553e-03 + Ca+2 4.485e-03 2.573e-03 -2.348 -2.590 -0.241 -17.79 + CaSO4 1.058e-03 1.064e-03 -2.975 -2.973 0.002 7.50 + CaCO3 5.535e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 + CaHCO3+ 4.119e-06 3.596e-06 -5.385 -5.444 -0.059 122.72 + CaOH+ 3.737e-08 3.233e-08 -7.427 -7.490 -0.063 (0) + CaHSO4+ 1.067e-10 9.230e-11 -9.972 -10.035 -0.063 (0) Cl 5.000e-03 - Cl- 5.000e-03 4.309e-03 -2.301 -2.366 -0.065 18.19 - FeCl+ 1.065e-10 9.209e-11 -9.973 -10.036 -0.063 (0) - HCl 1.910e-11 1.953e-11 -10.719 -10.709 0.010 (0) - FeCl+2 5.223e-26 2.966e-26 -25.282 -25.528 -0.246 (0) - FeCl2+ 6.577e-28 5.709e-28 -27.182 -27.243 -0.061 (0) - FeCl3 2.447e-31 2.460e-31 -30.611 -30.609 0.002 (0) -Fe(2) 3.488e-08 - Fe+2 2.668e-08 1.548e-08 -7.574 -7.810 -0.236 -21.80 - FeSO4 6.531e-09 6.565e-09 -8.185 -8.183 0.002 18.97 - FeHCO3+ 6.511e-10 5.630e-10 -9.186 -9.250 -0.063 (0) - FeCO3 4.789e-10 4.814e-10 -9.320 -9.318 0.002 (0) - FeOH+ 4.285e-10 3.720e-10 -9.368 -9.429 -0.061 (0) - FeCl+ 1.065e-10 9.209e-11 -9.973 -10.036 -0.063 (0) - Fe(OH)2 2.393e-13 2.406e-13 -12.621 -12.619 0.002 (0) - Fe(OH)3- 7.823e-16 6.790e-16 -15.107 -15.168 -0.061 (0) - FeHSO4+ 6.566e-16 5.677e-16 -15.183 -15.246 -0.063 (0) - Fe(HS)2 2.144e-18 2.155e-18 -17.669 -17.667 0.002 (0) - Fe(HS)3- 1.072e-25 9.273e-26 -24.970 -25.033 -0.063 (0) + Cl- 5.000e-03 4.311e-03 -2.301 -2.365 -0.064 18.18 + FeCl+ 1.075e-10 9.302e-11 -9.968 -10.031 -0.063 (0) + HCl 1.919e-11 1.961e-11 -10.717 -10.708 0.010 (0) + FeCl+2 5.272e-26 2.999e-26 -25.278 -25.523 -0.245 (0) + FeCl2+ 6.651e-28 5.776e-28 -27.177 -27.238 -0.061 (0) + FeCl3 2.478e-31 2.490e-31 -30.606 -30.604 0.002 (0) +Fe(2) 3.499e-08 + Fe+2 2.689e-08 1.563e-08 -7.570 -7.806 -0.236 -21.80 + FeSO4 6.427e-09 6.460e-09 -8.192 -8.190 0.002 18.97 + FeHCO3+ 6.547e-10 5.664e-10 -9.184 -9.247 -0.063 (0) + FeCO3 4.801e-10 4.825e-10 -9.319 -9.316 0.002 (0) + FeOH+ 4.309e-10 3.742e-10 -9.366 -9.427 -0.061 (0) + FeCl+ 1.075e-10 9.302e-11 -9.968 -10.031 -0.063 (0) + Fe(OH)2 2.399e-13 2.411e-13 -12.620 -12.618 0.002 (0) + Fe(OH)3- 7.810e-16 6.783e-16 -15.107 -15.169 -0.061 (0) + FeHSO4+ 6.481e-16 5.607e-16 -15.188 -15.251 -0.063 (0) + Fe(HS)2 2.154e-18 2.165e-18 -17.667 -17.664 0.002 (0) + Fe(HS)3- 1.075e-25 9.297e-26 -24.969 -25.032 -0.063 (0) Fe(3) 3.282e-14 Fe(OH)3 2.739e-14 2.753e-14 -13.562 -13.560 0.002 (0) - Fe(OH)2+ 3.233e-15 2.813e-15 -14.490 -14.551 -0.060 (0) - Fe(OH)4- 2.193e-15 1.908e-15 -14.659 -14.719 -0.060 (0) - FeOH+2 1.969e-19 1.118e-19 -18.706 -18.952 -0.246 (0) - FeSO4+ 6.864e-24 5.959e-24 -23.163 -23.225 -0.061 (0) - Fe+3 6.842e-25 2.279e-25 -24.165 -24.642 -0.477 (0) - Fe(SO4)2- 3.595e-25 3.109e-25 -24.444 -24.507 -0.063 (0) - FeCl+2 5.223e-26 2.966e-26 -25.282 -25.528 -0.246 (0) - FeCl2+ 6.577e-28 5.709e-28 -27.182 -27.243 -0.061 (0) - FeHSO4+2 3.756e-31 2.099e-31 -30.425 -30.678 -0.253 (0) - FeCl3 2.447e-31 2.460e-31 -30.611 -30.609 0.002 (0) - Fe2(OH)2+4 3.446e-36 3.365e-37 -35.463 -36.473 -1.010 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -47.125 -48.704 -1.579 (0) -H(0) 1.026e-11 - H2 5.130e-12 5.157e-12 -11.290 -11.288 0.002 28.61 + Fe(OH)2+ 3.243e-15 2.823e-15 -14.489 -14.549 -0.060 (0) + Fe(OH)4- 2.184e-15 1.901e-15 -14.661 -14.721 -0.060 (0) + FeOH+2 1.979e-19 1.126e-19 -18.703 -18.948 -0.245 (0) + FeSO4+ 6.759e-24 5.870e-24 -23.170 -23.231 -0.061 (0) + Fe+3 6.894e-25 2.304e-25 -24.162 -24.638 -0.476 (0) + Fe(SO4)2- 3.451e-25 2.985e-25 -24.462 -24.525 -0.063 (0) + FeCl+2 5.272e-26 2.999e-26 -25.278 -25.523 -0.245 (0) + FeCl2+ 6.651e-28 5.776e-28 -27.177 -27.238 -0.061 (0) + FeHSO4+2 3.706e-31 2.076e-31 -30.431 -30.683 -0.252 (0) + FeCl3 2.478e-31 2.490e-31 -30.606 -30.604 0.002 (0) + Fe2(OH)2+4 3.468e-36 3.413e-37 -35.460 -36.467 -1.007 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -47.123 -48.696 -1.573 (0) +H(0) 1.031e-11 + H2 5.156e-12 5.183e-12 -11.288 -11.285 0.002 28.61 Na 5.000e-03 - Na+ 4.951e-03 4.293e-03 -2.305 -2.367 -0.062 -1.31 - NaSO4- 4.771e-05 3.999e-05 -4.321 -4.398 -0.077 15.13 - NaHCO3 1.031e-06 1.044e-06 -5.987 -5.981 0.005 28.00 - NaOH 3.285e-19 3.302e-19 -18.484 -18.481 0.002 (0) + Na+ 4.817e-03 4.179e-03 -2.317 -2.379 -0.062 -1.31 + NaSO4- 1.816e-04 1.581e-04 -3.741 -3.801 -0.060 -12.22 + NaHCO3 1.305e-06 1.319e-06 -5.884 -5.880 0.004 31.73 + NaOH 3.186e-19 3.202e-19 -18.497 -18.495 0.002 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -69.807 -69.805 0.002 30.40 -S(-2) 5.046e-10 - HS- 4.593e-10 3.952e-10 -9.338 -9.403 -0.065 20.71 - H2S 4.522e-11 4.546e-11 -10.345 -10.342 0.002 36.27 - S-2 6.389e-15 3.628e-15 -14.195 -14.440 -0.246 (0) - Fe(HS)2 2.144e-18 2.155e-18 -17.669 -17.667 0.002 (0) - (H2S)2 1.083e-22 1.089e-22 -21.965 -21.963 0.002 30.09 - Fe(HS)3- 1.072e-25 9.273e-26 -24.970 -25.033 -0.063 (0) + O2 0.000e+00 0.000e+00 -69.812 -69.809 0.002 30.40 +S(-2) 5.033e-10 + HS- 4.580e-10 3.943e-10 -9.339 -9.404 -0.065 20.71 + H2S 4.528e-11 4.552e-11 -10.344 -10.342 0.002 36.27 + S-2 6.339e-15 3.607e-15 -14.198 -14.443 -0.245 (0) + Fe(HS)2 2.154e-18 2.165e-18 -17.667 -17.664 0.002 (0) + (H2S)2 1.086e-22 1.092e-22 -21.964 -21.962 0.002 30.09 + Fe(HS)3- 1.075e-25 9.297e-26 -24.969 -25.032 -0.063 (0) S(6) 5.333e-03 - SO4-2 4.208e-03 2.384e-03 -2.376 -2.623 -0.247 15.24 - CaSO4 1.078e-03 1.083e-03 -2.967 -2.965 0.002 7.50 - NaSO4- 4.771e-05 3.999e-05 -4.321 -4.398 -0.077 15.13 - FeSO4 6.531e-09 6.565e-09 -8.185 -8.183 0.002 18.97 - HSO4- 3.528e-09 3.050e-09 -8.453 -8.516 -0.063 40.39 - CaHSO4+ 1.084e-10 9.369e-11 -9.965 -10.028 -0.063 (0) - FeHSO4+ 6.566e-16 5.677e-16 -15.183 -15.246 -0.063 (0) - FeSO4+ 6.864e-24 5.959e-24 -23.163 -23.225 -0.061 (0) - Fe(SO4)2- 3.595e-25 3.109e-25 -24.444 -24.507 -0.063 (0) - FeHSO4+2 3.756e-31 2.099e-31 -30.425 -30.678 -0.253 (0) + SO4-2 4.094e-03 2.324e-03 -2.388 -2.634 -0.246 19.46 + CaSO4 1.058e-03 1.064e-03 -2.975 -2.973 0.002 7.50 + NaSO4- 1.816e-04 1.581e-04 -3.741 -3.801 -0.060 -12.22 + FeSO4 6.427e-09 6.460e-09 -8.192 -8.190 0.002 18.97 + HSO4- 3.449e-09 2.984e-09 -8.462 -8.525 -0.063 40.39 + CaHSO4+ 1.067e-10 9.230e-11 -9.972 -10.035 -0.063 (0) + FeHSO4+ 6.481e-16 5.607e-16 -15.188 -15.251 -0.063 (0) + FeSO4+ 6.759e-24 5.870e-24 -23.170 -23.231 -0.061 (0) + Fe(SO4)2- 3.451e-25 2.985e-25 -24.462 -24.525 -0.063 (0) + FeHSO4+2 3.706e-31 2.076e-31 -30.431 -30.683 -0.252 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.94 -5.22 -4.28 CaSO4 + Anhydrite -0.95 -5.22 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -10.33 -13.13 -2.80 CH4 + CH4(g) -10.32 -13.12 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -5.42 -9.33 -3.92 FeS - Goethite 0.00 -1.00 -1.00 FeOOH - Gypsum -0.63 -5.22 -4.58 CaSO4:2H2O - H2(g) -8.19 -11.29 -3.10 H2 + Goethite -0.00 -1.00 -1.00 FeOOH + Gypsum -0.64 -5.22 -4.58 CaSO4:2H2O + H2(g) -8.18 -11.29 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -9.35 -17.28 -7.94 H2S - Halite -6.30 -4.73 1.57 NaCl + Halite -6.31 -4.74 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 Mackinawite -4.68 -9.33 -4.65 FeS - Melanterite -8.22 -10.43 -2.21 FeSO4:7H2O - Mirabilite -6.12 -7.36 -1.24 Na2SO4:10H2O - O2(g) -66.91 -69.81 -2.89 O2 - Pyrite 0.00 -18.48 -18.48 FeS2 + Melanterite -8.23 -10.44 -2.21 FeSO4:7H2O + Mirabilite -6.15 -7.39 -1.24 Na2SO4:10H2O + O2(g) -66.92 -69.81 -2.89 O2 + Pyrite -0.00 -18.48 -18.48 FeS2 Siderite -2.81 -13.70 -10.89 FeCO3 - Sulfur -7.09 -2.20 4.88 S - Thenardite -7.06 -7.36 -0.30 Na2SO4 + Sulfur -7.09 -2.21 4.88 S + Thenardite -7.09 -7.39 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -847,157 +848,157 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.002e+01 1.582e-02 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.002e+01 1.583e-02 Calcite 0.00 -8.48 -8.48 1.000e+01 9.984e+00 -1.617e-02 -Goethite 0.00 -1.00 -1.00 1.000e+01 1.001e+01 8.000e-03 -Gypsum -0.01 -4.59 -4.58 0.000e+00 0 0.000e+00 +Goethite -0.00 -1.00 -1.00 1.000e+01 1.001e+01 8.000e-03 +Gypsum -0.03 -4.61 -4.58 0.000e+00 0 0.000e+00 Pyrite 0.00 -18.48 -18.48 1.000e+01 9.992e+00 -8.000e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.509e-04 3.509e-04 - Ca 1.618e-02 1.617e-02 + C 3.341e-04 3.340e-04 + Ca 1.617e-02 1.617e-02 Cl 1.500e-02 1.500e-02 - Fe 8.187e-08 8.187e-08 + Fe 8.228e-08 8.227e-08 Na 1.500e-02 1.500e-02 S 1.600e-02 1.600e-02 ----------------------------Description of solution---------------------------- - pH = 7.725 Charge balance - pe = -3.573 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 4079 - Density (g/cm³) = 0.99984 - Volume (L) = 1.00316 - Viscosity (mPa s) = 0.89935 + pH = 7.722 Charge balance + pe = -3.572 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 4332 + Density (g/cm³) = 0.99980 + Volume (L) = 1.00321 + Viscosity (mPa s) = 0.89930 Activity of water = 0.999 - Ionic strength (mol/kgw) = 6.093e-02 + Ionic strength (mol/kgw) = 6.003e-02 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 3.478e-04 - Total CO2 (mol/kg) = 3.509e-04 + Total alkalinity (eq/kg) = 3.310e-04 + Total CO2 (mol/kg) = 3.341e-04 Temperature (°C) = 25.00 Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 Total H = 1.110044e+02 - Total O = 5.556709e+01 + Total O = 5.556705e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 6.733e-07 5.372e-07 -6.172 -6.270 -0.098 -3.84 - H+ 2.226e-08 1.882e-08 -7.653 -7.725 -0.073 0.00 + OH- 6.668e-07 5.327e-07 -6.176 -6.274 -0.097 -3.84 + H+ 2.243e-08 1.898e-08 -7.649 -7.722 -0.072 0.00 H2O 5.551e+01 9.990e-01 1.744 -0.000 0.000 18.07 -C(-4) 1.588e-14 - CH4 1.588e-14 1.611e-14 -13.799 -13.793 0.006 35.46 -C(4) 3.509e-04 - HCO3- 3.108e-04 2.540e-04 -3.508 -3.595 -0.088 24.93 - CaHCO3+ 2.061e-05 1.696e-05 -4.686 -4.771 -0.085 9.81 +C(-4) 1.646e-14 + CH4 1.646e-14 1.669e-14 -13.784 -13.778 0.006 35.46 +C(4) 3.341e-04 + HCO3- 3.078e-04 2.519e-04 -3.512 -3.599 -0.087 24.82 CO2 1.066e-05 1.076e-05 -4.972 -4.968 0.004 34.43 - CaCO3 5.486e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 - NaHCO3 1.966e-06 2.030e-06 -5.706 -5.692 0.014 28.00 - CO3-2 1.418e-06 6.329e-07 -5.848 -6.199 -0.350 -3.13 - FeHCO3+ 8.217e-10 6.654e-10 -9.085 -9.177 -0.092 (0) - FeCO3 3.922e-10 3.977e-10 -9.407 -9.400 0.006 (0) + CaHCO3+ 6.277e-06 5.170e-06 -5.202 -5.286 -0.084 122.77 + CaCO3 5.487e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 + NaHCO3 2.424e-06 2.492e-06 -5.615 -5.603 0.012 31.73 + CO3-2 1.388e-06 6.223e-07 -5.858 -6.206 -0.348 -3.08 + FeHCO3+ 8.315e-10 6.740e-10 -9.080 -9.171 -0.091 (0) + FeCO3 3.940e-10 3.995e-10 -9.405 -9.399 0.006 (0) (CO2)2 2.096e-12 2.125e-12 -11.679 -11.673 0.006 68.87 -Ca 1.618e-02 - Ca+2 1.167e-02 5.232e-03 -1.933 -2.281 -0.348 -17.57 - CaSO4 4.483e-03 4.546e-03 -2.348 -2.342 0.006 7.50 - CaHCO3+ 2.061e-05 1.696e-05 -4.686 -4.771 -0.085 9.81 - CaCO3 5.486e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 - CaOH+ 5.692e-08 4.609e-08 -7.245 -7.336 -0.092 (0) - CaHSO4+ 6.946e-10 5.625e-10 -9.158 -9.250 -0.092 (0) +Ca 1.617e-02 + Ca+2 1.182e-02 5.322e-03 -1.927 -2.274 -0.347 -17.57 + CaSO4 4.337e-03 4.397e-03 -2.363 -2.357 0.006 7.50 + CaHCO3+ 6.277e-06 5.170e-06 -5.202 -5.286 -0.084 122.77 + CaCO3 5.487e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 + CaOH+ 5.734e-08 4.648e-08 -7.242 -7.333 -0.091 (0) + CaHSO4+ 6.768e-10 5.486e-10 -9.170 -9.261 -0.091 (0) Cl 1.500e-02 - Cl- 1.500e-02 1.202e-02 -1.824 -1.920 -0.096 18.27 - FeCl+ 5.367e-10 4.346e-10 -9.270 -9.362 -0.092 (0) - HCl 7.342e-11 7.793e-11 -10.134 -10.108 0.026 (0) - FeCl+2 5.534e-25 2.425e-25 -24.257 -24.615 -0.358 (0) - FeCl2+ 1.600e-26 1.302e-26 -25.796 -25.885 -0.090 (0) - FeCl3 1.543e-29 1.565e-29 -28.812 -28.805 0.006 (0) -Fe(2) 8.187e-08 - Fe+2 5.714e-08 2.619e-08 -7.243 -7.582 -0.339 -21.59 - FeSO4 2.244e-08 2.276e-08 -7.649 -7.643 0.006 18.97 - FeHCO3+ 8.217e-10 6.654e-10 -9.085 -9.177 -0.092 (0) - FeOH+ 5.403e-10 4.396e-10 -9.267 -9.357 -0.090 (0) - FeCl+ 5.367e-10 4.346e-10 -9.270 -9.362 -0.092 (0) - FeCO3 3.922e-10 3.977e-10 -9.407 -9.400 0.006 (0) - Fe(OH)2 1.958e-13 1.986e-13 -12.708 -12.702 0.006 (0) - FeHSO4+ 3.477e-15 2.816e-15 -14.459 -14.550 -0.092 (0) - Fe(OH)3- 4.814e-16 3.917e-16 -15.318 -15.407 -0.090 (0) - Fe(HS)2 1.449e-18 1.469e-18 -17.839 -17.833 0.006 (0) - Fe(HS)3- 4.955e-26 4.013e-26 -25.305 -25.397 -0.092 (0) -Fe(3) 3.368e-14 - Fe(OH)3 2.713e-14 2.752e-14 -13.567 -13.560 0.006 (0) - Fe(OH)2+ 4.923e-15 4.024e-15 -14.308 -14.395 -0.088 (0) - Fe(OH)4- 1.629e-15 1.332e-15 -14.788 -14.876 -0.088 (0) - FeOH+2 5.225e-19 2.290e-19 -18.282 -18.640 -0.358 (0) - FeSO4+ 4.399e-23 3.580e-23 -22.357 -22.446 -0.090 (0) - Fe(SO4)2- 4.726e-24 3.827e-24 -23.326 -23.417 -0.092 (0) - Fe+3 3.019e-24 6.681e-25 -23.520 -24.175 -0.655 (0) - FeCl+2 5.534e-25 2.425e-25 -24.257 -24.615 -0.358 (0) - FeCl2+ 1.600e-26 1.302e-26 -25.796 -25.885 -0.090 (0) - FeCl3 1.543e-29 1.565e-29 -28.812 -28.805 0.006 (0) - FeHSO4+2 4.196e-30 1.804e-30 -29.377 -29.744 -0.367 (0) - Fe2(OH)2+4 4.129e-35 1.411e-36 -34.384 -35.851 -1.466 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -45.635 -47.926 -2.291 (0) -H(0) 6.934e-12 - H2 3.467e-12 3.516e-12 -11.460 -11.454 0.006 28.61 + Cl- 1.500e-02 1.203e-02 -1.824 -1.920 -0.096 18.27 + FeCl+ 5.484e-10 4.446e-10 -9.261 -9.352 -0.091 (0) + HCl 7.420e-11 7.870e-11 -10.130 -10.104 0.026 (0) + FeCl+2 5.659e-25 2.491e-25 -24.247 -24.604 -0.356 (0) + FeCl2+ 1.644e-26 1.339e-26 -25.784 -25.873 -0.089 (0) + FeCl3 1.589e-29 1.611e-29 -28.799 -28.793 0.006 (0) +Fe(2) 8.228e-08 + Fe+2 5.815e-08 2.676e-08 -7.235 -7.573 -0.337 -21.59 + FeSO4 2.181e-08 2.211e-08 -7.661 -7.655 0.006 18.97 + FeHCO3+ 8.315e-10 6.740e-10 -9.080 -9.171 -0.091 (0) + FeCl+ 5.484e-10 4.446e-10 -9.261 -9.352 -0.091 (0) + FeOH+ 5.468e-10 4.454e-10 -9.262 -9.351 -0.089 (0) + FeCO3 3.940e-10 3.995e-10 -9.405 -9.399 0.006 (0) + Fe(OH)2 1.968e-13 1.995e-13 -12.706 -12.700 0.006 (0) + FeHSO4+ 3.403e-15 2.759e-15 -14.468 -14.559 -0.091 (0) + Fe(OH)3- 4.789e-16 3.901e-16 -15.320 -15.409 -0.089 (0) + Fe(HS)2 1.462e-18 1.482e-18 -17.835 -17.829 0.006 (0) + Fe(HS)3- 4.963e-26 4.023e-26 -25.304 -25.395 -0.091 (0) +Fe(3) 3.371e-14 + Fe(OH)3 2.714e-14 2.752e-14 -13.566 -13.560 0.006 (0) + Fe(OH)2+ 4.960e-15 4.058e-15 -14.305 -14.392 -0.087 (0) + Fe(OH)4- 1.614e-15 1.321e-15 -14.792 -14.879 -0.087 (0) + FeOH+2 5.291e-19 2.329e-19 -18.276 -18.633 -0.356 (0) + FeSO4+ 4.287e-23 3.492e-23 -22.368 -22.457 -0.089 (0) + Fe(SO4)2- 4.378e-24 3.549e-24 -23.359 -23.450 -0.091 (0) + Fe+3 3.077e-24 6.853e-25 -23.512 -24.164 -0.652 (0) + FeCl+2 5.659e-25 2.491e-25 -24.247 -24.604 -0.356 (0) + FeCl2+ 1.644e-26 1.339e-26 -25.784 -25.873 -0.089 (0) + FeCl3 1.589e-29 1.611e-29 -28.799 -28.793 0.006 (0) + FeHSO4+2 4.110e-30 1.775e-30 -29.386 -29.751 -0.365 (0) + Fe2(OH)2+4 4.199e-35 1.460e-36 -34.377 -35.836 -1.459 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -45.628 -47.907 -2.280 (0) +H(0) 6.997e-12 + H2 3.499e-12 3.547e-12 -11.456 -11.450 0.006 28.61 Na 1.500e-02 - Na+ 1.469e-02 1.195e-02 -1.833 -1.922 -0.090 -1.18 - NaSO4- 3.049e-04 2.282e-04 -3.516 -3.642 -0.126 15.75 - NaHCO3 1.966e-06 2.030e-06 -5.706 -5.692 0.014 28.00 - NaOH 6.333e-19 6.423e-19 -18.198 -18.192 0.006 (0) + Na+ 1.395e-02 1.136e-02 -1.855 -1.945 -0.089 -1.18 + NaSO4- 1.049e-03 8.593e-04 -2.979 -3.066 -0.087 -7.84 + NaHCO3 2.424e-06 2.492e-06 -5.615 -5.603 0.012 31.73 + NaOH 5.969e-19 6.052e-19 -18.224 -18.218 0.006 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -69.479 -69.473 0.006 30.40 -S(-2) 3.551e-10 - HS- 3.144e-10 2.509e-10 -9.503 -9.601 -0.098 20.81 - H2S 4.071e-11 4.128e-11 -10.390 -10.384 0.006 36.27 - S-2 3.673e-15 1.610e-15 -14.435 -14.793 -0.358 (0) - Fe(HS)2 1.449e-18 1.469e-18 -17.839 -17.833 0.006 (0) - (H2S)2 8.855e-23 8.980e-23 -22.053 -22.047 0.006 30.09 - Fe(HS)3- 4.955e-26 4.013e-26 -25.305 -25.397 -0.092 (0) + O2 0.000e+00 0.000e+00 -69.487 -69.481 0.006 30.40 +S(-2) 3.528e-10 + HS- 3.120e-10 2.493e-10 -9.506 -9.603 -0.097 20.80 + H2S 4.081e-11 4.137e-11 -10.389 -10.383 0.006 36.27 + S-2 3.604e-15 1.586e-15 -14.443 -14.800 -0.356 (0) + Fe(HS)2 1.462e-18 1.482e-18 -17.835 -17.829 0.006 (0) + (H2S)2 8.897e-23 9.020e-23 -22.051 -22.045 0.006 30.09 + Fe(HS)3- 4.963e-26 4.023e-26 -25.304 -25.395 -0.091 (0) S(6) 1.600e-02 - SO4-2 1.121e-02 4.886e-03 -1.950 -2.311 -0.361 15.60 - CaSO4 4.483e-03 4.546e-03 -2.348 -2.342 0.006 7.50 - NaSO4- 3.049e-04 2.282e-04 -3.516 -3.642 -0.126 15.75 - FeSO4 2.244e-08 2.276e-08 -7.649 -7.643 0.006 18.97 - HSO4- 1.104e-08 8.942e-09 -7.957 -8.049 -0.092 40.47 - CaHSO4+ 6.946e-10 5.625e-10 -9.158 -9.250 -0.092 (0) - FeHSO4+ 3.477e-15 2.816e-15 -14.459 -14.550 -0.092 (0) - FeSO4+ 4.399e-23 3.580e-23 -22.357 -22.446 -0.090 (0) - Fe(SO4)2- 4.726e-24 3.827e-24 -23.326 -23.417 -0.092 (0) - FeHSO4+2 4.196e-30 1.804e-30 -29.377 -29.744 -0.367 (0) + SO4-2 1.062e-02 4.647e-03 -1.974 -2.333 -0.359 22.36 + CaSO4 4.337e-03 4.397e-03 -2.363 -2.357 0.006 7.50 + NaSO4- 1.049e-03 8.593e-04 -2.979 -3.066 -0.087 -7.84 + FeSO4 2.181e-08 2.211e-08 -7.661 -7.655 0.006 18.97 + HSO4- 1.058e-08 8.575e-09 -7.976 -8.067 -0.091 40.47 + CaHSO4+ 6.768e-10 5.486e-10 -9.170 -9.261 -0.091 (0) + FeHSO4+ 3.403e-15 2.759e-15 -14.468 -14.559 -0.091 (0) + FeSO4+ 4.287e-23 3.492e-23 -22.368 -22.457 -0.089 (0) + Fe(SO4)2- 4.378e-24 3.549e-24 -23.359 -23.450 -0.091 (0) + FeHSO4+2 4.110e-30 1.775e-30 -29.386 -29.751 -0.365 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.31 -4.59 -4.28 CaSO4 + Anhydrite -0.33 -4.61 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -10.99 -13.79 -2.80 CH4 + CH4(g) -10.98 -13.78 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 - FeS(ppt) -5.54 -9.46 -3.92 FeS - Goethite 0.00 -1.00 -1.00 FeOOH - Gypsum -0.01 -4.59 -4.58 CaSO4:2H2O + FeS(ppt) -5.54 -9.45 -3.92 FeS + Goethite -0.00 -1.00 -1.00 FeOOH + Gypsum -0.03 -4.61 -4.58 CaSO4:2H2O H2(g) -8.35 -11.45 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -9.39 -17.33 -7.94 H2S - Halite -5.41 -3.84 1.57 NaCl + H2S(g) -9.39 -17.32 -7.94 H2S + Halite -5.43 -3.86 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 - Mackinawite -4.81 -9.46 -4.65 FeS - Melanterite -7.69 -9.90 -2.21 FeSO4:7H2O - Mirabilite -4.92 -6.16 -1.24 Na2SO4:10H2O - O2(g) -66.58 -69.47 -2.89 O2 + Mackinawite -4.81 -9.45 -4.65 FeS + Melanterite -7.70 -9.91 -2.21 FeSO4:7H2O + Mirabilite -4.99 -6.23 -1.24 Na2SO4:10H2O + O2(g) -66.59 -69.48 -2.89 O2 Pyrite 0.00 -18.48 -18.48 FeS2 Siderite -2.89 -13.78 -10.89 FeCO3 - Sulfur -6.96 -2.08 4.88 S - Thenardite -5.86 -6.16 -0.30 Na2SO4 + Sulfur -6.97 -2.08 4.88 S + Thenardite -5.92 -6.22 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1029,130 +1030,130 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.003e+01 2.649e-02 -Calcite -0.00 -8.48 -8.48 1.000e+01 9.973e+00 -2.684e-02 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.003e+01 2.650e-02 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.973e+00 -2.683e-02 Goethite -0.00 -1.00 -1.00 1.000e+01 1.001e+01 1.333e-02 -Gypsum 0.00 -4.58 -4.58 0.000e+00 9.631e-03 9.631e-03 -Pyrite 0.00 -18.48 -18.48 1.000e+01 9.987e+00 -1.333e-02 +Gypsum 0.00 -4.58 -4.58 0.000e+00 8.976e-03 8.976e-03 +Pyrite -0.00 -18.48 -18.48 1.000e+01 9.987e+00 -1.333e-02 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.534e-04 3.532e-04 - Ca 1.722e-02 1.721e-02 + C 3.317e-04 3.315e-04 + Ca 1.786e-02 1.786e-02 Cl 2.501e-02 2.500e-02 - Fe 8.704e-08 8.700e-08 + Fe 9.033e-08 9.029e-08 Na 2.501e-02 2.500e-02 - S 1.704e-02 1.704e-02 + S 1.770e-02 1.769e-02 ----------------------------Description of solution---------------------------- - pH = 7.720 Charge balance - pe = -3.567 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 5286 - Density (g/cm³) = 1.00040 - Volume (L) = 1.00294 - Viscosity (mPa s) = 0.90015 + pH = 7.709 Charge balance + pe = -3.556 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 5635 + Density (g/cm³) = 1.00044 + Volume (L) = 1.00301 + Viscosity (mPa s) = 0.90053 Activity of water = 0.999 - Ionic strength (mol/kgw) = 7.428e-02 - Mass of water (kg) = 9.995e-01 - Total alkalinity (eq/kg) = 3.504e-04 - Total CO2 (mol/kg) = 3.534e-04 + Ionic strength (mol/kgw) = 7.442e-02 + Mass of water (kg) = 9.996e-01 + Total alkalinity (eq/kg) = 3.286e-04 + Total CO2 (mol/kg) = 3.317e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = -1.163e-09 + Electrical balance (eq) = -1.182e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 - Total H = 1.109606e+02 - Total O = 5.554932e+01 + Total H = 1.109632e+02 + Total O = 5.555319e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 6.774e-07 5.309e-07 -6.169 -6.275 -0.106 -3.80 - H+ 2.273e-08 1.904e-08 -7.643 -7.720 -0.077 0.00 + OH- 6.607e-07 5.177e-07 -6.180 -6.286 -0.106 -3.80 + H+ 2.331e-08 1.952e-08 -7.632 -7.709 -0.077 0.00 H2O 5.551e+01 9.986e-01 1.744 -0.001 0.000 18.07 C(-4) 1.539e-14 CH4 1.539e-14 1.566e-14 -13.813 -13.805 0.007 35.46 -C(4) 3.534e-04 - HCO3- 3.115e-04 2.510e-04 -3.507 -3.600 -0.094 24.99 - CaHCO3+ 2.112e-05 1.715e-05 -4.675 -4.766 -0.090 9.82 +C(4) 3.317e-04 + HCO3- 3.038e-04 2.448e-04 -3.517 -3.611 -0.094 24.86 CO2 1.064e-05 1.076e-05 -4.973 -4.968 0.005 34.43 + CaHCO3+ 6.550e-06 5.318e-06 -5.184 -5.274 -0.090 122.78 CaCO3 5.469e-06 5.563e-06 -5.262 -5.255 0.007 -14.60 - NaHCO3 3.170e-06 3.297e-06 -5.499 -5.482 0.017 28.00 - CO3-2 1.466e-06 6.184e-07 -5.834 -6.209 -0.375 -3.01 - FeHCO3+ 8.404e-10 6.709e-10 -9.075 -9.173 -0.098 (0) + NaHCO3 3.843e-06 3.977e-06 -5.415 -5.400 0.015 31.73 + CO3-2 1.394e-06 5.880e-07 -5.856 -6.231 -0.375 -2.97 + FeHCO3+ 8.620e-10 6.880e-10 -9.064 -9.162 -0.098 (0) FeCO3 3.897e-10 3.964e-10 -9.409 -9.402 0.007 (0) (CO2)2 2.089e-12 2.125e-12 -11.680 -11.673 0.007 68.87 -Ca 1.722e-02 - Ca+2 1.261e-02 5.355e-03 -1.899 -2.271 -0.372 -17.52 +Ca 1.786e-02 + Ca+2 1.327e-02 5.632e-03 -1.877 -2.249 -0.372 -17.52 CaSO4 4.585e-03 4.664e-03 -2.339 -2.331 0.007 7.50 - CaHCO3+ 2.112e-05 1.715e-05 -4.675 -4.766 -0.090 9.82 + CaHCO3+ 6.550e-06 5.318e-06 -5.184 -5.274 -0.090 122.78 CaCO3 5.469e-06 5.563e-06 -5.262 -5.255 0.007 -14.60 - CaOH+ 5.840e-08 4.662e-08 -7.234 -7.331 -0.098 (0) - CaHSO4+ 7.313e-10 5.837e-10 -9.136 -9.234 -0.098 (0) + CaOH+ 5.990e-08 4.781e-08 -7.223 -7.320 -0.098 (0) + CaHSO4+ 7.500e-10 5.986e-10 -9.125 -9.223 -0.098 (0) Cl 2.501e-02 Cl- 2.501e-02 1.970e-02 -1.602 -1.706 -0.104 18.30 - FeCl+ 9.105e-10 7.268e-10 -9.041 -9.139 -0.098 (0) - HCl 1.201e-10 1.292e-10 -9.920 -9.889 0.032 (0) - FeCl+2 9.970e-25 4.117e-25 -24.001 -24.385 -0.384 (0) - FeCl2+ 4.520e-26 3.623e-26 -25.345 -25.441 -0.096 (0) - FeCl3 7.017e-29 7.139e-29 -28.154 -28.146 0.007 (0) -Fe(2) 8.704e-08 - Fe+2 6.146e-08 2.672e-08 -7.211 -7.573 -0.362 -21.54 + FeCl+ 9.575e-10 7.642e-10 -9.019 -9.117 -0.098 (0) + HCl 1.232e-10 1.325e-10 -9.910 -9.878 0.032 (0) + FeCl+2 1.076e-24 4.440e-25 -23.968 -24.353 -0.384 (0) + FeCl2+ 4.874e-26 3.906e-26 -25.312 -25.408 -0.096 (0) + FeCl3 7.564e-29 7.694e-29 -28.121 -28.114 0.007 (0) +Fe(2) 9.033e-08 + Fe+2 6.467e-08 2.811e-08 -7.189 -7.551 -0.362 -21.54 FeSO4 2.288e-08 2.328e-08 -7.641 -7.633 0.007 18.97 - FeCl+ 9.105e-10 7.268e-10 -9.041 -9.139 -0.098 (0) - FeHCO3+ 8.404e-10 6.709e-10 -9.075 -9.173 -0.098 (0) - FeOH+ 5.530e-10 4.433e-10 -9.257 -9.353 -0.096 (0) + FeCl+ 9.575e-10 7.642e-10 -9.019 -9.117 -0.098 (0) + FeHCO3+ 8.620e-10 6.880e-10 -9.064 -9.162 -0.098 (0) + FeOH+ 5.671e-10 4.546e-10 -9.246 -9.342 -0.096 (0) FeCO3 3.897e-10 3.964e-10 -9.409 -9.402 0.007 (0) Fe(OH)2 1.945e-13 1.979e-13 -12.711 -12.704 0.007 (0) - FeHSO4+ 3.649e-15 2.913e-15 -14.438 -14.536 -0.098 (0) - Fe(OH)3- 4.811e-16 3.857e-16 -15.318 -15.414 -0.096 (0) + FeHSO4+ 3.743e-15 2.987e-15 -14.427 -14.525 -0.098 (0) + Fe(OH)3- 4.692e-16 3.761e-16 -15.329 -15.425 -0.096 (0) Fe(HS)2 1.434e-18 1.458e-18 -17.844 -17.836 0.007 (0) - Fe(HS)3- 4.923e-26 3.930e-26 -25.308 -25.406 -0.098 (0) -Fe(3) 3.372e-14 + Fe(HS)3- 4.801e-26 3.832e-26 -25.319 -25.417 -0.098 (0) +Fe(3) 3.381e-14 Fe(OH)3 2.704e-14 2.751e-14 -13.568 -13.561 0.007 (0) - Fe(OH)2+ 5.051e-15 4.070e-15 -14.297 -14.390 -0.094 (0) - Fe(OH)4- 1.633e-15 1.316e-15 -14.787 -14.881 -0.094 (0) - FeOH+2 5.675e-19 2.344e-19 -18.246 -18.630 -0.384 (0) - FeSO4+ 4.636e-23 3.716e-23 -22.334 -22.430 -0.096 (0) - Fe(SO4)2- 4.988e-24 3.982e-24 -23.302 -23.400 -0.098 (0) - Fe+3 3.411e-24 6.920e-25 -23.467 -24.160 -0.693 (0) - FeCl+2 9.970e-25 4.117e-25 -24.001 -24.385 -0.384 (0) - FeCl2+ 4.520e-26 3.623e-26 -25.345 -25.441 -0.096 (0) - FeCl3 7.017e-29 7.139e-29 -28.154 -28.146 0.007 (0) - FeHSO4+2 4.667e-30 1.895e-30 -29.331 -29.722 -0.391 (0) - Fe2(OH)2+4 5.440e-35 1.478e-36 -34.264 -35.830 -1.566 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -45.454 -47.901 -2.447 (0) + Fe(OH)2+ 5.180e-15 4.174e-15 -14.286 -14.379 -0.094 (0) + Fe(OH)4- 1.592e-15 1.283e-15 -14.798 -14.892 -0.094 (0) + FeOH+2 5.972e-19 2.465e-19 -18.224 -18.608 -0.384 (0) + FeSO4+ 4.755e-23 3.811e-23 -22.323 -22.419 -0.096 (0) + Fe(SO4)2- 4.865e-24 3.883e-24 -23.313 -23.411 -0.098 (0) + Fe+3 3.682e-24 7.463e-25 -23.434 -24.127 -0.693 (0) + FeCl+2 1.076e-24 4.440e-25 -23.968 -24.353 -0.384 (0) + FeCl2+ 4.874e-26 3.906e-26 -25.312 -25.408 -0.096 (0) + FeCl3 7.564e-29 7.694e-29 -28.121 -28.114 0.007 (0) + FeHSO4+2 4.910e-30 1.993e-30 -29.309 -29.701 -0.392 (0) + Fe2(OH)2+4 6.031e-35 1.635e-36 -34.220 -35.786 -1.567 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -45.398 -47.846 -2.448 (0) H(0) 6.862e-12 H2 3.431e-12 3.490e-12 -11.465 -11.457 0.007 28.61 Na 2.501e-02 - Na+ 2.449e-02 1.965e-02 -1.611 -1.707 -0.096 -1.15 - NaSO4- 5.177e-04 3.759e-04 -3.286 -3.425 -0.139 15.93 - NaHCO3 3.170e-06 3.297e-06 -5.499 -5.482 0.017 28.00 - NaOH 1.025e-18 1.043e-18 -17.989 -17.982 0.007 (0) + Na+ 2.325e-02 1.865e-02 -1.633 -1.729 -0.096 -1.15 + NaSO4- 1.753e-03 1.414e-03 -2.756 -2.850 -0.093 -6.75 + NaHCO3 3.843e-06 3.977e-06 -5.415 -5.400 0.015 31.73 + NaOH 9.492e-19 9.656e-19 -18.023 -18.015 0.007 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -69.474 -69.467 0.007 30.40 -S(-2) 3.562e-10 - HS- 3.157e-10 2.474e-10 -9.501 -9.607 -0.106 20.83 +S(-2) 3.484e-10 + HS- 3.079e-10 2.413e-10 -9.512 -9.617 -0.106 20.83 H2S 4.049e-11 4.119e-11 -10.393 -10.385 0.007 36.27 - S-2 3.801e-15 1.570e-15 -14.420 -14.804 -0.384 (0) + S-2 3.617e-15 1.493e-15 -14.442 -14.826 -0.384 (0) Fe(HS)2 1.434e-18 1.458e-18 -17.844 -17.836 0.007 (0) (H2S)2 8.789e-23 8.941e-23 -22.056 -22.049 0.007 30.09 - Fe(HS)3- 4.923e-26 3.930e-26 -25.308 -25.406 -0.098 (0) -S(6) 1.704e-02 - SO4-2 1.194e-02 4.898e-03 -1.923 -2.310 -0.387 15.70 + Fe(HS)3- 4.801e-26 3.832e-26 -25.319 -25.417 -0.098 (0) +S(6) 1.770e-02 + SO4-2 1.136e-02 4.657e-03 -1.945 -2.332 -0.387 23.18 CaSO4 4.585e-03 4.664e-03 -2.339 -2.331 0.007 7.50 - NaSO4- 5.177e-04 3.759e-04 -3.286 -3.425 -0.139 15.93 + NaSO4- 1.753e-03 1.414e-03 -2.756 -2.850 -0.093 -6.75 FeSO4 2.288e-08 2.328e-08 -7.641 -7.633 0.007 18.97 - HSO4- 1.136e-08 9.066e-09 -7.945 -8.043 -0.098 40.50 - CaHSO4+ 7.313e-10 5.837e-10 -9.136 -9.234 -0.098 (0) - FeHSO4+ 3.649e-15 2.913e-15 -14.438 -14.536 -0.098 (0) - FeSO4+ 4.636e-23 3.716e-23 -22.334 -22.430 -0.096 (0) - Fe(SO4)2- 4.988e-24 3.982e-24 -23.302 -23.400 -0.098 (0) - FeHSO4+2 4.667e-30 1.895e-30 -29.331 -29.722 -0.391 (0) + HSO4- 1.108e-08 8.840e-09 -7.956 -8.054 -0.098 40.50 + CaHSO4+ 7.500e-10 5.986e-10 -9.125 -9.223 -0.098 (0) + FeHSO4+ 3.743e-15 2.987e-15 -14.427 -14.525 -0.098 (0) + FeSO4+ 4.755e-23 3.811e-23 -22.323 -22.419 -0.096 (0) + Fe(SO4)2- 4.865e-24 3.883e-24 -23.313 -23.411 -0.098 (0) + FeHSO4+2 4.910e-30 1.993e-30 -29.309 -29.701 -0.392 (0) ------------------------------Saturation indices------------------------------- @@ -1160,7 +1161,7 @@ S(6) 1.704e-02 Anhydrite -0.30 -4.58 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 - Calcite -0.00 -8.48 -8.48 CaCO3 + Calcite 0.00 -8.48 -8.48 CaCO3 CH4(g) -11.00 -13.81 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 @@ -1170,16 +1171,16 @@ S(6) 1.704e-02 H2(g) -8.36 -11.46 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -9.39 -17.33 -7.94 H2S - Halite -4.98 -3.41 1.57 NaCl + Halite -5.00 -3.43 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 Mackinawite -4.81 -9.46 -4.65 FeS Melanterite -7.68 -9.89 -2.21 FeSO4:7H2O - Mirabilite -4.49 -5.73 -1.24 Na2SO4:10H2O + Mirabilite -4.56 -5.80 -1.24 Na2SO4:10H2O O2(g) -66.57 -69.47 -2.89 O2 - Pyrite 0.00 -18.48 -18.48 FeS2 + Pyrite -0.00 -18.48 -18.48 FeS2 Siderite -2.89 -13.78 -10.89 FeCO3 Sulfur -6.96 -2.08 4.88 S - Thenardite -5.42 -5.72 -0.30 Na2SO4 + Thenardite -5.49 -5.79 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/phreeqc3-examples/ex5.sel b/phreeqc3-examples/ex5.sel index 3dff8160..f577caf6 100644 --- a/phreeqc3-examples/ex5.sel +++ b/phreeqc3-examples/ex5.sel @@ -1,8 +1,8 @@ sim state soln dist_x time step pH pe Cl pyrite d_pyrite goethite d_goethite calcite d_calcite CO2(g) d_CO2(g) gypsum d_gypsum si_Gypsum 1 i_soln 1 -99 -99 -99 7 4 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -999.9990 - 1 react 1 -99 0 1 8.27917 -4.94281 0.0000e+00 1.0000e+01 -3.1435e-08 1.0000e+01 1.0959e-08 9.9995e+00 -4.9333e-04 9.9995e+00 -4.8687e-04 0.0000e+00 0.0000e+00 -6.1255 - 1 react 1 -99 0 2 8.17027 -4.28555 5.0000e-04 9.9997e+00 -2.6667e-04 1.0000e+01 2.6666e-04 9.9991e+00 -9.2684e-04 1.0000e+01 1.4257e-04 0.0000e+00 0.0000e+00 -2.0130 - 1 react 1 -99 0 3 7.97956 -3.96634 2.5000e-03 9.9987e+00 -1.3333e-03 1.0001e+01 1.3333e-03 9.9971e+00 -2.9359e-03 1.0002e+01 2.3964e-03 0.0000e+00 0.0000e+00 -1.0495 - 1 react 1 -99 0 4 7.88084 -3.81205 5.0001e-03 9.9973e+00 -2.6667e-03 1.0003e+01 2.6666e-03 9.9944e+00 -5.5578e-03 1.0005e+01 5.1067e-03 0.0000e+00 0.0000e+00 -0.6331 - 1 react 1 -99 0 5 7.72534 -3.57335 1.5001e-02 9.9920e+00 -8.0000e-03 1.0008e+01 7.9999e-03 9.9838e+00 -1.6174e-02 1.0016e+01 1.5823e-02 0.0000e+00 0.0000e+00 -0.0108 - 1 react 1 -99 0 6 7.72035 -3.56679 2.5012e-02 9.9867e+00 -1.3333e-02 1.0013e+01 1.3333e-02 9.9732e+00 -2.6842e-02 1.0026e+01 2.6488e-02 9.6305e-03 9.6305e-03 0.0000 + 1 react 1 -99 0 1 8.27866 -4.94223 0.0000e+00 1.0000e+01 -3.1401e-08 1.0000e+01 1.0888e-08 9.9995e+00 -4.9102e-04 9.9995e+00 -4.8459e-04 0.0000e+00 0.0000e+00 -6.1251 + 1 react 1 -99 0 2 8.16976 -4.28517 5.0000e-04 9.9997e+00 -2.6667e-04 1.0000e+01 2.6666e-04 9.9991e+00 -9.2415e-04 1.0000e+01 1.4524e-04 0.0000e+00 0.0000e+00 -2.0139 + 1 react 1 -99 0 3 7.97867 -3.96612 2.5000e-03 9.9987e+00 -1.3333e-03 1.0001e+01 1.3333e-03 9.9971e+00 -2.9318e-03 1.0002e+01 2.4006e-03 0.0000e+00 0.0000e+00 -1.0546 + 1 react 1 -99 0 4 7.8793 -3.81158 5.0001e-03 9.9973e+00 -2.6667e-03 1.0003e+01 2.6666e-03 9.9944e+00 -5.5524e-03 1.0005e+01 5.1122e-03 0.0000e+00 0.0000e+00 -0.6412 + 1 react 1 -99 0 5 7.72165 -3.57159 1.5001e-02 9.9920e+00 -8.0000e-03 1.0008e+01 7.9999e-03 9.9838e+00 -1.6165e-02 1.0016e+01 1.5831e-02 0.0000e+00 0.0000e+00 -0.0253 + 1 react 1 -99 0 6 7.70941 -3.55585 2.5011e-02 9.9867e+00 -1.3333e-02 1.0013e+01 1.3333e-02 9.9732e+00 -2.6831e-02 1.0026e+01 2.6499e-02 8.9755e-03 8.9755e-03 0.0000 diff --git a/phreeqc3-examples/ex6.out b/phreeqc3-examples/ex6.out index e0190c4d..bdb6ecba 100644 --- a/phreeqc3-examples/ex6.out +++ b/phreeqc3-examples/ex6.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -267,10 +268,10 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Gibbsite -0.00 8.05 8.05 0.000e+00 1.785e-06 1.785e-06 +Gibbsite 0.00 8.05 8.05 0.000e+00 1.785e-06 1.785e-06 K-feldspar -5.86 -4.99 0.88 0.000e+00 0 0.000e+00 K-mica -1.86 11.11 12.97 0.000e+00 0 0.000e+00 -Kaolinite -0.00 5.71 5.71 +Kaolinite 0.00 5.71 5.71 KAlSi3O8 is reactant 1.000e+01 1.000e+01 -2.178e-06 -----------------------------Solution composition------------------------------ @@ -294,7 +295,7 @@ Kaolinite -0.00 5.71 5.71 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 3.359e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.403e-17 + Electrical balance (eq) = -3.402e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 13 Total H = 1.110124e+02 @@ -331,12 +332,12 @@ Si 6.535e-06 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -1.64 -5.20 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 + Gibbsite 0.00 8.05 8.05 Al(OH)3 H2(g) -34.79 -37.89 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -5.86 -4.99 0.88 KAlSi3O8 K-mica -1.86 11.11 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 + Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 O2(g) -13.70 -16.59 -2.89 O2 Quartz -1.21 -5.20 -3.98 SiO2 SiO2(a) -2.48 -5.20 -2.71 SiO2 @@ -386,7 +387,7 @@ Gibbsite -0.73 7.32 8.05 0.000e+00 0 0.000e+00 K-feldspar -2.54 -1.67 0.88 0.000e+00 0 0.000e+00 K-mica 0.00 12.97 12.97 KAlSi3O8 is reactant 1.000e+01 1.000e+01 -2.010e-05 -Kaolinite -0.00 5.71 5.71 0.000e+00 9.760e-06 9.760e-06 +Kaolinite 0.00 5.71 5.71 0.000e+00 9.760e-06 9.760e-06 -----------------------------Solution composition------------------------------ @@ -409,7 +410,7 @@ Kaolinite -0.00 5.71 5.71 0.000e+00 9.760e-06 9.760e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.184e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.047e-17 + Electrical balance (eq) = -2.771e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 15 Total H = 1.110124e+02 @@ -429,12 +430,12 @@ Al 5.799e-07 Al(OH)2+ 1.275e-12 1.268e-12 -11.895 -11.897 -0.002 (0) AlOH+2 1.291e-16 1.265e-16 -15.889 -15.898 -0.009 -27.86 Al+3 1.043e-20 9.949e-21 -19.982 -20.002 -0.020 -42.50 -H(0) 2.557e-38 +H(0) 2.558e-38 H2 1.279e-38 1.279e-38 -37.893 -37.893 0.000 28.61 K 2.010e-05 K+ 2.010e-05 2.000e-05 -4.697 -4.699 -0.002 8.98 -O(0) 5.099e-17 - O2 2.550e-17 2.550e-17 -16.594 -16.594 0.000 30.40 +O(0) 5.097e-17 + O2 2.549e-17 2.549e-17 -16.594 -16.594 0.000 30.40 Si 4.078e-05 H4SiO4 3.428e-05 3.428e-05 -4.465 -4.465 0.000 52.08 H3SiO4- 6.501e-06 6.468e-06 -5.187 -5.189 -0.002 27.95 @@ -451,7 +452,7 @@ Si 4.078e-05 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -2.54 -1.67 0.88 KAlSi3O8 K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 + Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 O2(g) -13.70 -16.59 -2.89 O2 Quartz -0.48 -4.46 -3.98 SiO2 SiO2(a) -1.75 -4.46 -2.71 SiO2 @@ -498,9 +499,9 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -2.00 6.05 8.05 0.000e+00 0 0.000e+00 -K-feldspar 0.00 0.88 0.88 +K-feldspar -0.00 0.87 0.88 KAlSi3O8 is reactant 1.000e+01 1.000e+01 -1.909e-04 -K-mica 0.00 12.97 12.97 0.000e+00 6.362e-05 6.362e-05 +K-mica -0.00 12.97 12.97 0.000e+00 6.362e-05 6.362e-05 Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ @@ -514,7 +515,7 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 9.388 Charge balance - pe = 7.983 Adjusted to redox equilibrium + pe = 7.984 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 14 Density (g/cm³) = 0.99707 Volume (L) = 1.00297 @@ -524,9 +525,9 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.275e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.135e-17 + Electrical balance (eq) = -3.034e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 + Iterations = 15 Total H = 1.110123e+02 Total O = 5.550698e+01 @@ -544,12 +545,12 @@ Al 5.973e-08 Al(OH)2+ 3.600e-14 3.554e-14 -13.444 -13.449 -0.006 (0) AlOH+2 1.954e-18 1.855e-18 -17.709 -17.732 -0.023 -27.83 Al+3 8.576e-23 7.641e-23 -22.067 -22.117 -0.050 -42.44 -H(0) 2.558e-38 - H2 1.279e-38 1.279e-38 -37.893 -37.893 0.000 28.61 +H(0) 2.557e-38 + H2 1.278e-38 1.278e-38 -37.893 -37.893 0.000 28.61 K 1.273e-04 K+ 1.273e-04 1.256e-04 -3.895 -3.901 -0.006 8.99 -O(0) 5.095e-17 - O2 2.547e-17 2.548e-17 -16.594 -16.594 0.000 30.40 +O(0) 5.102e-17 + O2 2.551e-17 2.551e-17 -16.593 -16.593 0.000 30.40 Si 3.819e-04 H4SiO4 2.797e-04 2.797e-04 -3.553 -3.553 0.000 52.08 H3SiO4- 1.021e-04 1.008e-04 -3.991 -3.996 -0.006 27.95 @@ -564,8 +565,8 @@ Si 3.819e-04 Gibbsite -2.00 6.05 8.05 Al(OH)3 H2(g) -34.79 -37.89 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar 0.00 0.88 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-feldspar -0.00 0.87 0.88 KAlSi3O8 + K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.72 4.99 5.71 Al2Si2O5(OH)4 O2(g) -13.70 -16.59 -2.89 O2 Quartz 0.43 -3.55 -3.98 SiO2 @@ -659,8 +660,8 @@ H(0) 2.557e-38 H2 1.279e-38 1.279e-38 -37.893 -37.893 0.000 28.61 K 3.025e-06 K+ 3.025e-06 3.018e-06 -5.519 -5.520 -0.001 8.98 -O(0) 5.100e-17 - O2 2.550e-17 2.550e-17 -16.593 -16.593 0.000 30.40 +O(0) 5.099e-17 + O2 2.550e-17 2.550e-17 -16.594 -16.594 0.000 30.40 Si 6.594e-06 H4SiO4 6.383e-06 6.383e-06 -5.195 -5.195 0.000 52.08 H3SiO4- 2.114e-07 2.110e-07 -6.675 -6.676 -0.001 27.95 @@ -1062,7 +1063,7 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Gibbsite 0.00 8.05 8.05 0.000e+00 1.163e-07 1.163e-07 +Gibbsite -0.00 8.05 8.05 0.000e+00 1.163e-07 1.163e-07 K-feldspar -11.34 -10.47 0.88 0.000e+00 0 0.000e+00 K-mica -7.34 5.63 12.97 0.000e+00 0 0.000e+00 Kaolinite -2.25 3.46 5.71 0.000e+00 0 0.000e+00 @@ -1125,7 +1126,7 @@ Si 4.800e-07 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -2.77 -6.32 -3.55 SiO2 - Gibbsite 0.00 8.05 8.05 Al(OH)3 + Gibbsite -0.00 8.05 8.05 Al(OH)3 H2(g) -12.06 -15.16 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -11.34 -10.47 0.88 KAlSi3O8 @@ -1268,7 +1269,7 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Gibbsite -0.00 8.05 8.05 0.000e+00 5.140e-07 5.140e-07 +Gibbsite 0.00 8.05 8.05 0.000e+00 5.140e-07 5.140e-07 K-feldspar -8.47 -7.59 0.88 0.000e+00 0 0.000e+00 K-mica -4.47 8.50 12.97 0.000e+00 0 0.000e+00 Kaolinite -1.05 4.66 5.71 0.000e+00 0 0.000e+00 @@ -1294,7 +1295,7 @@ Kaolinite -1.05 4.66 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.018e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.816e-15 + Electrical balance (eq) = -3.477e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 10 Total H = 1.110124e+02 @@ -1331,7 +1332,7 @@ Si 1.920e-06 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -2.17 -5.72 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 + Gibbsite 0.00 8.05 8.05 Al(OH)3 H2(g) -11.47 -14.57 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -8.47 -7.59 0.88 KAlSi3O8 @@ -1397,7 +1398,7 @@ Kaolinite -0.67 5.04 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.571e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.305e-17 + Electrical balance (eq) = -3.344e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 11 Total H = 1.110124e+02 @@ -1603,8 +1604,8 @@ Kaolinite -0.00 5.71 5.71 0.000e+00 1.714e-06 1.714e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 5.714e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = -6.910e-17 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Electrical balance (eq) = 2.000e-16 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 12 Total H = 1.110124e+02 Total O = 5.550623e+01 @@ -1706,9 +1707,9 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 3.697e-06 3.697e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 9.817e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = -7.217e-16 + Electrical balance (eq) = -3.042e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 12 + Iterations = 13 Total H = 1.110124e+02 Total O = 5.550625e+01 @@ -1726,12 +1727,12 @@ Al 6.057e-07 Al(OH)2+ 6.137e-12 6.117e-12 -11.212 -11.213 -0.001 (0) AlOH+2 1.327e-15 1.310e-15 -14.877 -14.883 -0.006 -27.86 Al+3 2.280e-19 2.213e-19 -18.642 -18.655 -0.013 -42.51 -H(0) 4.275e-39 - H2 2.137e-39 2.137e-39 -38.670 -38.670 0.000 28.61 +H(0) 4.273e-39 + H2 2.136e-39 2.136e-39 -38.670 -38.670 0.000 28.61 K 8.000e-06 K+ 8.000e-06 7.974e-06 -5.097 -5.098 -0.001 8.98 -O(0) 1.825e-15 - O2 9.126e-16 9.126e-16 -15.040 -15.040 0.000 30.40 +O(0) 1.827e-15 + O2 9.133e-16 9.133e-16 -15.039 -15.039 0.000 30.40 Si 1.661e-05 H4SiO4 1.526e-05 1.526e-05 -4.816 -4.816 0.000 52.08 H3SiO4- 1.345e-06 1.341e-06 -5.871 -5.873 -0.001 27.95 @@ -1786,7 +1787,7 @@ Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -0.64 7.41 8.05 0.000e+00 0 0.000e+00 K-feldspar -2.89 -2.01 0.88 0.000e+00 0 0.000e+00 K-mica -0.17 12.80 12.97 0.000e+00 0 0.000e+00 -Kaolinite 0.00 5.71 5.71 0.000e+00 7.703e-06 7.703e-06 +Kaolinite -0.00 5.71 5.71 0.000e+00 7.703e-06 7.703e-06 -----------------------------Solution composition------------------------------ @@ -1809,9 +1810,9 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 7.703e-06 7.703e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.778e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = -1.356e-16 + Electrical balance (eq) = -3.041e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 + Iterations = 14 Total H = 1.110124e+02 Total O = 5.550628e+01 @@ -1851,7 +1852,7 @@ Si 3.259e-05 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -2.89 -2.01 0.88 KAlSi3O8 K-mica -0.17 12.80 12.97 KAl3Si3O10(OH)2 - Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 + Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 O2(g) -60.56 -63.45 -2.89 O2 Quartz -0.57 -4.55 -3.98 SiO2 SiO2(a) -1.84 -4.55 -2.71 SiO2 @@ -1888,8 +1889,8 @@ Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -0.93 7.12 8.05 0.000e+00 0 0.000e+00 K-feldspar -2.14 -1.26 0.88 0.000e+00 0 0.000e+00 -K-mica -0.00 12.97 12.97 0.000e+00 1.014e-05 1.014e-05 -Kaolinite -0.00 5.71 5.71 0.000e+00 6.295e-07 6.295e-07 +K-mica 0.00 12.97 12.97 0.000e+00 1.014e-05 1.014e-05 +Kaolinite 0.00 5.71 5.71 0.000e+00 6.295e-07 6.295e-07 -----------------------------Solution composition------------------------------ @@ -1912,9 +1913,9 @@ Kaolinite -0.00 5.71 5.71 0.000e+00 6.295e-07 6.295e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.287e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 4.982e-14 + Electrical balance (eq) = 4.087e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 14 + Iterations = 13 Total H = 1.110124e+02 Total O = 5.550635e+01 @@ -1933,10 +1934,10 @@ Al 3.338e-07 AlOH+2 9.565e-17 9.359e-17 -16.019 -16.029 -0.009 -27.86 Al+3 8.407e-21 8.007e-21 -20.075 -20.097 -0.021 -42.50 H(0) 1.177e-38 - H2 5.884e-39 5.884e-39 -38.230 -38.230 0.000 28.61 + H2 5.883e-39 5.884e-39 -38.230 -38.230 0.000 28.61 K 2.186e-05 K+ 2.186e-05 2.175e-05 -4.660 -4.663 -0.002 8.98 -O(0) 2.408e-16 +O(0) 2.409e-16 O2 1.204e-16 1.204e-16 -15.919 -15.919 0.000 30.40 Si 6.433e-05 H4SiO4 5.478e-05 5.478e-05 -4.261 -4.261 0.000 52.08 @@ -1953,8 +1954,8 @@ Si 6.433e-05 H2(g) -35.13 -38.23 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -2.14 -1.26 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 + K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 + Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 O2(g) -13.03 -15.92 -2.89 O2 Quartz -0.28 -4.26 -3.98 SiO2 SiO2(a) -1.55 -4.26 -2.71 SiO2 @@ -1991,7 +1992,7 @@ Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -1.35 6.70 8.05 0.000e+00 0 0.000e+00 K-feldspar -1.30 -0.42 0.88 0.000e+00 0 0.000e+00 -K-mica 0.00 12.97 12.97 0.000e+00 2.127e-05 2.127e-05 +K-mica -0.00 12.97 12.97 0.000e+00 2.127e-05 2.127e-05 Kaolinite -0.29 5.41 5.71 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ @@ -2015,9 +2016,9 @@ Kaolinite -0.29 5.41 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 4.327e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.049e-17 + Electrical balance (eq) = -1.175e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 + Iterations = 13 Total H = 1.110124e+02 Total O = 5.550647e+01 @@ -2035,12 +2036,12 @@ Al 1.804e-07 Al(OH)2+ 2.326e-13 2.308e-13 -12.633 -12.637 -0.003 (0) AlOH+2 1.816e-17 1.762e-17 -16.741 -16.754 -0.013 -27.85 Al+3 1.136e-21 1.062e-21 -20.945 -20.974 -0.029 -42.48 -H(0) 8.193e-39 +H(0) 8.192e-39 H2 4.096e-39 4.096e-39 -38.388 -38.388 0.000 28.61 K 4.273e-05 K+ 4.273e-05 4.240e-05 -4.369 -4.373 -0.003 8.99 -O(0) 4.968e-16 - O2 2.484e-16 2.484e-16 -15.605 -15.605 0.000 30.40 +O(0) 4.970e-16 + O2 2.485e-16 2.485e-16 -15.605 -15.605 0.000 30.40 Si 1.282e-04 H4SiO4 1.027e-04 1.027e-04 -3.989 -3.989 0.000 52.08 H3SiO4- 2.550e-05 2.530e-05 -4.594 -4.597 -0.003 27.95 @@ -2056,7 +2057,7 @@ Si 1.282e-04 H2(g) -35.29 -38.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -1.30 -0.42 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.29 5.41 5.71 Al2Si2O5(OH)4 O2(g) -12.71 -15.60 -2.89 O2 Quartz -0.01 -3.99 -3.98 SiO2 @@ -2094,7 +2095,7 @@ Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -1.62 6.43 8.05 0.000e+00 0 0.000e+00 K-feldspar -0.76 0.11 0.88 0.000e+00 0 0.000e+00 -K-mica 0.00 12.97 12.97 0.000e+00 3.329e-05 3.329e-05 +K-mica -0.00 12.97 12.97 0.000e+00 3.329e-05 3.329e-05 Kaolinite -0.48 5.23 5.71 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ @@ -2118,9 +2119,9 @@ Kaolinite -0.48 5.23 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 6.706e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = -4.146e-13 + Electrical balance (eq) = -2.874e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 + Iterations = 16 Total H = 1.110124e+02 Total O = 5.550662e+01 @@ -2138,7 +2139,7 @@ Al 1.175e-07 Al(OH)2+ 1.049e-13 1.039e-13 -12.979 -12.984 -0.004 (0) AlOH+2 6.853e-18 6.599e-18 -17.164 -17.181 -0.016 -27.84 Al+3 3.599e-22 3.308e-22 -21.444 -21.480 -0.037 -42.47 -H(0) 3.760e-15 +H(0) 3.759e-15 H2 1.880e-15 1.880e-15 -14.726 -14.726 0.000 28.61 K 6.671e-05 K+ 6.671e-05 6.608e-05 -4.176 -4.180 -0.004 8.99 @@ -2159,7 +2160,7 @@ Si 2.001e-04 H2(g) -11.62 -14.73 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -0.76 0.11 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.48 5.23 5.71 Al2Si2O5(OH)4 O2(g) -60.04 -62.93 -2.89 O2 Quartz 0.17 -3.81 -3.98 SiO2 @@ -2196,8 +2197,8 @@ Reaction 1. Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -2.00 6.05 8.05 0.000e+00 0 0.000e+00 -K-feldspar 0.00 0.88 0.88 0.000e+00 9.093e-06 9.093e-06 -K-mica 0.00 12.97 12.97 0.000e+00 6.362e-05 6.362e-05 +K-feldspar -0.00 0.87 0.88 0.000e+00 9.093e-06 9.093e-06 +K-mica -0.00 12.97 12.97 0.000e+00 6.362e-05 6.362e-05 Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ @@ -2221,9 +2222,9 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.275e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.541e-16 + Electrical balance (eq) = 1.578e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 15 + Iterations = 17 Total H = 1.110123e+02 Total O = 5.550698e+01 @@ -2241,12 +2242,12 @@ Al 5.973e-08 Al(OH)2+ 3.600e-14 3.554e-14 -13.444 -13.449 -0.006 (0) AlOH+2 1.954e-18 1.855e-18 -17.709 -17.732 -0.023 -27.83 Al+3 8.576e-23 7.641e-23 -22.067 -22.117 -0.050 -42.44 -H(0) 3.149e-39 +H(0) 3.150e-39 H2 1.575e-39 1.575e-39 -38.803 -38.803 0.000 28.61 K 1.273e-04 K+ 1.273e-04 1.256e-04 -3.895 -3.901 -0.006 8.99 -O(0) 3.362e-15 - O2 1.681e-15 1.681e-15 -14.774 -14.774 0.000 30.40 +O(0) 3.361e-15 + O2 1.680e-15 1.680e-15 -14.775 -14.775 0.000 30.40 Si 3.819e-04 H4SiO4 2.797e-04 2.797e-04 -3.553 -3.553 0.000 52.08 H3SiO4- 1.021e-04 1.008e-04 -3.991 -3.996 -0.006 27.95 @@ -2261,8 +2262,8 @@ Si 3.819e-04 Gibbsite -2.00 6.05 8.05 Al(OH)3 H2(g) -35.70 -38.80 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar 0.00 0.88 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-feldspar -0.00 0.87 0.88 KAlSi3O8 + K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.72 4.99 5.71 Al2Si2O5(OH)4 O2(g) -11.88 -14.77 -2.89 O2 Quartz 0.43 -3.55 -3.98 SiO2 @@ -2678,7 +2679,7 @@ A: Gibbsite 1100 1.4048e-01 3.5642e-01 -6.3763e+00 Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Gibbsite -0.00 8.05 8.05 0.000e+00 9.946e-08 9.946e-08 +Gibbsite 0.00 8.05 8.05 0.000e+00 9.946e-08 9.946e-08 K-mica -7.60 5.37 12.97 0.000e+00 0 0.000e+00 Kaolinite -2.36 3.35 5.71 0.000e+00 0 0.000e+00 @@ -2740,7 +2741,7 @@ Si 4.214e-07 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -2.82 -6.38 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 + Gibbsite 0.00 8.05 8.05 Al(OH)3 H2(g) -35.96 -39.06 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -11.60 -10.72 0.88 KAlSi3O8 @@ -2898,7 +2899,7 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 6.730e-06 6.730e-06 pH = 8.987 Charge balance pe = -3.532 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 3 + Specific Conductance (µS/cm, 25°C) = 2 Density (g/cm³) = 0.99705 Volume (L) = 1.00297 Viscosity (mPa s) = 0.89003 @@ -2988,7 +2989,7 @@ E: Kaolinite -> K-mica 2.6017e+06 3.2848e+01 4.4087e+00 -4.2499e+00 Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -1.76 6.29 8.05 0.000e+00 0 0.000e+00 -K-mica -0.00 12.97 12.97 0.000e+00 4.218e-05 4.218e-05 +K-mica 0.00 12.97 12.97 0.000e+00 4.218e-05 4.218e-05 Kaolinite -0.57 5.14 5.71 6.730e-06 0 -6.730e-06 -----------------------------Solution composition------------------------------ @@ -3002,7 +3003,7 @@ Kaolinite -0.57 5.14 5.71 6.730e-06 0 -6.730e-06 ----------------------------Description of solution---------------------------- pH = 9.338 Charge balance - pe = 9.197 Adjusted to redox equilibrium + pe = -4.301 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 10 Density (g/cm³) = 0.99706 Volume (L) = 1.00297 @@ -3014,7 +3015,7 @@ Kaolinite -0.57 5.14 5.71 6.730e-06 0 -6.730e-06 Temperature (°C) = 25.00 Electrical balance (eq) = -1.219e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 3370 + Iterations = 3497 Total H = 1.110123e+02 Total O = 5.550672e+01 @@ -3032,12 +3033,12 @@ Al 9.244e-08 Al(OH)2+ 7.020e-14 6.946e-14 -13.154 -13.158 -0.005 (0) AlOH+2 4.247e-18 4.070e-18 -17.372 -17.390 -0.018 -27.84 Al+3 2.069e-22 1.882e-22 -21.684 -21.725 -0.041 -42.46 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.221 -40.221 0.000 28.61 +H(0) 1.194e-13 + H2 5.971e-14 5.971e-14 -13.224 -13.224 0.000 28.61 K 8.445e-05 K+ 8.445e-05 8.355e-05 -4.073 -4.078 -0.005 8.99 -O(0) 2.302e-12 - O2 1.151e-12 1.151e-12 -11.939 -11.939 0.000 30.40 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.932 -65.932 0.000 30.40 Si 2.534e-04 H4SiO4 1.913e-04 1.913e-04 -3.718 -3.718 0.000 52.08 H3SiO4- 6.207e-05 6.141e-05 -4.207 -4.212 -0.005 27.95 @@ -3050,12 +3051,12 @@ Si 2.534e-04 Al(OH)3(a) -4.51 6.29 10.80 Al(OH)3 Chalcedony -0.17 -3.72 -3.55 SiO2 Gibbsite -1.76 6.29 8.05 Al(OH)3 - H2(g) -37.12 -40.22 -3.10 H2 + H2(g) -10.12 -13.22 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -0.48 0.39 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.57 5.14 5.71 Al2Si2O5(OH)4 - O2(g) -9.05 -11.94 -2.89 O2 + O2(g) -63.04 -65.93 -2.89 O2 Quartz 0.26 -3.72 -3.98 SiO2 SiO2(a) -1.01 -3.72 -2.71 SiO2 @@ -3094,7 +3095,7 @@ F: K-mica -> K-feldspar 4.7638e+07 1.9074e+02 5.4868e+00 -3.5536e+00 Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -2.00 6.05 8.05 0.000e+00 0 0.000e+00 -K-mica 0.00 12.97 12.97 4.218e-05 6.362e-05 2.144e-05 +K-mica -0.00 12.97 12.97 4.218e-05 6.362e-05 2.144e-05 Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ @@ -3108,7 +3109,7 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 9.388 Charge balance - pe = 9.153 Adjusted to redox equilibrium + pe = -4.487 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 14 Density (g/cm³) = 0.99707 Volume (L) = 1.00297 @@ -3118,7 +3119,7 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.275e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = -1.220e-09 + Electrical balance (eq) = -1.219e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 1790 Total H = 1.110123e+02 @@ -3138,12 +3139,12 @@ Al 5.973e-08 Al(OH)2+ 3.600e-14 3.553e-14 -13.444 -13.449 -0.006 (0) AlOH+2 1.954e-18 1.855e-18 -17.709 -17.732 -0.023 -27.83 Al+3 8.576e-23 7.641e-23 -22.067 -22.117 -0.050 -42.44 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.233 -40.233 0.000 28.61 +H(0) 2.228e-13 + H2 1.114e-13 1.114e-13 -12.953 -12.953 0.000 28.61 K 1.273e-04 K+ 1.273e-04 1.256e-04 -3.895 -3.901 -0.006 8.99 -O(0) 2.435e-12 - O2 1.217e-12 1.218e-12 -11.915 -11.915 0.000 30.40 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -66.474 -66.474 0.000 30.40 Si 3.819e-04 H4SiO4 2.797e-04 2.797e-04 -3.553 -3.553 0.000 52.08 H3SiO4- 1.021e-04 1.008e-04 -3.991 -3.996 -0.006 27.95 @@ -3156,12 +3157,12 @@ Si 3.819e-04 Al(OH)3(a) -4.75 6.05 10.80 Al(OH)3 Chalcedony -0.00 -3.55 -3.55 SiO2 Gibbsite -2.00 6.05 8.05 Al(OH)3 - H2(g) -37.13 -40.23 -3.10 H2 + H2(g) -9.85 -12.95 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -0.00 0.87 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.72 4.99 5.71 Al2Si2O5(OH)4 - O2(g) -9.02 -11.91 -2.89 O2 + O2(g) -63.58 -66.47 -2.89 O2 Quartz 0.43 -3.55 -3.98 SiO2 SiO2(a) -0.84 -3.55 -2.71 SiO2 @@ -3224,7 +3225,7 @@ Initial solution 1. pH = 11.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 289 + Specific Conductance (µS/cm, 25°C) = 288 Density (g/cm³) = 0.99712 Volume (L) = 1.00297 Viscosity (mPa s) = 0.89020 @@ -3298,10 +3299,10 @@ Initial solution 2. pH = 7.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 189 + Specific Conductance (µS/cm, 25°C) = 190 Density (g/cm³) = 0.99712 Volume (L) = 1.00299 - Viscosity (mPa s) = 0.89010 + Viscosity (mPa s) = 0.89011 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.333e-03 Mass of water (kg) = 1.000e+00 @@ -3372,10 +3373,10 @@ Initial solution 3. pH = 7.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 189 + Specific Conductance (µS/cm, 25°C) = 190 Density (g/cm³) = 0.99715 Volume (L) = 1.00302 - Viscosity (mPa s) = 0.89005 + Viscosity (mPa s) = 0.89007 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.333e-03 Mass of water (kg) = 1.000e+00 @@ -3555,7 +3556,7 @@ Initial solution 1. pH = 11.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 280 + Specific Conductance (µS/cm, 25°C) = 279 Density (g/cm³) = 0.99714 Volume (L) = 1.00299 Viscosity (mPa s) = 0.89016 @@ -3629,10 +3630,10 @@ Initial solution 2. pH = 7.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 189 + Specific Conductance (µS/cm, 25°C) = 190 Density (g/cm³) = 0.99715 Volume (L) = 1.00302 - Viscosity (mPa s) = 0.89005 + Viscosity (mPa s) = 0.89007 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.333e-03 Mass of water (kg) = 1.000e+00 @@ -3703,10 +3704,10 @@ Initial solution 3. pH = 7.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 189 + Specific Conductance (µS/cm, 25°C) = 190 Density (g/cm³) = 0.99712 Volume (L) = 1.00299 - Viscosity (mPa s) = 0.89010 + Viscosity (mPa s) = 0.89011 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.333e-03 Mass of water (kg) = 1.000e+00 diff --git a/phreeqc3-examples/ex6A-B.sel b/phreeqc3-examples/ex6A-B.sel index dbbd6029..81e9f18a 100644 --- a/phreeqc3-examples/ex6A-B.sel +++ b/phreeqc3-examples/ex6A-B.sel @@ -1,22 +1,22 @@ sim state soln dist_x time step pH pe la_K+ la_H+ la_H4SiO4 Gibbsite d_Gibbsite Kaolinite d_Kaolinite K-mica d_K-mica K-feldspar d_K-feldspar si_Gibbsite si_Kaolinite si_K-mica si_K-feldspar 1 i_soln 1 -99 -99 -99 6.99738 4 -1.0000e+03 -6.9974e+00 -1.0000e+03 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -999.9990 -999.9990 -999.9990 -999.9990 2 react 1 -99 0 1 7.00369 10.3679 -7.5756e+00 -7.0037e+00 -7.0990e+00 1.0000e+01 -2.6579e-08 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.0000 -3.8080 -10.6919 -14.6949 - 3 react 1 -99 0 1 8.20884 9.16278 -5.6626e+00 -8.2088e+00 -5.1950e+00 1.7849e-06 1.7849e-06 1.0000e+01 -2.1784e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.0000 -0.0000 -1.8618 -5.8648 - 4 react 1 -99 0 1 9.10706 8.26456 -4.6991e+00 -9.1071e+00 -4.4650e+00 0.0000e+00 0.0000e+00 9.7604e-06 9.7604e-06 1.0000e+01 -2.0101e-05 0.0000e+00 0.0000e+00 -0.7300 -0.0000 0.0000 -2.5429 - 5 react 1 -99 0 1 9.38811 7.98342 -3.9009e+00 -9.3881e+00 -3.5533e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.3616e-05 6.3616e-05 9.9998e+00 -1.9091e-04 -2.0015 -0.7195 0.0000 0.0000 - 6 react 1 -99 0 1 8.35063 9.021 -5.5202e+00 -8.3506e+00 -5.1950e+00 1.0000e+01 -3.0245e-06 1.0000e+00 1.2397e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -0.0000 -1.5776 -5.5806 + 3 react 1 -99 0 1 8.20884 9.16277 -5.6626e+00 -8.2088e+00 -5.1950e+00 1.7849e-06 1.7849e-06 1.0000e+01 -2.1784e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 0.0000 -1.8618 -5.8648 + 4 react 1 -99 0 1 9.10706 8.26452 -4.6991e+00 -9.1071e+00 -4.4650e+00 0.0000e+00 0.0000e+00 9.7604e-06 9.7604e-06 1.0000e+01 -2.0101e-05 0.0000e+00 0.0000e+00 -0.7300 0.0000 0.0000 -2.5429 + 5 react 1 -99 0 1 9.38811 7.98357 -3.9009e+00 -9.3881e+00 -3.5533e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.3616e-05 6.3616e-05 9.9998e+00 -1.9091e-04 -2.0015 -0.7195 -0.0000 -0.0000 + 6 react 1 -99 0 1 8.35063 9.02099 -5.5202e+00 -8.3506e+00 -5.1950e+00 1.0000e+01 -3.0245e-06 1.0000e+00 1.2397e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -0.0000 -1.5776 -5.5806 7 react 1 -99 0 1 9.06827 -3.25856 -4.6603e+00 -9.0683e+00 -4.2503e+00 0.0000e+00 0.0000e+00 1.0000e+01 -3.2815e-05 1.0000e+00 1.0830e-05 0.0000e+00 0.0000e+00 -0.9448 0.0000 0.0000 -2.1135 8 react 1 -99 0 1 7.02917 -1.25493 -7.3981e+00 -7.0292e+00 -6.9215e+00 1.1996e-08 1.1996e-08 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -3.4530 -9.9565 -13.9595 8 react 1 -99 0 2 7.10321 11.4626 -7.0971e+00 -7.1032e+00 -6.6206e+00 4.7312e-08 4.7312e-08 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -2.8512 -8.6787 -12.6817 - 8 react 1 -99 0 3 7.2381 -1.23219 -6.7961e+00 -7.2381e+00 -6.3199e+00 1.1631e-07 1.1631e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -2.2497 -7.3406 -11.3436 + 8 react 1 -99 0 3 7.2381 -1.23219 -6.7961e+00 -7.2381e+00 -6.3199e+00 1.1631e-07 1.1631e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.0000 -2.2497 -7.3406 -11.3436 8 react 1 -99 0 4 7.44792 -1.59012 -6.4952e+00 -7.4479e+00 -6.0195e+00 2.5047e-07 2.5047e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -1.6490 -5.9288 -9.9318 - 8 react 1 -99 0 5 7.71092 -2.00241 -6.1942e+00 -7.7109e+00 -5.7200e+00 5.1404e-07 5.1404e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.0000 -1.0500 -4.4663 -8.4693 + 8 react 1 -99 0 5 7.71092 -2.00241 -6.1942e+00 -7.7109e+00 -5.7200e+00 5.1404e-07 5.1404e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -1.0500 -4.4663 -8.4693 8 react 1 -99 0 6 7.89183 9.81356 -6.0005e+00 -7.8918e+00 -5.5278e+00 8.0972e-07 8.0972e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -0.6657 -3.5152 -7.5182 8 react 1 -99 0 7 8.17443 9.60703 -5.6997e+00 -8.1744e+00 -5.2313e+00 1.6364e-06 1.6364e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -0.0727 -2.0422 -6.0452 8 react 1 -99 0 8 8.48037 -2.7668 -5.3990e+00 -8.4804e+00 -5.0859e+00 0.0000e+00 0.0000e+00 1.7143e-06 1.7143e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.1091 -0.0000 -1.3266 -5.1114 - 8 react 1 -99 0 9 8.77515 8.98491 -5.0983e+00 -8.7752e+00 -4.8164e+00 0.0000e+00 0.0000e+00 3.6971e-06 3.6971e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.3786 0.0000 -0.7312 -3.9771 - 8 react 1 -99 0 10 9.03134 -3.37462 -4.7979e+00 -9.0313e+00 -4.5510e+00 0.0000e+00 0.0000e+00 7.7032e-06 7.7032e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.6440 0.0000 -0.1746 -2.8896 - 8 react 1 -99 0 11 9.07064 8.46954 -4.6626e+00 -9.0706e+00 -4.2614e+00 0.0000e+00 0.0000e+00 6.2948e-07 6.2948e-07 1.0136e-05 1.0136e-05 0.0000e+00 0.0000e+00 -0.9336 -0.0000 -0.0000 -2.1358 - 8 react 1 -99 0 12 9.22303 8.39576 -4.3726e+00 -9.2230e+00 -3.9885e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 2.1273e-05 2.1273e-05 0.0000e+00 0.0000e+00 -1.3540 -0.2950 0.0000 -1.2950 - 8 react 1 -99 0 13 9.30283 -3.51489 -4.1800e+00 -9.3028e+00 -3.8123e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3.3294e-05 3.3294e-05 0.0000e+00 0.0000e+00 -1.6210 -0.4766 0.0000 -0.7610 - 8 react 1 -99 0 14 9.38811 8.43829 -3.9009e+00 -9.3881e+00 -3.5533e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.3616e-05 6.3616e-05 9.0932e-06 9.0932e-06 -2.0015 -0.7195 0.0000 0.0000 + 8 react 1 -99 0 9 8.77515 8.985 -5.0983e+00 -8.7752e+00 -4.8164e+00 0.0000e+00 0.0000e+00 3.6971e-06 3.6971e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.3786 0.0000 -0.7312 -3.9771 + 8 react 1 -99 0 10 9.03134 -3.37462 -4.7979e+00 -9.0313e+00 -4.5510e+00 0.0000e+00 0.0000e+00 7.7032e-06 7.7032e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.6440 -0.0000 -0.1746 -2.8896 + 8 react 1 -99 0 11 9.07064 8.46955 -4.6626e+00 -9.0706e+00 -4.2614e+00 0.0000e+00 0.0000e+00 6.2948e-07 6.2948e-07 1.0136e-05 1.0136e-05 0.0000e+00 0.0000e+00 -0.9336 0.0000 0.0000 -2.1358 + 8 react 1 -99 0 12 9.22303 8.3958 -4.3726e+00 -9.2230e+00 -3.9885e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 2.1273e-05 2.1273e-05 0.0000e+00 0.0000e+00 -1.3540 -0.2950 -0.0000 -1.2950 + 8 react 1 -99 0 13 9.30283 -3.51486 -4.1800e+00 -9.3028e+00 -3.8123e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3.3294e-05 3.3294e-05 0.0000e+00 0.0000e+00 -1.6210 -0.4766 -0.0000 -0.7610 + 8 react 1 -99 0 14 9.38811 8.43824 -3.9009e+00 -9.3881e+00 -3.5533e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.3616e-05 6.3616e-05 9.0932e-06 9.0932e-06 -2.0015 -0.7195 -0.0000 -0.0000 diff --git a/phreeqc3-examples/ex7.out b/phreeqc3-examples/ex7.out index 95b95625..0570eece 100644 --- a/phreeqc3-examples/ex7.out +++ b/phreeqc3-examples/ex7.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -127,60 +128,60 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -1.50 -2.97 -1.47 1.000e+01 9.996e+00 -3.568e-03 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.997e+00 -2.502e-03 +CO2(g) -1.50 -2.97 -1.47 1.000e+01 9.996e+00 -3.519e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.998e+00 -2.453e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 6.070e-03 6.070e-03 - Ca 2.502e-03 2.502e-03 + C 5.972e-03 5.972e-03 + Ca 2.453e-03 2.453e-03 ----------------------------Description of solution---------------------------- - pH = 6.971 Charge balance - pe = -1.249 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 453 - Density (g/cm³) = 0.99738 + pH = 6.969 Charge balance + pe = -1.247 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 457 + Density (g/cm³) = 0.99737 Volume (L) = 1.00304 - Viscosity (mPa s) = 0.89254 + Viscosity (mPa s) = 0.89302 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.282e-03 + Ionic strength (mol/kgw) = 7.281e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.004e-03 - Total CO2 (mol/kg) = 6.070e-03 + Total alkalinity (eq/kg) = 4.906e-03 + Total CO2 (mol/kg) = 5.972e-03 Temperature (°C) = 25.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 Total H = 1.110124e+02 - Total O = 5.552086e+01 + Total O = 5.552061e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.158e-07 1.069e-07 -6.936 -6.971 -0.035 0.00 - OH- 1.037e-07 9.466e-08 -6.984 -7.024 -0.040 -4.05 + H+ 1.164e-07 1.075e-07 -6.934 -6.969 -0.035 0.00 + OH- 1.032e-07 9.418e-08 -6.986 -7.026 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 -C(-4) 4.416e-25 - CH4 4.416e-25 4.424e-25 -24.355 -24.354 0.001 35.46 -C(4) 6.070e-03 - HCO3- 4.882e-03 4.475e-03 -2.311 -2.349 -0.038 24.63 +C(-4) 4.428e-25 + CH4 4.428e-25 4.435e-25 -24.354 -24.353 0.001 35.46 +C(4) 5.972e-03 + HCO3- 4.857e-03 4.452e-03 -2.314 -2.351 -0.038 24.63 CO2 1.075e-03 1.076e-03 -2.969 -2.968 0.000 34.43 - CaHCO3+ 1.050e-04 9.632e-05 -3.979 -4.016 -0.037 9.71 + CaHCO3+ 3.189e-05 2.927e-05 -4.496 -4.534 -0.037 122.68 CaCO3 5.554e-06 5.563e-06 -5.255 -5.255 0.001 -14.60 - CO3-2 2.780e-06 1.963e-06 -5.556 -5.707 -0.151 -3.84 + CO3-2 2.752e-06 1.943e-06 -5.560 -5.711 -0.151 -3.73 (CO2)2 2.121e-08 2.125e-08 -7.673 -7.673 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.151 -17.97 - CaHCO3+ 1.050e-04 9.632e-05 -3.979 -4.016 -0.037 9.71 +Ca 2.453e-03 + Ca+2 2.415e-03 1.704e-03 -2.617 -2.768 -0.151 -17.97 + CaHCO3+ 3.189e-05 2.927e-05 -4.496 -4.534 -0.037 122.68 CaCO3 5.554e-06 5.563e-06 -5.255 -5.255 0.001 -14.60 - CaOH+ 2.864e-09 2.618e-09 -8.543 -8.582 -0.039 (0) -H(0) 5.084e-15 - H2 2.542e-15 2.546e-15 -14.595 -14.594 0.001 28.61 + CaOH+ 2.879e-09 2.632e-09 -8.541 -8.580 -0.039 (0) +H(0) 5.087e-15 + H2 2.544e-15 2.548e-15 -14.595 -14.594 0.001 28.61 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -63.193 -63.192 0.001 30.40 @@ -285,64 +286,64 @@ Reaction 1. Elements Molality Moles - C 7.070e-03 7.070e-03 - Ca 2.502e-03 2.502e-03 + C 6.972e-03 6.972e-03 + Ca 2.453e-03 2.453e-03 N 7.000e-05 7.000e-05 ----------------------------Description of solution---------------------------- - pH = 6.832 Charge balance - pe = -3.723 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 456 - Density (g/cm³) = 0.99738 - Volume (L) = 1.00306 - Viscosity (mPa s) = 0.89255 + pH = 6.829 Charge balance + pe = -3.721 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 460 + Density (g/cm³) = 0.99737 + Volume (L) = 1.00307 + Viscosity (mPa s) = 0.89305 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.352e-03 + Ionic strength (mol/kgw) = 7.354e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.073e-03 - Total CO2 (mol/kg) = 6.570e-03 + Total alkalinity (eq/kg) = 4.976e-03 + Total CO2 (mol/kg) = 6.472e-03 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 10 Total H = 1.110146e+02 - Total O = 5.552186e+01 + Total O = 5.552161e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.597e-07 1.474e-07 -6.797 -6.832 -0.035 0.00 - OH- 7.527e-08 6.867e-08 -7.123 -7.163 -0.040 -4.05 + H+ 1.605e-07 1.481e-07 -6.795 -6.829 -0.035 0.00 + OH- 7.491e-08 6.835e-08 -7.125 -7.165 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 5.001e-04 CH4 5.001e-04 5.009e-04 -3.301 -3.300 0.001 35.46 -C(4) 6.570e-03 - HCO3- 4.955e-03 4.540e-03 -2.305 -2.343 -0.038 24.63 +C(4) 6.472e-03 + HCO3- 4.931e-03 4.518e-03 -2.307 -2.345 -0.038 24.63 CO2 1.503e-03 1.504e-03 -2.823 -2.823 0.000 34.43 - CaHCO3+ 1.064e-04 9.758e-05 -3.973 -4.011 -0.037 9.71 - CaCO3 4.082e-06 4.089e-06 -5.389 -5.388 0.001 -14.60 - CO3-2 2.050e-06 1.445e-06 -5.688 -5.840 -0.152 -3.84 + CaHCO3+ 3.232e-05 2.966e-05 -4.490 -4.528 -0.037 122.68 + CaCO3 4.086e-06 4.093e-06 -5.389 -5.388 0.001 -14.60 + CO3-2 2.030e-06 1.431e-06 -5.692 -5.844 -0.152 -3.72 (CO2)2 4.147e-08 4.154e-08 -7.382 -7.382 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.685e-03 -2.621 -2.773 -0.152 -17.97 - CaHCO3+ 1.064e-04 9.758e-05 -3.973 -4.011 -0.037 9.71 - CaCO3 4.082e-06 4.089e-06 -5.389 -5.388 0.001 -14.60 - CaOH+ 2.076e-09 1.897e-09 -8.683 -8.722 -0.039 (0) +Ca 2.453e-03 + Ca+2 2.417e-03 1.702e-03 -2.617 -2.769 -0.152 -17.97 + CaHCO3+ 3.232e-05 2.966e-05 -4.490 -4.528 -0.037 122.68 + CaCO3 4.086e-06 4.093e-06 -5.389 -5.388 0.001 -14.60 + CaOH+ 2.088e-09 1.908e-09 -8.680 -8.720 -0.039 (0) H(0) 8.575e-10 H2 4.288e-10 4.295e-10 -9.368 -9.367 0.001 28.61 -N(-3) 6.986e-05 +N(-3) 6.987e-05 NH4+ 6.962e-05 6.337e-05 -4.157 -4.198 -0.041 (0) - NH3 2.446e-07 2.450e-07 -6.612 -6.611 0.001 (0) -N(0) 1.393e-07 - N2 6.967e-08 6.979e-08 -7.157 -7.156 0.001 29.29 + NH3 2.435e-07 2.439e-07 -6.614 -6.613 0.001 (0) +N(0) 1.380e-07 + N2 6.901e-08 6.913e-08 -7.161 -7.160 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -62.351 -62.391 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -62.355 -62.395 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -84.704 -84.744 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -84.708 -84.748 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.647 -73.646 0.001 30.40 @@ -391,64 +392,64 @@ Reaction 1. Elements Molality Moles - C 8.070e-03 8.070e-03 - Ca 2.502e-03 2.502e-03 + C 7.972e-03 7.972e-03 + Ca 2.453e-03 2.453e-03 N 1.400e-04 1.400e-04 ----------------------------Description of solution---------------------------- - pH = 6.729 Charge balance - pe = -3.644 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 459 - Density (g/cm³) = 0.99738 + pH = 6.727 Charge balance + pe = -3.642 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 463 + Density (g/cm³) = 0.99737 Volume (L) = 1.00310 - Viscosity (mPa s) = 0.89257 + Viscosity (mPa s) = 0.89307 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.421e-03 + Ionic strength (mol/kgw) = 7.425e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.143e-03 - Total CO2 (mol/kg) = 7.070e-03 + Total alkalinity (eq/kg) = 5.046e-03 + Total CO2 (mol/kg) = 6.972e-03 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 15 Total H = 1.110169e+02 - Total O = 5.552286e+01 + Total O = 5.552261e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 2.025e-07 1.868e-07 -6.694 -6.729 -0.035 0.00 - OH- 5.939e-08 5.417e-08 -7.226 -7.266 -0.040 -4.05 + H+ 2.034e-07 1.877e-07 -6.692 -6.727 -0.035 0.00 + OH- 5.913e-08 5.392e-08 -7.228 -7.268 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 1.000e-03 CH4 1.000e-03 1.002e-03 -3.000 -2.999 0.001 35.46 -C(4) 7.070e-03 - HCO3- 5.026e-03 4.603e-03 -2.299 -2.337 -0.038 24.63 +C(4) 6.972e-03 + HCO3- 5.003e-03 4.582e-03 -2.301 -2.339 -0.038 24.63 CO2 1.932e-03 1.934e-03 -2.714 -2.714 0.000 34.43 - CaHCO3+ 1.077e-04 9.878e-05 -3.968 -4.005 -0.038 9.71 - CaCO3 3.260e-06 3.265e-06 -5.487 -5.486 0.001 -14.60 - CO3-2 1.642e-06 1.156e-06 -5.785 -5.937 -0.152 -3.84 + CaHCO3+ 3.275e-05 3.004e-05 -4.485 -4.522 -0.038 122.68 + CaCO3 3.265e-06 3.271e-06 -5.486 -5.485 0.001 -14.60 + CO3-2 1.627e-06 1.145e-06 -5.789 -5.941 -0.152 -3.72 (CO2)2 6.852e-08 6.864e-08 -7.164 -7.163 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.682e-03 -2.621 -2.774 -0.153 -17.97 - CaHCO3+ 1.077e-04 9.878e-05 -3.968 -4.005 -0.038 9.71 - CaCO3 3.260e-06 3.265e-06 -5.487 -5.486 0.001 -14.60 - CaOH+ 1.635e-09 1.494e-09 -8.786 -8.826 -0.039 (0) +Ca 2.453e-03 + Ca+2 2.417e-03 1.700e-03 -2.617 -2.770 -0.153 -17.97 + CaHCO3+ 3.275e-05 3.004e-05 -4.485 -4.522 -0.038 122.68 + CaCO3 3.265e-06 3.271e-06 -5.486 -5.485 0.001 -14.60 + CaOH+ 1.646e-09 1.503e-09 -8.784 -8.823 -0.039 (0) H(0) 9.577e-10 H2 4.789e-10 4.797e-10 -9.320 -9.319 0.001 28.61 N(-3) 1.398e-04 NH4+ 1.394e-04 1.268e-04 -3.856 -3.897 -0.041 (0) - NH3 3.861e-07 3.868e-07 -6.413 -6.413 0.001 (0) -N(0) 2.492e-07 - N2 1.246e-07 1.248e-07 -6.904 -6.904 0.001 29.29 + NH3 3.844e-07 3.850e-07 -6.415 -6.414 0.001 (0) +N(0) 2.470e-07 + N2 1.235e-07 1.237e-07 -6.908 -6.908 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -62.399 -62.440 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -62.403 -62.444 -0.041 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -84.800 -84.841 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -84.804 -84.845 -0.041 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.743 -73.742 0.001 30.40 @@ -456,13 +457,13 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.38 -8.71 -8.34 CaCO3 + Aragonite -0.37 -8.71 -8.34 CaCO3 Calcite -0.23 -8.71 -8.48 CaCO3 CH4(g) -0.20 -3.00 -2.80 CH4 CO2(g) -1.25 -2.71 -1.47 CO2 H2(g) -6.22 -9.32 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.73 -6.90 -3.18 N2 + N2(g) -3.73 -6.91 -3.18 N2 NH3(g) -8.18 -6.41 1.77 NH3 O2(g) -70.85 -73.74 -2.89 O2 @@ -497,64 +498,64 @@ Reaction 1. Elements Molality Moles - C 9.070e-03 9.070e-03 - Ca 2.502e-03 2.502e-03 + C 8.972e-03 8.972e-03 + Ca 2.453e-03 2.453e-03 N 2.100e-04 2.100e-04 ----------------------------Description of solution---------------------------- - pH = 6.647 Charge balance - pe = -3.574 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 462 - Density (g/cm³) = 0.99738 + pH = 6.645 Charge balance + pe = -3.572 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 465 + Density (g/cm³) = 0.99737 Volume (L) = 1.00313 - Viscosity (mPa s) = 0.89258 + Viscosity (mPa s) = 0.89310 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.490e-03 + Ionic strength (mol/kgw) = 7.495e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.213e-03 - Total CO2 (mol/kg) = 7.570e-03 + Total alkalinity (eq/kg) = 5.116e-03 + Total CO2 (mol/kg) = 7.472e-03 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 14 + Iterations = 15 Total H = 1.110191e+02 - Total O = 5.552386e+01 + Total O = 5.552361e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 2.443e-07 2.253e-07 -6.612 -6.647 -0.035 0.00 - OH- 4.927e-08 4.492e-08 -7.307 -7.348 -0.040 -4.05 + H+ 2.453e-07 2.263e-07 -6.610 -6.645 -0.035 0.00 + OH- 4.906e-08 4.473e-08 -7.309 -7.349 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 1.500e-03 CH4 1.500e-03 1.503e-03 -2.824 -2.823 0.001 35.46 -C(4) 7.570e-03 - HCO3- 5.096e-03 4.666e-03 -2.293 -2.331 -0.038 24.63 +C(4) 7.472e-03 + HCO3- 5.074e-03 4.646e-03 -2.295 -2.333 -0.038 24.63 CO2 2.361e-03 2.364e-03 -2.627 -2.626 0.000 34.43 - CaHCO3+ 1.090e-04 9.995e-05 -3.963 -4.000 -0.038 9.71 - CaCO3 2.735e-06 2.740e-06 -5.563 -5.562 0.001 -14.60 - CO3-2 1.382e-06 9.714e-07 -5.860 -6.013 -0.153 -3.84 + CaHCO3+ 3.317e-05 3.041e-05 -4.479 -4.517 -0.038 122.68 + CaCO3 2.742e-06 2.747e-06 -5.562 -5.561 0.001 -14.60 + CO3-2 1.370e-06 9.631e-07 -5.863 -6.016 -0.153 -3.72 (CO2)2 1.024e-07 1.025e-07 -6.990 -6.989 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.390e-03 1.679e-03 -2.622 -2.775 -0.153 -17.97 - CaHCO3+ 1.090e-04 9.995e-05 -3.963 -4.000 -0.038 9.71 - CaCO3 2.735e-06 2.740e-06 -5.563 -5.562 0.001 -14.60 - CaOH+ 1.354e-09 1.237e-09 -8.868 -8.908 -0.039 (0) +Ca 2.453e-03 + Ca+2 2.417e-03 1.698e-03 -2.617 -2.770 -0.153 -17.97 + CaHCO3+ 3.317e-05 3.041e-05 -4.479 -4.517 -0.038 122.68 + CaCO3 2.742e-06 2.747e-06 -5.562 -5.561 0.001 -14.60 + CaOH+ 1.364e-09 1.245e-09 -8.865 -8.905 -0.039 (0) H(0) 1.008e-09 H2 5.040e-10 5.049e-10 -9.298 -9.297 0.001 28.61 N(-3) 2.097e-04 NH4+ 2.092e-04 1.903e-04 -3.679 -3.721 -0.041 (0) - NH3 4.805e-07 4.813e-07 -6.318 -6.318 0.001 (0) -N(0) 3.310e-07 - N2 1.655e-07 1.658e-07 -6.781 -6.781 0.001 29.29 + NH3 4.784e-07 4.792e-07 -6.320 -6.319 0.001 (0) +N(0) 3.281e-07 + N2 1.640e-07 1.643e-07 -6.785 -6.784 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -62.452 -62.493 -0.041 25.02 + NO2- 0.000e+00 0.000e+00 -62.456 -62.497 -0.041 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -84.876 -84.916 -0.041 29.54 + NO3- 0.000e+00 0.000e+00 -84.879 -84.920 -0.041 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.787 -73.787 0.001 30.40 @@ -568,7 +569,7 @@ O(0) 0.000e+00 CO2(g) -1.16 -2.63 -1.47 CO2 H2(g) -6.20 -9.30 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.60 -6.78 -3.18 N2 + N2(g) -3.61 -6.78 -3.18 N2 NH3(g) -8.09 -6.32 1.77 NH3 O2(g) -70.89 -73.79 -2.89 O2 @@ -611,70 +612,70 @@ Component log P P phi Initial Final Delta CH4(g) -0.01 9.866e-01 0.998 0.000e+00 4.502e-04 4.502e-04 CO2(g) -1.09 8.149e-02 0.994 0.000e+00 3.719e-05 3.719e-05 H2O(g) -1.50 3.157e-02 0.995 0.000e+00 1.441e-05 1.441e-05 -N2(g) -3.44 3.640e-04 1.000 0.000e+00 1.661e-07 1.661e-07 +N2(g) -3.44 3.610e-04 1.000 0.000e+00 1.647e-07 1.647e-07 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 9.583e-03 9.582e-03 - Ca 2.502e-03 2.502e-03 + C 9.485e-03 9.485e-03 + Ca 2.453e-03 2.453e-03 N 2.797e-04 2.797e-04 ----------------------------Description of solution---------------------------- - pH = 6.586 Charge balance - pe = -3.506 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 465 - Density (g/cm³) = 0.99739 + pH = 6.584 Charge balance + pe = -3.504 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 468 + Density (g/cm³) = 0.99738 Volume (L) = 1.00315 - Viscosity (mPa s) = 0.89260 + Viscosity (mPa s) = 0.89313 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.558e-03 - Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 5.283e-03 - Total CO2 (mol/kg) = 8.033e-03 + Ionic strength (mol/kgw) = 7.565e-03 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 5.185e-03 + Total CO2 (mol/kg) = 7.935e-03 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 20 Total H = 1.110194e+02 - Total O = 5.552477e+01 + Total O = 5.552452e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 2.813e-07 2.593e-07 -6.551 -6.586 -0.035 0.00 - OH- 4.282e-08 3.903e-08 -7.368 -7.409 -0.040 -4.05 + H+ 2.824e-07 2.604e-07 -6.549 -6.584 -0.035 0.00 + OH- 4.265e-08 3.887e-08 -7.370 -7.410 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 1.550e-03 CH4 1.550e-03 1.553e-03 -2.810 -2.809 0.001 35.46 -C(4) 8.033e-03 - HCO3- 5.165e-03 4.728e-03 -2.287 -2.325 -0.038 24.63 +C(4) 7.935e-03 + HCO3- 5.144e-03 4.708e-03 -2.289 -2.327 -0.038 24.63 CO2 2.753e-03 2.757e-03 -2.560 -2.560 0.000 34.43 - CaHCO3+ 1.103e-04 1.011e-04 -3.957 -3.995 -0.038 9.72 - CaCO3 2.403e-06 2.408e-06 -5.619 -5.618 0.001 -14.60 - CO3-2 1.218e-06 8.551e-07 -5.914 -6.068 -0.154 -3.83 + CaHCO3+ 3.358e-05 3.077e-05 -4.474 -4.512 -0.038 122.68 + CaCO3 2.411e-06 2.415e-06 -5.618 -5.617 0.001 -14.60 + CO3-2 1.208e-06 8.481e-07 -5.918 -6.072 -0.154 -3.72 (CO2)2 1.392e-07 1.395e-07 -6.856 -6.855 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.389e-03 1.676e-03 -2.622 -2.776 -0.154 -17.96 - CaHCO3+ 1.103e-04 1.011e-04 -3.957 -3.995 -0.038 9.72 - CaCO3 2.403e-06 2.408e-06 -5.619 -5.618 0.001 -14.60 - CaOH+ 1.175e-09 1.072e-09 -8.930 -8.970 -0.040 (0) +Ca 2.453e-03 + Ca+2 2.417e-03 1.695e-03 -2.617 -2.771 -0.154 -17.96 + CaHCO3+ 3.358e-05 3.077e-05 -4.474 -4.512 -0.038 122.68 + CaCO3 2.411e-06 2.415e-06 -5.618 -5.617 0.001 -14.60 + CaOH+ 1.184e-09 1.080e-09 -8.927 -8.966 -0.040 (0) H(0) 9.779e-10 H2 4.890e-10 4.898e-10 -9.311 -9.310 0.001 28.61 N(-3) 2.792e-04 - NH4+ 2.786e-04 2.533e-04 -3.555 -3.596 -0.041 (0) - NH3 5.557e-07 5.567e-07 -6.255 -6.254 0.001 (0) -N(0) 4.849e-07 - N2 2.424e-07 2.429e-07 -6.615 -6.615 0.001 29.29 + NH4+ 2.787e-04 2.533e-04 -3.555 -3.596 -0.041 (0) + NH3 5.534e-07 5.544e-07 -6.257 -6.256 0.001 (0) +N(0) 4.809e-07 + N2 2.404e-07 2.409e-07 -6.619 -6.618 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -62.411 -62.451 -0.041 25.02 + NO2- 0.000e+00 0.000e+00 -62.414 -62.455 -0.041 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -84.821 -84.862 -0.041 29.54 + NO3- 0.000e+00 0.000e+00 -84.824 -84.865 -0.041 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.761 -73.760 0.001 30.40 @@ -688,8 +689,8 @@ O(0) 0.000e+00 CO2(g) -1.09 -2.56 -1.47 CO2 Pressure 0.1 atm, phi 0.994 H2(g) -6.21 -9.31 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.995 - N2(g) -3.44 -6.61 -3.18 N2 Pressure 0.0 atm, phi 1.000 - NH3(g) -8.02 -6.25 1.77 NH3 + N2(g) -3.44 -6.62 -3.18 N2 Pressure 0.0 atm, phi 1.000 + NH3(g) -8.03 -6.26 1.77 NH3 O2(g) -70.87 -73.76 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -729,72 +730,72 @@ Total pressure: 1.10 atmospheres (Peng-Robinson calculation) Component log P P phi Initial Final Delta CH4(g) -0.03 9.437e-01 0.998 0.000e+00 2.520e-03 2.520e-03 -CO2(g) -0.91 1.238e-01 0.994 0.000e+00 3.306e-04 3.306e-04 +CO2(g) -0.91 1.238e-01 0.994 0.000e+00 3.305e-04 3.305e-04 H2O(g) -1.50 3.158e-02 0.995 0.000e+00 8.432e-05 8.432e-05 -N2(g) -3.01 9.676e-04 1.000 0.000e+00 2.584e-06 2.584e-06 +N2(g) -3.02 9.612e-04 1.000 0.000e+00 2.567e-06 2.567e-06 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.122e-02 1.122e-02 - Ca 2.502e-03 2.502e-03 - N 5.549e-04 5.548e-04 + C 1.112e-02 1.112e-02 + Ca 2.453e-03 2.453e-03 + N 5.549e-04 5.549e-04 ----------------------------Description of solution---------------------------- - pH = 6.426 Charge balance - pe = -3.321 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 475 - Density (g/cm³) = 0.99742 - Volume (L) = 1.00319 - Viscosity (mPa s) = 0.89266 + pH = 6.425 Charge balance + pe = -3.320 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 479 + Density (g/cm³) = 0.99741 + Volume (L) = 1.00320 + Viscosity (mPa s) = 0.89323 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.824e-03 + Ionic strength (mol/kgw) = 7.837e-03 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 5.557e-03 - Total CO2 (mol/kg) = 9.737e-03 + Total alkalinity (eq/kg) = 5.460e-03 + Total CO2 (mol/kg) = 9.640e-03 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 21 Total H = 1.110199e+02 - Total O = 5.552811e+01 + Total O = 5.552787e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 4.069e-07 3.747e-07 -6.391 -6.426 -0.036 0.00 - OH- 2.968e-08 2.701e-08 -7.528 -7.569 -0.041 -4.05 + H+ 4.083e-07 3.760e-07 -6.389 -6.425 -0.036 0.00 + OH- 2.958e-08 2.692e-08 -7.529 -7.570 -0.041 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 1.483e-03 CH4 1.483e-03 1.485e-03 -2.829 -2.828 0.001 35.46 -C(4) 9.737e-03 - HCO3- 5.436e-03 4.969e-03 -2.265 -2.304 -0.039 24.63 +C(4) 9.640e-03 + HCO3- 5.419e-03 4.953e-03 -2.266 -2.305 -0.039 24.64 CO2 4.182e-03 4.187e-03 -2.379 -2.378 0.001 34.43 - CaHCO3+ 1.153e-04 1.055e-04 -3.938 -3.977 -0.038 9.72 - CaCO3 1.736e-06 1.739e-06 -5.761 -5.760 0.001 -14.60 - CO3-2 8.908e-07 6.220e-07 -6.050 -6.206 -0.156 -3.83 + CaHCO3+ 3.516e-05 3.219e-05 -4.454 -4.492 -0.038 122.68 + CaCO3 1.746e-06 1.749e-06 -5.758 -5.757 0.001 -14.60 + CO3-2 8.851e-07 6.179e-07 -6.053 -6.209 -0.156 -3.71 (CO2)2 3.213e-07 3.218e-07 -6.493 -6.492 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.385e-03 1.664e-03 -2.623 -2.779 -0.156 -17.96 - CaHCO3+ 1.153e-04 1.055e-04 -3.938 -3.977 -0.038 9.72 - CaCO3 1.736e-06 1.739e-06 -5.761 -5.760 0.001 -14.60 - CaOH+ 8.084e-10 7.368e-10 -9.092 -9.133 -0.040 (0) +Ca 2.453e-03 + Ca+2 2.416e-03 1.685e-03 -2.617 -2.773 -0.156 -17.96 + CaHCO3+ 3.516e-05 3.219e-05 -4.454 -4.492 -0.038 122.68 + CaCO3 1.746e-06 1.749e-06 -5.758 -5.757 0.001 -14.60 + CaOH+ 8.161e-10 7.438e-10 -9.088 -9.129 -0.040 (0) H(0) 8.711e-10 H2 4.355e-10 4.363e-10 -9.361 -9.360 0.001 28.61 N(-3) 5.536e-04 - NH4+ 5.528e-04 5.018e-04 -3.257 -3.299 -0.042 (0) - NH3 7.617e-07 7.631e-07 -6.118 -6.117 0.001 (0) -N(0) 1.289e-06 - N2 6.444e-07 6.456e-07 -6.191 -6.190 0.001 29.29 + NH4+ 5.529e-04 5.018e-04 -3.257 -3.299 -0.042 (0) + NH3 7.592e-07 7.606e-07 -6.120 -6.119 0.001 (0) +N(0) 1.280e-06 + N2 6.402e-07 6.413e-07 -6.194 -6.193 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -62.282 -62.324 -0.041 25.02 + NO2- 0.000e+00 0.000e+00 -62.285 -62.327 -0.042 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -84.642 -84.684 -0.041 29.54 + NO3- 0.000e+00 0.000e+00 -84.645 -84.687 -0.042 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.661 -73.660 0.001 30.40 @@ -802,13 +803,13 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.65 -8.99 -8.34 CaCO3 - Calcite -0.51 -8.99 -8.48 CaCO3 + Aragonite -0.65 -8.98 -8.34 CaCO3 + Calcite -0.50 -8.98 -8.48 CaCO3 CH4(g) -0.03 -2.83 -2.80 CH4 Pressure 0.9 atm, phi 0.998 CO2(g) -0.91 -2.38 -1.47 CO2 Pressure 0.1 atm, phi 0.994 H2(g) -6.26 -9.36 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.995 - N2(g) -3.01 -6.19 -3.18 N2 Pressure 0.0 atm, phi 1.000 + N2(g) -3.02 -6.19 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -7.89 -6.12 1.77 NH3 O2(g) -70.77 -73.66 -2.89 O2 @@ -851,70 +852,70 @@ Component log P P phi Initial Final Delta CH4(g) -0.06 8.731e-01 0.998 0.000e+00 6.645e-03 6.645e-03 CO2(g) -0.72 1.927e-01 0.994 0.000e+00 1.466e-03 1.466e-03 H2O(g) -1.50 3.159e-02 0.994 0.000e+00 2.404e-04 2.404e-04 -N2(g) -2.58 2.647e-03 1.000 0.000e+00 2.014e-05 2.014e-05 +N2(g) -2.58 2.636e-03 1.000 0.000e+00 2.006e-05 2.006e-05 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.396e-02 1.396e-02 - Ca 2.502e-03 2.502e-03 + C 1.386e-02 1.386e-02 + Ca 2.453e-03 2.453e-03 N 1.080e-03 1.080e-03 ----------------------------Description of solution---------------------------- pH = 6.272 Charge balance - pe = -3.139 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 496 - Density (g/cm³) = 0.99747 + pe = -3.138 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 499 + Density (g/cm³) = 0.99746 Volume (L) = 1.00327 - Viscosity (mPa s) = 0.89277 + Viscosity (mPa s) = 0.89344 Activity of water = 1.000 - Ionic strength (mol/kgw) = 8.329e-03 + Ionic strength (mol/kgw) = 8.355e-03 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 6.080e-03 - Total CO2 (mol/kg) = 1.259e-02 + Total alkalinity (eq/kg) = 5.982e-03 + Total CO2 (mol/kg) = 1.249e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 + Iterations = 22 Total H = 1.110207e+02 - Total O = 5.553368e+01 + Total O = 5.553344e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.811e-07 5.340e-07 -6.236 -6.272 -0.037 0.00 - OH- 2.088e-08 1.895e-08 -7.680 -7.722 -0.042 -4.04 + H+ 5.823e-07 5.351e-07 -6.235 -6.272 -0.037 0.00 + OH- 2.084e-08 1.891e-08 -7.681 -7.723 -0.042 -4.04 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.07 C(-4) 1.372e-03 CH4 1.372e-03 1.374e-03 -2.863 -2.862 0.001 35.46 -C(4) 1.259e-02 +C(4) 1.249e-02 CO2 6.509e-03 6.517e-03 -2.187 -2.186 0.001 34.43 - HCO3- 5.951e-03 5.427e-03 -2.225 -2.265 -0.040 24.64 - CaHCO3+ 1.245e-04 1.137e-04 -3.905 -3.944 -0.039 9.72 - CaCO3 1.312e-06 1.314e-06 -5.882 -5.881 0.001 -14.60 + HCO3- 5.940e-03 5.416e-03 -2.226 -2.266 -0.040 24.64 + CaHCO3+ 3.812e-05 3.480e-05 -4.419 -4.458 -0.040 122.68 + CaCO3 1.327e-06 1.329e-06 -5.877 -5.876 0.001 -14.60 (CO2)2 7.781e-07 7.796e-07 -6.109 -6.108 0.001 68.87 - CO3-2 6.893e-07 4.766e-07 -6.162 -6.322 -0.160 -3.82 -Ca 2.502e-03 - Ca+2 2.376e-03 1.642e-03 -2.624 -2.785 -0.161 -17.95 - CaHCO3+ 1.245e-04 1.137e-04 -3.905 -3.944 -0.039 9.72 - CaCO3 1.312e-06 1.314e-06 -5.882 -5.881 0.001 -14.60 - CaOH+ 5.610e-10 5.100e-10 -9.251 -9.292 -0.041 (0) + CO3-2 6.869e-07 4.747e-07 -6.163 -6.324 -0.160 -3.70 +Ca 2.453e-03 + Ca+2 2.414e-03 1.667e-03 -2.617 -2.778 -0.161 -17.95 + CaHCO3+ 3.812e-05 3.480e-05 -4.419 -4.458 -0.040 122.68 + CaCO3 1.327e-06 1.329e-06 -5.877 -5.876 0.001 -14.60 + CaOH+ 5.685e-10 5.168e-10 -9.245 -9.287 -0.041 (0) H(0) 7.648e-10 H2 3.824e-10 3.831e-10 -9.417 -9.417 0.001 28.61 N(-3) 1.076e-03 - NH4+ 1.075e-03 9.732e-04 -2.969 -3.012 -0.043 (0) - NH3 1.036e-06 1.038e-06 -5.984 -5.984 0.001 (0) -N(0) 3.525e-06 - N2 1.763e-06 1.766e-06 -5.754 -5.753 0.001 29.29 + NH4+ 1.075e-03 9.732e-04 -2.968 -3.012 -0.043 (0) + NH3 1.034e-06 1.036e-06 -5.985 -5.984 0.001 (0) +N(0) 3.511e-06 + N2 1.756e-06 1.759e-06 -5.756 -5.755 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -62.132 -62.174 -0.043 25.02 + NO2- 0.000e+00 0.000e+00 -62.133 -62.176 -0.043 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -84.435 -84.478 -0.043 29.55 + NO3- 0.000e+00 0.000e+00 -84.437 -84.480 -0.043 29.55 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.548 -73.547 0.001 30.40 @@ -922,8 +923,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.77 -9.11 -8.34 CaCO3 - Calcite -0.63 -9.11 -8.48 CaCO3 + Aragonite -0.77 -9.10 -8.34 CaCO3 + Calcite -0.62 -9.10 -8.48 CaCO3 CH4(g) -0.06 -2.86 -2.80 CH4 Pressure 0.9 atm, phi 0.998 CO2(g) -0.72 -2.19 -1.47 CO2 Pressure 0.2 atm, phi 0.994 H2(g) -6.32 -9.42 -3.10 H2 @@ -971,70 +972,70 @@ Component log P P phi Initial Final Delta CH4(g) -0.11 7.773e-01 0.998 0.000e+00 1.489e-02 1.489e-02 CO2(g) -0.55 2.836e-01 0.994 0.000e+00 5.433e-03 5.433e-03 H2O(g) -1.50 3.161e-02 0.994 0.000e+00 6.054e-04 6.054e-04 -N2(g) -2.13 7.474e-03 1.000 0.000e+00 1.432e-04 1.432e-04 +N2(g) -2.13 7.467e-03 1.000 0.000e+00 1.430e-04 1.430e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.775e-02 1.775e-02 - Ca 2.502e-03 2.502e-03 + C 1.765e-02 1.765e-02 + Ca 2.453e-03 2.453e-03 N 1.954e-03 1.954e-03 ----------------------------Description of solution---------------------------- pH = 6.161 Charge balance pe = -3.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 531 - Density (g/cm³) = 0.99755 - Volume (L) = 1.00337 - Viscosity (mPa s) = 0.89296 + Specific Conductance (µS/cm, 25°C) = 532 + Density (g/cm³) = 0.99754 + Volume (L) = 1.00338 + Viscosity (mPa s) = 0.89377 Activity of water = 1.000 - Ionic strength (mol/kgw) = 9.168e-03 + Ionic strength (mol/kgw) = 9.214e-03 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 6.948e-03 - Total CO2 (mol/kg) = 1.653e-02 + Total alkalinity (eq/kg) = 6.850e-03 + Total CO2 (mol/kg) = 1.643e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 22 Total H = 1.110224e+02 - Total O = 5.554139e+01 + Total O = 5.554114e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.533e-07 6.901e-07 -6.123 -6.161 -0.038 0.00 - OH- 1.623e-08 1.466e-08 -7.790 -7.834 -0.044 -4.04 + H+ 7.537e-07 6.903e-07 -6.123 -6.161 -0.038 0.00 + OH- 1.622e-08 1.466e-08 -7.790 -7.834 -0.044 -4.04 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.07 C(-4) 1.221e-03 CH4 1.221e-03 1.224e-03 -2.913 -2.912 0.001 35.46 -C(4) 1.653e-02 +C(4) 1.643e-02 CO2 9.579e-03 9.592e-03 -2.019 -2.018 0.001 34.43 - HCO3- 6.804e-03 6.181e-03 -2.167 -2.209 -0.042 24.64 - CaHCO3+ 1.393e-04 1.267e-04 -3.856 -3.897 -0.041 9.72 + HCO3- 6.803e-03 6.178e-03 -2.167 -2.209 -0.042 24.64 + CaHCO3+ 4.289e-05 3.901e-05 -4.368 -4.409 -0.041 122.69 (CO2)2 1.685e-06 1.689e-06 -5.773 -5.772 0.001 68.87 - CaCO3 1.131e-06 1.134e-06 -5.946 -5.946 0.001 -14.60 - CO3-2 6.170e-07 4.201e-07 -6.210 -6.377 -0.167 -3.80 -Ca 2.502e-03 - Ca+2 2.361e-03 1.607e-03 -2.627 -2.794 -0.167 -17.94 - CaHCO3+ 1.393e-04 1.267e-04 -3.856 -3.897 -0.041 9.72 - CaCO3 1.131e-06 1.134e-06 -5.946 -5.946 0.001 -14.60 - CaOH+ 4.266e-10 3.862e-10 -9.370 -9.413 -0.043 (0) + CaCO3 1.152e-06 1.155e-06 -5.938 -5.938 0.001 -14.60 + CO3-2 6.171e-07 4.198e-07 -6.210 -6.377 -0.167 -3.68 +Ca 2.453e-03 + Ca+2 2.409e-03 1.638e-03 -2.618 -2.786 -0.168 -17.94 + CaHCO3+ 4.289e-05 3.901e-05 -4.368 -4.409 -0.041 122.69 + CaCO3 1.152e-06 1.155e-06 -5.938 -5.938 0.001 -14.60 + CaOH+ 4.347e-10 3.935e-10 -9.362 -9.405 -0.043 (0) H(0) 6.743e-10 H2 3.372e-10 3.379e-10 -9.472 -9.471 0.001 28.61 N(-3) 1.944e-03 - NH4+ 1.942e-03 1.750e-03 -2.712 -2.757 -0.045 (0) + NH4+ 1.943e-03 1.750e-03 -2.712 -2.757 -0.045 (0) NH3 1.442e-06 1.445e-06 -5.841 -5.840 0.001 (0) -N(0) 9.954e-06 - N2 4.977e-06 4.988e-06 -5.303 -5.302 0.001 29.29 +N(0) 9.945e-06 + N2 4.972e-06 4.983e-06 -5.303 -5.303 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.934 -61.978 -0.045 25.03 + NO2- 0.000e+00 0.000e+00 -61.934 -61.979 -0.045 25.03 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -84.183 -84.227 -0.045 29.55 + NO3- 0.000e+00 0.000e+00 -84.183 -84.228 -0.045 29.55 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.439 -73.438 0.001 30.40 @@ -1042,8 +1043,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.83 -9.17 -8.34 CaCO3 - Calcite -0.69 -9.17 -8.48 CaCO3 + Aragonite -0.83 -9.16 -8.34 CaCO3 + Calcite -0.68 -9.16 -8.48 CaCO3 CH4(g) -0.11 -2.91 -2.80 CH4 Pressure 0.8 atm, phi 0.998 CO2(g) -0.55 -2.02 -1.47 CO2 Pressure 0.3 atm, phi 0.994 H2(g) -6.37 -9.47 -3.10 H2 @@ -1091,70 +1092,70 @@ Component log P P phi Initial Final Delta CH4(g) -0.17 6.819e-01 0.998 0.000e+00 3.152e-02 3.152e-02 CO2(g) -0.43 3.697e-01 0.994 0.000e+00 1.709e-02 1.709e-02 H2O(g) -1.50 3.162e-02 0.993 0.000e+00 1.462e-03 1.462e-03 -N2(g) -1.77 1.682e-02 1.000 0.000e+00 7.776e-04 7.776e-04 +N2(g) -1.77 1.683e-02 1.000 0.000e+00 7.780e-04 7.780e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 2.146e-02 2.146e-02 - Ca 2.502e-03 2.502e-03 - N 2.925e-03 2.925e-03 + C 2.137e-02 2.136e-02 + Ca 2.453e-03 2.453e-03 + N 2.924e-03 2.924e-03 ----------------------------Description of solution---------------------------- pH = 6.101 Charge balance pe = -2.919 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 569 - Density (g/cm³) = 0.99763 + Specific Conductance (µS/cm, 25°C) = 568 + Density (g/cm³) = 0.99762 Volume (L) = 1.00348 - Viscosity (mPa s) = 0.89316 + Viscosity (mPa s) = 0.89414 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.009e-02 + Ionic strength (mol/kgw) = 1.016e-02 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 7.907e-03 - Total CO2 (mol/kg) = 2.039e-02 + Total alkalinity (eq/kg) = 7.808e-03 + Total CO2 (mol/kg) = 2.029e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 20 Total H = 1.110249e+02 - Total O = 5.554922e+01 + Total O = 5.554898e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.686e-07 7.931e-07 -6.061 -6.101 -0.040 0.00 - OH- 1.418e-08 1.276e-08 -7.848 -7.894 -0.046 -4.03 + H+ 8.681e-07 7.925e-07 -6.061 -6.101 -0.040 0.00 + OH- 1.420e-08 1.277e-08 -7.848 -7.894 -0.046 -4.03 H2O 5.551e+01 9.995e-01 1.744 -0.000 0.000 18.07 C(-4) 1.071e-03 CH4 1.071e-03 1.073e-03 -2.970 -2.969 0.001 35.46 -C(4) 2.039e-02 +C(4) 2.029e-02 CO2 1.248e-02 1.250e-02 -1.904 -1.903 0.001 34.43 - HCO3- 7.747e-03 7.009e-03 -2.111 -2.154 -0.043 24.65 - CaHCO3+ 1.550e-04 1.404e-04 -3.810 -3.853 -0.043 9.72 + HCO3- 7.756e-03 7.015e-03 -2.110 -2.154 -0.044 24.65 + CaHCO3+ 4.799e-05 4.348e-05 -4.319 -4.362 -0.043 122.69 (CO2)2 2.862e-06 2.869e-06 -5.543 -5.542 0.001 68.87 - CaCO3 1.091e-06 1.093e-06 -5.962 -5.961 0.001 -14.60 - CO3-2 6.187e-07 4.145e-07 -6.209 -6.382 -0.174 -3.78 -Ca 2.502e-03 - Ca+2 2.346e-03 1.570e-03 -2.630 -2.804 -0.174 -17.93 - CaHCO3+ 1.550e-04 1.404e-04 -3.810 -3.853 -0.043 9.72 - CaCO3 1.091e-06 1.093e-06 -5.962 -5.961 0.001 -14.60 - CaOH+ 3.643e-10 3.285e-10 -9.438 -9.484 -0.045 (0) + CaCO3 1.119e-06 1.121e-06 -5.951 -5.950 0.001 -14.60 + CO3-2 6.204e-07 4.152e-07 -6.207 -6.382 -0.174 -3.66 +Ca 2.453e-03 + Ca+2 2.404e-03 1.608e-03 -2.619 -2.794 -0.175 -17.92 + CaHCO3+ 4.799e-05 4.348e-05 -4.319 -4.362 -0.043 122.69 + CaCO3 1.119e-06 1.121e-06 -5.951 -5.950 0.001 -14.60 + CaOH+ 3.734e-10 3.365e-10 -9.428 -9.473 -0.045 (0) H(0) 6.106e-10 H2 3.053e-10 3.060e-10 -9.515 -9.514 0.001 28.61 -N(-3) 2.903e-03 - NH4+ 2.901e-03 2.601e-03 -2.537 -2.585 -0.047 (0) - NH3 1.865e-06 1.869e-06 -5.729 -5.728 0.001 (0) -N(0) 2.240e-05 - N2 1.120e-05 1.123e-05 -4.951 -4.950 0.001 29.29 +N(-3) 2.902e-03 + NH4+ 2.900e-03 2.600e-03 -2.538 -2.585 -0.047 (0) + NH3 1.865e-06 1.870e-06 -5.729 -5.728 0.001 (0) +N(0) 2.241e-05 + N2 1.121e-05 1.123e-05 -4.951 -4.950 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.752 -61.798 -0.047 25.03 + NO2- 0.000e+00 0.000e+00 -61.751 -61.798 -0.047 25.03 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.958 -84.004 -0.047 29.55 + NO3- 0.000e+00 0.000e+00 -83.957 -84.004 -0.047 29.56 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.353 -73.352 0.001 30.40 @@ -1162,8 +1163,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.85 -9.19 -8.34 CaCO3 - Calcite -0.71 -9.19 -8.48 CaCO3 + Aragonite -0.84 -9.18 -8.34 CaCO3 + Calcite -0.70 -9.18 -8.48 CaCO3 CH4(g) -0.17 -2.97 -2.80 CH4 Pressure 0.7 atm, phi 0.998 CO2(g) -0.43 -1.90 -1.47 CO2 Pressure 0.4 atm, phi 0.994 H2(g) -6.41 -9.51 -3.10 H2 @@ -1211,66 +1212,66 @@ Component log P P phi Initial Final Delta CH4(g) -0.21 6.176e-01 0.998 0.000e+00 6.350e-02 6.350e-02 CO2(g) -0.37 4.254e-01 0.994 0.000e+00 4.373e-02 4.373e-02 H2O(g) -1.50 3.163e-02 0.993 0.000e+00 3.252e-03 3.252e-03 -N2(g) -1.60 2.536e-02 1.001 0.000e+00 2.607e-03 2.607e-03 +N2(g) -1.60 2.537e-02 1.001 0.000e+00 2.608e-03 2.608e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 2.384e-02 2.384e-02 - Ca 2.502e-03 2.502e-03 - N 3.536e-03 3.535e-03 + C 2.374e-02 2.374e-02 + Ca 2.453e-03 2.453e-03 + N 3.533e-03 3.533e-03 ----------------------------Description of solution---------------------------- pH = 6.071 Charge balance - pe = -2.875 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 593 - Density (g/cm³) = 0.99768 + pe = -2.876 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 591 + Density (g/cm³) = 0.99767 Volume (L) = 1.00356 - Viscosity (mPa s) = 0.89329 + Viscosity (mPa s) = 0.89437 Activity of water = 0.999 - Ionic strength (mol/kgw) = 1.067e-02 + Ionic strength (mol/kgw) = 1.075e-02 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 8.506e-03 - Total CO2 (mol/kg) = 2.287e-02 + Total alkalinity (eq/kg) = 8.406e-03 + Total CO2 (mol/kg) = 2.277e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 21 Total H = 1.110282e+02 - Total O = 5.555515e+01 + Total O = 5.555490e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.328e-07 8.501e-07 -6.030 -6.071 -0.040 0.00 - OH- 1.327e-08 1.190e-08 -7.877 -7.924 -0.047 -4.03 + H+ 9.319e-07 8.490e-07 -6.031 -6.071 -0.040 0.00 + OH- 1.329e-08 1.192e-08 -7.877 -7.924 -0.047 -4.03 H2O 5.551e+01 9.995e-01 1.744 -0.000 0.000 18.07 C(-4) 9.699e-04 CH4 9.699e-04 9.723e-04 -3.013 -3.012 0.001 35.46 -C(4) 2.287e-02 +C(4) 2.277e-02 CO2 1.436e-02 1.439e-02 -1.843 -1.842 0.001 34.43 - HCO3- 8.337e-03 7.524e-03 -2.079 -2.124 -0.045 24.66 - CaHCO3+ 1.645e-04 1.487e-04 -3.784 -3.828 -0.044 9.73 + HCO3- 8.350e-03 7.534e-03 -2.078 -2.123 -0.045 24.65 + CaHCO3+ 5.109e-05 4.618e-05 -4.292 -4.336 -0.044 122.69 (CO2)2 3.789e-06 3.799e-06 -5.421 -5.420 0.001 68.87 - CaCO3 1.078e-06 1.080e-06 -5.967 -5.966 0.001 -14.60 - CO3-2 6.257e-07 4.152e-07 -6.204 -6.382 -0.178 -3.76 -Ca 2.502e-03 - Ca+2 2.336e-03 1.549e-03 -2.631 -2.810 -0.178 -17.92 - CaHCO3+ 1.645e-04 1.487e-04 -3.784 -3.828 -0.044 9.73 - CaCO3 1.078e-06 1.080e-06 -5.967 -5.966 0.001 -14.60 - CaOH+ 3.362e-10 3.023e-10 -9.473 -9.520 -0.046 (0) -H(0) 5.751e-10 + CaCO3 1.109e-06 1.112e-06 -5.955 -5.954 0.001 -14.60 + CO3-2 6.280e-07 4.162e-07 -6.202 -6.381 -0.179 -3.65 +Ca 2.453e-03 + Ca+2 2.401e-03 1.590e-03 -2.620 -2.799 -0.179 -17.92 + CaHCO3+ 5.109e-05 4.618e-05 -4.292 -4.336 -0.044 122.69 + CaCO3 1.109e-06 1.112e-06 -5.955 -5.954 0.001 -14.60 + CaOH+ 3.456e-10 3.106e-10 -9.461 -9.508 -0.046 (0) +H(0) 5.750e-10 H2 2.875e-10 2.882e-10 -9.541 -9.540 0.001 28.61 -N(-3) 3.502e-03 - NH4+ 3.500e-03 3.130e-03 -2.456 -2.505 -0.049 (0) +N(-3) 3.500e-03 + NH4+ 3.498e-03 3.126e-03 -2.456 -2.505 -0.049 (0) NH3 2.093e-06 2.098e-06 -5.679 -5.678 0.001 (0) -N(0) 3.377e-05 - N2 1.689e-05 1.693e-05 -4.772 -4.771 0.001 29.29 +N(0) 3.379e-05 + N2 1.689e-05 1.694e-05 -4.772 -4.771 0.001 29.29 N(3) 0.000e+00 NO2- 0.000e+00 0.000e+00 -61.652 -61.700 -0.048 25.03 N(5) 0.000e+00 @@ -1282,8 +1283,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.86 -9.19 -8.34 CaCO3 - Calcite -0.71 -9.19 -8.48 CaCO3 + Aragonite -0.84 -9.18 -8.34 CaCO3 + Calcite -0.70 -9.18 -8.48 CaCO3 CH4(g) -0.21 -3.01 -2.80 CH4 Pressure 0.6 atm, phi 0.998 CO2(g) -0.37 -1.84 -1.47 CO2 Pressure 0.4 atm, phi 0.994 H2(g) -6.44 -9.54 -3.10 H2 @@ -1331,70 +1332,70 @@ Component log P P phi Initial Final Delta CH4(g) -0.24 5.807e-01 0.998 0.000e+00 1.292e-01 1.292e-01 CO2(g) -0.34 4.570e-01 0.994 0.000e+00 1.017e-01 1.017e-01 H2O(g) -1.50 3.163e-02 0.993 0.000e+00 7.039e-03 7.039e-03 -N2(g) -1.51 3.067e-02 1.001 0.000e+00 6.826e-03 6.826e-03 +N2(g) -1.51 3.068e-02 1.001 0.000e+00 6.827e-03 6.827e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 2.516e-02 2.516e-02 - Ca 2.502e-03 2.502e-03 - N 3.849e-03 3.849e-03 + C 2.506e-02 2.506e-02 + Ca 2.453e-03 2.453e-03 + N 3.846e-03 3.845e-03 ----------------------------Description of solution---------------------------- - pH = 6.054 Charge balance - pe = -2.852 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 605 - Density (g/cm³) = 0.99771 - Volume (L) = 1.00364 - Viscosity (mPa s) = 0.89335 + pH = 6.055 Charge balance + pe = -2.853 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 602 + Density (g/cm³) = 0.99770 + Volume (L) = 1.00365 + Viscosity (mPa s) = 0.89448 Activity of water = 0.999 - Ionic strength (mol/kgw) = 1.097e-02 + Ionic strength (mol/kgw) = 1.105e-02 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 8.812e-03 - Total CO2 (mol/kg) = 2.425e-02 + Total alkalinity (eq/kg) = 8.711e-03 + Total CO2 (mol/kg) = 2.415e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 20 Total H = 1.110340e+02 - Total O = 5.556044e+01 + Total O = 5.556019e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.693e-07 8.824e-07 -6.014 -6.054 -0.041 0.00 - OH- 1.280e-08 1.147e-08 -7.893 -7.941 -0.048 -4.03 + H+ 9.682e-07 8.811e-07 -6.014 -6.055 -0.041 0.00 + OH- 1.282e-08 1.148e-08 -7.892 -7.940 -0.048 -4.03 H2O 5.551e+01 9.995e-01 1.744 -0.000 0.000 18.07 C(-4) 9.119e-04 CH4 9.119e-04 9.142e-04 -3.040 -3.039 0.001 35.46 -C(4) 2.425e-02 +C(4) 2.415e-02 CO2 1.543e-02 1.546e-02 -1.812 -1.811 0.001 34.43 - HCO3- 8.638e-03 7.787e-03 -2.064 -2.109 -0.045 24.66 - CaHCO3+ 1.693e-04 1.529e-04 -3.771 -3.816 -0.044 9.73 + HCO3- 8.653e-03 7.798e-03 -2.063 -2.108 -0.045 24.65 + CaHCO3+ 5.266e-05 4.754e-05 -4.279 -4.323 -0.044 122.69 (CO2)2 4.373e-06 4.384e-06 -5.359 -5.358 0.001 68.87 - CaCO3 1.067e-06 1.070e-06 -5.972 -5.971 0.001 -14.60 - CO3-2 6.268e-07 4.139e-07 -6.203 -6.383 -0.180 -3.76 -Ca 2.502e-03 - Ca+2 2.331e-03 1.539e-03 -2.632 -2.813 -0.181 -17.91 - CaHCO3+ 1.693e-04 1.529e-04 -3.771 -3.816 -0.044 9.73 - CaCO3 1.067e-06 1.070e-06 -5.972 -5.971 0.001 -14.60 - CaOH+ 3.220e-10 2.892e-10 -9.492 -9.539 -0.047 (0) + CaCO3 1.100e-06 1.103e-06 -5.959 -5.958 0.001 -14.60 + CO3-2 6.294e-07 4.151e-07 -6.201 -6.382 -0.181 -3.65 +Ca 2.453e-03 + Ca+2 2.399e-03 1.581e-03 -2.620 -2.801 -0.181 -17.91 + CaHCO3+ 5.266e-05 4.754e-05 -4.279 -4.323 -0.044 122.69 + CaCO3 1.100e-06 1.103e-06 -5.959 -5.958 0.001 -14.60 + CaOH+ 3.315e-10 2.977e-10 -9.479 -9.526 -0.047 (0) H(0) 5.562e-10 H2 2.781e-10 2.788e-10 -9.556 -9.555 0.001 28.61 -N(-3) 3.808e-03 - NH4+ 3.806e-03 3.399e-03 -2.420 -2.469 -0.049 (0) - NH3 2.189e-06 2.195e-06 -5.660 -5.659 0.001 (0) -N(0) 4.085e-05 - N2 2.042e-05 2.048e-05 -4.690 -4.689 0.001 29.29 +N(-3) 3.805e-03 + NH4+ 3.803e-03 3.394e-03 -2.420 -2.469 -0.049 (0) + NH3 2.190e-06 2.195e-06 -5.660 -5.659 0.001 (0) +N(0) 4.086e-05 + N2 2.043e-05 2.048e-05 -4.690 -4.689 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.605 -61.653 -0.048 25.04 + NO2- 0.000e+00 0.000e+00 -61.604 -61.653 -0.049 25.04 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.771 -83.819 -0.048 29.56 + NO3- 0.000e+00 0.000e+00 -83.770 -83.818 -0.049 29.56 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.272 -73.271 0.001 30.40 @@ -1402,8 +1403,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.86 -9.20 -8.34 CaCO3 - Calcite -0.72 -9.20 -8.48 CaCO3 + Aragonite -0.85 -9.18 -8.34 CaCO3 + Calcite -0.70 -9.18 -8.48 CaCO3 CH4(g) -0.24 -3.04 -2.80 CH4 Pressure 0.6 atm, phi 0.998 CO2(g) -0.34 -1.81 -1.47 CO2 Pressure 0.5 atm, phi 0.994 H2(g) -6.45 -9.55 -3.10 H2 @@ -1457,64 +1458,64 @@ N2(g) -1.48 3.341e-02 1.001 0.000e+00 1.550e-02 1.550e-02 Elements Molality Moles - C 2.581e-02 2.581e-02 - Ca 2.502e-03 2.502e-03 - N 3.996e-03 3.996e-03 + C 2.571e-02 2.571e-02 + Ca 2.453e-03 2.453e-03 + N 3.992e-03 3.992e-03 ----------------------------Description of solution---------------------------- - pH = 6.046 Charge balance - pe = -2.840 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 610 - Density (g/cm³) = 0.99772 + pH = 6.047 Charge balance + pe = -2.841 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 608 + Density (g/cm³) = 0.99771 Volume (L) = 1.00376 - Viscosity (mPa s) = 0.89338 + Viscosity (mPa s) = 0.89454 Activity of water = 0.999 - Ionic strength (mol/kgw) = 1.111e-02 + Ionic strength (mol/kgw) = 1.119e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 8.955e-03 - Total CO2 (mol/kg) = 2.493e-02 + Total alkalinity (eq/kg) = 8.853e-03 + Total CO2 (mol/kg) = 2.483e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 26 Total H = 1.110450e+02 - Total O = 5.556719e+01 + Total O = 5.556694e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.882e-07 8.992e-07 -6.005 -6.046 -0.041 0.00 - OH- 1.256e-08 1.125e-08 -7.901 -7.949 -0.048 -4.03 + H+ 9.870e-07 8.978e-07 -6.006 -6.047 -0.041 0.00 + OH- 1.259e-08 1.127e-08 -7.900 -7.948 -0.048 -4.03 H2O 5.551e+01 9.995e-01 1.744 -0.000 0.000 18.07 C(-4) 8.824e-04 - CH4 8.824e-04 8.847e-04 -3.054 -3.053 0.001 35.46 -C(4) 2.493e-02 + CH4 8.824e-04 8.846e-04 -3.054 -3.053 0.001 35.46 +C(4) 2.483e-02 CO2 1.597e-02 1.600e-02 -1.797 -1.796 0.001 34.43 - HCO3- 8.779e-03 7.909e-03 -2.057 -2.102 -0.045 24.66 - CaHCO3+ 1.715e-04 1.548e-04 -3.766 -3.810 -0.045 9.73 + HCO3- 8.795e-03 7.921e-03 -2.056 -2.101 -0.045 24.65 + CaHCO3+ 5.338e-05 4.816e-05 -4.273 -4.317 -0.045 122.69 (CO2)2 4.685e-06 4.697e-06 -5.329 -5.328 0.001 68.87 - CaCO3 1.060e-06 1.063e-06 -5.975 -5.974 0.001 -14.60 - CO3-2 6.261e-07 4.125e-07 -6.203 -6.385 -0.181 -3.75 -Ca 2.502e-03 - Ca+2 2.329e-03 1.534e-03 -2.633 -2.814 -0.181 -17.91 - CaHCO3+ 1.715e-04 1.548e-04 -3.766 -3.810 -0.045 9.73 - CaCO3 1.060e-06 1.063e-06 -5.975 -5.974 0.001 -14.60 - CaOH+ 3.152e-10 2.829e-10 -9.501 -9.548 -0.047 (0) + CaCO3 1.093e-06 1.096e-06 -5.961 -5.960 0.001 -14.60 + CO3-2 6.288e-07 4.138e-07 -6.201 -6.383 -0.182 -3.64 +Ca 2.453e-03 + Ca+2 2.398e-03 1.577e-03 -2.620 -2.802 -0.182 -17.91 + CaHCO3+ 5.338e-05 4.816e-05 -4.273 -4.317 -0.045 122.69 + CaCO3 1.093e-06 1.096e-06 -5.961 -5.960 0.001 -14.60 + CaOH+ 3.247e-10 2.913e-10 -9.489 -9.536 -0.047 (0) H(0) 5.469e-10 H2 2.734e-10 2.741e-10 -9.563 -9.562 0.001 28.61 -N(-3) 3.952e-03 - NH4+ 3.949e-03 3.524e-03 -2.403 -2.453 -0.049 (0) - NH3 2.228e-06 2.233e-06 -5.652 -5.651 0.001 (0) +N(-3) 3.947e-03 + NH4+ 3.945e-03 3.519e-03 -2.404 -2.454 -0.050 (0) + NH3 2.228e-06 2.234e-06 -5.652 -5.651 0.001 (0) N(0) 4.449e-05 - N2 2.224e-05 2.230e-05 -4.653 -4.652 0.001 29.29 + N2 2.225e-05 2.230e-05 -4.653 -4.652 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.583 -61.632 -0.049 25.04 + NO2- 0.000e+00 0.000e+00 -61.583 -61.631 -0.049 25.04 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.742 -83.790 -0.049 29.56 + NO3- 0.000e+00 0.000e+00 -83.741 -83.790 -0.049 29.56 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.258 -73.256 0.001 30.40 @@ -1522,8 +1523,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.86 -9.20 -8.34 CaCO3 - Calcite -0.72 -9.20 -8.48 CaCO3 + Aragonite -0.85 -9.19 -8.34 CaCO3 + Calcite -0.71 -9.19 -8.48 CaCO3 CH4(g) -0.25 -3.05 -2.80 CH4 Pressure 0.6 atm, phi 0.998 CO2(g) -0.33 -1.80 -1.47 CO2 Pressure 0.5 atm, phi 0.994 H2(g) -6.46 -9.56 -3.10 H2 @@ -1577,64 +1578,64 @@ N2(g) -1.46 3.477e-02 1.001 0.000e+00 3.297e-02 3.297e-02 Elements Molality Moles - C 2.614e-02 2.614e-02 - Ca 2.501e-03 2.502e-03 - N 4.066e-03 4.067e-03 + C 2.603e-02 2.604e-02 + Ca 2.452e-03 2.453e-03 + N 4.062e-03 4.063e-03 ----------------------------Description of solution---------------------------- - pH = 6.042 Charge balance - pe = -2.834 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 613 - Density (g/cm³) = 0.99773 - Volume (L) = 1.00396 - Viscosity (mPa s) = 0.89339 + pH = 6.043 Charge balance + pe = -2.835 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 610 + Density (g/cm³) = 0.99772 + Volume (L) = 1.00397 + Viscosity (mPa s) = 0.89456 Activity of water = 0.999 - Ionic strength (mol/kgw) = 1.117e-02 + Ionic strength (mol/kgw) = 1.126e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 9.022e-03 - Total CO2 (mol/kg) = 2.527e-02 + Total alkalinity (eq/kg) = 8.920e-03 + Total CO2 (mol/kg) = 2.517e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.110669e+02 - Total O = 5.557876e+01 + Total O = 5.557851e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.978e-07 9.078e-07 -6.001 -6.042 -0.041 0.00 - OH- 1.245e-08 1.114e-08 -7.905 -7.953 -0.048 -4.03 + H+ 9.966e-07 9.064e-07 -6.001 -6.043 -0.041 0.00 + OH- 1.247e-08 1.116e-08 -7.904 -7.952 -0.048 -4.03 H2O 5.551e+01 9.994e-01 1.744 -0.000 0.000 18.07 -C(-4) 8.677e-04 - CH4 8.677e-04 8.699e-04 -3.062 -3.061 0.001 35.46 -C(4) 2.527e-02 +C(-4) 8.676e-04 + CH4 8.676e-04 8.699e-04 -3.062 -3.061 0.001 35.46 +C(4) 2.517e-02 CO2 1.624e-02 1.627e-02 -1.789 -1.789 0.001 34.43 - HCO3- 8.845e-03 7.967e-03 -2.053 -2.099 -0.045 24.66 - CaHCO3+ 1.725e-04 1.556e-04 -3.763 -3.808 -0.045 9.73 + HCO3- 8.862e-03 7.979e-03 -2.052 -2.098 -0.046 24.65 + CaHCO3+ 5.371e-05 4.845e-05 -4.270 -4.315 -0.045 122.69 (CO2)2 4.845e-06 4.858e-06 -5.315 -5.314 0.001 68.87 - CaCO3 1.056e-06 1.059e-06 -5.976 -5.975 0.001 -14.60 - CO3-2 6.254e-07 4.116e-07 -6.204 -6.385 -0.182 -3.75 -Ca 2.501e-03 - Ca+2 2.328e-03 1.531e-03 -2.633 -2.815 -0.182 -17.91 - CaHCO3+ 1.725e-04 1.556e-04 -3.763 -3.808 -0.045 9.73 - CaCO3 1.056e-06 1.059e-06 -5.976 -5.975 0.001 -14.60 - CaOH+ 3.118e-10 2.797e-10 -9.506 -9.553 -0.047 (0) + CaCO3 1.090e-06 1.092e-06 -5.963 -5.962 0.001 -14.60 + CO3-2 6.281e-07 4.129e-07 -6.202 -6.384 -0.182 -3.64 +Ca 2.452e-03 + Ca+2 2.397e-03 1.575e-03 -2.620 -2.803 -0.183 -17.91 + CaHCO3+ 5.371e-05 4.845e-05 -4.270 -4.315 -0.045 122.69 + CaCO3 1.090e-06 1.092e-06 -5.963 -5.962 0.001 -14.60 + CaOH+ 3.213e-10 2.882e-10 -9.493 -9.540 -0.047 (0) H(0) 5.423e-10 H2 2.711e-10 2.718e-10 -9.567 -9.566 0.001 28.61 -N(-3) 4.020e-03 - NH4+ 4.018e-03 3.584e-03 -2.396 -2.446 -0.050 (0) +N(-3) 4.016e-03 + NH4+ 4.014e-03 3.579e-03 -2.396 -2.446 -0.050 (0) NH3 2.244e-06 2.250e-06 -5.649 -5.648 0.001 (0) -N(0) 4.630e-05 +N(0) 4.631e-05 N2 2.315e-05 2.321e-05 -4.635 -4.634 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.573 -61.622 -0.049 25.04 + NO2- 0.000e+00 0.000e+00 -61.572 -61.621 -0.049 25.04 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.728 -83.777 -0.049 29.56 + NO3- 0.000e+00 0.000e+00 -83.727 -83.776 -0.049 29.56 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.250 -73.249 0.001 30.40 @@ -1642,8 +1643,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.86 -9.20 -8.34 CaCO3 - Calcite -0.72 -9.20 -8.48 CaCO3 + Aragonite -0.85 -9.19 -8.34 CaCO3 + Calcite -0.71 -9.19 -8.48 CaCO3 CH4(g) -0.26 -3.06 -2.80 CH4 Pressure 0.6 atm, phi 0.998 CO2(g) -0.32 -1.79 -1.47 CO2 Pressure 0.5 atm, phi 0.994 H2(g) -6.46 -9.57 -3.10 H2 @@ -1708,7 +1709,7 @@ Total pressure: 0.06 atmospheres ---------------------------------- Component log P P Initial Final Delta -CH4(g) -21.55 2.803e-22 2.657e-22 2.657e-22 0.000e+00 +CH4(g) -21.55 2.810e-22 2.664e-22 2.664e-22 0.000e+00 CO2(g) -1.50 3.162e-02 2.997e-02 2.997e-02 0.000e+00 H2O(g) -1.50 3.141e-02 2.977e-02 2.977e-02 0.000e+00 N2(g) -99.99 0.000e+00 0.000e+00 0.000e+00 0.000e+00 @@ -1754,73 +1755,73 @@ Total pressure: 0.06 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -3.26 5.527e-04 1.000 2.657e-22 5.242e-04 5.242e-04 -CO2(g) -1.49 3.208e-02 1.000 2.997e-02 3.042e-02 4.563e-04 -H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.336e-05 -N2(g) -4.45 3.524e-05 1.000 0.000e+00 3.342e-05 3.342e-05 +CH4(g) -3.26 5.527e-04 1.000 2.664e-22 5.242e-04 5.242e-04 +CO2(g) -1.49 3.208e-02 1.000 2.997e-02 3.042e-02 4.562e-04 +H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.337e-05 +N2(g) -4.45 3.523e-05 1.000 0.000e+00 3.341e-05 3.341e-05 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 6.089e-03 6.089e-03 - Ca 2.502e-03 2.502e-03 - N 3.156e-06 3.156e-06 + C 5.992e-03 5.992e-03 + Ca 2.453e-03 2.453e-03 + N 3.171e-06 3.171e-06 ----------------------------Description of solution---------------------------- - pH = 6.965 Charge balance - pe = -3.529 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 453 - Density (g/cm³) = 0.99734 + pH = 6.963 Charge balance + pe = -3.527 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 457 + Density (g/cm³) = 0.99733 Volume (L) = 1.00308 - Viscosity (mPa s) = 0.89255 + Viscosity (mPa s) = 0.89304 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.285e-03 + Ionic strength (mol/kgw) = 7.284e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.007e-03 - Total CO2 (mol/kg) = 6.089e-03 + Total alkalinity (eq/kg) = 4.909e-03 + Total CO2 (mol/kg) = 5.991e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.06 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 Total H = 1.110125e+02 - Total O = 5.552090e+01 + Total O = 5.552066e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.174e-07 1.084e-07 -6.930 -6.965 -0.035 0.00 - OH- 1.023e-07 9.337e-08 -6.990 -7.030 -0.040 -4.05 + H+ 1.180e-07 1.089e-07 -6.928 -6.963 -0.035 0.00 + OH- 1.018e-07 9.291e-08 -6.992 -7.032 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 8.710e-07 CH4 8.710e-07 8.724e-07 -6.060 -6.059 0.001 35.45 -C(4) 6.089e-03 - HCO3- 4.885e-03 4.478e-03 -2.311 -2.349 -0.038 24.63 +C(4) 5.991e-03 + HCO3- 4.861e-03 4.455e-03 -2.313 -2.351 -0.038 24.63 CO2 1.090e-03 1.091e-03 -2.963 -2.962 0.000 34.43 - CaHCO3+ 1.050e-04 9.638e-05 -3.979 -4.016 -0.037 9.71 + CaHCO3+ 3.191e-05 2.929e-05 -4.496 -4.533 -0.037 122.68 CaCO3 5.482e-06 5.491e-06 -5.261 -5.260 0.001 -14.61 - CO3-2 2.745e-06 1.938e-06 -5.562 -5.713 -0.151 -3.85 + CO3-2 2.717e-06 1.918e-06 -5.566 -5.717 -0.151 -3.73 (CO2)2 2.182e-08 2.186e-08 -7.661 -7.660 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.050e-04 9.638e-05 -3.979 -4.016 -0.037 9.71 +Ca 2.453e-03 + Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 + CaHCO3+ 3.191e-05 2.929e-05 -4.496 -4.533 -0.037 122.68 CaCO3 5.482e-06 5.491e-06 -5.261 -5.260 0.001 -14.61 - CaOH+ 2.825e-09 2.583e-09 -8.549 -8.588 -0.039 (0) + CaOH+ 2.840e-09 2.596e-09 -8.547 -8.586 -0.039 (0) H(0) 1.898e-10 H2 9.492e-11 9.508e-11 -10.023 -10.022 0.001 28.61 -N(-3) 3.109e-06 - NH4+ 3.094e-06 2.817e-06 -5.509 -5.550 -0.041 (0) +N(-3) 3.124e-06 + NH4+ 3.109e-06 2.831e-06 -5.507 -5.548 -0.041 (0) NH3 1.479e-08 1.481e-08 -7.830 -7.829 0.001 (0) -N(0) 4.697e-08 +N(0) 4.695e-08 N2 2.348e-08 2.352e-08 -7.629 -7.629 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.471 -61.511 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -61.474 -61.514 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.169 -83.210 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -83.172 -83.212 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -72.337 -72.336 0.001 30.40 @@ -1874,73 +1875,73 @@ Total pressure: 0.07 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -2.96 1.106e-03 1.000 2.657e-22 1.049e-03 1.049e-03 +CH4(g) -2.96 1.106e-03 1.000 2.664e-22 1.049e-03 1.049e-03 CO2(g) -1.49 3.256e-02 1.000 2.997e-02 3.088e-02 9.119e-04 H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.366e-05 -N2(g) -4.15 7.072e-05 1.000 0.000e+00 6.707e-05 6.707e-05 +N2(g) -4.15 7.071e-05 1.000 0.000e+00 6.706e-05 6.706e-05 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 6.109e-03 6.109e-03 - Ca 2.502e-03 2.502e-03 - N 5.856e-06 5.855e-06 + C 6.012e-03 6.012e-03 + Ca 2.453e-03 2.453e-03 + N 5.884e-06 5.883e-06 ----------------------------Description of solution---------------------------- - pH = 6.959 Charge balance - pe = -3.560 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 453 - Density (g/cm³) = 0.99734 + pH = 6.957 Charge balance + pe = -3.558 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 457 + Density (g/cm³) = 0.99733 Volume (L) = 1.00308 - Viscosity (mPa s) = 0.89255 + Viscosity (mPa s) = 0.89304 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.287e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.009e-03 - Total CO2 (mol/kg) = 6.108e-03 + Total alkalinity (eq/kg) = 4.912e-03 + Total CO2 (mol/kg) = 6.010e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 + Iterations = 25 Total H = 1.110126e+02 - Total O = 5.552099e+01 + Total O = 5.552075e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.191e-07 1.099e-07 -6.924 -6.959 -0.035 0.00 - OH- 1.008e-07 9.205e-08 -6.996 -7.036 -0.040 -4.05 + H+ 1.197e-07 1.105e-07 -6.922 -6.957 -0.035 0.00 + OH- 1.003e-07 9.159e-08 -6.999 -7.038 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 1.742e-06 CH4 1.742e-06 1.745e-06 -5.759 -5.758 0.001 35.45 -C(4) 6.108e-03 - HCO3- 4.888e-03 4.480e-03 -2.311 -2.349 -0.038 24.63 +C(4) 6.010e-03 + HCO3- 4.864e-03 4.458e-03 -2.313 -2.351 -0.038 24.63 CO2 1.106e-03 1.108e-03 -2.956 -2.956 0.000 34.43 - CaHCO3+ 1.051e-04 9.643e-05 -3.979 -4.016 -0.037 9.71 + CaHCO3+ 3.193e-05 2.930e-05 -4.496 -4.533 -0.037 122.68 CaCO3 5.407e-06 5.416e-06 -5.267 -5.266 0.001 -14.61 - CO3-2 2.707e-06 1.911e-06 -5.567 -5.719 -0.151 -3.85 + CO3-2 2.680e-06 1.892e-06 -5.572 -5.723 -0.151 -3.73 (CO2)2 2.248e-08 2.252e-08 -7.648 -7.647 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.051e-04 9.643e-05 -3.979 -4.016 -0.037 9.71 +Ca 2.453e-03 + Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 + CaHCO3+ 3.193e-05 2.930e-05 -4.496 -4.533 -0.037 122.68 CaCO3 5.407e-06 5.416e-06 -5.267 -5.266 0.001 -14.61 - CaOH+ 2.785e-09 2.546e-09 -8.555 -8.594 -0.039 (0) + CaOH+ 2.799e-09 2.559e-09 -8.553 -8.592 -0.039 (0) H(0) 2.249e-10 H2 1.125e-10 1.127e-10 -9.949 -9.948 0.001 28.61 -N(-3) 5.761e-06 - NH4+ 5.734e-06 5.221e-06 -5.242 -5.282 -0.041 (0) +N(-3) 5.790e-06 + NH4+ 5.762e-06 5.247e-06 -5.239 -5.280 -0.041 (0) NH3 2.702e-08 2.706e-08 -7.568 -7.568 0.001 (0) -N(0) 9.425e-08 - N2 4.713e-08 4.720e-08 -7.327 -7.326 0.001 29.29 +N(0) 9.423e-08 + N2 4.712e-08 4.719e-08 -7.327 -7.326 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.437 -61.477 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -61.439 -61.479 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.209 -83.249 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -83.211 -83.251 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -72.484 -72.484 0.001 30.40 @@ -1994,73 +1995,73 @@ Total pressure: 0.07 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -2.78 1.659e-03 1.000 2.657e-22 1.573e-03 1.573e-03 +CH4(g) -2.78 1.659e-03 1.000 2.664e-22 1.573e-03 1.573e-03 CO2(g) -1.48 3.304e-02 1.000 2.997e-02 3.134e-02 1.368e-03 H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.396e-05 -N2(g) -3.97 1.063e-04 1.000 0.000e+00 1.008e-04 1.008e-04 +N2(g) -3.97 1.062e-04 1.000 0.000e+00 1.008e-04 1.008e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 6.129e-03 6.129e-03 - Ca 2.502e-03 2.502e-03 - N 8.435e-06 8.434e-06 + C 6.032e-03 6.031e-03 + Ca 2.453e-03 2.453e-03 + N 8.475e-06 8.475e-06 ----------------------------Description of solution---------------------------- - pH = 6.953 Charge balance - pe = -3.575 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 453 - Density (g/cm³) = 0.99734 + pH = 6.951 Charge balance + pe = -3.573 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 457 + Density (g/cm³) = 0.99733 Volume (L) = 1.00308 - Viscosity (mPa s) = 0.89255 + Viscosity (mPa s) = 0.89304 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.290e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.012e-03 - Total CO2 (mol/kg) = 6.127e-03 + Total alkalinity (eq/kg) = 4.914e-03 + Total CO2 (mol/kg) = 6.029e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 + Iterations = 28 Total H = 1.110127e+02 - Total O = 5.552108e+01 + Total O = 5.552083e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.208e-07 1.115e-07 -6.918 -6.953 -0.035 0.00 - OH- 9.944e-08 9.076e-08 -7.002 -7.042 -0.040 -4.05 + H+ 1.214e-07 1.121e-07 -6.916 -6.951 -0.035 0.00 + OH- 9.894e-08 9.031e-08 -7.005 -7.044 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 2.613e-06 CH4 2.613e-06 2.618e-06 -5.583 -5.582 0.001 35.45 -C(4) 6.127e-03 - HCO3- 4.891e-03 4.483e-03 -2.311 -2.348 -0.038 24.63 +C(4) 6.029e-03 + HCO3- 4.866e-03 4.460e-03 -2.313 -2.351 -0.038 24.63 CO2 1.123e-03 1.124e-03 -2.950 -2.949 0.000 34.43 - CaHCO3+ 1.051e-04 9.647e-05 -3.978 -4.016 -0.037 9.71 - CaCO3 5.334e-06 5.342e-06 -5.273 -5.272 0.001 -14.61 - CO3-2 2.671e-06 1.885e-06 -5.573 -5.725 -0.151 -3.85 + CaHCO3+ 3.194e-05 2.932e-05 -4.496 -4.533 -0.037 122.68 + CaCO3 5.334e-06 5.343e-06 -5.273 -5.272 0.001 -14.61 + CO3-2 2.644e-06 1.867e-06 -5.578 -5.729 -0.151 -3.73 (CO2)2 2.315e-08 2.319e-08 -7.635 -7.635 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.051e-04 9.647e-05 -3.978 -4.016 -0.037 9.71 - CaCO3 5.334e-06 5.342e-06 -5.273 -5.272 0.001 -14.61 - CaOH+ 2.746e-09 2.510e-09 -8.561 -8.600 -0.039 (0) +Ca 2.453e-03 + Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 + CaHCO3+ 3.194e-05 2.932e-05 -4.496 -4.533 -0.037 122.68 + CaCO3 5.334e-06 5.343e-06 -5.273 -5.272 0.001 -14.61 + CaOH+ 2.760e-09 2.523e-09 -8.559 -8.598 -0.039 (0) H(0) 2.480e-10 H2 1.240e-10 1.242e-10 -9.907 -9.906 0.001 28.61 -N(-3) 8.293e-06 - NH4+ 8.255e-06 7.516e-06 -5.083 -5.124 -0.041 (0) +N(-3) 8.333e-06 + NH4+ 8.295e-06 7.553e-06 -5.081 -5.122 -0.041 (0) NH3 3.835e-08 3.841e-08 -7.416 -7.416 0.001 (0) N(0) 1.416e-07 - N2 7.081e-08 7.093e-08 -7.150 -7.149 0.001 29.29 + N2 7.080e-08 7.092e-08 -7.150 -7.149 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.418 -61.458 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -61.420 -61.461 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.232 -83.273 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -83.235 -83.275 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -72.569 -72.569 0.001 30.40 @@ -2114,7 +2115,7 @@ Total pressure: 0.07 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -2.66 2.212e-03 1.000 2.657e-22 2.097e-03 2.097e-03 +CH4(g) -2.66 2.212e-03 1.000 2.664e-22 2.097e-03 2.097e-03 CO2(g) -1.47 3.352e-02 1.000 2.997e-02 3.179e-02 1.823e-03 H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.426e-05 N2(g) -3.85 1.418e-04 1.000 0.000e+00 1.345e-04 1.345e-04 @@ -2123,64 +2124,64 @@ N2(g) -3.85 1.418e-04 1.000 0.000e+00 1.345e-04 1.345e-04 Elements Molality Moles - C 6.149e-03 6.149e-03 - Ca 2.502e-03 2.502e-03 - N 1.095e-05 1.095e-05 + C 6.051e-03 6.051e-03 + Ca 2.453e-03 2.453e-03 + N 1.100e-05 1.100e-05 ----------------------------Description of solution---------------------------- - pH = 6.947 Charge balance - pe = -3.584 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 453 - Density (g/cm³) = 0.99734 - Volume (L) = 1.00308 - Viscosity (mPa s) = 0.89255 + pH = 6.944 Charge balance + pe = -3.581 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 458 + Density (g/cm³) = 0.99733 + Volume (L) = 1.00309 + Viscosity (mPa s) = 0.89304 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.293e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.014e-03 - Total CO2 (mol/kg) = 6.145e-03 + Total alkalinity (eq/kg) = 4.917e-03 + Total CO2 (mol/kg) = 6.048e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 + Iterations = 28 Total H = 1.110128e+02 - Total O = 5.552117e+01 + Total O = 5.552092e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.225e-07 1.131e-07 -6.912 -6.947 -0.035 0.00 - OH- 9.806e-08 8.951e-08 -7.008 -7.048 -0.040 -4.05 + H+ 1.231e-07 1.136e-07 -6.910 -6.944 -0.035 0.00 + OH- 9.758e-08 8.906e-08 -7.011 -7.050 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 3.485e-06 CH4 3.485e-06 3.491e-06 -5.458 -5.457 0.001 35.45 -C(4) 6.145e-03 - HCO3- 4.893e-03 4.485e-03 -2.310 -2.348 -0.038 24.63 +C(4) 6.048e-03 + HCO3- 4.869e-03 4.463e-03 -2.313 -2.350 -0.038 24.63 CO2 1.139e-03 1.140e-03 -2.943 -2.943 0.000 34.43 - CaHCO3+ 1.052e-04 9.652e-05 -3.978 -4.015 -0.037 9.71 - CaCO3 5.262e-06 5.271e-06 -5.279 -5.278 0.001 -14.61 - CO3-2 2.636e-06 1.860e-06 -5.579 -5.730 -0.151 -3.85 + CaHCO3+ 3.196e-05 2.933e-05 -4.495 -4.533 -0.037 122.68 + CaCO3 5.263e-06 5.272e-06 -5.279 -5.278 0.001 -14.61 + CO3-2 2.609e-06 1.842e-06 -5.583 -5.735 -0.151 -3.73 (CO2)2 2.383e-08 2.387e-08 -7.623 -7.622 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.052e-04 9.652e-05 -3.978 -4.015 -0.037 9.71 - CaCO3 5.262e-06 5.271e-06 -5.279 -5.278 0.001 -14.61 - CaOH+ 2.708e-09 2.475e-09 -8.567 -8.606 -0.039 (0) +Ca 2.453e-03 + Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 + CaHCO3+ 3.196e-05 2.933e-05 -4.495 -4.533 -0.037 122.68 + CaCO3 5.263e-06 5.272e-06 -5.279 -5.278 0.001 -14.61 + CaOH+ 2.722e-09 2.488e-09 -8.565 -8.604 -0.039 (0) H(0) 2.656e-10 H2 1.328e-10 1.330e-10 -9.877 -9.876 0.001 28.61 -N(-3) 1.076e-05 - NH4+ 1.071e-05 9.756e-06 -4.970 -5.011 -0.041 (0) - NH3 4.909e-08 4.917e-08 -7.309 -7.308 0.001 (0) +N(-3) 1.082e-05 + NH4+ 1.077e-05 9.803e-06 -4.968 -5.009 -0.041 (0) + NH3 4.908e-08 4.916e-08 -7.309 -7.308 0.001 (0) N(0) 1.890e-07 - N2 9.452e-08 9.468e-08 -7.024 -7.024 0.001 29.29 + N2 9.450e-08 9.466e-08 -7.025 -7.024 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.406 -61.446 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -61.408 -61.448 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.250 -83.290 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -83.252 -83.292 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -72.629 -72.628 0.001 30.40 @@ -2234,73 +2235,73 @@ Total pressure: 0.07 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -2.35 4.424e-03 1.000 2.657e-22 4.195e-03 4.195e-03 +CH4(g) -2.35 4.424e-03 1.000 2.664e-22 4.195e-03 4.195e-03 CO2(g) -1.45 3.544e-02 1.000 2.997e-02 3.361e-02 3.647e-03 H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.546e-05 -N2(g) -3.55 2.843e-04 1.000 0.000e+00 2.696e-04 2.696e-04 +N2(g) -3.55 2.842e-04 1.000 0.000e+00 2.696e-04 2.696e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 6.228e-03 6.228e-03 - Ca 2.502e-03 2.502e-03 - N 2.079e-05 2.079e-05 + C 6.130e-03 6.130e-03 + Ca 2.453e-03 2.453e-03 + N 2.089e-05 2.089e-05 ----------------------------Description of solution---------------------------- - pH = 6.923 Charge balance - pe = -3.595 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 454 - Density (g/cm³) = 0.99734 + pH = 6.921 Charge balance + pe = -3.593 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 458 + Density (g/cm³) = 0.99733 Volume (L) = 1.00309 - Viscosity (mPa s) = 0.89255 + Viscosity (mPa s) = 0.89304 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.302e-03 + Ionic strength (mol/kgw) = 7.303e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.024e-03 - Total CO2 (mol/kg) = 6.221e-03 + Total alkalinity (eq/kg) = 4.926e-03 + Total CO2 (mol/kg) = 6.123e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 + Iterations = 28 Total H = 1.110132e+02 - Total O = 5.552152e+01 + Total O = 5.552127e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.293e-07 1.193e-07 -6.889 -6.923 -0.035 0.00 - OH- 9.294e-08 8.483e-08 -7.032 -7.071 -0.040 -4.05 + H+ 1.299e-07 1.199e-07 -6.886 -6.921 -0.035 0.00 + OH- 9.248e-08 8.441e-08 -7.034 -7.074 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 6.970e-06 CH4 6.970e-06 6.982e-06 -5.157 -5.156 0.001 35.45 -C(4) 6.221e-03 - HCO3- 4.903e-03 4.494e-03 -2.309 -2.347 -0.038 24.63 +C(4) 6.123e-03 + HCO3- 4.879e-03 4.472e-03 -2.312 -2.349 -0.038 24.63 CO2 1.204e-03 1.206e-03 -2.919 -2.919 0.000 34.43 - CaHCO3+ 1.054e-04 9.670e-05 -3.977 -4.015 -0.037 9.71 - CaCO3 4.996e-06 5.005e-06 -5.301 -5.301 0.001 -14.61 - CO3-2 2.503e-06 1.767e-06 -5.601 -5.753 -0.151 -3.85 + CaHCO3+ 3.202e-05 2.939e-05 -4.495 -4.532 -0.037 122.68 + CaCO3 4.998e-06 5.006e-06 -5.301 -5.300 0.001 -14.61 + CO3-2 2.479e-06 1.749e-06 -5.606 -5.757 -0.151 -3.73 (CO2)2 2.664e-08 2.668e-08 -7.574 -7.574 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.686e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.054e-04 9.670e-05 -3.977 -4.015 -0.037 9.71 - CaCO3 4.996e-06 5.005e-06 -5.301 -5.301 0.001 -14.61 - CaOH+ 2.566e-09 2.346e-09 -8.591 -8.630 -0.039 (0) +Ca 2.453e-03 + Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 + CaHCO3+ 3.202e-05 2.939e-05 -4.495 -4.532 -0.037 122.68 + CaCO3 4.998e-06 5.006e-06 -5.301 -5.300 0.001 -14.61 + CaOH+ 2.580e-09 2.358e-09 -8.588 -8.627 -0.039 (0) H(0) 3.114e-10 H2 1.557e-10 1.560e-10 -9.808 -9.807 0.001 28.61 -N(-3) 2.042e-05 - NH4+ 2.033e-05 1.851e-05 -4.692 -4.733 -0.041 (0) - NH3 8.826e-08 8.841e-08 -7.054 -7.054 0.001 (0) +N(-3) 2.051e-05 + NH4+ 2.043e-05 1.860e-05 -4.690 -4.731 -0.041 (0) + NH3 8.825e-08 8.840e-08 -7.054 -7.054 0.001 (0) N(0) 3.788e-07 N2 1.894e-07 1.897e-07 -6.723 -6.722 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.382 -61.422 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -61.384 -61.425 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.295 -83.335 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -83.297 -83.338 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -72.767 -72.766 0.001 30.40 @@ -2354,73 +2355,73 @@ Total pressure: 0.08 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -2.05 8.848e-03 1.000 2.657e-22 8.391e-03 8.391e-03 +CH4(g) -2.05 8.848e-03 1.000 2.664e-22 8.391e-03 8.391e-03 CO2(g) -1.41 3.929e-02 1.000 2.997e-02 3.726e-02 7.293e-03 H2O(g) -1.50 3.145e-02 0.999 2.977e-02 2.982e-02 4.786e-05 -N2(g) -3.24 5.691e-04 1.000 0.000e+00 5.397e-04 5.397e-04 +N2(g) -3.24 5.690e-04 1.000 0.000e+00 5.396e-04 5.396e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 6.385e-03 6.385e-03 - Ca 2.502e-03 2.502e-03 - N 4.054e-05 4.053e-05 + C 6.288e-03 6.288e-03 + Ca 2.453e-03 2.453e-03 + N 4.072e-05 4.072e-05 ----------------------------Description of solution---------------------------- - pH = 6.880 Charge balance - pe = -3.584 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 455 - Density (g/cm³) = 0.99734 + pH = 6.878 Charge balance + pe = -3.582 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 459 + Density (g/cm³) = 0.99733 Volume (L) = 1.00310 - Viscosity (mPa s) = 0.89256 + Viscosity (mPa s) = 0.89305 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.322e-03 + Ionic strength (mol/kgw) = 7.323e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.043e-03 - Total CO2 (mol/kg) = 6.371e-03 + Total alkalinity (eq/kg) = 4.946e-03 + Total CO2 (mol/kg) = 6.274e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.08 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 26 Total H = 1.110141e+02 - Total O = 5.552222e+01 + Total O = 5.552198e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.427e-07 1.317e-07 -6.846 -6.880 -0.035 0.00 - OH- 8.420e-08 7.684e-08 -7.075 -7.114 -0.040 -4.05 + H+ 1.434e-07 1.323e-07 -6.843 -6.878 -0.035 0.00 + OH- 8.379e-08 7.647e-08 -7.077 -7.117 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 1.394e-05 CH4 1.394e-05 1.396e-05 -4.856 -4.855 0.001 35.45 -C(4) 6.371e-03 - HCO3- 4.924e-03 4.512e-03 -2.308 -2.346 -0.038 24.63 +C(4) 6.274e-03 + HCO3- 4.900e-03 4.490e-03 -2.310 -2.348 -0.038 24.63 CO2 1.335e-03 1.336e-03 -2.875 -2.874 0.000 34.43 - CaHCO3+ 1.058e-04 9.705e-05 -3.976 -4.013 -0.037 9.71 - CaCO3 4.542e-06 4.550e-06 -5.343 -5.342 0.001 -14.61 - CO3-2 2.278e-06 1.607e-06 -5.642 -5.794 -0.152 -3.85 + CaHCO3+ 3.215e-05 2.950e-05 -4.493 -4.530 -0.037 122.68 + CaCO3 4.545e-06 4.553e-06 -5.342 -5.342 0.001 -14.61 + CO3-2 2.256e-06 1.591e-06 -5.647 -5.798 -0.152 -3.73 (CO2)2 3.273e-08 3.278e-08 -7.485 -7.484 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.686e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.058e-04 9.705e-05 -3.976 -4.013 -0.037 9.71 - CaCO3 4.542e-06 4.550e-06 -5.343 -5.342 0.001 -14.61 - CaOH+ 2.324e-09 2.124e-09 -8.634 -8.673 -0.039 (0) +Ca 2.453e-03 + Ca+2 2.416e-03 1.703e-03 -2.617 -2.769 -0.152 -17.98 + CaHCO3+ 3.215e-05 2.950e-05 -4.493 -4.530 -0.037 122.68 + CaCO3 4.545e-06 4.553e-06 -5.342 -5.342 0.001 -14.61 + CaOH+ 2.337e-09 2.135e-09 -8.631 -8.671 -0.039 (0) H(0) 3.610e-10 H2 1.805e-10 1.808e-10 -9.744 -9.743 0.001 28.61 -N(-3) 3.978e-05 - NH4+ 3.962e-05 3.607e-05 -4.402 -4.443 -0.041 (0) +N(-3) 3.997e-05 + NH4+ 3.981e-05 3.624e-05 -4.400 -4.441 -0.041 (0) NH3 1.558e-07 1.561e-07 -6.807 -6.807 0.001 (0) -N(0) 7.584e-07 - N2 3.792e-07 3.798e-07 -6.421 -6.420 0.001 29.29 +N(0) 7.583e-07 + N2 3.791e-07 3.798e-07 -6.421 -6.420 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.370 -61.411 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -61.373 -61.413 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.348 -83.388 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -83.350 -83.390 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -72.895 -72.894 0.001 30.40 @@ -2430,7 +2431,7 @@ O(0) 0.000e+00 Aragonite -0.23 -8.57 -8.34 CaCO3 Calcite -0.09 -8.57 -8.48 CaCO3 - CH4(g) -2.05 -4.85 -2.80 CH4 Pressure 0.0 atm, phi 1.000 + CH4(g) -2.05 -4.86 -2.80 CH4 Pressure 0.0 atm, phi 1.000 CO2(g) -1.41 -2.87 -1.47 CO2 Pressure 0.0 atm, phi 1.000 H2(g) -6.64 -9.74 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999 @@ -2474,7 +2475,7 @@ Total pressure: 0.10 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -1.75 1.769e-02 1.000 2.657e-22 1.678e-02 1.678e-02 +CH4(g) -1.75 1.769e-02 1.000 2.664e-22 1.678e-02 1.678e-02 CO2(g) -1.33 4.698e-02 0.999 2.997e-02 4.455e-02 1.459e-02 H2O(g) -1.50 3.145e-02 0.999 2.977e-02 2.983e-02 5.266e-05 N2(g) -2.94 1.137e-03 1.000 0.000e+00 1.079e-03 1.079e-03 @@ -2483,64 +2484,64 @@ N2(g) -2.94 1.137e-03 1.000 0.000e+00 1.079e-03 1.079e-03 Elements Molality Moles - C 6.702e-03 6.702e-03 - Ca 2.502e-03 2.502e-03 - N 8.235e-05 8.234e-05 + C 6.605e-03 6.605e-03 + Ca 2.453e-03 2.453e-03 + N 8.272e-05 8.272e-05 ----------------------------Description of solution---------------------------- - pH = 6.806 Charge balance - pe = -3.538 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 456 - Density (g/cm³) = 0.99735 - Volume (L) = 1.00312 - Viscosity (mPa s) = 0.89257 + pH = 6.804 Charge balance + pe = -3.536 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 460 + Density (g/cm³) = 0.99734 + Volume (L) = 1.00313 + Viscosity (mPa s) = 0.89307 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.363e-03 + Ionic strength (mol/kgw) = 7.365e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.084e-03 - Total CO2 (mol/kg) = 6.674e-03 + Total alkalinity (eq/kg) = 4.987e-03 + Total CO2 (mol/kg) = 6.577e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.10 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 + Iterations = 27 Total H = 1.110159e+02 - Total O = 5.552363e+01 + Total O = 5.552339e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.692e-07 1.562e-07 -6.772 -6.806 -0.035 0.00 - OH- 7.103e-08 6.481e-08 -7.149 -7.188 -0.040 -4.05 + H+ 1.700e-07 1.569e-07 -6.770 -6.804 -0.035 0.00 + OH- 7.070e-08 6.451e-08 -7.151 -7.190 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 2.788e-05 CH4 2.788e-05 2.792e-05 -4.555 -4.554 0.001 35.45 -C(4) 6.674e-03 - HCO3- 4.966e-03 4.550e-03 -2.304 -2.342 -0.038 24.63 +C(4) 6.577e-03 + HCO3- 4.943e-03 4.529e-03 -2.306 -2.344 -0.038 24.63 CO2 1.596e-03 1.598e-03 -2.797 -2.797 0.000 34.43 - CaHCO3+ 1.066e-04 9.777e-05 -3.972 -4.010 -0.037 9.71 - CaCO3 3.860e-06 3.866e-06 -5.413 -5.413 0.001 -14.61 - CO3-2 1.939e-06 1.366e-06 -5.712 -5.864 -0.152 -3.85 - (CO2)2 4.678e-08 4.685e-08 -7.330 -7.329 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.684e-03 -2.621 -2.774 -0.152 -17.98 - CaHCO3+ 1.066e-04 9.777e-05 -3.972 -4.010 -0.037 9.71 - CaCO3 3.860e-06 3.866e-06 -5.413 -5.413 0.001 -14.61 - CaOH+ 1.959e-09 1.790e-09 -8.708 -8.747 -0.039 (0) + CaHCO3+ 3.241e-05 2.973e-05 -4.489 -4.527 -0.037 122.68 + CaCO3 3.864e-06 3.871e-06 -5.413 -5.412 0.001 -14.61 + CO3-2 1.921e-06 1.354e-06 -5.716 -5.868 -0.152 -3.73 + (CO2)2 4.677e-08 4.685e-08 -7.330 -7.329 0.001 68.87 +Ca 2.453e-03 + Ca+2 2.417e-03 1.702e-03 -2.617 -2.769 -0.152 -17.98 + CaHCO3+ 3.241e-05 2.973e-05 -4.489 -4.527 -0.037 122.68 + CaCO3 3.864e-06 3.871e-06 -5.413 -5.412 0.001 -14.61 + CaOH+ 1.970e-09 1.800e-09 -8.706 -8.745 -0.039 (0) H(0) 4.105e-10 H2 2.052e-10 2.056e-10 -9.688 -9.687 0.001 28.61 -N(-3) 8.083e-05 - NH4+ 8.056e-05 7.332e-05 -4.094 -4.135 -0.041 (0) +N(-3) 8.120e-05 + NH4+ 8.093e-05 7.366e-05 -4.092 -4.133 -0.041 (0) NH3 2.671e-07 2.676e-07 -6.573 -6.573 0.001 (0) N(0) 1.516e-06 - N2 7.579e-07 7.592e-07 -6.120 -6.120 0.001 29.29 + N2 7.578e-07 7.591e-07 -6.120 -6.120 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.378 -61.418 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -61.380 -61.420 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.411 -83.451 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -83.413 -83.453 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.007 -73.006 0.001 30.40 @@ -2594,73 +2595,73 @@ Total pressure: 0.13 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -1.45 3.538e-02 1.000 2.657e-22 3.356e-02 3.356e-02 -CO2(g) -1.21 6.234e-02 0.999 2.997e-02 5.913e-02 2.917e-02 +CH4(g) -1.45 3.538e-02 1.000 2.664e-22 3.356e-02 3.356e-02 +CO2(g) -1.21 6.234e-02 0.999 2.997e-02 5.913e-02 2.916e-02 H2O(g) -1.50 3.146e-02 0.999 2.977e-02 2.984e-02 6.224e-05 -N2(g) -2.64 2.269e-03 1.000 0.000e+00 2.152e-03 2.152e-03 +N2(g) -2.64 2.268e-03 1.000 0.000e+00 2.151e-03 2.151e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 7.345e-03 7.345e-03 - Ca 2.502e-03 2.502e-03 - N 1.764e-04 1.764e-04 + C 7.248e-03 7.248e-03 + Ca 2.453e-03 2.453e-03 + N 1.772e-04 1.772e-04 ----------------------------Description of solution---------------------------- - pH = 6.692 Charge balance - pe = -3.445 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 460 - Density (g/cm³) = 0.99736 + pH = 6.690 Charge balance + pe = -3.443 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 464 + Density (g/cm³) = 0.99735 Volume (L) = 1.00317 - Viscosity (mPa s) = 0.89259 + Viscosity (mPa s) = 0.89310 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.454e-03 + Ionic strength (mol/kgw) = 7.459e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.177e-03 - Total CO2 (mol/kg) = 7.290e-03 + Total alkalinity (eq/kg) = 5.080e-03 + Total CO2 (mol/kg) = 7.193e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.13 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 + Iterations = 24 Total H = 1.110195e+02 - Total O = 5.552647e+01 + Total O = 5.552622e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 2.206e-07 2.035e-07 -6.656 -6.692 -0.035 0.00 - OH- 5.454e-08 4.974e-08 -7.263 -7.303 -0.040 -4.05 + H+ 2.215e-07 2.043e-07 -6.655 -6.690 -0.035 0.00 + OH- 5.431e-08 4.952e-08 -7.265 -7.305 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 5.573e-05 CH4 5.573e-05 5.583e-05 -4.254 -4.253 0.001 35.45 -C(4) 7.290e-03 - HCO3- 5.059e-03 4.633e-03 -2.296 -2.334 -0.038 24.63 +C(4) 7.193e-03 + HCO3- 5.037e-03 4.613e-03 -2.298 -2.336 -0.038 24.63 CO2 2.117e-03 2.120e-03 -2.674 -2.674 0.000 34.43 - CaHCO3+ 1.083e-04 9.933e-05 -3.965 -4.003 -0.038 9.71 - CaCO3 3.009e-06 3.015e-06 -5.522 -5.521 0.001 -14.61 - CO3-2 1.518e-06 1.068e-06 -5.819 -5.971 -0.153 -3.85 - (CO2)2 8.234e-08 8.249e-08 -7.084 -7.084 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.390e-03 1.680e-03 -2.622 -2.775 -0.153 -17.97 - CaHCO3+ 1.083e-04 9.933e-05 -3.965 -4.003 -0.038 9.71 - CaCO3 3.009e-06 3.015e-06 -5.522 -5.521 0.001 -14.61 - CaOH+ 1.501e-09 1.370e-09 -8.824 -8.863 -0.039 (0) + CaHCO3+ 3.297e-05 3.023e-05 -4.482 -4.520 -0.038 122.68 + CaCO3 3.016e-06 3.022e-06 -5.521 -5.520 0.001 -14.61 + CO3-2 1.505e-06 1.059e-06 -5.822 -5.975 -0.153 -3.73 + (CO2)2 8.234e-08 8.248e-08 -7.084 -7.084 0.001 68.87 +Ca 2.453e-03 + Ca+2 2.417e-03 1.699e-03 -2.617 -2.770 -0.153 -17.97 + CaHCO3+ 3.297e-05 3.023e-05 -4.482 -4.520 -0.038 122.68 + CaCO3 3.016e-06 3.022e-06 -5.521 -5.520 0.001 -14.61 + CaOH+ 1.511e-09 1.380e-09 -8.821 -8.860 -0.039 (0) H(0) 4.548e-10 H2 2.274e-10 2.278e-10 -9.643 -9.642 0.001 28.61 -N(-3) 1.734e-04 - NH4+ 1.730e-04 1.574e-04 -3.762 -3.803 -0.041 (0) - NH3 4.400e-07 4.407e-07 -6.357 -6.356 0.001 (0) -N(0) 3.023e-06 +N(-3) 1.742e-04 + NH4+ 1.737e-04 1.580e-04 -3.760 -3.801 -0.041 (0) + NH3 4.399e-07 4.407e-07 -6.357 -6.356 0.001 (0) +N(0) 3.022e-06 N2 1.511e-06 1.514e-06 -5.821 -5.820 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.409 -61.450 -0.041 25.02 + NO2- 0.000e+00 0.000e+00 -61.411 -61.452 -0.041 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.487 -83.527 -0.041 29.54 + NO3- 0.000e+00 0.000e+00 -83.489 -83.529 -0.041 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.096 -73.095 0.001 30.40 @@ -2714,73 +2715,73 @@ Total pressure: 0.20 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -1.16 6.907e-02 1.000 2.657e-22 6.553e-02 6.553e-02 +CH4(g) -1.16 6.907e-02 1.000 2.664e-22 6.553e-02 6.553e-02 CO2(g) -1.04 9.161e-02 0.999 2.997e-02 8.691e-02 5.694e-02 H2O(g) -1.50 3.147e-02 0.998 2.977e-02 2.986e-02 8.047e-05 -N2(g) -2.36 4.408e-03 1.000 0.000e+00 4.182e-03 4.182e-03 +N2(g) -2.36 4.407e-03 1.000 0.000e+00 4.181e-03 4.181e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 8.599e-03 8.599e-03 - Ca 2.501e-03 2.502e-03 - N 3.861e-04 3.861e-04 + C 8.502e-03 8.503e-03 + Ca 2.453e-03 2.453e-03 + N 3.874e-04 3.874e-04 ----------------------------Description of solution---------------------------- - pH = 6.541 Charge balance - pe = -3.311 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 468 - Density (g/cm³) = 0.99738 + pH = 6.540 Charge balance + pe = -3.309 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 472 + Density (g/cm³) = 0.99737 Volume (L) = 1.00326 - Viscosity (mPa s) = 0.89263 + Viscosity (mPa s) = 0.89318 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.655e-03 + Ionic strength (mol/kgw) = 7.665e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.383e-03 - Total CO2 (mol/kg) = 8.490e-03 + Total alkalinity (eq/kg) = 5.287e-03 + Total CO2 (mol/kg) = 8.394e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.20 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 + Iterations = 30 Total H = 1.110264e+02 - Total O = 5.553190e+01 + Total O = 5.553165e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 3.120e-07 2.875e-07 -6.506 -6.541 -0.035 0.00 - OH- 3.864e-08 3.520e-08 -7.413 -7.453 -0.041 -4.05 + H+ 3.131e-07 2.885e-07 -6.504 -6.540 -0.035 0.00 + OH- 3.851e-08 3.507e-08 -7.414 -7.455 -0.041 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 1.088e-04 CH4 1.088e-04 1.090e-04 -3.963 -3.963 0.001 35.45 -C(4) 8.490e-03 - HCO3- 5.264e-03 4.816e-03 -2.279 -2.317 -0.039 24.63 +C(4) 8.394e-03 + HCO3- 5.246e-03 4.799e-03 -2.280 -2.319 -0.039 24.63 CO2 3.110e-03 3.114e-03 -2.507 -2.507 0.001 34.43 - CaHCO3+ 1.121e-04 1.027e-04 -3.950 -3.988 -0.038 9.71 - CaCO3 2.202e-06 2.206e-06 -5.657 -5.656 0.001 -14.60 - CO3-2 1.121e-06 7.856e-07 -5.950 -6.105 -0.155 -3.84 + CaHCO3+ 3.418e-05 3.131e-05 -4.466 -4.504 -0.038 122.68 + CaCO3 2.212e-06 2.216e-06 -5.655 -5.654 0.001 -14.60 + CO3-2 1.114e-06 7.800e-07 -5.953 -6.108 -0.155 -3.72 (CO2)2 1.777e-07 1.780e-07 -6.750 -6.750 0.001 68.87 -Ca 2.501e-03 - Ca+2 2.387e-03 1.671e-03 -2.622 -2.777 -0.155 -17.97 - CaHCO3+ 1.121e-04 1.027e-04 -3.950 -3.988 -0.038 9.71 - CaCO3 2.202e-06 2.206e-06 -5.657 -5.656 0.001 -14.60 - CaOH+ 1.057e-09 9.646e-10 -8.976 -9.016 -0.040 (0) +Ca 2.453e-03 + Ca+2 2.416e-03 1.691e-03 -2.617 -2.772 -0.155 -17.97 + CaHCO3+ 3.418e-05 3.131e-05 -4.466 -4.504 -0.038 122.68 + CaCO3 2.212e-06 2.216e-06 -5.655 -5.654 0.001 -14.60 + CaOH+ 1.066e-09 9.727e-10 -8.972 -9.012 -0.040 (0) H(0) 4.883e-10 H2 2.441e-10 2.446e-10 -9.612 -9.612 0.001 28.61 -N(-3) 3.802e-04 - NH4+ 3.795e-04 3.448e-04 -3.421 -3.462 -0.042 (0) +N(-3) 3.815e-04 + NH4+ 3.808e-04 3.460e-04 -3.419 -3.461 -0.042 (0) NH3 6.822e-07 6.834e-07 -6.166 -6.165 0.001 (0) -N(0) 5.874e-06 - N2 2.937e-06 2.942e-06 -5.532 -5.531 0.001 29.29 +N(0) 5.873e-06 + N2 2.936e-06 2.942e-06 -5.532 -5.531 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.461 -61.502 -0.041 25.02 + NO2- 0.000e+00 0.000e+00 -61.463 -61.504 -0.041 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.569 -83.611 -0.041 29.54 + NO3- 0.000e+00 0.000e+00 -83.571 -83.612 -0.041 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.158 -73.157 0.001 30.40 @@ -2788,7 +2789,7 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 0 atm) - Aragonite -0.55 -8.88 -8.34 CaCO3 + Aragonite -0.54 -8.88 -8.34 CaCO3 Calcite -0.40 -8.88 -8.48 CaCO3 CH4(g) -1.16 -3.96 -2.80 CH4 Pressure 0.1 atm, phi 1.000 CO2(g) -1.04 -2.51 -1.47 CO2 Pressure 0.1 atm, phi 0.999 @@ -2834,73 +2835,73 @@ Total pressure: 0.33 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -0.86 1.380e-01 0.999 2.657e-22 1.310e-01 1.310e-01 +CH4(g) -0.86 1.380e-01 0.999 2.664e-22 1.310e-01 1.310e-01 CO2(g) -0.82 1.515e-01 0.998 2.997e-02 1.438e-01 1.138e-01 H2O(g) -1.50 3.150e-02 0.997 2.977e-02 2.989e-02 1.178e-04 -N2(g) -2.06 8.752e-03 1.000 0.000e+00 8.307e-03 8.307e-03 +N2(g) -2.06 8.751e-03 1.000 0.000e+00 8.306e-03 8.306e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.123e-02 1.123e-02 - Ca 2.501e-03 2.502e-03 - N 8.857e-04 8.858e-04 + C 1.114e-02 1.114e-02 + Ca 2.452e-03 2.453e-03 + N 8.876e-04 8.878e-04 ----------------------------Description of solution---------------------------- - pH = 6.361 Charge balance - pe = -3.140 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 488 - Density (g/cm³) = 0.99743 - Volume (L) = 1.00344 - Viscosity (mPa s) = 0.89274 + pH = 6.360 Charge balance + pe = -3.139 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 491 + Density (g/cm³) = 0.99742 + Volume (L) = 1.00345 + Viscosity (mPa s) = 0.89337 Activity of water = 1.000 - Ionic strength (mol/kgw) = 8.132e-03 + Ionic strength (mol/kgw) = 8.155e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.876e-03 - Total CO2 (mol/kg) = 1.101e-02 + Total alkalinity (eq/kg) = 5.781e-03 + Total CO2 (mol/kg) = 1.092e-02 Temperature (°C) = 25.00 Pressure (atm) = 0.33 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 + Iterations = 32 Total H = 1.110406e+02 - Total O = 5.554310e+01 + Total O = 5.554286e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 4.740e-07 4.359e-07 -6.324 -6.361 -0.036 0.00 - OH- 2.555e-08 2.321e-08 -7.593 -7.634 -0.042 -4.05 + H+ 4.750e-07 4.369e-07 -6.323 -6.360 -0.036 0.00 + OH- 2.550e-08 2.316e-08 -7.593 -7.635 -0.042 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 2.173e-04 CH4 2.173e-04 2.177e-04 -3.663 -3.662 0.001 35.45 -C(4) 1.101e-02 - HCO3- 5.750e-03 5.249e-03 -2.240 -2.280 -0.040 24.63 +C(4) 1.092e-02 + HCO3- 5.738e-03 5.237e-03 -2.241 -2.281 -0.040 24.64 CO2 5.139e-03 5.146e-03 -2.289 -2.289 0.001 34.43 - CaHCO3+ 1.209e-04 1.105e-04 -3.918 -3.957 -0.039 9.72 - CaCO3 1.562e-06 1.565e-06 -5.806 -5.805 0.001 -14.60 - CO3-2 8.135e-07 5.646e-07 -6.090 -6.248 -0.159 -3.83 + CaHCO3+ 3.699e-05 3.381e-05 -4.432 -4.471 -0.039 122.68 + CaCO3 1.577e-06 1.580e-06 -5.802 -5.801 0.001 -14.60 + CO3-2 8.103e-07 5.622e-07 -6.091 -6.250 -0.159 -3.71 (CO2)2 4.851e-07 4.860e-07 -6.314 -6.313 0.001 68.87 -Ca 2.501e-03 - Ca+2 2.379e-03 1.650e-03 -2.624 -2.783 -0.159 -17.96 - CaHCO3+ 1.209e-04 1.105e-04 -3.918 -3.957 -0.039 9.72 - CaCO3 1.562e-06 1.565e-06 -5.806 -5.805 0.001 -14.60 - CaOH+ 6.900e-10 6.280e-10 -9.161 -9.202 -0.041 (0) +Ca 2.452e-03 + Ca+2 2.414e-03 1.673e-03 -2.617 -2.776 -0.159 -17.96 + CaHCO3+ 3.699e-05 3.381e-05 -4.432 -4.471 -0.039 122.68 + CaCO3 1.577e-06 1.580e-06 -5.802 -5.801 0.001 -14.60 + CaOH+ 6.985e-10 6.355e-10 -9.156 -9.197 -0.041 (0) H(0) 5.119e-10 H2 2.560e-10 2.564e-10 -9.592 -9.591 0.001 28.61 -N(-3) 8.740e-04 - NH4+ 8.730e-04 7.910e-04 -3.059 -3.102 -0.043 (0) +N(-3) 8.760e-04 + NH4+ 8.749e-04 7.927e-04 -3.058 -3.101 -0.043 (0) NH3 1.032e-06 1.034e-06 -5.986 -5.985 0.001 (0) N(0) 1.166e-05 - N2 5.831e-06 5.842e-06 -5.234 -5.233 0.001 29.29 + N2 5.830e-06 5.841e-06 -5.234 -5.234 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.523 -61.565 -0.042 25.02 + NO2- 0.000e+00 0.000e+00 -61.524 -61.566 -0.042 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.652 -83.694 -0.042 29.55 + NO3- 0.000e+00 0.000e+00 -83.653 -83.695 -0.042 29.55 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.199 -73.198 0.001 30.40 @@ -2954,7 +2955,7 @@ Total pressure: 0.60 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -0.56 2.757e-01 0.999 2.657e-22 2.620e-01 2.620e-01 +CH4(g) -0.56 2.757e-01 0.999 2.664e-22 2.620e-01 2.620e-01 CO2(g) -0.57 2.711e-01 0.997 2.997e-02 2.575e-01 2.275e-01 H2O(g) -1.50 3.154e-02 0.996 2.977e-02 2.997e-02 1.923e-04 N2(g) -1.76 1.738e-02 1.000 0.000e+00 1.651e-02 1.651e-02 @@ -2963,62 +2964,62 @@ N2(g) -1.76 1.738e-02 1.000 0.000e+00 1.651e-02 1.651e-02 Elements Molality Moles - C 1.657e-02 1.658e-02 - Ca 2.501e-03 2.502e-03 - N 1.979e-03 1.979e-03 + C 1.647e-02 1.648e-02 + Ca 2.452e-03 2.453e-03 + N 1.980e-03 1.980e-03 ----------------------------Description of solution---------------------------- pH = 6.180 Charge balance pe = -2.966 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 531 - Density (g/cm³) = 0.99754 + Specific Conductance (µS/cm, 25°C) = 532 + Density (g/cm³) = 0.99753 Volume (L) = 1.00381 - Viscosity (mPa s) = 0.89296 + Viscosity (mPa s) = 0.89378 Activity of water = 1.000 - Ionic strength (mol/kgw) = 9.175e-03 + Ionic strength (mol/kgw) = 9.223e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 6.957e-03 - Total CO2 (mol/kg) = 1.614e-02 + Total alkalinity (eq/kg) = 6.860e-03 + Total CO2 (mol/kg) = 1.604e-02 Temperature (°C) = 25.00 Pressure (atm) = 0.60 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 + Iterations = 33 Total H = 1.110692e+02 - Total O = 5.556560e+01 + Total O = 5.556535e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.210e-07 6.605e-07 -6.142 -6.180 -0.038 0.00 + H+ 7.213e-07 6.607e-07 -6.142 -6.180 -0.038 0.00 OH- 1.695e-08 1.532e-08 -7.771 -7.815 -0.044 -4.04 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.07 C(-4) 4.337e-04 CH4 4.337e-04 4.346e-04 -3.363 -3.362 0.001 35.45 -C(4) 1.614e-02 +C(4) 1.604e-02 CO2 9.180e-03 9.193e-03 -2.037 -2.037 0.001 34.43 - HCO3- 6.813e-03 6.189e-03 -2.167 -2.208 -0.042 24.64 - CaHCO3+ 1.393e-04 1.268e-04 -3.856 -3.897 -0.041 9.72 + HCO3- 6.813e-03 6.187e-03 -2.167 -2.209 -0.042 24.64 + CaHCO3+ 4.294e-05 3.905e-05 -4.367 -4.408 -0.041 122.69 (CO2)2 1.548e-06 1.551e-06 -5.810 -5.809 0.001 68.87 - CaCO3 1.183e-06 1.185e-06 -5.927 -5.926 0.001 -14.60 - CO3-2 6.455e-07 4.394e-07 -6.190 -6.357 -0.167 -3.80 -Ca 2.501e-03 - Ca+2 2.360e-03 1.605e-03 -2.627 -2.794 -0.167 -17.94 - CaHCO3+ 1.393e-04 1.268e-04 -3.856 -3.897 -0.041 9.72 - CaCO3 1.183e-06 1.185e-06 -5.927 -5.926 0.001 -14.60 - CaOH+ 4.454e-10 4.033e-10 -9.351 -9.394 -0.043 (0) + CaCO3 1.205e-06 1.207e-06 -5.919 -5.918 0.001 -14.60 + CO3-2 6.457e-07 4.392e-07 -6.190 -6.357 -0.167 -3.69 +Ca 2.452e-03 + Ca+2 2.408e-03 1.636e-03 -2.618 -2.786 -0.168 -17.94 + CaHCO3+ 4.294e-05 3.905e-05 -4.367 -4.408 -0.041 122.69 + CaCO3 1.205e-06 1.207e-06 -5.919 -5.918 0.001 -14.60 + CaOH+ 4.540e-10 4.109e-10 -9.343 -9.386 -0.043 (0) H(0) 5.262e-10 H2 2.631e-10 2.636e-10 -9.580 -9.579 0.001 28.61 N(-3) 1.956e-03 - NH4+ 1.954e-03 1.760e-03 -2.709 -2.754 -0.045 (0) + NH4+ 1.955e-03 1.761e-03 -2.709 -2.754 -0.045 (0) NH3 1.516e-06 1.519e-06 -5.819 -5.818 0.001 (0) N(0) 2.315e-05 N2 1.158e-05 1.160e-05 -4.936 -4.936 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.570 -61.614 -0.045 25.03 + NO2- 0.000e+00 0.000e+00 -61.570 -61.615 -0.045 25.03 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.711 -83.756 -0.045 29.55 O(0) 0.000e+00 @@ -3028,8 +3029,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.82 -9.15 -8.34 CaCO3 - Calcite -0.67 -9.15 -8.48 CaCO3 + Aragonite -0.81 -9.14 -8.34 CaCO3 + Calcite -0.66 -9.14 -8.48 CaCO3 CH4(g) -0.56 -3.36 -2.80 CH4 Pressure 0.3 atm, phi 0.999 CO2(g) -0.57 -2.04 -1.47 CO2 Pressure 0.3 atm, phi 0.997 H2(g) -6.48 -9.58 -3.10 H2 @@ -3074,7 +3075,7 @@ Total pressure: 1.13 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -0.26 5.504e-01 0.998 2.657e-22 5.238e-01 5.238e-01 +CH4(g) -0.26 5.504e-01 0.998 2.664e-22 5.238e-01 5.238e-01 CO2(g) -0.29 5.096e-01 0.994 2.997e-02 4.850e-01 4.550e-01 H2O(g) -1.50 3.165e-02 0.992 2.977e-02 3.012e-02 3.446e-04 N2(g) -1.46 3.459e-02 1.001 0.000e+00 3.292e-02 3.292e-02 @@ -3083,64 +3084,64 @@ N2(g) -1.46 3.459e-02 1.001 0.000e+00 3.292e-02 3.292e-02 Elements Molality Moles - C 2.718e-02 2.721e-02 - Ca 2.500e-03 2.502e-03 - N 4.158e-03 4.161e-03 + C 2.708e-02 2.710e-02 + Ca 2.451e-03 2.453e-03 + N 4.153e-03 4.157e-03 ----------------------------Description of solution---------------------------- - pH = 6.021 Charge balance - pe = -2.810 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 616 - Density (g/cm³) = 0.99775 - Volume (L) = 1.00453 - Viscosity (mPa s) = 0.89341 + pH = 6.022 Charge balance + pe = -2.811 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 614 + Density (g/cm³) = 0.99773 + Volume (L) = 1.00454 + Viscosity (mPa s) = 0.89459 Activity of water = 0.999 - Ionic strength (mol/kgw) = 1.126e-02 + Ionic strength (mol/kgw) = 1.135e-02 Mass of water (kg) = 1.001e+00 - Total alkalinity (eq/kg) = 9.111e-03 - Total CO2 (mol/kg) = 2.632e-02 + Total alkalinity (eq/kg) = 9.009e-03 + Total CO2 (mol/kg) = 2.622e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.13 Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 32 + Iterations = 35 Total H = 1.111264e+02 - Total O = 5.561047e+01 + Total O = 5.561022e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.047e-06 9.523e-07 -5.980 -6.021 -0.041 0.00 - OH- 1.187e-08 1.062e-08 -7.925 -7.974 -0.048 -4.03 + H+ 1.046e-06 9.508e-07 -5.981 -6.022 -0.041 0.00 + OH- 1.189e-08 1.064e-08 -7.925 -7.973 -0.048 -4.02 H2O 5.551e+01 9.994e-01 1.744 -0.000 0.000 18.07 -C(-4) 8.642e-04 - CH4 8.642e-04 8.664e-04 -3.063 -3.062 0.001 35.46 -C(4) 2.632e-02 +C(-4) 8.641e-04 + CH4 8.641e-04 8.664e-04 -3.063 -3.062 0.001 35.46 +C(4) 2.622e-02 CO2 1.720e-02 1.723e-02 -1.764 -1.764 0.001 34.43 - HCO3- 8.933e-03 8.044e-03 -2.049 -2.095 -0.046 24.66 - CaHCO3+ 1.738e-04 1.567e-04 -3.760 -3.805 -0.045 9.73 - (CO2)2 5.435e-06 5.449e-06 -5.265 -5.264 0.001 68.87 - CaCO3 1.014e-06 1.016e-06 -5.994 -5.993 0.001 -14.60 - CO3-2 6.027e-07 3.962e-07 -6.220 -6.402 -0.182 -3.75 -Ca 2.500e-03 - Ca+2 2.325e-03 1.527e-03 -2.634 -2.816 -0.182 -17.91 - CaHCO3+ 1.738e-04 1.567e-04 -3.760 -3.805 -0.045 9.73 - CaCO3 1.014e-06 1.016e-06 -5.994 -5.993 0.001 -14.60 - CaOH+ 2.966e-10 2.660e-10 -9.528 -9.575 -0.047 (0) + HCO3- 8.951e-03 8.057e-03 -2.048 -2.094 -0.046 24.66 + CaHCO3+ 5.413e-05 4.881e-05 -4.267 -4.311 -0.045 122.69 + (CO2)2 5.435e-06 5.450e-06 -5.265 -5.264 0.001 68.87 + CaCO3 1.047e-06 1.049e-06 -5.980 -5.979 0.001 -14.60 + CO3-2 6.054e-07 3.974e-07 -6.218 -6.401 -0.183 -3.64 +Ca 2.451e-03 + Ca+2 2.396e-03 1.572e-03 -2.621 -2.804 -0.183 -17.91 + CaHCO3+ 5.413e-05 4.881e-05 -4.267 -4.311 -0.045 122.69 + CaCO3 1.047e-06 1.049e-06 -5.980 -5.979 0.001 -14.60 + CaOH+ 3.058e-10 2.742e-10 -9.515 -9.562 -0.047 (0) H(0) 5.340e-10 H2 2.670e-10 2.677e-10 -9.574 -9.572 0.001 28.61 -N(-3) 4.112e-03 - NH4+ 4.110e-03 3.665e-03 -2.386 -2.436 -0.050 (0) +N(-3) 4.107e-03 + NH4+ 4.105e-03 3.659e-03 -2.387 -2.437 -0.050 (0) NH3 2.187e-06 2.193e-06 -5.660 -5.659 0.001 (0) N(0) 4.606e-05 N2 2.303e-05 2.309e-05 -4.638 -4.637 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.585 -61.634 -0.049 25.04 + NO2- 0.000e+00 0.000e+00 -61.584 -61.633 -0.049 25.04 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.733 -83.782 -0.049 29.56 + NO3- 0.000e+00 0.000e+00 -83.732 -83.781 -0.049 29.56 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.237 -73.236 0.001 30.40 @@ -3148,8 +3149,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.88 -9.22 -8.34 CaCO3 - Calcite -0.74 -9.22 -8.48 CaCO3 + Aragonite -0.87 -9.20 -8.34 CaCO3 + Calcite -0.72 -9.20 -8.48 CaCO3 CH4(g) -0.26 -3.06 -2.80 CH4 Pressure 0.6 atm, phi 0.998 CO2(g) -0.30 -1.76 -1.47 CO2 Pressure 0.5 atm, phi 0.994 H2(g) -6.47 -9.57 -3.10 H2 diff --git a/phreeqc3-examples/ex7.sel b/phreeqc3-examples/ex7.sel index 3e87649e..ce9b0612 100644 --- a/phreeqc3-examples/ex7.sel +++ b/phreeqc3-examples/ex7.sel @@ -1,28 +1,28 @@ sim state reaction si_CO2(g) si_CH4(g) si_N2(g) si_NH3(g) pressure total mol volume g_CO2(g) g_CH4(g) g_N2(g) g_NH3(g) 1 i_soln -99 -999.9990 -999.9990 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 1 react -99 -1.5001 -21.5524 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 2 react 1.0000e-03 -1.3544 -0.4983 -3.9804 -8.3808 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 2 react 2.0000e-03 -1.2454 -0.1973 -3.7279 -8.1825 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 2 react 3.0000e-03 -1.1582 -0.0212 -3.6047 -8.0876 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 2 react 4.0000e-03 -1.0914 -0.0069 -3.4389 -8.0244 1.1000e+00 5.0197e-04 1.1134e-02 3.7187e-05 4.5021e-04 1.6610e-07 0.0000e+00 - 2 react 8.0000e-03 -0.9098 -0.0262 -3.0143 -7.8874 1.1000e+00 2.9373e-03 6.5142e-02 3.3055e-04 2.5198e-03 2.5836e-06 0.0000e+00 - 2 react 1.6000e-02 -0.7177 -0.0600 -2.5772 -7.7536 1.1000e+00 8.3718e-03 1.8563e-01 1.4663e-03 6.6449e-03 2.0143e-05 0.0000e+00 - 2 react 3.2000e-02 -0.5499 -0.1104 -2.1263 -7.6101 1.1000e+00 2.1071e-02 4.6708e-01 5.4326e-03 1.4890e-02 1.4316e-04 0.0000e+00 - 2 react 6.4000e-02 -0.4348 -0.1673 -1.7739 -7.4984 1.1000e+00 5.0847e-02 1.1268e+00 1.7087e-02 3.1521e-02 7.7758e-04 0.0000e+00 - 2 react 1.2500e-01 -0.3738 -0.2103 -1.5956 -7.4482 1.1000e+00 1.1309e-01 2.5057e+00 4.3730e-02 6.3498e-02 2.6073e-03 0.0000e+00 - 2 react 2.5000e-01 -0.3427 -0.2370 -1.5130 -7.4286 1.1000e+00 2.4478e-01 5.4231e+00 1.0169e-01 1.2922e-01 6.8255e-03 0.0000e+00 - 2 react 5.0000e-01 -0.3277 -0.2513 -1.4759 -7.4210 1.1000e+00 5.1044e-01 1.1308e+01 2.1949e-01 2.6076e-01 1.5502e-02 0.0000e+00 - 2 react 1.0000e+00 -0.3204 -0.2586 -1.4585 -7.4178 1.1000e+00 1.0429e+00 2.3104e+01 4.5605e-01 5.2387e-01 3.2966e-02 0.0000e+00 - 3 i_gas -99 -1.5001 -21.5524 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 3 react 1.0000e-03 -1.4939 -3.2574 -4.4528 -9.5993 6.4109e-02 6.0800e-02 2.3190e+01 3.0424e-02 5.2421e-04 3.3422e-05 0.0000e+00 - 3 react 2.0000e-03 -1.4874 -2.9563 -4.1503 -9.3376 6.5180e-02 6.1814e-02 2.3190e+01 3.0880e-02 1.0486e-03 6.7072e-05 0.0000e+00 - 3 react 3.0000e-03 -1.4811 -2.7802 -3.9735 -9.1855 6.6249e-02 6.2828e-02 2.3190e+01 3.1336e-02 1.5730e-03 1.0078e-04 0.0000e+00 - 3 react 4.0000e-03 -1.4748 -2.6552 -3.8480 -9.0783 6.7318e-02 6.3843e-02 2.3190e+01 3.1792e-02 2.0975e-03 1.3452e-04 0.0000e+00 - 3 react 8.0000e-03 -1.4506 -2.3542 -3.5461 -8.8235 7.1596e-02 6.7900e-02 2.3190e+01 3.3615e-02 4.1954e-03 2.6960e-04 0.0000e+00 - 3 react 1.6000e-02 -1.4059 -2.0531 -3.2447 -8.5767 8.0152e-02 7.6015e-02 2.3190e+01 3.7262e-02 8.3911e-03 5.3973e-04 0.0000e+00 - 3 react 3.2000e-02 -1.3283 -1.7522 -2.9439 -8.3425 9.7257e-02 9.2242e-02 2.3190e+01 4.4554e-02 1.6782e-02 1.0788e-03 0.0000e+00 - 3 react 6.4000e-02 -1.2055 -1.4513 -2.6441 -8.1258 1.3145e-01 1.2468e-01 2.3190e+01 5.9133e-02 3.3559e-02 2.1518e-03 0.0000e+00 - 3 react 1.2500e-01 -1.0385 -1.1608 -2.3556 -7.9353 1.9656e-01 1.8648e-01 2.3190e+01 8.6909e-02 6.5530e-02 4.1820e-03 0.0000e+00 - 3 react 2.5000e-01 -0.8204 -0.8602 -2.0577 -7.7555 3.2979e-01 3.1300e-01 2.3190e+01 1.4379e-01 1.3102e-01 8.3071e-03 0.0000e+00 - 3 react 5.0000e-01 -0.5684 -0.5600 -1.7598 -7.5884 5.9573e-01 5.6594e-01 2.3190e+01 2.5750e-01 2.6196e-01 1.6510e-02 0.0000e+00 - 3 react 1.0000e+00 -0.2955 -0.2603 -1.4608 -7.4290 1.1262e+00 1.0719e+00 2.3190e+01 4.8499e-01 5.2384e-01 3.2919e-02 0.0000e+00 + 1 react -99 -1.5001 -21.5512 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 + 2 react 1.0000e-03 -1.3544 -0.4983 -3.9846 -8.3828 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 + 2 react 2.0000e-03 -1.2454 -0.1973 -3.7319 -8.1845 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 + 2 react 3.0000e-03 -1.1582 -0.0212 -3.6085 -8.0895 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 + 2 react 4.0000e-03 -1.0914 -0.0069 -3.4425 -8.0262 1.1000e+00 5.0196e-04 1.1134e-02 3.7187e-05 4.5021e-04 1.6474e-07 0.0000e+00 + 2 react 8.0000e-03 -0.9098 -0.0262 -3.0171 -7.8889 1.1000e+00 2.9372e-03 6.5141e-02 3.3055e-04 2.5198e-03 2.5666e-06 0.0000e+00 + 2 react 1.6000e-02 -0.7177 -0.0600 -2.5789 -7.7545 1.1000e+00 8.3716e-03 1.8562e-01 1.4663e-03 6.6448e-03 2.0062e-05 0.0000e+00 + 2 react 3.2000e-02 -0.5499 -0.1104 -2.1267 -7.6103 1.1000e+00 2.1071e-02 4.6708e-01 5.4325e-03 1.4890e-02 1.4303e-04 0.0000e+00 + 2 react 6.4000e-02 -0.4348 -0.1673 -1.7737 -7.4983 1.1000e+00 5.0849e-02 1.1269e+00 1.7088e-02 3.1521e-02 7.7795e-04 0.0000e+00 + 2 react 1.2500e-01 -0.3738 -0.2103 -1.5954 -7.4481 1.1000e+00 1.1309e-01 2.5058e+00 4.3732e-02 6.3499e-02 2.6085e-03 0.0000e+00 + 2 react 2.5000e-01 -0.3427 -0.2370 -1.5129 -7.4285 1.1000e+00 2.4478e-01 5.4232e+00 1.0169e-01 1.2922e-01 6.8273e-03 0.0000e+00 + 2 react 5.0000e-01 -0.3277 -0.2513 -1.4759 -7.4210 1.1000e+00 5.1044e-01 1.1309e+01 2.1950e-01 2.6076e-01 1.5504e-02 0.0000e+00 + 2 react 1.0000e+00 -0.3204 -0.2586 -1.4585 -7.4178 1.1000e+00 1.0429e+00 2.3104e+01 4.5606e-01 5.2388e-01 3.2968e-02 0.0000e+00 + 3 i_gas -99 -1.5001 -21.5512 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 + 3 react 1.0000e-03 -1.4939 -3.2574 -4.4529 -9.5994 6.4111e-02 6.0800e-02 2.3190e+01 3.0424e-02 5.2421e-04 3.3415e-05 0.0000e+00 + 3 react 2.0000e-03 -1.4874 -2.9563 -4.1504 -9.3376 6.5180e-02 6.1814e-02 2.3190e+01 3.0880e-02 1.0486e-03 6.7058e-05 0.0000e+00 + 3 react 3.0000e-03 -1.4811 -2.7802 -3.9735 -9.1856 6.6249e-02 6.2828e-02 2.3190e+01 3.1336e-02 1.5730e-03 1.0076e-04 0.0000e+00 + 3 react 4.0000e-03 -1.4748 -2.6552 -3.8481 -9.0783 6.7318e-02 6.3843e-02 2.3190e+01 3.1792e-02 2.0975e-03 1.3450e-04 0.0000e+00 + 3 react 8.0000e-03 -1.4506 -2.3542 -3.5462 -8.8236 7.1596e-02 6.7900e-02 2.3190e+01 3.3615e-02 4.1953e-03 2.6955e-04 0.0000e+00 + 3 react 1.6000e-02 -1.4059 -2.0531 -3.2448 -8.5767 8.0152e-02 7.6015e-02 2.3190e+01 3.7262e-02 8.3911e-03 5.3964e-04 0.0000e+00 + 3 react 3.2000e-02 -1.3283 -1.7522 -2.9440 -8.3426 9.7258e-02 9.2242e-02 2.3190e+01 4.4554e-02 1.6782e-02 1.0786e-03 0.0000e+00 + 3 react 6.4000e-02 -1.2055 -1.4513 -2.6442 -8.1259 1.3145e-01 1.2468e-01 2.3190e+01 5.9133e-02 3.3559e-02 2.1514e-03 0.0000e+00 + 3 react 1.2500e-01 -1.0385 -1.1608 -2.3557 -7.9353 1.9656e-01 1.8647e-01 2.3190e+01 8.6908e-02 6.5529e-02 4.1813e-03 0.0000e+00 + 3 react 2.5000e-01 -0.8204 -0.8602 -2.0578 -7.7555 3.2978e-01 3.1300e-01 2.3190e+01 1.4379e-01 1.3102e-01 8.3061e-03 0.0000e+00 + 3 react 5.0000e-01 -0.5684 -0.5600 -1.7598 -7.5885 5.9573e-01 5.6594e-01 2.3190e+01 2.5750e-01 2.6196e-01 1.6510e-02 0.0000e+00 + 3 react 1.0000e+00 -0.2955 -0.2603 -1.4608 -7.4289 1.1262e+00 1.0719e+00 2.3190e+01 4.8499e-01 5.2384e-01 3.2922e-02 0.0000e+00 diff --git a/phreeqc3-examples/ex8.out b/phreeqc3-examples/ex8.out index 35e0b3f0..37d31d32 100644 --- a/phreeqc3-examples/ex8.out +++ b/phreeqc3-examples/ex8.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -89,7 +90,7 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. pH = 8.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 9863 + Specific Conductance (µS/cm, 25°C) = 9916 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89481 @@ -98,7 +99,7 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.326e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.946e-16 + Electrical balance (eq) = 6.944e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110124e+02 @@ -184,7 +185,7 @@ Initial solution 2. pH = 8.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 9862 + Specific Conductance (µS/cm, 25°C) = 9913 Density (g/cm³) = 1.00266 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -193,7 +194,7 @@ Initial solution 2. Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.447e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 7.169e-16 + Electrical balance (eq) = 7.200e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110124e+02 @@ -345,7 +346,7 @@ Hfo_w pH = 5.000 Charge balance pe = 15.095 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9862 + Specific Conductance (µS/cm, 25°C) = 9915 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -356,7 +357,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -1.123e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.06 - Iterations = 17 + Iterations = 16 Total H = 1.110122e+02 Total O = 5.580609e+01 @@ -371,7 +372,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.349 -43.339 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -52.670 -52.798 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -52.670 -52.798 -0.128 18.15 NH3 0.000e+00 0.000e+00 -57.052 -57.042 0.010 24.42 N(0) 1.543e-06 N2 7.715e-07 7.895e-07 -6.113 -6.103 0.010 29.29 @@ -483,7 +484,7 @@ Hfo_w pH = 5.250 Charge balance pe = 14.809 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -509,7 +510,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.278 -43.268 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -52.884 -53.012 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -52.884 -53.012 -0.128 18.15 NH3 0.000e+00 0.000e+00 -57.017 -57.007 0.010 24.42 N(0) 1.111e-06 N2 5.553e-07 5.682e-07 -6.255 -6.246 0.010 29.29 @@ -621,7 +622,7 @@ Hfo_w pH = 5.500 Charge balance pe = 14.523 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -632,7 +633,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -8.214e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 - Iterations = 14 + Iterations = 15 Total H = 1.110123e+02 Total O = 5.580613e+01 @@ -647,7 +648,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.206 -43.196 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.099 -53.227 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.099 -53.227 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.981 -56.971 0.010 24.42 N(0) 7.992e-07 N2 3.996e-07 4.089e-07 -6.398 -6.388 0.010 29.29 @@ -759,7 +760,7 @@ Hfo_w pH = 5.750 Charge balance pe = 14.237 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -785,7 +786,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.135 -43.125 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.313 -53.441 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.313 -53.441 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.945 -56.935 0.010 24.42 N(0) 5.752e-07 N2 2.876e-07 2.943e-07 -6.541 -6.531 0.010 29.29 @@ -897,7 +898,7 @@ Hfo_w pH = 6.000 Charge balance pe = 13.952 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -908,7 +909,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -5.700e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.03 - Iterations = 14 + Iterations = 15 Total H = 1.110123e+02 Total O = 5.580616e+01 @@ -923,7 +924,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.063 -43.053 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.527 -53.655 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.527 -53.655 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.909 -56.899 0.010 24.42 N(0) 4.140e-07 N2 2.070e-07 2.118e-07 -6.684 -6.674 0.010 29.29 @@ -1035,7 +1036,7 @@ Hfo_w pH = 6.250 Charge balance pe = 13.666 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9862 + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -1061,7 +1062,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.992 -42.982 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.741 -53.869 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.741 -53.869 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.874 -56.864 0.010 24.42 N(0) 2.979e-07 N2 1.490e-07 1.524e-07 -6.827 -6.817 0.010 29.29 @@ -1173,7 +1174,7 @@ Hfo_w pH = 6.500 Charge balance pe = 13.380 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9862 + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -1199,7 +1200,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.921 -42.911 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.956 -54.084 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.956 -54.084 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.838 -56.828 0.010 24.42 N(0) 2.144e-07 N2 1.072e-07 1.097e-07 -6.970 -6.960 0.010 29.29 @@ -1311,7 +1312,7 @@ Hfo_w pH = 6.750 Charge balance pe = 13.095 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9862 + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -1337,7 +1338,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.849 -42.839 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.170 -54.298 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -54.170 -54.298 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.802 -56.792 0.010 24.42 N(0) 1.543e-07 N2 7.715e-08 7.895e-08 -7.113 -7.103 0.010 29.29 @@ -1449,7 +1450,7 @@ Hfo_w pH = 7.000 Charge balance pe = 12.809 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9862 + Specific Conductance (µS/cm, 25°C) = 9915 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -1475,7 +1476,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.778 -42.768 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.384 -54.512 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -54.384 -54.512 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.767 -56.757 0.010 24.42 N(0) 1.111e-07 N2 5.553e-08 5.682e-08 -7.256 -7.246 0.010 29.29 @@ -1587,7 +1588,7 @@ Hfo_w pH = 7.250 Charge balance pe = 12.523 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9863 + Specific Conductance (µS/cm, 25°C) = 9915 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -1613,7 +1614,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.706 -42.696 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.599 -54.727 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -54.599 -54.727 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.731 -56.721 0.010 24.42 N(0) 7.992e-08 N2 3.996e-08 4.089e-08 -7.398 -7.388 0.010 29.29 @@ -1725,7 +1726,7 @@ Hfo_w pH = 7.500 Charge balance pe = 12.237 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9863 + Specific Conductance (µS/cm, 25°C) = 9915 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89481 @@ -1751,7 +1752,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.635 -42.625 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.813 -54.941 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -54.813 -54.941 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.695 -56.685 0.010 24.42 N(0) 5.752e-08 N2 2.876e-08 2.943e-08 -7.541 -7.531 0.010 29.29 @@ -1863,7 +1864,7 @@ Hfo_w pH = 7.750 Charge balance pe = 11.952 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9863 + Specific Conductance (µS/cm, 25°C) = 9915 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89481 @@ -1889,7 +1890,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.563 -42.553 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -55.027 -55.155 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -55.027 -55.155 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.659 -56.649 0.010 24.42 N(0) 4.139e-08 N2 2.070e-08 2.118e-08 -7.684 -7.674 0.010 29.29 @@ -2001,7 +2002,7 @@ Hfo_w pH = 8.000 Charge balance pe = 11.666 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9863 + Specific Conductance (µS/cm, 25°C) = 9916 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89481 @@ -2012,7 +2013,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -1.787e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 14 + Iterations = 15 Total H = 1.110124e+02 Total O = 5.580622e+01 @@ -2027,7 +2028,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.492 -42.482 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -55.241 -55.369 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -55.241 -55.369 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.624 -56.614 0.010 24.42 N(0) 2.979e-08 N2 1.490e-08 1.524e-08 -7.827 -7.817 0.010 29.29 @@ -2173,7 +2174,7 @@ Hfo_w pH = 5.000 Charge balance pe = 15.095 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9912 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89479 @@ -2199,10 +2200,10 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.349 -43.339 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -52.670 -52.798 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -52.670 -52.798 -0.128 18.15 NH3 0.000e+00 0.000e+00 -57.052 -57.042 0.010 24.42 N(0) 1.543e-06 - N2 7.716e-07 7.896e-07 -6.113 -6.103 0.010 29.29 + N2 7.715e-07 7.895e-07 -6.113 -6.103 0.010 29.29 N(3) 2.412e-13 NO2- 2.412e-13 1.817e-13 -12.618 -12.741 -0.123 25.24 N(5) 1.000e-01 @@ -2311,7 +2312,7 @@ Hfo_w pH = 5.250 Charge balance pe = 14.809 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9860 + Specific Conductance (µS/cm, 25°C) = 9911 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89479 @@ -2322,7 +2323,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -9.689e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.05 - Iterations = 22 + Iterations = 23 Total H = 1.110122e+02 Total O = 5.580611e+01 @@ -2337,7 +2338,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.278 -43.268 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -52.884 -53.012 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -52.884 -53.012 -0.128 18.15 NH3 0.000e+00 0.000e+00 -57.017 -57.007 0.010 24.42 N(0) 1.110e-06 N2 5.552e-07 5.682e-07 -6.256 -6.246 0.010 29.29 @@ -2449,7 +2450,7 @@ Hfo_w pH = 5.500 Charge balance pe = 14.523 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9859 + Specific Conductance (µS/cm, 25°C) = 9911 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89479 @@ -2460,7 +2461,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -8.259e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 - Iterations = 22 + Iterations = 21 Total H = 1.110123e+02 Total O = 5.580613e+01 @@ -2475,19 +2476,19 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.206 -43.196 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.099 -53.227 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.098 -53.226 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.981 -56.971 0.010 24.42 -N(0) 7.992e-07 - N2 3.996e-07 4.089e-07 -6.398 -6.388 0.010 29.29 -N(3) 3.351e-13 - NO2- 3.351e-13 2.525e-13 -12.475 -12.598 -0.123 25.24 +N(0) 7.997e-07 + N2 3.998e-07 4.092e-07 -6.398 -6.388 0.010 29.29 +N(3) 3.352e-13 + NO2- 3.352e-13 2.525e-13 -12.475 -12.598 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.972e-02 Na+ 9.972e-02 7.828e-02 -1.001 -1.106 -0.105 -1.09 NaOH 2.440e-20 2.497e-20 -19.613 -19.603 0.010 (0) -O(0) 1.998e-06 - O2 9.990e-07 1.022e-06 -6.000 -5.990 0.010 30.40 +O(0) 1.997e-06 + O2 9.987e-07 1.022e-06 -6.001 -5.991 0.010 30.40 Zn 9.832e-05 Zn+2 9.830e-05 3.697e-05 -4.007 -4.432 -0.425 -24.68 ZnOH+ 1.636e-08 1.278e-08 -7.786 -7.894 -0.107 (0) @@ -2587,7 +2588,7 @@ Hfo_w pH = 5.750 Charge balance pe = 14.237 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9859 + Specific Conductance (µS/cm, 25°C) = 9911 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89479 @@ -2613,7 +2614,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.135 -43.125 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.313 -53.441 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.313 -53.441 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.945 -56.935 0.010 24.42 N(0) 5.751e-07 N2 2.876e-07 2.943e-07 -6.541 -6.531 0.010 29.29 @@ -2725,7 +2726,7 @@ Hfo_w pH = 6.000 Charge balance pe = 13.952 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9860 + Specific Conductance (µS/cm, 25°C) = 9911 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89479 @@ -2751,7 +2752,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.063 -43.053 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.527 -53.655 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.527 -53.655 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.909 -56.899 0.010 24.42 N(0) 4.139e-07 N2 2.070e-07 2.118e-07 -6.684 -6.674 0.010 29.29 @@ -2863,7 +2864,7 @@ Hfo_w pH = 6.250 Charge balance pe = 13.666 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9860 + Specific Conductance (µS/cm, 25°C) = 9912 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -2889,7 +2890,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.992 -42.982 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.741 -53.869 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.741 -53.869 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.874 -56.864 0.010 24.42 N(0) 2.979e-07 N2 1.490e-07 1.524e-07 -6.827 -6.817 0.010 29.29 @@ -3001,7 +3002,7 @@ Hfo_w pH = 6.500 Charge balance pe = 13.380 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9860 + Specific Conductance (µS/cm, 25°C) = 9912 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -3025,21 +3026,21 @@ Hfo_w OH- 4.189e-08 3.190e-08 -7.378 -7.496 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.921 -42.910 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.920 -42.910 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.955 -54.084 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.955 -54.083 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.838 -56.828 0.010 24.42 -N(0) 2.145e-07 - N2 1.072e-07 1.097e-07 -6.970 -6.960 0.010 29.29 -N(3) 6.471e-13 - NO2- 6.471e-13 4.875e-13 -12.189 -12.312 -0.123 25.24 +N(0) 2.146e-07 + N2 1.073e-07 1.098e-07 -6.969 -6.959 0.010 29.29 +N(3) 6.472e-13 + NO2- 6.472e-13 4.875e-13 -12.189 -12.312 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.978e-02 Na+ 9.978e-02 7.833e-02 -1.001 -1.106 -0.105 -1.09 NaOH 2.442e-19 2.499e-19 -18.612 -18.602 0.010 (0) -O(0) 5.359e-07 - O2 2.679e-07 2.742e-07 -6.572 -6.562 0.010 30.40 +O(0) 5.358e-07 + O2 2.679e-07 2.741e-07 -6.572 -6.562 0.010 30.40 Zn 9.075e-05 Zn+2 9.059e-05 3.407e-05 -4.043 -4.468 -0.425 -24.68 ZnOH+ 1.507e-07 1.177e-07 -6.822 -6.929 -0.107 (0) @@ -3139,7 +3140,7 @@ Hfo_w pH = 6.750 Charge balance pe = 13.094 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9912 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -3165,18 +3166,18 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.849 -42.839 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.169 -54.297 -0.128 18.17 - NH3 0.000e+00 0.000e+00 -56.802 -56.792 0.010 24.42 -N(0) 1.545e-07 - N2 7.727e-08 7.907e-08 -7.112 -7.102 0.010 29.29 + NH4+ 0.000e+00 0.000e+00 -54.169 -54.297 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.801 -56.791 0.010 24.42 +N(0) 1.546e-07 + N2 7.731e-08 7.911e-08 -7.112 -7.102 0.010 29.29 N(3) 7.630e-13 - NO2- 7.630e-13 5.748e-13 -12.117 -12.240 -0.123 25.24 + NO2- 7.630e-13 5.749e-13 -12.117 -12.240 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.980e-02 Na+ 9.980e-02 7.835e-02 -1.001 -1.106 -0.105 -1.09 NaOH 4.343e-19 4.444e-19 -18.362 -18.352 0.010 (0) -O(0) 3.855e-07 +O(0) 3.854e-07 O2 1.927e-07 1.972e-07 -6.715 -6.705 0.010 30.40 Zn 8.484e-05 Zn+2 8.458e-05 3.181e-05 -4.073 -4.497 -0.425 -24.68 @@ -3277,7 +3278,7 @@ Hfo_w pH = 7.000 Charge balance pe = 12.809 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9913 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -3303,7 +3304,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.778 -42.768 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.384 -54.512 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -54.384 -54.512 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.767 -56.757 0.010 24.42 N(0) 1.110e-07 N2 5.552e-08 5.682e-08 -7.256 -7.246 0.010 29.29 @@ -3415,7 +3416,7 @@ Hfo_w pH = 7.250 Charge balance pe = 12.523 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9913 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -3426,7 +3427,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -2.512e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 23 + Iterations = 25 Total H = 1.110125e+02 Total O = 5.580627e+01 @@ -3441,19 +3442,19 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.706 -42.696 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.598 -54.727 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -54.599 -54.727 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.731 -56.721 0.010 24.42 -N(0) 7.993e-08 - N2 3.997e-08 4.090e-08 -7.398 -7.388 0.010 29.29 +N(0) 7.992e-08 + N2 3.996e-08 4.089e-08 -7.398 -7.388 0.010 29.29 N(3) 1.060e-12 - NO2- 1.060e-12 7.985e-13 -11.975 -12.098 -0.123 25.24 + NO2- 1.060e-12 7.984e-13 -11.975 -12.098 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.985e-02 Na+ 9.985e-02 7.839e-02 -1.001 -1.106 -0.105 -1.09 NaOH 1.374e-18 1.406e-18 -17.862 -17.852 0.010 (0) O(0) 1.998e-07 - O2 9.989e-08 1.022e-07 -7.000 -6.990 0.010 30.40 + O2 9.990e-08 1.022e-07 -7.000 -6.990 0.010 30.40 Zn 6.248e-05 Zn+2 6.181e-05 2.325e-05 -4.209 -4.634 -0.425 -24.68 ZnOH+ 5.783e-07 4.517e-07 -6.238 -6.345 -0.107 (0) @@ -3553,7 +3554,7 @@ Hfo_w pH = 7.500 Charge balance pe = 12.237 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9913 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -3579,10 +3580,10 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.635 -42.625 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.812 -54.940 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -54.812 -54.940 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.695 -56.685 0.010 24.42 -N(0) 5.760e-08 - N2 2.880e-08 2.947e-08 -7.541 -7.531 0.010 29.29 +N(0) 5.759e-08 + N2 2.879e-08 2.947e-08 -7.541 -7.531 0.010 29.29 N(3) 1.250e-12 NO2- 1.250e-12 9.414e-13 -11.903 -12.026 -0.123 25.24 N(5) 1.000e-01 @@ -3591,7 +3592,7 @@ Na 9.988e-02 Na+ 9.988e-02 7.841e-02 -1.001 -1.106 -0.105 -1.09 NaOH 2.444e-18 2.501e-18 -17.612 -17.602 0.010 (0) O(0) 1.437e-07 - O2 7.185e-08 7.353e-08 -7.144 -7.134 0.010 30.40 + O2 7.186e-08 7.353e-08 -7.144 -7.134 0.010 30.40 Zn 4.944e-05 Zn+2 4.841e-05 1.821e-05 -4.315 -4.740 -0.425 -24.68 ZnOH+ 8.055e-07 6.292e-07 -6.094 -6.201 -0.107 (0) @@ -3690,8 +3691,8 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 7.750 Charge balance - pe = 11.951 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9862 + pe = 11.952 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -3702,7 +3703,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -2.080e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 23 + Iterations = 25 Total H = 1.110126e+02 Total O = 5.580632e+01 @@ -3717,19 +3718,19 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.563 -42.553 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -55.025 -55.153 -0.128 18.17 - NH3 0.000e+00 0.000e+00 -56.657 -56.647 0.010 24.42 -N(0) 4.167e-08 - N2 2.083e-08 2.132e-08 -7.681 -7.671 0.010 29.29 -N(3) 1.475e-12 - NO2- 1.475e-12 1.111e-12 -11.831 -11.954 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -55.027 -55.155 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.659 -56.649 0.010 24.42 +N(0) 4.139e-08 + N2 2.070e-08 2.118e-08 -7.684 -7.674 0.010 29.29 +N(3) 1.473e-12 + NO2- 1.473e-12 1.109e-12 -11.832 -11.955 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.991e-02 Na+ 9.991e-02 7.844e-02 -1.000 -1.105 -0.105 -1.09 NaOH 4.348e-18 4.449e-18 -17.362 -17.352 0.010 (0) -O(0) 1.032e-07 - O2 5.161e-08 5.281e-08 -7.287 -7.277 0.010 30.40 +O(0) 1.035e-07 + O2 5.174e-08 5.295e-08 -7.286 -7.276 0.010 30.40 Zn 3.752e-05 Zn+2 3.594e-05 1.352e-05 -4.444 -4.869 -0.425 -24.68 ZnOH+ 1.063e-06 8.307e-07 -5.973 -6.081 -0.107 (0) @@ -3745,7 +3746,7 @@ Zn 3.752e-05 H2(g) -39.45 -42.55 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O N2(g) -4.50 -7.67 -3.18 N2 - NH3(g) -58.44 -56.65 1.80 NH3 + NH3(g) -58.45 -56.65 1.80 NH3 O2(g) -4.38 -7.28 -2.89 O2 Zn(OH)2(e) -0.87 10.63 11.50 Zn(OH)2 @@ -3829,7 +3830,7 @@ Hfo_w pH = 8.000 Charge balance pe = 11.666 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9862 + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -3840,7 +3841,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -1.854e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 25 + Iterations = 24 Total H = 1.110127e+02 Total O = 5.580635e+01 @@ -3855,7 +3856,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.492 -42.482 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -55.241 -55.369 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -55.241 -55.369 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.624 -56.614 0.010 24.42 N(0) 2.979e-08 N2 1.490e-08 1.524e-08 -7.827 -7.817 0.010 29.29 @@ -3866,8 +3867,8 @@ N(5) 1.000e-01 Na 9.993e-02 Na+ 9.993e-02 7.845e-02 -1.000 -1.105 -0.105 -1.09 NaOH 7.734e-18 7.914e-18 -17.112 -17.102 0.010 (0) -O(0) 7.448e-08 - O2 3.724e-08 3.811e-08 -7.429 -7.419 0.010 30.40 +O(0) 7.447e-08 + O2 3.724e-08 3.810e-08 -7.429 -7.419 0.010 30.40 Zn 2.762e-05 Zn+2 2.514e-05 9.458e-06 -4.600 -5.024 -0.425 -24.68 ZnOH+ 1.323e-06 1.033e-06 -5.878 -5.986 -0.107 (0) diff --git a/phreeqc3-examples/ex8.sel b/phreeqc3-examples/ex8.sel index 133aaa03..0ddfff4f 100644 --- a/phreeqc3-examples/ex8.sel +++ b/phreeqc3-examples/ex8.sel @@ -12,16 +12,16 @@ 15 react 1 -99 0 1 7.5 12.2374 -99 25.000 3.80557e-07 0.0999953 1 -1.01328e-05 -0.00506665 1.1918e-09 4.0447e-09 9.4738e-08 16 react 1 -99 0 1 7.75 11.9517 -99 25.000 7.23295e-07 0.0999982 1 -4.96214e-06 -0.00248112 4.2167e-10 4.0771e-09 9.5483e-08 17 react 1 -99 0 1 8 11.666 -99 25.000 1.3124e-06 0.100001 1 -1.7871e-08 -8.9354e-06 1.4817e-10 4.0887e-09 9.5749e-08 - 20 react 2 -99 0 1 5 15.0945 -99 25.000 -1.21096e-05 0.100042 0.999998 -0.000112354 -0.0562096 9.9686e-05 1.3167e-08 2.9577e-07 + 20 react 2 -99 0 1 5 15.0946 -99 25.000 -1.21096e-05 0.100042 0.999998 -0.000112354 -0.0562096 9.9686e-05 1.3167e-08 2.9577e-07 21 react 2 -99 0 1 5.25 14.8088 -99 25.000 -6.80176e-06 0.10005 0.999998 -9.68903e-05 -0.0484692 9.9221e-05 3.6026e-08 7.3398e-07 22 react 2 -99 0 1 5.5 14.5231 -99 25.000 -3.81085e-06 0.100056 0.999998 -8.25933e-05 -0.041314 9.8302e-05 9.7147e-08 1.5849e-06 23 react 2 -99 0 1 5.75 14.2374 -99 25.000 -2.1182e-06 0.100062 0.999999 -6.96993e-05 -0.034862 9.6949e-05 2.5852e-07 2.7639e-06 - 24 react 2 -99 0 1 6 13.9517 -99 25.000 -1.14729e-06 0.100066 0.999999 -5.82071e-05 -0.0291122 9.5439e-05 6.8198e-07 3.8284e-06 + 24 react 2 -99 0 1 6 13.9517 -99 25.000 -1.14729e-06 0.100066 0.999999 -5.82072e-05 -0.0291122 9.5439e-05 6.8198e-07 3.8284e-06 25 react 2 -99 0 1 6.25 13.666 -99 25.000 -5.67452e-07 0.100069 0.999999 -4.8109e-05 -0.0240603 9.3655e-05 1.7788e-06 4.4775e-06 26 react 2 -99 0 1 6.5 13.3802 -99 25.000 -1.82222e-07 0.100071 1 -3.95664e-05 -0.0197871 9.0590e-05 4.4736e-06 4.7812e-06 27 react 2 -99 0 1 6.75 13.0945 -99 25.000 1.33839e-07 0.100068 1 -3.28749e-05 -0.0164401 8.4578e-05 1.0254e-05 4.9050e-06 28 react 2 -99 0 1 7 12.8088 -99 25.000 4.7235e-07 0.10006 1 -2.81879e-05 -0.0140959 7.4599e-05 2.0021e-05 4.9534e-06 29 react 2 -99 0 1 7.25 12.5231 -99 25.000 9.25371e-07 0.100049 1 -2.51184e-05 -0.0125608 6.1808e-05 3.2551e-05 4.9732e-06 30 react 2 -99 0 1 7.5 12.2374 -99 25.000 1.63108e-06 0.100037 1 -2.28778e-05 -0.0114402 4.8410e-05 4.5580e-05 4.9823e-06 - 31 react 2 -99 0 1 7.75 11.9514 -99 25.000 2.83165e-06 0.100026 1 -2.08025e-05 -0.0104023 3.5937e-05 5.7490e-05 4.9870e-06 + 31 react 2 -99 0 1 7.75 11.9517 -99 25.000 2.83165e-06 0.100026 1 -2.08025e-05 -0.0104023 3.5937e-05 5.7490e-05 4.9870e-06 32 react 2 -99 0 1 8 11.666 -99 25.000 4.94809e-06 0.100017 1 -1.85413e-05 -0.00927139 2.5143e-05 6.7388e-05 4.9897e-06 diff --git a/phreeqc3-examples/ex9.out b/phreeqc3-examples/ex9.out index 23b36fe8..349afdd3 100644 --- a/phreeqc3-examples/ex9.out +++ b/phreeqc3-examples/ex9.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS RATES END ------------------------------------ @@ -178,7 +179,7 @@ Initial solution 1. pH = 7.000 pe = 13.629 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 1192 + Specific Conductance (µS/cm, 25°C) = 1190 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 Viscosity (mPa s) = 0.89124 @@ -187,7 +188,7 @@ Initial solution 1. Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.310e-07 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.834e-18 + Electrical balance (eq) = 5.948e-19 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110124e+02 @@ -270,7 +271,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -2.669e-07 pH = 6.045 Charge balance pe = 14.585 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1192 + Specific Conductance (µS/cm, 25°C) = 1191 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 Viscosity (mPa s) = 0.89124 @@ -279,7 +280,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -2.669e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.298e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 8.157e-16 + Electrical balance (eq) = 8.244e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 208 (195 overall) Total H = 1.110124e+02 @@ -371,7 +372,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -1.858e-07 pH = 5.807 Charge balance pe = 14.823 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1192 + Specific Conductance (µS/cm, 25°C) = 1191 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 Viscosity (mPa s) = 0.89124 @@ -380,7 +381,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -1.858e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.041e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 8.186e-16 + Electrical balance (eq) = 8.307e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 27 Total H = 1.110124e+02 @@ -472,7 +473,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.073e-07 pH = 5.522 Charge balance pe = 15.107 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1193 + Specific Conductance (µS/cm, 25°C) = 1192 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 Viscosity (mPa s) = 0.89124 @@ -481,7 +482,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.073e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 3.670e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 9.113e-16 + Electrical balance (eq) = 9.165e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 67 Total H = 1.110124e+02 @@ -573,7 +574,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.928e-07 pH = 5.324 Charge balance pe = 15.305 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1194 + Specific Conductance (µS/cm, 25°C) = 1192 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 Viscosity (mPa s) = 0.89124 @@ -582,7 +583,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.928e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 5.641e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.893e-15 + Electrical balance (eq) = 6.899e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 26 Total H = 1.110124e+02 @@ -674,7 +675,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.731e-07 pH = 5.195 Charge balance pe = 15.435 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1194 + Specific Conductance (µS/cm, 25°C) = 1193 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 Viscosity (mPa s) = 0.89124 @@ -775,7 +776,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.071e-07 pH = 5.072 Charge balance pe = 15.557 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1195 + Specific Conductance (µS/cm, 25°C) = 1194 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 Viscosity (mPa s) = 0.89124 @@ -784,7 +785,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.071e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 9.960e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.916e-15 + Electrical balance (eq) = 6.927e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 24 Total H = 1.110124e+02 @@ -876,7 +877,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.211e-07 pH = 4.976 Charge balance pe = 15.653 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1196 + Specific Conductance (µS/cm, 25°C) = 1194 Density (g/cm³) = 0.99747 Volume (L) = 1.00314 Viscosity (mPa s) = 0.89124 @@ -885,7 +886,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.211e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.244e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.904e-15 + Electrical balance (eq) = 6.924e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 23 Total H = 1.110124e+02 @@ -977,7 +978,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -7.790e-07 pH = 4.882 Charge balance pe = 15.748 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1197 + Specific Conductance (µS/cm, 25°C) = 1195 Density (g/cm³) = 0.99747 Volume (L) = 1.00314 Viscosity (mPa s) = 0.89124 @@ -986,7 +987,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -7.790e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.556e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.902e-15 + Electrical balance (eq) = 6.927e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 23 Total H = 1.110124e+02 @@ -1078,7 +1079,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -5.440e-07 pH = 4.827 Charge balance pe = 15.803 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1197 + Specific Conductance (µS/cm, 25°C) = 1196 Density (g/cm³) = 0.99747 Volume (L) = 1.00314 Viscosity (mPa s) = 0.89124 @@ -1087,7 +1088,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -5.440e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.774e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.314e-14 + Electrical balance (eq) = 5.316e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 20 Total H = 1.110124e+02 @@ -1179,7 +1180,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.315e-07 pH = 4.788 Charge balance pe = 15.842 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1198 + Specific Conductance (µS/cm, 25°C) = 1197 Density (g/cm³) = 0.99747 Volume (L) = 1.00314 Viscosity (mPa s) = 0.89124 @@ -1188,7 +1189,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.315e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.946e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.623e-14 + Electrical balance (eq) = 5.627e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 20 Total H = 1.110124e+02 @@ -1280,7 +1281,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -3.633e-07 pH = 4.758 Charge balance pe = 15.871 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1198 + Specific Conductance (µS/cm, 25°C) = 1197 Density (g/cm³) = 0.99747 Volume (L) = 1.00314 Viscosity (mPa s) = 0.89124 @@ -1289,7 +1290,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -3.633e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.091e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.664e-14 + Electrical balance (eq) = 5.669e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 20 Total H = 1.110124e+02 diff --git a/phreeqc3-examples/radial b/phreeqc3-examples/radial index decf7574..813fce04 100644 --- a/phreeqc3-examples/radial +++ b/phreeqc3-examples/radial @@ -9,137 +9,137 @@ SOLUTION 4; -water 1.3963e-03 # cells in Opalinus Clay... -SOLUTION 5; -water 7.7322e-05 +SOLUTION 5; -water 7.2695e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 5; -equil 5; - Su_ 3.8224e-04 5.2840e+05 6.6087e-04 + Su_ 5.4363e-04 5.2840e+05 6.6087e-04 Su_ii 7.4371e-06 Su_fes 6.9841e-07 - -Donnan 1.6711e-09 + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 5; -equil 5; - X 4.6718e-04 + X 5.8893e-04 -SOLUTION 6; -water 9.5113e-05 +SOLUTION 6; -water 8.9423e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 6; -equil 6; - Su_ 4.7019e-04 5.2840e+05 8.1293e-04 + Su_ 6.6871e-04 5.2840e+05 8.1293e-04 Su_ii 9.1484e-06 Su_fes 8.5911e-07 - -Donnan 1.6711e-09 + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 6; -equil 6; - X 5.7468e-04 + X 7.2444e-04 -SOLUTION 7; -water 1.1291e-04 +SOLUTION 7; -water 1.0615e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 7; -equil 7; - Su_ 5.5814e-04 5.2840e+05 9.6500e-04 + Su_ 7.9380e-04 5.2840e+05 9.6500e-04 Su_ii 1.0860e-05 Su_fes 1.0198e-06 - -Donnan 1.6711e-09 + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 7; -equil 7; - X 6.8218e-04 + X 8.5995e-04 -SOLUTION 8; -water 1.3070e-04 +SOLUTION 8; -water 1.2288e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 8; -equil 8; - Su_ 6.4610e-04 5.2840e+05 1.1171e-03 + Su_ 9.1889e-04 5.2840e+05 1.1171e-03 Su_ii 1.2571e-05 Su_fes 1.1805e-06 - -Donnan 1.6711e-09 + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 8; -equil 8; - X 7.8967e-04 + X 9.9547e-04 -SOLUTION 9; -water 1.4849e-04 +SOLUTION 9; -water 1.3960e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 9; -equil 9; - Su_ 7.3405e-04 5.2840e+05 1.2691e-03 + Su_ 1.0440e-03 5.2840e+05 1.2691e-03 Su_ii 1.4282e-05 Su_fes 1.3412e-06 - -Donnan 1.6711e-09 + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 9; -equil 9; - X 8.9717e-04 + X 1.1310e-03 -SOLUTION 10; -water 1.6628e-04 +SOLUTION 10; -water 1.5633e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 10; -equil 10; - Su_ 8.2200e-04 5.2840e+05 1.4212e-03 + Su_ 1.1691e-03 5.2840e+05 1.4212e-03 Su_ii 1.5994e-05 Su_fes 1.5019e-06 - -Donnan 1.6711e-09 + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 10; -equil 10; - X 1.0047e-03 + X 1.2665e-03 -SOLUTION 11; -water 1.8407e-04 +SOLUTION 11; -water 1.7306e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 11; -equil 11; - Su_ 9.0996e-04 5.2840e+05 1.5733e-03 + Su_ 1.2942e-03 5.2840e+05 1.5733e-03 Su_ii 1.7705e-05 Su_fes 1.6626e-06 - -Donnan 1.6711e-09 + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 11; -equil 11; - X 1.1122e-03 + X 1.4020e-03 -SOLUTION 12; -water 2.0186e-04 +SOLUTION 12; -water 1.8979e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 12; -equil 12; - Su_ 9.9791e-04 5.2840e+05 1.7253e-03 + Su_ 1.4192e-03 5.2840e+05 1.7253e-03 Su_ii 1.9416e-05 Su_fes 1.8233e-06 - -Donnan 1.6711e-09 + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 12; -equil 12; - X 1.2197e-03 + X 1.5375e-03 -SOLUTION 13; -water 2.1966e-04 +SOLUTION 13; -water 2.0651e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 13; -equil 13; - Su_ 1.0859e-03 5.2840e+05 1.8774e-03 + Su_ 1.5443e-03 5.2840e+05 1.8774e-03 Su_ii 2.1127e-05 Su_fes 1.9840e-06 - -Donnan 1.6711e-09 + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 13; -equil 13; - X 1.3272e-03 + X 1.6730e-03 -SOLUTION 14; -water 2.3745e-04 +SOLUTION 14; -water 2.2324e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 14; -equil 14; - Su_ 1.1738e-03 5.2840e+05 2.0295e-03 + Su_ 1.6694e-03 5.2840e+05 2.0295e-03 Su_ii 2.2839e-05 Su_fes 2.1448e-06 - -Donnan 1.6711e-09 + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 14; -equil 14; - X 1.4347e-03 + X 1.8085e-03 -SOLUTION 15; -water 2.5524e-04 +SOLUTION 15; -water 2.3997e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 15; -equil 15; - Su_ 1.2618e-03 5.2840e+05 2.1815e-03 + Su_ 1.7945e-03 5.2840e+05 2.1815e-03 Su_ii 2.4550e-05 Su_fes 2.3055e-06 - -Donnan 1.6711e-09 + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 15; -equil 15; - X 1.5422e-03 + X 1.9441e-03 # tracer-out filter cells... @@ -170,18 +170,18 @@ END # mixing factors... MIX 3; 4 6.6932e-04 -MIX 4; 5 1.9640e-04 -MIX 5; 6 1.5725e-04 -MIX 6; 7 1.8971e-04 -MIX 7; 8 2.2216e-04 -MIX 8; 9 2.5461e-04 -MIX 9; 10 2.8706e-04 -MIX 10; 11 3.1951e-04 -MIX 11; 12 3.5196e-04 -MIX 12; 13 3.8441e-04 -MIX 13; 14 4.1686e-04 -MIX 14; 15 4.4931e-04 -MIX 15; 16 7.7653e-04 +MIX 4; 5 1.9357e-04 +MIX 5; 6 1.5439e-04 +MIX 6; 7 1.8625e-04 +MIX 7; 8 2.1811e-04 +MIX 8; 9 2.4997e-04 +MIX 9; 10 2.8183e-04 +MIX 10; 11 3.1369e-04 +MIX 11; 12 3.4555e-04 +MIX 12; 13 3.7741e-04 +MIX 13; 14 4.0927e-04 +MIX 14; 15 4.4113e-04 +MIX 15; 16 7.6509e-04 MIX 16; 17 4.2533e-03 END TRANSPORT @@ -189,8 +189,8 @@ TRANSPORT -shifts 1120 -flow diff; -cells 1; -bcon 1 2; -stag 15 -time 1.5429e+03 - -multi_D true 2.5000e-09 1.5900e-01 0.0 9.9000e-01 - -interlayer_D false 0.001 0.0 1300 + -multi_D true 2.5000e-09 1.5900e-01 0.0 1 + -interlayer_D true 0.001 0.0 1300 -punch_fr 14; -punch_c 17 USER_GRAPH 1 Example 21 @@ -206,42 +206,4 @@ USER_GRAPH 1 Example 21 50 plot_xy days - dt / (2 * 3600 * 24), (a - get(2)) / dt / 8.2988e-03, color = Green, symbol = None 60 put(a, 2) 70 plot_xy days, equi("A_Hto"), y_axis = 2, color = Red, symbol = None -END -TRANSPORT - -shifts 0 - -punch_fr 2; -punch_c 3-17 -USER_GRAPH 1; -detach -USER_GRAPH 5 Example 21 - - -chart_title "Hto Concentration Profile: Filter1 | Clay | Filter2" - -axis_scale x_axis 0 2.2220e+01 - -axis_scale y_axis 0 1.2e-9 - -axis_scale sy_axis 0 1.2e-9 - -axis_titles "DISTANCE, IN MILLIMETERS" "FREE PORE-WATER MOLALITY" "TOTAL MOLALITY" - -headings Hto_free Hto_tot - -plot_concentration_vs x - -initial_solutions true - 10 IF cell_no = 3 THEN xval = 0 ELSE xval = get(14) - 20 IF (1 = 0 OR cell_no > 4) THEN GOTO 60 - 30 IF (cell_no = 4) THEN xval = xval + 0.5 * 1.8000e-03 - 40 IF (cell_no > 4 AND cell_no < 5) THEN xval = xval + 1.8000e-03 - 50 GOTO 200 - 60 IF (cell_no = 5) THEN xval = xval + 0.5 * 1.8000e-03 + 0.5 * 1.7109e-03 - 70 IF (cell_no > 5 AND cell_no < 16) THEN xval = xval + 1.7109e-03 ELSE GOTO 90 - 80 GOTO 200 - 90 IF (cell_no = 16) THEN xval = xval + 0.5 * 1.7109e-03 + 0.5 * 1.6000e-03 - 100 IF (cell_no > 16 AND cell_no <= 16) THEN xval = xval + 1.6000e-03 - 110 IF (cell_no = 17) THEN xval = xval + 0.5 * 1.6000e-03 - 200 y1 = TOT("Hto") - 210 plot_xy xval * 1e3, y1, color = Blue, symbol = Plus - 220 IF cell_no = 3 THEN put(y1, 15) - 230 IF (cell_no < 5 OR cell_no > 15) THEN GOTO 400 - 240 y2 = SYS("Hto") / (tot("water") + edl("water")) - 250 REM y2 = y2 / 1.4281e+01# conc / kg solid - 260 plot_xy xval * 1e3, y2, symbol = Circle, y_axis = 2 - 270 IF (cell_no > 6) THEN GOTO 400 - 280 IF 1 THEN plot_xy 1.8000e+00, get(15), color = Black, symbol = None - 290 IF 1 THEN plot_xy 2.0620e+01, get(15), color = Black, symbol = None - 300 put(0, 15) - 400 put(xval, 14) END diff --git a/poet/test/testPhreeqcEngine.cpp b/poet/test/testPhreeqcEngine.cpp index 155e6c74..2972aa93 100644 --- a/poet/test/testPhreeqcEngine.cpp +++ b/poet/test/testPhreeqcEngine.cpp @@ -29,8 +29,8 @@ POET_TEST(PhreeqcEngineStep) { EXPECT_NO_THROW(engine.runCell(cell_values, 100)); for (std::size_t i = 0; i < cell_values.size(); ++i) { - // ignore H(0) and O(0) - if (i == 4 || i == 5) { + // ignore Charge, H(0) and O(0) + if (i >= 3 && i <= 5) { continue; } EXPECT_NEAR(cell_values[i], base_test::expected_values[i], diff --git a/src/IPhreeqc.cpp b/src/IPhreeqc.cpp index f244839c..27ace0a5 100644 --- a/src/IPhreeqc.cpp +++ b/src/IPhreeqc.cpp @@ -892,7 +892,7 @@ void IPhreeqc::SetBasicCallback(double (*fcn)(double x1, double x2, const char * this->PhreeqcPtr->register_basic_callback(fcn, cookie1); } #ifdef IPHREEQC_NO_FORTRAN_MODULE -void IPhreeqc::SetBasicFortranCallback(double (*fcn)(double *x1, double *x2, char *str, size_t l)) +void IPhreeqc::SetBasicFortranCallback(double (*fcn)(double *x1, double *x2, const char *str, size_t l)) { this->PhreeqcPtr->register_fortran_basic_callback(fcn); } @@ -1017,8 +1017,13 @@ int IPhreeqc::test_db(void) { std::ostringstream oss; int sn = this->PhreeqcPtr->next_user_number(Keywords::KEY_SOLUTION); - oss << "SOLUTION " << sn <<"; DELETE; -solution " << sn; - + //oss << "SOLUTION " << sn <<"; DELETE; -solution " << sn; + oss << "SOLUTION " << sn << ";"; + if (this->PhreeqcPtr->llnl_temp.size() > 0) + { + oss << "-temp " << this->PhreeqcPtr->llnl_temp[0] << ";"; + } + oss << "DELETE; -solution " << sn; this->PhreeqcPtr->set_reading_database(TRUE); int n = this->RunString(oss.str().c_str()); this->PhreeqcPtr->set_reading_database(FALSE); diff --git a/src/IPhreeqc.h b/src/IPhreeqc.h index 4c04c426..6be24c24 100644 --- a/src/IPhreeqc.h +++ b/src/IPhreeqc.h @@ -6,6 +6,10 @@ #include "Var.h" +#ifdef IPHREEQC_NO_FORTRAN_MODULE +#include +#endif + /** * @mainpage IPhreeqc Library Documentation (@PHREEQC_VER@-@REVISION_SVN@) * @@ -1707,7 +1711,7 @@ Headings * @include ic */ #ifdef IPHREEQC_NO_FORTRAN_MODULE - IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, char *str, size_t l)); + IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)); #else IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, const char *str, int l)); #endif diff --git a/src/IPhreeqc.hpp b/src/IPhreeqc.hpp index b80419ab..36c3a6ae 100644 --- a/src/IPhreeqc.hpp +++ b/src/IPhreeqc.hpp @@ -718,7 +718,7 @@ public: * @see SetBasicCallback */ #ifdef IPHREEQC_NO_FORTRAN_MODULE - void SetBasicFortranCallback(double (*fcn)(double *x1, double *x2, char *str, size_t l)); + void SetBasicFortranCallback(double (*fcn)(double *x1, double *x2, const char *str, size_t l)); #else void SetBasicFortranCallback(double (*fcn)(double *x1, double *x2, const char *str, int l)); #endif diff --git a/src/IPhreeqcLib.cpp b/src/IPhreeqcLib.cpp index b57755ab..d0a3f0ba 100644 --- a/src/IPhreeqcLib.cpp +++ b/src/IPhreeqcLib.cpp @@ -802,7 +802,7 @@ SetBasicCallback(int id, double (*fcn)(double x1, double x2, const char *str, vo #if !defined(R_SO) #ifdef IPHREEQC_NO_FORTRAN_MODULE IPQ_RESULT -SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, char *str, size_t l)) +SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)) { IPhreeqc* IPhreeqcPtr = IPhreeqcLib::GetInstance(id); if (IPhreeqcPtr) diff --git a/src/IPhreeqc_interface_F.cpp b/src/IPhreeqc_interface_F.cpp index e25590fb..4063d748 100644 --- a/src/IPhreeqc_interface_F.cpp +++ b/src/IPhreeqc_interface_F.cpp @@ -414,7 +414,7 @@ RunStringF(int *id, char* input) } #ifdef IPHREEQC_NO_FORTRAN_MODULE IPQ_RESULT -SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, char *str, size_t l)) +SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)) { return ::SetBasicFortranCallback(*id, fcn); } diff --git a/src/IPhreeqc_interface_F.h b/src/IPhreeqc_interface_F.h index d3fe29ec..3e77604f 100644 --- a/src/IPhreeqc_interface_F.h +++ b/src/IPhreeqc_interface_F.h @@ -133,7 +133,7 @@ extern "C" { IPQ_DLL_EXPORT int RunFileF(int *id, char* filename); IPQ_DLL_EXPORT int RunStringF(int *id, char* input); #ifdef IPHREEQC_NO_FORTRAN_MODULE - IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, char *str, size_t l)); + IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)); #else IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, const char *str, int l)); #endif diff --git a/src/README.Fortran b/src/README.Fortran index 408ac795..bb5ca2dd 100644 --- a/src/README.Fortran +++ b/src/README.Fortran @@ -1,17 +1,17 @@ -In Fortran, you will need to include the source file IPhreeqc_interface.F90 -in your project files. This file defines the IPhreeqc Fortran module. This -is the preferred method to use IPhreeqc from a Fortran program. - - USE IPhreeqc - INTEGER(KIND=4) id - id = CreateIPhreeqc() - -Use of the include files IPhreeqc.f.inc and IPhreeqc.f90.inc has been -deprecated. To continue using them you must unset IPHREEQC_ENABLE_MODULE in -CMake builds or use the --disable-fortran-module in configure builds. If -either of these settings are used the Fortran include files will be -installed to the include directory. - - INCLUDE 'IPhreeqc.f90.inc' - INTEGER(KIND=4) id - id = CreateIPhreeqc() +In Fortran, you will need to include the source file IPhreeqc_interface.F90 +in your project files. This file defines the IPhreeqc Fortran module. This +is the preferred method to use IPhreeqc from a Fortran program. + + USE IPhreeqc + INTEGER(KIND=4) id + id = CreateIPhreeqc() + +Use of the include files IPhreeqc.f.inc and IPhreeqc.f90.inc has been +deprecated. To continue using them you must unset IPHREEQC_ENABLE_MODULE in +CMake builds or use the --disable-fortran-module in configure builds. If +either of these settings are used the Fortran include files will be +installed to the include directory. + + INCLUDE 'IPhreeqc.f90.inc' + INTEGER(KIND=4) id + id = CreateIPhreeqc() diff --git a/src/fimpl.h b/src/fimpl.h index de9eb214..eddf5a45 100644 --- a/src/fimpl.h +++ b/src/fimpl.h @@ -208,7 +208,7 @@ IPQ_DLL_EXPORT int IPQ_DECL IPQ_CASE_UND(runstring, RUNSTRING, runstring_, RUNS { return RunStringF(id, input, len); } -IPQ_DLL_EXPORT int IPQ_DECL IPQ_CASE_UND(setbasicfortrancallback, SETBASICFORTRANCALLBACK, setbasicfortrancallback_, SETBASICFORTRANCALLBACK_)(int *id, double (*fcn)(double *x1, double *x2, char *str, size_t l)) +IPQ_DLL_EXPORT int IPQ_DECL IPQ_CASE_UND(setbasicfortrancallback, SETBASICFORTRANCALLBACK, setbasicfortrancallback_, SETBASICFORTRANCALLBACK_)(int *id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)) { return SetBasicFortranCallbackF(id, fcn); } diff --git a/src/fwrap.cpp b/src/fwrap.cpp index bdec8e5a..6903c4f8 100644 --- a/src/fwrap.cpp +++ b/src/fwrap.cpp @@ -482,7 +482,7 @@ RunStringF(int *id, char* input, size_t input_length) } IPQ_RESULT -SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, char *str, size_t l)) +SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)) { return ::SetBasicFortranCallback(*id, fcn); } diff --git a/src/fwrap.h b/src/fwrap.h index c95758d0..b4449f30 100644 --- a/src/fwrap.h +++ b/src/fwrap.h @@ -135,7 +135,7 @@ extern "C" { int RunAccumulatedF(int *id); int RunFileF(int *id, char* filename, size_t filename_length); int RunStringF(int *id, char* input, size_t input_length); - IPQ_RESULT SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, char *str, size_t l)); + IPQ_RESULT SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)); IPQ_RESULT SetCurrentSelectedOutputUserNumberF(int *id, int *n); IPQ_RESULT SetDumpFileNameF(int *id, char* fname, size_t fname_length); IPQ_RESULT SetDumpFileOnF(int *id, int* dump_on); diff --git a/src/phreeqcpp/PBasic.cpp b/src/phreeqcpp/PBasic.cpp index 86c60359..0b7b68dc 100644 --- a/src/phreeqcpp/PBasic.cpp +++ b/src/phreeqcpp/PBasic.cpp @@ -24,6 +24,16 @@ #define toklength 20 typedef long chset[9]; +#if defined(_MSC_VER) && (_MSC_VER <= 1400) // VS2005 +# define nullptr NULL +#endif + +#if __cplusplus < 201103L // Check if C++ standard is pre-C++11 +# ifndef nullptr +# define nullptr NULL +# endif +#endif + #if defined(PHREEQCI_GUI) #ifdef _DEBUG #define new DEBUG_NEW @@ -1346,6 +1356,9 @@ listtokens(FILE * f, tokenrec * l_buf) case tokget: output_msg("GET"); break; + case tokget_: + output_msg("GET$"); + break; case tokget_por: output_msg("GET_POR"); break; @@ -1452,6 +1465,18 @@ listtokens(FILE * f, tokenrec * l_buf) case tokparm: output_msg("PARM"); break; + case tokrate_pk: + output_msg("RATE_PK"); + break; + case tokrate_svd: + output_msg("RATE_SVD"); + break; + case tokrate_hermanska: + output_msg("RATE_HERMANSKA"); + break; + case tokmeang: + output_msg("MEANG"); + break; case tokpercent_error: output_msg("PERCENT_ERROR"); break; @@ -1488,6 +1513,9 @@ listtokens(FILE * f, tokenrec * l_buf) case tokput: output_msg("PUT"); break; + case tokput_: + output_msg("PUT$"); + break; case tokqbrn: output_msg("QBrn"); // Q_Born, d(eps_r)/d(P)/(eps_r^2) break; @@ -1530,6 +1558,14 @@ listtokens(FILE * f, tokenrec * l_buf) case tokspecies_formula_: output_msg("SPECIES_FORMULA$"); break; + case tokphase_equation: + case tokphase_equation_: + output_msg("PHASE_EQUATION$"); + break; + case tokspecies_equation: + case tokspecies_equation_: + output_msg("SPECIES_EQUATION$"); + break; case toksr: output_msg("SR"); break; @@ -2660,6 +2696,51 @@ factor(struct LOC_exec * LINK) } break; + case tokget_: + { + std::ostringstream oss; + require(toklp, LINK); + + /* get first subscript */ + if (LINK->t != NULL && LINK->t->kind != tokrp) + { + i = intexpr(LINK); + oss << i << ","; + } + + /* get other subscripts */ + for (;;) + { + if (LINK->t != NULL && LINK->t->kind == tokcomma) + { + LINK->t = LINK->t->next; + j = intexpr(LINK); + oss << j << ","; + } + else + { + /* get right parentheses */ + require(tokrp, LINK); + break; + } + } + if (parse_all) + { + n.UU.val = 1; + } + else + { + n.stringval = true; + n.UU.sval = (char*)PhreeqcPtr->PHRQ_calloc(256, sizeof(char)); + if (n.UU.sval == NULL) + PhreeqcPtr->malloc_error(); + std::map::iterator it = PhreeqcPtr->save_strings.find(oss.str()); + n.UU.sval = (it == PhreeqcPtr->save_strings.end()) ? strcpy(n.UU.sval, "unknown") : + strcpy(n.UU.sval, it->second.c_str()); + } + break; + } + case tokget: { std::ostringstream oss; @@ -2699,7 +2780,6 @@ factor(struct LOC_exec * LINK) } break; } - case tokget_por: { i = intfactor(LINK); @@ -3149,13 +3229,15 @@ factor(struct LOC_exec * LINK) case tokpad_: case tokpad: { + char* str; n.stringval = true; require(toklp, LINK); - string1 = stringfactor(STR1, LINK); + str = strexpr(LINK); require(tokcomma, LINK); i = intexpr(LINK); require(tokrp, LINK); - n.UU.sval = PhreeqcPtr->string_pad(string1, i); + n.UU.sval = PhreeqcPtr->string_pad(str, i); + PhreeqcPtr->PHRQ_free(str); } break; @@ -3177,6 +3259,464 @@ factor(struct LOC_exec * LINK) } break; + case tokrate_pk: + { + require(toklp, LINK); + char* min_name = strexpr(LINK); + require(tokrp, LINK); + if (parse_all) { + PhreeqcPtr->PHRQ_free(min_name); + n.UU.val = 1; + break; + } + std::string min_string = min_name; + PhreeqcPtr->PHRQ_free(min_name); + Utilities::str_tolower(min_string); + std::map >::const_iterator it = PhreeqcPtr->rate_parameters_pk.find(min_string); + if (it == PhreeqcPtr->rate_parameters_pk.end()) + { + std::ostringstream oss; + oss << "PK rate parameters not found for " << min_name << "\n"; + snerr(oss.str().c_str()); + } + //if (it->second.size() != 8) + //{ + // std::ostringstream oss; + // oss << "RATE_PK requires 8 rate parameters, " << it->second.size() << " were found for " << min_name << "\n"; + // snerr(oss.str().c_str()); + //} + // temperature factor, gas constant + double dif_temp = 1.0 / PhreeqcPtr->tk_x - 1.0 / 298.15; + double dT_R = dif_temp / (2.303 * 8.314e-3); + int Table = 0; + double rate_H = 0.0, rate_H2O = 0.0, rate_OH = 0.0; + double lgk_H = -30.0, lgk_H2O = -30.0, lgk_OH = -30.0; + if (it->second.size() > 8) + Table = (int) it->second.back(); + + switch (Table) + { + case 0: + if (it->second.size() != 8) + { + std::ostringstream oss; + oss << "Expected 8 rate parameters, " << it->second.size() << " were found for " << min_name << "\n"; + snerr(oss.str().c_str()); + } + break; + case 33: + if (it->second.size() != 9) + { + std::ostringstream oss; + oss << "Expected 8 rate parameters for table 33 mineral. " << it->second.size() - 1 << " were found for " << min_name << ".\n"; + snerr(oss.str().c_str()); + } + break; + case 35: + if (it->second.size() != 11) + { + std::ostringstream oss; + oss << "Expected 10 rate parameters for table 35 mineral. " << it->second.size() - 1 << " were found for " << min_name << ".\n"; + snerr(oss.str().c_str()); + } + break; + default: + { + std::ostringstream oss; + oss << "Unknown table value " << Table << " for " << min_name << "."; + snerr(oss.str().c_str()); + } + break; + } + switch (Table) + { + case 0: + // rate by H+ + if ((lgk_H = it->second[0]) > -30) + { + double e_H = it->second[1]; + double nH = it->second[2]; + rate_H = pow(10.0, lgk_H - e_H * dT_R) * pow(PhreeqcPtr->activity("H+"), nH); + } + // rate by hydrolysis + if ((lgk_H2O = it->second[3]) > -30) + { + double e_H2O = it->second[4]; + rate_H2O = pow(10.0, lgk_H2O - e_H2O * dT_R); + } + // rate by OH- + if ((lgk_OH = it->second[5]) > -30) + { + double e_OH = it->second[6]; + double n_OH = it->second[7]; + rate_OH = pow(10.0, lgk_OH - e_OH * dT_R) * pow(PhreeqcPtr->activity("H+"), n_OH); + } + break; + case 33: + // rate by H+ + if ((lgk_H = it->second[0]) > -30) + { + double e_H = it->second[1]; + double nH = it->second[2]; + rate_H = pow(10.0, lgk_H - e_H * dT_R) * pow(PhreeqcPtr->activity("H+"), nH); + } + // rate by hydrolysis + if ((lgk_H2O = it->second[3]) > -30) + { + double e_H2O = it->second[4]; + rate_H2O = pow(10.0, lgk_H2O - e_H2O * dT_R); + } + // rate by P_CO2 + if ((lgk_OH = it->second[5]) > -30) + { + double e_OH = it->second[6]; + double n_PCO2 = it->second[7]; + rate_OH = pow(10.0, lgk_OH - e_OH * dT_R) * pow(PhreeqcPtr->saturation_ratio("CO2(g)"), n_PCO2); + } + break; + case 35: + // rate by H+ and Fe+3 + if ((lgk_H = it->second[0]) > -30) + { + double e_H = it->second[1]; + double nH = it->second[2]; + double nFe = it->second[3]; + rate_H = pow(10.0, lgk_H - e_H * dT_R) * pow(PhreeqcPtr->activity("H+"), nH) * pow(PhreeqcPtr->activity("Fe+3"), nFe); + } + // rate by hydrolysis and O2 + if ((lgk_H2O = it->second[4]) > -30) + { + double e_H2O = it->second[5]; + double n_O2 = it->second[6]; + rate_H2O = pow(10.0, lgk_H2O - e_H2O * dT_R) * pow(PhreeqcPtr->activity("O2"), n_O2); + } + // rate by OH- + if ((lgk_OH = it->second[7]) > -30) + { + double e_OH = it->second[8]; + double n_OH = it->second[9]; + rate_OH = pow(10.0, lgk_OH - e_OH * dT_R) * pow(PhreeqcPtr->activity("H+"), n_OH); + } + break; + } + // sum rates + double rate = rate_H + rate_H2O + rate_OH; + n.UU.val = rate; + // # affinity_factor m ^ 2 / mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH + // # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 + // 10 affinity = get(-99, 1) # retrieve number from memory + // 20 + // 30 REM # specific area m2 / mol, surface roughness + // 40 sp_area = get(-99, 2) : roughness = get(-99, 3) + // 50 + // 60 REM # temperature factor, gas constant + // 70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R + // 80 + // 90 REM # rate by H + + // 100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6) + // 110 rate_H = 10 ^ (lgk_H - e_H * dT_R) * ACT("H+") ^ nH + // 120 + // 130 REM # rate by hydrolysis + // 140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8) + // 150 rate_H2O = 10 ^ (lgk_H2O - e_H2O * dT_R) + // 160 + // 170 REM # rate by OH - + // 180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11) + // 190 rate_OH = 10 ^ (lgk_OH - e_OH * dT_R) * ACT("H+") ^ nOH + // 200 + // 210 rate = rate_H + rate_H2O + rate_OH + // 220 area = sp_area * M0 * (M / M0) ^ 0.67 + // 230 + // 240 rate = area * roughness * rate * affinity + // 250 SAVE rate * TIME + // -end + } + break; + case tokrate_svd: + { + require(toklp, LINK); + char* min_name = strexpr(LINK); + require(tokrp, LINK); + if (parse_all) { + PhreeqcPtr->PHRQ_free(min_name); + n.UU.val = 1; + break; + } + std::string min_string = min_name; + PhreeqcPtr->PHRQ_free(min_name); + Utilities::str_tolower(min_string); + std::map >::const_iterator it = PhreeqcPtr->rate_parameters_svd.find(min_string); + if (it == PhreeqcPtr->rate_parameters_svd.end()) + { + std::ostringstream oss; + oss << "SVD rate parameters not found for " << min_name << "\n"; + snerr(oss.str().c_str()); + } + if (it->second.size() != 31) + { + std::ostringstream oss; + oss << "RATE_SVD requires 31 rate parameters, " << it->second.size() << " were found for " << min_name << "\n"; + snerr(oss.str().c_str()); + } + + // temperature factor, gas constant + double dif_temp = 1.0 / PhreeqcPtr->tk_x - 1.0 / 281.0; + double e_H = it->second[0]; + double e_H2O = it->second[1]; + double e_CO2 = it->second[2]; + double e_OA = it->second[3]; + double e_OH = it->second[4]; + + double BC = PhreeqcPtr->activity("Na+") + PhreeqcPtr->activity("K+") + + PhreeqcPtr->activity("Mg+2") + PhreeqcPtr->activity("Ca+2"); + double aAl = PhreeqcPtr->activity("Al+3"); + double aSi = PhreeqcPtr->activity("H4SiO4") + PhreeqcPtr->activity("SiO2"); + double R = PhreeqcPtr->total("Organicmatter"); + // rate by H + + double pkH = it->second[5]; + double nH = it->second[6]; + double yAl = it->second[7]; + double CAl = it->second[8]; + double xBC = it->second[9]; + double CBC = it->second[10]; + double pk_H = pkH - 3.0 + e_H * dif_temp; + CAl *= 1e-6; + CBC *= 1e-6; + double rate_H = pow(10.0, -pk_H) * pow(PhreeqcPtr->activity("H+"), nH) / + (pow(1.0 + aAl / CAl, yAl) * pow(1.0 + BC / CBC, xBC)); + // rate by hydrolysis + double pkH2O = it->second[11]; + yAl = it->second[12]; + CAl = it->second[13]; + xBC = it->second[14]; + CBC = it->second[15]; + double zSi = it->second[16]; + double CSi = it->second[17]; + CAl *= 1e-6; + CBC *= 1e-6; + CSi *= 1e-6; + double pk_H2O = pkH2O - 3.0 + e_H2O * dif_temp; + double rate_H2O = pow(10.0, -pk_H2O) / (pow(1.0 + aAl / CAl, yAl) * pow(1.0 + BC / CBC, xBC) * pow(1.0 + aSi / CSi, zSi)); + // rate by CO2 + double pKCO2 = it->second[18]; + double nCO2 = it->second[19]; + double pk_CO2 = pKCO2 - 3.0 + e_CO2 * dif_temp; + double rate_CO2 = pow(10.0, -pk_CO2) * pow(PhreeqcPtr->saturation_ratio("CO2(g)"), nCO2); + // rate by Organic Acids + double pkOrg = it->second[20]; + double nOrg = it->second[21]; + double COrg = it->second[22]; + COrg *= 1e-6; + double pk_Org = pkOrg - 3.0 + e_OA * dif_temp; + double rate_Org = pow(10.0, -pkOrg) * pow(R / (1 + R / COrg), nOrg); + // rate by OH- + double pkOH = it->second[23]; + double wOH = it->second[24]; + yAl = it->second[25]; + CAl = it->second[26]; + xBC = it->second[27]; + CBC = it->second[28]; + zSi = it->second[29]; + CSi = it->second[30]; + CAl *= 1e-6; + CBC *= 1e-6; + CSi *= 1e-6; + double pk_OH = pkOH - 3.0 + e_OH * dif_temp; + double rate_OH = pow(10.0, -pk_OH) * pow(PhreeqcPtr->activity("OH-"), wOH) / + (pow(1.0 + aAl / CAl, yAl) * pow(1.0 + BC / CBC, xBC) * pow(1.0 + aSi / CSi, zSi)); + // sum rates + double rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH; + n.UU.val = rate; + // Sverdrup_rate + // # in KINETICS, define 34 parms: + // # affinity m ^ 2 / mol roughness, temperature_factors(TABLE 4) : e_H e_H2O e_CO2 e_OA e_OH, \ + //# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi + // 10 affinity = get(-99, 1) + // 20 + // 30 REM # specific area m2 / mol, surface roughness + // 40 sp_area = get(-99, 2) : roughness = get(-99, 3) + // 50 + // 60 REM # temperature factors + // 70 dif_temp = 1 / TK - 1 / 281 + // 80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8) + // 90 + // 100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") + // 110 aAl = act("Al+3") + // 120 aSi = act("H4SiO4") + // 130 R = tot("OrganicMatter") + // 140 + // 150 REM # rate by H + + // 160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14) + // 170 pk_H = pkH - 3 + e_H * dif_temp + // 180 CAl = CAl * 1e-6 + // 190 CBC = CBC * 1e-6 + // 200 rate_H = 10 ^ -pk_H * ACT("H+") ^ nH / ((1 + aAl / CAl) ^ yAl * (1 + BC / CBC) ^ xBC) + // 210 + // 220 REM # rate by hydrolysis + // 230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21) + // 240 CAl = CAl * 1e-6 + // 250 CBC = CBC * 1e-6 + // 260 CSi = CSi * 1e-6 + // 270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp + // 280 rate_H2O = 10 ^ -pk_H2O / ((1 + aAl / CAl) ^ yAl * (1 + BC / CBC) ^ xBC * (1 + aSi / CSi) ^ zSi) + // 290 + // 300 REM # rate by CO2 + // 310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23) + // 320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp + // 330 rate_CO2 = 10 ^ -pk_CO2 * SR("CO2(g)") ^ nCO2 + // 340 + // 350 REM # rate by Organic Acids + // 360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26) + // 370 COrg = COrg * 1e-6 + // 380 pk_Org = pkOrg - 3 + e_OA * dif_temp + // 390 rate_Org = 10 ^ -pk_Org * (R / (1 + R / COrg)) ^ nOrg + // 400 + // 410 REM # rate by OH - + // 420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34) + // 430 CAl = CAl * 1e-6 + // 440 CBC = CBC * 1e-6 + // 450 CSi = CSi * 1e-6 + // 460 pk_OH = pkOH - 3 + e_OH * dif_temp + // 470 rate_OH = 10 ^ -pk_OH * ACT("OH-") ^ wOH / ((1 + aAl / CAl) ^ yAl * (1 + BC / CBC) ^ xBC * (1 + aSi / CSi) ^ zSi)# : print rate_OH + // 480 + // 490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH + // 500 area = sp_area * M0 * (M / M0) ^ 0.67 + // 510 + // 520 rate = roughness * area * rate * affinity + // 530 SAVE rate * TIME + // - end + } + break; + + case tokrate_hermanska: + { + require(toklp, LINK); + char* min_name = strexpr(LINK); + require(tokrp, LINK); + if (parse_all) { + PhreeqcPtr->PHRQ_free(min_name); + n.UU.val = 1; + break; + } + std::string min_string = min_name; + PhreeqcPtr->PHRQ_free(min_name); + Utilities::str_tolower(min_string); + std::map >::const_iterator it = PhreeqcPtr->rate_parameters_hermanska.find(min_string); + if (it == PhreeqcPtr->rate_parameters_hermanska.end()) + { + std::ostringstream oss; + oss << "Hermanska rate parameters not found for " << min_name << "\n"; + snerr(oss.str().c_str()); + } + if (it->second.size() != 11) + { + std::ostringstream oss; + oss << "RATE_HERMANSKA requires 11 rate parameters, " << it->second.size() << " were found for " << min_name << "\n"; + snerr(oss.str().c_str()); + } + // gas constant * Tk, act("H+") + double RT = 8.314e-3 * PhreeqcPtr->tk_x; + double aH = PhreeqcPtr->activity("H+"); + + // rate by H+ + double lgk_H = it->second[0]; + double Aa = it->second[1]; + double e_H = it->second[2]; + double nH = it->second[3]; + double rate_H = Aa * exp(-e_H / RT) * pow(aH, nH); + + // rate by hydrolysis + double rate_H2O = 0.0, lgk_H2O = it->second[4]; + if (lgk_H2O) + { + double Ab = it->second[5]; + double e_H2O = it->second[6]; + rate_H2O = Ab * exp(-e_H2O / RT); + } + + // rate by OH- + // 180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14) + // 190 rate_OH = Ac * exp(-e_OH / RT) * aH ^ nOH + double rate_OH = 0.0, lgk_OH = it->second[7]; + if (lgk_OH) + { + double Ac = it->second[8]; + double e_OH = it->second[9]; + double nOH = it->second[10]; + rate_OH = Ac * exp(-e_OH / RT) * pow(aH, nOH); + } + // sum rates + double rate = rate_H + rate_H2O + rate_OH; + n.UU.val = rate; + +// Hermanska_rate +// # in KINETICS, define 14 parms: +// # parms affinity m ^ 2 / mol roughness, (TABLE 2) : (acid)logk25 Aa Ea na(neutral)logk25 Ab Eb(basic)logk25 Ac Ec nc +//# (Note that logk25 values are not used, they were transformed to A's.) +// 10 affinity = get(-99, 1) # retrieve number from memory +// 20 +// 30 REM # specific area m2 / mol, surface roughness +// 40 sp_area = get(-99, 2) : roughness = get(-99, 3) +// 50 +// 60 REM # gas constant * Tk, act("H+") +// 70 RT = 8.314e-3 * TK : aH = act("H+") +// 80 +// 90 REM # rate by H + +// 100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7) +// 110 rate_H = Aa * exp(-e_H / RT) * aH ^ nH +// 120 +// 130 REM # rate by hydrolysis +// 140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10) +// 150 rate_H2O = Ab * exp(-e_H2O / RT) +// 160 +// 170 REM # rate by OH - +// 180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14) +// 190 rate_OH = Ac * exp(-e_OH / RT) * aH ^ nOH +// 200 +// 210 rate = rate_H + rate_H2O + rate_OH +// 220 area = sp_area * M0 * (M / M0) ^ 0.67 +// 230 +// 240 rate = area * roughness * rate * affinity +// 250 SAVE rate * TIME +// - end + + } + break; + + case tokmeang: + { + require(toklp, LINK); + char* min_name = strexpr(LINK); + require(tokrp, LINK); + if (parse_all) { + PhreeqcPtr->PHRQ_free(min_name); + n.UU.val = 1; + break; + } + std::string min_string = min_name; + PhreeqcPtr->PHRQ_free(min_name); + Utilities::str_tolower(min_string); + std::map::const_iterator it = PhreeqcPtr->mean_gammas.find(min_string); + if (it == PhreeqcPtr->mean_gammas.end() || it->second.size() == 0) + { + std::ostringstream oss; + oss << "No definition in MEAN_GAMMAS found for " << min_name << "\n"; + snerr(oss.str().c_str()); + } + + double mg = 1.0; + double sum = 0.0; + cxxNameDouble::const_iterator it_nd = it->second.begin(); + for (; it_nd != it->second.end(); it_nd++) + { + double g = PhreeqcPtr->activity_coefficient(it_nd->first.c_str()); + mg *= pow(g, it_nd->second); + sum += it_nd->second; + } + mg = pow(mg, 1.0 / sum); + n.UU.val = mg; + } + break; case tokpercent_error: { n.UU.val = (parse_all) ? 1 : 100 * PhreeqcPtr->cb_x / PhreeqcPtr->total_ions_x; @@ -3380,20 +3920,22 @@ factor(struct LOC_exec * LINK) case toksetdiff_c: { - double d; + double d, d_v_d = 0; require(toklp, LINK); const char* str = stringfactor(STR1, LINK); require(tokcomma, LINK); - // double arugument d = realexpr(LINK); + if (LINK->t != NULL && LINK->t->kind == tokcomma) + { + LINK->t = LINK->t->next; + d_v_d = realexpr(LINK); + } require(tokrp, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->setdiff_c(str, d); - - //PhreeqcPtr->PHRQ_free((void *) str); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->setdiff_c(str, d, d_v_d); } break; @@ -3556,6 +4098,202 @@ factor(struct LOC_exec * LINK) } break; + case tokphase_equation: + case tokphase_equation_: + { + require(toklp, LINK); + std::string phase_name(stringfactor(STR1, LINK)); + varrec* elts_varrec = NULL, * coef_varrec = NULL; + std::vector > stoichiometry; + /* + * Parse arguments + */ + require(tokcomma, LINK); + + count_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || count_varrec->stringvar != 0) + snerr(": Cannot find count variable"); + + /* return number of names of species */ + LINK->t = LINK->t->next; + require(tokcomma, LINK); + elts_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || elts_varrec->stringvar != 1) + snerr(": Cannot find species string variable"); + + /* return coefficients of species */ + LINK->t = LINK->t->next; + require(tokcomma, LINK); + coef_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || coef_varrec->stringvar != 0) + snerr(": Cannot find coefficient variable"); + LINK->t = LINK->t->next; + + require(tokrp, LINK); + + free_dim_stringvar(elts_varrec); + PhreeqcPtr->free_check_null(coef_varrec->UU.U0.arr); + coef_varrec->UU.U0.arr = NULL; + /* + * Call subroutine + */ + std::string eq = PhreeqcPtr->phase_equation(phase_name, stoichiometry); + + // put type as return value + n.stringval = true; + n.UU.sval = PhreeqcPtr->string_duplicate(eq.c_str()); + + /* + * fill in varrec structure + */ + + size_t count = stoichiometry.size(); + *count_varrec->UU.U0.val = (LDBLE)count; + /* + * malloc space + */ + elts_varrec->UU.U1.sarr = (char**)PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(char*)); + if (elts_varrec->UU.U1.sarr == NULL) + { + PhreeqcPtr->malloc_error(); +#if !defined(R_SO) + exit(4); +#endif + } + coef_varrec->UU.U0.arr = (LDBLE*)PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(LDBLE)); + if (coef_varrec->UU.U0.arr == NULL) + { + PhreeqcPtr->malloc_error(); +#if !defined(R_SO) + exit(4); +#endif + } + + // first position not used + elts_varrec->UU.U1.sarr[0] = NULL; + coef_varrec->UU.U0.arr[0] = 0; + + // set dims for Basic array + for (i = 0; i < maxdims; i++) + { + elts_varrec->dims[i] = 0; + coef_varrec->dims[i] = 0; + } + // set dims for first dimension and number of dims + elts_varrec->dims[0] = (long)(count + 1); + coef_varrec->dims[0] = (long)(count + 1); + elts_varrec->numdims = 1; + coef_varrec->numdims = 1; + + // fill in arrays + i = 1; + for (std::vector >::iterator it = stoichiometry.begin(); it != stoichiometry.end(); it++) + { + elts_varrec->UU.U1.sarr[i] = PhreeqcPtr->string_duplicate((it->first).c_str()); + coef_varrec->UU.U0.arr[i] = it->second; + i++; + } + } + break; + + case tokspecies_equation: + case tokspecies_equation_: + { + require(toklp, LINK); + std::string species_name(stringfactor(STR1, LINK)); + varrec* elts_varrec = NULL, * coef_varrec = NULL; + std::vector > stoichiometry; + /* + * Parse arguments + */ + require(tokcomma, LINK); + + count_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || count_varrec->stringvar != 0) + snerr(": Cannot find count variable"); + + /* return number of names of species */ + LINK->t = LINK->t->next; + require(tokcomma, LINK); + elts_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || elts_varrec->stringvar != 1) + snerr(": Cannot find species string variable"); + + /* return coefficients of species */ + LINK->t = LINK->t->next; + require(tokcomma, LINK); + coef_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || coef_varrec->stringvar != 0) + snerr(": Cannot find coefficient variable"); + LINK->t = LINK->t->next; + + require(tokrp, LINK); + + free_dim_stringvar(elts_varrec); + PhreeqcPtr->free_check_null(coef_varrec->UU.U0.arr); + coef_varrec->UU.U0.arr = NULL; + /* + * Call subroutine + */ + std::string eq = PhreeqcPtr->species_equation(species_name, stoichiometry); + + // put type as return value + n.stringval = true; + n.UU.sval = PhreeqcPtr->string_duplicate(eq.c_str()); + + /* + * fill in varrec structure + */ + + size_t count = stoichiometry.size(); + *count_varrec->UU.U0.val = (LDBLE)count; + /* + * malloc space + */ + elts_varrec->UU.U1.sarr = (char**)PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(char*)); + if (elts_varrec->UU.U1.sarr == NULL) + { + PhreeqcPtr->malloc_error(); +#if !defined(R_SO) + exit(4); +#endif + } + coef_varrec->UU.U0.arr = (LDBLE*)PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(LDBLE)); + if (coef_varrec->UU.U0.arr == NULL) + { + PhreeqcPtr->malloc_error(); +#if !defined(R_SO) + exit(4); +#endif + } + + // first position not used + elts_varrec->UU.U1.sarr[0] = NULL; + coef_varrec->UU.U0.arr[0] = 0; + + // set dims for Basic array + for (i = 0; i < maxdims; i++) + { + elts_varrec->dims[i] = 0; + coef_varrec->dims[i] = 0; + } + // set dims for first dimension and number of dims + elts_varrec->dims[0] = (long)(count + 1); + coef_varrec->dims[0] = (long)(count + 1); + elts_varrec->numdims = 1; + coef_varrec->numdims = 1; + + // fill in arrays + i = 1; + for (std::vector >::iterator it = stoichiometry.begin(); it != stoichiometry.end(); it++) + { + elts_varrec->UU.U1.sarr[i] = PhreeqcPtr->string_duplicate((it->first).c_str()); + coef_varrec->UU.U0.arr[i] = it->second; + i++; + } + } + break; + case toksr: { const char* str = stringfactor(STR1, LINK); @@ -4004,6 +4742,8 @@ factor(struct LOC_exec * LINK) case tokviscos: { + if (PhreeqcPtr->print_viscosity) + PhreeqcPtr->viscosity(nullptr); n.UU.val = (parse_all) ? 1 : PhreeqcPtr->viscos; } break; @@ -4879,6 +5619,40 @@ cmdput(struct LOC_exec *LINK) } } +void PBasic:: +cmdput_(struct LOC_exec* LINK) +{ + int j; + std::ostringstream oss; + + /* get parentheses */ + require(toklp, LINK); + + /* get first argumen */ + char* str = strexpr(LINK); + std::string s_value = str; + PhreeqcPtr->PHRQ_free(str); + + for (;;) + { + if (LINK->t != NULL && LINK->t->kind == tokcomma) + { + LINK->t = LINK->t->next; + j = intexpr(LINK); + oss << j << ","; + } + else + { + /* get right parentheses */ + require(tokrp, LINK); + break; + } + } + if (!parse_all) + { + PhreeqcPtr->save_strings[oss.str()] = s_value; + } +} void PBasic:: cmdchange_por(struct LOC_exec *LINK) { @@ -6118,6 +6892,10 @@ exec(void) cmdput(&V); break; + case tokput_: + cmdput_(&V); + break; + case tokchange_por: cmdchange_por(&V); break; @@ -7452,6 +8230,7 @@ const std::map::value_type temp_tokens[] std::map::value_type("gas_p", PBasic::tokgas_p), std::map::value_type("gas_vm", PBasic::tokgas_vm), std::map::value_type("get", PBasic::tokget), + std::map::value_type("get$", PBasic::tokget_), std::map::value_type("get_por", PBasic::tokget_por), std::map::value_type("gfw", PBasic::tokgfw), #if defined (PHREEQ98) || defined (MULTICHART) @@ -7490,6 +8269,10 @@ const std::map::value_type temp_tokens[] std::map::value_type("pad", PBasic::tokpad), std::map::value_type("pad$", PBasic::tokpad_), std::map::value_type("parm", PBasic::tokparm), + std::map::value_type("rate_pk", PBasic::tokrate_pk), + std::map::value_type("rate_svd", PBasic::tokrate_svd), + std::map::value_type("rate_hermanska", PBasic::tokrate_hermanska), + std::map::value_type("meang", PBasic::tokmeang), std::map::value_type("percent_error", PBasic::tokpercent_error), std::map::value_type("phase_formula", PBasic::tokphase_formula), std::map::value_type("phase_formula$", PBasic::tokphase_formula_), @@ -7505,6 +8288,7 @@ const std::map::value_type temp_tokens[] std::map::value_type("print", PBasic::tokprint), std::map::value_type("punch", PBasic::tokpunch), std::map::value_type("put", PBasic::tokput), + std::map::value_type("put$", PBasic::tokput_), std::map::value_type("qbrn", PBasic::tokqbrn), std::map::value_type("rem", PBasic::tokrem), std::map::value_type("rho", PBasic::tokrho), @@ -7520,6 +8304,10 @@ const std::map::value_type temp_tokens[] std::map::value_type("soln_vol", PBasic::toksoln_vol), std::map::value_type("species_formula", PBasic::tokspecies_formula), std::map::value_type("species_formula$", PBasic::tokspecies_formula_), + std::map::value_type("phase_equation", PBasic::tokphase_equation), + std::map::value_type("phase_equation$", PBasic::tokphase_equation_), + std::map::value_type("species_equation", PBasic::tokspecies_equation), + std::map::value_type("species_equation$", PBasic::tokspecies_equation_), std::map::value_type("sr", PBasic::toksr), std::map::value_type("step_no", PBasic::tokstep_no), std::map::value_type("str_e$", PBasic::tokstr_e_), diff --git a/src/phreeqcpp/PBasic.h b/src/phreeqcpp/PBasic.h index 3035ceb8..4a04ce9e 100644 --- a/src/phreeqcpp/PBasic.h +++ b/src/phreeqcpp/PBasic.h @@ -254,6 +254,7 @@ public: tokgas_p, tokgas_vm, tokget, + tokget_, tokget_por, tokgfw, tokgraph_x, @@ -290,6 +291,10 @@ public: tokpad_, tokpad, tokparm, + tokrate_pk, + tokrate_svd, + tokrate_hermanska, + tokmeang, tokpercent_error, tokphase_formula, tokphase_formula_, @@ -302,6 +307,7 @@ public: tokprint, tokpunch, tokput, + tokput_, tokqbrn, tokrho, tokrho_0, @@ -317,6 +323,10 @@ public: toksoln_vol, tokspecies_formula, tokspecies_formula_, + tokphase_equation, + tokphase_equation_, + tokspecies_equation, + tokspecies_equation_, toksr, tokstep_no, tokstr_e_, @@ -443,6 +453,7 @@ public: void cmdrun(struct LOC_exec *LINK); void cmdsave(struct LOC_exec *LINK); void cmdput(struct LOC_exec *LINK); + void cmdput_(struct LOC_exec* LINK); void cmdchange_por(struct LOC_exec *LINK); void cmdchange_surf(struct LOC_exec *LINK); void cmdbye(void); diff --git a/src/phreeqcpp/Phreeqc.cpp b/src/phreeqcpp/Phreeqc.cpp index 817bfa26..25d903af 100644 --- a/src/phreeqcpp/Phreeqc.cpp +++ b/src/phreeqcpp/Phreeqc.cpp @@ -583,7 +583,6 @@ void Phreeqc::init(void) solution_pe_x = 0; mu_x = 0; ah2o_x = 1.0; - density_x = 0; total_h_x = 0; total_o_x = 0; cb_x = 0; @@ -898,6 +897,7 @@ void Phreeqc::init(void) viscos = 0.0; viscos_0 = 0.0; viscos_0_25 = 0.0; + density_x = 0.0; rho_0 = 0.0; kappa_0 = 0.0; p_sat = 0.0; @@ -1201,6 +1201,7 @@ Phreeqc::InternalCopy(const Phreeqc* pSrc) Rxn_kinetics_map = pSrc->Rxn_kinetics_map; use_kinetics_limiter = pSrc->use_kinetics_limiter; save_values = pSrc->save_values; + save_strings = pSrc->save_strings; save = pSrc->save; //class copier copy_solution; //class copier copy_pp_assemblage; @@ -1216,6 +1217,12 @@ Phreeqc::InternalCopy(const Phreeqc* pSrc) // Inverse not implemented //std::vector inverse; count_inverse = 0; + /* rate parameters */ + rate_parameters_pk = pSrc->rate_parameters_pk; + rate_parameters_svd = pSrc->rate_parameters_svd; + rate_parameters_hermanska = pSrc->rate_parameters_hermanska; + // Mean gammas + mean_gammas = pSrc->mean_gammas; // Mix Rxn_mix_map = pSrc->Rxn_mix_map; Dispersion_mix_map = pSrc->Dispersion_mix_map; @@ -1714,7 +1721,11 @@ Phreeqc::InternalCopy(const Phreeqc* pSrc) viscos = pSrc->viscos; viscos_0 = pSrc->viscos_0; viscos_0_25 = pSrc->viscos_0_25; // viscosity of the solution, of pure water, of pure water at 25 C - cell_pore_volume = pSrc->cell_pore_volume;; + density_x = pSrc->density_x; + solution_volume_x = pSrc->solution_volume_x; + solution_mass_x = pSrc->solution_mass_x; + kgw_kgs = pSrc->kgw_kgs; + cell_pore_volume = pSrc->cell_pore_volume; cell_porosity = pSrc->cell_porosity; cell_volume = pSrc->cell_volume; cell_saturation = pSrc->cell_saturation; @@ -1722,9 +1733,6 @@ Phreeqc::InternalCopy(const Phreeqc* pSrc) sys_tot = pSrc->sys_tot; // solution properties V_solutes = pSrc->V_solutes; - viscos = pSrc->viscos; - viscos_0 = pSrc->viscos_0; - viscos_0_25 = pSrc->viscos_0_25; rho_0 = pSrc->rho_0; kappa_0 = pSrc->kappa_0; p_sat = pSrc->p_sat; diff --git a/src/phreeqcpp/Phreeqc.h b/src/phreeqcpp/Phreeqc.h index aae4d877..4c3d3aef 100644 --- a/src/phreeqcpp/Phreeqc.h +++ b/src/phreeqcpp/Phreeqc.h @@ -93,13 +93,13 @@ public: int basic_run(char* commands, void* lnbase, void* vbase, void* lpbase); void basic_free(void); #ifdef IPHREEQC_NO_FORTRAN_MODULE - double basic_callback(double x1, double x2, char* str); + double basic_callback(double x1, double x2, const char* str); #else double basic_callback(double x1, double x2, const char* str); #endif void register_basic_callback(double (*fcn)(double x1, double x2, const char* str, void* cookie), void* cookie1); #ifdef IPHREEQC_NO_FORTRAN_MODULE - void register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, char* str, size_t l)); + void register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, const char* str, size_t l)); #else void register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, const char* str, int l)); #endif @@ -110,7 +110,7 @@ public: LDBLE aqueous_vm(const char* species_name); LDBLE phase_vm(const char* phase_name); LDBLE diff_c(const char* species_name); - LDBLE setdiff_c(const char* species_name, double d); + LDBLE setdiff_c(const char * species_name, double d, double d_v_d); LDBLE flux_mcd(const char* species_name, int option); LDBLE sa_declercq(double type, double sa, double d, double m, double m0, double gfw); LDBLE calc_SC(void); @@ -167,6 +167,8 @@ public: std::string kinetics_formula(std::string kinetics_name, cxxNameDouble& stoichiometry); std::string phase_formula(std::string phase_name, cxxNameDouble& stoichiometry); std::string species_formula(std::string phase_name, cxxNameDouble& stoichiometry); + std::string phase_equation(std::string phase_name, std::vector >& stoichiometry); + std::string species_equation(std::string species_name, std::vector >& stoichiometry); LDBLE list_ss(std::string ss_name, cxxNameDouble& composition); int system_total_elements(void); int system_total_si(void); @@ -283,7 +285,7 @@ public: int sum_diffuse_layer(cxxSurfaceCharge* surface_charge_ptr1); int calc_all_donnan(void); int calc_init_donnan(void); - LDBLE calc_psi_avg(cxxSurfaceCharge * charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, std::vector &zcorr); + LDBLE calc_psi_avg(cxxSurfaceCharge * charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, LDBLE f_free, std::vector &zcorr); LDBLE g_function(LDBLE x_value); LDBLE midpnt(LDBLE x1, LDBLE x2, int n); void polint(LDBLE* xa, LDBLE* ya, int n, LDBLE xv, LDBLE* yv, @@ -425,8 +427,6 @@ public: int initial_gas_phases(int print); int initial_solutions(int print); - int initial_solutions_poet(int sol_id); - int step_save_exch(int n_user); int step_save_surf(int n_user); int initial_surfaces(int print); @@ -558,6 +558,7 @@ public: LDBLE calc_PR(std::vector phase_ptrs, LDBLE P, LDBLE TK, LDBLE V_m); LDBLE calc_PR(); int calc_vm(LDBLE tc, LDBLE pa); + LDBLE calc_vm0(const char *species_name, LDBLE tc, LDBLE pa, LDBLE mu); int clear(void); int convert_units(cxxSolution* solution_ptr); class unknown* find_surface_charge_unknown(std::string& str_ptr, int plane); @@ -696,6 +697,10 @@ public: bool read_vector_ints(const char** cptr, std::vector& v, int positive); bool read_vector_t_f(const char** ptr, std::vector& v); int read_master_species(void); + int read_rate_parameters_pk(void); + int read_rate_parameters_svd(void); + int read_rate_parameters_hermanska(void); + int read_mean_gammas(void); int read_mix(void); int read_entity_mix(std::map& mix_map); //int read_solution_mix(void); @@ -998,7 +1003,7 @@ public: LDBLE new_Dw); int reformat_surf(const char* comp_name, LDBLE fraction, const char* new_comp_name, LDBLE new_Dw, int cell); - LDBLE viscosity(void); + LDBLE viscosity(cxxSurface *surf_ptr); LDBLE calc_f_visc(const char *name); LDBLE calc_vm_Cl(void); int multi_D(LDBLE DDt, int mobile_cell, int stagnant); @@ -1157,6 +1162,7 @@ protected: * Save *---------------------------------------------------------------------- */ std::map save_values; + std::map save_strings; class save save; /*---------------------------------------------------------------------- @@ -1184,7 +1190,16 @@ protected: *---------------------------------------------------------------------- */ std::vector inverse; int count_inverse; - + /*---------------------------------------------------------------------- + * Rates + *---------------------------------------------------------------------- */ + std::map > rate_parameters_pk; + std::map > rate_parameters_svd; + std::map > rate_parameters_hermanska; + /*---------------------------------------------------------------------- + * Mean gammas + *---------------------------------------------------------------------- */ + std::map mean_gammas; /*---------------------------------------------------------------------- * Mix *---------------------------------------------------------------------- */ @@ -1284,7 +1299,6 @@ protected: LDBLE solution_pe_x; LDBLE mu_x; LDBLE ah2o_x; - LDBLE density_x; LDBLE total_h_x; LDBLE total_o_x; LDBLE cb_x; @@ -1519,6 +1533,7 @@ protected: int iterations; int gamma_iterations; size_t density_iterations; + LDBLE kgw_kgs; int run_reactions_iterations; int overall_iterations; @@ -1624,6 +1639,9 @@ protected: int print_viscosity; LDBLE viscos, viscos_0, viscos_0_25; // viscosity of the solution, of pure water, of pure water at 25 C + LDBLE density_x; + LDBLE solution_volume_x; + LDBLE solution_mass_x; LDBLE cell_pore_volume; LDBLE cell_porosity; LDBLE cell_volume; @@ -1651,7 +1669,7 @@ protected: double (*basic_callback_ptr) (double x1, double x2, const char* str, void* cookie); void* basic_callback_cookie; #ifdef IPHREEQC_NO_FORTRAN_MODULE - double (*basic_fortran_callback_ptr) (double* x1, double* x2, char* str, size_t l); + double (*basic_fortran_callback_ptr) (double* x1, double* x2, const char* str, size_t l); #else double (*basic_fortran_callback_ptr) (double* x1, double* x2, const char* str, int l); #endif @@ -1894,7 +1912,8 @@ namespace Utilities for (it = b.begin(); it != b.end(); ++it) { // Adding logic to dump only non-negative entities - if (it->second.Get_n_user() >= 0) + //if (it->second.Get_n_user() >= 0) + if (it->first >= 0 && it->second.Get_n_user() >= 0) { it->second.dump_raw(s_oss, indent); } diff --git a/src/phreeqcpp/PhreeqcKeywords/Keywords.cpp b/src/phreeqcpp/PhreeqcKeywords/Keywords.cpp index c92bf0de..8b0e8c00 100644 --- a/src/phreeqcpp/PhreeqcKeywords/Keywords.cpp +++ b/src/phreeqcpp/PhreeqcKeywords/Keywords.cpp @@ -130,6 +130,10 @@ std::map::value_type("reaction_pressure", std::map::value_type("reaction_pressures", Keywords::KEY_REACTION_PRESSURE), std::map::value_type("reaction_pressure_raw", Keywords::KEY_REACTION_PRESSURE_RAW), std::map::value_type("reaction_pressure_modify", Keywords::KEY_REACTION_PRESSURE_MODIFY), +std::map::value_type("rate_parameters_pk", Keywords::KEY_RATE_PARAMETERS_PK), +std::map::value_type("rate_parameters_svd", Keywords::KEY_RATE_PARAMETERS_SVD), +std::map::value_type("rate_parameters_hermanska", Keywords::KEY_RATE_PARAMETERS_HERMANSKA), +std::map::value_type("mean_gammas", Keywords::KEY_MEAN_GAMMAS), std::map::value_type("solution_mix", Keywords::KEY_SOLUTION_MIX), std::map::value_type("mix_solution", Keywords::KEY_SOLUTION_MIX), std::map::value_type("exchange_mix", Keywords::KEY_EXCHANGE_MIX), @@ -221,12 +225,16 @@ std::map::value_type(Keywords::KEY_REACTI std::map::value_type(Keywords::KEY_REACTION_PRESSURE, "REACTION_PRESSURE"), std::map::value_type(Keywords::KEY_REACTION_PRESSURE_RAW, "REACTION_PRESSURE_RAW"), std::map::value_type(Keywords::KEY_REACTION_PRESSURE_MODIFY, "REACTION_PRESSURE_MODIFY"), -std::map::value_type(Keywords::KEY_SOLUTION_MIX, "SOLUTION_MIX"), -std::map::value_type(Keywords::KEY_EXCHANGE_MIX, "EXCHANGE_MIX"), -std::map::value_type(Keywords::KEY_GAS_PHASE_MIX, "GAS_PHASE_MIX"), -std::map::value_type(Keywords::KEY_KINETICS_MIX, "KINETICS_MIX"), +std::map::value_type(Keywords::KEY_RATE_PARAMETERS_PK, "RATE_PARAMETERS_PK"), +std::map::value_type(Keywords::KEY_RATE_PARAMETERS_SVD, "RATE_PARAMETERS_SVD"), +std::map::value_type(Keywords::KEY_RATE_PARAMETERS_HERMANSKA, "RATE_PARAMETERS_HERMANSKA"), +std::map::value_type(Keywords::KEY_MEAN_GAMMAS, "RATE_MEAN_GAMMAS"), +std::map::value_type(Keywords::KEY_SOLUTION_MIX, "SOLUTION_MIX"), +std::map::value_type(Keywords::KEY_EXCHANGE_MIX, "EXCHANGE_MIX"), +std::map::value_type(Keywords::KEY_GAS_PHASE_MIX, "GAS_PHASE_MIX"), +std::map::value_type(Keywords::KEY_KINETICS_MIX, "KINETICS_MIX"), std::map::value_type(Keywords::KEY_PPASSEMBLAGE_MIX, "EQUILIBRIUM_PHASES_MIX"), -std::map::value_type(Keywords::KEY_SSASSEMBLAGE_MIX, "SOLID_SOLUTIONS_MIX"), -std::map::value_type(Keywords::KEY_SURFACE_MIX, "SURFACE_MIX") +std::map::value_type(Keywords::KEY_SSASSEMBLAGE_MIX, "SOLID_SOLUTIONS_MIX"), +std::map::value_type(Keywords::KEY_SURFACE_MIX, "SURFACE_MIX") }; const std::map Keywords::phreeqc_keyword_names(temp_keyword_names, temp_keyword_names + sizeof temp_keyword_names / sizeof temp_keyword_names[0]); diff --git a/src/phreeqcpp/PhreeqcKeywords/Keywords.h b/src/phreeqcpp/PhreeqcKeywords/Keywords.h index f812fb39..06de5596 100644 --- a/src/phreeqcpp/PhreeqcKeywords/Keywords.h +++ b/src/phreeqcpp/PhreeqcKeywords/Keywords.h @@ -76,6 +76,10 @@ public: KEY_REACTION_PRESSURE, KEY_REACTION_PRESSURE_RAW, KEY_REACTION_PRESSURE_MODIFY, + KEY_RATE_PARAMETERS_PK, + KEY_RATE_PARAMETERS_SVD, + KEY_RATE_PARAMETERS_HERMANSKA, + KEY_MEAN_GAMMAS, KEY_SOLUTION_MIX, KEY_EXCHANGE_MIX, KEY_GAS_PHASE_MIX, diff --git a/src/phreeqcpp/Serializer.cxx b/src/phreeqcpp/Serializer.cxx index b4ebab76..fab11a37 100644 --- a/src/phreeqcpp/Serializer.cxx +++ b/src/phreeqcpp/Serializer.cxx @@ -201,6 +201,10 @@ Serializer::Deserialize(Phreeqc &phreeqc_ref, Dictionary &dictionary, std::vecto #if !defined(R_SO) std::cerr << "Unknown pack type in deserialize " << type << std::endl; exit(4); +#else + std::ostringstream oss; + oss << "Unknown pack type in deserialize " << type << std::endl; + phreeqc_ref.error_msg(oss.str().c_str(), STOP); #endif break; } diff --git a/src/phreeqcpp/Solution.cxx b/src/phreeqcpp/Solution.cxx index bac8322d..fbdffce4 100644 --- a/src/phreeqcpp/Solution.cxx +++ b/src/phreeqcpp/Solution.cxx @@ -2,18 +2,19 @@ // ////////////////////////////////////////////////////////////////////// #ifdef _DEBUG -#pragma warning(disable : 4786) // disable truncation warning (Only used by debugger) +#pragma warning( \ + disable : 4786) // disable truncation warning (Only used by debugger) #endif -#include -#include // assert -#include // std::sort -#include "Utils.h" // define first -#include "Phreeqc.h" #include "Solution.h" +#include "Dictionary.h" +#include "Phreeqc.h" +#include "Utils.h" // define first #include "cxxMix.h" #include "phqalloc.h" -#include "Dictionary.h" +#include // std::sort +#include // assert +#include #if defined(PHREEQCI_GUI) #ifdef _DEBUG diff --git a/src/phreeqcpp/Solution.h b/src/phreeqcpp/Solution.h index 7bb1f740..666de836 100644 --- a/src/phreeqcpp/Solution.h +++ b/src/phreeqcpp/Solution.h @@ -7,11 +7,11 @@ #include // std::vector #include #include "NumKeyword.h" -#include "SolutionIsotope.h" #include "NameDouble.h" #include "PHRQ_base.h" #include "PHRQ_io.h" #include "ISolution.h" +#include "SolutionIsotope.h" class cxxMix; class cxxSolution:public cxxNumKeyword @@ -49,8 +49,8 @@ class cxxSolution:public cxxNumKeyword void Set_cb(LDBLE l_cb) {this->cb = l_cb;} LDBLE Get_density() const {return this->density;} void Set_density(LDBLE l_density) {this->density = l_density;} - LDBLE Get_viscosity() const { return this->viscosity; } - void Set_viscosity(LDBLE l_viscos) { this->viscosity = l_viscos; } + LDBLE Get_viscosity() const { return this->viscosity; } + void Set_viscosity(LDBLE l_viscos) { this->viscosity = l_viscos; } LDBLE Get_mass_water() const {return this->mass_water;} void Set_mass_water(LDBLE l_mass_water) {this->mass_water = l_mass_water;} LDBLE Get_total_alkalinity() const {return this->total_alkalinity;} diff --git a/src/phreeqcpp/Surface.cxx b/src/phreeqcpp/Surface.cxx index ed55bb2d..f3f932a4 100644 --- a/src/phreeqcpp/Surface.cxx +++ b/src/phreeqcpp/Surface.cxx @@ -36,9 +36,10 @@ cxxSurface::cxxSurface(PHRQ_io *io) dl_type = NO_DL; sites_units = SITES_ABSOLUTE; only_counter_ions = false; - correct_GC = false; + correct_D = false; thickness = 1e-8; debye_lengths = 0.0; + calc_DDL_viscosity = false; DDL_viscosity = 1.0; DDL_limit = 0.8; transport = false; @@ -56,9 +57,10 @@ cxxNumKeyword(io) dl_type = NO_DL; sites_units = SITES_ABSOLUTE; only_counter_ions = false; - correct_GC = false; + correct_D = false; thickness = 1e-8; debye_lengths = 0.0; + calc_DDL_viscosity = false; DDL_viscosity = 1.0; DDL_limit = 0.8; transport = false; @@ -130,7 +132,7 @@ cxxSurface::dump_raw(std::ostream & s_oss, unsigned int indent, int *n_out) cons s_oss << indent1; s_oss << "-only_counter_ions " << this->only_counter_ions << "\n"; s_oss << indent1; - s_oss << "-correct_GC " << this->correct_GC << "\n"; + s_oss << "-correct_D " << this->correct_D << "\n"; s_oss << indent1; s_oss << "-thickness " << this->thickness << "\n"; s_oss << indent1; @@ -193,7 +195,7 @@ cxxSurface::read_raw(CParser & parser, bool check) this->Set_tidied(true); bool only_counter_ions_defined(false); - //bool correct_GC_defined(false); + //bool correct_D_defined(false); bool thickness_defined(false); bool type_defined(false); bool dl_type_defined(false); @@ -395,7 +397,7 @@ cxxSurface::read_raw(CParser & parser, bool check) case 11: // DDL_viscosity if (!(parser.get_iss() >> this->DDL_viscosity)) { - this->DDL_viscosity = 0.0; + this->DDL_viscosity = 1.0; parser.incr_input_error(); parser.error_msg("Expected numeric value for DDL_viscosity.", PHRQ_io::OT_CONTINUE); @@ -473,16 +475,16 @@ cxxSurface::read_raw(CParser & parser, bool check) PHRQ_io::OT_CONTINUE); } break; - case 19: // correct_GC - if (!(parser.get_iss() >> this->correct_GC)) + case 19: // correct_D + if (!(parser.get_iss() >> this->correct_D)) { - this->correct_GC = false; + this->correct_D = false; parser.incr_input_error(); parser. - error_msg("Expected boolean value for correct_GC.", + error_msg("Expected boolean value for correct_D.", PHRQ_io::OT_CONTINUE); } - //correct_GC_defined = true; + //correct_D_defined = true; break; } if (opt == CParser::OPT_EOF || opt == CParser::OPT_KEYWORD) @@ -498,11 +500,11 @@ cxxSurface::read_raw(CParser & parser, bool check) error_msg("Only_counter_ions not defined for SURFACE_RAW input.", PHRQ_io::OT_CONTINUE); } - //if (correct_GC_defined == false) + //if (correct_D_defined == false) //{ // parser.incr_input_error(); // parser. - // error_msg("correct_GC not defined for SURFACE_RAW input.", + // error_msg("correct_D not defined for SURFACE_RAW input.", // PHRQ_io::OT_CONTINUE); //} if (thickness_defined == false) @@ -582,7 +584,7 @@ cxxSurface::add(const cxxSurface & addee_in, LDBLE extensive) if (this->surface_comps.size() == 0) { this->only_counter_ions = addee.only_counter_ions; - this->correct_GC = addee.correct_GC; + this->correct_D = addee.correct_D; this->dl_type = addee.dl_type; this->type = addee.type; this->sites_units = addee.sites_units; @@ -754,7 +756,7 @@ cxxSurface::Serialize(Dictionary & dictionary, std::vector < int >&ints, doubles.push_back(this->debye_lengths); doubles.push_back(this->DDL_viscosity); doubles.push_back(this->DDL_limit); - ints.push_back(this->correct_GC ? 1 : 0); + ints.push_back(this->correct_D ? 1 : 0); ints.push_back(this->transport ? 1 : 0); this->totals.Serialize(dictionary, ints, doubles); ints.push_back(this->solution_equilibria ? 1 : 0); @@ -801,7 +803,7 @@ cxxSurface::Deserialize(Dictionary & dictionary, std::vector < int >&ints, this->debye_lengths = doubles[dd++]; this->DDL_viscosity = doubles[dd++]; this->DDL_limit = doubles[dd++]; - this->correct_GC = (ints[ii++] != 0); + this->correct_D = (ints[ii++] != 0); this->transport = (ints[ii++] != 0); this->totals.Deserialize(dictionary, ints, doubles, ii, dd); this->solution_equilibria = (ints[ii++] != 0); @@ -830,6 +832,6 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("n_solution"), // 16 std::vector< std::string >::value_type("totals"), // 17 std::vector< std::string >::value_type("tidied"), // 18 - std::vector< std::string >::value_type("correct_gc") // 19 + std::vector< std::string >::value_type("correct_d") // 19 }; const std::vector< std::string > cxxSurface::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/src/phreeqcpp/Surface.h b/src/phreeqcpp/Surface.h index 04527265..4b963ac8 100644 --- a/src/phreeqcpp/Surface.h +++ b/src/phreeqcpp/Surface.h @@ -67,10 +67,12 @@ public: void Set_debye_lengths(LDBLE t) {debye_lengths = t;} LDBLE Get_DDL_viscosity(void) const {return DDL_viscosity;} void Set_DDL_viscosity(LDBLE t) {DDL_viscosity = t;} + void Calc_DDL_viscosity(bool tf) {calc_DDL_viscosity = tf;} + bool Get_calc_viscosity(void) const { return calc_DDL_viscosity; } LDBLE Get_DDL_limit(void) const {return DDL_limit;} void Set_DDL_limit(LDBLE t) {DDL_limit = t;} - bool Get_correct_GC(void) const { return correct_GC; } - void Set_correct_GC(bool tf) { correct_GC = tf; } + bool Get_correct_D(void) const { return correct_D; } + void Set_correct_D(bool tf) { correct_D = tf; } std::vector Donnan_factors; bool Get_transport(void) const {return transport;} void Set_transport(bool tf) {transport = tf;} @@ -95,8 +97,9 @@ protected: LDBLE thickness; LDBLE debye_lengths; LDBLE DDL_viscosity; + bool calc_DDL_viscosity; LDBLE DDL_limit; - bool correct_GC; + bool correct_D; bool transport; cxxNameDouble totals; bool solution_equilibria; diff --git a/src/phreeqcpp/SurfaceCharge.cxx b/src/phreeqcpp/SurfaceCharge.cxx index 5d2857d8..22624369 100644 --- a/src/phreeqcpp/SurfaceCharge.cxx +++ b/src/phreeqcpp/SurfaceCharge.cxx @@ -36,6 +36,8 @@ PHRQ_base(io) grams = 0.0; charge_balance = 0.0; mass_water = 0.0; + DDL_viscosity = 0.0; + f_free = 0.0; la_psi = 0.0; capacitance[0] = 1.0; capacitance[1] = 5.0; @@ -68,6 +70,7 @@ cxxSurfaceCharge::dump_xml(std::ostream & s_oss, unsigned int indent) const charge_balance << "\"" << "\n"; s_oss << indent0 << "mass_water=\"" << this-> mass_water << "\"" << "\n"; + s_oss << indent0 << "f_free=\"" << this->f_free << "\"" << "\n"; s_oss << indent0 << "la_psi=\"" << this->la_psi << "\"" << "\n"; s_oss << indent0 << "capacitance=\"" << this-> capacitance[0] << " " << this->capacitance[0] << "\"" << "\n"; @@ -98,6 +101,8 @@ cxxSurfaceCharge::dump_raw(std::ostream & s_oss, unsigned int indent) const s_oss << indent0 << "-grams " << this->grams << "\n"; s_oss << indent0 << "-charge_balance " << this->charge_balance << "\n"; s_oss << indent0 << "-mass_water " << this->mass_water << "\n"; + s_oss << indent0 << "-f_free " << this->f_free << "\n"; + s_oss << indent0 << "-ddl_viscosity " << this->DDL_viscosity << "\n"; s_oss << indent0 << "-la_psi " << this->la_psi << "\n"; s_oss << indent0 << "-capacitance0 " << this->capacitance[0] << "\n"; s_oss << indent0 << "-capacitance1 " << this->capacitance[1] << "\n"; @@ -155,6 +160,7 @@ cxxSurfaceCharge::read_raw(CParser & parser, bool check) bool capacitance0_defined(false); bool capacitance1_defined(false); bool g_map_first(true); + bool DDL_viscosity_defined(false); for (;;) { @@ -225,7 +231,6 @@ cxxSurfaceCharge::read_raw(CParser & parser, bool check) mass_water_defined = true; break; - case 5: // la_psi if (!(parser.get_iss() >> this->la_psi)) { @@ -366,10 +371,27 @@ cxxSurfaceCharge::read_raw(CParser & parser, bool check) } } opt_save = 16; - - - break; + case 17: // f_free of water + if (!(parser.get_iss() >> this->f_free)) + { + this->f_free = 0; + parser.incr_input_error(); + parser.error_msg("Expected numeric value for f_free of mass_water.", + PHRQ_io::OT_CONTINUE); + } + break; + case 18: // DDL_viscosity + if (!(parser.get_iss() >> this->DDL_viscosity)) + { + this->DDL_viscosity = 1.0; + parser.incr_input_error(); + parser.error_msg("Expected numeric value for DDL_viscosity.", + PHRQ_io::OT_CONTINUE); + } + DDL_viscosity_defined = true; + break; + } if (opt == CParser::OPT_EOF || opt == CParser::OPT_KEYWORD) break; @@ -454,9 +476,11 @@ cxxSurfaceCharge::add(const cxxSurfaceCharge & addee, LDBLE extensive) this->mass_water += addee.mass_water * extensive; this->la_psi = this->la_psi * f1 + addee.la_psi * f2; this->capacitance[0] = - this->capacitance[0] * f1 + this->capacitance[0] * f2; + this->capacitance[0] * f1 + addee.capacitance[0] * f2; this->capacitance[1] = - this->capacitance[1] * f1 + this->capacitance[1] * f2; + this->capacitance[1] * f1 + addee.capacitance[1] * f2; + this->f_free = this->f_free * f1 + addee.f_free * f2; + this->DDL_viscosity = this->DDL_viscosity * f1 + addee.DDL_viscosity * f2; this->diffuse_layer_totals.add_extensive(addee.diffuse_layer_totals, extensive); } @@ -486,6 +510,8 @@ cxxSurfaceCharge::Serialize(Dictionary & dictionary, std::vector < int >&ints, doubles.push_back(this->sigma1); doubles.push_back(this->sigma2); doubles.push_back(this->sigmaddl); + doubles.push_back(this->f_free); + doubles.push_back(this->DDL_viscosity); ints.push_back((int) this->g_map.size()); { std::map::iterator it; @@ -523,6 +549,8 @@ cxxSurfaceCharge::Deserialize(Dictionary & dictionary, std::vector < int >&ints, this->sigma1 = doubles[dd++]; this->sigma2 = doubles[dd++]; this->sigmaddl = doubles[dd++]; + this->f_free = doubles[dd++]; + this->DDL_viscosity = doubles[dd++]; { this->g_map.clear(); int count = ints[ii++]; @@ -581,6 +609,9 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("sigma2"), // 13 std::vector< std::string >::value_type("sigmaddl"), // 14 std::vector< std::string >::value_type("g_map"), // 15 - std::vector< std::string >::value_type("diffuse_layer_species") // 16 + std::vector< std::string >::value_type("diffuse_layer_species"),// 16 + std::vector< std::string >::value_type("f_free"), // 17 + std::vector< std::string >::value_type("ddl_viscosity") // 18 + }; const std::vector< std::string > cxxSurfaceCharge::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/src/phreeqcpp/SurfaceCharge.h b/src/phreeqcpp/SurfaceCharge.h index 091b26b7..2333a331 100644 --- a/src/phreeqcpp/SurfaceCharge.h +++ b/src/phreeqcpp/SurfaceCharge.h @@ -87,6 +87,10 @@ public: void Set_charge_balance(LDBLE d) {this->charge_balance = d;} LDBLE Get_mass_water() const {return this->mass_water;} void Set_mass_water(LDBLE d) {this->mass_water = d;} + LDBLE Get_DDL_viscosity(void) const { return DDL_viscosity; } + void Set_DDL_viscosity(LDBLE t) { DDL_viscosity = t; } + LDBLE Get_f_free() const {return this->f_free;} + void Set_f_free(LDBLE d) {this->f_free = d;} LDBLE Get_la_psi() const {return this->la_psi;} void Set_la_psi(LDBLE d) {this->la_psi = d;} LDBLE Get_capacitance0() const {return this->capacitance[0];} @@ -117,6 +121,8 @@ protected: LDBLE grams; LDBLE charge_balance; LDBLE mass_water; + LDBLE DDL_viscosity; + LDBLE f_free; LDBLE la_psi; LDBLE capacitance[2]; cxxNameDouble diffuse_layer_totals; diff --git a/src/phreeqcpp/basicsubs.cpp b/src/phreeqcpp/basicsubs.cpp index bf545b4f..917353da 100644 --- a/src/phreeqcpp/basicsubs.cpp +++ b/src/phreeqcpp/basicsubs.cpp @@ -12,6 +12,16 @@ #include "Solution.h" #include "Parser.h" +#if defined(_MSC_VER) && (_MSC_VER <= 1400) // VS2005 +# define nullptr NULL +#endif + +#if __cplusplus < 201103L // Check if C++ standard is pre-C++11 +# ifndef nullptr +# define nullptr NULL +# endif +#endif + #if defined(PHREEQCI_GUI) #ifdef _DEBUG #define new DEBUG_NEW @@ -22,20 +32,20 @@ static char THIS_FILE[] = __FILE__; /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -activity(const char* species_name) +activity(const char *species_name) /* ---------------------------------------------------------------------- */ { - class species* s_ptr; + class species *s_ptr; LDBLE a; s_ptr = s_search(species_name); if (s_ptr == s_h2o) { - a = pow((LDBLE)10., s_h2o->la); + a = pow((LDBLE) 10., s_h2o->la); } else if (s_ptr == s_eminus) { - a = pow((LDBLE)10., s_eminus->la); + a = pow((LDBLE) 10., s_eminus->la); } else if (s_ptr == NULL || s_ptr->in == FALSE) { @@ -43,17 +53,17 @@ activity(const char* species_name) } else { - a = pow((LDBLE)10., s_ptr->lm + s_ptr->lg); + a = pow((LDBLE) 10., s_ptr->lm + s_ptr->lg); } return (a); } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -activity_coefficient(const char* species_name) +activity_coefficient(const char *species_name) /* ---------------------------------------------------------------------- */ { - class species* s_ptr; + class species *s_ptr; LDBLE g, dum = 0.0; s_ptr = s_search(species_name); @@ -61,7 +71,7 @@ activity_coefficient(const char* species_name) { if (s_ptr->type == EX && s_ptr->equiv && s_ptr->alk) dum = log10(s_ptr->equiv / s_ptr->alk); - g = pow((LDBLE)10., s_ptr->lg - dum); + g = pow((LDBLE) 10., s_ptr->lg - dum); } else { @@ -72,10 +82,10 @@ activity_coefficient(const char* species_name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -log_activity_coefficient(const char* species_name) +log_activity_coefficient(const char *species_name) /* ---------------------------------------------------------------------- */ { - class species* s_ptr; + class species *s_ptr; LDBLE g, dum = 0.0; s_ptr = s_search(species_name); @@ -94,10 +104,10 @@ log_activity_coefficient(const char* species_name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -aqueous_vm(const char* species_name) +aqueous_vm(const char *species_name) /* ---------------------------------------------------------------------- */ { - class species* s_ptr; + class species *s_ptr; LDBLE g; s_ptr = s_search(species_name); @@ -113,10 +123,10 @@ aqueous_vm(const char* species_name) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -phase_vm(const char* phase_name) +phase_vm(const char *phase_name) /* ---------------------------------------------------------------------- */ { - class phase* phase_ptr; + class phase *phase_ptr; int l; LDBLE g; @@ -136,7 +146,7 @@ LDBLE Phreeqc:: sa_declercq(double sa_type, double Sa, double d, double m, double m0, double gfw) /* ---------------------------------------------------------------------- */ { - if (sa_type == 0) + if (sa_type == 0) { // surface-area-calculation-Fixed_Surface return Sa; @@ -147,14 +157,14 @@ sa_declercq(double sa_type, double Sa, double d, double m, double m0, double gfw double mass0 = m0 * gfw; double V0 = mass0 / d; double St0 = mass0 * Sa; // total surface - double a0 = pow(V0, 1.0 / 3.0); // side length - double Sp0 = 6.0 * a0 * a0; // surface particle + double a0 = pow(V0, 1.0/3.0); // side length + double Sp0 = 6.0 * a0*a0; // surface particle double np = St0 / Sp0; // number of particles - double RATS = Sa / St0; + double RATS = Sa / St0; double mass = m * gfw; double V = mass / d; - double a = pow(V, 1.0 / 3.0); - double St = 6.0 * a * a * np; + double a = pow(V, 1.0/3.0); + double St = 6.0 * a*a*np; return St * RATS; // total current surface } else if (sa_type == 2) @@ -163,231 +173,104 @@ sa_declercq(double sa_type, double Sa, double d, double m, double m0, double gfw double mass0 = m0 * gfw; double V0 = mass0 / d; // volume double St0 = mass0 * Sa; // total surface - double a0 = pow(3.0 * V0 / (4.0 * pi), 1.0 / 3.0); // ((3*V0)/(4 * 3.14159265359))^(1/3) + double a0 = pow(3.0 * V0/(4.0 * pi), 1.0/3.0); // ((3*V0)/(4 * 3.14159265359))^(1/3) double Sp0 = (4.0 * pi) * a0 * a0; // surface particle double np = St0 / Sp0; // number of particles double RATS = Sa / St0; - + double mass = m * gfw; double V = mass / d; - double a = pow(3.0 * V / (4.0 * pi), 1.0 / 3.0); //((3*V)/(4 * 3.14159265359))^(1/3) + double a = pow(3.0 * V/(4.0 * pi), 1.0/3.0); //((3*V)/(4 * 3.14159265359))^(1/3) double St = 4.0 * pi * a * a * np; return St * RATS; // total current surface } - error_string = sformatf("Unknown surface area type in SA_DECLERCQ %d.", (int)sa_type); + error_string = sformatf( "Unknown surface area type in SA_DECLERCQ %d.", (int) sa_type); error_msg(error_string, CONTINUE); input_error++; return (MISSING); - } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -diff_c(const char* species_name) +diff_c(const char *species_name) /* ---------------------------------------------------------------------- */ { - class species* s_ptr; - LDBLE ka, l_z, Dw, ff, sqrt_mu; - sqrt_mu = sqrt(mu_x); + class species *s_ptr; + LDBLE Dw; s_ptr = s_search(species_name); - //LDBLE g; - //if (s_ptr != NULL /*&& s_ptr->in != FALSE && s_ptr->type < EMINUS*/) - //{ - // g = s_ptr->dw; - // if (s_ptr->dw_t) - // g *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); - // g *= viscos_0_25 / viscos * tk_x / 298.15; - //} - //else - //{ - // g = 0; - //} - //return (g); if (s_ptr == NULL) return(0); if ((Dw = s_ptr->dw) == 0) + return(0); + if (correct_Dw) { - if (correct_Dw) - Dw = default_Dw; - else - return(0); - } - if ((l_z = fabs(s_ptr->z)) == 0) - { - //l_z = 1; // only a 1st approximation for correct_Dw in electrical field + calc_SC(); + Dw = s_ptr->dw_corr; } else { - if (s_ptr->dw_a2) - ka = DH_B * s_ptr->dw_a2 * sqrt_mu / (1 + pow(mu_x, 0.75)); - else - ka = DH_B * 4.73 * sqrt_mu / (1 + pow(mu_x, 0.75)); - if (s_ptr->dw_a) - { - ff = exp(-s_ptr->dw_a * DH_A * l_z * sqrt_mu / (1 + ka)); - //if (print_viscosity && s_ptr->dw_a_visc) - // ff *= pow((viscos_0 / viscos), s_ptr->dw_a_visc); - } - else - { - ff = exp(-1.6 * DH_A * l_z * sqrt_mu / (1 + ka)); - } - Dw *= ff; + if (tk_x != 298.15 && s_ptr->dw_t) + Dw *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); + + Dw *= viscos_0_25 / viscos_0; } - - if (tk_x != 298.15 && s_ptr->dw_t) - Dw *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); - - s_ptr->dw_corr = Dw; - return (Dw * viscos_0_25 / viscos_0); + if (s_ptr->dw_a_v_dif && print_viscosity) + { + viscosity(nullptr); + Dw *= pow(viscos_0 / viscos, s_ptr->dw_a_v_dif); + } + return Dw; } + /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -setdiff_c(const char* species_name, double d) +setdiff_c(const char *species_name, double d, double d_v_d) /* ---------------------------------------------------------------------- */ { - class species* s_ptr; - LDBLE ka, l_z, Dw, ff, sqrt_mu; - sqrt_mu = sqrt(mu_x); + class species *s_ptr; + LDBLE Dw; s_ptr = s_search(species_name); - - //LDBLE g; - //s_ptr = s_search(species_name); - //if (s_ptr != NULL) - //{ - - // s_ptr->dw = d; - // g = s_ptr->dw; - // if (s_ptr->dw_t) - // g *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); - // g *= viscos_0_25 / viscos * tk_x / 298.15;; - //} - //else - //{ - // g = 0; - //} - //return (g); if (s_ptr == NULL) return(0); Dw = s_ptr->dw = d; - if ((l_z = fabs(s_ptr->z)) == 0) + s_ptr->dw_a_v_dif = d_v_d; + if (correct_Dw) { - //l_z = 1; // only a 1st approximation for correct_Dw in electrical field + calc_SC(); + Dw = s_ptr->dw_corr; } else { - if (s_ptr->dw_a2) - ka = DH_B * s_ptr->dw_a2 * sqrt_mu / (1 + pow(mu_x, 0.75)); - else - ka = DH_B * 4.73 * sqrt_mu / (1 + pow(mu_x, 0.75)); - if (s_ptr->dw_a) - { - ff = exp(-s_ptr->dw_a * DH_A * l_z * sqrt_mu / (1 + ka)); - //if (print_viscosity && s_ptr->dw_a_visc) - // ff *= pow((viscos_0 / viscos), s_ptr->dw_a_visc); - } - else - { - ff = exp(-1.6 * DH_A * l_z * sqrt_mu / (1 + ka)); - } - Dw *= ff; + if (tk_x != 298.15 && s_ptr->dw_t) + Dw *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); + + Dw *= viscos_0_25 / viscos_0; } - - if (tk_x != 298.15 && s_ptr->dw_t) - Dw *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); - - s_ptr->dw_corr = Dw; - return (Dw * viscos_0_25 / viscos_0); + if (d_v_d && print_viscosity) + { + viscosity(nullptr); + Dw *= pow(viscos_0 / viscos, s_ptr->dw_a_v_dif); + } + return Dw; } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: calc_SC(void) /* ---------------------------------------------------------------------- */ { - //int i; - //LDBLE lm, a, l_z, Dw, SC, ff; - - //SC = 0; -# ifdef SKIP - for (i = 0; i < count_species_list; i++) - { - if (species_list[i].s->type == EX) - continue; - if (species_list[i].s->type == SURF) - continue; - if (i > 0 - && strcmp(species_list[i].s->name, - species_list[i - 1].s->name) == 0) - continue; - if (species_list[i].s == s_h2o) - continue; - if ((Dw = species_list[i].s->dw) == 0) - continue; - if ((l_z = fabs(species_list[i].s->z)) == 0) - continue; - - lm = species_list[i].s->lm; - if (lm > -9) - { - ff = (mu_x < .36 * l_z ? 0.6 / sqrt(l_z) : sqrt(mu_x) / l_z); - - ff *= species_list[i].s->lg; - if (ff > 0) ff = 0; - a = under(lm + ff); - if (species_list[i].s->dw_t) - Dw *= exp(species_list[i].s->dw_t / tk_x - species_list[i].s->dw_t / 298.15); // the viscosity multiplier is done in SC - SC += a * l_z * l_z * Dw; - } - } - SC *= 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298160.0); - /* correct for temperature dependency... - SC_T = SC_298 * (Dw_T / T) * (298 / Dw_298) and - Dw_T = Dw_298 * (T / 298) * (viscos_298 / viscos_T) give: - SC_T = SC_298 * (viscos_298 / viscos_T) - */ - SC *= viscos_0_25 / viscos; - - return (SC); - //# endif - for (i = 0; i < (int)this->s_x.size(); i++) - { - if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) - continue; - if ((Dw = s_x[i]->dw) == 0) - continue; - if ((l_z = fabs(s_x[i]->z)) == 0) - continue; - - lm = s_x[i]->lm; - if (lm > -9) - { - ff = (mu_x < .36 * l_z ? 0.6 / sqrt(l_z) : sqrt(mu_x) / l_z); - - ff *= s_x[i]->lg; - if (ff > 0) ff = 0; - a = under(lm + ff); - if (s_x[i]->dw_t) - Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); // the viscosity multiplier is done in SC - SC += a * l_z * l_z * Dw; - } - } - SC *= 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298160.0); - /* correct for temperature dependency... - SC_T = SC_298 * (Dw_T / T) * (298 / Dw_298) and - Dw_T = Dw_298 * (T / 298) * (viscos_298 / viscos_T) give: - SC_T = SC_298 * (viscos_298 / viscos_T) - */ - SC *= viscos_0_25 / viscos; - - return (SC); -# endif + class species *s_ptr; int i; - LDBLE ka, l_z, Dw, ff, sqrt_mu; - sqrt_mu = sqrt(mu_x); - + LDBLE ka, l_z, Dw, ff, sqrt_mu, a, a2, a3, av, v_Cl = 1; SC = 0; + sqrt_mu = sqrt(mu_x); + bool Falk = false; + s_ptr = s_search("H+"); + if (s_ptr == NULL) + return(0); + else if (s_ptr->dw_a3 > 24) Falk = true; + //LDBLE ta1, ta2, ta3, ta4; //for (i = 0; i < (int)this->s_x.size(); i++) //{ @@ -401,147 +284,247 @@ calc_SC(void) // break; // } //} - for (i = 0; i < (int)this->s_x.size(); i++) + av = 0; + if (print_viscosity) + viscosity(nullptr); + if (!Falk) { - if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) - continue; - if ((Dw = s_x[i]->dw) == 0) + for (i = 0; i < (int)this->s_x.size(); i++) { - if (correct_Dw) - Dw = default_Dw; - else + if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) continue; - } - if (s_x[i]->lm < min_dif_LM) - continue; - if ((l_z = fabs(s_x[i]->z)) == 0) - { - //l_z = 1; // only a 1st approximation for correct_Dw in electrical field - } - else - { - if (s_x[i]->dw_a2) - ka = DH_B * s_x[i]->dw_a2 * sqrt_mu / (1 + pow(mu_x, 0.75)); - else + if ((Dw = s_x[i]->dw) == 0) { - ka = DH_B * 4.73 * sqrt_mu / (1 + pow(mu_x, 0.75)); - //ka = DH_B * ta1 * sqrt_mu / (1 + pow(mu_x, ta2)); - //ka = DH_B * ta1 * sqrt_mu / (1 + mu_x / ta2); + if (correct_Dw) + Dw = default_Dw; + else + { + s_x[i]->dw_corr = 0; + continue; + } } - if (s_x[i]->dw_a) + if (s_x[i]->lm < min_dif_LM) + continue; + if (tk_x != 298.15) { - ff = exp(-s_x[i]->dw_a * DH_A * l_z * sqrt_mu / (1 + ka)); - //if (print_viscosity && s_x[i]->dw_a_visc) - // ff *= pow((viscos_0 / viscos), s_x[i]->dw_a_visc); + if (s_x[i]->dw_t) + Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); + //else + //{ + // Dw *= exp(ta1 / tk_x - ta1 / 298.15); + //} + } + // correct for temperature dependent viscosity of pure water... + Dw *= viscos_0_25 / viscos_0; + s_x[i]->dw_corr = Dw; + if ((l_z = fabs(s_x[i]->z)) == 0) + { + //l_z = 1; // only a 1st approximation for correct_Dw in electrical field + continue; } else { - ff = exp(-1.6 * DH_A * l_z * sqrt_mu / (1 + ka)); - //ff = exp(-ta3 * DH_A * l_z * sqrt_mu / (1 + ka)); + s_ptr = s_x[i]; + if (print_viscosity) + { + a = (s_ptr->dw_a ? s_ptr->dw_a : 1.6); + a2 = (s_ptr->dw_a2 ? s_ptr->dw_a2 : 4.73); + av = (s_ptr->dw_a_visc ? pow((viscos_0 / viscos), s_ptr->dw_a_visc) : 1); + a3 = (s_ptr->dw_a3 ? pow(mu_x, s_ptr->dw_a3) : s_ptr->dw_a_visc ? 1 : pow(mu_x, 0.75)); + } + else + { + a = (s_ptr->dw_a ? s_ptr->dw_a : 1.6); + a2 = (s_ptr->dw_a2 ? s_ptr->dw_a2 : 4.73); + av = 1.0; + a3 = (s_ptr->dw_a3 ? pow(mu_x, s_ptr->dw_a3) : pow(mu_x, 0.75)); + } + ka = DH_B * a2 * sqrt_mu / (1 + a3); + ff = av * exp(-a * DH_A * l_z * sqrt_mu / (1 + ka)); } + Dw *= ff; + if (correct_Dw) + s_x[i]->dw_corr = Dw; + s_x[i]->dw_t_SC = s_x[i]->moles / mass_water_aq_x * l_z * l_z * Dw; + SC += s_x[i]->dw_t_SC; } - if (tk_x != 298.15) + SC *= 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298150.0); + return (SC); + } + else + { + /* the phreeqc equation from Appelo, 2017, CCR 101, 102 with viscosity correction, e.g. for SO4-2 and its complexes: + Dw dw_t a a2 visc -5< a3 <5 + -dw 1.07e-9 236 0.7281 3.452 -0.1515 -3.043 # obsolete + or + Debye-Onsager with (1 + ka)^2 in the denominator, + for the individual ions according to their contribution to mu, with sqrt charge multiplier for B2 and + a in ka corrected by volume (or mu^a2, if a3 = -10), and * (viscos_0 / viscos)^av + Dw dw_t a a2 visc a3 = (0) or >5 + -dw 1.03e-9 -14 4.03 0.8341 1.679 # Li+, ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5 + */ + LDBLE q, sqrt_q, B1, B2, m_plus, m_min, eq_plus, eq_min, eq_dw_plus, eq_dw_min, z_plus, z_min, t1, Dw_SC; + + m_plus = m_min = eq_plus = eq_min = eq_dw_plus = eq_dw_min = z_plus = z_min = 0; + SC = 0; + LDBLE eps_c = eps_r; // Cl concentration corrected eps_r + // average z and Dw for transport numbers t1_0 and t2_0 at zero conc's, and q of the solution... + for (i = 0; i < (int)this->s_x.size(); i++) { - if (s_x[i]->dw_t) + if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) + continue; + if (s_x[i]->lm < min_dif_LM) + continue; + if ((Dw = s_x[i]->dw) == 0) + { + if (correct_Dw) + Dw = default_Dw; // or charge based...Dw = l_z > 0 ? 1.6e-9 / l_z : 2e-9 / -l_z; + else + { + s_x[i]->dw_corr = 0; + continue; + } + } + if (tk_x != 298.15 && s_x[i]->dw_t) Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); - //else - //{ - // Dw *= exp(ta1 / tk_x - ta1 / 298.15); - //} + Dw *= viscos_0_25 / viscos_0; + s_x[i]->dw_corr = Dw; + + if ((l_z = s_x[i]->z) == 0) + continue; + + if (l_z > 0) + { + m_plus += s_x[i]->moles; + a = s_x[i]->moles * l_z; + eq_plus += a; + eq_dw_plus += a * Dw; + } + else + { + m_min += s_x[i]->moles; + a = s_x[i]->moles * l_z; + eq_min -= a; + eq_dw_min -= a * Dw; + } } - s_x[i]->dw_corr = Dw; + // q = z1 * z2 / ((z2 * t1_0 + z1 * t2_0) * (z1 + z2)); + // z1 = z_plus, z2 = z_min, t1_0 = (eq_dw_plus / m_plus) / (eq_dw_plus / m_plus + eq_dw_min / m_min) + //a = (eq_plus - eq_min) / 2; + //eq_min += a; + //eq_plus -= a; + z_plus = eq_plus / m_plus; // |av_z1| + z_min = eq_min / m_min; // |av_z2| + t1 = (eq_dw_plus / m_plus) / (eq_dw_plus / m_plus + eq_dw_min / m_min); + q = 1 / ((t1 / z_plus + (1 - t1) / z_min) * (z_min + z_plus)); + sqrt_q = sqrt(q); - s_x[i]->dw_t_SC = s_x[i]->moles / mass_water_aq_x * l_z * l_z * Dw; - SC += s_x[i]->dw_t_SC; - } - SC *= 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298150.0); - /* correct for viscosity dependency... - SC_T = SC_298 * (viscos_298 / viscos_T) - */ - SC *= viscos_0_25 / viscos_0; - return (SC); -} -#ifdef SKIP -/*Debye-Onsager according to Robinson and Stokes, 1954, JACS 75, 1991, - but with sqrt charge multiplier for B2 and mu^ff dependent ka */ -LDBLE q, B1, B2, m_plus, m_min, eq_plus, eq_min, eq_dw_plus, eq_dw_min, Sum_m_dw, z_plus, z_min, t1, t2, Dw_SC; + // B1 = relaxtion, B2 = electrophoresis in ll = (ll0 - B2 * sqrt(mu) / f2(1 + ka)) * (1 - B1 * sqrt(mu) / f1(1 + ka)) + a = 1.60218e-19 * 1.60218e-19 / (6 * pi); + B1 = a / (2 * 8.8542e-12 * eps_r * 1.38066e-23 * tk_x) * q / (1 + sqrt_q) * DH_B * 1e10 * z_plus * z_min; // DH_B is per Angstrom (*1e10) + B2 = a * AVOGADRO / viscos_0 * DH_B * 1e17; // DH_B per Angstrom (*1e10), viscos in mPa.s (*1e3), B2 in cm2 (*1e4) + //B1 = a / (2 * 8.8542e-12 * eps_c * 1.38066e-23 * tk_x) * q / (1 + sqrt_q) * DH_B * 1e10 * z_plus * z_min; // DH_B is per Angstrom (*1e10) + //B2 = a * AVOGADRO / viscos * DH_B * 1e17; // DH_B per Angstrom (*1e10), viscos in mPa.s (*1e3), B2 in cm2 (*1e4) -m_plus = m_min = eq_plus = eq_min = eq_dw_plus = eq_dw_min = Sum_m_dw = z_plus = z_min = 0; -SC = 0; -for (i = 0; i < (int)this->s_x.size(); i++) -{ - if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) - continue; - if ((l_z = s_x[i]->z) == 0) - continue; - if ((lm = s_x[i]->lm) < -9) - continue; - if ((Dw = s_x[i]->dw) == 0) - Dw = 1e-9; - if (s_x[i]->dw_t) - Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); // the viscosity multiplier cancels in q... - if (l_z > 0) - { - m_plus += s_x[i]->moles; - t1 = s_x[i]->moles * l_z; - eq_plus += t1; - eq_dw_plus += t1 * Dw; - Sum_m_dw += s_x[i]->moles * Dw; - } - else - { - m_min += s_x[i]->moles; - t1 = s_x[i]->moles * l_z; - eq_min -= t1; - eq_dw_min -= t1 * Dw; - Sum_m_dw += s_x[i]->moles * Dw; + LDBLE mu_plus, mu_min, lz, ll_SC, v0; + // the + and - contributions to mu, assuming -2, -1, 1, 2 charge numbers... + mu_min = 3 * m_min * (z_min - 1) + m_min; + mu_plus = 3 * m_plus * (z_plus - 1) + m_plus; + + Dw_SC = 1e4 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298.15e3); // for recalculating Dw to ll0 + t1 = calc_solution_volume(); + ll_SC = 0.5e3 * (eq_plus + eq_min) / t1 * mass_water_aq_x / t1; // recalculates ll to SC in uS/cm, with mu in mol/kgw + + for (i = 0; i < (int)this->s_x.size(); i++) + { + if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) + continue; + if ((lz = s_x[i]->z) == 0) + continue; + if (s_x[i]->lm < min_dif_LM) + continue; + if ((Dw = s_x[i]->dw_corr) == 0) + continue; + l_z = fabs(lz); + a3 = s_x[i]->dw_a3; + if (a3 != 0 && a3 > -5.01 && a3 < 4.99) + { + // with the phreeqc equation... + s_ptr = s_x[i]; + a = (s_ptr->dw_a ? s_ptr->dw_a : 1.6); + a2 = (s_ptr->dw_a2 ? s_ptr->dw_a2 : 4.73); + a3 = pow(mu_x, a3); + if (print_viscosity) + av = (s_ptr->dw_a_visc ? pow((viscos_0 / viscos), s_ptr->dw_a_visc) : 1); + else + av = 1.0; + ka = DH_B * a2 * sqrt_mu / (1 + a3); + ff = av * exp(-a * DH_A * l_z * sqrt_mu / (1 + ka)); + + Dw *= ff; + if (correct_Dw) + s_x[i]->dw_corr = Dw; + s_x[i]->dw_t_SC = s_x[i]->moles / mass_water_aq_x * l_z * l_z * Dw; + SC += s_x[i]->dw_t_SC * 1e3 * Dw_SC; + } + else + { + // Falkenhagen... + if (!a3) a3 = 10; + a = (s_x[i]->dw_a ? s_x[i]->dw_a : 3.5); + a2 = (s_x[i]->dw_a2);// ? s_x[i]->dw_a2 : 0.5); + av = (s_x[i]->dw_a_visc);// ? s_x[i]->dw_a_visc : 0.8); + if (lz < -0.5/* && lz > -1.5*/) + { + // Mg and Ca give different numbers than H+, Li+, Na+ and K for anions... + t1 = (z_plus - 1); + //a -= a3 / 1000 * l_z * t1; + //a2 += a3 / 1000 * l_z * t1; + a -= 0.126 * l_z * t1; + a2 += 0.126 * l_z * t1; + //av += 0 * t1; + } + Dw *= Dw_SC * l_z; + if (!a2 || !strcmp(s_x[i]->name, "H+")) + t1 = 1; + else + { + v0 = calc_vm0(s_x[i]->name, tc_x, 1, 0); + t1 = 1 + (s_x[i]->rxn_x.logk[vm_tc] - v0); + if (a2 && t1 > 0) + t1 = pow(t1, a2); + //t1 = (t1 <= a3 / 10 ? a3 / 10 : t1); + t1 = (t1 < 1 ? 1 : t1); + } + if (a3 >= 5) + // with the vm correction of a in ka.. + ka = DH_B * a * t1 * sqrt_mu; + else + // with a mu^dw_a2 correction of a.. + ka = DH_B * a * pow((double)mu_x, a2); + + t1 = (Dw - B2 * l_z * sqrt_mu / (1 + ka)) * + (1 - B1 * sqrt_mu / ((1 + ka) * (1 + ka)));// +ka * ka / 6))); // S.cm2/eq / (kgw/L) + //t1 = (Dw - B2 * l_z * sqrt_mu / (1 + ka)) * + // (1 - B1 * sqrt_mu / ((1 + ka) *(1 + ka * sqrt_q + ka * ka / 6))); // S.cm2/eq / (kgw/L) + if (av) + t1 *= pow(viscos_0 / viscos, av); + if (correct_Dw) + s_x[i]->dw_corr *= t1 / Dw * pow(mass_water_aq_x / calc_solution_volume(), 2); + + // fractional contribution in mu, and correct for charge imbalance + a2 = 2 / (eq_plus + eq_min); + a = (lz > 0 ? mu_plus / (eq_plus * a2) : mu_min / (eq_min * a2)); + t1 *= s_x[i]->moles * l_z * l_z / a; + t1 *= ll_SC; + s_x[i]->dw_t_SC = t1 / (1e3 * Dw_SC); + SC += t1; + } + } + return SC; } } -// Falkenhagen, q = (Sum(z1 * m1*Dw1) + Sum(z2 *m2*Dw2)) / ((Sum(m1*Dw1) + Sum(m2*Dw2))(av_z1 + av_z2)) -z_plus = eq_plus / m_plus; // |av_z1| -z_min = eq_min / m_min; // |av_z2| -q = (eq_dw_plus + eq_dw_min) / (Sum_m_dw * (z_min + z_plus)); -t1 = 1.60218e-19 * 1.60218e-19 / (6 * pi); -B1 = t1 / (2 * 8.8542e-12 * eps_r * 1.38066e-23 * tk_x) * -q / (1 + sqrt(q)) * DH_B * 1e10 * z_plus * z_min; // DH_B is per Angstrom (*1e10) -t2 = viscos_0; // (1 - 0.5) * viscos_0 + 0.5 * viscos; -B2 = t1 * AVOGADRO / t2 * DH_B * 1e17; // DH_B per Angstrom (*1e10), viscos in mPa.s (*1e3), B2 in cm2 (*1e4) - -Dw_SC = viscos_0_25 / t2 * 1e4 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298160.0); -for (i = 0; i < (int)this->s_x.size(); i++) -{ - if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) - continue; - if ((l_z = fabs(s_x[i]->z)) == 0) - continue; - if ((lm = s_x[i]->lm) < -9) - continue; - if ((Dw = s_x[i]->dw) == 0) - Dw = 1e-9; - - Dw *= Dw_SC; - if (s_x[i]->dw_t) - Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); // the viscosity factor is in Dw_SC - a = (s_x[i]->dw_a ? s_x[i]->dw_a : 3.5); - ka = DH_B * a; - if (s_x[i]->dw_a2) - ka *= pow((double)mu_x, s_x[i]->dw_a2); - else - ka *= sqrt_mu; - - // Falkenhagen... - //SC += under(lm) * l_z * l_z * (Dw - B2 * l_z * sqrt_mu / (1 + ka)) * (1 - B1 * sqrt_mu / - // ((1 + ka) * (1 + ka * sqrt(q) + ka * ka / 6))); - - t1 = (Dw - (B1 * Dw + B2) * sqrt_mu / (1 + ka)); - //t1 = (Dw - (B1 * Dw + B2 * sqrt(l_z)) * sqrt_mu / (1 + ka)); - //t1 = (Dw - (B1 * Dw + B2 * l_z * l_z) * sqrt_mu / (1 + ka)); - if (t1 > 0) - SC += under(lm) * l_z * l_z * t1; -} -return (SC * 1e3); -#endif /* VP: Density Start */ /* ---------------------------------------------------------------------- */ @@ -622,11 +605,14 @@ calc_dens(void) V_solutes += s_x[i]->moles * s_x[i]->logk[vm_tc]; } /* If pure water then return rho_0 */ - if (M_T == 0) - return rho_0; - else - return rho_0 * (1e3 + M_T / mass_water_aq_x) / (rho_0 * V_solutes / mass_water_aq_x + 1e3); - + density_x = rho_0; + if (M_T > 0.0) + { + density_x = rho_0 * (1e3 + M_T / mass_water_aq_x) / (rho_0 * V_solutes / mass_water_aq_x + 1e3); + } + solution_mass_x = 1e-3*(M_T + s_h2o->moles * s_h2o->gfw); + solution_volume_x = solution_mass_x / density_x; + return density_x; //M_T /= 1e3; //solution_mass = mass_water_aq_x + M_T; //V_solutes = M_T - rho_0 * V_solutes / 1e3; @@ -638,7 +624,7 @@ calc_dens(void) } /* VP: Density End */ /* DP: Function for interval halving */ - +#ifdef NOT_USED LDBLE Phreeqc:: f_rho(LDBLE rho_old, void* cookie) /* ---------------------------------------------------------------------- */ @@ -656,7 +642,8 @@ f_rho(LDBLE rho_old, void* cookie) rho = rho + pThis->rho_0; return (rho - rho_old); } - +#endif +#ifdef original /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: calc_solution_volume(void) @@ -687,7 +674,19 @@ calc_solution_volume(void) LDBLE vol = 1e-3 * total_mass / rho; return (vol); } - +#endif +/* ---------------------------------------------------------------------- */ +LDBLE Phreeqc:: +calc_solution_volume(void) +/* ---------------------------------------------------------------------- */ +{ + /* + * Calculates solution volume based on sum of mass of element plus density + */ + LDBLE rho = calc_dens(); + LDBLE vol = solution_volume_x; + return (vol); +} /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: calc_logk_n(const char* name) @@ -769,7 +768,7 @@ calc_logk_s(const char* name) class species* s_ptr; LDBLE lk, l_logk[MAX_LOG_K_INDICES]; - Utilities::strcpy_safe(token, MAX_LENGTH, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL) { @@ -1190,6 +1189,29 @@ diff_layer_total(const char* total_name, const char* surface_name) return (0); } } + else if (strcmp_nocase("viscos_ddl", total_name) == 0) + { + if (dl_type_x != cxxSurface::NO_DL) + { + cxxSurfaceCharge* charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); + if (charge_ptr->Get_mass_water() > 0) + { + cxxSurface * surf_ptr = use.Get_surface_ptr(); + if (surf_ptr->Get_calc_viscosity()) + { + viscosity(surf_ptr); + viscosity(nullptr); + return charge_ptr->Get_DDL_viscosity(); + } + else + return charge_ptr->Get_DDL_viscosity() * viscos; + } + } + else + { + return (0); + } + } /* * find total moles of each element in diffuse layer... */ @@ -1246,7 +1268,7 @@ calc_t_sc(const char* name) calc_SC(); if (!SC) return (0); - LDBLE t = s_ptr->dw_t_SC * 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298150.0) * viscos_0_25 / viscos_0; + LDBLE t = s_ptr->dw_t_SC * 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298150.0); return (t / SC); } return (0); @@ -1387,7 +1409,7 @@ equi_phase_delta(const char* phase_name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -equivalent_fraction(const char* name, LDBLE * eq, std::string & elt_name) +equivalent_fraction(const char* name, LDBLE* eq, std::string& elt_name) /* ---------------------------------------------------------------------- */ { class species* s_ptr = s_search(name); @@ -1793,7 +1815,7 @@ pr_pressure(const char* phase_name) class phase* phase_ptr_gas = phase_bsearch(gas_comp_ptr->Get_phase_name().c_str(), &j, FALSE); if (phase_ptr == phase_ptr_gas) { - if (gas_phase_ptr->Get_pr_in()) + if (gas_phase_ptr->Get_pr_in() && phase_ptr->moles_x) { return phase_ptr->pr_p; } @@ -1841,7 +1863,7 @@ pr_phi(const char* phase_name) class phase* phase_ptr_gas = phase_bsearch(gas_comp_ptr->Get_phase_name().c_str(), &j, FALSE); if (phase_ptr == phase_ptr_gas) { - if (gas_phase_ptr->Get_pr_in()) + if (gas_phase_ptr->Get_pr_in() && phase_ptr->moles_x) return phase_ptr->pr_phi; else return gas_comp_ptr->Get_phi(); @@ -1888,7 +1910,7 @@ saturation_ratio(const char* phase_name) /* ---------------------------------------------------------------------- */ int Phreeqc:: -saturation_index(const char* phase_name, LDBLE * iap, LDBLE * si) +saturation_index(const char* phase_name, LDBLE* iap, LDBLE* si) /* ---------------------------------------------------------------------- */ { class rxn_token* rxn_ptr; @@ -2062,7 +2084,7 @@ sum_match_ss(const char* mytemplate, const char* name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -list_ss(std::string ss_name, cxxNameDouble & composition) +list_ss(std::string ss_name, cxxNameDouble& composition) /* ---------------------------------------------------------------------- */ { LDBLE tot = 0; @@ -2711,7 +2733,7 @@ total_mole(const char* total_name) /* ---------------------------------------------------------------------- */ int Phreeqc:: -get_edl_species(cxxSurfaceCharge & charge_ref) +get_edl_species(cxxSurfaceCharge& charge_ref) /* ---------------------------------------------------------------------- */ { @@ -2749,7 +2771,7 @@ get_edl_species(cxxSurfaceCharge & charge_ref) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -edl_species(const char* surf_name, LDBLE * count, char*** names, LDBLE * *moles, LDBLE * area, LDBLE * thickness) +edl_species(const char* surf_name, LDBLE* count, char*** names, LDBLE** moles, LDBLE* area, LDBLE* thickness) /* ---------------------------------------------------------------------- */ { /* @@ -2806,8 +2828,8 @@ edl_species(const char* surf_name, LDBLE * count, char*** names, LDBLE * *moles, } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -system_total(const char* total_name, LDBLE * count, char*** names, - char*** types, LDBLE * *moles, int isort) +system_total(const char* total_name, LDBLE* count, char*** names, + char*** types, LDBLE** moles, int isort) /* ---------------------------------------------------------------------- */ { /* @@ -2922,7 +2944,7 @@ system_total(const char* total_name, LDBLE * count, char*** names, /* ---------------------------------------------------------------------- */ std::string Phreeqc:: -kinetics_formula(std::string kin_name, cxxNameDouble & stoichiometry) +kinetics_formula(std::string kin_name, cxxNameDouble& stoichiometry) /* ---------------------------------------------------------------------- */ { /* @@ -2973,7 +2995,7 @@ kinetics_formula(std::string kin_name, cxxNameDouble & stoichiometry) } /* ---------------------------------------------------------------------- */ std::string Phreeqc:: -phase_formula(std::string phase_name, cxxNameDouble & stoichiometry) +phase_formula(std::string phase_name, cxxNameDouble& stoichiometry) /* ---------------------------------------------------------------------- */ { /* @@ -2996,7 +3018,7 @@ phase_formula(std::string phase_name, cxxNameDouble & stoichiometry) } /* ---------------------------------------------------------------------- */ std::string Phreeqc:: -species_formula(std::string phase_name, cxxNameDouble & stoichiometry) +species_formula(std::string phase_name, cxxNameDouble& stoichiometry) /* ---------------------------------------------------------------------- */ { /* @@ -3028,6 +3050,109 @@ species_formula(std::string phase_name, cxxNameDouble & stoichiometry) return (formula); } +/* ---------------------------------------------------------------------- */ +std::string Phreeqc:: +phase_equation(std::string phase_name, std::vector >& stoichiometry) +/* ---------------------------------------------------------------------- */ +{ + /* + * Returns equation + * Also returns arrays of species and stoichiometry in stoichiometry + */ + stoichiometry.clear(); + std::ostringstream eq, lhs, rhs; + int j = -1; + class phase* phase_ptr = phase_bsearch(phase_name.c_str(), &j, FALSE); + bool rhs_started = false; + bool lhs_started = false; + if (phase_ptr != NULL) + { + std::vector::iterator it = phase_ptr->rxn.Get_tokens().begin(); + for (; it->name != NULL; it++) + { + if (!lhs_started) + { + std::pair item(phase_ptr->formula, it->coef); + stoichiometry.push_back(item); + } + else + { + std::pair item(it->name, it->coef); + stoichiometry.push_back(item); + } + if (it->coef < 0.0) + { + if (lhs_started) lhs << "+ "; + if (it->coef != -1.0) + { + lhs << -it->coef; + } + lhs << it->name << " "; + lhs_started = true; + } + else if (it->coef > 0.0) + { + if (rhs_started) rhs << "+ "; + if (it->coef != 1.0) + { + rhs << it->coef; + } + rhs << it->name << " "; + rhs_started = true; + } + } + } + eq << lhs.str() << "= " << rhs.str(); + return (eq.str()); +} + +/* ---------------------------------------------------------------------- */ +std::string Phreeqc:: +species_equation(std::string species_name, std::vector >& stoichiometry) +/* ---------------------------------------------------------------------- */ +{ + /* + * Returns equation + * Also returns arrays of species and stoichiometry in stoichiometry + */ + stoichiometry.clear(); + std::ostringstream eq, lhs, rhs;; + class species* s_ptr = s_search(species_name.c_str()); + bool rhs_started = false; + bool lhs_started = false; + if (s_ptr != NULL) + { + std::vector::iterator it = s_ptr->rxn.Get_tokens().begin(); + for ( ; it->name != NULL; it++) + { + std::pair item(it->name, it->coef); + stoichiometry.push_back(item); + if (it->coef > 0.0) + { + if (lhs_started) lhs << "+ "; + if (it->coef != 1.0) + { + lhs << it->coef; + } + lhs << it->name << " "; + lhs_started = true; + } + else if (it->coef < 0.0) + { + if (rhs_started) rhs << "+ "; + if (it->coef != -1.0) + { + rhs << -it->coef; + } + rhs << it->name << " "; + rhs_started = true; + } + } + } + eq << lhs.str() << "= " << rhs.str(); + return (eq.str()); +} + /* ---------------------------------------------------------------------- */ int Phreeqc:: system_total_elements(void) @@ -3186,13 +3311,13 @@ int Phreeqc:: system_total_aq(void) /* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in system and lists of species/phases in sort order - */ +/* + * Provides total moles in system and lists of species/phases in sort order + */ int i; - /* - * find total moles in aq, surface, and exchange - */ +/* + * find total moles in aq, surface, and exchange + */ for (i = 0; i < (int)this->s_x.size(); i++) { //if (s_x[i]->type != AQ) @@ -3213,13 +3338,13 @@ int Phreeqc:: system_total_ex(void) /* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in system and lists of species/phases in sort order - */ +/* + * Provides total moles in system and lists of species/phases in sort order + */ int i; - /* - * find total moles in aq, surface, and exchange - */ +/* + * find total moles in aq, surface, and exchange + */ for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != EX) @@ -3241,13 +3366,13 @@ int Phreeqc:: system_total_surf(void) /* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in system and lists of species/phases in sort order - */ +/* + * Provides total moles in system and lists of species/phases in sort order + */ int i; - /* - * find total moles in aq, surface, and exchange - */ +/* + * find total moles in aq, surface, and exchange + */ for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != SURF) @@ -3266,20 +3391,20 @@ int Phreeqc:: system_total_gas(void) /* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in system and lists of species/phases in sort order - */ +/* + * Provides total moles in system and lists of species/phases in sort order + */ int i; - /* - * find total in gas phase - */ +/* + * find total in gas phase + */ if (use.Get_gas_phase_ptr() == NULL) return (OK); - cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); + cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) { - class phase* phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), + class phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), &i, FALSE); assert(phase_ptr); size_t count_sys = sys.size(); @@ -3296,24 +3421,24 @@ int Phreeqc:: system_total_equi(void) /* ---------------------------------------------------------------------- */ { - /* - * Equilibrium phases - */ +/* + * Equilibrium phases + */ if (use.Get_pp_assemblage_ptr() == NULL) return (OK); std::map comps = use.Get_pp_assemblage_ptr()->Get_pp_assemblage_comps(); std::map ::iterator it = comps.begin(); - for (; it != comps.end(); it++) + for ( ; it != comps.end(); it++) { - cxxPPassemblageComp* comp_ptr = &(it->second); - int l; - class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); - size_t count_sys = sys.size(); - sys.resize(count_sys + 1); - sys[count_sys].name = string_duplicate(phase_ptr->name); - sys[count_sys].moles = equi_phase(sys[count_sys].name); - sys_tot += sys[count_sys].moles; - sys[count_sys].type = string_duplicate("equi"); + cxxPPassemblageComp *comp_ptr = &(it->second); + int l; + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); + sys[count_sys].name = string_duplicate(phase_ptr->name); + sys[count_sys].moles = equi_phase(sys[count_sys].name); + sys_tot += sys[count_sys].moles; + sys[count_sys].type = string_duplicate("equi"); } return (OK); } @@ -3322,21 +3447,21 @@ int Phreeqc:: system_total_kin(void) /* ---------------------------------------------------------------------- */ { - /* - * Equilibrium phases - */ +/* + * Equilibrium phases + */ if (use.Get_kinetics_ptr() == NULL) return (OK); std::vector comps = use.Get_kinetics_ptr()->Get_kinetics_comps(); - for (size_t i = 0; i < comps.size(); i++) + for (size_t i=0 ; i < comps.size(); i++) { - cxxKineticsComp* comp_ptr = &comps[i]; - size_t count_sys = sys.size(); - sys.resize(count_sys + 1); - sys[count_sys].name = string_duplicate(comp_ptr->Get_rate_name().c_str()); - sys[count_sys].moles = comp_ptr->Get_m(); - sys_tot += sys[count_sys].moles; - sys[count_sys].type = string_duplicate("kin"); + cxxKineticsComp *comp_ptr = &comps[i]; + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); + sys[count_sys].name = string_duplicate(comp_ptr->Get_rate_name().c_str()); + sys[count_sys].moles = comp_ptr->Get_m(); + sys_tot += sys[count_sys].moles; + sys[count_sys].type = string_duplicate("kin"); } return (OK); } @@ -3345,24 +3470,24 @@ int Phreeqc:: system_total_ss(void) /* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in system and lists of species/phases in sort order - */ +/* + * Provides total moles in system and lists of species/phases in sort order + */ - /* - * Solid solutions - */ +/* + * Solid solutions + */ if (use.Get_ss_assemblage_ptr() == NULL) return (OK); - std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); + std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); for (size_t k = 0; k < ss_ptrs.size(); k++) { - cxxSS* ss_ptr = ss_ptrs[k]; + cxxSS *ss_ptr = ss_ptrs[k]; for (size_t i = 0; i < ss_ptr->Get_ss_comps().size(); i++) { - cxxSScomp* comp_ptr = &(ss_ptr->Get_ss_comps()[i]); + cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[i]); int l; - class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); size_t count_sys = sys.size(); sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(phase_ptr->name); @@ -3375,19 +3500,19 @@ system_total_ss(void) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -system_total_elt(const char* total_name) +system_total_elt(const char *total_name) /* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in system and lists of species/phases in sort order - */ +/* + * Provides total moles in system and lists of species/phases in sort order + */ int i, j, k; LDBLE molality, moles_excess, moles_surface, mass_water_surface; char name[MAX_LENGTH]; - /* - * find total moles in aq, surface, and exchange - */ +/* + * find total moles in aq, surface, and exchange + */ for (i = 0; i < (int)this->s_x.size(); i++) { count_elts = 0; @@ -3452,7 +3577,7 @@ system_total_elt(const char* total_name) { if (x[k]->type != SURFACE_CB) continue; - cxxSurfaceCharge* charge_ptr = use.Get_surface_ptr()->Find_charge(x[k]->surface_charge); + cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[k]->surface_charge); i++; /* * Loop through all surface components, calculate each H2O surface (diffuse layer), @@ -3469,8 +3594,8 @@ system_total_elt(const char* total_name) moles_excess = mass_water_aq_x * molality * (charge_ptr->Get_g_map()[s_x[j]->z].Get_g() * s_x[j]->erm_ddl + - mass_water_surface / mass_water_aq_x * (s_x[j]->erm_ddl - - 1)); + mass_water_surface / mass_water_aq_x * (s_x[j]->erm_ddl - + 1)); moles_surface = mass_water_surface * molality + moles_excess; /* * Accumulate elements in diffuse layer @@ -3498,9 +3623,9 @@ system_total_elt(const char* total_name) } } } - /* - * find total moles in mineral phases - */ +/* + * find total moles in mineral phases + */ if (use.Get_pp_assemblage_in() == TRUE && use.Get_pp_assemblage_ptr() != NULL) { for (i = 0; i < count_unknowns; i++) @@ -3509,7 +3634,7 @@ system_total_elt(const char* total_name) continue; //std::map::iterator it; //it = pp_assemblage_ptr->Get_pp_assemblage_comps().find(x[i]->pp_assemblage_comp_name); - cxxPPassemblageComp* comp_ptr = (cxxPPassemblageComp*)x[i]->pp_assemblage_comp_ptr; + cxxPPassemblageComp * comp_ptr = (cxxPPassemblageComp * ) x[i]->pp_assemblage_comp_ptr; //if (it->second.Get_add_formula().size() > 0) if (comp_ptr->Get_add_formula().size() > 0) continue; @@ -3517,7 +3642,7 @@ system_total_elt(const char* total_name) paren_count = 0; int j; //class phase * phase_ptr = phase_bsearch(x[i]->pp_assemblage_comp_name, &j, FALSE); - class phase* phase_ptr = x[i]->phase; + class phase * phase_ptr = x[i]->phase; add_elt_list(phase_ptr->next_elt, x[i]->moles); elt_list_combine(); for (j = 0; j < count_elts; j++) @@ -3535,26 +3660,26 @@ system_total_elt(const char* total_name) } } } - /* - * Solid solutions - */ +/* + * Solid solutions + */ if (use.Get_ss_assemblage_ptr() != NULL) { - std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); + std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); for (size_t k = 0; k < ss_ptrs.size(); k++) { - cxxSS* ss_ptr = ss_ptrs[k]; + cxxSS *ss_ptr = ss_ptrs[k]; if (ss_ptr->Get_ss_in()) { for (size_t i = 0; i < ss_ptr->Get_ss_comps().size(); i++) { - cxxSScomp* comp_ptr = &(ss_ptr->Get_ss_comps()[i]); + cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[i]); int l; - class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); count_elts = 0; paren_count = 0; add_elt_list(phase_ptr->next_elt, - comp_ptr->Get_moles()); + comp_ptr->Get_moles()); elt_list_combine(); for (j = 0; j < count_elts; j++) { @@ -3574,15 +3699,15 @@ system_total_elt(const char* total_name) } } } - /* - * find total in gas phase - */ +/* + * find total in gas phase + */ if (use.Get_gas_phase_ptr() != NULL) { - cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); + cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); for (size_t i = 0; i < gas_phase_ptr->Get_gas_comps().size(); i++) { - class phase* phase_ptr = + class phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[i].Get_phase_name().c_str(), &k, FALSE); assert(phase_ptr); if (phase_ptr->in == TRUE) @@ -3615,19 +3740,19 @@ system_total_elt(const char* total_name) /* ---------------------------------------------------------------------- */ int Phreeqc:: -system_total_elt_secondary(const char* total_name) +system_total_elt_secondary(const char *total_name) /* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in system and lists of species/phases in sort order - */ +/* + * Provides total moles in system and lists of species/phases in sort order + */ int i, j, k, l; LDBLE molality, moles_excess, moles_surface, mass_water_surface, sum, coef; char name[MAX_LENGTH]; - /* - * find total moles in aq, surface, and exchange - */ +/* + * find total moles in aq, surface, and exchange + */ for (i = 0; i < (int)this->s_x.size(); i++) { count_elts = 0; @@ -3693,7 +3818,7 @@ system_total_elt_secondary(const char* total_name) { if (x[k]->type != SURFACE_CB) continue; - cxxSurfaceCharge* charge_ptr = use.Get_surface_ptr()->Find_charge(x[k]->surface_charge); + cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[k]->surface_charge); i++; /* * Loop through all surface components, calculate each H2O surface (diffuse layer), @@ -3744,9 +3869,9 @@ system_total_elt_secondary(const char* total_name) } } } - /* - * find total moles in mineral phases - */ +/* + * find total moles in mineral phases + */ if (use.Get_pp_assemblage_in() == TRUE && use.Get_pp_assemblage_ptr() != NULL) { for (i = 0; i < count_unknowns; i++) @@ -3755,7 +3880,7 @@ system_total_elt_secondary(const char* total_name) continue; //std::map::iterator it; //it = pp_assemblage_ptr->Get_pp_assemblage_comps().find(x[i]->pp_assemblage_comp_name); - cxxPPassemblageComp* comp_ptr = (cxxPPassemblageComp*)x[i]->pp_assemblage_comp_ptr; + cxxPPassemblageComp * comp_ptr = (cxxPPassemblageComp * ) x[i]->pp_assemblage_comp_ptr; //if (it->second.Get_add_formula().size() > 0) if (comp_ptr->Get_add_formula().size() > 0) continue; @@ -3763,8 +3888,8 @@ system_total_elt_secondary(const char* total_name) paren_count = 0; int j; //class phase * phase_ptr = phase_bsearch(x[i]->pp_assemblage_comp_name, &j, FALSE); - class phase* phase_ptr = x[i]->phase; - add_elt_list(phase_ptr->next_sys_total, x[i]->moles); + class phase * phase_ptr = x[i]->phase; + add_elt_list(phase_ptr->next_sys_total, x[i]->moles); elt_list_combine(); for (j = 0; j < count_elts; j++) { @@ -3782,26 +3907,26 @@ system_total_elt_secondary(const char* total_name) } } } - /* - * Solid solutions - */ +/* + * Solid solutions + */ if (use.Get_ss_assemblage_ptr() != NULL) { - std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); + std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); for (size_t i = 0; i < ss_ptrs.size(); i++) { - cxxSS* ss_ptr = ss_ptrs[i]; + cxxSS *ss_ptr = ss_ptrs[i]; if (ss_ptr->Get_ss_in()) { for (size_t k = 0; k < ss_ptr->Get_ss_comps().size(); k++) { - cxxSScomp* comp_ptr = &(ss_ptr->Get_ss_comps()[k]); + cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[k]); int l; - class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); count_elts = 0; paren_count = 0; add_elt_list(phase_ptr->next_sys_total, - comp_ptr->Get_moles()); + comp_ptr->Get_moles()); elt_list_combine(); for (j = 0; j < count_elts; j++) { @@ -3821,15 +3946,15 @@ system_total_elt_secondary(const char* total_name) } } } - /* - * find total in gas phase - */ +/* + * find total in gas phase + */ if (use.Get_gas_phase_ptr() != NULL) { - cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); - for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) + cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); + for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) { - class phase* phase_ptr = + class phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), &i, FALSE); assert(phase_ptr); if (phase_ptr->in == TRUE) @@ -3837,13 +3962,13 @@ system_total_elt_secondary(const char* total_name) count_elts = 0; paren_count = 0; add_elt_list(phase_ptr->next_sys_total, - phase_ptr->moles_x); + phase_ptr->moles_x); elt_list_combine(); /* * Look for element */ - for (size_t j1 = 0; j1 < (size_t)count_elts; j1++) + for (size_t j1 = 0; j1 < (size_t) count_elts; j1++) { if (strcmp(elt_list[j1].elt->name, total_name) == 0) { @@ -3867,7 +3992,7 @@ int Phreeqc:: solution_number(void) /* ---------------------------------------------------------------------- */ { - Phreeqc* PhreeqcPtr = this; + Phreeqc * PhreeqcPtr = this; int soln_no = -999; if (PhreeqcPtr->state == TRANSPORT) { @@ -3900,17 +4025,17 @@ solution_number(void) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -solution_sum_secondary(const char* total_name) +solution_sum_secondary(const char *total_name) /* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in system and lists of species/phases in sort order - */ +/* + * Provides total moles in system and lists of species/phases in sort order + */ int i, j; LDBLE sum; - /* - * find total moles in aq, surface, and exchange - */ +/* + * find total moles in aq, surface, and exchange + */ sum = 0; for (i = 0; i < (int)this->s_x.size(); i++) { @@ -3944,13 +4069,13 @@ solution_sum_secondary(const char* total_name) /* ---------------------------------------------------------------------- */ int Phreeqc:: -system_species_compare(const void* ptr1, const void* ptr2) +system_species_compare(const void *ptr1, const void *ptr2) /* ---------------------------------------------------------------------- */ { - const class system_species* a, * b; + const class system_species *a, *b; - a = (const class system_species*)ptr1; - b = (const class system_species*)ptr2; + a = (const class system_species *) ptr1; + b = (const class system_species *) ptr2; if (a->moles < b->moles) return (1); if (a->moles > b->moles) @@ -3970,21 +4095,21 @@ system_species_compare_name(const void* ptr1, const void* ptr2) /* ---------------------------------------------------------------------- */ int Phreeqc:: -system_total_solids(cxxExchange * exchange_ptr, - cxxPPassemblage * pp_assemblage_ptr, - cxxGasPhase * gas_phase_ptr, - cxxSSassemblage * ss_assemblage_ptr, - cxxSurface * surface_ptr) - /* ---------------------------------------------------------------------- */ +system_total_solids(cxxExchange *exchange_ptr, + cxxPPassemblage *pp_assemblage_ptr, + cxxGasPhase *gas_phase_ptr, + cxxSSassemblage *ss_assemblage_ptr, + cxxSurface *surface_ptr) +/* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in solid phases - */ +/* + * Provides total moles in solid phases + */ count_elts = 0; paren_count = 0; - /* - * find total moles in exchanger - */ +/* + * find total moles in exchanger + */ if (exchange_ptr != NULL) { for (size_t i = 0; i < exchange_ptr->Get_exchange_comps().size(); i++) @@ -4001,17 +4126,17 @@ system_total_solids(cxxExchange * exchange_ptr, } if (ss_assemblage_ptr != NULL) { - std::vector ss_ptrs = ss_assemblage_ptr->Vectorize(); + std::vector ss_ptrs = ss_assemblage_ptr->Vectorize(); for (size_t i = 0; i < ss_ptrs.size(); i++) { - cxxSS* ss_ptr = ss_ptrs[i]; + cxxSS *ss_ptr = ss_ptrs[i]; for (size_t j = 0; j < ss_ptr->Get_ss_comps().size(); j++) { - cxxSScomp* comp_ptr = &(ss_ptr->Get_ss_comps()[j]); + cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[j]); int l; - class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); add_elt_list(phase_ptr->next_elt, - comp_ptr->Get_moles()); + comp_ptr->Get_moles()); } } } @@ -4020,7 +4145,7 @@ system_total_solids(cxxExchange * exchange_ptr, for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) { int i; - class phase* phase_ptr = + class phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), &i, FALSE); add_elt_list(phase_ptr->next_elt, gas_phase_ptr->Get_gas_comps()[j].Get_moles()); } @@ -4028,13 +4153,13 @@ system_total_solids(cxxExchange * exchange_ptr, if (pp_assemblage_ptr != NULL) { std::map::iterator it; - it = pp_assemblage_ptr->Get_pp_assemblage_comps().begin(); - for (; it != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); it++) + it = pp_assemblage_ptr->Get_pp_assemblage_comps().begin(); + for ( ; it != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); it++) { int j; - class phase* phase_ptr = phase_bsearch(it->first.c_str(), &j, FALSE); + class phase * phase_ptr = phase_bsearch(it->first.c_str(), &j, FALSE); add_elt_list(phase_ptr->next_elt, - it->second.Get_moles()); + it->second.Get_moles()); } } elt_list_combine(); @@ -4042,14 +4167,14 @@ system_total_solids(cxxExchange * exchange_ptr, } LDBLE Phreeqc:: -iso_value(const char* total_name) +iso_value(const char *total_name) { int j; char token[MAX_LENGTH]; char my_total_name[MAX_LENGTH]; Utilities::strcpy_safe(token, MAX_LENGTH, ""); Utilities::strcpy_safe(my_total_name, MAX_LENGTH, total_name); - while (replace(" ", "_", my_total_name)); + while (replace(" ","_",my_total_name)); for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) @@ -4059,8 +4184,8 @@ iso_value(const char* total_name) return (isotope_ratio[j]->converted_ratio); } Utilities::strcpy_safe(my_total_name, MAX_LENGTH, total_name); - while (replace("[", "", my_total_name)); - while (replace("]", "", my_total_name)); + while (replace("[","",my_total_name)); + while (replace("]","",my_total_name)); Utilities::strcat_safe(token, MAX_LENGTH, "R("); Utilities::strcat_safe(token, MAX_LENGTH, my_total_name); Utilities::strcat_safe(token, MAX_LENGTH, ")"); @@ -4075,16 +4200,16 @@ iso_value(const char* total_name) return -1000.; } -char* Phreeqc:: -iso_unit(const char* total_name) +char * Phreeqc:: +iso_unit(const char *total_name) { int j; char token[MAX_LENGTH], unit[MAX_LENGTH]; - class master_isotope* master_isotope_ptr; + class master_isotope *master_isotope_ptr; char my_total_name[MAX_LENGTH]; Utilities::strcpy_safe(token, MAX_LENGTH, ""); Utilities::strcpy_safe(my_total_name, MAX_LENGTH, total_name); - while (replace(" ", "_", my_total_name)); + while (replace(" ","_",my_total_name)); Utilities::strcpy_safe(unit, MAX_LENGTH, "unknown"); for (j = 0; j < (int)isotope_ratio.size(); j++) { @@ -4100,8 +4225,8 @@ iso_unit(const char* total_name) return string_duplicate(unit); } Utilities::strcpy_safe(my_total_name, MAX_LENGTH, total_name); - while (replace("[", "", my_total_name)); - while (replace("]", "", my_total_name)); + while (replace("[","",my_total_name)); + while (replace("]","",my_total_name)); Utilities::strcat_safe(token, MAX_LENGTH, "R("); Utilities::strcat_safe(token, MAX_LENGTH, my_total_name); Utilities::strcat_safe(token, MAX_LENGTH, ")"); @@ -4122,13 +4247,13 @@ iso_unit(const char* total_name) } int Phreeqc:: -basic_compile(const char* commands, void** lnbase, void** vbase, void** lpbase) +basic_compile(const char *commands, void **lnbase, void **vbase, void **lpbase) { return this->basic_interpreter->basic_compile(commands, lnbase, vbase, lpbase); } int Phreeqc:: -basic_run(char* commands, void* lnbase, void* vbase, void* lpbase) +basic_run(char *commands, void *lnbase, void *vbase, void *lpbase) { return this->basic_interpreter->basic_run(commands, lnbase, vbase, lpbase); } @@ -4145,7 +4270,7 @@ basic_free(void) #include "BasicCallback.h" double Phreeqc:: -basic_callback(double x1, double x2, const char* str) +basic_callback(double x1, double x2, const char * str) { if (this->basicCallback) { @@ -4158,10 +4283,10 @@ basic_callback(double x1, double x2, const char* str) #ifdef IPHREEQC_NO_FORTRAN_MODULE double Phreeqc:: -basic_callback(double x1, double x2, char* str) +basic_callback(double x1, double x2, const char * str) #else double Phreeqc:: -basic_callback(double x1, double x2, const char* str) +basic_callback(double x1, double x2, const char * str) #endif { double local_x1 = x1; @@ -4169,35 +4294,35 @@ basic_callback(double x1, double x2, const char* str) if (basic_callback_ptr != NULL) { - return (*basic_callback_ptr) (x1, x2, (const char*)str, basic_callback_cookie); + return (*basic_callback_ptr) (x1, x2, str, basic_callback_cookie); } if (basic_fortran_callback_ptr != NULL) { #ifdef IPHREEQC_NO_FORTRAN_MODULE - return (*basic_fortran_callback_ptr) (&local_x1, &local_x2, str, (int)strlen(str)); + return (*basic_fortran_callback_ptr) (&local_x1, &local_x2, str, (int) strlen(str)); #else - return (*basic_fortran_callback_ptr) (&local_x1, &local_x2, str, (int)strlen(str)); + return (*basic_fortran_callback_ptr) (&local_x1, &local_x2, str, (int) strlen(str)); #endif } return 0; } -void -Phreeqc::register_basic_callback(double (*fcn)(double x1, double x2, const char* str, void* cookie), void* cookie1) +void +Phreeqc::register_basic_callback(double (*fcn)(double x1, double x2, const char *str, void *cookie), void *cookie1) { this->basic_callback_ptr = fcn; this->basic_callback_cookie = cookie1; } #ifdef IPHREEQC_NO_FORTRAN_MODULE -void -Phreeqc::register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, char* str, size_t l)) +void +Phreeqc::register_fortran_basic_callback(double ( *fcn)(double *x1, double *x2, const char *str, size_t l)) { this->basic_fortran_callback_ptr = fcn; } #else -void -Phreeqc::register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, const char* str, int l)) +void +Phreeqc::register_fortran_basic_callback(double ( *fcn)(double *x1, double *x2, const char *str, int l)) { this->basic_fortran_callback_ptr = fcn; } diff --git a/src/phreeqcpp/class_main.cpp b/src/phreeqcpp/class_main.cpp index 03fb3e40..79e6475f 100644 --- a/src/phreeqcpp/class_main.cpp +++ b/src/phreeqcpp/class_main.cpp @@ -1,6 +1,8 @@ +#ifndef NPP #ifdef DOS #include #endif +#endif #include "Phreeqc.h" #include "NameDouble.h" @@ -122,12 +124,18 @@ main_method(int argc, char *argv[]) { return errors; } +#ifdef NPP +#ifdef DOS + write_banner(); +#endif +#else #ifndef NO_UTF8_ENCODING #ifdef DOS SetConsoleOutputCP(CP_UTF8); #endif write_banner(); #endif +#endif /* * Initialize arrays @@ -214,11 +222,17 @@ main_method(int argc, char *argv[]) { return errors; } +#ifdef NPP +#ifdef DOS + write_banner(); +#endif +#else #ifndef NO_UTF8_ENCODING #ifdef DOS SetConsoleOutputCP(CP_UTF8); #endif write_banner(); +#endif #endif /* @@ -281,6 +295,64 @@ main_method(int argc, char *argv[]) return 0; } #endif //TEST_COPY +#ifdef NPP +/* ---------------------------------------------------------------------- */ +int Phreeqc:: +write_banner(void) +/* ---------------------------------------------------------------------- */ +{ +#ifdef TESTING + return OK; +#endif +#ifndef NO_UTF8_ENCODING + char buffer[80]; + int len, indent; + screen_msg( + " ÛßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßÛ\n"); + screen_msg( + " º º\n"); + + /* version */ +#ifdef NPP + len = sprintf(buffer, "* PHREEQC-%s *", "3.8.0"); +#else + len = sprintf(buffer, "* PHREEQC-%s *", "@VERSION@"); +#endif + indent = (49 - len) / 2; + screen_msg(sformatf("%14cº%*c%s%*cº\n", ' ', indent, ' ', buffer, + 49 - indent - len, ' ')); + + screen_msg( + " º º\n"); + screen_msg( + " º A hydrogeochemical transport model º\n"); + screen_msg( + " º º\n"); + screen_msg( + " º by º\n"); + screen_msg( + " º D.L. Parkhurst and C.A.J. Appelo º\n"); + screen_msg( + " º º\n"); + + + /* date */ +#ifdef NPP + len = sprintf(buffer, "%s", "August 27, 2024, with bug-fixes and new items"); +#else + len = sprintf(buffer, "%s", "@VER_DATE@"); +#endif + indent = (49 - len) / 2; + screen_msg(sformatf("%14cº%*c%s%*cº\n", ' ', indent, ' ', buffer, + 49 - indent - len, ' ')); + + screen_msg( + " ÛÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÛ\n\n"); + +#endif + return 0; +} +#else /* ---------------------------------------------------------------------- */ int Phreeqc:: write_banner(void) @@ -298,11 +370,7 @@ write_banner(void) " â•‘ â•‘\n"); /* version */ -#ifdef NPP - len = snprintf(buffer, sizeof(buffer), "* PHREEQC-%s *", "3.7.1"); -#else len = snprintf(buffer, sizeof(buffer), "* PHREEQC-%s *", "@VERSION@"); -#endif indent = (44 - len) / 2; screen_msg(sformatf("%14câ•‘%*c%s%*câ•‘\n", ' ', indent, ' ', buffer, 44 - indent - len, ' ')); @@ -322,11 +390,7 @@ write_banner(void) /* date */ -#ifdef NPP - len = snprintf(buffer, sizeof(buffer), "%s", "March 20, 2023"); -#else len = snprintf(buffer, sizeof(buffer), "%s", "@VER_DATE@"); -#endif indent = (44 - len) / 2; screen_msg(sformatf("%14câ•‘%*c%s%*câ•‘\n", ' ', indent, ' ', buffer, 44 - indent - len, ' ')); @@ -336,6 +400,7 @@ write_banner(void) #endif return 0; } +#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: @@ -507,7 +572,7 @@ process_file_names(int argc, char *argv[], std::istream **db_cookie, output_msg(sformatf(" Input file: %s\n", in_file.c_str())); output_msg(sformatf(" Output file: %s\n", out_file.c_str())); #ifdef NPP - output_msg(sformatf("Using PHREEQC: version 3.7.3, compiled March 20, 2023\n")); + output_msg(sformatf("Using PHREEQC: version 3.8.2, compiled August 27, 2024, with bug-fixes and new items\n")); #endif output_msg(sformatf("Database file: %s\n\n", token.c_str())); #ifdef NPP @@ -516,7 +581,7 @@ process_file_names(int argc, char *argv[], std::istream **db_cookie, /* * local cleanup */ - + line = (char *) free_check_null(line); line_save = (char *) free_check_null(line_save); diff --git a/src/phreeqcpp/common/Utils.cxx b/src/phreeqcpp/common/Utils.cxx index 6738fa9d..b2585a56 100644 --- a/src/phreeqcpp/common/Utils.cxx +++ b/src/phreeqcpp/common/Utils.cxx @@ -199,13 +199,17 @@ strcpy_safe(char* dest, size_t max, const char* src) { if (dest == nullptr || src == nullptr) { +#if !defined(R_SO) std::cerr << "nullptr in Utilities::strcpy_safe." << std::endl; +#endif throw; } lsrc = strlen(src); if (lsrc + 1 > max) { +#if !defined(R_SO) std::cerr << "Buffer overrun in Utilities::strcpy_safe." << std::endl; +#endif throw; } memcpy(dest, src, (lsrc + 1) * sizeof(char)); @@ -224,14 +228,18 @@ strcat_safe(char* dest, size_t max, const char* src) { if (dest == nullptr || src == nullptr) { +#if !defined(R_SO) std::cerr << "nullptr in Utilities::strcat_safe." << std::endl; +#endif throw; } lsrc = strlen(src); ldest = strlen(dest); if (ldest + lsrc + 1 > max) { +#if !defined(R_SO) std::cerr << "Buffer overrun in Utilities::strcat_safe." << std::endl; +#endif throw; } memcpy(&dest[ldest], src, (lsrc + 1) * sizeof(char)); diff --git a/src/phreeqcpp/gases.cpp b/src/phreeqcpp/gases.cpp index 9f71089f..bfcc64d7 100644 --- a/src/phreeqcpp/gases.cpp +++ b/src/phreeqcpp/gases.cpp @@ -606,11 +606,10 @@ calc_PR(void) { phi = B_r * (rz - 1) - log(rz - B) + A / (2.828427 * B) * (B_r - 2.0 * phase_ptr->pr_aa_sum2 / a_aa_sum) * log((rz + 2.41421356 * B) / (rz - 0.41421356 * B)); - //phi = (phi > 4.44 ? 4.44 : (phi < -3 ? -3 : phi)); phi = (phi > 4.44 ? 4.44 : (phi < -4.6 ? -4.6 : phi)); } else - phi = -3.0; // fugacity coefficient = 0.05 + phi = -4.6; // fugacity coefficient = 0.01 phase_ptr->pr_phi = exp(phi); phase_ptr->pr_si_f = phi / LOG_10; // pr_si_f updated // **** diff --git a/src/phreeqcpp/global_structures.h b/src/phreeqcpp/global_structures.h index c4672cfe..9eba4493 100644 --- a/src/phreeqcpp/global_structures.h +++ b/src/phreeqcpp/global_structures.h @@ -14,7 +14,7 @@ # define NAN nan("1") # endif #endif -#define MISSING -9999.999 +#define MISSING -9999.999 #include "NA.h" /* NA = not available */ #define F_C_MOL 96493.5 /* C/mol or joule/volt-eq */ @@ -210,6 +210,20 @@ struct Change_Surf /*---------------------------------------------------------------------- * CReaction *---------------------------------------------------------------------- */ +class rxn_token +{ +public: + ~rxn_token() {}; + rxn_token() + { + s = NULL; + coef = 0.0; + name = NULL; + } + class species* s; + LDBLE coef; + const char* name; +}; class CReaction { public: @@ -229,20 +243,6 @@ public: double dz[3]; std::vector token; }; -class rxn_token -{ -public: - ~rxn_token() {}; - rxn_token() - { - s = NULL; - coef = 0.0; - name = NULL; - } - class species* s; - LDBLE coef; - const char* name; -}; class save { public: @@ -322,6 +322,86 @@ public: /*---------------------------------------------------------------------- * Inverse *---------------------------------------------------------------------- */ +class inv_elts +{ +public: + ~inv_elts() {}; + inv_elts() + { + name = NULL; + master = NULL; + row = 0; + //uncertainties.clear(); + } + const char* name; + class master* master; + size_t row; + std::vector uncertainties; +}; +class isotope +{ +public: + ~isotope() {}; + isotope() + { + isotope_number = 0; + elt_name = NULL; + isotope_name = NULL; + total = 0; + ratio = 0; + ratio_uncertainty = 0; + x_ratio_uncertainty = 0; + master = NULL; + primary = NULL; + coef = 0; /* coefficient of element in phase */ + } + LDBLE isotope_number; + const char* elt_name; + const char* isotope_name; + LDBLE total; + LDBLE ratio; + LDBLE ratio_uncertainty; + LDBLE x_ratio_uncertainty; + class master* master; + class master* primary; + LDBLE coef; +}; +class inv_isotope +{ +public: + ~inv_isotope() {}; + inv_isotope() + { + isotope_name = NULL; + isotope_number = 0; + elt_name = NULL; + //uncertainties.clear(); + } + const char* isotope_name; + LDBLE isotope_number; + const char* elt_name; + std::vector uncertainties; +}; +class inv_phases +{ +public: + ~inv_phases() {}; + inv_phases() + { + name = NULL; + phase = NULL; + column = 0; + constraint = EITHER; + force = FALSE; + //isotopes.clear(); + } + const char* name; + class phase* phase; + int column; + int constraint; + int force; + std::vector isotopes; +}; class inverse { public: @@ -386,58 +466,6 @@ public: const char* netpath; const char* pat; }; -class inv_elts -{ -public: - ~inv_elts() {}; - inv_elts() - { - name = NULL; - master = NULL; - row = 0; - //uncertainties.clear(); - } - const char* name; - class master* master; - size_t row; - std::vector uncertainties; -}; -class inv_isotope -{ -public: - ~inv_isotope() {}; - inv_isotope() - { - isotope_name = NULL; - isotope_number = 0; - elt_name = NULL; - //uncertainties.clear(); - } - const char* isotope_name; - LDBLE isotope_number; - const char* elt_name; - std::vector uncertainties; -}; -class inv_phases -{ -public: - ~inv_phases() {}; - inv_phases() - { - name = NULL; - phase = NULL; - column = 0; - constraint = EITHER; - force = FALSE; - //isotopes.clear(); - } - const char* name; - class phase* phase; - int column; - int constraint; - int force; - std::vector isotopes; -}; /*---------------------------------------------------------------------- * Jacobian and Mass balance lists *---------------------------------------------------------------------- */ @@ -538,34 +566,6 @@ public: LDBLE* target; LDBLE coef; }; -class isotope -{ -public: - ~isotope() {}; - isotope() - { - isotope_number = 0; - elt_name = NULL; - isotope_name = NULL; - total = 0; - ratio = 0; - ratio_uncertainty = 0; - x_ratio_uncertainty = 0; - master = NULL; - primary = NULL; - coef = 0; /* coefficient of element in phase */ - } - LDBLE isotope_number; - const char* elt_name; - const char* isotope_name; - LDBLE total; - LDBLE ratio; - LDBLE ratio_uncertainty; - LDBLE x_ratio_uncertainty; - class master* master; - class master* primary; - LDBLE coef; -}; class iso { public: @@ -712,17 +712,18 @@ public: secondary = NULL; gfw = 0; // gram formula wt of species z = 0; // charge of species - // tracer diffusion coefficient in water at 25oC, m2/s - dw = 0; - // correct Dw for temperature: Dw(TK) = Dw(298.15) * exp(dw_t / TK - dw_t / 298.15) - dw_t = 0; - // parms for calc'ng SC = SC0 * exp(-dw_a * z * mu^0.5 / (1 + DH_B * dw_a2 * mu^0.5)) + dw = 0; // tracer diffusion coefficient in water at 25oC, m2/s + dw_t = 0; // correct Dw for temperature: Dw(TK) = Dw(298.15) * exp(dw_t / TK - dw_t / 298.15) + // parms for calc'ng SC = SC0 * exp(-dw_a * z * mu^0.5 / (1 + DH_B * dw_a2 * mu^0.5) / (1 + mu^dw_a3)) + // with DHO: ka = DH_B * dw_a * (1 + DD(V_apparent)^dw_a2 * sqrt_mu, dw_a3 is a switch, see calc_SC in PBasic dw_a = 0; dw_a2 = 0; - dw_a_visc = 0; // viscosity correction of SC + dw_a3 = 0; + dw_a_visc = 0; // exponent in viscosity correction of SC + dw_a_v_dif = 0; // exponent in viscosity correction of D, the diffusion coefficient of the species dw_t_SC = 0; // contribution to SC, for calc'ng transport number with BASIC dw_t_visc = 0; // contribution to viscosity - dw_corr = 0; // dw corrected for TK and mu + dw_corr = 0; // dw corrected for mu and TK erm_ddl = 0; // enrichment factor in DDL equiv = 0; // equivalents in exchange species alk = 0; // alkalinity of species, used for cec in exchange @@ -781,7 +782,9 @@ public: LDBLE dw_t; LDBLE dw_a; LDBLE dw_a2; + LDBLE dw_a3; LDBLE dw_a_visc; + LDBLE dw_a_v_dif; LDBLE dw_t_SC; LDBLE dw_t_visc; LDBLE dw_corr; @@ -1104,20 +1107,6 @@ public: /*---------------------------------------------------------------------- * Reaction work space *---------------------------------------------------------------------- */ -class reaction_temp -{ -public: - ~reaction_temp() {}; - reaction_temp() - { - for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) logk[i] = 0; - for (size_t i = 0; i < 3; i++) dz[i] = 0; - //token.clear(); - } - LDBLE logk[MAX_LOG_K_INDICES]; - LDBLE dz[3]; - std::vector token; -}; class rxn_token_temp { public: @@ -1136,6 +1125,20 @@ public: class unknown* unknown; LDBLE coef; }; +class reaction_temp +{ +public: + ~reaction_temp() {}; + reaction_temp() + { + for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) logk[i] = 0; + for (size_t i = 0; i < 3; i++) dz[i] = 0; + //token.clear(); + } + LDBLE logk[MAX_LOG_K_INDICES]; + LDBLE dz[3]; + std::vector token; +}; class unknown_list { public: @@ -1487,6 +1490,8 @@ public: Dwt = 0; // temperature factor for Dw dw_t = 0; + // viscosity factor for Dw + dw_a_v_dif = 0; // enrichment factor in ddl erm_ddl = 0; } @@ -1500,6 +1505,7 @@ public: LDBLE z; LDBLE Dwt; LDBLE dw_t; + LDBLE dw_a_v_dif; LDBLE erm_ddl; }; @@ -1515,7 +1521,9 @@ public: count_exch_spec = 0; // total moles of X-, max X- in transport step in sol_D[1], tk exch_total = 0, x_max = 0, tk_x = 0; - // (tk_x * viscos_0_25) / (298 * viscos) + // (tk_x * viscos_0_25) / (298 * viscos_0) + viscos_f0 = 0; + // (viscos_0) / (298 * viscos) viscos_f = 0; spec = NULL; spec_size = 0; @@ -1523,7 +1531,7 @@ public: int count_spec; int count_exch_spec; LDBLE exch_total, x_max, tk_x; - LDBLE viscos_f; + LDBLE viscos_f0, viscos_f; class spec* spec; int spec_size; }; diff --git a/src/phreeqcpp/integrate.cpp b/src/phreeqcpp/integrate.cpp index 8f20cd27..200909d2 100644 --- a/src/phreeqcpp/integrate.cpp +++ b/src/phreeqcpp/integrate.cpp @@ -733,58 +733,78 @@ calc_all_donnan(void) { bool converge; int cd_m; - LDBLE new_g, f_psi, surf_chrg_eq, psi_avg, f_sinh, A_surf, ratio_aq, ratio_aq_tot, co_ion; - LDBLE new_g2, f_psi2, surf_chrg_eq2, psi_avg2, dif, var1; + LDBLE new_g, f_psi, surf_chrg_eq, psi_avg, f_sinh, A_surf, ratio_aq, ratio_surf_aq, co_ion; + LDBLE new_g2, f_psi2, surf_chrg_eq2, psi_avg2, dif, var1, viscos; + cxxSurface *surf_ptr = use.Get_surface_ptr(); - if (use.Get_surface_ptr() == NULL) + if (surf_ptr == NULL) return (OK); f_sinh = sqrt(8000.0 * eps_r * EPSILON_ZERO * (R_KJ_DEG_MOL * 1000.0) * tk_x * mu_x); - bool only_count = use.Get_surface_ptr()->Get_only_counter_ions(); - bool correct_GC = use.Get_surface_ptr()->Get_correct_GC(); + bool only_count = surf_ptr->Get_only_counter_ions(); + bool correct_D = surf_ptr->Get_correct_D(); /* calculate g for each surface... */ - if (!calculating_deriv || use.Get_surface_ptr()->Get_debye_lengths() || - correct_GC) // DL_pitz && correct_GC + if (!calculating_deriv || surf_ptr->Get_debye_lengths() || + correct_D) // DL_pitz && correct_D initial_surface_water(); - LDBLE nDbl = 1; - if (correct_GC) + // z1, z2, fr_cat2 are the counter-ions, z_1, z_2, fr_ani2 are for co-ions. + LDBLE nDbl = 1, db_lim = 2, f_free, fr_cat2, fr_ani2; + LDBLE z1, z2, z_1, z_2; + z1 = z2 = z_1 = z_2 = f_free = fr_cat2 = fr_ani2 = 0; + /* + * sum eq of each charge number in solution... + */ + std::map::iterator it; + for (it = charge_group_map.begin(); it != charge_group_map.end(); it++) { - if ((nDbl = use.Get_surface_ptr()->Get_debye_lengths()) == 0) + it->second = 0.0; + } + charge_group_map.clear(); + for (int i = 0; i < (int)this->s_x.size(); i++) + { + if (s_x[i]->type > HPLUS) + continue; + charge_group_map[s_x[i]->z] += s_x[i]->z * s_x[i]->moles * s_x[i]->erm_ddl; + } + for (it = charge_group_map.begin(); it != charge_group_map.end(); it++) + { + if (it->first < -1.5) { z_2 += it->second; continue; } + else if (it->first < 0) { z_1 += it->second; continue; } + else if (it->first < 1.5) { z1 += it->second; continue; } + else { z2 += it->second; continue; } + } + if (correct_D) + { + if ((nDbl = surf_ptr->Get_debye_lengths()) == 0) { LDBLE debye_length = f_sinh / (F_C_MOL * mu_x * 4e3); - nDbl = use.Get_surface_ptr()->Get_thickness() / debye_length; - //use.Get_surface_ptr()->Set_debye_lengths(nDbl); + nDbl = surf_ptr->Get_thickness() / debye_length; + } + fr_ani2 = z_2 / (z_1 + z_2); + fr_cat2 = z2 / (z1 + z2); + db_lim = 2 - 0.5 * (fr_cat2 + fr_ani2); + if (nDbl > db_lim) + { + f_free = 1 - db_lim / nDbl; + if (f_free < 0) f_free = 0; } } converge = TRUE; + viscos = 0; for (int j = 0; j < count_unknowns; j++) { if (x[j]->type != SURFACE_CB) continue; - cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); + cxxSurfaceCharge *charge_ptr = surf_ptr->Find_charge(x[j]->surface_charge); if (debug_diffuse_layer == TRUE) output_msg(sformatf("Calc_all_g, X[%d]\n", j)); - /* - * sum eq of each charge number in solution... - */ - std::map::iterator it; - for (it = charge_group_map.begin(); it != charge_group_map.end(); it++) - { - it->second = 0.0; - } - charge_group_map.clear(); - for (int i = 0; i < (int)this->s_x.size(); i++) - { - if (s_x[i]->type > HPLUS) - continue; - charge_group_map[s_x[i]->z] += s_x[i]->z * s_x[i]->moles * s_x[i]->erm_ddl; - } + /* find surface charge from potential... */ A_surf = charge_ptr->Get_specific_area() * charge_ptr->Get_grams(); - if (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) + if (surf_ptr->Get_type() == cxxSurface::CD_MUSIC) { f_psi = x[(size_t)j + 2]->master[0]->s->la * LOG_10; /* -FPsi/RT */ f_psi = f_psi / 2; @@ -797,7 +817,7 @@ calc_all_donnan(void) } surf_chrg_eq = A_surf * f_sinh * sinh(f_psi) / F_C_MOL; LDBLE lim_seq = 5e3; - if (correct_GC) lim_seq = 5e1; + if (correct_D) lim_seq = 5e3; if (fabs(surf_chrg_eq) > lim_seq) { surf_chrg_eq = (surf_chrg_eq < 0 ? -lim_seq : lim_seq); @@ -816,23 +836,24 @@ calc_all_donnan(void) std::vector zcorr(charge_group_map.size()); std::vector zcorr2(charge_group_map.size()); //LDBLE fD = 0; - psi_avg = calc_psi_avg(charge_ptr, surf_chrg_eq, nDbl, zcorr); - psi_avg2 = calc_psi_avg(charge_ptr, surf_chrg_eq2, nDbl, zcorr2); + psi_avg = calc_psi_avg(charge_ptr, surf_chrg_eq, nDbl, f_free, zcorr); + psi_avg2 = calc_psi_avg(charge_ptr, surf_chrg_eq2, nDbl, f_free, zcorr2); /*output_msg(sformatf( "psi's %e %e %e\n", f_psi, psi_avg, surf_chrg_eq)); */ /* fill in g's */ ratio_aq = charge_ptr->Get_mass_water() / mass_water_aq_x; - ratio_aq_tot = charge_ptr->Get_mass_water() / mass_water_bulk_x; - + ratio_surf_aq = charge_ptr->Get_mass_water() / mass_water_surfaces_x; + //ratio_surf_aq = charge_ptr->Get_mass_water() / mass_water_bulk_x; + if (correct_D) + ratio_aq *= (1 - f_free); int z_iter = 0; for (it = charge_group_map.begin(); it != charge_group_map.end(); it++) { LDBLE z = it->first, z1 = z; co_ion = surf_chrg_eq * z; - if (correct_GC) + if (correct_D) z1 = zcorr[z_iter]; - //z1 *= cgc[0] * pow(z_factor, abs(z)); if (!ratio_aq) { @@ -878,18 +899,18 @@ calc_all_donnan(void) /* save Boltzmann factor * water fraction for MCD calc's in transport */ if (converge) { - if (only_count) - { - if (co_ion > 0) // co-ions are not in the DL + if (only_count && co_ion > 0) // co-ions are not in the DL charge_ptr->Get_z_gMCD_map()[z] = 0; - else // assume that counter-ions have the free water conc for diffusion - charge_ptr->Get_z_gMCD_map()[z] = ratio_aq_tot; - } else - charge_ptr->Get_z_gMCD_map()[z] = (new_g / ratio_aq + 1) * ratio_aq_tot; + { + charge_ptr->Get_z_gMCD_map()[z] = (exp(cd_m * z1 * psi_avg) * (1 - f_free) + f_free) * + ratio_surf_aq;// * s_x[]->moles == mol_DL in charge_ptr + } } z_iter++; } + + charge_ptr->Set_f_free(f_free); if (debug_diffuse_layer == TRUE) { std::string name = x[j]->master[0]->elt->name; @@ -920,8 +941,9 @@ calc_init_donnan(void) /* ---------------------------------------------------------------------- */ { LDBLE f_psi, surf_chrg_eq, psi_avg, f_sinh, A_surf, ratio_aq; + cxxSurface *surf_ptr = use.Get_surface_ptr(); - if (use.Get_surface_ptr() == NULL) + if (surf_ptr == NULL) return (OK); f_sinh = //sqrt(8000.0 * EPSILON * EPSILON_ZERO * (R_KJ_DEG_MOL * 1000.0) * @@ -963,12 +985,12 @@ calc_init_donnan(void) { if (x[j]->type != SURFACE_CB) continue; - cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); + cxxSurfaceCharge *charge_ptr = surf_ptr->Find_charge(x[j]->surface_charge); charge_ptr->Get_g_map().clear(); /* find surface charge from potential... */ A_surf = charge_ptr->Get_specific_area() * charge_ptr->Get_grams(); - if (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) + if (surf_ptr->Get_type() == cxxSurface::CD_MUSIC) { f_psi = x[(size_t)j + 2]->master[0]->s->la * LOG_10; /* -FPsi/RT */ f_psi = f_psi / 2; @@ -978,7 +1000,7 @@ calc_init_donnan(void) surf_chrg_eq = A_surf * f_sinh * sinh(f_psi) / F_C_MOL; /* find psi_avg that matches surface charge... */ - psi_avg = calc_psi_avg(charge_ptr, 0 * surf_chrg_eq, 0, zcorr); + psi_avg = calc_psi_avg(charge_ptr, 0 * surf_chrg_eq, 0, 0, zcorr); /* fill in g's */ ratio_aq = charge_ptr->Get_mass_water() / mass_water_aq_x; @@ -991,7 +1013,7 @@ calc_init_donnan(void) charge_ptr->Get_g_map()[z].Set_g(ratio_aq * (exp(-z * psi_avg) - 1)); - if (use.Get_surface_ptr()->Get_only_counter_ions() + if (surf_ptr->Get_only_counter_ions() && ((surf_chrg_eq < 0 && z < 0) || (surf_chrg_eq > 0 && z > 0))) charge_ptr->Get_g_map()[z].Set_g(-ratio_aq); @@ -1038,45 +1060,84 @@ calc_init_donnan(void) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, std::vector &zcorr) +calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, LDBLE f_free, std::vector &zcorr) /* ---------------------------------------------------------------------- */ { /* * calculate the average (F * Psi / RT) that lets the DL charge counter the surface charge */ - LDBLE fd, fd1, p, /*psi_DL, */p_psi = R_KJ_DEG_MOL * tk_x / F_KJ_V_EQ, temp, ratio_aq, z, z1, z1_c, eq, co_ion, sum_counter, sum_co; - + LDBLE fd, fd1, p, /*psi_DL, */p_psi = R_KJ_DEG_MOL * tk_x / F_KJ_V_EQ, temp, ratio_aq, z, Z1, Z1_c, eq, co_ion, sum_counter, sum_co; + LDBLE z1, z2, z_1, z_2; ratio_aq = charge_ptr->Get_mass_water() / mass_water_aq_x; p = 0; if (surf_chrg_eq == 0 || ratio_aq == 0) return (0.0); else if (surf_chrg_eq < 0) - p = -0.5 * log(-surf_chrg_eq * ratio_aq / mu_x + 1); + p = -0.5 * log(-surf_chrg_eq * ratio_aq * (1 - f_free) / mu_x + 1); else if (surf_chrg_eq > 0) - p = 0.5 * log(surf_chrg_eq * ratio_aq / mu_x + 1); + p = 0.5 * log(surf_chrg_eq * ratio_aq * (1 - f_free) / mu_x + 1); /* * Optimize p in SS{s_x[i]->moles * z_i * g(p)} = -surf_chrg_eq - * g(p) = exp(-p * z_i) * ratio_aq + * g(p) = exp(-p * z_i) * ratio_aq * (1 - f_free) * Elsewhere in PHREEQC, g is the excess, after subtraction of conc's for p = 0: * g(p) = (exp(-p *z_i) - 1) * ratio_aq - * with correct_GC true: - * correct ions to better match the integrated concentrations: - z == 1? z *= 0.285 cgc[6] - z == 2? z *= 0.372 cgc[7] - z == -1? z *= cgc[0] * (mu_x**( cgc[1] * nDbl**cgc[2] * (abs(surf_chrg_eq / A_surf / 1e-6)**cgc[3] * I ** cgc[4]) - z == -2? z *= cgc[0] * (mu_x**(cgc[5] * cgc[1] * nDbl**cgc[2] * (abs(surf_chrg_eq / A_surf / 1e-6)**cgc[3] * I ** cgc[4]) + * with correct_D true and f_free > 0: + c_edl = c_free * (f_free + (1 - f_free) * exp(-p * z_i)) + * with correct_D true and f_free == 0: + * correct ions to better match the integrated PB concentrations: + Gamma = abs(surf_chrg_eq / A_surf / 1e-6) + a = cgc[1] * nDbl**cgc[2] + b = Gamma**cgc[3] / abs(log10(I)) + counter_ions... + z == 1? z1 = cgc[0] * I**(a * b) + z == 2? z2 = 2 * cgc[4] * I**(cgc[5] * a * b) + co_ions... + c = cgc[7] * nDbl**cgc[8] * Gamma**cgc[9] + z == -1? z_1 = -cgc[6] * I**(c) + z == -2? z_2 = -2 * cgc[10] * I**(c * cgc[11]) + c_edl = c_free * exp(-p * z_i) */ - cxxSurface *surf_p = use.Get_surface_ptr(); - bool correct_GC = surf_p->Get_correct_GC(), local_correct_GC = correct_GC; - bool only_count = surf_p->Get_only_counter_ions(); - LDBLE Gamma = fabs(surf_chrg_eq) / (charge_ptr->Get_specific_area() * charge_ptr->Get_grams()) / 1e-6, - cgc[10] = { 0.36, 0.1721, 0.798, 0.287, 0.1457, 1.2, 0.285, 0.372 }; - - if (!surf_p->Donnan_factors.empty()) - std::copy(surf_p->Donnan_factors.begin(), surf_p->Donnan_factors.end(), cgc); - - cgc[1] *= pow(nDbl, cgc[2]) * pow(Gamma, cgc[3]) * pow(mu_x, cgc[4]); + cxxSurface *surf_ptr = use.Get_surface_ptr(); + bool correct_D = surf_ptr->Get_correct_D(), local_correct_D = correct_D; + bool only_count = surf_ptr->Get_only_counter_ions(); + LDBLE Gamma, cgc[12] = { 0.3805, -0.0106, 1.96, 0.812, + 0.395, 2.13, + 0.380, 0.0408, 0.799, 0.594, + 0.373, 1.181 }; + if (correct_D) + { + if (f_free) + { + z1 = z2 = z_1 = z_2 = 1; + } + else + { + if (!surf_ptr->Donnan_factors.empty()) + { + std::copy(surf_ptr->Donnan_factors.begin(), surf_ptr->Donnan_factors.end(), cgc); + z1 = cgc[0]; + z2 = cgc[1]; + z_1 = cgc[2]; + z_2 = cgc[3]; + } + else + { + Gamma = fabs(surf_chrg_eq) / (charge_ptr->Get_specific_area() * charge_ptr->Get_grams()) / 1e-6; + LDBLE a = cgc[1] * pow(nDbl, cgc[2]), + b = pow(Gamma, cgc[3]) / abs(log10(mu_x)); + // counter_ions... + z1 = cgc[0] * pow(mu_x, (a * b)); + z2 = cgc[4] * pow(mu_x, (cgc[5] * a * b)); + if (z1 > 1) z1 = 1; + if (z2 > 1) z2 = 1; + // co_ions... + LDBLE c = cgc[7] * pow(nDbl, cgc[8]) * pow(Gamma, cgc[9]); + z_1 = cgc[6] * pow(mu_x, c); + z_2 = cgc[10] * pow(mu_x, (c * cgc[11])); + } + } + } int l_iter = 0, z_iter; sum_co = sum_counter = 0; @@ -1085,16 +1146,16 @@ calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, std:: fd = surf_chrg_eq; fd1 = 0.0; z_iter = 0; - if (l_iter == 1 && local_correct_GC && fabs(sum_counter) < fabs(sum_co)) + if (l_iter == 1 && local_correct_D && fabs(sum_counter) < fabs(sum_co)) { - local_correct_GC = false; + local_correct_D = false; l_iter = 0; } std::map::iterator it; for (it = charge_group_map.begin(); it != charge_group_map.end(); it++) { z = it->first; - z1 = z; + Z1 = z; if (l_iter == 0) zcorr[z_iter] = z; co_ion = surf_chrg_eq * z; if (!z || (only_count && co_ion > 0)) @@ -1102,30 +1163,30 @@ calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, std:: z_iter++; continue; } - if (nDbl && local_correct_GC) + if (nDbl && local_correct_D) { /*psi_DL = fabs(p * p_psi);*/ if (co_ion < 0) {//counter-ion - if (fabs(z) > 1) temp = cgc[7]; - else temp = cgc[6]; + if (fabs(z) > 1.5) temp = z2; + else temp = z1; sum_counter += z * temp; } else {// co-ion - if (fabs(z) > 1) temp = cgc[0] * pow(mu_x, cgc[1] * cgc[5]); - else temp = cgc[0] * pow(mu_x, cgc[1]); + if (fabs(z) > 1.5) temp = z_2; + else temp = z_1; sum_co += z * temp; } zcorr[z_iter] = z * temp; } - z1 = zcorr[z_iter]; + Z1 = zcorr[z_iter]; eq = it->second; - temp = exp(-z1 * p) * ratio_aq; + temp = exp(-Z1 * p) * ratio_aq * (1 - f_free); fd += eq * temp; - fd1 -= z1 * eq * temp; - if (z == 1) z1_c = z1; + fd1 -= Z1 * eq * temp; + if (z == 1) Z1_c = Z1; z_iter++; } fd /= -fd1; @@ -1152,7 +1213,7 @@ calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, std:: if (debug_diffuse_layer == TRUE) output_msg(sformatf( "iter in calc_psi_avg = %d. g(+1) = %8f, surface charge = %12.4e, psi_DL = %12.3e V.\n", - l_iter, (double)(exp(-p) - 1), (double)surf_chrg_eq, (double)(p * z1_c * p_psi))); + l_iter, (double)(exp(-p) - 1), (double)surf_chrg_eq, (double)(p * Z1_c * p_psi))); return (p); } diff --git a/src/phreeqcpp/kinetics.cpp b/src/phreeqcpp/kinetics.cpp index 0472265c..d1158e2f 100644 --- a/src/phreeqcpp/kinetics.cpp +++ b/src/phreeqcpp/kinetics.cpp @@ -1579,7 +1579,10 @@ set_and_run(int i, int use_mix, int use_kinetics, int nsaver, converge = model(); } sum_species(); - viscosity(); + viscos = viscosity(NULL); + use.Get_solution_ptr()->Set_viscosity(viscos); + if (use.Get_surface_ptr() != NULL && dl_type_x != cxxSurface::NO_DL) + use.Get_surface_ptr()->Set_DDL_viscosity(viscosity(use.Get_surface_ptr())); return (converge); } diff --git a/src/phreeqcpp/mainsubs.cpp b/src/phreeqcpp/mainsubs.cpp index fccfdf23..eff1f2bc 100644 --- a/src/phreeqcpp/mainsubs.cpp +++ b/src/phreeqcpp/mainsubs.cpp @@ -342,106 +342,6 @@ set_use(void) return (OK); } -int Phreeqc::initial_solutions_poet(int sol_id) -/* ---------------------------------------------------------------------- */ -{ - /* - * Go through list of solutions, make initial solution calculations - * for any marked "new". - */ - int converge, converge1; - int last, n_user, print1; - char token[2 * MAX_LENGTH]; - - // state = INITIAL_SOLUTION; - set_use(); - print1 = TRUE; - dl_type_x = cxxSurface::NO_DL; - // std::map::iterator it = Rxn_solution_map.begin(); - // for ( ; it != Rxn_solution_map.end(); it++) - //{ - // for (size_t nn = 0; nn < Rxn_new_solution.size(); nn++) - cxxSolution &solution_ref = Rxn_solution_map.find(sol_id)->second; - initial_solution_isotopes = FALSE; - // if (solution_ref.Get_new_def()) { - use.Set_solution_ptr(&solution_ref); - LDBLE d0 = solution_ref.Get_density(); - // LDBLE d1 = 0; - bool diag = (diagonal_scale == TRUE) ? true : false; - int count_iterations = 0; - // std::string input_units = solution_ref.Get_initial_data()->Get_units(); - // cxxISolution *initial_data_ptr = solution_ref.Get_initial_data(); - density_iterations = 0; - // for (;;) { - prep(); - k_temp(solution_ref.Get_tc(), solution_ref.Get_patm()); - set(TRUE); - always_full_pitzer = FALSE; - - diagonal_scale = TRUE; - converge = model(); - if (converge == ERROR /*&& diagonal_scale == FALSE*/) { - diagonal_scale = TRUE; - always_full_pitzer = TRUE; - set(TRUE); - converge = model(); - } - // density_iterations++; - // if (solution_ref.Get_initial_data()->Get_calc_density()) { - // solution_ref.Set_density(calc_dens()); - // if (!equal(d0, solution_ref.Get_density(), 1e-8)) { - // initial_data_ptr->Set_units(input_units); - // d0 = solution_ref.Get_density(); - // if (count_iterations++ < 20) { - // diag = (diagonal_scale == TRUE) ? true : false; - // continue; - // } else { - // error_msg( - // sformatf("%s %d.", - // "Density calculation failed for initial solution ", - // solution_ref.Get_n_user()), - // STOP); - // } - // } - // } - // break; - // } - diagonal_scale = (diag) ? TRUE : FALSE; - converge1 = check_residuals(); - sum_species(); - viscosity(); - add_isotopes(solution_ref); - punch_all(); - // print_all(); - density_iterations = 0; - /* free_model_allocs(); */ - // remove pr_in - for (size_t i = 0; i < count_unknowns; i++) { - if (x[i]->type == SOLUTION_PHASE_BOUNDARY) - x[i]->phase->pr_in = false; - } - - if (converge == ERROR || converge1 == ERROR) { - error_msg(sformatf("%s %d.", - "Model failed to converge for initial solution ", - solution_ref.Get_n_user()), - STOP); - } - n_user = solution_ref.Get_n_user(); - last = solution_ref.Get_n_user_end(); - /* copy isotope data */ - if (solution_ref.Get_isotopes().size() > 0) { - isotopes_x = solution_ref.Get_isotopes(); - } else { - isotopes_x.clear(); - } - xsolution_save(n_user); - Utilities::Rxn_copies(Rxn_solution_map, n_user, last); - // } - initial_solution_isotopes = FALSE; - return (OK); -} - /* ---------------------------------------------------------------------- */ int Phreeqc:: initial_solutions(int print) @@ -510,6 +410,8 @@ initial_solutions(int print) set(TRUE); converge = model(); } + calc_dens(); + kgw_kgs = mass_water_aq_x / solution_mass_x; density_iterations++; if (solution_ref.Get_initial_data()->Get_calc_density()) { @@ -535,7 +437,10 @@ initial_solutions(int print) diagonal_scale = (diag) ? TRUE : FALSE; converge1 = check_residuals(); sum_species(); - viscosity(); + viscos = viscosity(NULL); + use.Get_solution_ptr()->Set_viscosity(viscos); + if (use.Get_surface_ptr() != NULL && dl_type_x != cxxSurface::NO_DL) + use.Get_surface_ptr()->Set_DDL_viscosity(viscosity(use.Get_surface_ptr())); add_isotopes(solution_ref); punch_all(); print_all(); @@ -638,7 +543,6 @@ initial_exchangers(int print) converge = model(); converge1 = check_residuals(); sum_species(); - viscosity(); species_list_sort(); print_exchange(); if (pr.user_print) @@ -1361,12 +1265,12 @@ xsolution_save(int n_user) temp_solution.Set_pe(solution_pe_x); temp_solution.Set_mu(mu_x); temp_solution.Set_ah2o(ah2o_x); - //temp_solution.Set_density(density_x); - temp_solution.Set_density(calc_dens()); - temp_solution.Set_viscosity(this->viscos); + // the subroutine is called at the start of a new simulation, and the following 2 go wrong since s_x is not updated + temp_solution.Set_density(density_x); + temp_solution.Set_viscosity(viscos); temp_solution.Set_total_h(total_h_x); temp_solution.Set_total_o(total_o_x); - temp_solution.Set_cb(cb_x); /* cb_x does not include surface charge sfter sum_species */ + temp_solution.Set_cb(cb_x); /* cb_x does not include surface charge after sum_species */ /* does include surface charge after step */ temp_solution.Set_mass_water(mass_water_aq_x); temp_solution.Set_total_alkalinity(total_alkalinity); diff --git a/src/phreeqcpp/model.cpp b/src/phreeqcpp/model.cpp index 103bcf4a..d730657c 100644 --- a/src/phreeqcpp/model.cpp +++ b/src/phreeqcpp/model.cpp @@ -4891,7 +4891,6 @@ sum_species(void) solution_pe_x = -s_eminus->la; ah2o_x = exp(s_h2o->la * LOG_10); - density_x = 1.0; if (s_o2 != NULL) s_o2->moles = under(s_o2->lm) * mass_water_aq_x; if (s_h2 != NULL) diff --git a/src/phreeqcpp/prep.cpp b/src/phreeqcpp/prep.cpp index fade6839..3948dbd6 100644 --- a/src/phreeqcpp/prep.cpp +++ b/src/phreeqcpp/prep.cpp @@ -1937,6 +1937,10 @@ convert_units(cxxSolution *solution_ptr) strstr(initial_data_ptr->Get_units().c_str(), "/l") != NULL) { mass_water_aq_x = 1.0 - 1e-3 * sum_solutes; + if (density_iterations > 0) + { + mass_water_aq_x = kgw_kgs; + } if (mass_water_aq_x <= 0) { error_string = sformatf( "Solute mass exceeds solution mass in conversion from /kgs to /kgw.\n" @@ -3991,17 +3995,16 @@ calc_PR(std::vector phase_ptrs, LDBLE P, LDBLE TK, LDBLE V_m) { phi = B_r * (rz - 1) - log(rz - B) + A / (2.828427 * B) * (B_r - 2.0 * phase_ptr->pr_aa_sum2 / a_aa_sum) * log((rz + 2.41421356 * B) / (rz - 0.41421356 * B)); - //phi = (phi > 4.44 ? 4.44 : (phi < -3 ? -3 : phi)); phi = (phi > 4.44 ? 4.44 : (phi < -4.6 ? -4.6 : phi)); //if (phi > 4.44) // phi = 4.44; } else - phi = -3.0; // fugacity coefficient = 0.05 - //if (/*!strcmp(phase_ptr->name, "H2O(g)") && */phi < -3) + phi = -4.6; // fugacity coefficient = 0.01 + //if (!strcmp(phase_ptr->name, "H2O(g)") && phi < -4.6) //{ //// avoid such phi... - // phi = -3; + // phi = -4.6; //} phase_ptr->pr_phi = exp(phi); phase_ptr->pr_si_f = phi / LOG_10; @@ -5399,6 +5402,53 @@ calc_vm(LDBLE tc, LDBLE pa) return OK; } +LDBLE Phreeqc::calc_vm0(const char * species_name, LDBLE tc, LDBLE pa, LDBLE mu) +{ + /* + * Calculate molar volume of an aqueous species at tc, pa and mu + */ + if (llnl_temp.size() > 0) return OK; + class species *s_ptr; + LDBLE g = 0; + s_ptr = s_search(species_name); + if (s_ptr == s_h2o) + return 18.016 / rho_0; + if (s_ptr != NULL && s_ptr->in != FALSE && s_ptr->type < EMINUS && s_ptr->logk[vma1]) + { + LDBLE pb_s = 2600. + pa * 1.01325, TK_s = tc + 45.15, sqrt_mu = sqrt(mu); + /* supcrt volume at I = 0... */ + g = s_ptr->logk[vma1] + s_ptr->logk[vma2] / pb_s + + (s_ptr->logk[vma3] + s_ptr->logk[vma4] / pb_s) / TK_s - + s_ptr->logk[wref] * QBrn; + if (s_ptr->z) + { + /* the ionic strength term * I^0.5... */ + if (s_ptr->logk[b_Av] < 1e-5) + g += s_ptr->z * s_ptr->z * 0.5 * DH_Av * sqrt_mu; + else + { + /* limit the Debye-Hueckel slope by b... */ + /* pitzer... */ + //s_ptr->rxn_x.logk[vm_tc] += s_ptr->z * s_ptr->z * 0.5 * DH_Av * + // log(1 + s_ptr->logk[b_Av] * sqrt(mu_x)) / s_ptr->logk[b_Av]; + /* extended DH... */ + g += s_ptr->z * s_ptr->z * 0.5 * DH_Av * + sqrt_mu / (1 + s_ptr->logk[b_Av] * DH_B * sqrt_mu); + } + /* plus the volume terms * I... */ + if (s_ptr->logk[vmi1] != 0.0 || s_ptr->logk[vmi2] != 0.0 || s_ptr->logk[vmi3] != 0.0) + { + LDBLE bi = s_ptr->logk[vmi1] + s_ptr->logk[vmi2] / TK_s + s_ptr->logk[vmi3] * TK_s; + if (s_ptr->logk[vmi4] == 1.0) + g += bi * mu; + else + g += bi * pow(mu, s_ptr->logk[vmi4]); + } + } + } + return g; +} + /* ---------------------------------------------------------------------- */ int Phreeqc:: k_temp(LDBLE tc, LDBLE pa) /* pa - pressure in atm */ @@ -5414,7 +5464,7 @@ k_temp(LDBLE tc, LDBLE pa) /* pa - pressure in atm */ if (pa != current_pa) goto proceed; if (fabs(mu_x - current_mu) > 1e-3 * mu_x) goto proceed; if (mu_terms_in_logk) goto proceed; - return OK; + return OK; proceed: diff --git a/src/phreeqcpp/print.cpp b/src/phreeqcpp/print.cpp index e372db9b..4aa70fb6 100644 --- a/src/phreeqcpp/print.cpp +++ b/src/phreeqcpp/print.cpp @@ -1,3 +1,4 @@ +//Note to encode in ANSI with NP++ #include "Utils.h" #include "Phreeqc.h" #include "phqalloc.h" @@ -14,6 +15,16 @@ #include "Solution.h" #include "Surface.h" +#if defined(_MSC_VER) && (_MSC_VER <= 1400) // VS2005 +# define nullptr NULL +#endif + +#if __cplusplus < 201103L // Check if C++ standard is pre-C++11 +# ifndef nullptr +# define nullptr NULL +# endif +#endif + #if defined(PHREEQCI_GUI) #ifdef _DEBUG #define new DEBUG_NEW @@ -270,6 +281,25 @@ print_diffuse_layer(cxxSurfaceCharge *charge_ptr) output_msg(sformatf( "\tWater in diffuse layer: %8.3e kg, %4.1f%% of total DDL-water.\n", (double) charge_ptr->Get_mass_water(), (double) d)); + if (print_viscosity && d > 0) + { + cxxSurface * surf_ptr = use.Get_surface_ptr(); + if (surf_ptr->Get_calc_viscosity()) + { + viscosity(surf_ptr); + viscosity(nullptr); + if (d == 100) + output_msg(sformatf( + "\t\t calculated viscosity: %7.5f mPa s.\n", (double)charge_ptr->Get_DDL_viscosity())); + else + output_msg(sformatf( + "\t\t calculated viscosity: %7.5f mPa s for this DDL water. (%7.5f mPa s for total DDL-water.)\n", (double)charge_ptr->Get_DDL_viscosity(), (double)use.Get_surface_ptr()->Get_DDL_viscosity())); + } + else + output_msg(sformatf( + "\t\t viscosity: %7.5f mPa s for DDL water.\n", (double)charge_ptr->Get_DDL_viscosity() * viscos)); + } + if (use.Get_surface_ptr()->Get_debye_lengths() > 0 && d > 0) { sum_surfs = 0.0; @@ -279,8 +309,7 @@ print_diffuse_layer(cxxSurfaceCharge *charge_ptr) continue; cxxSurfaceCharge * charge_ptr_search = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); sum_surfs += - charge_ptr_search->Get_specific_area() * - charge_ptr_search->Get_grams(); + charge_ptr_search->Get_specific_area() * charge_ptr_search->Get_grams(); } r = 0.002 * mass_water_bulk_x / sum_surfs; output_msg(sformatf( @@ -304,10 +333,8 @@ print_diffuse_layer(cxxSurfaceCharge *charge_ptr) if (s_x[j]->type > HPLUS) continue; molality = under(s_x[j]->lm); - moles_excess = mass_water_aq_x * molality * (charge_ptr->Get_g_map()[s_x[j]->z].Get_g() * - s_x[j]->erm_ddl + - mass_water_surface / - mass_water_aq_x * (s_x[j]->erm_ddl - 1)); + moles_excess = mass_water_aq_x * molality * (charge_ptr->Get_g_map()[s_x[j]->z].Get_g() * s_x[j]->erm_ddl + + mass_water_surface / mass_water_aq_x * (s_x[j]->erm_ddl - 1)); moles_surface = mass_water_surface * molality + moles_excess; if (debug_diffuse_layer == TRUE) { @@ -336,17 +363,26 @@ print_diffuse_layer(cxxSurfaceCharge *charge_ptr) } else { - LDBLE exp_g = charge_ptr->Get_g_map()[1].Get_g() * mass_water_aq_x / mass_water_surface + 1; + LDBLE exp_g = charge_ptr->Get_g_map()[1].Get_g() * mass_water_aq_x / ((1 - charge_ptr->Get_f_free()) * mass_water_surface) + 1; LDBLE psi_DL = -log(exp_g) * R_KJ_DEG_MOL * tk_x / F_KJ_V_EQ; - if (use.Get_surface_ptr()->Get_correct_GC()) + if (use.Get_surface_ptr()->Get_correct_D()) + { output_msg(sformatf( "\n\tTotal moles in diffuse layer (excluding water), Donnan corrected to match Poisson-Boltzmann.")); + output_msg(sformatf( + "\n\tDonnan Layer potential, psi_DL = %10.3e V, for (1 - f_free) of DL water = %10.3e kg (f_free = %5.3f).\n\tBoltzmann factor, exp(-psi_DL * z * z_corr * F / RT) = %9.3e (= c_DL / c_free if z is +1)", + psi_DL, (1 - charge_ptr->Get_f_free()) * mass_water_surface, charge_ptr->Get_f_free(), exp_g)); + output_msg(sformatf( + "\n\t\tThus: Moles of Na+ = (c_DL * (1 - f_free) + f_free) * c_free * kg DDL-water\n\n")); + } else + { output_msg(sformatf( "\n\tTotal moles in diffuse layer (excluding water), Donnan calculation.")); - output_msg(sformatf( - "\n\tDonnan Layer potential, psi_DL = %10.3e V.\n\tBoltzmann factor, exp(-psi_DL * F / RT) = %9.3e (= c_DL / c_free if z is +1).\n\n", - psi_DL, exp_g)); + output_msg(sformatf( + "\n\tDonnan Layer potential, psi_DL = %10.3e V.\n\tBoltzmann factor, exp(-psi_DL * F / RT) = %9.3e (= c_DL / c_free if z is +1).\n\n", + psi_DL, exp_g)); + } } output_msg(sformatf("\tElement \t Moles\n")); for (j = 0; j < count_elts; j++) @@ -2240,8 +2276,8 @@ print_totals(void) //#ifdef NPP if (print_viscosity) { - output_msg(sformatf("%45s%9.5f", "Viscosity (mPa s) = ", - (double) viscos)); + viscosity(nullptr); + output_msg(sformatf("%45s%9.5f", "Viscosity (mPa s) = ", (double) viscos)); if (tc_x > 200 && !pure_water) { #ifdef NO_UTF8_ENCODING diff --git a/src/phreeqcpp/read.cpp b/src/phreeqcpp/read.cpp index 2ac1bea7..9a60114c 100644 --- a/src/phreeqcpp/read.cpp +++ b/src/phreeqcpp/read.cpp @@ -135,6 +135,18 @@ read_input(void) case Keywords::KEY_MIX: read_mix(); break; + case Keywords::KEY_RATE_PARAMETERS_PK: + read_rate_parameters_pk(); + break; + case Keywords::KEY_RATE_PARAMETERS_SVD: + read_rate_parameters_svd(); + break; + case Keywords::KEY_RATE_PARAMETERS_HERMANSKA: + read_rate_parameters_hermanska(); + break; + case Keywords::KEY_MEAN_GAMMAS: + read_mean_gammas(); + break; case Keywords::KEY_SOLUTION_MIX: //read_solution_mix(); read_entity_mix(Rxn_solution_mix_map); @@ -2357,6 +2369,317 @@ read_kinetics(void) return (return_value); } /* ---------------------------------------------------------------------- */ +int Phreeqc:: +read_rate_parameters_pk(void) +/* ---------------------------------------------------------------------- */ +{ + /* + * Reads kinetics data + * + * Arguments: + * none + * + * Returns: + * KEYWORD if keyword encountered, input_error may be incremented if + * a keyword is encountered in an unexpected position + * EOF if eof encountered while reading mass balance concentrations + * ERROR if error occurred reading data + * + */ + std::string token; + int return_value, opt; + const char* next_char; + const char* opt_list[] = { + "xxxx", /* 0 */ + }; + int count_opt_list = 0; + /* + * Read rate parameters + */ + return_value = UNKNOWN; + for (;;) + { + opt = get_option(opt_list, count_opt_list, &next_char); + switch (opt) + { + case OPTION_EOF: /* end of file */ + return_value = EOF; + break; + case OPTION_KEYWORD: /* keyword */ + return_value = KEYWORD; + break; + case OPTION_DEFAULT: /* add to rate_parameters_pk map */ + { + std::string min_name; + int j = copy_token(token, &next_char); + if (j != EMPTY) + { + min_name = token; + str_tolower(min_name); + } + std::vector v; + read_vector_doubles(&next_char, v); + rate_parameters_pk[min_name] = v; + } + break; + case OPTION_ERROR: + input_error++; + error_msg("Unknown input in KINETICS keyword.", CONTINUE); + error_msg(line_save, CONTINUE); + break; + } + if (return_value == EOF || return_value == KEYWORD) + break; + } + return (return_value); +} +/* ---------------------------------------------------------------------- */ +int Phreeqc:: +read_mean_gammas(void) +/* ---------------------------------------------------------------------- */ +{ + /* + * Reads MEAN_GAMMAS data + * + * Arguments: + * none + * + * Returns: + * KEYWORD if keyword encountered, input_error may be incremented if + * a keyword is encountered in an unexpected position + * EOF if eof encountered while reading mass balance concentrations + * ERROR if error occurred reading data + * + */ + std::string token; + int return_value, opt; + const char* next_char; + const char* opt_list[] = { + "xxxx", /* 0 */ + }; + int count_opt_list = 0; + /* + * Read rate parameters + */ + return_value = UNKNOWN; + for (;;) + { + opt = get_option(opt_list, count_opt_list, &next_char); + switch (opt) + { + case OPTION_EOF: /* end of file */ + return_value = EOF; + break; + case OPTION_KEYWORD: /* keyword */ + return_value = KEYWORD; + break; + case OPTION_DEFAULT: /* add to mean_gammas map */ + { + std::string salt_name; + int j = copy_token(token, &next_char); + if (j != EMPTY) + { + salt_name = token; + str_tolower(salt_name); + } + cxxNameDouble nd; + + /* + * Store reactant name, default coefficient + */ + const char* cptr = next_char; + bool have_name = false; + std::string name; + LDBLE coef = 1; + while (copy_token(token, &cptr) != EMPTY) + { + coef = 1; + if (isalpha((int)token[0]) || (token[0] == '(') + || (token[0] == '[')) + { + if (have_name) + { + nd.add(name.c_str(), coef); + } + name = token; + have_name = true; + } + else + { + if (!have_name) + { + error_string = sformatf("No species name has been defined."); + error_msg(error_string, CONTINUE); + input_error++; + } + /* + * Store relative coefficient + */ + int j = sscanf(token.c_str(), SCANFORMAT, &coef); + + if (j == 1) + { + nd.add(name.c_str(), coef); + have_name = false; + } + else + { + error_msg("Reading relative coefficient of reactant.", CONTINUE); + error_msg(line_save, CONTINUE); + input_error++; + } + } + //if (have_name) + //{ + // nd.add(name.c_str(), coef); + //} + } + //read_vector_doubles(&next_char, v); + mean_gammas[salt_name] = nd; + } + break; + case OPTION_ERROR: + input_error++; + error_msg("Unknown input in MEAN_GAMMAS keyword.", CONTINUE); + error_msg(line_save, CONTINUE); + break; + } + if (return_value == EOF || return_value == KEYWORD) + break; + } + return (return_value); +} +/* ---------------------------------------------------------------------- */ +int Phreeqc:: +read_rate_parameters_svd(void) +/* ---------------------------------------------------------------------- */ +{ + /* + * Reads kinetics data + * + * Arguments: + * none + * + * Returns: + * KEYWORD if keyword encountered, input_error may be incremented if + * a keyword is encountered in an unexpected position + * EOF if eof encountered while reading mass balance concentrations + * ERROR if error occurred reading data + * + */ + std::string token; + int return_value, opt; + const char* next_char; + const char* opt_list[] = { + "xxxx", /* 0 */ + }; + int count_opt_list = 0; + /* + * Read rate parameters + */ + return_value = UNKNOWN; + for (;;) + { + opt = get_option(opt_list, count_opt_list, &next_char); + switch (opt) + { + case OPTION_EOF: /* end of file */ + return_value = EOF; + break; + case OPTION_KEYWORD: /* keyword */ + return_value = KEYWORD; + break; + case OPTION_DEFAULT: /* add to rate_parameters_svd map */ + { + std::string min_name; + int j = copy_token(token, &next_char); + if (j != EMPTY) + { + min_name = token; + str_tolower(min_name); + } + std::vector v; + read_vector_doubles(&next_char, v); + rate_parameters_svd[min_name] = v; + } + break; + case OPTION_ERROR: + input_error++; + error_msg("Unknown input in KINETICS keyword.", CONTINUE); + error_msg(line_save, CONTINUE); + break; + } + if (return_value == EOF || return_value == KEYWORD) + break; + } + return (return_value); +} +/* ---------------------------------------------------------------------- */ +int Phreeqc:: +read_rate_parameters_hermanska(void) +/* ---------------------------------------------------------------------- */ +{ + /* + * Reads kinetics data + * + * Arguments: + * none + * + * Returns: + * KEYWORD if keyword encountered, input_error may be incremented if + * a keyword is encountered in an unexpected position + * EOF if eof encountered while reading mass balance concentrations + * ERROR if error occurred reading data + * + */ + std::string token; + int return_value, opt; + const char* next_char; + const char* opt_list[] = { + "xxxx", /* 0 */ + }; + int count_opt_list = 0; + /* + * Read rate parameters + */ + return_value = UNKNOWN; + for (;;) + { + opt = get_option(opt_list, count_opt_list, &next_char); + switch (opt) + { + case OPTION_EOF: /* end of file */ + return_value = EOF; + break; + case OPTION_KEYWORD: /* keyword */ + return_value = KEYWORD; + break; + case OPTION_DEFAULT: /* add to rate_parameters_hermanska map */ + { + std::string min_name; + int j = copy_token(token, &next_char); + if (j != EMPTY) + { + min_name = token; + str_tolower(min_name); + } + std::vector v; + read_vector_doubles(&next_char, v); + rate_parameters_hermanska[min_name] = v; + } + break; + case OPTION_ERROR: + input_error++; + error_msg("Unknown input in KINETICS keyword.", CONTINUE); + error_msg(line_save, CONTINUE); + break; + } + if (return_value == EOF || return_value == KEYWORD) + break; + } + return (return_value); +} +/* ---------------------------------------------------------------------- */ bool Phreeqc:: read_vector_doubles(const char** cptr, std::vector& v) /* ---------------------------------------------------------------------- */ @@ -4440,9 +4763,6 @@ read_selected_output(void) temp_selected_output.Set_percent_error ( so_ref.Get_percent_error() ); temp_selected_output.Set_have_punch_name ( so_ref.Get_have_punch_name() ); temp_selected_output.Set_file_name ( so_ref.Get_file_name() ); -#if PHREEQCI_GUI - assert(false); -#endif } else if (n_user == 1 && so == SelectedOutput_map.end()) { @@ -5499,9 +5819,17 @@ read_species(void) input_error++; break; } - s_ptr->dw_t = 0; s_ptr->dw_a = 0; s_ptr->dw_a2 = 0; s_ptr->dw_a_visc = 0; - i = sscanf(next_char, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT, &s_ptr->dw, &s_ptr->dw_t, - &s_ptr->dw_a, &s_ptr->dw_a2, &s_ptr->dw_a_visc); + s_ptr->dw_t = 0; s_ptr->dw_a = 0; s_ptr->dw_a2 = 0; s_ptr->dw_a3 = 0; s_ptr->dw_a_visc = 0; s_ptr->dw_a_v_dif = 0; + i = sscanf(next_char, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT, + &s_ptr->dw, &s_ptr->dw_t, &s_ptr->dw_a, &s_ptr->dw_a2, &s_ptr->dw_a_visc, &s_ptr->dw_a3, &s_ptr->dw_a_v_dif); + if (i < 1) + { + input_error++; + error_msg("Expecting numeric values for the diffusion coefficient, its temperature dependence, and coefficients for the SC calculation.", + CONTINUE); + return (ERROR); + } + s_ptr->dw_corr = s_ptr->dw; opt_save = OPTION_DEFAULT; break; @@ -6414,7 +6742,7 @@ read_surface(void) if (thickness != 0) { error_msg - ("You must enter EITHER thickness OR Debye lengths (1/k),\n and relative DDL viscosity, DDL limit.\nCorrect is (for example): -donnan 1e-8 viscosity 0.5 limit 0.9 correct_GC true\n or (default values): -donnan debye_lengths 1 viscosity 1 limit 0.8 correct_GC false", + ("You must enter EITHER thickness OR Debye lengths (1/k),\n and relative DDL viscosity, DDL limit.\nCorrect is (for example): -donnan 1e-8 viscosity 0.5 limit 0.9 correct_D true\n or (default values): -donnan debye_lengths 1 viscosity 1 limit 0.8 correct_D false", CONTINUE); error_msg(line_save, CONTINUE); input_error++; @@ -6442,12 +6770,12 @@ read_surface(void) copy_token(token1, &next_char); if (token1[0] == 'T' || token1[0] == 't' || token1[0] == 'F' || token1[0] == 'f') { - temp_surface.Set_correct_GC(get_true_false(token1.c_str(), TRUE) == TRUE); + temp_surface.Set_correct_D(get_true_false(token1.c_str(), TRUE) == TRUE); continue; } else { error_msg - ("Expected True or False for correct_GC (which brings co-ion concentrations closer to their integrated double layer value).", + ("Expected True or False for correct_D (which brings co-ion concentrations closer to their integrated double layer value).", CONTINUE); error_msg(line_save, CONTINUE); input_error++; @@ -6460,9 +6788,19 @@ read_surface(void) if (j == DIGIT) { (void)sscanf(token1.c_str(), SCANFORMAT, &dummy); + if(dummy == 0) + { + dummy = 1; temp_surface.Calc_DDL_viscosity(true); + } temp_surface.Set_DDL_viscosity(dummy); continue; } + else if (token1[0] == 'C' || token1[0] == 'c' ) + { + temp_surface.Calc_DDL_viscosity(true); + temp_surface.Set_DDL_viscosity(1.0); + continue; + } else if (j != EMPTY) { error_msg @@ -6601,10 +6939,10 @@ read_surface(void) i1++; continue; } - else if (i != EMPTY || i1 > 8) + else if (i != EMPTY || i1 > 4) { error_msg - ("Expected at most 8 numbers for the Donnan_factors for co- and counter-ions,\n z *= cgc[0] * (mu_x**(cgc[1] * nDbl**cgc[2] * (abs(surf_chrg_eq / A_surf / 1e-6)**cgc[3] * mu_x**(cgc[4])", + ("Expected 4 numbers for the Donnan_factors of single and double-charged coounter- and co-ions,\n z1, z2, z_1, z_2", CONTINUE); error_msg(line_save, CONTINUE); input_error++; diff --git a/src/phreeqcpp/spread.cpp b/src/phreeqcpp/spread.cpp index 1f442138..d2a385c3 100644 --- a/src/phreeqcpp/spread.cpp +++ b/src/phreeqcpp/spread.cpp @@ -162,8 +162,6 @@ read_solution_spread(void) { case 0: /* temp */ case 1: /* temperature */ - case 2: /* dens */ - case 3: /* density */ case 10: /* water */ if ((count == 2 || count == 3) && num == TRUE) { @@ -174,6 +172,18 @@ read_solution_spread(void) opt = OPTION_DEFAULT; } break; + case 2: /* dens */ + case 3: /* density */ + copy_token(token, &cptr); + if (count == 2 || count == 3 && (num == TRUE || token[0] == 'c' || token[0] == 'C')) + { + /* opt = opt; */ + } + else + { + opt = OPTION_DEFAULT; + } + break; case 6: /* ph */ case 7: /* pe */ if ((count == 2 || count == 3 || count == 4) @@ -285,33 +295,35 @@ read_solution_spread(void) break; case 2: /* density */ case 3: - //sscanf(next_char, SCANFORMAT, &(soln_defaults.density)); { - copy_token(token, &next_char); - if (sscanf(token.c_str(), SCANFORMAT, &dummy) != 1) - { - error_msg("Expecting numeric value for density.", PHRQ_io::OT_CONTINUE); - error_msg(line_save, PHRQ_io::OT_CONTINUE); - input_error++; - } - else - { - soln_defaults.density = dummy; - } int j = copy_token(token, &next_char); - if (j != EMPTY) + if (j == DIGIT) { - if (token[0] != 'c' && token[0] != 'C') + if (sscanf(token.c_str(), SCANFORMAT, &dummy) != 1) { - error_msg("Only option following density is c[alculate].", PHRQ_io::OT_CONTINUE); + error_msg("Expecting numeric value for density.", PHRQ_io::OT_CONTINUE); error_msg(line_save, PHRQ_io::OT_CONTINUE); input_error++; } else { - soln_defaults.calc_density = true; + soln_defaults.density = dummy; + copy_token(token, &next_char); + if (token[0] == 'c' || token[0] == 'C') + soln_defaults.calc_density = true; } } + else if (j != EMPTY) + { + if (token[0] != 'c' && token[0] != 'C') + { + error_msg("Options following density are numeric value or c[alculate].", PHRQ_io::OT_CONTINUE); + error_msg(line_save, PHRQ_io::OT_CONTINUE); + input_error++; + } + else + soln_defaults.calc_density = true; + } } break; case 4: /* units */ diff --git a/src/phreeqcpp/step.cpp b/src/phreeqcpp/step.cpp index bd960b36..be02a1f4 100644 --- a/src/phreeqcpp/step.cpp +++ b/src/phreeqcpp/step.cpp @@ -327,6 +327,7 @@ xsolution_zero(void) solution_pe_x = 0.0; mu_x = 0.0; ah2o_x = 0.0; + viscos = 0.0; density_x = 0.0; total_h_x = 0.0; total_o_x = 0.0; @@ -379,6 +380,7 @@ add_solution(cxxSolution *solution_ptr, LDBLE extensive, LDBLE intensive) solution_pe_x += solution_ptr->Get_pe() * intensive; mu_x += solution_ptr->Get_mu() * intensive; ah2o_x += solution_ptr->Get_ah2o() * intensive; + viscos += solution_ptr->Get_viscosity() * intensive; density_x += solution_ptr->Get_density() * intensive; total_h_x += solution_ptr->Get_total_h() * extensive; diff --git a/src/phreeqcpp/structures.cpp b/src/phreeqcpp/structures.cpp index 1580f0ae..c6b83ec9 100644 --- a/src/phreeqcpp/structures.cpp +++ b/src/phreeqcpp/structures.cpp @@ -139,6 +139,7 @@ clean_up(void) } logk.clear(); save_values.clear(); + save_strings.clear(); /* working pe*/ pe_x.clear(); /*species_list*/ @@ -1561,6 +1562,7 @@ s_init(class species *s_ptr) s_ptr->dw_t = 0.0; s_ptr->dw_a = 0.0; s_ptr->dw_a2 = 0.0; + s_ptr->dw_a3 = 0.0; s_ptr->erm_ddl = 1.0; s_ptr->equiv = 0; s_ptr->alk = 0.0; diff --git a/src/phreeqcpp/tidy.cpp b/src/phreeqcpp/tidy.cpp index 5769b4f5..35ddce08 100644 --- a/src/phreeqcpp/tidy.cpp +++ b/src/phreeqcpp/tidy.cpp @@ -5431,6 +5431,16 @@ tidy_isotope_ratios(void) /* * Mark master species list as minor isotope */ + if (isotope_ratio[i]->isotope_name == NULL) + { + + input_error++; + error_string = sformatf( + "For ISOTOPE_RATIO, did not find ISOTOPE name for this isotope ratio %s", + isotope_ratio[i]->name); + error_msg(error_string, CONTINUE); + continue; + } master_isotope_ptr = master_isotope_search(isotope_ratio[i]->isotope_name); if (master_isotope_ptr == NULL) diff --git a/src/phreeqcpp/transport.cpp b/src/phreeqcpp/transport.cpp index 0bd3d649..6e69e8df 100644 --- a/src/phreeqcpp/transport.cpp +++ b/src/phreeqcpp/transport.cpp @@ -52,6 +52,16 @@ struct MOLES_ADDED /* total moles added to balance negative conc's */ } *moles_added; int count_moles_added; +#if defined(_MSC_VER) && (_MSC_VER <= 1400) // VS2005 +# define nullptr NULL +#endif + +#if __cplusplus < 201103L // Check if C++ standard is pre-C++11 +# ifndef nullptr +# define nullptr NULL +# endif +#endif + #if defined(PHREEQCI_GUI) #ifdef _DEBUG #define new DEBUG_NEW @@ -115,6 +125,7 @@ transport(void) sol_D[i].count_exch_spec = 0; sol_D[i].exch_total = 0; sol_D[i].x_max = 0; + sol_D[i].viscos_f0 = 1.0; sol_D[i].viscos_f = 1.0; sol_D[i].tk_x = 298.15; sol_D[i].spec = NULL; @@ -961,6 +972,7 @@ transport(void) { snprintf(token, sizeof(token), "\nFor balancing negative concentrations in MCD, added in total to the system:"); + count_warnings = pr.warnings - 1; warning_msg(token); for (i = 0; i < count_moles_added; i++) { @@ -969,6 +981,7 @@ transport(void) snprintf(token, sizeof(token), "\t %.4e moles %s.", (double)moles_added[i].moles, moles_added[i].name); + count_warnings = pr.warnings - 1; warning_msg(token); } } @@ -1640,14 +1653,14 @@ init_heat_mix(int l_nmix) { if (implicit) { - LDBLE viscos_f; + LDBLE viscos_f0; l_heat_nmix = l_nmix; for (i = 1; i <= count_cells + 1; i++) { heat_mix_array[i - 1] = heat_mix_array[i] / l_heat_nmix; /* for implicit, m[i] has mixf with higher cell */ - viscos_f = sol_D[i - 1].viscos_f * exp(heat_diffc / sol_D[i - 1].tk_x - heat_diffc / 298.15); - viscos_f += sol_D[i].viscos_f * exp(heat_diffc / sol_D[i].tk_x - heat_diffc / 298.15); - heat_mix_array[i - 1] *= (viscos_f / 2); + viscos_f0 = sol_D[i - 1].viscos_f0 * exp(heat_diffc / sol_D[i - 1].tk_x - heat_diffc / 298.15); + viscos_f0 += sol_D[i].viscos_f0 * exp(heat_diffc / sol_D[i].tk_x - heat_diffc / 298.15); + heat_mix_array[i - 1] *= (viscos_f0 / 2); } } else @@ -1821,7 +1834,7 @@ fill_spec(int l_cell_no, int ref_cell) class master *master_ptr; LDBLE dum, dum2; LDBLE lm; - LDBLE por, por_il, viscos_f, viscos_il_f, viscos; + LDBLE por, por_il, viscos_f0, viscos_f, viscos_il_f0, viscos_il_f, viscos; bool x_max_done = false; std::set loc_spec_names; @@ -1860,13 +1873,14 @@ fill_spec(int l_cell_no, int ref_cell) sol_D[l_cell_no].spec[i].z = 0.0; sol_D[l_cell_no].spec[i].Dwt = 0.0; sol_D[l_cell_no].spec[i].dw_t = 0.0; + sol_D[l_cell_no].spec[i].dw_a_v_dif = 0.0; sol_D[l_cell_no].spec[i].erm_ddl = 0.0; sol_D[l_cell_no].count_exch_spec = sol_D[l_cell_no].count_spec = 0; } sol_D[l_cell_no].tk_x = tk_x; - viscos_f = viscos_il_f = 1.0; + viscos_f0 = viscos_il_f0 = viscos_f = viscos_il_f = 1.0; if (l_cell_no == 0) { por = cell_data[1].por; @@ -1883,22 +1897,29 @@ fill_spec(int l_cell_no, int ref_cell) por_il = cell_data[l_cell_no].por_il; } if (por < multi_Dpor_lim) - por = viscos_f = 0.0; + por = viscos_f0 = viscos_f = 0.0; if (por_il < interlayer_Dpor_lim) - por_il = viscos_il_f = 0.0; + por_il = viscos_il_f0 = viscos_il_f = 0.0; /* * correct diffusion coefficient for temperature and viscosity, D_T = D_298 * viscos_298 / viscos * modify viscosity effect: Dw(TK) = Dw(298.15) * exp(dw_t / TK - dw_t / 298.15), SC data from Robinson and Stokes, 1959 */ - viscos = viscos_0; + if (print_viscosity) + viscos = Utilities::Rxn_find(Rxn_solution_map, l_cell_no)->Get_viscosity(); + else + viscos = viscos_0; /* * put temperature factor in por_factor which corrects for porous medium... */ - dum = viscos_0_25 / viscos; - viscos_f *= dum; - viscos_il_f *= dum; - sol_D[l_cell_no].viscos_f = dum; + dum = viscos_0_25 / viscos_0; + dum2 = viscos_0 / viscos; + viscos_f0 *= dum; + viscos_il_f0 *= dum; + sol_D[l_cell_no].viscos_f0 = dum; + viscos_f *= dum2; + viscos_il_f *= dum2; + sol_D[l_cell_no].viscos_f = dum2; count_spec = count_exch_spec = 0; /* @@ -1999,6 +2020,10 @@ fill_spec(int l_cell_no, int ref_cell) else sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr2->dw * viscos_il_f; } + if (s_ptr2->dw_a_v_dif) + sol_D[l_cell_no].spec[count_spec].dw_a_v_dif = s_ptr2->dw_a_v_dif; + else + sol_D[l_cell_no].spec[count_spec].dw_a_v_dif = 0.0; //if (implicit) // && name_ret.second && (l_cell_no > 1 || (l_cell_no == 1 && bcon_first != 2))) //{ @@ -2086,22 +2111,29 @@ fill_spec(int l_cell_no, int ref_cell) sol_D[l_cell_no].spec[count_spec].lg = s_ptr->lg; sol_D[l_cell_no].spec[count_spec].z = s_ptr->z; if (s_ptr->dw == 0) - sol_D[l_cell_no].spec[count_spec].Dwt = default_Dw * viscos_f; + sol_D[l_cell_no].spec[count_spec].Dwt = default_Dw; else { if (s_ptr->dw_t) { sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr->dw * - exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15) * viscos_f; + exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); sol_D[l_cell_no].spec[count_spec].dw_t = s_ptr->dw_t; } else - sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr->dw * viscos_f; + sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr->dw; } + if (s_ptr->dw_a_v_dif) + { + sol_D[l_cell_no].spec[count_spec].dw_a_v_dif = s_ptr->dw_a_v_dif; + sol_D[l_cell_no].spec[count_spec].Dwt *= pow(viscos_0 / viscos, s_ptr->dw_a_v_dif); + } + else + sol_D[l_cell_no].spec[count_spec].dw_a_v_dif = 0.0; if (correct_Dw) { //calc_SC(); // removed that neutral species are corrected as if z = 1, but is viscosity-dependent - sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr->dw_corr * viscos_f; + sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr->dw_corr; } if (l_cell_no <= count_cells + 1 && sol_D[l_cell_no].spec[count_spec].Dwt * pow(por, multi_Dn) > diffc_max) diffc_max = sol_D[l_cell_no].spec[count_spec].Dwt * pow(por, multi_Dn); @@ -2221,7 +2253,8 @@ diffuse_implicit(LDBLE DDt, int stagnant) // Transport of aqueous species is summarized into master species. // With electro-migration, transport of anions and cations is calculated in opposite directions since (sign) J = - z * dV. // Only available moles are transported, thus are > 0, but if concentrations oscillate, - // change max_mixf in input file: -implicit true 1 # max_mixf = 1 (default). + // decrease max_mixf in input file: -implicit true 0.7 # max_mixf = 0.7 (default = 1). + // or define time substeps: -time 0.5e6 year 20 # substeps = 20 (default = 1). int i, icell, cp, comp; // ifirst = (bcon_first == 2 ? 1 : 0); ilast = (bcon_last == 2 ? count_cells - 1 : count_cells); int ifirst, ilast; @@ -3725,37 +3758,74 @@ fill_m_s(class J_ij *l_J_ij, int l_J_ij_count_spec, int icell, int stagnant) /* ---------------------------------------------------------------------- */ void Phreeqc:: calc_b_ij(int icell, int jcell, int k, LDBLE b_i, LDBLE b_j, LDBLE g_i, LDBLE g_j, LDBLE free_i, LDBLE free_j, int stagnant) -/* ---------------------------------------------------------------------- */ +/* ---------------------------------------------------------------------- */ +//{ +// ct[icell].v_m[k].b_ij = b_i * (free_i + g_i) * b_j * (free_j + g_j) / (b_i * (free_i + g_i) + b_j * (free_j + g_j)); +// // At filterends, concentrations of ions change step-wise to the DL. +// // We take the harmonic mean for f_free, the average for the DL. +// if (ct[icell].v_m[k].z) +// { +// if (!g_i && g_j) +// { +// ct[icell].v_m[k].b_ij = free_j * b_i * b_j / (b_i + b_j) + +// b_i * (1 - free_j) / 4 + b_j * g_j / 4; +// } +// else if (g_i && !g_j) +// ct[icell].v_m[k].b_ij = free_i * b_i * b_j / (b_i + b_j) + +// b_j * (1 - free_i) / 4 + b_i * g_i / 4; +// } +// // for boundary cells... +// if (stagnant > 1) +// { /* for a diffusion experiment with well-mixed reservoir in cell 3 and the last stagnant cell, +// and with the mixf * 2 for the boundary cells in the input... */ +// if (icell == 3 && !g_i && g_j) +// ct[icell].v_m[k].b_ij = b_j * (free_j + g_j) / 2; +// else if (jcell == all_cells - 1 && !g_j && g_i) +// ct[icell].v_m[k].b_ij = b_i * (free_i + g_i) / 2; +// } +// else +// { +// if (icell == 0 || (icell == count_cells + 1 && jcell == count_cells + count_cells + 1)) +// ct[icell].v_m[k].b_ij = b_j * (free_j + g_j); +// else if (icell == count_cells && jcell == count_cells + 1) +// ct[icell].v_m[k].b_ij = b_i * (free_i + g_i); +// } +// if (ct[icell].v_m[k].z) +// ct[icell].Dz2c += ct[icell].v_m[k].b_ij * ct[icell].v_m[k].zc * ct[icell].v_m[k].z; +// return; +//} { - ct[icell].v_m[k].b_ij = b_i * (free_i + g_i) * b_j * (free_j + g_j) / (b_i * (free_i + g_i) + b_j * (free_j + g_j)); - // At filterends, concentrations of ions change step-wise to the DL. - // We take the harmonic mean for f_free, the average for the DL. - if (ct[icell].v_m[k].z) + // Oct. 2023, with g_i,j = exp(g*z) * SS (charge_ptr-water / aq_x) + LDBLE fg_i = (1 - free_i) * g_i, + fg_j = (1 - free_j) * g_j; + ct[icell].v_m[k].b_ij = b_i * (free_i + fg_i) * b_j * (free_j + fg_j) / (b_i * (free_i + fg_i) + b_j * (free_j + fg_j)); + // At filterends and boundary cells, concentrations of ions change step-wise to the DL. + // filter cells, harmonic mean for f_free, the average for the DL. + if (icell != 0 && icell != count_cells && ct[icell].v_m[k].z) { if (!g_i && g_j) - { - ct[icell].v_m[k].b_ij = free_j * b_i * b_j / (b_i + b_j) + - b_i * (1 - free_j) / 4 + b_j * g_j / 4; - } - else if (g_i && !g_j) + ct[icell].v_m[k].b_ij = b_i * free_j * b_j / (b_i + b_j) + + (b_i * (1 - free_j) + b_j * fg_j) / 4; + if (g_i && !g_j) ct[icell].v_m[k].b_ij = free_i * b_i * b_j / (b_i + b_j) + - b_j * (1 - free_i) / 4 + b_i * g_i / 4; + (b_j * (1 - free_i) + b_i * fg_i) / 4; } - // for boundary cells... + // for boundary cells, all z... if (stagnant > 1) { /* for a diffusion experiment with well-mixed reservoir in cell 3 and the last stagnant cell, and with the mixf * 2 for the boundary cells in the input... */ if (icell == 3 && !g_i && g_j) - ct[icell].v_m[k].b_ij = b_j * (free_j + g_j) / 2; + ct[icell].v_m[k].b_ij = b_j * (free_j + fg_j) / 2; else if (jcell == all_cells - 1 && !g_j && g_i) - ct[icell].v_m[k].b_ij = b_i * (free_i + g_i) / 2; + ct[icell].v_m[k].b_ij = b_i * (free_i + fg_i) / 2; } + // regular column... else { if (icell == 0 || (icell == count_cells + 1 && jcell == count_cells + count_cells + 1)) - ct[icell].v_m[k].b_ij = b_j * (free_j + g_j); + ct[icell].v_m[k].b_ij = b_j * (free_j + fg_j); else if (icell == count_cells && jcell == count_cells + 1) - ct[icell].v_m[k].b_ij = b_i * (free_i + g_i); + ct[icell].v_m[k].b_ij = b_i * (free_i + fg_i); } if (ct[icell].v_m[k].z) ct[icell].Dz2c += ct[icell].v_m[k].b_ij * ct[icell].v_m[k].zc * ct[icell].v_m[k].z; @@ -3788,7 +3858,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) b_i_ani = A1 / (G_i * h_i / 2) * Dw * {f_free + (1 - f_free) / Bm)}. 22/2/18: now calculates diffusion through EDL's of multiple, differently charged surfaces * stagnant TRUE: - * same eqn for J_ij, but multplies with 2 * mixf. (times 2, because mixf = A / (G_i * h_i)) + * same eqn for J_ij, but multiplies with 2 * mixf. (times 2, because mixf = A / (G_i * h_i)) * mixf_ij = mixf / (Dw / init_tort_f) / new_tort_f * new_por / init_por * mixf is defined in MIX; Dw is default multicomponent diffusion coefficient; * init_tort_f equals multi_Dpor^(-multi_Dn); new_pf = new tortuosity factor. @@ -3879,13 +3949,20 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { if (s_ptr1->Get_dl_type() != cxxSurface::NO_DL) { + if (s_ptr1->Get_calc_viscosity()) + { + viscosity(s_ptr1); + ct[icell].visc1 = s_ptr1->Get_DDL_viscosity(); + } + else + ct[icell].visc1 = s_ptr1->Get_DDL_viscosity() * Utilities::Rxn_find(Rxn_solution_map, icell)->Get_viscosity(); + s_charge_p.assign(s_ptr1->Get_surface_charges().begin(), s_ptr1->Get_surface_charges().end()); s_com_p.assign(s_ptr1->Get_surface_comps().begin(), s_ptr1->Get_surface_comps().end()); if (s_ptr1->Get_only_counter_ions()) only_counter = TRUE; - ct[icell].visc1 = s_ptr1->Get_DDL_viscosity(); /* find the immobile surface charges with DL... */ for (i = 0; i < (int)s_charge_p.size(); i++) { @@ -3906,14 +3983,20 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { if (s_ptr2->Get_dl_type() != cxxSurface::NO_DL) { + if (s_ptr2->Get_calc_viscosity()) + { + viscosity(s_ptr2); + ct[icell].visc2 = s_ptr2->Get_DDL_viscosity(); + } + else + ct[icell].visc2 = s_ptr2->Get_DDL_viscosity() * Utilities::Rxn_find(Rxn_solution_map, jcell)->Get_viscosity(); + s_charge_p.assign(s_ptr2->Get_surface_charges().begin(), s_ptr2->Get_surface_charges().end()); s_com_p.assign(s_ptr2->Get_surface_comps().begin(), s_ptr2->Get_surface_comps().end()); if (s_ptr2->Get_only_counter_ions()) only_counter = TRUE; - ct[icell].visc2 = s_ptr2->Get_DDL_viscosity(); - for (i = 0; i < (int)s_charge_p.size(); i++) { for (i1 = 0; i1 < (int)s_com_p.size(); i1++) @@ -3928,6 +4011,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) } } } + viscosity(nullptr); if (!stagnant) { if (icell == 0) @@ -4227,7 +4311,11 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { g_i += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; } - g_i *= sol_D[icell].spec[i].erm_ddl; + dum = ct[icell].visc1; + if (sol_D[icell].spec[i].dw_a_v_dif) + dum = pow(dum, sol_D[icell].spec[i].dw_a_v_dif); + g_i *= sol_D[icell].spec[i].erm_ddl / dum; + //g_i *= sol_D[icell].spec[i].erm_ddl / ct[icell].visc1; } if (dl_aq2) { @@ -4250,7 +4338,11 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) } } } - g_j *= sol_D[icell].spec[i].erm_ddl; + dum = ct[icell].visc2; + if (sol_D[icell].spec[i].dw_a_v_dif) + dum = pow(dum, sol_D[icell].spec[i].dw_a_v_dif); + g_j *= sol_D[icell].spec[i].erm_ddl / dum; + //g_j *= sol_D[icell].spec[i].erm_ddl / ct[icell].visc2; } } @@ -4260,11 +4352,13 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) b_j *= sol_D[icell].spec[i].Dwt; else { - dum2 = sol_D[icell].spec[i].Dwt / sol_D[icell].viscos_f; + dum2 = sol_D[icell].spec[i].Dwt / sol_D[icell].viscos_f0; dum2 *= exp(sol_D[icell].spec[i].dw_t / sol_D[jcell].tk_x - sol_D[icell].spec[i].dw_t / sol_D[icell].tk_x); - dum2 *= sol_D[jcell].viscos_f; + dum2 *= sol_D[jcell].viscos_f0; b_j *= dum2; } + if (sol_D[icell].spec[i].dw_a_v_dif) + b_j *= pow(sol_D[jcell].viscos_f / sol_D[icell].viscos_f, sol_D[icell].spec[i].dw_a_v_dif); calc_b_ij(icell, jcell, k, b_i, b_j, g_i, g_j, f_free_i, f_free_j, stagnant); k++; @@ -4343,7 +4437,11 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) } } } - g_i *= sol_D[jcell].spec[j].erm_ddl; + dum = ct[icell].visc1; + if (sol_D[jcell].spec[j].dw_a_v_dif) + dum = pow(dum, sol_D[icell].spec[j].dw_a_v_dif); + g_i *= sol_D[jcell].spec[j].erm_ddl / dum; + //g_i *= sol_D[jcell].spec[j].erm_ddl / ct[icell].visc1; } if (dl_aq2) { @@ -4351,7 +4449,12 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { g_j += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; } - g_j *= sol_D[jcell].spec[j].erm_ddl; + + dum = ct[icell].visc2; + if (sol_D[jcell].spec[j].dw_a_v_dif) + dum = pow(dum, sol_D[jcell].spec[j].dw_a_v_dif); + g_j *= sol_D[jcell].spec[j].erm_ddl / dum; + //g_j *= sol_D[jcell].spec[j].erm_ddl / ct[icell].visc2; } } b_i = A1; @@ -4360,11 +4463,14 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) b_i *= sol_D[jcell].spec[j].Dwt; else { - dum2 = sol_D[jcell].spec[j].Dwt / sol_D[jcell].viscos_f; + dum2 = sol_D[jcell].spec[j].Dwt / sol_D[jcell].viscos_f0; dum2 *= exp(sol_D[jcell].spec[j].dw_t / sol_D[icell].tk_x - sol_D[jcell].spec[j].dw_t / sol_D[jcell].tk_x); - dum2 *= sol_D[icell].viscos_f; + dum2 *= sol_D[icell].viscos_f0; b_i *= dum2; } + if (sol_D[icell].spec[i].dw_a_v_dif) + b_i *= pow(sol_D[icell].viscos_f / sol_D[jcell].viscos_f, sol_D[icell].spec[i].dw_a_v_dif); + calc_b_ij(icell, jcell, k, b_i, b_j, g_i, g_j, f_free_i, f_free_j, stagnant); k++; @@ -4437,7 +4543,11 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { g_i += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; } - g_i *= sol_D[icell].spec[i].erm_ddl; + dum = ct[icell].visc1; + if (sol_D[icell].spec[i].dw_a_v_dif) + dum = pow(dum, sol_D[icell].spec[i].dw_a_v_dif); + g_i *= sol_D[icell].spec[i].erm_ddl / dum; + //g_i *= sol_D[icell].spec[i].erm_ddl / ct[icell].visc1; } if (dl_aq2) { @@ -4445,7 +4555,11 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { g_j += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; } - g_j *= sol_D[jcell].spec[j].erm_ddl; + dum = ct[icell].visc2; + if (sol_D[jcell].spec[j].dw_a_v_dif) + dum = pow(dum, sol_D[jcell].spec[j].dw_a_v_dif); + g_j *= sol_D[jcell].spec[j].erm_ddl / dum; + //g_j *= sol_D[jcell].spec[j].erm_ddl / ct[icell].visc2; } } b_i = A1 * sol_D[icell].spec[i].Dwt; @@ -4829,12 +4943,11 @@ Step (from cell 1 to count_cells + 1): LDBLE lav, A_ij, por, Dp1, Dp2; cxxMix * mix_ptr; cxxSurface *surface_ptr1, *surface_ptr2; - LDBLE viscos_f; + LDBLE viscos_f0; /* * temperature and viscosity correction for MCD coefficient, D_T = D_298 * viscos_298 / viscos */ - viscos_f = viscos_0; - viscos_f = viscos_0_25 / viscos_f; + viscos_f0 = viscos_0_25 / viscos_0; //n1 = 0; //n2 = n1 + 1; @@ -5044,7 +5157,7 @@ Step (from cell 1 to count_cells + 1): Dp2 = (Dp2 + Dp1) / 2; /* and the mixing factor... */ - mcd_mixf = Dp2 * viscos_f * A_ij * DDt / lav; + mcd_mixf = Dp2 * viscos_f0 * A_ij * DDt / lav; } mixf = mixf_store + mcd_mixf; @@ -5120,7 +5233,7 @@ Step (from cell 1 to count_cells + 1): Dp1 = (Dp1 + Dp2) / 2; /* and the mixing factor... */ - mcd_mixf = Dp1 * viscos_f * A_ij * DDt / lav; + mcd_mixf = Dp1 * viscos_f0 * A_ij * DDt / lav; } mixf = mixf_store + mcd_mixf; @@ -5500,12 +5613,11 @@ diff_stag_surf(int mobile_cell) LDBLE Dp1, Dp2; cxxMix *mix_ptr; cxxSurface *surface_ptr1, *surface_ptr2; - LDBLE viscos_f; + LDBLE viscos_f0; /* * temperature and viscosity correction for MCD coefficient, D_T = D_298 * Tk * viscos_298 / (298 * viscos) */ - viscos_f = viscos_0; - viscos_f = viscos_0_25 / viscos_f; + viscos_f0 = viscos_0_25 / viscos_0; cxxSurface surface_n1, surface_n2; cxxSurface *surface_n1_ptr = &surface_n1; @@ -5653,7 +5765,7 @@ diff_stag_surf(int mobile_cell) if (multi_Dflag) { Dp2 = comp_k_ptr->Get_Dw() * - pow(cell_data[i2].por, multi_Dn) * viscos_f; + pow(cell_data[i2].por, multi_Dn) * viscos_f0; Dp1 = 0; if (surf1) { @@ -5663,7 +5775,7 @@ diff_stag_surf(int mobile_cell) if (strcmp(comp_k1_ptr->Get_formula().c_str(), comp_k_ptr->Get_formula().c_str()) != 0) continue; - Dp1 = comp_k1_ptr->Get_Dw() * pow(cell_data[i1].por, multi_Dn) * viscos_f; + Dp1 = comp_k1_ptr->Get_Dw() * pow(cell_data[i1].por, multi_Dn) * viscos_f0; break; } } @@ -5712,7 +5824,7 @@ diff_stag_surf(int mobile_cell) /* find diffusion coefficients of surfaces... */ if (multi_Dflag) { - Dp1 = comp_k_ptr->Get_Dw() * pow(cell_data[i1].por, multi_Dn) * viscos_f; + Dp1 = comp_k_ptr->Get_Dw() * pow(cell_data[i1].por, multi_Dn) * viscos_f0; Dp2 = 0; if (surf2) @@ -5723,7 +5835,7 @@ diff_stag_surf(int mobile_cell) if (strcmp(comp_k1_ptr->Get_formula().c_str(), comp_k_ptr->Get_formula().c_str()) != 0) continue; - Dp2 = comp_k1_ptr->Get_Dw() * pow(cell_data[i2].por, multi_Dn) * viscos_f; + Dp2 = comp_k1_ptr->Get_Dw() * pow(cell_data[i2].por, multi_Dn) * viscos_f0; break; } } @@ -5881,9 +5993,15 @@ LDBLE new_Dw, int l_cell) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -viscosity(void) +viscosity(cxxSurface *surf_ptr) /* ---------------------------------------------------------------------- */ { + if (surf_ptr && !surf_ptr->Get_calc_viscosity()) + { + for (int i = 0; i < (int)surf_ptr->Get_surface_charges().size(); i++) + surf_ptr->Get_surface_charges()[i].Set_DDL_viscosity(surf_ptr->Get_DDL_viscosity()); + return surf_ptr->Get_DDL_viscosity(); + } /* from Atkins, 1994. Physical Chemistry, 5th ed. */ //viscos = @@ -5892,7 +6010,7 @@ viscosity(void) // 0.000836 * (tc_x - 20) * (tc_x - 20)) / (109 + tc_x)); /* Huber et al., 2009, J. Phys. Chem. Ref. Data, Vol. 38, 101-125 */ LDBLE H[4] = { 1.67752, 2.20462, 0.6366564, -0.241605 }; - LDBLE Tb = tk_x / 647.096, denom = H[0], mu0; + LDBLE Tb = (tc_x + 273.15) / 647.096, denom = H[0], mu0; int i, j, i1; for (i = 1; i < 4; i++) denom += H[i] / pow(Tb, i); @@ -5964,124 +6082,220 @@ viscosity(void) both weighted by the equivalent concentration. */ LDBLE D1, D2, z1, z2, m_plus, m_min, eq_plus, eq_min, eq_dw_plus, eq_dw_min, t1, t2, t3, fan = 1; - LDBLE A, psi, Bc = 0, Dc = 0, Dw = 0.0, l_z, f_z, lm, V_an, m_an, V_Cl, tc; + LDBLE A, psi, Bc = 0, Dc = 0, Dw = 0.0, l_z, f_z, lm, V_an, m_an, V_Cl, tc, l_moles, l_water, l_mu_x, dw_t_visc; m_plus = m_min = eq_plus = eq_min = eq_dw_plus = eq_dw_min = V_an = m_an = V_Cl = 0; tc = (tc_x > 200) ? 200 : tc_x; - - for (i = 0; i < (int)this->s_x.size(); i++) + l_water = mass_water_aq_x; + l_mu_x = mu_x; + + + int i1_last; + if (surf_ptr == NULL) + i1_last = 1; + else { - if (s_x[i]->type != AQ && s_x[i]->type > HPLUS) - continue; - if ((lm = s_x[i]->lm) < -9) - continue; - if (s_x[i]->Jones_Dole[0] || s_x[i]->Jones_Dole[1] || s_x[i]->Jones_Dole[3]) + i1_last = (int)surf_ptr->Get_surface_charges().size(); + if (i1_last > 1) + i1_last += 1; + } + std::map z_g_map; + cxxSurfaceCharge s_charge_p; + LDBLE ratio_surf_aq = mass_water_surfaces_x / mass_water_aq_x; + for (i1 = 0; i1 < i1_last; i1++) + { + Bc = Dc = Dw = m_plus = m_min = eq_plus = eq_min = eq_dw_plus = eq_dw_min = V_an = m_an = 0; + if (surf_ptr) { - s_x[i]->dw_t_visc = 0; - t1 = s_x[i]->moles / mass_water_aq_x; - l_z = fabs(s_x[i]->z); - if (l_z) - f_z = (l_z * l_z + l_z) / 2; - else - f_z = mu_x / t1; - //if data at tc's other than 25 are scarce, put the values found for 25 C in [7] and [8], optimize [1], [2], and [4]... - if (s_x[i]->Jones_Dole[7] || s_x[i]->Jones_Dole[8]) + z_g_map.clear(); + if (i1_last == 1 || i1 < i1_last - 1) { - s_x[i]->Jones_Dole[0] = s_x[i]->Jones_Dole[7] - - s_x[i]->Jones_Dole[1] * exp(-s_x[i]->Jones_Dole[2] * 25.0); - s_x[i]->Jones_Dole[3] = - s_x[i]->Jones_Dole[8] / exp(-s_x[i]->Jones_Dole[4] * 25.0); + s_charge_p = surf_ptr->Get_surface_charges()[i1]; + l_water = s_charge_p.Get_mass_water(); + z_g_map.insert(s_charge_p.Get_z_gMCD_map().begin(), s_charge_p.Get_z_gMCD_map().end()); + for (std::map::iterator x = z_g_map.begin(); x != z_g_map.end(); ++x) + x->second *= ratio_surf_aq; } - // find B * m and D * m * mu^d3 - s_x[i]->dw_t_visc = (s_x[i]->Jones_Dole[0] + - s_x[i]->Jones_Dole[1] * exp(-s_x[i]->Jones_Dole[2] * tc)) * t1; - Bc += s_x[i]->dw_t_visc; - // define f_I from the exponent of the D * m^d3 term... - if (s_x[i]->Jones_Dole[5] >= 1) - t2 = mu_x / 3 / s_x[i]->Jones_Dole[5]; - else if (s_x[i]->Jones_Dole[5] > 0.4) - t2 = -0.8 / s_x[i]->Jones_Dole[5]; else - t2 = -1; - t3 = (s_x[i]->Jones_Dole[3] * exp(-s_x[i]->Jones_Dole[4] * tc)) * - t1 * (pow(mu_x, s_x[i]->Jones_Dole[5])*(1 + t2) + pow(t1 * f_z, s_x[i]->Jones_Dole[5])) / (2 + t2); - s_x[i]->dw_t_visc += t3; - Dc += t3; - //output_msg(sformatf("\t%s\t%e\t%e\t%e\n", s_x[i]->name, t1, Bc, Dc )); + { + s_charge_p = surf_ptr->Get_surface_charges()[0]; + z_g_map.insert(s_charge_p.Get_z_gMCD_map().begin(), s_charge_p.Get_z_gMCD_map().end()); + for (i = 1; i < i1_last - 1; i++) + { + s_charge_p = surf_ptr->Get_surface_charges()[i]; + for (std::map::iterator x = z_g_map.begin(); x != z_g_map.end(); ++x) + x->second += s_charge_p.Get_z_gMCD_map()[x->first]; + } + for (std::map::iterator x = z_g_map.begin(); x != z_g_map.end(); ++x) + x->second *= ratio_surf_aq; + l_water = mass_water_surfaces_x; + } + l_mu_x = eq_plus = eq_min = 0; + for (i = 0; i < (int)this->s_x.size(); i++) + { + if (s_x[i]->type != AQ && s_x[i]->type > HPLUS) + continue; + if (s_x[i]->lm < -9 || s_x[i] == 0) + continue; + l_moles = s_x[i]->moles * s_x[i]->z * z_g_map.find(s_x[i]->z)->second; + if (s_x[i]->z < 0) + eq_min += l_moles; + else + eq_plus += l_moles; + l_mu_x += l_moles * s_x[i]->z; + } + l_mu_x += fabs(eq_plus + eq_min); // add surface charge + l_mu_x /= (2 * l_water); + eq_plus = eq_min = 0; } - // parms for A... - if ((l_z = s_x[i]->z) == 0) - continue; - Dw = s_x[i]->dw; - if (Dw) + + for (i = 0; i < (int)this->s_x.size(); i++) { + if (s_x[i]->type != AQ && s_x[i]->type > HPLUS) + continue; + if ((lm = s_x[i]->lm) < -9) + continue; + l_moles = s_x[i]->moles; + if (surf_ptr != NULL) + { + l_moles *= z_g_map.find(s_x[i]->z)->second; + } + if (s_x[i]->Jones_Dole[0] || s_x[i]->Jones_Dole[1] || s_x[i]->Jones_Dole[3]) + { + dw_t_visc = 0; + t1 = l_moles / l_water; + if (t1 < 1e-9) + continue; + l_z = fabs(s_x[i]->z); + if (l_z) + f_z = (l_z * l_z + l_z) / 2; + else + f_z = l_mu_x / t1; + //if data at tc's other than 25 are scarce, put the values found for 25 C in [7] and [8], optimize [1], [2], and [4]... + if (s_x[i]->Jones_Dole[7] || s_x[i]->Jones_Dole[8]) + { + s_x[i]->Jones_Dole[0] = s_x[i]->Jones_Dole[7] - + s_x[i]->Jones_Dole[1] * exp(-s_x[i]->Jones_Dole[2] * 25.0); + s_x[i]->Jones_Dole[3] = + s_x[i]->Jones_Dole[8] / exp(-s_x[i]->Jones_Dole[4] * 25.0); + } + // find B * m and D * m * mu^d3 + dw_t_visc = (s_x[i]->Jones_Dole[0] + + s_x[i]->Jones_Dole[1] * exp(-s_x[i]->Jones_Dole[2] * tc)) * t1; + Bc += dw_t_visc; + // define f_I from the exponent of the D * m^d3 term... + if (s_x[i]->Jones_Dole[5] >= 1) + t2 = l_mu_x / 3 / s_x[i]->Jones_Dole[5]; + else if (s_x[i]->Jones_Dole[5] > 0.4) + t2 = -0.8 / s_x[i]->Jones_Dole[5]; + else + t2 = -1; + t3 = (s_x[i]->Jones_Dole[3] * exp(-s_x[i]->Jones_Dole[4] * tc)) * + t1 * (pow(l_mu_x, s_x[i]->Jones_Dole[5])*(1 + t2) + pow(t1 * f_z, s_x[i]->Jones_Dole[5])) / (2 + t2); + if (t3 < -1e-5) + t3 = 0; + Dc += t3; + if (!surf_ptr) s_x[i]->dw_t_visc = dw_t_visc + t3; + //output_msg(sformatf("\t%s\t%e\t%e\t%e\n", s_x[i]->name, t1, Bc, Dc )); + } + // parms for A and V_an. 7/26/24: added V_an calculation for gases z = 0 + if ((l_z = s_x[i]->z) == 0) + { + if (s_x[i]->Jones_Dole[6]) + { + V_an += s_x[i]->logk[vm_tc] * s_x[i]->Jones_Dole[6] * l_moles; + m_an += l_moles; + } + continue; + } + if ((Dw = s_x[i]->dw) == 0) + continue; Dw *= (0.89 / viscos_0 * tk_x / 298.15); if (s_x[i]->dw_t) Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); - } - if (l_z < 0) - { - if (!strcmp(s_x[i]->name, "Cl-")) - // volumina for f_an... - { - V_Cl = s_x[i]->logk[vm_tc]; - V_an += V_Cl * s_x[i]->moles; - m_an += s_x[i]->moles; - } - else// if (s_x[i]->Jones_Dole[6]) - { - V_an += s_x[i]->logk[vm_tc] * s_x[i]->Jones_Dole[6] * s_x[i]->moles; - m_an += s_x[i]->moles; - } - if (Dw) + if (l_z < 0) { + if (!strcmp(s_x[i]->name, "Cl-")) + // volumina for f_an... + { + V_Cl = s_x[i]->logk[vm_tc]; + V_an += V_Cl * l_moles; + m_an += l_moles; + } + else if (s_x[i]->Jones_Dole[6]) + { + V_an += s_x[i]->logk[vm_tc] * s_x[i]->Jones_Dole[6] * l_moles; + m_an += l_moles; + } // anions for A... - m_min += s_x[i]->moles; - t1 = s_x[i]->moles * l_z; + m_min += l_moles; + t1 = l_moles * l_z; eq_min -= t1; eq_dw_min -= t1 / Dw; } + else + { + // cations for A... + m_plus += l_moles; + t1 = l_moles * l_z; + eq_plus += t1; + eq_dw_plus += t1 / Dw; + } } - else if (Dw) + if (m_plus && m_min && eq_dw_plus && eq_dw_min) { - // cations for A... - m_plus += s_x[i]->moles; - t1 = s_x[i]->moles * l_z; - eq_plus += t1; - eq_dw_plus += t1 / Dw; - } - } - if (m_plus && m_min && eq_dw_plus && eq_dw_min) - { - z1 = eq_plus / m_plus; z2 = eq_min / m_min; - D1 = eq_plus / eq_dw_plus; D2 = eq_min / eq_dw_min; + z1 = eq_plus / m_plus; z2 = eq_min / m_min; + D1 = eq_plus / eq_dw_plus; D2 = eq_min / eq_dw_min; - t1 = (D1 - D2) / (sqrt(D1 * z1 + D2 * z2) + sqrt((D1 + D2) * (z1 + z2))); - psi = (D1 * z2 + D2 * z1) / 4.0 - z1 * z2 * t1 * t1; - // Here A is A * viscos_0, avoids multiplication later on... - A = 4.3787e-14 * pow(tk_x, 1.5) / (sqrt(eps_r * (z1 + z2) / ((z1 > z2) ? z1 : z2)) * (D1 * D2)) * psi; - } - else - A = 0; - viscos = viscos_0 + A * sqrt((eq_plus + eq_min) / 2 / mass_water_aq_x); - if (m_an) - V_an /= m_an; - if (!V_Cl) - V_Cl = calc_vm_Cl(); - if (V_an) - fan = 2 - V_an / V_Cl; - //else - // fan = 1; - viscos += viscos_0 * fan * (Bc + Dc); - if (viscos < 0) - { - viscos = viscos_0; - warning_msg("viscosity < 0, reset to viscosity of pure water"); - } - for (i = 0; i < (int)this->s_x.size(); i++) - { - s_x[i]->dw_t_visc /= (Bc + Dc); + t1 = (D1 - D2) / (sqrt(D1 * z1 + D2 * z2) + sqrt((D1 + D2) * (z1 + z2))); + psi = (D1 * z2 + D2 * z1) / 4.0 - z1 * z2 * t1 * t1; + // Here A is A * viscos_0, avoids multiplication later on... + A = 4.3787e-14 * pow(tk_x, 1.5) / (sqrt(eps_r * (z1 + z2) / ((z1 > z2) ? z1 : z2)) * (D1 * D2)) * psi; + } + else + A = 0; + viscos = viscos_0 + A * sqrt((eq_plus + eq_min) / 2 / l_water); + if (m_an) + V_an /= m_an; + if (!V_Cl) + V_Cl = calc_vm_Cl(); + if (V_an && V_Cl) + fan = 2 - V_an / V_Cl; + else + fan = 1; + if (Dc < 0) + Dc = 0; // provisional... + viscos += viscos_0 * fan * (Bc + Dc); + if (viscos < 0) + { + viscos = viscos_0; + warning_msg("viscosity < 0, reset to viscosity of pure water"); + } + if (!surf_ptr) + { + for (i = 0; i < (int)this->s_x.size(); i++) + { + if (s_x[i]->type != AQ && s_x[i]->type > HPLUS) + continue; + if ((lm = s_x[i]->lm) < -9) + continue; + if (s_x[i]->Jones_Dole[0] || s_x[i]->Jones_Dole[1] || s_x[i]->Jones_Dole[3]) + s_x[i]->dw_t_visc /= (Bc + Dc); + } + } + else //if (surf_ptr->Get_calc_viscosity()) + { + if (i1_last == 1) + { + surf_ptr->Get_surface_charges()[i1].Set_DDL_viscosity(viscos); + surf_ptr->Set_DDL_viscosity(viscos); + } + else if (i1 < i1_last - 1) + surf_ptr->Get_surface_charges()[i1].Set_DDL_viscosity(viscos); + else if (i1 == i1_last - 1) + surf_ptr->Set_DDL_viscosity(viscos); + } } return viscos; } diff --git a/src/phreeqcpp/utilities.cpp b/src/phreeqcpp/utilities.cpp index 79dfae7f..b2ff4839 100644 --- a/src/phreeqcpp/utilities.cpp +++ b/src/phreeqcpp/utilities.cpp @@ -41,6 +41,10 @@ calc_alk(CReaction& rxn_ref) break; } return_value += r_token->coef * master_ptr->alk; + //if (strcmp(r_token->name, "e-") == 0 && strcmp(rxn_ref.token[0].name,"e-") != 0) + //{ + // std::cerr << rxn_ref.token[0].name << " Non-master species has e- in reaction.\n"; + //} r_token++; } return (return_value); diff --git a/unit/TestIPhreeqc.cpp b/unit/TestIPhreeqc.cpp index e316cfdb..b0321a4f 100644 --- a/unit/TestIPhreeqc.cpp +++ b/unit/TestIPhreeqc.cpp @@ -1846,7 +1846,7 @@ void TestIPhreeqc::TestGetDumpStringLineCount(void) obj.SetDumpStringOn(true); CPPUNIT_ASSERT_EQUAL( true, obj.GetDumpStringOn() ); CPPUNIT_ASSERT_EQUAL( 0, obj.RunAccumulated() ); - CPPUNIT_ASSERT_EQUAL( 33, obj.GetDumpStringLineCount() ); + CPPUNIT_ASSERT_EQUAL( 34, obj.GetDumpStringLineCount() ); } void TestIPhreeqc::TestGetDumpStringLine(void) @@ -1872,7 +1872,7 @@ void TestIPhreeqc::TestGetDumpStringLine(void) obj.SetDumpStringOn(true); CPPUNIT_ASSERT_EQUAL( true, obj.GetDumpStringOn() ); CPPUNIT_ASSERT_EQUAL( 0, obj.RunAccumulated() ); - CPPUNIT_ASSERT_EQUAL( 33, obj.GetDumpStringLineCount() ); + CPPUNIT_ASSERT_EQUAL( 34, obj.GetDumpStringLineCount() ); int line = 0; @@ -1884,6 +1884,7 @@ void TestIPhreeqc::TestGetDumpStringLine(void) CPPUNIT_ASSERT(::strstr(obj.GetDumpStringLine(line++), "-total_o") != NULL); CPPUNIT_ASSERT(::strstr(obj.GetDumpStringLine(line++), "-cb") != NULL); CPPUNIT_ASSERT(::strstr(obj.GetDumpStringLine(line++), "-density") != NULL); + CPPUNIT_ASSERT(::strstr(obj.GetDumpStringLine(line++), "-viscosity") != NULL); CPPUNIT_ASSERT(::strstr(obj.GetDumpStringLine(line++), "-totals") != NULL); CPPUNIT_ASSERT(::strstr(obj.GetDumpStringLine(line++), " C(4) ") != NULL); CPPUNIT_ASSERT(::strstr(obj.GetDumpStringLine(line++), " Ca ") != NULL); @@ -2051,6 +2052,7 @@ void TestIPhreeqc::TestSetDumpFileName(void) CPPUNIT_ASSERT(::strstr(lines[line++].c_str(), "-total_o") != NULL); CPPUNIT_ASSERT(::strstr(lines[line++].c_str(), "-cb") != NULL); CPPUNIT_ASSERT(::strstr(lines[line++].c_str(), "-density") != NULL); + CPPUNIT_ASSERT(::strstr(lines[line++].c_str(), "-viscosity") != NULL); CPPUNIT_ASSERT(::strstr(lines[line++].c_str(), "-totals") != NULL); CPPUNIT_ASSERT(::strstr(lines[line++].c_str(), " C(4) ") != NULL); CPPUNIT_ASSERT(::strstr(lines[line++].c_str(), " Ca ") != NULL); @@ -2161,7 +2163,7 @@ void TestIPhreeqc::TestSetOutputFileName(void) CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Mass of water (kg) = ") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Total alkalinity (eq/kg) = ") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Total CO2 (mol/kg) = ") != NULL ); - CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Temperature (°C) = ") != NULL ); + CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Temperature (°C) = ") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Electrical balance (eq) = ") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Percent error, 100*(Cat-|An|)/(Cat+|An|) = ") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Iterations = ") != NULL ); @@ -2171,7 +2173,7 @@ void TestIPhreeqc::TestSetOutputFileName(void) CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), "----------------------------Distribution of species----------------------------") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), "") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Log Log Log mole V") != NULL ); - CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Species Molality Activity Molality Activity Gamma cm³/mol") != NULL); + CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Species Molality Activity Molality Activity Gamma cm�/mol") != NULL); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), "") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " OH- ") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " H+ ") != NULL ); @@ -3975,12 +3977,12 @@ void TestIPhreeqc::TestMultiPunchCSelectedOutput(void) CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(6, 0, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( -7.60411, var.dVal, ::pow(10., -2) ); // si_Calcite - CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(1, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 0.692077, var.dVal, ::pow(10., -2) ); - CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(2, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 0.678847, var.dVal, ::pow(10., -2) ); - CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(3, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 0.678847, var.dVal, ::pow(10., -2) ); + CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(1, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 0.702316, var.dVal, ::pow(10., -2) ); + CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(2, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 0.695856, var.dVal, ::pow(10., -2) ); + CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(3, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 0.689518, var.dVal, ::pow(10., -2) ); CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(4, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( -999.999, var.dVal, ::pow(10., -2) ); CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(5, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( -999.999, var.dVal, ::pow(10., -2) ); - CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(6, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 0.672429, var.dVal, ::pow(10., -2) ); + CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(6, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 0.683300, var.dVal, ::pow(10., -2) ); // DUMMY_1 CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(1, 2, &var)); CPPUNIT_ASSERT_EQUAL(TT_EMPTY, var.type); @@ -4004,7 +4006,7 @@ void TestIPhreeqc::TestMultiPunchCSelectedOutput(void) CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(3, 4, &var)); CPPUNIT_ASSERT_EQUAL(TT_EMPTY, var.type); CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(4, 4, &var)); CPPUNIT_ASSERT_EQUAL(TT_EMPTY, var.type); CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(5, 4, &var)); CPPUNIT_ASSERT_EQUAL(TT_EMPTY, var.type); - CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(6, 4, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 3.69E-13, var.dVal, ::pow(10., log10(3.69E-13)-2) ); + CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(6, 4, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 4.12e-13, var.dVal, ::pow(10., log10(4.12e-13)-2) ); // Sum_Delta/U CPPUNIT_ASSERT_EQUAL(VR_OK, obj.GetSelectedOutputValue(1, 5, &var)); CPPUNIT_ASSERT_EQUAL(TT_EMPTY, var.type); diff --git a/unit/TestIPhreeqcLib.cpp b/unit/TestIPhreeqcLib.cpp index 9f7c442f..9648b406 100644 --- a/unit/TestIPhreeqcLib.cpp +++ b/unit/TestIPhreeqcLib.cpp @@ -1814,7 +1814,7 @@ void TestIPhreeqcLib::TestGetDumpStringLineCount(void) CPPUNIT_ASSERT_EQUAL( IPQ_OK, ::SetDumpFileOn(n, 0) ); CPPUNIT_ASSERT_EQUAL( IPQ_OK, ::SetDumpStringOn(n, 1) ); CPPUNIT_ASSERT_EQUAL( 0, ::RunAccumulated(n) ); - CPPUNIT_ASSERT_EQUAL( 33, ::GetDumpStringLineCount(n) ); + CPPUNIT_ASSERT_EQUAL( 34, ::GetDumpStringLineCount(n) ); if (n >= 0) { @@ -1843,7 +1843,7 @@ void TestIPhreeqcLib::TestGetDumpStringLine(void) CPPUNIT_ASSERT_EQUAL( IPQ_OK, ::SetDumpFileOn(n, 0) ); CPPUNIT_ASSERT_EQUAL( IPQ_OK, ::SetDumpStringOn(n, 1) ); CPPUNIT_ASSERT_EQUAL( 0, ::RunAccumulated(n) ); - CPPUNIT_ASSERT_EQUAL( 33, ::GetDumpStringLineCount(n) ); + CPPUNIT_ASSERT_EQUAL( 34, ::GetDumpStringLineCount(n) ); int line = 0; @@ -1855,6 +1855,7 @@ void TestIPhreeqcLib::TestGetDumpStringLine(void) CPPUNIT_ASSERT(::strstr(::GetDumpStringLine(n, line++), "-total_o") != NULL); CPPUNIT_ASSERT(::strstr(::GetDumpStringLine(n, line++), "-cb") != NULL); CPPUNIT_ASSERT(::strstr(::GetDumpStringLine(n, line++), "-density") != NULL); + CPPUNIT_ASSERT(::strstr(::GetDumpStringLine(n, line++), "-viscosity") != NULL); CPPUNIT_ASSERT(::strstr(::GetDumpStringLine(n, line++), "-totals") != NULL); CPPUNIT_ASSERT(::strstr(::GetDumpStringLine(n, line++), " C(4) ") != NULL); CPPUNIT_ASSERT(::strstr(::GetDumpStringLine(n, line++), " Ca ") != NULL); @@ -2329,7 +2330,7 @@ void TestIPhreeqcLib::TestSetDumpFileName(void) CPPUNIT_ASSERT_EQUAL( true, ::FileExists(DUMP_FILENAME) ); - std::string lines[33]; + std::string lines[44]; std::ifstream ifs(DUMP_FILENAME); size_t i = 0; @@ -2347,6 +2348,7 @@ void TestIPhreeqcLib::TestSetDumpFileName(void) CPPUNIT_ASSERT(::strstr(lines[line++].c_str(), "-total_o") != NULL); CPPUNIT_ASSERT(::strstr(lines[line++].c_str(), "-cb") != NULL); CPPUNIT_ASSERT(::strstr(lines[line++].c_str(), "-density") != NULL); + CPPUNIT_ASSERT(::strstr(lines[line++].c_str(), "-viscosity") != NULL); CPPUNIT_ASSERT(::strstr(lines[line++].c_str(), "-totals") != NULL); CPPUNIT_ASSERT(::strstr(lines[line++].c_str(), " C(4) ") != NULL); CPPUNIT_ASSERT(::strstr(lines[line++].c_str(), " Ca ") != NULL); @@ -2466,7 +2468,7 @@ void TestIPhreeqcLib::TestSetOutputFileName(void) CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Mass of water (kg) = ") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Total alkalinity (eq/kg) = ") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Total CO2 (mol/kg) = ") != NULL ); - CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Temperature (°C) = ") != NULL); + CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Temperature (°C) = ") != NULL); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Electrical balance (eq) = ") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Percent error, 100*(Cat-|An|)/(Cat+|An|) = ") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Iterations = ") != NULL ); @@ -2476,7 +2478,7 @@ void TestIPhreeqcLib::TestSetOutputFileName(void) CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), "----------------------------Distribution of species----------------------------") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), "") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Log Log Log mole V") != NULL ); - CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Species Molality Activity Molality Activity Gamma cm³/mol")!= NULL); + CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " Species Molality Activity Molality Activity Gamma cm³/mol") != NULL); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), "") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " OH- ") != NULL ); CPPUNIT_ASSERT( ::strstr(lines[line++].c_str(), " H+ ") != NULL ); @@ -4150,12 +4152,12 @@ void TestIPhreeqcLib::TestMultiPunchCSelectedOutput(void) CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 6, 0, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( -7.60411, var.dVal, ::pow(10., -2) ); // si_Calcite - CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 1, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 0.692077, var.dVal, ::pow(10., -2) ); - CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 2, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 0.678847, var.dVal, ::pow(10., -2) ); - CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 3, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 0.678847, var.dVal, ::pow(10., -2) ); + CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 1, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 0.702316, var.dVal, ::pow(10., -2) ); + CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 2, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 0.695856, var.dVal, ::pow(10., -2) ); + CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 3, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 0.689518, var.dVal, ::pow(10., -2) ); CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 4, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( -999.999, var.dVal, ::pow(10., -2) ); CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 5, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( -999.999, var.dVal, ::pow(10., -2) ); - CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 6, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 0.672429, var.dVal, ::pow(10., -2) ); + CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 6, 1, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 0.683300, var.dVal, ::pow(10., -2) ); // DUMMY_1 CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 1, 2, &var)); CPPUNIT_ASSERT_EQUAL(TT_EMPTY, var.type); @@ -4179,7 +4181,7 @@ void TestIPhreeqcLib::TestMultiPunchCSelectedOutput(void) CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 3, 4, &var)); CPPUNIT_ASSERT_EQUAL(TT_EMPTY, var.type); CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 4, 4, &var)); CPPUNIT_ASSERT_EQUAL(TT_EMPTY, var.type); CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 5, 4, &var)); CPPUNIT_ASSERT_EQUAL(TT_EMPTY, var.type); - CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 6, 4, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 3.69E-13, var.dVal, ::pow(10., log10(3.69E-13)-2) ); + CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 6, 4, &var)); CPPUNIT_ASSERT_DOUBLES_EQUAL( 4.12e-13, var.dVal, ::pow(10., log10(4.12e-13)-2) ); // Sum_Delta/U CPPUNIT_ASSERT_EQUAL(IPQ_OK, ::GetSelectedOutputValue(id, 1, 5, &var)); CPPUNIT_ASSERT_EQUAL(TT_EMPTY, var.type);

    aU7d8Rf||)sdn7pKh^0U&hGV@54Bfdg3VUhv zKu~FqB~~9_1=*!IuQV0Z0G%bp z2_67Ta7N_fS?t4iWn1d7{iGg=CzgRD6xKd1C!n?Ju{~K(%paUX;?jpasopOTWId&N zD506_6Uhsdn%%T+XnB6CDhYKz0Y0>WMaFhO|LHo~GxDi0lYtRrTV;Es6Ep>yw~W8mpM z#*9;hX@joHX;2~aJy_0|RGw6*`_$IIrIU#%Yd|S(caSClT3x5xQbNZ<#5&ScN2h-h zRY!+N-OKx~HmMBBTFgPFWoD;NDG9VLMi@}yPAYZ6K(5`&3D8&-52eqDf;P`C42E-EUH4T*pl@YUK^5A(;QG|Nk*=3j*39!SDq~I|Uc&i+k%O zEjgB1E|!)-kCgqO8OHe6BAaP%&}n*L3dSR|%X(eT13UNI||xLVq)Gyi&EEnt0-gnq3#)q|Kctl(PF{x6qWfug`pHCFIbV9;-NTBFpTq&Il{ z)_{tuxNHZIX-^eP6+O2|yk!8Qq!M=<{m-Z*Bc{JwyLlz^v_sL!(Bb&6SV-(;p$g9W z0sE=sqv;x_jbj|YBkz&z8xyl_Xv*!lF<2uXL@b(uX$4aU!aUR~MM>-nvaalS^h+_LcoVsfmYVs~uux`!n4|N>|MJvgq~(+5J5|JwM0M zt6(7tOvtP8GxV4oz?Uo24{z9k3*&W1MuumpjFQ(6+jHk=!O4&nK=Y(eU#$W^gjB62#R zI=4gmii95jwL(kzrL-umPt zG2&ua%H+tdt?OCFr(F;Ut;*AUNKPx*f_} z9L~`UYP=fUAT_oLBw1;5sAQZ~7U@=-{qFp@h(P}SGDoady=8M!e}Bv4(Z z&kCkQ0z90v_Y|G^dIuAi^KoFfzCdPxSp!~q?Hsp4mS}RDHl$Ow@F`R%#~)E;1L%ia zPzs{IM{s8|M2u@?&HNiw@C^G&=yy$yew9c|oup0!SEWA-rBGh}{;#>& zVhq-ddR5{6tfah#)j$&9Q;^Pe(OJ#j|MvX&L4vXyhVjvB@$|<*O^r>=WF%NN4OMIy zK{H!Bl6;O<(dn9)X6+&>e75(W)vg$C;YLGwqE3Hfo$b{}kdXIstO8%MWu`QvqBrnu zVlrNO$$5Y@v+brn=l(vT1MM>_<7ukJp{#LH+yEw5)nA}edz$HbZy<5P)!WL8|I5yH z?|kxWCpjzB44JFH_rE?D{J?)`1Fl9sTQYsXSwrYxx3xl9Z>43Fl(oi}bMpSz7$x{b z(X-aFu-v{o$H(Ll?w5p~$2eSoT(2px{R|{#vb>D`X|wfT?G-DfT{I=@iYL#fLQ zsh>(Iyg<9dw60;tWxW>R?!V!)qjv|4())uBZ-;aiyB5pYBh#P*xPgF)1F0?=yOgpY z&s85BD8qwy^m|)BJ7qd?vXUHKX#XUaeXhy~#rTWG32P*ln|1fu5D;zOdzA)H5Y0kW>5hX~2QPjPZsejn- z;W>T|QKBD42`;(0QF;^gl9u}>+vPic1%|}~uHfx2uOmWH3ozu8f)7GDKSE@brW@9{%^zugW#w(*xrvd`a|)`*;P3)k?AoOT+7 zzFkuUlXeF!{-d&Qb1_xO)&1V?(t_m}oUct%47IA-gmWG|_tHT?|M67OUHP_81Yj1+ z5tck>7eZe45(o-S+_QKT7u6X@`lgxNG8r2?zxvGtGn?Tc32PU8dvfvOwq}xcDSG|l z4dA1U1ODpndv7}<1zx;vB%K%3i+$-koGvGoGs<*Me3XyqYdfqQzN4r3^!&i`^8PI| zmOH03;Nv?tzg5EJ&03sqz6-F7o=^GxaQB#QCvd6kqlZL@Q~h6mxrdKWVg21^iP7uH zayq}KU9p%Nf@tUIWEhSZQIK4z-sQL5E}})n{*Rg)Je-yVzHRT+f19Bb^_n-g1cd>w z$&ItGM~3Cs^W=KGm$$%7TK0b6-wzSqmu<9<=aQ{CC>1B8hckW>Eupu)x>3}_(lKIF z|JmS@+0h*^Xy2p2IT@mrCfKCuTU9c40+cAHxD*F3*D;tXAZzaL`5 z-sa^5je)%u*~^dVFdT_@s*_LX*-&c&C7mXu0ux&SoV|_GUn1AeC~>B*o|ZvOd>bP zpj}H*K;)uZmmFwp2E4*z(`3>`LqS2y8@`V8g+*-i^q;QNCu@6q&Yv^xy}7-OBjv4Y z^A*>%o(~ic4Gqg|_*^7IGl$GL1$n!<-4yS5lRrCkC~F!Sp_+{~h(xOA1elpBNJtE_ zLrB|&%@F93oB_X8ZN=rG9sS%)+d2iV(xbV)U%tJt7Q9^IApj#S6$TK}phW4&rL&R6 z!V5dyDjN>UMQp@qT~khX?lb?N{E4!R6fdT0IgeM0{l5Kd|kdLzS{Q z~9yj zyc=Nf*}7y#x}R)f?)CML6o1Mc(|Y(i6^6wPZ>uzq+hwO&6@^fWCWT+t)J&^A>l=0c zE3*D#rkb8N)B0v5&)-`5JPc4ASTO z6*pkbJ z_{_osN8rqi3{f!1G@hosyc{5JpU}!)M`4bmpg@d;HDv{W)<0epFmsM|4!i2DZEf|O zA#v%L8UJ}$1F{m`IrMGm`t)IZrnh|Hq2fvR6|tKw@znHXT-u=LdaD5F@3ptz$;#f7 zjiRS{;&RS>otaKOhx2bribg)|)9dSPh~Pd+T;iM74v1y1Ie z%5M7~$&98_IrYh#7SWXi33jme)XgsC-i~f%%E0!xL#Ev*ZlBV@9kkyriGpak3QeEp zA}Y_CNgf(^e1BU}rydW`>lr`s`Fwi}gNqOLxx9Qp=PERKf6g}B7IoPPA+v+wCh7lC zFmuJOR6Mlv9`W5oo_@#%$E8PKx1!P^TvSHzeg7}B=~ntZXiANTlTK2)pqk$o5Emfa zsJ5Q!6ZrXWm*$vP2d~jJdK=89EcWT zLKE|*G$C2QvlWWwVg@UQ?j|PhVlt^@qY*+c_8xl}zG>73Gs%mlVo56*&v3paWP~ZS zqS9l(G5s+TOJgGv>VReSl5T(_np#Oe_NG!Ok?<*Zb(Z}|gJ@>sw4$;bE9mDq)ag6Hdu(Nnfj zUbR;T%_;5Icb#oXJ6ZH#k^=tsjh<4&ZQtD#G3D194-{b-)Jx&ZFp1ucPy;J6;D&Jv zkcf{m9%%CP-XR>DgX=VC@P@Q>%I?GKlJ3Xq`fx88$E%|B!0qasD8}irl2LiVlonGY zb=tuDk*|loTf?0i2y%ya^L*JTaAGwwAYE-dCH6J8n(YdjY(l*No%`1>&xKnsNLNpvcV~ezIZ61-8hIi`sxA zKv@BGkmj%HK&58Nw5rNtYC=Yi*iMc#(Zc@AWXj>|%YJFli%WH;i^~)J@5T(=7eC$| zghv436@75~n{&V5t*5!x8!ae!GRIy&2eXE$@@0|O#O-4@!OU#x&Uc^W{^gs#4M)(+ z*M$}rzvp-dzl~Kj1d(+A8S)PSi}y)UFb0qAb&mI^uP?LiVm{ArV>*GCy}fw1{~C{s zfBVZf3v~6p3UC&sW)?!pYQ}DZce*YLJ%FFmJ&Nm0YC&R!UR!Oq-SvbE<(-od*Xr52 znoS{(x!(n#`&<+Mx9;yIkAIix#LrF=1AFr~xP2zNZkZ4O59BrwT=GS`dfmF;+!`rK zo^dCh#vJ@&aD{0cq4_wR)AaQ8jd35B zrD$S8+nRPUK4{K)V&!d6ZYIxe92zY438nfz?JOm;Z2LO~P^?u-#}5zmiuS$nIRUL4=8wvbfRalvCEGRF=0@ zY5@bax~M8vN~CF+KVRYYJ;8~OHNV4cD@R3vG*9ntWL+kA`Q2x+3x4bS`%Q`|KJaF7 zo}|Iy=h$*B_<(-{o%P|{yCKM?!)`GPinlzU)L+!JeKXf@K3~sUgNSt!Vg zld!3qiLlPW-wdZ*x(&6fg_p|sC!3w6t5@slpu@X%6`;@pMX9f%du&TCO$(C`yk?lL z@y13`4eE=XO{=4&p3ePaNZS;C;OlM1tH))5yYnqgAT_nO^Rx3t;@LkS3xL3s>ot++ zsER~PZ0;q-+CkJfAXsZ1(!a~A{oofZm7&g^e4xu`b2JOHcgU-A27QPG?y#S27=82V zUd*ilsTj5ibbAex_kVexQX@$y_j25xYv3Yy^(!-9YtI*RdbFB~{L7aRru5zx`}*C- zndza!ah0Zg>4+U%Z6yl9vid>)1%oCkB}VBh7(SFA(LEU4J(aY zW=(@lc<4ax=lSvc@C*30OSmnBLDXCRF(Kuuia|{AK(6|gFhH*AHH+~{gH0r~xzxxz zZ7Si@lhy4HiwJ}SGRC_nlmL5)PQSUzOYqIR`}WmvAJ?l1+e60U)j?}z-oxp~1FY$* zN#xFyuW9GAe`i;}_Lk|P*s&IvOw=1>O>p7=NmRGwe(vUNsc3CYIOu(kJa(D*(B-IX zFB3X172SoB`0;uT{GPIZP&0{vZWo|y@i7`IyO7WvvPH+raKVQy*)l6P2gn+wJnj%g zCTJk)xPA=lxOcKqof=h#%T7bUJ}V`hV^-2={kw7iB;u7Az4{mrC1Ddb+)%9&fy-HS zC`<3mo+i0>5CQgbylHNW z=>^t&F{#LSdMmf;TW~jZv-4G`Zv5HWQwGx0yo7*C=})gUlR?0y-@fu0cuF!M1hX`W z5y-lGRc7ZFNkeh^=4(@INbI~z-X#lp)N+f8^;O+e2uhvRf3PjW3<5BwIVEL5A=`*Q zG?yBNFNa#8KIO!hWk{pY+nM675;ibWdTw=?$1xI&@k*%4r=ud3upPCY?40$CqNT=9 zs_&L!SIH;!*lLTa?+pMY`xXyTTR%K(%c2S&5T$VE8C1qrcCH=|fG;pyA0gB58bLN? zifR%q+FZ*LclHi%_x=hg#)!GbG)R!;8$SEP1z$A}|I7=f%_K3c|n%)9w2;STWMt2qac^dLz5(QW3_(gK$$q^gu{>On9% z##@Er=FKa1@RN>INgbCS6|%8C6fY>j`H#cLfjWuKf=wgw#7RZwD0GS2)SL-Q;3Wg^ehOx}K8?>A5oU^E zSoH6T1ID;dW$qjD2(U&jNhUbQ4I+2x+9IE;@SZ;#7Zyr!^@$qrSz&f&hF(Sn=0WEp zU58A2uN8tqPUIwzkQMc9L{t*lqhRF`o7Y}z%!+G7DbM+s2!`mogOwvrmaw&(ANcPs z4i5F&Z1{Xx7yfc_<7Lxu5768Z^-!;={+3tYNGvsV;3{I;`XKBi`bXL#8|&9+&tXLr znmq%Oor()kR^f@QojYDI+ov$d2uX`2;U@pAi3bk(lC^O$<1JTOD~F_JZ&_lE~7+o8%%>`pJQU)jwe)~Pupk--4GCZ&uv;~EDRlFB9&r;-Qvu2EZXM762dU0et(7fErnrltGkhFIxEp>X4kDQZoa zP05(hRM*p#`_<@cZo?t{#agr$8Y6_(VPs*C8b{P&tZ0&!BHEX$+@H0Ai+xqJ40PJ+ z%GRZKom_BqTEdQ-;mpKvI>-pm(VuR$18=Bi5-boIT|_^lnXhmNYH|Gtnftp zPi-KN;ET?~lXju${nJ~JSZ&>DN}KQ8@Q%Gm)PVWJVKFtq6Cc*V$h^!{RJ8KiXmTWV zr1YQ3q*Gaz>OWU7XTBP=$!)@s7I}&}SmjNw4XCj=MN`+arbW!qd!K|HBZKm&oXF@G z=tLGYquwaQop+W$Vc9Lqlx64OR4<@v1tUT;O^ncFy-6a{Ay(TEbV29qP)2FX(+VnN z3U+R8gAuth56}R?)Ik6JISlxWBX)MB)M+B~Fm>!dt;6jnI#}ugEJdE+TxKf*7 zP*a>83o7iLdjvYfmw*EBpKsdIAPZ3lvy`x=M@MmuI`5dvIk=@}v7gc*^|hTCiJBwr zy(E`R1U*6Pq+2Z~#6_A7g_Zr>+N!QP@F&)ULJnsK>K{dJDt_UrlJj|H8m6uwJc8>fEw#CJL;;MyMBq9O#vjQf1qbx?yLcjq>a*=fUb_6W__<_*J`y` zuPh8qZ*>g|Y_{-nk|+$d1vcUIiuJta85^cDcKJEB^A3{;qXKNA$=p65Fs4CF#j+1e zbOatRGCU`G{+i5uWQBl=w+{yT56yQDjG}JdFuoJ(Y4V62%s)lbi(c%hbZ&T#+5<2v7 zzBXvHy4_QyO;i7>dZ4Q9ropM!V{~e=#Pfm2b5o$0$|+eQ^oTxC{iIQ=c^)mMK+iSz z!-}m@Sw{Qe^N0xv@{^0c>JLkumViA!OUJ?a0W~KZ^cG}n@9uB@mnrDg-}6;%;&q20 zik0}MESt{Y!+M~7QcyeA*YBgCvRS~yi6>KxyXL74gxwv5p47QRm_~X-w1M=gq~Lt5 z@jngZB`Cs4Yb45Han8EA|3qwu7@=EuJBmTc4|4c={|V1Sd*U#|J4#aop4M+5=t?Zw z{dXuNgnXof6aAb zbFGWyki78UwMrH%q$T%c=vOh1pGZmHolc4X09UXj31Oq7>BA{2WHdRu^&AN{(Ao2y z;3UB_WEea`fl|z19|LepbX3>Qo&1~^=vtZLRKV88s0~Aw#R+Mk`}~r!H(pjy?k`&{ zht*z};LIhze~mWhY^WZB*AlW&cehrwNs3Rlq_o9RU0A0J>k?7<}sSTveUs}`qJjVpLq#&aip!D z5+Q`q(oY;{gN~40Y*-aGZpy(PZ!kKewM@(^iXk z%!c%m|9B}SX_NQmhElLesR_f}y7u)@mB~O#$58{^=fEiVnWU17841#8_!)gpn>vd- zY%?!Y#!KH!w396Z?iy~NQM}*`7UitzXNj)~xC!d=9=>juyp{`Rt@&pIr=!LW zWxq~Bw5J65g<%N$r3entomeN|O(sowE6`Q^a4-peOGRT0X67g9G(Qf(n;B^yfZ3RFZoGT*X9HU98rBj%`uK zbM2SxY4t9)1cUHETHpC|=Yj?T=3}#0X2^u5M82*oHkx$r>}<{STttXp;k|PKdAS;i z>+XDPd%=&Nx7%G^JNSZ+ewgFjjy0OGWfinNZ_}H`t?%QX;(88hJX`ai&XhN9rs^`I zr2l!}xPr=14!BgIE(2alXHK;Vxxgk5XWjh@wO%n2IhD5V|FL%-w+tX7!o#e4n2zA$Q;|YH~tY>Nm=Asi3t|8t1>Efp=1BW}a(L~%a9oQ&G3^-Ep zF%6?l4O%r6NoRkud&4bC^^?{}li48!TrU!w#joE-y@w#x?i<$5vuqq`r1fmobN%oe z{_G%RqGq;zS+A6q(a=3pI=ri~*m8YRMqhbM>9M&FX`cQKp@X*1;{=-RmpR%N1hxzH zVB}raAp@cGpI<>d)-IJW5S2QgojA|Hg4*J$R#@@UC0u~KT^7_QcEPf(DcfW+C8+Nx zF~J$rJPY<2>zLzWCfGlBn(c&wf0@>EOD+et35?37;}Srvc3JmrTzL2MAc!m2X)LXm z^9qye_f9*&e#>Okl=1j!M(%2>Q2J@z@j z+1W_PGXsv{7ISdy&c7j^&Bey2)_LH|$+CfL&h3l~hS{$em*<_J3Gdk$+JSMl-u+sq z?pooFU!m2F31_?&DltAMG56zyD?hw;-)Z?#$6aS9NjQH}e4rx$J_UVT`HGJQldwVc zpyg5m=lLT_*Uh)a_IfkDXMD2<21zyzMIR0Kyw$cH)fy@FU<^yOe{mj$o%6fo$pr46 z9s!!}-uf-hiZgf4?mKE5U1D9>p3N?XNIq>_O@dhSBip6STOC=JXsc>GH)hQ88F=;G ztw`m*B+6Y9b`I6gt5lRybDaIToBUpH=ci<*_>v&z-=Slx=Lsp0HJqJCJc|Zf9I3W1 zrb2|@D*{%xT`LNq04fP@yWU4|MlbRGZ#}rL4V5Q?Og^v2nRHujCuPE|8 z(iwz`JKD+o-iNIdgM@iDs?44?9=T}MG}q0h>-Xfq%@*rUy)y}eMRLMrykj9AfA{V9 z3oF5FYGY(GmA*5SJD49d8qMCG;lEP7aKf%!1yk4+p#Vm1U;%XPo^F7e*x z+aj{wh}AiRzMkLHp(kMN53oG^OJhNf7ML7l9YvXc8BdqOI`E6ygAhqHEMtpQD5fve6dGN%& zSg(T*k<19i3+0mlI5{P^W8-15f{{D`t;l2Ja8~pML<-YoKsLjw-{d+O8g=RKh|Di4 zl?0gE9iN4|rEu`&g5t0_r$Ck&BcgA{7!8fkB4nCMtyKBqa*-vEa!)i|$@W*>u@+8= z0tFu%eZ&kii!gGzJLZVX5HbdlETM887d)3ZiuvzbC>&BKgq!J5B17PRgAoa{q%v8D z#*Y668sU`)=kam)dXO1{4IW zEnzU+DZGHnQ1SCD)zWYm0xK8pvaa1GY`pzxO$VqqACZEE{S~RK)N>giu`m5=oiWlt z1U^>d1Ch1#W_3MrnsAEZz->>ABeNu4W&vJtSeg0vU+ntUYpbLIepKgawMW9#2C6;jqczt&ZM!~Ip7Cy#FJ_~l8FaB)L1p_br=*3nLCA;N2nqN)9RSG7y% zPT4q*c3qqot2HD6TwOjsEJU*JLG_XMaufMNCuJcR@lrQ-V$?|P}OSex{PJDzkEEbl0 zN?F6bwZpPgv1VG`x8s>#2z^?(R!5;~C34ThP*t|d=eW2UDCXb z!uDg@R#?B(k*Z&2f#47b7$=7cb9LGz$r{JJ%4=(?p~k}|zHJOu&wmx5zgqo#6D{hn z6Z@9;2_+f;4WJXer|TA6N?~Bt4j-DH?HBk)r{)caSR*<~oX%hM(MI(D>^D1n)Ze53 z%*ANL7DTYZJ4|8hI+57z<7oIhV@?4_zq1Z*?61;IBmc z=6S4j)&KA~y;W0-i{eEtP2t3j&d?cQ@uCJ1kbPw37Rp~ckESo|DgA)U_wQM2>pJgP<*?Tc`q_J%~Y3#Rz@)tBM1Y^-*F^+R~qWqLTY18JEf-)Ix(a$=m&VOX`P z-_DHgX?LZG!JJ8nQ_ ziG$Ssxk1d}^zPSQup zyMN4avn1n2%!XvvuWCY(X+i6YJ%7epgbwtuNOS6Lo%@{b2u=&&Y~f-V{44QH3Z2v1 z?QWS!hvTq2jK4A1T>XA&@^=0yUihL2FP>Bws*=$PwD+y-%pbESV!8O-r3D+0&%VsO zvx;`9IZs`~6MuWOTTU{_x89Jsn-4N=e&THXBpm!#{TT@Cx{#K{_N-sB+LJWch`~Zo zI?An1U7-*bIjd@fz)T9k@-? zY)aUz!yokt`)a*tG-~bOh|o8eSK`&(k3SRf9hUfCAmVmcH*W0cki(smu% z3}SIq-&-B3i5J7zeY8tOy)TZr6rx+Vl7OFPoT`$Bq@HYt4}S_&WsXLtB#BkOB_IXA z%if*F=px~LtY3UddwCvK9&YDmbFz4pph`~*x?EYA*t$UZ-Eyb7|8+Am@+^1^WalP! zgk-)}gX5?2*CMvfyhsli=YK*Hoay6yULyN_=o~3k-R*R) z*-opqj$@ou-~mqz1V;qvl*w|hR_YGleCaj|%d=+5F6+Xp*Wa>rORR2bh%MmJWmvN| zyl;gccD9R)o9)D5>%Fd@+TG)_A~b!LfcStOsGn%~8debq2pFtDKgT*ZR_6~2qE|PI zl0Eb@+DcCUU=L^_7;BM)Mpj94JQ6C2w593fx9gr`YwMJco2sAb%__~#3wqYFux>nf zCG+m}mhyq(R{7G;yHd|kqF~7JGD)D^l6zyZ^U~)v(%$UgykZC0xxALGMJ{E0Sst?b zf`q%F^t;#?h(s`iFyGnsTQx4f7;)*A_UrvY_%t7WPpZuSQ&t%&mRJm{M==TE2}WGV z-IE&gg3j@z^o|N$YJ6CSy(1?s**GOHf{?gg!%#)NXNv}Z=Rq7fEHLx&B*M^0b;K!I^t1j%{Xb*k z|NRRHc$fx71hAm*6Eu4X6xoTip_4#pMO^y(YOtUFZ%XjsQ3Hw;X~{>cjE3r3C`)s~ zIw0Ghj0+l#S{OJ43`&4FOk!W#cfl|e)p1<&Xu*erq6v?Idra`6}kST$5Z~%%_J+I6@g>`_J6MoY}HB- zhR`a2Uy#b)N^m8pv8EDc>+mYN!+#H~-3Cu!u@f+oqVk|mO+ zMmwK3QyqM}8{Ch#mavL~SM;moHA-~}dTod$qB595!>j_V0;rNHK#jh6>YepluW#cT zR>`Xnqxe_=zn3gYyub$pgxNCV6s-qh5+K72xpgazri&%!k3d^dUm^mcE;ck)9=Bvzv@^8b3wn zEE+WqNaXF$UMz6r)k`n}6o`}1s8wmi;QWG{Xid=;w;lYW0a6#5$<6jX-K~t8mSB%> zmeF&9Q4BIwoNaOIcEE?v=;Jg;47OsEPZw5iwPyAB*i~?hEAX``$rswnsJt!n3;LP< z!+BDe=s)EHg&-8C>IV1hx@0rR1DDcH35VbTwoqI~|D0zMV z0hF2->~^o+cZyMyK%b*P+;$&mhZ@&lrPEgZ-A6>nInNjvh-h7T$K$jA<-Vh!eI|*b z0)FmuNpb0}e#}x)obT?Ko`|lN{G*T*S?ZIdJIN60T$?Firgb>nVso1VsGzA#~Az zO*)_|RTy1erUC1G1OiJBftd%-n}0E-34%zne)ZBtb4JHDVzJA;W7)JbfV4o@ z=XyA!x)gJcyR&IZ*;hY0JD5WbItLvL_7C?NtBgJ>Bemn27Gp^I7h9!e^zs74`9#)h z3mBh+7sP^pI|`a# z0LbcL`*y}$jyTBf=eEm}8;1+Sx>Xq|_2J%Po8+6+I02_(plOGgFuva#e8$Wvt; zf6JQyfuo4iM}&!Xb$F~1yUk$jGPa*18uLHbQ4yUd(-nd+eunP*L7OF5I|XQ#LoOWD zAlB>zhJByZ@k5;W^Na6sgkAqGhQ}{}y}mILOG?W4#R`U5!XSAqP}hEG_n?~eNv`G% zZ?X{I5M_xNKA8a24%QWZ5&v~m`E_t0TXJSxu005;fYG)gm5L|{Qw>P_-!>Ef_^ z>tWFz7KGo8Wh7D3K&FlYlG6D|fQ-zF&!V#0SOVdfFdu3b&{7}d5JSt#?yrb(D8R+4 zVF-_Ifq77@K_CgQ?4NHYtlqHlvKE;u^ThO%hJM@;sq1)FZ61?6d{unjqk;;bo)S7P z%cz3Ee3yyT);Z{=nRARnOe?v?E@HQ^Ql1JgSeu4E3$bKgejTm$JDPI-2qb+}TFPUR z%cmtUJ9rA`ty*tc?I;-C2_58RQ|Q<>w7PV34=HvD_eX=B*kVBAfl7P)Km+((h7Jr!%JZ$FYQ zE4$oSg1rIIFD}RGCa```zBq0U*StU7k&~DoNssjHq|47W+4_srxG}8476Q^fx5gKI zdM!XkDqCB@gGFq8?`T1YvUIK*z&SLuJ{M&@S$g`>sua1%m}Nyr+e@l_;GU*E-%UV* z&vm+X(|>R7o7xubmwec*Xom9Oxp6CJ+N9g~T)NUU<=Z&( z=GD7j6FeSqxoZbhhu{%N7GDnWJ(_KIC$+UbzuqhCoJ>Pn=C=A~S;~+?;_<1xA2#QL zq6A&g2{I$yRUq&~4(Cm;zHJRIUYdMqe~O>mYY#+U+k|P1p8?MUhoM`*uu_R@gdqvr zwUrY{f$?iVi=5Ux2WJysIaKXS0~io5~H+9EK=rX z9xCKL=3A-J;4w6sfCS^U=tADid=_oAFlLL9YiMT^6H+V)6e&>@2;wZr) z$q}AiXOjH{mA%EZ`M~YQkpBy%;x57jrRD7nT$B7ifNgTixX0KjOee%}2hgQ5tvi4I z+5zQcX$UtRCEuCYiLug;5!?0x1h{b{!G=9m8;$1#!Gvxp5{O2BvsN+G$$jnID%k^X z+1O?0AHrgWk7;d~8N3sEcEi1H;JZ~Zzr;tocHS@TlIK9b^)fLEfV414gUD_ITwxZ1C;bi&8p;wVuZiX zk&-I2OFgQZWVFb%U^k_S{Y{{=Ua*vMo!+>F#8IYQ!yAlKx|RQq61=Xme^f+I^lMU}h^2H^!%Agvs z__u}PeY!6oZfM%({>81cprhk*?Vafgm_`5q&bh2( z8d(9mb*g@((BNp=;QDG!tUa^|tP+t01LUItWepr?YiYf}I2k#^?h%}dS2X4|+;c(H09UEqW`U50rAa0(bXSv+Vq@5)C~XSl^wcC? zPry$Z+!z<3Y4OdD>hBaAS02p1z28!WVK@PDzRMJ}JE$1lYgT$q)NJrAo~R$zWsXb!Vk1m%PW);k6C+5-Y7j zSg;3@gP2bmQHWGv+6r?Sp>Rb=@S1Sb592Fq?@gO0ztm+LO%A|dn1WCgQqfZ)<;cf4 z_+6-DJ-g>No2;>Uh^)3*rBX2f132lsF4`1{W$;Hwh%12QK1RzE4k`4CM&Xu%5YL5J zw3_qZok!w^4wN0zRK`cJ+;~BzFFJw!zKR?v$qK|@S9}Y`7opliK6cCJx;f@+SFR2c`sZV{c&cC!DfqLtnOgnbcI_5RY)xLKp7!QuZSEP zm_Y{HL|@!aut-7NPt<5O&b+KHiL08&NXNS2>$kHws?T_=LHP}69WV{@cJ(>~>`s~H z_5tGl)pODo;#ZL>(Q1k0GdIEgrwbY6-U-WNl>_JU047Q&hEDqgdhp%8JrjUbWiu0DK%*0bwAZ<>Qsrkj2UHd(%&VU+_B)q}D2 zAv0iF0l>^DI_Gw8nPfQ+Z(v4z>bzC9jY>I&NNZsTFwiP^=w|X5-K75*hV7lrh3_7D zA7IAz!*X`0Rx>?XkZX&_S#;~fqpZ))TTpR?JEuCP(Zo^(r#>Mf-oWV2IG=8Hh@o~M zO;6JNMUeBU1(XE|+giwy~C2l|M*Fo;5M&xJ-8^opV7`L3=}Fdqf8w z#^$mJDyN-)6J)SU#4a03J5YRBd|u3}JQ=Ui2`B@;(fg4CR_5ECc% zF2f&8|AtW?n|+4nD+`4P$?qUOKv6O@%P+CM@XB!5oUNM=`aQY}_+!p@xhe-!uzokF zEtbXxtSQJ&>4qP8CU6>m&ZoQ>c7?2F7Tyv8UB;;(tpQ5O0OskvlmpcTe@ z9GAv;8qX74bF7i>5I7I*2(N(7HJej^k zyXEo^4+r_rhZCPFXuF}@_+SmcIyx5zWol<5U}0y3(P2{#uIw`xW!j_>ZIq2~o#i_{ zbMEcybDwBxTcdy&G*dueASfA$a51@E^s&b2sx2S+s7$pT;9p)vE3AZwvF+&aqfNq| z>Q0x|a}QR)puvb&6N||TG}4dQ=tJap~ zDZx6!lo$Lp$4>_~REtW1jd5F6aeq?{unKi#662^Ywo9+CBnlNI<726jAEII4ew}`N z$i=m^f?q_Me4I48B!mmF;TyWHD~{I=(ShpmI0HgSK{>W{7`G1{s&bjqz)osQ8^#Ya@P^x(D66>tr}%g} zZhZsr*XecbUH2(!AMze0rXw^=VoRmJ6OF|%k&%Bta>%ssqL)JgE|4JuKL3I^f?E#v zqC5A+Fj?lmvzv5|SJ%9s`%?d;?8=qy3!J~+zWJOC^@ycW%XV!6zDfPT?h)gaL6O97 z``=pZ_DTyZlkkux0y^i*%9{6EWDyjO7O>Upx%4jpAwD)T(s>8j*E|Wn>ebZWus==B zyDZ@yWOvJ63N^y8O?=V)Ovu!ay{{Ckt_CbI6Dan%f@T>_%x#ux|7gbF9@SP)J73su z=^klnTw{sg)&=t*FErvB3;S}S2kba3e%xDwjHKIY7f8vwCoyom%5FNurMGPQjEW%H z?w{^Msd_fauqrXQGFuT^*08bqWtfa6T2gC>m254BLYU>brZd?MO#xdOVPUTagPB_F zNadOj-eZJofu(LqW}lukK?4_BC2aDp?u8jtDz4ZV)SXYUJ`IZxS?oHW&`kAW&1;h0 zTNG+&p(RaJR{D){*l~#X--ZK*nu3ALZRRw(zJbYmr&}(=b%w6#0Iok{aGsXcW8IRQ zZ6~p6tG<_pQ3M(f+xaG;%P=9t&JS7Q*W3?tg=Odz82!whJGKw~VUVr5wm^q78L3V|Wt~Wv{3?oT!t=vW1!%>j<0y;^UNDJhLPunoz`U`|9KIt^8;+YAQf~ z^vE65;d)_KY{8Dm|43Y3j7Z$(2jQ2&Z|f}`%w5>U`^7NLd!E03b(twz#QSFB`NvkP znsA_GE1Ag{XrDM6?V}5>){aT?F>aF4KTD?4IhW7}Ucxb z)o%L3_-x%&HxI+8y<>M3-CK{o-39;LbAdN+E{H-Vg}$p}_3ieY^x`F%SEm+EzbRGi zhN4jdue>&>q8C957(WJPEAW3oX*s7zif)RHC%}e{ctvixO_OD$`mUaQ`h8 zJQtLCgB7tO!8{7OUSWgCn_0_hVdO%7cFh zpoOjiffTY@!d_6v*y63*TpW0AIn9K1{uJXj8+#>_ z(#1w=XyW`M>5@cA%T&9@1-BQ3OqcQ331(r`uQJW}NvEqcWLL(FlNY9n{_Xhr{j`R@ zL;CdBagl06agUcy7IY66^smMU{BnmE<(2eAwzH<9oUEP%Lt?+5_e>=dzH1H<$n=83 z;U4ynOW`YB%aKqjnBkjT3(-(qhA1R)tLAuv2wq!V`h^Ic?p>xdy9ZnTIkEXa62!hgK^RPY$uq zUl$iRl<&`yLE?u{#Xjr~qvEQo z6Dac+7F|?hSK=6F|r}j%q{z8Cdl*hMIp5IJ{z402}T#xes!LRUQ z4WgR&DefhYt{~6XEtYZao?01b9o<|K#XV>Rb}yBSp&%`u(Rg=7z}dT|9jpSK0UD{L z>A(Zp1)@R>#q+hx!QlPk?rc#6v)q!8iL|TezAkr?Dpwp48Iv3w-+D##kax2n3{565 zCKKFR#R_>67x0P(XJ>^b?aTpHp>wN&lFtgMX$jyEN8WN=M}q;|VA65kxy_QrL`xeG zLih2*9!a~}WGl}`7rum6LP_AiapS$B-!!S4T{$tRk|%?bDRrJ(toG*;jYnzX^h%)E zJmM?ED}2DHRw_S345m}E(6B{3>8wa*f?sa??DmFc{z;?e^n197ThgyzEH|^I*{@A+ z)Ys1RdmfIY3mVq74RiJ^WMy&c* z&Lv2ki;0Wq=kofa!STj+gyxet_#9X3^@!T*E<3Uy3ZzWv{D*OqF9vX2;yXPX&1ZKu z`$(h>%~YuPn~(_*fHb&v#4X$Ar611u*Yp>=>fWDJX}Iq0_YVLk;uQ*MIk)q%myi#N z6ZYRtZ&HZ<4YpFI9QA+F@4Y%UE!XT)maX|w#G_6_mV`4hY&ws}0$b{#-QzApU=3}unkJS7pcvDvNDZrS8X5~t1m2)>3J&^ z`A3g**zxzvoVqp>Q`wg`mp-KCcMtaRo%o#i*stbSY9i(ut={gtMK!#hka2VL#MU!v zhd_2W*#_O7eoz9Q10^AYOiZF#?6j3CAtIKzOsn^N*_gR${UD{k_@v0l!xp{D9Q*X( zF@=i#b37`8>Eg9>JK9+w;ClM>iu z6*bGA$4oO`_O&e!=k=2RBasMUHu)xIm1@p(z#>^f@n(avZT1a)iP8ZG}D z*+$+?zrXW8)v2y`WCEVin!v`$u4vUO8wavx+J@Mh&}Px7&`(XkJ|UrUpSjJ;;Dm4X z<}JDNtZA*U1Sx(UR{?yV=dd0x86UpZxxbz%${oLabC|JV@iPQr*0gXdngmJ>9;ARXc1E{# z9}z+ILUdt`i<1Q|``UE~I)2C^OVc>k-`-R_>M0{=B(u<>NzOJYV@=?^A-d8{{o$ z2gO4Xq9F43GH_NgoSB6tf^bZT)6+|r8{RFg|u$r^N6jjkFoAKy0V5gD3!j-)s~?Wa}s9v^6QdaTvsqd`#|>*{s*HP%G6KUKi%XkyLZ;q-IH{N0q~6h2+O)PQf>iqYmKWB{#&k*Cq{MWRe(L-J5`qTU!HP6?EtV0jm+H*DNyb60<7zS8`Y#HA?LMi_BhG-(1#^yT<7_NO2uoxT@wwyk4ayGv2wpcv(D?w=VJS-U0#6%DI$M@;@_`FR5q?= zXu^puuXgs!)E~y>-_DYuiX2on55osnFem_TdzTS1{PHe2Rs;2^pPd$0e{ZiXeRs?d7 z7e?kjz`MQg#I7A_wVv`h*iz9{@U>)8!Tl$6=DJEw)La{dO*_RB{~ zi%upnR)InSzR)b;@57s)g7gxMI4WE129`Rpc7CC5??xm$D;=#)mxWE&T_ym)%+BL& z?-hX(ne#f3U-EFM%lbjMbx%H%PW*iZEEc-!8|iNRgxbN{u(xwWepHviY_+?6>^I56 zWo{m(P$J)Y{y+uJ0bV!EDQ1XxumP1c#rVjej#WRN5=j}SLid2Kt&nP?p$O->xLuz4 zqX`L*jI9Y|T9Fk^eorZAZkV(}9ov*u%qdopbR97X2G#Fvl&29)AAEVJhPI%Ww73_9 zdi`Bn1Zmz$DOF>H*}FWYbWLiu$XD5$5WiX)whT}nVzqn*;K-A;+y?G6;WVzTIci_X z&r!|*WZzpjUbT!kpoJ@2c)$CM5(?dUbnT}%x|AAoARWOe7>Q(JlecwooyHdZW;92a z!+t2(bvYj&olnSrVagTCxyQlbnVjk;GyN?8niJ4=;;VY_pSeh9q23zWOq1b9S z{A~E37?LOBe}zOS7ir->4KaExl41;`)YH}H1V5Nfc4QAWF{aqq;XR2meY&wvN-0kR zT5kzrr>UfO%AHrzDXGXT2bg~zyM~%f{bJGaPWt-VOHInQa-G+H@sA!g`@?rY%Y`P! zHcgZ;K|Y1P(CjJCY6!SBeaE)PDuskQ-`GP!z8Q``KZD!FmnF3wz-(KVH!XEOyf~1r zR|A+=;hg`T$cKxSj+otg%wmp@fEP6S;%LGsROA<#EkJ4dMLE(&ok71Jf2|(xIDNKc zc|5tQBRK!ls$#{lr{RmYfAPV_2-TUdKrmj~0l(yRKt;h8;UeYkG&9hm1R&V+~VYK5>SnXdL;`{>9K^u6G zhcf_FM0v8p`94-)#N6v}%eCGQlM8kG<5?taFQt0K5R%d+DzE^^=&QXz-ZgfT}?pVOak22et%*@BWO|qY=#$nys2 zGh3_kad%tQ06DaDO&aDMjpdKSYJ5*PIxq+GkEuCNRJ4>d`(0{uy1OD;M9CD|3!C)^ zdk{kjzT{zPW{_2%R3w@$n@tSD$&@YvCBqmSYjYRiw_q3l2&%?5#1*rth z#X%y<8^mA9dtdF^CJMRS>B-*gGr4*^)Q!K{b<QFHDMaPk%N0lo;lUPb^>&g~?@@%)o9*17 zHQgy+qxC%Y<VJ$K1 zB_XVsWOIKkh+_7!@7SaLm8CAP{_=ph3j#K%3|oSkN`fVH5>o@#t(g0DdZ16x{##QH zP`EpI;6Lp!95Wcdoy*HCPo4fc$$gf|*BdNGEX5=sKL*!UR+m4!4+twv1QSTv?;JmD z=c_EF==Mqq5qZHRAN6OZY0kemETAcOqdju({PyG8dd>0K0%z;C1v%B+*xhj2_LnzU z=yoj4C`cnjmq3R?TzDGzXppPI4E|I(#8sS}E+R%=fD)`J&a+m(dPudJ=dt!RoZ<3x z&WSIy?l}5O$1j&lPOUSDyP;^-k0fp{rKAKM3bF~Ic7-mQ%%NG$RleQ%^e>re7;oB4 zUV*?`93JP+H_@`5VQ`UKkR7eJeRHb|+qWcIV(&@zk;!bk`)`G9%#n`t7``XZx?i%F z3F|)3GyC*>_ee$C4sBXI?l@cfV6|TKvXs8# z5?sh~T|xH|fD?3?=JvP&o-^^Vedi7LZM`l&u|%-NMlk_?9D&<{rZU&N0$8(9urC^T zFQ?p@nd?ILtLPgJePM^Re9{Ai%R|kW=QaF&Xz`?A0uX(OHbl3{v|-S;*$Tcal5K}- zw${Cz$YH%Ch!7Zxn1693Pb;mp+P$m3b`ZOAJr2peO}Ky6TOX!mceGsKG=PA}?XD@- zB++#opD`MWOEFbW8g6xvbcG3Hfcb0R*f@1$<|hqD0mvE>6HenfAw&l;!VIWjbT`jf z*}XLtz2hvq_W69C#PKuHl`fgE8v&A(ex2rrS&makDwte#uHn5VVU1(~EQHtlS&mob z6d7%O6_ojB_5DTB=)+K_is6ixxG5=29lg;%&e z7pp}*n$ACwk!RCRw>fKCS7h!zN{siQ*JIUWaA@ys5T1`Cs1b zJkqnUx!B5%XjIYYiaPh;xN z-rp9(V~z?)41{M)pPTE~pU0@kIQ^DJaF!s@^n0 z*<0>^b)-6hj;GLd9317kRqT!734{1cp!8xk7_@TQYDFYuMuI5OQ&s*6zfM(NFId); z3W~qdSV_d-8`~1{4H`lvNn|9R#_@h)2>}Pm*naj+Q%5&_Bme^$g2~V}FPrc1w)|`d z&qd$zJpVSlqhWV>2SG*0z?>E?KQEY;vOs3Vka$?X-u=QP#(y2z(DSC7+A}9cp|_1n zQ{81-l$Zfh`4)eub6s0Tzz-2_UN8-iy-_=u^yIHO3A%H$qzMxY*$55{dilW}7#goR z{5Y9P3Fd)Kw$)0;nW^)x$&y$)_uvvV%7eczX8x4XO><<*ohO^p!!!@?v` zT9xq+XTR*Pd9>9?!5kApyYL$rE-)N`I)MF7i9t-{=;iAJh%aW7#$?6^x!EZGGPl`g zoy;ho?}s5~sVylU(zLX8i%W@}tEFhVz?g^-dHJ-t*y!?GqGgb@;;w1Y%X?t^ZdF1G z8OXoY=rA=7x+AU~e11~g>e+RB5Kt!7a>2edl%m{IOPRBY3qkbVaE(KfnorV{_PFU* zMUjEUzGEOE5uTP(94RMti|Xc1MfJC_xAjNL--e$YA%E>xI6eMv7NAya0F7`y0>dzh zlxH1H#9jZ%vpa?M8uwhf@aR^LwMejk_=%$0QVXw!+_~fgUvqE{QQKPtJk9 zaWBxoMk{=V5yYn`qB56^3@+3=YHSO<;VOL|4`+{&L3GJWJAAP$35eR-Nn>LHU(B3- zC8H>T+9`mq`!$CZ-uLd6nH^WF9?`-2t+9;VLoZ{QbsgqRY?U%HyfZPxUA&Dy&Sr^s z*=_T*Y@V*o&T;*O?Ld{P{!kk>BNl~V^hRFe`E?3cHLSQ93D88mt}zvrnWnbM3@)P5 zSSMgUYHcGMaLX2wqJ%1fj3_DaI+96}3eK<724Huk2tbx*CJGM=LuQ1>oVqXfX+GX? zU5>lI!mrZgpNf83q?>x=?9*CqowJlOi9@2$H)_jGx4z)r*+86JreCGWD@n^&*pEJ@ zK%A^iN*m-PSBnI=q}V(r*~nC`rHheC%Vd7=5eUg!tZ2|a4*mb%bkg6-VuIOEmO6b0 z`A$3pN`$^jy#)=F)uiK5As0T7oDPGi@MwQPvt$AP8+CYD>&SZzxP}TsLRfE@JWtma zmSCL~Z&AyhaqigZFl(4$#g+Af~dg#qFsPfbjiI>gJ zH$=CAgZ~HMA!HEc$RHY&hHiY-D)|1fOh2!3SG?(@uRo9mDo()v`09sBO7mz^nou=q zikS)fJXt}P{%b#YA4%5nu|+v;^2CqL6p@5TruLv<;>%(739rM~X&nJ%tLw^jTI(KO z1oVzNx!gxKiz9>Az_xzqG6%Rq#31aKpGucKrBCKkf?oqyUh(=6C z{mTwtP>f4TW{(IpI>#ZYNgygWMAnZ~z}alf>Az|m9IFtgG89GAZgB~6#b1@Fc@9Xa z{Od8Wp7(yQ{nWSYurG3q9RL3D8YD|UGopq6{rEN4U*DECy=^j;q+Yi-z*5XhNvkZ) z>_&Y}emPVF=!VeDX_)FAw6z4(PN*V(uA z;LLcv-FR@^0l+oUO&?pRS%!>EVq&?=n&)@TKnBMDMKpV0M2m#)U6dylsRS~oiNk61 zIMv6l`LKO8Ki0}~Et#M*>t#SKTS-8T3WhiyM@!Yc9_4#x+8sIvv$EWN1W+pesO}*! zoZZSOEZN20>AUzir5$lAM)w8O#CoEvtIBS`Pv$RtHqD*WE(6=Xx~@C({hqd6yBJ#V z)!I2LFI5G+CiOJr=RXL3C{(0N+z-ykH>oLXpFOH18R%R`4L7(dD$bL^9p3fL4cuZR zYXGx^I1mN~__{5SyCdE_GpQeAXy?hlF+6{nh<7APO(b(L)N6$glD$FVh^t8UvY5s! zJy~1h6t(CJ96mL7cK1|zGP$&O$#|544&m84sLJ+#$t$3ic^Ol6|gvw z&fhDb5GRPUQ@xek8(|Oq^ikHm&wkZ<@IXp)icy@G*?e+hm+0HlV0sJ193pswlqSG0 z0tH<=FqpBHfRd7690FoWr?1yq1+sK(CLYTRdud%;u~j-a8n-180SvG z=M;({(TeQkhGZW*ZVdF8L3`X6Nq@(7+VMPw5E`HOjdGhWicu~%v!Z7nPn?>rPZ?fU zY1Ey(JW}H=!Fy4w^ek*lmF&tLMkk6@`a>>L*Wh62=i)DCb? zlfm0W=Taq_flEZ^wX`b{(!f;a-F9Ph$IMjbKa~5{SA~1p9KOH*Ccl96-v9b_Gd?PX zwXdk9+wr{j*kIaxX}j6n1DF&Fwb5*yIdl+V#|d;}N6mmHP(uzqp)KoyYyQPink%4C8@_djIHZem~uF2r<(^;%xWx$&HtiR|JgYS4s*D9r5ePWypB)mi@2hC;7FvbM80D zEH2Wo&6ngcfDFiu)wasRiA%*k1t`WqAd4v}vO1>S757R|1-f=w6^B#>eW!2tPrJvK z$WHT69If=W5mx5+<1JE3QlX9jUhSJPNdK-bU5eHI~%!%(eBNwAn+13>QL8Do3 zN4)oI*sLt_nb&3gO(mbZ=JuDiF@O-($T|0~n(<=#HcO{PPT4s!M-g~)0nOE$x4I*Cm+w@E&Qa` zO`DeWuG5WgwjZzC``jIRC;Hd2wgO|L+0O@kfsrOMU<{5+(bnAC&1~^PVZi)tzz~&n zQhdf#w2ljYzwxfAece$t8KwY}WAx%;-lI{wTJE};`lBr2qKe`#$5@}yTl1v7u*Lb{ z_W9(Wb5RgNd{T^4bI&RYNm<6^GzEK9)*;p;g_%gu7r*?eWC{#nrh(v8K_+p2*~yJm zl5ToFB;uV93b|TkshsHu{-xJd@x_mD8#Mh`Sd@XdJhU68?*ua5Y6@xCvVKjpwZ|Wok z)AvO*1bHATNkDeQJ$UIN23*2uvqXHYh3f0uGUVsk^{s1!LvKF*j3MH>C=g4`DWQQt1d-7;Mx_yjkb7hL5BJ55$RAae1cV-@iAl!0NvJ@|5=*%y zR%bj(l9wZxZNieGF(n7TwmF{96FgH+_XZ*ZF=m@+yEunBZPP@EtQ*AH~y zKZ*&tq_B~6uhTgOy7IWL@X!r=Ig!do(%R=V73+)56W0y+B>mBtEV4AHYFknoz3+{? z{6x^`Qpbw`?wTRe-QtO{37R7+^*N3~~Gh3;JM51s?(BpsC*D>NIOOgST zJac@LGz%!j-o94ltfH)8_P{?v=bhn-VrSvI2*Q<5{NWBiGa4k;UI`mPfmdTZa5{dc zWipK;1VgsRV~kPAWD0eZ!kmiCh8~)9{x~lZl^8SZvc?Aj@i0u7VuS6FNJT)L)Mop> zpf3v0{1mz_$Nx+Lxhh^8sfjN(+T@kA1eG=YCb9bG;wi%z^^d&;X8Lc3ofSzfi@{t_JJ$iVDi4S9pk>- zp=Ek_N*wQFk|12>x8rhc8|j@A)}x`2}9M=VwqH0U3JP_x(-g&pH44t zJy6vpOuu>PYEBI_9>{h6gbY9snGfw_JpLnV`=BxAf*PCemgKbD-+RaerEl-;PQl1B zoC(>b!jYU1S`jxV4zowgh5`U2@-O3CB`w!LV@{^yX8LO4G zr5*^#-v{=Zu9MLYC$|eZ!#1NXl2|nr8mQ;Buth+TH*9$GbV%xdz|?~f8H9*nrnIsH zAFEBJ;qkyYe6l4|kj0sE#gw(jlNWEKJ`D^(hyXdg*XKL(al7{D#Nm?5)6#cq^IOPe z>PTiMoT7`QdB;7ywB}+WS_+tT-!-7r*ScS<==D%x^azGn5}8UV0@Ifb%Evp;wHITx zea(yVDHh?wPG|x6*<}@1GkO$TVQl@6lct`aZ-IV0B`qdK8gF+~)XGa&bXdIhA=tfh zqB_(ir2*<;N4_{?uF3p*Kf_?8bN?*KC53UW@r2dr+yCu!woOs)pgRuTAbpT|$#|WV z$|@_jhAMc$XJv6EIo4P7gGKmfRn{k)92uae489i3QoQxuUFR-*iyJz8v`BvSHjc*j zbw7oa<)NGn>^|um9vh`YqHv{ff%ejD%eM}{f-Sh9W~+96@3IsUYf-t~LZ6O?lYr3F zF=O&iVD7yydD-J!u#doV5s!HgM2-obuQR!NxPx}${sfRlNdPP-anXr%!^2%9*^Tqf zjyizlRG~5r*RALg38u9HRP@eqbIM%57TpQ<|Fl^{6oGb$+rfbmUYO*n>wZ%m34w5* zs-Hfcgz1bn1MZ@V)Oy>i`DZOX5zSa!egj)i8tiu2^q12egIru?c@c6f^brZW&=x&$ zZP;bz^ds01Nt(%IyAQ&Xd`$XQ+Ann(iA^Y6YopkgK#hB;2nK6^J#iuZ+%0tIEHP<1 zm&M5^vOi=V==uGgsj0Ff(YC6z@fyGMHzUNt5lo}pghajdsmA2SvC_GKZ9QU3Q`I}F{(7(k#%0UW#+o;Z_BFmE->z;6wU4AjX`Z3jf^cm zr=mA!*8^D_*OiA*Z_2U0{zpCnPs@M!q$tcunflwSG4~Rcq_N26-^_A_>kDFotco=U zt!&OMtc+GN$rt`(z}EeFm8+Gfz6Kt_vW#1Gf24!yAo`G+4J4ijqBoXjC*Bpyos0($ z!|@3#K+N&~(e#yJaWqZWiv@QG5PWfW3+}GL9fAaRcXxMp2=49{9D=)B(8XQ8y`SrQ zXQ%f^_e}4#-96Pcb*fISF4%0wDX_yXhDUEmQ;_Ad3qQ<(wF!PJS~pif8|d-`^QgAh zbbCOxq!(F)L`)6_Li6g!cPkIoFU1rP-j3&8cJj+5M76n~i|&v@A!RJLh}`;(izS%@ zPgL+j1tLF?LM;m2ko2hC4|}Heq8Uf>nEs)Sduc!NUvPNDJ3(9_cc2lcq?OhK_mN%ecN#l=to*(}$O8V6GC z8+L}g_K`FA^_3#A3^uCY2mvc=P5_h9pP_OU(vUzo_seLOlXpA7 zR67d~jr{A|ukNp2#9Z%(^EaK?V@nN!Mal|;eqt@NoCnhVZ0ygT;%cCy69}36KnJRQY za}MM11jdKvvZx|@v+OOc8fz;^Q2QKQ2k<^B?d{;9MRPV-(y%TC9IKqP^)Ih`d*TYm zXxx-S2U(4B*YH}W{4P^H7zFx$I9cD_PdBNFk)WB7w`1mcyIO!%Ho((!=n=BckL{!) z;g`=NeLGo7(@OKkLUzKNroEyEweeY9z-X;%MK)A|>=CjjNxro5O`YG1@#mS&LvIaJjVlNmfHelCn*5(3&vdO1g%l0W zdTP=Gby9A=oG{e0$ynjL6;G|ag^TA;vGZg#tBk;lL43Q*kEKP4&Q}zgGft?V6BWdD zA?Y~`I_ekJQ2tpUJ>T-LRvi92m2%+R&yBW?u>L$UCQADfU%*h!MDEPdbV4%+KEf|N z8+WDA^vSAte(+AOtD{~`ee-eh)2tb3?Qgko-;W<^om6e5s-Kb{Igu(J3H(FWs}064 zfov&}g`?)S?RGF|OUaMbD~Xo~D9NY1>f@1MGkJi4fL2+I+3iA=kB_^i^uxY~_eQ!OOgMbI=pHVB4kDoBL331!SL= zB`OQyz8Poh@^^^Q=GFsO4`5)e0_eW9)fZ}LnYHuC0S}<$y1Am(YrVKH@pTJfr>C=Q zo8Qmpq4(VWJSMN^E#JDT#aI$zU!;+GOeqJim;#-sp6z~|r>CfFPAAWV#VNsRWDP9A z_}wKA4? z&edWOY}ZLRzBI#D=r}sg+mGLNtFDmRl*w%xKjJn6~{mLX4bfo4JJ}q=5bOyh*3c?Ijo$OUI*R`QD)w6 z?ym&dHS@AJe^zDso|uO{ou+xXXUG}gcR-Zco<&-IPR$=P4_$A!;6YGjd9gC*{rt_a zCOQe$p4Gn2A1^Q5Xlv22aG8R3D(MH;mCT(T4q|a(vIUKsh`1n07#zsPN*V_pO3ub} z&ag~3r{AlI#8(}WS}>Re;Fx2Inm8jJ?K2$K-!d?d`B!?Zw5_HNClIsN%gQ<>%1LVv zCJ66cB$bBo&q5cuan%K`M19lPgw8$G+H(0QjW znp<$$YG`Il=Xl~TsZ;gz8vB5R|ry3#uyOWuKA7ZQM=7)hZs#~1{ z8I&HsWk)4gq(Enc4AwgO`TM$~)+RkpTDMlU05-Gz)0@AkZWA{ZAK_gPgG0{ zS-+C^NxKDYc8`GpimzS>P1+vpW2U5J9ybn`!yjOKeZo*Dv_-yp2mt|NmEH%=!=|K4$Ae3{7ev)POZ zU~oIm@pL@be${=)|7eBHxEyr2Tt!pRaa53~sf@;CriYgq!ZLVc1lN!Y66~m1I9ZjY z5RY4?Yj~Xep(F6`yOYWK_@5%lU017h_TG2KBcJZPAguR^3oGp5WtFy%!`4`zITX1C zzpEY}J4{+#TXCBEW-Qx`9spp+`*0A|q1d)z9y$L^PI7Alwub2PtsM5zt#=N(&Gzl< z4PTMHbJDur?%H5GRmcru12Jn;A=#f$Na4Uqf-+t_M5avKkBJq;%3iP6UjU(xg<5j= zr;UVu>ydV{y91c39{1V1_32lfWd_9K8vRdJKz@GPQ`UrfjhmdU&@7t~7* zAJ8S_)t_3|U#61!o9>3zt4p4Tob&Wwmi62yGB5R-Pm+*zaE>6Z7Lq47sp-aLJ6om~ zLmj&5^8ynvZ%fMr`Ny~M>8rfQI9*2L1@8l zt6-NJj3Or|irz@wu!H#E|AdVwAxgSP_pZIvfg!u?Lfxgm=d`^=n<%vmSaiS*CJa(b z8XE|>X|@_n;qT%mkd<`GfW=L`7B@jOLG*|10&{Q0QH*^w0cBw?SPu0;gViw>GD3)y zysR@^8v6e_`O9KvL=Kd|Wsy@+i5d6`Q z(d7^+kM`xfecz!}B;yva^w^D|Uw^vkbglnp`kMq1iG*^yn&u-4I z7P(e#)B@2gFEtm-!Z~aBxZogcjSGtX-1 z+fn{vhu2UUy}|Bf1Kt%@;KQs8aB+vvzUCUwZqkEY=bwzuvjr zdvS?14c>3DYBEgs!y(zDIXbQI3=$TFO1JaO*@q>Qu|RVDVYLTfpuDWZl5{UurbB>8S$K&d&^PWk)Ja|?y}LSaPb^dU3uFK~;yV^C zWsyJG)1O56?G_5iamGk{V72!DqU0PPQO2OPk@`Hy=5l)%fVVr{e9)#Wx8 z#o0N(5^yI$2%G&6!2cT+8qo#M8X${4(}^)OsV8UgZnp* zt)wPMn*XIE-&f((e5f~GvvqJ6gj6@<>8Rj_Y6Y6)U*vgfyxjFox&J+MPolue#T=rI zwiXd+BVu-e4LlcExC9oCRx0+lj4ASieF30h{>u@7oGRAo7c^oTn!1El0?iFq6k6}( zM0kwi=1s$8e!y%o#2f~7U^oOfS$7Dh+vyygKrYQQ=twR-r%Jv2%LyoAi-4Bq2_ifBv0jFN;es=vFj8Bu%vjiUI*``tCY z?mK2Z%Qu=%E|Zr_xu0sYYt zBk&(2w?m|OvA7U;ntC~sR2pG)||-^0QvZ7(&s8&7}|M$SVXMlOv~nkK~)OCT9L z*q?4o>`-$t!xQFPZuC14uwYx`3dt`9VQi`4KmFn~{X}T)NdP|ee5bNaHhv+_@x$|x zC!RbYAeeXT124Nri9NH*U!b-sT|_%tmmm0w1@HKqJ#hnroTlM1(9v;ON=MXBaDv0x zqq4&-N^@P0uXcE|!@hA{eMw?G_q-CvN;f{Ea87j0@ z)u*|4T<}5UduAMqf10OFpQr|tL`9&0f&z=8<(A;x-^7z10IJpVUnfF`ik%+{N60UH zJ_~l)zO@CueiG**EVamTI!Y!+z1Wd0zqDEPZ(jn90Z^1h~=j?`LYhdo;Y?bLj}YT@8hH7ISxf5bEb=_i#UU7}5C9_>_I zmb2@^W)|MzN2)AhUkhOg-<)&`w?ETb)exKgmWq%{#3ieXFE=0X9`?+k`L$I^`&enI zD1`i5SIvWDg&;xltTJ$R`L)wbx+nLYh_TrQM?8QM6#O+dIXh|CBbi-*hi^Rb9&@Bg zcCz=*yWGEr9fF7KQ}E`)GKJ}rVIBZJq{S7)YD5eJm1Loy!C6H9caQ>pDpn+?76JhO zm9OABH#t};?HP8 z+QH#rftfvmg^Iiy>ahJ}ub3D)yZk&KkzFPi!{(VhW+r7YB{T%IfB$5>%C|(aQ1;?v z6`9av6>(;gReBVX_>SKqe6gWwRD4w3a+#4Q&2-PSmMFMH@b?_t38p=@W z3kM;G-;(&|zWOIp1#zfW(vy)kgx)QV1`~7Iox1G7tHG-vr}{mt;+5s;PsnvuKXrBm z{zNV4z`C9~UF<|v^}QPowRhz*Ir3Ef2ZN()59;=N1$}O9b=n!I@kGD@*eVf8g9#N- z_LM9vyA&`6veP9p6;-{lcrn=MN`JBqL>jBJHjeC1S77ATdFno;__1>p#h}feW!S;@X%Tm=x}I(065m7@G5E` znC+8Ro}GXkdi5lQTqOPav|u?HFo^MIa^?L=Jx$+X^>JO+W|t7z4Z}&!-PLSu26nub z&}-8z%Z;0NdUEQzOHSQDgJAP|O!B|vzoZ*PFGcKkOmPzYn351uI(V?vn$y>Z+}frOe8?+*Efh$ zyTw`)3v=cADwbhs*tBKmQ5J7({*))>HaPjUfe14QOu4 za$@lk?D6n{U>;h8go>$1cKHF*Agy@$K4>X;wa^an&}3+!E3KmPAs}`=f32V7p3<;E zhv;xN+{k~QC!vV&r;ABbFQ6~`T}_o)7;3-}wVy=&G)t<6c?6SU#aKENf_0@>77syo zOz@m~JuQdjwjJlsCf_QQ;asuww%v2VxDKI@a6+j?CMEk68MH;F>2Q}*rTWd}-%L(yIP&r4?qN$~O#uLnEu?gJ00Hl7lN|qMYkSPM)gP zXSM%C2h{^jKu9oy@n2+Vcz~wdK(f$hDr==7Lz-2?atSk}L2^RYuX=%ok;GnUay3=4 z)aQ=-j(^xaE6GXG2YZ%aCIn;6qJ3dusb_YPQ|A&1sWg#6F)Hr@h$Cs?p=70&<1Vhu zO4iRS)@lR~NN{7ohYY%&w(5I$JWl8BeZP20^337*YyQbTkRriNz$lmxk(dubg6qF* zgh6Jw6-r2Kw+_40fqA=>LR429XE!gRtzEn)1CMK+Xhx1@Y$0U09S}+Uczh>VohJD! zm#((!Chzl+JF(wPS{_s67g5~NEMMlx{`D{YT8;SyMfrL5-ShNx^mLO^%IRW^utY-q zG)l7Bpy9phmIgC97+<4`$Za^#Y7%D?ddI(K0(PzZI|OK&J0%z5dOBm;a-Myn>#yx z?hX6%C|o{X6+o3I(v6Z>-s{j|S8>tEol$+v!f4UNa(!A2Lq|pW5SwKO37DkBRJog_ zs?-LureEa#I4xkuO&y?4hO9`IbjqBZBo9y5LQ7xZ5Hd^@izkQavz|I1V}Xh%FT80) z3q)2ww-_4)q-m&LZo2)oEzcZX*W1hXm!vA+xrrQCqVBT$6z&YXo#DTYobbbRgZ1?~ zjG=nq<);<*C{fl@Znw(=Kns&C0Z>UGQ0oEE>HbqCuTXxSMH;pHL>~6q%MkCEU2j}W zy*EdfaX~4$;ZuniCV)_&3?;lf-MA@vAUj~Cqw)MepUNFzVs6e0^Syl;%+~G?@1mb&t5lshi$8AmtZZ5X_%F4HRNolr&m9DReYFhr^Sz zGcfS8@w2hfv9Ym{F-)CFD}p5@c*;H6v^m1QcAg0w1i~2 z;yWcXNGQmm=<)HtA5gFtj7_{NrLrR-9-!`TAp^Tg+{R|m5Tg`;r;8M>HNE>&Sw)By zzx<6$FtHf|83Dq@HWMI*MEYB*B~8j$B8mUD+qApoc+<%YKhFshCPdfUcozP)$7|uk z$!-wriV8W!pkXk?7#{!-fO8R?wFqc!wtv8bEpR-_^Qp@u2_bYYKS4Xx09+EB&(AxSmE{!6Dno> zD-H}70Psl6Ug6duYSDx{tImw}Sl6)siJa%R`q7l6^F1;BQ{th<<3f-ZaMy0FBwS-; z_@1fA=9!yt5yM!_BFZW|MlU6^LTftpJ?S}oSl(h^nvxSMVn|sJ8CoH|infGJqBfX= zs`)H@o-QF?AYt0rk50Jgp#iIn^?OiUyOwm@+-f{+=Ya2gf@t&;dFoLm+>rKQCcMVkq$$4%345zv?=0`(oME%oZ}4&5$YPbs z`Ra13oA>c|jScTH6t#Yj$>ZfFfYY~kN?rEW^|I>Ug2PPc{WoDKK5~vgoO4olI3gj< z)NwYR_g0Oqr-fc3=(>Z&Wr?UflsBXnvyCrkMq;?=N@9r(s-Cys!|28n@VX_(A~4iJ z_+MH#^#v z{wMfrZp?t+NiI|K8e>1Op{bm4`Y2gU@bL!%=)o|~4hT+n6c;~CW z^7a0Wn#D-2t8*$A06zZV(kiY8r)$A&s$3uJdlu^!^R~|Ttfs-8%N^!Hn)^-uolHH< zq}nt5e-TARUdDfv12lE0@Yx zl*tCrU_L5#KGtk^$&b;6cO918nk!0MAC)X`POaLg&eMt(Y?iz}e02HkKdzq#%(8LS zc6D_*pFNi7^lFeE9v%WXZCB0Wawazg)sjf6*7`A51SciX(>X|X=(Yp zKx|q)cq!Xyp!Mij%iSyjG+^0T-t?c#NCZHofL5FHa!+HZ-rDfW-EOAMdaD;xTirw_ zh#pG&{gg|T*TeVY;QrGF;(H$3+qpvS1#$1kF6zIHb|>}YBri9M_M@bbZJ*xS*NEf$ zi^Z=;uYwi&@%b$_O?IvqXY;o!I*Q_}o^0_|@W{&AXEl=McxaX?{atSFWyE?IPiJ_9 z5En<~e$r5O>SR=ni>pto0P@ebpO5;)Z(d_M2DZd5+OUUxNwbG{*KN#*9+1km>n6vkc=F}OmjX|kNnyxndS)rdF*++KYFae~?~O+4>&bd9dQZx{XN zc^ZtH+mAPmq6U6%i(F;;d^J-aJDD*Bc|F^6h3hoO**=^QfoNOz໶lXm9Me%9? zfQM>>9S-2Aa2gnI?K4f6*P6|r1Pw1NA_NB%4wS+qpX|isLahq1%%I0wr1?Q<`IjN- zUy?}$70F?_5&x|jZGmnz!L3_Vzm;xGtxE9PbbnH5%fCcSjB<{XgKm>qy5aPnm?^pw z%G72LrW7q(vMn581icLVh1!!8##Rp5Mwv{~XhBj!4FyDc^KDWhW3^4Pq;TX_&30&X zzE~!>CXN*KDpVH)a!xe05%A;Sp~0VACRnVPeDV264XfZ zq!VT`@n~3Utq1#!wcpaZ35Y>s-}v8FaP;-tPD0t11s`_fYTxevXykg{PU8D6JFGWY ze>Ui*2TS4E6q>G9YO29I=H7h9mhrPs$^`o> zy-W4TGHG+4{-N^a-#x0FAqVpLJ*FQ!{3-T}0g>0eB?!`woVbBKf8lwSjJaHE*L|nU zMZ20nn`d@j37s4Flf7#gxos^VOzua)?e3LLaOBJeD(_2c=gZs1t3bhgXeD~grjFT8 zZibDJCi^p2R5D-LiAK^K#6(Yrl}am(lVZl_+_zUk`QS&Qo~Q1xfbHHJCWGm2jb7K` zl9Wv*!fj3*oa4vs=iQ?i2)*pA3`o}t(FI`6ZF(Dj@b#yLa{JIr+a{5~Jflzu9vftzpwBk&wVv^5?pIq}>F3Pa{JW)&q0XTT7Wd>x!P6DK_+^hhBB?54b z@^WZMp(bYT{9EjH-_hZRgIRBnbUrgzaI~|gMdZ8T^=p^+uPsH2J?81zFuFf?$KAGd zzNJm9SIBE?dp6DRStREkS!`;{cXQN9$YqiXVb1Cjiv2sm`-HeU8<)?D>V3KGB!+l$ zDTTGD2Eh4~L+48ymwzpj0szUP#vijhMUhMQt*o8DljN!wyH=(@2BiP zD*GP>{+vGY)qGj9!f*6_zaz|a(r0IJX6u&+(YGr1E%$j6B?On$DrZ=bk zj@mhE-{L6PZi&rm-xe>I%U(73Ui!xJ`0vtUaz37(1hu{EF4yO;@xKW8oXpN;XH#wC zuaB>c;@&(y``P8$S|fk#yQq7){CYlP%4I%JN7eTtTzTF+MSRWKK=)7f{?N12_f*jE zC%@g?ugy^7JIW=f@&UCgauNP=*|Bo&4$t7-bg+6=&`N`R)_4!NR%%*JBf5u_(njFX<+29l|5FjjxM+>xElsQ$!Zz^;*Q%U5&?UgJF3%w$U3lTv zK}n4?lJ*~EzW6hz%feMgFBfkaASDIKfQ6PQ6wBmm$|e3up&db#3iZDmJ=qJznI$;T(ZsD`fc)nT9c%XwddV zBF9E_0FyEtrGI?Z6aa=fypuq5qZ?M}Bttl9$Z)9}OCrmhv-kEy9$NEc>YN~J^HJW% zsa9W3J{`81)xW!3bMe@R2}xuVh8QL7h`||g0$wYlKh{0j2jSQZ=inQYt6Tx&OAV%f zPSQR*@cX(x77Ke#b3gWKJ0Vsc#Awp zb+4bxLeIOL-cQ+TI)3M{2UZGjA14Rsf4?$q%SQSlJII{A8jnHWU9I@-@r=O<$F9xO z9rf^Jv*(e=qjmFkJ2wsmltEX*{)6o}&+Rz{lzlUMqw#^|y#pqhYK7|9_8VL`xQ&RO zXUcO|ZnYQZ##kFcqOQyXzsZq>CP()yZ*8YRKltAFf=LOtDt*LQ0YRi0WEh4}rdC9m zEGG>K*anxW+wZD8ZyorLU2SLlp(f6j85VWgraz(RGmwv}E4LHh?X;UY-kZGjq0DUQ z#KLMsZTU!X03=$Ff_|?D+h4Qa{vJT+AB88+ImVmZn)P)N0@zfSG2zb&WV|m4XNrP) z(6ZQN_^;PUDJYD7B(Nd>ysme}n7HNsKIojTF_{rN=eux;x+pQ9U0Aq?A154`pGak4gU5#WGIX#2JAj86t~Os zetFh$O_s4zH)r&~gm}=#oU}5AG&MChEiUnzpKEB;;Wofs(r)M94&O3%NyyFE9h)4t zTo;aCfXnp%;ts=ZEH8v+6%WruGQt~yPI|+PmxvUaHf9)1QG7IJ?YH1&3VVAKyQK}E zMaO}$_polKb7Q1Bd$H2f{j`|>Ho^Fq?b|UqK4IgrSJRMfw_MFDV6KtH*`CGe#}rI5 zPe3`R~N;@`YS0IdcPQfhB^R{%dOde&kT!urxNgSGR_2D)Wi>W;m^F_m zk++nR;WX&=`8pl8jlXHzyW`%k;@xU_v1Yeaz1TsNb#~qKZQ-W!J-ndDA?#o07Ljpo2*wsvK9jbveb#X~IT+B)c>HvJxwL{%Y34 zwH>X?dQ#H zG$TysR=OTAx&fJP;!v5vi7llv{=PLD*IJ5Zic4!iN;;SywVEa4R??;2GBSo{N*$}} z>UZdGDUI1Y(`l$G4-+IO;&1e~t}fD(y>M!j)fFEH{q+y~Vwe*04cseB{Zshdy> zeBdsc!TDMWe130CqtTx7hpK5g24}~Rq>D)x`Ry=J!s;u?OTR5Aj?LAoo z-MIC#)1riy9Bk*k@7MDqZlU`A&ZY+2V!&Z4MHb^pDq54-ZeuK@(H{Cdl+lkh9^T4_ zrfGRg=qQrbw-PI#FYtL~yF z&(*7Snr-I`)oeY@O2HV?ZE<;WXmTj2Xo9`C>4A`VTNh9jJyumBS_({z0hA!OzQBS; zME<*wnELH*w$0&7c#}9~oA3ObF+!9tb+1s5mO_%8&h8d$OpP49 zQ6k6Uq!mf{&$5c20$!+6&9$>E!nFykn3vji=4L`N z@bM+G73ON%an0p&WbGUSJb`<=&b`t=bJe#Yc4?5Jcbn;|tUp7plP-w>efz@00`K>^ zs%VrF_HRd5Sgq=W^6%42Ym*lB?I8Sd6`M=Y*Q20n@u|Jp?%jduoU+&doQ$sAczzBYy{0-a z<(0QlCZn#pwsR``t}>AMzAo_t?{cWf_8vsuRE-SFaB=D~gQJ?c4m#&E%CKoRP&0FTP zhhY}UU$0&|17(l@HpY=;gdw7F=a{*zN0r1vffCf#!N3Mq(`gaGNeI*zP;xiXM6E{imHs>@>N?Y7sr|qy?tZz$ReiD6j*xi6hTx1j`m#vh zxC^_HVgapG>bTOB>U&Lo;)@qTUcWUXyC&5yFs~#?1s;4vG$rT}!DL2pBSj(X^1m`m z6MmwSjqqu*+&k`ZPxD>=vN&&4U}#vPJ%{akSzf}?r^#0b;QnP- zlrZI{v#yi61!r4i6{+$-zH!e-?;{xu4<=*9;zUsw^JPT6U_w<322*hqv0_DviGab7 zSlm#PAR~+tG_lO@-7pWltDYVeUed8##5ye3zZ?{F@~!>g!u5u$_nrYHCDFJ9EXCCt zq2T^D@1{ac@H%O&wJv{W7G5*~60452i)W%wk^E$Y_g92czDpk_v+MHHKfsYf^gAq3 z0)ZBnzOfx>TJuiEW3y_8=0)*MP}D6iE6~@p-*_2+KBrW4T3x@ynf9xG{%|hlZqSsN zCU3M1gJ5@{D{heGE)OZ7+=@gblwI+MhB!*K=MZnj8P6zyzkOl^&X=i($CEd>-TZ!M z9@v1g{T(AXDUwJ+y6Ax`BQnN$FN;>c#*EU!DWhGF6bikn8?oZ66tTK?C6>x2=^Q@7 z-m9ISJTcY)72FN{KVN_$q$yg$X?c$+LfOO&WFfdD@{qrLU??6f6HTNM#VGLhVFYV< z7BWXM(U`r{%lb9!+n(hM+=Seorl^XS(&Q?R+yp#!`2rrcPpNO-JBW6(Es zf2H6sGHr5O^h4_Or_FwEuA?;1uRh04(55P4f+9#W`a}Cw99Nj7=i{xVTyoK58wV>q z?JK?W327?sRHFq77VB&izg1v`CL(?1W$b_-(N9;=o0ugFA00z9^DKDFD;mL4V?xxK z-WwyXNx!sLSjj%*HehzJSeSwCaISfU2l@vwV&hV#jWsVG3j*RKf03YjzP?3H^3!uSm2 zK{WDkpplWnNWlXu4+v?*VC~jSvW!@Q>S*eT_Fu~JAWCT0>zbTb4?W?|%odQ0Hg z`9IA@rxm`tIRY}}OyzlEak+s#<#d;ZXMv>Rr5gF9!zLVM3>7iLD15_ zL-sd^0Y2b%dR01Pe z?lBGK!ou2_%UZgL^}_&?^FdL1o_!w*W7fvo9_^}MBD63hq0~QV<`&orjyA0=3N0Np zGM#M2i7}AQ(w?iVL?%Wp6EZdn)fCn@TraenEmAU4Qc@FkueGCiLcg-`rI1#ec9e;i z9t%y}MJg4ungkCN*mGM4i+-7~7kj?3koy*lR!pOY0Z0Jo{D7f$gKHU8mLIU`aOP{0 zmhj-%I6RjOvjMKznW2w?zE(t5mygpR$1QGC#XeI}0>>L&_X(Oc^p=c(FVo6U%(lKi^?A1skKD0Kb$CYi z#He4%#pN?B-F0Mz#x3Ekj6@mG5-b+6{CN<`taxJvy+&^+8f0C^zuJhX7XF)QGyBsT zOJ7(WXi|Ny+(1!y(Fsl&i^KnSbib<5d?xT>y=6L=zpUdX6Kg?EbDr-6PYW+2LyJMD z)iNh*la-2}Y(D8f=n;EHx*W+HEXP&Q5i~-hm4@K(=fcI12AQM7zXLUR!i0a-+1eue z{4|Mh50 zwIcoC*=Y~H6Omh0Qdv|42YlHRjA(g0qjCqhS{&IvqJgH!I;cjGuczAM<&S^8r@g2a z?eiZL64Ja%R^$KE`$2HK*pjj)`yY%IW?B#MUt>PvN=hSsf3vF5NHFnomO)Vo973Zn?8$fUiPfYGw4}AUzfy_ zM9)WtW0SEMQQ)1R+@KL~Rs_?gP~Li+K`+nqmRgg!Fd+eYC7R!5XNarV&S;$%)9?cd z=w!Apv!Hye@4mZCYL7Qs(nMlnuP;HHG2!nkGTa|!^!6Ua4L{5^|*L*Pe#E?KT#+ZS~`a|09U?}pY@`Yj%l zDa(L#LR^tSv(y6X`kKd+3QKO^LR)pCg7XvQ{it;UE~Dv4M>Dgnj+dBS7|p9SS&BYm zAA0mDJ*_W>hZ_-M><+fGlSZm-`MB=IUf^*J*zvn;{chcdiMZT1zS!$W4E*-`DDEmx zr|)G;%6xTczB=nwv98=AoX0KVB1*h{G1j>$J|8F^b%Z|XdWDYuXSl%d*6Xara1N@` zo8J*&a&Vv9oGh5@Ac=Cd)i}dQ{ijfVQg`72oWPL?PW^|Rgg!_MRc;{F1!NQZ<)yU2 zPtMQqU*ufL55nc1V)0}jrx}hA8^3+?Bk_-Idg`ttaGdM()6T(V($NQZQE&#AJgvU{ zd$nJ4<=P>S8UHQt6PG@V-)h=XvedTGAQQ?k+7G>#zsA~OH(n@z-P9@FW478H`%BI9 zYh^5t_39t4)PhetUoIQxZ6tt@J}BY#lW?0FRy)osiwcPeKxv~b*ozCoMi% z!WPQd`P}2Ta}k8|5!wyZ!Lc!BJbBo^I|YwT z5(FE;w-O)6nkdS+8kiiwhU;QU2a$JvTXNaUX=_h(7sPwL^}}aO`fsK)*2Ika{^!}1 z$mSV=z#lbj*1BAP=O4Z9ZSvQWpIW98xqcs}fN5M`;d>76>knDJt~lXInUB67w$DMbbumX^*CCow?{ zKv1=U88dC+gi&XGf)neSI+dMhS@e*4sT#Tlj$BFaM&efLSdO+#N#6YKT#Fw2xSnT4m@d`O&k{YJ3iY_wkX=hNn5u~9MH>mUk;ugY!=pwvQorRa?3 ztU^ozQ>m?>j*rEpsn1!1uikTC4XkWH_T0^8^pRjzT>qH8>vFR7yFDzN^fI-4!wRr|dyu@F(t5vliwJS!{Y+%k^gW%RJ2J>M zXwb}SzHFQ5P@~zzOGBlBn?#8wjyRKqw0C`#-i(928qmnoTck7JlJik}xx#e1l4j68 zDRk(6c4$2nU_2^J*the`yYw?1g?0LT4#0N2=yp4V@_O*YhQs;-3Bl$(=Wj|JlQQP>cyKxI`Rd**$vJEjP3YtB){c;kgxPCV5NhJQ z@5JvD-+y|<4RVLrCDBh+?z!5D7ZB$Rde$3zc}_#l({>kkqcHen@$LRr?y1+@^NRx6 zlN?Rc2DZYs_k4|R-|R(RRDZjJ z`%%T2384*_T_^Epr$E3boHD&O+2;(HX0N! zG$)Ozv4kZvDtxOYaRRo*i_$Np;!3+X*=|dnAiqM|?(5iI;3sB2BGkOT_8e%pED|Dr z=TD~u)W2Q)6G>lCmx=CiR)@>|vtqX`ZIo;4@g3n*36%nqZXGQ5WtFU2?J*c&bmOVv z07!c2vBM8}|CIZc8-vfe@wkHp==RL9|9pSk_Pmw9gg^doHy;iRw{3UJoD|T`k;r(y z{cg3m{-#|F-u-pkn2j2Zt77K#CLR9M000lLZAP!kOM6a9|0xUC6aLSHu8^zSlMXme z|0xdx5J15B6BcwQ?BoA*1B^N+#G?Q8^BbWwW-iC+KSe^EJ~@h~zd*S|?gZQ=4hmXO z_DEH^P#W!j3dsO;z}ON=4yO!IAIin;T>5wo2Z^SBZ-iwQfG3E zW>|QKL!x-{>OsNFp$+IlyDMn}yWOVmWPH4n&`igSPWk10?ag^?;@6>E@>YzXl4;5W!GY8pPQjTxYkh3Fs-Wl-# zi5z)qZ~H~f8kDZD?H3*q66J7>-K?Kvk7xF>_wjKL*AIQ)?ptnMqBZ|fqVEUBEnbSt zz8#nIG!8Ik1-mydC7w)P2ydGVvIRO#O^}>D7pIp=!L^^hZmDNb%ZG(Y^cfi8fSh`lYHqVzNG}y5uAj7(->tC9K&@MaFi4e9sat7g2 z{aA{;_08XF<<~!bkbQjsiVYf|8F6u?pLQp6TlpqTuKwHVyllNKiLWkj@&0-GPXrYc zi-k6OEb!tjK5b2hK>7@}1?gBR;Qo!E#pbyVAZG$oE0pKKErEMHhw$P0#JTsEKu3&s z!R?`NbS%ku57w8X(Dqa(R*UR(-=l4lQKbD~7f9g1;I3SU`@Nni`+K?Cqw|I9SjFtc z`&_g8@oU2c-qY82kKNpP20bOt`?qw6;VIvTv015UPWKxb0N7&(NAu`e{bwdyV^ojn zc3LbQM90_dC!cO<*dZjT6B1uJ)p5rq|IbMz(fg5JOsjU?MTO~0dtQ+AE36PevJKBg z2Okq;S!@FQ#=9A?UP$h8f5gxr8*jO&0EBmB$Ukw2L33Oe2Zs!a$?Tgd4cjd+kws6B z^+-K5q#6H8ruB!SB#0N)R90$mJ?(rO0yvz+xDWX))tHpUbEksXAPUHpQT{R$#M3A^5-uXE96;`RE;D8YqS2-8xa6Mi6Eqk!v zEWB^;=WuLv`+YW9tRFtLWB!jglhhXa}Z-}E+KIh7bj134OKNX=}Z)6T+<^Pvlk5QnuL zQqbY{HTM?my{Y=5{X>@Ugq#OR4qvWamdzy`-#lS!m4a(YNE%a~A;L6{d1l;+I?E^U zLU7z;4TbV>^HI#L`Ir6J7#h2~*4fVO*s0{}kxI|>@JPb!9{(n?vvvt|CIaSove^uu zr-XHvkNze=OoJ=xbo@o>bsjtnJDbTu@#bNkJw=zWwLDr!p8|{C567Y7wdd&^ zEhplx^c7$LI{5m}LNWJSDx*s-W(x7<(1cGhBfSc|yD@Cx@)IZ*60B8^CUeJCcx<%` zc?^gEEE>K2sXrBlTG))CXQm-aZ-43Q{L#_fQiK9v96$$rPlr8I^Xtt;i^oo5#aY-P zYM%DyEM^Pvct~hff}KbAZXSzphx}b`1<74s%3GLS%+fqHxv3KR=-HWC#dwspHZ&PL_wu10>97hdcGZ9J3FTx{{gb1Gy<i`PUDrjXcj^vy9Dch?c)pS!L-E=i@ma*PBL>WLN)8P_Tr4 z&&>-806B)~QIv?ej8vYI+2hWc{;#=&pqB2qZr7*1uWXkq2twqa-;!*iOfjgvz54R9 zI&*eF8P=6$GI;^ZK4ZMvygo@^ua#p>Rofm5_u&_Fzqcy3u}fw(qGijqjIgb!b+(SH zwpN+O60FnL26{3g>?0nNU3U;5HVS_l_|B91rqn>B-R_IfmbnZ~4G8;!$$Q@B&yIcF$qZF{E3t0#~U6m5MgHFu>31VRo7`0O}VT`W*rlvZAz3EU>| zXkop9C~;lg_HT*RpE(|D92ee?mM}a20dqmVprU?|qE~TUP+3VbJ^;t}O80d;Zwb`p zeLWo`*7aGT=TYhq_*Fkp;(Z)gS>I8H)V4<}My-ENMkl6>i~=hJZncP~_yr?9Mqqy5 z^fEEgwSbi+>+&F`nv1?cJ_CT@#zt6j$3RqxT8m$pWfWaOcpcZ{wG1H^q=^Uco^rr~ zH--})pA}5aFdk8|3ewq$;Nq?KR0tpwhY$x5M^PJQA6S1K{KqJI9pbq;C2e)1p_Z1E zw=>6e7@{`VgZd486%29BxKDOdq1<)YAYhU(ZSg1)D1kA|i=^XfQv~ddgl_7?14nm@ z97^nc69tA7s)&mJ`!Xy`hqLN2Xrjo%Fr;$vT7Xt#Wvz*H4wYQa0`oYfIDOxWx9(x! z_N|O@W$_B{yPf_b%Re(wumFHu{OXCWZ_l<#hlx+#^*{eBy(h;cy>mCvM>h_rIg451 zle7?qnG?O|mA3wJmjeg!Hi5G?b`5sx*C_Zi?TOGpYZ)gcB8L&x$Qjpe#|~%|Au?29 z7_j*r9lAhkE2b{3eWWD;z1GhCSAy0!+$8|}I8=ajq0Rpoc}+}%lIpC5P!Ow-Fbn{g zzI^v~)#GD)fHZNOmFanw?XJtRorddOYP6Q2-s)O?wbI(Ty!Jav9~^f_?~3Qj`{z|! z(t@QB&l0GI5J-v?fmqT&|yk`s_%i_lbI`>n;y^7Yq9yA`BRxqc*&^3qH4FD@(qUQb+!(qFy-a{#~r3 z)(Nh9`-}l!<9m&B1bft&l7jy#CJVYR;;Y^CT=AuijjPKkpkL&joG(TpLfq3<)6 zoB+gRwXO5wD@B^9pl^|&`riS>J}#~*X8estZ6Smh+>~JPZsb89dilb{VI<{bd6U`F z+d(t&n%?-q@#TTI{7m9xV2A-MW+v{oCM<`y{R&4qPUr5%2uYSA2~dFh zYrMf7JWwJrA$F4foGv3z2{(#7sP-kVKKK^HD%b{d%4c*aa$wEQJJqkh^^gT zx+(`gz_}~bM7;*^)F_LR={-=!5yy#VAn$8DU}jJ@WvuWW#d?FPxvy(WQ&+q{4}#n=SBv37!Yz>bZc%$psV_HlfE=7z(b@Nr<7db1 zzK&|cu{#Bft((vG7eHO`&Ds;q`C;?D@C=r@p>Nxhm6?zog;Q@6F| zGHDZC`8VU>Tm1PQ>ZTuhiW41UM^PWP-=I#b+k0^-TDJ2zNax0wW(E;JJKpH+BH|@1 znJtpdQ_gCJRMov1oe`($tW*n=0*N6&hzr`{N>4Mckl@#EC@`WBX9M{oM|Ue;?tPkV z1BV#daj(fAXMg;-rfdJbAMtMhY_7a!psQqIKx9bOzVE%MbtJZI@yIF@5qB|1XDF`6 zCwDT9K7$%}v8{qFNa!xET7b6Zmj$wKm(5V(Ms;nA|6})a+(=ye$?${uq3za!_kOk% z2>*(HCLA(3Xi5-t_L9Dz3~%Jxt#`YvZ4w68KD>Qo;b&4(Fx2}iVc>j6QB@UkNxeJ^!9}Dq@IgRz0r1GL2TL zVYf5XyPfIp-x|SyU3dPuquTx)kbRpBIsUeHOfRm(yOYSxdJ|max(zF7j~Q|zxB%BB zFn5j%O9gM7}3FyjJ4MW>dg|>%bCeA}K#k%fkcz$ zATT%|0$K!mTx8-W0GJ%6|7Emh{iBtRZZk=EDEssMO6tq|+3UbIXYDG^78>E$xh;mv z$RflK7}J8;N>W~^^rnPrI718xKHH3Y@U6V8QNBVF2T>5nr{yaPqRxOIE2Nk32xl+= zSMWo>D#}4kH*~Ic+im;rAGzM%rk6=al zUdsi|);I5cV$Q4dYx|>acl)jAiUS-r!|}uzs6J8F_kVQ>k?T^@AqGh811&OQZR-6iq*k-Q#IJVo1c?M~#ynT0^t0b&HL`uD8|RubB&x z23C|DtVIE-0R7P`lUkGa=DB5xAsP{eP)#P59JiBhOl)4X5LG)vmb`q^Z_33NQJQVK7B(RG{k5ocFy z#&v)9{~|kMGpj#d@oH=}P~zZ+oi@o?MI>c#)|wq5tGDEnap)(`5WM_21!;$82ep=$ z$fPJvwqX*q0eCn$=TP+~&IMdv_SzMr=$C2#LF%xY%)I}z+#goai(;iF3p`RJ@5l|n zi2Gve*pe)?-Dbh-*eihuH!GX_7)Gv&_szaEK(rY(rEnYAQxNVeC}2@(|Jp& z<5-hO@;c}gc7-d&PfTjo4VA zs#=lC#vjUdaRX(ih)aie}W|* z^A{a8TOKNT{NJ4wzQqir>=&%$2M#B5qs(zlsyCh=7BF+bF+w0i1{-)NUJ4Zx4<#>> z`CGkDjh@;7ulU|}uH92HPdoUnE&n2I!iXD>n|&INa&bVq==Q!TUp@)eRiK_?{Qrf9 z#w#w6EDkT%bo;29W5r|n9mH=UVO>x*VNiv?vpL2C$vyg@(;)eLHBcd{e}$VVzi>|o`>zF(G2YVkUbhq=ATWo zY)5eNpV1wd;>DZI$ls7m0D|IX?AMDq%=^npM;-83lYmnT$=^u)7KBu4tp8SG(IoDF z>L~J>4-Iu&+vY)@m%HPBoELZF5+IjV(a5aK7Y?^}Ug%pbbz9Dc*hlHnmeWiRP}!Aw z`+05Gq7?|?Xntdo;x?fit?fxS9{gTAXuX#5OWl+^MkVH@BOzRA(UouGlDpR~oL`9t zKKtj%6ZFMAN#^lI3vMwIei_fIGEv$C77>c?>}dhl4{3>~>TG(`X-+T$SfRr0*zlG0`wi_tN@Hw13-DKjjfY{Hy&M= zExIJvI8wP7+6crLT1a8G1e;Gf2Ba(ZqlfA!32NHZz6~QIV{D7EPvx?pEipz?rJCt%>6liKM!7- zft$ah%;1iGYVX9eFS25mEmCPfJF|L-FyDHeb$s4*Y+QZUSFaqxr{cAOqK5=v4iGad zk1c`rIAM0;;7ilX+1~sE!KA%9!CD;*`?!5(8N*UX?xbZ0=N}M;7|rAzyC(5>45&pW zTOXl-C|3J#_{cz(`eH@>02%wPO0#Zew*;xOxFZW(STGVvMQOPV50G3E7_b^&ys2$} zCd3~7Kdd-?i|SA)6{N$2%$)mqF1b7hP+joSp=thWCRJ1<#=hCpAn?8c)3tRZkDsu1 zl@S0@itlM&Zk zA}~Yr6L!g+u6&SU+)IcN`yuKV^n1}c)=Jy!c)MV(6B^L`Z@zRYoU|V8tDEq-^i;2% zHHY8AJWYMdP#9qu%MvSio~0<;)f2sTPoBq2*481!=t;gp=BL=SQYBz3zhzJiA4q>f zbnITbIf>&)E2Z)j^=q=+7wy!))_p7oVni)-r%=g?d0jSxw;+t3H#h9A@$?%0o0mR(^^pI>mJJ%^L=U9iI6=crJFzjgQ~9q zA0CTMmT8c2iutK>B^KDWK5kvT?!-;Y_Z*~4#nHV!;S53-?Q%7b3JlW{M|>IU=F@=m zzGBd|!8TkdDwnUk)|waeF~TA!Pw>*Xvj`Ky=!Q`)D?8ryId;canqW$jTxXldzj@D- zg0i*BhXqoDR1;E!%52hRe|+Nd#dDi)1Xb}TtWw`(vqAMhXn*bXsV^t zTrt-2oo@NfB1;y-_9y1~ZyR1HNET!Al{Mx*MTp!X~R*$>#jHwkB>4-du8Ppk3h<`O+yb z5?!}QP>Z8PM0W{obp>{<`@_K3$Qp8%8w5VZ-zM`^Pop9_WAT7U|2F~{Wkj`-Pp&EX z(YG(HQn(O;EF3Q>R#>Is`4zB+d2y$Jy$Q8VKk{`J$FYzJe28uPsFQ#kXNB!cy)yRq z)x1xpw^Vl@^(v0~WpFvGrd8BkpleU7(OsBNJvY#>75DtQ=yW)T5e4p^3>Yfz#INV! zu#rbq{x+eoKq=_k$Buz4C|yWS5+Y98-2U{4_0@6i9_W9J7TOAS3$4JD;wRfaE*?g9 zDPid)2jvRrdB-+9U5`_)E+uNvJCW~J2~+Up)E2T#c(|6f3+GX`M=w9?kkg8&|Gy5? z{Y8TI=cXC@ev7lH+wm-&lqAOW$5s|>I9JZDqD|;`ykcZvqV&p1#oO!Gh<}(~+xDJ< z-ZE9JM)GEedN&?mG1`o;?1$6+!JAF@Tx^4D-(a~I(y6?da&o$cC2i3Oswu75i2rjP zfAi?8ZTM~Y{mZFT)Pn0qyT|Synr!Z?bz|In+VO-n+>1Lm22I0I8!Vo?1o9%UFfzNa%WOaD4X>xlz)tq6d7<; zAj9CwDc=t9bxfa5Y8G!54eTZAnH-4If@6lcS~1H$dNN)?VZY5LiCkx8U@P_A3?UeyI1<7f3x`14zwzdYmVQCX!=U1T>SlYivuF~dg_ zUUW|Xd~dx9(O0#81I0fDFMDG>$vr-n2zx)Snp?knd+Xf{sM;TvN=`Hf)||=B@=2b! zNb^M9J;0_w+E&XIgLW9O!2Haemb^wVd9xgKpdQ)et9o3WqLTGdp|hq4T%vZvH>sTX zlDw(Jdm?U?a{n&fKNdMW{7f?paq7QJ{?O~9*>lKR1=o32xVT)_?I)-Qa_p~sc%DjJ zVM~fFQWqD+^&zl5x9j|E<6C)_!=--H7=Npe>=&*)r+^8oSPZj#sf-n$tgK3mmU=RM zc>(H!bd9jHtkU`5O2=JP0Jqb+=e5VY7+L(*VF}p}aeP2@#`BXrmH>9M5-rW|86cJ^ zoOidg*W*Y5)tApS88+i~)zIrd)%C_4wQf8Eb9vnr>SV_m_MaL4J~uy>m6AboYBYUH zFqBOr?h0LSkqu8WD`eqj`s^SUU43c>XW*<|O=cP3$MMU*Yy3JjS^TjovHqw_fE!0Q zw>v`iLqvM?2dCHCCIM2xH;?tzBD;WCIR{p$e820WdaUT1Y*8pnz*ghS(dTx%V9f=tim&8sqKq#sVnyT6 zQl~@+j=V@s^b5CG3W!Aaek20_^^!Zi$?3l^Gc2MIBawKz!*E+E@Hkx{C+611qN(a> z{gc=7xz8MWbqLdzR{3G|r%hOqp0UxcRzH2aCKuk&WOL?dT6EafGz4_R*0h+Igcgw8 z0#NXijy|KYpvmXVs(0%u_eMPCHadfIh;$s05T|)drX8jj;-*z~gNsNXm+@ z>Sjh|FQG`B+Nw;PrqUTIVqQC&g2%O^LT&DB9W%Xbf64Ym0%~%Qt%1q1UuqU0%2gu3 zSZ)Ez0UZAFQdWAniTc@W|AimqY@Vx6xyhj{m@Qi=5NSFOHB@@5Q0-w<#DJ8 zvb~YTwOgaNO)9wHDet1ZurB4DVu?Im!aQNkAzk`tEEgu=t;u8mw=k@;No@msWX~5j zh~k}tso8S6DJk!X>v=8Pj(t+^`84Of-Acq|Nq@=(g8>heM9Uy1$t(8oQfw5`y?FSZ z0trC`8DFQbEw%!Ev#Q6lC~`5{vh0wx0{|hoah?^v%LefQA^LxpO8z_tO6KTF z0Slzc%If)6iW_>eBU3lWZnwZE{SplsU6Nwj^XX;$IrfWCF2s)U&_A{_{0N2_1^#+Y zMexGcf8E#CUDxt*)$B)R_N=)#vnF~MMw}+jzP2`(M+0mz2%Qyxu(7@Uk9vd-IRY|lPx#|)UtbQ{j zz(OoYGZIdf*!l-D^5gp_CyV*?)Wp=^%Zc-I=B+tSZ@0rN7W-+x>AT3=TSX2PaeK}> z4@O+~GZ9M#UWq>3T1y9b%U=%M-+Jdy;&1uIAiwJmBoRKN=8W?6git{y9eFY%b|4+3 zMSikb*5b^#izi*oA(P!!3POY^6Ap15Bj&>_J-Y2W#-Qbk{wo34Vy(;TBn+(sbA3?+ zi^Kff_7H#D{^dBg((wq6;6{#SegE9P`+B$vcHO~n-8o=rWlL75X55oV51-!v0phcY z2fxveRVgvim<|QkqL{gWz1t?t^7T)$=dbN7pZ zwWHs+uu&5t8z5PotRP3;EwX%5!9ERkZ}gUhiTn<(Qdf{=F{u#fP!Nq7tx2x*E?z{@*`5_r?Y6b=n_4IQ-ckxUa4` zuO>vHt%i%DiPo1p$G-D>`GiUxq{9VyKNR1eBxqSids zXWv04DT+L)AD46el&&}+XOS}FQ;3o2C@nO(SS8=2jFKHJfC(Z-#yr_?>V5~;5?VWK zVbSJhazx6|XYv1t7LfSq%D6ocsQ-C%U6}d#dR)@m)6@8paf%n?C&GR9H=p!hIN5`9 za16EtZKS*kL9rHE>B(Z5)QpRflS{!6+hS0Lmu%H;j*Sent9gUv8P(*kuqJb`E-W)+ zL{07sa=?fJm9o+=&Pa%FQtIpIlCDI-)==%TKn9*|&hPOAzUU@F=Gfwip& zgA(R2gIWdqk>tl2XubXKTc;Q9z33?LpDCN%p?C~?2BC}#w3AI4mnfwaBImy7adW{@ zj#;uUTNYbzxY4?hGJ3Xl6Sos4D@7QuEtagfJd)6HCVYdkg-181V(T{mK-@7IjSFog z{!I4J?K2*}=bgLbJ-hkumZ#|lv^K5XOR+xO0QrK9Qg*R>!vUjwL!KH@<{>$oZ`$!3 zkLE(5AwKt1O|knUeQV>=!w5p3u{&f@5%$fW?iW#mLm>`;U|HrE@-TBg7(AjHq?deP z$KN_uxg>3+0ZBeHm_i`_kSTbY4RMR2sFi^w!*XAJU}&OHD4HTn!i!{kAXi{Y|rz13qL>X0Nrkc`z z)eyXH8F~HGQjSauhyY~R4|YNIGhc!1d!6VbPr$R)8jJep{ua-s*F>V(0*|E7HxbqN zDiJok)M|t9KM`Ss1Im(kEE30A;RA96sG5X}V!{Q5oY}mtY|Hq<^NqSYttQJ6Mc}7W zddj4xm6LFbgpT7(PQ=qeXgA0mTI%##Yu`axuZPBQiThSJ7lY$%5sA-_32*xvpR37M zH``7>ui|uM@sf<^lLJB%Hd-YXgjv%7yK-1?x!v;E##UC!9QK9x6_$qWrVNXxxYAq4*75lmFAtL{}Y@cwOG9GT`sOrs>ys;cs7EwiH zdKxjf3>ZuoaG=cTvB)B(5BL&)PL)5qc+%2BG5;Mmng|Tn!SsY<05T8=5M=jE^ezz& zwnl~o>vU{L=nZxMcHmX--(EN!Jr*Z{h-74HXmI>HEbjfNJtbzk*#=#}?<*8Xbt%aR z`QP*pzA0)ZG>NpIuw0KpiBqhs?L}h&VynTPuLywH^<5kCMBZFq+Fx&gah@TV^j+F= zI@#6ny<+nPIw=%-`ieaAhGM2NdmXUkL9UxZNXQL9AXk{Pt1<%kn~HHfvbaQWSyhFB z21^sLHE93LR?*FflJ0kmq<-q34*!PPc*g@X$PlYQtqHcu?GocWD#pkl+p&ln{AcGl|`ruDDBQ2oufuwMS_uLZgeKBql~ zb~eVA3?eK*0Nan88jl_d150TL23)7-(dFsZo;#m2p2<#uF2`ZI%^kx^YS?IFw75A68nqKnP} zv$!Xsz=UXqKZOFI1ZN`JWh1E@E5gPL>F_OVJ1Hrk=>C33i!HVfTN%`39qwYVOwC=P z$_$CP0mh}4Z5CFzI^kkc+>Ex6wM;H;aENtKxv9dbinWOG#3u2$dPbiMt*tglMd>_sc0(-j(9 z+${ibg1hVzR_cb$CK_%K16P8(IIxt#x=JR`u+ zT&!IoNiq^`J-mOdW!W#BuP7xYMH@1d<+}Fcdas#ox3qQrb^y^hm?I9P%jCG^3eN>- zGkct=&^Ev5srm|xMM1j)516gM)J6ZiubLiKgWm&hD(0jHYKBvFZ5J4VR-&ir<707c zYpbbruOz+E=FpKq4sZ|^q-rIOQv;^w2DTXDj$LeKwmy$GcA8O)8~{n9-Q5^2^Xg`c z2H-$_q9xDGCo%;uEK==~Q>`feM^=LZX}I`GFuRn@^XPtZflEE;u|dJNsE_aAj(G0r zTTBeYQc1$+71Ove!`1Wk0RfTS zr^%HZi#^+CLMr|)h-qNg1QtZ*<@4I_vSCw*nadQG1U$hM$_^(p6a77hV_j()sAksG zg!w2VtQ)6Z;T0r=POm_62B=3yS*{2*foVl2;=0Fk>3JI5)TU0nJF~Nb&Qs!|_sU>TIIqD6`yQtvwJtd;NwqZXn=o~oBwm>*?ftc7+;u}wkB_oGG7GwWbL z0hD`x_J^^e#$g^o#$L+_p@%>TIsa4>8f&3i{~l8G3T*<-h0aYD7hf0^h%KSODv`Vb0>hIgyB6E}17slW(3 zEdY$3b_I*ts5z1q*~Y?3nv5R_l=ZK6=>NV0kd`nQJU#ORkyJ=K90uhynYN{qLIy2h+qt#P2^a_=$|`jNxls3aoJKjKk3wdM9WV+}~W` zWU@3^MxuuVG{s4S+v`)K%#z4mH8pF;Shq(Bq$Y?@2ISn$(cR_$ya{31g7WK5Gmc_@JSm<(@%bF6*8#J_~p$||Gd69A974x^P#=a7|{t*6av^{~W7M3s{KU2tyv{a;5Yh;Y>3P%1Ok}u`3hM1O1r|!UTNzB`{ zsflW5%mPy{qj&F-3#cPO6KTYsw*+)i_Hn}O1~u$q=cc#w3qJ2xQ!ugPn$b*{hcu?I^C3bnI%4#bUfruL?}4mNLUT0##@Gh&3W5~gG{Ei$Sc=vc^05dnMjqFhY*5f zqh*I3%w0_-oT`k78c5h-glSMmQ}y($ld$iqM%_=yzzS=+^6m^}cKkW}xl^HUSgk`$ zaH)ng{MMfR^_4~Nrz9r7)>7jZB2x~teiIi2n&rCul9JGgEz1)n5jCP_$?*-AjV@6k zt2rEVqx1%M)H#Cmvhjh|#DIr!Yz+yiyH|t*KicLhg4lh!H08P^qgiFI(c$ryWq|*F zgboA9_sNTLXsqAVg~+}LH?IQ^Mi7OGF#f4jGTWg3T(S?r7-}#27}F(heK3)6pWx)8%B2T z#Sxay%oT_Vh4?0Pe|)1Z@bBpq`mII0C(Y$7`_Q<%7_2h-Q2_&IS*hYor<1G0FR!T- z0Di2G?;72;AiTie)vOg)Gq5bljdbl`BHwF$)$6-SL@pp5UA+*vZM8ONj5owiN);@e zPBDA#JA*+nd3X_YRRn(6UW7%A5i(B01yV(-~D#wOED_E_Vz;G zh%+St3^$(TgTEQ@Ry;`waYMTlqV8FrO3k81AvLU^6gwccE9jGJ;ytnf;3a@N6^AK0 zk4|!|kSIt=^q1UHq{iwnF_EV5t4cQ-ORA%i1RejAPj&QeeQlqo;`BaB8M44KE$kBRz$jE7w@<_ zGiMK*)kgIGUqmyHfcL}Tbju|l=SfRmf>~YRu&AMqc03J%so8@m&Qod=N?y%JwzAW$ ziB$A?Snekk8X!*BInNK+5UUKT3=H5Uqm(r5m3qP?dS4dE25#brL-{&(Z8KPs{af7< zWcHKMCy%pKnibdL%BBRkn$!g8TdYYa?~fIr9OUydnoghacQ~ysWt=$~pJXH8pa99k zw1+<^Y#|@A_i;sGe($Q{CstlBe!mcf7gE9J0xw7)f57wE=MFiohaq8YS^d*9SD1!G zeDZ@S?VW_L?zsZTwC~!kWCS?g}o2y6j1X1gL?Amss|UC$%zQ=<9g7l)*@aS&3<1h z3IK==N{Gf~dprbB>%TdCb$TPoeNN)D;7mPKQmuYVbp=NLGch=Y?_l(zFQ-I{Ps>8# zN2>gPwE$Uq3QG^l7v-m$i`Qvx=l75v=kx*0OK(Uofbh0&>2cFI*WJ4_8;fp{;tv5Tg9gnp-_y6L828ahTGln6f8Zd{Qz_tnWG6{~9mTd;Gg? zR!OlL6KnO!fZw9c0(RXp3wFo~N94O+`#+cYc|n4ygB)LGH8_>-q>+PDqYu%H(gUUo zic(>q*}pIn!#!;#zM|1*4SQSZ|0^7YF|1P;}YYVb-)kF{^Z5 zFjyjv*n0+ID8S|3MQqlZGrraq{UIY^TKit@7B6D}!oRExX2r^LHx~0|nVcH6 zj`VdZ|i6cCD&HKf+%reMcQa*B+Pd#2eO_iyB*<>MY!N!yWbc=Sp6`<^{a~ojf)Q863S6^6rl?RD=%fH^dRy>OT z(%*z&`fmF3WK$UX;cKZ@n`6U96Ds6Z&Xi(!t(?6UDPbxyKa}ujH`7$mOgKHYP2eG13Vi@5DcMucZz7G`oE(t9 zW4HqN@@op}IS^78HkHsvU7agi=vV7Z$cG)#-E~d zp|ypqA;d7}%BffJM`B;m*_g_K>Z= z|E)U=iOVOop~#;Ja+Hrn23-DzyWuPEnmRX$BR6LDU3 zP;BLDcwhd}8a|B?dfmkS4<+?yU*@Q&Sh6}1DqtW=Dw>fRi5CXLWl+n=*v3#Z8Ft2W ziLIo^+bqGUwETtVD{TAx7*;lCVzs5EKcCj>2K z2KdBdAH2QkueAF|(TJ!2#hGGj*x(G!G6IIQ6&ot5d8qA*hN)q~34qz^ooKf3sDCoc+(+I*P**n<6oPt7+kTXJ*Jhd4TF)H%t*Cb;du<`rhyNO9LYd zJ4kScXDq{akw}GbNRON#Xq{}AEuGdPhXg=eQ$-$?NZCv!p9<(3%jX||IUcq%Z?>8~ zP;#OqGKEvKAE2a=r(qf=$gTDC|4NAsF2OF=zMhgj7h{&+cjAoalceb_qC`&>OIrOA zUK)BiN0q4gjW$__kVD5fuQ1DL8R9nwJ>OR-G_=l_ppnVVZf3y6LqAFaHx{)KmJ{ugJa0b?*)!4 z$(oH`(erUlaazYC2*#UtNYjZe_q#o>8M`04@k>i2T;Klv-KsJ8>aAbdylbnI+&S z{RLpGepnBVy&o5ATT)H>7VCGs1|2xy1wJ1cRS+;+Gxj`663$>t7j2-Us`8u34neP; z{Yx7vC=tbh_(h3w)K%m}k1?aTI@j`PKsJeI_0w2z~CU!aqIv{Q@-2Ilk)G`PDMiOvRpZTc{-#DS9IT78)t^MAW1V#MP2aB%=Ggl>iPd^j19hru2v@wj26eKvW zrc5tYFqF0B$tDbJ5!~DXkT{49CK&ku)rXz={Wg}D_p=-i zSDVs?h%ELDIkbz*<900&o$3mMx*(2V5y9+3Mkcs~;BH-6hqR#iR|gpEO~;xIjoYr4 z=tft#N(TeIFFL|*2>^gD%k;F4N)mAk7y*>UqW&E6g4o{kSeQO^d%wz5^cd9ek!)f# zv=1yZuz1CxDk85uaGZ*~2&IoWrT{BySe8d5owN1g8BpDUY%V;f8PikP73lLqnfZ4O z`Pbun`J>aesLpjV6d>T(cezo`K4hjVyq^SS6c-OnQ78gHlK8Za9hke^*MQ+qOWjTO z`ic?_!&9)*kD?YRBO$IF!ijl6 z8FtihsYj3`6)3)~LEfAQVN5SVLe6cE;(&h?nP;Q@Kh1^Qh*z^XH@oV(08~HQ&Wf(3D4b|(SP$OvYM4M^-HC{9M zR>D-%Re%o=2P&XK8j^C1u5Op?EY-$9N;DdnI7T9>d0&vH%7(UalAS8WLJXHClG?rR zK$7B&@&A$rFPvmOk=!R!SG?Za^xT66$-YvBFdpJvREe7q;tIb7-`L} zZBpC2!5GlObAy$hGW>O12ZvryGMqK61xUJ);zQ$?5;wAX#}Dv-Z*WUI7g3#N&E$?D za-U+pTz+`OUd{2cRgXXN9@dVmKHxQerxsXiI+FQYzqylvKS~Ik(45XEX@CV_2OI%O z{@G0nJxM7pEGqp8sQlXf^Xzqz=14>jj{j5`{Y$o*xt9a*YqQ&BbU}il%4dIIT*8bY z{)4)@j2f+f!+Dd)Zx)J?wt27{>=dKOVTq?&2t9~`VrKnk2vaw|orLP?A+SgW46u#M ziTYRaA^Fd!NCR?Uq)ei*kl8C}mop*0bjWb*q}U<)o4;urSN?VcTUEwKA4e#}-s38R zDfICKl}gxu*~}B3tpt-kh_$OO^WgEgL$Vrk*^a`bvaVAka4AM|X|MFSi%#oFRO1lSUyskfJssAEWjJ%iO&F^d1mgH!rVZc_G#&I|#NRm0;9=M?{1&?7*gy)9q9+y7E&|38$j4a!{)(m)f7+d{Fa2*)=L- z<90$*2pR!-`29UcjxtpYfRxDP4A3#af$WEanSXN;OqUkBY$6QKAn-^Ta_7Muv9$#+ zN%%>tBOy`VSh}lSx>Bs5TmPeeGX($}eOuoan+V8M{w2-<-#F#(fVu-uNF_plM$r8!PtmqY_pi$@U|iboBNhiToEZw=8S&B z_uC&Vt3W@iNCOhtDkUPbnXVb-Gh*N{YqXXEde~{%}tOc0MGMdUQjF>x0?XT1X0Ngpr=Sqic11NAZFahc7(%}E-2N6DJ$FYQ9YHD|liPAuV;g-u^CA}Dm^jOI zKyhIxzVcDbe^a3^pV397$5D42$20NIsEnaS*7Sm5O@J%xDGF;WJUhC)^JQNQzeEXE zxuU`5s3D%a$&PTJ%;p3y@DAA~dVIqB_a%6X$=782dF073nvC_s-*GZcpP|PZlqB&A zBj*M~5pVZ;E3It30-ZJRXwj&~(V5S*?GSwKHB9c{9c8P?z6%4+|0My*TVT0cj&!o;rP)x&gF+#M0 zk{fugQS_u3Vtvfgv_XlJrMH*dDN3jU(i0k8avyc6u!v5%CF=>}Ay8V9tp@k#U3T0z z5&Ey=cF{LKWJ=R;7GOa_>g+frw$P@|^d-b#@pR`k=sPS(Js}b#kPSq|yZr{%x%I@S zGN)cAX3VMUgTUh21*bW;w|;rRbKOBw6ton0(ejAKg4L|p4ux^l@-z(cgUQC~W5&xo z-H;c{&`=d`9UezDbihL;Au6QMdJ>7bBMV4knnvQ6l+6YoZ53>jhcXKp}U*;0|vXz_x;u$`!;{3 zbrHt~2Y3O;pRr5QW*0`nJ6Xg!&WMAv)d@YdW#$;$V)g6SS}oJ=&f8YYuRJZN>I|bf zY&d2NgzKo76%5q1gP8ZK$`wrMHdWe}IdMj3IdOtt1cWw|M?80LDD6#OZMJit=QnYc zTy0A;*pJT0IuUlxD5TPZXGagx<3f@V1t8*!jR{;TI*I6Qj$@4p@o?!G!N>Yf+Vw`> z3A5p6q!$;H>#)ij5rb#!*==^OdX(oW&zckhL;!)+2K->yJsH&~zF}6xEoa>sbjr%O z%N^zSd&9-t4CW1oTReGm(lOwEIr`uyF&sCC^EJzljk@;BN>GdU2MOTt5%>66SRCn8 z2pv);c(J3Qshz;n&K5o8)ig=XU-%_m<-DjMEot;cJ`u3)atc&PmgZLnqn}e05?m&T z?nF2IH2G)5biS&*Zn>1U1lQ+43@J2*3Q4=z1Q}|Ue=<-kivEc{=lQf5+73<)&>xeg zufb_%I6P?+;f<7#K%O_>emy3DnH=|v511dr(w*Wv;VIwjP=M8Gd@a|D>g}{g{y$7c`?>%|t>wa~*&<#@ zodr}ra6mv^9~Z1BMmeaC3zNl5_>g#KuKnlX>q=})*Ej1c+k28xF&y)d%p9?($Es$? zDU@z+y%>qvhm#_Ovm0OJur(|h38UrKFJRbXFUgVCx{6|lJ=T*d6qK3_2aY-%tGB1`co-0JfZKq2>I0<9p*Sf)meF96rDqVnm}|M`v13%u-#wb>K4_LvxVK zH6LrKJfOE!X+9-`LN>>aHk3y!~6<5tAS$c0+NwM z9%uXIu^pDT%i$dRINYNNY6Q9d z#6&kaEBxshc;ZPhB6+*PBRx+EfJgtIzUf>nN!iJF2Q+kGS0QGElB4opLjn|K8#6@) zY1Uutey5diStPEME6@wN^mr}vrSB+(Ylqwe;Zo3^=N{D_A|*cbZDqRYzH38Dd>g76 zY@d^lD88@#i@UJ4uge7Y*H!+`!#7Pcmt-GhsMw`Bcs8Txsz_fvQ&64(%I&$4tRfvH zklzqG1-2$&9*LfsN_^u^!YnDSuBC?&;`HzV_lWZ1sQP*YL_aNnFKjKbikk@;=q?ZQ0OO0yNkD#;K^Z$d|M^t zz^BOOiXZ4(wI-ZJ#bE-O4YwbJC^35w4pgS8c_HCG#{$1~p8Aic2-bMaAEAWnURzL0 z2$h7{&MA2dc0YN#DG#C( zO%OqGhcN%5g{HqMAqfSm7F-TFh7%{J0+knWN=DPrQMn#77Fvb$&xk)2^7M*Q)Ff^k zR4CCKlY*rgD%O(iq!mDbiDSZ!oFx$0_MBpPDv>74KuaEexuTx6%-BT6Noi~L&w95- zJci5en-dl}8ZpavBrLP!CF=#eYj}jq})x>I|p!@6`j{4&2{ZxV-QhU(p*x4@t{>8xP=}t6#MBh zn^Rm;iNfKwL~ser10G%foJ;BhXcAFCit6BiLg2|oE`MaIcpLjc%zY0*;9XE*bOOEOjyTPOO=l@t9`wdmViidjfId74R|tY`bQlZ-=} zA{!(PT+NR12}75JQSzf>RohRr=z~{$>?<(PmG?;wo29sV!2w#_Ixe9|?8w3rX2S}^ zL&mh}7%s*$es!B+ga%*b|3)H^*ZPZP377cE(V!Bsgb_DFsq8WlbFu@FmXOJbAb=Ys z)%HieCk#9*6+#9VonZ*mJQ>lZ_kIMCzI!xzc@xjWoZKuPi|b4aJa&$ZCD254^e0`W zWen}eQ+eC=VftU*Dt5!FR_*O{R?M{PK7wEh7kj`F zdp~Xh7bqmL_v?fM90Z7Y#4Loe1s~`*O+O?+GZCZs0b?+S@Gpqb_oo2SwH2oG%7+Ka zKg)%QI|6N6oKs9!T&$KZifE!tXt0K1t{2|JtT9G7iweN)c4CJTaY*T`{?iV|!sKh& zE_eJmrFx!Q^uj37mRWMGDI{<*xvssRT8*Al5>}QCmh+?gVzrS(xN2k&FyLg|7VThq}!c z-*oUf(mH^M76Z3zd1(EPkF){Ex0OrYB}yU^^Tb)iIC`eCKdXiZ0MxyOpAU!y7Vqce zbbG8^Kmh8S-&O3yT6CS^_}_Pb5*N^jokho}#@gN;+!AkDsB#d88Q!d|d$bO~G1Tmn7;nOQlmv=m3UK2#ahxQzk}uJrHS^JMk? zFeVUmV#5l~&;TGwGj5?$Glg^wJzkLP+FcHsHB14zAYRp150_+eEG`ve0;utJ^mqoDTC&WS46x`X%xVy=*KW(_Vs<-*ZoRKZ4=?WYv6X^nZ+c zQK$yf?62l7!sdqsU%dD7BM#S1U5_tn>_bCfrqcXe%_?v8+))<^onV`nkR>Gmz|2f$ z>``k>kV50nHtyIl`shSd{3U=Gg;1geAV7mI5q_T$%?d%$%<6P8^{zz;)01+bcnE7$ zX0C#|uImQI2LlT5e*mJz{~sU{-JC7c_x`YS8_q)_=$8*=6u_+d+c=Io+(cn2^|m{da#jp@iGJf;Eul&0~~ag3xBw(NkzR< zLc!xWzDTTAraqZ}+dpd)_`gMIx?^r;4kLKl$eByy-XT88bviKIX-&RdH%XPmeA=Sll}t@lzuz)X<_eK}RYaZ0G86W$67 zBg6lJPz_o0Ph~nhiKjbBiVI`-(0gtKxQ;Ht9S{8DhVW)4I9ht0qR(s%il1En@o!2P z0Kfzx1b|}_2_MJ|JcwuZHrc|!PJ7hXqClu^X>n6{*X-y)Mf4D*+J*hSAd{EAA>;WE z#AU1L#6(_C)%l&_lMEZ5(kdEPCZJigM*d@W#$EQX8t)&O2iF1QyhE4}VWb=k^RE5^ zmd8^^Vd;&6b2z5w+Avm$d`b{5Z-GW|*#SlcSRqC5S5OFX# zB$~4}*?j??BewQ=S`vR0)%bd7)?B>%CvTPZ^_-b`-^3`JMT&aTQA;mksAq*sqydxK zT&pp1^%E@XzpMw_Q(0Ids)ea@Ee`z*Z1f^E@yR;+ifx69!FS^pcuphYReF!prhlb} z{YAKa`M+EMT!|2~a?YjhHmq>eI9guMSc=|M6Zshxn{|MlbL75;)OOYwiX@38R{64; zuibGXL6iT%P;eR~AAhLhSoX;C7tvlPRHA%!MV#0&$-TtiZ8bpsJ-emr6=Oc6#Nm$nC; zcriKtvy$RWithdB^r_Wi-`j1tpS}6+4h5Z@v)LP#lm9XuWDn0fHyM2ucH$yQ+cvg_ zEO>T7h6fo@??zd#1yyhyPgJ2IAHge9jjlN_$wlffIn7}!zmjEs+of#}ty;?k0N7U5 z_SHU|A3-w3MF^-UU{g~bgm*I^vq-b!_)}czr{w)$!Hc1A2%oVdFg=S}@ z;-e^{`I^5I%|%KK7Jr;wjzVzshA>dkg1ovwkC8gEf>J2-NylGsP{YQ0Bku3AL$n%F zk<7o1s9s?3np-@Q^Bto=B7O@#SgclYyZ5v@udc-U%e~Incwcz^XCI2=?V2fUDp6$F ztAGBaw2hr0I=R@=^sZ)>L?D^T43{Islb4)H+}B8nV?I)bRARENvzHClW4*@QtG%_3zJD+h`OM;}^q-6PE>!nSmEKF=NRa}6Z)LUET|)f)5u zGG6`R^$fA*sWCz&X@US@`+VmXM6|HqI{d;xKjZhSRTLQs1vQ7s7JqQXmSJns#g5%t z?P>549DuN2L5-TaNsdr9)@Zp*^_z4H)g-61`U}!>%}iBR^&@IF)hVD9p)rF= zEMpeQ4U#c_4d=wl`CVs0*Tan|c~-beu1ap|r8q+zkLSq;)G(Q)8Ivr%G+BYe_u$D@ zM0|q1^~1G7FaPM&+6+*eDjZt z=OWVCL(-?wPOAkEv_Yk-an3`av>fu~mrANXUr!Ra#~R`)nGT{1sTxepPGS!FRlNfc zz&vU&ws!wAzIrFm?Y#Buz5xgY4=ck#?&^xshTG|>^aOj9pfT&32o-l-nykVGu_S42~0ThlSC@0ArIX3{`7%&TeZg@h{R z7%KhNu%jp3h)NV?q-|2NxH?HE2(vZZ#Wp4Vm#v|J*5EjwqhdOZy`GZ`1^|Vw&ssF+ z%3_Z{uWyHCVD)D!$WXPkIG@JOA)m30QpmERE{!LrfU-SZ^@qs`@;1p5tJ~FX!^^GU zN@Uao4tWVFz~x#Q{J{P*$3TwU8@Ki|e?(Ait011_cLz+`LxQEr-;P3IXC+0bL~u$H z=Nsa}8ue%Frd&VTI`*~)xp90EeLCfRr~cjEtF;+QroyQ z+9Y%_qA5>`j$$A^ByReg5+<#Aq+vcM>mMoc)bGCCbEz|)^GODqlh)vRH zIQ!??%(t3d_P0@*uL4-eZAvm=?TQ(wFno(cE*&r<|9Lv?&cNSSSqz2IDcVIRPqpsy z&!M+y;X>$ojUB=ZYhrnN_-w~l*dR>WupY+?jfyxLe^Ig=5s=24N;@}wK3V89oY{IP zh-b)BVv<5Dzp)IgUF9_J^%P(IGsjzRQZE`&ln6orYw^M<^v)x0Kb>TXm79V-0Ega725(mDS8J zbCKwK^{?uCiyhnRERmC&cKp*0Ax_*Q1w?x@vjovNx!+~6y^~n}g>gC)(-T(J{iGof zE{Ok{?U{S?@rD9g_xsgz#Jw>36;-2p1QrO+bd%1#rvA~Gft#A>8H~QQ07I@(<~%h> z4M08ZDxoejNr0f=$<7_f&eTR0*;s@a7w`=|H06`~w# zf|VnOI0Ic#JDEeKUDXMX@Cl&=XGGv-B3(y9N^mH(#iV~6<+B&GeC zPTBfCWqAHD<`@zv2@}>f;S%0aEw8qZtF+L2fR(urCLU-_0ByL?i)0rJc8wRNJ<_6X zU%a}Uy3__^B(e_XV2&d2jTO%nL8rk0$aEqi`zC z@tmz-At}_Q+^{1@vV_~H%qsbS!6UDd)Xcek0!PI1@vCZCl|F7CIM-N3)Cl!g6j5F= z7q>YTq$Oe)7jsJ5g!A`mM>oXo34@|fO1vW70!?u4FdX@u&~{W62;T_cV4{_rBRXNVf#p$4#CdwnxeUa0g}-1xpF!fyfz$bSom=B;b(lm z0CLc=ndL}LR^H&?{%?ng0*r)cJy|l*7t$;@&Da1qu8cu0DD`FS!s3U+;E+^%QfOM7f zvd(cP6UMu_FxhYlSWs0*CTHnuJ>!>@yk&95e-;~eD&@_mCxu{(%^1TI*{75f{0nw> zma*Onji!Usc-Hle^;8h{2-Sl+I3ufyURKa^Lbb3UgmgVjl97fBC*20PbLz8NjD`Gw zWW(rHT77&6mtMlc8Y)^BiV-cMI{~8^zDN5Pi z4+zsB#vsW>KF7{g7NdHp2_XBsGC5f(e^IBql@b+(?j3r#Ix(%Hf2J{$}X+HnFKq5!|jD4not;E2s_@e0<#Otd+fP~2f!WOW8@ zu`wKTkab+2C%#jYnj8)}5kM-|;&S81*7qs`CyBFkc+P&Fo3VA1n=pgU4iKUo8MliqVjWaEPP{$opD545^)T1LA*0!m zVY#VGaaKrvodpBL?_)4Y5iy%zpRe4^mv1+b){`-Z(Y8e_Z#L%J*rk4z*2#!Spd|D8 zFgg@Nmm_v1jB!9_==f5cQ-ZO)Z880JHgjqfISxlg27t@`mG)@Nxv^!Q5N$V+jOY(s zOUTtrq;2z+pIC%>=pfE?yz)I%jb)(ef%#c9tfA#a!a{Q`f=4!bP1`kdhE)cKCS=qS zE)+g|SdL|?q?=LZdCR(&zG%_+AKAv`Cauy>ruHwV4iRX+9^z|Hr!Tpp3SPL>3G|G6*O%#1M&d>wWq< zU)}Y;-HvUu?|me1{JSh99^)1_vPTM49C66P*23O^_*LV6o1^vE-JHa#pFm20NPl~oh&t&&n z#M&T%3nHogyH@fesnw*19;|%imVx%LChS{IAG0xO!@kvLDU>|)q@*g4i%qSHL(YmL ze8HYr#C_-(d$qV6oqaTRd>F$)8g)Q>r4#DN|KBHI*-L?|g)5j@TlQu!Nx zMJ&oj04z-n93pVj@8VjG+=pydd&8%c5V|YZ+u&8tx(7Q*#4X7-N3^ZDNQ6=kPeyJm zt637d2(O^;wUz|8N? zY0gG{;-g%XN|Hs3)5S^?4s~z2C0A8zg_%Q`m6Iu7$%HmV1L{t4G9w=fsZtp<)0B$`nCMhXG`iWIgVrH#FA}yAO;YMiCA&8mI&wM zDu*uDLU*Zr$8Y*A&bXhZWZ4OEaKOt*dyH)d1Aw%~tT?0QfT!8u=`w~V1#~>#c0R+g zoG?|4;4v}{04;zp1fqX$I4+%n;P(R3XR6JQAZTdG&5{D}2?=6bOlVwa!`zoHn8JQm z2O%n0_hi7t6b&>GR&&HCqm~c^L_^S_dvbLtbAYf>_4M%lip*W~eC@EBohDr;vdB)q z7OwyS-YiFhl{ggP`TD^5qA-2`?{(mKKL(C>@?Ec<9<}SyzgutN%`@uD!_SvCRAG0i zatn^A0D4-R|9ectz=w1^#B0Ep)c}olXsn==*9EDYi!*=pZ#S7g0}`O2!m-Ud_LK+ zj6}FP0<@vX28{^gX*d;a9kDjll&B%hQNb~NmQJtzlJ0J`INNOY{&S8XZ=%nEh&;eO z`z=PDHrLVoTk4y6-sE`8&E8Ph$zQC!fCf^^d(tfSSi^~k1v?as|JS+(aJkwgsEfcNKMg!Q>ww!m$84J;?T;) zS9g-`Yx)RVz`L;?Hw_E*o3glJhe;r`VdtNqPLqz!Ci~&t1w~3+eZyu<){4I8Z=YM> z(!EnGVCUxmw-^SgWkW#iN=np9D;NMx6}&9|z!o1AU@+rUU`tT1F6LWf)8WOvQpd&U zqNGVU(Y(l;Fz!@fNU%;@i#`duu?Q3z*sTDx87;=&RD4F*y6@`rUe!5RgU6@|r4)jh z9medw{gifZBC*YDev4iIc{Z*|LoUi4h`{Obj^Q6X5Wx%!4#5_QBlh+lOsu+BdpswV zN;Z)fV;S0l4YK|m5Q}EgXHC(XwmoYtCzjxs%yIt}Xrr&(mM$)BjFe9vJ+TL*`vEaP z%mW8_m0Q{L9_Djv)5YZ~YRK~66 zW^n;I=^bYy3wVxyOVxj3OeBSrB3xOP`4NlNZ@+vEdxx%zH~`raL229&o~J{O*B{HjgiRj>OG zpR^4NmB_Qsc)9W?aM~AvX5;hu zPOU68(CiP)`ii4S>pwgPR+`IWH*rx&!ro(hJ222ko^+|h`?!9RWy6EaQkTmT*TCBk zgK#1u;$?Vt6|L;|YWqPWU3K7oQ6)e7&yQ&x*L8jPv{x9LPK~k9heubWx#!-cu8^-4 z5oG&a9yvr182=)M!KeAJdJ(YMcw3N2|$l<-Ocd1v>W`rS-^66mt zj*BE*OuFRrPkmv%$^wZp@*7VF5nF^%aw3C~eFPq@1=RrDcC~GW&JxI6+cf|Hey&&X z-g!153!itbX0^klDc^l}_EUeugV;=umjeI5C4mz9{!rl>Qvii76tOj-&F$4|er#OjH)2oJl^`WrzI$>?)#w~eOIv4)sUr{{>_tL7}>jQ7kOO3tL; z^dl#(JDkbS%;=x&4$lG{o+J?H21xXng5OS)R6e%s?sDd5Cwrv(5#%6mp> zy9=EYKiPW>Tu$49A&J2iaARp-if1dzFa)|zoYp3q*B!;&NaSO`VnIf8<5L=y`2ZZJ z$-DPKMY;<;mfr5N0|D1o%^HHMUwF&L^QzWicK)}DVW9!1_<~4JA|Qayyk)TbYfWC& zRqCrM3|^OG|3@1P@V%0nuGU}BRV&x^-y%TovSj(Q+^A76c2zS|c21u|C zqaVXG?&kc{yuUPp!Rb^3-R$M|H~MlkKMGPL&hJ)hlccWY)AS-&onq$0b5^Uz(WBBB zsBsKLJFIHma0Iw7rij+of|!o0B1`sgSulVwIBt`d`$}3?{o#h`<3AfJ_u2EBND;T$ zb3Ff1+y*agu>&(tCc6yR;yF7maY?t|f)YMd2f<8dN+-u!^8oi&3 z#5aK%55(-7Dx&SS>zW-#<@i(;U#Fa2dpX|NFP#ZmxpY6=5mmWE$aQXT06;{YSEcR3 zAxJvsO>5ohQG7LW^Y3XluezdG0OC}IV+i2C8-qg7z3WmA#n-*Z zkKD)Q>#o>&JH@N5(bnJ8TXVw)s!o8|2Uy6T!^}QZ;+&_w!NlfAs(W!%+iA z(m_n2Oa{1M{#RH3RnLqBOg*h=MEjfJEqXy*NrVlW64|&40^mq1bU*C!o=fp)hVD!b zC#KFYXYfQv&;g&^o+0l;8IfPS$Ia(cuE-dE;2Ch5`=>F5M7mVw5E3491O&YFwp$NR z&e=Ea;I*Kr{ej|aD2!JC06qWF{c8sM#bqIk4;Iofh!A=}3V=DH3LC`eOALjii45C= z90)JODx}Vks~m%r$!Jbym=RI{RQ(J-HQxcqd_wH;c|Uf)$)uk88lIq z=FS|mY>X@f4WC<&G5+gMD0F~Kpn9v=(S!y`4Y1cj0+o!3aTY-A~X09-}aN;O18@D870lPhMYHR+9_)tKS6r(#ZOHjZaKJrZ4Ej$V&We z&hxM6rh-eP|8{2FzfSG=MJ-VTogNq~Zel5WV(OgTCytYXknyeA@=@ zd;5D0d{L`-6`R1$-HY$Q#`yB=Z@s>ctN!WS$*2R_BZ0bk_r90}-Nz|!_Am_Y7mcOW ze!aaV@mAkO-DyJ@A7sq0RC&j&!ves#4gbocCl5uo>Hj`6-toI`$^2dS#1Q@fv9{Cg zC<2kkzr@0$OL;%Jnwx`4G<87^Do!iT~*rprB?k}cX1FzAiuS!LVO4v z7>o!r#7mv$dxxfP+{aItK=U_`7$Y(Gcv=#ljrg7_J38J@${dW4t0N_vSJ#z@)hFE5 zvu^-dmR1p9e{;?rDxi*Uy|oq3uG~`r$?nWsO3GPX!E5ZNc`w^B1)`qg5Ca&HR1p9f z8z<0E|Bzxj5c$+X!*?5V#78T{d@QjS)tmmX2M$}dd*78vRss!=tFMBb&3z#i(1Qx8 z?MB_{w6bL&s(6&HXK}MYBJ2ewF!#d`t(vm33O5*X*YWsST(8UbY_+!T*RqFJl+3RpjpCs|og2H#-Y^A2I+{Bs#^6lpaOVZynpU9>K^Z5K5c^!!5AjaqbB|95{du2ctn8GyMWp!} z0=GPu7%)77wO{Suahu+VFl;r?CB=wc0x_JJl9EjEUm$!wYk@(#A9J6vE?d`;+h23N zh*<(9L{pTXhl2l!k^&GaD#$0YlK*CZy?~?pgbzwGYSai4A?^^z@ee6r>5D|bFr_h* z0Q4B6p=n*660?gPE2il~?yZ~ySYf!LqFo=F z(EHdto`Won-milHTI$FJ0wUlC*E!;_vq~|`2eBQS%X0z#rB+&Y^k1WPguW^?+LYV1 zA57+y|6E-t@ACOoc2P$9DZv3dkv*$WPIxab_(hdXz`OoKxa~Be$xlUx+HR-QOB-r5 zpu{G{6BA6Lg1V&d&>;JUz!vi=_-EFW#&(Mm5{@t1xstvAw2sF1CvBddRDlu<2J147 zl>>MEEJY7*jCboo%I#^s-zY6&Mk+)21b4n~N}`XsEya}Z#iN-SJ$bDg!u9FAR?`U$TUtiteDI-TqqPmyf-zM-o5Kcnq-kVPY{%k`CeG zdC$ZXeB+~4jqj}`QEv%P2~nI^H1(#*qxpSzD4;jCmcjTHX$dzsg0ow6_J~ce7ycwg z5Y=YsnPrJ91R;@1@s=m{@q3<|`j4}B_GqO-KGLcBzIQ>FN(RTuQ*hDTg zk{EV}Dw6ZmxcJcs*wGnLD~60xn*|n5!^)AN{M=HVhST4d?cwM{Qsln7Rviziou7-} z(ul2ZWh3Vdp`+5JYfG2Ylz45Us}fOGq??-3GE{lyaEbgeE}o2Pd;uEwI}NfL%P9V` zNiYSZJ(BX(QWB#$Uye7F>!*wN)xlv;`PVwGQ*F;*pRN3TA3MGNV~m3V4j&VRLCkwv z7P?3&Jc}sFPToN#!qA4<^@wK0aIs`A(|)4zSW_sXU$7IORmF_Hp$$$_FhR_QXw}PL z&Sn$7^2@uFT8D9-nL#Lk`h{=)+l*Bd*Xf_ach$?@WO|^>#R`R(MU9EgBq5B$qz#lm z#QT|)%o8rhF7xUsumb(6IPi)y;f+jic`-`bhh5lZ&+G{)mO!~0>}Bj-x_?hfNpgTf z_BUWchL30;LM2H-y2(iiR7{|jnK-^MQba0smHO@ZWWJ%V|_9UuFQK?nFu`?l#WsouP=XclXb}n z1_5guBpJ*LPBNt5i(mA6V35awg43`v-lLOt&7+D4hOiP118%hX;k^*% zaRiQX_dopCU2o9Ny*Ek9zV46Mfq|wDs^kegjb3k}{Nr8r#p-faVmrr9CH1E8vT}7l zFh~OZu?b8oI49`Q%`(mfAJSG33~cUxio#qM{3D9EIE$tbQ0#QzQ=z>FdG zwM-TO@ZX6JEOWPaGGVYaHL)~gu(UNaH)Um|cd#>$P>>UchsFNyXYi5|B1!-NXgu&F zg$4zdkVi+G06!p&q{T%5-~YYxd&-i4B`^*Wn$AGe%J6?DND2)C&i`emcw}GtdIso< zrhK`d_g2#e22g^!fl?zE*_>16y9qBL5VnixV9o!E#8zw&HZTJxjs>+uPEZ_vIF)x4 z#1e;)K@?k{4lgPU02xe_#0L4<2rz`%zFv9#RJ_pLx!|pPcjRku*5BT+SM_z3%c(5n z<#%;`J5=*KzkP_P`4~Qah}Acc={H7|C0U>qSqyKC<{hm<+X6!SjxcfZQU^#ENQJl; zDr3(y(dL&$G2XcMqpbeXJed)&PyXc8Vrd=ozia<75h%MCST-@5l2fx#pP_0$w9a(< zYQMb`T=CFxepa*a-^^X(sKO4-l|M`DonZP1;G3~A3tF2KbF7q7(|cC#siY!d5YLGZ zHAK-^)MP*wbu+iq(y$g*?$!OWejHl*MDB{#Cm_EMo77LdS44-k;aQ4xPh{GM?mXit zZ7?>f+vE*H>bPhEXG|Y-9?*_)SGiMpLMMWx_SIhrr}_~74FE*Kr%&SE2i||9I}0EE z^Zv(nFHFF7#l5SgIeu1tlk)v?KF0qv&lG(VDerqItpB!wDaL`_{oT&)``PFJHB#sE zxxk>`XgkFM=8Z4K@ag!0jz{c?isg=@g#ZcFaQJ8tXTVT=tnCfBF zb&*qsgK0$7{Icw5Fv7Kw#ffOs9E!D>GA?S_(@#BIyQZ0tMq~L87ON7o_`=hHPHp~# zsQ0NSP8>-|AyzZomJ|2jTd_|n8BYq#C37Z>$0kKg{|30(fp(i+f|-Z(MydeWfY0hq+_{{dDKJD}s7HSMu9L5@sbi_v-V9IG8e>|rY8jYc+2fdx;r(n*{rfGgDmCvtP0KP62HXfif1Hi=eJY`?s*7^xZWe7+C+qz!I4)y*!|9l~VqLi?45haXZxN9` zl?PxXlC$I&m0ltfL1`q!NJhRd&=5Gx0p7d?2dPeLI`BECXg@s=dxs3o0q3=Woa-LR znLBi|A7vICkWv?axpssM5#DIP#8|(dIo^4>FA^5O{HW_4WmJa}B|Fk)> zn>_QU6sw+Y7?^ApwaXKSshQ|SM%^(dN6=B7@zUb>UnyClF-C<_t75CHN#?S^|DTt2kbJcO9m=o&>5MGS6Ce3`cKme5}pC~WG#*Pv? z{5Gwp!E0K{F3!{}%j8_H&TyT~ENGG2774VWrp> zE$yGtAt^v{a#Kukc8fibKBJg4oWX<~vf$vZyiIUu-5X_Gr5mc&bTJpqs6I zWy8s-+P!pl$%dy08Y7r*gFO<{5_vQ(v05|}`WJ&M1Mac$WZCg0fNYC{m6bk_X?wt4 zT}N4HD*$Ffjsgh&89wbGguK}FXeg-*a#`Y^X2=cWVDyUxtt1mhft{ui{jF$U z`tw%&YMev~K`=6rGJfqWFm@0!GR~4)q2h!N!BO01h7a#zJz{A?4$4$NOe($h>VAzz-q>{NmuR<9FD9Ou}Li!oLo8O5?1w= z6|FLuGODsnO4FJavnqZl<>7UJ6er59#Fe*wLQ~U%TR0i|mlGce;;RTtA)6C^=y<#7 zEo37lmHFk|hzfT>W7_Ytsr(FF@@(2DfzOg_>taRsLDcv1guRVNF^Ia3N=6oV?q$ZD zkrpVHx1>gAlaufu*s(ZIxe(WXsi7op3=6F=f`V7Vgtp-;vpBr-jTw5F>co^R*hmSV zl7#hUC2(WRRLngv0nAnqrWflWBsDR|IUq-vTAOmivA$Q|EtVg4Zq|=rf2}h4SQz6A zCg3QB?L1EkHw9R0O3wsZHux1p(fi()fjJ->TMuctr@hxd)Z6fLq8hbiJ@bKyhL*ps zV9P;8)Cg*`DTel8;)7yztUUfwTzvc83&&yc*Li+bx8dGwJSChR_N`Ypk!ssCHC~nGu$CJv{u+s@Yb*Pz0-6f9riDSWF$e@#dsexkSEI(!fhQ7KW z3zEEvlPh+gP=P%2#Y@>rHdmz^&&+aim6m!{XJ)DDLNc?Ux+K-HiZDxaYsUm@B{Ml? z!3e9%x0}pd*;yOiWwU=;6LFyv zEDimU8?I(JkIi4frZqfyc8Ovl>)0+VJoizWV>M(Btw~M7!cOq>$eB);xbD1nsAL!POQv=^4KSOiIzjy1`j! zep1V#UP@KNzIi73iyoe6+f>AUgkhJLZniz29O}N)j4iBp&`)-&EH-P&wyexOJd5k2 z1O9zYZB*60dEKIV(|VnRA@c5*BQ?b+IDZ4w-yd1zS@LBIpiPFY2|+3YKml$W5Zt0& zuLWa1kx@IZhPpLh*F*B7^kdg7Q@|bIv;Zvg-lzX`Y9H3$^8hwfWc6GB&4-tFIiJlF zK7T`qe*7+(MV^=LZIjt%ec_=$EdCjs6>m@8Fnu`rwahB2GA(u1vWnVLp7?W+ zk|b&}DVmZhk>qogCQasGqnbUkU`!_Su{SFcns;Opy-51lL5GD_-Cbh<*^U#OxE<>T zil@%06C2%?K^Y58FBhc z#3e2x>bzy8c!P?1#zk7u%4-{hjqx)(_C*^gb_i_giCpSXTGl<_FVwm__V!dahWez&9@{ z{9COeTRgBqIl)?DCzJg&{nY%8rLG2kLP4y}IZ9O}7si!ZG?=barqJ~Bm ziKb|TkESXiYSgBhYd-2rc+TvqhE&{3(; z{_{zlP!xm8`Z@mRo^Q9NCMRPP#-uRo+hHN6=y*Lwg>NXR>Pe_60disfx;t)PTu0ZX zv%`+|p;b;bwvKbq{t|6~>PgZz%d@Swzv<*q287 zs}&j2Cq)*Yby^CJ`f!6C^TEJ2Nh6jf8E{~K(twX&e_Z{wn2$y4A@ zL|`H;wsPYpv3}7@e^4edij@@R(q0blajO@j0IPJ)p$oMgVgt5!{G0d|$i3u5ve2yb z9jfl{(Q;uwbzJvxVow&3E55{)nvI$zIh8&?v*rpQ`uh7XbYlUa_rUV-V}R%^-k^qP zPLRpw$2#hvGe!|KWK$KwV6{>}IbLR|DCI0Q{Hj^0LeuvgtKsbGotF^ptFel@*R}$e zjjK$!^_}pcS19+~QP6XP`{R6Y1!mC)k&o}9QF48nv#!;`w7KMN32TMq@}P*@Bg_YO$&BEOY@yt{SBlN~V#(iP84r5cFBobp-f(&oW8T zN$F5HPF_OJyu@9uPj3mCYNnX_7f#vl*%er+PAtD{q|B)HMBL-SK2UFb<14|Xwx}#X zz)N(j@!&)JIM@8v$yL4i?A=dSw$FxznOd$ovU5aT+m$|)+4y8iw50~T@zeJD6vm2Q+r3K*6 zcnv%8S5oLba zdOsJV<~*luE_oh=RLS*(ozkU0DOcn4Shks|r(fPhp+XVRVDe455jgp>QypFR%Cbby%G^ik_Z_P^Zi!sb zn)^MB#!&sK_;S$q=*CmLwyd%b%T&BP3PZ{p7Z#x4##2$NrU4}Dd+eUE?a|6)&?FscO`m53T7}iH?;AsR%5tLQjXV+_3Tiu7W5abf5W&R_yQJ2D0VFMwD_#ry{Ya zVT$mSGb^Szj;@Ln|XA^@o5VH_T4)plp1+!fWZ$E5RK9p^iL ziXs_GZ7uy~%Y{G6e$({i^4a$}y*zt*#2E5wJLT_ko;`LMAZzm4pQp%qtjg)S3}65N z+V3;&I}QPxoi?3s0XffOF$`XhM1by$^Y%j(fcH!H!s0m_2sn$-{X?Z(qne)|{4DE~ z?L2tx{ZN#$f?{8Y#gbtHXhdB;nR)24$pP0y05%(lNlkXluB$?A=TuS{xb3lp^TqXp zZhwLE!(`B@h6}ed$+jj{I%B#O%SXM|UwoTSWlg-cHdLUx{eDp(-o~`n{ zoht=HlkY=48fDq8q>7FDkcpb*X16q9CjCJ~HE5GdQ_$ zB9P1~9-GHjzv8pu1AFk)F_%==4ls9h&M))1jnBMBu=#fqns*~|9(PM7O|m+zXFKRi zBa_mWFY@zPDCflm)5W2HnMu_smciy2jUv{#&xfb!O*R5=#zd~ruV@9Wha)9cBO`bW zz5<2AII$T<7F-wo4jav$w`4K8vLHqY(NfJK6IT)oRmFu{{q0Fq zKc7818(Tc_Lbz^~ZAia??<-!emXSB#W!N#==jTIvzRQ(ow(++T-tIi(P}4;fuZJ(~ zx91uR*&sY6a1a0?4RAqcNOg7S0+Sn)NWW!>e-Ij$sf(qA5iPB7YF)cIW${J+CjOXoWa_xo>SWO|c?1nh1}987 z>5ULgJ>FftAC5FJI(((Q?IokrlOs3 z0Fh5=IK|>+g3CpM%jN9-g#v!IH#v)&y-7*x#x9sTrID0$DuB0y(Bpz{h^T!MhMlkc zU9i~@_*}4iyYF=l5x#6`ux-`g%W|J>dPQ>^=Io$8UeIL-La%uC1%;e=ypTK-`3!er zuRg$IVDQ?H)q2J7J8tZtt=;!B%W{K(_>CVhrr$jzZ^lE;?)Qc6J+AX;*yWJ}f50q1 z{S>Z?QJ=XSQ;>N)%hGGyN;Yao;c2PyhZl~qY`qYfr+Z- zzMXc@BO1=O;WeG70zPR|$#(rSgNep_o$m2*&0$spRpYL)uhZo?S$JBZDZAk$Vx#Ra zB80&Mv^BQw{NVD|KClZ%oZ#o9>G7~^<1_Hz=WV@jp`YaWGlXy$DI`^qqW)EJwx=VV z_H?ZRCGE1B?k|+odZwd29?Cbe<5`qAaEXU)>yKyvzkEm$L{-?Z$oI1hY&1+q>@@UxfJ7Am>77tj?YGJi_#3Ez?LTunxn0hb@ zMkzdn>P}}3P|HY&*wiumTz8E0d*P1bJBl$Af0TQ-p+JUOs2oSEM50Lim!vO06ytwE zcPltS~NNBqf#cL&4NNeXPRV z9M#WDbpruu1Q1KPmD24|MA!4pVCQk`L>7vr2lXDsd4KmOiO)MXQ~t(%*&rJ!w_1hGfcypEJA|e}v*1NW$`cTvN zw$nIv57)Tvy5d3KzSTyPeSZu?(X|_bmhDAceHhF@aGk~vzB=}}A#kSebl9^Jn;azM z=iH6za_jpcy!4b2({3}Om$LTM(9+@`sC-spQW>*ZM6r6s&+#Hnq3!v?x#)9y!K;}X z0ot%<1Q1;A@ze9#GoV*LB@UE9Y=%mLr`&e6kpr4muMFiIXG>Tnw$xJi!Cslz;k0EAOElycw)Vo`}AlFE+~ zWWw8zc6^7-bN9^Z4=u9l8&kGHh;BR+u1!hkub}-Hv2WcyKC(wXotc9U(&a3FC8dFD zHT8FrK#`uK6gkCHEBn}|%eeS6XlRBFt>?}5Dq!U!U*S&zm$KNZawb?AB_X}z#sa!?zp*ju4CQYm}HjHBYXd;!uQd&~W48*JpxF0vC;-1&!Bwmr) z+n4!yikh0SEw)&(IB-eIXkz91#OJsab1PBJL*}>CI45~&?~kBj#rP~|@>y=glZ(}3E64Z*{YeO zsf5NK+0^XJOpKGgFFd3uWbdt3ou5x*lraIaJV})=Jvq;1t?IXu&1tw)CZ{acT(1|H z5P%Z!MUM&}+!FNW!*vQFGk$k_f_6w58^8Z6#AbU{wkNvpZI{l(W(=WccEsj|825rs z&t}41OE2d*$nzjT%kxM{>^+DNgV(E(P3Ja6|I6^(>q&Y6y@vMaf>B58+E{>0^IjE& zW#?8td;4b3`G$?zUSxJo`+Y94G=%C!#Tn8H(ervHb7hCY7>38`;H9L-x(AWl!xA=c zh}~2#{$i62c)p0@Ww->qZnF;Jdsa!wTCyAJ_`Gx;G}Zm;1BUcDDS2j0Js5vBoowmS zT zl9dDt0TA=LturBPDZA&t-z_49tKz^7$-Ey+dCv|5vQ~4Sa9eDnc8;SvOKsw=elC-N zzSz^y;l^HKy4QWVxvZ#1@+D*N7}N6rEbUcCV_r;zeBND|pY|9OHHLc<|;tQSL}=Gw|b#zbrShkGt*_Z+buf_W^|ktFl3XN;xP} zoM4@?@lTlijMfC1OijrsROzwMlpysu_7y$uY|}c3$vWJMBHJlU@yH{ez(E= z?j`8mN}2*{DnjsWv1$Eer0ZPDKeQ0c7TtW4%p9{ahAUNbRh2KiJfxe+JxhT(PxpJzG{$-LfKT{{m6@pC>zSU>q(bk+$~7(3iV@d;y4T+T>AJQnV3+!;? z=EzdS6)b`^a;6t5&GK9PJfs*4=rM-l^ghd}O#T8smyeuNxP_bx4_@ zzG|UD5Sfsr>kFZLoJLs2m1XsQ9`76A#K6uOK}Z~c-F#3@VBY40YSZXEF)$!33WmM!LN+ws+3i7v9bMi)=P6<$ZCo0p1i91kz!{H`VvQj@9{ zUV-V0J6n9t((t|Qy!9GW_O{Oq9unfYkDs&dCrUxX_*H`$jRLj8yQKY+Gbw;neUFfh3C=$?5UE#B5cq+T_6Jed`YTL#JtOg&CfpjJ{FjTJ1sj{!$wV#KJ6q4* z&UD(1hMx?O0HS!82_sfYb%PG5-fx^a{EsI1-c8M4(=V9}x(r%%UiZ+vcb^xvA16|( zoeU~C=YtdL7dBsGUWJe2_&Xk#Voo00K3^;!tlExt7N2N%dkt{&IUabOZ+Q54%%nLJ z?B)9}|F)#&H2P)$q+1dL@!@=8aG|0u%Vt_Bh zx-X7`&n8*smiOKfDuUCfaKB(_ZGuh2g%jHXWwm}+)~0Lk7w6JlNz&qGq-?wIY!ou_ zd|l3B;{D4Tc>j#mm+}%~ruAcIpXHx5KN6 zxY?f^-1O#Nb6G-$1!b6I5MWKo1H~sRxIKO3tU8N5ioRud@HVk=vfcvV6eI=pGq}c* z*|wGvv}ENWuWf?5_$6GDLMBHh7{bbdI?rmyGG;ksQ4V_cTNw`fT>*5o4PZ=s5YTf5 zWHYIZA3Z;*ZQLFWzRhQYNc=#R5dz1?+qnT|06&&0RoHM`u6Oah^v}L}%bJysMq5I` zpE1=FJ3qf+zPr;IBX}Iu|4yp_v9W!2i;BU2g94vdC$ivoB(Zy|L2JUV&k>wy|#ak`*yt{#*^Zw zCPvHubkeu+gaGLFx2f=)6bvS~D7q8TVbbQW+rB4kTiN=EypK)Tb&{%*_4rEG`Bs^t zD#py6w${2kc#P_LYIpt|PO}_uAp@F~T-w*0OzFJW>GV80=)8L(0uRgHUBacEfmhhG zf+yeHw2n2orGMZqh_eh=mj@JK=4y@OL%8=f@q0ZX0=jPx*5PTvTj7{!H%ggIwzEUY zIlA5*TLCGV4@0uf9gp!EIZgP{;LUhRnU<>r{+2%pXaw%yu&teE`$vyq)esXanGYQL zf*ZIYI!FK{nM3b$2QOv6EHv)xM6&gVih+=f2kpD6#jfKiVk?{H>slmWBYpe9iH#n3 zxh&fK-HHI|0v@wi?R@=e^R|+&HbFWF)UIcCtx@qv%dBO+8g+>oCXp0u=n$zV-z$+&7FFJiP2g z?)g}~d??jl92aQmB0MA(jnAKcDxIR-9?i!}#SCHwb#IgV)f(e6$;p7Q%qCu28?Q~J zSR&)Y0Y3R@WGlq8Eo#L~*q#G;HbdKYC-RN;<8CM|S-LOaN;tlU?4}ox$;9&dhR+OW zy>_A!snkssQ*Yx6+0skNd$Sqrka$ez6>gpr+hkDz#SM@iuwt1DSBm2ef`C6Ot_1x!2PENBzKaIpArs4;m*ygsNx_X>}nWVd1`KF3@>k1UV#?3fV z%=((!w*RE2C9d2^!@Yb;q&^S+YMD>pIKf2BU5Y8*+0LK-pJM!-!eAUmSs+2thXEi- ziuMC4QGQcst%~x?uBn+@EDR}6rW^cn@U6XDGq&k&H3VzXUI|=NeGFQB_`jXW8 z9x;h&+?8B1xj4?fsP0O7k*Z*%!OnuJI9C%uN~(|Df2wVV5$^yk(C=`cJ?|_&#$Ney zsq<#DmJnlo)e>n>1b&DXOv4_&k?ED0E#5WWYMH=?A%G@d6+{D@S>UzAP7^j$%SZQ! zFC*HepUjMuwrMlJ1eQP{jaSq7cj}!q%mQC^ZsJv3ytf)}-yV+1K%V8gj-3Zia0DD( zAFye+3*XPhpZbZhue$VgGavf0BBsYNL5aUg4+xl_TQE0*#euD!j>3vHHoN5NPOYkq z_o;;tqO5!7ZmVh1XD#bPxOk3O_;zI;$IHunymxK0{BHY`LQ)kQf4J^%>s|(yzTttz z`C!Y-O|$DtLYcRrenON4vZK?#FY-ptTeOK|= zJ`UUaadQl0=Gx!YAbS{Q4DgRXz#;3^wRuD~a1OJPNMM<HhcrDlumHBGDysliG z{yho8R_WT;p_o#a+)^2DSWR#s#TYg$*-Kvg0>&4&s(JScpZ*eh1iA198T9$mC>`ug z7Y%LW?CnWT>VKE;$Fy>SB)R$L#Ig}DP`bTdCs8v0KtEu!ITiP566Q=6H~qQnDNVn= z)37M)lkO6`k&J@Yyr%T6fRakZmvJbiwVWexY0FqdS-Jv^!jRIoAV)7>iZFN;`Xnn2GXWFcCgJA`O?6(2G&OS{Y>o zb2b%gUpQooG^?uuIW$h~%7lO|NFvYir51ufLb@hbCFdRvIl%}MpH zESWdi-VjSGxXxj;S+fmZ3j|Hek~LGWZy1PikY>#HCUU=S2iog6?ufDHSPNflrA*Ce z2EwE##STMbQK~d2^j_){q)_ar$`VQ| z8n8M^fxz45-9Kgk&H5V-;8T$* z#$Gm_Cbh1z$|ieSQm)Y+Z5#9qjm9;l)hwbJPD+bgOP7zk;pDT9SmrZ}_rJguC=LI* zD-b0}DMB^>M1OYg%{ug}GeENZ!z6Ea8}!@sMr=nuQ74B`Y0}81`s_LJ-lUlNw%bJv z?uu;1W&l~X$3leOQtKtwBs7{ z-h2Qm)^w_q9ZEPUe>SQfEX0O{9xEvH6JwIq*xAit?$e#RA}Qv+jaMLSQD~F9x=sA$Vn`-HhPmfNlNde2&&0tyMqz)Nw|ZPC5?kN zvLp^zi#xV1ypxlA7RGu`57hGR{&I0M35bD07I{*8Y~!}OIB7Ccr3vyxhw?1;vCxLO zE<4?!EZhm_Ea<$FX7BDeG?QGEiEkFof&p2!K$(x$@St}4CQXMU`S2psQ)OL3$>%Wt zE<*0URovfPw8>&}hOnx~L01jO2Z4`%Om+I&Oui^#b=QdsZB8u?i6<3H-i+MymY+&r zH%b>o-6}DbT8-P|GPPu(qe=!FL?jr@J-o<3v&2!cD25?(9IuKN z?XjY}zjVN!gc27Jb19tPy%Gx!p_6AyYTn!IOP$^((l6r^dBQIL| zMz(ebqcStcfrap`#8zaXa|B8@GQ-hz7!d;6E5`S?!wvE~`V(UHE1qn~BbJ3G!LYby zpryg!4(*BW(k;BYzlq8+$wWcHKBZX=LxlDI*SUGNDD$ z%pzM`2~H*BfELXqR#dC|ZAJ^z+LB>vf2I)rwy-4oE6rcsrnU#=P}^5V?TL;*hO`J; zc8Qp(m@=cPlaVDI8f6UFP;AH`+4#InT@Z6`e+R6Zur{3l^OpvzI;76MgLW;+nU`&= z92HfMErG}d?osuRdJ@r0bg)A))4;FZS`NP^JBN9&OFQXb^g@D5(^}rWl9V^uEI{j> zv`(Y8!F2_b?1UQ-E%b1^u|=n?exCfm!`29(FlUe(d4}GhU9~V0Z(Z_1p1gLJBIydf zy|Wf2x1vJoASyGQ2tAR6?X!P-qv@{FPj(9-{nu6Gk@AS8W7px@IMAOW&9Uhg=WS51 z74yOj$Ysj3G)3(Wm9oIp3FxC$caJLxF>0I|$%R(#qDA=R9%+D%?Yv2i&rr-2A^yd3>>3(RSv=o?k zN319}SogLXc+l+>$0=6O={>U*dXamf0OG7stl9j!X9-$@h&vruvi8&l=kl~5bY&kk ze_cMsr{zc{4r*U>A8fQ}En3EKG-73&FZ>1#6|K=cyZw5&y(UH+_q4^B4IbI$ca(ds zd$9bxlqn|HdAzdE!S_JhFVLCfX2cD$YAaH6p7>fdCZvkkLriM_fGpn8Q`psJX7gr%xS3c!*r9GRqb;s)x(>4^sb#FJkfa9l zgfi3KJgLvP_)pLS4$R7(Xz1>Hgf39B5D?=7w7hM-RdPGTH+g$1;~*PpWKt35CLHFB zw%c5ec|a^>s*=?=L1rw*I(tmW3OcHI5JXWv*_PC;McLDxR)(%ihsSNR5doQ$yBvrS z@<7-M(~FjJG2Tn7iIt=|vaSw%y0J<^O}1r;sj>!YwR9K>A?2^dJb{sM?uYPWVO*wz z>p{$Axty`?;R42&Pcr#r5`NI1cT{YR%sfm$&bR7c2-e;TV9!?!1*@7Vq4SNUK6Pp09Hvp)C4J8&5_43P3q;R6rEn2AdjNkIrGdx zE;mgppJW10Q-)SUi9RslGK^>wPE;1)h}qpcM{T3^C}edLq}?VfJ>{0G4GFy?=<*j; zlB&#%5EdO=sad&C4rb^@SkHRU-@ZEshba*NU%yc}!T53d_@@7ugkN3e%eIh#cz*#@ z*4ck@LdMCeeo1PjU@B&4wG<^@cH&l0o{J-%_c4w)Co`=4!irbUalIL%K~UVu@i&_Q zmH4to{Wxo`HANHe+*haKeL3ExNVTmsoyV2@~FB*PNvdKA-LTD@13p z{%vzn2#GzL{zULtwTIHmua23&hQ zdo3Gah3~s=HkX0juXAUd*dAZzNbWwwiI3D1%g{TPxYqED{<=3H+W{)%)$bLmPM{39 z=i>DtW6$*1hSGi37&#Xt9fQAG+7$By7ph`pfq8{^SGV0Iu{KRSV#Pn zwyu$^UBQz$|G0@0U$v4Q{A3(RXC{7H%;&IhiWwlnBaED>Z!+xeNHNGX+|`% zCw&Fy3!^J+@HY-*hF->q!pwZJz#g$@y!q~yJDxy2M@1ZaXfjzdDgKAyFg=bf(ca8H zStD1z;KULVLz{LDMK{9&uq9a*baEixj-GX9djB8eO9S4-MZA_{TO+kkqG=V3Ptie* zH=Ruko;!>-wD!&jdXt&)FPp9S3vb)pWYU_%=v#d_C-6=`h{ySxlZ#_OAXWWuX@61DZ+5`t(YJzs&+^Ni z{zbxBwu**P4fB`YlvaXnICDCU_tcn$+xFij^hgx@l3L>A>VjET;i*r5YszIDCJOyj z_(x#rj{Lt`pix9K zF9k6=3#8?_Xl;9Wy9M;t|7e1ckv#k>1Dm$ej|r10{*{9k^0&uMl5fwXOQieTPeC#{ zUHv4tuR{rlgAg5(zmbvJo=4k7ChP=uG#zmRBBS{7rw{V9MW0%+7b==b$QjFZJ0!!B z?@(#dV0-3e+^j7UJG^tZ46YPYbmjZx9eWU^4J~_I3rY-Rv_2eat-PNO9p}$2>Nl!2 znEG(*#8Ajd$cx*Q9nHBjit4q7L^Y9|OJCRuy%VawXtCm;kZM7oPmLbQ>&~_BdSs^6 z0|b_RGEpn@+7mV2|5)LqDH@7Lb>=!pD|c?hS?m1A9MeyR*wol|%U)V?X?F>4KSkgh zYIV6`jh#`O-C1kpB2WLy*m}`!Ve)&8!u5`3Jw;8z8;6QnJya#K6QMUnPcxB_T{rW+ zXPq1iJ*jodfdfpRNRKqS8h<)fZhLm1q@T{5%>AlY%|ADfcr~JCN||?0(iA4#5GvjJ zGp|}{JV&Ej!LwLN@25Mb3ji{HrNId%|0du|x@FN5EiksNWWfc2m1;sez1Z=sME2}3 zRl!6miet`$A-ac`&|zD(ZN=Q-Zi#>vh=~{MMa)Ja&EXVKACqA9P*AtoGc$_}r=9qVhN}`HZ`eSN&^KOtRi)uMFz0^_UecCgk{g^>LBDnya+~ zi>8zna^EB0h4>~9l(i#ov5W$g=;6g>6(d)~pMpMC zh%)??qB|nXP3;q|h(H$A(Xb78G#$pqzDU+@zh! zIG@cuDXwtLCd>yq7$=lC5{jv&FGu7Vl3Z7}iIo2hmGb>dk^1ZN%B@#lxuI~xsS|A( zT-jE0bz^x!H!%!>em0E%r68>cO|G~!cvUbeBs^5ful}hKuM1t$^G(amjtn#EQEcw zw5@Z+zS|Sf^6?hs*j+SpU|Q@CbQ|qsi))21_rfxLcTp@w$BF;x6!o%kxx@G$=e>cT z2Dxa+04&?cD_V49>;V{a5nYE!4!^WCKn*5#B$9nFzqYv=n?5&T$)nTi)S{QVvDY+4 z_Tn_xtyx%FMw4GeWJ5dWVm=Jn$o4NXM`gD?RueK@Yw7?c^(=c1#EBDReC@CJ9D4%e zR{N||wYqWR?KGBmyJ;Bt-Vk)6=_Y=K--k>Jxr&e#?0Ng%wa4r|3-9H>ytF9mO$cbH|N%gVS`BU z(^IO=@K>GeBiHECJwxPXix|B{;tn(v=%>P{{{`~wF#|IlooKQ$`eJ2Rgv)Q$-!xgKvBGTFQG zRWY0M%c#DB+nLn{{*&%<-#|^F`cCXhSoQkZrDagi%0CBFe)azc5R@Ea%gVjk`EaSJ z5X#}HKj1a~gOvbI$_|?Fv~GnNh%f!+EHsef%2ofBAi$9_WOu=(gv4|Rk{_6d{_Rg* zU9R^(l!#@dF`%T-ry-M~;F9j{M>lHz3tG@9Ar$W~4a*?EEhkKDe*Pa^AcE(nQ{zt6 zwuOT$!iceb|MpAZ8wom1$43yW6(pA7<9`qr76|lOLe`HZhotgV4g4RngveXehBpXH zV$l?Rtf|H73}B}Chnn5K0>qFUpK?E90%m@uV+k>i%rE_iP9M&K=|{Dz%;?t&5ff&J zjpHk{{=0z+?#GIbk@@{CG|Vxdg-Tg;;#1Op&5jBnv8Yw?#aY5sWcey3k)fsaMbzYf zg?8)LF84k!2or?=z@UmX*F~iu3^g<-dv8P^U`*?yP=Ha2cyA>ROp9`1UOjJ{V&p_H zgqi2x9twxXGJi>Bp2%-ya#@JEs7cto(qmHNvp@du)s__>0 zX;HSNW_v3QhZwk+!`KE zEjb2v@2Fq27FTD}v>>_A7dYpJv+UkJ?V+XeoDV}+G31ng+^T($UXeXDYvJ;?USvmy z*VF1k)!>v@VleRz%$eTY!YqlyFa<$s`O&CM3Q_%2roqEkK#w${0 z=BmR)s>jWx>dF$Y^;OY>e29xoUU03``3xuF_2SZAaHv~b<=|d%k#oaz&^6o2!8erC zBh{u8wOScD%;YM+g|9RqvO!TzpURTOV=(TZOP%k>_F~La8uoqiU++^5T3AtvV!h_x zr#&V7V&6k4=>wWg6$-flZ#)DfWq-D{?`1vQbi z812+2;}T-ftbT@JI`Ft^B5m;5dM#2{%W}zS`R_oCMpXdRKhc_>H&?odSkSy9c3NIo z%k|36!Mot{{RA-8Y3YBkRBJDQPTVLLm~?|kZBSPxp0R3~h~ zBaQKJUpw1qH8grAPzdQ*bZTH&QB??=YkE4$o-is?ueFoutTBrBLw6Ynudr--O_xlm zg%;|mcHiQlo>2d!(`mnDw&s;G6#d@i1IL@xg9)RZgbN&fRZEF6v&dz3A@qdLeWm#J z_IJ&bChuC>&k!$bow<;OJf-^=sP--dF^qt#OVyj_&Uuyl+>(%1(x!Q@2s#6?c}$q! zYp<`K2)Bw3| z9zu0&obP}nCo`R@b7~>)n!S#J>0-mer{8w@j-7)%DwsrGWmRW25~eo38wx|Jp4DeI z_-%`|i~bn{s5JIHp?YkZn1XUs;Tcw1QpIZN(o&TIasEk-jRzN`ANS=yLC5VJDw;K~FlUb)_9BI{Z&ZIn?s^ zCR%M}n_JhZvyJyAdZ=iCh&`>^ITavXh65t$cHkPDe7<4UX;mn9%GPRhf10pHtf#-c zUi-^yZ7ZRne_D6gDlM^RV@YzIU~DuUZwV~GTqOqJ^nJDu4D)_56edlTs z{E(X2raDY3aDi02jl9YEg6f|>Ntmt78rQSE+_f&Fp8Pvq9srJ6tAUI)-h8d=eEK7y z1CtYj!C14Ow82Prt5Dn7b+5ym@dEmXh|#*HW`#E4FUxPg(vw>n$IiRZ-%-$XHWXb z^O@J(`oVA$O^wFsp_zHEWDeBm@XkC(F*!`FsGlznjlpic`S-1rt2I#mg8|}HZO*49 z9HSXg%yIv)s|QD)^qNIChS#hwJ*=wUmCb+rhso9_^rnijpR6N>??5D_`pz3)h2~Q8 zonWrRMNPi{gaQv^xqO#^fwynqRQhi(C%B`_y1u>wPDr5qZ`uKu{{T_w7Q_Lm*a z(8MU~D~C_|d=|8Gzr16JKV#3XJ}#NK0|#^a_Ij#;q*+KNi6#_Xgv#Z1WFN%!tHZgI zR%(}VewO(^@*e>|2AFm&3-h0=$Gi3+(Vabc8Bcz>R~`Fjo!?aGL^x|UReNp;{?iup z47Tf#MT$2kBvy$^;+MDPb#Lgcj=vw^Idq-|JMsSMX^#TZeH%k}_(bZ{^KUSqg$AIF zaUF~i({|+E2UDP4x^3%yeyz0rXksSgakTnZ8C~w#1Ka-&oM>d&1k)}Ux}jO8kFC@` z8y>D?>3NEKajs^{f>W2T+S%(=^4!Ry{+*V`LeA%HDYY8t8bIk|>N=3~s~2FmBVx&X zXr{vn8y?EIdchvd4vaiCV#Q=*8&QQSNFT2GF^GpVFC1+JWL7>n#i<28^qe-3$F^Pf zmG&b*qk}AN@WfZ%xpC~crpiOl8Oh@vXS!dY$gQpZ>O8u=dh#{MRHWa*n^*?CGAOGv zFaWQ$5~rKQN%y}3RZJzL47gt8z~#>6vI)a%z;T-afP0VdZV2azi0=f>3lO+eZF|;wv}A74sa%`0;98F8fs`6 zklb#lioYU>A~?vVFwK=)29$PRu(T)AVG8x&2z-frFWFTS`-C0&0hyANRDODOlHQ1$ zBAWv)?4MqEaRM#kj#pJx6F7eNkVvi+&aUP6SJ|8DufBJb3+{TiP-tz!GP2{h#r=Bx zw-82jPsZ~Te!Qw}8>-Z*v102WY5W`QT0fwC!@Cu&;78y5=N=1Yfu&YEbeiS=tN+uP zyY$Bjd6g3+li6WYyjIbDRY%5^)tdi54Z;ceiRxFG2_abbnCn6=k8 zRvY<8vI~iU6*R6D9N!Trji}4aZw6Z%-L3CM{&(?>KtaZ}l#i`08`&%=+Cp0?*D5*u z`TziUX8V}8stpHBF7VWx{M%}MpnRYUW1{%LyPFi8?lMQVl7^WbQRN{kt7`GgOuTGy#BBw}ZIbcO9@}I)q zQ|Qmix5Y=Y649OgLB!cMmwRKxOIS$ zGgi-2_fcc%-xdcG7g79V)M?6{yMWn+EY!S~yRCmv>aS=`K-s@S6WM=LUS$(C`6-Z} zo5%@Qfxszqw!GT&|L5sX&_eTJyg68**2km{qqtPfP>Si8`Dh!A|9_$nyVB#mY?hRP z2@{dr?Bh&qEg~LuzE<86{D1e9JakCil zJ)~Vg?CfJy)|f>4UqSzmwdDK>UYsrZ7cJts6YI_3xfcyi;!N!6f4?&b3t9S)8bN`4 z|1j76LT00?OVXm%(+p|fOrEtbMSnXfh>(8dE={IELt}#9)^-}NK zUlD2gJr<*6Bt2QFz0U6ExFZRh(Vm6F=ViD2kJx{QC@`3Rigq|tVBjSK9U~Reik+#z z0M^42vE0+jn~nlrBZfcp*AFa(1Wft2sGzwn-NbMAdI!q(uU1;h!^&rQKQ>vn^xxC) zkrXKXU&q6ip18Tv=lF3&IOCKe*&*zY7ydCbaVl15p{WmBI1|hNN7Yw{RTXS+AEg8Y zq@|_1yG0J&A>G~G9ZGjMNOyNi3)0<4HwZ}Aw~yX?pYO+W{s7LN*;DIXYrSjDj7|9@ zhC&>(MEZ8fVp3x4OZ@>6 ziVrD2^h6sB@?5@ghWyaNq8aJwyLtl^>PM5PKv3bXBv5-Ok%E@U>iI|fKn4@4M+$cVu^1z zmHj%DrjJ`Mf!&Jp#7c+Wn}-trKXY(IncQDp(?nT|e*e5lB|oNkPi|Ci@xLqxtRh5wZLSij?CzH|=0~Cv?K1*Pzqg7 zRFd%@?TrqLa4Ikw7C=%-RqN^k4-tzGDNJ^j3-D+LhE675ZT>wL`AKNjdcGRnz>vzO z62=|48rK--FC~MHF_1y`Q(-p+1Gs+sD>(M`oBTAz9uD3%{E@t_$)iOkvBlVTtReqH zXZR3|lAgv&$xoOfm?EKzle5(W5SNAzLKx^=GgMres4@K+IkmBR$#$w?{-QR-0l+q} zXkVZQqV!UkKduDebEY~f$}5z9%6}93Ih6BD8$iL29qb=y^^T0R7uEp;dvV=b!Azse zj_9R@&!Y+S8%|qM4g0^`znR4`R}v0?Se<}~3lbiUf_lB!N;bAPAC^ugL&^mBVtugZ}CU~Yb?2NLwK7zTde4z5!OkmMtF z97v^6KUiZnQ*RGbT^wdXh8t;;gV?*>k5D~rfWtcJtbK+&nhnt~6s#0PKjqIaP)gsS ziG*se+Pu}p2E2akCDpNpuBE+Eq^eK!DCmX1YbYRS&20}+hgszBQIc>3l_Mmz$P<8K z7Mu8_Yi;!vh?$mHO(4Lxhf_R;o!VsLO5%t|2%@1hoTDpC7S6N z1Q1+I++bs>T+t%rfFGV(Mp9ukt^&Ho90 z`Ma)cV|5$Qdqg~MkyOZXg^qt~^m%Qp{;ePH!3cw1JZ7Dk9lJ6;UI zDZEt#`>jlQFO7;fKTwnaqZyFU#bCRVPzC?q)7~IfrPVGYzp)n00mIMivp6!QAzwDBirOX;YJdK`>to=R@ zF5}}>dTxqP+%KjprYVs%=)Cuu=H1`gLf(;W;Ewa(tg%ijJ?!;rc%C%8%w|6o%{^Z} zO_<8gu6=HEd9paW((Y>TIlAHXVIdr)$nz#dMV+K`dw0|N3OM^W1|A(A&KSi|$dqP7 zooa_$(7=wufjP%Q_$m(tt#xS6$}W>yf$j3w3D2VEcQGcwO3$4cEz_&d*U zWtri)1#;bNfa&fOjA{HUJw(EhBEKuS=%-3e5k(6kT~Ai_{_MOZXTbGz6kcJ=_h%db zCn4&-z_E~!6uxV|Os=n&WBNr7XL|3;m=Snh1#zyterSWahBHQ`e(uJnJ0?NsnQG)+ zdF&fbVqs-A#R@@#1Df3^B+;P#*vsm!H1g%C@$~8!9hMnZ5w*f*2rm=}Bo7yX;kYkT zMtmNkOxwRC*#v7!!Xx0t)e*~8ncD|++b_s~oNYRVu3#j#3;*pHn5^R0%_A8ViVo3~ ziVI{|oJnz=3bU3CGL=T8ODf;QdVI*i`ye?-U)`mt=PQp;gII!XRwriEgX@TWB$>Fo z@dq|=GZRXo7UxaOe1=a=JOuh_f7l2pii#8e8h3#);7@+A-rCFZMH_-mu%3t_V zVGVI6jBZvhn71)-HxCx)SKB)oA@_shMcsx#BS2OW+M4lB6F5rBm5!8O zI_*Bpv_4b7_aCwKYY+8<4S)6Lr@=-KfZ4eDQh|LzM!Qdw5oV8O@;&OnV1QQ1e>e2L zJAbU@=ZX)nk+duf>cQL!7wyl`$8E!SM}CC0uufksSp52P1?_usYa(B%ZdF;&@8 zv*RZnm@y6v3j%$Q8k*moCpcP8`OS*V-WDP{D*7PQnZRRyBTD72($ye-3pWZp_A7&F zI+ghBTY1DL7-RDEzJOx%`=60xb1O3rV4?`(6Aa}N2crhUlw#G+Sy^f94L8RQ#U1vS ziyQc?=R<&_uKi%q9P>S|EBgZZz{7^~XjiKuA#|}pDB27oD~+l7qObm~r|+>iR^$u# z`TVSmL*zQtlKdHK`H5!^5%ME%{5?neijoLO@-_oPE-F4+?))1PDtL0?dxt}H!(VZ3 z3Id1J)3|w~WE;Z_bt11xf3r5i4Sbseh8O=k7>&NF1Y0+Kh5GA2aQZuIib(;9B~HS`1&83ccm2*8z!;xbwm0UPQ05`QUkvr2Xe~`N@7^ayxe}a&g<)i(aOy`aUAmLBlSK5sJ69t;zAu~MNBwyKIg-mbC z+K~GF6%d*bw}r3lo<2P#Gvw1akg;&(x)2oh63^gvB{}cEQy4w6*nKq()CxNM7z*fD zRo2{%KcaCNNW%~BA+6iVzY8Ttxb6rfo(z0&9!rapP0im!kRDK|&Rlso6>dM51$*zgv6l8vk|6k#LvB{;e7^$o@ zw|_374rJ$E(ShQ=vJVZg&i(+@K0&?9NC{@^B#bNIvrzQ>1b2smHGPcc7|O}<@7u3GIT3S{(Wg8rR!%p%JK6^gFHr)< zIH3P_RfWZkjUp}b`i^PBlD(v&pzXbM0mAj;w%sQrB%a>k%37iSO5duHoeL{LX>jks z<(9xI@B1k`kITd6jBk6ViSy9BuQ-4Xp8<;)o_(M4Dq45Qes|iyE;WFk3!R(x%&xzi zAHapx?)p1+`BTXS5%*)DF@3Cfe$7iP-RwGaL3l#Ld09=;vKCL!UR zCLR^l9SP4MF(a|g6t+P4i=jC#G_{-Sdr#@RF_wwF?gU>DNEJG5etmYLc zr$xDhCD9b+i27v-dt)Lo;X=j4wiob1!PDvCWlz077qXJkJ%CFQkyGretTUsc!VtB7 zlZ`|);|2efcS}k7&nAw1sHh~mKd{dWLVPQN&o1Q{P{zQDj`@shT2nDPgfQ{1LtBCo znCoUPlxMP^)UrNRObh)7*?eV6z{UyJnIlqTPDuepCY9?C&x%F|51rW$pW0lR@;@01 zvbJ=lO&(wTYDrUVPMtFIO-=*AB4?IO*qCn}8`WspL+rn~0PbyCotIBHon08ZnZK`t zTRYQYOJOuz_5eddrK;HX(Tk^?4DaUv^LokvEXWT_0c@-sP**2pQCO!4wZO-Y_T20G zv&we8OZ&b_s^FI~ejCgE4beO8PWAZ*2^ai0Mzsg^k@io6vu?K(Vgp!K-M}Y_rm@`m z(6Rd4u(H^p>+d8IsaT@Uwx`Lqo%yq;CaHC7^{}p|bJ{a4E2#^tul{c>uA%B19b70BeV540ln+E}Q^^I4x<1|yPfbmNZV%65XGv$?>i5nLHQ0M% zlU40*jwSIqr!i_StlBg%M)H!B*xUc$g-KE|^$wm$*389OCj3%vbhBnizuR2jk=wnK zv6E4^v*YP`zG>ap6H@V6^0PHzw+`xuK`pX+%{>{!&U0Y$*=WmdC6K|@xSsqrye*)= zpv5$-kb3tMzC=r(hx*3OgA@>^#Lx11ML~UCk3bIa_`?KnpsD9s((?(+V9YJ9N!}A_ zs{~T9uGq`%EE2&9QLU^jYo{IC4`g8Sz9tm0Y>7eT-pxjY1Vs~FJD*28j48rpdS6|g zsM^{>Dtzha@NWCFzJq$)y*TPrjA&)yL_YCrc%7V3@%`L=#(m_ z0$6rpfkGsB4EMF@r~29P-KWk8ly&+pkB8^7D%-A?tCO~y=e8SeXixj+12c{cfu?dM zuC`R+F;UU=C``iGV--Sxa6n zSYdc-`nls7d*hzl2T>##GR}px{sP>c0*ge(ck4NkISmef@s$XJ+!{2m^l}NTkc+jO zbw=ZZpHt(Q_QNe(*xL$s1Q>o1x{HsMT>py zuB3< z3NPSdO`Obj2?Q709NgF_jrni<>$EI?JlKvvxu^o{lNKh`j;xYX*9LhaGz_Th7Vj^n-sGT6gWroN_m$ zAKz89bVox5fdQTkA_l3?;W> zIB=711=5j2%^b`q(3D~S9GC{82^Lt){DE`4g;@UO!UYc*k=LKor zKOu8K|JP=BO+mXXwv&!;&mi8Y2uw6iV7F@Gv0(<@m}9YUuNu!z*4YxFnsl=QkM?vZ zZwdS#uZ~L)q3$bWSZ4+4j!42H-NI+<;5jO@h6dOmwrl_0^xZV2l`#k1THZSG9!^H?IN9Tr%YFb*aKx$Rm zh|L&2hdSv-Z7g*}+H&6Jgw=m%cwOR@;4S(rYr?#?$|lB~g^b6C<}!X^`Wlx6oVuyw z@^d@SHopERco0Zilw7tZKKS5|zA?G%0rj9qwEDH%!GmOFrVZV7cbt;U@6(g#J}_T^u)dMP5d4rvpp}CX?k}+WKa>8;+qWhFI--_ z2Hwf`RVT5(_lui9tO85vIKt!YyW|uu@~Ay#&k@&~c3#i5wX8k&5$-DwpE$HO8& zYVDGS{jyD4N&Mas#h*$FzSoBC2n~Q{$=qyhH*p8665{ZU8;M6Bd^^t z1PEkpag`pS62$R%T4es>d>3LZi$Y^jUBVCYQ}_14#|o4)FQ=xP$;=MhwUaA8TSmDX zCY?efFXE{TMQ!SG&GZHX!GT^tvbyq{=RIuc6qBwv~sr{xJF5|c6V!Y zHb%I<_%l_E{KwHJu+v>(!VE)$sClDo_JuN4nj~;x>&LJ4o%g~yvxmNGS%ZX^kWzEO zuANuinYP|;VlX+@UhQt32~U&KCn=HFc&S{*Qpd+87s~qy5Fe$QbgER4s}HPu#8s&X zQ@zK0=KeSY=PIy&(xJ()-g$F&>Q3}0ro_oIXBv1|iR)0eEvqA|jC^6sQltHu?YFkM z!w+RW=0}~e-yt_qZcTAmhO5Z(7OBp8G$TUY(f_uc?%`~ z|N1qqVrsr6gy$Q8*3wpuhv=*l-xs0tz(dADmdx`^{&B-Y_u4-#dpjsRmUtc(xHp6V z97U@=(6Ofsb$Zo(@Zct{m>)iYz=|AZ)4n?)x;vd`)*rspZ%Y(_eDcH}%C!8cgNq(u zOO3dmg?|fZvLgv=^3~e6!r#I>Zp z<%)%=MN2DN9Q%JylB1i5sTa&$nO(}T)cnKvxX*NshVUH0DnG8AKjXJ0uG8hi@37ZJ z#~FTq72XDP0pBT7B8pGOGHEq=J|nx&LRm+5w45d>J)VIG6-BccGZDD;6;uzKi6~+o ze|bzrtCry_ps=VYt$>6X#DV9{%(w*=p$Dg{gTlLA-5-`<`ojqT`wxueFJ)3L2~L$& zCg3f~$(Y}YXhmk#Yppa)G=T9z{!TL*PzIf@Ok`v}Ovr!e)YJ#v>|})@S%S<4kB$lxM=#TJNJ>e&OowCXl*eTIqhl6Mlwlw9NC3tCI z4jN!Jzl3l_yQpH~&TIAbQA?Bb^r>wEP;5Up*I^^ttKRa)1B1R*ozGFyewQ*Mj)s5a zhoTDM)#{{B)zaO?O%&8$D2&RS@36@lW>R2D=8EU)ocN>c=0!@RBWnu`=%$c+gWSi@ z|KlDsloE&g(7XqRDl|nC8uY|OdseTI0Kem0+1%oCFW%1o=GU=-mgGtN2{jfKgIs~- zUwKyHQcewU=2*P0UPQ)r?fK_Ms_Ag%LO|EUPEZTi1u%o-lP@!~fXVe6UXTIXG|=Q( zn3vwCrG+z>9OoZGEPRr@-dHMo5(jR7fF^KHtTE!Pt*sbwFka3npXuHNw8#W(>F3n` zyP`aGw$;5~$0j@(_*o;N5Zp-CA`FP=<-6T4Qs z6XEMxScCc>g3^~#;i?+tB-DaFs5j8F-px^+4M`)n-NY$zo?}E;HpI-!ow`~>1@!JiN0HG)aIsl@jrqxg+jsm6-y;9W_<58p`|X#`mu)F0UH@2 z4%4{)mr+t`R{e%7+i%s{ES*(@Qz#Ra4#~xn3lfzzJmQjseuX*2HnVDkT%TwkIN;99(o^Hap46p zJ919Bb$ZR}NPNkOyE6zp)Baa5C~BK#A0y@GQ!-a0TC`PxMRyz|Uss@Qy?-?eFydr~ zQpu^QtnaL9o(B_@LU$?g36PsR(=er7br88&Oe^9lgISm8T@wLwjgKYQl_2{wcX1ze zwit$-=W0u`qzK)Xx}r9dWc$S=$P_GtMszf6S`Bbi5%t?3Kby(jeeFapV~!? z{Znq7rcI|$NcGn<6^vIqmV031<+mTc2Is3S7n@o)5^cwvJfFv(n{nWrT!w^%m~;o$ zib7d@QJg;swm*y`%klUxpYO|465Faqp6=fgCjG*=sgF&7S!KkQ)9^z{>l?^#Ot0#D z)Tm}t-#ABj{#)|o(wR^tFj&HE!#@Ks-_^Sf>oK-;mPt1z73>e95RpOqSY?`xK~0{a z5!7Kr#Byd{3Q5ap8ND_rcTyFf15*os{03_MI&5`-b`KDb#ca2FE9Ns7uMDXOf6N}`@LV2DFzLV zmxf`!+k|L?`BzxwAq=*QZf>J+92zJPSDy%jxU3Bu^*E=8f}sJShTjp>c%aWI3=bbP z;i9pdtSr$yvQ(RrOgsyNmO!W;KOZSassr!h!Ww@8aZ{NV05Wi_hw2<{<*5HIRx-l^ zFtmx67R?$?KQ_n!Bp`cy@1K;T`dOXy4>XO^284}k>Rx1C&;8=T!!TMAp=r7gr09K_ zfY=p-B*MS^p3)I*>GOP6#5}5fz5Ka>A+0^b)|YF-?0*x8P?7mPiX26bTy7WR;mIPL zexb)|*u_6{s#C!pda~uOr;dVvns1+|r>A9&Jf|NnM?&V~?|K?P0YxzDz4rX@}Q?*yv3+qjKs&g2paPREqDQq1+%+Qvv1S?htY^dBkE$PiRN zvz=@b@dWXy-R!DALKBJ*!D_ z`$-a=;#)D59R}s2Lwu$-NPNj@_1VC@E>@0#$*FB)u(5J9Ij7cyZyG1Iy0k8Jy0nmt z3eaRWqzb;R9t}1G`U%Yk{$|}txt;6>XokH9G7^>pZ4&9C{jWfo6f;&O8Woz0RvOHk zLKCS}u}MtbsoM!Bo^Zmsa5uczXgWeG>Q)GaB2auljo%esmiUAn8*zlRsq}a2xsN}b z(w&|EizYa+>aHTBT#48WyQk*r0Q!)uFJdX~8eRmU)R}g5ACnBd2z;o&9Nu<;|Gd^6 zW9IN9H1+r#Mzo((`03+eYeJC$2Zzl`$|@~%8ytjYk;@-jljrJ0^+*gL-9#s%&xio~`>Kecgv zrbE#jXQ}pSWfz*jVM)h?{bmY8#o|jx-Pw76MmA!$R;Z=PfM>!Z{ShVBeB@OF$BMr& zA2C&ZoGYN7VgXFP3E7AMvgPtoHr`!^Wn^h=@Y1_TE_4LG;}3-NRQriiHINa=>+Ovf zOQ~AJ&AZ)oh=~6EvEmgdQqNhc!I;+s?vIn*ioHyNn?FMOWqdEZNSHJCm{TLGGDcI_ zIY;aoIew$3DkUg~9K(g>7KgUW7`>|XYnJQpueG^-C&t4XAU3&>0S0r*#+*wufFs&kg?#%D&*2XO^8NIHYG# zStx7q&k325bjCo_?uL<3oxIZ!i$}$(xq6FdxF@clU?MGD)O-W9-2jS`l(2C6q~%aK zLU|An4)KRtvWq6Z!qN$6mT|h-9V=u{v4XjJ6F60!nuZ_%3eXYWfI!y9Wi5y7!4?Yc zG9okDhVfh?R;q0Tgf0bH=J{~ukLFSphzwU#7Ej8pd|#nJX3RASQT@!;KD2DSDFh+N zq3E%nE5e(u4th$Cgpzlwh55&R*pH_SyaqYNBxXrEH1kp~+bO(uB4p*=ANleXQRJtK zeNsrKWZou5Lz3C-=`j)_2&De8qA7UP z&)N&w^C6%>Tg%5f#tep=r9^op6NvB6z~xQ6hh>yy3Z|!6d3$;_(6?I-&^X6u393@a zHJiYSi{U5Cvg)45v6l5BXpCV51~avB)Ol`$`?xsv&l{1Hd!rjlXb`9Y>RD9%50zbw za|l=O5G=XhzZpOH@>BP}dY)_g zMvMwoLaV*XaHTC2bzf)&dV4ErU0}vJj4ob**wWM{zZ8$J(h=oFk>R?JD?<;_PF;hu-I7y`l@<%MVOE$P0GuZt>!%kC?hoId>H8)S5*^4p6~}EU_i(q(E(63pyg?!^|X+* z3eve+27c$vHYS%H!0FfrLY7C<3jtx+uH8ehpkt8Fz~ML_`_C#ou{@_Q6@t0))#M>) z>mIng5s2f338=yS=~B2;QmooOPMuU6#W}dG@5nVxfezM>JYOhBs9FtjUi`wCF6?lL)T{3+ci2h=UTTEJ-0gtW@DS~<~ z5%7Ak!O)I^q$=u4Ui9Vm&WQ_PY+OBL+5Nen0s7n+RrM$+C>@nuTZ~UJjGkmub9mK{ zD9`uh)#Oh4ai;>^MdZ{#N$FY-&Ad%e0@e$iNiHBRNgv(_J(06}0{0bYR>Np&RFf;% z6}y;oqN=aWy?@9FzFM^XC%s( zTHOBQyjoa(KGh2JaVx}BER>zTaMj!(ewvLS^xM2X;$7}QZ%dGd3>Xpz4rb$iE6oq# z2?ns8wa>?dRyw?8=6RCMhU)1g8|?vu(cJ&3H`cC=ApD+iG*5vij!XrG_pVvsPqgmp z#N;#a(Q(meaR)t^4!mRfjNI0eWJ^GRi88qDDi$&4C1tHNM)_oJ z7pK%3RM>>YtRgx*h4N01vW1H)30(}C6fH*oRC_0?QWjXN)53!m*h>%Oc?fJpS-eng zp?N8OkXP>Xi?jO##l0DfYF^932KiOSFK*3CX}xxiG5DM!q~lb`N-TKG|4S!X%&JgK zGRt0Ey$$nAxFL{EQjKXju=ht?|L)}dLWZ7ta!8Ea=8?T-{Z;?Fp^%^Nauo}d%^UCI zi*o<8AzQ2lP%Zw2ANyA`TK)qx{)6DdtKfB)}v!zPAKn`u9Qx{W&=H6$7m@ zHY6ZW8%5R!@+T4Ib)K3zL}jVIzN|1EEQBz9#Fe9q#hL_?a~zPK@Z8&=bj;F{iud&f zO(`A=oncSt7u1KAfm7nJp|3!Gyw&gO)&KN-ohRuTxjoVFcc`_eeGM`wmxzhG2*L%| zye2_ViVu5pgrC;^+ii>4KP?g&MEz+hdp(srrKQfK3JPfSq1DT0ctu>e&r*C zx&9_IixSg6Aqs54TmKKW*^~V0Pzx?wi5& zap}-M@_#N!&?}pv29xE+^>4bCBlE^e!pyYGa)9)b-^Z?bkl~MlpZ32>v?%AtW%Ui5 z%_u7#8O6`0uZ>!(?NKc`(FzM+I+-C&eg!sW1Tr@lt#oi50kEhf%7u`O92+*qt9+%-d0C!PF! z-w}(@C={K}{jADRAqSj{4IpWAgYUB+=G@D-IcIwDN9b<+MsXuXn7EbM!TJ z;Pr3Wk!)L_`jAhZ4P>n+zw0c6bb<+x*eydf<}2Dw-nVC>u5{04Q^#SynotQVZ6GdL zL^5a75JWc$>I)6%R2KG0yP5$PDZLpb7=>=@4M%bo0-3#XpVOpdzEf0O9%*gNlaNkd zC)|m;PEt&AR>&-K*GRg&_C*AX~ly{xt#pkcPZlx!P)5sI+r=H>_G1=74 z4_Y-&J8#`lJjDf8v5Waj#k^(_5sdZ~tX`NeSjAPSvrO1Pin3Wf9-RKV!4BY|lL*SL zYy=Rw#FFPRn7id-4rw;T*Qxfu!jVogIN_NOyfPy(Mh@)ls3aCo!#gnWzKP`4zh^CxlzeH&N!+NQWBTTAQ>JsF-c-VMmUZkm^=HFW)H%Z z`9@r`t$k|ahEh&R(@%&BAInIl(M&vhVk(k$UaFMz8Wbk)^xAT-BvweFT(sHLp#a*y z=XL|X=8|L)123MD-IzKz0TNOw(0WL&TUgQyZgF5Mhn-1hvJYDw?8#h{kp`u$hL6w3 z`e`%+4zX0rHKT8hGo2|{F?V-#LExAd+IoUY@7W%L>p^=Y87UMlh&_L#0NvB9F>IzmXa`X&Ejv1(jJl-$VPWB5XZPtyKtD@XDFS|-} z?c%qLEjW3WWr>Vwv=uxZD@kgrgne@WN%j%WmG*V$oJefxRPytapuq=>rG%CXQzzK?3FyeE6 z22mxKs#y2OMITPGvK>bjQG!WGgy`Qqz3HXk6;lipcs=TJ6}YXF8>ux1@sewMo`-a7 z6&s~uej9lP{QTzLcR6^dwb@xZRlttN&x{RyRDtQTAw|sT!(q%g2^{S>VD#Lu4)aeg zFt4llYUv)ySnGmHjtcV_-^)FX1DQm(B%LTI%cwMot|}W+B?=o-?lh&78y}c}%U-9* zF+tnJEoxG$LYTfZXhBWyI*>hanjNJr3Zc5n40E+9hSXGc98#pR5YU&iICBSIsR?~% zoh$jE?}m2(ANy`O-~@eZumY1us}DN*n8vt-M9Mo=0_?H``)WdZWradNd@?AXDl<5= zn6i(oJ|T;cUmsN;b^L1RRb--4zxwc0Ir)(S zypDVW)s^4G%6WDkw+JwQR1QoikRW>#wM^!LzbLK!s$q@!y#7Mod$5+3Jr#l$)G!N8E51^+%=a3#&WG%27a(NrPu9kJUvi113+blZQ4y(OHGpCo<`t?XKiDsg|SbW65viJQX37^g!&@<><(D;ybTiXRi)3d)gQ z7^a^OVvQ}@60u>9DtJH2g?znL0k%lFNN-PP$%UX*Aqgork`#uMb<;X2+L|^UEzOz7 zx11cmr8mwnNcPjfCO%*=MZqpms(spuHO6q6j>i1zV+JJ}JWP+3_ACS4Ko#V@N^Is`5|^)_wJZ7DD)GkUX-Mn5 z;KrD%khdjXX={>Ws3FdSjqU&zvqrAgn5-OqQZUat%`rxb`N1%6{rfU}0%8 z>b8{uRsFocc6YYh>@)9r$+=mH<1$8l1g%Q{cGh*}#(Ss*=JbcYWPP%B`a?jRI z$7OupO{x@qfH<4aK;gHynj=aYlaEF+o`Yk=*B)=Ut3xCHG{3!*9r;XJTaJKRM%r=3 zSb}niF3_H__QO8g%%|r;Y=%lRS#~arkpeAV_v+)7HsDD5`c-RCN^?nYmb4 z`0LHb%ON|DJbGTPw)dAC*q2*%{>#%25(8mX4c%tD9W`6|h%H}EL@%Ig8OxW4t z8pBh;ql4K&wFKt+b-46V$026i>fXr<*Iv4Hm9`S5v)}{CJ=$j8?=ajx*T6Vl0J)>F8RGZchfHD5t>$-vFKypqATs zNpFgYZ6wm$mg z?_WB%`MxjRV*<^MP!ZRm#;tYTT~@DaWR7xljOKoY_obt?`4TxJep+YPU`UZ@DsK|E zlQhWAdYbW(TKd)#8=$wO8A0k?dJ^mNx7eZkx;9!}Axj@gaNjtU@dGPueZ^+g!3Di# zlj$)+fBBRgyifR#vriZVgnK_yT-*#|Pk8G_N>41mE@}!I=yU~#54x8Q$%BJ>bSX^texMqrW z-BTB!E&8-x%}cNDJkod9z3o;zPm0h+<6aWAT|AZ#)qZ8^n;a(_k?XS7XF%&B(o}_M z@}OHwxbOy^vMJ#7-2n!>srVy6Z!@54o(zR>?O<6^pPTXW)RZ@-=b;2>hxYEzQQizC z-H~@+1Mc?5?1k;Rca3ITx%SWrdA3?)RAV@r=JHX9=fW)m5}FkWkj%}lptlGRBe^37 z!9hqf0NJttqq!fVM8eN;MTSbQqnUan=*5>0$gu2c}R>dypr%*)+v+1GF`7G?;;`(nU>&04lyLuk;7|e_4Q*fpB3bHsV`~P?hEYM-`6tk z;4P!Zu#a?+CCTeMca2W(6PCsw$xbu|Bdckrj-&DPIROsi6W*Zj*Xxzn8g-hSWP}N_ z=%_7jOiQ-+XESU7w_)x@jO9!lI4!VC+1hC9L~8SeAlAZnvqt}alFaR`cx}F{#u!6h`_1=Jk|eyg zXG)X414d&PFg_)V8e;!aRX_6@rSWGoyHmyIXcSl8%*LAo1#D8fGSskrfLD9~XY>XW zDvWg4)K&pGx>Ac4d*7fE9lY7|7I(TG*$bRl3tXh}*^yV?M0H303IIaUUx0x6!%UK< z-&TLJ0ijF$EN-)@9Yxa5NkJb%S?X641a_pyz!(E*)LxTW3j*3H>`K*N(<&E$6f0^? z=EUs?U`xg5(QG4VospL#7RNQe1cEm4D5$ z8)Cg|b-F4~h4J^tHegVw>(p+^T|`Qs^q+^-EjI^VU_+VDlaN9o$w(*A0YIb`H1j5r z;Vbv4fiPqnh96I^;&NJ1qh3)m938B&4vI&DIK+Qc<1Q-2~jZDGz}#t6cCjUaaci)7?*rTgjce>7DeDkANu8jpg_dy@ijO3}H4Bu&Of%J=uL6Rw!AJJ1F+ip?RZqsgaJRH?P9gZx42J zYIMGP0F_@QM#F-^fnrgv{vhkp5_}DZS6oe%~;) z6wmw`UwYmKkJ8(_!C33+_|T(`(`p3hepnIh!ec_MPD@MXt9{r{3BRiqDiA^RX^-wAt zK6R}77%D%WJ?{`b1i$PjzwDho!q#TJn!pDp>_Jt|f~f!rLlj+_N zE|8u)q%?hRHNj)d)))7z^)jBZ8dhfD?3v(eIxNLueGi_iS1ak#Ga}vVVv{{;m~;r76Iz4YD}r!#|O8`_g8e|kp*cRzFq!Qh$q)wSSDm0*}xz#G)7 zwe`E-O+J_F$1e-6m0dRttqi^|D89dSUw*@-XX%*iIj{aSBJCbK9na5_*`7n_SSzPB z5a9$Y=Y~>WRNv(}&Ysf$$JAE<#qk9F9uC1ng1fr}cXtTR;qLAPJ6wZHu;A_v!66WW zyW8RJ?!3$YtM9#cTU#}?HhXRJ+n%28?V2OFYJsCD^oh3X(X&DigsdCIr-C|tke+;> zlC19;J{9s^Nf-C6o$qC&>J!$}t=JHO-l<%6WU2VlUv#wgyMEJfdH=_#oZypZpJ0oL zdanyz>gDhgdFCs#Id0vVHtp0YIWPy$O4`k`(u}(HsK<2;WK4Qwyr#asJ6Mm8No zTEcjisO$QJzsv2Yz^N}$JH!Pp?<*#f^PiL&GuPQ?Y0rxC%W%)wOd(zuY3rSw@Vgdx z7^CX2kF2^I^^J1sM`Wn}#erq+PC*G8k{R~5d6t8U=w1bx=HsM2u@@n8Np_>rtovLf zf!|L3?=xH0xjWI%UyBUioBXfVf*oh%j@5gygXIW3d8kaz#q8We+}C=V+PR*>;GWkG zPggy(POW1bWSf1oSx_Q6$daAw3|kMwEn5vY@0c20|CCTpbTHl|aNDI0Sxto17`z`= z2;1Ja-`Z++Gk*Ft>Y(TgJYjSrkx$dAd@C+uo`<2n#o;X$LWm1mGf8*~t?yEMVY=*` zPa3O9Z8S8tXJNYxV-gyB6KNiw)!VQ9%M`SryN$aCXSXgUApr@BS2)^GAjIWg#2{wc zO>VY9QfpiJm3HQka%=+eG`w&$%abf2uRmh0`rQ4Iwq&Jl%=*h^v*H&_pMJt5v!bP8W%7Kt1(4{8 zDTCSEpP!(b$}U-Nwn@xAo8~`jBwor9j*tq1#So171rk=7SR6N`AqR;f4W0|+diy$xoUSLxu6jq_up#(Yk?mBw)o#5oWDPx zgM1gBi@M*@iQlWbvmTAnma@>>9|N|RP1R+Fa%!hGH4TQT{C~V&LC2nFm{NCKT#aT3 ze$3ccEK)ANPr27B`u_YhHbjhS`O-aKDLhnYuLj1NDHR~<8bw#=B0nx(p2l1}aN}w_ zbOC|uGs94;TfyF!j_;2(@5`yeZGQJv!tyyUJZp~;{#!eSOx^GPslpFQ_x>*kBP1`8 z{@2gCepWC8LG0tT8Cc+xQdE4Gnw?@2qU^h`b{i%!YDFjI?iIxdb0;JP zBKy`&o_g^q(q*GNEhMk7Yp)T)Z)}Ht!RNl$?=V~ZMym*Q1&}a406q1H0NPuc5<+cRQ@WB`T_sn zZK$#`5~>h<@C&j#BK}+M-;yNzZwU#!iM+G~;Qim0+gXwXIfCRQqYXKO*8gvZN?|~Q ztOy_l{F_hv_VYyF$LQ1C?c4YoYDjoIfLt^XE{Ie|#OgCv#rHT2n_Y81Y|0?Hsvq#7 zQNk7c6&fna`OQuA>a?G1DiBLU`=#d*J~eGpX(Sk7D+hOc%=S7Re|&Yew6HWBg0GK1 z83z(roUgXt|Kz_1xt_JM*sxaz!~w6~POD=5xc9D*+1s*0y?bugD&NVXJTimwL&3%Y zCKJ430efncEWb-^C$l!T~_YDP>yZz%wP&nmdu(Tsn4PUe_`0Hvf}%!Uytz$kBww7XWQz z{H-Mt05dQM%rRtGD2Y{8?H+>Y+hg4n*Cso2b<{%J;3SysXa@z8_jB!Hms)*X$_4j1Ea9@CRs%CtsW(EfEWgpSb&*C5Ggr1 zSwX@Z%rX;MG-O$p$_5=Pawc_RHf}_z=R5m=;rn-eA2j%5nc{aCW5+uE%z5cp4KUwf zbB*U264}EO*wg*KdOw?g<6yyX8BwAZ2DTXnb`cOnPd=A+h;R--nXt}hS_CAGI6?^s$9TQd<{j~}Vc^xw&f^q?Qwde2dDxVS8rmdB)kI#krA!(Gl`~P3T5(uh88kJds-bcBJeOeu zZzn=jM|6RO3<#L4Vss76D1}8C#4fI*>_fk5kV>_&&nhnmzbQLESREO@H@gkjST4S{ z3#DH|ih#tqh}`9J8DS7$B`C&|)-S`m;2M@I z|H6LECEqA!@qD zoJ0#O0$5?9#NSd@^EHf;grM3`^la@vC^sRDz9^!E5s!~zC{rPn_xHorV-7i1XQwMe zWdd-6L|_pyV1gpaBt+oS(JCE|)(IP_(L?ywPd2vN8lpVDl~3&yW!l1B zJr2MM$Bx6|)b~y{6C%=ijvw>C)~M~o7U7ocemmfJkY_3`!Y&n>*9b3uL&ve!hb}lh zG9;OPgT=67+zf-J3{z>uc^95zC!Lkf{~%hG1PD`m+m2+J^FRW zWXhG99@hB8`I}K$5Hnqw7Dygpa#NZyr-BYViVR(o4EdX{<5EnJq1W3)oxzDGAGBEp ztGjV)Vf6GZ^Hh0yz4~sGyVJ1X1q#=^#=oZ#TMUK#Aw6dNmxV>CPG&+gX~ZTs-yWc+ z@&hzGlISQ#MuHrDMNsaSAq%u6SsH5+>pdFrLC<0;<|-~|^>iVa((-Cvx1BVHW7w-X z!;C2XdBV@vVB*C1Uf=&z`2BV-&^;SJQ^{0T1nv2 zAFrxk^yHi9)(zHuEVxEkgle?UGQmDr9p73VhgPXQ^U;mcFI<#}TC-?L&_~RSu@j3& z{6cY~W6~UEhL`Y_q>YTO>Lr()QrlF)4^{1$v#SVDF>QeE6t%=sqGlKn5~LtZmrc)f z0YDl~D|d)44;!;S(msB*75q-x#Wgx)q@u7;EJei38w5(XQvY3353ZSidU1D$D0_F? zxFybS>JSV{Ul8=hf*a+WVzeToA_*B6cXbo@5D66sdnFy2K2-NG%@_-=kbKbuyCmSE;$U z(YB6~HmfbZjXvz!fKeDAP5bi~>3BEgdNb~^HZx&lGF%LLEG@)MOT;|hP}qd>@(i%5 zCOUKjJuDJ{w0qpU&=XV$Q&n7icQCb`F=VwR^O`aCiL6i6F2A|Dx_aF6X3_b8Nl+iq z!{YGMMgnv?hXX|@XkZ>vsJZZPY-1Zo{5c>dH}PmeQT{O%0JRG8IQp(M?sMkopML2- z1NCxk=m@$VKeBCWtmX$r=iw#N_o2^1(I*Y>Aow*|3(k_wRFX`LV#nV+`(7ISiHgAi$<-=RUx7Rr8oo4h} z2P^Zf+;X!U4zVzoMzQKAkFn;qO>ys%yr*z~=9MINFPZ1QqMGhz_yb;-tAlwTVco|) z8bIm&fo=F)mA5@7U}M_Wkzkt7XfzOy>ip$0^W5q37yrazyo*s%$+sCzz*@~{d#R5u zK)S;ge3|V!W-fTr6R1ey`)k)9F#f)z-?;*OyU)o%`L%iELC4c}Eo``iV3;-q4*r-C&*Rw)4s6Dz_R;QSYxBDH;|U@fY$V6c^YiKW0aAn%>lU zqBaqK;?C`f$#{PGupj{wOG072&Zs8Yu zIjshijhijTO|AzS53(l|%Hw*_TYvo+;|9wnl2KH4q#%`u-PFQTSo6`S6tyte!! zG)N(3P$~mPEh7gMh7t5S`a~LcV|rArC<4d+?v#6VTz}r!O9cIBQ+9_Nw2py=SavEQ zXIplutv`K7B%tnma1g7%tK)@%da``f69{v-=HnsMjuS9FA;jmj0m%&3-o*{i-gf$$ z$G2S>%-_6%$kp?;JSHBx8S4a=pA^9r@mHGe`_@1i%iE(ffCN&O9(LLDgjMVQ>k|~o zhUr6^ufnuidZP1JefQ6*FpfjSmt%?R%C8`yhWk0ab_CA$`}bOy07b-h#YOwy7FcuO z>UWUQdgtqiBfh^%3lLdYTPyi-B&TQv6Eko)7ZnHgO3W&S8pC&2G6$F?%-Dc6clNr# zklEls@^tpH3qvi;ib9a{w6j5E`EuWc*6O&*1K2onTIdHc<)i1J6r2WqCVedvgNdO>y38_gHfHG7@y%&J{-7tJe)n%f@!Lt|+IL5y z&izpCk+U`rRKkS`zanwn(f}p%6nh9b^U&1T1TL|psgHf-PHzxhvm`f>Oj>f?xwmleD#;C;P7ysdSj zJPXs*Fq76^jx3J*ad(P>PcWsYRKLlJDNEAc2z48qArwFP@xiNW{1y0}^XI3p|05W^icXSMZJ%n2nQ==AU z=gw+))V+2NxcQKvdAMIs%FD~6&OJ4JyXC{wH8h|eEP%X+ectwHCl%GDr4JVEF-8a{ z8=rcsa+i_lLO%5rT$pgQ3uL1N#>t-W_~E}o?`gM}@!2-uYbw}9KCIK_6pVci?Y*ZkE>xo7b@`nn zIZyh0)T1*T{V=O}s^O-B2!WmD<&RRBg_TRK^*rWfy1rdb>N$Z&Z~SwEa$QPO*LUX} zouc~@yM4=oB6SC^OLX9Tc73Mw*5C&oBymqT zgw#S_R7`Vjw8?m(gWkTZ>@3iC#9@AYA>6MLZ*NK9R5~z?g(ZA>*{&b&gKuJC@qJ#r zs4O^MaDbZj7ub7hexCQ&pF2AkcqhbjS)+0{e6u{p5wC8onwdgx_El^5zi&D9K^-Or zv0=ihtOX`+-OB~I);ki;5yR$g2k`$y$=!b3&(%DAnCY$&G#w)UXhwm^n^^o#1B*n4 z2x=gpEp39o?~UQ9w8`;nkWN(C7DD9W?GsUvsa1(!OL(f{Ra0eUqgMGO#omE|PhO|} z>Q?6ejGri9z~#EX@)DuxIF>VL6bZdofAgfgF($%|*c53M&n$O1M%iTgx>hq($ToA5yt&gg45{=63o((jFop zitve&4Hm~tARGHm`-1!x6~~g|-p9Wc78k<@#Du(=142kM6$=Xws+7imm_U<4hu$rx z2M@eHjb~(JP_evK>2{A+R1eZ$J$8Nbo9fvXwyLi+Zo;hF@k4A!#B**rHYZYNDc58s zy1U5Hd=u(E-pKrQC0_oR?f3a@nGc|oIs4>GN?tCc`~o`bKeT*7u)S-^6nYB^GOzKw zJRaemV0hUZgTAjX!8Z7E&AsMP(|UP{PICDACR*Ymf1l-A?Oi+5kdFQd-TM|D=6gNM z+M8A0Ho`p(SfTCs4tZ>DAT5v-+@sO5)=bZDyRJB~{+y{oy3sminj?NUV|&hv@a;WT zcU>CNwnX7gDyj&p^%q}C5za~`zw35iD*DdjI)BBzf`ttha$>8u#Oe0s3if0Kx4-{A zTrkVIOhx6eD)g0Ce_Ru0bv2;Dh$1F5q;!41EJ$kX?fe>S=xfYM&!v==D{xg)GOhpz z6?D*9GSG=&G%Wn)roG&kwEhcZr6WKR_JbG7qNf_a*tOFT}jY`R0`_UWI>5~*UrCZW=-++4Dh z-YvX(dmF5e(w=d!TGQWro?zkA*5L^*ar@(=seN*btKkB*JZQD*qsxOLc5u1HL7du% zLnQ%(AZ1R9R6NE)I3yEnv4daAD|Z1O|a{m5JegtO^lJ5eB==JYiAag6f{LfCjJSYfX+qnNt=t@tORq37VW;BbK`;(QQVI z>?EHYs|}q(0yDi0+b(lUuU?$-oW^%Xqm=HHvfZ@lx2IbRGzo?8##So)-S$aFQRAQt z|2SLR%@J>|TUV)D9QmI9UFq_=pBT1XH@rtEuJYX;fC7|zuvdSx?iIWX_5azq-9h7> zlR#c%JJWgUbKEs}=(;{3U|9VAC~2XIhh^|)GI{?!RiMFI2h?4~GWJ$2zkd9E*@6Dq zA~&P2XTRdjmr?LF@-x=NMpksid#&%dcG<&bf#te#lb2Y1_ZSiTdDl&rK0=)Pkkv@Q zuWDKr;KdVya+@|)sX)QOA?DVG!m907!2h61QXPpsmG-U7+V~57kv}5`1(*A8 znfnrq#zTe^OR|l71gUDOrVoA}ir5C2VC#lmKt&u%8luq3MX8CAk?LN$8c38qza5km zMZ@oiUdl-VNb|Yu%hWs%z!ugQNB%`-$;)k3f<+o~aupu-E4CUM%I!kIzem3Mh_ECk zYnI({+3R{9n!woga|LBBG8@6z1=;rpkp?g*`@nS}1b9@jt3VnwfKwfI9ptb$x=^w- zSn*Oy0Et@E*jMXAI_ZkBPUc|R7~TOCBS-t;L~bzOR*OG)uY|wNpyFxnh#p*fBRKsy z5I+Og)58ng)%TYLW-7Nzxfb9S(2gqOS-&-MrLM8_VT~@{EqrcR)^B=&$kFik9B-RV z1mM?mp2x1a1)(e5zojb3Kwq~Z!PbG)8u4!Do2hmXaqYgpZ3Dtbk`I{|5?#f8R{ON|!=>Gc&5O@n8{Q5T?YHkAb8DwE`N5JloX500C zphRMLdm(85LeIWoS&Gu#q5t@J0(T!vqW0Py{Brx2!Pc_wyfFv!2PI{ysuSB#W4F=C zV(+}A@(#V*bmqP)>~?1&U89LzWg!~~W+RP(svQPx3@)&=gZbX;d>T$hg=Cj1JHMcf z1}+>VrjHe@4LDi%sFk$P#n7T4Cqy5*8qEWlp(=ftQ02@uhh}BDGps_Q?8lio7)4C& zKtaKw(P?I8(LjnHp?km&z0*xdq}0r zaYwpE)~=(ow*5#XSB)!NUTL&mc~lU!qgaHs6Nw6lS)?Y7uvhN0&ExGysAqrFxMEjL zdx_@zTt2p5YHDlJ^QZ#mMslqF_}Beehqbn* z^US5w>wIn@@WtVLvQVl%*C&GYC*N%vUG8EO{LE+5bNq=^=>fwTkGRvV@64UO9!|I6 zB)%>`eJtE;YrgO_m1K>8{YwT{JO-0T;J>);x4}3v8t(1}-Wz(>Wf`wLZO+H!IIJxW zvprNM&mZpJ9!1=MnwpC6)_mB+HS(6HL0=BTUL8B14hNLbZw1b;0z1`HbaUnys+wL$ zuN%5nwU&?f5^&tCw}HH!(%~%VMK{N*&9~{De2o@ElJreN$3a3|K{>|fP96&$bo2$@ zVE=_my{3Z7t^ND4VXG1Pk@s5Lk&+eR_w&0dgkFul>uSN48h_KNH#^JJCdaN;9Q&uA z!i`EL>OSEO?aeLhC2qJpjZLU_{1hqNzPElQB+c*lC&sOQ<8r2ZjnUP9Z7txfN6*9g z#J)qAal6#~FKA~%v(RQ#dm%1Z;=Z_(`2YPNnhSrdl)*9(uc zI^E!X;A?p~Jj*0mRTP{aUgB0Gy%m==?ZyKtDz`A6z+8c|k?Zg+jact{D4aB?aD4;u zJ`$5j^uuF|kSxr??GUg#LKIGXDnA^A611+)y0f5Gf^(>jKw*?FC#BKE;CC>^v6%`} zr+r>;1=enGUu#usQ>=ROSl}*GA8QIPy<(lemdfQ#@({qim zMJFm-)qPtVZ>}mm8iXq67ju^mIY*o$%3G$mqI=z99dbKrd`I)U{!>?w@*GDfv~vx7 zm<@J6g34)|`1|bF(Sr7TbRnL#s3uMJp0Y4SOmbRQbj7!8P2z^TXI&VaX(k~ zeDs3gXY-g>AT1fyy%0Z4F;^d9H-}K>jw5}Ts++BUnQmai)57lOCnDI=um}=4mAUg2 zz6X-jsA+Wh*y&0myqP)L@cByn!!wpkZI80Z<@ zhTa0~Iq-gfCI`9^CE8%B-gKhMKx9BA(-B&2+1oCM%jAIu7VU#i^d!mVdo8bs^eOru z@Ke|wZ@c)zDPmO=R8L7cs9R_MpSD1V2ysZ4T|>ys>E6}$kE$#{j&gc+G-i3ORLhGJ z`TI1d!fuN;jud0kSWS>IN#w!g2hM)9C=p4T@sx;31a4uRqC=;PocK%~xad0vv4)5= z>4(0}Dv9@>AvPF?nMOKV4jBU&tDwlSY@CKvU@+^kz$+ z)bH5UQ*e82?NILH4>Pei(3lzI28Rj7^+cyP#Ss;OEJ0~@{Q<1;%yqduPy8Hn1>R+0 zC`>^!NU_p^A!Coy#wuT2iZ1TWajlK@!<>-t&paAf4C=J z6SWVqSdrS`pfF_SeKS#?>`416L{YHmBcQWwhf-bWiwIG}hZV%Anq^Hsogjn^SB^E! z8kCmXd`}GN8W5$XyP+>LuTr{6X41gz(n@cgs+wJEda8_7uC;!(32ruXtC5`Kj}h3^ zgO^Pylr8?Kt_hcPM3a-V>wz0Y8iMhpmnVX6_v=7ARqx%l8bpm9*yR;>r<$JItul|? zS4$G}cqDbyhKDO7hio~2pElV%XKdwWy?!n|ol{2>Pv%`~ZyrJ9w1_Jf(oFxV^i7)i z<{EP{amzdgd?!MH-~~rp+PXW ze7a9kqP)7xYjrik?x{oac<6Vj5o?`Y?c|gO;#QqeP*r%wSj!m4=Rk&F$B=*mOKqHqE6FxBCOA$ zq#DfQQy#dgRK`fq>>;G_^azvb=`dMt1@#Fkaw(2?{~HS+yF+MZZR31)Yzm|oOmRHkw7RAiB2VZi%XS}Hmbrcx1&g?o#3ld0GelTqz%s_~#rl@dw% zLXU~0npYF}-Ad{pEZs(q9YfYqnX4|*L#+kI*r|jpZT2hHkc=#iTpzwV=ZLb#t&_&N zaYbPEug%z5eQy-l=9F3MDN35$+u5<<45qQ#FArrKLY4&j#WxxA5HPUk> z1pzm3Z{DSqlu)OLr1J~=h@E>Fb@clg;<0I1;sGxpY-oiic)Up(d`!|b4SUF(r-{|f zyge6mL%EnkCzM6zWQZD`m?g)O%WgH{WCdG;H8mE`Fpvh3Fijg@NL(b&6hDSTH#g8} zT6hZ(w66j!lH*`a$Awv!g3zhDq(7-PUA8DOJwQ=>R+fG;8f|wLM=*;wsC|A8PfLeE zXrfc!o9Ep`YRb=vn|XEQk#8JTP8}HZz_<7VMN{k@?}>u%8V(#OmLRGG`&v;{t-I7q zFHy8M*|OmD)lO?qr(P6I_EGYS*r;%{gMMug>H*RzgZ=~#1*MA&uaxhX#v5{vDY5Ao z(dh%c&|=Fs75^2qG0u*13ChFLtuTMJ!54;|FBpLU`x)c{oIF9@E9_5e#Y zD`wgFIy_bm^x|k+MpZUP%F6anvMV>V8?e(6<7p|FlL4deRywe+h_tvy9WwW~xwUJ_ zcnT6eXoS@~zN-0acgl*Rdj? z_t1?#%H=5ZztekwmK9V0qMa>lz#NP*#FtXFxkU zUE+1%L_j4$te^C##mI7!fos~%P8({mZZ8xhVOq?B)XnLq(5-^(5q8Y!{z4T-iKK*9BMe% z+iUPxyJ>VszhBLYer>t>bF0ra!dXJ6lJlBPau49c!pq7pgI_c+JOBIp*@lHFmqXLe3H!LrX7MS*ZY=TvW1l zJ*GzcizJp0=vIEY%b!Zxe7{d2913hCQW4OG>@J_*h z>3ZvEOt8U!)1{TiT3PcTN?CwCDt(Dx7-x{)!eVa=5AbE*C%x4UUQCCg!4p(`rwpqw z3>~kl+B^D3d-BNb5(O}rbw2k|LX*vPXv-Inq!(ITGHd}D%;rY)CVaGl;d$vK2E9iUEAh%qAe zCqnO&oq?4oXu#SYoA;s~lDqK?baB|8{Sf|g-u3P?d!gcT;0%Y2qVE4VtcTLI*+$n1 z;MueLxmI?w?Qa)#x-`6-Ilno-kcz4Zv(e#vq@l&`b4&~nDXGX#n?`n8rC36K$loCV zwCwBx1~av_1}YGKIQ~Sw0irWR)gN^~L-{_wNipq?E&(AA_=yuU9-Zb|Qc?Xg-@Wr^ zTqj$1mb5b(p4)Q<*22v&Lk*16)IkNlIwTXkbEvs1A(_dn+NWDcQApV2P}_9gzf-x4 zG-*Nsqf1ICiZB69SEUEKVMv3SF?1mT&)z40mG%tRgij)(i4 zL9TwL`l+RN>Q|m$;8oPaxfTZ2d;1AOKOa8FglQjxxTra`X*3N&m^P2;BdroH`@re# zIV-qawUwI#a^AmtfYM4nc%zjk?$u-Pq*)nn@t?tyMEqTCrkZB^#)>TDGh9y}I%O?Q zw#(|9r(g93iYsn5x`rSKGZR+7L$T$5l6);KD}lwQkb9?-GxQscZY59$?%8DyZn3t zL@?Nx_tKi~R{6G?-Fvo*DwN(bXX}mZ3|LxK?^SHzOUzZI#B_3;wI6I=EeYtM)UjLN zbe0bjb5Pm-I>mN$3Gc<`o(M>)e3ESSTE5nDeRdsr3pW6w9Rz;9ep5F9IH(vf~Sk}w?i-LSo4zuM1f zn7*0+XlXPNj=$9lgg!4>K|9LpEY`ce&RB6A0{QF5;hcM9cTi$texFa_*Obw9ahClP zk~d_b2o0qP8-#`v+{8tL*!g4t7$p)-?*3)AzPu&LVWQQhDFD%PiXhwZJ|)5Zrv;fx z-5rAxgx&ERkLyPOh}~;i=3a1ZWfcZ6NWWL&1A`eZEWOUlbpIwm6kwV>HNf(Z;oA3k^IbYWrBb9!Lx;kfmMocki?WGsFP}?ze71$t^-4JNSdi!L zt%Y#|;cI}T@K?O)aYIQ#)+_d>9Ly>k%|s18sTX7%LC z@PhT27ceZrq^F8UY4Z0+q-^9kp}r5lWAhGi$t4+~_7{ho^oV{ZV*X)8CQ+Wbaq;2p zoAFfeXw@-XWTPZY9hvig$W>-4=;hsi9s_p$(#s^{U^6`Y%xE@VNrT;|^1&>2T-b8q zI9su*qCDY8lxqVa0Q8oWGmsY7`bB~<3TviqL=xDhhm(;w8a;&?k2|>!IFt@5f(%8^ zIGOuZtAO11r7U9qlc^2{1RegLy0sYm#c_xCa|fP4rN}i-9g-gkBJGRmLUyR}oYt4K zBZMWo8HHiZl8y%|7{7fNAb>8Wrz2%0lR6K=gJZ$++J)q~l@bm`O>BHvTWOa}zvLJ} z+39}>@FTG|ke@Y9mDyH6a9Zmhh;$9=A`9~n`fB8j(Yq!44?rRYop{qcbJ;?gwHUD& zhK2e$EE4lFvH#Ge%s~<@86qOe9tMEimR;`Oxl)c3rfQ*LASXMiRGI#n7RVj&UQfBY!zGc6i<5n-T!8-5I}`c8xUsDx@bi z$wHx*o3C6a+~gbQS)1$s9Vs%75kx5m9YR_k8&r!C#uO?^fDWgRL+2lHc#xWfEVP_a zrhvPA!lla7SXb&Kf6=r*BqJRbO4_!?Cg_k?6bOqslt2(fReg{z>5Vo(~Zsp+~;`tE3K#JoXU#%YHKz zsi-7g@QBNME!E6<1zQk9x0n4`G>#@eV8{Gtd&kG^f-iqI_^XfMzJaqdy%w7K84Kh;Ii}To`knXKnsV-t}Ez>jGAv> zvR(1vQ;F@o>32V+7cOB6LHmg%%h#gKeL_#1?AuAltLJ6<@wUUwc9*O>F0Uw6ovxBs z82|K59w^??op1Gw>CMl_`%xWO)g4vuHPpLa-uxZr1diU{RAdUB{@hv_JbtSu>P|Tz zg(gTkr){#$nPzEualXa25aOmd#cbg}kGifzGGs!$dMKY^3Jrxf>MX{FC2!l$gVy~E zL0z>ZFJGK2V%=-gLb0TG!}dRD;?W>w#G%-fl`DhbqObQ$c}V4|UYba_rVOo4o=XcN)V-VOyyn@CKCCJZ zT30=_k#}FRw=YId?kfA6$>0ewiZ-Xsrg@ul8dWR?Fa4E-fQGZ2 zy1hGL@9m^+h+WZPp6}QoZg4Stpk(w(T}_PQMFWiUE)>mw%MdV~_CQMPD8(v@e>Uki zZuQgwdochf2ze$RreN?-T z*JdAwiC9BOMWLTQO4*-sXZ^@?bW~ZtrV3?IsEhb#I%C9l(WqEfgb$j({W_HaYoZnt zjl;3!JQeY#5d0`a&pe=K{LZ7jphIWYE2f%P*Y5E(Ct26&Y{WN*{p%Itn#(7E2*wtN z0$TZMt=Y?~zmA@2o`m+yWN8*Q!Dl>?pQ;WgXYqA^;|zymVhFpZZS7tx$eVAcGwF91 zmkQc^uA<}4ZL6adFqaCmetT-S(gYF%D!Z2lFU+Nc_pg7rLjW=D}%4$*2{2PRFMF}8) z&l{PXy1DefQH-*XmoB0)i%t|HBg;CA#iM-FdWQ|32@R=+G*SGonG;J$Kt#y;43|`A zWY5(nUF4FFNZmlO-wY8ulWd0(i91V;7-FOl&ElZ0@|%ZrVANZSJ0!44Nb1x9-=PFe z97l85Ws1#6NtI!2ic_r5);QxDl56p;F>U71&cS?Pr}mQqfHFAtvN+sgaq(7>Edrue zJodUKl>8aGyH+lg9YHc^L`ug3!!z)H#%L!l7^_nK62C1li~dm%@@k~eOR(v26*2pw z82|p?TMO)>mD8`y=V=fJ6OyD#hK4B(dAmL&;M9TLvojKwlmA$USjDZa z=pVpX&7+lbwLPg{sX}#w2@o7CRVAL#_7fpR zSHUmI6q_qr|8cCYHQnbDVaYy_ipL{fNKgix|DOyb65=!1go_*y+%J#1hW=wBS*s{) zyP^nKOR+r>O>RWm>nP!(v-yAMboEF(WP!z%S&Ibq;b%GwG}+K_J}>G2cEPsfn|x)b z14{&ym#ISvo2L;TgZ}4X`+W$HxwQL94wmZ=05gIqvGJc14)u5LP)|Cq#BZs2F542~ z|DT2*mj&dEGn~*wXHnvCY{L*5IC&Z2umD53rX7CCW7Ty@%}Vi#fPrDcOj3e`s&q_q zc7e1ph;6wPfe@&W$@r5Pq7}rxHp1X$;wb(10@lH+tPwZcHb{^tyUG1rU7i#xO~a{g zq??~5Tn-jjUtBK3xZ+fW*`*KiiYe@vev17+o~;PT9f0ANmgc$7Ql3?H7+n9+2nt|L zP$|0z^^hL704e$2{I}w|bL%jYrTEqOHrYTlZ#}=P0X%;2!=Nj?c-#Y3@w?g{L_)2G zF0fxs&W;w|cvxs_UBVOJWxQI}@qC8)qC3ym>w+`5l;&!PE6Sk&80^S^l)tuy&vyH^ zIj2t#$9|V-Ze6aurOxa>Lg0YRzifAu&fOTIu6n)^-=&odUE5>IJQ(Qy$LLG9$6bj3 zF>jrM`y34wd@)ZV{CG&gGOn2%`n|c*uXyNs&HrE#teN_93a0uFOjVzIfDI^^>uOrL zuUhFk|9+0f=>;lXy&OI>WbW`+)q3ErsTy)~Q-YbS`fD`mw?c4Nx`ImnO+b-ap1pE% zOu4XF@_z)3n8aLf4%}FwFDvP+sr7(El`?LugWj}K-JD%Kem^;Nw3SHohrr_-*GXyF zwY8tUMrgTMOn5g}RZTtwKB6Mmtaihv+p9s5HYxHO9rq4T(lX|Ft@Lb?BHlwFGZr6*- zr;UQ%Za04m;%u>v8v;0tFN{erGC6ISe4WxEmXtPi@q@bHT zran8Vffy>+?$whn0cSEMi0NhA)N7o!eo4E( znYqe`d^QQ}ev&m}G`1Thw#|mrV@x~Tbfr|n{3LlC-M*Ihdif*h{~E3&7e7}K^LE}} zWGoWq35ovgK2v9vvdpOr7;UCPQ~kZE!nMDze-+67i6)wEvx}VL{9kKR*ZN4ijc#JG zeQZ?2ZG%V;cFuVuYoIuh>NWX9$Kn-up<9AdPmt~AI0G>a&LL)U^ATUTK+dC^ymPy{ z$vCM5qS{_^u`mFaWd2O8-)Y9a<3;*NBWe)GerPd(eFVnkM#XU`6V-A3xV8S-s0E3_ zXXb{AV2jBClHv3MTO#@Yw^*t`;1i+5MaR26w%|L(OU$#7xGBV()!R{*IxSn z!_`{`#T9I8!-Iw(!7aECuE8a^1r6@*ZbKlrySsZJxH|-QcPF?zgY!+!x%a+RU)B7X zsouT2S1);%Os_=}r1XR2Hb#G7#=3faY21IT<~LrFqEDRg&Yy!m-l(y$-)KRi>C?(B6Au@V#-3O-lhXXC`T>* zGjBC%VwNG~9|$FdbpcaCeKqFPa^3|(5Krc=m6cS!3*?e3?N~+1pH+bKYC#r)R5uxsLz&yL#{{eOo&uqs&!l&NzGup+CXTn|*ScxQadpMU?C@ z|Cp9v_xtNN`w=x$o;$0Abo2jCaex0Sf4@ay%#7nWGFJO#CeIN2Y)zT9ka@z0OKa{| zvL?t=PI?f2f|`k@_UB*J4hF2{Cd@n<3@3o!$%YUn)9Y{ZJa?!MXoEh;ry$uiy=({W zwLvxs4H(bo;G;b$8L7|f@^oxjmK?Um-N@uS#6s{u+zOObB5hH2^pHo9rT)K@cM+69 zd;*IVf1qN>)GEo)4gV`B{)75|fs~fu2-@7u`sGAn=+J$iWb;GCSQxT&qC5?jxFOYY zXD$vyrUb`m5>Fh&EAoXHq{ml2sI-C$P#Wv<^c=KIpR1`n2i}0+sA<%pMzupYT2~Se zA3r^oxZ|fI%i1&En6ygZ2(BD8gDU0Xd^&S`!CmFEx%1i-!`s5Y*pYvIF%2 z&*<2EVA#6jf6*O=(&(v|ryUWi9nlsY!_6)?bRN59Ab}lN-IRY2{Y(j3Lpz)zG8S)q zBTuMnaL=hh=;u}-oV_qN+{quzPQU*$j5f6_v;)7o&d6AJ7!?%v0gJPE-pMiEc*jye z+1UTq0_0YLL{*Nmq}e+xy|BgcPfiJ(s-%7lV`?WeA}u6BI9`j5us72S#Dr%`tU`M| zqHW0|BM&21dQoO}?7cm#Yz^>)0@6tYFS9KJ?+ng zq}L2lceWmg{f2sSC)#52$F9ZWFO;M_&~`&oZ&N2 zPm}BI7;+67MNi#NuPTuG#CI%l&F0&g4PE>1i6sM{x(@y<_AUVl^9nYi7@!XbZxU~k zZm8!ln_hZ_?lKM@I>TFRo)TgNjat7yDs#SCn9;INzD!4-rnE;TY$sC49|X|+FYjbi zlbG(oC@?XX8dPfBOf$YFzcPQdqe8kSSyR{eGiDkzDU?Ja5LDl|bYF@K*m`x*ma~%d zU4<@s{!Ks;;*D59iV?-*&uZ2VmY7~T0+|;=M`xZF@$nBtjo5E!gpi;dAsGzCJXNlq z+dj2tU@bguLAcTC^ylkynVsmYZ+++aa9Ys&(_Hh--a>78dnN}UI&*+_s0W?A0!Y z=)OU+n`w?w>`ZCe)dqP~1+pH+?T7PVXy=Eb0;WtpqhefN^Zk3TXb)vY#O%p=CUbs1 zduZRW>Bp#L&{};j&zBw;CCx&hbz|ZnUR%9U*U{nz5tO8;YsjCpZKWZx=>S^9@yhc9Qh@xu*r*{LHb% zTYUaLVulFdWT)!%Sac%@bu7jM3;J0XOEfCSZOdyWv&ZgeM<A;llIBJfEJiNBQ#vgG8%1+H#4>Odj32qy$t+Ju~tU47{x~#%^%RY*)7!8uZms#Zr}C=4bti4 zn~Ar|#2AE6x-0Zmf&>X7D5FF$sS!9-WpEhkZ8!|;5ar7LzUsdod;e&0blbN-cwcP3 zIh`Xgv!BaJcS)IGMag}LdSp^J3~+>6V|yL86Y}}?1_FO;ij{SOMGqAld$m7Uq7AQg zz;(V_QdMYOr|^`_`pbSDto`P;J`Tw-O^#hhtMf$?tTTE2kT`nj!h+JcKFx7D5OUJ9 z>Vr+E-Hkqk7>!Vh8Hr3))lLJNEyh*{wf%}k6!!B-VxNt2By$g_Q=Lm`@sq2X@i3R@ ztb7jcVSWr~L7C~)Ji^IvxbXPJ1dG14^37HqCiOSJ25T;NxBywD=YB+bAX` zKm}4pkZkh{KGWIVCdM^9pRoO~GTFV@IN=+fj5}EEe;g4xzx2C4uQq+9#3217mGWfv zzC|n?HRx!5pgBG<=0*PYzvmGFQeHRg2kKhmn~~Gf0(?I$&&?GIo!>aFIpgd zw5hNM7VtJewFP0ZoG$)s9GC20jAQdB+X?x^@jZ?FxnPDGcxiadhtdv5z5WZTN+N*& zLM1X&3tKG|k|Rix(fPX^nf^^uM*=e_q@YgFMws26G4j3x%x@?EI7s3-jRuk%ZAZ%1 zR{O}H)3)%#h`ipR&yu_qf>qLC!&gzdRW;n$*42a!pjW%2_GF0aj~|63&Ru9el!rlx z&0&tk--YMvX>y^o{hQP{7_A(mIjM^&=oK2JT=^Pj@2+se+0Q?$_ZG@)aDW&WnP>YY zf%xOahRlD02HBOB;9&~eLs&Dtj@xCZ-<7p|%NAj*z=2focKwKtE@YZVgp6Bk}>LZ$q;wioLE-vpp5P7_(Gut zM@DIyWrlNn*;jmt(}!1t-iF&jeK(Etx(;|T>v|lGFCHoGgdR> zLcPIuy@BHS_>Gf&w5f4}2kGu`gWE6K)4Jb+ZCaBC(eU<4*^dlYI*Y5(37F(c+wFwm z5!=eg%Od~h?F}X$!dijaseW?kTh5MJTd zQyKMrfbeV+ff#8M2CIBeTho7~f-xB=upB3;X68ZQttM2i##foV>y791(fFHySmidE zP#ZWY>4NN_)kbd{DwF1y1bKiiB9{0n9}Hq{rd=4MkcyLAB8s5%JnF7@aGl3VF_@O0 ze%~??_EpEerO6@EGn20}%@5tjtJ9#O?OOhWfG1xqHKR@8sWdD(jn2piyZ-)>qvU@7 zpxuBS@Tj_Zq)g74{i;R5l31|FGg+Z7{%kSc1kcN#1TLr!VlVH~(LIlynvl;aUe{lh zx=$I@x(RI)@&ZBj{{xh4774ztB;q3a{Md%uNRaAbiUE+3#TZArKIe`yjl;13!TZ83 zC**KGoRWC*JzE=IOl zCWtKm`@k>}mvEKkMMxeFMFNx(k?e{;RP4yzUkP`B(49+u8| zC5o^B$d0LG1_}3hXegX1rbX2E=U^<=wVbCJH4yw}k0KR3LHy^-x7@kArfuuYM}BEH z9qqNOs}C}pl%%0z6chJMo3#=v9@n=7NKyWose!$Mn&ZWZ^ zAR3xFfw$VSRr{yu1j&DmKo+MelPhoI14CfXk~#2yg9L-g@`*Gb(I3J!Ts4eZ_G)|{XKL}|umgJaYbc>ZAaGo~6mLi|u}xWf~|6Q>qnu zfC2$JESLmwJ(fa`FOvqF0pgF5MPK5eEA59mLRK-fD`Li^nb~!oXX=?Rh-SjJ((pPF z1i+(gHVkl@On8;}wR7$QSKKma9dgsBord`-X3*GW?VEG3e2J7CQk{QTxXBdj1|zE- zy>tC;U5MN$sKo=);P=eTcG)#YcA#0OfwgKZZikB#3SO$uK&jYmxNk^bAa|ErUgvZv z)}7wD2Ysd+RgCC@9$)%Y0}A%fH@Wi_5b!D_=`^U(Z77X+DoIIv^I*kQ5oP zz&iE{j?~jCj1kADgt*EJ^zkmX(Z>j-SEhlN+LO;K9X;F$dAdkYWT{fNOZnv+`r*$hK8}bJck=LJH=|OO-vEQ6Y-6n7;EA*=F&QK^hjcjK zmy58eClCb>+YAwG!+Ad9_y=tTGmhASyZCnslB%*}$8bcHVmxIrOi%feI20%Y-kI=S zY#_2aTx^5d?(=%actqo577gFl*r|=cf>-kZ>|mE1)BP|--WzReAtYlTSL;9&%j3Eb z7&({Ar@g?S-RVu>fvi*gTV{nLE|*5t}aEM+Gu;Y9E^a zJuiuq>=@n4ZW+1S!nX2fJ(_j|3xE>sAnC_>Sy82l`g_HYp|JUBah zSIO{}CpVC&=SyL}b2`)2p=Y#4`*M)(xmh*j2yoc=IcvJ{OFDDRu>raI)Yn>auNsZP zrbaU{s<-ocA_Zl(6MB8F5^DS2#;4fjbV9s~JfGzC7+ZW;dZH+{rmYDJcc{XmM7lmR zISu)(&1CB87Hu!jex+EClsQC)ztIT{wKL(;T*_+M*8s&c+u!6(9kIX0e+3!Yy4O@B$;Jww zGwO-6Y5BE}W!}9w>g|u2#E%80jg6(fe);s=e&IT?d{W+VzhNDqq2wxVDl?Fe%tVzw zO&Z?{tEk7jQRA|*t083KdM6HGDyuwSYCq2sbhYo=yr@q)yKBjG^LC%j!0GfwV{s|E zgp}OQp(d49JZXC-NoB3})}Iaob-pVut(0j|>;l=n*q4 z?Y@Hb&SS3YWOL+)^C=UvycVWWH#RSK6&3^@cah$wkK0avrx#N-s>*$0W*%%w(Ww;I zbk2S6XsZ0xb*@H|T?Rf&rp5uPPv(?%p-$%lyA+Jn*M#KMOWo0FP zGwF+5#_~XVv1O)bJ|#6A)J?KTtfOyj!hjLBPuaxghRf`_gwx{n_3Glw^v3nty83c> zf81$IV;NHAalOja$w_kF@fB1wz~PRFeloRg?V)Y2@|jX;Wzp(X*cf8)vI=& z!JCD2KZ*T0Jy%!V<(E~yCY5tN5BJmZL%aTi3VUrfjQ*-@i%RXA%OCx(nLYD` zTN~GpTkKYAW*vOYtti<3@0DmKW6?3Sg-^GbUp8Dz1ZEjr2PRLFY2z0}kMj_obKzRA9dcK9Iu_A?!FbTjsJrz&qo`2#e6X@6HPG zrW3nab=%CXU}Pi%Y(=@bFF zjNs$T3`hm$|3cS|B3&NHRGU^j(HAOl?Ct&TbH5Ta$q;(+@w2G(9<&m^EZ#Z5^rvQN2`zx+^{y+fVX(5lU zZQz{VwV0Hgh?3jc%SMWwHIJ@!rZd`B*!Q=)1%l4%SKJLsW~Q*cT~Ykcq97;E6-BZ> zD+XBnAhhLDuN;Oy4f&6X{&%WTr7qGOFyQ0D`yR~Tbg}v84)e~o*AvDMeJ#wJEuS~i zi+wI95ui7AotYeClc6E~0D^U@gcb4F_Dhms(R2>L_6pVB(xMpQ@n4bQw^*OD!6Iit z81UloO~A=iAD{X86{2R!>t~`ejhE4NiV}GUWQ%t(;yT?ud1i<+f!%D(`%w&}HXSI4 zj9o!efTcsN1V+%mUo?jFqBOkS0ld46hoSUn`N9vNgToV zR>$l6if6?<$C8WM461I}wxQF8EAMn`{cZ&S4(Ydnn&$77rj8aSnM}GUl0|E27P+ak_|)1J$P*O5@s{D zmU-9(m*4nS9>>*`?3NY66*r9}MZ^BZKF_DOdl`Iyt$2F7a#=%4QmD&nQ>9>6sva2( zK^fTOWJWD)-OSnMKPg7VRGeu{1`?9D497By)@WG4kv}S^paA_f6tLe#4SkoZfzsxb z+mr}zX4vQ6=Zx&BlIETdlhMt4@tKsH`L8mRM^v{R^u`s3sNV9s0`9}uoq1;ZY?->3wQTC{|FgmNV*y*Mq)smG+a2t>`3%~gK55mC z?F#fRT`*?uuHR<+_*fg)8qe(sE`RUoM)(A_Jf)N`a5lW|zbBndKN2rHNZVjqs?uT1 zC=oL;g>P8Qf;tm6L*AS?;thI4X*f{81D#VfjaLyEO;9Zdd?D-h1E9rrgir=`pWk(D ztp2hzF0fY4TwMKS9g;?#yZhwnq0ZJ69<0?x(tV~5^UI2W+pUUn5DjgB(o_rp`{Lx@ z+_#<>UD;YltD519z+%0O2*Zmu9pwRvZ^gjXUCp&jcLSsB1zhmCK>K~oCU^-*zy>G# z8Uz;$&*qLJo2ba*{8yQ}NRK%f9(=!lagzvem`c|PL}WYOA~pkHnHkB~4)a0Qe`=TL zYVH5b#u*VXdEnfUKNjsddi&i9+S}rD9J6!l|8l!*{^Y@^$q&@dx`U~Efr;)!>HY#( z0}yw}L@3K`VesBkWX9~n8PXs$rfC+Vkl{VtnB|DZKy6}kW}ZY*{Ux4c2+t43Bi-Sj z7ZXuMvsLTJ5c$4U+NY6cmx7Fvg8$0e3d<_mL|rcz4BAu=`6H=`u$$;P8p@NnLAaOb zi=U5X;?jZ1fUfjBZF9F!QA+l=4V8-YxPT#Nwpl@olt!|$r71Exd4ArKozYpY`}#0^F>4@_y?{mD-tw#!tn8#2 zG>N+7ES(}g9Q!CVqz+mV>M%0!DpbBBN3hsAlKVB5f8>u!Ak5@hDwav5zVhT4!RM~( zWp?t9;?nmqJ%H0rVd<5mKMU4gv!NE}f1}#eRTw-hW~Xk1NP}1cS@mPb`QjtvuX;8r z*e{n+<@wS3B3tn_?lKJMBs~d_C<&ZJtnDjbA9_&QJD(@!Q{BL_Bq};Y&BocxNx!M3 z$&d}lC`?LRr1ys|(IoWy`;Kdi{O*}^cse2h2GSXzSkXw!{;}cy@&Q7LnU3+cXqT$>rxsSqC$cHW|u&OYglmL}!1#B31sCqI!`)=jzOd4&esRH2IN-yqv54mn6u&?4rd z-imW!z-g#RfWyGL0@IJb3u(K$w^PT~r7j-edVKu!#Wu7dNpNx=FyU5fzreRt8G&uT zB_CNwZPCTj^kX;;16n>}RnoX#hR!W%sxWILC40$K_Kx=QG^eqs0T&>*Olht#*kMs`v0D_4_CAoCPk zfyz^{Tea! zt2g>Vn~R@s0ECEU(n`cHV4+tqlAK8S+qBVSLrmA_$kld_y#gZXtiiU+#^uQgPV9xh zQG5wJ!BVXEAx8xq^TzRCF5)%QIjPOY#q8fbyXJ|n=QGHrCfz|UfJ>gnx7!qLpR3g` zU3xyi7Fk&*bSSbVI!QkO;#X^_;IIH@A|W+1$`Y@)*8Q{hu+LQ;to1iFQjd|mHVQv& z7{I!&VfT(5#Xq2Io+ip$C|30!(m`9ILwT45Q9Ow@A6nu+$BEp?NtOuK%zeX+;ca{; z{W+aR0d4=fmzbo!y(pa{7a!3l&j7WZpgT)-wB5bxL*VKc$AAygI*`2JYlQ0(dR@?L zTX}z2Pm<0A{>Nl@nu&tPXx}ZKRAb;iL`Mjd2IXdW`5FC89Om2)blY(5KaituG&)yk zqQ2x`iKHh!)A;<|Y7%$Z^}&<9vPx%#ySqlh+>5}|i>V~*yv$^V#`$!(aQ3H`nSKVq zx%&WS>jvNUFO=tGLJK3rS&-q%jInO-j4uA@Rn8dcWcA{;|p%?s1F0UA!V|7^3;#ThbG-s?(h^h%YkiM^$VAql&)xhK(-lfh-F0WQa@_A~sr!DzPn z_blE8;uE;AGERjuoX}`8KQkS$#+}F z#4L7QAQbp$VBP7tnv&JI$Sr$U%yZJ|IoSQIpw%3dW}8t{=mf>ruv-{(k|9p_2*R$s z@Ha;|w40r|Lq%Uck+f75DBv_s_%55QVrNJ^^&LNz)!@DVjnsddb!b{($nH+QHbhZ+ z4`%Z9&2O%X@hIY?ZEG2NrMT!B{-XJfjQnEI0~OB6<)d5loqV2Cy-@Wq&w{pEK9zJ& z{>M3FH8JCQ+r&tzY}U*;O*Jg6dIz5ON$}q5+FGyL{Rm5(pT!=`6O4crttyx z2NCL1f^%qY)sIs3&YKcx0nLT6!^_0*C@Xce^-@nIm;AgN8wka|YuEb5K+4GHQ zU61o@B!z{%+T5Tp@&!emtZUPL975hkLWl|)m=c?t8?)7UM^lPbwO0;}s>Yj+<3aTM z$Z>m=K_%J?Aw?qG?c*u6Oc#l-LEHvm5y_&E7*=sUB{^IlY>0T86)ssAB?SV4aqwdr zd!FT#8GLOPg|y+{)Xof}{X6(VVcKC{v%A;mMF4<=>R*ol7ukp0F!dLM2{5Olbhgoe z1_kLrz6-KFVW7cDL#L$}2k2^Got_Rypq`ffkpV&HV&ikT@0gpfEcZaz!D)rltEiZ; zS_c$b+Gn;h;72KWh2Vt^o#(3{S?=ay!v7fT7k5)q(Paj}zej6*Cw824lv>}&@&VXX zXA;xdm8q`EL(&F-!1yp;sp?V2lL3K$$$YF ziRNpsyBKBJk9`$@%PA|BdFxrWbcL|Ko>E{@WunPvPwLQA@5DqC>u7sZ$<-UPYJ-YB zE;jN3=`9biS}<&V@!oJ>%l83@XuxUQHL`Hz>)ufZG*6GR9zmf50^C{_nDJq9MHEVT5r3JIO zIEC>!$RXrIOCrR556Z&$WJpOKB&8&!3QuyvsNF%u6O;!uB{7g*VWn>O6IBwS`Xv@{ zB3&@w_G05K-RO}+_>XHdd^I^3AzZ7}Ehqzn3V_BUS5;C8!V-KvYqZC_!f@aK`d4ixnxPo=uo(sx7b$cAm&YHvLYH4}CRzjnF%l82xQ{>Iwi5 zR>g{uAy!qIC$zdtmI{_Qt>^DiKx1&q_tS|tPn9TAnx z4uJ)hbTCX-dC(YH`}P-P{yU%*TX?O+&_025wgFJwCsLf!D=A)um3~D$oUNz8W6sYj z@lTN$NUM+){$g8`lW;e8g9W(x+u~>v5}R52x0F6Y=2HnF zna|rw5vmPRstI^$Fo0*6jF&3?mFC=9?u0b@KutVd$Ohz~&KBty7fkI&QuWw$G1xhg zj6E*#@@NIhly{XP;A??EF)@~Lb`3hQ zYoR1jxo0ehipC_vek%et83TR#G%K$e<->s*8oKJ3?$27MT}BAU?4|fN=6@?SOVVfi z6je?;VnC0Mu39dD*F;wD)@WI3ds?756K(Vjs8&cPUiMcBSgMKlef#ovj4H>EcQ^mX z?!VaJP2BY<*R6?g=0$;-KVva-N7&9jX^xsy@rBZ!qs=B#f#;f6I-WGn2MddpmG1k@ zN>tO=z0aHqmPaQ0FpQHADRAtWs4=YKwsB?AimIy8)MHv!?Jqx1+WVQm0pZ)fn7h3& z03ISy`b|;KSIsF;%=8zoDsV*~(vcUbhlvU=*q#Z0-rLhm{9=G&S$-dPI!p0MeUC9C zIbUfbF8iXqk?uq1#fsoQ>uKo(kLqtJ8m)*OBSVM6>&-Mbbww|za}N0&VMJiSOfbEtG)WT zGbZK{nI1)Kyx&hA!#c(Hx*ibiMg)ok@h?20qnUHTC+odsj;zwndanQcb9c@NLa?y< zNX}-1+#6we^a(V?&9bbNm`5Rbh3{GVyDcUkxlviOV!?^@dy>-VFOJ_U6e|4*ejZ%D z*UEcRC28lptY+7RsTD%+8`#)#+l?h^H2e#P<@Ux^lY8~E%|m-G(Iy35E=>F*ot99} z*Yr84usGy2=c=7T=Yghcg*GE;G|``jr>4QO|H8F+HrOfaZxj`KzQ3*pNK!e+j;tI# z9uMC5<~n#UH@@4ubgnp_rrUcBrq0mo*4tZ@Yh!ZE+{qqiW%yekj~sA(a zK}70)V$Dou&SZ4rS|>GEwq)+fW<2T$Ci066PG#V0fJ0G+1O?Hio8xres9 z>>(nlLzOEKEs4Owp0Vxc)%n%!<_oe(spnLo<{p(ZF4DBS=XdwsDE(XLrIi^B=xp}~ z{m}ysHyb_1Kr|y;mflAeuSDW`!o-BP5zz2%F>WKbI+g;rJ_EqltCqF~u%>N?sfd8% zi(bXZ+tFAm;R;vSBT-v8!o17Mp;RGXAmsvN2hfR`dr27})@K*CkPzu5#Qm7bPtG$5&RP>!2 zomkAYcR@VQh<4eC;eahuyI`~4*ISB$QTThT+&a9 zmU1e@WQ)~CjA@?yo9Uf($jJAOwkAFX>>@EX!Ur_8WZ~iT%jcV(S_Z{$;>$nUpNDEN zNkDflcfoa8MLj+LT`Ae9#X>jCfP zC1|@v?`vjcWbxCL<^d}o>fYASRnPZClUFtXDh%(An0>RldNe4c&7&wkQK~kQkS7~6 zRVE%1(?ONIt*!)}wAzftNjX9BIPsUT&>x;%aj#$H^s&|xNJW2UHc{u_3x zxD`kGO?-H)^;55Y+B!1!=gLKjN?f#Fa^r;zk7kxH0e7yKOV+y@_F zp%+7ny|DFk?Sc-Ngq+5UpfuyA zqe1wt#26nj@SV)fRwUB`g0fCYLh>0b6l`&Z8&W9FAiQCsEx|q#%uLD=OwFc3!~Bh; zr~)TxDG3rQrF;xQ^PM~Z_g;KJA7Vyqi{kA-b80_kjFXBN`^q9Z+l_2njBh8(X0r6e z9vjX!+T01L$%KldVEeow(*=mTgo_m36|>CHYUqAe@_^qIkC%4Jk2J-A@XcCW+%hiU zXOBiLpKfuHS35+4IR6318wspib5ZhPdkl#K2YKgY>l#icoNzh!NEO43c?@Y`Qe#_W z{GiaUg{e0lvR*uEyD}Aw#*jViCPm(J52b!el~!~Z@%tM7BLd+P2!IkV!&tb}X~PU+ zVH;eZ$pgTOZH%PO@VBPjEA4L$5kfBqvDL(L>$Wq#ogZ8KI z9)GszYzRQ~NxlL$?hg;kz_MRFMYL2H!_@|hgX7`|fL+}3kIv42L;$(&D*Xj?MFo

    UwhR&{ zarE)*GEwBSy9AI9+u9#aL#HTY;FaorN$98-WZEn1D{E=@il>z=(i6(z^)hPyLl#pp zWt~5nENWZECz_Z0oVl0Dq6rUAOzCW%K*t@5X&7-!oPZ~o-t8aT^&@ITHm*q%U6x*D z(E@Tb(YB3o@kYwo7Fu$c(T0n6nNT{!(Y%znsP4XH4gKa`lUMS)lr2q%QOUh@7E2j; zu%ujrG-2Y}$(MFIO~+ogW#%<5v@1U%#)JvvyNHl&xi?s#bA?UsyHstf=dkE6Y#~5^ zx%{FZ)Dbv(+cCRm!Gxul#DjOMyYo}J*h>wEl;>QB5P4AIaO{OK11+M>JF7*^l2ERI z@t~f0oh#{9R`1nWESsa2clu#Om78Q~!IUy(DdS#jDqHMEa?(JMYMzm-lzBL%Be9rcZe-E}@(IzXZvIR4d`qIrJP+18%B(q^*7Kvq1*6rV}}G>&Ju z%c(XYDGS-;x-|9?q${H~OwU)? z=u`(9A^+*ciuKjk$e+S``wITY_|fuHZa%SdJNfLq`(Z_$BVLg~cjZ=1vy1&KnC@nA zSbM^hdXJ)xYQT>nK}Ar`JJqECA8#I+Yg7#8cW6;!GfEymYo|gI4KcoBf@5G_H`UEO zBYsfo%8n@+CKa@4&I}v}37ROF8R}ITi<)JJN^2n-`q?AAOWdTL*zoqCNB53e5Fh(O zi5+YA3wZR{*a%EyM~U44-c0m{=4AqDK>;{+no_5+rP1V~srpc763ByFTa-;ojY`b! zB0NNWJ3I!*1jQwfq)=pjD0m0LN4FJR>tKIp$zB^V%Q^1UZW<=E?Pk^!#FDAb!NMVL z0o&^zL>FQ~(5@LV$rupv!4YFM?!M!&5<7u|B?85WoH318x2L2W66UiwJvGIXx^Ddy z14(|w8EXD|q4ya4`S2$?>rhJ(4whz%neMQ)vFd2ssRn1HgtQyl=A2_kKDHk&bRk^e z)->odRA14;r4P_b>ydkQQ{`(ae0iZk?snT;&ta@ox~PO247|GIY^`mSWePL_T!7P0 zE&y3ba!tskn{N$(3osq8=Ozgd@$ymJ)N~a7^Zm!~GSM~ysG8{dv_>Z8Rl23~9q)XO zSEt?l`}n39yyoU^-d`Q>!oPI9^Uwc5#~W&+czpSvLj1pPROcFM-#_tbJ>_qRRBfla z`x<17qd6`KU(2%YI$JS&2^k~OUmqaj6HS+xJJ`9;>aY6NG?C4L2)Ob)B3>R^`kin9 zGG6j)g3Lj3fQ+{rA2ZgDmyO-(Ai#=kSL6YH5#IZHg+_4W{o=0Y<|Ms4Z+N;E%DRLP9_MY+gbU_n70o4BuPjmPOp7!%!@HD6qZ@38Wm_c8-2+x>7 zAGnibZjTx~9;g6B$VtN61u$1)*t><}q)@~!9Lgx-PTJ&@L}XJN`pP5xKK{h5r?J}# z!*0a2X&9KjMbS7?*DK$Mdz^GW?DgW*uNKZ~YTjVB|MI8f0=_!z?KiV|e(p(%c_sMQ z-vN6PnD+n6pEd^UNrwRbw1>n$dy*tzPXY$)NsF#ITK}^r`2hB$=YR31k3RX+7-N7+ z^S_0sar^^Mqk+bo+e)Pw&RzkhVlGiG*xZJ?w2?@$qqPxOek-QCwAw-o*BSN z2A@IUg7H+5kymy$K7)v4oSgp4pWcK9@TUdLj49B`IU$zx!arrarRNWjWq6-5-jPok zuWI2ww$9_ z>^)1$Pe)sR@~6K#u=wkU*S@(v{IGrN812EDAj?TGODsFrSoFeZXpKNlrXpKWzE zWtB_=jja6mc2<4vZeS-!Wr2nrh*xOLMQk&(<^Azgo{ar5T<; zn6f4V)ae4qA=%t|F$HTyB65ZMwI~pELAQDzQ`N}efYx(4`00@S@Lw0NsYDK0DVy?z z^l6pWfH!cv4j>pkRAe=S)IEco1$d@>%kxz=Zsp=1Rwi(D%)k{BC} zy{Uij#fMaEsBvDku)odH>Iz6QWU$X2LmHXj<-{lIS4IuA1Cy%vF|SF$FjBw2>S%3!?A}0Ly0~HvbD#ms0x=_|V0b?a1ty0b6y*Q} z>RUy-I8DiXGz#>*CtmYTEMByo>DZiUBt_7fSPHSFKg$6`phHsnWG(vcab5`^|DsPf z7JUKGr>AF5Ti{il>c z{&1m@=B|^xeQaa*vgZ_uh1GfbBDs~XILG|s;)PI2>diZxD#Pw;pTTc?3`Zcv?0UD&L+iw+h@yw*)f%+h2HEl)XY*5IQ?k$Sg%D zR7>RDt892zBnd`5KY@hxY@s~g00(&kHOQQ6=k-ej_TA)Gm^B~?a4YwHnS$PF0l?GV zR;wU?cot~&e8SU~BvG>j_Am*jKjCSd0C*buUw9fg3vTISag zbTEsH5DK?8s$Y7l2xxKiV3E)%L8JMhuP3mSH8h)JIkBINX|in$0Am`+Lm;7N{_sT3 zI&H&T@{6l_`R|B)B3ifT!OPl>61MXdfQpx>R1OTggQpju;++B&Wd@V|vQM9mqDLRk zr7|CaGt>v_SQ!?XEPJ6dt*m?^k(z-9*{p>bNB=&Y7Y>N2#)9q*j*lC*> zntv(N|FF|E0PM7XDAWJNPRm&h_)0{qX&S)i4FGa-rieHYg{Lrl*|w`aPFxz&FhD<_ zFh=5A4(}c)Nk635dEVN1+59K=;6HPLV5VBC!G%Qxp5d)hmT`r_+ z%rm|1EX+wZa|a>c&Ry^DFU0nkYdGaf4B4Hg{;GJV04m;jfQpyyUn*Yle^k6?765h{ zx;;f2x<7m0E;4wqk`{oSW;0|(%aJVKmXcPK7J!8kgNuK> zkZ$FQ$W7|2#s98 zIbBNn`YO(hR7Eb}6G^`e8|Z=_KI)D&ilc;+n4AWV`N$R>d7Bv2{ z({S(2zrzR=Rvn-%HXHp?1F+M+W(T)da<<1z>YyK^ZSPntI4+B1GIhMqnbj`1m3H$; zef%SVIR%NyG}>LYs-q*jzHyix zGm*x21K4%Ox)64Cb(E=g;Yg;dP=*?G&UJ~&86qzcO3j;t%&8z~OH6viO>y|f zH!m>FaTALf>Kpq|b|IO0`OVtvD_T42Y?UtqIaTjyA9S7f1=qgg8vk6G_R5;MI_dyV zZ}#FB{BByAd#%Grc8i!k&7VaK(ci&DabaH!iJ>6#qr!FC9)-)HwiA+(EXZi`#t&;3 zwNgAsb6LhDTQ1EUC$J$yOJXvhFN-QX+_XQXeFt-$r=wqRs^E z&T`=rttSyJB(fh;LLG2ro4vD<>BPf|`xD>>V_FHP8ND8xv+DPbIuz5&-nS=4D^yIE zDFybK!`yNna{xBpdi;^pXLl&{1NjTR2@X3Pj#WLeU(Fwd&M~DOzbey5L&w8w$5)c% z?SD^_WigrQ5m27J9@nwRMq*g1%i7?VXrm3#W%^i|HTiK>>}raVSsj0R-*+kqf5hqtBMm*vr2`Z)?9OgpmX zZA@8;M-km0Irddb$mvQ~hSVwq81aU!XY>#ms*wr0= z&-XQH>2^R}zpm;8sbat#L+rk+0YB(|{60eTPLsTU>G`)o5|opA@qbJ~8UJ^J|Nqfx z{~w+9ztL%}Vv7{sQQnw3Z2Xv$+jA-WRSLM%-w%GDTe08wvK6BKF)l9ns8zW;j{~_k z<_1Cgt$Q?rAwZ0Km_>xz4Ej9~vLvv&_(M6AHev4URYq%IqXs=G)M4Y>wrSIhs$478 zuRjp~F2e64QXl<~!^`xahj*>`V!!%(AtC^Hk!FuAz;}PraeS<5Bc|$2#9+?vo3e?< z?gmL&fY%Uf)g(4*68*KfbgFHwdUpEA4ucw%Q%+enSk*cvb|SxHJ&wTkQ6pg;sxo=} zF|=A?r)!kKwNXE@ReH2+QP%FAbP@S%GE^z_Y3-0B=6mZYRt2RKLdvVqLM+F^_OSsj zZHqDDFfhkRBjHkm@U+BKsP>LkCwAZ*G~tRt2Ao1eg90qBGQ7Z@B%wSjp^nU_N;=A- z&{;xLmUuF>aFJz>Fl(Qox5)s8jD1aNcc*64Q1aZ$f)2^d&-N)`+njq#gW2rH7a-7V~+Kb7C~EIMl9@*!grwz9HOn{Hbo zBzbmOKnof$i2?N!t+e7sE_pZmEW21z8Sew_N~H#5Je10>LeboR4Y!iL~FXLVAAw`OO^B zM{*;~YZR-JEMNBfMwi@#k|3P2lw?C#)m%y^lswo8l3=j-B6Ki0n3Q=r9k=q{PUR1I zqZwN5Qn=_zW?>o+e|_zV6o+bk6Uj?^QE8p&~Fvc^Cs7%)##Ri(YWotGU`FqEFDS_(dhVn zCau_PM#c;L7dq(0 zAfAgU^38xEpdS$6@A88Mw|a&se|!e`0BN+L9&rSL@UAW~D?lj? zxFP}s_`+ZE1YyOxQ}S$$mAcXK=C6T)!!&nKtB=Ucf+bq3gyqKHhs=LB8M-0O~IXoPM==ctCUqfcjU>6sMTFgLospsja{0j=nr0 zVZGul4Ssn-yE520$YGcD-tUvc@snVkP8#oIe%=6DQ3DDD{`Kiai=l=v;mNj*-s}Fy zi>8nJBw05B@S-h$deJ5aoqeG`1=9UiO(IT>&zHxTNbi_R4*-F*U-6HbKW#xXG5Xki z`EC3Ffiz46XSK91(3$6Fe*b)wrop8d{c}@XnOcRpECQW_Zzibe3sqFrA`nbzDmbWJq{VI#sIOvo+m9 zbrM<`eNJYozTI*7@S+R?cvE{f2SWX~eu6dY>J@6+=NA71Fs!JmGz_t@f$3qg$tJv>MLD7&)JXj8K?8QpVKUA>v z*83+kj+fylpuJJlgL|CHIUXgT%g!8$tup5`Mp1F_Ny90cb+&jg zX=gEN$=SdaYvXke5-F;X&S^@F!NMX|SnAsw9GlnV5z7_C?jx{;`BR3-?{xmY;Ou;A z#QRvmptLwclAI502V>vb_-#o;bhq{WxBj`r|2aqh_YxoSXFP{Q3c`vABPgV_etxph z$!JS2hRc^!M(jny0nyuj0UNYpSQEQ{1mu&iY&4Z|(Cn zt5fj1B>m!OxzGjNjT+%!xx$(D6Oz+6Y}Bsb-v;%j`q@chfnAfp-XVj<>e6hs|M>>WeZY_EKd?qT}J>ePU>Q()Y`YugG@Eiy8lAGwD^sD!`6js|u zM6@1bpEl^ulkt(Rb+|CTM|b!o38?lSpXEuZwP+jcGW0P;t|G0_LCZ4Y*c#nm)_;!@ zvRpvnWA7-LKU29mZ7Rv&o z6asi`F73psdsx$pY)pr)|LqPW=KA?tUK$b(yfHb*L(5;2baJW;z$BeYwk@X@B_HeA z`_eQjY2Zjq!eAYV`yp9Mta+IcF>kDXqXg=Pr?|n6b%_$xkqVjgLvYr6`xJzhDEU3T z?dBn)S~3HFjXV@_r3N30eDYI>_Ur|c4x1D`V+W@n`l~=ZI2E9gOCy=-LD(em6Tsim zjsLLv#Z21CyR)M@#_oXj;fVgqC8@oa2@s;y5Y|I#{}rN%d^NyXQw^xW;8R<^P`7D1 zbR184V|sl!g0a%uAT{|h)wn4%jaF=TB3TRxi}<^RjhB9lUv@%ao8(o$Ev-h>Wy8|t z&z}~dKS~9NVzv)0K~02HChI7!!k&`UwaYemYD4yoSLhEa%cBSnl|2 zingdDQ?1-}Axd2QF~K33cdTFXN&e43NfWWb07#YSkcqL}PzW>F60}dJoblP=t!*Q8) z8^z-~myvN{3VT*paS-CA-qr-VIoYpUd8zGJX>+of-t^UVVp?;LaBi84HPtNj!I`%X+mSg%B|&NH zyrG)286DlRKC6XYYY-4A>;yfM@y6VkR{9RNug$L+%qj&d6G{`sLv=IA4$spm=MrhW z@BZwvo2=kp=~(KuUs7_Q_5FUeue8tJ-Zj%uJE7$w^0Z!k`lNl9PDGozmpy#EVwWAr z0pfr=Ya@6wGgdsiyb_=GDOR*YXTEw5%Qkkjw zs93(jvx2(ZU_}rW*UJIdRQLt4=3E*$3pv(aLkwf@W6Q$?AZ+Jj7)Z%7T5_)%yNNmP z#fz2egfoKVAhz?jAFm`o@vAae^eqobGY)>1n4*#%RlP6~v~bsNB%65mnuGz31x@LG zLqsSpWx5r`f(&1pg&JP%rgq@sx-X9UU5iO@JT*~#&<2YAY-zCjv=K!OcjC*f<)Y#$ z2h=f!G=a+JwzT2fq2owgK^GcG309sEft$_CM$)_qA+~ge|AOCByIeJI#2#W*-Zc7+ zEqz-1&DeI4uVD;2Pb+-Af6cnUycxbxIJ4*6;*I0%D!q2m3eHV>`>YFPgbHK8#=1=3 zK623?3zFtSYhIGirghU`{VDyAYOsmy>guX>QB=V!UtO1>%6e#%2KFQzqIn51k3aDc z9SVXrgyc+$S3v&b!ex$TZ`E!C0&LNRKE4}W2)imcNNYu0`|pS@iqc2NS)-QwQS&Rv zE+m&61U>A$s_4U8%@nu#K(y+{1F+Z^qhX^9?%Q{4+%R z?zw|}Q6tSI>bXkv-6Hjo-`xU4`G3EEe{7I$q5x|S%u}9FJ->-?+4V>3P|aIi^8Vo8mz_}|rsG!uo6--G|6O+G`1?i$*p$8(d~5IK zM>^uilpSolsW274&OC*-?}JBk>q^&$G(k}m@cV5{W~t)l;-ai3H<1-J9UH2h>)qmg zOL}(oK{1dAI9)s(nRUv36-lmPXwD>07OLUil}k=Hrdu zk6sf&!phz?sVQ>MyV?tggf{T!w`qijbLrzui>x7pXTxD4B<@(dH4&r|biwba5z>;_ znXV~)MQff(XBxjD%u)!18x*_zzatS!r{&~;ba?mW`CHiui#*SxP9`<)`U| z?n09+;t)P63CNeTOKcp)`{v<(aFV>zD&9E(fWRa>P7-$gl-@Yo4u;~j^AYp%khK}@ zBBdoGPPbqID0t7I1kc+bjFNv4e!R`zpdj~YAO^?R`C{cu2G^NDM!SedPO(Zk;kneEZbvJ#%0A5&IB@e>$B6q z0=&rcsO!!le9|{oz;wV#CCO*;vj;2fG(^tX0zMiAneuomSkC|hTD6vkuNc*d*%vk9 zc^I0GUjgRGE?-*kck8qtO2-s|pZB|srY~6PLON%yB>Yl);?S#5rggq)V2?CY_ElV(jvaPy)sQkn zx07V6#v<*y%+}L!H14hfpbJ)l*7!EC)6n^{z6=J-Wit}PmK7@l&Z z!*|~{{#1a2m3eD_(5=$%2G;QdQZ_bMuukL$)!CzD2+q5*q;SFzjm5~rCsPjI%_JG! zY^=i@VH0e@#?seOh!)b@F1aaiOE?_`^R-oGrDij;fWK*wV0_Rl3}Zl5n89|?5SCeF za7v`M&pFEMLPZeVDQekJqcu7nJHt zxNIV+;*U+Ujb9a@7%Pq1X}(I+Csv;19bHCd+*;ToMGilUL-(pPcuE21iwrtAzE3jg zZ#ZHAkCt;r2?s~xpA*L{58s8@HmXP)CzZz{H3)wEn=po;-b^m>&*b?_e|#wX?{JR9 zYD^?Wh+V05U^gc3Yu&XVMblcf>2CzDic&tjrDB+9SAURWe6bNS&aGM&kT#7=k*@Y} z?&){>1Ii;RT@s4|p>v|WZ&is`67=k9N z+pwvseX5}G4TUO7ukHT(YgTkm6mvAmo%izSH|!K_ac+&BW>tWS3%rk2(%`M0Y_Q)U)rgF z%RmP*k8-;fD}mz%4Dn+x?&W~^KNAfPUepi2(6D03T#`LPdd*od-GEXEb5i)MuT9)u zL}edIm-z_Zewx|@OM)=-thWfl5_tpPP0K-a5Z>|m835pu362IC4+;$o?sE&2CEKBO zUxPw_=aGn>{Z?`{2|N16?a;;Cp-7dN>I?PipYwJXk;oBqW+o@aQOn5*`aB^oN9@B( zyk}EGa$k_*?SUH{rxK^vd4Xq1;|c3pQFsv$fR0#{K^OWcl+$sH%KQ1G_O{QKmpaz> z!sN`P2{s>t9>O+<)=S9e)?dU-dFu9eD6{qfLtCu>iy$P*zSt>s;;tBYtV2ICX1JUtFKh*xr6Z`^=zbB_`*qALj6jBNJtXbcG zDot}TRF5-M#Sy>Ym|Uv&xW)8`rJ1gT%aWSuAf{|V9tV9`SHJhu@61r!9s(V(WtvwR zkNh;+{{E~<{Yo7RS!WB8wi#+;9*cX?hTKB5Y^M_wHEPegMnm4D^z)@l#wq-3OTSI*>=b#EU9f{ev_@R>RZl<7deSLh5bw1gY)HqI+L|0kz?`P-%< zeb0;zXPbpVLoj=tHlR}+=VKk=+Q6eEr69@uWu@DDS~q2&q^ZE~+dQI>gXBa7G-rKF z?KEoKotxX@Ftf?S&zzb?asuYc=BXiAX|_StBwY1VD@Ghbdk4~BI0&us!XhhV?H1W1 z(eI2}iPO>!t$E$Gi_kn_%9;#edoO6vGC3_1JuRP>Zn)DIul)J4oF7pvQ-fCco45R% zb-VN$8^$j~c-h$TKci(o@_;E6|JF2-pshJTMYEri7ygBlcSpwp7v7N?m8a(o9PxJJ zs^n3$^{Hg7Wop=^uBA@-CiezWs?&}rf%niPBZIK?DR4#Gl(InCnW9X=yc|vlbyUv?e!hN|$q`N?bKF{eTI=R4oEo}qa|ygKc?Q|*LUr!Pj<*sSxabr~)& zO94ILhYw^pZ*OYWg>Pm-z-I3I3|})opUtqK%L^PclIe{J6;e5)*5-rF>v9eM)>ZAn z4=$&imZ~jc+c&IFcbp&di4qx{t2C2-Oi1ED>A&j5)KThVKQ)a#2DWiJEOv5`Xl?-_aCnK(`8|TzphsU3?jzK zHH}8%e@bd}Bq!ki8ls%GWo7S5r{xF$xJN-HC3hrd8f+dWVYTD~`=HRnv^cp!)d0_SM!e z+}ybwIV?s6wlwuH98`if#aOHO;sb>su!l3RxJy-iwzL$=CBj<-_pEUhJyLVD2+uv4 zCav@0b8M%%gqI#dI=7TA@72$01b3lc-_*tfq!LtGwmE*KFJtO?tl%+`dpO?>=3Aj` zLm;1))UL>)cz9@3Vw+^KD|XaigW;=SF8O_ikXB7?@1U~YUr?iylSU((N_GKpS}+O^ z*vtZLuSrM}1@ktv8ao!q4)d-Kb^MK6tiZ(RyFkL-Vu({pr1~kVO@GpwmSQQDFD|!j z)#+{%(;OvUR$Z~Nu%#)DL@Khs($G?_eA|VCbPQR23%Oh>lzRblnn!WL zb`NJf64#Izi{f=V2{XjXMPihGwGyI`%~5RZUPb`p1jVMk=c-5B^i*ej96l5OnXCf_ zD2zd;n)Z(F#4TMk;lbtbR-U>zQr$3_T(U$??aAU6=C^fisj^|}j4O$ap<_=8BWubr z%sj0#g0Ie%To4e3*V@f{Lai-RYSYG2ie?thXoA zx=nxos!=YEl)e>}dX8tbvT;gbXUt}^leyF(kP)0U%e6ZjpNm#wHyaIQ6tbw>X7Goo>AC?gF|FgP?j zr3!D-DvAx--H@^&rh8c%y6=<6n7ZM2x!+_Znkz%Vw?E!J?uSl>4J2@Z4)H0ffOMuF zIXWAGmW>AC=2P5|e?7>&LR|z@eCkq-zojEu_VS;!Po6-(yy%F>7rQLn9vQ_k*N=&> zxCS>)FwYP#~ME6?Cc& zErBLP233UOyE_~H_2EtLo8x~z*2{8|EdR%QC(HkPvJ7(0MD7-WL@998I8-728&a2Q ziG+lnh??R16GB6)GVV|!}IAT$~rX|FXjCWnwh1g7y_&lPHOoov*m!*iIV&1wz zb~9o!45D<^sH*>p@=-0*mOqL4|`~Ar=J{di-T2Yxtz>vl*y%jdx|Bf5! zu-1T0MAXDcZ0kQcus_DpWa)EBcodxyVmy?r((ARq$cts)ZmmGjr-i4egQ$HU0``dE zILCKnWt@FeU1FbQa_l0$I<7-?D|j)`M?>J0i87@N6n}6S7Y*@-I>R8?O=Z~^1r3t} z4fgN`Hv;9yfHzQPVLYu}c6jKjH|Lx!aYZ=C!-X&R`4Pqix-e6)C=%a%NpsiO7Zbj~ zKFJrOO<}&aCA&2y=I)|R;>l4ui65aO=5Zvs)x9o7uR9Cvl(}=q&BTB`B~J}5lj*F8 zeU<1(A|3@q!b>IB#ZN5n`PF%`2JhYk{{hGEY*VN}&oa?ee+U(9TfY@&7WcD_?FE_-q{dn?r3ne@bPgl0u_Q?Kl8Q`ef zfWdtw6OZerr-jAfLnZr<$@+Nd#}SJKW?-+G5%d+uSwY!?Zrv#%=W{MyN)ev_UrG9^ zPULTc>LP_A1ee?!+Ty{fLaVY87D41OWOEc*y{`+XHuy?*Lf$^q;CG_7|r`SpNZ_&-tfn^5%TuvtT@n=VE4;z@T-)_ z88+xYx$APiZPv7Y3qc$=Cx>Y42}5 zCdmbq?^2pjw*oolP>2u0%aUi4kK2_{#Lw>zp6oRdL~){hd{pQtL+sQdr$RIJzXOMTjsvv&|`j>wb^qE|m zdprvBE-nlpa|ppD{t)z+E~v?j{|7;T8$i%E`-`BDL-0bR_!mJR+}#yi6NoP-FB{W3 zm8+0cQ&m2^#48Y78Okg|rC9U`iJMe&U%YiVR9QNp1>in&c@;E=#jpx|Q6nFQ=x;b~ z=P9w!Fy8`UC7I#s5KcM>gX&Dowk77TPzpe9$H(f25mJR_#R&R$g8nX8NInG-m5C_1 znr92}6d4XtC28OHwkw6kS6yWAKLq{c4G@;AzX|#gA^1GrPnAP^Ty`WM1brx2JNWQw z>_#P>Cck2RP9`-$^|I#KjwXtGjNi!R`uGfv<044g-%>Ob9dx-NaZ5|P?eT^$$>P;m ztOhxB0gL-$l@$U06o_xzr6SSZIqOW?m{BE_xP}gDd~N2z&_nU69cL6LlP6AHtaz4y zC5bRfKn0IZ0^Ye|_6I*7#&1FJ(Z<$9H5?@QUFcRfF>Euu#i*a+VPzwQTSDj$Kc5`H z&mZSueB>U#Uf~eraQ(y2hxxQZomg4N`?cZ#{K%GUSnCfzU$83uNdFH%f1~J*%mt%l z6VA&z9xx=qQ~>Wc$qd}P{F|RYL=&teJ8fb{SXqa!9lr6w&p*BhXZA@9xB1}bGyeL% z;MUo`7-fA4R|=cwMjqnDsFJt|O$|NJ%1MhW?@P{`haTMoYRLZ63QwOrL1=A19#(%v zQL_cz?XSJP@}Ir^mYEY)f3^+8H*hwBGUOY$F`rafeR)~HjD-2?S(FCRygeG+a z=gO0St9{n59#yhPnH{RG7g+zmn&wD-@I%}`XM5K{ZdC*?;h$9tD9e}oVQ`-r zAndCsoxGsl3ZfB>em!_c|40Z=yZV^itG)jr=+Ar*^zWX+;1z~?0R(+~6K@N^v3X7nxZ(@ukVB99AncWNz_Mb<)Q~;$ zc&X3;D{%|B2RI0!ciD)YyENg2kAzr1j(jZcArx$xX$FD%S3v#+(60{w`t%2&KPU}R zH26uN?ZD@}_hWIt_t)Znx92B6!z5$W1Xw7wnwc<<-k-(2(V@z>MkP9g6|m$VuI6A4 zGoT|?72JfrxWHg~VPzbjYvA&YB7sjZL>#hGi!HXdIz(pq6^cFFyt$UfG!dNw$OqV6DKWhum7(pTvjMw#(TjtHq65BuN-=Rx%Vo(r?EQfb z^KD}|FH^nu)O6fF*49?tNSc0FmhqrTuFR8n@!r9BwrQG_rRaG_aqX8cY&YAh|HRD; zne1~NsE2I+wSNLQocKU^4>xig$l9r5Uim7%@%5o8FBGITR?W)-GsGZ?j(bd9eY})a z`%M#U04judUJ25AoN2T(?h-D|a4 z_wCKlWB1kF*1SDz%B)w4`JKBON;$W`pDbi>2)urtuUYBC z4pz%X?G#Esl89`bW>$tV#0tMx?dbqL-$Weq)+qb zWD)`_PoK;ac?J`{^2ENf;`M3wUltxED#0v;9+(+SWj@6;&OwFPH2aGzd=26rB@ap? z#-9LgBft+|T0115wfM~{mrFz6;3y0sm{;UEA#kK3C`ocMzdUO{(M_)(Ps$TL$hI6< z_0{9^ujk|b{DGkiy++>i$l>BR{8=^z7*Q9J36w(0Id&Ctw<~^Hn;a>k;Yl4t0ZUXan_ybfvKcPCS(8f*zeSIw6U1CTxqCTPdzNw*Gwl^YFn<>S?ufpJbRW?baN5t1c3ZV6#P?w{RDpes;ort6TTH&W7ps=RwrOiX zv&aoy8U8%#jD^;x+r(qWvUC(m={_)n^12fQEB}58I?G0&Nmwhf5#-_+hI^qL{{}R0f`JabSteE z(ao+9!$X`32g>U5Bq#HIXh40XQ-QPC4ornHhgpC67^NT?e&UOg`ib1`6z*um-p&HD zYGB*CT=v(;5W=~Mr*a}i*jlF&n%FTk8EtKR+P3w?r<}^#yHaZF$5u(`20P09_(Qw8 z18K$$AXAdgMGB@Woc+Ti0C)qx#O!(b>%@qVN8g#=cXR4Eb*ABl)U%AbmIiuSs}>vf zBM?=%1lflL7U++mU%>#nR91(y! ztkSz2uhTcfFq;0V-z!ar0^D!i284bnU24D_nyMQOm`@Z5rwSOcHx0JsYt*^f&CRh^ zWZxC7!|;@7JpCRDc}WsKfz@52j!=6eIrxMR%n5Xu+2KO?Z%* z@{c}l`Iw$+L{Bd^|Cj=_K|hRb18(_g6#sV1H#O2T1c1vp**;PLz;~3*Hg}>Iq3)aC zCd6JpN5S~q)^bT8?ebLzgTgnQC31@#>5985Ld9DAqS#W|0_%HSZ~GjwtLPV3_DqMq zmsdiOjd^C&0eUFH;~C7_Z!E(2Sk|Web4_V)pgL9kAvidth(gyjUd-E10I2@`k5@h$ z9*FXsS-q8Cq^~t+WD+wJ!D=pJ0uh~Hl?Z}xrARuaqWocg!vIQr}L=r2YKvu&I z>J#z<0eB4tTlY&QR?t!|jd0*J|FdF7rZ7ynqar~Ke}M}dp947{Vra7?I<)I)d0L+q zchH#^G^DK~c*SD?Qy*#&K-2g7py`LWh4uYFIE>%{x53BzVjK)X2L#F{sBMbs1Jlmx zF3=T|+MIgaHVmy7dx9?NBz%sFm!r(#@6F_e<3kFfoBY{8OQFkvFF^0P_HDC~pl+>l zPUl+_df|JG)s!=c9!3Zu<$S{hX=_=ci%%wmadNx{Y4#y0pD&~H$^izx@5D#%87B5s z99VrrXMY#@wma{xeR8g1>;mKg`HrCx_9gV1kW_I8vOI*?n&xv)&oN(BI@pk(4*OfY z`B}Wwcg6=T-~$eza%(R}buFd`Scsg?bU^Rf>q1T2?o%0{_bgH~18K0)G`0c^*yD5Z z2MFohN^Su5_}u264vyibZ+L&WWzEwHhVM&)(Zu3;e~9{l48%->PQ!A#+6XhR#8E#Y zQX29^sT3jHJxqguN>igag$DBid4H;C0P)A38A z1+F%3wyPBcXvkFd=TcWR)WnKIo&1J4Fp22@XvlmHmk<<{<90b?Z4{}LEef{-AwHVV zx2cGZ6Raa_9qu4z%y8t>_oGa+_ky3rX6vd%$$`_ZdgjOdQO0#3quF8H*?;9h@=O25|yDJ9W26){FxLsT%f71wg%9c*$)bM}xp^CPE` z0Dy&TMG~f>s|KjkMsR!eU=g#RlheK9i}?7Lz&@tfN)i$nY)+L_6?^!=re?_J;8CoI z(wZ|8gV0Ik*B|)woo#SdUQJlkTgMPZc+%8S`{29V^7r-$Q!j$eCWzhoMf8-!A*5(A zGReeArQf|qJz$)|tm%gRmej-V=Psh5B1w zsx}|j-N8Cn%g1u>b0=qxSwb=u9zD^WMu$8@28#=F%u#mH(mM%{FPW5yOG97v)DpCY z8-T0ePemm>q2t+rWkHCM6mra3j7VI&+Z{*HM1PLN+`rn-6+qBncO-=ORaDbjjD0R$ zV^zMd{uxt7YF6tU{?*7n)VBT2i#X^w`UeKt(<_T$);Fqt;CM@ed&{l*!Pp(b-MVj} z;)6z?1RO}%1hX8w3BA~$%0j$uKiOJ~YEmM(8lM8KFb<$|r=I7IU@end79|>nR@EJgEd}Ri=>RQ;pKnT;iziIl1e7O|w7|p71=aMHMj;z6B?@bY2-lB}e`sXB z<&2Ht-J43~pa+$7yDI>F>#NXa-%KjJvcZ_FN1hpRutE~hDvIry4UzXR)YE&9O2PvN zccZabznM?1--%;?k4qdnYNU>uj~aV|kPcwnNnQDuo(wNqN5CHr6Urf^bnJr{f@#_8 z4;JzAHnmP7Kn|OJ9osIL#YN=M;y9>miq+UzIl{Wao8TMlHvg1-L$8*cq0YkhX^~>l zA!v+mp(mU(!8`9^c!pB!YGJ`;(Oc~39OcVr^mQC5OO#_^K|OXeG zXBu&8&{99^A^(~wh%5{3U5$?1hi=1P6y07tT}ouzl&LzupVw$41vb579p)Mp0nEM= za;7S}Syj^W7mG#hXb!D%GAaljYEXP)sCXtIPka zVAIU4`68@vEYSCg&`$g;Wi1kzrfxHcr$(f?Nrc_7Bn)p+)#4|6hz+VvS zYXkvx#f-LTq_nHV!c5dvA|o;Cp*sC{xe0P2Zfxi3+?}qoklgx{t!p31EXcfT|Fuk3 z`vmGDm9NWLTNMn3JL*~*`MbZUi;$<*lJDv(h!OnOEEi~i`M#MgTuXCVW^GX$&8}YXCmSuaXj}i*7|LNCt+MysRJ69l zBG>rh@Q^XBQTO2<*Ma4bSu?(4ps;#|`H`8!)xoOs#4jpqa)KaI<64ZYl_Jp^17}_E z%oOq(8enCt3o$uV$}=e1M>dm-9$M`nnGr6Wlq_jcB3n;BxtG~#vIy$r6OaeEo4gIX zutiI*MMQ*-1K4uVJQ*iNG&%9!z>M+2URhNMV^|M3NI7$z{OzHAoR|^}o}8wPlWVt} zapNALYVh%+PtwHhrLD;bhIS1rH!^}`k^-uEc|AO17^Ns7+P=w2DH-T;(xfHeDTZ%Ct7T zGAG_t_sxRC(>aM;SMCnYt&a-#mNrZ7dn!e1N(*A?Kk*p8Z%=9t?X4N7 z&1jfi@GY+#^{p&MAkbffHJfInN?2f3&2qKt+#-5^0`_ZR%ZjL=Z-++@BdA9cSF?=c zJT)22JCsfx&S5jRB$K&7O5k6_UVeo@>Qx!ZW#N(foGKpI>pk%sBH?Z@y`NyvAoa31sd6wj` zLFW#O*m0n_l6i1Mz?b69GWvJku_dw*R{(_z_LWYBWiw@Y;Dj9&vgnrrl(A zNwHtcGS(iXO3CNa;EUkS8^-N$DD7rhRKD)v(cT6WJQ@hwIQh;+_B zUV=|T1#y``1)O%}Z*-SrmmTsa=tPx@-3{!>`=@ z3LU#@@=UZoCm({~6J7;X{4**!Ps2t+DgSeoq{5=hs40Ty*k;80SQa%Ip$v+a=j7yl zU##NzSmP+o0y;PJY^dL)zEDx6s8DiH@smp0&cy@0>S8$q+5hl(750VD$Dpn0A?(s#ppye-P50{Hv039;FE8 zVN9#qk0YW=45KEfJP`I#sCs1A%<1A*H2hNR`%$QJ{NsQiUgbvhcG8>nE3}9QI3U95 z##6}dB<;=Pl{H;N{>xv24e*zgyZ_5yqAy2lZhONSnTY+zUt*Ao3hKWsNwsx zBZhSNN1>|whtSN(&{otIpQ5Y9qi-X|Kl(DzJfjyt@PK>^n=>V_`)@v<(6{W`X+R_8&Orqg&`6Q!ZU;0{rhj~TO%y*=dMzx` zyHkY?edV;Ku&qnA`Dmn^d;Mc0rRLZ8FEl_S1&8_{lGMNDq>Hh6t=JuM%4^-bUlVY% z2rzINKOai?Tq3L`HQFeaL*ODA530Ha^Xg@i#a6GL9e$3>%p5LJGCwen_L9hYlj-yt z{_(1L){-y-M+*56rF?{{UXk2^05`bKucA771~5*B=+AN}VLt2`G%)5Jt$%)hl>0HR z(TJ?FVajiA|;>HQzTY2a0?O;;;z@v{iQ zcS06eO?ch>o0~b^b3gf6ts!JB0`!ATbW7lyz)0WE&8B;Rb}Gbf^_ z>$7UTQcnEN2oGF+_9PeqZEYFYfs1qf4l&xXs zz$VLNsqK{C%06l- zw>*rvGMRZtI=x!k$df+VyPv3RirfmjnWYLSQ{-KoT?jyeo8Vuj7Y2_3;+Nt z&sQAM%(55omolem5<>jGnXkiH9{RFjAuGTeh0sHFmeN(0-DAM!pXtLT|CK9rv~r#v z(|F`jf%;biUO&i9J9q>~o{4I-m+g&bWOOPte26}ow&)iuX8Cf~iU%Ax8#{&*A$rn< zQqfk>2x|YxqufW!?kMZqcdXCr@SrJepnjoGKfh?A@xnvA->TUudM~tnA*5VxR|4f1-y$TPPeR$uejJoCPbqg?84(a6S8=0aXQlDjKrN-UW@mB>0`Ei+0uig8nJoqh#YX%QZ%K zW!|nz3M34>V|Tfaj%ElRd_Shq~881Ef%@mj|qu~7rwxK zm1IJoQ*``Xl9n4Yc2JSVyFhsS zLW8&q>pp`ph8h1>K=Iu+U=yu7=(^WC@=5L>BNn%C0Vp4Oey*EjBoFfVkc4g%H<8aU zFy#NNb{tR9EX4rk2pM1JWn1BS1C_+lz(em-6@v3sX@3mSBcgT)U$CBXdO{5=W&d1N zUp!F6U7kUxyQH^Q5yagai`P5ZSs?4!;%d2>3u_Y61$tEqIVM)-SYh&sn^@2wg&cPW z7d|+n>44aHw*mvckLiM5Mzw`7o1fF<;I-7F$hV1yR|}Dn&XL}25jL|)U+i5w+Tt1$ z=@3*Bgix}{QZObO{9YxJUYek+OqMKUOB(6EN5FeRcdqc>#6<8!&*(SurU$_IV4rUO zwi56@*LrT;R#Zd$>|73ydA%4Kho*4ywwt8&5J8FPZVb=fi#|H;-#%(Bw&QE*=OxEW ze;xDlcz3MUqzKYj=zgf*lLf-W*Ww8}>+rFr>}J5@E`CgwnFo`R2%AZB4myQ(Pdfz1 zIG1&ZV#Ia^5zvXOeHmhY3L?>Q&8e$y++Q-^v?js1y>0SpD0435(- zi5TjXa_Q6=Z+@EcW(8|7h&@h9`?D$Ks6I_-_+Ir=IWoGg+WK`Gwt5#!sOK6BY2NEj zs}T%^~&?BYx5Z8)Ywrtgp}-6et&7j9ySO6qfF)SDTz(x1x5Q^ zVIikAS&>z1IL8XH6M~1AG#ZvI7GFxMCy87`M4!7%u~!HYvxut|ZH^%A6IehvTRO49 zaPXTFVXKCYgwc-!eSr#oE`o$JY983ojG25#o(xSnKDN<}-rptoL*H<2NX?F2LtBZP zz^wx6e2O;`f+{K0L@|S` zzC?AR_B0t#KluizpD_8!06P%nR*EwWpM|Hzz1gp*&m+=q&^b6G0Pn`DtU)Q|9nTue zBq*k_G08yrF``8fSf})*m^(*t4tNRk->Udy&w=udFLf4~z(J`7uI^&OG8{t*c~Ios z`rx>{ZmJim28jNew(4fBmqD%|`E-b$p?;)MBtcBR?L_L|?JT44-D+kvUX&~10G-sa zmc75?L_};;EyMXf- z#Sk8F7cH|fNneZJcqZLbY6lVB!C&G;kP@rX`&v1N8BZ_qvFcuGTyy5U`HLGw_whSg z;mrw+CFqUy+w&RNQ_)KS*pT^|l~3-63t^N_UFV1BS}Lcnm#!G9<=N#8K;CcWd>Kgb z@zau9oQ+->PAx2CR~ky!DTQQgh+#_$=MCTWs*}il8Y)n1#}FWJefBx7&FX*4?r&GG z=a@P$;o_$+F&mG^tTzpgs@>s+q@V9(ltd*KMTc?}A;qa~I zLVI#%F`(^jU_Yshh8^;EnMraN%xW;+2=w~F%~pU#D|byw1i6$$)Yg8zMER@jQcquD zKT~u*%0p z&mP3!Zhwt%SotjYz(&I=tGd;0Z|8lYQ)QzPCe%r-Kzsm7!K?NgzU;_Zc}5Ugk!j1q z^{`iKa4YtKW4fJZVab{gJT=9U%Mw1@Rs9%-9}a|4JbT*Eez$$zE zV-iNAXIfZo!#PQ8%OgF!Vtt06*XZO}-FVyFnB}6v;+9kTMieV2_~4S|ZbHOn4g*=E ze#fmEvi0cWde%@lTYTdKTC^2D4#{T?MBeMY)?*$G!C4{i+jW$|17E_vDS5j4G6w#s z%X`?18qj0spzn)Ao_KVoLc}Vg-VejG3vKFL z_~#s9Cp6UF+!5B7t%Tk@pl&kS;V??U-|YwnHV!Gy{l?gc@cA@){>?Gp?5Gt?Yf&6C zaag~eWHyE@=8+W7SE?}sqjRFBE|PckxHsXwJOo3}!tipm9Uv?TwUCWC+F|b&QWXhe zQ;&JbI2zs3yp?VB4ow`_WX&6>{RI5ruNw6F7WE3`_VF`j-k@m}KC(dkrA)Vgw_`sk zi-uu#OR>GJjau-sAFZ{;y`xg7VVX`6i8kQ6buar0tgDwP9X+j zai2B(Z~oGM1pt5ADF1VM^}oqqYIrRDfBmKZzx9`n{-5!e()WY#|HnPm9|dH7;=lV# zp~)9(@QIzhS*>C;WAYKZqI-MXn_) z0$H}`4pvaHT4hrJDLG9<4n-I-qzc(8J~7LKYQRW*^4%p^t{#ZlX4Ejg01oG~jTDcJ z$Qz7AjtX4K)~rABi~XRVqTDOgO%;P*mAYp?k|7lz#aI`{yw$Yyvnu|kq$`Rs253xi zN-$+}2{$CaLdR(ufjM8ypG0@J_?NvB3%p%WC&TSKZRrs(L<^!Aantp{fbl3(3d9K299lRDvlDxR{Im z)Cd${Es@eqBI z_{u@W00fX;{rU+=uU3E1za-jjD%}>A=-#PuVrQh^vg4CC8q@5`Y3t6g5K9PMeE&Ji$9ek(_n?W z_5u1`uECWx!UCwfF}2E2w$Ms|I@-519P>jRePz`M*s|si1N|0NrW%0V zYllb2vI8_g(A>pJIZ$IT5lkPbwT%m4_ilZ>UOae(>o5hW6J>aTu)o;7av$v8QL}tk zamm7%Jz>D>HA9lM$J&sr1EFXd5#QRVTGW#m(=0Ion(Mn%1^nKDS+p9ldcvCiV)wc^ zGZA+y8cC1UB?8pZtRhPb6WkxK_cX1rPFH^g@Ot5m#VE@ytj4j{XZLVLq=sQs-QaO4 zx}r*}x#s_3_og&Ozj`1nNKJLPOiuk__b$&2PJ#{&+5D0X)p&gFqr$TTyk7P2kJnp) z0*$=F@Ym}V#mK@yLIjc;5%r?g7%0`#T{3CfzlbrLwLb#9-ZdU}9QFTty#$Eqh* zA*5V2+Swi?ZPGJNL4T>E|M+(c&dgo_{@o5Tf|vFk5S2Lj{lEOXlmP#3{^53|eBe)* z4|cDBKjbX*10`6f4S?ONvi(*Ls$($u$G=ObCv0*Bl%h^f+(*v1LU&vjlLb83EjBS&*B24*+*s(5MK&oj%zwr})F227H))aHpRD z-06}hnXkPkRTyZ`f4I|Z>wmb@um8xMehz5U!TwLt>)%SL#n`RCqF0|SrQN{kZG1*b zK5B!yWm;p4W(l``h-K!r%}T|2cr*3!4koEo$#J^8B82-uD z5vl2F(zTph0;Lg(gdK16FMux*g!9!f&}U%FWj0z8$QTJgk#$QE3%EDbfHR>OJOx9Q z!B+J0Gb_t)drmCiTK`Q`1%31htQihJTQE6R9nh%{v()by3#z@eoFlNUBXp!^VxkYT z)R}>}4V3CT7RoD5$t4rn9-HE|fq2!*@Q>3CqI!@8Q@^2k6txIv|0pB#K06_4qr{5;D-bOyIuz%Tgz}0g* zPs5NML{*7#wX?^^Z5MOdwS~qiu>psk!$DRjm?4GIAB4A=>VBufv2?5?TAW9Veq3wN zAy7QmGVjD(%Kr^F;eD?6uFtbh!}ZQhBGS>D3bn<)#Yg)y{dyz>k?+B63$bKRwq=IL zZvq{FO_k>;cd-U2c=y2l7&BEldhFI)01Dm$fP(kAT7V^MF5tHWp?nBM6FWZxT7`M zaBahklzdnht7{DXR1xyqSX>A+vc&cPz(kGeBz-# z?zbV7SSriahf*}xL{xWD@}LT&KKiBiCl2Q}WbbF4;?r__#uKKR(*?=T*S2Yt62*%i zTMZfjimz5XXq?p*eCQ+29!!)s0vMgDpc~J)gJs5cDLUwgAX^Ey6Z$}{)u=ePkt$+X zs1{l(Naw9d&9yiz0A-{wC#@@;2Lm&~3#yD~`uQVz<)-=sh+bI+)Da^cwDNGf0nuyy z+}TI;I`GfYtLXoTUhxtE(JLMxdR43!^zp=$!3|QAD2Q(Qyz7mXRIj2Z_W7wtqSICl z{;_*L-P@G_A0U>h^VSgz7&Hgt19iwYvQLlKuF|F-i@(lOR6GC=1wZhB#jz2csPy*T ziVFWwOEqN^D}?8d215x$geD|rX!&i@or!1z7J-@#3${6cMc^ziYZfWkWyKpq?|z#e zk%Nn_yh0YHsgw}fPfvzo!k~_M(8xDLOi+Hg5EbAvaAmX}Bx@1uo9>aQ?agmLxgQVL zsqx;k;!eMn3L+H_N5vdVg`~dYhgjZ=xoy4&hv-5*bjA*TVvP@f(HZ{oHS6uNsq@|A zOHa+a7jr#fi=cT5!=B$cQm2lkx~pcJrEztBuM(d15Y?kw`M{u3*hWkbE|^hAsut{2 zL-smV2qj3md=5S<5XjhXE6nrUiRL7jwf7KA=z;I}_pM~r$(x!TGAp(A>Dd5EX_>_U zumpZ9L_CE>Kh=b|EHU@V&kXQ9va>31=&VkPixrq_P#~6s1wLWK>=JH?x6t)j81K}9 zXQ~rab7)?~=T3Jc110C15jh_eTuvtxA3x$fKONcv{%^DDON(*9d7_>>poF%5X zjSDrINm>XfkYsnFLIw$_-%A-(94(CJ_v(~;fPQPT`2}1(YT(muKs;t*C6|NLw82I} z$ZcAc2oHy=fP`?FV8C!fw0CtsE598c*=}VDCtYd||E$7n_kIFKzn8x5=?l;_LYXNa zqgIAxH0`72-at~=AO^j=Z6X#gQI&g_XT9XSdtojr3TvWrtzgHL_kvp(fu72m`IKNR z(ED%4glFI92otoB@KE*aZ)FmE0qAn9g)Wg-q3{)Pq6vw5Dc7YoOohe<+!@bzBQ8gZ`IsGSMb`P+9ElKp(Br}jHNh43A#stpW2%4G-C zRRqAcQ%D^v*D1srR$QHLi~^UA=Wu}n=RZOBRFKPeS@f6~EUg)rmY_I6;3 zI(ZqUy}p(tKgaMiaqKVI6O1T0L$S;VXN3VmMnGR8pYO<-dq=qR)X1uqxEjIVC4fSO1Y70?$5yzBE z$t$TQoY^0pmX!TOwU2tjjk&u>v3v6(%?3Bk`1)gW+py0@mgasq)l;*UeVIQVyR{Gk z>2PwGWWR@*+jB22n%2+`VI7-9xyIcWx{97(J;S=ojFox17M6vXsgAg9=s83@1V+mME4{o+}<99NK{{e@#Jr=q+4{WVoV-H5&P;2 zg_&90d~QiiJkh`C;Krsq?@ZCzt%m?wb$dY_S-HnwI6mxsd}T`%drMk8e{CUx+L9DF z24%K-?yixfmEkBdNw}a(6$pG z`&867HOT?vZLzRu)sk1Fv^@~M)Fqt4qM8E80A9$wkjKrFr%#NC}{oE=GG0a(Xu7oBQ>R?^ zXQz7Y<6tS$I``m0NTbSdLQJjKF-NQXDZleAV>tqxmlLm(5B1hoWvLDpQTP;~{$at; zOOlF+B^_FQ&CIxlT#tW%|Fu&&)pj^$zMV-1(WOHsA+TB}5#4{=sY8A7@-?kb;?;!* z?inYvey?V7t&BP*-x20%%q4n&r&((j<@~!;(-$+L%j0b*ldB@Y{z_)l>EuiSal&qa z&KxALu4_NW!tL(4lD>n2XYZHs9g z%)AO@FFxp!g^v$liHkZ1qGLl71vPfxsVyN(-)BD^-tMn!%)2Rk9s2 zLzi2{Kc_s+eXB~resWb%+?!)3B|UO!W}DjCJo#9ZjI$?F!6+6NFjB|^K}FivLx!IG zV}^~BW3)+n!4Z(K2|f*-zvE+R9q=NgNZST;bXk)z0+;*NEa*zfv+dw6&V|_mnaS64*~nHRh8{Xs$a>-`XC-aeay*7gKb(Khl=4TW_9V)}Xj7 zGo$HQt>;p%a#U!RR`Y2LbYVx*#0V`g+FbMQM*sU$z>UVmFU}JzLnLzfVZ-FCLhSHE zqPlD5S(GK(m)alkgx{yu7ToSFz~|YO`|jH91ajaS@a1*oc3NKDPz~*AhfyBdcDH>5 z#4foti=CZWNyyt01z1(a=amZYp2+rTA8bYru6h5G9z_3|ee}00z;A}-pZC{)p|Af! zU;isT*z(^~pK@vqH~KG!_fPbdo$l|2R{yF`{i{Cp@AWCK|DO7kIfy#uGWxcU0? z_Tc{oxBah22iX6Ex$PE_|CCPqf7AV=_BkB*yZx2@&maI`f8~mAI}dh+^ou;edZVJ% z`S!?J(%q-S0%{bLf^g2V5PylF^7`S`|C*R+kT2%P?Yx1Z(!HcZ9OG1cWUh?y^knqI z@jA?UiGdMnGrmi?e8zxTFPwwUPv2J!O=@?UGBXnCnGRX*4~gTmH5e+t?jGCUZsuD~ z(dED+5w@IgkH(eA#JX7cdz$p0%w7haZ=rfR#CZ-o$b1YNo5XhT8K9DLMKxfEGE;2f z3XTf-^ZNh|H7!6xEqDeSLD&agzR|?&Qb-jy@e>e ze4k*ki1+kGwUHuU0TV1*(Ib8ClX~u4|M#_@vA^az`Ar}yCqbesNGmZH{VRm~nLPYD zvfgC^je{6^F(>fCj^DN++5B?OpuAQeto%tgLA!5``ryI2RHn&IwEKBi`-$e3cOQ=T zdAe@aSgBJZiAD%7w{}=q+@j8gHVG#b*5Qy#nF$%V3q?NkL}IPweETKGv~aM(S8Yv! zf8DCy&Xv2?IP*qc8r)7t;vK;ovHoBj;Z=_4^3p#~o zD|aR6hoWRicE8~q5bhQ~YM-?Uxe3Tmqaf4KWt8N7ioD(apZ#lvITeWlZE8xdFwZyTj)_l?*`A z1nP5z&ME;j3;UuJwACRzE+ih{p*ehw8UnBhkh}lG$!3OMPTk}A4!?rZg#lIK0^rw6 zEj?l1*~Ot@GB@0RiGvF1kMK~I9BQS_X!sIe(FK%9}_G)=pPg8 zoz%QjW-+EkjhG$w7Zu9n!=Jvu_XvePX1$2INc!*Dq++Q&w6CU7rvTD|>fOz92NoKg(F455#x>5UvW{d~7sWP};Bd~*D`)hRrK z#B5`>w_0G$_~-J=cc6xF@EGgWg@_hiF2~(%&!>Z44xy0bND%KWHJw7L929wEI6zAc zEfWm(ry!*mfe*+dO)?8YRg5^nx#titJx$SRSE$ELK&;nh<>#w!*6hHS3>@KGf(*WZ z5qAHN5!Ps%jiPz2Nh673UnDPg0tOX!;vSc&4U^m5uLY|E+&;!fOYj$h0LHvF*!?SDoReTtS5HG`cke8G{dweqMIQrwc)z(Ym^czr#eT)3np%%qbL>%dvpl+Cx3V( zYh^oZ)W-o1H7sDoOrJp5*~lcY{(Un)qe=b`9W$Wxo>Bte=WqoZhXY)_M>y!C5J7qs zW53NHAB|V!wp2R|CoLDFfznEita~z7uWmq-z@L(SBxMx<>2hkledk}_9Rt(9`Bwx0 z|626UziOrf_*b;k0s#L?^`*gUeC5IIa-mNMaSZtz*^ZJ-VwBV2S6W2}0lz*536_Bh zCVZzh;V3#vZSzS!zy`bI5c>=b*kFCvD%=o1Kez=IEN|vUjFD8hcU~)R9eG39nZJP$ zx(kSHC>+LHk|S3GBm;mAwz27`FB_k{Mdun6mj^WO%kn2@{)I}0Q<#fZ!5et?!CIZO zPH*$o`>R(cy>L*n$-uD2YO~O4{F}F{eZOC6M2K!y@BHhsqRXRC^S2(J;^Prwb_a9;3)@}NOZF#-X6&#Io6T4ZR*cUpB10OFn`RP+hzHBIAHsO}3H0GV8kEv! zTOWUsIUZhQLw7@$J(h_QX>=Zy*XStS34p&kpE1ZEZc9s3M2VwTNh2?fRO~-m z37{zs&jC<*@=6K=1i=-Q1Cm9BWP1ix>89f+U+`4J&k0bnR;Ih~GR$sXQl>?5OU2M? z;^_Va=72gt?wO=L@m3-j{3~%86k~CaTfFm|=s3DfCR8T}Kr^(q`xr@>4WM7|UpEaU zE57P?TDW6E@ExU` z>2g*^gs}Jd^xkP4FV&pwu&LzAa@bSN53gj(J)AAsY1m?l)diLlui4em-wm>8LF!M_ zb2&LED=n7yd)n$kAW__@U_fw94d-)|gfumrQ)GV#r00#>T{UgiAaBE)MHrz_U2-SF zxC$p`JqY{(T~IrR2>phPx5o@{Y^0p6uso6k0O!rg#r_b&W*BubIDx!%1e%$2;UeK) zMi(zzY#WrD>T&$?(?GpQ*s}kNHcoLLhm`bNVYKv>>3pI^uVxJsOrp4bpZe)owFgv< zJ@rw23=N7!vHthM;cI+DZ zuaU=dz{fbzzvF!hojp_!o~p{Cy&~s>65;+{)7mr3{PO_*)1xi{-q-IDuoWW(D}ed6 zsCNhMXh`QEcx;KDQxopM0WrI5NFpN1Z;s)}?0tT{J+g_p|8&Zbn_R67CC_(PBeXKi z-*7A)11lv4$&#J;bN$p|c46L51j-y;HlEXhqYW+|E5cqSGw;zZ4q-3tRabh5)9Ji( zK?>ouWj6ZL9tmkafTDHH9^CGwoN{&2NNqV|icZ*mTA_WlDVFifmS*j7O-)NhD?vhA z-WW62Yu}pzMaR-IuoM&5NB81s!Oj=wpV^=xpfWb!8kj!Il$muV(;HJDfRH@R)2Tqy zvO|*=X4vPLbm>qnv#oOZXaT-P@+bm&p|6yR(9f)BN-lfvrvU*e=yH97j0C}B*RDH2 z&1~#o>bXc$sherooL1FU;o{ZrTuIXW;vmcc*3b;>q}&3sK7gaei;>M6=u*b}_<19J zsRou5%?caW6^c|(OpBW$=FAfPnIl0>#^lH41YgsZNH7+FlqU=zrR3jF;%D4{bxKG^ z{`jT!&L6P9@&#D$&I7?7x7uA?Gm!HpA=%@es%YM47wr%m>@vrQ^jqLw?cK;9V4*t~>`2Sr`;PJnyCm^+vfBAR&>;LZZ zfK+OFP_sY`&j;Uvev|1h)dOb;@`9X3IP+!^F~jIWl5%PGb(%RDv{9cZQQ2h_rTvvH zA|gk!nwQ5jtnL>3mZ3_24BrKo%Wbv}(mB=Y#Qc;PESi<34dz4#F$H`ri4@R zP~+nOp~XeKsMdxnb$8T`pLJ{!O&9OZ6d<#;I9o7OL%dP%fo<4jd@`1snyX-2K$d~o zYT`o_bV@HQL2!;E<6&5iBI#l+k(i!-=r@t^6k7>$AH)E>Fqe*9@su2~=Z8}i7po~K zn~MJff93ZVnT7Tz0~0p^;IE3?o25Cj`V-U|g>d1cj9;i+{d6=&;%%G0@?@K#wh8fs z)1=^q8`+o+dzZ>#kH_x5o|v=Vbg<;2z8U0adp7|1*C>!115N<{s!w4dBAZCMXMs|5A(nrz&rq|QXy1zgjEddab2aADEImY|7uLV3}tRpi&t08 z=UuvNi(N}cHDx)ikRy|x6NC?<{2~U43qdtJDMbaE81mh(Owl+?|jv!yMqe+IS`( z>WvfKv92oxW{Y)+i>5W^y4&*&_l4^+NYTDPV=Jw5ABL|DM91MeEv5J4w`Lukr|TnO zwlU6x*^dR)FkQCkA0=8CA-o1haQF;*0$-)bca$p7F-!W2%Y<1)M1uDk=!ModV9upQ zI^Ukr1Zcs;F2eUb@Rl~%iH!hNR*2GJzb5US$$R>m%2^;`aT#m)J02*d(E#kuUAb?# zT9ki`uLV@eu3{qf^VzwWWY6ivWmzSuKtt%3LB0^?X(tcR zGaOlf$`$q|$23k~qYg-n>tZ?oINq}O*v|r{##jYj9E4#vpdtl&8I^&+j1In_b~8W{ zKg4e?qT;L8*k7v$N+G&&75D*ZhjZ)fN#Q%Ij$j=Yt_J{ zNozU_8%%_*M+tqpT9P}yxZH~3vz?qt=v5haSXzJ?oo_)zu@R6b+MKM*9>u|3+Y!Hv zAWw;JOQ5I{t7pvJ2HWyvGr@^pi-hIrIk~>cz(KN*rw$5DL)(;dJI~_1v@PVUZ)Z#V zyL_PJPx*l2AM$~(|Bw&($&38}5U{g8g;YglD=^&uHojJ{1K)9RK;`^22B`>yiMsvZ zCOqhy9GUa;$nDflH$NHg$Ck#h92MWX`h*Lkn^P|y4tEAou93i(Y;-YYB&0w%R7xqz zHi&NZ71-wQ!%+3b(Pw=6Fj+ZGCOqmFIqI+4f#c5Ie0ygdnb|zFlkxuKyH~B5Uf54s zh=%_r9~jb-6#|CaG)fe}D}80dJ?quKkohIO`S2^%;$9y91wX_)Tti#D=hd0GIu&m> z;1?08AHl{iaa=|fIfg555)?6yr~dV~w{xVT@PBp>>^}F#D_NN*jKak;C5CpxW03Gh z-5$gh5^%}?1Z^Ku*)}I=L94|gaazulESx|%0tGfYj8`~&2Vlh;f9caAhd;Y59>;XV z!>wOgp2Yu1_}|M1Mr|KnnEy#WAV$abX8u?{4>aS@7}dq&i`ji$d0(Q=9H=DH@U%l- z<*U$7z?NJGYV!hxW3A&2iA(w2aS9EjkRKQxvbfa%85{4IK3NE|4N(EH=Y|BD|7$bK zE~(1kv*(=Jl?$1yU?tax%jZIEEm2q9!(_$=MQRW$KXJYvk+wwvvBXU&Uerh4I?oO6M&hHZMB)#OgUZX{@4`nDmtYu?+ey8B&g zhV?`qz772CWVi{BCII`u&AWZTP5ka6pgPHivCqz{%h=89WTnx4N=7EhJD+oN?YzI+kSAg+oFAeBk48XDYJ zja(Hv?+k*a_6>dXg{`y#9vehxvoL0{S zB<9(Gq{PgZ_qEn)AJX+qh*uMG$~^6s)uNobFGJ>2SLxR!)28dehzHAR;FPX@{y^y> z*>Vl)qPN_WQ>#zgVDCJwBc(>SUqGFJq&f=SK|UW-1HVr|F_pqW?@-@+!3OCnDs4du zHkvmdVgDi97??0$0Q*Q*(EI*a+r7w1&4uy=@qS zU%QV}%Oks8&dU`wsFbxS-b8(nUr&*(BuLyUkX%sCoQ#$xsKwgNhFb=mT@lfgGDKd0 z)VKvsVUBV#q$SGWtykv2yBOV*>{u8LkPl!i*Fp`|Vi2LlRqfu)l}etwd?+RwN><$` zi%dbKBuiX z_)p?3JF1T-w&jy02pU*>Kfx@x49lTT7BHY6@UupkjKlJ11h^%pjC#lT6=2yI%s<)O1j8XRCmW=7MoQ4y5%jYI= zl04s_T3EE1P(d}9Os-kIn&5)SO|h3jA+?J-tmP!0qi<)A@Zq4re9-X9o*O;mp#XMw zVuWhUnrKL2x5Ox~V?Tvi7%gbcX$yzBDz)WoIKMMytik%$EyfPwk%A{`Az*N*%fe^7rsK;vh)=DX_`D;#pz~>6 z%)Bc3FF;t5A-%akGahucoOeqs%kt1B5a+6PFqBi%j@bK4{TQ@zCA{2T97Q4FrjagZirC#vly5<%%Q#X%%o#8e37Lu= zrN=a)mugehZ)UE*?N|Vq2cXHAlF{NeAL-KeRYA{?x9sZsB0&z}p1|t3bwl~UNOY>T zL!W26B495KdSKQO`azer`X0B0DnEilegcrM;j?27Y*v}#_6Ux&LrOM${wgx8XB{0u z=PXQbg5KPemd4TCP@6Ls$6ik=0RzgC&%OP+Xy}cErUZo5BH~K37j=p~Nz9QYw z>9ES@C)Q%;g85LYAbzza_T8bPdtq54Uo*O7E6dk`B>V$wnu>-K6q6cwaV~_|r{)4n zy}MwjqdH1uNj~r~aGGW?Rn>FlZ+LhT0<93^qclz5>Sbv{7*?yp?G)msGs98$T1lI# zpXy#p5`v=tP!5P+{=vY$?<|RY;$u8Ol`|Q zv#*sA7k|UPp4Oq!{_O(r8)Est-mm^4AN-pIV4X&p+%CN^6{>6j6DR45b3+F2>PgMN z2(16f1Qvkt{_oJfUchuZ{FlS~5BBvh%$ffO;LG(``@E|9i12z`~;Y< z?8*LvIrC5U^^co_|Jrgj9E>;SfPHMUe2mvd;zL_mT_ZI2oCepMDE zpwSIn@$~~BLG%&%7kw_PKMGG^Pn&SDCtQeogyJvsDN5%nElxHlNj&(k_&18dO`E<~ zGZ(0kh)`^@Svl>kZUP(zzpWO-LO(I~VJ{=-GM4y7)A8dG{!ox4I ze&11t5#_pPp@mO$#;vOesCUv0BzqsO>eBYnQoXUFvjD>toUQizaCPRo-SY+ar4}$; zT}w8O03L3``*?!mAMA0)_QL0Q^=94_Oh?$JI^&jLN$Y+L-{zu-cQuB4iAgdBiUx*% zZkAn0(V}Qk4gd^S&LaK6d-wFc>zj7xNs)ftQ8@luP+J?&qmT5poeH9owwhNss`H?? zFW*G~)ZmmdC@KYaD?Qr-z9RD{TmMKAXjhjI)!z-GPo~KjS^DY;HsKWB!r)3iCbPns zfk!~>IUTbm^;-Kw{-JhAJu^$UL51*&wHRUj3{omdUt^C~#4M-f^*?PPg_ML)*Yjlr z?bP`$LU4|slu$qel*kMM z{@s`v4@c%lNo<}}n|wd_u-3&Ppj5gIUd|4QbojA|g#J0-zB0PFSfH$LLJvOAY_t|< zov#s;B2&Z8*NXwZx=+deL$~ibgJwc_Q90}sMsd0(Gd`Hb5T&*=N1=g2)66-_GXkczy9S5NNlZk2|qfk4fK1EgG6vMJPSTG zATbnRaAv8EOoTRG%h{fE*=|P9FsW}06`C59U40BDM!H8EDmY(LPqBIZ2zZJgBtNWX zje?*~j?(etswGRbN<)vg%e)*?c?fL{^hAP;w)2^whLx}xvAmggCAMAKvY#PHIqjJB zZm{+|hf;^&c()B)T(`6zIPAkVYv ziQW%8kY?y$KFf&@90HW4Y|?xpuh^BpD0(%6wiljmlp(EQE~SC2qT$y;O0)2MmlZN+ zC*I`R)Z!#olBc!1yyi)Aq`rgdzF&%KQmM>MJk4g1Q@BNmXR&c0mYNE-5f41Lh&j1Y z?hQUp^EPC9dWFrl=86*s7C(x%=kL?Q@XhxIG<2Zx^S+d-Fp(z2lmg91L>`a@6oiUQ4a%M*_T3m=D&MYeX4%xk$H;$GXlC;1(o&C`{(^ zC$SAAYDYK|R`mM2qR3_ziZd*@`;gAnVbGyTqdAui7vDYCrYDgt!Fls02-7B$3@9$0 zb~pS~CYXJ83-*%~P96@kiOYj>uY4KwqHR!ofBNzDyb+K?u;k0SF;^)%}S1pF*ukqoDZ?Fca z?`&-2XMi1z(n#IP={zN5P)4ll8#8~-yRk(gN%(-k!xGYIe!+ykA&PfP6Mb#+$x*FB1I4->^X6^Q2 ztjYry7B&QE3aJ80dVoyUVR?kkvL5o#0`QdkTN{?YA6s?!8~u2^)&UjuuDlxU>#0VO zSQRr)VV`KCLtw0AoF5DL5}3_ixxj}d&bi+rP2-cU#4i1?@g+@qlim^yQx?}zB&J5p zU7Z1(o-)b(!c07EgqH!6)0N4G#DnFg0i=#yH>b6{w*c!P$ach_5(~6JWn(7Q*(ELa zMyn#Vuj;9Ejvqy zZW|~*r-=fdaw`=XX6RK`1v0SAp-(%n0H&;1gA+tekiuKzg6Uj$Y1*ltNXk>eB-&C< z87ap7pLU-`ni9ZX3(MHn1XriT$G#G97LBE#@XpL(l7uNGRFk`J(d`R$ZW?t6Gm@7E zLFQCDFF_7t&W|e0pVHJBd;yg`HKBf<8ZM4sP)Elcz9);;%UD%j+Fk|xOk+0o9;#>D zFa5w5uav4(SWRY#%t!;e%Oaw%w6Z;=m^6iJM|+C2c8A ztTS?;NrqhsDD;BLD`mZ6%?iSKCE+raWHCvMIQq$jtgiksjT-kE=qIJu6?Fxp0dTjN z`nG&y5Vr5j9F&xS&Ih9M5?0%QSkXI5I8tsOp+zh{rc!5#Tb8pH-X>~SooZ~UC6So! zZeoa36U(V<%z=s2(Mwt?uE2P#gd)^va2Zk@I@IfvhGTI~`n(;$aWyzZ$DSPWQH<5Z zFj3K|JD|LHi=Y^q6Gwh7H5)wT5;~LhD@n@?6Ty#fu>@V31C%0J?TKIQ%xd{*NIZAh zj+*D5ESz^XNp~8h6|_39?`#smX%1}jw{5<~PO?CP(eXg4gO{SJ*NcGKV#^luCgyXN zux`a~Oo67s6;mcsI)`&>Vt=QPa z#~oHWs!AgEpDD|#Bgd-nF=(pv+_3?DTP0q-rJ?>T6cA3GXlep~AZUefx-lX5RBu4F z7l3zHC~dv6lu{QxUY|Uobx@X?_Z<%MwYLkiX0N6Bt5WL*oANj(e|TM3>ypEEqJ7<{ zS>3#ItN417Yl4vhsz{Wu#4&r~1^L~i-?+``q*;Ddd;yK$VqOJ5Wy)E7yk5kt)u}JW-_NC6}{ITNPE?XtSyL-hX=Tez1fK7Vq`USa;(F56qz{22eSR# z;}420sMNy7y`gd9$U?Kr@(t|q@~+fkp)*}xb4RFNE=vzpbjLbVf-%v<+2Hcl(Z`K0 zQ*1&-)pLqS*QR3ud{#if)+B0pOCW^nD3 zdp*O{Oq-hlDyoyy^%_SSWWPXAw4F}MtCuJJi7KGvnj1DPCR51&QC1aDavcCAe+@bj z1-b;3TonL0Sr)gHg@aIY`*{b)z{pWtlq{&}IP9-SgwtZk!m$=bo~V#$b*-RH$n|zN zFixq2ZYm@9%O?zDu2)_tHg1comdeyXhH-@7`$gq%nKyK8>Q#04Y}_Ye34Cu$9FyV1ys$MD$v0bD?lupsBB2M1VX2kaE2Qq+CnHG>&6f z%B5|kzM0D_J|;f^Qm$7Ol009$R!Lr)B%U&R+RtMC{PV9yi6%0T+Q6(q?G*9e1S_Za zlxvE1v&(zR6@i&dQmzHWfAMS7pA>*f?D9~Rm-Fl^ zB3086Ef*y*vTr}-CqA&fRBa6?P!M7}2=CW4V9~Rq6LGCFje0x;B@j}t>FL#LNBz6= zU*sAE(Z1yMp688X9-S%h8;5PW?gjgMM%27jqr$0$=~*0Ykm)HT!70BUp1i#u-Pf37 z3xSQ@ZCMd-_Va%b^MC5rTLme{^tQF+zS3WpY&&QRd(1aI1{!`H=nzfqD3Sm0$Pujn zQ&HxYf!S(p<7P|WL^yZPh5^JvzbQ``np}%6I0NEP2fMEgoRAk7%vluKI;$`vFq@uu z7Ay0vz$a7D`a4I)7dK=3oBi(t4Wc9a-wPW=Pxjv*Up>!tz5=;aPTvrzNa-+h=$2z@ zPHjMgK$_{9*Xxs!^z zSao|ly-fs8jiQE4*rt;umQG#S7si{^EqOMvWwj9R)clqwy4FS%Y?*W0Iky}~0xegKqQ@o^b>2)i20*GO!$Als>4 zC}vyaX)gJ%8bQBX1DW7>(5bG_FJM9B14^#``ra3+tF~r<@W8WBRSzWlMO0S{NN_|? zr58*<%kjrA_OpU@GY^{wP)IMSvT2YShiy}GHcxfmG6lUbTQV2h16f?Mda!p%czqo? zWh)R}U(CBoshE8v506$m2d{~g>@x)~T$nP0SU6o+OOE=8AN1?wkk>k54A zsCQzO{r&hVA3fDz(W%BPpo*NoY~&PDy&0gtiXWH4wnho(6N@56N;EqnE(|I_FBh3R zxGr=ni<$Dha$x+((6oWIiz&cLKl2H)7@+}_690>ZhnY%RJd8?gBv8F z?TqiLTV=o9Z4Qn58`qWR^(oUOy}dqh)hf}f{UqO8gzszhF5xS zy45PvZ3ABQ0*cEKjnu!u^R+6Wmz1o< z`tgyxR_Jy{>n=^ij4mJp%W?GL)^&#OWu$JCO~x^clCWU*CEGXoNcV|JVS{UUZWjuH z|18f*rs8YgM9d|3#FHRuxt{iJ3$NCRN`ebGi2#dr?j)_9p_GiM*!SbDOqvdy(hUqt z;((1$1Fn)jd*oo)?VD}IFYq5|50H=}zST`oi>4w6U=Gm*d$p9b{Ej&va6 zT9^U3A)NcHYC{(FbabJqfxx|kde6CD39C+t{K~q@JN)z^I ztxpc7s^p5(M*03SeC+{BD*}7jSB&$pYzX-UJ`a?BS#9osUb4^HqF_565v?Qk?Gcq& z3AH10uS+pPN9zEth2v24EZ{(E0+%{u`nn`D*kt0`HPI}|NhpB!XM=d}<^n7KmSbzA ztRtE{^owY6rHGl5p&G-8Hj`32K0H`Gf^)2+J}M>h&*xCqbqPaR{5NCY?sZ<2hf83w zwV+AT`U+WHV*c$1>)D#ci!7Ya4F38c52vpy4&L@hV}-Z}GZi4D7us6db?VYntWWn=R)WGKG7iRS9@nh8Re-|-9Co>8AIEW zoD>}aA_()SV*TWbbc*}*u=wiWCjWaYO;h*c|crdp9OtF^~H>$Mq)^2k2)QM4zLUsjg?x^fPv&Pk9OJ zk$$fBddC3!mGduPz{{)7m!i87niXV*twE{@KsL~xs5cv*%4M?$(d7Y)%5CS+tfCU7 zbc7g~XTH!gNQQA#o#Udt@s#t?mY2CN{f9~StX-9EPYC{i_p^EDudz*IZdS@Rn_*!!k-_^8dIKB!gX8YhHtkBW#SG)5T=FL@)JD3 zgZtA!Ek)9(HnF48_x#ufjAP#~|I_fZ8>3Bc#tp0Nh};cv%gaWGmPZlcGLokOm;VPL zOsS~Yc)^LZ%07(7IFHeFWH@ToI4T*@68g!h?r8#XjhPAM!{6{7m{R7@PJiA6&4esd zUm)ivZyy&iGPt=LGw~QdMeY{D*wiHjJg+o6^&ITn#%?wx_QEP)!q0^tgqBFjP}><{ zxKVX8^e<>iv+-H2vVX`wW#Te8Ht0`feD>JNS5*T>*yf(-C%~Q0`S*~Yz1k+C2=r%VNe@c@4_%j z4@*-`R8eaY_UxrTYvEXw zgf>V_oK3L$0|oZ<9?g&aAPTJyCt~K#F8aXDeq$J6y7^6gyWllFt+$Fx^2SU1l9fM& zd35KM*DeLsoz!8KNfhfz3@D6r`UHuBf~3vHnI$@DLgweb7=H5&hPk0S2gF@JZs-uC zPU%%T${>&5lM-^^6<#mkY4z{q&s-Qfk#kyFs`RC(O8=1mYM^e?xoM0BOXIS#xBH zgSJ>o8x;lFmDOQ~HJF)86SPegu1SKG$T-nmh%c?d2c*nLO5+DoRX=+iewPf$xA*x^FRL;Lk{mpIb>n+H$g^v4b8(tH@+ zHA|cDxF0uN3*bCycR1E{1JlD8H`~%-JQBU~_lal;?60Rr+d!5UAJn^gFVedE<_KVE z8%bw5QbXsJhMonQ`cc0OHX0}#7#H679v|+DiG@C+#Y(Su{&7ey%P+JnExzat`zB7YDT(AEUuD%z_h!e3# z=hb5u9){Hk71`k&ant60WhdzkJQ0<7sd6JxHc9mLDU5rm95}E-zV^*`_E)MJZj~B^Z2m;D7LK@vZvakY}Qz8i`v3x_1DRhZEBxS4})_l8|Hp zl+08GXh8~*p}O;I+z{W_x8>V0~ zGyuDIPC|19kZ}aU5nZs14No|5MNPPbeHvfs=y5{i3ldR|Te1nwg#5@)(p#zk`T*ecjZY@U;$5F#|T>&9E|9Sn%nkj`?BNN z?(g;yEyxT`F|%i!tWLk%4ev#N7Wa8y~?}h4m)l39Izy>*0nnwY3tM%kxP&e+evv z1L&pQsgIfUueWPR_7UQzr(b{hyvky$7wB(qN&n0X{JWwZ+U$U6T^lKs6$vlo`((_E@;fy$z~srE#Af$vkp*!+5&UL_cmNAanv9ps;89!i~t?u$2){J@EnifK4ICsl~7YT1y= z;2}%eYl|LWD1#-GR989kiSWKB8&f2z+oXs9lJ2epBOil45{FaRf!-j}`mz`?RK!Oo z$aY3VidLAqQe_r&RM?kKDT)bC!7e*R&vKMC4r!$&4daOj#4`%&Q#AE+}l+}&ixePPfr z8PH&NA8SgdcF={HyhWk7pO=((^*zzy z3-5+@O;WS9KMn1ge;V4gMgBCj)9B1XJErg4anRFZOv+M#OQk!>V_e05BNUASBIF{M z>EI=h^-yqHtirxG#(BW}cD5;yr)v>!qBnp7wyoC$w>@hXIrK+fu+*C_xg(F-Qwxw6 z6dLY7oOgP6To0@+N{ao`9op+nv-_*(ReLL(A01|2_q(h^P^FculVOa!nKKunw%tJH zOCIYzx|A;8SpV|y&K+?5{M*C(r=k7d53k=D%YQk%UGT)ac{1x+$_-|qYM1=EVxs^- zdlHiMxr`qqq#2ch9ZKIcIb0#}XMMYNXzwak9Eohjd-| z_u(~Kob~^R{5i)Xo*A_c8kT5!$!luK{m|4v&y*Xjc|yOpNCdEi4i!}@1= zsLz^*%m(C;yq`_&^8rr-`v6Y^t?`5Iv28xIxSkho|M4`i>>p19H+}#fsMs=XFmY$s zp%Vfgs9=$R5dKtmi8H53#X_XwfyX}tj`v4+QDq8u9OcU$wi?$3oi5%~EZAZ%wYT7^ ze1D(=68tI-A(xq!YtC;*Qayu9*uLx zvKV#=(&mkUb8v2oJ#=8Wo>loMUzJC6IJxLBR`rDUiwd+oUfp)f_rgByNpQ|w*#u}B zHf{X&w)lRccs@oER%#S7>$cIWKIVzH{pFVS7x|JC=KRJHo$06O%f_>O(;3p>9-A^g z2_Eotq;Fsghh(5&V3n5RmBAoAr2Mg{A?k8)aFk*j$}wnrU*+4oFm|6OMpP*`^uPv? z150{~lz4PydEusr!Lo1vy^BfD3)hPjT%y8v^2h6x_X_40Hh`o3#+>*~Uv$L$T@9qw zsBp2=$!`!~GXY_nnOBL$DVW*YPvz#*5gqT=wC{chPy?;N3txA=tAR?+pn&z?=s;w^ zI%+-oTC#k`Z>bQL=Wh}3Z-Z~0>fWB3Dk@*@Enyo_ph_fPiCfDe0GIq`jd0;qm0hUj z5y8}WM@ar5$3pi9A3RXu5t>-PzqrE;fc|2s2rdL%@>>V6G%|FfY`8D9FVS33j8fZ?Q$@L-bmD_)_eeuWIN7B4p>O(7m~D+S zY8L+eb;@NrszfW`b;{@nqfd{d)P0cbL5dc1t+E8Oio{uDqX z+yq4UX;*5+CI5V#0s>nMHMQWB+q?9EgQ)+4c-8FEQ8J*BTuAZl>Dvqo)zV1sK8INK z|6=c*f-4Q!Hr?2EI_|iGj&0kv*|BZgwr#s(Tb-nnj%{;R`ul!N)&K21bFlZ!RL$9Y zzTR3@&wJnZb)jwQx4XpuSk>4sF%vR!<3X6<@tuzKq8ANI1L^U?-}(~ekblOJS*cYK zchXj%L5Fdwv_HY<=3A8UT5_CoMHx@>=VvK!?_*he%sLF|KL;X_oT% zH<}0^1{IY*(3H?a?Ih)2Efs9x>tx)tyl?8quD8Ztv&;2UGgFJ+1eH$}m z-i6$B0NFNoLL)cd1mTBg=2=6|zlgt27x4pQ#wjBVBiLrlR*n(C)V1 z_A+CGmGseAv7<%h0BS5(bLwxxpMKU!CvNDdG@I7j9*`kSm#=Auz+GP){$>q72}t<& zs67R@2Lz(yH9o-e^r=nE7d~>J4TJWF_gXobej}R{eUSWS{SkKdcp@y*QyL)L!kOX? z^IjB-cq$t7YBSneX1(QI6glw`7O6|muMPU=!N^qSN2mb4cX#MH8>rR}&ySh0!)X6}3fWg3Q;8r6$PPY@96UhcH8eM~y7^URuWaI2orq6dj&?Ti78}%u=#6c`p z07`J**3PXn3nw1sy=>3{l{=!Gqsl}zr+jsWd%vvcYfV2?twC7?vOQsf5Up?qqS()t zS0`|-1rt>nU4zPn0B7PZb)Fz$^R6y2!vqZ^nwSecvg{Vo@E{ulK=fa3K;Um4rE&we zgD^g6?Q5`|m|QG?o3AX5vf>fd^q*yD{gcXQfOv}%riwI20*prVOWl9!o! zqVBT1q6@wIek%?cqhFIFF%lf6oxS^c@Z6p;k~O7u%C;>R*z-p#KP#ez1a~FPiSx2e z;FgAc^3L{8|Hr+_7Us)v89Vfb5&;e74fA)ZESZZ7AF4rK@M}G^ds|KohgU5}Pit1P zltM6ww<$a2Xz~~DRjs>?*O|;&FZ;F?nZBScO?@&n5w}yyx3d1M`X}?BG(vD` zA876(X zHX&jjH)F1VHyhX9a18|uu2pMVCPvuRe5?)?VQ#iOlhmPu6TjM(JvPNsoC?<44o1^6 zVw1d20GZkywN%A)%%nuSTcYKa=m8;`j&uskHjztXXjdrvi)I?EhTIziKU(;T`oS$1m!hUGSzN?YKb0Ka8!b(;%R9WbQ-dq*j%%Q)OuiC-FSI$r1{E-_uphwn z&!-BX(-JuVg+GTZ7!TCRak7uQn37i6%uaBc8-G4H=h|E`yrVW9V}XWeT$5YSb2_%7 zD##qV)v!$z$bW3Aa6ixsBU(+f(srzQIZ63>39QKq7_r+c>3ZmP#;l5mBb_Io_P~PU3uQg(=PA9g znj+p5{)7(wQi*CHlXegJlZzA$OmBv!mCR}qW9q~}qHN58*7Z|fMXN*}d+*BC)=x^F zSeOE{#7u=`|JZI8cM{YXB?>zwXLYGg>Hc}l6tqhm=)Qi2Afw9n7u}j@TO&&&tNoWR z#AN6p;8iliflN7e&2xFTi)mWm$zzZw1uWdtv>dOo=T}4CU!W;tkKBOTy*LszpS;`Y z0=Z}FF*@i>iDemMux1E}V>qD{4B0nc1O+Fc*mXq2 zOPvI|s)(nM*`WffO(PZH=W^9b&wjdJ(JggBucynQQ9giip1x|+B57j4`V`98CdXo* zO>{Gy%;(aP9EbQU>fB44>2z?rGTobg_`^Oy=Air_bE1l?Pz4;~R>E8JSB5lh#hM(a z}WAw4DtZ){;Wv8Zw9}gRSqa%IiQZkfii4X!MY2j#ZwseI0_(@C$KOcMxSE>Ej z)aYW;)Q!l45aO7!ArA8bwF>;^oQ$Y#Z8TVy6!r;&M1M6K6ucYZ!@~f`k0M`ZbHX2@ zH-#>gUc&oyTh;7Gh$U0`B<9nbIOG<=4Yd6j~S16?1Ec zGlhS-3_dZlInL&@dT&Z)bWI6mA}U@*nMDKlARK-7R)C%3Y)1Zpva>#Rnc(rQ1lF=q&>cQDOtMg)RPY8C;X(q&N8I2 zgGshv*?jPFIJ6|PNK)=(hof9lTFlQ(S?NjR*mDEKXTO?Oe<3k`BBDkGGbIn#bDt$MOH##HMAR ziFo+0V*I}!sZP~36AD_-uoK9Nq%NOecOw_Vo3Y+8ol$RAhg&Di7Y!>N5&y{w;+HURoU{JZ&r9keeutv2=iV^WSNl_2n$y zy@Z0_`IzVj42MLO9-SvU$cV`t5mK0YQE`E8Lj->IT;E z$5wOuPNIAt+k1pz8lwHyMUoph(AmVjH&js9OVUq=sEJFsM={69!`D=WSHR$_`&z#9 zqb(}8XbY_;_lY-T$s=!ov0Bm_=%hJM$HxBAVT_uKSVRh2qv|&gNSQu_7;z)_H;R5L z5|GDm6!1;4dCE}S;dX!a;%9VpCHnY9&APZR+=-F!GP$cJsEfL4;Zyl=l0j>T;+myq z4F}W8>D7$>6HfSF2koL1WB=fXp$@QU=F2MDYZ|2h9nFuy4;(VoewPH(F0v(vgojNF z-~c7yL_cz}oR(c7*-7-XH`4I$JHZPrvV(Lw$-^H{N~y>5Gl%hgvB14fMKhB5f}J)G zAs^hD4z-5Q_g+1bwYyt_5RL$YOusD>S&H2fIdaXXQRkIP6IZ1?7f(?2ry$5Huw0Ed z64Vri(Cu4H^7;|S`)|SOa#k=ueYfB$6{+DHVw^0z5#U7$pvnTn1a?0=;F3zrrYu52 zFA*f)8!+W*KV(#3ggxmRQK&Us1fp}>A2|b;WEgeAb|-nNMT8Yvm*|}A)`LLLkFO^@ z3(AVVQ#~syoO?!02HWj3qunfOai*;t_GgwyZ*_rB5RPxaa&d;j^0_^b?PQ8_FnKG= zwtKYUo&{m2wXsA}g1P4JCQ&=>(Me8Yalm!x2NdDpZRy{ga} zYI4yA_LCH!6SUOlP@Pe>Ij~aTjru^&W+hZca(hQ3QiAC16wCoBK09!H^6a;DrU946 z!wZI`Uh~T=+*}>9Vaf?6$UyXU*Xm*l`cM!NoTb|uw$u=%);~;fC+TI69^Um?? z@<`}Y-qGyuaONBo(W%7aua-n(y;?`Dt66XaohjvFlA-SKW=|B!3dcD7>_4g99zx7+ z=WR!fbvc9ljvx$(R!3P634Z#p`BD2no^8@Zw1A}r<6;mCxXj^_8Wmj=ENqt*rd^o* zfpEs@T2#ib+9MTtPMv!1uKB>xctoC1n9%XrN+>II3f092{TP1tL-?(jcC+aqf8V5Y z@J^u6A9jjaab-fXY~vbY3kdP$#)a1nm6AL@(&qR#n6L+xAdGvdV)#t*G zrIye1i`=uwb|{9X|N6t(kQ6oFTRg(+#v?|^!FsK3UuFXz7eFTu-T3W z2j*913eI_ZJ-Od7o@{wV4QRMoW58PzJzMUKxAIn@#IY@OeBjt-FC%9{;;{ll!zUn=QUK2`8!krgv6m=!%_X7_i(6ezHN+WC+iC!WilMJ%!ncT zap~{dEDFCzAep+TLu@DaF7`0Fl5oB_?>7bRr*ODmimk31w0?&>@8HSX>8I3?#of$h zubX|PdH8b%st~~h+K2=u%T|{i`mKtgL#MEHPWZ}RLi*5!qn6`hR55?tgPUxG0qJ-9 zc`ecW)6Q7QD6ok@1Ol z10GH2F|p*uo;L-tp0L|Kj*c#ApG72-IUch^PFYRp?q)2sfr3`#ahXbNAyjiDbQ(A{D9S`3eA$_c4H%wHSjo?Lg)+>mS^+ zaW*~)$Pc!9Y3Mkr?@RaSPaR)^Jg@7lPaML2V-8v7=B-^@)1%|sT`H!u2eYk9Cs}iF z+)HvKaB6t3Pwh=x!@f=SNBI_^yhbtglPfG;KyjtdmInpT8BYe!O^cV*y?cV?C(#3< zhnSr> zljpmxxMibH-=aDdrAP0M);BDM+Aa|#dz^EdxXuNHANu3!^6p?yicd>y9tZeod*~R|C+IqReubCf&urr7jcAE{oyqR2B|vMo;HZ z$2usD(_aV*`-Pa^HtJTSUWLegsViQ_7xZGD4+p@cSQOdP8A^y;cuox4_0l~WrX=s- zoCaV0{L3e3&7H_5j?CE4E87G?L#r7(ihZxfDQrlJtAm@==k+2@q^D#PrB{g)&Q4xO zbJDX#@ES_3Nq>dgE6_GyJG{iaN&(GIwdT*0!<*uXTg0Gs^4cC$uk|3TE)EtRw0ZwI z+203ImE$%~nWEP17`@HU6v0W==;%w=Z#T)ejs~N{uBGzk5%&}8#pwzHV)VhHN#&!Dou+5xqaz4r} zv*1uYWIoJa99}=MIH%*m#4B|dWTGqJ)bOA(tD<`v&Vt7ZVK1op*zSrQssDBUTNWxG z^9o%#(^+K9O&W$}is1ZpOVGwb(35WkrhOw%>ylAzo9odfSid79QcRnS?hhwcd|8uy zk*n>acym|z`fo1bt1S&>6w+{q56>R%$_X6lEb53|tuD+pQNjt>_a_DO5a%?)4io!{ z@d<$_AQC8l^mT5Y@vP?4F7QT;p!7=Im_!@EBi(=zPPJn+MSHQ}LQpwY*1W3NH?)OC za9+H*b_XgrGns&}_?$E7E%(J{GjgH1xn*A)R_ma))Y@oeP-0~@B^m&EbQR2rZ{}}U z;uE^|+HgvajeWkmasNlA=owFFIE2n5m`vv_DuGaJC=r+qY5pCNtnp7^%y5;Ca19``oM>UX5E8 zWhuP1H->5@6P881rw>p6AOE4#4=xS>)qD7)q%jPW_2@P!=wuv1fp}NR%`rgxSH-3O8 z;O>wQ=*Fzfr9@@Huw#8ry#$RpyQ6b9NSyI#rF?6^%$tI3e)X0k?WfX_ag*}&HTez= zCjt4O)Wu}wlkJlE_w6|&^S=A`U&f3Xg}~Dbn7IvEt!T{CoExgZv7|Z4O5$@Q(2SM4 z;(~&J`3Lj1*97QwDG4OC>y08KI5I)k+U0F>+D&qEw>4%eVfgCyx;dihoJ721S=4Yd z=bVv*M`GzF@ER4gaGRGmXolgFWjJfcjtel6#}Vsef#>oiArW1W+V$i`V3miY;f3WW zx}G@Dn+9YAnHtVsRPq@5_j?_kuRZ1VWndtw;*&Q~db150GTz=~{uYCG0YE;Ij&|%} z5!!P@dz97Yw({W;x{yBZk4di;@hy40ybiBVX*<)?xIW(dk2&7^u5xHU_06t>x)r(u z&|7%%*73i$h{CygoYC@+LPETPZ|^mLdb__o?%>N26srldGB|B>V6JE0A|6{!5 z1L;qfzj(Myu zk0Y^XN0uyy%J-X`wgVLf#_+6OpUS^tpWC}$+t+?Wr!Eu%jYSDKrA@hwURHvNAb{BC z>FL7fh0#)zu)KHCdwojat8VFsqo^ZcgGnop zSO>{}ihWv+OTEiK#Xi|RpJE?4+E1}h%OX_j6Dq{r1|eJ@a@8{5Eu?R5Ak*EK^7jon zYQI)@@P$Vtq+P&5|K@X{Z^#=g)FWcy4OjO5rR?sXY{^SPCNDNK@VF9?l_-S35|I*; zPq#V@?xY=_9G_HtS6^wg&ohvy?IK=Z1nLBy*fUeC`QKD=F6+o8w&mGn5ug zq|Sdv86;{juUyb>EBA!3NT9pgik<&!88p;bnmjayt~DQ17)0m^l-*{vXQCCanh?Jp zcLpT$P)Bd1CwgjDFXUgb4+6lgUhgK8`5$7RAHi0O%V&h;STb-b0I`oX^uNdVJ3-ZL zPzLK%ijo!xQU`j1%FHV!3FQe)iE4~i!>oGezA&XK>wLUv5IQ^M!m+-2oAlb4F=f>_ zMhkj=!!Q%jb_y9ml zstULv4th7cHzWvozWKPWntW zB(sP^V+>qGq zU(%2hW~+qA!#$g9Da-BDec_+(#VtJ|f!JGEOQd4ldoKmIrxEP~>bj8MnY^TgnUF>J zJJHW0l8-GMkA*UXfJrU}SFJDloamDX&>FIp54D3vjfzGeCo?uOTzaeGzR}^nnz%$E zyw;bkYgT*>WH8(Rv%j{S1ibu6|1{<-o~f_pdI$}CauuCR9tSY~o_)wc-OdyoQJDQ%eoNk?&acv zF8{&7N~m!m=|x$wUo*3LOy-;-l-Rxf5e@U2=)~nN?@0-l58r`$uJpda>nX%!!7^b; z*O5GNdaFC;D`s6a6xb?asjGv!F!PWa~X+ z&Bg6rY2T-i5)nF4?%da3)ec0h$b3l68FxeE$$pI!^u8O#hx;WM$G=)zZ4~ch(T;WS z^`cpB?gg{-N8JPTKg6;g-KCd@q%qG?ArVJv@af3U=GwAL4?RHA$EmT2HnI5Nx`bos zzS~5Z0R#PGq7TIVvyJaRPxK2uC;E?0Ah`dW=+8ka(Q_w8uLgf50!;LAwE-{Ua#t%A z6v}tpM$BT`;IjFE34e7iWuPb2?3VQzm92^E^S)jT4qus9}#> ztN4K2?pF@pio@3|^2!NAJ_ZxCrLa^qTkDiB#sV&>lO+XLgt)Ex1NMgFShx|MN5WHc z3bajkbDOk@WI1XLc@~kY<~B@|>^!F^{FtCq8_H-x_tDOS**osfnaNSuY|g2jRQCGh z>geHwbm{#T3dFSj@^8IXr1iewZ@cz-Ln5XJ(d5HQo6W5p5L(p-2ip6(sn(8{ka~?{ z2X#hwL;cDPCr&9R(dnkrPp2*ERr@^myOgGLI5zq)4I=g`bLcB9F=Y;1wv73`z6GwP z#|eyX)m9yq%l^j~C_*fIx;OyU&p0qZ^%F&6R0*AbaZId=BQ+n!YfqoclA0r2eekO{Z`tDm*Ce#=C+~^EF&QCqcgBJRX?;v8rwwbP&yhIN zQv~s+iEYoo_cwy0%lzAw0B)M2 zajH|i1ey-3m~rBgGqJj=@;MUgY8C>NC4X$C^b^($PK`n^rW7Aq-{@8^twAC&XY4TZ zT5wGQ9l^odoq>Yk?i8J7w#%^5!f5nyI;vX%XPhbYJgQ{|(VC4I*5yR@bldJOUaJ&O zjS8~`t>tPP%SNVlTDEvWgv2xI@R{2Ua+dBum!M_G+Z@F0Dvkzo-|z3uB%B*rkfYs> z8Q540_2aHoH9=C^;hlz8Z}fztO}5T`LkfbyXBR5iUn8du$s!Lze??_Ly!x(2Qw|u4c=s_{MQxy16y(l*go$$rfqv zEr^RXqok*aIc4%k4)q*E@;v;L-5qFZ@`R`@cs_fOu1tP z*yl?t)w$JA*W*Ee)32P#{EBRD-ww;BZxZ5t`U8^aUD~Q2#oI2bkqnuec5knV6XDi9 z4KimZf?&7Km?%pkIhF62UU7vzjVe?z9`Q49x{!IA$`kTQy+rl-kNFPyX=jL-qK-c; zEas(G+YIb^;bN4~0}E61M3(_km8G`$Vd$hl#VU;kJ^76|l6VLyt1`xmqTB6|eE~DO z^FY#{^9R&JCGYK!y9OSr&;|b=+Q;D}jKY$C=lQS-ybH=pI!yyKs;ZRTEa!oV4BXZj zS=DQqNT9$%}XdbFW zvTQH}N&n9C9eBQHVRwAJ-)W!CbZ?}+Dvp!B zJNkX_+|01F;OAb5hUM%W@y?+cIIIv-XP+C?mrEMszNDiWoaV`KL`nYx3{2s4185HE z@`H%efRE|%ncNIzl2pVe0qbiEi;I7SqLIOU8I}l^pNp7IVDXMy;Lw`q!w5W$fd{0c zo6+7Q`YB0(V;t4}+A9Mk)+=D0zf!a3DM|xOn))?&_|kI+u+Db{tn-iUxTCVYv&Q4p zviD5v8!FEB8Hnim zF!C!X=agHks&f9|#dTsL;bc@jr&P5r?fEFU?NYHG48wt#wmOCVWv%XqoNjIFXwH1tk8TxFm}L}T353Bu^Kr< z+^j@5az<2O%^4n+^5=?>Et=qo3R*~T5{VuqKde2C`Q}#SwV|0wCAuC17zuL!?DoPp zUAo#Fh&&_={of#ea)3ZEwpTPMwoCHbp%#wek)9|Ca{*@5V+XMdtmQXcly{7PFs{*`5gODqCp-H2)RTQFZ@8Yib^hj|#i{0+{?eTV~DGcXfw zB+s9(=3rm00H4vJZlY0mS{m36H}-kC_XQU{CSTXi==-mEnyJ;Ig)15E;%|9a-$O6b zj||L=y3q@pmSb10eF^#r?bZ+b5Z+B^`AQrhM}2mE*B{Pz!l7QaR9^6#!leH#)bCz4 zdp8t(n@nenc89fsu==~vD2{_^h?$dz$)~uu*};E?A@#iavEJ<0ht9R zDvxSKCN>k{rlHHEvre;)ulB7vYais**b#+&hEl4lCU9G#mO3ukHyf?$-owY+`c^MF zkHwF?Rk}no3@>Ht3LV*q%87fk zvt9B}D3sRwrrY8SMYHNOP6Y)zH6f+(%;nYTVwdUMXY!fMa z@CgSk!RS7uR2_|rM+pXqIH_~v1#+1`&!-g$55o~}$ADO0sCU1L`dzsC$00Naw5>J@ zGrV3O%IU0%#Djq5|nXRP0AtXrfI;F!Rt-<4o9!yEKr zE6@csd)iAt1KT3R4bMgm5@A4?2&X(&sPuf|F4k=iK_4*%S*R01cM;XtriXqb%)ZQS-~CL5VJd6fK7)OHK(H@=`Ch!BAp+n*lU^}*ZvrN>R$bRF(CT@xCSyw>qch-rlr zjQ+lA?eAM{Ih>zRyWCJSAQ0)awjNbRuHM!qw&=ugAhzCoMKL%}pCM={8RHJwNQ3c&YimvfFy5m`}ry@yU z^*`xl^95<&NnCA@>l;Flb?H`Iyg-ISl<%{l$|JU^#ox0#MghrwjkUX89*L)a*qu_v zoMruqFbtJ8()Ws4Fs~BO@|$d~YA3fEQN($sTN`bc`5ZopR@GWyri&!Z-vpPAHS`{} zov+Slr5TFLkF+CQFNjD_s9X~{=@X~G33^B|&d|D^Ict`b$Zp$aW{jX^_M(_0g_us;iur>$*n-FxZ+lDMakL>C%ND|es^0>leWst-N->u_k+oiO&kef3BC z_Q0Zs8%F&C1rflU*{>Is=P3%u-Bq){qj$LI>+a*uQ*m9?YG0nwMpSSHaJJO^xw|V9C!{LZ zulv-xse1D7cb);kM3hJV4$2a9CP_hMJ4(9J_fvzYFhSSbS3!##{cYc7mI(&&85>_WxkrEQof!e%rfQQPQ zL_xLQA|Q=MRYE>TTyZ-@tTFV|K05rmsft!+Q(=@flBOVj<7pUUl9XDuM$Ljy03S^G zEc}~=zYXq^*+U5yxL`S&tn4&MfcBrYbe1a_NRW* zbEuCxGSg(gVv~Gz9I$j%koUG%=3zDWpG1SRTn)DW0Q)9}1CRy2xdiUH1PWUgk6c&3-P zIE=Q1CmV9jcqHu8j}VGth1#QbCYjzNP+mG2i=c=Og!nR7`bC;-?i<=#B8u2|Yo{f0 zO`N#tRw*ZuA$q9cgfF&@F2osH%CKHr5u_2YFJF^_XerS(t@DAPoUp051+9E!+@8K3g*N0B`4*YjZN~8VdNH3e=9JU=Fm3@?&-5MNiJ8f zI}dlzkvo()L3`w%B=0`eN#3ao%>U6T7$gVMLGqE)D0J%DR#vB&LW4twRYrh%1YW`a|u_-J5kH6`W?? zP9Aeju*Qc4IkcmCWamGO<5#c-d6|i*@FBpYuPgdnKC%{opbR`U&Xx4 z!>+XwLQ*#5CA7PxIvZT`sORHpJ3Zl%z!oLDUD17?2>0FrKPBkTsTN+HoSh#g-!di= zSDTu4xIqOOYYR|&>9`K^GvNe=?U14z*scZ;ei*#~-Lhfr?ZTh70@zr!I^^ z*1US^#sDKEwx<0eVR6Oqt@(4&hS8|meBySgnGZiMu6DX)rI!6O9Ri~$_qJ)PBxLj0 z=j_?)@Sman4dZZ54*PpW4m&;?xGi1dyTGQ!@4m6M90co_#WQ4(-#Q&QGtZ!)uOL^~ ztH3;6Z!gmXw}8&`3E(jLFRmk-hfDU;e{mhL{AKT-sxRB`d|pS3Z;%+;dzg6eC~>Zp zc0_cjXb$dnL@0!Dz+W#ZUL3&?6r{zHan1y zvcK%I`DM`lD@57J#rl^KW*qVI=ip**q*JfEs=RRG$AV$n&#JMHq$wD$fLf%5yAMnf?bFjN1)W@P2ujMa3xhEOP#ngT$;$ z>zv14!R4hTP97%Y!6o?Q6LVu9Ea`qJ?Gtq6Nw9m@Xo9YyiGBqUT~SF3BqVRB@+5ea zo(B_QKaMik3_1$Y#DmMxJFj0 zi^gozVXGXWkDXnpsaI$6E83=a6&S&cwWT!563_*5;JzFEemOA0NrD^;)iwSE@)n49~=E2Asq*Ps=?O zYf+$V9|CuJO9}b|4aTG<&q+jX>A4zPzn16L4B>C!51&DExrDE|B0iuTwWa;g{8yOe z_NH!_`u*@YumtF+qvusErN$ZV8Wm$4sWj!I1*pp_?hOFY?>}HVtjFZUGbMJQSB#J8Q!Mte^$i z0J0s4I^$P4h;4~^2^%BVgRWLs4YHXEvUboqGy_qm6J(9a4qoAcoM6xtuQRl7`59o) z6G=kD&FKI)C6<>p(pNKhM*jAEbAveH3A0JLo8r#(FM@8d5IOZ9O4 z1e09r_jf)5u*0%*Sar)To($;jS!3TH0MN1z60%>4Wlx`XQBzRE2W*-C^H9X18KVlI z?_9E7OhwEu8Q=~hhK{GV)pl4pB!}4!+C$4Rr%Bw++}J_lRFunsh7AAg2UL{2r=;}g z@8MO-hWoM~>-q+$KRcl-P1bo-PnJi%rz#(y90Xsd)%O=FWY)VE@h5~@A$ils+&B;^?(eXsn4}lyY zjtWRvWrLu&kyNsAM_34^08z&QX6ohZ2X0Z7fG8<330Ii~-3++_rS#$!k6qSDvu~-G zdvn^8J9-?;4b;PqU6S*88yc&SXsIu$vJl_OR=jbMjq>BeN4{y%1GNe*#(Pyy&Q(N8&0J zcBfW0SKV+T9R5u^G)3Lgzh~ZW!A%xlwY_t>0NnhG>vDC*QA{k#6gZ3TarZRY2`p=8ce=gsUvK{aisR1jf32IEU`Y-1cddoF-F{inazar@Gxc{xf&h7iU<~8Z z$^>`z4LOL0S|*LRxfCyca=?7oJn7E3XhAhRT`ObJnlPnOQ4y+pY3afEdBNqq;9yyc zU5({ThO1@5`V+Gi?bc)4Ts?B=MTh^phqH5G&M1C&sts8mxFP$;#DTlr@wcu~zp$wW zvx$iy7$n(4yqy8ZTApSCjaRyA(Xwe_AEd(X?4BU^PYa>feAFVyO*37Ayk zH1^K;Pq^cCF9R7=o#NG9Wt1`+2WBZW^Y9)MnLBvQq9FY(U*t%#Ekfm=PC5m zs(~$iC>ksIF~}5Z{n#)|SfeeUvN8!4fUFDvEX$E4FT&ZwA)qtvDFdZXrN#&Ej$?0loUMqm>i*=TE!;BRKu)=II_!btkNHFRqL`F zU>wDMv*6SLOQX5NKXYsr?{$Pu6LB#KA657w0YGo5j(IfV#1QK^+?N>KoCh$x`-QSnN zW|#BN_mzM}i0y?561BdrBvm=1@fg&d($R|>OmZlZoU^>BurPZB^1x51tvO>Tjmx<9 zbkr>%9~CYL@3;c6nf7O@zQ4_~&rCa^%^lfj2v8`7nAOj0pmfm6LR<+cZ+0A84zY`t zH*imrdNye8g91Y)#EjfwO@~to#8JXrF{i)vvPl&5N#U7s9?-=FTlWmQFosy6XE#j! zkoAuCK&0_XZXcf;sAoklrQ%y1V8H&;Tsbq$qX38rj3c*?{liZigmWZH%ua}`1^ zoaZkW==tjEt92 zgdOUH63bG_@C=3Y4G1Wt#pi+91@Bc9!dtO3`#Z*`Yjm*UTNdfu49z1)_2SqO0+DVKxT@LNdu z9kxu*ODBm|T)cD`Q9MPhFh&N6l@U#c4S3#-#Geggh+nH4)Qp_Hz(PIuFQ>du%sb8~ zPV79xVnX&Sam(K#l6+BZ>v?0koP0KuBGojilOyZ58NMcBWuU-R_h=N_V)=uKhpvxsDu-5M2?rL|h+k}s| z7FN7;`1>j`hrW`@9BK`xfaTDhe5tC_thLt(;6-f2J7%nuq9S2|U(Qp(Oxhd?iqdrm)` z@3&d(F}Y*8Jur>_kLvTs;xw*HI0!CCP4^7zu}kgtb4kF7p_`YG@AC5bm&WH_-)_E6 zPiH>aztA%7N~ZUJ0WB-Fm!*jY0Rpmw`A=Bqf2f@p>F8)(t$zGZd&x$6y}V9$SvG?f3;}@Zen&E`=FXD3n&S40JY4V zL1=PHgvM5m8EBH+k8jb}kvZx%W|F2jZjQ*DJ&Fk@US(b^z&5@gXgQb?Yu$`0ETqRd zg0#-2s12x=D7(kL?+rQiDt{2E`ZpN>{1i=S`m`EIn#^HpklcdSB~qlUZs;?+3VEb% zwaJtPj=BRleX8j>UH^DmS`I%}v-r$3CQ3bxS*|budoPTkuRAXC%M|tL%?dbQulUtJ_8Px1-k_Ivg{RbeFrd95LA8#K%+$hFXIeE!SJ{weBE?(JWJ zpZ*q~Pt`4BGA7X9b;>^a?2EjwI{sMDd1okL!FB5g)L8nIwFbb$LBOr_bTjICxHM## zHHd2}hZpotq@|foSxvD|yzk@~V=>utihCh>S)=4!n)F9Y={?20w6$qSAZD2mPu`Bq zfg-KuWSDYVz2A)Meq6`opBRaQR!7fSBWL7f=p+wn!%0d{Bi!989%ev``6YNU@P`5q zUrFOo@fqlo$ZRQ7$@rR=P_9eN6llq2sIoP95~L>`f@?(rnNQr_k~EBy!)=G~|H2A! z(gBSl0P;tPAF!l24#~rUv%7-{egE4XRd_KJvw<4+gbVYG8t{e-bB|hh`m{U2=yI}! zoB9`!CpEmH>fC*0w%fHX}|Q3_8>&I z&4Jou^zYA(#n)o|(t$R4KenTgX;~s3rm#dK`jypT0g$;}xQ@?m*QmIfkm;o;+c;PT zEa%7ZNB)Hdj}}cqb?gaJ3=Z8)*}Pm=xfcT3kn1(u}6XNK$SD`K?wrnPmZ}m=)h^$BMWOmpG~k?^|gFV z`e-yhqYSL^=tb8p??q)x4BK-+l*RrTk0t@7z8kJJo($Lxj@c{nJb!kyff>p(%|ZRT zhO-C0|Ae24C+dLrtTW}@27U*$slM*L|8vd*Ccdp$(((HX&rnogr%1)`4kH^!mU?=>D{04 z=-pdsa0IPBTe6dQW&eXxda;NFgIy$s((PyS$DF`*>H3BH;K4W zw3y?vBVnWK@EXWFxB`R@0W@&|ILIGMpwfPN?9rZ9?lF0AA!qAe&uz0cOB1m(v_j(O zS>aNycJ)|dPCUbT;_S-0=NwZn&;5E6y&R;nHoKH*uY^cAgNErsukY!MF2>&4G3~-? zJc`zQ5BOJI2BRY}KXi9bBe_%WpVKduE*XNoas{Y&eWeDSy+QA3ObXv9n0*Go?BRnp z60F%q>_&VWSd2{sn78nupeciJ`pBN+5AcEjtR_~>z9H!r^^J5kduMEJOHKuR?lkq zlwK1*pB?V-tz!Gt-Cy+zAb?6bB(k+C{m~hBJu*|(ae6EU6QE@Jj(rS0rhrKK!-a}| z!Zrx5UneDBfXPOJ#*5~r4Q$xwIJa62{az>FNhJ4t4|w0a{ghwc27k?;bNiS7 ziT)q|Q`%Rb|K@*MW@`WNKP^yw_@DO6b0Rvk2k*6ge)et1qe|RwGcaPhn7$Ht(Ia~Y z$~k^YhrIkzPXIP>Zg2U8gn>mYvbD)jv}ge^P-{+jPwcxl-GbvNK<~5c09-sXb#;R? z#(9RCaAlwF)^#RzdTnIKGXswQ#hU@&vkv>wP2Je=u5?wMG9lJpKXMd+$CAwtW z`%6ScWOLG*j+pa?K?-Fut}cFucy?@sLiOFUW~iDYSuWK|5#XB5vyH|s5>S+ii4}zl zL*JxTCnvfh7#2K!7BZjs*~&Kl`*S-Q89j#V=uOjt6)wM#xswOPr;$B&9G?)tfONZQ zDCH6>isE^7)rqqlM7z>-Xo#e(VW2-6V#!=%LUH^kHdI;_ZeT!aYBV5=umEAjz}13N zjWa_#w0tdNreud*&lJ}s=h^dHhT#E>T@wHD{%#l{fHOh!dR=tFjo{VgQddA*tdp#JUE7 zbDu*tb#@b6INfcrjXiS#j|hT~aY*78=zUUr&50IBjHGEUdEDzYMi#_1AU zsd*vF3f3iVl1|!zwl^sdq1(R+q>Bhz`^loScBUPc^^`mz>|&~PPy`Wqz$A` z4ujS$?ygZy4N?r_3T&QtD?%uYLTU5I3p#pFgCfQ|kh+Qhzmn2$qJ0M{+9zHHbAYYf z+>QfFhkW-1)v19>&(F5mD4h{u;kBL-^RRUrRK1goWCG zy+i5PtDb#jVqRh0!hJY$1%CsiK;IY3hiB9jX7&9A66uRs+SHsLTz6DVO)K6H0n0z)0 zl-}V7CfVYUnfKI!KBQ-hv+KfW@u6Km3xKA1QsWaYjANKL^P0VOLyPK$$mRyz$Lo0x zEe&uGULq%>t_%e9Mo3yKfK0aZD?oJIXe^tTXiLLqO^pT(Nv6j%U?vH9@RlxCO!?yw zZ~d~{E7q?R`2Er6wGJ@SEXpqks-ihbQ$)cJznvC4&7Y7eaKv|A%znc^C-}7$6XqE> z;nrR&Y-Cp`v1Ry_1&u6iV#u%D!7$>iEbM)O=_JHLFBZj!Ul?K zyWTrIP4-u`2L zQvBL$)feUaDP7G^FZ32uAP@A2ZwPLo%>6vGoZ|{ZAOAabcTL~Cw4i27`;1gj z4Sg^-xV1IL6b=b`nDiZbX&cIqEx=BcrZpSP-~CFF$0fM2To*lW$?k>XJUyXWy$eovn>`+3n`2#`JjHlp`BGk<^n*G3e{?QWr1?6pWs_Z`9I zEW1XhVffCr0HVs)e(F!b>G-4Iq~^t`alQBNExDWx8UVbLJIIJ&jS63^ODY}-zQ0G{bhwi%_>%r`A2=(4C7C~&u)>hbq3Wo5j zf8KgXRw^vK-W6-^H+{|&RE!5vOVZUW6yE+5gdOEh%(ei>>`$wWK>@zOPjf4G4=X23 zAe@957_t=lxe}S2t+CPkhV33Lrzd5w9ffr`7{HLr)Axp>2n45_J{a)qnyzuD;t)Tz z57rqF!w_v7FBCGg+qb|kKOJv)9dI}93y6_kBD$dp@rrqg1b;o~u-fj0@=1G8Dt0%~ z-VWS#ge2Mks^xyzG_W7q{EC(OR@aUk^V(zMJXF>hV0VhyheEj9EkJz(L&T2K_e6zu zZL0eR*j!Qw|&ej6}l=AWr84_=+nCotJJ7;x964 zo`fR9WkE>fz6cK8qx_spt~Gj`T8}1!QsM!b;+YbiBeCs=iWJhia~h4s3BjkZYMD1x zNgyb?DhRR$t5;uv$78(TDOV+=!#)IkHWpHvrX50N?dv6nS8p=wt_Q`*U9$6f1&OkZ zDoF83hwDJF%Pjxmj3=uIhbLZ3 zBA<|-;~^z&jA#l|mOj&h`E42e;~sXICMQy0?YWnVDn%M{ia<^O1J3-dwJ|K-Q5B?J|aNBsr^sCsn9n}9X+@Q(GbWJ z8_;i>0qt553_dUg11(S#93Qk-bnSF)JyMhdTy*E5hrv!g3*lVUm5^M$oBsAPkboBy zAc-Nh5(`T5Z$U{N{t!Q5Qpt~EHI;w271oQ0ui|z_tlD48$)A?%6H4?x!vLUAtPd0# z2tc8s$mNohZ!Q27stG`$22=XLq)tdCj6}H6z6BU^Y~wG2u(M3umlf4llvSfZ#|8eg z-g@s84Yi$|;Ygm|L*$O%7phLL4aOkadqr#~ zr1$#nt&1G!mj^%6i@sSvz-daKv}gODfD<7g;N<;Z0jI&z^N)ZNzO3Cb=`};H{cnZc zZuw> zHgdhe{s}lWeFU7AtK}{qfJC3e1F$KH;~xG7oR$FrCsaVd38u0{D%k~Jhe0vv=(DfC zChAKTMB#+zb?MArC&suO%0?&K+P60_;oh!Z_+0Lq%1fWn63>_=v7^1_PW|=F#V1#x z^KoClpV?CeZ_47Pxb)CmSH>8JefO=cM}u{wbRtKj2qJ)h6ZgLYPHiY&)$v~cA>g#N z8%|2)`)o!0M!#wHH{i5~u{~_?5pZ&S@sVq*jGTU0q)Bz29GMu4I^C++vpv>hin&)L zUWkljKKdeOol4)!)Q(0Y$ZLvFiO-}#!pY1uM&=$jNeuDAe$s~L_jd#Batl%4{FsQDaELWvt5afy4${$PwhCx}W_)vwPD@zy>pv?^psIJ2-~YR#S4l|Be2%fv*F$ALO<$K*nIy&^5vVja!%GHT ztoM9u45v5CwpmxY7`H}``t7LBp@dR1Q9q&izLDz|+OS#^Pa&8Z&i9k|npADM2oBZ< zt-;BOotTeO%;Mc_=5vlnjW)Gh%<5Db>3D+Mz;qVn#mo4j5LQkd?eYzV59Z}A4M~5` zSlY@19EbutW0bEQQVWBGNnz7^nQYD#-F;HG!FzI8(~+aWtzlAGFlbO(2a~~@0sW?i z_M(YOhE#p~Xs_Pt&JI*)O?xd^T{7h^GLwJ$O_1b`2kCQt^x@(s24DZ_H+fA?eDs@a zVDK~AN~$Sc$eEW3ORxT0zX@A&CHab6bw+nd=TE z-@;tl;WcKm2`QN#bd0HUueC3{nIusLkSbJ}Po>dL-t?85B~{n)XyAVJRmYD+AgKKm zepYoFD34HLPq_sH2slO5e?qfg&(cka)SaTKskBuZND#0aozA8w{p!hnw`8uSIn5b8 z9EOK3>k=j{%q3e=4~}uahki+-J;rVi?nb7bO>mnn zp-(3hrf-757;f2EpStgE9kmnc$j#$oYANFRpYqG?qB^T$L7ofTvc6(ECRLis!U$ly0VJJ zElb{W6tfnFlPr|mNq6p)`M~x0b}Z7Rbix@wn7fpaD_+?q-Yk?Fvy8j|1xyKC3!xAu z%r-6ECFmO+stIKSr0cag>iXkPf+);dwXvRRJg4Fsv6xa`ykL&84ida00K^QC0_80MJ%wA#{Hor+<<@+^!Dy+OOQ)4Mrb)AtG-&M+;Mlv9YO=! z6Q5eZ|H^<9-+vA`y=I;o{RfQ>3*(=i=>KIFsz3F=l7-H(s4DH_(cT4@;@g+@O!skW z+71&$f!f7b2vwSeX2)m3xArc$v4It#3fA_qV&|Kh6<~0d;`r?+3g%i0wxx@G6r5%y zj^Y|J#nRy=D=Z3yIEM}VtoqPoY#WmM`}Eoe5*C|hw1F0pCiPl3-=N0arVXLgzM`V} ztBA+dzgYL8NN2GyjcP^c7R;1ae*bZJ8hBgT^fi4VAl!bm*I^+Qzr(JpvC+s&EknRu zQ>xf&kIgy_NWgLr#EEJI$3G}k@(&7~ z^`-7hkvMXG{Rf5iaoUpqpP*3j6!ew<`0+CT-vasn|Hu3Py^lBl|B;V3GU{Cm^xr$6 z{#l^_uBKvFI8l7`^xp%wfPW9nPFoCL%b4Z$-P3LOU>~Mf>!g&9{_v3;c5yA?5h_Vs z8UV3J3a3pVJTX)We?9o&I9XLBhQ{Onu1>+fb(g+n<$wM#Z{*#1%-?X_h(*~|-Qxe1 zcOLdr_51UU!26ZiJiCx`V8v@oR`9aX8U&Fw;AUzmq@+KGS3EL+ld*?_?y|O<6@R?D zj%bDnh2pXfUCiIKpJ`P}`9(SWM2(ZqmoS}x3i|`%%hV@BVF3hCS8GIHqWUyz{C^?> z2|-J4v!UIs$-{*J1W+QrP*4tcFlCQ_1W^1TB3)vJ01Z^9n58$|Q8JHv4L&avJRw55 z&@L5_%O}{Iq{E~jL?ljSzXI-RP?)fA77na|D>=eVsOq*)Zb@%zP_+BtZCi>@@MLb4 z6!9Bf)xIq?;+4%6cMA*N!CPHlwOa5)vAOJw?6hz@#a-tdsHRXRFNMn3XqmN3hq_~J zC_2O;FAB`wKHxvbrTbtcABsy+Nz3Cbxld-dbHu~P?T(Y(7-)uxcd_&og`@IJ| z)!kYTqEQh&E@uY`6~|fjP%hy3Ie@OwfeNrMWH30Q=FvfCvt>DY?bqEaZ8?)wkYa8M z)wi>lE~QPgf&00q&MrO^fAtuc(gde$LfHT?e4LFT|VaRd9#Xk)Hjmb2n38h!!$l}a@4>CT#?Zf|MIn`%X1U`kz4dapgQ$>yHaxP0QDwie`Fn~TSM@?6D*uaVbQ?tZlMLCKM3C;KtvG*NtvYphPG?f zPXZ5Ke*yWlOXse1*@rPUpxcWb(K5=_ANdi6vHwH=^i5d02Lc06H^pj1B=`h&b-qq@nOiUnUeQ{YuZS!ktM?Ncfj zl>1z~@b?i){XE9u8xr%rS!owRp)g*G_BoF-4LAo{LsXclK}&-$?DU|a);sY0ygtu+0)X=6BQX0VDa%yX5#I7@59 z$9~pIlDm^Ur&a8wdRZ;?@W>r6z=@dDM)iq)h=9~V=BmQkWfLhcwwP^zTv&>kkKRPv z)sjyE=$uP@pWEd45I{-uym`g<9JuS9J7H`i_WVG*_J0Ei zpuR}sz{t-Z-|2F}Y2tWV@>7(*j0QCzX zfHIVy|Ca!2mJ0O`!7u(x@EObi1V7;)f?t<<*2}D*(tw)4?!-#@WjRJc3gYrIv=S~wS86i%0D^ni$a%K8?tqP*RGGD9HK^e5W zN(e18YMDupsaepZ^Pn3APlL?nlOGP6yld{VGtL-)NwikOVv4cp8zi^91B z;H?J3loUY@G#V-$o{y%o{J#*sHH{@+3pC@~WfIhWDP)q~3L0hrE-;uuM$w_14C)NC zIHXGk(UKh9ug1~st}pUAP`^5PyYXyx&mhZ(H^HKt-~K9~=rib7DG&(a^!So88)yzZ z^7AjC&FKpa!F-K?m~JunsNLPIMBss-I!>m(TtglrPk=xD*ydO2T|p(VE%L%uxneNu zsX^T|*8^{b_XUpU&y6_Ba~NYsgI=0qc692zRM&GgltjYl(7ysDc!PkAZ=jz*sn<7~ zN8WS{KGgC`FYh|-ecvy>FbxINo1WR_L#5rnn-+x=IlbR$O}zJPiPNz_u56_nV0P>= zKO=Yb59Ds3%2s%>^50(Xmz$Lg?E@~X017C0daRXeRQlO#CD)k@%`q;G%%P~UZ+>p8 zt1Pm=WPlH(`WaCRh1fIT#9wPKLXi8SWjcLnuZu9bq#b=ND!;wCbeTQ&XCk0^_seki zNlskl1%WFewdS}`2`!+GKc2(aaZJz3#kP_x|l_!RpKNfMk1LwlnL}PpEdq-&;h0 zx0F@auff*ta3WJaQ&xq);rgpy{-O?8}aoGtK zMo~JZ>%M%7Ia`d>VM=2Ba%%;(#JjzYymqtGGh-sUKR6wB%_nLfm$f~wJtj>x2HP-;cwf$M@ z$x)nf?@kNH75zY%mbg}3Z4qem5v{sd1L6(cgv_hs5T`PptWa}&w78Z#o$<(ZHxKy+ zE-;=R>;bvDk(5Mz=bDr*DWnzq7jE@In=kl7r((hg<1xfq2V-dxX^gNgWSd8&JcbL| zlg@6Xp?u`~q#6XrZ&WD({ug!i?kM|o?sV<;`5~T4d~Gy3+^I)gT#3d)6tmXz(zEa+<{!WjRs@9o?57B%yzfafh)AtxD9iB+;AKH@~19H_|A}2>O9< zj8p?-{BEDy9vVuJuSttJ$;Z_~RY?R`WL8SKMcLrXB@Onha-Xv{Mt$$DS$6-Lo)D#8 zPUw&R{`{WPUg$~UX9d;qVx?5|^uJX;l?sk(;W>@pI5h`))V!xWf)kR5@xMdUNoZ6Vd7@n5Gb&p6ktOq6qHKW zm^@uStsL!ww6c=S1@<}&Iw#*>*pS+=+9i@*WpuOtm_37niJ7jyy;%whgA+n9s>7n9yCttr=$}c>`mXbRo=QROJ_mOcaeBgHe*}HAvKj8`J|9 zQC6aN0OdcM}< zal`TlLeMlgwW2y5WZ$>CVu~anvMVgAKKHQo0IZ%p1E*IvAO5VK1LV>+qPq=z%t2zA zzfx`)u|x*`c7E;i<}>Wnsrk`$PUCmqWwYf10x|MSdS+$$fv>IN+h|_=BasA6l>yUb zF2Nt)69N89Y<`c>0YrkYG;r(1+CDn+)kMMX#wqdzQ#S}N#AmgYN8RzqW@P9W{CN?i zd-Mx~tx>+OnGaKeIUH|smb#SR+{`Xpf#Yg`)ImE~G*%fOXdp~^b8Lflx^C3h>?|vY z@a{Ff_wyKS5~jHW$EB7Xd11o1&(egsXVJozIg>d-@XSG{q zunefn|D?qsA7ug9;;DdHIPuIFRv~7^7jb6pg12cX7|=^0C%3;5HNr;%d{2vj(eoy$ zRBNKKzD3%%eB}7;AOwwq$?fAtnMs1(k}NC6eCa%QU7v`7leL)5AK_CfK=_nfIbKe-rd9Cw$OI5R>0^+q)X36t9Re@7_CNV z<@Iyht#${sf>P%$U4Gty8ncWp$?Bs$gT&u-pG)0$H(&~$t1l7#*XS7^#{wB1Xtv7Q zjf_PiztsDnLP51Xa~g1DvJ^Mi&VN~Gudf&+9`lVi4fJ5jWNNGgE6mYQ)Q5@)DfgD_ zbhb)m5ahT3LZ?(j;(XD{&9H=aA~tV_C|?B!1f?iLfx(H@5r)z#Si9@|;;HXsY7#!0 zx1x8ya`xyA>C(FaDBtYE_LTcT%lNq-*__`=bQfTIVn-^=HkG-i*FId3t$kIgyr| z$QvNT9TH9C3A5w)l3*e_r#?bprkJ^Gs_E>kYi51=8H;eb()vczVi!mnt#JDkA!}-= zR(9)<^T2UJ0emP^v{|F1@RU{@{0_MQf^e8$dL?NT#P>vSVBG{@}He*L%x^_p| z#4ID1AKCo$8fX@has?3$6ulSrl%X|4n;~vlWi}9(Yzx$(GBhID^A`y;p_ICo?GZbjRaO|!y1|vLria+tk_SE>J;g9Xf(a`kEQ#zON(1^Y^j3KE}o;I*-rwZQS zM9i)7z@3+o6#bZ_$01`;C5!@vR@Qw&{~>+Fc0$c6wG82Od7a zy!%1&wdLg6Nm>{ktRXv{YN<3#9gjyfMYrv0fg9oNPr#(Z@JdXcAkYZd7Fc!4g-g^q8f&DCpKgQ0`W zWT8FMi4}eZY(uCB1`g+>}a%%Kl+Kc=2h1tz^b0AxN4AbHWIGk zSeP6u69f4Y0ludr!y(q(XeHNZ|I~=6jzh06ljuasO_o#Mn=28NE`!W~ZS!RrM@!Vt zJB=aC$G5Smr{9^CsB9L+a}@qlH{pvx{*94y$C3o7hJz4r{FJ#ley>n)=lIhbDG-Os6p@)%)^UW&;qSqZKaxb?G<@-{$pu+0Yad^w-#4a`T=rnglF#Kk{O>9R_ zz{6{`yjYx&-2o;PC0*~V4oondTwNBxI)~CMPC4)Drzgs*aXK zY!R_=(Y^O1=cSqAI`rb0Il2dh9aZ-SB)bySSo>rcvK{FiSoN-o+Xe zjcT?uJ$WZ+B2`fVBBTiy<>yr$gw3rLMv)p5I`GJ8jmltcm_9cR<)V1?v4#8=OrEes z1xta#5hMZ)@c80wyf$lKt+jzAPFV3QW|qE2nE*ck_TA{f6 z!X?c>zo4tln2-HNU-r7;BX53Qb9cUN)gs5x&}q2xNXcnzC%9F{u1}~cs!^j}Q08Fi zgY1!(eFN&V>r9Hkgh;(ty7Dz1fP0Pu|Jl#hISM3%+!!HIR}yB9uf*QSS}R{-sIpbEnjeHyb3iJhIu&@^^zD zpw7`gv4G8Ut@fm_Yd8iqg~E5h=GpyY^PJQ>gPB_qnp5FBer$D^V-@3D&Gpv0|8S7L z^R;uoC6qEucykWkyWkCirpA}M#bt7V9;Cy^Wg&MC9JI~ft; zE0WvDQ*E{c)wmKWlpG(*=}SZYdLc)Gh%lyJy$d1AK@5{xNWJIqLr6fc>x(L7ZOqT4 zU8y>FZkEXN3x3}=K5`99klGY>F3UEdG)L~9#hEB*!>?c^Vj7K(9Lms@E{M3ot zoKd}XCDHj~nt*rB@sNfJ(FG+24Zq?(VR>%C%|>Aj$>M)%!(kq>>NpPEMkZP`z`IkJ ztx$kHRk;(aS0Iv~`!qfj|MtCgfKzdmf^I0j*n7qjuMAT*pKw!(1v-((1kC<&;q*Jv ze$^Bzkk$4B&15SND2p~LR`1>ll&Jn3N6CxG8~z$qm>GHqJ;!7K~|ZaebZ$oM9dA z7o`RMAMcu*s$%j$5#sf7vVPL+U7!}&bz69dSTTw8=2)>yfr;2PUs5h;b8_IQd*KMK zg3?mrK72RFsz~>@__mha2U)DrS0+2)=ytGZt`GmBH3r^YOg~QoNt z*w2NU`Q!(MID&d92Zgqgq~k(8^r`{bHJHoOB5#3}L6(m7hvn1vxiw}NH~?7wL@fOY zVHCNYg>()(C7jvxwZT&({&F2Ym4hpj(u{9vox95c-YqF42>Po~(E+C5r_+NTa2@COvP&(JV5PZ?;(#SRc*@^9E!o|7mR)o?b}Aju|5oR0;B<)jA6Y)@|Nh$z zIEViG?apF!{p;Ip@h|MSJ>vOwtZG9v${)sB_W0n)$+ErHr*Nq+7i}U{-S@x_14xt+{-gJIplLm`v zq`az~Op2&+jrsGmP#PSW0$wto4O-rOucBV+1vcSu>};qUghi%i>* z#4HV;NBJqSfdlZ#?FrdhvDn0QRS;S6!9i5`W~}j!2s1KbKaqLQ7~)yXe0;$kTcl6G z)vU>kttw*rkiO#x(AMj)-k|!?_?||Yt*DFz?twirU9s|Ds&qm!b&=4pq{?ECq*j!c z_!wfvjjvyxgg}6Mtm(s%VG~0?m zEa|}E4*ydDhi=`={m#G`$l~R9sTCz>IDEUXm#0&(nj~MDr~=@UBjl<9Bxv92B}!zZ zp0(ZrZO8ppH~lLMAW1|<3a8DXd;?l52ofC^PXydlRrnHa^htv(qaA;?%dbpkKpCyH zKf)4NeMHwWcruMvAlfKqMn%RoS0ytaB`&I^gD%9-+X}v)m}gXz61;Tof~aQ6A4uBP zpxz`H!6z%mIn^hQY;qt(5b=S8UFPxvzXu6keOW3Ra#+oA-n5c&L&T(pH=0#83gkeF zx)~;sN}+jhc~E%3;1Xyn^<_-&Eu!<(4OL)`#*9s@Ih#UV+YV^2PfK{~OB#>lv7bsj zXHvcuPtMW>#wQUlV3Z3ABL%S{T4wzFA7Z?jjk^+8VRmT*ZjYw^MW<4 zC6gLgesmQYdzvyQ>N87fp@juX>=Hj-S@Rx*-NgE0bg7LBqO~(VXqWKE-{C;PecVm8 zcIn;`EZ=Enn){czGXmwDm?15^Kkn7|K8mk@Pbdvhg|w$YjGlC+knBYe>JI_+qI=tI z7XvdgC(D65M4hVB21VkEk_jNEs%o1^*mlmH=Fn|?D1}7eg zBF}3eF90_~>X!eC6ZQs#ln_^}E6gMSH%G##R^zvb2uxh9OUxz^avNe-6-zu_6WaWmN2SYl)JEh&WQz@Q}sv9iRmQE@}uSi+;MLc*|Y;KPpX^wx8~HS9Uyib zNJP~rCekhJ5hQflvc<>!Kqx94H~~-koDIUf(LO#Ze4HhIrj_@leC!hJf#7#d(@kf@ z&BZ6hU7pHt;&YnyzTQ7~Q$GW9*a3G_*;L;=KJKQbYJfB$+|24)3>s>%g07s}m|~tM zjGX(*Dg*3SDFzfTqWtw(Zs3U6QD+~C(VmLcKx*bt#;3R23yefAjbzv^?9ATNVm?0~ zAbb`Guy_dCf5Th8q$1sKp??IfJn{GN`MHy0WO`&y9Ff#DjlB#U#kwYpm$#!JOrT3c z=a=(S;j+RyAivN^Yr!t6%vT6pCCuEK;uk;+oB4gfj&yCm)k9LWm9j_q{7Lv10`>CP zzyY^p9omA)E{`NgN{R9Zlt63CZLjE(Li+w%nDTfY>fG)i_;)|{tDwxJI2ArRo|-4JK0*BYh&cmPoDB1 zm9f5cQa2jw18J`al^bf|i8o3R6j|bP+Un=8`lHF$xKD9{)NAipn5B~U34&#-#aLuR z-e8w!^U={lFaBvcp)Jij1Etzp^wFgCp#*2~=r!iA?nULO4;xSfeUH2Ww47`i0w~{u z)8Wep%m>Hn4CA~E9?69hB>p?g&(3qtex?Vo`~Y64wCWI8*K$!7x-N|xY_ruZi8}XW z2z3lbl-Bg)e02hr08Zd%J!wQ9L) zB_N)p$YFmxpD(|@nyNB0Gae28Tq0sx)^Eu^UTka3be=UuBr^4o#gI}#lihl&e zoX}A}Voq`{`vW1IyUBoq=DS>OF~5s8R#60Azkb8XzvuBZ%iX*;0A0qa0vVVT=zaFAS1Sujn~U%Ii~2 z;f4tc0X#C3dSul#sOd>QqEnr4e*msIyu;#eSRQ@RPyIiiMTA<`hs|d+6Q^6hDb({H3G;vJ$Qno!74|^eTCBxS;4&b1www_@uy+q`K3ZBlLH9XLRLU_%>3fVI9-)`b~-N9^_@z z4s@DVeyyeOo9(dRF|q&1N;FfRlB0KVw2p{fcXRj|Ws_kh^+EGJ#sa04B2M+=qErWH zv$d|>TDD2`G^<6cezp!!nLFCp5a@5T;0M4D!MqGt`xu%fIJn&p($EDM@^bk#Fzp~4zx!-;wV1LT-(#S+nh zEmMi1`ocznB~zmdsV0*z%bSZg9@2a(aY%J_^xWTkdNjR!4UU~0bNhJ?cEjC&9Em2P z*0etxea~tw(Seqj<#9!~xV0}SOcEz^3@3)xxl7~S_%a+|xx&4IHpYbmlL1L`?tFy4 zl;H@=to~&W-qBoW9ppwDjH7f!Ce*QE%@b#z_Ok~6~S4iH69yWmU+vQ_-;B(I*bKZhkmbP)bW8z%%fgAq)%$r8G z8Lm}jc9HT@vA;nvZp3koY^RM$(rl{kO;bW7TC)qQ#+Dpj{F0KOQby!xxA($EeHzSD z(y$=XQS5bsK~^fFhn6(%tZlFMtxMvbO8K;Hir=GqPiz{koRYg;ZN#rS_BW^IDRMf6 zk%Y6)>-Z4eO(l42coeY66N=Yv_U(3})nqf5#_9DOPd@ZQe86Oz#(3F-jy9zi+Md)g zU*;^nR1zc-$~+oZC3UspUvZrr?Fjp3P_L65`?EN%o|%;_UYPZb8#|GMhVC6;nrgR> z-=@yQaQ(>Klt;U>kgIDC4$XJz(xax!|K6m$QyHGPZov8Tu|N(E$DL*zr+%oO8=EhmZn0rSpj?R%FQlUMB!5~14fBm%FzC?{WRXVw+TuNc4&siraGmk_ulueb>sW? z(a*ltO?;Mp*3M->xXbuU@X^TI5q+7eB}Sh!CpA-Mif-r9v>yfcUhWh!vdu8p- zC)@guZiKAm4n|nh;MMIQLidk8*M8S4rEW}!?Joth4xvd)aLfCidEQAZKkGGjv2+=a zO)wD1PVkht&-#;~3PKbaaW022+G~HYYe@W0?J#c8&ca&O3>ifisMmF51OQ4 z7v(09F8S&odW+kOwP zN(oygfAh2Lv4OR!4<~WPHHS>=Je7PdMYva9#BUgCC%e4s3C|md+-hnTVdNfA6r=+F z@-%OqKDlh`OZ&{vw(3wjLdC>NyV(#tk||~+jdg1Z5tK)&Z^(qXYYH@S`X*8b|3EB`~$u==Nw-j zy$>gG?;Di0kj+L|Zxoy(XU(osHsG-k6%a4HCLNHv-Hkxie9M_5gsnrx3dJ6D+n7v4 z#i&+gUEeZ`6CAJ5yS7WUc*GjQ?_Y=MY8Ma6N#`w+&fK1c7W)=RtDMGIt7PqD{4Erf zpFupkZ^fRgb-aS!x};uyCf^B!dT)`v|MU6NA=yz5%nVK>$=j+-MYnD6{z`A@@_BVI zUHgjl>-2AQNZniRjf?Hgvu|9 zsy{}4K44UmQ~B^8D;*8DL3lk(&q5t)k9;h=NJb5(U-qHb>-o5k4Y;^Wy-Yp5lpu4% zl!Fr&n=P(C$?$(6_@n{pj`L-|(R)%i?wVeJ{z7Z!v2$75rrkiW|AR~-a+=i>({K0` zi*&);>-|jkBX%j1xhiKtUvY}$toF3XT)DVpz+OO)R2O6_OdllkE*u;bnls82_-k;j zOf9oeyeg^?3@OyABvaqGc$pe|xhp{$9u9|Q1hCtveIz^hAQQx`KBBK83ciF@NHP`gC!aJI$tMTFy| zhmSyY+QUP`yxBqJA>1Aj=b5|hyo;bWzkx7x-Pu9G%~f#;@TupEAXETu@SR#=Lw!=` z8PtDo``GEiuh;puq^tXg*5kd^WX2T;B63P`VrBJ)zmYhWKFtYEC>^?3g83vKO)ste ztxYU=yWY%fy3^N)Pl+G>soBkK0I>G_PT9aB#l#KT75rX)0n)wyb`%2p4sT%)@*4J7 zbA6G;CJVCPJB8yd$?`2>tb^%k9cWn%C=YxymBt$LH=2K4mK@vA&EK`>LKXU`#|rgB zz}mBii4G8{^N)4{L46zd!fQ2M}0z=7`{!D)i&M@b0XGBg0ZjmXo&Fb9y zEFpuavp9r5XK%-Zvfi+n9F{`l3t%hUZ7}+l>3FbRIBujShTUxXu|^R|cj@6gK!j12 zipF$^Ox?Z}xRx0|r;23$XZvr3CL#7vB1fHZA#A00)PdYs5WrE5u!Vq0oCe>V6e-&k zkuVUB6+LD3Jqu(V#S;f!2t%j@t@(w$#on*93d6GfYBYZRGbLK#{u~F1NKZ-Uxh)-V z@fGR@sD{S?5H9OQ7P;rrP4qjrACjxsFTw8}=zp&EFm1*YO86u;gd7D-O3QZ0FJ?Vnm&pYT%7#Spoji^%RA`$8i=vegS`AHlwTO>G5 zb1v1dGNk#vkCj~M$Onxi{Hlz45ymF}743R8#rC>DtHaNtz+RoPs|%ZC?Aa$N*h?2W z3K6Fl1#eD9i;b8bX_+o8EKwNq$Z_Bo&=BFiGXU(BFVpRy0s7iImEq&AgEuI#3QS+J zJ!HrtnkB$aU#B0J^mkNB0E|kSDd16nQ3(OZW@yS;=oMjj>Il;u#7G>MObW6hKgTzp z%yw3by+f?4C9*|&x+GQ|pRowrBS?3Wer)75m;c3_y`Zj|Y1;?$=bk@U{4et^KX0?( zcI**WgafS4m7yo)7-Ml`BS{EWEA7>1K&}(EP3O;^~|&DH%0>`FZUk$8k&X8qMjBhE|RAfF-Bgvr$Qxp zezP~?E#5<&&f>2u$!8$c&BC4sq|; zygN}TedT2Kk8nyt&C8WiEmO=(nBaCgs_L_nv28%7j7&m)o`79I9#zBObG&2UT|t#X zhQKPZ2l8AKAt2TLM0ZMAdxj(&P`H1I1RkH(x=XnRWXhoCP$2-BvTKA9sty=Vkf2XN z1RFWmmW5d-ZBcJ7n4bg%S@%LQYu7G_E1+~5_>x-{B(XJEF0#IS*97Hbs|4)-j<3JLh+k>a4gkX$ZtgAljRbA9Q zqtgb6&cJ!twA(@x)K+G$pgK~iHPVz5Xg#%FFlN!Wla^oTCz`9Kn_k5cB}~BQ6mmV- z_$P)|8>paIrQH$=tyNvDNux@)bc1?^_r=TVLek#5FI_7O_4>M}9@Xay-3yqJWHp5Id z#Ic%_1wRW?J!{b``-4sbr5&uZqZTduubMZE(BOS7UU#=GG25i9hBEzkY4kvaBg+BF zHmk6*1Dmxu6Ou6G#_F^5y*UG3xW1U1Kz8l(Cg)YPz^I}64ke2!)!+My7U^rUl;vr> zlI|WVs*l6S^2c`Rne7_dEf(%)mD-btsU;frB7t?$N)oS!HSHdWgB(MBB)ONaCF5#Z-B3d?la8y&`52yw06{QfrV@> zf3PqfXyUYFEy%y%mt5yaAd5Pab@9C}7@|+7N)De&l{d?7lCouIZZYCYk##jzjiB*n zH`AP;Sk1~LYPPgMmI10X`j{87ROoFWgA-9MqA9H!4`|w%m9wx&!g6kgERYsI3EwRL z&gd2sUN!;ioluPFWYy1l0B;(R+F} zIf;9Jt)GfP<^hTulMP5*hzL+Og4Pzu@70Y!^mofeg$KSvMW!!=TM|xQVG`Vj_P?PW z>nuNdzQyV!XWAo!sHP{+*4}*6jl&>Prj9y#eVUx_1t+6(k-)(yX({S8ruymy+@<&I z|5hG%mAjS9(f!TAOZTwjDE$4=c=Bp2L$_tTHCR8Oe|kTfHt{!Ceai>d@hXpQJLa`} ztGr*F1*+%NZ_idg55R`=BOZY)w)gwLCrQ^jCPe=cgR=bZN;3h;uPB5x_Ed=tXZt0I zSxCY!TGIUVKAy*OE;BQgs}VG>g8x#QFY%)k!8}Z8)Sj_L;t|1VioXJmEJS*Bd9`cg z^>D@&3zuY6&V*{**?vCHZ4muZMDcO5j`uIJNZ=?&iJ+ZGA$2C^U;%K@ba}GcRcj98 zryS|9J$mS|EY>ha3;oh>q+2NAKX7^A^9zG;dzL{>Q%nZfozF3624l23`T!ghAHYF} z6bM*4F20K%N(xZE_u(>6N`# zH&~S!9{ULGFPTz^6uuc6pu)4uM4QnDi9b0^h=vAyxkSf5NMkw@1r3)24e{{dFb3sA zhcnb*qQ9tHb9m}$_`$wV>I#2_ivw5T>mAMkx;$UFB9hQ@L;cV+5F4?~I?WUNo&2R~={z`r|LyQd80l>66(lYtInUaq2K8ux|0@klz5NDMx( zu&aEQkGEjXQ_*>yA;;wu=QRt&Mt`7W|1!=p|J(%#QbYodoM?YPd#Q| zDXo_dQGNDs^yoPN2Mw~4AX;CMmiW{kJsivgJC=9=`}&eEDOc?yx;&*JLum;~4*n0r zZ~e~<|KFcv=72Sk{f}XN*8lzC%_jU6bz!z^v|4nrUlm_~z>nCJVvEhsdw0@)e5`6E zs_IEZZ^q}9w1LLv0!fvJS0823DEiAdg1D$;vURm;X6ncWgBq1XPFXfU)iN?_Jhy!< zn!x%&BX;deMdH{)P?f??=P!Ea2EDizsb8fFvNmsI3&>{^K}tc7tB357@hzuVwyF1kz1`_8M=5#=oAxGb| zZN0%vI?NaX%9o(Rddf&fG`v{#LklNUQx0fFsuj#t7MFD$9|YW0*VtrCdk0zo3n&)j z@H*^UtE&uMt z(%;iCb=k8+GFNsmUyRJ&;bO^H2k}9B2)1pXjbW-VyI9S>j4TJe+s2O|?3`6n4)2mc z!OOVz2v|TVmztY;y=^3S$ff@^%l~4 zYv;3PQH)L1S8q%MUScag#ixdS^s7$9^FdF?Uwl!%o8si-1;yT>KZ4B#Kzvkgb~Hzp z_hClM&;*?&n^o*Xuf`nah&>Y!w(`IxcL2nH`1fDE%7}$q{~@f;ME`dK(p>{CD=TkP`M$w4o0z6b@lgBz zY{`2xaDU`I)>C~zDA7sjS)!CZ;tm&JV&s;4E3ZrI@i^g5J8?HX`%VdlaE~H>_WAyH z<^8VFa86U&yP&`N)!;Vw(nMpOIAq>YAg4GRWJ)@ZxvpN$1QjvX%7dIRjI#DiT7md_ zSo{c>Idt>sv3^zYJxqp17s7<(9SEJM4~>4Cdz|lYDE}Ah7ziT7i6#C!NS~Yl=6me0 zXKTtRe(g>W13oaYR`e}-gmw1a!f~#bbl;-! z`@0puF;S`P?y#oz`TXmc0FRE#)t{~I100hisaQ8y{uKR6B&h3L{Cs++&L?y{zdw%2 zBlI7~#BE#m2#w+XAIC(+#1#bKm|(1ddkq2{6RO{T9Fyihj>$omnk>k1uN;oIILlOm zR43DuHt?|;PzDs>?Nk-!1Pp{eZzjMo>AY3{Zub@7m|RKJ&I25iQD!Ux{~QhsmVL>k|`L|ow$>s)6nsot3wpAZRgKMY=*pc?X5au5#KYE;}<{Dd< zPh{8<(b?x}k7466-vA)x>qavGy83-f69IUt9k4)S{j41^YvOq=PJ895yWeGxLlbbD zcPa1XKhCz6FUXL_y=yOhegF)U`U_N}Y>nLB7}EK3huuc4+>RdYZcrsXGlA`HsJ0=g z97ut=1^FFWJLZ01TUKY|Ik*MDdA7wUuDu?tN(@90;5@ZEPO$wYdG`^q8yh z;t3)WRa^xn{c7nV%OMi&dP$^1*LoK)N=mz zx8VT3Y2cKdm4;A|7m5sa2jKyA$T`|$E-%t4)=nvX5UZ?UmPCb}enn^5gw5`3x{Lo? z)dylGh5p0w^~d>pk(X`B)ZBivT$AyP7(7b4eT`U^rtzEr?3Gk z{-`+LZUHmQa2)2-Ps2W+>6aE~?pM2he&>3lpKPGO`U!13`+eWccdX+i&&li#l(r}un; z&{x(pRu#FwN^hMoekI)U!2gRpLRfuf6_8*QPZTdZoXZ*U7mCPEAhR(#J zMw;2tA-W)v2SqZzSur7w$<@`)*}dFA_8k%Kogl+w!01blKN)+Su#VG>PN1<-_Parb-eV#lbusvb5`rhU!}f5*Uhqz!u(&b@rbKQxnX zx=a-nLd1-EBYB)1WBCrl_OnF}dxNCAZ8)Rh>wh`<@(hAq3_h6d;aPe*o7fC_G~s?@ z(<;9`j*&L8Ub-*&{y6!U)rFog|2X;a<4oPq_IMv4#NA?Ob3YGKXep8Fat)J@-FI@k zPKy-VE5oeBa6_)y;$ao1Tc+F{r9? zHJ`P9{J7Pk`XGwos;_}uwH>@EJAPU>5vCiFoljnSHRiy!IjE~m*zjCRnPF^Av6wrS zzMilG!iq$BR1EAD<9`6)%c}J0gqZM)3^AMz=DTAOBO4ynMCmgCbcwy^=j3 z7Vik`cay)l!6Y-8Ca-`FWY9Z)AGh60^@Ge#!6B)NEO%OXf&a<`VL|6Z&h z$wPFBn_Mi@zCq7DDZg@u3Wp^&t^6Ad=H+I^JfdPUpAY-WUdaL)76Q=K4<07wW-Azg zdR?&vboCc5qadVopbG}e@{_^&_yT0Qe%Z|F@gf0r!lO=S)eZNP>zZJ9k9B5}NQa_8 z;1)&q;1Z1VXOi0qpp@wnhZqn8-d2quhw};$8N#U;RWRi7F$!%R%l)=vzhlUm$-a1u z-^^tXM|pImIKVNs<{NcaaBnYkX(l<~zAT;{f+24cwU%wjoJLVKm+Ko)#|rpb!>f;S zIgk&38`gjCBWsG)jLo^Yu^5lLhR@d9b@T`b>yzh)Twvop(j-^VjyR0v;Jiz;*&%op z$KZG|@_q?w-bh{@=dz?Hl(FeB&YOFk*cX3RE|P?mz?AGk9W;?lQl4X24l*mXrL;Z| zX;>;sHj+CyGHS_iUK)=I2g4~jBF*a<9ZeIj?cA2NI!)N@us9OyBd!P)Kwtx`Xk%7M zpV!B*Ap8ykf#z*gO z#kE}53Su;BKpcY^y#e0eR*Lw*tVJ-RGn5f&;!lPuggA*gy%D_5$%Z?YL1~Y#=`w6o z#)W_1g7MmvbqQfChIE)WiK|MzaaNjyhR|=V3zsh*wYx$O(++jP5d#DUTXLUtmZ((X zxMF=qomih7KH#}-3tMTuHr6X9Ivobhy904Y1}RiBAB%RdPjK;BwgSHRB3 zU9up-5Tsi4Wmj6Rvv-=R+ zEzZWVal@fK{X?gU9rx~$i!F}w2RqW}Gf@^=X`^QbThI@BtYMO&15?)J*R6TyWr)9!D z5oLl+#1q{Ft;%JVastZwyye+FRd(zs+SmzUg0$@(1|h&WH+53?SDX_(?2!XSR%kKx zt?t}S6g+O-X>$1HLaBuTJv`(Sq@Lrk9#mjN=vGb&(rr8n2_i^%wljl1yEV-R(Oeh` zq)4*p3O;666Si?S#=Z=IvOf2I@PU!o18Oj;3I_AcLLc+7hiNoUtiN?v0-1X_@WCWL zC0>)Q+PLZ*`uMW-HG`>LuF)a4&|$QU@1?VE>f-^=n(5JG*-zJm=$SCHYKQPiA9sEnghi@*I>72z6VRr5UMR6Iy zG}!Z%h7=Yaw|O{_A2~M)iAt=pRWxu}Z0(S3x^!0!PqG~3VJD#PHPOy`a?{}vz^40s z27JtgU8FXlZUs&ttA!*2IA!Kn+Ak=f{XXeK>iE)`ZW4|dx4f0HkoE0&55oiItcuV# zslaWSwO^}*?MR$s`nbL`01Qc9)7Xda3Y}oVbeeZVSLNpQOZefZgeY4fhnUx6F(122 z=7R2Pto}|vveLxfiZ($ih|wY57%e-&jJVh^G~sVsY0kSQjf*9LvA0Q7MG8RdN;^PQ zRAV>p_ZzF?<`M_079rIoTwo+d`~|0?Ta{8905x;Z~!pPiEL z0201G@@JdW%Riq#kLXU4zHDQM4g7=g4-T&Mk}pqYMbfn|S-;AAhWl5!WnDVUU)^sp zc5nAj#!dbE`{F8Cm$J}*>Sg~9YLK_J;>=D4hYmFKH7sIy4>zbnsg(N^KjN|^G5d;-ml zH)4)zbT$IiaQq=9iz%2->Hv`cpyL<~-)lN^z5M|Z_bv{svAuP8fb`g#|Ij(T_;upX zfpNgfGt65Y;J~>3Ib?+d;UzV1UthDwCOcFOWVhuT)k23N-DB^z1L*b^kU0929$@8p zz8W*)-o6bg>aiEF@=R4JXxo7?XipH~>ur39#&1C4@u@`lCQ}WoVL@nUL+T<%5wd-h zf_!Crw4E45{I~=!$QERN=Xdyyt@%ktdRXxHz__pb&yjdtLz7xIVq7ZF@);K)Oq`-< zj=tf1Kb{UjTK=qMg^_Sp0fCc&MKol?GF>|XG=0rVB&^z*;Yms;#<8VDlSD;3I>CUi zy51?PJtFBm-eq-`k?}0KKPei03=4RPNy-SRWx9m3hwd8rO$l!2MqqJgSj@7MG22FC zYDpPsXyEbhc=D9Tml}EGLd8YH^f;L4dgI36LQH=FIpFDEt|dm-;q{rr=HC9mUraeA zK@5ffk-;R!EvKq&4OZVu2`xcf>Iq3#=>Jm56G7dSoI{q>D5B>+tR0)YG<{nV`@q+!@DU0=aB4y3b$e<_gog^K;w zy_&S92x9*f34$3NbR8P7L-y$kbBe8`rcu4HIIYy`^8{`C04gEA4kP|Vbd*Wf!{}=& zj~UG@hYC|iDMy2m>XTp`3sbZ6*#m-U94qBTOJb*Dh4`8F&F`od>Ey{H|9oXSZ3qoH z2Mx-@$P8>5BXlXPrUX%uV`8?RPN(^?LN=lp@sknzl6v$@I%DgCLbiB6^RvR$`;AF= z+aPrbI{Z;0^T(i`#t=mwDeie(iKQMC`csUme6D~2Ynv6a0$HNq=1~F+@+u>CAPVGu zB-?xV81?{y*FMk9@KA_-0LQ-? znu-$b+wErZ>KYJ7(G!ZJ{FTgr1PO;s>+5g5bB+JJ3xCMin=fkMww&_g9LtNNpN8a0 z4t!RwUqA6@CMe{<6Al4sfVA8#+FP-6OS!N0E#OoQft55sV+vA1-^qdBg?%+TNKSe3 zO_4zWe%+$Xy*7vPmKn%isNY+YdArbTZB9D+a%%|kh~DvmqV1~hXMmj7ogZJiYNgb< zPVqqi5c5f`39qx2kX|%V0zVO|fCXPgejwW(-=;51?p?8*?k0tni)L_$Ck>@>6^cfb z>vj_)6`}$D_GNxj`@e07o4C&xs^qi)!K4F%dWK@AwM%x=;zWPO81mdGg+`qNCJO&AV0lDNuJx zV1Gb9WQP$|UO;#+NmXr&l1iMHj$^v$yXEzQnKJ>Mtgs;lks` zoZ!zr-epy*5>j&}Wrt-y(LP`5$**)e!1s113o3Vx;-=XuvQl@}hd(o&rlwq`+IXNJ zM{sEl>l4?pEi{k3KU7P+zn=GwW`3B|#Ob&t_WmY ze|KisI==23xu;jLFK2fi`o57UdveYkclZ_D2*r-ttu}>d(8kVR+v5KAmn;3b2oGNv znep**XMd|YSZ%Xy6X4!B@w#+#T^gtRR!#713lAnn7EJu^_%QVLQZK5RJ1vh@J=y9= z@HkgX*klIPHlZ8D;_*NhJ}WI%iQ#=SCOJX5O=RI>ib(WMNG$}DK?PDS9}MW$d1So; z`!!Y0N;+=z-Xv9b$==VG>CvXS*4uTK-+f#(oxz}M6L~tbtM0wa%Qb6ER|9V?tP4Z> zmQ~UwMf09R`VWTDToY38OFwy23C&q-FM>0d?D0&MA%~;3G*VX50&5mo(_f{UOE@H5 ztkXM|aVXZ_f7u*|6G)Z0Aq0p*H;hM4lH(A1GrZKu4 z!NdC8t18`D+Iqz(hPqgxS& zYFT${>49!>c$iTUC%ekiY`U_FB|BBA45{G}I?FPApHw_q#5`(_S%K=3!Ny_U$hK;D zK+2R_4w|JkMv>b+=l7j9-H*-`265of!Gmc2Ar#q}HHu-Mhg5sKP2I4lC{LSm`vX(* zY~0bxg8RZG_dRB)ZO2_3qB$PYdnw)HYs{n-s|5wp5`LRvhq~+wiVLUi$!$?1vu~F` z=7SL*5*f5vWh={W@Yk)a2aHWeB8~Xn3N5_cYebyL@Oak9_6o~NJ$Y0sue!+Rz&hq& z%cGIncJz2Hf8RSqgJ9hRF&hp{qLkXsdT;G=)kn2 zy*191SN%?xIAhes;yw+6dCjBRtUH7s-+3}9b4>6iZY*Pk^DA_(PqR%mj@H^nw9{PL$nj^=1O@fIkTQ)&qI2XOLjR5ey&a7yb zDk=T6Beevu$L!l%s=m6?ybg}uqS)zY93B-Rmgno-I97FmvrFbGo-ue9%hv8PYW6Xh z7^cj+;j7f8>0Y-FY1UL-hfm zpWxZx^JnVqE8`Icox`O*=AJFhyP;I!+ayhuH$>YXOCPvHhb|%K4m)tYzC*hzW^=9k z;5`rla!~gZ{NG9XO=!5<|B>*s{Xa!#kSkWQl^fy#sF*fdd+NA5V9cW@%Xf8zF;Pj&CP6KeB6{;?O$+VMgMOs{bE0*{EF39Dix6OjVPs{=+Odp z`23o4^L)yBbO0pX_f=QkJ2uCpW!e8SgwHZN35 zp#=P)%suCs60zho)_UlFTKXpc$Cf_Le_8s4|G%^J*=R3m=sXJ^3I1g|-$c*gx5v5O zJ;qV1I|+U#Z+%ZmIf^hVN$?|&_9%sQn-D-M5CcNOPoUV&Mx^YbYCl(wdaZ}|j1+LO z&7GxZm1Ac3=lXci&5urz14_^E41({Ae3&xZvq`*G@|ctP2mR+3Tn)xtiu;!aMFpSq z#<%B_9LEyy0K)GtIrZ(o3BSW-CUo2Bhtf{7Fm!Pln+$k;H@5uwupN)@*@CAQ?@pQP zBhJ5jcnL1k{r)52|9gD=|M*H z;#B9v{cYp=ftG@(FxSnfLxa1W!^vuG3R{6{h_brvd*6{#Zt?~Zt2W6gLCT{DO`lf+ z$dWis4U(EsJ4FjsGz`6GRv=F_thSgl!BO^-0uQPfxLkKUEi8tgs#v|J8xo|SM=h2a zfxYHO(bgRo1Y`?)^=1T}uQ>E5M7aKcbuOa%T>d_|K1wiBpxHK;ahh!kw)UTgcj)Bw zg}TgrM{8f`s_t391|qrX%{+3~HH+rTRNr9ZzK68{^~0zj@3Thb_BOVzs>mav57%eI z&OT+QWtXK@mt6U=|2MwR2QyV^Z1UgH{gX4_ou}a87fGbQntn-FZkw+S@1hh_)#vT) z*5`xiA59-Z^%bD$-w(HClIlbD8*H%huzc)uxT6mECVI|-BEZm$&B)Lo5QCD~frwSo zLpw4>^{VnLOw9v4{kibRT&&nM|3So>(32)?GLxGC0Z+Csk+tftEQrs*goH#A9YJ|r zIAOhn08c-S00cz4Q!wwZrw=Gejx31-Y<-3Q^7JdudA14GM z0I@5hh&gCePyv%quInie^ZoQ8sX2|>Rv2<2X`uf`FP+S2P1$S66ZtmzHzH}&sZ{wV zA}Rg&bItEUeVhiFP1f2X|M9p=a}v`1G}X(mAxNYM<_`0z_9Ec%c>5gY?$t>L>dEd%@$IV`@_?3VR|J@Ej~#ZqzzANePeNsG zMcTWWy+;uIT_Adnx0%0ogJ!x6^j_vpg4idyq8H$b>!1hhvQVWum>|4e+1_C>0)7IE0?{ooM-PFw`tHwA^nrz{Oq9dI zm5W^}v>gGv(D#d#dL9XFKMzb%Yl$GonSaJ)B-#nr2Dy@Mp*!AnPEm=?mjrjgz{4o8 zD`eUtHGyusIKGrH&jmDJ8ORaO-_Wk)lpmM=m{Y#gr`keGHdp*d8rZ^k2}t-iHbUfJ z&}ApEb{jRGvL*tWJi?l+2~h04^??Xa76uRBY#;T=5FRd|m#SZf98Sb2>X0d4pzPox zanqk|qNBu+`$uLe!wbTg1p zmN{on(0%xvKi&Pic=H^VDoqG;#ygLqvpj|cCx1`)GE+4;B;d5)qe~kBo#YL$xb$$4 zE7y|fIl}r!lWLXx?FrXViMY;vgwA>&IO{8Dc|iN!@;oUE2K0v38nvmO)^*H*d;I@P z)_;eWP9oN5x|f+|(FEcCl2Qc$^EbR-c*fEhkcl2Or)Dla#&}<#E8`SfF)ijxJFVmq z#}z$q3&G1)mW6a2UIMYlGzO%td+$RnSiInu2O+V*{4*(3FZ1G95Uhy*QIRXyGy$r{ z$dfvsHzrWwQfTt^V#3QY+*F=B zHHoO2!2ZCVTlqujJ4(kN=hx4u#4IS7$Pf~B(4mATJ$mMvdSps&ziF>UK(-kH@%Rd^ zo)qo<5^ENra*!*R!5M^pUmNG8W8ZJ-tDS`jL@@$P2y9zjmv;_L4sYzC+X{iEASdva z=zbyAqFC1>t9~f2EbIVPzqtMyEz}T&Q_|oAT+m-#noa++n>^wKhah?Ha@tI+Oa;zM zsH1urdFAFPJi}85cHc|)^d0d{iijYM0PS~moZa`0o_A@i($CNcU3vj+(4A(ZVjasb zLip}oA(xb(+Izfa<~f$&tuTvF+mzW#EFcHXTzBQGbge9TT0-qg$julztDxjKeB1mY z795m2+&em4lqv?_>~C&))0}7@5CNt>YP(uZNeUW&YDwt}lq3!(XAJq-06iJS_I2L* zo$BD1vrKO^_NRAh;4N3eL8#Y#_@_;oe^rc%YaLQtFEy@RYr|Ds}K+CBVRNkR^BwSQ+?dQ0pQHo&-kbBX=yi zLX|uy03&7h-OV@1)stKv_N$c{1=#%>3{^GF#^_j7*`RMa`5{3TwlD5I(5*$VLI1v} zxL?g&URpLL_O$)5_&K~l6K|vblIY;iU_e~5#={MWW0i&z0ad2nD$L+xB;(0lW=TK> z;~WJNVY(V0@gGzF+5;qItOB!l3)2U-QzRM@VCtI*#DQ%(9g{zUUVk|PdDC^urrNoH zLTFa(0xf?^uJ2ir*ggJNb)To_Z*?CY5o+~X5AE80r?%^K*t411ZUdBUzsH91ex!d; z!vJzR^|5`sl>Y@H+c@o8`*wFDe#^5L7ZZ6`rdfU=O{L~r!y4MhjaKh_@2(h6b5QzB zn7PDyud%bCXXvA!?=lY+z|_Zp(L}m97oUh$bP@PiAUFE;7u(CPfa<>1EZR%d*@=T9tI4lgF^rC$piX5fmkqi~jtFv=Jw{9g zNN18AGRk9$WKbSfcP$rg4wILn3B@nAt!dfKt=_rM$J+>Tv5Mn{zfPlrCBq+|4$6wr z-K2P5FI3wbqj}s$)Am=jQZ_W0c&-@9RvMyG9k^?lDujLVT`f-InY^qmU56|{?{6`a z+hg!9z1gzj?f?DA}@5c6fA|@tb@+#6D(l( z!pl~6d0&@f2W`3CooAoFqCSyYVbIu0RYCe{QG{A8`|!7n1X>JmISVWzcP*X6kjnY! zm--z{;HD_NYT*+8Ngn;4 zZkzaX3g7t3s8zRNy@;n2+rBX`3W-`uez_jcmSdvnYog zr1pDOO^LYMU~F~W8{;ILn>}Q4=1HW3wYkE;$w;-H@^{p2ouI*Dwm0sGRol@14xM3W zx69spqw;u8PA%PdlGLJNM72RMn>sga?`%lrit|)~n?|9tgJ$iTa*b=KwJ?*;(0>xt zUQ^H!qUL{lz&33#;bNkKsO26+wb{x>-n9O1tPvA?_T|FCzYYr_5VZbg7n%BZPVG}b_z zX4S|Mx<_9z;UMVJcQ6~a=d6wJqEW5;ykmY*Jl=sIp~Rj#B_IXZpEQ!gHZEvuCRZ@J zOolOE*eV9W-KbyTmL+c5Ahi`rDTZlV~@%E7$!;scgFDE1Q1yw?ad zUW{v`o0p9{sjDm>?X4TEA`NOAU6#~Zu1S!zjkNnl>O8mSK9f$^BajDm?jAo>@gt*n z)b8+`hvM1;TX9!n@I%Oo|I7TUjLAX4G^3enE z0ht$q+6Up+>L>J@cq5m3(@A1KEvjkzwRtn|U~yPMVZT0D1DU7TeiCsJ^Rqv_EG>}6 z$-voVVuQ3ZHh)*6xSmH1#S~7VJKD|wk{-50jI8JQ7=fp?bbxf^FgticJ12#7^rd}F z-({pSzXS9oBZM~{=b`06s6bp{hgoz%@q^ef?2GZ&mPSsNT5+KkG^`87a1>n!$fOm& zdDE<)({_WoUr2H>LsHgE(H12d`gof`dlcHt4&=E$6~j^Y~(us(Y;EE*6xGo&Yg zK%z{I(*do`1`7u{C0ac(6mwn zzW}qyFrVPNFaFDR{T`0jeBnV5nKsLt%wEB-boV~E#7Vh9qrUj7%xy%8{RCGjuqDqu zGIySBUPUe03n_86oBabK-@UXL()YkcH{YCcR6yr!L-@ZtXZ3*2SuqrisVLc>&e{L8 z_d(f12^)0(*!vw|!oFERa1c;`?0t^E_Wr**XGlo9*q91TfOgwSPl-XRT^)a&s)ST$ zGsGkMB2t;bcfPwGu%QCAq9j;HpLUm+vZpjkMnxI^(p8`+9Cb<;LU3hjeCFsLVhiqf z*tr56v!2_LluI{yg8b8!IU&KGqK@BAY`NrmD7(OVtph=7jQ(WMXMdpo%0HbmoOY;c7yN|qnTT4eVZ!IH;vlrYm=!Oi{ssNrAxp+<>u5eu9YvA|F$9~+w?{K~ zI5f5ce+&x8(X+%B1(vh_S&(KPE5%1b=b~bSaKoPRJBr1Rntl{rsn6jE{mRZi#$uGs z{}}ttpqfQbp|`+3jbn7xEORfd@{3IGN8!@rH%d^W(I-{0pTuzS`(hoBN9pgU=-+a% zDKpe&k1_m>v9fF8wHO5@`W@dpwSHKW3BdLC`(ZRp)+m7_#~Zg=Oe>54JR&i z<%WDusVMSOe}<=3pck}t*D}!&rZ150tReCCe{YuAd#_7E=l9G2bzkZ4O+2m4e$3t6 za)@FBVIhl2G)06`nr)jwo$sT=U&Vg=K}2WBTsB-39#JY>b(zQ%!T8&YGR6xV9#D6M zT_zOVdLkS$vQMktCRp96f~cD?bQ|(+V&FwH!cx=-@%s}wi%--w*rhP|VGUC8nG>*H zO!mft#8+mzR?mF*2l=BPA>J7JywkeAvjJNC?4hALKvc|84 z5L^vG3Oc$EjldP?UEnQ35PF$KGf8cB-Z9L7^b52E2|FqJ$8b7Nazi9x7UH z0qn}4kC2}OnF+xB)h)jLVg9b(8u&=~x?fP4kp06JkWX#4#NCWfRM!`rNP=|IeE5Fy z2m4m|C0BS{>u9t0x=??2cP5XPk-fo z1S_+%bwd6$V*eqI};Lzmw!Ggk8_TT1heK<1Y2D4G0HgFn{Fqmr*!Nh}cA zLub;bill1)FZSLkI`4kpyN+$!wr$%@lg4ap+iBd`wr$(C)7VL)#(l5!zSr9O*?X-q zp7-cES!X@&xW>r%|Gu9&C$rk(()Mq4D&MiY-ieFLw&sd3RgV zl}1>DS(my%Ce!shuO@zp%zl9~>E_SKk*7*kC&8%nP5gSpjN)#5?67jaG1aUr= z4dgsfTx{JWwX_Scnt8g5WkTySZUH&kOF0;DGWV0A}Oa+p}NcIlweIE6;Qd938itrG9WrsRe*MXoM zdFE^(B)cqiL|q8P`Z`Q0FLMTmvmD44Ut==bx0aa+hYLv$3ctN+hwNBJLwM%A~-hwWXJebURE@8Y(6O z4QV2P*o@*=E1lxJ>5)EWv~~6CtV@w&!(8qC;|zU67@w-sWrOyqjirUA0i&5q5pa+- zR1Qbln0pIEG`*SKIGS{7L|#I*=(0UZD&%;1(mx64d)f4 zNc@Qq`y{dulJ~ByfeuniNLDABgVIjciSBt11)EfQJB}+vqN6VC6p)Ft>28TTQ%+) zk)?f^uH6qdFFc(G`T?UY6sd=s8a+(xz3@dSLv^XT$S}TrvmkuWi4AqfmOS zDD)Tzz6#|gUMB6hskOQ-XDhh5t4GS&&e*0z!COyGeb;JYi>2^0<=b{b(n=7t4iChk zQB6{lGz5`#J)T_4Flk#n0bxc(d1g5m&}J#kUPg;Jag~gqf3rI;v3KN*cDL@lLh0Ev zpePHx*kXI`d^2Rl0+aUbX4OI?Zze1{gau`5>{ZjG8B?DH!23mUJ;c5fZWZ2=sk(up zti$=$zJhY;^v*eQ?O`_(Y?OZ6p?9`EX+g(j*3acDe6rL4cpo?kx%{sGs&A>;ufxSP zSDZ1u@t{AZb-@W_q&c2gaFC3^k=q@dN0Y;6Ct0d`+=Uw&m^MoGWaTlLaWn#{41N8c z&+DtjUI0pRdqEVen)duo9U6K!kY3HJ@cXCHUo!w&|1W@l>vr%RaMuT%`WdwkH~N|S z49sqZlVqMUHMM`kIbCE`>%h5nYEuc1vcq(Jb??&d1qk@ZU!oCt!@A!8<#n|Ekk|j; zp7y!_!$1FrfBwJVpPv(Q{?8sc;WAb9(dfdAfPnw)UyAvF&-=Ll-H(@<=|4Z- z|NMCWuYSCF|4)9r3_py~e*ZfG|DRpTxu#Z3J{N|Mp80RlgxCji)k%7x5xM(tArTw0 zeIIvhdqik`5HKm9w>1jsPtKp3%gQ}n8dZuH^$FLrrzel_w0+;(p+ZAVipHGZf8o=nyNOG{epMMnm34av)+wgrlA5qA7#jYr+p2oK)+=lrYBvLHpHp0e+b)(f9IAQ;$d5j&*>n6*uxS zI26$i?DHlv$k4M5SQeC@$xEcOC~(Z8DjrAmhk_sZZ1N9}V(H>@vL00(~w!xO?^ z4*qyTBh#jNQY>oF`c+3!q_Yr2?ttNZ5dMw;`agY0Sk4QOc>q*FHKZokA3zh(;K4d) z)CrjxYvdMZ^Gyz2^-mwN8_Axk7@P%$KC4w=(MtNP-0V~G0&G7SnAaM`cHX1|}= z@NY46m*xqrQ@1a7wuQfSgZzSk~}J zI5vN5T)rt73gSWcW#*;=oc?=+(=r2QKeo}Z^!c5mjy`r=P@1vE z>jsr422*28z;1nya5v&TP#cNE7f>{GF`DAkd^!I!m#o#WA87l!9`oK3*dnqN%`B&& znpj5y=N;Qy=aS8C5aj)4y4-_;ShVBUK?z_+Iw*AfIis$u$nj-;w#57 zaA=#8$-Xeq|H1Bu$E(!}D+xypTflv=`(OLX=>G;%Br6-3U_RJ=f)92d9~yrw8(Sb- zq`*K_G>=F+nHYHp4vo$lvT9#Ou?xJb1+-Oerz9(dfUOA2vkl;u9P4?}vA^rLyH4M1 zCVMndZEZe0f*R9bxtwgS=6%b!=wOmIa#EX3?P&{47iY>_w};@b%L|if4>;VWe0Rd= zBC$6lm6X2tL+@)M-2b-hTgkn*=e|UUay1^ad#3*-r)2Tz1#^ZE+K$U~uO)_Ye|#co+k>-5=dzy#xa>3i?ci@ox#(e;otXrU zEUQrDXatZC)DF6jO&f(8gA?QUv&3YA)w+E3ALgl8e6c_qhvGh$cXP8Nn zKj(GLIEbnfSp|vRz34s6h?xFYh0}6@*}E#JvujI>t;z%?j58x5ljOSit-pb$|5vK# zmqK&@v0ko)(PBO0P&daT~t$7QQb=Py_@$I*z8jgAwHd2PIl`&Rk# znT>fz!Ohv8jr^s?%AB#Bx;dw`4vs~cDe7lmWZ{jB43JQBFHsR{Rryc3=()8Yj*T-M zBDyRWo3hS%rfLibd3?T_8q1>id8~hT!7MD{4Pa@6OS>o=HFdo!)HZl?b3=o(^`ufa zx@zh5W9$5RSgSzDaT<10>O{gyW?%*!f0T}_sRX}VQlH1}FN)kw8K)4D6`u($NZ$Wc z(rNsFhlJ!}L zvley92G!I%+yP${P7InYxB~y_J*gYE{cm)9x(WS67f_WLsu7-XJe!v3 zsfL+>Q)8R-efOqK^kgi%5cCSE?jg|&l3qT5lzVZkgL=@v{4NSAuE>#sG57gE}~958k!)DdzKEt=JG969Mn`I+mOW5AH-9c;mqt@|4A@vKLgLgK9eS zAskb9{#wIPT-sl`@2I1Q20GYN4=mbA!^5faKp8HXa#pUap5}c*sp_D-mBoPboS8(~ z*J(hEdPHsAM-XA16sv|YwctvmAhqI8pKN-qK9^&& zI%x>((lI1VMt&W!+C(~bS?8#)awu^P(iaI;64vp|y(?sB2a4j-d+hyMY*;miACzW9|0lgq$xhUHkkZS-JRODVqiPGX z`z;u_8%~Q6_-t-7`0&lD4CY++5))NfT>iu*p9~TVyMt2u`eyx^(p!{$2LSy1%S5SKVHKDDw(n`2YI% z@9g#hPZB>%DwN-ir7Aur7|Y#(I_*c6nAQ%R>r}!&=@Hrv-P_iMKOU-H0}v^r1b;*R zs~djwdoPtd;1xg)(2+y|6wO?19gG?OA>se?P<8%A({_)m$)~&L6|x_GBiSi$@C)6q z0*D(D#-9|Lx_S^_s5F~6ER%iTz9(E1@RYVmm(98=QDJ_`Ll}+uy7z$Ko)Qlc0;*LsYW zyBXioFKLt}C=!l`p7~wKY34j4go^!MC_a)Jx?vzO0x=5Vc(gDr12in6=pQQhlhc4? zng8F(vi?!1@5GUv800x_LpcI)eJCKaUhrZ7d|yUNwK^AvFk}~MV3C&SP*v!A`Ddx~ zqwiZt(Jy!?Z#ZGU@l^KMRc;-nsy9YGFLs2XyjIM?V~feJS?iz`0m(8qM1MfC%xTy; z4#hBT16{)Lb&rxOpxy>bxBrz1MA6M3dLzVL9Gc+Fe7~9D_R97a`K;37{lGaLc;gp6 zY%(g85}8eg_L0QZtPXo8E>0 zd@liA@%`;O{m{&JliY5sAYWv99WBc+G6{ziiFUZnLuv9{(bj~Q7{a%qcmK4Sj$mbRe;qXET;~tY0@N-^OV&rsxHJYG%_yR>*__ZOViBK%< zQY3okp+p$5+5k3((h2RZPhLr%r_LFEFy$FDMJf3EP=g5lT*wS|D+IuG7F%jW!xw?_ zx9hB6QjOq@Y*fjseYQQet!GY!Q<&cnPy%oY7KpjFj7?zJFHSUP%4-I#S0i@H6!Nw& z!B)asIpL8iMf-x+oQM`yP$;bw6-iU`_~ANR5Z3niw(bCMoxSw(!GN3%a+NU8$_wpV zLLY*+Q~o|%zty8F-16c%z)n#4e2e;#`y!= zo%5@q_y6Q0x07Ef4D8%XzdrYaDOuj=;Q~ROwr^ySiqG8!u8MeJTZX^Ep2*Un9{@8R zgVp0ib=f%$%mOhPOga~Yay zGD~%_xk==JLzDqr{Lh-bUf^wjYd)Z!=TF%U+196;11r3~sC2lckBt={1*1SjSm$^+t1Xne?C1-=uZl}WWS=8JSLCKXQ3FM6vEY(a9Y*Y~x@Cp=PTAo#F6 zGMzy&EHF?uM4}fl&kWqMSe(NGsXLtu8OhI-?Ak7O&$PBD}v5;6t zGUE(kUpF-{qr^h`xnxpMYK%QLdm9%tC)J zP>AJT6=T#ysYE;$Kd536`C2^b3&0{;OoPtqnGZ|s)jPbWKka;Gq9&=@d)?x zwww*2*drMXvB^mzr;iLB9Zbm)&@QNXSJ=(IwNS=d-7rT!+BwRW1^yRT)064vi7iW{MXJAu{YYXIzPOumzn!P@HSK z7*bO6U)}O)c_to<}Be%~ioOE>iXT2_L4!)fY^l;FZI^PPY7I1A1m)Be$|@J)Q`3O|js07$7CW!19n~_^jA?glEuS2BEwNi}t>q$QnjB zJcuNu13spb6R{3|1`9DS7U0Y%V4XHs7j)D(Rg!9@5kT4iZvTAr0l@nN7rBwL?6HiP84{_+uztct-QWe+PX8=jwOZ zrPRL;dRhI+6BhkkFJ??AfeVl{tJ?Gp7`aro2Mjw+VZ(ze%(TGUWV|XEJ?)z}lLnjU z5yT&H$MDw#cwzfO2xx2TV~W~?4CwAkGzbBHQ|S!0^7b*CFTsz zXFE}}zDyV^W-k7Q^*wTx{z%L!3CboJ=iuU!DO+AbG0<)&1euag^KeHA1D4SNW9h-G zS^M$qDG5{6l4oIp(q;}<9!40hU2JC1kM(m@fLV90PU%rg7IQv2AZf;9HJcbz6JK`F zv}x)bI&VV35UAXbvBaX;x908Dv`SfDZ=XFBI-$WC3<04{_qAC5GJDm=_$AP|0Ha=` z$wN^z@ycU!ur42+yE@~QVte1Uwpb2KsJesOOfmJYVRFHEl91&{A67MQ0I-w>jrfvd zIWhh;iVb(&WP9d(BfaGYnB-_8hDQ@gpx?CQ_{?5xlB{Yc(-=J*36FSw%JFr z<0-)H|Lc@_1hBcsSxKw}VRL+fL#fy$hm=URXB6MI0-$NO#?v2O1lKO|AT*$ot}ZQo zh(7nZxbxFq4|o9hz9X8Fg2_Rn6my&_B_|+hw$)glzy$4>H=j?R&g1C4O&J|FjaB>} z2c%5OR@ZS$&u`R|yTOlu$hwN@nYR+#ZswaawW;q!Fh8zBnP{a|7um(IXA)QNR!6C| zwmC<_I~hPb37%d>RaTu<;0$P*p?0F3OK;^q9_XIQ2caq&KLAu{hjb>i&4LTRhJsdG zvAOI5cvamNFSEHV8)jqa>0qTI(cZY$;lOtkD> zjxHg>NkOX4V>KBOO1I)C#bKQ}GFBaf7cvO;W@|YXvnV9KuH`W8EG4P~y!Uhc7j{47 zFhT5YRagonevs|=^3m}wd5k5=l|&*Se2X%~55kjX1oid+tc4O4B}gx)K6~_u4Emj# zC4j-J7&hLFUb4$|CPd0I>=2HvvV9>mS_%(=7B?DAP6DDY+5?AqsNL}S;o zrVjN7uAog*!co=s4=rukE;<@D@5_)!9kR4)TdALG?DLRv@S~oO)_ACRW}Z-*iuxC? z25CRZ6I)hrST>ex2(}^_a+!XJj#(pU!?$8kI|Q!Uq$lVT#H zk~F?Y#=nM|MHtY^94s(=;nF}S(e5z*aD|Y$>IROmYWFE_AR&$i*J#%AoH^$l3)FJx zfVD7{+TQhwEfC&7xyKOmeUAO}o7h}b=cUzRmidsO>SW5(7C%byme|i1Vr{!d{CWIO zKMQ3-9f+SZSjJyy_420A@W?XG4qzM`4uf>*pb8WN%v{7v`7sU*NPLch2K<(dZtklq z#~Z$!$o_ToyAsZcg==-TDV!YL^&5;Be}s*4prdcBB@Wp0gv_-cTWRs%p+h3v zTCb=?DX-dji<}R3n`T3r(WzrnPuhf%`f`o>6@D{AjZ$B=u}+|;>~Sy7c`jO zo$sWDfg3=5G8UZ)HYERV53S7q`_OttG&&5Bq^Gt0mn7X!ALwbO_$n`7wGmtM zXK+u>+oPt-=Zy{gLa2ucjj9{=@G23snvAl9qjvV^`&aKe5r1bg#V{pqt$ft_4GKv4WhzGnN-V83X6f_9{ROJ>rps`eutk?~>V8NQ6}(VojfV#11Wj03 zZ}O+C4*`JvhX4QwAOPt95C9kre`5%l`1#)j04IZg2>@3A2mlWEq<*h#7~)Z1#wYDb z%?p^bM=!uqt|HnMY9hpInUL9EFQ3KS zOsN@ADU_3&56N39VRBblSNtD_e|A$z$_h)XNu=#hhq&UfqYj@v;BhH>VrZJNm#v+@ z8<{huvVVW`L|BoX?Qor$?fI~zud5Bu0EdoLPb-AWJiQE1;n}4T%zlB3y>|ImhJWzC z4F8}0{~7)*wssY6CL}$6)rvhDd>Hc5uJo=zT@T_MU%L(=)bzU!qDoQ|vg*k76RoykA%nh?m zawM62k0^oK(oh&3F7W9^} z7}V#YuVQzlHuLEhA#69f3fHGjbDEU5O+Q1y=rd^T>cjOL=+A@eg8%ZzONk(O|L+6< z%zsMf|AzqJcuP1Ae|>gficNlfREJWU(2vN9`3KwIeTvfm-lwp+LI{B5wV+dVKp*<7 zjHM*4Hni`8{_gQ4pc&%ttYMl$EB*OL?Ao=>+td7oz$7cGUt`0GZv3Yd-eT1ty3x{} z2N@>AgipAx;t4_)^#(zCoh;Zgd0aG}Yg8hY!G&Fht^FJo_WMkcN!T5bMu-{2aYlQ` zxkdwDMXP4vzdQ(!e&{R0UP?|@OSo?U`ij4Py;Z{>`idtml{rfKq1YntIS0H_Oocqc z9T`>Vcw7@Om+NJ#*q+16k6-Wk3hmwmzCZRPE}ZF&^`Ab4VOplV22n1{Sh1$4a(N9C zOXUS+WoL4h`h)ZQ7bO8JO^r*4*}%Pj^eG_4VT20-eG0gP9Z7QQDJL!b0Sz3vLwMs~ zv7jyioL3jld`ye)pVtWf*{5*(=u_aq|J|o>>o(0769RLEjd7R^bKLVEECwdy@5z|) zCyWTGt-$`~w0gm9rT>LJ<5Z0=)Hyl|a;c|#FayZyu;-hhMsHxfcwhh0S1bVZ6+h;Z_$&LU(gq`5PMTeg{cY@e zH%9@13iGkUReXTH!WE0=xpOR<(GMXuyB-I11wqc?@E`h$AlSe46}U>f!^-^rr+?`y zTHgO9yK>%z-UR+{1OR_+Ts{N<`F{xjL=$KyWo_8CK!|^-#}Iw@Cim2>(f|dl1Wd=P z3321pK7DpBZ)>}XlsIj`IX40%y}YJ+?~l4!rz^=!vABDDD^#*aEC%nK^|{^wcbhLR z1Zj&hV4t>?bav8X7B?cxe!ss?`@W_&(P632SO{7a`oC*562pA~Lq2IbDV?R9o)tv` zhV_~AmjoJjaEg}_HbY{Qjuoec^0$#dUMs774#W9WZRhbIz(%U3+JFVR1ih&)YG$g4 zwcr}a29;&j1(7ER6hu}~x~w$eDq0J6c#5v{CMpEj3P?r80P2%?FU(}m>?psO$qoUJ zUPgaEdJ!>svzhtNs1l!sK=!HjtK#ty?Fa=&AGRP&AXAKP{f+-O0Pufi0RC?m1PM29 z5{V1rRxy;j-B#t>QaxPJJa)gl>>Yg4WvkVIub6`EMCzu6+x4*#fIhDM`dl-EgPg`N zM|w@V4t)uD^P0?gzX9m~ z-T$KheIiqXD^N%8p!7@j6)@ZprxuWCx*-_&iv zElM6@S?k~==j8p%F#z>Rq9TW7!n`J>SyQT*PjMBh86zXEamHUP&PDi0nDDlXWbZUJ zIxv`Akp(No#F2HtB)Y_AK7quD`US(6Wulrn=IOw@oyFmMv34S)_f z2esIK78q+nG$jUFs&|(%3V@xQ`JB57As|-UM$}~Occ-H~;dmZIQHQ{yO#CN4Iiupe z31Kj3N75ozryh~yW*c=$UqPxi$fLWH#)^avkXDkJPCFrRsC>#i;L2z_wh(8v9_CcK z6oM&H*Urh7%h%W|A z>|>`Lwb}+$MUamKem|jUu`AX{GkB5!oZ(vfV~zJ{qRcgm5Dpy5v_`_c(N^=^EEFAz zb8+NmjwDuD{RCiXxdd+M^eP|ALbZ{3DeLU+4H+QiUg7VzS5qz1{lYT(cLJzi4QQ=Ajfb-;|r-T8eSFUit!2Ip3 z%*!imVxhge#^cA&m_H?o)L#bE1?MCvC%%ac0Av|7#m9ZA8r$|g%3tiT>f4TV)owKbJ)OdTZ#QK)@%Fi7rGXP z%j*+K|8#v8$@uL9VsAIvP42rg@oxs~4ey)?2$)s)CG1VA6b{f!4R%}bb#K! za|CF)CFTnbjh6CdpEC&0*pUXj^3%n`TU}FNvxJ+anJbLbdQJ(yUENQAKbkM&)F@M^ zmyN0gGP~joK3j~YIuV@#KRm5vHfUG!QZ8~>lvVFhlQ`_0$mHk3?PNlZuQC2i1eSSy zO~{_#z-KuLWD0@E??+mR0D6DfxNc0qM1ZJJwBj=xr4sS8%bkzwcyCR{aZ)whGLV@i zRzSQaHwd1iqc(v3r|GTz6o>Hvw7^4_cIu;K5R@Zb<$-QXYT^KZmSqjgX#mjj>H57x zi1vg17i0ffEDrro_CKjiyeBI6DYQ6*N|Jx)bL+BpD7ArdT#QNFbq|v`s9oFy!eaQ4)DvOXs>j+Qxzr6dzR24 zi>$;5Cj^tI?QDNQa*5b<@DDCa2QcS$bH{oiFTa?l?!%ETLb?ZNJh;4X!nd|&i^ zj#qH88$a5j&^cx;DKe}6z{DSC!NaFA(PYXQu)D&?u*b{U%_ji#9|>|Hb&SM=f!SMB z0cG;D_TBcEUmH%{nOLOTA#3`%6Q48KFb1c(ea3?X-EK;X)qPntYB#jGTFz~x7)Cgb zod@SxaHAhKD{9ZzMr)Z1+xJCQjY<8ClR1TDp zb`*9g@zQLC;Xnh%<5uC38`1G&{9CIZ!Bc%}Iu_-@-KiH`#7z|5i&%9=?o3l|#NVNa z(EU_hu>)qd=4>Qgv=y`G!kPVtT}b13yk?@4pA^t=)A}uLJrV+e9d|e#StP;VjvdV4 zq8^s;qoc#R%x~m?TQuaS*B83k3a)p4?dYe<=eLq0zQ`)v0NnnSrqsn5ZxqY>53$9O z?(w>wtg0Ccd$$aleekYw8GHWONbbN~-2ek5JivmZ z*i(#*qL{qL;j}9`6(rt!=z$uy?woL3r%uGN*6rnGTv!L!To&0Jqh*U-$l9f6A__A1 zq88y>$IWRAhVN6k9z?ARksZ4(Q7{Z*@J}le@Ty*%*n-b3?3gS(C3!TKO3br(Y`*4_ zTcY^2RWx46a+Yg(eP(8Bo5hvneK~KMx9NwM{Hp8tP;ABOJk<{Jy~uTnMeStX22Yg% z{0K!9Wo^P}&WV$lwak6y6uvhlKR3soEH7G$adav}Rmzt;c6lNeyaOhisQPpI~d3&B)PPp58<^2$9R7G=H)5U;uh?q+VzayO=Z) zHk&5*61d*!;%tdL{!|q!Q#X$5Y#lFI{w=({l}}OIl54Wits~59^V>4oqE;4f`W)2} zapx|g!&*^GV&$08`-JAGf#KZ3^Dfg@<&{#_Dw|5^c~jzr#MlET#)ht~TOzg4NOoz4 z_gJ!~jROsyhaAZeidoY$M@Nx69KP;VWfw@Y9KlLuPfhzFh;@tuGXmpE=-sH6_R^gE%9i;daR1(KbAk%y+!R6{sgz?LoL0$&HYc4EtL8P1x7b1H$< z;n*b?$Hsc6juYB;Z9Snws4J>d*`Qhiq5r|~F!%jI-JxijIdgeWnkO+TjPasnj*94# zMjkQ}xBl60-vf;tKCyJ@OIDfj-nf*gOtC@7%1=z|Ena-e+b+3Z9%6ObbWT2-Rtmq? z9FnZ-ojKDn{KiiEXj|pso~5_WU7Ak@Y?fWUZ3Tpx4{aFFe#@@K-P-ja_#5 z50KFOI*o8*Ue2I9T@;zVT2NR%n|^1>$C-|yGBjN=oF+8UWJ0&RsUj`0!N}sRcdBHT zXo)-3Kdwf6GG08FGzFFt*RrUr!=%X(=D?qq@FhCX5zV9(TaSP18P^ygBq_>vij$}c z5ed{oaO1jWl+=-VZZbjyX*nJ^x0+`JlEjRwTEw!4x;PBCn_i0L)l2DJ;)U!NK%ID0 zHDgk)x?mNyViHL*%@Qxm6b16P&#KH^lv+rCDO9>GiU479EXb_TO7&84!$k0|ZC7&0 zb9ahn45*~yDwshIsv_EfqFw2eN-PRghIc*XLio1F!lmC=t_LYYbshU6AGo0+BYIWE zxDJkhwCWW*b}_510o|uyw%2N{nKC7nzT?UX_zV?Nw<)gHN0sv>*lpa}mlsMpvAchh z?yz@5K}u1Ry4l4vI?)ZSZEoeOd}{$RE@q*KV&-Q$=Ih#Ey7m=^%*-wZq~0yx=Ecs|S+|K#Zzy>G^l#vQH5O=6a(U7CH)8?j zKkrq5v4G>Q6ksfXd`k$$v)eV(#6d>vp^b_n0y5FHmkfP@VkRm>e|<*D3cj-Fve>AD z?@dVqBN?_ZI>9)dL^(aWoBf*xv^z;l`c(XfXl5Jb89OZ-$vkXk=(9!XM&oHCnptk? zld>8Af};ADzsCX*P4ICz8TdsPBpd{%3_$kjL@ND_AoQJxe57G>BM`qN{&dko#L<)u zQ2^gfE$Ec728GnxW%Enbtg|p&*uWgn{fj92iPKmMp~4y>L|>}?j}?K0 zq0LX((QXa?>Y`crz(6_N!-T!zeRR>X|8&u^Ke}j*0-^utqNzjiUQj`^0qLQJLN)Av zA9MwD(fo=%yC4;i;`ghV(l7}GdXY1nMWL{6`=R)d#flDC57EgzO1?_3bWL=(PfAua zmp>&}ufvV|Zr9my``5_q6z}kGy2o6Woj4d9`=f&Zw$-&>CBsy5I*eW7p*!_vHS?VT z``fBQ1dq%1;&Ppi<=(UnqyO9r`0M?PtpH$K{lB&XHCyf)+RR@t;riURHlc<+kDA(c z)zpQ#w(1Q_U59!ES#Lpz*!@p@p#F5x9NBYPzj!!01(|tAQa?br!ss4Tx%gO-mPjWI zPMdATcQIG5DQ*t2O{f)Pt2o;EJH6O52XPQ`e$~9Ccr$k zH5_51NRJDtMg60T_Fr3p&{?)Hl9xYQ0Z4Tei=I<4V!wZO(X@sqWa-TC%}D45$eH>~ zHDqvFy|3iUs_Xh}|%@V0<$bqZixeXcc6HE0Xi3TW|n7mYTf+^Gh=>L6V zz!Qwq8-kL5?q6epp?{18rfTH>&#}OG6FsO?d9DBk1~)YugwN@80A?6Qj6tVzXKF07 zyaknzsP1W_66~L`Kz`kyu|P(-UDg@43`i)^@42-p*fFFumd-=vY_5=>KSDcyy+phn zqcG+eV@+9V-URm6g)2%)Gp!WbFZ!X-?NC(utAxw!cbcuT4at-Rbwrg?6tomJ%JM?b zaBANvGL#bwK4zgJP1o;{ftR6!voE-nP|mP2L4FaC6K22T+3%BU6tM7DVN_-l+HS7- zY5JUIhFLj5iR>lndz#tV^T5JO}^F?yW%r%%XJ?b85Qnph(b}`+Mq`({HyPhqD3wmxQ1_bcuz6~ z?JH*sgdAU1VaPO=V7JVkU74%&wZ3d9IE|c&vM><4>qG+>#+r{{MH!c!HQ92APd-pL z>QhNr-53*!!G(nGy#2r(IkV&!PvS9o zhKZMP8Mxa=k(>kzWx58`kmn0pYDPMpvyrBv;@E89vlt;+eV|s+FsF2k6;B?B&p6+9 zIi}gJxH0Bnron8|54C=Qcsbe=Zx^L_eryHwd2A9dctcFUla5*i0kuBu(PsPkP};&- z{F@5i3E6gs>aR3yynYb%H0mRqJV=7Jv#1l}TKpbhLTK7;Rdw6K+1FEckY?|&>>d0& zmtPv2m3!asOEzTuzIvhVuf0)zdqqH(bWOBu%9R=kkJia69|(OeOCO74LnW6ykGP)C zb~ZaYr-y>y-#kpA5UceCvmYVh3cht-h^H+;Z`j)Jr$! z`eE-$uYHNl-V#7Ije-OlRN+rHE$Jb#>IiZuC@bBl=BlQ!0?M9JE6XKr;FO?vI_-oS zhbg)yHI`DN9dR1r#muGYea|i%H$ACGzh}_GVFTkwY9cD-xqok6MgeR4%ZlEO0}-P- zekI-G6SLJ%`gdyhL(<;7<=%z3p~>@>@nrq}D@WTaD5KpVV91jtmJrFCm6Z|gnSj$| z=sc{j>L_xKF!30`Rse$4xPmy(Hr2oSm&6kj-XoUMl{`XdtOMQD?#LvLLs$CLMP(U! zVY8k`6o2WVJ!7J)F4G*x{-xMDG{1#Hp>oPGZDtCze0B}A>%Q`^`{0i@#bVT+N{HxH zw;SW(rcnB`oX0Vd>1AUy_I8h9{&JIfjD^bPYPBWB5J}-*SqKNFyZEkH zfG?{pmf7Qen*?P6a8njhlxH^ma6?WC*|LLUd3Cn0HMFL`#LA@Z;?zuEGvEO7#I#k% zSbeQ}M-*jUlY=NJ_QV`!OY?*!3n_PrlpyZ8liujbj?&Ar0pK9{y^<;@S_4B;MxO0C zR*0Z6f{VlzsPHN(7gLrs!jjukPAES%XR_wggOmJ#ImaCEr|==&EJ7nU5bl5h!0L^`ure0dM(3=6dD%J z5b+!qk=o06G!Zvje3zy-I>a*}CzYF|@kQ0?JK4z#_F{K5MbPHnDwLh@-B(U9=Y3-O z{i+(V%6IMRNua+d*MnXq?z?T=z71B4Ab6H1*TLIt(;p2<6yxIB#%JVq-(`J+hFzjS zN2{!~mDsYu@dE)x;2m=F)!iQyp6aVNvl+oSuKUr|`wZ%Ad#;)m`-Y*vnNVcxy`*(f zT%VdC?=Zw=PCX63T4awRG0>y_d2#8iF7P1Xl>gxiWDFKYJEc}ZyXf+2pnHMSXC24B zj63uGJe&Aa7YF=sf4D$Zo$uI2`5X9uVhnc9ZFgAe3xEU z?6b#E7=lKIg>M&Ef}~wQci2M|*CTWxbFDSv?Bz)m=@sB0m$iiFvGlQDTqos3^W%pO31f_w>_ih7o>Ii#R><<)LVS+vkk zdMhk+Dl=0}p%*}2-I7*{2;<>vZ4#=`?DJ*Aw6rLUwX{>I^XE-dbs|ni?K3Y)Hz7?+ zEXxfp9k0st;>0Qk{H2ffvl)(V?|5urZhF>8<~nSdEzIJyMHZ=o>xOBGJC5CzCH*EU zp9L2Je>a!mT)smjLwfiAoDYNzA$VinAE#w8g>(Acp`*Vibmqd_pW1>ln7JZs#H(Y^ zLQYGI+J~U5z6&Q1@wtXOuN&^x!}gUTXM>R)t_8o~*o*5MxI_A9KkT?mXDZKhS-6xb z(QV6}M=s%wk?NKN>IMyPo@x0setv6LY&bLOg>sTlazc<N83$gwf+D0^ve3bcLV>atN*92{=e$#&rVVQZ|dq&G382B z?M&J7KlyCIRq40t>ff)!+2ZSsyEu6G6c;2cgl9Hs64n7ya?1#J`?5Q!%u;^wKFq>G zK*K-f(y4^3kUyRf&<1-N;=vTi&kU+4Kho+xaFgNpAP9e@)ic%(U?J}3iSUS#Dw~Dw zDE)R|%ungjZs(Qw{2M$#2LMk97WWWgFL-mj5qpB6V%_2v0CS*w#KJS)T)G|176jL~ zb0iKPB7{3M^*wy#>~0#jI4}Q~|NVo-+-qlNzpv zx_}w%ddx=Q2TbSnN&wR8zej)oY4sO$|8-H^L3|&lzL1 zfVTu@x_e=SSM^k0zX2KgU&TttWa>v6>a>ZkuI`T!`pi^19)-8+x6C=HnEIn zVbgwDn!RDl(9N{&Q`Ruxp8CX7b{9?bEs~BT_^)1GiG0x6>;dcf5TqR;{C-~?L#&2?}-%nt?G4`fO_@9)rU8+PSlKuWFtFOgLasF`7&%Ywh7wKd;a1Ti; z_)1;kF@&z+&;>F}Ww_{%*SFlH*1XrN_AvWgQ^{9t(~Je zCKYpihIdBX4H?rgXt1O*v+NCdwyQux7{%!>0s~-& z1M%u~SQCU+B=(i0P;WP6Su=6vm!i*=1N9j*xY*nll0-iNY4y#8ivgg+ZmI3nMg0|{ zQ?9T~pMw&LY2}%^UwxL1BJROYcffK^vM zrQ_P^hFtL0dol*u#im72)3_EuvBIcK;gy!Y zmzM5CxDE0Bn@^;C8F~Z zlM0u~=9K|`uJO}qNJ>JXQa;Z!kB7o7{jy)F$WGKt-l@Z5@7HBFXA7b(X@8whM5HSr zX&>iejkKWjqn4n5qzC8tiAuV>3c#V8lszd^(?_A$13zy`?dd$6k8Jp+^6O#E)#Q@? ze{{W5cV&$ltsC2RQn78@wpmFkwp}qRwo|bywr$&XDt6Ay_pPx>wjS7S@9)z0Fb|$NIujmayyD2UB8Q=$SxjN@Zx5+$e?q&RItt%CxO=;!remt z0;xbreZ*|t$#mWP2k54koBosk&#sAhgLK_QeN(EiRk-)y;P~D;oW8j$L#bk_Ss;(xy_#4>GkE?o^koQh#RIF5wTaS zL^hiVLz*d%+HkQ&*BEMSdKw=~WrC_7RWM`%`nS_1nbqn6|Kc6*gPKpi9 zWKh|8Y;R3lZ7-edx=_jcp+OPiqiteh_G@d^pMVHX#e#_I`!GEXS~n7AwmcN%p3K z%PLt@e3xo)g%}G@hR7hcRUpL=*N?}q{! zs-wq4v|1j5YpRJNhHbI87WtM6f>W%qNdZ09;-hxPOkcCA+1)Q;Pv@Ook78Y-ET0jb8W_ zJ#Qa3yu^ruy!^o^7t|Ue#Ed_UY6HGRs2l z$*s8wC&7_IdEG8v=FGNe2tCaY^CE-biT&6aBNI$lbtg5tdn1L!$AZZkmFZA(0W@Nr zU*5_aQH!hd(G&^dcAD2(n^?B;b#c<%YeojA&8LlSiov5H<3Yv%0v#*lw8fn zD#uqkk04&%&W{8h_$Gv&XG{`K+pCF&EF=lZf_F5f2k@O2HSwZ_9=LDi7uio)U8)`* zy;C)$X8Mm_Z?dK`4IWW69TAtI zYv9DOj33W*Gq3C7sunk=QAbCR?G4k7@PY(&+?YhEa%S7$S<%wgSya*^Uu!{XxEIh}T`6C>_^GzS&kJqsk|N zo*T402ybQ8gnW0PM)eZv)4DSARwJ<3l}2lto*Z5-OZ~~@HLN8%TvZaDudO=_+~D`> z&0*^LJFetjw*b8o0ZJRyDBJGY0>d5dRg- z>y;JN(N8W)MxsCy$I$xB4&bcH#H)VN`m-_}m!IAFj^c%p@EV#?H23KMY2ORkfDnb0 z^W=c3GqczcwlhI+u|BR|yYG5;V za=`8xdaGZDZmZ(O1)~4f@s9T2rT>jM??Rz0O99*}RsZW&`B!fKb*pfv`+UjG!SI+{c$Ip*yKMee(C@XvC zROg6c_o_Av92Y2JCS988c)I}eej;GkmkA(XVCyv&+I*l|scBNNU1c=TK4}!rq~CzJ zbKVXRcXF|^EW&VN0XIVRE$q%y8!(m_Kmg?F+na!$BhXKb*?F&$Lk2)iboLZq@k~Zg zvD{5^d?}WnG3Ffy<(;7Po$dFb7wM&y;LAe$m%)%K^{ua-2w=p2uXIgl!wtG1QdvT{(mTwog zSVqq|85r_IsOo6|mJ}hb-=N!qJvNq>VKCJL4zdpa9SIcbQY67Sk~ca$d#hXQn>oTT z=;vm2Scw9CLstQN3rrvEw)uS50R1)1gkOwgTuvDIPxq*&C>Xn=b}N)_IN!7xpy+O zmrD(h=mq78g?Nd464A4zL}LQ`l}`l~)+^eF#U)}t8a=|RrjM9D zXy+mk?@#t|zB?nQrl1E^p_b5vvx26B;`$(Rp`W_YFff0QPcFBr3rlE$=!wb>vyMX8^d#yr)&@dk_m?~T~C_Dl_z10xxGTFZTb0*+hulRZxGDblR z1`d6gRZ+@snjcp9Dg6=_ZAn-n+6S_heX45(%6(?Bu{IAG!_= znpBS53mW5Mq($dwB9mwwPsKqQTAI&%V4H|lIa#S)T0T7 z$79N6h%QSd#r@)6@CQq&m$w)Ke(9C+8`gwB=$VT5cgMybkXo%1R1^t5@`PgnwaPu% zBdu)RY+Fw(J(MV{pO+DZIDR#ZMm$l8TmEG9=~Vn}+apLEUx88s$^{x%Xj<&X?u}$n zAxMY1Tt*fG8A#O+NILoMBHaDLB|iDqMWmvho#(Ev%mT9CHr18_{|f5DEhcmw`WUU~ zeXymCfSUgD++q8rD)_Sfh`Y3Rz5WwKhI?Jb&^S-*O;=$u4WqAPhA;^IZ_%T$H^VWa z)Ts;*D(Gks5|n*gEng-)Lvs_%q{;4tu!ml?y2U`h=FZTd5N{)9`y6F#pUVX24w4r{ zJ^2;skB;9dP#3F&b6ms)UD7E0eua!nM%kdvyC_#Mw*f_(@o%7AXKX+w0k^;p0dB(X zHLxGo<%7+q#~L{(bc&oVIDrXjJRl6R)BNzSUiN;XGow6Exe)NIe8;X8r2b7KXcNZ% zj6pI`R6aVg!&cR@9?QWleiPZ6LmCidXc9g5NG6f`SJ-Li$CLgSyY-tnBF)d0@N_=I`GT1)T$Ni!L>|}N=F#I%O|G& z4)q<|MBVIXLQ%=Kp~)6e)eBWjmm<+F9vJo23!$HdK$VY3Jfd8lOT-{8V6K$Z<~Hsq zQc*V1>47Hv4uXI2@NPV=Agmg1J^VBeooD&L*x!5u75xZ$Ixig^M_`2ppQ)8`e)6lT zZVRW4C?n$T74)AHO!{$jN(T+8Zl;IasUg`(R@_2B@BL(F_u}iYEH~kBT=Zh!qPS$^ zK^!sq`Bs4Tu|HCvv>bS0Khdbx^LOPvOgA3o__2Sk3@;k7BVOx%{cU*sm;kV@EZ&x` zZ(-bnE#Rd}*qk?-O7kSBg9QeShpsd4NF7nxOer<`HX3Nmjve!&wDrq4nQ+DI)14|s z=$!82y`fe=WbL_=?)!stZW@W}EWW(7e%L>Rr^9Mvq&A*ajn-^JEEZ2A`MHAr#6P_f z%8jk(VsSHk>KZyD;BXlTU1}q+>$XE0q1b7&lZ4T~T51oT$RTvA%#ZYt^|85Jdwsce zlj=kp+6sEg=pb(#=`2iV^fN`OCK?c>YErK;I-n1eIc-djd^)9@E=(@*@qMLr8Mhf% zv<9DKvvGCO;5mxsexW1&{kvSYxR^@P_A%wgJ5~-T_87LdUOW#?lzJar2+!ceY%$9zh6w=@^)@5yT_vwb=(+nhtJWvg!>w}CTATi2KINh zmGQ&1#PrjuW!I;|3J#2vdv3?u0P$Pz)r=!B^C>E1P-!B9LRO?ZW@GYM>SAw}EijfE z<)tFt{C;C9t@BzLaw4kIOY!lTIqcFHQd

    cC<*JOdM)6bz$HOrk6y8%$%y3b0*Zu;800s9W11Y1B1?Js?R zE7f*2X6i?02VwMEpOw=@i#;*Ys{QX{=AUEJx%(9(#R2a7gYKWuqveVKro*BaY z7YD&vm)74t`URsOO;Iy312pcU4nFW!&(dMw+$ry1fLPVFu|HM=-C(}}#Q+%m1Un-Q zmmdO$^*);VLfH@?_Od~tJ`0F62w%)B!;dmf)@<{m`87L}D;hdM`N!p{XBv?-hiMAX zN$OL3c=206;;cm;7=9aB2cuT}cn4iBv=5_R()U$p`zHpQYkjfs&3x~9LIj%Tg|iL)%L2A5@3rQlJ{VM zQ=7V7WP(##Mj0dk(~89^DGPP}M?L*$B1&c(cblkiFbPwD@wC+MGSF_oHo+0z(JDXQ zm0sqO)Rfrv>rBOrq3>_*WIi_Ocd~}Sppv0~@dt@CIs-L1K~kgmQ>5 z@dX0Ow&-=>60k*$o(D{R?g=o_lP!#;$C(})wGba-%Nd0IsAsf1R69Z!O(CqYohG3k zL^gcyrR53EK^Gz8pbS-E$001sLrxkx5f3@4HzWFxFm=pFyl0t!qou6@+8+}A#8>(A z57)Y%I=cYv&uC}dP>*;LE0+KMdHSE z7oTuZz}iPgJn+Rf>Dr?LNXi?x`ta-}|E+~V11=ElTo4<#8a9akO6^gUx6K_SktJ4) zpQSJBZAE%24J*L&7(O7~a$bwD8?Dhp>QsWz0QC5S0F^(yP8$_ux^)=_M)!R2(p96T z#bmNueA}bG_mUFaI0bLpN@h`Rw5A%Naf}OkgTxH2Px>!!kPyUc$6()`3k-q|L90;h zB+3(rzb^?U&L?hHMide|5I8U<=%wE_!_nvEVwN4xOa&k5Mv~qM3xb@<9%j1$hyyd` zm47CbPNE9|KPZK1Ywx-EDAERjQfoLK1n>%*{P7urzp6*xZykD)H>uykOx^MngljnW z-~3-Ml9JWptOK_cnn>>J7v4d&ovqkheUZ1!_I|2!O4?YNVLDOVN?|vmR>yJTX1@yd zdP5qoBiL2x;`LTDj!%J#G{8ySPT;p?XkSg@D&O~VN<0JYodQeDl?9x&p^>?6(>0)j z`ILZ4-syTo8oAYo!Oo*jr-!)Fo~_ARih>qwrX~`!PU>6q<(yE?*&+kR%|OwRbsD{x}bn= zSIv~YF{PfuWiN8RIfwd~n&b`**FJT+(Pu$=xh^vw6Xqjn4!P7KU!a>nUIuIFBg(6> z!BV6Hea4*V;Q-TZ5ypWST0`5)-%0o#0A#k=zsT&MiF9}s!wKn*0<$sLxX2(TkW7y= z_Q))rlP}}XnS;IA#9V=JihWE>p`{M4aNLr%sM4AQS~Nw*7Nsk=;`zS8yrIyV$KDv@ zvI~wJVeg`e_a;VPP_iKxW?_L7ha74J7hbi-YKj`R1TCzy8v=W>VGfE9$AOIf8NIaK z($rLlXV&G4;U%7xcd!bSZQ{9%m;LZ`Ro28a4nt3*{*bck8BJbP6$B=57OP@z16i$? zToktz!z6j%sF3fPo;RnA$I&j4bXFzlQOMBT+S6jbV~ju0puQ4+CB z-68E;)yzPL19ud;N0xFYY8&=|=@<-nsO%_;mLAnAwht5Puj=aj7V120LzyXAsx39a zJkc9jCK`?4cu2=m5|cHTTb1*MJrP+ZJ`H=~;VkOgyP~UQs;@iyCH&d>@XeA7m^Bu( zrh@-@7!q!6(LuFJ@|VLKInlF;!dP?s*Ij~E+blXNTRIg0WtJN07ye);2C zc-da$V2X!=p$m32B6URmEwPO}x$OjnDhO?qnL~ZUz=LJ3ktKa`o2uS_oo?UKc zQg>nc+ku(=>@Bbm-218mmsEf)5B%GlVw$}i*CxFCEC<%@2H|EF*aj~NmuIGni)R~d z=@F?lG7LyzB&(gXAfrV`bLY91@&eY`W`5{0_VC=qA5EMw!?pQgSsTI09E9||Y>6hm zsVD$*;m3UT$jneI+W?17Md!^3?Bi(Axk%hOJa1f6bKx9&oATk!)J*Lifq3(ov0T1V z+B*F5OTA?6c9~bA8)tDPt?DGjh6~e$#I#d3y5Vo`?C3ZxM+Y9&8xuM|NxQg^!J&c=lSPLz^=AbPLcYMn z4kapfbiokxMq?`)2dnNY*p@%eC{@fNREO^((VJGlTJ+fUG092Crm`lz3y{wP!sEq>ENsk3j&^P+tNlh2A|2M4K$4Ph-o zgL=y(f8ng=W`JddjzmMfSqoOi%E}0hu6!V_>-VT7hUQ zAmIq`-U`94_l1)?+W3xHNMB16+}%H)nyKlMp+$9Hfk=92nP_=n5)$hJmhbv^STlH= z{UaH#o@&G;TPgJ;;0Q%&wf;b)1my(1`}eOqi6?K2(C1WCkSq|GwbV4d>;i|mj5a?! zg@a56?0FDB91Z%ENVxa%nYfes8{oJj{J+&e+i3O_@Hx)DepX%jxK(s?KmZ}JzmgU! z(?>FNi|;spjzP&(;mqD9w0E%!m=m% zs+{0msKG@pfk+f2@3Rdf#uJx(Qx?0Tq#Ec{2)0Y9W)4KVNzIo|(Fc^aO z-hPv!>`v>QI#t%o#h;Yf^gJyzSky8svfZL8ERkUMPWq_u&H zPb@h404$}aUzSp3ho=3*W2jkxrE~>b`(W#Y!rq$}DcCMmq{ei6c}BE`vX1{KKBu=G zY{4s*yk~e~ZjmUJ(yM^W-k)K~5z!uOpa7Vs(~s77b4FnXlC275KCTLzVuYn<08|Cc zOqy-ZzzQrY&f`dJ9aH7 zfyKRBB;R=BEdk#j?SSt(aFgcXc^P0>Qbd!!yS)O41Vw_~bQdDQ!gKX3mA}5?N;k+X z2^Ikz@t{@5t4d3NEnY~T7aO9v^tB>2LgT_IAg(yDl09x9op#jK%6<=}HN`b0q8TIw z016fsK?dOWf}!Ib!HunUlU*%jtZ560UBkh>_ciVq`nuX1_meGwM}o=?*t3l}wIP$u z|JV!Y^#cY#GnTG-c8$`V!}H|~Qepzrx7^&tZh*M5eX=@FB+XykdF{lkFLtg2LGw)y zTXz&Cp5k=#**wuT1qPrgEwDx<16t&J8NMVy(El63GE$B)@SS;Gw(_1!%pPZ4UcTvR z!J;MD4Yd6Qj6z6(X7U5dAwZ2E(ZARtH-Jl|$&BJ>gFe3iMKrm@BTtT8Hq3(G??lG{!IsWX~h&l?Su87LxTelJWNx-9;W{;xGy@0Mgbd`5FM7#g|%t4S+3x%lfu}g0jBJ+OfAvAi% z7d|YUCBia4e3T|7yNAUCzi!qK1ESNk!{^TZOFEGgEEWo>M7wMl!>?Q;v(*z;>`j!P z+`igmw#rg)Kv9%~{CB6{-LqVMsA4`mTCo!_?{4~cetyk=yc#pBOzuAL`;F*erC0(% zaW5iLd#~7DhkvxGgETv;i|4ZCje41rl}JbE3*3teWLeEy5O@E$$0mJnC!B&9eHWnU z#WDmv2dQaIL2%aHm2up7I-9ASr#E?4r47}R={qn6`qonYUCdHVkKgRp+TWj~ib%Pf zZ)%4E^shqv^$T%O3ElAqAzTAkX5P0MRI&J;9hU}VK~Oz%Ux#fGr0m1@Er95!`b+d9 ztN`62yLWBMia-d3qMW(o2^2xZq_8Oh1W%C*ox8@EK-ei*Y>Gh)2ZG5KdLjizSoJ5& zJ^}X5JBNue#s!2Fbw2o^BKY+Uo06VJ=bN|Me8SAQ;+c!|JVwLftXDmJ(feCN^NNP%q=sknX&SDu}JIn_ZE=XqHo5f}p0&n)U zD{YmIvdY$!|40xjrVq3|?#DObk5I)G!;2K1FGPW1%5mrCg7(ul2~-sU$G|wCoVc}u zEM|2Sg!744BF`EmFDY3E9(C92>CI8yoBE9OgkG748~eO!HwomSKE4lKm>!qW0ELx; z3)jh;@@?0Rk2LN0E_uB05tSEix9`d4=EsMS&Z39_MJX5jG}snGy{vxXh#ylX=LV&c z+&61NJ$@$rC!Ek#?h98GRytub<%z_b2AnZnREMlz>xqaeZTE(?jZa4*4@@glPo1%= z^KmA;4w62ViMWLEq4NE{%r_5D+#F@e6cF^ z4kLgOakZiGBTQxzAT*3pF{*^lztS|6OG)xXiR6JR9dFoE_?{WwklVT%ka%?j>%q1V zj)J4Qy~B@iCoWsabB$&tbxFMzZ5EUkA&GQmktNR+DYg<=0d(3}%CQl7Y?N$&R%giD z2{cxBA+gSh(AlRr&1QtjwKJFAv-Wh3_8Sy9?A+<7^v!LK{C`r_vxF`0j?j;K@NxsybaVu;*Xw zY@xJ5X1*21n9CXZUEe%Oh-?dRrNTTy{rTGYBOKQye)2cQ?uK=n8C?JmaCS-lPPk?> zN6j*_ZU3JItERn9r^7W3qX&lVS&lTJnROc?(XvNp&7|b&N?lJo5vo2-bg_cG;$zLG z^5}b$u7hIK9wga<8|!*hXT4vHj6Rw%ra_34-yk+pO(GN#--6o3``-DR*%s4HhTSZG zBX6^f6r7nSY0&i@0+EHe{iblE^5`IO)h|fcuuDyO2u$U`o;q9hW>sp`hZ? zD3hkArr6SwA?LXmDmLb0t{O5CC7ZLu&3ORtn_vSLnpht{cjL?>%}swB;3Ok zk(CQMkxa|jl!OJ&aV)e;ZQL`aY>wevU0o$JV_!6x8vcpHB$f8zMfF+}ceJdX_tH|+q zws(mz*2qeo#R}HiQD~`|*QF5?r`#hf>kxIriJP23ZRlKBSfwTmM8yN@b{()?;~m%* z&-1D&l}1jLMLSz2DT@xy2bSE}?U9N;QDaKEb3S^<;#t#jss(eZgWbZLSG#UJ-Pk}B$TNkiX*qSL-u5_bN4M*eM~{Pgs)tokyIzB{zJfbh=fFyYs@1A@lq z^RF+uS~!5N79+F!ZPQZS4_KOwo%_c!^@*PqfUX8BJqhafutHPS`Z7K3^LL!@wmM4~ zzLhhy!_AcYM-~Zm2PQgp^nt|<`4%e?5-8V;5fDCT^92@qa=_@IcxG>fDkktixM6Ej zDR>$>TaB&g4KEAxoIN1EG&2s&<_}V3Glt?rW< z(*E zx{i%Ssv>fz@fW;39%i)G{1e?FXp8Ctxxa%Y_si^aXR|9>xjUVA3nVg>!!urZD zJYYogU->0Y9MsdjpdQFmNL;X{+yWgPf3-cpQ09(>wp2*M%1xMVK6DlvyF4fp;OiwtlW>{fmTbp3oPd5M;I!=R!X2!W1{34pJQ9x7fuh< zpe=Yp9y+|Iz>>>pKkJmBM69>`NFqvNVF7aXOA#JJ&sKmm7NYhX%5}Tici|Ff@*B_v z=3VZvJ40Q*fHW;K7+mNG|uu1jtNHF0$SGW$R^1{Oj%PBAV84W(6s zCG^wM!4?2upi+4rmdys~uvnoiZ3<8Ov?HL>^b0|Dpa5(_XVY<`H@FRy8gOp$cc`DV zj44SWk_`-$fDiLE+t$|#`13rqKr>~yh8R{NRZrtgS0=8$zAXj@J; z8zRD=IaJs|k^KTO*@%r$iCh;r3h(0Xj98Q0u%j}Sz%P^Iea8ROZ7?w&+oOAMaOYin z@}%;oWJeG7W%i>q{*w-y;{kr7COP4iKj9B7dAJqPd-lab1-#;DMRrZTR|;^o10f(W zHTQ3XoPoI~&y->G-LB(8xY(p^;LKI!ZBs>11eQMvjFAKJRGQngNO1ygJaQ@2b!u(T zCOzpcbdS`b*G*KeHTo5Xs(~i?)z}oIHYYd=>6N$z$(g+aS|%kmD$%7|FKPh;+dU}H zF_6ks{*t_|472K_eLK&Diw&zl3a8NXG?}QD(C@DIpEqZHrP(KoH6V*X|Ils~4q%i= zsil=qI_iPnDvWi$&~EAf&~BW(?5K@Vz=1%f7K8U}df%$LkPhk9hTbMXs`kF1)N`i9 zEo=+hx{@9yr>eTHY`hS<>FR#3nqW=~pyM?&c;S)BII*>qYgJ?(R_c!+vDOF2)MrXOTPw^3)c zRi~gnQh*0%mroRjCYHsV<4Jpa5H?Bu{0Vk-b3d)NV9C6F`Uk3#uk)!t9%!Fk5?hBk z1Z@ZO1dI_&4LwWo8(>9+*m+jK+jZTotKS^tk$&iM-Ut(XgqBMX&|jf&_fA(b^d7^^ zwLG)_4hn(%T+awdyUr;-BDF{HY1A$~my<^ZJH7U!dFJPOH$Ql^=hkGwPvLi;w2fwP zK!!8kZKNJf>e8O2SsjbLk52vrNKW9Gl>moS8t#y!(!pr}SIL=2KkYLNQrs#2zL;~W zy>1-Vp^)9rndCWlB!o^z!`3<*gjkch`)_U**Ys6i$;l0$uc<_M3Xes~uMiE7@R4!0 z0swcT21&RR@l@IdtbfGlCoLS&PV*@o@_ts2XA#Y|Pn=kC)Axmcx7R{vFc9Q#!#k;? z0u)IBuWg%Y#Z~+#9xmRKAu-!A@dE{!HPIW?o8I2-|u(_Plgc8JLYn13t7zM&fISSG5$C$bf^QsK%Q<#rQm4^VjTU*sPdb3@kt4nRY zx#s6;(#!B4YfggDBtBI})XR^IxK3zkoD7x-9Ky`mWRsrGj9OkTZnc-tR#~L-nrEvJ zkhz=7qQ@kdHW^8n#d7nYWLsQj@{=ZOQRHTFZcinK+)gtcF!7{rSJd;PzvU#M<0KXc zLX2KFN^ZS5hF}AEPi)dTR5;P*#c5N)97Cin%>p1REc}G=v3pkmuTX$?msGcIMYL|U zs4I|h*1zCxOv-a(bFp%pZC9f!RM2a~8oEZRA|Ya_QQPxQ;G93a?YjtrOUJ*7p;wQj!hU;n#X!qX4t`)W@qM`*~dL3sx5TK zMDrV58@v0nxYb>MYLeESwxX@TespI|(fz8W(ieSI_LFSN`UzWDRTU%2kw^c1LPH+a zP!bG1mtWV|E2SY97hlelCP+CLpnh;#q zS1G?Ylne-^t_aL<+41RFb|(fGP~Ul!gdqdkh+$XX1kh;3L$k;ZwEp_DE@F_jC9M%gHG0K0;=1ba0;VEjM0~W5*c@$ zT&C{0bwxz#^xk$YPzxt3<0N2egwm!Aq;-?U#bBybT~jvJFhnqfgAX{}T2FXFpvVC%};)52zh z7Y06-*W|w)l}_je_>WnN#y!$>A%8)(PU=B87R8ZjER zWF}K^U%hqPl}$q~N0L_+z2_A?CMMB^S0OVmE{5CLXJZEuLbFQRI;W3!>y`{Ux#Row zd+Eh|ylNN*ydAz{W3yX>UZemo81#RJU8n=+_qFf~s!7tb9m-ltZ2)kHJVCw6?)gSo z24Gu59?H(lR28tX3cXZI6Q_Bm>k@aD;?H|(M&3JWWq)PPIKDJP0lLCYCM z1>$yJ9<_Q0ZjOYq_ndsPesoVAO022*XWgF=N!9G3kd-a-BiKB$^#psOFX*sAQrFJR zq^#8$=mocn^^8Q$TCY?e=izGMsw9;zRjrkN7iEJlmozxE%6rS=FZY`|V>x)znZNER zM3e%IT~Gh>{K@Yo`6L3gjO6~XTrBptNK5+@!SynAnSSlSvqdpTwT1H}{rJTe62O0> zyMyJsAbowe`=1w}X7jF0YCwo0{~s$Lmj7D;?frKJ1cqA2Ak&0c8}q9y`zC-3{^xq9 z%<~|G-gBs4Pa@n87d00fmxl}63$cz4Ybr9Iap|(;=f83DPnLiakS!L^QiQyFmnpcI zd3)bSUALwb;-x2@WK-`#Cu1$axfxB_=bx8rzqhWF6$@?9f}lcWkzu1v$={_x1`)gJ zfD_QI&NqalSvh{}ytt6B45b=e7m>gjP@ses7Men;Pb~=RNLQw}8-43zZd!@1&j@C1 z5Lz%)rov}{v<)w0K)d7%E#eCVB_V;rke9v5-AdRGP$P9C4RD#b;4aSOU7g7567WIiMio<&(jM|MUwFuB~eKI^|B z5aU_w4#(8Bm_Fmz4aj0kp?|~^12XIUIqc1S)UyP~@9&1V`qo=9`0u)(D#f~qTf<)v zI5us#n8}tvG(d==Lp))ELm7#=n(OtZBiF`dly7gonG)140yg9rFO{j@L@h z+Vm6k^tKr3jhi~E(1v(tSO~*$r^6m7qHp@MaJfgZ_Fh)sF@!)jP%iv=Rt8`RpRZC{yc8Jh~Qr;=!HkD$4Palg$tqh0!0 z6W{MKMrF@#5DMe+gbaclk!=UK=qSu!dfXaK(&Ev90LTj80c3^Y^ef=l-rG`O#2RAQ zUJm=O&RT_tv-vqrG}FTjQC=ia)nY`WIxdh|VFsMsJcye3k6O&4_;GDQflL3wsZ9PQ zhfYyO?*=c5h}0?*T^Oxa@&OoQ00nN&EFqh>SDs>7K;&5Xt`lt51+JMa!4$|rpx{`j z2&B9E&;vsB>j>mIjQ*d_nsskA-HK29nMz8KJw{mG-%7$+tm7h8Jo7TLU_lr|HWC;) zsC%6Zt&+(YI(>Y764F67#z4b`IgkP9{q$4vQ%m(?tUo;jKPpD-TzKZg+bN>6ASuzu&iQ_~8UoCvW6r#uVdeYw$w3%EHq-iUS_n^M|NO=WG zq7^bl6(AJaUXrRJGD4w-Jc}eKsxp+@trDF0+{7iS%at%a##1%=3PFDN3Fz9AIlvW& zm*(E8_C`G}z>ElR1aP!NzKAja{&;Mtc2`c| ziC)=5^9aaQ;eRw5QNFo;Yu!lDRylu?cUT5ZKhE>nbm``0(UvsFn$-Yf2cek`AYAqh zkKj0fyZp5JqtE!Vjd?>uuKAf5F%v{IKJS;L#I~}}fLypnw*7PBQKoNhZ>_75M_iz$ zy{X4W`V$(!W{@;$eeoS=W~p8lh3IyBXE>**+lh_W{NzF}%7M;&rtx_%$kz&ZA!TzH zUu?ejUKZg#ci{&o!_R~ikOR77$Zb3RlLZ*ZR_040CX7KEGlziS{mn`{4#uOi*+)UqLx0D(TryhXy4{Ey@q zr|CH=yhVsrv0PZL{lb9YaWTT&yGZZZA#fqH>Z*si5*+-;e$Sz;V;AscZa$=`R6pd2 z24Z-c+@Y@g5BDFS5DnC-H)=RU{55k%gA-PCoYlMY7d6eP`e~Z{W}Z zHuN^Yn;}yy(jc$N3hizrt0A2b-&fDO)h?P*o$xrz__QZe(7%oIF#O$5OMHtNLKHJV zWFJ5WG<~)T7LmJqLu$A8<0c#dbOkBPRi|4}HZreg!|q?fn9&xH*jiYJiiuuHyguW} zzkg;sK_SUgrnnkW%WKG!hJrI7M3(X3Jrs0f4zY6APkroa)4#9iteh3qX@X_^8n^$& zi*0@sp4uVYX51z*D1;0w*JXk?Je_)9SbhF7oSd1FbWfyEL|K;*Pd7t7quefiE=9u? zHgJ@^N%@S8mol8j%f=j11%PKe8vQoSfU>Vk&u$jA&l_|ny#KvhpGh9Mi4UI|eG(Ow zlA8j~!Vhj!JavKM2dFK!J(^+gTbNL==@sK1#dn19a`#O`+5fbrGxF}2kBO0Zv&r>E z9)S7fWkFjVLidUV9K-e_w{AGT+XjKRi{TgmS0EPX;^!qWIsKu{xjKepSUr98*j$2M z1egNFfNo6`_>z=YGg#qj^Cr28+QnYD|)Qvhxru za2A(*NJ)!B*|W*#HyB$W&b{Z9uo6@Lq^B#`4bbpV!EvhZP9Q!pDws(XF7v73x zby?L|*Q7Wgn?6}DyDE6G0}l#Z-l4d!E~6>yH8>5LUgyZ3QQonIacl}>g9lN>*fEJ; z<-x4VtEQyRf@9l}j}mOa5M4aLdP2awd`c6bQk86dklh$X%D5@Wk^c0}Rg7wZ67^oS zEsw2$=TCh%7xOUn{X~7wukt^pE*dA_w56ajQ39yLgxirPJ1zo6{U>%A;WJt#ERN^8 zDd>}HJAObOe!qKq8*`PWMKR>E9a|+|#m(10y~G~Q$%H^P$ZTI7`t=>>Ch@n*n|K|_ zk6VN5-iLc@1Lmu2^`AvjZ%ezK_7G>TOf#zu0d*ZAo{vwmPSOf@Lz+^TKUE`|+E`4L zj4I&Ynb5I?kcoQh)`s^Vs2ji5}WqFgaVNJ5NT#b^GAq$I?aMa**r50?XCY)#*xLS^|@_&~Z!(a`l%S3GFiVUC%Hl z<~n=Yn2J20~hI>B6i$ZXGkYZcpG&2AYmRr9DloG8gb8di#cRC^uHc7ElN}WF;*cgT9l5AHm+k z$AOB#olG;vz&F4Bn^9m!WXap1B*Fj8fRatX3cQP1xfeB{8mxn*7Y^&x9~7B6@1tnOdzm(Zk0N^WB>N z+gbDmd-(1l{dAXlbxgOpuKf=9k~!>$%6tat9Zpy>=Euk*vvt17!j1dGXEmm(_UH1`=SPj7DgH>brFj#f zTm7tiH8)Zy{y$z_<8uaNG-Ws_t}hEn9F#RK7DfVi!WXYDwTcl2jwW_aHSwrKQ@f`R z`{j6cQetA(5N;GHv_N!rT#vC-55fRC`#;sXVA8K@-IQLaCGyV-H-X7Ce~%B zA0q8@D~WqA(km;8sV9lc8saV|itDZ*$h^Y>LGExK_M6HbeH%5-A{860=9sgquw5tJD7jGI+TBG?f>xVc25AjI=12! zNbTLOc}4g4E&+vnB51wY-s?PgT_wZN8L}RK7ueEeL4r>L7HM%<#p3(u>75hEgyN3y zZ)gN;2fI!4AkQ&);C|!9DQV8u=Qz_$57#FG=p;D5p_?SWcy(-CiMEo4U4{9YU`#0; zyy0ttU)4Ho3P81P(DYjHOtU$)6)6r%Ha6`9#)lv!hm2NxP@ZB@K@1bLL7n*Id%y_b zG!@TjJ`4V(QPuKF&`$sWY!@d>L85Bhh|&i^2W^7gt<}29n+Ycih-&qwgmF-{%|*K* z=%{Xp#}~;I9YG4O*ZSK@iR$BB;v=MpZ6lD`24atJ<&YL-kOt5bn{=B8#jW1W4e;}n zX>Wv<(;*#J0c>r{2ReJ_`0}3^BlT#Th39OWj{bJ}YXFgIOFQ#CBEY1&e{LXD`Dxk9ENC%+3&7REa3gkGdbCLgY^#qMP{0}bpX+`0 zRpWt|euS*em17hDs&%n+&sjyS7}CU3-Q-&x=;OGPQxuHYk%ktJW_= zlz$|ZxRZtk9OP=^N!D{1(5^SbtyC1Z7nQDvCQyyHe2} zLVrsS<3WC_BsgG`DKEzU{X_5^Pk$6SJ+Mpq98XVicr^acU$lo167AIPc{jiA)oa^7 zFy&E+9&{1DEGnw2&@|9R?VOc35`kneb2yVjKp9mV>cp~KS_4bX&#U^;PZd6vH&V3R>=evdU^d*C}9mTBU*?bDudpzqxlpMPfb zdgT1z&*ar(F0>^U-oukr!$vNG%cP;h-Ada1b}h=h$1GN$X$@p7LkyCxH8oq&`6g{~ zzdgYFla?vR7VpCxvvBM>=+K%i=%e=Yh5^apBP z#5@8-DKW6D|AH)jz(r)Rtb!Wa5Y#$Pn6Zv8L|8*AZMQ zJK9ZDU-94jy|TFv6zvxT0iVIV-2?I4ob17FIB@-PNgu;RQV=pH&TH=+2rilRE3TzS z956H8e0jNbx6{f=qD@hzYktK<-8vcECcj132m4T6D@qa*<6*UD_oULn|Gy(at9$Xl%BJ-)k#SMsZ&2pvg|G=aUBD?SKIyJFD3 zx3hb-bzPC2s=F5OY1J;Zs^&%(eewH9fc3jQ7#qFlb8WSCD7SakdP8m_Ey}G4KUU$x zAxzHHp_217G;0*1$6U9tCu?oax%rila~Q$Q3t$*~Vz*!jK}!r@bc2(yhjgwNh5lN> zH*OfSUqF1b#cFy60OI6DyYEQ=<+|lz&r`c&FFA>eQvnw7DoH!eF%RMk6u}m-%(e>3 z@J#&6ao!!z;b`5T%I=9PoiulO$(4~^l=a`uPpMHc`)WN7TBtR0VYs^qRuiZ$H|Cy` zan{+lX@S$uS54Ah)S7Ye|MKBg-)dB@b|AGqeFfr3>||Esy?5u0<`j$0*p4r3%nULD73 zsp*x@dPbM@OZmMnCx;>#gH3bqT^D=K<8|!T3u%G$tss@cx#Pd2dD<}Lo8*!wPBp(w z-l%>lUlvT)2A1XL#q%Q9(azH-skVWi))aTi-YvkmuPfCk3IvRgYXuk@*W@*`Nm+3W zvJ%VmXP(^K&yed^bHg}<@)>C-vl)m^%}TJGihI%nC)Bfv&MjZnQ9vcG4gCp#MEtw! zB2xpKrCsGRT|<8H>lgL!)Vz!EP<(Xw9-By?GWGA?ZpLjHyT1IWH31f}oZ03`I`*2h%VfD+ z+zI_6dF$CM)}HWIa(y0^Pw5B7)wY;tg>JxMyb@e$*jWd8c3J)Q>&odPH=Il|RzO^C zt1X>O7S_SzbsQZwtkEIHJDmHS+s$fb>G-Q9tB;IUlb#UptR_w=Co$HfRTZh0ihf=y zPLaRwx|Zyp|61VO|NfEUE~}a1U!Rl6UM71smTLu_k|h_a`0V&et7IDK)UZjy0l;K>(!H5*n?O_y{_wexznYFkQx zJCs~EEGw5$wiVe(&z+>6!PvpB#kgs6@gQo^lvw+d9yfb`)QF=L&x@lm)2D_h4YKNY zz~w|q!glMls&dE^Hh#0(Fc*b8<*!Dm2WBm;Voc{J(CT>;V^p+m9s5uti zL7VIut5uut%sCD6?9MI+Kb?s8145X z|3uH~MwV;Dn7OJTre^FVkX6XV3SoIvIh-a-?Px@|cc<$oj=?6xb;g*=GN0PB9aC{&w6wEw} zYTdW!rYmbs+Z}|0{AWyxRt-L~oq{kzY*)qpZ-`o{8;YyxqF-hY#T<1T(GO~wOUfQN0PP9 z*T0uXw5y|=7jl?eIZ8#uHk`K|A}Ci!_#*D9qtH<$0?KEHt&SZKQEk6_`_coz+VI+# zpN@w6!lZnAsW#q}LuT0CXrhq1uzHOjl%L~XOP_jY9}EmGh`)(|B5D1?%T&y!-ydP; zs|L}`9bgIR+4yItX|o)t@gNj$hJo<_2~Y;RV&LFE2@sW>zeNd^ zw$yxqkbH(3XTvL2dddk|W;76X|NT8_Lj@+>S&5*!5Yh9Kz&(Y3ZYb*mLHXa`3U~p9 zo{)pyFi=tt2oZnr<~fr0`NBkc#Lv7D%D$FBc=H|hFx!xv;g?XZ--)0f;8ao5pdJo> zjvyj&F0pLifbw$-12#Z?C%(?_!6Noc_{7#){4uk{Li($M>+N~|Bc|CRo9FLgZ{DPy zE!lwkkJ(D!NNUIgKmueUn7(;LPFSbIs{>(5u%;MVB}VEBbP1KeaJSFR9h@T?l(hw4 z_?!S7$=Di0V{{gzb?LQ0zHI9b{2um5CaQO}j5{||p_l`UtJ8dB`1q54@6-m{v4E^wi$ zsRw_E(DsE?ZkuPZm!~J9bFlemrosjO6<&9};>E|B7#1l}oZjrao-l5gf?>oo8GnGw zra}#e$E#I;B@b_?40ifv0&ai^2M8td1_3nOZt9#&kn+q9@HAEmDgsDK zW%CjC)`U0G0FqKJkSH*q<3&z$CZ^E~(s>pw5JiYK91bZ0|3_QeOXVvH_Im_pWYs;X z=vpkdhtYe1`Pz3@En%IE)`gC=;wO}PWS*f{1H2X3_&v=mO&Blpw`xe)A$$DPqVI4E zE494*_4-%-5a#S4`UEzxGtl=eqYa9rtAhS-_e4O4c-h&YyuxQEh3jz}rLFNBl^NxrowXWPAqah=Ag1yR z_<+6B8pr6{qSV&N0;-bsd`C)B@ChvDU+KX!N(5gtu)&E7PRWJ<_% zNG6$LpEUdWq&rvfYtA2*Do-(Cy=O26c}sTg^9A+>Qlyqvju9=IMdTd`nLhvcWVI71+_=&Wx64Ol6Ts@7To-`02=hF zoTmewHjQH6hzq$RP9-&M--(z+;;1+W*Z`I09tt-Y5d(J$nVO@ciXd-rNC21xLaJUx z0A>O0o7MOrbGH&@5mt7HZ@)rM*W4}je9TQpdqN=5%mx3B&GJJ5B-$UH(2~82rNn^N z_2M4J+M@fa$@ANOOafJ&OskF`Z?HrCfJ=)lcE=fC<0`_4^V$YsNRF=El#Vvs4hfaJ zfZ&7w(8*H5!+hjC_kD_vw4iSRDD+*`BiO`k6#=L*b|>ee4o4HAKIbzg*1PA;ILJ1^ zjlFcGPO|cLY+zW(Bu5Xd<2k@n`o|yYA}@BF{s%PItP8dCnxD1pYuU!Rh2adkIElAd zx=076pJ;0>^Yzn?SIk<=K_z3p3D9R&iGc#&wdoS;EwfRlre#KK<)h~~zi-7LKiI8) z>a;ocmOZ|#GpH>;v05QmXwa5}j%@KvP^1oG=U(shDR7&nt=W!{^D`x;RKs`bGyNmS z5^ZkTwjzKED0$P#w;$sd(&$3##aMx3bu7hzJJujHg$$mRJEvL&;~%x@kNLIA{7b`a zWG6HB`6}p=#}P}i@H!bFY|!Z-7Z4OXaY(6cL?I_RhAIu$_!TMDVD<6kW1pH496mF1 z8Bd7)W*Td@Te!RP`@MQp={4}A(>%tO&e>uAimCTTngUoF3R~96;d9GuOF2JgO}7ID zT^rIaYVHZ;LAU2=Cmec}zT%wzkj)IH7Yn`02AgArXGpc5$Yy{MkXthsZ$inE>X8sZ zx*mDB68bi`v~l=id~SThFplFATGRE~elJ$}5GxKO)-2X^oVW^C3Z~-2ZL0PKrnDKy z?8G>K<=>?MJhVTIDNnwoXIhSa#aY3szeMF@P>hU_(tE*zh26{Lvr?Oa<-dK;GTSh{ z(5y1kbHz6sUl%7+P!;TR;casyh=z5j& z2rvOXeSDug-PfHe^B-qzlSLUOu}(Ym6;nmK#(|^J#JPxE1x=vl^^~R7G?NrN*Z3^+ z+40|5StA2Z*7Ne9QHn-sX4Nfm?p~yE>?fgJ%pLJ!f5HsqAd1x({8`c$TASo*jZt*Z z%Wc$~KweSe#EdZ1O(~Tg{RnyHO%ThV?CHclYEsAF5M9SxlJR2<^0-@-hbw7FV_M~# zmSZ2EWGh$K+&(nK22T-FiAHr|W`IcfTkJeJ-qcZpvLMZi7z%^aR`bhhnR4{uWgC{F zB-i3gR=vx;eo#qx2(5J{7sQXZ1g9m4PDQXTMR7(~{Bh2cfkT;i6Gws=QWp;e zY#*9TVUttO48s;ZsuYpojq(wA)el`x`QlRx$!UoegbZcxbnE*$+v^S%3(Kair8UL1 z!@jee@FvdMW}}x$uwhae<*Q1}w_shJrQzToN|DAzhWvzh;8wEZ1F`|Yarfl~44U=W zJT&PWQ2|u3DlUF&Rce}0RSgGa56OymHfQO#z3k6ihf1;Etf8Jf-rzLJ%Epu}e$b04 zBY+ZIELszlH%c~J6r~Yz^^h!DV~NmIHO4`D{j8^(=2s11;BMBS2!E<_J)-2 z6Gz)hbb5sW^Au-MiaHLM zW#0*H@kR?u@!Uz_+PGeGq>qN0l8Oy&sVpt=*Or4%rq7SlEy?-doEK%j7 zbXTTy^MQdQ>1CuB>JJsMMvW|W+7JB!Ga%lv zF^eC(4w4oi%bHn>F&_Dw!d|7*Y{cC08;rWmsTre0ae zjh7+%KW6*<2P)NBT-#1%xb!K6O9qsMrEBIlQ~B5HaE2!2reO}q@I5evsEs`~Z&}$l z5J~thV7oigOgru@oxV@s8CBIM$JLu@!13D9;+U-AG^1^?=wbIT$g(+ni}X_LAHIsh zR`_MqN5uRnB8&Dms=?t{8pSZ<_Pc04BXW%r)vtGtLqO)xjvyioZQE(`hKg;*JGN(` z1!$Xj5gzIHqLzSId)SPpHsG|g`=&Hr)_-5s?4^dC8{FUy*^V`~9U*DHJe5lT79jc( zC>31XwSt714nKkjaz79e6dQlyA2o3z5jo9#LIe}n!443V#(v(=oqwvee;%e>UHu#R zm;pvUN0rq*h&mO=Ru79l1rS4NRL<+3ZH9SkZ-g%&Bw=P`dY^z6+UF-Ikb*QQ7#a`+ z5EP)VMhpb=x7zP7Ae`9!kCD%R!ik1f+#V-}ub#yxs9~XxLAetdrfInvF?2BZE&@Y= zHgWtQF_YxZa!nSH%HrZ;dG!^xMN#o$gpai!A4iVU-s@eD$Bvp3g&YqOpK6)BanoKf zMs1ho9f?Lo6bOMqtD8NxF1aOpEQ66>VasKoE034+N?~l^oe;c1SER?@E5uX4@ zDUReb);x_Hj4n54cqS5jI}rk0c>AAJsOV?=NCG5#V}Y4_Z$yCiXKYg+j)BM9|6Ai( zEE40R+qWALAnOsc3tSlY%Iv*b2c1uQy*LfK?PhcC1bfF5ikoJ3-?*#s zLzr5*0MvdVE0K$5i8vw|S6$~ggg)`P*_|thL|hT(6KPqjCWGq@DMw>u><{DtXe;{c`4S3IEsns(g!1&Am8=s~sF zavZ~dwmd3rIg3;nW1kAu&$5_qq)oGdN!c6SwgK_vUTUWag4I>b(akyf#G6q0fqR3? zy|}>q%?L6NKS=pL_~>a5H~AFB2M@D`isvmnN6a!ed<*Q+BQ&=Hj6j-X zKxi*laC<;X6u_xYLd6*46jYdwmaaW;1kIP^5zrP7e{(%7unyD51Kr`v2xBFGnT-$z z{mu+U9JvUtxCLBzJwC{l-MJ#TBuGvj+zKJK5RD^dekq_`*9A5mU%8mS*xB;>gt3HN zZrDY1o5ds%sryS)N!+RP5}_>e@Yyq~_?%KDV|p6aCYd`Pq#T`49dd+z>3JACQ=cLk zf16<#ZX0qHN@b=S`Tx8>k<4!R_SQAEyD5`K5&6SeHB!14j>Gbm2c^gXg99(}9S!S| zz~g=ibuQyW=EI{dsF1#ex?gmsH7 zz?Q32qgldsb5E?)D{|0YuFKVwdw|ubizCrOlfRR^qGit~e%+w-Vy_)`03R`nG$~J+ zg^H&!EMXJW?JIOlXOmes-<)pHWJ(X*oG`b}QG6Xu9IJ|c6~Lf()Z6Xc-ntNPafc|% zHP_`D;>Y?w?+?nC_Xq9E`;!4Uq^z(<{GazHG2evMkptld*XA{31ZM@Y`w(pK_Zg*} z{yMNAI0r!m(`|Gh=(kIX+RT3wpAEtmecK~Wteq!bOK&#sa_>8eu$dAhi|?cHoD%aU z5+Y2XkkTWfG;Q-=3m;ozdQ?_R($uhMs-f)NG?q!`8(%fNzl?aVrcXB5KC3^js#dv# zn14<`9<48D`A)m){_MpfRPiQ<+02_FL7U6s6eZBWmbPgMJl>}GaK_k*=X9to5ID9& z!tpJZzoS<=kLA}he)g!8{h^ZP2lY`Dk9Z*-^4?*r zoy=j+uRP4m@bR13w-3w(K6pDZ%L5?z@ff-jb!K4hWxFa!jTl!=?y%4DkG=h4JXrev z$Zepp-lz4gn{ARC{FRx~5;4KzV{` zrZm+mm0^WH_b-a!ft5^RN6Abi{@y9-`l>k;exB9ii1PO%@B|mJNXb9Zb5AF}&OGwl z*mjgz6G;4j{65%7KHLyJZ-@HYa`zKzu~tBhY|(vvWf#D)ZD!g_kOb6y0KX5!m*2+* z5#aYh!6T?Zx;6}86w$z8@tImyx0(@Yn^3v==oA3>eaIDr>OfHHf?qE~lGRde4^0Lb zQFn53@5J>7DaCnr-q-X8p|+rqMBuXx_#IqCCU|hKaL}gwQ0(2*(4OEUUqp7V4uKEN zDeQO{U9ycV(*J&YNCfPA3d~>4bHI4?dps#QEt01nM25CeN44d~pk7jdCjt8&hd#i* zM+S%(s#=(1j4)o@9rNHb^iu{}FXzUd<`B0v60q0u$r70HL_J`C2N!wurzsAbXTp^r zwH~O-*gp>$In$O+HdRhb*DCv#rzf6vdO4JVqP2isCVQW0@S2EMY|8m(&d)9HW!03e z@og6&ee+Z#=WaZA)%x#oi}tH9>67Y_Yw9M~$oc%z@e;42)VP2Z2Vz6#@^<6hYh{=8 z(*yD*c}dbCk~Wksl)RzoVc1eG?}p<@lJA8RY8en|(rfzNo+pf`US7L~@~LrwU`vT; zI^j^}ij$3v-*k!Kh3w`-5qnPP#GmvuxvN^E6<*t1SI9O>Q5fK45c`7}L!@if#%(2D z{#vp7L4y7+?U|HRtg(_+k4@_(**F##cCH}$2K2P=9%A4=pY>Hw)*gpXuWt*QFeJ)A za>oVx)UXULWLu#)7t^ z;>}>00Z7)ynG;TPlQx0y~I zZ=Gy=HGJa3)yafL$JNN+0&~v{;ch&S5f@;I-&S@Qxc3IUoQizlE+NFwPI!zO%>;>D zWY)6H^sC=-BG0@?EZ9!5SLa`#v8O}N0#}^`obmsnfR58tbtY3bqc1r3<-+AH$;b!G zu7D<8Ri9JXSzoOU0*6+*SkFLHn3B*;9kkqQ1Cf}x$xu#$0_^h|YBw*vLAX_3r@!wS zB<1EG+NRSdoS5a;zTJ|Xo;qjJxUk?i4@kngi@_C!Z15#hm{60^SBTtyxBHVeJrvDq zC{vNV`a|1=rDOJue)oIRpLl!csdU-z<9VoWw5$i4{*5Ml8Yp=Z4NKHVsp}w&N?ry| z=ina;s=@Kc5qX3c+zVpMq9($UtBuQWkG$l+8s_Zl=H%W&gl*Tg+FXiTVA=KMcmuRX z3w&a%u)&EA>DwNgr@VMAN^OHRR|1a7hzE9QQIe)ia|s|EY9(UNc$&_l@bMh~K-7vS zbi#$^)037hSy}Rs#lc@I039Wo)=&;HIqM+YHtkAP98%_b$!@m}8a0Y!=F9W>8wQ>$ zDknL4grGvPIU-I-qG|rho$zUM!UL6^g%t?Hfk(_R>YC`yuD4{W@@Yh7+fG}~VvWeU zQO68A&BN{gbEfXLZ@~ErCp2D3{6n3)Ap;#PNzyK)8+UQ26i7QT2nkk4G6PDnRbu|b zx)C}2w`qIC3Fx=gtcF(08MrhKQodC@3R$MJMIk*7&sWb*omrn0A_R)D63l}}piKBs zZ+TP%T?{kBLWvS#zn1j@>~*E%a&E)vqt+vO%S`MDZ#rpG3mGJ(rG=7J0UJprt;Cz% zR9B^zCMuwp-@ai~Fpt8}kYPuCFp#Ikbj;-6Z<@n=7zr=NmfWSKUZ;_7n)(@MJEKM( zMq|^b*I>FVCLl|I@FuLAGgvYX9mnrCzY{vJV^XV*vlzFdh-j+d(=4t*sv1$Od)&2J z=JaNo(<^0!zOJkjTo%penf^+!m15R9$MR$Y$q*SW#ioW!{BFEJgM5i zaEedag*+zRYqtA7B#(jAb*g!?p<%ZBqqD3AWUD|0`kB_a3(WYi19qzYw2dWo6YHeULWY&bAr=l-g!u}50|+6|2%)r@Xqrh=dz(`ycd-z`5qoE_XOy4 z99v=9Id&~m3P$1Lc@Nz=*93Xhe8#?j6VgZXe48L-%{<=!(A9F!%dwsx?sqbpvyK{nh=TGa9KOdetjVKi1rx5n! z2-4$RC?xw41P6;jy?HB-NUHBxxwqtC^#pCZoPInQ%$yk#AW*>}5x5HM23*%i`qBz?&?bkXpQt4Lyvb^jA zal_Y4s~Jlnkl^m%n1Smf;8fH!W-d zvSlq!C`0?#F80m03q6}-FZAOtODg1-C6$G*zrV$5>&ueL&+tyQ*r`DO(6{3RnyUv~ zOa821-)hiUgBASJ*}?Q*{xqOL{g&2k4q)QmFmLWTBPtOhc(h`Kqq-%(&B za^ob!^riI?5(kV-*oF85EuN!~K5*7_@QlqM0*n)d-^;~OiNZa&Su$B*vRu~p%BXJ&j+XJkz? zc)?}p4a~6ih(W=u|7ub(sW2qvQPpFjscWCV;?jnowpaL@<6?m&q&HFpd)1ULp*u@0ak1Xl$*|a z`6r&AGYStErv{R}#hte<9K;MwHTb=b(zv=~JgJly8!zSPhty{8gHj0G#L+sL0RFVA z7qZ9;!@^T;dbHT2H8;eVTJczu7F@)Sw?xmkO8xGC$DHj#k8Cf@`?AbHZK&1iP#U+$ zl2Y;@Fs1}jw21^#Cv?aacE%)IwgsAyA-TwCMZOrbzB>uTl9NtFAC1{eaW*_a59)SQ z;3f!`C|o=fU>x*0GJowvEQNZQHi(HZ~fYjcwa(%*OVW}5fV(69r)DM2x2$9#S5Or9sL|Yd{I;xk`435jfty99U8LoaE%v+KN ztc49oWFSbUBR{OW2L`yEgkJfzcyMJtK4G8mP*v~z)h`T@ibp>alw5gs0W8m0!eynY zcgp^;;`!Fx6wzD-@I&+OyUXo9_+8Sz(MQOpY}j`@%df1D@%sRfc?j6st4fkj(a53x z$zCoXg|pPKaEzs9d1AUm%W}q+o1YRm1zJkpbB{5%LA6NYQhgmJsLD#wEaqa3=`OV^ zSzCGHfP$D85C_wwO@3p(aVD-Ag!E^Dlc9TDahbZ!YfsX;9RQaXO$A}a{MQ)#NDfT5W;k+NMNZ()F!MFrfePQv-or6GGV=Ndg^SN zg8a;{jnDoHt^%t(^-dTa?O#QSQ22u9Ky^pC*Pf&9v#Su=gl7f;*eEkj@oUoLJJ)qN z+p02{V5Kj;GWutPm5mtr8wb>${+drIJY9fNs+O(Fnu>z|tJoNgbaQ=YuodcY5%kmi zG6|Xhz60`{R{?%EM*>+*bMx%;32g2o8~r)C zC`Tv`X!Zf$0g|~PEwguarEVFdR^kr!lo{d_(63Nx*@_0L%pX?q943W&NyZx~0b@pP z{NydFZm6h4_I(>}{guqF9E=M=XB^1-+|Xc+t+uZGn$h$0CK4^nNl~(hm}J3HpK%hK zK1CgXWscJad+wUnP`#jYai#TUtBJza;jd?BQ9N%vQd3*lzRrv2_~9$;cwTxSihXt> z#ewfoG&#kVgZr=%ue1C*3LunP{q5w=v7#_ZoUD9<6x#TL+UUrE1gmrMB5~>+np{(9yMM!T7f63)whw zxt!#J<2?83U=bO=(huf--06ViX9Ex0%-$?k6H1iFJVIVCPR_ETcSW<=c2VSy$YJ%L~Ovs#E3Mv`SR^imHWq9^5e1xS#kdt~iz z(dZuH4j#x*xJ*cp4A$2pl$CyXh^{L2@43|fo=a?9X+jtY&dI-?O85Gkw&d#kCkFBc z1q_*LO8ph(O2Rsf&px8K`K+uSQ%D(;C~IC!yPR)ss$N!?oQ_O)*jqUzU^WMJm&(=w zj;L~pdu2pYHAkY~hcBy^EDtngzAJBrTyln&iPyPZsLyHt3jkER(&(!A_aanJAJ(NpKQuxapCuN-)Ej$v^m$W z;8 zIe0T@&;^Y^BWmJ(Do}7R6FunJ#STToI{4t|!`bB3SIBf8gyN84S6X6v*+;9m-;^B2 zMmw}Wp;b;y^c?Idr5w}Cr%AQQ8{i{aHP}zZnUyem=)!nFYu_?O39k$|ZW!zb;NgbiQif?BVwkriUe#oWIBtt+7ZJTJH6G2xCszoQ|Q9Ffc_{+pQ#^JpT)26-oeo?U}77|5A_b`MQpD!Mf?p^ND$5=$^FNZJfPY-cdHV zLP_Nn#K-wT{JBOCKiu!n+*rBi-h!&Kuw>(*Tf%LL)>t{@{1MO1v-{jX-Fy9V`8A&)|7})1YPUl=0-m5k{>y#b zzq3kXH8EcT-|tVvI{_Spk$#pH!uN&rQ)n>Jj_aXRXgdYMceH>$)7X{N zqI|+>2LGef^p9ut9q-187=U4J+I1IJuO>YZ0gj_K_v}pdvrM&SFcKTH91`TV)sKDe zMPL8(`3L`PoUsTSCwBz5XDR4wDyi2@fJ&+}Cl;_$+C{0N(KiOn0r}t=4IJxEaAJO7FgDW2 zW`)VGo)76F4&kY?fI>Nk#NE-)EycKJT!3K?a44sAOQ&?^EMea_>W{Nc$O^h*891U2 z_EE8uH7ZIkpy$(V`Nj$o{oKRYS?nkbJblj!1L*n4 zKR!#`$+7)U&nMN|*z7-hYQSyL1^Bqk9zxQRjh30$LL6xTkV*Zg=kpgJM_2{)e4YV4 zAAA%7nZ`@SOoi4R@GFvCecvPR`#K11QGM&!GXZr@neV37b&E?*>|%4%9V-xQ~Oi1CZaZv<>lrj7XTWa)pTO-3DiL z*c9>Dx*)lPSpDTFUl80M2yD>Sx>KNx0D?L2$#*u^lTZ|Am#;ZxEyPRi`DWcmi^mos zb8?0^iXc#Eg`WgfEDkT`QFRC8)h{5JTW|5rl>5dN-cjbAhDRZ^Huf~cs!)m%Go3s- z5$;b-YLx?nlmZ~@NAuTo!A*nA6n;`k zV%g8x_8!g}LKi$?U&qo@1-zA$){#<$YHQDU;^YNZ;KdOD#lyfsh$4=+(g@kk0HAoB zfDVy?mihs=aZ}P0lnSVckb)qsZ8rOOKGRJtw`AU&AOnpWxilCdoijxj| zCg84BsYMr^tX-);W4Ec6?uDnbf?Fz8wWZAvWR~6X$|%E%PRLh-bTdv`0)Zb9EC6!~ z^ktTH?0b$Ege5U}$BCzD?x`nXZtr|UNth|9(}8MrJM21-`#B?g^W9EkYcwkiw|lFV zXzLhOXMB9W9KbJk?jPLV@($JW&Y)u3kO3z?K}*A)Si{=O%nD5Ry5doxMp?tiLC{kO z6-0hQU}!gn#TbxxWOckTg=7<5e8z@XF33n5H?OYy)$=J-kG+$URSXf5PqIH3J>ya8 zr|Pg#VFNt|P&_N?d4zU(FN{cvBUX8(zlyEW_$Ea-rycM8z{2ykmAD^-$1z`+y72P( z>L63O^|9Lc_5P}-dIX>lrhcud^m<|n6VeeEM-B8m2uA; zg1TE@=mtY`GmAn0BHK|;3Fn6dx-!1c7==0u<_C|SbA}8TqXfi;Gc3vWbsHz$$U{vQ zszyi-xQ#RI7|-Tadtz`tg5|d&zaue{sNWTqz>J`hrD;{%$-d9$OJWY|w5n{MN!8ge z*JBf^(0DA7xa05N3M8V{j`zT{mJXi* zh9OE1t@yc0Y(cMi6yWHiL=8SxY0gBi~9GMQUYq{NxKzl$=qWHP86yb;7;Ag zben`(yOB!0JcFK%zGat?PcqAn`1+gJ`E)Y4kL5!yNA{vdRg@?t$f4^nR9P5@Uog`M zUb%DqWW8(@FQUD?w;+_FexyQtyN$>EPc!X)1A>aeMJX;~^)l{?PrY z{m6l|ifU9-Le0pnK(;TuPCfJev$gADP^g*4SvND0^GO2m2|b2;s=-QX! zEeN1^tD5W?e{3&fLdX)qp~tw%Kqud{`_%77-ypDk%R5T>jaQAOc4+fMQS1rjs8`@G zzWSg=2L`Mc8P{rHPCRj!j!nsSP+b+F?U9$`U-^Nu$tn%NVy{M$hf7wQO!?_6zeqdor3Q3I5|* za7{GdT;ld)6AH#3|XAd`!h>WdW_Y6#Ipv@NJ}2VburqPtyre37PG-v(0P zjdiCt64bPHG_)Y)O&f@EzIoCq?6mN)vcCAxura@oqym;ya#W9(!cUfz@(>}0mBpPu z^kbP$rqV;A(=M=>`e~>xK~UTBhfLi=-weZ}HsgVP5)^bTg-V}Tpd~rA8CUTBJ#0e> zx^eN?jLOVlNQ5LDCcDjf61mP8Md3wK$JlHE?woIu8RHk|wyK5wgMb>iNxg%~6%kyyG#yI=XoCuxv-bF3lgI#JA^_QJgPprJxB;Mcw z><1yp0S~T4>_pDD;rTK=%`wfi31{b}3}y{>w21~fWJNwT?e>o)C2@ETyZZKTv6G+$ zmZxNS^#p8j&q-EV1^vVZj1tx#I;+vLS()Q8em`OS`~dCn+rk>rW`^cihn6#FCj;eq z@R}M{XD*hP-HCKXBj{55;>_8i=?3014EljuWCu828P8birkHOSB^M&=_?o`(Z}~{0 z=_r#;sbt)JuS|jSI>i$M#_L*v)mUydfp|Y#MBy#&dFn+Cse-qp;-h3w*B@M(Nf7R+ zR#v@9u$+F6D3h9+Z6^M~48e4dK#Xo8!5g%-H_Y6Kq6B_kQp^N=?uD@G@q0~rQWof; z;Mya^yNL-+`xbtk_(gdcyreY#e11Vk<|=kYPJZ9g{=5I6|wv{Z&!IT(e}xx3fZ5iLmQIrasu*Y zs)gXmVsaI|n&LaJt@JAC3DRM6 zBGA*TlsiWZOf4gD34E9CQdUtS9SLij=xhgGbM!c7oM_)27^I~%DGln^rmj0Vxl#fS zvr2aTY%ZG*^UEyJq!Y<$P|R55*qZ7VCDL6VJIp4p;(t?lCCIR;JKNHouW{Q_i2Gpt zDGd^my+Kt=3SjczkXtoKf*O?yT?d*9R9R~l3ODykeE0cYG`j24=c4MgK10EDnG-CF zjQ~nF6DniXGR3%2S@&&a0wFo1m}7RmiD_xL@K2PRh7~^JeLGVJ zhMA5QGmPU-v&v92_@xU7D~Gn*ez3)pv%H4#nY zt(?n8oXBff=_@-!<%~FSIHf{F2*+{?bs)6TKjit52~T!j>0&PwBLnJ{?Z#nH%=dYHbF0S{3ity{)f^&)xqc;&Xu52NDk0Ct?3(pRoUj-?86o zL-%8t`7~$|(Dz|k!+2#^mPm0Qekju635Aei=( z_}t44Jz{5Oi4xrA=ZLiTXfS;7G64GHXJ^OpPSLd*fx5_{!f`cuWM(-u>F@V>rvDM| zj!RPLEA!KGmp|~nX7Yno- zV%jLLcuB|Rum|ju?_c`_V8EXHzxD~E2F~6e(0KiS4A|b3rzO8M00wM?hz}H`{Zl-Y zTed>P5aaGJkuLGwt}u~K@!jsQyQ%DsM+E$kVnoO)!kYy!HxiuNh2yL+c_dC1)I4Ae zQnG=8Rqhy=w_6O(pbC5_d{e+Y3HJ;%Y)f(!htA2g+;_J-%f&xKKFjucKfl#5Y|CB$ zX16>vLF~A<-^KnCb8&j0lvk2-LXo^wJL2*SAC%us;AsS5OMP}b&lz&muP|W3`SSMW z=aWh4yQWp56-x(@U)X!*IZyN9+i(Qf2edVD#BkJf?Uma!HwFIPc4};QVTSq`8DF~3 z1<*b>kQxWSChZ008$9T|em>4lfPB~@-j@Iym>~-AcR)W!CTIdyB;bxp6h_*=1lY1F z;;{q(0rq6Bag=9I@)iwV=tB*7A0Z52pTNIiuN{+-9Ukl4plUP+c;W3|*Dy7>Eg+dm z$zR6U@JFajhT`^KSqLE7t9%o%Kc+lZW}D2=AJlTXSVYDWPF{;wN}X|l2|*og!_GPn+y!h6sUpy@1M#xTTFzFj z1!2j2(_Vb0W?X&-@eH7MblEDQMv^$X@X2l5+na&sfs*0v{}Ev0|0}=-6ny&SFb9AZ zyLW;&{m^<|Fv^=W8Nyf&Q_wR<-BXI7f{gR5^p!6+u@B*oFHrMX1sV4dncNp)js<4` zT~r5i=s5E3KVXW9q!ekt61fc@~69yt28bpe<9tUi?AIKi$jlUeQfq;IaP5E9z7Bsh(8${9Ev; z$sCAH{{F`6sO3PXEx7SR=*GRJnoWQd!L( z0OzgIkb`=-%FNJvZND-aA!2n*`Zs8_&~k6M-Wc<14S-#F+d8%jrJTHmV}ELIsfa~o)+7^oNJw^)a&IQ z8X`v1C5JN1STg0ve_Ft&oyont7?vX{m||Z;9-St8tzECQ^tZ5gIvd3kBxpqDk1r3k zIEmIz(yKWY#7$BEAbQ|xMj(~PoJ>bQ+her+oPQ0KBbq#^&B_V4n|br)a}8jZ>rg#JUIX2=LfPjoxumrcL&Y z%1vb9Zl5jsebZrzdz^Qx#yINYNn8C(rmI){SE>}~I!#dniAi(Ljm#)3dX6%8d~cKy zx6N>%i6VuGCwXu!x@S$Py6SxG4+ENYmp2$e@w$Kkd39 zb>wpsX^c~{+GL3C*9|!~lcFe@u?-r@@KSrz>epY%^!j$WI@cx!j`24}?~+cuyJS@Z z&d%SQM&4;iM4R|!hBA%t8LGBSe(wPE&i3tA@y->|)6P8ZF`da9?4#MujDuL&dPz2k ze_NFy`4t} z{BAS?ww(OA2OnhJF!hN|g)*9zmHh&funubhOV9)+JB%r4+oPxW>QZx266tyo^#qpM z@Y+q57!8c#5Cf*F&Mi3c*F1*J#_JY%fhO8ZNgUI@&D~4&c=%v0@@HJjf`Z!Ty<;;H zW|YHG&W`QR0geSHMOA@&tt->LqGdpmO2C;CWYbYuDD?5PWH7_OL&XnT0g9ZUX0{CE z7&2U#bkuK;qE5k&sT(kl91UA>Ty=u$%&E(igaWn)odPqyHI4hKLI>JLDMk=xBiP^7 z($HvG%>%MgbC(!`>CD7bO3ghVr|)!t`$ia}4O^~4atK{ap$8$cc@Tz|saomSe3Gfi zgsoqhw}#$b6dqDmr!r`zsFE992Jcf82gdf*WXaLD-7vy8=4xLRv0NNAcV5uU=w$g? zP4?;6QxZBxCcpC=ds@?`7x5D3`;^~=e{3mH&><;r1Tru>$M4g1f~dqLE`86PO=A0A z#hfCCh|k6|Eswj72QlQcs4UlCkWGP0)DOMcBXfO=7SS8F1S!Z#K;btnAIPHfVunX` zLfY9vv(D6$7Y#YJv^E3bUp#S9}n;afCQvd6gfJYQhk@;5|9b+b3= zd3&RYJ?#K#L)GOAHIWeWBrebw_|x#)Wf5oCFJYB2PN;_hNz@ zw;z7v%bMeMLlEWk?yTf?=t&WTiCB`6esYBfUb9K7Ou=CNMl~Y08FlR@ld+TfOTJcT zR}1%VI;lD1OH3WJ$~x=IF*V5|U#~3|6Mdx?E~UO_Kh>6XMXK@n8C{W+kL?q`nNvZ2 zmJaCeR#mG$)n!*x&LA`#cff2ioJtS*p{S`T1Lku^ouj@93Cpf8eIfV-q(_rcEUiLn z4@CuM-oDH@*?|eOA(oX)2-67XzT6Eq$6By(s7{WpQwMtbNDx5*LD~)>M2G4DhlBM< zMVbAhAW{gsnvVy6IW3g2;XFVI3266G|K#?2=vN<}BeQ3qo@ruPM8QLxc&w|7W#VH_ zQVYbJ9qK%`l$5r6xBGBFWmGNsa+(yv^@KK~nXQ&ae_3_3J%pjddZ@a;{VG1n0oDNq*UwDp&3;M;szCMb z9@bM-bH`WH<0U%#O?8eq?B8v2zh0Nd$zbodK06*E`EW^IKK{FSx&zFW0}^no_TTC~ z|E?BI%^&Lk@wC3dXYda2!{GcZoo3DnE$R4;?`X3=1Q*?E8?9oh|9e8h`GuT&kQ_xr zH25wdiY6)l(qK8t>$Lw-j<)n9r5ng+ot#hK8Qc6aX#X|hkNZU>KZ_-6CIw$%SI|E` zl^A9^pN~iWAA8f4rh%mp>aUJ8u=m4l@B%A+wHnQ`^0EA$aroel27&VbESK+Xk*0zs z2BdP^rZh1iUoR`F+V{$A)%rVkZ@v~{g=P*+AcahuY9t1S@|Xke!Hk$c*z`gF)9$gR zJZ=AHxxhqxAOV&OI?64e)DvRN4_Gc@yL^DNB zST;)qO+e^S3L@^T1Br%&YHrV1zL(3_gRBEMRHNK$N9LS>g_|#m!I8SskSFeT{fFz( zuvh(u>zVic)8xR7&*Hp2wB5w+_2Z%(uv{o|PJ)%JHB8zRegqP%%X$1j*b)aU7hh1x z?xKJNXZzdwpB_hwuUZy~)c>37;c4Cla6Moj2!Q4CKU@!Bx%`LgA^V5x*{1<4mp@-z z&m;{*F@LsQ$X>^-2H<6-f)MvevTlIecsq512Q&iSU`h?pH;#F=G6manH|NDmS* zrtAN6El4!;7tfMo7CC49>4s#2WmzQbOoV`=PiEzex#F`{Kws$FZzXgw7beCivXE+H z3t9wKyeLpeT}UeQ8&_KzXcS3V0fotb@6?DLSp#&%YhT>}cWSS_v@jrNt30Jlz2Ij1 z6+JePd;xWBq)q35;ZmG-G!XgEa8Zh|HUJElqL(&25w`xwUX-za57pY5f5sW0p8zXmcaxx0X!0mG&95aMN&bqp|Ez@U#`ZRcIbnHF7x zZD1<#e1g{7_*SMRj$AP4M z3f&v1MeoFvnGTXa$=t$)?kW7k^@IYro_7S99AeL$SMuXF9S~lqjOs8L_aHK=6!TNI zP60fG;q(gDV$*c4V-@91CAIy6nQsTm-U-~%3l1Rs9OXI4#|@=nyDWmj-H)n>ZNyGm zbR*UgDzftwmKfCyc)D@hX#09rXIC-IK`AlzrVEhu4(YE_NAC}2{B46Ql+a?gS}5-Z zm6d&{N+>a|jv8!vV1QF~YeEcAlP0HiPTFJ@XwO__x`^?VwXv!ZVf&U74EzdW{-+dF z1Nn-6N(fz+E349LjURdDNw}paln{#x>q!9V^hYVU6P&vtt@P{35|Rgc$Y+&&X9vjtScn8as=*Tm6?U=_Iowwiy`OJC8m`WOEJod)7HFKLj#Y`LRq=TX1G5V}7P03~xOd;;6k8wx$V<+))n36vzmo!bZ=TEny5V_{OMf2&+|8hNd z|8hO*UtEvasXy@^h78iOz!TkS83s=NPjx39$rFwfT)%%sV_gdfcYv1A6gH*30XC2weEzn{QXFtpD>(HTFJ#L02(=|F@Iqcd z80aFv$(DtG26Ube*@f7^YV-m)*gf@<7?~$g2bk1-F%}@!i3nIGhv=`c7_mKjd zW?No)m~mv#aqlFqy8x`G!lun3m(xSQ?_R-at~~23GOCLruXQ2{`7IWZ?a}^nvQ;6| z0TEvPgZ1Qzb7CBSmcPnC+sk{jB;U}f40dOMcgqD7_@n;^>!B_VA7j#1AT{X^PA&jo zJul^`()pYi1Hm&G+co_5iQ&-=JqWcd=Mh(}B6sk7l5F~pJO0+2&JFKwMln7(7Qvy+ z`i^rNXb1l9DX{)mPm0r(A7-^it*s6YtD8vr+vj=9=i?J(=!W|+N( ziS<3=8*1HBhpcw&&A89+2*jNfWm@Er&7lUys5tS=e8v!q zLhwU`OL=C^(atvXAC=7ctA!e{ZJ;Ay|`G`A;;QQ+g6>9TsM$*(53gq zCG#45<`{-H6!27=lW5lKstp_8>9dEBFN+NsQrzM=)Ht5139BM-=UE*8imyraAM%_V zeKY%kw_B-#Tm5Rn1OC^_ff3tVoJ(V=)H26JUC-hK8xf?fpz&OqqlB)j0uy`mZs>Z7 zul>Aoyk+)y!g}f>$-a2XQynB>e@at~+H)-ywU4YvC*MIP(^DnooZLf>6%l(9Y6ur0 zbOJfrG+t--CQI4D|NBX0841o+%J*&&;2jmUEhsQL?^sV|vIR3?8PtiMm^v{8H<{fD z*7oS^0Qs|{3m6s>>V^5rcQ)SCfcMrGJDR7SOn0zfys0zK0>Q6a+swr3pP2G5a1TwY`TEkllYV)#QwQcKe8eyO9H+p(>;nqGXcBYYDjVAj-uo$ z?W&i^B`YtW%-dJu*UhUIXRNh(6-q$^>78un4*T7HkBA#>^`dV!#)vU$8iubIk!*WS zwZmi@jQ4q< zR62tr7}%K_SYFS}(b~`NJLJ2YH>Al4;URs@+NvLN!`0s@v*;k(AN$7Lsch=_OV%bf zTn&)xM$D%_8?FmUI9CmQ37`W1fAg!{%w3Qg}nLCOWSvah1MjYaCMH zUb2O{W40$vXJy4D3;Ft(fpn9z_k@H#(t5T3<*`W>To=06jp|mwnu2%A7!_+d} zvGn64yoc?+WNwA3s5DLIJd{%hWbL$GIGvk^GI5iy&zO_nG0(l77Q(T4H{}|a%ww-j zrJc8hR{h`@nn41g;AA!tUNy$ewu84$(V}=hGw;;J>x>-*zr&4ZcKI?(mli^dqP?Ee zGqsC!{Jq^x$briKV8<)8xvXzKNt45!`6lk+x6ON?@N9UQMz;6iB~-nMN?95HWs0Vf(Q40|0}IB<9&q|IMPG9QuRS7 z#N?;^aN#V0gy^!u5zNv9m*4RL?KUFQqWnP;)q;e<(?I|v=%>>{(QkY12SPB|?}p}? ze$bq4+W=NDQrLh)J?_?n9ZwP%d$B6s&D7EU_@OXNvc?>alPnup!ST zH#HJP`-@be{!DtQo{e}nyv;Fgict678H{$=qMi)#qbK5(sGwlj8Dd>Q0c5q>(0FQD z$O4Gd8A^nRJ!($EzKUEpQp~5T_psjPkiO&1d((CSVB%bcdO2@a48TPi>Y9aJJBf^W zOYC(!j)6Cs08Mj)dM#BxKjO8P{SEoHmml-mYof>A6{!GYSgWy~zg0a1`r`D?^ z^oSgH1gqGFL`_Q)y+uRw8_KEbHyU!n9vus_WgysBr^cs$F49u=+Kz{ogceE5UB}tW z$` zrC$l4$c^+k7xjAB4`uE{Vpo|AQj9#)uZWF-X@DHpv!JZjT~)gOCj zpKk}3p5t=)Fd29QRXnT&6>}nJX5#}7Y4Hjj@I^R*-+7uQs;h|)nI>A)Ct>3czZ=VbTSh<-M#_`J5$npyo3@aD z_HvQwhXlhtjkIpb$;?6~pZsIs0tog5k+7b{Z7)|5h#^rDX!TTRbD%wG$QI5 z0*naBw*Vso+_tZc=I<Nik7*=HhFz8uq^#32kX99ru5QMT9vG%iU zi~rN>k(&A=ZgPyMfhr6*Neco|MZyf9V_s1A09@T_D@CSG^{V{T6ym zl((Ml#<-8c>!)GLTHt#v(@~~;n4sO}hu{J>WGT18lz(Mw&~hp$+6so<#fKxdhtqa1 z9LzsMjsmUqXaX zjeigy49lRPnYt<(&LNfV{2*$P-(oZiB)$Pz@inll<1{wO3X1enjH)dkNR6RU?A9L| zMJEs>BllC;g+SW!onVg=u7WlVWG}SDHKI-rNc>eY;>fyTOP-N=6=)aH!kZ$yd2-W( z{|FIo(V`1WplQX$$TWOff$LZ=@~U|kd|Pi6n?O0E34iOy2xBL9fQba=1h9V*KG1dN z0K#Vs_kR;UB7or}0vJw^#h?XI2ScMMqgrHi&s*4kv^B&_qg>x-Kv^&oYnU5N@(?#V zgH;x{!Q-r1v69N+w_5^3ogkG28g~V6p=gg8Ep zP$SgZ8jxo@m5PUa0X~8`Lk-)Wh2f|!Ta?|j7E}2!2s1LEc;X_00KJ@^= zCr?&O5(dktA>MTFCuJGh4PS8&yFlqaoZx`&tvVi+1p>%>%&);J@b5=>wDj5U;J8Bp6>&7 zp$7v>3rD}E4Htn%9yn|3O)*6sAs{taKmV!qoD%mMEmRB_NB?CIt-eSmiDB0GRQUVO zii@&W0b<1BB;2tXsbhNi13>tIY99UCXt}J4aYsoHbNQAp0+bK;?08U;<{>U;@u?mi z9z6Q#58Q2>f6b8o#0AyI`piM4I!y9`COAg>Jf+oS-iXIrzM(zt9C2qA@J>hfPSN5J z%o*u$^A5T`Rj3z^`NVhislm_GgGB@kX!VfkV`aRu_`Wsd2lsfTVDt7f({)Z{kT&Su zQdwag^8{Fd==c*&W-IXu9bwxeC5bvaS&KA>IhK&>;Ur`rP+S8^9hVxklg9J!>G4ZI z3;8PVb-a-mRI9QY0{9-~#{%H*WG;&Dw#SFa)`Tvyq_Rs&<}s3E-$Dta2xwYVa; zkyQ|oyg#sVQ++V9ZEL~nzkP`k=rGE%8KHmtSOlvv>LV0bL^ONRf;9Z6go?5AZn`7w z;X|Y_!7AbcNA>IDCHBjdU<$CB+el@UTq& zAH1htsQX{M2U&0Hl*u4L;B(D2@f{d&swK!R@Tgb1a}JEyEUW~Z`=bjl6u~dj`s4q? zdy1@^{tw=>s7j$`qM5kg$@+7~KCf~0eNb1y`;O^+b|uHR3dk3M?VW0|JKbb1tF zBk6oL`q>MFA!!CqiHRfHSp8h~0l;F)8T-*A3veAab>KK^5_`e0OqiPflwaH_C3xs$ z+#QU!y+=GU+7Z9#+tRbD5UtIz1*dAH0NupCwlXjMmXAh_rUJFSpe@Ge#9q04-jZW4 zx7x}kiC|l;&}OtEmwHr1>l`+Yqea5kZ|KWV&Gr%#C$$IoT~zZt7SQTpcHTrg1N&v6|_xQ>N!2J8ths2)r5IhG&v`C+WyGgUb%0BCGpNDvT=!Nay~(a*Zw<67kuzy z)!{0q$9?Ij$I2HO*3SLytjv22MIdFfZCt|qhc=rj5BY2omn;@bch1o|v@YXh=j=AA zw6HFbd){vK1pP@h`NWCA_Y@HTJYC|EmZIckl=6UAXti?ouhC=f+n)`pIEaWC=!P+7y22v7Yp2_%y@dtXfOP8Zn%!7pR7~KV*aeQ&#!CM64HW{ z8F<5mLw?rhQp2uBRye#G+J5;z)+aZ{W18 zwPx7Y6gVg%#hgY0=*Qo=8FRMPJ2zd~cwq}EVb#qX_VLg|l5^UO36BkhdDjk(WOl|3 z7Ad}Gw%!6#=g#0ppCYQg2f|$V7am}jUZc50m8C+eCYloQUOEf56Ynjd@%cSqDDk?X z_Tjz;E;h3!!=z2C!GIBoXH@^K(>=4;r3G2vtz#}_kQTQV2he3FUBfKP!a%lmUhX8% z?|R=xe{RC8Nsg%S*HoQY`g&;Mp&6endO3nwx3{pzhF#wf+rgT+yq>Ov=Cd`fUe|8X zy+ATupiQ~`MxEw{uCL~HDLare0HM~_XfntdaDVg?1X`bCw6REA=)v)O_#1pXVbpqS z*B~qSBQh0KN^i(&>x8xe+^NsRl~G>T6`)4g{rzLV$;|{RFF){vdGfu)rLP4wqX=#3 z7){jIT?59@Nr6ru!7OvTR>`!h;y$$!#jB2Id>O(tw0MIj4q;eK9ebG^PXLJGB+OIG zg<%6k)K0rfGuTK(zABVl*|wWsS~HC0iGs$I3-V`8TB8pqc(^k2MixSG!U5YdR`E{x zG>LS|EP27VH#moe5)H$3pL$EB`&LGnWW0b5X~|s`SXhU26TyP{Y+K->CI)zME00sB zM6T15{3=pk@`oiYalnnTTs|qo)-9mb^hN>Y{Dyc;lTh65`N-R3ZuXepD$Ju9)7L z(yHst(0K@4X{>`Alr=3X^d5D9O?A>plPW_9Bx`lJ3>4kfey~3*E>x;!vwVAH+7f#v zsdJw2|D}9zp4G{Qf9W^7blaVLhPz>34Wa&Se@_4E_4xglE4qJ| zm4>GM-v9L;mAK^VNzVI|R=aEeHR7Fl=IcFbl_PrX^r{e7+6m zimtOILSW(*pA)m=XWFF<+QLc0FT?!4litRXOcHZ@7>od+t+$=7ttFO{i5Y;#P2MGC zu4DyQcKyw`Ja>pbMads#My>@6AuNE+qC+=Yd4m=FWQhcU%J@Nt^bAc{E0o{?EBelg z7A;t{1vHxr0;1I^_+?I*+Fh9@inot%nI=-Sj|WVwPUwADG)l)#erTB zy6-uAfDWp4dWm;esw&XegH#3vKL0OdOjmIz%G(lTPTB~W@sbG~sk;>(3d2{fj~zbz z@~!G&ef~$}l+QZLUKbFvn4x87gYIrne9;it zn>Z35B%u3&{%7g~1AtxiSSnk+c?I``d|%TA`=)hEK!WlF*#S*-LBf~cclO;r1B@^z zm*OMIQt$tuK9z>PjG7yaPc#r_JePJ6d%h0Zn+{er0=So}|DryodO(F{W^Diu_SWC1 z-a4(~RxN-BJHp~UOKAeH8b)u0(#_A7gi_KaE_b#A;KAlmHUggh*MrUQ<-s1K)un@w z!NNQbL=}rHeib08<;5oK!x;g+f(HTjQ<$ZW$9-u7{tob9oWXO$-{N4qFB#mR{(RYB#w(u&fX(Wz7&--)RQ%jaS|T@}28| z#?XtJHG<5@!Zj7unFSmKi2Vr`1NYJ$k7m(HaGT0+GyhkE9oY}@cP(hMi z%};P)h`l7UAaRJg4_aw9Q;f25wHmGJI`~e{h(75A*RMdzd2yO@7D_&X*8?;eMu7E| zLG`JMnp!3NtI_pijrGruC@N0gSFISZnPl}&fC$^1`kYlh9t{cyls4GlJFa=Pb)C&RbG_Z>yf{rLG7L}P*2`^qv`93?cD>^A z#7G(${Kym-9V^bSZvg@!L>1zupi!rGL!|0GoXad;(8nOb($?Gzq{iFBcWx0cA_!vX zh@lrhC|(z-^aMr&#&M4J0jv)>g#~Gki=_@m4@`&UFEk3!1wzH~n)l@GpjWMat z5E-Cu_c4!D?slGy_)pmjpF{CY5Wf&O$t52sC{X4iQ*#dLjt0FsP_5!TRcUy{CnXu4 z$r|rtwzChk$Pe?D_5`Tgo${SWGvJgrt_+zXvZTCC_>y4ff=3z_5_KIsASo^he8RA8 zzb^rHLrMVYF=AhaVS_eNEBakK=`A<%F3|BkBZ{D29q<0L`Gz%kDD8uld`IOnPJOXX z;T5m2!6Q$Qk`&_4#%e6_eYt6%iqUnd4Qx&H{<}9md*Q9;_JQ78Ky^Wju$ZK_Rp}DM zM;?VX?lW#{QVi^GoDbqlz&HVCFL?K>tFe;%-I+Y}BXJs+bbi4ir-)u!UkKcbHzBgn z^u8_B3=k|UuYp^k30QS3R@PudACe75>7DDIKt-p2;*IgSFLGB&&Ah{vm@PsdXIk6LM^`6 zsl-e(IEgrsq;hprbGIUH{Oi*d|YUX>idn`>I$*o}x-fXCFWGL_Mj{E3-~mef;0 z=4-z^zH|OBy3YAO4u0Rav2EK{W7}+O+qRR&W@Fnn8rzL+TTOZ=&)(;pi+%ru`DNzy zp6_R^Wf%(R^dPFX!=cz)UNclbvTRJdWqGtvf==PpTe+8|24PKTkdgM4_evN1@+JAu zTe$}{mS&igaywxv-ay@(_Efzji)H(VU1|=XGOy}d23Ego%N^%oRBQ&k>qzntt9ntC z8y3{M+Az%Wn;F-fA(x6(@0tmgEJW)f;x{%wn~b!Kbh%!5Uu1;d%KAT7??+&I9d~O>MC87v1|ZZquXDt(T@3B zF~F0R*0$Oy_r$dHQuex*we3EBj|r{wSR!uF$$4pxGS49!$x3t~27ZusrqVd#hrqnqz+V_dkt0%@dt zjYvBl$yqsBM)IkNMb&Ag88S0kUVBs*CJQibG(T%JRK!mvrA9WOn(^dy6fd|kHf@tMe-rn` zacK1Y7G2&iHdVm&SM;p2REk0?MI(~eGvAg2yP=UN!%(j{ig#Hhjg}t{DX+F>nVqi& zlJ6HUt<4Jw^%RuoCtZNu-RVIyY!s6F|MKF)KO zbIy(25isj{i@$@@PQcRR1uQhXWhzIjQ0!zzM|R(6t<0{RUIN|QrUG!dD#g^778Y*F zT%$=rbR_4R1jtSTZYV^TNTp;;rtyRM!FaOFA2*A8e{>Go2KyG$IJiY># zf!g#ull&u|qsaF^#Lp42Hy@+lpAGbeZScdN4if^F4F8cm#aimjB ze(zC_W3;|cev0eFZ$Ymv;*gPKYEGiz-9Lv{UA zc>FOn$JJ7ujmcaG&6ZyDjPje?qKbg z7b_wcSLKhM)W|DnHH{?DWS96J+pvgGI``SKC|0_jFW z?;b>d*7{v3lpJRz>>Sx$Plz0e{_>Tew5shn!Vcq)zrxP~ZL^zvAj8OPmdgd7v+ z3c@Q^uGKwlwu^ZuG~m}-GnjN5-tUcD9A0f^cmE&W2lY0>BMh)q{QtvJ;ruu6leE|N z@3JVM*K6Y1@Y zziQw%RTbG|!A-N2&)`pZS~ije*zA=fuO;u@%ow%>VU_#BSub0?DnPF1`tK{@Upk(e z47R>Arpx5|+clR)x+?<>t2VW~;%$%_$pW^9MtgBIg9Kaeu+S7GBO}1!Tp2oLf?+ZB z?~2OM&{TGN2k}QPHr6@mIxLX+^j#|{GgW)6UyNUebB@=6ql`en&{BJRXpa+$bP(-c zkfQ$3P!51z&nwP6$b@tbZb6|9)$gk-P3rHy!vdX?(= zzw@eTd>*%euivJtn)+pKu2AI8>2~WxM)TGUz*)k}&=H<6!>Fu85v~%y(BNRXToVn= zpecfV`s!h$=E61i%GfH~hH>=G)cH5+?yO|}#Y^ZDFqDJ3)wspR@Y}ebmIC5^vE64Z zKay(yMVT~%AK(Mohx1QZG`Q2yU|8El1n>HvuxK@iV;9E|O73K!zv&S)(KptG4|24- z8g;muC6=kB`S3y!(essbBLauC9VvKRM-5Z4(j+$;KL*H)eKz2sXbmXco?(K4_X@ z65cFOv&GL1jdoQ5xu6CcTUKEU;xV0gE0%+8;5B1%p-D|NmgQtD8k{~Ni0(N6b;cOP zU7o3LA{2U}h&?Uv<}vrrRFN&RRN{tWk1qZA?Mj+=Jv_jDtY-v#4unelRTgF2kHx^T zOJo|Za*qmi=@qB>{u(-12bLZsu+D<9el zQW1dsNDPm$%;D&Fih8ocb*5eyGEY4hIzh_p6(KbBbuD)UXHWBArhKSt|;ln7qWb5En1g1}{L z{X_heJrHkyyqfiP4xuK4C3=!70K%fntI#yiMSxrnu3!*3)SS3lgc7(frrpnBNvY=e zIIhPawB{yxQ%c}JL2`fh>Tq0wb6h(DQU24@j)Zcm+(LMO&5c z0&BxWl)gT~b<215CX4+wZ-Y#Nx<4G=-M$22d-dhbj*yWQnuBi*_AY!zv=T3A!v<<{ zQRE9i?Dz1sEjiYa5k!9oH_SF_^d@cRcz`6o??fI4o;@=p3m7o+9=)?~YejICmduYjc8)6%PK#bl>=Nv%}os#bAdAW_Q!EA%=35~9U;fxe5VZD zha03n#Y^45JJG=L58{IzJ4v3qi8mAE#%CWg!^>bTWRh2bzCR6Cl)*V&guL25mZu>M zElc`!pfnV{iVKk-D3pbl;N_1os101!wkYIKVkpef2YQFRF2+ULo^rNrb4q%>~;D?d)*2`vXMrfkB14Te2&$F_&ia2gV z%{nT@Tp}%UfK2!F1Q^s;Ov4T}X=WAQ3cxaUZ>I8;od)~PpMbwD!R{5Q@T}mXr@9(2 zRGNYPH2`9{N9Ggi@?k5G(1c)+eVo<3!`wmMLVxK!5}@AQhh}^ZS_^D`7}4B`kM|tj z4%!I+3!>E3xA>^cV+Q#H%=Y9rI`3gG`-&4y1fVDy%Y@d)`n|Kr`7t#el$%u(>>9nu z{?;=8UqdBOpTJGU8KonGUyEVURa;rK{#pNTS%`q=AB*HC2Oh0PTU7@iH-X_a4-TA% zp@j+@1%!`C&Bx8X(aBN%FC)Pmy0x?6beg#98TCi`V2<-6uOTJ~$S)PM882uRlP*T& zLgnPJLs{$?$lJa+)KtRtqaBa(RG~fk%a7(}y|DGy9{K}-NG-!yEkQzh2(~^%3J>sbS)nE11XZt;Q)TLGS52SQlFlo7!(t;13(h-LegmFlWqmPpN1GoodkqDRyQ z7$7J*|LUn<)nNOs;UN*83sCuRO1q~rbL}55s~LeJl<5!DDI;&;%H-7_0+Hs`i_@?z zgU!1yj;=sTGeb)Nh6-fkg4AjDL}gx^rwq*#peK56ZF-2Wu6O?9Im#nm+M7|aiN2>d z-c6Y1LFfB`sQ!8S_`=sv*+V`So7y##ENP6^jl*kny&)TEq0DkU0}K^C8^BO8?LOCg zN4LHI2rW;V6qI_tTD?y79af+)*Ly}Nwc@#-_6Czo^tMm2IIyfe2vIPp5Cses#IlAB zh1t$|=U?+Vk~KFuYkE7oRy6iyq`0>&#d=9UZmekS!Go^A=~EVgJxC9um~M)n6Pvy z58ev)qm29wEquMDRxJI)^ue1orfDPQqE0Usrx<@aUq!bJ)_0TxcM4W$)(h0Qmp5b{ zQAQsgJhX{L5Ge2nKhmD#Ghxl|%%BE(WRl-NPyG_cFhdAnhANM6U9fi%z5gNy@M*S*Vdb8hKnOe!O zLi8my(J6nHd**eD9g+3Q8WScs@4OVpTDTB2h*Gt$39h1ED1*(U28 zeb`xZsdBi)-cQS)rz`=-0j}FFrUvmBa1B~U(nULmS{Iv%CYfca#9TFLoD`7Wf`Edx z9YR;l0)U|Tnuv?FK?KkYoRAd6%h3Alk`X|*9`X>?#uLt`1iLDuumygF_0cWJ6xnAR z3lLU&zwb&vg{gp1%}-Xvk2Q^}e50gZ+nZPtY*}CMB#4(zx$aEeMO#l=D>gOlT6?

    ;-Y>!6fjxkloq#96byfp{S+oq-48aRtBfhaH z!VV~W!2%7SfU!@gOWP|oFqSqntGfNfe)}Rjj`>6oHZO}BYd;#MsDpcwVQH)bep(Y^ zD{h)f&?FfrG*;0)@xG4CFN$ZNa`32@Ybh^4X$o%{wjnu>yrB^WEUY0COT!WX9EwEW zwpFbFbi^q%u9K(b1lktx1@*vWkfK6-;45N~*TLia@HcAVHC{=U20sDX6RBmP7+jG7 z_KBC9XP)Ba{MF}(9a2Qvo|L6&KP_$4AsZ6B7n0aPNW39|mynpCcJS%#FZ+C-k};B` z5QQ`#2>Ek|zC~y<4pY-0jqym#v*QO4ylXo}(LmqXMa_25!xLfmjg@!b_?5o<3Xk+d zl~9pNz{EpfP?1V-9&(d);B&jLq2+-Nc}oVo2j5xRHBc)Db_BGEK$8x868AO-pEpwV zqsCMs5{aHP-Zi<{bl3m$4WEtkD{bgq1^7$NfF;@z_vV(*hUe9Oyx#V}OPsbZS;?!0 z4NV*2jphCe8eigAf^0)ogo2`~=!Z4ovZ@tA^DRtn*_M+yYDOI78h+ypVGX@03(ivZ z++{5hOlD=>n+cuW7i;&0+h1|itbwdF>Xrp2+SP!y%n)L~!t zZQ%{wNV|?9Dd^^bqU{f)zox=JnS09#zTIFu!BdWFL0TX*ebG{Qhy?z4ZW`h{(@@sH zJQ{)*h(jy*3?%af2u@YZ-6+8Cz|#~p4!Q=&*^B^dU^~E%fzG<3BR2>PierfmFT<}A zc(wy{d^=jZ8wk+>HvDzLB5idfLU}vx2Wyl9Mj*L0n9*p$Ggi;c5gZICOxt0DhUVOO zdGdzn@hCuF!M`hJHnHO+%va%zRR~@pj?8SxS!E2Uk-O_xyZ5F^xHx8R?w-0 zpL_4~oYzg~a{e-YZY;e=MLYzai~2xsqYBT$13O3hyu*EZ66;#90b`kbwDA3}|NHF= z($nSW2M3n7v6(}9)M>`__y72B{|A%$tMJ|}-ufcV=y(&vTOYzJ&m|X0_g1Fg&+5Oy zb|aSzxs}9`-}?MFYPDS&A=39NIby%wLrcE`SX9Axd%%7}g8*wll)wJ{-xdG{bo8PA zom*Q$OLSNYgbct=c zj&$!YjkP9<{($aMH1$ZC`)iJ2J|!O$F>qz62#)*|p&nE4myFhuPgLxYfc` z%7r|%ft>?3)BtM&TiJ*^v-;=Oq5_spq!r9n{`RGpw{w|HJDr)N%W3deZf92$O{BAv zd^(+}XThZ|ygncs3r_E-;Gfhlsmt-OA=Gr);VMjL*-PZ=>2>ix{mUx-SAtZM?O5Al z)dt;8D^6roY?jw)vZQ3HksJ#MEl1U6#9=tIF)?OxqBG?p;pAdHtWplss6|24v8_{sW8!@)tomcT)OEXfa9=b2-z6t zu9Nk8fn*~JXXn`Q)HM~tY0Zl1bdDgF_4LcZOGgQ&L{Jm(qtecR|7!>!yg7_iRIXHC z)O7gSoXzTm`Erx4%WgQg7_~amu*fb~%CxJ5r(|(qmh9X}(dz7g9Ia`|qU+ICrmkC@ zHz*v@PDNEhBILS4%{!HTnYNowyjPhB;jxmNNK!2+&I)RQ;TC<;Frs-bD{qRcsFW&p z1dfiC>h?&UtJ$R|HZj$z%~PB*o~;H=Wj>eJ3f0|e!=YAEG)RK^`xFoSL;=9sR^%- zOO;KH?yWhpvly*oQEsqK_BCn|$xhmY9%G1QOF;m|aC0d2TwAQVwA*7l^C=ULIo(#V zSm&tjs7Kd^o5aRV(?Y~GXERqw%=?s_sHbzS)+V>f0r^<5sp6o@Qw0Q254UEuI$KWl znckwB+7K-%WhNxOSX6Uivq~BoACt5+yP#YmEH>7&j9Tk3Eq12N@*2^O7ip$hq#Lus zY`}UvoG+*0*{V$0jajANDdp0uerY_Y=4zP)MUKr+ij;%N{*{; zv$r0Q^ZIgJ=##U#VRmEsGR?(m(RIbKDqW620K@%?-d1_CHmHYFw1Ur##4 z!dz@CGFvF=xlvm+8-1sxZ`Q+JXDzMejl~GnQ8OQD6cS>KAtqtLYOgz+d2wM8CY4>( zH!B2?ofOk5|A+t!=W^(x%f{>cw=vSLHM7=r~_y>Jdh) zY3!_EH492~BM@0X@H6T_9#w~I=*lQFcq)JYFbZq+1&k-DgtYx(|4 z&O~J?%;&ZGa3D_Ee2Rm0FGOIE(k&IlrI4`&P_$tX6vRq8`$d)+}#*N8jp3V2# zYH>znZK+T*>0V}6)< z+q24@E)ryBIMJeUN?u4kxo<58iB3E^uH{&!W3#bIyIh)^lWyE_a?Ko{QW{grlx7(zJsoDpd?lv0`mrcc zW|G;pU?uJJGBzI9Jh5rnxkRPhODbJ6u}JrunQ}cjlaeiI(C!=hvbFBV%XzVyw5Jm> zl_|_tlVn!OjVh5?GS4Qgf}BsR#d<2$=vN5@uwX^UN~%OH*Nl)6TjBDi5^eXi#A1?+ zlzW0p#v_fP)oZSz(QHbWYN=i_eKZrM4QPMS9|8z0^s?!srPu@*?B)piGQER^rqpp! zm20%>j0S>QXJSiE6Dz%ZtdwgTY!*(TX{y5HJIo$nehI#1qU8*{SqC!QK{G*dG;>NF zKuNllOcU{J3Je>(Ug7idm^AtB$fw6WD<|9Fd({&grq{{z^Gd}W*9j)$$iVVT ziNuo2&8U{SZs)Tc*KhZV@@P`YmUCoM-i$>vF`DZPGmSRV&6Qo6jLOoaS5rJ|Gp>~B zxSLxJhnaGbrc1fWEYD1|LT29UC>GhQ43n&-XDSJo1}y96d0kr8cw&>Z7J68Urprc6 zFqvs}t|(Q{e2uE*QA^~sn3G6EsMq3)MGexcVNb@GEvW@?062{3vE!zt9()vPrJ59;cg zUsP*U*iL1ZIjf#;&(uO?tZGBHrkZScxC*By>7|y8G(Anpb!%%zQEg}85Yt(zHKr_f zJeKEk!Oes(0x(!hnS}wz?{T7!XI+{)rx;1zB z?k3l1Ab=fp*q3{5WZ^W$KI`;539(8KRx}W!rJhW+hE0j+rp892AXjEiR48@GRJ<@= zjf>q`n3zVx4bfe5EbUB3V+2svX3bnXl3G|wlrIpGSX?vbd9<(1R|Ui7pC;%%|%W%HyH3qGYE(cce&%baLrLlW@)9JiMu_ zdA;4MmR+v7NhVgQUZL3Q_wwzvF_!rZCC9@HtG48enMIt}#}R=uW}bgoTrGgF$&cOs z#vRVwZY8TxPOVEij-6>U%Ym3EMjS#UhuwC4LbPI1MO)ciVF8I)P*pS1EJrspAiRbn zAb_JWT_;nmZgUwg87reHQ%R|mStfy8&_iY3&nS^hK2rd`k|?Fy>0;U_whTqlxQID# zBoc*~I8+l-(^8HP)^#^Z8*!mf|@rUx`cy z8(kUHV{#)y7usecs|*s}pmYbTF0-i&%9cZvXnh_T#Uk})YMiJw*o@Wb0heRE8s=xq zNuK7x{AP}-U=_2dt?hPep6k;&xt4Vkvk@>Zp2gOf5j&Me-LTOzIvswb)79+UXwzz^ zI;1)?GN0m^7`suzc0DtVCwi{Y1P)1L+FL7ZHs7Gk(Xgtm%sy4{tW8T;*Cz`;BZo;+ zaw8Ecxp1Ya)ocM%QD=0D$aP$5oz70hd`nhSslFldI-hXIR&O{RRc5Nf)Ojn*Pk<_T zVxv$>zQ`BsaIZS9Br3#;n6;qMZ4pFz2_>hVF93s^P9yUyr>lmRv*K_b0D}QntTSk# zXJ9$DKmd1(o^iLb=oC{^v}DbK0U4||aygaR4~DSHY;y5|-s>4Ft{gGMjKid(OQzTu zuQEo3VImX)m|$Avicv_bM4ccuv{oXBWL1xv+*B(}GwX~PLzQ|Oo0`=nUe3$BwwcYQ@qxJJ=jE`$ z4r0}UGu@O^bvhFrjjT#FuXN+R4DYDZ29apxS~FdC6DRes-|aLZ(cqjdkY*{k5j{O^p~Gh_7oRW5e_Wg z5kNtKE6df{k((={=E6cFB?DWSF1AmhX8O>-K^BTitvw2XMjS6&mwSe1+9U6=3FvBR z2?wQ|^(5gNdiV>B+SzbpXd9h7?7^Oi&rvWt<7#{kZN~lu18-KgvenMYWFE)l^YY4@Y7YY4q@!&=LP&^T4{v5@}Jjj2dJ-+MFu^bnbxLN{A zZMo;EMf!^Pm)7kKiK1iPN(M#8!Z12kkCw|_HZjY|*|gHgB+`r%jSQMRGjV1GEUrlOG7%X2bf zWa-3wTAHpka}}Xnom?tiuu_V0Ow^XGbUr)&|LlF)lHy3S=Br>mH~kw`rF}ccy3If! z#J(foW=ty*XhSP-HDfamGxG-XR_7H)AwgzBl4PnxQPuS)ZPt|_$vqYi_izvYTz0oH zn?zDA@oVh9UTfOxgTD`r>RcEOGRMQiM+m*vRyH5CJlyVYY>%^AM52E^aTM@^hP5}Y zc7XN`hZvW63ez{+aIY(C4;#@IYOZ0%kB&AVTb$Pn0q4OTE`-1r4j6(8*kxa+4)idH z1uvP5xPcFX6@^x_7S4%DIPHo}7zuTRX_i-=#%#y#(RE|IXVhfxXL-TzGt&u7*(f(g}iX_V9r8(5Yur=P%z=X6wbPwMQ#%7sLk=k!4pYz!;-sg!)zxW zU&m9Ylc|QVd%@=Qd0U#WhZZuE+UxF|=p5up6ln|}&NFXtHQ-ylwz3*d3B6ig?%ODK z;19{BnT%;fCJsZFw8#N7>1tJM5DWy4l@GIFP-S}f6!lz`?^kfV*FE5S`lR6AiXgJp zWu-OVfiJyuiNCp-871~JnTKpEz%?h)Dx&p4x6uijChG}%i8I0`Z*1W}o6zGHDZyQ= z<2x2bQZ!bT`E|E8(7N3SX@JcPq0q|;hD~FEO$nm)i5Du%7~=QJpvg5GifPn|4GeKC z%cveHI@WAG97Nkm;%)20rW-p**g8mK-`(()S+ZGNjkz-IDJ$-f65Pz-Kw2oZ)k0|u zj5X4(^vKT2?+ci_TXspFB3YfD_9C+hNdXQK;e25SlLi$g%Q84#*>cHnCA)!I<-+FOQXHqxnbk=IR~n*Bs5EAw!ZA~IUNvO|P6s`i zuxiDCEAI*a1;OmY$H_&GNq0Y;eYOj_O0daoDrN^zs$l7pPhxZasm4j~8l%0uXEqY1 zfMtfB4C={fRN}-!cI4!b8lKTV8I2OifcWbVE6betf|8{76@zj5i<#wUd;uSj`Qd@= zjxT2Vf1sm13?WerPVUQ|On>|Gm4s=0r~Uzop_yq>kiY(rOi|tdYvVa-R-cwysx+NO z^gJhaHX!u|9CaP-*SR5k&KS66#*jZsStja#JN_7e+?+QpTWZe0Y5viirN{VBhe+u` z{)g?^r+^0Mn~XyzM9}q?ttDGX5Qt^s2VUUzM=|3 z&$LDpdgBace!xhJb|+ZD(9~Vy^NQRIheLs5u&Lq7e!Cm48$q&F#~dc84V=sawvfZN zs?$};a0o+eFMFK67g!^9Eu@N$QKk{klhKPHj2C&5a+q+1Dp0x888pLLV?~n8NN!FD z1kw>GJ4=jai`b^Al{#L?70ITnzmJvba}%4I{Aeo$EP?^-K>8Mi7jT0#_aHC=pzYr_ zAuki9t{D;Zl@UQ<^oAA5Y)5vW|71MUbNxcj(5E^1G$;SQ=A_y=>__Dt7}oclo`FcW zGJ;%p66tf2Cq@E|OyLe>+1t@}=&<#cJE_o2WQp2-+3`_AS9)`T3Xodd?;g4mvF2ot z4f@<5S_@sSQ|{JNf>oY(lV98MT-~WlvPM_9<)R!eIPTDj4=qaL^wl;%Ir-p4!~N9I zd9=-j&M*WKTxPj}7mPC6?U_~C&$Pd8tf|D#shu4c3XmnXxSk8otMazfSg#4My|l}F z)?7e#8|u;80BawhjccscdO-9VaQ^+1g7 zX0YEKq8z4Q(g4)gKbfi58$`T~_ke`g@j zl@dG#re1!)iNHnvOYbVdF->nYA6SGMFa;UG+G~P5=-oB(NQQt*PX|F*u+psr=^6%6 zNAUUU~fw?ejUj?b8U()~nNV5Vz(^fyzR)2%E)h8i;xn+tGIE8?f zvQ5eE2ztx5RcStGMla0}1u3M@d86RlYgFO2Zv66qL<**oz2DsdiJ<7?6+j{bdUQ8H zA_mh8g41c<@9zyrq%Q%988G$}koXBmd`8MJuK|gfUHrEMBvMB((!zXiPTR4B$CK0KqC1BJp8QyiT5tt{Xx$zeSg`fXZJm= z`~)QaI{*^tb3h_}HOP+@105ftYZO>ByXp`!0)_Sh?Ki8rX~q znm!tL>V3!MY0tLTKI9SsHtdDN)w(5YQ-XWcB+XgH=x>QOsv`Sx6s`4x61Am9Um4H5 z8LRBe#?aR!jiDE+G`AGPv%HzvZ4S})_#lYPL0E^j&)C`0qs=XR;BdDy*)F`+$h8)I z9hH%GjCqSlKrDJcS{^Xh99!^|Vh{vjq-^!>M1hvvV~O+C?j= ze4vI{M{y)qh?=9S?Q@1JwQ4Jzk?eVgXM0q0Uq(e^itV>vdp_r92XizVj|n=NfS%>< zI2qNZ*|}O2EELm%U|1DbJ?CJXB-7CtIIImwAH(Cy1YPjEIka#Z^Q3zinka=G6;5b` zU2?iotv4p|x`r!_k&vCZGj~|Z>p|Qej%_jLa>5?2s9MVm&&9s=+iC} zu>I+LGYHUXmtg{EL{p|E*lVG)kf23#<);K?%3aQ9gRwtaZp#ha=dhR?^!Xj$l;yS2 zrC{4`z`bC$*^Z}`>g?cjg=jf5H{zNbAZ|F?YBPfvM~4OrWoxCVLOU-7w#VPz8@Rbb}|s<(THFswYXynDM4Ny zuW1wSZ{kJSh%ve4>^6}s29>_u+NxGr-r$%)&-aI#Mef>izf2JF0y>PE6SB5Atf|(7 zIv`q$2o5I%j$MfucfV=T?e+op@hD^{JZfv@7J;u}?JzPoqp8y%nA(OQbS+WO@M^nr zmzrDctqvBlG*w!PW1`y|Wf|wtLA8{Av(cjo%Mqzj+nf;9s=C&RM7W^Hwso^Qo)5HG znbph%+AyYzWINs$89H$W#ne{oeXkGA zC)n0(<7+HND{Vs_R=0i!8*MBt9*~YDRMkB_z{1Kll6kA!;YBwy0q_V9x(I}pS8#JM zs6;GdHktBR;ufp+Ds=iaqP@oZt(CK`dJc;_2OcbdmXBA2I!7UKZMvlV>3lR!)L2T; z&=yV3peSLf;UjOaR~UF3Sqw+OtxivDR5GX@o#C9jrn5$HLgkiM~=PY4rTIYgg zUmo(vc-W;|S;}a;W(l)dbsFKk-|W>|dPQO4#Qs7}q`CIm`*E*(SV?h1Q}$h37!z1! z!sxZWv2U~(r{3EeF(r5pB;pB#nCZhi zAQ4X>#FXGYkccM`VoLBHNW>EeF(r5pB;pB#m=e4P67d8=ObOltiFg7bW(4nmL_C2I zQ-b$EBA!5qDZzUn5l)StgWlf1!C75E3?(n=0THQS*s~KPYKco2pWhBEwMgZ z5aQ(!y^2u7mBCNr^%iBx@{EGwjlrSgnusQo&NUjcqBBfG5q)Jenwy8NV>a>MT||LY4AU_?;018-Ywb%$E{z zBAOZf^rL589#lxU3R!?rx{FB0=s@Os&zc^QZsntOQ>#2@Di{4 zBDbmmmYxPCt6o3CMo+m_Zy^zxtARQE6N&hll>3>K`%5O}CJJq+&v(hc--Sesn$5Yt zu-KWW^o-rCUfV6V<`UQTs&6TSeqz@;ArsKpDy;6TmKj;y*|yfiobA*v`;H`ShpkMP zONk3GZ$vm`Zy9ws9(BDA*IKvSKG$Fot+QV^joEtGgQgzT3C648M4xTtnuVE(ChJ$W z3)icgodDObA`vmeMw%~?h)t5RpOA>OCK1unpD(FkB1t4Q7iPp@rw(xgCe~1l9WfpX z8R$wx*CSMG*O#?U_b8-qLHp4%kM7IBDzO|ezAsVzCj<@SdpKh{YRkuGe&;e$nHs;;h0UaBIRL9KkM!p5|M&WNJNax zheS-C{Lx56kUMb2j1k3=h}0(%@zY9uTB-a<#DQh4tr!gJdseCrb)J!kJ-7pH`uJ)c z^hmnJ_r~zH*4?pHa#xPq0ui_faJ42PfkyUzUl&GHUnS(8tJfJN85)me)zO}9vSi?; z1Uvd%_Vn_hH(cAB$rLp=cGcMJHssuZV|XI9kg{{YU^j6LscLmL#XPlTwn=B-W+jwZ z;4-gC4Q*Iew(~6L#7~G?*swQEXDh%~t>=h5YdZLhn?OXoU*UFnx0ZLiJ_beQ{SI@= zdZf)Zf{*aSJ=Kv{g9=ujLpxMMoh-hwMTG@VllA7lHaRcqlg~nd&zTJpOcRk>Bdg(%~MYIeo6Gk9S2_5z1@Ce%gNAanu_7<@)k%#Rp zycY5kQEtyyQ+{8LoJ3X6%r#D|rckTRBlAw|`_*oEh-{@7^5f00S&riw!Zu)QIWBu$ z%iyU{=<}|PAe&>t%v_uyRZML%F-jXqYiijencF+QIO|Q+nW<6JHnP$B1NtyP${T7> zR;_kp(W01kXS(g_5kc12-k4uPMka@mGHtuzrVja3Voun33eo#b9G=%waGhW=hv$bO z5I^%&Kl4<7^*q&oC<4*{1CaP(2tZnB^Sv(sk;GvVzD4&H{*b_!6Fdu{5IjTb+y{P0qOTzj*^2uFAifPiJb{ERfh6Yu zkrXlW5`_44Pxe3_GTf9&_0%ob*KM995@Kjl=tuv=U1|qN52i7cpjJn*orrZT!&udjR^l^;Nkbvqx*Lu7efHK zs8+L39|N!DSZfNcDM<}0E0bKb;W5lQe51OV?Ao1WV@FIHdbB3`XagRPgr0MNDB2F0 zSl(^8Zlkv%x8ZQxAxD|R0{g^*G&~{-7_)}7;%coK_q&Nd>hh-RkxW}t`1O7_wmf63 zEe_@B*cJv0suF6wrl_>ZZoSprF%`E4IayY9-<)`kr_WK7s~e^z_tBBk3)U>Lt8t9W zhLioGS|ucdl!my!cUstr5r*(SF;1PsifAkB+-!H&ku1wY(snOP^DVkdP)~L&<=*$|Z)gB&h7ttgTsC8tlS4S#73mdiQSD2uZ2;# z6?Y57Lewpdh{zdR7%!c4%d5S$Fu6p9@i|_ zrdifRFPsMxk=s);v#^wIs5rZBw?AqRb!ctzT@?**oLer-y}AKK%W|@v8{6wJXxXwY z*R);LXbq|5vOZSV$Cr_r3<>KDHX18>c>&F~+JO`gsH>rpTjnA|<+o#6pbt_{syc*i zaQLjPZ8yD^J#wK@6!{<_Gn(9RG^-B?0{5g<#?WG78@^=!wBf&S` zTQKO>-j7Zuge$cJ_zM~ipU3b=hbTWiqM{zrivZfqu-P%RRyb^S+3;iSl@|^F`t|Es z!*4%Nq_rT?t6dA|2`OdUT7 zY;r&P^d*yCG4WGhhukqHtAz1pJpC%L;pOnD04a|cza@zZ1S(p-BUMB368b9sBKDb(cA6_??F;{3AAFrg;k6kICKz&sXz>(1_&S}5);4~)dvz!n&?9d7Q zqdcz0V7D6sErBL(2Vj#P)MqXTxS=biYu0hoGp6{I14Gj3x9lh)aY?hUncg7LjFKuU zYIg1%|A*!{!PA#j7#zQ(OcGT9dTfW*(NQ?AH7cW{ZbQ)&z$s03wv|3`Y&A@$i8-eS z(v|!2I*z=&j!?(ko~Ii?N1v}_$Go1W%M=Em));7H`bRd{&#LW~lmIxzU8TewgHxu{ zbXFZ@56;pq<@==7QRLX);tKp`FF{_$Jx$ujdYQSCDUk7fcM?U?n8{IkaqQ%vzqC$o zDEe4eJ@viZp_h7uedpdQn*6xseBpa$H7=j2UT<6HYP*8J4ZjrVYAIRovT6sOm@*TC z32%bww8fT9;&ziPhTXnX%(Uw+Y1 zHNIn14g1At#{c?qqqXntSH3TM?d4eA$}hYgJ1NixFfNbjZSZ$8(vM=5m?KH`9>vYk z9>vK`Ov9siML^Z450j2Rzdm@~Jt9~4>t!tYb7?Au@2bf*A~J&g!(_|)*P~d8wvvO@ zeR7{)isuJnCF-!a(*Vs);9T)bjL3xO}ZR-eV-`eq(K{C z1JeWAzyA2|lH+VF(c4f2a18%LH~hfy_F4Y(`CO&73r=GJGCeu&a<RZsU=AbVpX-%AA;B^CC#+`gjWFI zNT)}>l~_F)8ADM)TSd?#Fe_;Wb1BPnE&;I>Jumqs?PA&?O*2CPr4hA2^-7MdKKH^> zv*!AaVuV)mgb^5`Y3@tuj3>_=X&fz zj+Ib*6h9z%#`Q~~^{7VV^9YKK@52OC1*`61{SqJ6FVlIPbUvp&+8Q&hoZt}RPvkb*`jKuim@<@?FA+CIqS&WzDsp2NkJtth{F|Ng!%3*T# zVcZfg?_s>Mg^-6`foNCow<9M*nP-(3>zx=pj+NwukK=}XBOb;p=W#_bX2V< zwjL$ZSzV=nY|=%{{5sS2n?6kDT^@&~lo%BmxT*j8QhJ&o;HP@3sfs>up;PzsxNRtL zh7BA|;Cv^3Z}R7<>CX@AqMta%$<-5yFIP^klc!SeCiPxr58Rjd@lNJi2db#-zoswz zym;)`dc)3qDxPH)T}9Bm9ZE&BIMw^1)HG^(K4`~90LJ_% zcOcwwb2+{x^_Q^;Q0oGOG?HD3B?iu^LWV1XBrE$EqRFxPE-?!EOl%^l_M@1|;=@=; zd31EaPGym0D*vA4mYGw=|1FuhwI{ls-*v=Qdk}pQY$5>IXWPOFJB?=7X=j!5j?ofBnz@ z{l2u^cz&B(BOHh92GRU7b-&@rQ%(36?@Ga$m2=N5@(MLmWIPg`{qd=|gI@aQE-C!3 zatMOViXkU{&F`39okde0#m%rE#mRR(DOcRD*eJe?P(O<4qY-jBqe&k`2;NTxUG(&Q z<@+(sl%MRmrGRej*NVM^;YzsU_rb4&Bd(LUypLZenKYsIc>k%<&+v67J8?Q*e+5sc z(QMBTeJ?!y-j(X|ZM-u^`LGSyke((HIYklAkKew>^c8RmKTY3VOdm)Geb^}e4AbXC zkHZt^lgL8CpN7-F<=|E*hb!NiMj=+Yv(pN3`(BYO#5C9XF2pIHKo*?0M3p>n5CdHV zXpa;A1Jsp06^clqABJB-zQHByxbyvzrha58H0d*?Y}@}jJLd!~@k{VGg7{DH%vlSd zTecm%6Xz!e)vnv_Yu5UE1;0?Da<2U3%Sur{R*MwkmTN&5;*@Ve7dq}WY_O(`T(F9Q zbCz3!6q~g?JJmv*4yyOK9F@G8XN7uZg?^q4=t8{IC{b7;(Dskw=%pC!M@`)0v8V(4$Wz&ll_x@c2FULvw&fJlEm(_lr^`|(;mD;M;H$x}Exp4$O z(L+Cn0zaj#-1Pwbd&?gEk6UF}f7RRvG}WZv#qEJ3`+swf*6VZ6*Q3=t&w=~Ea1qBC zW&A|+_-@MY;a^#acE6=#(KW)bg zY|}nqEdDC}2_grjuO;|j(4XfObS|h|E}S1=Hg2^Pw6OG78s`Avk&m}DJFvTROMlVa z&8(37cQO0Ps`TDP?{fyD?yqKVound(5a$`#pOO?%7x#4U@Waz znB-WYAqT%gr$av?(3&d_e(ys4|F+2r2+4qAh^Gf$Wh>wa^Rn3ft84|Fp-#B&@5)x7 zKm&hjw!$kL^45_??wEfexLkSw`>6Ho>rQCqiK7+bmepf>7`In1 zgquQBmF)u`CW4^S!=sqx+^81fm9vh^9lXs8im$fmSBt$sw+ztFdC$qy+gwhuwKFe< zyl#Pd386fWz$@=A=j7%uEAtPjQV43zo5`(tlxR_F{;-`xJ~dj1)l*Tw^Y!)vXD(l+ zSfS2+ZwgBxrnwGj3)U;loeoiKb)TvcJ!UB1p!n+jaKU*24Ct1r__<}{nY8fw_heRs zHJZ>mCUAi+o|zTo+pQNAUXEa)th!UW+@tti%BSN=!FU1NqzF*Ji#-8LeC9Oi;yPVXm&ErX~pAR3;A^{(2Z?W=A zk8f|WNZzCLail)k96$Yk4n@lzLHs|LGl#fFmM{^{oA~ zcNTFUsS|sT)FJ?G|9s}of$K#h3VZ|)tderBuD?iUfH4i0hu3$5(o$MDW^|TB#RN83mP|sNK=DI}Q zT#p1T$j9{=lNjf^xs_19O64~Q4u=>pM{=F-`s#j z%papbth~9NeTHR3^yYen_OVY&5{bK{mRaC{EguRi|INt{67y9H8^=E73l_X`VD1eA zi$oTROgZ^e@lfOZAqdsfJu9pSaxJe01G9%FIdC-jj9nfIjw zXxaODAUficQU4yh^K`OTx9ujnkBN5bRRSMsUB==C4SHSDX8rkGm|6 z*$|%AZGJ6%W8y+|8-0OCZM+sZp6ngjd^r2#m|v#QZpOn0KpGxJ=rcOmYc!?z2V@iu zh~(W)N_;_e!BNTIrJRL0Y}t!=D0TF#qp(%u3NAshcwXI4hF#`!;++N2^v2x0`p4h? zvtY7%b8mlJ@h)J-B9BWV$=&q@om}VM#MxGh)T3y1K@&<|-2j@tid>tr|D{Z=MHRnD ztxu}dYD;20rERv7iJ}f(oqY3SS6`6rC+o{}oMYRac}a(7r&yQEE-nRyjg$0X1-9sD zFB98YVbGCdm@`w$6%c>_Hw6LlyDD>XG4~?V^I!jCeWo>v<>Hj#np|yA)@a08f7+p; zQzj#;MF8z20F{lJW%z%_p5j7m$y~^t$%`_mkQol@n{z{ax?iuf+m$F)Cl^lFwz>j5ttf@M5Br+c-OHhNDc{1 zf$AC?u82}&y^06K*kHv26%r<^@baYPJo2Z#5X{9)1Jxq&c&;TLb6j0TJ}4A#3FZ!< z=>=mpj-;+p@&pyQfoyT9;RTYOo?tvg``r>mmp&i3qQ8%c|EuT51N=gMkf7e;?aL1m z)YIpkI(PiZ$BFn&A2-^W=L?^=Y@2J~s=$%|P;x(Ayr?o1fP@RQVW;VCMHy~Q;mt}q zmz@g%yA2uZWhQ_dk|%%)KS#$Ta0VXCk=g3Evt?bZ=;K$i{x#ShHk@A=I6L0$2aOxQTS4lbyVrqP~7e4jmieWamJ(0d6T z9s%_QTFI!`t#cd|d_Y}~4~xA00VzE?PSLWSIh0Alr=!$9`4_HJ@1n#nZ!ZH-2cnzcslu&B*%{0m?TOiy#52lmlXh*w`FU7k)?=12ij0OLHciQo%kc@6vK*g2I91uC^TJE%g#YAS`^$_s2 z_zjmv4m6RZ3D)03&(bu!yxh9N)H)t1NmI8h44qgamBva_Pb8Yo&EqeC>A-WYLO=>R zlpObG?tBL3iBJgy(J?vM8^rPGxLS>z0UeU4!bUWJXE1q&B!6U8Lvwt^RMF-wl4IHa*Nz@L~(a|bgB8=rZ= z0ZrS+tB6Zea{Sy2hxnKEdUMi+;G8X-u+{13qcDnpp=@a355N|1;4DKPKSvUq*|M(j-{55+mm|Mt9F6dJUpJyH!R|)NA!`^~QK>eGe60S;B2~E3p*s|L@p%Uti z*0xl_;k*Pm{HYTD&?;ef7(!Pi9KD=M$eXacr4r&(5X399s7hR-!{VD2WgV9aswhE6 zKlr}r=v{C$KbVqRRYB%iX>oUexW|n%UUgXmf}9I&NRYWV*2#u6iCAjJTHpniQ^a z?6knBXe1xNN_V}U%u0=5u^vBB8gT19eqxzDwV=N&cT6pqUmmP=Csxe(dtTu9W1bid zHvUYSv?rQT;gq)MO#!ELIX%|kmo#m9HNPk}tr)PxoPCA4#fe?9aA3M2B|qXp$j1GF z<&5F61zck#yNrGkcuHWgesn;AIzSl}QJe&gHUhq48%C+Hlp^1nkcdBtJ)o>9h{^sk zQ}AMD43d)Vqc?2Heic&yr?TD@L<}#R?4g>^LT~g;0Rj^lU*N84Q!x4bHU@3~Y&4=i zLr0?mNUbH#EsNsZ{md}1?@b{AwqWa>F=$T%&rwl+TEILNm9Cek=d(Cg@@43CEZ90E zQ){z=jx1@T)V1pR=&rMdR7G5GDyf-~n~> zE1JuZv*j0pDCh!mREgNP{?oT;$*KO{OoG(_*R=c^k>}hSa?Ce z)st}d_kaGt_0xrKkzNch+14#8r*A?zWmSz9=PaFFoyyT+t5a*(M|P{#rU$UzwDyNX z=2t(z`xiT3z2>)s?(L8#5m^|{iY(lhBFf!N{kbCK;9>2Xm<3)mfYI_NR-ZA~BK?r^ z#G;DzD_GBSw!jvXaW zy%szb_nHF$GXnP(9aI24iIzR z`gID9Fl1;xL@vugwdS-ieTFXNtKmg83)68(2`tZwYG}^WSYz9Ed@7Q%jfpj-^*^sz zvniyFf<1a7TPa^ot8-ux(z%_XTkM#U&sVEoYEBzH8I5~ujq&}o6rw3os_7tu`=+&e z#Q>Hu-Aa9Kv8ynN-mEspj!)G0RRV7sz?QVQ;7lMsu8QUi!fKJ4*E{ef?H=yu`PWD`%Hy(wG5Unb;vj}Cva2@7OgpHF!Ltaw`7Wlu-@Z| zK1vl{w0fwvO3~`v2o|%(V6Ab=NU3z(G(TOdmrBVKTHW(WSbVrdx&1Ok!8N7Rg2bs7 zXohN?r! z!P%@1_)*!X31%hZN9YjnLQ<1?K{B@Is)6SolP5~8i;eP^&jc$@e6QR8_qTulewLh3 z_nidp_YYpLH^yV?zF+y{X8|(5K^`_-ICoEGSmd0$mlSHvd&Kj@vNIqfDzC2cq_FHq z!8BUZNLlNxe8QlfTqKOF9GTa9IkJkq=cAVn-pdg|5$)m>=iS0JoeZxAW1O_F2HC=u z^=_dGGPuau{wAlGelg&+K`od!_k8&qBb0X)QvlCQ0a9jpJ(*!pI(e~2e5HyzdMx7kzEbR43!38oqyUIO zcfZ#$pIuLJPpTHQPZuhi>Gd_Unln#t#A3^CS^xV#7nrI`e;2O3t z9y~@%u!cmcSoh;@1Y`n3(Vx7BH)UDGw5&%85eeHAgpEXTRO+J1i3MB65tywZ8(Lik zM5ci&iZP}bLBmlr9^xPejN72th|h3aldLE*gZ>k=9>KVP!5UzJ7Z>qza*HIyr(hQo zrDQ2RyQRyx(D&$!5;^69H^QTeK-Vr;UNwW&ru^L&Xf*-5 z8M76#KwXqME+cXD^0$kRXE(oGe!suHytux+Urp$BAe21iToSAJw6$P$@pvUuz_uYG z$I;y4vRY)+jGU9FiYY*qYLHK3!|!^61lV=xql( z5njC^zghb}>wo{j4+^indvERAyb-Y>84OG?K|`=<(b9w_VIdKDBB8+)zbI|}(SkIX zxFPGCJ5*QASFCAp306>X(P;rx^WSQL+HVw{&r&KVr2^1;<{dS*#=uQsj|L~S!$7!r z4yHUAvzCpnZIpNQ>2b=40xgYElIsprz|74zP;Opmk>AIZjnT_E4q_UD-4I8GzAUr| zSAsm~li_gL@mijX2V?X+8iMkTn6;$FQc~wC)#=HR8!zwo`}Bec)J^q*FwSv=A(KJ&ePI{wkPi?M+bw{d4lfTw8Z;8ZDSe186G?Potz zio0onN_@S>_Ufxu#L)sJxyKYZCHP?1t$fD5z z<1VH^vge7~s!|IY8ZDlZiKYh*UWh^F(Tal2L2aiXNyf8hd{g^}5?N5eIy4 z@#8Fb!BLUoV5K>|NuaxaP=M}yiPihbu*-aISDXdW^v0aF{Kwz_J0IgzEnm#U6z2`t zKa^RM|8D)DjZx%F0)vMmX$?qZH4nL6gMrr6%m(w7W`;Sjk8lqUj2!`PU;&Kw^l0kt zgqxh`z_qw%RmrTZH%j+&zbO4Vsk6eNTI8I?@(^V@XQu)o4J_ArVTVNzE5Es9VxEOC zsb|T6osd+^-GGey{1-ML7j3`h;hAFTkRq|L@H~B35!_nQ)S}?j-z2GkeWRY`5KY`S z6Z-k%$Y=ZngbXEw3%!85M_`^N zq1#AVW3*L)Fb`~@NK)O-N{DKa4#6$GW!6|xOk7$|kz|};nVbpiTk@CpzU#|Bk{VtA zSBqC};ZZ>>@-lnO06f0t@(4@2h+d0V+-H)$@tI7p_|w= zl{Ul!lFJ_BaAn#;upls#PS@&}(?f{w7-GwVp=9=oKfK^}_{{UnjevbTCxI(b2-vse zD#als+b^N#;?F+(g*F7{hlj27jECtfF`7V&+_K1Q=S!GPG$KKVAE_i2@49U#&g%3H zNBlpzk^{_f%Ok9OF_-<%N;aXg?9VNYTY%UP$!M@_5~Oi$JRXC0VP%k895jj7nEM^?5hdmBZ@!}Y`GtPwo-ZJwknY*JnJ72&tKgifyhF^C~Z--Cm7%G|s(qH1Ah zStrRDc47zKZc{KVLb1a*Dy4*&9%RMB9lJe4wjv7WU?erw3XqmnLn@h8tK2-oJC67x zUS3ykf7nECr`2G#p|>xL>+Ni6y=27|OoU_?Z>-C54^PTr8pA@FhHB?Hn8tB~&CI4z zOm}Z7hc!(Kzg-?=Fo>XPVxejLZpZaB9>8j9_- zw%N2y&c;2po0Y;Q=1`JxL}Sup_{9WrpKiWpQ#~~&`?7NSqLG)F?Atw|W0kGgvZc$W z^r<@zJf-~_JK{Q$8Bt~O+_EyqFUND+J^NrI1#=`8Er@xZg4r6IqBXug2eqUidrEH9 z6V>SqlWA#i3>Y(#;ztCE=%coIW{aiQMCj%tlLsbzKmAhfKdxQ zW+gD{>U9d{Ht4F_ul9alWe>V(T~@RMVFQZQD(z00b9>}697wzulL*>9-`V3BWYPy+8ftL|LP^~`+C zRoAB>$EmI~OlHHyCP$`Z#Cb&IG_FHrJ~&`YHtlyrQ)eK z9TgTktrQTH+n9|Zs9sLgAaY9iraPkK?N*ubgY%7orQ6&dcfNzc(naUabl}7$y1FRK zv3e8T&sak~%icqEs6Am8^C~;|cNBJfO2l-IU2Kq>Y zJuBo@3Bqf)dBht91pD_02shZ;XxYH;0mi)#g_VOZd?5%dW+S-YsLhrhZXfciE{kI} zVPOq5r;=sM$ zz240x-wyqAueSi7yVtv3t9LXud!KINakkZ;b$mwB^T^KD6?LAbf{e>UvCu1Y$O$f zw!+uuBbhtJ*K4ebijNNe$=AR{8$~_0%h%?^p5?_b)%j!9QA`?xd$HB<(nf=O@mAwY zH{?$W)7-R+SOquJi6OtK$VbzJJ9%lssVlu3@>`}shN zEJ@SIy+TX!W2uJZR`;)MCR}zfaP$W>B-c^<dX2vf!@} zz7Z$Zy56=XM(^Vl!DwR}i~*0)(GDRBkS!!x1B0JV^! zg{~?I3>XBZq0sX7j@Zj+s?5sD%F4>Ae*K*ppIFi_{Kxq9cl2*!d}5e#w|RQNvPmve z5XuLMF_%2iMMJE1PY=>UhGp}`f^*jb6ARtVxc?nEjWpcG&Vk$?Sg^^FsGJ@MY4(6| zfw^x;&cCy(d-&@3^nhczObP-xv8FmWJ?Kuv*>~=n`Z|>I8&F!?Bj;8L^h8^+(38B7 z$rX8wzwQEQSyKhfkZ+3}1vDVUz9H%ZgbzeV?3nJ~*=q{uS*UqkGhsh+>FoT?wQuk_ z9>0P5<~C;Pq9m(*_=X~@u=jkDMX#farmesmqHSqTtFqcfPhf+m2Pr=1+;mB6zRv*i zGpge!%)EcjKknOep!ky`-f3%7BM{qPM}2WP6fx$`gHLU4{#fj|*W2(&ZO0>b%eAl@W=Z6)OQEHJTq-^~LTBLzUGJi!#@tHVr zYfMx_;W!mB5FD6=H2yQ!D zhO5qSB)ZlPb0!_CfJdwpGhR)`LBKDIZ!Vjpr)-exn>#b(&SG;1^8yr`$!wUch(}QFVZ4xj9 z=PtEhj_Z8c5~Jlh`nJSctnJEX)U3S& z7M5X$%GvQVyOsBAc8hRdGJr&UhMNaTHf2rSoja56rg%KN!OhgzNH;8d;Kulw49njp z!>xQBGEae_?$zS&DQDwnek||T{78Eze%mTHpBuOJ;(3_E8b7mMdB0{oj%D3wm-$+9(}Bd zubv)+J!>qIrr1N30Kqh61kr947@}nxaV8^MB$39nY1oxbU4d=wdz!4k*dY?L7^Y5I ziJ#A_^6m55#sWtYP!!K#lPxPmNURuYV0a~d4zCJ*hZn7IrGebD2*QRthA-x}os6*XeJ!kg)(j+Kk|$0AjH3S}nOih6MVM z#5_pbqF>i&AU7M+70olC1c;xDuR`C&w@m^>JHNdra<6BjF^4K1==Eet1}agin2XuI zH@)8iAPfQE@jG?GJuV)&v=@*g=;Hb&~+Wr|L89=+h ziUBOq=!#@!E9xZdX~w>3NNx-m0C9OiW`YT1KmM&qi_#WY`u?qtaUiQ7i^;H+*U$)U zm$ExZv~s-^=Ft1`Cq+E;F-)LJJF&9}^H0@=y^E{{;tmfsXkB03wyW250>MJXsI)`I z{;!}*az&m1l6d2Ngr3A0Jw8bkbV6Hi5Y;%3ZCzXmEr}O;lBP;A9@`&1+3-%*-1pRl z3ssEiH*>zln*+N)V~pR5=DdgTU4gN~&RSNLmF#^cnAR7&`$+(vY47zdq{Shzw}HB5GkUCcv)-E*pMWbCFB zWNxKgW}__fc3{6um{t1=Z0sT*3T*r$AEK@4?8UMKivONib_dfi#|QR!T=PHrBpN*J zoSBfzTCm6IOqjDgcF_$5mVR^tohe)QJS$^m%DNLY>M84~%^U*~=H11X8e(W(fs3DG zo}=%Wr^C7=R>W`C-Ojq3oJL-(o6JO*0#M-oA}&mi5%%GvqMc@)${wvGN5y?Aw!|Tc ziF&&R6taDlB+i|-{oK?PHOA->Fe3GFmE%k}l>+!Li41IkXro*kiy%lq{O8`PcEwqCXvFBQtD@1=x)l z+$RgnKr+-@#|bLMR%6{vLl050WneTx4;Vm|5dXQez(MaIVVuaYM@F@q%()TYJx#OL zeF8>6U3%YLnl`<^4urdg>irh#4w{_2YjzwUj>*nSYUur%h`MBHI=au}SMYJZa7?oJ zs-sz!HiS<(=czLp($0m`Z5(EgmNFN|(}Nt32d!^g_;L=dZV%fKY52&rM8iU7y}Q(a zTQ(Ejc9=9XC%!}Vk6Gn#)dv0v+j0I`8P2+0S*iu>AUkIiqoS!6>WpYgvV3}wH)K)4 z)XJ;o{Ccaz*tr>q-O5zNV$WlC6E^)>95|kYKoTZE_XO@Z%FfOF4;1>g*sH4QefTFq zzgBxRi`}5yqb=vH1?bS8hR8cF@%QTwT>ggo7aJpvKmO-G{(CfC!YlD2up(?qR_zsI zDC4z8ZHhO8Kz!*q%L;En>rUIS=~eva>lbQN?BP|}U3opp;xseYiJWY;83j;3XMZt0 z9Mul~ap}`h+`R!-794fu!`lfTSMf4BMr$ahz|z(Mzi}l_H5+Y4oJT#BWj23U1d0L` z7<7e};!m*V4PljL(_=JrOKl;rn)W*DG|Se%RxcobsGF&d-v<1m-q;sfy)oY z^L+iROu`hjBOy{*5}u`8mA-&?bum*a_FR=dLZ#wicTPyToIrUauv2woHkl2R1tZR9 z_QQho^O^l|8~Nxpn$`O90bl_~FXHrIKclzb^k5+s-O(yQ0g?r}&zfy{`yxJZ28}9K z)X$+V@DV2m`{BO$B?t2#aq zfNVvs%xCQ&YFr!PCF zh{QSt9K6{g$*!L^2`!RSVq&siT?t!Zf~{ona}5ggU4z?JvS`;SuLUXKfpa`12ct(9 z*kd8|fR3C$T<9KNH~g}ablQy>~~)=vBKD9*LmIL|d?1vxj7H&V@Sm(myV zWaac|CfJJNC#)ml6@`9S$HzcKAIo^#DmS0cn)wDntpVy863ecRc;Qywnk%`AVI+Y9 zu9}z=o3x=vIz`-V2Yw5>UgvzYpA{Xnhk2YC7qL>_dl~+Y&YRS@y zZ4EJZ0HG4U$b}iAUr(q=1JSUaE!iSk%UpD*&5i>n>WwTciZ+s3FUH8VP*~ZD((a8R zZHdh5R{WBSV96M0l3t$Bq~!*9lIg0fMG6AYHt*&uZA^QQRJaU#*DPF)PYxZ zq`eRGtE^~H#2ND0(}GQpAT1H?2sEI0cF`6$l!&0!y33LP!_gN z&l>3VYRj;oemHM-UtUF(anmQ#Sl5n+kKvMtq2XpDDZF zLj?ZnQ`Y=abC!nTkNTYTbrM6gbC&)|43y@qtjd-wD$lb-Ym$k<$0Pu!Cn_r?00J`L zCa3ux88F!C4>4vyUC}I*A149TGDO6J&m$rxq+vnXCHi?1CI@cvuaMJOsE!vch`cc1nO-Ov+l7s;w}K zs-^t+oTHtlDf;$yI@6TslwsPXr5ab)?dONb7-KjgafZ=Gu6^D9aZncze*P=RvTU3& zHK)UlMiLE48$lAGOv8w`gHUcLc9q5(7Ruj3IRv2` zKX+(qzwXfJgmRKZDAUf?AQ#HClU;~}GWBE^q5`qBNk=S*X_Jpc5Yxu(p=fBP8Ry}Z zG{y7W&hOFPj9X3Y1Jx4aKYO1|`F-!nxgiZQZ3<@NymU-)%*DQ`w*q4qXIYqO*Qxl$ z_@wq5;}e}8nj+CdX%`QXNm34JdscpsxP53-?r(kT&luB=$el-kW#rRdOmzEl2g026);su>05(9JJ2y^}4 zZ@l2V*xnWnLUecD*p=T_4nXwggjtFfwb@Y0xAP?UQ5Pl0d@7mcbEzCpl*dRL&m)Lv zHkr(&GeSDnh;qkCo=b8PW&%~UdY?@25sU)Ao+!kccF8!Kn8noI zX-B>T5z|ZUF~L@d_(kid=tt{sVHHGT=Z#$%E6xX`6h%d{711K`s!*SpL?y&%V~6s7 z;yl26KOco$`xWQ)Cy$Shmzrh*$+vX;GFMVxHFG5!XASs0#<<1VgdFFLA120Q`eWHm z952HCYm9Mg-89=j1aK5<$62fiNbWa_^Tdsbd5$|~e=d8|m|%)Y{BrfuUo}@RMwI$rvL?qBc=K zSk~xCUn$z1Hhysqgf1vHQ6cr%C#uAGaA^mU7iB|IeuLp9&1Cq?O<-~*lw<$+FH0>l z!IaSWWre2qn-wYusi?y7&>0}lW4UV$2zcVJo+-UceoCm@viRkvr0M6UgwFeMKBL%= zdzdzkWbR?w*b%yisUJceW8BbbEt0~d9=MTMWPQ`EgdIS(l@hfzm{;H`B98s}T+B(Iz0~Ir0`~tbt`z^a3;e7aFbtb@e6#;eAU3`PbL>{4xxQ`YO`D;z>c<-DEWvBpdrzBaE+mz zX}C_YjIT(sNDJ#^_8Tb{<*X&D+)CRk)(MqY|2kf=17~{55 zH^&>fFX@LRfU#XW{`DTFJ2&Gi&@|cw^{W;_=UJjssI(PLq^<3HHiWdMe(NG1xb0oS zd9A4;$)ZYoRO7s;l5kv{i*(TEIFkA>aaQBLWt=~bqkf2oND}z}&2j!XF3y#l=*u{g zP@3;m^_$}YZ}C$&q7EAVmb0LJqlMOft4K0fc)Vr@4yL)^2;CSg@R^ufnlPH zj%HcfaMrd7$)N!Bjro3hfTAmAlMV%^o!}^7)Ft%aoZ05BZDT$9DGeVZi~_!#x#eCo zZ3W&CZA%N0A$Q=QT_Rx6pN_JTj=`ex+$Rfk+$zvbAX$xdJdGX>fCz`b33|W)s)UBa z;Wsb>>OsOdks*pkwVTYjCM><*LVys1^6q#H;O|t{k$dQcnuvf|nhx&^EPlm6QvgyR zi?1B6g-(4`vM`;V!Z+IJV zb$bvj{d={+-4^}<SsppQSy$(g=HSKhNAe)wEOd-=?axbFQnX!Y0 z_zok2BwVGk6}?~WX1?BPTsPaRlX{L4DX@r0wCezNMJrelglN(0D4O&dWBj_H2WMEY zG91xjC;^2e*@HHE3Q+sjAkGBTNRFGPjU0(Djy7(?7~}TC<2y%UdwqShoon4j_RStY zNm7+)W2b5{My@NHa78y|P5r8DydIUKS;t4RB?HqhX6(;D5~`Ny%DtYAh?s~5Rk!tL zNdvu}EXhE%f?zB{r5a-Gl&%sjgf~>m6AQ(TBI$=U0LD;MoAefyb5oGaVbh4;O~E3KTh~{&?do-XmC#}B z0A}VM9};6VA8Uni!UQCfsBD2CnFG0J5tWe(1db@)FAyZs0)D~9OSMQ=+h83dG71C& z1!t8#RB1umCi@rK{dI)-mRv=|nN)reOtU2VUI1Eb>U2-h#&8)kfP@xL;?4&e9k{NH z;j&Gn@&*Fvqe7!^P=+CoXi5uOkdS#IK_qjr7sxjqNvh2TfK#6_xP0;pXxA;OKm)=Tshdy+uz&8@rstw4`vyz&eO(H*W$dJKY! z{`q;FsHzDIZdwzv3O^B*#5&=Tn9u6O$8^Ki7ch|qqS}XjktEwN6CEIlwh2ENfRAUU zYyqdoqGABCJ55O1P*;EjlxdCpbj=b?Q?`fLPC_s&*eXVc0|J49BO?J7 zQj>Ht1%gVGmLGO3YTcu!N>bz$@}xlDJPGw)(Qj*hhCA$nqWP{He+Q%xrBo?;VlBmLMZ^8h$QPl$7<3t;7f8qAoM9OX# ze+7TaUA*trO!q@{8|{-9eg9f70ibYAV52p>K+j#X0o~uV3WlNaqCx=M9@&&-s98^zo1k|9a^vgx&s2i_Tvr+1aQGVNekpWrivCoqWxJQ zNb@qI#Aht}h1fGRlBnKb%t>#)6GxGR5Y@TT;;QQcr5>8cOARnyOGdPHh_?pwB{4-l z$Lp(NmSj?y0%2L zFa_#i=j#pIt_uau^IU3x@meT0)zGK6P@n}O#JF#l3<34%UvTa)=iY(OR|gw<3wsS zq|F^ff$2dYt$%kskfni}jRsISm1_jFG=15S>*RomCNc?Q0wvPyABmOE(KZ-=a5j4GWCb;($3Krj~m?W_|fnX6W8-XB^%kp5MtJFw15Gh8Glf|C|3mzw5qXI?% z`?22yn`uP$n_wgNA$*T%!6Y;F;e$l{f||uMlN?(dOmNZTOD9Jvv3}-lYHPOkLQSUw zkTV&)*|H*c4A~w!>n+k*ke)JEbrvQ7`d|i^Xx-%myr~ak-7P;9&-3-O@)CGv59{vo zd||xIE76`Tw$*iuJjX$;D~WZr!%(LkjJ!yQ^feM@30SLZky%2n%;lF`P=r9!1TRj|%n zOca)*y-xF;W6k!VcZ!^y*lJFxCRZ=t*|41`ubvDag*gqZ99q9EOpWH$nu!Txp zOHDCeTJ@$Qg#BvOAB1-cMQ6~NiVM0jn23_AWv>?6#W!aIxSWuTo(r`ytkZ^4! zG%wEcXpF?n__+dhv<2_TgX<_FX95x#=5i7>?1=1_(q$a6LQ8uf zW`$oQnFP@uPg@C(^Ypn4y$Y2kQzp=7-FR>;c~4?mV`bo{(W`WS-^`$^P6=Z&Qii_m1YdOFVb z=GF;lPblHqBOp%@1u@aKmsB(o5k?!kx|cNfW5_w&y|c6C_U;BEQypm!5st2jF@8h~ zCvD_rk?QCG>lmZC6i7vYCv9Q-V<=AKp-obkhQ365h%t8Lv4CMCw*q4agLX2z)E?ud zbmjJH(9SI$beF`2YG22BBas1HMltdZEtW0Wv&2af|6s7lHWK+C2og?Dp%_LNKO+PFf)}=mwI2B42I!}>x=B>`JrE@7(~n*NH@~vMjSy6iXkQX6ikhBTars!0FBp=( z{#|5LS+tzUCbF{_cv1Sa6uwr5jPNtE_3 zmyr%F6SGymDi_=3()0CgyKx&*K4w@%n9WVHLi&MV;cQS^z}BaT|I&dZ_hh2Nje*c0 zGhYP)rHb@|LE?HKWiXZj3Xm+&J#s3d(*lbMuT!HY$!0a!WT!N2?kB4{2bggDF&xnK z$YGxr34XyGz+I^IBB?{7)CU9k&wu<+4_Ih{StQocK<*EoVWX1l%dHd)SIe-$KmYN+ z=nV&v@DDTzY?CaojN;r5=8x}KB2n3wU}Pk!OBs+kRLKA$;jjf;wn-x?0uCL?${h?; zSMJLey~#$#kTjK&U~#wZaV;eFl3=|fGnfSF-G(MtD{ggyH9ZItJrPb z^O{h9Y@kisDj@W50K_gZnxF>^ph{@FjZRcPJ?J{X4-&?S4DmIp-DJ-7{PZ--a&!B;w?6;6fWej(^JfC#-zVLS{>uk``3pEjS$dXVGsc=T-xU(P|*?O_`oGYv^;i3V&$NV$$S zxE(gpZHKQi{LFmdklbO3+24(Q{1c|?6T41L&2nE40k{I zq(^pT&*~NHwMUAwDgdZWT}GBb;w}es17aHnwYXfu0_49-l@P?LB9xJ|;O(ctB`uKj z>_O;UKmu3+f-;B;p zIt=H=ZL8dTZrs+3=Sv7MlJQTs0&_bRDRvmy0Sg|BcW@SXqxyZ zD#b1hAfiyUn)&=z%)`!snX;O&Rk+JV?aX2yoX?5Ig%7PpJ06#_X1=lCarvbynuQ(R ziSGIXV1HTS@hXa&HTTk9HFsgLoa}C~Yp&+LgUhq(9B+%$G~MLQ1@AH{V>UnD@S|Mu z4+LK{ekPW3GBg7nEBR+);O6(?SN9v^v^3pTdefOY$3@_0N3(EX*d-CyM>UTVWw_CW z?`U@4>2{p@vgTl959C&t1TL61Nd_xe*p8pmHG_4J=oGVHpinXmvX&6J`+|kY;j}8E z_@`h139XfZV9g_Ds6m8n*ku0vV7qT9j1-D9f!@&3WD}DxRv{n_iHn=iBxG=-)M}HT z!pz(=J(rqbywokEMeR@B;uj;#IFz=qUEOkC+jcf0#ZzMGoob59<8P~T8YVzr$EXH6 z^Pb}Qw+k_!v_Rs}Qd+>i<{Vhq2GIiPWWayLBcLgc8&U+0X#pb(`U*zEg)RJSqZq5r zE5vIa(JopE1)$Rf(+MYL1DUlD#*Oo4xqMSxYx;7-c*UXC$6=re#c#%L%S# zz@S%Uk}MW7*bvey)d?md97H00F%Y~wEkHfnKq;ZLz(LNWmxx903|We)LZT$uhA2@h zVoYz2IidaZBo&#fC)hGNggX-094&xw$#InuN)Xq-3xB{plGj_oW`dK78g+5 zomA`Fu?T@Wp(Y=PiuDX_7#NAk27X4JL=3U?l=0Z|=THbllw}?{T%>=ejXb^?T9rpc z$IahFG80Z&g1NAvdSAG6VGHFj%j}M`Bl$d=Bgc*YIFXE!+vB~D64{P#KjY-J{dK>l zfTtIRf9qR+5|9zAx)jkPU`*<``Ow@cV)vmi#Tdz%Do22#YtP{>*FjUb3 zMF<6`7QR^=XtD$nP4H&RaQsgX#(E#quWN{7*hlzNcf*+zD5Iv0^Zd}S!u;3O{1+OY zg9Nt3fd(QTyfOgVB8|W~a8E5tXHwZ5P9*Gr0i;JslTbi(0!4F!F8)Rlr1#M_ud#=VSQBb+2av>lc^gve{$`l6LX#?9ypwsnNSnjT&O#5cR=o%R)BE z3u&*0@9-CJasU+Q4!eC;Qpd10>=aY+xh7G7@|_w zRN!27HK}1FP!ee-lRQYEnlq;dXNG3$33S7GNve;|PzPkGV!#&=gNY}&OYWU3IF=?7 zE~I|MxSxnZKyCj%chy3D60;edjks!Vxg%L zN-3}n`BPIvSu!+J>siN=He@t(<}hH!n$d;ra4i0%8=3@66Sj^ig~zpjGVUWe2Y=um z=q)@^5j^-46Ugb{@^f^J-*8@@^o$|;3&E~%t%%sbg9pSDX>h&fD``;n{EnFc#i-3u z8SCcB*u)(&5yEpONqsPhGbHF1W)u7#`r5rR*Y}ARvN;qGhOl5$8LSC^bPfu8E|+qU zObe-H6k%^{(>enh{wqRxIIXA7DW3Z4@vYx?xSz;mMG0M|te zeK-4=7=Pd~aM3`|hS~_UHT;%^dV=0Tr@En@q@C!3#g`Oy`Q;?XW>;RGy|VGuS^w9+ zxG>OL-r;A-3Y%WzIM(gS&TlRZ&(?nI@a~+JB=3GEB|fL!xrN4Z{sWIMv&=zI$CA4h zSyAwX(eD%$BY{-{lrQ7P94@`ad@wfp)zP|BR3E@V%ar+Miw1zJSygqGLTmQJnEmL? z?^sGv!(tkD%YZBG!Z-oL4$=*9VFSoPl4(Ij2I;J_iZv@ZD3$>%X@GwA;I~aU$KBDIJ-~oI+D2C! zL=u-0ay;)al)yQg^AC}fW7FvL5hRhgY$lmS8(pbVLFVIg9iQy z|Mw8KnHfP*Buqz}B+xBpN!TW=NkKz>nBCvdM}noqci)yLhc)R;kZOtk&UMgr`vAUF z3cCVk*c!HvhR_!1KmYCjknG=9>!grx*FHs^tzzVPYWgxh!Ul8JjvkHe=Ao^~mWZ2h zg8Y_DZL<;^^H#k~6FVYCY`k(eojytF0gZq$J$tvbrC$w``1POv?SJpiH)+>6PY%bo zopHU9V(TzA!y@cj1eOT+Z~u1*7K4o<=+2^W!~)b6o8f5}JLm{l_s9DeW@&@8c#Yq3 z_uv@yxygW;8y2vQp#pdB9Z|w*$w+bd_4g5M1MMi0h+nsfM~mIZo-?6AdZJs;6QqPa zo16eAal%B=p^z`!K|K*W&iM&{BJ0Wt`zKmEjzn|_D7Lr!ITVe)tRCT~9LF7J^!YtY z(@zBUm`}l5W4UV$PEzUPG`tvKqs0lA!B_7`vf2fc6DXK7d`3vKe-2IU2n`1=jDxC; zIL)tnfTK*^Co`OnV9(`uING9eG_w($Ae+PTTj(@XWS#tY2lWlE(i+@*n({kv7VbaL zijAn%?@dsG{OQ4M*(?4=)PdExXf?;TnNlr3J^S0gO!9wbSUG!>x-mqh&fnx^OL#oHu1@ppxm>su zN+LwEnpCa@tJTr#eeHFSX})xX!|Z7KaLHM%>rVBeFu89uI;LH%;RbI@ie+9hsl!82 zx357>d%dxm$?i>d!rnZ*KRn!JNA>sq^`u#B-1Vw2&Bl085c_%K?coO0&TrF|^t6_4 z4$?{SA&nb+E%DXn-9xtsZpV4^QBL*W!Bu6XrLLt%{^6}NRn7LxJEy)dc4~BK3@5|K zLoR#YYgUWR_MoIQ_wwz_wPHWMUgU6tN##~jYkK+prN*9>vqG!)UK?2NsZ6i=K7OoZ zT94VMmwbo6e644d7xAe$;i}`>CD+y;m?yq@(MmoT*KgPTPX5}$4L%(jTDO?$*wbvS zR$)a!?wBR<>BZJ%#%jEt?-fwjuJbk2RZ9IP0b)uuP{h z6vpGnIy>RA{Z2BK@7};idg_HSD+RvIR&Fv)R&C=3>*YJ)C9UOp;O5=XIQjZM&m}9v z!<($giP^)#$Y#1sx7Oh=9#gj5=nT%7S4&MwZ)dj*Fa%v1jf*onJ6--fQ*PxqR(`*! z<@1-Xm+;m#y8m>3@qWeMPCIOK^f*l=JNMJ<-H>na?~gU+CEaJ(^D%BP$ED;{_WnY; zRhv1hQ_A1o3HN8r;}bW$?}%r-eyd+5MEdCy5?IMYmmRcXjfkE+okOAe549@ z)>wFwc)sjRz0y;&SGukjuMZ!u%FTz4c*&?%I`>e1DBst$JL{s{71(w|D7QwIoIAAN zdF`bLrpl{OsNa-dRO$6v95n8@H{HYy)?Uucl+1ET_IdHb5ns=P83 z@ANnAzH?qIFce~Is$sv6tlpb;ZafI*W?Ohw*=fHvdetrsvs+*u zxVy8|m2iJGnC7eOi&a+Hu0um`pS|cOyZWf2DgBaNGGG_4ZVSA8RTEkDVj^4j48xS9 z!CB`}m(m>jbYJRQ+N3GG)JDmM`pB|(-E_ZGYUG-@!7^9LUtGV+)d6Q|kDbv#xGFR! z`TA&(Vav7p;OXWu`93LJKD}97O*5;HFO{x-W;U9Sg}3v!-sH?m7jBE3S{(Ooaf4^2 zQk}159>Fx(O{#51P~`JR?zSv0@^5gj>H#sXzO(r*;+;bqG zY0JfGs&jeOZ@%-+p!6SXOK8;8bmzu=>T_I5t@WTZzR=B5TjQ?UJ(116q`Ue2tTkpR1?#k!6o8mbb6^pl()LW+6YIdAKIZux&*@sp&b!OCGnVYhey~R%_xe=4zU-zi^x9?j?2b`8O}*v_*yhs(JDQ#; z7rb#J$({GXBiFjpEHzynm#kWKSkrUDUE{i1&u6>2LZ;Oz6xed3+866~R(VX<9@>ij zm}1hSv~uq>SUpS1ttmSmOHcQDVW@T6g&x-)+p0W$O~c0Y$KqkOluEs@V&ye|&U2=6 zpYJgJ_EW*Oi@m{K&B(lNW$!Qf_TZvX$v`1LY+U3XT2Fah>bE4(=w79& zgIBG7SG6krmz$JQsI_o|)oS7J_7;HF6W12{tlC!qcpn{}i%*wlccon6|FicbONwjR z{R;8CX$Mt_CZ_k|b%Z1kh7vzH7!Y8K zkossIT_>{}yuW3dBX*ROiH+MCB(s@zN@^2XS=MrRs!3)>Jxgqs)AH2Jkq6R{Gyo3{ zICj9LsZD;{;s=0BGyQ^ptN+HOQPt-zat%}M@la6f-LyN^#7e)IE*IJcM*}fRqLps3 z6AT$#7G3{8dd5=VM`~-k9Fzv7@xm^5{GO1l9GS|{`DMBe?pOGtJmLL!3Rc^{%ofQ> z-z>=1u7@?W+wV|=qEay@9l1+2}Z+Q zi*1^$sk5Y>5okjoQHC3vW)5%kx;#l#FrnOAmxhh}f~HI2crq(!Ib`Vn>#=+%8=y^v zSXYXRm7|pzqTL{~lZCoK7B#Y27@$Ib%B@ge`fhV62J2Qxr(0<-D|5(AeSpdJ6wPay z>5|P3H5%oDRUTw8cSNUknw1LERccgCw^>_kt2E1&$uem%rrjS^^UM08*j|^oZE_^k zx`@r&2!hrKc4pDUc(a@l)zM}U2&tyAC>p9p)(d7PX$k3pIaqk5VzOmsL|eB7L#o-n z!8B7SLhomFl;BG8YU2#+!yH*PYuVPENES9sU#jsCAl~rui&VE;Kn5L}#>bd#azeX6 z8j9>yk_)wAw5V~3GP$HvRjr}6RJe{$Jd!pat6i=#QGHh856fM)wO|gNtd&Zx@g&w? z`2xk7lsjmCGpFj*tl;L>HP4hPrOu$pE^=Dmhc*_gZl&wByW2iDulKBUQ_|UNN@_W( z7pyX0W!fxjO^rNbRNca?Ps@H^TSF|r&TbvXl`4X&jh97sDVYF-KzqL#$Mn)Y9;;*mSi=(a#yuLE^{R-S2pwG+RSYh%&gKZX6qBPRdRE! z0_}FFDrwc|ZMrd}`?A_!O}NTxxUrB1_nneof%nQOdz( zug_*SozZIEsMCz-S@beMn<-u$42Dysw^`z*%q8U#rWGkuPcAmq;g(yd18l6@vR>IX zjI`vY(HhI4&0bCDigUK8r~?Jh%Ka&7m$Xo(G;>bLVe);uo++rQa#qq1r<27zUcwtn zub9l*=~TN$BjPqWZp{bz+ssZ;)!mnJv0k-iemD_ zh;Q?5QeC1YD>@#(GnXC@` zqhYZ;vT2$XdUVqq*Ua>2oua$!Xu>wkF;jK>|vVs#|(hX{}1C)0L;=oY(3#W@4#S^|~^gv=zEMGKpNncB#F2rAP%K8DG?rBoxdt zSu4>Hpszbs$u^M9EO1&tqB!|5cELA0eSJNRjL=S+FAcV%E|}|0yXzL|S{o<^<3KJ0 zw}-!4WV40Hsr(pR^g#nO5dMdsEVzGYTQ@EPRN0lyT8OWP&`Y3R6yQh>J{d5&QzP=V zm(^EQ1b%#=yu@#DsM}Bj((fU20+ZYVb>))I6Of)J9CUlv<2=U7-DVM7RlraSCsROY z==LEq2^J;fC}&r$YG}SJ1Z3k=2=Fv5j-iqsP~}P;kN5IYAX5NEczLz1<%?6S4uQW- zc)t|9Hug!6%7LCbt_APFmwy8;MGNeXhOWc6NQ86F!~A>BLlBbi2XG2vNIG-~5@;6N zxdSuAA8W-@ri!ZA-tX|M8o2DB%MZf-J@C)|vHl+TA)%KOlh-sIwWRon?6TMy<^w!ftzTMTEa)H(7Tg!74YBX%O zkU%jbI%sY#&GhoRViJ0Dp_`0WNpH5Y$#v}VP{ON=rL;|XB_rKUmb19*tC^lG%uT$L z(=c_8u14)z__xch_ zdqce}kE+uiy{({wX?0#7rE6Qhw_Z#6vNHosWB3;%aIeU_?xm~whO^Fp% zCPtg$CS^#5XLl*GNexY7EW6ceztvmtO*c1dY;sCEDNstF>6ICK*;%?>oYB$)XDKut zH(eXGiGE|y@mag5`&y1?h|8^m;j6Tn7MT7jxm^I`#1o_}KQm^?#-B7Rg{lx>qvT@E z-nO}<>$5z5pq-rZ;>KF`(b$0(kQW~c&_i)^qZHjqkKwv)4YQEX4|W3d5Mc0;-jkv` zfD^A(r*oi(1s>c2;^-W}@|zSrL=Arm7-+lu?~-Jlv?2ZS5I#x%`DY+45+MHP&)>8l zZs;49$(Y}91kZd^g9xQ>-~-~GOc2}jO@;ph9&Hk!J_Z4vgKxrn-@a#%9I+9916fm4 zm}U3R-=-?ZFMyaa4H(oaK@kOm$vD$ATw?(O&%g#;D7X$K*jv2J8TkbQG=j1p{}SG` zfuOrC(m+T{AkuI&6lr-R`?|rE%ib>2eo3ldlIovXQqif+CeLiZw7x5;@-5C~0~Z2Q z@2%Trz96zAu~A+32h&NZ-!Hb^aU)f2^)N?Qoxz-6d){XxJmmo+wiO$2 z{mY_cKT`0VFhNg*35H--q)8w%?{PT(vk`(osxbgqqAWkSQ zR|xfFv&gwCV@0jdn53S$wcYofn)y~=;e)p=T>LZI4UrRO+NA}%S>G-H@aXL6L>3&iTVt8>> zf%p+shV!6$#m8j5daWcJ^85W9SNJYR(8Y9B#}slRIj`kHI?m8@DtE7u=pAD0T9T!I z{Oy0PG4>aD1V@vv0*#-KHcBnuB-SClBqv4DN7y;&(yv> zdP*WF$N~~FLG10~TAH|QI5)egyO6Wyh{UFlF+u(oBu(5sd()zS$1bHUJke&ZQRmH2 zL(Xvxaib)Px}b^O(9ENB!Q1CgG$sB~Eb8W7oRnhv$G`t~g!#Q>qdlOK`L*fX@9_8Y zpDU230cG6^|0}G?|J}YO*vBnNG~B+-p+E!I$_w5B@1pX2+~+W5)jeJQ3x@yeL9bKS zq)z&SHRmfr;~fF9Qy0(l1P;`f6}uOCAHNmdF&rzLwn&=r6*U+O_5L_oug(FR=Vajwe@o_7i5VSK?=8sN!3 zV;5^sPp?0C0pf{n8&oNLIRKHmCbxh9|GYA7Z|+K8eF!~yZyK0g17+&Y%RJDTFoh@% zH8)8yExQIG?Q+x|%fx5}0b^AI3QOrlXf75{F@vHH&uT7Oamtw0us|7)NCiq_4eg}j z!3U1*i8bNwN@^Xi=6CcA)v-qS#5!j5wMjhLrVOp3$cpCohv*MaoYPoM?Nv~HR+CSh z$WN^Wd;VcXKYm*F{1x!U@4|03*qr|Jw||=&#zN!FMK%Ln1F~ZI`US{!`P=a@;8}-V zk3sAx!<=X*$_!Msb!kP@Fu@UY4csLvZ#X%cn8O30j*&<#7`iFV@efBO&HaCli1{{FZB+!gcH6yZDY zwfH^zmavRqRC`bqD`DA+swQ5IJk@(E2(>F>?8}YwojR^51>kYZrD-fpg|o$%1gYAx z;mqU&sJ#>P*`LY14p_blZHq!sbPC)D#i0|&m6Q+a7=KF~)xAw!Q*A*x-_KKRVGiP0 zC5VAyd#c8UICNyyoyVwarJb~IH%__*t4D(b=|QQu#8l)t#}eO`QwK@yY=5C0UEqQO zm;xk;mn&rRQ2t6j$$CFO`8R~CJXHUPQf4XEv|>nvmSPoij8gJB){y?PR1MpXWKYEM z6htc29Z!QgYqwnYm_Br0ld|Y* z+rH(ZahB!3W@ipo9vr?D2#SNDu(wH1w}#3VZ4qIh{$b3I^)8-n6QF@sKy zBHYhbp4Mu#!uB!FQ`vvjjVOjlytV|zvXrGimC>rr$7+*%-c*|0QV~?|iw-T8-yvct z+IS=U~Y!NrS%;~e|HE1ce_&nm%9Lx4?knpf};4Keig>OC> zelx%*3FZD;O!zhnFTWgsN?mi3Kl-S4#Q2ZBLb-SQ$P+gOe^8OpGN!T;N!G<`OWbgv zmhH2elOyrxn0D6lTKcR2i6^=HeC6wDp4sQ2{?f2udZ7sI#nTs_X6>v+Q<0+RTrt_z z`TI|^ku4E8(!Lv}AU-XQhvRw2Q+1gYd>D-?sk4zyi^i(y-ODqdz}Wet#6r z@1rd);Wo1mmv>YS#09`0jG$av*go=-PS{2w=l{{bT!Cxw#h(ojz+nZw-VF|b1F;@D zc=V`C?}WNQMI>IRi_Q65DS;m*Xi1%mbg}>Xk|3>wxLJxk7`JqJ;i0N`by1F+yR7(8 z4?bG+Mk(*Ab3eyl^ct5)($VVc&f2s{yVBnBk8705X0HB7>y5AHTKRBZ3iWp*aU4Z$ckI*b~074%62& zrr!%NyRQ{D;hmbnFD$@Xb?bNTj?&#AtS4Bz>y5>2VhCtgC zGEBs=-%<3oQ)uU7$>Yt)Uv4`#cMbZHId*c0_eM0jb8yFLfKG=PB?sLp;ByA`^G0`V zT-U<1BCOX*&ZEy8(NXe=9|Z-k4e5GR%8xmwt4A-Mzz5GC%81DaV=;+e+~+4iYxL*i zJ~y1y{V@mj&XM3Bb+v+1JKuNlsNY`$SniQ+XHW#wX}9*Meb6>C_L!b#(u z=;3C%VmpySmSQ#N%Hq?g?TP7PBAy?L7gnHbpSN6*B0+xf#`7&*^YlElp)+AjwXQrC15=EJ?YfuA&V<`S=--RtVczArZu7^1I(yr|FZ<^c>i zc=Wu>6ZYZ6)%`DQ4gA3xPSm zjxe?6$vQ&WaDE*_7spKl*q?*OE*|B+nRv_`MDDd{nud8z{CvGGnvj5S z#9LI`_X*v-s?~kH>AflL^y_u|2GjWKb^3Zbt1rmn-i_=2dh~~0D@pbXCF1t?&RyY8 zLIw=^{*LMU_4@p+={Byb>qUefuX zxWG*VeoBluz_w7j$E=yL#=z>$H_jMF3xC{$F}m#&|%F%;@RY55GdwwGnO^1PN@AHP~ z5r;U8cGz)$qZcc=Zk+gp+S5iDO47xmQ?xA185qe{UPlL97Ppd3?zJ3f=76_#)_dp2>%9 z&4=>(_syNak97}S0H4FpLKpEWLVg-uU|F~XJGuyR82xN?5zmkNe7Zp2C5vZbcDxFr z@420C!|c7-=_^Xeg|+M{nrI~&qMPU#8V8S+A1vI?X?cLEw=PxooK^p0vapXWx%Vv5 z9+dw5CE7okg&}YmehRwy*m^x5M;8cWO*^_kf;w3{y1*dU`{C)r7wupt?u*d{_!B&7 zo<))q9HTDn{RBY5W{=z&;1p4a%(2}XPut{*m)_|y#1w=g-{{kbZ7ywJPB3P;l9`ph^h$wIjEYs2UXuU_@9QUp?dPm+CRHaA8PGKTc}4LA$t-_ z$$x2<@~%~KLh$LAZ2EIJ4RIHz`B1w&5(ZNM#*c`>p?&zXU@-AQd_A=e{0Sa2&!WRA zHeK>w20+3#k1gnIjKF~R(EBSyL*<~n`scQE(Z^Z3?=AVI5auttW8%)voD# za^t#kzk>2=reaf~p7vDiDvvDRab?EiYkTV6%Em=ekcA9IDkSB{S)Jq?Zq?l+i!8Fu zPvlR|59Aku21r>Cl2Qv4L~1+>dn}RYMx)VhG%V-z;HY*`Is3=wPr+~G`O}ldKQWKt zlgjfa|Hg-J!n3B)Y|tb4D3o8o$MT1K#J}|1FyI4Nfz8 zZ00`3V2+xr0aqJyK>5$H_!-*b`{-x%wEY)8&@&&#tR5fm|Awz)dV0`*v7%Aq2gl^u zY?NMAzuv>p9}ar}VwZ%+@Z)rQ&rT<=alx}XDV;)L+c zdA)tosU3*XBOrI-t3%_N-CI3}-f)PIzBL{$lA}ilp3hM|uEW?4bNT;kjcWYI?Zn|9 zSd-9`FEY0e-_QXEebSJh{fixgvZ)(VUw(>Oos?w&nn%N^F8CUp)-tNcyWzBEI;X)e z`Iw)`4$IthnZiwSkO-##g|f$C7~{lQC}!07iDdphX`GhE%cI~mu<&S zrK%^pVX4+8EM?+3s-whF(Km`5HRYj9hRTyo)}?1#7=$Q-UX*i-o)mhE;_cXDqqd`+ zyOA>3#AAvq-_mi~o_S2B(WsZ-W9oo?i}sj~t1+YI?lET!))%i$JBv0O2|^B^_bd5Yey`l$z$rkV!nG!`FTv8Mme|Wi7;s*rQZ^U(Eb>; zM@^&J-f#b@(<~|9!G4MPuGo5FBfe|xDASptKj4>q%ui&FW!_4Q0?9!lm>Tm>ozkUO z_tcwe=<}vPBEEZ5`b^)3QQMK|(&kMSB8&YCc~cGJWJf7YUEY*hlKkD9S|Vs6QpE4x z)ZA`5s_m?PPn$QTmPmg0rnbU&b)(iQzc+P}79o;@L@;%FQ>9D2?x{D`)aOm5Rg@NX z$xH4{)r@L&zrCr8LS(pqp=!RG(K7eio4Qa-puc-lO9U-M`go&iK0s%0b5o7t)?U}~)NyC_{Ec2B*j zmNswdBCXoAuuES0O26YWnZBENQzbn>Tv~6+G|bw5dsAu&^mlJ+iJ&D-AMdv})i!E7 z3bbWdwHbW3fj3o%li2UMsd>I@?dyj%<(VeP1THMnGU&Z;!PDI!~F|+Q+4B{c(KKFmfFCZQcIw}ds9o6MY~TJG?j5E$J!keXsOu?5I-wB%SZzmwe1mWR7LtN{bN5K_Zw- zxha9B02cFiBDW`bQ}Fd?&+k(|fIoU(7+HXsh;7>2kb#>Zl#(=cw(Fn+kD?`WLECY#PlS3EYhg_9P#0hum6-l>aYO`nbEc z9GjV?g<@8aG805&YcqEqU@-HblgpDJ&k#vLPA9C7}*pLYFjZ_nB^Ee5`pHooRlhHlLn12<7 zmd^*NHzWSx0tYxRl0ofSEOaEv7gc-;n{4+W`4>J@&iV0HTM{@eu}W{7y61U6N0$Hd z4yMYVgQYoc39ac`BmP47#Ttzr`e4@o`2BAW=EcLkZ@IzP^TP+`K3ESI6U%wH@q90k zAmahMLS)6mN!Fd=Um?3=q%SY4)yvDp9T`E+kOe7&EbsrgEFd16yo{W98OJ^isQ*L{ z&d36&MB20k4@ufQ#80$icROMB?TE3EvlsL>FY=iEqO4nQ_DFoEY*8AFnOhoEt4O7)@Z&x8NgPi%VjHf0hb+ios71ap<54!?(eR9}w9N7`z#?#c zI`Z5g^sSKUn`1cCHb2`MTRrBmkZGKsH_!&^=F4rj`{#}>a)zF^nc0?OPaMvd+8_=b z?^zciGY#ZiA!XUO`HB*5o*s=?n|-+g9nn6UjL0*$hDe_c29tn2Q9>h4O)M_m9toE> zWaM!%z(3&nfQ_O*II=V_$UXmh;LsP=G%{s?&w8~}M z;WA_&H~5f-)b}2#OR?6Fnp{C`Iwep~me0INKx_|8=oc|fp&FP=EMi{pFTlqKiO&L( zXjr5Gltwv!-{p=A^#eYf9E%K?={X_CR zWcHA7*+8s-fW`zRBs3=BUTF|ok1m%Q-h83K-|FCKIlN0O5v6f>98Ih6V>4lV+=Jpc%Eb7A6q;3ugvQ8#GHBsGc^)=YA69+E5d?7%w z463V+ef8J5!7DS9UA4eVV;PG>rN@-j4s@!9&)abVV0G|&yN!0Ex`Qa1|Ay$A!SA@1 z!xU#A;`yYd;6+e;DFq)LpGba1)LAXPB9wM=*4|A2Dk`p+<){?4o#m;!$ZpQq0&6qB zg0Zna!vD>Syv(b!=&3&}TWAzn%gacexKG@lj8{dnRqq4;;|#I}1_ zdga7oYi85DenV8kua(!=m|FyN5YUu@*!UU()zrgyqHS^m?vWj8o0@J?n)P#Sus$q& zoaw-}W#Mv$1G|o$0|z%U=C`(nh%2qPsv+w2x%VqcUT=8zQ6DpEEJNb5SQ{)%SW&U2 z1RLU00|ybKJ*48qWl$fX4PKwi9G~?>t$;S5`f9k6pM^l{v0}W@biu1tbwT>U;ar&f3Wo@n~a_X}u2BlSwwkl+tx1<)^u~14>?eGL&DFeeIN<4xp zK2oeG4KU{z)Cx+qRX2~lAb=8fUGPw6LDWtb#15dox#>Hhw23HI3xXic0;Sn`Pnl`L zvMw4rkfa37_1vQ<=;FK{l7J;Y#&zQ>>Aezf#KI7OPY+m#TBo^)f>grc5DvLOw7?5R z)f895GNfR8u1jtCa$Fkqc8ul->XWCZW8y*Or;&Q+-^s%_N#EKQ6kHLg*X9~~F{lBh z(a%WFR3RW7p7l`K3nfrcf2|9aPycnod{j_Iac-72I?A#>1T-bnB&r@nfLknk!`UaW zadZJo4y18IQx^hg^{2!*xZ@~Fpf=F#O7O6XU5$DlOMZ4o70okqIQzCveKDqT_;R~L~%lj({b~M$q`#uXU_~ZSh2~j4WKygs0|vb?xk@eTIS~==I%0Pxb`65 zzy7$t`hGn(R3+m)M&`hIQ`S6cm>=iG^fnjr+|>r^+Uht*+mt`s*~pRb(gqM(sOW5Y zps^o~P64dBPHATXaofU7$?2~`zUu8ndz^fd=K!Tq0!QWp7Se#QH;W5mZIGoAu`Yt5 ztyvegVji^Z{rvkG@!;)#ck(tgQ z0UJdJ0FCuISgmaX?r?@;qYb3CElKAKOht|oAWSK+8tt^Ll0)4`REen)wB%k8d`Ise zQ}!8mifG7wLq&5-!ZoPcOf{K>jP)x4TQm}80f8o)8Tafc6|?XR(-f*CP1ULfraVxs zxr#18sO6S|GHt;P1kOqM4a)&3A9-z+#DN#>k|ywfcr(Lg^};1tV?X@F&FyR z0lw2X_kIKeHl=v=BiPQ&4Slaau|@ub+t7;#ZY0wSBC?UTL^-a?R0$Na$~3;rcq3SX zQFToWW#}kDsvmL>QyUF+%?c%gU~@bKAsr`=g*rK_gf;f)kxwqIrgG`d$>`cWLa;i_U~s$}K1h?eDH z&B?F7J1SY;33v{>JGXK&du*jK^M47# zM4XaZ^CBdfq1ogJgHp999AVG~Ok52V;4YU_>w$*qhNlE77!N5fmZ$~~+e%Iem~ZtN z>P8!L@fK?JKxvjOn9_zyY0jAFreei5_Yt%K8=)HKDS_I^NKh0oQtKsui!=n(oAoZT z@WqN}pAoVCEU8`Y?NB#Xg!&e1%jGGOS!>2zuW!kbSxws|`GQZbX${XRfxg{{JoTvp zEBV=AXpL!fqZMY?Wa)71uF2A2i+2&+y^eaGBSQV>+-{kEfCTw}|NcK2K-V89QAMOJ z%PIFJY9{$`WBEUa6R3)Z+WGVGm^$7eF;7lT4#^+C|Hu8bRGzuy0cvG6d5(zx_FuT^w~SQ@gZ!jOE6pU#7djVL z2pSmV+w`_@xuV=R*~Y^B_sZ?LI9HiP-+D}0A|8YgXn9U3OH9%iHS4{Zdi^H+~BRZAT(!> z=nNyac8L9U3^;rRY?S!kwgIPY%M^26@P>8NFkV`Q+nk8BpoOQ2scp2sTDM7-Sn`-Ccu?~w8G^ChNJBYu*-C{~gTw5;# z{2fk8;A&NEttU`L)Jl+s){{0)Om0xK6-Ytg*~|*{G5xy$R-KgY8*Gp=SfvF=^0QOH zOlr01^{UYNR@5FY43ynPy_H)7jhox6>q2&*qYfJ}mv3oeISv{7%oVrOM13{9NjRQ_ z1g>>A7O_va2BA{5Ace9hV{p@s?w6k9c+Y}t(8v#(&_MeUXiGe8-Ev6GYTPP@e`luI zOVGG<7roRgU&)7n+MbKMXkg!Z%p^Zs{V3X=uIfCq0sZ#6(PiJGfw;Yj3uD>n(sEzp z?ncqA0vt3nyUgJCCH16Gb;}Kk`KFqv$}}awxO=SBV8uZ=eTCY{>!no6PB&@dq6QCl zL{G7}7ke+T(#%j5*^0FZ=!=1s;NfoKRsw}8$r?|%3V6t=52K<)LOBIWpq_mehSb#t z4|nx|8YtWmMm4!k9m;iAf7UK1)_`lX8S8Qbb{xQMgw(YY%i>Z{jQpuLb-z@2nQb_> zax;AHx?j7U`|icV_aFB+KXz;WBtHvvmKfr+nh;RWg*ZR%y0;HEKdw7p3P=}er@RV# zP%siVs(akglhPt~LSwE!n&EnRLjj7WwcI=vLDN6op5N@2re|Zv3*nwvP9ke0DQGNW zlccJBn{0(S^blet4TwOl@ zg^SVzkobeHz#x7>!e0l8Wr=wYhXRt8W4)pBjke*@uh-`}L=pMTLX*i0DMBzy3n?HZ zFJ#O}7;XYQuH12^FP1@teCChF7$jb~5YF_Niia6_xK+ zSB(@8=@t151i}i5Fbu*g3Zk@9`2PU_0RR8&eaUj;x|ZOtDEuNS^0w0!NzJ~M8KKdZ z2T7LX^sp!gMNtxM4l)M~UcK)Agx*#ydePIqqr1Q7{XqRf10X4DqzDcW(%1LJOG_jK z8~|rN2M2mhQ%xf=J>v~Ql71W&b%~dcl0W}BIX%-``pcJXgMY{H^*AwQ(`RE|=j;6+N7+=4VM?{q z5qfHhGZQ||IsbvDXSyNv+dqyNCe7wbsp{fUMI7*!Y%aY)z1uL1JLX&#T?k8Bf8GUM zuY=zc2bvC61Wmx#%-`KE*_BDdxw(JQ67*!}kFz8_`5ydo3V?<1oAWUkmA6dI?iReR zt9`pcI?aAG>CgB@i)((aS?1!^K$?mD#mllN%Qrk4OBM&P)#_M_j&x}_+W8u8*GgY- zSWSC%C(W=`^rL~K8)jPreIQt6e)$`ES=MArQJ3DYJW#cZ60i0h5LE4#`)vWkV%g4h zsSiI6!C%ma4S7DF$$YeRo0$4mY}rJ%$_`|+J8_2AFGOdl(9}6D?T+ZS5bS^5Z_WlI z*tRXK({L;LmqVd{F_kNnx!vgB<$JQ&0wWG}emvSm1ZXd0z%{{S88ij>rESUJfj9#c zZU0b0hzgPH$596D*n)6AsDpF2a)mlp8O*NMkY#l1-Rr6cbK1(GJ-ftbfL`!bXFQOL zA_jzrArpjo$Wd5q3Y;3}9sD zIM)HIGwL_&8tz{maw(+`~8gprRik3rQ$a zWQ52WC%+mKi3>DzUkphGWdjX&kFxml7TdIpHDK7hK>D> z0bG_aZ~+n$Vp%_Y8*Xb5F&R$22FfIiRlbtXB>c_ftDn%uw@lnV2kIm&>97}GUL9%Z zBpeA#A|U63zX_TOI|h<>5-E?PE$ynzkWahX%i|a(zJ!ASMx-a@``{cvQtDXgHl))w zC8fv9yeii$@+mH~=HU@H@=wwjS!wP{P2C5q`-B+4RJ-eNPnnPg5c8A? z36F^nJNRndNK1y}f7E4Fu@q)ieWmzq10(VjKbE@ODwe|Bs;?Bk4H%+L@nfmW-C-%r z-Pxbw$Jzdu-7UUS{I=+zUnzbcU{Ian$5NNb!P1+^L4?Hpcww(%#_9k;q>yMxUA&W} zH{MAE4S(BcW=KS&E-1y44@wbnrBxrw7sbYT^|{lkmh07y7bYDzq=Dn1A`M$j!#QA2 z8ai0$iN^tubU?_>-NDI>BE5(T|4MT~sH+Fc_xF_Iy%jWZFrXPg@y+6Ka#l&hXC6G< zjIXjZ_*IfghEiEL>Vmo4VS~9L6=5${cZ`7uq*KdqVB7Duh!(a79482A;BZp5V}T8y zgRIG1h{+)s2zBWL+*gH+eHb8X!{^sv2p^^O%|vQ_bJPWLIVu9VsJ8L~6}dv3S?wO1 zeKO<~1>bk$FiSpXEL!qf%Rt+P*6@#A%YG~3go_nBZ~*gYa3C* zmm`tyi+Woeh`Oi>5LX?FvB5h^=w}j`kzVg-7{?wRXqvh0C*nj@SK2$q^{)2YhH$(= z<6#F*2bR+3puhy5N01-qZQ%(U-0*NprZ$FcvZx7?J77=p=vz-SO-%uBS!Ccjgp;+u z*wY4U0l(M){x~WimUK3>O!RdzRKrrb0AldUFnJwxlFB$!6EqoKkl=$m8^;MRv!CN|Age6u7BH|BvfS3j};{h}2EcVi8^2g6+o z(QQISV#VB zPcQ_--@R_T*yyyH?MRiRSWjI9+d=X^BSL&b5M>#IZO|LE2Vfd9Fy+_lhyxxxxA<+%ybRi^) zrIJO+eg0}LRUqfD_HzK%loavVFvYPKe(mlc%9F{dEEA;^P1EP?O4FA+nPOS5Bl6@C zvZq;UpV#Nlf~NM-O|M}pk-#4gWNYTt#hQ-kXnTZtwh#K)m`6zZpwBax{s{4)bYH=;I|Zg^tqhV^ko|YMzY37B4HUMiu+^mikO14 z9+UIK57%HMT}eac=c4{EIHgEPL-;SeJRb2>Lnw|7N&cq%ad05u0#xxQUAJh}1Lg@^+OaGSsCLs_!oLaZG)cv( zVMH24Lz6AcYb{CRBMtWqc!0NYp}+ya!ku;ZMP)NIUdurc5C5X~A!O)_*=5Mb>>|M+^4??mJpY;B z)bsB{vFTK=tL1LB^4z@Zw(g=lEtsV*3V_PP{e^ux5i7cW60;>aZd1m`q{JDU;!h1R zN+(g4K9^N(LAms(slL4~P3wp3yCythbR1lG16jEwf4$Y@LE z<>+$}=BT`$juoaZx>rQHVo;*jyMNy zNyAp1@yggcX1NAoELVpIpw3h=O7f)7;hX!k^kKJ*f2*czhGfnU@5%H4vIehnJZb8E zQKuQq>I`6|I;0vQF;CV=th!dNzw3-ku;QJ zx>bf(N!9=#Q4YO=__Acm0|bp!lF%1E&XErvlawTez++iYq&*6=X9y<60ODlQkZ@D_ zIrYj#NV0kQ@&)prHecYkAldmB$wuy^WKQ!@(ky)m7x_;USgh z2@Z7-xm&}J)QIwSmppw55&6H|nJJUkSAA?D_cTyCL97YfdGhH56ee(!uK0*@AD$l$ z4dL1tK2B^^>YXT4Y4d>s`0*0NVFUQ_5yV=$o;NBGck$R1@kld>9!CNW0V%#bTRoK# zB^lEf)6X9^rXP}w1L!IksN%z#64fZLmdytWe`OZM4ujwaY*5l*FdSvc_B7Mf6t`~! zEQc(@-x%*dj-XoW5+8JooC%t&>2ON$zXh@_dfSJ37aU!Zm3H?k0 zAnNsghH)r=JnX=MAcAtvevDv^kG#$IV1pYT4rXd&@I1?*CMew-tN`-RIamwcvi4h> zxj0R2fM9VRq_dn2G|hzH(aWJ_I$zLO0Hci$B+o4-ZqN8*+wEQ2u^+oa57FRtN$bzM zpzC#v?ui3Uhd@Jv*uigS#@q0FnG2_p8|Q2Q6JxH?4>Jp)vyA0HG>)+HQ4m93!gdVt zZT?iS6C*+mH?Y$gaK=N2yn~JB{6t#g24K#EJMd3@G7r>A3wV- zaydtXaUWEXe0P6Vi?Qx-oB9=tPV_no7F$?+ zu@x+Uw1T6WEo)e8-VMGu=%Uv&)r6`hZwQj~qK;waH^7+1^NoP#qBiD-xZXQhfL?c=k_@#}u5)Swpmini z=fD5w|L!rZy}$nge+?u5tADO+6L>JDyo7ek<9p?f2c6R2|7Q%H`k>r+NOWxvIL8YY zU@$Ckee54C!ssD%?uw^j5*RK2m;WW@LhM}>{A`!d*}~5L4|Omky%eWiS#Y5HK;FC$ zsQ0TZVGt;gQ?PGCzU&uVNGd$PV2TNBonwqBQPZu*HqO|#ZQHhO+jGXYZO<9owr$(i zo%eflb90j~>HfDnRq0fBdRITS);XH6-o7hTfk><(-gZeE?OE|=#(`a^ZpIh~-~-M4 zO!hM6koD1Q2-w)mQ#}W2@sU_IH^{2<&gqIiGVeM+MmYqiO57x>uNC?3hN!x)8 z+%_tXtH~`P`=uC7@Pqv_;y1E-T)St#VPChy*^<^cx0HU- z%M+r?sPWb;9BYTum_zh%(Cw59Serr4TLh)>SU8tQeu{Kk3(3ELn9|E}P(S*nUYb!n9;G z+Ds`$2%Cbp1^OWdS-{fU@_a1|SB$^Qi7JV@gBaJ18zrz2Vp&ztpT30_D-wNq+Q!iI zH8w!-V6Res`|87U?rIXwp{Mp_?Noqp*@kQ4{!WK;%^>V-qfHEopQXz@)BF z_NvH(KovcdsDp5jRgih8W0@rokZta!5&%xV9hh;jAP&2y3x{>GP(?Ph1{ zG;ZE1S=^m@-a*!kD)h(cTiQdvEA_JJBzY)hggy7M=QSHUrF#=(0=2Foi|HSu%J6$j zEeEUB$NCaII88BLSZXB2(`N1(s9HM_o-@KfK=wMu_6@Jvw_y#NjL-T&>xKD1UZp*- z1Di4PYV{_kY7 zt_fy=bOd}~`Am940a%z(q!o#jCa z(|^OrjCnZ1KF|AG23Tg@@x_RiaPUfz!Ws}$b~;owfc%P$e2F>O=pq5(EkRG?GP-&L1#?3zaJYIMUn5Sy@T^!x8Dy&r@19t8{j{W84FUSW=vyDa5 zoy!piN}D>I^goS$_Q1ON>ur>-LCjnicf0ohgDdFEx{3n6+Kp5Ep7}5#dj$cR$HeNB5vaE#=YNT4W=2*n9W!yf@Ww}$K=4GY!FXbJT1fp}j=m1LS&a;` zlip>5C%2_lX2YIFLx)ejkwcVhc7dh!<)GVk;Q+L(=?ShrG=V48P}mnvW%DcXrD+2y zw<6I$ExWmbr_<~5a$G7fS*3y@a183^vugMp4T_IYm+)k4cGUSQ)sn$c|G~iaA zh#g2bWeNGY@ptAXeYmK!+2r=8uNKO4Y9f6 z>D{}p*P6oZ7F;J0tJ$)LugXiAr+ZUX@)#OfBGaUGonG59R)O38nO%x$hc2HiuFZ0ujL$AH|J>ibOVDJhJV_ zKG!CMT`$(d3aCf|&`4U}<7jzW6O za8EY*Pi*I_=c6lLu06*#1T|&h5(=@xeXKSRzAKzW7bdrL;66s=6iwLCwNHjtGPExq zNqf*`q}05Q=04u2dC0R`K6q%I9E`YQwh!+gxrr`T?EdCFK5};0N!rDh3B`CNwR6sN z@ouYEO=h$tqaslvMSN-9T4s4jU^XGGm{_*7u@<^wE$Nk~R;i+g zwcNB1OFq-?pshK}aCA>SQ0MZ|%2XNit@WHaq{d=MSw4xLjHxNfK--JSb^uwBHcfK@^>||3fH!@~yH~5^!wV1DcVQF2j$f%X7S(?Cr`#5H0)J!Mk>*$KmsBsmSj^ z7h|)jrq=Ai;G@-EYwr?ngssK!Ty2lFxKlOK=-^vBdwDgro&q-a8djBWS(x{sQogIB zJD1fg*0gYz5(audkC6C8?P+E4uwH|1Npy)Txt#b)#^P?g&3OPyIw4W2Jt@&N%Al*W zC-!^^yoSdk9dhiYRF=ia< zx0TbjdvaaoOSkg`cV`%M@9U_`Mi*DD;i_eFw;Uf5+bP|Xl8KJ4?YOpI#Hn97v_U|D z&DX^7Z;8Ao8|5VExqSJHq8nOzJNG%9)0TDl&#Qb5PuO^)Z{bpP>GFlQJp1(6q!8Vh ziD)2rb!uhVz?)Y~Mn=C_ZQQOF9{Xy}W838C+1{^Sq(-3@T~hm*XuYOinzrmev>Um? z#(37y;jOQ)*W#2ek8&6J&}vmO9-1vjxfesOrHf)Gre>0ulQ*mDSM_5kNhTien~bx^ zY)x6orTx0TQjO-Sk|#~udnwAJbkP@^^_p%RH9W27q}bX9HPasou9?l^rIpYUg=D7W zl5$k&!k0?g1t027ywV%bT78i!tS6gw?9C}W&+K*XOw5uKIzUY#Y6&hjAso$q z{(8z|rE)uzLs`YKW5p4*A)~iwyoRfXL-af&If?Q%#Wzp)xpA0Ste!>RlOx34w(*Ne zqpOmIjM9y(@m5xzW zDj2bry>to;2#IuFVdKRjjNcU zAexNsO(7*SWGOqAY>2!U9nnslL}uTMOMC~8CTQh2ygC7ADS^RMVJ(UBl=SUEJ;bS^ zA~NYJ6FN+T@wPvnz3G`$BFC&S16$Okvg_obnH-Ay1j1f-BklUqxeW%{2c<9u>LyIH zyoQMsHIUIL!aIj4seW0!y=^ZX3j)FrSe$hoJ#cySLZ>+K`dG9u=y2v}J~4s{0A93` zA`>-KV95a0i3F^qLk75C5`2Gph^`>iiwD&@u*m;e&><<-L7FjK#dU zuXJ;Vi*Qo$2(XGUXw5}LxWg0^7v zuP_tWqOXmgv@IIR(Ze-Sit8UZBmaGia$U0eZuAJb66yr4VMv$=gROtKmh9A0H*AJe z@^TJq;y^ljzU}k$XL}Pgf=>JP-J7ve0`_(g8jeS#pPOj^d_*qrc*{X<&IQ-;_ozv= zH3kktDQh#H$4ULqH&>KzEdhD}p}ms)osBShS*4#zfXP2^jev3(gE9Y@*M@ak0`O$A z#s7ny;Vf7Q?@lR-hob^_u8>$#3}3}nlrvxQCVoGPTQ079DPX56C@ z4_CItVRNvV$unjIdI;e%t3}cNlcJ%KT5dY_H5dkdVHx8bp9Vg@#)&;Zzvxa}W#cw8 z#-T5PM?lK*C#MF{l6>VjwGP{TuK^nFiZ9F^0}+p)$&ANP{DHhF~mxkO>*~D=zkSAaqsQ)o33oXDiP*Lea%&Uvs)v}u(eb`M3+y9F~F{60cgP*dvp-KmpvcEHvytSKY{jL2-w z@NLZ`IXRE>v<2NFpiHHlEv<+owqo4ZLtA}r@MS&ctAuDM#OU|wo(rNyM&WRliJ0&o z|DNQZ$@d1)0^^Ocinio|H7Y=aWQsz9nv9&w%?wI3Lt$`)h*B5LZAar5-EVq*@kIgM zS6o9eEXZYq71957(b%Rfb<1%D(pQdDNf1sOVCfvBZJPL zRv^-$oaRs69}Ju8?zmh`4S$0^FE|ZC!$w-fuP@?OHH8nj2u2SZB@@B3BrT$;DECDz z`m00w?1}ah4$2D!fFVmXgb_g0C?HwVOBWI^s_!i0B1=--r{&n`{^1Sni>-QyfB!XI zIY?UcW#Q=>j)z0#FN9^unVb=+!|Ih>rep zVZ^{^;1yo`b9%gbu@vphP0dBVC>|1KB2j}j*uT(pj4t%XrG^_Gf?!E5k`a$-nYUr) zDiIxOMHGrDO~{Ib>j+XvE61B{7# zPFnz1qZvl&M5fAIvNiHSlp9Vlgo{ns5?@70?lveQKLiF{nOMxR2f9?dRZw33&I^dV z0MoHMO3Vp3{II?zdT$D=08mboFunaV^9C|N&7coa0@b*Z?l~1Iv~Qw0Yg2$|E|ZM3 zlQ%SuZiU_fhWw~?$V{kJ7C~j)aw*xPsThcm0XZ~A_ z>Y;Y+vZ+DuGvw(~ZZyIHm^ombg=|l$Y&-VqW*4K2XvZ}iBHgWZqpQXsT8=B2w*ZfE-6$h|Wg85F&9P;!o~Ct<}jIQh4ei z5EGTXkj$GXz854nOOnLT!7uY=N!U>{(ahyAtg|Bg2jj)ToKQjUq+1VJqpgJ}+jZ6f zp0LlQMe9|B>*W#*OwzjThfsGO;t+utjzsq_&HOCE!-4RI)AHr6KA5<0UNAK0^|JWe zZjDsor7T<@cwsl34Ikd7+Z<|U!wqX-9G8sHnxQX)i&e-SuBD@Nin_uQ_}I5`paR)W zgWKWB4*jkJ{8QpSKKpZ`({T>E_3E<{HGrWV0%N7BXYe6XVC_{q=h*cjf;Y|iMJ?g3 zRe2Sfo)nX^@+>%%+7kIDMyq!)q{RTiNY zfC93<3a=Zsg(WHthD;B*SZtV5Z>&`8+w^`(&io+rB^xeRp+5o6YmekGJ_PO}k2Ksr z3;sK#25NYxMoU{~ zGeX5SNBJa-jEmc-eyN$dYh*(JrK_3&9y38q{z)fNVs292%iT&BA{vZ{pXBn13QC1E zm8azW7TBm!rO)xjBh_Sz$?A8>yA6MWb(9`Pmo_dFC?~h)(pQJ(9}~C8UrvdJ^HeQj z2OM3w^fkF$>X3Zlf5VX)r0qHrAuzw2=O*LA#C7B=yjLv&>f7ck;Ey5=4?5pBEmS6+ zEJvUd;jrg>@8sh{szY3+enBq%CrVs!{&_$GHaBoGrie#E%1^4PG*X z>b&qEz$t(TyFbg-YDIekJ>*oDySFMSU_A~q{OHMl+x2bV>iRb0BI?j8xrX^c=F3gk z>#p3igrPTpV~~TH?b#_d>U%?G1eT3y2M-Zog4-Vh?*A7eNv#a}Fr^&gupn>_TKN#l z!L-TC`gtr)4JE3u8lx0sY0(Ek$q|xwy+oFYVId~A7a$ME6*VeuQAp>oO_29qdeQA~ zKoa#Ecb&O}DNQ9cafKpUc1>KYEVAKxZ(u4t^(!!g4WB`+I73`}ui4-JUNVW|6?icB zcFZwxn`h<0y((W*R1;d`zwP3df4zyH9*UmT3?sz8{Q&+)jlpLvVPEp!Zms^BsgVmQ zl@gU!P7R}x9OGK*rtWw!0zLwgxZy-;j@JqNvCFYT3SHWf+dKF>8Yv-he3f88FoH{2 zGcTm#?jGXa-u2#|l=(CLhXZmf(_ZH6rGQ>kFdo|#hnvvnCl_G%1M1Vsjv0L6Y?L9M zXx8}A2A?gVbP}=B*(e$a?9M5M~$t zB-o7LB046FVXFc9g!S#b&-%WM|<4D9SNHHKeQ%K7x2ot&QK%p(T> zr0tTJz~%EJiDuQ`m4BdipDXXrn4G=>iDo+T5yVEeDT}68*UAFOk4-}jrQpbjSZVoh z@`8N83tWM_OXc}codlEc3G^D z4tmh6!=hJO!iM!>K9TCgA!%?~c*q1d&Ky_?l*c<+3+AiXgOi^88txt)OxCx>--G-s z+R07@7Zkv&K^s0<1nFs4gO{OWO)%}B5)0_9?*zd(^n+fENU^K?SNgkt`&WQYr=_G7 z(PI#JIWX%ipxOxajOeY50))#?@yOSQY*_4XQ`$!_D!v=L6WS@C!v;(zrs33JHEM4- z+;3Cu#Q@kq>}>TR4EA3>M{dOS_gLTils&cgUU=Pm6A3%)*2kOF41oa`D!$-yzG9n- z0C0d=nd*h;t>4}ETz}Z#U`d`-eD#iAc)bf#NqQVsC)+d(VSraEKjCsdU1b2-LF{b} zqm6doKgMr_cMn^BXoI>(Z_E!Vdw3AT?*1EKk~*H?H~hu;4VM#qmX@Yc(FSO#{U2^} z##t=I5eKO^pJKn=&k3gQk5s+l9w$m3$b}Xo2li=Ov)*f<^f0!|hjWS(i0V9Zs2ZFD z@+{DwF7dB(Gw>tF-GV^IZ!u6E7SI#r^A74^he|GBSF};#PJ>*vTy8OQP!T2jt3a_m z>em~QbG2Ar{M3d3=!3~uykU&J_zRf5`T)T!N%@8EtX88YlrxSAq9f zF^Xn@93E;W=oLg-Fw3re@O^eyWOn@|CxZ6iuXhT&(F$kgoNER|;!J&))EBCqc~822 zNo;U6fXZ@yBwEg4!MTUqX8ReOS>HSy>TiAaU)!D;?Q8uS%RGg((Jk0Wc$w$0zf1bPNjdkF*|BRi zd=?+jW4#h)e)Ghh1AugMK6iA~*;hVZ*ijp~Rbkt+$0Y4g9yHkt#=C~-4J+uwmCoP& zG4*aqQ2&VoSwMz;OPGlN?NZESluIz#*Gk6-S-@808%`Uv4gHaq3?Q4hLO+NP?bWmO zf`LueV1*?7vwE^5^g9+TFo&Y;RiA+Li za=rhQg)FG7(kZ)Rsaub6_ zEaB8WF_086I_YU&008Z+@s9vtsW9{F=2;h6^gXu4s`yWyWc`-Fo%Ela=(RR=4u z_Zo6*bKY`rOdb>?yv1OivH|5N8^MzR$biDb6}<^#kk8e|u>G>HVMJ0)!D&o8Jxi+3 zm79yf`BR}S4jkSkTSQ1dp!czK=9m= zAx7n6lM)Q&rjXr-Ay-Usiwju1@_Hl~K-UYl@Z+ z4IlyM>dX4-8&#ctO9W#bn2aLEV_{60rKd~)aadWX)>nvb35o?{lG=7HPh9c{F#$_iLCj39my?O+)@rMz3e%(1GWIz z3`Sr+xpM#_dZ0B0a@$mSq+Tasi^!;*4LlLtq&toUV+(M-!{;+a58(IrDrV@!m%}_( z@4<8EkD5QP1%gfeLb|zs8lVPrcFbsGV3koExQ(H!Ei!_~4Mikxxy2hh5{$5>hBNcK zB4)v!J_T$7zS~m{R`(?aM~&WGEAdDo=1?rr$b;sP+&E%WJiu)>5C)z8DprtJ3DB>{ z(PA$S$2{2-mMb;~7@@-|m>Y~z-+oNSw2R5KZl_l-Zg!H~Lju?D3Tr16j`{D>=DXks zZ1HAkimRjbZ040-2dk5w^f@O2RXVhcXzw=TmIbzyZ(>^kSHUq3+o~~gIT{U{Ivu(f z^s01f;CiC*tl)tCJ)diuhzvrRTk6H`)^ZMnj0%A10e&3qAj#GPk3J^xh2K*tDt0{) znCN#4c+~~ZJ)4C+dthHCKKQQcCK27&AX>=v=&wLD@hTP#*H|}q5H2wX2&W(?W9xid z)$M!>#7AAz+5;+s!P@pkgPw7BV>$#$15H+90=}7T$QrihMU74W!uVDFG4eLo+90%t zu6649SRuuW$i2Xg(-~pcJx)aimV1Jn*aXa3)S0Z-*D$v5y>SRE5(@X~eWvxg2(#=a zX&h)4Q~Jd=;w321y}_5hyH=A9-K4`MZ+)IFNV+syWoEx9mJM?&iEYCY`7<(g;B ziA&Wk`Ea?$?J8M4=9f71` z(8lQ6)+x{Z)ZYf~=Srk9Gssl7iKDK9HYeoJx^Ba?;~64{czFPI*i7TObG88dFz-FHFCs^C@PtoSdL@- z?%I?3&y^<^HRVM-Hp~>Yk_AYA5o5-v_svS*rw*>VN|rov48~U9DfiUz5ZH|AC|JK~ zD`F)Iy!tzMP(N1%eGUX;4+KE6mt=BZ1NOgfEjS*uhtZUzN)k%;P|O9b`4%Bq*=yAv zhl$Cyz0q$ZCtx9_vDdXGLejINXP6w&G#)$4HT`t>ukAk;;B4wSR9`+nfHqo z7~F|`9~&8;Z@8uBJv0Y3a9LP_)btm@3;hkZL0OM}hk^9(>e!q0%Oru833aUzn#&2~adG77%9Mzw6 zjdSJC9vl~#j&l3`i^FT8Ta9izpxt7Xpn%{~C5g zu}(I?mxS6S8gQDy@1{<7@aN}AChqHygZuEyy(}f3bBDWlJZup$_=YaP&@%Skfn371{W?zNO;vRG^~NlP-Vr&ns$ZR{TgKN0gMoI zuyEr>Id1gVC4064kSlCb>f}QAeK{n^EdY=A2K4)k6+{)obVr7JIK~~GF@lu==%g1# zFQ+=x!o4jz$gLEw`;_a8$Qczz(ZN0g$(T;6LnNmC8;Z`SEjAy16~DZ9!v2uNN*S_A z-%6j881P&4iy2nI9#@BOx#sn3p1?c|zPF>0enl|%>@dFECTtd*>_`!X*1Mv-~3 zIFD`uCqH`4))0P&pb=US(>gR-P<1wZsgX2|)}90di~Gcow6*4C+R{K5|Jpnrx0pw4 zNHb@`pm`CclS6A4EF>|+OIYW_ABYwx_q0O!hKQ7T2I(+)QVh=wRA)t{8+-V(Tq>>TD z;%_A2VN|$qK6#0w z$jaUZH0^@3f$C?%kJUj9#mb&U;WpDedbd{sNe`B@{^N1JsaPH-YIaV5;<&9fC-nO% zmdQC$L5M^;h1}Anoaw3V!(dH;1hOOrklyB9Cq$-21_{IOWy6bn0mxl1F=|~esLc2C zWcRZXLhANlWEQ6czFX6{g(Vlm0!V~@4{Wh6Y^AjE`c~`rgU8B_Q*RkcX76-Pj@IFc zC;rfE==7SxaXE3?B8}7~?7L-S+m%bSyLW`*5)oFZqmS7sTL+yb(7XYv3o{8gR|_9q zXSA-{L5*X)9-lTQ{mf{?YKZIj(vP3MI)BOG(La#@p!5+SG zsi{g?QQ)k)4*M1wTm)S)c_s)&&5BTZYEV%c)`?I7*hU#B^K)RzIzQXlq+$z(0FL*| zAx*xZuz)Olvd)Tte?tZ)(Hu*9vIqbF?p!(pr#b)pkMXa#|laAcxmURD#j7$1#76#`M_w#vtvkmr9q_A ziZtk(D&?wc!O~dr=(PB&snTRd6(}(cE&+P-^!#N2m+1y)_H=-;0#qhnL9wgT`=J^E zD3NQ;qFj+MX*SXIS!VsT^oVi+g)zs;30e|Q3ntvxRbL}815@73Vffi=@D zM47soS@29%WEybHQJF^3X1XFxfGayvL5_>f5jf;oZx^=7ziyy>T*fp5s zPHWjdPe?_OqQ~xHG3C^H(XQmxvp3 zQAr}b7r1IsNWc>GfmZJx7r$yUH3Gt9gyw2WdI7q_A4>5j1CH>h000rtVa*G-@Rluy zF5idK7NZPa%;qWMR~^@8aYFUQ`p5L8P*5y)f3CyXQ%^MC{;eV=ZJ$S+o1lxDq%&ti zw%Rm&>gcP0=?gBpQH(*7vWNt+`xDmqX9PYjhVWjWuoNCs819TmFCjX*G?5s?%oc%7 z*QAdCbQ071)e4U6IaM^i?zRqWYU8)Rj&uM>PDmfretQz9)KTCK{uBuw0kfk-wB=bs zRR|u@1|LMmRA2pqTQ=&0?R`d&{^hUhy$z^AGl_RyMxW;qQt*=%k+F(IqM*l}7mIW% zq;$PIzC}Qd8+G*IX^9F&ABXSO>7RD#8Do9HwS)eRaZF{k=%)WXD3^C)KR*s~X=`sL zaRN?$wW0+WErj;g#b33ehmW89#nBbycO50-4Il*csR6hzfXtT<6_z&aHb~!#>B{xM zieG@oHWig3OIjIj%oZ=_@AqaIaqS!7QULvn4@%tbfO&sQrj*dMkp}#@>EafzjcAqY z#CdsMlY0rhmcvWs-eICHnX-kM;1f5Y1T@P>F2kj&Y_d;yR597=3HMj!q3k zYul~Er=DSJ)OMvL$q`~ElHFnO;TcD^DY7xkNm~i6P`~N)+h)DEw>sj&1M z@5J?7#*_B3^wWxZ8sGoP)Z>#ik#E4FiHh%BF4{w*(v@-MO_Z5OdL@&>mN#;F*pV7D z(${=IlYw@YZXhC#x<2vlqcOin^h2qBCpt9@6zH|63)0&_I>t_KA>IH++Ajm&bZGF| zkVL)UTU_40KBvOI9_scD>w&llH*z8HlbFE2dgNYTelo@^H{8(9F*B!I%`&?Mn=Lc) zE5v<+%xPh+FvS-wROC9@TW=O8nf70@v4X1B)E|ZD2BbLxPmy@c6&M)3`$pAeqN!5b zk7priH?C|!X>{Xa>n;`_0@S}#jf!0}n^{+bPED?naD0E7UbfXGryLC=Xrc~i?u_XD zXd(~XK;lYvhC+U|vtRau6Ue(VOvMXSFc=%wyu!1T>TM%o$<|eFEm5wKHCZLtMy**i ziH<}m9{L}NBs+(F%tQ5N?m1|fza#8{ChYytI!0Ufm-^d%WjWG4i?M;Y-u%(ZQi>f8md?RJ||4c zj?D-+F`b5?R=9BisaG^9L}y8O+TKnQ_&+#2k&sRjM(Y;4W&SKmB@!TZe@)siY1gus zK>@chh9f#MQ_`i41zRpv&Y@(#nyZ5DDM|9ajLSVCZFv!)wN&E*jVeoopPT7L=$vtA zl~eu&TFPO3G!w3ojX2O%oWEasd`KLY4xx~YjG;^qC`qvUYi=mOI#Iw%#T-FBI}i5$ z00Sr;J0Y!*cyUD*?mZLrXe+2@1cYdoi)C42&n3$XmF*zyQ8U+cxGO}}c#OK29F|Jq zaF3bo!@BN$#=w^Dq6_T;3uxW_lx*!mos>!A$&7PKN8*!`))On$l6;<+j}3di`DteVN!mXW!yTLL!4k4V?7p0(5kq4#>@>g1M!4WF+~_K0D#GX7z@ z?rRQ@`MvNwtCINyZ|$_|hkWD+oegtX%(`nvB-FZ{E?F-Tk+ei{@!*n0iP{fS=vY#@ zX~S=Sk^2L)IK#Moxk5^rGW9Grr^%Zq6_L-&M&Z)Oe9nTpJ8VfyvT!B}{1U62?@wi0 zFe?<sYs(b#+#Co@G#q)F3&f>Bda7)_czPtJKGB7b}tZz`lh6d7^*T8;NCcD(n3X?Q$$II(&C zfcG(U2K(uuFa>QaAKxz+h_81AlRHZ0%8T7%Hs#IvwffulSVH74UrnjZh00CuQiPeK zC}BL`4fhEbbG$lHG!;GfG+mw@7&Gvkt3+)RFLe4yuu3?r`w*NvE0rvv-y5iw_IiJ` zh2iMGJ=hRTuqe^9(=(lsZpk(>E0$JSVsYjDS{$dV7o#NWsr-jyC6$bHD78jx{b~;I zrgdaBu~cHi+4<`3l?%ZkX>}NGEJQWUm_FR7t5Ni1nu`}SbeOaKE6<{M#3Xk>fXwjh z7}9MM7Q6NQnOu!rSe8V6i#NBzyJhZB-Qvmhl15SH(%mSZ5q>SjCD?Pw%qlfP+2&D@ zs+1eb&^#{l5gQ)pi6sVrHuaWfzKn~<)bdcpEO&$@W4n4GrWa9YDRGLbN2Md+9o?nE z+X35-ng8hhW~7**By#5Pxh{|O+p%H3ueW$V8o<9)FkZ(`43;k?9U89wradXWywdue zNf)LR3{Drd)4IFNi>GiS)MzGk9`#hkJ(J58X;L}J*uQunE)2`1Q*w=CG#;GIL;y$His`gD2msl9?(IU^y09EVZzclw z+-ECBztgVU*~iPx?O+k+&aB@_|13LE-;MQUM}(&MG1KDv2hJxGICu&i`+C}RFAZeb zn>?Kws`1YGCch3I4grUXis?82?!P_*BhmO#Y-GmG_$SoLNtsc3(vuPiC|sGzhd={h zVKNB!!BL7AXS)(lj8Ch|39SWb`s{%axe8`Oe6u2`gS#@@x9bQ^w4aC_paq_yk)Ci*Hgs_#F2?#~S5+pO zp;BA4)?kiXM^5MdPM7>lPJAPV`cW&;k8|u11G#aq{uq-+DBV@E{iH73_>0kG_!<~SZ+Qo{o%ajztHkS#%QQZtlS3c2Wsy> zcyz;#y`&Khqzu0Y_$TVj)tyjJE{JK0j~|8N0w^TPT5nEJbBy0Kx;=j@1rh`5BiVPb z?FcPa&k0Xoeno(*ALVTouocC1Ig|I4yJLS!g&8Cu?)rG-|IaxsZpzd>CULYiP5)$- z@q((}3HX%nr}f3Et8OB=?Hu;Pe^+)f1_T#F_Uk+ji}HJlXyw|8{v5B6&uz>AMB?7& ztZv$+#7BZsSoPV0AG?lfi;TBSHmZw5vdyRyigYpi3Vzbtj?xkE{@ zpt8C;DarJYzs?wmObd6%wif-S`UmnBGi*FDq)XI&G=cpebzMowD|xGcrYr=8m5hMo zV`1nyg%PUr>i)J4nohTYOjzfUQ(M;4Y9N{p=GYJUKLGoJj4+y30kLsUH`|XpEvY<> z1iO$OmAbW3c-}Uw7o02dbW>S?MGcp9C?d67GU*|iJT*l2!J-{YN2?Z>Yxnwn&v`6t z7b!ghs<8M!*yb&qoYo9nFhX*#>`aC`EZweX&boyg``I^jK2Ne)S9LaWDYXjN+e#^? zJ6tGQD}M$aib&IH5c87vrsm>3vDeJt*Q019)K$nfVWhn{nX?(?K^Aw>x0F(Rl)0ggY>14J}if@rI129a}SI^^>Oi$EW*J} zJe_q4xTJv>1v4?~LF-CMg_uIe_bg1MNuB6*_icChGFfb{3Miv!>jjiXXdoKjZwY&h{Dsi`grB^v;svXE)EU&uli)c(O%n0iKUebWO zM%_$M-0Fy}q&PmSJUNJRz%{aAjjydMsIOxgXDq{e*f%2_g)`1gT8t!P`?qfjRS zUgSv%CaRw4&$uL9W%z9rsJnJQU!MnJ=hRO@VSJEA#bg}Zd-hXfjSyr*Y|y(U2sJ8M z*UJEIukRFGSJYrH?^=%@(-rnsm)Q)z+ACL=tyo;Sl_^C@D5u(-o&UH{>ySgx)2Gys z;Am*!oB}Q0M|Q1Q>8NL|Uz!YZ+^FBuKtqWdpqA2aB}O?t{`|i2_OWX$Jh}S-E(@lz zVSxDpW^`9o+moF(`3<99!#X5jPD2^xFa3Qu_t~eSY%$DX6R*~>e?I(1R-G4loCObOw{4t3JQ)q|nL2>o8VCkJ)7|HKHTQbsW% zOH)H7O7=1WE2l+gf|G6vB9n-OcpR=kOAlI9_JTALHYIsL@G@rTKucpQ=@S;sB#vVv z(M$HIJ8KFTJFId#p zKCo$!PZj(-a~%#}x*gly>};fLS$@PYKl@-`QgOyubDlhZ8XANPE;du8 z9X;#_9E(l+>Axc5eOO2nISy9%XB`^@-S7xsEP2RJHh9F_xX%{LNrNmfGmFS6c>x*}fBJ0wdB=B&g>i)?@j+5(Do$di_z& zGOhFCs+dcfq*!jcN8=`-b4tWk^B;#^JZL-a@)^Do8lLs(KekIlHneobYpT@AZ1k6G z7e{y88dp>6Gc9(7XzAW~f0*~LjP95X@8^=fyTiJYGjHnIKO`fM1Z(DM7avc~8q;r9 zI2k1V4**+0q`%8$!bG;59MMlv1n{|^rXC}i*npdjW)(f2m}t+v>U2`e=Niw&#qcFu z?i158(a17FeDcmfk|Ky$Iswzd&tSUtudMh+IRbKA;oFcYB%WYu{4`9BpQ|nSMSRc# zWW*0&XvCQ_i^|O4%$X?Jk9DIjc_urKiZ2S4Z-!s;jjmC+Bj0|SvE_b-j@8D~L}X60 z95D}nDtzmuQlxL6nb+B4TYG%Uk$nASpe57K5=Bc1nQfJB-(DBVTP~R&$1=70v}Yu$ zPe-Q84Ve)(kqFmwADXS9-0~n>LN~BE>c_{cN@=H8XF2umzzc@}tK&F(hi` zS@*HR_HMJ4N@SGIeUMyx(bDO9qPJ-02TCvhiU5v@Cij|Z)L)9#dH=npC)JsDTc%U7 z9*|xWdlY{y8p7@WrhRfGaF(9Ux9wf^?^@#ODSbqLK_>Wii(N zRjO&6vIOQFuGJ=h=2 zP4w=b&1UEQ>)-yLO*dP6`B=7bZm!{V&@ZNMvysQzU@$OZ&irDV;Mv%6R)XiSd70Jc ztxmy~@0l~QN_2ZxUP z#47?cyo*4V+78u^tbDtX-|aVSKT;hWAc2Yq_%xVPtR*}gO5)iP_Kz6Y6#DrHA*F+& z{V@iHg~HEoLmSAO6R?BtZ27>!D(_B*`Ulp69rkneY{A5R(`77<4I-PY+FgR09;f=3 zElHcG9njLR?!eG+l7qYI3oBi>tDg3y=GfDhH^;XX06)b8ZMSi7m4yl~Jji`~>gI5d z3^hDlWBO!Qu`)B6)4pjLNT?#Wr!eL2 zP;`XDW+-~hl<~Vl(ao@=Rhrq0#CBfi#(^xv2S9D_4up=Y-GPBU6J94Lm$)D2s=s?3 zk-=_j9ZhX_*E*UvDvk!QItO`qG_eceu$cvK#*dA0M?99~&V{gT(uLsRYZeCb2ImuQ z=vAC4CiQSplUzTX898`JAE*r&JcJKqXbv92%gcm|!ul)Y@kOC+TeB{Rf)AEXy*P3< z%e-C^-n*fG0|yKpG(J-M+#JeQ7^Wm@I%u#_1%t3VNY!%!?VlUIdd%;5*(ZL z7tKLSGXI!!(vn_7$bSPJnv9T%uX7c6okuD#bO13%ZRWF`bITS56sWg+)e+}Hd-)PZ z?-e=J7d)PA^|b_q&TIQ#!{u6o1-k`0x;1E$${5ZsqN?dN1!9Yiirnfq^fHA~53Iaj zdmt;1NpKuCQIM4v>)R5C<+SBgu?;_V!QYhS1QUxH*$|DkRuf&_NiEyNwlAln0mSTD zHG(Luq0`Hl*JTUd_^hK-I;ZTtXoD0yc#4{&Gu*9V#qEz1Lr4W!g6reW?j``p3jbfyr3GgCgmcH?O zfsd#=bdn|BrSjQh4v*N{{TfUHX-Du03R?w|6g71!w)f>#HGr7?Zi;O)KzpTyhhp1Z zir-_z_L>ErWi4Z=Jt4t)H(EF)JDhrh+gZO)yCqO*tN`P8#Fq6N#RKNAbEAjJll?~T zp!vcV1o1iYiVfp_4Km@1FQY0=f#S<3cEex3d?-gC6HW5o?7!;5m{874=C%hX56IksqChblbbb~r z%JjGHdd^hu(QqKCaPs6jSYPsft5&lc7P2qi*Z{Jdg`8Fg^E!UsJE?b=g{&}$^KyZb zZ8)Dl!j5vq1mF*G4w!x$sqAO?%%|TThaHLIBX%`G=hQYTJs;o&UN4Aoh8aA;1ng06k|!0g{<}$Dnt*k3P4X>#YO_P&M6BOj4$o`w z@c#A|JNy(D=Vx%dB16C^jr|&AxG!8VxxhJ<#r$_FJ7}Xec@)IlbLWL4j*+%I-vQ?U zqEg)umG(&a?UX7GTbzWMkHv2#6N`!XJ%O?k;F%k#3fO~o*`a)yK75&de}BIQkZ{F% z z&NQc`)!;ePTwS|%qv5%0SNs@1nbT5Z@cd+UxOQFrwY>G$iU-cwA|5vXr>>Ekn3c zSrUP}eM_A8_RXy(Y{%G?Ymxcl5hAntQfvfm{wGGY3Z*A6zTeb?oNLyUmLut~@> z>j7mM6wb{-nS0yRcphvX2YVQ79%>y8m)j?B7tjg+FQ9!jU;Tgft~AMQ97|t?;a~Q& ztrV%fCdv_Zrn1X1zNh+8A)pLiA=o8FI`X+sWxx!$hQrtiS zAVH8;MO7&!QFs8}f`{)tJTM65Idvx~8C*f?CX08!lOLph<^nEiqoah4@_OA(ns~6~ zcU)%`m@K6c$3%W48~Q5YvT~t?FSyQsu2_i0B*`}?V!^`nQig@L6@AH5IW%}6{qYYi z--{gY;2%QV^8W4{Y!nvzH%Kj|Eo9pqF9+~}k0xw5^7o)wG&FKW94gEB)5?z`fA=#? zlR(`^f;lyCOSZYT1M;(t??>>>!a#F&cZkqiLdNo4ctrydgV}L>cwo;Gj2TzJBC%U1 zs@$wcfUQ#{9M4IVjIbjAx(PTN@4PVYUXOg`tlUh2%W*3E#|u3E`PaW)VgX3qh(n!L zu_$O(^4Tu)APy9DT2k7tCuSfmIs%t@jK}D{i}Ph3n0)SK9@Ft8z6^)sGLLsffll0r zpg(~6mN&69f1oHWp_=$Nk_0fN)Ws9H|D%O07HZf?&h|?m*eot`l~E;6i()qeRnZnMh87|Dav0j=t`u$$S;~1dk_N#pa~snQ>pbTEz6eiiPv(js`|it}ZEgKq zr{p^7jF%vzMq7pS%qTe2DtJZUSbKt31a>zkcxCSS@zV3cDB`sANQpr`QX<<0`uL$~ zKfMa@{I3FiKn+w^tqI|eWFWIruxK%y>4xZB7|Gg=^vNKomx_}yTp06tqERUH0tT)K z=EaS)Vc?1)B<&fvS=pJn>ISa(iOKM60@Ix^g!R5BHgGZiNi~8B zPsVs+%!ZY&3vgdE-uN=4an}^ufTFZ9bq+DKz z8DO5Y(9yI>1FT+JXx0F?vTtd@RvT~h1%m)fH`b=dVgh9w88Zxh%Q4yPwCqkgJ7!y` z$k~kAZ6QwvX|uLaeg^3evFlJSGwib0nPG77=co_vgdv>WVGGWFbT)#d6Jy~MVSO=zwH$}&ixI5lIK-4?GJc@r5Le2jI$icU)v5T2 z^NNt|#8h}i=!+4oxlept+I6_C;9c9(MqJY zQbw!Lg2Afm-Lt2qM<`OA9-Zwe`y{iT*iazFICbZP68+^`v}!)Faiv`5>6QGzN4SWdg}=Xuw8TjG^+ zIZjvdbDSiJ$j0>_Zr4s=TkvF5bx|3&W38%G_Vt^`@^h#qk_msfaSxBQCfWfA*wrI54ng%$E^M`wAGVU@KCGS1<`4o|22yQrHjd@k z9?PXH_yA`6Tb$vbRs*dZ2ECMzLFX7~berb0$1ulN62Pu2VWC~yyNk9WR=GB5tTQ6A zWr~H}^{}1hP?SRN^|9lx>{g^h9NB zV;Grto=IQZYcP&gP7K#7jmn{s%XZO7*-5MQUgf$}4mn)5iySr<{Qvg(*WYeFeEvkU z2PtVFIcW7RXtb59df&#xoHo7uQhH0R=+g2`eg=z^O!%;2?hfb~*6z*-+kbg?R+UrRwVZcZ30xMlla8kWQgeVEmX$z3al3STRDn1R^D;wKD4@S^(!rG~so2OVPe-#7@3}>01Olbhg!u^HAr(g z>~x|lhiv7B9R<0n8UnQ(%15BubkTqNw)}eg<+o3l$ry+rS5*Uamc!mAVQy`64S3FU z@R9g1^?EFnPF}jVFw)A>MMa#dPiD5~g1Vs^#r>X~(mUA5 z;SoyzZa&|T&EMT#LY9Y%Z7o=#Qolrwe zl@BRC^8#N9s4q~jpRWY8A5AOD3V=d&9b#FOjL=jGR+ZZz__A^f1wsskBj20|1Pi-M zc@^4L^d(Q(;Fr)%wS%wr#tv-Hf-*=n0eA0(7X0LZ5d|OC6P@JT?C-uoT0nVp0~$~8 z_ZD((sx^3%rm zBlsSDd3T7&8$`?U-B80526{a^jvWvBS+Frv^Vz2t!MeQq{LH@inmat|_&QJ2a@lpB zMsnVCk||7>8eIEc1V?U$mgD^V;$7gFE}Fb|UU+<8s^OKJ0YgdKdT6F7ipbb>R&(P7 zE`D1eFuKuX(B#+9HJdS;t>crv?A?h$7%%R6GN4Z1F3a4-AHY7cxI9mjG&L z(~2>K=Y1{s`UBe9KEQn~8g&A2Lr?r_KKTcT;Nh<}&ZE6PetBuT?ne{Rg4^Q^tz$!I zzg+Y+WLKgsNY?ki$Acc~sLbL|8z%^(uRer0;9J)`eTTlh^xebGJNZ8Gf#?77-t^X_ z3!eX{_}#G&$7%ax;H=@Fcind(Iu5V#RSn-?<0oy(hA3TCPo zWi3@xfJW+@jEvE7lF74K)j0)jP!2*l=sKFn&H&jTJZpPfTI;!n1fwc&DoZ|Th0)bn z`FW`qrIFx93RI(NDb=QG^=A-!+QQt&R_Lvj~p>mj|-Wu59-l!=2I zDNxU3C~TuNVE;bU%>1X<%Z!#S}{9CS&^MLJLaPk zVyh$Pej!eUc@g^y?I-I}dg*v7_iksy@`OoErFT)b$Mxc)O943aD`AC&2TW<4WTxt z5UGSIx+qA8c(6wNr^;QV6ewt;r|j!lvPMLmYRnZ?ZB~ujjjE1k3Rml_u$!{I8gHpz z8eHM8$uSL=M?T;K@BLtH2PjVwA1#mD4#9M|HvCQa7r-p^2Ub3m*lYQ&4-b>0e~!X- zY^_Z6xVqnxn# zbpCi0pO!eC(gIuW>~{Xj0o_CS+L{^I+MRQ6dz#~=mw_#i^8j=O9#AknYYS!dcIEru zcV_T?Hiyu~Pg^I9{NM?mJV-MWNq0O8P{OaT)69#YjA^53nuABmWuqBrH`{n9U;q(# za~z;+KG^{ppm*4=So-LdJX>HM`1%mNWdcTpC;_RIMG8y0ENcEn7A2N^LLoxf zcF3Xz)siJGLx5O;($Nyq@|8|N@y|-vDW#J*g<*xewd<5an=I5uhGvGNbz+6<_tGV2ycS+tnaV!OgHj>TSxUP&pYT4~V>sC8BjnO7JgYRrdH zc?mJuUx9LO%*+y^#mp=rYDO}Lu|Z0}jYbHc5B?Wu8~+e!u_?h|ABHpGR1?TA)W*hZ zZ3_OIga6>~^&$8JmNFwxzz?*Q4f}||L(j8=ogYT16^4NcIg3nNx~_P@;T|H2()L&n zTgRf+r>m8iye*661BtZg)!gcpMbBmNqy#rf@cp2?%+nw-hIN(7NCx4XsOzs7bt>X5UX$Y#?jJBhR5hU zOcREQ@_dE#;Se$XQ~staBYu0@t^Cu9k>rCU*Wdo%|NJjSXfR;AhX?x|-#f}qCbL41 zv!v+Kv?~y&3kJDO)OKW(+YZf?Q#4gC#{+%wkH1qBhts{truJ3r#hYnCFaGg&29Blc zkuq7D;b0_-6pIuJj)?`M5F+)nEJFIgnAR_rZ{JMv$uaqNLIYz$^!X@BN|mCFqo9c< ztZ#+hR!Qk%?KrA5!z%-94ywQ$0UzIVQ+FIUNQ@0{7EmMdlXSS4w!^4-L0wq|bHIeg z2%5;5!GdTB5i_L?tJ0kTwNfm(Orlm=a5uB@UDtnrP1=7xprfDKCh&LK7hs;Zhaij) zIQ(wEw_RU*sV^3b*UwMt#_Uz{#+3`o7G>1@eO@}E5#P=>hbK78>q6`4D^*D<$FmwH zLMd>F__B#8(@s@);8@odKh}7Cb_c_GRmd*Ys(JGu@mY6L5b(VLTOGw`2{!^Wj zL1eRxkhnO;Ln@kh*bvo^EB;;OD()4!@X}bks;&=pS4GGyUb9MoroJF+vY;DrIuYgm zg1BRl*J_Gq_|_RNVoVJNHR*cKg7;w?mXEwQ(YtG-Z0=U(MB)#Y zs0Z;6F#Rf>04=1%1eL3yh)PLQS>?cxCZBe&cYib;)Y*AHcp{gP3w(=gnvuwMEy+rXf86)fAqKc?shLEUq80UwGYWpQ$MW4E+@kBUI}z-(Bg_mHM>L z&zGThYO3Qz0I+a%N~Ecdv3k=Cr33gu9h+q8S!6XPx!lDi$I?>e1TJX)SlxwMv;J6o zi5izbcIxL=sjuNSC8zy5cVVO)U6EIcrAW6AS@IoeJ z<^H>df=g&Of|DekBQfCX56E^tK*NcKoi5V4a(^|S`~%$9;IB5$qrEa-)jH=yyv zIjg0E5=;Z>+;ex?ZH25JfH!s!y>p$r;~a*EJy32daQ0}Ab=t?|+3BkG3}ROOuxCYA zdT0{u+4z|CU)`P!$%@Hg&l2iWvpq{|Zv|iVT@z-GX3m@@>>1f2F!iJjyCuM=X3beq z$8yYEhNF~gjth+##1gcg7_nw=m}zcf9fLfrI%OQ1Ks#H^zQdAYpfX{RHmp(6F+OJF zQ%%JoFxVFrZ?-U1bNjAg@-&yAb_gkYlWQYqf&f?dXr?3g>{IDdI4Qk%t}A+iq_T@k z;fxq)1@$BoPRy~+&SL`_KnU|d7S8WndVmgQ^+FHCN>Q}v5|X((>p?Ag@H>|t7^t9F zFZ7`9${y0z14ex3tOs;G_+G3B@C82>5ZSr*S=;W{%qP)cTET$ z?U^ESY}$jfe+uR8#@X4S_Q`(GzWO^8)j>&!4}vAwbSJ;be3!n65)@E<$OUFK8n|bZ znMpTg#+c9p?`_FU*4k!dW;hrQll5Y&NlmkHX*Q{8wj@JyQZpvtK=-6(G#E{6T6rZd z!Z~n#hVq^ANi-p4WXBiL|xpjI5QhR)rJ_ z9(C5|WR2*JI*+G3u4W!ER>pG`QXsf^J|p_vAD$ardY*%8mGNAK1O_gi$2Pn-JlFNi z?XUs})U?RQ$BhuOX#{E(7fq}mftsig(*3azsHr3bYNA4f^~Xb?cyc^=5GWObp+6P^ zH64s*{YIcvh?V|W2-J8mG5U=_sSrv%BT#Y?C>849oDryUb>={zIv26-Edn)~bD3}s z1gdkP?EWH9V+tBk%yV`G3SA`HNuG~L1?c`DP_tn%&*2MxGRWmjma#=XK5m4Nm54y0 z`)ga5w3AD8`;S14B_U8#B_fgRtnD}g#fKI!BT!Q%f{`5D?JfeP4~%g;XaSGg!GSsVp*eMxYWr=Rly)*@;fBO=kqEjI~NctU1)VhX~Y! zvNNUdoEd?dDiO-&;d%cMs0mlz8wUcVM1Y%z=lw&V7L+X|e8Eo!xtz%`c2?x$<3L zb_5EoTU`vMo)IX_a}ERwm1*we+SJ)%MfzaIJjO98~1}4xe7J#WlBv~k6th6*QfSPYARH_mnk(}JzO2b2S19fDKB_0 zQ);?RkFoZ_&}=f)dJxFZi=) zE*7IE-<&X$Hn+ut32iI-66DZCBL#9F|Ih+c>39eK5aO2ici&*6KuL6i$iWu; zJ(-V*Y2V*{G-1P$zbDd9q+yDNP80|3t*{Uw=Vxl*mTVJf1o_#<_oL&RyF*0YAR<7a zAb*LD&G5~k7xA#3%za>oc5rXMc&p_#8NGd}FJ_Zh(#V0?l16LoY&M6`@jYo2 z9WU~w5exTQ8$2U%aMDPb(kNN3AKGha3We3z2(p zqOCMyq3<5xZRgU&#PsBeq~)4V(ue^mS%~`W=~-L2i@RO<{`Z|3e4ovc3%7N`$PbabBX~@03r@j&|13*lleuaQN)T8P@0~T%-bskwo$pJtY~Xva%1Rp=)2>ipUi`P_zyF!yOY!B;>pdWl>_p(8cCZnjG%@l|wbX zwNkTe*A1n~JR_dh5srcHr5Ss9GN1n}gw32CmQf7}&p^9@pLzR3q(OL1b3zU5DZI!5 zn|%%9(+Fz=P25AILGwNPwPrtB_C7*D9A!AGD!qRbM&_ModJ)SoCM*vFsYOHBIgfC1 zH>L#~t57p{K6n>x{~rJV|Nrbg+j8Q_lE0$xzI5-}fB@h6Y&Darr@$qH$yg3Re zK&OR7OTw3VI=kPnzp?vK`vd0}wz8@ONER|li9~oj5!2=(DzmDxGPCl^tuA-nuwtFK z(a@g^hL-0?7IR%I8ggsoJUQOL>a%X-2cg9RZiPet(X$-S`uFPNr|1j(8+`fq$4|rO zF%MkF`)NIXVqSOX2cLKDJHG#O#DbrPNA`~ReCUK?oafIw_740+{w}zZf4aWw2jYF(iT~Q|ovIpLJrI3~SjXj7V?P17ItO_=X7puOq95=Pb3B+q#zdSR_adjuT&pi2 zhm%goe@(ms8`jsNu8IAmoBOX#x*Y8`b_jdtT2-Ep5Dhbfy-!Z@*TaR}0)0hS9viEuC zpmA8MogX!Kqg%%-J%eDdjC!vmrH;v|g{N{S%iVxT%^3^XLpa`lY>pMXheU-!PH*0!-G)k}NS`w(4uGMx16QLv7&GfpzRJN8L z6e*cTVqbYEiA0DgpooA)LJC{s!0!vf2tf&zN@{|DIuQeER63Vdz(UJzoJft%Zk!^H zMZ;tUfB+RNJx?ldcB7R%kZXi>J0zP{hlNg;3Rs`BNE|T?mo|du_o*O7bUPM3`c$Ao zXEbpo10vfp!T;Xio`r10-y-)A>W)K79&hqQk2(7p?ph49infuW!Q3t!Y@srAo~1q^ zn2I%b+A%j{BTS@q%^5i^3o4c%T&tC5PKn7ahHXn7QK0n4^poSIu-VJm2~gub&H~G> z)UDC3)tN-rqd#%QT5*d-7VG%p6T8yfw?>Iks(BhZ=%<_0(Cczp(i(Vt1JXn4H9*}) zkLZrrff1c`LN4@a1h{=NHf1z1X`E%K3%$|I{_s7Xx|yzVb~sUHG%?4E_#gnDNHw{{ z4G+Wnji92Ax6z6c9&dFWMnE$%{*3(q1QEv0YR0@!IR4 zgI4q8^1){1a!m{7c*avjrXHKWY!3`~AeC^aA!MV2GDvZ6>pNP8i(^ zYW#dCf0w@ygdlybVj9h6L#$?F$LfmNh}rHRA06sB@qV9o zqjUAFD`yO}CU!*r+nLS&Q6O{ck59bbsUJoDNPXJ#yH|nb05Km6>h{Fd^YhN-NUVq@ zKj`tWD~5`#osC`Vnumg(r6GFm4ghb3aPmUI?jmJcoO%TcShMa-H6&I&_~oi13v#AxExr|}dm@yd8K z@8Qbn!kpoaSc)=GK#U3?2AlK(&yMSi+m7qP^1^E?_{2vY;3a}N>K#W~L zHxUCO{RCuxbS#lngr9H{$wA`}&LxiV4-`hrq1DMnZlP*2^)OY^8d3Hv>Y209iL7E6tDM>R8$r`@QuNgA|LEJ4Hdqn_4|V(`K}{v5)d7xw10IMI8blYwB-#f zM)32_ab51^U=qoci>Et0hvJba(MP-+{a7(-c}~Mxlu7U^qc2V$9JV%I`P8U z2P*^r=YRcg4)|3@w3pu^TN{X00D~f(&j_k9I)1fE9Wi~w^RSM?kY@kYJaq(|VVhG& zj;AUxs9Dpv{#^5J!n)gR#vxcq-DNd}!py&n=cQ(T`uU3uAyCdxDKi(pH8#Hy=~Of514hQ36Zft%f;P3_Rc=mZl)A#z$qb+jKOlpK(ofAm2@R~nI;f%? zW&mBzLQDv^88mf`!Rbmy03V0k!vHfC>aIhmGfdsez`c`;3Y_aMwtqX$>5d`fMg| zr~q|1#8^-*Vb>4DBV*s|fsLa=1@;m{`eyf4GEUWXAvHZ3vPhcdz&FF@tbbCCh79(R zxPVzg6Lfe0wWvUmfl7>BHVL`Kyl3$fq1tpEC^-c`3HYyx6X@DQW3UV9%0qtNl6gx# z-V@M56%syjGO^2^Numnn2hWe3E>|;PR;U2UA^_TstHR1t}Lhjv*b&)dgDnj_CpSZBP_>tCn2N~i(PWO zSq&)6G9ES{8Pc$b*3r`IMzLaG)5a`;P8=~?f|Rp5a}A;|A9tchdK@7EVJI<#pd#!s*n*E@4)#O&BB+Q5nVtERWu4t+8PGaz3rGRtntPO7}61B zHnE8tIk+NoW<@A;Wyn3qF+u>Pt7wUK0lc@H|M!pozCY^m-qYpY+#(>+o{`1YpsdJuYtTK{47HF2HmJI`JjOSZKwR3lhlX1|@SP_~7P~T< z>6_rI0duYMUlYf5I)Rf^_^Wwh;cTs9;Z^yiQmAlYxV8-4jl*yo@+O;CQCqLu?R?jc zNf?`ehAiZJU=)%oHyQ1Uizh7YUY=_hnvlTChl+OgprUoWCsx2&SH9@7F%vq76FFR3 zlddkV&(Htb0>g#)LC5jt>_9B$rF*lw1Bu^9zP4Zi*8E`_pVqe?StK+WT`;>PE3LWK zkDo3Z`XgpBF*R{bQg`YB_o48Lxb_Fnu{xw5u*5=G9WE~CvTTaeQAIPagt!<^#Nx{N zO4mqeeXx(SSLOKNqX6{igJrGfj~rPkMd1gzcw!a6jT+;sA%C)%yzGm`w?=H>@ep2h zoGuGGz6VA#IYQ2yTC0ya(>;MNHW7i?q%3K?u<1S`PCZx}&CdC<&2 z9ad^|8%F1lKdkJNP3w)4{KOO2VA+_145UySP{B6aa>yvRP0Kqvc&Nl*Ls(>xLcb^U z12S-PdI$!lS?rh8n514fzKFFYDd#|GJF4u1Hh5gA$6v+Vz=Bhn((7c$I@asS6v!LzOB|Xl1dz_FeeYy@Y@;S0i z1G$#809356EEuGEfq}^+bAScFSP*j0>F!z~cf|{7$r%RzNWKE&#Y9L@5O&H2;X#Wg z=DN>P&ZhA>QG>~-gfR5Gj*K{A?#K@#a2f%fKXCnH`O~2@819WPc4LwH!hRtwAeF?7 zs(F?g0`4H+QJecqP%-qiwuwkA%RE~b*W zlb~RnlM$U*fmlH*ShV*Sh^lfxR8axUmb+gZH@|Rh(F`W(yNLZ1f`>y&eyDr~5#P0X zzAMB$yn;ULp>D~Z^x{Zoig^54>H-On)jTQO-l!Cwt3kf9cPvZf4xf90KMD85dInB+ z&wnB;K%#wSsC*tHfYakcRmp;~Bak96+85KHJ5A44kZUtN%M{#l19kBx;7WGvV@+QRNvkSHI=JN+O_I1Jw zT#4iD65mh7rWC63+gPr~X66Uh^FuB>p8#TF{1_VdECB{W17rxMyjlZD8GH#t$(V>G zK*(i*;=P&vNTHc1d$*dwlpD#RvSeBupn<5qd<+-g%}M+Nnc`zmmoDSp-N>#~mrAk- zAt**!L0*eRnTutSI|^wVkmTgZ&|7HME;d|kB{K1PTkfP&5~l(v4;>Y-6S5uiBRW$I z-KD->t5JcXG!sM68R3PVZogtVN(B!a&t_(Zp(79_IOv!nbYh}{MQQL90yObWHBVmw z8^JoeMdWB9D|LK$(Y_%rNwgfb9}{NA&8 z=XCGSSj5zz**}z?tQW;BWS0G+pU5?O@e^4{AiMsBo@&-tIaM<>4)a8|M8&kk>~rXK z!B8&=**2hLEUfe`;S22E@+1v5sLd71Ig|@EMLws$ZD($lF=6LU45*vl&}U-WQY3fjJTs_)CN?Wgs5gVUs8q+rWZyGcZoCt*e5*PXMgyk4*RJpCJCj$g)%nB zwT~6+&J%(pnn0?S`@9Ph1p=WSeJkXu40ML*VF9;1Ke8MMd-G%-nJi5hM&c447obK= z%`9OYcMQy6;m?5?ycG|EVKb=}PJ&_IKaO$$nyqQyK^5~bYX(Nw5@-@SxHd0lErG}& z#g&ffHcfCoGFZ53FQ$BQsS9|~9Bc(kpOaQ`6_L4EU?~L` zUAe&SlO7&1HM1-Ym<4U)X*z9IuPNDDzI~0BFv+IJu@$+@W)>SZr~snuCq_3dt*Mi( zB;5g*_YNXp+0Vvzo(B|>HI?otd?J?VC#5g zU^eQB`9)pyG@e(=ytCW^mt$!8RB|Yt8>>=D{(NJ)S(;#$1eql+3s|USw-MMRVjs2p zlnlL&>vw-*t`yYkr%FbZcm;6=L2B$AZ#==+7uK@9DHw6NKpMSsGz~!{Q%>|H-a_}{0CfFC?jx4mDC6p((P;(b_>l< zseqx}dS;NwsDA8+q0^x&TS%8u&cg^A4${qxFwM?)-(sPNjFN*8PLi%Q7&=f-DOpq4 z8jJs32kIr^>KesaBe3>cv^q zD1_eHvU!+iu?HS7fDND^W)_C<`&OeC&$?o@6*?iGwn0m}eB%`ZW4$gkhB#Pej(Jr7 zArnX)RFsXG0>vRCiwYbn1I7qat&;5gzD7`r;~}6K#bD`^LbhYL{yaw7b>I&I8DU#MqB+#1&pwfhgSNjz!4f}?aIMB zaTpq9wc1#r0(eVjqVguAjx@$BFyFu}IJVHm_kFukv&4=4YjQoRdG?mpM(r(i32058 z9WY6;kv~zEhBzS4S7t9AT%1})Y5fTKuL)F!X09br4|KP58M+5u)4}!MwU9pMhG7J$PBy3U zc(iLtZ!w5KePs(l@vtim>E5UuSR<)v#a3L{8bmtZ(wu@OioK&3L7!6Jhc@}4t-T5=fe#0VlbNWushngJU@Lo#3^ShyRn z5hxS~HiFcwG^s%0{Xa(F@Ru7SaJb8j8Pi8!Zp`Q&d$}=!b`ty7$ySq0gx0A55uY?l zIgK;VnK5B}mdC1~raA!?z&Rb5Y&pqfT7yoeVNKIp!l~dySEztp_>cSnS5x0`&rs3w zTe4+@+=}#GM#i5U&l>nV8tSM<1Xv@p&XA8-q#`Aybz;aKxYcKY)#r~qNEscXA@kx^ zoR(_EX~|Zc%2v^jt^I!Af=z-TS^YF(I!4tc6jBIi2Dygfcp+PB8v%P{WG!h}&~c)G z1rEw^YBW21NU9Mylr~_rmZ*?aqdCxf@hTMAkaP}1NL@Q3+3_&%= zT%vWStWUN0`798+mcwSceIBcLm{h;d@!%6xk|90v+@S1oW~JB27#aSOVFYdimyD8j{4)ZDE$B<8LmB}RLrln2eo7q@<31n^ zfi+V}P*y7=P%4n)?Gc8w3{e3a)2$#Rxxc;Lf}2b!@9l;+3*5ckfITf3@x|pLwWZZO z4YIx2to^1ew-w(*rZMGtVdS7;0xDW#w_`mqmA7B19a`cX$>=p{K%SLJnAVKVs83$8 zPGkx^q}Y$dhjD2HG0f4iHK@Xn)89w_Gz^Z00zhieH6)}g>%qb|Sk(i6H!xFPuy+Hq zJOiWy!mNo2>OyCqkpa1pl^6Ta4_2u2S`>TtSo1*HYugXAdl|w44hpQ!4BrKLplDq}gwOps8 zI&{m`!)Lz}hG5HD!K;Fb3FZw>Eo2WUm!uIeHejgC8#7=S_1SCvDj#c-?mP#h*lG)kBnAJ5}+5Ki= zE313=YP#`H0&b46kPqW-f+aze&8fp*ZC(Pw$$# z?IKXJV08jm+j-;=493W>^eAq=2v|l2l4pmz7`@l5^wSDGhm8P=?o9bYcT$9s;y9ce;Pud?A82jy`08bAnBW;?_l|@xko`0gJF$o*6w( z%Ue<{*R_r*%AiXsFeh=K ze(|Jh_PNTFgfNL~AF!3TH8%fFe%bQf$;g}gKJkI)U!01Yt46`|e~;fyahNXKZ-LW; zmjm&)1<~4ajcWDdnD*wLiNGNLl5}2D-u?p0Q-f&O!G($y*K@B=8+}io=&FC?cY22v za#>5OpUgZA;LcdzrCaI^R|4W7VB_JUBQX~@R1ZP63H==gjjInAP{ zfq~p!-hNH`WKzFPu_ARIbH~K9!aM}eU**~_P}FRO3`N0>_x5fB=7nQFz+Bfz8a;dj^?J5B1>|)$_a)%!lAkmQRi$bI zpLEq9_4KkL6C@E@WKN@o*CH|x$VFyxk`GThU;d@Y?L02uc7ox5TeoxRZObPEY272_ zad&vf_U75!co=a0t6S-%QYQ^h#G;1RYLJbbh?Dmdq08%#ortqP{85Kt+H+E4h*O)W zvHK=2k{EvmHGYswRQrfPP&*Omw)fYBX{!yz-J2$Wb*@Tox4+RD)>1w2I4mn^|s!;-ZV`(Q)PMVCa%yr{nxL zjbRFgH0b9eKIEx&H9V|~3iPN!HgZ_kTXphHn^8^|g-UL2J5SeJe1LR2myoAAdFTGy z$<6Kg_5ID&dF%3Je!0mOFY;37ZgC@a!>?tFiw>T8eTyU33H9IjG1zYye(Z;09>)i9 zutfamJXP4Wn!ZOBLKjQ$?Hh3oNKip)#Kk{l9sRxt>J(V~xG0huSMpr1mm29k*JWTh zYv45HbFrLm*2QAVHgG31pERg7=FbS+Ugw7-ciZB*UHQCJr}SQ`*JN+~xSlI}wP;@T z5aH>-^#}L47W4vy@9W1AYK9g`i{nXk6^<6k+ps~dL^srJtE|M6_XIDJktX=W_?obr1 z7K@u)yuA`5h>?{mZ){2;n;rgE`K-__dMot1Bw7uPV$b52qsnokNZMY>{Jvh=rZ>O8 z3pRxyhBs5ojg#<4b1zBy+q-zwxHV8$RO+q8=u^}y2WR%84#ZdD1*Flb>OT@-s%C;` zB~ROW1rNQa?Omx_4UPJ7rI9RUZAgvf^9{D%eS_N|$=}tWO~|4ZajUDUOc3N{E-?I5uTpvSAnNofj5McS zJVkm~alTCSf1$SN@C%6_s|wIMZ@F9e{q*$@Eo(C{B$?`|)Dd|zKO z%31k5y=Nu#^wy3vOIh?p+eJ?_kD9MMabO?B<>NE?TCpiFOT@dL+#^4%kHFIIQ@zT@dxhhSb=Qg5?uE7m32}eIJf~oz_jWhYsKp! zBoZDexeE_`V*o7j$KvxwO+F&qDTviNlJ7cx6!|0ZtzB2O^d*xxP;V4M0!w()_kG!U zLcSSHBK<}J>iRBppV0exIGwec?u?hH?Od>Ni#%n^ZQL>qmX5T@oacwlBYlwc4rRB} zfW=Vl5Oex1&7X*+hbgLK(!!x%o=)X;Fk%!2(_5vb5@K@e>L!yz0Wi{PO_DO_m7Y=T ziy)rSN==lOn$U)}Xq6^QWuDKfO_<6&C%akszkmGqdZv_Ue*^$pVkpO(q>B7i^JJ8n zv+|{Kfo%Zwx};J+ohl$}Yx>k|%DzacUQO>!pXQrB9Us{SJ)h1N`6AUI8uY67T!~xO z!scCb7ljWjNB%^<`j_Wsg)UL=$(2hCw?uMfy;eEQV6T$UG?^+gUhYiDbGycYxd06gLr!rS_LkmP|1h>(}FEi+qf)Z%j zfR`+CsH;IX!Alm!;jE9BWC%8CikM2aX7f+z<6lOy9aWk|2H2f1a;fK1<670MMKLhz zqehY*F>xRrf+tE3yyE`69oz8e|jaVNo2;`p(0v+_}C_+0|i* z(5G>3IwB2g-me_mMP`wmFY&_T?J6{5;!#1 zp4qU3S^G!*!yvaOC(X$&IBBF{Tm4G@tF^L;^7*ey*M=zKqw(esd40c9ASJd-=QTQ~ z_ZpRp5|?0Z6VHiCkRUkn-RjT5W0B-oIuAm-d>#Z^a$JHXwb&!sbOd@li0+^;liMLPJ~rL#P@=`GL8 zGR4JDl+Jk3ayL(_2bF_nl2$i@Mt8`9L6O$!_Da_2b@~q5rLazKP?1S8QmoW! zjpHI6hwYWD(`zNg@>-|MLyF1z9h)M>=3%|i`&H>opzS}q33T0MsT3ilsK^v05|8zy za7$NPW*nD`{x=)0Uucn}B}n=F`&p6OSvJFEyGC!gB#FtnyE#W3Zp|NyWgt1&g}yt9 z9N$BrxRzSME2tR-*7k1K%4R)n*ESn`y|&|U{@1(9ua~FSmv`UpuP#n*Qq|t_$)diN zXyQ%NUfJxWZJAhEF3mDC!X_2YTUS+6VREJLdY<{NKXRfH1lpvlc5MU+yHcQSpj|7Q zX}4V~pJ{g+Pfd%t-S?CmZ%gWuAEEA)jCPbPdB5=iMB6Y>{-9xdnY=KT8p>h60hnR#xwtEDrX+ncS% zu})C~W%rjq<1u|b#vj=6CuBFh(S3e$6q+d&jb47nObR{fiie~7{49zMuO5Vj-RFnI zZFm9mYiv*;hv(8GSk=%EI=q)!+o~C(UZvlB^KgC9&uyFDSu@)YUG!NsN0}9Uo|QD8 z=jrt$ZCxy!rQ5kq!4&nVlI?`&=cTgn3W7EE73q4?7qCR)+P&OQD;)>$Y6yB=S`$f)=oIv;JCU>^v^$Z)+uJllQEh zn@P|I0HR@8xtMp??UNQtS9zTv7cjm;IaTTW zNA=D6kIJN6P-m~bXY48pES(dszRga!oLyUk&*uLD00960?0xHQ;!3yRt5`YGQSV7N zVD6+(w?u&4IwT<>*U>04rT{0#Cbqfd*Y^-dnm;p7GjH-e$<(T{0fTK^*cd0B-r50U zyVk0zb*rj%(FcNve(eo3q$6#F_I`8!l^h=!zu~X;`@gI|SL8!~=f(#kLH@OuPVFV> zGxUz}ThR4kAL(9iV^EUPwVL>mg(f^3L|n0 zUkx-d;MaorZ;v)&qN1H3soOJVsAer(XHSUquXS~gA07YND;4=1ZvViT4sa*h6Ty1T zd~o1|QOX4)#}3h-s;DCjWdrV%GlfzmP0$~hKyHkwj4a%nLQ6(h7-Clw20c0nhS1W@ zPwO!mbqr{Jpz6Q&GO28F_N3zz*;J~q=800CJORBo!AVLR--V}s?eVFU31SVQ!F1Cn zyr?U^mb!l547JYX$!4T3w9M;uc&ul^->F2ZuzM`>sZ?UiSghyx-e}aPy&62HQ5; zeBh8xYC zvt=}VsG1*MD6kK0Dq&yR1r!s9u@e*J*ouj0SlkC?8>m0nJ(H(%i7+X#8aqm?{NLFL?T*8w$D`QMqlxEVOOHNeQbpK3F(&vDpHJsPq{VFPP8727 zJ5h)oE!Mj+pv6=sS15&PF=k`81D=h32mHg);zcavVmh7A7sI5**lpiuqu;*&csg2+ z11)Cod}YI=#f^4;(`2=`C0dNd&hI)}oKK!CDTq7*kHf|FP{u!?i69!Z`7P2dPu^KW zxG|vH6rU=s-zSETmh4Ix!FFQJI}3!tGKXu&OGlz{<-~MwvxkH>(ymblX-E-)7EO+z z=TkpgYFG<2lFXbal|w}=;80V zB2_i;KwW??8R`J@a+*9rjzsX36vlzm|Js>9vS^)RDrX!kA1EmI0rtKUnqk z2cK+?_-x|e|N8Ikbcq;2i@++lDM=Zkwhdm=OGgDeLRz(N?1t~5+MYIX)64kJ^cOTL zbcj|q4Fu0&q0P+fA)dTrjR5r1`Xu8)%{u&Hj!#QAmk7i-pr(p2G*sFwzI{s6=ooY; z83Ef8f;@39Ow}Q*N$9PPG(qjz%?grbY`nk~sNxk^vxbO0<8~XS&ej%yRn=Fk(<#12 zjT=eRjcXMwDPjc)i&x}kMU{trW#PW<2Sq(O6qL4!f}-A8S2G-D!*;AmZTQ;7pSTT* zIiJd;^7DtSXM8UL-HwcCBPQ%k7l9Nxr=j&)1-hN^`eTOetOEJ9P8FGDr;1fRqjoY` zaHLaYb-Z@bSjt7cX1wu`l2NT0)0rHf%j_Nzu_tIJB*8n+Wf+Q?3r#_h;IW=ykg39(zA z`JC>^e8TSNv=a{GLyhswxt*KRMs~u1ZjKJy-c(PgSk*(022aZ>FF-ESe ze;W*1o+pqy#;_uMtH&9?dN;HFg!G7+S0e@bXm_dTQS@ zPe>FfF2V4#vHdobI!N2IwVDj3MK($Pl`UA|cw5mT(I1G-=faG#p`q>bD4ThlSwsp) zm`FO+H#^^!^wKw1supKq1geIuqEFkbh7_SlBJ6F5k zDykw9tq4}n_ZW|-q{MhA@sfVmL$?IO$BJ)>y^};&yQn=k*A(3P*43UBY08@}Icw$v z`az%YJ9~Xq7UX|eSTzz~5FZ{$dxMiO4X(mgGhA+Da229YaT%o*rQ`K5i;)twV4FMx znlVPue$3~MTTFJ^!abWTY&8?;W<0ywVpwtG*{C<5r>s01HG(|)VGnSP8G1|n>5bi1 ze33n{gVlbF2QLojv5RE960$Xz3?`D@9D`^hCeUa_@@@;-r8DN5Cv=g_RC73LUM0RQ z&kwuCa0!N=5~|JG)$>J|<#-9H#f&GS&&(SQPcW4!jCvo3^28$phEXpmnwQOQdu4r( zVgIE%L_+Y2=^0&Q{{cyQyqoRYkSzgXf zxCtIORJAtJbhx1D)~&X6JSH-Ncl7sPd$3@!rh^=Ki>j<@&?WdcW6fD>>liiqf`;>H zUVCuA8T+!YbNysGfDiYo1%>UF<2#}5#n#cstcTVaP@1>W37N0ARQ0tlXsT8BywqGmA0(hxSI=0-=J1fPm_srAX^s#-L8ku zy0p{jG@(7p@!9ke$GarNP1EPhS`^vLJkRnuX(u`|QVjBArKd_F;;zx#P{MQeYi~TzNl)9FFvi`$Uk3+*BKGh^wI$tX63GkS4rkxa zXWw8T_c&dG2$UJY2v``OsxvGjJN3^Vpuc%GlkxAa` zQw7pelY4?JtK-WN(qv&k6G{*8d{Vruc~0jlAc)`wYD;9I&7Z5#qrt%pFK$AhOyMsK z`~VV@N#N~pGDG)BgQ6b;p^NCt_=(F-M@M)moy}nUAqHsiSL>2CV{7zorBO>KEVZ1^ zq*4Va3Fq4I9eD%O8lFE+oIo-)9&0{M#C<7dvpFgi@DrU55{(*t4w!3?15(DbLH@Sp zJs)F4E>s24tG0^uB?l6wn8Kq>#Td|bOPz4=6Mam)7#%|gB=JbYj{t!Q2c%2pFXwnJ zbr1-OejxnX>lw!2Aeq#~9_kBvLLDFl-^1L|7Yux>2ukPQD2TlaAJhPYiU4W(6PuR|-hZUmakH zag4A<1z&#cX_zbscwuy|8}w1@5fc*%9KIQo)`ZAg{5caEP9ip4t%faPmn|heGZUig zD;M!Lh2hUsT3yQ9TLE2@cCnNe$A^reIdb@03o8dGnxui?(%*)HhRs>|RH4Gru)b*4 zm)7hTL$0WVbz!;`wTvypjzp$x-mZB;C@pCt<;82tM^su8glED%Ia2{d8ysOd+Y-cA zG7pl7dow!FfuhOWI*D5l6^rtLQ}MvUkIxfO=+8QzNn<05TKxZE{%E9AX{;tdhhk}H zinarxMKZmipP&E_Qa^!|eh9MERftObi7lY6r2HUv`BFNO$_-{e8tUL6TT0~dFJq}~ z^bRukTaRd*gM1!U?GWyxq)gLfbKL~OM zbiU@lf{w$ZfG83vhZ}&1)9*x&JKmuS9`lwp7(ehpOYfMZ1bIF#E)V>$w95f#EBjMe zV;T@&;nIk8d)@>L`p?l1I`(9~p)?juYqv9LW4ijacU#k|hlh>wVYhr*#{W(mm2~%A zx=D8N#bxaf|82tW_o<6fOSzWu|DC%NdHnQn(LPstM(gb6x^Y{m)(;Pl{_{U3<)5Y0 zi#YC_-k;s(3ypGD&OiQ1-J~k&$?@T9bMoi>>3EWB9`{Bsxy$r%>gM|XLVZsbipsDw z7ALPq_2Y|f{%zQJJI`O2NrNdp_n4Qo+{h@&RsL*zSUnwI*3bT&3{K>MmM{J3v`=29 zlbgOK-EV%7dDyu)721FD_1al|QYsIsNwrEEyp)@os`Vby@=;Ba`{HH# zx_x21RC1H*QE5;aHm8q=hq;!NZ#A;|R6WadOZSb`6swr?_ipY_yYe9aIe!_6_r+3% zG+S=+yq4HVf5$_2#xBOvZ)lH>Fr87M}F}b-jercl|4L zc#$2xJ&u~jec@#!y>v?#$th{@On*S)`CIC3|Gt{<7xC~{lgV+tygFIsZ1UzL$-`uw zHDI#N;rEBkncO<5kIt1dnKalsxqN-CAH9v=%k|!HzdCxny6!w23*(9O(v`m_&6tP=WnH!^z=Hpzm(n{ zNrUP1qtw)d^y_1N$jiLZsAf{h)>S_<9zR~BCVa8m%I3=L2EH}Oy(IOc!*nxs)F@o1 zl;%b4F7uLCOC8jB*Hm7jvwUCXvq$~?Mp58};{M@im~1E8^;Y`qF*lU1TD{}stD$7Y zx8vI+(lP^aG_JUfGieYH_G3wF+{@!yxm>ALfj{8p)5+QUdHQzRN?ng0r@3tFeyZQ< zN5kW3tueamyj@MJ!}`6hygg0tc>bjIc63iCUZ6C8 zSCBI5(_#N9JGw&0d?%wKt@Tj5$z*$aNjbXj2!GO&k$G#094K^?SWb`f? z9cK!S>1FbvP}(viLJaCCW+%^i)TLUz)Z?m9iGdZ``nXT^pgU-!;4 zmkm7h##1X_uPb-A&1&cM_~m(9tMtUq1VFHXzSxLbe8AMVphQC?qq zYL(~D>ZQr`+u(Anx0?^wxwA&Uem?k<=@l+J=yg(0p%Y$|bJvZ#BN;thyrbNxeKbJY z>HT^BO+TI})kcv@8?E}Mm^n{Mm&zmRzdiL2$DQ~0=FJe#M(a_TWTiqir`0cvGPy^xN%!9Kb9*%W0hJtnNp~Ry{ybgquTPqCarSzjkqhtT{-yDfEG0)d>7p<^d=SUCT1`Bg-kp}~rCz?(I&Kz^ zj+2?={c=y}HQtKHFRz_Lql~*xc{yiPa_vD!Z~l2`?2jLN_tjJRv9UjSIZ>|8Z%X2g zsweNIM(b5fUS8h~lsmFG@a@aE- z6KVV&uWTi55g6_((r{~0!DEZP4FpOTjG>0d(q0X4ivaQJhdGvSQ&>y^)*ofY1R9gWf^P_Gj@X~}X(uUHOOYu~nZn`Zr6@w=c!Cl_0-*!@f$ zk+P4Pl@)peXpEYG^YkxXhVNi~`O`!{_(YCrj*WhT!*&zbQHPq*gHyO6Z0ccDB!$Cj z1%C{N28WGc?i*Y#JkU|$d<{kuZWujDYcGTDP4U_n8>vtjmKuEv=i59_O6&F{-B7hD zJ>jqqON$JGj}vMKcZ3<}O&bl)K#&<6^|AH#57$Ks0y{^Candf zLc*-3b5;QpF2%K`+z^h5m_|374Q+H+O1(rqyuZJ(^t@1luraTm`{=U)emGnP&Q;g+ z+xY!YV)-d|r-ESd&*mM{x+yu>YFX2RKJ#r)M7NtceVu!bRW#evIfuA~(bMK~dxS(d zi}=yh1VtaHn(+)}?MzvvQ#j7ekUp*W-k7d3&aV*GT6x8cxo~p4@wjEG8mC)U_~Cle zU9|^Rbgsh?IWZd}9LtMp1GWy_qs0mK&4J)TvO^AB3Mus{ArFGo>a8D+Ep9hczFWuW zepH5Ja$lQEXfyvL7oq~Qg+(urT3DedMAzC2(P~9FS>;;b0ma2!L2?649Z79s{vb|4 zqT|ZO_^s=LHpM0<^}qq^$51(e2rlxbW_lu01Ik0FEXxk!F1hJAOA6CkJrFFmot!|R zpa4Zwurx#-Q4F?i%#SjZn`~nS0tid+L{z}ak?VhxTNfWzwz#F?oIxfT+I zp^i9Jk*A!%!R7`wCO{!^lFs2fZMyx0FJLFsH1ZQR07)-fc)N*X)*1Ocv1Q#-_RS{O#16Yx|FWYsX}I4{lH8ryN5745@z>`2`qMuE52noc?!j|r|i zgws!RH&Qb23W@9Bb*zn~zLVQMJbawEn2C@KfUdTsVgEZB1o8!T+xkLRK{~$V+DO!p zfXPuGiap$pV3=`*v&S=UDj#sSBZIX;R_TqqMQ1W9aCX9r3aUjeQNd$chXsP9psp-+ z!M%GoGnj}9Y?(Rt?WT}~7F%`RK)~2?Zv_GcA~h;lmgKhGO?p{E!O9t~ZgEW}djp4|5D}g>1E72O zd#*?gBY2=L05C&^V80BtpiFy;1P)qZ;$WYd@sz~$%F_#q5Q(C}mY1p;vy1M~FfRxo zY~a9-tvO|dS#UJ%E}ahR({)<5n?}oSpxW$Ao(4Y8$&)Emd>$j}{-!+)R8oL6e20NL zhiJkeID}{(!3fwQ8?)I=i5$;BWE*}cS1Qu(vP3s7#xrKEc*av~K|k4j2M zR>vmJe^qeh`li5#6i*Ir4SxfVQWGuwEpThf=t>fy&v1c<;$zW@g*0>lrgNo7Em;~I zNwN$R0pGDKM*S9eMiX(2^@&Iv8$er03K22Ffo^EX5PR?ye5$W8r$OTjHwd74+i=Aa zu7xRsR1A6l(7YRSdavUoF>ST?#Gd%+W% zV5JxC$M}{rm(N}>jZ0khSx&t~d$V&$E`gAl5CUmflV~P9e`sBH$ z{+L}dHR7l1*G$8Ix}GgqET67#pHmc4i!z*UtuIjWB@H+4lAwIPF3}()>o`cB!hwl_ zmydw2z_swg1ewP@5WBDt$nYKCHcxTTMC=Jl7isi7NZ|CL*1@>b6CiNTmeB;kAr9He zPuRMV^fLH^<%16DVrZ{!6u^x4?4w&6Zhw7@#M>}iv<|LqXQq+*Sgo~0LIuZmmKF$< zA6q0;fGvbsGO~$_kVdT2<>+XVoG`JR@CL}*$V!yUUfyw?wWTuWTkMo>2#|2@VJB>lC%sID?WQS3#^z(MFuNMS4SN$mJErlF8mjnxB@FBQa>XDW-9fS zgMG)RU0PmI$#ZvKN#}GKY#MpWnUhAnkPC@ag1bQqQaR^_u@HjW^t7zwUQy+&cYh-)$_a1YNeZOmcg2Qnti ze3F-7VpQoNCvxzcb|IO$SN7blGVKxwtBWn&`{#o#q(RG`?b_&}h{6OyRFnP)ImD_|WUQhD1GMu=-6gyppG>KsY# z3`XJF61at7y+`CV$aGAEkeO$wp`UnpI|~Iem4K|SWZhZpEhLp%+qpmPBtkW^hGqdq zb3NwJbIu?t7OR*Unu}V=A$AC2m2_^5AOHz3qT!A_)bY>M7U-*O#1e1I2iif>sGkzk z@;1^C&VbMmQy4%nU@biPOlyfi&}7)|V_R?rf~P8xf$C#6!n_~dSTfsy!N4&tIfIeO zOq50j5=$`+OR=dU^qI`FU{E3PN_1jOWLxG2f`ujnSuk~WWQh|8yL zXw&a_J!AS!IH?_-?CaWBQVAQ#q}NG-TYXmC%UA|2wJC60+>+^rK_iKL#5tMnHEz#4 zfiSa*F@{E&!B0U$qe^KqA4|begYLz!-<(46p93A-romgERsahpaB92dH_g0sRw30H z*;t22`Gul<>D-z_Bx{6uYvtnQ98YrwP`C2hL;&;ena})d-HQki>CW{j z1)Dpy-=}$R`+_p%kTQ}qRe>r3f^2Cf{Q#>25z`foed(jNL{7mMY)j%rhyQ9_0XAp! zVT&@_&-t4)-(HtkOEg9XiNf?JZVo`{rk(JUZt}bhkvh~DRLyrtKPC^I-3Ncec#w8} z$WoW2OItY5Fdh0NokMhiNKYedx)*#DR2h!riG$$P$#t#PsK8;oB=#)dNgXRg8v88B zeHFhgwIRhUge2qf!-^A940b|N#kP(ny$mKOD8D;{DZfGTL7TnA=I3ggHFBUt{WRvL z5fu*3bOK%-;~r8tfg22EI$c(Aj9Ea}MYGI(QzUHF$f|)US45D1;-Bc)pKT94Ap5rj zIXcP4=C>Hof&2wq(rhO!K{ao5cABHZ(UvGg9`=`Vp>7i%n^(xkvOuW{i_mN_my;2$ zRiYGL))G0w?lD!I3%nHLDD$x_uC0nYn@t`yyP^WOSy8<}E0{P(a87!@d=JM^K#q^q!~pfLp~27=U*)V`oIF?S$%bg2m@^lSl} zusxadTDS$P+8s1+L)tR0*B^oht0KozoXtYV?JSk7FX>t8yz<(W0BIp1=79Fq`Bg}Z zw|We_bO>#KWufBR!Yk(CwA0D0>4f2QYpKB7;w{s!Vv$NWuTmCfwY4B2yn#D1pH=@H z6|9P2P>$lQx_f3HLaeq{3RXrgaD@qaV{sFwkayjrVUWIo?18q_hu|SL3*@61bG>O> z!_ya?Ifoa+cr|56Ov}?i5Si?PK#m7bX6s#t#Y-?WsQ7kV5?iu3G-1uuh|th z3`TPeS**_=yfo?o>NT)qpDEhsG$8JqX>(`W+o?=)F=e_&I$6iHR_K;#`=jL)hb`w>r`UwP!aW>bEWs zSglo^#qA+s}LU25hNp$OSO7s}0K z$jB)cJ-?bKLx8Lxo4yYnn4?0jOipqdsqI!oCdWeH!9ogpx-l(Jvv62-G-)Q3wfQ|v z(e)x)z#tC}(){v&Ye@>s(uLThfN#NSHn&c^+M$3j5tAVk6>pM?;^ zF4y`+h>V1I2Px9rsgTG;@}yrO?3PZ7HsUOVA#^SdLYR$qw_BCVAMNG|IG?0Tcf29# zloydUA(1(EfyUgm+80P2avKTRjuiY6DpQj{iswk_db())gRpKTu>v@_)y>>hrt?Z) z-CS8*MApr<;%BAz4#$bH(1L7|V7tY3wk8R(Idg_$ED89OXU&L@%^+5_a<2if?@ij6 z13u_eewDLZv^;IZO*zjvVgu#8j&-)1V$dJ!(8^OEQ;D*R+$&X6b;+21=Z1=8$Vhhz zG1y4_uAA%aCb!z!T<5Ye5tB=Ey>i08I@hU0Hcav17GXjgaS z4=g`Ci05!9zlN>x*3)c!Y|}O=&J)@e%{o%vZk*vZNZHEyXXR|2?}d;%u_tgokwf{g z2`e_n<@(hwqX$zEsN(=GPBxw+dW1aXQ)!jm{0eC!&PppkUj>G*w94BJXY^?Yk&M+= za%~dp`x$iBu_p9c{MCKYv`N9AecvdS-P92YboC18-l(%?YW8?_md(H5t=p$8jb8C#0EB~q^vU64GO2)7)DNHf@e!yGRy*`BgnU!G)Q3vgik>cR6^^wmX zJt!rWNaeyN&`;*30UtD~z>zq^F2l)~|_>jNhVi z>#NVSQ3toshI&0#ogGq01&Y|T5I2OvZ%~Vll+3Z!TY)M_W*r`;ERmLL`vwfan!7O& zC|b{F$_N5WmiikksuAVwJ@rYyL@_+QtDeWt2XLBKgbOZ7CL zNF_KZiPjbj0m`*<9SIvGlCs=XZ#qC4Ha8#yT2RCu>>n)H+r$LIs@_nwDHtlt{qdU{ zm&=rFfRhW5+1q3z06~WWZn~ijq2w2ot%d42cu=qfqjumz((J}gf;%E6j#J>Div<~W zxrRBRtThaEBpO#RV9S8W{Ng1a(ymblvw|I)+Xb46-V!UJ^yfEnrl|DK`s`K+MNBDtb_R`@P#aRSoBX3f(JijcWs)lpSr zcF`Rg<^=(S$pEZ-bD9gY#Wd|Moet~Mby~LTG`h~PFTkO!HGw1wYJJR6k<9Z#`9lXg z-kJW*x|C3fc?e~hp)MwrE2QP1O|u?b{hWfv+`s?ze-O6Xu_XTYzy2@C1>gx5*^o<- z{&>g+ScUnL5I2|Sx6RYbi|2azrdhjwzPYMZPHQ*51%_WhOkx8BC)dJ@qgM`gA=)rv z7lwdG3rh!ZS|KZ-fhs8mh!nWnEW=oiC0Pa$tO3ty_(d#{@vzTcC(9=gNO}kwIjv-xmnhn!HsjzyfK0Jg2~Pk#%lNj_x7@$7F2>1BIC+ zGFWT{`!)mhDTJuQXauX2$W-Mrd?Q)v_rZBa5@b&5VC^>;8YJ2eYex-X8&F32COR=o zQtX5}o#D)1sDn4xjNi!?B9zCL`U82&>BsUWl}qnfLVka5gVM1=>ydTVk?Rg ztOOA?x}pNdB+UXrV%rkg?1aNxZklU}Fy-c!1!ka9g1~Z7O)lZ=L{!i&@B%P8vK3fN zrU+Rim_%dW#R~*)!(F^UFqsU{V50zfK!v|4d$}})3Cj6dOKX~Y!Nef3R_|n`C~&f% zbrCm$%v9!C+=`j9i1X6cy$e{E;eh=VlB|^b#{a+n&8IxzutYEx7)InD7gKBzHVEUz z_J8<))){D5z$T)bq9rGR9SLdQxp7YtdoT+ko-07o;zn+fP0Z6%JVH}WL4t;DCD@_0 zHJ|j_#|l=v(ogY+oasNYyctD)G{?&I$lV%F=z}@Pj!qpkIp(rchq?9WIarvl@8}5e~Jg&UV>k8CsySI)}l6&4W5M5jGM!@?f}MGM z!{OKL_>7*IVHqWwoMiL=w#QMd^S`yrnPp+(BlWw_oz?*HJBMz8W}dV$^ZDBbZA2f; ziPb*MQYo~o$6&sp`GKmF(`D0Sb$cRRTK7bzSTv2#g(qkLwe?6opPg~JiP6@GZ`F~0 zmHIr72i@NjTITgS9M;!G`(3$A?;eS?XTV?>Nca#1dAy3_3tnOD5h23k;ox~bOc}IE zwSeu)Ah!_r&o6^=>BwY|AO82;A&W=`$zEGL5h3B7dpEL?*uD74kI#DW?LN$S6=SEZci`-~pEq%O0I-?ehYc4H64qSsV{Lwk>HDo6mKsx9Z*oj&Vi=# zxgBVtkP|+(b1!3YOW5I1Jv&ydDvrGQ}$zZ}a zc3v9Q7=SlSr zL0m%4Ol=m+WyDqnj$QCBg(@V2$=%p_om6A!b@G>*beRO7W3cFQCSKb%m_oGiqC)x0 z#skjY$Sov8%Jb% zkK<1))jhSkAJc$U&zg4qm!6G6&&JNJp&GqgLnL~ZX=(eVXV>yUxTh7da|5VG?*{Ot zXW6*sOV57kS-%2?6c>n>fcd1pC||B9q3fXrLBF^Q`$8Z;J!31^O|;PKm#&D z?9ORxU+1)5B;dk|I@Q z+c*-w3d>JPO)QDjpY0jDDprzlYBNsONzFWLZMh&3lDMG=ElI`pJnbR2Y7ewG*^?|9 zKa?o(4fn4bc7KUj6cL;a^?;(uN=S%kJ<${HeD@6U&)t4;Md> zeR*=)J!!Msf66;X2kyYDqB`wyVYAop<;l{;9(I4=lPgVuMlY4d)rkCLgleRJm+Y@U z;Xk~fORI1_%e=ch>2!Mf@Vfi{M0?PC7fa-#kLKmcpgZhzK726vT^~RCaCa#Fo$yKo zRrdy4v$-E|)st)mB_{l@y!wL{eV{Z3=L1^*h5xjqZDKwm`I;!WjN(X-;V4ode(N2c zqLuB#legXB`N&}GF9ngW{*#R*@88ha#$PDKnTwWl-rhbMd*W9Xv+>l2>X*d3Jkiew zXFV0yJP zFx|=x%;rd!x|VO8C-mFxP46cKbsX$NFk57@zPa#=~3+r%yr|XpTiTXOxO1^B~EgwH+AN&Zoz~M-sPrC)iG2h zD0BfcBJQf05ra7(Myz}@^6sVJly&#pmV+4?C=M5QE1TZHk7(lWTDs%JG#S{?d#&>Z z)C8?@D4+&@#x|6X9Pb|rjd$^c)xIr7`mjoEEDuloFHyD>9?mf`v3rN7*u~BSOpGve zoV^pxy|Ac6?nkrV6(e>^h#&O|{(+rPc`?_ID<46EV>{Xmv#%fyHNUz6fRFxv4r+V0 zF7O)yk$keG_q!cd#03LS`{ayWjfwA*1%0X;?3x>%0l(m4)3$&M&fw+AxxspDw({9! zK$uMYn-sEfR#Z@Xwd8i=-9?EnUYvmc^DRC)d zXF`-s3v6&^11)hs5XT2$kT2STZyhhVPPNRLtD)R&jYHLL{#H+vF@VT9@hq7GxRENghxMJT=B z`rp6)y&svjMY+y`;2WdVPYYrq19%?R0-*^NEAa_Ekrm9) z_@k-yh|S>P2-`OG`EUgeY=>4*5kmoSkD=>AbpcsIzDuDy`g;xuEZ6hz2mla<9nj_# zdpIKYYT;}=58ZIc%{6jN!Gc46msbG~L9_kpS|B(Y_RrZI9E1-o6pEQIouUiN@sEkDfITW=)($t+)@^m0P+QO%$F_b*2YFmh4X@-` z>`q)}JhKxS!_*QlH>kt zO@ncyZq)_jbQ+Aa(HcjHapE$PcqPwbcjEFw_h)zVjp`CHPI|w;oPf;E#@l+a_v|P~ z-HMM$*%6tz1SDR`vsjI|WY7IsjRvhq1*;2M(Obg?tpu%cglHu$5sFvxEOsX@J9K|` zC*P>fJdrKh=jCr=Iu;~VHE)VYs%rM?94}&!$tXKw)C<+uE@TV!xa<#J$#d93z3f!O z27?LZI;aHneuKe+);K;4rsvB2*{|KHKKCczs4fxbu$?kB#W~eGYbBghHG8#QP&7W* zn7eu-#LsL|@mMskitMp;qqV)l-7e;<>X$jDH<@Fif+NMqnGT+4Aac+c#|V+@mpG;$ zLE>1=!&%1z^Ilw%dkV~}^J;nBAYKMzTQ0<_U*eqJB+iKnUTzpvW#u3PVmxmaw%3hu zjEJ#*X?Xe(q~RS=V6bX5Ya9<`tUfaM>hsO(I_EGx`&32U-fnNxZ5Ok*^-EyX4={o8 zg@zgL1$+s*3n3V!1(lFx=~x%BUYfDr1BAa`V=0)`E*6zOKro zzkz(I26y{pdi&fRjO&q~NJ-Mcj_$fW|q`Xvb(2bd)Il45~_R<{9r4cIHq0@W{H&^U&C!3ON* z#1m61NKsFZMiGIM*Z>yjRVXVd`W0eAG8K%3UIIT6H8UWT~Bmw1MVW3 zC>h+jJ=z>LhIhO_FHayvKz1wp z?&O5n#08PyUtrFH+R}{MbACTld@_@NiGBUa%=PzOOR+;4H0b^9yHpK=AO3aP$adUs z>c$O5CY4FfumTC?7f20V>YsRhOvv{Ia=(9tPs`JSmI)uC2i3lC(1O14(Xo6B+4smX z@2|^y}LkYhyI|K662}wFz-1*zsM<Z%| z&8Gz>?5o`xaef@wIVehudDv>C41@0-%FGW zHIJ5LH9lDWoHY=~bZfQ?KyKUPj>G5-zL&iu|q?Rk&tBe@3 zJyIDhw=%J2)(>2nZYXIX^D@emDzbeEa^!{rdx1$AZFE%{@ODaVSXIP~Bxg}7rTLqx zC{<`)*I1+~iqid6Mb8Rj?qo{&?2)8IT`@6N6I@waBL4_glEJE~h^-voN}9Wu-G~}~ zq?XxQP}o+LT4KknYzQDl(_e_#uwNCWc}szkTsp}`=~f}IUyM?69H>-MBb5+VZqpm%EBE=NT*QWjaQW^ zWR>F#nWhq=Dnx8bRNPk)Qqg56bL7q-L}=5AEs*kvyJXQK7o!P}^FVm%%gx>U_kSH} zuRM&m>ra^;vjxOr)8ns_sXNJ3h=q3a1oU-lyHtFTIBs(z<*SMXF`o7Z9P-zr*QHoX z@^z`dSPu5B$^AP#bCJmca`$9egCUV9yrD5>X>xf%Utpckx>g)42(uU zlHq%`eic$AjDXC654M<=Z)jxaccZlrhG#N87*?tF9t^J~Eo)Z7D_DbCGrLP_XGs%` znLiIz-A*#-#kMOJUd|Nx1%mxDmowwGhGr8?Z8>vuS#mgtTy{(uwA=k!U1*It+q{&J z=dBh>D6kMYUu6}j5G9j&FcmCah@8?yvRD%;O(YAEVg;N@W%Lp~c&U`c(s)(m)IvhV z+VJsdrnDwmtR0gwhz?WjV`|*-({kE)5vrt}AbFYJL@M2 zGK|Q|wXmz*Vm7CfO)mKk_fp1}p@ZP_unGO0Qquz@@bi2X(cB_Sa-F}bZ%4JRjHFF2 zsRXw)P|iHn`A}DWg=S6KE2AnR--c8b=Xz_9xPMDoBX(1oBUGXSjmW^q;iyD$ORl66 z#?ZJqAf4E(rjRZ_>qtCY8)CG2Mz2(b$>3JXY_6Jmm889^_11_^t3Mo!%G8J~CM0RW zUIimn&3Do^wW>_tGn(w%gH`iVO?L5IP6f`pE&X6!{HSt8Pdb~Z!K=G6?jNsa2u*YV zmE0Cm@<yzEEh`ivwV+K{naV3Ir4^z? z2Xi=EVV|^YteD_mP&t(LffN%B_NP{+9hFhCG5Ueop4wn{?if$d%ENMhuUtoKX&+WD zz2Pn>PIuNQEZzKJe*@>V)qVDu?uM!v=l#{ z2>-y&iRQA5RQIFV?}@WCm$R?XYH*&BA&&2v!@BPoKS%)z{Dy#-PnPt4x3hWv!r+Wu z@k5U2Q=OmAz+v)$UvP#l`3Xl;Lj2%jw(`XVBQzm4%qoP&4}+t9xVXGKkxEtz*#PbunAhSoQRjBB50|<&Dx)mPE1hf4iOA2^|;EMQq5eHw1ZGVD6x5`4ni#x zr*wzeQMN^aUedv?s^*{`V$lghX~U{U8VEtBW>~$jVO689y7kfV4Jya--6xy)wDbh~ z$j8UmZ>OiH$JcLY>?KE!57Tue?men;Pi>LUa4L3YyW z_EG0!`xAO1D+qV+M^oz&o54faTl*Vgv|wJeLo29=#S`NmL)V4s0(7JC_U-GCM z*yUqUxBY&~BAdDmH%@ss2Ej#=w)NP#^qc3pcR8{-B&+uYfM@tv@I2}Wc;HynvDjx6 zo=qK%K4Wo19S5TS4@VoXW4?0`uafY?Uv?w=XSaLvd?&ldSG5^2sru0aAqsr{9{>RV z|LlEPlH$s;;8w7DX3x$wZYG+A>bxp5=6Rm^d8P>vXaEgNUu|}m(0l0a6?FG{dIN6@ z9U%#lNq`VgWL4&|Q-B8d2zL(;4-a>b#dnjBYq}un#?Sv)d^fdeXz_i{%0Iptk~);d zZ{Vk~{_%~lzf4(P{P7Ke-+4{ebnxB&`xg26ACbi_DEn7chcE#|l=wbnbv7sb_(tJ0 zf+7U{&Aw`iOA}tD-9HFfHzc7BArmMa$5Y!&NpZkhvI+0RaGFVA-)!hEl7_jG#ZB9r zEGLUqfN`j^(-CZ)(|FJ&@CYXkG#&IKYIj7IRPY@mwm<5Y3@)&isW~r7ssQhZ1ArRE z?7o5)IcW8?rkV!0%^JKU0mPCb8lked2-P)(Rb9;MO}kLSrIh`8WZQb@A3q?sow4D* zkea<0*A@0QYHAFt~5P=`glln<{I}%qC3dbpNb%3~N^{gljN9Lwkcyv21HcxoX zU5+H~4a`deDDeUV2+S9L2T)Mk`WG4}P0eKGdkgci9sP?&73%Wk90d}$%sQtm`b)x{ z{G7u5WqDuAU{}k2HU<;)>s!dgJ0rf)_f`*=MaV->-PKyXBv$FqDOMQs`c~!V5-a%O zynn5QN8MoI5tQA28`(yDPYd%679NSdfG{(VEUqv!&>yxV%i@yd%@aD3bXN*DO5UTq zrzZ@Yt6Y{I+`(ReJ3Fpz)b>_>cGvbf1yp{N5BtcU?#}V&1ckU|M!UfhCgEiAWeNYj zmM{q&YhRY|GZhK)j@-iB8|+b%{IW-1iMjB@dG1=PFn)_wh(6LP{Mu80wn$a>1nPb` zZ?QYDTQt`#cE>C1ecvEvUv|f}41R?@>KhpR89Z?KJBpFw8+mWN@hN<8y~Gadm!0)xXYGsfEq2yR>?eQOSsUiU59hgS?W|k&lL6N@vhe^r z>m~M+f1f;(YXaH!-C0+vi(5>am)OMp3Lbl$Y4Z}BxW8u_1qzcW_no~@5uq2@!lhnf z3-|X-qxf861wWkkuQYIIFHfKY#BIz|4V;%ql!e}`KgPgG>}Sbdsi( z44i8j{1Tg>{u%sb;Jmhh^AcOH{>AFc!1?tCj+YD00pd31nUz53SI86nvnqkaCGfg& z(pv)#!0ex3x{tobLdZ(<*7sU22-7A=jxc>Amc^V6!n*%rr!1= zKJOq_*A&n>6=r%-pl&d5=uete`Z)|7oD$#m6Tt5vKJGyBZ{gg#Ay+K$hxaw9yxffr z5EtoDlI1334DXr zX|J%Sr%EgI-2GPe)S+E-MK0a_W4Vtf+sE2czfg)_Vkh~JiWI-Mnf42X=OwnP{Rq#O z1^8<%z+Wh?6*1z!GVXfYCXF=UR!kj$DuJ%=PC#E(Qp;#pZFk36e}I57ko0C*|9hnfJ2APoipB6tkE8xmzv0neX3|KL#UZ7{0b-aeAdv8^&PnRCFadcm_N}K!B3qnWUECFwF0#DI0#*Dh8JX(Z zToS~m;RB3&7A*}^llYOODWa*bd?4Lu=$nvggQrR5^C;4tfeG>cG>pxWG zkMBUVl{K7f_bsG|?JDwc3OzP9+{-ECdhP5pm3G`fUUfsGo0ZbOuSZ<+vLyhB0chsW zoIZo-k9IEk83#caph)ULYS{yk`5fQRGY|sFus;R)N$7Wrb?`LfAP~ErNJOY?eOm_4 zGz^|5_Me4goB96zIS4%<+Phaf5Wx!k)PB5&0rJ?~rAxa~s1pO=ZcEvf;I7z~+PHf5 z%@JPH0sW?$>eD0%*Q3_pM^@%4q|d1 zi0gSf1=;f{2#4WzC!#?%bxh8q$KJeF@2)rXSsnJ}XbgmDD9y#^b?fn%Mk_Gdz)Ug$ za9EWe!DyTRu8S9V~R2KCF6+!;bVlYhIdzIG?jN7HZPp6`|e zW$>xmt1YE-E{dyQ*xLAW_4=HZ`+Cjwm#q71+I!jY^YbrN0>fF>Oz;jbnqZpuGld5$ zvf$pap*!vI=i9)~ml)e6!*+q<hFR z?VLRyfCmW1o<9x)*g3h#t~3kIGS01mv=oKy&4eh+CDz6T&66WsTR`@Z+>mtuq9hY zmjw8A2tEM}r{yR?x~FX%T*kJg3_jkxHjgmsl{@YLaa(j)kBYdq;3jPH3BK+oCYaiE z1J{uJWhFc{tHI9y`_)+uc70TzSq=30tcGJN@xvdnNf+H4?pLc%7u+c&>Wu{|&xEE- zHTBTp=BOE)OJ_w6vl;(eh}UF7C|8(8=sQD2@2OI}wr3q69xCOLMvCoV{Zc7URVn*n^^a32%qOkz{#&aQ z;yp^-Ri)f=#yTF|gx}u5m-Ix>r+sqz*OKa~+NyjnZS@Pq<`wp6ZV;Q_S`i}eKu9hs zLipiboyx9nb~|H__sY)_*Sj}{$eYzu3LD-Wi7b%Py11!(v>g^sL%xM{JM>A<2_)gt zZJ=r9saM3gsO~-QZq|D}e+q@Wke&`3usd+DVy-xjz;`lAxH@4vEU~alrZxrFai@-! zD~ps-i8`DB>xavM|eEM%wJRD|+gUVNk z>p+ubZ6W!}IyubR@fY3?=qXKQ822j8{d6->$)l2{YJQT_4)*|kA=6p&X&n=n@Damb zV1FP6`U>n1L`Tc;RW>b9uY8pc34}=yVTLs4M?!-2%$G8Grr-zamao*EK$ylUQggS;+i_1 zPrwE`z2Bfao>?)%iK%mpYJ6*9pDhf5A?SYPYRQ?mKdiewvO~%`&+T$b)vCIt4R)SW z`0p_pST!mb2?<~_1N+gwm>6jiFv;rT%#wf*{P?z*8a6QnorSY6_&RlyeL{j{m`&Sc zg5ToXZ^i95$g6K5LsF(-$pPsEe(9oYBCAFQ4znq)8(x_>xv1iGHo_#ZIXP}cZ~ zDA@1Fb^v8gh4GE{Jr)`RmAR$z_P^Xm z*B78AWla^GUxEf!sv&5OM-ebEo!kg$K62VJ1TQ&{@#T32_CVs(I(P(182jDslY6BI zm}x*2qZ;4YAKyl%IsG1q7_c}iYrJbyQ3dzFFi}_&{M3gLSKbskf*}YMQCP`dyur?& zLlzXp4yYt+vLQ>CjzB3AuWN=jFyDDiiD)q7N{lSP>K?#B5&PRz*LY~{sKdsHojM|8 zd|wz)>wzzz2MsVxL*_EBEus8Ew8qpXlGDlUGtLW!{f+&;9Ow%C1V|5rmW5K_Edr5` zcc;2xW<*U1!7pH$1?0lU&(4d6={&l5#BGX$9ey*H+|t&A;B%`sPU&$hnY{P*--kkV zH0VxV`;i9q(v??u5ZreT=C&Z7@?Bcl^mM5RzHwkN2AASGRAa`>Vs#N{yPWE%N^|o? z-+bY=S4=sf+2a_pPSs+TsSPBXeIIb$AGX*<_T+l^w=<|5-Dx*?tLh`$3BjHl(m?BS zEN>?>P9+}nX8zrP;%)Q!l=6joV^>*(G(cE*@jsW)HTItdien_`r@j3DH}|56f!Q`> zz%?t-jjp2m4rWzNwoLJFI4yoh{)S@p#=??5_C)!&!sbJU|7}X#{fO25iZx>$aofOp;ojO1;|&m6T5GTr^#@%%9(dc# zHQ(Xfwf_{XiUdnzdjQ$o{r~}q{`dUNp}oy-=x~8-9S)Yj&;x3>l`@j?cr6wm#&R+6 zm#ZbP;aX}$hTumf6$k$|;q?wuo^xtl2LBJ*S$Wa#mW84^GP!)CUTe|GQaqmi_kUZ) z{$`LdzZm2?`4&ajVndng6_5s!(6X8Mq`52<`Upz-P32WAyH_Z+`o=f8)Q;w`` zfO(@U^2Hf43wM%~5(VT>Mk0$+?3h_GBGSl4P{^!&4Kk|;uXpjh%wfcoSFI1a8FsOh#!V?aMl$nh)=2gwrNnlS-U=J&Sc#~{ORCPbxJZp5 za(})z87_Bo)V!&kT0*8^= zlF=K@{O&#&jyHLJ*la)*rZpoP#HCANgRoARRv!xdSzsZMu!|h z#)KNUH6_OpBOS+@NV-PX5w%%Pwec~fF$1x-)-_aexZH`ML|O^gqAbcr!|}Nl5h6l~ z!}2}SlB(P&6PcJQ!Ot?Sh^XUJe!fU}(b)!=tHqbfJie3{saPzLOTzI1Z}zkKbrEZ= zIHW%Btw@6Ftc;eCwo>a-KpD8!ms zJfn8Z+E`nJ85>|n?zY8sD`AeZ@lK);9&|_L)dY_VQHo_s2x&}IWZbD+Gj`cS6;wn! ztVu2L8J3-_5hfW~WQw(_nrxPshBNej=>z z5^7H!=1VrfNE2&i$($S?NJKLnk80gyTy3a}Tx_-u3)M+uz=Vr(r>oOA2}CXyiA0mJ zbi5c_)LOAvFP4BZmPp0I7Sglbpf?< zY?YxADO$s76HZ$6S!!M{_YozY;3xGoU$FsZ%O!=SN@!D2Rywy}$Z?|*nd4I?EJzjF zimN=*(o=kXMYLjlJ&9sUP9?ZvjIGc@^rH&2IT#MY9+=wMy{{s7AaQ@<44Pz`J z)3$^((-OOJnMV;z%%BF)Eb*9x#L|Fmu^5CF8^w}iCO3$5;14;L+5j~6VS>LR)I4cs z)$c5UAd>dyNr2f58_j0AP(pIU(gvU{Hv0gFxsCY9C51_GSjoGURozTcO%eXE0VZmo zH8D6j?f*q}LQ0Q?V*|E|!c!Vs2>o!~XIuG>~K&`Vt1vu+%l%uQ2!q z4OnQ)K=V{m!QvX&)Bm*pv)3J8i=0~*Ia{)VcTmK3DTEw*aq0R{AXInt;6Sn06L7)t zvC4qIj-6DeJdrQ&-@<7u`T+kHbRnMbZ{e^9nEh~X{}vjhDb$~Ti^Lh4 zbe$VCN|1N-Zvp8)^l!NX;>*AFO8%{rBJd0RTlWruK2-e}by4*nM!Pgt3a82Ntx-%h zJ}z9G4}1Xfnl^SPiU0c7|NioY9VqHOUl`OiCwyVl1AJiwZ9BVmePP5q{oxBE9LLzk z8HU?W@43S;n#8``VPEdBFL&6NJM5wEFulOf4FxU(FS^693bKyX=2CT;oO1JW39g$OEX^}r(9m@a000}`#LHvYfFKiD!o1xA6oNnB{Aw#L)r!?_nSQp zHxgtY&E$&lsm7?B6wSZ&=}C-Hs@o8>I%4r7beuI&!XyY8^wq?`#`x(O`KLbEnV7YAs8 z=`KZj#*cYv%11Nv(#TO?1v1+#%&TppPd3yU#kQhmiR`8+a+*=-Mx9?q$6cXCEWxZZ zs?debL@XQm0WKES^+qxsO@ztLy1Hx=1)Wu$MZQ^GqgN*ka#S@6WX-B1E9s<^ zTPVwLIjK(P5vGWS+fyzAT^3$rJyEj(&PO_q+b)U;9Prf-8LZC*j9m4*J=>?z%thi& zqqIn+n)60=l{8ypewHeYQZ;!w8|v{yO>xFDAbmE^5K7xBqf!~cB1ycM=n!kn%o++_ zSX=1~&&TM_geY?DS}rjgR5PtvWT@c^Db`|jO=8D&B&-o}!%?tYK`%;ZuDhIur%SVB zFQrMy1XhQUghMrh`>Pt7`Eb;vf5iifpoyFNWa{0_uP`bmyFO zhk?JenFLA?>32w^i`Gd#(_VKQP&q7XjYTR^ti|@6os}vwiZIYulyHU~bY(#Y-ND}+ zUf)&kT(*1?AiGkFbl#Q_M<2!ju%z9Sy*~@~?pTGLZsnv%una?NyZqsj-TO2;QKe;>Yh+Lh_X%pF2S4`Y~r@@LxQ5A|CJ~2ipx`Jvk9b zj6Aw|LW=f>(0&t+pk67Q!7FZl!ZCBi`y&DJJvf{^k;V7L7N+Z=y^PF13$EV8I35^# zP$RY$J~f-62;)`!3;@3=XX|J-I}-=I5o*t#+?2_6l$PZt{QR06EBnVmhSgoNsP0|Q z=s2Ex=U5$-JUCXzE1Da3B4!Un_zrt_Uem5)NZwnMm!Q>XP!Mcw1P zzWq7wtVrCu4AP~{0>;gxh7CN*3UCF7+EyGmD>(FiO7;iMwsmt)NepKXS9{d+b`{^v zv)3_bb56mbP#qnx_49}CiNehVy$CvZTFUjk_<#THzxx*A>!Hu?2iqMd=SJkY!xn?~ zr28^G31o$NHtNV;_^*HcPd@_ZCEJfOd7O^yHu&xA-x&m)jo@lDufUrB#9I&#i{^QxK( z;NN92cFr2x^xd;FXBT782;02K0|A#*OS24@ZoU>?XI5R9^E1$*OSK>%cz=&F?GY(q!`AwrgZZlge7~-(M_*%(5JjRlO6?aZ^{iDQ+P4YcafEsYa z{!K>$=(3~Xb9CtJfBox!`Ozesb^Rr{x9R@fh7~S6d!i9;HP>^7-?{n?Cug6H^YR8{ z!D$fo+uFxEz;>Iq@5Vbj)*iiib8f8dRVSz1V`BV|B#$BKb1i%*L&p_;{khu%se%*M z%m4ME3B0`EPd0k5=+!;++r7rsA>1SVbXn`2({AT#b)432t}TCeEp|m$eJeK)P5iV5 zU$Jv>b&|ss-Ni2ZNMB@&>7pu$oS7bC(9nCV0q#9L+&&Zh!L~U@ISE8w#(5M&HtxNf zjPuyND>9$(sXLZ;$d+Z$1>8Ax70RraQ~gZR)c&br$i9_vq#5=`%Z46T=mQsQ@GTQ> z06qgEy!62}VFcIfhhR0Fuh0*d)8TI1E&Vh~U}xw%z4J9(?|tI-x!RJKw#QH!+ZJ~A zESiN9yOn6|<3_I-*c*%2V=y_>_4#rA`Zcp?gm^$sA*Aq$oI(=z=x#ZMC{E!RO8>_L zYG$DXg2PI^*XI-xB!eQ4s+xtO$61Ar&i%?Ne5I^H4R}pWH$l!m(jYrkddUp% z$tdo~VXs|D*5joD5zdemT%n9MHO`^^T8&Be(b%F()!+cvnXQ_UMK`N*XaAp}eS{wK3wYn)~$9QBmnU)vbL1$KNwy}9WpUfZ=U6BpY zEfZJFvNCVe>0}zWl>TV0Wz#Z6F7l$NiKLVH*-{EsT8e7)x|SHWkYbV}5-f>e^;$*m z2wW9SuCc;&CXIM(Bo^6xWE3_cYMvOEncB26spN;$LMkMQSXFb942|ZXohc~&K3!1J zc)Z%DGR=BF94V%$AUWg5nlx?gr$Md@ z!*z@3r5kfOicZN)e_gIJN(L*O|{lG3-fs^H(m~6q>(9+ zk#;3M#qv((XJH&GXQ@PV(pbzERg;NXMqyN&Tg_Z%Tqv!TK3Q2u=9Ne@jfhORheMI_ zsto1;w4^X|Wo59nt(g-kSQ%_cw{v)5+>FZ_OUSkMa8znIf;~jC;|UdQvg-`BOwe3+ zM9XrCqyO6atb2sak-p-?A!l-!P{6$T$;i9|ZnL^wokR}+qcjWxM6 z)9zTMaJAa5gGwG=B5DZVtQ z&dSL}YlT+HTwasKg;EaBI|XfM18j22s+Y$st1xL-tMNoySECUmyS$|`*y%LL0F}XP zfUrDRpvqtck|Em#7D|Ytv12f6Ghk(~gs#o!O>x_0ugYKyM0R~;u!s#1QZ)AX%3xp1 zxIb+f_q41{^XFnD>OKyzK<^Xr<4sd9&ng6WMZSsm+s8cid9F*KGi&^vND?6K!1swH zhgm(3JCP(%ud?TlBstoPIua*zqtdR^83&DbbFFSb{| zEOKtk_ui+_el&Lzvvb`^Mks>0**E*W4{mGT5^ZsoWH1QnS-a#Pec5h#GbfHU4PJ%NB={~0qHipq8A8aDF;b*%8(fnylMP3?6=K@a;2SXsM)8~pI5H4RUhCrAM zi!;n;cFi&+Sz7xw-UFe8#(TuiIkrKtoqm=VW!Z>~{_)Q%tdlcV$mK-vBX7$Uc|X2W z*SD(mp?N<(C)J}goCnUTfy9xMG=(+%bS;?l`;q)W-iJSV;TniVL!CW02Jec?-vTcX zD!&WYPtvc`&pNBwVCwxLX`QE=YxwD#WQ2fz42@WM@Mf^4rQ6eY2$4WNTNEYFKm6I?x)Lv^CS6X#Lh$%j~caF_+w z`vr<#Bna7Xdvl^`KIY$0SEx_?8gp>K z1Bu=HnDYu%dmd2%xqPYi`kv#(KVM;gq}Hs7)Sv)3bjb>ODBjelKtyHEBa z9ri1sot1!Kr6v7G2%s>#((Z+KMvmiU^nQXt$jdo9A0;h;z~S3N@6URNsr|x;J5zA5 z0(Y0Hy4`WbaaMqiih1-djhLN>Pi=$0Xt%gaK7q5{@@V~u9T8u}kIua3x5&}CCj5n? z*B3L2J+45hzkL~UQ{Cz+ZGA8R-FII906q+*9*`^tw;fI-%h9k$_e++eF@iwOo|AWD zvfLX zfW;peVtLt6|H_m*nppNT<*<{Pa?uB5%HiaDbU#tt!ulUwMksqUN>SUR63XJVDqD%F~g2g_`2j0-bP$l~1w)#3y;wZLqEx}nZu zXe?7P8u4LxP+J2@sB+0BYDq%0)~oQnxTZwwYuci4Qx;ct+1)B`rJ^My<4{iejo& zloH%Rt96mWJk=1;PL@^bNEL19Hb6_K%(@Y?a>^*VEY9&YA*@=FgjsHCOlM*!5}RqS z6IeUNTg19kK|8Fej8;09Mq~&C*O&g_1N6H zy>3R>R>mq?#cX3mRjZ}cus-N#!qxsdQkHW~Wi479#aNt)=C!Ikv%02$MmdY>=Exk? zFU5;^(Gl#1)gThXG%6MnEfpPBLRd}|n6W7(-`^s9>w7d2Hak)EX!`hu<0qnVO(Y9&|F zIRz=om>gb|EP0C8`HPSTabyH7fMS@UpV>bM+fF|#spo73UXwNGmb0uz&H$tc`E*od^kKND5irZ(JuiQtkdCfT*d6$GuNWwE*xB%)3W6r;o=%e`r z_W#+ty5zQzBz+Z(=SA*rkp%xFbw?{gmgSbhvaFTZ-7zsS;Q&cUWSb;30BG6sG!b)z zd6*l_>`aZEt$Hm_XZ#SdQ~OAlFpM915Jt9&M817jYNGa!(| z38A^bucjZt(GJeq3jkybxLP4(uRW%Y*KeNZtDPb@(BmjNUVEC0{RXGzAg)T=j1BV@ zI>A<(_ZJq5EVVs8Z(q*DHY7AE`m$I&IA zEfj`=Xx>UaHgBa67D@9KYF76`A$X8K#b{`=HZ8Fzt#o_~&{Z7I4HnqD!a@4u1^uAY zG+z8_;Fu8XU?w>g8y|G=^A+AqF#sMOHhE&Z zT1_blE9aN+TSP-NZ9lp5Df;JQ@Od5u-k5#5WU)W@h69>j9{Y2*Px8`9%VC2)@?fNy zE6tmEV4b89N~lY+LBoma4WhAxPfW=F!*7%w@JKS2d-4jq;z_8X^Axu01&q6}(F@*R zP|bMs4u0)m*Xsj}uxTj?o)x0d93mn@cEN>TSsD1?f~Y4Qa16(LQ*U7%YdSq$w;{ zZN1qFSdQK;(i)xL|27HxLQp@pyK9X2+9r2MNq9>>R>YdQDXb_P2V0T$8yv@Llq+XC zu$mL(YHA`d`jze%FC|)^&_!XsP@xa9-7R6#uWoWSQj7l_|VBB;EAhTKzoM5@2N(w_e7fCq;R;SkcSBUjmOggx8ck zSZdVjHCT2C%#Mw-$Um1J{?u6|CV)@>RcxEX^q&}(Xl?qhy94^~s5R`{hezr;Q;~=i zD`0f3){f_<#6$#rkSBR9?Yz7_(g^J~X=z8PwPh^rA_0<(1zJXcXp-jMBCgsZPUljm zEaEsIINy$tX%QDOo@^9KRgAZ{T^>fqoV3JGSBm3CP*W+Tct*3wF!TFBa_Ww@sh2wdoE*S<^lFd zH!@`>iR_KcXbsiGQnG#GfbY!rfNrH3$cUqlJw{t9+N9%LYGKR`RuPxR1GYs@rwjRi{gJ5LEp?G5o0)3FbQM8dv=@bk6 z7DZMuLqLw4nJfXVk~zw1ql_#(%i8tqBIJB_qv# z5v%1CC?&le%YFrK1F2W&PMC#bNnLPRKhf){te>d5*p>(m1lVx&47ti_CC7{rQcv7n zC9!l*qs7aR#2jvvU9Afya}io;p~#J)VpdN*DzdA?Ap9{1(KUW?&+Ib?$l z-G5n*ods%ZcDC|1f5raRCB)k5 zGoAGz3R#KH#61MUOY>j+q9Z#&pip!=CaDISDLYhHhJ3=(CH8AH^sR$3N6rZ+LzbwD zS_MP)=?PT{Lvl{dkI+Gc$Lyk(;S?9r`hS1@yZC@VR>BLA6cP^gPgKCa#7E1r=@oK* zcyFMD^9A`RNjmlM$>;a%`A-&CIz0^jW3)2Ht?;&01)KgiU@`@&M&`5_n)#XQlfR#! z_E|9E@aA%@rXFMzvwTa^Iy7W$bhOgwv(F8s4&O#0Q&Jzs< z2rJ)`KwuI@5O5TY3&x6PNF3}l+nU-aY5;wCa2!AS^0@Zt7u?CjS)eJPJJ?ZlxkrY@ zxj@xsHWYE?2^|Wn;1MXw&Od#g*`R`w;#L77a9br0HYbsFsi?5BTI5csJ)JLuF+xOBLiGU7qeZubr!J?_ zl(-d#&t{_enji1|55XZ|Kr@@#}o*&(It61w!?S*+E%J z;R_+v(eLKbNw`#~6Z{X*5vtmpr@|6@#8sDhhDr!!AQP^&@*dRL@Okn06^i`{Q59-yHJPDY)va_V z3@kAVtOdvY637|mw{0RgQk8s^W6Br@ck+<9mzIOtejI|ay){Ey3)2Fui+~3Ux*ZC2 z1>O#YdIN2Ta-4wM%Ut3RQ`Tob&6$B`*d3*iB7x`g2zBSPuI;3&V^w{*wr{ypsDoZe zO6u55L6RxdQ@5k4Cs>-0P**(zmVK3qy$AKSQ|VWtLsfKp%?`{=4oWaH5TWAxff8GM zX{qY;l|8Z6o~jHlg~?<)k=Q9F1hA9NF697&YzCp8#*ir#TP~W|tW2LMl(qRP(6&rW zEt%bAKf81mwr4mGMlf#AHn2EaC@3`8m(bq~lt_vn2qo1B1jwMAZ9LEYS+YCkdANIo z0(e>H;W6HFIL?`GuWl|zSLgS!?%P?XO<>F7vx+7UGAq3!3>_$AR_@M57xhlbX<*=6 z#(3dOK6*bGE64EG?nCepKq)Hz2%}>wB})Y`M4b(3AdaG9TovT8_w^W6N8SbVIR|7x_d>79du$I#b>wfznMc#iW_wtkQOVdY%D3XBy>!piw2{1(v=P1{fIe2V`07<`^b zSq2m=HTmaWhaS}9f9{h*ENMAxkhkQ_>pV~{(g-CqRVXnUOZY@i$r&_~jOE@&$@iV7 zuw8EsgUAoV^vb@E2EYxm|5^-CSPsNKaV&!n_WPmdr&#{S2`v!MstdIMx9X+MB@}SF zG($4<;q;z(k1~`kULzL6AsJ~3!&M9PTp7a+pbVEnZHNW)mt;F;=H+wL6)B#@W=B?n zr))Y>;biH8jj2qVtent7K|#AlQv^jeCaWSr3E}>Kn}l7V)Nb2tmh`YfD0PsYxKk-6 zJ?Mix;4&4wX+fn7PF)8sc zLK-8+umT!`B?E(2=g2;c=TymH*1GgSj>XEFg6jmrQcP^n2YHUy63t7+C5_Ndlcl5w zVM4J4OH|QsY<<}Vq%0w&`Zs|jlISNTvrt)oQI3c@hFNp-Y85Y~ZMPar@5p{_h<0mYLQ>TfF{yLsz2vp~33LP!o1XN{th zR1Hn#g2AAec1O~{MvqW`Pp&huJ+EabL?eWsZ-lxlF{MKNl|c>?>JW%FDAbn^^D7AT z1xG0o8yaK>5af`h1KI<`;5Z?AQmCi-%6FaVdZKJ-2UGjWUQOp9*OS;}D&v0GrX!{y z=a0&Ur3xHY=>#IMDuS2tV7o7aqc!s!l~JW+oL!@&o7r6sY3NWNoZ!&0{yXD&HlNHe zlne1m8IiBZ7&*qoSs@~f2iI8|1Zj(cz&zP5&YDEPT47Nyz$}VY_hWQaV-Y_8G+r3H z!WmF^2*Hc4YFOZMdtxRn=)5B|Flb$n9q|J_TfwlDIql{U1tZpzvcu`hMyD#v{i3Qv zg_>i%@aInpWg{D_n?rTSe6+>MZUFw` zn1DFUl3)T}t)ABYhd1+uOK?K9_;mlV^bXMvW8hw<7JBXP&`=@-g!my&! zHn(!%W8zUW7@oV_i+D9w?ygc{g=o?Eg+~lPLRfe@+>ub@tzmKrTeV09g(KU9B=&|l z#HkPyBUPfxU`Il+%O7=%P-8jd0mok&{dllpn}KSq0^-@5InN%(b)6$|H68+fH>S2b z{}deW@qr)x7Cb+(kva_iYV}rK3s~717|WTe&eX9s4V?sZC*+QSRnQO`nYDPfz9?I< zK$hCdIy*qVK~RDtB%sf*Kcl8ST+o3&wK0ZptV8hD%A5ONq7%I__YBMP)=SdI*fvb# zBkZ6p8`5Yqm7DVb%>=6w`@T;A5tC<73d@sqnhe1zd5DOgRM6B)$G)!+D>_YmzaQri zLE6iSOZGZqppw)&(rm}9b)-LW4Pbi?iu?ks1RiUJ(Qo?tmtI;)x=~BsEGMJ7*;6I_s*qA-&}dBFPpQQ%f2Zz&l_`Z@{|25}-L5UR zf#<jv-wZvvX%iJtae$|11Bl5%WkhPV5b4qs_y3f=mKI+ zq+tH4ws~goAYO&!(O?RVDRk{Wujel43P<%CqcYuN%LCs*DkQPMf2?E%;k!q8r2pOT zV(qrYHjg|QEz$_>Tj}N@hF-R}3GgK51>@GYtg=g$>b)}iUcElX>z?$4_AeIWdA{YZ;oy;tQ+EVtSud_@=>69H z`|F=aSMP5C{E)&>ulR`A(U`W|b&~Pf^rfH^DyFXl-kfSD1rUN*^$OpN&NNJv*6!@<1h#N>G7R~hU7a> zC|jQ7wbCrtA*q&1DwYJlqS{lD1PsX+GVEY3&=*2rApBjtVvlPde~r4jSuaNc#lcS= z3KjqHMem3XZQ?9Ys3>L9qiE*IlyAg{uv8B7_6lI&N^e+7F|hg@mJ9|)3>NWkU@j#2w?a1LVF6|~ zvjjHe5QSF%L?$0rdNEXr57l1`6)Vy{vFOw=B8SKP{XvI`ODTaBIj9(RTLYQASm}jP zDPB~6VWb%^awsHrB^gDmIB0d_C~9J?XjXcKRE8CC@wYuI7HrQ$)vi37)I4MY z@zze?D{J!c(RJ1u_D66D_R znA-W&&9C04{9VlHT)D-+j$(2EoIPW56gXrL>ztDRH5yUU6S z8mguamI$UISDnKKNz~72i|zi}U1W9}dXc%`{e^c}ji=A-K&adA{u|o55VJ}3vQF&9 z0&=OPVvFFo)LJ@IJAP7ai|rEH-J^CJ1hU4l=U?2!k-!C)Q@bn5?kb4gonKW`=g)Lr;Rk1}^W=R5mk-bcEyT602{Py7 za?=*uHnfW<=++D2DAfw!2@Z(c@q(+V-MxHQ{k?pJw@DmAdU-QCI|Rr*4~ujqvPe(6 z>+)W`Fox<`1fd(cGEtv;+Fd;N8VV8!$_Y^I*mw&us8tj9qsFuywT69Lw$eV5Dd5`O z=l2?VpRcv&@+~uFYA@iqv<+L`fph_v8Q9&^?#iy$&?~#1&I0~tNSPniZXKNk+-&tb zM<5C3u+w|(-cV{-UQfF#m)&PLHg-2KTWPG_S?brcR3 z^Y=tm>U?s9s7g(OaiXb}s_(SBi|g(3T^wWihC1sz7Z$&vTC3=+@eV-;Xw}rkYia65 z+uN&~gBP#n&eHO{7tAE#{Uqkn20GY%brT0xt4YhREw;OA7aI}M*|gpD2(r7X7K5d; z097jQDW(syy{e{7bISyx;VPLr@c2(hSMM%jEw+VpTwlB39$cPCt&Yn;Ac)}ub-N_s z2T`5@Kv0=lJl5GKef#t10Esswv$K-GUAUECieTEH7a^Hc%2W8PPdckySRlG;>NMZ4 zU^xb=Id83Xj(j3vTCb_2=ji50MkN!N=z|AK)>=%~3oDh<+!iyMw2PkYH#BRLcpd} z(+0V?C{5dN&@%fnMGH=4&_NWN?tfAcQZ zAQA-u1*F|&+@PVbFQ5cS-9wgz>HB{G00960>|J|v;!3XnDpPFL);VWx0ygj5%~Sy) zlhnzp66WmQs#}#Z&?LU&*sL*=WIz3NcN-ED49E{zI6Z$1F*df`EvePgPtx;|`|Tgk z!GAa6WA>jf&qu!u>$s#>O670=C@;@=-;Vi_C%^mfyQwiU?T5vW532mf8*lgJ<;fC1 zW5=bb%Vx~|#Y*44Y2Bn*>jF&zSk} z=q;(LEy!A4F_Ql;j{fOi`g~k!RhxDH{zu;H)E|@ai?R4waN%?vMU4oG*1nMZ>V!>< zx#jUQooch)(*^m{;30S3tHl@9)<#r+Y#_VyL{Bc5#KYDwtEMqKve@k;VPsz<@K@Y@_no)cDLZTrbTzt&*EleUDY|hN;si`?Y>P0f@ui=Rx+M z+hr(%HmzK3RKin~P_j7ZgC(ol&QP*y#gr_a@(%E4*ifcL97M9PX{#Srnk;P>Pc=;e zj};QiRKN=w5~@;OI%ke$j*H^LCE|dp9yaSNRaqtHj%^gw9b1FQY6DpmfG`Ve@*t9m zP20iGr$2tXyuSFY)N{V-B}lZiiA`$W!w6S+zg?E)I`Vt@=QupJZPVLJ>IHV?yKQrNr|0t}BTQfJM$^hOurYRxSU>|^aJhI`a7BviK0eUkZ4xZg_6gP6+zBiWZs(T&1$!|@ zp1fA!@rsPc;~zsSiZz?bpc28EcdQ9vysa}cV#M9jDC~drjv%1OM+w|L=NB?h^O~mje2ga7!Ew9nW)~{Ii-oE9ES>RMO<1thTu0_h{lc9zPZ*ALd?gAf7dH ztl1Yiz&_Q@k}O?buhc`sbhQm zm5kZQG>=Oi*EFnEw%5dOR`t%}9RtqxKLVi`T7jMxBPb`>n0t=At$+GlC_DdxT8)oI zSdWVB4%>Iv9P>XP{7?TL z0oPY*6`_me#fxipU5T5qP(-_~#FDsmL%U%qZsNm;K8k_V142FO@)fqO%L*DCp2k=x znq7T6@i=RrVKgyJ_B64KNz8)Yv5K)9J{05RUA z7BqsW5W*OqFggg~W~Ongc%oI%z?FgsV~7?$M7UZ_9U@#yQ^GS%g^MTQ_%3RN5mp%C z^qu0VV}x6orZ>hCR^eDKps<2K!r1UpAl?g`ynO))UwOtsVPL|U&<59enZblxnWh29 z(|rZa16DZUeTKZGw{9q$@K$w~GETTfFP79QXiByM3dbc*0fl4Irhvij%Xpp!NnMo*JR=)qxH`NCneb|VpwY%(!@rTH|s3;;i1@5g!o z+R#JU)k7`J`=iB1h@S&NuC_+8~|9(xw+a6}4tQ)B2xHN2fNuP+&XfP#`IX%np){;wUiMs{G;m|xi8px*G zfmJmvO-`j3ifQK@iYZPZo(?^ST_{4UZR1LchJ!f5~pt%mc>zn@pZ~}V8HVHkYTy`eR_{3c|Ol#wsAN|ubVIJ&7 zs~^r-cxRiCz3DmeJNQogLbLY{%i+^zZ^;(!=0D`6`ofhoHxm_%7n<2AiwOb<#LiDV zQsea zHmhkRh!n5X0=*b@MXgc^m8^j4rv;?3!X$pckr z!M5I~b9)4FYGWJkgX=-(;-1%<{n+4#)<}NMdlcbng^y@iPrGwcm!1#4o39T(JKaLM zbrMv!WI`WYD*imb;w=)E*w51M<<#4mbm_%4y7|U6vXc=|^C2Z85E*$7k;kEsK+qr>MWx(EiK+tg5wDn(% zr|IS(Zw}j|U7)}96eYGtFZ|Nm?>apjW^O0X_zFXyBh@SS0{wPGn8ptw$j#*C5PF8y z)WjY?QS&qR5rk{LX_^trUX-_9-ekSztF_JXL_KuS;Lm0(x2ce-5Rzc@=g3P^Cx?3@SX5~Q6{y=Kn1bUr~A9> zJbRC%htODQ=s=9TyTBm>F)Yxh`NW*f9P1a$eZZmzL5RK|-rlePlo zJymI7J~7DJfvuZOoABrf5LZ}4X^md#(j2)Cw4opNFishy9}4yu{xmJe*B={;K;%4t z&xXg`-1!i07nG)FsV;C)papr8;HkI^Toi0#hV53lxwszO{|i!s7QKtI1__no_bG-@hdp*2w|D<+jzJYc)zbDx zTZQuM&R(B}j&(mX{{!(-eY)w5v1d$msilViI>{FSL?nq8TM+0kwJ(%c+RN(;p3M7I zUrAAHh6WGLh`X=8 z#CEf9>zvHk$h%o*b@P)G$MKkZ%O=ca_K4e}(jsQRm|gnf9-02@xaZ?~U6W6Xx_&HQ zC-jpbTs(ca82*R3Ck~g7x|%-?e2V>30+@4L@~v`t&R-g5{AAO)Wc40Dazc2E&~?VI1OL_mOE0-(k&+yYcrfwqsbhQmm5kZQG>=Oi z*EFnEY0$)P7TmJ>jsesAAAzh4tzZWw23yYkTagX_^tsrD@X3~M9ok@tD=v&zXU?~5 z^3=q9VdLdVUP-~{27bin_`|c7Hxm32by|w+yL<7+I?m6OMZkW5)98@?$#d*|z zIX&Xket9qAJh9TGvc((al_nMJd24~5{=d=UC*p+satllG$&gp<%76`seX3QF#RG1j zqLT=+P&MoZ_6HXo-$ead`W-|i_87j36lTg4Li9BHBh=d;|DnhpH58r7&_r2BDWd z-p@CC{B!rXq1=f=^|%q@K`-~YpKtE7>T#ob+$1HBLXR7`X_0;-`hJ|A<+V)v$n^2k zJ>RAR)JG;uMHI7<%=Z08x{?&9kqkDC2^z@+s5d;t1Z*UOJ(MvT$zYQRY$StCUYtfU z*sHfs;}F(FCX-QIc}Ut#WcpE+4i<|F22^d~A}dl8nSK-;THYjhEbfjaDw{C7xu)Gj z2HWBWH<7`{DuJ5FV2>WOiA*g(iaamA&=xucZ^Ew(8{Aa}dt6~%Ww2Q?Mpqf^0R(rI zp;GJqe?#{xCtL5LFz@mv!6R|kyJUGNiPyVEX6s!k@PQPjAsIGtPo`y=T&+M9Gq&m@ zpqSxyv}Jx!hMd0>D3&N7qP$5iiX|%L2uZQ1W>u>3P1@nQRGU@xqu>tmCb`IL6vSG| zEQ&~|W>py&@Zs=cGMPP%LZHZ-F@1{a``(4m|Z{OQ&(*F&R%Pe%MkqTT;!I zV$!CXEoJC%%%<7WDZTLhX};lm)oh8V=2Oj<;!~%ZEhXJ`tKuhnKfN*bjHxcQaSHg= zWWh@Du;7X`ms)(}z}qZ<(D$k@6Hy9Dm+brV{EFAOzn=v-Y|?f6%7kgF9yaT&N|-=M z(L-!^g2vja=pl~XfK6Kwds}_>qIkQ+v%-^J7ItBTiAAACa{7rU8wMxdZUo!k0pU6- z5v){$s8Ki}d6VFgxQ@S1Rf-YRTMOG{f$uxeV>ElP@3``ecv}zb!Gvr*uxV3U54^1h zHhIvk2R40_w;tdIW!QrkYx6;QhOueOKjsj_Molr-POs1_aCn+;fx}iSE1X~Pc5PI^ z>nZNq^a{C(j(R2EijJz6(~cBkN6hJO(1PS*(9R5d6lr%qu2M$ifZGgEwmq>257cCU zdc;a~aeAXIMu!3H;ZtBWwQ(#bGn2`cQPwN@mQhw4$K7cw2Gk#Idm$({q2vY~Eyp8W67#bEt za7kC7#U4G=p76SX_Cww@!i|fWW6e3-CUn68Ji8EkmxX@#q0;~ zF>7|*#jT*F$&Tbu#CioEMZAZ)arS6VJOavbWdoCp8#QuxA-#f+7ux3Jsx~Choend4 z<`cW0d2E_7Kkm>}Cf)KXx<(JLqv7Lq_Kzbcmh*f+HeELQu$f4oEq5Sj;<(R-o2H{v zqZcC6irZ;)=*(q(QC?@%x{)8=Dy zHf8>+|MDeobBiJzqxZ0qVi9^>qZhK$@IzMn$CV?;<@Uur=gy3IatBrEx$|%^Bq3AA za++2%EOw-8_)b$S^I~jHCi59D%{+40WMYm?W<#PMC^edQsuP~-<|~%3G+Q2|=qn}X zoSM$<(WC5ppRr=ZcHe9C{G}R2e+~F_8VScKc}?k> zwpU0^smJl0RvTHeq)x(fx>ZxY%^ax0W^UX|NvWo}FW2LESgZ9c%}*WQ!}>N0%VK1U z-3AKEw0C_2$&w9{iPPN(Z6I$gUTHIl=xLsnu&F_dI?4dpzX52&2OyfBX;_3uZ{&-{ z6J^1OA-mYKJY*y1X|u~4V-VrCfoV^y`KlAEoNPU&7roK(qc`a-y6_D`|LP>o`J@;3 z&{e9=k{>d0DQ}?h!T@FJV3Su5Z!KsM2hG&MrtjG#T|{nZjD9}29O6NE4C5qqV1$M8 zN$Sw)C3Wa3sbf1UkO3~Q=<|f!NH42H$B$G}^ar7DdYJ{;lUI?+(?DH4x5G~I^95m# z9K;udJ#G_FH7)Fs^By5t+USMSC^H=eZ3188pPVtX4i67QcP%GdVCms5^t`%Vs0EfV zd9Yv$wzAVwuHBPr_Ft7Ah(*u0TKInZcdPVr=c@VEx=wXIcUXvj-1TqoZ+=|$&eELL zSczwuqH?SIop=_nz6NNtk_z%lbUaAExWq(D=@pw%z*7>7C2b|eb}!0!S$eX zaX&b}?3X{Jdea)ouX&FmT&?gCE!RE{Ea&kAx`kexx0-L9H#^+|@@8P~KA^fK6Z+s% z@v#Ycc}-8dgfc=eoK?*?-7Y&BsVW)CN=CvBGcynqdU3XDzHzqf#01peR*A{(VzRz% zQ9{9pTM~xh7_C>zD|BB7!d&n1f zV<0&}>!(7zLYh+%7M!j#ejWI?UKN=|dQW&gaZerFbRz1tumyhtrL>P zI|f|me+2A0v;w^%22|>lx12Wr^tq5t|AJbZJ8Z*hM_h4XygGBP$mFSs`NGD_lRaix z{*3b@K93)swY-twfvD3`Uf$h{Kh|-6E?&B#^(8~_67#nXXFtI?#``02vL_ND-klG9 zVLNAC!yX4D*v?;zqa_W?Vf*fyWB%uZ|LNZ&VERh6vP>a-yJpvwqZZ3czx&F;iCZ_c z8&-}QzL)-^7%X!xxi%7uUmVpHv0!Xa<-%wG{kC%x_StV+ z0H3BAVXbAH=oUxuD(Hy77~`+reJ6(4An8*0O- z!yY@;?mHoE`M3MtKwP}`(4TI4SDvwpuPoK2Hsio}oTWDBz<6d$EeJn?EeQ0N+84?z z?dA0a$FY3XSEBQ@hVT!B1ld_Db!Dv-+gdr}#)|T+C~JlMQie@i*P1hBtSDopoXl9sxZq9mEQ4UdE8V}6& z3}s90z4Yd7OVLX{tM7I4*~)y<%#jE12fZAfI)08$JXY8+N&B7s8ctkG$YAsmhU)ny z45{o_mHnEKJPO&b@P#la7!Sfn{m(G1(}RH5iwXf(8KyC5QyHdd zP^vOa7Yc?Rn6zG0FsaHgO%_y88K$wRQyHcSX;T@d`#-%a&%kzwH|QZD>qSLEf-+38 zw-*XrkchaC-2?~|TP94~n&R@b2!vosv4vP;ZG|P>%Oj46L*~D{Zw{C5@APSN&p-2rsEPH;Phqym?U+z4~ zq8p$@QWQlH6htXGb?-QmNHoysMmPHNpC|K|{ulrCKj$yQ*RTG00)ODY_>K6F_%)aj zo4I3a{_=r1ubv&BKRdy%|Bk=uw&9z^aMt70!Pn@kXEUD$)PJDQURw$KRJ{BLNBKjJB$zwZZZ`1RGZcKfW;e{*{C%$j%3Ue1V5J`7(yJ3sBWJKgiH_%@`E zA$;4H|9d6|ks$r|l#M6hVoGQ6oEA^m;=l2yKlr2bSI;`_)Al(B@G^Xwag+=nN&KFC za+Wux&YCIZu1I|KmX1i|gz(GNY5(%Ni}RmJAm73#hsKk?BLjzi;Sk3@nN0+?nLFe^ zJ9NZH=$>ARFXJ6rvlD=K@kDAr3-;|Sy>Z2a(BB5J6-@5S$Io~7|LcD@c!rNhyXMt` z$^G`>_W84G?=~d&f#=Uc=DE*aG#HsD4aVhZtKXxi4MyJoXz<)R^s>o(VtbC~HyC|8 z*9Qvb_Nz~+tFpPKkrzBo2cB~uu)pcgEiMhixXO3dJeBYCKvlkT6_wBQd7`fJnVwR4}t7}V`FYbkO6Z~)5v@s! z*Uh8FHw~o4%U-i+(V^}*oHT$M+pS)mhp$pDIgCXyo~G;@4?o?>El} z)8A_!Oc6N^yvQ9A|LNZL+#v&!QZUn=Nxg0!f6?h}7OVBzr$$cn*t`j=AMPvb(Bz@! z`Kgdweje_H+&E;xjPjK~a89HRxRkZpb(#qJ&9k2N8(}?dHc{H158B2(5a*Ujvcy3d z`ce9Bs7aH}v!eFRTTu-u8$&i4MFH0_xVAw@BW5$|s(9wQa%Ni<)}<_`wO+)UXF2Wv zw481}7iW=cPwo%VwRF)u^J%{k=F<#C_B-h6ZWu+5eEL^JUHfUvR9VJ^+O3l+E16J5 zCe4G{oBI8m6M>BN8mvA>UfaL_gwhgA{;Oqg+Z zlOS->Ja@vy&!Fs$l+c(c*iOAS!AhQm-omI^g&N_3H=aMFK5py43qx-jj~#GyI27Iq z{(kigtS2#(gT?tJmOy|d!T%Pdy%=p1p__MFEO(fnfK+g@{O~n$_!lG!y&6fmCdC*2 z44k!i+^(tpjW>L{<3ndLIG`iX2OM@lvy})vMGI>#LX!u^8Cv3Ajvz(%Bfi*MoT*8) zu8}Ku6KZwZ$5R?o-{M3VOn{rTGSKtp>Xveg?k=3!p^OV?=mIXr~ zcq^QHSvfV~4C3=OeCKl{t~~)FzaMzs_bKtepIssoO;`|m{u5^_L|u{!;CzwH5hD>8 zprc%?((xeJKIbW;cMlRQI#o#jyRK=f)-AUfvTJ>TNPlg3cE#kYN_5@ zJgv5ETA*a!i79XuHcfMRrXX!}^3_R;Dh6fE1B73~$10Wry>+!)ra;}9I~rr6H>ML1 zpK@Jp#<=bldR7dct8i_LpJM!P=LminP%8@fGY$b|j=2^;cdTw3Q^u{SH>6H_H%?HW z&exnT*Tv276&cW+`GqX0IipHkQgg=ZIq2RHW1*!-XEviy6FbE)^;%TluUB_B-?AIE zE4|m^3Qq1b`Qvd!2S|24r$LK8!Y>dd8CZN@`Ts}0^_@QxGTZX`Z3DUJrS<+cB*)z& zOBVb*vaY>FrS~Hw@pScfaYtDJ0c;}VUl`wV3OE!Hmqhz<5E4JvKE7tHM}Ql?7zxUa zrUUBpPj5)T>|=+xbt`hd_A0^rAswyh5!fs3|}X#Ah4sQ?ngxWzjlY5AAAB!e>1voj4(o+b z(&2$m1YQok8UOygi;qa%{v4zFr9+1Q+7Z8sYk+)oLdlSV2L^8eo)^N0%Py{b9EJE% zg5t_^V2P#i1@sq=2(bWx;P~%aM6ZkJE{AB{`x0h#$6JC;C^lY~x+#>Nop$mrM_epg zHgW6-?vz7ov})5F{uu?K1Fp~5r#RbmA*YBR3Ep+5J0Jm*T< z+AT^CpB)@8>9P8US6i+!q8%8uJ_VFxEd?{Aqyy1j!9W9V*f=G)bIb;6z;g++eskO-yKmnY=h#0MvsTv)%)}>^0)LNE745Dlq zF(n6+7C`B1GzBgea%tHcfOP!w`yI$f5cT}iuQ%e8FFp3))h7=Wf94G2GYTKjRmi0$ z3Bf{Qd($bGwBYCWxTc`uspOLpE>;8}y{xOc#`A!3s7|03^x5yAkxMTIkv@{?%%RqK z3i8RC;J#M&sr6>L?dFhgGRvJVEOF({aw29pVV1MZMKN@-kZvte3|#8m+X2gq?`HgleU+t7s$AvC|pfa#7Uqo^Q;8dx|E0|?lZ(~U5S@^>)+hcm9E z?Uwb<6Cu`Fh)aN=cyo{hAsylDI3e*-$%-DGjT6qIGPxJWa*%u+y%1pu`5JrvD;&NI zH00~VO;DZDG=JbDi;XOo(xEsM2OPOtU5RAiE@cXqn(WmAH58|sDR4^q zixwo6*hwuwoI6y)%C%teW5pn0!0FYpJ{ThorJJN49=SGS3f9cyr@5M+NAK`3wld`; z2faNrhd_t=Tn93?G9?MgXO}<93l%$s9-q3VAfe`AY+Yc31QmzacH|TLDOP#hXi9x% z6UPEC^;nuk;c1f9*;>}E$GCfAh;NEA zE(spT+wA-DJGHp3RN1NgXWOkdzdavWd|&>izPD6cCr?A)+XCNDMSjaaE!1ia~3vpoA?7IE38JIoT}|m3zQpy zCBiLECa)79P`)WxN;-(%js<~dV@$d!h>FEPv|!0I!W6i%@6F9E&K!}jvFrKfD8!s( z2NQ^?RiOa}&*hdWkXQVIp`y2Fo{uW3st&09XQeqkkQOyGO2=7gnPGk`Gb3i;fu0xz zkb6IH;bRQAYh zMj_M?5Qw=P&pBQ(((r}AYT)?;t_r3?3PC}1AE*zxBOw}UPR3S1hYSo(G97wpXKJbK zOt-dTQ@As~e!cp#fti6t0xNi$4lqxN-|f99MAAl+-H3BEmkwZf6mL#v z`J)q`1)eJmiaHAFb_<|yR8X<3gJ!0ar592ms-r0pYr8g0Gr!XCPEL`W$O?g)ZrfTU ze$huhEy?i1$j9BptS>Gf@C2~E0a0^In{=(}!5R*gY&x3I%pp-xY14uwsu&sr$6SYo z>Em#l;EddYcZ5kL#kYwEbQVQfVM_&Tp>nN<1`u?Oy6<^mLDb~BUT%;{u)y`3+6{Vb3 z>Lu4P@z$gOPblZ^}?s14yF%Rb)5vPAf;*9~S~el50bEOzNOG_^!?E>Wer z0(#C#wW>RMI~LNJF%&8t?d!WQsOb)SawMG|owrpeOas`O5wmK%ESZqrf|DX4T6gEL z96@SMvgac^8D0HD8{kp`E#OFJj3`DHIFx-kNZ-5 zR@WJ4`VhGxN~JhVPj5}d2NbWIkoGe>DejUqD@b**+;Ls!P_|bshG%3PY#Ug z7O_T7^k@yBEhX`v!0A3@nAM>vHR2KP7b6zZQlaR;l#_)KhJ{ZMcH3^Xd)8EUnu$?2 z1Su8Ga1q4;nc9(JK_a}E8$ERv$xjWQrMh{@;N$|@WYj60I;JNF*=h}*p7wDf`TxEo zmld9S4aU=3wJ>Va(^Cs@F+IDv&%%(p4W416kB|x}Kt^SQ!*9xTctENZfxfN0G|hkxO|({s=+J|>4CzqHhT0qAQE&6B2Twh6Sa17e z!4-3xr&^L+3tIlObI9@up$Y`#`($1$&SSF3 zngfT1qt|WO^VjyKBJ+#6BPW7FoN;+8mn%J1{@Hs{q>h1Zv(=tq>y@m+o?)V;*H?=5 zKyA?PLXPoQ&*%enpIQD(#wY8481{PdwkEoMm3SVN*Y(fK(wV7OF#K<>+Q#fuq=9Xx zjoEB`8%^){jQLO4%NDw`VR%$cEzYiXs-{4(nu(8L-S=48WR3&#Sr*5^jv+bzs>P%Exqn1ldVDCXKeC9?BKuh+_=V!aOdW~(~j zd#>$rnv(kXlHy|>uzN1`?yQ!V((7WP`36cbe+-oN%QNT%@)8<9yn6Pl&xZHcSeaxD zn!Xq_|25Pg#cK;{yb$K@b+4eJy7G#gdHlr@u`wyr$oUTabA>aAAs_9FLKuEBrjVR7e|B(NEK_3X-L#F1N_SZqwwg$sMT zlWUpcMGUzwaS^jhc~Aa;S~Yp5>tj)p`hg}7%EdiS6ny6A9C7C4DX?5>(;$ElKYrZV z6Ka3Yl>5#W0_XJ0(G#?+4_K@_|0Jb8aln5_oTm^+i6tQv>EWUfq~?H2z6Zh_=>Hts zWdc#8$Dxm@DHm``mLaqY*|#zZ=H{N0yi3=`6n2E|r8) zQjlBF&~5H58<$x?%z-rqZAEmBfHo8OE>=$D!*Nw505=W^f(Sd(EE|g~l@#jxp1fB3 z6o5TYer*h<#BmhoFm~C959x;d{pBOcIpOoxG+IYmpxB7RXK0ZzVWP)~xZZo9Z1G=b z6nY-CtlwR(_=J(mKRHiF*3gRvXgFAa3E1DpHdL)fnhqp~U$Bh<`zssCOBR?q6Gr<8f1*GgKQMYYyekwvvCSxMS5g;KQ>T?>@*iLM3BTrc%0do%?~ zwFHtD^((at(t@N$gj%5Db8{z$h$%7wOQb1Su~!M4eRD3)TB*lQifq_mn%-S#Q5U26 zjaanrJPYiH;^HHU@U~=X&w{ynokNU(N8t+15aPwWdrE4usjm~2B0<~?OG z=_WA+?oLHz)`EmpHcSCy;DVp38XmPks$K4Nk3~!}P=Ke`{fX;+s<^}gmsQ~rbA6K3 zM2yy|Izq=Y1rAk7V|aXS5Rr<-Sj;ts)>@T81PXil3uBFw4fed2uME-yBnyHSoh|TM z-DjCGVqLrRQkA#1v2?Z0qk5gkm8!JrF{*N*XRZCrj<`~JY(=P?6nP%s?bP##wjeFX zqpY0$ryYYFc;Q5%B<*@sGiGXbH8s~CQ&o}H?G9T-lm6M)H}8m2RN0M2-fP_tl)_~+ z8_}w5m=>%`ee(1`s@;6{29xSnA3b<@_fb-BHNeSN)~K9i>Wb#;UYb0qL`j+@cMKlb z9)$S%Dp_=T9#K<(gwsHUW;MXACE3!YaPvu4ORrX-xSJd{nhTy{ovIXJ%hQ>c$>Zs#m19F5gq><-R9$nExzjhR0JjoN)w)aVdIXqCBSV zaG5*=S)O1nfNJ!LQ7GpsI!mwU(JH2qfCi zQbSm2RulmGDw1l&Q29^eidM=6VOZ$8S8(%IUO^{XeyyO)Xvv=n-a?j5lSTESJrWb; z_rIgH|Jnt6WaU&j{~8PSTy=M9as;$4OpXY&q{*>Nc7wSTvLQdZd^QjTcT52_mq|wW zjl+wK72H%)^YpTWrc-aA)_q3{9t6CGEQHF~#^^-J0Jtwno60=^^cX4kI>>_-Can#D&P3)C*+qoTosZs0X3fiVCRI zpoD`{)TT6X(BBabz*>Np%TD_ki&Uhd?nU)O_&HGx8LJA-xE^UefHdGF&#bOgJghgF&m@S>Z}i4^}mAT14S6nFgmT9qpIwP2=_%gAqr)WyNC{H9FaOv1#V>XCu z!;F10n^m(l|iGv~6YbBZnFRixR&^}hI?H_B)Q={M&uhd!BeGU5N6ap35)1pECR;uHS$ zX7R6&i+{nA`C4ZjD}rxhY;}8Y!2t$8&>=%~$*(T~1GATWp-|tze&iRpv$IaG-+gA; zoV)o$y~_)+T>jK(#5d?hJPXYI%mQ3;TEqVi;{Bby9C|jVTp&Qq-WQIy4^uLx7Jf0L zfz4lfhgKA;(>sFs2Oj!pIbYixfG-R40%!9>ieo8)%8;VQuaG)%Jx3w(Bxw8g;a6aE zX1{~V4}ebc5?Nn<^AQRl!FlNhFUhNClQ5jUJUI#M37wLl<;|$ee-kmw{G&fUk$W+9 zPWW~9{A5ZP!aCUiOcz9AsJBo&A@W&;p=QhuIga^g{9i9;i)rzHX^-YUd|@`M89s1S z>}1Ph*f0~=m6eGN95#E$90%|T|K=wnoepSxIPwF-4nlrG2f@i)WO(v22z?sb6Zj{z zZTiaT9tKbRfPj``!>0h*oxFS;`BV7ojYifZvc{8S4Fa52$Yv+Y*JpkZ{z|>61^?i) z<#RxyAP*k{Ih*(qIUO+p{3ri^d?Gr+Arrw{U+2lYl!=R2f=(jO zqkFcfHdkbM>Rfh{%_}>Xef$U&g!tf~sU#2W0{8Uh^E^Ms0B5-pV<6K_@}dRgPf6*p z!E0V5GQ!t_w+htA&7)`Z%sAL%Jx~S3vyLTp&Rb1fUoJuPQ1w|M2pJ=iLl8Zw9+g~D z5uV=0XKOWV?U)XVR+g3(2e-W9xPtv$(<~k6b_h!ny2;^DUy&teKbKT&d)v=7Z8W;= z>9UFjj5AnE{CDk|z&_KA5LXc^z3H~q?Ix{*XQy#aUfRzOu{s3=m?d(( zJfFWJwJ0PlXtT%(lzIngW>_eBtMszyWKnuk@XW2uT+W$_*Jxj|&4#qWbfJ|ib!v_- zTBabq_vVn#X)Nv0U@qd+d!P_oX9}KLOIZ!I%qSL%<5+fhNa=<@peD+opJGV-Ast$A z??>!qopc(q<#2Q-{h>RP95ocmeZnxt2CT@*A_Ux?H{ z*3L75MIZ&}>1IK*wIxyTEoUJ#5ydTEZmx(V@Mr+t$a9BZLyn;8TG7mk+>kkz%PByF z0`uXd&uSSJ+)536Qgkl>r@{{V{6OZNycnEyGZzE;$WfMaGw7frBylsa%A~^OqxFNE z-Q(?tmy6hbt4x%6`1%NXU$WuxYyy3pR!#%X6OI=`GXZS+8ib;!A>5ra&q^kD2!94+ z$_3RZ9GqI!Uc{w7O_*B*r|Ep>-DlJ@qI8eDFYXOr& z$rL!HJA+`s}R8IICFbhyA60<-}<7hF3jA6r}4-~8!qh*RV<}iXe zHr5iXLGIG?(Uh>N0;>wsW5I5)H11#jw&B@TO-|I1sG!NM6i1L#5cVH5`7SJwV+Pwx ztTD$3AYYg&g$8PSbTnc%1N|FkS6g|Et{v-5XQsK@E-7d>e*kjHEN3G6*IwPf>^MP^5SzH*#WUv6514FY40J{B`t zzm?U@@>hW&Yb&deB0X;vaou`7kyClZcPN(oF(PM5ef74 ztW|2gg-oEFnGZLlU1qB+%%G~RniBQutx}Df-gru-VfV$LuHI)^&naQfes2(ovMYos zaH9Ey0yHhp6@;mng2gpK<|vf}*FvN(8txejE0|B1t#XKHdK`z$CZSS5wkE?Jq|4Eb zrqt({G{)Z4_q}BjFd05j8?u*=gUN?+>a+7C(v^R)Mv>2l@gW&j1P)4~ z$H$=oGz+CBxKdac3CwQ!4x(G)yE^QNFN*LI?zQpA?# z#vy~60>_zLMPBH2FjR?O((RSVjG>TAcVj4=`QE^xDm}(E@o28UWgJ6qjMGpKt0jVH z!NU%(#5LF6RV_MM7ni0$#c{}{;4KQ!7~3}AGsfT@V+3OC?C%`4+ig?8iY}5|#|*C= zHeLiE2N7HyY@f|g%}v03eVn@y;p>*Eh1{8AVB-gU(+_#<6jT-9n7UMPfm-lX>X&H& z3PLtgNhHt%CW1jg8)n3@h8#3R&*BIAS0wzRM;6+S@Y25c5;DU=5uU~d)Zz-7O#{dT z#P6||nB}?RlD`;M)FTRP;y~ITWYXbk;cZawjzsldd}jouiB<|`@wxD4At#VQFc2aP;e**^i#$WD}jYig7?(;YOYvhjU@o!NGb>Ez^=X30GBoCs{ zvI!(cLOCfwW-f8$kBK`3$Sxq!K^clXwjaD<{xECaSS+Ds{QY9WezgV2`FiA$gesCaBoh(z3b5TZE-{C)BK#q*R7nx7-|_9xYPkbhq%;>0<@-aeKvNmhzhW%1tf=C zB$8WWpJCN6{_t3&su3t;F`Y#rDhN<)%bG?UCYF)q%b+f}-hQ!Ih|jtdCPuiL%vTu& z)avA4{nsH)g!VuU4j7-0Au9=U&7D{QpF=R>SnFAC7`4RPf+BOziJd z*icPc)T(NsN3EF8Z9`lEHdM2#v{s9F7(gaZD~*djfFF!u$W1M zf!u5>XBSS2tXz<4x7CUO>n&MzwUs}Y5yXla`(2Tv-_*A9ZyN!xc+Fm|pdbyY>SiVeR zQCvQ5pWMA2;y`iMF`3meV-0ape#V6wN5ily7pC<%oY z$izV{v_6<+!j*(+|LDG&&?&@;Tl7I%Y_K2zGRg5AOMHTXNtT9N1bF8Wb$k|BxAcJw ziE!wG?>Bb#g7eiPmhF%rV74_QGd}v@$@-P}K6OO2^(SI~r|#d3LcsNT{{?z`3s@-2 zDO!=o0a3bD>IKYiR3&N!r{qx6g0$FeV@q>QK{A-YF(qzfE_=gZT~>oQln3B(d;pq) z%P;0*pQ!jOw7}io+ zntSVo*O8UqH8FoWF0~-C6rC3{E+whYrKA`;_UtgI8xFO^r4V(VP>ep%p=iG7Eyl2B zV5)E-JSsf|__xS_zX(;!CuGPUl_4Q~B5a7}4K(FQ!3(9(J?4m|$MI1%dX|!FU35Rh z@TSc47wuNElR|0Dg>y7r7u)kX^dS5PYnx+x!bN~p3ZlS$3}(t8CZ}2CzF{W%qZNZf%bR6NM8-YR<&=57590;I&0FtS6)k*CGtY&X;jwF)ovJ8&@ z`tttk&CUP3M%o5DtL>lf&gVM@r|(>3%t;qfrcVP zxJ<~#m{Wh?xyPL|3p#rUWracxLVOq>fm}=pYJPS@Xt3vURVF?XK~xJ6Q_rEt1L6>n zsjUO0N?R!^u@<3Y?C6pkX$oA5B#o`n7$mN<%!#jJAkkuU<E;35KAjZz*A{xS zUVrV)_PI5K)JiMm=bNc6c9P!+{Dn$vnih=@l%nc2)d7Ab^dV%@$KF%{h07HeKgl{H zE?liKY!MrjVwD-ZKt?l>eIa#faUGqKKRLn|8e;Cf6azKm+exh3!PPXr;lM=|Ger1( zg*hz5s7qNN!HT#j^h3hj5K8XGbyHm8JcVeFA3_oGg$W(6+i}m-d@Q8%MAE_;7R6_i zn8{28xB}$lgG-2rD&HGKK?sR1{9DFlJl1EiZ0K|)X3gAL6pG0XJPs#6S}}85y4S- zdjy}5Sj0YBHkN~^>HnuiNC2Q>yRQRNIY5T8y&a>h~iU~i?~ zKPi%uAP;wGHO3G>4WU^&^g*%Sf*#E;lrU2eL47g>OU>20FX<`a+*q%_09|FqDw%R! z+!QD*plAx1si+P4N{JgZ)`U|nf~QsjSPN7_ z!2Bc;4NxNbOevy53*Kx3;!?##u`d*9aMK~ z;D4d42nxe<6}Ci5tS0oOtcwjBw4^C>90q2|!`rP{VdmX_uE}BH0j_F8UkZgqNzJzj zi;^yZde$YY&>U35;RX@l!ez6cRG0xDSEDLw1&p4l|C54uQl#3v(Nb-6%c7jtrs2ek z38G5cnm9(XEi~sxqRjxVcTexglNbQjNuYW!UDBz1=eC9begUE8TKnR7J!8!cXH9~&dsvp@mCLuxS_v}BtPMg*I1=K@q6kE z*L(klGrF9D>-{VKw3x#JZNK_#2>*nVyL=2W^G>fXnIQG``GsWq)VCM0kt*|T-Ut^L z@+eGy+t2&9f0;XOUsn4{eS6u?d$xZb8=4Xe4Z)kYO7tr{bG>&}?I-~@DY%ese~+}xcu+TWy` zyVH}!oBp(8$ToGkzE<|^8e~qePAb8qvNwP1`v4)V_isHITZnJc#dpS}AnQxTsvXwE2ATsiJ>#=X}vW9KO&iu)i}M zsVla!5?^dl9bXckC?#D?|F^Zuh0;@)EA=_9!XRKEIur)kZl8m#36AcW^k_FkaI8?L zj^Oxht9(;NZd4N+n5=pbT%lLZy(X?$q|B7yia2HFbj6m4zch+hN|+MgU)Or!j$71J zxNx5un8%7ob9EZW6&MnH6Nkc(+wD29z57kSk+!aS#MHNK7{y9VOhSq^_EZiaY@#Ymr!SD0U>$+mJz2+3=N;j_p27y1~DL>yl2q<^##kp`b`%lQ zd8?XJbDOG?8YR`8j%nyf?)ETqs&O<^;s9#5y8ZOcye!o;N08T@^<(V(iG6naaQ>8{ zrFQ?K3N3BbeXK@HdSTYPJAuxN!y=kZHQmc9RI^p*sv6ZaA$+z9)tnZ`DmI#GI;Uyd zR5_~IuE$Z0YMKz?T7_!5dwteal2BXq$f;3{G~4W+} zi+n%?7E@;~t(LL<8+5C^Z9=@(MWQNwX*s&L7XL4C58o8c*1#*9ZKFSi#or|RG$F97 z68jvS(ZAA#X0y@XBr!E1C`pN!4#4hzR!QS5VfQylIA8+Y%Tws!O#j{UO60WJ^ly@! zw%f{Yd*{$zTmSo=DulDy`frkOnh;A=g>d%S0nqJLaT}Fz0GK44CdAHEA)LMT0i0D5 zRhxYPCJCnrp)%DppF?v4TwJF6Ta_cH5^eyK=)!2{1`cO$ei@ zB-ZxX8E{%4*5Hr$P8MFw-8Q|51o=y1+vM!l&pV)Y_{Gl|9)6rq!l~^mm0j5v1aSGM=8>|J~8C^+J6Ew-6NvSp)ezb14xI2xiw=pX zycQj?QLoG-_y`$Bti9EWND@kb*lw?tOuc>0$ye(WlfRL0S6baj$(eZ@DQ#?}7Ldfj zSLoG6+^`xVvM9(N)m!TMP_h%K!o;`O<0m=s+Ui*wLNpZXuV=#BXEB3*`SiEOO^tb7A|fwq47;btD%fiq^MMqn{LMkafowu4<5-)FrP} zZ{)KJd0!}jk;TPjp+VzIuxR}k-#urXj!%VLFPHK-AhxRw>Re%{Y>!;Pkc+HMt% zI^u`S=CpWl3^rsz;5pHTj@J9hWwqT58nh;tj!AtdN0Sy-=gHBWb>+i}kCQsDWg8@p zPi;11A@;5>-((D1SJmnNNxSVfH5n7@(Aff5T>KX?QN797*(H`d%Q{qlHW^Dc89R@I z=~G{K7x9Scr@QB|MWI47ubXu-;$jdv(aO!dU?n-*T~j8VQRn;3o|bCwb(&Q$utas; zTt|^Od~lNrC=QwAP$;emxpWmM?)Xztyg5F&Fxb|3vN?es|tWL2M{1FfPx%9P4p6epJ#UN|+mC}V&x2vzHF(S-l z*Nj-Dkm`o}MuUU>-V^9UUqJwDS?f@vnLL00MJmShTAm!q03s|{*Y z(}Yy33RH7?xwoec)EPOiQ#7s%GZus7i^j91@t}fe+(cA+mrb+xBJ9_vSrDaNm>ME% z)BZLgz2y??cZmJH#8}ql_R>dUOS@=tfBP8F5@$}ed-8~{wem}>an?-(IlT>1pkU)$ zIs3n62b+*lvfxQrOJ)bxrMqos(`sYf0uH?X^Zu&8QW4HOKkB~?S%v- z&=r}uDxbD56H6fA8~ec#pskTFkr+h6T~X4uXas!Mh>E~Jl#+H$jz95{r=HIo$1|v{y=z49 z08aamw6(0zC{e%mnrvTgt_Z4jtJ60mH%p*kYkF*576r8rs8$<=$ z(q)SY1gX+GzLI=uL{!EP zCZ9TWMrE9~t3_pOQ$GES$}mk--l>B1-QYt6e(P7N@v1=_IOr z|CCN9Z|UvU=3@5>vZ-m#=+pL3XS8YA^oDt%vAff0yAcgkf2h0DZ=ceAck6?ye|0j0 zfh)&c$Y4WJ(4^b**4(c}2rwBl*d!foU;VH9o!3zi5(8A;v<9;IL`G<{gyxmQN9Gd_8i!xfMJGA)Q);KOau0HRWUZ#PP;Y7XL2?4PWAe zGZIdY_?O|ti^dcFpzV8s?ai2tFWVE!zakF*K%A$51(r9$m&sod8&ThyLL&@@4-739 zcp<);=#)P*&Y?*uisH9FdMV>mbIXctvfG^~z<{VhJ?i#^eO9hNEP zAQ5*rF~-EqotfjR5i2ayT`w%JsDWM<6kdTV)A>Y+iM3#HSvj4V!=kx`ZR(m_Gu3Y$ z(&TAIeSReTfA+4gH*FY*e-&#_n^f9D|GywrYC0jYb}DSIl}XHqYLYH-hIs1-*}hyq zNzdn)(mo2SZ5x3j7x61l)DMX5_s_eymoow$>$jTN~>VT7(08O(O7;Z zBojuYdK{?uUdUNzLOJl85%xRLpOWtqcoqrj2Vx0+_}mxpd@*D2Dk79~0$d0Kz9g?N ze_`qB&nbU>`9~02Ocp-008&!wLQ<0;^uHq-{9+gpl=O)%O#)P@Ah0aW(P|fo>EfNgl}Cto;kMR4r9?L5^zP$|vg4+NWV8I7v?n@k z^vpYKjplW0l;EvzEYjYrl30c8>-Eg{WC&yGn~TCWOY?J_Ogc|&xdaWuBD_ zQq%gZ2C-VCC;|Uq#)2>4(J|>7Gpa=z@+SC+;Q%zCq(Vt#?RFIn3v)S%)*tg2@95(`N$nhdqj^}zy zfQ>Rq9D{-oqk#*}^xqnBL7dV8FtW1+z{X(b{xP^XifMs)rv{xRmR(i%yXO{DK;Bg+ z<)(o24Srpbx64_SoCp@{`)fYOZMeCc#i{BK*(QLFb-t-}h%f?oIs@gD?=wyv;IqMq=HDVltCe%=*tZ651gq@G zCX28e5od^$*pnJ#nA~vpqWn>9OOEZ`Dwopqy4qFR#n|56hsz`ogdW_lGJBnOGPv7o zLqWQ(j#lKI%{OX=I{3CLt=NbAAgXA^rE-L-s)a%Rog}b~nD5CjHlK(5XxOB_R=K`p z$NHK%Zv6%T0RR8&J==2IIF`S{^1j#=M-oLzmQov6IgZnIC2_KGre`0zDg{xH#4$x` zc(JX1nh%-%x%raC0YFNWNQxjxm~y)x;-(1V902EzgM+g(_TQ2A_|EgK$&dF(olZ|b z`(RwfKYheg6xsp2xiHQ~m))cD|9*V8{O-{|cfrcWr0D~)-yi)%V;g@*9-4V*IX`Mc z3xA1B%bAfTV?1>|{QgMqK;O3I!2gfphaaI$e!x%24A_^JGl5rlN?`Xp>^F~r_5X}O z>O*+Z=5N|DV(g#%){pOk^Z$aUfc>`fU5q;Y_$~c7w>#}=VbjmZNR}Sd z{n5ZU>*$6K{6l^X@KXT4a;7>vVx4fH-Zi#n^B_X1+odE;f$_Q*_ zlLV_JnUl#AioWA5muV;sGEl0I(aD_p{BP6@co(`~x;`0jXT(=Os|A@zPQzI(dfh%> z-K-XU!|3I=81&i9XSW#k2c!HJqv3!;fmPtcZn&Jg4HskV{Sg%Bqh6Px@)&m-Ay+H+ z^3}^5%knyZ9NC|uF@LTAi#w|cSX`neVDWX<1T1dl<^n$aEW#lLG>tqza4yUn_l13r zh-9&XRqd-#0Gqqx!Ab3S6wvXPb^?dCoQfYcPsI-#r{eX_KGoVC_V=h~V??GRw?)6B z?}0Mt4EHGTv)*VAlmbRTzZb7>gNy)iPSK^s=AhLTGA%e#icO0G!mHEjo*7M$qMcUf zY}gP)x}#okQ zVHFNqr|;3ng>?EJ*|Me64TeLjb6eH1NTh8?PSjP0JH{fxp z-1KRJ?$25Co7>;7e%xLC`ugqT)t8&w-vlVC%L%zwvW+aZyfGv-wj|MhY97&YL=TQ= zM>?0nl~e6o-?hWQavhP4V{X|ivn53gNfq{45mxF}$Vy$H^k%ufT_D_7R!Xo^=$P0G zkmUp`5n@t7u>~V({VIvpXq^1-cK@10D^3h=$H+#6oReBXk|6qJ2%79LDV+@z=XsPhSfD;5_!gQ?$7X8PF~_c$w|vm*P#C{Ku0;Jp@e){=7X zxv(f8e&Ns9rj(XO&T@%n{0;4WdmQ@-Y43FT*bKg>$qINm$7q7RA9#vAOytg*j~RML zn)l8kBl2!0{lS0%T+Z$Q7Vv(z+oR+@C;#6cvYlXP@D%~Pz+IBxjSg)>S&2;8kUovw zAaEDttxgRZ&Ibebz;Ggn!o$>cgZN<<2K<2nGF{u(*lZD$&te_MM!aShwxStpmzB3z zcI}d)=z}|1{UlvyY9$_v=WFGCa-9IignZMo-XC3f7P5DUn0~V@6QV(KIwgNNiH~hA zs_7K6T7G1S^0JJ0Zzwi!W&9hM*hRtEu&bC-KWmY};hP;R%*;2Ugq> zC4sEhjKeni0HJU{s10`*bCL7PwXp{Q)@>j)LR< z9zDf4#MAbhXHDRLXXG#GgVTJ+=uk#rjiWY&m2s&YnogW(xlb7ba%oeWr;OF-(CqTT zrq&#Sb+BJ+4hO1@v*jH5)tY8C@2!@h2K9TZ)!6F#S+`0fssKG)BijmamE=%!ytxcH z9BRB-JvscgTKeIlN^+<)}c)+pN~0H)=i|0+Yx z%{%|~f~fg}XXI3dSG%t1-A$kzhpiC-VU)){YRk-lI=Ed1)j=<}}Cl@}=wvt@==Eb6VhZ>7A zx^-o%e*QW$F6=wY_@;M`zg?ds^Of_-iYMUYbYE@$_nQXeHne>a=2aCpeK578@#;FE{etNFXOs*XML-(P)4tL zn?Jn<=Gpg$(OOg+QIho8b4bN@XTR=?Q{OWcb}Eqd-)VKqF?f7dT%=O4YUOGd%iR;+O{lK=IqA9hjTyKa+{jPF( ztx--vh?^K$I}Vbo-@IMeUK36bl(89lMqO1YZc(Q-=w6b4jp2o@lYj55F8Sr#P(ZXq zhl3hv#}_z^UoCR|R$s)0RF0oeKuS4wjYh89>J7!BQuUxHZc@MhBhg=5PPCWGNvKz} z|5c9z<+@RW?k##L;b+yjfkwPULeaq2>09Flro@H)CRyg}b^7vP6fo7nG^;)!SSll@ zUO!EJM$T(M@HHU#JaXtYAov;(dDy$PWacwhxxqP~4H zA2x<>{6C5OqyNLEl!|WCwOtQ}1pmcaEAEXxF(guTSkv+dc@dnoLRwc>DW`hG1^LzO z$G!9ff3j;B_3KU2+gAstOKZgO2{i^=6+qS#x~bs7^959RWg)gCv;@o-+RgfEn$1bh z;P9VwtXUK61lH8TULL=L>f0+Y*7ZG8y9&;IY-2OJ(Jhew)^y_I#uO68GngYM1zh^9>>>dLeAb_` zu?Yy{M5!b(@gAI8BE?y$u~`-ppI21_3q&j6%TWi38rfP2Q#Lx6RZiY`B8I&bs0p4DZ7i~O zQs9KvP6`qcEvi8IXrT<&BNC~iEJuYRqDl@@{( zRp6)q7Sh*J;Qr=^$li(p)Cf+Ys6r01SAk_BTbrN&QFETSAJ|JL(yY!chg$zzpUhWF z>=8W)RY8$s&LN8MYwWuB3*_DRMl?z>CoY2Pt%#R=v^`Mp+<5dM8Z1O0K7HC6@cG@h zFMs=a^X)bPzP$mzY|kQ7ncmjj@lA6lrBBNNRXQoZ?!N!Hy4Z;~D4m;gN?T*wHSbTg zak%yneT~~ponw$F!M3H_wr$%!ZTD&0wr$(CZQHhO+jjTq*Z0oEy!ls^kyViunN{)a zti9L5-s6jv*PGe(z(`+mCt)!UVKbQK@K4V_MSK9M&FJ&0+mh3x^_p%)vyX*tipX}g zgzB!Pc>X-||9UV3b+k_?NmpL3+8Mr8o$WMwb$dSZNGyu7UgTF66{otSpzfCt5Wk>- z6HJa0e^%4~nhr}sw7x-&5-*-U8o|2Oj+pLbY*6~(Iy*MRi#u5EZJw^Rw$um3O2>-6 zThx-8c(hoO6)Z{DWK^#AlgD=9x4ekHn*1M zg@=Z$TssW(27*7bMx6qb);qKuPJGBh0aTLWfDTk*TQHyTc{_;~{hUY%>}m}@j#(f_ z+)oCIU`(G+eW69vY;UO|fYd})!tWs0>RlC6wei|Vv0lHS-kqMoi!#pOLK#Yl^O;IS ztl;-3EzKht=oks?o`w3?h+#``hRPv+wVtuSmrz)Q1?_$zwZ&Ki@F<{7LN{A-Oc5fy zAA12cb&fL}`#jBKgAw*S;RcsS$p5+T^A4an*wPR`Z_hUb%|Cqqg!*KAml*p-KrK5f z0em-DP3LUzZ!yRm8@W@Y>0*5Zrh44rhI@X62ekGztg^s4eZO2X+^M*upfb_8BEE|J z)``*}{F^+2it%qbWvQy4lSlm2)63$LI{CteYe*p0Gb|6rdxQ0-LC@Pu?L_qO0I%V5mME z!f3EUggAhNgOT{QM>%$ipt4#(Kimk6OH#XE54J}M6PcnI?ob>8M;Gz=PrC5GM6{(B zL;xz%Tl5v=^Go43I|+3+g90@ml%FCfYWnZO=EbIz~$(NMvhb zN5@m^q|w&=uUK!ImUHeRQm;ogZ)mGm(M-D!bs#5h>qT}$roJM=kXa*xettDJm+4=@ zCV(x~@RMC#gT;&*7j~rf**!B%%45sGgd0uK8My@R4fhsr742<leUxXE>TJhkZgsu zdx$d2Q>g56gQ_sbn=U}->HNi-qrxgw)5Ix~A9d+iC|J4X=kk``hQ0{P?F9}po1Iy$ zqlu9>_ERRC(Kb913%w9~rJxe_TDnoH42|Ool<1W2mW(UJ(2A+txL`$ZPG++GqOo(6 zt`s8KAArEBg>|oaGRZ2V>aj9KSIf1@t(E|&rlPJ~pzuJ@w$2ucgNUGssDQ~`1{5Fc za+u`yV5oq}T%hD^no*DrT*?GN>Y7lINGGX*sa)pdZA^w`xhDFNVYsPD<-J>;MiE|Ozd2R6$I zmB?ujRg;rVXrV16Y-wA7NRkjK{v^^W_u1em$L%r1092hBDNw3y%_GFeE8N}0OECv6 z33Le$88`$4U#hoUQ-Q*M^hMF5t;XC|bxDp7bwJZuS)K^@ecN4S<}?@4t%AXwmXoRl zJ|bt-3U)CjUUym9kyPU@Exc_9FTrcqL~hx7qeBW`yPbcaN&gG@!iY8l7|k`fC9#)G zm=R2ROZstMa6+rf0gMLYD$CC(|MV!`iok3(p&AhBIl_w;eVi8r3oLfw5 zkF{BLvuFQ-TMo+++07dSV;(hTnwi8RFYVUj)B>qC?4|vEd;C0nZL9kG$=B81QDSwZ zjL@0T+TiGmrcLRbFoE5Pdfi&kCM8phv}?l-Y|S#pFuOC9`s9T778htH#@jRqgHYbc zI)2XwH(HkyjI)tK&iQL7K_plozIV)_odgx7P4%NO^(O_0G$oiKmHD&hpM-!`bqUE zEs%;wM+NGMaKmj`=22&ne%R(sc)3D(BKEMCmk!Z z_>a#Kc$P)1<7Ad4a;h4M@VSK<*Dx7}il$9}S|&ji9!OMXlU_SCPM<^! zjd0(tnfdAsan{xzs-ZkWLlg>-je$UpF3R(%DLxzHGF~{f^ei#0(5!nf2 zI1|n_&nUy?1dm-e3P%WPTW}O_f=nK#*bWV^J=6Swg4q2A6FlR(Oypr5_OsSXuxBkB zzWH(TIG><~LRuWor37{rZA69&4vjz$1Ep;=}E zx%(IM#Uk!cU>vJ3YRM6D1oiEzHrQO;JR#vhJGZ`i+iv(&MyOl~#?*D>G1BHuc}c8j zq2e{)&&TWXM<1NKH#S|J*yW~|v38%*eZkv?s!Y_+`|3}9A|FK#BOoCVXH8%Jp;>T~ z87U`sxGCBgsIEU@G9dCM`|lKHI8uO1TOF!FCGFK@q0q3ygoP-A#oX;hW{nh|&hU^V zM7i?wNH_Patwdi*XPIR|t)>r#mXBqLyZ>*ZP5 zjN;gOC;DEDt*Kfx_@SfE^_kX=r58GCEZxpG1^^&WMr$Jis?^Uyd1%OS_(kPzW*goq z_DwYGnP6_%O^%_aIhNOrV5GnDrt8KpVN?1IF?|QFrC0Pp%HQUL$kxX(5`s#e*+dGZ z^K}rGLt!wuN}<-}&T6ZS3C+;JgTCpZBeo+LXDyYOoLP3tt;c%_(0WlAQxPf^LZLOg zC<7`YPM+kwFlr5N5TrjfzH>_ib###x^7UX?iTk(>wTM>H$N` zSw!;ZBn1CeMmScsd^^l+xIB7+hee7KPPXwmVzxXHv;kgN7mVZ!ef%K&i`9SWCjHk0K7C%qZRa{eYC!Jt)-{Gg8uG5(U@p`0^XD~eS?-*H z+mp$8mYDqU*$4IHKV#S65Rza{5mETGgempw+A&y>(>|>C9b^#Q2LVXi^RrENb;Q?O zMW`T5u&RrxAWD?pxFe-5AeG;k(~PwW2Jjop+}-&;>Xf%?6M%g1sdO+IX9Fi*SfBfc z7H$(XtUU?(*G_yn)MKuD8%gsQhf?gM0gs+xpSAR+*XG`+`10F^(VHB?#n8JmG-Tb7 zdb@^Nq|s1w^vYfIhH>YOXFOoH63(Fekdm?gv)fVKU4~DmClwBC%{!l(niS8zL+)d@ zbqOyFVuynB`g%q=LYULC%VP=j!%gfffe-UIUx&P0wrz$~bT5Y`;ysl|u>uKxt!>Dw z>~t1_Xa3$6JpL~_=M6}4Yk@3<{crKT6eZT~srCvh`Y@%&^!Nph57ut*hL5A`93&D;7frKXjMz{(Mg%ehtOe88BE2 zfK}X&D`|ogrRS-O=HJoM*fhL}H9W>ncNXsy9@^71KgX()52d;_`_8hliAyi zc(7K`ccysW*QXFBp2zm;FRf-%xv%;Cs1A5oOK+8!(FKkDH1kmFF_Kd9ErFV`mWG{x zafXd+HIvKEF3^TXcC-oOY2GC}517pPtdaM{JC|ZmRZu-N1h0>^GTVc&cl&wE*G_kt zGUT|0WkLI^le5>i6? z?oJ^c{(ndgOqVhMD-t1DONC7Q&ST>qwgjHZiSJHo{4zR6WQ(YAFu(h$$}%QWAvkLE zmM2&Qii_kZY9fLqCa5_k*+yea8rHKOwXbgWOwIV))e7O_wEQ9H!3|bWVJd~oxGrJy z%btipf-4}`tsl5)(fyHW(O_Xxg~k}(Un+WfpjY9v2B0Mg2tDecOlst_gkG1`$8QfX z8r_v@A3AuEaxA?;G_`{|H`fHUXb-v`Y&sRonaQ6MT<&oFnzxksspM{*V5=+15IaDc z2&tnB2@h4QS1-D-JE{`xtk@!U6a(f$xY}Lv`_ew{<{!ZnXXRB3q4}JXt+qYi)SH z4^O^_jze`rzU?tj_EXodlP%pl^xI!m&sK>%X!mOI{(*0ftKMIYUMJUVhPaycBTwe? ziqY?LQSQa(AA=G`grpHssS$iN0#ejs|Pz_>0#2Yxs$>j*I$Lc-z1=K+ApW-hZ?pr;KC5CDVtE8inPYFUOJJ6&Q-mM(h;6y@SZLkMVT__q@VD?Ul#+#5TgIysDDYoSCkIK)S4a4o}Lt!3$>UK;$MpUP+>x4veQY4sWeAD1!Xk z6`{U~`a8xREt^H~bHG=rPVICv?KI$7mTGi{pR%TTAL^Mh+ga}FJIu0rDK^Z1j|e8? z{DMma^9Ix@Lp%PkjLxB(c>mkQ82_8MjO1=OAUAg(kG<4^^%UTNKw{UR|DXy{6cO1P zvc0{_ zC(RdYJtfqzZX!=Iw?#+(+LG1~mI?@)TYe=c*VOS`5hlt-4kBP%>g8Cri5_8Hc(ltV zc^&0avCwu2v{}kVWxj#7eOcu1J?mRuEkG8OQ-$>k$wI+m?;aI!`v}bCVDvG-s!6IRfDF8RrHrChK2B#cBqkN{6m>q+zTn$&wQsGC| zsOELngN4In$78#l7=|t^3*b(O^)$m`&n8n7E<4UA26o(62X>sxSjBn3ag$bq{GF@T zanPe8_^{|DvLo02qLeut_8{~p*uRV?fUOtc>NuC z7jwKiF1r4lwL{HzyZ{ET);&0u>d-NQjCMQo*g2SgohO1{T$W0zd_Sro_&QBoP`<}` z$^2CH4!KO##Le@5qwBsneyn&_Ig=!>i`|jMA0(lh36RkQ{!@`7?Em)(+6tG_1eyR< zDnHFsE5`uDD#&(UKsh7Rq>UCA*?!HI%-|XG&%ia`P6{>V0Zt*Pfv{M_I@nLcjRM8V zn-4xJc5q_-_q-R&sAt0#i;yiDSK*v84&-@MNz5*rdiYLHcy}36w>383;mZ6btcH*3 z$tr`?9<(A!SSNUj38)GFzTO@{-lIo(dVYGzw%Bw?IA{2Dz2hIBuV`vnv5tizA;|Ig z)aZlhh7p?mkv&SONRgCL2_i4lNDwqH>08qZK!6-KGClST&W!yhqzSS78q6AC1ntHu z2`lp&b~Y!7tIx=4_GrIvnU0H6*9SxfWryGu*U^*buJITW8Sk+rpu`^~ZJ;&aw7m!) zQyuaM^$bV6*=y|B?(o=87}mN%3~u3x$^OX zj8dmRlGKnW*ujO2v+S1J^>=>5BbyKReyDbfoafqEs0jeK(2D-T? zD-7vFDPcvB(106Dtya2#1Ut7}wacczT5jNCdmad_-zkn{yNPyqri(=(`rBwUZZh=9 zT`pkiVE-UX40Af0IcMIsK=zhNeue zEWJRQeaf`{EG=!=p-M;ImW~j+-I=1y6nu$2Asx$e1v6;Fq0R5gdpr~VU;sNm&@+z? zzI`MZgU-LdxhrM!Q7`Xy4pGso&ydTZGx%VV?J&F|e_g+^jm#f^Q3idWtRsEhq`k*Z1SpGg=>Fk`CG-y4aJ&R6ZsQseA^C zt?v-HmLiKSADKQqN4R)w%ryctLYapyxF~6$2-Uk3es2ovF1Onj!^b4 zMG?B%Yyr03ZGXD{qV;jx%y4Am3N&OhUA13{FT)Wry_$~4;J5~K3o}LGac_-&6K5FL zn$BGy1T68|B&1sm^WGpe#YGx`iO1&6u8)Ux4CAGBi^IU@`Mb5iB_4;4#XBkmOM+w?pMMc?f zGy|RsxTHw0MpDoUs=c4FLsFS=WE`$%QC~$>aMT$SzpYf!0FuqsZU8ta5Qg*jK1U;b zG4$@da}9X~ROopXXNpK5?o=(BC!y#9 zcggVIr=oR0sgm^ntivL)O#qO!ST2i*)?f>`UB94EXkI=j5)4QPbx8L2n&4+xakk~z zz19m8XMVQP91`))9tMV#N2Zlbt3jWQpE5*Sb`nVd)Q5yFt7+;MwaoxDL49oe9iiR^ z+P(|}Szp!0!5o!d3$D=O=K$@lFOPRbvBHInvNIsB@^Bm3V|fRt6;m#gK8f6|qMB!e z@l9flGH*AORFf|A%Ni1rw4AYbEP}wE)tweOPQB7N3O2{2D(Pa2)?d}?zjJD6{XRe` zW?N5JDV0Uu60?o_ZhyHTC;ELt!ZrI1;xrCl4fU~HIxB|n8sZnXWzHn0%OZRhwObQE zt*5Jd*?#jh^4R;JwWpPAn|C#URiNz(`vtHr6sqg-M;Fxtg~5P|KyHlFx>Q4h&=8CU z#;FXJC4y08T4ECi8#zURjLue}gO@LpU8@NJWpdakoP1rfzNVC7W1H%bp=Eq(4v4aq z#P^F1iN(sDMbF5e86@^X29IhP{Fm!ynG7HR1{VJ6c1Qad!j^h52Hw03U?KGt7po7r zmJP}*19+uZT!h0Y@V$0c;4S6Y##yA%7T%s^j1*o)aqSe|<@>2FM7N0J(t9g&t~HLrgpWmeN#k z+o!h_$HI3%Jbcu$+uT5~*zWTezDw-V#Tx|`AydUOP(uS_0$(TX`vs6>e>UoNGpUjZ zv^M-zZSYtB{POBwJ66`&1fH_wnAT7Adlyn!Ql4q-r>X|cBuc4d$-FMn;NDZ((SW%z zR7w;}?EKr{p8ibG{99B*HHV;oD^ABVb2M)uD#IcCtJF*Xfpo9}BYKD5@okt0Z86IS zi-s#Av}K>Y2^&R0x^!fY!XLp*>X3F|EB`C) ?b;M8C|9Jet4ik-d)%s@ z#To#Eyr0E(Nj^7pJt-z%T)VU(DptJea8Yf3lPat$5$?S5FN#zdcJM3K$D9}8s%2Dr z>e(2MlfM{?KGvLo;++~j20A%Yq*=5a-IFB3S-}~2RNh@_R^$_Uv)eQbi;#s|9s`7eE zq)KH~g2%`!1o8Qma_SuciSYj=`e>niT_NTGKc?-nI0Zsd!v8L}D3ZNxSCzGFti2ki zWnz33U+I^NcxiT&%#292!H7OEdM8$~&~}{X8$u+^FbJy}YFGDX@bd~W-m;7MhC-V~ zP!_4{Wx4tqj{gRMYMY*{cxq*7297Wf@{Gzc`m=z_)4vg*!(mOFRh84#dZ?7qtV?)O zs_OEp%Kdo^D;syEvWnmDJDt_UDs=OzsV|JM;Ua36nyemHhECcTtS)tIuVGiDd z_Ew?5C06#rvdwT5VnJq7+ou#zT^SLV5a@o$)m3r=VzF*z2%9Xv_TQCc%zUJS64Bgc zWpde2?`W-E??@`USHacwU!Dhq)Y43?#wn_%=BhsW#5k%LlyZ*-I%geUrjTi88Gh7j!#F(2jjLg*hO7}l|_Nla+G3ukVhr@z1u z!~Mm#>|N{OCdOpSV=2N;?O4j5E3|UcMp2wLzPIO01d-;}0BtI%Rf>T1dvOvZ1XORA zk$U|%lP>xjbjLi4lnTD2C18B_HB8CU8!qc4xyJofg?K~Ntc|Z+=cI|PZ$L>sHeM{& zXVu3Sp%iqPVq3<@{q-_K?BLN@@H}fKxK|m;i{hO>?iXjj;lCNbADIS#(B3@6bM!1^ z!sb^4Ag2+&!B#8Sz^I2gsV}VQ7H~271V3=N-u_WHr&?>FG0+OQ)IV0Gv~HU;pO%G9 zHe0Fx5Kb!(#K5}YIc3^DVR3Pc$35b2aCSclr}1tFoI*sz8-1;Ntc}+)u48#}`uR@x zkemFyby_FF4c#A3a1P31!d)e>mXimvnXcRGWOxsX%{!d+vu{^JoISMFPC=jbw{4V8 z2T6xN%HW1pgy*`>+fT(93TPCVl8r>B=C*mk_76N;1VXtWlqx+kYzUfKfv)#PxWTTVw&OJ7 z+wMasBu4F*gjIm<$iEyb_GyIdU~?-?!9}WT#b{Xoa-#cXVsdQp9QO;p0`(Wk{V5A{ zED7C;wcwSy+qyd*P%)tg#6ROLLh&~s$2+@Zry$u?-DB5sW`rSdvK_8M8*WR@ao9(v*jB3e(Vc@=Ap#>Az7 zl6DXqQBjnj{LP&E+{(}gUA6lkz}5bJB_u{|y~FBsgoQk_4&lF4eXlY4{!7&i|DkFD z=ZxYy5YdE0m##qCOfPat7*Bt@;*k+RA+Z;V*GOon zcF%}i8{N*$q~|mPC=%ADU=t8b5>sTYr;R@Yn>(|4dbW+N72>Ms{nq@xZ~l3)o#)dX zj@1*O-ONrHU4>tAe>_mW6w&tj(tMI|1jy~Hdf^vosb^LgogCVIC^@BCF0@0hI63(7#L z_wz0^XIQ|wuhEMWnkYx}CTy_MR}kq>^uLc_zK^kZ+a~NkaC^>e8g=aSBeEB+?6Y#eiAho#&y&h|}@pqa){y~EtX|_421%3U&<-DQ}<#;|fC`sYo2}aCx z;}vUOx9Ho8xgNkDe2dLZh5PaQBTt=FEBfiCH>l@&gdDCdyS_8Klg0@Vfr(d)@xbCb zWQp?_JPUNfSBGvZffa@FMKcRqehr2yYH!o|;>9VZM-jphmfx8bo2I)@`b1VL3O8$w z&Wu%;mx9q$GmN`Ajk8t1h;~WnhdPV9*%u)*gUg;~SlKv?bI$bS=y+B0p98Ct;ynzAqz-O0^d}nH=xBilee(ROVb#8<>pR&~hObsZW^+A#B zo}dsj)q3nD^Nkt+n28oo0cnKAx#_Lv(}#eeA}l&1(0O#*MVBxR2rsxxs8K9Ae#5y< zXypo{TMr4&dsePZ^EKw%f031n-0N+}kczhmA=6dNErWN7Owa~eNXe4!G!)5V+62z2 zCSR#eMGaJh5M-xzu@nH$d&|Zd}~l z(xZQ5E@wm2j#GEqIo=B3=czUA-TRoi-Fk{RV`}J)sa)y zK2B`0fr~2-4Bz$o#rXJZ=6w{L&mKDh_h!KXvjgel`3Mx%G#>!vW9uGsI+(QAt7bD? z7~V^Qsx=>q zPYjN?I~iyrbu4h(eSeVy?;ZBpq_JnLa8wrI_#eugPc5HjHD<^Zw97R?RI$;V2dkt=QN5Y`aiN(DMH#7>vdwjeg=2+ zOR;8ka=+aVOFpy%ErKR^CDZpd%HN}i@KHWN23pIH2!&RTO%ln>KcjktS9i3Y(a*7_ z>kXy2?-H=-4N!dsHV0s8SO$J+;B`bQFqFHlwB}De?M29l-a>n;lRTKf^fj~V3ka}h zjFWksZ#{U&9S1nDgn3~#kb6GVc(g%=#$F9j2-{kr{G$&->GiM z1IxqRvA6gc?+Zu_+O!<_M26g9v`{Ymg0sZ^S&Cpk(R1TL>iJDVZc@KamCb{Gb}%CY zc!XBc44g4R3^Z%9cdA|M3s{H@K8sk$6F;Y=<(Jz0pHA#{gH58Yc8>}9vb2}D+A-bDKqiU~*PBx7vNo5^YJv0VH+tc$$v#_SY zgp)JvEdc!6anMCXvWiAnio7NR5yFCQF+q666II7nxzp^fMbyXjoSJ({CRR{x-6G=> zr)<4S4^?Z%52sp8?gHC`Vn*+Z$>9&)awh@C0%G;=r4v)(^rs?aRUR|K!YE8dyh?0N zvFUHg{htUmSs#|6t?s<6q+|KmPF(NftnqGoAB;1g_{RH7IgK@52H-&JtV~@kDL6wcgSuu34r$H)}> z?0R5n0dP6t|ljGI2{ESsIsrLL|vEGGZQ+AJ&cno zlJU?C)I)H^kHxA@no|wEMp^1lUxIv_l<5`!NF>u%KN-!U8M-%|<8F zL2bI%9A0>)X5aPaJ6+tmgiNlAFWcw z)8(xEbNKobpdCJqzE33~@r*K0d2kq672c3@E$@!OK>Y<3({9awSFEP;V>(hg(x%dv zo4^To<=;*p_Oo#^_K`cX-4j8XT1*p zGlI|1OgH7xGlu1d3Zi^=)Er(J54g8TU>QS1`J2O8p01rF{OnX~*-7X)eO5R9WwVKj*G1CN9Q|R|}gI^)8M3Q_2hm%waF%E^@{Xnk&b_eCks1@jN`? zYlsurW|nbmuGf!;=p%4uVOHuL0!ZjEs9ncw=Rcs6PaO5lW6SQJ6M(EZT{f&{QFgY6 zhtc=>%yIs|KKFp55Nh1ZcV2Lg+(D%1g~V;`E5kUb{zahWmQV<~5^Io(dvDsS7-ho) z_41gh9-`QWXx-QrP)HXwd7zYHbOC5xCetWIo=JGstziSIMo<|jP-&lG0)=I06m+9K z`9MKakf_xd2y~J{8ndT+^BDzqKaPy}llEbr0E5KBoPIkcPh@sjfv&ou2o$4rLShK> zlm^iJ!)?LpVf`a7fv`4uKH~|qpE&WLd_aD0GGF~Av+DCTZqhewd4szxqf!@r+gDh2 zFk=pc_r;EA?{eosmd{2r%O;u77*b$uP)B>?9NNO~riQln$!W{~p8Y-Zp#BhLB9dLQ zBvj8A6}FZ$DGep{MO0-C&pQk-Bfik!Ww01S+c;5ZZ5 zf|fSbQ#?l^k^CByr^lyp6;!Oi#Gb`|SxE9=7jrAmR9Uim6* zmPUyP&zENpKiK6ZAR`8Mgjl3DiYJ2UP9ddQ9zRB)aSg8~oNai|gn10k_4j+JF@PqR z7lq@JnbqXn@-k~S)MEKumNXy^=AxocUYrXGMB}BYg}3RAEgP}ww0 zI8Z1yDNGSX>s6d~Vz5wYiz#R5)Fn6r@EY2)m{(K%^`CXa7uAPs53QO9c|_>>6?KTM zWO3*vSZ~(XExVidmP0o(^7b&~nP`9Ecg`k){k2#$iu~?h>DO%Xk~~Zv@Y(k$P39St z^)*Mvtgo*bHicNeLOU_1iBz;ETRFfn6b3KCS?2J9T>o%zuI<0HPwDBVWPwz3O`4m$aR!e|4H&^|4#wvI=_zH?5Htam z5*#7G73Ie$WUn7IjFcr+^KC6DicnL3sK=v(J+SmB)0h0|a;GWW%SGSzNQeaco_c)I#&?Jia~Yr|iDKVUR!G%!#KFP~K{&MKk2jP~nE9IF z`PCB~h0P#r@fYqAB;;BMM8Jnp`n6q=)5?_{k<*Gt5Ep>dp!GpkR0Zx(VHJL~Ul){+ zW+Q$q65ONU3l6DAuSu35d1)TCX19nhLhQ$)WuT0lo;0 zhI*glhHNWRrd8uqm~Y6-Q}LGeKhntI8)4n!&TI@}mP8Tw zBoOS`+V=H!{b6(;xHM4ez zZm)~G2#QP5$eG?J&V}A3SC+Bwwv3<7M;~S_Yc169+|5HE_Ju?9T|>5Cr^|jszcGrt ztDXLb-~02qDyv}eL-i2zKGrL^c&vLX94Z9q@Z%StcH|cx;vKGf6I4t*u(zi=;G4|j z8qVd1&wEt~Ty_%g;06!V;923=61dgNRG@J*Gg0=v$?mOBFDk2RmAla`xWZ4|#>BmX zn4WF78i#>zE~w-GydB(}cu7Co*v4&=%F)*!k;F0fg{)5)cDm<#Cmg@9%2H?bIUVWR zBaQ1^as)x3Ff>*j6gM+8kUv)K-dK;+m5_>8y_idJ&{-O(%*|9zVm%t#!YiS%iBfdz z%Cfp*C%Vm8Lte8p6h)gaK+m`&#|&yIqm7>2T7e#;9|b3piufPisjR~@!uOCeWR6-S zLI7yS+2^2cKdB$lsCk0(U+}jm0oV!LgzcKojGnCJxg(V_-I%mA5W>bgV2T6BOHkYKBFq4L=>K{9=EK+I`~Ib<;@FuSArG492}63pyCadwxIRhc zd6XFAeMBErcg{iLts?B z63~lDhZ!#ld|RkJQ?wZ#!^OdRbXvJldh_9$LN3*>Cu`%(R0tGPffXQ7t^PHCq4n72 zv?e|Gl9FHrqh^AA6!mEd`+dV0-D+wyApr=&Rx969S=OQmI$+Ydl7>{4)UKFOkyVI+ z2DS&O{L5$2%q?f!+$Mp6^jq3eW}=Rwcs1!xvPaS%6%^p`!OEa>^_T*nKr*>AI=G7X z1+J7PEe!B{SlCB2=-ogzAHvAOi7Vhw=@Gm{nbC%yMKEFz7`@XFpI)@Gb%il)8e zyMxPW(iz(daOgCQ;bNh4z#+7i6-^1lxVD;q;@*yv6!en?c@Xawp}qG0sOarT&RGQ* z-k5__SQro3RKj5LcefF8>&+CVMqOK#>;3jpTE3Ryr5EOCmS!6s69;k==FR5$H?MHY zu7a3B%~hgrP~sZnj#66YXtZi`!_z1nvSG^2J z#1TE|SN=YVC}S>4>9CEU3XS3$ zp|^9VuwELQwz53WT);qpBI4~+!N&fcOB#>=#@UkKk;u`bFHAuIpsuNv=C zsl!#gE&XYQt0>27z%UFEZi^HniD+3VZeN}w*GLwYt#-F7?m?1Zvx6M^ zdb1y1sEN(>(IgNU5v_Exx^}SKy^nZX)QEIGEW+yxpfgtGF(#$lJ6FV*0a*I?=gA4C5xym-7xWWWOWFpVOwjA z16^OFFA#^1qbg;zJ>=-zxA+5lm>%~z85bzrOD>PVY^q&;1Tv>WU_vR->0_`8a(RdROSzQVr0QUsGPfwr;x ztCT~;*Jrybw|DPx)y<; zHlJuJf7(*NY@t>B6OQOvf@^UOmP#Yn^Mwc=`Ga8_mk|`zHW@fI8^&4Qk3Rc3-m&rrK4o9|48-M%w@{`0Dc^8q_qQvZF^A$V z0cv&jf!mY|IvH6UgXGh7B)mwP1&-=w92Y+$A6qkZ{!~TwpnTm0+{kf=Ys+@vUL??g z%lAo3w$hbV&B}FLKTj7c21jTxlk+wlt|+5?VtCI*q17~K%{^J1gmL}qgRC3J@SkIS z9m|Dla*hH1Lt@{d3G7YUEOWy5-Cs@Q|Bk`~HUS=_?*fPrdm{2weL5qPvS7oK3^+BE zbfZ%1aPb)E+jl(||MrH7J_Px3;jR8rBca8k@^<3VSfWlWroME7q&B`BnS!;`&X#JQ z-k0cAKm1f6na8DCao{RgtV~iQ1LpY>w!~N+XY3=2t%R~g$Co;Z#k9j%!om{oi~I@X z;F%zHeej&yIYXWn@}S65hI5Dz(y$r%J0e8Yg?`DrRsZBzN=P;EW zgAfUa?j95L#<`qi9)jTcojqrQD>!xBM4gN<&3#?rY&*#htUF;6hDm3=EkIqKe1>R1 zpZZy?B*=2>Q;8vF72&!tzIR)C8aAyTU(lX9sh~qf_%fwA5sOTuM9wN2hPgK1TB&1! zEzbNG@l7qhNsY6zf@0k}e&&2Nc?qWs2!b)vy>k8rMKV0Ou{CrwaQL+x z&W`z@eVaA`j@r}&)&3ft*%B+>Xr5S6a|wmNOx;fWIr6lh(7K1Oxuzs-WEqo8u1fb4 z6{wxYDo=$1zbuQi)pRF8bJ-1TFt!7=nW}QX`YY<=dENf(oS-OW)n4n-{KlqK!%eV=d9$B&P?QaamiZIJ0P25C*J4B0BXvHNi0`134-208Syiza3nn$H*#w&!`l z*-B*^El-D5`-Xob_z9VZe`RO<)r|MoyFdTI-J|D5G`x~P@M04-e#?-HH7kzp-(H&2 zR~*BC$^asnJ6&e*$?JJxCP&`gGA*4+ft5mu?WVUG9SPp?t*2%3p(V^H#TsT4oVS)eZVR<6<~AxNjBKzVmShO% z*RW~?LoF*DK0nUym;=8=E?YB;Z>aLJyiz;JR+<*!q_HdHxX6kvE4qecf;bU%v!K-M-@VwIsFUUOftyyWmgFpd=6OjfwcHq8kR?qmDC;(BTTi zl`b+&FKs{Hdip(jkt*RNZZ?w}dZ#kO&cI#mP#{eBY0wOw@&JW!ed+!rO)>DmT3l4_ zKN<+{hf3(J#`7?9+cm{!ku{q?f$-p+dV+ZBy3t+%_Ov(F86kdEhpfnXB(>s|H+=U`C6mBusWxDCIcWrYp%8UwbhxI zc_|zkG8SBgHx#**=4DH3_4@1^Y5=7`sO*bNzrLQch+n&<=B6O&95RxR-19Z98vDtd zt^q(k%Cwgm5dJm`h?cRwaa$dI&0Yl}+XN^22g#d|j@}n~>MG49iZkufM289F28$P3 z9!mFOeY1uE5rhL#11DZQI+B`I>Rkuvd6xr@8Xqb5;?Et`locUodV*aP;+$`z=r;2Wxw5OA9~-6Tki ztwoDTpe8l8SEZ^__^#m0>L7L${45|#3BgdEB#r*RKXAQubTsBEk1`m+C$YC6woZ0g z|M3w{jhT=^tqk^yEUqIn#cNoorkVDEf zity+pdsop-;Q(F4dr_grJ<$Cy%@H~iu~)mAzAT2=ubW=_M&%{|x{rEN$235Mp|vET zwWSscN1;U63k4neBvURoYQ_GV4fOJ$RJ~?11`56O20xmRF3FYUIdo5RR)X0#pRb*+ zZTtV6!X^z=PX~lP^X~2N&M5I)tT-kZ^gK3DE^2H;=%>BU!UPg4b7f=4B)QZBKMyg1 zL`IAhns5f5p75vHSSQhE)9C5pn=hHz3G&!F!`!0*2G>xSDUgdPF8cb@vzaC44V-8l z<&n!JNM;;y9?JMV;fu@Ih8bS?s1B2G;3E$lX$G^~pdG%lN43UTAX27{$3XOVqlZrL zKdaIY-aZu-h+eeEi=_>u`qpBFv&x;q4u|uU@22kBQ-o3gQfu?Y4r8jtiM`t9n<UI77CLg^rQhz6+kme~SRNeFT{L5PERQ zVo;Zm2WdJDIEiT-qBq!StC{RMkq0FMajd?e^%7Z%i$2MIBY5__NV^auzvaR5jquv*kmyXbBx>X`XX&6L# zrm_mu&R?P?Dfrr_Biw0;`sH9Y=E~rd3&k*StP#GJhyQ+P*)@XE!NlXVG=5v z4{lAYAND_>wyE%xF&NRiGTdY2kpTgy6Bqp@^ zg5iEAf^av|f(Lc_r-Nn4E8Ih(ZDto>QuhokqRwnL0?jHx9^MFo85gorC-GOWR^m^5 za+Q8Q@`wV@Uh8+ctw3atY&M16wSzH&M}1!Friui?6^XV)0quQ&?m=DY6052PUD|SK z9N6?|IC^%ucO{xG9HP!Vf&wVScNntCr?v{4@F95ZAk#QZDS^`|^y|BrTVeq2Fn-NY z-7*h9kd2Fw*R*eILFm;MdlNhSlBVJaYW`@m{B8C{qvoOu=@#`&ZOyS*;g(jS*DFK-v#(0_* zjp5XVhxdIW*s&SOe0T0qRcL{RSs4s%!`x^5Rc7l2=rXn7T{1*Y0yup@&_`AQ=G|6B zBlUBo@E7Em;>=eLYffCl;JDn&$C%pt3I}mW2Vi4`3|BxNg$7> zu-AR|WqSuu8Srh^kt0rMaT?LXC{ElTLyf?ilE)^fK9Y_X7J*pE{yV7Q)|_=*Y*>z{ z7(^~vmU6u35l)6Zh%5tvONJ-{pifZdJhb|Hfx!25`~wkMcBlc^ID zlSu4GZnmSuVFJu^IpY99Ew^h-9F@V|p4%W06zI!Ps)Dx@GPiJ-2|I|!sjNzvlk-Bd zn&R7D%!|Y(Q@PaYLjN8*!g-h#^{BQLC=UrfS=i(m9}j^qgtl-u{~#4vyExC(tGu(r z;FIi7y+FmQVt*h$4aprSt~D&~6~m+eFJ=h6cTnirCrlk2j90(y-aN+!q$50k0o*k( z=o}QHFDkKX;+e2d4zec?<07rV#VXF-sT-CAIvqz<>U~2whzp`Wuj(_lbLhzzKXHM!H9d9eS zz<&YAg0us!8k~qu#5(r>GJOC4ur{FeKUlju3+Dr)mHHp7MMeJ~SSvR5eF@Og?=8pn zgQ&NC>-Dj@^~!q}aN*-UqXHlD8$3evPBl!R+k)rq1^rLe+yHp)x=2(^Tr?Lm^%9rB_1w1a*AXjIFu$<3Q6dv$vpkp+5`i7)X*{PdJp%{u@ zQ23j^@BSYNpo}bGwL`4bo!^kutAAN2EreyDoui?eEJb-=C7zK{W>sL|T{RD|(YA)O zJX?XOyfxeQqu-0J>jk5%H87#^z#DK|%ktnE9?#G*{uT-z=j%E58KNw>Q}i9f{z;19}I%sQ8UexXkN;cd#Hep79b98-pZKO zZUstNFClP!6oMuOS~RSh=C;S7VuuYjs#!cq)G;HJgY52u)l()4E71%!SXf@2EJZW^wop~?y6Y^6TfQ{S@Gt-A0I#F5Mh~PYId*C}$gs=B z*_z3dX0qZHb#8}DNlPW9gQ(HPYOeuIQV^$cJG$hvhHg%E3@U}x3$sZwbdNM#E|;s> zLy3l7<`0?L)D6zM@GPg3y|!q>w0icnrcSy&U6VZUT+~-+YadOK)ZC*}p#Peh>oV?4 zjJT>>H4&udh2P!kG44Pa{NJ~c3QgKWsat>CEc0!<_NlY~VND1-E>Z#J@72(Y!Jq$q zo~FuDIguT>l~X9n?W$*z`pqZs${xq*H&>c|v)!*W<3q0M7tX@FXC$Nz+}0b-eR&Et z|AuU8(nb|Ete*@Cf4I|czBDTdHq+6bTDYz0&Z_~eQAo^2*19~swAxR{Hl!X884zcu zy=PqB=~UH#sGkj8c&3S&R@Y&xc(V9mbT!&N3tN|ciZ1-!>iR_J(AuH_)yr2iJOt`AYVmD>SUe zAIYQz&q&@7{@Ro-pQ&&&owPWL2-#JlwZ1|xjBR`nyS{sLlohdCcQ*I^nJ}cIJaZ`1 zP@Y$Lle|koY@{B@+6i2>komFjXyeBoWpFpYdakcE0z4$C3qOY2RCz=_+ z^!nPjyYSeTkdpChuh!*0BkA+{Iu}iU&!6P!(Y}Tk2=|_2HIWiR7Wxmp1C_YzfDMaP+76Hg>tb=vcR~af**MUAWYM zJ(e8mf!zPHu`N_FnU_h-P9BT7(;lw^nD#56jz!r`hq+xb$GlIGC86_N1S%(rD&MXU z4K&4bfYC`lGrb@92k(DGrao7;2kb4omEaos@fi}>6MFRvN+85F%4)MJ<b==;3y7_r_fY15=`|Eaz_bfv%lyVhQh?m2<`}go* zN9nJp+4A`l=Qq(C7%!~SunZnQ0PW!p#ur=DDwNkI8PHn*&*%GdnXX;>iQ3c!(ZQIt z&SYGyZKz!==hQ>TT8C}DoX{sxu-wd>pO`f~?8Z;n)g5t^y_GBBA*!7E<<9Ar-dLfW zU2MmeYi5)m0`JW2M&TYD@>dieyHtN!dY}TKz-8f!d+@O=_>MN~jMo>ah~IF)=HD6E z7<)f{Ag~>TFeAJvQtRb0MvzYy&&j?*_|ROBzKufFQr{kT#=CIY%I$FTgP`uJ+dr|~ zxwCex9oEPjI0>-^{;gs*oXJ=o5US}s@re)HTQc(gjcu+WKpY_$LYRCduwNMYCdUVV zK4M=_vlXn(x-vauz&)=hXOVV-^J6#lgTHnSKLGa{uhtjdl!1h2V_Ag#4M+wROa0X? zn<|i{ZlSsd6V@yp0}`Hv8|OCh+t!~*cQncit~QJ0dOz)hQ;yV#`uFTqADy5&37$;` zGuWYgt-U#L|E+zivfC_mOgYWY%kac8=;1MDs({oKPEY_HAM?%`A)317Y=6fBnn{`usFat_l+IC<<+>N90+#;;bhyP>kk_O$!& z{vUMJk)mS`kl*EL#I{X@@d^RNzO}g_o3?fhahX>#39Ht2af8{mOgsjMzuJ&UPk7)` zyPj#Bdw}nNsyLWV>gG&@9<7*OLa|u(zZw_Wtpw9$LBW=b=TjxLqjBlwnUrz)h(uWF zT8nP15v=YQ?6*O}dv^ko?zeWQr$;EF!etuv30RJP(|p8 z#jgmRVxfKpNQ7UR2Avzmv!(}Le;$F$P3Y6cc97upbxgSjfN~N3Ky_ohb!n8wzW&zi z0?xSs(Lr}p{7S>UNR>D*VT8i;A?!qR&}g@#P6+&j05o!t(5(R>dQPA!Fxu%9LunlE z9ew=+CbXy9Xxr{XXW)#@r!yjpb&XH7Hd%M6j{I&n;ll(2Og8LdX??Ib*1WqVNltX` z``dkY?R6wh;%I0y{^DY#c>4$)aeCw}F|9aL`0OKjJ|E|0t*H_H0&CiyOQR72D%cx+ zoE3c<&;stbXO;~YDI);&nGak99kyBwp;cda-zWbs@{_zHx5tT|lgZNS`ImY)?VAG> z$G_MhD<4viwgCf%>%Pxd1fLwFwZ_oXk59*uTo3osx>lz`L?Jt?_}I^uXHrz9EQ4`U z8SBtar$CdDnoj0EMDz^&Ao@WQ!NdUSlQpBW;CgqnAMwR$s!5ai`XUATA>riXF;F&C zbuN_Em{ct;k5pI}%;{)<((GsS_W_$_-((&%rH5WsunaF?g=K(tn5w-t8 zb^=5A!Y`bSrf*^?hi<`h5pZTA>8-)VUxm(W#8!p~!hk<=8dM@%;u~}YucApa_GjWi_t48;M?(r{CLbUgH%jBPW zJFp`qnc2SS3AS-Mkj_U?K1>N~AdE#YXNy6P+DxQb8vvSCPb-9-9W$A04bNuFfvF24 zREo-v4pjhiI5aZ`4HOH|u%4!8p^8@m8wA<+S~l}*?iE0;sl{*6^(@*=eARNNSS&cV zkWVUeK})d7h(KMh)D1&rnbANpBJjl9YnRWdN4K=W8%5@@*hB4_RiURb)R}QJb9Q*T^^KWIdu0E>rl83__(Xy=3;iy_hv1OFtRE{ns zcLA9&Gbp$H(VNia!a2OFDH$dge&e40tIX}k1`+*UAw)3(-Gmc2dzsLWR$1HGzIZ8B}ZCZKvoDg0hjy3UZ3L~6i+tU41)-;Er}Butvy!v zs=FBkAeydXtZU1~lB?{xGwLmN0j&0C6K3T;*{ASjU2xE9HSHG$&)akOcT2ZDatev; z>$O234DJzYS+2SIC=2LnT^B_5SI?XLyOtFK}PzYuboLx&>(m~8%f&Sttavd37^8Fc3vAYBFBU< z76G$k_}0WUQt~puT;mpQn@IY*U5zjkE|_x*v${)v!|WgjzwUqE?^h?ascv{q_1EV@ z7AnkFo@+;~7cI7h$#LR#F70G}6w)+^5u^ZNyH3MqFTBFMgM8M3t~XiD?)*w!gpA~I zr$JT`0*^qTd~k@?`6(+w!zhgC&I9rnglu@7rtJ!VtF2SiHuzCo*(L^?i7W9e*XlZA zxF=GYVwM0W#QGkvw)}NynIVp+Xv649@*Lm`XUhKeCC#-vzz2BdoK#jZR9mx^y#+Z8 zP>NxLsPcf0SCS@JL;?WoAeeKma&xxZ+(2|0IjGYjgFxAHRN0W>s1nsekwr2z3E-*7 zH*t$KXys!wTXYHgDa`d6XJIxehh!=!3&vl^xY5a5_fOyVd-vz}-<(3S)gH0lNNSkG z(+V_NmDw-|cdubDF06%f&Fl6g#{EUWM-bBrf|r@9fjMJ69#&kC^|hOKf7a$>#@lYc zCrb73YBG*2B~2$L*llg5yX5A;Oqm_V>$)A|o^%e@x<PmC9DdNzjjHzQtu?^bl-x$^sG^(;`nK0^T7N0+-(Ov-$JcH=JBSqtKO%#a= zACvE-4Hd4oyNRZ|%{p6YK!nPO_rm=o_8#xSG`DsOIKZzf85ToNY!+Fdcw5IM$!L}* zC#X8rIw#J*PEX(-zTB8Mf_1{|?o~`2&l_cNeqThu;@R}{Fmm3UD zza0k(0*F%2+gE6cD({#`(EXzUgWFW4fp=oJxw0j)O%`V~%zyPPjw<8rsYw@}boz6b zdL<>?s8(UQOsi;H5u0RZI*3Z8t}qbBF*x_-P+lsdMB@A6-;ZK9mc?9)ib1R2eUTSQaLU1 zLrsHeQ9kc+w-_Y@C!SV=AT@GaO_Ed-xcCUpx+mL0esxs6uWt^BpquY0wK3E|N;SAs z+jQ#np~q=tIn~l~*r;@c?Iy8dc+*>cYUwG^6U!GLmpO0muQ$85tjcB9O8vH5&I7l= zv_ZEEt61i`30CI230AAAx%Ld8T?Zee;!rk#M~z()i?(k)K;xGNS~Us=T9}ryG2R^< zv2FQv@f6)3p?1=R8qNInBP4yU94qxEOe&U!`Nf*FymCE;zGdi~*n;nVf`$g>&3^v& z1|X~bXxNlONGK5wN1wyaQG`u$&f06mwNUe%XoJD25)%ynUDxJ8sLUp@Z9eK&z zahNJ4iGe(5>RL8dPoL$+t`+>fS{M1K2lKCB%ej#=mG zzFNd|f3z(VRvPYG3;>CIHlT$X0la*cX=9m=N1RUk5O1pnyEWRQSjL92)G1nMNRo*V>G@^0M}T z>z8s0XKs-jO^lkf$gVQlu4UV*#wqEPC2ql4PB5kVyn9WIZuy13a4%Y)2g^~H9dln* z`a~|yRh0c1b$E|E`uMi8o@Hup^U}=b#0mzY_09J|03y2@6(bZWUIB2^sLXKCTUS72*;LCuZU_HaeOq)=r-nf z9DwZsK}D3DcDSpY#C^SknO#H|*s=t=CuY4cK?Q4?m+V=^*IH||I7+N_no;d{#Zc#s zyw+F(C)G>M2+TV7S2m@U4{y?9aXgE|ii?Q`i=rWrpSSe-y$FHaBBZ5ODX(lBF`!OZ zVf$3bDxA=;uuRnU0;$#IgQ8kI3Z?Lq)t;p*A=9kHDNOYpU=3!`(iS+IiMDAZW4&&I>NXp z8A@VKN-|llXqBe8102Is#-g0DM1D%CnNiedN-3OC)LTZ*qTDatszNWLwRwx#&c#z` z6irnpTfppK11_2Yxy_?9!wa3so@?W|D?Bn`7AiJ2EhenB9%Pu7R(}26`A=8tEE)peQ*R#;kdg;`vAMDka` zLug-Ra+ha*E07eeBb!D}Mg?On>2L2!OWP|M70DljPlk#FAA;@B1^Wrv3L9h>g3Z3% z>S(p29bqjKeQomX`xWVmRtJLrAcvoOROxH9BWS0s6^ zQFL1vQl2OKCgnTMD=z*tw=g|c*4o@y`Pg{bB@k~w7}lB6|HU8f>tCI|yi$iJTBilO z*oPm~Z=+zNeWa?gtE8*?$wcvy!kTP=W2>T`vmF#1i{rMPp)>UZQc1p#JRJRG+_k z&wjJ4c8|QVPs6pfZ}-nQ1fR?nB%aQCrcPxszF_NIAD%vfa>7d$uBpLQ z+)Jb3S{@Y)$W8aknPY;gIhKdO)!a)`RF+2+H%rwFwuCS(%C#4cWYyIh02uD5*3L~h z%pzLY0x8N3j6fA49vK(sK= z=JhKRY(;UtI$)e#J2w1ZJ0ggQ9AC>$Q&_9mae)#LSM2B3v*GyfvJhyRE4zlbfsB|rYYNv89gfstUCAbWi$ZHY#<5pP`ZYKD9CV9> zQ_>xmH<2ifO@R$xHDqTvu32&d^Z2;d&QWrNI<}VCo z$Ish~pL$i$b2vlE6s;Vz@FEA7x&jlgr(7DhFXC6)1={n$DcLY%2x!1XoZg$LbP>iQ zHT`9Xk=eYLp*gYCxH62F=SA1J z8*U_Qv=PN+&Dm%V>X)3}Tw|57Pga?cGBQ1e3p?5>$^fnQN*+@*#L3$-Nh;;#S3WyeP0$s^Le zf@Vy4!)YMxzUy|IQp-LP6NxY1q*9XYKD6mkcwGWJ6+!3pV%Lcw4G98PIwz_Zn{Gy> zxRH%!ukFjH2B;dNITFpeNcR0%5k?14!bvpCA#Gt{06&;I6NBjwQ&#K{7LMC->x3|; zr{2jzr)`0l?*Vux@IVb){!=nE3P&y)tP7S48z*Ecf{zJ?XO?+cxMDGg;(wc)Sn-ULjwJ zv`uGn2?3t8w#$&>4M#+B*%=!{)TE=WK63D?U7W0_e_L5(l4b(>NjHLU8->v@!Ug9X z5Pt*qXsvrpFn5yOrr6_N=3ONyEQ%Dknb-zvie~XcDt0e39{^lK2KcCgh>x121{Fch zs=mghOIPHTAH3VDl{HC0qSj0CgI55O9rI7z^`K0LaIaSnRuqXhB@0AUk*VAQM>Sc( zeOga~%`(TUbK<8ayK2`q3nv^qR>%?Sl8rQs3(Fv5D}dMu_8OS1lV{|JYa<(R*PbPrh?BU(B;4rWOxdg?}{-$AhND%q`bws26N=T_5RB*tesvHEyTxH ze1e^~sr28SfDjeB^cx~F%oQTO3P)?$6}!a6_zsbYd$J3?qNRh)h`u5Ct$C+|(LH4# z@N4a?YWsux8uds0bZYcu%5xI@Y~HO38#E#^J-q)i8P;n6e!rQXXa)++ZulYYU%o%} z39k#MSc|{BNYusFTMnCHWu_)5)8ibH z0mA)BR4?c>eQ0nx-l=oHo?7HTUYc*f2#9hfMha>u92wQZFWm9xT`2CRGwZw9odMuU zTJY>TxhlL{k%v$0n*7$BJ$jYyt%FOU9L(s^ckM{5Z7 zROX4<|7a@~*zFFVPYlZ}>x&>c{(+9>{oxmn%S_DeL`{cj3$L z@J|;8tvr$M1l%c~u11ZOD+t$X^+?h}OPYka(I@nQPqQk#Q46_HN{zgbV{c{H3vwUMekKrV=n!YpYX%gs^ zeyD+De}CBrFHPk?|4xTOE;e^Tf*9VgaFh=l=6`kt3eL{}K~iL%M~dx;{#MRJ7jRU} zxBm@h_dri;6=V4ZG1^hbfx}^b-_6)Z{_;0Sf~)QWJ;Uqy(2pI%ov7<%jqNc^Q&GUD z7AaV(PL|Nq7@14N0JM%~2{pfaP?3NZxZ2$$Hknf5BPEEGSxZSLi0qpDb7Y&)RMhtz z!&(vl5<_WdkR+spBEtYVFHBR?T}a8b+K{=~YCU(2~ggg zA<$$^wlX0rOgKUz(eUCs;%k$p;X=Ug1{>FmUerjb2g#M z1_?BRloCgBe?_r~0?AU6f7fED4Ri$6k~}nXB#6Xgg%9$}1SA7&SR!EYdE-07^G9fU zKFi{)_&1iv*a$a>JLaWGW0}yS;JQI|QTQshLxfO)ANHc~>XNm-m`iff$M9+SFk`;G zri1$OkTb!_LN~7P{EWTQ$tSad1Kl9Z+5PNu?2PT)x|BYYpklpIOLdp9fKHU^t~7d` zoukb9n=#JCTfGwp$`-W5whWjGFJPJ`8>M&;nv2UHq$qE;g~2kIhT2=qp+v6Uc@MBP ze*8kogAEudJim|08FcRl(H(FzpAYFjjOJrNffy~gNXO;9Mez7`sd0}g$i2Gjg7r?x zc)Y~fm50v8mjg)xk{fwrOhPvO&FOnmslvRmWZ(&Msj;=X6i)azQHQ;phK*Z&?2V$O zmas^JES>7=OvVEJ!0DdKK*35~YbKnuewiDEC{%~kQYxcQeTmB!+|Ye@XcC%pdZI-@ z;aJUvnrQvrMdO?ok(`7CYB=y7<;<*(EV%6f3wo~l`X!0GMNXfmxZZ%J@Bjk+Px)*? zH>xvV^0iJju*;1!j*qz9^6VQvoTY;wKbQ_!`#2V+PP(T{A8c3Vz%b7Iq8o2AYt31 z==%f=h9$1%KhrVL3#6E;p2fnLoO^>W#|Pmf9Tw=`6D!aaN4K0=={Fke;CW|ai{?Su zq-G~0XBemc-_9-CVleCvJp|0A^`Dt2FwQ9^#>yMF_KEQVFrc=^b)qIB4*=e(4pVK| zuoizX1O(iafoK)wx%$e`=LhDXvH3{VV8XwBy8j7>aEYD(wp7Ix?D7Cq9%T-tsmGPGEg_w>y z^Qt-HUuG5pPW-8}v^)AHz$#&nGU&eWey;qWq>;G5GdK#^X+RR(ZW6R;gKyq79UCbO zlC3@ZRe};fY<@l75k-Tds6bKOa@iD+cR)^CmMto zIsy{sP}B>qOq7&sn1}AYcd+=EYDUMYE|DqL?4E~QRlyR|P6=h}wUb0gJK`@60zLyy zax%gZ>mmK+1gF%Bw9y1Ch(~@1O~@7F?0<>N5H7Dvp})*?;>H~q@$fYnLZI&$!2Wi{%HjXs~& zGW%B_m7)S?`BQE{0{Wa>MT-K}Ac?%5kbv5z{?O8AG#NzT#JRP=wS&2a4L+d}g%p57D<=2{{6VfGT$;;t>su%*wtZB;s+6;w?Cb z9UWjeur#D6(_i>Dw6jUYj_A(k$o-i+VEG$( zrM(`lxZeJV>CB^w*)ciX`fvu+m*y?jpU0Z_?(t z8+>6;@HTUh9nU2uYx$n`WmOl5g_&e^?SZ!A)u>(=}iQEcSV)8%WsQL-;nq>;2GgU2FQJ5@i2GR|9xGK zah>|M#8N`fl<`Rvh?hr1Jjf$Pc(A&3RWN1Y<$aabC$La zNYyu)W6WO}m#Qj=JT-j@r$pO(00_2qh@VlB0Q06I5eE8(MPVZ0{+1}hQD;-C9bH5F zT0|d0ly;REcw}S+cqBRg=eqWGv13#LRQJhQ4>^vstF;`Bm)ckV)&o}1kA zkS1oiVi@O<=q^maaM<}NKd)G*ZeNQsj)6K7;4*HF_WL(!Wy4*r-%oCCZupFyH+~l= z(w*8R`_JdcPXuXJKn8wqs9X`xZ~gD+<9Ge9L@LJ+CoScD( z@7tDZdsR${br~xHIQPx}6A{G8FX)(DK_K`>A8`!(zaNdWihw7D6cWUXRQ8?QWw|`5 zs~DzavkCy=2M}uorM+RFVY{jTfHt@ zpSpWV)RT=~6~EMPAZI-J$jjriDrQYyhRc|CzJsr!QI;b`qjKw~wfvY&ETK9QT`z6- zm5T>`$y=cjl<*Q#)G69T;jOahB0eN;P!JSDVq}h`xU1{D_|s|~K*oM?BU)IqpJoAk zh6oH=8l9FU)d-Dt)GAY7lC>T-@l;4;{txnfE`iNH%x>rC;U1{mRNGzt5Rkf%b{7IL zVkqH){_=(X*Q|$L#vlkRRV(vy)I@4Pf|{qt>nf6&27*8`TSpK5b3rCQGQuyzZanm1 zxYyT&`Qtf7+&F~hR*!1DWr~Nk^uB0Jq9o-WkyFS}Kr}IN!SFB|+lP4LH?~?IYpg+w z14vxJl?Dem(Q2jucW-{tBh_-EwCWu;;?I@N04y^PKHNk)r;6SVIfyAZ=3@4)+*w@? zIIM$f0+Z-ly+u`cWhVVOQJ-gkztnx?E8F9Pnl9aL%Fu%oDmZkjxJzxvncc}^a)_|v z^~4z>ZBF7`;(OJdGHzZ&(rh*c@04%oL}A`y^@a|yWF*xWr3PZ9XOg_8KwD{9Z#UDh&m$kyJmfxeKU5-; z!O72qo>}YOd$O{GuEjs#dx?s?!MMsAL1?W2?G#@VQg|ooFNC@7baw{KaVdefo+gCu z#DIt_Cl)yPJ2=>6+eeTA#GKp`(PyO3V1`}W4_`hkmL9jn8o`Jn&K0h~crmWPKI9Ut z=@h0qDUcASh>OBg7C?%;k_w1$SNxNsOe>&{CZRxrjN60=8{rdK}XaojoH|1420`tK^;=iPUTQUe2an@ zqo{y$ZO#>zln$R^X-{%-D_<;?PBW#vDOC-mrn65Dr90%)agwzG@uIX?3?mu*-HvjF z%veMcplIQyG-ahsnuq;LnfkMC1heM{N!lli3jEMC?+Ao4ow z>eP9(BwX%RbSgT8l8#3iqFKJed38j z%_el{`F5%`XcPyK@wCp^R14Y~Y!V&VTdyI7oAP_s3F`tB`$b_X><>rQUBKQiaVRtJ z=wu&RAE5!ut&zey1?<;XqTWchATNWouGU&rF7*d2p%7oEgeBu5z4zGK9itwwY*}4n zX%R~jaW|PMP**T$JQsiMUE`yDUqwSqHB@7L)n^*9I?n&vmsFGa+lDwgVd!k@t9(#w zUv73WbvCb#nrWy47#~+QLrQNiHpQvjHfg)!a`8YZ-{DQb05d(&eaZOL0iy=v089d_ z(+U~Gx2!3^6IfS^`*{VMxEdp&(0Rr+&Bs~%fM=Pcnx34f6oc4FbZo+DGqbaxy}xAiC|b2H2XQ*SpOPv z=uq9R$Vt}Tbj04VaR2&&&{4TfV^LEHOx$8!DkjJ*eeQN*)xZ0=DtiqCV?-LAbD#s6 zhQOsT*iQr99$T`D-u~hKCrV<}+mJ@-5ThD9uC&YGtQwi1$a$L7%1!U8r;SQ75H`a~ zRI*P~73Q$4Ch0aTVOuXxd$6fCz)l@rEBp+Vn5FYTB=BGwQkZS7*lX~WTaj*q+qfJ* zz`J`OYMPn#MeG&q!}mcu`Bj9)N&JtO)X&{dDSj!x@gBUpjvqpZwxYF)x1sER=}VA= z?M~VDD_dTcw%m`6g4O|Lq7_)*p*{kdL3V}u(jKhirlz$m9D?+P%BL5(5)Z@MnR^CRv?&zrG*hP<0?-$kW~@TiEbv?eCK$PlgixPLP%EeV9B6k zt&n6h?^;yhV8u-AsvrCGP0*<(D!p5-8INCZul~5f)5Vz@@j2u*V>RAT(wi0q8eziq zo(bI!6dhXj6&e!26ut9#mf)d|Zbf1z(80B=&x_j}kdWw`2{*V?7LS|(>z+j8On9aJsmZWu|I%p($aT^Ej{W)eYh^~c zsc43+mZFP{~gQ7p)JS%oWcJPS2euuz2OrG}P{#wfr zJkuaKQX4aVRYkO%MJp%Ze!K}_^DB@U3mDLQorKN$huOpiN2C8+h^TwMG`7OlWSq@C zd!9}g3+l_gXO8Y8hbgy1YG;JkzB^WJ@O_uOZCkIv4GJ4|;knTcZg1u{ zAj*h-a>~`2oA%q`APenZt@maOrzs5#`g?d+^K=HDqIx1sKf)8AA#c5NLB zmg(K~SiKD>-6aKI{K>L<3s|Pys`-Vmj##Tz6NJq)ZdCo%)LQ;-uroe0`qX+T+;ft9 ze(USl>$yxkl#rvE>rXUG?C?xkX_ zDn%m!A_3;e9UHRzF4k(B=9enfmX;36bnN^6u4UWQViVSC+ve66<(7^`p72kH#wnV4 zG(YV7oYftT5QPh4;Jfy-E^cq5PS zX?axV-&Qb!p04WS>38_Lt|vto!F*!jV%b3gi2U_w^@}6Td`b2q0_9rU%4Ox`*=jG{g7G%Wgi!PP=eVV^C@PwH`11qVIggSC4@xo2{cowL!f~LEbr`aMJ|kl# zh*EJ69gBEG4-*FZ#=`&Irl{-a%tU1HYPKD|kEkpmq=-+EV5k;n`8`eJcFt-vZsh+E z^-WQtLraux+qP}HZ`-zQ+q!Mrwr$(CZCkge-+QxWesd~WmC8x2q;~Dva>hyEPBP5Z zZXD{1()VxOSRc147Q(blLI+jVm26Xq*Gk7@zgLAv(%bxYJ-TQXE#GL6=PN^Y`IS)D zvW$oKRM}|2w+qn8@0cUPY~sHVss#$9rganqRdox^E`8KwKlH9>z@j}IYQ;8wC?B(oLBWwV4@wnHIWD{w}BC8$L83?b4# z=f>7ubMifS(c0|(7D|Sp-##fMpLlft;8JEvBfEBKEyata%bBKpwRTo*)()%b_>~2& zJ=G;yw3$(9zqJ zQ=8dRhn6frr1hr1OusgCg;Vtbt5mc(!)9f2!uSyq(Z{8t`OJk9fLrBBdL^5GX|jB2 z+GDnHUV4#2CFT;`P}tyu8*y$vDKA)?Unt@7M>R_>uowxGTn>Z_j)ndZrB0=}Y>9iV zBE))mQM3?^zgmY<^yI^(3*1NrC3iW=+}dgo+KaBXUb6_Sak*+ieK{X&u_{upvyEFM z?b3vR=|mMxK0A{4LlY$!s1-Vc=Q*1e!lu@g=ds2Xu=7u3pnUxD_P7!-r+1oX^;FIA zx1r9YiLBq?s}#F4WfxYn-?Msdoph-g3dma#ADZ5A9ux5i3@W>@SMg+l|mg@2Le@D zljYXcMllQj_Ka2d{|C5>l90#feJPN9@dpp<{OM7a=543+AAd z$3vXz88b}`bhUo*e0HB`5i*x^fWWGOgNMm&N&rm;e9MkCb5R>(?OZW0m_;%TTsHz&t;(UDQ3a=XU&nkYZFyWY;J50|h5hdj5praQ3QC|kq2FFR zQKu*CA~nd3bFrOMNM7(uGmZka8i^W2gx$f{9vW{%U+*;PXi-Rln_`}} zoQC_ZE3FwH%7$OUow8uZ=iBqg$E=S@z^Z@-&ywmW?u2V^0cI_&W6W|icaGf#lcr@--3xSe`XuU`fPMRXeg& zHv~05t|UUN@Ix31P-{z0Ng@$K2V@|`^@d90b4hW$WT26wtV`9{i0Xnes2uey<-rsu z{G2EjB(;OxX^UjdCn7#<+6em9Lg6y=|6$+4K`xo(1)Q zGiUv0NyKxGHaqX^&QB^|4>;CvVc6cMUCU<}M59VL|zTO&$$&cyU z&ArprFG8K@8;JkI?=_pU$&qlR68296eT6h~X)>oDqt2vL=gd{brrot9pg&JQs%e-q zLOC%>=cYEB`wH>J*ejrW;6w>+cM4odB0OlM%vcdK9Wy@u9&S{wORfS2wL2F)aHYVr zBa{h}N=RVg3cYL#juxcNv!ii8;XohsAK#hX>jUl~8G9QGAPUg(4cX$ccc&3pA0o8hO+2W>Cm5*t4+Ovjmpethzg7giC!i4|U zO$@^W*E>*ALb%M8XPaeh0jPrfGnp z2Da2C<8sVK8c$Sow>|10pKtDf@t|*xAc1vPSEMG{(80{>C*6jI75bKys05aW{pe z#6{>3NMC82Yv|@te1?4u$tWz*quxsD(j|l@*9(WJNj_ch4r;3! zX`VdIEFsUX;Lo^cIyS$&eJ$1l4hrTG@X4P!Wrf-c(0UxF+5HAvbZ; zZ~P{%?2b>k1IJki0KGr*@hW&?K-yYQ!5Sn^^U58!fWkusA)Y!;A`~qWLD3bZuiUF% z*d#QIxKe<|o?H=}=0}I53RBr7Ix1EFdO8{$oTB>AKL9<`7pyK27j=4fszoEElp^oA zUKHyQ<_2I)=+AY=FMt6TZzEK&xwLo7scbQO{u!_E-JGQDyN1o)ldS`mp5l^&j`eis zrYDiJ4GOjlTRd$H-(<~}TLW>}H&7TrE^ZOrY;UjgBI{iUi0?tx4AgJHzj|g!8ai04 z-xU2`!}1zJXyTd%x!>k-MOgjqkL#ch_Yg)I4elhkppSRr9q~(=eJ^<4W%h_ESAkj2 z%(HC+vttYf?;?8-@Luf+&7;wHXDoG1eD1b6Ok2=~+u4l@CDs}EynV}& zzKxpX2bTLAXXKi^Hr0!pU_sAG58M_Zx{h!Oeuq$y= z`(m*-@Mb+894PHuhUjI&KG|bzDWHWMI;-# zzhQZ^z;-;(?Re$B`r&QqZTw_Q_Q3s$ciEiQtT$)#xkG=vfpYa>cpmS~g|0=kYL{%T z-Bp&}(cy&zN;SEKkU0aycgJpd{+^_?)*lUPKZH{3x_H%9t7}&F)(0nj0E>?IIBG%a zp(IoGTV%GPbi->_Ij-ALV&?BN{d5ceuA1f6NVXQJoI>_ULmlQreTol2}_ZmgBaL&{KIAi8~Z8 zUa^x<+)AI4MEu~MwlH{2qXw&F)OtL6ie|>s3`qhJ6X=O(I1|_`n$=uih03ukf6!Ns z3=@s?w;=+ib{Od-b3be_-_%)M(?J>tcV%xPafbqPo<=-eq+hDDaL80RLd%|gHE(F) z7pldXzan)42Z5{~OKsp5O1ggD6-!aisLu~0&FJ=BuqF}@*N#aMrBvuHEcQuK&zLO? zL;CFQQO+4N!L&_6TGsl@S~$ct($!EknxaUQDp9W>c_kf@{Kx(fN2B=pZYd1~kanUw zuep(2_tIQ$={hhcMRm!VRI6)#Cd<7#gwr84Nj(VaCU!)oaagm-JjP_9z?E$no7OtQ zQ*ZuN>~@kOK6{eQcYhVp|C8xllNw&?d1(FttYsHAqD zmN(c-n9N0~GY@lEi<%I;sEiPqRfBlj!O+4OKtFlSLfL3XiuaGqr-V}f9o8B(v`E8}j*7taazY?ApDONTSjufd+di(PV6}X~l@% z`1bn7j?PtzEoZz)NvgG7f-~&vEHrja4q8|7*y`{AywVC;2!#U-mz()W zB={YR`Gmbi2RoYic9 zowsd?MO_}jkCO*Y7Rg;rcUndCf8xx1o9)gra9r&*<%qlUTnrT#>3_lZ;>IvxuwxSab zKXcJZ*HDkQzho{YcH!f;+QNKA?(X7qjvp@1$s#u@Mj2mgOS5to7n-%aB$Q`}r&{4C zvu>sE_N>+953bB3El-&V(U>WY+Ft#23g<%Pu!kycDNlH#|V3eS%UWcQLYZT($Eepu6Z-iPz0Y*^>iI zCNDUot8^{GeIU0A;0}tYs5Urlq@QK6Nz?i9`TjkBOnyJNcFL)(_WHiPF#}s@nj)Y6 z4SFyhxz*g@G?#vc!%AnD#KeyRvWv#5WI_nOc){kr)g5pkFs`smakV9q>dq8j4p9GO zCXcdNjn&w2$Xp)iLTWDFy_{Uapt<%IO7YB{iwXIhdr_K>2XUy#W*<_#g1!@2A!|SHtJWrRTs~5DIAj$qz+}(M#$F|-2~%qjG=uN-DIcPGpzzBw?CUOt-6TM ztr18F^?nP;Bs{gPO=FDWS>Mo2nXW{MCNe|wn<3VDv)^BHBL6zz;mQX-DuvbIoQ?TO zL@Zdj+Yfy|i%JSn=iL?-@Q0IuejvEJ1!eh{W9SQ_*VahL&__DYeTHfr1>Wfr(ZdVk zfJ4)-gv>u2Ho8Haj*v$B^?(6#e=@nqMW%<4r?J<6v+{>7(^@q;^-~ldBO5e~x}owR zCz5?=-gl_fxMP!rkB1b9uwUM{(zXo~-8X5~h&T7e3Le-rl?(U`gj_aYZcZd)6-``2 zXUmG#E=e*iwX3a!YbjM80OvfYS98>HC0Q3Snp~l)Kuiq{)iRK%5BSBBSJq_k?xlL1 z=lc8B@7s-8N{DKht&S37;(2w32k^G&Dh7!;$1EhW=*ksyO0PFCfAMj5OV3{Z6LGt1 z$W*6;);%qn!LVR=4%h#(DA%07P8yVN>>rQ&p9v9mJ~WXl7o0tV{zLdPEKquw**sEe zO3*@f-)6laR+P&7Lb2CS=3SmFt{m_q zD^@e&<-ZZ&n~ebi^o#P06b-nk3&J|Wpy<3X5j?Wf^TH|^fi7J63reK9ng7L84p-JjTUluV) zZeHuvXs#r$71Ry>w+Q7TJNU&{q^J&J>tf3$>R%&!&H_9?A<{5mAMespX{g}BmQ4Rn zX*dHFsk)%L^v_4Il!Y@pWmct^i3amxYekz0|!9;3sc*bNol;VLK52ZcrOUkdO zoAjkC<%1-yj4qV8wgvuWD32zKcZ?Ih?VxYqDT(D$@;q6*2L8SMpc#`0p%4LV+*bLB1z=y>5~Er1?%} z)J=}(iaET*uLkvtJpXHp>(>2^1-yg;zu$>`H@{P>pa%Z+uCbvq|LnAU_o-=X>T311 z1RM65*#lk$yT>hB`D^V?qjA-R*&%jC>wWpa?&)Ua=jDa=;l~;Fx!ELkdF!za{zN|n zX?*j$bj(wucGQv<9mxoCs{U>2!ww0hBZhK9(AI^9pFx@yYxzX>CjC#%{gEplyDOsi z1*uF&Tnearm@iqWLZuUuB*W_tbWV>?tsE?OMV2--y{PHm6>)y-Me*+Fa?br=^0Pk( zg&*mbqMfYEETbwF2O+LB8FgEA6{jODP8BA|X!)|wGcx?i8L3(%%PP!b?M~P`H<3JB z5YzROM8aYfJXN_8o=sYb&gAfFi+RQ#>ip0j;@zOxv0G{Hr|-{pi<^Guq16|~d+sFAsVzHQzE;g|BQL&`r(`+r@LjUETL5(~ zk|?9JqlcGsAs&nweShg2`50~NPdN>wC#l(#Cm~1rQMY2nNmJTQ9d~2fGyu4ZBlg&1 z20M}e5g$HIK3_vzgPRTL4gdExDK`fpC&x);#17p>5G)n=vpM%{+C)XAc8lRX$WY!F z8Y$navgbvOP8kwsB|rB(S}6$?h(8QEG&;>CR$=KaOE91CjiY(~9p&e8MNwL^fA>3E zr>H{R#~gP=h1O4mIGPQ{)hqMxv9r&~++(2OFn3g;r6qfRAY#_6gw&8nA#Fs+9F zaph6Dcol4)v$uAcuCA-CURl0n^q>rVQ*>5?%eN{{`nSl2J~5+pw$`}jqY6e}3ZNY{ z7sJCIv5b4w3{PkD3sdicCKM179U2kTC$iGpfhC*T5?vOMxxvJ*?e*<>^R%*trUOf+fY}O}$i|E%JZcPx)n#Bq z@<#;E)Z+p}-fbH zesqDr_lKO_O2#ha$HS(F2H$Fkzkh$3e17(m-o4{x2io;wwKi%eHMcVd<}v0tJWwqV zK5Zd2`=TZQ_4+r%xGa`Scmi)&QvyYSjcRoSTwu`8hcSz+)+@W z>>l3PTMBbUuD6XOTBhNhp@b_=4L8i*n1CvYDPteyQ-G}!aG^5oHqdn{qAxj zI;m6;6F;1Cm2+JJPv9Uu`^4ZJ^x5Wjqji`{^O}eF zVB^p>+Iv+>3a|_|WF@D)1?#A{eh`p8>zhx7R1gHqNpW({Pl30>&SP#5?i4c$mx^PB z1qJlJr3tIrz9=fr)dMsqGH+7Xl9XH7y74F#oCO?Y>!xXd(L{WU+a92f#F=AezHiH$ zTa;yn0JnKxfGPB?Ti=%N@fi;2o+G$xTOp-ko!Emfl%M10Tlx$8#HXu2-U4x+CT}_ zNlb5eUz(453vJoP?Z@3lNiJs6I{mq40jZl>2a5Z9ZHz!saPv$6Ywj)Qo=|{I$Z@dY zFWVv$(9|QhSU}Eni?X#5iP!}jC_SEjzxhxrZ4|GqY1+A7MQ+Ji`p##mE8LXe0SkoS zBxOt!9cjAcoWk zYrFG`+&%1uq{EORuPv*jPH(T$fE)jW`Qf?uC(tr!Lf~n!1+J0(m2>6VDi^eu!qy$H z$m@r}08=-dCsfV~YGqC`d?mRvJAb`cGQTNbT6-Y9tRdnVH)UEKkq#FeH+ zRlP?5*-dqQ`^E#?2~ac0+rwm=cz;2f`hokRg8H)i?QGB?Q1ST;WZvun{P%V}5p8-2 zfhBW)@dz%gOT)9q{xL#X4VnCdj4_-34H>Reo>tqY)ji@38PaU(H%S_@J=^?|!0X37*1Uf4 zrwT5cLMxku8?WegDRQoP9QLEGd4N@ zXc@g7+>qPui-z=?AwxZF%Jd>3n8OV~KUP%&?Wvs3Su;l2bp)k5^zSlzioZ{mx1T5H3Z}#TJGc7JNH(pyY^XX>bGIoq z1NpDYWsg5X*Rrb*pou)DR5(Qc0fThJ{Y|ygx>C!;r+#^i`C3BjrV=w?PWQ7SCXafu zIA-1Sa~{mW%Qpz<-$DX!Gn#Ai-S9rT!wl&sdons^`_|!?*RAl8)1G?Weq)=v123u~ z3`7hfB6eT|ah}nbKKvlgU}SJ?C6n1Ufz@oz4Q;o(6KQddS=lA#n{aF3((Au>zTfvy zt?;2~)+Bfw@CP^yb;~;dd8cE(+4@xo6BnpAz6r!xN$2g;DQh(gPT-ps_0v=xx!uo> zkS}m1X+gmFq9gGht}A}vu2^{|@EAY!bqaYgfJZR?M(FmP9NxoV=iXcnQLrxZBFG_0 zZ-Ulc968{BD#XeliOQP5P=cS32n?cEpapaz&TJ4cbb`$e-sW2VU5(W0!~Eh2+RC~B zd{QWT!bEzrZ(VS>MwYqWG?Vc@t^;oaPPuGgpXT2P(?V_`cTFxxvrbxGD7bUes(r&X zdw*_nT)7dI-EFKk<1hV(EcUxw^83%i3OVAkcy_Nzb(On1jqb&_WRi66O#XGHJ?Zsm zP%f}Zq7B#-o9w<|HCC6SKC3ej|H<^zI$Bk?0KtIdRRN2orImzHZBuQHo!hN}!RVmZ z$O~6d@;0adAp6VYNzceAR9`88NkURmRwy1qe$A*(-Nc^9)c_l*28xUhSvBkT8iqDS zn=T@=zmFT!@(N6YKx}|x0H(GhqWH_6F*5fN`MWHpS#jPUu7@+~SIG`ml37Ct;|u8A zI|o`R9DmV)yxkRJ4$5VqkVskPN;wC)t}^h)m{l2)F((0P zPXTh`ax?Z(!S^5B*((Dq2|RI74l7H_%|;X? zZp5B>cQEmukYgB~yb6oD?Y7TM@&4OZkVq~>e7iboGc3GJqjAeuYKS72= z-1$)SsuQ?np4952HVkz1L?3CewqXsExVfG(VBwkyXe?!~X4MC0ra>F&{D`&b{>rf^ z1-G$RBx8&KM1IpBl0^m;FH}vULNq!ME8KSJd)xwJ!@dq6>-TCQ)IpAM5ePE5Nj^s2 z^m3YrxsA1GHlaNX8*HIEtQ9#dK^_&`BtYZEE3HLIU{%0*Obel4nQkqbzqEw@bW&O6 z7$h!75U5-k07idqkjl1OZb2@`yh1DsaSPc5?|Sl^jq>~)lmc-)G8KZ@&!$Sw<;D$} zDX?G&tm^AY>hh$^#_%)MBq5gEMm5RijS?ECPj$-(H)MG{QA-Qw@#FYDj1#x#U5uHANrJ zzudjsbR{1TKfA{%@RxMb)1%;%Q~)Zr;Q9fn{p6|xWr}?bz(}CdK*!}4VotQr()G&{ znf$1n4J%$t4bdxD#aU^o%-Mi_%G{67zvS7LRjc^7VqlOe_83PB!!)baS4c@-YEZEj zmebSL3j;&?$}e>v&X{!GBG?uDk=E7S<)({JkQL|gzO;rX8{XluYmo~Wb7r2AS~z$O zOE|@;Xn%^NMG>rY*Tf%-iQ@g2RjB0`gO``cOLp&Fn-QU7^sg<6RVy+`QH0HPA|f-G zH3x=Rq+E*k6+kUahKJX)=mSSk_#=ePPgK>pbk_4@tV`TE7>mlGC!bWR!?Qic6uzvq zFKAZ6reeLq@pF?PK{~J1tcVIjGN!iV_#_sh^es(w^?96m=l0xjfI|n~4N{)9Fuur8 zQ&{d!#x79u)@g}0MBQx_$+cn%za%8YyOiCh$MpQ-CG2ijYMY>;I_p)1XsW2prA6fh zqsp!B3gn3zQu{N;>nmiZ5rcxMox03wN@>BKL%GdpOO}XILJC$f_QKb7I2Q;(f_OB_ zl+1190+8v~Cho(YhgHqgN0M!mXrsyriV!GJj0OiJG!JAAI<13YZg5a>gW*`bbYtco zdYD%D5P)7vVkjF=sd=pJIF~2FLW*9v^tH?wsZNrhdPbJ>>_J{n94|2O4U>$%08kD2 z1vK{RbX6qZMLfFW?=iS~YXjJ>yRoDQa(TEA6_ZorfvsZug~abfP}p*SK*&)7mQVEh zM5MNZXE5!KsiVw!wFKnLPdv)=S`(S5A)4G+HcYG6niMunVcobt59FnWp)I>!QggG+ zMt{a36s!X72EC)O9eNpBbeXFiBwkq;hu&|NuUF?%!7^%PWJ$40cjkm(<$r5|<9zi) zQX(@t2HkF+Ea#dLT+#yAS|x)+7$J2>uMq+@RU}Sj8qRq4*AWHssKUn#ME4i+FpK!G zleQc$$OwFc038`5yCCRxt)?|}#Z1th1N*kT;-JHRjBGlIc$+S=9=AKQO zGdtfJ3)TsvP^s@H0xZxGmaehPix~t)uN(_CmBs=ZFjQ`4i-4!==S9NNP#aU@Wc8vD z;AU2=(i~Y*C1R2*H!Wtz#V-xt+7D1I%v6!?Na}0~WzO2JZ|_vA3O%cBd>>c8ov1dW zPs@Nc??`CDciU?gl2?Ky;j&lj(QC}|1RA^eIcvb3@zsN`3$CraR|UvkaG;Bem9^ll zCxzv|^1NV+SLJ($8}Pas8~eUFSG5Lv1E$iq|E#4a2ZBKRy2UFN$SsC*Gx{0tlPt=+ zIU%xU_wUR<7ZRrjG7xWFbbri9=u=bHcVM^sByP0bo_2+t`_Q6zqQ{~PiOeCdmfdS#SCgOyXI*y%j&iqZ2K%bcP)eyqDLls zEiMWc-KSYCg|1Hr*t_+y8yYRAPV0s{DZy$PXRwp^Sao0fbgoy^b%X3oLI z55ZfHEq?pE;g8V zdimMR|Dsqq|UD55#~+$U}wQM4d2GJv1Sy%0~(5}DOIJ4vx4 z*ChHDRQueGfv;bH-`asqAP^(g#g9ec`q_zfO_gK#ca%wSY6Q6WdRtOX(O=%|oX;T6arKbBD`+npZ6e6ak~JdC)DAM(XN ziaY3?y6)oDNDhttT~cv5J`71OFUTE7A2;?WAp*OY?`Fm6$7;0b2!(m^HL>eMKD*|D zQ={dDBO_}~<^OgP4d^E!CAZ!rZ1=K!B@9rMe2Ka`K_VBDb_+kCX}RI?Knr! zi83#Pyn-xHK#gV7l~c_%H^M@HmRx>0YAszb@LE`ql_>$c#u&+AU>%c%`+5n)#~3uYsc6hpEowa!glI34Ryd)o zc2+frz>0Dlr>;Jq4^oZLp@6&nnAjMo36G3Wb7khno|BZ(+*UWKI)bLU>>rews?ya9 zQLT@0rsZgA|FGNswq6n#8_^-Oe8p5Cst{~!rNGV^>R`QM&vCS-QrV>JygJOeFD0|V zw|1sig>dXW=i7C@_de}2tTq0c3)jaLZl_SL1Q?_H8W9Fc^kj*nfDQd2F?As44az{p zYvghib+58@8H8d*)=37WqCO+*%)Yvmb7>s{Z}Qh2E-)q0*hkpN9TJ4(PTkEQwY3kcCPK>W&b2?c6s{nH?VN zPn>M%pLW|F$*CAl{Y(Ao23i+kTddId@%b5UyvP(wcmEryoN6b~0Bg7{oY-u2b2sIz z`@y7aF}ypohf#fG7o3Vi^h0{ofl59qV=H8Bf@gbH2V!5@ai-L8T|vRSlt{G+AAv&&qJBN{^3-1gGW z_;Kg)g7?VKQks?etBI8`jiLT~+cS+Rw?xS(zbzdlG`qsc=Rpt{ym0NI#H$ZFf_ESu#kIHQYdM&$AsGmRRdTBra{ zPULqI3-VmzYeS*;0(NDGw+qG2pi>U{F=}|T=uHtu`yFsE`iUVyP~Rkx0S>&7ziCu@ z=0@%lZ1{*Yt`OzRQrh^2Za$iSD&3ZD$P**gy=(H?(ZGc&As_cPEv744_=|oyK zc1u08dVc#@?(*Ww@Uwz+i0Z9Mx9KY0D>cI2vS{{NV_RoG{}iT$qct$&Nlg@|4fZIt ztS4U!(qk@ap|?+&j!M<913|zV~oIFlO*dv5JJAVq#=dNaWmfJavG~HNkyreFQuWdd^;_j2KF_C(Ae(vq#>gf zBovG%q}RMK=1*e?ODCyio@xhtDQA7q_8(SMXuUIO<#bq^a$r9WqJ+*7x0V zIHUf8vlR_=drif3du-}7^k2i5Jl1`t8b0b!)+u62pSohehKdyOgR)7O2rlMw{Z2}I zC;FZI1~^c9y-`-F`l;I)rq8jnoa8;bm2fH`P*E5CoGxL@_>W<6^JHCDd{RD zq_!1pAOhbx?GHqN85xcoX#lGgc6Op4&ljsJ{1d4e`L#=N?;v<04rFSEv;(uVNt`hI z^_)YCK|@1?mAh=qL#v0!SiOAkjv6*4YK9m1xVa@vg|#lYtedm{sML+SXklO6WM&5^ z@;_+%8qzh-$P%sJK>k0cDF5daSx4{)2#Y>>`^vyA2>rkB#zb#l8zQB#Dv+w=g%WI zRQFE$$bWWD>dWuWfjfUHDc-pR9-`|EKNqFpY-VOOVQVUe%%`nE8S>KPm=a*8wHfHx zO%4PAESq@kv9QWrc~OO;;@|mAaTq5B1kwExz2fS_K?r3Qo#T{TOb{5w1=<-04VmWq z_HlQiaQzM*su zDn@JL2`WJ6>V|Gv9x-9dkcDA!$x=+41O2nQG?-sBU)VA*Xib;?(0p6qSjzN~a#wPF zmqC!SIrOl#8^~O8oJjPIH;?!Y1}a&X%!j6X{>!2`Q}bYGpIlrlNCD}V6F6H!Lh;P@ zUMTmjo|inV*TuZD=Wabv8GYx}b!9zrM3rG;4;rdJyd?V7Bj_!Y)-ah5qo17_>ZElU z8r{lGoicH%7~|Z4&qR#&o+dKDffwvAy$MK5f=8&I zWbG85HVIc2r1uO%^>p0?T%wh3Qtg~BYg*zi_r`R1Sbrs~h>P3|JZN;b#@u$>fWBFR z!uN|=x}b1B8iJ{eQMuDVmZW9&NNF3imSt2F%#)R_;3lxcOac z89EU0Oa7;IO)EF77uol}hMlSF3$|5WX0KRf6YH62 zv@+v1E}2~6#W7^6|BE$qam?J!uis&g5)q?NAzJ}9O*yRuSl5Q2FIaVKgT7o>L|3&j zxD`+eOwDDsQ~TIwiP=k0Vk>>MCb)7R5d}%ojB2)KwBx_-ZI`a(HJ=`LyI9|6qvNI5 zSNANS9lAO591YTkP8U)1=Hq#CXa47n&A73A4hOFGIUUBqkA0hg4qYD#>|7W6g4@{4 z8NtDMP2P4>m14H9hO8HDLg-z&*TD4s&2g+#B0^}PB21Kc!F@8|zx{oc5WMxy_T1@X z|3=NpF&ow;`Vxmj@L7fJUu!2r`!)jw|H(@j{JhrwNW`II>!?*zO587t3cjbHj_CM} zONnW58u$ur2#{QaC*l!wdBwX^ux0Jb(@)2Z%!vOtuP-(*_Deu6kVPoS=CG}wM2mXIbMCXnNl8t+n6d$5nw^@0c1mQA# zi@5!8Y-!t@xyYJO2iSk$jj=^|%d8BupQi&#?{S$F-uD*E8-OwK8T%#(o)3wHf*b1(lemry!BiY%7e zNT_cik_Uo$^x5ek^mWWi&ATY5fZKq;5ShWT`;l<6PYo4mU|rK#T@*rN1u!rNfa-t5 zk~KhCIVULpj^gT(2|T$1ya8O&naC!y>2sjRJgoNqeEQkcr}C%e8EFz@3CrPL!_~); zexVI@lmG*tIo(~OI}GF9Jc0TGcBCf`Y}qc`8kTNHp;Yx+{VvG4JrKu zA=-3C@|PWAP*)^SMUrvQNWw$0BFQ)t<;gn*-*!SZTeH)yK(HyNmpCJbM7#tSrXcDs&7z5U_`)P5beb`in3vW+Amb-@7`Gnj;W*Jz=aHAr z^HWVIEztUkb9~1>^g>(3y zg4>B#pEF0oBN4yb)nzq3Ye?1(X6jg5j*o9NJ!?%?(f$8^uuwb@A#60m|n@!6S(FOO$-{g}Fa$7QHm zdeFl^95)Rn?SYw)r<6tOCE9M%_v1NNgB%3lQri}jzH%7UwcKo&)Y_-x*&X4t&@sf1 zA>^mQ>7nbf^YAREzY-Z=2<4)BSx%HQ;WXjw9_C_u7EzDKEx)#6V{=?qWLzbCtI}KX z`(_qOX71IA_(Z!T9H-V^)r)$vmy7At9(YdKg#^KqydLZ)l8JhJmja$a@WT20FHRlg z%dcrUdGuM985LJ-HUie-0NqAa1O#9GuD5%C-BlD_ zScsk)bC54rVy5F_;}C_&?#g<$_Q#6fj^TDi$JAba1H;js{f&%y>)N}u|EUwTf%`AU zN}|oU?sXD@fWM^lJ4sTaJo8E;s`2*4SF8sz_3;J%sjQc{n$IF(o!>sjYkl%|j3bxT z=L(rw_Tw*4r~}W}`Ryn><=e%RmSf6U}JUe$hS*Fn_8 zuel(dQW!K!<(u;u85sB!j5JnDcP-K%50m)yNJeE|3<}S}Ol5ArAp$Ci01li790D$? zOdvu^CEh?~v-;UhM5APe3S98O{^zh${OEQ_9`r<wkT4kmCJ&>*aVqMqx1RJeR~;<>^%9_v0y;j}yS`kUbo z_k4w`WU(tDz@DCm-PAu1VPzHQDMX9;gWDLTBvuQFx?rHcRg^P;{f%6uRQzKk{c!m) zOi1sDga@a}g9!P7keCAmD9a!~{j`u~A|ld4YgP#N;MzDy+>ydKRyyEMmG+o%2G7)8 zl*DD8A^1*9)LcPe_S^_AgH?y7isOr@HF(A@sZ(iWcdZ6B9<$2#zoK4o_|R9KQxJ7~ zVpTxt{Wm+9jr(dh07^tNLW9(AuvWGDE52B8Y;tUXWVTF{c4^W3!-5Ln0`E$fFzP!X z1#mUJaoT*iYsp)k^`HI~&C`SPecXMfIdkz>&~wzUWyy_obJ*eW76gLh*p~XlYz+>A zEc>nmSEJ!O zqK?Wk>#H1lm;UTp9pLuPP9W-lXSjQ7`FE6~8kTNn*!jB=_As6@;^bK4?D2aU5=>a{`@qf4|zfONsei2=*-T{Re?nY5M{Oncr+o_HjG&3NXxO#(O}VKYZ|LI>P)+{xuvB zKnRy8r$8`g6EL9E1jhr>(6w4j@_`cL@(e*C65?viTyDODtY_e(k~G?~M2B*Dm%nNx ze?VtHHI4|H)C7cZ*CKB{DRnzfw$hJkhWZ#pFzIK3b&~J3GA9|qrJ(^r+Oitza6O_v z%R5)MAw0ylT~M^W0d5^YR~eBAZ1*?kg71{=>!~pPIR`Y>DhwM6kkb1jd1e&)xl9qY zw^c5t3W3>!{w&j97`G8on4N$Fpc~e65JlC zL-vM4(NBZ4{e7&c`9A`(!QIFkd=HbN^hLQ^D^%6x_m83x`tCS)iv z&d!WL$y%YH1&)P4pRYaQF~j&t8s2{QdX1wSoydjWS`!yocZ&@Hp@= zim99q@Q}gquXR)hkBd+hX=y7ztcl0#j%^1;s%9&TfpQyg&5Lun46YqPI2v#FJQr3V z^&%9c;I?FBsXza^i3$k?%v(`G9&yOjf^(cFQ6^4&GP&jbEVjN?{hT0q zkVL+JZS6IKCVue5LGOkSSmHRQ;8@CrgnZ)ATIK+DY+`G925n;<#j4CD0ksWz9Y~0D zi$}!!S4QkS$ovfjivvK33f5VZDcmlHAZu5+a5+B`K_Ie)0;i}!wxEaGxS>ePs9@Pn zv8bR0PvHt1KaGqVB_lG!}kL$rFO-}^WZtJoLRk`+ST`u zR4?B}6uFl>v)5wqvFs-3*jd4wK=zY?ybshopkrT!>Os7Tp&$igsI+bmWo8ZZNm(ai$r*pjzFW{l;7UyZYqFag*mI3$X0c-!*wth z4ImK6Be4#39$*4hmyvORW+b%nT*DI=WnfK0p7A5MRRbt!>N-2&SZQgvPgyL^Ka+uu z3W@M2$xITBksWO|fN3J6%{07!PM;|X`U;_%q9!>dB@CRkuBaBuTo+V0C=SJMQJx!q zcf%f)pqXsi`EINv5&Q_qA~bPu@w*g5c> zKrmomJh5_sv;DBUiAMn-n;Fv5L64%oYw->{Y0%jfFhE-s3A9a@5C;%vOTxjUJ-7gq zH`ES)mugYLL;MgGEDHomn-5oB&e^RR6+AA8O&V@wLA2En$84CtkciQE}dzsNe-GQWFZ+L<|%-_#{z(Q9&y{Uhksh zOdJeE9%@inwK7E+5WK1wGZ_IfRg_c6a!Aj!s}E>MFM^uZLA}VhA#w^X5Qj?1>FOMy z-KuW=FR*|*BQKh^)@L9+YCoe9!8diJ2g1f`C?o;jUaNF(`l7Q%()(4Yz)feOj!QUf zl{5%|+lwT~6W)3P@@iu}5}|!#TQ9=7*G3LE^%2D{?2)T72enUOW6!9hLaoHb%v&<3 z%r2mgEaNOwN4woDW&w3@mQ!aYK_*ay7^j@p2G=gjcmU<0%<41tB!q$&NW4bqFbD<8 z2o~V}R0MN3kp$V+^;zf^EF~wDE**4@3K>L=3KBA*^&PL&6~XmJvp{vcKMNzS7oMm9 z>XFKPB`Qd0xem0#gv-XkX~{wOF&wxcR@YaKoj15BbL`xr(vbmlGL@oZlZZ2R18zW$ zE{!1E(9YUj9SWk3?9RxbMOYHdH3Op?TXd@pt7*Erz8bHB;jh&aJ)^U^-(Z;*XrB0ZGMAw^V4$v)>6Skx2b%pK(`(@MFnfaD-spRfuveL zf+oO*%kUls+6MD!QsqQN5cyz*sY90iV}qm|Mp$An6euh`qM{jyPL4!ZB0a+7o?t$o zaQUGDjqGr9IWh@_md40X2w1qxqO%)swjPN4Wj5ieHD%c63Hp6|3*z0xXcx~!!Eg0E(3<5HxYK~{9lDG8#qQ2UEa9>Sfmnk;`H-ysoha)7 zYTpvHZtzibL>;a;@=Vl;nt^Q++1FcsaJai7Jd7vhbVB)CNT+u;d@A+{oke8$JiYY` zN`EjeC^|W!qG9^hj`(QZhW*9oJNP@FJ{Vv4YWN=v!>$DUJlO4urmx@NgCW?zX#EGn zZPPhGr{NsQT9DW!(QppFvKPae4wuX3VmVq0$oDAh&?4@qtCqjL>*fhM?75qiZ3}E} zo}k^`L))9*){2EXAfP=kUlKAfS#-)PIRp-#4P^K~=sjR$&mqdy9qcGB;nE(_6DBlT^$tM3I4#hxkh@2g&lmUuCChPyzjR%#N0jq_CX{e2!K4k*aSw->_Q|62MgTB|6z>mqoS| z^F+c+F)xcl|I={}v~f{caC&!1W|tqWN_Yd@K9J$#SssK~Bh4!P}`1Kko$s9~2Te!NqwbY=R3z zVFK)=xM;(NncRathPMoqrvU9Kx1X0te@P<~?mCjq;j6?tXmFY=drM-G>a8G0F_ z4XPw*J9P_n(0O!kc2hewF1=kqq`leWjaY9L3b#y&9VX?4;100Wdfoc3FMDPUJSJ zQA57w^x^kdZkG)X^ubA3_3OePG`($$`p!Uf68Tk?u*1{oC|Z0KEi{ST7tyiCqB2uw zhQl6#)EysPhqAw(tLixFj50$_q5B((4g7|8XFZ96IYMtZFF5^9XE5HJ7uePEu93hn&-W@!fQub{IQ>?r)GIgWW8yy;p*g4mr;KJglVXyY6eKhUMsUzYl}E09LQ?q&5b!$^yHsapO(_5gjrbd? zd#GB?InX5*Dc%s*8l;NdFPB>T(TKF$b-#!OhO%@SP+JSi>bkpS z9Wl1X4uSnLe4;rR7{L6MA=8lGA!au(x?k;9w%UB$Yg1>3I;)L#8zxg^Dn~Dg~ zLs^0hqihOV2zEL&3JY=Sf)jEn**s(1S_YCV@B`A!>j;RCeR0H@s)-j8sdeq43`{^<#Ete z6L~nA`K^JbHs)}zl?TbpO+iVh5RvHO-wPC+{o5dEih<+AR?UAn7ftLXF;E;Ht_+Tt zzlFSv{qBDuZof_Zg(lPw7NtU9{opT|)rX?;1K&-hZ<5;j64cagN%DqC!AllWnQk-8 z4UN8y@cMg8Chf1QA8_dfi`yS`DnpSOD*M-5G(=96M00tIKT6;)*-(EVa{a&^ytQfe zb`>r8XuG@Jk%Y$$)E%$uSdH|&W2=dcEn2*{pF$ZW zsF?AAM%>$PO(4YoHUDAbAJZJ^!icoP!2*>k{`sw6GK%?pJC`5kYB~5*YZs{DO62FO{u4=`skUG$|X^f`6ks79?WqewJ4SutuX5? zU-J1BC#Jb}(pai@^pJUKCzf!%t*?fud!g_w-Pgx+{wd4QxWR6}IeoU2RjQ~Dm8yBy zTQrUKpmbmBWr}jK+b^&SE7O@O*-SR`YRH`i1E@#21@aHc+4N=JGoLc!xi}s&5Ah{# z@XmM!e0`dj#-564ISbKWjK{4;Zl74WWV~CAlZaS%ZA7d(y8cYxNnEutuPb*FZjh@s zCzD2bYOQjO(JWS+zqC4o=L%~r#BooIjT4o*RyB$*qTFDg5-&??pi_-xE8kFbuFu8W zOj3#u;-iL0PCIrFA8VA+G}HaNp%8l&i^IX7o&}S#RPJ)~$AqdTOI%^Jsw|QNrqU5O zDphS5FQchcuqr7@uTL3He4Q+wn&R{YH%L)0VoztO$xCBKN~GB?(up|Nl4;9&c}OhC z?2t>QazY#4(o*BNQO;AnM7f>mB$VDm>5(3%Rb~L%D_tc;o61i)GFg^m?JP^O*;sx) ziwkj~!BKZFshQZ~MwR%)RFeF((vJh3*7&(qID}{1V69yoFZK4bJS^pMg?16m4|Maj zdbg@m{Uw*^%wLwNB=@v5`bK$HS(e)K$H9GTS)4VV=2ecpe9{@!@uBNp5nwMXb^A@O(16l<-_gw1I$&tY*<);CAPl+bI;<5}s zP|~Y;6F1l>DTC!Go#p1Ed@aKao--s@WUEhwm^kF<$4S0B+0u5v*=8 z;<<@XgLAMlTGj0y@{RF|HLOX?P}e z?c9UeY-QLbJ4~fBOqv%Lt$3St;xd#3cNq>?UXC*9S(l@){>?AWM1pLJ^GO26M} z&`YirGZ-e#Y1z#DagJCj9?uqY<$OJ7wfni;ORj(}7D_fB#)kb&ML}n?J{v!muTd zyR1?um6S{yH)v(p?7S=Wb(1RJk5}_{RuBsViSL3@u~Ka{2f}Rp_?*!?)1F!t7L&)9 z(K4-zfGj*cQOQdEt|2EMUpTQnWh%JAK{LH*fmG|!sL#Z-`kal^U{LN>mu8P_PAhb# zFqY`2I^bS%Wu@^Due35&Z8hyrSZQ&`+=Jp{MX60|)dIL1;RcIctFovx(>e3C_EeiR zKv}WU)iY9l$BCy_uNA>5ZNM>wGSyFUk)Ohnms&CDH; z!qJ2wUU8iJl$xu6tLEz;xWJ7~%Nyy(&hy!O%-h*{?u*;6VE}EYIj^ zn2{-`&y?Kt<&0-+DMM{15B_ekB^=7UbZn`FLXrEir4rtg@+o3VOg8J+@Lp_*Nl_`Z zYx^pprR08S$!68B(9%Z=EqU|6J4BW)ove7&TJiA zl3sBo8jUmRxYDtp5=trh3MzdCmA-;XUqPj729*l(OHQfFITTcC90@8_nu%4eJ@2;6 z7AeNK6e-_7PDM?eJ(b%d4L6wY59`%fE-lE74oI%5oNyn1jVxTgV#syfn8Gl{wtW8TS2Aa^R(**l^C5db*t@>-A(~_GAqCVjghWRy;p7VpS=gBaLyJu_o4SwN@H8I0W5?O0Gfii8xix&n6jhk!YAzN$Iw&*<=i=A`?rClSPM@=_#!}_WO?= z_E{Q`Y37-FVixm`C2DGxtv1X&Zg9D5K1>&d_J|T18uPkZW>*qZwdBc^GZ&Rbby?-h z4>Ld|^5osBG+uEG+I(*p6v5O66RxlFOmVog3w<0)rdWxo3c`6xxsvb4WON zI`13fY`F>Nd%M$QYVlf=>^>~jL^@x2XmqvvVOzN?wOPA|qon}u%$Kpij|6jWF$@Kg z#bHKG$@Jps6)p$kQTg6d^1NBj4evFEf9-0qf<92pWNuUu@1~7vFFhWXtp~%#p*iE) zvq42kD}}@|MGYs0nksAgYOMLvT_|i-OEe3stY~lpdcrh2DWP-Mh)q^f#>{IIx!YxV zGuywPcj%QpQ;Z&Mj3=2qqs^v|@%bw8ym*Rb^(Uq`9Wk-xkZjSyyqc(#o-54(RY@kt zjkMHQ^<#zRYb^&SWUALull27OrV4iaf|96KuYLb0Pb!AEn#8U6ec_CN(pos!AK!k? z4JaWg?lu@AptLQi+y+Ail=Ad|rAT@m_Bt3)ss#!t#oO&S99}!1^kvW>Nw>)c zS%=s62JgE&FVNn*jI-y=TI2Q8?7e%7!yj#aXV7-d*|VUYu>tSgjdt68wwFZT=E83d z+>@>QT|RO!RaCnJlL2-IhC4}Oe|Ml?VYUti&&iE z8H_mN(8g%y@CqDE%$~gN29U<|u5K87N{3Pk?bT>sFzyxU4yf`TYIm>MZRO(>OkcRs z)HNE-ICAwkTI&~RH6o-2LV&wt`J$w9RKw#~4N?N^P^%x0RnrH`2<(qvxj?I*h^zJy z5TqF4Re1F}2q4|#kB(y?NWnt-eWi6E6xa*?rDv9-f*wcf>;kR+Ll(h9J>5sDXQjX> z#~-N(*dKqO;~_rH_z%t0{qg^OfmT1yavc#<1vyDKQl{GPYLEksKhbLaiD(t+tO}>E z|Beelpd)nNcdiDJ)xYIj4OGYaH(XcVU0M4~Vl_&S&HnfU9rJV*R()UkM?O_K+{B(3 zJYcj3YC4pg_jHu`Z_nCo*R3XcwB7KLDt8DUzKmt+^gvZ6Ts8X>%2=Ks{ILGXbu6ib zjX388cZ1&gel|0|OI&;0!^6Nu095&iY zW=T74WvA1p?(N3Ej#r%CZgm@92dvpWf*sFO@ow0U2|SN{^(D{MOWL0(47QVx!i$1a zs)ok`%*^lyzI{ohYhxsUR0>x`|G4tw$M)y*_;02c;e#Vj){DrLozLpLuvg!k%#!$s zN$0+Or1-}DOfuv0%z1iKxVrD5kKEimb2GKWU8fwoo+jPw&+Yt83mwlIKpNQFzTYO^ z6%Ta`1&Y&Iege!Oc6caw5c49>nvsof>m0TSM;QQ8q>JVToJ$=Q846SAsK}^b9m$iu z9H^_2B}gt>C{)=82>y12aZkvLY-Dc<@lk>Feiohi=$bu*j!t+($Ba7%dTUr;g=#A> z;3d{1EK!mO4iGZ~2F z+JYY60Do@7fv7qGOH^m(X15oIwW3R(iV{pKqBr(C(fE9}6SN|%cW!7!g#WqZ4r+RV zRF@FjC6Jb+gUEo1?xCnr0pwL3KBB3CL}NI721)V=1xW`iK9)B!WCmMcLV=Q5!}wtj zFDj789E=p5Xpx8t7SBe8M=mmHf;WyvcDB9uvv6JCdD^>VCyvYPmF#ppkzOS`9Y>fm z)K;}qDzys)i&O_xIM6u#ENOgH*;O4-hZn=&#fRk3{k$V@GuNw4>*^+yd;0KpDcZ9R zb92@EsHSnWuJL1C59Y2ulusYrUG2+25tM9o{goHkZJvpu^uQjsQ`iZ+$ICwhQ1irW z4tsiBBCK&jn9Vn;acls;{yLqMq(YTX`dM z>0%3B?2p(!U?F!$CY@e+?1xP9(FLwC}N-XVzT) zk)_j2#;@VMn#-AVCV}*%tJGXh?blp(oByi09KPoA{|5j7|NrcLX>#khvgTG4z7a3# zhRWtli9Yw72ujpE&qGH?1!q#?B$5(E{d&EM{?YxG@K*75@;1<0Xn@pU*|IEJwocV4 ztD<~Jkjz9T5{U%x0q~rYg9J zx_f1tmzX`g^4G!|Tt)xpZOfM}AKp5t03#nA-sLOO_dA-%pg30`@1j&6WDKTewm*>i z=z6-;1vy7aER!P&`y@_Q_@&{)CoGX+^7vguJ>vf8^Mbei7rejXjqi7ctoZO_$M%4* z7(qm$9$t0hFWn-@st4ZVJyF-c-}ORMunqX3##-JXA^te}2-&lZ|0E_90Il(&ZmGMx z-s4Z{gFOEDfB)+|;PTG*J8!Y%UHL9$R4gwtX@7U&?k>g1t^7F-q)p~>}-%Q?Bb?ZKQ zij(LAN;&&P-*z7F=?5C51iIvFk2Lx~f*VcNRn33I$Oi(xy}8#dNnStR6I2GraE$)8 z(mh?!4c!kPqf0~nW_tELEUx<~gO72U9a1IT^MNMhI3wtZ2QV|I(%mR8r=AG5@7w0~ z(M}=vK-u~Rm=$jvbo0s!_pWU4zP^%yV^W{JwUS+57hff^dwd`P75{B@AL~CV^G6^O zELv4rOTf0i-wg^Lm&M@T+w4xVq7Mhzf36g&g?Xhv_4ot%%cb1BzpmA%r8U(r zX{#C4!b@ncJ8Ie+B$Kt4Odzi3#YU;A(u-whQK!3XL=g3;39Y--%4ZA?s|Go)60{oC zTG=TZj!QE&MJmt2bp0FCCwoMj< zytXN=NrfqOB>|_(4R4|?jC@d{47a{u1bsSRk6QX-5)s7liQad4d_HL`F$42E9DyQ2 z+a!Wu(nQx-RuxE!l{(;&L(LGcn8W*Mv6JbdR=-&o5;NLn6uGl;ZA_0#dBkF5(M)%; zJjQ3!xz!Sp5UC;H)d{uK+k#d?=DtOWi_!p*UBVGpLH;#8M+8C5n5yZiWp)ZIn{RNi ze!z#*a&=S32cdv=SCfz;g;D4YyyCJH7CNh;Qfr6YvN2i`5+4pRtRyUoqqtBO6@0*` zjUbO@23oJsU=|r7A~zXL$yHk}F$!VJme48m2vYMHt2k2l8m{}qW}ICk zQriz#t%zWwU@4(SXN8s4tz-~|sIR9ST^{Arx+)OEd9GDkm*;hENpM-;ldEIyxL!^SFLif zKAm6&Ay0=wlMjjcVA@)EW@%MXMx5rf`xvc`7lXK_2vx=}Gr1P;>6NOA4$^F)RB8?D znp4>b8@iLl>Q%C_9C@n9UqXXAf`?;x8DD=yWIom9VY}%la1<}l$ zt?R>xpgci55~hG$fsaiNUZQoWmZ3q?bf zP-Vc&)$#@jvx8LtHHsi?kn8k<0;nbIfMq9a9x6FsV12tm&R04raJb0^^;1id1OppZ9<>sQ* zSWWxYRky^<&g60k%`YPO+y;++ZOCj(w8RhsXow^o`o=ZT>!1|B1PHU-23~D-IEa#? zo4b^v8-@(xPXz{;u04;hVIT|R85pMOmM6n**YDAPQLpQ(i}%&VOVY*L8x!~nLmy!< zpNb>pHR#ZQ2t1;@?K{O(qTUqjZXNnq@QyWn*|m6Ie$sz@TX{tGdB*SG_??jIl$~Rl z3^d=5wDUvW4N$`0?+BEDAHtjN5_SOPH81*c0fF8bd<3e&_dAM=N+)=ni95MPpdi_e zQ$M0E2(~>39msjl=UpFs0{g8D6J^ihO^~%ec5h^9I%c~|C`38keGup9&swui*Qs+~ zM=mJp9`4eyt&rYkpYp;6)A$)aAFYv7_4E~sE`FLt3$kLnz)mRUy+--EMh|8h+o}s* zi-%D}(2F;%-Mi<7hohr6ZMH}z8z}>p&i2)(wHm{)BUK%w$H_C&`#-*4Zo_y~SD%K zhv&2K8$ti`C>O{%--cb~+qO?4>f54yOIA-7eK?r^f_#+w5RQ{?BNbpHy0x^I-nN3N zJxDYFHjd*Y^vRDJxTdnZAjeS~eB|M6CmQ_+EZ}G{5H<4PkMRgG$WeS7J5w5uDapJf zyW7tc+xFoNgGYK$mwt4+WdoWHXu8(YghrN%%Lo`%CZ;4Wmb@{71L*O*L-fHm-x)e0 zxcy+4@56Hfj{fhTQ`k0OI=nz;^hM*tWXdlJZ=q_G;p3$@MhySDK%1cW!bWuy-cP?y- zPy6EZ<&3W2bJU8T^jS|ml$AjE7au2z#JBG9d9!&ztNAPtKWl2&4QpIqYog45Os#?b z=X2xyZ54l7oyhF2l+Si5BiHw$Q@Jh6Q=Q6f>7O%@80_$*+913Ea-kLZ;r_XWv>`0?#>d&+*kJ<;1r5f|MyK+0~F za2O_v9=xZGJ7by`)WnbT$;_vzG9H4%QOM!#AvlbAq1zKfaKh^f-M(SjZP&JyC-0pc z`P^esQe6;;>Y&nmzY82Ml4Orq*#lWp5Ixb4qF#8F+h5i9S5Q%RDNi>YLvF*t2?(p% zq8!Q*G6eWPxgNh zC_|E2XkAZJcegQ_Bcj6>L|r}t3O%QM4|*p!bB^#Z`U03KD8C4hhoNW&!(Jfr;7f`E zg84%Hsu2kctrZkV^jA0t4@c9Rwk5}Rk}ZNB7i<%=6ey#(2|XZ=;$DUWA%vwE>{N8Y zE6~RF@TVvx0vtl8Y#E4s;!Fd~e2ivJ+mCSofJs53}lyAq&-q0yD&+M?`vfO-$k zK}1En#fd#ZT&DbW&W6PnvGqO(mHCPh`~+C$M@NKj&e>7%@Fw*1e}_4{x1yOZXy(s? zW|GgLne<6$CjJ@FOyYq)2hGed55ybLOf-X%U(n1iXyz9*^9!2!snAS~^3g#I&FowX z&0Iv#Ou=uVXvcNw7CzvcwTR$g=sBB?q!!)K&ZCWKrbr-4N6z|-6<%BoLawn1G)NW-uIwwya9N z(VaC&e#C@kv8!r>)p*h?uJfov*K%~JrwdY8t9y$s+Cs*c>bZDio zj?#jwmgwd%ZB81r*DD!Xix`$Fo;YpIMm1*ck!Z*ig=VwWad*&6&02JJ&`im1Gi(ga z)X_of0L|=+-5V~W>id47!gtB(bP@{^Uf(~W&;-?G&2`NGaG){ zFm}*Pk4n?}d~Haj1?}?71>duWe%3eA%+gzyb#dkw`jsqSZur%RU>LTWi%q_h4kh3< zru`7znCUWQ&KE*+U0RpJrc9Ljydv;yW?o%%bG{QI^-+H?Zs1D0JRemv>Dt7!rsZuZ zPc%E-QRcJJv{&XbUSX|GYDFfTvNo>kRUPS1Gnj>}dXi#^G;^-5bB&0g+H4ib4orFz znpuybnPZ{{jIcSFd838g);OWC=-Gu@*eyf^OWMSI1AV2`qaS{N)*zC+{r8B#TTwXCW1w8W59C+JIYq2R3%(WH!4iI5FePnS{F zURI{eA~!@Uop52en|9Q*?rja+^$fIOAt4t43wyL8xn0$L|$oy4{PbUVlxD zoNRkq^EG6!DtarQUNGtE#H`oF?yARI)gHZ~R`@Jr^ZjL^tr-k6v}MuiIfUc!^|4o^ zvzeSeY!qWyp*LLQC;94hjd`6S-&}KCy-l^VqbAlG;un#mS@4mdt^I-<}q)}_SKa5L`h@QE*RpRG2kA50!#N9xagiiPza^CJr5ih)%T0yrM+CK20VdU8Znzh@I! z=1cLOmkl;=XK61R&;K*lqrU+d^O)D^dG#wKvo5#o+^5<0VNU88_L0aw-#ZnWzj0ef zQu~?QQ<%=oZmxQ(q)&i!zVL8=T1e+bD4EZOb#CFvU$D--tzA?sw}5uO2x$IB*v?D> zY$tb>kNd)Qrs6WX2-}I{5e#hi!Aoo>9WRR6J}0*Bec(C|KJ=XGn6 zt_G=XgO!&ibX1owlH|IzD3_S^Gyn3dnDrB5j^#^YKn&#bxq%=a`;!mC+SYkXHJAFi zbqLQr@U4)x*DyNQcsy+?J_0BEj!x296S{7(!6ha{d>~wsxeg8g23&Gy0-p|-+|`3$ z3@jNnr=M#~yH%;jSjp|8j9&*U83C(5xr-mQUWtH{d%ypy11D)5;(k9II0>=oCxDX~ zDAC6OCowcb64bvw12{=A41JF93*aO};S~B=xXH{*++^$wzi^X(Cfwv{8~6#Z$&X$d z^5$F`xsNFR9$TH9jcUF?lRpbINk0coW=?`8iO&E{k`I}4m`MncJd2pb82k${`GuJL zLQH-kCO;D~$(9OoOEe+S=dH~w{nD}!7CK5_S(k&^%2;BHzJ#GN-In>ndKnSKT3xzL z=0h|;SaMtqT_PZ?0FH2`D9tom=Qd@Qq=HabX6MaJO`VNatUnIP#m4Q9(V~e6h}EB= z=@sUz<6Q~oF5PE|nUr;!CB>DP^r*7Y=E4|lv^%t@R@SA)MsozBHW`-k#U3MRm2sio zvuwL;Pixf~QSp|cQ|=HwZV?e&Shm}>HA%0rXvG|_Hs~l_S7s%?I!c!yV3IEz>pVVe zPN$&Ese`<>x!FcHaqH0 z$}7^)tCA`OMr?s?#~C5L(bL6;+!cs`GrGuT{)4(=4w>3dK~hG_w+jqrDUx z5I}YS>v3HtB1pF*-^}J!h**Qp;pC=)jTwryCA00tfLcg&Lv*uBC(n|ag{wuOqcN4mXf<;C{00l#>$==8(Lt-t z(oL6@7?R+Ga4;CGrRt)Cgc{aI(-A=*)1}#3c7aDKrY9>((X&X_XfAcLBA`P*J6t+W zL!bZNPv-A;DeasHLi9z;mQ^(DrN>C# zpRb@^5hTm8CwFo@-7>y{n9KBo$5|o-uY`z^}1vyaVMCK@~_>>V{&-7!8vt2zcX6 zF1rpizrDx@8$AAH)y9tKTp%R4^jemnHMj zTfn@HdyKbzg{AY8aF4q!pm)~tr^P*9fLQo!)Z=z$@eB31x3mii(zZa)Oo$m zy=gkPf;?s~hdeUZ?V$7pc}&G+bQ$CkLJ|)joPa!{Fx=Zcr?(-)lkd^LTc=-HIRR%IGW5X395`@D++L!tdXfmhKy}=l%2HhzxSBc7F7txrDWohE2t;*N8pC zB=Jk%K3#dCKh<5&hkIP_4_JV59#!Xlq8fHZ+x{+?>s9=8&j$X(HE+f5w`a*3Xj5HK zQgc8)9$-1z4m2tuP4|4;g%FU)K%V9ev?MlcRim82ndf5hxi!Nk55}cuBz%R+hl+lA zh9dyhQLWo6>4_qbqo_|TvFBT;ex@-d^7U7-db{WGq3j@5YYFGy&)VV7tZ9*_{=3z* z?9ung&#q~SLaVD-K~O9pBU}CrYe34gT_+kMu$5F^N`VV3rGiu)bP+V!O8vHL{r>Q6 zpEv&S^wYr@2t@yxLQ)upKal_RzcKWT3@=7HUv!hP-A>2n#iC!4>wC(yjk6KlDfj&y8o9W zDFmMC$B9h(hBC@LmZ!Fe4w%fyci`TzAUQ(f3&ja*z49M@*^0!Q`8Lusu5nN+(+3IAgBe@1{wu95y zqh?08qUy~*dcG_Bq6RM^9HtAb91?%>AYyc&4eydHyLhcqy?f!sAp_B+69LxW0JFz_ zB=Rx`F#FpL-F3SpT(qtkdotF9lNXIOVN8r<*tSm?^K7Q{`J5B$>imltGM^h z!TJ~Ht86zSICZ|tHX?cI{m*1ec%w=1f5esOOic7P^=BQBm-9={nI;d+t`ZSr9zIgO z7ct>GnEGRIl*>~!Y?P7t^9H#odrt$ zMN8?|GrTCM`UU-jZv1jWou3)_YswS_@xPo@`%Xzp>xObu=5(jyeY$AU%v4kX!%#B1k{jMSh@wyur48izq8@vf&%3Hb$csnK9u&G!_v27~Q4I?Fh2ufB#;0E^r zPVM%?P5E{dTt!Qco`hHjst>7(mD(=W4pTntcKjZF5+lrakz~~BK8?|$97Pi$yr23X zaEUSR{?F9+6qW+_Jjjr*oA3?mx#Vvw)r*jwAG1_1MI29wA}5!?oi2liR4xQsl$KFh zLk)&%=!KYDxW@>`UXYvC5QaynN}D)1TNZ{`fS+>Aa?i*M%g zvX`3uL~b3|2A#gdaGal#*Fg7^ zOr-t1j3%3<`f2%mSL5=ekDPEPooJoiM|ICLN4$|&cBt8pGDJOV-v&bIwkd-Svy@{m%)BHe>r=fLIekGh zc|PdNj5pFdy~`ekZPzZpxy@d5^9h^mv2dE?=grwQ$h|MDfm5oRT@^s}vbe`X(8hxJt6anAgo%ChP8A z#p)evJg+LecdYTeir;&X`nQDSUBye$Z^r6|^?SQ}qzN5mD%t+tR}O6PbJ@BXH^sG+ z)Pn1nv5q4fNrL+8*xhoxu5Ek1nFLvh?JyqiV)q-4qSUiPUOrR2VxpA-f1Q!t#A^tz z9rRD!?p(ug`^it-FX${LFA41bI=!P0=Z--ASYE%?Z^kO%K|kzf+>(HCt~zic$r##o zZWM0r_s=8&^;I(j$=ai0|N7lGm*MYZf7=-(d~tnVE^rbNGbre2j>}QXgf+Flq@f0&gfwy+2?w1N5=L{Y z*Lk3vuT-lSsIn3IAKKZ*NLNlL|2Jqki1Zr^%32-RnUS@_QAaz858?NXMHfnD)C;Ej z+?_uRp%8+~LQ?O{+65-g2#7io6&1SUKlx9g1Z5ogjlRxVYtFh*^=~Z=5w~Cewmzbj zdr(iH34AEO9!fC$wjZyvPb?T-d4GF2?4A)_yMxC>X2Pc3t6WO5X$Sk$^rr}~Hg(RC z4O1Kf&#KlNwVvG2Z*B$GDcnVO;VnsNK&MOtAcg-HCUDMeZHtmWF2`fl6GSn4b21y> zY?27*gW{{~4ny)m&Pu)A)h-o6$gxp3D950_`0S=nay0IIS^0guM_&r!cx>PLGBMyL?d3K zQxG5}V0X_al4$8=>XzcoeaE@6pk3%47smf=HhfeoWxL`H}S4|EGtkrh@a(5#_OtoG1 zy;fZKh9b_N=t0&4co%v^|AU5T{{BHj&x531TL**n zN>jvE;&g|W?UtyH1@!u)@e60t^q*tz`k8331J2s0mguH2D!OgW;`XrHb?$b)>rH!^ zPGw<}Cd#<;Sn$-?PNm?k@;y3rCZ<0ww0yL*l)n;MG8E~$f}T4HOS*-aHLb=$_dWHj zlQO8gHC)kMIwr+I6=O5zI%KN7M|SHh;|{2WDiy1fvm5r>Se2EF?rC*iWYuq|66HMS z8pW@qLUgI8p&6D=#q-xSSgHnz*fEf-v3yoso0)7;VLA*W=(=dwzBF^RoWw@P89w$% zQwu?}(YcE-)>VZ~#PL``qa}O_mDs2R*e##dq;XBKh>2Hmn$QpW)_-SJYMJz|>$i5r zD3z(cW6d0T2J-g8Gj9baPyb<2p1owp#3IPB;aVY0jU2DIiDhm~=2uQ9M-~UI+}1$9 zfN_q;cW6onJ3m1rHLqiUi6o2H!|FFMROP9wJ7@HfRe{Uj)L5#nKte*DsDA5G)B(k5 z$){V`w4A@DK0qd@deYQan4O!Spz_)j<-qxb%noYX--m0+w$i9!M2v$M!43nM!{KQ= zAK=2%w5{Bq38^N}D`zXC73Up;DWb_t4SYjMev6uCiXzHpoMKN_087;?LGU`3VeO+i zxf9U2GV3m$bHIogiEl&^yRp|qpE*#)YDCdyoXMw*zFKp)Y7rw7vw?PT=cjmT&qr6&WIhNpK(bK&`u2ZnHmX5gHZi$u%V(N-i!xv- zj<9=vcXm@F2^kKTutTS@Zn8H=)8F095(>rrZ8A(p+^83P_H=+dgNL9xN6a=Xo$NW| z(6#TbMDiX}UOqh@L46RjsfF-Qz)Qa)i?fmRojM{XE$liU4!LtC{2J1=Zmr)+Hb?{# zh*_(SbXos}f4FO)Ti{xG3S^pQvmzl#6D+t$__@B9VI5r5MD0IUjY~%D#LFAnifu_I zg7l%uh*M*yCmZ~!o-b{acA#vm7zn&({b+gN$92VHR-|2FXT2vzC%^A{<-*j9)?!PIb4M{samnG_(GU$(; zSq*%@DJ8^@I)$~4nJ3QQ)F$O_9_$LQ%g`|1v~}G(6-c8c|BSm*@WsHHXr;@NCd`;c ztXZ0Fcg+6DVc{AxYX^*nqSz$SJRjUvYroq2!hcgYr+y~jy%>E_F$jpp|DmVNbW&!< zPt)(MW3sSe#MTV}%Y!lX;>$CEDMaWU155+`}nU>hA(_Y{^J`y01e z8d}LwkD19T9sbd2UHO(B00*&ME3<%><4x?B>QOoN#h;GE(DNc~$l|k& zdMcZwGsmLpMT8E=?p*tq4weSvnlEO`8}BPu{t7o}H~iPNx4e zx1n1tDf?LlVZk@P8zZLyd3H`Yf9O=O;|~jQHWk2R^3Se$x+3|%5jF7m(I99tbS3sd?nLb4sQ|O+5*BxkY z+T5)kNvle;tb}OyfSSJsO)Wz`kmuMoJjG{!0i!d^g{klZz=Kf11pMYA2~e%wA)-M* z%5*KMnNeYV1?kYwS$<2Pq1o$#OF!8?5_Cv->udF0um$(6U}5XNP$_?DYdph2_I1Fe z73O^abqRWJV((V^fXs6p@A;g})_C}F6psBhfM~4h(qRB8n_afU5poA%j7}-Zc5KRu z%5y>UXvu?PFwMliVz{B>4n*X(IF^}Xr<>UY-2m;n(AzkO%cQfkMesbI)S314!Dr7j zXvK4ki9CHNF_tyHA0L1!@22FzzirNIXY4k5)Z%Pdd%-vxVV$-^{_y)=`RAZV|!npiMcP8l)=uo0`IGt zVD&0tR0kh*@{P0__37_NieQH7{WCOE$B6Uf{UV8sTgS+~f$<{gyu)WS5o7lv8MjFi z>ah!bjpR1!|Boa3D{ujR==C|~GW@U2jpSpV8>!F$PXgq^9FdWy1hOor=K$XT^Y~+{ z*Wm`={T2S3YwYV8{&;WfP6!hgHoZc-#G_K6p2-iu#3^3k(ex?gkzbd7{c+zR2T3Nx zLZ6nZ5Vn!}MYIkY%7RFuqfu!#Ei7NhLd(x95#lHr5v~{_vDKLjg=33Eq4i3>DGBFn zd|%lN8r_6lLE2%1k2#-ZMJELP_?g6#d7(P^lHdPx?zz$@y;mC%MV?>fx=05&WtLexouSYu1ug zvi0{`8Aqs_)>}A@X~BDBk*G?53~ycV$N525{V#$>IoC1hKwbjPZPk(bHK)P^x)|se zXq$8u8aa9TaJG{cpU}N*ayz%BS_D zt*ao|z4e25+se9&BjM_Hw6DOm!&R_lOM6sC!=H`w9lZ3tYn)+>h96D;9E6WlAueGk zce6#0>NKE>2;!4o}_M4%{4e?hjIF=OoMKE)fq*V|CRmQFcwK~Ww~ub*BOh6sSn&2(!Ihf#Vbl>gZQ5wp(t{7qbYWu$ z-Jc=#3VjOKtWQ|KmB2Qm6U^rM5eWd~LxG)T)&}}N9}Z4V9X#f48t8_vfZ{24-p7jr z!e-&!--J$5El!>1JdWr5HxefB5yLC5fDYQ(KAi2$u8==maVM?$ReflOLN2Ic_W~9+ zahf#83HGD}S3VNn5HUFu_4|8?tCu0*zFecdpI|029-{hoS1vroG1+ZXKLxI_xEOwM z3vE#Kn=uMcL?mxFgWZ_A8F+}h_R5a1Bs_V{GS%aOTsX`^;_k3Yl~hY};&({7hP(a& z+w!D*K96kMFq-p~Hjm7QOE%Tuf%EVasYZcaole+eGXLc3?wwcj9oydLT4p-8*kxKM z=?|1?wq7HgwXeXv%^xb{EC!oKdgcP1{AlMfzaPt+vi)f9<+Sh^6?X|fe|zY?0|3|9 zn-sXFrzbjR^T2wMy&J-2a1yt8_dDmhYgD)StO+dl+ZVqXyEKuvQ@tn-Q>R_RR2Bpd z9p&+{4&}TDn|iU$8y!~Qhhwecpa{r(W4_C)jxs8RVp%`|pQWHLN*5T?9jzV8 z!!yeE@zFETT}+bVY2p`OvbR5h%qXZ{3f>9NQ}`cK`w(l5c=!5?;fbkM`vm@%Dw<3 zef_!1*pHNqJBi-XsvnEB`rP&_R6jQ699$Kb`e4_yNNABCtghk_4<{KG%$||2g!_Z} z6koBv1L-56LO_(y(cvCqfvVXP+2mc>@js^DE4xUqpg?edASS5MV#ZEvVav()ui1WE9^#Rkv|)`Db$ zg+|u&11qxRJ%|OV7$?c>ykwdRw|Hq@*;CJq8t?Q-7WlRTsnoC%V-5}((yB$^c2WG$ zB`Y#bcp$(oJ=Ui*UME3(-{O8Oz-31gZ?DuCGR*g zu@5=Q&(}Om)06xb%B=5Z%}?op4gZ!-GaE`5&By$57jNxTMTtEZxB_Xqqy?Xiz<-VI z*I0UAAESl6jR1sERCIllR~QqzWWxg?xso-u`Kc`t`TS2U=@U*6Vob7YS=9@KrmT3I zka*NENRd%Y^u7GbgjI%!gdjchK|T3-O6Qn?L!@=^x+hFo*$JojF>iVO^V?x;l*kW( z`D9+{iGbgokrMKm8eGb^Ni~(vC7UwY%(=k?pfuT`U6r*Ln~3mRoL>NWWuhpM)#26LqLB!oO16?Rv#40%`F>mF+Z+17q4M=cgN!B z(0O_0ub{PbBo&t-s?oREd1)H5FP81_%rG%VF}>x)mC*KFa(9=fM5qKLdC)u)NE^5$ zAkihk=L1z{8@l#8Hzw{ka^}C$YA>g;>ig}gC4)WOzjB_NKv%nZRo%^#-ZgZnh8Dis zXw#u-HZ$-4#AZLa{#GeOh3;<@a+!$vC>I+0CRYiFFSO29F8h$1k`~~}b;BfIQ!JF+ zQHEprZYD?YF(qHai8o5-9OZb5Wy_51`YX8P;#|gEn{ct_t=BduCZ33D?-j%w9(;9| z@|J;-u={n~kbAkkH?isPp73n_-pjeBzg9=xD!8}|fyFyWHUe-|-Ex|A?{3%9#dnC@Z-G<M{kA|7WNX3asC@ymcUGcxHruk0bcZam zFd1EQxFS;8S&4eK0Q>8)$Kbm1eBrX?vw&su!)HD%52&=_)p^BZEV7uRX6PtX+HQ&d z4vmlLjHa1~{crcx*0O2%s>i0$Ii zc+vCxaxn>MdECXN;V;?F3wGPlcV046vLnMg!CCUnF3jwb!xmQEo+OfP4@vj&u($Pd zF5T;u?a=WNX;zv`Hj?c5ugh`*ZN3t(c=PTG^2~(gaCM{PPR%Oy$>`=gkx!!BDfnyZ zCq?!Q&ExmLjd@C!9XdDyO`EisvA0rTBDxIaoY5jsT`QGG%DAE{$Vs-S{;en}QlqO> zMBO&L#se`&%m|FLPU)g#t?+yx-5zb|r{9;|@F+&?4XJbf+ElW|(AlM#r^DlyWF4!x z^Xbcyl7pGby7ZAW%0{Iy&ZV5ki>kGxGbUQ7q{dhZrq0!hVSFkJwAtp+C?xSQD#4zj z32=1pQye^B6QAYlw#|+=3RzXaHTdQLO~YD|)B{U7MdQK&ud?6f6Zw|+Gl+Vx65rV; zJD!Ncz4umtGEtwzjx)LpQJYoD)t^i2&9YoBz_iksCg9c`KIPp+&%U%3yFoonSh z+GyLGsBRyabu%Mri)B#l5~1l180c<|;LiK~SGg~0ll5&I+}dY_1KRY^=5T(O`?j|s zk0+s@+RS$4yoI*y6D@T#&p!pq8 z19VDKflwor!c0&Y_hM?Q2gfC+d~%MtJ=veBE(Nm=lRO&1xAWHErLc(4-R5H)({=!V zIBu|(HH)`I0*wpYY_E z`+adjWU}?t$+vYl67Wb-#_M+N4&oGg$#5@788M-feU3g||2|`VTzbWt9iG9!aK&Z( zl&n}{Px;#3{9+J_bqno!kc6L4Hp&{B&yeOW5pdml2gZ}*`Q^cFB5o!oOL&TqWy_}N zHXXhB%oWle=(WL+!+$78v7X$fX^R0}jSJ4nBlART?{Amy0$T~vu+dWtO{KvXpl*_t z>?9@)9~weWh==8%P=cUx`fJ#nBPIAF`wt;xCYz^4H z3>d)QtmQzhnmW91=acLMhjb*Re}iIjDEAE&%Em#3Ie}3`Z_IuT{OuP;q+tqUv<*1! z`1f7=izKuOh#WiS-;19|4Js+a5Y^bv;k_;*>ok0zN{SNFSYZ;YtsqWJNFuEKgZ(_E z(GyPV!mr!<&R5##z)X2TRl81Dyqar(h=s@0Z1R6 zK)WRIx8ER&3(?frZYzp}DF`wsqPpqP-PD0;Y5X%KFKb4y?;#pOu^us&Fu)CB zxJ~@qPb=7k?qyLp@xSwxo&I7f8XH0-%0KGf>00a}CZO=z&$^6yh*xy#f(IAQ#4eRfqSZIBdp6MgH*eKhBfa_a9AW6MA$*Pd-vrdGy?l2}PQ}E)h z4M%YvvlZ@V+U+Q$;0=KU+Cc2ebn1>*m2$swK%N5UzT+b(`o$z2n3#)N9Nl~Fk4c#@ zI;7?EE;lU!5U2cv&_}iQ9#ocPoJCTP%L|#|T2JK#bIV~^Q;yTf+`*%xv(imN6$Iov zEaQQLY?>&l&Aj{K>ay}JzO?2^(07A+$XZ>GMcOh%@8nG%<4cz_l0#k)&GSX_$gfT?riv(r&;yT)z9zUU1&w0gM&?ZTDoZ_Ak)&of>9rd!*BS^5+>9ctg377J~HN^ zg6C#2Ilp>m43eYqb8LoddrU%DT*o1_Y3FelhT~F8boUZIKjj(QX8`p8$z0XfCG39^ zm@+L^harIu`4;-uHS`(`2tb7UoTy=p#BWO9$#OPXL|QJ0E01x6&dSW}8@vdbxlNG}YbB%N_G)zVUYx#X<@`rLr*a z32P27M86?6KrD@9jz7e{1FEq(|Gd8a1w}>K=G%K=KpW!w1%e^mBX+1kKZ+f~vL_)b zgU6+Dn~t`zP@UlJT4G5$Kr;X|M6*Rz;{voNscl;QbP)Hvw(IU~87D$(#!-4lSV)oJ zQr!x7`45eS5y3YXXs?qi8FC+13ybjq63F_{bGu3ITFg^FJ4C&pl_}K^(&2COdZRCZ z<6pDBCQOt)kEq5)f8gbf%g&?CvqZ)ZXkX!bjC{4M9kDpReLWu~9L*JH$ErGpe|23R zC*wfPKcw5Ng>0t2G@tNHtz*gN zF+}x-)PQ7Qw7(`SWo!l!vP=8mi=WlYStGZ-QgT3KGJ^G_JIxG;@qLA_c!ZCEdfaR` zo3EE|IwnM)+hVcE-rpTfKXf_RTQHkHj^;Dr(B$hEi@Q8VIl0GGJL>d7$mqq{2N<}_ zQ-Wi2NgW-Mf%~E-#%t@_n+Ac%_GY2U1rjidAxe3(O=2+b=VF!L<^vbsX3NY(;V!NQ zx|q6eVZLp$98j;s2b4@;ehO**o0KI71RY$F&{^Fsn$54Wscyw_Wyv60z!tJznTz(a z`_=&|`Trf<>?vXk-jqaf5&7*5M8mL<+UO23(j#M!;1wb_+Umiwe_h3+Rk36w?Q_G zSLx)ym-Em;?DX6HnmCZ&SjG_Qao1-oj4}fYnUgh6#z6jK37KZ+dqCt zb0N}UquL(fB?N{Fom1QMyQ9UKKx{r8?DV+`0m$KCwbWex{t>f#Z1KkImupT}`9EW} zsWhvRs+N63r>j8gX$;DZ)Rl)c*k;{lRn=RSa^gSoy^*Kt`#GQ zRfd%;0{PgDuFi=wTa@$`u|bb;S?yqJx06%icq&WeH=g)$P(Q}_@OO_~S5nz|91o-k{rkMC1qrDb9(rAK`yO_uMj*E0hljw0P zkeu3@*-21xkDU`K7(LoO^M2zVI`{3{_BHVvW*vIwz4#Qq7ASHIWRq* zT@34}!51A}Ak9<&?=2X2QiHg_h(Kg0bEcxvk|99tTSV$O>b)YY{%DdU@#x)SjNsJ( z!$u|s7N}IHo%JdjaFhvYU)%60BaOS&(`%>kUU(ZyR1f)*9y#U~*o^m1;FmxqUk}(v zhPD?LLIOh6ZPph2Q!Q`5xp|Zf=JcerX7Fyi56p_3$CCmn7(YV-lI!#v(BRE_+n(JX zUY4%y@@~5XbnZIeew{7Ga7jGCU@V~ z{bZQn_YxcV7M=wjX299WgFa5X{}(S`1K?zf(pU9H9KO)o-G6OX`3!@1RQzs2RpiUK z*QWZku^~6rx7p|xmrCqD26dLJT6gTQ$AzaZrJv;sqqpMBZ|CTG3WjvQFziA5mUd;h z*0Q~1kZNy)smUf3OY%ckEEv@BuZ=Ul&xEpIOZts{|bJX^pgE7A)qPgY{aRr;eii`AYQq2On6 zmR%x&tgb(##UVX6t7Pco0UmadRG5cB+*mO$iIa}H*!TjB#IASukN)J-Te75RIulQ8 z7lK2bsSrh@0ss5ckQS6Gi^&;lpYdIRZ}_lW`O^pxB4POyqZUyP7E~(NW&^&52GI^; z1PeaBtyF%zk85e+F||7Im8#|P-fPm+@8g-VjB6T{K88@v@0=I6l#YhFfXH#avPN3@ zbhmE}^Y20hW_)KzzFaF#+AGf1F6-bV8(fZZD$&j2la4ndrx}_> z=@oHb+n!1dDW2!p-N-CK9sdzRmeNNNRoFr;Az`xspMs`5OTW_~%i-2-PGoa-oyJKp zg^!hNMUo5jG;;MZ zTJueV%Y~9CjAL5NHTYtl4h-{!-$&@L>z<2ZL|WhHiu!rDqw<`hb?)EVvG;wL&3}>4 zwIkoxwNykvBEPC7d@dAMG&k+|&RI?s`y-i6Yj8|t`M*H}`DVh*(UPtn$x}a(y5iJA zyd`O<)XZCGo@zoXG2rx^Nu0J$M?f#sUv_XPZ(0Y(vfh3gn8D|sfM*qXVg1GIrYv9z zP#UK{;(8TSTY3kS3}WytF{-TLYeRs>gTCVVJe@#9O*dLVyNwFW!GXv_eOF<*^Q}X< z#v~x5d}NTwIM9!m%p^!bG9lhu@3t zZI35E56L?P0O~uZD@;?NU=MB-e*Oy_3a&Q;0;wF8;b>mg@dS;7^og#OGzI_!{gdoW z{=5*OEGa|3DgqhW?HOItFza&REJfszJfx3dL86*{AH7rfqU;J?qqZo2b|1%*aGRdQfTU0o%Yphu zXkp8NkOaig`q5Qs02-cei1aVDBnX;Yn2jMfDwt^rcM~jKpaZU8)G~Zmz-e)uXkM=c zxUXEpulEBW#H#G6szi|BIqG16L9LGRutiMMM`X7SBYrB`< z$A@zQ4k$^&2icU~QKuA7*c<@PS#mnU5ZXq##!~*^^E9R0Y>2FIlrbd{Z;iaa{esKk zyueNLKlg%K1Vyt@`TSTq<*7WG%$K#TJQ+8h_8+44(zmfO5! z`kX_+Q!(>`(td3!%Eep;`t=QfsC~*2xxn2D`%S=b8>RKAqM&spkVYh`+AsrPoV_#e z*OfT>1`RAvI|Oa?Fdi9InJAH>N-mVKstL^egHuybLFf@mJfSt?lsPThff4eE#Is`R z*xQ}Sv1M*4GAaS3*hH#tMX;PDk9!*8Izqs(3ec!2Jtxq}IZz{Dlmze&e`UdQca^&^6SRJNqclEqyUoMYn7ua8+mV$O2AD+w5^?hIDK=G>0o$t}V5S znp&${N#vzx>Z9Htl5j6jSl{W}PuoH+G~>WL+%#pI*~D?Sl64-{SkHH~n7xy6>PWh}@trwH(YxVWE$XIxip z1u%;{1LiG+iPH-qq#IN*zA%iMzMRz_m%32Qy()dOsbGmUF%b(l~m7oxKT7Z7PM9HlupMe${1qu=$P2f0B> zX;ZNU)AYeEQjlPK8vq*j%n;P%bEqU@*#2^&XHp{Bg3+QLGnHn!P16el7+vQ3zKm90z!j*TKtn@YGL5}LP%F{zHNd#r) z{^U_BnKU_LwK=mnX8^Pv)w5)G|Lkd{lxC39mgj!le3f9PM1L>%Vt32_ORT5>8FU`6 z68NQD{PXG22f^Cc#awZfD*FgQxJmdE=24kAAiW+NP*2l_2v-?<0V~c{?VxgkBCzZm zDusjJPd~;=&X9xtN#w-%g*(&H zPi4RFU*cm(xSp6{UIEmdEEyn#aDj*|L8aUdvHQ#M2TllCfN9`(TAyRy3wZICbUyW4 zvXKdDZc5Qa^#;Gy0PeO(B`qXt3kS);1))Dc^#uj_()X(1PT{i2k|ff@4e!XeoD>ki zY(ioO6GgaVkVdR)1(ijnM0cxw%KmU=N~Gy>%?Q>ho?F}MwPK|Q^Di~0PC}bQE{RZv zdpZE!K;urP63Pk7fCNQhg>YboZ4r_Q8d?fl2pO0b4Yrkx50owr@(OlDoAWQWY=_Gx z1UskL{l;GzWR7VAE>q|O43dpNUAciFLD4Do<&FC1?t8#(f~~~|7WrRni3Yo>0*HdZ zW8h93FFO*r$y)XtNok@o{qHh42L`k2m|2Ceut_%V?A-JUd`-zwgp~f8be5loOyz6)?5n$5 z<%K2QjqiB6l}0I8d7;2MX=)c_MJt^0wA?{0@$nmYbJOs^Fj&uKA4sOl)+0mdN-<24 zSJ@g|9iww=Savze`0z-q_`tV;<*<1)`-`uQoAF(mcOfZb-(&MZ?eQf%W`sTO+f zRI{GfHp`Z3n|oO`-)9iiSN!wAmmp`(+NT=3-jts6mNvvIa|Iq0yS29wuJI4Zx4(|M zHn>V!xkp097tu@Ud@iRu#9zQsSZ)J0X&1Ez?$+t=^pz&8Pxs97aHnOk9hJG@B~kY% zcF6-x1O!t!(rZ(i#iK}YcZ3p~!FUewC>})2Xvl-9fAl*JeT!Stg8x=u4>?;U1B=!< zC7Umh1R^PW9~ppB%KKwP%}@h<4vkp?eSW(T^8p>pOdc%I8oPKPBWiMW`M4<3*u~I zj@#k{Z3~1d-CSIqGsQx$e<={j%V;@(Q zj!;K<$by4XpS=Q&dY?U-f}1xaszTNMT+I>3!~!!I4I36z1oUBcdU~)jC9Y)Hr6Fc- zH7V&ig3Dmgfg&{B_Q=z7YPt>=2C04cRU|q!Id~Z_QQOqB0o!2YVLeSFaZc<48fE5V z(QbMqz-hG&_ytA#x*a%l;iV6aP^bO`8nb5A2`uW>2WN8Z(9-fKAcDkbD;%+rACk&m zBVE6Suo|W>VIL`koUK{JHZ?2}Y<=fCWt4VKt+H-W-i*eu|8BXlGk%_2t|fX#gSwz{ zAkJ0JQ0dm-%qYv}8XmL$J)`cFfJ);q4P-Xq5;|#S{2u^G(fzMY4Wu^(?McOP@9<>& zi0l*#Hb#!)k!<&&_G)_P`7$MDRN5m^n}P!jlpnH`MA4r+!y!fD*3ka`(HUW|z?2$T zOwMm44F8xY^LZO5x)wV#B#P`ijYL;Q?tn6|5#9jCL3DV_xX?4m!rrM0SsqXq)O81R zHsEJw5=%ERNQ~>hR3QmgDlwB>Zz2ebIM;YJ>`_a9!HU}*P%(X^&X{3o+m)=a^i+4F zrCBDW`|Fa^p(`sCX@r!^dpJ>CDy1m{x{71#@f4Uq2whz0J3!~jUr%n z2?A>GhOr_#+y@6#O)a)w>1#M#iK zvB&XiWY|3?b+++j1&GMhL(Gs7(F5su6M*(nY+!=F5r%!f!#lZ9)DDTQq*bd1l2d}B2sr3eo$22CZ`S&dYaOBO&Stbb?i* ziv#-JV!tc-p;M`4hDaN)`NDS6Fxg{dU;AILZGf5}`{}82&C0IbWd)V?Vs5r&0=S{z zIeou06jCT!YHzSq%l|~2o2EwjLpn{YXd%(9x1VDEKohuxZBP%PGeNYzLHndB7nfIA zd-ptr6r?l?=4nt;o(FzeMh|9KlgV8U3WV-*U=9vt$+5K5n;#$@%;9tQDKbGmAxfkN zYUDLDTejIM;9Zj96nuf&eOvW5pkwa2hSep#j*K9g+M1~t#VxQ=?3+Fij@s!b*4fxwLThvuIeX&zcCb84=Z8wHNE>`)T6 zJ!8n$ne~O-_iCT1wN6j*>})BD{~l;Kh&!>M2sNFYD{0%xq)(s-Es5+2VA~l01ga`C znnt-MLa^{-h=fds*xBMHXImATTbTffBlSwc2_5FtWe_?Y@}_c-6lmepaLE4c*r~-+cVz zKT8biT1g9@T9!czp6naRo-31J!5kX~bd*#0J=*}_=;?bX{gxtlD>o1hF8REK;ILZe zL)aV~`-GnAxQ@eiW4Hi34|>zg?XO*~*XY`DC*?kr+A))$e$*DW^Yzlyd^tXoF5~DT zT&!7j!xKA*mm?W@As<>vaK z9<)!n`G40(A)M$cCh(5YaC>%^edTaSavR{1wQizsXe1`=hS|POA8;ev<%gG)wK{LP zn3&pKUaCD~gKGA2@R0HRc&f}5-%sSgBzBqaAbZJ-Pv=g`>l z@Q5iGxB=iI8z0LLmF3aTO%;9>UA5JM10tcnnasmD!$?2G$3{N{asn5nzk+jG=>T+a zEwjl3|CdI>A%>HN{h>kv7vm6Lf#I~|w&bPARShV^?ExPK!v;db4WoNMP zLw|hvH(Px`t3n+7!7CFE0C7k`DYW+B*Fx+FS0~-R?#pp>qq1bJYn>aknjoRWr@b5W zS@V}OPw?m(RgpT5S!tY}#Z=!+-%ZjDi%Bf$2b=3l>0Pe&f!L+XHdruVe$juW?hl_zo+7Sc6GdYeFmpQ*xmk z_B=`H{TfT&LDQRYtaU-|Ht>R~o1hV;QBNvx!qk4I^oc2oJBSXYh3j3A8u_Gnk0u>A5WsJzf372)7p z17Xrr7157=s7y0iaKJOl`gD?}V^j!0W=B92?ImKm*3B9Pu}eT3?ij%iZ5nD8gom%s zx`D0utieu|IRr;pNa!~b@M}qljDCkgs{4OTfN3T0d3gC(>@LOKG%)L_PG-iNf1hS- z2nSRSVsCl~x!9ioDgt>*FK4u)dsKfIj%K_LTN*CTw0j(mj2g&(#xYdzHn~jP zwryc6E=hMtBwDV|NVT1w{*)~|I6VmkoiLQa=ji`-x&2Jy^DAYt#t^rj@bE>lH15vP z=WBN0frD7L&buJf42}EY)BE9jOycvYWx_=L51*%FRzVKEyyDk&RwWzF|4%1~Xy0Ng z97nVdK3%krr%tDu?|%Ceu%-TNmmcQd+#t6ffqlT>j+q^>{vQi{fBFXLFs(^x`dyhTf1g-wlGeZ) z#YE+EfM#x|dJQkVo89Fz5a2$$UfKm;yrdd0woM&IM^4ehENOhlo~=SB+R}*oF2kBA zLauX$ab70^?j#4^ewSxLq>8ePcPN5^UhPnu&Yn%|h)4}p72imVyWVKnq}Rvsvpc8# zlkd`;^q`L-3{5OKRO4=VIKsOUtfu5Yas@vVNK&X(waqs%2*cN~)vl^5z^kFt6u>nF zf#m*ou3-!en)_<>wv2*%M4AX{g!+O44Mh<;q2}Sawj}aUr7RVXH0P0Vl@<1Ji^fQb*jc% zwRSBd{$o$Yk6zA3!x5b;Pvgxz(uKkz#$uNkRC|4;{|^JoDAg9{WU3Wxo%VXRr-QAw zvY}fx-;cqky-z>88q_8<~m7=dJQ%dt)e%h?)rlFrNu!{{$ar`TqomqBY^;KkfFmRG8iWk2zWWk4m>f1FhI1O#pYL;NUSibVt1A};*j$3$7L!PIFYSTnpYXcsx$Y%IXs zEPJtrWdgUiAq}_ZA0Ly|j#G7A$%>fYBkjU&O^~*sKHk2^h`hwv7pPdFXmI#B26AIF zyni<&UZI+*pw^jQHPVVk(3^s-i^@r%iSqAUIEV=h0ihlHdt5|$!CGLNcA1j+Q38C0_|F} z6G>*M!M4RWkKvE}hwjT~n1A!L-$#b;0b7%1&$1b%PG(ax;F@0?JbUV)TMD@Rbvup9 z#OR@(#UbSp$v?9|>Ddj&(MT6*oE~q?8uLEbO|&XDic7+cnn$ ztE5wEXigiP2arcyrE% zJt~_SOn#7sZ(KZMyKHZE3<>pj^Yv723=dM*9QTB6{v|D&fG*$sjfv$V0QI~ju*fDs z?K5ksrok? z;K==>in_sXD@X`Sy!IwzYvY||NeF$KjG$e9yZ>4$@EGZ)2=Zabs3-w_c!h z+>BYA{LOw<9%STl^NFh1Ng=dNZH@4)IM_)+w#6sHhx~<=S5$-6?0c!JU`>U+4pX2T ztUA1m3R%&pfe48#J}iS6DOhw7m%%LI*+h_-7g`sR0z%^McTO7ph-#EE#(l>X1tED^*l=r z&98Av&F)=%8!8)mM{OEsdWeG}n>E&PpA`di8>04ih#1~CaM`F2>vz9=0S!Q(fBI%Y zUZEzyZ&|QD;hCBmgzhV;!FojwZ@M|0wRR=ELS6iG%Xc||{)eX!)b~rgRQqQIhVTt_ zSN}0uH5sr&1pTs&!%cTv*lohvH>+}+3G@kS0`jT|EU;mT+AXLI{W*i6*!iECEB+5< z?-VUsuxpD>+qP}nwyia7+qR80ZQHhO+qU)A-uIr{&hPuJq(;(4>n+tsMk)d6eH0$L z`uAw1J$6^X|2ja@XLkkk-wl{qFFgDrALC%-wG}8|6=ai0K>Qn@y}(~Gp#1oIwBa`nM4=K$~{_tjpI^E>kNIyrgx()}-i|E_Ww z;pihbd)nz~{vPOFDc~0mN*BNvfUkUhD9-HdmQGG?SRlH8F5I1PKXf1b-YbYD-PrvX z-P6O@ij6_s6wRWitC%MDTk0U(gUz2e8|NeU*ZzwhDPY3UkamVN=)*kmj&y5cc-{q2 z6X`0tc|3z-#TM=-iBen|){Yb~>7z16bTDNj|B!!RfF`Z8hxr#UfuN=J2{}uqLi%Me z_4CuM`-C8AoC8Aog!By{X-Hb#RzhaF8^^3U&jHznje)Hvx-7x|0SGXYR9`vRQJLPl zqIAo;RB$sjiBDfihOMs%MCQX^vacwCVco|0GXycykwG#x%gKO_(+uc;f;jU31o3eP z7rLqA3z>lbaR}ZZUg98vLmmtcu?GdJ-+Zl)=!fl94pgDV$+<#6Jx%lvE0Y_^acEK_Rod?uZr12QZ7PTT{e)2XZ=?+ zRR63F-T!FpqWqt&`gffu8?Tjecb!X}x9Zi`or>3xcZ&f32TElAe}*k)r5(Mn^!|31 z=0{n|{}(R*7n2|3asP0%@DE4-OYjdzD3tqf#YA2>i& z;9+3&p^8*FZaMo=0lOQqko&)maOpbvpD8;+Zb)!#rS7OYVLVn%wHh66lX(lMD%H-p zslntgsdWcErygx;)olbt-&Y;c#D0u1X8Z^%`KSDE(6fKqes&?H&)sK)Wi)z@gKoi) zH%8hb$;K6u$vGcz2M$1?w;Ma1VvxrD-Pmu%YoUeNj)@cwP>yMHK%Xw{NBQvwJC+9qc)^--U1BGTRp9|H-ZM%WI2Zj z#FyI^q?g?j#t$p$XTArw=tGH`M2>)1yAF0HR?c0n4YlF59=2QmCjViPYg_QFC_WsQ zHBhuRktRZ^tk&lHVc6r#Vvj23ljVFu-$<&M`EgeFd@ZVInrjiUIhIo);LH@ttXksA z^kmocNVv^^i;Pr}9#vH-`sly272zDu(N~KyvsAT;s~r(;c6Pwv=22~^Fk`P2+^^?f z#(D}g!2vx~y;44D49RV?G*OXv;yLsf7AE;@f-&^dJokcfjLxGL#uQ9$l-n|Ks{n;T z#~CQE=_t%v)ZEHKUfIHP6O;Bas~+(;^Him-lhklaP8;5Zn6-FVJIl3@kH{{YU++Ph z_PPC4tx~m`5H&c`XjS*rY;C@g__HIx)gIuj_p4t!C~N|@ZRrg5ld*hQXSs|zovn9J z@1B}%35XnL`ObriP3jKKO;3BY^2^G3u-4q(xfsp4;#a6Lv`rgC-U^&Xbf~0aHu9FZo~*Zy8ftwLVYD{tKJ#N_ zS41$nJsww7c)K%t&#`wlMB~Hm+e!~*1a8)I_&)FDcOV|kospFiCXwM@+Y_M&K8`Ee zsy926+k#huzt+sxh!*Y9d4LIR0lp4Q{~xlaOAm*ixVx$5DK&J^B4QBqw8;^Dc*nfE?VvAb-5= zoa~QgPsg_!?X1Oeb*z{bEMddo%%ZO6HLe;A-fEv^wOu#ZPoGJ`Q|~|HF%2z+|9|kQ zcAMtvCK@7c4x3pCbrxh@-+Qu}WcnHzrDY+<>idi?ifHJrpk5^2K$?izcNIwX8#AL&apDIHFMZ z3kwu+)5LNP?!v1s<&w3`XOU_xFSc1*q6*eiP4A zFtod&i<69`U}(Fs<(4`Z zJpAWY7G`@KovP#4n488_d*NuimunL(p8p+@Q@>WIQ$Y?#_QRqrk$q*++o;N|iLT-` zKQ`v&wSJXbLp47b+gZKe?~!IFk0+p}8R+c?Dfz`c?xL_zzlznkDp7sgwuSOo{x+Vs z&DTl3wXgtmW^PY<-KE33!wS3O%i<9LaVNS*ap#N#Z7p8gib5eJ++ zt8wZv+>#X9vDZHI}<=J08TarKNJC1MS)yn@B*%6?hN^J>hX*hJa5WN3wX(eT%=Degy4 zh2AStq+dk;d-5)H_+I+5+moZa-POzW?HDlk?V0EWmS%>0Ada`q5#^3w7dP<~(Bi>2 zw_(o5VToTe&iE3V+?IC*V&pt|FWBxo?_x(M#^)r5dxAA{#txId8BXxIKf;+syr6;i zr-uJeuHK9arA)U#IAV^KMmVCKwMn=`D9H(XmV=I^HgwnIUgJZoBi1L4KBQUfc$P2h zVR$1$-(4FTNu1kJT)uR-R7Q@saSl1YZ6$dUq;xW|(ZZe92n`c%2C3xPwi0^3F%@%6 z`CCjsk;wC)OB7tZK2G5MCmFVZh*6N}TegQ%AQ-g03<376X(a3zLR^^q53ll{Y7JK} zD?L~4ZF5(vrfZktR;axSJSqzujBJ({SvjnZjL8%hXXXfLtd4eJvgqczuv-TbLh9B* zgPkKU;oqaq5;*arkgrhkR(79IY#t41;}LB9>@{(AK2k|kEX5MUzwDyBYgZ`W9bVlL z!U||**z@wXAemsy|E@3ooz8^2)iqG7R6UupUF=eYo1U(5d|TIju{~`#e(jmmFVHH49+n*Ku>N*QV}lW=FSRxzb4AA;kDMXvJz6DaZpF^X~^b6AdFKp`ogwDsZNDb~oVU zgg#xQCId8Gq?XC}qb$0*pO?idW4|nWRQg_tc6a)^)wUxxEW*_J43uswTj$0iO*dZQ zLW=G5L;Pg2Wy5L@lSXIDc3I0=&%FPl{&E3Ol&_1{cg^VXjHANKU8;!V|G3r8Fe56w?L2Fz6(S)k1!gnQ~t zHmlb&AMLwR+Z}~B+o z%92c8nY5|+?ne3NC8!VU8j~SQ*pUuzwO^)#h3!U7_O-iuC%KLKnY7NUHh@$(d`1 zi5B#2YIHXZm&y8yFnzh#_#L=PTV}QAr>cD|FbOnu2~R5VJpFuI<}EpmHtZ-JG2)OA zy>jY3?Gu|;>+@aPb{G`4O>v}9$eC48s7(xovTtKn5{e}}>z>#HzNKahw0k*PI7?jP zhi;*c0aCwjv#QA}dhAFem6aw_-1A+RB__Kl2kBq5!v|nQuF9?)1E7P;g`%{e=qKRu-Rw>tUC% zi18$Gu|g!YB?bJrdD<=pym)|TNWAOCieRTD&FzhVQ|P2P3WTz4W0i*i{dJew4lrpr zRCQ8^3xp-q`P?htXOxR7jLE9M{-a>r+<-3#}ZPz}s(E8x9&128w!b)$mNklaS zVkHvwrtkKV_nb?wfh*cgNj|>&qp@pI z&9~KNT6!cxJym_jxlu#lP09uOHv+h;i{Bn}61wx_ixL?a;lTZA%_mk0t}``OBa}od z&h2nI1*73nS*E&7jz(1M{dU;HXwt?B?YNy?f1>y18GV3v`Zug9g_m?p}1mRIDH8zuATLLZ=_f z7|HM1ORhCB{8qfOW!rfu<X|P?^@@yMNjmWM)tz>f3m^EC}U9dAT@|e?k|4mpIzvzIq%Z%@^ z-Ki;?&#u$q@OjPN0pD@u&`mRS($-xc+vu{{zn=ExV#&_Zt8gH6Qzep~rKT~WdEHbd zXGst70lg+(h1-1jZgqNC3!}JWi`K=OBwq0%Jk95?<_2_dSLsUna?nAHA}*C9a@BG% zc14#(`rXFf^s$+gk^eo}28WHhD)y%ScKA1a3=H$WP9#XDKX8VxTia6bKz>%6Wc1sx zb7z4(?x>CBgKTO4Pfmlyy}blv*>B{Fg$%HGneaMxcd_7bBsYvkG=JNt>&5#w!%=0j zx(p57Z3WqMS0Y{q9&Ar!3k1G-5f%P`%cnw!n&KWY;`P1($xS6u{T&m+L;hDW4sgx} ztO+xdFJz5~O~dqEohEvwtP)-vwK!~fNWVl@0cjRl@r%XLAK=A-Y>tThoYd?S3j6Y- z{zoBw?2KcMmCd>C&d`e7@RR4kr%BE7{Gn5WK2a};0|r+e&KS)5 z2A>0q(TOq&h~6QCwLb^uwlX7o8TOcflLPy-X{29TVoVOtFFzL#KT;4-Bq#wil6x?N z?o@|jpWYw-9Wqdy-8RteqPPg~ux-aO0?pNG-3CEYS)GSaD3UjEbYMgz;JfHSq9x75;DfxcJ^od8u9d3qt{EAJz+ zGp{20r3B~khZFISWy+PLGw~lJ<)MhMdz$>wJ_Gw^JY~g}cimcrdb_pn!IE0dq(hO3 z?kdaN0}-r|nz0o`C-w-GOJM5RXF0TOR65%BpCRKql)nBH&Q@MhY7B%Z55V%gaiXVF zkHHkftihTWuV*X^LTgS0sSXjjngl_>0cU8+H!#B{_&eP|R_H1Go&=D*OSHbE3%`